diff --git a/translated_images/9-feature-importance.cd3193b4bba3fd4bccd415f566c2437fb3298c4824a3dabbcab15270d783606e.fa.png b/translated_images/9-feature-importance.cd3193b4bba3fd4bccd415f566c2437fb3298c4824a3dabbcab15270d783606e.fa.png new file mode 100644 index 000000000..43a3db8d9 Binary files /dev/null and b/translated_images/9-feature-importance.cd3193b4bba3fd4bccd415f566c2437fb3298c4824a3dabbcab15270d783606e.fa.png differ diff --git a/translated_images/9-features-influence.3ead3d3f68a84029f1e40d3eba82107445d3d3b6975d4682b23d8acc905da6d0.fa.png b/translated_images/9-features-influence.3ead3d3f68a84029f1e40d3eba82107445d3d3b6975d4682b23d8acc905da6d0.fa.png new file mode 100644 index 000000000..64ade67d6 Binary files /dev/null and b/translated_images/9-features-influence.3ead3d3f68a84029f1e40d3eba82107445d3d3b6975d4682b23d8acc905da6d0.fa.png differ diff --git a/translated_images/ROC.167a70519c5bf8983f04e959942bb550de0fa37c220ff12c0f272d1af16e764a.fa.png b/translated_images/ROC.167a70519c5bf8983f04e959942bb550de0fa37c220ff12c0f272d1af16e764a.fa.png new file mode 100644 index 000000000..305fd20d2 Binary files /dev/null and b/translated_images/ROC.167a70519c5bf8983f04e959942bb550de0fa37c220ff12c0f272d1af16e764a.fa.png differ diff --git a/translated_images/ROC_2.777f20cdfc4988ca683ade6850ac832cb70c96c12f1b910d294f270ef36e1a1c.fa.png b/translated_images/ROC_2.777f20cdfc4988ca683ade6850ac832cb70c96c12f1b910d294f270ef36e1a1c.fa.png new file mode 100644 index 000000000..5c7f814ee Binary files /dev/null and b/translated_images/ROC_2.777f20cdfc4988ca683ade6850ac832cb70c96c12f1b910d294f270ef36e1a1c.fa.png differ diff --git a/translated_images/accessibility.c1be5ce816eaea652fe1879bbaf74d97ef15d895ee852a7b0e3542a77b735137.fa.png b/translated_images/accessibility.c1be5ce816eaea652fe1879bbaf74d97ef15d895ee852a7b0e3542a77b735137.fa.png new file mode 100644 index 000000000..18d19a556 Binary files /dev/null and b/translated_images/accessibility.c1be5ce816eaea652fe1879bbaf74d97ef15d895ee852a7b0e3542a77b735137.fa.png differ diff --git a/translated_images/accountability.41d8c0f4b85b6231301d97f17a450a805b7a07aaeb56b34015d71c757cad142e.fa.png b/translated_images/accountability.41d8c0f4b85b6231301d97f17a450a805b7a07aaeb56b34015d71c757cad142e.fa.png new file mode 100644 index 000000000..591e7c695 Binary files /dev/null and b/translated_images/accountability.41d8c0f4b85b6231301d97f17a450a805b7a07aaeb56b34015d71c757cad142e.fa.png differ diff --git a/translated_images/accuracy.2c47fe1bf15f44b3656651c84d5e2ba9b37cd929cd2aa8ab6cc3073f50570f4e.fa.png b/translated_images/accuracy.2c47fe1bf15f44b3656651c84d5e2ba9b37cd929cd2aa8ab6cc3073f50570f4e.fa.png new file mode 100644 index 000000000..4fa08b2cc Binary files /dev/null and b/translated_images/accuracy.2c47fe1bf15f44b3656651c84d5e2ba9b37cd929cd2aa8ab6cc3073f50570f4e.fa.png differ diff --git a/translated_images/ai-ml-ds.537ea441b124ebf69c144a52c0eb13a7af63c4355c2f92f440979380a2fb08b8.fa.png b/translated_images/ai-ml-ds.537ea441b124ebf69c144a52c0eb13a7af63c4355c2f92f440979380a2fb08b8.fa.png new file mode 100644 index 000000000..e29d82287 Binary files /dev/null and b/translated_images/ai-ml-ds.537ea441b124ebf69c144a52c0eb13a7af63c4355c2f92f440979380a2fb08b8.fa.png differ diff --git a/translated_images/all-genres.1d56ef06cefbfcd61183023834ed3cb891a5ee638a3ba5c924b3151bf80208d7.fa.png b/translated_images/all-genres.1d56ef06cefbfcd61183023834ed3cb891a5ee638a3ba5c924b3151bf80208d7.fa.png new file mode 100644 index 000000000..9049f9738 Binary files /dev/null and b/translated_images/all-genres.1d56ef06cefbfcd61183023834ed3cb891a5ee638a3ba5c924b3151bf80208d7.fa.png differ diff --git a/translated_images/apple.c81c8d5965e5e5daab4a5f6d6aa08162915f2118ce0e46f2867f1a46335e874c.fa.png b/translated_images/apple.c81c8d5965e5e5daab4a5f6d6aa08162915f2118ce0e46f2867f1a46335e874c.fa.png new file mode 100644 index 000000000..a2f8cd88e Binary files /dev/null and b/translated_images/apple.c81c8d5965e5e5daab4a5f6d6aa08162915f2118ce0e46f2867f1a46335e874c.fa.png differ diff --git a/translated_images/barchart.a833ea9194346d769c77a3a870f7d8aee51574cd1138ca902e5500830a41cbce.fa.png b/translated_images/barchart.a833ea9194346d769c77a3a870f7d8aee51574cd1138ca902e5500830a41cbce.fa.png new file mode 100644 index 000000000..f781b319b Binary files /dev/null and b/translated_images/barchart.a833ea9194346d769c77a3a870f7d8aee51574cd1138ca902e5500830a41cbce.fa.png differ diff --git a/translated_images/bellman-equation.7c0c4c722e5a6b7c208071a0bae51664965050848e4f8a84bb377cd18bdd838b.fa.png b/translated_images/bellman-equation.7c0c4c722e5a6b7c208071a0bae51664965050848e4f8a84bb377cd18bdd838b.fa.png new file mode 100644 index 000000000..6d0dd8e02 Binary files /dev/null and b/translated_images/bellman-equation.7c0c4c722e5a6b7c208071a0bae51664965050848e4f8a84bb377cd18bdd838b.fa.png differ diff --git a/translated_images/binary-multiclass.b56d0c86c81105a697dddd82242c1d11e4d78b7afefea07a44627a0f1111c1a9.fa.png b/translated_images/binary-multiclass.b56d0c86c81105a697dddd82242c1d11e4d78b7afefea07a44627a0f1111c1a9.fa.png new file mode 100644 index 000000000..09fe1cfa3 Binary files /dev/null and b/translated_images/binary-multiclass.b56d0c86c81105a697dddd82242c1d11e4d78b7afefea07a44627a0f1111c1a9.fa.png differ diff --git a/translated_images/boxplots.8228c29dabd0f29227dd38624231a175f411f1d8d4d7c012cb770e00e4fdf8b6.fa.png b/translated_images/boxplots.8228c29dabd0f29227dd38624231a175f411f1d8d4d7c012cb770e00e4fdf8b6.fa.png new file mode 100644 index 000000000..fa8219909 Binary files /dev/null and b/translated_images/boxplots.8228c29dabd0f29227dd38624231a175f411f1d8d4d7c012cb770e00e4fdf8b6.fa.png differ diff --git a/translated_images/calculation.a209813050a1ddb141cdc4bc56f3af31e67157ed499e16a2ecf9837542704c94.fa.png b/translated_images/calculation.a209813050a1ddb141cdc4bc56f3af31e67157ed499e16a2ecf9837542704c94.fa.png new file mode 100644 index 000000000..09b220935 Binary files /dev/null and b/translated_images/calculation.a209813050a1ddb141cdc4bc56f3af31e67157ed499e16a2ecf9837542704c94.fa.png differ diff --git a/translated_images/cartpole.b5609cc0494a14f75d121299495ae24fd8f1c30465e7b40961af94ecda2e1cd0.fa.png b/translated_images/cartpole.b5609cc0494a14f75d121299495ae24fd8f1c30465e7b40961af94ecda2e1cd0.fa.png new file mode 100644 index 000000000..76b66c47c Binary files /dev/null and b/translated_images/cartpole.b5609cc0494a14f75d121299495ae24fd8f1c30465e7b40961af94ecda2e1cd0.fa.png differ diff --git a/translated_images/centroid.097fde836cf6c9187d0b2033e9f94441829f9d86f4f0b1604dd4b3d1931aee34.fa.png b/translated_images/centroid.097fde836cf6c9187d0b2033e9f94441829f9d86f4f0b1604dd4b3d1931aee34.fa.png new file mode 100644 index 000000000..81c85893c Binary files /dev/null and b/translated_images/centroid.097fde836cf6c9187d0b2033e9f94441829f9d86f4f0b1604dd4b3d1931aee34.fa.png differ diff --git a/translated_images/ceos.3de5d092ce8d2753d22b48605c1d936a1477081c0646c006a07e9c80a2249fe4.fa.png b/translated_images/ceos.3de5d092ce8d2753d22b48605c1d936a1477081c0646c006a07e9c80a2249fe4.fa.png new file mode 100644 index 000000000..bbb373a47 Binary files /dev/null and b/translated_images/ceos.3de5d092ce8d2753d22b48605c1d936a1477081c0646c006a07e9c80a2249fe4.fa.png differ diff --git a/translated_images/ceos.7a9a67871424a6c07986e7c22ddae062ac660c469f6a54435196e0ae73a1c4da.fa.png b/translated_images/ceos.7a9a67871424a6c07986e7c22ddae062ac660c469f6a54435196e0ae73a1c4da.fa.png new file mode 100644 index 000000000..bbb373a47 Binary files /dev/null and b/translated_images/ceos.7a9a67871424a6c07986e7c22ddae062ac660c469f6a54435196e0ae73a1c4da.fa.png differ diff --git a/translated_images/cf-what-if-features.5a92a6924da3e9b58b654c974d7560bfbfc067c123b73e98ab4935448b3f70d5.fa.png b/translated_images/cf-what-if-features.5a92a6924da3e9b58b654c974d7560bfbfc067c123b73e98ab4935448b3f70d5.fa.png new file mode 100644 index 000000000..2c3953e37 Binary files /dev/null and b/translated_images/cf-what-if-features.5a92a6924da3e9b58b654c974d7560bfbfc067c123b73e98ab4935448b3f70d5.fa.png differ diff --git a/translated_images/cheatsheet.07a475ea444d22234cb8907a3826df5bdd1953efec94bd18e4496f36ff60624a.fa.png b/translated_images/cheatsheet.07a475ea444d22234cb8907a3826df5bdd1953efec94bd18e4496f36ff60624a.fa.png new file mode 100644 index 000000000..caff5e38e Binary files /dev/null and b/translated_images/cheatsheet.07a475ea444d22234cb8907a3826df5bdd1953efec94bd18e4496f36ff60624a.fa.png differ diff --git a/translated_images/chess.e704a268781bdad85d1876b6c2295742fa0d856e7dcf3659147052df9d3db205.fa.jpg b/translated_images/chess.e704a268781bdad85d1876b6c2295742fa0d856e7dcf3659147052df9d3db205.fa.jpg new file mode 100644 index 000000000..afef99916 Binary files /dev/null and b/translated_images/chess.e704a268781bdad85d1876b6c2295742fa0d856e7dcf3659147052df9d3db205.fa.jpg differ diff --git a/translated_images/chinese.e62cafa5309f111afd1b54490336daf4e927ce32bed837069a0b7ce481dfae8d.fa.png b/translated_images/chinese.e62cafa5309f111afd1b54490336daf4e927ce32bed837069a0b7ce481dfae8d.fa.png new file mode 100644 index 000000000..b2a6d3dfd Binary files /dev/null and b/translated_images/chinese.e62cafa5309f111afd1b54490336daf4e927ce32bed837069a0b7ce481dfae8d.fa.png differ diff --git a/translated_images/clusters.b635354640d8e4fd4a49ef545495518e7be76172c97c13bd748f5b79f171f69a.fa.png b/translated_images/clusters.b635354640d8e4fd4a49ef545495518e7be76172c97c13bd748f5b79f171f69a.fa.png new file mode 100644 index 000000000..5f991e289 Binary files /dev/null and b/translated_images/clusters.b635354640d8e4fd4a49ef545495518e7be76172c97c13bd748f5b79f171f69a.fa.png differ diff --git a/translated_images/comparison.edfab56193a85e7fdecbeaa1b1f8c99e94adbf7178bed0de902090cf93d6734f.fa.png b/translated_images/comparison.edfab56193a85e7fdecbeaa1b1f8c99e94adbf7178bed0de902090cf93d6734f.fa.png new file mode 100644 index 000000000..66e090d89 Binary files /dev/null and b/translated_images/comparison.edfab56193a85e7fdecbeaa1b1f8c99e94adbf7178bed0de902090cf93d6734f.fa.png differ diff --git a/translated_images/comprehension.619708fc5959b0f6a24ebffba2ad7b0625391a476141df65b43b59de24e45c6f.fa.png b/translated_images/comprehension.619708fc5959b0f6a24ebffba2ad7b0625391a476141df65b43b59de24e45c6f.fa.png new file mode 100644 index 000000000..9fb69618f Binary files /dev/null and b/translated_images/comprehension.619708fc5959b0f6a24ebffba2ad7b0625391a476141df65b43b59de24e45c6f.fa.png differ diff --git a/translated_images/confusion-matrix.3cc5496a1a37c3e4311e74790f15a1426e03e27af7e611aaabda56bc0a802aaf.fa.png b/translated_images/confusion-matrix.3cc5496a1a37c3e4311e74790f15a1426e03e27af7e611aaabda56bc0a802aaf.fa.png new file mode 100644 index 000000000..fd463d4e3 Binary files /dev/null and b/translated_images/confusion-matrix.3cc5496a1a37c3e4311e74790f15a1426e03e27af7e611aaabda56bc0a802aaf.fa.png differ diff --git a/translated_images/correlation.a9356bb798f5eea51f47185968e1ebac5c078c92fce9931e28ccf0d7fab71c2b.fa.png b/translated_images/correlation.a9356bb798f5eea51f47185968e1ebac5c078c92fce9931e28ccf0d7fab71c2b.fa.png new file mode 100644 index 000000000..534fac14e Binary files /dev/null and b/translated_images/correlation.a9356bb798f5eea51f47185968e1ebac5c078c92fce9931e28ccf0d7fab71c2b.fa.png differ diff --git a/translated_images/counterfactuals-examples.b38a50a504ee0a9fc6087aba050a212a5f838adc5b0d76c5c656f8b1ccaab822.fa.png b/translated_images/counterfactuals-examples.b38a50a504ee0a9fc6087aba050a212a5f838adc5b0d76c5c656f8b1ccaab822.fa.png new file mode 100644 index 000000000..566b1e104 Binary files /dev/null and b/translated_images/counterfactuals-examples.b38a50a504ee0a9fc6087aba050a212a5f838adc5b0d76c5c656f8b1ccaab822.fa.png differ diff --git a/translated_images/cuisine-dist.d0cc2d551abe5c25f83d73a5f560927e4a061e9a4560bac1e97d35682ef3ca6d.fa.png b/translated_images/cuisine-dist.d0cc2d551abe5c25f83d73a5f560927e4a061e9a4560bac1e97d35682ef3ca6d.fa.png new file mode 100644 index 000000000..97b45b02a Binary files /dev/null and b/translated_images/cuisine-dist.d0cc2d551abe5c25f83d73a5f560927e4a061e9a4560bac1e97d35682ef3ca6d.fa.png differ diff --git a/translated_images/currency.e7429812bfc8c6087b2d4c410faaa4aaa11b2fcaabf6f09549b8249c9fbdb641.fa.png b/translated_images/currency.e7429812bfc8c6087b2d4c410faaa4aaa11b2fcaabf6f09549b8249c9fbdb641.fa.png new file mode 100644 index 000000000..0f56c6528 Binary files /dev/null and b/translated_images/currency.e7429812bfc8c6087b2d4c410faaa4aaa11b2fcaabf6f09549b8249c9fbdb641.fa.png differ diff --git a/translated_images/data-visualization.54e56dded7c1a804d00d027543f2881cb32da73aeadda2d4a4f10f3497526114.fa.png b/translated_images/data-visualization.54e56dded7c1a804d00d027543f2881cb32da73aeadda2d4a4f10f3497526114.fa.png new file mode 100644 index 000000000..cb5ebd9b8 Binary files /dev/null and b/translated_images/data-visualization.54e56dded7c1a804d00d027543f2881cb32da73aeadda2d4a4f10f3497526114.fa.png differ diff --git a/translated_images/dataanalysis-cover.8d6d0683a70a5c1e274e5a94b27a71137e3d0a3b707761d7170eb340dd07f11d.fa.png b/translated_images/dataanalysis-cover.8d6d0683a70a5c1e274e5a94b27a71137e3d0a3b707761d7170eb340dd07f11d.fa.png new file mode 100644 index 000000000..11e2ed67b Binary files /dev/null and b/translated_images/dataanalysis-cover.8d6d0683a70a5c1e274e5a94b27a71137e3d0a3b707761d7170eb340dd07f11d.fa.png differ diff --git a/translated_images/datapoints.aaf6815cd5d873541b61b73b9a6ee6a53914b5d62ed2cbbedaa2e1d9a414c5c1.fa.png b/translated_images/datapoints.aaf6815cd5d873541b61b73b9a6ee6a53914b5d62ed2cbbedaa2e1d9a414c5c1.fa.png new file mode 100644 index 000000000..4a6619bcd Binary files /dev/null and b/translated_images/datapoints.aaf6815cd5d873541b61b73b9a6ee6a53914b5d62ed2cbbedaa2e1d9a414c5c1.fa.png differ diff --git a/translated_images/distribution.9be11df42356ca958dc8e06e87865e09d77cab78f94fe4fea8a1e6796c64dc4b.fa.png b/translated_images/distribution.9be11df42356ca958dc8e06e87865e09d77cab78f94fe4fea8a1e6796c64dc4b.fa.png new file mode 100644 index 000000000..9303fbbb5 Binary files /dev/null and b/translated_images/distribution.9be11df42356ca958dc8e06e87865e09d77cab78f94fe4fea8a1e6796c64dc4b.fa.png differ diff --git a/translated_images/dplyr_filter.b480b264b03439ff7051232a8de1df9a8fd4df723db316feb4f9f5e990db4318.fa.jpg b/translated_images/dplyr_filter.b480b264b03439ff7051232a8de1df9a8fd4df723db316feb4f9f5e990db4318.fa.jpg new file mode 100644 index 000000000..bc58a393d Binary files /dev/null and b/translated_images/dplyr_filter.b480b264b03439ff7051232a8de1df9a8fd4df723db316feb4f9f5e990db4318.fa.jpg differ diff --git a/translated_images/dplyr_wrangling.f5f99c64fd4580f1377fee3ea428b6f8fd073845ec0f8409d483cfe148f0984e.fa.png b/translated_images/dplyr_wrangling.f5f99c64fd4580f1377fee3ea428b6f8fd073845ec0f8409d483cfe148f0984e.fa.png new file mode 100644 index 000000000..dc66fa584 Binary files /dev/null and b/translated_images/dplyr_wrangling.f5f99c64fd4580f1377fee3ea428b6f8fd073845ec0f8409d483cfe148f0984e.fa.png differ diff --git a/translated_images/ea-error-cohort.6886209ea5d438c4daa8bfbf5ce3a7042586364dd3eccda4a4e3d05623ac702a.fa.png b/translated_images/ea-error-cohort.6886209ea5d438c4daa8bfbf5ce3a7042586364dd3eccda4a4e3d05623ac702a.fa.png new file mode 100644 index 000000000..ba5a5d745 Binary files /dev/null and b/translated_images/ea-error-cohort.6886209ea5d438c4daa8bfbf5ce3a7042586364dd3eccda4a4e3d05623ac702a.fa.png differ diff --git a/translated_images/ea-error-distribution.117452e1177c1dd84fab2369967a68bcde787c76c6ea7fdb92fcf15d1fce8206.fa.png b/translated_images/ea-error-distribution.117452e1177c1dd84fab2369967a68bcde787c76c6ea7fdb92fcf15d1fce8206.fa.png new file mode 100644 index 000000000..8d13a8aef Binary files /dev/null and b/translated_images/ea-error-distribution.117452e1177c1dd84fab2369967a68bcde787c76c6ea7fdb92fcf15d1fce8206.fa.png differ diff --git a/translated_images/ea-heatmap.8d27185e28cee3830c85e1b2e9df9d2d5e5c8c940f41678efdb68753f2f7e56c.fa.png b/translated_images/ea-heatmap.8d27185e28cee3830c85e1b2e9df9d2d5e5c8c940f41678efdb68753f2f7e56c.fa.png new file mode 100644 index 000000000..8db10028e Binary files /dev/null and b/translated_images/ea-heatmap.8d27185e28cee3830c85e1b2e9df9d2d5e5c8c940f41678efdb68753f2f7e56c.fa.png differ diff --git a/translated_images/elbow.72676169eed744ff03677e71334a16c6b8f751e9e716e3d7f40dd7cdef674cca.fa.png b/translated_images/elbow.72676169eed744ff03677e71334a16c6b8f751e9e716e3d7f40dd7cdef674cca.fa.png new file mode 100644 index 000000000..c324c9ee5 Binary files /dev/null and b/translated_images/elbow.72676169eed744ff03677e71334a16c6b8f751e9e716e3d7f40dd7cdef674cca.fa.png differ diff --git a/translated_images/electric-grid.0c21d5214db09ffae93c06a87ca2abbb9ba7475ef815129c5b423d7f9a7cf136.fa.jpg b/translated_images/electric-grid.0c21d5214db09ffae93c06a87ca2abbb9ba7475ef815129c5b423d7f9a7cf136.fa.jpg new file mode 100644 index 000000000..9616118e7 Binary files /dev/null and b/translated_images/electric-grid.0c21d5214db09ffae93c06a87ca2abbb9ba7475ef815129c5b423d7f9a7cf136.fa.jpg differ diff --git a/translated_images/eliza.84397454cda9559bb5ec296b5b8fff067571c0cccc5405f9c1ab1c3f105c075c.fa.png b/translated_images/eliza.84397454cda9559bb5ec296b5b8fff067571c0cccc5405f9c1ab1c3f105c075c.fa.png new file mode 100644 index 000000000..cf3f031c7 Binary files /dev/null and b/translated_images/eliza.84397454cda9559bb5ec296b5b8fff067571c0cccc5405f9c1ab1c3f105c075c.fa.png differ diff --git a/translated_images/embedding.2cf8953c4b3101d188c2f61a5de5b6f53caaa5ad4ed99236d42bc3b6bd6a1fe2.fa.png b/translated_images/embedding.2cf8953c4b3101d188c2f61a5de5b6f53caaa5ad4ed99236d42bc3b6bd6a1fe2.fa.png new file mode 100644 index 000000000..8967953da Binary files /dev/null and b/translated_images/embedding.2cf8953c4b3101d188c2f61a5de5b6f53caaa5ad4ed99236d42bc3b6bd6a1fe2.fa.png differ diff --git a/translated_images/encouRage.e75d5fe0367fb9136b78104baf4e2032a7622bc42a2bc34c0ad36c294eeb83f5.fa.jpg b/translated_images/encouRage.e75d5fe0367fb9136b78104baf4e2032a7622bc42a2bc34c0ad36c294eeb83f5.fa.jpg new file mode 100644 index 000000000..525b8541a Binary files /dev/null and b/translated_images/encouRage.e75d5fe0367fb9136b78104baf4e2032a7622bc42a2bc34c0ad36c294eeb83f5.fa.jpg differ diff --git a/translated_images/energy-plot.5fdac3f397a910bc6070602e9e45bea8860d4c239354813fa8fc3c9d556f5bad.fa.png b/translated_images/energy-plot.5fdac3f397a910bc6070602e9e45bea8860d4c239354813fa8fc3c9d556f5bad.fa.png new file mode 100644 index 000000000..4c6c01c36 Binary files /dev/null and b/translated_images/energy-plot.5fdac3f397a910bc6070602e9e45bea8860d4c239354813fa8fc3c9d556f5bad.fa.png differ diff --git a/translated_images/env_init.04e8f26d2d60089e128f21d22e5fef57d580e559f0d5937b06c689e5e7cdd438.fa.png b/translated_images/env_init.04e8f26d2d60089e128f21d22e5fef57d580e559f0d5937b06c689e5e7cdd438.fa.png new file mode 100644 index 000000000..15f84e910 Binary files /dev/null and b/translated_images/env_init.04e8f26d2d60089e128f21d22e5fef57d580e559f0d5937b06c689e5e7cdd438.fa.png differ diff --git a/translated_images/environment.40ba3cb66256c93fa7e92f6f7214e1d1f588aafa97d266c11d108c5c5d101b6c.fa.png b/translated_images/environment.40ba3cb66256c93fa7e92f6f7214e1d1f588aafa97d266c11d108c5c5d101b6c.fa.png new file mode 100644 index 000000000..f340cf46f Binary files /dev/null and b/translated_images/environment.40ba3cb66256c93fa7e92f6f7214e1d1f588aafa97d266c11d108c5c5d101b6c.fa.png differ diff --git a/translated_images/escape.18862db9930337e3fce23a9b6a76a06445f229dadea2268e12a6f0a1fde12115.fa.png b/translated_images/escape.18862db9930337e3fce23a9b6a76a06445f229dadea2268e12a6f0a1fde12115.fa.png new file mode 100644 index 000000000..891e0750e Binary files /dev/null and b/translated_images/escape.18862db9930337e3fce23a9b6a76a06445f229dadea2268e12a6f0a1fde12115.fa.png differ diff --git a/translated_images/facetgrid.9b2e65ce707eba1f983b7cdfed5d952e60f385947afa3011df6e3cc7d200eb5b.fa.png b/translated_images/facetgrid.9b2e65ce707eba1f983b7cdfed5d952e60f385947afa3011df6e3cc7d200eb5b.fa.png new file mode 100644 index 000000000..4616f153d Binary files /dev/null and b/translated_images/facetgrid.9b2e65ce707eba1f983b7cdfed5d952e60f385947afa3011df6e3cc7d200eb5b.fa.png differ diff --git a/translated_images/fairness.25d7c8ce9817272d25dd0e2b42a6addf7d3b8241cb6c3088fa9fc3eb7227781d.fa.png b/translated_images/fairness.25d7c8ce9817272d25dd0e2b42a6addf7d3b8241cb6c3088fa9fc3eb7227781d.fa.png new file mode 100644 index 000000000..6cc6dc9e4 Binary files /dev/null and b/translated_images/fairness.25d7c8ce9817272d25dd0e2b42a6addf7d3b8241cb6c3088fa9fc3eb7227781d.fa.png differ diff --git a/translated_images/fairness.b9f9893a4e3dc28bec350a714555c3be39040c3fe7e0aa4da10bb8e3c54a1cc9.fa.png b/translated_images/fairness.b9f9893a4e3dc28bec350a714555c3be39040c3fe7e0aa4da10bb8e3c54a1cc9.fa.png new file mode 100644 index 000000000..6cc6dc9e4 Binary files /dev/null and b/translated_images/fairness.b9f9893a4e3dc28bec350a714555c3be39040c3fe7e0aa4da10bb8e3c54a1cc9.fa.png differ diff --git a/translated_images/favicon.37b561214b36d454f9fd1f725d77f310fe256eb88f2a0ae08b9cb18aeb30650c.fa.png b/translated_images/favicon.37b561214b36d454f9fd1f725d77f310fe256eb88f2a0ae08b9cb18aeb30650c.fa.png new file mode 100644 index 000000000..26e0ae439 Binary files /dev/null and b/translated_images/favicon.37b561214b36d454f9fd1f725d77f310fe256eb88f2a0ae08b9cb18aeb30650c.fa.png differ diff --git a/translated_images/flat-nonflat.d1c8c6e2a96110c1d57fa0b72913f6aab3c245478524d25baf7f4a18efcde224.fa.png b/translated_images/flat-nonflat.d1c8c6e2a96110c1d57fa0b72913f6aab3c245478524d25baf7f4a18efcde224.fa.png new file mode 100644 index 000000000..eec3f3263 Binary files /dev/null and b/translated_images/flat-nonflat.d1c8c6e2a96110c1d57fa0b72913f6aab3c245478524d25baf7f4a18efcde224.fa.png differ diff --git a/translated_images/full-data-predict.4f0fed16a131c8f3bcc57a3060039dc7f2f714a05b07b68c513e0fe7fb3d8964.fa.png b/translated_images/full-data-predict.4f0fed16a131c8f3bcc57a3060039dc7f2f714a05b07b68c513e0fe7fb3d8964.fa.png new file mode 100644 index 000000000..d280693bb Binary files /dev/null and b/translated_images/full-data-predict.4f0fed16a131c8f3bcc57a3060039dc7f2f714a05b07b68c513e0fe7fb3d8964.fa.png differ diff --git a/translated_images/full-data.a82ec9957e580e976f651a4fc38f280b9229c6efdbe3cfe7c60abaa9486d2cbe.fa.png b/translated_images/full-data.a82ec9957e580e976f651a4fc38f280b9229c6efdbe3cfe7c60abaa9486d2cbe.fa.png new file mode 100644 index 000000000..17e7094b9 Binary files /dev/null and b/translated_images/full-data.a82ec9957e580e976f651a4fc38f280b9229c6efdbe3cfe7c60abaa9486d2cbe.fa.png differ diff --git a/translated_images/gender-bias-translate-en-tr.bfd87c45da23c08526ec072e397d571d96b6051c8b538600b1ada80289d6ac58.fa.png b/translated_images/gender-bias-translate-en-tr.bfd87c45da23c08526ec072e397d571d96b6051c8b538600b1ada80289d6ac58.fa.png new file mode 100644 index 000000000..29c194f63 Binary files /dev/null and b/translated_images/gender-bias-translate-en-tr.bfd87c45da23c08526ec072e397d571d96b6051c8b538600b1ada80289d6ac58.fa.png differ diff --git a/translated_images/gender-bias-translate-en-tr.f185fd8822c2d4372912f2b690f6aaddd306ffbb49d795ad8d12a4bf141e7af0.fa.png b/translated_images/gender-bias-translate-en-tr.f185fd8822c2d4372912f2b690f6aaddd306ffbb49d795ad8d12a4bf141e7af0.fa.png new file mode 100644 index 000000000..29c194f63 Binary files /dev/null and b/translated_images/gender-bias-translate-en-tr.f185fd8822c2d4372912f2b690f6aaddd306ffbb49d795ad8d12a4bf141e7af0.fa.png differ diff --git a/translated_images/gender-bias-translate-tr-en.1f97568ba9e40e20eb5b40e8538fc38994b794597d2e446f8e43cf40a4baced9.fa.png b/translated_images/gender-bias-translate-tr-en.1f97568ba9e40e20eb5b40e8538fc38994b794597d2e446f8e43cf40a4baced9.fa.png new file mode 100644 index 000000000..d6a0167b6 Binary files /dev/null and b/translated_images/gender-bias-translate-tr-en.1f97568ba9e40e20eb5b40e8538fc38994b794597d2e446f8e43cf40a4baced9.fa.png differ diff --git a/translated_images/gender-bias-translate-tr-en.4eee7e3cecb8c70e13a8abbc379209bc8032714169e585bdeac75af09b1752aa.fa.png b/translated_images/gender-bias-translate-tr-en.4eee7e3cecb8c70e13a8abbc379209bc8032714169e585bdeac75af09b1752aa.fa.png new file mode 100644 index 000000000..d6a0167b6 Binary files /dev/null and b/translated_images/gender-bias-translate-tr-en.4eee7e3cecb8c70e13a8abbc379209bc8032714169e585bdeac75af09b1752aa.fa.png differ diff --git a/translated_images/globe.59f26379ceb40428672b4d9a568044618a2bf6292ecd53a5c481b90e3fa805eb.fa.jpg b/translated_images/globe.59f26379ceb40428672b4d9a568044618a2bf6292ecd53a5c481b90e3fa805eb.fa.jpg new file mode 100644 index 000000000..31ba4b334 Binary files /dev/null and b/translated_images/globe.59f26379ceb40428672b4d9a568044618a2bf6292ecd53a5c481b90e3fa805eb.fa.jpg differ diff --git a/translated_images/grid.464370ad00f3696ce81c7488a963158b69d3b1cfd3f020c58a28360e5cf4239c.fa.png b/translated_images/grid.464370ad00f3696ce81c7488a963158b69d3b1cfd3f020c58a28360e5cf4239c.fa.png new file mode 100644 index 000000000..44be91b15 Binary files /dev/null and b/translated_images/grid.464370ad00f3696ce81c7488a963158b69d3b1cfd3f020c58a28360e5cf4239c.fa.png differ diff --git a/translated_images/heatmap.39952045da50b4eb206764735021552f31cff773a79997ece7481fe614897a25.fa.png b/translated_images/heatmap.39952045da50b4eb206764735021552f31cff773a79997ece7481fe614897a25.fa.png new file mode 100644 index 000000000..9249fef7b Binary files /dev/null and b/translated_images/heatmap.39952045da50b4eb206764735021552f31cff773a79997ece7481fe614897a25.fa.png differ diff --git a/translated_images/hierarchical.bf59403aa43c8c47493bfdf1cc25230f26e45f4e38a3d62e8769cd324129ac15.fa.png b/translated_images/hierarchical.bf59403aa43c8c47493bfdf1cc25230f26e45f4e38a3d62e8769cd324129ac15.fa.png new file mode 100644 index 000000000..eb84fc9a7 Binary files /dev/null and b/translated_images/hierarchical.bf59403aa43c8c47493bfdf1cc25230f26e45f4e38a3d62e8769cd324129ac15.fa.png differ diff --git a/translated_images/human.e3840390a2ab76901f465c17f568637801ab0df39d7c3fdcb6a112b0c74c6288.fa.png b/translated_images/human.e3840390a2ab76901f465c17f568637801ab0df39d7c3fdcb6a112b0c74c6288.fa.png new file mode 100644 index 000000000..3070781f6 Binary files /dev/null and b/translated_images/human.e3840390a2ab76901f465c17f568637801ab0df39d7c3fdcb6a112b0c74c6288.fa.png differ diff --git a/translated_images/hype.07183d711a17aafe70915909a0e45aa286ede136ee9424d418026ab00fec344c.fa.png b/translated_images/hype.07183d711a17aafe70915909a0e45aa286ede136ee9424d418026ab00fec344c.fa.png new file mode 100644 index 000000000..d0e31337f Binary files /dev/null and b/translated_images/hype.07183d711a17aafe70915909a0e45aa286ede136ee9424d418026ab00fec344c.fa.png differ diff --git a/translated_images/indian.2c4292002af1a1f97a4a24fec6b1459ee8ff616c3822ae56bb62b9903e192af6.fa.png b/translated_images/indian.2c4292002af1a1f97a4a24fec6b1459ee8ff616c3822ae56bb62b9903e192af6.fa.png new file mode 100644 index 000000000..0b6e2fdde Binary files /dev/null and b/translated_images/indian.2c4292002af1a1f97a4a24fec6b1459ee8ff616c3822ae56bb62b9903e192af6.fa.png differ diff --git a/translated_images/individual-causal-what-if.00e7b86b52a083cea6344c73c76463e9d41e0fe44fecd6f48671cb2a2d280d81.fa.png b/translated_images/individual-causal-what-if.00e7b86b52a083cea6344c73c76463e9d41e0fe44fecd6f48671cb2a2d280d81.fa.png new file mode 100644 index 000000000..588f4eb6c Binary files /dev/null and b/translated_images/individual-causal-what-if.00e7b86b52a083cea6344c73c76463e9d41e0fe44fecd6f48671cb2a2d280d81.fa.png differ diff --git a/translated_images/jack-o-lanterns.181c661a9212457d7756f37219f660f1358af27554d856e5a991f16b4e15337c.fa.jpg b/translated_images/jack-o-lanterns.181c661a9212457d7756f37219f660f1358af27554d856e5a991f16b4e15337c.fa.jpg new file mode 100644 index 000000000..97b3aa950 Binary files /dev/null and b/translated_images/jack-o-lanterns.181c661a9212457d7756f37219f660f1358af27554d856e5a991f16b4e15337c.fa.jpg differ diff --git a/translated_images/janitor.e4a77dd3d3e6a32e25327090b8a9c00dc7cf459c44fa9f184c5ecb0d48ce3794.fa.jpg b/translated_images/janitor.e4a77dd3d3e6a32e25327090b8a9c00dc7cf459c44fa9f184c5ecb0d48ce3794.fa.jpg new file mode 100644 index 000000000..ef6133a15 Binary files /dev/null and b/translated_images/janitor.e4a77dd3d3e6a32e25327090b8a9c00dc7cf459c44fa9f184c5ecb0d48ce3794.fa.jpg differ diff --git a/translated_images/japanese.30260486f2a05c463c8faa62ebe7b38f0961ed293bd9a6db8eef5d3f0cf17155.fa.png b/translated_images/japanese.30260486f2a05c463c8faa62ebe7b38f0961ed293bd9a6db8eef5d3f0cf17155.fa.png new file mode 100644 index 000000000..f3fe5b099 Binary files /dev/null and b/translated_images/japanese.30260486f2a05c463c8faa62ebe7b38f0961ed293bd9a6db8eef5d3f0cf17155.fa.png differ diff --git a/translated_images/july-2014.9e1f7c318ec6d5b30b0d7e1e20be3643501f64a53f3d426d7c7d7b62addb335e.fa.png b/translated_images/july-2014.9e1f7c318ec6d5b30b0d7e1e20be3643501f64a53f3d426d7c7d7b62addb335e.fa.png new file mode 100644 index 000000000..abb167c6f Binary files /dev/null and b/translated_images/july-2014.9e1f7c318ec6d5b30b0d7e1e20be3643501f64a53f3d426d7c7d7b62addb335e.fa.png differ diff --git a/translated_images/korean.4a4f0274f3d9805a65e61f05597eeaad8620b03be23a2c0a705c023f65fad2c0.fa.png b/translated_images/korean.4a4f0274f3d9805a65e61f05597eeaad8620b03be23a2c0a705c023f65fad2c0.fa.png new file mode 100644 index 000000000..42a08d4ae Binary files /dev/null and b/translated_images/korean.4a4f0274f3d9805a65e61f05597eeaad8620b03be23a2c0a705c023f65fad2c0.fa.png differ diff --git a/translated_images/learned.ed28bcd8484b5287a31925c96c43b43e2c2bb876b8ca41a0e1e754f77bb3db20.fa.png b/translated_images/learned.ed28bcd8484b5287a31925c96c43b43e2c2bb876b8ca41a0e1e754f77bb3db20.fa.png new file mode 100644 index 000000000..c289732f3 Binary files /dev/null and b/translated_images/learned.ed28bcd8484b5287a31925c96c43b43e2c2bb876b8ca41a0e1e754f77bb3db20.fa.png differ diff --git a/translated_images/linear-polynomial.5523c7cb6576ccab0fecbd0e3505986eb2d191d9378e785f82befcf3a578a6e7.fa.png b/translated_images/linear-polynomial.5523c7cb6576ccab0fecbd0e3505986eb2d191d9378e785f82befcf3a578a6e7.fa.png new file mode 100644 index 000000000..e33123fb7 Binary files /dev/null and b/translated_images/linear-polynomial.5523c7cb6576ccab0fecbd0e3505986eb2d191d9378e785f82befcf3a578a6e7.fa.png differ diff --git a/translated_images/linear-results.f7c3552c85b0ed1ce2808276c870656733f6878c8fd37ec220812ee77686c3ef.fa.png b/translated_images/linear-results.f7c3552c85b0ed1ce2808276c870656733f6878c8fd37ec220812ee77686c3ef.fa.png new file mode 100644 index 000000000..2b636a72e Binary files /dev/null and b/translated_images/linear-results.f7c3552c85b0ed1ce2808276c870656733f6878c8fd37ec220812ee77686c3ef.fa.png differ diff --git a/translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.fa.png b/translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.fa.png new file mode 100644 index 000000000..816521801 Binary files /dev/null and b/translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.fa.png differ diff --git a/translated_images/linear.a1b0760a56132551947c85988ff1753b2bccea6c29097394744d3f8a986ac3bf.fa.png b/translated_images/linear.a1b0760a56132551947c85988ff1753b2bccea6c29097394744d3f8a986ac3bf.fa.png new file mode 100644 index 000000000..4d67ef868 Binary files /dev/null and b/translated_images/linear.a1b0760a56132551947c85988ff1753b2bccea6c29097394744d3f8a986ac3bf.fa.png differ diff --git a/translated_images/lobe.2fa0806408ef9923ad81b63f5094b5d832a2e52227c4f0abb9fef6e1132fde15.fa.png b/translated_images/lobe.2fa0806408ef9923ad81b63f5094b5d832a2e52227c4f0abb9fef6e1132fde15.fa.png new file mode 100644 index 000000000..c9c646509 Binary files /dev/null and b/translated_images/lobe.2fa0806408ef9923ad81b63f5094b5d832a2e52227c4f0abb9fef6e1132fde15.fa.png differ diff --git a/translated_images/logistic-linear.0f2f6bb73b3134c1b1463fb22452aefe74b21b7c357ddccac31831a836dcce73.fa.png b/translated_images/logistic-linear.0f2f6bb73b3134c1b1463fb22452aefe74b21b7c357ddccac31831a836dcce73.fa.png new file mode 100644 index 000000000..c3bfa3541 Binary files /dev/null and b/translated_images/logistic-linear.0f2f6bb73b3134c1b1463fb22452aefe74b21b7c357ddccac31831a836dcce73.fa.png differ diff --git a/translated_images/logistic.b0cba6b7db4d57899f5a6ae74876bd34a0bd5dc492458b80b3293e948fa46a2d.fa.png b/translated_images/logistic.b0cba6b7db4d57899f5a6ae74876bd34a0bd5dc492458b80b3293e948fa46a2d.fa.png new file mode 100644 index 000000000..bf983106e Binary files /dev/null and b/translated_images/logistic.b0cba6b7db4d57899f5a6ae74876bd34a0bd5dc492458b80b3293e948fa46a2d.fa.png differ diff --git a/translated_images/lpathlen.94f211521ed609400dc64c3d8423b9effc5406f33d2648d0002c14c04ba820c1.fa.png b/translated_images/lpathlen.94f211521ed609400dc64c3d8423b9effc5406f33d2648d0002c14c04ba820c1.fa.png new file mode 100644 index 000000000..3d6401011 Binary files /dev/null and b/translated_images/lpathlen.94f211521ed609400dc64c3d8423b9effc5406f33d2648d0002c14c04ba820c1.fa.png differ diff --git a/translated_images/lpathlen1.0534784add58d4ebf25c21d4a1da9bceab4f96743a35817f1b49ab963c64c572.fa.png b/translated_images/lpathlen1.0534784add58d4ebf25c21d4a1da9bceab4f96743a35817f1b49ab963c64c572.fa.png new file mode 100644 index 000000000..ca5ced7c0 Binary files /dev/null and b/translated_images/lpathlen1.0534784add58d4ebf25c21d4a1da9bceab4f96743a35817f1b49ab963c64c572.fa.png differ diff --git a/translated_images/map.e963a6a51349425ab107b38f6c7307eb4c0d0c7ccdd2e81a5e1919292bab9ac7.fa.png b/translated_images/map.e963a6a51349425ab107b38f6c7307eb4c0d0c7ccdd2e81a5e1919292bab9ac7.fa.png new file mode 100644 index 000000000..2a166615e Binary files /dev/null and b/translated_images/map.e963a6a51349425ab107b38f6c7307eb4c0d0c7ccdd2e81a5e1919292bab9ac7.fa.png differ diff --git a/translated_images/mape.fd87bbaf4d346846df6af88b26bf6f0926bf9a5027816d5e23e1200866e3e8a4.fa.png b/translated_images/mape.fd87bbaf4d346846df6af88b26bf6f0926bf9a5027816d5e23e1200866e3e8a4.fa.png new file mode 100644 index 000000000..feef5d42c Binary files /dev/null and b/translated_images/mape.fd87bbaf4d346846df6af88b26bf6f0926bf9a5027816d5e23e1200866e3e8a4.fa.png differ diff --git a/translated_images/ml-fairness.ef296ebec6afc98a44566d7b6c1ed18dc2bf1115c13ec679bb626028e852fa1d.fa.png b/translated_images/ml-fairness.ef296ebec6afc98a44566d7b6c1ed18dc2bf1115c13ec679bb626028e852fa1d.fa.png new file mode 100644 index 000000000..980a680dc Binary files /dev/null and b/translated_images/ml-fairness.ef296ebec6afc98a44566d7b6c1ed18dc2bf1115c13ec679bb626028e852fa1d.fa.png differ diff --git a/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.de.png b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.de.png new file mode 100644 index 000000000..d658b0b3c Binary files /dev/null and b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.de.png differ diff --git a/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.es.png b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.es.png new file mode 100644 index 000000000..538eba471 Binary files /dev/null and b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.es.png differ diff --git a/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.fa.png b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.fa.png new file mode 100644 index 000000000..070107f33 Binary files /dev/null and b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.fa.png differ diff --git a/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.fr.png b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.fr.png new file mode 100644 index 000000000..8d341c144 Binary files /dev/null and b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.fr.png differ diff --git a/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.hi.png b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.hi.png new file mode 100644 index 000000000..54e4f75ec Binary files /dev/null and b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.hi.png differ diff --git a/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.ja.png b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.ja.png new file mode 100644 index 000000000..c9ad5317d Binary files /dev/null and b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.ja.png differ diff --git a/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.ko.png b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.ko.png new file mode 100644 index 000000000..93422b385 Binary files /dev/null and b/translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.ko.png differ diff --git a/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.de.png b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.de.png new file mode 100644 index 000000000..a22edafa6 Binary files /dev/null and b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.de.png differ diff --git a/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.es.png b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.es.png new file mode 100644 index 000000000..537199b49 Binary files /dev/null and b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.es.png differ diff --git a/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.fa.png b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.fa.png new file mode 100644 index 000000000..224800d2b Binary files /dev/null and b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.fa.png differ diff --git a/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.fr.png b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.fr.png new file mode 100644 index 000000000..16ef73e99 Binary files /dev/null and b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.fr.png differ diff --git a/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.hi.png b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.hi.png new file mode 100644 index 000000000..f9ad6dd33 Binary files /dev/null and b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.hi.png differ diff --git a/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.ja.png b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.ja.png new file mode 100644 index 000000000..07879f4d8 Binary files /dev/null and b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.ja.png differ diff --git a/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.ko.png b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.ko.png new file mode 100644 index 000000000..d1c4a3cb7 Binary files /dev/null and b/translated_images/ml-for-beginners.9eecb963dbfbfb322dbf4d68360828af4abaf00a40e117c78d08605412dd3f31.ko.png differ diff --git a/translated_images/ml-history.a1bdfd4ce1f464d9a0502f38d355ffda384c95cd5278297a46c9a391b5053bc4.fa.png b/translated_images/ml-history.a1bdfd4ce1f464d9a0502f38d355ffda384c95cd5278297a46c9a391b5053bc4.fa.png new file mode 100644 index 000000000..42ef1c86d Binary files /dev/null and b/translated_images/ml-history.a1bdfd4ce1f464d9a0502f38d355ffda384c95cd5278297a46c9a391b5053bc4.fa.png differ diff --git a/translated_images/ml-realworld.26ee2746716155771f8076598b6145e6533fe4a9e2e465ea745f46648cbf1b84.fa.png b/translated_images/ml-realworld.26ee2746716155771f8076598b6145e6533fe4a9e2e465ea745f46648cbf1b84.fa.png new file mode 100644 index 000000000..536d98bb2 Binary files /dev/null and b/translated_images/ml-realworld.26ee2746716155771f8076598b6145e6533fe4a9e2e465ea745f46648cbf1b84.fa.png differ diff --git a/translated_images/ml-regression.4e4f70e3b3ed446e3ace348dec973e133fa5d3680fbc8412b61879507369b98d.fa.png b/translated_images/ml-regression.4e4f70e3b3ed446e3ace348dec973e133fa5d3680fbc8412b61879507369b98d.fa.png new file mode 100644 index 000000000..a7eb6db90 Binary files /dev/null and b/translated_images/ml-regression.4e4f70e3b3ed446e3ace348dec973e133fa5d3680fbc8412b61879507369b98d.fa.png differ diff --git a/translated_images/ml-reinforcement.94024374d63348dbb3571c343ca7ddabef72adac0b8086d47164b769ba3a8a1d.fa.png b/translated_images/ml-reinforcement.94024374d63348dbb3571c343ca7ddabef72adac0b8086d47164b769ba3a8a1d.fa.png new file mode 100644 index 000000000..675dee5d6 Binary files /dev/null and b/translated_images/ml-reinforcement.94024374d63348dbb3571c343ca7ddabef72adac0b8086d47164b769ba3a8a1d.fa.png differ diff --git a/translated_images/ml-timeseries.fb98d25f1013fc0c59090030080b5d1911ff336427bec31dbaf1ad08193812e9.fa.png b/translated_images/ml-timeseries.fb98d25f1013fc0c59090030080b5d1911ff336427bec31dbaf1ad08193812e9.fa.png new file mode 100644 index 000000000..928ef2bda Binary files /dev/null and b/translated_images/ml-timeseries.fb98d25f1013fc0c59090030080b5d1911ff336427bec31dbaf1ad08193812e9.fa.png differ diff --git a/translated_images/model-overview-dataset-cohorts.dfa463fb527a35a0afc01b7b012fc87bf2cad756763f3652bbd810cac5d6cf33.fa.png b/translated_images/model-overview-dataset-cohorts.dfa463fb527a35a0afc01b7b012fc87bf2cad756763f3652bbd810cac5d6cf33.fa.png new file mode 100644 index 000000000..74d8b0ab7 Binary files /dev/null and b/translated_images/model-overview-dataset-cohorts.dfa463fb527a35a0afc01b7b012fc87bf2cad756763f3652bbd810cac5d6cf33.fa.png differ diff --git a/translated_images/model-overview-feature-cohorts.c5104d575ffd0c80b7ad8ede7703fab6166bfc6f9125dd395dcc4ace2f522f70.fa.png b/translated_images/model-overview-feature-cohorts.c5104d575ffd0c80b7ad8ede7703fab6166bfc6f9125dd395dcc4ace2f522f70.fa.png new file mode 100644 index 000000000..a110f3af6 Binary files /dev/null and b/translated_images/model-overview-feature-cohorts.c5104d575ffd0c80b7ad8ede7703fab6166bfc6f9125dd395dcc4ace2f522f70.fa.png differ diff --git a/translated_images/monnaie.606c5fa8369d5c3b3031ef0713e2069485c87985dd475cd9056bdf4c76c1f4b8.fa.png b/translated_images/monnaie.606c5fa8369d5c3b3031ef0713e2069485c87985dd475cd9056bdf4c76c1f4b8.fa.png new file mode 100644 index 000000000..c78199632 Binary files /dev/null and b/translated_images/monnaie.606c5fa8369d5c3b3031ef0713e2069485c87985dd475cd9056bdf4c76c1f4b8.fa.png differ diff --git a/translated_images/mountaincar.43d56e588ce581c2d035f28cf038a9af112bec043b2ef8da40ac86119b1e3a93.fa.png b/translated_images/mountaincar.43d56e588ce581c2d035f28cf038a9af112bec043b2ef8da40ac86119b1e3a93.fa.png new file mode 100644 index 000000000..b47a33bc8 Binary files /dev/null and b/translated_images/mountaincar.43d56e588ce581c2d035f28cf038a9af112bec043b2ef8da40ac86119b1e3a93.fa.png differ diff --git a/translated_images/multinomial-ordinal.944fe02295fd6cdffa68facf540d0534c6f428a5d906edc40507cda4356950ee.fa.png b/translated_images/multinomial-ordinal.944fe02295fd6cdffa68facf540d0534c6f428a5d906edc40507cda4356950ee.fa.png new file mode 100644 index 000000000..6a64d073a Binary files /dev/null and b/translated_images/multinomial-ordinal.944fe02295fd6cdffa68facf540d0534c6f428a5d906edc40507cda4356950ee.fa.png differ diff --git a/translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.fa.png b/translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.fa.png new file mode 100644 index 000000000..486d3825b Binary files /dev/null and b/translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.fa.png differ diff --git a/translated_images/netron.a05f39410211915e0f95e2c0e8b88f41e7d13d725faf660188f3802ba5c9e831.fa.png b/translated_images/netron.a05f39410211915e0f95e2c0e8b88f41e7d13d725faf660188f3802ba5c9e831.fa.png new file mode 100644 index 000000000..fa1808b4a Binary files /dev/null and b/translated_images/netron.a05f39410211915e0f95e2c0e8b88f41e7d13d725faf660188f3802ba5c9e831.fa.png differ diff --git a/translated_images/notebook.4a3ee31f396b88325607afda33cadcc6368de98040ff33942424260aa84d75f2.fa.jpg b/translated_images/notebook.4a3ee31f396b88325607afda33cadcc6368de98040ff33942424260aa84d75f2.fa.jpg new file mode 100644 index 000000000..56d3b4ee6 Binary files /dev/null and b/translated_images/notebook.4a3ee31f396b88325607afda33cadcc6368de98040ff33942424260aa84d75f2.fa.jpg differ diff --git a/translated_images/original.b2b15efe0ce92b8745918f071dceec2231661bf49c8db6918e3ff4b3b0b183c2.fa.png b/translated_images/original.b2b15efe0ce92b8745918f071dceec2231661bf49c8db6918e3ff4b3b0b183c2.fa.png new file mode 100644 index 000000000..c27078a7e Binary files /dev/null and b/translated_images/original.b2b15efe0ce92b8745918f071dceec2231661bf49c8db6918e3ff4b3b0b183c2.fa.png differ diff --git a/translated_images/overfitting.1c132d92bfd93cb63240baf63ebdf82c30e30a0a44e1ad49861b82ff600c2b5c.fa.png b/translated_images/overfitting.1c132d92bfd93cb63240baf63ebdf82c30e30a0a44e1ad49861b82ff600c2b5c.fa.png new file mode 100644 index 000000000..8783aafb3 Binary files /dev/null and b/translated_images/overfitting.1c132d92bfd93cb63240baf63ebdf82c30e30a0a44e1ad49861b82ff600c2b5c.fa.png differ diff --git a/translated_images/p&p.279f1c49ecd889419e4ce6206525e9aa30d32a976955cd24daa636c361c6391f.fa.jpg b/translated_images/p&p.279f1c49ecd889419e4ce6206525e9aa30d32a976955cd24daa636c361c6391f.fa.jpg new file mode 100644 index 000000000..abe85d5b1 Binary files /dev/null and b/translated_images/p&p.279f1c49ecd889419e4ce6206525e9aa30d32a976955cd24daa636c361c6391f.fa.jpg differ diff --git a/translated_images/parse.d0c5bbe1106eae8fe7d60a183cd1736c8b6cec907f38000366535f84f3036101.fa.png b/translated_images/parse.d0c5bbe1106eae8fe7d60a183cd1736c8b6cec907f38000366535f84f3036101.fa.png new file mode 100644 index 000000000..428ffb965 Binary files /dev/null and b/translated_images/parse.d0c5bbe1106eae8fe7d60a183cd1736c8b6cec907f38000366535f84f3036101.fa.png differ diff --git a/translated_images/parsnip.cd2ce92622976502a80714e69ce67e3f2da3274a9ef5ac484c1308c5f3cb0f4a.fa.jpg b/translated_images/parsnip.cd2ce92622976502a80714e69ce67e3f2da3274a9ef5ac484c1308c5f3cb0f4a.fa.jpg new file mode 100644 index 000000000..f25b446ec Binary files /dev/null and b/translated_images/parsnip.cd2ce92622976502a80714e69ce67e3f2da3274a9ef5ac484c1308c5f3cb0f4a.fa.jpg differ diff --git a/translated_images/peter.779730f9ba3a8a8d9290600dcf55f2e491c0640c785af7ac0d64f583c49b8864.fa.png b/translated_images/peter.779730f9ba3a8a8d9290600dcf55f2e491c0640c785af7ac0d64f583c49b8864.fa.png new file mode 100644 index 000000000..43581e5f3 Binary files /dev/null and b/translated_images/peter.779730f9ba3a8a8d9290600dcf55f2e491c0640c785af7ac0d64f583c49b8864.fa.png differ diff --git a/translated_images/pie-pumpkins-scatter.d14f9804a53f927e7fe39aa072486f4ed1bdd7f31c8bb08f476855f4b02350c3.fa.png b/translated_images/pie-pumpkins-scatter.d14f9804a53f927e7fe39aa072486f4ed1bdd7f31c8bb08f476855f4b02350c3.fa.png new file mode 100644 index 000000000..06ab9e06b Binary files /dev/null and b/translated_images/pie-pumpkins-scatter.d14f9804a53f927e7fe39aa072486f4ed1bdd7f31c8bb08f476855f4b02350c3.fa.png differ diff --git a/translated_images/pinch.1b035ec9ba7e0d408313b551b60c721c9c290b2dd2094115bc87e6ddacd114c9.fa.png b/translated_images/pinch.1b035ec9ba7e0d408313b551b60c721c9c290b2dd2094115bc87e6ddacd114c9.fa.png new file mode 100644 index 000000000..3c9095038 Binary files /dev/null and b/translated_images/pinch.1b035ec9ba7e0d408313b551b60c721c9c290b2dd2094115bc87e6ddacd114c9.fa.png differ diff --git a/translated_images/poly-results.ee587348f0f1f60bd16c471321b0b2f2457d0eaa99d99ec0ced4affc900fa96c.fa.png b/translated_images/poly-results.ee587348f0f1f60bd16c471321b0b2f2457d0eaa99d99ec0ced4affc900fa96c.fa.png new file mode 100644 index 000000000..f6ee37ec1 Binary files /dev/null and b/translated_images/poly-results.ee587348f0f1f60bd16c471321b0b2f2457d0eaa99d99ec0ced4affc900fa96c.fa.png differ diff --git a/translated_images/polynomial.8fce4663e7283dfb9864eef62255b57cc2799e187c6d0a6dbfcf29fec6e52faa.fa.png b/translated_images/polynomial.8fce4663e7283dfb9864eef62255b57cc2799e187c6d0a6dbfcf29fec6e52faa.fa.png new file mode 100644 index 000000000..25d1adfdb Binary files /dev/null and b/translated_images/polynomial.8fce4663e7283dfb9864eef62255b57cc2799e187c6d0a6dbfcf29fec6e52faa.fa.png differ diff --git a/translated_images/popular.9c48d84b3386705f98bf44e26e9655bee9eb7c849d73be65195e37895bfedb5d.fa.png b/translated_images/popular.9c48d84b3386705f98bf44e26e9655bee9eb7c849d73be65195e37895bfedb5d.fa.png new file mode 100644 index 000000000..ffa4c8758 Binary files /dev/null and b/translated_images/popular.9c48d84b3386705f98bf44e26e9655bee9eb7c849d73be65195e37895bfedb5d.fa.png differ diff --git a/translated_images/price-by-variety.744a2f9925d9bcb43a9a8c69469ce2520c9524fabfa270b1b2422cc2450d6d11.fa.png b/translated_images/price-by-variety.744a2f9925d9bcb43a9a8c69469ce2520c9524fabfa270b1b2422cc2450d6d11.fa.png new file mode 100644 index 000000000..11efe5d61 Binary files /dev/null and b/translated_images/price-by-variety.744a2f9925d9bcb43a9a8c69469ce2520c9524fabfa270b1b2422cc2450d6d11.fa.png differ diff --git a/translated_images/problems.f7fb539ccd80608e1f35c319cf5e3ad1809faa3c08537aead8018c6b5ba2e33a.fa.png b/translated_images/problems.f7fb539ccd80608e1f35c319cf5e3ad1809faa3c08537aead8018c6b5ba2e33a.fa.png new file mode 100644 index 000000000..8ce401e0f Binary files /dev/null and b/translated_images/problems.f7fb539ccd80608e1f35c319cf5e3ad1809faa3c08537aead8018c6b5ba2e33a.fa.png differ diff --git a/translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.fa.png b/translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.fa.png new file mode 100644 index 000000000..e769f0c56 Binary files /dev/null and b/translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.fa.png differ diff --git a/translated_images/pumpkins_catplot_1.c55c409b71fea2ecc01921e64b91970542101f90bcccfa4aa3a205db8936f48b.fa.png b/translated_images/pumpkins_catplot_1.c55c409b71fea2ecc01921e64b91970542101f90bcccfa4aa3a205db8936f48b.fa.png new file mode 100644 index 000000000..c3a5cb9d3 Binary files /dev/null and b/translated_images/pumpkins_catplot_1.c55c409b71fea2ecc01921e64b91970542101f90bcccfa4aa3a205db8936f48b.fa.png differ diff --git a/translated_images/pumpkins_catplot_2.87a354447880b3889278155957f8f60dd63db4598de5a6d0fda91c334d31f9f1.fa.png b/translated_images/pumpkins_catplot_2.87a354447880b3889278155957f8f60dd63db4598de5a6d0fda91c334d31f9f1.fa.png new file mode 100644 index 000000000..24b8e4841 Binary files /dev/null and b/translated_images/pumpkins_catplot_2.87a354447880b3889278155957f8f60dd63db4598de5a6d0fda91c334d31f9f1.fa.png differ diff --git a/translated_images/r_learners_sm.cd14eb3581a9f28d32086cc042ee8c46f621a5b4e0d59c75f7c642d891327043.fa.jpeg b/translated_images/r_learners_sm.cd14eb3581a9f28d32086cc042ee8c46f621a5b4e0d59c75f7c642d891327043.fa.jpeg new file mode 100644 index 000000000..b3fe53960 Binary files /dev/null and b/translated_images/r_learners_sm.cd14eb3581a9f28d32086cc042ee8c46f621a5b4e0d59c75f7c642d891327043.fa.jpeg differ diff --git a/translated_images/r_learners_sm.e25fa9c205b3a3f98d66476321637b48f61d9c23526309ce82d0a43e88b90f66.fa.jpeg b/translated_images/r_learners_sm.e25fa9c205b3a3f98d66476321637b48f61d9c23526309ce82d0a43e88b90f66.fa.jpeg new file mode 100644 index 000000000..b3fe53960 Binary files /dev/null and b/translated_images/r_learners_sm.e25fa9c205b3a3f98d66476321637b48f61d9c23526309ce82d0a43e88b90f66.fa.jpeg differ diff --git a/translated_images/r_learners_sm.e4a71b113ffbedfe727048ec69741a9295954195d8761c35c46f20277de5f684.fa.jpeg b/translated_images/r_learners_sm.e4a71b113ffbedfe727048ec69741a9295954195d8761c35c46f20277de5f684.fa.jpeg new file mode 100644 index 000000000..b3fe53960 Binary files /dev/null and b/translated_images/r_learners_sm.e4a71b113ffbedfe727048ec69741a9295954195d8761c35c46f20277de5f684.fa.jpeg differ diff --git a/translated_images/r_learners_sm.f9199f76f1e2e49304b19155ebcfb8bad375aface4625be7e95404486a48d332.fa.jpeg b/translated_images/r_learners_sm.f9199f76f1e2e49304b19155ebcfb8bad375aface4625be7e95404486a48d332.fa.jpeg new file mode 100644 index 000000000..b3fe53960 Binary files /dev/null and b/translated_images/r_learners_sm.f9199f76f1e2e49304b19155ebcfb8bad375aface4625be7e95404486a48d332.fa.jpeg differ diff --git a/translated_images/recipes.186acfa8ed2e8f0059ce17ef22c9452d7b25e7e1e4b044573bacec9a18e040d2.fa.png b/translated_images/recipes.186acfa8ed2e8f0059ce17ef22c9452d7b25e7e1e4b044573bacec9a18e040d2.fa.png new file mode 100644 index 000000000..7f5ad501b Binary files /dev/null and b/translated_images/recipes.186acfa8ed2e8f0059ce17ef22c9452d7b25e7e1e4b044573bacec9a18e040d2.fa.png differ diff --git a/translated_images/recipes.9ad10d8a4056bf89413fc33644924e0bd29d7c12fb2154e03a1ca3d2d6ea9323.fa.png b/translated_images/recipes.9ad10d8a4056bf89413fc33644924e0bd29d7c12fb2154e03a1ca3d2d6ea9323.fa.png new file mode 100644 index 000000000..1668f223a Binary files /dev/null and b/translated_images/recipes.9ad10d8a4056bf89413fc33644924e0bd29d7c12fb2154e03a1ca3d2d6ea9323.fa.png differ diff --git a/translated_images/scaled.91897dfbaa26ca4a5f45c99aaabe79b1f1bcd1237f8124c20c0510df482e9f49.fa.png b/translated_images/scaled.91897dfbaa26ca4a5f45c99aaabe79b1f1bcd1237f8124c20c0510df482e9f49.fa.png new file mode 100644 index 000000000..94f0e5222 Binary files /dev/null and b/translated_images/scaled.91897dfbaa26ca4a5f45c99aaabe79b1f1bcd1237f8124c20c0510df482e9f49.fa.png differ diff --git a/translated_images/scaled.e35258ca5cd3d43f86d5175e584ba96b38d51501f234abf52e11f4fe2631e45f.fa.png b/translated_images/scaled.e35258ca5cd3d43f86d5175e584ba96b38d51501f234abf52e11f4fe2631e45f.fa.png new file mode 100644 index 000000000..94f0e5222 Binary files /dev/null and b/translated_images/scaled.e35258ca5cd3d43f86d5175e584ba96b38d51501f234abf52e11f4fe2631e45f.fa.png differ diff --git a/translated_images/scatter-dayofyear-color.65790faefbb9d54fb8f6223c566c445b9fac58a1c15f41f8641c3842af9d548b.fa.png b/translated_images/scatter-dayofyear-color.65790faefbb9d54fb8f6223c566c445b9fac58a1c15f41f8641c3842af9d548b.fa.png new file mode 100644 index 000000000..b0a4e6dd8 Binary files /dev/null and b/translated_images/scatter-dayofyear-color.65790faefbb9d54fb8f6223c566c445b9fac58a1c15f41f8641c3842af9d548b.fa.png differ diff --git a/translated_images/scatter-dayofyear.bc171c189c9fd553fe93030180b9c00ed123148a577640e4d7481c4c01811972.fa.png b/translated_images/scatter-dayofyear.bc171c189c9fd553fe93030180b9c00ed123148a577640e4d7481c4c01811972.fa.png new file mode 100644 index 000000000..eebc5f7cc Binary files /dev/null and b/translated_images/scatter-dayofyear.bc171c189c9fd553fe93030180b9c00ed123148a577640e4d7481c4c01811972.fa.png differ diff --git a/translated_images/scatterplot.ad8b356bcbb33be68d54050e09b9b7bfc03e94fde7371f2609ae43f4c563b2d7.fa.png b/translated_images/scatterplot.ad8b356bcbb33be68d54050e09b9b7bfc03e94fde7371f2609ae43f4c563b2d7.fa.png new file mode 100644 index 000000000..069f893e2 Binary files /dev/null and b/translated_images/scatterplot.ad8b356bcbb33be68d54050e09b9b7bfc03e94fde7371f2609ae43f4c563b2d7.fa.png differ diff --git a/translated_images/scatterplot.b6868f44cbd2051c6680ccdbb1510697d06a3ff6cd4abda656f5009c0ed4e3fc.fa.png b/translated_images/scatterplot.b6868f44cbd2051c6680ccdbb1510697d06a3ff6cd4abda656f5009c0ed4e3fc.fa.png new file mode 100644 index 000000000..ad39f74fb Binary files /dev/null and b/translated_images/scatterplot.b6868f44cbd2051c6680ccdbb1510697d06a3ff6cd4abda656f5009c0ed4e3fc.fa.png differ diff --git a/translated_images/shakey.4dc17819c447c05bf4b52f76da0bdd28817d056fdb906252ec20124dd4cfa55e.fa.jpg b/translated_images/shakey.4dc17819c447c05bf4b52f76da0bdd28817d056fdb906252ec20124dd4cfa55e.fa.jpg new file mode 100644 index 000000000..9f1b98eed Binary files /dev/null and b/translated_images/shakey.4dc17819c447c05bf4b52f76da0bdd28817d056fdb906252ec20124dd4cfa55e.fa.jpg differ diff --git a/translated_images/sigmoid.8b7ba9d095c789cf72780675d0d1d44980c3736617329abfc392dfc859799704.fa.png b/translated_images/sigmoid.8b7ba9d095c789cf72780675d0d1d44980c3736617329abfc392dfc859799704.fa.png new file mode 100644 index 000000000..58253355a Binary files /dev/null and b/translated_images/sigmoid.8b7ba9d095c789cf72780675d0d1d44980c3736617329abfc392dfc859799704.fa.png differ diff --git a/translated_images/slope.f3c9d5910ddbfcf9096eb5564254ba22c9a32d7acd7694cab905d29ad8261db3.fa.png b/translated_images/slope.f3c9d5910ddbfcf9096eb5564254ba22c9a32d7acd7694cab905d29ad8261db3.fa.png new file mode 100644 index 000000000..ef0322692 Binary files /dev/null and b/translated_images/slope.f3c9d5910ddbfcf9096eb5564254ba22c9a32d7acd7694cab905d29ad8261db3.fa.png differ diff --git a/translated_images/solvers.5fc648618529e627dfac29b917b3ccabda4b45ee8ed41b0acb1ce1441e8d1ef1.fa.png b/translated_images/solvers.5fc648618529e627dfac29b917b3ccabda4b45ee8ed41b0acb1ce1441e8d1ef1.fa.png new file mode 100644 index 000000000..18154d696 Binary files /dev/null and b/translated_images/solvers.5fc648618529e627dfac29b917b3ccabda4b45ee8ed41b0acb1ce1441e8d1ef1.fa.png differ diff --git a/translated_images/svm.621ae7b516d678e08ed23af77ff1750b5fe392976917f0606861567b779e8862.fa.png b/translated_images/svm.621ae7b516d678e08ed23af77ff1750b5fe392976917f0606861567b779e8862.fa.png new file mode 100644 index 000000000..d5dd444e5 Binary files /dev/null and b/translated_images/svm.621ae7b516d678e08ed23af77ff1750b5fe392976917f0606861567b779e8862.fa.png differ diff --git a/translated_images/swarm.56d253ae80a2c0f5940dec8ed3c02e57161891ff44cc0dce5c3cb2f65a4233e7.fa.png b/translated_images/swarm.56d253ae80a2c0f5940dec8ed3c02e57161891ff44cc0dce5c3cb2f65a4233e7.fa.png new file mode 100644 index 000000000..be8f860b3 Binary files /dev/null and b/translated_images/swarm.56d253ae80a2c0f5940dec8ed3c02e57161891ff44cc0dce5c3cb2f65a4233e7.fa.png differ diff --git a/translated_images/swarm_2.efeacfca536c2b577dc7b5f8891f28926663fbf62d893ab5e1278ae734ca104e.fa.png b/translated_images/swarm_2.efeacfca536c2b577dc7b5f8891f28926663fbf62d893ab5e1278ae734ca104e.fa.png new file mode 100644 index 000000000..ae0d74b0e Binary files /dev/null and b/translated_images/swarm_2.efeacfca536c2b577dc7b5f8891f28926663fbf62d893ab5e1278ae734ca104e.fa.png differ diff --git a/translated_images/test-data-predict.8afc47ee7e52874f514ebdda4a798647e9ecf44a97cc927c535246fcf7a28aa9.fa.png b/translated_images/test-data-predict.8afc47ee7e52874f514ebdda4a798647e9ecf44a97cc927c535246fcf7a28aa9.fa.png new file mode 100644 index 000000000..fb777183c Binary files /dev/null and b/translated_images/test-data-predict.8afc47ee7e52874f514ebdda4a798647e9ecf44a97cc927c535246fcf7a28aa9.fa.png differ diff --git a/translated_images/thai-food.c47a7a7f9f05c21892a1f9dc7bf30669e6d18dfda420c5c7ebb4153f6a304edd.fa.jpg b/translated_images/thai-food.c47a7a7f9f05c21892a1f9dc7bf30669e6d18dfda420c5c7ebb4153f6a304edd.fa.jpg new file mode 100644 index 000000000..e8c694921 Binary files /dev/null and b/translated_images/thai-food.c47a7a7f9f05c21892a1f9dc7bf30669e6d18dfda420c5c7ebb4153f6a304edd.fa.jpg differ diff --git a/translated_images/thai.0269dbab2e78bd38a132067759fe980008bdb80b6d778e5313448dbe12bed846.fa.png b/translated_images/thai.0269dbab2e78bd38a132067759fe980008bdb80b6d778e5313448dbe12bed846.fa.png new file mode 100644 index 000000000..58335e8c4 Binary files /dev/null and b/translated_images/thai.0269dbab2e78bd38a132067759fe980008bdb80b6d778e5313448dbe12bed846.fa.png differ diff --git a/translated_images/tokenization.1641a160c66cd2d93d4524e8114e93158a9ce0eba3ecf117bae318e8a6ad3487.fa.png b/translated_images/tokenization.1641a160c66cd2d93d4524e8114e93158a9ce0eba3ecf117bae318e8a6ad3487.fa.png new file mode 100644 index 000000000..06161612c Binary files /dev/null and b/translated_images/tokenization.1641a160c66cd2d93d4524e8114e93158a9ce0eba3ecf117bae318e8a6ad3487.fa.png differ diff --git a/translated_images/train-data-predict.3c4ef4e78553104ffdd53d47a4c06414007947ea328e9261ddf48d3eafdefbbf.fa.png b/translated_images/train-data-predict.3c4ef4e78553104ffdd53d47a4c06414007947ea328e9261ddf48d3eafdefbbf.fa.png new file mode 100644 index 000000000..a3a9ce644 Binary files /dev/null and b/translated_images/train-data-predict.3c4ef4e78553104ffdd53d47a4c06414007947ea328e9261ddf48d3eafdefbbf.fa.png differ diff --git a/translated_images/train-test.8928d14e5b91fc942f0ca9201b2d36c890ea7e98f7619fd94f75de3a4c2bacb9.fa.png b/translated_images/train-test.8928d14e5b91fc942f0ca9201b2d36c890ea7e98f7619fd94f75de3a4c2bacb9.fa.png new file mode 100644 index 000000000..bd306feaf Binary files /dev/null and b/translated_images/train-test.8928d14e5b91fc942f0ca9201b2d36c890ea7e98f7619fd94f75de3a4c2bacb9.fa.png differ diff --git a/translated_images/train-test.ead0cecbfc341921d4875eccf25fed5eefbb860cdbb69cabcc2276c49e4b33e5.fa.png b/translated_images/train-test.ead0cecbfc341921d4875eccf25fed5eefbb860cdbb69cabcc2276c49e4b33e5.fa.png new file mode 100644 index 000000000..bd306feaf Binary files /dev/null and b/translated_images/train-test.ead0cecbfc341921d4875eccf25fed5eefbb860cdbb69cabcc2276c49e4b33e5.fa.png differ diff --git a/translated_images/train_progress_raw.2adfdf2daea09c596fc786fa347a23e9aceffe1b463e2257d20a9505794823ec.fa.png b/translated_images/train_progress_raw.2adfdf2daea09c596fc786fa347a23e9aceffe1b463e2257d20a9505794823ec.fa.png new file mode 100644 index 000000000..b995b24b9 Binary files /dev/null and b/translated_images/train_progress_raw.2adfdf2daea09c596fc786fa347a23e9aceffe1b463e2257d20a9505794823ec.fa.png differ diff --git a/translated_images/train_progress_runav.c71694a8fa9ab35935aff6f109e5ecdfdbdf1b0ae265da49479a81b5fae8f0aa.fa.png b/translated_images/train_progress_runav.c71694a8fa9ab35935aff6f109e5ecdfdbdf1b0ae265da49479a81b5fae8f0aa.fa.png new file mode 100644 index 000000000..f5527d750 Binary files /dev/null and b/translated_images/train_progress_runav.c71694a8fa9ab35935aff6f109e5ecdfdbdf1b0ae265da49479a81b5fae8f0aa.fa.png differ diff --git a/translated_images/turntable.f2b86b13c53302dc106aa741de9dc96ac372864cf458dd6f879119857aab01da.fa.jpg b/translated_images/turntable.f2b86b13c53302dc106aa741de9dc96ac372864cf458dd6f879119857aab01da.fa.jpg new file mode 100644 index 000000000..631db5fad Binary files /dev/null and b/translated_images/turntable.f2b86b13c53302dc106aa741de9dc96ac372864cf458dd6f879119857aab01da.fa.jpg differ diff --git a/translated_images/ufo.9e787f5161da9d4d1dafc537e1da09be8210f2ee996cb638aa5cee1d92867a04.fa.jpg b/translated_images/ufo.9e787f5161da9d4d1dafc537e1da09be8210f2ee996cb638aa5cee1d92867a04.fa.jpg new file mode 100644 index 000000000..2d9e3d62e Binary files /dev/null and b/translated_images/ufo.9e787f5161da9d4d1dafc537e1da09be8210f2ee996cb638aa5cee1d92867a04.fa.jpg differ diff --git a/translated_images/unruly_data.0eedc7ced92d2d919cf5ea197bfe0fe9a30780c4bf7cdcf14ff4e9dc5a4c7267.fa.jpg b/translated_images/unruly_data.0eedc7ced92d2d919cf5ea197bfe0fe9a30780c4bf7cdcf14ff4e9dc5a4c7267.fa.jpg new file mode 100644 index 000000000..d09c41c8c Binary files /dev/null and b/translated_images/unruly_data.0eedc7ced92d2d919cf5ea197bfe0fe9a30780c4bf7cdcf14ff4e9dc5a4c7267.fa.jpg differ diff --git a/translated_images/violin.ffceb68923177011dc8f1ae08f78297c69f2b868d82fa4e754cc923b185d4f7d.fa.png b/translated_images/violin.ffceb68923177011dc8f1ae08f78297c69f2b868d82fa4e754cc923b185d4f7d.fa.png new file mode 100644 index 000000000..5b6379a8e Binary files /dev/null and b/translated_images/violin.ffceb68923177011dc8f1ae08f78297c69f2b868d82fa4e754cc923b185d4f7d.fa.png differ diff --git a/translated_images/voronoi.1dc1613fb0439b9564615eca8df47a4bcd1ce06217e7e72325d2406ef2180795.fa.png b/translated_images/voronoi.1dc1613fb0439b9564615eca8df47a4bcd1ce06217e7e72325d2406ef2180795.fa.png new file mode 100644 index 000000000..e4db5db46 Binary files /dev/null and b/translated_images/voronoi.1dc1613fb0439b9564615eca8df47a4bcd1ce06217e7e72325d2406ef2180795.fa.png differ diff --git a/translated_images/web-app.4c76450cabe20036f8ec6d5e05ccc0c1c064f0d8f2fe3304d3bcc0198f7dc139.fa.png b/translated_images/web-app.4c76450cabe20036f8ec6d5e05ccc0c1c064f0d8f2fe3304d3bcc0198f7dc139.fa.png new file mode 100644 index 000000000..2533cfb45 Binary files /dev/null and b/translated_images/web-app.4c76450cabe20036f8ec6d5e05ccc0c1c064f0d8f2fe3304d3bcc0198f7dc139.fa.png differ diff --git a/translated_images/wolf.a56d3d4070ca0c79007b28aa2203a1801ebd496f242525381225992ece6c369d.fa.png b/translated_images/wolf.a56d3d4070ca0c79007b28aa2203a1801ebd496f242525381225992ece6c369d.fa.png new file mode 100644 index 000000000..a7f831a76 Binary files /dev/null and b/translated_images/wolf.a56d3d4070ca0c79007b28aa2203a1801ebd496f242525381225992ece6c369d.fa.png differ diff --git a/translations/de/1-Introduction/1-intro-to-ML/README.md b/translations/de/1-Introduction/1-intro-to-ML/README.md index 48803c830..8d0856a1e 100644 --- a/translations/de/1-Introduction/1-intro-to-ML/README.md +++ b/translations/de/1-Introduction/1-intro-to-ML/README.md @@ -1,148 +1,159 @@ -# Einführung in das maschinelle Lernen + +# Einführung in maschinelles Lernen -## [Vorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/) +## [Quiz vor der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/) --- -[![ML für Anfänger - Einführung in das maschinelle Lernen für Anfänger](https://img.youtube.com/vi/6mSx_KJxcHI/0.jpg)](https://youtu.be/6mSx_KJxcHI "ML für Anfänger - Einführung in das maschinelle Lernen für Anfänger") +[![ML für Anfänger - Einführung in maschinelles Lernen für Anfänger](https://img.youtube.com/vi/6mSx_KJxcHI/0.jpg)](https://youtu.be/6mSx_KJxcHI "ML für Anfänger - Einführung in maschinelles Lernen für Anfänger") -> 🎥 Klicken Sie auf das obige Bild für ein kurzes Video, das diese Lektion durchgeht. +> 🎥 Klicken Sie auf das Bild oben, um ein kurzes Video zu dieser Lektion anzusehen. -Willkommen zu diesem Kurs über klassisches maschinelles Lernen für Anfänger! Egal, ob Sie völlig neu in diesem Thema sind oder ein erfahrener ML-Praktiker, der sein Wissen auffrischen möchte, wir freuen uns, dass Sie dabei sind! Wir möchten einen freundlichen Ausgangspunkt für Ihr ML-Studium schaffen und freuen uns über Ihr [Feedback](https://github.com/microsoft/ML-For-Beginners/discussions). +Willkommen zu diesem Kurs über klassisches maschinelles Lernen für Anfänger! Egal, ob Sie völlig neu in diesem Thema sind oder ein erfahrener ML-Praktiker, der sein Wissen auffrischen möchte – wir freuen uns, dass Sie dabei sind! Wir möchten einen freundlichen Einstiegspunkt für Ihr ML-Studium schaffen und freuen uns über Ihr [Feedback](https://github.com/microsoft/ML-For-Beginners/discussions), das wir gerne bewerten, beantworten und einarbeiten. [![Einführung in ML](https://img.youtube.com/vi/h0e2HAPTGF4/0.jpg)](https://youtu.be/h0e2HAPTGF4 "Einführung in ML") -> 🎥 Klicken Sie auf das obige Bild für ein Video: MITs John Guttag stellt das maschinelle Lernen vor. +> 🎥 Klicken Sie auf das Bild oben für ein Video: John Guttag vom MIT führt in maschinelles Lernen ein. --- -## Erste Schritte mit maschinellem Lernen +## Einstieg in maschinelles Lernen -Bevor Sie mit diesem Lehrplan beginnen, müssen Sie Ihren Computer einrichten und bereit machen, Notebooks lokal auszuführen. +Bevor Sie mit diesem Lehrplan beginnen, müssen Sie Ihren Computer so einrichten, dass Sie Notebooks lokal ausführen können. -- **Konfigurieren Sie Ihre Maschine mit diesen Videos**. Verwenden Sie die folgenden Links, um zu lernen, [wie Sie Python](https://youtu.be/CXZYvNRIAKM) auf Ihrem System installieren und [einen Texteditor](https://youtu.be/EU8eayHWoZg) für die Entwicklung einrichten. -- **Lernen Sie Python**. Es wird auch empfohlen, ein grundlegendes Verständnis von [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) zu haben, einer Programmiersprache, die für Datenwissenschaftler nützlich ist und die wir in diesem Kurs verwenden. -- **Lernen Sie Node.js und JavaScript**. Wir verwenden auch JavaScript einige Male in diesem Kurs, wenn wir Webanwendungen erstellen. Daher müssen Sie [node](https://nodejs.org) und [npm](https://www.npmjs.com/) installiert haben sowie [Visual Studio Code](https://code.visualstudio.com/) für die Entwicklung in Python und JavaScript verfügbar haben. -- **Erstellen Sie ein GitHub-Konto**. Da Sie uns hier auf [GitHub](https://github.com) gefunden haben, haben Sie möglicherweise bereits ein Konto. Wenn nicht, erstellen Sie eines und forken Sie dann diesen Lehrplan, um ihn selbst zu verwenden. (Fühlen Sie sich auch frei, uns einen Stern zu geben 😊) -- **Erforschen Sie Scikit-learn**. Machen Sie sich mit [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) vertraut, einer Sammlung von ML-Bibliotheken, auf die wir in diesen Lektionen verweisen. +- **Konfigurieren Sie Ihren Computer mit diesen Videos**. Verwenden Sie die folgenden Links, um zu erfahren, [wie Sie Python installieren](https://youtu.be/CXZYvNRIAKM) und [einen Texteditor einrichten](https://youtu.be/EU8eayHWoZg) können. +- **Lernen Sie Python**. Es wird empfohlen, ein grundlegendes Verständnis von [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) zu haben, einer Programmiersprache, die für Datenwissenschaftler nützlich ist und die wir in diesem Kurs verwenden. +- **Lernen Sie Node.js und JavaScript**. Wir verwenden JavaScript auch einige Male in diesem Kurs, wenn wir Webanwendungen erstellen. Daher müssen Sie [Node](https://nodejs.org) und [npm](https://www.npmjs.com/) installieren sowie [Visual Studio Code](https://code.visualstudio.com/) für die Entwicklung mit Python und JavaScript verfügbar haben. +- **Erstellen Sie ein GitHub-Konto**. Da Sie uns hier auf [GitHub](https://github.com) gefunden haben, haben Sie möglicherweise bereits ein Konto. Falls nicht, erstellen Sie eines und forken Sie dann diesen Lehrplan, um ihn selbst zu nutzen. (Geben Sie uns gerne auch einen Stern 😊) +- **Entdecken Sie Scikit-learn**. Machen Sie sich mit [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) vertraut, einer Sammlung von ML-Bibliotheken, die wir in diesen Lektionen verwenden. --- ## Was ist maschinelles Lernen? -Der Begriff 'maschinelles Lernen' ist einer der beliebtesten und häufig verwendeten Begriffe von heute. Es besteht eine nicht unerhebliche Wahrscheinlichkeit, dass Sie diesen Begriff zumindest einmal gehört haben, wenn Sie irgendeine Art von Vertrautheit mit Technologie haben, unabhängig davon, in welchem Bereich Sie tätig sind. Die Mechanik des maschinellen Lernens bleibt jedoch für die meisten Menschen ein Rätsel. Für einen Anfänger im maschinellen Lernen kann das Thema manchmal überwältigend erscheinen. Daher ist es wichtig zu verstehen, was maschinelles Lernen tatsächlich ist und es Schritt für Schritt durch praktische Beispiele zu lernen. +Der Begriff „maschinelles Lernen“ gehört zu den beliebtesten und am häufigsten verwendeten Begriffen der heutigen Zeit. Es ist nicht unwahrscheinlich, dass Sie diesen Begriff mindestens einmal gehört haben, wenn Sie mit Technologie vertraut sind, unabhängig davon, in welchem Bereich Sie arbeiten. Die Mechanik des maschinellen Lernens ist jedoch für die meisten Menschen ein Rätsel. Für einen Anfänger im Bereich maschinelles Lernen kann das Thema manchmal überwältigend wirken. Daher ist es wichtig, zu verstehen, was maschinelles Lernen tatsächlich ist, und es Schritt für Schritt anhand praktischer Beispiele zu lernen. --- -## Die Hype-Kurve +## Der Hype-Zyklus ![ml hype curve](../../../../translated_images/hype.07183d711a17aafe70915909a0e45aa286ede136ee9424d418026ab00fec344c.de.png) -> Google Trends zeigt die aktuelle 'Hype-Kurve' des Begriffs 'maschinelles Lernen' +> Google Trends zeigt den aktuellen „Hype-Zyklus“ des Begriffs „maschinelles Lernen“ --- ## Ein geheimnisvolles Universum -Wir leben in einem Universum voller faszinierender Geheimnisse. Große Wissenschaftler wie Stephen Hawking, Albert Einstein und viele andere haben ihr Leben der Suche nach bedeutungsvoller Information gewidmet, die die Geheimnisse der Welt um uns herum enthüllt. Dies ist die menschliche Bedingung des Lernens: Ein menschliches Kind lernt neue Dinge und entdeckt Jahr für Jahr die Struktur seiner Welt, während es zum Erwachsenen heranwächst. +Wir leben in einem Universum voller faszinierender Geheimnisse. Große Wissenschaftler wie Stephen Hawking, Albert Einstein und viele andere haben ihr Leben der Suche nach bedeutungsvollen Informationen gewidmet, die die Geheimnisse der Welt um uns herum entschlüsseln. Dies ist die menschliche Bedingung des Lernens: Ein Kind lernt neue Dinge und entdeckt die Struktur seiner Welt Jahr für Jahr, während es erwachsen wird. --- -## Das Gehirn des Kindes +## Das Gehirn eines Kindes -Das Gehirn und die Sinne eines Kindes nehmen die Fakten ihrer Umgebung wahr und lernen allmählich die verborgenen Muster des Lebens, die dem Kind helfen, logische Regeln zu entwickeln, um erlernte Muster zu identifizieren. Der Lernprozess des menschlichen Gehirns macht den Menschen zu dem anspruchsvollsten Lebewesen dieser Welt. Kontinuierliches Lernen durch Entdecken verborgener Muster und anschließendes Innovieren auf diesen Mustern ermöglicht es uns, uns im Laufe unseres Lebens immer weiter zu verbessern. Diese Lernfähigkeit und die Fähigkeit zur Weiterentwicklung stehen im Zusammenhang mit einem Konzept namens [Gehirnplastizität](https://www.simplypsychology.org/brain-plasticity.html). Oberflächlich betrachtet können wir einige motivierende Ähnlichkeiten zwischen dem Lernprozess des menschlichen Gehirns und den Konzepten des maschinellen Lernens ziehen. +Das Gehirn eines Kindes und seine Sinne nehmen die Fakten seiner Umgebung wahr und lernen nach und nach die verborgenen Muster des Lebens, die dem Kind helfen, logische Regeln zu entwickeln, um die erlernten Muster zu erkennen. Der Lernprozess des menschlichen Gehirns macht den Menschen zum raffiniertesten Lebewesen dieser Welt. Das kontinuierliche Lernen durch das Entdecken verborgener Muster und das anschließende Innovieren auf diesen Mustern ermöglicht es uns, uns im Laufe unseres Lebens immer weiter zu verbessern. Diese Lernfähigkeit und Weiterentwicklungskapazität hängt mit einem Konzept namens [Gehirnplastizität](https://www.simplypsychology.org/brain-plasticity.html) zusammen. Oberflächlich betrachtet können wir einige motivierende Ähnlichkeiten zwischen dem Lernprozess des menschlichen Gehirns und den Konzepten des maschinellen Lernens ziehen. --- ## Das menschliche Gehirn -Das [menschliche Gehirn](https://www.livescience.com/29365-human-brain.html) nimmt Dinge aus der realen Welt wahr, verarbeitet die wahrgenommenen Informationen, trifft rationale Entscheidungen und führt bestimmte Handlungen basierend auf den Umständen aus. Das ist es, was wir als intelligentes Verhalten bezeichnen. Wenn wir ein Abbild des intelligenten Verhaltensprozesses in eine Maschine programmieren, nennt man das künstliche Intelligenz (KI). +Das [menschliche Gehirn](https://www.livescience.com/29365-human-brain.html) nimmt Dinge aus der realen Welt wahr, verarbeitet die wahrgenommene Information, trifft rationale Entscheidungen und führt bestimmte Handlungen basierend auf den Umständen aus. Dies nennen wir intelligentes Verhalten. Wenn wir einen Nachbau des intelligenten Verhaltensprozesses für eine Maschine programmieren, nennen wir das künstliche Intelligenz (KI). --- ## Einige Begriffe -Obwohl die Begriffe verwechselt werden können, ist maschinelles Lernen (ML) ein wichtiger Teilbereich der künstlichen Intelligenz. **ML befasst sich mit der Verwendung spezialisierter Algorithmen, um bedeutungsvolle Informationen zu entdecken und verborgene Muster aus wahrgenommenen Daten zu finden, um den rationalen Entscheidungsprozess zu unterstützen**. +Obwohl die Begriffe oft verwechselt werden, ist maschinelles Lernen (ML) ein wichtiger Teilbereich der künstlichen Intelligenz. **ML beschäftigt sich mit der Verwendung spezialisierter Algorithmen, um bedeutungsvolle Informationen zu entdecken und verborgene Muster aus wahrgenommenen Daten zu finden, um den rationalen Entscheidungsprozess zu unterstützen**. --- ## KI, ML, Deep Learning -![KI, ML, Deep Learning, Datenwissenschaft](../../../../translated_images/ai-ml-ds.537ea441b124ebf69c144a52c0eb13a7af63c4355c2f92f440979380a2fb08b8.de.png) +![AI, ML, deep learning, data science](../../../../translated_images/ai-ml-ds.537ea441b124ebf69c144a52c0eb13a7af63c4355c2f92f440979380a2fb08b8.de.png) > Ein Diagramm, das die Beziehungen zwischen KI, ML, Deep Learning und Datenwissenschaft zeigt. Infografik von [Jen Looper](https://twitter.com/jenlooper), inspiriert von [dieser Grafik](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining) --- -## Konzepte, die behandelt werden +## Zu behandelnde Konzepte -In diesem Lehrplan werden wir nur die Kernkonzepte des maschinellen Lernens behandeln, die ein Anfänger kennen muss. Wir behandeln das, was wir als 'klassisches maschinelles Lernen' bezeichnen, hauptsächlich unter Verwendung von Scikit-learn, einer ausgezeichneten Bibliothek, die viele Studenten nutzen, um die Grundlagen zu lernen. Um breitere Konzepte der künstlichen Intelligenz oder des Deep Learning zu verstehen, ist ein starkes Fundament des maschinellen Lernens unerlässlich, und daher möchten wir es hier anbieten. +In diesem Lehrplan behandeln wir nur die Kernkonzepte des maschinellen Lernens, die ein Anfänger kennen muss. Wir konzentrieren uns auf das sogenannte „klassische maschinelle Lernen“, hauptsächlich mit Scikit-learn, einer hervorragenden Bibliothek, die viele Studenten nutzen, um die Grundlagen zu lernen. Um breitere Konzepte der künstlichen Intelligenz oder des Deep Learning zu verstehen, ist ein starkes Grundwissen im maschinellen Lernen unerlässlich, und wir möchten es hier anbieten. --- ## In diesem Kurs lernen Sie: - Kernkonzepte des maschinellen Lernens -- Die Geschichte des ML +- die Geschichte des ML - ML und Fairness -- Regressions-ML-Techniken -- Klassifikations-ML-Techniken -- Cluster-ML-Techniken -- Natürliche Sprachverarbeitung-ML-Techniken -- Zeitreihenprognose-ML-Techniken +- Regressionstechniken im ML +- Klassifikationstechniken im ML +- Clustering-Techniken im ML +- Techniken der Verarbeitung natürlicher Sprache im ML +- Zeitreihenprognose-Techniken im ML - Verstärkendes Lernen -- Anwendungsbeispiele für ML in der realen Welt +- Anwendungen des ML in der realen Welt --- -## Was wir nicht behandeln werden +## Was wir nicht behandeln - Deep Learning -- Neuronale Netzwerke +- Neuronale Netze - KI -Um ein besseres Lernerlebnis zu schaffen, werden wir die Komplexität von neuronalen Netzwerken, 'Deep Learning' - mehrschichtige Modellierung mit neuronalen Netzwerken - und KI vermeiden, die wir in einem anderen Lehrplan behandeln werden. Wir werden auch einen bevorstehenden Lehrplan zur Datenwissenschaft anbieten, um diesen Aspekt dieses größeren Feldes zu fokussieren. +Um das Lernen zu erleichtern, vermeiden wir die Komplexität neuronaler Netze, „Deep Learning“ – den Aufbau von Modellen mit vielen Schichten unter Verwendung neuronaler Netze – und KI, die wir in einem anderen Lehrplan behandeln werden. Wir werden auch einen bevorstehenden Lehrplan zur Datenwissenschaft anbieten, um diesen Aspekt dieses größeren Feldes zu fokussieren. --- ## Warum maschinelles Lernen studieren? -Maschinelles Lernen wird aus einer Systemperspektive als die Schaffung automatisierter Systeme definiert, die verborgene Muster aus Daten lernen können, um intelligente Entscheidungen zu treffen. +Maschinelles Lernen wird aus einer Systemperspektive definiert als die Erstellung automatisierter Systeme, die verborgene Muster aus Daten lernen können, um intelligente Entscheidungen zu unterstützen. -Diese Motivation ist lose inspiriert von der Art und Weise, wie das menschliche Gehirn bestimmte Dinge basierend auf den Daten, die es aus der Außenwelt wahrnimmt, lernt. +Diese Motivation ist lose inspiriert von der Art und Weise, wie das menschliche Gehirn bestimmte Dinge basierend auf den Daten lernt, die es aus der Außenwelt wahrnimmt. -✅ Denken Sie eine Minute darüber nach, warum ein Unternehmen versuchen würde, maschinelles Lernen zu nutzen, anstatt einen fest codierten, regelbasierten Motor zu erstellen. +✅ Denken Sie einen Moment darüber nach, warum ein Unternehmen maschinelle Lernstrategien anstelle eines fest codierten regelbasierten Systems verwenden möchte. --- ## Anwendungen des maschinellen Lernens -Anwendungen des maschinellen Lernens sind mittlerweile fast überall und so allgegenwärtig wie die Daten, die durch unsere Gesellschaften fließen, generiert von unseren Smartphones, vernetzten Geräten und anderen Systemen. Angesichts des immensen Potenzials modernster Algorithmen des maschinellen Lernens haben Forscher deren Fähigkeit untersucht, multidimensionale und multidisziplinäre Probleme des realen Lebens mit großartigen positiven Ergebnissen zu lösen. +Anwendungen des maschinellen Lernens sind mittlerweile fast überall und so allgegenwärtig wie die Daten, die in unseren Gesellschaften fließen, generiert durch unsere Smartphones, vernetzte Geräte und andere Systeme. Angesichts des enormen Potenzials moderner maschineller Lernalgorithmen erforschen Forscher ihre Fähigkeit, multidimensionale und interdisziplinäre Probleme des realen Lebens mit großartigen positiven Ergebnissen zu lösen. --- ## Beispiele für angewandtes ML -**Sie können maschinelles Lernen auf viele Arten nutzen**: +**Maschinelles Lernen kann auf viele Arten genutzt werden**: -- Um die Wahrscheinlichkeit einer Erkrankung aus der medizinischen Vorgeschichte oder Berichten eines Patienten vorherzusagen. +- Um die Wahrscheinlichkeit einer Krankheit anhand der medizinischen Vorgeschichte oder Berichte eines Patienten vorherzusagen. - Um Wetterdaten zu nutzen, um Wetterereignisse vorherzusagen. - Um die Stimmung eines Textes zu verstehen. -- Um Fake News zu erkennen, um die Verbreitung von Propaganda zu stoppen. +- Um Fake News zu erkennen und die Verbreitung von Propaganda zu stoppen. -Finanzen, Wirtschaft, Erdwissenschaften, Weltraumforschung, biomedizinische Ingenieurwissenschaften, kognitive Wissenschaften und sogar Bereiche der Geisteswissenschaften haben maschinelles Lernen angepasst, um die mühsamen, datenintensiven Probleme ihres Bereichs zu lösen. +Finanzen, Wirtschaft, Geowissenschaften, Weltraumforschung, biomedizinische Technik, Kognitionswissenschaften und sogar Bereiche der Geisteswissenschaften haben maschinelles Lernen adaptiert, um die mühsamen, datenintensiven Probleme ihrer Domäne zu lösen. --- ## Fazit -Maschinelles Lernen automatisiert den Prozess der Musterentdeckung, indem es bedeutungsvolle Einblicke aus realen oder generierten Daten findet. Es hat sich als äußerst wertvoll in Geschäft, Gesundheit und Finanzanwendungen erwiesen, unter anderem. +Maschinelles Lernen automatisiert den Prozess der Mustererkennung, indem es bedeutungsvolle Erkenntnisse aus realen oder generierten Daten gewinnt. Es hat sich als äußerst wertvoll in Bereichen wie Wirtschaft, Gesundheit und Finanzen erwiesen. -In naher Zukunft wird es für Menschen aus jedem Bereich notwendig sein, die Grundlagen des maschinellen Lernens zu verstehen, aufgrund seiner weitverbreiteten Anwendung. +In naher Zukunft wird das Verständnis der Grundlagen des maschinellen Lernens für Menschen aus jedem Bereich aufgrund seiner weit verbreiteten Anwendung unverzichtbar sein. --- # 🚀 Herausforderung -Skizzieren Sie auf Papier oder mit einer Online-App wie [Excalidraw](https://excalidraw.com/) Ihr Verständnis der Unterschiede zwischen KI, ML, Deep Learning und Datenwissenschaft. Fügen Sie einige Ideen zu Problemen hinzu, die jede dieser Techniken gut lösen kann. +Skizzieren Sie auf Papier oder mit einer Online-App wie [Excalidraw](https://excalidraw.com/) Ihr Verständnis der Unterschiede zwischen KI, ML, Deep Learning und Datenwissenschaft. Fügen Sie einige Ideen hinzu, welche Probleme mit diesen Techniken gut gelöst werden können. -# [Nachlesequiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/) +# [Quiz nach der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/) --- # Überprüfung & Selbststudium Um mehr darüber zu erfahren, wie Sie mit ML-Algorithmen in der Cloud arbeiten können, folgen Sie diesem [Lernpfad](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott). -Nehmen Sie an einem [Lernpfad](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) über die Grundlagen des ML teil. +Machen Sie einen [Lernpfad](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) über die Grundlagen des ML. --- # Aufgabe [Starten Sie durch](assignment.md) +--- + **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/1-Introduction/1-intro-to-ML/assignment.md b/translations/de/1-Introduction/1-intro-to-ML/assignment.md index edc6da65a..dd5308b2c 100644 --- a/translations/de/1-Introduction/1-intro-to-ML/assignment.md +++ b/translations/de/1-Introduction/1-intro-to-ML/assignment.md @@ -1,12 +1,23 @@ -# Starten und Einrichten + +# Loslegen ## Anweisungen -In dieser nicht bewerteten Aufgabe solltest du deine Python-Kenntnisse auffrischen und deine Umgebung einrichten, damit du Notebooks ausführen kannst. +In dieser nicht bewerteten Aufgabe solltest du deine Python-Kenntnisse auffrischen und sicherstellen, dass deine Umgebung eingerichtet ist und Notebooks ausführen kann. -Nutze diesen [Python Learning Path](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) und richte dann deine Systeme ein, indem du diese Einführungsvideos ansiehst: +Folge diesem [Python-Lernpfad](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) und richte anschließend dein System ein, indem du dir diese Einführungsvideos ansiehst: https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6 +--- + **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, bitten wir zu beachten, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/1-Introduction/2-history-of-ML/README.md b/translations/de/1-Introduction/2-history-of-ML/README.md index 21b167c2c..19a250759 100644 --- a/translations/de/1-Introduction/2-history-of-ML/README.md +++ b/translations/de/1-Introduction/2-history-of-ML/README.md @@ -1,152 +1,164 @@ + # Geschichte des maschinellen Lernens ![Zusammenfassung der Geschichte des maschinellen Lernens in einer Sketchnote](../../../../translated_images/ml-history.a1bdfd4ce1f464d9a0502f38d355ffda384c95cd5278297a46c9a391b5053bc4.de.png) > Sketchnote von [Tomomi Imura](https://www.twitter.com/girlie_mac) -## [Vorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/) +## [Quiz vor der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/) --- [![ML für Anfänger - Geschichte des maschinellen Lernens](https://img.youtube.com/vi/N6wxM4wZ7V0/0.jpg)](https://youtu.be/N6wxM4wZ7V0 "ML für Anfänger - Geschichte des maschinellen Lernens") -> 🎥 Klicken Sie auf das Bild oben für ein kurzes Video, das durch diese Lektion führt. +> 🎥 Klicken Sie auf das Bild oben, um ein kurzes Video zu dieser Lektion anzusehen. -In dieser Lektion werden wir die wichtigsten Meilensteine in der Geschichte des maschinellen Lernens und der künstlichen Intelligenz durchgehen. +In dieser Lektion gehen wir die wichtigsten Meilensteine in der Geschichte des maschinellen Lernens und der künstlichen Intelligenz durch. -Die Geschichte der künstlichen Intelligenz (KI) als Fachgebiet ist eng mit der Geschichte des maschinellen Lernens verbunden, da die Algorithmen und rechnerischen Fortschritte, die dem ML zugrunde liegen, in die Entwicklung der KI eingeflossen sind. Es ist nützlich, sich daran zu erinnern, dass, während diese Bereiche als eigenständige Forschungsgebiete in den 1950er Jahren zu kristallisieren begannen, wichtige [algorithmische, statistische, mathematische, rechnerische und technische Entdeckungen](https://wikipedia.org/wiki/Timeline_of_machine_learning) dieser Ära vorangingen und sich überlappten. Tatsächlich haben Menschen sich seit [Hunderte von Jahren](https://wikipedia.org/wiki/History_of_artificial_intelligence) mit diesen Fragen beschäftigt: Dieser Artikel behandelt die historischen intellektuellen Grundlagen der Idee einer „denkenden Maschine“. +Die Geschichte der künstlichen Intelligenz (KI) als Forschungsfeld ist eng mit der Geschichte des maschinellen Lernens verbunden, da die Algorithmen und rechnerischen Fortschritte, die ML zugrunde liegen, die Entwicklung der KI vorangetrieben haben. Es ist wichtig zu bedenken, dass sich diese Bereiche zwar erst in den 1950er Jahren als eigenständige Forschungsgebiete herauskristallisierten, aber wichtige [algorithmische, statistische, mathematische, rechnerische und technische Entdeckungen](https://wikipedia.org/wiki/Timeline_of_machine_learning) bereits vorher gemacht wurden und sich mit dieser Ära überschnitten. Tatsächlich beschäftigen sich Menschen schon seit [Hunderten von Jahren](https://wikipedia.org/wiki/History_of_artificial_intelligence) mit diesen Fragen: Dieser Artikel beleuchtet die historischen intellektuellen Grundlagen der Idee einer „denkenden Maschine“. --- -## Bemerkenswerte Entdeckungen +## Bedeutende Entdeckungen -- 1763, 1812 [Bayessches Theorem](https://wikipedia.org/wiki/Bayes%27_theorem) und seine Vorgänger. Dieses Theorem und seine Anwendungen bilden die Grundlage für Inferenz und beschreiben die Wahrscheinlichkeit, dass ein Ereignis auf der Grundlage von Vorwissen eintritt. -- 1805 [Kleinste Quadrate Theorie](https://wikipedia.org/wiki/Least_squares) von dem französischen Mathematiker Adrien-Marie Legendre. Diese Theorie, die Sie in unserer Regressionseinheit kennenlernen werden, hilft bei der Datenanpassung. -- 1913 [Markov-Ketten](https://wikipedia.org/wiki/Markov_chain), benannt nach dem russischen Mathematiker Andrey Markov, werden verwendet, um eine Folge möglicher Ereignisse basierend auf einem vorherigen Zustand zu beschreiben. -- 1957 [Perzeptron](https://wikipedia.org/wiki/Perceptron) ist eine Art von linearem Klassifikator, der von dem amerikanischen Psychologen Frank Rosenblatt erfunden wurde und den Fortschritt im Deep Learning untermauert. +- 1763, 1812 [Bayes-Theorem](https://wikipedia.org/wiki/Bayes%27_theorem) und seine Vorgänger. Dieses Theorem und seine Anwendungen bilden die Grundlage der Inferenz und beschreiben die Wahrscheinlichkeit eines Ereignisses basierend auf vorherigem Wissen. +- 1805 [Methode der kleinsten Quadrate](https://wikipedia.org/wiki/Least_squares) von dem französischen Mathematiker Adrien-Marie Legendre. Diese Theorie, die Sie in unserer Regressionseinheit kennenlernen werden, hilft bei der Datenanpassung. +- 1913 [Markow-Ketten](https://wikipedia.org/wiki/Markov_chain), benannt nach dem russischen Mathematiker Andrey Markov, werden verwendet, um eine Abfolge möglicher Ereignisse basierend auf einem vorherigen Zustand zu beschreiben. +- 1957 [Perceptron](https://wikipedia.org/wiki/Perceptron) ist eine Art linearer Klassifikator, der von dem amerikanischen Psychologen Frank Rosenblatt erfunden wurde und die Grundlage für Fortschritte im Deep Learning bildet. --- -- 1967 [Nächster Nachbar](https://wikipedia.org/wiki/Nearest_neighbor) ist ein Algorithmus, der ursprünglich zur Routenplanung entwickelt wurde. Im Kontext des maschinellen Lernens wird er verwendet, um Muster zu erkennen. -- 1970 [Backpropagation](https://wikipedia.org/wiki/Backpropagation) wird verwendet, um [Feedforward-Neuronale Netzwerke](https://wikipedia.org/wiki/Feedforward_neural_network) zu trainieren. -- 1982 [Rekurrente Neuronale Netzwerke](https://wikipedia.org/wiki/Recurrent_neural_network) sind künstliche neuronale Netzwerke, die von Feedforward-Neuronalen Netzwerken abgeleitet sind und zeitliche Graphen erstellen. +- 1967 [Nächster Nachbar](https://wikipedia.org/wiki/Nearest_neighbor) ist ein Algorithmus, der ursprünglich zur Routenplanung entwickelt wurde. Im ML-Kontext wird er zur Mustererkennung verwendet. +- 1970 [Backpropagation](https://wikipedia.org/wiki/Backpropagation) wird verwendet, um [Feedforward-Neuronale Netze](https://wikipedia.org/wiki/Feedforward_neural_network) zu trainieren. +- 1982 [Rekurrente Neuronale Netze](https://wikipedia.org/wiki/Recurrent_neural_network) sind künstliche neuronale Netze, die aus Feedforward-Netzen abgeleitet sind und zeitliche Graphen erstellen. -✅ Machen Sie ein wenig Forschung. Welche anderen Daten stechen als entscheidend in der Geschichte des ML und der KI hervor? +✅ Machen Sie ein wenig Recherche. Welche anderen Daten sind Ihrer Meinung nach entscheidend in der Geschichte des maschinellen Lernens und der KI? --- ## 1950: Maschinen, die denken -Alan Turing, eine wirklich bemerkenswerte Person, die 2019 [vom Publikum gewählt wurde](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) als der größte Wissenschaftler des 20. Jahrhunderts, wird zugeschrieben, dass er dazu beigetragen hat, das Fundament für das Konzept einer „denkenden Maschine“ zu legen. Er hatte es mit Skeptikern und seinem eigenen Bedürfnis nach empirischen Beweisen für dieses Konzept zu tun, indem er teilweise den [Turing-Test](https://www.bbc.com/news/technology-18475646) entwickelte, den Sie in unseren NLP-Lektionen erkunden werden. +Alan Turing, eine wirklich bemerkenswerte Persönlichkeit, die [2019 von der Öffentlichkeit](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) als der größte Wissenschaftler des 20. Jahrhunderts gewählt wurde, wird zugeschrieben, die Grundlage für das Konzept einer „denkenden Maschine“ gelegt zu haben. Er setzte sich mit Kritikern auseinander und suchte nach empirischen Beweisen für dieses Konzept, unter anderem durch die Entwicklung des [Turing-Tests](https://www.bbc.com/news/technology-18475646), den Sie in unseren NLP-Lektionen näher kennenlernen werden. --- -## 1956: Dartmouth-Sommerforschungsprojekt +## 1956: Dartmouth Summer Research Project -„Das Dartmouth-Sommerforschungsprojekt zur künstlichen Intelligenz war ein wegweisendes Ereignis für die künstliche Intelligenz als Fachgebiet“, und hier wurde der Begriff „künstliche Intelligenz“ geprägt ([Quelle](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)). +„Das Dartmouth Summer Research Project zur künstlichen Intelligenz war ein wegweisendes Ereignis für die KI als Forschungsfeld“, und hier wurde der Begriff „künstliche Intelligenz“ geprägt ([Quelle](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)). -> Jeder Aspekt des Lernens oder irgendein anderes Merkmal von Intelligenz kann prinzipiell so präzise beschrieben werden, dass eine Maschine geschaffen werden kann, die es simuliert. +> Jeder Aspekt des Lernens oder eines anderen Merkmals der Intelligenz kann im Prinzip so genau beschrieben werden, dass eine Maschine dazu gebracht werden kann, ihn zu simulieren. --- -Der leitende Forscher, der Mathematikprofessor John McCarthy, hoffte, „auf der Grundlage der Vermutung fortzufahren, dass jeder Aspekt des Lernens oder irgendein anderes Merkmal von Intelligenz prinzipiell so präzise beschrieben werden kann, dass eine Maschine geschaffen werden kann, die es simuliert.“ Zu den Teilnehmern gehörte ein weiterer Lichtblick auf diesem Gebiet, Marvin Minsky. +Der leitende Forscher, Mathematikprofessor John McCarthy, hoffte „auf der Grundlage der Vermutung vorzugehen, dass jeder Aspekt des Lernens oder eines anderen Merkmals der Intelligenz im Prinzip so genau beschrieben werden kann, dass eine Maschine dazu gebracht werden kann, ihn zu simulieren.“ Zu den Teilnehmern gehörte auch eine weitere bedeutende Persönlichkeit des Feldes, Marvin Minsky. -Der Workshop wird zugeschrieben, mehrere Diskussionen angestoßen und gefördert zu haben, einschließlich „des Aufstiegs symbolischer Methoden, von Systemen, die sich auf begrenzte Bereiche konzentrieren (frühe Expertensysteme) und von deduktiven Systemen im Vergleich zu induktiven Systemen.“ ([Quelle](https://wikipedia.org/wiki/Dartmouth_workshop)). +Der Workshop wird dafür anerkannt, mehrere Diskussionen angestoßen und gefördert zu haben, darunter „der Aufstieg symbolischer Methoden, Systeme, die sich auf begrenzte Domänen konzentrieren (frühe Expertensysteme), und deduktive Systeme versus induktive Systeme.“ ([Quelle](https://wikipedia.org/wiki/Dartmouth_workshop)). --- ## 1956 - 1974: „Die goldenen Jahre“ -Von den 1950er Jahren bis Mitte der 70er Jahre war die Optimismus hoch, dass KI viele Probleme lösen könnte. 1967 erklärte Marvin Minsky selbstbewusst, dass „innerhalb einer Generation ... das Problem, 'künstliche Intelligenz' zu schaffen, wesentlich gelöst sein wird.“ (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall) +Von den 1950er Jahren bis Mitte der 1970er Jahre herrschte große Zuversicht, dass KI viele Probleme lösen könnte. 1967 erklärte Marvin Minsky selbstbewusst: „Innerhalb einer Generation ... wird das Problem der Schaffung von ‚künstlicher Intelligenz‘ im Wesentlichen gelöst sein.“ (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall) -Die Forschung zur natürlichen Sprachverarbeitung blühte auf, die Suche wurde verfeinert und leistungsfähiger gemacht, und das Konzept der „Mikrowelten“ wurde geschaffen, in denen einfache Aufgaben mit einfachen sprachlichen Anweisungen abgeschlossen wurden. +Die Forschung zur Verarbeitung natürlicher Sprache blühte auf, Suchalgorithmen wurden verfeinert und leistungsfähiger gemacht, und das Konzept der „Mikrowelten“ wurde entwickelt, in denen einfache Aufgaben mit einfachen Sprachbefehlen ausgeführt werden konnten. --- -Die Forschung wurde gut von Regierungsbehörden finanziert, es wurden Fortschritte in der Berechnung und den Algorithmen erzielt, und Prototypen intelligenter Maschinen wurden gebaut. Einige dieser Maschinen sind: +Die Forschung wurde von Regierungsbehörden gut finanziert, Fortschritte in der Berechnung und bei Algorithmen wurden erzielt, und Prototypen intelligenter Maschinen wurden gebaut. Einige dieser Maschinen umfassen: -* [Shakey der Roboter](https://wikipedia.org/wiki/Shakey_the_robot), der sich bewegen und entscheiden konnte, wie er Aufgaben „intelligent“ ausführen kann. +* [Shakey der Roboter](https://wikipedia.org/wiki/Shakey_the_robot), der sich bewegen und entscheiden konnte, wie er Aufgaben „intelligent“ ausführt. ![Shakey, ein intelligenter Roboter](../../../../translated_images/shakey.4dc17819c447c05bf4b52f76da0bdd28817d056fdb906252ec20124dd4cfa55e.de.jpg) > Shakey im Jahr 1972 --- -* Eliza, ein früher „Chatterbot“, konnte mit Menschen sprechen und als primitiver „Therapeut“ fungieren. Sie werden mehr über Eliza in den NLP-Lektionen erfahren. +* Eliza, ein früher „Chatterbot“, konnte mit Menschen kommunizieren und als primitiver „Therapeut“ fungieren. Sie werden mehr über Eliza in den NLP-Lektionen erfahren. ![Eliza, ein Bot](../../../../translated_images/eliza.84397454cda9559bb5ec296b5b8fff067571c0cccc5405f9c1ab1c3f105c075c.de.png) - > Eine Version von Eliza, einem Chatbot + > Eine Version von Eliza, ein Chatbot --- -* „Blocks World“ war ein Beispiel für eine Mikrowelt, in der Blöcke gestapelt und sortiert werden konnten, und Experimente im Unterrichten von Maschinen, Entscheidungen zu treffen, getestet werden konnten. Fortschritte, die mit Bibliotheken wie [SHRDLU](https://wikipedia.org/wiki/SHRDLU) erzielt wurden, trugen dazu bei, die Sprachverarbeitung voranzutreiben. +* „Blocks World“ war ein Beispiel für eine Mikrowelt, in der Blöcke gestapelt und sortiert werden konnten und Experimente zur Entscheidungsfindung von Maschinen durchgeführt wurden. Fortschritte mit Bibliotheken wie [SHRDLU](https://wikipedia.org/wiki/SHRDLU) trieben die Sprachverarbeitung voran. [![Blocks World mit SHRDLU](https://img.youtube.com/vi/QAJz4YKUwqw/0.jpg)](https://www.youtube.com/watch?v=QAJz4YKUwqw "Blocks World mit SHRDLU") > 🎥 Klicken Sie auf das Bild oben für ein Video: Blocks World mit SHRDLU --- -## 1974 - 1980: „KI-Winter“ +## 1974 - 1980: „AI Winter“ -Mitte der 1970er Jahre wurde offensichtlich, dass die Komplexität, „intelligente Maschinen“ zu schaffen, unterschätzt worden war und dass ihr Versprechen, angesichts der verfügbaren Rechenleistung, übertrieben war. Die Finanzierung trocknete aus und das Vertrauen in das Fachgebiet nahm ab. Einige Probleme, die das Vertrauen beeinträchtigten, waren: +Mitte der 1970er Jahre wurde klar, dass die Komplexität der Schaffung „intelligenter Maschinen“ unterschätzt und ihr Versprechen angesichts der verfügbaren Rechenleistung überbewertet worden war. Die Finanzierung versiegte und das Vertrauen in das Feld nahm ab. Einige Probleme, die das Vertrauen beeinträchtigten, waren: --- - **Einschränkungen**. Die Rechenleistung war zu begrenzt. -- **Kombinatorische Explosion**. Die Anzahl der Parameter, die trainiert werden mussten, wuchs exponentiell, während immer mehr von Computern verlangt wurde, ohne dass eine parallele Entwicklung der Rechenleistung und -fähigkeit stattfand. +- **Kombinatorische Explosion**. Die Anzahl der zu trainierenden Parameter wuchs exponentiell, je mehr von Computern verlangt wurde, ohne dass sich die Rechenleistung und -fähigkeit parallel weiterentwickelten. - **Mangel an Daten**. Es gab einen Mangel an Daten, der den Prozess des Testens, Entwickelns und Verfeinerns von Algorithmen behinderte. -- **Stellen wir die richtigen Fragen?**. Die Fragen, die gestellt wurden, begannen selbst in Frage gestellt zu werden. Forscher sahen sich Kritik an ihren Ansätzen gegenüber: - - Turing-Tests wurden durch Ideen wie die „chinesische Zimmer Theorie“ in Frage gestellt, die postulierte, dass „die Programmierung eines digitalen Computers den Anschein erwecken kann, Sprache zu verstehen, aber kein echtes Verständnis produzieren kann.“ ([Quelle](https://plato.stanford.edu/entries/chinese-room/)) - - Die Ethik der Einführung künstlicher Intelligenzen wie dem „Therapeuten“ ELIZA in die Gesellschaft wurde in Frage gestellt. +- **Stellen wir die richtigen Fragen?**. Die gestellten Fragen selbst wurden infrage gestellt. Forscher sahen sich Kritik an ihren Ansätzen gegenüber: + - Turing-Tests wurden unter anderem durch die „Chinese Room Theory“ infrage gestellt, die besagt, dass „das Programmieren eines digitalen Computers ihn zwar so erscheinen lassen kann, als würde er Sprache verstehen, aber kein echtes Verständnis erzeugen könnte.“ ([Quelle](https://plato.stanford.edu/entries/chinese-room/)) + - Die Ethik der Einführung künstlicher Intelligenzen wie des „Therapeuten“ ELIZA in die Gesellschaft wurde herausgefordert. --- -Gleichzeitig begannen verschiedene Schulen des Denkens in der KI zu entstehen. Eine Dichotomie wurde zwischen ["schlampigen" vs. "ordentlichen KI"](https://wikipedia.org/wiki/Neats_and_scruffies) Praktiken etabliert. _Schlampige_ Labore passten Programme stundenlang an, bis sie die gewünschten Ergebnisse erzielten. _Ordentliche_ Labore „konzentrierten sich auf Logik und formale Problemlösung“. ELIZA und SHRDLU waren bekannte _schlampige_ Systeme. In den 1980er Jahren, als die Nachfrage entstand, ML-Systeme reproduzierbar zu machen, rückte der _ordentliche_ Ansatz allmählich in den Vordergrund, da seine Ergebnisse besser erklärbar sind. +Gleichzeitig begannen sich verschiedene Schulen der KI-Forschung zu bilden. Es entstand eine Dichotomie zwischen ["Scruffy" vs. "Neat AI"](https://wikipedia.org/wiki/Neats_and_scruffies)-Praktiken. _Scruffy_-Labore optimierten Programme stundenlang, bis sie die gewünschten Ergebnisse erzielten. _Neat_-Labore „konzentrierten sich auf Logik und formale Problemlösung“. ELIZA und SHRDLU waren bekannte _Scruffy_-Systeme. In den 1980er Jahren, als die Nachfrage nach reproduzierbaren ML-Systemen aufkam, setzte sich der _Neat_-Ansatz allmählich durch, da seine Ergebnisse besser erklärbar sind. --- -## 1980er Jahre Expertensysteme +## 1980er Jahre: Expertensysteme -Als das Fachgebiet wuchs, wurde sein Nutzen für Unternehmen klarer, und in den 1980er Jahren nahm auch die Verbreitung von „Expertensystemen“ zu. „Expertensysteme waren unter den ersten wirklich erfolgreichen Formen von Software für künstliche Intelligenz (KI).“ ([Quelle](https://wikipedia.org/wiki/Expert_system)). +Mit dem Wachstum des Feldes wurde sein Nutzen für Unternehmen deutlicher, und in den 1980er Jahren verbreiteten sich „Expertensysteme“. „Expertensysteme gehörten zu den ersten wirklich erfolgreichen Formen von künstlicher Intelligenz (KI)-Software.“ ([Quelle](https://wikipedia.org/wiki/Expert_system)). -Diese Art von System ist tatsächlich _hybrid_, besteht teilweise aus einer Regel-Engine, die Geschäftsanforderungen definiert, und einer Inferenz-Engine, die das Regelwerk nutzt, um neue Fakten abzuleiten. +Diese Art von System ist tatsächlich _hybrid_ und besteht teilweise aus einer Regel-Engine, die Geschäftsanforderungen definiert, und einer Inferenz-Engine, die das Regelwerk nutzt, um neue Fakten abzuleiten. -In dieser Ära wurde auch der neuralen Netzwerke zunehmend Aufmerksamkeit geschenkt. +In dieser Ära wurde auch den neuronalen Netzen zunehmend Aufmerksamkeit geschenkt. --- -## 1987 - 1993: KI „Abkühlung“ +## 1987 - 1993: AI „Chill“ -Die Verbreitung spezialisierter Hardware für Expertensysteme hatte den unglücklichen Effekt, dass sie zu spezialisiert wurde. Der Aufstieg der Personalcomputer konkurrierte auch mit diesen großen, spezialisierten, zentralisierten Systemen. Die Demokratisierung des Rechnens hatte begonnen und ebnete letztendlich den Weg für die moderne Explosion von Big Data. +Die Verbreitung spezialisierter Expertensystem-Hardware hatte den unglücklichen Effekt, zu spezialisiert zu werden. Der Aufstieg von Personal Computern konkurrierte mit diesen großen, spezialisierten, zentralisierten Systemen. Die Demokratisierung des Rechnens hatte begonnen und ebnete schließlich den Weg für die moderne Explosion von Big Data. --- ## 1993 - 2011 -Diese Epoche sah eine neue Ära für ML und KI, um einige der Probleme zu lösen, die früher durch den Mangel an Daten und Rechenleistung verursacht worden waren. Die Menge an Daten begann schnell zuzunehmen und wurde breiter verfügbar, zum Guten und zum Schlechten, insbesondere mit dem Aufkommen des Smartphones um 2007. Die Rechenleistung expandierte exponentiell, und die Algorithmen entwickelten sich weiter. Das Fachgebiet begann an Reife zu gewinnen, als die ungebundenen Tage der Vergangenheit in eine wahre Disziplin kristallisierten. +Diese Epoche markierte eine neue Ära für ML und KI, um einige der Probleme zu lösen, die zuvor durch den Mangel an Daten und Rechenleistung verursacht worden waren. Die Menge an Daten begann rapide zu wachsen und wurde zunehmend verfügbar, sowohl zum Guten als auch zum Schlechten, insbesondere mit der Einführung des Smartphones um 2007. Die Rechenleistung nahm exponentiell zu, und Algorithmen entwickelten sich parallel dazu weiter. Das Feld begann, Reife zu erlangen, da die ungebundenen Tage der Vergangenheit sich zu einer echten Disziplin formten. --- -## Jetzt +## Heute -Heute berührt maschinelles Lernen und KI fast jeden Teil unseres Lebens. Diese Ära erfordert ein sorgfältiges Verständnis der Risiken und potenziellen Auswirkungen dieser Algorithmen auf das menschliche Leben. Wie Microsofts Brad Smith erklärt hat: „Informationstechnologie wirft Fragen auf, die den Kern grundlegender Menschenrechtsgarantien wie Datenschutz und Meinungsfreiheit betreffen. Diese Fragen erhöhen die Verantwortung für Technologieunternehmen, die diese Produkte schaffen. Unserer Meinung nach erfordern sie auch durchdachte staatliche Regulierung und die Entwicklung von Normen für akzeptable Anwendungen“ ([Quelle](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)). +Heute berühren maschinelles Lernen und KI fast jeden Teil unseres Lebens. Diese Ära erfordert ein sorgfältiges Verständnis der Risiken und potenziellen Auswirkungen dieser Algorithmen auf das menschliche Leben. Wie Brad Smith von Microsoft erklärt hat: „Informationstechnologie wirft Fragen auf, die das Herzstück grundlegender Menschenrechtsfragen wie Privatsphäre und Meinungsfreiheit berühren. Diese Fragen erhöhen die Verantwortung für Technologieunternehmen, die diese Produkte entwickeln. Aus unserer Sicht erfordern sie auch eine durchdachte staatliche Regulierung und die Entwicklung von Normen für akzeptable Anwendungen.“ ([Quelle](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)). --- -Es bleibt abzuwarten, was die Zukunft bringt, aber es ist wichtig, diese Computersysteme und die Software und Algorithmen, die sie ausführen, zu verstehen. Wir hoffen, dass dieses Curriculum Ihnen helfen wird, ein besseres Verständnis zu gewinnen, damit Sie selbst entscheiden können. +Es bleibt abzuwarten, was die Zukunft bringt, aber es ist wichtig, diese Computersysteme sowie die Software und Algorithmen, die sie ausführen, zu verstehen. Wir hoffen, dass dieses Curriculum Ihnen hilft, ein besseres Verständnis zu erlangen, damit Sie selbst entscheiden können. [![Die Geschichte des Deep Learning](https://img.youtube.com/vi/mTtDfKgLm54/0.jpg)](https://www.youtube.com/watch?v=mTtDfKgLm54 "Die Geschichte des Deep Learning") -> 🎥 Klicken Sie auf das Bild oben für ein Video: Yann LeCun spricht in dieser Vorlesung über die Geschichte des Deep Learning +> 🎥 Klicken Sie auf das Bild oben für ein Video: Yann LeCun diskutiert die Geschichte des Deep Learning in diesem Vortrag --- -## 🚀Herausforderung +## 🚀 Herausforderung -Tauchen Sie in einen dieser historischen Momente ein und erfahren Sie mehr über die Menschen dahinter. Es gibt faszinierende Charaktere, und keine wissenschaftliche Entdeckung wurde jemals in einem kulturellen Vakuum geschaffen. Was entdecken Sie? +Tauchen Sie in einen dieser historischen Momente ein und erfahren Sie mehr über die Menschen dahinter. Es gibt faszinierende Persönlichkeiten, und keine wissenschaftliche Entdeckung wurde jemals in einem kulturellen Vakuum gemacht. Was entdecken Sie? -## [Nachlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/) +## [Quiz nach der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/) --- ## Überprüfung & Selbststudium -Hier sind einige Artikel, die Sie ansehen und anhören sollten: +Hier sind einige Dinge, die Sie sich ansehen und anhören können: + +[Dieser Podcast, in dem Amy Boyd die Entwicklung der KI diskutiert](http://runasradio.com/Shows/Show/739) -[Dieser Podcast, in dem Amy Boyd über die Entwicklung der KI spricht](http://runasradio.com/Shows/Show/739) [![Die Geschichte der KI von Amy Boyd](https://img.youtube.com/vi/EJt3_bFYKss/0.jpg)](https://www.youtube.com/watch?v=EJt3_bFYKss "Die Geschichte der KI von Amy Boyd") --- ## Aufgabe -[Erstelle eine Zeitleiste](assignment.md) +[Erstellen Sie eine Zeitleiste](assignment.md) + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als autoritative Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/1-Introduction/2-history-of-ML/assignment.md b/translations/de/1-Introduction/2-history-of-ML/assignment.md index bec107332..e06d4475b 100644 --- a/translations/de/1-Introduction/2-history-of-ML/assignment.md +++ b/translations/de/1-Introduction/2-history-of-ML/assignment.md @@ -1,14 +1,25 @@ -# Erstellen Sie eine Zeitleiste + +# Erstelle eine Zeitleiste ## Anweisungen -Verwenden Sie [dieses Repo](https://github.com/Digital-Humanities-Toolkit/timeline-builder), um eine Zeitleiste zu einem Aspekt der Geschichte von Algorithmen, Mathematik, Statistik, KI oder ML oder einer Kombination davon zu erstellen. Sie können sich auf eine Person, eine Idee oder einen langen Zeitraum des Denkens konzentrieren. Stellen Sie sicher, dass Sie multimediale Elemente hinzufügen. +Verwende [dieses Repository](https://github.com/Digital-Humanities-Toolkit/timeline-builder), um eine Zeitleiste zu einem Aspekt der Geschichte von Algorithmen, Mathematik, Statistik, KI oder ML oder einer Kombination dieser Themen zu erstellen. Du kannst dich auf eine Person, eine Idee oder einen langen Zeitraum des Denkens konzentrieren. Stelle sicher, dass du multimediale Elemente hinzufügst. -## Bewertungsrichtlinien +## Bewertungskriterien -| Kriterien | Vorbildlich | Ausreichend | Verbesserungsbedarf | -| --------- | ------------------------------------------------- | -------------------------------------- | --------------------------------------------------------------- | -| | Eine bereitgestellte Zeitleiste wird als GitHub-Seite präsentiert | Der Code ist unvollständig und nicht bereitgestellt | Die Zeitleiste ist unvollständig, nicht gut recherchiert und nicht bereitgestellt | +| Kriterien | Vorbildlich | Angemessen | Verbesserungswürdig | +| --------- | ------------------------------------------------ | --------------------------------------- | ---------------------------------------------------------------- | +| | Eine veröffentlichte Zeitleiste wird als GitHub-Seite präsentiert | Der Code ist unvollständig und nicht veröffentlicht | Die Zeitleiste ist unvollständig, schlecht recherchiert und nicht veröffentlicht | + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, bitten wir Sie zu beachten, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/1-Introduction/3-fairness/README.md b/translations/de/1-Introduction/3-fairness/README.md index c4b898c32..425e95608 100644 --- a/translations/de/1-Introduction/3-fairness/README.md +++ b/translations/de/1-Introduction/3-fairness/README.md @@ -1,46 +1,55 @@ -# Aufbau von Machine Learning-Lösungen mit verantwortungsbewusster KI - -![Zusammenfassung von verantwortungsbewusster KI im Machine Learning in einer Sketchnote](../../../../translated_images/ml-fairness.ef296ebec6afc98a44566d7b6c1ed18dc2bf1115c13ec679bb626028e852fa1d.de.png) + +# Entwicklung von Machine-Learning-Lösungen mit verantwortungsbewusster KI + +![Zusammenfassung der verantwortungsbewussten KI im Machine Learning in einer Sketchnote](../../../../translated_images/ml-fairness.ef296ebec6afc98a44566d7b6c1ed18dc2bf1115c13ec679bb626028e852fa1d.de.png) > Sketchnote von [Tomomi Imura](https://www.twitter.com/girlie_mac) -## [Vorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/) +## [Quiz vor der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/) ## Einführung -In diesem Lehrplan werden Sie entdecken, wie Machine Learning unser tägliches Leben beeinflussen kann und bereits beeinflusst. Schon jetzt sind Systeme und Modelle in täglichen Entscheidungsprozessen involviert, wie z.B. bei medizinischen Diagnosen, Kreditgenehmigungen oder der Betrugserkennung. Daher ist es wichtig, dass diese Modelle gut funktionieren, um vertrauenswürdige Ergebnisse zu liefern. Wie jede Softwareanwendung werden auch KI-Systeme Erwartungen nicht erfüllen oder unerwünschte Ergebnisse liefern. Deshalb ist es entscheidend, das Verhalten eines KI-Modells zu verstehen und erklären zu können. +In diesem Lehrplan werden Sie beginnen zu entdecken, wie Machine Learning unser tägliches Leben beeinflussen kann und bereits beeinflusst. Schon jetzt sind Systeme und Modelle in alltägliche Entscheidungsprozesse eingebunden, wie etwa bei medizinischen Diagnosen, Kreditgenehmigungen oder der Betrugserkennung. Daher ist es wichtig, dass diese Modelle zuverlässig arbeiten, um vertrauenswürdige Ergebnisse zu liefern. Wie jede Softwareanwendung können auch KI-Systeme Erwartungen nicht erfüllen oder unerwünschte Ergebnisse liefern. Deshalb ist es entscheidend, das Verhalten eines KI-Modells verstehen und erklären zu können. -Stellen Sie sich vor, was passieren kann, wenn die Daten, die Sie verwenden, um diese Modelle zu erstellen, bestimmte demografische Merkmale wie Rasse, Geschlecht, politische Ansichten oder Religion nicht berücksichtigen oder diese demografischen Merkmale unverhältnismäßig repräsentieren. Was passiert, wenn die Ausgabe des Modells so interpretiert wird, dass sie eine bestimmte demografische Gruppe begünstigt? Was sind die Konsequenzen für die Anwendung? Und was geschieht, wenn das Modell ein nachteilhaftes Ergebnis hat und Menschen schadet? Wer ist verantwortlich für das Verhalten der KI-Systeme? Dies sind einige Fragen, die wir in diesem Lehrplan untersuchen werden. +Stellen Sie sich vor, was passieren kann, wenn die Daten, die Sie zur Erstellung dieser Modelle verwenden, bestimmte demografische Gruppen wie Rasse, Geschlecht, politische Ansichten oder Religion nicht berücksichtigen oder diese unverhältnismäßig repräsentieren. Was passiert, wenn die Ergebnisse des Modells so interpretiert werden, dass sie eine bestimmte demografische Gruppe bevorzugen? Welche Konsequenzen hat das für die Anwendung? Und was passiert, wenn das Modell ein schädliches Ergebnis liefert? Wer ist für das Verhalten des KI-Systems verantwortlich? Dies sind einige der Fragen, die wir in diesem Lehrplan untersuchen werden. In dieser Lektion werden Sie: -- Ihr Bewusstsein für die Bedeutung von Fairness im Machine Learning und damit verbundenen Schäden schärfen. -- Sich mit der Praxis vertrautmachen, Ausreißer und ungewöhnliche Szenarien zu erkunden, um Zuverlässigkeit und Sicherheit zu gewährleisten. -- Verständnis dafür gewinnen, wie wichtig es ist, alle zu ermächtigen, indem inklusive Systeme entworfen werden. -- Erkunden, wie entscheidend es ist, die Privatsphäre und Sicherheit von Daten und Personen zu schützen. -- Die Bedeutung eines „Glasbox“-Ansatzes erkennen, um das Verhalten von KI-Modellen zu erklären. -- Achtsam sein, wie wichtig Verantwortung ist, um Vertrauen in KI-Systeme aufzubauen. +- Ihr Bewusstsein für die Bedeutung von Fairness im Machine Learning und die damit verbundenen Schäden schärfen. +- Sich mit der Praxis vertraut machen, Ausreißer und ungewöhnliche Szenarien zu untersuchen, um Zuverlässigkeit und Sicherheit zu gewährleisten. +- Ein Verständnis dafür gewinnen, wie wichtig es ist, alle Menschen durch die Gestaltung inklusiver Systeme zu stärken. +- Erkunden, wie entscheidend es ist, die Privatsphäre und Sicherheit von Daten und Menschen zu schützen. +- Die Bedeutung eines transparenten Ansatzes erkennen, um das Verhalten von KI-Modellen zu erklären. +- Sich bewusst machen, wie essenziell Verantwortlichkeit ist, um Vertrauen in KI-Systeme aufzubauen. ## Voraussetzungen -Als Voraussetzung sollten Sie den Lernpfad "Verantwortungsbewusste KI-Prinzipien" absolvieren und das folgende Video zu diesem Thema ansehen: +Als Voraussetzung sollten Sie den "Responsible AI Principles"-Lernpfad absolvieren und das folgende Video zum Thema ansehen: Erfahren Sie mehr über verantwortungsbewusste KI, indem Sie diesem [Lernpfad](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott) folgen. -[![Microsofts Ansatz zur verantwortungsbewussten KI](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Microsofts Ansatz zur verantwortungsbewussten KI") +[![Microsofts Ansatz für verantwortungsbewusste KI](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Microsofts Ansatz für verantwortungsbewusste KI") -> 🎥 Klicken Sie auf das Bild oben für ein Video: Microsofts Ansatz zur verantwortungsbewussten KI +> 🎥 Klicken Sie auf das Bild oben für ein Video: Microsofts Ansatz für verantwortungsbewusste KI ## Fairness -KI-Systeme sollten alle fair behandeln und vermeiden, ähnliche Gruppen von Menschen unterschiedlich zu beeinflussen. Zum Beispiel sollten KI-Systeme, die Empfehlungen zu medizinischen Behandlungen, Kreditanträgen oder Beschäftigung abgeben, allen mit ähnlichen Symptomen, finanziellen Umständen oder beruflichen Qualifikationen dieselben Empfehlungen geben. Jeder von uns trägt ererbte Vorurteile in sich, die unsere Entscheidungen und Handlungen beeinflussen. Diese Vorurteile können in den Daten, die wir zur Schulung von KI-Systemen verwenden, offensichtlich werden. Solche Manipulation kann manchmal unbeabsichtigt geschehen. Es ist oft schwierig, sich bewusst zu sein, wenn man Vorurteile in Daten einführt. +KI-Systeme sollten alle Menschen fair behandeln und vermeiden, ähnliche Gruppen unterschiedlich zu beeinflussen. Beispielsweise sollten KI-Systeme bei medizinischen Behandlungen, Kreditanträgen oder Beschäftigungsentscheidungen die gleichen Empfehlungen für alle mit ähnlichen Symptomen, finanziellen Umständen oder beruflichen Qualifikationen geben. Jeder von uns trägt als Mensch ererbte Vorurteile mit sich, die unsere Entscheidungen und Handlungen beeinflussen. Diese Vorurteile können sich in den Daten widerspiegeln, die wir zur Schulung von KI-Systemen verwenden. Solche Manipulationen können manchmal unbeabsichtigt geschehen. Es ist oft schwierig, bewusst zu erkennen, wann man Vorurteile in Daten einführt. -**„Unfairness“** umfasst negative Auswirkungen oder „Schäden“ für eine Gruppe von Menschen, wie z.B. solche, die in Bezug auf Rasse, Geschlecht, Alter oder Behinderungsstatus definiert sind. Die Hauptschäden, die mit Fairness verbunden sind, können klassifiziert werden als: +**„Unfairness“** umfasst negative Auswirkungen oder „Schäden“ für eine Gruppe von Menschen, wie etwa solche, die durch Rasse, Geschlecht, Alter oder Behinderungsstatus definiert sind. Die Hauptschäden im Zusammenhang mit Fairness können wie folgt klassifiziert werden: -- **Zuteilung**, wenn beispielsweise ein Geschlecht oder eine Ethnie bevorzugt wird. -- **Qualität des Services**. Wenn Sie die Daten für ein bestimmtes Szenario trainieren, die Realität jedoch viel komplexer ist, führt dies zu einem schlecht funktionierenden Service. Zum Beispiel ein Handseifenspender, der anscheinend nicht in der Lage ist, Personen mit dunkler Haut zu erkennen. [Referenz](https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773) -- **Herabwürdigung**. Etwas oder jemanden unfair zu kritisieren und zu kennzeichnen. Zum Beispiel wurde eine Bildkennzeichnungstechnologie berüchtigt dafür, Bilder von dunkelhäutigen Menschen als Gorillas zu kennzeichnen. -- **Über- oder Unterrepräsentation**. Die Idee ist, dass eine bestimmte Gruppe in einem bestimmten Beruf nicht gesehen wird, und jeder Service oder jede Funktion, die dies weiterhin fördert, trägt zu Schäden bei. -- **Stereotypisierung**. Eine bestimmte Gruppe mit vorab zugewiesenen Eigenschaften zu assoziieren. Zum Beispiel kann ein Sprachübersetzungssystem zwischen Englisch und Türkisch Ungenauigkeiten aufweisen, aufgrund von Wörtern mit stereotypischen Assoziationen zum Geschlecht. +- **Zuweisung**, wenn beispielsweise ein Geschlecht oder eine Ethnie gegenüber einer anderen bevorzugt wird. +- **Qualität des Dienstes**. Wenn die Daten für ein spezifisches Szenario trainiert werden, die Realität jedoch viel komplexer ist, führt dies zu einem schlecht funktionierenden Dienst. Zum Beispiel ein Seifenspender, der scheinbar keine Menschen mit dunkler Haut erkennen konnte. [Referenz](https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773) +- **Herabsetzung**. Unfaire Kritik oder Etikettierung von etwas oder jemandem. Ein Beispiel ist eine Bildkennzeichnungstechnologie, die Bilder von dunkelhäutigen Menschen fälschlicherweise als Gorillas bezeichnete. +- **Über- oder Unterrepräsentation**. Die Idee, dass eine bestimmte Gruppe in einem bestimmten Beruf nicht gesehen wird, und jede Funktion oder Dienstleistung, die dies weiter fördert, trägt zu Schaden bei. +- **Stereotypisierung**. Die Zuordnung vorgefertigter Attribute zu einer bestimmten Gruppe. Zum Beispiel kann ein Sprachübersetzungssystem zwischen Englisch und Türkisch Ungenauigkeiten aufweisen, die auf stereotypische Geschlechtsassoziationen zurückzuführen sind. ![Übersetzung ins Türkische](../../../../translated_images/gender-bias-translate-en-tr.f185fd8822c2d4372912f2b690f6aaddd306ffbb49d795ad8d12a4bf141e7af0.de.png) > Übersetzung ins Türkische @@ -48,113 +57,114 @@ KI-Systeme sollten alle fair behandeln und vermeiden, ähnliche Gruppen von Mens ![Übersetzung zurück ins Englische](../../../../translated_images/gender-bias-translate-tr-en.4eee7e3cecb8c70e13a8abbc379209bc8032714169e585bdeac75af09b1752aa.de.png) > Übersetzung zurück ins Englische -Beim Entwerfen und Testen von KI-Systemen müssen wir sicherstellen, dass KI fair ist und nicht darauf programmiert ist, voreingenommene oder diskriminierende Entscheidungen zu treffen, die auch Menschen verboten sind. Die Gewährleistung von Fairness in KI und Machine Learning bleibt eine komplexe soziotechnische Herausforderung. +Beim Entwerfen und Testen von KI-Systemen müssen wir sicherstellen, dass KI fair ist und nicht so programmiert wird, dass sie voreingenommene oder diskriminierende Entscheidungen trifft, die auch Menschen untersagt sind. Fairness in KI und Machine Learning zu garantieren bleibt eine komplexe soziotechnische Herausforderung. ### Zuverlässigkeit und Sicherheit -Um Vertrauen aufzubauen, müssen KI-Systeme zuverlässig, sicher und konsistent unter normalen und unerwarteten Bedingungen sein. Es ist wichtig zu wissen, wie KI-Systeme in verschiedenen Situationen reagieren, insbesondere wenn sie Ausreißer sind. Beim Aufbau von KI-Lösungen muss ein erheblicher Fokus darauf gelegt werden, wie eine Vielzahl von Umständen, mit denen die KI-Lösungen konfrontiert werden könnten, zu bewältigen ist. Zum Beispiel muss ein selbstfahrendes Auto die Sicherheit der Menschen an oberste Stelle setzen. Daher muss die KI, die das Auto antreibt, alle möglichen Szenarien berücksichtigen, mit denen das Auto konfrontiert werden könnte, wie Nacht, Gewitter oder Schneestürme, Kinder, die über die Straße laufen, Haustiere, Straßenbau usw. Wie gut ein KI-System eine breite Palette von Bedingungen zuverlässig und sicher bewältigen kann, spiegelt das Maß an Voraussicht wider, das der Datenwissenschaftler oder KI-Entwickler während des Designs oder der Tests des Systems berücksichtigt hat. +Um Vertrauen aufzubauen, müssen KI-Systeme zuverlässig, sicher und konsistent unter normalen und unerwarteten Bedingungen sein. Es ist wichtig zu wissen, wie sich KI-Systeme in einer Vielzahl von Situationen verhalten, insbesondere bei Ausreißern. Beim Aufbau von KI-Lösungen muss ein erheblicher Fokus darauf gelegt werden, wie eine breite Palette von Umständen gehandhabt werden kann, denen die KI-Lösungen begegnen könnten. Zum Beispiel muss ein selbstfahrendes Auto die Sicherheit der Menschen als oberste Priorität betrachten. Folglich muss die KI, die das Auto antreibt, alle möglichen Szenarien berücksichtigen, denen das Auto begegnen könnte, wie Nacht, Gewitter oder Schneestürme, Kinder, die über die Straße laufen, Haustiere, Straßenbauarbeiten usw. Wie gut ein KI-System eine Vielzahl von Bedingungen zuverlässig und sicher handhaben kann, spiegelt das Maß an Antizipation wider, das der Datenwissenschaftler oder KI-Entwickler während des Designs oder Tests des Systems berücksichtigt hat. > [🎥 Klicken Sie hier für ein Video: ](https://www.microsoft.com/videoplayer/embed/RE4vvIl) ### Inklusivität -KI-Systeme sollten so gestaltet sein, dass sie alle einbeziehen und ermächtigen. Bei der Gestaltung und Implementierung von KI-Systemen identifizieren und beheben Datenwissenschaftler und KI-Entwickler potenzielle Barrieren im System, die unbeabsichtigt Menschen ausschließen könnten. Zum Beispiel gibt es weltweit 1 Milliarde Menschen mit Behinderungen. Mit dem Fortschritt der KI können sie in ihrem täglichen Leben leichter auf eine Vielzahl von Informationen und Möglichkeiten zugreifen. Indem Barrieren angesprochen werden, entstehen Chancen für Innovation und Entwicklung von KI-Produkten mit besseren Erfahrungen, die allen zugutekommen. +KI-Systeme sollten so gestaltet sein, dass sie alle einbeziehen und stärken. Beim Entwerfen und Implementieren von KI-Systemen identifizieren und adressieren Datenwissenschaftler und KI-Entwickler potenzielle Barrieren im System, die Menschen unbeabsichtigt ausschließen könnten. Zum Beispiel gibt es weltweit 1 Milliarde Menschen mit Behinderungen. Mit den Fortschritten in der KI können sie in ihrem täglichen Leben leichter auf eine Vielzahl von Informationen und Möglichkeiten zugreifen. Durch die Beseitigung von Barrieren entstehen Chancen, KI-Produkte mit besseren Erfahrungen zu entwickeln, die allen zugutekommen. > [🎥 Klicken Sie hier für ein Video: Inklusivität in KI](https://www.microsoft.com/videoplayer/embed/RE4vl9v) ### Sicherheit und Datenschutz -KI-Systeme sollten sicher sein und die Privatsphäre der Menschen respektieren. Menschen haben weniger Vertrauen in Systeme, die ihre Privatsphäre, Informationen oder Leben gefährden. Bei der Schulung von Machine Learning-Modellen verlassen wir uns auf Daten, um die besten Ergebnisse zu erzielen. Dabei müssen die Herkunft der Daten und die Integrität berücksichtigt werden. Zum Beispiel, wurden die Daten vom Benutzer eingereicht oder sind sie öffentlich verfügbar? Darüber hinaus ist es beim Arbeiten mit Daten entscheidend, KI-Systeme zu entwickeln, die vertrauliche Informationen schützen und Angriffen widerstehen können. Da KI immer verbreiteter wird, wird der Schutz der Privatsphäre und die Sicherung wichtiger persönlicher und geschäftlicher Informationen zunehmend kritischer und komplexer. Datenschutz- und Datensicherheitsprobleme erfordern besonders viel Aufmerksamkeit für KI, da der Zugang zu Daten für KI-Systeme entscheidend ist, um genaue und informierte Vorhersagen und Entscheidungen über Menschen zu treffen. +KI-Systeme sollten sicher sein und die Privatsphäre der Menschen respektieren. Menschen haben weniger Vertrauen in Systeme, die ihre Privatsphäre, Informationen oder ihr Leben gefährden. Beim Training von Machine-Learning-Modellen verlassen wir uns auf Daten, um die besten Ergebnisse zu erzielen. Dabei muss die Herkunft und Integrität der Daten berücksichtigt werden. Zum Beispiel: Wurden die Daten von Nutzern eingereicht oder waren sie öffentlich verfügbar? Während der Arbeit mit den Daten ist es entscheidend, KI-Systeme zu entwickeln, die vertrauliche Informationen schützen und Angriffen widerstehen können. Da KI immer häufiger eingesetzt wird, wird der Schutz der Privatsphäre und die Sicherung wichtiger persönlicher und geschäftlicher Informationen immer wichtiger und komplexer. Datenschutz- und Datensicherheitsfragen erfordern besonders große Aufmerksamkeit bei KI, da der Zugang zu Daten entscheidend ist, damit KI-Systeme genaue und fundierte Vorhersagen und Entscheidungen über Menschen treffen können. > [🎥 Klicken Sie hier für ein Video: Sicherheit in KI](https://www.microsoft.com/videoplayer/embed/RE4voJF) -- Als Branche haben wir bedeutende Fortschritte im Bereich Datenschutz und Sicherheit gemacht, die maßgeblich durch Vorschriften wie die DSGVO (Datenschutz-Grundverordnung) gefördert wurden. +- Als Branche haben wir bedeutende Fortschritte im Bereich Datenschutz und Sicherheit gemacht, die maßgeblich durch Vorschriften wie die DSGVO (Datenschutz-Grundverordnung) vorangetrieben wurden. - Dennoch müssen wir bei KI-Systemen die Spannung zwischen dem Bedarf an mehr persönlichen Daten, um Systeme persönlicher und effektiver zu machen, und dem Datenschutz anerkennen. -- Ähnlich wie bei der Geburt vernetzter Computer mit dem Internet sehen wir auch einen enormen Anstieg der Anzahl von Sicherheitsproblemen im Zusammenhang mit KI. -- Gleichzeitig haben wir gesehen, dass KI zur Verbesserung der Sicherheit eingesetzt wird. Ein Beispiel sind die meisten modernen Antiviren-Scanner, die heute von KI-Heuristiken gesteuert werden. -- Wir müssen sicherstellen, dass unsere Data-Science-Prozesse harmonisch mit den neuesten Datenschutz- und Sicherheitspraktiken kombiniert werden. +- Ähnlich wie bei der Geburt vernetzter Computer mit dem Internet sehen wir auch einen enormen Anstieg der Sicherheitsprobleme im Zusammenhang mit KI. +- Gleichzeitig wird KI genutzt, um die Sicherheit zu verbessern. Ein Beispiel: Die meisten modernen Antiviren-Scanner werden heute von KI-Heuristiken betrieben. +- Wir müssen sicherstellen, dass unsere Datenwissenschaftsprozesse harmonisch mit den neuesten Datenschutz- und Sicherheitspraktiken zusammenarbeiten. ### Transparenz -KI-Systeme sollten verständlich sein. Ein entscheidender Teil der Transparenz besteht darin, das Verhalten von KI-Systemen und ihren Komponenten zu erklären. Das Verständnis von KI-Systemen zu verbessern, erfordert, dass die Stakeholder nachvollziehen, wie und warum sie funktionieren, damit sie potenzielle Leistungsprobleme, Sicherheits- und Datenschutzbedenken, Vorurteile, ausschließende Praktiken oder unbeabsichtigte Ergebnisse identifizieren können. Wir glauben auch, dass diejenigen, die KI-Systeme nutzen, ehrlich und offen darüber sein sollten, wann, warum und wie sie diese einsetzen, sowie über die Einschränkungen der Systeme, die sie verwenden. Zum Beispiel, wenn eine Bank ein KI-System zur Unterstützung ihrer Verbraucherentscheidungen verwendet, ist es wichtig, die Ergebnisse zu überprüfen und zu verstehen, welche Daten die Empfehlungen des Systems beeinflussen. Regierungen beginnen, KI in verschiedenen Branchen zu regulieren, sodass Datenwissenschaftler und Organisationen erklären müssen, ob ein KI-System die regulatorischen Anforderungen erfüllt, insbesondere wenn es zu einem unerwünschten Ergebnis kommt. +KI-Systeme sollten verständlich sein. Ein wesentlicher Bestandteil der Transparenz ist die Erklärung des Verhaltens von KI-Systemen und ihrer Komponenten. Die Verbesserung des Verständnisses von KI-Systemen erfordert, dass Interessengruppen verstehen, wie und warum sie funktionieren, damit sie potenzielle Leistungsprobleme, Sicherheits- und Datenschutzbedenken, Vorurteile, ausschließende Praktiken oder unbeabsichtigte Ergebnisse identifizieren können. Wir glauben auch, dass diejenigen, die KI-Systeme nutzen, ehrlich und offen darüber sein sollten, wann, warum und wie sie sich entscheiden, diese einzusetzen. Ebenso über die Grenzen der Systeme, die sie verwenden. Zum Beispiel: Wenn eine Bank ein KI-System zur Unterstützung ihrer Kreditentscheidungen einsetzt, ist es wichtig, die Ergebnisse zu prüfen und zu verstehen, welche Daten die Empfehlungen des Systems beeinflussen. Regierungen beginnen, KI branchenübergreifend zu regulieren, daher müssen Datenwissenschaftler und Organisationen erklären, ob ein KI-System die regulatorischen Anforderungen erfüllt, insbesondere wenn es zu einem unerwünschten Ergebnis kommt. > [🎥 Klicken Sie hier für ein Video: Transparenz in KI](https://www.microsoft.com/videoplayer/embed/RE4voJF) -- Da KI-Systeme so komplex sind, ist es schwer zu verstehen, wie sie funktionieren und die Ergebnisse zu interpretieren. -- Dieser Mangel an Verständnis beeinflusst, wie diese Systeme verwaltet, operationalisiert und dokumentiert werden. -- Dieser Mangel an Verständnis beeinflusst insbesondere die Entscheidungen, die auf der Grundlage der Ergebnisse getroffen werden, die diese Systeme produzieren. +- Da KI-Systeme so komplex sind, ist es schwierig zu verstehen, wie sie funktionieren und die Ergebnisse zu interpretieren. +- Dieses mangelnde Verständnis beeinflusst die Art und Weise, wie diese Systeme verwaltet, operationalisiert und dokumentiert werden. +- Noch wichtiger ist, dass dieses mangelnde Verständnis die Entscheidungen beeinflusst, die auf Grundlage der von diesen Systemen erzeugten Ergebnisse getroffen werden. -### Verantwortung +### Verantwortlichkeit -Die Personen, die KI-Systeme entwerfen und implementieren, müssen für das Verhalten ihrer Systeme verantwortlich sein. Die Notwendigkeit von Verantwortung ist besonders wichtig bei sensiblen Technologien wie Gesichtserkennung. Kürzlich gab es eine wachsende Nachfrage nach Gesichtserkennungstechnologie, insbesondere von Strafverfolgungsbehörden, die das Potenzial dieser Technologie zur Auffindung vermisster Kinder sehen. Diese Technologien könnten jedoch von einer Regierung genutzt werden, um die grundlegenden Freiheiten ihrer Bürger zu gefährden, indem sie beispielsweise die kontinuierliche Überwachung bestimmter Personen ermöglichen. Daher müssen Datenwissenschaftler und Organisationen verantwortlich dafür sein, wie ihr KI-System Individuen oder die Gesellschaft beeinflusst. +Die Menschen, die KI-Systeme entwerfen und einsetzen, müssen für die Funktionsweise ihrer Systeme verantwortlich sein. Die Notwendigkeit von Verantwortlichkeit ist besonders wichtig bei sensiblen Technologien wie Gesichtserkennung. In letzter Zeit gibt es eine wachsende Nachfrage nach Gesichtserkennungstechnologie, insbesondere von Strafverfolgungsbehörden, die das Potenzial der Technologie in Anwendungen wie der Suche nach vermissten Kindern sehen. Diese Technologien könnten jedoch von einer Regierung genutzt werden, um die Grundfreiheiten ihrer Bürger zu gefährden, indem sie beispielsweise eine kontinuierliche Überwachung bestimmter Personen ermöglichen. Daher müssen Datenwissenschaftler und Organisationen verantwortlich dafür sein, wie ihr KI-System Einzelpersonen oder die Gesellschaft beeinflusst. -[![Führender KI-Forscher warnt vor Massenüberwachung durch Gesichtserkennung](../../../../translated_images/accountability.41d8c0f4b85b6231301d97f17a450a805b7a07aaeb56b34015d71c757cad142e.de.png)](https://www.youtube.com/watch?v=Wldt8P5V6D0 "Microsofts Ansatz zur verantwortungsbewussten KI") +[![Führender KI-Forscher warnt vor Massenüberwachung durch Gesichtserkennung](../../../../translated_images/accountability.41d8c0f4b85b6231301d97f17a450a805b7a07aaeb56b34015d71c757cad142e.de.png)](https://www.youtube.com/watch?v=Wldt8P5V6D0 "Microsofts Ansatz für verantwortungsbewusste KI") > 🎥 Klicken Sie auf das Bild oben für ein Video: Warnungen vor Massenüberwachung durch Gesichtserkennung -Letztendlich ist eine der größten Fragen für unsere Generation, die erste Generation, die KI in die Gesellschaft bringt, wie sichergestellt werden kann, dass Computer den Menschen gegenüber verantwortlich bleiben und wie sichergestellt werden kann, dass die Menschen, die Computer entwerfen, allen anderen gegenüber verantwortlich bleiben. +Letztendlich ist eine der größten Fragen für unsere Generation, als die erste Generation, die KI in die Gesellschaft bringt, wie wir sicherstellen können, dass Computer weiterhin den Menschen gegenüber verantwortlich bleiben und wie wir sicherstellen können, dass die Menschen, die Computer entwerfen, allen anderen gegenüber verantwortlich bleiben. ## Auswirkungen bewerten -Vor der Schulung eines Machine Learning-Modells ist es wichtig, eine Auswirkungenbewertung durchzuführen, um den Zweck des KI-Systems zu verstehen; was die beabsichtigte Nutzung ist; wo es eingesetzt wird; und wer mit dem System interagiert. Diese Informationen sind hilfreich für Gutachter oder Tester, die das System bewerten, um zu wissen, welche Faktoren bei der Identifizierung potenzieller Risiken und erwarteter Konsequenzen zu berücksichtigen sind. +Bevor ein Machine-Learning-Modell trainiert wird, ist es wichtig, eine Auswirkungsbewertung durchzuführen, um den Zweck des KI-Systems zu verstehen; wie es verwendet werden soll; wo es eingesetzt wird; und wer mit dem System interagieren wird. Diese Bewertungen sind hilfreich für Prüfer oder Tester, die das System evaluieren, um zu wissen, welche Faktoren bei der Identifizierung potenzieller Risiken und erwarteter Konsequenzen berücksichtigt werden müssen. -Die folgenden Bereiche sind bei der Durchführung einer Auswirkungenbewertung zu beachten: +Die folgenden Bereiche sollten bei der Durchführung einer Auswirkungsbewertung berücksichtigt werden: -* **Negative Auswirkungen auf Einzelpersonen**. Es ist wichtig, sich über Einschränkungen oder Anforderungen, nicht unterstützte Nutzungen oder bekannte Einschränkungen, die die Leistung des Systems behindern, bewusst zu sein, um sicherzustellen, dass das System nicht in einer Weise verwendet wird, die Einzelpersonen schaden könnte. -* **Datenanforderungen**. Ein Verständnis darüber, wie und wo das System Daten verwenden wird, ermöglicht es Gutachtern, etwaige Datenanforderungen zu erkunden, die Sie beachten sollten (z.B. DSGVO oder HIPAA-Datenvorschriften). Darüber hinaus sollte geprüft werden, ob die Quelle oder Menge der Daten ausreichend für das Training ist. -* **Zusammenfassung der Auswirkungen**. Erstellen Sie eine Liste potenzieller Schäden, die durch die Nutzung des Systems entstehen könnten. Überprüfen Sie im Verlauf des ML-Lebenszyklus, ob die identifizierten Probleme gemildert oder angesprochen werden. -* **Anwendbare Ziele** für jedes der sechs Kernprinzipien. Bewerten Sie, ob die Ziele jedes der Prinzipien erfüllt werden und ob es Lücken gibt. +* **Negative Auswirkungen auf Einzelpersonen**. Es ist wichtig, sich über Einschränkungen oder Anforderungen, nicht unterstützte Verwendungen oder bekannte Einschränkungen, die die Leistung des Systems beeinträchtigen könnten, bewusst zu sein, um sicherzustellen, dass das System nicht auf eine Weise verwendet wird, die Einzelpersonen schaden könnte. +* **Datenanforderungen**. Ein Verständnis dafür, wie und wo das System Daten verwendet, ermöglicht es Prüfern, mögliche Datenanforderungen zu untersuchen, die berücksichtigt werden müssen (z. B. DSGVO- oder HIPPA-Datenvorschriften). Darüber hinaus sollte geprüft werden, ob die Quelle oder Menge der Daten für das Training ausreichend ist. +* **Zusammenfassung der Auswirkungen**. Eine Liste potenzieller Schäden erstellen, die durch die Nutzung des Systems entstehen könnten. Während des gesamten ML-Lebenszyklus überprüfen, ob die identifizierten Probleme gemindert oder adressiert wurden. +* **Anwendbare Ziele** für jedes der sechs Kernprinzipien. Bewerten, ob die Ziele jedes Prinzips erreicht wurden und ob es Lücken gibt. ## Debugging mit verantwortungsbewusster KI -Ähnlich wie beim Debugging einer Softwareanwendung ist das Debugging eines KI-Systems ein notwendiger Prozess, um Probleme im System zu identifizieren und zu beheben. Es gibt viele Faktoren, die dazu führen können, dass ein Modell nicht wie erwartet oder verantwortungsvoll funktioniert. Die meisten traditionellen Leistungsmetriken für Modelle sind quantitative Aggregationen der Leistung eines Modells, die nicht ausreichen, um zu analysieren, wie ein Modell gegen die Prinzipien verantwortungsbewusster KI verstößt. Darüber hinaus ist ein Machine Learning-Modell eine Black Box, die es schwierig macht zu verstehen, was seine Ergebnisse beeinflusst oder eine Erklärung zu liefern, wenn es einen Fehler macht. Später in diesem Kurs werden wir lernen, wie wir das Responsible AI Dashboard verwenden können, um KI-Systeme zu debuggen. Das Dashboard bietet ein ganzheitliches Werkzeug für Datenwissenschaftler und KI-Entwickler, um Folgendes durchzuführen: +Ähnlich wie beim Debugging einer Softwareanwendung ist das Debugging eines KI-Systems ein notwendiger Prozess zur Identifizierung und Behebung von Problemen im System. Es gibt viele Faktoren, die dazu führen können, dass ein Modell nicht wie erwartet oder verantwortungsvoll funktioniert. Die meisten traditionellen Leistungsmetriken für Modelle sind quantitative Zusammenfassungen der Leistung eines Modells, die nicht ausreichen, um zu analysieren, wie ein Modell gegen die Prinzipien der verantwortungsbewussten KI verstößt. Darüber hinaus ist ein Machine-Learning-Modell eine Blackbox, die es schwierig macht, zu verstehen, was seine Ergebnisse antreibt oder eine Erklärung zu liefern, wenn es einen Fehler macht. Später in diesem Kurs werden wir lernen, wie man das Responsible AI-Dashboard verwendet, um KI-Systeme zu debuggen. Das Dashboard bietet ein ganzheitliches Werkzeug für Datenwissenschaftler und KI-Entwickler, um: -* **Fehleranalyse**. Um die Fehlerverteilung des Modells zu identifizieren, die die Fairness oder Zuverlässigkeit des Systems beeinträchtigen kann. -* **Modellübersicht**. Um herauszufinden, wo es Ungleichheiten in der Leistung des Modells über Datenkohorten hinweg gibt. -* **Datenanalyse**. Um die Datenverteilung zu verstehen und potenzielle Vorurteile in den Daten zu identifizieren, die zu Fairness-, Inklusivitäts- und Zuverlässigkeitsproblemen führen könnten. -* **Modellinterpretierbarkeit**. Um zu verstehen, was die Vorhersagen des Modells beeinflusst oder beeinflusst. Dies hilft, das Verhalten des Modells zu erklären, was wichtig für Transparenz und Verantwortung ist. +* **Fehleranalyse**. Um die Fehlerverteilung des Modells zu identifizieren, die die Fairness oder Zuverlässigkeit des Systems beeinflussen kann. +* **Modellübersicht**. Um herauszufinden, wo es Leistungsunterschiede des Modells über verschiedene Datenkohorten gibt. +* **Datenanalyse**. Um die Datenverteilung zu verstehen und mögliche Vorurteile in den Daten zu identifizieren, die zu Fairness-, Inklusivitäts- und Zuverlässigkeitsproblemen führen könnten. +* **Modellinterpretierbarkeit**. Um zu verstehen, was die Vorhersagen des Modells beeinflusst. Dies hilft, das Verhalten des Modells zu erklären, was für Transparenz und Verantwortlichkeit wichtig ist. ## 🚀 Herausforderung -Um zu verhindern, dass Schäden von vornherein entstehen, sollten wir: +Um Schäden von Anfang an zu verhindern, sollten wir: -- eine Vielfalt von Hintergründen und Perspektiven unter den Menschen haben, die an den Systemen arbeiten +- eine Vielfalt an Hintergründen und Perspektiven unter den Menschen haben, die an den Systemen arbeiten - in Datensätze investieren, die die Vielfalt unserer Gesellschaft widerspiegeln -- bessere Methoden im gesamten Lebenszyklus des Machine Learning entwickeln, um verantwortungsbewusste KI zu erkennen und zu korrigieren, wenn sie auftritt - -Denken Sie an reale Szenarien, in denen das Misstrauen gegenüber einem Modell offensichtlich ist, sowohl beim Modellaufbau als auch bei der Nutzung. Was sollten wir noch berücksichtigen? +- bessere Methoden im gesamten Machine-Learning-Lebenszyklus entwickeln, um verantwortungsbewusste KI zu erkennen und zu korrigieren, wenn sie auftritt -## [Nachlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/6/) +Denken Sie über reale Szenarien nach, in denen die Unzuverlässigkeit eines Modells beim Modellaufbau und -einsatz offensichtlich ist. Was sollten wir noch berücksichtigen? +## [Quiz nach der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/6/) ## Überprüfung & Selbststudium +In dieser Lektion haben Sie einige Grundlagen der Konzepte von Fairness und Unfairness im maschinellen Lernen kennengelernt. -In dieser Lektion haben Sie einige Grundlagen der Konzepte von Fairness und Unfairness im Machine Learning gelernt. +Sehen Sie sich diesen Workshop an, um tiefer in die Themen einzutauchen: -Sehen Sie sich diesen Workshop an, um tiefer in die Themen einzutauchen: +- Auf der Suche nach verantwortungsvoller KI: Prinzipien in die Praxis umsetzen von Besmira Nushi, Mehrnoosh Sameki und Amit Sharma -- Auf der Suche nach verantwortungsbewusster KI: Prinzipien in die Praxis umsetzen von Besmira Nushi, Mehrnoosh Sameki und Amit Sharma +[![Responsible AI Toolbox: Ein Open-Source-Framework für verantwortungsvolle KI](https://img.youtube.com/vi/tGgJCrA-MZU/0.jpg)](https://www.youtube.com/watch?v=tGgJCrA-MZU "RAI Toolbox: Ein Open-Source-Framework für verantwortungsvolle KI") -[![Responsible AI Toolbox: Ein Open-Source-Rahmenwerk für den Aufbau verantwortungsbewusster KI](https://img.youtube.com/vi/tGgJCrA-MZU/0.jpg)](https://www.youtube.com/watch?v=tGgJCrA-MZU "RAI Toolbox: Ein Open-Source-Rahmenwerk für den Aufbau verantwortungsbewusster KI") -> 🎥 Klicken Sie auf das Bild oben für ein Video: RAI Toolbox: Ein Open-Source-Rahmenwerk für den Aufbau verantwortungsbewusster KI von Besmira Nushi, Mehrnoosh Sameki und Amit Sharma +> 🎥 Klicken Sie auf das Bild oben für ein Video: RAI Toolbox: Ein Open-Source-Framework für verantwortungsvolle KI von Besmira Nushi, Mehrnoosh Sameki und Amit Sharma -Lesen Sie auch: +Lesen Sie außerdem: -- Microsofts RAI-Ressourcenzentrum: [Responsible AI Resources – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) +- Microsofts RAI-Ressourcenzentrum: [Responsible AI Resources – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) -- Microsofts FATE-Forschungsgruppe: [FATE: Fairness, Accountability, Transparency, and Ethics in AI - Microsoft Research](https://www.microsoft.com/research/theme/fate/) +- Microsofts FATE-Forschungsgruppe: [FATE: Fairness, Accountability, Transparency, and Ethics in AI - Microsoft Research](https://www.microsoft.com/research/theme/fate/) -RAI Toolbox: +RAI Toolbox: -- [Responsible AI Toolbox GitHub-Repository](https://github.com/microsoft/responsible-ai-toolbox) +- [Responsible AI Toolbox GitHub Repository](https://github.com/microsoft/responsible-ai-toolbox) Lesen Sie über die Tools von Azure Machine Learning, um Fairness sicherzustellen: -- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott) +- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott) ## Aufgabe -[RAI Toolbox erkunden](assignment.md) +[Erkunden Sie die RAI Toolbox](assignment.md) + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, sollten Sie sich bewusst sein, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als autoritative Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/1-Introduction/3-fairness/assignment.md b/translations/de/1-Introduction/3-fairness/assignment.md index ee9461d7a..cdebafa06 100644 --- a/translations/de/1-Introduction/3-fairness/assignment.md +++ b/translations/de/1-Introduction/3-fairness/assignment.md @@ -1,14 +1,25 @@ -# Erforschen Sie das Responsible AI Toolbox + +# Erkunden Sie das Responsible AI Toolbox ## Anweisungen -In dieser Lektion haben Sie das Responsible AI Toolbox kennengelernt, ein "Open-Source-Projekt, das von der Gemeinschaft betrieben wird, um Datenwissenschaftlern zu helfen, KI-Systeme zu analysieren und zu verbessern." Für diese Aufgabe erkunden Sie eines der [Notebooks](https://github.com/microsoft/responsible-ai-toolbox/blob/main/notebooks/responsibleaidashboard/getting-started.ipynb) des RAI Toolbox und berichten Sie über Ihre Erkenntnisse in einem Papier oder einer Präsentation. +In dieser Lektion haben Sie das Responsible AI Toolbox kennengelernt, ein "Open-Source-Community-Projekt, das Datenwissenschaftler dabei unterstützt, KI-Systeme zu analysieren und zu verbessern." Für diese Aufgabe sollen Sie eines der [Notebooks](https://github.com/microsoft/responsible-ai-toolbox/blob/main/notebooks/responsibleaidashboard/getting-started.ipynb) des RAI Toolbox erkunden und Ihre Erkenntnisse in einem Bericht oder einer Präsentation festhalten. -## Bewertungsrichtlinien +## Bewertungskriterien -| Kriterien | Hervorragend | Ausreichend | Verbesserungsbedürftig | -| --------- | ------------ | ----------- | ---------------------- | -| | Ein Papier oder eine PowerPoint-Präsentation wird präsentiert, die die Systeme von Fairlearn, das ausgeführte Notebook und die aus der Ausführung gezogenen Schlussfolgerungen diskutiert | Ein Papier wird präsentiert, jedoch ohne Schlussfolgerungen | Es wird kein Papier präsentiert | +| Kriterien | Vorbildlich | Angemessen | Verbesserungswürdig | +| --------- | ----------- | ---------- | -------------------- | +| | Ein Bericht oder eine PowerPoint-Präsentation wird vorgelegt, die Fairlearns Systeme, das ausgeführte Notebook und die daraus gezogenen Schlussfolgerungen diskutiert. | Ein Bericht wird vorgelegt, jedoch ohne Schlussfolgerungen. | Es wird kein Bericht vorgelegt. | + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, sollten Sie sich bewusst sein, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Verantwortung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/1-Introduction/4-techniques-of-ML/README.md b/translations/de/1-Introduction/4-techniques-of-ML/README.md index c839d3dfb..c8cffec4c 100644 --- a/translations/de/1-Introduction/4-techniques-of-ML/README.md +++ b/translations/de/1-Introduction/4-techniques-of-ML/README.md @@ -1,121 +1,132 @@ + # Techniken des maschinellen Lernens -Der Prozess des Aufbaus, der Nutzung und der Wartung von Modellen des maschinellen Lernens sowie der Daten, die sie verwenden, ist ein sehr anderer Prozess als viele andere Entwicklungsabläufe. In dieser Lektion werden wir den Prozess entmystifizieren und die wichtigsten Techniken skizzieren, die Sie kennen sollten. Sie werden: +Der Prozess des Erstellens, Nutzens und Wartens von Modellen des maschinellen Lernens (ML) und der Daten, die sie verwenden, unterscheidet sich stark von vielen anderen Entwicklungs-Workflows. In dieser Lektion werden wir den Prozess entmystifizieren und die wichtigsten Techniken skizzieren, die Sie kennen müssen. Sie werden: -- Die zugrunde liegenden Prozesse des maschinellen Lernens auf einem hohen Niveau verstehen. -- Grundlegende Konzepte wie 'Modelle', 'Vorhersagen' und 'Trainingsdaten' erkunden. +- Die grundlegenden Prozesse des maschinellen Lernens auf hoher Ebene verstehen. +- Grundlegende Konzepte wie "Modelle", "Vorhersagen" und "Trainingsdaten" erkunden. -## [Vorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7/) +## [Quiz vor der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7/) [![ML für Anfänger - Techniken des maschinellen Lernens](https://img.youtube.com/vi/4NGM0U2ZSHU/0.jpg)](https://youtu.be/4NGM0U2ZSHU "ML für Anfänger - Techniken des maschinellen Lernens") -> 🎥 Klicken Sie auf das Bild oben für ein kurzes Video, das diese Lektion durchläuft. +> 🎥 Klicken Sie auf das Bild oben, um ein kurzes Video zu dieser Lektion anzusehen. ## Einführung -Auf einem hohen Niveau besteht die Kunst der Erstellung von Prozessen des maschinellen Lernens (ML) aus mehreren Schritten: +Auf hoher Ebene besteht die Kunst, Prozesse des maschinellen Lernens zu erstellen, aus mehreren Schritten: -1. **Frage entscheiden**. Die meisten ML-Prozesse beginnen mit einer Frage, die nicht durch ein einfaches bedingtes Programm oder eine regelbasierte Engine beantwortet werden kann. Diese Fragen drehen sich oft um Vorhersagen basierend auf einer Sammlung von Daten. -2. **Daten sammeln und vorbereiten**. Um Ihre Frage beantworten zu können, benötigen Sie Daten. Die Qualität und manchmal die Quantität Ihrer Daten bestimmen, wie gut Sie Ihre ursprüngliche Frage beantworten können. Die Visualisierung von Daten ist ein wichtiger Aspekt dieser Phase. Diese Phase umfasst auch das Aufteilen der Daten in eine Trainings- und Testgruppe, um ein Modell zu erstellen. -3. **Trainingsmethode wählen**. Je nach Ihrer Frage und der Art Ihrer Daten müssen Sie entscheiden, wie Sie ein Modell trainieren möchten, um Ihre Daten bestmöglich widerzuspiegeln und genaue Vorhersagen zu treffen. Dies ist der Teil Ihres ML-Prozesses, der spezifisches Fachwissen und oft eine beträchtliche Menge an Experimentieren erfordert. -4. **Modell trainieren**. Mit Ihren Trainingsdaten verwenden Sie verschiedene Algorithmen, um ein Modell zu trainieren, das Muster in den Daten erkennt. Das Modell kann interne Gewichtungen nutzen, die angepasst werden können, um bestimmten Teilen der Daten mehr Gewicht zu geben und so ein besseres Modell zu erstellen. -5. **Modell bewerten**. Sie verwenden zuvor nicht gesehene Daten (Ihre Testdaten) aus Ihrem gesammelten Set, um zu sehen, wie das Modell funktioniert. -6. **Parameteroptimierung**. Basierend auf der Leistung Ihres Modells können Sie den Prozess mit unterschiedlichen Parametern oder Variablen wiederholen, die das Verhalten der verwendeten Algorithmen steuern. +1. **Die Frage festlegen**. Die meisten ML-Prozesse beginnen mit einer Frage, die nicht durch ein einfaches bedingtes Programm oder eine regelbasierte Engine beantwortet werden kann. Diese Fragen drehen sich oft um Vorhersagen, die auf einer Sammlung von Daten basieren. +2. **Daten sammeln und vorbereiten**. Um Ihre Frage beantworten zu können, benötigen Sie Daten. Die Qualität und manchmal auch die Menge Ihrer Daten bestimmen, wie gut Sie Ihre ursprüngliche Frage beantworten können. Die Visualisierung von Daten ist ein wichtiger Aspekt dieser Phase. Diese Phase umfasst auch das Aufteilen der Daten in eine Trainings- und Testgruppe, um ein Modell zu erstellen. +3. **Eine Trainingsmethode wählen**. Abhängig von Ihrer Frage und der Art Ihrer Daten müssen Sie entscheiden, wie Sie ein Modell trainieren möchten, um Ihre Daten bestmöglich zu reflektieren und genaue Vorhersagen zu treffen. Dieser Teil des ML-Prozesses erfordert spezifisches Fachwissen und oft eine beträchtliche Menge an Experimenten. +4. **Das Modell trainieren**. Mithilfe Ihrer Trainingsdaten verwenden Sie verschiedene Algorithmen, um ein Modell zu trainieren, das Muster in den Daten erkennt. Das Modell kann interne Gewichte nutzen, die angepasst werden können, um bestimmte Teile der Daten gegenüber anderen zu bevorzugen, um ein besseres Modell zu erstellen. +5. **Das Modell bewerten**. Sie verwenden bisher unbekannte Daten (Ihre Testdaten) aus Ihrem gesammelten Satz, um zu sehen, wie das Modell abschneidet. +6. **Parameteranpassung**. Basierend auf der Leistung Ihres Modells können Sie den Prozess mit unterschiedlichen Parametern oder Variablen, die das Verhalten der Algorithmen steuern, wiederholen. 7. **Vorhersagen**. Verwenden Sie neue Eingaben, um die Genauigkeit Ihres Modells zu testen. -## Welche Frage stellen +## Welche Frage soll gestellt werden? -Computer sind besonders geschickt darin, versteckte Muster in Daten zu entdecken. Diese Fähigkeit ist für Forscher, die Fragen zu einem bestimmten Bereich haben, die nicht leicht durch die Erstellung einer bedingungsbasierten Regeln-Engine beantwortet werden können, sehr hilfreich. Angenommen, bei einer versicherungsmathematischen Aufgabe könnte ein Datenwissenschaftler in der Lage sein, maßgeschneiderte Regeln zur Sterblichkeit von Rauchern im Vergleich zu Nichtrauchern zu erstellen. +Computer sind besonders gut darin, versteckte Muster in Daten zu entdecken. Diese Fähigkeit ist sehr hilfreich für Forscher, die Fragen zu einem bestimmten Bereich haben, die nicht leicht durch die Erstellung einer regelbasierten Engine beantwortet werden können. Bei einer versicherungsmathematischen Aufgabe könnte ein Datenwissenschaftler beispielsweise handgefertigte Regeln zur Sterblichkeit von Rauchern im Vergleich zu Nichtrauchern erstellen. -Wenn jedoch viele andere Variablen in die Gleichung einfließen, könnte ein ML-Modell effizienter sein, um zukünftige Sterblichkeitsraten basierend auf früheren Gesundheitsdaten vorherzusagen. Ein fröhlicheres Beispiel könnte die Wettervorhersage für den Monat April an einem bestimmten Ort sein, basierend auf Daten, die Breite, Länge, Klimawandel, Nähe zum Ozean, Muster des Jetstreams und mehr umfassen. +Wenn jedoch viele andere Variablen in die Gleichung einbezogen werden, könnte sich ein ML-Modell als effizienter erweisen, um zukünftige Sterblichkeitsraten basierend auf vergangenen Gesundheitsdaten vorherzusagen. Ein fröhlicheres Beispiel könnte die Wettervorhersage für den Monat April an einem bestimmten Ort sein, basierend auf Daten wie Breitengrad, Längengrad, Klimawandel, Nähe zum Ozean, Jetstream-Mustern und mehr. -✅ Dieses [Präsentationsdeck](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf) zu Wettermodellen bietet eine historische Perspektive zur Nutzung von ML in der Wetteranalyse. +✅ Diese [Präsentation](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf) zu Wettermodellen bietet eine historische Perspektive zur Nutzung von ML in der Wetteranalyse. -## Vorbereitende Aufgaben +## Aufgaben vor dem Modellaufbau -Bevor Sie mit dem Aufbau Ihres Modells beginnen, gibt es mehrere Aufgaben, die Sie abschließen müssen. Um Ihre Frage zu testen und eine Hypothese basierend auf den Vorhersagen eines Modells zu bilden, müssen Sie mehrere Elemente identifizieren und konfigurieren. +Bevor Sie mit dem Aufbau Ihres Modells beginnen, gibt es mehrere Aufgaben, die Sie erledigen müssen. Um Ihre Frage zu testen und eine Hypothese basierend auf den Vorhersagen eines Modells zu bilden, müssen Sie mehrere Elemente identifizieren und konfigurieren. ### Daten -Um Ihre Frage mit irgendeiner Art von Sicherheit beantworten zu können, benötigen Sie eine gute Menge an Daten des richtigen Typs. An diesem Punkt müssen Sie zwei Dinge tun: +Um Ihre Frage mit einer gewissen Sicherheit beantworten zu können, benötigen Sie eine ausreichende Menge an Daten des richtigen Typs. Es gibt zwei Dinge, die Sie an diesem Punkt tun müssen: -- **Daten sammeln**. Behalten Sie die vorherige Lektion zur Fairness in der Datenanalyse im Hinterkopf und sammeln Sie Ihre Daten sorgfältig. Seien Sie sich der Quellen dieser Daten, möglicher inhärenter Vorurteile und der Herkunft bewusst. -- **Daten vorbereiten**. Es gibt mehrere Schritte im Prozess der Datenvorbereitung. Möglicherweise müssen Sie Daten zusammenstellen und normalisieren, wenn sie aus verschiedenen Quellen stammen. Sie können die Qualität und Quantität der Daten durch verschiedene Methoden verbessern, wie zum Beispiel das Umwandeln von Zeichenfolgen in Zahlen (wie wir es in [Clustering](../../5-Clustering/1-Visualize/README.md) tun). Sie könnten auch neue Daten basierend auf den ursprünglichen generieren (wie wir es in [Classification](../../4-Classification/1-Introduction/README.md) tun). Sie können die Daten bereinigen und bearbeiten (wie wir es vor der Lektion [Web App](../../3-Web-App/README.md) tun werden). Schließlich müssen Sie die Daten möglicherweise auch zufällig anordnen und mischen, abhängig von Ihren Trainingstechniken. +- **Daten sammeln**. Denken Sie an die vorherige Lektion zur Fairness in der Datenanalyse und sammeln Sie Ihre Daten sorgfältig. Achten Sie auf die Quellen dieser Daten, mögliche inhärente Verzerrungen und dokumentieren Sie deren Herkunft. +- **Daten vorbereiten**. Es gibt mehrere Schritte im Datenvorbereitungsprozess. Sie müssen möglicherweise Daten zusammenführen und normalisieren, wenn sie aus verschiedenen Quellen stammen. Sie können die Qualität und Quantität der Daten durch verschiedene Methoden verbessern, wie z. B. das Konvertieren von Zeichenfolgen in Zahlen (wie wir es in [Clustering](../../5-Clustering/1-Visualize/README.md) tun). Sie könnten auch neue Daten basierend auf den ursprünglichen Daten generieren (wie wir es in [Klassifikation](../../4-Classification/1-Introduction/README.md) tun). Sie können die Daten bereinigen und bearbeiten (wie wir es vor der [Web-App](../../3-Web-App/README.md)-Lektion tun). Schließlich müssen Sie die Daten möglicherweise auch zufällig anordnen und mischen, je nach Ihren Trainingstechniken. -✅ Nachdem Sie Ihre Daten gesammelt und verarbeitet haben, nehmen Sie sich einen Moment Zeit, um zu prüfen, ob ihre Struktur es Ihnen ermöglicht, Ihre beabsichtigte Frage zu adressieren. Es kann sein, dass die Daten in Ihrer gegebenen Aufgabe nicht gut abschneiden, wie wir in unseren Lektionen zu [Clustering](../../5-Clustering/1-Visualize/README.md) entdecken! +✅ Nachdem Sie Ihre Daten gesammelt und verarbeitet haben, nehmen Sie sich einen Moment Zeit, um zu prüfen, ob deren Struktur es Ihnen ermöglicht, Ihre beabsichtigte Frage zu beantworten. Es könnte sein, dass die Daten für Ihre Aufgabe nicht gut geeignet sind, wie wir in unseren [Clustering](../../5-Clustering/1-Visualize/README.md)-Lektionen herausfinden! ### Merkmale und Ziel -Ein [Merkmal](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection) ist eine messbare Eigenschaft Ihrer Daten. In vielen Datensätzen wird es als Spaltenüberschrift wie 'Datum', 'Größe' oder 'Farbe' ausgedrückt. Ihre Merkmalsvariable, normalerweise als `X` im Code dargestellt, stellt die Eingangsvariable dar, die verwendet wird, um das Modell zu trainieren. +Ein [Merkmal](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection) ist eine messbare Eigenschaft Ihrer Daten. In vielen Datensätzen wird es als Spaltenüberschrift wie 'Datum', 'Größe' oder 'Farbe' ausgedrückt. Ihre Merkmalsvariable, die in der Regel als `X` im Code dargestellt wird, repräsentiert die Eingabevariable, die verwendet wird, um das Modell zu trainieren. -Ein Ziel ist das, was Sie vorhersagen möchten. Das Ziel wird normalerweise als `y` im Code dargestellt und stellt die Antwort auf die Frage dar, die Sie Ihren Daten stellen möchten: Im Dezember, welche **Farbe** haben die günstigsten Kürbisse? In San Francisco, welche Stadtteile haben den besten Immobilien-**preis**? Manchmal wird das Ziel auch als Label-Attribut bezeichnet. +Ein Ziel ist das, was Sie vorhersagen möchten. Das Ziel, in der Regel als `y` im Code dargestellt, repräsentiert die Antwort auf die Frage, die Sie an Ihre Daten stellen möchten: Im Dezember, welche **Farbe** haben die günstigsten Kürbisse? In San Francisco, welche Stadtteile haben die besten Immobilien-**preise**? Manchmal wird das Ziel auch als Label-Attribut bezeichnet. -### Auswahl Ihrer Merkmalsvariable +### Auswahl Ihrer Merkmalsvariablen -🎓 **Merkmalsauswahl und Merkmalsextraktion** Wie wissen Sie, welche Variable Sie wählen sollen, wenn Sie ein Modell aufbauen? Sie werden wahrscheinlich einen Prozess der Merkmalsauswahl oder Merkmalsextraktion durchlaufen, um die richtigen Variablen für das leistungsfähigste Modell auszuwählen. Es sind jedoch nicht die gleichen Dinge: "Merkmalsextraktion erstellt neue Merkmale aus Funktionen der ursprünglichen Merkmale, während die Merkmalsauswahl eine Teilmenge der Merkmale zurückgibt." ([Quelle](https://wikipedia.org/wiki/Feature_selection)) +🎓 **Merkmalsauswahl und Merkmalsextraktion** Wie wissen Sie, welche Variable Sie beim Aufbau eines Modells auswählen sollen? Sie werden wahrscheinlich einen Prozess der Merkmalsauswahl oder Merkmalsextraktion durchlaufen, um die richtigen Variablen für das leistungsfähigste Modell auszuwählen. Sie sind jedoch nicht dasselbe: "Die Merkmalsextraktion erstellt neue Merkmale aus Funktionen der ursprünglichen Merkmale, während die Merkmalsauswahl eine Teilmenge der Merkmale zurückgibt." ([Quelle](https://wikipedia.org/wiki/Feature_selection)) ### Visualisieren Sie Ihre Daten -Ein wichtiger Aspekt des Werkzeugkastens eines Datenwissenschaftlers ist die Fähigkeit, Daten mithilfe mehrerer ausgezeichneter Bibliotheken wie Seaborn oder MatPlotLib zu visualisieren. Ihre Daten visuell darzustellen, könnte Ihnen helfen, versteckte Korrelationen zu entdecken, die Sie nutzen können. Ihre Visualisierungen könnten Ihnen auch helfen, Vorurteile oder unausgewogene Daten aufzudecken (wie wir in [Classification](../../4-Classification/2-Classifiers-1/README.md) entdecken). +Ein wichtiger Aspekt im Werkzeugkasten eines Datenwissenschaftlers ist die Fähigkeit, Daten mit mehreren hervorragenden Bibliotheken wie Seaborn oder MatPlotLib zu visualisieren. Die visuelle Darstellung Ihrer Daten könnte es Ihnen ermöglichen, versteckte Korrelationen zu entdecken, die Sie nutzen können. Ihre Visualisierungen könnten Ihnen auch helfen, Verzerrungen oder unausgewogene Daten aufzudecken (wie wir in [Klassifikation](../../4-Classification/2-Classifiers-1/README.md) herausfinden). -### Teilen Sie Ihr Datenset auf +### Teilen Sie Ihren Datensatz -Vor dem Training müssen Sie Ihr Datenset in zwei oder mehr Teile unterschiedlicher Größe aufteilen, die dennoch die Daten gut repräsentieren. +Vor dem Training müssen Sie Ihren Datensatz in zwei oder mehr ungleiche Teile aufteilen, die die Daten dennoch gut repräsentieren. -- **Training**. Dieser Teil des Datensets wird verwendet, um Ihr Modell zu trainieren. Dieses Set bildet den Großteil des ursprünglichen Datensatzes. -- **Testing**. Ein Testdatensatz ist eine unabhängige Gruppe von Daten, die oft aus den ursprünglichen Daten gesammelt wird, die Sie verwenden, um die Leistung des erstellten Modells zu bestätigen. -- **Validierung**. Ein Validierungsset ist eine kleinere unabhängige Gruppe von Beispielen, die Sie verwenden, um die Hyperparameter oder die Architektur des Modells zu optimieren, um das Modell zu verbessern. Je nach Größe Ihrer Daten und der Frage, die Sie stellen, müssen Sie möglicherweise dieses dritte Set nicht erstellen (wie wir in [Time Series Forecasting](../../7-TimeSeries/1-Introduction/README.md) anmerken). +- **Training**. Dieser Teil des Datensatzes wird an Ihr Modell angepasst, um es zu trainieren. Dieser Satz macht den Großteil des ursprünglichen Datensatzes aus. +- **Testen**. Ein Testdatensatz ist eine unabhängige Gruppe von Daten, die oft aus den ursprünglichen Daten entnommen wird und die Sie verwenden, um die Leistung des erstellten Modells zu bestätigen. +- **Validieren**. Ein Validierungssatz ist eine kleinere unabhängige Gruppe von Beispielen, die Sie verwenden, um die Hyperparameter oder die Architektur des Modells zu optimieren, um das Modell zu verbessern. Abhängig von der Größe Ihrer Daten und der Frage, die Sie stellen, müssen Sie diesen dritten Satz möglicherweise nicht erstellen (wie wir in [Zeitreihenprognosen](../../7-TimeSeries/1-Introduction/README.md) feststellen). -## Ein Modell aufbauen +## Ein Modell erstellen -Mit Ihren Trainingsdaten ist es Ihr Ziel, ein Modell oder eine statistische Darstellung Ihrer Daten zu erstellen, indem Sie verschiedene Algorithmen verwenden, um es zu **trainieren**. Das Training eines Modells setzt es Daten aus und ermöglicht es ihm, Annahmen über wahrgenommene Muster zu treffen, die es entdeckt, validiert und akzeptiert oder ablehnt. +Mithilfe Ihrer Trainingsdaten besteht Ihr Ziel darin, ein Modell oder eine statistische Darstellung Ihrer Daten zu erstellen, indem Sie verschiedene Algorithmen verwenden, um es zu **trainieren**. Das Training eines Modells setzt es Daten aus und ermöglicht es ihm, Annahmen über wahrgenommene Muster zu treffen, diese zu validieren und anzunehmen oder abzulehnen. -### Wählen Sie eine Trainingsmethode +### Eine Trainingsmethode wählen -Je nach Ihrer Frage und der Art Ihrer Daten wählen Sie eine Methode, um es zu trainieren. Indem Sie die [Dokumentation von Scikit-learn](https://scikit-learn.org/stable/user_guide.html) durchgehen - die wir in diesem Kurs verwenden - können Sie viele Möglichkeiten erkunden, ein Modell zu trainieren. Je nach Ihrer Erfahrung müssen Sie möglicherweise mehrere verschiedene Methoden ausprobieren, um das beste Modell zu erstellen. Sie werden wahrscheinlich einen Prozess durchlaufen, bei dem Datenwissenschaftler die Leistung eines Modells bewerten, indem sie ihm unbekannte Daten zuführen, die Genauigkeit, Vorurteile und andere qualitätsmindernde Probleme überprüfen und die am besten geeignete Trainingsmethode für die jeweilige Aufgabe auswählen. +Abhängig von Ihrer Frage und der Art Ihrer Daten wählen Sie eine Methode, um sie zu trainieren. Wenn Sie [Scikit-learn's Dokumentation](https://scikit-learn.org/stable/user_guide.html) durchgehen - die wir in diesem Kurs verwenden - können Sie viele Möglichkeiten erkunden, ein Modell zu trainieren. Abhängig von Ihrer Erfahrung müssen Sie möglicherweise mehrere Methoden ausprobieren, um das beste Modell zu erstellen. Sie werden wahrscheinlich einen Prozess durchlaufen, bei dem Datenwissenschaftler die Leistung eines Modells bewerten, indem sie ihm unbekannte Daten zuführen, die Genauigkeit, Verzerrungen und andere qualitätsmindernde Probleme überprüfen und die am besten geeignete Trainingsmethode für die jeweilige Aufgabe auswählen. -### Trainieren Sie ein Modell +### Ein Modell trainieren -Mit Ihren Trainingsdaten sind Sie bereit, es zu 'passen', um ein Modell zu erstellen. Sie werden feststellen, dass Sie in vielen ML-Bibliotheken den Code 'model.fit' finden werden - es ist an diesem Punkt, dass Sie Ihre Merkmalsvariable als Array von Werten (gewöhnlich 'X') und eine Zielvariable (gewöhnlich 'y') übergeben. +Mit Ihren Trainingsdaten sind Sie bereit, sie zu "fitten", um ein Modell zu erstellen. Sie werden feststellen, dass Sie in vielen ML-Bibliotheken den Code 'model.fit' finden - zu diesem Zeitpunkt senden Sie Ihre Merkmalsvariable als Array von Werten (in der Regel 'X') und eine Zielvariable (in der Regel 'y'). -### Bewerten Sie das Modell +### Das Modell bewerten -Sobald der Trainingsprozess abgeschlossen ist (es kann viele Iterationen oder 'Epochen' dauern, um ein großes Modell zu trainieren), können Sie die Qualität des Modells bewerten, indem Sie Testdaten verwenden, um seine Leistung zu messen. Diese Daten sind eine Teilmenge der ursprünglichen Daten, die das Modell zuvor nicht analysiert hat. Sie können eine Tabelle mit Metriken über die Qualität Ihres Modells ausdrucken. +Sobald der Trainingsprozess abgeschlossen ist (es kann viele Iterationen oder 'Epochen' dauern, um ein großes Modell zu trainieren), können Sie die Qualität des Modells bewerten, indem Sie Testdaten verwenden, um seine Leistung zu messen. Diese Daten sind ein Teil der ursprünglichen Daten, die das Modell zuvor nicht analysiert hat. Sie können eine Tabelle mit Metriken zur Qualität Ihres Modells ausgeben. 🎓 **Modellanpassung** Im Kontext des maschinellen Lernens bezieht sich die Modellanpassung auf die Genauigkeit der zugrunde liegenden Funktion des Modells, während es versucht, Daten zu analysieren, mit denen es nicht vertraut ist. -🎓 **Unteranpassung** und **Überanpassung** sind häufige Probleme, die die Qualität des Modells beeinträchtigen, da das Modell entweder nicht gut genug oder zu gut angepasst ist. Dies führt dazu, dass das Modell Vorhersagen entweder zu eng oder zu locker an den Trainingsdaten ausrichtet. Ein überangepasstes Modell sagt die Trainingsdaten zu gut voraus, weil es die Details und das Rauschen der Daten zu gut gelernt hat. Ein unterangepasstes Modell ist nicht genau, da es weder seine Trainingsdaten noch die Daten, die es noch nicht 'gesehen' hat, genau analysieren kann. +🎓 **Underfitting** und **Overfitting** sind häufige Probleme, die die Qualität des Modells beeinträchtigen, da das Modell entweder nicht gut genug oder zu gut passt. Dies führt dazu, dass das Modell Vorhersagen entweder zu eng oder zu locker an seine Trainingsdaten anpasst. Ein überangepasstes Modell sagt Trainingsdaten zu gut voraus, da es die Details und das Rauschen der Daten zu gut gelernt hat. Ein unterangepasstes Modell ist nicht genau, da es weder seine Trainingsdaten noch Daten, die es noch nicht "gesehen" hat, genau analysieren kann. -![Überanpassungsmodell](../../../../translated_images/overfitting.1c132d92bfd93cb63240baf63ebdf82c30e30a0a44e1ad49861b82ff600c2b5c.de.png) +![überangepasstes Modell](../../../../translated_images/overfitting.1c132d92bfd93cb63240baf63ebdf82c30e30a0a44e1ad49861b82ff600c2b5c.de.png) > Infografik von [Jen Looper](https://twitter.com/jenlooper) -## Parameteroptimierung +## Parameteranpassung -Sobald Ihr erstes Training abgeschlossen ist, beobachten Sie die Qualität des Modells und überlegen Sie, wie Sie es durch Anpassung seiner 'Hyperparameter' verbessern können. Lesen Sie mehr über den Prozess [in der Dokumentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott). +Sobald Ihr erstes Training abgeschlossen ist, beobachten Sie die Qualität des Modells und überlegen, wie Sie es durch Anpassung seiner 'Hyperparameter' verbessern können. Lesen Sie mehr über den Prozess [in der Dokumentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott). ## Vorhersage -Dies ist der Moment, in dem Sie völlig neue Daten verwenden können, um die Genauigkeit Ihres Modells zu testen. In einem 'angewandten' ML-Umfeld, in dem Sie Web-Assets erstellen, um das Modell in der Produktion zu verwenden, könnte dieser Prozess das Sammeln von Benutzereingaben (zum Beispiel durch Drücken eines Knopfes) umfassen, um eine Variable festzulegen und sie an das Modell zur Inferenz oder Bewertung zu senden. +Dies ist der Moment, in dem Sie völlig neue Daten verwenden können, um die Genauigkeit Ihres Modells zu testen. In einem 'angewandten' ML-Setting, in dem Sie Webanwendungen erstellen, um das Modell in der Produktion zu verwenden, könnte dieser Prozess das Sammeln von Benutzereingaben (z. B. einen Knopfdruck) umfassen, um eine Variable festzulegen und sie an das Modell zur Inferenz oder Bewertung zu senden. -In diesen Lektionen werden Sie entdecken, wie Sie diese Schritte verwenden, um zu vorbereiten, zu bauen, zu testen, zu bewerten und Vorhersagen zu treffen - all die Gesten eines Datenwissenschaftlers und mehr, während Sie in Ihrer Reise voranschreiten, um ein 'Full-Stack'-ML-Ingenieur zu werden. +In diesen Lektionen werden Sie entdecken, wie Sie diese Schritte nutzen, um vorzubereiten, zu erstellen, zu testen, zu bewerten und vorherzusagen - all die Aufgaben eines Datenwissenschaftlers und mehr, während Sie auf Ihrem Weg zum 'Full-Stack'-ML-Ingenieur voranschreiten. --- -## 🚀Herausforderung +## 🚀 Herausforderung -Ziehen Sie ein Flussdiagramm, das die Schritte eines ML-Praktikers widerspiegelt. Wo sehen Sie sich derzeit im Prozess? Wo glauben Sie, werden Sie Schwierigkeiten haben? Was erscheint Ihnen einfach? +Erstellen Sie ein Flussdiagramm, das die Schritte eines ML-Praktikers darstellt. Wo sehen Sie sich derzeit im Prozess? Wo erwarten Sie Schwierigkeiten? Was erscheint Ihnen einfach? -## [Nachvorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8/) +## [Quiz nach der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8/) -## Überprüfung & Selbststudium +## Rückblick & Selbststudium -Suchen Sie online nach Interviews mit Datenwissenschaftlern, die über ihre tägliche Arbeit sprechen. Hier ist [eines](https://www.youtube.com/watch?v=Z3IjgbbCEfs). +Suchen Sie online nach Interviews mit Datenwissenschaftlern, die über ihre tägliche Arbeit sprechen. Hier ist [eins](https://www.youtube.com/watch?v=Z3IjgbbCEfs). ## Aufgabe -[Interviewen Sie einen Datenwissenschaftler](assignment.md) +[Führen Sie ein Interview mit einem Datenwissenschaftler](assignment.md) + +--- **Haftungsausschluss**: -Dieses Dokument wurde mithilfe von maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, bitten wir Sie zu beachten, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Verantwortung für Missverständnisse oder Fehlinterpretationen, die aus der Nutzung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/1-Introduction/4-techniques-of-ML/assignment.md b/translations/de/1-Introduction/4-techniques-of-ML/assignment.md index 8fe851fdc..a32484fd8 100644 --- a/translations/de/1-Introduction/4-techniques-of-ML/assignment.md +++ b/translations/de/1-Introduction/4-techniques-of-ML/assignment.md @@ -1,14 +1,25 @@ -# Interview mit einem Data Scientist + +# Interviewe einen Data Scientist ## Anweisungen -Sprechen Sie in Ihrem Unternehmen, in einer Benutzergruppe oder unter Ihren Freunden oder Kommilitonen mit jemandem, der professionell als Data Scientist arbeitet. Schreiben Sie ein kurzes Papier (500 Wörter) über seine täglichen Aufgaben. Sind sie Spezialisten oder arbeiten sie 'full stack'? +Sprich in deinem Unternehmen, einer Benutzergruppe oder unter deinen Freunden oder Kommilitonen mit jemandem, der beruflich als Data Scientist arbeitet. Schreibe eine kurze Arbeit (500 Wörter) über ihre täglichen Aufgaben. Sind sie Spezialisten oder arbeiten sie „Full Stack“? -## Bewertungsrichtlinien +## Bewertungskriterien -| Kriterien | Vorbildlich | Angemessen | Verbesserungsbedarf | -| --------- | ------------------------------------------------------------------------------------ | ------------------------------------------------------------------ | ----------------------- | -| | Ein Aufsatz der richtigen Länge, mit zugeordneten Quellen, wird als .doc-Datei präsentiert | Der Aufsatz ist schlecht zugeordnet oder kürzer als die erforderliche Länge | Es wird kein Aufsatz präsentiert | +| Kriterien | Vorbildlich | Angemessen | Verbesserungswürdig | +| --------- | ----------------------------------------------------------------------------------- | ----------------------------------------------------------------- | --------------------- | +| | Ein Aufsatz in der richtigen Länge, mit angegebenen Quellen, wird als .doc-Datei präsentiert | Der Aufsatz ist schlecht attribuiert oder kürzer als die geforderte Länge | Kein Aufsatz wird präsentiert | + +--- **Haftungsausschluss**: -Dieses Dokument wurde mithilfe von KI-gestützten Übersetzungsdiensten maschinell übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Nutzung dieser Übersetzung entstehen. \ No newline at end of file diff --git a/translations/de/1-Introduction/README.md b/translations/de/1-Introduction/README.md index 04f0d85f8..06abe04d8 100644 --- a/translations/de/1-Introduction/README.md +++ b/translations/de/1-Introduction/README.md @@ -1,26 +1,37 @@ -# Einführung in das maschinelle Lernen - -In diesem Abschnitt des Lehrplans werden die grundlegenden Konzepte des maschinellen Lernens vorgestellt, was es ist, und Sie erfahren etwas über seine Geschichte sowie die Techniken, die Forscher verwenden, um damit zu arbeiten. Lassen Sie uns gemeinsam diese neue Welt des ML erkunden! + +# Einführung in maschinelles Lernen + +In diesem Abschnitt des Lehrplans werden Sie mit den grundlegenden Konzepten des maschinellen Lernens vertraut gemacht, erfahren, was es ist, und etwas über seine Geschichte sowie die Techniken lernen, die Forscher verwenden, um damit zu arbeiten. Lassen Sie uns diese neue Welt des maschinellen Lernens gemeinsam erkunden! ![globe](../../../translated_images/globe.59f26379ceb40428672b4d9a568044618a2bf6292ecd53a5c481b90e3fa805eb.de.jpg) > Foto von Bill Oxford auf Unsplash - + ### Lektionen -1. [Einführung in das maschinelle Lernen](1-intro-to-ML/README.md) +1. [Einführung in maschinelles Lernen](1-intro-to-ML/README.md) 1. [Die Geschichte des maschinellen Lernens und der KI](2-history-of-ML/README.md) -1. [Gerechtigkeit und maschinelles Lernen](3-fairness/README.md) +1. [Fairness und maschinelles Lernen](3-fairness/README.md) 1. [Techniken des maschinellen Lernens](4-techniques-of-ML/README.md) -### Danksagungen +### Credits + +"Einführung in maschinelles Lernen" wurde mit ♥️ geschrieben von einem Team, darunter [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) und [Jen Looper](https://twitter.com/jenlooper) -"Einführung in das maschinelle Lernen" wurde mit ♥️ von einem Team von Personen verfasst, darunter [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) und [Jen Looper](https://twitter.com/jenlooper). +"Die Geschichte des maschinellen Lernens" wurde mit ♥️ geschrieben von [Jen Looper](https://twitter.com/jenlooper) und [Amy Boyd](https://twitter.com/AmyKateNicho) -"Die Geschichte des maschinellen Lernens" wurde mit ♥️ von [Jen Looper](https://twitter.com/jenlooper) und [Amy Boyd](https://twitter.com/AmyKateNicho) verfasst. +"Fairness und maschinelles Lernen" wurde mit ♥️ geschrieben von [Tomomi Imura](https://twitter.com/girliemac) -"Gerechtigkeit und maschinelles Lernen" wurde mit ♥️ von [Tomomi Imura](https://twitter.com/girliemac) verfasst. +"Techniken des maschinellen Lernens" wurde mit ♥️ geschrieben von [Jen Looper](https://twitter.com/jenlooper) und [Chris Noring](https://twitter.com/softchris) -"Techniken des maschinellen Lernens" wurde mit ♥️ von [Jen Looper](https://twitter.com/jenlooper) und [Chris Noring](https://twitter.com/softchris) verfasst. +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner Ausgangssprache sollte als die maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/2-Regression/1-Tools/README.md b/translations/de/2-Regression/1-Tools/README.md index fe1e5099b..c853429fe 100644 --- a/translations/de/2-Regression/1-Tools/README.md +++ b/translations/de/2-Regression/1-Tools/README.md @@ -1,118 +1,127 @@ -# Einstieg in Python und Scikit-learn für Regressionsmodelle + +# Erste Schritte mit Python und Scikit-learn für Regressionsmodelle ![Zusammenfassung von Regressionen in einer Sketchnote](../../../../translated_images/ml-regression.4e4f70e3b3ed446e3ace348dec973e133fa5d3680fbc8412b61879507369b98d.de.png) > Sketchnote von [Tomomi Imura](https://www.twitter.com/girlie_mac) -## [Vorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/9/) +## [Quiz vor der Lektion](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/9/) > ### [Diese Lektion ist auch in R verfügbar!](../../../../2-Regression/1-Tools/solution/R/lesson_1.html) ## Einführung -In diesen vier Lektionen werden Sie entdecken, wie man Regressionsmodelle erstellt. Wir werden kurz besprechen, wofür diese verwendet werden. Aber bevor Sie etwas tun, stellen Sie sicher, dass Sie die richtigen Werkzeuge haben, um den Prozess zu starten! +In diesen vier Lektionen lernen Sie, wie man Regressionsmodelle erstellt. Wir werden gleich besprechen, wofür diese verwendet werden. Aber bevor Sie irgendetwas tun, stellen Sie sicher, dass Sie die richtigen Werkzeuge haben, um den Prozess zu starten! -In dieser Lektion lernen Sie, wie Sie: +In dieser Lektion lernen Sie: -- Ihren Computer für lokale Machine-Learning-Aufgaben konfigurieren. -- Mit Jupyter-Notebooks arbeiten. -- Scikit-learn verwenden, einschließlich der Installation. -- Lineare Regression mit einer praktischen Übung erkunden. +- Ihren Computer für lokale Machine-Learning-Aufgaben zu konfigurieren. +- Mit Jupyter-Notebooks zu arbeiten. +- Scikit-learn zu verwenden, einschließlich der Installation. +- Lineare Regression mit einer praktischen Übung zu erkunden. ## Installationen und Konfigurationen -[![ML für Anfänger - Richten Sie Ihre Werkzeuge ein, um Machine Learning-Modelle zu erstellen](https://img.youtube.com/vi/-DfeD2k2Kj0/0.jpg)](https://youtu.be/-DfeD2k2Kj0 "ML für Anfänger - Richten Sie Ihre Werkzeuge ein, um Machine Learning-Modelle zu erstellen") +[![ML für Anfänger - Richten Sie Ihre Werkzeuge ein, um Machine-Learning-Modelle zu erstellen](https://img.youtube.com/vi/-DfeD2k2Kj0/0.jpg)](https://youtu.be/-DfeD2k2Kj0 "ML für Anfänger - Richten Sie Ihre Werkzeuge ein, um Machine-Learning-Modelle zu erstellen") -> 🎥 Klicken Sie auf das Bild oben für ein kurzes Video, das die Konfiguration Ihres Computers für ML behandelt. +> 🎥 Klicken Sie auf das Bild oben für ein kurzes Video zur Konfiguration Ihres Computers für ML. -1. **Installieren Sie Python**. Stellen Sie sicher, dass [Python](https://www.python.org/downloads/) auf Ihrem Computer installiert ist. Sie werden Python für viele Aufgaben in der Datenwissenschaft und im Machine Learning verwenden. Die meisten Computersysteme haben bereits eine Python-Installation. Es gibt auch nützliche [Python Coding Packs](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott), um die Einrichtung für einige Benutzer zu erleichtern. +1. **Python installieren**. Stellen Sie sicher, dass [Python](https://www.python.org/downloads/) auf Ihrem Computer installiert ist. Sie werden Python für viele Aufgaben in der Datenwissenschaft und im maschinellen Lernen verwenden. Die meisten Computersysteme haben bereits eine Python-Installation. Es gibt auch nützliche [Python Coding Packs](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott), die die Einrichtung für einige Benutzer erleichtern. - Einige Anwendungen von Python erfordern jedoch eine bestimmte Version der Software, während andere eine andere Version benötigen. Aus diesem Grund ist es nützlich, in einer [virtuellen Umgebung](https://docs.python.org/3/library/venv.html) zu arbeiten. + Einige Anwendungen von Python erfordern jedoch eine bestimmte Version der Software, während andere eine andere Version benötigen. Aus diesem Grund ist es sinnvoll, in einer [virtuellen Umgebung](https://docs.python.org/3/library/venv.html) zu arbeiten. -2. **Installieren Sie Visual Studio Code**. Stellen Sie sicher, dass Visual Studio Code auf Ihrem Computer installiert ist. Befolgen Sie diese Anweisungen, um [Visual Studio Code zu installieren](https://code.visualstudio.com/) für die grundlegende Installation. Sie werden Python in Visual Studio Code in diesem Kurs verwenden, daher möchten Sie möglicherweise Ihr Wissen über die [Konfiguration von Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) für die Python-Entwicklung auffrischen. +2. **Visual Studio Code installieren**. Stellen Sie sicher, dass Visual Studio Code auf Ihrem Computer installiert ist. Folgen Sie diesen Anweisungen, um [Visual Studio Code zu installieren](https://code.visualstudio.com/) für die grundlegende Installation. Sie werden Python in Visual Studio Code in diesem Kurs verwenden, daher sollten Sie sich mit der [Konfiguration von Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) für die Python-Entwicklung vertraut machen. - > Machen Sie sich mit Python vertraut, indem Sie diese Sammlung von [Lernmodulen](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott) durcharbeiten. + > Machen Sie sich mit Python vertraut, indem Sie diese Sammlung von [Learn-Modulen](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott) durcharbeiten. > > [![Python mit Visual Studio Code einrichten](https://img.youtube.com/vi/yyQM70vi7V8/0.jpg)](https://youtu.be/yyQM70vi7V8 "Python mit Visual Studio Code einrichten") > - > 🎥 Klicken Sie auf das Bild oben für ein Video: Verwendung von Python innerhalb von VS Code. + > 🎥 Klicken Sie auf das Bild oben für ein Video: Python in VS Code verwenden. -3. **Installieren Sie Scikit-learn**, indem Sie [diese Anweisungen](https://scikit-learn.org/stable/install.html) befolgen. Da Sie sicherstellen müssen, dass Sie Python 3 verwenden, wird empfohlen, eine virtuelle Umgebung zu verwenden. Beachten Sie, dass es spezielle Anweisungen auf der oben verlinkten Seite gibt, wenn Sie diese Bibliothek auf einem M1 Mac installieren. +3. **Scikit-learn installieren**, indem Sie [diesen Anweisungen](https://scikit-learn.org/stable/install.html) folgen. Da Sie sicherstellen müssen, dass Sie Python 3 verwenden, wird empfohlen, eine virtuelle Umgebung zu verwenden. Beachten Sie, dass es spezielle Anweisungen gibt, wenn Sie diese Bibliothek auf einem M1 Mac installieren. -4. **Installieren Sie Jupyter Notebook**. Sie müssen das [Jupyter-Paket installieren](https://pypi.org/project/jupyter/). +4. **Jupyter Notebook installieren**. Sie müssen das [Jupyter-Paket installieren](https://pypi.org/project/jupyter/). -## Ihre ML-Autorenumgebung +## Ihre ML-Entwicklungsumgebung -Sie werden **Notebooks** verwenden, um Ihren Python-Code zu entwickeln und Machine-Learning-Modelle zu erstellen. Diese Art von Datei ist ein gängiges Werkzeug für Datenwissenschaftler und kann an ihrer Endung oder Erweiterung `.ipynb` erkannt werden. +Sie werden **Notebooks** verwenden, um Ihren Python-Code zu entwickeln und Machine-Learning-Modelle zu erstellen. Diese Art von Datei ist ein häufig verwendetes Werkzeug für Datenwissenschaftler und kann an ihrer Endung `.ipynb` erkannt werden. -Notebooks sind eine interaktive Umgebung, die es dem Entwickler ermöglicht, sowohl Code zu schreiben als auch Notizen hinzuzufügen und Dokumentation rund um den Code zu verfassen, was für experimentelle oder forschungsorientierte Projekte sehr hilfreich ist. +Notebooks sind eine interaktive Umgebung, die es Entwicklern ermöglicht, sowohl Code zu schreiben als auch Notizen und Dokumentation rund um den Code hinzuzufügen, was besonders hilfreich für experimentelle oder forschungsorientierte Projekte ist. -[![ML für Anfänger - Richten Sie Jupyter Notebooks ein, um Regressionsmodelle zu erstellen](https://img.youtube.com/vi/7E-jC8FLA2E/0.jpg)](https://youtu.be/7E-jC8FLA2E "ML für Anfänger - Richten Sie Jupyter Notebooks ein, um Regressionsmodelle zu erstellen") +[![ML für Anfänger - Jupyter Notebooks einrichten, um mit der Erstellung von Regressionsmodellen zu beginnen](https://img.youtube.com/vi/7E-jC8FLA2E/0.jpg)](https://youtu.be/7E-jC8FLA2E "ML für Anfänger - Jupyter Notebooks einrichten, um mit der Erstellung von Regressionsmodellen zu beginnen") -> 🎥 Klicken Sie auf das Bild oben für ein kurzes Video, das diese Übung behandelt. +> 🎥 Klicken Sie auf das Bild oben für ein kurzes Video, das diese Übung durchgeht. -### Übung - Arbeiten mit einem Notebook +### Übung - Mit einem Notebook arbeiten In diesem Ordner finden Sie die Datei _notebook.ipynb_. 1. Öffnen Sie _notebook.ipynb_ in Visual Studio Code. - Ein Jupyter-Server wird mit Python 3+ gestartet. Sie finden Bereiche des Notebooks, die `run`, Code-Schnipsel, enthalten. Sie können einen Codeblock ausführen, indem Sie das Symbol auswählen, das wie eine Wiedergabetaste aussieht. + Ein Jupyter-Server wird mit Python 3+ gestartet. Sie finden Bereiche des Notebooks, die `ausgeführt` werden können, also Codeabschnitte. Sie können einen Codeblock ausführen, indem Sie das Symbol auswählen, das wie eine Wiedergabetaste aussieht. -2. Wählen Sie das `md`-Symbol aus und fügen Sie etwas Markdown hinzu sowie den folgenden Text **# Willkommen in Ihrem Notebook**. +2. Wählen Sie das `md`-Symbol und fügen Sie ein wenig Markdown sowie den folgenden Text hinzu: **# Willkommen in Ihrem Notebook**. - Fügen Sie als Nächstes etwas Python-Code hinzu. + Fügen Sie anschließend etwas Python-Code hinzu. -3. Geben Sie **print('hello notebook')** im Codeblock ein. +3. Geben Sie **print('hello notebook')** in den Codeblock ein. 4. Wählen Sie den Pfeil aus, um den Code auszuführen. - Sie sollten die ausgegebene Anweisung sehen: + Sie sollten die gedruckte Aussage sehen: ```output hello notebook ``` -![VS Code mit geöffnetem Notebook](../../../../translated_images/notebook.4a3ee31f396b88325607afda33cadcc6368de98040ff33942424260aa84d75f2.de.jpg) +![VS Code mit einem geöffneten Notebook](../../../../translated_images/notebook.4a3ee31f396b88325607afda33cadcc6368de98040ff33942424260aa84d75f2.de.jpg) -Sie können Ihren Code mit Kommentaren versehen, um das Notebook selbst zu dokumentieren. +Sie können Ihren Code mit Kommentaren durchsetzen, um das Notebook selbst zu dokumentieren. ✅ Denken Sie einen Moment darüber nach, wie unterschiedlich die Arbeitsumgebung eines Webentwicklers im Vergleich zu der eines Datenwissenschaftlers ist. -## Bereit mit Scikit-learn +## Einführung in Scikit-learn -Jetzt, wo Python in Ihrer lokalen Umgebung eingerichtet ist und Sie sich mit Jupyter-Notebooks wohlfühlen, lassen Sie uns auch mit Scikit-learn vertraut machen (ausgesprochen `sci` as in `science`). Scikit-learn bietet eine [umfangreiche API](https://scikit-learn.org/stable/modules/classes.html#api-ref), um Ihnen bei der Durchführung von ML-Aufgaben zu helfen. +Jetzt, da Python in Ihrer lokalen Umgebung eingerichtet ist und Sie sich mit Jupyter-Notebooks vertraut gemacht haben, machen wir uns ebenso vertraut mit Scikit-learn (ausgesprochen `sci` wie in `science`). Scikit-learn bietet eine [umfangreiche API](https://scikit-learn.org/stable/modules/classes.html#api-ref), die Ihnen bei der Durchführung von ML-Aufgaben hilft. -Laut ihrer [Website](https://scikit-learn.org/stable/getting_started.html) ist "Scikit-learn eine Open-Source-Machine-Learning-Bibliothek, die überwachtes und unüberwachtes Lernen unterstützt. Sie bietet auch verschiedene Werkzeuge für das Anpassen von Modellen, die Datenvorverarbeitung, die Modellauswahl und -bewertung sowie viele andere Hilfsprogramme." +Laut ihrer [Website](https://scikit-learn.org/stable/getting_started.html) ist "Scikit-learn eine Open-Source-Machine-Learning-Bibliothek, die sowohl überwachte als auch unüberwachte Lernmethoden unterstützt. Sie bietet auch verschiedene Werkzeuge für Modellanpassung, Datenvorverarbeitung, Modellauswahl und -bewertung sowie viele andere Hilfsmittel." -In diesem Kurs werden Sie Scikit-learn und andere Werkzeuge verwenden, um Machine-Learning-Modelle zu erstellen, um das zu tun, was wir 'traditionelle Machine-Learning'-Aufgaben nennen. Wir haben absichtlich neuronale Netzwerke und Deep Learning vermieden, da diese in unserem kommenden Lehrplan 'KI für Anfänger' besser behandelt werden. +In diesem Kurs werden Sie Scikit-learn und andere Werkzeuge verwenden, um Machine-Learning-Modelle zu erstellen, die sogenannte 'traditionelle Machine-Learning'-Aufgaben ausführen. Wir haben bewusst auf neuronale Netzwerke und Deep Learning verzichtet, da diese besser in unserem kommenden 'AI for Beginners'-Lehrplan behandelt werden. -Scikit-learn macht es einfach, Modelle zu erstellen und sie für die Verwendung zu bewerten. Es konzentriert sich hauptsächlich auf die Verwendung numerischer Daten und enthält mehrere vorgefertigte Datensätze, die als Lernwerkzeuge verwendet werden können. Es umfasst auch vorgefertigte Modelle, die die Schüler ausprobieren können. Lassen Sie uns den Prozess des Ladens von vorverpackten Daten und die Verwendung eines integrierten Schätzers für das erste ML-Modell mit Scikit-learn mit einigen grundlegenden Daten erkunden. +Scikit-learn macht es einfach, Modelle zu erstellen und zu bewerten. Es konzentriert sich hauptsächlich auf die Verwendung numerischer Daten und enthält mehrere vorgefertigte Datensätze, die als Lernwerkzeuge verwendet werden können. Es enthält auch vorgefertigte Modelle, die Studenten ausprobieren können. Lassen Sie uns den Prozess des Ladens vorgefertigter Daten und der Verwendung eines eingebauten Schätzers für das erste ML-Modell mit Scikit-learn erkunden. ## Übung - Ihr erstes Scikit-learn-Notebook -> Dieses Tutorial wurde von dem [Beispiel zur linearen Regression](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py) auf der Website von Scikit-learn inspiriert. +> Dieses Tutorial wurde inspiriert von dem [Beispiel zur linearen Regression](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py) auf der Scikit-learn-Website. -[![ML für Anfänger - Ihr erstes lineares Regressionsprojekt in Python](https://img.youtube.com/vi/2xkXL5EUpS0/0.jpg)](https://youtu.be/2xkXL5EUpS0 "ML für Anfänger - Ihr erstes lineares Regressionsprojekt in Python") +[![ML für Anfänger - Ihr erstes Projekt zur linearen Regression in Python](https://img.youtube.com/vi/2xkXL5EUpS0/0.jpg)](https://youtu.be/2xkXL5EUpS0 "ML für Anfänger - Ihr erstes Projekt zur linearen Regression in Python") -> 🎥 Klicken Sie auf das Bild oben für ein kurzes Video, das diese Übung behandelt. +> 🎥 Klicken Sie auf das Bild oben für ein kurzes Video, das diese Übung durchgeht. -Im _notebook.ipynb_-Datei, die mit dieser Lektion verbunden ist, löschen Sie alle Zellen, indem Sie auf das Symbol 'Mülleimer' klicken. +In der Datei _notebook.ipynb_, die mit dieser Lektion verbunden ist, löschen Sie alle Zellen, indem Sie auf das Symbol 'Mülleimer' klicken. -In diesem Abschnitt arbeiten Sie mit einem kleinen Datensatz über Diabetes, der in Scikit-learn für Lernzwecke integriert ist. Stellen Sie sich vor, Sie möchten eine Behandlung für Diabetiker testen. Machine-Learning-Modelle könnten Ihnen helfen zu bestimmen, welche Patienten besser auf die Behandlung ansprechen würden, basierend auf Kombinationen von Variablen. Selbst ein sehr einfaches Regressionsmodell könnte, wenn es visualisiert wird, Informationen über Variablen zeigen, die Ihnen helfen würden, Ihre theoretischen klinischen Studien zu organisieren. +In diesem Abschnitt arbeiten Sie mit einem kleinen Datensatz über Diabetes, der in Scikit-learn für Lernzwecke integriert ist. Stellen Sie sich vor, Sie wollten eine Behandlung für Diabetespatienten testen. Machine-Learning-Modelle könnten Ihnen helfen zu bestimmen, welche Patienten besser auf die Behandlung ansprechen würden, basierend auf Kombinationen von Variablen. Selbst ein sehr einfaches Regressionsmodell könnte, wenn es visualisiert wird, Informationen über Variablen zeigen, die Ihnen helfen könnten, Ihre theoretischen klinischen Studien zu organisieren. -✅ Es gibt viele Arten von Regressionsmethoden, und welche Sie wählen, hängt von der Antwort ab, die Sie suchen. Wenn Sie die wahrscheinliche Größe einer Person in einem bestimmten Alter vorhersagen möchten, würden Sie eine lineare Regression verwenden, da Sie einen **numerischen Wert** suchen. Wenn Sie herausfinden möchten, ob eine Art von Küche als vegan betrachtet werden sollte oder nicht, suchen Sie nach einer **Kategorisierung**, sodass Sie eine logistische Regression verwenden würden. Sie werden später mehr über logistische Regression erfahren. Denken Sie ein wenig über einige Fragen nach, die Sie an Daten stellen können, und welche dieser Methoden angemessener wäre. +✅ Es gibt viele Arten von Regressionsmethoden, und welche Sie wählen, hängt von der Frage ab, die Sie beantworten möchten. Wenn Sie die wahrscheinliche Größe einer Person in einem bestimmten Alter vorhersagen möchten, würden Sie lineare Regression verwenden, da Sie einen **numerischen Wert** suchen. Wenn Sie herausfinden möchten, ob eine Art von Küche als vegan betrachtet werden sollte oder nicht, suchen Sie nach einer **Kategoriezuweisung**, sodass Sie logistische Regression verwenden würden. Sie werden später mehr über logistische Regression lernen. Denken Sie ein wenig über einige Fragen nach, die Sie an Daten stellen können, und welche dieser Methoden dafür besser geeignet wären. Lassen Sie uns mit dieser Aufgabe beginnen. ### Bibliotheken importieren -Für diese Aufgabe werden wir einige Bibliotheken importieren: +Für diese Aufgabe importieren wir einige Bibliotheken: -- **matplotlib**. Es ist ein nützliches [Grafiktool](https://matplotlib.org/) und wir werden es verwenden, um ein Liniendiagramm zu erstellen. -- **numpy**. [numpy](https://numpy.org/doc/stable/user/whatisnumpy.html) ist eine nützliche Bibliothek zum Umgang mit numerischen Daten in Python. +- **matplotlib**. Es ist ein nützliches [Grafikwerkzeug](https://matplotlib.org/) und wir werden es verwenden, um ein Liniendiagramm zu erstellen. +- **numpy**. [numpy](https://numpy.org/doc/stable/user/whatisnumpy.html) ist eine nützliche Bibliothek für die Verarbeitung numerischer Daten in Python. - **sklearn**. Dies ist die [Scikit-learn](https://scikit-learn.org/stable/user_guide.html)-Bibliothek. -Importieren Sie einige Bibliotheken, um Ihnen bei Ihren Aufgaben zu helfen. +Importieren Sie einige Bibliotheken, die Ihnen bei Ihren Aufgaben helfen. 1. Fügen Sie die Importe hinzu, indem Sie den folgenden Code eingeben: @@ -122,26 +131,26 @@ Importieren Sie einige Bibliotheken, um Ihnen bei Ihren Aufgaben zu helfen. from sklearn import datasets, linear_model, model_selection ``` - Oben importieren Sie `matplotlib`, `numpy` and you are importing `datasets`, `linear_model` and `model_selection` from `sklearn`. `model_selection` is used for splitting data into training and test sets. + Oben importieren Sie `matplotlib`, `numpy` und Sie importieren `datasets`, `linear_model` und `model_selection` aus `sklearn`. `model_selection` wird verwendet, um Daten in Trainings- und Testsets aufzuteilen. -### The diabetes dataset +### Der Diabetes-Datensatz -The built-in [diabetes dataset](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) includes 442 samples of data around diabetes, with 10 feature variables, some of which include: +Der integrierte [Diabetes-Datensatz](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) enthält 442 Datenproben zu Diabetes mit 10 Feature-Variablen, darunter: -- age: age in years -- bmi: body mass index -- bp: average blood pressure -- s1 tc: T-Cells (a type of white blood cells) +- age: Alter in Jahren +- bmi: Body-Mass-Index +- bp: Durchschnittlicher Blutdruck +- s1 tc: T-Zellen (eine Art von weißen Blutkörperchen) -✅ This dataset includes the concept of 'sex' as a feature variable important to research around diabetes. Many medical datasets include this type of binary classification. Think a bit about how categorizations such as this might exclude certain parts of a population from treatments. +✅ Dieser Datensatz enthält das Konzept von 'Geschlecht' als Feature-Variable, die für die Forschung zu Diabetes wichtig ist. Viele medizinische Datensätze enthalten diese Art von binärer Klassifikation. Denken Sie ein wenig darüber nach, wie solche Kategorisierungen bestimmte Teile der Bevölkerung von Behandlungen ausschließen könnten. -Now, load up the X and y data. +Laden Sie nun die X- und y-Daten. -> 🎓 Remember, this is supervised learning, and we need a named 'y' target. +> 🎓 Denken Sie daran, dass dies überwachtes Lernen ist und wir ein benanntes 'y'-Ziel benötigen. -In a new code cell, load the diabetes dataset by calling `load_diabetes()`. The input `return_X_y=True` signals that `X` will be a data matrix, and `y`, die das Regressionsziel sein werden. +In einer neuen Codezelle laden Sie den Diabetes-Datensatz, indem Sie `load_diabetes()` aufrufen. Der Input `return_X_y=True` signalisiert, dass `X` eine Datenmatrix und `y` das Regressionsziel sein wird. -2. Fügen Sie einige Druckbefehle hinzu, um die Form der Datenmatrix und ihr erstes Element anzuzeigen: +1. Fügen Sie einige Print-Befehle hinzu, um die Form der Datenmatrix und ihr erstes Element anzuzeigen: ```python X, y = datasets.load_diabetes(return_X_y=True) @@ -149,9 +158,9 @@ In a new code cell, load the diabetes dataset by calling `load_diabetes()`. The print(X[0]) ``` - Was Sie als Antwort zurückbekommen, ist ein Tupel. Was Sie tun, ist, die beiden ersten Werte des Tupels den Variablen `X` and `y` zuzuweisen. Erfahren Sie mehr [über Tupel](https://wikipedia.org/wiki/Tuple). + Was Sie als Antwort erhalten, ist ein Tupel. Sie weisen die beiden ersten Werte des Tupels `X` und `y` zu. Erfahren Sie mehr [über Tupel](https://wikipedia.org/wiki/Tuple). - Sie können sehen, dass diese Daten 442 Elemente in Arrays von 10 Elementen haben: + Sie können sehen, dass diese Daten 442 Elemente enthalten, die in Arrays mit 10 Elementen geformt sind: ```text (442, 10) @@ -159,39 +168,39 @@ In a new code cell, load the diabetes dataset by calling `load_diabetes()`. The -0.04340085 -0.00259226 0.01990842 -0.01764613] ``` - ✅ Denken Sie ein wenig über die Beziehung zwischen den Daten und dem Regressionsziel nach. Die lineare Regression sagt Beziehungen zwischen dem Merkmal X und der Zielvariable y voraus. Können Sie das [Ziel](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) für den Diabetes-Datensatz in der Dokumentation finden? Was zeigt dieser Datensatz, gegeben dieses Ziel? + ✅ Denken Sie ein wenig über die Beziehung zwischen den Daten und dem Regressionsziel nach. Lineare Regression sagt Beziehungen zwischen Feature X und Zielvariable y voraus. Können Sie das [Ziel](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) für den Diabetes-Datensatz in der Dokumentation finden? Was zeigt dieser Datensatz, wenn man das Ziel betrachtet? -3. Wählen Sie als Nächstes einen Teil dieses Datensatzes aus, um ihn zu plotten, indem Sie die 3. Spalte des Datensatzes auswählen. Sie können dies tun, indem Sie `:` operator to select all rows, and then selecting the 3rd column using the index (2). You can also reshape the data to be a 2D array - as required for plotting - by using `reshape(n_rows, n_columns)` verwenden. Wenn einer der Parameter -1 ist, wird die entsprechende Dimension automatisch berechnet. +2. Wählen Sie als Nächstes einen Teil dieses Datensatzes aus, um ihn zu plotten, indem Sie die dritte Spalte des Datensatzes auswählen. Sie können dies tun, indem Sie den `:`-Operator verwenden, um alle Zeilen auszuwählen, und dann die dritte Spalte mit dem Index (2) auswählen. Sie können die Daten auch in ein 2D-Array umformen - wie für das Plotten erforderlich - indem Sie `reshape(n_rows, n_columns)` verwenden. Wenn einer der Parameter -1 ist, wird die entsprechende Dimension automatisch berechnet. ```python X = X[:, 2] X = X.reshape((-1,1)) ``` - ✅ Drucken Sie jederzeit die Daten aus, um ihre Form zu überprüfen. + ✅ Drucken Sie die Daten jederzeit aus, um ihre Form zu überprüfen. -4. Jetzt, wo Sie die Daten bereit haben, um geplottet zu werden, können Sie sehen, ob eine Maschine helfen kann, eine logische Trennung zwischen den Zahlen in diesem Datensatz zu bestimmen. Dazu müssen Sie sowohl die Daten (X) als auch das Ziel (y) in Test- und Trainingssätze aufteilen. Scikit-learn hat eine unkomplizierte Möglichkeit, dies zu tun; Sie können Ihre Testdaten an einem bestimmten Punkt aufteilen. +3. Jetzt, da Sie Daten bereit zum Plotten haben, können Sie sehen, ob eine Maschine helfen kann, eine logische Trennung zwischen den Zahlen in diesem Datensatz zu bestimmen. Dazu müssen Sie sowohl die Daten (X) als auch das Ziel (y) in Test- und Trainingssets aufteilen. Scikit-learn bietet eine einfache Möglichkeit, dies zu tun; Sie können Ihre Testdaten an einem bestimmten Punkt aufteilen. ```python X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33) ``` -5. Jetzt sind Sie bereit, Ihr Modell zu trainieren! Laden Sie das lineare Regressionsmodell und trainieren Sie es mit Ihren X- und y-Trainingssätzen unter Verwendung von `model.fit()`: +4. Jetzt sind Sie bereit, Ihr Modell zu trainieren! Laden Sie das lineare Regressionsmodell und trainieren Sie es mit Ihren X- und y-Trainingssets, indem Sie `model.fit()` verwenden: ```python model = linear_model.LinearRegression() model.fit(X_train, y_train) ``` - ✅ `model.fit()` is a function you'll see in many ML libraries such as TensorFlow + ✅ `model.fit()` ist eine Funktion, die Sie in vielen ML-Bibliotheken wie TensorFlow sehen werden. -5. Then, create a prediction using test data, using the function `predict()`. Dies wird verwendet, um die Linie zwischen den Daten gruppen zu zeichnen. +5. Erstellen Sie anschließend eine Vorhersage mit Testdaten, indem Sie die Funktion `predict()` verwenden. Diese wird verwendet, um die Linie zwischen den Datengruppen zu zeichnen. ```python y_pred = model.predict(X_test) ``` -6. Jetzt ist es Zeit, die Daten in einem Diagramm anzuzeigen. Matplotlib ist ein sehr nützliches Werkzeug für diese Aufgabe. Erstellen Sie ein Streudiagramm aller X- und y-Testdaten und verwenden Sie die Vorhersage, um eine Linie an der passendsten Stelle zwischen den Daten gruppen des Modells zu zeichnen. +6. Jetzt ist es Zeit, die Daten in einem Diagramm anzuzeigen. Matplotlib ist ein sehr nützliches Werkzeug für diese Aufgabe. Erstellen Sie ein Streudiagramm aller X- und y-Testdaten und verwenden Sie die Vorhersage, um eine Linie an der passendsten Stelle zwischen den Datengruppierungen des Modells zu zeichnen. ```python plt.scatter(X_test, y_test, color='black') @@ -202,27 +211,29 @@ In a new code cell, load the diabetes dataset by calling `load_diabetes()`. The plt.show() ``` - ![ein Streudiagramm, das Datenpunkte zu Diabetes zeigt](../../../../translated_images/scatterplot.ad8b356bcbb33be68d54050e09b9b7bfc03e94fde7371f2609ae43f4c563b2d7.de.png) + ![Ein Streudiagramm, das Datenpunkte zu Diabetes zeigt](../../../../translated_images/scatterplot.ad8b356bcbb33be68d54050e09b9b7bfc03e94fde7371f2609ae43f4c563b2d7.de.png) +✅ Denk ein wenig darüber nach, was hier passiert. Eine gerade Linie verläuft durch viele kleine Datenpunkte, aber was genau macht sie? Kannst du erkennen, wie du diese Linie nutzen könntest, um vorherzusagen, wo ein neuer, unbekannter Datenpunkt in Bezug auf die y-Achse des Plots liegen sollte? Versuche, den praktischen Nutzen dieses Modells in Worte zu fassen. - ✅ Denken Sie ein wenig darüber nach, was hier passiert. Eine gerade Linie verläuft durch viele kleine Datenpunkte, aber was tut sie genau? Können Sie sehen, wie Sie diese Linie verwenden sollten, um vorherzusagen, wo ein neuer, ungesehener Datenpunkt in Bezug auf die y-Achse des Plots passen sollte? Versuchen Sie, den praktischen Nutzen dieses Modells in Worte zu fassen. - -Herzlichen Glückwunsch, Sie haben Ihr erstes lineares Regressionsmodell erstellt, eine Vorhersage damit gemacht und es in einem Diagramm dargestellt! +Herzlichen Glückwunsch, du hast dein erstes lineares Regressionsmodell erstellt, eine Vorhersage damit gemacht und sie in einem Plot dargestellt! --- -## 🚀Herausforderung +## 🚀 Herausforderung + +Zeichne eine andere Variable aus diesem Datensatz. Hinweis: Bearbeite diese Zeile: `X = X[:,2]`. Angesichts des Ziels dieses Datensatzes, was kannst du über den Verlauf von Diabetes als Krankheit herausfinden? -Ploten Sie eine andere Variable aus diesem Datensatz. Hinweis: Bearbeiten Sie diese Zeile: `X = X[:,2]`. Was können Sie aus dem Ziel dieses Datensatzes über den Verlauf von Diabetes als Krankheit herausfinden? -## [Nachlesequiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/10/) +## [Quiz nach der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/10/) -## Überprüfung & Selbststudium +## Rückblick & Selbststudium -In diesem Tutorial haben Sie mit einfacher linearer Regression gearbeitet, anstatt mit univariater oder multipler linearer Regression. Lesen Sie ein wenig über die Unterschiede zwischen diesen Methoden oder sehen Sie sich [dieses Video](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef) an. +In diesem Tutorial hast du mit einfacher linearer Regression gearbeitet, anstatt mit univariater oder multipler linearer Regression. Lies ein wenig über die Unterschiede zwischen diesen Methoden oder sieh dir [dieses Video](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef) an. -Lesen Sie mehr über das Konzept der Regression und denken Sie darüber nach, welche Arten von Fragen mit dieser Technik beantwortet werden können. Nehmen Sie dieses [Tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott), um Ihr Verständnis zu vertiefen. +Lies mehr über das Konzept der Regression und denke darüber nach, welche Arten von Fragen mit dieser Technik beantwortet werden können. Nimm an [diesem Tutorial](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) teil, um dein Verständnis zu vertiefen. ## Aufgabe -[Einen anderen Datensatz](assignment.md) +[Ein anderer Datensatz](assignment.md) + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, bitten wir zu beachten, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/2-Regression/1-Tools/assignment.md b/translations/de/2-Regression/1-Tools/assignment.md index f59600026..4a7564eb9 100644 --- a/translations/de/2-Regression/1-Tools/assignment.md +++ b/translations/de/2-Regression/1-Tools/assignment.md @@ -1,16 +1,27 @@ + # Regression mit Scikit-learn ## Anweisungen -Schauen Sie sich den [Linnerud-Datensatz](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html#sklearn.datasets.load_linnerud) in Scikit-learn an. Dieser Datensatz enthält mehrere [Ziele](https://scikit-learn.org/stable/datasets/toy_dataset.html#linnerrud-dataset): 'Er besteht aus drei Übungs-(Daten) und drei physiologischen (Ziel-)Variablen, die von zwanzig Männern mittleren Alters in einem Fitnessclub gesammelt wurden'. +Schauen Sie sich das [Linnerud-Dataset](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html#sklearn.datasets.load_linnerud) in Scikit-learn an. Dieses Dataset hat mehrere [Zielvariablen](https://scikit-learn.org/stable/datasets/toy_dataset.html#linnerrud-dataset): 'Es besteht aus drei Übungsvariablen (Daten) und drei physiologischen Variablen (Zielvariablen), die von zwanzig Männern mittleren Alters in einem Fitnessclub gesammelt wurden.' -In Ihren eigenen Worten beschreiben Sie, wie man ein Regressionsmodell erstellt, das die Beziehung zwischen der Taille und der Anzahl der gemachten Sit-ups darstellt. Machen Sie dasselbe für die anderen Datenpunkte in diesem Datensatz. +Beschreiben Sie in Ihren eigenen Worten, wie man ein Regressionsmodell erstellt, das die Beziehung zwischen dem Taillenumfang und der Anzahl der durchgeführten Sit-ups darstellt. Machen Sie dasselbe für die anderen Datenpunkte in diesem Dataset. -## Bewertungsrichtlinien +## Bewertungskriterien -| Kriterium | Vorbildlich | Angemessen | Verbesserungsbedarf | +| Kriterien | Vorbildlich | Angemessen | Verbesserungswürdig | | ------------------------------ | ----------------------------------- | ----------------------------- | -------------------------- | -| Ein beschreibender Absatz einreichen | Gut geschriebener Absatz wird eingereicht | Einige Sätze werden eingereicht | Keine Beschreibung wird bereitgestellt | +| Ein beschreibender Absatz wird eingereicht | Ein gut geschriebener Absatz wird eingereicht | Einige Sätze werden eingereicht | Keine Beschreibung wird geliefert | + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/2-Regression/1-Tools/notebook.ipynb b/translations/de/2-Regression/1-Tools/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/de/2-Regression/1-Tools/solution/Julia/README.md b/translations/de/2-Regression/1-Tools/solution/Julia/README.md index 0c0271f63..ae1fc76a0 100644 --- a/translations/de/2-Regression/1-Tools/solution/Julia/README.md +++ b/translations/de/2-Regression/1-Tools/solution/Julia/README.md @@ -1,6 +1,15 @@ -Dies ist ein temporärer PlatzhalterBitte schreiben Sie die Ausgabe von links nach rechts. + -Dies ist ein temporärer Platzhalter + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb b/translations/de/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb new file mode 100644 index 000000000..a5004d712 --- /dev/null +++ b/translations/de/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb @@ -0,0 +1,448 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_1-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "c18d3bd0bd8ae3878597e89dcd1fa5c1", + "translation_date": "2025-09-04T01:34:22+00:00", + "source_file": "2-Regression/1-Tools/solution/R/lesson_1-R.ipynb", + "language_code": "de" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "YJUHCXqK57yz" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Einführung in die Regression - Lektion 1\n", + "\n", + "#### Einordnung in den Kontext\n", + "\n", + "✅ Es gibt viele Arten von Regressionsmethoden, und welche du wählst, hängt von der Frage ab, die du beantworten möchtest. Möchtest du beispielsweise die wahrscheinliche Körpergröße einer Person in einem bestimmten Alter vorhersagen, würdest du `lineare Regression` verwenden, da du nach einem **numerischen Wert** suchst. Wenn du hingegen herausfinden möchtest, ob eine bestimmte Küche als vegan betrachtet werden sollte oder nicht, suchst du nach einer **Kategorisierung**, und dafür würdest du `logistische Regression` verwenden. Mehr über logistische Regression wirst du später lernen. Überlege dir ein paar Fragen, die du an Daten stellen könntest, und welche dieser Methoden dafür am besten geeignet wäre.\n", + "\n", + "In diesem Abschnitt wirst du mit einem [kleinen Datensatz über Diabetes](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) arbeiten. Stell dir vor, du möchtest eine Behandlung für Diabetespatienten testen. Machine-Learning-Modelle könnten dir dabei helfen, herauszufinden, welche Patienten besser auf die Behandlung ansprechen würden, basierend auf Kombinationen von Variablen. Selbst ein sehr einfaches Regressionsmodell könnte, wenn es visualisiert wird, Informationen über Variablen liefern, die dir bei der Organisation deiner theoretischen klinischen Studien helfen könnten.\n", + "\n", + "Also, lass uns mit dieser Aufgabe beginnen!\n", + "\n", + "

\n", + " \n", + "

Kunstwerk von @allison_horst
\n", + "\n", + "\n" + ], + "metadata": { + "id": "LWNNzfqd6feZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. Laden unseres Werkzeugkastens\n", + "\n", + "Für diese Aufgabe benötigen wir die folgenden Pakete:\n", + "\n", + "- `tidyverse`: Das [tidyverse](https://www.tidyverse.org/) ist eine [Sammlung von R-Paketen](https://www.tidyverse.org/packages), die darauf ausgelegt ist, Datenwissenschaft schneller, einfacher und unterhaltsamer zu machen!\n", + "\n", + "- `tidymodels`: Das [tidymodels](https://www.tidymodels.org/) Framework ist eine [Sammlung von Paketen](https://www.tidymodels.org/packages/) für Modellierung und maschinelles Lernen.\n", + "\n", + "Sie können sie wie folgt installieren:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\"))`\n", + "\n", + "Das untenstehende Skript überprüft, ob Sie die für dieses Modul benötigten Pakete installiert haben, und installiert sie für Sie, falls einige fehlen.\n" + ], + "metadata": { + "id": "FIo2YhO26wI9" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse, tidymodels)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "id": "cIA9fz9v7Dss", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2df7073b-86b2-4b32-cb86-0da605a0dc11" + } + }, + { + "cell_type": "markdown", + "source": [ + "Lassen Sie uns nun diese großartigen Pakete laden und in unserer aktuellen R-Sitzung verfügbar machen. (Dies dient nur zur Veranschaulichung, `pacman::p_load()` hat das bereits für Sie erledigt.)\n" + ], + "metadata": { + "id": "gpO_P_6f9WUG" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# load the core Tidyverse packages\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# load the core Tidymodels packages\r\n", + "library(tidymodels)\r\n" + ], + "outputs": [], + "metadata": { + "id": "NLMycgG-9ezO" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. Der Diabetes-Datensatz\n", + "\n", + "In dieser Übung werden wir unsere Regressionsfähigkeiten unter Beweis stellen, indem wir Vorhersagen auf einem Diabetes-Datensatz treffen. Der [Diabetes-Datensatz](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt) umfasst `442 Stichproben` mit Daten zu Diabetes, darunter 10 Prädiktorvariablen: `Alter`, `Geschlecht`, `Body-Mass-Index`, `durchschnittlicher Blutdruck` und `sechs Messungen des Blutserums` sowie eine Zielvariable `y`: ein quantitativer Messwert für den Krankheitsverlauf ein Jahr nach der Ausgangsmessung.\n", + "\n", + "|Anzahl der Beobachtungen|442|\n", + "|-------------------------|:---|\n", + "|Anzahl der Prädiktoren|Die ersten 10 Spalten sind numerische Prädiktoren|\n", + "|Zielvariable|Spalte 11 ist ein quantitativer Messwert für den Krankheitsverlauf ein Jahr nach der Ausgangsmessung|\n", + "|Informationen zu den Prädiktoren|- Alter in Jahren\n", + "||- Geschlecht\n", + "||- bmi Body-Mass-Index\n", + "||- bp durchschnittlicher Blutdruck\n", + "||- s1 tc, Gesamtserumcholesterin\n", + "||- s2 ldl, Low-Density-Lipoproteine\n", + "||- s3 hdl, High-Density-Lipoproteine\n", + "||- s4 tch, Gesamtcholesterin / HDL\n", + "||- s5 ltg, möglicherweise Logarithmus des Serumtriglyceridspiegels\n", + "||- s6 glu, Blutzuckerspiegel|\n", + "\n", + "\n", + "> 🎓 Denke daran, dies ist überwachtes Lernen, und wir benötigen eine benannte Zielvariable 'y'.\n", + "\n", + "Bevor du Daten mit R bearbeiten kannst, musst du die Daten in den Speicher von R importieren oder eine Verbindung zu den Daten herstellen, die R für den Fernzugriff auf die Daten verwenden kann.\n", + "\n", + "> Das [readr](https://readr.tidyverse.org/)-Paket, das Teil des Tidyverse ist, bietet eine schnelle und benutzerfreundliche Möglichkeit, rechteckige Daten in R einzulesen.\n", + "\n", + "Lass uns nun den Diabetes-Datensatz von der folgenden URL laden: \n", + "\n", + "Außerdem werden wir eine Plausibilitätsprüfung unserer Daten mit `glimpse()` durchführen und die ersten 5 Zeilen mit `slice()` anzeigen.\n", + "\n", + "Bevor wir weitermachen, möchten wir noch etwas vorstellen, das du oft in R-Code sehen wirst 🥁🥁: den Pipe-Operator `%>%`\n", + "\n", + "Der Pipe-Operator (`%>%`) führt Operationen in logischer Reihenfolge aus, indem er ein Objekt an eine Funktion oder einen Ausdruck weiterleitet. Du kannst dir den Pipe-Operator so vorstellen, als würdest du in deinem Code \"und dann\" sagen.\n" + ], + "metadata": { + "id": "KM6iXLH996Cl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import the data set\r\n", + "diabetes <- read_table2(file = \"https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt\")\r\n", + "\r\n", + "\r\n", + "# Get a glimpse and dimensions of the data\r\n", + "glimpse(diabetes)\r\n", + "\r\n", + "\r\n", + "# Select the first 5 rows of the data\r\n", + "diabetes %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "Z1geAMhM-bSP" + } + }, + { + "cell_type": "markdown", + "source": [ + "`glimpse()` zeigt uns, dass diese Daten 442 Zeilen und 11 Spalten enthalten, wobei alle Spalten den Datentyp `double` haben.\n", + "\n", + "
\n", + "\n", + "> `glimpse()` und `slice()` sind Funktionen aus [`dplyr`](https://dplyr.tidyverse.org/). Dplyr, ein Teil des Tidyverse, ist eine Grammatik für Datenmanipulation, die eine konsistente Reihe von Verben bereitstellt, um die häufigsten Herausforderungen bei der Datenmanipulation zu lösen.\n", + "\n", + "
\n", + "\n", + "Da wir nun die Daten haben, konzentrieren wir uns auf ein Merkmal (`bmi`), das wir für diese Übung verwenden möchten. Dafür müssen wir die gewünschten Spalten auswählen. Wie machen wir das?\n", + "\n", + "[`dplyr::select()`](https://dplyr.tidyverse.org/reference/select.html) ermöglicht es uns, Spalten in einem Dataframe *auszuwählen* (und optional umzubenennen).\n" + ], + "metadata": { + "id": "UwjVT1Hz-c3Z" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select predictor feature `bmi` and outcome `y`\r\n", + "diabetes_select <- diabetes %>% \r\n", + " select(c(bmi, y))\r\n", + "\r\n", + "# Print the first 5 rows\r\n", + "diabetes_select %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "RDY1oAKI-m80" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Trainings- und Testdaten\n", + "\n", + "Es ist gängige Praxis im überwachten Lernen, die Daten in zwei Teilmengen aufzuteilen: einen (in der Regel größeren) Satz, mit dem das Modell trainiert wird, und einen kleineren \"Rückhalte\"-Satz, mit dem überprüft wird, wie gut das Modell funktioniert hat.\n", + "\n", + "Da wir nun die Daten vorbereitet haben, können wir prüfen, ob eine Maschine helfen kann, eine logische Aufteilung zwischen den Zahlen in diesem Datensatz zu bestimmen. Wir können das [rsample](https://tidymodels.github.io/rsample/)-Paket verwenden, das Teil des Tidymodels-Frameworks ist, um ein Objekt zu erstellen, das die Informationen darüber enthält, *wie* die Daten aufgeteilt werden sollen. Anschließend können zwei weitere rsample-Funktionen verwendet werden, um die erstellten Trainings- und Testdatensätze zu extrahieren:\n" + ], + "metadata": { + "id": "SDk668xK-tc3" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\r\n", + "# Split 67% of the data for training and the rest for tesing\r\n", + "diabetes_split <- diabetes_select %>% \r\n", + " initial_split(prop = 0.67)\r\n", + "\r\n", + "# Extract the resulting train and test sets\r\n", + "diabetes_train <- training(diabetes_split)\r\n", + "diabetes_test <- testing(diabetes_split)\r\n", + "\r\n", + "# Print the first 3 rows of the training set\r\n", + "diabetes_train %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "EqtHx129-1h-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. Trainieren eines linearen Regressionsmodells mit Tidymodels\n", + "\n", + "Jetzt sind wir bereit, unser Modell zu trainieren!\n", + "\n", + "In Tidymodels spezifizieren Sie Modelle mit `parsnip()`, indem Sie drei Konzepte angeben:\n", + "\n", + "- Der **Modelltyp** unterscheidet Modelle wie lineare Regression, logistische Regression, Entscheidungsbaum-Modelle und so weiter.\n", + "\n", + "- Der **Modus des Modells** umfasst gängige Optionen wie Regression und Klassifikation; einige Modelltypen unterstützen beide, während andere nur einen Modus haben.\n", + "\n", + "- Die **Engine des Modells** ist das rechnerische Werkzeug, das verwendet wird, um das Modell anzupassen. Oft sind dies R-Pakete, wie **`\"lm\"`** oder **`\"ranger\"`**.\n", + "\n", + "Diese Modellinformationen werden in einer Modellspezifikation erfasst, also erstellen wir eine!\n" + ], + "metadata": { + "id": "sBOS-XhB-6v7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- \r\n", + " # Type\r\n", + " linear_reg() %>% \r\n", + " # Engine\r\n", + " set_engine(\"lm\") %>% \r\n", + " # Mode\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Print the model specification\r\n", + "lm_spec" + ], + "outputs": [], + "metadata": { + "id": "20OwEw20--t3" + } + }, + { + "cell_type": "markdown", + "source": [ + "Nachdem ein Modell *spezifiziert* wurde, kann das Modell mit der [`fit()`](https://parsnip.tidymodels.org/reference/fit.html)-Funktion `geschätzt` oder `trainiert` werden, typischerweise unter Verwendung einer Formel und einiger Daten.\n", + "\n", + "`y ~ .` bedeutet, dass wir `y` als die vorhergesagte Größe/Zielvariable anpassen, erklärt durch alle Prädiktoren/Merkmale, also `.` (in diesem Fall haben wir nur einen Prädiktor: `bmi`).\n" + ], + "metadata": { + "id": "_oDHs89k_CJj" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>%\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Train a linear regression model\r\n", + "lm_mod <- lm_spec %>% \r\n", + " fit(y ~ ., data = diabetes_train)\r\n", + "\r\n", + "# Print the model\r\n", + "lm_mod" + ], + "outputs": [], + "metadata": { + "id": "YlsHqd-q_GJQ" + } + }, + { + "cell_type": "markdown", + "source": [ + "Aus den Modell-Ausgaben können wir die während des Trainings gelernten Koeffizienten erkennen. Sie repräsentieren die Koeffizienten der Ausgleichsgeraden, die den geringsten Gesamtfehler zwischen der tatsächlichen und der vorhergesagten Variablen liefert.\n", + "
\n", + "\n", + "## 5. Vorhersagen für den Testdatensatz treffen\n", + "\n", + "Nachdem wir nun ein Modell trainiert haben, können wir es verwenden, um die Krankheitsprogression y für den Testdatensatz mithilfe von [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html) vorherzusagen. Dies wird genutzt, um die Linie zwischen den Datenclustern zu ziehen.\n" + ], + "metadata": { + "id": "kGZ22RQj_Olu" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\r\n", + "predictions <- lm_mod %>% \r\n", + " predict(new_data = diabetes_test)\r\n", + "\r\n", + "# Print out some of the predictions\r\n", + "predictions %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "nXHbY7M2_aao" + } + }, + { + "cell_type": "markdown", + "source": [ + "Woohoo! 💃🕺 Wir haben gerade ein Modell trainiert und es verwendet, um Vorhersagen zu treffen!\n", + "\n", + "Beim Erstellen von Vorhersagen ist es in der tidymodels-Konvention üblich, immer ein Tibble/Data-Frame mit standardisierten Spaltennamen zu erzeugen. Dies erleichtert es, die Originaldaten und die Vorhersagen in einem nutzbaren Format zu kombinieren, um sie für nachfolgende Operationen wie das Plotten zu verwenden.\n", + "\n", + "`dplyr::bind_cols()` verbindet effizient mehrere Data-Frames spaltenweise.\n" + ], + "metadata": { + "id": "R_JstwUY_bIs" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Combine the predictions and the original test set\r\n", + "results <- diabetes_test %>% \r\n", + " bind_cols(predictions)\r\n", + "\r\n", + "\r\n", + "results %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "RybsMJR7_iI8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 6. Modellierungsergebnisse visualisieren\n", + "\n", + "Jetzt ist es an der Zeit, dies visuell darzustellen 📈. Wir erstellen ein Streudiagramm aller `y`- und `bmi`-Werte des Testdatensatzes und verwenden dann die Vorhersagen, um eine Linie an der passendsten Stelle zwischen den Datenclustern des Modells zu zeichnen.\n", + "\n", + "R bietet mehrere Systeme zur Erstellung von Grafiken, aber `ggplot2` ist eines der elegantesten und vielseitigsten. Es ermöglicht dir, Grafiken durch **Kombination unabhängiger Komponenten** zu erstellen.\n" + ], + "metadata": { + "id": "XJbYbMZW_n_s" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plot\r\n", + "theme_set(theme_light())\r\n", + "# Create a scatter plot\r\n", + "results %>% \r\n", + " ggplot(aes(x = bmi)) +\r\n", + " # Add a scatter plot\r\n", + " geom_point(aes(y = y), size = 1.6) +\r\n", + " # Add a line plot\r\n", + " geom_line(aes(y = .pred), color = \"blue\", size = 1.5)" + ], + "outputs": [], + "metadata": { + "id": "R9tYp3VW_sTn" + } + }, + { + "cell_type": "markdown", + "source": [ + "✅ Denk mal darüber nach, was hier genau passiert. Eine gerade Linie verläuft durch viele kleine Datenpunkte, aber was macht sie eigentlich genau? Kannst du erkennen, wie du diese Linie nutzen könntest, um vorherzusagen, wo ein neuer, noch nicht gesehener Datenpunkt in Bezug auf die y-Achse des Plots liegen sollte? Versuche, den praktischen Nutzen dieses Modells in Worte zu fassen.\n", + "\n", + "Herzlichen Glückwunsch, du hast dein erstes lineares Regressionsmodell erstellt, eine Vorhersage damit gemacht und es in einem Plot dargestellt!\n" + ], + "metadata": { + "id": "zrPtHIxx_tNI" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/de/2-Regression/1-Tools/solution/notebook.ipynb b/translations/de/2-Regression/1-Tools/solution/notebook.ipynb new file mode 100644 index 000000000..6200c4485 --- /dev/null +++ b/translations/de/2-Regression/1-Tools/solution/notebook.ipynb @@ -0,0 +1,677 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Lineare Regression für Diabetes-Datensatz - Lektion 1\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Benötigte Bibliotheken importieren\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from sklearn import datasets, linear_model, model_selection\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Laden Sie den Diabetes-Datensatz, aufgeteilt in `X`-Daten und `y`-Merkmale\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 10)\n", + "[ 0.03807591 0.05068012 0.06169621 0.02187239 -0.0442235 -0.03482076\n", + " -0.04340085 -0.00259226 0.01990749 -0.01764613]\n" + ] + } + ], + "source": [ + "X, y = datasets.load_diabetes(return_X_y=True)\n", + "print(X.shape)\n", + "print(X[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Wählen Sie nur ein Merkmal aus, auf das Sie sich bei dieser Übung konzentrieren möchten\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442,)\n" + ] + } + ], + "source": [ + "# Selecting the 3rd feature\n", + "X = X[:, 2]\n", + "print(X.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 1)\n", + "[[ 0.06169621]\n", + " [-0.05147406]\n", + " [ 0.04445121]\n", + " [-0.01159501]\n", + " [-0.03638469]\n", + " [-0.04069594]\n", + " [-0.04716281]\n", + " [-0.00189471]\n", + " [ 0.06169621]\n", + " [ 0.03906215]\n", + " [-0.08380842]\n", + " [ 0.01750591]\n", + " [-0.02884001]\n", + " [-0.00189471]\n", + " [-0.02560657]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [ 0.01211685]\n", + " [-0.0105172 ]\n", + " [-0.01806189]\n", + " [-0.05686312]\n", + " [-0.02237314]\n", + " [-0.00405033]\n", + " [ 0.06061839]\n", + " [ 0.03582872]\n", + " [-0.01267283]\n", + " [-0.07734155]\n", + " [ 0.05954058]\n", + " [-0.02129532]\n", + " [-0.00620595]\n", + " [ 0.04445121]\n", + " [-0.06548562]\n", + " [ 0.12528712]\n", + " [-0.05039625]\n", + " [-0.06332999]\n", + " [-0.03099563]\n", + " [ 0.02289497]\n", + " [ 0.01103904]\n", + " [ 0.07139652]\n", + " [ 0.01427248]\n", + " [-0.00836158]\n", + " [-0.06764124]\n", + " [-0.0105172 ]\n", + " [-0.02345095]\n", + " [ 0.06816308]\n", + " [-0.03530688]\n", + " [-0.01159501]\n", + " [-0.0730303 ]\n", + " [-0.04177375]\n", + " [ 0.01427248]\n", + " [-0.00728377]\n", + " [ 0.0164281 ]\n", + " [-0.00943939]\n", + " [-0.01590626]\n", + " [ 0.0250506 ]\n", + " [-0.04931844]\n", + " [ 0.04121778]\n", + " [-0.06332999]\n", + " [-0.06440781]\n", + " [-0.02560657]\n", + " [-0.00405033]\n", + " [ 0.00457217]\n", + " [-0.00728377]\n", + " [-0.0374625 ]\n", + " [-0.02560657]\n", + " [-0.02452876]\n", + " [-0.01806189]\n", + " [-0.01482845]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [-0.06979687]\n", + " [ 0.03367309]\n", + " [-0.00405033]\n", + " [-0.02021751]\n", + " [ 0.00241654]\n", + " [-0.03099563]\n", + " [ 0.02828403]\n", + " [-0.03638469]\n", + " [-0.05794093]\n", + " [-0.0374625 ]\n", + " [ 0.01211685]\n", + " [-0.02237314]\n", + " [-0.03530688]\n", + " [ 0.00996123]\n", + " [-0.03961813]\n", + " [ 0.07139652]\n", + " [-0.07518593]\n", + " [-0.00620595]\n", + " [-0.04069594]\n", + " [-0.04824063]\n", + " [-0.02560657]\n", + " [ 0.0519959 ]\n", + " [ 0.00457217]\n", + " [-0.06440781]\n", + " [-0.01698407]\n", + " [-0.05794093]\n", + " [ 0.00996123]\n", + " [ 0.08864151]\n", + " [-0.00512814]\n", + " [-0.06440781]\n", + " [ 0.01750591]\n", + " [-0.04500719]\n", + " [ 0.02828403]\n", + " [ 0.04121778]\n", + " [ 0.06492964]\n", + " [-0.03207344]\n", + " [-0.07626374]\n", + " [ 0.04984027]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03207344]\n", + " [ 0.00457217]\n", + " [ 0.02073935]\n", + " [ 0.01427248]\n", + " [ 0.11019775]\n", + " [ 0.00133873]\n", + " [ 0.05846277]\n", + " [-0.02129532]\n", + " [-0.0105172 ]\n", + " [-0.04716281]\n", + " [ 0.00457217]\n", + " [ 0.01750591]\n", + " [ 0.08109682]\n", + " [ 0.0347509 ]\n", + " [ 0.02397278]\n", + " [-0.00836158]\n", + " [-0.06117437]\n", + " [-0.00189471]\n", + " [-0.06225218]\n", + " [ 0.0164281 ]\n", + " [ 0.09618619]\n", + " [-0.06979687]\n", + " [-0.02129532]\n", + " [-0.05362969]\n", + " [ 0.0433734 ]\n", + " [ 0.05630715]\n", + " [-0.0816528 ]\n", + " [ 0.04984027]\n", + " [ 0.11127556]\n", + " [ 0.06169621]\n", + " [ 0.01427248]\n", + " [ 0.04768465]\n", + " [ 0.01211685]\n", + " [ 0.00564998]\n", + " [ 0.04660684]\n", + " [ 0.12852056]\n", + " [ 0.05954058]\n", + " [ 0.09295276]\n", + " [ 0.01535029]\n", + " [-0.00512814]\n", + " [ 0.0703187 ]\n", + " [-0.00405033]\n", + " [-0.00081689]\n", + " [-0.04392938]\n", + " [ 0.02073935]\n", + " [ 0.06061839]\n", + " [-0.0105172 ]\n", + " [-0.03315126]\n", + " [-0.06548562]\n", + " [ 0.0433734 ]\n", + " [-0.06225218]\n", + " [ 0.06385183]\n", + " [ 0.03043966]\n", + " [ 0.07247433]\n", + " [-0.0191397 ]\n", + " [-0.06656343]\n", + " [-0.06009656]\n", + " [ 0.06924089]\n", + " [ 0.05954058]\n", + " [-0.02668438]\n", + " [-0.02021751]\n", + " [-0.046085 ]\n", + " [ 0.07139652]\n", + " [-0.07949718]\n", + " [ 0.00996123]\n", + " [-0.03854032]\n", + " [ 0.01966154]\n", + " [ 0.02720622]\n", + " [-0.00836158]\n", + " [-0.01590626]\n", + " [ 0.00457217]\n", + " [-0.04285156]\n", + " [ 0.00564998]\n", + " [-0.03530688]\n", + " [ 0.02397278]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [-0.0547075 ]\n", + " [-0.00297252]\n", + " [-0.06656343]\n", + " [-0.01267283]\n", + " [-0.04177375]\n", + " [-0.03099563]\n", + " [-0.00512814]\n", + " [-0.05901875]\n", + " [ 0.0250506 ]\n", + " [-0.046085 ]\n", + " [ 0.00349435]\n", + " [ 0.05415152]\n", + " [-0.04500719]\n", + " [-0.05794093]\n", + " [-0.05578531]\n", + " [ 0.00133873]\n", + " [ 0.03043966]\n", + " [ 0.00672779]\n", + " [ 0.04660684]\n", + " [ 0.02612841]\n", + " [ 0.04552903]\n", + " [ 0.04013997]\n", + " [-0.01806189]\n", + " [ 0.01427248]\n", + " [ 0.03690653]\n", + " [ 0.00349435]\n", + " [-0.07087468]\n", + " [-0.03315126]\n", + " [ 0.09403057]\n", + " [ 0.03582872]\n", + " [ 0.03151747]\n", + " [-0.06548562]\n", + " [-0.04177375]\n", + " [-0.03961813]\n", + " [-0.03854032]\n", + " [-0.02560657]\n", + " [-0.02345095]\n", + " [-0.06656343]\n", + " [ 0.03259528]\n", + " [-0.046085 ]\n", + " [-0.02991782]\n", + " [-0.01267283]\n", + " [-0.01590626]\n", + " [ 0.07139652]\n", + " [-0.03099563]\n", + " [ 0.00026092]\n", + " [ 0.03690653]\n", + " [ 0.03906215]\n", + " [-0.01482845]\n", + " [ 0.00672779]\n", + " [-0.06871905]\n", + " [-0.00943939]\n", + " [ 0.01966154]\n", + " [ 0.07462995]\n", + " [-0.00836158]\n", + " [-0.02345095]\n", + " [-0.046085 ]\n", + " [ 0.05415152]\n", + " [-0.03530688]\n", + " [-0.03207344]\n", + " [-0.0816528 ]\n", + " [ 0.04768465]\n", + " [ 0.06061839]\n", + " [ 0.05630715]\n", + " [ 0.09834182]\n", + " [ 0.05954058]\n", + " [ 0.03367309]\n", + " [ 0.05630715]\n", + " [-0.06548562]\n", + " [ 0.16085492]\n", + " [-0.05578531]\n", + " [-0.02452876]\n", + " [-0.03638469]\n", + " [-0.00836158]\n", + " [-0.04177375]\n", + " [ 0.12744274]\n", + " [-0.07734155]\n", + " [ 0.02828403]\n", + " [-0.02560657]\n", + " [-0.06225218]\n", + " [-0.00081689]\n", + " [ 0.08864151]\n", + " [-0.03207344]\n", + " [ 0.03043966]\n", + " [ 0.00888341]\n", + " [ 0.00672779]\n", + " [-0.02021751]\n", + " [-0.02452876]\n", + " [-0.01159501]\n", + " [ 0.02612841]\n", + " [-0.05901875]\n", + " [-0.03638469]\n", + " [-0.02452876]\n", + " [ 0.01858372]\n", + " [-0.0902753 ]\n", + " [-0.00512814]\n", + " [-0.05255187]\n", + " [-0.02237314]\n", + " [-0.02021751]\n", + " [-0.0547075 ]\n", + " [-0.00620595]\n", + " [-0.01698407]\n", + " [ 0.05522933]\n", + " [ 0.07678558]\n", + " [ 0.01858372]\n", + " [-0.02237314]\n", + " [ 0.09295276]\n", + " [-0.03099563]\n", + " [ 0.03906215]\n", + " [-0.06117437]\n", + " [-0.00836158]\n", + " [-0.0374625 ]\n", + " [-0.01375064]\n", + " [ 0.07355214]\n", + " [-0.02452876]\n", + " [ 0.03367309]\n", + " [ 0.0347509 ]\n", + " [-0.03854032]\n", + " [-0.03961813]\n", + " [-0.00189471]\n", + " [-0.03099563]\n", + " [-0.046085 ]\n", + " [ 0.00133873]\n", + " [ 0.06492964]\n", + " [ 0.04013997]\n", + " [-0.02345095]\n", + " [ 0.05307371]\n", + " [ 0.04013997]\n", + " [-0.02021751]\n", + " [ 0.01427248]\n", + " [-0.03422907]\n", + " [ 0.00672779]\n", + " [ 0.00457217]\n", + " [ 0.03043966]\n", + " [ 0.0519959 ]\n", + " [ 0.06169621]\n", + " [-0.00728377]\n", + " [ 0.00564998]\n", + " [ 0.05415152]\n", + " [-0.00836158]\n", + " [ 0.114509 ]\n", + " [ 0.06708527]\n", + " [-0.05578531]\n", + " [ 0.03043966]\n", + " [-0.02560657]\n", + " [ 0.10480869]\n", + " [-0.00620595]\n", + " [-0.04716281]\n", + " [-0.04824063]\n", + " [ 0.08540807]\n", + " [-0.01267283]\n", + " [-0.03315126]\n", + " [-0.00728377]\n", + " [-0.01375064]\n", + " [ 0.05954058]\n", + " [ 0.02181716]\n", + " [ 0.01858372]\n", + " [-0.01159501]\n", + " [-0.00297252]\n", + " [ 0.01750591]\n", + " [-0.02991782]\n", + " [-0.02021751]\n", + " [-0.05794093]\n", + " [ 0.06061839]\n", + " [-0.04069594]\n", + " [-0.07195249]\n", + " [-0.05578531]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03315126]\n", + " [ 0.04984027]\n", + " [-0.08488624]\n", + " [ 0.00564998]\n", + " [ 0.02073935]\n", + " [-0.00728377]\n", + " [ 0.10480869]\n", + " [-0.02452876]\n", + " [-0.00620595]\n", + " [-0.03854032]\n", + " [ 0.13714305]\n", + " [ 0.17055523]\n", + " [ 0.00241654]\n", + " [ 0.03798434]\n", + " [-0.05794093]\n", + " [-0.00943939]\n", + " [-0.02345095]\n", + " [-0.0105172 ]\n", + " [-0.03422907]\n", + " [-0.00297252]\n", + " [ 0.06816308]\n", + " [ 0.00996123]\n", + " [ 0.00241654]\n", + " [-0.03854032]\n", + " [ 0.02612841]\n", + " [-0.08919748]\n", + " [ 0.06061839]\n", + " [-0.02884001]\n", + " [-0.02991782]\n", + " [-0.0191397 ]\n", + " [-0.04069594]\n", + " [ 0.01535029]\n", + " [-0.02452876]\n", + " [ 0.00133873]\n", + " [ 0.06924089]\n", + " [-0.06979687]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [ 0.01858372]\n", + " [ 0.00133873]\n", + " [-0.03099563]\n", + " [-0.00405033]\n", + " [ 0.01535029]\n", + " [ 0.02289497]\n", + " [ 0.04552903]\n", + " [-0.04500719]\n", + " [-0.03315126]\n", + " [ 0.097264 ]\n", + " [ 0.05415152]\n", + " [ 0.12313149]\n", + " [-0.08057499]\n", + " [ 0.09295276]\n", + " [-0.05039625]\n", + " [-0.01159501]\n", + " [-0.0277622 ]\n", + " [ 0.05846277]\n", + " [ 0.08540807]\n", + " [-0.00081689]\n", + " [ 0.00672779]\n", + " [ 0.00888341]\n", + " [ 0.08001901]\n", + " [ 0.07139652]\n", + " [-0.02452876]\n", + " [-0.0547075 ]\n", + " [-0.03638469]\n", + " [ 0.0164281 ]\n", + " [ 0.07786339]\n", + " [-0.03961813]\n", + " [ 0.01103904]\n", + " [-0.04069594]\n", + " [-0.03422907]\n", + " [ 0.00564998]\n", + " [ 0.08864151]\n", + " [-0.03315126]\n", + " [-0.05686312]\n", + " [-0.03099563]\n", + " [ 0.05522933]\n", + " [-0.06009656]\n", + " [ 0.00133873]\n", + " [-0.02345095]\n", + " [-0.07410811]\n", + " [ 0.01966154]\n", + " [-0.01590626]\n", + " [-0.01590626]\n", + " [ 0.03906215]\n", + " [-0.0730303 ]]\n" + ] + } + ], + "source": [ + "#Reshaping to get a 2D array\n", + "X = X.reshape(-1, 1)\n", + "print(X.shape)\n", + "print(X)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Teilen Sie die Trainings- und Testdaten sowohl für `X` als auch für `y` auf\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Wählen Sie das Modell aus und passen Sie es an die Trainingsdaten an\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = linear_model.LinearRegression()\n", + "model.fit(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Verwenden Sie Testdaten, um eine Linie vorherzusagen\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Zeigen Sie die Ergebnisse in einem Diagramm\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbmUlEQVR4nO3de3wU1f0//tcQIHIxiQmBALsQUdSigNYLxn6iSaECaj/5NKTawAfRWi2IbUBRS71gtIrKp5rUj5dqK7ZfXfwAWcVS8ALuYtCIQEERvAC/cAtJoCBJQAhkc35/rLtmk92dmd2Z2ZnZ1/Px2Edl92Tm7CTd894z7/M+khBCgIiIiMhEuiW6A0RERESdMUAhIiIi02GAQkRERKbDAIWIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHS6J7oDsWhvb8f+/ftx+umnQ5KkRHeHiIiIFBBCoKWlBYMGDUK3btHnSCwZoOzfvx9OpzPR3SAiIqIY7N27Fw6HI2obSwYop59+OgD/G0xLS0twb4iIiEiJ5uZmOJ3O4DgejSUDlMBtnbS0NAYoREREFqMkPYNJskRERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpqMqQHn++ecxatSo4OqZvLw8rFy5Mvh6QUEBJEkKeUyfPj3kGHv27MG1116L3r17o3///rj77rvR1tamzbshIiIiW1C1zNjhcODxxx/H8OHDIYTA3/72NxQVFWHTpk04//zzAQC33norHn744eDP9O7dO/jfPp8P1157LXJycvDRRx+hvr4eN954I3r06IHHHntMo7dEREREVicJIUQ8B8jMzMSCBQtwyy23oKCgABdeeCEqKirCtl25ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5m5ubkZ6ejqamJtZBISIisgg143fMOSg+nw+vv/46jh07hry8vODzr732Gvr164cLLrgAc+fOxbfffht8raamBiNHjgwGJwAwfvx4NDc3Y+vWrRHP1draiubm5pAHERERac/n88Hr9WLRokXwer3w+XwJ6YfqSrJbtmxBXl4eTpw4gb59++KNN97AiBEjAACTJ0/G0KFDMWjQIHz22We499578dVXX8HtdgMAGhoaQoITAMF/NzQ0RDzn/PnzUV5errarREREpILb7UZZWRn27dsXfM7hcKCyshLFxcWG9kX1LZ6TJ09iz549aGpqwtKlS/GXv/wFa9asCQYpHb3//vsYO3YsduzYgbPOOgu33XYbdu/ejXfeeSfY5ttvv0WfPn2wYsUKTJw4Mew5W1tb0draGvx3oJY/b/EQERFpw+12o6SkBJ3DgkBZ+qVLl8YdpOh6i6dnz544++yzcfHFF2P+/PkYPXo0Kisrw7YdM2YMAGDHjh0AgJycHDQ2Noa0Cfw7Jycn4jlTU1ODK4e4/w4REZG2fD4fysrKugQnAILPzZo1y9DbPXHXQWlvbw+Z3eho8+bNAICBAwcCAPLy8rBlyxYcOHAg2Oa9995DWlpa2BkYIiIi0l91dXXIbZ3OhBDYu3cvqqurDeuTqhyUuXPnYuLEiRgyZAhaWlrgcrng9XrxzjvvYOfOnXC5XLjmmmuQlZWFzz77DLNnz8aVV16JUaNGAQCuvvpqjBgxAlOnTsWTTz6JhoYG3H///Zg5cyZSU1N1eYNEREQUXX19vabttKAqQDlw4ABuvPFG1NfXIz09HaNGjcI777yDn/zkJ9i7dy9WrVqFiooKHDt2DE6nE5MmTcL9998f/PmUlBQsX74cM2bMQF5eHvr06YNp06aF1E0hIiIiYwXudGjVTgtx10FJBNZBISIi0o7P50Nubi7q6urC5qFIkgSHw4Ha2lqkpKTEfB5D6qAQERGRPaSkpAQXvARW7QQE/l1RURFXcKIWAxQiIiJCcXExli5disGDB4c873A4NFlirBZv8RAREVGQz+dDdXU16uvrMXDgQOTn52s2c6Jm/FZdSZaIiIjsKyUlBQUFBYnuBm/xEBERkfkwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREptM90R0gIjIzn8+H6upq1NfXY+DAgcjPz0dKSkqiu6W5ZHmfZB0MUIiIInC73SgrK8O+ffuCzzkcDlRWVqK4uDiBPdNWsrxPshbe4iEiCsPtdqOkpCRk0AaAuro6lJSUwO12J6hn2kqW90nWIwkhRKI7oVZzczPS09PR1NSEtLS0RHeHiGzG5/MhNze3y6AdIEkSHA4HamtrLX0bJFneJ5mHmvGbMyhERJ1UV1dHHLQBQAiBvXv3orq62sBeaS9Z3idZEwMUIqJO6uvrNW1nVsnyPsmaGKAQEXUycOBATduZVbK8T7ImBihERJ3k5+fD4XBAkqSwr0uSBKfTifz8fIN7pq1keZ+kzokTwMaNwPHjie0HAxQiok5SUlJQWVkJAF0G78C/KyoqLJ84mizvk5Q5dgzIzQV69QIuucT/37t2Ja4/DFCIiMIoLi7G0qVLMXjw4JDnHQ4Hli5dapv6IMnyPikyIYCbbgL69gV27/7++QMHgBdeSFi3uMyYiCiaZKmwmizvk0L95S/ArbdGfv2ZZ4A77tDufLotM37++ecxatQopKWlIS0tDXl5eVi5cmXw9RMnTmDmzJnIyspC3759MWnSJDQ2NoYcY8+ePbj22mvRu3dv9O/fH3fffTfa2trUdIOIyDApKSkoKChAaWkpCgoKbDtoJ8v7JL9PPgEkKXpw0rcvMGOGcX3qTFWA4nA48Pjjj2Pjxo3YsGEDfvzjH6OoqAhbt24FAMyePRv/+Mc/sGTJEqxZswb79+8PmR70+Xy49tprcfLkSXz00Uf429/+hldeeQUPPvigtu+KiIiIujh40B+YjBkTvd0f/wi0tACJjFPjvsWTmZmJBQsWoKSkBNnZ2XC5XCgpKQEAfPnll/jBD36AmpoaXH755Vi5ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5eYuHiIhIubY24OqrAY8neruiIsDtBrrplKFqSCVZn8+H119/HceOHUNeXh42btyIU6dOYdy4ccE25513HoYMGYKamhoAQE1NDUaOHBkMTgBg/PjxaG5uDs7CEBERkXbKy4EePaIHJ+npwOHDwJtv6hecqKV6N+MtW7YgLy8PJ06cQN++ffHGG29gxIgR2Lx5M3r27ImMjIyQ9gMGDEBDQwMAoKGhISQ4CbweeC2S1tZWtLa2Bv/d3NystttEZAJMxCQyzooVwLXXyrf79FNg1Cj9+6OW6gDl3HPPxebNm9HU1ISlS5di2rRpWLNmjR59C5o/fz7Ky8t1PQcR6cvtdqOsrCxk7xeHw4HKykouZf0OAzjSwv/3/wFnnSXfzuUCSkv170+sVE/k9OzZE2effTYuvvhizJ8/H6NHj0ZlZSVycnJw8uRJHDlyJKR9Y2MjcnJyAAA5OTldVvUE/h1oE87cuXPR1NQUfOzdu1dtt4kogdxuN0pKSrpsTFdXV4eSkhK43e4E9cw83G43cnNzUVhYiMmTJ6OwsBC5ubm8NqTYt98CZ58tH5z85jdAe7u5gxNAg0Jt7e3taG1txcUXX4wePXpg9erVwde++uor7NmzB3l5eQCAvLw8bNmyBQcOHAi2ee+995CWloYRI0ZEPEdqampwaXPgQUTW4PP5UFZWhnD5+IHnZs2aBZ/PZ3TXTIMBHMVDCOBXvwL69AF27ozcbuRIf/n6P/3Jv5LH7FSt4pk7dy4mTpyIIUOGoKWlBS6XC0888QTeeecd/OQnP8GMGTOwYsUKvPLKK0hLS8NvfvMbAMBHH30EwP9BdeGFF2LQoEF48skn0dDQgKlTp+JXv/oVHnvsMcWd5ioeSiROw6vj9XpRWFgo287j8aCgoED/DpmMz+dDbm5ul+AkQJIkOBwO1NbW8u+Muli4EPjlL+Xb7d4NDBmif3/kqBm/VeWgHDhwADfeeCPq6+uRnp6OUaNGBYMTAHj66afRrVs3TJo0Ca2trRg/fjyee+654M+npKRg+fLlmDFjBvLy8tCnTx9MmzYNDz/8cAxvk8h4zKNQr76+XtN2dlNdXR0xOAH8s0x79+5FdXV1UgZwFN7Gjf79cuSsWgWMHat/f/SgKkD561//GvX10047Dc8++yyeffbZiG2GDh2KFStWqDktkSkEpuE7TzoGpuG5b0l4AwcO1LSd3TCAIzX+/W9g4EB/XZNonngCuOceY/qkF5OsdiYyN+ZRxC4/Px8Oh6PLbrkBkiTB6XQiPz/f4J6ZAwM4UiJQaC07O3pwcu21/tetHpwADFCIFFEzDU+hUlJSUFlZCQBdgpTAvysqKpI2vyI/P7/LTsIdJXsAR8Cjj/oLrb33XuQ2ffoAhw4By5cntjy9lhigECnAafj4FBcXY+nSpV0GYofDkfS3xpYtW4YTJ06EfY0BXHJ75x3/apv774/ebtMm4OhRIDPTmH4ZRXWhNqJkxGn4+BUXF6OoqIgroDqIlNcUkJmZiRdffDGpA7hkVFsLDBsm3+7//T/gv/9b//4kStybBSYClxmT0QJLQevq6sIOJlwKSmrJLS8G/DNMu3bt4t9Ukvj2W+DCC4Ht26O3mzEDePZZa9Qy6cyQzQKJkgnzKEhrcnlNALBv3z7mNSUBIYDp0/15JNGCkx/8wB/EPPecNYMTtRigECnEPArSEvOaCAD+/nf/7sF//nP0drW1wLZtQK9exvTLDJiDQqSC2jwKVp2lSJjXlNw2bQJ++EP5du++C3xXCzXpMAeFSCesOkvRMK8pOR06BAweDLS2Rm/36KPA739vTJ+MxBwUogSz0+ZvPp8PXq8XixYtgtfrZTE6jTCvKbn4fMCECUC/ftGDk/Hj/YXW7BicqMUAhUhjdqo663a7kZubi8LCQkyePBmFhYXIzc21VIBlZsxrSg7z5wPdu/vrmkSSmuovY//22/YptBYv3uIh0phddu+NVKMj8O2eA6h2zJCrZIY+2M2qVcryRzZuVJaPYge67WZMRPLssDpDbhZIkiTMmjULRUVFHMQ0kJKSktBglflS2tq9G8jNlW+3cCFw001698a6eIuHSGNGrs7QKz+Eew8lDzvlSyXa8ePAiBHywcmttwLt7QxO5DBAIdKYUbv36pkfYodZIJJnp3ypRBICuP12oHdv4IsvIrcbPhw4dgx48cXkKLQWLwYoRBozYnWG3t96WaMjMjutauJMWfxcLn+hteefj95u507g66/9QQwpwwCFSAd6rs4w4luvUbNAVmO3VU1azJTZKWBT49NP/bMgU6ZEb7dypX+GRcnmfxSKAQqRToqLi7Fr1y54PB64XC54PB7U1tbGnXSo97fewGqOwAoe1ujws2OuRrwzZXYL2JQ4fBjo29e/qV80jzziD0wmTDCkW/YkLKipqUkAEE1NTYnuCpHhXC6XACD7cLlcqo9dVVUlHA5HyHFSUlJC/u10OkVVVZUO78y82traulyXjg9JkoTT6RRtbW2J7qoqgfclSZLq91VVVRX25yRJEpIk2e5vpK1NiGuvFcIfdkR+/OQnQpw6lejempea8ZszKEQWo1d+SKQZgsCU/axZszSbBbIau+ZqxJovlWzJtQsW+Aut/fOfkdukpAAHDvj3zunOAh6aYIBCZDF65IdEG3ACx6yqqkra4l12XtUUS76UXQO2zt5/359ncs890dutX+8vT5+dbUy/kgXjPCKLCXzrLSkpgSRJIUFFrPkhagYcM1e/1YvdVzWp3aVbq4DNrNVr9+wBhg6Vb/fXvwK//KX+/UlWnEEhsiCtVwnZeYZAC8mwqilQzba0tBQFBQVRAwUtAjYzJtieOAGMGiUfnNxyi7/QGoMTfTFAIbIoLVcJ2X2GIF7RcjUA/wzTH//4R1N8+zdCvAGb2VZECQH89rdAr17Ali2R2511FnD0KPCXv7DQmhG4WSARwefzITc3F3V1dWHzUCRJgsPhQG1tbdIMwuGE27MmINn2rgkEGQDC3maMNJMX+FuLdEvR6L+1118HSkvl2+3Y4Q9QKD5qxm/OoBCRIdVv7aC4uBhPP/102NesXA8lFrHeZjRLgu2WLf5ZELngZPly/wwLgxPjMUAhIgDfDziDBg0KeX7w4MEhA06yVg4F/O999uzZYV+z4/JaObHcZkx0vtORI0BGhj/XJJp58/yBybXX6tINUoCreIgoRKS8AiD8LY5kurXB1U5dBZJrlUpUvlN7O1BcDCxbFr1dYSFrmZgFZ1CICIB84uI999xjqsTGREj0t38ziHcGLRErop5+2l9ITS44aWz01z5hcGIODFCISLYyqBACTz31VNJUDo0k2Vc7abE02Mh8J6/Xn2dy553R261b57+d079/3KckDTFAISLZWxcAogYfdqkcKicZ6qFEouXSYD13+waAffv8gUlhYfR2L77oD0wuuyyu05FOGKAQkWa3JOx8awNI3tVOeuy9o8du362twA9/CDid0dtNm+bPSbn11phPRQbgnTYiE0lU6W+tbknY9dZGR4Fv/+GShSsqKmyZLKxXcrDaBNto7rzTn2sSzdChwOefA337qj++Wcvy2xkDFCKTCLdCJjMzE2VlZbjvvvt0/TAM3LqQu80TSaC4lh1vbYSjdu8aqzNzcvCSJcD118u3+/prYPjw2M6R7KvXEkZYUFNTkwAgmpqaEt0VIiGEEG1tbcLj8QiXyyU8Ho9oa2tT9fNVVVVCkiQBIOwjKytLVFVV6dT77/sQ6fzRHpIkCUmSdO8fyYv37zASj8ej6G/B4/Focj4lPv9cCH8GSfTHW2/Fd55I/9/k331s1IzfDFCI4lRVVSUcDkfIh5fD4VD8wdXW1tbl5yM99P4wLC8vVx2gOJ1OfkibQLx/h9EE/kYjBdGSJAmn06lZQBTNN98IccYZ8oHJ/ffHfy65/28a+b7tggEKkUG0+Hal9NtpIBjQ88NQyQeyw+EQq1at0vxbOsXOiG/5gXN0Po9RMwk+nxCTJskHJvn5Qpw8qc05zThzZHVqxm+u4iGKkVYrG9Tct9d7KW9glYokSRFXqVRWVmLs2LEoLS1FQUGBbfMurEKPFTbh6L00OJo//clfaK2qKnq7hgbggw+AHj20Oa+Zc2+SAQMUohhptemZ2pUven8YJnIgIvWM3HxPj6XB0VRX++uZlJVFb/fRR/75kwEDtD1/shfmSzSu4iGKkVbfrtSuoDHiwzDZVqlYmdHf8rVcGhxJXR3gcMi3e/55YPp0/foR+P9mXV1d2BmqZFu9ZjTOoBDFSKtvVx1vq0RjdJXSwEDEWznmZqdv+SdPApdeKh+cTJniL7SmZ3ACJG9hPrNggEIUIy3Lngduq2RlZUU8FsAPQ+rKLuX3Z80CUlOBDRsitxk8GGhuBl591X/rxwi85Zk4DFCIYqT1t6vi4mI0NjaivLwcmZmZIa/xw5Aisfq3/D/8wR9sfPcWIvryS/8eO6efbky/OjI694a+o2Z50GOPPSYuueQS0bdvX5GdnS2KiorEl19+GdLmqquu6rIE69e//nVIm927d4trrrlG9OrVS2RnZ4s5c+aIU6dOKe4HlxmTmYSrPxFvbRC9Cm6Rfenxd6inNWuUFVp7881E95S0pGb8loQIk/kTwYQJE/CLX/wCl156Kdra2vD73/8en3/+ObZt24Y+ffoAAAoKCnDOOefg4YcfDv5c7969kZaWBsC/JO7CCy9ETk4OFixYgPr6etx444249dZb8dhjjynqR3NzM9LT09HU1BQ8LlEicZ8OMgMr/B0ePAj07y/fbu5cQOGQQBaiZvxWFaB0dvDgQfTv3x9r1qzBlVdeCcAfoFx44YWoqKgI+zMrV67Eddddh/3792PAd2vCXnjhBdx77704ePAgevbsKXteBihERNbS3u6vT9LeHr3doEFAbS2gYCggC1IzfseVg9LU1AQAXe6Xv/baa+jXrx8uuOACzJ07F99++23wtZqaGowcOTIYnADA+PHj0dzcjK1bt4Y9T2trK5qbm0MeRERkDTfd5C+0JhecfP21f4kxgxMC4qiD0t7ejlmzZuFHP/oRLrjgguDzkydPxtChQzFo0CB89tlnuPfee/HVV1/B7XYDABoaGkKCEwDBfzc0NIQ91/z581FeXh5rV4mIKAFefx0oLVXW7oYb9O8PWUvMAcrMmTPx+eefY+3atSHP33bbbcH/HjlyJAYOHIixY8di586dOOuss2I619y5c3HnnXcG/93c3Ayn0xlbx4mISFdffw2ce658u5tuAhYu1L07ZFExBSh33HEHli9fjg8++AAOmYo6Y8aMAQDs2LEDZ511FnJycvDJJ5+EtGlsbAQA5OTkhD1GamoqUlNTY+kqEZGurJCYapQTJ4BeveTb9ejhb9uNhS4oClV/HkII3HHHHXjjjTfw/vvv48wzz5T9mc2bNwP4vophXl4etmzZggMHDgTbvPfee0hLS8OIESPUdIeIKKHcbjdyc3NRWFiIyZMno7CwEP3798fDDz8c9+Z8VnPZZcqCk4MH/RVjGZyQHFV/IjNnzsSrr74Kl8uF008/HQ0NDWhoaMDx48cBADt37sQjjzyCjRs3YteuXXjrrbdw44034sorr8SoUaMAAFdffTVGjBiBqVOn4tNPP8U777yD+++/HzNnzuQsCRFZhtvtRklJSZc9lA4fPox58+ZhwIABwdw7O3v8cX+htfXro7d75JE1EALo18+YfpENqCmwgk4F2AKPhQsXCiGE2LNnj7jyyitFZmamSE1NFWeffba4++67uxRk2bVrl5g4caLo1auX6Nevn7jrrrtYqI2ILKOtra1LUbRwD0mSTFsoLV5r1yortAb8XkiSJJxOJwsOkn6F2syCdVCIKJG8Xi8KCwsVtXU6naitrbVNXsqhQ0pnQf4F4OKQZzwej+47IZO5GVYHhYgoGdXX1ytuu3fvXlRXV+vYG2O0t/s381MWnPRC5+AEUHfdiBigEBGpFEj6V8rqA/Mtt/gLrZ08KdfyXAASgBNhX1V73Si5MUAhIlIpPz9ftsRCR1YdmBcv9ifAvvxy9HZ//3s7HA4nJGl72NclSYLT6UR+fr4OvSS7YoBCRKRSSkoKKisrZdtZdWDeudMfmMhVd50yxZ8GO3Vqt+D1kCQppE3g3xUVFbbJwyFjMEAhshmfzwev14tFixbB6/UmXT0OoxQXF6OqqgpZWVlhX7fiwNza6g9Mzj5bvq3PB7z66vf/Li4uxtKlSzF48OCQdg6HA0uXLkVxcbHGvSW74yoeIhtxu90oKysLqc3hcDhQWVnJAUInPp8Pjz76KCorK3H48OHg806nExUVFZa57ldcAdTUyLdrbAT694/8OivrUjRqxm8GKEQ2ESgc1vn/0oFv8vwWqy+rDswLFgD33CPfzuMBuEI4dlb9+9AaAxSiJOPz+ZCbm9ulqmmAJElwOBy2qscRDQcDeR9/DOTlybd76CFg3jzdu2NrnNn8HuugECWZ6urqiMEJ4N9Hyy71OOSE2x8nNzc3KcrOK3H4sD/PRC44ueACfwIsg5P4RNoSoa6uDiUlJfy7jIIBCpENKK2zYfV6HHJiGQySJalYCOD004EIOb0hjh0DtmzRv0925/P5UFZW1uW2K4Dgc7NmzbLt31y8GKAQmZDaQVNpnQ2r1uNQIpbBIFlmW6ZP9+8efPRo9HZbt/oDmd69jemX3XFmMz4MUIhMJpZBM1A4rHMNigCr1uNQQ+1gkAxT7263/3bOn/8cvd0rr/gDkxEjDOlW0uDMZnwYoBCZSKyDZsfCYclaKEvNYGD3qffaWn9gMmlS9HbXX+8PTKZNM6ZfyYYzm/FhgEJkEvEOmsleKEvNYGDXqfeTJ/2BybBh8m3b2oD/+z/9+5TMOLMZHwYoRCahxaBZXFyMXbt2wePxwOVywePxoLa21vbBCaBuMLDj1PtVV/l3G5ZTX++fNbHxZJppcGYzPgxQiExCq0EzJSUFBQUFKC0tRUFBQdJ8+KkZDOw09V5R4Z81+eCD6O1Wr/YHJjk5hnSLvpPsM5vxYIBCZBJ2GjQTRelgYIep9/Xr/YHJ7NnR2z3wgD8w+fGPjekXdZXMM5vxYCVZIpMIVIOtq6sLm4eSbNVg46GkkmwgIRlAyPU2+9YAR44AZ5wh3+7cc4Evv9S9O0SqsJIskQXxfrV2lNzmstrUuxD+ImtKgpOjRxmckPVxBoXIZMLt22G1nXGtxAr79vzmN8D//q98uy1b/CXqicyKmwUSWZwVBk0jJev1eOstoKhIvt3LLwM336x/f4jipWb87m5Qn4hIhcAtCkrOnWB37wZyc+XbFRcDVVW6d4coIRigEJFpBRJZO0/0BirrmjFXJB4nTyqrZQL4C60lwSQSJTEmyRKRKdm9HH1nP/mJsuCkro6F1ig5MEAhIlOyazn6zv73f/31TFatit7u3Xf9gcmgQcb0iyjReIuHiEzJKuXoY03g3bgRuOQS+ePPnQs89pgGHSWyGAYoFpSsKxoouVihsm4sCbxNTUBGhvyxhw0Dduzwz64QJSMuM7aYZFzRQMnJ7JV1IyXwRqpEG9gH58AB+WO3tAB9+2raXSJTYCVZmwp8IHa+Lx9Y0eB2uxPUM7Iyn88Hr9eLRYsWwev1mibp1MyVddUm8N55J9Ctm3xw8umn/kCGwQkRAxTLSLYVDWQMt9uN3NxcFBYWYvLkySgsLERubq5pgl2zlqNXmsD75JNbIUnA009HP96LL/oDk1GjNO4okYXxFo9FeL1eFBYWyrbzeDws8EWKqL1FkUhmy7tatGgRJk+eHKWFA8Be2eP89Kf+arFEyYKVZG3IKisaKPGUDOZyM3KSJGHWrFkoKioyRQK22SrrRk7M7Q7glKJjnDoFdOcnMFFEvMVjEVZY0UCJp/SWTbLUGNFLfn4+HA5Hp9yYf0JJcLJ3r/92DoMTougYoFhE+A/E70mSBKfTifz8fIN7RmahJok60TNyZk3MVapjAi8wHYAAcE3Un1m50h+YOBx6947IHhigWISZVzRQ4qlNok7kjJzZE3OVGjasGEK0A3g+ars5c/yByYQJxvSLyC6YJGsx4eqgOJ1OVFRUmCahUQmzJT3GwkzvQW0SdaJqjFgpMTeS5mYgPV2+3ZAhwK5dLLRG1JGq8VtYUFNTkwAgmpqaEt2VhGhraxMej0e4XC7h8XhEW1tborukSlVVlXA4HAL+eXEBQDgcDlFVVZXorilmtvfgcrlC+hLp4XK5Qt6DJElCkqSQNoHntH4vbW1tXa5Z5/M6nU7T/j23twsxeLAQ/vmQ6I8k/WgikqVm/GaAQoYKDIrhBic9BkU9mPE9eDweRQGKx+Pp8l46Bw1Op1OX9xBrH81gzhxlgcm//pXonhKZm5rxm7d4yDCB2wqRVo8kunS5EmZ9D/HcsjHqVpV87RA/l8uF0tJSzc8fi7ffBiZOlG/33HPAjBn694fI6ljqnkzJDktbzfoe4kmiDtQYKS0tRUFBgS7Bic/nQ2Njo6K2ZlgqX1fnzx2RC04mTPDPnTA4IdIeAxQyTKKXtmph2bJlitol4j2YtSx8YNXO7Nmzo7Yzw1L5tjZ/YKJkKfDJk/6lw0SkD5YKIsMYvbRV61sXbrcbFRUVitomahaguLgYRUVFplldFGnVTmdmWCpfVKSs7PyePYDTqX9/zMZMq9YoSahJbnnsscfEJZdcIvr27Suys7NFUVGR+PLLL0PaHD9+XNx+++0iMzNT9OnTRxQXF4uGhoaQNrt37xbXXHON6NWrl8jOzhZz5swRp06dUtwPJslaU2AVR7gEU2i4iqOtrU2Ul5eLzMxMzVbZyK1A0fo92IHSawYdE3OVeOklZQmwy5cnpHumYLZVa2Rduq3iGT9+vFi4cKH4/PPPxebNm8U111wjhgwZIo4ePRpsM336dOF0OsXq1avFhg0bxOWXXy6uuOKK4OttbW3iggsuEOPGjRObNm0SK1asEP369RNz587V5Q2Suei9tLWqqkpkZWVFDB5iPYfSFSgA+KH9HaXX7Omnn1Yd0Gmx1P7TT5UFJrNmqT60rZhx1RpZl2HLjA8cOCAAiDVr1gghhDhy5Ijo0aOHWLJkSbDNF198IQCImpoaIYQQK1asEN26dQuZVXn++edFWlqaaG1tVXReBijWptfS1qqqKt1mOJTWGZmV7KNZB7HUZlEi3m/zLS3KApOcHH/tk2Rm9do1ZD5qxu+4kmSbmpoAAJmZmQCAjRs34tSpUxg3blywzXnnnYchQ4agpqYGAFBTU4ORI0diwIABwTbjx49Hc3Mztm7dGvY8ra2taG5uDnmQdRUXF2PXrl3weDxwuVzweDyora2NK4kzUOpdjohxlY3SnJKioiJVx7UzPXKO1Ow31JkQwLBhwOmny5/nyBGgvp5VYM26ao2SQ8wBSnt7O2bNmoUf/ehHuOCCCwAADQ0N6NmzJzIyMkLaDhgwAA0NDcE2HYOTwOuB18KZP38+0tPTgw9nMmao2YzWS1vlPkg7U7vKhps1qqf1NVO731BHc+cC3boBtbXRz7Fhgz+QUVLKPhnYYeUdWVfMAcrMmTPx+eef4/XXX9eyP2HNnTsXTU1NwcfevXt1PydZi9oPSLWrbLhZo3paXzOl3+afeeaZYJDy7rv+WZDHH49+7Gee8QcmF1+sqCtJI5GbShLFFKDccccdWL58OTweDxwdCgbk5OTg5MmTOHLkSEj7xsZG5OTkBNt0LtgU+HegTWepqalIS0sLeRB1pOYDMtaZDrPWGTEzLa+Z0iB09uzZcDovgyQB48dHbzt2rD8wueMOxd1IKpw5pIRSk9zS3t4uZs6cKQYNGiS+/vrrLq8HkmSXLl0afO7LL78MmyTb2NgYbPPnP/9ZpKWliRMnTijqB5NkqTO5JczokNQXbzKu1TdrTAQtrpmyVUHdFCXAAkIozMlPekZvKkn2ptsqnhkzZoj09HTh9XpFfX198PHtt98G20yfPl0MGTJEvP/++2LDhg0iLy9P5OXlBV8PLDO++uqrxebNm8Xbb78tsrOzucyY4hbpgzTwyMrK4oephckHoUsVBSa7diX6nViPkZtKkr3pFqBE+taycOHCYJtAobYzzjhD9O7dW/zsZz8T9fX1IcfZtWuXmDhxoujVq5fo16+fuOuuu1iojTQR7oM0MzNTlJeX22KmI9lnb8IHoTcrCkyWLUt0760t2f/2SBvczZiSml1LcrvdbpSVlYUkijocDlRWViZV/sv31wEA5BPmf/KTr/Huu+fo3i8ikqdm/GaAQmQBkfa0CSQvJlOSbmsrMGaMwKefyhUpOQSgHzweDwoKCgzoGRHJUTN+czdjIpOLp/6H3cyaBZx2GhQEJxmQpGyuMCGyMAYoRCbHap7A//2fv57Jd2VVorgUgARJ8lebZm0aIutigEJkcslczXPLFn9g8otfRG+XlTUNgARgAwDWpiGyg+6J7gBRR3ZNcI1HMlbzPHIEyM0FvtvuK6J584CHHgJ8vpdRXX0z/26IbIRJsmQaXKUSns/nQ25uLurq6sLmoUiSBIfDgdraWssPyu3twKRJwJtvRm931VXAe+8BPXoY0i0i0giTZMly4tml1u6SZR+gigogJUU+OGlsBLxeBidEdscAhRKOq1TkmXkfIJ/PB6/Xi0WLFsHr9ar+Pa1Z488zmT07ert16/wl1/r3j6OzRGQZvMVDCef1elFYWCjbjvUszJejE89tuX37AKdT/hwvvgjcemu8PSUiM1AzfjNJlhIumVepqJWSkmKaIC1S8bjAbblIMzutrcAVVwD/+lf040+dCvztb/7ZFSJKPrzFQwmXjKtUrC7W23Jz5vgLrUULTpxOoKUF+PvfGZwQJTPOoFDC5efnw+FwyK5S6VwR1Cy3O8zSDyOpKR5XUFCApUuBn/9c/rhffQWcw21ziAicQSETiGWVitvtRm5uLgoLCzF58mQUFhYiNzfX8NU+ZumH0ZTeblu//hgkST44eestfwKslYKTeJODiUiGxjspG0LNds1kHVVVVcLhcAgAwYfT6RRVVVVd2kmSFNIOgJAkSUiS1KW9nv01Qz8SwePxdHnfoY80ARwU/rAj8uO++xL9TmIT7m/V4XDY+ndOpAU14zdX8ZCpyN0uCRQti3R7waiiZWbpR6JELh4nAXgdwPVRfz4/H1i92pq1TLizNFHs1IzfDFDIUsyyJNks/UikwEANBBJj7wDwjOzPNTQAAwbo2ze98oKSPTAlihcryZJtmWVJsln6kUiB4nH9+v0X/Hc5ogcnH33kv7Gjd3CiZ14Qd5YmMg4DFLIUsyxJNks/Emn/fmDSpGIcPBh94H/+eX9gkpenf5/03jKBgSmRcRigkKVcccUV6NevX8TXJUmC0+nssiRZa4Gl0Z1XHRndj0Q4eRK47DKgU9X9LqZM8W/+N326MStejNgygYEpkXEYoJBluN1unHXWWfj3v/8d9vV4N85TM4gmywZ+nd1zD5CaCqxfH7nN4MFAczPw6qv+QmtGLcU24vZLMgemRIbTaymRnrjM2K+trU14PB7hcrmEx+MRbW1tie6SbiIt6e34CCxJjuW6xLpsVOnSaKurqoq+XDjw+PLLzj9n3FJsl8sls/TZ/3C5XHGdJ/CeOr+vZFheThQvNeM3AxSLSqY6DG1tbV3ea+dHdna2aG1tjem6xDuI2jlQ/OILZYHJG290/Vm535skScLpdGp2veRrs/gfHo8n7nMlS2BKpDUGKDaXbAXClA485eXlqq+LFoOoHQOUpiYhBgyQD0x+97vIxzAyYBDi+99lpJk2rQMiO/7eifTGAMXGjP5WagZKp+4zMzNVX5d4B1G7zWS1twtxww3ygUlenhCtrdGPZdQtl454+4XI3NSM30yStZhkrMOgdEXE4cOHI74W6brEs2xU7yWtRnv2WaBbN+D//i96u/37/TVNevaM3i4RK14CtVkGd1pi5HA4WOGVyGIYoFhMMtZhULJyIisrS9GxOl+X/v37K/q5zu2MWNJqlA8/9K+2ueOO6O3WrvXPnyiNJxK14qW4uBi7du2Cx+OBy+WCx+NBbW0tgxMii2GAYjHJWIdByZLe3/72t4qOpdV1scNMVkODPzD5j/+I3u6ZZ/yByY9+pO74iVyKnZKSgoKCApSWlqKgoMB2y72JkgEDFItJ1joMclP39913X0zX5cCBA4rO37mdlWeyTp0CrrhCfibkhhsAn09+ZiUa3nIholh1T3QHSJ3At9KSkhJIkhRyi8HOBcIA/2BXVFQUcRO4WK5LrDNSVp3J+v3vgfnzo7cZMAD4+mtAq3045X5vZqHXBoNEFCM9s3X1ksyreAJiqcOQDMsi1V6XWJemGr2kNV5vvqmsnsm2bYnuaWLYbTUWkVlxmXGSUBNwJNMHsNpALNalqVZY0vrVV8oCk6VLE93TxEm2ukJEicQAhULwA1herJVBzVpRtLlZiMGD5QOTOXMS2s2ES8a6QkSJpGb8loQIs07S5Jqbm5Geno6mpiakaXWj3KZ8Ph9yc3MjrjiRJAkOhwO1tbVJf7891hwEM+UuCAFMnQq89lr0dpde6l82LFfLxO68Xi8KCwtl23k8HhQUFOjfISKbUzN+M0nWpLQa9NQsh032D+DA0lSjfk5rf/4zMH26fLu6OmDQIP37YwVWXo1FZHcMUEzI7XajrKwsJLBwOByorKxUvSyTH8D29/HHQF6efLsPPgBstvo8blZdjUWUDFgHxWS0Lp/OD2D7amz0F1qTC04qKvy3fhicdJWsdYWIrIABionoUT6dH8D2c+oUcOWVQE5O9HaTJvkLrZWVGdMvK0pktVsiio4BionoUT6dH8D28sAD/sTWaH8CWVnAkSPA0qX+zf8oOla7JTIn5qCYiNI8kLq6Oni9XsUJtIEP4HB5LRUVFfwAtoDly4Gf/lS+3eefA+efr39/7MYq1W6JkgmXGZuI0iWP2dnZOHjwYPDfShNozbQcVg92fH/btwPnnCPfbvFi4Oc/178/RETxUDN+M0AxkUDNkrq6urB5KJEEbtUk83S0liufzODoUeCCC4Ddu6O3u/NO4I9/DH3OjoGaFfC6E8lTNX7rVS1OT3auJBupfLrcI5krXtqpUm57uxDTpslXgL34YiFOnOj688m0pYGZ8LoTKaNrqfs1a9aI6667TgwcOFAAEG+88UbI69OmTesyUIwfPz6kzaFDh8TkyZPF6aefLtLT08Uvf/lL0dLSorgPdg5QhAj/YZedna0oUPF4PInuvqGUlCp3OBxi1apVsnvzJHozxZdeUrZvzt694X/eioFaoq+5Fqx43YkSRdcAZcWKFeK+++4Tbrc7YoAyYcIEUV9fH3wcPnw4pM2ECRPE6NGjxccffyyqq6vF2WefLUpLSxX3we4BihBdP7hfffVVRQGKy+VKdNcN5fF4VM00Rfpmm8hvwOvWKQtMvN7Ix7DinjJ2mHWw4nUnSiTDNguMFKAUFRVF/Jlt27YJAGL9+vXB51auXCkkSRJ1dXWKzpsMAUpnSgfiZJtBcblcqgOUzt9sE/UNuLFRWWDy1FPyx7La34ddZh2sdt2JEk3N+K1LlQSv14v+/fvj3HPPxYwZM3Do0KHgazU1NcjIyMAll1wSfG7cuHHo1q0b1q1bp0d3bIEF18KLpQKu6FD07uTJk5oXx5PT1gYUFAADBkRv97Of+QutzZ4tf0wrbWmgR0HCRLHSdSeyGs0DlAkTJuDvf/87Vq9ejSeeeAJr1qzBxIkTgx82DQ0N6N+/f8jPdO/eHZmZmWhoaAh7zNbWVjQ3N4c8kg0LroUnF7hFIr4revfcc89pXhwvmoceAnr0ANasidwmIwP45hvA7VZeaM1KWxroUZAwUax03YmsRvMA5Re/+AX+8z//EyNHjsR//dd/Yfny5Vi/fj28Xm/Mx5w/fz7S09ODD6fTqV2HLYQVL7uKFrgpsXPnTkXt4v0GvGKFf9+c8vLo7T77zB+cZGSoO76VZtjsNOtgpetOZDW6F8IeNmwY+vXrhx07dgAAcnJycODAgZA2bW1tOHz4MHIibC4yd+5cNDU1BR979+7Vu9umVVxcjF27dsHj8cDlcsHj8aC2tjYpg5OASIGbEmeddZaidrF+A9650x+YXHtt9HaLFvkzTkaOjOk0lpphs9Osg5WuO5HlxJPsgjBJsp3t3btXSJIkli1bJoT4Pkl2w4YNwTbvvPMOk2Qpbh1XPq1atSrq6goAwul0itbWVuFwOCLWnYl1FcbRo0KceaZ8AmxZmbbXINLKmPLyctMs5Q2sfNH6midSuOvudDotk+xLZBRdV/G0tLSITZs2iU2bNgkA4qmnnhKbNm0Su3fvFi0tLWLOnDmipqZG1NbWilWrVokf/vCHYvjw4eJEh6pSEyZMEBdddJFYt26dWLt2rRg+fDiXGZPm7r777qgByt133y2EiFwcL5YVJe3tQtx8s3xgMnq0EMeP6/O+OwZq5eXlYvDgwSHva/DgwQkPWLS85mZhh5ouRHrTNUCJtKxu2rRp4ttvvxVXX321yM7OFj169BBDhw4Vt956q2hoaAg5xqFDh0Rpaano27evSEtLEzfffDMLtZGm5OpTBL7hBgYRLb4Bv/yysmXDe/bo9a5DRVrK2/mRqNojesw6MEggMjc14zf34iFTindfE6UbL3o8HhQUFMR1zg0bgEsvle/T6tXAj38s304LgX2doq2WCUjkXk5a7l9jt/2YiOyIe/GQpWlRYVRpAbd4Ku8eOCBESor8jMmCBTGfImZqK+xaMe+jI7sUfiOyu4QXaiP78/l88Hq9WLRoEbxer2ZFtdxuN0pKSrp886+rq0NJSQncbrei4+i5UqStDRg3Dujf319ILZKf/tTfds4c1aeQJXf91S7RFRaqPdKZnQq/EVEHekdLeuAMSmLptYeKlvua6LVS5JFH5GdMTj9diE7bT2lKyfWPZY8ixDmjlCgsN09kHZxBId1oNcMRjpYVRrWuT/HOO/56Jg88EL3d5s1AczNwxhmKDqua0usfa4VdK9Qe6czowm96zR4SUSgGKKSY3lPpWg80WlTera31ByYTJkRv9+qr/vmT0aMVdS0maq6/2gq7Vq54amThN7fbjdzcXBQWFmLy5MkoLCxEbm5uXIE5EUWg72SOPniLRxtql2TqPZWu1/FjWXp67JgQw4fL386ZOdNf+8QIsVyfcLeDOj+snkhqVOE3JuISxU/XOihmwAAlfrHkkei9MsYMFUbb24W47Tb5wOT884X49lvduhFWrNe/c+E2O1Y81bvwm5b5UUTJjAEKRRXrN0EjkhETWWH0b39TVmht1y7duhCVVtffrsXM9Cw3z0RcIm0wQKGI4vkmaORUupHf8v/1L2WBybvv6nJ6xcwww2R2egVfRtTVIUoGasbv7qCkomalTKDCakAg8bKkpASSJIUka2q5c2txcTGKioo0qzDaWaB66ddfH8Idd/wMp05FzxWfPx/43e80OXVcjLr+VpaSktLl71YLRu/ArGWFXSLL0jta0gNnUGKnxTdBK+/cWlVVJQYPHiKAlbIzJhMnCmHGyQgrX3+rMnL2Sq86Q0RmwL14KKJY9qgJx4rf8NxuNyZN2gDgsajtevUC9u4FsrKM6VcsrHj9jaDndQnUoAEQdvZKi72MAufo/LGcyP2SiLTEvXgoomTNY1i5sk1Rnsn69fZ638nEiJkHPWevuFKIkgEryVJEWldYNbtdu/yF1iZOlHs/UwFIOHrUenvRdJSsVU71rHDcUXFxMXbt2gWPxwOXywWPx4Pa2lpNZjW0rKRMZAcMUJKQFhVWze74cWDECODMM+VaPgdAAvAqAO3KoSdCslY5NXqzwEAibmlpKQoKCjQL5o0u2U9kdgxQkpSe3wQTSQjg9tuB3r2BL76I1vJLAL0AzAx51op70QDGzSCYkV1mHoxeKURkdlxmnMT0WpKZKK++CkydqqTlmQB2hTwjSRIcDocl96KRm0GQJAmzZs1CUVGRbW7ddWSXmYfABo91dXVhf5dW/hsligVnUMjyNm/255nIBScPPLAWktQNkrQ75Hmr597YZQYhVnaZeUi2/DAiOQxQyLIOH/bfyrnooujtHn3Uf+vn4Yf/w5a5N4meQUh0Ym5g5iHSrs1W2qk5GfLDiJTiLR6yHJ8PKCoC/vnP6O2uvhpYsQLo+IVT7yq1iZDIGQS3242ysrKQGRyHw4HKykrDBlO7Vdi1498oUSxYqI0sZcEC4J57orfp0QPYvx/o18+YPiWaz+dDbm6ubO5CbW2tpoOc2YqKhQuWnE4nKioqOPNAZBJqxm8GKGQJq1cD48bJt9uwAbj4Yv37YzZGVDntKBAURcp90SsoUtIvzjwQmZea8Zs5KGRqe/b4E2DlgpOFC/15JskYnADG5y6YNTFXrxolRGQ85qCQKZ04AVx6KfD559HbFRbuwAMP7MOVV+YDSO7ByMjchUQn5hKR/TFAIVMRAigrA555Jnq77t1r0dZ2Pjye4/B4jE/MNCujatvYZWkvEZkXc1DINBYtAiZPVtLybAA7Q54x+26vdsuNSFRiLhFZG3NQyFI++8yfZyIXnPzjHz44HE50Dk4AffZc0Yod98hhUTEi0hsDFEqYI0eA9HRg9Ojo7crL/bd++vY1Z2JmNHbeI4dFxYhIT8xBIcO1twPFxcCyZdHbjR0LvP020P27v1KrJWaq2SMHgCVvAbGoGBHphQEKGeqpp4C77oreRpKAhgagf//Q562WmKl0Ke6jjz6Kl156KaHVWONht00nicgceIuHDOH1+gMPueDkk0/8MyydgxPAenuuKJ3JmTdvni1vARERxYMBCulq3z5/YFJYGL3dX/7izzO59NLIbayWmBnPTI6Zk34pvERvmkhkNwxQSBetrcAPfwg4ndHb3Xyzf8bklluUHddKiZlyMz5yzJj0S+HZcaUWUaIxQCHN3XkncNppwKZNkduceSZw9Cjw8sv+GRY1iouLsWvXLng8HrhcLng8HtTW1poqOAGUzfgoYZakXwrPziu1iBKJhdpIM4sXAzfcIN9u+3bg7LP1749ZhNtlNysrC4cOHVL08x6PJ5iEareCb1Zn1k0TicyKhdrIUFu3+mdB5IKTf/zDn2eSTMEJ0HXGZ9WqVejVq5fsz3VO+uVtBPMx66aJRHbAAIViduQIkJkJXHBB9HYPPugPTK67zpBumVLHXXZTUlKiDmoBQohg0i9vI5iT1WrzEFkJAxRSLVBo7YwzgG++idzuqquAkyf9lWDpe0oHq1mzZqG4uFi24FugLVeNGM9qtXmIrISF2jrg/X15FRXA7Nny7RoagAEDdO+OrvT6e1A6WHWsMKv0NgILphkrsFJLbtNEs9TmIbISzqB8h/f3o/vgA3+eiVxw8vHH/ts5geDEqrUh9Px7UFtwjrcRzMtqtXmILEVYUFNTkwAgmpqaNDleVVWVkCRJAAh5SJIkJEkSVVVVmpzHivbtE8IfckR/vPhi15+tqqoSDocj5Jo6HI6w17OtrU14PB7hcrmEx+MRbW1tBry78Iz4ewico/N5wp3D4/F06Uu4h8fjibtfFJtwf+tOpzOpPzuIwlEzfid9gNLW1tblg6XzgOF0OoMDppkGUj2dOCHExRfLByZTpwrR3t7159UM8moCGb2p/XuIh9JBLdCncNdT6z5R7JLls4EoHgxQVFDz7dRMA6me7rpLPjBxOoVoaQn/82oGebPNXhk9W6F0UFMz40JEZFZqxm/VOSgffPABfvrTn2LQoEGQJAlvvvlmyOtCCDz44IMYOHAgevXqhXHjxmH79u0hbQ4fPowpU6YgLS0NGRkZuOWWW3D06FG1XdGE0vv2y5Yts/0yz6VL/Xkmf/xj9HZffQXs2QP07Rv+daVJnV6v13SrU4zO9+i4/LigoCBiroKVSvybiVVzoIgohiTZY8eOYfTo0Xj22WfDvv7kk0/iT3/6E1544QWsW7cOffr0wfjx43HixIlgmylTpmDr1q147733sHz5cnzwwQe47bbbYn8XcVC6ouLVV1811UCqpS++8AcmP/959HbLlvnnT845J3o7pYO31+s1XZErMy8btUqJf7Ng4juRxcUzVQNAvPHGG8F/t7e3i5ycHLFgwYLgc0eOHBGpqali0aJFQgghtm3bJgCI9evXB9usXLlSSJIk6urqFJ1XjxyUaPf3s7OzbZmk2NQkRHa2/O2c++5Td1ylt0nuv/9+Re1cLpc+FyAMub8HfHdbr+OtGOYemI/Zbh0SkZ+ut3iiqa2tRUNDA8aNGxd8Lj09HWPGjEFNTQ0AoKamBhkZGbjkkkuCbcaNG4du3bph3bp1YY/b2tqK5ubmkIdWlCwTnDJliqJjGbXMMzBt/dprr6GiogKvvfaaqunr9nbg+uuB9HTg4MHI7X70I3+htT/8QV3/lC6jVVqzw8jZimh/DwHHjx/HsmXLAFj7W7pdb3+wsB2RTcQTCaHTDMqHH34oAIj9+/eHtPv5z38urr/+eiGEEI8++qg455xzuhwrOztbPPfcc2HPM2/evLDfZLVaZixE9BUVZlrmGa6f6PDNXu6b4TPPKFs2XF8ffz/lkjrNvDqlqqpKZGVlReyXJEni7rvvtuy3dDsnfJvp/69EFMqwVTxGBSgnTpwQTU1NwcfevXs1D1CEiDxVb5aBNNK0dee+hBtk1q5VFph89JG2/ZVbRmvW1SlKViKlpKREfd2sS3/tfvvD5XIpClCMvHVIRH4Ju8WTk5MDAGhsbAx5vrGxMfhaTk4ODhw4EPJ6W1sbDh8+HGzTWWpqKtLS0kIeeoi0osIM1SKjTVt31nH6ur7enwD7H/8R/Weef94fouTladFbv2hJnYHbC62trXjooYdMtzpFyUqkaLcIhEl3sU2G2x9mTnQmIhXiiYSA8Emy//M//xMSLYVLkt2wYUOwzTvvvJOwJFk1ElktUum0deDx7rteMWaM/IzJ5MnhC63pKdx1HDx4sCgvL9cl0TSWJFal38LlHoFv6WZJpE2G2x9mmfEkoq50vcXT0tIiNm3aJDZt2iQAiKeeekps2rRJ7N69WwghxOOPPy4yMjLEsmXLxGeffSaKiorEmWeeKY4fPx48xoQJE8RFF10k1q1bJ9auXSuGDx8uSktLdXmDWkvUQKNuwJwvG5gMHChEc7MhXQ9h9O2FWHMt1AaE0QZ6M+V7JMvtDyNuHZol6CSyEl0DlEgf3NOmTRNC+GdRHnjgATFgwACRmpoqxo4dK7766quQYxw6dEiUlpaKvn37irS0NHHzzTeLlkhlScNIZICSKMoGzP+SDUwAIb74IjHvwcgy8kLEFwwp+RauJAdlyZIlpsr3SIYZlAA9ZzzNFHQSWQlL3dtQ9MH9HEWBSYe7cbr0T+7bpJGDoxbBkNy38MAqnkivL1682NCATM11SZbbH3rMctg9yZhITwxQbKrrB2NfAdTJBia/+53+/VLybdLI2wtaBUNy38Ktsjy983sy48opKzB6FpDIbhig2FhVVZUYPNghgNdkA5MxY4Robf3+ZxP9bVLrATva+9EyGJK7bpFeN3O+RyITvq3MrEEnkVWoGb+7gyylsbEYdXXyS2/r6oBBg77/t9vtRllZWcjSWYfDgcrKypiX8sotWZUkCbNmzUJRURFSUlKCFWbr6urC/owkSXA4HMjPzw97rurqatTX12PgwIE4ePAg7rzzzojvR8ulpoHl52pfV9qHzptpGqG4uBhFRUUh1zQ/P1/XpfJ2YPRmkkRJTe9oSQ/JOIPy0UfKCq2tXdv1ZxcvXhxxOjqeKf1Yvk3GcnshWvXcSMcwQ66Fkn19Ag/OXFgDZ1CI4sNbPDZSX68sMHnmmfA/v2TJEt0qnsZ6C0PN7QUl1XMjvR8z5Foorf7LvAVrMEPgS2RlDFBs4ORJIX70I/nA5IYbhPD5wh+jqqpK8cAeyze+eL5NKsmHkUtIlDtnW1ubKC8vF5mZmYqCIb2Ul5fzW7eNmCHwJbIq5qBY3H33AY89Fr1Ndjawfbt/R+JwAvkhSsVyzzyenBK5vA5Avtx8NMuWLcPUqVNDfj4zMxNlZWW47777DM21GD58uKJ2zFuwhuLiYixdujRsTldFRUXCtmcgshsGKCby1ltAUZF8u61bgREjordRO7jHsi9JYI+ikpISSJIUEqRosUdRPAN2RUVFl+e++eYbPPTQQ7jgggsMHUS4N4z9MMmYSH+abhZIsfn6a/+GfnLBydKl/hs7csEJoG5wdzqdYWc5lAh8m9Rjs79YBmxJkiIOEoEAyujN8AIzTZ03mgyQJCmu3wElRqTNRYlIGwxQEujoUcDhAM49N3q7OXP8gcmkScqPrWZwj3cn5mi7FsdDbmDvLDCLY7Zdhs2wGzYRkdUwQEkAIYD//m/g9NP99UoiufRS4MQJYMEC9edQMrinpKRg8eLFmtzu0OPbZLSBPRyHw4FZs2YpOrbR+R56zjQREdmRJMJlN5pcc3Mz0tPT0dTUhLS0tER3R5UXXwR+/Wv5dvv2AZ3GMtXcbjdKSkoAIGwS65IlS4Kvm1mkInNPP/00+vXrF5IDUF1djcLCQtljejwe2SRdPXQuOMe8BSJKJmrGbybJGmTdOuDyy+XbffABoFUqQqTVBk6n03KrDToHWEIIdOvWrUuQEc/KIiMoWb1EREScQdFdYyOQkyPfrqICULEqWBUrf2sPzAJ1/jMN3PIJd3sk0sxRtJ8hIiL9qRm/GaDo5NQpYOxYQC4Xc9IkYPFioBuzgbrw+XzIzc2NuFw6MBtSW1vbJeAKd1vIijNHRER2wgAlwebNAx5+OHqbrCxg587IhdbsIp7ZG6/XG1c+iZVnjoiI7Ig5KAnyz38C110n3+7zz4Hzz9e/P0aIFgTEu4NyrDvHdu7T9ddfz8CEiMhiGKBoYMcOQEk188WLgZ//XP/+GCVaAAIgbO5IXV0dSkpKFOWBxFKBNd6giIiIzIG3eOJw7Jh/JmT37ujtZs8GnnrKmD51pOctjmjJq0IIZGVl4dChQ2F/NlruSOf+5+bmyq7ICRwnloRaIiIyjprxm6mZMRACuPlmoG/f6MHJRRf5C60lIjhxu93Izc1FYWEhJk+ejMLCQuTm5sLtdsd97MBGhOGChsBzkYKTQBsl1VzVVGCV65MQArfddhtWr15taJl7IiKKDQMUlf76V/+Km1deid5u717gX/8CUlMN6VaIwExC59Uvgdsr8QYp8ewy3JGSHBOlFViV9OnQoUMYN26cZoEa6cfn88Hr9WLRokXwer0MKomSEAMUhdav92/o96tfRW/n8fhnWBwOY/rVmZLZjXg3y9OqTLzSHBMle/2o6ZNWgRrpQ8/ZPyKyDibJyjh4EBgwwB90RPPHPwJ33mlMn6KRm0noeHsl1oqmsewy3FEs1VzlKrCq6ZMQApIkYdasWSgqKjJ0hQ+XPkcXKY9ITXK1Vvi7IkowYUFNTU0CgGhqatLtHKdOCfHjHwvhD00iP4qKhPD5dOuGai6XSwCQfbhcrpjP0dbWJhwOh5AkKeyxJUkSWVlZQpKkLm0Cz1VVVWn4ruX7FOnh8Xg07Uc0VVVVwuFwhJzf4XBofi2sKvA7jPS7kiRJOJ1O0dbWpntf+Lsi0oea8Zu3eMJ45BGgRw/g/fcjt0lPBw4fBt5801xVYGNZmquWkuTVF1980dDde9XufBxg1K7GeucF2YGa2T898XdFZBL6x0va02sGZe1a+RkTQIjPPtP0tJpSMruh1bfQcN8ynU5nyLfMtrY24fF4hMvlEh6PR7S2tob8W+tvw+H6FO1hxAyKmWYGzMyI2T85/F0R6UvN+M0A5Tv79wvRq1f0wGTRIs1Op6uqqqqwt1cCjyVLlmh2rs4BSOCDO9zzRk2bt7W1iVWrVonMzExTDDQej8c0wZKZmeE6maEPRHbGACUGr78eOTD5zW+EaG/X7FSKRBr4lYo2k5CZmSnKy8t1G5zDnTsrKytioKBHTkqgH0bmwURihpkBKzBy9i8S/q6I9MUAJQbbtgmRkhIamIwcKcTx45qdQjGtZhoWL14c9UM2KytL80E6EBQovcWi98Cj5DaU3vitXLlEB5X8XRHpiwFKjN59V4gbbxRi6lQhdu/W9NCKRRrg1X5Ay91L7/jQ6kNfzTmN/NCPdzZKi/MnembAShIZVPJ3RaQvNeM39+IxkcDeM5FWMijdwwYAvF4vCgsLFZ3X6XQqOqYcNecMx+VyobS0NK4+mFVgZQiAkBof3CcovETWIOHvikg/3IvHorRcZqlm+axWSzfjXbIbbwG4RJIrza60ZL9W57O6QGG+0tJSFBQUGFogTevfFRHFhpVkTUTpAF9XVwev1xv126XawV6LeiCxBhixVJY1E7fbjbKyspDg0uFwoLKyMmQwKy4uRlFRUVwzAz6fD48++igqKytx+PDhqOej2GnxuyKiOOl7t0kfRlSSTQSlCXr9+vWTTaBVmw+iRf5HLNVcjV5Ro7WqqipD8nsC50rEaigiIq0wB8WiAjkodXV1YTf7iyTSvfFI+5p0/lmleS1KRLt/L4RAVlYWDh06FHze6XSioqLCkt/8fT4fBgwYEPJ+OsvKykJjY2Pc19btdmPSpElR22j9uyQi0hpzUCxKSQn5cAKBQOddigP30rOyssL+XOCYFRUVmg1o0e7fV1VVobGxMequxFbi9XqjBicAcOjQIXi93rjOE9ihWo4wqBQ8EZERGKCYTKQBPlKQERBpcCouLkZjYyPKy8uRmZkZ8ppeSX/FxcXYtWtX2EAkkcmPWlMaeMQboMglT3dm1P5CRER6YpKsCXVO0Nu+fXtwZkVOuMEpJSUFDz74IO677z7Dkv4CgUi8uOW9+oDDyquhiIgCGKCYVGCAd7vdeOihhxTnpEQbnLQKGowSbnVMZmYmysrKcN999+keqMgFRwUFBfjDH/4ge5x4r7magMPpdFp2NRQRUUdMkjUxucJtHdklQTIQFCxbtgwVFRUR22VlZeHFF1/ULX9FydJho5JklSZPS5KU0DodnO0iIjmqxm99FhLpy0zLjPUso6502TG+W2Zq9SWm0TY4jPTQc5PBcNe483U2apmx3A7VeuyrpLZ/RuxUTUTWxr14DKL3h7LSnVUzMzMtPxDEsskgAM33RZGrHxNuL5aqqioxePBg3QfncH9veu9MrbRfWuwfRUT2l9AAZd68eV0+qM4999zg68ePHxe33367yMzMFH369BHFxcWioaFB1TnMEKAY8aGsdAZl1apVGryjxDHTJoOx7mZr1IaEid74MFx/1AZ0RJS81IzfuiwzPv/881FfXx98rF27Nvja7Nmz8Y9//ANLlizBmjVrsH//fsvVwQjUpRBh8gFEhJokscjPz4fD4YhYA0WSJDidTkslvoajdhltZ1ouq1V6rM7t7LR8Wg0t948iIupIl1U83bt3R05OTpfnm5qa8Ne//hUulws//vGPAQALFy7ED37wA3z88ce4/PLL9eiO5tR8KMcTPAQKt5WUlAQrsQboUWQtFlokRpppk0Glx0rEUl6le/4YKdaAjohIji4zKNu3b8egQYMwbNgwTJkyBXv27AEAbNy4EadOncK4ceOCbc877zwMGTIENTU1EY/X2tqK5ubmkEciGfmhbOadVd1uN3Jzc1FYWIjJkyejsLAQubm5cLvdqo4TzyaDWi+rVTprZfRS3sAWAp0D47q6OpSUlKi+5loxc0BHRBan9f2lFStWiMWLF4tPP/1UvP322yIvL08MGTJENDc3i9dee0307Nmzy89ceuml4p577ol4zHB5LUhgDkqseQrxMFvugZY5OGbbZDDSiplEJX2aOc9D7nfHHBQi6shUq3i++eYbkZaWJv7yl7/EHKCcOHFCNDU1BR979+5NaIBi1g9lIxM1tR4w5ZbR9u3bN+TfTqdT10Ah3IoZvc8ZSSICYjXMFtARkXklPEm2o4yMDJxzzjnYsWMHcnJycPLkSRw5ciSkTWNjY9iclYDU1FSkpaWFPBJJyaZ+RueGaHW7RQk9EiMj3cpyOp2oqqrCkSNHDN1kMNp+QkYze56HmW9DEpGF6R0ttbS0iDPOOENUVlaKI0eOiB49eoilS5cGX//yyy8FAFFTU6P4mGZYZiyEeb5lG12HQml9FpfLpfrYZruVZQZmn0EJ4O+OiOSoGb81L3U/Z84c/PSnP8XQoUOxf/9+zJs3D5s3b8a2bduQnZ2NGTNmYMWKFXjllVeQlpaG3/zmNwCAjz76SPE5zFTqPtHlveXK4Sspga/2PXi9XhQWFsr2zePxBFcxJfo6WZlcqXu7bHNARPaX0FL3N9xwgxg4cKDo2bOnGDx4sLjhhhvEjh07gq8HCrWdccYZonfv3uJnP/uZqK+vV3UOs8ygmEG8365jqYarNgeHZdDjxzwPIrIDUyXJ6oEByvfiud0Sz60hpQMmy6Brxyy3FImIYpXQWzxGMNMtnkSL5XYLoM2toXCFw5xOJyoqKlBcXKzJOSgUb5URkZWpGb8ZoFhcrPkJsQY24c4facDU6hxERGQPasZvXUrdk3FiLYev1dLVwB40sfys2nZERJQ8dK+DQvqLpQ6FESXKWQadiIhixVs8NqImP8GIpatcHktERB2pGb85g2IjgdstpaWlKCgoiDroG1EN14wVd4mIyBoYoCQxI0qUsww6ERHFgrd4yJClq1weS0REXGZMlCAMxIiIIuMyY6IECFe4zuFwoLKykreyiIhUYg4KkQbcbjdKSkq6VM2tq6tDSUkJ3G53gnpGRGRNDFCI4uTz+VBWVhZ2KXXguVmzZsHn8xndNSIiy2KAQhSn6urqiPsNAf4gZe/evaiurjawV0RE1sYAhShOLOlPRKQ9BihEcWJJfyIi7TFAIYpTfn4+HA5Hl2q5AZIkwel0Ij8/3+CeERFZFwMUojixpD8RkfYYoBBpgCX9iYi0xUqyRBpiJVkioshYSZYoQQI7ShMRUXx4i4eIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHQYoBAREZHpMEAhIiIi02GAQkRERKbDAIWIiIhMx5KVZAPV+ZubmxPcEyIiIlIqMG4r2WXHkgFKS0sLAMDpdCa4J0RERKRWS0sL0tPTo7ax5GaB7e3t2L9/P04//XS0tLTA6XRi79693DhQR83NzbzOBuB1Ng6vtTF4nY1hlesshEBLSwsGDRqEbt2iZ5lYcgalW7ducDgcAABJkgAAaWlppv6l2AWvszF4nY3Da20MXmdjWOE6y82cBDBJloiIiEyHAQoRERGZjuUDlNTUVMybNw+pqamJ7oqt8Tobg9fZOLzWxuB1NoYdr7Mlk2SJiIjI3iw/g0JERET2wwCFiIiITIcBChEREZkOAxQiIiIyHdMHKIcPH8aUKVOQlpaGjIwM3HLLLTh69GjUn3nxxRdRUFCAtLQ0SJKEI0eOaHJcu4vlmpw4cQIzZ85EVlYW+vbti0mTJqGxsTGkjSRJXR6vv/66nm/FVJ599lnk5ubitNNOw5gxY/DJJ59Ebb9kyRKcd955OO200zBy5EisWLEi5HUhBB588EEMHDgQvXr1wrhx47B9+3Y934IlaH2db7rppi5/txMmTNDzLViCmuu8detWTJo0Cbm5uZAkCRUVFXEfM1lofZ0feuihLn/P5513no7vQAPC5CZMmCBGjx4tPv74Y1FdXS3OPvtsUVpaGvVnnn76aTF//nwxf/58AUB88803mhzX7mK5JtOnTxdOp1OsXr1abNiwQVx++eXiiiuuCGkDQCxcuFDU19cHH8ePH9fzrZjG66+/Lnr27ClefvllsXXrVnHrrbeKjIwM0djYGLb9hx9+KFJSUsSTTz4ptm3bJu6//37Ro0cPsWXLlmCbxx9/XKSnp4s333xTfPrpp+I///M/xZlnnpk01zQcPa7ztGnTxIQJE0L+bg8fPmzUWzIltdf5k08+EXPmzBGLFi0SOTk54umnn477mMlAj+s8b948cf7554f8PR88eFDndxIfUwco27ZtEwDE+vXrg8+tXLlSSJIk6urqZH/e4/GEDVDiPa4dxXJNjhw5Inr06CGWLFkSfO6LL74QAERNTU3wOQDijTfe0K3vZnbZZZeJmTNnBv/t8/nEoEGDxPz588O2v/7668W1114b8tyYMWPEr3/9ayGEEO3t7SInJ0csWLAg+PqRI0dEamqqWLRokQ7vwBq0vs5C+AOUoqIiXfprVWqvc0dDhw4NO3DGc0y70uM6z5s3T4wePVrDXurP1Ld4ampqkJGRgUsuuST43Lhx49CtWzesW7fOdMe1sliuycaNG3Hq1CmMGzcu+Nx5552HIUOGoKamJqTtzJkz0a9fP1x22WV4+eWXFW21bXUnT57Exo0bQ65Pt27dMG7cuC7XJ6CmpiakPQCMHz8+2L62thYNDQ0hbdLT0zFmzJiIx7Q7Pa5zgNfrRf/+/XHuuedixowZOHTokPZvwCJiuc6JOKbV6XlNtm/fjkGDBmHYsGGYMmUK9uzZE293dWXqAKWhoQH9+/cPea579+7IzMxEQ0OD6Y5rZbFck4aGBvTs2RMZGRkhzw8YMCDkZx5++GEsXrwY7733HiZNmoTbb78dzzzzjObvwWz+/e9/w+fzYcCAASHPd74+HTU0NERtH/hfNce0Oz2uMwBMmDABf//737F69Wo88cQTWLNmDSZOnAifz6f9m7CAWK5zIo5pdXpdkzFjxuCVV17B22+/jeeffx61tbXIz89HS0tLvF3WTUJ2M/7d736HJ554ImqbL774wqDe2JsZrvUDDzwQ/O+LLroIx44dw4IFC/Db3/5W1/MSxeMXv/hF8L9HjhyJUaNG4ayzzoLX68XYsWMT2DMi9SZOnBj871GjRmHMmDEYOnQoFi9ejFtuuSWBPYssIQHKXXfdhZtuuilqm2HDhiEnJwcHDhwIeb6trQ2HDx9GTk5OzOfX67hmpOe1zsnJwcmTJ3HkyJGQWZTGxsao13HMmDF45JFH0Nraaqt9Izrr168fUlJSuqxqinZ9cnJyorYP/G9jYyMGDhwY0ubCCy/UsPfWocd1DmfYsGHo168fduzYkZQBSizXORHHtDqjrklGRgbOOecc7NixQ7Njai0ht3iys7Nx3nnnRX307NkTeXl5OHLkCDZu3Bj82ffffx/t7e0YM2ZMzOfX67hmpOe1vvjii9GjRw+sXr06+NxXX32FPXv2IC8vL2KfNm/ejDPOOMPWwQkA9OzZExdffHHI9Wlvb8fq1asjXp+8vLyQ9gDw3nvvBdufeeaZyMnJCWnT3NyMdevWRb3mdqbHdQ5n3759OHToUEhgmExiuc6JOKbVGXVNjh49ip07d5r77znRWbpyJkyYIC666CKxbt06sXbtWjF8+PCQpa/79u0T5557rli3bl3wufr6erFp0ybx0ksvCQDigw8+EJs2bRKHDh1SfNxkFMu1nj59uhgyZIh4//33xYYNG0ReXp7Iy8sLvv7WW2+Jl156SWzZskVs375dPPfcc6J3797iwQcfNPS9Jcrrr78uUlNTxSuvvCK2bdsmbrvtNpGRkSEaGhqEEEJMnTpV/O53vwu2//DDD0X37t3F//zP/4gvvvhCzJs3L+wy44yMDLFs2TLx2WefiaKiIi4z1vg6t7S0iDlz5oiamhpRW1srVq1aJX74wx+K4cOHixMnTiTkPZqB2uvc2toqNm3aJDZt2iQGDhwo5syZIzZt2iS2b9+u+JjJSI/rfNdddwmv1ytqa2vFhx9+KMaNGyf69esnDhw4YPj7U8r0AcqhQ4dEaWmp6Nu3r0hLSxM333yzaGlpCb5eW1srAAiPxxN8bt68eQJAl8fChQsVHzcZxXKtjx8/Lm6//XZxxhlniN69e4uf/exnor6+Pvj6ypUrxYUXXij69u0r+vTpI0aPHi1eeOEF4fP5jHxrCfXMM8+IIUOGiJ49e4rLLrtMfPzxx8HXrrrqKjFt2rSQ9osXLxbnnHOO6Nmzpzj//PPFP//5z5DX29vbxQMPPCAGDBggUlNTxdixY8VXX31lxFsxNS2v87fffiuuvvpqkZ2dLXr06CGGDh0qbr311qQeNAPUXOfAZ0bnx1VXXaX4mMlK6+t8ww03iIEDB4qePXuKwYMHixtuuEHs2LHDwHekniREEqz3JCIiIksx9TJjIiIiSk4MUIiIiMh0GKAQERGR6TBAISIiItNhgEJERESmwwCFiIiITIcBChEREZkOAxQiIiIyHQYoREREZDoMUIiIiMh0GKAQERGR6TBAISIiItP5/wEp1b8yUKjSwAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test, y_test, color='black')\n", + "plt.plot(X_test, y_pred, color='blue', linewidth=3)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "16ff1a974f6e4348e869e4a7d366b86a", + "translation_date": "2025-09-04T01:29:57+00:00", + "source_file": "2-Regression/1-Tools/solution/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/de/2-Regression/2-Data/README.md b/translations/de/2-Regression/2-Data/README.md index 29e0a8108..a5afc056a 100644 --- a/translations/de/2-Regression/2-Data/README.md +++ b/translations/de/2-Regression/2-Data/README.md @@ -1,62 +1,71 @@ + # Erstellen eines Regressionsmodells mit Scikit-learn: Daten vorbereiten und visualisieren -![Datenvisualisierungs-Infografik](../../../../translated_images/data-visualization.54e56dded7c1a804d00d027543f2881cb32da73aeadda2d4a4f10f3497526114.de.png) +![Infografik zur Datenvisualisierung](../../../../translated_images/data-visualization.54e56dded7c1a804d00d027543f2881cb32da73aeadda2d4a4f10f3497526114.de.png) Infografik von [Dasani Madipalli](https://twitter.com/dasani_decoded) -## [Vorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/11/) +## [Quiz vor der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/11/) > ### [Diese Lektion ist auch in R verfügbar!](../../../../2-Regression/2-Data/solution/R/lesson_2.html) ## Einführung -Jetzt, wo Sie mit den notwendigen Werkzeugen ausgestattet sind, um mit dem Aufbau von Machine Learning-Modellen mit Scikit-learn zu beginnen, sind Sie bereit, Fragen zu Ihren Daten zu stellen. Es ist sehr wichtig, zu verstehen, wie man die richtigen Fragen stellt, um das Potenzial Ihres Datensatzes richtig zu erschließen. +Jetzt, da Sie mit den notwendigen Tools ausgestattet sind, um mit dem Aufbau von Machine-Learning-Modellen mit Scikit-learn zu beginnen, können Sie anfangen, Fragen zu Ihren Daten zu stellen. Wenn Sie mit Daten arbeiten und ML-Lösungen anwenden, ist es äußerst wichtig, die richtigen Fragen zu stellen, um das Potenzial Ihres Datensatzes voll auszuschöpfen. -In dieser Lektion werden Sie lernen: +In dieser Lektion lernen Sie: - Wie Sie Ihre Daten für den Modellaufbau vorbereiten. -- Wie Sie Matplotlib für die Datenvisualisierung verwenden. +- Wie Sie Matplotlib für die Datenvisualisierung nutzen. -## Die richtige Frage zu Ihren Daten stellen +## Die richtigen Fragen an Ihre Daten stellen -Die Frage, die Sie beantwortet haben möchten, bestimmt, welche Art von ML-Algorithmen Sie nutzen werden. Und die Qualität der Antwort, die Sie erhalten, hängt stark von der Beschaffenheit Ihrer Daten ab. +Die Frage, die Sie beantwortet haben möchten, bestimmt, welche Art von ML-Algorithmen Sie verwenden werden. Und die Qualität der Antwort hängt stark von der Beschaffenheit Ihrer Daten ab. -Schauen Sie sich die [Daten](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) an, die für diese Lektion bereitgestellt werden. Sie können diese .csv-Datei in VS Code öffnen. Ein schneller Blick zeigt sofort, dass es leere Felder und eine Mischung aus Zeichenfolgen und numerischen Daten gibt. Außerdem gibt es eine merkwürdige Spalte namens 'Package', in der die Daten eine Mischung aus 'sacks', 'bins' und anderen Werten sind. Die Daten sind in der Tat etwas chaotisch. +Werfen Sie einen Blick auf die [Daten](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv), die für diese Lektion bereitgestellt wurden. Sie können diese .csv-Datei in VS Code öffnen. Ein kurzer Blick zeigt sofort, dass es Leerstellen und eine Mischung aus Zeichenketten und numerischen Daten gibt. Es gibt auch eine seltsame Spalte namens 'Package', in der die Daten eine Mischung aus 'sacks', 'bins' und anderen Werten sind. Die Daten sind tatsächlich ein wenig chaotisch. [![ML für Anfänger - Wie man einen Datensatz analysiert und bereinigt](https://img.youtube.com/vi/5qGjczWTrDQ/0.jpg)](https://youtu.be/5qGjczWTrDQ "ML für Anfänger - Wie man einen Datensatz analysiert und bereinigt") -> 🎥 Klicken Sie auf das Bild oben für ein kurzes Video zur Vorbereitung der Daten für diese Lektion. +> 🎥 Klicken Sie auf das Bild oben, um ein kurzes Video zur Vorbereitung der Daten für diese Lektion anzusehen. -Es ist tatsächlich nicht sehr häufig, dass Ihnen ein Datensatz übergeben wird, der sofort einsatzbereit ist, um ein ML-Modell zu erstellen. In dieser Lektion lernen Sie, wie Sie einen Rohdatensatz mit gängigen Python-Bibliotheken vorbereiten. Sie werden auch verschiedene Techniken zur Visualisierung der Daten kennenlernen. +Es ist tatsächlich nicht sehr üblich, einen Datensatz zu erhalten, der vollständig bereit ist, um direkt ein ML-Modell zu erstellen. In dieser Lektion lernen Sie, wie Sie einen Rohdatensatz mit Standard-Python-Bibliotheken vorbereiten. Sie lernen auch verschiedene Techniken zur Visualisierung der Daten. -## Fallstudie: 'der Kürbismarkt' +## Fallstudie: 'Der Kürbismarkt' -In diesem Ordner finden Sie eine .csv-Datei im Wurzelverzeichnis `data` mit dem Namen [US-pumpkins.csv](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv), die 1757 Zeilen von Daten über den Markt für Kürbisse enthält, sortiert nach Städten. Dies sind Rohdaten, die aus den [Standardberichten der Spezialkulturen-Terminalmärkte](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice) des United States Department of Agriculture extrahiert wurden. +In diesem Ordner finden Sie eine .csv-Datei im Stammordner `data` namens [US-pumpkins.csv](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv), die 1757 Zeilen Daten über den Markt für Kürbisse enthält, sortiert nach Städten. Dies sind Rohdaten, die aus den [Specialty Crops Terminal Markets Standard Reports](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice) des US-Landwirtschaftsministeriums extrahiert wurden. ### Daten vorbereiten -Diese Daten sind gemeinfrei. Sie können in vielen separaten Dateien pro Stadt von der USDA-Website heruntergeladen werden. Um zu viele separate Dateien zu vermeiden, haben wir alle Stadtdaten in einer einzigen Tabelle zusammengeführt, sodass wir die Daten bereits ein wenig _vorbereitet_ haben. Lassen Sie uns nun einen genaueren Blick auf die Daten werfen. +Diese Daten sind gemeinfrei. Sie können auf der USDA-Website in vielen separaten Dateien, nach Städten sortiert, heruntergeladen werden. Um zu vermeiden, dass zu viele separate Dateien entstehen, haben wir alle Städtedaten in eine Tabelle zusammengeführt, sodass die Daten bereits _etwas_ vorbereitet sind. Schauen wir uns die Daten nun genauer an. ### Die Kürbisdaten - erste Schlussfolgerungen -Was fällt Ihnen an diesen Daten auf? Sie haben bereits gesehen, dass es eine Mischung aus Zeichenfolgen, Zahlen, leeren Feldern und seltsamen Werten gibt, die Sie verstehen müssen. +Was fällt Ihnen an diesen Daten auf? Sie haben bereits gesehen, dass es eine Mischung aus Zeichenketten, Zahlen, Leerstellen und seltsamen Werten gibt, die Sie verstehen müssen. -Welche Frage können Sie zu diesen Daten mit einer Regressionstechnik stellen? Wie wäre es mit "Vorhersage des Preises eines Kürbisses, der in einem bestimmten Monat verkauft wird"? Wenn Sie sich die Daten erneut ansehen, gibt es einige Änderungen, die Sie vornehmen müssen, um die erforderliche Datenstruktur für die Aufgabe zu erstellen. +Welche Frage können Sie mit diesen Daten unter Verwendung einer Regressionstechnik stellen? Wie wäre es mit "Den Preis eines Kürbisses für den Verkauf in einem bestimmten Monat vorhersagen"? Wenn Sie die Daten erneut betrachten, gibt es einige Änderungen, die Sie vornehmen müssen, um die für die Aufgabe erforderliche Datenstruktur zu erstellen. -## Übung - Analysieren der Kürbisdaten +## Übung - Die Kürbisdaten analysieren -Lassen Sie uns [Pandas](https://pandas.pydata.org/) verwenden, (der Name steht für `Python Data Analysis`), ein sehr nützliches Tool zum Strukturieren von Daten, um diese Kürbisdaten zu analysieren und vorzubereiten. +Verwenden wir [Pandas](https://pandas.pydata.org/) (der Name steht für `Python Data Analysis`), ein sehr nützliches Tool zur Datenaufbereitung, um diese Kürbisdaten zu analysieren und vorzubereiten. -### Zuerst nach fehlenden Daten suchen +### Zuerst fehlende Daten überprüfen -Sie müssen zunächst Schritte unternehmen, um nach fehlenden Daten zu suchen: +Zunächst müssen Sie Schritte unternehmen, um fehlende Daten zu überprüfen: -1. Konvertieren Sie die Daten in ein Monatsformat (das sind US-Daten, daher ist das Format `MM/DD/YYYY`). +1. Konvertieren Sie die Daten in ein Monatsformat (dies sind US-Daten, das Format ist `MM/DD/YYYY`). 2. Extrahieren Sie den Monat in eine neue Spalte. -Öffnen Sie die _notebook.ipynb_-Datei in Visual Studio Code und importieren Sie die Tabelle in einen neuen Pandas-Datenrahmen. +Öffnen Sie die Datei _notebook.ipynb_ in Visual Studio Code und importieren Sie die Tabelle in ein neues Pandas-Dataframe. -1. Verwenden Sie die `head()`-Funktion, um die ersten fünf Zeilen anzuzeigen. +1. Verwenden Sie die Funktion `head()`, um die ersten fünf Zeilen anzuzeigen. ```python import pandas as pd @@ -66,26 +75,26 @@ Sie müssen zunächst Schritte unternehmen, um nach fehlenden Daten zu suchen: ✅ Welche Funktion würden Sie verwenden, um die letzten fünf Zeilen anzuzeigen? -1. Überprüfen Sie, ob im aktuellen Datenrahmen fehlende Daten vorhanden sind: +1. Überprüfen Sie, ob im aktuellen Dataframe fehlende Daten vorhanden sind: ```python pumpkins.isnull().sum() ``` - Es gibt fehlende Daten, aber vielleicht spielt das für die aktuelle Aufgabe keine Rolle. + Es gibt fehlende Daten, aber vielleicht spielt das für die Aufgabe keine Rolle. -1. Um Ihren Datenrahmen leichter handhabbar zu machen, wählen Sie nur die Spalten aus, die Sie benötigen, wobei `loc` function which extracts from the original dataframe a group of rows (passed as first parameter) and columns (passed as second parameter). The expression `:` im folgenden Fall "alle Zeilen" bedeutet. +1. Um Ihr Dataframe einfacher zu bearbeiten, wählen Sie nur die benötigten Spalten aus, indem Sie die Funktion `loc` verwenden, die aus dem ursprünglichen Dataframe eine Gruppe von Zeilen (als erster Parameter übergeben) und Spalten (als zweiter Parameter übergeben) extrahiert. Der Ausdruck `:` bedeutet in diesem Fall "alle Zeilen". ```python columns_to_select = ['Package', 'Low Price', 'High Price', 'Date'] pumpkins = pumpkins.loc[:, columns_to_select] ``` -### Zweitens, den Durchschnittspreis eines Kürbisses bestimmen +### Zweitens den Durchschnittspreis eines Kürbisses bestimmen -Denken Sie darüber nach, wie Sie den Durchschnittspreis eines Kürbisses in einem bestimmten Monat bestimmen können. Welche Spalten würden Sie für diese Aufgabe auswählen? Hinweis: Sie benötigen 3 Spalten. +Überlegen Sie, wie Sie den Durchschnittspreis eines Kürbisses in einem bestimmten Monat bestimmen können. Welche Spalten würden Sie für diese Aufgabe auswählen? Hinweis: Sie benötigen 3 Spalten. -Lösung: Berechnen Sie den Durchschnitt der `Low Price` and `High Price`-Spalten, um die neue Preis-Spalte zu füllen, und konvertieren Sie die Datums-Spalte, sodass nur der Monat angezeigt wird. Glücklicherweise gibt es laut der vorherigen Überprüfung keine fehlenden Daten für Daten oder Preise. +Lösung: Nehmen Sie den Durchschnitt der Spalten `Low Price` und `High Price`, um die neue Spalte Price zu füllen, und konvertieren Sie die Spalte Date so, dass nur der Monat angezeigt wird. Glücklicherweise gibt es laut der obigen Überprüfung keine fehlenden Daten für Daten oder Preise. 1. Um den Durchschnitt zu berechnen, fügen Sie den folgenden Code hinzu: @@ -96,37 +105,37 @@ Lösung: Berechnen Sie den Durchschnitt der `Low Price` and `High Price`-Spalten ``` - ✅ Fühlen Sie sich frei, Daten auszudrucken, die Sie zur Überprüfung verwenden möchten, indem Sie `print(month)` verwenden. + ✅ Sie können beliebige Daten mit `print(month)` überprüfen. -2. Kopieren Sie nun Ihre konvertierten Daten in einen neuen Pandas-Datenrahmen: +2. Kopieren Sie nun Ihre konvertierten Daten in ein neues Pandas-Dataframe: ```python new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price}) ``` - Wenn Sie Ihren Datenrahmen ausdrucken, sehen Sie einen sauberen, aufgeräumten Datensatz, auf dem Sie Ihr neues Regressionsmodell aufbauen können. + Wenn Sie Ihr Dataframe ausdrucken, sehen Sie einen sauberen, aufgeräumten Datensatz, auf dem Sie Ihr neues Regressionsmodell aufbauen können. -### Aber warten Sie! Hier ist etwas Seltsames +### Aber Moment! Hier ist etwas Seltsames -Wenn Sie sich die Spalte `Package` column, pumpkins are sold in many different configurations. Some are sold in '1 1/9 bushel' measures, and some in '1/2 bushel' measures, some per pumpkin, some per pound, and some in big boxes with varying widths. +Wenn Sie sich die Spalte `Package` ansehen, werden Kürbisse in vielen verschiedenen Konfigurationen verkauft. Einige werden in '1 1/9 bushel'-Maßen verkauft, andere in '1/2 bushel'-Maßen, einige pro Kürbis, einige pro Pfund und einige in großen Kisten mit unterschiedlichen Breiten. -> Pumpkins seem very hard to weigh consistently +> Kürbisse scheinen sehr schwer konsistent zu wiegen -Digging into the original data, it's interesting that anything with `Unit of Sale` equalling 'EACH' or 'PER BIN' also have the `Package` type per inch, per bin, or 'each'. Pumpkins seem to be very hard to weigh consistently, so let's filter them by selecting only pumpkins with the string 'bushel' in their `Package` ansehen. +Wenn man sich die Originaldaten ansieht, ist es interessant, dass alles mit `Unit of Sale` gleich 'EACH' oder 'PER BIN' auch den `Package`-Typ pro Zoll, pro Bin oder 'each' hat. Kürbisse scheinen sehr schwer konsistent zu wiegen, daher filtern wir sie, indem wir nur Kürbisse mit dem String 'bushel' in ihrer `Package`-Spalte auswählen. -1. Fügen Sie am Anfang der Datei, unter dem ursprünglichen .csv-Import, einen Filter hinzu: +1. Fügen Sie einen Filter oben in der Datei unter dem ursprünglichen .csv-Import hinzu: ```python pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)] ``` - Wenn Sie die Daten jetzt drucken, sehen Sie, dass Sie nur etwa 415 Zeilen von Daten erhalten, die Kürbisse nach Scheffel enthalten. + Wenn Sie die Daten jetzt ausdrucken, sehen Sie, dass Sie nur die etwa 415 Zeilen mit Daten erhalten, die Kürbisse nach dem Bushel enthalten. -### Aber warten Sie! Es gibt noch eine Sache zu tun +### Aber Moment! Es gibt noch etwas zu tun -Haben Sie bemerkt, dass die Menge pro Scheffel von Zeile zu Zeile variiert? Sie müssen die Preise normalisieren, sodass Sie die Preise pro Scheffel anzeigen, also machen Sie etwas Mathematik, um es zu standardisieren. +Haben Sie bemerkt, dass die Bushel-Menge pro Zeile variiert? Sie müssen die Preise normalisieren, sodass Sie die Preise pro Bushel anzeigen. Machen Sie also einige Berechnungen, um dies zu standardisieren. -1. Fügen Sie diese Zeilen nach dem Block hinzu, der den new_pumpkins-Datenrahmen erstellt: +1. Fügen Sie diese Zeilen nach dem Block hinzu, der das neue_pumpkins-Dataframe erstellt: ```python new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9) @@ -134,38 +143,38 @@ Haben Sie bemerkt, dass die Menge pro Scheffel von Zeile zu Zeile variiert? Sie new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2) ``` -✅ Laut [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308) hängt das Gewicht eines Scheffels von der Art des Produkts ab, da es sich um eine Volumeneinheit handelt. "Ein Scheffel Tomaten sollte zum Beispiel 56 Pfund wiegen... Blätter und Gemüse nehmen mehr Platz mit weniger Gewicht ein, sodass ein Scheffel Spinat nur 20 Pfund wiegt." Es ist alles ziemlich kompliziert! Lassen Sie uns nicht mit einer Umrechnung von Scheffel in Pfund beschäftigen und stattdessen nach Scheffeln bepreisen. All dieses Studium von Scheffeln Kürbisse zeigt jedoch, wie wichtig es ist, die Natur Ihrer Daten zu verstehen! +✅ Laut [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308) hängt das Gewicht eines Bushels von der Art des Produkts ab, da es sich um eine Volumenmessung handelt. "Ein Bushel Tomaten soll beispielsweise 56 Pfund wiegen... Blätter und Grünzeug nehmen mehr Platz mit weniger Gewicht ein, sodass ein Bushel Spinat nur 20 Pfund wiegt." Das ist alles ziemlich kompliziert! Lassen Sie uns die Umrechnung von Bushel zu Pfund ignorieren und stattdessen nach Bushel berechnen. All diese Studien zu Bushels von Kürbissen zeigen jedoch, wie wichtig es ist, die Natur Ihrer Daten zu verstehen! -Jetzt können Sie die Preisgestaltung pro Einheit basierend auf ihrer Scheffelmessung analysieren. Wenn Sie die Daten ein weiteres Mal ausdrucken, können Sie sehen, wie sie standardisiert sind. +Jetzt können Sie die Preise pro Einheit basierend auf ihrer Bushel-Messung analysieren. Wenn Sie die Daten noch einmal ausdrucken, können Sie sehen, wie sie standardisiert sind. -✅ Haben Sie bemerkt, dass Kürbisse, die nach halben Scheffeln verkauft werden, sehr teuer sind? Können Sie herausfinden, warum? Hinweis: Kleine Kürbisse sind viel teurer als große, wahrscheinlich weil es pro Scheffel so viel mehr von ihnen gibt, angesichts des ungenutzten Raums, der von einem großen hohlen Kürbis eingenommen wird. +✅ Haben Sie bemerkt, dass Kürbisse, die nach dem halben Bushel verkauft werden, sehr teuer sind? Können Sie herausfinden, warum? Hinweis: Kleine Kürbisse sind viel teurer als große, wahrscheinlich weil es so viel mehr von ihnen pro Bushel gibt, angesichts des ungenutzten Raums, den ein großer hohler Kürbis für Kuchen einnimmt. ## Visualisierungsstrategien -Ein Teil der Rolle eines Data Scientists besteht darin, die Qualität und Natur der Daten, mit denen sie arbeiten, zu demonstrieren. Dazu erstellen sie oft interessante Visualisierungen oder Diagramme, Grafiken und Charts, die verschiedene Aspekte der Daten zeigen. Auf diese Weise können sie visuell Beziehungen und Lücken aufzeigen, die sonst schwer zu erkennen wären. +Ein Teil der Rolle eines Data Scientists besteht darin, die Qualität und Natur der Daten, mit denen er arbeitet, zu demonstrieren. Dazu erstellen sie oft interessante Visualisierungen, wie Diagramme, Grafiken und Charts, die verschiedene Aspekte der Daten zeigen. Auf diese Weise können sie visuell Beziehungen und Lücken aufzeigen, die sonst schwer zu erkennen wären. [![ML für Anfänger - Wie man Daten mit Matplotlib visualisiert](https://img.youtube.com/vi/SbUkxH6IJo0/0.jpg)](https://youtu.be/SbUkxH6IJo0 "ML für Anfänger - Wie man Daten mit Matplotlib visualisiert") -> 🎥 Klicken Sie auf das Bild oben für ein kurzes Video zur Visualisierung der Daten für diese Lektion. +> 🎥 Klicken Sie auf das Bild oben, um ein kurzes Video zur Visualisierung der Daten für diese Lektion anzusehen. -Visualisierungen können auch helfen, die am besten geeignete Machine Learning-Technik für die Daten zu bestimmen. Ein Streudiagramm, das anscheinend einer Linie folgt, deutet beispielsweise darauf hin, dass die Daten ein guter Kandidat für eine lineare Regression sind. +Visualisierungen können auch helfen, die am besten geeignete Machine-Learning-Technik für die Daten zu bestimmen. Ein Streudiagramm, das einer Linie zu folgen scheint, zeigt beispielsweise, dass die Daten ein guter Kandidat für eine lineare Regression sind. Eine Datenvisualisierungsbibliothek, die gut in Jupyter-Notebooks funktioniert, ist [Matplotlib](https://matplotlib.org/) (die Sie auch in der vorherigen Lektion gesehen haben). -> Erwerben Sie mehr Erfahrung mit Datenvisualisierung in [diesen Tutorials](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott). +> Sammeln Sie mehr Erfahrung mit Datenvisualisierung in [diesen Tutorials](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott). -## Übung - Experimentieren mit Matplotlib +## Übung - Mit Matplotlib experimentieren -Versuchen Sie, einige grundlegende Diagramme zu erstellen, um den neuen Datenrahmen, den Sie gerade erstellt haben, anzuzeigen. Was würde ein einfaches Liniendiagramm zeigen? +Versuchen Sie, einige grundlegende Diagramme zu erstellen, um das neue Dataframe anzuzeigen, das Sie gerade erstellt haben. Was würde ein einfaches Liniendiagramm zeigen? -1. Importieren Sie Matplotlib am Anfang der Datei, unter dem Pandas-Import: +1. Importieren Sie Matplotlib oben in der Datei, unter dem Pandas-Import: ```python import matplotlib.pyplot as plt ``` 1. Führen Sie das gesamte Notebook erneut aus, um es zu aktualisieren. -1. Fügen Sie am Ende des Notebooks eine Zelle hinzu, um die Daten als Box zu plotten: +1. Fügen Sie am Ende des Notebooks eine Zelle hinzu, um die Daten als Box-Diagramm darzustellen: ```python price = new_pumpkins.Price @@ -174,15 +183,15 @@ Versuchen Sie, einige grundlegende Diagramme zu erstellen, um den neuen Datenrah plt.show() ``` - ![Ein Streudiagramm, das die Preis-Monats-Beziehung zeigt](../../../../translated_images/scatterplot.b6868f44cbd2051c6680ccdbb1510697d06a3ff6cd4abda656f5009c0ed4e3fc.de.png) + ![Ein Streudiagramm, das die Beziehung zwischen Preis und Monat zeigt](../../../../translated_images/scatterplot.b6868f44cbd2051c6680ccdbb1510697d06a3ff6cd4abda656f5009c0ed4e3fc.de.png) - Ist dies ein nützliches Diagramm? Gibt es etwas, das Sie überrascht? + Ist dies ein nützliches Diagramm? Überrascht Sie etwas daran? - Es ist nicht besonders nützlich, da es lediglich Ihre Daten als eine Streuung von Punkten in einem bestimmten Monat darstellt. + Es ist nicht besonders nützlich, da es Ihre Daten nur als Punktverteilung in einem bestimmten Monat anzeigt. ### Machen Sie es nützlich -Um Diagramme nützliche Daten anzuzeigen, müssen Sie die Daten normalerweise irgendwie gruppieren. Lassen Sie uns versuchen, ein Diagramm zu erstellen, bei dem die y-Achse die Monate zeigt und die Daten die Verteilung der Daten demonstrieren. +Um Diagramme nützliche Daten anzeigen zu lassen, müssen Sie die Daten normalerweise irgendwie gruppieren. Versuchen wir, ein Diagramm zu erstellen, bei dem die y-Achse die Monate zeigt und die Daten die Verteilung der Daten darstellen. 1. Fügen Sie eine Zelle hinzu, um ein gruppiertes Balkendiagramm zu erstellen: @@ -191,25 +200,27 @@ Um Diagramme nützliche Daten anzuzeigen, müssen Sie die Daten normalerweise ir plt.ylabel("Pumpkin Price") ``` - ![Ein Balkendiagramm, das die Preis-Monats-Beziehung zeigt](../../../../translated_images/barchart.a833ea9194346d769c77a3a870f7d8aee51574cd1138ca902e5500830a41cbce.de.png) + ![Ein Balkendiagramm, das die Beziehung zwischen Preis und Monat zeigt](../../../../translated_images/barchart.a833ea9194346d769c77a3a870f7d8aee51574cd1138ca902e5500830a41cbce.de.png) - Dies ist eine nützlichere Datenvisualisierung! Es scheint darauf hinzuweisen, dass der höchste Preis für Kürbisse im September und Oktober auftritt. Entspricht das Ihren Erwartungen? Warum oder warum nicht? + Dies ist eine nützlichere Datenvisualisierung! Es scheint darauf hinzudeuten, dass die höchsten Preise für Kürbisse im September und Oktober auftreten. Entspricht das Ihrer Erwartung? Warum oder warum nicht? --- -## 🚀Herausforderung +## 🚀 Herausforderung Erforschen Sie die verschiedenen Arten von Visualisierungen, die Matplotlib bietet. Welche Typen sind am besten für Regressionsprobleme geeignet? -## [Nachlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/12/) +## [Quiz nach der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/12/) -## Überprüfung & Selbststudium +## Rückblick & Selbststudium -Werfen Sie einen Blick auf die vielen Möglichkeiten, Daten zu visualisieren. Erstellen Sie eine Liste der verschiedenen verfügbaren Bibliotheken und notieren Sie, welche für bestimmte Aufgaben am besten geeignet sind, zum Beispiel 2D-Visualisierungen vs. 3D-Visualisierungen. Was entdecken Sie? +Schauen Sie sich die vielen Möglichkeiten zur Visualisierung von Daten an. Erstellen Sie eine Liste der verschiedenen verfügbaren Bibliotheken und notieren Sie, welche für bestimmte Arten von Aufgaben am besten geeignet sind, z. B. 2D-Visualisierungen vs. 3D-Visualisierungen. Was entdecken Sie? ## Aufgabe -[Erforschen der Visualisierung](assignment.md) +[Visualisierung erkunden](assignment.md) + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/2-Regression/2-Data/assignment.md b/translations/de/2-Regression/2-Data/assignment.md index 3c2dcf155..ee80e9c43 100644 --- a/translations/de/2-Regression/2-Data/assignment.md +++ b/translations/de/2-Regression/2-Data/assignment.md @@ -1,11 +1,23 @@ + # Erkundung von Visualisierungen -Es gibt mehrere verschiedene Bibliotheken, die für die Datenvisualisierung zur Verfügung stehen. Erstellen Sie einige Visualisierungen mit den Kürbis-Daten in dieser Lektion mit matplotlib und seaborn in einem Beispiel-Notebook. Welche Bibliotheken sind einfacher zu verwenden? -## Bewertungsrichtlinien +Es gibt mehrere verschiedene Bibliotheken, die für die Datenvisualisierung verfügbar sind. Erstelle einige Visualisierungen mit den Kürbisdaten aus dieser Lektion mithilfe von matplotlib und seaborn in einem Beispiel-Notebook. Welche Bibliotheken sind einfacher zu verwenden? -| Kriterien | Vorbildlich | Angemessen | Verbesserungsbedürftig | -| --------- | ----------- | ----------- | ---------------------- | +## Bewertungskriterien + +| Kriterien | Vorbildlich | Angemessen | Verbesserungswürdig | +| --------- | ----------- | ---------- | -------------------- | | | Ein Notebook wird mit zwei Erkundungen/Visualisierungen eingereicht | Ein Notebook wird mit einer Erkundung/Visualisierung eingereicht | Ein Notebook wird nicht eingereicht | +--- + **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als autoritative Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/2-Regression/2-Data/notebook.ipynb b/translations/de/2-Regression/2-Data/notebook.ipynb new file mode 100644 index 000000000..6bf4d8f4b --- /dev/null +++ b/translations/de/2-Regression/2-Data/notebook.ipynb @@ -0,0 +1,46 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "coopTranslator": { + "original_hash": "1b2ab303ac6c604a34c6ca7a49077fc7", + "translation_date": "2025-09-04T01:36:24+00:00", + "source_file": "2-Regression/2-Data/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/de/2-Regression/2-Data/solution/Julia/README.md b/translations/de/2-Regression/2-Data/solution/Julia/README.md index 612dfde36..4f397de66 100644 --- a/translations/de/2-Regression/2-Data/solution/Julia/README.md +++ b/translations/de/2-Regression/2-Data/solution/Julia/README.md @@ -1,6 +1,15 @@ -Dies ist ein temporärer PlatzhalterBitte schreiben Sie die Ausgabe von links nach rechts. + -Dies ist ein temporärer Platzhalter + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit Hilfe von maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/2-Regression/2-Data/solution/R/lesson_2-R.ipynb b/translations/de/2-Regression/2-Data/solution/R/lesson_2-R.ipynb new file mode 100644 index 000000000..b4f64b3cc --- /dev/null +++ b/translations/de/2-Regression/2-Data/solution/R/lesson_2-R.ipynb @@ -0,0 +1,673 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_2-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "f3c335f9940cfd76528b3ef918b9b342", + "translation_date": "2025-09-04T01:43:23+00:00", + "source_file": "2-Regression/2-Data/solution/R/lesson_2-R.ipynb", + "language_code": "de" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Erstellen eines Regressionsmodells: Daten vorbereiten und visualisieren\n", + "\n", + "## **Lineare Regression für Kürbisse - Lektion 2**\n", + "#### Einführung\n", + "\n", + "Jetzt, da Sie mit den Werkzeugen ausgestattet sind, die Sie für den Einstieg in den Aufbau von Machine-Learning-Modellen mit Tidymodels und dem Tidyverse benötigen, können Sie beginnen, Fragen an Ihre Daten zu stellen. Wenn Sie mit Daten arbeiten und ML-Lösungen anwenden, ist es äußerst wichtig, zu verstehen, wie man die richtigen Fragen stellt, um das Potenzial Ihres Datensatzes vollständig auszuschöpfen.\n", + "\n", + "In dieser Lektion lernen Sie:\n", + "\n", + "- Wie Sie Ihre Daten für den Modellaufbau vorbereiten.\n", + "\n", + "- Wie Sie `ggplot2` für die Datenvisualisierung nutzen.\n", + "\n", + "Die Frage, die Sie beantwortet haben möchten, bestimmt, welche Art von ML-Algorithmen Sie verwenden werden. Und die Qualität der Antwort, die Sie erhalten, hängt stark von der Beschaffenheit Ihrer Daten ab.\n", + "\n", + "Lassen Sie uns dies anhand einer praktischen Übung genauer betrachten.\n", + "\n", + "

\n", + " \n", + "

Kunstwerk von @allison_horst
\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "Pg5aexcOPqAZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. Importieren von Kürbisdaten und Aufrufen des Tidyverse\n", + "\n", + "Wir benötigen die folgenden Pakete, um diese Lektion zu bearbeiten:\n", + "\n", + "- `tidyverse`: Das [tidyverse](https://www.tidyverse.org/) ist eine [Sammlung von R-Paketen](https://www.tidyverse.org/packages), die darauf ausgelegt ist, Datenwissenschaft schneller, einfacher und unterhaltsamer zu machen!\n", + "\n", + "Sie können sie wie folgt installieren:\n", + "\n", + "`install.packages(c(\"tidyverse\"))`\n", + "\n", + "Das untenstehende Skript überprüft, ob Sie die für dieses Modul benötigten Pakete haben, und installiert sie für Sie, falls einige fehlen.\n" + ], + "metadata": { + "id": "dc5WhyVdXAjR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse)" + ], + "outputs": [], + "metadata": { + "id": "GqPYUZgfXOBt" + } + }, + { + "cell_type": "markdown", + "source": [ + "Lassen Sie uns nun einige Pakete starten und die [Daten](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) laden, die für diese Lektion bereitgestellt wurden!\n" + ], + "metadata": { + "id": "kvjDTPDSXRr2" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n =50)" + ], + "outputs": [], + "metadata": { + "id": "VMri-t2zXqgD" + } + }, + { + "cell_type": "markdown", + "source": [ + "Ein schneller `glimpse()` zeigt sofort, dass es Lücken gibt und eine Mischung aus Zeichenketten (`chr`) und numerischen Daten (`dbl`). Das `Date`-Feld ist vom Typ Zeichenkette, und es gibt auch eine seltsame Spalte namens `Package`, in der die Daten eine Mischung aus `sacks`, `bins` und anderen Werten sind. Die Daten sind, ehrlich gesagt, ein bisschen chaotisch 😤.\n", + "\n", + "Tatsächlich ist es nicht sehr häufig, ein Datenset zu erhalten, das vollständig einsatzbereit ist, um direkt ein ML-Modell daraus zu erstellen. Aber keine Sorge, in dieser Lektion wirst du lernen, wie man ein rohes Datenset mit Standardbibliotheken in R vorbereitet 🧑‍🔧. Außerdem wirst du verschiedene Techniken zur Visualisierung der Daten kennenlernen. 📈📊\n", + "
\n", + "\n", + "> Eine Auffrischung: Der Pipe-Operator (`%>%`) führt Operationen in logischer Reihenfolge aus, indem er ein Objekt an eine Funktion oder einen Ausdruck weiterleitet. Du kannst den Pipe-Operator so verstehen, als würdest du in deinem Code \"und dann\" sagen.\n" + ], + "metadata": { + "id": "REWcIv9yX29v" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. Überprüfung auf fehlende Daten\n", + "\n", + "Eines der häufigsten Probleme, mit denen Datenwissenschaftler umgehen müssen, sind unvollständige oder fehlende Daten. R stellt fehlende oder unbekannte Werte mit einem speziellen Platzhalter dar: `NA` (Not Available).\n", + "\n", + "Wie können wir also feststellen, ob der Data Frame fehlende Werte enthält? \n", + "
\n", + "- Eine einfache Möglichkeit wäre die Verwendung der Basis-R-Funktion `anyNA`, die die logischen Werte `TRUE` oder `FALSE` zurückgibt.\n" + ], + "metadata": { + "id": "Zxfb3AM5YbUe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " anyNA()" + ], + "outputs": [], + "metadata": { + "id": "G--DQutAYltj" + } + }, + { + "cell_type": "markdown", + "source": [ + "Super, es scheint, als ob einige Daten fehlen! Das ist ein guter Ausgangspunkt.\n", + "\n", + "- Eine andere Möglichkeit wäre, die Funktion `is.na()` zu verwenden, die anzeigt, welche einzelnen Spaltenelemente mit einem logischen `TRUE` fehlen.\n" + ], + "metadata": { + "id": "mU-7-SB6YokF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "W-DxDOR4YxSW" + } + }, + { + "cell_type": "markdown", + "source": [ + "Okay, erledigt, aber bei einem so großen Dataframe wie diesem wäre es ineffizient und praktisch unmöglich, alle Zeilen und Spalten einzeln zu überprüfen😴.\n", + "\n", + "- Eine intuitivere Methode wäre, die Summe der fehlenden Werte für jede Spalte zu berechnen:\n" + ], + "metadata": { + "id": "xUWxipKYY0o7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " colSums()" + ], + "outputs": [], + "metadata": { + "id": "ZRBWV6P9ZArL" + } + }, + { + "cell_type": "markdown", + "source": [ + "Viel besser! Es fehlen einige Daten, aber vielleicht spielt das für die Aufgabe keine Rolle. Mal sehen, welche weiteren Analysen Ergebnisse bringen.\n", + "\n", + "> Neben den großartigen Paketen und Funktionen verfügt R über eine sehr gute Dokumentation. Zum Beispiel können Sie `help(colSums)` oder `?colSums` verwenden, um mehr über die Funktion zu erfahren.\n" + ], + "metadata": { + "id": "9gv-crB6ZD1Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Dplyr: Eine Grammatik für Datenmanipulation\n", + "\n", + "

\n", + " \n", + "

Illustration von @allison_horst
\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "o4jLY5-VZO2C" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`dplyr`](https://dplyr.tidyverse.org/), ein Paket im Tidyverse, ist eine Grammatik für Datenmanipulation, die eine einheitliche Sammlung von Verben bereitstellt, um die häufigsten Herausforderungen bei der Datenmanipulation zu lösen. In diesem Abschnitt werden wir einige der Verben von dplyr erkunden! \n", + "
\n" + ], + "metadata": { + "id": "i5o33MQBZWWw" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::select()\n", + "\n", + "`select()` ist eine Funktion aus dem Paket `dplyr`, mit der du Spalten auswählen kannst, die du behalten oder ausschließen möchtest.\n", + "\n", + "Um deinen Data Frame übersichtlicher zu gestalten, kannst du mit `select()` mehrere Spalten entfernen und nur die behalten, die du benötigst.\n", + "\n", + "Zum Beispiel werden wir in dieser Übung die Spalten `Package`, `Low Price`, `High Price` und `Date` für unsere Analyse verwenden. Lass uns diese Spalten auswählen.\n" + ], + "metadata": { + "id": "x3VGMAGBZiUr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(Package, `Low Price`, `High Price`, Date)\n", + "\n", + "\n", + "# Print data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "F_FgxQnVZnM0" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::mutate()\n", + "\n", + "`mutate()` ist eine Funktion im Paket `dplyr`, mit der Sie Spalten erstellen oder ändern können, während die bestehenden Spalten erhalten bleiben.\n", + "\n", + "Die allgemeine Struktur von `mutate` lautet:\n", + "\n", + "`data %>% mutate(new_column_name = what_it_contains)`\n", + "\n", + "Lassen Sie uns `mutate` ausprobieren, indem wir die Spalte `Date` verwenden und die folgenden Operationen durchführen:\n", + "\n", + "1. Konvertieren Sie die Daten (derzeit vom Typ Zeichenkette) in ein Monatsformat (es handelt sich um US-Daten, das Format ist also `MM/DD/YYYY`).\n", + "\n", + "2. Extrahieren Sie den Monat aus den Daten in eine neue Spalte.\n", + "\n", + "Im R-Paket [lubridate](https://lubridate.tidyverse.org/) wird die Arbeit mit Datums- und Zeitdaten erleichtert. Also verwenden wir `dplyr::mutate()`, `lubridate::mdy()`, `lubridate::month()` und schauen, wie wir die oben genannten Ziele erreichen können. Wir können die Spalte `Date` entfernen, da wir sie in den nachfolgenden Operationen nicht mehr benötigen.\n" + ], + "metadata": { + "id": "2KKo0Ed9Z1VB" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load lubridate\n", + "library(lubridate)\n", + "\n", + "pumpkins <- pumpkins %>% \n", + " # Convert the Date column to a date object\n", + " mutate(Date = mdy(Date)) %>% \n", + " # Extract month from Date\n", + " mutate(Month = month(Date)) %>% \n", + " # Drop Date column\n", + " select(-Date)\n", + "\n", + "# View the first few rows\n", + "pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "5joszIVSZ6xe" + } + }, + { + "cell_type": "markdown", + "source": [ + "Woohoo! 🤩\n", + "\n", + "Als Nächstes erstellen wir eine neue Spalte `Price`, die den Durchschnittspreis eines Kürbisses darstellt. Jetzt berechnen wir den Durchschnitt der Spalten `Low Price` und `High Price`, um die neue Spalte Price zu füllen.\n", + "
\n" + ], + "metadata": { + "id": "nIgLjNMCZ-6Y" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new column Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(Price = (`Low Price` + `High Price`)/2)\n", + "\n", + "# View the first few rows of the data\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "Zo0BsqqtaJw2" + } + }, + { + "cell_type": "markdown", + "source": [ + "Yeees!💪\n", + "\n", + "„Aber Moment mal!“, wirst du sagen, nachdem du das gesamte Datenset mit `View(pumpkins)` durchgesehen hast, „Hier stimmt doch etwas nicht!“🤔\n", + "\n", + "Wenn du dir die Spalte `Package` ansiehst, werden Kürbisse in vielen verschiedenen Konfigurationen verkauft. Einige werden in `1 1/9 bushel`-Maßen verkauft, andere in `1/2 bushel`-Maßen, einige pro Kürbis, einige pro Pfund und einige in großen Kisten mit unterschiedlichen Breiten.\n", + "\n", + "Lass uns das überprüfen:\n" + ], + "metadata": { + "id": "p77WZr-9aQAR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Verify the distinct observations in Package column\n", + "pumpkins %>% \n", + " distinct(Package)" + ], + "outputs": [], + "metadata": { + "id": "XISGfh0IaUy6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Erstaunlich!👏\n", + "\n", + "Kürbisse scheinen sehr schwer konsistent zu wiegen zu sein, daher filtern wir sie, indem wir nur Kürbisse mit dem String *bushel* in der Spalte `Package` auswählen und diese in einen neuen Dataframe `new_pumpkins` speichern.\n", + "
\n" + ], + "metadata": { + "id": "7sMjiVujaZxY" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::filter() und stringr::str_detect()\n", + "\n", + "[`dplyr::filter()`](https://dplyr.tidyverse.org/reference/filter.html): erstellt eine Teilmenge der Daten, die nur **Zeilen** enthält, die Ihre Bedingungen erfüllen, in diesem Fall Kürbisse mit dem String *bushel* in der Spalte `Package`.\n", + "\n", + "[stringr::str_detect()](https://stringr.tidyverse.org/reference/str_detect.html): erkennt das Vorhandensein oder Fehlen eines Musters in einem String.\n", + "\n", + "Das [`stringr`](https://github.com/tidyverse/stringr)-Paket bietet einfache Funktionen für gängige String-Operationen.\n" + ], + "metadata": { + "id": "L8Qfcs92ageF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Retain only pumpkins with \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(Package, \"bushel\"))\n", + "\n", + "# Get the dimensions of the new data\n", + "dim(new_pumpkins)\n", + "\n", + "# View a few rows of the new data\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "hy_SGYREampd" + } + }, + { + "cell_type": "markdown", + "source": [ + "Du kannst sehen, dass wir uns auf etwa 415 Zeilen Daten beschränkt haben, die Kürbisse in großen Mengen enthalten. 🤩\n", + "
\n" + ], + "metadata": { + "id": "VrDwF031avlR" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::case_when()\n", + "\n", + "**Aber Moment! Es gibt noch etwas zu tun**\n", + "\n", + "Hast du bemerkt, dass die Menge pro Scheffel je nach Zeile variiert? Du musst die Preise normalisieren, sodass sie pro Scheffel angezeigt werden und nicht pro 1 1/9 oder 1/2 Scheffel. Zeit für etwas Mathematik, um das zu standardisieren.\n", + "\n", + "Wir verwenden die Funktion [`case_when()`](https://dplyr.tidyverse.org/reference/case_when.html), um die Spalte \"Price\" je nach bestimmten Bedingungen zu *mutieren*. `case_when` ermöglicht es, mehrere `if_else()`-Anweisungen zu vektorisieren.\n" + ], + "metadata": { + "id": "mLpw2jH4a0tx" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(Price = case_when(\n", + " str_detect(Package, \"1 1/9\") ~ Price/(1 + 1/9),\n", + " str_detect(Package, \"1/2\") ~ Price/(1/2),\n", + " TRUE ~ Price))\n", + "\n", + "# View the first few rows of the data\n", + "new_pumpkins %>% \n", + " slice_head(n = 30)" + ], + "outputs": [], + "metadata": { + "id": "P68kLVQmbM6I" + } + }, + { + "cell_type": "markdown", + "source": [ + "Jetzt können wir die Preise pro Einheit basierend auf ihrer Buschel-Messung analysieren. All diese Untersuchung der Kürbis-Buschel zeigt jedoch, wie `wichtig` es ist, `die Natur Ihrer Daten zu verstehen`!\n", + "\n", + "> ✅ Laut [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308) hängt das Gewicht eines Buschels von der Art des Produkts ab, da es sich um eine Volumenmessung handelt. \"Ein Buschel Tomaten soll beispielsweise 56 Pfund wiegen... Blätter und Grünzeug nehmen mehr Platz mit weniger Gewicht ein, sodass ein Buschel Spinat nur 20 Pfund wiegt.\" Das ist alles ziemlich kompliziert! Lassen wir die Umrechnung von Buschel zu Pfund beiseite und setzen stattdessen den Preis pro Buschel an. All diese Untersuchung der Kürbis-Buschel zeigt jedoch, wie wichtig es ist, die Natur Ihrer Daten zu verstehen!\n", + ">\n", + "> ✅ Ist Ihnen aufgefallen, dass Kürbisse, die pro halbem Buschel verkauft werden, sehr teuer sind? Können Sie herausfinden, warum? Hinweis: Kleine Kürbisse sind viel teurer als große, wahrscheinlich weil es viel mehr von ihnen pro Buschel gibt, da der ungenutzte Raum von einem großen hohlen Kuchen-Kürbis eingenommen wird.\n" + ], + "metadata": { + "id": "pS2GNPagbSdb" + } + }, + { + "cell_type": "markdown", + "source": [ + "Nun, zum Schluss, einfach aus Abenteuerlust 💁‍♀️, verschieben wir die Spalte \"Month\" an die erste Position, also `vor` die Spalte \"Package\".\n", + "\n", + "`dplyr::relocate()` wird verwendet, um die Position von Spalten zu ändern.\n" + ], + "metadata": { + "id": "qql1SowfbdnP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new data frame new_pumpkins\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(Month, .before = Package)\n", + "\n", + "new_pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "JJ1x6kw8bixF" + } + }, + { + "cell_type": "markdown", + "source": [ + "Gute Arbeit! 👌 Du hast jetzt einen sauberen, aufgeräumten Datensatz, mit dem du dein neues Regressionsmodell erstellen kannst! \n", + "
\n" + ], + "metadata": { + "id": "y8TJ0Za_bn5Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. Datenvisualisierung mit ggplot2\n", + "\n", + "

\n", + " \n", + "

Infografik von Dasani Madipalli
\n", + "\n", + "\n", + "\n", + "\n", + "Es gibt ein *weises* Sprichwort, das so lautet:\n", + "\n", + "> \"Das einfache Diagramm hat dem Datenanalysten mehr Informationen geliefert als jedes andere Hilfsmittel.\" --- John Tukey\n", + "\n", + "Ein Teil der Aufgabe eines Data Scientists besteht darin, die Qualität und die Eigenschaften der Daten, mit denen er arbeitet, zu demonstrieren. Dazu erstellen sie oft interessante Visualisierungen, wie Diagramme, Grafiken und Charts, die verschiedene Aspekte der Daten zeigen. Auf diese Weise können sie Beziehungen und Lücken visuell darstellen, die sonst schwer zu erkennen wären.\n", + "\n", + "Visualisierungen können auch dabei helfen, die am besten geeignete Machine-Learning-Technik für die Daten zu bestimmen. Ein Streudiagramm, das einer Linie zu folgen scheint, deutet beispielsweise darauf hin, dass die Daten gut für eine lineare Regression geeignet sind.\n", + "\n", + "R bietet mehrere Systeme zur Erstellung von Grafiken, aber [`ggplot2`](https://ggplot2.tidyverse.org/index.html) ist eines der elegantesten und vielseitigsten. Mit `ggplot2` können Sie Grafiken erstellen, indem Sie **unabhängige Komponenten kombinieren**.\n", + "\n", + "Beginnen wir mit einem einfachen Streudiagramm für die Spalten Price und Month.\n", + "\n", + "In diesem Fall starten wir mit [`ggplot()`](https://ggplot2.tidyverse.org/reference/ggplot.html), geben einen Datensatz und eine ästhetische Zuordnung (mit [`aes()`](https://ggplot2.tidyverse.org/reference/aes.html)) an und fügen dann Schichten hinzu (wie [`geom_point()`](https://ggplot2.tidyverse.org/reference/geom_point.html)) für Streudiagramme.\n" + ], + "metadata": { + "id": "mYSH6-EtbvNa" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plots\n", + "theme_set(theme_light())\n", + "\n", + "# Create a scatter plot\n", + "p <- ggplot(data = new_pumpkins, aes(x = Price, y = Month))\n", + "p + geom_point()" + ], + "outputs": [], + "metadata": { + "id": "g2YjnGeOcLo4" + } + }, + { + "cell_type": "markdown", + "source": [ + "Ist das ein nützlicher Plot 🤷? Überrascht dich irgendetwas daran?\n", + "\n", + "Er ist nicht besonders nützlich, da er lediglich deine Daten als eine Ansammlung von Punkten in einem bestimmten Monat darstellt.\n", + "
\n" + ], + "metadata": { + "id": "Ml7SDCLQcPvE" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **Wie machen wir es nützlich?**\n", + "\n", + "Um Diagramme mit nützlichen Daten anzuzeigen, müssen die Daten normalerweise irgendwie gruppiert werden. In unserem Fall würde beispielsweise das Ermitteln des Durchschnittspreises von Kürbissen für jeden Monat mehr Einblicke in die zugrunde liegenden Muster unserer Daten liefern. Das führt uns zu einem weiteren **dplyr**-Überblick:\n", + "\n", + "#### `dplyr::group_by() %>% summarize()`\n", + "\n", + "Gruppierte Aggregationen in R können einfach berechnet werden mit\n", + "\n", + "`dplyr::group_by() %>% summarize()`\n", + "\n", + "- `dplyr::group_by()` ändert die Analyseebene von dem gesamten Datensatz zu einzelnen Gruppen, wie beispielsweise pro Monat.\n", + "\n", + "- `dplyr::summarize()` erstellt einen neuen Dataframe mit einer Spalte für jede Gruppierungsvariable und einer Spalte für jede der angegebenen Zusammenfassungsstatistiken.\n", + "\n", + "Zum Beispiel können wir `dplyr::group_by() %>% summarize()` verwenden, um die Kürbisse basierend auf der **Monat**-Spalte zu gruppieren und dann den **Durchschnittspreis** für jeden Monat zu berechnen.\n" + ], + "metadata": { + "id": "jMakvJZIcVkh" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price))" + ], + "outputs": [], + "metadata": { + "id": "6kVSUa2Bcilf" + } + }, + { + "cell_type": "markdown", + "source": [ + "Knapp und bündig!✨\n", + "\n", + "Kategorische Merkmale wie Monate werden besser mit einem Balkendiagramm 📊 dargestellt. Die Ebenen, die für Balkendiagramme zuständig sind, sind `geom_bar()` und `geom_col()`. Sieh dir `?geom_bar` an, um mehr zu erfahren.\n", + "\n", + "Lass uns eins erstellen!\n" + ], + "metadata": { + "id": "Kds48GUBcj3W" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month then plot a bar chart\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price)) %>% \r\n", + " ggplot(aes(x = Month, y = mean_price)) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"Pumpkin Price\")" + ], + "outputs": [], + "metadata": { + "id": "VNbU1S3BcrxO" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 Dies ist eine nützlichere Datenvisualisierung! Sie scheint darauf hinzudeuten, dass die höchsten Preise für Kürbisse im September und Oktober auftreten. Entspricht das deinen Erwartungen? Warum oder warum nicht?\n", + "\n", + "Herzlichen Glückwunsch zum Abschluss der zweiten Lektion 👏! Du hast deine Daten für den Modellaufbau vorbereitet und anschließend weitere Erkenntnisse mithilfe von Visualisierungen gewonnen!\n" + ], + "metadata": { + "id": "zDm0VOzzcuzR" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/de/2-Regression/2-Data/solution/notebook.ipynb b/translations/de/2-Regression/2-Data/solution/notebook.ipynb new file mode 100644 index 000000000..80cfec8e5 --- /dev/null +++ b/translations/de/2-Regression/2-Data/solution/notebook.ipynb @@ -0,0 +1,437 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
70BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
71BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
72BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
73BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1617.017.017.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
74BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/8/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", + "

5 rows × 26 columns

\n", + "
" + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade \\\n", + "70 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "71 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "72 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "73 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "74 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "\n", + " Date Low Price High Price Mostly Low ... Unit of Sale Quality \\\n", + "70 9/24/16 15.0 15.0 15.0 ... NaN NaN \n", + "71 9/24/16 18.0 18.0 18.0 ... NaN NaN \n", + "72 10/1/16 18.0 18.0 18.0 ... NaN NaN \n", + "73 10/1/16 17.0 17.0 17.0 ... NaN NaN \n", + "74 10/8/16 15.0 15.0 15.0 ... NaN NaN \n", + "\n", + " Condition Appearance Storage Crop Repack Trans Mode Unnamed: 24 \\\n", + "70 NaN NaN NaN NaN N NaN NaN \n", + "71 NaN NaN NaN NaN N NaN NaN \n", + "72 NaN NaN NaN NaN N NaN NaN \n", + "73 NaN NaN NaN NaN N NaN NaN \n", + "74 NaN NaN NaN NaN N NaN NaN \n", + "\n", + " Unnamed: 25 \n", + "70 NaN \n", + "71 NaN \n", + "72 NaN \n", + "73 NaN \n", + "74 NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "City Name 0\n", + "Type 406\n", + "Package 0\n", + "Variety 0\n", + "Sub Variety 167\n", + "Grade 415\n", + "Date 0\n", + "Low Price 0\n", + "High Price 0\n", + "Mostly Low 24\n", + "Mostly High 24\n", + "Origin 0\n", + "Origin District 396\n", + "Item Size 114\n", + "Color 145\n", + "Environment 415\n", + "Unit of Sale 404\n", + "Quality 415\n", + "Condition 415\n", + "Appearance 415\n", + "Storage 415\n", + "Crop 415\n", + "Repack 0\n", + "Trans Mode 415\n", + "Unnamed: 24 415\n", + "Unnamed: 25 391\n", + "dtype: int64" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Month Package Low Price High Price Price\n", + "70 9 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "71 9 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "72 10 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "73 10 1 1/9 bushel cartons 17.00 17.0 15.30\n", + "74 10 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "... ... ... ... ... ...\n", + "1738 9 1/2 bushel cartons 15.00 15.0 30.00\n", + "1739 9 1/2 bushel cartons 13.75 15.0 28.75\n", + "1740 9 1/2 bushel cartons 10.75 15.0 25.75\n", + "1741 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "1742 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "\n", + "[415 rows x 5 columns]\n" + ] + } + ], + "source": [ + "\n", + "# A set of new columns for a new dataframe. Filter out nonmatching columns\n", + "columns_to_select = ['Package', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Get an average between low and high price for the base pumpkin price\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "# Convert the date to its month only\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "\n", + "# Create a new dataframe with this basic data\n", + "new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price})\n", + "\n", + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9)\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2)\n", + "\n", + "print(new_pumpkins)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcXklEQVR4nO3dfZRcdZ3n8fdnKg80GbAJdLKkSQyTycnoEodoLQlGOXE0JiauZNiZFRbOoqPkuIddnWE3M7BwxmEOOcTJLOJZ96wbkBFHJjrjYGTFMWRRhlkXohUTCYoRkAh0kPQY4gO2Etrv/lG3YqW6bj3d7qrum8/rnD5d9btP3/u7v/p09a3bfRURmJlZfv1arwswM7OJ5aA3M8s5B72ZWc456M3Mcs5Bb2aWc9N6XUA9Z511VixcuLDXZZiZTRl79uz554gYqDdtUgb9woULKZVKvS7DzGzKkPT9tGk+dWNmlnMOejOznHPQm5nlnIPezCznHPRmZjnX9KobSXcAbwcOR8R5SdtW4F8DLwFPAu+OiKN1ll0LfAQoALdHxJbxK717Lr/tIb765JHjz1cums1dV104Zr7VtzzA44dfPP588ZxZ7LpmVTdKTLVj7xBbdx7g0NER5vX3sWnNEjYsG+xpTWbWXa28o/8EsLambRdwXkS8BvgucF3tQpIKwP8A3ga8GrhM0qszVdsDtSEP8NUnj3D5bQ+d0FYb8gCPH36R1bc8MNElptqxd4jr7t7P0NERAhg6OsJ1d+9nx96hntVkZt3XNOgj4kHgSE3bfRHxcvL0YeCcOoteADwREd+LiJeATwMXZ6y362pDPq29NuSbtXfD1p0HGDk2ekLbyLFRtu480KOKzKwXxuMc/R8A/1CnfRB4pur5s0lbXZI2SipJKg0PD49DWXbo6Ehb7WaWT5mCXtL1wMvAXVkLiYhtEVGMiOLAQN2/4rU2zevva6vdzPKp46CX9C7KH9JeHvVvUzUEzK96fk7SNqWsXDS7pfbFc2bVnS+tvRs2rVlC3/TCCW190wtsWrOkRxWZWS90FPTJ1TR/DLwjIn6WMtvXgcWSzpU0A7gUuKezMnvnrqsuHBPq9a662XXNqjGh3uurbjYsG+TmS5Yy2N+HgMH+Pm6+ZKmvujE7yajZPWMlbQdWAWcBzwMfpHyVzUzgh8lsD0fE+yTNo3wZ5bpk2XXArZQvr7wjIja3UlSxWAz/UzMzs9ZJ2hMRxbrTJuPNwR30ZmbtaRT0/stYM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzTYNe0h2SDkt6tKrt9yV9S9IvJdX9R/fJfAcl7Ze0T5LvJGJm1gOtvKP/BLC2pu1R4BLgwRaWf1NEnJ925xMzM5tY05rNEBEPSlpY0/YYgKQJKsvMzMbLRJ+jD+A+SXskbWw0o6SNkkqSSsPDwxNclpnZyWOig/4NEfFa4G3A1ZIuSpsxIrZFRDEiigMDAxNclpnZyWNCgz4ihpLvh4HPARdM5PbMzGysCQt6SbMknVZ5DLyV8oe4ZmbWRa1cXrkdeAhYIulZSe+R9LuSngUuBO6VtDOZd56kLyaLzgX+r6RvAl8D7o2IL03MbpiZWZpWrrq5LGXS5+rMewhYlzz+HvDbmaozM7PM/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznmt54RNIdwNuBwxFxXtL2+8CfAa8CLoiIUsqya4GPAAXg9ojYMk51j7Fj7xBbdx7g0NER5vX3sWnNEjYsG2x7PatveYDHD794/PniObN4avhFXo5fzTNN8MTN68csu/Dae8e0Hdwydr5qN+zYz/bdzzAaQUHisuXzuWnD0pZqbWWf6+3PrmtWtbR+K8tyjJZv3sXzP3np+PO5p81g9/WrgebjpdF2x2u8t6vR/jSTpR+b6VV/TBWKiMYzSBcBPwU+WRX0rwJ+Cfwv4L/UC3pJBeC7wGrgWeDrwGUR8e1mRRWLxSiV6v7sqGvH3iGuu3s/I8dGj7f1TS9w8yVL2zrYtaHYSG3Y13vRVqSF/Q079vOph58e037FigVNXwCt7HPa/jjsW5flGNWGYsXc02bUba84uGV9w+0WXzl7XMZ7uxrtT7Owz9KPzYzX63+qk7QnIor1pjU9dRMRDwJHatoei4gDTRa9AHgiIr4XES8BnwYubrHmtmzdeeCEgwwwcmyUrTublXiiVkMeOOEdfqe2736mrfZqrexz2v60s58nuyzHKC3MG4V8K9sdr/Heronan6x61R9TyUSeox8Eqo/is0lbXZI2SipJKg0PD7e1oUNHR9pqnyxGU36bSmuvNlX3earJcowmartT8dhPZD9Oxf7otknzYWxEbIuIYkQUBwYG2lp2Xn9fW+2TRUFqq73aVN3nqSbLMZqo7U7FYz+R/TgV+6PbJjLoh4D5Vc/PSdrG3aY1S+ibXjihrW96gU1rlrS1nsVzZrU877RxeJ1ftnx+W+3VWtnntP1pZz9PdlmO0dzTZrTV3up2x2u8t2ui9ierXvXHVDKRQf91YLGkcyXNAC4F7pmIDW1YNsjNlyxlsL8PAYP9fR19ELPrmlVjQnDxnFljQr3eVTdpH7g2uurmpg1LuWLFguPvagpSyx9OtbLPafvjD2Jbl+UY7b5+9ZgQrHxw2Wy8NNrueI33djXan2ay9GMzveqPqaSVq262A6uAs4DngQ9S/nD2vwMDwFFgX0SskTSP8mWU65Jl1wG3Ur688o6I2NxKUe1edWNmdrJrdNVN06DvBQe9mVl7Ml1eaWZmU5uD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnNNg17SHZIOS3q0qm22pF2SHk++n5Gy7KikfcnXhNxdyszMGmvlHf0ngLU1bdcC90fEYuD+5Hk9IxFxfvL1js7LNDOzTjUN+oh4kPKtA6tdDNyZPL4T2DC+ZZmZ2Xjp9Bz93Ih4Lnn8A2BuynynSCpJeljShkYrlLQxmbc0PDzcYVlmZlYr84exUb7pbNqNZ1+Z3MPw3wG3SlrUYD3bIqIYEcWBgYGsZZmZWaLToH9e0tkAyffD9WaKiKHk+/eAB4BlHW7PzMw61GnQ3wNcmTy+Evh87QySzpA0M3l8FrAS+HaH2zMzsw61cnnlduAhYImkZyW9B9gCrJb0OPCW5DmSipJuTxZ9FVCS9E3gK8CWiHDQm5l12bRmM0TEZSmT3lxn3hLw3uTx/wOWZqrOzMwy81/GmpnlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Oca3rjEQBJdwBvBw5HxHlJ22zgM8BC4CDwbyPihTrLXgnckDy9KSLuzF72WKtveYDHD794/PniObPYdc0qAHbsHWLrzgMcOjrCvP4+Nq1ZwoZlg22tr9bBLevHrDvtDun1TBM8cfN6Lr/tIb765JHj7SsXzeauqy5saR3LN+/i+Z+8dPz53NNmsPv61Q33o7pf8mThtfeOaasco6zLvuaDX+LHvxg9/vz0mQUeuXEt0HxsNVp3s+22u+xgf19LY/yGHfvZvvsZRiMoSFy2fD43bWjtHkHnXnvvCeNcwFPj1M/dcrK8Jqoponk8SboI+Cnwyaqg/wvgSERskXQtcEZE/EnNcrOBElAEAtgDvK7eD4RqxWIxSqVSyzuRFsqL58zi6jct5rq79zNy7Fcv1L7pBW6+ZGnqC6FZyFfc+s7zx6x7PLQS9rUhX1Ed9o36JU8Du16AVDQLkmbL1oZ8xekzC/z5hqUNx1ajdTdycMv6jpetV0e1G3bs51MPPz1m/itWLGga9rUhX9FK2Gc5RuMpz68JSXsiolhvWkunbiLiQeBITfPFQOXd+Z3AhjqLrgF2RcSRJNx3AWtb2WY70kL58cMvsnXngTFBPHJslK07D7S9vlr11j0eqt/hp6kX8rXtjfrFWlMv5CvtnYytbkmrY/vuZ+rOn9ZeLe0tYTu/yfbayfqayHKOfm5EPJc8/gEwt848g0D1CHo2aRtD0kZJJUml4eHhDGWd6NDRkbbax2PddnKYyLE1HurVMZryG3xau+XDuHwYG+XzP5lGSkRsi4hiRBQHBgbGoywA5vX3tdU+Huu2k8NEjq3xUK+OglR33rR2y4csQf+8pLMBku+H68wzBMyven5O0jauFs+Zldq+ac0S+qYXTmjvm15g05olba+vVr11j4eVi2Y3nWfuaTOatjfqF2vN6TPrH9/TZxY6GlvdklbHZcvn15k7vb1a2o+CqfQj4mR9TWQJ+nuAK5PHVwKfrzPPTuCtks6QdAbw1qRtXO26ZtWYA1X5cGXDskFuvmQpg/19iPKVCY0+iE1bX62DW9aPWXc7pqm8jtpQb/Wqm93Xrx4T9rVX3TTqlzxJ+zCvlQ/5mi37yI1rx4R95aqbZmOr0bqbbbeTZVsZ4zdtWMoVKxYcfwdfkFr6IBbKH7jWjvNWr7rJcozG08nymqjV6lU324FVwFnA88AHgR3A3wILgO9TvrzyiKQi8L6IeG+y7B8A/zVZ1eaI+Ktm22v3qhszs5Ndo6tuWgr6bnPQm5m1J/PllWZmNnU56M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczy7lMQS/pA5IelfQtSX9YZ/oqST+StC/5+tMs2zMzs/ZN63RBSecBVwEXAC8BX5L0hYh4ombWf4qIt2eo0czMMsjyjv5VwO6I+FlEvAz8I3DJ+JRlZmbjJUvQPwq8UdKZkk4F1gHz68x3oaRvSvoHSf8ybWWSNkoqSSoNDw9nKMvMzKp1fOomIh6T9CHgPuBFYB8wWjPbN4BXRsRPJa0DdgCLU9a3DdgG5ZuDd1qXmZmdKNOHsRHx8Yh4XURcBLwAfLdm+o8j4qfJ4y8C0yWdlWWbZmbWnqxX3cxJvi+gfH7+b2qm/wtJSh5fkGzvh1m2aWZm7en41E3i7yWdCRwDro6Io5LeBxARHwN+D/gPkl4GRoBLI8KnZczMuihT0EfEG+u0fazq8UeBj2bZhpmZZeO/jDUzyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcy/T96SR8ArgIE3BYRt9ZMF/ARyjcO/xnwroj4RpZtdssNO/azffczjEYgoHK3lILErBm/xo9/8avb4y6eM4td16zi8tse4qtPHmlp/QKe2rIeYMxyKxfN5q6rLgTgt67/Ij8f/dW9Wk4piO9sXgfA8s27eP4nLx2fNve0Gey+fvUJtVcM9vexac0SNiwbbHv/CxKXLZ/PTRuWtrTs6lse4PHDLx5/XukfgB17h9i68wCHjo4wr6qmTrbX6BhVlm9lvQuvvXfMug9uWV+3HwsSK37jDA7+cIRDR0c4dUaBn700StRst+I1H/zSCWPl9JkFHrlxbcPtVjQaF82WbaTRmGom7fhN9LJZNBsDjepqdAza1Wg7E9036vSGT5LOAz4NXAC8BHwJeF9EPFE1zzrgP1EO+uXARyJiebN1F4vFKJVKHdU1Hm7YsZ9PPfx0W8ucUtAJL55WCHj9otl1fzisXDSbPQdfqLvOUwriFadOPyHkW6mjb3qBmy9Z2nQApe3/FSsWNA3f2pCvWDxnFle/aTHX3b2fkWO/Cr6+6QVeu+AVdfug0fZaOUaL58yqW0v1eusFZlaV9deGfMXpMwt12ysOblmf+qZhZcp4qV62kdqQr2gl7HfsHap7/FoZU1mWzaLZWG5U19+Vnk49Bu2GfaPtAOPSN5L2RESx3rQsp25eBeyOiJ9FxMvAP1K+b2y1i4FPRtnDQL+kszNssyu2736m7WXaDXkovwNNe9F+9ckjqev8+WjUDflmdYwcG2XrzgNN60rb/1b6pV6wVtq37jxwwmCu1JTWB422l6WWTo5vOyrrTwvzRiFf0WhcZNFoTDWTdvxaGVNZls2i2VhuVNd4HoNG2+lG32QJ+keBN0o6U9KplN+1z6+ZZxCo7ulnk7YxJG2UVJJUGh4ezlBWdqM5vq3toaMjTedJ2/+s/dLKtlvdXpZaJvr45nX8pB2/Vo5rlmWzaDaWu1VXo+10o4aOgz4iHgM+BNxH+bTNPqD5W5X09W2LiGJEFAcGBjpdzbgoSD3d/kSa19/XdJ60/c/aL61su9XtZalloo9vXsdP2vFr5bhmWTaLZmO5W3U12k43ash01U1EfDwiXhcRFwEvAN+tmWWIE9/ln5O0TWqXLa/9xaS5Uwrtv7hF+XxfPSsXzU5d5ykFMfe0GW3X0Te9wKY1S5rWlbb/rfTL4jmzUts3rVlC3/TCmJrS+qDR9rLU0snxbUdl/afPLNSdntZerdG4yKLRmGom7fi1MqayLJtFs7HcqK7xPAaNttONvskU9JLmJN8XUD4//zc1s9wD/HuVrQB+FBHPZdlmN9y0YSlXrFhw/Kd+9UugII15oS6eM4vvbF7X1gCoXHVz11UXjlmu8mHPdzavG/MCrHxotvv61WPCfu5pM/jO5nUn1F4x2N/X8oc7tftfkFr6IBZg1zWrxgRs5aqbDcsGufmSpQz296Gqmu666sK2t9fsGF2xYgG7rlnVdL1pH14e3LK+bj8WJFYumn18H2bNKBzfdu36H7lx7ZixUrnqptF2gYbjotmyjTQaU82kHb9WxlSWZbNoNpYb1dXoGLSr0Xa60TcdX3UDIOmfgDOBY8A1EXG/pPcBRMTHkssrPwqspXx55bsjounlNL2+6sbMbKppdNVNpuvoI+KNddo+VvU4gKuzbMPMzLLxX8aameWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5zLeivBP5L0LUmPStou6ZSa6e+SNCxpX/L13mzlmplZuzoOekmDwPuBYkScBxSAS+vM+pmIOD/5ur3T7ZmZWWeynrqZBvRJmgacChzKXpKZmY2njoM+IoaAvwSeBp4DfhQR99WZ9d9IekTSZyXNT1ufpI2SSpJKw8PDnZZlZmY1spy6OQO4GDgXmAfMknRFzWz/G1gYEa8BdgF3pq0vIrZFRDEiigMDA52WZWZmNbKcunkL8FREDEfEMeBu4PXVM0TEDyPiF8nT24HXZdiemZl1IEvQPw2skHSqJAFvBh6rnkHS2VVP31E73czMJt60TheMiN2SPgt8A3gZ2Atsk/TnQCki7gHeL+kdyfQjwLuyl2xmZu1QRPS6hjGKxWKUSqVel2FmNmVI2hMRxXrT/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznOr7DFICkPwLeCwSwH3h3RPy8avpM4JOU7xX7Q+CdEXEwyzbzaMfeIbbuPMChoyPM6+9j05olbFg22HSaWSc8pk4+HQe9pEHg/cCrI2JE0t8ClwKfqJrtPcALEfGbki4FPgS8M0O9ubNj7xDX3b2fkWOjAAwdHeG6u/cfn542zS9M60Sj8eYxlV9ZT91MA/okTQNOBQ7VTL8YuDN5/FngzcmNxC2xdeeB4y+6ipFjo2zdeaDhNLNOeEydnDoO+ogYAv4SeBp4DvhRRNxXM9sg8Ewy/8vAj4Az661P0kZJJUml4eHhTsuacg4dHUltbzTNrBMeUyenjoNe0hmU37GfC8wDZkm6otP1RcS2iChGRHFgYKDT1Uw58/r7UtsbTTPrhMfUySnLqZu3AE9FxHBEHAPuBl5fM88QMB8gOb3zCsofylpi05ol9E0vnNDWN73ApjVLGk4z64TH1Mkpy1U3TwMrJJ0KjABvBko189wDXAk8BPwe8OWIiAzbzJ3KB2CNroLwFRI2XloZb5Y/ypK7km6kfBXNy8BeypdaXg+UIuIeSacAfw0sA44Al0bE95qtt1gsRqlU+zPDzMzSSNoTEcW60ybjG2wHvZlZexoFvf8y1sws5xz0ZmY556A3M8s5B72ZWc5Nyg9jJQ0D328y21nAP3ehnHZMxppgctblmlo3GeuajDXB5KyrWzW9MiLq/rXppAz6VkgqpX3C3CuTsSaYnHW5ptZNxromY00wOeuaDDX51I2ZWc456M3Mcm4qB/22XhdQx2SsCSZnXa6pdZOxrslYE0zOunpe05Q9R29mZq2Zyu/ozcysBQ56M7OcmxJBL+kOSYclPVrVNlvSLkmPJ9/PmAQ1/ZmkIUn7kq91Xa5pvqSvSPq2pG9J+kDS3rO+alBTr/vqFElfk/TNpK4bk/ZzJe2W9ISkz0iaMQlq+oSkp6r66vxu1VRVW0HSXklfSJ73rJ+a1NXTvpJ0UNL+ZNulpK2nWQVTJOgp33B8bU3btcD9EbEYuD953uuaAD4cEecnX1/sck0vA/85Il4NrACulvRqettXaTVBb/vqF8DvRMRvA+cDayWtoHwD+w9HxG8CL1C+wX2vawLYVNVX+7pYU8UHgMeqnveyn6rV1gW976s3JduuXDvf66yaGkEfEQ9S/n/21apvPH4nsGES1NRTEfFcRHwjefwTyi+AQXrYVw1q6qko+2nydHryFcDvUL6RPXS/r9Jq6ilJ5wDrgduT56KH/ZRW1yTW06yCKRL0KeZGxHPJ4x8Ac3tZTJX/KOmR5NRO139Fq5C0kPINX3YzSfqqpibocV8lv/bvAw4Du4AngaPJjewBnqXLP5Rqa4qISl9tTvrqw5JmdrMm4Fbgj4FfJs/PpMf9lFJXRS/7KoD7JO2RtDFp6/nrbyoH/XHJ7Ql7/s4H+J/AIsq/dj8H/LdeFCHp14G/B/4wIn5cPa1XfVWnpp73VUSMRsT5wDnABcBvdbuGWrU1SToPuI5ybf8KmA38SbfqkfR24HBE7OnWNlvRoK6e9VXiDRHxWuBtlE9TXlQ9sVevv6kc9M9LOhsg+X64x/UQEc8nL9RfArdRDo+ukjSdcqDeFRF3J8097at6NU2GvqqIiKPAV4ALgX6Vb2QP5bAd6nFNa5PTXxERvwD+iu721UrgHZIOAp+mfMrmI/S+n8bUJelTPe4rImIo+X4Y+Fyy/Z5n1VQO+sqNx0m+f76HtQDHD2LF7wKPps07QdsX8HHgsYi4pWpSz/oqraZJ0FcDkvqTx33AasqfH3yF8o3soft9Va+m71SFhCif3+1aX0XEdRFxTkQsBC4FvhwRl9PDfmpQ1xW97CtJsySdVnkMvDXZfu+zKiIm/RewnfKv98conw98D+XzhPcDjwP/B5g9CWr6a2A/8Ajlg3t2l2t6A+VfCx8B9iVf63rZVw1q6nVfvYbyDe0fofxi/NOk/TeArwFPAH8HzJwENX056atHgU8Bv97NvqqqbxXwhV73U5O6etZXSZ98M/n6FnB90t7TrIoI/wsEM7O8m8qnbszMrAUOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/N8s9l//aWz4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "price = new_pumpkins.Price\n", + "month = new_pumpkins.Month\n", + "plt.scatter(price, month)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Pumpkin Price')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAARAElEQVR4nO3de5AlZX3G8e8joKigiIwbVNYVQ6ErwcVaiRW0CgUNikEQKxFTijHJahlUSsvUqknE/LVE0KoYNVkDigloNCoQLt5AxUuCLrrhIhqUQgMiLBGE0goR+OWP0+sMszOzZ8ft0zO830/VqTndfc7phwae6XlPX1JVSJLa8aChA0iSJsvil6TGWPyS1BiLX5IaY/FLUmMsfklqzK5DBxjHPvvsU6tWrRo6hiQtK1dcccVtVTU1e/6yKP5Vq1axadOmoWNI0rKS5IdzzXeoR5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYZXECl3auVesvHDoCN2w4eugIUrMsfjXNX4JqkUM9ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqTG/Fn2S/JF9M8p0k1yR5Yzf/lCQ3JdncPV7YVwZJ0rZ27fGz7wHeXFXfSrIncEWSz3fL3lNVp/W4bknSPHor/qq6Gbi5e35XkmuBx/W1PknSePrc4/+VJKuAQ4DLgcOAk5K8EtjE6K+C2yeRQ9L8Vq2/cOgI3LDh6KEjNKH3L3eT7AF8Eji5qu4EPgA8CVjD6C+C0+d537okm5Js2rJlS98xJakZvRZ/kt0Ylf7ZVfUpgKq6parurar7gA8Ch8713qraWFVrq2rt1NRUnzElqSl9HtUT4Azg2qp694z5+8542XHA1X1lkCRtq88x/sOAVwBXJdnczXsbcEKSNUABNwCv6TGDJGmWPo/q+SqQORZd1Nc6F+IXV5I04pm7ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JakxvxZ9kvyRfTPKdJNckeWM3f+8kn09yXffzUX1lkCRtq889/nuAN1fVauCZwJ8lWQ2sBy6pqgOAS7ppSdKE9Fb8VXVzVX2re34XcC3wOODFwFndy84Cju0rgyRpWxMZ40+yCjgEuBxYUVU3d4t+AqyY5z3rkmxKsmnLli2TiClJTei9+JPsAXwSOLmq7py5rKoKqLneV1Ubq2ptVa2dmprqO6YkNWOs4k/y0CQH7uiHJ9mNUemfXVWf6mbfkmTfbvm+wK07+rmSpMXbbvEn+T1gM/CZbnpNkvPHeF+AM4Brq+rdMxadD5zYPT8ROG8HM0uSfg3j7PGfAhwK3AFQVZuBJ47xvsOAVwDPTbK5e7wQ2AA8L8l1wJHdtCRpQnYd4zW/rKqfjXbgf2XOcfn7vaDqq0DmWXzEGOuVJPVgnOK/JsnLgV2SHAC8Afh6v7EkSX0ZZ6jn9cBTgbuBc4CfASf3mEmS1KPt7vFX1S+At3cPSdIyN85RPZ9PsteM6Ucl+WyvqSRJvRlnqGefqrpj60RV3Q48prdEkqRejVP89yVZuXUiyRMY46geSdLSNM5RPW8Hvprky4wOz3w2sK7XVJKk3ozz5e5nkjyd0aWVYXTNndv6jSVJ6su8Qz1Jntz9fDqwEvhx91jZzZMkLUML7fG/idGQzulzLCvgub0kkiT1at7ir6p1SR4E/EVVfW2CmSRJPVrwqJ6qug/4uwllkSRNwDiHc16S5PjMukqbJGl5Gqf4XwN8Arg7yZ1J7kpy5/beJElamsY5nHPPSQSRJE3GQodzHpDkvCRXJzknyeMmGUyS1I+FhnrOBC4Ajge+Dbx3IokkSb1aaKhnz6r6YPf8XUm+NYlAkqR+LVT8uyc5hOnbJz505nRV+YtAkpahhYr/ZuDdM6Z/MmPaM3claZla6Mzd50wyiCRpMsY5jl+S9ABi8UtSYyx+SWrMOHfgojt56wkzX19Vl/UVSpLUn+0Wf5JTgT8AvgPc280uwOKXpGVonD3+Y4EDq+runrNIkiZgnOK/HtgN2KHiT3Im8CLg1qo6qJt3CvCnwJbuZW+rqot25HMlqW+r1l84dARu2HB0b589TvH/Atic5BJmlH9VvWE77/swo5u4fGTW/PdU1Wk7ElKStPOMU/znd48dUlWXJVm1w4kkSb0a53r8Z+3kdZ6U5JXAJuDNVXX7XC9Kso7Rzd5ZuXLlTo4gSe1a6Hr8H+9+XpXkytmPRa7vA8CTgDWMrgV0+nwvrKqNVbW2qtZOTU0tcnWSpNkW2uN/Y/fzRTtrZVV1y9bnST7I6Hr/kqQJmnePv6pu7p6urqofznwAL1jMypLsO2PyOODqxXyOJGnxxvly9y+T3F1VlwIk+XPgOcDfL/SmJB8FDgf2SXIj8A7g8CRrGJ0AdgOjG7lLkiZonOI/BrggyVuAo4AnAy/e3puq6oQ5Zp+xY/EkSTvbOEf13JbkGOALwBXAS6uqek8mSerFvMWf5C5GQzJbPRjYH3hpkqqqR/QdTpK08y10B649JxlEkjQZ416W+SXAsxj9BfCVqjq3z1CSpP5s90YsSd4PvBa4itHhl69N8r6+g0mS+jHOHv9zgads/UI3yVnANb2mkiT1ZpxbL34fmHmxnP26eZKkZWicPf49gWuTfKObfgawKcn5AFV1TF/hJEk73zjF/1e9p5AkTcw4J3B9GSDJI7j/zdZ/2mMuSVJPxrnZ+jrgr4H/Be4Dwuiwzv37jSZJ6sM4Qz1vAQ6qqtv6DiNJ6t84R/X8gNF9dyVJDwDj7PG/Ffh6ksvZsZutS5KWoHGK/x+ASxmduXtfv3EkSX0bp/h3q6o39Z5EkjQR44zxX5xkXZJ9k+y99dF7MklSL8bZ4996J623zpjn4ZyStEyNcwLXEycRRJI0GeOcwPXKueZX1Ud2fhxJUt/GGep5xoznuwNHAN8CLH5JWobGGep5/czpJHsBH+srkCSpX+Mc1TPbzwHH/SVpmRpnjP/fGB3FA6NfFKuBj/cZSpLUn3HG+E+b8fwe4IdVdWNPeSRJPZu3+JPszugm67/J6HINZ1TVPZMKJknqx0Jj/GcBaxmV/guA0yeSSJLUq4WGelZX1W8BJDkD+MYCr91GkjOBFwG3VtVB3by9gX8BVgE3AL9fVbfveGxJ0mIttMf/y61PFjnE82HgqFnz1gOXVNUBwCXdtCRpghYq/qclubN73AUcvPV5kju398FVdRkw+768L2Y0hET389jFhJYkLd68Qz1VtUsP61tRVTd3z38CrOhhHZKkBSzmBK6doqqK6fMDttFdCnpTkk1btmyZYDJJemCbdPHfkmRfgO7nrfO9sKo2VtXaqlo7NTU1sYCS9EA36eI/Hzixe34icN6E1y9Jzeut+JN8FPh34MAkNyb5Y2AD8Lwk1wFHdtOSpAka55INi1JVJ8yz6Ii+1ilJ2r7BvtyVJA3D4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYXYdYaZIbgLuAe4F7qmrtEDkkqUWDFH/nOVV124Drl6QmOdQjSY0ZqvgL+FySK5KsGyiDJDVpqKGeZ1XVTUkeA3w+yXer6rKZL+h+IawDWLly5RAZJekBaZA9/qq6qft5K/Bp4NA5XrOxqtZW1dqpqalJR5SkB6yJF3+ShyfZc+tz4PnA1ZPOIUmtGmKoZwXw6SRb139OVX1mgByS1KSJF39VXQ88bdLrlSSNeDinJDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGjNI8Sc5Ksn3knw/yfohMkhSqyZe/El2Ad4HvABYDZyQZPWkc0hSq4bY4z8U+H5VXV9V/wd8DHjxADkkqUmpqsmuMHkpcFRV/Uk3/Qrgt6vqpFmvWwes6yYPBL430aDb2ge4beAMS4XbYprbYprbYtpS2RZPqKqp2TN3HSLJOKpqI7Bx6BxbJdlUVWuHzrEUuC2muS2muS2mLfVtMcRQz03AfjOmH9/NkyRNwBDF/03ggCRPTPJg4GXA+QPkkKQmTXyop6ruSXIS8FlgF+DMqrpm0jkWYckMOy0BbotpbotpbotpS3pbTPzLXUnSsDxzV5IaY/FLUmMsfklqzJI9jn9IM442+nFVfSHJy4HfAa4FNlbVLwcNOGFJ9gdewugw3HuB/wLOqao7Bw0maVH8cncOSc5m9EvxYcAdwB7Ap4AjGG2zE4dLN1lJ3gC8CLgMeCHwbUbb5DjgdVX1pcHCSVoUi38OSa6sqoOT7Mro5LLHVtW9SQL8Z1UdPHDEiUlyFbCm++d/GHBRVR2eZCVwXlUdMnDEiUnySOCtwLHAY4ACbgXOAzZU1R2DhVtCklxcVS8YOsekJHkEo/8uHg9cXFXnzFj2/qp63WDh5uFQz9we1A33PJzRXv8jgZ8CDwF2GzLYQHZlNMTzEEZ//VBVP0rS2rb4OHApcHhV/QQgyW8AJ3bLnj9gtolK8vT5FgFrJhhlKfgQcB3wSeDVSY4HXl5VdwPPHDTZPCz+uZ0BfJfRCWZvBz6R5HpG/xI/NmSwAfwj8M0klwPPBk4FSDLF6JdhS1ZV1akzZ3S/AE5N8uqBMg3lm8CXGRX9bHtNNsrgnlRVx3fPz03yduDSJMcMGWohDvXMI8ljAarqx0n2Ao4EflRV3xg02ACSPBV4CnB1VX136DxDSfI54AvAWVV1SzdvBfAq4HlVdeSA8SYqydXAcVV13RzL/ruq9pvjbQ9ISa4FnlpV982Y9yrgLcAeVfWEobLNx+KXxpTkUcB6RvePeEw3+xZG15raUFW3D5Vt0rrLq19VVdtcLj3JsVV17uRTDSPJ3wCfq6ovzJp/FPDeqjpgmGTzs/ilnSDJH1XVh4bOsRS4LaYt1W1h8Us7QZIfVdXKoXMsBW6LaUt1W/jlrjSmJFfOtwhYMcksQ3NbTFuO28Lil8a3AvhdYPZYfoCvTz7OoNwW05bdtrD4pfFdwOgojc2zFyT50sTTDMttMW3ZbQvH+CWpMV6dU5IaY/FLUmMsfglIUkn+ecb0rkm2JLlgkZ+3V5LXzZg+fLGfJe1sFr808nPgoCQP7aafx+jKrIu1F7DkrsoogcUvzXQRcHT3/ATgo1sXJNk7yblJrkzyH0kO7uafkuTMJF9Kcn13/wKADcCTkmxO8q5u3h5J/jXJd5Oc3V3mW5o4i1+a9jHgZUl2Bw4GLp+x7J3At7t7MbwN+MiMZU9mdBz3ocA7ustVrwd+UFVrquot3esOAU4GVgP7A4f1+M8izcvilzpVdSWwitHe/kWzFj8L+KfudZcCj+5uwAFwYVXdXVW3Mboxy3xna36jqm7sruK4uVuXNHGewCXd3/nAacDhwKPHfM/dM57fy/z/X437OqlX7vFL93cm8M6qumrW/K8AfwijI3SA27Zzs/m7gD37CCj9utzjkGaoqhuBv51j0SnAmd0FuX7B6HaLC33O/yT5WnfDkouBC3d2VmmxvGSDJDXGoR5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSY/4fZDFW+b6+4WkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar')\n", + "plt.ylabel(\"Pumpkin Price\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "95726f0b8283628d5356a4f8eb8b4b76", + "translation_date": "2025-09-04T01:36:47+00:00", + "source_file": "2-Regression/2-Data/solution/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/de/2-Regression/3-Linear/README.md b/translations/de/2-Regression/3-Linear/README.md index 964b384c9..c51f5dd85 100644 --- a/translations/de/2-Regression/3-Linear/README.md +++ b/translations/de/2-Regression/3-Linear/README.md @@ -1,124 +1,133 @@ -# Erstellen Sie ein Regressionsmodell mit Scikit-learn: Regression auf vier Arten + +# Erstellen eines Regressionsmodells mit Scikit-learn: Regression auf vier Arten ![Infografik zu linearer vs. polynomialer Regression](../../../../translated_images/linear-polynomial.5523c7cb6576ccab0fecbd0e3505986eb2d191d9378e785f82befcf3a578a6e7.de.png) > Infografik von [Dasani Madipalli](https://twitter.com/dasani_decoded) -## [Vorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/13/) +## [Quiz vor der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/13/) > ### [Diese Lektion ist auch in R verfügbar!](../../../../2-Regression/3-Linear/solution/R/lesson_3.html) ### Einführung -Bisher haben Sie erkundet, was Regression ist, mit Beispieldaten aus dem Preisdaten-Set für Kürbisse, das wir in dieser Lektion verwenden werden. Sie haben auch eine Visualisierung mit Matplotlib erstellt. +Bisher hast du untersucht, was Regression ist, anhand von Beispieldaten aus dem Kürbispreis-Datensatz, den wir in dieser Lektion verwenden werden. Du hast ihn auch mit Matplotlib visualisiert. -Jetzt sind Sie bereit, tiefer in die Regression für ML einzutauchen. Während die Visualisierung Ihnen hilft, Daten zu verstehen, kommt die wahre Kraft des maschinellen Lernens vom _Training von Modellen_. Modelle werden mit historischen Daten trainiert, um automatisch Datenabhängigkeiten zu erfassen, und sie ermöglichen es Ihnen, Ergebnisse für neue Daten vorherzusagen, die das Modell zuvor nicht gesehen hat. +Jetzt bist du bereit, tiefer in die Regression für maschinelles Lernen einzutauchen. Während die Visualisierung hilft, Daten zu verstehen, liegt die wahre Stärke des maschinellen Lernens im _Trainieren von Modellen_. Modelle werden mit historischen Daten trainiert, um automatisch Datenabhängigkeiten zu erfassen, und sie ermöglichen es, Ergebnisse für neue Daten vorherzusagen, die das Modell zuvor nicht gesehen hat. -In dieser Lektion werden Sie mehr über zwei Arten von Regression lernen: _einfache lineare Regression_ und _polynomiale Regression_, sowie einige der mathematischen Grundlagen dieser Techniken. Diese Modelle ermöglichen es uns, die Preise von Kürbissen basierend auf unterschiedlichen Eingabedaten vorherzusagen. +In dieser Lektion wirst du mehr über zwei Arten von Regression lernen: _einfache lineare Regression_ und _polynomiale Regression_, zusammen mit einigen mathematischen Grundlagen dieser Techniken. Diese Modelle ermöglichen es uns, Kürbispreise basierend auf verschiedenen Eingabedaten vorherzusagen. [![ML für Anfänger - Verständnis der linearen Regression](https://img.youtube.com/vi/CRxFT8oTDMg/0.jpg)](https://youtu.be/CRxFT8oTDMg "ML für Anfänger - Verständnis der linearen Regression") -> 🎥 Klicken Sie auf das Bild oben für eine kurze Videoübersicht zur linearen Regression. +> 🎥 Klicke auf das Bild oben für eine kurze Videoübersicht zur linearen Regression. -> In diesem Lehrplan gehen wir von minimalen mathematischen Kenntnissen aus und versuchen, ihn für Studenten aus anderen Bereichen zugänglich zu machen. Achten Sie auf Hinweise, 🧮 Markierungen, Diagramme und andere Lernwerkzeuge zur Unterstützung des Verständnisses. +> Im gesamten Lehrplan gehen wir von minimalen Mathematikkenntnissen aus und versuchen, das Thema für Studierende aus anderen Bereichen zugänglich zu machen. Achte auf Notizen, 🧮 Hinweise, Diagramme und andere Lernhilfen, die das Verständnis erleichtern. ### Voraussetzungen -Sie sollten jetzt mit der Struktur der Kürbisdaten, die wir untersuchen, vertraut sein. Sie finden diese vorab geladen und vorgefiltert in der _notebook.ipynb_-Datei dieser Lektion. In der Datei wird der Kürbispreis pro Scheffel in einem neuen Datenrahmen angezeigt. Stellen Sie sicher, dass Sie diese Notebooks in Kernen in Visual Studio Code ausführen können. +Du solltest inzwischen mit der Struktur der Kürbisdaten vertraut sein, die wir untersuchen. Du findest sie vorab geladen und bereinigt in der Datei _notebook.ipynb_ dieser Lektion. In der Datei wird der Kürbispreis pro Scheffel in einem neuen DataFrame angezeigt. Stelle sicher, dass du diese Notebooks in Visual Studio Code ausführen kannst. ### Vorbereitung -Zur Erinnerung: Sie laden diese Daten, um Fragen dazu zu stellen. +Zur Erinnerung: Du lädst diese Daten, um Fragen dazu zu stellen. -- Wann ist die beste Zeit, um Kürbisse zu kaufen? +- Wann ist die beste Zeit, Kürbisse zu kaufen? - Welchen Preis kann ich für eine Kiste Miniaturkürbisse erwarten? -- Sollte ich sie in halben Scheffeln oder in der 1 1/9 Scheffel-Box kaufen? -Lassen Sie uns weiter in diese Daten eintauchen. +- Sollte ich sie in halben Scheffelkörben oder in 1 1/9 Scheffelkisten kaufen? +Lass uns weiter in diese Daten eintauchen. -In der vorherigen Lektion haben Sie einen Pandas-Datenrahmen erstellt und ihn mit einem Teil des ursprünglichen Datensatzes gefüllt, wobei die Preise nach Scheffel standardisiert wurden. Dadurch konnten Sie jedoch nur etwa 400 Datenpunkte sammeln und nur für die Herbstmonate. +In der vorherigen Lektion hast du einen Pandas-DataFrame erstellt und ihn mit einem Teil des ursprünglichen Datensatzes gefüllt, wobei du die Preise pro Scheffel standardisiert hast. Dadurch konntest du jedoch nur etwa 400 Datenpunkte sammeln, und das nur für die Herbstmonate. -Werfen Sie einen Blick auf die Daten, die wir in dem begleitenden Notebook dieser Lektion vorab geladen haben. Die Daten sind vorab geladen und ein erster Streudiagramm ist erstellt, um die Monatsdaten zu zeigen. Vielleicht können wir etwas mehr über die Natur der Daten erfahren, indem wir sie weiter bereinigen. +Schau dir die Daten an, die wir in dem begleitenden Notebook dieser Lektion vorab geladen haben. Die Daten sind vorab geladen, und ein erster Streudiagramm wurde erstellt, um Monatsdaten zu zeigen. Vielleicht können wir durch eine gründlichere Bereinigung der Daten noch mehr Details über die Natur der Daten erhalten. ## Eine lineare Regressionslinie -Wie Sie in Lektion 1 gelernt haben, ist das Ziel einer linearen Regressionsübung, eine Linie zu zeichnen, um: +Wie du in Lektion 1 gelernt hast, besteht das Ziel einer linearen Regression darin, eine Linie zu zeichnen, um: -- **Variablenbeziehungen zu zeigen**. Die Beziehung zwischen Variablen darzustellen. -- **Vorhersagen zu treffen**. Genaue Vorhersagen darüber zu treffen, wo ein neuer Datenpunkt in Bezug auf diese Linie fallen würde. - -Es ist typisch für die **Kleinste-Quadrate-Regressionsmethode**, diese Art von Linie zu zeichnen. Der Begriff 'kleinste Quadrate' bedeutet, dass alle Datenpunkte rund um die Regressionslinie quadriert und dann addiert werden. Idealerweise ist diese Endsumme so klein wie möglich, da wir eine niedrige Fehlerzahl oder `least-squares` wünschen. +- **Beziehungen zwischen Variablen zu zeigen**. Die Beziehung zwischen Variablen darzustellen. +- **Vorhersagen zu treffen**. Genaue Vorhersagen darüber zu machen, wo ein neuer Datenpunkt im Verhältnis zu dieser Linie liegen würde. -Wir tun dies, da wir eine Linie modellieren möchten, die die geringste kumulierte Distanz zu allen unseren Datenpunkten hat. Wir quadrieren auch die Terme, bevor wir sie addieren, da wir uns um ihre Größe und nicht um ihre Richtung kümmern. +Typisch für die **Methode der kleinsten Quadrate** ist es, diese Art von Linie zu zeichnen. Der Begriff "kleinste Quadrate" bedeutet, dass alle Datenpunkte um die Regressionslinie quadriert und dann addiert werden. Idealerweise ist diese Summe so klein wie möglich, da wir eine geringe Fehleranzahl oder `kleinste Quadrate` anstreben. -> **🧮 Zeigen Sie mir die Mathematik** +Wir tun dies, da wir eine Linie modellieren möchten, die die geringste kumulative Entfernung von allen unseren Datenpunkten hat. Wir quadrieren die Terme vor dem Addieren, da uns die Größe der Abweichung wichtiger ist als ihre Richtung. + +> **🧮 Zeig mir die Mathematik** > -> Diese Linie, die als _beste Anpassungslinie_ bezeichnet wird, kann durch [eine Gleichung](https://en.wikipedia.org/wiki/Simple_linear_regression) ausgedrückt werden: +> Diese Linie, die als _Best-Fit-Linie_ bezeichnet wird, kann durch [eine Gleichung](https://en.wikipedia.org/wiki/Simple_linear_regression) ausgedrückt werden: > > ``` > Y = a + bX > ``` > -> `X` is the 'explanatory variable'. `Y` is the 'dependent variable'. The slope of the line is `b` and `a` is the y-intercept, which refers to the value of `Y` when `X = 0`. +> `X` ist die 'erklärende Variable'. `Y` ist die 'abhängige Variable'. Die Steigung der Linie ist `b`, und `a` ist der y-Achsenabschnitt, der den Wert von `Y` angibt, wenn `X = 0`. > ->![calculate the slope](../../../../translated_images/slope.f3c9d5910ddbfcf9096eb5564254ba22c9a32d7acd7694cab905d29ad8261db3.de.png) +>![Berechnung der Steigung](../../../../translated_images/slope.f3c9d5910ddbfcf9096eb5564254ba22c9a32d7acd7694cab905d29ad8261db3.de.png) > -> First, calculate the slope `b`. Infographic by [Jen Looper](https://twitter.com/jenlooper) +> Zuerst berechnen wir die Steigung `b`. Infografik von [Jen Looper](https://twitter.com/jenlooper) > -> In other words, and referring to our pumpkin data's original question: "predict the price of a pumpkin per bushel by month", `X` would refer to the price and `Y` would refer to the month of sale. +> Mit Bezug auf die ursprüngliche Frage zu den Kürbisdaten: "Vorhersage des Preises eines Kürbisses pro Scheffel nach Monat", würde `X` den Preis und `Y` den Verkaufsmonat darstellen. > ->![complete the equation](../../../../translated_images/calculation.a209813050a1ddb141cdc4bc56f3af31e67157ed499e16a2ecf9837542704c94.de.png) +>![Vervollständigung der Gleichung](../../../../translated_images/calculation.a209813050a1ddb141cdc4bc56f3af31e67157ed499e16a2ecf9837542704c94.de.png) > -> Calculate the value of Y. If you're paying around $4, it must be April! Infographic by [Jen Looper](https://twitter.com/jenlooper) +> Berechnung des Wertes von Y. Wenn du etwa 4 $ zahlst, muss es April sein! Infografik von [Jen Looper](https://twitter.com/jenlooper) > -> The math that calculates the line must demonstrate the slope of the line, which is also dependent on the intercept, or where `Y` is situated when `X = 0`. +> Die Mathematik, die die Linie berechnet, muss die Steigung der Linie zeigen, die auch vom Achsenabschnitt abhängt, oder wo `Y` liegt, wenn `X = 0`. > -> You can observe the method of calculation for these values on the [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html) web site. Also visit [this Least-squares calculator](https://www.mathsisfun.com/data/least-squares-calculator.html) to watch how the numbers' values impact the line. +> Du kannst die Methode zur Berechnung dieser Werte auf der Website [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html) beobachten. Besuche auch [diesen Rechner für die Methode der kleinsten Quadrate](https://www.mathsisfun.com/data/least-squares-calculator.html), um zu sehen, wie die Werte die Linie beeinflussen. -## Correlation +## Korrelation -One more term to understand is the **Correlation Coefficient** between given X and Y variables. Using a scatterplot, you can quickly visualize this coefficient. A plot with datapoints scattered in a neat line have high correlation, but a plot with datapoints scattered everywhere between X and Y have a low correlation. +Ein weiterer Begriff, den du verstehen solltest, ist der **Korrelationskoeffizient** zwischen den gegebenen X- und Y-Variablen. Mit einem Streudiagramm kannst du diesen Koeffizienten schnell visualisieren. Ein Diagramm mit Datenpunkten, die in einer ordentlichen Linie verstreut sind, hat eine hohe Korrelation, während ein Diagramm mit Datenpunkten, die überall zwischen X und Y verstreut sind, eine niedrige Korrelation hat. -A good linear regression model will be one that has a high (nearer to 1 than 0) Correlation Coefficient using the Least-Squares Regression method with a line of regression. +Ein gutes lineares Regressionsmodell ist eines, das eine hohe (näher an 1 als an 0) Korrelation aufweist, basierend auf der Methode der kleinsten Quadrate mit einer Regressionslinie. -✅ Run the notebook accompanying this lesson and look at the Month to Price scatterplot. Does the data associating Month to Price for pumpkin sales seem to have high or low correlation, according to your visual interpretation of the scatterplot? Does that change if you use more fine-grained measure instead of `Month`, eg. *day of the year* (i.e. number of days since the beginning of the year)? +✅ Führe das begleitende Notebook dieser Lektion aus und sieh dir das Streudiagramm von Monat zu Preis an. Scheint die Datenassoziation zwischen Monat und Preis für Kürbisverkäufe laut deiner visuellen Interpretation des Streudiagramms eine hohe oder niedrige Korrelation zu haben? Ändert sich das, wenn du eine feinere Messung anstelle von `Monat` verwendest, z. B. *Tag des Jahres* (d. h. Anzahl der Tage seit Jahresbeginn)? -In the code below, we will assume that we have cleaned up the data, and obtained a data frame called `new_pumpkins`, similar to the following: +Im folgenden Code nehmen wir an, dass wir die Daten bereinigt haben und einen DataFrame namens `new_pumpkins` erhalten haben, ähnlich dem folgenden: -ID | Month | DayOfYear | Variety | City | Package | Low Price | High Price | Price ----|-------|-----------|---------|------|---------|-----------|------------|------- +ID | Monat | TagDesJahres | Sorte | Stadt | Verpackung | Niedriger Preis | Hoher Preis | Preis +---|-------|--------------|-------|-------|------------|-----------------|-------------|------ 70 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364 71 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636 72 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636 73 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 17.0 | 17.0 | 15.454545 74 | 10 | 281 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364 -> The code to clean the data is available in [`notebook.ipynb`](../../../../2-Regression/3-Linear/notebook.ipynb). We have performed the same cleaning steps as in the previous lesson, and have calculated `DayOfYear`-Spalte mit folgendem Ausdruck: +> Der Code zur Bereinigung der Daten ist verfügbar in [`notebook.ipynb`](notebook.ipynb). Wir haben die gleichen Bereinigungsschritte wie in der vorherigen Lektion durchgeführt und die Spalte `TagDesJahres` mit folgendem Ausdruck berechnet: ```python day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days) ``` -Jetzt, da Sie ein Verständnis für die Mathematik hinter der linearen Regression haben, lassen Sie uns ein Regressionsmodell erstellen, um zu sehen, ob wir vorhersagen können, welches Paket von Kürbissen die besten Kürbispreise haben wird. Jemand, der Kürbisse für ein Feiertagskürbisfeld kauft, möchte diese Informationen, um seine Käufe von Kürbispaketen für das Feld zu optimieren. +Jetzt, da du die Mathematik hinter der linearen Regression verstehst, lass uns ein Regressionsmodell erstellen, um zu sehen, ob wir vorhersagen können, welches Kürbispaket die besten Kürbispreise hat. Jemand, der Kürbisse für einen Feiertags-Kürbisstand kauft, könnte diese Informationen benötigen, um seine Einkäufe von Kürbispaketen für den Stand zu optimieren. -## Auf der Suche nach Korrelation +## Suche nach Korrelation -[![ML für Anfänger - Auf der Suche nach Korrelation: Der Schlüssel zur linearen Regression](https://img.youtube.com/vi/uoRq-lW2eQo/0.jpg)](https://youtu.be/uoRq-lW2eQo "ML für Anfänger - Auf der Suche nach Korrelation: Der Schlüssel zur linearen Regression") +[![ML für Anfänger - Suche nach Korrelation: Der Schlüssel zur linearen Regression](https://img.youtube.com/vi/uoRq-lW2eQo/0.jpg)](https://youtu.be/uoRq-lW2eQo "ML für Anfänger - Suche nach Korrelation: Der Schlüssel zur linearen Regression") -> 🎥 Klicken Sie auf das Bild oben für eine kurze Videoübersicht zur Korrelation. +> 🎥 Klicke auf das Bild oben für eine kurze Videoübersicht zur Korrelation. -In der vorherigen Lektion haben Sie wahrscheinlich gesehen, dass der durchschnittliche Preis für verschiedene Monate so aussieht: +Aus der vorherigen Lektion hast du wahrscheinlich gesehen, dass der Durchschnittspreis für verschiedene Monate wie folgt aussieht: Durchschnittspreis nach Monat -Dies deutet darauf hin, dass es eine gewisse Korrelation geben sollte, und wir können versuchen, ein lineares Regressionsmodell zu trainieren, um die Beziehung zwischen der `Month` and `Price`, or between `DayOfYear` and `Price`. Here is the scatter plot that shows the latter relationship: +Dies deutet darauf hin, dass es eine gewisse Korrelation geben sollte, und wir können versuchen, ein lineares Regressionsmodell zu trainieren, um die Beziehung zwischen `Monat` und `Preis` oder zwischen `TagDesJahres` und `Preis` vorherzusagen. Hier ist das Streudiagramm, das die letztere Beziehung zeigt: -Scatter plot of Price vs. Day of Year +Streudiagramm von Preis vs. Tag des Jahres -Let's see if there is a correlation using the `corr`-Funktion vorherzusagen: +Lass uns sehen, ob es eine Korrelation gibt, indem wir die Funktion `corr` verwenden: ```python print(new_pumpkins['Month'].corr(new_pumpkins['Price'])) print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price'])) ``` -Es scheint, dass die Korrelation ziemlich klein ist, -0.15, durch die `Month` and -0.17 by the `DayOfMonth`, but there could be another important relationship. It looks like there are different clusters of prices corresponding to different pumpkin varieties. To confirm this hypothesis, let's plot each pumpkin category using a different color. By passing an `ax` parameter to the `scatter`-Plot-Funktion können wir alle Punkte im selben Diagramm darstellen: +Es sieht so aus, als ob die Korrelation ziemlich gering ist, -0.15 für `Monat` und -0.17 für `TagDesJahres`, aber es könnte eine andere wichtige Beziehung geben. Es scheint, dass es verschiedene Preiscluster gibt, die mit verschiedenen Kürbissorten korrespondieren. Um diese Hypothese zu bestätigen, lass uns jede Kürbiskategorie mit einer anderen Farbe darstellen. Indem wir einen `ax`-Parameter an die `scatter`-Plot-Funktion übergeben, können wir alle Punkte im selben Diagramm darstellen: ```python ax=None @@ -138,7 +147,7 @@ new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar') Balkendiagramm von Preis vs. Sorte -Lassen Sie uns im Moment nur auf eine Kürbissorte, den 'Pie-Typ', konzentrieren und sehen, welchen Einfluss das Datum auf den Preis hat: +Lass uns für den Moment nur auf eine Kürbissorte, den 'Pie Type', fokussieren und sehen, welchen Einfluss das Datum auf den Preis hat: ```python pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE'] @@ -146,22 +155,22 @@ pie_pumpkins.plot.scatter('DayOfYear','Price') ``` Streudiagramm von Preis vs. Tag des Jahres -Wenn wir jetzt die Korrelation zwischen `Price` and `DayOfYear` using `corr` function, we will get something like `-0.27` berechnen, bedeutet dies, dass es sinnvoll ist, ein prädiktives Modell zu trainieren. +Wenn wir jetzt die Korrelation zwischen `Preis` und `TagDesJahres` mit der Funktion `corr` berechnen, erhalten wir etwa `-0.27` - was bedeutet, dass das Trainieren eines Vorhersagemodells sinnvoll ist. -> Bevor wir ein lineares Regressionsmodell trainieren, ist es wichtig sicherzustellen, dass unsere Daten sauber sind. Lineare Regression funktioniert nicht gut mit fehlenden Werten, daher ist es sinnvoll, alle leeren Zellen zu entfernen: +> Bevor wir ein lineares Regressionsmodell trainieren, ist es wichtig sicherzustellen, dass unsere Daten sauber sind. Lineare Regression funktioniert nicht gut mit fehlenden Werten, daher macht es Sinn, alle leeren Zellen zu entfernen: ```python pie_pumpkins.dropna(inplace=True) pie_pumpkins.info() ``` -Ein weiterer Ansatz wäre, diese leeren Werte mit Mittelwerten aus der entsprechenden Spalte zu füllen. +Eine andere Herangehensweise wäre, diese leeren Werte mit den Mittelwerten der entsprechenden Spalte zu füllen. ## Einfache lineare Regression [![ML für Anfänger - Lineare und polynomiale Regression mit Scikit-learn](https://img.youtube.com/vi/e4c_UP2fSjg/0.jpg)](https://youtu.be/e4c_UP2fSjg "ML für Anfänger - Lineare und polynomiale Regression mit Scikit-learn") -> 🎥 Klicken Sie auf das Bild oben für eine kurze Videoübersicht zur linearen und polynomialen Regression. +> 🎥 Klicke auf das Bild oben für eine kurze Videoübersicht zur linearen und polynomialen Regression. Um unser lineares Regressionsmodell zu trainieren, verwenden wir die **Scikit-learn**-Bibliothek. @@ -171,14 +180,14 @@ from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split ``` -Wir beginnen damit, Eingabewerte (Merkmale) und die erwartete Ausgabe (Label) in separate numpy-Arrays zu trennen: +Wir beginnen damit, Eingabewerte (Features) und die erwartete Ausgabe (Label) in separate numpy-Arrays zu trennen: ```python X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1) y = pie_pumpkins['Price'] ``` -> Beachten Sie, dass wir `reshape` auf den Eingabedaten durchführen mussten, damit das Paket für die lineare Regression es korrekt versteht. Die lineare Regression erwartet ein 2D-Array als Eingabe, bei dem jede Zeile des Arrays einem Vektor von Eingabemerkmalen entspricht. In unserem Fall, da wir nur eine Eingabe haben, benötigen wir ein Array mit der Form N×1, wobei N die Größe des Datensatzes ist. +> Beachte, dass wir `reshape` auf die Eingabedaten anwenden mussten, damit das Paket für lineare Regression sie korrekt versteht. Lineare Regression erwartet ein 2D-Array als Eingabe, wobei jede Zeile des Arrays einem Vektor von Eingabefeatures entspricht. In unserem Fall, da wir nur eine Eingabe haben, benötigen wir ein Array mit der Form N×1, wobei N die Datensatzgröße ist. Dann müssen wir die Daten in Trainings- und Testdatensätze aufteilen, damit wir unser Modell nach dem Training validieren können: @@ -186,16 +195,16 @@ Dann müssen wir die Daten in Trainings- und Testdatensätze aufteilen, damit wi X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) ``` -Schließlich benötigt das Training des tatsächlichen linearen Regressionsmodells nur zwei Codezeilen. Wir definieren die Methode `LinearRegression` object, and fit it to our data using the `fit`: +Das eigentliche Training des linearen Regressionsmodells dauert nur zwei Codezeilen. Wir definieren das `LinearRegression`-Objekt und passen es mit der Methode `fit` an unsere Daten an: ```python lin_reg = LinearRegression() lin_reg.fit(X_train,y_train) ``` -Der `LinearRegression` object after `fit`-ting contains all the coefficients of the regression, which can be accessed using `.coef_` property. In our case, there is just one coefficient, which should be around `-0.017`. It means that prices seem to drop a bit with time, but not too much, around 2 cents per day. We can also access the intersection point of the regression with Y-axis using `lin_reg.intercept_` - it will be around `21` in unserem Fall, was den Preis zu Beginn des Jahres angibt. +Das `LinearRegression`-Objekt enthält nach dem `fit`-Vorgang alle Koeffizienten der Regression, die über die Eigenschaft `.coef_` abgerufen werden können. In unserem Fall gibt es nur einen Koeffizienten, der etwa `-0.017` sein sollte. Das bedeutet, dass die Preise mit der Zeit leicht sinken, aber nicht zu stark, etwa um 2 Cent pro Tag. Wir können auch den Schnittpunkt der Regression mit der Y-Achse über `lin_reg.intercept_` abrufen - er wird in unserem Fall etwa `21` sein, was den Preis zu Jahresbeginn angibt. -Um zu sehen, wie genau unser Modell ist, können wir die Preise in einem Testdatensatz vorhersagen und dann messen, wie nah unsere Vorhersagen an den erwarteten Werten sind. Dies kann mit der mittleren quadratischen Fehler (MSE)-Metrik erfolgen, die der Durchschnitt aller quadrierten Unterschiede zwischen dem erwarteten und dem vorhergesagten Wert ist. +Um zu sehen, wie genau unser Modell ist, können wir die Preise auf einem Testdatensatz vorhersagen und dann messen, wie nah unsere Vorhersagen an den erwarteten Werten liegen. Dies kann mit der Mean-Square-Error (MSE)-Metrik erfolgen, die den Mittelwert aller quadrierten Unterschiede zwischen erwartetem und vorhergesagtem Wert darstellt. ```python pred = lin_reg.predict(X_test) @@ -203,14 +212,13 @@ pred = lin_reg.predict(X_test) mse = np.sqrt(mean_squared_error(y_test,pred)) print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') ``` - -Unser Fehler scheint bei etwa 2 Punkten zu liegen, was ~17% entspricht. Nicht besonders gut. Ein weiterer Indikator für die Modellqualität ist der **Bestimmtheitskoeffizient**, der wie folgt ermittelt werden kann: +Unser Fehler scheint sich auf zwei Punkte zu konzentrieren, was etwa 17 % entspricht. Nicht besonders gut. Ein weiterer Indikator für die Modellqualität ist der **Bestimmtheitskoeffizient**, der wie folgt berechnet werden kann: ```python score = lin_reg.score(X_train,y_train) print('Model determination: ', score) ``` -Wenn der Wert 0 ist, bedeutet das, dass das Modell die Eingabedaten nicht berücksichtigt und als *schlechtester linearer Prädiktor* fungiert, was einfach einem Mittelwert des Ergebnisses entspricht. Ein Wert von 1 bedeutet, dass wir alle erwarteten Ausgaben perfekt vorhersagen können. In unserem Fall liegt der Koeffizient bei etwa 0.06, was ziemlich niedrig ist. +Wenn der Wert 0 ist, bedeutet das, dass das Modell die Eingabedaten nicht berücksichtigt und als *schlechtester linearer Prädiktor* agiert, der einfach den Mittelwert des Ergebnisses darstellt. Der Wert 1 bedeutet, dass wir alle erwarteten Ausgaben perfekt vorhersagen können. In unserem Fall liegt der Koeffizient bei etwa 0,06, was ziemlich niedrig ist. Wir können auch die Testdaten zusammen mit der Regressionslinie darstellen, um besser zu sehen, wie die Regression in unserem Fall funktioniert: @@ -223,17 +231,17 @@ plt.plot(X_test,pred) ## Polynomiale Regression -Eine andere Art der linearen Regression ist die polynomiale Regression. Während es manchmal eine lineare Beziehung zwischen Variablen gibt – je größer der Kürbis im Volumen, desto höher der Preis – können solche Beziehungen manchmal nicht als Fläche oder gerade Linie dargestellt werden. +Eine andere Art der linearen Regression ist die polynomiale Regression. Während es manchmal eine lineare Beziehung zwischen Variablen gibt – je größer der Kürbis im Volumen, desto höher der Preis – können diese Beziehungen manchmal nicht als Ebene oder gerade Linie dargestellt werden. -✅ Hier sind [einige weitere Beispiele](https://online.stat.psu.edu/stat501/lesson/9/9.8) von Daten, die eine polynomiale Regression verwenden könnten. +✅ Hier sind [einige weitere Beispiele](https://online.stat.psu.edu/stat501/lesson/9/9.8) für Daten, die polynomiale Regression verwenden könnten. -Werfen Sie einen weiteren Blick auf die Beziehung zwischen Datum und Preis. Sieht dieses Streudiagramm so aus, als sollte es unbedingt durch eine gerade Linie analysiert werden? Können die Preise nicht schwanken? In diesem Fall können Sie eine polynomiale Regression versuchen. +Betrachten Sie erneut die Beziehung zwischen Datum und Preis. Sieht dieses Streudiagramm so aus, als sollte es unbedingt durch eine gerade Linie analysiert werden? Können Preise nicht schwanken? In diesem Fall können Sie polynomiale Regression ausprobieren. ✅ Polynome sind mathematische Ausdrücke, die aus einer oder mehreren Variablen und Koeffizienten bestehen können. -Die polynomiale Regression erstellt eine gekrümmte Linie, um nichtlineare Daten besser anzupassen. In unserem Fall sollten wir in der Lage sein, unsere Daten mit einer parabolischen Kurve anzupassen, wenn wir eine quadrierte `DayOfYear`-Variable in die Eingabedaten aufnehmen, die an einem bestimmten Punkt im Jahr ein Minimum hat. +Die polynomiale Regression erstellt eine gekrümmte Linie, um nichtlineare Daten besser anzupassen. In unserem Fall sollten wir, wenn wir eine quadrierte `DayOfYear`-Variable in die Eingabedaten aufnehmen, unsere Daten mit einer parabolischen Kurve anpassen können, die zu einem bestimmten Zeitpunkt im Jahr ein Minimum erreicht. -Scikit-learn enthält eine hilfreiche [Pipeline-API](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html?highlight=pipeline#sklearn.pipeline.make_pipeline), um verschiedene Schritte der Datenverarbeitung zu kombinieren. Eine **Pipeline** ist eine Kette von **Schätzern**. In unserem Fall werden wir eine Pipeline erstellen, die zuerst polynomiale Merkmale zu unserem Modell hinzufügt und dann die Regression trainiert: +Scikit-learn enthält eine hilfreiche [Pipeline-API](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html?highlight=pipeline#sklearn.pipeline.make_pipeline), um verschiedene Schritte der Datenverarbeitung zu kombinieren. Eine **Pipeline** ist eine Kette von **Schätzern**. In unserem Fall erstellen wir eine Pipeline, die zuerst polynomiale Merkmale zu unserem Modell hinzufügt und dann die Regression trainiert: ```python from sklearn.preprocessing import PolynomialFeatures @@ -244,36 +252,36 @@ pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) pipeline.fit(X_train,y_train) ``` -Durch die Verwendung von `PolynomialFeatures(2)` means that we will include all second-degree polynomials from the input data. In our case it will just mean `DayOfYear`2, but given two input variables X and Y, this will add X2, XY and Y2. We may also use higher degree polynomials if we want. +Die Verwendung von `PolynomialFeatures(2)` bedeutet, dass wir alle Polynome zweiten Grades aus den Eingabedaten einbeziehen. In unserem Fall bedeutet das einfach `DayOfYear`2, aber bei zwei Eingabevariablen X und Y fügt dies X2, XY und Y2 hinzu. Wir können auch Polynome höheren Grades verwenden, wenn wir möchten. -Pipelines can be used in the same manner as the original `LinearRegression` object, i.e. we can `fit` the pipeline, and then use `predict` to get the prediction results. Here is the graph showing test data, and the approximation curve: +Pipelines können genauso verwendet werden wie das ursprüngliche `LinearRegression`-Objekt, d. h. wir können die Pipeline `fit`ten und dann `predict` verwenden, um die Vorhersageergebnisse zu erhalten. Hier ist das Diagramm, das Testdaten und die Annäherungskurve zeigt: -Polynomial regression +Polynomiale Regression -Using Polynomial Regression, we can get slightly lower MSE and higher determination, but not significantly. We need to take into account other features! +Mit der polynomialen Regression können wir einen etwas niedrigeren MSE und einen höheren Bestimmtheitskoeffizienten erzielen, aber nicht signifikant. Wir müssen andere Merkmale berücksichtigen! -> You can see that the minimal pumpkin prices are observed somewhere around Halloween. How can you explain this? +> Sie können sehen, dass die minimalen Kürbispreise irgendwo um Halloween beobachtet werden. Wie können Sie das erklären? -🎃 Congratulations, you just created a model that can help predict the price of pie pumpkins. You can probably repeat the same procedure for all pumpkin types, but that would be tedious. Let's learn now how to take pumpkin variety into account in our model! +🎃 Herzlichen Glückwunsch, Sie haben gerade ein Modell erstellt, das helfen kann, den Preis von Kürbissen für Kuchen vorherzusagen. Sie können wahrscheinlich dasselbe Verfahren für alle Kürbissorten wiederholen, aber das wäre mühsam. Lernen wir jetzt, wie man Kürbissorten in unser Modell einbezieht! -## Categorical Features +## Kategorische Merkmale -In the ideal world, we want to be able to predict prices for different pumpkin varieties using the same model. However, the `Variety` column is somewhat different from columns like `Month`, because it contains non-numeric values. Such columns are called **categorical**. +In der idealen Welt möchten wir in der Lage sein, Preise für verschiedene Kürbissorten mit demselben Modell vorherzusagen. Die Spalte `Variety` unterscheidet sich jedoch etwas von Spalten wie `Month`, da sie nicht-numerische Werte enthält. Solche Spalten werden als **kategorisch** bezeichnet. -[![ML for beginners - Categorical Feature Predictions with Linear Regression](https://img.youtube.com/vi/DYGliioIAE0/0.jpg)](https://youtu.be/DYGliioIAE0 "ML for beginners - Categorical Feature Predictions with Linear Regression") +[![ML für Anfänger - Kategorische Merkmalsvorhersagen mit linearer Regression](https://img.youtube.com/vi/DYGliioIAE0/0.jpg)](https://youtu.be/DYGliioIAE0 "ML für Anfänger - Kategorische Merkmalsvorhersagen mit linearer Regression") -> 🎥 Click the image above for a short video overview of using categorical features. +> 🎥 Klicken Sie auf das Bild oben für eine kurze Videoübersicht zur Verwendung kategorischer Merkmale. -Here you can see how average price depends on variety: +Hier können Sie sehen, wie der Durchschnittspreis von der Sorte abhängt: -Average price by variety +Durchschnittspreis nach Sorte -To take variety into account, we first need to convert it to numeric form, or **encode** it. There are several way we can do it: +Um die Sorte zu berücksichtigen, müssen wir sie zuerst in numerische Form umwandeln, oder **codieren**. Es gibt mehrere Möglichkeiten, dies zu tun: -* Simple **numeric encoding** will build a table of different varieties, and then replace the variety name by an index in that table. This is not the best idea for linear regression, because linear regression takes the actual numeric value of the index, and adds it to the result, multiplying by some coefficient. In our case, the relationship between the index number and the price is clearly non-linear, even if we make sure that indices are ordered in some specific way. -* **One-hot encoding** will replace the `Variety` column by 4 different columns, one for each variety. Each column will contain `1` if the corresponding row is of a given variety, and `0` anders. Das bedeutet, dass es vier Koeffizienten in der linearen Regression geben wird, einen für jede Kürbissorte, die für den "Startpreis" (oder eher "zusätzlichen Preis") für diese spezielle Sorte verantwortlich ist. +* Einfache **numerische Codierung** erstellt eine Tabelle mit verschiedenen Sorten und ersetzt dann den Sortennamen durch einen Index in dieser Tabelle. Dies ist keine gute Idee für die lineare Regression, da die lineare Regression den tatsächlichen numerischen Wert des Index nimmt und ihn mit einem Koeffizienten multipliziert, um ihn zum Ergebnis hinzuzufügen. In unserem Fall ist die Beziehung zwischen der Indexnummer und dem Preis eindeutig nicht linear, selbst wenn wir sicherstellen, dass die Indizes in einer bestimmten Reihenfolge angeordnet sind. +* **One-hot-Codierung** ersetzt die Spalte `Variety` durch 4 verschiedene Spalten, eine für jede Sorte. Jede Spalte enthält `1`, wenn die entsprechende Zeile einer bestimmten Sorte entspricht, und `0` andernfalls. Das bedeutet, dass es in der linearen Regression vier Koeffizienten gibt, einen für jede Kürbissorte, die für den "Startpreis" (oder eher "Zusatzpreis") für diese bestimmte Sorte verantwortlich sind. -Der folgende Code zeigt, wie wir eine Sorten-Einmalcodierung durchführen können: +Der folgende Code zeigt, wie wir eine Sorte one-hot codieren können: ```python pd.get_dummies(new_pumpkins['Variety']) @@ -290,14 +298,14 @@ pd.get_dummies(new_pumpkins['Variety']) 1741 | 0 | 1 | 0 | 0 1742 | 0 | 1 | 0 | 0 -Um die lineare Regression mit der einmal codierten Sorte als Eingabe zu trainieren, müssen wir nur die `X` and `y`-Daten korrekt initialisieren: +Um die lineare Regression mit einer one-hot codierten Sorte als Eingabe zu trainieren, müssen wir nur die `X`- und `y`-Daten korrekt initialisieren: ```python X = pd.get_dummies(new_pumpkins['Variety']) y = new_pumpkins['Price'] ``` -Der Rest des Codes ist derselbe wie der, den wir oben verwendet haben, um die lineare Regression zu trainieren. Wenn Sie es versuchen, werden Sie sehen, dass der mittlere quadratische Fehler ungefähr gleich ist, aber wir erhalten einen viel höheren Bestimmtheitskoeffizienten (~77%). Um noch genauere Vorhersagen zu erhalten, können wir mehr kategoriale Merkmale sowie numerische Merkmale wie `Month` or `DayOfYear`. To get one large array of features, we can use `join` berücksichtigen: +Der Rest des Codes ist derselbe wie der, den wir oben verwendet haben, um die lineare Regression zu trainieren. Wenn Sie es ausprobieren, werden Sie sehen, dass der mittlere quadratische Fehler ungefähr gleich bleibt, aber wir erhalten einen viel höheren Bestimmtheitskoeffizienten (~77 %). Um noch genauere Vorhersagen zu erhalten, können wir mehr kategorische Merkmale sowie numerische Merkmale wie `Month` oder `DayOfYear` berücksichtigen. Um ein großes Array von Merkmalen zu erhalten, können wir `join` verwenden: ```python X = pd.get_dummies(new_pumpkins['Variety']) \ @@ -307,11 +315,11 @@ X = pd.get_dummies(new_pumpkins['Variety']) \ y = new_pumpkins['Price'] ``` -Hier berücksichtigen wir auch den `City` and `Package`-Typ, was uns MSE 2.84 (10%) und eine Bestimmung von 0.94 gibt! +Hier berücksichtigen wir auch `City` und `Package`-Typ, was uns einen MSE von 2,84 (10 %) und einen Bestimmtheitskoeffizienten von 0,94 gibt! -## Alles zusammenbringen +## Alles zusammenführen -Um das beste Modell zu erstellen, können wir kombinierte (einmal codierte kategoriale + numerische) Daten aus dem obigen Beispiel zusammen mit der polynomialen Regression verwenden. Hier ist der vollständige Code zu Ihrer Bequemlichkeit: +Um das beste Modell zu erstellen, können wir kombinierte (one-hot codierte kategorische + numerische) Daten aus dem obigen Beispiel zusammen mit polynomialer Regression verwenden. Hier ist der vollständige Code zu Ihrer Bequemlichkeit: ```python # set up training data @@ -339,32 +347,34 @@ score = pipeline.score(X_train,y_train) print('Model determination: ', score) ``` -Das sollte uns den besten Bestimmtheitskoeffizienten von fast 97% und MSE=2.23 (~8% Vorhersagefehler) geben. +Dies sollte uns den besten Bestimmtheitskoeffizienten von fast 97 % und MSE=2,23 (~8 % Vorhersagefehler) geben. -| Modell | MSE | Bestimmung | -|-------|-----|---------------| -| `DayOfYear` Linear | 2.77 (17.2%) | 0.07 | -| `DayOfYear` Polynomial | 2.73 (17.0%) | 0.08 | -| `Variety` Linear | 5.24 (19.7%) | 0.77 | -| Alle Merkmale Linear | 2.84 (10.5%) | 0.94 | -| Alle Merkmale Polynomial | 2.23 (8.25%) | 0.97 | +| Modell | MSE | Bestimmtheitskoeffizient | +|-------|-----|---------------------------| +| `DayOfYear` Linear | 2,77 (17,2 %) | 0,07 | +| `DayOfYear` Polynomial | 2,73 (17,0 %) | 0,08 | +| `Variety` Linear | 5,24 (19,7 %) | 0,77 | +| Alle Merkmale Linear | 2,84 (10,5 %) | 0,94 | +| Alle Merkmale Polynomial | 2,23 (8,25 %) | 0,97 | -🏆 Gut gemacht! Sie haben vier Regressionsmodelle in einer Lektion erstellt und die Modellqualität auf 97% verbessert. Im letzten Abschnitt zur Regression werden Sie über logistische Regression lernen, um Kategorien zu bestimmen. +🏆 Gut gemacht! Sie haben in einer Lektion vier Regressionsmodelle erstellt und die Modellqualität auf 97 % verbessert. Im letzten Abschnitt zur Regression lernen Sie die logistische Regression kennen, um Kategorien zu bestimmen. --- -## 🚀Herausforderung +## 🚀 Herausforderung -Testen Sie mehrere verschiedene Variablen in diesem Notebook, um zu sehen, wie die Korrelation mit der Modellgenauigkeit übereinstimmt. +Testen Sie mehrere verschiedene Variablen in diesem Notebook, um zu sehen, wie die Korrelation mit der Modellgenauigkeit zusammenhängt. -## [Nachlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/) +## [Quiz nach der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/) ## Überprüfung & Selbststudium -In dieser Lektion haben wir über lineare Regression gelernt. Es gibt andere wichtige Arten von Regression. Lesen Sie über Schrittweise, Ridge, Lasso und Elasticnet-Techniken. Ein guter Kurs, um mehr zu lernen, ist der [Stanford Statistical Learning-Kurs](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning) +In dieser Lektion haben wir über lineare Regression gelernt. Es gibt andere wichtige Arten der Regression. Lesen Sie über Stepwise-, Ridge-, Lasso- und Elasticnet-Techniken. Ein guter Kurs, um mehr zu lernen, ist der [Stanford Statistical Learning Kurs](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning). -## Aufgabe +## Aufgabe -[Ein Modell erstellen](assignment.md) +[Erstellen Sie ein Modell](assignment.md) + +--- **Haftungsausschluss**: -Dieses Dokument wurde mithilfe von KI-gestützten Übersetzungsdiensten maschinell übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung resultieren. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/2-Regression/3-Linear/assignment.md b/translations/de/2-Regression/3-Linear/assignment.md index e8c60f01e..5d34a77f1 100644 --- a/translations/de/2-Regression/3-Linear/assignment.md +++ b/translations/de/2-Regression/3-Linear/assignment.md @@ -1,14 +1,25 @@ + # Erstellen eines Regressionsmodells ## Anweisungen -In dieser Lektion haben Sie gelernt, wie man ein Modell mit linearer und polynomialer Regression erstellt. Nutzen Sie dieses Wissen, um einen Datensatz zu finden oder eines der integrierten Sets von Scikit-learn zu verwenden, um ein neues Modell zu erstellen. Erklären Sie in Ihrem Notizbuch, warum Sie die gewählte Technik verwendet haben, und demonstrieren Sie die Genauigkeit Ihres Modells. Wenn es nicht genau ist, erklären Sie warum. +In dieser Lektion wurde gezeigt, wie man ein Modell mit sowohl linearer als auch polynomialer Regression erstellt. Nutzen Sie dieses Wissen, um einen Datensatz zu finden oder einen der integrierten Datensätze von Scikit-learn zu verwenden, um ein neues Modell zu erstellen. Erklären Sie in Ihrem Notebook, warum Sie die gewählte Technik verwendet haben, und demonstrieren Sie die Genauigkeit Ihres Modells. Falls es nicht genau ist, erklären Sie, warum. -## Bewertungsrichtlinien +## Bewertungskriterien -| Kriterien | Hervorragend | Angemessen | Verbesserungsbedarf | -| --------- | ---------------------------------------------------------- | ------------------------- | ------------------------------- | -| | präsentiert ein vollständiges Notizbuch mit einer gut dokumentierten Lösung | die Lösung ist unvollständig | die Lösung ist fehlerhaft oder hat Bugs | +| Kriterien | Vorbildlich | Angemessen | Verbesserungswürdig | +| --------- | ------------------------------------------------------------ | -------------------------- | ------------------------------- | +| | präsentiert ein vollständiges Notebook mit einer gut dokumentierten Lösung | die Lösung ist unvollständig | die Lösung ist fehlerhaft oder fehleranfällig | + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, sollten Sie beachten, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/2-Regression/3-Linear/notebook.ipynb b/translations/de/2-Regression/3-Linear/notebook.ipynb new file mode 100644 index 000000000..203f1b3a8 --- /dev/null +++ b/translations/de/2-Regression/3-Linear/notebook.ipynb @@ -0,0 +1,128 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Kürbispreise\n", + "\n", + "Lade die benötigten Bibliotheken und den Datensatz. Konvertiere die Daten in ein DataFrame, das einen Teil der Daten enthält:\n", + "\n", + "- Nur Kürbisse auswählen, die pro Scheffel bepreist sind\n", + "- Das Datum in einen Monat umwandeln\n", + "- Den Preis als Durchschnitt aus Höchst- und Tiefstpreisen berechnen\n", + "- Den Preis so umrechnen, dass er die Bepreisung pro Scheffelmenge widerspiegelt\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ein einfaches Streudiagramm erinnert uns daran, dass wir nur Monatsdaten von August bis Dezember haben. Wir benötigen wahrscheinlich mehr Daten, um Schlussfolgerungen auf lineare Weise ziehen zu können.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.scatter('Month','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "plt.scatter('DayOfYear','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "b032d371c75279373507f003439a577e", + "translation_date": "2025-09-04T01:02:01+00:00", + "source_file": "2-Regression/3-Linear/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/de/2-Regression/3-Linear/solution/Julia/README.md b/translations/de/2-Regression/3-Linear/solution/Julia/README.md index 7aafb5173..daf853981 100644 --- a/translations/de/2-Regression/3-Linear/solution/Julia/README.md +++ b/translations/de/2-Regression/3-Linear/solution/Julia/README.md @@ -1,6 +1,15 @@ -Dies ist ein temporärer PlatzhalterBitte schreiben Sie die Ausgabe von links nach rechts. + -Dies ist ein temporärer Platzhalter + +--- **Haftungsausschluss**: -Dieses Dokument wurde mithilfe von KI-gestützten Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, sollten Sie beachten, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb b/translations/de/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb new file mode 100644 index 000000000..f4caacab7 --- /dev/null +++ b/translations/de/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb @@ -0,0 +1,1084 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_3-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "5015d65d61ba75a223bfc56c273aa174", + "translation_date": "2025-09-04T01:13:39+00:00", + "source_file": "2-Regression/3-Linear/solution/R/lesson_3-R.ipynb", + "language_code": "de" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "EgQw8osnsUV-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Lineare und polynomiale Regression für Kürbispreise - Lektion 3\n", + "

\n", + " \n", + "

Infografik von Dasani Madipalli
\n", + "\n", + "\n", + "#### Einführung\n", + "\n", + "Bisher hast du untersucht, was Regression ist, anhand von Beispieldaten aus dem Kürbispreis-Datensatz, den wir in dieser Lektion verwenden werden. Du hast sie auch mit `ggplot2` visualisiert. 💪\n", + "\n", + "Jetzt bist du bereit, tiefer in die Regression für maschinelles Lernen einzutauchen. In dieser Lektion wirst du mehr über zwei Arten der Regression lernen: *einfache lineare Regression* und *polynomiale Regression*, zusammen mit einigen mathematischen Grundlagen dieser Techniken.\n", + "\n", + "> Im gesamten Lehrplan gehen wir von minimalen mathematischen Kenntnissen aus und versuchen, das Thema für Studierende aus anderen Bereichen zugänglich zu machen. Achte daher auf Hinweise, 🧮 Erläuterungen, Diagramme und andere Lernhilfen, die das Verständnis erleichtern.\n", + "\n", + "#### Vorbereitung\n", + "\n", + "Zur Erinnerung: Du lädst diese Daten, um Fragen dazu zu stellen.\n", + "\n", + "- Wann ist der beste Zeitpunkt, Kürbisse zu kaufen?\n", + "\n", + "- Welchen Preis kann ich für eine Kiste mit Miniaturkürbissen erwarten?\n", + "\n", + "- Sollte ich sie in halben Scheffelkörben oder in einer 1 1/9 Scheffelbox kaufen? Lass uns weiter in diese Daten eintauchen.\n", + "\n", + "In der vorherigen Lektion hast du ein `tibble` (eine moderne Neuinterpretation des Dataframes) erstellt und es mit einem Teil des ursprünglichen Datensatzes gefüllt, wobei du die Preise standardisiert nach Scheffel angegeben hast. Dadurch konntest du jedoch nur etwa 400 Datenpunkte sammeln, und das nur für die Herbstmonate. Vielleicht können wir durch eine gründlichere Bereinigung der Daten mehr Details über die Natur der Daten erhalten? Mal sehen... 🕵️‍♀️\n", + "\n", + "Für diese Aufgabe benötigen wir die folgenden Pakete:\n", + "\n", + "- `tidyverse`: Das [tidyverse](https://www.tidyverse.org/) ist eine [Sammlung von R-Paketen](https://www.tidyverse.org/packages), die Datenwissenschaft schneller, einfacher und unterhaltsamer macht!\n", + "\n", + "- `tidymodels`: Das [tidymodels](https://www.tidymodels.org/) Framework ist eine [Sammlung von Paketen](https://www.tidymodels.org/packages/) für Modellierung und maschinelles Lernen.\n", + "\n", + "- `janitor`: Das [janitor-Paket](https://github.com/sfirke/janitor) bietet einfache kleine Werkzeuge zur Untersuchung und Bereinigung von unordentlichen Daten.\n", + "\n", + "- `corrplot`: Das [corrplot-Paket](https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html) bietet ein visuelles Explorationswerkzeug für Korrelationsmatrizen, das die automatische Neuordnung von Variablen unterstützt, um versteckte Muster zwischen Variablen zu erkennen.\n", + "\n", + "Du kannst sie wie folgt installieren:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"corrplot\"))`\n", + "\n", + "Das untenstehende Skript überprüft, ob du die für dieses Modul benötigten Pakete hast, und installiert sie für dich, falls sie fehlen.\n" + ], + "metadata": { + "id": "WqQPS1OAsg3H" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, corrplot)" + ], + "outputs": [], + "metadata": { + "id": "tA4C2WN3skCf", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "c06cd805-5534-4edc-f72b-d0d1dab96ac0" + } + }, + { + "cell_type": "markdown", + "source": [ + "Wir werden später diese großartigen Pakete laden und sie in unserer aktuellen R-Sitzung verfügbar machen. (Das dient nur zur Veranschaulichung, `pacman::p_load()` hat das bereits für Sie erledigt.)\n", + "\n", + "## 1. Eine lineare Regressionslinie\n", + "\n", + "Wie Sie in Lektion 1 gelernt haben, besteht das Ziel einer linearen Regression darin, eine *Linie* *der* *besten Anpassung* zu zeichnen, um:\n", + "\n", + "- **Variable Beziehungen zu zeigen**. Die Beziehung zwischen Variablen darzustellen.\n", + "\n", + "- **Vorhersagen zu treffen**. Präzise Vorhersagen darüber zu machen, wo ein neuer Datenpunkt im Verhältnis zu dieser Linie liegen würde.\n", + "\n", + "Um diese Art von Linie zu zeichnen, verwenden wir eine statistische Technik namens **Least-Squares Regression**. Der Begriff `least-squares` bedeutet, dass alle Datenpunkte um die Regressionslinie herum quadriert und dann addiert werden. Idealerweise ist diese endgültige Summe so klein wie möglich, da wir eine geringe Anzahl von Fehlern oder `least-squares` anstreben. Die Linie der besten Anpassung ist daher die Linie, die uns den niedrigsten Wert für die Summe der quadrierten Fehler liefert – daher der Name *Least-Squares Regression*.\n", + "\n", + "Wir tun dies, weil wir eine Linie modellieren möchten, die die geringste kumulative Entfernung von all unseren Datenpunkten hat. Wir quadrieren die Terme vor dem Addieren, da uns die Größe und nicht die Richtung interessiert.\n", + "\n", + "> **🧮 Zeig mir die Mathematik**\n", + ">\n", + "> Diese Linie, genannt *Linie der besten Anpassung*, kann durch [eine Gleichung](https://en.wikipedia.org/wiki/Simple_linear_regression) ausgedrückt werden:\n", + ">\n", + "> Y = a + bX\n", + ">\n", + "> `X` ist die '`erklärende Variable` oder `Prädiktor`'. `Y` ist die '`abhängige Variable` oder `Ergebnis`'. Die Steigung der Linie ist `b` und `a` ist der y-Achsenabschnitt, der den Wert von `Y` angibt, wenn `X = 0`.\n", + ">\n", + "\n", + "> ![](../../../../../../2-Regression/3-Linear/solution/images/slope.png \"Steigung = $y/x$\")\n", + " Infografik von Jen Looper\n", + ">\n", + "> Zuerst berechnen wir die Steigung `b`.\n", + ">\n", + "> Anders ausgedrückt, und bezogen auf die ursprüngliche Frage zu unseren Kürbisdaten: \"den Preis eines Kürbisses pro Scheffel nach Monat vorhersagen\", würde `X` den Preis und `Y` den Verkaufsmonat darstellen.\n", + ">\n", + "> ![](../../../../../../translated_images/calculation.989aa7822020d9d0ba9fc781f1ab5192f3421be86ebb88026528aef33c37b0d8.de.png)\n", + " Infografik von Jen Looper\n", + "> \n", + "> Berechnen Sie den Wert von Y. Wenn Sie etwa 4 \\$ zahlen, muss es April sein!\n", + ">\n", + "> Die Mathematik, die die Linie berechnet, muss die Steigung der Linie demonstrieren, die auch vom Achsenabschnitt abhängt, oder wo `Y` liegt, wenn `X = 0`.\n", + ">\n", + "> Sie können die Methode zur Berechnung dieser Werte auf der Website [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html) beobachten. Besuchen Sie auch [diesen Least-Squares-Rechner](https://www.mathsisfun.com/data/least-squares-calculator.html), um zu sehen, wie die Werte der Zahlen die Linie beeinflussen.\n", + "\n", + "Gar nicht so beängstigend, oder? 🤓\n", + "\n", + "#### Korrelation\n", + "\n", + "Ein weiterer Begriff, den Sie verstehen sollten, ist der **Korrelationskoeffizient** zwischen den gegebenen X- und Y-Variablen. Mithilfe eines Streudiagramms können Sie diesen Koeffizienten schnell visualisieren. Ein Diagramm mit Datenpunkten, die in einer ordentlichen Linie angeordnet sind, hat eine hohe Korrelation, während ein Diagramm mit Datenpunkten, die überall zwischen X und Y verstreut sind, eine niedrige Korrelation aufweist.\n", + "\n", + "Ein gutes lineares Regressionsmodell ist eines, das einen hohen (näher an 1 als an 0) Korrelationskoeffizienten mit der Least-Squares Regression-Methode und einer Regressionslinie aufweist.\n" + ], + "metadata": { + "id": "cdX5FRpvsoP5" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **2. Ein Tanz mit Daten: Erstellen eines Dataframes für das Modellieren**\n", + "\n", + "

\n", + " \n", + "

Kunstwerk von @allison_horst
\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "WdUKXk7Bs8-V" + } + }, + { + "cell_type": "markdown", + "source": [ + "Lade die benötigten Bibliotheken und den Datensatz. Konvertiere die Daten in einen Dataframe, der einen Teil der Daten enthält:\n", + "\n", + "- Nur Kürbisse auswählen, die nach Scheffelpreis bewertet sind\n", + "\n", + "- Das Datum in einen Monat umwandeln\n", + "\n", + "- Den Preis als Durchschnitt aus hohen und niedrigen Preisen berechnen\n", + "\n", + "- Den Preis so umrechnen, dass er die Bewertung nach Scheffelmenge widerspiegelt\n", + "\n", + "> Diese Schritte haben wir in der [vorherigen Lektion](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/2-Data/solution/lesson_2-R.ipynb) behandelt.\n" + ], + "metadata": { + "id": "fMCtu2G2s-p8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "library(lubridate)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "ryMVZEEPtERn" + } + }, + { + "cell_type": "markdown", + "source": [ + "Im Geiste des reinen Abenteuers lassen Sie uns das [`janitor package`](../../../../../../2-Regression/3-Linear/solution/R/github.com/sfirke/janitor) erkunden, das einfache Funktionen zum Untersuchen und Bereinigen von unordentlichen Daten bietet. Zum Beispiel werfen wir einen Blick auf die Spaltennamen unserer Daten:\n" + ], + "metadata": { + "id": "xcNxM70EtJjb" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "5XtpaIigtPfW" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤔 Wir können es besser machen. Lassen Sie uns diese Spaltennamen `friendR` machen, indem wir sie mit der [snake_case](https://de.wikipedia.org/wiki/Snake_case)-Konvention mit `janitor::clean_names` umwandeln. Um mehr über diese Funktion zu erfahren: `?clean_names`\n" + ], + "metadata": { + "id": "IbIqrMINtSHe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Clean names to the snake_case convention\n", + "pumpkins <- pumpkins %>% \n", + " clean_names(case = \"snake\")\n", + "\n", + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "a2uYvclYtWvX" + } + }, + { + "cell_type": "markdown", + "source": [ + "Viel tidyR 🧹! Jetzt ein Tanz mit den Daten, wie in der vorherigen Lektion, mit `dplyr`! 💃\n" + ], + "metadata": { + "id": "HfhnuzDDtaDd" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(variety, city_name, package, low_price, high_price, date)\n", + "\n", + "\n", + "\n", + "# Extract the month from the dates to a new column\n", + "pumpkins <- pumpkins %>%\n", + " mutate(date = mdy(date),\n", + " month = month(date)) %>% \n", + " select(-date)\n", + "\n", + "\n", + "\n", + "# Create a new column for average Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(price = (low_price + high_price)/2)\n", + "\n", + "\n", + "# Retain only pumpkins with the string \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(string = package, pattern = \"bushel\"))\n", + "\n", + "\n", + "# Normalize the pricing so that you show the pricing per bushel, not per 1 1/9 or 1/2 bushel\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(price = case_when(\n", + " str_detect(package, \"1 1/9\") ~ price/(1.1),\n", + " str_detect(package, \"1/2\") ~ price*2,\n", + " TRUE ~ price))\n", + "\n", + "# Relocate column positions\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(month, .before = variety)\n", + "\n", + "\n", + "# Display the first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "X0wU3gQvtd9f" + } + }, + { + "cell_type": "markdown", + "source": [ + "Gute Arbeit! 👌 Du hast jetzt einen sauberen, aufgeräumten Datensatz, mit dem du dein neues Regressionsmodell erstellen kannst!\n", + "\n", + "Wie wäre es mit einem Streudiagramm?\n" + ], + "metadata": { + "id": "UpaIwaxqth82" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set theme\n", + "theme_set(theme_light())\n", + "\n", + "# Make a scatter plot of month and price\n", + "new_pumpkins %>% \n", + " ggplot(mapping = aes(x = month, y = price)) +\n", + " geom_point(size = 1.6)\n" + ], + "outputs": [], + "metadata": { + "id": "DXgU-j37tl5K" + } + }, + { + "cell_type": "markdown", + "source": [ + "Ein Streudiagramm erinnert uns daran, dass wir nur Monatsdaten von August bis Dezember haben. Wir benötigen wahrscheinlich mehr Daten, um Schlussfolgerungen auf eine lineare Weise ziehen zu können.\n", + "\n", + "Werfen wir erneut einen Blick auf unsere Modellierungsdaten:\n" + ], + "metadata": { + "id": "Ve64wVbwtobI" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Display first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "HFQX2ng1tuSJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "Was wäre, wenn wir den `Preis` eines Kürbisses basierend auf den Spalten `Stadt` oder `Paket`, die vom Typ Zeichenkette sind, vorhersagen wollten? Oder noch einfacher, wie könnten wir die Korrelation (die erfordert, dass beide Eingaben numerisch sind) zwischen beispielsweise `Paket` und `Preis` finden? 🤷🤷\n", + "\n", + "Maschinelle Lernmodelle funktionieren am besten mit numerischen Merkmalen anstelle von Textwerten, daher müssen kategorische Merkmale in der Regel in numerische Darstellungen umgewandelt werden.\n", + "\n", + "Das bedeutet, dass wir einen Weg finden müssen, unsere Prädiktoren so umzuformatieren, dass sie für ein Modell effektiver nutzbar sind – ein Prozess, der als `Feature Engineering` bekannt ist.\n" + ], + "metadata": { + "id": "7hsHoxsStyjJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Vorverarbeitung von Daten für die Modellierung mit Recipes 👩‍🍳👨‍🍳\n", + "\n", + "Aktivitäten, die Prädiktorwerte umformatieren, um sie für ein Modell effektiver nutzbar zu machen, werden als `Feature Engineering` bezeichnet.\n", + "\n", + "Verschiedene Modelle haben unterschiedliche Anforderungen an die Vorverarbeitung. Zum Beispiel erfordert die Methode der kleinsten Quadrate die `Kodierung kategorischer Variablen` wie Monat, Sorte und Stadtname. Dies bedeutet einfach, dass eine Spalte mit `kategorischen Werten` in eine oder mehrere `numerische Spalten` übersetzt wird, die die ursprüngliche Spalte ersetzen.\n", + "\n", + "Angenommen, Ihre Daten enthalten die folgende kategorische Variable:\n", + "\n", + "| Stadt |\n", + "|:--------:|\n", + "| Denver |\n", + "| Nairobi |\n", + "| Tokio |\n", + "\n", + "Sie können *ordinale Kodierung* anwenden, um jeder Kategorie einen eindeutigen Ganzzahlwert zuzuweisen, wie folgt:\n", + "\n", + "| Stadt |\n", + "|:-----:|\n", + "| 0 |\n", + "| 1 |\n", + "| 2 |\n", + "\n", + "Und genau das werden wir mit unseren Daten machen!\n", + "\n", + "In diesem Abschnitt werden wir ein weiteres großartiges Tidymodels-Paket erkunden: [recipes](https://tidymodels.github.io/recipes/) - das entwickelt wurde, um Ihnen bei der Vorverarbeitung Ihrer Daten **vor** dem Training Ihres Modells zu helfen. Im Kern ist ein Recipe ein Objekt, das definiert, welche Schritte auf einen Datensatz angewendet werden sollen, um ihn für die Modellierung vorzubereiten.\n", + "\n", + "Nun erstellen wir ein Recipe, das unsere Daten für die Modellierung vorbereitet, indem es für alle Beobachtungen in den Prädiktorspalten einen eindeutigen Ganzzahlwert ersetzt:\n" + ], + "metadata": { + "id": "AD5kQbcvt3Xl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\n", + "pumpkins_recipe <- recipe(price ~ ., data = new_pumpkins) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "# Print out the recipe\n", + "pumpkins_recipe" + ], + "outputs": [], + "metadata": { + "id": "BNaFKXfRt9TU" + } + }, + { + "cell_type": "markdown", + "source": [ + "Super! 👏 Wir haben gerade unser erstes Rezept erstellt, das ein Ergebnis (Preis) und die dazugehörigen Prädiktoren spezifiziert und alle Prädiktorspalten in eine Menge von Ganzzahlen kodiert 🙌! Lass uns das schnell aufschlüsseln:\n", + "\n", + "- Der Aufruf von `recipe()` mit einer Formel teilt dem Rezept die *Rollen* der Variablen mit, wobei die Daten aus `new_pumpkins` als Referenz verwendet werden. Zum Beispiel wurde der `price`-Spalte die Rolle `outcome` zugewiesen, während die restlichen Spalten die Rolle `predictor` erhalten haben.\n", + "\n", + "- `step_integer(all_predictors(), zero_based = TRUE)` gibt an, dass alle Prädiktoren in eine Menge von Ganzzahlen umgewandelt werden sollen, wobei die Nummerierung bei 0 beginnt.\n", + "\n", + "Wir sind sicher, dass du dir gerade Gedanken machst wie: \"Das ist so cool!! Aber was, wenn ich überprüfen möchte, ob die Rezepte genau das tun, was ich von ihnen erwarte? 🤔\"\n", + "\n", + "Das ist ein großartiger Gedanke! Siehst du, sobald dein Rezept definiert ist, kannst du die Parameter schätzen, die erforderlich sind, um die Daten tatsächlich vorzubereiten, und dann die verarbeiteten Daten extrahieren. Normalerweise musst du das nicht tun, wenn du Tidymodels verwendest (wir werden gleich die übliche Vorgehensweise sehen -> `workflows`), aber es kann nützlich sein, wenn du eine Art Plausibilitätsprüfung durchführen möchtest, um sicherzustellen, dass die Rezepte das tun, was du erwartest.\n", + "\n", + "Dafür brauchst du zwei weitere Verben: `prep()` und `bake()`. Und wie immer helfen dir unsere kleinen R-Freunde von [`Allison Horst`](https://github.com/allisonhorst/stats-illustrations) dabei, das besser zu verstehen!\n", + "\n", + "

\n", + " \n", + "

Kunstwerk von @allison_horst
\n" + ], + "metadata": { + "id": "KEiO0v7kuC9O" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`prep()`](https://recipes.tidymodels.org/reference/prep.html): schätzt die erforderlichen Parameter aus einem Trainingssatz, die später auf andere Datensätze angewendet werden können. Zum Beispiel, für eine gegebene Prädiktorspalte, welche Beobachtung wird der Ganzzahl 0, 1, 2 usw. zugewiesen.\n", + "\n", + "[`bake()`](https://recipes.tidymodels.org/reference/bake.html): nimmt ein vorbereitetes Rezept und wendet die Operationen auf jeden beliebigen Datensatz an.\n", + "\n", + "Das gesagt, lassen Sie uns unsere Rezepte vorbereiten und anwenden, um wirklich zu bestätigen, dass die Prädiktorspalten im Hintergrund zuerst kodiert werden, bevor ein Modell angepasst wird.\n" + ], + "metadata": { + "id": "Q1xtzebuuTCP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep the recipe\n", + "pumpkins_prep <- prep(pumpkins_recipe)\n", + "\n", + "# Bake the recipe to extract a preprocessed new_pumpkins data\n", + "baked_pumpkins <- bake(pumpkins_prep, new_data = NULL)\n", + "\n", + "# Print out the baked data set\n", + "baked_pumpkins %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "FGBbJbP_uUUn" + } + }, + { + "cell_type": "markdown", + "source": [ + "Woo-hoo!🥳 Die verarbeiteten Daten `baked_pumpkins` haben alle ihre Prädiktoren kodiert, was bestätigt, dass die im Rezept definierten Vorverarbeitungsschritte wie erwartet funktionieren. Das macht es zwar schwieriger für dich zu lesen, aber viel verständlicher für Tidymodels! Nimm dir etwas Zeit, um herauszufinden, welche Beobachtung einer entsprechenden Ganzzahl zugeordnet wurde.\n", + "\n", + "Es ist auch erwähnenswert, dass `baked_pumpkins` ein Dataframe ist, auf dem wir Berechnungen durchführen können.\n", + "\n", + "Zum Beispiel können wir versuchen, eine gute Korrelation zwischen zwei Punkten deiner Daten zu finden, um möglicherweise ein gutes Vorhersagemodell zu erstellen. Dafür verwenden wir die Funktion `cor()`. Gib `?cor()` ein, um mehr über die Funktion zu erfahren.\n" + ], + "metadata": { + "id": "1dvP0LBUueAW" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the correlation between the city_name and the price\n", + "cor(baked_pumpkins$city_name, baked_pumpkins$price)\n", + "\n", + "# Find the correlation between the package and the price\n", + "cor(baked_pumpkins$package, baked_pumpkins$price)\n" + ], + "outputs": [], + "metadata": { + "id": "3bQzXCjFuiSV" + } + }, + { + "cell_type": "markdown", + "source": [ + "Wie sich herausstellt, gibt es nur eine schwache Korrelation zwischen der Stadt und dem Preis. Allerdings gibt es eine etwas stärkere Korrelation zwischen dem Paket und seinem Preis. Das ergibt Sinn, oder? Normalerweise gilt: Je größer die Obst- oder Gemüsekiste, desto höher der Preis.\n", + "\n", + "Während wir schon dabei sind, können wir auch versuchen, eine Korrelationsmatrix aller Spalten mit dem `corrplot`-Paket zu visualisieren.\n" + ], + "metadata": { + "id": "BToPWbgjuoZw" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the corrplot package\n", + "library(corrplot)\n", + "\n", + "# Obtain correlation matrix\n", + "corr_mat <- cor(baked_pumpkins %>% \n", + " # Drop columns that are not really informative\n", + " select(-c(low_price, high_price)))\n", + "\n", + "# Make a correlation plot between the variables\n", + "corrplot(corr_mat, method = \"shade\", shade.col = NA, tl.col = \"black\", tl.srt = 45, addCoef.col = \"black\", cl.pos = \"n\", order = \"original\")" + ], + "outputs": [], + "metadata": { + "id": "ZwAL3ksmutVR" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 Viel besser.\n", + "\n", + "Eine gute Frage, die man jetzt zu diesen Daten stellen könnte, wäre: '`Welchen Preis kann ich für ein bestimmtes Kürbispaket erwarten?`' Lassen Sie uns direkt loslegen!\n", + "\n", + "> Hinweis: Wenn Sie das vorbereitete Rezept **`pumpkins_prep`** mit **`new_data = NULL`** **`bake()`**, extrahieren Sie die verarbeiteten (d.h. kodierten) Trainingsdaten. Wenn Sie ein anderes Datenset hätten, beispielsweise ein Testset, und sehen möchten, wie ein Rezept es vorverarbeiten würde, könnten Sie einfach **`pumpkins_prep`** mit **`new_data = test_set`** backen.\n", + "\n", + "## 4. Erstellen Sie ein lineares Regressionsmodell\n", + "\n", + "

\n", + " \n", + "

Infografik von Dasani Madipalli
\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "YqXjLuWavNxW" + } + }, + { + "cell_type": "markdown", + "source": [ + "Jetzt, da wir ein Rezept erstellt und tatsächlich bestätigt haben, dass die Daten angemessen vorverarbeitet werden, bauen wir nun ein Regressionsmodell, um die folgende Frage zu beantworten: `Welchen Preis kann ich für ein bestimmtes Kürbispaket erwarten?`\n", + "\n", + "#### Trainiere ein lineares Regressionsmodell mit dem Trainingsdatensatz\n", + "\n", + "Wie Sie wahrscheinlich schon herausgefunden haben, ist die Spalte *price* die `Zielvariable`, während die Spalte *package* die `Prädiktorvariable` ist.\n", + "\n", + "Um dies zu tun, werden wir die Daten zunächst so aufteilen, dass 80 % in den Trainings- und 20 % in den Testdatensatz gehen. Anschließend definieren wir ein Rezept, das die Prädiktorspalte in eine Reihe von Ganzzahlen kodiert, und erstellen eine Modellspezifikation. Wir werden unser Rezept nicht vorbereiten und backen, da wir bereits wissen, dass es die Daten wie erwartet vorverarbeitet.\n" + ], + "metadata": { + "id": "Pq0bSzCevW-h" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\n", + "# Split the data into training and test sets\n", + "pumpkins_split <- new_pumpkins %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "\n", + "# Extract training and test data\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "\n", + "\n", + "# Create a recipe for preprocessing the data\n", + "lm_pumpkins_recipe <- recipe(price ~ package, data = pumpkins_train) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "\n", + "# Create a linear model specification\n", + "lm_spec <- linear_reg() %>% \n", + " set_engine(\"lm\") %>% \n", + " set_mode(\"regression\")" + ], + "outputs": [], + "metadata": { + "id": "CyoEh_wuvcLv" + } + }, + { + "cell_type": "markdown", + "source": [ + "Gut gemacht! Jetzt, da wir ein Rezept und eine Modellspezifikation haben, müssen wir eine Möglichkeit finden, diese zusammen in einem Objekt zu bündeln, das zunächst die Daten vorverarbeitet (prep+bake im Hintergrund), das Modell auf den vorverarbeiteten Daten anpasst und auch potenzielle Nachbearbeitungsaktivitäten ermöglicht. Klingt das nicht beruhigend?🤩\n", + "\n", + "In Tidymodels wird dieses praktische Objekt [`workflow`](https://workflows.tidymodels.org/) genannt und enthält bequem alle Modellierungskomponenten! Das ist das, was wir in *Python* als *Pipelines* bezeichnen würden.\n", + "\n", + "Also, lass uns alles in einem Workflow bündeln!📦\n" + ], + "metadata": { + "id": "G3zF_3DqviFJ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Hold modelling components in a workflow\n", + "lm_wf <- workflow() %>% \n", + " add_recipe(lm_pumpkins_recipe) %>% \n", + " add_model(lm_spec)\n", + "\n", + "# Print out the workflow\n", + "lm_wf" + ], + "outputs": [], + "metadata": { + "id": "T3olroU3v-WX" + } + }, + { + "cell_type": "markdown", + "source": [ + "Obendrein kann ein Workflow auf ähnliche Weise angepasst/trainiert werden wie ein Modell.\n" + ], + "metadata": { + "id": "zd1A5tgOwEPX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Train the model\n", + "lm_wf_fit <- lm_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the model coefficients learned \n", + "lm_wf_fit" + ], + "outputs": [], + "metadata": { + "id": "NhJagFumwFHf" + } + }, + { + "cell_type": "markdown", + "source": [ + "Aus den Modellergebnissen können wir die während des Trainings gelernten Koeffizienten sehen. Sie repräsentieren die Koeffizienten der Linie der besten Anpassung, die uns den geringsten Gesamtfehler zwischen der tatsächlichen und der vorhergesagten Variablen liefert.\n", + "\n", + "#### Modellleistung mit dem Testdatensatz bewerten\n", + "\n", + "Es ist Zeit herauszufinden, wie das Modell abgeschnitten hat 📏! Wie machen wir das?\n", + "\n", + "Nachdem wir das Modell trainiert haben, können wir es verwenden, um Vorhersagen für den `test_set` mit `parsnip::predict()` zu treffen. Anschließend können wir diese Vorhersagen mit den tatsächlichen Label-Werten vergleichen, um zu bewerten, wie gut (oder nicht!) das Modell funktioniert.\n", + "\n", + "Beginnen wir damit, Vorhersagen für den Testdatensatz zu machen und die Spalten an den Testdatensatz anzufügen.\n" + ], + "metadata": { + "id": "_4QkGtBTwItF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\n", + "predictions <- lm_wf_fit %>% \n", + " predict(new_data = pumpkins_test)\n", + "\n", + "\n", + "# Bind predictions to the test set\n", + "lm_results <- pumpkins_test %>% \n", + " select(c(package, price)) %>% \n", + " bind_cols(predictions)\n", + "\n", + "\n", + "# Print the first ten rows of the tibble\n", + "lm_results %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "UFZzTG0gwTs9" + } + }, + { + "cell_type": "markdown", + "source": [ + "Ja, Sie haben gerade ein Modell trainiert und verwendet, um Vorhersagen zu treffen! 🔮 Ist es gut? Lassen Sie uns die Leistung des Modells bewerten!\n", + "\n", + "In Tidymodels machen wir das mit `yardstick::metrics()`! Für die lineare Regression konzentrieren wir uns auf die folgenden Metriken:\n", + "\n", + "- `Root Mean Square Error (RMSE)`: Die Quadratwurzel des [MSE](https://en.wikipedia.org/wiki/Mean_squared_error). Dies ergibt eine absolute Metrik in derselben Einheit wie das Label (in diesem Fall der Preis eines Kürbisses). Je kleiner der Wert, desto besser das Modell (vereinfacht gesagt repräsentiert es den durchschnittlichen Betrag, um den die Vorhersagen falsch sind!).\n", + "\n", + "- `Coefficient of Determination (üblicherweise bekannt als R-squared oder R2)`: Eine relative Metrik, bei der ein höherer Wert eine bessere Anpassung des Modells bedeutet. Im Wesentlichen repräsentiert diese Metrik, wie viel der Varianz zwischen vorhergesagten und tatsächlichen Label-Werten das Modell erklären kann.\n" + ], + "metadata": { + "id": "0A5MjzM7wW9M" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Evaluate performance of linear regression\n", + "metrics(data = lm_results,\n", + " truth = price,\n", + " estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "reJ0UIhQwcEH" + } + }, + { + "cell_type": "markdown", + "source": [ + "Da geht die Modellleistung. Mal sehen, ob wir eine bessere Einschätzung bekommen, indem wir ein Streudiagramm der Pakete und Preise visualisieren und dann die Vorhersagen verwenden, um eine Linie der besten Anpassung darüber zu legen.\n", + "\n", + "Das bedeutet, dass wir den Testdatensatz vorbereiten und verarbeiten müssen, um die Paketspalte zu kodieren und diese dann mit den Vorhersagen unseres Modells zu verbinden.\n" + ], + "metadata": { + "id": "fdgjzjkBwfWt" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Encode package column\n", + "package_encode <- lm_pumpkins_recipe %>% \n", + " prep() %>% \n", + " bake(new_data = pumpkins_test) %>% \n", + " select(package)\n", + "\n", + "\n", + "# Bind encoded package column to the results\n", + "lm_results <- lm_results %>% \n", + " bind_cols(package_encode %>% \n", + " rename(package_integer = package)) %>% \n", + " relocate(package_integer, .after = package)\n", + "\n", + "\n", + "# Print new results data frame\n", + "lm_results %>% \n", + " slice_head(n = 5)\n", + "\n", + "\n", + "# Make a scatter plot\n", + "lm_results %>% \n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\n", + " geom_point(size = 1.6) +\n", + " # Overlay a line of best fit\n", + " geom_line(aes(y = .pred), color = \"orange\", size = 1.2) +\n", + " xlab(\"package\")\n", + " \n" + ], + "outputs": [], + "metadata": { + "id": "R0nw719lwkHE" + } + }, + { + "cell_type": "markdown", + "source": [ + "Wie Sie sehen können, generalisiert das lineare Regressionsmodell die Beziehung zwischen einem Paket und seinem entsprechenden Preis nicht besonders gut.\n", + "\n", + "🎃 Herzlichen Glückwunsch, Sie haben gerade ein Modell erstellt, das helfen kann, den Preis einiger Kürbissorten vorherzusagen. Ihr Kürbisfeld für die Feiertage wird wunderschön sein. Aber Sie können wahrscheinlich ein besseres Modell erstellen!\n", + "\n", + "## 5. Erstellen Sie ein polynomiales Regressionsmodell\n", + "\n", + "

\n", + " \n", + "

Infografik von Dasani Madipalli
\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "HOCqJXLTwtWI" + } + }, + { + "cell_type": "markdown", + "source": [ + "Manchmal haben unsere Daten keine lineare Beziehung, aber wir möchten trotzdem ein Ergebnis vorhersagen. Die polynomiale Regression kann uns helfen, Vorhersagen für komplexere nicht-lineare Beziehungen zu treffen.\n", + "\n", + "Nehmen wir zum Beispiel die Beziehung zwischen Verpackung und Preis in unserem Kürbis-Datensatz. Während es manchmal eine lineare Beziehung zwischen Variablen gibt – je größer der Kürbis im Volumen, desto höher der Preis – können diese Beziehungen manchmal nicht als Ebene oder gerade Linie dargestellt werden.\n", + "\n", + "> ✅ Hier sind [einige weitere Beispiele](https://online.stat.psu.edu/stat501/lesson/9/9.8) für Daten, die polynomiale Regression verwenden könnten.\n", + ">\n", + "> Werfen Sie einen weiteren Blick auf die Beziehung zwischen Sorte und Preis im vorherigen Diagramm. Sieht dieser Streudiagramm so aus, als sollte er unbedingt mit einer geraden Linie analysiert werden? Vielleicht nicht. In diesem Fall können Sie polynomiale Regression ausprobieren.\n", + ">\n", + "> ✅ Polynome sind mathematische Ausdrücke, die aus einer oder mehreren Variablen und Koeffizienten bestehen können.\n", + "\n", + "#### Trainieren eines polynomialen Regressionsmodells mit dem Trainingssatz\n", + "\n", + "Die polynomiale Regression erstellt eine *gekrümmte Linie*, um nichtlineare Daten besser anzupassen.\n", + "\n", + "Schauen wir, ob ein polynomiales Modell besser darin ist, Vorhersagen zu treffen. Wir folgen einem ähnlichen Verfahren wie zuvor:\n", + "\n", + "- Erstellen Sie ein Rezept, das die Vorverarbeitungsschritte angibt, die an unseren Daten durchgeführt werden müssen, um sie für die Modellierung vorzubereiten, z. B.: Kodierung von Prädiktoren und Berechnung von Polynomen eines Grades *n*.\n", + "\n", + "- Erstellen Sie eine Modellspezifikation.\n", + "\n", + "- Bündeln Sie das Rezept und die Modellspezifikation in einen Workflow.\n", + "\n", + "- Erstellen Sie ein Modell, indem Sie den Workflow anpassen.\n", + "\n", + "- Bewerten Sie, wie gut das Modell auf den Testdaten abschneidet.\n", + "\n", + "Legen wir los!\n" + ], + "metadata": { + "id": "VcEIpRV9wzYr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\r\n", + "poly_pumpkins_recipe <-\r\n", + " recipe(price ~ package, data = pumpkins_train) %>%\r\n", + " step_integer(all_predictors(), zero_based = TRUE) %>% \r\n", + " step_poly(all_predictors(), degree = 4)\r\n", + "\r\n", + "\r\n", + "# Create a model specification\r\n", + "poly_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>% \r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Bundle recipe and model spec into a workflow\r\n", + "poly_wf <- workflow() %>% \r\n", + " add_recipe(poly_pumpkins_recipe) %>% \r\n", + " add_model(poly_spec)\r\n", + "\r\n", + "\r\n", + "# Create a model\r\n", + "poly_wf_fit <- poly_wf %>% \r\n", + " fit(data = pumpkins_train)\r\n", + "\r\n", + "\r\n", + "# Print learned model coefficients\r\n", + "poly_wf_fit\r\n", + "\r\n", + " " + ], + "outputs": [], + "metadata": { + "id": "63n_YyRXw3CC" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### Modellleistung bewerten\n", + "\n", + "👏👏Du hast ein Polynommodell erstellt – lass uns Vorhersagen für den Testdatensatz machen!\n" + ], + "metadata": { + "id": "-LHZtztSxDP0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make price predictions on test data\r\n", + "poly_results <- poly_wf_fit %>% predict(new_data = pumpkins_test) %>% \r\n", + " bind_cols(pumpkins_test %>% select(c(package, price))) %>% \r\n", + " relocate(.pred, .after = last_col())\r\n", + "\r\n", + "\r\n", + "# Print the results\r\n", + "poly_results %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "YUFpQ_dKxJGx" + } + }, + { + "cell_type": "markdown", + "source": [ + "Woo-hoo, lass uns bewerten, wie das Modell auf dem test_set mit `yardstick::metrics()` abgeschnitten hat.\n" + ], + "metadata": { + "id": "qxdyj86bxNGZ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "metrics(data = poly_results, truth = price, estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "8AW5ltkBxXDm" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 Viel bessere Leistung.\n", + "\n", + "Das `rmse` sank von etwa 7 auf etwa 3, was darauf hinweist, dass der Fehler zwischen dem tatsächlichen Preis und dem vorhergesagten Preis reduziert wurde. Man kann dies *grob* so interpretieren, dass falsche Vorhersagen im Durchschnitt um etwa 3 \\$ danebenliegen. Das `rsq` stieg von etwa 0,4 auf 0,8.\n", + "\n", + "Alle diese Metriken zeigen, dass das polynomiale Modell deutlich besser abschneidet als das lineare Modell. Gute Arbeit!\n", + "\n", + "Lass uns sehen, ob wir das visualisieren können!\n" + ], + "metadata": { + "id": "6gLHNZDwxYaS" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Bind encoded package column to the results\r\n", + "poly_results <- poly_results %>% \r\n", + " bind_cols(package_encode %>% \r\n", + " rename(package_integer = package)) %>% \r\n", + " relocate(package_integer, .after = package)\r\n", + "\r\n", + "\r\n", + "# Print new results data frame\r\n", + "poly_results %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_line(aes(y = .pred), color = \"midnightblue\", size = 1.2) +\r\n", + " xlab(\"package\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "A83U16frxdF1" + } + }, + { + "cell_type": "markdown", + "source": [ + "Du kannst eine geschwungene Linie sehen, die besser zu deinen Daten passt! 🤩\n", + "\n", + "Du kannst dies noch glatter machen, indem du eine polynomiale Formel an `geom_smooth` übergibst, wie hier:\n" + ], + "metadata": { + "id": "4U-7aHOVxlGU" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_smooth(method = lm, formula = y ~ poly(x, degree = 4), color = \"midnightblue\", size = 1.2, se = FALSE) +\r\n", + " xlab(\"package\")" + ], + "outputs": [], + "metadata": { + "id": "5vzNT0Uexm-w" + } + }, + { + "cell_type": "markdown", + "source": [ + "Ganz wie eine geschmeidige Kurve!🤩\n", + "\n", + "So erstellen Sie eine neue Vorhersage:\n" + ], + "metadata": { + "id": "v9u-wwyLxq4G" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a hypothetical data frame\r\n", + "hypo_tibble <- tibble(package = \"bushel baskets\")\r\n", + "\r\n", + "# Make predictions using linear model\r\n", + "lm_pred <- lm_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Make predictions using polynomial model\r\n", + "poly_pred <- poly_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Return predictions in a list\r\n", + "list(\"linear model prediction\" = lm_pred, \r\n", + " \"polynomial model prediction\" = poly_pred)\r\n" + ], + "outputs": [], + "metadata": { + "id": "jRPSyfQGxuQv" + } + }, + { + "cell_type": "markdown", + "source": [ + "Die Vorhersage des `polynomial model` ergibt Sinn, wenn man die Streudiagramme von `price` und `package` betrachtet! Und falls dies ein besseres Modell als das vorherige ist, basierend auf denselben Daten, solltest du für diese teureren Kürbisse ein höheres Budget einplanen!\n", + "\n", + "🏆 Gut gemacht! Du hast in einer Lektion zwei Regressionsmodelle erstellt. Im letzten Abschnitt über Regression wirst du etwas über logistische Regression lernen, um Kategorien zu bestimmen.\n", + "\n", + "## **🚀Challenge**\n", + "\n", + "Teste mehrere verschiedene Variablen in diesem Notebook, um zu sehen, wie die Korrelation mit der Modellgenauigkeit zusammenhängt.\n", + "\n", + "## [**Post-lecture quiz**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/)\n", + "\n", + "## **Review & Selbststudium**\n", + "\n", + "In dieser Lektion haben wir über Lineare Regression gelernt. Es gibt andere wichtige Arten der Regression. Lies über Stepwise-, Ridge-, Lasso- und Elasticnet-Techniken. Ein guter Kurs, um mehr darüber zu lernen, ist der [Stanford Statistical Learning course](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning).\n", + "\n", + "Wenn du mehr darüber erfahren möchtest, wie du das großartige Tidymodels-Framework nutzen kannst, sieh dir bitte die folgenden Ressourcen an:\n", + "\n", + "- Tidymodels-Website: [Get started with Tidymodels](https://www.tidymodels.org/start/)\n", + "\n", + "- Max Kuhn und Julia Silge, [*Tidy Modeling with R*](https://www.tmwr.org/)*.*\n", + "\n", + "###### **DANK AN:**\n", + "\n", + "[Allison Horst](https://twitter.com/allison_horst?lang=en) für die Erstellung der großartigen Illustrationen, die R einladender und ansprechender machen. Weitere Illustrationen findest du in ihrer [Galerie](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n" + ], + "metadata": { + "id": "8zOLOWqMxzk5" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Nutzung dieser Übersetzung entstehen.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/de/2-Regression/3-Linear/solution/notebook.ipynb b/translations/de/2-Regression/3-Linear/solution/notebook.ipynb new file mode 100644 index 000000000..b5c04ea34 --- /dev/null +++ b/translations/de/2-Regression/3-Linear/solution/notebook.ipynb @@ -0,0 +1,1113 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Lineare und polynomiale Regression zur Preisgestaltung von Kürbissen - Lektion 3\n", + "\n", + "Laden Sie die erforderlichen Bibliotheken und den Datensatz. Konvertieren Sie die Daten in ein DataFrame, das einen Teil der Daten enthält:\n", + "\n", + "- Nur Kürbisse berücksichtigen, die pro Scheffel bepreist sind\n", + "- Das Datum in einen Monat umwandeln\n", + "- Den Preis als Durchschnitt aus Höchst- und Tiefstpreisen berechnen\n", + "- Den Preis so umrechnen, dass er die Preisgestaltung pro Scheffelmenge widerspiegelt\n" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", + "

5 rows × 26 columns

\n", + "
" + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 167, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MonthDayOfYearVarietyCityPackageLow PriceHigh PricePrice
709267PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
719267PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
7210274PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
7310274PIE TYPEBALTIMORE1 1/9 bushel cartons17.017.015.454545
7410281PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
\n", + "
" + ], + "text/plain": [ + " Month DayOfYear Variety City Package Low Price \\\n", + "70 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "71 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "72 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "73 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 17.0 \n", + "74 10 281 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "\n", + " High Price Price \n", + "70 15.0 13.636364 \n", + "71 18.0 16.363636 \n", + "72 18.0 16.363636 \n", + "73 17.0 15.454545 \n", + "74 15.0 13.636364 " + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "new_columns = ['Package', 'Variety', 'City Name', 'Month', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ein Streudiagramm erinnert uns daran, dass wir nur Monatsdaten von August bis Dezember haben. Wir benötigen wahrscheinlich mehr Daten, um Schlussfolgerungen auf lineare Weise ziehen zu können.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkT0lEQVR4nO3dfXRV9Z3v8fc3EB7kYcAQA+Wh0IZSUWLqzWVARi+W+lQdodXOtHcQZ41dOGumc1tn5graXqc67Ywybe2009Urtb3F2mnrkhYVtEIj1NoRNTAQEFQyhRpoCBihgEJIyPf+cXZiHs5Jzsbss0/O/rzWOivnfM/Z53zdhm9+57d/D+buiIhIchTFnYCIiOSWCr+ISMKo8IuIJIwKv4hIwqjwi4gkzOC4E8jGuHHjfOrUqXGnISIyoGzZsuUNdy/tHh8QhX/q1KnU1NTEnYaIyIBiZr9NF1dXj4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EuHphPNbK8/StOJ5rhTEZEIDYjhnBK9x7YdYNnqWoqLimhpa2PFDRVcXzkx7rREJAJq8QtNJ5pZtrqWUy1tHG9u5VRLG7evrlXLX6RAqfAL+4+cpLio669CcVER+4+cjCkjEYmSCr8waexwWtrausRa2tqYNHZ4TBmJSJRU+IWSkUNZcUMFQwcb5xQPYuhgY8UNFZSMHBp3aiISARV+ASC1AaeBBT9FpGBFWvjNbJ+Z7TCzbWZWE8TONbMNZrYn+Dk2yhykb+0Xd5tb23j79BmaW3VxV6SQ5aLFf7m7V7p7VfB4OVDt7tOB6uCxxEgXd0WSJY6unoXAquD+KmBRDDlIJ7q4K5IsURd+B9ab2RYzWxrEyty9ASD4eV7EOUgf2i/uDisuYtTQwQwrLtLFXZECFvXM3Xnu/jszOw/YYGavZHtg8IdiKcCUKVOiyk8C11dOZF75OPYfOcmkscNV9EUKWKQtfnf/XfDzEPAzYDbQaGYTAIKfhzIcu9Ldq9y9qrS0x85hEoGSkUO5aPIYFX2RAhdZ4TezEWY2qv0+cCWwE3gcuDl42c3AY1HlICIiPUXZ1VMG/MzM2j/n393952b2EvCImd0CvA58IsIcRESkm8gKv7v/BrgoTbwJWBDV54qISO80c1dEJGFU+KVDzd4mvrb+VWr2NsWdiohESBuxCACLH9zMc3Wpgv+NZ+q4tLyEH3x6TsxZiUgU1OIXavY2dRT9dr+qa1LLX6RAqfALz+55I1RcRAY2FX7hsunjQsVFZGBT4ReqppVwaXlJl9il5SVUTSvJcISIDGQq/ALAjVWTGTKoiCGDjCGDivhE1eS4UxKRiKjwS8dGLKfPtHH6jHP6jDZiESlkKvyijVjOUvWugyx7dDvVuw7GnYpIKBrHL9qI5Sxcef8mXmt8C4Cf1OxnRtkInr5tfqw5iWRLLX7p2IhlyCBj6OBUP782YsmsetfBjqLf7tXGt9TylwFDhV8AqNn3JqfPOM2tqX7+mt++GXdKeWv9rsZQcZF8o8Iv1DUe56HNr3eJPfT869Q1Ho8po/x25cyyUHGRfKPCL2yrPxoqnnQLZo5nRtmILrEZZSNYMHN8TBmJhKOLu0Ll5DGh4gJP3zaf6l0HWb+rkStnlqnoy4ASeYvfzAaZ2X+a2drg8RfN7ICZbQtuH406B+ldedkolsztuqH9krlTKC8bFVNGA8OCmeO578aLVPSz1HSime31RzU/JA/kosX/WWA3MLpT7H53/0oOPluydM/CWSyZM5Vt9UepnDxGRV/61WPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaiRVpi9/MJgHXAg9G+TnSP8rLRnFj1WQVfelX7TPDT7W0cby5lVMtmhket6i7er4O3A60dYt/xsxqzex7ZjY23YFmttTMasys5vDhwxGnKSJR0czw/BNZ4Tez64BD7r6l21PfBt4PVAINwFfTHe/uK929yt2rSktLo0pTRCKmmeH5J8oW/zzgejPbB/wY+LCZPezuje5+xt3bgO8AsyPMQURi1j4zfFhxEaOGDmZYcZFmhscssou77n4HcAeAmc0H/t7dF5vZBHdvCF72MWBnVDmISH64vnIi88rHsf/ISSaNHa6iH7M4xvGvMLNKwIF9wK0x5CAiOVYycqgKfp7ISeF3903ApuD+Tbn4TBERSU9LNoiIJIwKv4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EsHLZsbztLvv8AHv/AkS7//QtypDAh1jcd5tKZeO7vlAW3EIoCWzQ1r6vJ1HffXv/IGU5evY9+918aYUX67a82OLtt7Lpk7hXsWzooxo2RTi1+0bG5ImVr4avmnpz2d848Kv2jZ3JCerWsKFU867emcf1T4RcvmhnRZeUmoeNJpT+f8o8IvWjY3pJV//oeh4kmnPZ3zj7l73Dn0qaqqymtqauJOo+A1nWjWsrkhLP3+Czxb18Rl5SUq+lmoazyuPZ1zzMy2uHtVj7gKv4hIYcpU+NXVIyKSMJEXfjMbZGb/aWZrg8fnmtkGM9sT/Ey72brkniZwhfPlJ3Yy959/wZef0CZy2ViztZ5Pr3qJNVvr404l8SLv6jGzvwWqgNHufp2ZrQDedPd7zWw5MNbdl/X2HurqiZ4mcIXzvuXr6DwOqgj4jSZwZTTnnzZw8NjpjscTRg/h+TuviDGjZIilq8fMJgHXAg92Ci8EVgX3VwGLosxB+qYJXOF8+YmdtHWLtQVx6WnN1vouRR+g4dhptfxjFHVXz9eB26HLv5Oy9s3Wg5/npTvQzJaaWY2Z1Rw+fDjiNJNNE7jCWbvzYKh40q3dkeF8ZYhL9CIr/GZ2HXDI3beczfHuvtLdq9y9qrS0tJ+zk840gSuc6y4cHyqedNfNynC+MsQlelG2+OcB15vZPuDHwIfN7GGg0cwmAAQ/D0WYg2RBE7jC+fwfX9jjH05REJeeFl08mQmjh3SJTRg9hEUXT44pI8nJOH4zmw/8fXBx91+Apk4Xd89199t7O14Xd3NDE7jC+fITO1m78yDXXTheRT8La7bWs3bHQa6bNV5FP0dincDVrfCXAI8AU4DXgU+4+5u9Ha/CLyISXqbCn5P1+N19E7ApuN8ELMjF54qISE+auSsikjAFXfg1EzWcBzbu4Zp/fZYHNu6JO5UBQVsJykBVsFsvaiZqOOd/4UlOtqau9+xuOM7Xq/ew+0sfjTmr/KWtBGUgK8gWv2aihvPAxj0dRb/dyVZXyz8DbSUoA11BFn7NRA1nTW1DqHjSaStBGegKsvBrJmo4iyomhIonnbYSlIGuIAu/ZqKGc+vl0xk+2LrEhg82br18ekwZ5TdtJSgDXUHvwKWZqOE8sHEPa2obWFQxQUU/C9pKUPKdtl4U6WdqWEi+i3Xmrkih0XBhGcgKso9fJEoaLiwDnQq/dFj0zV/yvuXrWPTNX8adSl7TcOGzo5n0+UNdPQLA1OXrOu5vO3CCqcvXsU97yKY1aexwjje3dokdb27VcOFeqGssv6jFLxlb+Gr5p/dnK/8jVDzp1DWWf1T4hdoDJ0LFk+6VQ2+HiiedusbyT5R77g4zsxfNbLuZvWxmdwfxL5rZATPbFty0EljMKiaODBVPug+ed06oeNJpJn3+ibLF3wx82N0vAiqBq81sTvDc/e5eGdyejDAHycKav/kfoeJJ9/O/vTxUPOnaZ9IPHVzUcdNM+nhFVvg9pb2voDi45f9ssYT6o/KSLo8v7fZY5N2o2fcmza1tHbea3/a626pELNI+fjMbZGbbgEPABnd/IXjqM2ZWa2bfM7OxUeYgfavZ28RzdU1dYr+qa6Jmb1OGI5Jt6fdfCBVPOi1jnX8iLfzufsbdK4FJwGwzuxD4NvB+Ut0/DcBX0x1rZkvNrMbMag4fPhxlmon37J43QsWT7tm69H8QM8WTTstY55+cjOpx96OkNlu/2t0bgz8IbcB3gNkZjlnp7lXuXlVaWpqLNBPrsunjQsWT7rIM3WCZ4kmnZazzT5SjekrNbExwfzjwEeAVM+u8yPvHgJ1R5SDZqZqWvmBliifdyj//w1DxpMu0cqlWNI1PlC3+CcBGM6sFXiLVx78WWGFmO4L45cBtEeYgWfj7n2wNFU+6//nAr0PFk06/X/knsiUb3L0W+FCa+E1RfaacnQ27D4WKJ92Lvz0aKp50+v3KP5q5K1xx/nmh4kk3+71jQsWTTr9f+UeFX/jKn14cKp50/37rvFDxpNPvV/5R4RcA/mDYoF4fi7wb40cP6fJ4QrfHklsq/MLD/7GX35860yX2+1NnePg/9saUUX6r+Id1oeJJt2ZrPQePne4Sazh2mjVb62PKSLIq/Gb2ATOrNrOdweMKM/tCtKlJrjxW2xAqnnTHMqwmnCmedGt3HAwVl+hl2+L/DnAH0AIdI3Y+GVVSklsLKyaEiifd6Axri2WKJ911s8aHikv0si3857j7i91irWlfKQPO4kumpe3jX3zJtJgyym+1d6ffmSxTPOkWXTy5R5/+hNFDWHTx5JgykmwL/xtm9n6C1TXN7EZS6+xIgVjYbRu8hR/Stni9+ddPVnZ5/I1uj6Wr5++8gq//SQUfOf88vv4nFTx/5xVxp5Ro5t73Sslm9j5gJXAJcATYCyx2932RZheoqqrympqaXHxUItU1Hucj9z/bI/6L2y7TtPo0mk40M+++ZzjV8s7mIsOKi/j1sg9rjXnJK2a2xd2rusezmrnr7r8BPmJmI4Aid9d6qgWkt9UTVfh7at9K8BTvFP72rQRV+GUgyHZUzz+Z2Rh3f8vdj5vZWDP7UtTJSW5o9cRwtJWgDHTZ9vFfEyytDIC7HwG0V26BGDtiCIOKrEtsUJExdoQm2aTTvpVgEWCk/hFpK8G+1TUe59Gaem3AkgeyXaRtkJkNdfdm6FhmWb/lBWL/kZMUGXSewlVkqOuiF/9nzY6Ojh4PHl9fqQvimdy1ZkeXXbiWzJ3CPQtnxZhRsmXb4n8YqDazW8zsL4ANwKro0pJcamk9Q8uZrhf5W844La1nMhyRbJrpHI62Xsw/WRV+d18BfBk4H7gA+McgJgXghb3pN77OFE86zXQOR1sv5p+s1+N396eApyLMRWRAWFgxgZf2HUkbl540eCD/9NriN7Pngp/HzexYp9txMzvWx7HDzOxFM9tuZi+b2d1B/Fwz22Bme4KfY/vvP0fOxlUXpJ86nymedJrpHE552SiWzJ3SJbZk7hQNFY5Rry1+d/+j4OfZ/B9qBj7s7ifMrBh4zsyeAj4OVLv7vWa2HFgOLDuL95d+oj1Rw0vXxy+Z3bNwFkvmTGVb/VEqJ4/R71bM+uzjN7Oi9lU5w/CUE8HD4uDmwELeuTC8ClgU9r2lf12+ojpUPOm05+7ZKS8bxY1Vk1X080Cfhd/d24DtZjalr9d2Z2aDzGwbcIjUZusvAGXu3hC8dwOQdv81M1tqZjVmVnP48OGwHy0h7H3zVKh40mnPXRnosh3OOQF4OViT//H2W18HufsZd68EJgGzzezCbBNz95XuXuXuVaWlpdkeJmdh2rnDQsWTTnvuykCX7aieu9/Nh7j7UTPbBFwNNJrZBHdvMLMJpL4NSIw23r6Aqct77h618fYFMWST//791nlpz5f23JWBoq9RPcPM7HPAJ4APAr9291+23/o4ttTMxgT3hwMfAV4BHgduDl52M/DYu/ovkH6x795rmRismT5x9BD23au15Xuz795ruWTaGAYXwSXTxuh8yYDSV4t/Faldt34FXAPMBD6b5XtPAFaZ2SBSf2Aecfe1ZvY88IiZ3QK8TuqPisTsrjU7OBDsi3rg2GnuemyHptT3QS18Gaj6Kvwz3X0WgJl9F+i+C1dGwfaMH0oTbwLUh5BHMk2pXzJnqkZgiBSgvi7utrTfcXdttVigNKVeJFn6avFf1GmGrgHDg8dGaqj+6Eizk5zQlPqz84Wfbueplxu55oIyvvTxi+JORyRrfc3cHdTb81IYystGMaNsBK82vtURm1E2Qt08veg8qufhF/fz8Iv7dYFXBoxsx/FLAatrPN6l6AO82viWls3N4As/3R4qLpJvVPhFffwhPfVyY6i4SL5R4RfGnlMcKp5011xQFioukm9U+IUjb7eEiiddpgu5usArA4UKv2hUz1nYd++1LJ49iZIRxSyePUkXdmVAyXoHLilc7RtlPPR8182wNaqnd1/6+EV86eNxZyESngq/ANooQyRJVPilQ3nZKBV8kQRQH7+ISMKo8EuHusbjPFpTr4lbIgVOXT0CpJZl7rxC55K5U7Qss0iBUotfMi7LrJa/SGGKrPCb2WQz22hmu83sZTP7bBD/opkdMLNtwe2jUeUg2dGSDSLJEmVXTyvwd+6+1cxGAVvMbEPw3P3u/pUIP1tC0AQukWSJrPC7ewPQENw/bma7gYlRfZ6cvbEjhqQ2WOgUsyAuIoUnJ338ZjaV1DaMLwShz5hZrZl9z8zGZjhmqZnVmFnN4cOHc5FmYu0/cpKRQ7u2AUYOHcz+IydjykhEohR54TezkcBq4HPufgz4NvB+oJLUN4KvpjvO3Ve6e5W7V5WWlkadZqJNGjuclra2LrGWtjYmjR0eU0YiEqVIC7+ZFZMq+j90958CuHuju59x9zbgO8DsKHOQvpWMHMqKGyoYbDDIYLDBihsqKBk5NO7URCQCUY7qMeC7wG53/1qn+IROL/sYsDOqHCR7/7ZxD60OZxxaHb61cU/cKYlIRKIc1TMPuAnYYWbbgtidwKfMrJLUtcR9wK0R5iBZqN51kNfSbL1YvesgC2aOjykrEYlKlKN6niM1OKS7J6P6TDk763el3zJw/a5GFX6RAqSZu8KVM9NvGZgpLiIDmwq/sGDmeGaUjegSm1E2Qq19kQKlRdoEgKdvm0/1roOs39XIlTPLVPRFCpgKv3RYMHO8Cr5IAqirR0QkYVT4RUQSRoVfOmgHLpFkUB+/ANqBSyRJ1OIX7cAlkjAq/KIduEQSRoVftAOXSMKo8AvlZaNYMndKl9iSuVMoLxsVU0YiEiVd3BUA7lk4iyVzprKt/iiVk8eo6IsUMBV+6VBeNkoFPwQtcRGOzld4TSea2X/kJJPGDu/XjZFU+EXOwpX3b+rYw+AnNfuZUTaCp2+bH2tO+UznK7zHth1g2epaiouKaGlrY8UNFVxfObFf3jvKHbgmm9lGM9ttZi+b2WeD+LlmtsHM9gQ/0262LpKvetu4RnrS+Qqv6UQzy1bXcqqljePNrZxqaeP21bU0nWjul/eP8uJuK/B37n4+MAf4azObCSwHqt19OlAdPJY8ULO3ia+tf5WavU1xp5LXetu4RnrS+Qpv/5GTFBd1Lc/FRUXsP3KyX94/ssLv7g3uvjW4fxzYDUwEFgKrgpetAhZFlYNkb/GDm7nxgc1845k6bnxgMzc9uDnulPKWNq4JR+crvEljh9PS1tYl1tLWxqSxw/vl/XMynNPMpgIfAl4Ayty9AVJ/HIDzcpGDZFazt4nn6rq28n9V16SWfwbauCYcna/wSkYOZcUNFQwrLmLU0MEMKy5ixQ0V/XaBN/KLu2Y2ElgNfM7dj5ml24Y37XFLgaUAU6ZM6ePV8m48u+eNjPGqaSU5zmZg0MY14eh8hXd95UTmlY+LZFSPuXu/vVmPNzcrBtYCT7v714LYq8B8d28wswnAJnef0dv7VFVVeU1NTWR5Jl3N3iZufKBn186jt85R4RcZwMxsi7tXdY9HOarHgO8Cu9uLfuBx4Obg/s3AY1HlINmpmlbCpeVdC/yl5SUq+n1Ys7WeT696iTVb6+NOZUBoOtHM9vqj/TYyRc5elF0984CbgB1mti2I3QncCzxiZrcArwOfiDAHydKeQ11X4qw7pJU5ezPnnzZw8NhpAH6x+xD3/fwVnr/zipizyl9RjkmX8KIc1fOcu5u7V7h7ZXB70t2b3H2Bu08Pfr4ZVQ6SnTVb6zuKWLuGY6fVks1A5yucqMekS3gFvUibvlpmZ+2O9BNpMsWTTucrnKjHpEt4BVv4H9t2gHn3PcPiB19g3n3P8Pi2A3GnlLeum5V+hEWmeNLpfIUT9Zh0Ca8gC7++WobT+PtToeJJt+jiyUwYPaRLbMLoISy6eHJMGeW3qMekS3gFuUhb+1fLU7zTymj/aqlftp7W1DZkjN96+fQcZzMwPH/nFazZWs/aHQe5btZ4Ff0+RDkmXcIryMKvr5bhLKqYwO6GnqN4FlVMiCGbgWPRxZNV8EMoGTlUBT9PFGRXT/tXy6GDjXOKBzF0sOmrZS9uvXw6wwd3nVE9fLCptS9SoAqy8AOk5iMbWPBTevXfpp7b5XFVt8fSk1YzDaeu8TiP1tRT16g5InEryK6e9ou7za3vdPfcvrqWeeXj1OpPo7dF2jR7N73FD27uOGffeKaOS8tL+MGn58ScVf66a80OHtr8esfjJXOncM/CWTFmlGwF2eLXuOFwelukTXrSaqbh1DUe71L0AR56/nW1/GNUkIVfF3fDuWz6uFDxpNMfynC21R8NFZfoFWTh17jhcDJ156ibJz39oQyncvKYUHGJXkH28YPGDYfx5Sd2Zox//o8vzHE2+e9Xrx3KGNcfy57Ky0axZO4UHnq+ax9/edmoGLNKtoIt/KBxw9lauzPD2jM7D6rwp/HIlv0Z47dddX6OsxkY7lk4iyVzprKt/iiVk8eo6MesILt6JJzrLsyw9kyGeNJNGnNOqLiklJeN4saqySr6eUCFX/jT2e8NFU+68d3W6ekrLil/8/BLXHDXU/zNwy/FncqAUb3rIMse3U71rv5d+bWgu3okO8/VHc4YV+usp5r634eKC0xdvq7j/hM7D/HE8nXsu/faGDPKf1fev4nXGt8C4Cc1+5lRNoKnb5vfL+8d5daL3zOzQ2a2s1Psi2Z2wMy2BbePRvX5kr2jb7eEiifdmdYzoeJJl6mFr5Z/ZtW7DnYU/XavNr7Vby3/KLt6vg9cnSZ+f+cduSL8fMnSW6dbQ8WTrunt9OclUzzpnnkt/fyGTHGB9bsaQ8XDinLrxWcBbas4AFw1M/1F3EzxpJv1npGh4kn34Q+kn9+QKS5w5cyyUPGw4ri4+xkzqw26gsZmepGZLTWzGjOrOXw4fR+09I+qaSVpV+fUmPT07l50Uah40n1z8X8PFRdYMHM8M8pGdInNKBvBgn5qjOW68H8beD9QCTQAX830Qndf6e5V7l5VWlqao/SSqXrXQU62epfYyVbv95EEhWLS2OEMK+76T2dYcZGWBOnFvnuvpXxc6vyUjxuuC7tZePq2+dxx1Qc4f8Io7rjqA/12YRdyXPjdvdHdz7h7G/AdYHYuP1/Si7o/sdCUjBzKqZaua0GdamnTZMFeTL9jHXVvpBZJrHvjJNPvWNfHEbL4wc3889OvsbvhOP/89Gvc9ODmfnvvnBZ+M+u8pdPHgPRrBUhOzXrP6FDxpPvCT7eHiifd/U/vpqXrF0paPBWX9KJeATbK4Zw/Ap4HZpjZfjO7BVhhZjvMrBa4HLgtqs+X7A0bkn46R6Z40j31cvpvQpniSfdYbfouw0xxiX4F2ChH9XzK3Se4e7G7T3L377r7Te4+y90r3P16d0+/y7fklFZPDOeaC9KPrMgUT7qFFekvSGaKS/QrwGrJBpGQLv9g+gKfKZ50mRau04J2mVVNK+HS8q6j6i4tL+m3kXb6Li+9bpShJRt66u1ieH8NtyskmUaHVe86qPPVix98eg41e5t4ds8bXDZ9XL8Or1aLX9TVE1LUk2sKjUaNnb2qaSX87ZUz+n1OjQq/dGyU0Zk2ysgs6sk1hUZ/KPOPuXvfr4pZVVWV19TUxJ1GwatrPK6NMkKo3nWQ9bsauXJmmYp+H666fxOvdlp0rD9XmpTMzGyLu1f1iKvwi0gu6A9l7mUq/Lq4K3KWmk40a0/nEBbMHK+CnydU+EXOwmPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaIlnRxV2RkJpONLNsdS2nWto43tzKqZY2bl9dS9OJ5rhTE8mKCr9ISPuPnKS4qOs/neKiIvYfORlTRiLhqPCLhDRp7HBa2rquztnS1qZlmWXAUOEXCalk5FBW3FBBcREMKoLiIlhxQ4Uu8Pah6UQz2+uPqkssD+jirshZ+LeNe2hfkv8M8K2Ne3Rxtxe6GJ5f1OIXCal610Fe6zQZCeDVxre0Y1kGuhief1T4RULS2jPh6GJ4/olyI5bvmdkhM9vZKXaumW0wsz3Bz4ybrYvkK609E44uhuefKFv83weu7hZbDlS7+3SgOngsMqBokbZw2i+GDysuYtTQwQwrLtLF8JhFulaPmU0F1rr7hcHjV4H57t4Q7L+7yd1n9PU+WqtH8pHWnglHS1zkXr6s1VPWvt1iUPzPy/RCM1sKLAWYMmVKppeJxEZrz4RTMnKoCn6eyNuLu+6+0t2r3L2qtLQ07nRERApGrgt/Y9DFQ/DzUI4/X0Qk8XJd+B8Hbg7u3ww8luPPFxFJvCiHc/4IeB6YYWb7zewW4F7gCjPbA1wRPBYRkRyK7OKuu38qw1MLovpMERHp24DYetHMDgO/PcvDxwFv9GM6/UV5haO8wlFe4eRrXvDucnuvu/cYHTMgCv+7YWY16caxxk15haO8wlFe4eRrXhBNbnk7nFNERKKhwi8ikjBJKPwr404gA+UVjvIKR3mFk695QQS5FXwfv4iIdJWEFr+IiHSiwi8ikjAFU/jN7DYze9nMdprZj8xsWLfnzcy+YWZ1ZlZrZhfnSV7zzez3ZrYtuN2Vo7w+G+T0spl9Ls3zcZ2vvvLKyfl6NxsJmdnVZvZqcO76dc+Jd5nXPjPbEZy3fl3nPENenwj+P7aZWcbhiDGcr2zzyvX5+hczeyX49/YzMxuT4dh3f77cfcDfgInAXmB48PgR4M+7veajwFOAAXOAF/Ikr/mk9izI5fm6ENgJnENq9vYvgOl5cL6yySsn5wu4DLgY2NkptgJYHtxfDtyX5rhBwH8B7wOGANuBmXHnFTy3DxiXw/N1PjAD2ARUZTgujvPVZ14xna8rgcHB/fui/P0qmBY/qUIx3MwGkyocv+v2/ELgIU/ZDIxpXyk05rzicD6w2d3fdvdW4JfAx7q9Jo7zlU1eOeHuzwJvdgsvBFYF91cBi9IcOhuoc/ffuPtp4MfBcXHnFal0ebn7bnd/tY9Dc36+sswrUhnyWh/83gNsBialObRfzldBFH53PwB8BXgdaAB+7+7ru71sIlDf6fH+IBZ3XgBzzWy7mT1lZhdEmVNgJ3CZmZWY2TmkWveTu70m5+cry7wg9+erXZeNhIB0GwnFcd6yyQvAgfVmtsVSGx3lgzjOV7biPF9/Qeobd3f9cr4KovAHfZoLgWnAe4ARZra4+8vSHBrpWNYs89pKaj2Ni4BvAmuizAlSLR5SXyU3AD8n9XWxtdvLcn6+sswr5+crpJyftxDmufvFwDXAX5vZZXEnhM5XD2b2eVK/9z9M93SaWOjzVRCFH/gIsNfdD7t7C/BT4JJur9lP19bjJKLvdukzL3c/5u4ngvtPAsVmNi7ivHD377r7xe5+GamvnHu6vSSO89VnXnGdr0A2GwnFcd6y2uDI3X8X/DwE/IxUt0HcYvk9y0Yc58vMbgauA/7Mg079bvrlfBVK4X8dmGNm55iZkVr6eXe31zwOLAlGq8wh1e3SEHdeZjY+eA4zm03q/0lTxHlhwX7HZjYF+Djwo24vieN89ZlXXOcrkM1GQi8B081smpkNAT4ZHBdrXmY2wsxGtd8ndSFxZ/fXxSCO89WnOM6XmV0NLAOud/e3M7ysf85XFFes47gBdwOvkPqf8wNgKPCXwF8GzxvwLVJXxHfQy9X8HOf1GeBlUt0am4FLcpTXr4BdwecuCGL5cL76yisn54vUH5wGoIVUK+sWoASoJvUtpBo4N3jte4AnOx37UeC14Nx9Ph/yIjUKZHtwezlHeX0suN8MNAJP58n56jOvmM5XHan++23B7f9Gdb60ZIOISMIUSlePiIhkSYVfRCRhVPhFRBJGhV9EJGFU+EVEEkaFXwQwMzezH3R6PNjMDpvZ2rN8vzFm9ledHs8/2/cS6W8q/CIpbwEXmtnw4PEVwIF38X5jgL/q60UicVDhF3nHU8C1wf1P0WnWsKXWvF8TrJW+2cwqgvgXg7XVN5nZb8zsfwWH3Au8P1jL/V+C2EgzezRYc/2H7TOQRXJNhV/kHT8GPmmpzXIqgBc6PXc38J/uXgHcCTzU6bkPAleRWsvlH8ysmNS6+P/l7pXu/r+D130I+Bwwk9TM0HkR/reIZKTCLxJw91pgKqnW/pPdnv4jUktu4O7PACVm9gfBc+vcvdnd3yC1QFpZho940d33u3sbqSn5U/v1P0AkS4PjTkAkzzxOag+F+aTWwGnX23K4zZ1iZ8j87yrb14lESi1+ka6+B9zj7ju6xZ8F/gxSI3SAN9z9WC/vcxwYFUWCIu+WWhwinbj7fuBf0zz1ReD/mVkt8DbvLIOc6X2azOzXwWbaTwHr+jtXkbOl1TlFRBJGXT0iIgmjwi8ikjAq/CIiCaPCLyKSMCr8IiIJo8IvIpIwKvwiIgnz/wEDeg/76NO6rgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('Month','Price')" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAshElEQVR4nO3dfZyU5Xno8d+1y7IgiwLLunJkV2xWSangRreKIVoVQ03qEdKon74YTKMlzan9pCatmLTHGtvaiE3M6UlOq4k59SVNJJiA9ZgIEqxRwThQXhQ0bAOyGFhwBd01sO7Ldf6YZ5aZ3ZndmWfuZ+aemev7+Sw7c+8z19zP7HDtM/erqCrGGGMqR1WxK2CMMaawLPEbY0yFscRvjDEVxhK/McZUGEv8xhhTYcYVuwLZmD59us6aNavY1TDGmJKyefPmN1W1YXh5SST+WbNmEYvFil0NY4wpKSLyerpya+oxxpgKY4nfGGMqjCV+Y4ypMJb4jTGmwljiN8aYCmOJ32TU1dPLto6jdPX0FrsqxhiHSmI4pym8NVvfYPlj26mpqqJvcJAVH5/H1a2nF7taxhgH7IrfjNDV08vyx7ZzvG+Q7t5+jvcNcutj2+3K35gyYYnfjLD/yDFqqlLfGjVVVew/cqxINTLGuGSJ34wwc+pE+gYHU8r6BgeZOXVikWpkjHHJEr8Zob6ulhUfn8eEmiom145jQk0VKz4+j/q62rziWmexMX6wzl2T1tWtp7OgZTr7jxxj5tSJeSd96yw2xh+RJn4R2Qt0AwNAv6q2icg04FFgFrAXuE5Vj0RZDxNOfV1t3gkfUjuLjxNvQrr1se0saJnuJL4xJjeFaOq5TFVbVbUtuH8bsF5VzwLWB/dNGbPOYmP8Uow2/sXAg8HtB4ElRaiDKSDrLDbGL1EnfgXWishmEVkWlDWq6gGA4PupEdfBFFlUncXGmHCi7txdoKq/FJFTgXUi8mq2Dwz+UCwDaG5ujqp+pkBcdxYbY8KL9IpfVX8ZfD8E/BC4AOgUkRkAwfdDGR57v6q2qWpbQ8OIncNMCaqvq+XcpimW9I0pssgSv4hMEpHJidvAIuBl4HHghuCwG4A1UdXBGGPMSFE29TQCPxSRxPP8m6r+WEReAlaKyI3APuDaCOtgjDFmmMgSv6r+Ajg3TXkXsDCq5zXGGDM6W7LBGGMqjCX+InK9do3v8YwxfrC1eorE9do1vsczxvjDrviLwPVGJ77HM8b4xRJ/Ebheu8b3eMYYv1jiLwLXa9f4Hs8Y4xdL/EXgeu0a3+MlWGexMX4QVS12HcbU1tamsVis2NVwrqun1+naNT7Hs85iYwpPRDYnLYk/xEb1FJGrjU58j2cbsRjjF2vqMZEr5c5i181T7Z3drIp10N7Z7SSeNZ+ZMOyK30SuVDuLXTdP3b56Bw9t2jd0f+lFzdy5eK439TOVw674Tc5yvWotxY1YXM9laO/sTkn6AA9t3Bf6yt/mWph82BW/yUnYq9ZS24gl0TyV6JOAE81TYeq+teNoxvKWxslFr5+pLHbFb7KW71VrKW3E4rp5qrVpSk7lYynV5jPjB0v8JmujXbWWG9fNUy2Nk1l6UeoWoksvag51tR9F/UxlsaYekzXXV62+c908defiuSydP4utHUdpbZoSOulHVT9TOSJP/CJSDcSAN1T1KhG5A/hj4HBwyBdV9cmo62Hyl7hqfWhjaht/vgnMZ67nRrQ0Tnb6ermun+tJgMZPhbji/yywCzg5qexeVf3HAjy3ccz1Vavxhw0PrRyRtvGLyEzgd4BvRfk8prBaGidzTVuTJf0yYsNDK0vUnbtfA24FBoeV3ywi20Xk2yIyNd0DRWSZiMREJHb48OF0hxhjHCnl2dUmd5ElfhG5CjikqpuH/eifgfcBrcAB4CvpHq+q96tqm6q2NTQ0RFVNYww2PLTSRHnFvwC4WkT2At8DLheRR1S1U1UHVHUQ+CZwQYR1MMZkwYaHVpbIOndV9QvAFwBE5FLgL1T1ehGZoaoHgsM+BrwcVR2MMdmz4aGVoxjj+FeISCugwF7g00WogzEmDdfDQ42fCpL4VfUZ4Jng9icK8ZzGGGPSsyUbjDGmwljiN8aYCmOJ3xhjKowlfmOMqTCW+I0xpsJY4jfGmApjid8UTFdPL9s6jka68Nf6nQdZvmob63cerIh4rl9T3+MZN0RVi12HMbW1tWksFit2NUweCrHk76J7n+Hnne8O3Z/dOImnbrm0bOO5fk19j2dyJyKbVbVteLld8ZvIFWLJ3/U7D6YkVYDXOt8NfWXtezzXr6nv8YxblvhN5Aqx5O/anZ05lZd6PNevqe/xjFuW+E3kCrHk76I5jTmVl3o816+p7/GMW5b4TeQKseTvwjmnMbtxUkrZ7MZJLJxzWlnGc/2a+h7PuGWdu6ZgCrGR9/qdB1m7s5NFcxpDJ9VSiuf6NfU9nslNps5dS/zGGFOmbFSPMcYYoACJX0SqReQ/ReSJ4P40EVknIruD72k3Wzf+cjkpZ/WWDm568CVWb+lwULPKmzAU29PFV9e+RmxPl5fx2ju7WRXroL2z20k840bkTT0i8jmgDThZVa8SkRXAW6r6ZRG5DZiqqstHi2FNPf5wOSln/l3rOPjOe0P3Z5w8no1f/LAXdSsF139rE8+1n0jQF7fU8/BN872Jd/vqHTy0ad/Q/aUXNXPn4rmh45ncFaWpR0RmAr8DfCupeDHwYHD7QWBJlHUw7riclLN6S0dK0gc48M57oa/8K23CUGxPV0qSBvhpe1foK3XX8do7u1OSPsBDG/fZlb8nom7q+RpwK5A8oLcxsdl68P3UdA8UkWUiEhOR2OHDhyOupsmGy0k5T+xIP2M1U3kh61YKnt39Zk7lhY63teNoTuWmsCJL/CJyFXBIVTeHebyq3q+qbara1tDQ4Lh2JgyXk3Kumpt+KGOm8kLWrRRcctb0nMoLHa+1aUpO5aaworziXwBcLSJ7ge8Bl4vII0CniMwACL4firAOxiGXk3KWnNfEjJPHp5TNOHk8S85rKnrdSkHbmfVc3FKfUnZxSz1tZ9ZneERh47U0TmbpRc0pZUsvaqalcXKoeMatgozjF5FLgb8IOnfvAbqSOnenqeqtoz3eOnf94nJSzuotHTyx4yBXzT0tdNKPqm6lILani2d3v8klZ00PnaSjjNfe2c3WjqO0Nk2xpF8ERZ3ANSzx1wMrgWZgH3Ctqr412uMt8RtjTO4yJf5xhXhyVX0GeCa43QUsLMTzGmOMGclm7hpjTIUp68Tv+yxO1/VzPUvS93iFYFsRmnJUkKaeYvB9Fqfr+rmeJel7vEKwrQhNuSrLK37fZ3G6rp/rWZK+xysE24rQlLOyTPy+z+J0XT/XsyR9j1cIthWhKWdlmfh9n8Xpun6uZ0n6Hq8QbCtCU87KMvH7PovTdf1cz5L0PV4h2FaEppyV9Q5cvs/idF0/17MkfY9XCLYVoSlltvWiqQiWWI05oagzd40pBBsuaUx2yrKN31QeGy5pTPYs8ReR61mc63ceZPmqbazfGW4zk2zjhX2edI9zteduVMMlfd/T1vXv3GYWVwZr4y8S180Si+59hp93vjt0f3bjJJ665VLn8cI+T7rHvX2sz9meu109vbT93dMkv5sFiP31FaHb+n3f09b179yayspPUfbcNem5bpZYv/NgSgIAeK3z3dBXgZni3fvUrlDPkymeyz13t+47wvBLGA3Kw/B9T1vXv3NrKqsslviLwHWzxNqdnTmVh423Znv6pDLW8+RSj7B77rp+DXzf09b1+drM4soS5Z67E0TkZyKyTUReEZEvBeV3iMgbIrI1+PpoVHXwletZnIvmNOZUHjbe4nnp98Md63lyqUfYPXddvwa+72nr+nxtZnFlifKKvxe4XFXPBVqBK0Uk0aB5r6q2Bl9PRlgHL7mexblwzmnMbpyUUja7cRIL54RLopni3fLbvx7qeTLFc7nnruvXwPc9bV2fb1Qzi21Zaz9FNo5f473GPcHdmuDL/57kArm69XQWtEx3NtnoqVsuZf3Og6zd2cmiOY2hE8BY8RomT+C1pLblUydPCB1v/l3r8qrjcK7fXJ3dx1PuHxp2P1cP3zTf6Z62rn/nrt+Ttqy1vyId1SMi1cBmoAX4hqouF5E7gE8C7wAx4POqOmoPXDmO6ilFsT1dXHPfphHlqz49P+cktnpLB3++cvuI8q9dNy/UVf/6nQe58aHNI8ofWHp+qIToOl6l6erpZcHdP+F434nmowk1VTy//PJQf1Bcx6sURRnVo6oDqtoKzAQuEJFzgH8G3ke8+ecA8JV0jxWRZSISE5HY4cOHo6ymyZLLDspMnbi+dO66jldpbFlrvxVkVI+qHiW+2fqVqtoZ/EEYBL4JXJDhMferapuqtjU0NBSimmPyfTKPa8PbU/PtoEyOl6kT15fOXdfxEh55YQ/X/ssLPPLCnrziRBXP1YQ6W9bab5G18YtIA9CnqkdFZCJwBXC3iMxQ1QPBYR8DXo6qDi4lT775p5+0O53M4yKea5naU0+ZUM3bxweGjjtlQnVWzTzp4qWLlU/n7oyTx3Ng2ISwfDq4XcYDOPeOHw+d70t7j3DP2tfYdseV3sSbf9e6obkVT+86xN0/fjX0hLr6ulrOmDYxpT/ojGnh+w3q62ppnjYxZe5CPvEqXZRX/DOADSKyHXgJWKeqTwArRGRHUH4ZcEuEdXDC98k8rmWazLN+58GURA3w9vGBMeudLt5frtrO8f7UK7jeAc1ra8Mjx/pTyo4c6/cm3iMv7En72oW9Uncdb/WWDqcT6mJ7ulKSPsQnmOXzfybdhDVf/s+UmsgSv6puV9UPqOo8VT1HVe8Myj+hqnOD8quTrv695ftkHtcytadmat8eq97p4lVXCdXibxuw63hrtqd/m2cqL3Q8130ulfZ/ptTYzN0s+D6Zx7VM7amZ2rfHqne6eAODyoD62wbsOt7ieTNyKi90PNd9LpX2f6bUWOLPgu+TeVzLNJln4ZzTQtU7Ea92nHBSTTW144R7rpnHPdecSzXxN2E1ONnasJr44myu4klwX/KMd/0Hz+SUCdUpZadMqOb6D57pRbwl5zU5nVBXaf9nSo1txJIl15NvXMdzLdNknt2HulOOax92P5P4bBGJZ1CNp9O7ntxJciv1Pzy5M68JOf9z9Y6heAPB/XziLV+1bWhSmAb3fZowNHF8auf4SeOrRzl6bK5n9FTa/5lSYlf8OWg7s57PLZrt7A3nOp5r9XW1nNs0ZSjph+0ATHTu9vYP8qv3BujtH+Tz39/mtDPRdWfnfRt2c6w/NRUe61fu27Dbi/q57ox1HS+h0v7PlIqsEr+InC0i60Xk5eD+PBH562irZnwTtgMwXUfpYIbLy7Cdia47O1dneFym8rH43hnrOp7xW7ZX/N8EvgD0QXzEDvB7UVXK+ClsB2C6jtIqSX9s2M5E152dSzI8LlP5WHzvjHUdz/gt28R/kqr+bFhZf9ojTdZKbeXCsB2A6TqLv3LtuU47E113dn76srOYOC71r9PEccKnLzvLi/q57ox1Hc/4LatF2kTkR8DNwPdV9TwRuQa4UVU/EnUFoTwXaSvllQtXb+ngiR0HuWruaTklhq6e3hGdxWFjZfLIC3tYs/0Ai+fNCJ1Uk923YTertx9gybwZoZN+VPVbs/UNPve9rSjxPvN7f68179+569+HKa5Mi7Rlm/h/Dbgf+CBwBNgDXK+qex3XM61yS/y2cqHJl/3OTTbyWp1TVX+hqlcADcD7VfVDhUr65cj3WaZh2AYZheXD79yUrqzG8YvIXcCKYJVNRGQq8XX0bWRPCL7PMs2VbZBReMX+nZvSlm3n7kcSSR8g2Dil4vbKdcX1NneF3jYvuTzTgm7ZXvn73sHta7zE73x8NdRWVzG+Or+ZxQntnd2sinXQ3pndxDxTmrKduVstIrWq2gsQLLNsDYl5cL3NXaG2zRte/qeXtlBTVcVxTlx9Vouw4dVDXPb+UwEy1sn3Dm7f48X2vsV7A0Dw2sdefyuveLev3sFDm/YN3V96UTN3Lp4bOp7xV7adu7cCVwP/l/jM7k8Bj6vqimirF1dunbu+y9Rx+MTNH+Kqrz+XUl47TgChd9gSy3W11RzvG0BEmDCuekSi872D2/d47Z3dXHHvsyPKn77lEloaJxc9nvFDvp27K4C/B34d+A3gbwuV9E3hZeo43NpxdET5+Opqbr6shQk1VUxKWiump3eA/kHoG9C0TUC+d3D7Hm9rx9Gcygsdz/gt60XaVPVHwI8irIvxRKaOw9amKWnL/+DCZv7gwmY2vHqIO/79FXp6U9ekSUgkuvq6Wu87uH2P19o0JafyQsczfhv1il9Engu+d4vIO0lf3SLyzhiPnSAiPxORbSLyioh8KSifJiLrRGR38H2qu9OpbK728D3RcVjF+GphfHW8s7ilcXKwvHLV0FeiQ/HIu+/R09tP30DmpsNj7/XzlbWvsXpLB0fefY+Pf2Am4wRqqoXx1eKkg7umCqqroKbKzbLM46vFaf1cxWtpnMzSi5pTypZe1By6WcZ1POO3Ua/4VfVDwfcwv/1e4HJV7RGRGuC5YAbw7wLrVfXLInIbcBuwPER8k8T1Hr4rYx28N5C4QlW+H+vg6tbTie19K6U9P/b6W8T2vpXSKZhJv8Z3TBqxa1LwxyLxHGF9fcNuEk3oA8A3NuzOK178NTjxhyzf+rmO53od5TsXz2Xp/Fls7ThKa9MUS/plbMw2fhGpSqzKmQuN6wnu1gRfCiwGHgzKHwSW5BrbpCrUnsCrt3SMSPAPbdyXVdLPRj51Xr/zYNo9WdfvDLe6pO/7LLd3dqf9XeQ7DLOlcTLXtDVZ0i9zYyZ+VR0EtolI81jHDici1SKyFThEfLP1F4HGxD67wfdTMzx2mYjERCR2+PDhXJ+6ohRqf9NCLNEbts6Z9gPOVB62Hr7sGWudsSYf2U7gmgG8EqzJ/3jia6wHqeqAqrYCM4ELROScbCumqverapuqtjU0NGT7sIpUqP1NC7FEb9g6Z9oPOFN52Hr4smesdcaafGSb+L8EXAXcCXwl6SsrwazfZ4ArgU4RmQEQfD+UfXVNOoXa33TJeU1pOwCHl4WVT50XzjmN2Y2TUspmN05i4Zxwf6x83zPWOmNNPkadwCUiE4A/AVqAHcADqprVOvwi0gD0qerRYKbvWuBu4LeArqTO3WmqeutosWwCV3Zc70eaKV57Z/eIDsDkMiDt7U3/9ebQksTvn3Eyz+5+k1PrxnOo5z1ndV6/8yBrd3ayaE5j6KSfrFCvaVjpfhfGJIRalllEHiW+69ZPgY8Ar6vqZ7N8wnnEO2+riX+yWKmqd4pIPbASaAb2Adeq6lujxbLEX/qSlys41tefcUavMcadTIl/rAlcc1R1bhDgAWD4LlwZBdszfiBNeRewMNs4pvQlL+R2Yk0fpW8g/uHx1se2s6Bluq0jb0yBjNXG35e4kW0TjzHDpVuuIJmtI29MYY2V+M9Nnq0LzMt25q4pX7ku3ZtuuYJkx/sH6OtPv8xD1HWzeKYSjTVzt3q0n5vKE2bp3sRyBbcOa+OH+CJufQPKNfdtynsZYNfLCldaPFM5sh3OaUzWs0WHb9SyreMoC1qm8/zyy3nkpgt58YtX8N2bLhyxrk8+M09dz2SttHimsmS9Oqcxo80WTQwlzHb0zoZX00/fSI7lum4Wz5g4u+I3WRtrtujwbRhHW4/f92WFKy2eqSyW+E3WxpotmsvoHd+XFa60eKayZLX1YrHZBC6/ZJotmm57wWTpthp0PfPU4hlzQqiZu76wxF86Ht/6xojROzZD15jiCDtz15icXN16OgtaprP/yLGhbQUTt21mrjF+sMRvnKuvq01J8pbwjfGLde4aY0yFsSt+UzBdPb3WBGSMByzxm4KwZZmN8Yc19ZjI5TKxyxgTvcgSv4g0icgGEdklIq+IyGeD8jtE5A0R2Rp8fTSqOpjCSV6fZzhbltkYv0TZ1NMPfF5Vt4jIZGCziKwLfnavqv5jhM9tCii5GSdd081YyzL3DQ4OtfsbY6IX2RW/qh5Q1S3B7W5gF2ANuWVmeDNOuqabxLLME2qqmFw7jnFVUFMtTK4dx4SaKlZ8fJ518BpTQAXp3BWRWcS3YXwRWADcLCJLgRjxTwVH0jxmGbAMoLm5efiPjScSzTgntlQ80XSTnMxtYpcx/oi8c1dE6oDHgD9X1XeAfwbeB7QCB4CvpHucqt6vqm2q2tbQ0BB1NU1I6ZpxMjXd1NfVcm7TlKEJXonbxpjCijTxi0gN8aT/HVX9AYCqdqrqgKoOAt8ELoiyDiZaw5txRmu6Sd4m0LYMNKZ4Imvqkfjeeg8Au1T1q0nlM1T1QHD3Y8DLUdXBFMbwZpx0SX/4NoHJbMtAYworyjb+BcAngB0isjUo+yLw+yLSCiiwF/h0hHUwBTJ8fZ5k6bYJTPbQxn0snT/LlhU2pkAiS/yq+hwgaX70ZFTPafyUaZvA4cdY4jemMGzmrolcNtsB2paBxhSOJX4TuXTbBCazLQONKSxbpM0UxJ2L57J0/qyhbQIB2zLQmCKxxG8KpqVxckqSt4RvTHFYU48xxlQYS/zGGFNhLPGbjEZbatmHeMaYcKyN36Q11lLLxY5njAnPrvjNCNkstVzMeMaY/FjiNyOk2zErn12yXMczxuTHEr8ZIZellosRzxiTH0v8ZoRcllouRjxjTH5EVYtdhzG1tbVpLBYrdjUqTldPr9NdslzHM8aMTkQ2q2rb8HIb1WMyGm2pZR/ipeP7HyuLZ/F8YInflA3fh6BaPIvni8ja+EWkSUQ2iMguEXlFRD4blE8TkXUisjv4PjWqOpjK4fsQVItn8XwSZeduP/B5Vf11YD7wpyIyB7gNWK+qZwHrg/sVyfeZsaU009b3IagWz+L5JModuA4AB4Lb3SKyCzgdWAxcGhz2IPAMsDyqevjK94+ZpfSxFfwfgmrxLJ5PCjKcU0RmAR8AXgQaE5utB99PLUQdfOL7x8xS+9gK/g9BtXgWzyeRD+cUkTrgP4C/V9UfiMhRVZ2S9PMjqjqinV9ElgHLAJqbm89//fXXI61nIW3rOMr133qR7t7+obLJteN45KYLOTfEFoS+xysk30dpWDyLV0hFGc4pIjXAY8B3VPUHQXGniMxQ1QMiMgM4lO6xqno/cD/Ex/FHWc9C8/1jZql9bE3m+xBUi2fxfBDlqB4BHgB2qepXk370OHBDcPsGYE1UdfBV4mNh7bgqThpfTe04Nx8z3ccTTqqppnacpMQL2+mb7nG+d0hbPFOOorziXwB8AtghIluDsi8CXwZWisiNwD7g2gjr4C1N/KsydM+/eAJCEDMubKdvuscpeN0hbfH87tA34dmSDUXQ1dPLgrt/wvG+E80pE2qqeH755aGu0gsV74mbP8RVX38u5+dJF692XBWg9PafeP+Vwmtg8UwpydTGX9aLtPn6Mdj3McSZ4m3tOBrqedLFq64SqqX0XgOLZ8pB2S7Z4PPH4JlTJ3K8fyCl7Hj/QF6dsT1JI3AAenr7ncdrbZoSqtM33fn2DQxSJanH+dQhbfFKp0Pf5K4sr/hLYVz78Ca2fJrcjrz73ohWfQ3KXcYDQo9VTne+t//33/B2HLXF83scuslPWV7xJz62HufEFUziY2uYN3IU8SbWjEsZJz+xZlzoeFs7jmYsb2mc7DTeNW1NLGiZntNY5Uzne85/O4Xnl1/ubNzz1a2n51w3ixddPOOvskz8vn8Mdh2vNcOkqkzl+cbLdazyaOfr+zhqi2fKUVk29Yw1Dj1sPF8/Vrc0TmbpRc0pZUsvag51tR9FPNfzDIwx+SnLK37IPA49LN8/Vp9/xjS+97N9CFUog7SdMc2reK7nGRSK71P6Ky2ecaMsx/FX2phk38d0l+rvw+eRYZUYz+SuosbxV9qYZN/HdJfi78P3kWGVFs+4VZaJP6oxyb5OCCt053Ou9R4tnuvXdPWWDm568CVWb+nIK47vf/wqLZ5xqyzb+BOdibcO+5iZT7OCzx+D6+tqaZ42kZ93vjtUdsa08G2q9XW1tJ0xlefau4bKfvOMqdTX1Yaqd31dLdedP5OHNu0bKruubSbPtb/p9DWdf9c6Dr4Tn7vw9K5D3P3jV9n4xQ+HijVz6kR+1Zc66exXfflNsvN5ZJjv8YxbZXnFD/HO0+eXX84jN13I88svzyuh+P4xOLanKyXpA7zW+S6xPV0ZHjG69s7ulKQP8NP2LmJ7ukLVu6unl5Wb96eUPfrSfm5dtc3Za7B6S8dQ0k848M57oa/8j7z7HgODqf1fA4MaelJcfV0t17XNTCm7rm2mNyPDfI9n3CrLK/4EV2OSfZ8Q9uzuNzOWt51Zn3O8TBO4nt39Zqh6pzvf6ioJRvicuKrO5zX44dZfZixfcl5TzvGeaz+csTzMsNaunl5WxlL/+K2M7eezC88O/R71faSZTQjzV9le8bvk+8fgS86anlP5WDJN4LrkrOkc60tdw+dY39hrAqU734FBHdGU0p3H+kIfyFDnTOVjmV43IafysUTV5l1fV8u5TVOcJVXf4xk3LPFnwfePwW1n1nNxS+qV/cUt9aGu9gGmThofvyJPUl0lTDlpPPH9dU4Yfj+ddM0cl53dkPbYPYd7cqxt3NzTT8mpfCwTa9L/18hUPpao2rxddWYnrN95kOWrtrF+50En8WJ7uvjq2tdCNztGHa+9s5tVsQ7aO7srIl5CWTf1uOT7x+CHb5pPbE8Xz+5+k0vOmh466UP86vSkmuqUtXVOqqlma8fRtO3eYzXPpGvmWLerM+2xYZuntu1/O2P5wjmnFT1efV0ttdXC8b4TZbXVktfv3WVnNsCie58Z6it6NLaf2Y2TeOqWS0PHu/5bm4b6iv7pJ+1c3FLPwzfN9ybe7at3pAw4WHpRM3cunlu28ZJFufXit0XkkIi8nFR2h4i8ISJbg6+PRvX8UfD9Y3DbmfV8btHsvJI+ZL46HVcFw/I+gwpvdh8fNV66Zo5xGd55vzb9pJzrO9rjfIm3eksHbx9Pbdp6+/hA6Ct1153Z63ceTDtAIOyVf2xPV8YBAj7Ea+/sTkmqAA9t3Bf6ytr3eMNF2dTzr8CVacrvVdXW4OvJCJ/fhJSpKeoXb/4q7fGZro4T0rbxk76JqH8wbfGYMj3Ol3hP7EifQDOVFzre2p3pP4FlKh/LaAMOfIg32gq05RhvuMgSv6o+C7wVVXwTratbT+eRT13AHy2YxSOfuoCrW08P3YmcvEhb4uvW356d9tioVhQtdryr5qZvHspUPpZLM7zmmcrHsmhOY07lY3E94KBQAxh8eb+4jjdcMTp3bxaR7UFT0NRMB4nIMhGJiUjs8OH0Q+tMdG5fvYNr7tvEP/2knWvu28Tta3bk1Ykc2/sWvf2DQ1/7j/zK6xVFXcdbcl4TM04en1I24+TxoYaaAsxtSv9fJ1P5WBbOOY3ZjZNSymY3TgrVnwHuBxy4juf7+8V1vOEiXaRNRGYBT6jqOcH9RuBN4ssz/i0wQ1U/NVacctts3Xftnd1cce+zI8qfvuUSWhons3pLB0/sOMhVc0/LKnGNFu/1rndZu7OTRXMaQyeZZOt3HvQ63n0bdrN6+wGWzJvBpy87K3ScqBa+e+SFPazZfoDF82Zw/QfPDB0nIdf3SqHj+f5+yXfARqZF2go6qkdVhxoMReSbwBOFfH6TndHaFx/auHeo0+npXYfY0nF0zJEGmeLdvuZlXvhFvDXw0dh+p6MgfI+360A3b7xzPHS80ZbVcFG/l/Ye4eeHe5ydb7bvlWLF8/H9krw8yv0//YXT1U0L2tQjIjOS7n4MeDnTsaZ4MrUjTj2pJtRIg0zxEkk/l1iZ+D6qIop46Ua5+FQ/ixc+XtSrm0Y5nPO7wEZgtojsF5EbgRUiskNEtgOXAbdE9fwmvEzti0d+1Zf2+LFGGqSL98H3pd/YxZdREBbP4hUzXtSrm0bW1KOqv5+m+IGons+4defiuSydP4utHUdpbZpCS+PkjFcv2Yw0OP+MaTz60n4S+29devapvPBfIwd9+TIKwuJZvGLGi3p1U1uywWTU0jiZa9qahkYSTJ00fsToewnKR5P42NrbP8jxYFTPV5/+Ode1pbZX5jNqIWzdLF5cS+PktKNm8hmVUmnxotinOqrVTW3JBpO1/UeOUVc7LmUph7racaFW56ypquIPL5zFsovfl/KpotB1s3hxXT29vPT6kZSyl14/QldPr8XLUrpPyfmIcnVTS/wma2E/fo72uPq6Widjk31fQdX3eL4vPe57vISWxsnOxtqDu6Xlh7OmHpO1sB8/C7Eph+8rqPoez/c/TL7HKzWRTuByxSZw+aWrpzfUx8+wjytE3SwePL71jRHbleYzbrzS4vko0wQuS/zGmCE+/2EqhXi+8WLmrjGlptwTw3Cu25QrLV6psMRvTAbJU+bLtSnAVCbr3DUmjainzBtTTJb4jUkj6inzxhSTJX5j0qj04X6mvFniNyaNqOYetHd2syrW4WzvVNfxunp62dZx1Jq0ypx17hqTgesp88nrtQNO1393Ec86syuHXfEbM4r6ulrObZri5Eq/ktd/N36xxG9MAVT6+u/GL1FuxPJtETkkIi8nlU0TkXUisjv4Hm5naGNKTKWv/278EuUV/78CVw4ruw1Yr6pnAeuD+8aUPdfrtZfa+u/GL5Gu1SMis4AnVPWc4P5rwKWqeiDYf/cZVZ09Vhxbq8eUi/bObmfrtUcRr9KWqCh3vqzV06iqBwCC5H9qpgNFZBmwDKC5uTnTYcaUFNfrtZfK+u/GL9527qrq/arapqptDQ0Nxa6OMcaUjUIn/s6giYfg+6ECP78xxlS8Qif+x4Ebgts3AGsK/PzGGFPxohzO+V1gIzBbRPaLyI3Al4EPi8hu4MPBfWOMMQUUWeeuqv5+hh8tjOo5jTHGjK0ktl4UkcPA6xE+xXTgzQjj+6Dcz7Hczw/sHMtFIc/xDFUdMTqmJBJ/1EQklm6sazkp93Ms9/MDO8dy4cM5ejuc0xhjTDQs8RtjTIWxxB93f7ErUADlfo7lfn5g51guin6O1sZvjDEVxq74jTGmwljiN8aYClP2iV9EmkRkg4jsEpFXROSzw37+FyKiIjI9qewLItIuIq+JyG8Xvta5Ge0cReTPgvN4RURWJJWXxTmKSKuIbBKRrSISE5ELkh5Tauc4QUR+JiLbgnP8UlCecQOjUjrHUc7vHhF5VUS2i8gPRWRK0mNK5vwg8zkm/dyPfKOqZf0FzADOC25PBn4OzAnuNwFPEZ8cNj0omwNsA2qBM4H/AqqLfR5hzhG4DHgaqA1+dmoZnuNa4CNB+UeJ7/FQqucoQF1wuwZ4EZgPrABuC8pvA+4uxXMc5fwWAeOC8rtL9fxGO8fgvjf5puyv+FX1gKpuCW53A7uA04Mf3wvcCiT3cC8Gvqeqvaq6B2gHLsBjo5zjZ4Avq2pv8LPEaqjldI4KnBwcdgrwy+B2KZ6jqmpPcLcm+FLi5/JgUP4gsCS4XVLnmOn8VHWtqvYH5ZuAmcHtkjo/GPV3CB7lm7JP/MmCHcE+ALwoIlcDb6jqtmGHnQ50JN3fz4k/FN5LPkfgbOBiEXlRRP5DRH4zOKyczvHPgXtEpAP4R+ALwWEleY4iUi0iW4kvWb5OVV9k2AZGQGIDo5I7xwznl+xTwI+C2yV3fpD+HH3LNxWT+EWkDniMeKLoB/4KuD3doWnKSmLMa/I5quo7xBfhm0r84/RfAitFRCivc/wMcIuqNgG3AA8kDk3zcO/PUVUHVLWV+FXvBSJyziiHl9w5jnZ+IvJXxP9vfidRlC5E5JXMU5pznIdn+aYiEr+I1BBPFt9R1R8A7yPenrZNRPYS/wVtEZHTiP/FbUp6+ExONB94K805QvxcfhB8/PwZMEh8gahyOscbgMTt73PiY3JJnmOCqh4FngGuJPMGRiV7jsPODxG5AbgK+EMNGr8p4fODlHNcjG/5ppgdIYX4Iv4X9SHga6Mcs5cTnS2/QWpnyy8ojQ6lEecI/AlwZ3D7bOIfKaXMznEXcGlweyGwuYR/jw3AlOD2ROCnxJPhPaR27q4oxXMc5fyuBHYCDcOOL6nzG+0chx1T9HxT6M3Wi2EB8AlgR9DuBvBFVX0y3cGq+oqIrCT+RuwH/lRVBwpS0/DSniPwbeDbIvIy8B5wg8bfbeV0jn8M/C8RGQccB5ZByf4eZwAPikg18U/jK1X1CRHZSLyZ7kZgH3AtlOQ5Zjq/duKJb128JZJNqvonJXh+kOEcMx1crHO0JRuMMabCVEQbvzHGmBMs8RtjTIWxxG+MMRXGEr8xxlQYS/zGGFNhLPGbsiUiA8Gqna8EqyV+TkRCv+dF5EPByouvBl/Lkn7WECyN8Z8SX0X0M0k/uzBYebIShk+bEmBvRFPOjml86jwicirwb8QXcvubXAMFsyz/DViiqluCZXWfEpE3VPX/EZ889qqq3iAijcBGEVkFdAFfB/6HnliILNfnFuJDrwfDPN6Y4WwcvylbItKjqnVJ938NeIn4shVnAA8Dk4If36yqL4jIw8AqVV0TPOY7wKPAbxJffPH2pHgLgTuAPwMeJz5T8w3gIuCPgse8BJxPfGLZl4FLiU9W+oaq3hesPbSG+JpKNcBfq+qaYCG6HwEbgnhLVPV1l6+PqVyW+E3ZGp74g7IjwPuBbmBQVY+LyFnAd1W1TUR+i/iib0tE5BRgK3AWsBJ4MPEHIYh1CrBHVaeJyCeBNlW9OfhZFbCR+EqabcDHie+H8HciUgs8T3wGbgdwkqq+E3yK2BQ83xnEp+9/UFU3RfICmYplTT2m0iRWQ6wBvi4ircAA8bWMUNX/EJFvBE1Dvws8pqr9QXNLuquktFdOqjooIvcR/2PQJSKLgHkick1wyCnEE/x+4C4RuYT4InqnA43BMa9b0jdRsMRvKkbQ1DNAfHXLvwE6gXOJD3I4nnTow8AfAr9HfH14gFeIX7k/nnTc+cTXWMlkMPiC+B+cP1PVp4bV6ZPEF/Y6X1X7gtUbJwQ/fjf7szMmezaqx1QEEWkA/gX4erBQ3SnAgaDD9BNAddLh/0p83wZU9ZWg7BvAJ4NPCIhIPfFtAleQnaeAzwRLSyMiZ4vIpKAeh4KkfxnxJh5jImVX/KacTQxW8qwhvvLhw8BXg5/9H+AxEbmWeAfq0NW1qnaKyC5gdVLZARG5HvimiEwmfgX/NVX99yzr8i1gFvF12AU4THwLxe8A/y4iMeL9Ca+GOVFjcmGdu8YMIyInATuIb+7+drHrY4xr1tRjTBIRuYL4Vff/tqRvypVd8RtjTIWxK35jjKkwlviNMabCWOI3xpgKY4nfGGMqjCV+Y4ypMP8fFF03YlhPduQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.14878293554077535\n", + "-0.16673322492745407\n" + ] + } + ], + "source": [ + "print(new_pumpkins['Month'].corr(new_pumpkins['Price']))\n", + "print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Es sieht so aus, als ob die Korrelation ziemlich gering ist, aber es gibt eine andere, wichtigere Beziehung – denn die Preispunkte im obigen Diagramm scheinen mehrere unterschiedliche Cluster zu haben. Lassen Sie uns ein Diagramm erstellen, das verschiedene Kürbissorten zeigt:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA7VklEQVR4nO2deXxU5fX/34cQzACyR6WyBEEpyBIlYF3rAlQtAi61Rtx+xq9tNZbar1q7iHxb7FdxrVr7VZt+QYGIS12wdcMvtmqtLIoIRFHbhCKUhMhO2M/vj3uTzCQzSWbmzsydmfN+ve7rzj1z7+c+T2Zy5rnneZ7ziKpiGIZhZA/tUl0AwzAMI7mY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFlG+1QXoC306tVLCwoKUl0MwzCMtGLZsmWbVDW/qT0tHH9BQQFLly5NdTEMwzDSChGpCme3UI9hGEaWYY7fMAwjyzDHbxiGkWWkRYzfMBLJvn37WLduHbt37051UQwjJvLy8ujTpw+5ubltOt8cv5H1rFu3jkMPPZSCggJEJNXFMYyoUFVqa2tZt24dAwYMaNM1FuoxIlJTA0uWOPtMZvfu3fTs2dOcvpGWiAg9e/aM6onVHL8RlvJy6N8fxo1z9uXlqS5RYjGnb6Qz0X5/zfEbzaipgZISqKuDrVudfUlJ5rf8DSNbMMdvNKOyEjp0CLXl5jp2IzHk5ORQWFjIsGHD+M53vsOuXbsA6Ny5MwCVlZUEAgEKCwsbtieeeCJE4/zzz6ewsJBBgwbRtWvXhvPOPPNMfvKTnzScV1VVxVFHHcWWLVs4/fTTGTx4MCNHjuTkk0/m008/BWiw12tcdNFFSfpLGElBVX2/jRo1So3kUV2tGgioQuMWCDj2TGT16tWpLoJ26tSp4fWll16q9957b4j9n//8px577LFt0lq0aJF++9vfbjjetWuXDh48uKGekyZN0jlz5qiq6je/+U1dsmSJqqo++uijet555zWzG+lBuO8xsFTD+FRr8RvNyM+HsjIIBKBLF2dfVubY4yGjOosTWJlTTz2Vzz//3DO9QCDAfffdx3XXXccrr7zC9u3bmTJlSrPzTjvtNE/va/gXc/xGWIqLoaoKFi509sXF8ellVGdxAiuzf/9+XnnlFYYPH97svS+++CIk1PP222+3Wffcc8+lR48eXHHFFTzyyCNhz1mwYEHIfadMmdJwr5tvvjn6yhi+JaHj+EWkEtgOHAD2q2qRiPQA5gMFQCVwsapuTmQ5jNjIz4+/lQ+hncV1dY6tpATGjvVGP6kkqDJ1dXUUFhYCTou/pKSk2TkDBw5k+fLlMd/j+uuvp66ujsGDB4fYp0yZQiAQoKCggIceeqjBPnfuXIqKimK+n+FfkjGB6wxV3RR0fCvwpqreKSK3usc/CX+pkQnUdxbX+0lo7CxOO8efoMoEAoG4nHpbaNeuHe3aNX/INweffaQi1DMJmO2+ng1MTkEZjCRSUAB794ba9u1z7GlHRlXGyFYS7fgVeF1ElonIta7tcFXdAODuD0twGYwUk6jO4pSQwso0jfE/+OCDCb1fcIx/7NixCb2XkVzEGfGTIHGRr6nqehE5DHgDuAF4SVW7BZ2zWVW7h7n2WuBagH79+o2qqgq7noCRRtTUOBGRggJ/Of2KigqGDBkS3UV+rYyRtYT7HovIMlVtFsdLaIxfVde7+2oReR4YA2wUkd6qukFEegPVEa59DHgMoKioKHG/TkbS8Kqz2BdkVGWMbCNhoR4R6SQih9a/BsYDK4GXgCvd064EXkxUGQzDMIzmJLLFfzjwvJs8qD0wT1VfFZElwNMiUgKsBb6TwDIYhmEYTUiY41fVfwAjw9hrgbMSdV/DMAyjZWzmrmEYRpZhjj+FeJ3uxe96hmH4A3P8KcLrdC9+1zNaRkS4/PLLG473799Pfn4+EyZMAGDWrFmUlpYCMH36dDp27Eh1deOAuPr0zU1fA9x///3k5eWxdetWamtrG8bmH3HEERx55JENx2vWrGHYsGEh106fPp177rkHgKuuuooBAwZQWFjIyJEjefPNNxvOszTO6YU5/hTg9UInftczWqdTp06sXLmSOjcVxBtvvMGRRx4Z8fxevXpx7733tkm7vLyc0aNH8/zzz9OzZ0+WL1/O8uXL+f73v8+NN97YcNyh6SIMYbj77rtZvnw5DzzwAN///vdD3ps7d26D1rPPPtumshmpwRx/CvB6oRO/62UiiQiDnXPOOfzpT38CHGdd3EJK1Kuvvpr58+fz1Vdftaj5xRdfsGPHDmbMmEG5h49tJ554Il9++aVnekZyMcefArxO9+J3vUwjUWGwSy65hKeeeordu3ezYsUKTjjhhIjndu7cmauvvprf/OY3rZTV+QE59dRT+fTTT0PCQ/Hw6quvMnny5BCbpXFOH8zxpwCv0734Xa+eTOgsTmQYbMSIEVRWVlJeXs65557b6vk//OEPmT17Ntu2bYt4zlNPPcUll1xCu3btuOCCC3jmmWcinhtpwe5g+80338xRRx3FZZddxs9+9rOQ84JDPXfffXer5TdSRzLSMhthKC52Urh7le7F73rl5Y6D7NDBeZooK4t/cZdUkOgU0xMnTuSmm27irbfeora2tsVzu3XrxqWXXhpxYZUVK1bw2WefMW7cOAD27t3LUUcdxfXXXx/2/J49e7J5c+jSGF999RUDBgxoOL777ru54IILePDBB7nyyitZtmxZNNUzfIK1+FNIfj6MHu1dyhe/6mVSZ3Giw2BXX30106ZNC7sCVzh+/OMf8+ijj7J///5m75WXlzN9+nQqKyuprKxk/fr1fPnll0RKeNi5c2d69+7dMFrnq6++4tVXX+WUU04JOa9du3ZMnTqVgwcP8tprr0VZQ8MPmOM3Ek46dxbv2wc7dzp7iD8MVlcHmzaFPjEE06dPH6ZOndrm8nXt2osJE85nz549zd576qmnOP/880Ns559/Pk899VREvSeeeIIZM2ZQWFjImWeeye23387AgQObnSci/OIXv2DmzJkNNkvjnD4kNC2zVxQVFenSpUtTXQwjRmpqnE7QYGcXCDhr+fohwWWktMy1tU4ZRUDVqUPPns57sWRlXrsWgvtWDzsM+vWLvdwtlc/IPqJJy2wtfiNqKipg9mxn3xbScSGWffscp3rwIBw44OyrqkJb/tGEwerqQp0+OMeRWv7xls8wWsI6d42ouOEGePjhxuPSUghanzsiXncWJ5q9e52WdDAijj03N3q9nTsj2wOB1JfPyC6sxW+0mYqKUKcPznE0LX8vO58TSYcOTvgkGNXmfRVtpVOn6Oyt4XX5jOzCHL/RZhYvjs6ezuTmOjHzdu0gJ8fZ9+8fe2s6EHBi+sEcdlhsrf1ElM/ILizUY7SZMWOis6c7PXs6fRJ79zot6Xidar9+ztPOzp1OSz9Wp5+o8hnZQ8Jb/CKSIyIfisjL7vF0EflSRJa7W+tTFA1fMGSIE9MPprTUsWcqubmOk/bKqQYC0KtX/E6/Hq/L13T4qpGZJCPUMxVoGgW+X1UL3e3PSSiD4REPPQSrV8OsWc6+LR27Ruvk5OQ0jIEvLCyk0p3kEJxSuZ633norJF1zfn4+hYWFfP3rX+f+++9n9+7dfP3rX+fjjz9uuGbmzJmcddZZDfo9evRoSLFcP+Z+0aIP6dBBmDXrNT7+2BkuCs3TPIOTrjk4pXNhYSFbtmxJzB/H8JyEhnpEpA/wbeAO4MeJvJeRPIYMyexWfioIBAIsX768mT04pfJVV10V9trvfve7PPzww9TW1jJ48GAuuugiHnjgAa677jr++te/sn79eh599FGWLl1K9+7dASe3/oQJExry5u/bB7NmlVNYeAqvvFLOCSd8i6oqJ5QUiRtvvJGbbrop3qobKSDRLf4HgFuAg03spSKyQkT+ICLdw10oIteKyFIRWVqTjnP7jYymZmcNS75cQs3OxH03o02p3LNnTwYNGsSGDRs4++yz6d27N0888QQ33ngj06dPb3D64dizR3nzzWe5/fZZvP/+6+zZs7theKiReSTM8YvIBKBaVZtmcfodMBAoBDYAYVeTUNXHVLVIVYvy02H8n5E1lH9cTv8H+jPuyXH0f6A/5Svjz8tcV1fXEDKpT7MQbUrltWvXsnv3bkaMGAHAAw88wM9//nNqampCVvcKx9Kl7/K1rw2gT5+BjBp1Ou++++dWh4fef//9DWU+44wzoquwkVIS2eI/GZgoIpXAU8CZIjJHVTeq6gFVPQg8DmTomBAjE6nZWUPJSyXU7a9j656t1O2vo+TFkrhb/vWhnuXLl/P8888DbU+pPH/+fI499liOOuoopk6dSl5eHgBf+9rXOPPMM/nBD37Q6v2feaac4uJLaNcOzj77El5/vbzV4aHBq3ctWrQo+kobKSNhMX5V/SnwUwAROR24SVUvE5HeqrrBPe18YGWiymAYXlO5pZIOOR2o29+YayE3J5fKLZXkd/LuyTSalMr1Mf733nuPb3/725xzzjkcccQRgJNJs127ltt3Bw4c4LnnniM39yV+85s7OHhQ+eqrWjp02A4c6lmdDP+QiglcM0XkYxFZAZwB3JiCMhhGTBR0K2DvgdDA974D+yjoVuDpfaJNqQzOcoiXX355q6tyNWXhwoWMHDmSf/3rX1RWVrJ2bRUXXnghL7zwQpy1MPxKUhy/qr6lqhPc15er6nBVHaGqE4Na/4bhe/I75VM2qYxA+wBdDulCoH2Askllnrb2IbaUygA/+clP+N///V+2b9/e5nuVl5c3u9eFF17IvHnzANi1axd9+vRp2O677z4gNMYfPATV8D+WltnIeiKlZW6Jmp01VG6ppKBbgedO3zBiIZq0zJaywTBiIL9Tvjl8I22xJG2GYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvJI2aGliyxNknipdfhmuucfZesGWLs1ykV4knvdbzOo2y3/UMbzDHbySF8nJnhahx45x9G3KORc3w4XDeec5C7uedB27KmphZtQo+/xw2bXL2q1YlTk9EQvLp7N+/n/z8/JD0y6XuYgg//OEP+dWvfkVtLXz8Mdxyyx1MmXI9tbVO1s36dMuFhYWcdNJJDdfn5+dz3HHHcfTRR/Otb32Lv/3tbyHlq9f78Y+nc/PN9zSkZQYoKChg06ZNQPMU0nfeeScAp59+OvXDrgsKChg6dDhDh47gtNO+yeuvV7WY5nnr1q1cccUVDBw4kIEDB3LFFVeEpKJetWoVZ555JscccwxHH300v/rVr6gfij5r1ixEhDfffLPh/Oeffx4R4dlnnw25z6xZsyguLg6xbdq0ifz8fPbs2QPApEmTOPHEE0POCU5DPXTo0JCkeVdddVXDfU4//XQGDx7c8Le56KKLuOOOOxqOg/92Dz74INOnT+eee+5p0An32W3cuJEJEyYwcuRIhg4dyrnnxr+EiQ3nNBJOTQ2UlEBdnbOBczx2rHfr7778Mqxskvzj448du+s7o2LLlsay1lNX59i7dfNer1OnTqxcuZK6ujoCgQBvvPEGRx55ZFitGTNmUFhYyMiRU1AVXnjh98yZ8yFVVXDwINx9990N6ZaDqU/tALBo0SIuuOACFi1axJAhQ9i3j4brVZ2tPi1z03w9kVJIN+WhhxbRtWsvHn30dh5/fAa9ez8eMc1zSUkJw4YN44knngDg9ttv55prruGZZ56hrq6OiRMn8rvf/Y7x48eza9cuLrzwQh555JGGFBbDhw+nvLycs846C3AmwI0cObLZfS644AJuuukmdu3aRceOHQF49tlnmThxIocccghbtmzhgw8+oHPnzvzzn/9kwIABDdfWp6H+7LPPGDVqFBdddBG5YZIZzZ07l6Ki0KHzP//5zwHnRy/4bzd9+vSQ88J9dtOmTWPcuHFMnToVcNJ5xIu1+I2EU1nZPMtjbq5j94pI2QVizToQKRTTaK8Blrh7L/TgnHPO4U9/+hPQmJkzHF26dOG22+5g5sxSZs68nu9975ccemg3RBzH3RbOOOMMrr32Wh577DHASb8sEnpOPGmZVRv1hg8/kZqaLyPqff755yxbtozbbrutwTZt2jSWLl3KF198wbx58zj55JMZP348AB07duThhx9ueNIAOPXUU1m8eDH79u1jx44dfP755xQWFja7V5cuXTjttNNYsGBBg+2pp55q+Fs/99xznHfeeVxyySURZ0kfffTRdOzYkc2bN0f7Z4mJDRs20KdPn4bjEfE+ymKO30gCBQXN/+H37XPsXjF5cnT21ojUqnfs5UB/YJy7bz1u1bKeQ72z2b17NytWrOCEE06IqHfZZcVs27aZnTu3ce65TohI1Vl0/eabb24IF0yZMiWixvHHH88nn3wCOD/MwZP4y8vv55JLCjnpJEdn/fr1De8Fp5AuLCxk/vz5zbRFGvXee+9VvvnNyRHTPK9evbohDFJPfUhk1apVrFq1ilGjRoVcM3DgQHbs2MG2bdvc+wljx47ltdde48UXX2TixIkR611cXNzg1NevX8+aNWsa0krX/+AWFxdHXAPhgw8+4Oijj+awww4L+/6UKVMa/jY333xzxHKEI9xnd/3111NSUsIZZ5zBHXfcEfJZxIqFeoyEk5/vxN1LSpyW/r59zrGXyyxMmODE+INWG2T48NjCPOA45EAgNDwTCEC3bjVACVDnbrjHY4HIFYqs13g8YsQIKisrKS8vbzWOu3HjOrZu/TcHDgh79uwgEOhM//6O448U6mlKcLqW3Fyn76WqynHal156I7fddhM9ezrvFwT9Src11HPDDWfw739vpEePw7j++hkR0zyrKtL0cSPIHul9IMR+ySWX8OCDD7J161buvfdefv3rX4e9ZsKECVx33XVs27aNp59+mosuuoicnBw2btzI559/zimnnIKI0L59e1auXMmwYcMAJzfR448/zj/+8Q9effXViPUOF+ppK+E+u29961sN93zllVc47rjjWLlyJfGsU2ItfiMpFBc7TmXhQmcfIYoRFytWwIIFzg/MggXOcTwceywMGuQsjj5okHMMlUDTZmuua49FL5SJEydy0003RQzz1DN16lR++cvpFBdfzDPP/BfDh9PgpNvKhx9+GJLbpWdPGnR6945eryl//esiKiurGDnyWJ59dlpEvWOPPZYPP/yQg0FxqoMHD/LRRx8xZMgQjj32WJrm6vrHP/5B586dOfTQxrTRY8aMYeXKlWzatIljjjkmYrkCgQBnn302zz//fEiYZ/78+WzevJkBAwZQUFBAZWVlSLjnxhtv5NNPP2X+/PlcccUV7N69O5Y/S0z06NGDSy+9lCeffJLRo0fz17/+NS49c/xG0sjPh9GjvW3pN2XCBPj972Nv6TelWzcnJNXYMi8Amgaq97n2WPRCufrqq5k2bRrDhw+PqPHKK69QXV3NFVdcwfTpt/Hyy8/z2Wer23T/ev7yl7/w2GOP8R//8R8h9txcJxwTFHWJiy5dAjz88APMmfMEX331VdhzBg0axHHHHceMGTMabDNmzOD4449n0KBBTJkyhXfeeYeFCxcCTqjphz/8Ibfcckszrf/+7/+O2NIPpri4mPvuu4+NGzfyjW98A3DCPK+++mpDKuxly5aFjfNfcMEFFBUVMXv27Db9DeLl//7v/9i1axcA27dv54svvqBfv35xaZrjN4yoyAfKgADQxd2X0VKYJxr69OnTMHojHLt37+ZHP/oRjzzyCCJCp06dmDlzZsNQTwiNExcWFrLX7WCZP38+hYWFHHPMMfz617/mueeeizorKTSP8d96660tnt+7d2+Ki4v57W9/C4RP81xWVsaaNWsYNGgQAwcOZM2aNZSVlQFOC/3FF19kxowZDB48mOHDhzN69OiQOtdzzjnntGkZyPHjx7N+/Xq++93vIiLuOgRrG34EAAYMGECXLl14//33m10/bdo07rvvvpCnlHqCY/xjx45ttSzBhPvsli1bRlFRESNGjODEE0/kmmuuYfTo0VHpNiXhaZlFJAdYCnypqhNEpAcwH6eJVAlcrKotdo9bWmZ/UVPjjMgpKIi/9T53Ljz9NFx8MbTQD5nQssWSltkZzVOJ8zVOXZbOHTtg61bo2hXCDI9PuV5dnTOBq1Mnp0/DSBzRpGVORot/KlARdHwr8KaqHg286R4baYKXE7H69oXLLoOXXnL2cT69JmWSWCP5wGhS6fTXrIFPPoENG5z9mjX+0lu71pmkVlnp7NeujU/P8I6EOn4R6QN8G/h9kHkSUB8cmw1MTmQZDO8Inoi1dauzLymJLQXD3Lmwbl2o7V//cuypLls6sGMHuCMZG9i2zbH7Qa+uDqqrQ23V1c0nsRmpIdEt/geAW4DgQNjh9cstuvuwg2FF5FoRWSoiS2sy9b83zfByItbTT0dnb414y5YOK9EFE5TNoE32ZOvt3Bmd3YiPaL+/CXP8IjIBqFbVZbFcr6qPqWqRqhbFM17V8A4vJ2JdfHF09taIp2x5eXnU1tamlfPv2jU6e7L1OnWKzm7EjqpSW1tLXl5em69J5ASuk4GJInIukAd0EZE5wEYR6a2qG0SkN1DdoorhG7yciDVlCvz0p054p56+fWPv4I2nbH369GHdunWk25Pljh0QPJQ8Ly/075lqvT17IHjN90MP9TZNh9FIXl5eSFqH1kjKYusicjpwkzuq526gVlXvFJFbgR6q2nxAbhA2qsdfZNqonnTm3Xfh9ddh/Hg4+WT/6VVUwOLFMGYMxDBy1IiTSKN6UuH4ewJPA/2AtcB3VDX8zA4Xc/yGYRjRE8nxJyVXj6q+Bbzlvq4FzkrGfQ3DMIzm2MxdwzCMLCOjHX8ylvqLB6/LV1EBs2c7+2zQSwZef0Z+/04aWYKq+n4bNWqURsu8eaqBgGrXrs5+3ryoJRKK1+UrLa1fN8nZSkszWy8ZeP0Z+f07aWQewFIN41OT0rkbL9F27tbUOFP2m+Y+r6ryx0gPr8tXUQFDhza3r14d20gKv+slA68/I79/J43MJJW5epJOMpb6iwevy7d4cXT2dNdLBl5/Rn7/ThrZRUY6/mQs9RcPXpdvzJjo7Omulwy8/oz8/p00souMdPz1szgDAejSxdl7vdRfPHhdviFDoGlq8tLS2MMoftdLBl5/Rn7/ThrZRUbG+Ovx+yxOr8vn9SxJv+slA68/I79/J43MIqUzd+PFZu4abcUcq2E0klWdu0Z2ktyFWAwjfTHHb2QE2bYQi2HEgzn+FOL1LM6XX4ZrrnH2idSL9T7hrps7FyZNin3lrXoSNVzy3Xfh9tudvRd4ref1Z24zi7OEcLO6/LbFMnPX73g9i3PYsNCZscOHJ0Yv1vuEu65Pn1Bb376xl7e6WlUkVE/EscfKuHGheuPHx66VCD2vP3ObWZx5EGHmbsqdelu2THP81dXOP1bwP20gELuTWrAgVKt+W7DAW73bbovtPpH0wm1z5nhb5lj/Bu+8E17vnXf8oed1fb3+Thr+IJLjt1BPCvA6LPHCC9HZY9WbPz+2+0RTjljX3PX6b/D669HZk63ndX1tZnF2kcg1d/NEZLGIfCQiq0Tkv1z7dBH5UkSWu9u5iSqDX/F6FufkydHZY9X77ndju0805Yh1zV2v/wbjx0dnT7ae1/W1mcVZRrjHAC82QIDO7utc4H3gG8B0nNW4sjbUo9oYT+3SxZt46vDhoY/p8cZ7I+nFep9w1/XtG2qLJ8YfT9kiMX58qF68MXmv9byur9ffSVUnVLR4sXchI6/1Mh2SHepx77vDPcx1N//PFksSxcVOZsaFC519cXF8eitWwIIFzhDGBQuc40ToHXFE6Hm9e8eupx5/G7zWW78+9HjDhvj0XnsN3nkHpk1z9q+9Fp+e15+5199Jr+dV2DwNDwn3a+DVBuQAy4EdwF2ubTpQCawA/gB0b00nE1v86YiXHZRz5oTX8kvnrtd62YbXncXW+RwbpKJzV1UPqGoh0AcYIyLDgN8BA4FCYANwb7hrReRaEVkqIktrbFCxL/CygzJSJ65fOne91ss2LK21v0nKqB5V3YKz2PrZqrrR/UE4CDwOhE3Oq6qPqWqRqhbl+yTpit8n83hN08k88XZQButF6sT1S+eu13r1/O53cNppzt4LvNbzakKdpbX2OeEeA7zYgHygm/s6ALwNTAB6B51zI/BUa1p+CPX4fTKP10SazNO9e2i5e/SIXa9Hj9i0IuF1Z7HXerH+7ZKl5+WEOlXvO5+9nrCWDZDsCVzACOBDnFj+SmCaa38S+Ni1vxT8QxBpS7Xj9/tkHq+JFE+NFPdurdyR9PLymtv8EgP2Wu+RR8L/7R55xB96Xve5ZNv/jF+J5PgTOapnhaoep6ojVHWYqv7StV+uqsNd+0RVjXOsROLx+2Qer4kUT40U326t3OH02rWDnJzm9/BLDNhrvUgjUGIdmeK1ntd9Ltn2P5Nu2MzdNuD3yTxeEymeGim+3Vq5w+kdPAgHDjS/h19iwF7rRRoaGeuQSa/1vO5zybb/mbQj3GOA37ZUh3pU/T+Zx2siTeaJtdzz5jmhnU6dnP28ec7Wvr1qTo6zj3fCUL1eu3be6eXkOMnecnLi1/O6T8PvfSTZ9j/jR4gQ6rEVuKLg3XedR8vx4+Hkk/2n5zXhVrPq2xfWrWs8p29fWLu2da3ycmeiUbt2Tmu/rAxuuSU2rUj06AGbN4ce19bGrtepE+zaFXq8Y0fk85Ndvlg/i2TpQfb9z/iNSCtwpbw135bNDy1+I/YOwHAdpR06xKYVCa87O++6K7zeXXf5o3xed8Z6rWf4A+Lp3BWRY0TkTRFZ6R6PEJFfePvbZPidWDsAw3WUHjwYm1Yk/N556vfOWK/1DH/T1s7dx4GfAvvAGbEDXJKoQhn+JNYOwHAdpe0ifPNi7Uz0e+ep3ztjvdYzfE64x4CmG7DE3X8YZFvelmu92DI11JOOmQtj7QAM11nsdWei152dnTqF6nXq5K/y+X3CmpF6iHMc/yYRGQhOdk0RuQgnz44RI+mauXDtWpgzByZOdPZt7fwLl/kxVq1I1NbCI4/Aqac6+3g6TsHpyL3rLigsdPbxdOwmonx33QXt2zvzIdq3d47jwevPw/AvbRrVIyJHAY8BJwGbgX8Cl6lqZUJL5+KXUT1eUVPjOOe6ukZbIOA4xFjSEnmtZ/gf+8yNthBpVE+bWvyq+g9VHYuTf+frqnpKspx+JuL3Waax0DShm5FY/PCZG+lLW0f1/FpEuqnqTlXdLiLdRWRGoguXqfh9lmm02AIZySfVn7mR3rQ1xn+OOqmVAVDVzUDWrZXrFfn5zgSmQAC6dHH2ZWWxP6J7rVdPpFZ8zc4alny5hJqdNdTUOBOz6upg61ZnX1LS9pZ/sJYXZIte/Wd+SPca8gYu4ZDuNZ585hVra5j9xhIq1tqjWybTvo3n5YjIIaq6B0BEAsAhiStW5lNcDGPHNp8Z6xe9+pm2HTo4LcuyMuce5R+XU/JSCR1yOrD3wF5+NqyMDh2KQ2LNOTnw5z/DuW7TIFKZmmqVTSqjeFjs6/1lm97ftpWz57oSONABcvbyt21lFBO73g2PlvPwv0rgYAf4y15K+5bx0PfiXH/R8CVt7dy9BZgI/C/OyJ6rgZdUdWZii+eQaZ27fidSx+GyT2oY9WR/6vY3vhFoH0Dvq2L3V6Fe/dBDYfduEHGuDf7xAKfl2/+B5lpVP6oiv1P0v1rZplextoahj/WH3KAPaV+A1ddWMaRf6vUMfxBv5+5M4A5gCHAs8KtkOX0j+UTqOFz8aSUdckLfyM3J5ef3VBIIQOfOjfbt252Y89694UNAlVvCa1VuqYytzFmmt/jTSqdlHszBXMfuAz3D37Q5LbOqvqKqN6nqf6rqa4kslJFaInUcjhlcwN4DoW/sO7CP711cQFUVPPyw09KPRPCok4Ju4bUKuhXEVuYs0xszuADaNZ0Ovc+x+0DP8DctOn4RecfdbxeRbUHbdhHZ1sq1eSKyWEQ+EpFVIvJfrr2HiLwhIp+5++7eVSe78WoN34aOw0Mat7IyGNIvn7JJZeTlBAhIF/JyApRNKiO/Uz6bNsG2bc4PRCTq6mDaNGc9101r87myWxkdJMAh2oVD2jVqxVTmTk7ZOkiA3INd6CDe6B3SztvyeaU3pF8+pX3LYF8AdneBfQFK+5bFHJYJ0dsTv57hc8JN5/ViAwTo7L7OBd4HvgHMBG517bcCd7WmlakpG7wkWWsCl5aq0rFa+dpipWO1lpa6tjCZHdu0BWnFW+Zhw0L14l2Tddw4b8vntV64zyJeVldV66zXF+vqqgTm/TCSBrGuuYvzVLCytfNa0egIfACcAHyKu84u0Bv4tLXrzfG3TLLWN42UutfLLdYyR1oPeMECb/8GflkzdvXq8HqrV8emZ2QmkRx/qzF+VT0IfCQi/aJ9mhCRHBFZDlQDb6jq+8Dh6q6z6+4Pi3DttSKyVESW1th00BZJ1vqmyUjRG2uZI60HHMkeazn8smbs4sXR2Q0jmLZ27vYGVrk5+V+q31q7SFUPqGoh0AcYIyLD2lowVX1MVYtUtSjfko+0SLLWN01Git5YyxxpPeBI9ljL4Zc1Y8eMic5uGCGEewxougHfDLe15dogjduBm7BQT0JI1vqmTeP5ccf4PSzz8OGhevHG+P2+Zmy4z8IwgiGWNXdFJA/4PjAI+BgoU9X9bflBEZF8YJ+qbnFn+r4O3OX+aNSq6p0icivQQ1VvaUnLJnC1jWStb1pR4YQUxoyBIUOa2yD867fecmYEFxfDiBGO9hFHwL//7V2ZX37ZCe9MngwTJsSv5/c1Y8N9FoZRT6QJXK05/vk4q269DZwDVKnq1DbecAQwG8jBCSk9raq/FJGewNNAP2At8B1V/aolLXP86U9wCohduyLP6DUMwztidfwfq+pw93V7YLGqHp+4YobHHH96Ey4FRDCWR94wEkOsKRsapuO0NcRjGE0JlwIiGMsjbxjJpTXHPzJ4ti4woq0zd43MpaICZs929m0hXAqIYHbvbvn9aIi2bKZnZCXhenz9ttmoHv8Q60iS4MXWc3NVO3RwNi9HpXg9yiXb9IzMg1hG9fgFi/H7g4oKGDq0uX316tARJTU1jTn4IfzrNWvglFNa1/K6bKZnZBNxpWU2DGjbbNHgZRiPPBL69GlcknHhQhg92unE/fzz6O7hRdlMzzAczPEbbaa12aJNl2FsKR+/1zNPTS8+PSO7MMdvtJkhQ6C0NNRWWtoYWohm9E5rWl6XzfQMoxGL8RtRE2m2aCzj9b2eeWp6htFITBO4/II5/vShfoZubq7zAyACeXlO2Mdm6BpGconk+NunojBG5lJcDGPHhh/JYzNzDcMfmOM3PCc/P9TJm8M3DH9hnbuGYRhZhrX4jaQRaWKXPREYRnIxx28kBUvLbBj+wUI9RsKJZmKXYRiJJ2GOX0T6isgiEakQkVUiMtW1TxeRL0Vkubudm6gyGMmjpgaWLAnvwC0ts2H4i0S2+PcD/6mqQ4BvANeLSH1aqftVtdDd/pzAMhhJIDg/T//+znEwraVl3revMe5vGEbiSZjjV9UNqvqB+3o7UAEcmaj7GamhaRgnXOgmP9+J4wcC0KWL08Lv0MF5HQg471kHr2Ekj6TE+EWkADgOeN81lYrIChH5g4h0j3DNtSKyVESW1lgA2LeEC+OEC90UFzvpGhYuhC+/hHXrnNdVVdaxaxjJJuEpG0SkM/AX4A5V/aOIHA5sAhT4FdBbVa9uScNSNviXcPl5bA1dw/AHKcnHLyK5wHPAXFX9I4CqblTVA6p6EHgcsESyaUzTME5LoZvgZQJtyUDDSB0JG8cvIgKUARWqel+QvbeqbnAPzwdWJqoMRnJomp8nnNO/4QZ4+OHw15eWwkMPJbKEhmEEk7BQj4icArwNfAwcdM0/A4qBQpxQTyXwvaAfgrBYqCe9ibRMYDC2ZKBheE/Ss3Oq6juAhHnLhm9mGW1ZDnDxYnP8hpEsbOaukXDashygLRloGMnDHL+RcMItExiMLRloGMnFkrQZSeGhh+C66xqXCQRbMtAwUoU5fiNpDBkS6uTN4RtGarBQj2EYRpZhjt8wDCPLMMdvRKalXMt+0DMMIybM8RvhaS3Xcqr1DMOImYQnafMCm7mbZLzOvGaZ3AwjJaQkSZuRprQ113Kq9AzDiAtz/EZzwi2ZFc8yWV7rGYYRF+b4jeZEk2s5FXqGYcSFxfiNyNTUtJxrOdV6hmG0SNKzcxoZQH6+tw7aa71w+P3HyvRMzw+oqu+3UaNGqWG0yrx5qoGAateuzn7ePNMzvfTV8wBgqYbxqQlz1kBfYBFQAawCprr2HsAbwGfuvntrWub4jVaprnb+2aBxCwQcu+mZXrrpeUQkx5/Izt39wH+q6hDgG8D1IjIUuBV4U1WPBt50j7MTv8+MTaeZtn4fgmp6pucjEub4VXWDqn7gvt6O0/I/EpgEzHZPmw1MTlQZfI3fZ8am20xbvw9BNT3T8xPhHgO83oACYC3QBdjS5L3NrV2fcaEevz9m+vSxtVXqY6xdungbszU900uFngcQIdST8OGcItIZ+Atwh6r+UUS2qGq3oPc3q2r3MNddC1wL0K9fv1FVVVUJLWdSWbLEaUlv3dpo69IFFi6E0aMzTy+Z+H2UhumZXhKJNJwzoY5fRHKBl4HXVPU+1/YpcLqqbhCR3sBbqjq4JZ2MG8fv91w4llvHMDKCpOfqEREByoCKeqfv8hJwpfv6SuDFRJXBtwTPZO3UyduZsV7q5eU5enl5oXqxdvqGu87vHdKmZ2QgiRzVczJwOXCmiCx3t3OBO4FxIvIZMM49zk7qn7a8euryWk8kdA+xd/qGu87vHdKmF5+e4V/CBf79tlnnrk/0Vq+O7T6R9PLy0u9vYHpGGkEKxvGnHr8+BidqDHEvoAhnnwi9xYtjK3e4+rZrBzk50WtFcw/TS52e4Wsy1/H7+TG4oCC04xRg9+74xhBP2A5VOHOhq4AJO7zXGzMmtrHK4eq7dy8cOBC9Vkv38PO47GzTM/xNuMcAv21Rh3r8/hhcXa2amxuql5sbu17NatWdTf5sO3HsXuvFMlY5Un3/53/8PY7a9OLTM1IOEUI9mZmds/6xNbiVWf/YGstIl0TodewYOk4+EIhdr3qxMyc6mH2uvdcQb/WKr4SxY6Mbqxypvscf7wwR9Wrcc3Fx9GUzvcTpGb4lMx2/3x+DvdY7bAzkNrHluvZE6EWbXrml+vo99bPpGRlIZsb4WxuHHqueX1ek6jUEPiyFXcBWnP2HpbG19hOh5/U8A8Mw4iIzHX894cahx0pxsROWWLjQ2RcX+0tv7Ukw+BA4L8/Zrz3JX3rg/TyDZODXkWHZqmd4Q7jAv9+2lHfu+p106MxOx8/D7wt1ZJueETUkeyEWL7eoHf/ixc6XLdjRdOni2DMRr+vrd71k4Pcfv2zTM2IikuPPzFBPosYk+/UxONmdz9GWuyU9j/+mL8/dzDWTqnl57ub4hNyRXBUMZjZXUMFgf02QyjY9w1vC/Rr4bYspZUOixjj79TF42LDQ1tXw4fHpjRsXqjd+fHzlLi0N1Sst9fxvMKxPrcLBhm1439rYxaqrtbTdb0P0Sts97J8WcLbpGTFBVoV66qmudsIJ8X7Z/P5P8c47oVr12zvvxKa3enVkPZ/m6lkw5yvXQQdLHtQFc76KSc/5EzTXWx3jnDhVDf/jFw9+n8BlE8JSTiTHn5mhnnry852FQ+IdNuj3x+DXX4/O3hqLF0fW82munhfm7IjK3hqLF26Lyt4qNTXOENZgysriC3H5faSZ13qGZ2S24/cKv0/gGj8+OntrjIkw8Wv8eNi1K9RWV9e2XD1791JDL5ZQRA294OBB2Lkz9Lxt22L+G0w+aWNU9tYYc3j4Fd8i2VslUTFvrxo36aJneII5/rbg9wlcJ5/c3MmPH+/YY6FXL2jfZFJ3+/bQo0fzORFtmSORn095yRv0p4pxLKQ/VZSf+0T4c9esianIE477N8NZDmjDNpzlTDju3zHpDelYRSkPhuiV8iBDOsbo+BM14GDuXJg0ydl7wcsvwzXXOHsvePdduP12Z+9HvYoKmD3b2WeDXj3h4j9+23yTj9+rPoNE6b3zjuq0abHH9uuJNPxy1izVnJxQe05Oq8Myw4b42+/Rano170eYNi22Mk+bpgq6gLO1hEd1AWd7oreawTqLK3Q1g+PTU1Xt3j20rj16xK6lqtqnT6he377x6SVrgIBf9Lzuc/GhHsnu3AX+AFQDK4Ns04EvgeXudm5btHzj+LOFSJ2xc+Y0d9SgumBBi3Jhf0cCe3QxRc215syJrcyRymZ6bWPBgpg+24h4PeAgWQMYYu2996leJMefyFDPLODsMPb7VbXQ3f6cwPsbsRIpFBUpDLNkSYtyYaMcB9pRQGXzk/fvj6nIEa/zi97TT0dnT7beCy9EZ28NrwccJGsAQyR7uus1IWGOX1X/CnyVKH0jwRQXwxtvwI9+5OyLi2PuRG74Hck7SJfAXgJ5Bym749/ks6n5yZE6llsj0nV+0bv44ujsrXF2uDZVC/bWmDw5OntreD3gIFkDGPzyffFarynhHgO82oACmod6KoEVOKGg7i1cey2wFFjar1+/6B6TjPiJFF8cPz7U3tY4a2mpVtNLF1PkxPZLS30ZE02oXt++oXrxxOQXLw4fCognDcbw4aFa8cb4Y/2uJEvP79+XdIzxa3jHfziQg/OkcQfwh7boWIw/ybQWX5wzR3XixLbHk1vSW7BAtaQk9lhyU/yud9ddqoWFzj4eEjUz9pFHVE891dl7QbTflWTr+f37EueADV84/ra+13Qzx59kZs0K76hnzYqtFRJJ76yzfNdCSis9G+WS2XoepDTxheMHege9vhF4qi065viTTKQWeqSRH62NNIik58NREKZner7Q8+iJLpLjT1jnroiUA+8Bg0VknYiUADNF5GMRWQGc4Tp/w28MGQKlpaG20lKorQ1/fmsjDcLpnXVWbFqR8PuoCtMzvWhIcHbThK25q6rhEnOUhbEZfuShh+C665wv7pgxjvOONHuwLSMNTjoJfv97Z6avqjP65M03Y9OKpgymZ3rpqJeomd71hHsM8NtmoR6fUF2t2q5d6ONnu3axZ+csKQm1xRMTjbVspteI30fh+F3Ph9lXycrsnIa3VFbCoYeG2jp3ji07Z24ufO97sHo1zJrl7B96KPllMz2Hmhp4++1Q29tvx549NNv0wPn+evV9hoRmN01YqMfIQGJ9/Gzpuvx8J4yUqrKZnkP9j3NdXaOtPqYcS/LAbNOrZ8gQb77P9eTnJySzqbX4jbYTa1ZRr7ORJuMe2abn9x8mv+ulG+HiP37bLMbvM2LNKup1NtJk3COb9Py+Apff9XwIEWL84rznb4qKinTp0qWpLoZhZD41NU64oz4MZ3ppjYgsU9WipnaL8RtGS2S4Y2iG1zHlbNNLEyzGbxiRKC+H/v1h3DhnX16e6hIZhieY4zeMcNTUQEmJM+pj61ZnX1IS33A/w/AJ5vgNIxwJnjJvGKnEHL9hhCPbh/sZGY05fsMIR6LmHlRUwOzZkfMepVqvpsZZStNCWhmNOX7DiITXU+ZvuAGGDoWrrnL2N9zgLz3rzM4abBy/YSSDigrHOTdl9erYpvh7rVdT4zj74BQGgYDzg5eFwx0zhUjj+K3FbxjJIMvzvxv+IpELsfxBRKpFZGWQrYeIvCEin7n77om6v2H4imzP/274ikS2+GcBZzex3Qq8qapHA2+6x4aR+URa1SzWTI5e6yUjkZ7hGxIa4xeRAuBlVR3mHn8KnK6qG0SkN/CWqg5uTcdi/EbGUFERuqqZ3/SyLUVFhhMpxp9sx79FVbsFvb9ZVcOGe0TkWuBagH79+o2qqqpKWDkNwzAykbTr3FXVx1S1SFWL8q3lYRiG4RnJdvwb3RAP7r46yfc3DMPIepLt+F8CrnRfXwm8mOT7G4ZhZD2JHM5ZDrwHDBaRdSJSAtwJjBORz4Bx7rFhGIaRRBK2EIuqRprfflai7mkYhmG0TlqkbBCRGiCRw3p6AZsSqO8HMr2OmV4/sDpmCsmsY39VbTY6Ji0cf6IRkaXhhjxlEplex0yvH1gdMwU/1NG3wzkNwzCMxGCO3zAMI8swx+/wWKoLkAQyvY6ZXj+wOmYKKa+jxfgNwzCyDGvxG4ZhZBnm+A3DMLKMjHf8ItJXRBaJSIWIrBKRqU3ev0lEVER6Bdl+KiKfi8inIvKt5Jc6Olqqo4jc4NZjlYjMDLJnRB1FpFBE/i4iy0VkqYiMCbom3eqYJyKLReQjt47/5dojLmCUTnVsoX53i8gnIrJCRJ4XkW5B16RN/SByHYPe94e/UdWM3oDewPHu60OBNcBQ97gv8BrO5LBerm0o8BFwCDAA+ALISXU9YqkjcAawEDjEfe+wDKzj68A5rv1cnDUe0rWOAnR2X+cC7wPfAGYCt7r2W4G70rGOLdRvPNDetd+VrvVrqY7usW/8Tca3+FV1g6p+4L7eDlQAR7pv3w/cAgT3cE8CnlLVPar6T+BzIMb17JJDC3X8AXCnqu5x36vPhppJdVSgi3taV2C9+zod66iqusM9zHU3xanLbNc+G5jsvk6rOkaqn6q+rqr7XfvfgT7u67SqH7T4GYKP/E3GO/5g3IVhjgPeF5GJwJeq+lGT044E/hV0vI7GHwrfE1xH4BjgVBF5X0T+IiKj3dMyqY4/Au4WkX8B9wA/dU9LyzqKSI6ILMdJWf6Gqr4PHK6qG8D5AQQOc09PuzpGqF8wVwOvuK/Trn4Qvo5+8zdZ4/hFpDPwHI6j2A/8HJgW7tQwtrQY8xpcR1XdhpOErzvO4/TNwNMiImRWHX8A3KiqfYEbgbL6U8Nc7vs6quoBVS3EafWOEZFhLZyednVsqX4i8nOc/8259aZwEgkvZJyEqeMIfOZvssLxi0gujrOYq6p/BAbixNM+EpFKnA/oAxE5AucXt2/Q5X1oDB/4ljB1BKcuf3QfPxcDB3ESRGVSHa8E6l8/Q+NjclrWsR5V3QK8BZxN5AWM0raOTeqHiFwJTACmqBv8Jo3rByF1nITf/E0qO0KSseH8oj4BPNDCOZU0drYcS2hnyz9Ijw6lZnUEvg/80n19DM4jpWRYHSuA093XZwHL0vhzzAe6ua8DwNs4zvBuQjt3Z6ZjHVuo39nAaiC/yflpVb+W6tjknJT7m4Tl4/cRJwOXAx+7cTeAn6nqn8OdrKqrRORpnC/ifuB6VT2QlJLGTtg6An8A/iAiK4G9wJXqfNsyqY7/AfxGRNoDu4FrIW0/x97AbBHJwXkaf1pVXxaR93DCdCXAWuA7kJZ1jFS/z3Ec3xtOJJK/q+r307B+EKGOkU5OVR0tZYNhGEaWkRUxfsMwDKMRc/yGYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvZCwicsDN2rnKzZb4YxGJ+TsvIqe4mRc/cbdrg97Ld1NjfChOFtEfBL13gpt5MhuGTxtpgH0RjUymTp2p84jIYcA8nERut0cr5M6ynAdMVtUP3LS6r4nIl6r6J5zJY5+o6pUicjjwnog8C9QCDwPXaWMismjvLThDrw/Gcr1hNMXG8RsZi4jsUNXOQcdHAUtw0lb0B54EOrlvl6rq30TkSeBZVX3RvWYuMB8YjZN8cVqQ3lnAdOAG4CWcmZpfAicC/8+9ZgkwCmdi2Z3A6TiTlX6rqo+6uYdexMmplAv8QlVfdBPRvQIscvUmq2qVl38fI3sxx29kLE0dv2vbDHwd2A4cVNXdInI0UK6qRSLyTZykb5NFpCuwHDgaeBqYXf+D4Gp1Bf6pqj1E5CqgSFVL3ffaAe/hZNIsAi7EWQ9hhogcAryLMwP3X0BHVd3mPkX83b1ff5zp+yep6t8T8gcyshYL9RjZRn02xFzgYREpBA7g5DJCVf8iIr91Q0MXAM+p6n433BKulRS25aSqB0XkUZwfg1oRGQ+MEJGL3FO64jj4dcCvReQ0nCR6RwKHu+dUmdM3EoE5fiNrcEM9B3CyW94ObARG4gxy2B106pPAFOASnPzwAKtwWu4vBZ03CifHSiQOuhs4Pzg3qOprTcp0FU5ir1Gqus/N3pjnvr2z7bUzjLZjo3qMrEBE8oH/AR52E9V1BTa4HaaXAzlBp8/CWbcBVV3l2n4LXOU+ISAiPXGWCZxJ23gN+IGbWhoROUZEOrnlqHad/hk4IR7DSCjW4jcymYCbyTMXJ/Phk8B97nuPAM+JyHdwOlAbWtequlFEKoAXgmwbROQy4HERORSnBf+Aqi5oY1l+DxTg5GEXoAZnCcW5wAIRWYrTn/BJLBU1jGiwzl3DaIKIdAQ+xlncfWuqy2MYXmOhHsMIQkTG4rS6HzKnb2Qq1uI3DMPIMqzFbxiGkWWY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFnG/wfSVo6szTyIxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax=None\n", + "colors = ['red','blue','green','yellow']\n", + "for i,var in enumerate(new_pumpkins['Variety'].unique()):\n", + " ax = new_pumpkins[new_pumpkins['Variety']==var].plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAGKCAYAAAAVEBpAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcxklEQVR4nO3df5h3dV3n8ecrwEBEARm4bhW8UxEDfwDekqztpiiFmiGGCW5GZhduLRVpJaX5a7e9bP25musurAiRgqaopGEiF+TiKnrzQ4SQIEMSEG615BbzB/DeP8538sswv+c7c85n5vm4rrnm/PjOzIvx/r488znnfE6qCklSe36s7wCSpOWxwCWpURa4JDXKApekRlngktSoHdfyh+211161efPmtfyRktS8yy677BtVNTVz+5oW+ObNm9m6deta/khJal6Sr862fcEhlCQ7J/l8ki8muSbJ60bbX5vk5iRXjj6eNenQkqS5LeYI/PvAEVX1nSQ7AZckOX+0761V9abViydJmsuCBV7drZrfGa3uNPrw9k1J6tmirkJJskOSK4HbgQuq6tLRrpOSXJXk9CR7rFZISdJ9LarAq+ruqjoYeBhwWJLHAu8CHgkcDNwKvHm2r01yYpKtSbZu27ZtIqElSUu8Dryq/gW4GDiqqm4bFfs9wGnAYXN8zalVtaWqtkxN3ecqGEnSMi3mKpSpJLuPlncBngF8OcmmsZcdA1y9KgklSbNazFUom4Azk+xAV/gfqKqPJTkrycF0JzRvBF66aiklSfexmKtQrgIOmWX7i1YlkSRpUdb0TkwN3+ZTPt53hAXd+IZn9x1BGgQns5KkRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1KjmH6nWwiPAwMeASZo8j8AlqVEWuCQ1asECT7Jzks8n+WKSa5K8brR9zyQXJLl+9HmP1Y8rSZq2mCPw7wNHVNUTgIOBo5I8GTgFuLCq9gcuHK1LktbIggVene+MVncafRRwNHDmaPuZwHNXI6AkaXaLGgNPskOSK4HbgQuq6lJgn6q6FWD0ee85vvbEJFuTbN22bduEYkuSFlXgVXV3VR0MPAw4LMljF/sDqurUqtpSVVumpqaWGVOSNNOSrkKpqn8BLgaOAm5Lsglg9Pn2SYeTJM1tMVehTCXZfbS8C/AM4MvAecAJo5edAHx0lTJKkmaxmDsxNwFnJtmBrvA/UFUfS/JZ4ANJXgLcBDx/FXNKkmZYsMCr6irgkFm2fxN4+mqEkiQtzDsxJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhq1YIEn2TfJRUmuTXJNkt8ZbX9tkpuTXDn6eNbqx5UkTdtxEa+5C3h5VV2eZDfgsiQXjPa9taretHrxJElzWbDAq+pW4NbR8vYk1wIPXe1gkqT5LWkMPMlm4BDg0tGmk5JcleT0JHvM8TUnJtmaZOu2bdtWllaS9G8WXeBJHgB8CDi5qu4A3gU8EjiY7gj9zbN9XVWdWlVbqmrL1NTUyhNLkoBFFniSnejK+71VdS5AVd1WVXdX1T3AacBhqxdTkjTTYq5CCfBu4NqqesvY9k1jLzsGuHry8SRJc1nMVShPAV4EfCnJlaNtfwQcn+RgoIAbgZeuQj5J0hwWcxXKJUBm2fXXk48jSVos78SUpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJatSCBZ5k3yQXJbk2yTVJfme0fc8kFyS5fvR5j9WPK0matpgj8LuAl1fVTwJPBv5zkgOBU4ALq2p/4MLRuiRpjSxY4FV1a1VdPlreDlwLPBQ4Gjhz9LIzgeeuUkZJ0iyWNAaeZDNwCHApsE9V3QpdyQN7TzydJGlOiy7wJA8APgScXFV3LOHrTkyyNcnWbdu2LSejJGkWiyrwJDvRlfd7q+rc0ebbkmwa7d8E3D7b11bVqVW1paq2TE1NTSKzJInFXYUS4N3AtVX1lrFd5wEnjJZPAD46+XiSpLnsuIjXPAV4EfClJFeOtv0R8AbgA0leAtwEPH9VEkqSZrVggVfVJUDm2P30ycaRJC2Wd2JKUqMscElqlAUuSY2ywCWpURa4JDXKApekRi3mOnBJy7D5lI/3HWFRbnzDs/uOoGXyCFySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjXIyK0lNcHKw+/IIXJIaZYFLUqMWLPAkpye5PcnVY9tem+TmJFeOPp61ujElSTMt5gj8DOCoWba/taoOHn389WRjSZIWsmCBV9WngW+tQRZJ0hKsZAz8pCRXjYZY9pjrRUlOTLI1ydZt27at4MdJksYtt8DfBTwSOBi4FXjzXC+sqlOraktVbZmamlrmj5MkzbSsAq+q26rq7qq6BzgNOGyysSRJC1lWgSfZNLZ6DHD1XK+VJK2OBe/ETHI28FRgryRfA14DPDXJwUABNwIvXb2IkqTZLFjgVXX8LJvfvQpZJElL4J2YktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY1asMCTnJ7k9iRXj23bM8kFSa4ffd5jdWNKkmZazBH4GcBRM7adAlxYVfsDF47WJUlraMECr6pPA9+asflo4MzR8pnAcycbS5K0kOWOge9TVbcCjD7vPdcLk5yYZGuSrdu2bVvmj5MkzbTqJzGr6tSq2lJVW6amplb7x0nShrHcAr8tySaA0efbJxdJkrQYyy3w84ATRssnAB+dTBxJ0mIt5jLCs4HPAgck+VqSlwBvAI5Mcj1w5GhdkrSGdlzoBVV1/By7nj7hLJKkJfBOTElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGLfhU+vkkuRHYDtwN3FVVWyYRSpK0sBUV+MjTquobE/g+kqQlcAhFkhq10gIv4JNJLkty4iQCSZIWZ6VDKE+pqluS7A1ckOTLVfXp8ReMiv1EgP3222+FP06SNG1FR+BVdcvo8+3Ah4HDZnnNqVW1paq2TE1NreTHSZLGLLvAk+yaZLfpZeBngasnFUySNL+VDKHsA3w4yfT3eV9VfWIiqSRJC1p2gVfVV4AnTDCLJGkJvIxQkhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1akUFnuSoJNcluSHJKZMKJUla2LILPMkOwDuBZwIHAscnOXBSwSRJ81vJEfhhwA1V9ZWq+gFwDnD0ZGJJkhaSqlreFybHAkdV1a+P1l8E/FRVnTTjdScCJ45WDwCuW37cNbMX8I2+Q6wj/j4nx9/lZLXy+3x4VU3N3LjjCr5hZtl2n/83qKpTgVNX8HPWXJKtVbWl7xzrhb/PyfF3OVmt/z5XMoTyNWDfsfWHAbesLI4kabFWUuBfAPZP8hNJ7gccB5w3mViSpIUsewilqu5KchLwN8AOwOlVdc3EkvWrqSGfBvj7nBx/l5PV9O9z2ScxJUn98k5MSWqUBS5JjbLAJalRG77Akzxwnn37rWUWaS5JHpzkmCRP7DtLi5J8YGz5T2fs++TaJ5qMDV/gwMXTC0kunLHvI2uapHHr9U3ShyQfS/LY0fIm4Grg14CzkpzcZ7ZG7T+2fOSMffe5w7EVFvi97yjdc559Wti6fJP05Ceq6urR8ouBC6rqOcBP0RW5lma+y+2avRRvJbfSrxc1x/Js65rfunyT9OSHY8tPB04DqKrtSe7pJ1LT7p/kELqD1l1Gyxl97NJrshWwwGHvJC+j+x9yepnRukeNS7Mu3yQ9+ackv0U3ZcWhwCcAkuwC7NRnsEZ9HXjLLMvT603a8DfyJHnNfPur6nVrlaV1SS6ab39VPW2tsrQuyd7A64FNwDur6pOj7U8DnlhVb+ozn4Zhwxf4fJKcXFVv6zuHNC7JjlV1V985WpJkf+CNwKOALwG/V1U395tq5TyJOb+XLfwSLSTJkUku6DtHS5JcMrZ81ozdn1/jOOvB6cDHgV8ELgfe0W+cybDA5+dVKEuQ5Igkf5/kO0n+IsmBSbYCbwDe1Xe+xuw6tnzQjH3+u1y63arqtKq6rqreCGzuO9AkeBJzfo4vLc2b6Z6+9Fm6Z6V+DvjjqvofvaZqk1f0TNbOYyfV4d4n2amqy3tLtgIbvsCTbGf2N0SA+69xnNZVVV08Wv5Ikm2W97LtnuQYur+Sd0/yvNH2AA/qL1azZrvyZHq9gCPWPNEEeBJTE5PkK8DvjW160/h6VZ275qEaleQ98+2vqhevVZb1IMkDq+qOvnNMmgU+iyS7As8FXlhVz+45TjMWKJ2qKu8gVC+S/APwyqo6p+8sk2SBj4weC/cs4IXAUcCHgHOr6q96DaYNaeyGsllV1Vvm2697S/Jw4G3AA4DfqKob+k00GY6BJ0cCxwM/B1wEnAUc5p+oSzdL6RTwDeCSqvrHHiK1bLe+A6wnVfVV4JgkRwGfSfIF4J6x/b/QW7gV2PAFTvdMz/8L/PR0ySTxxNvyzFY6m4FXJnntevvzdZV9s6r+rO8Q60mSA4A/oHu/v5OxAm/Vhh9CGV1KdBxwLPAV4Bzg1VX18F6DrSNJ9gQ+VVWH9p2lFUku9/c1OUneAPwC8PKqOr/vPJOy4W/kqaorquoVVfVI4LXAIcD9kpyf5MR+060PVfUtvPlE/doCHLqeyhss8Hs9aKCqPlNVJwEPpTvhcXhfudaTJEcA/9x3jsY8Pskds3xsT7LuLodbA3tW1ff6DjFpjoHPMmVsVd1DNzb+N2sfp11JvsR9b4raE7gF+JW1T9S0L1XVIX2H0LBZ4PCgsbvc7sObT5bkecAPxtaL7mTcnT3lkaY9Isl5c+30KpR2PQj4eWYfoy3AAl+893vibWL+su8A68w2url61hULHG7yDsGJ8UTl5Bw8vZDkT6vqFWPrn6yqn+0lVbu2V9Xf9h1i0ixwZ3abpKn57iD07sEledTY8pHAK8bWfdTf0t3Yd4DVYIHDt9brRDc92IHuVmWPxFeXBx1LVFVznudqmQUOnwQuS/Kaqnpf32Ead2tVvb7vEOuED4jWgjb8nZgASR5KNzfwXnRPjhmfI8GTmIuU5IrZLn1Lsi9w3OhJKFqEJBczz5G2D4gWeAQOQFXdnOTjwJ8Az+FHBe5VKEvz9OmFJHsBz6ebKOxh+Htckqp6at8Z1pMkv1xVfzFafkpVfWZs30mtzjuz4Y/AkxxEd9R9C/C7VXVrz5GalWQ34Bi6KXkfDXwYeEFVPazXYA2a794E8C/DpRqfW2bmPDMtzzvjETh8EDi5qu5z12WSXb0JZUlup3ti+qvoppCt0WPBtHTPmWeffxkuXeZYnm29GRZ4d73tXkm2AFdV1Q+S7A2cDPwq8JD+ojXnj+hmdnwX8L4k7+85T7Ocj37iao7l2dabseEnswL+E3Al8A7gc0lOAK6lO9P/xB5zNaeq3lpVP0U3bWeAjwAPSfKKJI/uNVyDkuwwOpcwvX6/JCcmubbPXI16TJKrRvP1TC9Prx/Qd7jlcgw8+Tu6hzl8K8l+wA3Af6iqz/UcbV1I8ji6MfFfGk3Zq0VIchzwv4E7gevppjo+C/gC8F+q6vL+0rVn9Ei1OY2e2NMcC/y+JzSurqrH9plJSnI18NyquiHJocBn6S7F/HDP0TQgFnhyO91TeKYdN75eVb+95qEalWQ7s48nhu6p9A9c40jNmuXA4stV9Zg+M7Vs7N/m9AnL6X+nTf/b9CQm/P6M9ct6SbEOVJUP4p2cvWfMK/OA8XXnlVma9fpvc8MfgUtDlOQ18+wupyxYmiQ7012w8CjgKuD0qrqr31Qrt+ELPMlfMf8ty01O9N6HWf5MZbS+I3C/qvIvvglI8qSq+kLfOVoyuqT1h3RPpH8m8NWq+p1+U62cbyh4U98B1ouZf6aO7sz8TeCldHdlapmSHEh3fuZ44Nt0D+nV4h1YVY8DSPJuuhvOmrfhC3yuSd6nJ2AC1t0k8Kstye50N0L9CvA+4ElV9c0+M7VodOnb8aOPu4CHA1uq6sY+czXqh9MLVXVX0uzNl/ey4Qt83IwJmB6KR41LMvr9vRx4AXA6cEhVfbvfVG1K8v/oHvd3DnBsVV2f5B8t72V7QpLpOf9DN0XvHXgVStvmmIDpEU7AtCxfpXv24HuA7wIvGT/S8cqJJdlGN4vjPnRP4Lmehm/57ltV7dB3htWw4QscJ2CapDfyo5JZl5dtrZWqOjrJg4BfBF6X5FHA7kkOq6p1MX6rlfMqlOR36ca6d6Ubr30/cEFVPaLXYNrQkuxUVT8cW9+bbmjqeGDfqtq3t3AajA1f4NOSPILuzXEcsD/wGuDDVfX3vQZrSJK3z7ffu1oXb3SH8EeBs4GLauyNmuThrc7docna8AWeZL+qumnGtsfRlfkLnIBp8UYzOc6pqs5cqyytS/Jg4Fh+dEDxQeDsqrq012AaFAv83k/q+FBV/WLfmaRxSR5Cd3XUccDewDlV9cp+U2kILPCxB/HO9VBeLU6S8+bb712ty5fkAcDzgJcBm6pqn54jaQC8CmX+J3VoaQ4H/olu3PZSGn5U1RCM5u94Dt1w3lOATwB/CHyyz1waDo/Ak7vpJs0P3VN4vju9i4Yv8O9Dkh2AI+kK5/HAx+nGba/pNViDkrwPeAbwabqbeT5WVd/rN5WGZsMXuFZHkh+nK/I3Aq+vqnf0HKkpoxPC51bV9r6zaLgscE3UqLifTVfem4Hz6KbuvLnPXNJ6ZIFrYpKcCTwWOJ/uSomre44krWsWuCYmyT105xPg3ieEPZ8grQILXBqgJM+bb39VnbtWWTRcFrg0QKO/Zq4cfcCMpxxV1a+tdSYNjwUuDdBoRswX0D3D8aN0l2Pe0G8qDY0FLg1Ykl2Bo+nK/MHAK+d6ipQ2nh/rO4CkeX2P7hmYd9BNebxzv3E0JB6BSwOU5Gl019IfBnyK7rLMrf2m0tBY4NIAjU5iXgVcQndJ5r3eqM6tLnAyK2moXtx3AA2fR+DSwI2mkq2qunPBF2tD8SSmNFBJfiPJTcBXgZuSfDXJb/adS8NhgUsDlORVdHOBP7WqHlxVDwaeBjxztE9yCEUaoiTXAU+YOQd4kl2AL1bVo/tJpiHxCFwaqNke4FBV/wrc00McDZAFLg3T15I8febGJEcAt/aQRwPkEIo0QEkOopsD5RLgMrrrwJ9E92zMo31MncAClwZr9FDjFwIH0c1GeA3wXp+NqWneyCMNVFV9L8lFwO10R+DXWt4a5xG4NEBJHgj8H+CJdHOC/xjwBLrhlJdU1R39pdNQWODSACU5A7gReH1V3TPaFuCPgUdV1a/0l05DYYFLA5Tk+qraf6n7tLF4GaE0TFn4JdroLHBpmD6T5NWjYZN/k+SPgc/1lEkD4xCKNECjk5jvBg6lO4lZwCHAFXQnMb/dXzoNhQUuDViSRwIHMroOvKr+IcnJVfW2fpNpCCxwqTFJbqqq/frOof45Bi61xxOcAixwqUX+2SzAW+mlQUqyndmLOsAuaxxHA+UYuCQ1yiEUqSFJdk/yyr5zaBgscGmAkuyb5NQkH0vy60nun+TNwPXA3n3n0zA4Bi4N058Dfwt8CDiK7u7La4DHVdXX+wym4XAMXBqgJF+sqieMrd8G7FdV3+8xlgbGI3BpoJLswY+u+f46cP8kuwJU1bd6C6bB8AhcGqAkN9I9fX62m3aqqh6xtok0RBa4JDXKIRRpgJIcOt/+qrp8rbJouDwClwZo9DDjuVRVHbFmYTRYFrgkNcobeaQBSvIHY8vPn7Hvv619Ig2RBS4N03Fjy384Y99RaxlEw2WBS8OUOZZnW9cGZYFLw1RzLM+2rg3Kk5jSACW5G7iTH83//d3pXcDOVbVTX9k0HBa4JDXKG3mkAUqy53z7nQtF4BG4NEhJ/pFurDvAJuAWfnTy0rlQBFjg0uAluaKqDuk7h4bHq1Ck4fMoS7OywCWpUZ7ElAYoycvGVveesU5VvWWNI2mALHBpmHYbWz5txroEeBJTkprlGLgkNcoCl6RGWeCS1ChPYkoDleQA4ETgMaNN1wKnVdV1/aXSkHgELg1QksOBi4HtwKl0V6LcCVyU5Mk9RtOAeBWKNEBJzgf+tKounrH9Z4BTquqZvQTToFjg0gAl+fuqevQc+66rqgPWOpOGxyEUaZi2z7PvzjVLoUHzJKY0TPsmefss2wM8dK3DaJgscGmYfn+efVvXLIUGzTFwqTFJdqyqu/rOof45Bi4NUJJLxpbPmrH782scRwNlgUvDtOvY8kEz9gUJC1waqvnGNh33FOBJTGmodk9yDN1B1u5JnjfaHuBB/cXSkHgSUxqgJGcwz5F2Vb147dJoqCxwSWqUY+DSACV5R5L7PEYtyWOSfKqPTBoeC1wapq8DVyZ5IUCS+yf578B5wDt7TabBcAhFGqgkPwH8Gd0DjR8CfAD4r1X13V6DaTA8ApeGa/roake69+q1lrfGWeDSACV5FfAp4M+r6t8B/x44OsnfJjmw33QaCq8Dl4ZpCjikqrYDVNXNwLFJngl8CPjJPsNpGBwDlxqT5Mer6vt951D/PAKXBmiOucDH/faaBNGgWeDSMF3WdwANn0MoktQoj8ClAUpy3nz7q+oX1iqLhssCl4bpcOCfgLOBS3EOcM3CIRRpgJLsABwJHA88Hvg4cHZVXdNrMA2KN/JIA1RVd1fVJ6rqBODJwA3AxUl+q+doGhCHUKSBSvLjwLPpjsI3A28Hzu0zk4bFIRRpgJKcCTwWOB84p6qu7jmSBsgClwYoyT3AnaPV8TdpgKqqB659Kg2NBS5JjfIkpiQ1ygKXpEZZ4JLUKAtczUtycZKfm7Ht5CT/c5Ff//okz1jgNb+a5CErySlNmgWu9eBs4LgZ244bbZ9Xkh2q6tVVtdCT3n+V7rmU0mBY4FoPPgj8/OjGF5JspivbFybZmuSaJK+bfnGSG5O8OsklwPOTnJHk2NG+J44eW3ZZkr9Jsmm0bwvw3iRXJnl2kg+Pfb8jk3iDjdacBa7mVdU3gc8DR402HQe8H3hlVW2hm0vkZ5I8fuzLvldVP11V50xvSLIT8A7g2Kp6InA68CdV9UFgK/Afq+pg4K+Bn0wyNfrSFwPvWbX/QGkOFrjWi/FhlOnhk19KcjlwBXAQMP4w4PfP8j0OoLv78YIkVwKvAh4280XV3TxxFvDLSXanmznw/In8V0hL4FwoWi8+ArwlyaHALsA/A78HPKmq/jnJGcDOY6+/8z7fobvL8ZqqOnwRP+89wF8B3wP+sqruWkF2aVk8Ate6UFXfAS6mG/Y4G3ggXUl/O8k+wDMX8W2uA6aSHA7dkEqSg0b7tgO7jf28W4Bb6I7Sz5jMf4W0NB6Baz05m262vuOq6stJrgCuAb4CfGahL66qH4xOWL49yYPo3h9vG32PM4D/leRfgcOr6l+B9wJTVfV3q/EfIy3EuVCkZUryZ8AVVfXuvrNoY7LApWVIchndEM2RVfX9vvNoY7LAJalRnsSUpEZZ4JLUKAtckhplgUtSoyxwSWrU/wdO32Yxjk19aAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.2669192282197318\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 174, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcL0lEQVR4nO3df5RcZZ3n8fenSduJJJDQCTEnPwxOhFkWYpSWhYkogsPiHA5wNuiZOSK4OpOVHT3i6iaic3D1zHpMMqszLu4ZGWUJLMMsQxAcZjiQBZTBJUCTyQ9+KdlBSCKE0CRDtyZth/7uH3U7qW6qOl3Vdavurft5ndMnVU9Vfe/zVFe+dfu5z/1eRQRmZlYcHa3ugJmZNZcTv5lZwTjxm5kVjBO/mVnBOPGbmRXMlFZ3YCJmz54dixcvbnU3zMxy5Yknnng1IuaMbc9F4l+8eDG9vb2t7oaZWa5IeqFSu6d6zMwKxonfzKxgnPjNzArGid/MrGCc+M3MCia1xC9poaQHJT0j6SlJn0va10l6VtI2ST+UNDOtPtjk9A0MsnXnfvoGBjMZz8zqk+ZyzkPAFyJis6QZwBOSNgIbgWsi4pCkNcA1wOoU+2F1uGvLblZv2EZnRwdDw8OsXbGUi5fNz0w8M6tfanv8EfFSRGxObvcDzwDzI+K+iDiUPG0TsCCtPlh9+gYGWb1hGweHhukfPMTBoWFWbdhW9556o+OZ2eQ0ZY5f0mLg3cCjYx76JHBPldeslNQrqXfv3r0p99DK7dp3gM6O0R+Nzo4Odu07kIl4ZjY5qSd+SdOBDcDVEfF6WftXKE0H3VLpdRFxfUT0RETPnDlvOuPYUrRg1jSGhodHtQ0ND7Ng1rRMxDOzyUk18UvqpJT0b4mIO8rarwQuAj4WvgRY5nRP72LtiqVM7exgRtcUpnZ2sHbFUrqnd2UinplNjtLKu5IErAdei4iry9ovBL4FfCAiJjSH09PTE67V03x9A4Ps2neABbOmNSRJNzqemY1P0hMR0TO2Pc1VPcuBjwPbJW1J2r4MfAfoAjaWvhvYFBGfTrEfVqfu6V0NTdCNjmdm9Ukt8UfEw4AqPPQPaW3TzMyOzmfumpkVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/tZW+gUG27txP38Cg4zle7uOlJbWLrZs1211bdrN6wzY6OzoYGh5m7YqlXLxsvuM5Xi7jpcl7/NYW+gYGWb1hGweHhukfPMTBoWFWbdhW956X4zleK+OlzYnf2sKufQfo7Bj9ce7s6GDXvgOO53i5i5c2J35rCwtmTWNoeHhU29DwMAtmTXM8x8tdvLQ58Vtb6J7exdoVS5na2cGMrilM7exg7YqldE/vcjzHy128tCkiWt2Ho+rp6Yne3t5Wd8NyoG9gkF37DrBg1rSG/KdzPMdrZbzJkvRERPS8qd2J38ysPVVL/KlN9UhaKOlBSc9IekrS55L2EyRtlPRc8u+stPqQdVlfQ5yXNclmVps01/EfAr4QEZslzQCekLQR+ARwf0R8U9KXgC8Bq1PsRyZlfQ1xntYkm1ltUtvjj4iXImJzcrsfeAaYD1wCrE+eth64NK0+ZFXW1xDnbU2ymdWmKat6JC0G3g08CsyNiJeg9OUAnFjlNSsl9Urq3bt3bzO62TRZX0OctzXJZlab1BO/pOnABuDqiHh9oq+LiOsjoicieubMmZNeB1sg62uI87Ym2cxqk2ril9RJKenfEhF3JM17JM1LHp8HvJJmH7Io62uI87Ym2cxqk9pyTkmiNIf/WkRcXda+DugrO7h7QkSsGi9Wuy7nzPoa4qytSTaz2lRbzpnmqp7lwMeB7ZK2JG1fBr4J3CbpU8CLwEdS7EOmdU/vamhCzXo8M8uG1BJ/RDwMqMrD56e1XTMzG59r9ZiZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBN/C2X9ilnV4tW7nUqvy+t74HiWZ2nW6rFxZP2KWdXi1budSq8LyOV74HiWd77Yegv0DQyyfM0DHBw6UvN+amcHP119Xl1F0ZoV7+7PvI+Lrnu45u1Uitc1pQMIBg8d+fzl4T1wPMuTpl9s3arL+hWzqsXbsnN/XdupFO+YDnGM8vceOJ61A0/1tEDWr5hVLd6yhTPr2k6leG8MBzD6r808vAeOZ+3Ae/wtkPUrZlWLt2TujLq2UyneusuWsu6yd+XuPXA8awee42+hrF8xq1q8erdT6XV5fQ8cz/Kg2hy/E7+ZWZvywV0zMwOc+M3MCseJ38ysYJz4zcwKxonfzKxgnPjNzAqmrRN/1isXOp6ZtULblmzIeuVCx3PlR7NWacs9/r6BQVZv2MbBoWH6Bw9xcGiYVRu21b2n6XjZimdmk5Na4pd0g6RXJD1Z1rZM0iZJWyT1SjozjW1nvXKh47nyo1krpbnHfyNw4Zi2tcDXImIZcG1yv+GyXrnQ8Vz50ayVUkv8EfEQ8NrYZuC45PbxwC/T2HbWKxc6nis/mrVSqkXaJC0G7o6I05L7/wq4FxClL53fiYgXjhan3iJtWa9c6HhmlqaWVOeskPi/A/wkIjZI+iiwMiI+VOW1K4GVAIsWLTrjhReO+v1gZmZlslKd80rgjuT23wJVD+5GxPUR0RMRPXPmzGlK58zMiqDZif+XwAeS2+cBzzV5+2ZmhZfaCVySbgXOBWZL2gV8Ffgj4C8kTQEOkkzlmJlZ86SW+CPiD6o8dEZa2zQzs6NryzN3zcysOid+M7OCceI3MysYJ34zs4Jp68RftPrvWa+fX7Tfh1lWuR5/m8h6/fyi/T7Msqwt9/iLVv896/Xzi/b7MMu6tkz8Rav/nvX6+UX7fZhlXVsm/qLVf896/fyi/T7Msq4tE3/R6r9nvX5+nn8fWT/AXbR41hiplmVulKzU48+6rNfPz9vvI+sHuIsWz2rXknr8jVJv4jerV9/AIMvXPMDBoSNTVFM7O/jp6vPq+tJyvMnFs/pkpR6/WS5k/QB30eJZY00o8Us6WdL9kp5M7i+V9Cfpds2sdbJ+gLto8ayxJrrH/1fANcAQQERsA34/rU6ZtVrWD3AXLZ411oTm+CU9HhHvlfRPEfHupG1LRCxLu4PgOX5rnawf4C5aPKtNtTn+iZZseFXSbwGRBLsMeKmB/TPLpO7pXQ1NWI5nWTDRxP/HwPXAb0vaDTwPXJ5ar8zMLDUTSvwR8c/AhyQdC3RERH+63TIzs7RMdFXPNyTNjIhfRUS/pFmS/jTtzpmZWeNNdFXPhyNi/8idiNgH/F4qPTIzs1RNNPEfI+nwERpJ04DCHbHJeh2T3uf7+NZ9P6P3+b6GxNuxp5/be3eyY8/omb16+13pdVl/T83a0UQP7v4v4H5J/5PSyp5PAutT61UGZb2OyeXf38TDO0oJ/zsP7OCcJd3c/Idn1R3v2ju3c9OmFw/fv+LsRXz9ktPr7nel1wVk+j01a1cTrtUj6cPA+YCA+yLi3jQ7Vq7V6/izXsek9/k+Lvvepje13/4fzqLnpO6a4+3Y08+Hvv1QxXiX3/BYzf2uNN6uKR1AMHjoyOcvS++pWTuYdK2eiLgnIr4YEV9oZtLPgqzXMXnouVdraj+aLTv3V41XT78rjfeYDnGMsvuemrWzcRO/pIeTf/slvV720y/p9eZ0sfWyXsfk/e+cXVP70SxbOLNqvHr6XWm8bwwHb0R239MRPgZh7WjcxB8R70v+nRERx5X9zIiI45rTxdbLeh2TnpO6OWfJ6Cmdc5Z01zXNA7Bk7gyuOHvRqLYrzl5Ez0nddfW70njXXbaUdZe9q6Hv6UfPWDCq7aM9CyY1zXPXlt0sX/MAl3//UZaveYAfbdldd6w04pnV66hz/JI6gG0RcVpNgaUbgIuAV8pfK+mzwGeAQ8DfR8Sqo8Vq9Rz/iKzXMel9vo+HnnuV979zdt1Jv9yOPf1s2bmfZQtnsmTujMPt9fa70usa9R5k/TiMj0FYK9RdqycihiVtlbQoIl482vPL3AhcB9xU1okPApcASyNiUNKJNcRruazXMek5qf69/EqWzJ0xKuGPqLfflV7XqPdgZI7/IEcS68gcfz3xsx7PbDImupxzHvCUpMeAX400RsTF1V4QEQ9JWjym+SrgmxExmDznldq6a81UbW+8kX+pNOqvlKwfh3F9esuSiSb+rzVoeycD50j6r8BB4IsR8XilJ0paCawEWLRoUaWnWIqqrYlv5Fr5Rp570D29i0UnTOPnew7vl/D2E+r/Ykoj3toVS1k15r3z3r61wriJX9JU4NPAEmA78IOIODTJ7c0CzgLeC9wm6R1R4UBDRFxPqSIoPT092b8wcBvpGxhk9YZtHBwaPjw1sWrDNk6dd1zF9uVLZtecwHqf7zuc9Ef8444+ep/vq2vPv/f5vlFJGuBne36VmXgAFy+bz/Ils12f3lruaOv41wM9lJL+h4H/Nsnt7QLuiJLHgGGgvjWHlppqa+K37NzfsLXyjT73IOvxRnRP7+JdC2c66VtLHS3xnxoRl0fE94DLgHMmub07gfOgdB1f4C3A5P4nWcNVm49etnBmw+apG33uQdbjmWXJ0RL/0MiNWqd4JN0KPAKcImmXpE8BNwDvSC7a/jfAlZWmeay1qp1nsGTujIadf9Docw+yHs8sS8Zdxy/pDY6s4hEwDfh1cjuadRJXVtbxF02eVvXkJZ5ZM1Vbxz/hIm2t5MRvZla7SRdpMxvRyLr/1Wr+t2u8Ozfv5A/XP86dm3dmMt79T7/M6tu3cv/TLzckXqOvEdGsa060a7wR3uO3mpSvvQcmtfa+Ws3/emU93lnf2MjLr//m8P15x72FR778u5mJd8G3fzxqCespc4/l3s+fW3e8Rn5W0oiX9c9LI+J5j98mbby197Xasad/1Ica4KZHXqx7zybr8e7cvHNUkgZ46fXf1L2n3uh49z/9csXzFurd82/kZyWNeFn/vDQ63lhO/DZhjVzbXq3mf7X2vMe7e3vlBFqtvdnx7nt6T03tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9q7XmPd9Hpb6upvdnxLjh1bk3tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9K1UDbId6l71nIvOPeMqpt3nFv4dL3LMxEvPNPfRunzD12VNspc4/l/FPr+yLJ+nkVWf+8NDreWD64azVr5Nr2ajX/2zXenZt3cvf2l7no9LfVnaTTjHf/0y9z39N7uODUuXUn/XJZP68i65+XycbzOn4zs4Lxqh6zNuRr+Fo9JlqP38wyppHXRrBi8R6/WQ6VXzOhf/AQB4eGWbVhm/f8bUKc+M1yqNo1E+q5NoIVjxO/WQ75Gr42GU78ZjlU7ZoJvrKXTYQP7prllK/ha/Vy4jfLse7pXU74VjNP9VhVeaktbma18R6/VZTF2uJm1hje47c3yVttcTOrjRO/vUneaoubWW2c+O1N8lZb3Mxq48Rvb5K32uJmVhuXZbaqslZb3MxqU60ss1f1WFVL5s5oaIJudDwzq4+neqxmjVyPn/VzBRzP8VoZL63rLXiP32rSyPX4WT9XwPEcr5Xx0rzeQmp7/JJukPSKpCcrPPZFSSFpdlrbt8Zr5Hr8rJ8r4HiO18p4aV9vIc2pnhuBC8c2SloI/C7w4tjHLNsauR4/6+cKOJ7jtTJe2tdbSC3xR8RDwGsVHvo2sArI/nIiG6WR6/Gzfq6A4zleK+Olfb2Fph7clXQxsDsitk7guSsl9Urq3bt3bxN6Z0fTyPX4WT9XwPEcr5Xx0r7eQqrr+CUtBu6OiNMkvRV4ELggIv5F0i+Anoh49WhxvI4/Wxq5Hj/r5wo4nuO1Ml7fwOCkrrdQbR1/MxP/6cD9wK+ThxcAvwTOjIiXx4vjxG9mVrtqib9pUz0RsT0iToyIxRGxGNgFvOdoSd+yp961xWmtSU5zG0WLZ8WQ2jp+SbcC5wKzJe0CvhoRP0hre9Yc9a4tTnNNclrbKFo8Kw7X6rEJ6xsYZPmaBzg4dGS1wdTODn66+rxx5x/rfV0z+uZ41s5aPtVj+Vfv2uK01ySnsY2ixbNiceK3Cat3bXHaa5LT2EbR4o3I+jGIrMfLCyd+m7B61xanvSY5jW0ULR6UjhksX/MAl3//UZaveYAfbdldd6wixssTz/FbzepdWzzZNcmt2EZR4mX9GETW42WV6/Fbw3RP76rrP0e9r2vlNooSb+SYwUGOJMKRYwb1xC9avLzxVI+ZZf4YRNbj5Y0Tv5ll/hhE1uPljef4zeywrB6DyEu8rPEcv5kdVVaPQeQlXl54qsfMrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgUkv8km6Q9IqkJ8va1kl6VtI2ST+UNDOt7ZuZWWVp7vHfCFw4pm0jcFpELAV+DlyT4vbNzKyC1BJ/RDwEvDam7b6IOJTc3QQsSGv7ZmZWWSvn+D8J3FPtQUkrJfVK6t27d28Tu2Vm1t5akvglfQU4BNxS7TkRcX1E9EREz5w5c5rXObMyfQODbN25n76BwVZ3xaxhpjR7g5KuBC4Czo+IaPb2zSbqri27Wb1hG50dHQwND7N2xVIuXja/1d0ym7Sm7vFLuhBYDVwcEb9u5rbNatE3MMjqDds4ODRM/+AhDg4Ns2rDNu/5W1tIcznnrcAjwCmSdkn6FHAdMAPYKGmLpL9Ma/tmk7Fr3wE6O0b/9+js6GDXvgMt6pFZ46Q21RMRf1Ch+Qdpbc+skRbMmsbQ8PCotqHhYRbMmtaiHpk1js/cNauge3oXa1csZWpnBzO6pjC1s4O1K5bSPb2r1V0zm7SmH9w1y4uLl81n+ZLZ7Np3gAWzpjnpW9tw4jcbR/f0Lid8azue6jEzKxgnfjOzgnHiNzMrGCd+M7OCceI3MysYJ34zs4Jx4jczKxgnfjOzgnHiN2uiHXv6ub13Jzv29Gcynq8/UAw+c9esSa69czs3bXrx8P0rzl7E1y85PTPxfP2B4vAev1kT7NjTPypJA9z0yIt176k3Op6vP1AsTvxmTbBl5/6a2psdz9cfKBYnfrMmWLZwZk3tzY7n6w8UixO/WRMsmTuDK85eNKrtirMXsWTujEzE8/UHikV5uN55T09P9Pb2trobZpO2Y08/W3buZ9nCmXUn6TTj9Q0M+voDbUTSExHRM7bdq3rMmmjJ3BkNSdBpxfP1B4rBUz1mZgXjxG9mVjBO/GZmBePEb2ZWME78ZmYFk4vlnJL2Ai+kuInZwKspxs+Cdh9ju48PPMZ20cwxvj0i5oxtzEXiT5uk3kprXdtJu4+x3ccHHmO7yMIYPdVjZlYwTvxmZgXjxF9yfas70ATtPsZ2Hx94jO2i5WP0HL+ZWcF4j9/MrGCc+M3MCqbtE7+khZIelPSMpKckfW7M41+UFJJml7VdI2mHpJ9J+rfN73VtxhujpM8m43hK0tqy9rYYo6RlkjZJ2iKpV9KZZa/J2xinSnpM0tZkjF9L2k+QtFHSc8m/s8pek5sxjjO+dZKelbRN0g8lzSx7TW7GB9XHWPZ4NvJNRLT1DzAPeE9yewbwc+DU5P5C4F5KJ4fNTtpOBbYCXcBJwP8Djmn1OOoZI/BB4P8AXcljJ7bhGO8DPpy0/x7w4xyPUcD05HYn8ChwFrAW+FLS/iVgTR7HOM74LgCmJO1r8jq+8caY3M9Mvmn7Pf6IeCkiNie3+4FngPnJw98GVgHlR7gvAf4mIgYj4nlgB3AmGTbOGK8CvhkRg8ljryQvaacxBnBc8rTjgV8mt/M4xoiIgeRuZ/ITlMayPmlfD1ya3M7VGKuNLyLui4hDSfsmYEFyO1fjg3F/h5ChfNP2ib+cpMXAu4FHJV0M7I6IrWOeNh/YWXZ/F0e+KDKvfIzAycA5kh6V9BNJ702e1k5jvBpYJ2kn8GfANcnTcjlGScdI2gK8AmyMiEeBuRHxEpS+AIETk6fnboxVxlfuk8A9ye3cjQ8qjzFr+aYwiV/SdGADpURxCPgKcG2lp1Zoy8Wa1/IxRsTrlK6wNovSn9P/GbhNkmivMV4FfD4iFgKfB34w8tQKL8/8GCPijYhYRmmv90xJp43z9NyNcbzxSfoKpf+bt4w0VQqReicnqcIYl5KxfFOIxC+pk1KyuCUi7gB+i9J82lZJv6D0C9os6W2UvnEXlr18AUemDzKrwhihNJY7kj8/HwOGKRWIaqcxXgmM3P5bjvyZnMsxjoiI/cCPgQuBPZLmAST/jkzZ5XaMY8aHpCuBi4CPRTL5TY7HB6PGeAlZyzetPBDSjB9K36g3AX8+znN+wZGDLf+a0Qdb/pl8HFB60xiBTwNfT26fTOlPSrXZGJ8Bzk1unw88kePf4xxgZnJ7GvCPlJLhOkYf3F2bxzGOM74LgaeBOWOen6vxjTfGMc9peb4pwsXWlwMfB7Yn824AX46If6j05Ih4StJtlD6Ih4A/jog3mtLT+lUcI3ADcIOkJ4HfAFdG6dPWTmP8I+AvJE0BDgIrIbe/x3nAeknHUPpr/LaIuFvSI5Sm6T4FvAh8BHI5xmrj20Ep8W0szUSyKSI+ncPxQZUxVntyq8bokg1mZgVTiDl+MzM7wonfzKxgnPjNzArGid/MrGCc+M3MCsaJ39qWpDeSqp1PJdUS/5Okuj/zkt6XVF58NvlZWfbYnKQ0xj+pVEX0qrLH/k1SebIIy6ctB/xBtHZ2IEqnziPpROCvKRVy+2qtgZKzLP8auDQiNidlde+VtDsi/p7SyWPPRsSVkuYCj0i6HegDrgP+YxwpRFbrtkVp6fVwPa83G8vr+K1tSRqIiOll998BPE6pbMXbgZuBY5OHPxMR/1fSzcDtEXFX8ppbgP8NvJdS8cVry+KdD/wX4LPAjyidqbkbOBv498lrHgfOoHRi2TeBcymdrPTdiPheUnvoLko1lTqBP4mIu5JCdPcADybxLo2IFxr5/lhxOfFb2xqb+JO2fcBvA/3AcEQclPRO4NaI6JH0AUpF3y6VdDywBXgncBuwfuQLIYl1PPB8RJwg6RNAT0R8JnmsA3iEUiXNHmAFpesh/KmkLuCnlM7A3Qm8NSJeT/6K2JRs7+2UTt//nYjYlMobZIXlqR4rmpFqiJ3AdZKWAW9QqmVERPxE0neTqaF/B2yIiEPJdEulvaSKe04RMSzpe5S+DPokXQAslXRZ8pTjKSX4XcA3JL2fUhG9+cDc5DkvOOlbGpz4rTCSqZ43KFW3/CqwB3gXpUUOB8ueejPwMeD3KdWHB3iK0p77j8qedwalGivVDCc/UPrC+WxE3DumT5+gVNjrjIgYSqo3Tk0e/tXER2c2cV7VY4UgaQ7wl8B1SaG644GXkgOmHweOKXv6jZSu20BEPJW0fRf4RPIXApK6KV0mcC0Tcy9wVVJaGkknSzo26ccrSdL/IKUpHrNUeY/f2tm0pJJnJ6XKhzcD30oe+x/ABkkfoXQA9fDedUTskfQMcGdZ20uSLgf+StIMSnvwfx4RfzfBvnwfWEypDruAvZQuoXgL8HeSeikdT3i2noGa1cIHd83GkPRWYDuli7v/S6v7Y9ZonuoxKyPpQ5T2uv+7k761K+/xm5kVjPf4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCub/A2eoKqxqO9IQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']\n", + "print(pie_pumpkins['DayOfYear'].corr(pie_pumpkins['Price']))\n", + "pie_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Lineare Regression\n", + "\n", + "Wir werden Scikit Learn verwenden, um ein lineares Regressionsmodell zu trainieren:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n", + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.77 (17.2%)\n" + ] + } + ], + "source": [ + "X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1)\n", + "y = pie_pumpkins['Price']\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "lin_reg = LinearRegression()\n", + "lin_reg.fit(X_train,y_train)\n", + "\n", + "pred = lin_reg.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXXElEQVR4nO3df3BV5Z3H8feXEDGKEF0QTYCmdTEtv4R6tW5/rL+qYVerjF21bmeHrW5ZXWvXtmJFO63tdEdrnFY722mHGRl1a9mqpGzX1kZrtdqtQC+gBtBYLYgkKFGM+CMCCd/9495gSHJzf+Se3HuefF4zjDfPPfecJ1/hc899znOfY+6OiIiEYUypOyAiIsWjUBcRCYhCXUQkIAp1EZGAKNRFRAIydiQPNmnSJK+rqxvJQ4qIxN66detec/fJuWw7oqFeV1dHMpkcyUOKiMSemb2U67YafhERCYhCXUQkIAp1EZGAKNRFRAKiUBcRCUjW2S9mNg24GzgG2A8sc/fbzawR+AywF3gR+IK7d0bYVxkBqza00djcSntnFzXVVSxpqGfh/NpSd0tEcpTLmXo38DV3/whwCnClmc0EHgZmu/tc4HlgaXTdlJGwakMbS5taaOvswoG2zi6WNrWwakNbqbsmIjnKGuruvsPd16cfvwU8C9S6+0Pu3p3ebDUwNbpuykhobG6la1/PQW1d+3pobG4tUY9EJF95jambWR0wH1jT76lLgQczvGaxmSXNLNnR0VFQJ2VktHd25dUuIuUn51A3s/HASuBqd9/dp/0GUkM09wz2Ondf5u4Jd09MnpzTt1ylRGqqq/JqF5Hyk1Oom1klqUC/x92b+rQvAs4FPu+6hVLsLWmop6qy4qC2qsoKljTUl6hHIpKvXGa/GHAH8Ky7f79P+wLg68Cp7v5udF2UkdI7y0WzX0Tiy7KdYJvZJ4EngBZSUxoBrgd+CIwDXk+3rXb3y4faVyKRcC3oJSKSHzNb5+6JXLbNeqbu7n8AbJCnfp1vx0REJFr6RqmISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gEJOs9SkWitmpDG43NrbR3dlFTXcWShnoWzq8t+33LQKp36SnUpaRWbWhjaVMLXft6AGjr7GJpUwvAsMMgyn3LQKp3edDwi5RUY3PrgRDo1bWvh8bm1rLetwykepcHhbqUVHtnV17t5bJvGUj1Lg8KdSmpmuqqvNrLZd8ykOpdHhTqUlJLGuqpqqw4qK2qsoIlDfVlvW8ZSPUuD7pQKiXVewEtihkTUe5bBlK9y4O5+4gdLJFIeDKZHLHjiYiEwMzWuXsil22znqmb2TTgbuAYYD+wzN1vN7OjgJ8DdcBW4CJ3f6PQTpeC5tSKSGhyGVPvBr7m7h8BTgGuNLOZwHXAI+4+A3gk/XNs9M6pbevswnl/Tu2qDW2l7pqISMGyhrq773D39enHbwHPArXA+cBd6c3uAhZG1MdIaE6tiIQor9kvZlYHzAfWAFPcfQekgh84OsNrFptZ0sySHR0dw+xu8WhOrYiEKOdQN7PxwErganffnevr3H2ZuyfcPTF58uRC+hgJzakVkRDlFOpmVkkq0O9x96Z086tmdmz6+WOBndF0MRqaUysiIcoa6mZmwB3As+7+/T5P/RJYlH68CPif4ncvOgvn13LTBXOora7CgNrqKm66YI5mv4hIrGWdp25mnwSeAFpITWkEuJ7UuPq9wHRgG3Chu+8aal+apy4ikr+izlN39z8AluHpM/PpmIiIREtrv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBET3KBUpkO6cJeVIoS5SgN47Z/XeaKX3zlmAgl1KSsMvIgXQnbOkXCnURQqgO2dJuVKoixRAd86ScqVQFymA7pwl5UoXSkUK0HsxVLNfpNwo1EUKtHB+rUJcyo6GX0REAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJSNlPaYzrSnhx7beIxFtZh3pcV8KLa79FJP7KevglrivhxbXfIhJ/WUPdzJab2U4z29inbZ6ZrTazp8wsaWYnR9G5uK6EF9d+i0j85XKmfiewoF/bLcC33X0e8M30z0UX15Xw4tpvEYm/rKHu7o8Du/o3AxPSjycC7UXuFxDflfDi2m8Rib9CL5ReDTSb2a2k3hg+XrQe9RHXlfDi2m8RiT9z9+wbmdUBD7j77PTPPwR+7+4rzewiYLG7fzrDaxcDiwGmT59+4ksvvVSsvouIjApmts7dE7lsW+jsl0VAU/rxfUDGC6XuvszdE+6emDx5coGHExGRXBQa6u3AqenHZwB/Lk53RERkOLKOqZvZCuA0YJKZbQe+BXwRuN3MxgLvkR5eERGR0soa6u5+SYanTixyX0REZJjK+hulIiKSH4W6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhACr1H6Yhq3vQK//pf6w5qO/yQCmbVTGRmzQRm1UxgVs1EZkwZT2WF3qdEZPSKRahPPbJqQNs7e3tYu3UXa7fuyvr6D006nJk1E9JvABOZVTOBSePHRdFVEZGSyunG08WSSCQ8mUwWZV9vvLOXzTt2s6n9TTa172ZT+25e2Pl2Ufbd6/JTj+NLZ/w148fF4r1PRAKVz42nYxvqueru2c+LHe+wecebbGrbnX4DeJPd73UX7Rizaydw42dmkag7qmj7FBHppVAv0Notu/jOA5vY2LY7smM0zJrCrReewBGHVkZ2DBEJi0I9Ym/v6ebHj73Ajx59MdLj3PmFkzit/uhIjyEi5U+hXkb+9+l2rlqxIdJjfOaEGm6+YA6Ha+xfJEgK9Ryt2tBGY3Mr7Z1d1FRXsaShnoXza0vSl9ff3sPVP3+KJ/78WqTH+d5n53DxSdMjPYaIFJdCPQerNrSxtKmFrn09B9qqKiu46YI5JQv2XK1ct52v3fd0pMeoPqySJ649XWP/ImVAoZ6DT9z8O9o6uwa011ZX8X/XnVGCHhXfltfe4fRbH4v8OLd/bh7nzyvvN0KROFOo5+CD1/2KwX5zA7bcfM5Id6fkbvzlJu7849ZIj3HMhEP53TWnctghGvsXyUc+oT5q/3XVVFcNeqZeUz3w26ujwY3nzeLG82Zl3e75V9/i7B88XtAxXtn9HjO/2ZzTtj+8ZD7nnVBT0HFERrNRe6Ye5zH1OHB3rr3/Ge5btz3S4xx1+CH88bozOLSyItLjiJRSUYdfzGw5cC6w091n92m/CvgS0A38yt2vzXawcgp1KK/ZL6NVpmsbUfj+RSdwwUenjsixRIqp2KH+t8DbwN29oW5mpwM3AOe4+x4zO9rdd2Y7WLmFupRePtc29u93/vnOP/H48x2R96v1uwsYN1Zn/1Ieijqm7u6Pm1ldv+YrgJvdfU96m6yBLtGL4yePfK5tjBlj3H3pyTntN7l1F//wkycL7lf9N36T03Y/+sePcs7cYws+jkixFXqh9HjgU2b2H8B7wDXu/qfBNjSzxcBigOnT9aWXqPS/RtDW2cXSphaAsg720z88mZ+u3jZo+3Ak6o7itovnZb1u0t2zn0/d8ig73nyvoONc+bP1XPmz7NtVVVbwzI1na71/iVyhoT4WOBI4BTgJuNfMPuSDjOW4+zJgGaSGXwrtqAytsbn1oPAC6NrXQ2Nza1mH+qPPDT6Ukqk9H7nUZGzFGJ5cemZO+/vt5lf5l7sLGz7s2tfDjBsezGnbOxYlOPMjUwo6jkihob4daEqH+Foz2w9MAqIf7JRBtWe42JipvVxE2e9i7/vTM6ewNYfvMOzt3s+J332Ytwpc3vmyu3J745g/vZr7L/84FWOsoONImAoN9VXAGcBjZnY8cAgQ7aIlMqS4zruPst+lqskhY8fQcmNDTts+8Ew7X/pZYQu+bdjWyXHX/zqnbVde8Tec+AGt9z8aZA11M1sBnAZMMrPtwLeA5cByM9sI7AUWDTb0IiNnSUP9oOPHSxrqS9ir7KLsdxxqcu7cGs6dm/1LVnu6e1hw2xNsee2dgo7z2R/ndtH4ytOP45qz6zHT2X9cjdovH4UojrNfINp+x7Umw/GbjTu4/KfrIz1G9WGVrPq3T1A36fBIjyMpWvtFRLLa093D9U0bWbk+mm/9jh1jXJiYxkWJqcybVq2z/2HQ2i+jVFzPSuPa7yiN5KeX2y6el3Xfa/7yOhcvW53Xcbr3OyvWbmPF2oFTVvubP72aixLTOHfusVrueZh0ph6IuK5lE9d+RynKmkRd7/f29XDzg8/x3Cu7Wf2XXcPeX3/jxo7hosQ0LkpMY3bthFFz9q/hl1EoruvDx7XfUYqyJuVU7+1vvEvT+jbuTb7M9jeKP/U28YEjuTAxlXPm1jA+5rd61PDLKKR56uGI09z94Zh65GF8+cwZfPnMGUNut69nP4+1dnBf8mUe2vxqzvtPvvQGyZfe4OsrW4bc7vBDKrgwMY3PnTyNDx8zIef9lyuFeiA0Tz0cIc7dH47KijGcNXMKZ83M/i3bba+/y/3rt3N/8mXac1z64Z29Pdz5x60ZbxIzftxYZtZMYFbNBGYeO4FZNROZMWV82S75oFAPRBzmZA8mrv2O0mifuz8c0//qML561vF89azjh9xub/d+fvfcTu5Lvswjzw29HuHbe7pZu2UXa7dkv0bwoUmHp98AJqbeBGomMGn8uLx+h+HSmHpA4jqLJK79jpLm7pePznf3snnHbja372ZT+242tb/J86++nfd+Hrjqk8yunVhQH3ShVERkhHX37GfLa+8cCP7NO1JvAp3v7gPgD18/nalHHlbQvnWhVERkhI2tGMOMKUcwY8oRJf3kU54j/SIiUhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIB0Tx1OYi+bSgSbwp1OaD/WtttnV0sbUqtcKdgF4kHDb/IAY3NrQct9ATQta+HxubWEvVIRPKlUJcDymmtbREpjEJdDsi0pnY5r7UtIgdTqMsBSxrqqaqsOKgtpLW2RUYDXSiVA3ovhmr2i0h8KdTlIAvn1yrERWJMoS4lp7nxA8X1zkf6fznQSNdEoS4lpbnxA0VZk7juO65KUZOsF0rNbLmZ7TSzjYM8d42ZuZlNiqR3EjzNjR8oyprEdd9xVYqa5DL75U5gQf9GM5sGnAVsK3KfZBTR3PiBoqxJXPcdV6WoSdZQd/fHgV2DPPUD4Fpg5O5cLcHR3PiBoqxJXPcdV6WoSUHz1M3sPKDN3Z/OYdvFZpY0s2RHR0chh5OAaW78QFHWJK77jqtS1CTvC6VmdhhwA3B2Ltu7+zJgGUAikdBZvRxEc+MHirImcd13XJWiJuaePWfNrA54wN1nm9kc4BHg3fTTU4F24GR3f2Wo/SQSCU8mk8PrsYjIKGNm69w9kcu2eZ+pu3sLcHSfg20FEu7+Wr77Eoma5k3LaJPLlMYVwJNAvZltN7PLou+WyPD1zhFu6+zCeX+O8KoNbaXumkhksp6pu/slWZ6vK1pvRIpoqDnCOluXUGmVRgmW5k3LaKRlAiRYNdVVtA0S4KN53nTU4noNI679HozO1CVYmjc9suJ6DSOu/c5EoS7BWji/lpsumENtdRUG1FZXcdMFc2J7Blbu4rr2S1z7nYmGXyRoWh9+5MT1GkZc+52JztRFpCjiuvZLXPudiUJdRIoirtcw4trvTDT8IiJFEde1X+La70xyWvulWLT2i4hI/vJZ+0XDLyIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAcka6ma23Mx2mtnGPm2NZvacmT1jZr8ws+pIeykiIjnJ5Uz9TmBBv7aHgdnuPhd4Hlha5H6JiEgBsoa6uz8O7OrX9pC7d6d/XA1MjaBvIiKSp2KMqV8KPJjpSTNbbGZJM0t2dHQU4XAiIpLJsELdzG4AuoF7Mm3j7svcPeHuicmTJw/ncCIiksXYQl9oZouAc4Ez3d2L1yURESlUQaFuZguArwOnuvu7xe2SiIgUKpcpjSuAJ4F6M9tuZpcB/wkcATxsZk+Z2U8i7qeIiOQg65m6u18ySPMdEfRFRESGSd8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAUvPSuiETnG6taWLHmZXrcqTDjko9N47sL5xRl36s2tNHY3Ep7Zxc11VUsaahn4fzaouxbSk+hLlJmvrGqhZ+u3nbg5x73Az8PN9hXbWhjaVMLXft6AGjr7GJpUwuAgj0QGn4RKTMr1rycV3s+GptbDwR6r659PTQ2tw5731IeFOoiZaYnw43EMrXno72zK692iR+FukiZqTDLqz0fNdVVebVL/CjURcrMJR+blld7PpY01FNVWXFQW1VlBUsa6oe9bykPulAqUmZ6L4ZGMful92KoZr+Ey7wI43S5SiQSnkwmR+x4IiIhMLN17p7IZVsNv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBGREZ7+YWQfwEjAJeG3EDly+VAfVAFSDXqpD5hp8wN0n57KDEQ31Awc1S+Y6PSdkqoNqAKpBL9WhODXQ8IuISEAU6iIiASlVqC8r0XHLjeqgGoBq0Et1KEINSjKmLiIi0dDwi4hIQBTqIiIBKXqom9k0M3vUzJ41s01m9u/9nr/GzNzMJvVpW2pmL5hZq5k1FLtPpTBUHczsqvTvusnMbunTHlQdMtXAzOaZ2Woze8rMkmZ2cp/XBFUDADM71MzWmtnT6Tp8O91+lJk9bGZ/Tv/3yD6vCaoOQ9Sg0cyeM7NnzOwXZlbd5zVB1QAy16HP88PPR3cv6h/gWOCj6cdHAM8DM9M/TwOaSX8BKd02E3gaGAd8EHgRqCh2v0b6T6Y6AKcDvwXGpZ87OtQ6DFGDh4C/S7f/PfBYqDVI/14GjE8/rgTWAKcAtwDXpduvA74Xah2GqMHZwNh0+/dCrsFQdUj/XJR8LPqZurvvcPf16cdvAc8CvSvw/wC4Fuh7dfZ84L/dfY+7bwFeAE4m5oaowxXAze6+J/3czvRLgqvDEDVwYEJ6s4lAe/pxcDUA8JS30z9Wpv84qd/3rnT7XcDC9OPg6pCpBu7+kLt3p9tXA1PTj4OrAQz5dwGKlI+RjqmbWR0wH1hjZucBbe7+dL/NaoG+t0nfzvtvAkHoWwfgeOBTZrbGzH5vZielNwu6Dv1qcDXQaGYvA7cCS9ObBVsDM6sws6eAncDD7r4GmOLuOyD1Bggcnd48yDpkqEFflwIPph8HWQMYvA7FzMfIQt3MxgMrSf0D7gZuAL452KaDtAUzz7JvHdx9N6lbCB5J6qPnEuBeMzMCrsMgNbgC+Iq7TwO+AtzRu+kgLw+iBu7e4+7zSJ2Jnmxms4fYPMg6DFUDM7uBVE7c09s02C4i7+QIGKQOcyliPkYS6mZWSeof8T3u3gQcR2o86Gkz20rql1lvZseQeufpe0fdqbz/cTzWBqkDpH7fpvTHsLXAflKL+ARZhww1WAT0Pr6P9z9OBlmDvty9E3gMWAC8ambHAqT/2zsUF3Qd+tUAM1sEnAt83tMDyQReAzioDudTzHyM6ELA3cBtQ2yzlfcvBMzi4AsBfyGcCyID6gBcDnwn/fh4Uh+tLMQ6DFGDZ4HT0o/PBNYF/ndhMlCdflwFPEEqxBo5+ELpLaHWYYgaLAA2A5P7bR9cDYaqQ79thpWPY4fI+0J9AvgnoCU9bgRwvbv/erCN3X2Tmd1L6n9sN3Clu/dE0K+RNmgdgOXAcjPbCOwFFnnq/16IdchUgy8Ct5vZWOA9YDEE/XfhWOAuM6sg9en4Xnd/wMyeJDX8dhmwDbgQgq1Dphq8QCqwHk6NQrLa3S8PtAaQoQ6ZNi6kDlomQEQkIPpGqYhIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiATk/wHell9jjLoNCQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test,y_test)\n", + "plt.plot(X_test,pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Die Steigung der Linie kann aus den Koeffizienten der linearen Regression bestimmt werden:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([-0.01751876]), 21.133734359909326)" + ] + }, + "execution_count": 178, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lin_reg.coef_, lin_reg.intercept_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Wir können das trainierte Modell verwenden, um den Preis vorherzusagen:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 179, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([16.64893156])" + ] + }, + "execution_count": 179, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Pumpkin price on programmer's day\n", + "\n", + "lin_reg.predict([[256]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Polynomiale Regression\n", + "\n", + "Manchmal ist die Beziehung zwischen Merkmalen und Ergebnissen von Natur aus nicht linear. Zum Beispiel könnten Kürbispreise im Winter (Monate=1,2) hoch sein, dann im Sommer (Monate=5-7) sinken und anschließend wieder steigen. Lineare Regression kann diese Beziehung nicht genau erfassen.\n", + "\n", + "In diesem Fall könnten wir in Betracht ziehen, zusätzliche Merkmale hinzuzufügen. Eine einfache Methode ist die Verwendung von Polynomen aus Eingabemerkmalen, was zu einer **polynomialen Regression** führt. In Scikit Learn können wir polynomiale Merkmale automatisch mithilfe von Pipelines vorab berechnen:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.73 (17.0%)\n", + "Model determination: 0.07639977655280217\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 180, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbw0lEQVR4nO3de3Cc1Znn8e+jm93ClmRb8kWyjYBgDb6ATQQhFwIhFzu7meBQNVOVyu5Sm9RQSWWnJlMTZ3BIZWq2dpcMnprZzM5WTbEDFVLDsJOZOM4USTAEkkBYMJExjOwYY8AXkGRLsi35otb92T+6JbfurXa3ut+j36eqS2+ffvvto0f2T6/Oe/q0uTsiIhKGonx3QEREskehLiISEIW6iEhAFOoiIgFRqIuIBKRkLl+surra6+vr5/IlRUQib//+/Z3uXpPOvnMa6vX19TQ1Nc3lS4qIRJ6ZnUh3Xw2/iIgERKEuIhIQhbqISEAU6iIiAVGoi4gEZMbZL2a2Bvg+sBIYBh529++a2S7gd4F+4G3gP7t7Vw77KnNgz4EWdu09QmtXnNqqGDu2NrB9S12+uyUiaUrnTH0Q+BN3vwG4Dfiqma0HngE2uvuNwJvAztx1U+bCngMt7NzdTEtXHAdauuLs3N3MngMt+e6aiKRpxlB39zZ3fzW5fQE4DNS5+9PuPpjc7WVgde66KXNh194jxAeGxrTFB4bYtfdInnokIrM1qzF1M6sHtgD7xj30ReBnUzznPjNrMrOmjo6OjDopc6O1Kz6rdhEpPGmHupktAn4IfM3dz6e0P0BiiObxyZ7n7g+7e6O7N9bUpPUuV8mT2qrYrNpFpPCkFepmVkoi0B93990p7fcCnwG+4PoIpcjbsbWBWGnxmLZYaTE7tjbkqUciMlvpzH4x4BHgsLv/VUr7NuBPgTvcvSd3XZS5MjLLRbNfRKLLZjrBNrOPAC8AzSSmNAJ8E/gbYAFwJtn2srt/ebpjNTY2uhb0EhGZHTPb7+6N6ew745m6u/8asEke+ulsOyYiIrmld5SKiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQGb8jFKRXNtzoIVde4/Q2hWntirGjq0NbN9SV/DHlolU7/xTqEte7TnQws7dzcQHhgBo6Yqzc3czwBWHQS6PLROp3oVBwy+SV7v2HhkNgRHxgSF27T1S0MeWiVTvwqBQl7xq7YrPqr1Qji0Tqd6FQaEueVVbFZtVe6EcWyZSvQuDQl3yasfWBmKlxWPaYqXF7NjaUNDHlolU78KgC6WSVyMX0HIxYyKXx5aJVO/CYO4+Zy/W2NjoTU1Nc/Z6IiIhMLP97t6Yzr4znqmb2Rrg+8BKYBh42N2/a2ZLgX8C6oHjwO+7+7lMO50PmlMrIqFJZ0x9EPgTd78BuA34qpmtB+4HnnX364Fnk/cjY2RObUtXHOfynNo9B1ry3TURkYzNGOru3uburya3LwCHgTrgbuCx5G6PAdtz1Mec0JxaEQnRrGa/mFk9sAXYB6xw9zZIBD+wfIrn3GdmTWbW1NHRcYXdzR7NqRWREKUd6ma2CPgh8DV3P5/u89z9YXdvdPfGmpqaTPqYE5pTKyIhSivUzayURKA/7u67k82nzWxV8vFVQHtuupgbmlMrIiGaMdTNzIBHgMPu/lcpD/0rcG9y+17gx9nvXu5s31LHg/dsoq4qhgF1VTEevGeTZr+ISKTNOE/dzD4CvAA0k5jSCPBNEuPqPwDWAieB33P3s9MdS/PURURmL6vz1N3914BN8fDHZ9MxERHJLa39IiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEH1GqUiG9MlZUogU6iIZGPnkrJEPWhn55CxAwS55peEXkQzok7OkUCnURTKgT86SQqVQF8mAPjlLCpVCXSQD+uQsKVS6UCqSgZGLoZr9IoVGoS6Soe1b6hTiUnA0/CIiEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQAp+SmNUV8KLar9FJNoKOtSjuhJeVPstItFX0MMvUV0JL6r9FpHomzHUzexRM2s3s4MpbZvN7GUze83Mmszs1lx0Lqor4UW13yISfemcqX8P2Dau7SHgz919M/Dt5P2si+pKeFHtt4hE34yh7u7PA2fHNwMVye1KoDXL/QKiuxJeVPstItGX6YXSrwF7zewvSfxi+FDWepQiqivhRbXfIhJ95u4z72RWDzzp7huT9/8G+JW7/9DMfh+4z90/McVz7wPuA1i7du37T5w4ka2+i4jMC2a2390b09k309kv9wK7k9v/DEx5odTdH3b3RndvrKmpyejFuuMD9A8OZ/RcEZH5JNNQbwXuSG7fBRzNTncm97+ePcqt/+PnfGtPM/tPnCWdvy5EROajGcfUzewJ4E6g2szeA/4M+APgu2ZWAvSSHF7JlbtuWE77hT7+Zf97/MPLJ1m7tDzxAQWba7m2ZlEuX1pEJFLSGlPPlsbGRm9qasr4+Rf7Btl78BR7Xmvhxbc6GXa4aU0Vn9tcy+/eVMuyRQuy2FsRkcIwmzH1SIV6qtPne/nX11r50YEWftt2nuIi4451NWzfUscnb1hBrKx45oOIiETAvAj1VEdOXWDPay38+EALrd29XFVWzLaNq/jcljo+eN0yioss668pIjJX5l2ojxgedvYdO8ueAy38tLmNC32DrKhYwN2b69i+uY4bVi3GTAEvItEyb0M9Ve/AEM+90c6PDrTwyyPtDAw5DSsWs31LHXdvrtVb9kUkMhTq45y71M+TzW3sOdDC/hPnMIPbrlnG57bUsW3TSioWls55n0RE0qVQn8aJM5f4cfIC67HOS5SVFHFXw3I+vWklH/ud5Qp4ESk4CvU0uDuvv9c9Ov7efqGP0mLjw++rZtuGlXxi/QqqNUVSRAqAQn2WhoedA+92sffQKZ46eIqTZ3soMrilfinbNq5k64aVGoMXkbxRqF8Bd+dw2wWeOnSKvQdPceT0BQBuWl3JpzasZNvGlVynd7GKyBxSqGfROx0X2XvoNE8dOsXr73YBcP3yRaNn8BtqKzRNUkRySqGeI23dcZ4+dJqnDp5i37EzDDusXhJjW/IM/ua1SyjSG51EJMsU6nPgzMU+nj3czlOHTvHro530Dw1Ts3gBn1q/gm0bV3LbtcsoLS7oz/UWkYhQqM+xC70D/OJIB3sPnuIXR9rp6R+iYmEJn7hhBZ9Yv4IPX1dNZbmmSopIZhTqedQ7MMQLRzt56uApfn74NN3xAYossZrk7dfX8NHrq9m8pooSncWLSJoU6gVicGiY197t4vmjnbxwtIPX3+1i2GHxghI+9L5lyZCvYe2y8nx3VUQKmEK9QHX3DPDi24mAf/7NTlq64gBcvaycj15fw+3XV/PB65axWO9qFZEUCvUIcHeOdV7ihaOdPP9mBy+9c4ae/iGKi4yb11YlQn5dDZvqKrV0sMg8p1CPoP7BYV49eY4XjnbwwtFOmlu6cYfKWCkfeV81t19fze3raqjTO1tF5h2FegDOXOzjxbfP8MKbiZA/db4XgOtqrkqMxa+r5rZrl1FeNuPHzIpIxCnUA+PuvNV+kV8lA37fsTP0DgxTWmw0Xr2U29dV89Hra1i/qkJvfhIJkEI9cL0DQ+w/cY7nkxdcD7edB2DpVWWjQzUfuGYZa5bGtISBSAAU6mnac6CFXXuP0NoVp7Yqxo6tDWzfUpfvbs1a+4VeXnyrkxfe7OT5o510XuwDYPniBdxSv5TG+iXcUr+U31m5WPPjRSJIoZ6GPQda2Lm7mfjA0GhbrLSYB+/ZFMlgHzE87LzZfoGm4+doOn6W3xw/Nzp18qqyYm6+egmNVyeCfvOaKq5aoDF5kUKnUE/Dh7/z3GjYpaqrivHi/XfloUe509oVp+nE5ZB/49R53KG4yNhQW0Hj1Uu5pX4J769fwvLFC/PdXREZZzahPm9P01onCfTp2qOstirGZ6tifPamWgDO9w5w4GRXMuTP8o+vnODRF48BUL+snMb6pdy0poqNtRXcsKqChaXF+ey+iMzCvA312qrYpGfq8+ETjioWlnLHuhruWFcDJObIH2rtpun4OX5z/CzPvdHOv+x/D4Aig/ctX8TG2krW11awsS7xNZuf5RrKtQ2RQjBvh19CHVPPBnentbuXgy3dHGrp5lDreQ62dnP6fN/oPlcvK2djbSUb6irYUFvJxtoKlmXwma76OYjMLKvDL2b2KPAZoN3dN6a0/yHwX4BB4Cfu/o0M+5sXI4GhM8SJzIy6qhh1VTG2blg52t5xoY9DrcmQb+mmuaWbnzS3jT6+qnIhG2qTIV9XyYbaClZVLpx2WuWuvUfGBDpAfGCIXXuP6GchkoF0hl++B/wt8P2RBjP7GHA3cKO795nZ8tx0L7e2b6lTcMxCzeIF3NmwnDsbLv+4u3sGONTWzW+TQX+w9TzPvdHOcPIPwKVXlaUEfeLr1UvLR98kNZ+ubYjMhRlD3d2fN7P6cc1fAb7j7n3Jfdpz0DeZpXyMTVeWl/Kh66r50HXVo209/YMcbruQOKtvSQzdPPLrdxgYSiT9ogUlrK+tYENtBVXlpZzrGZhw3Gxd29B4vcw3mV4oXQfcbmb/HegFvu7uv5lsRzO7D7gPYO3atRm+nMxk/Nh0S1ecnbubAeY8xMrLSnj/1Ut4/9VLRtv6Boc4evoih1q7OZgM+ideOUnvwPCkx7imupyDLd3UV1/Fogzn0hdSTUTmSloXSpNn6k+OjKmb2UHgOeCPgFuAfwKu9RkOVkgXSkMTxXn3Q8POBx98lvYLfdPut3zxAq6pvmrM7dqaq1iztJwFJVNPt4xiTSQcQ8NOW3eck2d7ePdsDx9rWM7yiszeBzIX89TfA3YnQ/wVMxsGqoGODI8nVyiKY9PFRUbHNIH+d//hZt7pvMSxjksc67zEM789zZlL/aOPFxmsXlI+JuhHtmsrY5GsiUTL+d4BTp5JhPbJlNu7Z3to6YqPDjkC/J//1Mgn1+f+zX2Zhvoe4C7gl2a2DigDOrPVKZm9qM67n6rfdVUxtm1cNaG9u2eAY2cucazzIsc6LvFO5yWOn7lE0/GzXOq/PIumrKSI4iJjcHjiH48rKxbi7lrsTGY0MDRMW1fv5bA+dzm0T57toWvc9aCq8lLWLi1nQ10ln960irVLy0dvqyrn5t3a6UxpfAK4E6g2s/eAPwMeBR5NDsP0A/fONPQiubVja8Ok8713bG3IY69mNtt+V5aXsrm8is1rqsa0uzsdF/oSZ/bJ2/97q5NDrecZ/w+z7Xwv67+9l5WVC1lZsZBVlQtZUZn4urJiYaK9ciHVVy3QUsaBcncu9Q/R1dNPV88AXT0DnO3p571zY8+6W7t6GUo5MSgtNlYvKWfN0nJuXF05GthrkrdsvikvU/P2zUchiupMj1z2e8+BFh566g1au3upXlTGv9+0ijVLyznV3Uvb+V5OdSdup8/3TjirLykyVqSE/MgvgJUp4b988ULKSrTyZT71Dgxxrqefc5cG6IpfDulzPf10xwc4d6mfrvjAaICf6xmgO94/ZmgkVfWiskRILykfE9prl5WzsmJhXj5eUgt6iczS8LDTeamP0919tHXHOZUS+G3J0G/tjk+YrWMGVbFSqsrLqIiVUhUrpTJ5qyq/vH25rWz0Ma2pM1b/4HAieKcJ4smCu29w8hlUAAtLi6iKlVFVnqj5kvKR7TKqYon7lcn2JeWl1FbFCnLlUi3oNU/pTD1zRUXG8sWJM+9Nqysn3cfdOR8fpO18fEzgd17sozs+kDgr7Onn+JlLo/enO2cqKylKBHzKL4GK5HZbdy8vvX2G7vgAS8pL2b6ljtuvr6asuJiykqLErTjxdUHylto+3br5uaq3uzM07Ay5c7F3cFwQpwb05cA+d+ly3Xr6h6Y8dmmxjQnixPBHMpxHwjo27v48/cWpM/VARHUNlaj2Ox3Dw86FvkG6ewZGQ74r3j+6PdLelfJ4d3yAzot90559pqPIGA34BaXFia8lRcQHhjh1vnfMLxszWF0VY/HCUoZHgjkZzkPDzvDoNqOPj7QNpmynEyVFxmjwTnamXJn8Ov7suryseF5f2NaZ+jwU1TVUotrvdBQV2eiwy2xMNb++ZtEC/vcXbqZ/cJj+oSH6BobpHxqmb3A40TaYuJ+63TcwNGafnx8+PSF83aH9Qh8NKxdTZEZxUcrNjKLUr0WMaSsuTn4tsjHPXbSgZNJhjsULSnTxOccU6oGI6pzsqPY7l6b63jsv9nHrNUuv6NjX3P+TSdv7B4f5+3tvuaJjS2HQZftATDUfPQrz1GfTPh/ksiaqd/gU6oHYsbWB2LiLQlGZpx7FfudSLmuieodPwy+BiOr68FHtdy7lsiaqd/g0+0VEpMDNZvaLhl9ERAKiUBcRCYhCXUQkIAp1EZGAKNRFRAKiUBcRCYhCXUQkIAp1EZGA6B2lMkYhrG0uIplTqMuo8Wubt3TF2bm7GUDBLhIRGn6RUdOtbS4i0aBQl1Fa21wk+hTqMkprbYtEn0JdRmmtbZHo04VSGaW1tkWiT6EuY2zfUqcQF4kwhbrknebGT5TLmkT12FE11zVRqEteaW78RLmsSVSPHVX5qMmMF0rN7FEzazezg5M89nUzczOrzknvJHiaGz9RLmsS1WNHVT5qks7sl+8B28Y3mtka4JPAySz3SeYRzY2fKJc1ieqxoyofNZkx1N39eeDsJA/9NfANYO4+uVqCo7nxE+WyJlE9dlTloyYZzVM3s88CLe7+ehr73mdmTWbW1NHRkcnLScA0N36iXNYkqseOqnzUZNYXSs2sHHgA+FQ6+7v7w8DDAI2NjTqrlzE0N36iXNYkqseOqnzUxNxnzlkzqweedPeNZrYJeBboST68GmgFbnX3U9Mdp7Gx0Zuamq6sxyIi84yZ7Xf3xnT2nfWZurs3A8tTXuw40OjunbM9lkiuad60zDfpTGl8AngJaDCz98zsS7nvlsiVG5kj3NIVx7k8R3jPgZZ8d00kZ2Y8U3f3z8/weH3WeiOSRdPNEdbZuoRKqzRKsDRvWuYjLRMgwaqtitEySYDP53nTuRbVaxhR7fdkdKYuwdK86bkV1WsYUe33VBTqEqztW+p48J5N1FXFMKCuKsaD92yK7BlYoYvq2i9R7fdUNPwiQdP68HMnqtcwotrvqehMXUSyIqprv0S131NRqItIVkT1GkZU+z0VDb+ISFZEde2XqPZ7Kmmt/ZItWvtFRGT2ZrP2i4ZfREQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQCMmOom9mjZtZuZgdT2naZ2Rtm9m9m9iMzq8ppL0VEJC3pnKl/D9g2ru0ZYKO73wi8CezMcr9ERCQDM4a6uz8PnB3X9rS7DybvvgyszkHfRERklrIxpv5F4GdTPWhm95lZk5k1dXR0ZOHlRERkKlcU6mb2ADAIPD7VPu7+sLs3untjTU3NlbyciIjMoCTTJ5rZvcBngI+7u2evSyIikqmMQt3MtgF/Ctzh7j3Z7ZKIiGQqnSmNTwAvAQ1m9p6ZfQn4W2Ax8IyZvWZmf5fjfoqISBpmPFN3989P0vxIDvoiIiJXSO8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYBkvPSuiOTOt/Y088S+dxlyp9iMz39gDf9t+6asHHvPgRZ27T1Ca1ec2qoYO7Y2sH1LXVaOLfmnUBcpMN/a08w/vHxy9P6Q++j9Kw32PQda2Lm7mfjAEAAtXXF27m4GULAHQsMvIgXmiX3vzqp9NnbtPTIa6CPiA0Ps2nvkio8thUGhLlJghqb4ILGp2mejtSs+q3aJHoW6SIEpNptV+2zUVsVm1S7Ro1AXKTCf/8CaWbXPxo6tDcRKi8e0xUqL2bG14YqPLYVBF0pFCszIxdBczH4ZuRiq2S/hMs/COF26Ghsbvampac5eT0QkBGa2390b09lXwy8iIgFRqIuIBEShLiISEIW6iEhAFOoiIgGZ09kvZtYBnACqgc45e+HCpTqoBqAajFAdpq7B1e5ek84B5jTUR1/UrCnd6TkhUx1UA1ANRqgO2amBhl9ERAKiUBcRCUi+Qv3hPL1uoVEdVANQDUaoDlmoQV7G1EVEJDc0/CIiEhCFuohIQLIe6ma2xsx+YWaHzeyQmf3RuMe/bmZuZtUpbTvN7C0zO2JmW7Pdp3yYrg5m9ofJ7/WQmT2U0h5UHaaqgZltNrOXzew1M2sys1tTnhNUDQDMbKGZvWJmryfr8OfJ9qVm9oyZHU1+XZLynKDqME0NdpnZG2b2b2b2IzOrSnlOUDWAqeuQ8viV56O7Z/UGrAJuTm4vBt4E1ifvrwH2knwDUrJtPfA6sAC4BngbKM52v+b6NlUdgI8BPwcWJB9bHmodpqnB08Cnk+3/DvhlqDVIfl8GLEpulwL7gNuAh4D7k+33A38Rah2mqcGngJJk+1+EXIPp6pC8n5V8zPqZuru3ufurye0LwGFgZAX+vwa+AaRenb0b+L/u3ufux4C3gFuJuGnq8BXgO+7el3ysPfmU4OowTQ0cqEjuVgm0JreDqwGAJ1xM3i1N3pzE9/tYsv0xYHtyO7g6TFUDd3/a3QeT7S8Dq5PbwdUApv23AFnKx5yOqZtZPbAF2GdmnwVa3P31cbvVAakfk/4el38JBCG1DsA64HYz22dmvzKzW5K7BV2HcTX4GrDLzN4F/hLYmdwt2BqYWbGZvQa0A8+4+z5ghbu3QeIXILA8uXuQdZiiBqm+CPwsuR1kDWDyOmQzH3MW6ma2CPghif/Ag8ADwLcn23WStmDmWabWwd3Pk/gIwSUk/vTcAfzAzIyA6zBJDb4C/LG7rwH+GHhkZNdJnh5EDdx9yN03kzgTvdXMNk6ze5B1mK4GZvYAiZx4fKRpskPkvJNzYJI63EgW8zEnoW5mpST+Ez/u7ruB60iMB71uZsdJfDOvmtlKEr95Uj9RdzWX/xyPtEnqAInvd3fyz7BXgGESi/gEWYcpanAvMLL9z1z+czLIGqRy9y7gl8A24LSZrQJIfh0Zigu6DuNqgJndC3wG+IInB5IJvAYwpg53k818zNGFgO8D/3OafY5z+ULABsZeCHiHcC6ITKgD8GXgvya315H408pCrMM0NTgM3Jnc/jiwP/B/CzVAVXI7BrxAIsR2MfZC6UOh1mGaGmwDfgvUjNs/uBpMV4dx+1xRPpZMk/eZ+jDwH4Hm5LgRwDfd/aeT7ezuh8zsByR+sIPAV919KAf9mmuT1gF4FHjUzA4C/cC9nvjphViHqWrwB8B3zawE6AXug6D/LawCHjOzYhJ/Hf/A3Z80s5dIDL99CTgJ/B4EW4epavAWicB6JjEKycvu/uVAawBT1GGqnTOpg5YJEBEJiN5RKiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgH5/+EaqS+WjFbpAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)\n", + "\n", + "plt.scatter(X_test,y_test)\n", + "plt.plot(sorted(X_test),pipeline.predict(sorted(X_test)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Kodierung von Sorten\n", + "\n", + "In einer idealen Welt möchten wir in der Lage sein, die Preise für verschiedene Kürbissorten mit demselben Modell vorherzusagen. Um die Sorte zu berücksichtigen, müssen wir sie zunächst in numerische Form umwandeln, oder **kodieren**. Es gibt mehrere Möglichkeiten, dies zu tun:\n", + "\n", + "* Eine einfache numerische Kodierung, die eine Tabelle mit verschiedenen Sorten erstellt und dann den Sortennamen durch einen Index in dieser Tabelle ersetzt. Dies ist keine gute Idee für die lineare Regression, da die lineare Regression den numerischen Wert des Index berücksichtigt und dieser numerische Wert wahrscheinlich nicht numerisch mit dem Preis korreliert.\n", + "* One-Hot-Encoding, das die `Variety`-Spalte durch 4 verschiedene Spalten ersetzt, eine für jede Sorte, die 1 enthält, wenn die entsprechende Zeile zur angegebenen Sorte gehört, und 0, wenn nicht.\n", + "\n", + "Der folgende Code zeigt, wie wir eine Sorte mit One-Hot-Encoding kodieren können:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FAIRYTALEMINIATUREMIXED HEIRLOOM VARIETIESPIE TYPE
700001
710001
720001
730001
740001
...............
17380100
17390100
17400100
17410100
17420100
\n", + "

415 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " FAIRYTALE MINIATURE MIXED HEIRLOOM VARIETIES PIE TYPE\n", + "70 0 0 0 1\n", + "71 0 0 0 1\n", + "72 0 0 0 1\n", + "73 0 0 0 1\n", + "74 0 0 0 1\n", + "... ... ... ... ...\n", + "1738 0 1 0 0\n", + "1739 0 1 0 0\n", + "1740 0 1 0 0\n", + "1741 0 1 0 0\n", + "1742 0 1 0 0\n", + "\n", + "[415 rows x 4 columns]" + ] + }, + "execution_count": 181, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.get_dummies(new_pumpkins['Variety'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Lineare Regression auf Sorten\n", + "\n", + "Wir verwenden nun denselben Code wie oben, aber anstelle von `DayOfYear` nutzen wir unsere one-hot-codierte Sorte als Eingabe:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "metadata": {}, + "outputs": [], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety'])\n", + "y = new_pumpkins['Price']" + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 5.24 (19.7%)\n", + "Model determination: 0.774085281105197\n" + ] + } + ], + "source": [ + "def run_linear_regression(X,y):\n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + " lin_reg = LinearRegression()\n", + " lin_reg.fit(X_train,y_train)\n", + "\n", + " pred = lin_reg.predict(X_test)\n", + "\n", + " mse = np.sqrt(mean_squared_error(y_test,pred))\n", + " print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + " score = lin_reg.score(X_train,y_train)\n", + " print('Model determination: ', score)\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Wir können auch versuchen, andere Funktionen auf die gleiche Weise zu verwenden und sie mit numerischen Merkmalen wie `Month` oder `DayOfYear` zu kombinieren:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.84 (10.5%)\n", + "Model determination: 0.9401096672643048\n" + ] + } + ], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety']) \\\n", + " .join(new_pumpkins['Month']) \\\n", + " .join(pd.get_dummies(new_pumpkins['City'])) \\\n", + " .join(pd.get_dummies(new_pumpkins['Package']))\n", + "y = new_pumpkins['Price']\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Polynomiale Regression\n", + "\n", + "Polynomiale Regression kann auch mit kategorialen Merkmalen verwendet werden, die als One-Hot-Encoding dargestellt sind. Der Code zum Trainieren der polynomialen Regression wäre im Wesentlichen derselbe wie oben gezeigt.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.23 (8.25%)\n", + "Model determination: 0.9652870784724543\n" + ] + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d77bd89ae7e79780c68c58bab91f13f8", + "translation_date": "2025-09-04T01:04:13+00:00", + "source_file": "2-Regression/3-Linear/solution/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/de/2-Regression/4-Logistic/README.md b/translations/de/2-Regression/4-Logistic/README.md index 0e998f6ef..bb777b080 100644 --- a/translations/de/2-Regression/4-Logistic/README.md +++ b/translations/de/2-Regression/4-Logistic/README.md @@ -1,35 +1,44 @@ + # Logistische Regression zur Vorhersage von Kategorien -![Infografik: Logistische vs. lineare Regression](../../../../translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.de.png) +![Infografik: Logistische vs. Lineare Regression](../../../../translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.de.png) -## [Vorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/) +## [Quiz vor der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/) > ### [Diese Lektion ist auch in R verfügbar!](../../../../2-Regression/4-Logistic/solution/R/lesson_4.html) ## Einführung -In dieser letzten Lektion über Regression, eine der grundlegenden _klassischen_ ML-Techniken, werfen wir einen Blick auf die logistische Regression. Diese Technik verwenden Sie, um Muster zur Vorhersage binärer Kategorien zu entdecken. Ist diese Süßigkeit Schokolade oder nicht? Ist diese Krankheit ansteckend oder nicht? Wird dieser Kunde dieses Produkt wählen oder nicht? +In dieser letzten Lektion über Regression, eine der grundlegenden _klassischen_ ML-Techniken, werfen wir einen Blick auf die logistische Regression. Diese Technik wird verwendet, um Muster zu erkennen und binäre Kategorien vorherzusagen. Ist diese Süßigkeit Schokolade oder nicht? Ist diese Krankheit ansteckend oder nicht? Wird dieser Kunde dieses Produkt wählen oder nicht? In dieser Lektion lernen Sie: -- Eine neue Bibliothek zur Datenvisualisierung +- Eine neue Bibliothek für Datenvisualisierung - Techniken für die logistische Regression -✅ Vertiefen Sie Ihr Verständnis für die Arbeit mit dieser Art von Regression in diesem [Lernmodul](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott) +✅ Vertiefen Sie Ihr Verständnis für diese Art der Regression in diesem [Learn-Modul](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott) -## Voraussetzungen +## Voraussetzung -Nachdem wir mit den Kürbis-Daten gearbeitet haben, sind wir nun genug damit vertraut, um zu erkennen, dass es eine binäre Kategorie gibt, mit der wir arbeiten können: `Color`. +Nachdem wir mit den Kürbisdaten gearbeitet haben, sind wir nun vertraut genug, um zu erkennen, dass es eine binäre Kategorie gibt, mit der wir arbeiten können: `Color`. -Lassen Sie uns ein Modell für die logistische Regression erstellen, um vorherzusagen, _welche Farbe ein gegebener Kürbis wahrscheinlich hat_ (orange 🎃 oder weiß 👻). +Lassen Sie uns ein Modell der logistischen Regression erstellen, um vorherzusagen, _welche Farbe ein bestimmter Kürbis wahrscheinlich hat_ (orange 🎃 oder weiß 👻), basierend auf einigen Variablen. -> Warum sprechen wir in einer Lektion über binäre Klassifizierung im Kontext von Regression? Nur aus sprachlichen Gründen, da die logistische Regression [tatsächlich eine Klassifizierungsmethode](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression) ist, wenn auch eine auf linearer Basis. Lernen Sie in der nächsten Lektion über andere Möglichkeiten, Daten zu klassifizieren. +> Warum sprechen wir über binäre Klassifikation in einer Lektion über Regression? Nur aus sprachlicher Bequemlichkeit, da die logistische Regression [eigentlich eine Klassifikationsmethode](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression) ist, wenn auch eine lineare. Lernen Sie in der nächsten Lektion weitere Methoden zur Klassifikation von Daten kennen. -## Definieren Sie die Frage +## Die Frage definieren -Für unsere Zwecke werden wir dies als binär ausdrücken: 'Weiß' oder 'Nicht Weiß'. In unserem Datensatz gibt es auch eine Kategorie 'gestreift', aber es gibt nur wenige Instanzen davon, daher werden wir sie nicht verwenden. Sie verschwindet, sobald wir null-Werte aus dem Datensatz entfernen. +Für unsere Zwecke drücken wir dies als Binärwert aus: 'Weiß' oder 'Nicht Weiß'. Es gibt auch eine 'gestreifte' Kategorie in unserem Datensatz, aber es gibt nur wenige Instanzen davon, daher werden wir sie nicht verwenden. Sie verschwindet ohnehin, sobald wir Nullwerte aus dem Datensatz entfernen. -> 🎃 Interessante Tatsache: Manchmal nennen wir weiße Kürbisse 'Gespenst'-Kürbisse. Sie sind nicht sehr leicht zu schnitzen, daher sind sie nicht so beliebt wie die orangen, aber sie sehen cool aus! Wir könnten unsere Frage also auch umformulieren: 'Gespenst' oder 'Nicht Gespenst'. 👻 +> 🎃 Fun Fact: Wir nennen weiße Kürbisse manchmal 'Geister'-Kürbisse. Sie sind nicht sehr leicht zu schnitzen, daher sind sie nicht so beliebt wie die orangefarbenen, aber sie sehen cool aus! Wir könnten unsere Frage also auch so formulieren: 'Geist' oder 'Nicht Geist'. 👻 ## Über logistische Regression @@ -39,39 +48,39 @@ Die logistische Regression unterscheidet sich in einigen wichtigen Punkten von d > 🎥 Klicken Sie auf das Bild oben für eine kurze Videoübersicht über die logistische Regression. -### Binäre Klassifizierung +### Binäre Klassifikation -Die logistische Regression bietet nicht die gleichen Funktionen wie die lineare Regression. Erstere bietet eine Vorhersage über eine binäre Kategorie ("weiß oder nicht weiß"), während letztere in der Lage ist, kontinuierliche Werte vorherzusagen, zum Beispiel, gegeben den Ursprung eines Kürbisses und die Erntezeit, _wie viel sein Preis steigen wird_. +Die logistische Regression bietet nicht die gleichen Funktionen wie die lineare Regression. Erstere bietet eine Vorhersage über eine binäre Kategorie ("weiß oder nicht weiß"), während letztere kontinuierliche Werte vorhersagen kann, z. B. basierend auf der Herkunft eines Kürbisses und der Erntezeit, _wie stark sein Preis steigen wird_. ![Kürbis-Klassifikationsmodell](../../../../translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.de.png) > Infografik von [Dasani Madipalli](https://twitter.com/dasani_decoded) -### Weitere Klassifikationen +### Andere Klassifikationen -Es gibt andere Arten von logistischen Regressionen, einschließlich multinomialer und ordinaler: +Es gibt andere Arten der logistischen Regression, einschließlich multinomialer und ordinaler: -- **Multinomial**, die mehr als eine Kategorie umfasst - "Orange, Weiß und Gestreift". -- **Ordinal**, die geordnete Kategorien umfasst, nützlich, wenn wir unsere Ergebnisse logisch ordnen wollen, wie unsere Kürbisse, die nach einer endlichen Anzahl von Größen (mini, sm, med, lg, xl, xxl) geordnet sind. +- **Multinomial**, bei der es mehr als eine Kategorie gibt - "Orange, Weiß und Gestreift". +- **Ordinal**, bei der geordnete Kategorien verwendet werden, nützlich, wenn wir unsere Ergebnisse logisch ordnen möchten, wie unsere Kürbisse, die nach einer begrenzten Anzahl von Größen geordnet sind (mini, sm, med, lg, xl, xxl). ![Multinomiale vs. ordinale Regression](../../../../translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.de.png) -### Variablen MÜSSEN nicht korrelieren +### Variablen müssen NICHT korrelieren -Erinnern Sie sich, wie die lineare Regression besser mit korrelierten Variablen funktionierte? Die logistische Regression ist das Gegenteil - die Variablen müssen sich nicht anpassen. Das funktioniert für diese Daten, die einigermaßen schwache Korrelationen aufweisen. +Erinnern Sie sich daran, wie die lineare Regression mit stärker korrelierten Variablen besser funktionierte? Die logistische Regression ist das Gegenteil – die Variablen müssen nicht übereinstimmen. Das funktioniert für diese Daten, die nur schwache Korrelationen aufweisen. ### Sie benötigen viele saubere Daten -Die logistische Regression liefert genauere Ergebnisse, wenn Sie mehr Daten verwenden; unser kleiner Datensatz ist für diese Aufgabe nicht optimal, also denken Sie daran. +Die logistische Regression liefert genauere Ergebnisse, wenn Sie mehr Daten verwenden; unser kleiner Datensatz ist für diese Aufgabe nicht optimal, also behalten Sie das im Hinterkopf. [![ML für Anfänger - Datenanalyse und -vorbereitung für logistische Regression](https://img.youtube.com/vi/B2X4H9vcXTs/0.jpg)](https://youtu.be/B2X4H9vcXTs "ML für Anfänger - Datenanalyse und -vorbereitung für logistische Regression") -> 🎥 Klicken Sie auf das Bild oben für eine kurze Videoübersicht über die Vorbereitung von Daten für die lineare Regression +> 🎥 Klicken Sie auf das Bild oben für eine kurze Videoübersicht über die Datenvorbereitung für die lineare Regression. ✅ Denken Sie über die Arten von Daten nach, die sich gut für die logistische Regression eignen würden. ## Übung - Daten bereinigen -Zuerst reinigen Sie die Daten ein wenig, indem Sie null-Werte entfernen und nur einige der Spalten auswählen: +Bereinigen Sie zunächst die Daten ein wenig, indem Sie Nullwerte entfernen und nur einige der Spalten auswählen: 1. Fügen Sie den folgenden Code hinzu: @@ -83,19 +92,19 @@ Zuerst reinigen Sie die Daten ein wenig, indem Sie null-Werte entfernen und nur pumpkins.dropna(inplace=True) ``` - Sie können jederzeit einen Blick auf Ihr neues DataFrame werfen: + Sie können jederzeit einen Blick auf Ihren neuen Dataframe werfen: ```python pumpkins.info ``` -### Visualisierung - kategoriales Diagramm +### Visualisierung - kategorisches Diagramm -Bis jetzt haben Sie das [Starter-Notebook](../../../../2-Regression/4-Logistic/notebook.ipynb) mit Kürbisdaten erneut geladen und es so bereinigt, dass ein Datensatz mit einigen Variablen, einschließlich `Color`, erhalten bleibt. Lassen Sie uns das DataFrame im Notebook mit einer anderen Bibliothek visualisieren: [Seaborn](https://seaborn.pydata.org/index.html), die auf Matplotlib basiert, das wir zuvor verwendet haben. +Bis jetzt haben Sie das [Starter-Notebook](./notebook.ipynb) mit Kürbisdaten erneut geladen und bereinigt, sodass ein Datensatz mit einigen Variablen, einschließlich `Color`, erhalten bleibt. Lassen Sie uns den Dataframe im Notebook mit einer anderen Bibliothek visualisieren: [Seaborn](https://seaborn.pydata.org/index.html), das auf Matplotlib basiert, das wir zuvor verwendet haben. -Seaborn bietet einige tolle Möglichkeiten, Ihre Daten zu visualisieren. Zum Beispiel können Sie die Verteilungen der Daten für jede `Variety` und `Color` in einem kategorialen Diagramm vergleichen. +Seaborn bietet einige interessante Möglichkeiten, Ihre Daten zu visualisieren. Beispielsweise können Sie die Verteilungen der Daten für jede `Variety` und `Color` in einem kategorischen Diagramm vergleichen. -1. Erstellen Sie ein solches Diagramm, indem Sie `catplot` function, using our pumpkin data `pumpkins` verwenden und eine Farbzuordnung für jede Kürbiskategorie (orange oder weiß) angeben: +1. Erstellen Sie ein solches Diagramm mit der Funktion `catplot`, indem Sie unsere Kürbisdaten `pumpkins` verwenden und eine Farbzuordnung für jede Kürbiskategorie (orange oder weiß) angeben: ```python import seaborn as sns @@ -111,18 +120,19 @@ Seaborn bietet einige tolle Möglichkeiten, Ihre Daten zu visualisieren. Zum Bei ) ``` - ![Ein Gitter von visualisierten Daten](../../../../translated_images/pumpkins_catplot_1.c55c409b71fea2ecc01921e64b91970542101f90bcccfa4aa3a205db8936f48b.de.png) + ![Ein Raster visualisierter Daten](../../../../translated_images/pumpkins_catplot_1.c55c409b71fea2ecc01921e64b91970542101f90bcccfa4aa3a205db8936f48b.de.png) - Durch die Beobachtung der Daten können Sie sehen, wie die Farb-Daten mit der Sorte zusammenhängt. + Durch die Beobachtung der Daten können Sie sehen, wie die Farbdaten mit der Sorte zusammenhängen. - ✅ Angesichts dieses kategorialen Diagramms, welche interessanten Erkundungen können Sie sich vorstellen? + ✅ Angesichts dieses kategorischen Diagramms, welche interessanten Untersuchungen können Sie sich vorstellen? -### Datenvorverarbeitung: Merkmals- und Label-Codierung -Unser Kürbis-Datensatz enthält Zeichenfolgenwerte für alle seine Spalten. Mit kategorialen Daten zu arbeiten, ist für Menschen intuitiv, aber nicht für Maschinen. Maschinenlernalgorithmen funktionieren gut mit Zahlen. Daher ist die Codierung ein sehr wichtiger Schritt in der Datenvorverarbeitungsphase, da sie es uns ermöglicht, kategoriale Daten in numerische Daten umzuwandeln, ohne Informationen zu verlieren. Eine gute Codierung führt zum Aufbau eines guten Modells. +### Datenvorverarbeitung: Feature- und Label-Encoding -Für die Merkmalscodierung gibt es zwei Haupttypen von Codierern: +Unser Kürbis-Datensatz enthält Zeichenkettenwerte für alle seine Spalten. Mit kategorischen Daten zu arbeiten, ist für Menschen intuitiv, aber nicht für Maschinen. Maschinelle Lernalgorithmen funktionieren gut mit Zahlen. Deshalb ist Encoding ein sehr wichtiger Schritt in der Datenvorverarbeitungsphase, da es uns ermöglicht, kategorische Daten in numerische Daten umzuwandeln, ohne Informationen zu verlieren. Gutes Encoding führt zu einem guten Modell. -1. Ordinaler Codierer: Er eignet sich gut für ordinale Variablen, bei denen die Daten einer logischen Reihenfolge folgen, wie die Spalte `Item Size` in unserem Datensatz. Er erstellt eine Zuordnung, sodass jede Kategorie durch eine Zahl repräsentiert wird, die der Reihenfolge der Kategorie in der Spalte entspricht. +Für das Feature-Encoding gibt es zwei Haupttypen von Encodern: + +1. Ordinaler Encoder: Er eignet sich gut für ordinale Variablen, also kategorische Variablen, bei denen die Daten einer logischen Reihenfolge folgen, wie die Spalte `Item Size` in unserem Datensatz. Er erstellt eine Zuordnung, sodass jede Kategorie durch eine Zahl dargestellt wird, die die Reihenfolge der Kategorie in der Spalte ist. ```python from sklearn.preprocessing import OrdinalEncoder @@ -132,7 +142,7 @@ Für die Merkmalscodierung gibt es zwei Haupttypen von Codierern: ordinal_encoder = OrdinalEncoder(categories=item_size_categories) ``` -2. Kategorialer Codierer: Er eignet sich gut für nominale Variablen, bei denen die Daten keiner logischen Reihenfolge folgen, wie alle Merkmale, die nicht `Item Size` in unserem Datensatz sind. Es handelt sich um eine One-Hot-Codierung, was bedeutet, dass jede Kategorie durch eine binäre Spalte repräsentiert wird: Die codierte Variable ist gleich 1, wenn der Kürbis zu dieser Sorte gehört, und 0, andernfalls. +2. Kategorischer Encoder: Er eignet sich gut für nominale Variablen, also kategorische Variablen, bei denen die Daten keiner logischen Reihenfolge folgen, wie alle Features außer `Item Size` in unserem Datensatz. Es handelt sich um ein One-Hot-Encoding, was bedeutet, dass jede Kategorie durch eine binäre Spalte dargestellt wird: Die codierte Variable ist gleich 1, wenn der Kürbis zu dieser Sorte gehört, und 0, wenn nicht. ```python from sklearn.preprocessing import OneHotEncoder @@ -140,7 +150,8 @@ Für die Merkmalscodierung gibt es zwei Haupttypen von Codierern: categorical_features = ['City Name', 'Package', 'Variety', 'Origin'] categorical_encoder = OneHotEncoder(sparse_output=False) ``` -Dann wird `ColumnTransformer` verwendet, um mehrere Codierer in einem einzigen Schritt zu kombinieren und sie auf die entsprechenden Spalten anzuwenden. + +Dann wird `ColumnTransformer` verwendet, um mehrere Encoder in einem einzigen Schritt zu kombinieren und auf die entsprechenden Spalten anzuwenden. ```python from sklearn.compose import ColumnTransformer @@ -153,7 +164,8 @@ Dann wird `ColumnTransformer` verwendet, um mehrere Codierer in einem einzigen S ct.set_output(transform='pandas') encoded_features = ct.fit_transform(pumpkins) ``` -Andererseits verwenden wir zur Codierung des Labels die `LabelEncoder`-Klasse von Scikit-learn, die eine Hilfsklasse ist, um Labels zu normalisieren, sodass sie nur Werte zwischen 0 und n_classes-1 (hier 0 und 1) enthalten. + +Für das Label-Encoding verwenden wir die `LabelEncoder`-Klasse von scikit-learn, eine Utility-Klasse, die Labels normalisiert, sodass sie nur Werte zwischen 0 und n_classes-1 enthalten (hier 0 und 1). ```python from sklearn.preprocessing import LabelEncoder @@ -161,17 +173,18 @@ Andererseits verwenden wir zur Codierung des Labels die `LabelEncoder`-Klasse vo label_encoder = LabelEncoder() encoded_label = label_encoder.fit_transform(pumpkins['Color']) ``` -Sobald wir die Merkmale und das Label codiert haben, können wir sie in ein neues DataFrame `encoded_pumpkins` zusammenführen. + +Sobald wir die Features und das Label codiert haben, können wir sie zu einem neuen Dataframe `encoded_pumpkins` zusammenführen. ```python encoded_pumpkins = encoded_features.assign(Color=encoded_label) ``` -✅ Was sind die Vorteile der Verwendung eines ordinalen Codierers für die `Item Size` column? -### Analyse relationships between variables +✅ Was sind die Vorteile der Verwendung eines ordinalen Encoders für die Spalte `Item Size`? + +### Beziehungen zwischen Variablen analysieren -Now that we have pre-processed our data, we can analyse the relationships between the features and the label to grasp an idea of how well the model will be able to predict the label given the features. -The best way to perform this kind of analysis is plotting the data. We'll be using again the Seaborn `catplot` function, to visualize the relationships between `Item Size`, `Variety` und `Color` in einem kategorialen Diagramm. Um die Daten besser darzustellen, verwenden wir die codierte `Item Size` column and the unencoded `Variety`-Spalte. +Nachdem wir unsere Daten vorverarbeitet haben, können wir die Beziehungen zwischen den Features und dem Label analysieren, um eine Vorstellung davon zu bekommen, wie gut das Modell das Label anhand der Features vorhersagen kann. Die beste Möglichkeit, diese Art der Analyse durchzuführen, ist das Plotten der Daten. Wir verwenden erneut die Funktion `catplot` von Seaborn, um die Beziehungen zwischen `Item Size`, `Variety` und `Color` in einem kategorischen Diagramm zu visualisieren. Um die Daten besser darzustellen, verwenden wir die codierte Spalte `Item Size` und die nicht codierte Spalte `Variety`. ```python palette = { @@ -190,15 +203,16 @@ The best way to perform this kind of analysis is plotting the data. We'll be usi g.set(xlabel="Item Size", ylabel="").set(xlim=(0,6)) g.set_titles(row_template="{row_name}") ``` -![Ein Kategoriendiagramm von visualisierten Daten](../../../../translated_images/pumpkins_catplot_2.87a354447880b3889278155957f8f60dd63db4598de5a6d0fda91c334d31f9f1.de.png) -### Verwenden Sie ein Schwarmdiagramm +![Ein kategorisches Diagramm visualisierter Daten](../../../../translated_images/pumpkins_catplot_2.87a354447880b3889278155957f8f60dd63db4598de5a6d0fda91c334d31f9f1.de.png) + +### Verwendung eines Swarm-Plots -Da die Farbe eine binäre Kategorie ist (Weiß oder Nicht), benötigt sie 'einen [spezialisierten Ansatz](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar) zur Visualisierung'. Es gibt andere Möglichkeiten, die Beziehung dieser Kategorie zu anderen Variablen zu visualisieren. +Da `Color` eine binäre Kategorie ist (Weiß oder Nicht Weiß), benötigt sie 'einen [spezialisierten Ansatz](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar) zur Visualisierung'. Es gibt andere Möglichkeiten, die Beziehung dieser Kategorie zu anderen Variablen zu visualisieren. Sie können Variablen nebeneinander mit Seaborn-Diagrammen visualisieren. -1. Versuchen Sie ein 'Schwarm'-Diagramm, um die Verteilung der Werte anzuzeigen: +1. Probieren Sie einen 'Swarm'-Plot aus, um die Verteilung der Werte darzustellen: ```python palette = { @@ -208,27 +222,27 @@ Sie können Variablen nebeneinander mit Seaborn-Diagrammen visualisieren. sns.swarmplot(x="Color", y="ord__Item Size", data=encoded_pumpkins, palette=palette) ``` - ![Ein Schwarm von visualisierten Daten](../../../../translated_images/swarm_2.efeacfca536c2b577dc7b5f8891f28926663fbf62d893ab5e1278ae734ca104e.de.png) + ![Ein Schwarm visualisierter Daten](../../../../translated_images/swarm_2.efeacfca536c2b577dc7b5f8891f28926663fbf62d893ab5e1278ae734ca104e.de.png) -**Achtung**: Der obige Code könnte eine Warnung erzeugen, da Seaborn nicht in der Lage ist, eine so große Anzahl von Datenpunkten in einem Schwarmdiagramm darzustellen. Eine mögliche Lösung besteht darin, die Größe des Markers zu verringern, indem Sie den Parameter 'size' verwenden. Seien Sie sich jedoch bewusst, dass dies die Lesbarkeit des Diagramms beeinträchtigt. +**Achtung**: Der obige Code könnte eine Warnung generieren, da Seaborn Schwierigkeiten hat, eine solche Menge an Datenpunkten in einem Swarm-Plot darzustellen. Eine mögliche Lösung besteht darin, die Größe des Markers mit dem Parameter 'size' zu verringern. Beachten Sie jedoch, dass dies die Lesbarkeit des Diagramms beeinträchtigt. > **🧮 Zeigen Sie mir die Mathematik** > -> Die logistische Regression basiert auf dem Konzept der 'maximalen Wahrscheinlichkeit' unter Verwendung von [Sigmoid-Funktionen](https://wikipedia.org/wiki/Sigmoid_function). Eine 'Sigmoid-Funktion' sieht in einem Diagramm wie eine 'S'-Form aus. Sie nimmt einen Wert und ordnet ihn irgendwo zwischen 0 und 1 zu. Ihre Kurve wird auch als 'logistische Kurve' bezeichnet. Ihre Formel sieht so aus: +> Die logistische Regression basiert auf dem Konzept der 'Maximum-Likelihood' unter Verwendung von [Sigmoid-Funktionen](https://wikipedia.org/wiki/Sigmoid_function). Eine 'Sigmoid-Funktion' auf einem Diagramm sieht aus wie eine 'S'-Form. Sie nimmt einen Wert und ordnet ihn irgendwo zwischen 0 und 1 zu. Ihre Kurve wird auch als 'logistische Kurve' bezeichnet. Ihre Formel sieht wie folgt aus: > > ![logistische Funktion](../../../../translated_images/sigmoid.8b7ba9d095c789cf72780675d0d1d44980c3736617329abfc392dfc859799704.de.png) > -> wobei der Mittelpunkt der Sigmoidfunktion am Punkt 0 von x liegt, L der maximale Wert der Kurve ist und k die Steilheit der Kurve darstellt. Wenn das Ergebnis der Funktion mehr als 0,5 beträgt, erhält das betreffende Label die Klasse '1' der binären Wahl. Andernfalls wird es als '0' klassifiziert. +> Dabei liegt der Mittelpunkt der Sigmoid-Funktion bei x = 0, L ist der maximale Wert der Kurve und k ist die Steilheit der Kurve. Wenn das Ergebnis der Funktion größer als 0,5 ist, wird das betreffende Label der Klasse '1' der binären Wahl zugeordnet. Andernfalls wird es als '0' klassifiziert. -## Erstellen Sie Ihr Modell +## Modell erstellen -Ein Modell zu erstellen, um diese binäre Klassifizierung zu finden, ist in Scikit-learn überraschend unkompliziert. +Ein Modell zu erstellen, um diese binäre Klassifikation zu finden, ist überraschend einfach in Scikit-learn. -[![ML für Anfänger - Logistische Regression zur Klassifizierung von Daten](https://img.youtube.com/vi/MmZS2otPrQ8/0.jpg)](https://youtu.be/MmZS2otPrQ8 "ML für Anfänger - Logistische Regression zur Klassifizierung von Daten") +[![ML für Anfänger - Logistische Regression zur Klassifikation von Daten](https://img.youtube.com/vi/MmZS2otPrQ8/0.jpg)](https://youtu.be/MmZS2otPrQ8 "ML für Anfänger - Logistische Regression zur Klassifikation von Daten") -> 🎥 Klicken Sie auf das Bild oben für eine kurze Videoübersicht über den Aufbau eines Modells für die lineare Regression +> 🎥 Klicken Sie auf das Bild oben für eine kurze Videoübersicht über den Aufbau eines linearen Regressionsmodells. -1. Wählen Sie die Variablen aus, die Sie in Ihrem Klassifikationsmodell verwenden möchten, und teilen Sie die Trainings- und Testdaten auf, indem Sie `train_test_split()` aufrufen: +1. Wählen Sie die Variablen aus, die Sie in Ihrem Klassifikationsmodell verwenden möchten, und teilen Sie die Trainings- und Testsets mit `train_test_split()`: ```python from sklearn.model_selection import train_test_split @@ -255,7 +269,7 @@ Ein Modell zu erstellen, um diese binäre Klassifizierung zu finden, ist in Scik print('F1-score: ', f1_score(y_test, predictions)) ``` - Werfen Sie einen Blick auf die Punktzahl Ihres Modells. Es ist nicht schlecht, wenn man bedenkt, dass Sie nur etwa 1000 Datenzeilen haben: + Werfen Sie einen Blick auf die Bewertung Ihres Modells. Es ist nicht schlecht, wenn man bedenkt, dass Sie nur etwa 1000 Zeilen Daten haben: ```output precision recall f1-score support @@ -276,27 +290,27 @@ Ein Modell zu erstellen, um diese binäre Klassifizierung zu finden, ist in Scik F1-score: 0.7457627118644068 ``` -## Bessere Verständlichkeit durch eine Verwirrungsmatrix +## Bessere Verständlichkeit durch eine Konfusionsmatrix -Während Sie einen Punktbericht über [Begriffe](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report) erhalten können, indem Sie die oben genannten Elemente ausdrucken, können Sie Ihr Modell möglicherweise leichter verstehen, indem Sie eine [Verwirrungsmatrix](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix) verwenden, um zu verstehen, wie das Modell funktioniert. +Während Sie einen Bewertungsbericht [Begriffe](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report) ausgeben können, indem Sie die oben genannten Elemente drucken, können Sie Ihr Modell möglicherweise besser verstehen, indem Sie eine [Konfusionsmatrix](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix) verwenden, um zu verstehen, wie das Modell funktioniert. -> 🎓 Eine '[Verwirrungsmatrix](https://wikipedia.org/wiki/Confusion_matrix)' (oder 'Fehlermatrix') ist eine Tabelle, die die wahren und falschen Positiven und Negativen Ihres Modells ausdrückt und somit die Genauigkeit der Vorhersagen misst. +> 🎓 Eine '[Konfusionsmatrix](https://wikipedia.org/wiki/Confusion_matrix)' (oder 'Fehlermatrix') ist eine Tabelle, die die tatsächlichen vs. falschen Positiven und Negativen Ihres Modells ausdrückt und somit die Genauigkeit der Vorhersagen misst. -1. Um eine Verwirrungsmatrix zu verwenden, rufen Sie `confusion_matrix()` auf: +1. Um eine Konfusionsmatrix zu verwenden, rufen Sie `confusion_matrix()` auf: ```python from sklearn.metrics import confusion_matrix confusion_matrix(y_test, predictions) ``` - Werfen Sie einen Blick auf die Verwirrungsmatrix Ihres Modells: + Werfen Sie einen Blick auf die Konfusionsmatrix Ihres Modells: ```output array([[162, 4], [ 11, 22]]) ``` -In Scikit-learn sind die Zeilen der Verwirrungsmatrix (Achse 0) die tatsächlichen Labels und die Spalten (Achse 1) die vorhergesagten Labels. +In Scikit-learn sind die Zeilen (Achse 0) die tatsächlichen Labels und die Spalten (Achse 1) die vorhergesagten Labels. | | 0 | 1 | | :---: | :---: | :---: | @@ -305,42 +319,41 @@ In Scikit-learn sind die Zeilen der Verwirrungsmatrix (Achse 0) die tatsächlich Was passiert hier? Angenommen, unser Modell wird gebeten, Kürbisse zwischen zwei binären Kategorien zu klassifizieren, Kategorie 'weiß' und Kategorie 'nicht-weiß'. -- Wenn Ihr Modell einen Kürbis als nicht weiß vorhersagt und er tatsächlich zur Kategorie 'nicht-weiß' gehört, nennen wir das ein echtes negatives Ergebnis, dargestellt durch die obere linke Zahl. -- Wenn Ihr Modell einen Kürbis als weiß vorhersagt und er tatsächlich zur Kategorie 'nicht-weiß' gehört, nennen wir das ein falsches negatives Ergebnis, dargestellt durch die untere linke Zahl. -- Wenn Ihr Modell einen Kürbis als nicht weiß vorhersagt und er tatsächlich zur Kategorie 'weiß' gehört, nennen wir das ein falsches positives Ergebnis, dargestellt durch die obere rechte Zahl. -- Wenn Ihr Modell einen Kürbis als weiß vorhersagt und er tatsächlich zur Kategorie 'weiß' gehört, nennen wir das ein echtes positives Ergebnis, dargestellt durch die untere rechte Zahl. +- Wenn Ihr Modell einen Kürbis als nicht weiß vorhersagt und er tatsächlich zur Kategorie 'nicht-weiß' gehört, nennen wir dies ein True Negative, dargestellt durch die Zahl oben links. +- Wenn Ihr Modell einen Kürbis als weiß vorhersagt und er tatsächlich zur Kategorie 'nicht-weiß' gehört, nennen wir dies ein False Negative, dargestellt durch die Zahl unten links. +- Wenn Ihr Modell einen Kürbis als nicht weiß vorhersagt und er tatsächlich zur Kategorie 'weiß' gehört, nennen wir dies ein False Positive, dargestellt durch die Zahl oben rechts. +- Wenn Ihr Modell einen Kürbis als weiß vorhersagt und er tatsächlich zur Kategorie 'weiß' gehört, nennen wir dies ein True Positive, dargestellt durch die Zahl unten rechts. -Wie Sie sich vielleicht denken können, ist es besser, eine größere Anzahl echter positiver und negativer Ergebnisse und eine niedrigere Anzahl falscher positiver und negativer Ergebnisse zu haben, was darauf hindeutet, dass das Modell besser abschneidet. +Wie Sie sich denken können, ist es vorzuziehen, eine größere Anzahl von True Positives und True Negatives und eine geringere Anzahl von False Positives und False Negatives zu haben, was darauf hinweist, dass das Modell besser funktioniert. +Wie hängt die Konfusionsmatrix mit Präzision und Recall zusammen? Erinnern Sie sich, dass der oben gedruckte Klassifikationsbericht eine Präzision von 0,85 und einen Recall von 0,67 zeigte. -Wie steht die Verwirrungsmatrix im Zusammenhang mit Präzision und Rückruf? Denken Sie daran, der oben ausgegebene Klassifikationsbericht zeigte eine Präzision (0.85) und einen Rückruf (0.67). +Präzision = tp / (tp + fp) = 22 / (22 + 4) = 0,8461538461538461 -Präzision = tp / (tp + fp) = 22 / (22 + 4) = 0.8461538461538461 +Recall = tp / (tp + fn) = 22 / (22 + 11) = 0,6666666666666666 -Rückruf = tp / (tp + fn) = 22 / (22 + 11) = 0.6666666666666666 +✅ F: Wie hat das Modell laut der Konfusionsmatrix abgeschnitten? A: Gar nicht schlecht; es gibt eine gute Anzahl von True Negatives, aber auch einige False Negatives. -✅ Q: Wie hat das Modell laut der Verwirrungsmatrix abgeschnitten? A: Nicht schlecht; es gibt eine gute Anzahl echter negativer Ergebnisse, aber auch einige falsche negative Ergebnisse. +Lassen Sie uns die Begriffe, die wir zuvor gesehen haben, mit Hilfe der Zuordnung von TP/TN und FP/FN in der Konfusionsmatrix erneut betrachten: -Lassen Sie uns die Begriffe, die wir zuvor gesehen haben, mithilfe der Zuordnung der Verwirrungsmatrix von TP/TN und FP/FN erneut betrachten: +🎓 Präzision: TP/(TP + FP) Der Anteil relevanter Instanzen unter den abgerufenen Instanzen (z. B. welche Labels gut zugeordnet wurden) -🎓 Präzision: TP/(TP + FP) Der Anteil relevanter Instanzen unter den abgerufenen Instanzen (z. B. welche Labels gut gekennzeichnet waren) +🎓 Recall: TP/(TP + FN) Der Anteil relevanter Instanzen, die abgerufen wurden, unabhängig davon, ob sie gut zugeordnet wurden oder nicht -🎓 Rückruf: TP/(TP + FN) Der Anteil relevanter Instanzen, die abgerufen wurden, unabhängig davon, ob sie gut gekennzeichnet waren oder nicht +🎓 F1-Score: (2 * Präzision * Recall)/(Präzision + Recall) Ein gewichteter Durchschnitt von Präzision und Recall, wobei 1 das Beste und 0 das Schlechteste ist -🎓 f1-Score: (2 * Präzision * Rückruf)/(Präzision + Rückruf) Ein gewichteter Durchschnitt von Präzision und Rückruf, wobei 1 das Beste und 0 das Schlechteste ist +🎓 Support: Die Anzahl der Vorkommen jedes abgerufenen Labels -🎓 Unterstützung: Die Anzahl der Vorkommen jedes abgerufenen Labels +🎓 Genauigkeit: (TP + TN)/(TP + TN + FP + FN) Der Prozentsatz der Labels, die für eine Stichprobe korrekt vorhergesagt wurden. -🎓 Genauigkeit: (TP + TN)/(TP + TN + FP + FN) Der Prozentsatz der Labels, die genau für eine Stichprobe vorhergesagt wurden. +🎓 Makro-Durchschnitt: Die Berechnung der ungewichteten Durchschnittswerte für jedes Label, ohne die Ungleichheit der Labels zu berücksichtigen. -🎓 Makro-Durchschnitt: Die Berechnung des ungewichteten Mittelwerts der Metriken für jedes Label, wobei das Ungleichgewicht der Labels nicht berücksichtigt wird. +🎓 Gewichteter Durchschnitt: Die Berechnung der Durchschnittswerte für jedes Label, wobei die Ungleichheit der Labels durch Gewichtung nach ihrer Unterstützung (der Anzahl der tatsächlichen Instanzen für jedes Label) berücksichtigt wird. -🎓 Gewichteter Durchschnitt: Die Berechnung des Mittelwerts der Metriken für jedes Label unter Berücksichtigung des Ungleichgewichts der Labels, indem sie nach ihrer Unterstützung (der Anzahl der echten Instanzen für jedes Label) gewichtet werden. - -✅ Können Sie sich vorstellen, welche Metrik Sie beobachten sollten, wenn Sie möchten, dass Ihr Modell die Anzahl der falschen negativen Ergebnisse reduziert? +✅ Können Sie sich vorstellen, welchen Metrikwert Sie beobachten sollten, wenn Sie die Anzahl der False Negatives reduzieren möchten? ## Visualisieren Sie die ROC-Kurve dieses Modells -[![ML für Anfänger - Analyse der Leistung der logistischen Regression mit ROC-Kurven](https://img.youtube.com/vi/GApO575jTA0/0.jpg)](https://youtu.be/GApO575jTA0 "ML für Anfänger - Analyse der Leistung der logistischen Regression mit ROC-Kurven") +[![ML für Anfänger - Analyse der Leistung von logistischer Regression mit ROC-Kurven](https://img.youtube.com/vi/GApO575jTA0/0.jpg)](https://youtu.be/GApO575jTA0 "ML für Anfänger - Analyse der Leistung von logistischer Regression mit ROC-Kurven") > 🎥 Klicken Sie auf das Bild oben für eine kurze Videoübersicht über ROC-Kurven @@ -364,7 +377,36 @@ plt.title('ROC Curve') plt.show() ``` -Verwenden Sie Matplotlib, um die [Receiver Operating Characteristic](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc) oder ROC des Modells zu zeichnen. ROC-Kurven werden häufig verwendet, um einen Überblick über die Ausgabe eines Klassifizierers in Bezug auf echte vs. falsche positive Ergebnisse zu erhalten. "ROC-Kurven zeigen typischerweise die wahre positive Rate auf der Y-Achse und die falsche positive Rate auf der X-Achse." Daher ist die Steilheit der Kurve und der Abstand zwischen der Mittellinie und der Kurve von Bedeutung: Sie möchten eine Kur +Verwenden Sie Matplotlib, um die [Receiver Operating Characteristic](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc) oder ROC des Modells zu zeichnen. ROC-Kurven werden häufig verwendet, um die Ausgabe eines Klassifikators in Bezug auf seine True Positives und False Positives zu betrachten. "ROC-Kurven zeigen typischerweise die True Positive Rate auf der Y-Achse und die False Positive Rate auf der X-Achse." Daher sind die Steilheit der Kurve und der Abstand zwischen der Mittellinie und der Kurve wichtig: Sie möchten eine Kurve, die schnell nach oben und über die Linie geht. In unserem Fall gibt es zunächst False Positives, und dann geht die Linie richtig nach oben und darüber: + +![ROC](../../../../translated_images/ROC_2.777f20cdfc4988ca683ade6850ac832cb70c96c12f1b910d294f270ef36e1a1c.de.png) + +Verwenden Sie abschließend die [`roc_auc_score` API](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score) von Scikit-learn, um die tatsächliche 'Fläche unter der Kurve' (AUC) zu berechnen: + +```python +auc = roc_auc_score(y_test,y_scores[:,1]) +print(auc) +``` +Das Ergebnis ist `0.9749908725812341`. Da die AUC von 0 bis 1 reicht, möchten Sie einen hohen Wert erzielen, da ein Modell, das 100 % korrekte Vorhersagen trifft, eine AUC von 1 hat; in diesem Fall ist das Modell _ziemlich gut_. + +In zukünftigen Lektionen zu Klassifikationen werden Sie lernen, wie Sie iterativ die Werte Ihres Modells verbessern können. Aber für den Moment: Herzlichen Glückwunsch! Sie haben diese Lektionen zur Regression abgeschlossen! + +--- +## 🚀 Herausforderung + +Es gibt noch viel mehr über logistische Regression zu entdecken! Aber der beste Weg zu lernen ist zu experimentieren. Finden Sie einen Datensatz, der sich für diese Art der Analyse eignet, und erstellen Sie ein Modell damit. Was lernen Sie dabei? Tipp: Probieren Sie [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) für interessante Datensätze aus. + +## [Quiz nach der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/16/) + +## Überprüfung & Selbststudium + +Lesen Sie die ersten Seiten [dieses Papiers von Stanford](https://web.stanford.edu/~jurafsky/slp3/5.pdf) über einige praktische Anwendungen der logistischen Regression. Denken Sie über Aufgaben nach, die besser für die eine oder andere Art von Regression geeignet sind, die wir bis jetzt studiert haben. Was würde am besten funktionieren? + +## Aufgabe + +[Wiederholen Sie diese Regression](assignment.md) + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/2-Regression/4-Logistic/assignment.md b/translations/de/2-Regression/4-Logistic/assignment.md index f968c09a5..f38757031 100644 --- a/translations/de/2-Regression/4-Logistic/assignment.md +++ b/translations/de/2-Regression/4-Logistic/assignment.md @@ -1,14 +1,25 @@ -# Wiederholungen bei der Regression + +# Wiederholung einiger Regressionen ## Anweisungen -In der Lektion hast du einen Teil der Kürbisdaten verwendet. Gehe nun zurück zu den ursprünglichen Daten und versuche, alle Daten zu nutzen, gereinigt und standardisiert, um ein logistisches Regressionsmodell zu erstellen. +In der Lektion hast du einen Teil der Kürbisdaten verwendet. Gehe nun zurück zu den ursprünglichen Daten und versuche, alle Daten, bereinigt und standardisiert, zu verwenden, um ein Logistisches Regressionsmodell zu erstellen. -## Bewertungsrichtlinien +## Bewertungskriterien -| Kriterien | Hervorragend | Angemessen | Verbesserungsbedarf | -| --------- | --------------------------------------------------------------------- | ------------------------------------------------------------ | ----------------------------------------------------------- | -| | Ein Notizbuch wird präsentiert, das ein gut erklärtes und gut funktionierendes Modell enthält | Ein Notizbuch wird präsentiert, das ein Modell mit minimaler Leistung enthält | Ein Notizbuch wird präsentiert, das ein unterdurchschnittliches Modell oder gar keins enthält | +| Kriterien | Vorbildlich | Angemessen | Verbesserungswürdig | +| --------- | ----------------------------------------------------------------------- | ------------------------------------------------------------ | ----------------------------------------------------------- | +| | Ein Notebook wird präsentiert mit einem gut erklärten und gut funktionierenden Modell | Ein Notebook wird präsentiert mit einem Modell, das minimal funktioniert | Ein Notebook wird präsentiert mit einem schlecht funktionierenden Modell oder gar keinem | + +--- **Haftungsausschluss**: -Dieses Dokument wurde mithilfe von maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, bitten wir zu beachten, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/2-Regression/4-Logistic/notebook.ipynb b/translations/de/2-Regression/4-Logistic/notebook.ipynb new file mode 100644 index 000000000..988025126 --- /dev/null +++ b/translations/de/2-Regression/4-Logistic/notebook.ipynb @@ -0,0 +1,269 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Kürbissorten und Farbe\n", + "\n", + "Lade die benötigten Bibliotheken und den Datensatz. Konvertiere die Daten in ein DataFrame, das einen Teil der Daten enthält:\n", + "\n", + "Schauen wir uns die Beziehung zwischen Farbe und Sorte an.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", + "

5 rows × 26 columns

\n", + "
" + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "dee08c2b49057b0de8b6752c4dbca368", + "translation_date": "2025-09-04T01:18:27+00:00", + "source_file": "2-Regression/4-Logistic/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/de/2-Regression/4-Logistic/solution/Julia/README.md b/translations/de/2-Regression/4-Logistic/solution/Julia/README.md index 8ccd45f95..cc87cf926 100644 --- a/translations/de/2-Regression/4-Logistic/solution/Julia/README.md +++ b/translations/de/2-Regression/4-Logistic/solution/Julia/README.md @@ -1,6 +1,15 @@ -Dies ist ein temporärer PlatzhalterBitte schreiben Sie die Ausgabe von links nach rechts. + -Dies ist ein temporärer Platzhalter + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, sollten Sie sich bewusst sein, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als autoritative Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb b/translations/de/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb new file mode 100644 index 000000000..27a5fb19c --- /dev/null +++ b/translations/de/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb @@ -0,0 +1,686 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Erstellen Sie ein logistisches Regressionsmodell - Lektion 4\n", + "\n", + "![Infografik: Logistische vs. lineare Regression](../../../../../../translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.de.png)\n", + "\n", + "#### **[Quiz vor der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/)**\n", + "\n", + "#### Einführung\n", + "\n", + "In dieser letzten Lektion zur Regression, einer der grundlegenden *klassischen* ML-Techniken, werfen wir einen Blick auf die logistische Regression. Diese Technik wird verwendet, um Muster zu erkennen und binäre Kategorien vorherzusagen. Ist diese Süßigkeit Schokolade oder nicht? Ist diese Krankheit ansteckend oder nicht? Wird dieser Kunde dieses Produkt wählen oder nicht?\n", + "\n", + "In dieser Lektion lernen Sie:\n", + "\n", + "- Techniken der logistischen Regression\n", + "\n", + "✅ Vertiefen Sie Ihr Verständnis für die Arbeit mit dieser Art von Regression in diesem [Learn-Modul](https://learn.microsoft.com/training/modules/introduction-classification-models/?WT.mc_id=academic-77952-leestott)\n", + "\n", + "## Voraussetzung\n", + "\n", + "Nachdem wir mit den Kürbisdaten gearbeitet haben, sind wir nun vertraut genug, um zu erkennen, dass es eine binäre Kategorie gibt, mit der wir arbeiten können: `Color`.\n", + "\n", + "Lassen Sie uns ein logistisches Regressionsmodell erstellen, um vorherzusagen, *welche Farbe ein gegebener Kürbis wahrscheinlich hat* (orange 🎃 oder weiß 👻), basierend auf einigen Variablen.\n", + "\n", + "> Warum sprechen wir über binäre Klassifikation in einer Lektion über Regression? Nur aus sprachlicher Bequemlichkeit, da die logistische Regression [eigentlich eine Klassifikationsmethode](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression) ist, wenn auch eine lineare. Lernen Sie in der nächsten Lektion weitere Methoden zur Klassifikation von Daten kennen.\n", + "\n", + "Für diese Lektion benötigen wir die folgenden Pakete:\n", + "\n", + "- `tidyverse`: Das [tidyverse](https://www.tidyverse.org/) ist eine [Sammlung von R-Paketen](https://www.tidyverse.org/packages), die Datenwissenschaft schneller, einfacher und unterhaltsamer macht!\n", + "\n", + "- `tidymodels`: Das [tidymodels](https://www.tidymodels.org/) Framework ist eine [Sammlung von Paketen](https://www.tidymodels.org/packages/) für Modellierung und maschinelles Lernen.\n", + "\n", + "- `janitor`: Das [janitor-Paket](https://github.com/sfirke/janitor) bietet einfache Werkzeuge zur Untersuchung und Bereinigung von unordentlichen Daten.\n", + "\n", + "- `ggbeeswarm`: Das [ggbeeswarm-Paket](https://github.com/eclarke/ggbeeswarm) bietet Methoden zur Erstellung von Beeswarm-Diagrammen mit ggplot2.\n", + "\n", + "Sie können diese Pakete wie folgt installieren:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"ggbeeswarm\"))`\n", + "\n", + "Alternativ überprüft das untenstehende Skript, ob Sie die für dieses Modul erforderlichen Pakete installiert haben, und installiert sie bei Bedarf.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, ggbeeswarm)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Definiere die Frage**\n", + "\n", + "Für unsere Zwecke werden wir dies als binär ausdrücken: 'Weiß' oder 'Nicht Weiß'. Es gibt auch eine Kategorie 'gestreift' in unserem Datensatz, aber es gibt nur wenige Instanzen davon, daher werden wir sie nicht verwenden. Sie verschwindet ohnehin, sobald wir Nullwerte aus dem Datensatz entfernen.\n", + "\n", + "> 🎃 Fun Fact: Wir nennen weiße Kürbisse manchmal 'Geister'-Kürbisse. Sie sind nicht sehr leicht zu schnitzen, daher sind sie nicht so beliebt wie die orangenen, aber sie sehen cool aus! Wir könnten unsere Frage also auch so formulieren: 'Geist' oder 'Nicht Geist'. 👻\n", + "\n", + "## **Über logistische Regression**\n", + "\n", + "Die logistische Regression unterscheidet sich in einigen wichtigen Punkten von der linearen Regression, die du zuvor gelernt hast.\n", + "\n", + "#### **Binäre Klassifikation**\n", + "\n", + "Die logistische Regression bietet nicht die gleichen Funktionen wie die lineare Regression. Erstere liefert eine Vorhersage über eine `binäre Kategorie` (\"orange oder nicht orange\"), während letztere in der Lage ist, `kontinuierliche Werte` vorherzusagen, zum Beispiel basierend auf der Herkunft eines Kürbisses und der Erntezeit, *wie stark sein Preis steigen wird*.\n", + "\n", + "![Infografik von Dasani Madipalli](../../../../../../translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.de.png)\n", + "\n", + "### Andere Klassifikationen\n", + "\n", + "Es gibt andere Arten der logistischen Regression, einschließlich multinomialer und ordinaler:\n", + "\n", + "- **Multinomial**, bei der es mehr als eine Kategorie gibt - \"Orange, Weiß und Gestreift\".\n", + "\n", + "- **Ordinal**, bei der geordnete Kategorien verwendet werden, nützlich, wenn wir unsere Ergebnisse logisch ordnen möchten, wie unsere Kürbisse, die nach einer begrenzten Anzahl von Größen geordnet sind (mini, sm, med, lg, xl, xxl).\n", + "\n", + "![Multinomiale vs ordinale Regression](../../../../../../translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.de.png)\n", + "\n", + "#### **Variablen MÜSSEN NICHT korrelieren**\n", + "\n", + "Erinnerst du dich, wie die lineare Regression besser mit stärker korrelierten Variablen funktionierte? Die logistische Regression ist das Gegenteil - die Variablen müssen nicht übereinstimmen. Das funktioniert für diese Daten, die nur schwache Korrelationen aufweisen.\n", + "\n", + "#### **Du brauchst viele saubere Daten**\n", + "\n", + "Die logistische Regression liefert genauere Ergebnisse, wenn du mehr Daten verwendest; unser kleiner Datensatz ist für diese Aufgabe nicht optimal, also behalte das im Hinterkopf.\n", + "\n", + "✅ Überlege, welche Arten von Daten sich gut für die logistische Regression eignen würden.\n", + "\n", + "## Übung - Daten bereinigen\n", + "\n", + "Bereinige zunächst die Daten ein wenig, indem du Nullwerte entfernst und nur einige der Spalten auswählst:\n", + "\n", + "1. Füge den folgenden Code hinzu:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Load the core tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the data and clean column names\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\") %>% \n", + " clean_names()\n", + "\n", + "# Select desired columns\n", + "pumpkins_select <- pumpkins %>% \n", + " select(c(city_name, package, variety, origin, item_size, color)) \n", + "\n", + "# Drop rows containing missing values and encode color as factor (category)\n", + "pumpkins_select <- pumpkins_select %>% \n", + " drop_na() %>% \n", + " mutate(color = factor(color))\n", + "\n", + "# View the first few rows\n", + "pumpkins_select %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sie können jederzeit einen Blick auf Ihren neuen Dataframe werfen, indem Sie die Funktion [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) wie unten gezeigt verwenden:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "pumpkins_select %>% \n", + " glimpse()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lassen Sie uns bestätigen, dass wir tatsächlich ein binäres Klassifikationsproblem bearbeiten:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Subset distinct observations in outcome column\n", + "pumpkins_select %>% \n", + " distinct(color)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualisierung - kategorisches Diagramm\n", + "Bis jetzt haben Sie die Kürbisdaten erneut geladen und bereinigt, sodass ein Datensatz mit einigen Variablen, einschließlich Farbe, erhalten bleibt. Lassen Sie uns das Dataframe im Notebook mithilfe der ggplot-Bibliothek visualisieren.\n", + "\n", + "Die ggplot-Bibliothek bietet einige praktische Möglichkeiten, Ihre Daten zu visualisieren. Zum Beispiel können Sie die Verteilungen der Daten für jede Sorte und Farbe in einem kategorischen Diagramm vergleichen.\n", + "\n", + "1. Erstellen Sie ein solches Diagramm, indem Sie die Funktion geombar verwenden, unsere Kürbisdaten nutzen und eine Farbzuordnung für jede Kürbiskategorie (orange oder weiß) festlegen:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "# Specify colors for each value of the hue variable\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# Create the bar plot\n", + "ggplot(pumpkins_select, aes(y = variety, fill = color)) +\n", + " geom_bar(position = \"dodge\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(y = \"Variety\", fill = \"Color\") +\n", + " theme_minimal()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Durch die Beobachtung der Daten können Sie erkennen, wie die Farbdaten mit der Sorte zusammenhängen.\n", + "\n", + "✅ Angesichts dieses kategorialen Diagramms, welche interessanten Untersuchungen können Sie sich vorstellen?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Datenvorverarbeitung: Feature-Encoding\n", + "\n", + "Unser Kürbis-Datensatz enthält Zeichenkettenwerte in allen seinen Spalten. Mit kategorischen Daten zu arbeiten ist für Menschen intuitiv, aber nicht für Maschinen. Maschinelle Lernalgorithmen funktionieren besser mit Zahlen. Deshalb ist Encoding ein sehr wichtiger Schritt in der Datenvorverarbeitungsphase, da es uns ermöglicht, kategorische Daten in numerische Daten umzuwandeln, ohne Informationen zu verlieren. Ein gutes Encoding führt zu einem guten Modell.\n", + "\n", + "Für das Feature-Encoding gibt es zwei Haupttypen von Encodern:\n", + "\n", + "1. Ordinaler Encoder: Er eignet sich gut für ordinale Variablen, das sind kategorische Variablen, bei denen die Daten einer logischen Reihenfolge folgen, wie die Spalte `item_size` in unserem Datensatz. Er erstellt eine Zuordnung, bei der jede Kategorie durch eine Zahl repräsentiert wird, die der Reihenfolge der Kategorie in der Spalte entspricht.\n", + "\n", + "2. Kategorischer Encoder: Er eignet sich gut für nominale Variablen, das sind kategorische Variablen, bei denen die Daten keiner logischen Reihenfolge folgen, wie alle Merkmale außer `item_size` in unserem Datensatz. Es handelt sich um ein One-Hot-Encoding, was bedeutet, dass jede Kategorie durch eine binäre Spalte repräsentiert wird: Die kodierte Variable ist gleich 1, wenn der Kürbis zu dieser Sorte gehört, und 0, wenn nicht.\n", + "\n", + "Tidymodels bietet ein weiteres praktisches Paket: [recipes](https://recipes.tidymodels.org/) – ein Paket zur Datenvorverarbeitung. Wir definieren ein `recipe`, das angibt, dass alle Prädiktorspalten in eine Menge von Ganzzahlen kodiert werden sollen, `prep` es, um die erforderlichen Mengen und Statistiken für die Operationen zu schätzen, und schließlich `bake`, um die Berechnungen auf neue Daten anzuwenden.\n", + "\n", + "> Normalerweise wird recipes üblicherweise als Vorverarbeitungswerkzeug für die Modellierung verwendet, wobei es definiert, welche Schritte auf einen Datensatz angewendet werden müssen, um ihn für die Modellierung vorzubereiten. In diesem Fall wird **dringend empfohlen**, ein `workflow()` zu verwenden, anstatt ein Rezept manuell mit prep und bake zu schätzen. Das werden wir gleich sehen.\n", + ">\n", + "> Für den Moment verwenden wir jedoch recipes + prep + bake, um festzulegen, welche Schritte auf einen Datensatz angewendet werden sollen, um ihn für die Datenanalyse vorzubereiten, und anschließend die vorverarbeiteten Daten mit den angewendeten Schritten zu extrahieren.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Preprocess and extract data to allow some data analysis\n", + "baked_pumpkins <- recipe(color ~ ., data = pumpkins_select) %>%\n", + " # Define ordering for item_size column\n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " # Convert factors to numbers using the order defined above (Ordinal encoding)\n", + " step_integer(item_size, zero_based = F) %>%\n", + " # Encode all other predictors using one hot encoding\n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE) %>%\n", + " prep(data = pumpkin_select) %>%\n", + " bake(new_data = NULL)\n", + "\n", + "# Display the first few rows of preprocessed data\n", + "baked_pumpkins %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "✅ Was sind die Vorteile der Verwendung eines Ordinal Encoders für die Spalte Item Size?\n", + "\n", + "### Beziehungen zwischen Variablen analysieren\n", + "\n", + "Nachdem wir unsere Daten vorverarbeitet haben, können wir die Beziehungen zwischen den Merkmalen und dem Label analysieren, um eine Vorstellung davon zu bekommen, wie gut das Modell in der Lage sein wird, das Label anhand der Merkmale vorherzusagen. Der beste Weg, diese Art von Analyse durchzuführen, ist das Plotten der Daten. \n", + "Wir werden erneut die ggplot-Funktion geom_boxplot_ verwenden, um die Beziehungen zwischen Item Size, Variety und Color in einem kategorischen Plot zu visualisieren. Um die Daten besser darzustellen, verwenden wir die kodierte Spalte Item Size und die nicht kodierte Spalte Variety.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Define the color palette\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins_select_plot<-pumpkins_select\n", + "pumpkins_select_plot$item_size <- baked_pumpkins$item_size\n", + "\n", + "# Create the grouped box plot\n", + "ggplot(pumpkins_select_plot, aes(x = `item_size`, y = color, fill = color)) +\n", + " geom_boxplot() +\n", + " facet_grid(variety ~ ., scales = \"free_x\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(x = \"Item Size\", y = \"\") +\n", + " theme_minimal() +\n", + " theme(strip.text = element_text(size = 12)) +\n", + " theme(axis.text.x = element_text(size = 10)) +\n", + " theme(axis.title.x = element_text(size = 12)) +\n", + " theme(axis.title.y = element_blank()) +\n", + " theme(legend.position = \"bottom\") +\n", + " guides(fill = guide_legend(title = \"Color\")) +\n", + " theme(panel.spacing = unit(0.5, \"lines\"))+\n", + " theme(strip.text.y = element_text(size = 4, hjust = 0)) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Verwenden Sie ein Swarm-Plot\n", + "\n", + "Da Farbe eine binäre Kategorie ist (Weiß oder Nicht), benötigt sie 'einen [spezialisierten Ansatz](https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf) für die Visualisierung'.\n", + "\n", + "Versuchen Sie, ein `Swarm-Plot` zu verwenden, um die Verteilung der Farbe in Bezug auf die item_size darzustellen.\n", + "\n", + "Wir verwenden das [ggbeeswarm-Paket](https://github.com/eclarke/ggbeeswarm), das Methoden bereitstellt, um Bienenstock-ähnliche Plots mit ggplot2 zu erstellen. Bienenstock-Plots sind eine Möglichkeit, Punkte darzustellen, die sich normalerweise überlappen würden, sodass sie stattdessen nebeneinander angeordnet werden.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create beeswarm plots of color and item_size\n", + "baked_pumpkins %>% \n", + " mutate(color = factor(color)) %>% \n", + " ggplot(mapping = aes(x = color, y = item_size, color = color)) +\n", + " geom_quasirandom() +\n", + " scale_color_brewer(palette = \"Dark2\", direction = -1) +\n", + " theme(legend.position = \"none\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Jetzt, da wir eine Vorstellung von der Beziehung zwischen den binären Kategorien der Farbe und der größeren Gruppe der Größen haben, wollen wir die logistische Regression untersuchen, um die wahrscheinliche Farbe eines bestimmten Kürbisses zu bestimmen.\n", + "\n", + "## Erstellen Sie Ihr Modell\n", + "\n", + "Wählen Sie die Variablen aus, die Sie in Ihrem Klassifikationsmodell verwenden möchten, und teilen Sie die Daten in Trainings- und Testdatensätze auf. [rsample](https://rsample.tidymodels.org/), ein Paket in Tidymodels, bietet eine Infrastruktur für effizientes Datensplitting und Resampling:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Split data into 80% for training and 20% for testing\n", + "set.seed(2056)\n", + "pumpkins_split <- pumpkins_select %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "# Extract the data in each split\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "# Print out the first 5 rows of the training set\n", + "pumpkins_train %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "🙌 Wir sind jetzt bereit, ein Modell zu trainieren, indem wir die Trainingsmerkmale mit dem Trainingslabel (Farbe) verknüpfen.\n", + "\n", + "Wir beginnen damit, ein Rezept zu erstellen, das die Vorverarbeitungsschritte festlegt, die an unseren Daten durchgeführt werden müssen, um sie für die Modellierung vorzubereiten, z. B.: Kategorische Variablen in eine Reihe von Ganzzahlen zu kodieren. Genau wie `baked_pumpkins` erstellen wir ein `pumpkins_recipe`, aber wir führen kein `prep` und `bake` aus, da dies in einen Workflow eingebunden wird, den Sie in nur wenigen Schritten sehen werden.\n", + "\n", + "Es gibt eine ganze Reihe von Möglichkeiten, ein logistisches Regressionsmodell in Tidymodels zu spezifizieren. Siehe `?logistic_reg()`. Für den Moment werden wir ein logistisches Regressionsmodell über die Standard-Engine `stats::glm()` spezifizieren.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create a recipe that specifies preprocessing steps for modelling\n", + "pumpkins_recipe <- recipe(color ~ ., data = pumpkins_train) %>% \n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " step_integer(item_size, zero_based = F) %>% \n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE)\n", + "\n", + "# Create a logistic model specification\n", + "log_reg <- logistic_reg() %>% \n", + " set_engine(\"glm\") %>% \n", + " set_mode(\"classification\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Jetzt, da wir ein Rezept und eine Modellspezifikation haben, müssen wir eine Möglichkeit finden, diese zusammen in einem Objekt zu bündeln, das zunächst die Daten vorverarbeitet (prep+bake im Hintergrund), das Modell auf den vorverarbeiteten Daten anpasst und auch potenzielle Nachbearbeitungsaktivitäten ermöglicht.\n", + "\n", + "In Tidymodels wird dieses praktische Objekt als [`workflow`](https://workflows.tidymodels.org/) bezeichnet und fasst bequem Ihre Modellierungskomponenten zusammen.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Bundle modelling components in a workflow\n", + "log_reg_wf <- workflow() %>% \n", + " add_recipe(pumpkins_recipe) %>% \n", + " add_model(log_reg)\n", + "\n", + "# Print out the workflow\n", + "log_reg_wf\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nachdem ein Workflow *festgelegt* wurde, kann ein Modell mit der [`fit()`](https://tidymodels.github.io/parsnip/reference/fit.html)-Funktion `trainiert` werden. Der Workflow wird ein Rezept schätzen und die Daten vor dem Training vorverarbeiten, sodass wir dies nicht manuell mit prep und bake durchführen müssen.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Train the model\n", + "wf_fit <- log_reg_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the trained workflow\n", + "wf_fit\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Das Modell gibt die während des Trainings gelernten Koeffizienten aus.\n", + "\n", + "Nachdem wir das Modell mit den Trainingsdaten trainiert haben, können wir Vorhersagen für die Testdaten mithilfe von [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html) treffen. Beginnen wir damit, das Modell zu verwenden, um Labels für unseren Testdatensatz sowie die Wahrscheinlichkeiten für jedes Label vorherzusagen. Wenn die Wahrscheinlichkeit größer als 0,5 ist, wird die vorhergesagte Klasse `WHITE` sein, andernfalls `ORANGE`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make predictions for color and corresponding probabilities\n", + "results <- pumpkins_test %>% select(color) %>% \n", + " bind_cols(wf_fit %>% \n", + " predict(new_data = pumpkins_test)) %>%\n", + " bind_cols(wf_fit %>%\n", + " predict(new_data = pumpkins_test, type = \"prob\"))\n", + "\n", + "# Compare predictions\n", + "results %>% \n", + " slice_head(n = 10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sehr schön! Das bietet einige zusätzliche Einblicke in die Funktionsweise der logistischen Regression.\n", + "\n", + "### Bessere Verständlichkeit durch eine Konfusionsmatrix\n", + "\n", + "Jeden einzelnen Vorhersagewert mit seinem entsprechenden \"Ground Truth\"-Wert zu vergleichen, ist keine besonders effiziente Methode, um zu beurteilen, wie gut das Modell vorhersagt. Glücklicherweise hat Tidymodels noch ein paar weitere Tricks parat: [`yardstick`](https://yardstick.tidymodels.org/) - ein Paket, das verwendet wird, um die Effektivität von Modellen anhand von Leistungskennzahlen zu messen.\n", + "\n", + "Eine Leistungskennzahl, die mit Klassifikationsproblemen verbunden ist, ist die [`Konfusionsmatrix`](https://wikipedia.org/wiki/Confusion_matrix). Eine Konfusionsmatrix beschreibt, wie gut ein Klassifikationsmodell funktioniert. Sie zeigt tabellarisch, wie viele Beispiele in jeder Klasse von einem Modell korrekt klassifiziert wurden. In unserem Fall wird sie zeigen, wie viele orangefarbene Kürbisse als orange klassifiziert wurden und wie viele weiße Kürbisse als weiß; die Konfusionsmatrix zeigt auch, wie viele in die **falschen** Kategorien eingeordnet wurden.\n", + "\n", + "Die Funktion [**`conf_mat()`**](https://tidymodels.github.io/yardstick/reference/conf_mat.html) aus yardstick berechnet diese Kreuztabellierung der beobachteten und vorhergesagten Klassen.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Confusion matrix for prediction results\n", + "conf_mat(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lassen Sie uns die Verwirrungsmatrix interpretieren. Unser Modell soll Kürbisse zwischen zwei binären Kategorien klassifizieren: Kategorie `weiß` und Kategorie `nicht-weiß`.\n", + "\n", + "- Wenn Ihr Modell einen Kürbis als weiß vorhersagt und er tatsächlich zur Kategorie 'weiß' gehört, nennen wir das ein `true positive`, dargestellt durch die Zahl oben links.\n", + "\n", + "- Wenn Ihr Modell einen Kürbis als nicht weiß vorhersagt und er tatsächlich zur Kategorie 'weiß' gehört, nennen wir das ein `false negative`, dargestellt durch die Zahl unten links.\n", + "\n", + "- Wenn Ihr Modell einen Kürbis als weiß vorhersagt und er tatsächlich zur Kategorie 'nicht-weiß' gehört, nennen wir das ein `false positive`, dargestellt durch die Zahl oben rechts.\n", + "\n", + "- Wenn Ihr Modell einen Kürbis als nicht weiß vorhersagt und er tatsächlich zur Kategorie 'nicht-weiß' gehört, nennen wir das ein `true negative`, dargestellt durch die Zahl unten rechts.\n", + "\n", + "| Wahrheit |\n", + "|:--------:|\n", + "\n", + "\n", + "| | | |\n", + "|---------------|--------|-------|\n", + "| **Vorhersage** | WEISS | ORANGE |\n", + "| WEISS | TP | FP |\n", + "| ORANGE | FN | TN |\n", + "\n", + "Wie Sie sich vielleicht denken können, ist es wünschenswert, eine größere Anzahl von true positives und true negatives sowie eine geringere Anzahl von false positives und false negatives zu haben, da dies darauf hinweist, dass das Modell besser funktioniert.\n", + "\n", + "Die Verwirrungsmatrix ist hilfreich, da sie zu anderen Metriken führt, die uns helfen können, die Leistung eines Klassifikationsmodells besser zu bewerten. Gehen wir einige davon durch:\n", + "\n", + "🎓 Präzision: `TP/(TP + FP)` definiert als der Anteil der vorhergesagten positiven Ergebnisse, die tatsächlich positiv sind. Auch bekannt als [positiver Vorhersagewert](https://en.wikipedia.org/wiki/Positive_predictive_value \"Positive predictive value\").\n", + "\n", + "🎓 Recall: `TP/(TP + FN)` definiert als der Anteil der positiven Ergebnisse aus der Anzahl der Proben, die tatsächlich positiv waren. Auch bekannt als `Sensitivität`.\n", + "\n", + "🎓 Spezifität: `TN/(TN + FP)` definiert als der Anteil der negativen Ergebnisse aus der Anzahl der Proben, die tatsächlich negativ waren.\n", + "\n", + "🎓 Genauigkeit: `TP + TN/(TP + TN + FP + FN)` Der Prozentsatz der Labels, die für eine Probe korrekt vorhergesagt wurden.\n", + "\n", + "🎓 F-Maß: Ein gewichteter Durchschnitt von Präzision und Recall, wobei der beste Wert 1 und der schlechteste Wert 0 ist.\n", + "\n", + "Lassen Sie uns diese Metriken berechnen!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Combine metric functions and calculate them all at once\n", + "eval_metrics <- metric_set(ppv, recall, spec, f_meas, accuracy)\n", + "eval_metrics(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualisiere die ROC-Kurve dieses Modells\n", + "\n", + "Lass uns eine weitere Visualisierung durchführen, um die sogenannte [`ROC-Kurve`](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) anzusehen:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make a roc_curve\n", + "results %>% \n", + " roc_curve(color, .pred_ORANGE) %>% \n", + " autoplot()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "ROC-Kurven werden häufig verwendet, um die Leistung eines Klassifikators in Bezug auf wahre vs. falsche Positive zu visualisieren. ROC-Kurven zeigen typischerweise die `True Positive Rate`/Sensitivität auf der Y-Achse und die `False Positive Rate`/1-Spezifität auf der X-Achse. Daher sind die Steilheit der Kurve und der Abstand zwischen der Mittellinie und der Kurve entscheidend: Man möchte eine Kurve, die schnell nach oben und über die Linie verläuft. In unserem Fall gibt es zunächst falsche Positive, bevor die Linie korrekt nach oben und darüber verläuft.\n", + "\n", + "Abschließend verwenden wir `yardstick::roc_auc()`, um die tatsächliche Fläche unter der Kurve (Area Under the Curve, AUC) zu berechnen. Eine Möglichkeit, die AUC zu interpretieren, ist die Wahrscheinlichkeit, dass das Modell ein zufällig ausgewähltes positives Beispiel höher einstuft als ein zufällig ausgewähltes negatives Beispiel.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Calculate area under curve\n", + "results %>% \n", + " roc_auc(color, .pred_ORANGE)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Das Ergebnis liegt bei etwa `0,975`. Da der AUC-Wert zwischen 0 und 1 liegt, strebt man einen hohen Wert an, da ein Modell, das zu 100 % korrekte Vorhersagen trifft, einen AUC-Wert von 1 erreicht. In diesem Fall ist das Modell *ziemlich gut*.\n", + "\n", + "In zukünftigen Lektionen über Klassifikationen wirst du lernen, wie du die Werte deines Modells verbessern kannst (zum Beispiel, indem du mit unausgeglichenen Daten umgehst, wie in diesem Fall).\n", + "\n", + "## 🚀Herausforderung\n", + "\n", + "Es gibt noch viel mehr über logistische Regression zu entdecken! Aber der beste Weg, etwas zu lernen, ist, zu experimentieren. Finde einen Datensatz, der sich für diese Art von Analyse eignet, und erstelle ein Modell damit. Was lernst du dabei? Tipp: Schau dir [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) für interessante Datensätze an.\n", + "\n", + "## Rückblick & Selbststudium\n", + "\n", + "Lies die ersten Seiten von [diesem Paper von Stanford](https://web.stanford.edu/~jurafsky/slp3/5.pdf), das einige praktische Anwendungen der logistischen Regression beschreibt. Überlege, welche Aufgaben besser für die eine oder andere Art von Regressionsaufgaben geeignet sind, die wir bisher behandelt haben. Was würde am besten funktionieren?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Nutzung dieser Übersetzung entstehen.\n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "langauge": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "feaf125f481a89c468fa115bf2aed580", + "translation_date": "2025-09-04T01:26:08+00:00", + "source_file": "2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/de/2-Regression/4-Logistic/solution/notebook.ipynb b/translations/de/2-Regression/4-Logistic/solution/notebook.ipynb new file mode 100644 index 000000000..7e1d6b123 --- /dev/null +++ b/translations/de/2-Regression/4-Logistic/solution/notebook.ipynb @@ -0,0 +1,1257 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Logistische Regression - Lektion 4\n", + "\n", + "Laden Sie die benötigten Bibliotheken und den Datensatz. Konvertieren Sie die Daten in ein DataFrame, das einen Teil der Daten enthält:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", + "

5 rows × 26 columns

\n", + "
" + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \\\n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \\\n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NamePackageVarietyOriginItem SizeColor
2BALTIMORE24 inch binsHOWDEN TYPEDELAWAREmedORANGE
3BALTIMORE24 inch binsHOWDEN TYPEVIRGINIAmedORANGE
4BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
5BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
6BALTIMORE36 inch binsHOWDEN TYPEMARYLANDmedORANGE
\n", + "
" + ], + "text/plain": [ + " City Name Package Variety Origin Item Size Color\n", + "2 BALTIMORE 24 inch bins HOWDEN TYPE DELAWARE med ORANGE\n", + "3 BALTIMORE 24 inch bins HOWDEN TYPE VIRGINIA med ORANGE\n", + "4 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "5 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "6 BALTIMORE 36 inch bins HOWDEN TYPE MARYLAND med ORANGE" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Select the columns we want to use\n", + "columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color']\n", + "pumpkins = full_pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Drop rows with missing values\n", + "pumpkins.dropna(inplace=True)\n", + "\n", + "pumpkins.head()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Werfen wir einen Blick auf unsere Daten!\n", + "\n", + "Indem wir sie mit Seaborn visualisieren\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHpCAYAAACVw6ZvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3klEQVR4nO3deVRU5f8H8PeFkQFZZXNQ2RQBwy3NNRVGMTCz3JW0JJcyjdwXLJcwBSszTcU0wKxccl9KyoVxS0VTEhXXRM1A+7qwmOz394eH+/M6A7IKV9+vc+7Jee6zfO7IkXfP3JkRRFEUQURERKRgRlVdABEREVF5MdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdDQc0sURaSnp4MfxUREpHwMNPTcysjIgLW1NTIyMqq6FCIiKicGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8VVUXQFTVrq5qAkszZnsipXIbdqWqS6BqgP+KExERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdCUU3BwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp8PPz8/g/MWHo0bN4ZGo8HcuXP1xvbv3x9t27ZFfn4+Zs2aJY1RqVRwc3PDuHHjkJmZKavP0PH4c0dERM8+BpqnRBRFDBw4EGFhYRgzZgySkpKg0+ng7OwMPz8/bNmyBQDg7e0NjUYDnU4njc3IyMCJEyfg4OAg+2V9+PBhZGdno3PnzlJbYGAgUlJSkJycjJ07d0Kr1WLMmDF47bXXkJeXJ6spLCwMKSkpsiMkJETWJyMjA1988UWJr3PTpk3SXPHx8QCA3bt3S2379+/H8uXL8cknnyAxMVEat379euzYsQPfffcdjI2NAQA+Pj7StcybNw/Lly/HhAkTZOs9Onfh0bJlyxLXS0REzwZVVRfwvPjpp5+wYcMGbNu2DT169JDaly9fjtu3b2P48OHo2rUrzM3NodVqodPpMHXqVADAwYMH4enpiU6dOkGn08HPzw/Aw10gV1dXuLu7S/Op1WpoNBoAQN26ddGiRQu0bdsWXbp0wcqVKzF8+HCpr6WlpdS3KCEhIfjyyy8xevRoODo6PvE6bW1tpT8X7ibZ2dnJ1nn99dfx5ptvYsiQITh69Cju3buH0aNHIyIiAl5eXlI/lUoljRswYAD27NmDbdu24ZtvvpH6PD43ERE9n7hD85SsXr0anp6esjBTaMKECbh9+zZ27doFANBqtTh48KC0oxIXFwc/Pz/4+voiLi5OGhcXFwetVvvEtTt37oxmzZph06ZNpa47KCgIHh4eCAsLK/XY4ixcuBC3b9/G7NmzMWrUKDRu3Fhvd+hxZmZmyMnJKfOa2dnZSE9Plx1ERPRs4A5NBdixYwcsLCxkbfn5+bLHFy5cQKNGjQyOL2y/cOECgIeB5v79+zh27BjatWsHnU6HSZMmoUOHDhgyZAiysrIgiiLi4+NlOy7F8fb2xqlTp2RtU6ZMwccffyxr27lzJzp27Cg9LryvpkePHhg3bhwaNGhQovWexMrKCjExMXjllVdgbm6OU6dOQRCEIvv/8ccfWL16tezlNQBo3749jIzkubzwPpvHhYeH45NPPtFrd307EVZWVmW4CiIiqi4YaCqAVqtFZGSkrO3o0aMYPHiwrE0UxRLN5+HhgXr16kGn08HHxwcnT56Er68vHB0d4eLigsOHD0MURWRnZ5doh6Zw7ccDw6RJkxAcHCxrq1u3rt7YgIAAdOjQAdOnT8fq1atLtF5JdO7cGW3btkXz5s3h6uqqdz4xMREWFhbIz89HTk4OunfvjsWLF8v6rFu3rsig+LjQ0FCMHz9eepyeng5nZ+fyXQQREVULDDQVwNzcHB4eHrK2v//+W/bY09MTSUlJBscXtnt6ekptfn5+iIuLQ9OmTdGwYUPp/pXCl51EUYSHh0eJfyEnJSXJ7rUBAHt7e726ixIREYF27dph0qRJJepfUiqVCiqV4R9DLy8vbNu2DSqVCnXq1IGJiYleH2dn5xJfg1qthlqtLle9RERUPfEemqdk4MCBuHjxIrZv3653bv78+bCzs0PXrl2lNq1Wi99//x27du2SbgIGIN0YrNPpSrw7s3fvXiQmJqJPnz5lrr9169bo3bu3dKPy02BiYgIPDw+4ubkZDDNERESFuEPzlAwcOBDr16/HkCFD8Pnnn6NLly5IT0/HkiVLsG3bNqxfvx7m5uZS/8L7aKKjo7FixQqp3dfXV7pvZtSoUXrrZGdnIzU1Ffn5+bh58yZiY2MRHh6O1157DW+//basb0ZGBlJTU2VtNWvWLPJ+kjlz5sDHx6fIHZWqcPv2bb1rsLGxgampaRVVREREVYE7NE+JIAj46aefMG3aNCxYsABeXl7o2LEjrl69Cp1Op/fhfO7u7nB1dUVGRgZ8fX2ldhcXF9SpUwc5OTmynZtCsbGxcHJygpubGwIDAxEXF4dFixZh69at0ue7FJoxYwacnJxkx+TJk4u8Bk9PTwwdOlT24X5Vzd/fX+8aCj/Th4iInh+CWNI7VYmeMenp6bC2tkZaWhrf5UREpHDcoSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVTVXUBRFXt6qomsDRjtq8obsOuVHUJRPQc4r/iREREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0z5ng4GAIggBBEGBiYgIPDw+EhYUhLy8PAKDT6SAIAu7duyd7bOhITU3Vm3/WrFlF9i88/P39ERAQoDd26dKlsLGxwd9//623bu3atdGnTx/89ddfUn83NzeD80dERFTOk0dERNWWqqoLoKcvMDAQMTExyM7Oxi+//ILRo0ejRo0aCA0NLXLM+fPnYWVlJWtzdHTU6zdx4kSMHDlSetyqVSu8++67GDFihNSWm5uLJk2a4JtvvsF7770HALhy5QomT56MyMhI1KtXD5cuXZLWtbS0xMWLF/Huu++iR48eOHXqFIyNjQEAYWFhsrkBwNLSspTPCBERKR0DzXNIrVZDo9EAAN5//31s3rwZ27ZtKzbQODo6wsbG5olzW1hYwMLCQnpsbGwMS0tLab1CCxcuxAcffIBXXnkFbm5uGDZsGF555RW89dZbBtd1cnLCjBkzMGjQIFy6dAleXl4AYHDuomRnZyM7O1t6nJ6eXqJxRERU/THQEMzMzHD79u2nuuaQIUOwefNmDB06FL1798bp06dx5syZYseYmZkBAHJycsq0Znh4OD755BO9dssOi2BlaQ7bBv5lmpeIiKoe76F5jomiiN27d+PXX39F586di+1br149affFwsICPj4+5V5/+fLlOH36NMaOHYvly5fDwcGhyL4pKSn44osvULduXWl3BgCmTJkiq8vCwgIHDhwwOEdoaCjS0tKk4/r16+W+BiIiqh64Q/Mc2rFjBywsLJCbm4uCggK8+eabmDVrVrFjDhw4ILs3pUaNGuWuw9HREe+99x62bNmCnj17GuxTr149iKKI//77D82aNcPGjRthYmIinZ80aRKCg4NlY+rWrWtwLrVaDbVaXe66iYio+mGgeQ5ptVpERkbCxMQEderUgUr15B8Dd3f3Et1DU1oqlarY9Q8cOAArKys4OjoavNnX3t4eHh4eFV4XEREpCwPNc8jc3FwxIaCyghQRET1bGGioRG7duoWsrCxZm52dXYW89FQeGRkZep+HU7NmTb23mBMR0bONNwVTiXh5ecHJyUl2/PHHH1VdFmbMmKFX1+TJk6u6LCIiesoEURTFqi6CqCqkp6fD2toaV05u4du2iYgUjjs0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/LZteu7Z1tfy27mJiBSOOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmYlz/Zuw65UYjVERFQW3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCml4OBgCIIgHXZ2dggMDMSpU6dk/QRBwJYtW2RtcXFxeO211+Dg4ABTU1M0aNAAAwYMwP79+4td083NDYIgYO3atXrnfHx8IAgCVq5cqXcuPDwcxsbG+Pzzzw3Om5qaipCQENSvXx9qtRrOzs7o0aMH9uzZI1v7q6++kh6LooiJEyfCysoKOp2uyFqLOt58803UrFkTq1evlo0rKChA+/bt0bdvXwDy59nExAQeHh4ICwtDXl4eAECn0xW5RmpqarHPJxERPXsYaMogMDAQKSkpSElJwZ49e6BSqfDaa68VO2bp0qXo0qUL7OzssG7dOpw/fx6bN29G+/btMW7cuCeu6ezsjJiYGFnbkSNHkJqaCnNzc4NjoqOjMXnyZERHR+udS05ORsuWLbF37158/vnnSExMRGxsLLRaLUaPHm1wvvz8fAwbNgyrVq1CXFwc/Pz89PocO3ZMem42btwIADh//rzUFhkZiYiICISEhCAlJUUaN3/+fPz1119YtmyZ1Fb4PF+8eBETJkzArFmz9MLZo3MXHo6OjoafRCIiemapqroAJVKr1dBoNAAAjUaDqVOnomPHjvj333/h4OCg1//atWsYO3Ysxo4diy+//FJ2rmnTpvjwww+fuOagQYOwYMECXL9+Hc7OzgAeBpZBgwZh1apVev337duHBw8eICwsDKtWrcLvv/+O9u3bS+dHjRoFQRAQHx8vC0Q+Pj4YOnSo3nzZ2dkICgrC8ePHceDAAXh5eRms89Hrt7W1BQA4OjrCxsZGag8JCcGWLVswYsQI7NixA+fOncOMGTOwbt062NvbS/0efZ7ff/99bN68Gdu2bUNoaKjU5/G5iYjo+cQdmnLKzMzEDz/8AA8PD9jZ2Rnss3HjRuTm5mLy5MkGzwuC8MR1ateujYCAAHz33XcAgP/++w/r1q0zGD4AICoqCkFBQahRowaCgoIQFRUlnbtz5w5iY2MxevRog7s7jweEzMxMdO/eHWfPnsWhQ4eKDDMlJQgCYmJicODAAaxYsQLBwcEYOHAgXn/99WLHmZmZIScnp8zrZmdnIz09XXYQEdGzgTs0ZbBjxw5YWFgAAO7fvw8nJyfs2LEDRkaG8+GFCxdgZWUl7TYAD0POkCFDpMeHDx9GkyZNil136NChmDBhAj766CNs2LABDRo0QPPmzfX6paenY8OGDTh8+DAAYPDgwejYsSMWLlwICwsLXLp0CaIowtvbu0TXO3v2bFhaWiIpKcngDlRZuLq64quvvsLw4cNRr149/Pbbb0X2FUURe/bswa+//oqQkBDZuXr16unNe+bMGYPzhIeH45NPPtFrt+ywCFaW+sHOtoF/SS6FiIiqAe7QlIFWq0VCQgISEhIQHx+PgIAAdOvWDVevXi1yzOO7MAEBAUhISMDPP/+M+/fvIz8//4nrdu/eHZmZmdi/fz+io6OL3J1Zs2YNGjRogGbNmgEAmjdvDldXV6xbtw7Aw4BQGq+88gru37+PuXPnlmrck7zzzjtwcnJCSEgIrKys9M4XBkdTU1N069YNAwYMwKxZs2R9Dhw4IP1dJCQk4JdffilyvdDQUKSlpUnH9evXK/R6iIio6nCHpgzMzc3h4eEhPf72229hbW2NFStW4NNPP9Xr37BhQ6SlpSE1NVXapbGwsICHhwdUqpL/FahUKrz11luYOXMmjh49is2bNxvsFxUVhTNnzsjmLigoQHR0NIYNG4aGDRtCEAScO3euROt26dIFISEheOONN1BQUICFCxeWuOYnUalURT4HWq0WkZGRMDExQZ06dQz2c3d3L/E9NGq1Gmq1ujzlEhFRNcUdmgogCAKMjIzw4MEDg+f79u2LGjVqYN68eeVea+jQodi3bx/eeOMN1KpVS+98YmIijh8/Dp1OJ9u50Ol0OHz4MM6dOwdbW1sEBARgyZIluH//vt4c9+7d02t75ZVXsH37dqxYsaJENzFXhMLg6OLiUqrgR0REzx/+liiD7Oxs6bNO7t69i8WLFyMzMxM9evQw2N/FxQXz58/HmDFjcOfOHQQHB8Pd3R137tzBDz/8AAAwNjYu0dqNGjXC//73P9SsWdPg+aioKLRu3RqdOnXSO9eqVStERUXh888/x5IlS/Dyyy+jdevWCAsLQ9OmTZGXl4ddu3YhMjISSUlJeuP9/f2xY8cO9OjRAwUFBVi8eHGJaq5Mt27dQlZWlqzNzs4ONWrUqKKKiIioKnCHpgxiY2Ph5OQEJycntGnTBseOHcP69esNfi5LoZCQEPz222/4999/0bdvXzRs2BCvvvoqrly5gtjY2CfeEPwoOzs7mJmZ6bXn5OTghx9+QJ8+fQyO69OnD1atWoXc3FzUr18fJ06cgFarxYQJE9C4cWN07doVe/bsQWRkZJFrd+7cGT///DNWrlyJ0aNHl/p+nIrm5eUl/V0UHn/88UeV1kRERE+fIFb1bySiKpKeng5ra2tcObmF73IiIlI47tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeLx27bpuWdbXwsrK6uqLoOIiMqBOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmaVl+3dhl2ptLmJiOgh7tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0ChMcHAwBEHAyJEj9c6NHj0agiAgODhY6tuzZ0+9sREREbJxW7ZsgSAI0mOdTgdBEHDv3j29Nby9vaFWq5GamirrW9yh0+kwa9YsNG/eXG++5ORkCIKAhIQEg/M5ODjg1VdfRWJiosHn4fEjMDCwBM8iERE9axhoFMjZ2Rlr167FgwcPpLasrCysXr0aLi4uxY41NTXFvHnzcPfu3VKve/DgQTx48AB9+/bFd999BwBo3749UlJSpKN///4IDAyUtbVv377Ua50/fx4pKSn49ddfkZ2dje7duyMnJ0fW5/F1UlJSsGbNmlKvRUREysdAo0AtWrSAs7MzNm3aJLVt2rQJLi4uePHFF4sd6+/vD41Gg/Dw8FKvGxUVhTfffBNvvfUWoqOjAQAmJibQaDTSYWZmBrVaLWszMTEp9VqOjo7QaDRo0aIFxo4di+vXr+PcuXOyPo+vo9FoUKtWrVKvRUREysdAo1BDhw5FTEyM9Dg6OhrvvPPOE8cZGxtj7ty5+Prrr/H333+XeL2MjAysX78egwcPRteuXZGWloYDBw6UqfbSSEtLw9q1awGgTMHoUdnZ2UhPT5cdRET0bFBVdQFUNoMHD0ZoaCiuXr0KADh06BDWrl0LnU73xLG9evVC8+bNMXPmTERFRZVovbVr16Jhw4bw8fEBAAwcOBBRUVHo2LFjma+hOPXq1QMA3L9/HwDw+uuvw9vbW9Znx44dsLCwkLVNmzYN06ZNMzhneHg4PvnkE712yw6LYGVpXhFlG3Tn8u4n9rFt4F9p6xMRPQ8YaBTKwcEB3bt3x8qVKyGKIrp37w57e/sSj583bx46d+6MiRMnlqh/dHQ0Bg8eLD0ePHgwfH198fXXX8PS0rLU9T/JgQMHULNmTRw5cgRz587FsmXL9PpotVpERkbK2mxtbYucMzQ0FOPHj5cep6enw9nZueKKJiKiKsNAo2BDhw7FBx98AABYsmRJqcZ26tQJAQEBCA0Nld4VVZSzZ8/iyJEjiI+Px5QpU6T2/Px8rF27FiNGjHjielZWVkhLS9NrL3wnlbW1tazd3d0dNjY28PLywq1btzBgwADs379f1sfc3BweHh5PXLuQWq2GWq0ucX8iIlIO3kOjYIGBgcjJyUFubi4CAgJKPT4iIgLbt2/H4cOHi+0XFRWFTp064c8//0RCQoJ0jB8/vsQvWXl5eeHvv//GzZs3Ze0nTpyAqalpse/OGj16NE6fPo3NmzeXaC0iInr+cIdGwYyNjZGUlCT9ubSaNGmCQYMGYdGiRUX2yc3Nxffff4+wsDA0btxYdm748OH48ssvcebMGenemqIEBATAy8sLQUFB+PTTT6HRaHDixAl8/PHHGDNmTLH116xZEyNGjMDMmTPRs2dP6TNzsrOzpc/DKaRSqUr10hsRET0buEOjcFZWVrCysirz+LCwMBQUFBR5ftu2bbh9+zZ69eqld65Ro0Zo1KhRiXZpVCoVfvvtN7i4uCAoKAiNGzfGzJkzMWbMGMyePfuJ4z/44AMkJSVh/fr1UltsbCycnJxkR4cOHZ44FxERPXsEURTFqi6CqCqkp6fD2toaV05uqdR3OZUE3+VERFQ+3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFU1V1AURVzba+tlzfWE5ERFWPOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4pQ40cXFxlVEHERERUZmVOtAEBgaiQYMG+PTTT3H9+vXKqImIiIioVEodaG7cuIEPPvgAGzZsQP369REQEICffvoJOTk5lVEfUaW7uqoJkqPcq7oMIiIqh1IHGnt7e4wbNw4JCQk4evQoPD09MWrUKNSpUwcffvgh/vzzz8qok4iIiKhI5bopuEWLFggNDcUHH3yAzMxMREdHo2XLlujYsSPOnDlTUTUSERERFatMgSY3NxcbNmzAq6++CldXV/z6669YvHgxbt68iUuXLsHV1RX9+vWr6FqJiIiIDCr1l1OGhIRgzZo1EEURb731Fj777DM0btxYOm9ubo4vvvgCderUqdBCiYiIiIpS6kBz9uxZfP311+jduzfUarXBPvb29nx7NxERET01pX7JaebMmejXr59emMnLy8P+/fsBACqVCr6+vhVTIREREdETlDrQaLVa3LlzR689LS0NWq22QooiIiIiKo1SBxpRFCEIgl777du3YW5uXiFFEREREZVGie+h6d27NwBAEAQEBwfLXnLKz8/HqVOn0L59+4qvkIiIiOgJShxorK2tATzcobG0tISZmZl0zsTEBG3btsWIESMqvkIiIiKiJyhxoImJiQEAuLm5YeLEiXx5iYiIiKqNMr3LSa1WY/fu3fjmm2+QkZEBAPjnn3+QmZlZ4QUSERERPUmpP4fm6tWrCAwMxLVr15CdnY2uXbvC0tIS8+bNQ3Z2NpYtW1YZdRIREREVqdQ7NGPGjMFLL72Eu3fvyu6j6dWrF/bs2VOhxREREVHpzZo1C82bN6/qMp6qUgeaAwcO4OOPP4aJiYms3c3NDTdu3KiwwoiIiJ5XqampCAkJQf369aFWq+Hs7IwePXpw46AYpQ40BQUFyM/P12v/+++/YWlpWSFFPY+e9MPr5uaGr776Surv5uYGQRBw5MgR2Txjx46Fn5+f9HjWrFkQBAGCIEClUsHe3h6dOnXCV199hezsbNlYPz8/qe+jx8iRI6U+j7ZbWVmhVatW2Lp1q2yelStXGpzH1NRU6hMcHIyePXsW+Xw8fr1FWbNmDYyNjTF69Ogn9iUiUoLk5GS0bNkSe/fuxeeff47ExETExsZCq9U+1X/rcnNzn9paFaHUgeaVV16R/aIRBAGZmZmYOXMmXn311Yqs7blR1h9eU1NTTJky5Ynz+/j4ICUlBdeuXUNcXBz69euH8PBwtG/fXrqpu9CIESOQkpIiOz777DNZn5iYGKSkpOD48eN4+eWX0bdvXyQmJsr6WFlZ6c1z9erVUjwrJRMVFYXJkydjzZo1yMrKqvD5iYietlGjRkEQBMTHx6NPnz7w9PSEj48Pxo8fL/1P7LVr1/DGG2/AwsICVlZW6N+/P27evFnknAUFBQgLC0O9evWgVqvRvHlzxMbGSueTk5MhCALWrVsHX19fmJqa4scff6z0a61IpQ408+fPx6FDh/DCCy8gKysLb775pvRy07x58yqjxmdeSX54DXn33Xdx5MgR/PLLL8XOr1KpoNFoUKdOHTRp0gQhISHYt28fTp8+rfd3VrNmTWg0GtlhZWUl62NjYwONRgNPT0/Mnj0beXl5el9GKgiC3jy1a9cu5TNTvCtXruD333/H1KlT4enpiU2bNhXbPzs7G+np6bKDiKg6uXPnDmJjYzF69GiDH49iY2ODgoICvPHGG7hz5w727duHXbt24a+//sKAAQOKnHfhwoWYP38+vvjiC5w6dQoBAQF4/fXXcfHiRVm/qVOnYsyYMUhKSkJAQECFX19lKnWgqVevHv78809MmzYN48aNw4svvoiIiAicPHkSjo6OlVHjM60kP7xFcXd3x8iRIxEaGoqCgoJSrevt7Y1u3bo9MQQUJy8vD1FRUQCgd0/V0xATE4Pu3bvD2toagwcPlmopSnh4OKytraXD2dkZAGDZYRGs/FY8jZKJiIp16dIliKIIb2/vIvvs2bMHiYmJWL16NVq2bIk2bdpg1apV2LdvH44dO2ZwzBdffIEpU6Zg4MCB8PLywrx589C8eXO9l/bHjh2L3r17w93dHU5OThV5aZWu1IEGePh//IMHD8Znn32GpUuXYvjw4bJ3PFHJleSHtzgff/wxrly5UqatQW9vbyQnJ8vali5dCgsLC9nx+NxBQUGwsLCAWq3GuHHj4Obmhv79+8v6pKWl6c3TrVu3UtdYlIKCAqxcuRKDBw8GAAwcOBAHDx7ElStXihwTGhqKtLQ06bh+/XqF1UNEVBFEUXxin6SkJDg7O0v/UwYAL7zwAmxsbJCUlKTXPz09Hf/88w9efvllWfvLL7+s1/+ll14qY+VVr0SfQ7Nt2zZ069YNNWrUwLZt24rt+/rrr1dIYc+LkvzwFsfBwQETJ07EjBkzit1uLGrtx79odNCgQfjoo49kbY+/VLRgwQL4+/vjr7/+wrhx47Bo0SLY2trK+lhaWuLEiROytooMvbt27cL9+/el+7bs7e3RtWtXREdHY/bs2QbHqNVq2XeQERFVNw0bNoQgCDh37lyVrK/kbwEoUaDp2bMnUlNT4ejoWOw7UwRBMPgOKCpaRfzwjh8/HkuXLsXSpUtLNS4pKQnu7u6yNmtra3h4eBQ7TqPRwMPDAx4eHoiJicGrr76Ks2fPyl5yNDIyeuI85REVFYU7d+7IQlJBQQFOnTqFTz75BEZGZdp8JCKqUra2tggICMCSJUvw4Ycf6gWMe/fuoVGjRrh+/TquX78u7dKcPXsW9+7dwwsvvKA3p5WVFerUqYNDhw7B19dXaj906BBat25duRf0FJXoX/2CggLpl1VBQUGRB8NM6T36w3v//n298/fu3XviHBYWFpg+fTrmzJmj966lopw7dw6xsbHo06dPaUuWad26NVq2bIk5c+aUa57SuH37NrZu3Yq1a9ciISFBOk6ePIm7d+/it99+e2q1EBFVtCVLliA/Px+tW7fGxo0bcfHiRSQlJWHRokVo164d/P390aRJEwwaNAgnTpxAfHw83n77bfj6+hb5ktGkSZMwb948rFu3DufPn8fUqVORkJCAMWPGPOWrqzyl+uqD3NxcBAYGYtmyZWjYsGFl1fTcWbJkCV5++WW0bt0aYWFhaNq0KfLy8rBr1y5ERkYafE30ce+++y4WLFiA1atXo02bNrJzeXl5SE1NRUFBAW7fvg2dTodPP/0UzZs3x6RJk2R9//vvP6Smpsra1Go1atWqVeTaY8eORa9evTB58mTUrVsXwMOXsx6fBwAcHR2l3ZO0tDQkJCTIztvZ2Un/x3Hjxg29866urvj+++9hZ2eH/v37671k9uqrryIqKgqBgYFF1ktEVJ3Vr18fJ06cwJw5czBhwgSkpKTAwcEBLVu2RGRkJARBwNatWxESEoJOnTrByMgIgYGB+Prrr4uc88MPP0RaWhomTJiAW7du4YUXXsC2bduerd/lYinZ29uLFy5cKO0weoJ//vlHHD16tOjq6iqamJiIdevWFV9//XUxLi5OFEVRdHV1FRcsWCD1f/yxKIri6tWrRQCir6+v1DZz5kwRgAhANDY2Fm1tbcUOHTqICxYsELOysmTjfX19pb6PHgEBAVIfAOLmzZtl4woKCkRvb2/x/fffF0VRFGNiYgzOA0BMSUkRRVEUhwwZYvD8sGHDpOszdP77778XmzRpIo4aNcrg87hu3TrRxMRE/Pfff5/4nKelpYkAxCsnt4i3L+16Yn8iIqq+BFEs3V2p48aNg1qtRkRERPmSFFEVS09Ph7W1Na6c3AIrS3PYNvCv6pKIiKiMSv1t23l5eYiOjsbu3bvRsmVLvRuWvvzyyworjoiIiKgkSh1oTp8+jRYtWgAALly4IDv3+P0MRERERE9DqQPN4x9xT0RERFTV+GEdREREpHil3qEBgOPHj+Onn37CtWvXkJOTIztXnu8GIiIiIiqLUu/QrF27Fu3bt0dSUhI2b96M3NxcnDlzBnv37oW1tXVl1EhERERUrFIHmrlz52LBggXYvn07TExMsHDhQpw7dw79+/eHi4tLZdRIREREVKxSB5rLly+je/fuAAATExPcv38fgiBg3LhxWL58eYUXSERERPQkpb6HplatWtL3BdWtWxenT59GkyZNcO/ePfz3338VXiAREdHTlBzl/uROFcRt2JWnttazrsQ7NKdPnwYAdOrUCbt27QIA9OvXD2PGjMGIESMQFBSELl26VE6VREREJLl+/TqGDh2KOnXqwMTEBK6urhgzZgxu374t9fHz84MgCBAEAaampvD09ER4eDgMfUHA4cOHYWxsLL0C86jk5GQIggBHR0e9L0Bu3rw5Zs2aJWu7dOkShg4dChcXF6jVatStWxddunTBjz/+iLy8PKlfYW2PH2vXri3Tc1LiQNO0aVO0adMGTZo0Qb9+/QAAH330EcaPH4+bN2+iT58+iIqKKlMRREREVDJ//fUXXnrpJVy8eBFr1qzBpUuXsGzZMuzZswft2rXDnTt3pL4jRoxASkoKzp8/j9DQUMyYMQPLli3TmzMqKgohISHYv38//vnnH4PrZmRk4Isvvii2tvj4eLRo0QJJSUlYsmQJTp8+DZ1Oh+HDhyMyMhJnzpyR9Y+JiUFKSors6NmzZ+mfFAAl/i6nAwcOICYmBhs2bEBBQQH69OmD4cOHo2PHjmVamKiqFX6XU1paGqysrKq6HCKqJqr7S07dunXD6dOnceHCBZiZmUntqampaNCgAd5++21ERkbCz88PzZs3x1dffSX1admyJVxdXWUfsZKZmQknJyccP34cM2fORNOmTTFt2jTpfHJyMtzd3TFp0iRERkbi8uXLcHR0BPBwh6Znz56YNWsWRFGEj48Patasifj4eBgZ6e+ZiKIofauAIAjYvHlzmQPM40q8Q9OxY0dER0cjJSUFX3/9NZKTk+Hr6wtPT0/MmzcPqampFVIQERERGXbnzh38+uuvGDVqlCzMAIBGo8GgQYOwbt06vZeVRFHEgQMHcO7cOZiYmMjO/fTTT/D29oaXlxcGDx6M6Ohogy9LBQUFwcPDA2FhYQZrS0hIQFJSEiZOnGgwzACV+xVJpX6Xk7m5Od555x3s27cPFy5cQL9+/bBkyRK4uLjg9ddfr4waiYiICMDFixchiiIaNWpk8HyjRo1w9+5d/PvvvwCApUuXwsLCAmq1Gp06dUJBQQE+/PBD2ZioqCgMHjwYABAYGIi0tDTs27dPb25BEBAREYHly5fj8uXLeucLv9/Ry8tLart16xYsLCykY+nSpbIxQUFBsvMWFha4du1aKZ6R/1eurz7w8PDAtGnT8PHHH8PS0hI///xzeaYjIiKiEijh3SIYNGgQEhIScOjQIXTr1g0fffQR2rdvL50/f/484uPjERQUBABQqVQYMGBAkffEBgQEoEOHDpg+fXqJ1rezs0NCQgISEhJgY2Oj9+0CCxYskM4XHnXq1CnR3I8r01cfAMD+/fsRHR2NjRs3wsjICP3798ewYcPKOh0RERE9gYeHBwRBQFJSEnr16qV3PikpCbVq1YKDgwMAwNraGh4eHgAevrTk4eGBtm3bwt/fH8DD3Zm8vDxZiBBFEWq1GosXLzb4DQARERFo164dJk2aJGtv2LAhgIch6cUXXwQAGBsbS+urVPqRQ6PRSOfLq1Q7NP/88w/mzp0LT09P+Pn54dKlS1i0aBH++ecfrFixAm3btq2QooiIiEifnZ0dunbtiqVLl+LBgweyc6mpqfjxxx8xYMAAg/eqWFhYYMyYMZg4cSJEUUReXh5WrVqF+fPny3ZI/vzzT9SpUwdr1qwxWEPr1q3Ru3dvTJ06Vdb+4osvwtvbG1988QUKCgoq7qJLqMQ7NN26dcPu3bthb2+Pt99+G0OHDpW9TkZERESVb/HixWjfvj0CAgLw6aefwt3dHWfOnMGkSZNQt25dzJkzp8ix7733HmbPno2NGzdCpVLh7t27GDZsmN5OTOFHsYwcOdLgPHPmzIGPj49s10UQBMTExKBr1654+eWXERoaikaNGiE3Nxf79+/Hv//+C2NjY9k89+7d03tTkaWlJczNzUv7tABiCfXo0UPcsmWLmJeXV9IhRNVaWlqaCEBMS0ur6lKIiEolOTlZHDJkiFi7dm2xRo0aorOzsxgSEiL+73//k/r4+vqKY8aM0Rv73nvviT4+PuJrr70mvvrqqwbnP3r0qAhA/PPPP8UrV66IAMSTJ0/K+rz77rsiAHHmzJmy9vPnz4tDhgwR69WrJ6pUKtHa2lrs1KmT+M0334i5ublSPwAGj/Dw8DI9JyX+HBqiZw0/h4aI6NlRrnc5EREREVUHZX6XE9Gz4uqqJrA008/2/NI4IiLl4A4NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/h4aIiOgRdy7vfmpr2Tbwf2prPeu4Q0NERKQQy5Ytg6WlJfLy8qS2zMxM1KhRA35+frK+Op0OgiDg8uXLcHNzw1dffaU336xZs9C8eXODj93c3CAIQpFHcHAwABR5fu3atRV89cXjDg0REZFCaLVaZGZm4vjx42jbti0A4MCBA9BoNDh69CiysrJgamoKAIiLi4OLiwsaNGhQprWOHTuG/Px8AMDvv/+OPn364Pz589J335mZmUl9Y2JiEBgYKBtvY2NTpnXLioGGiIhIIby8vODk5ASdTicFGp1OhzfeeAN79+7FkSNHpJ0anU4HrVZb5rUcHBykP9va2gIAHB0dDQYVGxsbaDSaMq9VEfiSExERkYJotVrExcVJj+Pi4uDn5wdfX1+p/cGDBzh69Gi5Ao3SMNAQEREpiFarxaFDh5CXl4eMjAycPHkSvr6+6NSpE3Q6HQDg8OHDyM7OlgWaKVOmwMLCQnbMnTu3QmoKCgrSm/vatWsVMndJ8SUnIiIiBfHz88P9+/dx7Ngx3L17F56ennBwcICvry/eeecdZGVlQafToX79+nBxcZHGTZo0SbqRt9CiRYuwf//+cte0YMEC+PvL37FVp06dcs9bGtyheQYEBwcbvMP80qVLAIDw8HAYGxvj888/1xu7cuVK2euhK1eulMYbGRnByckJAwYMwLVr1yCKIvz9/REQEKA3z9KlS2FjYwN/f/9i74p3c3OTxpSmrpJe8+M3pRERPWs8PDxQr149xMXFIS4uDr6+vgAeBghnZ2f8/vvviIuLQ+fOnWXj7O3t4eHhITsK740pL41Goze3SvV090wYaJ4RgYGBSElJkR3u7u4AgOjoaEyePBnR0dElmsvKygopKSm4ceMGNm7ciPPnz6Nfv34QBAExMTE4evQovvnmG6n/lStXMHnyZHz99dfYuHGjrAbg4d3vhY+PHTsmjSttXSW55jVr1pRpLiIiJdFqtdDpdNDpdLK3a3fq1Ak7d+5EfHz8c3X/DMBA88xQq9XQaDSyw9jYGPv27cODBw8QFhaG9PR0/P7770+cSxAEaDQaODk5oX379hg2bBji4+ORnp4OZ2dnLFy4EBMnTsSVK1cgiiKGDRuGV155BW+99Rasra1lNQD/f/e7RqOR7povS10lueZatWqVeh4iIqXRarU4ePAgEhISpB0aAPD19cU333yDnJycpxpo7t27h9TUVNlx//79p7Y+wHtonnlRUVEICgpCjRo1EBQUhKioKLRv377E42/duoXNmzfD2NgYxsbGAIAhQ4Zg8+bNGDp0KHr37o3Tp0/jzJkzT7WussjOzkZ2drb0OD09vVLXIyJlUsKn92q1Wjx48ADe3t6oXbu21O7r64uMjAzp7d1PyzvvvKPXFh4ejqlTpz61GiCS4g0ZMkQ0NjYWzc3NpaNv375iWlqaaGZmJiYkJIiiKIonT54ULSwsxIyMDGlsTEyMaG1tLXsMQDQ3Nxdr1qwpAhABiB9++KFszZs3b4r29vaikZGRuHnz5iJrA6B3vix1leSazc3NxTlz5hQ5ZubMmdL1PHpcOblFvH1pV5HjiIio+uMOzTNCq9UiMjJSemxubo41a9agQYMGaNasGQCgefPmcHV1xbp16zBs2LAi57K0tMSJEyeQm5uLnTt34scff8ScOXNkfRwdHfHee+9hy5Yt6NmzZ6lqLWtdj3v8mgEUe4NbaGgoxo8fLz0ufAmNiIiUj4HmGWFubg4PDw9ZW1RUFM6cOSO707ygoADR0dHFBgcjIyNprkaNGuHy5ct4//338f3338v6qVSqMt3FXta6HmfomoujVquhVqtLVSsRESkDA80zKjExEcePH4dOp5PtWty5cwd+fn44d+4cvL29SzTX1KlT0aBBA4wbNw4tWrSoNnUREREVYqB5RkVFRaF169bo1KmT3rlWrVohKirK4Oe/GOLs7IxevXphxowZ2LFjx1OrKz8/HwkJCbI+arUajRo1AvDwJt/U1FTZeZVKBXt7+3LVSEREysO3bT+DcnJy8MMPP6BPnz4Gz/fp0werVq1Cbm5uieccN24cfv75Z8THxz+1ujIzM/Hiiy/Kjh49ekj9Y2Nj4eTkJDs6dOhQ5vqIiEi5BFEUxaougqgqpKenw9raGldOboGVpbki3qpJRESGcYeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUT1XVBRBVNdv6WlhZWVV1GUREVA7coSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgoefe1VVNkBzlXtVlEBFROTDQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQKFRwcDAEQZAOOzs7BAYG4tSpU7J+giBgy5YteuOTk5MhCAISEhL0zvn5+WHs2LHSYzc3N9lahUdERESR8xZ3zJ49G+bm5rh06ZJs7D///INatWph8eLFeuuam5ujRYsWWL9+vdR/1qxZBuf39vYuxTNJRETPAgYaBQsMDERKSgpSUlKwZ88eqFQqvPbaa5WyVlhYmLRW4RESEqLXz9nZWdZnwoQJ8PHxkbVNnDgRAQEBCA4ORkFBgTR2xIgRaNmyJUaPHq237smTJ9GqVSsMGDAAv//+u3T+8blTUlJw8ODBSnkOiIio+lJVdQFUdmq1GhqNBgCg0WgwdepUdOzYEf/++y8cHBwqdC1LS0tpreIYGxvL+llYWEClUumN/eabb+Dj44Mvv/wSEydOxMqVK3Ho0CEkJiZCEAS9dTUaDZYsWYIffvgB27dvR/v27QHA4NxFyc7ORnZ2tvQ4PT29ROOIiKj6Y6B5RmRmZuKHH36Ah4cH7OzsqrqcJ3JwcMDy5csRFBSEZs2aYdy4cVi4cCGcnZ2LHKNSqVCjRg3k5OSUac3w8HB88skneu2ubyfCysqqTHMSEVH1wJecFGzHjh2wsLCAhYUFLC0tsW3bNqxbtw5GRhX/1zplyhRprcLjwIED5ZqzZ8+e6N+/PwIDA+Hr64shQ4YU2TcnJwfh4eFIS0tD586dpfbExES9ukaOHGlwjtDQUKSlpUnH9evXy1U/ERFVH9yhUTCtVovIyEgAwN27d7F06VJ069YN8fHxcHV1rdC1Jk2ahODgYFlb3bp1yz3v9OnTsWrVKnz88ccGz0+ZMgUff/wxsrKyYGFhgYiICHTv3l067+XlhW3btsnGFLXbolaroVary10zERFVPww0CmZubg4PDw/p8bfffgtra2usWLECn376abFjC3/pp6Wl6Z27d+8erK2tZW329vaytSqKSqWS/fdxhUHKwsICtWvXlt1fAwAmJiaVUhcRESkLX3J6hgiCACMjIzx48OCJfW1tbWFvb48//vhD1p6eno5Lly7B09OzssoslcIgpdFo9MIMERFRIe7QKFh2djZSU1MBPHzJafHixcjMzESPHj1k/a5cuaL3eTMNGzbE+PHjMXfuXNSuXRtt27bF7du3MXv2bDg4OKB3796y/hkZGdJahWrWrFnlN9Pm5eXp1SUIAmrXrl1FFRERUVVgoFGw2NhYODk5AXj49mZvb2+sX78efn5+sn7jx4/XG3vgwAFMnjwZFhYWmDdvHi5fvgxbW1u8/PLLiIuLg5mZmaz/jBkzMGPGDFnbe++9h2XLllXsRZXSmTNnpOegkFqtRlZWVhVVREREVUEQRVGs6iKIqkJ6ejqsra2RlpZW5TtNRERUPryHhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+Bhp57V1c1QXKUe1WXQURE5cBAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BTCsHBwejZs6esbcOGDTA1NcX8+fOlPoIgICIiQtZvy5YtEARBerxy5UrY2NgYXEcQBGzZskXWtnHjRvj5+cHa2hoWFhZo2rQpwsLCcOfOnSLnS0pKgrOzM/r164ecnJxi13y09sePwMDAIsfMmjULzZs312tPTk6GIAhISEiQPTZ0HDlyRDb2wYMHsLW1hb29PbKzs/XmdnNzk8aamZnBzc0N/fv3x969e4usk4iInm0MNOXw7bffYtCgQYiMjMSECROkdlNTU8ybNw93796tkHU++ugjDBgwAK1atcLOnTtx+vRpzJ8/H3/++Se+//57g2OOHTuGjh07IjAwEOvWrYOJiUmJ1goMDERKSorsWLNmTYVcBwDs3r1bb/6WLVvK+mzcuBE+Pj7w9vbWC3aFwsLCkJKSgvPnz2PVqlWwsbGBv78/5syZU2G1EhGRcqiqugCl+uyzzzBz5kysXbsWvXr1kp3z9/fHpUuXEB4ejs8++6xc68THx2Pu3Ln46quvMGbMGKndzc0NXbt2xb179/TG7N27F2+88QZGjRqFefPmlWo9tVoNjUZTrpqLY2dn98T5o6KiMHjwYIiiiKioKAwYMECvj6WlpTSPi4sLOnXqBCcnJ8yYMQN9+/aFl5dXpdRPRETVE3doymDKlCmYPXs2duzYoRdmAMDY2Bhz587F119/jb///rtca/3444+wsLDAqFGjDJ5//CWkzZs3o3v37vj4449LHWaqg8uXL+Pw4cPo378/+vfvjwMHDuDq1aslGjtmzBiIooitW7caPJ+dnY309HTZQUREzwYGmlLauXMnPvvsM2zduhVdunQpsl+vXr3QvHlzzJw5s1zrXbx4EfXr10eNGjWe2DczMxP9+vXDpEmTMGXKlDKtt2PHDlhYWMiOuXPnFjsmMTFRb4yPj4/Bvu3bt9fr+6jo6Gh069YNtWrVgq2tLQICAhATE1Oi2m1tbeHo6Ijk5GSD58PDw2FtbS0dzs7OAADXtxPhNuxKidYgIqLqiS85lVLTpk3xv//9DzNnzkTr1q31fiE/at68eejcuTMmTpxY5vVEUSxxXzMzM3To0AErVqxAUFAQGjVqVOr1tFotIiMjZW22trbFjvHy8sK2bdtkbTdu3ICfn59e33Xr1hVZV35+Pr777jssXLhQahs8eDAmTpyIGTNmwMjoyflbFEXZzdePCg0Nxfjx46XH6enpUqghIiJlY6Appbp162LDhg3QarUIDAzEzp07YWlpabBvp06dEBAQgNDQUAQHB8vOWVlZ4f79+ygoKJD9oi68J8ba2hoA4OnpiYMHDyI3N/eJuzTGxsbYsmULevfuDa1Wi7i4uFKHGnNzc3h4eJRqjImJid4Ylcrwj5azs3OR8//666+4ceOG3j0z+fn52LNnD7p27VpsHbdv38a///4Ld3d3g+fVajXUanWxcxARkTLxJacycHV1xb59+5CamorAwEBkZGQU2TciIgLbt2/H4cOHZe1eXl7Iy8uT3tZc6MSJEwAeBhkAePPNN5GZmYmlS5canP/xm4LVajU2bdqEVq1aQavV4uzZs6W8uqoTFRWFgQMHIiEhQXYMHDgQUVFRTxy/cOFCGBkZ6b21noiInn3coSkjZ2dn6HQ6aLVaBAQEIDY2FlZWVnr9mjRpgkGDBmHRokWydh8fH7zyyisYOnQo5s+fj/r16+P8+fMYO3YsBgwYgLp16wIA2rRpg8mTJ2PChAm4ceMGevXqhTp16uDSpUtYtmwZOnToIHv3E/Aw1GzcuBH9+vWDVqvF3r17pXta8vPz9UKUWq2WdnKys7ORmpoqO69SqWBvb1+u56vQ7du39ea3sbFBRkYGtm/fjm3btqFx48ay82+//TZ69eqFO3fuSC9/ZWRkIDU1Fbm5ubhy5Qp++OEHfPvttwgPDy/1DhMRESkfA0051KtXTxZqfv31V4P9wsLCsG7dOr32devWYebMmXjvvffwzz//oF69eujVqxemT58u6zdv3jy0bNkSS5YswbJly1BQUIAGDRqgb9++GDJkiME1TUxMsGHDBvTv318KNcDDG4dffPFFWd8GDRrg0qVLAIDY2Fg4OTnJznt5eeHcuXMle1KewN/fX69tzZo1uHHjBszNzQ3eaN2lSxeYmZnhhx9+wIcffggAmDFjBmbMmAETExNoNBq0bdsWe/bsgVarrZA6iYhIWQSxNHedEj1D0tPTYW1tjbS0NIO7a0REpBy8h4aIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUr0oDTXBwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp+P8tZfkufy0cePXrOhw83NDQDg5+dn8PzIkSMNXkdxcwqCAK1Wixo1auDgwYOycffv30f9+vUxceJEvXVNTU3xwgsvYOnSpVL/lStXGpzf1NTUYF1ERPTsUsQOjSiKGDhwIMLCwjBmzBgkJSVBp9PB2dkZfn5+2LJlCwDA29sbGo0GOp1OGpuRkYETJ07AwcFBFhQOHz6M7OxsdO7cWWoLDAxESkoKkpOTsXPnTmi1WowZMwavvfYa8vLyZDWFhYUhJSVFdoSEhMj6ZGRk4IsvvijxdZa3/tJauHChrH4AiImJkR4fO3ZM6jtixAi96/3ss88Mzvton6+++gpWVlaytu3btyMkJATBwcG4f/++NG7y5MkwMzPDp59+qrfu2bNn0b9/f4wePRpr1qyRzj8+d0pKCq5evVrm54SIiJRJEYHmp59+woYNG7Bq1SoMHz4c7u7uaNasGZYvX47XX38dw4cPl34xarVaWSA4ePAgPD090aNHD1m7TqeDq6sr3N3dpTa1Wg2NRoO6deuiRYsWmDZtGrZu3YqdO3di5cqVsposLS2h0Whkh7m5uaxPSEgIvvzyS9y6davE11qe+kvL2tpaVj8A2NjYSI8dHBykvjVr1tS7XisrK4PzPtrH2toagiDI2iwsLDB37lyYmJhgypQpAIC4uDh8++23WLVqlWyHpXDd+vXrY9asWWjYsCG2bdsmnX98bo1Gg9q1axusKzs7G+np6bKDiIieDYoINKtXr5Z+qT9uwoQJuH37Nnbt2gXgYSA4ePCgtKMSFxcHPz8/+Pr6Ii4uThoXFxcHrVb7xLU7d+6MZs2aYdOmTaWuOygoCB4eHggLCyvxmIquv7oyNTXFqlWrsHz5cmzduhVDhw7FtGnT0LJly2LHmZmZIScnp0xrhoeHw9raWjqcnZ0BAHf+isOdy7sr9CAioqerygPNjh07YGFhITu6desm63PhwgU0atTI4PjC9gsXLgB4GAju378vvVyi0+ng6+uLTp064ejRo8jKysKDBw8QHx9f4kDg7e2N5ORkWduUKVP06j5w4ICsT+F9NcuXL8fly5dLtFZ56i/Jc1lWS5cu1Zv7xx9/LNecL730EkJDQ9G7d2/Y2dnho48+KrJvfn4+fvjhB5w6dUr2MltaWlqJrzk0NBRpaWnScf369XLVT0RE1YeqqgvQarWIjIyUtR09ehSDBw+WtYmiWKL5PDw8UK9ePeh0Ovj4+ODkyZPw9fWFo6MjXFxccPjwYYiiiOzs7BIHGlEUIQiCrG3SpEkIDg6WtdWtW1dvbEBAADp06IDp06dj9erVlVp/SZ/Lshg0aJBe4CjqpZ3SmD59OsLCwjB16lSoVPo/jkuXLsW3336LnJwcGBsbY9y4cXj//fel85aWljhx4oRsjJmZmcG11Go11Gp1uWsmIqLqp8oDjbm5OTw8PGRtf//9t+yxp6cnkpKSDI4vbPf09JTa/Pz8EBcXh6ZNm6Jhw4ZwdHQEAOllG1EU4eHhIb3k8CRJSUl696rY29vr1V2UiIgItGvXDpMmTSpR/7LWX5Lnsqysra1LfL2lURhiDIUZ4P+DlJmZGZycnGBkJN9UNDIyqpS6iIhIWar8JaeSGDhwIC5evIjt27frnZs/fz7s7OzQtWtXqU2r1eL333/Hrl274OfnJ7V36tQJOp0OOp2uxLsze/fuRWJiIvr06VPm+lu3bo3evXtj6tSpJepfkfUrXWGQqlu3rl6YISIiKlTlOzQlMXDgQKxfvx5DhgzB559/ji5duiA9PR1LlizBtm3bsH79etk7jArvQ4mOjsaKFSukdl9fXwwfPhwAMGrUKL11srOzkZqaivz8fNy8eROxsbEIDw/Ha6+9hrffflvWNyMjA6mpqbK2mjVrFvnOnzlz5sDHx6fInYhHlbX+yvTff//pXa9arUatWrWeah2PE0VRry4AcHR0ZAAiInqOKOJffEEQ8NNPP2HatGlYsGABvLy80LFjR1y9ehU6nU7vA+Xc3d3h6uqKjIwM+Pr6Su0uLi6oU6cOcnJyZDsfhWJjY+Hk5AQ3NzcEBgYiLi4OixYtwtatW2FsbCzrO2PGDDg5OcmOyZMnF3kNnp6eGDp0qOzD8YpS1vor04oVK/SuNygo6KnWYEh6erpeXU5OTqV6qzwRESmfIJb0bluiZ0x6ejqsra1x5eQWWFmaP3lAKdg28K/Q+YiIqHiK2KEhIiIiKg4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESmeIr5tm6gy2dbXFvkt6UREpAzcoSEiIiLFY6AhIiIixWOgISIiIsXjPTT03BJFEQCQnp5exZUQ0dNmaWkJQRCqugyqQAw09Ny6ffs2AMDZ2bmKKyGipy0tLY1vBnjGMNDQc8vW1hYAcO3aNVhbW1dxNSWXnp4OZ2dnXL9+XTH/ICuxZkCZdSuxZuDp121paVnpa9DTxUBDzy0jo4e3kFlbWyvqH/5CVlZWiqtbiTUDyqxbiTUDyq2bqh5vCiYiIiLFY6AhIiIixWOgoeeWWq3GzJkzoVarq7qUUlFi3UqsGVBm3UqsGVBu3VR9CGLhe1eJiIiIFIo7NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDT03FqyZAnc3NxgamqKNm3aID4+vspq2b9/P3r06IE6depAEARs2bJFdl4URcyYMQNOTk4wMzODv78/Ll68KOtz584dDBo0CFZWVrCxscGwYcOQmZlZaTWHh4ejVatWsLS0hKOjI3r27Inz58/L+mRlZWH06NGws7ODhYUF+vTpg5s3b8r6XLt2Dd27d0fNmjXh6OiISZMmIS8vr9LqjoyMRNOmTaUPcGvXrh127txZrWt+XEREBARBwNixY6t13bNmzYIgCLLD29u7WtdMCiYSPYfWrl0rmpiYiNHR0eKZM2fEESNGiDY2NuLNmzerpJ5ffvlF/Oijj8RNmzaJAMTNmzfLzkdERIjW1tbili1bxD///FN8/fXXRXd3d/HBgwdSn8DAQLFZs2bikSNHxAMHDogeHh5iUFBQpdUcEBAgxsTEiKdPnxYTEhLEV199VXRxcREzMzOlPiNHjhSdnZ3FPXv2iMePHxfbtm0rtm/fXjqfl5cnNm7cWPT39xdPnjwp/vLLL6K9vb0YGhpaaXVv27ZN/Pnnn8ULFy6I58+fF6dNmybWqFFDPH36dLWt+VHx8fGim5ub2LRpU3HMmDFSe3Wse+bMmaKPj4+YkpIiHf/++2+1rpmUi4GGnkutW7cWR48eLT3Oz88X69SpI4aHh1dhVQ89HmgKCgpEjUYjfv7551LbvXv3RLVaLa5Zs0YURVE8e/asCEA8duyY1Gfnzp2iIAjijRs3nkrdt27dEgGI+/btk2qsUaOGuH79eqlPUlKSCEA8fPiwKIoPg5yRkZGYmpoq9YmMjBStrKzE7Ozsp1K3KIpirVq1xG+//bba15yRkSE2bNhQ3LVrl+jr6ysFmupa98yZM8VmzZoZPFddaybl4ktO9NzJycnBH3/8AX9/f6nNyMgI/v7+OHz4cBVWZtiVK1eQmpoqq9fa2hpt2rSR6j18+DBsbGzw0ksvSX38/f1hZGSEo0ePPpU609LSAPz/l37+8ccfyM3NldXt7e0NFxcXWd1NmjRB7dq1pT4BAQFIT0/HmTNnKr3m/Px8rF27Fvfv30e7du2qfc2jR49G9+7dZfUB1fu5vnjxIurUqYP69etj0KBBuHbtWrWvmZSJX05Jz53//e9/yM/Pl/0jCQC1a9fGuXPnqqiqoqWmpgKAwXoLz6WmpsLR0VF2XqVSwdbWVupTmQoKCjB27Fi8/PLLaNy4sVSTiYkJbGxsiq3b0HUVnqssiYmJaNeuHbKysmBhYYHNmzfjhRdeQEJCQrWtee3atThx4gSOHTumd666Ptdt2rTBypUr4eXlhZSUFHzyySfo2LEjTp8+XW1rJuVioCGichs9ejROnz6NgwcPVnUpJeLl5YWEhASkpaVhw4YNGDJkCPbt21fVZRXp+vXrGDNmDHbt2gVTU9OqLqfEunXrJv25adOmaNOmDVxdXfHTTz/BzMysCiujZxFfcqLnjr29PYyNjfXeTXHz5k1oNJoqqqpohTUVV69Go8GtW7dk5/Py8nDnzp1Kv6YPPvgAO3bsQFxcHOrVqyerOycnB/fu3Su2bkPXVXiuspiYmMDDwwMtW7ZEeHg4mjVrhoULF1bbmv/44w/cunULLVq0gEqlgkqlwr59+7Bo0SKoVCrUrl27Wtb9OBsbG3h6euLSpUvV9rkm5WKgoeeOiYkJWrZsiT179khtBQUF2LNnD9q1a1eFlRnm7u4OjUYjqzc9PR1Hjx6V6m3Xrh3u3buHP/74Q+qzd+9eFBQUoE2bNpVSlyiK+OCDD7B582bs3bsX7u7usvMtW7ZEjRo1ZHWfP38e165dk9WdmJgoC2O7du2ClZUVXnjhhUqp25CCggJkZ2dX25q7dOmCxMREJCQkSMdLL72EQYMGSX+ujnU/LjMzE5cvX4aTk1O1fa5Jwar6rmSiqrB27VpRrVaLK1euFM+ePSu+++67oo2NjezdFE9TRkaGePLkSfHkyZMiAPHLL78UT548KV69elUUxYdv27axsRG3bt0qnjp1SnzjjTcMvm37xRdfFI8ePSoePHhQbNiwYaW+bfv9998Xra2tRZ1OJ3tb7n///Sf1GTlypOji4iLu3btXPH78uNiuXTuxXbt20vnCt+W+8sorYkJCghgbGys6ODhU6ttyp06dKu7bt0+8cuWKeOrUKXHq1KmiIAjib7/9Vm1rNuTRdzlV17onTJgg6nQ68cqVK+KhQ4dEf39/0d7eXrx161a1rZmUi4GGnltff/216OLiIpqYmIitW7cWjxw5UmW1xMXFiQD0jiFDhoii+PCt29OnTxdr164tqtVqsUuXLuL58+dlc9y+fVsMCgoSLSwsRCsrK/Gdd94RMzIyKq1mQ/UCEGNiYqQ+Dx48EEeNGiXWqlVLrFmzptirVy8xJSVFNk9ycrLYrVs30czMTLS3txcnTJgg5ubmVlrdQ4cOFV1dXUUTExPRwcFB7NKlixRmqmvNhjweaKpj3QMGDBCdnJxEExMTsW7duuKAAQPES5cuVeuaSbkEURTFqtkbIiIiIqoYvIeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiKgUkpOTIQgCEhISqroUInoEAw0REREpHgMNESlKQUEBPvvsM3h4eECtVsPFxQVz5swBACQmJqJz584wMzODnZ0d3n33XWRmZkpj/fz8MHbsWNl8PXv2RHBwsPTYzc0Nc+fOxdChQ2FpaQkXFxcsX75cOu/u7g4AePHFFyEIAvz8/CrtWomo5BhoiEhRQkNDERERgenTp+Ps2bNYvXo1ateujfv37yMgIAC1atXCsWPHsH79euzevRsffPBBqdeYP38+XnrpJZw8eRKjRo3C+++/j/PnzwMA4uPjAQC7d+9GSkoKNm3aVKHXR0Rlo6rqAoiISiojIwMLFy7E4sWLMWTIEABAgwYN0KFDB6xYsQJZWVlYtWoVzM3NAQCLFy9Gjx49MG/ePNSuXbvE67z66qsYNWoUAGDKlClYsGAB4uLi4OXlBQcHBwCAnZ0dNBpNBV8hEZUVd2iISDGSkpKQnZ2NLl26GDzXrFkzKcwAwMsvv4yCggJpd6WkmjZtKv1ZEARoNBrcunWr7IUTUaVjoCEixTAzMyvXeCMjI4iiKGvLzc3V61ejRg3ZY0EQUFBQUK61iahyMdAQkWI0bNgQZmZm2LNnj965Ro0a4c8//8T9+/eltkOHDsHIyAheXl4AAAcHB6SkpEjn8/Pzcfr06VLVYGJiIo0louqDgYaIFMPU1BRTpkzB5MmTsWrVKly+fBlHjhxBVFQUBg0aBFNTUwwZMgSnT59GXFwcQkJC8NZbb0n3z3Tu3Bk///wzfv75Z5w7dw7vv/8+7t27V6oaHB0dYWZmhtjYWNy8eRNpaWmVcKVEVFoMNESkKNOnT8eECRMwY8YMNGrUCAMGDMCtW7dQs2ZN/Prrr7hz5w5atWqFvn37okuXLli8eLE0dujQoRgyZAjefvtt+Pr6on79+tBqtaVaX6VSYdGiRfjmm29Qp04dvPHGGxV9iURUBoL4+AvKRERERArDHRoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUrz/A+sUfVTiRBWAAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "# Specify colors for each values of the hue variable\n", + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# Plot a bar plot to visualize how many pumpkins of each variety are orange or white\n", + "sns.catplot(\n", + " data=pumpkins, y=\"Variety\", hue=\"Color\", kind=\"count\",\n", + " palette=palette, \n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Datenvorverarbeitung\n", + "\n", + "Lassen Sie uns Merkmale und Labels codieren, um die Daten besser darzustellen und das Modell zu trainieren.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['med', 'lge', 'sml', 'xlge', 'med-lge', 'jbo', 'exjbo'],\n", + " dtype=object)" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the different values of the 'Item Size' column\n", + "pumpkins['Item Size'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OrdinalEncoder\n", + "# Encode the 'Item Size' column using ordinal encoding\n", + "item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']]\n", + "ordinal_features = ['Item Size']\n", + "ordinal_encoder = OrdinalEncoder(categories=item_size_categories)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OneHotEncoder\n", + "# Encode all the other features using one-hot encoding\n", + "categorical_features = ['City Name', 'Package', 'Variety', 'Origin']\n", + "categorical_encoder = OneHotEncoder(sparse_output=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_MICHIGANcat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIA
21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.01.0
43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n", + "

5 rows × 48 columns

\n", + "
" + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_MICHIGAN cat__Origin_NEW JERSEY \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NEW YORK cat__Origin_NORTH CAROLINA cat__Origin_OHIO \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_PENNSYLVANIA cat__Origin_TENNESSEE cat__Origin_TEXAS \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VERMONT cat__Origin_VIRGINIA \n", + "2 0.0 0.0 \n", + "3 0.0 1.0 \n", + "4 0.0 0.0 \n", + "5 0.0 0.0 \n", + "6 0.0 0.0 \n", + "\n", + "[5 rows x 48 columns]" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.compose import ColumnTransformer\n", + "ct = ColumnTransformer(transformers=[\n", + " ('ord', ordinal_encoder, ordinal_features),\n", + " ('cat', categorical_encoder, categorical_features)\n", + " ])\n", + "# Get the encoded features as a pandas DataFrame\n", + "ct.set_output(transform='pandas')\n", + "encoded_features = ct.fit_transform(pumpkins)\n", + "encoded_features.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIAColor
21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.01.00
43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
\n", + "

5 rows × 49 columns

\n", + "
" + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_NEW JERSEY cat__Origin_NEW YORK \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NORTH CAROLINA cat__Origin_OHIO cat__Origin_PENNSYLVANIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_TENNESSEE cat__Origin_TEXAS cat__Origin_VERMONT \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VIRGINIA Color \n", + "2 0.0 0 \n", + "3 1.0 0 \n", + "4 0.0 0 \n", + "5 0.0 0 \n", + "6 0.0 0 \n", + "\n", + "[5 rows x 49 columns]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "# Encode the 'Color' column using label encoding\n", + "label_encoder = LabelEncoder()\n", + "encoded_label = label_encoder.fit_transform(pumpkins['Color'])\n", + "encoded_pumpkins = encoded_features.assign(Color=encoded_label)\n", + "encoded_pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['ORANGE', 'WHITE']" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the mapping between the encoded values and the original values\n", + "list(label_encoder.inverse_transform([0, 1]))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAYpCAYAAABBoEQQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxVdf7H8ff1IuAI4oqAIqiIuORS5lqCpqnTkE2NOo6ZYlk5uOVYaf1m1MbCpkUrNbMhW8a0Tdtm1FwAzTRFpVxJDVMTRBNZHEGB8/vDh3e8gXpZT6f7ej4e5zH3nu853/vhjMGbL9/zPTbDMAwBAAAAFlLD7AIAAACAsiLEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcD7MLAAAAwK9fTEyMS8ctWbLEpeMIsQAAAKhy2dnZTu/PnTunDRs2KDo6ulz92QzDMCqjMAAAAMBVaWlp6tChg3Jzc8t1PnNiAQAAUO0qOo5KiAUAAIDlEGIBAABgOdzYBQAAgCqXlJTk9P7HH39UUVGREhMTZbPZHPsjIyNd6o8buwAAAFDl7Ha7DMNwCqw/ZxiGiouLXeqPkVgAAABUuaysrErtj5FYAAAAWA43dgEAAKDaLF++XHfddZfatm2rtm3b6q677tJ7771X5n4YiQUAAECVKy4u1pAhQ/Txxx+rVatWatOmjWw2m/bv36/U1FTdc889eu+991SjhmtjrMyJBQAAQJWbN2+ekpKS9Omnn+qOO+5wavvPf/6jkSNH6qWXXtIjjzziUn+MxAIAAKDKdejQQZMnT9aYMWNKbV+yZInmzp2rb7/91qX+CLEAAACocrVq1dKBAwcUEhJSavsPP/ygiIgInT9/3qX+uLELAAAAVc7b21vZ2dlXbc/JyVGtWrVc7o8QCwAAgCrXo0cPLViw4Krt8+fPV/fu3V3ujxu7AAAAUOX+9re/KTIyUqdPn9Zf/vIXtW3bVpK0f/9+vfDCC/r000+VmJjocn/MiQUAAEC1+Oyzz3T//ffr9OnTTvsbNmyof/7zn7rzzjtd7osQCwAAgGpz/vx5rV27Vt99950kKTw8XP379y/TfFiJEAsAAIBfiNTUVLVu3dqlY5kTCwAAAFMcPnxYCQkJji0jI0PFxcUunUuIBQAAQLU4cuSII7AmJibq+PHj8vHx0S233KLJkycrKirK5b6YTgAAAIAq17x5c/3www+qXbu2evXqpT59+igqKko333yzatQo+6qvhFgAAABUOQ8PD/n4+CgmJkb9+/fXrbfeKl9f33L3R4gFAABAlcvMzFRSUpKSkpKUmJio7777Tp07d1ZUVJT69OmjW265RT4+Pi73R4gtJ8MwlJubK19fX9lsNrPLAQAAsJSffvpJiYmJjlCbmpqqzp07a+vWrS6dz41d5ZSbmys/Pz9lZ2erTp06ZpfjVgzDUEFBgdllAKa48t+/l5cXv0SbhGsPVFyDBg3Uq1cvFRcXq7i4WNnZ2frmm29cPp8QC8spKCjQkCFDzC4DgBv74IMP5O3tbXYZgOUcO3ZMSUlJ2rhxozZu3KgffvhB3bp1U9++ffXOO++oe/fuLvdFiAUAAECVa9GihU6cOKFu3bopKipKr732mnr06CFPT89y9UeIhaU9M2i/PO2uLYoM/BoUFNr05Oq2kqSnB+6Tlwe3NVSXC0U19MSqNmaXAVjW0aNHVbNmTRmGIcMwHNMIyosQC0vztBfzQxxuy8vD4N9/teIXZqAifvzxRyUmJiohIUHvvfeenn76aXl6eqpr167q06ePIiMj1bNnT3l5ebnUHyG2gljcAQAA/Npdvqm0InPBGzdurGHDhmnYsGGSLoXay0/vevvtt/X3v/9dnp6eOn/+vEv9EWIriLvkAQDAr93lm6o/++yzSuuzSZMmuvfee3XvvfdKujTdYP369S6fX/ZnfOnSnWVjxoxRUFCQPD09FRISokmTJumnn35yHBMVFSWbzSabzSZvb2+Fh4crLi6u1JHLLVu2yG6364477ijRduTIEdlsNvn7+ys3N9eprVOnTpo5c6bTvkOHDmnMmDFq1qyZvLy81KRJE912221aunSpCgsLHcddru3n2/Lly8tzSQAAAFABzZo1U0xMjMvHl3kk9vvvv1ePHj0UHh6uZcuWqXnz5tq7d68effRRrVq1Slu3blX9+vUlSWPHjtVTTz2lgoICbdiwQQ8++KDq1q2rcePGOfUZHx+vCRMmKD4+XidOnFBQUFCJz83NzdXzzz+vWbNmXbW2bdu2qV+/fmrXrp0WLFigiIgISVJycrIWLFig9u3bq2PHjo7jlyxZooEDBzr1Ubdu3bJeEgAAAFyHKwHVMAy9+eabLvVX5hAbGxsrT09PffHFF6pVq5akS8m5c+fOatmypZ588km9+uqrkqTf/OY3CggIcBQ+f/58rV271inE5uXl6b333lNycrIyMjL05ptv6oknnijxuRMmTNCLL76o2NhY+fv7l/pFjx49WuHh4dq8ebNq1PjfIHOrVq00fPjwEqPAdevWddRXXvn5+crPz69QHyibK683U5IBVJcrv9/wfR/upjL+zb/99tsaOHDgVW/cKigo0KpVq6omxJ45c0Zr1qzR008/7QiwlwUEBGjEiBF67733tHDhQqc2wzD05Zdf6sCBA2rVqpVT2/vvv6+IiAi1bt1a9957ryZPnqzp06eXeBLK8OHDtXbtWj311FOaP39+idpSUlK0f/9+LVu2zCnAXqkiT1cpKChwmv+ak5MjSXrwwQdVs2bNcveLirlQZJN3TZIsgKp3oeh/P0NGjhxpYiWAdb3xxhtq3LhxqW2nTp0q0+BimebEHjx4UIZhqE2b0tfJa9OmjbKysnTq1ClJ0sKFC+Xj4yMvLy/17t1bxcXFmjhxotM58fHxjgm9AwcOVHZ2tpKSkkr0bbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAAA/4+HhoaKioqu2FxYWym63u95feYpwdVmpESNG6Mknn1RWVpZmzJihnj17qmfPno721NRUbdu2TStXrrxUjIeHhg0bpvj4eEVFRZXob8CAAbrlllv017/+Ve++++51P79BgwZKSUmRdOlGswsXLji1z507V/369XPaV9p8XEmaPn26pkyZ4nifk5Oj4OBgLV68uNTpDag6+fn5jlEQTzujsACqx5Xfb9555x0eOwu3cuXP3vKqV6+eTp48edWsdfLkScd9Va4oU4gNCwuTzWbT/v379fvf/75E+/79+1WvXj01atRIkuTn56ewsDBJl6YNhIWFqXv37o7gGB8fr8LCQqcvxjAMeXl5af78+fLz8yvxGXPmzFGPHj306KOPOu2/PE0hNTVVnTt3liTZ7XbH53t4lPxSAwICHO3X4+XlVeocDm9vb76RmagCM0QAoEyu/H7D936g7Dp27KhVq1Y5ctrPrV69Wh06dHC5vzJNJ2jQoIH69++vhQsXlliINiMjQ0uXLtWwYcNKnXvq4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/++Qo9wgwAAACVb8SIEZozZ442bNhQoi0hIUHPPPOMhg8f7nJ/ZZ5OMH/+fPXs2VMDBgzQ7NmznZbYatKkiZ5++umrnvvQQw/p73//uz766CN5eHgoKytL999/f4kR13vuuUfx8fF6+OGHS+3n6aefVrt27ZxGV202m5YsWaL+/furV69emj59utq0aaOLFy9q48aNOnXqVIl5FmfPnlVGRobTPl9fX9WuXbuslwUAAADXcN9992nFihXq16+fbrjhBrVp00Y2m00HDhzQN998o9/+9rcaPXq0y/2V+WEHrVq1UnJyslq0aKGhQ4eqZcuWevDBB9WnTx9t2bLlmnMZ6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMKbHcQ/fu3bVjxw61bt1asbGxatu2rXr27Klly5Zp7ty5JdanjYmJUWBgoNP2yiuvlPWSAAAAwAUrV67Um2++qZCQEO3du1e7d+9WkyZN9M9//lOffvppmVaSshmu3qUFJzk5OfLz89PZs2dLDeKoOvn5+RoyZIgk6fnf7ZWXB/+E4T4KCm2a+nk7Sfz7r25XXvsPPviAObFwK4ZhqKCg4Bf1775cqxPgfyqy9iwq7kJRDUnMgYb7KCi0lfoaVe/S9xvAPdlstl9UgJUIsbC4J1aVvmYx4A6eXN3W7BIAwGXNmze/7jGGYejIkSMu9UeIBQAAQJU7evSonnrqKfn6+kqSTp8+reeee07PPvusJCkvL0//93//53J/zIktp8tzYrOzs1WnTh2zy3Erl+flAO7oyn//Xl5eTGkyCdceKDu73a4TJ044Hjv7/fffq2PHjsrNzZV06UmrAQEBLi+VykgsLOeXOC8HqE61atUyuwQAMB2z1AEAAGA5hFgAAACY4ufTcsoyTYcQCwAAgCr30EMP6Te/+Y3jfZMmTbRq1SrHe19fX8XFxbncHzd2lRM3dgEAAJiHG7sAAABQ5X744QeXjgsJCXHpOEIsAAAAqlyLFi1kGIZsNpuunAjw8/euLrFV5XNiFy1aJF9fXxUWFjr25eXlqWbNmoqKinI6NjExUTabTYcPH1ZoaKjmzZtXor+ZM2eqU6dOpb4PDQ2VzWa76jZ69GhJumr78uXLK/mrBwAAgCTt2rVLKSkpjv+9vO3cuVOPPfaYatWqJX9/f5f7q/KR2D59+igvL0/Jycnq3r27JGnTpk0KCAjQ119/rfz8fMeanwkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjrmrF65tuKSJUs0cOBAp/Pr1q1brs8FAADAtXXo0KHEvi+++ELTp0/XoUOH9Nhjj2nq1Kku91flIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFA+27dv17Rp0/Tll1/qwQcf1Jo1a9SwYcMy9VEtS2z16dNHCQkJjvcJCQmKiopSZGSkY//58+f19ddfVyjEAgAA4Jfr4MGDGjZsmHr27KnAwEAdOHBAr7zySpkDrFSNIXbz5s0qLCxUbm6udu3apcjISPXu3VuJiYmSpC1btqigoMApxD7++OPy8fFx2p555plKqWn48OEl+j569OhVjy8oKFBOTo7TBgAAANc8/PDDateunbKzs7V9+3b961//UvPmzcvdX7WsThAVFaVz585p+/btysrKUnh4uBo1aqTIyEjFxMQoPz9fiYmJatGihZo1a+Y479FHH3XcjHXZyy+/rI0bN1a4prlz56pfv35O+4KCgq56fFxcnGbNmlXhzwUAAHBHr7/+ury9vZWZmamYmJirHrdr1y6X+quWEBsWFqamTZsqISFBWVlZioyMlHQpNAYHB+urr75SQkKC+vbt63Rew4YNFRYW5rTv8lzXigoICCjR97VMnz5dU6ZMcbzPyclRcHBwpdQCAADwazdjxoxK7a/a1ont06ePEhMTlZWVpUcffdSxv3fv3lq1apW2bdumcePGVVc5Zebl5SUvLy+zywAAALCkv/3tb5XaX7WG2NjYWF28eNExEitJkZGRGj9+vC5cuFCtN3WdPXtWGRkZTvt8fX1Vu3btaqsBAAAA5VMtN3ZJl0Ls+fPnFRYWpsaNGzv2R0ZGKjc317EUV3WJiYlRYGCg0/bKK69U2+cDAACg/GzGlc/5gstycnLk5+en7Oxsx8MUAAAAUD2qbSQWAAAAqCyEWAAAAJju7NmzZbo/ihALAAAA0124cEFJSUkuH0+IBQAAgOVU2xJbvzaX74fj8bMAAMCd+Pr6ymazlfm8H3744Zrtp06dKlN/rE5QTt9//71atmxpdhkAAADVKjMzU40aNSrzeXa7XYZhyGazqbT4eXl/cXGxS/0xEltOlx9/e/ToUfn5+Zlcjfu5/NjfY8eOscSZCbj+5uL6m4drby6uv7kuX39PT89ynb9r165rtp85c0Z9+/Z1uT9CbDnVqHFpOrGfnx//IZmoTp06XH8Tcf3NxfU3D9feXFx/c5VnKoEkdejQ4ZrtmZmZZeqPG7sAAADwi1CWgEyIBQAAgOk8PT3Vtm1bl48nxJaTl5eXZsyYIS8vL7NLcUtcf3Nx/c3F9TcP195cXH9zVfX137Rpk06fPu3y8axOAAAAANPk5uZq0qRJevfddzVjxgxNnz7dpfO4sQsAAACmSEhI0JgxY1S/fn3t2LFD7dq1c/lcQiwAAACqXN++fZ3Why0sLNTWrVv1xBNP6G9/+5vsdnuZ+iPEAgAAoMp16tTJ6X1hYaH27Nmj/fv368yZM2V+gAJzYgEAAGCK48ePKyYmRt9++63mz5+vIUOGuHwuqxOU04IFCxQaGipvb29169ZN27ZtM7skt7Bx40ZFR0crKChINptNH3/8sdkluY24uDjdfPPN8vX1lb+/v+666y6lpqaaXZbbePXVV9WhQwfHIu89evTQqlWrzC7Lbc2ZM0c2m02TJ082uxS3MHPmTNlsNqctIiLC7LLcyo8//qh7771XDRo0UK1atXTDDTcoOTm5wv02bdpUa9eu1d/+9jfFxMRo6NChLp9LiC2H9957T1OmTNGMGTO0c+dOdezYUQMGDCjzkyZQdufOnVPHjh21YMECs0txO0lJSYqNjdXWrVu1du1aXbx4UbfffrvOnTtndmluoWnTppozZ4527Nih5ORk9e3bV4MHD9bevXvNLs3tbN++Xa+99tp1nz6EytWuXTulp6c7ti+//NLsktxGVlaWevXqpZo1a2rVqlXat2+fXnjhBdWrV6/SPiM2NlYpKSk6fvy4y+cwnaAcunXrpptvvlnz58+XJBUXFys4OFgTJkzQtGnTTK7OfdhsNq1cuVJ33XWX2aW4pVOnTsnf319JSUnq3bu32eW4pfr16+u5557T/fffb3YpbiMvL0833nijFi5cqNmzZ6tTp06aN2+e2WX96s2cOVMff/yxUlJSzC7FLU2bNk2bN2/Wpk2bqvyzDMNw+ald3NhVRhcuXNCOHTuc1jCrUaOG+vXrpy1btphYGVC9srOzJV0KUqheRUVF+uCDD3Tu3Dn16NHD7HLcSmxsrO644w7169dPs2fPNrsct3Lw4EEFBQXJ29tbPXr0UFxcnJo1a2Z2WW7h008/1YABAzRkyBAlJSWpSZMm+vOf/6yxY8eWqZ9Zs2Zd9xjDMDRz5kyX+iPEltHp06dVVFSkxo0bO+1v3LixDhw4YFJVQPUqLi7W5MmT1atXL7Vv397sctzG7t271aNHD+Xn58vHx0crV64s0yMaUTHLly/Xzp07tX37drNLcTvdunXTm2++qdatWys9PV2zZs3Srbfeqj179sjX19fs8n71vv/+e7366quaMmWKnnjiCW3fvl0TJ06Up6enRo0a5XI/n3zyieP1hQsXdODAAadpOZdXKyDEAqgysbGx2rNnD3PSqlnr1q2VkpKi7Oxsffjhhxo1apSSkpIIstXg2LFjmjRpktauXStvb2+zy3E7gwYNcrzu0KGDunXrppCQEL3//vtMp6kGxcXF6tKli5555hlJUufOnbVnzx4tWrSoTCF2586djtdpaWnq2LGj075Tp04pICDA5f64sauMGjZsKLvdrpMnTzrtP3nyZJkuPGBV48eP1+eff66EhAQ1bdrU7HLciqenp8LCwnTTTTcpLi5OHTt21EsvvWR2WW5hx44dyszM1I033igPDw95eHgoKSlJL7/8sjw8PFRUVGR2iW6lbt26Cg8P16FDh8wuxS0EBgaW+GW5TZs2Onr0aLn7tNvtKiwsdNp38eJF1ajhejQlxJaRp6enbrrpJq1fv96xr7i4WOvXr2duGn7VDMPQ+PHjtXLlSm3YsEHNmzc3uyS3V1xcrIKCArPLcAu33Xabdu/erZSUFMfWpUsXjRgxQikpKWV+0hAqJi8vT4cPH1ZgYKDZpbiFXr16lVhS8bvvvlNISEi5+wwKCtLFixe1Y8cOx77NmzeXaXCE6QTlMGXKFI0aNUpdunRR165dNW/ePJ07d04xMTFml/arl5eX5/Sbd1pamlJSUlS/fn0m+Fex2NhYvfvuu/rkk0/k6+urjIwMSZKfn59q1aplcnW/ftOnT9egQYPUrFkz5ebm6t1331ViYqLWrFljdmluwdfXt8T879q1a6tBgwbMC68GU6dOVXR0tEJCQnTixAnNmDFDdrtdw4cPN7s0t/DII4+oZ8+eeuaZZzR06FBt27ZNixcv1uLFi8vdp4eHh373u99p0KBBGj58uPLz87V06VI9+OCDrndioFxeeeUVo1mzZoanp6fRtWtXY+vWrWaX5BYSEhIMSSW2UaNGmV3ar15p112SsWTJErNLcwtjxowxQkJCDE9PT6NRo0bGbbfdZnzxxRdml+XWIiMjjUmTJpldhlsYNmyYERgYaHh6ehpNmjQxhg0bZhw6dMjsstzKZ599ZrRv397w8vIyIiIijMWLF1e4z8zMTGPYsGFGw4YNjaCgIOPhhx828vLyXD6fdWIBAABgOUwnAAAAQJX74YcfXDrO1bm2jMQCAACgytntdscTuUqLn5f3FxcXu9QfI7EAAACoFuvWrVPDhg0lScePH9fQoUP11VdfSZLOnDmjvn37utwXIRYAAADVol27do6nnvr4+Mhmszme2pWZmVmmvlgnFgAAAJZDiAUAAECVq+zbsAixAAAAqHI2m+26+0o75moIsQDgBo4cOSKbzaaUlBSzSwHgppYtW6a6des63rdo0UI5OTmO9w0aNNCWLVtc7o8QCwDlMHr0aN11112O91FRUZo8ebJp9aSlpelPf/qTgoKC5O3traZNm2rw4ME6cOCAJCk4OFjp6ek8IhWAaYYOHSovL6+rttvtdnXt2tXl/lidAAAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZd+OAQEBJhbKABUIkZiAaCCRo8eraSkJL300kuy2Wyy2Ww6cuSIJGnPnj0aNGiQfHx81LhxY40cOVKnT592nBsVFaUJEyZo8uTJqlevnho3bqzXX39d586dU0xMjHx9fRUWFqZVq1Zd9fP37t2rw4cPa+HCherevbtCQkLUq1cvzZ49W927d5dUcjrB6NGjHbVeuSUmJkqSCgoKNHXqVDVp0kS1a9dWt27dHG0A8EtAiAWACnrppZfUo0cPjR07Vunp6UpPT1dwcLDOnj2rvn37qnPnzkpOTtbq1at18uRJDR061On8t956Sw0bNtS2bds0YcIEjRs3TkOGDFHPnj21c+dO3X777Ro5cqT++9//lvr5jRo1Uo0aNfThhx+qqKjI5Zov15qenq5JkybJ399fERERkqTx48dry5YtWr58ub799lsNGTJEAwcO1MGDByt2sQCgkvDYWQAoh9GjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxl59WI12au9qgQQPdcMMNjn2Xn25zrafZxMbGKiMjQ0uXLlWPHj30wQcfqF27dlq7du01a9y1a5dGjhyp+fPnq1evXpKk3bt3q6ioSOHh4U61JyUlOdUNAGbixi4AqCJ5eXmKjo7Ws88+W6ItMDDQ8bpmzZpObTabzWnf5XUTi4uLr/l5vr6+io6OVnR0tGbPnq0BAwZo9uzZ6t+/f6nHZ2Rk6M4779QDDzyg+++/36luu92uHTt2yG63O53j4+NzzRoAoLoQYgGgEnh6epaYj3rjjTfqo48+UmhoqDw8qvfbrc1mU0REhL766qtS2/Pz8zV48GBFREToxRdfdGrr3LmzioqKlJmZqVtvvbU6ygWAMmM6AQBUgtDQUH399dc6cuSITp8+reLiYsXGxurMmTMaPny4tm/frsOHD2vNmjWKiYlx+QYsV6SkpGjw4MH68MMPtW/fPh06dEjx8fF64403NHjw4FLPeeihh3Ts2DG9/PLLOnXqlDIyMpSRkaELFy4oPDxcI0aM0H333acVK1YoLS1N27ZtU1xcnP79739XWt0AUBGMxAJAJZg6dapGjRqltm3b6vz580pLS1NoaKg2b96sxx9/XLfffrsKCgoUEhKigQMHqkaNyhtDaNq0qUJDQzVr1izHUlqX3z/yyCOlnpOUlKT09HS1bdvWaX9CQoKioqK0ZMkSzZ49W3/5y1/0448/qmHDhurevbt+97vfVVrdAFARrE4AAAAAy2E6AQAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBwPswsAAADAr19MTIxLxy1ZssSl42yGYRgVKQgAAAC4nrvvvtvx+ty5c9qwYYOio6Md+woKCrRq1SoVFxe71B8hFgAAANUqLS1NHTp0UG5urmPfqVOnFBAQoKKiIpf6YE4sAAAAqlXNmjV18eJFp335+fny8HB9pishtpwMw1BOTo4YyAYAACiboKAgGYahdevWOfb95z//UbNmzVzugxu7yik3N1d+fn46efKk6tSpY3Y5bsUwDBUUFEiSvLy8ZLPZTK7IfXH9AQDlUaNGDY0YMULR0dEaMGCAzp8/r3Xr1mnmzJku98Gc2HLKycmRn5+fBgwYoJo1a5pdDmCKDz74QN7e3maXAQCwoPPnz2vWrFlav369PD09deedd+rRRx9VjRquTRRgJBYAAADVrlatWpozZ065zyfEVtCM/t+pvo/ZVbiXgkKbnlzdVpL09MB98vLgjwnV6UJRDT2xqo3ZZQAALCYpKcml4yIjI106jhBbQTVrFMvLgzmBZvHyMAix1c619fuAXxvm4wMV07dvXxmGcc3/dgzDcHmdWEJsBV0o4psYALiDgoICDRkyRBLzwYHyyMrKqtT+CLEAAACocpW9mlO51ok9duyYxowZo6CgIHl6eiokJESTJk3STz/95DgmKipKNptNNptN3t7eCg8PV1xcXKnrqm7ZskV2u1133HFHibYjR47IZrPJ39/f6akOktSpU6cSSzEcOnRIY8aMUbNmzeTl5aUmTZrotttu09KlS1VYWOg47nJtP9+WL19enksCAACAa0hKSnJpc1WZR2K///579ejRQ+Hh4Vq2bJmaN2+uvXv36tFHH9WqVau0detW1a9fX5I0duxYPfXUUyooKNCGDRv04IMPqm7duho3bpxTn/Hx8ZowYYLi4+N14sQJBQUFlfjc3NxcPf/885o1a9ZVa9u2bZv69eundu3aacGCBYqIiJAkJScna8GCBWrfvr06duzoOH7JkiUaOHCgUx9169Yt6yUBAADAdZQ2J7a091U2JzY2Nlaenp764osvVKtWLUlSs2bN1LlzZ7Vs2VJPPvmkXn31VUnSb37zGwUEBEiSYmJiNH/+fK1du9YpxObl5em9995TcnKyMjIy9Oabb+qJJ54o8bkTJkzQiy++qNjYWPn7+5doNwxDo0ePVnh4uDZv3uy0xlirVq00fPjwEqPAdevWddQHwDVX/meUn59vXiFANbvy3ztLrAPlk5qaqsaNG0u69Nf2W265RceOHZPNZtOpU6cUHh7ucl9lCrFnzpzRmjVr9PTTTzsC7GUBAQEaMWKE3nvvPS1cuNCpzTAMffnllzpw4IBatWrl1Pb+++8rIiJCrVu31r333qvJkydr+vTpJe5cGz58uNauXaunnnpK8+fPL1FbSkqK9u/fr2XLll11kdyK3ElaUFDguCtVuvSwA8AdXXkz48iRI02sBDBPQUFBiZ+DAK6vTp06jrmxPj4+MgxDfn5+ki79oliWXxDLNCf24MGDMgxDbdqUvkZkmzZtlJWVpVOnTkmSFi5cKB8fH3l5eal3794qLi7WxIkTnc6Jj4/XvffeK0kaOHCgsrOzS50PYbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAABVrFyrE7iakkeMGKEnn3xSWVlZmjFjhnr27KmePXs62lNTU7Vt2zatXLnyUjEeHho2bJji4+MVFRVVor8BAwbolltu0V//+le9++671/38Bg0aKCUlRdKlG80uXLjg1D537lz169fPaV9p83Elafr06ZoyZYrjfU5ODkEWbsnT/r///t955x2WGYLbyM/Pd/z1wcvLy+RqAOup7Gk4ZQqxYWFhstls2r9/v37/+9+XaN+/f7/q1aunRo0aSZL8/PwUFhYm6dK0gbCwMHXv3t0RHOPj41VYWOgUHA3DkJeXl+bPn+8YXr7SnDlz1KNHDz366KNO+y9PU0hNTVXnzp0lSXa73fH5Hh4lv9SAgABH+/V4eXnxTQuQdOWsHG9vb0Is3BIPOgDK7uf/3dSsWVOhoaHXPOZayjSdoEGDBurfv78WLlyo8+fPO7VlZGRo6dKlGjZsWKkF+Pj4aNKkSZo6daoMw1BhYaHefvttvfDCC0pJSXFs33zzjYKCgrRs2bJSa+jatavuvvtuTZs2zWl/586dFRERoeeff97lu9oAAABQPbZs2aIGDRo43gcHB2v37t2O9/7+/kpPT3e5vzJPJ5g/f7569uypAQMGaPbs2U5LbDVp0kRPP/30Vc996KGH9Pe//10fffSRPDw8lJWVpfvvv7/EiOs999yj+Ph4Pfzww6X28/TTT6tdu3ZOo6s2m01LlixR//791atXL02fPl1t2rTRxYsXtXHjRp06dUp2u92pn7NnzyojI8Npn6+vr2rXrl3WywIAAIBr6Nq163WPKW0Fqqsp88MOWrVqpeTkZLVo0UJDhw5Vy5Yt9eCDD6pPnz7asmWLY43Y0tSvX1/33XefZs6cqfj4ePXr16/UKQP33HOPkpOT9e2335baT3h4uMaMGVNieZ/u3btrx44dat26tWJjY9W2bVv17NlTy5Yt09y5c0usTxsTE6PAwECn7ZVXXinT9bhyfiAA4NfLy8tLH3zwgT744AOmlwG/ADaDxe7KJScnR35+fkqeG6IGvsyNqk4FhTZN/bydJOn53+2Vlwf/hKvTldef58cDAMxSrtUJ8D8XimqooPD6x6HyFBTaSn2N6nGhqFxPqwYAoFIRYito1tpw1axZ0+wy3NaTq9uaXQIAAKgE//3vf/Xcc89pxowZLh3PkAoAAABMl5eXp1mzZrl8PCOxFfT22287Hp+G6mEYhuMRwF5eXqzXaCJubgEAVKay/EwnxFYQi72bg2eWm+fKXyIAAKhMZVlvgBALoEwKCgo0ZMgQSaxOAABwXYsWLa4ZUouKisrUHyEWQJlcuT5zfn4+IRYA4JLJkydfsz0vL0//93//53J/hFgAAABUuYkTJ16zPTMzs0whltUJAAAAYDmEWABlUlxcXOprAAAqqiyrExBiAZRJbm5uqa8BAKiICxcuqG/fvi4fX+UhdtGiRfL19VVh4f+ezZqXl6eaNWsqKirK6djExETZbDYdPnxYoaGhmjdvXon+Zs6cqU6dOpX6PjQ0VDab7arb6NGjJemq7cuXL6/krx4AAADX8/bbb6tDhw6y2+0un1PlN3b16dNHeXl5Sk5OVvfu3SVJmzZtUkBAgL7++munu5sTEhLUrFkztWzZslyftX37dsfyDF999ZXuuecepaamOh5GcOXaokuWLNHAgQOdzq9bt265PhcAAABld+rUKT300ENat26dXnjhBY0dO9blc6s8xLZu3VqBgYFKTEx0hNjExEQNHjxYGzZs0NatWx0jsomJierTp0+5P6tRo0aO1/Xr15ck+fv7lxpO69atq4CAgHJ/FgAAAFz380fKFhYW6rXXXlP79u21e/duhYSElKm/alliq0+fPkpISNC0adMkXRpxfeyxx1RUVKSEhARFRUXp/Pnz+vrrrzVmzJjqKKnMCgoKnJ5SlJOTY2I1AAAA1vLJJ584vS8sLFRWVpbuvvvuMgdYqRpD7OTJk1VYWKjz589r165dioyM1MWLF7Vo0SJJ0pYtW1RQUOA0Evv444+XWC/swoULatu2bYVrGj58eIl5F/v27VOzZs1KPT4uLq7EbxAAAABwzc6dO0vs++yzzzR27FitWLFC8fHxat68ucv9VcvqBFFRUTp37py2b9+uTZs2KTw8XI0aNVJkZKRjXmxiYqJatGjhFCIfffRRpaSkOG0PP/xwpdQ0d+7cEn0HBQVd9fjp06crOzvbsR07dqxS6gAAAHBX0dHR2rt3rxo0aKAOHTpo4cKFLp9bLSOxYWFhatq0qRISEpSVlaXIyEhJUlBQkIKDg/XVV18pISGhxLIKDRs2VFhYmNO+y3NdKyogIKBE39fi5eUlLy+vSvlsAAAAXNKgQQN98MEHevfddxUbG6s///nPLp1XbevE9unTR4mJiUpMTHRaWqt3795atWqVtm3bVqGbugAAAGBdf/rTn7R3716Xj6+WkVjpUoiNjY3VxYsXHSOxkhQZGanx48frwoUL1Rpiz549q4yMDKd9vr6+ql27drXVAAAA4C6SkpJcOu5a0zuvVK0h9vz584qIiFDjxo0d+yMjI5Wbm+tYiqu6xMTElNgXFxfnWEEBAAAAladv374yDMPxaNkrX19mGIbLjzS3GYZhVHqVbiAnJ0d+fn7Kzs52PEwBcAdnzpzRqFGjJElvvfVWpc1TBwD8ul25POmRI0d0yy236Pjx4459p06dUnh4uOPBVddTbSOxAH4datSoUeprAACu5cpBP19fXxUXFzvtO3/+vMoytspPIAAAAFQrf39/nT9/Xunp6Y59Bw8elL+/v8t9MBILoEy8vb1LfQ0AgKtq166tTp066Q9/+IOmTp2q/Px8PfXUU7rllltc7oM5seXEnFi4K8MwHI9g9vLyKjEpHwAAV2zfvl333HOPfvzxR0lS27Zt9emnn7r81C5CbDllZ2erbt26OnbsGCEWAAC4DV9f30obwCgsLFRqaqo8PT0VFhZWpn4JseX0/fffq2XLlmaXAQAAUK0yMzPVqFEjs8tgTmx5XV5W6OjRo/Lz8zO5GveTk5Oj4OBgRsJNwvU3F9ffPFx7c3H9zXX5+nt6epbrfFemCRiGoSNHjrjUHyG2nC4vLeTn58d/SCaqU6cO199EXH9zcf3Nw7U3F9ffXOWdSnD06FE99dRT8vX1lSSdPn1azz33nJ599llJUl5env7v//7P5f4IsQAAAKgWDzzwgOPJrd9//73mzp2riRMnSro0TaEsIZZ1YgEAAGA5hNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrl/a9Wd1AgAAAFQ5u92uEydOOE0n6NSpk3JyciRdmk4QGBiooqIil/pjJBYAAABV7qGHHtJvfvMbx/smTZpo1apVjve+vr6Ki4tzuT9GYgEAAGA5jMQCAADAcgix5bRgwQKFhobK29tb3bp107Zt28wuyS1s3LhR0dHRCgoKks1m08cff2x2SW4jLi5ON998s3x9feXv76+77rpLqampZpflNl599VV16NDBsT5mjx49nP4Mh+o1Z84c2Ww2TZ482exS3MLMmTNls9mctoiICLPLcis//vij7r33XjVo0EC1atXSDTfcoOTkZFNrIsSWw3vvvacpU6ZoxowZ2rlzpzp27KgBAwYoMzPT7NJ+9c6dO6eOHTtqwYIFZpfidpKSkhQbG6utW7dq7dq1unjxom6//XadO3fO7NLcQtOmTTVnzhzt2LFDycnJ6tu3rwYPHqy9e/eaXZrb2b59u1577TV16NDB7FLcSrt27ZSenu7YvvzyS7NLchtZWVnq1auXatasqVWrVmnfvn164YUXVK9ePVPrYk5sOXTr1k0333yz5s+fL0kqLi5WcHCwJkyYoGnTpplcnfuw2WxauXKl7rrrLrNLcUunTp2Sv7+/kpKS1Lt3b7PLcUv169fXc889p/vvv9/sUtxGXl6ebrzxRi1cuFCzZ89Wp06dNG/ePLPL+tWbOXOmPv74Y6WkpJhdiluaNm2aNm/erE2bNpldihNGYsvowoUL2rFjh/r16+fYV6NGDfXr109btmwxsTKgemVnZ0u6FKRQvYqKirR8+XKdO3dOPXr0MLsctxIbG6s77rjD6WcAqsfBgwcVFBSkFi1aaMSIETp69KjZJbmNTz/9VF26dNGQIUPk7++vzp076/XXXze7LEJsWZ0+fVpFRUWONc4ua9y4sTIyMkyqCqhexcXFmjx5snr16qX27dubXY7b2L17t3x8fOTl5aWHH35YK1euVNu2bc0uy20sX75cO3fuLNMSQKgc3bp105tvvqnVq1fr1VdfVVpamm699Vbl5uaaXZpb+P777/Xqq6+qVatWWrNmjcaNG6eJEyfqrbfeMrUuD1M/HYAlxcbGas+ePcxJq2atW7dWSkqKsrOz9eGHH2rUqFFKSkoiyFaDY8eOadKkSVq7dq28vb3NLsftDBo0yPG6Q4cO6tatm0JCQvT+++8znaYaFBcXq0uXLnrmmWckSZ07d9aePXu0aNEijRo1yrS6GIkto4YNG8put+vkyZNO+0+ePKmAgACTqgKqz/jx4/X5558rISFBTZs2Nbsct+Lp6amwsDDddNNNiouLU8eOHfXSSy+ZXZZb2LFjhzIzM3XjjTfKw8NDHh4eSkpK0ssvvywPDw+XnzCEylG3bl2Fh4fr0KFDZpfiFgIDA0v8stymTRvTp3QQYsvI09NTN910k9avX+/YV1xcrPXr1zM3Db9qhmFo/PjxWrlypTZs2KDmzZubXZLbKy4uVkFBgdlluIXbbrtNu3fvVkpKimPr0qWLRowYoZSUFNntdrNLdCt5eXk6fPiwAgMDzS7FLfTq1avEkorfffedQkJCTKroEqYTlMOUKVM0atQodenSRV27dtW8efN07tw5xcTEmF3ar15eXp7Tb95paWlKSUlR/fr11axZMxMr+/WLjY3Vu+++q08++US+vr6OOeB+fn6qVauWydX9+k2fPl2DBg1Ss2bNlJubq3fffVeJiYlas2aN2aW5BV9f3xLzv2vXrq0GDRowL7waTJ06VdHR0QoJCdGJEyc0Y8YM2e12DR8+3OzS3MIjjzyinj176plnntHQoUO1bds2LV68WIsXLza3MAPl8sorrxjNmjUzPD09ja5duxpbt241uyS3kJCQYEgqsY0aNcrs0n71SrvukowlS5aYXZpbGDNmjBESEmJ4enoajRo1Mm677Tbjiy++MLsstxYZGWlMmjTJ7DLcwrBhw4zAwEDD09PTaNKkiTFs2DDj0KFDZpflVj777DOjffv2hpeXlxEREWEsXrzY7JIM1okFAACA5TAnFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgDcwJEjR2Sz2ZSSkmJ2KQBQKQixAFAOo0eP1l133eV4HxUVpcmTJ5tWT1pamv70pz8pKChI3t7eatq0qQYPHqwDBw5IkoKDg5Wenq727dubViMAVCYPswsAAFTMxYsX1b9/f7Vu3VorVqxQYGCgjh8/rlWrVuns2bOSJLvdroCAAHMLBYBKxEgsAFTQ6NGjlZSUpJdeekk2m002m01HjhyRJO3Zs0eDBg2Sj4+PGjdurJEjR+r06dOOc6OiojRhwgRNnjxZ9erVU+PGjfX666/r3LlziomJka+vr8LCwrRq1aqrfv7evXt1+PBhLVy4UN27d1dISIh69eql2bNnq3v37pJKTicYPXq0o9Yrt8TERElSQUGBpk6dqiZNmqh27drq1q2bow0AfgkIsQBQQS+99JJ69OihsWPHKj09Xenp6QoODtbZs2fVt29fde7cWcnJyVq9erVOnjypoUOHOp3/1ltvqWHDhtq2bZsmTJigcePGaciQIerZs6d27typ22+/XSNHjtR///vfUj+/UaNGqlGjhj788EMVFRW5XPPlWtPT0zVp0iT5+/srIiJCkjR+/Hht2bJFy5cv17fffqshQ4Zo4MCBOnjwYMUuFgBUEpthGIbZRQCA1YwePVpnz57Vxx9/LOnSiGqnTp00b948xzGzZ8/Wpk2btGbNGse+48ePKzg4WKmpqQoPD1dUVJSKioq0adMmSVJRUZH8/Px099136+2335YkZWRkKDAwUFu2bHGMrP7cggUL9Nhjj8lut6tLly7q06ePRowYoRYtWki6NBLbvHlz7dq1S506dXI6d8WKFRoxYoTWrVunXr166ejRo2rRooWOHj2qoKAgx3H9+vVT165d9cwzz1T08gFAhTESCwBV5JtvvlFCQoJ8fHwc2+WRzsOHDzuO69Chg+O13W5XgwYNdMMNNzj2NW7cWJKUmZl51c+KjY1VRkaGli5dqh49euiDDz5Qu3bttHbt2mvWuGvXLo0cOVLz589Xr169JEm7d+9WUVGRwsPDnWpPSkpyqhsAzMSNXQBQRfLy8hQdHa1nn322RFtgYKDjdc2aNZ3abDab0z6bzSZJKi4uvubn+fr6Kjo6WtHR0Zo9e7YGDBig2bNnq3///qUen5GRoTvvvFMPPPCA7r//fqe67Xa7duzYIbvd7nSOj4/PNWsAgOpCiAWASuDp6VliPuqNN96ojz76SKGhofLwqN5vtzabTREREfrqq69Kbc/Pz9fgwYMVERGhF1980amtc+fOKioqUmZmpm699dbqKBcAyozpBABQCUJDQ/X111/ryJEjOn36tIqLixUbG6szZ85o+PDh2r59uw4fPqw1a9YoJibG5RuwXJGSkqLBgwfrww8/1L59+3To0CHFx8frjTfe0ODBg0s956GHHtKxY8f08ssv69SpU8rIyFBGRoYuXLig8PBwjRgxQvfdd59WrFihtLQ0bdu2TXFxcfr3v/9daXUDQEUwEgsAlWDq1KkaNWqU2rZtq/PnzystLU2hoaHavHmzHn/8cd1+++0qKChQSEiIBg4cqBo1Km8MoWnTpgoNDdWsWbMcS2ldfv/II4+Uek5SUpLS09PVtm1bp/0JCQmKiorSkiVLNHv2bP3lL3/Rjz/+qIYNG6p79+763e9+V2l1A0BFsDoBAAAALIfpBAAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAy/EwuwAAAAD8+sXExLh03JIlS1w6zmYYhlGRggAAAIDrsdvtGjhwoLy8vCRJ586d04YNGxQdHS1JKigo0KpVq1RcXOxSf4RYAAAAVDm73a4TJ06ocePGkqS0tDR16NBBubm5kqRTp06pcePGLodY5sQCAACg2v18HLWs46qEWAAAAFQ5X19fZWVlOd5nZWXp3LlzysvLkyRlZGSofv36LvdHiAUAAECVi4iI0CuvvKLi4mIVFxdr4cKFCgoK0tSpU7V582Y9+eSTuvnmm13ujzmxAAAAqHIff/yx/vCHP6h27doqLi5W7dq1tXr1av3xj3/UwYMHFRwcrM8++0w33HCDS/0RYgEAAFAtNm7cqM8++0y1atXS2LFjFRwcLEn66aef1KBBgzL1RYgFAACA5TAnFgAAAJbDE7sAAABQ5ex2u0vLaLm6TiwhFgAAAFVu5cqVldofc2IBAABgOYzEAgAAoNocO3ZMH374oQ4ePChJatWqlf7whz84VipwFSOxAAAAqBbz58/XX/7yFxUWFsrPz0+GYSgnJ0ceHh6aO3eu/vznP7vcF6sTAAAAoMpt2LBBkydP1vjx45Wenq4zZ84oKytL6enpmjhxoiZMmKCEhASX+2MkFgAAAFXud7/7nRo2bKg333yz1PYxY8bo1KlT+uyzz1zqj5FYAAAAVLmvv/5ao0ePvmr7fffdp6+//trl/gixAAAAqHI5OTlq3ry54/1///tfrVixwvG+ZcuWys3Ndbk/QiwAAACqXIMGDXTmzBnH+4yMDI0aNcrxPjs7W02bNnW5P5bYAgAAQJXr0aOH3nnnHdWrV082m03Hjx93at+wYYO6dOnicn/c2AUAAIAqt27dOg0YMMDx6Fmbzabf/OY3jikEN998s1588UXdeuutLvVHiAUAAEC12Lt3r4qKihzv7Xa72rVrV66+CLEAAACwHG7sAgAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOILSfDMJSTkyPuiwMAAKh+POygnHJzc+Xn56fs7GzVqVPH7HIAAAB+0Vq0aHHdwT/DMHTkyBGX+iPEAoCFGIahgoICs8twS1de+zp16qhGDf6YCZTF5MmTr9p28uRJLV26VEePHnW5P0IsAFhIQUGBhgwZYnYZbu+dd95R3bp1zS4DsJSJEyc6vS8qKtK///1vLVmyRGvWrFFkZKT+8Y9/uNwfIRYAAADV5sCBA3rjjTf0r3/9S7Vr11ZMTIzmz5+vJk2alKkfQiwAWNQzg/bL015sdhluI6/ArplrI8wuA7C0rKwstWvXTr1799by5cvVu3fvcvdFiAUAC7nypoiaNYrl5cEKKdWloJBfGMx05ZxkLy8v2Ww2kytCefzmN7/RH//4R3388ceaMWOGYmJiNGTIENWqVavMfTErHQAs5Mqbui4U8UMc7uPyfPAhQ4Zwc6OFeXl5aenSpUpPT9fQoUP18ssvKzAwUA899JC+/vrrMvVVrhB77NgxjRkzRkFBQfL09FRISIgmTZqkn376yXFMVFSUbDabbDabvL29FR4erri4uFKXVtiyZYvsdrvuuOOOEm1HjhyRzWaTv7+/cnNzndo6deqkmTNnOu07dOiQxowZo2bNmsnLy0tNmjTRbbfdpqVLl6qwsNBx3OXafr4tX768TNdi7ty5ZToelePZZ59VdHS0nn32WbNLAQAAZVSnTh2NGzdOycnJ2rhxo2rVqqU77rhD7dq1c7mPMofY77//Xl26dNHBgwe1bNkyHTp0SIsWLdL69evVo0cPnTlzxnHs2LFjlZ6ertTUVE2fPl1/+9vftGjRohJ9xsfHa8KECdq4caNOnDhR6ufm5ubq+eefv2Zt27Zt04033qj9+/drwYIF2rNnjxITE/XAAw/o1Vdf1d69e52OX7JkidLT0522u+66q0zXY8uWLcrMzCzTOaiYzMxMffnll5KkL7/8kusPAIAF1K9fX/Xq1SuxRUZG6u2339aFCxe0f/9+l/sr85zY2NhYeXp66osvvnDMX2jWrJk6d+6sli1b6sknn9Srr74q6dK8h4CAAEly3Hm2du1ajRs3ztFfXl6e3nvvPSUnJysjI0NvvvmmnnjiiRKfO2HCBL344ouKjY2Vv79/iXbDMDR69GiFh4dr8+bNTuv3tWrVSsOHDy8xCly3bl1HfRXx+OOPa8mSJRXuB655/PHHS7zn+gMA8Mv20ksvVeqTTssUYs+cOaM1a9bo6aefLjEBNyAgQCNGjNB7772nhQsXOrUZhqEvv/xSBw4cUKtWrZza3n//fUVERKh169a69957NXnyZE2fPr3EhO3hw4dr7dq1euqppzR//vwStaWkpGj//v1atmzZVRegrqpJ4KdPn9b69et12223VUn/+J/169fr9OnTTvu4/gCqxRU/e/Pz85Wfn29eLW7oyuvNI9+t6Y9//KNq1qxZaf2VKcQePHhQhmGoTZs2pba3adNGWVlZOnXqlCRp4cKF+uc//6kLFy7o4sWL8vb2LrHQbXx8vO69915J0sCBA5Wdna2kpCRFRUU5HWez2TRnzhxFR0frkUceUcuWLZ3av/vuO0lS69atHfsyMzPVokULx/t//OMf+vOf/+x4P3z4cNntdqd+9u3bp2bNmpX42goKCpwmkufk5Di1v/LKK4qKiirRHypPUVGRXnnllVLbuP4AqtqVN9KNHTvWxEpQUFBQrrvZYa4mTZroT3/6k+6//37dcMMNFe6vXDd2ufob0IgRI5SSkqLNmzdr0KBBevLJJ9WzZ09He2pqqrZt26bhw4dLkjw8PDRs2DDFx8eX2t+AAQN0yy236K9//atLn9+gQQOlpKQoJSVFdevW1YULF5za586d62i/vAUFBZXaV1xcnPz8/BxbcHCwU3tRUZFWr17tUl0on9WrV6uoqKjUNq4/AAC/bNOmTdO2bdvUuXNndevWTa+99lqJm/bLokwjsWFhYbLZbNq/f79+//vfl2jfv3+/6tWrp0aNGkmS/Pz8FBYWJunStIGwsDB1795d/fr1k3RpFLawsNApOBqGIS8vL82fP19+fn4lPmPOnDnq0aOHHn30Uaf9l6cppKamqnPnzpIku93u+HwPj5JfakBAgKP9eqZPn64pU6Y43ufk5DgFWbvdroEDB7rUF8pn4MCBev3110sNslx/AFXN0/6/AZzXX3+dx85Ws/z8fI0cOVLSpWWaYD1TpkzRlClTtHnzZkVGRio/P19TpkzRH/7wB40ZM0aRkZFl6q9MIbZBgwbq37+/Fi5cqEceecRpKD8jI0NLly7VfffdV+rcUx8fH02aNElTp07Vrl27VFRUpLffflsvvPCCbr/9dqdj77rrLi1btkwPP/xwiX66du2qu+++W9OmTXPa37lzZ0VEROj555/X0KFDrzovtry8vLyu+R/NxIkT+VN2FbPb7ZowYYLmzZtXoo3rD6DKXfGjzdvbW97e3ubV4uZ40IG11atXTzabTd9884327Nmjd955RyNHjpS3t7diYmI0ffp0l/opc9KbP3++CgoKNGDAAG3cuFHHjh3T6tWr1b9/fzVp0kRPP/30Vc996KGH9N133+mjjz7S559/rqysLN1///1q376903bPPfdcdUqBJD399NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJkHP27FllZGQ4befOnSvrJVHDhg3Vt2/fMp+HsrvtttvUsGFDp31cfwAArKl9+/Z69tlnlZaWpiFDhrg8ZVQqR4ht1aqVkpOT1aJFCw0dOlQtW7bUgw8+qD59+mjLli2qX7/+Vc+tX7++7rvvPs2cOVPx8fHq169fqVMG7rnnHiUnJ+vbb78ttZ/w8HCNGTOmxJ2h3bt3144dO9S6dWvFxsaqbdu26tmzp5YtW6a5c+c6Le0lXVr2KzAw0Gm72o1D18KC+9Xr59eb6w8AgDV98803evTRRxUSEqKPP/64TD/Ty7xOrCSFhITozTffvOYxiYmJpe4v7WEHP9e1a1enm8dKu5Hstdde02uvvVZif3h4+HVru1qf5dGjR49S161F1fH399ctt9yiL7/8UrfccgvXH27lymlNV87RBH7tvLy89MEHHzhew7p++uknGYahG264QUePHtWQIUP04Ycfqnv37mXqp1whFv/zyCOPmF2CW3r88cdLPPQAcAdXzgVkWiDcyeXH2MO6nnvuOX300UdKTk5Wjx49NGbMGA0bNky/+c1vytUfIRYALOpCUQ1JxWaX4TYuFlXuDcOAu3nxxRc1cuRIvf322woPD69wf4RYALCoJ1aV/uAZAPglOn78uOMm+6ysLB08eFA2m01hYWGqV69emfvj10oAAABUObvdrrS0NP32t79Vw4YN1b17d3Xr1k0NGzbUb3/7W/3www9l6s9m8ADicsnJyZGfn5+ys7NVp04ds8sB4CYMw3B6BDaqz5XXvk6dOpW+Hjnwa3fy5EndeOONstvtio2NVUREhKRLD6qaP3++ioqKtHPnTjVu3Nil/gix5USIBWAGQizcFb9EWN/EiROVkJCgbdu2OT0wS7r0RLabb75ZUVFRLi93SogtJ0IsADPk5+dryJAhZpcBmOqdd97hsb8W1KJFCz3//PO6++67S23/+OOP9Ze//EWHDx92qT9+jQEAAECVS09PV4cOHa7a3r59e/34448u98fqBABgUa/8fay8PGuaXQZQLXLy/qupf3/T7DJQAY0aNVJhYeFV2y9evOjyfFiJEAsLunJelJeXl9Pi74A78fKsKS8vQizcg2fB/yILMyGt6aabbtIXX3zhuKHr51avXq2OHTu63B/TCWA5BQUFGjJkiIYMGcINLgDgJi5c/N8IHt/7remRRx7Ra6+9puzs7BJtOTk5ev311zV58mSX+2MkFgAAAFWud+/e2rt3b6ltderU0b59+8rUX5WPxC5atEi+vr5OcyDy8vJUs2ZNRUVFOR2bmJgom82mw4cPKzQ0VPPmzSvR38yZM9WpU6dS34eGhspms111Gz16tCRdtX358uWV/NUDAACgKlT5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr68vb0lSQkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjqWwLpyTbIlS5Zo4MCBTuezXAcAAEDVaNGihUvzmdPS0lzqr8pDbOvWrRUYGKjExERHiE1MTNTgwYO1YcMGbd261TEim5iYqD59+pT7sxo1auR4Xb9+fUmSv79/qeG0bt26CggIKPdnwTxX/geQn59vYiVA9bvy3zw3twCwkp/Pd12/fr3WrFmjv/71r/L19S1zf9UyJ7ZPnz5KSEjQtGnTJF0acX3sscdUVFSkhIQERUVF6fz58/r66681ZsyY6iipzAoKCpwmkufk5JhYjXu78v+HkSNHmlgJYK4LFwvl7e1pdhkA4JKJEyc6Xq9bt07Tp09XnTp1lJiYqH//+9/y9Czb97NqWZ2gT58+2rx5swoLC5Wbm6tdu3YpMjJSvXv3VmJioiRpy5YtKigocBqJffzxx+Xj4+O0PfPMM5VS0/Dhw0v0ffTo0aseHxcXJz8/P8cWHBxcKXUAAAC4k/Xr1+vOO+/UQw89pP379+vHH3/UH//4RxUXF5epn2oZiY2KitK5c+e0fft2ZWVlKTw8XI0aNVJkZKRiYmKUn5+vxMREtWjRQs2aNXOc9+ijjzpuxrrs5Zdf1saNGytc09y5c9WvXz+nfUFBQVc9fvr06ZoyZYrjfU5ODkHWJF5eXo7X77zzjmNONeAO8vPzHX+B8KzJAjMArCUhIUF33nmnHnzwQb344ouSLo3K9uzZUw888IDeeOMNl/uqlu+AYWFhatq0qRISEpSVlaXIyEhJl0JjcHCwvvrqKyUkJKhv375O5zVs2FBhYWFO+y7Pda2ogICAEn1fi5eXl1N4gnmufLiBt7c3IRZuiwd9ALCSpKQkRUdH64EHHnBagSooKEjr1q3TLbfcoqlTp+r55593qb9qe9hBnz59lJiYqMTERKeltXr37q1Vq1Zp27ZtFbqpCwAAAL9c0dHRiomJ0UsvvVSiLSwsTKtXr9Y///lPl/urtr9F9enTR7Gxsbp48aJjJFaSIiMjNX78eF24cKFaQ+zZs2eVkZHhtM/X11e1a9euthoAAADcxahRo/TKK69ctb1Tp0769NNPXe6vWkPs+fPnFRERocaNGzv2R0ZGKjc317EUV3WJiYkpsS8uLs6xggJ+uby8vPTBBx84XgMAfv2unAPO935rulaAvax3794u92czWGiwXHJycuTn56fs7GzHwxQAoKrl5+dryJAhkqTFz/5ZXl41Ta4IqB45uf/VhL++LunSTb08oAjc2goAFlVw4aLZJQDVhn/v+DlCLABY1OVRKQBwR9W2OgEAAABwNT/99JOaN2/u8vHMiS2n7Oxs1a1bV8eOHWNOLIBqYxiG06OXAXdx5b/9OnXqqEYNxuHM4uvrWyXrVGdmZiogIMDlJ3cxnaCcfvrpJ0niqV0AAMCtZGZmqlGjRmaXQYgtr8tPDjt69Kj8/PxMrsb9XH7sLyPh5uD6m4vrbx6uvbm4/ua6fP09PT3LdX5SUtI128+cOVOm/gix5XT5zxh+fn78h2SiOnXqcP1NxPU3F9ffPFx7c3H9zVXeqQR9+/aVYRiVNhWBEAsAAIAql5WVdc32U6dOqVWrVi73R4gFAABAlbve6Hl+fn6Z+uPWvnLy8vLSjBkzePSdSbj+5uL6m4vrbx6uvbm4/uaqjutflqkGLLEFAAAA0+Xm5urhhx/W0qVLXTqekVgAAACY7q233tLHH3/s8vHMiQUAAIBpjh49qjFjxiglJUXx8fEun8dILAAAAEzx1ltvqWPHjqpVq5b27t2rP/7xjy6fy0gsAAAAqlyLFi105a1YhYWFSk9P16JFi/TAAw+UuT9GYstpwYIFCg0Nlbe3t7p166Zt27aZXZJb2Lhxo6KjoxUUFCSbzVamuTOomLi4ON18883y9fWVv7+/7rrrLqWmpppdltt49dVX1aFDB8ci7z169NCqVavMLsttzZkzRzabTZMnTza7FLcwc+ZM2Ww2py0iIsLsstzKjz/+qHvvvVcNGjRQrVq1dMMNNyg5OblMfUyePFmPPPKI0xYcHKz4+HgdOHCgzDUxElsO7733nqZMmaJFixapW7dumjdvngYMGKDU1FT5+/ubXd6v2rlz59SxY0eNGTNGd999t9nluJWkpCTFxsbq5ptvVmFhoZ544gndfvvt2rdvn2rXrm12eb96TZs21Zw5c9SqVSsZhqG33npLgwcP1q5du9SuXTuzy3Mr27dv12uvvaYOHTqYXYpbadeundatW+d47+FBhKkuWVlZ6tWrl/r06aNVq1apUaNGOnjwoOrVq1emfiZOnFhi34MPPqjJkyfrxhtv1KxZszR16lSXl9liia1y6Natm26++WbNnz9fklRcXKzg4GBNmDBB06ZNM7k692Gz2bRy5UrdddddZpfilk6dOiV/f38lJSWpd+/eZpfjlurXr6/nnntO999/v9mluI28vDzdeOONWrhwoWbPnq1OnTpp3rx5Zpf1qzdz5kx9/PHHSklJMbsUtzRt2jRt3rxZmzZtqrLP+Pe//62xY8cqNDRUX331lUvnMJ2gjC5cuKAdO3aoX79+jn01atRQv379tGXLFhMrA6pXdna2pEtBCtWrqKhIy5cv17lz59SjRw+zy3ErsbGxuuOOO5x+BqB6HDx4UEFBQWrRooVGjBiho0ePml2S2/j000/VpUsXDRkyRP7+/urcubNef/31Sv2MO+64Q3v37lXTpk1dPocQW0anT59WUVGRGjdu7LS/cePGysjIMKkqoHoVFxdr8uTJ6tWrl9q3b292OW5j9+7d8vHxkZeXlx5++GGtXLlSbdu2Nbsst7F8+XLt3LlTcXFxZpfidrp166Y333xTq1ev1quvvqq0tDTdeuutys3NNbs0t/D999/r1VdfVatWrbRmzRqNGzdOEydO1FtvvVWpn1OvXj29//77Lh/PhBIAZRYbG6s9e/boyy+/NLsUt9K6dWulpKQoOztbH374oUaNGqWkpCSCbDU4duyYJk2apLVr18rb29vsctzOoEGDHK87dOigbt26KSQkRO+//z7TaapBcXGxunTpomeeeUaS1LlzZ+3Zs0eLFi3SqFGjXO4nJibmuscYhqE333zTpf4YiS2jhg0bym636+TJk077T548qYCAAJOqAqrP+PHj9fnnnyshIaFMf/ZBxXl6eiosLEw33XST4uLi1LFjR7300ktml+UWduzYoczMTN14443y8PCQh4eHkpKS9PLLL8vDw0NFRUVml+hW6tatq/DwcB06dMjsUtxCYGBgiV+W27RpU+YpHdnZ2Y7txIkT+te//uW0LzMzU2+//bbL/TESW0aenp666aabtH79escNRcXFxVq/fr3Gjx9vbnFAFTIMQxMmTNDKlSuVmJio5s2bm12S2ysuLlZBQYHZZbiF2267Tbt373baFxMTo4iICD3++OOy2+0mVeae8vLydPjwYY0cOdLsUtxCr169Siyp+N133ykkJKRM/axYscLxOi0tTR06dHDad+rUqTINCBJiy2HKlCkaNWqUunTpoq5du2revHk6d+6cS8PkqJi8vDyn37zT0tKUkpKi+vXrq1mzZiZW9usXGxurd999V5988ol8fX0dc8D9/PxUq1Ytk6v79Zs+fboGDRqkZs2aKTc3V++++64SExO1Zs0as0tzC76+viXmf9euXVsNGjRgXng1mDp1qqKjoxUSEqITJ05oxowZstvtGj58uNmluYVHHnlEPXv21DPPPKOhQ4dq27ZtWrx4sRYvXlzuPmvWrKmLFy867cvPzy/b0mkGyuWVV14xmjVrZnh6ehpdu3Y1tm7danZJbiEhIcGQVGIbNWqU2aX96pV23SUZS5YsMbs0tzBmzBgjJCTE8PT0NBo1amTcdtttxhdffGF2WW4tMjLSmDRpktlluIVhw4YZgYGBhqenp9GkSRNj2LBhxqFDh8wuy6189tlnRvv27Q0vLy8jIiLCWLx4cYX6KyoqMjw9PY21a9c69i1atMgICwtzuQ/WiQUAAEC1GzNmjJYtW6YBAwbo/PnzWrdunWbOnKm//vWvLp1PiAUAAEC1O3/+vGbNmqX169fL09NTd955px599FHVqOHaugOEWAAAAFgON3YBAACgyiUlJbl0XGRkpEvHMRILAACAKme322UYhmw2m2Nfae+Li4td6o+HHQAAAKBapKamKisrS1lZWdq1a5d8fHx05swZZWVl6bvvvnMKtNfDdAIAAABUizp16qhOnTqSJB8fHxmGIT8/P0mX1oktywQBRmIBAABgOYRYAAAAVLnKvg2LEAsAbuDIkSOy2WxKSUkxuxQAburn811r1qyp0NDQax5zLYRYACiH0aNH66677nK8j4qK0uTJk02rJy0tTX/6058UFBQkb29vNW3aVIMHD9aBAwckScHBwUpPT1f79u1NqxGAe9uyZYsaNGjgeB8cHKzdu3c73vv7+ys9Pd3l/rixCwAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZeWtgkICDC3UABurWvXrtc9xt/f3+X+GIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKwhO7AKAcRo8erbNnz+rjjz+WdGlEtVOnTpo3b57jmNmzZ2vTpk1as2aNY9/x48cVHBys1NRUhYeHKyoqSkVFRdq0aZMkqaioSH5+frr77rv19ttvS5IyMjIUGBioLVu2OEZWf27BggV67LHHZLfb1aVLF/Xp00cjRoxQixYtJF0aiW3evLl27dqlTp06OZ27YsUKjRgxQuvWrVOvXr109OhRtWjRQkePHlVQUJDjuH79+qlr16565plnKnr5AKDCGIkFgCryzTffKCEhQT4+Po7t8kjn4cOHHcd16NDB8dput6tBgwa64YYbHPsaN24sScrMzLzqZ8XGxiojI0NLly5Vjx499MEHH6hdu3Zau3btNWvctWuXRo4cqfnz56tXr16SpN27d6uoqEjh4eFOtSclJTnVDQBm4sYuAKgieXl5io6O1rPPPluiLTAw0PG6Zs2aTm02m81p3+UlZ673PHFfX19FR0crOjpas2fP1oABAzR79mz179+/1OMzMjJ055136oEHHtD999/vVLfdbteOHTtkt9udzvHx8blmDQBQXQixAFAJPD09S8xHvfHGG/XRRx8pNDRUHh7V++3WZrMpIiJCX331Vant+fn5Gjx4sCIiIvTiiy86tXXu3FlFRUXKzMzUrbfeWh3lAkCZMZ0AACpBaGiovv76ax05ckSnT59WcXGxYmNjdebMGQ0fPlzbt2/X4cOHtWbNGsXExLh8A5YrUlJSNHjwYH344Yfat2+fDh06pPj4eL3xxhsaPHhwqec89NBDOnbsmF5++WWdOnVKGRkZysjI0IULFxQeHq4RI0bovvvu04oVK5SWlqZt27YpLi5O//73vyutbgCoCEZiAaASTJ06VaNGjVLbtm11/vx5paWlKTQ0VJs3b9bjjz+u22+/XQUFBQoJCdHAgQNVo0bljSE0bdpUoaGhmjVrlmMprcvvH3nkkVLPSUpKUnp6utq2beu0PyEhQVFRUVqyZIlmz56tv/zlL/rxxx/VsGFDde/eXb/73e8qrW4AqAhWJwAAAIDlMJ0AAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOV4mF0AAAAA3EdMTMx1jzEMQ2+++eY1j7EZhmFUUk0AAADANd19991XbTMMQ7t27dLRo0dVXFx8zX4YiQUAAEC1WbFiRYl9p0+f1tKlS/XGG28oJydHDz/88HX7YSQWAAAA1a64uFirV6/WkiVL9Pnnn+uWW27RmDFjdPfdd8vLy+u65xNiAQAAUK3y8vIUEREhT09PjR49WjExMQoODi5TH6xOAAAAgGpnt9tls9lkGMZ157+WhhALAACAauXj46MjR45o4cKF2rt3r9q2bav+/ftr2bJlKigocKkPphMAAADAVGfOnNG//vUvLVmyRD/88IOGDx+uBQsWXPMcQiwAAACqze9///urttlsNu3atUs//PADS2wBAADgl6N+/fq61hhqnz59XOqHkVgAAABYDiOxAAAAqDauPHZWkpYsWXLNdkIsAAAAqk12dnal9MN0gnIyDEO5ubny9fWVzWYzuxwAAAC3wjqx5ZSbmys/Pz/l5OSYXQoAAIDbYTpBBbm6IC8AAABcmxNrGIbefPPNax5DiK2g/Px8s0sAAACwjGvNiS0qKtK6det0/vx5QiwAAAB+OVasWFHq/k8++URPPPGEvL29NWPGjOv2w5xYAAAAmGbTpk3q2bOnhg8frt/97nf6/vvv9dhjj133PEJsBV3vkWgAAAAoac+ePYqOjtZtt92mdu3a6dChQ3r22Wfl5+fn0vmE2ArKy8szuwQAbmbcuHGKjo7WuHHjzC4FAMrshx9+0KhRo9SpUyd5eHho9+7dev311xUUFFSmfsoVYo8dO6YxY8YoKChInp6eCgkJ0aRJk/TTTz85jomKipLNZpPNZpO3t7fCw8MVFxdX6rNyt2zZIrvdrjvuuKNE25EjR2Sz2eTv76/c3Fyntk6dOmnmzJlO+w4dOqQxY8aoWbNm8vLyUpMmTXTbbbdp6dKlKiwsdBx3ubafb8uXLy/PJQGAanH48GEdP35cknT8+HEdPnzY5IoAoGxat26tDz74QFOnTtXo0aN14MABffLJJyW26ynzjV3ff/+9evToofDwcC1btkzNmzfX3r179eijj2rVqlXaunWr6tevL0kaO3asnnrqKRUUFGjDhg168MEHVbdu3RKjB/Hx8ZowYYLi4+N14sSJUpN4bm6unn/+ec2aNeuqtW3btk39+vVTu3bttGDBAkVEREiSkpOTtWDBArVv314dO3Z0HL9kyRINHDjQqY+6deuW9ZIAQLWZOnVqifcrV640qRoAKLvCwkIZhqHnnnvuqscYhnHdKZtlHomNjY2Vp6envvjiC0VGRqpZs2YaNGiQ1q1bpx9//FFPPvmk49jf/OY3CggIUEhIiGJiYtShQwetXbvWqb+8vDy99957GjdunO64446rLqcwYcIEvfjii8rMzCy13TAMjR49WuHh4dq8ebOio6PVqlUrtWrVSsOHD9eXX36pDh06OJ1Tt25dBQQEOG3e3t5lvSQAUC2WLFni9Bcl6dIPg+s9XxwAfkkKCwtVVFR0zc2Ve47KFGLPnDmjNWvW6M9//rNq1arl1BYQEKARI0bovffeKzFlwDAMbdq0SQcOHJCnp6dT2/vvv6+IiAi1bt1a9957r954441SpxwMHz5cYWFheuqpp0qtLSUlRfv379fUqVNVo0bpX1ZFHg9bUFCgnJwcpw0AqsvFixevuizNihUrdPHixWquCADMVabpBAcPHpRhGGrTpk2p7W3atFFWVpZOnTolSVq4cKH++c9/6sKFC7p48aK8vb01ceJEp3Pi4+N17733SpIGDhyo7OxsJSUlKSoqyuk4m82mOXPmKDo6Wo888ohatmzp1P7dd99JujTP4rLMzEy1aNHC8f4f//iH/vznPzveDx8+XHa73amfffv2qVmzZiW+tri4uGtOZQCAqvT6669ft/3K728A8EuVlJTk0nGRkZHXbC/Xww5KGyktzYgRI/Tkk08qKytLM2bMUM+ePdWzZ09He2pqqrZt2+aYz+Xh4aFhw4YpPj6+RIiVpAEDBuiWW27RX//6V7377rvX/fwGDRooJSVF0qUbzS5cuODUPnfuXPXr189p39XujJs+fbqmTJnieJ+Tk6Pg4ODr1gAAlWHs2LFatWrVNdsBwAr69u0rwzCu+RdyV+bElinEhoWFyWazaf/+/fr9739fon3//v2qV6+eGjVqJEny8/NTWFiYpEvTBsLCwtS9e3dHcIyPj1dhYaFTcDQMQ15eXpo/f36p64TNmTNHPXr00KOPPuq0v1WrVpIuBePOnTtLkux2u+PzPTxKfqkBAQGO9uvx8vKSl5eXS8cCQGWrWbOm7r777lKnFNxzzz2qWbOmCVUBQNllZWVVSj9lmhPboEED9e/fXwsXLtT58+ed2jIyMrR06VINGzas1GTt4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/+eR5AAOBXKSYmpsQv5B4eHho9erQ5BQFAOaxbt061atVSnTp1rrldT5lXJ5g/f74KCgo0YMAAbdy4UceOHdPq1avVv39/NWnSRE8//fRVz33ooYf03Xff6aOPPtLnn3+urKws3X///Wrfvr3Tds899yg+Pv6q/Tz99NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJ+a9nz55VRkaG03bu3LmyXhIAqDbPP//8Nd8DwC/dsGHD1LRpU02dOlX79+8vdz9lDrGtWrVScnKyWrRooaFDh6ply5Z68MEH1adPH23ZssWxRmxp6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMUX5+vtP+7t27a8eOHWrdurViY2PVtm1b9ezZU8uWLdPcuXNLrE8bExOjwMBAp+2VV14p6yUBgGrTsmVLNW3aVJLUtGnTEje5AsAv3YkTJzR79mzt2LFD7dq1U8+ePfX666+X+SmoNsPVu7TgJCcnR35+fkpLS1NoaKjZ5QAAAFjK/v371aFDB/3jH//Qv/71L3333XcaMmSI7r//fvXq1eu655frsbP4n6utSQsAAICruzyO+sgjj2jHjh3avn27AgMDde+99zqeunotJDAAAACYLjw8XL1799Ytt9yiH3744brHE2IriMfUAgAAlF9ycrKmTJmiJk2aaNKkSbrhhhtcCrHletgB/oe1YwEAAMrmwIEDeuONN1RcXKyoqCgNHTpUH374oUtzYS8jxFbQtZ42AQAAAGft27fXvn371L17dy1evFh//OMfVbt2bUd7YWGhNm/eXDWPncX/sLgDAACA6wYOHKgPPvhAbdq0KbX9zJkz6tOnT+U+dhYlFRQUmF0CAACAZbjykBZX/tLNjV0V9PMHLgAAAKBiXPlLNyOxAAAAqDYxMTHXbD9//rxL/RBiK+h68zUAAADwP9nZ2ddsd3WqJiG2gsr6nF8AAAB3tmLFimu2nzp1So0bN75uP1U+J3bRokXy9fVVYWGhY19eXp5q1qypqKgop2MTExNls9l0+PBhhYaGat68eSX6mzlzpjp16lTq+9DQUNlstqtuo0ePlqSrti9fvrySv3oAAACUhasrP1X5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr7jqVcJCQlq1qyZWrZsWa7P2r59u4qKiiRJX331le655x6lpqaqTp06kqRatWo5jl2yZIkGDhzodH7dunXL9bkAAACoPK6sTlDlIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFD56tevr4SEhOseVy1zYvv06aOEhARNmzZN0qUR18cee0xFRUVKSEhQVFSUzp8/r6+//lpjxoypjpIAAABgkqKiIq1Zs0apqanKyckp9ZjevXtfs49qC7GTJ09WYWGhzp8/r127dikyMlIXL17UokWLJElbtmxRQUGB00js448/rv/7v/9z6uvChQtq27ZthWsaPny47Ha70759+/apWbNmpR5fUFDgdLfc1S44AAAAri4jI0O33367UlNT1bRpU/n5+ZU4xjAMzZgx45r9VEuIjYqK0rlz57R9+3ZlZWUpPDxcjRo1UmRkpGJiYpSfn6/ExES1aNHCKUQ++uijjpuxLnv55Ze1cePGCtc0d+5c9evXz2lfUFDQVY+Pi4vTrFmzKvy5AAAA7uyJJ56Qv7+/1q9f7zQVtKyqJcSGhYWpadOmSkhIUFZWliIjIyVdCo3BwcH66quvlJCQoL59+zqd17BhQ4WFhTntuzzXtaICAgJK9H0t06dP15QpUxzvc3JyFBwcXCm1AAAAuIuEhAS9++67FQqwUjWuE9unTx8lJiYqKytLjz76qGN/7969tWrVKm3btk3jxo2rrnLKzMvLS15eXmaXAQAAYGmnTp2qlJvrqzXExsbG6uLFi46RWEmKjIzU+PHjdeHChQqtTFBWZ8+eVUZGhtM+X19f1a5du9pqAAAAcDfNmzfXjh071Lx58wr1U60h9vz584qIiHB6CkNkZKRyc3MdS3FVl9Ke2xsXF+dYQQEAAACVb9SoUZo0aZJycnJ00003XXWd/pCQkGv2YzNcfSwCnOTk5MjPz09paWkKDQ01uxwAAABLKCoq0t/+9jfNmzdP+fn5JZ7QZbPZZBiGiouLr9kPIbacLofYH3744arLcgEAAKB0hmHo6NGjys7OLrW9Q4cO1zy/2qYTAAAAAJfZbLbrThm4FkIsAAAAqk1SUpJLx125EEBpCLEV5O3tbXYJAAAAltG3b18ZhiGbzebYV9r7682JJcSW0+WpxAUFBTyCFgAAuA1fX1+nwFlWWVlZTu+PHDmiW265RceOHZPNZtOpU6cUHh5+3X4IseX0008/SRI3dQEAALeSmZlZoadt1alTx+l9rVq1ZBiG/Pz8JKnUFQtKQ4gtp8uPvz169KjjoqP6XH7s77Fjx0r8x4Cqx/U3F9ffPFx7c3H9zXX5+nt6elZqv1u3btW5c+eUnZ0tPz8/nThxQg0bNrzueYTYcqpRo4Ykyc/Pj/+QTFSnTh2uv4m4/ubi+puHa28urr+5KjKV4Ernz5/XggULFB8fL0n685//rOHDh2vevHm6+eabr3t+jUqpAgAAAHDB8ePHNW3aNDVt2lSfffaZEhMTddddd2n58uUaPHiwDh06pGefffa6/TASCwAAgGrTsmVLRURE6I033tDgwYMlSStWrNB3332nCxcuKCIiQh4e14+ohNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrsq6/kuXLtUf/vCHEvtdWZHgSjx2FgAAAJbDSCwAAACqTUxMjEvHLVmy5JrtjMQCAACg2tjtdg0cONAxLeHcuXPasGGDoqOjJV16kNSqVauu+8QuQiwAAACqjd1u14kTJ9S4cWNJUlpamjp06KDc3FxJ0qlTpxQQEKCioqJr9sMSWwAAADDNz8dTDcNw6YldhNhyWrBggUJDQ+Xt7a1u3bpp27ZtZpfkFjZu3Kjo6GgFBQXJZrPp448/NrsktxEXF6ebb75Zvr6+8vf311133aXU1FSzy3Ibr776qjp06OBY5L1Hjx5atWqV2WW5rTlz5shms2ny5Mlml+IWZs6cKZvN5rRFRESYXZZb+fHHH3XvvfeqQYMGqlWrlm644QYlJyebWhMhthzee+89TZkyRTNmzNDOnTvVsWNHDRgwQJmZmWaX9qt37tw5dezYUQsWLDC7FLeTlJSk2NhYbd26VWvXrtXFixd1++2369y5c2aX5haaNm2qOXPmaMeOHUpOTlbfvn01ePBg7d271+zS3M727dv12muvqUOHDmaX4lbatWun9PR0x/bll1+aXZLbyMrKUq9evVSzZk2tWrVK+/bt0wsvvKB69epV2mf8/ClgLj0VzECZde3a1YiNjXW8LyoqMoKCgoy4uDgTq3I/koyVK1eaXYbbyszMNCQZSUlJZpfiturVq2f885//NLsMt5Kbm2u0atXKWLt2rREZGWlMmjTJ7JLcwowZM4yOHTuaXYbbevzxx41bbrml0vpr06aNcfr0acf7rKwspwx19uxZY9CgQdfth5HYMrpw4YJ27Nihfv36OfbVqFFD/fr105YtW0ysDKhe2dnZkqT69eubXIn7KSoq0vLly3Xu3Dn16NHD7HLcSmxsrO644w6nnwGoHgcPHlRQUJBatGihESNG6OjRo2aX5DY+/fRTdenSRUOGDJG/v786d+6s119/vdz97du3Tw0aNHC8r1u3rqZNm+Z47+fnp//85z/X7YcQW0anT59WUVGR4466yxo3bqyMjAyTqgKqV3FxsSZPnqxevXqpffv2ZpfjNnbv3i0fHx95eXnp4Ycf1sqVK9W2bVuzy3Iby5cv186dOxUXF2d2KW6nW7duevPNN7V69Wq9+uqrSktL06233uq4mx1V6/vvv9err76qVq1aac2aNRo3bpwmTpyot956y9S6eNgBgDKLjY3Vnj17mJNWzVq3bq2UlBRlZ2frww8/1KhRo5SUlESQrQbHjh3TpEmTtHbtWnl7e5tdjtsZNGiQ43WHDh3UrVs3hYSE6P3339f9999vYmXuobi4WF26dNEzzzwjSercubP27NmjRYsWadSoUabVxUhsGTVs2FB2u10nT5502n/y5EkFBASYVBVQfcaPH6/PP/9cCQkJatq0qdnluBVPT0+FhYXppptuUlxcnDp27KiXXnrJ7LLcwo4dO5SZmakbb7xRHh4e8vDwUFJSkl5++WV5eHhcdz1LVK66desqPDxchw4dMrsUtxAYGFjil+U2bdqYPqWDEFtGnp6euummm7R+/XrHvuLiYq1fv565afhVMwxD48eP18qVK7VhwwY1b97c7JLcXnFxsQoKCswuwy3cdttt2r17t1JSUhxbly5dNGLECKWkpMhut5tdolvJy8vT4cOHFRgYaHYpbqFXr14lllT87rvvFBISYlJFlzCdoBymTJmiUaNGqUuXLuratavmzZunc+fOufwsYJRfXl6e02/eaWlpSklJUf369dWsWTMTK/v1i42N1bvvvqtPPvlEvr6+jjngfn5+qlWrlsnV/fpNnz5dgwYNUrNmzZSbm6t3331XiYmJWrNmjdmluQVfX98S879r166tBg0aMC+8GkydOlXR0dEKCQnRiRMnNGPGDNntdg0fPtzs0tzCI488op49e+qZZ57R0KFDtW3bNi1evFiLFy82t7BKWy/BzbzyyitGs2bNDE9PT6Nr167G1q1bzS7JLSQkJBiSSmyjRo0yu7RfvdKuuyRjyZIlZpfmFsaMGWOEhIQYnp6eRqNGjYzbbrvN+OKLL8wuy62xxFb1GTZsmBEYGGh4enoaTZo0MYYNG2YcOnTI7LLcymeffWa0b9/e8PLyMiIiIozFixebXZJhMwwXnusFAAAA/IIwJxYAAACWQ4gFAACA5RBiAQAAYDmEWAAAAFgOIRYAAACWQ4gFAACA5RBiAQAAYDmEWABwA0eOHJHNZlNKSorZpQBApSDEAkA5jB49WnfddZfjfVRUlCZPnmxaPWlpafrTn/6koKAgeXt7q2nTpho8eLAOHDggSQoODlZ6ejqPSAXwq+FhdgEAgIq5ePGi+vfvr9atW2vFihUKDAzU8ePHtWrVKp09e1aSZLfbFRAQYG6hAFCJGIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKYjMMwzC7CACwmtGjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxHTp0cLy22+1q0KCBbrjhBse+xo0bS5IyMzOv+lmxsbHKyMjQ0qVL1aNHD33wwQdq166d1q5de80ad+3apZEjR2r+/Pnq1auXJGn37t0qKipSeHi4U+1JSUlOdQOAmbixCwCqSF5enqKjo/Xss8+WaAsMDHS8rlmzplObzWZz2mez2SRJxcXF1/w8X19fRUdHKzo6WrNnz9aAAQM0e/Zs9e/fv9TjMzIydOedd+qBBx7Q/fff71S33W7Xjh07ZLfbnc7x8fG5Zg0AUF0IsQBQCTw9PUvMR73xxhv10UcfKTQ0VB4e1fvt1mazKSIiQl999VWp7fn5+Ro8eLAiIiL04osvOrV17txZRUVFyszM1K233lod5QJAmTGdAAAqQWhoqL7++msdOXJEp0+fVnFxsWJjY3XmzBkNHz5c27dv1+HDh7VmzRrFxMS4fAOWK1JSUjR48GB9+OGH2rdvnw4dOqT4+Hi98cYbGjx4cKnnPPTQQzp27JhefvllnTp1ShkZGcrIyNCFCxcUHh6uESNG6L777tOKFSuUlpambdu2KS4uTv/+978rrW4AqAhGYgGgEkydOlWjRo1S27Ztdf78eaWlpSk0NFSbN2/W448/rttvv10FBQUKCQnRwIEDVaNG5Y0hNG3aVKGhoZo1a5ZjKa3L7x955JFSz0lKSlJ6erratm3rtD8hIUFRUVFasmSJZs+erb/85S/68ccf1bBhQ3Xv3l2/+93vKq1uAKgIVicAAACA5TCdAAAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWI6H2QUAAADA/WRlZengwYOy2WwKCwtTvXr1ynQ+I7EAAACoNmlpafrtb3+rhg0bqnv37urWrZsaNmyo3/72t/rhhx9c7sdmGIZRhXUCAAAAkqSTJ0/qxhtvlN1uV2xsrCIiIiRJqampmj9/voqKirRz5041btz4un0RYgEAAFAtJk6cqISEBG3btk21atVyasvPz9fNN9+sqKgovfLKK9fti+kEAAAAqBaff/65Zs2aVSLASpK3t7f+/ve/6z//+Y9LfRFiAQAAUC3S09PVoUOHq7a3b99eP/74o0t9EWIBAABQLRo1aqTCwsKrtl+8eNGl+bASIRYAAADV5KabbtIXX3xx1fbVq1erY8eOLvVFiAUAAEC1mDJlil577TVlZ2eXaMvJydHrr7+uyZMnu9QXqxMAAADAcnhiFwAAAKpFixYt5Mr4aVpa2nWPIcQCAACgWrg6VcAVTCcAAACA5XBjFwAAACyH6QQAAACoFq7MiTUMQ0eOHLluX4RYAAAAVItrzYlNS0vT4sWLdf78eZf6Yk4sAAAATHP69Gk9/fTTWrRokbp3765nn31WXbt2ve55jMQCAACg2p07d04vvviinn/+eTVv3lwrV67UwIEDXT6fEAsAAIBqU1hYqMWLF2v27NmqVauWFi5cqBEjRpS5H0IsAAAAqsXy5cv117/+VdnZ2XryyScVGxsrD4/yxVHmxJaTYRjKzc2Vr6+vbDab2eUAAAD84tntdnl5eelPf/qTfH19r3rc3Llzr9sXI7HllJubKz8/P2VnZ6tOnTpmlwMAqGKGYaigoECS5OXlxQAGUA5RUVEyDEPff//9VY9xdXyVkdhyysnJIcQCgBvJz8/XkCFDJEkffPCBvL29Ta4IcG88sQsAABfk5+eX+hqAOZhOAAAAgGoxa9Ysl46bMWPGdY8hxAIA4ILi4uJSXwNw3VNPPaV27dpddUWCwsJC7dmzhxALAEBlyc3NdXpdv359E6sBrGvt2rVq3LhxqW2nTp1SQECAS/2Ua07ssWPHNGbMGAUFBcnT01MhISGaNGmSfvrpJ8cxUVFRstlsstls8vb2Vnh4uOLi4kq942zLli2y2+264447SrQdOXJENptN/v7+Tt9AJKlTp06aOXOm075Dhw5pzJgxatasmby8vNSkSRPddtttWrp0qQoLCx3HXa7t59vy5cvLc0kAAABwHXa7/Zp/ySgqKlKNGq7F0zKH2O+//15dunTRwYMHtWzZMh06dEiLFi3S+vXr1aNHD505c8Zx7NixY5Wenq7U1FRNnz5df/vb37Ro0aISfcbHx2vChAnauHGjTpw4Uern5ubm/j979x5WVZX/cfxzPAiaECpeAC8gIuAlFTMVKQHT1CnTLHMYNEQrc9DUxkprJq1UbKaL5TUbMptKLc2aZgbNFNBMRUzM+y1MTRCvXBxFgf37w8fz6wTqAYEzp/N+Pc9+Ovu2zpf9mH5crr2WXn/99RvWlpaWpk6dOmnv3r2aO3eudu3apZSUFD3++OOaP3++du/ebXX9okWLlJWVZbUNHDiwvI8EAAAANvD09LTq9Py1M2fOqG7duja1Ve7hBPHx8XJ1ddXXX3+t2rVrS5KaN2+u0NBQtWzZUi+++KLmz58vSbrtttssXcJxcXGaM2eO1qxZo9GjR1vaKygo0LJly5Senq7s7Gx98MEHeuGFF0p979ixY/Xmm28qPj5ejRo1KnXeMAwNHz5cQUFB2rhxo1WKb9WqlaKjo0v1AtetW9fmLmsAAADcmjZt2ig5OVnt2rUr83xKSoratGljU1vl6ok9e/asVq9erT/+8Y+WAHuNt7e3YmJitGzZslJh0TAMbdiwQfv27ZOrq6vVuU8//VQhISEKDg7W0KFD9f7775c55CA6OlqBgYF65ZVXyqwtIyNDe/fu1cSJE6/bDc3E1AAAAPbzyCOPaPr06dq3b1+pc/v379err76qQYMG2dRWuULswYMHZRiGWrduXeb51q1b69y5czp16pQkad68eXJ3d5ebm5t69OihkpISPf3001b3JCYmaujQoZKkvn37Kjc3V6mpqaXaNplMmjlzphYuXKjDhw+XOn/gwAFJUnBwsOVYTk6O3N3dLdu8efOs7omOjrY67+7urqNHj5b5sxUWFiovL89qAwAAgO2eeuoptWjRQh06dNCAAQM0adIkTZ48WQ899JA6dOigpk2bWv2L/Y1U6MUuWxf5iomJUUZGhjZu3Kh+/frpxRdfVPfu3S3n9+/fr7S0NEVHR0uSXFxcNGTIECUmJpbZXp8+fXT33XfrL3/5i03f7+XlpYyMDGVkZKhu3bq6fPmy1fm33nrLcv7a5uvrW2ZbCQkJ8vT0tGzNmjWzqQYAAABcVbNmTa1du1YvvviiMjMzNXfuXM2ePVsHDx7Uc889p9TU1FL/an895RoTGxgYKJPJpL179+qhhx4qdX7v3r2qV6+eGjZsKOnq4N3AwEBJV4cNBAYGqlu3burVq5ekq72wRUVFVsHRMAy5ublpzpw58vT0LPUdM2fOVFhYmJ599lmr461atZJ0NRiHhoZKuvoG3LXvL2s+Mm9vb8v5m5k8ebKeeeYZy35eXh5BFgAAoJxuu+02vfTSS3rppZduqZ1y9cR6eXmpd+/emjdvni5evGh1Ljs7Wx9//LGGDBlS5thTd3d3jRs3ThMnTpRhGCoqKtKHH36oN954w6ondMeOHfL19dWSJUvKrKFLly4aNGiQJk2aZHU8NDRUISEhev3116tkEmo3NzfdfvvtVhsAAADso9yzE8yZM0fdu3dXnz59NG3aNLVo0UK7d+/Ws88+qyZNmmj69OnXvXfUqFF69dVXtWLFCrm4uOjcuXMaOXJkqR7Xhx9+WImJiXrqqafKbGf69OmlVnswmUxatGiRevfurfDwcE2ePFmtW7fWlStXtH79ep06dUpms9mqnfPnzys7O9vqmIeHh+rUqVPexwIAAICbiIqKuuk1hmEoJSXlpteVe0xsq1atlJ6eroCAAD366KNq2bKlnnzySUVFRWnTpk03XMGkfv36euyxxzR16lQlJiaqV69eZQ4ZePjhh5Wenq4ffvihzHaCgoI0YsQIXbp0yep4t27dtG3bNgUHBys+Pl5t2rRR9+7dtWTJEr311lulBgrHxcXJx8fHaps9e3Z5HwkAAABssH79egUHBys0NFShoaEKCAjQd999Z9kPDg7W+vXrbWrLZNj6lhas5OXlydPTU7m5uQwtAAAncPbsWcXGxkqSFi9ezLKzQAWYzWadOHHCsuzsjz/+qA4dOlhWZc3JyZG3t7dNQ0MrNDsBAADO5pdzkNu6LCaAqsP/hQAAAHA4hFgAAADYza9ntbJ1hVVCLAAANqhVq1aZnwHYrk+fPnJzc7PsN27cWO+++65l/7bbbtOoUaNsaosXuyqIF7sAwLkYhqHCwkJJV+cOt7W3CEDVoCcWAAAADqfcix0AAOCMCgsLNXjwYEnSZ599xpACoALMZrNsGQRgyxRbhFgAAGzwywV2Ll26RIgFKmDlypVW+ydPntT48eO1ZMkSSVJubq5lPuabIcQCAACgWjz44INW+z/++KNq1KhhOZ6Tk2NzW4yJBQAAgF38+OOPunjxooqLiyVdfXHew8PDpnsJsQAA2OCXY/RsGa8H4Ma2bt2qCRMmqKSkRLNnz1ZBQYHmzp2r4OBgm+4nxAIAYINra7v/+jOA8lm1apX69u2r3/3ud3rnnXcUEBCgZ555Rrfffrvmzp2rP//5zza1U+UhdsGCBfLw8FBRUZHlWEFBgWrWrKnIyEira1NSUmQymXT48GH5+/tr1qxZpdqbOnWqOnbsWOa+v7+/TCbTdbfhw4dL0nXPL126tJJ/egAAAFzTtm1bPfTQQ2rdurX27t2rqKgopaena8GCBXrnnXe0ffv2UuNmr6fKX+yKiopSQUGB0tPT1a1bN0nShg0b5O3trS1btli94ZmcnKzmzZurZcuWFfqurVu3WsZUfPfdd3r44Ye1f/9+y2IEtWvXtly7aNEi9e3b1+r+unXrVuh7AQAAcHNRUVH65ptv5OPjYzlWt25dPfnkk+Vuq8pDbHBwsHx8fJSSkmIJsSkpKRowYIDWrVunzZs3W3pkU1JSFBUVVeHvatiwoeVz/fr1JUmNGjUqM5zWrVtX3t7eFf4uAAAAlM+cOXMqra1qmWIrKipKycnJmjRpkqSrPa7PPfeciouLlZycrMjISF28eFFbtmzRiBEjqqOkcissLLQsNyhdfXsOAAAAtlu8eLFN19kyV2y1hdjx48erqKhIFy9e1Pbt2xUREaErV65owYIFkqRNmzapsLDQqif2+eefLzW49/Lly2rTps0t1xQdHS2z2Wx1bM+ePWrevHmZ1yckJOjll1++5e8FAABwViNGjNDtt98uk8kk6epMH3l5eZZ/NTcMw+YFD6olxEZGRurChQvaunWrzp07p6CgIDVs2FARERGKi4vTpUuXlJKSooCAAKsQ+eyzz1pexrrmnXfe0fr162+5prfeeku9evWyOubr63vd6ydPnqxnnnnGsp+Xl6dmzZrdch0AAADOZN++fWrcuLEkKTMzUx06dNDZs2clSadOnbJ5uGe1hNjAwEA1bdpUycnJOnfunCIiIiRdDY3NmjXTd999p+TkZPXs2dPqvgYNGigwMNDq2LWxrrfK29u7VNs34ubmJjc3t0r5bgAAAFzteTUM47r7N1Jt88RGRUUpJSVFKSkpVlNr9ejRQ0lJSUpLS7ull7oAAADgPKqlJ1a6GmLj4+N15coVS0+sJEVERGjMmDG6fPlytYbY8+fPKzs72+qYh4eH6tSpU201AAAAOBNbe1ltUa09sRcvXlRgYKBlHIR0NcTm5+dbpuKqLnFxcfLx8bHaZs+eXW3fDwAA4GyuvdB1Te3atdWjRw+r89fWD7hpW0ZlRmInkpeXJ09PT+Xm5loWUwAA/HadPXvW8sb04sWLK+0dDcCZ5OTkqFGjRpXSVrX1xAIA4Mhq1KhR5mcAtqusACtV45hYAAAAOLe4uDibrlu0aNFNryHEAgBgg1+O07N1zB4Aax9++KEiIiIsixvcCsbEVlBubq7q1q2rY8eOMSYWAJyAYRiW5cfd3NxKvaACOAsPD48K//o3m836/vvv1aFDh1uug57YCjpz5owksWoXAABwKjk5OWrYsKG9yyDEVtS1t1KPHj0qT09PO1fjfK4t+0tPuH3w/O2L528/PHv74vnb17Xn7+rqau9SJBFiK+zam6menp78j2RHt99+O8/fjnj+9sXztx+evX3x/O3rf2UoDXOEAAAAoFqMHDlSXl5eldIWPbEAAACoFgsXLqy0tgixFeTm5qYpU6bIzc3N3qU4JZ6/ffH87Yvnbz88e/vi+dtXZTz/Fi1a2HRdZmbmTa9hii0AAABUC7PZrIkTJ6pJkyY3vO7pp5++aVuEWAAAAFSLypwnlhe7AAAA4HAIsQAAAHA4hFgAAAA4HEJsBc2dO1f+/v6qVauWunbtqrS0NHuX5BTWr1+v/v37y9fXVyaTSV988YW9S3IaCQkJuuuuu+Th4aFGjRpp4MCB2r9/v73Lchrz589X+/btLZO8h4WFKSkpyd5lOa2ZM2fKZDJp/Pjx9i7FKUydOlUmk8lqCwkJsXdZTuXnn3/W0KFD5eXlpdq1a+uOO+5Qenp6udv5xz/+IT8/v0qpiRBbAcuWLdMzzzyjKVOmWAYn9+nTRzk5OfYu7TfvwoUL6tChg+bOnWvvUpxOamqq4uPjtXnzZq1Zs0ZXrlzRfffdpwsXLti7NKfQtGlTzZw5U9u2bVN6erp69uypAQMGaPfu3fYuzels3bpV7777rtq3b2/vUpxK27ZtlZWVZdm+/fZbe5fkNM6dO6fw8HDVrFlTSUlJ2rNnj9544w3Vq1ev3G399a9/1QcffKCzZ8/eemEGyq1Lly5GfHy8Zb+4uNjw9fU1EhIS7FiV85FkrFy50t5lOK2cnBxDkpGammrvUpxWvXr1jL///e/2LsOp5OfnG61atTLWrFljREREGOPGjbN3SU5hypQpRocOHexdhtN6/vnnjbvvvrtS2ho7dqzRpEkTw83NzRg8eLCxatUqo6SkpEJt0RNbTpcvX9a2bdvUq1cvy7EaNWqoV69e2rRpkx0rA6pXbm6uJKl+/fp2rsT5FBcXa+nSpbpw4YLCwsLsXY5TiY+P1/3332/1ZwCqx8GDB+Xr66uAgADFxMTo6NGj9i7Jafzzn/9U586dNXjwYDVq1EihoaF67733KtTWO++8o+PHj+ujjz7SihUrNHToUPn7+2vKlCk2LXDwS4TYcjp9+rSKi4vVuHFjq+ONGzdWdna2naoCqldJSYnGjx+v8PBwtWvXzt7lOI2dO3fK3d1dbm5ueuqpp7Ry5Uq1adPG3mU5jaVLl+r7779XQkKCvUtxOl27dtUHH3ygVatWaf78+crMzNQ999yj/Px8e5fmFH788UfNnz9frVq10urVqzV69Gg9/fTTWrx4cYXbbNOmjWrUqKHs7GzNnTtX+/bt0x133KHevXtryZIlNrXBsrMAyi0+Pl67du1iTFo1Cw4OVkZGhnJzc7V8+XLFxsYqNTWVIFsNjh07pnHjxmnNmjWqVauWvctxOv369bN8bt++vbp27So/Pz99+umnGjlypB0rcw4lJSXq3LmzZsyYIUkKDQ3Vrl27tGDBAsXGxt5S22azWQ888IAeeOAB5efna+bMmRo2bJiio6Nvei8htpwaNGggs9mskydPWh0/efKkvL297VQVUH3GjBmjf/3rX1q/fr2aNm1q73KciqurqwIDAyVJd955p7Zu3aq3335b7777rp0r++3btm2bcnJy1KlTJ8ux4uJirV+/XnPmzFFhYaHMZrMdK3QudevWVVBQkA4dOmTvUpyCj49Pqb8st27dWitWrKiU9s+cOaOlS5fqo48+0sGDBzV69Gib7mM4QTm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIIMBWs4KCAh0+fFg+Pj72LsUphIeHl5pS8cCBA7c0VVZxcbEMw1D//v3VtGlTrVy5UuPGjdOJEyc0e/Zsm9qgJ7YCnnnmGcXGxqpz587q0qWLZs2apQsXLiguLs7epf3mFRQUWP3NOzMzUxkZGapfv76aN29ux8p+++Lj4/XJJ5/oyy+/lIeHh2UMuKenp2rXrm3n6n77Jk+erH79+ql58+bKz8/XJ598opSUFK1evdrepTkFDw+PUuO/69SpIy8vL8aFV4OJEyeqf//+8vPz04kTJzRlyhSZzWab/skZt27ChAnq3r27ZsyYoUcffVRpaWlauHChFi5cWO62PvvsM61YsUJJSUlq2rSpOnXqpDlz5lQsEFfKfAlOaPbs2Ubz5s0NV1dXo0uXLsbmzZvtXZJTSE5ONiSV2mJjY+1d2m9eWc9dkrFo0SJ7l+YURowYYfj5+Rmurq5Gw4YNjXvvvdf4+uuv7V2WU2OKreozZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXFihdmrVqmUMHjzYWL169S3XZDIMwyh/9AUAAADK5+zZs5U2NSMhFgAAAA6HF7sAAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCgBM4cuSITCaTMjIy7F0KAFQKQiwAVMDw4cM1cOBAy35kZKTGjx9vt3oyMzP1hz/8Qb6+vqpVq5aaNm2qAQMGaN++fZKkZs2aKSsrS+3atbNbjQBQmVzsXQAA4NZcuXJFvXv3VnBwsD7//HP5+Pjo+PHjSkpK0vnz5yVJZrNZ3t7e9i0UACoRPbEAcIuGDx+u1NRUvf322zKZTDKZTDpy5IgkadeuXerXr5/c3d3VuHFjDRs2TKdPn7bcGxkZqbFjx2r8+PGqV6+eGjdurPfee08XLlxQXFycPDw8FBgYqKSkpOt+/+7du3X48GHNmzdP3bp1k5+fn8LDwzVt2jR169ZNUunhBMOHD7fU+sstJSVFklRYWKiJEyeqSZMmqlOnjrp27Wo5BwD/CwixAHCL3n77bYWFhemJJ55QVlaWsrKy1KxZM50/f149e/ZUaGio0tPTtWrVKp08eVKPPvqo1f2LFy9WgwYNlJaWprFjx2r06NEaPHiwunfvru+//1733Xefhg0bpv/+979lfn/Dhg1Vo0YNLV++XMXFxTbXfK3WrKwsjRs3To0aNVJISIgkacyYMdq0aZOWLl2qH374QYMHD1bfvn118ODBW3tYAFBJTIZhGPYuAgAczfDhw3X+/Hl98cUXkq72qHbs2FGzZs2yXDNt2jRt2LBBq1evthw7fvy4mjVrpv379ysoKEiRkZEqLi7Whg0bJEnFxcXy9PTUoEGD9OGHH0qSsrOz5ePjo02bNll6Vn9t7ty5eu6552Q2m9W5c2dFRUUpJiZGAQEBkq72xLZo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYflWOPGjSVJOTk51/2u+Ph4ZWdn6+OPP1ZYWJg+++wztW3bVmvWrLlhjdu3b9ewYcM0Z84chYeHS5J27typ4uJiBQUFWdWemppqVTcA2BMvdgFAFSkoKFD//v312muvlTrn4+Nj+VyzZk2rcyaTyeqYyWSSJJWUlNzw+zw8PNS/f3/1799f06ZNU58+fTRt2jT17t27zOuzs7P14IMP6vHHH9fIkSOt6jabzdq2bZvMZrPVPe7u7jesAQCqCyEWACqBq6trqfGonTp10ooVK+Tv7y8Xl+r97dZkMikkJETfffddmecvXbqkAQMGKCQkRG+++abVudDQUBUXFysnJ0f33HNPdZQLAOXGcAIAqAT+/v7asmWLjhw5otOnT6ukpETx8fE6e/asoqOjtXXrVh0+fFirV69WXFyczS9g2SIjI0MDBgzQ8uXLtWfPHh06dEiJiYl6//33NWDAgDLvGTVqlI4dO6Z33nlHp06dUnZ2trKzs3X58mUFBQUpJiZGjz32mD7//HNlZmYqLS1NCQkJ+ve//11pdQPAraAnFgAqwcSJExUbG6s2bdro4sWLyszMlL+/vzZu3Kjnn39e9913nwoLC+Xn56e+ffuqRo3K60No2rSp/P399fLLL1um0rq2P2HChDLvSU1NVVZWltq0aWN1PDk5WZGRkVq0aJGmTZumP/3pT/r555/VoEEDdevWTQ888ECl1Q0At4LZCQAAAOBwGE4AAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADsfF3gUAAADAecTFxdl03aJFi2543mQYhlEZBQEAAAA3M2jQIKv9CxcuaN26derfv78kqbCwUElJSSopKblhO4RYAAAA2E1mZqbat2+v/Px8SdKpU6fk7e2t4uLiG97HmFgAAADYza/7Uw3DKHWsLIRYAAAAVJsrV65USjuEWAAAAFSbJk2aaPz48dq5c6ckqU6dOvrd735ndY3JZLppO4RYAAAAVJtJkyYpLS1NoaGh6tq1q7744gv9/e9/t5xv2LChDh48eNN2eLELAAAA1W7jxo2KiIhQ27ZtdejQIT3yyCMaMWKEIiIibLqfnlgAAABUu3r16slkMmnHjh3asmWLvL29NWzYMAUFBSkhIeGm99MTCwAAgGq3Z88edejQwepFr+LiYr300kt67bXXVFRUdMP7WbELAAAAdrVjxw599NFHWrJkiTw9PfXaa6/d9B5CbAUZhqH8/Hx5eHjY9AYdAAAA/t+ZM2dkGIbuuOMOHT16VIMHD9by5cvVrVs3m+4nxFZQfn6+PD09dfLkSd1+++32LgeoNoZhqLCwUJLk5ubGX+LglPi1D1Tc3/72N61YsULp6ekKCwvTiBEjNGTIEN12223laocxsRWUl5cnT09P9enTRzVr1rR3OQCAavTZZ5+pVq1a9i4DcEg+Pj567LHHNHLkSAUFBVW4HXpiAQAAUG2OHz8us9l8y+0QYm/RlN4HVN/d3lUA1aewyKQXV7WRJE3vu0duLvxjDpzD5eIaeiGptb3LABzeRx99ZNN1sbGxNzxPiL1FruYSubkwLgrOyc3FIMTCiZTYuwDgN2HChAk3vcYwDEJsVWNEMQA4h1/+fs/rJEDFnT17tlLaYcWuW3S5mF5YAHAGv/z9/toMHQDsp0Ih9tixYxoxYoR8fX3l6uoqPz8/jRs3TmfOnLFcExkZKZPJJJPJpFq1almWECvrb6+bNm2S2WzW/fffX+rckSNHZDKZ1KhRI+Xn51ud69ixo6ZOnWp17NChQxoxYoSaN28uNzc3NWnSRPfee68+/vhjq5UfrtX2623p0qUVeSQAAACwweLFi23abqbcwwl+/PFHhYWFKSgoSEuWLFGLFi20e/duPfvss0pKStLmzZtVv359SdITTzyhV155RYWFhVq3bp2efPJJ1a1bV6NHj7ZqMzExUWPHjlViYqJOnDghX1/fUt+bn5+v119/XS+//PJ1a0tLS1OvXr3Utm1bzZ07VyEhIZKk9PR0zZ07V+3atVOHDh0s1y9atEh9+/a1aqNu3brlfSQAAACw0a/HxJaUlCgvL8+SwQzDUG5ubuWPiY2Pj5erq6u+/vpr1a5dW5LUvHlzhYaGqmXLlnrxxRc1f/58SdJtt90mb29vSVJcXJzmzJmjNWvWWIXYgoICLVu2TOnp6crOztYHH3ygF154odT3jh07Vm+++abi4+PVqFGjUucNw9Dw4cMVFBSkjRs3qkaN/+9kbtWqlaKjo0v1AtetW9dSHwAAAKrer8fEZmZmqkOHDpbjp06dsimflWs4wdmzZ7V69Wr98Y9/tATYa7y9vRUTE6Nly5aVCouGYWjDhg3at2+fXF1drc59+umnCgkJUXBwsIYOHar333+/zCEH0dHRCgwM1CuvvFJmbRkZGdq7d68mTpxoFWB/6VZWVyksLFReXp7VBgAAgFtz+fJllZT8/+wfv/x8I+UKsQcPHpRhGGrduux58lq3bq1z587p1KlTkqR58+bJ3d1dbm5u6tGjh0pKSvT0009b3ZOYmKihQ4dKkvr27avc3FylpqaWattkMmnmzJlauHChDh8+XOr8gQMHJEnBwcGWYzk5OXJ3d7ds8+bNs7onOjra6ry7u7uOHj1a5s+WkJAgT09Py9asWbPrPSYAAADYKCkpSf/973+Vk5Mj6WrPbOPGjW96X4Ve7LJ1apGYmBhlZGRo48aN6tevn1588UV1797dcn7//v1KS0tTdHS0JMnFxUVDhgxRYmJime316dNHd999t/7yl7/Y9P1eXl7KyMhQRkaG6tatq8uXL1udf+uttyznr21ljceVpMmTJys3N9eyHTt2zKYaAAAAUNrx48c1ZswYffzxxzKZTPr973+vOXPmaPTo0erRo8dN7y9XiA0MDJTJZNLevXvLPL93717Vq1dPDRs2lCR5enoqMDBQd911lz799FPNmTNH33zzjeX6xMREFRUVydfXVy4uLnJxcdH8+fO1YsUK5ebmlvkdM2fO1LJly7R9+3ar461atZJ0NRhfYzabFRgYqMDAQLm4lB7+6+3tbTl/o+skyc3NTbfffrvVBgAAgPLZsmWLfv/736tly5bKy8tTamqqxo0bp2+//Vbjxo1TrVq19Prrr9+0nXKFWC8vL/Xu3Vvz5s3TxYsXrc5lZ2fr448/1pAhQ8oce+ru7q5x48Zp4sSJMgxDRUVF+vDDD/XGG29Y9YTu2LFDvr6+WrJkSZk1dOnSRYMGDdKkSZOsjoeGhiokJESvv/66zWMpAAAAUL26d++uCxcuaMuWLfrwww9122236c0337T8a/emTZvUtGnTm7ZT7tkJ5syZo+7du6tPnz6aNm2a1RRbTZo00fTp069776hRo/Tqq69qxYoVcnFx0blz5zRy5Eh5enpaXffwww8rMTFRTz31VJntTJ8+XW3btrXqNTWZTFq0aJF69+6t8PBwTZ48Wa1bt9aVK1e0fv16nTp1Smaz2aqd8+fPKzs72+qYh4eH6tSpU97HAgAAABts2bJFnTt3LnX82qQBx48fV1xcnNasWXPDdso9JrZVq1ZKT09XQECAHn30UbVs2VJPPvmkoqKitGnTJsscsWWpX7++HnvsMU2dOlWJiYnq1atXqQArXQ2x6enp+uGHH8psJygoSCNGjNClS5esjnfr1k3btm1TcHCw4uPj1aZNG3Xv3l1LlizRW2+9VWp+2ri4OPn4+Fhts2fPLu8jAQAAgI3KCrDXfPjhh2rfvn2pjseymAwWgK6QvLw8eXp6auubfmpwO0vPwnkUFpk08V9tJUmvP7Bbbi78FgLncOmKSc/+++qv/U8//bTUVJMAKu7UqVMaNWqUvvnmG73xxht64oknbnpPuYcTwNqVkhoqLLr5dcBvRWGRqczPwG/dlZL//8fLW5l3HHB2v159taioSO+++67atWunnTt3ys/Pz6Z2CLG36OU1QapZs6a9ywDs4sVVbexdAgDAwXz55ZdW+0VFRTp37pwGDRpkc4CVCLEAAACoRt9//32pY1999ZWeeOIJff7550pMTFSLFi1u2g5jYivo2pjYkydPMmcsnIphGCosLJR0df5k/lkVzohf+0DlO3v2rEaNGqVVq1bptdde0x//+McbXk+IraBrITY3N5cQCwAAUEk++eQTxcfH69y5cze8rkLLzgIA4GwMw9ClS5d06dIlm5dfB1B+/fv3v+E0XNcQYgEAsEFhYaEGDx6swYMHW4bUAKh8Fy9e1Nq1a296HSEWAAAb/HKBnV8vtgOg+hFiAQAA4HCYYgsAABuUlJSU+RlA+ZjN5koZV06IBQDABvn5+Vaf69evb8dqAMe1cuXKG57Pzc1VbGzsTdup8uEECxYskIeHh4qK/n9t1oKCAtWsWVORkZFW16akpMhkMunw4cPy9/fXrFmzSrU3depUdezYscx9f39/mUym627Dhw+XpOueX7p0aSX/9AAAAPilBx988IZbnz59bGqnyntio6KiVFBQoPT0dHXr1k2StGHDBnl7e2vLli26dOmSatWqJUlKTk5W8+bN1bJlywp919atW1VcXCxJ+u677/Twww9r//79lnlca9eubbl20aJF6tu3r9X9devWrdD3AgAAwDZXrlxRzZo1b7mdKu+JDQ4Olo+Pj1JSUizHUlJSNGDAALVo0UKbN2+2Oh4VFVXh72rYsKG8vb3l7e1t+WeeRo0aWY55enparq1bt67l+LXtWpgGAABA1WjSpInGjx+vnTt3lnnebDbL39//pu1Uy+wEUVFRSk5OtuwnJycrMjJSERERluMXL17Uli1bbinEAgAA4H/bpEmTlJaWptDQUHXt2lXvvvuu1ZhzLy8v/fjjjzdtp9pC7MaNG1VUVKT8/Hxt375dERER6tGjh6WHdtOmTSosLLQKsc8//7zc3d2tthkzZlRKTdHR0aXaPnr06HWvLywsVF5entUGAACA8nnmmWf03XffKTU1Vdu2bdO8efPk7e2t2NhYpaam2txOtYTYyMhIXbhwQVu3btWGDRsUFBSkhg0bKiIiwjIuNiUlRQEBAWrevLnlvmeffVYZGRlW21NPPVUpNb311lul2vb19b3u9QkJCfL09LRszZo1q5Q6AAAAnFG9evVkMpm0Y8cObdmyRd7e3ho2bJiCgoKUkJBw0/urJcQGBgaqadOmSk5OVnJysiIiIiRJvr6+atasmb777jslJyerZ8+eVvc1aNBAgYGBVltlTWni7e1dqm0Xl+u/5zZ58mTl5uZatmPHjlVKHQAAAM6uXbt2eu2115SZmanBgwfrL3/5y03vqbZ5YqOiopSSkqJz587p2WeftRzv0aOHkpKSlJaWptGjR1dXOeXm5uYmNzc3e5cBAADwm7Njxw599NFHWrJkiTw9PfXaa6/d9J5qDbHx8fG6cuWKpSdWkiIiIjRmzBhdvny5Wl/qOn/+vLKzs62OeXh4qE6dOtVWAwAAgLM6c+aMDMPQHXfcoaNHj2rw4MFavny5ZUrWm6nWEHvx4kWFhISocePGluMRERHKz8+3TMVVXeLi4kodS0hI0KRJk6qtBgAAAGfzt7/9TStWrFB6errCwsI0YsQIDRkyRLfddlu52jEZlbF4rRPKy8uTp6encnNzLYspAAB+u86ePWtZCnPx4sUsOwtUkI+Pjx577DGNHDlSQUFBFW6n2npiAQBwZDVq1CjzM4DyOX78uMxm8y23Q4gFAABAtfnoo49suu7av3xcDyEWAAAA1WbEiBGqU6fODac2NQyDEAsAQGWoVatWmZ8BlN+GDRvUoUOHW2qDEFtB196HY/lZAHAOhmEoMTFR0tWlyC9fvmznigD78PDwkMlksncZhNiKOnPmjCSx/CwAAHAqOTk5atiwob3LIMRW1LWpVY4ePSpPT087V+N88vLy1KxZMx07dowpzuyA529fPH/74dnbF8/fvq49f1dXV3uXIokQW2HXplfx9PTkfyQ7uv3223n+dsTzty+ev/3w7O2L529ftzqUoGXLlnJzc7vlOgixAAAAqDYHDhyolHYIsQAAAKg2cXFxNl23aNGiG55nyZEKcnNz05QpUyqlOxzlx/O3L56/ffH87Ydnb188f/uqrOf/4YcfKicnR7m5ucrNzdWJEyf00UcfWfZzcnK0ePHim7ZjMq7NFQUAAABUMbPZrBMnTqhx48aSpMzMTLVv3175+fmSpFOnTsnb21vFxcU3bIeeWAAAANjNr/tTDcModawshFgAAAA4HEIsAAAA7OrX03bZMo0XIRYAAADVJjg4WC4u/z9BVv369fXCCy9Y9t3c3NSnT5+btkOIraC5c+fK399ftWrVUteuXZWWlmbvkpzC+vXr1b9/f/n6+spkMumLL76wd0lOIyEhQXfddZc8PDzUqFEjDRw4UPv377d3WU5j/vz5at++vWWS97CwMCUlJdm7LKc1c+ZMmUwmjR8/3t6lOIWpU6fKZDJZbSEhIfYuy6n8/PPPGjp0qLy8vFS7dm3dcccdSk9Pr1Bbe/bskZeXl2W/bt26mjRpkmXf09NT//nPf27aDiG2ApYtW6ZnnnlGU6ZM0ffff68OHTqoT58+ysnJsXdpv3kXLlxQhw4dNHfuXHuX4nRSU1MVHx+vzZs3a82aNbpy5Yruu+8+Xbhwwd6lOYWmTZtq5syZ2rZtm9LT09WzZ08NGDBAu3fvtndpTmfr1q1699131b59e3uX4lTatm2rrKwsy/btt9/auySnce7cOYWHh6tmzZpKSkrSnj179MYbb6hevXp2rYsptiqga9euuuuuuzRnzhxJUklJiZo1a6axY8da/U0CVctkMmnlypUaOHCgvUtxSqdOnVKjRo2UmpqqHj162Lscp1S/fn397W9/08iRI+1ditMoKChQp06dNG/ePE2bNk0dO3bUrFmz7F3Wb97UqVP1xRdfKCMjw96lOKVJkyZp48aN2rBhg71LsUJPbDldvnxZ27ZtU69evSzHatSooV69emnTpk12rAyoXrm5uZKuBilUr+LiYi1dulQXLlxQWFiYvctxKvHx8br//vut/gxA9Th48KB8fX0VEBCgmJgYHT161N4lOY1//vOf6ty5swYPHqxGjRopNDRU7733nr3LIsSW1+nTp1VcXGyZoPeaxo0bKzs7205VAdWrpKRE48ePV3h4uNq1a2fvcpzGzp075e7uLjc3Nz311FNauXKl2rRpY++ynMbSpUv1/fffKyEhwd6lOJ2uXbvqgw8+0KpVqzR//nxlZmbqnnvusUyOj6r1448/av78+WrVqpVWr16t0aNH6+mnn7ZpVa2q5HLzSwDAWnx8vHbt2sWYtGoWHBysjIwM5ebmavny5YqNjVVqaipBthocO3ZM48aN05o1a1SrVi17l+N0+vXrZ/ncvn17de3aVX5+fvr0008ZTlMNSkpK1LlzZ82YMUOSFBoaql27dmnBggWKjY21W130xJZTgwYNZDabdfLkSavjJ0+elLe3t52qAqrPmDFj9K9//UvJyclq2rSpvctxKq6urgoMDNSdd96phIQEdejQQW+//ba9y3IK27ZtU05Ojjp16iQXFxe5uLgoNTVV77zzjlxcXG66PCYqV926dRUUFKRDhw7ZuxSn4OPjU+ovy61bt7b7kA5CbDm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIkNlstneJTqWgoECHDx+Wj4+PvUtxCuHh4aWmVDxw4ID8/PzsVNFVDCeogGeeeUaxsbHq3LmzunTpolmzZunChQuKi4uzd2m/eQUFBVZ/887MzFRGRobq16+v5s2b27Gy3774+Hh98skn+vLLL+Xh4WEZA+7p6anatWvbubrfvsmTJ6tfv35q3ry58vPz9cknnyglJUWrV6+2d2lOwcPDo9T47zp16sjLy4tx4dVg4sSJ6t+/v/z8/HTixAlNmTJFZrNZ0dHR9i7NKUyYMEHdu3fXjBkz9OijjyotLU0LFy7UwoUL7VuYgQqZPXu20bx5c8PV1dXo0qWLsXnzZnuX5BSSk5MNSaW22NhYe5f2m1fWc5dkLFq0yN6lOYURI0YYfn5+hqurq9GwYUPj3nvvNb7++mt7l+XUIiIijHHjxtm7DKcwZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXGjvkgzmiQUAAIDDYUwsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAHACR44ckclkUkZGhr1LAYBKQYgFgAoYPny4Bg4caNmPjIzU+PHj7VZPZmam/vCHP8jX11e1atVS06ZNNWDAAO3bt0+S1KxZM2VlZbFEKoDfDBd7FwAAuDVXrlxR7969FRwcrM8//1w+Pj46fvy4kpKSdP78eUmS2WyWt7e3fQsFgEpETywA3KLhw4crNTVVb7/9tkwmk0wmk44cOSJJ2rVrl/r16yd3d3c1btxYw4YN0+nTpy33RkZGauzYsRo/frzq1aunxo0b67333tOFCxcUFxcnDw8PBQYGKikp6brfv3v3bh0+fFjz5s1Tt27d5Ofnp/DwcE2bNk3dunWTVHo4wfDhwy21/nJLSUmRJBUWFmrixIlq0qSJ6tSpo65du1rOAcD/AkIsANyit99+W2FhYXriiSeUlZWlrKwsNWvWTOfPn1fPnj0VGhqq9PR0rVq1SidPntSjjz5qdf/ixYvVoEEDpaWlaezYsRo9erQGDx6s7t276/vvv9d9992nYcOG6b///W+Z39+wYUPVqFFDy5cvV3Fxsc01X6s1KytL48aNU6NGjRQSEiJJGjNmjDZt2qSlS5fqhx9+0ODBg9W3b18dPHjw1h4WAFQSk2EYhr2LAABHM3z4cJ0/f15ffPGFpKs9qh07dtSsWbMs10ybNk0bNmzQ6tWrLceOHz+uZs2aaf/+/QoKClJkZKSKi4u1YcMGSVJxcbE8PT01aNAgffjhh5Kk7Oxs+fj4aNOmTZae1V+bO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKs9sS1atND27dvVsWNHq3s///xzxcTE6JtvvlF4eLiOHj2qgIAAHT16VL6+vpbrevXqpS5dumjGjBm3+vgA4JbREwsAVWTHjh1KTk6Wu7u7ZbvW03n48GHLde3bt7d8NpvN8vLy0h133GE51rhxY0lSTk7Odb8rPj5e2dnZ+vjjjxUWFqbPPvtMbdu21Zo1a25Y4/bt2zVs2DDNmTNH4eHhkqSdO3equLhYQUFBVrWnpqZa1Q0A9sSLXQBQRQoKCtS/f3+99tprpc75+PhYPtesWdPqnMlksjpmMpkkSSUlJTf8Pg8PD/Xv31/9+/fXtGnT1KdPH02bNk29e/cu8/rs7Gw9+OCDevzxxzVy5Eirus1ms7Zt2yaz2Wx1j7u7+w1rAIDqQogFgErg6upaajxqp06dtGLFCvn7+8vFpXp/uzWZTAoJCdF3331X5vlLly5pwIABCgkJ0Ztvvml1LjQ0VMXFxcrJydE999xTHeUCQLkxnAAAKoG/v7+2bNmiI0eO6PTp0yopKVF8fLzOnj2r6Ohobd26VYcPH9bq1asVFxdn8wtYtsjIyNCAAQO0fPly7dmzR4cOHVJiYqLef/99DRgwoMx7Ro0apWPHjumdd97RqVOnlJ2drezsbF2+fFlBQUGKiYnRY489ps8//1yZmZlKS0tTQkKC/v3vf1da3QBwK+iJBYBKMHHiRMXGxqpNmza6ePGiMjMz5e/vr40bN+r555/Xfffdp8LCQvn5+alv376qUaPy+hCaNm0qf39/vfzyy5aptK7tT5gwocx7UlNTlZWVpTZt2lgdT05OVmRkpBYtWqRp06bpT3/6k37++Wc1aNBA3bp10wMPPFBpdQPArWB2AgAAADgchhMAAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAw3GxdwEAAAD47YuLi7PpukWLFtl0nckwDONWCgIAAABuxmw2q2/fvnJzc5MkXbhwQevWrVP//v0lSYWFhUpKSlJJSYlN7RFiAQAAUOXMZrNOnDihxo0bS5IyMzPVvn175efnS5JOnTqlxo0b2xxiGRMLAACAavfrftTy9qsSYgEAAFDlPDw8dO7cOcv+uXPndOHCBRUUFEiSsrOzVb9+fZvbI8QCAACgyoWEhGj27NkqKSlRSUmJ5s2bJ19fX02cOFEbN27Uiy++qLvuusvm9hgTCwAAgCr3xRdf6JFHHlGdOnVUUlKiOnXqaNWqVfr973+vgwcPqlmzZvrqq690xx132NQeIRYAAADVYv369frqq69Uu3ZtPfHEE2rWrJkk6cyZM/Ly8ipXW4RYAAAAOBzGxAIAAMDhsGIXAAAAqpzZbLZpGi1b54klxAIAAKBavPXWW2rRokWltMWY2AoyDEP5+fny8PCQyWSydzkAAAD/08xms77//nt16NChUtpjTGwF5efny9PT07JUGgDgt80wDF26dEmXLl0q98pCACofIRYAABsUFhZq8ODBGjx4sAoLC+1dDuD0CLEAANjg0qVLZX4GYB+82AUAAIAqt2HDBrVq1UqSdO7cOeXl5ZV5nZ+fn03tEWIBAABQ5cLCwvTaa6/pzTff1OnTp0udN5lMMgyDKbYAAKhMv/yD1dY/ZAH8v3nz5unNN9/UCy+8oDvvvFOenp631B4hFgAAG/xyNpr8/HzVr1/fjtUAjue9997TrFmz9Ic//KFS2qvQi13Hjh3TiBEj5OvrK1dXV/n5+WncuHE6c+aM5ZrIyEiZTCaZTCbVqlVLQUFBSkhIKHNakk2bNslsNuv+++8vde7IkSMymUxq1KhRqemsOnbsqKlTp1odO3TokEaMGKHmzZvLzc1NTZo00b333quPP/5YRUVFluuu1fbrbenSpRV5JAAAALiBw4cPq1u3bpXWXrlD7I8//qjOnTvr4MGDWrJkiQ4dOqQFCxZo7dq1CgsL09mzZy3XPvHEE8rKytL+/fs1efJkvfTSS1qwYEGpNhMTEzV27FitX79eJ06cKPN78/Pz9frrr9+wtrS0NHXq1El79+7V3LlztWvXLqWkpOjxxx/X/PnztXv3bqvrFy1apKysLKtt4MCB5X0kAAAAuIn69euXORa2osodYuPj4+Xq6qqvv/5aERERat68ufr166dvvvlGP//8s1588UXLtbfddpu8vb3l5+enuLg4tW/fXmvWrLFqr6CgQMuWLdPo0aN1//3364MPPijze8eOHas333xTOTk5ZZ43DEPDhw9XUFCQNm7cqP79+6tVq1Zq1aqVoqOj9e2336p9+/ZW99StW1fe3t5WW61atcr7SAAAAHAT4eHhevXVV687K0F5lSvEnj17VqtXr9Yf//hH1a5d2+qct7e3YmJitGzZslJDBgzD0IYNG7Rv3z65urpanfv0008VEhKi4OBgDR06VO+//36ZQw6io6MVGBioV155pczaMjIytHfvXk2cOFE1apT9Y93K8rCFhYXKy8uz2gAAAGCbmTNnau/evWrSpIlCQ0MVFRVV5marcoXYgwcPyjAMtW7duszzrVu31rlz53Tq1ClJV99Cc3d3l5ubm3r06KGSkhI9/fTTVvckJiZq6NChkqS+ffsqNzdXqamppdo2mUyaOXOmFi5cqMOHD5c6f+DAAUlScHCw5VhOTo7c3d0t27x586zuiY6Otjrv7u6uo0ePlvmzJSQkyNPT07I1a9bseo8JAAAAv9K8eXPt3r1bCxcu1MCBAxUaGlrmZqsKzU5g65rRMTExevHFF3Xu3DlNmTJF3bt3V/fu3S3n9+/fr7S0NK1cufJqMS4uGjJkiBITExUZGVmqvT59+ujuu+/WX/7yF33yySc3/X4vLy9lZGRIuvqi2eXLl63Ov/XWW+rVq5fVMV9f3zLbmjx5sp555hnLfl5eHkEWAACgHNzc3BQdHV0pbZUrxAYGBspkMmnv3r166KGHSp3fu3ev6tWrp4YNG0qSPD09FRgYKOnqsIHAwEB169bNEhwTExNVVFRkFRwNw5Cbm5vmzJlT5vxhM2fOVFhYmJ599lmr49dWgNi/f78lxZvNZsv3u7iU/lG9vb0t52/Gzc1Nbm5uNl0LAACAqlWu4QReXl7q3bu35s2bp4sXL1qdy87O1scff6whQ4aUOfbU3d1d48aN08SJE2UYhoqKivThhx/qjTfeUEZGhmXbsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/11JqEGAAD4H9OiRYubbv7+/ja3V+7hBHPmzFH37t3Vp08fTZs2TS1atNDu3bv17LPPqkmTJpo+ffp17x01apReffVVrVixQi4uLjp37pxGjhxZqsf14YcfVmJiop566qky25k+fbratm1r1btqMpm0aNEi9e7dW+Hh4Zo8ebJat26tK1euaP369Tp16pTMZrNVO+fPn1d2drbVMQ8PD9WpU6e8jwUAAAA3cPToUb3yyivy8PCQJJ0+fVp/+9vf9Nprr0m6OmPVn//8Z9sbNCrgyJEjRmxsrNG4cWOjZs2aRrNmzYyxY8cap0+ftlwTERFhjBs3rtS9o0aNMtq2bWs88MADxu9+97sy29+yZYshydixY4eRmZlpSDK2b99udc2TTz5pSDKmTJlidXz//v1GbGys0bRpU8PFxcXw9PQ0evToYbz77rvGlStXLNdJKnNLSEiw6Rnk5uYakozc3FybrgcAOLYjR44YDzzwgPHAAw8YR44csXc5gMOpUaOGkZ2dbdk/fPiw4e7ubtk/efKkYTKZbG7PZBg2vqUFK3l5efL09FRubq5uv/12e5cDAKhiZ8+eVWxsrCRp8eLFLDsLlJPZbNaJEyfUuHFjSVcX0OrQoYNlRdacnBx5e3vbPCy0QsvOAgDgbH45B/n15iMHUH34vxAAAAB28evJAMqzMBUhFgAAG/xyWXKWKAfKb9SoUbrtttss+02aNFFSUpJl38PDQwkJCTa3x5jYCmJMLAA4F8MwVFhYKOnq3OG3spQ5gFtXoRW7AABwNiaTiR5Y4H8IwwkAAADgcAixAAAAcDiEWAAAANidYRj66aefbL6eEAsAAAC7O3XqlFq0aGHz9YRYAAAA/E9gnlgAAAA4nPLM/FrlU2wtWLBAzz77rM6dOycXl6tfV1BQoHr16ik8PFwpKSmWa1NSUhQVFaVDhw7p3nvv1fjx4zV+/Hir9qZOnaovvvhCGRkZpfb9/f1vOJYiNjZWH3zwwXVT/pIlS/T73//+ln5eAAAAlPbyyy/f8HxBQUG52qvyEBsVFaWCggKlp6erW7dukqQNGzbI29tbW7Zs0aVLlyzz7iUnJ6t58+Zq2bJlhb5r69atKi4uliR99913evjhh7V//37LYgS1a9e2XLto0SL17dvX6v66detW6HsBAABwY19++eUNzxcVFZWrvSoPscHBwfLx8VFKSoolxKakpGjAgAFat26dNm/erMjISMvxqKioCn9Xw4YNLZ/r168vSWrUqFGZ4bRu3bry9vau8HcBAADAdt9///0Nz586dUqNGze2ub1qGRMbFRWl5ORky35ycrIiIyMVERFhOX7x4kVt2bLllkJsVSosLFReXp7VBgAAgMpRnvGwUjWG2I0bN6qoqEj5+fnavn27IiIi1KNHD8uY2E2bNqmwsNAqxD7//PNyd3e32mbMmFEpNUVHR5dq++jRo9e9PiEhQZ6enpatWbNmlVIHAAAArirP7ARVPpxAkiIjI3XhwgVt3bpV586dU1BQkBo2bKiIiAjFxcXp0qVLSklJUUBAgJo3b26579lnn9Xw4cOt2nrnnXe0fv36W67prbfeUq9evayO+fr6Xvf6yZMn65lnnrHs5+XlEWQBAAAqiaen501f/vqlagmxgYGBatq0qZKTk3Xu3DlFRERIuhoamzVrpu+++07Jycnq2bOn1X0NGjRQYGCg1bFrY11vlbe3d6m2b8TNzU1ubm6V8t0AAAD4f6dPn9ZTTz2lVatW6c9//rNN91TbPLFRUVFKSUlRSkqK5UUuSerRo4eSkpKUlpb2PzseFgAAAFXjyy+/VLt27XTy5En98MMPNt9XLT2x0tUQGx8frytXrlh6YiUpIiJCY8aM0eXLl6s1xJ4/f17Z2dlWxzw8PFSnTp1qqwEAAMBZ/Hou/6KiIr366qv67LPP9Oqrr1oN27RFtYbYixcvKiQkxGr6hIiICOXn51um4qoucXFxpY4lJCRo0qRJ1VYDAACAswgICJBhGDKZTJb/mkwmrVq1qtR7SrYwGeWdzwCSrr7Y5enpqdzcXMtiCgAAACjbr4cKFBUVafr06UpOTtabb75Z6mX+myHEVhAhFgAA4NZ99NFHevrppxUWFqb33nvvhrNF/VK1vdgFAAAA/NrQoUO1a9cuFRUVqV27djbfV21jYgEAAICy+Pr6avXq1Zo3b57N9zCcoIIYTgAAAGA/9MRW0LXsn5eXZ+dKAAAAqo+Hh0e5loe95trsBDdiGIaOHDliU3uE2Ao6c+aMJLH0LAAAcCo5OTlq2LBhue8bP3685fPp06f1t7/9Ta+99prlWEFBgc2rdUkMJ6iw8+fPq169ejp69Kg8PT3tXY7TycvLU7NmzXTs2DGGc9gBz9++eP72w7O3L56/fV17/ufPn7/l7PPjjz+qQ4cOys/PtxzLycmRt7e3SkpKbGqDntgKqlHj6sQOnp6e/I9kR7fffjvP3454/vbF87cfnr198fztqyJDCX7N3d1dly5d0uXLl+Xq6irpaki+7bbbbG6DKbYAAABQrRo1aiQPDw+98cYbkqTi4mK9/vrrCg4OtrkNemIBAABQ7V544QU9//zz+utf/6orV67o4sWLWrZsmc33E2IryM3NTVOmTJGbm5u9S3FKPH/74vnbF8/ffnj29sXzt6/Kfv4TJ05Uu3bttHbtWrm6uqp///7q1q2bzffzYhcAAAAcDj2xAAAAqHIvv/yyTddNmTLFpuvoiQUAAECVM5vNatu2rVxcrvahXr58Wfv27VP79u0lSUVFRdq1a5fNU2wRYgEAAFDlzGazTpw4ocaNG0uSMjMz1b59e8tcsadOnZK3t7eKi4ttao8ptgAAAFDtft2PahjGTZel/SVCbAXNnTtX/v7+qlWrlrp27aq0tDR7l+QU1q9fr/79+8vX11cmk0lffPGFvUtyGgkJCbrrrrvk4eGhRo0aaeDAgdq/f7+9y3Ia8+fPV/v27S2TvIeFhSkpKcneZTmtmTNnymQyWS2jiaozdepUmUwmqy0kJMTeZTmVn3/+WUOHDpWXl5dq166tO+64Q+np6XatiRBbAcuWLdMzzzyjKVOm6Pvvv1eHDh3Up08f5eTk2Lu037wLFy6oQ4cOmjt3rr1LcTqpqamKj4/X5s2btWbNGl25ckX33XefLly4YO/SnELTpk01c+ZMbdu2Tenp6erZs6cGDBig3bt327s0p7N161a9++67lnF8qB5t27ZVVlaWZfv222/tXZLTOHfunMLDw1WzZk0lJSVpz549euONN1SvXr1ytVNWL+strf5loNy6dOlixMfHW/aLi4sNX19fIyEhwY5VOR9JxsqVK+1dhtPKyckxJBmpqan2LsVp1atXz/j73/9u7zKcSn5+vtGqVStjzZo1RkREhDFu3Dh7l+QUpkyZYnTo0MHeZTit559/3rj77rtvuZ3atWsbJ0+etOyfOnXKGD16tGX/zJkzRuvWrW1uj57Ycrp8+bK2bdumXr16WY7VqFFDvXr10qZNm+xYGVC9cnNzJUn169e3cyXOp7i4WEuXLtWFCxcUFhZm73KcSnx8vO6//36rPwNQPQ4ePChfX18FBAQoJiZGR48etXdJTuOf//ynOnfurMGDB6tRo0YKDQ3Ve++9V+52/vvf/6pRo0aW/QYNGmjevHmW/fr162vPnj02t0eILafTp0+ruLjY8mbdNY0bN1Z2dradqgKqV0lJicaPH6/w8HC1a9fO3uU4jZ07d8rd3V1ubm566qmntHLlSrVp08beZTmNpUuX6vvvv1dCQoK9S3E6Xbt21QcffKBVq1Zp/vz5yszM1D333GN5qx1V68cff9T8+fPVqlUrrV69WqNHj9bTTz+txYsX27UuFjsAUG7x8fHatWsXY9KqWXBwsDIyMpSbm6vly5crNjZWqampBNlqcOzYMY0bN05r1qxRrVq17F2O0+nXr5/lc/v27dW1a1f5+fnp008/1ciRI+1YmXMoKSlR586dNWPGDElSaGiodu3apQULFig2NtZuddETW04NGjSQ2WzWyZMnrY6fPHlS3t7edqoKqD5jxozRv/71LyUnJ6tp06b2LsepuLq6KjAwUHfeeacSEhLUoUMHvf322/Yuyyls27ZNOTk56tSpk1xcXOTi4qLU1FS98847cnFxsXleS1SOunXrKigoSIcOHbJ3KU7Bx8en1F+WW7dubfchHYTYcnJ1ddWdd96ptWvXWo6VlJRo7dq1jE3Db5phGBozZoxWrlypdevWqUWLFvYuyemVlJSosLDQ3mU4hXvvvVc7d+5URkaGZevcubNiYmKUkZEhs9ls7xKdSkFBgQ4fPiwfHx97l+IUwsPDS02peODAAfn5+dmpoqsYTlABzzzzjGJjY9W5c2d16dJFs2bN0oULFxQXF2fv0n7zCgoKrP7mnZmZqYyMDNWvX1/Nmze3Y2W/ffHx8frkk0/05ZdfysPDwzIG3NPTU7Vr17Zzdb99kydPVr9+/dS8eXPl5+frk08+UUpKilavXm3v0pyCh4dHqfHfderUkZeXF+PCq8HEiRPVv39/+fn56cSJE5oyZYrMZrOio6PtXZpTmDBhgrp3764ZM2bo0UcfVVpamhYuXKiFCxfat7Bbni/BSc2ePdto3ry54erqanTp0sXYvHmzvUtyCsnJyYakUltsbKy9S/vNK+u5SzIWLVpk79KcwogRIww/Pz/D1dXVaNiwoXHvvfcaX3/9tb3LcmpMsVV9hgwZYvj4+Biurq5GkyZNjCFDhhiHDh2yd1lO5auvvjLatWtnuLm5GSEhIcbChQvtXZJhMoxyrO8FAAAA/A9gTCwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAcAJHjhyRyWRSRkaGvUsBgEpBiAWAChg+fLgGDhxo2Y+MjNT48ePtVk9mZqb+8Ic/yNfXV7Vq1VLTpk01YMAA7du3T5LUrFkzZWVlsUQqgN8MF3sXAAC4NVeuXFHv3r0VHByszz//XD4+Pjp+/LiSkpJ0/vx5SZLZbJa3t7d9CwWASkRPLADcouHDhys1NVVvv/22TCaTTCaTjhw5IknatWuX+vXrJ3d3dzVu3FjDhg3T6dOnLfdGRkZq7NixGj9+vOrVq6fGjRvrvffe04ULFxQXFycPDw8FBgYqKSnput+/e/duHT58WPPmzVO3bt3k5+en8PBwTZs2Td26dZNUejjB8OHDLbX+cktJSZEkFRYWauLEiWrSpInq1Kmjrl27Ws4BwP8CQiwA3KK3335bYWFheuKJJ5SVlaWsrCw1a9ZM58+fV8+ePRUaGqr09HStWrVKJ0+e1KOPPmp1/+LFi9WgQQOlpaVp7NixGj16tAYPHqzu3bvr+++/13333adhw4bpv//9b5nf37BhQ9WoUUPLly9XcXGxzTVfqzUrK0vjxo1To0aNFBISIkkaM2aMNm3apKVLl+qHH37Q4MGD1bdvXx08ePDWHhYAVBKTYRiGvYsAAEczfPhwnT9/Xl988YWkqz2qHTt21KxZsyzXTJs2TRs2bNDq1astx44fP65mzZpp//79CgoKUmRkpIqLi7VhwwZJUnFxsTw9PTVo0CB9+OGHkqTs7Gz5+Pho06ZNlp7VX5s7d66ee+45mc1mde7cWVFRUYqJiVFAQICkqz2xLVq00Pbt29WxY0erez///HPFxMTom2++UXh4uI4ePaqAgAAdPXpUvr6+lut69eqlLl26aMaMGbf6+ADgltETCwBVZMeOHUpOTpa7u7tlu9bTefjwYct17du3t3w2m83y8vLSHXfcYTnWuHFjSVJOTs51vys+Pl7Z2dn6+OOPFRYWps8++0xt27bVmjVrbljj9u3bNWzYMM2ZM0fh4eGSpJ07d6q4uFhBQUFWtaemplrVDQD2xItdAFBFCgoK1L9/f7322mulzvn4+Fg+16xZ0+qcyWSyOmYymSRJJSUlN/w+Dw8P9e/fX/3799e0adPUp08fTZs2Tb179y7z+uzsbD344IN6/PHHNXLkSKu6zWaztm3bJrPZbHWPu7v7DWsAgOpCiAWASuDq6lpqPGqnTp20YsUK+fv7y8Wlen+7NZlMCgkJ0XfffVfm+UuXLmnAgAEKCQnRm2++aXUuNDRUxcXFysnJ0T333FMd5QJAuTGcAAAqgb+/v7Zs2aIjR47o9OnTKikpUXx8vM6ePavo6Ght3bpVhw8f1urVqxUXF2fzC1i2yMjI0IABA7R8+XLt2bNHhw4dUmJiot5//30NGDCgzHtGjRqlY8eO6Z133tGpU6eUnZ2t7OxsXb58WUFBQYqJidFjjz2mzz//XJmZmUpLS1NCQoL+/e9/V1rdAHAr6IkFgEowceJExcbGqk2bNrp48aIyMzPl7++vjRs36vnnn9d9992nwsJC+fn5qW/fvqpRo/L6EJo2bSp/f3+9/PLLlqm0ru1PmDChzHtSU1OVlZWlNm3aWB1PTk5WZGSkFi1apGnTpulPf/qTfv75ZzVo0EDdunXTAw88UGl1A8CtYHYCAAAAOByGEwAAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACH42LvAgAAAPDbFxcXZ9N1ixYtsuk6QiwAAACqXG5urtX+zz//rB07duh3v/tdhdojxAIAAKDKff7555bPx44dU2RkpK5cuaKgoCDNnDmz3O0xJhYAAADV5vjx44qMjFSTJk20du1azZ8/X3/961/L3Q49sQAAAKgWJ06cUFRUlHx9fZWUlKQ6deroyy+/1P3336/69evr8ccft7ktQiwAAACqXFZWliIjI9W4cWOtWrVKderUkSRFRkZqyZIlGjJkiOrWratHHnnEpvZMhmEYVVkwAAAAEBISIi8vL61evVru7u6lzn/44YcaNWqULl68aFN79MQCAACgynl5eWnVqlVlBlhJeuyxx3TmzBmb26MnFgAAAFWuoKDgugG2IgixAAAAqHK2LHZgGIY++OADm9ojxAIAAKDKDRo06LrniouL9c033+jixYsqKSmxqT3GxAIAAKDK/XKxg1/68ssv9cILL6hWrVqaMmWKze2x2AEAAACq3YYNG9S9e3dFR0frgQce0I8//qjnnnvO5vsJsQAAAKg2u3btUv/+/XXvvfeqbdu2OnTokF577TV5enqWqx1CLAAAAKrcTz/9pNjYWHXs2FEuLi7auXOn3nvvPfn6+laoPV7sAgAAQJWrVauWatSooaefflphYWHXvW7AgAE2tUeIBQAAQJVzcXHRzWKnYRg2z05AiAUAAIDDYUwsAAAAHA7zxAIAAKDa7NmzR/v371deXl6Z52NjY21qh+EEAAAAqHJ5eXl69NFHtWbNGrm4uKhOnTqlrjEMQ+fOnbOpPXpiAQAAUOWmTJminJwcbdu2TR07drzl9uiJBQAAQJULCgrSggUL1LNnz0ppjxe7AAAAUOVOnDihgICASmuPEAsAAIAq17RpU+3bt6/S2mNMLAAAAKrcoEGDNGHCBLm6uurOO++Up6fnLbXHmFgAAABUuf/+97964okntHTp0huu3MWKXQAAAPifk5WVpQMHDig3N7fM8w8++KBN7RBiK8gwDOXn58vDw0Mmk8ne5QAAADgVxsRWUH5+vjw9PZWbm6vbb7/d3uUAAAA4hLS0NH3yySc6cOCATCaTAgMDFRMToy5dupSrHWYnAADABoZh6NKlS7p06dINx/MBuL5JkyYpLCxMixYtUlZWlk6cOKEPPvhA3bp104svvliutgixAADYoLCwUIMHD9bgwYNVWFho73IAh7N8+XK9+eabmjVrls6ePavt27dr+/btOnv2rN555x399a9/1YoVK2xujxALAIANLl26VOZnALaZO3euJkyYoLFjx8psNluOm81mjRkzRn/60580Z84cm9sjxAIAAKDKbd++XQ899NB1zw8cOFDbt2+3uT1CLAAANvjl3JW2zmMJ4P+VlJTI19f3uud9fX1VXFxsc3uEWAAAbJCfn1/mZwC2admypQ4ePHjd8wcPHlTLli1tbq9CIfbYsWMaMWKEfH195erqKj8/P40bN05nzpyxXBMZGSmTySSTyaRatWopKChICQkJZb7RuWnTJpnNZt1///2lzh05ckQmk0mNGjUq9ZtGx44dNXXqVKtjhw4d0ogRI9S8eXO5ubmpSZMmuvfee/Xxxx+rqKjIct212n69LV26tCKPBAAAADfwyCOP6N13373u+QULFujhhx+2ub1yh9gff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W11+b3uGX28CBA8v7SAAAAHATY8eO1T333FPmSl15eXnq0aOHxowZY3N75V7sID4+Xq6urvr6669Vu3ZtSVLz5s0VGhqqli1b6sUXX9T8+fMlSbfddpu8vb0lSXFxcZozZ47WrFmj0aNHW9orKCjQsmXLlJ6eruzsbH3wwQd64YUXSn3v2LFj9eabbyo+Pl6NGjUqdd4wDA0fPlxBQUHauHGjatT4/3zeqlUrRUdHl+oFrlu3rqU+AAAAVJ3bb79dY8eOLfe56ylXiD179qxWr16t6dOnWwLsNd7e3oqJidGyZcs0b948q3OGYejbb7/Vvn371KpVK6tzn376qUJCQhQcHKyhQ4dq/Pjxmjx5cqmlXKOjo7VmzRq98sorZU6/kJGRob1792rJkiVWAfaXWB4WAADAPhYvXmzTdbGxsTZdV64Qe/DgQRmGodatW5d5vnXr1jp37pxOnTolSZo3b57+/ve/6/Lly7py5Ypq1aqlp59+2uqexMREDR06VJLUt29f5ebmKjU1VZGRkVbXmUwmzZw5U/3799eECRNKDfw9cOCAJCk4ONhyLCcnRwEBAZb9v/71r/rjH/9o2Y+Ojraap0yS9uzZo+bNm5f62QoLC60mt87LyyvzGQAAAKC0CRMmWO0XFRXp4sWL8vDwsBwzDMPmEFuhF7tsXW4vJiZGGRkZ2rhxo/r166cXX3xR3bt3t5zfv3+/0tLSFB0dLUlycXHRkCFDlJiYWGZ7ffr00d13362//OUvNn2/l5eXMjIylJGRobp16+ry5ctW59966y3L+Wvb9aZ+SEhIkKenp2Vr1qyZTTUAAADg6r/oX9tOnjype+65R5L0/vvvW46fO3fO5vbKFWIDAwNlMpm0d+/eMs/v3btX9erVU8OGDSVJnp6eCgwM1F133aVPP/1Uc+bM0TfffGO5PjExUUVFRfL19ZWLi4tcXFw0f/58rVixosxBv5I0c+ZMLVu2rNRkuNeGKezfv99yzGw2KzAwUIGBgXJxKd3p7O3tbTl/o+skafLkycrNzbVsx44du8GTAgAAQFkuX76shx56SBkZGXrxxRf1hz/8QevWrSt3O+UKsV5eXurdu7fmzZunixcvWp3Lzs7Wxx9/rCFDhpQ59tTd3V3jxo3TxIkTZRiGioqK9OGHH+qNN96w6gndsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/31KpmE2s3NTbfffrvVBgAAANsVFRXpkUce0bZt27R27VpNnTpVr7zyigYOHKitW7eWq61yz04wZ84cde/eXX369NG0adPUokUL7d69W88++6yaNGmi6dOnX/feUaNG6dVXX9WKFSvk4uKic+fOaeTIkfL09LS67uGHH1ZiYqKeeuqpMtuZPn262rZta9VrajKZtGjRIvXu3Vvh4eGaPHmyWrdurStXrmj9+vU6depUqfGv58+fV3Z2ttUxDw8P1alTp7yPBQAAADdQXFysRx55RFu3blVycrJCQkIkSRMnTtTZs2f1u9/9TuvXr7/uu1e/Vu4xsa1atVJ6eroCAgL06KOPqmXLlnryyScVFRWlTZs2qX79+te9t379+nrsscc0depUJSYmqlevXqUCrHQ1xKanp+uHH34os52goCCNGDFCly5dsjrerVs3bdu2TcHBwYqPj1ebNm3UvXt3LVmyRG+99ZbV1F7S1Wm/fHx8rLbZs2eX95EAAADgJgYPHqzNmzdr3bp1lgB7zYwZM/Twww+rT58+NrdnMmx9SwtW8vLy5OnpqdzcXIYWAIATOHv2rOWt6cWLF9+w0wZAad7e3lq3bp3atGlz3WuGDBmiZcuW2dRehWYnAADA2fxyDvLrzUcO4PpuFmAl6eOPP7a5vXKPiQUAAADKa+vWrTd9eevaCqy2IMQCAACgyo0YMUJ16tS57nSmEiEWAIBKV6tWrTI/A7Ddhg0b1KFDh0ppixALAIAN3Nzc9Nlnn1k+A7AvQiwAADYwmUz0wAL/Q3i9EgAAAA6HEAsAAIAq17Jly0odisNwAgAAAFS5AwcOVGp7hFgAAABUubi4OJuuW7RokU3XsexsBbHsLAAAgO3MZrP69u1rGVJw4cIFrVu3Tv3795ckFRYWKikpSSUlJTa1R4itIEIsAACA7cxms06cOKHGjRtLkjIzM9W+fXvl5+dLkk6dOiVvb28VFxfb1F6Vv9i1YMECeXh4qKioyHKsoKBANWvWVGRkpNW1KSkpMplMOnz4sPz9/TVr1qxS7U2dOlUdO3Ysc9/f318mk+m627UVIK53funSpZX80wMAAKAsv+5HNQyj1LEbqfIxsVFRUSooKFB6erq6desm6epqDd7e3tqyZYsuXbpkmXcvOTlZzZs3V8uWLSv0XVu3brWk9++++04PP/yw9u/fb+kprV27tuXaRYsWqW/fvlb3161bt0LfCwAAgOpV5SE2ODhYPj4+SklJsYTYlJQUDRgwQOvWrdPmzZstPbIpKSmKioqq8Hc1bNjQ8rl+/fqSpEaNGpUZTuvWrStvb+8KfxcAAABujclkuuH+jVTLPLFRUVFKTk627CcnJysyMlIRERGW4xcvXtSWLVtuKcRWpcLCQuXl5VltAAAAsE1wcLBcXP6//7R+/fp64YUXLPtubm7q06ePze1VW4jduHGjioqKlJ+fr+3btysiIkI9evRQSkqKJGnTpk0qLCy0CrHPP/+83N3drbYZM2ZUSk3R0dGl2j569Oh1r09ISJCnp6dla9asWaXUAQAA4Az27NkjLy8vy37dunU1adIky76np6f+85//2NxetcwTGxkZqQsXLmjr1q06d+6cgoKC1LBhQ0VERCguLk6XLl1SSkqKAgIC1Lx5c8t9zz77rOVlrGveeecdrV+//pZreuutt9SrVy+rY76+vte9fvLkyXrmmWcs+3l5eQRZAAAAO6mWEBsYGKimTZsqOTlZ586dU0REhKSrobFZs2b67rvvlJycrJ49e1rd16BBAwUGBloduzbW9VZ5e3uXavtG3NzcKnWpNAAAAFRctQwnkK4OKUhJSVFKSorV1Fo9evRQUlKS0tLS/mfHwwIAAOB/S7UtOxsVFaX4+HhduXLF0hMrSRERERozZowuX75crSH2/Pnzys7Otjrm4eGhOnXqVFsNAAAAqJhq7Ym9ePGiAgMDLSs1SFdDbH5+vmUqruoSFxcnHx8fq2327NnV9v0AAACoOJadrSCWnQUAALDdyy+/bNN1U6ZMsek6QmwFEWIBAABs16lTJ6v9y5cva9++fWrfvr3lmGEY2r59u03tEWIriBALAABQcZmZmWrfvr3y8/MrdH+1jYkFAAAArrnVftRqm53gt+bag2f5WQAA4Ew8PDxkMpnsXQYhtqLOnDkjSazaBQAAnEpOTo4aNmxo7zIIsRV1beWwo0ePytPT087VOJ9ry/4eO3aMMcl2wPO3L56//fDs7Yvnb1/Xnr+rq2uF7v/pp5+s9o8fPy7DMHTkyBGrnl0/Pz+b2iPEVlCNGleHE3t6evI/kh3dfvvtPH874vnbF8/ffnj29sXzt6+KDiUICAiwGgd7rZ2AgADLvmEYKikpsak9QiwAAACqnK1TZ9mKEAsAAIAq98v5YCsDIbaC3NzcNGXKFLm5udm7FKfE87cvnr998fzth2dvXzx/+7rV5//rMbHXY+uYWBY7AAAAQJUzm80yDMMy9vXXGBMLAACA/0nffPONGjRoIOnq7ASPPvqovvvuO0nS2bNn1bNnT5vbIsQCAACgWrRt21aNGzeWJLm7u8tkMlnGyubk5JSrLZadBQAAgMMhxAIAAKDKVfZrWITYCpo7d678/f1Vq1Ytde3aVWlpafYuySmsX79e/fv3l6+vr0wmk7744gt7l+Q0EhISdNddd8nDw0ONGjXSwIEDtX//fnuX5TTmz5+v9u3bWyZ5DwsLU1JSkr3LclozZ86UyWTS+PHj7V2KU5g6dapMJpPVFhISYu+ynMrPP/+soUOHysvLS7Vr19Ydd9yh9PT0crVR1iIJvz5WnoUUCLEVsGzZMj3zzDOaMmWKvv/+e3Xo0EF9+vQp91gOlN+FCxfUoUMHzZ07196lOJ3U1FTFx8dr8+bNWrNmja5cuaL77rtPFy5csHdpTqFp06aaOXOmtm3bpvT0dPXs2VMDBgzQ7t277V2a09m6davefffdSp/zEjfWtm1bZWVlWbZvv/3W3iU5jXPnzik8PFw1a9ZUUlKS9uzZozfeeEP16tUrVztLlixR3bp1LfsBAQHKy8uz7Ht5eWnTpk02t8cUWxXQtWtX3XXXXZozZ44kqaSkRM2aNdPYsWM1adIkO1fnPEwmk1auXKmBAwfauxSndOrUKTVq1Eipqanq0aOHvctxSvXr19ff/vY3jRw50t6lOI2CggJ16tRJ8+bN07Rp09SxY0fNmjXL3mX95k2dOlVffPGFMjIy7F2KU5o0aZI2btyoDRs23FI7b775poYNG6aGDRtWSl30xJbT5cuXtW3bNvXq1ctyrEaNGurVq1e5/vYAOLrc3FxJV4MUqldxcbGWLl2qCxcuKCwszN7lOJX4+Hjdf//9Vn8GoHocPHhQvr6+CggIUExMjI4ePWrvkpzGP//5T3Xu3FmDBw9Wo0aNFBoaqvfee6/c7UyfPl1NmzbVI488oqSkJJvng70eQmw5nT59WsXFxZbpIa5p3LixsrOz7VQVUL1KSko0fvx4hYeHq127dvYux2ns3LlT7u7ucnNz01NPPaWVK1eqTZs29i7LaSxdulTff/+9EhIS7F2K0+natas++OADrVq1SvPnz1dmZqbuuece5efn27s0p/Djjz9q/vz5atWqlVavXq3Ro0fr6aef1uLFi8vVTk5Ojv71r3/Jzc1N999/v/z8/PTnP/9Zhw8frlBdzBMLoNzi4+O1a9cuxqRVs+DgYGVkZCg3N1fLly9XbGysUlNTCbLV4NixYxo3bpzWrFmjWrVq2bscp9OvXz/L5/bt26tr167y8/PTp59+ynCaalBSUqLOnTtrxowZkqTQ0FDt2rVLCxYsUGxsrM3tmM1m9e7dW02aNNFnn32md955Rx999JHuuOMOdevWTSNHjtTDDz9s8/9j9MSWU4MGDWQ2m3Xy5Emr4ydPnpS3t7edqgKqz5gxY/Svf/1LycnJatq0qb3LcSqurq4KDAzUnXfeqYSEBHXo0EFvv/22vctyCtu2bVNOTo46deokFxcXubi4KDU1Ve+8845cXFxUXFxs7xKdSt26dRUUFKRDhw7ZuxSn4OPjU+ovy61bt76lIR2GYeihhx7SihUrlJ2drejoaC1cuFC+vr42t0GILSdXV1fdeeedWrt2reVYSUmJ1q5dy9g0/KYZhqExY8Zo5cqVWrdunVq0aGHvkpxeSUmJCgsL7V2GU7j33nu1c+dOZWRkWLbOnTsrJiZGGRkZMpvN9i7RqRQUFOjw4cPy8fGxdylOITw8vNSUigcOHJCfn1+ltF9cXCzDMGQYhlxcbB8kwHCCCnjmmWcUGxurzp07q0uXLpo1a5YuXLiguLg4e5f2m1dQUGD1N+/MzExlZGSofv36at68uR0r++2Lj4/XJ598oi+//FIeHh6WMeCenp6qXbu2nav77Zs8ebL69eun5s2bKz8/X5988olSUlK0evVqe5fmFDw8PEqN/65Tp468vLwYF14NJk6cqP79+8vPz08nTpzQlClTZDabFR0dbe/SnMKECRPUvXt3zZgxQ48++qjS0tK0cOFCLVy48JbaXb58uT755BOtWrVK99xzj8aOHVu+GYcMVMjs2bON5s2bG66urkaXLl2MzZs327skp5CcnGxIKrXFxsbau7TfvLKeuyRj0aJF9i7NKYwYMcLw8/MzXF1djYYNGxr33nuv8fXXX9u7LKcWERFhjBs3zt5lOIUhQ4YYPj4+hqurq9GkSRNjyJAhxqFDh+xdllP56quvjHbt2hlubm5GSEiIsXDhwnK3cfnyZSMpKcn4wx/+YNSoUcPw9/c3Xn75ZePo0aMVqol5YgEAAFDlvLy89N///lcPPfSQRo4cqXvvvfeW2iPEAgAAoMrNmTNHQ4cOtVq161YQYgEAAOBweLELAAAAVc6WWW0Mw9CRI0dsao+eWAAAAFQ5s9msV155RR4eHmWeLygo0J///Gebl6MlxAIAAKDKmc1mnThxQo0bNy7zfE5Ojry9vW0OsSx2AAAAgCrn6uqqK1euXPf85cuXy7WsMyEWAAAAVc7b21uZmZnXPX/kyJHr9tKWhRALAACAKtetWzf94x//uO75f/zjH+rSpYvN7RFiAcAJHDlyRCaTSRkZGfYuBYCTGj16tN5//3299NJLOnv2rOX4uXPnNHXqVP3973/XU089ZXN7hFgAqIDhw4dbrfEdGRmp8ePH262ezMxM/eEPf5Cvr69q1aqlpk2basCAAdq3b58kqVmzZsrKylK7du3sViMA59ajRw/NnDlTM2fOVMOGDeXt7S0fHx81aNBA06dP17Rp0xQVFWVze8wTCwAO7sqVK+rdu7eCg4P1+eefy8fHR8ePH1dSUpLOnz8v6epbwd7e3vYtFIDTmzhxogYNGqQvvvhCmZmZMgxD/v7+GjBggFq1alW+xgwAQLnFxsYaAwYMsHyWZLVlZmYahmEYO3fuNPr27WvUqVPHaNSokTF06FDj1KlTlnYiIiKMMWPGGOPGjTPq1q1rNGrUyFi4cKFRUFBgDB8+3HB3dzdatmxp/Oc//7luLdu3bzckGUeOHLnuNZmZmYYkY/v27detWZKRnJxsGIZhXLp0yfjTn/5k+Pr6GrfddpvRpUsXyzkA+F/AcAIAuEVvv/22wsLC9MQTTygrK0tZWVlq1qyZzp8/r549eyo0NFTp6elatWqVTp48qUcffdTq/sWLF6tBgwZKS0vT2LFjNXr0aA0ePFjdu3fX999/r/vuu0/Dhg3Tf//73zK/v2HDhqpRo4aWL1+u4uJim2u+VmtWVpbGjRunRo0aKSQkRJI0ZswYbdq0SUuXLtUPP/ygwYMHq2/fvjp48OCtPSwAqCQsdgAAFTB8+HCdP39eX3zxhaSrY2I7duyoWbNmWa6ZNm2aNmzYoNWrV1uOHT9+XM2aNdP+/fsVFBSkyMhIFRcXa8OGDZKk4uJieXp6atCgQfrwww8lSdnZ2fLx8dGmTZvUrVu3MuuZO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKsvdrVo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYfl2LV5E3Nycq77XfHx8crOztbHH3+ssLAwffbZZ2rbtq3WrFlzwxq3b9+uYcOGac6cOQoPD5ck7dy5U8XFxQoKCrKqPTU11apuALAnXuwCgCpSUFCg/v3767XXXit1zsfHx/K5Zs2aVudMJpPVMZPJJEk3XYrRw8ND/fv3V//+/TVt2jT16dNH06ZNU+/evcu8Pjs7Ww8++KAef/xxjRw50qpus9msbdu2yWw2W93j7u5+wxoAoLoQYgGgEri6upYaj9qpUyetWLFC/v7+cnGp3t9uTSaTQkJC9N1335V5/tKlSxowYIBCQkL05ptvWp0LDQ1VcXGxcnJydM8991RHuQBQbgwnAIBK4O/vry1btujIkSM6ffq0SkpKFB8fr7Nnzyo6Olpbt27V4cOHtXr1asXFxdn8ApYtMjIyNGDAAC1fvlx79uzRoUOHlJiYqPfff18DBgwo855Ro0bp2LFjeuedd3Tq1CllZ2crOztbly9fVlBQkGJiYvTYY4/p888/V2ZmptLS0pSQkKB///vflVY3ANwKemIBoBJMnDhRsbGxatOmjS5evKjMzEz5+/tr48aNev7553XfffepsLBQfn5+6tu3r2rUqLw+hKZNm8rf318vv/yyZWWua/sTJkwo857U1FRlZWWpTZs2VseTk5MVGRmpRYsWadq0afrTn/6kn3/+WQ0aNFC3bt30wAMPVFrdAHArmJ0AAAAADofhBAAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcFzsXQAAAAB+++Li4my6btGiRTZdR4gFAABAlcvNzbXav3DhgtatW6f+/ftXqD2TYRhGZRQGAAAA2CozM1Pt27dXfn5+he5nTCwAAACq3a32oxJiAQAA4HAIsQAAAHA4vNgFAACAKpeammq1//PPP6u4uFgpKSkymUyW4xERETa1x4tdAAAAqHJms1mGYVgF1l8zDEMlJSU2tUdPLAAAAKrcuXPnKrU9emIBAADgcHixCwAAANVm6dKlGjhwoNq0aaM2bdpo4MCBWrZsWbnboScWAAAAVa6kpESDBw/WF198oVatWql169YymUzau3ev9u/fr4cffljLli1TjRq29bEyJhYAAABVbtasWUpNTdU///lP3X///Vbn/vOf/2jYsGF6++23NWHCBJvaoycWAAAAVa59+/YaP368RowYUeb5RYsW6a233tIPP/xgU3uEWAAAAFS52rVra9++ffLz8yvz/E8//aSQkBBdvHjRpvZ4sQsAAABVrlatWsrNzb3u+by8PNWuXdvm9gixAAAAqHJhYWGaO3fudc/PmTNH3bp1s7k9XuwCAABAlXvppZcUERGh06dP609/+pPatGkjSdq7d6/eeOMN/fOf/1RKSorN7TEmFgAAANXiq6++0siRI3X69Gmr4w0aNNDf//53Pfjggza3RYgFAABAtbl48aLWrFmjAwcOSJKCgoLUu3fvco2HlQixAAAA+B+xf/9+BQcH23QtY2IBAABgF4cPH1ZycrJly87OVklJiU33EmIBAABQLY4cOWIJrCkpKTp+/Ljc3d119913a/z48YqMjLS5LYYTAAAAoMq1aNFCP/30k+rUqaPw8HBFRUUpMjJSd911l2rUKP+sr4RYAAAAVDkXFxe5u7srLi5OvXv31j333CMPD48Kt0eIBQAAQJXLyclRamqqUlNTlZKSogMHDig0NFSRkZGKiorS3XffLXd3d5vbI8QCAACg2p05c0YpKSmWULt//36FhoZq8+bNNt3Pi10AAACodl5eXgoPD1dJSYlKSkqUm5urHTt22Hw/PbEAAACoFseOHVNqaqrWr1+v9evX66efflLXrl3Vs2dPRUZGqlu3bnJ1dbWpLUIsAAAAqlxAQIBOnDihrl27KjIyUj179lRYWJjNofXXyj+fAQAAAFBOR48elclkkmEYMgzDMoygouiJBQAAQJU7efKkUlJSLIsdHDp0SK6ururSpYuioqIUERGh7t27y83Nzab2CLEAAACodj///LPVkrM//fSTXF1ddfHiRZvuJ8QCAADA7o4ePaq1a9cqLi7OpusJsQAAAHA4zBMLAACAKmdLD6thGPrggw9sao+eWAAAAFQ5s9msvn37XvfFrcLCQiUlJdk8YwEhFgAAAFXObDbrxIkTaty4cZnnT506JW9vbxUXF9vUHvPEAgAAoMq5uLjcMKAWFRXJbDbb3B4hFgAAAFWuXr16Onny5HXPnzx5UvXr17e5PUIsAAAAqlyHDh2UlJR03fOrVq1S+/btbW6PEAsAAIAqFxMTo5kzZ2rdunWlziUnJ2vGjBmKjo62uT1e7AIAAEC1GDhwoP75z3/qjjvuUOvWrWUymbRv3z7t2LFDv/vd7/TVV1/JZDLZ1BYhFgAAANXCMAz94x//0PLly5WZmSnDMOTv769BgwZp+PDhqlHD9kEChFgAAAA4HMbEAgAAwOGw7CwAAACqXIsWLW56jWEYOnLkiE3tMZwAAAAAVc5sNuuVV16Rh4eHJOn06dP629/+ptdee02SVFBQoD//+c8sOwsAAID/Hb9edvbHH39Uhw4dlJ+fL0nKycmRt7e3zSGWMbEAAABwOIRYAAAAOBxCbAUZhqG8vDwxGgMAAKBifr2wga0LHUiE2ArLz8+Xp6enZRwHAAAArm/UqFG67bbbLPtNmjRRUlKSZd/Dw0MJCQk2t8eLXRWUl5cnT09P5ebm6vbbb7d3OQAAAE6FeWIBAABQ5X766SebrvPz87PpOkIsAAAAqlxAQIAMw5DJZLJ6p+jX+7ZOsUWIBQAAQJXbvn17mccNw9CSJUs0e/Zsy0IItiDEAgAAoMq1b9++1LGvv/5akydP1qFDh/Tcc89p4sSJNrdHiAUAAEC12rp1qyZNmqRvv/1WTz75pFavXq0GDRqUq40KTbF17NgxjRgxQr6+vnJ1dZWfn5/GjRunM2fOWK6JjIyUyWSSyWRSrVq1FBQUpISEhDLnVd20aZPMZrPuv//+UueOHDkik8mkRo0alZrOqmPHjpo6darVsUOHDmnEiBFq3ry53Nzc1KRJE9177736+OOPVVRUZLnuWm2/3pYuXVqRRwIAAICbOHjwoIYMGaLu3bvLx8dH+/bt0+zZs8sdYKUKhNgff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W1y9atEhZWVlW28CBA8v7SAAAAHATTz31lNq2bavc3Fxt3bpVH330kVq0aFHh9so9T2y/fv20a9cuHThwQLVr17Ycz87OVsuWLfXYY49p/vz5ioyMVMeOHTVr1izLNXfeeaf8/Pz0+eefW44VFBTIx8dH6enpmjJlitq3b68XXnjBcv7IkSNq0aKFnn32Wc2fP1+HDx9Wo0aNJF3tiR04cKCmTp0qwzDUtm1b3XbbbUpLS1ONGqXz+bU34qSrPbErV66scGhlnlgAAADbmc1m1apVS8HBwTdc8fR6L4D9WrnGxJ49e1arV6/W9OnTrQKsJHl7eysmJkbLli3TvHnzrM4ZhqFvv/1W+/btU6tWrazOffrppwoJCVFwcLCGDh2q8ePHa/LkyaWWHYuOjtaaNWv0yiuvaM6cOaVqy8jI0N69e7VkyZIyA6xUvqXMfq2wsFCFhYWW/by8vAq3BQAA4GymTJlSqe2VK8QePHhQhmGodevWZZ5v3bq1zp07p1OnTkmS5s2bp7///e+6fPmyrly5olq1aunpp5+2uicxMVFDhw6VJPXt21e5ublKTU1VZGSk1XUmk0kzZ85U//79NWHCBLVs2dLq/IEDByRJwcHBlmM5OTkKCAiw7P/1r3/VH//4R8t+dHS0zGazVTt79uxR8+bNS/1sCQkJevnll8v8uQEAAHBjL730UqW2V6EXu2wdgRATE6OMjAxt3LhR/fr104svvqju3btbzu/fv19paWmKjo6WJLm4uGjIkCFKTEwss70+ffro7rvv1l/+8hebvt/Ly0sZGRnKyMhQ3bp1dfnyZavzb731luX8tc3X17fMtiZPnqzc3FzLduzYMZtqAAAAQOUrV09sYGCgTCaT9u7dq4ceeqjU+b1796pevXpq2LChJMnT01OBgYGSrg4bCAwMVLdu3dSrVy9JV3thi4qKrIKjYRhyc3PTnDlz5OnpWeo7Zs6cqbCwMD377LNWx68NU9i/f79CQ0MlXR17ce37XVxK/6je3t6W8zfj5uYmNzc3m64FAABA1SpXT6yXl5d69+6tefPm6eLFi1bnsrOz9fHHH2vIkCFljj11d3fXuHHjNHHiRBmGoaKiIn344Yd64403rHpCd+zYIV9fXy1ZsqTMGrp06aJBgwZp0qRJVsdDQ0MVEhKi119/3eblygAAAOCYyr3YwZw5c9S9e3f16dNH06ZNU4sWLbR79249++yzatKkiaZPn37de0eNGqVXX31VK1askIuLi86dO6eRI0eW6nF9+OGHlZiYqKeeeqrMdqZPn662bdta9a6aTCYtWrRIvXv3Vnh4uCZPnqzWrVvrypUrWr9+vU6dOlVq/Ov58+eVnZ1tdczDw0N16tQp72MBAABANSr3mNhWrVopPT1dAQEBevTRR9WyZUs9+eSTioqK0qZNm1S/fv3r3lu/fn099thjmjp1qhITE9WrV68yhww8/PDDSk9P1w8//FBmO0FBQRoxYoQuXbpkdbxbt27atm2bgoODFR8frzZt2qh79+5asmSJ3nrrLY0ePdrq+ri4OPn4+Fhts2fPLu8jAQAAQCXYv3+/zdeWe55YXMU8sQAAALfm8OHDSk5OtmzZ2dk2Dwst93ACAAAAoCKOHDliCawpKSk6fvy43N3ddffdd2v8+PGlpli9EUIsAAAAqlyLFi30008/qU6dOgoPD1d8fLwiIyN11113XXehqhshxAIAAKDKHTt2TLfffrvi4uLUu3dv3XPPPfLw8KhwexVa7AAAAAAojxMnTui9997TlStX9Nxzz8nLy0tdu3bV888/r1WrVqmgoKBc7fFiVwXxYhcAAEDFnTlzRikpKUpNTVVKSoplwarNmzfbdD/DCeBwDMNQYWGhvcsA7OKXv/7d3NzKXFwG+K3j1/5vg5eXl8LDw1VSUqKSkhLl5uZqx44dNt9PiIXDKSws1ODBg+1dBgDATj777DPVqlXL3mWgAo4dO6bU1FStX79e69ev108//aSuXbuqZ8+e+sc//qFu3brZ3BYhFgAAAFUuICBAJ06cUNeuXRUZGal3331XYWFhcnV1rVB7hFg4tNmvPiE315r2LgOoNoWXr2jsX96TxK9/OJdf/tqHYzp69Khq1qwpwzBkGIZlGEFFEWJvEe/F2Zeba025ufGHOJwTv/7hTH755y1/9jqmn3/+WSkpKUpOTtayZcs0ffp0ubq6qkuXLoqKilJERIS6d+8uNzc3m9ojxN4iXjACAKDqXb5SZPlcWFio2rVr27EaVETjxo01ZMgQ/V97dx7U1PX2AfwbAgEUBBcIIEtcitQqoKKojLKIWyvitKOORQxorbVxQes6OhV/MmBra9W64liq4zhWrVq7oLWa4C6KUrepVcBxA8EphkUIGPL+4ZDXFNSwJLeY72cmM7kn9548nkmbJ4fnnjN+/HgAz5Pa2t27duzYgRUrVkAikaCiosKo/ky+TuzmzZvh6OiIZ8/+/8NXVlYGGxubOluLqVQqiEQi5OTkQCaTYc2aNXX6S0xMRGBgYL3HMpkMIpHopY+4uDgAeOnru3fvbuZ/PRERERHVp2PHjpg4cSK2bduG3Nxc5OXlYePGjUZfb/KZ2PDwcJSVleHixYv6O85OnjwJNzc3nD9/HpWVlfo7DJVKJby9vdGlS5dGvdeFCxeg1WoBAGfOnMEHH3yAmzdv6tdxffFXW1paGkaMGGFwvbOzc6Pel4iIiIiaxtvbG/Hx8Uafb/Iktlu3bnB3d4dKpdInsSqVCtHR0Th+/DjOnTunn5FVqVQIDw9v9Hu5uLjon7dr1w4A4OrqWm9y6uzsDDc3t0a/B2svWgAAEfNJREFUFxEREREZz9gENS0tzajzzFITGx4eDqVSiUWLFgF4PuO6YMECaLVaKJVKhIWFoaKiAufPn8fkyZPNEVKzqaysRGVlpdBhWJQXx5vF/URERC2DWq02OC4vL8fx48cRFRXVqP7MlsQmJCTg2bNnqKiowOXLlxEaGorq6mps3rwZAHD27FloNBqDmdiFCxdi6dKlBn1VVVWhe/fuTY5pwoQJEIvFBm03btyAt7d3vedrNBqDm7hKSkoAAB9//DFsbHh3sFCqqp/Bzq5x68sRERGR+ezfv9/gOC8vD/7+/nXajWWWJDYsLAzl5eW4cOECiouL4evrCxcXF4SGhiI+Ph6VlZVQqVTo3LmzQRI5f/58/c1YtdatW4cTJ040OaZvvvkGkZGRBm0eHh4vPT8lJQXLly9v8vsSERERUdP/mmqWJLZr167w9PSEUqlEcXExQkNDATxPGr28vHDmzBkolUpEREQYXNehQwd07drVoK221rWp3Nzc6vT9KosXL8bcuXP1xyUlJfDy8kJqaipcXV2bJSYyTmVlJWJjYwEAEhuuEkdERGSJzJYBhIeHQ6VSobi4GPPnz9e3Dx48GOnp6cjMzMT06dPNFU6D2dra1rv4rp2dHfdvFpBIJBI6BCIiIhKAWZNYhUKB6upq/UwsAISGhmLGjBmoqqpq0soEDfXkyRMUFBQYtDk6OqJ169Zmi4GIiIjIUmRkZBgcP3jwAFqtVr9PQK0X88RXMWsSW1FRAT8/P0ilUn17aGgoSktL9UtxmUt9yzykpKToV1AgIiIiouYTEREBnU5X56+oQ4YM0T/X6XSoqakxqj+zJbEymazeAl4fH5962+/cuVNvP4mJiUhMTHzpca2wsLCXFgw357JMxu7vS0RERI334j0Q/O5tmYqLi5u1P94V00SsySQiIjK9F79v+d3bMtXuoNpcmMRSi6apqhY6BCKzevEzz88/WRJ+3lu+f9fEvoyxNbEiHbc8apSSkhI4OTlBrVY3+y8LerXKykqMHTtW6DCIiEgge/fu5cpALZBYLK63JvZF/8maWCIiIiKyXM1dE8uZ2EZSq9VwdnbGvXv3OBNrZjqdzmALYCJL8uLn39bWlrWBZJH42ReWo6OjSca/tLQUs2bNQlpamlHnM4ltpNzcXHTp0kXoMIiIiIjMqrCwEC4uLibp183NjeUEpla7/e3du3fh5OQkcDSWp3bbX86EC4PjLyyOv3A49sLi+AurdvwlEonJ3qMhM7xMYhvJysoKAODk5MT/kATUpk0bjr+AOP7C4vgLh2MvLI6/sExZytGQAgEmsURERERkcrWrEzQXJrFEREREZHIHDhx45etqtRpyudzo/pjENpKtrS2WLVvGre8EwvEXFsdfWBx/4XDshcXxF1ZTx3/06NGvfL2wsLBB/XF1AiIiIiISXENXJ7AycTxERERERK8lFoshk8mMPp8zsURERETU4rAmloiIiIhMLjw8/LXn6HQ6qFQqo/rjTCwRERERmZxYLMbUqVPRqlUrAM9XI9i5cycUCgUA4OnTp0hNTWVNrKlt2LABMpkMdnZ2CA4ORmZmptAhWYQTJ04gKioKHh4eEIlEOHjwoNAhWYyUlBT07dsXjo6OcHV1xZgxY3Dz5k2hw7IYmzZtgr+/v36R9wEDBiA9PV3osCzWypUrIRKJkJCQIHQoFiExMREikcjg4efnJ3RYFuXBgweYOHEi2rdvD3t7e/Ts2RMXL15scD/Lly/H6tWrsXr1aixZsgQSiUR//L///a9BfTGJbYQffvgBc+fOxbJly3Dp0iUEBARg+PDhDV4aghquvLwcAQEB2LBhg9ChWJyMjAwoFAqcO3cOR48eRXV1NYYNG4by8nKhQ7MInp6eWLlyJbKysnDx4kVEREQgOjoa169fFzo0i3PhwgVs2bIF/v7+QodiUd555x3k5+frH6dOnRI6JItRXFyMkJAQ2NjYID09HTdu3MDXX3+Ntm3bChoXywkaITg4GH379sX69esBADU1NfDy8sLMmTOxaNEigaOzHCKRCAcOHMCYMWOEDsUiFRUVwdXVFRkZGRg8eLDQ4Vikdu3aYdWqVZgyZYrQoViMsrIy9O7dGxs3bkRSUhICAwOxZs0aocN64yUmJuLgwYPIzs4WOhSLtGjRIpw+fRonT55sUj9isRgPHz6EVCoFAOTm5iIgIAClpaUAuMSWyVVVVSErKwuRkZH6NisrK0RGRuLs2bMCRkZkXmq1GsDzRIrMS6vVYvfu3SgvL8eAAQOEDseiKBQKvPfeewbfAWQet27dgoeHBzp37oyYmBjcvXtX6JAsxqFDhxAUFISxY8fC1dUVvXr1wtatW5ulb5FI9MrjV2ES20CPHz+GVqvV/4qoJZVKUVBQIFBUROZVU1ODhIQEhISEoEePHkKHYzGuXr0KBwcH2Nra4pNPPsGBAwfQvXt3ocOyGLt378alS5eQkpIidCgWJzg4GN9//z0OHz6MTZs2IS8vD4MGDdLP4JFp5ebmYtOmTXjrrbdw5MgRTJ8+HbNmzcL27dsb1M/w4cMNdvuSSqXYsmWL/rhVq1aYNm2a0f1xiS0iajCFQoFr166xJs3MunXrhuzsbKjVauzbtw9yuRwZGRlMZM3g3r17mD17No4ePQo7Ozuhw7E4I0eO1D/39/dHcHAwfHx8sGfPHpbTmEFNTQ2CgoKQnJwMAOjVqxeuXbuGzZs3Qy6XG93Pb7/9ZnDcunVrTJgwQX/s4OCAjRs3Gt0fZ2IbqEOHDhCLxXj06JFB+6NHj+Dm5iZQVETmM2PGDPzyyy9QKpXw9PQUOhyLIpFI0LVrV/Tp0wcpKSkICAjA2rVrhQ7LImRlZaGwsBC9e/eGtbU1rK2tkZGRgXXr1sHa2hparVboEC2Ks7MzfH19cfv2baFDsQju7u51fiy//fbbgpd0MIltIIlEgj59+uDYsWP6tpqaGhw7doy1afRG0+l0mDFjBg4cOIDjx4+jU6dOQodk8WpqaqDRaIQOwyIMGTIEV69eRXZ2tv4RFBSEmJgYZGdnQywWCx2iRSkrK0NOTg7c3d2FDsUihISE1FlS8e+//4aPj49AET3HcoJGmDt3LuRyOYKCgtCvXz+sWbMG5eXliI+PFzq0N15ZWZnBL++8vDxkZ2ejXbt28Pb2FjCyN59CocCuXbvw008/wdHRUV8D7uTkBHt7e4Gje/MtXrwYI0eOhLe3N0pLS7Fr1y6oVCocOXJE6NAsgqOjY53679atW6N9+/asCzeDefPmISoqCj4+Pnj48CGWLVsGsVhs8KdoMp05c+Zg4MCBSE5Oxrhx45CZmYnU1FSkpqYKG5iOGuXbb7/VeXt76yQSia5fv366c+fOCR2SRVAqlToAdR5yuVzo0N549Y07AF1aWprQoVmEyZMn63x8fHQSiUTn4uKiGzJkiO73338XOiyLFhoaqps9e7bQYViE8ePH69zd3XUSiUTXsWNH3fjx43W3b98WOiyL8vPPP+t69Oihs7W11fn5+elSU1OFDknHdWKJiIiISHBcJ5aIiIiIWiSuE0tERERELU5DCgR4YxcRERERmdzrNkeo3QnSWKyJJSIiIiKTe9025TqdDmq12uiaWCaxRERERCS4oqIiSKVS3thFRERERC1HQ+dVmcQSERER0X8CVycgIiIDd+7cgUgkQnZ2ttChEBHVy8HBAaGhoUafzySWiKgR4uLiMGbMGP1xWFgYEhISBIsnLy8PH374ITw8PGBnZwdPT09ER0fjr7/+AgB4eXkhPz+fW6QS0X+SRqPB559/jlOnThl9DZfYIiJq4aqrqzF06FB069YN+/fvh7u7O+7fv4/09HQ8efIEACAWi+Hm5iZsoERE9cjKyoJcLodGo4FKpTL6Os7EEhE1UVxcHDIyMrB27VqIRCKIRCLcuXMHAHDt2jWMHDkSDg4OkEqliI2NxePHj/XXhoWFYebMmUhISEDbtm0hlUqxdetWlJeXIz4+Ho6OjujatSvS09Nf+v7Xr19HTk4ONm7ciP79+8PHxwchISFISkpC//79AdQtJ4iLi9PH+uKj9gtEo9Fg3rx56NixI1q3bo3g4OAGfbkQEb2OVqvF8uXLERISgoiICFy5cgUDBw40+nomsURETbR27VoMGDAAU6dORX5+PvLz8+Hl5YUnT54gIiICvXr1wsWLF3H48GE8evQI48aNM7h++/bt6NChAzIzMzFz5kxMnz4dY8eOxcCBA3Hp0iUMGzYMsbGxePr0ab3v7+LiAisrK+zbtw9ardbomGtjzc/Px+zZs+Hq6go/Pz8AwIwZM3D27Fns3r0bV65cwdixYzFixAjcunWraYNFRBZLLBbDyspK/7CxscGKFSuwZ88erFu3Dvb29g3qj+vEEhE1QlxcHJ48eYKDBw8CeD6jGhgYiDVr1ujPSUpKwsmTJ3HkyBF92/379+Hl5YWbN2/C19cXYWFh0Gq1OHnyJIDnMxNOTk54//33sWPHDgBAQUEB3N3dcfbsWf3M6r9t2LABCxYsgFgsRlBQEMLDwxETE4POnTsDeD4T26lTJ1y+fBmBgYEG1+7fvx8xMTH4448/EBISgrt376Jz5864e/cuPDw89OdFRkaiX79+SE5OburwEZEFOnTokMGxVqvFypUrUVRUhG3btiE8PLxB/bEmlojIRP78808olUo4ODjUeS0nJwe+vr4AAH9/f327WCxG+/bt0bNnT32bVCoFABQWFr70vRQKBSZNmgSVSoVz585h7969SE5OxqFDhzB06NCXXnf58mXExsZi/fr1CAkJAQBcvXoVWq1WH18tjUaD9u3bG/EvJyKqa/To0XXaoqOjkZycjHfffReTJ0/GqlWr0KpVK6P6YxJLRGQiZWVliIqKwhdffFHnNXd3d/1zGxsbg9dEIpFBW+26ia/bxcbR0RFRUVGIiopCUlIShg8fjqSkpJcmsQUFBRg9ejQ++ugjTJkyxSBusViMrKwsiMVig2vqS8iJiBrLysoKS5cuxahRoxAbG4sePXogNzfXqGuZxBIRNQOJRFKnHrV379748ccfIZPJYG1t3v/dikQi+Pn54cyZM/W+XllZiejoaPj5+WH16tUGr/Xq1QtarRaFhYUYNGiQOcIlIgsXGBiIS5cuYcmSJUZfwxu7iIiagUwmw/nz53Hnzh08fvwYNTU1UCgU+OeffzBhwgRcuHABOTk5OHLkCOLj442+AcsY2dnZiI6Oxr59+3Djxg3cvn0b27Ztw3fffYfo6Oh6r5k2bRru3buHdevWoaioCAUFBSgoKEBVVRV8fX0RExODSZMmYf/+/cjLy0NmZiZSUlLw66+/NlvcREQvsrGxwZdffmn0+ZyJJSJqBvPmzYNcLkf37t1RUVGBvLw8yGQynD59GgsXLsSwYcOg0Wjg4+ODESNGwMqq+eYQPD09IZPJsHz5cv1SWrXHc+bMqfeajIwM5Ofno3v37gbtSqUSYWFhSEtLQ1JSEj777DM8ePAAHTp0QP/+/TFq1Khmi5uILEtERARet56ATqczejk/rk5ARERERCY3d+5c/XO1Wo2dO3dCoVDo254+fYrU1NTX1v/XYhJLRERERGaVm5uLgIAAlJaW6tuKiooglUqNTmJZE0tEREREZmVvb4+qqiqDhLW8vBy2trZG98EkloiIiIjMyt3dHdbW1ti1a5e+bfv27foNWozBG7uIiIiIyOw+/fRTyOVyfPXVV6ioqMCtW7ewYcMGo69nTSwRERERCWLz5s04duwYJBIJRo8ejfHjxxt9LZNYIiIiImpxWE5ARERERCa3fft2o86Ty+VGnceZWCIiIiIyObFYjDZt2kAkEgEAampqUFJSAmdnZwDPNzpQq9VcJ5aIiIiI/jvEYjEePnwIqVQKAMjLy0NAQABKSkoAPF8n1s3NzehtubnEFhERERGZnU6nM9iG9t/Hr8MkloiIiIhaHCaxRERERGRyzV3ByiSWiIiIiEyu9oauWvb29hg8eLDB63Z2dsb3xxu7iIiIiMjUCgsL4eLiUieZbSwmsURERETU4rCcgIiIiIhaHCaxRERERNTiMIklIiIiohaHSSwRERERtThMYomIiIioxWESS0REREQtDpNYIiIiImpxmMQSERERUYvzf6ZZxmSdoxyiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size']\n", + "\n", + "g = sns.catplot(\n", + " data=pumpkins,\n", + " x=\"Item Size\", y=\"Color\", row='Variety',\n", + " kind=\"box\", orient=\"h\",\n", + " sharex=False, margin_titles=True,\n", + " height=1.8, aspect=4, palette=palette,\n", + ")\n", + "# Defining axis labels \n", + "g.set(xlabel=\"Item Size\", ylabel=\"\").set(xlim=(0,6))\n", + "g.set_titles(row_template=\"{row_name}\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9+0lEQVR4nO3deXQc1Z33/3dV9aatZcnaF1tesTEYL3gLdmzAxDAOkEDCPgES8jwTiJMZMkxgzu8MhFmAMUlIgkOWYSDJQIAwLE54MAEvbLHBbGFzAjZeZFuLV+1qqZffH1dSd6m7Zcu2UBs+r3N0wP3tunVv1e263666V7JisVgMERERkQxkD3cFRERERNJRoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLM9wV+BoRKNRdu/eTV5eHpZlDXd1RERE5DDEYjFaWlqoqKjAtge+Z3JcJyq7d++murp6uKshIiIiR6C2tpaqqqoB33NcJyp5eXmAaWgwGBzm2oiIiMjhaG5uprq6um8cH8hxnaj0Pu4JBoNKVERERI4zhzNtQ5NpRUREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0J/165dfPe73+Xpp5+mvb2d8ePHc99993HqqacOd9U+2SIhqP1fOPg25E2E0ZeAJzseb3wR6laBNwg1l0N2wh+Nat0G238L4Tao/DwUzY3HultNrHULFMyA6i+C7TWxWBR2r4I9L0KgDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHoKMOihdAxdlg9eTZ0W6ofRwOvAG542D0peDNjW+7dwPs+gN4ckwstyYea99pyu1uhvKzoWRBPBZuh+0PQ8tfYcRUqL4QHH9PW2JQ/xw0rAF/sWlLoGSwZ0FERA7BisViseHa+YEDB5g+fTqnn3463/jGNyguLubDDz9k3LhxjBs37pDbNzc3k5+fT1NTk/7Wz2B07oXVi6DpvfhrOTWweB1kj4JXroGP/jses31w2sNQ/QXY9hCs/1uIhePxCdfBrLuhZTM8twg6dsVjBdPhzNXg5MAL55vkp5c3HxY9DcXzYNOd8OYN7npO+0848QaTaKw9G7qb4rHyJfDZlRBph9VnmiSlV1YlnLkWghPgtWXwwd3xmOWBeb+Gmkth55Pw0kUQ7YrHx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kUpD7mIiMQNZvwe1kTlxhtv5OWXX+bFF188ou2VqByhjd+ED1ckvz7qyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4dzM8f647qep16gqTSGxanhyrWGr2u3pRcsyTB+dtgacmmzs1/S18CrbeDzt+lxybcB2MnAUbrkqO5Y6Fcz+M3+kREZGUBjN+D+sVdeXKlZx66ql8+ctfpqSkhOnTp/PLX/4y7ftDoRDNzc2uHzkCiXcCXK8/CbueTB0L7YMP70mdpIB5jFT3dPr97UxTbtN7sOW/k5MUMK9tvjd1knKocuuehh3/mzoWbjFtSZWk9JW7Mk3s8fT7bP0IDr6TOiYiIkdkWBOVjz76iHvuuYcJEybwzDPP8I1vfINvfetb/OpXv0r5/ttuu438/Py+n+rq6o+5xp8QvfMs+rP95iftdtkDxAJgedPH0u0TwMlKH/McYp/pyrW84AkMsO0hyrV9g4/BwMdPREQGbVgTlWg0yowZM/iP//gPpk+fzv/5P/+Hr3/96/zsZz9L+f6bbrqJpqamvp/a2tqPucafEDWXp3n9MvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7rJgHoz/abWPGC5Nihyh11EdRcYerWX6DMtCWnJvW2NQOUW3N5+ljBDMiflDomIiJHZFgTlfLyck488UTXa5MnT2bHjh0p3+/3+wkGg64fOQJT/hkqPu9+rXgBTLvDrOCZdkd8pQ6YgX3+I+YOxYJHwV8Uj9k+mHkXFJwCM38II+e4y62+ECZdD6MvhonLcCUOeRNg3v0QKIbPPGAmpPby5JjXAsXmPXkTEwq1TKJRc4kpu/pL7n2OnGPqUjAVZv7IfQfEXwTzf2faMv937sTL8sC023uOwe3JCVLFUnPsqs6Fyf/knouSU2PqKyIix9SwTqa97LLLqK2tdU2m/Yd/+AdeeeUV/vSnPx1ye02mPUr73+hZnnyCWXmTqKPOLL/1BqH8HHASBvtIJ+x+2ixPLv9c8rLcxpegdbO5w1Aw1R1r2QJ7XoKscihb7B7su5tNuQAV55h994pFTX066qB4PuT1WxV24O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrHL3tnvWx5cnF85wx1q3QePzpv1lZ4E97Kv9RUSOC8fNqp+NGzfymc98hu9973tcdNFFvPrqq3z961/nF7/4BZdfnub2egIlKiIiIsef42bVz6xZs3j88cf57W9/y0knncS//uu/ctdddx1WkiIiIiKffMN6R+Vo6Y6KiIjI8ee4uaMiIiIiMhAlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3Du/JZbbuF73/ue67UTTjiBv/zlL8NUo34e9ANd8X9f3AHbH4Gm9yB/Coy+CJxAPN6wFuqeBX8h1FwOWeXxWMsW2P4QRDqh+gtQODMe626GbQ9C2zYYORsqzwO759TEorDrKdj7MmRVwZjLwVcQ3/bAn6H2MbAcGH0xBE+IxzobYev/QGgPlJ4OZWeBZZlYJAS1/wsH34a8iTD6EvBkx7dtfBHqVoE3aNqSXRWPtW6D7b+FcBtUfh6K5ia0pdXEWrdAwQyo/iLY3nhbdq+CPS9CoAzGXAH+kfFtD74HtY+a/6/+EoyYEo+F9sG2B6CjDooXQMXZYPXk2dFuqH0cDrwBueNg9KXgzY1vu3cD7PoDeHJMLLcmHmvfacrtbobys6FkQTwWboftD0PLX2HEVKi+EBx/T1tiUP8cNKwBf7FpS6Akvm3zX822sQhUXwAFp8RjXQdg6wPQsROKPmOOYV9bwrBrJex7FXJqoOYycw567X8dap8w9Rh9KeSNi8c66kxbQvuh/CxzzntFOo9d3930X7D9Z/H4uO/AnDv5pIt07CXSsRfL8eLJqcTyxI9ftLuNSNtuYrEonuxSbP+Ivlgs2k24dTexcDu2fwROdilWz/mOxWJEOhqJdu7H8gRMuY4vXm6omXB7HRYWTk4Fti/er2OREOHWXcQiIZxAEXZWEVbP5zsWixBpqyfa1YztzcHJqcSynXhbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7bUEe1uwfbm4eSUu8738c6KxWKx4dr5LbfcwqOPPspzzz3X95rH46GoqGiAreKam5vJz8+nqamJYDB46A0G40Hr0O/JmwBnroOsMvjTFWaA7uVkwYLHzIC65T549etm0Oo1+Z9g+h1mcF5zJnQ2xGMj58IZfwTLA+v+BhrXxWP+kXD6H6FwBrxzK7xzc0KFLDj1JzDxOmhYB8+fC+HWeLjqfJj/KHQdhNWLzKDVK6cGFq+D7FHwyjXw0X/HY7YPTnvYDFLbHoL1fwuxcDw+4TqYdTe0bIbnFkHHrnisYDqcuRqcHHjhfJP89PLmw6KnoXgebLoT3rzBfXyn/SeceINJNNaeDd1N8Vj5EvjsSoi0w+ozTZLSK6sSzlwLwQnw2jL44O6EQ+SBeb+Gmkth55Pw0kUQTUhGx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kXwwU/htW8CCR+tk2+Bk2+G/W/C2rNM4tWrZKE5DrEIrDkL9m2IxwIlcMYak7S9dSO8f0dCW2yY/UsY91XY/Qy8+EWIdMTjoy+Bzzxg+tZzC6Hlw3jsaPpuKp6RcNHegd9znIrFYnTteZNI2+74i5aNv+RUnOwSwi21dO19m8Tz7ckfh69wMtGuFjrrN5gvBj1s/wj8ZXMBi1DDq0Q7E/qC7SVQNhfbn0/3gQ/oPviBqy7ekSfhDdYQ6dhLqGGj67w42aX4SmZCNExn3Xpi3S3x6nqy8JfNw/Jk0bX3bSKttQml2vhKZuDJKSPcuouuPW+525I3Gl/RyUS72wjVrScW6YyX6wsSKJsLtodQw0aiHXsSivXgL52DEyigu2kL3fs3udtSMBnviHFEOg8QanjFJOm9m2YV4y+dBdEInfUbiHXFP/uWE8BfPhfbm0vXvncJN29LKNXCVzwNT24l4bZ6uhrfAKLxY5Rbja9oKrFwB6H69cTC8c+L5c0jUD4XbC9dja8TaU+4JlsO/tJZOFlFdDdvo3vfu+62jJiIt2Ai0VCTOd/R7nhbAoX4S+cAMUL1G4iGDiYcIx+B8nnYvjy69m8i3LTFVa6vaCqevFFE2hsJNb5mvuz1tiWnAl/xdIiEzPkOt8Wr68nBXz4POyGZzjSDGb+HPVF54okneOutt45o+yFLVH4/HVoOs05jr4KKpWbg6i+rAs5+E1aONt9G+1uy0QzOiYlIr5NvMYNf/8EboHAWzLsfnpqSHLO9cN5WeO6z0PpRcnzu/bBvI3y4Ijk26ssw5ip4fmlyzD8Slm6CleMg3JIcP3MdbFoOu59Kjk2+wSRCr12XHMufAgt/D78f7/oQAmYgPnezSbgSk6pep64wicSm5cmxiqVmv6sXJcc8eXDeFnhqsjth6LXwKdh6P+z4XXJswnUwchZsuCo5ljsWFr8AK8e4LlR9lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpnLZsF1KhlS4bXfPgOdmOX78FQvo3Lkmue8C/or5dO/f5E5EenhHTATbSRq8AWxfPr7iaXTuej5FbSwCVWf0DLLtSVFf0SnmW3nL9qSYk1OOJ7fKJDhJO/USqFpEZ+1a95eQ3raUzaO7aQvRjsakmCd/LJYnO2nwBjP4+0tnmWOUQqDqDEING11JVS/vyJOIhdsJNyVfx+ysErz54wjVr08u1PIQqDqdzl3rUn4O/aWzCLfu7Lu742pL3mhs/wi69v45RbHZ+Mvm9bQlua8HKhfStectoglJVV9bCidDNJKUeALYgZF4CycT2v1SirbY5hjtfpFYQrLby1cyg0h7I5HWnUkxJ7cKf/G05DIzxGDG72F99APw4YcfUlFRQSAQYN68edx2222MGjUq5XtDoRChUPxkNTc3D02lDjdJAXMbPtWgBGbg+PCe9Bf67b9NnaSA+bbuyUkd278Rtv4mdSzaDZt/kTpJ6S13X4oLFZg7DImPlRKF9pm2pEpSwDxGqns6/T5zxqSONb0HW+5NeaEnFoXN96ZOUnrLbUu+IAOmLjljU8fCLaYtqZKU3nJ3rkwTezx1QgDmmG/+Rfr+sPXXqZMUMI+uEu+GJGpcZx69pBLphM33pK9T7ePpz8vR9N1PkUhbQ8rXY5GQSQhS9V0g0ro7ZZICEG6v73vM0F+0q4lwioGnZ6+EW7anTFIAIu31REPJAyWYdiQ+ZnDvtNvcmUiRpACE2+pSJil95SY8bnHVtruFcMuO1PsEwi07UiYpptx6Ymk+E9GORsKe1PskFibcsi1t3w63N7jvliTus70+ZUJgim0n3LqDVEkKQLh1Z8okBXrakuauZLRzH+HWXSljxKLmGKWpU6StnkjiXazEWJo2Ho+GdTLtnDlzuP/++1m1ahX33HMPW7duZcGCBbS0pO64t912G/n5+X0/1dXVH3ONU3D8YPvTx9MlGwBOtplbkoo9ULmW2TbtPgeI2f74PItB7ZOB9+kEwEpzEXQC6fd5qHIHastA5VpeGOi256HaYvsGH4ND1DcHSPNIcaByLcc8jkm7z4H62EBtOcT59g5Q7qeJlf4yaVkDfNezbNKdb8uyByw37XXhkPt00pd7iH0esi0DlGsdYVsYYB6FmWNxpG0Z6PjZA5Q7wPEDLAZoy0DtHPAYWQPWd+ByD3G+PyGGtSXnnHMOX/7yl5k6dSpLlizh//2//8fBgwd55JFHUr7/pptuoqmpqe+ntrY25fuO2ui/O/z31lxuflIJTjLzRXyFyTHLhjFfMfNGBltu+edg3NVmvkV/nlwY/3dmIutgy625zPykklMDE79pJsEmsUyZoy5Kve3oy9Lvs3gBjP+6e2JnL9tvYsULkmOHKnfURVBzBSkHikCZaUtOTeptawYod6DjVzDDHHtPbnLM8phzVr5k8OVWnQ9jr0x94fEVwIRrITh58OUequ9OSNN3P2U8uZUpX7e8uXiCNfHJ4v23y6vCyS5NGXNyKtOWa2cV48mrJmXftRw8+aOxfPmpy82txElTrie3AicnTVs8WTjBmrSJvze3CienPGXMk1uZtlzbX4g3OCp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntTJ/UDHfqDjZ/ny8eSPTpM4WHjyqrGzilNuO9AxcrJLe853CrYXb7AGy5vimtJTridNuelePx5lVMo1YsQIJk6cyObNm1PG/X4/wWDQ9TMkTrvn8N5Xthim3gplZ5g5JYkdOLsKTnsIPFkw/xH3IxXbD7N+biZ7nrrCTDhNVHO5GXzGXg3jrsF1wcqfYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt3hvvgGykwbPAFY8Cj4EyY72z6YeZdZ1TLzhzByjrvc6gth0vVmRdLEZe625E0wc20Cxaa+iXcGPDnmtUCxeU/exIRCLZNo1Fxiyq7+knufI+eYuhRMhZk/ct9R8BeZeRuegPlvYuJleWDa7T3H4PbkBKliqTl2VeeaydCJF9+cGlNfX76ZeJy4UsfJgrn3mXM2+xfmHCa2Zdw15lxPuLYnuUpQMM30kbzxps8k3gHxFfS0Jduc98SVWZYDJ91s+ubUW01fTXSkfTfdHaHyNEnqJ4CTVWTmlCS03XIC+ItnYNkO/pKZ7s+LZeMrmortzcU38iQsn/s65eRU4gnW4ORW4+S6ByjLm2e29WThKz7F3ccsD/6SGVi2F3/xdKx+d+88+WPxZJfizR+PnVXiitn+QryFk3ECBXgLJrnaguPHVzITu68tiXfgbLyFU7D9QXyFU1yrmQCc7DKz39wKk7QltsWTg6/4FCzHbyZ9JvYxy8FXPL0ndgpWv7t3nmCNGYTzx+JkuxMk2z/C1MUXxFs4BdcwZvvw97TFVzKzX+Jl4S2YZI5B4aSkBMnMexmPJ7sUT/44V8zyZJljbnvxl8xwf0m0bHzFp5hzVjQVy5vn2rb3PHuCNUnJiuUL4ht5ErY3B1/RVPf5tr34S2b29LEZWK4vcxaeERNM3yyYiB1wL0CxA+b1T4phnUzbX2trK6NGjeKWW27hW9/61iHfP6SrfgBeuBJ2/tr8f9YY+OJHsPdVaH4fgidC0Wz3+9t3Qv0as8SzfIn74hVuh91Pm2f+FWe7l+XGYtD4vJkYWjjLvSwXzFLXvRvMAFJ6RnyJMZilrrtXmeXM5ee4l+VGw1D/rFmmXLLQvSwXYP8bPcuTTzArbxJ11Jnlt96gKTdhmSGRTtOWcJu5uxNwXxRpfAlaN5s7DAVT3bGWLbDnJbP8tWyx+4PZ3WzKBag4xz3Yx6KmPh11UDzfvSwX4MDb8eXJJf0SjM5GqPujSX4qznHfvYl0mZVI3U2mPln9vjXuWR9fnlzY7y5V6zZz3gIlZul3wpJJulvN3JBo2JzvxME+FjPLmttroWiee0k5QNP78eXJJQvd5zu0z5xvJ2DakjhYRbuh7hmzPLnsDHfiAse27yauivuETqLtLxruINqxD8vxYmcVu27lx6IRIh2NEIvgZJW4luWapa77iIU7sP0jXMtywSx1jYYOYHmysAMj+5ayglnqGunYA5Zlyk3oY7FYlGjHXmKREHZgpGtZLkA01ES0qxnLm+taYgxmqWukYy/YHpzskgHaUuxalgsQ6dxPrLsN25+P3S8Ji3a3maXWTsC1XNqU202k3cyncLKLXfNlzNLmvcQindiBQteyXHOMmomGmrC82a4lxuYYhXqOkdNzjJyEcqNE2hshGsbJKnItKTdtOUCsZ3my7XffpYp2txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHiIQOEOtqxfLl4vjTzDXMIMfNqp9//Md/5Nxzz2X06NHs3r2bm2++mbfeeov333+f4uLUt9ASDXmiIiIiIsfccbPqZ+fOnVx66aXs27eP4uJi5s+fz4YNGw4rSREREZFPvmFNVB56KM2SSxEREREybDKtiIiISCIlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3BXINHtt9/OTTfdxLe//W3uuuuu4a4OPGi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qolwL54nHK4bDcyeLFYjEhHI9HO/VieAJ6cSizH1xePhpoJt9dhYeHkVGD74v06FgkRbt1FLBLCCRRhZxVh9Xy+Y7EIkbZ6ol3N2N4cnJxKLNvp2zbSuY9I+x4s24OTW4ntyYrvs7udSNtuYtEwTnYpTiB+vYlFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW+VuS1cLkbY6AJyccmxfXkJbunra0okTKMTOKkloS7SnLU3Ynmyc3EosOz50RToPEGlvMG3JqcD2xq9j0XAHkdZdPW0pxgnErzexaIRI226i3a3YvmBPW5x4Wzr3EunY29OWSqzezz4Q7Wo1x4gYnuxybH/8MxqLdBFu20Us3IntL8DJLnW3pb2BaOgglicbT24FVu/1EYiGDhJub8DCxsmtwPbmpOw3nzZWLBaLDXclADZu3MhFF11EMBjk9NNPP6xEpbm5mfz8fJqamggGg4d8/6D0T1JSyZsAZ66DrDL40xVmgO7lZMGCx8yAuuU+ePXrZtDqNfmfYPodZnBecyZ0NsRjI+fCGX8EywPr/gYa18Vj/pFw+h+hcAa8cyu8c3NChSw49Scw8TpoWAfPnwvh1ni46nyY/yh0HYTVi8yg1SunBhavg+xR8Mo18NF/x2O2D0572AxS2x6C9X8LsXA8PuE6mHU3tGyG5xZBx654rGA6nLkanBx44XyT/PTy5sOip6F4Hmy6E968wX18p/0nnHiDSTTWng3dTfFY+RL47EqItMPqM02S0iurEs5cC8EJ8Noy+ODuhEPkgXm/hppLYeeT8NJFEO2Kx8deDXPuhfYdpi1t2+Kx/CmmXF8BvPRl2PlEPObJgYV/gNJF8MFP4bVvAgkfrZNvgZNvhv1vwtqzTOLVq2ShOQ6xCKw5C/ZtiMcCJXDGGpO0vXUjvH9HQltsmP1LGPdV2P0MvPhFiHTE46Mvgc88YPrWcwuh5cN47Gj6bjqXZcSl5LgRi0YINbxKtDOhL9heAmVzsf35dB/4gO6DH7i28Y48CW+whkjHXkING13nxckuxVcyE6JhOuvWE+tu6YtZniz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPWyT2XU/eaHxFJxPtbiNUt55YpDNeri9IoGwu2B5CDRuJduxJKNaDv3QOTqCA7qYtdO/f5G5LwWS8I8YR6TxAqOEVk6T3bppVjL90FkQjdNZvINYV/+xbTgB/+Vxsby5d+94l3LwtoVQLX/E0PLmVhNvq6Wp8A4jGj1FuNb6iqcTCHYTq1xMLxz8vljePQPlcsL10Nb5OpD3hmmw5+Etn4WQV0d28je5977rbMmIi3oKJRENNdNZvMF+eetsSKMRfOgeIEarfQDR0MOEY+QiUz8P25dG1fxPhpi2ucn1FU/HkjeKTaDDjd0YkKq2trcyYMYOf/vSn/Nu//RvTpk0b3kTlcJKUXmOvgoqlZuDqL6sCzn4TVo4230b7W7LRDM6JiUivk28xg1//wRugcBbMux+empIcs71w3lZ47rPQ+lFyfO79sG8jfLgiOTbqyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4d7NJuBKTql6nrjCJxKblybGKpWa/qxclxzx5cN4WeGqyO2HotfAp2Ho/7PhdcmzCdTByFmy4KjmWOxYWvwArx7guVH2Wvgfrr4L9G5Nj05ebO1Tv3JIcK1lk4s/MSo45AThvO6yaDh0p7mrM/505Jx/dnxw7mr6bihKVQUk1eAPYvnx8xdPo3PV8iq0sAlVn9Ayy7UlRX9Ep5lt5y/akmJNTjie3yiQ4STv1EqhaRGftWveXkB7+snl0N20h2tGYFPPkj8XyZCcN3mAGf3/pLDp3rknRFkxbGja6kqpe3pEnEQu3E25Kvo7ZWSV488cRql+fXKjlIVB1Op271qX8HPpLZxFu3dl3d8fVlrzR2P4RdO39c4pis/GXzetpS3JfD1QupGvPW0QTkqq+thROhmgkKfEEsAMj8RZOJrT7pRRtscmqXuy6M/VJMZjxOyMe/Vx33XUsXbqUxYsX82//9m9p3xcKhQiFQn3/bm5u/jiqN7DaJ1IPSmAGjg/vSX+h3/7b1EkKmG/rnjS3/fZvhK2/SR2LdsPmX6ROUnrL3ZfiQgXmDkPiY6VEoX2mLamSFDCPkeqeTr/PnDGpY03vwZZ7k5MUMK9tvjd1ktJbblvyBRkwdckZmzoWbjFtSZWk9Ja7c2Wa2OOpEwIwx3zzL9L3h62/SZ2kgHl0lXg3JFHjOvPoJZVIp2lLujrVPp7+vBxN35WjFmmrT/l6tKuJcOvONFvFCLfuSJmkAETa64mGkgdKs78G12MG9067zZ2JFEkKQLitLmWS0lduwuMWV227Wwi37Ei9TyDcsiNlkmLKrSeW5jMR7Wgk7Em9T2Jhwi3b0vbtcHuD+25J4j7b64lFQiljsXB7T1tSJ+Th1p0pkxToaUuau5LRzn1EWtN8fmNRIh178ORWpo5/Sgx7ovLQQw/xxhtvsHFjmgt4gttuu43vfe97H0OtBsHxg+1PH0+XbAA42WZuSaoObA9UrmW2HajcdGx/fJ7FoPZ5iHKdAFheiKX4kDuB9Ps8VLnpLkaHKtfygieQOnaofToB87grmqYt9gDfbg55XixSXuicQPrHK5YD9gBtGbCPDVDfo+m7cvSsAdYyWE760AAxLCd9uZY94D4ta4DhoHfbVF8oLLtvnkraOqVjD9BO2yEWOdK2DHT8bMw6klRtGeD49dQpfXCgmI1FLE2KYx2iL2jNy7AegdraWr797W/zwAMPEAgMcCHucdNNN9HU1NT3U1tbe8htjszIQ7+lV83l5ieV4CQzX8RXmByzbBjzFTNvZLDlln8Oxl1t5lv058mFCX9nJrIOttyay8xPKjk1MPGbZhJsEsuUOeqi1NuOviz9PosXwPivuyd29rL9Jla8IDl2qHJHXQQ1V5i69RcoM23JqUm9bc0A5Q50/ApmmGPvyU2OWR5zzsqXDL7cqvNh3FWpL1i+Aph4LQQnD77cI+27ckyk+5ZsZxXjyasmZd+1HDzB0Vi+/JTbOrmVOGnK9eRW4OSkjlmeLJxgTdrE35tbhZNTnjLmya1MW67tL8QbHJW671o23rxR2P7UfczJqUh7jJyccrx5VSljOH6c4BishAnC7m0r05c7wPGzfPl4gqPTJCQWnrxq7KzilNsOdIyc7NKe852C7cXJKkkd+xQZ1kTl9ddfp7GxkRkzZuDxePB4PDz//PP8+Mc/xuPxEIm4v2H6/X6CwaDrZ0hctvfw3le2GKbeCmVnmDkliR04uwpOewg8WTD/EfcjFdsPs35uJnueusJMOE1UczlMuNZM7Bx3Da4LVv4UM4Eyu8rMN3ESPozeoNmnL99Mokx83GLZZs5G1bkw5Z+h4vPufRYvgGl3mBU80+6Ir9QBM7DPf8TcoVjwKPiLEtrig5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVSY+SP3HQV/kZm34QmY/yYmXpYHpt3ecwxuT06QKpaaY1d1rpkMnXjxzakx9fXlm4nHiSt1nCyYe585Z7N/Yc5hYlvGXWPO9YRre5KrBAXTTB/JG2/6TOIdEF9BT1uyzXlPXJllOXDSzaZvTr3V9NVER9p300o9KEh6Tm41Tq57gLK8efiKpmJ7svAVn+LuY5YHf8kMLNuLv3g6Vr+7jZ78sXiyS/Hmj8fuN7jZ/kK8hZNxAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPcbcguM/vNrcATrHG3xZODr/gULMePr3i6u49ZDr7i6T2xU7D6rW7xBGvw5FbiyR+Lk+1OkGz/CFMXXxBv4RRcw5jtw9/TFl/JzH6Jl4W3YJI5BoWTkhIkM+9lPJ7sUjz541wxy5NljrntxV8yw/0l0bLxFZ9izlnRVCxvnmvb3vPsCdYkJSuWL4hv5EnY3hx8RVPd59v24i+ZOfBdnE+JYZ1M29LSwvbt7jkGV199NZMmTeK73/0uJ5100oDbD+mqH4AHg0DC89PLYrD3VWh+H4InQtFs9/vbd0L9GrPEs3yJe7APt8Pup80z/4qz3ctyYzFofN5MDC2c5V6WC2ap694NZgApPSO+xBjMUtfdq8xy5vJz3Mtyo2Gof9YsUy5Z6F6WC7D/jZ7lySeYlTeJOurM8ltv0JSbOJkr0mnaEm4zd3cC/TL+xpegdbO5w1Aw1R1r2QJ7XjLLX8sWuz+Y3c2mXICKc9yDfSxq6tNRB8Xz3ctyAQ68HV+eXNIvwehshLo/muSn4hz33ZtIl1mJ1N1k6pPV71vjnvXx5cmF/e5StW4z5y1QYpZ+JyyZpLvVzA2Jhs35ThzsYzGzrLm9FormuZeUAzS9H1+eXLLQfb5D+8z5dgKmLYmDVbQb6p4xy5PLznAnLnBs+27ihHNNoj0q0a5WoqEDWJ4s7MDIvqWsYJa6Rjr2gGXhZJW4luXGYlGiHXuJRULYgZGuZbkA0VAT0a5mLG+ua4kxQCzcSaRjL9genOwS16ObWDRCpKMRYhGcrGLXslyASOd+Yt1t2P58bJ/7uhvtbjNLrZ2Aa7m0KbebSLtZFeRkF7vmy5ilzXuJRTqxA4VJy3KjXc1EQ01Y3mzXEmNzjEI9x8jpOUZOQrlRIu2NEA3jZBVh9XscHOk8QKxnebLtd9+lina3E+3ch+X4e9qSeIzCPcco1nOM4tdHs7R5H7FwB7a/wLWk3LSlpWd5crrz3ZiyLZ80x92qn0SLFi0a/lU/IiIiMmQGM35rlo6IiIhkrGFf9dPfunXrhrsKIiIikiGO6I7KwYMH+a//+i9uuukm9u/fD8Abb7zBrl27DrGliIiIyOEb9B2Vt99+m8WLF5Ofn8+2bdv4+te/TmFhIY899hg7duzg17/+9VDUU0RERD6FBn1H5frrr+eqq67iww8/dP3uk7/5m7/hhRdeOKaVExERkU+3QScqGzdu5P/+3/+b9HplZSX19al/JbSIiIjIkRh0ouL3+1P+jZ0PPviA4uLUv5VPRERE5EgMOlE577zzuPXWW+nuNn/wybIsduzYwXe/+10uvPDCY15BERER+fQadKLy/e9/n9bWVkpKSujo6GDhwoWMHz+evLw8/v3f/30o6igiIiKfUoNe9ZOfn8+zzz7LSy+9xNtvv01rayszZsxg8eLFh95YREREZBAGnajs2LGD0tJS5s+fz/z58/tej8Vi1NbWMmrUqGNaQREREfn0GvSjn5qaGmbMmMGWLVtcrzc2NjJmzJg0W4mIiIgM3hH9ZtrJkycze/ZsVq9e7Xo9w/6+oYiIiBznBp2oWJbFT3/6U/6//+//Y+nSpfz4xz92xURERESOlUHPUem9a/IP//APTJo0iUsvvZR33nmHf/mXfznmlRMREZFPt6P668nnnHMOf/rTnzjvvPN49dVXj1WdRERERIAjSFQWLlyIz+fr+/eJJ57IK6+8wgUXXKA5KiIiIocpEon0/fLUTyKfz4dtH9FUWBcrdhxnF83NzeTn59PU1EQwGBzu6oiIiBxSLBajvr6egwcPDndVhpRt24wZM8Z1c6PXYMbvw7qj0tzc3FdQqr/zk0gJg4iISHq9SUpJSQnZ2dmfyIUo0WiU3bt3U1dXx6hRo46qjYeVqBQUFFBXV0dJSQkjRoxIucNYLIZlWUQikSOujIiIyCdZJBLpS1JGjhw53NUZUsXFxezevZtwOIzX6z3icg4rUVmzZg2FhYUArF279oh3JiIi8mnWOyclOzt7mGsy9Hof+UQikaFPVBYuXJjy/0VERGTwPomPe/o7Vm087Om4e/fuZfv27a7X3nvvPa6++mouuugiHnzwwWNSIREREZFeh52oLFu2zPVbaBsbG1mwYAEbN24kFApx1VVX8Zvf/GZIKikiIiKfToedqGzYsIHzzjuv79+//vWvKSws5K233uLJJ5/kP/7jP1ixYsWQVFJERESOzi233MK0adOGuxqDdtiJSn19PTU1NX3/XrNmDRdccAEej5nmct555/Hhhx8e8wqKiIiIGYeXLVvG2LFj8fv9VFdXc+655yb9geBPmsNOVILBoOuX07z66qvMmTOn79+WZREKhY5p5URERAS2bdvGzJkzWbNmDcuXL+edd95h1apVnH766Vx33XUfWz2G4zfpHnaiMnfuXH784x8TjUZ59NFHaWlp4YwzzuiLf/DBB1RXVw9JJUVERD7Nrr32WizL4tVXX+XCCy9k4sSJTJkyheuvv54NGzYAsGPHDs4//3xyc3MJBoNcdNFFNDQ0pC0zGo1y6623UlVVhd/vZ9q0aaxataovvm3bNizL4uGHH2bhwoUEAgEeeOCBIW9rf4edqPzrv/4rK1euJCsri4svvph/+qd/oqCgoC/+0EMPaemyiIjIMbZ//35WrVrFddddR05OTlJ8xIgRRKNRzj//fPbv38/zzz/Ps88+y0cffcTFF1+cttwf/ehHfP/73+fOO+/k7bffZsmSJSmncdx44418+9vfZtOmTSxZsuSYt+9QDvuPEk6dOpVNmzbx8ssvU1ZW5nrsA3DJJZdw4oknHvMKioiIfJpt3ryZWCzGpEmT0r5n9erVvPPOO2zdurXv6cavf/1rpkyZwsaNG5k1a1bSNnfeeSff/e53ueSSSwC44447WLt2LXfddZdrcczf//3fc8EFFxzjVh2+Qf315KKiIs4///yUsaVLlx6TComIiEjc4fzt4E2bNlFdXe2agnHiiScyYsQINm3alJSoNDc3s3v3bk477TTX66eddhp//vOfXa+deuqpR1H7o3f0f39ZREREhsyECROwLIu//OUvw7L/VI+bPk5KVERERDJYYWEhS5YsYcWKFbS1tSXFDx48yOTJk6mtraW2trbv9ffff5+DBw+mnJYRDAapqKjg5Zdfdr3+8ssvZ9w0jkE9+hEREZGP34oVKzjttNOYPXs2t956K1OnTiUcDvPss89yzz338P7773PyySdz+eWXc9dddxEOh7n22mtZuHBh2kc3N9xwAzfffDPjxo1j2rRp3Hfffbz11lvDsrJnIEpUREREMtzYsWN54403+Pd//3e+853vUFdXR3FxMTNnzuSee+7BsiyefPJJli1bxmc/+1ls2+bss8/mJz/5Sdoyv/Wtb9HU1MR3vvMdGhsbOfHEE1m5ciUTJkz4GFt2aFbscGbppNDY2EhjYyPRaNT1+tSpU49JxQ5Hc3Mz+fn5NDU1EQwGP7b9ioiIHInOzk62bt3KmDFjCAQCw12dITVQWwczfg/6jsrrr7/OlVdeyaZNm/pmIluWRSwWw7IsIpHIYIsUERERSWnQicpXv/pVJk6cyL333ktpaSmWZQ1FvUREREQGn6h89NFH/O///i/jx48fivqIiIiI9Bn08uQzzzwz6ZfBiIiIiAyFQd9R+a//+i+uvPJK3n33XU466SS8Xq8rft555x2zyomIiMin26ATlfXr1/Pyyy/z9NNPJ8U0mVZERESOpUE/+lm2bBlXXHEFdXV1RKNR14+SFBERETmWBp2o7Nu3j3/4h3+gtLR0KOojIiIi0mfQicoFF1zA2rVrh6IuIiIiIi6DnqMyceJEbrrpJl566SVOPvnkpMm03/rWt45Z5UREROTT7YhW/eTm5vL888/z/PPPu2KWZSlRERER+ThEI7DnReiog6xyKF4AtjPku12xYgXLly+nvr6eU045hZ/85CfMnj17yPY36ERl69atx2zn99xzD/fccw/btm0DYMqUKfzLv/wL55xzzjHbx1F5sN9v3b24A7Y/Ak3vQf4UGH0ROAl/v6BhLdQ9C/5CqLncdJxeLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQW9v0k4EoLa/4WDb0PeRBh9CXiy49s2vgh1q8AbNG3JrorHWrfB9t9CuA0qPw9FcxPa0mpirVugYAZUfxFsb7wtu1eZD1agDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHzAeyeAFUnA1Wz5PLaDfUPg4H3oDccTD6UvDmxrfduwF2/QE8OSaWWxOPte805XY3Q/nZULIgHgu3w/aHoeWvMGIqVF8Ijr+nLTGofw4a1oC/2LQlUBLftvmvZttYBKovgIJT4rGuA7D1AejYCUWfMcewry1h2LUS9r0KOTVQc5k5B732vw61T5h6jL4U8sbFYx11pi2h/VB+ljnnvSKdx67vrur/l1i9cFkXcvyIdO4j0r4Hy/bg5FZie7L6YtHudiJtu4lFwzjZpTiB+PUmFg0Tad1FNNyO7cvHySnD6um7sViMaEcjkc79WI4fT24VluOLl9vVQqStDgAnpxzblxcvN9JFuHUXsUgnTqAQO6uk77eex2JRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3mDaklOB7Y1fx6LhDiKtu3raUowTiF9vYtEIkbbdRLtbsX3BnrY48bZ07iXSsbenLZVYvZ/9TFH7GLz+bXMN65VdBTN/ZK45Q+Thhx/m+uuv52c/+xlz5szhrrvuYsmSJfz1r3+lpKTk0AUcgSP+o4RdXV1s3bqVcePG4fEc2R9h/v3vf4/jOEyYMIFYLMavfvUrli9fzptvvsmUKVMOuf2Q/lHC/klKKnkT4Mx1kFUGf7rCDNC9nCxY8JgZULfcB69+3QxavSb/E0y/wwzOa86EzoZ4bORcOOOPYHlg3d9A47p4zD8STv8jFM6Ad26Fd25OqJAFp/4EJl4HDevg+XMh3BoPV50P8x+FroOwepEZtHrl1MDidZA9Cl65Bj7673jM9sFpD5tBattDsP5vIRaOxydcB7PuhpbN8Nwi6NgVjxVMhzNXg5MDL5xvkp9e3nxY9DQUz4NNd8KbN7iP77T/hBNvMInG2rOhuykeK18Cn10JkXZYfaZJUnplVcKZayE4AV5bBh/cnXCIPDDv11BzKex8El66CKIJg+zYq2HOvdC+w7SlbVs8lj/FlOsrgJe+DDufiMc8ObDwD1C6CD74Kbz2TSDho3XyLXDyzbD/TVh7lkm8epUsNMchFoE1Z8G+DfFYoATOWGOStrduhPfvSGiLDbN/CeO+CrufgRe/CJGOeHz0JfCZB0zfem4htHwYjx1N303nsiO6lMjHKBaL0bX3bSKttQmv2vhKZuDJKSPcuouuPW+R2Hc9eaPxFZ1MtLuNUN16YpHOvpjlCxIomwu2h1DDRqIdexKK9eAvnYMTKKC7aQvd+ze56uItmIx3xDginQcINbxikvTeTbOK8ZfOgmiEzvoNxLrin33LCeAvn4vtzaVr37uEm7cllGrhK56GJ7eScFs9XY1vAPE/nOvkVuMrmkos3EGofj2xcPzzYnnzCJTPBdtLV+PrRNoTrsmWg790Fk5W0WEe6fSOyR8lrH0MXvwSrmsMAD3j1oJHhyxZmTNnDrNmzeLuu811NRqNUl1dzbJly7jxxhtd7z1Wf5Rw0IlKe3s7y5Yt41e/+hUAH3zwAWPHjmXZsmVUVlYmVXSwCgsLWb58OV/72tcO+d4hS1QOJ0npNfYqqFhqBq7+sirg7Ddh5WjzbbS/JRvN4JyYiPQ6+RYz+PUfvAEKZ8G8++GpFMmc7YXztsJzn4XWj5Ljc++HfRvhwxXJsVFfhjFXwfNLk2P+kbB0E6wcB+GW5PiZ62DTctj9VHJs8g0mEXrtuuRY/hRY+Hv4/XhzxyWRZcO5m03ClZhU9Tp1hUkkNi1PjlUsNftdvSg55smD87bAU5PdCUOvhU/B1vthx++SYxOug5GzYMNVybHcsbD4BVg5xtzl6W/pe7D+Kti/MTk2fbm5Q/XOLcmxkkUm/sys5JgTgPO2w6rp0LE7OT7/d+acfHR/cuxo+m4qSlQyXqS9gVBDiv5newlULaKzdq37S0gPf9k8upu2EO1oTIp58sdiebLp3vduUszy5uEvnUXnzjUp6xOoOoNQw0Zi3cnXFO/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoOp3OXetSfg79pbMIt+7su7vjakveaGz/CLr2Jv/2dcuTTaDq9KP++3ZHnahEI7Cyxn0nxcUyd1bO23rMHwN1dXWRnZ3No48+yhe+8IW+16+88koOHjzIk08+6Xr/sP315Jtuuok///nPrFu3jrPPPrvv9cWLF3PLLbcccaISiUT43e9+R1tbG/PmzUv5nlAoRCgU6vt3c3PzEe3rmKp9IvWgBGbg+PCe9Bf67Q+lTlLAfFv35KSO7d8IW3+TOhbths2/SJ2k9Ja7L8WFCswdhsTHSolC+0xbUiUpYB4j1SX/EsC+feaMSR1reg+23JucpIB5bfO9qZOU3nLbtqeO1T1tHgOlEm4xbUmVpPSWu3NlmtjjqRMCMMd88y/S94etv06dpIB5dJV4NyRR4zrTV1KJdJq2pKtT7ePpz8vR9F05LrnuEiSKdps7EymSFIBwe13KJAUg0taAlfC4JVGsu4Vwy4609Qm37EiZpJhy64ml+UxEOxoJe1Lvk1iYcMu2tH073N6Q9jhE2uuJRUIpY7FwO7GuFiz/Mb57P1h7XhwgSQGIQXuteV/pomO667179xKJRJJ+PUlpaSl/+ctfjum+Eg06UXniiSd4+OGHmTt3riuznDJlClu2bBl0Bd555x3mzZtHZ2cnubm5PP7445x44okp33vbbbfxve99b9D7GFKOH+wBnl160yQbYG6xW07q2+r2QOVa4KT5kMLAMdsfn2cxqH0eolwnAJYXYik+5E4g/T4PVW66i9GhyrW8R75PJ2Aed0XTtMX2Jb/ea8D65mBuzaa48+AE0j9esRzTV9Luc6A+NkB9D9V3BypXjk9W+t9IYVnphwML22yb6guFZffNU0m98QDf6geIWbZDLJKmXMs+RFsGKNeyMb+ZI1VbnAHLHTD2celIvhN0VO87Dgz6qO/ZsyflhJm2trYjuiV2wgkn8NZbb/HKK6/wjW98gyuvvJL3338/5Xtvuukmmpqa+n5qa2tTvu9jVXO5+UklOMk8KvAVJscsG8Z8xcwbGWy55Z+DcVeb+Rb9eXJhwt+ZiayDLbfmMvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7r7omdvWy/iRUvSI4dqtxRF0HNFfQ9s00UKDNtyalJvW3NAOUOdPwKZsD4vzPnoD/LY85Z+ZLBl1t1Poy9MvVF0lcAE6+F4OTBl3uovjsxTd+V45aTU5nydcuThROsSZvce3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV4clOX6+SU482rShnD8eMEx2B5Uif3Tk5l+nJzK3HSxCxfPrYvxWf745aV+jwc8fsGoaioCMdxaGhw35FqaGigrCzV2HBsDDpROfXUU3nqqfg8hN7k5L/+67/SPrIZiM/nY/z48cycOZPbbruNU045hR/96Ecp3+v3+wkGg66fIXG4z9rLFsPUW6HsDDOnJDGLz66C0x4CTxbMf8T9SMX2w6yfm8mep64wE04T1VwOE641EzvHXYNrsM2fYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt0RX6kDZmCf/wh4AmaSlj9hQpntg5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVQzAz7xjoK/yMzb8ATMfxMTL8sD027vOQa3JydIFUvNsas610yGTrz45tSY+vryzcTjxJU6ThbMvc+cs9m/MOcwsS3jrjHnesK1PclVgoJppo/kjTd9JvEOiK+gpy3Z5rwnrsyyHDjpZtM3p95q+mqiI+27clxzAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPc5WWX4ckfiye3Ak+wxhWzPDn4ik/Bcvz4iqe7+5jl4Cue3hM7BavfnWdPsAZPbiWe/LE42e4B1/aPMHXxBfEWTsE1jNk+/D1t8ZXM7Jd4WXgLJpljUDgpKUEy817G48kuxZPvfmxsebLwF/e7Tg+X4gU9n/V0NwYsyK5O/wXvKPh8PmbOnMnq1av7XotGo6xevfqIxv/DNejJtC+99BLnnHMOV1xxBffffz//9//+X95//33+9Kc/8fzzzzNz5sxDFzKAM844g1GjRnH//fcf8r1DuuoHkifVXhaDva9C8/sQPBGK+q0bb98J9WvMEs/yJe7BPtwOu582z/wrznYvy43FoPF5MzG0cJZ7WS6Ypa57N5jOWXpGfIkxmKWuu1eZ5czl57iX5UbDUP+sWaZcstC9LBdg/xs9y5NPMCtvEnXUmeW33qApN2GZIZFO05Zwm7m7E+h3h63xJWjdbO4wFEx1x1q2wJ6XTLZfttg92Hc3m3IBKs5xD/axqKlPRx0Uz3cvywU48HZ8eXJJvw9oZyPU/dEkPxXnuO/eRLrMSqTuJlOf/t9C9qyPL08u7HeXqnWbOW+BErP0O2HJJN2tZm5INGzOd+JgH4uZZc3ttVA0z72kHKDp/fjy5JKF7vMd2mfOtxMwbUl81BTthrpnzPLksjPciQsc276b+NnQJNrjTizcSaRjL9genOwS16ObWDRCpKMRYhGcrOKkZbmRzv3Eutuw/fnYPvd1N9rdRrRzP5YTwM4qct1lj0W7ibSbVUFOdjFWQh8zS5v3Eot0YgcKsfslLtGuZqKhJixvtmuJMUAsEiLSsQcsByerBCthAmksFiXS3gjRME5WEZbHfec20nmAWM/yZNuf368t7UQ792E5/p62HJvHPsd21Q+4HyUP/aqfhx9+mCuvvJKf//znzJ49m7vuuotHHnmEv/zlL0lzV4Zt1Q/Ali1buP322/nzn/9Ma2srM2bM4Lvf/S4nn3zyoMq56aabOOeccxg1ahQtLS08+OCD3HHHHTzzzDOcddZZh9x+yBMVERGRY+iYJCqQ5veoVJs73EP4e1QA7r777r5f+DZt2jR+/OMfM2fOnKT3DWuicqx87WtfY/Xq1dTV1ZGfn8/UqVP57ne/e1hJCihRERGR48sxS1Rg2H4z7eEatuXJjuNQV1eXNKF23759lJSUEIkcxi+G6nHvvfcOdvciIiICJik5xkuQM9GgH7qluwETCoXw+QZYtikiIiIySId9R+XHP/4xYFb59P5hwl6RSIQXXniBSZMmHfsaioiIyKfWYScqP/zhDwFzR+VnP/sZjhN/Dubz+aipqeFnP/vZsa+hiIiIfGoddqLS+1eTTz/9dB577DEKCvS7FURERGRoDXoy7dq1a4eiHiIiIiJJDjtRuf766w/rfT/4wQ+OuDIiIiIiiQ47UXnzzTcP+Z6j/fPXIiIiIokOO1HRIx8RERH5uA3Z36wOBoN89NFHQ1W8iIiIfAoMWaIyjL+ZX0RE5BMvFosR6dhLuHUXkY69Qz7uvvDCC5x77rlUVFRgWRZPPPHEkO6v16BX/YiIiMjwCrfV0b3vPWKRzr7XLCeAd+QUPDnlA2x55Nra2jjllFP46le/ygUXDO0fPkykREVEROQ4Em6ro6vx9aTXY5FO83rJzCFJVs455xzOOeecY17uoQzZox8RERE5tmKxGN373hvwPd373vtETb9QoiIiInKciHbucz3uSSUW6STaue9jqtHQU6IiIiJynIhFQsf0fceDIUtUOjo66OjoGKriRUREPnUsx39M33c8GLJEJSsri6ysrKEqXkRE5FPHDozEcgIDvsdyAtiBkR9TjYaeVv2IiIgcJyzLwjtySspVP728I6cMyZ+0aW1tZfPmzX3/3rp1K2+99RaFhYWMGjXqmO+vlxIVERGR44gnpxxKZn7sv0fltdde4/TTT+/7d+8fK77yyiu5//77h2SfoERFRETkuOPJKcfJLutZBRTCcvzmsdAQ/nHgRYsWDcuy5yFLVPSXlEVERIaOZVk4WUXDXY0hp7/1IyIiIhlryBKVp59+msrKyqEqXkRERD4FDuvRT++EmcPxgx/8AID58+cfWY1EREREehxWovLmm2+6/v3GG28QDoc54YQTAPjggw9wHIeZM2ce+xqKiIh8wkSj0eGuwpA7VlNADitRWbt2bd///+AHPyAvL49f/epXFBQUAHDgwAGuvvpqFixYcEwqJSIi8knk8/mwbZvdu3dTXFyMz+f7RC4+icVi7Nmzx/zeF6/3qMqyYoNMeSorK/njH//IlClTXK+/++67fO5zn2P37t1HVaHBaG5uJj8/n6amJoLB4Me2XxERkSPV1dVFXV0d7e3tw12VIWVZFlVVVeTm5ibFBjN+D3p5cnNzM3v27El6fc+ePbS0tAy2OBERkU8Vn8/HqFGjCIfDRCKR4a7OkPF6vTiOc9TlDDpR+eIXv8jVV1/N97//fWbPng3AK6+8wg033MAFF1xw1BUSERH5pOt9JHK0j0U+DQadqPzsZz/jH//xH7nsssvo7u42hXg8fO1rX2P58uXHvIIiIiLy6TWoOSqRSISXX36Zk08+GZ/Px5YtWwAYN24cOTk5Q1bJdDRHRURE5PgzZHNUHMfhc5/7HJs2bWLMmDFMnTr1qCoqIiIiMpBB/2bak046iY8++mgo6iIiIiLiMuhE5d/+7d/4x3/8R/7whz9QV1dHc3Oz60dERETkWBn071Gx7Xhuk/hLamKxGJZlfaxLrTRHRURE5PgzpL9HJfG31IqIiIgMpUEnKgsXLhyKeoiIiIgkGXSiAnDw4EHuvfdeNm3aBMCUKVP46le/Sn5+/jGtnIiIiHy6DXoy7Wuvvca4ceP44Q9/yP79+9m/fz8/+MEPGDduHG+88cZQ1FFEREQ+pQY9mXbBggWMHz+eX/7yl3g85oZMOBzmmmuu4aOPPuKFF14Ykoqmosm0IiIix5/BjN+DTlSysrJ48803mTRpkuv1999/n1NPPfVj/WuQSlRERESOP4MZvwf96CcYDLJjx46k12tra8nLyxtscSIiIiJpDTpRufjii/na177Gww8/TG1tLbW1tTz00ENcc801XHrppUNRRxEREfmUGvSqnzvvvBPLsvjKV75COBwGwOv18o1vfIPbb7/9mFdQREREPr0GPUelV3t7u+uvJ2dnZx/Tih0OzVERERE5/gzpb6btlZ2dzcknn3ykmwNw22238dhjj/GXv/yFrKwsPvOZz3DHHXdwwgknHFW5x8yDlvvfF3fA9keg6T3InwKjLwInEI83rIW6Z8FfCDWXQ1Z5PNayBbY/BJFOqP4CFM6Mx7qbYduD0LYNRs6GyvPA7jk1sSjsegr2vgxZVTDmcvAVxLc98GeofQwsB0ZfDMGEY9fZCFv/B0J7oPR0KDsLev/sQSQEtf8LB9+GvIkw+hLwJCSbjS9C3SrwBk1bsqvisdZtsP23EG6Dys9D0dyEtrSaWOsWKJgB1V8E2xtvy+5VsOdFCJTBmCvAPzK+7cH3oPZR8//VX4IRU+Kx0D7Y9gB01EHxAqg4G6yeJ5fRbqh9HA68AbnjYPSl4M2Nb7t3A+z6A3hyTCy3Jh5r32nK7W6G8rOhZEE8Fm6H7Q9Dy19hxFSovhAcf09bYlD/HDSsAX+xaUugJL5t81/NtrEIVF8ABafEY10HYOsD0LETij5jjmFfW8KwayXsexVyaqDmMnMOeu1/HWqfMPUYfSnkjYvHOupMW0L7ofwsc857RTqPXd9941ZoXBmPV1wKix5EMkcsFiHSVk+0qxnbm4OTU4llO33xSOc+Iu17sGwPTm4ltierLxbtbifStptYNIyTXYoTiF9vYtEwkdZdRMPt2L58nJwyrJ6+G4vFiHY0Euncj+X48eRWYTm+eLldLUTa6gBwcsqxffE5jbFIF+HWXcQinTiBQuyskr4/0RKLRXva0oTtycbJrcSy40NXpPMAkfYG05acCmxv/DoWDXcQad3V05ZinED8ehOLRoi07Sba3YrtC/a0xYm3pXMvkY69PW2pxOr97MvH7ojvqBwLZ599NpdccgmzZs0iHA7zz//8z7z77ru8//775OTkHHL7Ib2j0j9JSSVvApy5DrLK4E9XmAG6l5MFCx4zA+qW++DVr5tBq9fkf4Lpd5jBec2Z0NkQj42cC2f8ESwPrPsbaFwXj/lHwul/hMIZ8M6t8M7NCRWy4NSfwMTroGEdPH8uhFvj4arzYf6j0HUQVi8yg1avnBpYvA6yR8Er18BH/x2P2T447WEzSG17CNb/LcTC8fiE62DW3dCyGZ5bBB274rGC6XDmanBy4IXzTfLTy5sPi56G4nmw6U548wb38Z32n3DiDSbRWHs2dDfFY+VL4LMrIdIOq880SUqvrEo4cy0EJ8Bry+CDuxMOkQfm/RpqLoWdT8JLF0G0Kx4fezXMuRfad5i2tG2Lx/KnmHJ9BfDSl2HnE/GYJwcW/gFKF8EHP4XXvgkkfLROvgVOvhn2vwlrzzKJV6+SheY4xCKw5izYtyEeC5TAGWtM0vbWjfD+HQltsWH2L2HcV2H3M/DiFyHSEY+PvgQ+84DpW88thJYP47Gj6bsp+eGyzkO8Rz4OsUgXnXXriXW39L1mebLwl83D8mTRtfdtIq21CVvY+Epm4MkpI9y6i649b5HYdz15o/EVnUy0u41Q3Xpikfh5tnxBAmVzwfYQathItGNPQrEe/KVzcAIFdDdtoXv/Jlc9vQWT8Y4YR6TzAKGGV0yS3rtpVjH+0lkQjdBZv4FYV/yzbzkB/OVzsb25dO17l3DztoRSLXzF0/DkVhJuq6er8Q0g2hd1cqvxFU0lFu4gVL+eWDj+ebG8eQTK54LtpavxdSLtCddky8FfOgsnq+hQh18O05AuTx5Ke/bsoaSkhOeff57Pfvazh3z/kCUqv6uA7rrDe+/Yq6BiqRm4+suqgLPfhJWjzbfR/pZsNINzYiLS6+RbzODXf/AGKJwF8+6Hp6Ykx2wvnLcVnvsstH6UHJ97P+zbCB+uSI6N+jKMuQqeX5oc84+EpZtg5TgItyTHz1wHm5bD7qeSY5NvMInQa9clx/KnwMLfw+/HmzsuiSwbzt1sEq7EpKrXqStMIrFpeXKsYqnZ7+pFyTFPHpy3BZ6a7E4Yei18CrbeDzt+lxybcB2MnAUbrkqO5Y6FxS/AyjHmLk9/S9+D9VfB/o3JsenLzR2qd25JjpUsMvFnZiXHnACctx1WTYeO3cnx+b8z5+Sj+5NjR9N3U7ksYy4ln2pde98h3LI96XUnpxxPbhWhhhT9z/YSqFxE58617i8hPfxl8+hu2kK0ozEp5skfi+XJpnvfu0kxy5uHv3QWnTvXpKxroOoMQg0bXUlVL+/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoPp3OnetSfg79pbMIt+7su7vjakveaGz/CLr2/jlFsdkEqk53/TFeOXIfy6OfodDUZLLmwsLClPFQKEQoFOr7d3Nz89BU5HCTFDC34VMNSmAGjg/vSX+h3/5Q6iQFzLd1T5q7Svs3wtbfpI5Fu2HzL1InKb3l7ktxoQJzhyHxsVKi0D7TllRJCpjHSHVPp99nzpjUsab3YMt/JycpYF7bcm/qJKW33LbkCzJg6pIzNnUs3GLakipJ6S1358o0scdTJwRgjvnmX6TvD1t/kzpJAfPoKvFuSKLGdaavpBLpNG1JV6fax9Ofl6Ppu5KxXHcCEl9va8DqfQzbX7TbJDcpkhSAcHtdyiSlr1xv6jmKse4Wwi3Jv86ir9yWHSmTFFNuPbE0n4loRyPhNPskFibcvD1t3w63N6Q/Ru31xCKhlLFYuJ1YVwuWX/MhP26DXp48VKLRKH//93/PaaedxkknnZTyPbfddhv5+fl9P9XV1R9zLVNw/GAP8OwyXbIB5ha75aSO2QOVa4EzwORlzwAx2x+fZzGofTLwPp0AWGkugk4g/T7BHIcj3We6ci0veAKpY4dTru0bfOyQ5WYDab6NDVSu5YA9QFsG7GMDteUo+q5kLivNZd2y08egb65JyhgDbGvZA26b9hp3iJiZUzPAPgcYvqyByrXsAcp1BjxGA8ZkyGTMUb/uuut49913eeihNN8cgZtuuommpqa+n9ra2rTvPSrFKR59pFNzuflJJTjJzBfxpbhDZNkw5itm3shgyy3/HIy72sy36M+TC+P/zkxkHWy5NZeZn1RyamDiN80k2CSWKXPURam3HX1Z+n0WL4DxX3dP7Oxl+02seEFy7FDljroIaq4gZWIQKDNtyalJvW3NAOUOdPwKZsCEvzPnoD/LY85Z+ZLBl1t1Poy7KvVF0lcAE6+F4OTBl3ukfVcympNbmfJ1T24FTk7qmOXJwgmOSZv4e3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV40rTFySnHk1eVMobjxwnWYHlSfwFycirTl5tbmfb4Wb58bF+Kz7YMuYxIVL75zW/yhz/8gbVr11JVlabzAX6/n2Aw6PoZEmf94fDeV7YYpt4KZWeYOSWJWXx2FZz2EHiyYP4j7kcqth9m/dxM9jx1hZlwmqjmcphwrZnYOe4aXINt/hQzgTK7ysw3Sbwb4Q2affryzSTKxMctlm3mbFSdC1P+GSo+795n8QKYdodZwTPtjvhKHTAD+/xHzB2KBY+CP2FCme2DmXeZVS0zfwgj57jLrb4QJl1vViRNXOZuS94EM9cmUGzqm/gN3pNjXgsUm/fkTUwo1DKJRs0lpuzqL7n3OXKOqUvBVJj5I/cdBX+RmbfhCZj/JiZelgem3d5zDG5PTpAqlppjV3WumQydePHNqTH19eWbiceJK3WcLJh7nzlns39hzmFiW8ZdY871hGt7kqsEBdNMH8kbb/pM4h0QX0FPW7LNeU9cmWU5cNLNpm9OvdX01URH2nfTKZh/6PfIx8KbPx47q8T1mu0vxFs4GSdQgLdgEq7PoePHVzIT23bwl8zsdwfOxls4BdsfxFc4Bds/wlWuk12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wULK/77p0nWIMntxJP/licbHeCZPtHmLr4gngLp+Aaxmwf/p62+Epm9ku8LLwFk8wxKJyUlCCZeS/j8WSX4skf54pZniz8xf2u0/KxGdbJtLFYjGXLlvH444+zbt06JkyYMKjth/z3qKw6A/avNf9vBeHSJtj7KjS/D8EToWi2+/3tO6F+jVniWb7EPdiH22H30+aZf8XZ7mW5sRg0Pm8mhhbOci/LBbPUde8GM4CUnhFfYgxmqevuVWY5c/k57mW50TDUP2uWKZcsdC/LBdj/Rs/y5BPMyptEHXVm+a03aMpNWGZIpNO0Jdxm7u4E3BdFGl+C1s3mDkPBVHesZQvsecksfy1b7B7su5tNuQAV57gH+1jU1KejDornu5flAhx4O748uaRfgtHZCHV/NMlPxTnuuzeRLrMSqbvJ1Cer37fGPevjy5ML+92lat1mzlugxCz9TlgySXermRsSDZvznTjYx2JmWXN7LRTNcy8pB2h6P748uWSh+3yH9pnz7QRMWxIf80W7oe4Zszy57Ax34gLHtu8mrorTJNqMFA01Ee1qxvLmupYYA8TCnUQ69oLtwckucT26iUUjRDoaIRbBySpOWpYb6dxPrLsN25+P7XNfd6PdbUQ792M5AeysItfE01i0m0i7WRXkZBe75suYpc17iUU6sQOF2P0Sl2hXM9FQE5Y327XEGCAWCRHp2AOWg5NV4lqGHYtFibQ3QjSMk1WE1e9xcKTzALGe5cm2P79fW9qJdu7Dcvw9bcmI7/WfGMfNqp9rr72WBx98kCeffNL1u1Py8/PJyhpg3kIP/cI3ERGR489xk6ikW+Z13333cdVVVx1yeyUqIiIix5/jZnlyBv0KFxEREclAeugmIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhnLM5w7f+GFF1i+fDmvv/46dXV1PP7443zhC18Yziq5PWi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qqlQEM8TjVctgP55ItFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW4Xl+Pq2jXa1EGmrA8DJKcf25cXLjXQRbt1FLNKJEyjEzirB6rlWxWJRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3oBle3ByKrC98etYNNxBpHUXsWgYJ7sYJ5BwvZHjhhWLxWLDtfOnn36al19+mZkzZ3LBBRcMOlFpbm4mPz+fpqYmgsHgoTcYjP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6EC//IuXDGH8HywLq/gcZ18Zh/JJz+RyicAe/cCu/cnFAhC079CUy8DhrWwfPnQrg1Hq46H+Y/Cl0HYfUiM2j1yqmBxesgexS8cg189N/xmO2D0x42g9S2h2D930IsHI9PuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDdimRj0G0u41Q3Xpikc6+1yxfkEDZXLA9hBo2Eu3YE9/A9uAvnYMTKKC7aQvd+ze5yvMWTMY7YhyRzgOEGl4xSXrvplnF+EtnQTRCZ/0GYl3xz77lBPCXz8X25tK1713CzdsSSrXwFU/Dk1tJuK2ersY3gGhf1Mmtxlc0tS8JkuEzmPF7WBOVRJZlZU6icjhJSq+xV0HFUjNw9ZdVAWe/CStHm2+j/S3ZaAbnxESk18m3mMGv/+ANUDgL5t0PT01JjtleOG8rPPdZaP0oOT73fti3ET5ckRwb9WUYcxU8vzQ55h8JSzfBynEQbkmOn7kONi2H3U8lxybfYBKh165LjuVPgYW/h9+PN3dcElk2nLvZJFyJSVWvU1eYRGLT8uRYxVKz39WLkmOePDhvCzw12Z0w9Fr4FGy9H3b8Ljk24ToYOQs2XJUcyx0Li1+AlWPMXZ7+lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpqJE5ROts/5Voh2NSa978sdiebLp3vduUszy5uEvnUXnzjUpywxUnUGoYSOx7uRrinfkScTC7YSbkq9jdlYJ3vxxhOrXJxdqeQhUnU7nrnUpP4f+0lk42aUp6yMfn8GM38P66GewQqEQoVCo79/Nzc3DWJsetU+kHpTADBwf3pP+Qr/9odRJCphv656c1LH9G2Hrb1LHot2w+Repk5TecvelGCjB3GFIfKyUKLTPtCVVkgLmMVLd0+n3mTMmdazpPdhyb3KSAua1zfemTlJ6y23bnjpW97R5DJRKuMW0JVWS0lvuzpVpYo+nTgjAHPPNv0jfH7b+JnWSAubRVeLdkESN60xfSSXSCZvvSV+n2sfTn5ej6bvyqRKLRVMmKQCRtgashMctru26Wwi3pH8sGG7ZkTJJMeXWE0vzmYh2NBJOs09iYcIt29L27XB7gxKV48xxNZn2tttuIz8/v++nurp6uKtk5grY/vRxb5pkA8wtdstJHbMHKtcCJ82HFAaO2f74PItB7fMQ5ToBsLzpY+n2eahyPYfYZ7pyLe+R79MJmMddg40dstxsIM3duoHKtRywA6ljkD6hPVS5h+q7A5Urnz5WmuHCsvvmqaSOp7nGAdjpY5btkHaIsmysAYYva4B9DlhXyUjH1Rm76aabaGpq6vupra0doj0NItuuudz8pBKcZB4V+AqTY5YNY75i5o0Mttzyz8G4q818i/48uTDh78xE1sGWW3OZ+UklpwYmftNMgk1imTJHXZR629GXpd9n8QIY/3X3xM5ett/Eihckxw5V7qiLoOYKUiYGgTLTlpya1NvWDFDuQMevYIY59p7c5JjlMeesfMngy606H8ZdlXqg8BXAhGshOHnw5R6q705M03flU8eybJyc8pQxT24lTk5lypjtL8QbHJW671o23rxR2P7UfczJqcCTm7pcJ6ccT15VyhiOHyc4BsuTlWbb1GVK5jquEhW/308wGHT9DInL6g/vfWWLYeqtUHaGmVOSmMVnV8FpD4EnC+Y/4n6kYvth1s/NZM9TV5gJp4lqLjeDz9irYdw1uAbb/ClmAmV2lZlv4iR8GL1Bs09fvplEmfi4xbLNnI2qc2HKP0PF5937LF4A0+4wK3im3RFfqQNmYJ//CHgCsOBR8BcltMUHM+8yq1pm/hBGznGXW30hTLrerEiauMzdlrwJZq5NoNjUN/EbvCfHvBYoNu/Jm5hQqGUSjZpLTNnVX3Lvc+QcU5eCqTDzR+47Cv4iM2/DEzD/TUy8LA9Mu73nGNyenCBVLDXHrupcMxk68eKbU2Pq68s3E48TV+o4WTD3PnPOZv/CnMPEtoy7xpzrCdf2JFcJCqaZPpI33vSZxDsgvoKetmSb8564Msty4KSbTd+ceqvpq4mOtO+mlXfot8hxzVc4Bds/wvWak12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wUrH53nj3BGjy5lXjyx+JkuxMk2z/C1MUXxFs4BdcwZvvwl8zEth18JTP73VW18BZMwgkcTn+WTKLJtAN5sBA4EP/3ZTHY+yo0vw/BE6Fotvv97Tuhfo1Z4lm+xD3Yh9th99PmmX/F2e5lubEYND5vJoYWznIvywWz1HXvBjOAlJ4RX2IMZqnr7lVmOXP5Oe5ludEw1D9rlimXLHQvywXY/0bP8uQTzMqbRB11ZvmtN2jKTVhmSKTTtCXcZu7uJC7LBWh8CVo3mzsMBVPdsZYtsOcls/y1bLF7sO9uNuUCVJzjHuxjUVOfjjoonu9elgtw4O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrH7fGvesjy9PLux3l6p1mzlvgRKz9DthySTdrWZuSDRsznfiYB+LmWXN7bVQNM+9pByg6f348uSShe7zHdpnzrcTMG1JfDQW7Ya6Z8zy5LIz3IkLHNu+mzjhXJNoP1UinfuJdbdh+/Oxfe7rbrS7jWjnfiwngJ1V5FpdE4t2E2k3q4Kc7GKshD5mljbvJRbpxA4UYvdLXKJdzURDTVje7KQlxrFIiEjHHrAcnKySnkdGveVGibQ3QjSMk1WE5RngEap8rI6bVT+tra1s3rwZgOnTp/ODH/yA008/ncLCQkaNGnXI7Yc8UREREZFj7rhZ9fPaa69x+unxX0p1/fXXA3DllVdy//33D1OtREREJFMMa6KyaNEiMuTJk4iIiGSg42oyrYiIiHy6KFERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkY3mGuwIAK1asYPny5dTX13PKKafwk5/8hNmzZw93teBBy/3viztg+yPQ9B7kT4HRF4ETiMcb1kLds+AvhJrLIas8HmvZAtsfgkgnVH8BCmfGY93NsO1BaNsGI2dD5Xlg95yaWBR2PQV7X4asKhhzOfgK4tse+DPUPgaWA6MvhuAJ8VhnI2z9HwjtgdLToewssHraFAlB7f/CwbchbyKMvgQ82fFtG1+EulXgDZq2ZFfFY63bYPtvIdwGlZ+HorkJbWk1sdYtUDADqr8Itjfelt2rYM+LECiDMVeAf2R824PvQe2j5v+rvwQjpsRjoX2w7QHoqIPiBVBxNlg9eXa0G2ofhwNvQO44GH0peHPj2+7dALv+AJ4cE8uticfad5pyu5uh/GwoWRCPhdth+8PQ8lcYMRWqLwTH39OWGNQ/Bw1rwF9s2hIoiW/b/FezbSwC1RdAwSnxWNcB2PoAdOyEos+YY9jXljDsWgn7XoWcGqi5zJyDXvtfh9onTD1GXwp54+KxjjrTltB+KD/LnPNekc5j13dXnYqbA5eFOd60b/2D699Zo88h0lZHtLsF25uHk1OOZTt98UjHXiIde7EcL56cSixP/PhFu9uItO0mFoviyS7F9o/oi8Wi3YRbdxMLt2P7R+Bkl2L1nO9YLEako5Fo534sT8CU6/ji5YaaCbfXYWHh5FRg++L9OhYJEW7dRSwSwgkUYWcVYfV8vmOxCJG2eqJdzdjeHJycSndbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7Ycm77bWf8XiO7ti+MpJbt6FsPJisViseGswMMPP8xXvvIVfvaznzFnzhzuuusufve73/HXv/6VkpKSAbdtbm4mPz+fpqYmgsHggO8dtP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6GeGzkXDjjj2B5YN3fQOO6eMw/Ek7/IxTOgHduhXduTqiQBaf+BCZeBw3r4PlzIdwaD1edD/Mfha6DsHqRGbR65dTA4nWQPQpeuQY++u94zPbBaQ+bQWrbQ7D+byGWMDBNuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDeikZlP5JSiqWJwd/+Twsx0/XnjeJtO1OCNr4S07FyS4h3FJL1963STzfnvxx+AonE+1qobN+g/li0MP2j8BfNhewCDW8SrQzoS/YXgJlc7H9+XQf+IDugx+46uQdeRLeYA2Rjr2EGja6zouTXYqvZCZEw3TWrSfW3ZLQliz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPW+625I3GV3Qy0e42QnXriUU64+X6ggTK5oLtIdSwkWjHnoRiPfhL5+AECuhu2kL3/k3uthRMxjtiHJHOA4QaXjFJeu+mWcX4S2dBNEJn/QZiXfHPvuUE8JfPxfbm0rXvXcLN2xLPGr7iaXhyKwm31dPV+AYQjR+j3Gp8RVOJhTsI1a8nFo5/XixvHoHyuWB76Wp8nUh7wjXZcvCXzsLJKqK7eRvd+951t2XERLwFE4mGmsz5jnbH2xIoxF86B4gRqt9ANHQw4Rj5CJTPw/bl0bV/E+GmLa5yfUVT8eSNItLeSKjxNfNlr7ctORX4iqdDJGTOd7gtXt2j6LvpZI/5/CHfMxiDGb+HPVGZM2cOs2bN4u67zWASjUaprq5m2bJl3HjjjQNuO2SJyuEkKb3GXgUVS83A1V9WBZz9Jqwcbb6N9rdkoxmcExORXiffYga//oM3QOEsmHc/PDUlOWZ74byt8NxnofWj5Pjc+2HfRvhwRXJs1JdhzFXw/NLkmH8kLN0EK8dBuCU5fuY62LQcdj+VHJt8g0mEXrsuOZY/BRb+Hn4/3vUhBMxAfO5mk3AlJlW9Tl1hEolNy5NjFUvNflcvSo558uC8LfDUZHfC0GvhU7D1ftjxu+TYhOtg5CzYcFVyLHcsLH4BVo5xXaj6LH0P1l8F+zcmx6YvN3eo3rklOVayyMSfSfGtxgnAedth1XTo2J0cn/87c04+uj85djR9N5XjJFFp3/pHoOuQ7wNwcqtwskt6Bjw3y/Hjr1hA5841yX0X8FfMp3v/Jnci0sM7YiLYTtLgDWD78vEVT6Nz1/MpamQRqDqjZ5BtT4r6ik4x38pbtie3JaccT26VSXCSduolULmIzp1r3V9CettSNo/upi1EOxqTYp78sVie7KTBG8zg7y+dZY5RCoGqMwg1bHQlVb28I08iFm4n3JR8HbOzSvDmjyNUvz65UMtDoOp0OnetS/k59JfOIty6s+/ujqsteaOx/SPo2vvnFMVm4y+b19OW5L4eqFxI1563iCYkVX1tKZwM0UhS4glgB0biLZxMaPdLKdpim2O0+0ViCcluL1/JDCLtjURadybFjqbvpjKcicqwPvrp6uri9ddf56abbup7zbZtFi9ezPr1yR0wFAoRCsVPVnNz88dSzwHVPpF6UAIzcHx4T/oL/fbfpk5SwHxb9+Skju3fCFt/kzoW7YbNv0idpPSWuy/FhQrMHYbEx0qJQvtMW1IlKWAeI9U9nX6fOWNSx5regy3/nfrDEovClntTJym95bYlX5ABU5ecsalj4RbTllRJSm+5O1emiT2eOiEAc8w3/yJ9f9j6m9RJCphHV4l3QxI1rjOPXlKJdJq2pKtT7ePpz8vR9N3j2uElKYD5Vp3mu1wsEjIJQZoLfbh1V8okBSDcXt/3mKG/aFcT4RQDT89eCbfuSJmkmPrWEw0lD5QAkbYG12MG9067e9qS+hFeuL0uZZLSV27C4xZXbbtbCLfsSL1PINyyI2WSYsqtJ5bmMxHtaCTsSb1PYmHCLdvS9u1we4P7bkniPtvrUyYEpth2wq07SHf3Idy6M2WSAj1tSXNXMtq5j3DrrpQxYlFzjNLUKdJWTyTxLlZi7Cj6bqYZ1sm0e/fuJRKJUFpa6nq9tLSU+vr6pPffdttt5Ofn9/1UV1d/XFVNz/GD7U8fT5dsADjZZm5JKvZA5Vpm27T7HCBm++PzLAa1TwbepxMAK81F0Amk3yeYRw1Hus905VpeSHgOO+hybd/gYzDwsXeygTR36wYq13LAHqAtA/axgdpyiPPtHaDcTwvLjs8fShlP/13PJCKpz7d1yHLTXBf6yh1gu3TlHmKf1kAxBtjWsgfcFnuA+g4QM3MsjrQtAx0/e4ByBzh+gMUhjn3a2EDHyDpEfYfqfGfEFNXDclyt+rnppptoamrq+6mtrT30RkOt5nLzk0pwkpkv4itMjlk2jPmKmTcy2HLLPwfjrk59kfTkwvi/MxNZB1tuzWXmJ5WcGpj4TTMJNollyhx1UeptR1+Wfp/FC2D8190TO3vZfhMrXpAcO1S5oy6CmitIOVAEykxbcmpSb1szQLkDHb+CGebYe3KTY5bHnLPyJYMvt+p8GHdV6ouOrwAmXgvByYMv91B9d0Kavnu8s4sO/Z4enpxKPLmVKWOWNxdvsCY+Wbz/tnlVONmlKWPOAOXaWcV48qpJ2XctB09wNJYvP3W5uZU4acr15Fbg5KRpiycLJzgmbeLvya3CySlPE6tMW67tL8SbNyp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntRfgAY69gMdP8uXjyd/dJqExMKTV42dVZxy24GOkZNd2nO+U7C9eII1WN4U15Secj1pyj1U3/UM0HczzbAmKkVFRTiOQ0OD+zZcQ0MDZWXJA6Lf7ycYDLp+hsThPmsvWwxTb4WyM8ycksQOnF0Fpz0EniyY/4j7kYrth1k/N5M9T11hJpwmqrkcJlxrJnaOuwbXBSt/iplAmV1l5psk3o3wBs0+fflmEmXi4xbLNnM2qs6FKf8MFf2eNxYvgGl3mBU80+5wd+BAmWmDJwALHgV/woXe9sHMu8yqlpk/hJFz3OVWXwiTrjcrkiYuc7clb4KZaxMoNvVNvDPgyTGvBYrNe/ImJhRqmUSj5hJTdvWX3PscOcfUpWAqzPyR+46Cv8jM2/AEzH8TEy/LA9Nu7zkGtycnSBVLzbGrOtdMhk68+ObUmPr68s3E48SVOk4WzL3PnLPZvzDnMLEt464x53rCtT3JVYKCaaaP5I03fSbxDoivoKct2ea8J67Mshw46WbTN6feavpqoiPtu58A2aPnHvpNgB0owlswESeryMwpSei7lhPAXzwDy3bwl8x0f14sG1/RVGxvLr6RJ2H53NcpJ6cST7AGJ7caJ9c9QFnePLOtJwtf8SnuPmZ58JfMwLK9+IunY/W7e+fJH4snuxRv/njsLPdCBNtfiLdwMk6gAG/BJFdbcPz4SmZi97Ul8Q6cjbdwCrY/iK9wims1E4CTXWb2m1thBr7Etnhy8BWfguX4zaTPxD5mOfiKp/fETsHqd/fOE6wxg3D+WJxsd4Jk+0eYuviCeAun4BrGbB/+nrb4Smb2S7wsvAWTzDEonJSUIJl5L+PxZJfiyR/nilmeLHPMbS/+khnuL4mWja/4FHPOiqZiefNc2/aeZ0+wJilZsXxBfCNPwvbm4Cua6j7fthd/ycyePjYDy/VlzsIzYoLpmwUTsQPu5PuI+25aqRPjj0tGTKadPXs2P/nJTwAzmXbUqFF885vfHL7JtL36T6q9LAZ7X4Xm9yF4IhT1W0LdvhPq15glnuVL3B0g3A67nzbP/CvOdi/LjcWg8XkzMbRwlntZLpilrns3mAGk9Iz4EmMwS113rzLLmcvPcS/LjYah/lmzTLlkoXtZLsD+N3qWJ59gVt4k6qgzy2+9QVNuwjJDIp2mLeE2c3cn4L4o0vgStG42dxgKprpjLVtgz0tm+WvZYvcHs7vZlAtQcY57sI9FTX066qB4vntZLsCBt+PLk0v6JRidjVD3R5P8VJzjvnsT6TIrkbqbTH2y+n1r3LM+vjy5sN9dqtZt5rwFSszS74Qlk3S3mrkh0bA534mDfSxmljW310LRPPeScoCm9+PLk0sWus93aJ85307AtCVxsIp2Q90zZnly2RnuxAWObd9N/GwcJ5No+2vf9ieI7e/5l032mL8hEjpArKsVy5eL43cnaNFwB9GOfViOFzur2HUrPxaNEOlohFgEJ6vEtSzXLHXdRyzcge0f4VqWC2apazR0AMuThR0Y2beUFcxS10jHHrAsU25CH4vFokQ79hKLhLADI13LcgGioSaiXc1Y3lzXEmMwS10jHXvB9uBklwzQlmLXslyASOd+Yt1t2P587H5JWLS7zSy1dgKu5dKm3G4i7WY+hZNd7JovY5Y27yUW6cQOFLqW5Zpj1Ew01ITlzXYtMTbHKNRzjJyeY+QklBsl0t4I0TBOVpFrWa5pywFiPcuTbb97MI52txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHjmnfTVwVd6wn0fY6rlb9PPzww1x55ZX8/Oc/Z/bs2dx111088sgj/OUvf0mau9LfkCcqIiIicswdN6t+AC6++GL27NnDv/zLv1BfX8+0adNYtWrVIZMUERER+eQb9jsqR0N3VERERI4/gxm/j6tVPyIiIvLpokRFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0L/aPT+Ut3m5uZhromIiIgcrt5x+3B+Of5xnai0tLQAUF1dfYh3ioiISKZpaWkhPz9/wPcc13/rJxqNsnv3bvLy8lx/Kls+mZqbm6murqa2tlZ/20nkE0af70+XWCxGS0sLFRUV2PbAs1CO6zsqtm1TVVU13NWQj1kwGNSFTOQTSp/vT49D3Unppcm0IiIikrGUqIiIiEjGUqIixw2/38/NN9+M3+8f7qqIyDGmz7ekc1xPphUREZFPNt1RERERkYylREVEREQylhIVERERyVhKVERERCRjKVGR48aKFSuoqakhEAgwZ84cXn311eGukogcpRdeeIFzzz2XiooKLMviiSeeGO4qSYZRoiLHhYcffpjrr7+em2++mTfeeINTTjmFJUuW0NjYONxVE5Gj0NbWximnnMKKFSuGuyqSobQ8WY4Lc+bMYdasWdx9992A+TtP1dXVLFu2jBtvvHGYaycix4JlWTz++ON84QtfGO6qSAbRHRXJeF1dXbz++ussXry47zXbtlm8eDHr168fxpqJiMhQU6IiGW/v3r1EIhFKS0tdr5eWllJfXz9MtRIRkY+DEhURERHJWEpUJOMVFRXhOA4NDQ2u1xsaGigrKxumWomIyMdBiYpkPJ/Px8yZM1m9enXfa9FolNWrVzNv3rxhrJmIiAw1z3BXQORwXH/99Vx55ZWceuqpzJ49m7vuuou2tjauvvrq4a6aiByF1tZWNm/e3PfvrVu38tZbb1FYWMioUaOGsWaSKbQ8WY4bd999N8uXL6e+vp5p06bx4x//mDlz5gx3tUTkKKxbt47TTz896fUrr7yS+++//+OvkGQcJSoiIiKSsTRHRURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEMtott9zCtGnThrsaIjJMlKiIyJCqr69n2bJljB07Fr/fT3V1Neeee67rj0yKiKSjP0ooIkNm27ZtnHbaaYwYMYLly5dz8skn093dzTPPPMN1113HX/7yl4+lHt3d3Xi93o9lXyJybOmOiogMmWuvvRbLsnj11Ve58MILmThxIlOmTOH6669nw4YNAOzYsYPzzz+f3NxcgsEgF110EQ0NDWnLjEaj3HrrrVRVVeH3+5k2bRqrVq3qi2/btg3Lsnj44YdZuHAhgUCABx54YMjbKiJDQ4mKiAyJ/fv3s2rVKq677jpycnKS4iNGjCAajXL++eezf/9+nn/+eZ599lk++ugjLr744rTl/uhHP+L73/8+d955J2+//TZLlizhvPPO48MPP3S978Ybb+Tb3/42mzZtYsmSJce8fSLy8dCjHxEZEps3byYWizFp0qS071m9ejXvvPMOW7dupbq6GoBf//rXTJkyhY0bNzJr1qykbe68806++93vcskllwBwxx13sHbtWu666y5WrFjR976///u/54ILLjjGrRKRj5vuqIjIkIjFYod8z6ZNm6iuru5LUgBOPPFERowYwaZNm5Le39zczO7duznttNNcr5922mlJ7z/11FOPsOYikkmUqIjIkJgwYQKWZX1sE2b7S/W4SUSOP0pURGRIFBYWsmTJElasWEFbW1tS/ODBg0yePJna2lpqa2v7Xn///fc5ePAgJ554YtI2wWCQiooKXn75ZdfrL7/8csr3i8jxT3NURGTIrFixgtNOO43Zs2dz6623MnXqVMLhMM8++yz33HMP77//PieffDKXX345d911F+FwmGuvvZaFCxemfXRzww03cPPNNzNu3DimTZvGfffdx1tvvaWVPSKfUEpURGTIjB07ljfeeIN///d/5zvf+Q51dXUUFxczc+ZM7rnnHizL4sknn2TZsmV89rOfxbZtzj77bH7yk5+kLfNb3/oWTU1NfOc736GxsZETTzyRlStXMmHChI+xZSLycbFihzPjTURERGQYaI6KiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMb6/wHCnL2DXQSZ/gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Suppressing warning message claiming that a portion of points cannot be placed into the plot due to the high number of data points\n", + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')\n", + "\n", + "palette = {\n", + " 0: 'orange',\n", + " 1: 'wheat'\n", + "}\n", + "sns.swarmplot(x=\"Color\", y=\"ord__Item Size\", hue=\"Color\", data=encoded_pumpkins, palette=palette)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Achtung**: Warnungen zu ignorieren ist KEINE gute Praxis und sollte, wenn möglich, vermieden werden. Warnungen enthalten oft nützliche Hinweise, die uns helfen, unseren Code zu verbessern und ein Problem zu lösen. \n", + "Der Grund, warum wir diese spezielle Warnung ignorieren, ist, die Lesbarkeit des Plots zu gewährleisten. Das Plotten aller Datenpunkte mit einer reduzierten Markierungsgröße, während die Konsistenz der Farbpalette beibehalten wird, führt zu einer unklaren Visualisierung.\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Erstellen Sie Ihr Modell\n" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "# X is the encoded features\n", + "X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])]\n", + "# y is the encoded label\n", + "y = encoded_pumpkins['Color']\n", + "\n", + "# Split the data into training and test sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.94 0.98 0.96 166\n", + " 1 0.85 0.67 0.75 33\n", + "\n", + " accuracy 0.92 199\n", + " macro avg 0.89 0.82 0.85 199\n", + "weighted avg 0.92 0.92 0.92 199\n", + "\n", + "Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0\n", + " 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0\n", + " 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1\n", + " 0 0 0 1 0 0 0 0 0 0 0 0 1 1]\n", + "F1-score: 0.7457627118644068\n" + ] + } + ], + "source": [ + "from sklearn.metrics import f1_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "# Train a logistic regression model on the pumpkin dataset\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "# Evaluate the model and print the results\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('F1-score: ', f1_score(y_test, predictions))" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[162, 4],\n", + " [ 11, 22]])" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import confusion_matrix\n", + "confusion_matrix(y_test, predictions)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAIjCAYAAABBOWJ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgUElEQVR4nO3dd1gUV8MF8LOUZelqsItBjTV2jcYKKgoWFDWKJUKIvUc0tqjYoibWxKDGFqwRNGqMjQiC3WhE7CX2BiixgHR27/eHL/tJBGVxl9lyfs/DE3aY2T07ETjcuTMjE0IIEBEREWmRmdQBiIiIyPiwYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBCZgODgYMhkMvWHhYUFypYtiy+++AIPHz7MdRshBDZs2ICWLVuiSJEisLGxQa1atTBz5kwkJyfn+Vo7duxA+/bt4eTkBLlcjjJlyqBnz544ePBgvrKmpaVh8eLFaNy4MRwdHaFQKFClShWMGDEC169fL9D7J6LCJ+O9SIiMX3BwMPz9/TFz5kxUqFABaWlpOHnyJIKDg+Hi4oKLFy9CoVCo11cqlejTpw9CQ0PRokULdOvWDTY2Njhy5Ag2b96MGjVqIDw8HCVLllRvI4TAl19+ieDgYNSrVw+fffYZSpUqhdjYWOzYsQNnzpzBsWPH0LRp0zxzJiQkwNPTE2fOnEGnTp3g7u4OOzs7XLt2DVu2bEFcXBwyMjJ0uq+ISEsEERm9X375RQAQp0+fzrF8woQJAoAICQnJsXzOnDkCgBg3btwbz7Vr1y5hZmYmPD09cyyfP3++ACC++uoroVKp3thu/fr14q+//nprzo4dOwozMzOxbdu2N76WlpYmxo4d+9bt8yszM1Okp6dr5bmIKHcsGEQmIK+CsXv3bgFAzJkzR70sJSVFFC1aVFSpUkVkZmbm+nz+/v4CgDhx4oR6m2LFiolq1aqJrKysAmU8efKkACAGDhyYr/VdXV2Fq6vrG8v9/PzEhx9+qH58+/ZtAUDMnz9fLF68WFSsWFGYmZmJkydPCnNzczF9+vQ3nuPq1asCgFi6dKl62bNnz8To0aNFuXLlhFwuF5UqVRLz5s0TSqVS4/dKZAo4B4PIhN25cwcAULRoUfWyo0eP4tmzZ+jTpw8sLCxy3c7X1xcAsHv3bvU2T58+RZ8+fWBubl6gLLt27QIA9OvXr0Dbv8svv/yCpUuXYtCgQVi4cCFKly4NV1dXhIaGvrFuSEgIzM3N0aNHDwBASkoKXF1dsXHjRvj6+uLHH39Es2bNMGnSJAQEBOgkL5Ghy/2nBxEZpRcvXiAhIQFpaWn466+/MGPGDFhZWaFTp07qdS5fvgwAqFOnTp7Pk/21K1eu5PhvrVq1CpxNG8/xNg8ePMCNGzdQvHhx9TIfHx8MHjwYFy9eRM2aNdXLQ0JC4Orqqp5jsmjRIty8eRNnz55F5cqVAQCDBw9GmTJlMH/+fIwdOxbOzs46yU1kqDiCQWRC3N3dUbx4cTg7O+Ozzz6Dra0tdu3ahXLlyqnXSUpKAgDY29vn+TzZX0tMTMzx37dt8y7aeI636d69e45yAQDdunWDhYUFQkJC1MsuXryIy5cvw8fHR71s69ataNGiBYoWLYqEhAT1h7u7O5RKJQ4fPqyTzESGjCMYRCYkKCgIVapUwYsXL7B27VocPnwYVlZWOdbJ/gWfXTRy898S4uDg8M5t3uX15yhSpEiBnycvFSpUeGOZk5MT2rRpg9DQUMyaNQvAq9ELCwsLdOvWTb3eP//8g/Pnz79RULI9fvxY63mJDB0LBpEJadSoERo2bAgA8Pb2RvPmzdGnTx9cu3YNdnZ2AIDq1asDAM6fPw9vb+9cn+f8+fMAgBo1agAAqlWrBgC4cOFCntu8y+vP0aJFi3euL5PJIHI5y16pVOa6vrW1da7Le/XqBX9/f8TExKBu3boIDQ1FmzZt4OTkpF5HpVKhbdu2GD9+fK7PUaVKlXfmJTI1PERCZKLMzc0xd+5cPHr0CD/99JN6efPmzVGkSBFs3rw5z1/W69evBwD13I3mzZujaNGi+PXXX/Pc5l28vLwAABs3bszX+kWLFsXz58/fWH737l2NXtfb2xtyuRwhISGIiYnB9evX0atXrxzrVKpUCS9fvoS7u3uuH+XLl9foNYlMAQsGkQlzc3NDo0aNsGTJEqSlpQEAbGxsMG7cOFy7dg3ffPPNG9vs2bMHwcHB8PDwwKeffqreZsKECbhy5QomTJiQ68jCxo0bcerUqTyzNGnSBJ6enli9ejV27tz5xtczMjIwbtw49eNKlSrh6tWrePLkiXrZuXPncOzYsXy/fwAoUqQIPDw8EBoaii1btkAul78xCtOzZ0+cOHECYWFhb2z//PlzZGVlafSaRKaAV/IkMgHZV/I8ffq0+hBJtm3btqFHjx5Yvnw5hgwZAuDVYQYfHx/89ttvaNmyJbp37w5ra2scPXoUGzduRPXq1REREZHjSp4qlQpffPEFNmzYgPr166uv5BkXF4edO3fi1KlTOH78OJo0aZJnzidPnqBdu3Y4d+4cvLy80KZNG9ja2uKff/7Bli1bEBsbi/T0dACvzjqpWbMm6tSpg/79++Px48dYsWIFSpYsicTERPUpuHfu3EGFChUwf/78HAXldZs2bcLnn38Oe3t7uLm5qU+ZzZaSkoIWLVrg/Pnz+OKLL9CgQQMkJyfjwoUL2LZtG+7cuZPjkAoRgVfyJDIFeV1oSwghlEqlqFSpkqhUqVKOi2QplUrxyy+/iGbNmgkHBwehUCjExx9/LGbMmCFevnyZ52tt27ZNtGvXThQrVkxYWFiI0qVLCx8fHxEVFZWvrCkpKWLBggXik08+EXZ2dkIul4vKlSuLkSNHihs3buRYd+PGjaJixYpCLpeLunXrirCwsLdeaCsviYmJwtraWgAQGzduzHWdpKQkMWnSJPHRRx8JuVwunJycRNOmTcWCBQtERkZGvt4bkSnhCAYRERFpHedgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1pncvUhUKhUePXoEe3t7yGQyqeMQEREZDCEEkpKSUKZMGZiZvX2MwuQKxqNHj+Ds7Cx1DCIiIoN1//59lCtX7q3rmFzByL699P3799W3hyYiIqJ3S0xMhLOzs/p36duYXMHIPizi4ODAgkFERFQA+ZliwEmeREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1khaMw4cPw8vLC2XKlIFMJsPOnTvfuU1UVBTq168PKysrfPTRRwgODtZ5TiIiItKMpAUjOTkZderUQVBQUL7Wv337Njp27IhWrVohJiYGX331FQYMGICwsDAdJyUiIiJNWEj54u3bt0f79u3zvf6KFStQoUIFLFy4EABQvXp1HD16FIsXL4aHh4euYhoVIQSi7z3Dk6R0qaMQEVEhaFLJCY7WloX+upIWDE2dOHEC7u7uOZZ5eHjgq6++ynOb9PR0pKf//y/TxMREXcUzCCdvPUXvVSeljkFERIVk76gWLBjvEhcXh5IlS+ZYVrJkSSQmJiI1NRXW1tZvbDN37lzMmDGjsCLqvQsPnwMAnOys4PKBjbRhiIhI52zk5pK8rkEVjIKYNGkSAgIC1I8TExPh7OwsYSJp3XuaAgDo9YkzxnlUlTgNERFp05kzZ/DTTz9h5cqVsLQs/FGL1xlUwShVqhTi4+NzLIuPj4eDg0OuoxcAYGVlBSsrq8KIZxDuPU0FAJQvxtELIiJjcvr0abRr1w7Pnz9H+fLlJR+9N6jrYDRp0gQRERE5lh04cABNmjSRKJHhuf+/EQxnFgwiIqNx6tQptG3bFs+fP0ezZs0wbtw4qSNJWzBevnyJmJgYxMTEAHh1GmpMTAzu3bsH4NXhDV9fX/X6Q4YMwa1btzB+/HhcvXoVy5YtQ2hoKMaMGSNFfIOjVAk8ePaqYJTn/AsiIqPw119/oW3btnjx4gWaN2+Offv2wd7eXupY0haMv//+G/Xq1UO9evUAAAEBAahXrx6mTZsGAIiNjVWXDQCoUKEC9uzZgwMHDqBOnTpYuHAhVq9ezVNU8yn2RSoylQKW5jKUclBIHYeIiN7TyZMn0a5dOyQmJqJFixZ6Uy4AQCaEEFKHKEyJiYlwdHTEixcv4ODgIHWcQnX8ZgL6rPoLFZxsETnOTeo4RET0HlJTU1GpUiXExsbC1dUVu3fvhp2dnU5fU5PfoQY1B4PeD+dfEBEZD2tra2zevBkdO3bEnj17dF4uNGVQZ5HQ+8k+RfVDFgwiIoOVmZmpPgXVzc0Nbm5u0gbKA0cwTAhPUSUiMmxHjx5FtWrVcPHiRamjvBMLhgm5x0MkREQG68iRI/D09MStW7fw7bffSh3nnVgwTEj2HAyOYBARGZbDhw+jffv2SE5Ohru7O9auXSt1pHdiwTARSWmZeJqcAQBwLpb7VU+JiEj/HDp0SF0u2rZti127duV59Wp9woJhIrIPjxSzlcNeIe316YmIKH8iIyPRoUMHpKSkwMPDA7///rtBlAuABcNk8BRVIiLDIoTA3LlzkZKSAk9PT+zcudNgygXAgmEyeIoqEZFhkclk2LZtGyZMmIAdO3ZAoTCsKzCzYJiIe5zgSURkEO7evav+3MHBAfPmzTO4cgGwYJgMXgODiEj/HThwANWqVcO8efOkjvLeWDBMBOdgEBHptz///BNeXl5IS0vD8ePHoVQqpY70XlgwTABv005EpN/CwsLQuXNnpKeno0uXLti2bRvMzc2ljvVeWDBMAG/TTkSkv/bt24cuXbogPT0d3t7eCA0NhVwulzrWe2PBMAHZEzzLFbWBuZlM4jRERJRt79698Pb2Rnp6Orp27YqQkBCjKBcAC4ZJ4CXCiYj0040bN5CRkYHu3bsbVbkAeLt2k8BTVImI9NOoUaNQoUIFeHp6qm/Bbiw4gmECeIoqEZH+OHjwIJ49e6Z+7OXlZXTlAmDBMAn3/k0GwFNUiYik9vvvv8PT0xPt2rVDYmKi1HF0igXDBPAQCRGR9Hbs2IHPPvsMmZmZqFy5MmxsjPtnMguGkUtMy8SzlEwAvAYGEZFUtm/fjp49eyIrKwt9+vTB+vXrYWFh3NMgWTCMXPYZJB/YymFnZdz/mImI9NFvv/0GHx8fZGVloW/fviZRLgAWDKPHS4QTEUln586d6nLRr18/rFu3zuCv0Jlfxl+hTBznXxARSad69eooUaIE2rZti7Vr15pMuQBYMIweCwYRkXSqVq2KU6dOoXTp0iZVLgAeIjF6d/9lwSAiKky//vor/vzzT/XjcuXKmVy5ADiCYfQ4B4OIqPBs2rQJvr6+kMvlOHXqFGrVqiV1JMlwBMOIvbpN+/+u4slTVImIdGrjxo3w9fWFSqXC559/jo8//ljqSJJiwTBisS9SkaUSkJub8TbtREQ6tGHDBnW5GDhwIH7++WeYmZn2r1geIjEiT5LSkZKRpX4cc/85AKBcUWvepp2ISEfWrVsHf39/CCEwaNAgLF++3OTLBcCCYTR2n3+EEZvP5vo1zr8gItKNqKgodbkYMmQIgoKCWC7+hwXDSFx+9OqmOZbmMlhZ/P9sZbmFGbrVLytVLCIio9a8eXP4+PigaNGiCAoKgkzG0eJsLBhG5vNPP0Sgl2lPLCIiKiwWFhbYsGEDzM3NWS7+g+M4REREGli9ejUGDBgAlUoF4FXJYLl4E0cwiIiI8mnlypUYPHgwAMDd3R29evWSOJH+4ggGERFRPvz888/qcjF69Gj4+PhInEi/sWAQERG9w/LlyzFkyBAAwJgxY7B48WIeFnkHFgwiIqK3CAoKwrBhwwAAY8eOxcKFC1ku8oEFg4iIKA93795FQEAAAGDcuHGYP38+y0U+cZInERFRHj788EOEhobi1KlTmD17NsuFBlgwiIiI/iMpKQn29vYAgC5duqBLly4SJzI8PERCRET0msWLF6NmzZq4ffu21FEMGgsGERHR/yxatAgBAQG4d+8efvvtN6njGDQWDCIiIgALFy7E2LFjAQBTp05Vf04Fw4JBREQmb/78+Rg3bhwAYNq0aZgxYwYndL4nFgwiIjJp33//PcaPHw8AmD59OsuFlvAsEiIiMllpaWnYtGkTAGDGjBmYNm2axImMBwsGERGZLIVCgfDwcGzfvl19nxHSDh4iISIik3P27Fn158WLF2e50AEWDCIiMimzZs1C/fr1sXLlSqmjGDUWDCIiMhmvz7N4+vSpxGmMG+dgEBGRScg+QwQA5s2bhwkTJkicyLixYBARkVETQmD69OmYOXMmgFenpX799dcSpzJ+LBhERGS0hBCYNm0aZs+eDQBYsGABr9BZSFgwiIjIJCxatAhjxoyROobJYMEgIiKjJZPJMHPmTLRv3x5NmzaVOo5J4VkkRERkVIQQWLVqFVJSUgC8KhksF4WPBYOIiIyGEAITJkzAoEGD0LlzZyiVSqkjmSweIiEiIqMghMD48eOxYMECAEDXrl1hbm4ucSrTxYJBREQGTwiBcePGYdGiRQCAoKAgDBs2TOJUpo0Fg4iIDJoQAgEBAViyZAkAYPny5RgyZIi0oYgFg4iIDNvUqVPV5WLFihW8cZme4CRPIiIyaN26dUOxYsXw888/s1zoEY5gEBGRQatfvz7++ecfFCtWTOoo9BqOYBARkUHJPlvk5MmT6mUsF/qHBYOIiAyGSqXC8OHDMX/+fLRv3563XNdjPERCREQGQaVSYdiwYfj5558hk8mwZMkSjlzoMRYMIiLSeyqVCkOHDsXKlSshk8kQHBwMX19fqWPRW7BgGAkhdQAiIh1RqVQYPHgwVq9eDTMzM6xbtw6ff/651LHoHVgwjMSp26+OQ5Z2VEichIhIu4KCgtTlYv369ejbt6/UkSgfWDCMwLW4JJy5+wwWZjJ41ysrdRwiIq0aOHAgwsLC0KdPH/Tp00fqOJRPLBhG4NdT9wAA7tVLooQ9RzCIyPCpVCrIZDLIZDIoFAr88ccfkMlkUsciDfA0VQOXmqHEb9EPAAC9G5eXOA0R0ftTKpXw9/fH119/DSFezTBjuTA8kheMoKAguLi4QKFQoHHjxjh16tRb11+yZAmqVq0Ka2trODs7Y8yYMUhLSyuktPpnz4VYJKVloVxRa7T4yEnqOERE7yW7XKxfvx5LlizB+fPnpY5EBSRpwQgJCUFAQAACAwMRHR2NOnXqwMPDA48fP851/c2bN2PixIkIDAzElStXsGbNGoSEhGDy5MmFnFx/ZB8e6d2oPMzM2PCJyHAplUr4+flhw4YNMDc3x5YtW1CnTh2pY1EBSVowFi1ahIEDB8Lf3x81atTAihUrYGNjg7Vr1+a6/vHjx9GsWTP06dMHLi4uaNeuHXr37v3OUQ9j9frkzh4Ny0kdh4iowLKysuDr64tNmzbBwsICISEh+Oyzz6SORe9BsoKRkZGBM2fOwN3d/f/DmJnB3d0dJ06cyHWbpk2b4syZM+pCcevWLezduxcdOnTI83XS09ORmJiY48NYcHInERmD7HKxefNmWFhYIDQ0FN27d5c6Fr0nyc4iSUhIgFKpRMmSJXMsL1myJK5evZrrNn369EFCQgKaN28OIQSysrIwZMiQtx4imTt3LmbMmKHV7Prg9cmdfTi5k4gM2LFjx7BlyxZYWFhg69at8Pb2ljoSaYHkkzw1ERUVhTlz5mDZsmWIjo7G9u3bsWfPHsyaNSvPbSZNmoQXL16oP+7fv1+IiXUne3KnczFrNOfkTiIyYK6urggODsa2bdtYLoyIZCMYTk5OMDc3R3x8fI7l8fHxKFWqVK7bTJ06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZmb/YlKysrWFlZaf8NSCz78EivTzi5k4gMT2ZmJp4/f47ixYsDAO8rYoQkG8GQy+Vo0KABIiIi1MtUKhUiIiLQpEmTXLdJSUl5o0SYm5sDgPpcaVPAyZ1EZMgyMzPRu3dvtGzZEnFxcVLHIR2R9EqeAQEB8PPzQ8OGDdGoUSMsWbIEycnJ8Pf3B/Cq0ZYtWxZz584FAHh5eWHRokWoV68eGjdujBs3bmDq1Knw8vJSFw1TsO3Mq8M8bWtwcicRGZbMzEz06tUL27dvh1wux8WLF/MctSbDJmnB8PHxwZMnTzBt2jTExcWhbt262L9/v3ri571793KMWEyZMgUymQxTpkzBw4cPUbx4cXh5eeHbb7+V6i1I4u+7zwAAHh/zm5KIDEdGRgZ69eqFHTt2QC6XY8eOHTnOJCTjIhOmdGwBQGJiIhwdHfHixQs4ODhIHUdjWUoVak4PQ1qmChFjXVGpuJ3UkYiI3ikjIwM9e/bE77//DisrK+zcuROenp5SxyINafI7lDc7MzA3nrxEWqYKdlYWqPCBrdRxiIjeKSMjAz169MCuXbtgZWWF33//HR4eHlLHIh0zqNNUCbjw4AUA4OMyDjx7hIgMwtOnT3Hp0iUoFArs2rWL5cJEcATDwFx8+Kpg1CrrKHESIqL8KVWqFCIjI3Hjxg20atVK6jhUSDiCYWDOZxeMciwYRKS/0tPTERUVpX7s7OzMcmFiWDAMSJZShSuxr+6lUpMjGESkp9LS0tCtWze4u7tj69atUschibBgGBBO8CQifZeWloauXbti7969kMvl+OCDD6SORBLhHAwDwgmeRKTPUlNT4e3tjT///BM2NjbYs2cP3NzcpI5FEmHBMCAXOMGTiPRUamoqunTpggMHDsDGxgZ79+6Fq6ur1LFIQiwYBuQCJ3gSkR5KT09H586dER4eDltbW+zduxctW7aUOhZJjHMwDAQneBKRvpLL5ahcuTJsbW2xb98+lgsCwIJhMDjBk4j0lUwmw08//YTo6Gi0aNFC6jikJ1gwDAQneBKRPklOTsbMmTORmZkJADAzM0OVKlUkTkX6hHMwDAQneBKRvkhOTkbHjh1x6NAh3Lp1C8HBwVJHIj3EEQwDwQmeRKQPXr58iQ4dOuDQoUNwcHDAkCFDpI5EeoojGAbg9QmeHMEgIqlkl4sjR47AwcEBf/75Jxo3bix1LNJTHMEwAK9P8HThBE8ikkBSUhLat2+PI0eOwNHREQcOHGC5oLfiCIYBOM8JnkQkISEEevTogaNHj6JIkSI4cOAAGjZsKHUs0nMcwTAAvEU7EUlJJpNh0qRJKFu2LMLDw1kuKF84gmEAOMGTiKTm6uqKGzduQKFQSB2FDARHMPQcJ3gSkRRevHgBLy8vXLx4Ub2M5YI0wREMPccJnkRU2J4/fw4PDw+cOnUKN27cwMWLF2Fubi51LDIwLBh6jhM8iagwPX/+HO3atcPp06fxwQcfYMuWLSwXVCA8RKLnOMGTiArLs2fP0LZtW5w+fRpOTk44ePAg6tSpI3UsMlAcwdBjSpVAxJXHAIB65YtKnIaIjNnTp0/Rtm1bREdHq8tFrVq1pI5FBowjGHrs8D9P8PB5KhytLdGmegmp4xCREZs8eTKio6NRvHhxREZGslzQe2PB0GO//nUPANCtflkoLHkMlIh0Z/78+fD29sbBgwdRs2ZNqeOQEeAhEj0Vn5iGiKuvDo/0aVRe4jREZIxSU1NhbW0NALC3t8eOHTskTkTGhCMYeir09H0oVQKfuBRF5ZL2UschIiOTkJCATz/9FHPnzpU6ChkpFgw9pFQJbDl9HwDQpzFHL4hIu548eYLWrVvj/Pnz+OGHH/D06VOpI5ERYsHQQ69P7mxfs7TUcYjIiDx+/BitW7fGhQsXUKpUKURFRaFYsWJSxyIjxDkYeoiTO4lIF7LLxaVLl1C6dGlERkaiatWqUsciI8URDD3DyZ1EpAvx8fFo1aoVLl26hDJlyiAqKorlgnSKIxh6hpM7iUgXwsLCcPnyZXW5qFy5stSRyMixYOgRTu4kIl3x9fVFWloaWrVqxXJBhYIFQ49wcicRaVNcXBysrKxQtOirWw0MGjRI4kRkSjgHQ49s/t/kzu71y3FyJxG9l9jYWLi5uaFdu3Z4/vy51HHIBLFg6Im4F2k4mD25s7GzxGmIyJA9evQIbm5uuHbtGuLj4/Hs2TOpI5EJYsHQE6F/v5rc2cilGD4qwcmdRFQwDx8+hJubG65fv44PP/wQhw4dQoUKFaSORSaIczD0gFIlEPK/yZ29OXpBRAX04MEDtGrVCjdu3MCHH36IqKgouLi4SB2LTBRHMPTA4euc3ElE7+f+/ftwc3PDjRs34OLiwnJBkmPB0AObT3FyJxG9n9TUVKSkpKBChQosF6QXeIhEYpzcSUTaUKVKFURGRsLa2hrly/M6OiQ9jmBIjJM7iaig7t69i4iICPXjqlWrslyQ3mDBkNDrkzt55U4i0sSdO3fg5uaGjh074uDBg1LHIXoDC4aEXp/c6VmzlNRxiMhAZJeLO3fuwNnZmTctI73EgiEhTu4kIk3dvn0brq6uuHv3LipXroyoqCiULVtW6lhEb2DBkAgndxKRpm7dugU3Nzfcu3cPVapUYbkgvcazSAqRSiVw/Oa/eJmeicirTzi5k4jyLfvy3/fv30fVqlURGRmJ0qV53RzSXywYhWjTX3cx9fdLOZZxcicR5UeJEiXQrFkzxMTE4ODBgywXpPdYMAqJEALrTtwFAFQpaQcHhSVcnGzRoRZ/SBDRu1lYWGDDhg14/vw5nJycpI5D9E4sGIXk77vPcOPxS1hbmuO3oU1hr7CUOhIR6bnr169j1apV+O6772BmZgYLCwuWCzIYLBiFZPNfr84Y6VynDMsFEb3TtWvX0KpVK8TGxsLOzg6BgYFSRyLSCM8iKQTPUzKw50IsAKA351wQ0TtcvXpVXS5q1qyJoUOHSh2JSGMcwSgEv0U/REaWCjVKO6BOOUep4xCRHssuF3FxcahVqxYiIiJQvHhxqWMRaYwjGDomhMCv/7ugVu/G5SGTySRORET66sqVK3Bzc0NcXBxq166NgwcPslyQwWLB0LHTd/5/cqd33TJSxyEiPZWWlgYPDw/Ex8ejbt26OHjwICd0kkFjwdCx7NELTu4kordRKBQICgpC48aNER4ejg8++EDqSETvhQVDh54lc3InEb2dEEL9uZeXF44fP85yQUbhvQpGWlqatnIYpe1nObmTiPJ2/vx5NGzYELdu3VIvMzPj331kHDT+l6xSqTBr1iyULVsWdnZ26m+MqVOnYs2aNVoPaKiEENj816srd3JyJxH917lz59C6dWtER0dj3LhxUsch0jqNC8bs2bMRHByM77//HnK5XL28Zs2aWL16tVbDGbLTd57h5pNkTu4kojfExMSgTZs2+Pfff9GwYUP+cUZGSeOCsX79eqxcuRJ9+/aFubm5enmdOnVw9epVrYYzZNmjF5zcSUSvO3v2rLpcfPLJJzhw4ACKFi0qdSwirdO4YDx8+BAfffTRG8tVKhUyMzO1EsrQPUvOwN6LcQB4t1Qi+n/R0dFo06YNnj59ikaNGuHAgQMoUqSI1LGIdELjglGjRg0cOXLkjeXbtm1DvXr1tBLK0L0+ubM2J3cSEV7Nyxo7diyePXuGxo0b488//4SjI38+kPHS+FLh06ZNg5+fHx4+fAiVSoXt27fj2rVrWL9+PXbv3q2LjAaFkzuJKDcymQxbt27FhAkTsHjxYjg4OEgdiUinNB7B6NKlC/744w+Eh4fD1tYW06ZNw5UrV/DHH3+gbdu2ushoUDi5k4he9++//6o/d3Jywpo1a1guyCQU6GZnLVq0wIEDB7SdxShwcicRZTt9+jQ8PDwwb948DBo0SOo4RIVK4xGMihUr5mjk2Z4/f46KFStqJZSh4uROIsp26tQpuLu749mzZ9i0aROUSqXUkYgKlcYF486dO7l+o6Snp+Phw4daCWWofot+wMmdRIS//voLbdu2RWJiIlq0aIE9e/bkOK2fyBTk+xDJrl271J+HhYXlmP2sVCoREREBFxcXrYYzJK/flr0PJ3cSmawTJ07Aw8MDSUlJaNmyJfbs2QM7OzupYxEVunwXDG9vbwCvZkL7+fnl+JqlpSVcXFywcOFCrYYzJKduP1VP7uzCyZ1EJun48ePw9PREUlIS3NzcsHv3btja2kodi0gS+S4YKpUKAFChQgWcPn0aTk5OOgtliHhbdiKKjIxEUlISWrVqhT/++IPlgkyaxmeR3L59Wxc5DBondxIRAEyePBllypSBj48PbGxspI5DJKkC3Rc4OTkZe/fuxYoVK/Djjz/m+NBUUFAQXFxcoFAo0LhxY5w6deqt6z9//hzDhw9H6dKlYWVlhSpVqmDv3r0FeRtawyt3Epmu6OhoJCcnA3h1CNnf35/lgggFGME4e/YsOnTogJSUFCQnJ6NYsWJISEiAjY0NSpQogVGjRuX7uUJCQhAQEIAVK1agcePGWLJkCTw8PHDt2jWUKFHijfUzMjLQtm1blChRAtu2bUPZsmVx9+5dya/lf+nRCwCAZ81SnNxJZEIOHz6MDh06oFGjRti9ezeLBdFrNB7BGDNmDLy8vPDs2TNYW1vj5MmTuHv3Lho0aIAFCxZo9FyLFi3CwIED4e/vjxo1amDFihWwsbHB2rVrc11/7dq1ePr0KXbu3IlmzZrBxcUFrq6uqFOnjqZvQyesLAo0IEREBujQoUNo3749kpOTYWlpyT8uiP5D49+IMTExGDt2LMzMzGBubo709HQ4Ozvj+++/x+TJk/P9PBkZGThz5gzc3d3/P4yZGdzd3XHixIlct9m1axeaNGmC4cOHo2TJkqhZsybmzJnz1gvYpKenIzExMccHEdH7iIqKUo/kenh4YOfOnbC2tpY6FpFe0bhgWFpawszs1WYlSpTAvXuvzp5wdHTE/fv38/08CQkJUCqVKFmyZI7lJUuWRFxcXK7b3Lp1C9u2bYNSqcTevXsxdepULFy4ELNnz87zdebOnQtHR0f1h7Ozc74zEhH918GDB9XlwtPTk+WCKA8az8GoV68eTp8+jcqVK8PV1RXTpk1DQkICNmzYgJo1a+oio5pKpUKJEiWwcuVKmJubo0GDBnj48CHmz5+PwMDAXLeZNGkSAgIC1I8TExNZMoioQA4ePIhOnTohNTUV7du3x/bt26FQKKSORaSXNC4Yc+bMQVJSEgDg22+/ha+vL4YOHYrKlStjzZo1+X4eJycnmJubIz4+Psfy+Ph4lCpVKtdtSpcuDUtLyxyX3K1evTri4uKQkZEBuVz+xjZWVlawsrLKdy4iorwUKVIECoUCrVu3xm+//cafLURvoXHBaNiwofrzEiVKYP/+/QV6YblcjgYNGiAiIkJ9lVCVSoWIiAiMGDEi122aNWuGzZs3Q6VSqQ/TXL9+HaVLl861XBARaVP9+vVx/PhxVKhQgeWC6B20dtpDdHQ0OnXqpNE2AQEBWLVqFdatW4crV65g6NChSE5Ohr+/PwDA19cXkyZNUq8/dOhQPH36FKNHj8b169exZ88ezJkzB8OHD9fW2yAiyuHPP//E8ePH1Y+rVavGckGUDxqNYISFheHAgQOQy+UYMGAAKlasiKtXr2LixIn4448/4OHhodGL+/j44MmTJ5g2bRri4uJQt25d7N+/Xz3x8969e+qRCgBwdnZGWFgYxowZg9q1a6Ns2bIYPXo0JkyYoNHrEhHlx/79++Ht7Q25XI4TJ07g448/ljoSkcHId8FYs2YNBg4ciGLFiuHZs2dYvXo1Fi1ahJEjR8LHxwcXL15E9erVNQ4wYsSIPA+JREVFvbGsSZMmOHnypMavQ0SkiX379qFr165IT09H+/btUblyZakjERmUfB8i+eGHH/Ddd98hISEBoaGhSEhIwLJly3DhwgWsWLGiQOWCiEgf7d27F97e3khPT0fXrl0RGhrKeV5EGsp3wbh58yZ69OgBAOjWrRssLCwwf/58lCtXTmfhiIgK2+7du9G1a1dkZGSge/fuCAkJgaUl75BMpKl8F4zU1FT1dfZlMhmsrKxQunRpnQUjIipsx48fR7du3ZCRkYHPPvsMv/76K8sFUQFpNMlz9erVsLOzAwBkZWUhODgYTk5OOdbR5GZnRET6pH79+nB3d4ednR02bdrEckH0HvJdMMqXL49Vq1apH5cqVQobNmzIsY5MJmPBICKDpVAosH37dlhYWMDCQuPLBBHRa/L9HXTnzh0dxiAiksaOHTtw8uRJzJs3DzKZjJf+JtISVnQiMlnbt2+Hj48PsrKyULduXfTu3VvqSERGQ2tX8iQiMiTbtm1Dz549kZWVhb59+6rPkiMi7WDBICKTs3XrVvTq1QtKpRL9+vXDunXrOOeCSMtYMIjIpISEhKB3795QKpXw9fXFL7/8kuMOzUSkHSwYRGQy7t+/j379+kGpVMLPzw9r165luSDSkQIVjJs3b2LKlCno3bs3Hj9+DODVdfsvXbqk1XBERNrk7OyM1atXo3///lizZg3LBZEOaVwwDh06hFq1auGvv/7C9u3b8fLlSwDAuXPnEBgYqPWARETvKzMzU/25r68vVq9ezXJBpGMaF4yJEydi9uzZ6tu2Z2vdujXvckpEemfjxo2oV68e4uLipI5CZFI0LhgXLlxA165d31heokQJJCQkaCUUEZE2bNiwAX5+frh06RJWrlwpdRwik6JxwShSpAhiY2PfWH727FmULVtWK6GIiN7XunXr4OfnB5VKhcGDB2PKlClSRyIyKRoXjF69emHChAmIi4uDTCaDSqXCsWPHMG7cOPj6+uoiIxGRRoKDg+Hv7w8hBIYMGYJly5bBzIwnzREVJo2/4+bMmYNq1arB2dkZL1++RI0aNdCyZUs0bdqUfyEQkeR++eUXfPnllxBCYNiwYSwXRBLR+NJ1crkcq1atwtSpU3Hx4kW8fPkS9erVQ+XKlXWRj4go39LS0jB37lwIITB8+HAsXboUMplM6lhEJknjgnH06FE0b94c5cuXR/ny5XWRiYioQBQKBSIiIrBu3Tp88803LBdEEtJ43LB169aoUKECJk+ejMuXL+siExGRRm7fvq3+3NnZGVOmTGG5IJKYxgXj0aNHGDt2LA4dOoSaNWuibt26mD9/Ph48eKCLfEREb/Xzzz+jSpUqCA0NlToKEb1G44Lh5OSEESNG4NixY7h58yZ69OiBdevWwcXFBa1bt9ZFRiKiXC1fvhxDhgxBVlYWTp8+LXUcInrNe02trlChAiZOnIh58+ahVq1aOHTokLZyERG91bJlyzBs2DAAwNixY/H9999LnIiIXlfggnHs2DEMGzYMpUuXRp8+fVCzZk3s2bNHm9mIiHL1008/Yfjw4QCAr7/+GvPnz+ecCyI9o/FZJJMmTcKWLVvw6NEjtG3bFj/88AO6dOkCGxsbXeQjIsph6dKlGDVqFABg/PjxmDdvHssFkR7SuGAcPnwYX3/9NXr27AknJyddZCIiytO1a9cAvLrx4pw5c1guiPSUxgXj2LFjushBRJQvS5cuRbt27eDl5cVyQaTH8lUwdu3ahfbt28PS0hK7du1667qdO3fWSjAiomy///472rdvD7lcDplMxp8zRAYgXwXD29sbcXFxKFGiBLy9vfNcTyaTQalUaisbEREWLlyIcePGwdvbG9u2bYO5ubnUkYgoH/JVMFQqVa6fExHp0vz58zF+/HgAQO3atXnTMiIDovF36/r165Genv7G8oyMDKxfv14roYiIvvvuO3W5CAwMxIwZMzjngsiAaFww/P398eLFizeWJyUlwd/fXyuhiMi0zZs3DxMnTgQATJ8+HdOnT5c2EBFpTOOzSIQQuf4V8eDBAzg6OmolFBGZrvnz52PSpEkAgJkzZ2Lq1KkSJyKigsh3wahXrx5kMhlkMhnatGkDC4v/31SpVOL27dvw9PTUSUgiMh2NGjWCjY0NJk2ahClTpkgdh4gKKN8FI/vskZiYGHh4eMDOzk79NblcDhcXF3Tv3l3rAYnItLi6uuLKlSsoX7681FGI6D3ku2AEBgYCAFxcXODj4wOFQqGzUERkWhYsWABPT0/UrFkTAFguiIyAxpM8/fz8WC6ISGumT5+Or7/+Gq1bt8a///4rdRwi0pJ8jWAUK1YM169fh5OTE4oWLfrWU8WePn2qtXBEZLyEEJg+fTpmzpwJ4NWNyz744AOJUxGRtuSrYCxevBj29vbqz3kuOhG9DyEEpk2bhtmzZwN4dYhk7NixEqciIm3KV8Hw8/NTf/7FF1/oKgsRmQAhBKZOnYpvv/0WALBo0SKMGTNG4lREpG0az8GIjo7GhQsX1I9///13eHt7Y/LkycjIyNBqOCIyPqtXr1aXi8WLF7NcEBkpjQvG4MGDcf36dQDArVu34OPjAxsbG2zdulV9WV8iorz06tULzZo1w5IlS/DVV19JHYeIdETjK3lev34ddevWBQBs3boVrq6u2Lx5M44dO4ZevXphyZIlWo5IRIbu9SsA29vbIyoqKsfF+ojI+Gg8giGEUN9RNTw8HB06dAAAODs7IyEhQbvpiMjgCSHw9ddfY+7cueplLBdExk/j7/KGDRti9uzZcHd3x6FDh7B8+XIAwO3bt1GyZEmtByQiwyWEwLhx47Bo0SIAgKenJ+rVqydxKiIqDBqPYCxZsgTR0dEYMWIEvvnmG3z00UcAgG3btqFp06ZaD0hEhkkIgYCAAHW5WL58OcsFkQnReASjdu3aOc4iyTZ//nyYm5trJRQRGTYhBMaMGYMffvgBAPDzzz9j0KBBEqciosJU4AOhZ86cwZUrVwAANWrUQP369bUWiogMlxACo0ePxtKlSwEAK1euxMCBAyVORUSFTeOC8fjxY/j4+ODQoUMoUqQIAOD58+do1aoVtmzZguLFi2s7IxEZkEOHDmHp0qWQyWRYtWoV+vfvL3UkIpKAxnMwRo4ciZcvX+LSpUt4+vQpnj59iosXLyIxMRGjRo3SRUYiMiBubm5YsmQJVq9ezXJBZMI0HsHYv38/wsPDUb16dfWyGjVqICgoCO3atdNqOCIyDCqVCsnJyep7Fo0ePVriREQkNY1HMFQqFSwtLd9Ybmlpqb4+BhGZDpVKhWHDhqFVq1Z4/vy51HGISE9oXDBat26N0aNH49GjR+plDx8+xJgxY9CmTRuthiMi/aZSqTBkyBD8/PPPiI6OxuHDh6WORER6QuOC8dNPPyExMREuLi6oVKkSKlWqhAoVKiAxMVE9a5yIjJ9KpcLgwYOxatUqmJmZYf369ejcubPUsYhIT2g8B8PZ2RnR0dGIiIhQn6ZavXp1uLu7az0cEeknlUqFgQMHYu3atepy0bdvX6ljEZEe0ahghISEYNeuXcjIyECbNm0wcuRIXeUiIj2lUqkwYMAA/PLLLzAzM8OGDRvQp08fqWMRkZ7Jd8FYvnw5hg8fjsqVK8Pa2hrbt2/HzZs3MX/+fF3mIyI9Exsbi/3798PMzAybNm1Cr169pI5ERHoo33MwfvrpJwQGBuLatWuIiYnBunXrsGzZMl1mIyI9VLZsWURGRmLr1q0sF0SUp3wXjFu3bsHPz0/9uE+fPsjKykJsbKxOghGR/lAqlYiJiVE/rlq1Krp16yZdICLSe/kuGOnp6bC1tf3/Dc3MIJfLkZqaqpNgRKQflEolvvjiC3z66acICwuTOg4RGQiNJnlOnToVNjY26scZGRn49ttv4ejoqF6WfWtmIjJ8WVlZ8PPzw+bNm2FhYYGXL19KHYmIDES+C0bLli1x7dq1HMuaNm2KW7duqR/LZDLtJSMiSWVlZcHX1xe//vorLCwsEBISwsMiRJRv+S4YUVFROoxBRPokKysLn3/+OUJCQmBhYYHQ0FB07dpV6lhEZEA0vtAWERm3rKws9O3bF6GhobC0tMTWrVvRpUsXqWMRkYFhwSCiN5ibm8PS0hLbtm3j5b+JqEA0vhcJERk3CwsLrF+/HseOHWO5IKICY8EgImRmZmLZsmVQKpUAXpWMTz75ROJURGTIWDCITFxGRgZ8fHwwfPhwDB8+XOo4RGQkClQwjhw5gs8//xxNmjTBw4cPAQAbNmzA0aNHtRqOiHQru1zs2LEDVlZWnMxJRFqjccH47bff4OHhAWtra5w9exbp6ekAgBcvXmDOnDlaD0hEupGRkYEePXpg586dsLKyws6dO9G+fXupYxGRkdC4YMyePRsrVqzAqlWrYGlpqV7erFkzREdHazUcEelGeno6PvvsM+zatQsKhQK7du2Cp6en1LGIyIhofJrqtWvX0LJlyzeWOzo64vnz59rIREQ61rdvX/zxxx/qctG2bVupIxGRkdF4BKNUqVK4cePGG8uPHj2KihUrFihEUFAQXFxcoFAo0LhxY5w6dSpf223ZsgUymQze3t4Fel0iU+Xn5wdHR0f88ccfLBdEpBMaF4yBAwdi9OjR+OuvvyCTyfDo0SNs2rQJ48aNw9ChQzUOEBISgoCAAAQGBiI6Ohp16tSBh4cHHj9+/Nbt7ty5g3HjxqFFixYavyaRqfPy8sKdO3fg7u4udRQiMlIaF4yJEyeiT58+aNOmDV6+fImWLVtiwIABGDx4MEaOHKlxgEWLFmHgwIHw9/dHjRo1sGLFCtjY2GDt2rV5bqNUKtG3b1/MmDGjwKMmRKYkLS0N/fv3z3FzwiJFikgXiIiMnsYFQyaT4ZtvvsHTp09x8eJFnDx5Ek+ePMGsWbM0fvGMjAycOXMmx19RZmZmcHd3x4kTJ/LcbubMmShRogT69+//ztdIT09HYmJijg8iU5KamoouXbpg7dq16NSpk/piWkREulTge5HI5XLUqFHjvV48ISEBSqUSJUuWzLG8ZMmSuHr1aq7bHD16FGvWrEFMTEy+XmPu3LmYMWPGe+UkMlTZ5eLAgQOwtbXFihUrYG5uLnUsIjIBGheMVq1aQSaT5fn1gwcPvlegt0lKSkK/fv2watUqODk55WubSZMmISAgQP04MTERzs7OuopIpDdSUlLQpUsXhIeHw9bWFvv27eOcJSIqNBoXjLp16+Z4nJmZiZiYGFy8eBF+fn4aPZeTkxPMzc0RHx+fY3l8fDxKlSr1xvo3b97EnTt34OXlpV6mUqkAvLp3wrVr11CpUqUc21hZWcHKykqjXESGLiUlBZ07d0ZERATs7Oywb98+NG/eXOpYRGRCNC4YixcvznX59OnT8fLlS42eSy6Xo0GDBoiIiFCfaqpSqRAREYERI0a8sX61atVw4cKFHMumTJmCpKQk/PDDDxyZIPqf8ePHq8vF/v370axZM6kjEZGJKfAcjP/6/PPP0ahRIyxYsECj7QICAuDn54eGDRuiUaNGWLJkCZKTk+Hv7w8A8PX1RdmyZTF37lwoFArUrFkzx/bZM+H/u5zIlE2fPh3nzp3Dd999h6ZNm0odh4hMkNYKxokTJ6BQKDTezsfHB0+ePMG0adMQFxeHunXrYv/+/eqJn/fu3YOZGW/6SvQuSqVSPYHTyckJhw8ffut8KSIiXdK4YHTr1i3HYyEEYmNj8ffff2Pq1KkFCjFixIhcD4kAQFRU1Fu3DQ4OLtBrEhmTly9folOnTujduzcGDx4MACwXRCQpjQuGo6NjjsdmZmaoWrUqZs6ciXbt2mktGBHlT1JSEjp06ICjR4/i3Llz6N69e77PsiIi0hWNCoZSqYS/vz9q1aqFokWL6ioTEeVTUlIS2rdvj2PHjsHR0RFhYWEsF0SkFzSa3GBubo527drxrqlEeiAxMRGenp7qcnHgwAE0atRI6lhERAAKcKnwmjVr5rifAREVvuxycfz4cRQpUgTh4eH45JNPpI5FRKSmccGYPXs2xo0bh927dyM2Npb3+SCSQGhoKE6cOIGiRYsiPDwcDRs2lDoSEVEO+Z6DMXPmTIwdOxYdOnQAAHTu3DnHLHUhBGQyGW+kRFQI+vfvjydPnsDDwwP169eXOg4R0RvyXTBmzJiBIUOGIDIyUpd5iCgPL168gIWFBWxtbSGTyTBp0iSpIxER5SnfBUMIAQBwdXXVWRgiyt3z58/Rrl072NnZYffu3bCxsZE6EhHRW2k0B4MX7iEqfM+ePUPbtm1x+vRpnD9/Hvfu3ZM6EhHRO2l0HYwqVaq8s2Q8ffr0vQIR0f97+vQp2rZti+joaDg5OSEiIgLVqlWTOhYR0TtpVDBmzJjxxpU8iUg3nj59Cnd3d5w9exZOTk44ePAgatWqJXUsIqJ80ahg9OrVCyVKlNBVFiL6n3///Rfu7u6IiYlB8eLFcfDgQd4xmIgMSr7nYHD+BVHhefToEe7evYsSJUogMjKS5YKIDI7GZ5EQke7VqlUL4eHhUCgUqFGjhtRxiIg0lu+CoVKpdJmDyOQlJCTg9u3b6kt+8wJaRGTINL5UOBFp35MnT9C6dWu0adMGJ0+elDoOEdF7Y8Egktjjx4/RunVrXLhwAXZ2dihatKjUkYiI3ptGZ5EQkXZll4tLly6hTJkyiIyMRJUqVaSORUT03jiCQSSR+Ph4tGrVCpcuXULZsmURFRXFckFERoMjGEQSePLkCVq1aoUrV66oy8VHH30kdSwiIq1hwSCSgL29PVxcXJCUlITIyEiWCyIyOiwYRBJQKBTYvn07Hj9+jPLly0sdh4hI6zgHg6iQPHr0CN999536onUKhYLlgoiMFkcwiArBw4cP0apVK/zzzz9QqVSYNGmS1JGIiHSKIxhEOvbgwQO4ubnhn3/+wYcffojevXtLHYmISOdYMIh06P79+3Bzc8ONGzfg4uKCQ4cOwcXFRepYREQ6x4JBpCPZ5eLmzZuoUKECoqKi8OGHH0odi4ioULBgEOlAeno62rRpg1u3bqFixYosF0RkclgwiHTAysoK06ZNQ5UqVRAVFcWzRYjI5LBgEOnI559/jvPnz8PZ2VnqKEREhY4Fg0hLbt++DU9PT8TGxqqXWVlZSZiIiEg6LBhEWnDr1i24ubkhLCwMQ4YMkToOEZHkWDCI3tPNmzfh5uaGe/fuoUqVKli+fLnUkYiIJMcreRK9h+xy8eDBA1StWhWRkZEoXbq01LGIiCTHEQyiArpx4wZcXV3x4MEDVKtWDVFRUSwXRET/w4JBVEADBgzAw4cPUb16dURGRqJUqVJSRyIi0hssGEQFtGHDBnh5ebFcEBHlgnMwiDSQmpoKa2trAICzszN27dolcSIiIv3EEQyifLp27RqqVq2K0NBQqaMQEek9FgyifLh69Src3Nxw//59zJs3D1lZWVJHIiLSaywYRO9w5coVuLm5IS4uDrVr18aff/4JCwseXSQiehsWDKK3uHz5Mtzc3BAfH486deogIiICTk5OUsciItJ7LBhEebh06RJatWqFx48fo27duiwXREQaYMEgysPmzZvx+PFj1KtXDxEREfjggw+kjkREZDB4IJkoD7Nnz0aRIkXQv39/FCtWTOo4REQGhSMYRK+5ceMGMjIyAAAymQxff/01ywURUQGwYBD9z7lz5/Dpp5+iZ8+e6pJBREQFw4JBBCAmJgatW7fGv//+i0ePHiE1NVXqSEREBo0Fg0ze2bNn0aZNGzx9+hSNGzfGgQMH4OjoKHUsIiKDxoJBJi06OlpdLj799FOEhYWxXBARaQELBpmsM2fOoE2bNnj27BmaNGnCckFEpEUsGGSykpOTkZGRgaZNm2L//v1wcHCQOhIRkdHgdTDIZLVs2RKRkZGoXr067O3tpY5DRGRUWDDIpJw6dQoKhQK1a9cGADRq1EjiRERExomHSMhknDx5Em3btkWbNm1w9epVqeMQERk1FgwyCSdOnEC7du2QmJiIGjVqoFy5clJHIiIyaiwYZPSOHz8ODw8PJCUlwdXVFXv37oWdnZ3UsYiIjBoLBhm1Y8eOqcuFm5sb9uzZA1tbW6ljEREZPRYMMlpnzpyBp6cnXr58idatW7NcEBEVIp5FQkarSpUqqFOnDhQKBXbt2gUbGxupIxERmQwWDDJa9vb22LdvH8zNzVkuiIgKGQ+RkFE5dOgQ5s+fr35sb2/PckFEJAGOYJDRiIyMRKdOnZCSkoLy5cvDx8dH6khERCaLIxhkFA4ePIiOHTsiJSUFnp6e6NKli9SRiIhMGgsGGbyIiAh06tQJqamp6NChA3bs2AGFQiF1LCIik8ZDJGTQwsPD4eXlhbS0NHTo0AHbt2+HlZWV1LGIiEweRzDIYD18+BCdO3dGWloaOnbsyHJBRKRHOIJBBqts2bKYN28ewsPDsXXrVpYLIiI9whEMMjhCCPXno0aNws6dO1kuiIj0DAsGGZR9+/ahRYsWePbsmXqZmRn/GRMR6Rv+ZCaDsXfvXnh7e+PYsWM5LqZFRET6hwWDDMLu3bvRtWtXZGRkoHv37pgxY4bUkYiI6C1YMEjv/fHHH+jWrRsyMjLw2Wef4ddff4WlpaXUsYiI6C30omAEBQXBxcUFCoUCjRs3xqlTp/Jcd9WqVWjRogWKFi2KokWLwt3d/a3rk2HbtWsXunfvjszMTPTo0QObN29muSAiMgCSF4yQkBAEBAQgMDAQ0dHRqFOnDjw8PPD48eNc14+KikLv3r0RGRmJEydOwNnZGe3atcPDhw8LOTnpWnp6OkaPHo3MzEz4+PiwXBARGRDJC8aiRYswcOBA+Pv7o0aNGlixYgVsbGywdu3aXNfftGkThg0bhrp166JatWpYvXo1VCoVIiIiCjk56ZqVlRXCwsIwcuRIbNy4ERYWvGwLEZGhkLRgZGRk4MyZM3B3d1cvMzMzg7u7O06cOJGv50hJSUFmZiaKFSuW69fT09ORmJiY44P0W0JCgvrzKlWq4Mcff2S5ICIyMJIWjISEBCiVSpQsWTLH8pIlSyIuLi5fzzFhwgSUKVMmR0l53dy5c+Ho6Kj+cHZ2fu/cpDvbtm1DhQoVEBYWJnUUIiJ6D5IfInkf8+bNw5YtW95698xJkybhxYsX6o/79+8XckrKr61bt6JXr154+fIltm3bJnUcIiJ6D5KOOzs5OcHc3Bzx8fE5lsfHx6NUqVJv3XbBggXq+1DUrl07z/WsrKx4GWkDEBoaij59+kCpVMLX1xcrVqyQOhIREb0HSUcw5HI5GjRokGOCZvaEzSZNmuS53ffff49Zs2Zh//79aNiwYWFEJR3asmWLulz4+flh7dq1MDc3lzoWERG9B8lnzgUEBMDPzw8NGzZEo0aNsGTJEiQnJ8Pf3x8A4Ovri7Jly2Lu3LkAgO+++w7Tpk3D5s2b4eLiop6rYWdnBzs7O8neBxXMr7/+is8//xwqlQr+/v5YtWoVywURkRGQvGD4+PjgyZMnmDZtGuLi4lC3bl3s379fPfHz3r17OW5mtXz5cvUVHV8XGBiI6dOnF2Z00oJ9+/ZBpVLhyy+/xKpVq3jjMiIiIyF5wQCAESNGYMSIEbl+LSoqKsfjO3fu6D4QFZq1a9fC1dUV/v7+LBdEREaEP9Gp0B09ehRKpRIAYGFhgf79+7NcEBEZGf5Up0K1bt06tGzZEv3791eXDCIiMj4sGFRogoOD4e/vDyEErK2tIZPJpI5EREQ6woJBhWLt2rX48ssvIYTA0KFDERQUxMMiRERGjD/hSefWrFmDAQMGQAiBYcOGsVwQEZkA/pQnnXq9XIwYMQI//fQTD40QEZkAvThNlYxXiRIlYGlpiaFDh2LJkiUsF0REJoIFg3TKy8sLZ86cQc2aNVkuiIhMCA+RkNatW7cON2/eVD+uVasWywURkYlhwSCtWrZsGb744gu0atUKCQkJUschIiKJsGCQ1gQFBWH48OEAXt1j5oMPPpA4ERERSYUFg7Ri6dKl6vvJjB8/Ht9//z0PixARmTAWDHpvP/74I0aNGgUAmDBhAubNm8dyQURk4lgw6L1s3LgRo0ePBgBMmjQJc+fOZbkgIiKepkrvx9PTE7Vr14aXlxdmzZrFckFERABYMOg9OTk54fjx47CxsWG5ICIiNR4iIY3Nnz8fK1asUD+2tbVluSAiohw4gkEa+e677zBx4kQAwCeffIIGDRpInIiIiPQRRzAo3+bNm6cuFzNmzGC5ICKiPLFgUL7MmTMHkyZNAgDMmjUL06ZNkzgRERHpMx4ioXf69ttvMWXKFPXnkydPljgRERHpOxYMeqvDhw+ry8XroxhERERvw4JBb9WyZUtMmzYNNjY2mDBhgtRxiIjIQLBg0BuEEMjMzIRcLgfwakInERGRJjjJk3IQQiAwMBAeHh5ISUmROg4RERkoFgxSE0Jg2rRpmDVrFqKiorB7926pIxERkYHiIRIC8KpcTJkyBXPmzAEALFq0CD179pQ4FRERGSoWDIIQApMnT8a8efMAAIsXL8ZXX30lbSgiIjJoLBgmTgiBSZMm4bvvvgMA/PDDDxg1apTEqYiIyNCxYJi4R48eYeXKlQCApUuXYsSIERInIiIiY8CCYeLKli2LiIgI/P333xg4cKDUcYiIyEiwYJggIQTu3LmDChUqAADq1auHevXqSZyKiIiMCU9TNTFCCIwdOxZ16tTBiRMnpI5DRERGigXDhAghMGbMGCxevBhJSUm4dOmS1JGIiMhI8RCJiRBCYPTo0Vi6dCkAYOXKlRgwYIDEqYiIyFixYJgAIQRGjhyJoKAgAMCqVatYLoiISKdYMIycEAIjRozAsmXLIJPJsHr1anz55ZdSxyIiIiPHgmHkMjMzcefOHchkMqxZswb+/v5SRyIiIhPAgmHk5HI5fvvtNxw6dAgeHh5SxyEiIhPBs0iMkEqlwtatWyGEAAAoFAqWCyIiKlQsGEZGpVJhyJAh6NmzJ8aPHy91HCIiMlE8RGJEVCoVBg0ahDVr1sDMzAx169aVOhIREZkoFgwjoVKpMHDgQKxduxZmZmbYsGED+vTpI3UsIiIyUSwYRkCpVGLAgAEIDg6GmZkZNm3ahF69ekkdi4iITBjnYBiBQYMGITg4GObm5ti8eTPLBRERSY4Fwwi0atUKcrkcmzdvho+Pj9RxiIiIeIjEGHz++edwdXWFs7Oz1FGIiIgAcATDIGVlZWHixImIjY1VL2O5ICIifcKCYWCysrLg6+uL7777Dh4eHsjKypI6EhER0Rt4iMSAZGVloV+/ftiyZQssLCwwc+ZMWFjwfyEREekf/nYyEFlZWejbty9CQ0NhaWmJrVu3okuXLlLHIiIiyhULhgHIzMxE3759sXXrVlhaWuK3336Dl5eX1LGIiIjyxDkYBmDChAnYunUr5HI5tm/fznJBRER6jwXDAAQEBODjjz/G9u3b0alTJ6njEBERvRMPkegpIQRkMhkAoFy5coiJieGETiIiMhgcwdBDGRkZ6NGjB0JCQtTLWC6IiMiQsGDomfT0dHz22Wf47bff0L9/fzx58kTqSERERBrjn8V6JLtc7N69GwqFAtu3b0fx4sWljkVERKQxFgw9kZ6eju7du2PPnj1QKBTYtWsX2rZtK3UsIiKiAmHB0ANpaWno3r079u7dC4VCgT/++APu7u5SxyIiIiowzsHQA+vWrcPevXthbW2N3bt3s1wQEZHB4wiGHhg0aBCuX7+Ojh07onXr1lLHISIiem8sGBJJTU2Fubk55HI5ZDIZFi5cKHUkIiIireEhEgmkpqaiS5cu6NmzJzIyMqSOQ0REpHUcwShkKSkp6NKlC8LDw2Fra4urV6+idu3aUsciIiLSKhaMQpSSkgIvLy8cPHgQtra22LdvH8sFEREZJR4iKSTJycno1KkTDh48CDs7O+zfvx8tWrSQOhYREZFOcASjEGSXi6ioKNjb22P//v1o2rSp1LGIiIh0hgWjEFy9ehWnT5+Gvb09wsLC0KRJE6kjERER6RQLRiFo0KAB9uzZA7lcznJBREQmgQVDR16+fIkHDx6gWrVqAABXV1eJExERERUeTvLUgaSkJLRv3x4tWrTAhQsXpI5DRERU6FgwtCwxMRGenp44evQoMjMzkZaWJnUkIiKiQqcXBSMoKAguLi5QKBRo3LgxTp069db1t27dimrVqkGhUKBWrVrYu3dvISV9u7T0dHh6euL48eMoUqQIwsPD8cknn0gdi4iIqNBJXjBCQkIQEBCAwMBAREdHo06dOvDw8MDjx49zXf/48ePo3bs3+vfvj7Nnz8Lb2xve3t64ePFiISd/0+pVq3DixAkULVoU4eHhaNiwodSRiIiIJCETQggpAzRu3BiffPIJfvrpJwCASqWCs7MzRo4ciYkTJ76xvo+PD5KTk7F79271sk8//RR169bFihUr3vl6iYmJcHR0xIsXL+Dg4KCV9zBy42n8cfExnkWuhfk/kQgPD0f9+vW18txERET6QpPfoZKOYGRkZODMmTNwd3dXLzMzM4O7uztOnDiR6zYnTpzIsT4AeHh45Ll+eno6EhMTc3xom0z26r/WNjaIiIhguSAiIpMnacFISEiAUqlEyZIlcywvWbIk4uLict0mLi5Oo/Xnzp0LR0dH9Yezs7N2wr+mcqkiqFfOAVPHjkS9evW0/vxERESGxuivgzFp0iQEBASoHycmJmq9ZIxsUxkj21TW6nMSEREZMkkLhpOTE8zNzREfH59jeXx8PEqVKpXrNqVKldJofSsrK1hZWWknMBEREeWLpIdI5HI5GjRogIiICPUylUqFiIiIPC+p3aRJkxzrA8CBAwd4CW4iIiI9IvkhkoCAAPj5+aFhw4Zo1KgRlixZguTkZPj7+wMAfH19UbZsWcydOxcAMHr0aLi6umLhwoXo2LEjtmzZgr///hsrV66U8m0QERHRayQvGD4+Pnjy5AmmTZuGuLg41K1bF/v371dP5Lx37x7MzP5/oKVp06bYvHkzpkyZgsmTJ6Ny5crYuXMnatasKdVbICIiov+Q/DoYhU0X18EgIiIyBQZzHQwiIiIyTiwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdZLfrr2wZd88NjExUeIkREREhiX7d2d+bsRucgUjKSkJAODs7CxxEiIiIsOUlJQER0fHt64jE/mpIUZEpVLh0aNHsLe3h0wm08pzJiYmwtnZGffv34eDg4NWntPUcZ9qH/epdnF/ah/3qXbpYn8KIZCUlIQyZcrAzOztsyxMbgTDzMwM5cqV08lzOzg48JtCy7hPtY/7VLu4P7WP+1S7tL0/3zVykY2TPImIiEjrWDCIiIhI61gwtMDKygqBgYGwsrKSOorR4D7VPu5T7eL+1D7uU+2Sen+a3CRPIiIi0j2OYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWDkU1BQEFxcXKBQKNC4cWOcOnXqretv3boV1apVg0KhQK1atbB3795CSmo4NNmnq1atQosWLVC0aFEULVoU7u7u7/x/YGo0/TeabcuWLZDJZPD29tZtQAOk6T59/vw5hg8fjtKlS8PKygpVqlTh9/5rNN2fS5YsQdWqVWFtbQ1nZ2eMGTMGaWlphZRW/x0+fBheXl4oU6YMZDIZdu7c+c5toqKiUL9+fVhZWeGjjz5CcHCw7gIKeqctW7YIuVwu1q5dKy5duiQGDhwoihQpIuLj43Nd/9ixY8Lc3Fx8//334vLly2LKlCnC0tJSXLhwoZCT6y9N92mfPn1EUFCQOHv2rLhy5Yr44osvhKOjo3jw4EEhJ9dPmu7PbLdv3xZly5YVLVq0EF26dCmcsAZC032anp4uGjZsKDp06CCOHj0qbt++LaKiokRMTEwhJ9dPmu7PTZs2CSsrK7Fp0yZx+/ZtERYWJkqXLi3GjBlTyMn11969e8U333wjtm/fLgCIHTt2vHX9W7duCRsbGxEQECAuX74sli5dKszNzcX+/ft1ko8FIx8aNWokhg8frn6sVCpFmTJlxNy5c3Ndv2fPnqJjx445ljVu3FgMHjxYpzkNiab79L+ysrKEvb29WLduna4iGpSC7M+srCzRtGlTsXr1auHn58eC8R+a7tPly5eLihUrioyMjMKKaFA03Z/Dhw8XrVu3zrEsICBANGvWTKc5DVV+Csb48ePFxx9/nGOZj4+P8PDw0EkmHiJ5h4yMDJw5cwbu7u7qZWZmZnB3d8eJEydy3ebEiRM51gcADw+PPNc3NQXZp/+VkpKCzMxMFCtWTFcxDUZB9+fMmTNRokQJ9O/fvzBiGpSC7NNdu3ahSZMmGD58OEqWLImaNWtizpw5UCqVhRVbbxVkfzZt2hRnzpxRH0a5desW9u7diw4dOhRKZmNU2L+bTO5mZ5pKSEiAUqlEyZIlcywvWbIkrl69mus2cXFxua4fFxens5yGpCD79L8mTJiAMmXKvPHNYooKsj+PHj2KNWvWICYmphASGp6C7NNbt27h4MGD6Nu3L/bu3YsbN25g2LBhyMzMRGBgYGHE1lsF2Z99+vRBQkICmjdvDiEEsrKyMGTIEEyePLkwIhulvH43JSYmIjU1FdbW1lp9PY5gkMGZN28etmzZgh07dkChUEgdx+AkJSWhX79+WLVqFZycnKSOYzRUKhVKlCiBlStXokGDBvDx8cE333yDFStWSB3NIEVFRWHOnDlYtmwZoqOjsX37duzZswezZs2SOhrlE0cw3sHJyQnm5uaIj4/PsTw+Ph6lSpXKdZtSpUpptL6pKcg+zbZgwQLMmzcP4eHhqF27ti5jGgxN9+fNmzdx584deHl5qZepVCoAgIWFBa5du4ZKlSrpNrSeK8i/0dKlS8PS0hLm5ubqZdWrV0dcXBwyMjIgl8t1mlmfFWR/Tp06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZm/PtYU3n9bnJwcND66AXAEYx3ksvlaNCgASIiItTLVCoVIiIi0KRJk1y3adKkSY71AeDAgQN5rm9qCrJPAeD777/HrFmzsH//fjRs2LAwohoETfdntWrVcOHCBcTExKg/OnfujFatWiEmJgbOzs6FGV8vFeTfaLNmzXDjxg11WQOA69evo3Tp0iZdLoCC7c+UlJQ3SkR2eRO8hVaBFPrvJp1MHTUyW7ZsEVZWViI4OFhcvnxZDBo0SBQpUkTExcUJIYTo16+fmDhxonr9Y8eOCQsLC7FgwQJx5coVERgYyNNU/0PTfTpv3jwhl8vFtm3bRGxsrPojKSlJqregVzTdn//Fs0jepOk+vXfvnrC3txcjRowQ165dE7t37xYlSpQQs2fPluot6BVN92dgYKCwt7cXv/76q7h165b4888/RaVKlUTPnj2legt6JykpSZw9e1acPXtWABCLFi0SZ8+eFXfv3hVCCDFx4kTRr18/9frZp6l+/fXX4sqVKyIoKIinqeqDpUuXivLlywu5XC4aNWokTp48qf6aq6ur8PPzy7F+aGioqFKlipDL5eLjjz8We/bsKeTE+k+Tffrhhx8KAG98BAYGFn5wPaXpv9HXsWDkTtN9evz4cdG4cWNhZWUlKlasKL799luRlZVVyKn1lyb7MzMzU0yfPl1UqlRJKBQK4ezsLIYNGyaePXtW+MH1VGRkZK4/F7P3o5+fn3B1dX1jm7p16wq5XC4qVqwofvnlF53l4+3aiYiISOs4B4OIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg8jIBAcHo0iRIlLHKDCZTIadO3e+dZ0vvvgC3t7ehZKHiAqGBYNID33xxReQyWRvfNy4cUPqaAgODlbnMTMzQ7ly5eDv74/Hjx9r5fljY2PRvn17AMCdO3cgk8kQExOTY50ffvgBwcHBWnm9vEyfPl39Ps3NzeHs7IxBgwbh6dOnGj0PyxCZKt6unUhPeXp64pdffsmxrHjx4hKlycnBwQHXrl2DSqXCuXPn4O/vj0ePHiEsLOy9nzuv23e/ztHR8b1fJz8+/vhjhIeHQ6lU4sqVK/jyyy/x4sULhISEFMrrExkyjmAQ6SkrKyuUKlUqx4e5uTkWLVqEWrVqwdbWFs7Ozhg2bBhevnyZ5/OcO3cOrVq1gr29PRwcHNCgQQP8/fff6q8fPXoULVq0gLW1NZydnTFq1CgkJye/NZtMJkOpUqVQpkwZtG/fHqNGjUJ4eDhSU1OhUqkwc+ZMlCtXDlZWVqhbty7279+v3jYjIwMjRoxA6dKloVAo8OGHH2Lu3Lk5njv7EEmFChUAAPXq1YNMJoObmxuAnKMCK1euRJkyZXLcJh0AunTpgi+//FL9+Pfff0f9+vWhUChQsWJFzJgxA1lZWW99nxYWFihVqhTKli0Ld3d39OjRAwcOHFB/XalUon///qhQoQKsra1RtWpV/PDDD+qvT58+HevWrcPvv/+uHg2JiooCANy/fx89e/ZEkSJFUKxYMXTp0gV37tx5ax4iQ8KCQWRgzMzM8OOPP+LSpUtYt24dDh48iPHjx+e5ft++fVGuXDmcPn0aZ86cwcSJE2FpaQkAuHnzJjw9PdG9e3ecP38eISEhOHr0KEaMGKFRJmtra6hUKmRlZeGHH37AwoULsWDBApw/fx4eHh7o3Lkz/vnnHwDAjz/+iF27diE0NBTXrl3Dpk2b4OLikuvznjp1CgAQHh6O2NhYbN++/Y11evTogX///ReRkZHqZU+fPsX+/fvRt29fAMCRI0fg6+uL0aNH4/Lly/j5558RHByMb7/9Nt/v8c6dOwgLC4NcLlcvU6lUKFeuHLZu3YrLly9j2rRpmDx5MkJDQwEA48aNQ8+ePeHp6YnY2FjExsaiadOmyMzMhIeHB+zt7XHkyBEcO3YMdnZ28PT0REZGRr4zEek1nd2nlYgKzM/PT5ibmwtbW1v1x2effZbrulu3bhUffPCB+vEvv/wiHB0d1Y/t7e1FcHBwrtv2799fDBo0KMeyI0eOCDMzM5GamprrNv99/uvXr4sqVaqIhg0bCiGEKFOmjPj2229zbPPJJ5+IYcOGCSGEGDlypGjdurVQqVS5Pj8AsWPHDiGEELdv3xYAxNmzZ3Os89/by3fp0kV8+eWX6sc///yzKFOmjFAqlUIIIdq0aSPmzJmT4zk2bNggSpcunWsGIYQIDAwUZmZmwtbWVigUCvWtsBctWpTnNkIIMXz4cNG9e/c8s2a/dtWqVXPsg/T0dGFtbS3CwsLe+vxEhoJzMIj0VKtWrbB8+XL1Y1tbWwCv/pqfO3curl69isTERGRlZSEtLQ0pKSmwsbF543kCAgIwYMAAbNiwQT3MX6lSJQCvDp+cP38emzZtUq8vhIBKpcLt27dRvXr1XLO9ePECdnZ2UKlUSEtLQ/PmzbF69WokJibi0aNHaNasWY71mzVrhnPnzgF4dXijbdu2qFq1Kjw9PdGpUye0a9fuvfZV3759MXDgQCxbtgxWVlbYtGkTevXqBTMzM/X7PHbsWI4RC6VS+db9BgBVq1bFrl27kJaWho0bNyImJgYjR47MsU5QUBDWrl2Le/fuITU1FRkZGahbt+5b8547dw43btyAvb19juVpaWm4efNmAfYAkf5hwSDSU7a2tvjoo49yLLtz5w46deqEoUOH4ttvv0WxYsVw9OhR9O/fHxkZGbn+opw+fTr69OmDPXv2YN++fQgMDMSWLVvQtWtXvHz5EoMHD8aoUaPe2K58+fJ5ZrO3t0d0dDTMzMxQunRpWFtbAwASExPf+b7q16+P27dvY9++fQgPD0fPnj3h7u6Obdu2vXPbvHh5eUEIgT179uCTTz7BkSNHsHjxYvXXX758iRkzZqBbt25vbKtQKPJ8Xrlcrv5/MG/ePHTs2BEzZszArFmzAABbtmzBuHHjsHDhQjRp0gT29vaYP38+/vrrr7fmffnyJRo0aJCj2GXTl4m8RO+LBYPIgJw5cwYqlQoLFy5U/3Wefbz/bapUqYIqVapgzJgx6N27N3755Rd07doV9evXx+XLl98oMu9iZmaW6zYODg4oU6YMjh07BldXV/XyY8eOoVGjRjnW8/HxgY+PDz777DN4enri6dOnKFasWI7ny57voFQq35pHoVCgW7du2LRpE27cuIGqVauifv366q/Xr18f165d0/h9/teUKVPQunVrDB06VP0+mzZtimHDhqnX+e8IhFwufyN//fr1ERISghIlSsDBweG9MhHpK07yJDIgH330ETIzM7F06VLcunULGzZswIoVK/JcPzU1FSNGjEBUVBTu3r2LY8eO4fTp0+pDHxMmTMDx48cxYsQIxMTE4J9//sHvv/+u8STP13399df47rvvEBISgmvXrmHixImIiYnB6NGjAQCLFi3Cr7/+iqtXr+L69evYunUrSpUqlevFwUqUKAFra2vs378f8fHxePHiRZ6v27dvX+zZswdr165VT+7MNm3aNKxfvx4zZszApUuXcOXKFWzZsgVTpkzR6L01adIEtWvXxpw5cwAAlStXxt9//42wsDBcv34dU6dOxenTp3Ns4+LigvPnz+PatWtISEhAZmYm+vbtCycnJ3Tp0gVHjhzB7du3ERUVhVGjRuHBgwcaZSLSW1JPAiGiN+U2MTDbokWLROnSpYW1tbXw8PAQ69evFwDEs2fPhBA5J2Gmp6eLXr16CWdnZyGXy0WZMmXEiBEjckzgPHXqlGjbtq2ws7MTtra2onbt2m9M0nzdfyd5/pdSqRTTp08XZcuWFZaWlqJOnTpi37596q+vXLlS1K1bV9ja2goHBwfRpk0bER0drf46XpvkKYQQq1atEs7OzsLMzEy4urrmuX+USqUoXbq0ACBu3rz5Rq79+/eLpk2bCmtra+Hg4CAaNWokVq5cmef7CAwMFHXq1Hlj+a+//iqsrKzEvXv3RFpamvjiiy+Eo6OjKFKkiBg6dKiYOHFiju0eP36s3r8ARGRkpBBCiNjYWOHr6yucnJyElZWVqFixohg4cKB48eJFnpmIDIlMCCGkrThERERkbHiIhIiIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi07v8A1k+hWenkwRsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import roc_curve, roc_auc_score\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "y_scores = model.predict_proba(X_test)\n", + "# calculate ROC curve\n", + "fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])\n", + "\n", + "# plot ROC curve\n", + "fig = plt.figure(figsize=(6, 6))\n", + "# Plot the diagonal 50% line\n", + "plt.plot([0, 1], [0, 1], 'k--')\n", + "# Plot the FPR and TPR achieved by our model\n", + "plt.plot(fpr, tpr)\n", + "plt.xlabel('False Positive Rate')\n", + "plt.ylabel('True Positive Rate')\n", + "plt.title('ROC Curve')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.9749908725812341\n" + ] + } + ], + "source": [ + "# Calculate AUC score\n", + "auc = roc_auc_score(y_test,y_scores[:,1])\n", + "print(auc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "vscode": { + "interpreter": { + "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" + } + }, + "coopTranslator": { + "original_hash": "ef50cc584e0b79412610cc7da15e1f86", + "translation_date": "2025-09-04T01:19:39+00:00", + "source_file": "2-Regression/4-Logistic/solution/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/de/2-Regression/README.md b/translations/de/2-Regression/README.md index 8b8380b84..65ffa8c5f 100644 --- a/translations/de/2-Regression/README.md +++ b/translations/de/2-Regression/README.md @@ -1,43 +1,54 @@ + # Regressionsmodelle für maschinelles Lernen ## Regionales Thema: Regressionsmodelle für Kürbispreise in Nordamerika 🎃 -In Nordamerika werden Kürbisse oft für Halloween in gruselige Gesichter geschnitzt. Lass uns mehr über diese faszinierenden Gemüse entdecken! +In Nordamerika werden Kürbisse oft zu Halloween in gruselige Gesichter geschnitzt. Lassen Sie uns mehr über dieses faszinierende Gemüse herausfinden! ![jack-o-lanterns](../../../translated_images/jack-o-lanterns.181c661a9212457d7756f37219f660f1358af27554d856e5a991f16b4e15337c.de.jpg) > Foto von Beth Teutschmann auf Unsplash -## Was du lernen wirst +## Was Sie lernen werden -[![Einführung in die Regression](https://img.youtube.com/vi/5QnJtDad4iQ/0.jpg)](https://youtu.be/5QnJtDad4iQ "Einführung in die Regression - Klicke zum Ansehen!") -> 🎥 Klicke auf das Bild oben für ein kurzes Einführungsvideo zu dieser Lektion +[![Einführung in Regression](https://img.youtube.com/vi/5QnJtDad4iQ/0.jpg)](https://youtu.be/5QnJtDad4iQ "Einführungsvideo zur Regression - Klicken Sie, um es anzusehen!") +> 🎥 Klicken Sie auf das Bild oben für ein kurzes Einführungsvideo zu dieser Lektion -Die Lektionen in diesem Abschnitt behandeln die Arten der Regression im Kontext des maschinellen Lernens. Regressionsmodelle können helfen, die _Beziehung_ zwischen Variablen zu bestimmen. Diese Art von Modell kann Werte wie Länge, Temperatur oder Alter vorhersagen und somit Beziehungen zwischen Variablen aufdecken, während es Datenpunkte analysiert. +Die Lektionen in diesem Abschnitt behandeln verschiedene Arten von Regression im Kontext des maschinellen Lernens. Regressionsmodelle können helfen, die _Beziehung_ zwischen Variablen zu bestimmen. Dieser Modelltyp kann Werte wie Länge, Temperatur oder Alter vorhersagen und dabei Beziehungen zwischen Variablen aufdecken, während er Datenpunkte analysiert. -In dieser Reihe von Lektionen wirst du die Unterschiede zwischen linearer und logistischer Regression entdecken und erfahren, wann du das eine dem anderen vorziehen solltest. +In dieser Serie von Lektionen werden Sie die Unterschiede zwischen linearer und logistischer Regression entdecken und erfahren, wann Sie welche bevorzugen sollten. [![ML für Anfänger - Einführung in Regressionsmodelle für maschinelles Lernen](https://img.youtube.com/vi/XA3OaoW86R8/0.jpg)](https://youtu.be/XA3OaoW86R8 "ML für Anfänger - Einführung in Regressionsmodelle für maschinelles Lernen") -> 🎥 Klicke auf das Bild oben für ein kurzes Video, das Regressionsmodelle einführt. +> 🎥 Klicken Sie auf das Bild oben für ein kurzes Video, das Regressionsmodelle vorstellt. -In dieser Gruppe von Lektionen wirst du eingerichtet, um mit Aufgaben des maschinellen Lernens zu beginnen, einschließlich der Konfiguration von Visual Studio Code zur Verwaltung von Notebooks, der gängigen Umgebung für Datenwissenschaftler. Du wirst Scikit-learn entdecken, eine Bibliothek für maschinelles Lernen, und du wirst deine ersten Modelle erstellen, wobei der Fokus in diesem Kapitel auf Regressionsmodellen liegt. +In dieser Gruppe von Lektionen werden Sie sich darauf vorbereiten, Aufgaben des maschinellen Lernens zu beginnen, einschließlich der Konfiguration von Visual Studio Code zur Verwaltung von Notebooks, der üblichen Umgebung für Datenwissenschaftler. Sie werden Scikit-learn entdecken, eine Bibliothek für maschinelles Lernen, und Ihre ersten Modelle erstellen, wobei der Schwerpunkt in diesem Kapitel auf Regressionsmodellen liegt. -> Es gibt nützliche Low-Code-Tools, die dir helfen können, mehr über die Arbeit mit Regressionsmodellen zu lernen. Probiere [Azure ML für diese Aufgabe](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) +> Es gibt nützliche Low-Code-Tools, die Ihnen helfen können, mehr über die Arbeit mit Regressionsmodellen zu lernen. Probieren Sie [Azure ML für diese Aufgabe](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) aus. ### Lektionen -1. [Werkzeuge des Handels](1-Tools/README.md) -2. [Daten verwalten](2-Data/README.md) +1. [Werkzeuge der Branche](1-Tools/README.md) +2. [Datenverwaltung](2-Data/README.md) 3. [Lineare und polynomiale Regression](3-Linear/README.md) 4. [Logistische Regression](4-Logistic/README.md) --- -### Danksagungen +### Credits -"ML mit Regression" wurde mit ♥️ von [Jen Looper](https://twitter.com/jenlooper) geschrieben. +"ML mit Regression" wurde mit ♥️ geschrieben von [Jen Looper](https://twitter.com/jenlooper) -♥️ Quizbeiträge stammen von: [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan) und [Ornella Altunyan](https://twitter.com/ornelladotcom) +♥️ Quiz-Beiträge stammen von: [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan) und [Ornella Altunyan](https://twitter.com/ornelladotcom) -Der Kürbis-Datensatz wird von [diesem Projekt auf Kaggle](https://www.kaggle.com/usda/a-year-of-pumpkin-prices) vorgeschlagen und seine Daten stammen aus den [Standardberichten der Specialty Crops Terminal Markets](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice), die vom United States Department of Agriculture verteilt werden. Wir haben einige Punkte zur Farbe basierend auf der Sorte hinzugefügt, um die Verteilung zu normalisieren. Diese Daten sind gemeinfrei. +Der Kürbis-Datensatz wird von [diesem Projekt auf Kaggle](https://www.kaggle.com/usda/a-year-of-pumpkin-prices) vorgeschlagen, und seine Daten stammen aus den [Specialty Crops Terminal Markets Standard Reports](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice), die vom Landwirtschaftsministerium der Vereinigten Staaten veröffentlicht werden. Wir haben einige Punkte zur Farbe basierend auf der Sorte hinzugefügt, um die Verteilung zu normalisieren. Diese Daten sind gemeinfrei. + +--- **Haftungsausschluss**: -Dieses Dokument wurde mithilfe von KI-gestützten maschinellen Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als autoritative Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/3-Web-App/1-Web-App/README.md b/translations/de/3-Web-App/1-Web-App/README.md index 202a400b1..a04183172 100644 --- a/translations/de/3-Web-App/1-Web-App/README.md +++ b/translations/de/3-Web-App/1-Web-App/README.md @@ -1,58 +1,67 @@ -# Erstellen einer Webanwendung zur Nutzung eines ML-Modells - -In dieser Lektion werden Sie ein ML-Modell auf einem Datensatz trainieren, der wirklich außergewöhnlich ist: _UFO-Sichtungen im letzten Jahrhundert_, bezogen aus der Datenbank von NUFORC. - -Sie werden lernen: - -- Wie man ein trainiertes Modell 'pickelt' + +# Erstellen einer Web-App zur Nutzung eines ML-Modells + +In dieser Lektion wirst du ein ML-Modell mit einem Datensatz trainieren, der nicht von dieser Welt ist: _UFO-Sichtungen des letzten Jahrhunderts_, basierend auf der Datenbank von NUFORC. + +Du wirst lernen: + +- Wie man ein trainiertes Modell "pickelt" - Wie man dieses Modell in einer Flask-App verwendet -Wir werden weiterhin Notebooks verwenden, um Daten zu bereinigen und unser Modell zu trainieren, aber Sie können den Prozess einen Schritt weiter gehen, indem Sie das Modell 'in der Wildnis' erkunden, sozusagen: in einer Webanwendung. +Wir werden weiterhin Notebooks nutzen, um Daten zu bereinigen und unser Modell zu trainieren. Du kannst den Prozess jedoch einen Schritt weiterführen, indem du das Modell "in freier Wildbahn" einsetzt, sozusagen: in einer Web-App. -Um dies zu tun, müssen Sie eine Webanwendung mit Flask erstellen. +Dazu musst du eine Web-App mit Flask erstellen. -## [Vorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/17/) +## [Quiz vor der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/17/) -## Eine App erstellen +## Erstellen einer App -Es gibt mehrere Möglichkeiten, Webanwendungen zu erstellen, die maschinelles Lernen Modelle konsumieren. Ihre Webarchitektur kann die Art und Weise beeinflussen, wie Ihr Modell trainiert wird. Stellen Sie sich vor, Sie arbeiten in einem Unternehmen, in dem die Datenwissenschaftsgruppe ein Modell trainiert hat, das Sie in einer App verwenden sollen. +Es gibt verschiedene Möglichkeiten, Web-Apps zu erstellen, die ML-Modelle nutzen. Deine Web-Architektur kann beeinflussen, wie dein Modell trainiert wird. Stell dir vor, du arbeitest in einem Unternehmen, in dem die Data-Science-Abteilung ein Modell trainiert hat, das du in einer App verwenden sollst. ### Überlegungen -Es gibt viele Fragen, die Sie stellen müssen: +Es gibt viele Fragen, die du dir stellen musst: -- **Ist es eine Web-App oder eine mobile App?** Wenn Sie eine mobile App erstellen oder das Modell in einem IoT-Kontext verwenden müssen, könnten Sie [TensorFlow Lite](https://www.tensorflow.org/lite/) verwenden und das Modell in einer Android- oder iOS-App nutzen. -- **Wo wird das Modell gehostet?** In der Cloud oder lokal? +- **Ist es eine Web-App oder eine Mobile-App?** Wenn du eine Mobile-App erstellst oder das Modell in einem IoT-Kontext verwenden möchtest, könntest du [TensorFlow Lite](https://www.tensorflow.org/lite/) nutzen, um das Modell in einer Android- oder iOS-App zu verwenden. +- **Wo wird das Modell gespeichert?** In der Cloud oder lokal? - **Offline-Unterstützung.** Muss die App offline funktionieren? -- **Welche Technologie wurde verwendet, um das Modell zu trainieren?** Die gewählte Technologie kann die Werkzeuge beeinflussen, die Sie verwenden müssen. - - **Verwendung von TensorFlow.** Wenn Sie ein Modell mit TensorFlow trainieren, bietet dieses Ökosystem die Möglichkeit, ein TensorFlow-Modell für die Verwendung in einer Web-App mit [TensorFlow.js](https://www.tensorflow.org/js/) zu konvertieren. - - **Verwendung von PyTorch.** Wenn Sie ein Modell mit einer Bibliothek wie [PyTorch](https://pytorch.org/) erstellen, haben Sie die Möglichkeit, es im [ONNX](https://onnx.ai/) (Open Neural Network Exchange) Format für die Verwendung in JavaScript-Web-Apps zu exportieren, die das [Onnx Runtime](https://www.onnxruntime.ai/) nutzen können. Diese Option wird in einer zukünftigen Lektion für ein mit Scikit-learn trainiertes Modell untersucht. - - **Verwendung von Lobe.ai oder Azure Custom Vision.** Wenn Sie ein ML SaaS (Software as a Service) System wie [Lobe.ai](https://lobe.ai/) oder [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) verwenden, um ein Modell zu trainieren, bietet diese Art von Software Möglichkeiten, das Modell für viele Plattformen zu exportieren, einschließlich der Erstellung einer maßgeschneiderten API, die von Ihrer Online-Anwendung in der Cloud abgefragt werden kann. +- **Welche Technologie wurde verwendet, um das Modell zu trainieren?** Die gewählte Technologie kann die benötigten Tools beeinflussen. + - **Verwendung von TensorFlow.** Wenn du ein Modell mit TensorFlow trainierst, bietet dieses Ökosystem die Möglichkeit, ein TensorFlow-Modell für die Nutzung in einer Web-App mit [TensorFlow.js](https://www.tensorflow.org/js/) zu konvertieren. + - **Verwendung von PyTorch.** Wenn du ein Modell mit einer Bibliothek wie [PyTorch](https://pytorch.org/) erstellst, hast du die Möglichkeit, es im [ONNX](https://onnx.ai/) (Open Neural Network Exchange)-Format zu exportieren, um es in JavaScript-Web-Apps zu verwenden, die die [Onnx Runtime](https://www.onnxruntime.ai/) nutzen können. Diese Option wird in einer zukünftigen Lektion für ein mit Scikit-learn trainiertes Modell untersucht. + - **Verwendung von Lobe.ai oder Azure Custom Vision.** Wenn du ein ML-SaaS (Software as a Service)-System wie [Lobe.ai](https://lobe.ai/) oder [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) verwendest, um ein Modell zu trainieren, bietet diese Art von Software Möglichkeiten, das Modell für viele Plattformen zu exportieren, einschließlich der Erstellung einer maßgeschneiderten API, die von deiner Online-Anwendung in der Cloud abgefragt werden kann. -Sie haben auch die Möglichkeit, eine vollständige Flask-Webanwendung zu erstellen, die in der Lage wäre, das Modell selbst in einem Webbrowser zu trainieren. Dies kann auch mit TensorFlow.js in einem JavaScript-Kontext erfolgen. +Du hast auch die Möglichkeit, eine vollständige Flask-Web-App zu erstellen, die das Modell direkt im Webbrowser trainieren kann. Dies kann auch mit TensorFlow.js in einem JavaScript-Kontext erfolgen. -Für unsere Zwecke, da wir mit Python-basierten Notebooks gearbeitet haben, lassen Sie uns die Schritte erkunden, die erforderlich sind, um ein trainiertes Modell aus einem solchen Notebook in ein von einer Python-basierten Web-App lesbares Format zu exportieren. +Da wir mit Python-basierten Notebooks gearbeitet haben, schauen wir uns die Schritte an, die erforderlich sind, um ein trainiertes Modell aus einem solchen Notebook in ein Format zu exportieren, das von einer Python-basierten Web-App gelesen werden kann. -## Werkzeug +## Tool -Für diese Aufgabe benötigen Sie zwei Werkzeuge: Flask und Pickle, die beide in Python laufen. +Für diese Aufgabe benötigst du zwei Tools: Flask und Pickle, beide laufen auf Python. -✅ Was ist [Flask](https://palletsprojects.com/p/flask/)? Flask wird von seinen Schöpfern als 'Micro-Framework' definiert und bietet die grundlegenden Funktionen von Web-Frameworks mit Python und einer Template-Engine zum Erstellen von Webseiten. Werfen Sie einen Blick auf [dieses Lernmodul](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott), um das Erstellen mit Flask zu üben. +✅ Was ist [Flask](https://palletsprojects.com/p/flask/)? Von seinen Entwicklern als "Micro-Framework" definiert, bietet Flask die grundlegenden Funktionen von Web-Frameworks mit Python und einer Template-Engine zur Erstellung von Webseiten. Schau dir [dieses Lernmodul](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) an, um das Arbeiten mit Flask zu üben. -✅ Was ist [Pickle](https://docs.python.org/3/library/pickle.html)? Pickle 🥒 ist ein Python-Modul, das eine Python-Objektstruktur serialisiert und deserialisiert. Wenn Sie ein Modell 'pickeln', serialisieren oder flatten Sie seine Struktur zur Verwendung im Web. Seien Sie vorsichtig: Pickle ist nicht von Natur aus sicher, also seien Sie vorsichtig, wenn Sie aufgefordert werden, eine Datei 'un-pickeln'. Eine pickled Datei hat die Endung `.pkl`. +✅ Was ist [Pickle](https://docs.python.org/3/library/pickle.html)? Pickle 🥒 ist ein Python-Modul, das eine Python-Objektstruktur serialisiert und deserialisiert. Wenn du ein Modell "pickelst", serialisierst oder flachst du dessen Struktur ab, um es im Web zu verwenden. Vorsicht: Pickle ist nicht von Natur aus sicher, sei also vorsichtig, wenn du aufgefordert wirst, eine Datei zu "un-pickeln". Eine gepickelte Datei hat die Endung `.pkl`. -## Übung - Bereinigen Sie Ihre Daten +## Übung - Daten bereinigen -In dieser Lektion verwenden Sie Daten von 80.000 UFO-Sichtungen, die von [NUFORC](https://nuforc.org) (Das Nationale UFO-Meldungszentrum) gesammelt wurden. Diese Daten enthalten einige interessante Beschreibungen von UFO-Sichtungen, zum Beispiel: +In dieser Lektion wirst du Daten von 80.000 UFO-Sichtungen verwenden, die vom [NUFORC](https://nuforc.org) (National UFO Reporting Center) gesammelt wurden. Diese Daten enthalten einige interessante Beschreibungen von UFO-Sichtungen, zum Beispiel: -- **Lange Beispieldarstellung.** "Ein Mann erscheint aus einem Lichtstrahl, der auf ein Grasfeld in der Nacht scheint, und läuft auf den Parkplatz von Texas Instruments zu." -- **Kurze Beispieldarstellung.** "Die Lichter verfolgten uns." +- **Lange Beispielbeschreibung.** "Ein Mann tritt aus einem Lichtstrahl hervor, der nachts auf ein grasbewachsenes Feld scheint, und rennt in Richtung des Texas Instruments-Parkplatzes". +- **Kurze Beispielbeschreibung.** "Die Lichter haben uns verfolgt". -Die [ufos.csv](../../../../3-Web-App/1-Web-App/data/ufos.csv) Tabelle enthält Spalten über die `city`, `state` und `country`, wo die Sichtung stattfand, das `shape` des Objekts und dessen `latitude` und `longitude`. +Die [ufos.csv](../../../../3-Web-App/1-Web-App/data/ufos.csv)-Tabelle enthält Spalten über die `city`, `state` und `country`, in denen die Sichtung stattfand, die `shape` des Objekts sowie dessen `latitude` und `longitude`. -In dem leeren [Notebook](../../../../3-Web-App/1-Web-App/notebook.ipynb), das in dieser Lektion enthalten ist: +Im leeren [Notebook](notebook.ipynb), das in dieser Lektion enthalten ist: -1. Importieren Sie `pandas`, `matplotlib` und `numpy`, wie Sie es in den vorherigen Lektionen getan haben, und importieren Sie die ufos-Tabelle. Sie können sich eine Beispiel-Datenmenge ansehen: +1. Importiere `pandas`, `matplotlib` und `numpy`, wie du es in den vorherigen Lektionen getan hast, und importiere die UFO-Tabelle. Du kannst dir einen Beispiel-Datensatz ansehen: ```python import pandas as pd @@ -62,7 +71,7 @@ In dem leeren [Notebook](../../../../3-Web-App/1-Web-App/notebook.ipynb), das in ufos.head() ``` -1. Konvertieren Sie die UFO-Daten in ein kleines DataFrame mit neuen Titeln. Überprüfen Sie die eindeutigen Werte im Feld `Country`. +1. Konvertiere die UFO-Daten in ein kleines DataFrame mit neuen Titeln. Überprüfe die eindeutigen Werte im Feld `Country`. ```python ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']}) @@ -70,7 +79,7 @@ In dem leeren [Notebook](../../../../3-Web-App/1-Web-App/notebook.ipynb), das in ufos.Country.unique() ``` -1. Jetzt können Sie die Menge der Daten, mit denen wir arbeiten müssen, reduzieren, indem Sie alle Nullwerte entfernen und nur Sichtungen zwischen 1-60 Sekunden importieren: +1. Reduziere nun die Menge der Daten, mit denen wir arbeiten müssen, indem du alle Nullwerte entfernst und nur Sichtungen zwischen 1-60 Sekunden importierst: ```python ufos.dropna(inplace=True) @@ -80,7 +89,7 @@ In dem leeren [Notebook](../../../../3-Web-App/1-Web-App/notebook.ipynb), das in ufos.info() ``` -1. Importieren Sie die `LabelEncoder`-Bibliothek von Scikit-learn, um die Textwerte für Länder in eine Zahl zu konvertieren: +1. Importiere die `LabelEncoder`-Bibliothek von Scikit-learn, um die Textwerte für Länder in Zahlen umzuwandeln: ✅ LabelEncoder kodiert Daten alphabetisch @@ -92,7 +101,7 @@ In dem leeren [Notebook](../../../../3-Web-App/1-Web-App/notebook.ipynb), das in ufos.head() ``` - Ihre Daten sollten so aussehen: + Deine Daten sollten so aussehen: ```output Seconds Country Latitude Longitude @@ -103,11 +112,11 @@ In dem leeren [Notebook](../../../../3-Web-App/1-Web-App/notebook.ipynb), das in 24 3.0 3 51.783333 -0.783333 ``` -## Übung - Erstellen Sie Ihr Modell +## Übung - Modell erstellen -Jetzt können Sie sich darauf vorbereiten, ein Modell zu trainieren, indem Sie die Daten in die Trainings- und Testgruppe aufteilen. +Jetzt kannst du dich darauf vorbereiten, ein Modell zu trainieren, indem du die Daten in Trainings- und Testgruppen aufteilst. -1. Wählen Sie die drei Merkmale aus, auf denen Sie trainieren möchten, als Ihren X-Vektor, und der y-Vektor wird `Country`. You want to be able to input `Seconds`, `Latitude` and `Longitude` sein und eine Länder-ID zurückgeben. +1. Wähle die drei Merkmale aus, die du als X-Vektor trainieren möchtest, und der y-Vektor wird das `Country`. Du möchtest `Seconds`, `Latitude` und `Longitude` eingeben und eine Länder-ID zurückerhalten. ```python from sklearn.model_selection import train_test_split @@ -120,7 +129,7 @@ Jetzt können Sie sich darauf vorbereiten, ein Modell zu trainieren, indem Sie d X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) ``` -1. Trainieren Sie Ihr Modell mit logistischer Regression: +1. Trainiere dein Modell mit logistischer Regression: ```python from sklearn.metrics import accuracy_score, classification_report @@ -134,13 +143,13 @@ Jetzt können Sie sich darauf vorbereiten, ein Modell zu trainieren, indem Sie d print('Accuracy: ', accuracy_score(y_test, predictions)) ``` -Die Genauigkeit ist nicht schlecht **(ungefähr 95%)**, was nicht überraschend ist, da `Country` and `Latitude/Longitude` correlate. +Die Genauigkeit ist nicht schlecht **(etwa 95%)**, was nicht überraschend ist, da `Country` und `Latitude/Longitude` korrelieren. -The model you created isn't very revolutionary as you should be able to infer a `Country` from its `Latitude` and `Longitude`, aber es ist eine gute Übung, zu versuchen, aus Rohdaten zu trainieren, die Sie bereinigt, exportiert und dann dieses Modell in einer Web-App verwendet haben. +Das Modell, das du erstellt hast, ist nicht sehr revolutionär, da du ein `Country` aus dessen `Latitude` und `Longitude` ableiten solltest. Aber es ist eine gute Übung, um zu lernen, wie man aus Rohdaten trainiert, diese bereinigt, exportiert und dann das Modell in einer Web-App verwendet. -## Übung - 'pickeln' Sie Ihr Modell +## Übung - Modell "pickeln" -Jetzt ist es an der Zeit, Ihr Modell _zu pickeln_! Sie können dies in wenigen Codezeilen tun. Sobald es _pickled_ ist, laden Sie Ihr pickled Modell und testen Sie es mit einem Beispieldatenarray, das Werte für Sekunden, Breite und Länge enthält, +Jetzt ist es Zeit, dein Modell zu _pickeln_! Das kannst du mit wenigen Codezeilen tun. Sobald es _gepickelt_ ist, lade dein gepickeltes Modell und teste es mit einem Beispiel-Datenarray, das Werte für Sekunden, Breite und Länge enthält. ```python import pickle @@ -151,15 +160,15 @@ model = pickle.load(open('ufo-model.pkl','rb')) print(model.predict([[50,44,-12]])) ``` -Das Modell gibt **'3'** zurück, was der Ländercode für das Vereinigte Königreich ist. Wild! 👽 +Das Modell gibt **'3'** zurück, was der Ländercode für Großbritannien ist. Verrückt! 👽 -## Übung - Erstellen Sie eine Flask-App +## Übung - Flask-App erstellen -Jetzt können Sie eine Flask-App erstellen, um Ihr Modell aufzurufen und ähnliche Ergebnisse zurückzugeben, jedoch auf eine visuell ansprechendere Weise. +Jetzt kannst du eine Flask-App erstellen, um dein Modell aufzurufen und ähnliche Ergebnisse auf visuell ansprechende Weise zurückzugeben. -1. Beginnen Sie damit, einen Ordner namens **web-app** neben der _notebook.ipynb_-Datei zu erstellen, in der sich Ihre _ufo-model.pkl_-Datei befindet. +1. Erstelle zunächst einen Ordner namens **web-app** neben der Datei _notebook.ipynb_, in der sich deine Datei _ufo-model.pkl_ befindet. -1. Erstellen Sie in diesem Ordner drei weitere Ordner: **static**, mit einem Ordner **css** darin, und **templates**. Sie sollten jetzt die folgenden Dateien und Verzeichnisse haben: +1. Erstelle in diesem Ordner drei weitere Ordner: **static**, mit einem Ordner **css** darin, und **templates**. Du solltest nun die folgenden Dateien und Verzeichnisse haben: ```output web-app/ @@ -170,9 +179,9 @@ Jetzt können Sie eine Flask-App erstellen, um Ihr Modell aufzurufen und ähnlic ufo-model.pkl ``` - ✅ Verweisen Sie auf den Lösungsordner, um eine Ansicht der fertigen App zu sehen. + ✅ Sieh dir den Lösungsordner an, um die fertige App zu sehen -1. Die erste Datei, die Sie im _web-app_-Ordner erstellen müssen, ist die **requirements.txt**-Datei. Wie _package.json_ in einer JavaScript-App listet diese Datei die Abhängigkeiten auf, die von der App benötigt werden. Fügen Sie in **requirements.txt** die Zeilen hinzu: +1. Die erste Datei, die du im Ordner _web-app_ erstellen musst, ist die Datei **requirements.txt**. Wie _package.json_ in einer JavaScript-App listet diese Datei die Abhängigkeiten auf, die von der App benötigt werden. Füge in **requirements.txt** die Zeilen hinzu: ```text scikit-learn @@ -181,25 +190,25 @@ Jetzt können Sie eine Flask-App erstellen, um Ihr Modell aufzurufen und ähnlic flask ``` -1. Führen Sie diese Datei jetzt aus, indem Sie in den _web-app_-Ordner navigieren: +1. Führe diese Datei aus, indem du zu _web-app_ navigierst: ```bash cd web-app ``` -1. Geben Sie in Ihrem Terminal `pip install` ein, um die in _requirements.txt_ aufgelisteten Bibliotheken zu installieren: +1. Gib in deinem Terminal `pip install` ein, um die in _requirements.txt_ aufgeführten Bibliotheken zu installieren: ```bash pip install -r requirements.txt ``` -1. Jetzt sind Sie bereit, drei weitere Dateien zu erstellen, um die App abzuschließen: +1. Jetzt bist du bereit, drei weitere Dateien zu erstellen, um die App fertigzustellen: - 1. Erstellen Sie **app.py** im Stammverzeichnis. - 2. Erstellen Sie **index.html** im _templates_-Verzeichnis. - 3. Erstellen Sie **styles.css** im _static/css_-Verzeichnis. + 1. Erstelle **app.py** im Root-Verzeichnis. + 2. Erstelle **index.html** im Verzeichnis _templates_. + 3. Erstelle **styles.css** im Verzeichnis _static/css_. -1. Gestalten Sie die _styles.css_-Datei mit einigen Stilen: +1. Baue die Datei _styles.css_ mit ein paar Styles aus: ```css body { @@ -233,7 +242,7 @@ Jetzt können Sie eine Flask-App erstellen, um Ihr Modell aufzurufen und ähnlic } ``` -1. Als Nächstes gestalten Sie die _index.html_-Datei: +1. Baue als Nächstes die Datei _index.html_ aus: ```html @@ -268,11 +277,11 @@ Jetzt können Sie eine Flask-App erstellen, um Ihr Modell aufzurufen und ähnlic ``` - Werfen Sie einen Blick auf das Template in dieser Datei. Beachten Sie die 'Mustache'-Syntax um Variablen, die von der App bereitgestellt werden, wie den Vorhersagetext: `{{}}`. There's also a form that posts a prediction to the `/predict` route. + Schau dir das Templating in dieser Datei an. Beachte die "Mustache"-Syntax um Variablen, die von der App bereitgestellt werden, wie den Vorhersagetext: `{{}}`. Es gibt auch ein Formular, das eine Vorhersage an die Route `/predict` sendet. - Finally, you're ready to build the python file that drives the consumption of the model and the display of predictions: + Schließlich bist du bereit, die Python-Datei zu erstellen, die den Verbrauch des Modells und die Anzeige der Vorhersagen steuert: -1. In `app.py` fügen Sie hinzu: +1. Füge in `app.py` Folgendes hinzu: ```python import numpy as np @@ -309,40 +318,42 @@ Jetzt können Sie eine Flask-App erstellen, um Ihr Modell aufzurufen und ähnlic app.run(debug=True) ``` - > 💡 Tipp: Wenn Sie [`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode) while running the web app using Flask, any changes you make to your application will be reflected immediately without the need to restart the server. Beware! Don't enable this mode in a production app. + > 💡 Tipp: Wenn du [`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode) hinzufügst, während du die Web-App mit Flask ausführst, werden alle Änderungen, die du an deiner Anwendung vornimmst, sofort reflektiert, ohne dass der Server neu gestartet werden muss. Vorsicht! Aktiviere diesen Modus nicht in einer Produktions-App. -If you run `python app.py` or `python3 app.py` - your web server starts up, locally, and you can fill out a short form to get an answer to your burning question about where UFOs have been sighted! +Wenn du `python app.py` oder `python3 app.py` ausführst, startet dein Webserver lokal, und du kannst ein kurzes Formular ausfüllen, um eine Antwort auf deine brennende Frage zu erhalten, wo UFOs gesichtet wurden! -Before doing that, take a look at the parts of `app.py`: +Bevor du das tust, schau dir die Teile von `app.py` an: -1. First, dependencies are loaded and the app starts. -1. Then, the model is imported. -1. Then, index.html is rendered on the home route. +1. Zuerst werden die Abhängigkeiten geladen und die App gestartet. +1. Dann wird das Modell importiert. +1. Dann wird index.html auf der Home-Route gerendert. -On the `/predict` route, several things happen when the form is posted: +Auf der `/predict`-Route passiert Folgendes, wenn das Formular gesendet wird: -1. The form variables are gathered and converted to a numpy array. They are then sent to the model and a prediction is returned. -2. The Countries that we want displayed are re-rendered as readable text from their predicted country code, and that value is sent back to index.html to be rendered in the template. +1. Die Formularvariablen werden gesammelt und in ein numpy-Array umgewandelt. Sie werden dann an das Modell gesendet und eine Vorhersage wird zurückgegeben. +2. Die Länder, die wir anzeigen möchten, werden aus ihrem vorhergesagten Ländercode wieder in lesbaren Text umgewandelt, und dieser Wert wird zurück an index.html gesendet, um im Template gerendert zu werden. -Using a model this way, with Flask and a pickled model, is relatively straightforward. The hardest thing is to understand what shape the data is that must be sent to the model to get a prediction. That all depends on how the model was trained. This one has three data points to be input in order to get a prediction. +Ein Modell auf diese Weise mit Flask und einem gepickelten Modell zu verwenden, ist relativ einfach. Das Schwierigste ist zu verstehen, welche Form die Daten haben müssen, die an das Modell gesendet werden, um eine Vorhersage zu erhalten. Das hängt ganz davon ab, wie das Modell trainiert wurde. Dieses Modell benötigt drei Datenpunkte, um eine Vorhersage zu liefern. -In a professional setting, you can see how good communication is necessary between the folks who train the model and those who consume it in a web or mobile app. In our case, it's only one person, you! +In einem professionellen Umfeld kannst du sehen, wie wichtig gute Kommunikation zwischen denjenigen ist, die das Modell trainieren, und denen, die es in einer Web- oder Mobile-App verwenden. In unserem Fall ist es nur eine Person: du! --- -## 🚀 Challenge +## 🚀 Herausforderung -Instead of working in a notebook and importing the model to the Flask app, you could train the model right within the Flask app! Try converting your Python code in the notebook, perhaps after your data is cleaned, to train the model from within the app on a route called `train` hinzufügen. Was sind die Vor- und Nachteile, diesen Ansatz zu verfolgen? +Anstatt in einem Notebook zu arbeiten und das Modell in die Flask-App zu importieren, könntest du das Modell direkt in der Flask-App trainieren! Versuche, deinen Python-Code aus dem Notebook, vielleicht nachdem deine Daten bereinigt wurden, so zu konvertieren, dass das Modell innerhalb der App auf einer Route namens `train` trainiert wird. Was sind die Vor- und Nachteile dieser Methode? -## [Nachlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/18/) +## [Quiz nach der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/18/) -## Überprüfung & Selbststudium +## Rückblick & Selbststudium -Es gibt viele Möglichkeiten, eine Web-App zu erstellen, um ML-Modelle zu konsumieren. Machen Sie eine Liste der Möglichkeiten, wie Sie JavaScript oder Python verwenden könnten, um eine Web-App zu erstellen, die maschinelles Lernen nutzt. Berücksichtigen Sie die Architektur: Sollte das Modell in der App bleiben oder in der Cloud leben? Wenn Letzteres, wie würden Sie darauf zugreifen? Zeichnen Sie ein architektonisches Modell für eine angewandte ML-Weblösung. +Es gibt viele Möglichkeiten, eine Web-App zu erstellen, die ML-Modelle nutzt. Mache eine Liste der Möglichkeiten, wie du JavaScript oder Python verwenden könntest, um eine Web-App zu erstellen, die maschinelles Lernen nutzt. Überlege dir die Architektur: Sollte das Modell in der App bleiben oder in der Cloud leben? Wenn Letzteres, wie würdest du darauf zugreifen? Zeichne ein Architekturmodell für eine angewandte ML-Web-Lösung. ## Aufgabe -[Versuchen Sie ein anderes Modell](assignment.md) +[Probiere ein anderes Modell aus](assignment.md) + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/3-Web-App/1-Web-App/assignment.md b/translations/de/3-Web-App/1-Web-App/assignment.md index 4f9201160..207d37ec1 100644 --- a/translations/de/3-Web-App/1-Web-App/assignment.md +++ b/translations/de/3-Web-App/1-Web-App/assignment.md @@ -1,14 +1,25 @@ -# Probier ein anderes Modell + +# Probieren Sie ein anderes Modell aus ## Anweisungen -Jetzt, da du eine Webanwendung mit einem trainierten Regressionsmodell erstellt hast, verwende eines der Modelle aus einer früheren Regressionslektion, um diese Webanwendung neu zu erstellen. Du kannst den Stil beibehalten oder sie anders gestalten, um die Kürbisdaten widerzuspiegeln. Achte darauf, die Eingaben zu ändern, um die Trainingsmethode deines Modells widerzuspiegeln. +Nachdem Sie eine Web-App mit einem trainierten Regressionsmodell erstellt haben, verwenden Sie eines der Modelle aus einer früheren Lektion über Regression, um diese Web-App neu zu erstellen. Sie können den Stil beibehalten oder ihn anders gestalten, um die Kürbisdaten widerzuspiegeln. Achten Sie darauf, die Eingaben so zu ändern, dass sie der Trainingsmethode Ihres Modells entsprechen. -## Bewertungsrichtlinie +## Bewertungskriterien -| Kriterien | Vorbildlich | Angemessen | Verbesserungsbedarf | -| -------------------------- | -------------------------------------------------------- | -------------------------------------------------------- | -------------------------------------- | -| | Die Webanwendung funktioniert wie erwartet und ist in der Cloud bereitgestellt | Die Webanwendung weist Mängel auf oder zeigt unerwartete Ergebnisse | Die Webanwendung funktioniert nicht richtig | +| Kriterien | Vorbildlich | Angemessen | Verbesserungswürdig | +| -------------------------- | --------------------------------------------------------- | --------------------------------------------------------- | -------------------------------------- | +| | Die Web-App funktioniert wie erwartet und ist in der Cloud bereitgestellt | Die Web-App enthält Fehler oder zeigt unerwartete Ergebnisse | Die Web-App funktioniert nicht richtig | + +--- **Haftungsausschluss**: -Dieses Dokument wurde mithilfe von KI-gestützten maschinellen Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, sollten Sie sich bewusst sein, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Verantwortung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/3-Web-App/1-Web-App/notebook.ipynb b/translations/de/3-Web-App/1-Web-App/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/de/3-Web-App/1-Web-App/solution/notebook.ipynb b/translations/de/3-Web-App/1-Web-App/solution/notebook.ipynb new file mode 100644 index 000000000..0db580a96 --- /dev/null +++ b/translations/de/3-Web-App/1-Web-App/solution/notebook.ipynb @@ -0,0 +1,267 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5fa2e8f4584c78250ca9729b46562ceb", + "translation_date": "2025-09-04T02:22:12+00:00", + "source_file": "3-Web-App/1-Web-App/solution/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " datetime city state country shape \\\n", + "0 10/10/1949 20:30 san marcos tx us cylinder \n", + "1 10/10/1949 21:00 lackland afb tx NaN light \n", + "2 10/10/1955 17:00 chester (uk/england) NaN gb circle \n", + "3 10/10/1956 21:00 edna tx us circle \n", + "4 10/10/1960 20:00 kaneohe hi us light \n", + "\n", + " duration (seconds) duration (hours/min) \\\n", + "0 2700.0 45 minutes \n", + "1 7200.0 1-2 hrs \n", + "2 20.0 20 seconds \n", + "3 20.0 1/2 hour \n", + "4 900.0 15 minutes \n", + "\n", + " comments date posted latitude \\\n", + "0 This event took place in early fall around 194... 4/27/2004 29.883056 \n", + "1 1949 Lackland AFB, TX. Lights racing acros... 12/16/2005 29.384210 \n", + "2 Green/Orange circular disc over Chester, En... 1/21/2008 53.200000 \n", + "3 My older brother and twin sister were leaving ... 1/17/2004 28.978333 \n", + "4 AS a Marine 1st Lt. flying an FJ4B fighter/att... 1/22/2004 21.418056 \n", + "\n", + " longitude \n", + "0 -97.941111 \n", + "1 -98.581082 \n", + "2 -2.916667 \n", + "3 -96.645833 \n", + "4 -157.803611 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
datetimecitystatecountryshapeduration (seconds)duration (hours/min)commentsdate postedlatitudelongitude
010/10/1949 20:30san marcostxuscylinder2700.045 minutesThis event took place in early fall around 194...4/27/200429.883056-97.941111
110/10/1949 21:00lackland afbtxNaNlight7200.01-2 hrs1949 Lackland AFB&#44 TX. Lights racing acros...12/16/200529.384210-98.581082
210/10/1955 17:00chester (uk/england)NaNgbcircle20.020 secondsGreen/Orange circular disc over Chester&#44 En...1/21/200853.200000-2.916667
310/10/1956 21:00ednatxuscircle20.01/2 hourMy older brother and twin sister were leaving ...1/17/200428.978333-96.645833
410/10/1960 20:00kaneohehiuslight900.015 minutesAS a Marine 1st Lt. flying an FJ4B fighter/att...1/22/200421.418056-157.803611
\n
" + }, + "metadata": {}, + "execution_count": 23 + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "ufos = pd.read_csv('../data/ufos.csv')\n", + "ufos.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array(['us', nan, 'gb', 'ca', 'au', 'de'], dtype=object)" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ], + "source": [ + "\n", + "ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']})\n", + "\n", + "ufos.Country.unique()\n", + "\n", + "# 0 au, 1 ca, 2 de, 3 gb, 4 us" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nInt64Index: 25863 entries, 2 to 80330\nData columns (total 4 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 Seconds 25863 non-null float64\n 1 Country 25863 non-null object \n 2 Latitude 25863 non-null float64\n 3 Longitude 25863 non-null float64\ndtypes: float64(3), object(1)\nmemory usage: 1010.3+ KB\n" + ] + } + ], + "source": [ + "ufos.dropna(inplace=True)\n", + "\n", + "ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)]\n", + "\n", + "ufos.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Seconds Country Latitude Longitude\n", + "2 20.0 3 53.200000 -2.916667\n", + "3 20.0 4 28.978333 -96.645833\n", + "14 30.0 4 35.823889 -80.253611\n", + "23 60.0 4 45.582778 -122.352222\n", + "24 3.0 3 51.783333 -0.783333" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
SecondsCountryLatitudeLongitude
220.0353.200000-2.916667
320.0428.978333-96.645833
1430.0435.823889-80.253611
2360.0445.582778-122.352222
243.0351.783333-0.783333
\n
" + }, + "metadata": {}, + "execution_count": 26 + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "\n", + "ufos['Country'] = LabelEncoder().fit_transform(ufos['Country'])\n", + "\n", + "ufos.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "Selected_features = ['Seconds','Latitude','Longitude']\n", + "\n", + "X = ufos[Selected_features]\n", + "y = ufos['Country']\n", + "\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", + " FutureWarning)\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", + " \"this warning.\", FutureWarning)\n", + " precision recall f1-score support\n", + "\n", + " 0 1.00 1.00 1.00 41\n", + " 1 1.00 0.02 0.05 250\n", + " 2 0.00 0.00 0.00 8\n", + " 3 0.94 1.00 0.97 131\n", + " 4 0.95 1.00 0.97 4743\n", + "\n", + " accuracy 0.95 5173\n", + " macro avg 0.78 0.60 0.60 5173\n", + "weighted avg 0.95 0.95 0.93 5173\n", + "\n", + "Predicted labels: [4 4 4 ... 3 4 4]\n", + "Accuracy: 0.9512855209742895\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import accuracy_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('Accuracy: ', accuracy_score(y_test, predictions))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[3]\n" + ] + } + ], + "source": [ + "import pickle\n", + "model_filename = 'ufo-model.pkl'\n", + "pickle.dump(model, open(model_filename,'wb'))\n", + "\n", + "model = pickle.load(open('ufo-model.pkl','rb'))\n", + "print(model.predict([[50,44,-12]]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/de/3-Web-App/README.md b/translations/de/3-Web-App/README.md index a9137154d..7aa06731b 100644 --- a/translations/de/3-Web-App/README.md +++ b/translations/de/3-Web-App/README.md @@ -1,24 +1,35 @@ -# Erstelle eine Webanwendung zur Nutzung deines ML-Modells + +# Erstellen Sie eine Web-App zur Nutzung Ihres ML-Modells -In diesem Abschnitt des Lehrplans wirst du in ein angewandtes ML-Thema eingeführt: Wie du dein Scikit-learn-Modell als Datei speicherst, die verwendet werden kann, um Vorhersagen innerhalb einer Webanwendung zu treffen. Sobald das Modell gespeichert ist, lernst du, wie du es in einer in Flask erstellten Webanwendung verwenden kannst. Zuerst erstellst du ein Modell mit Daten, die ganz im Zeichen von UFO-Sichtungen stehen! Dann baust du eine Webanwendung, die es dir ermöglicht, eine Anzahl von Sekunden zusammen mit einem Breitengrad- und Längengradwert einzugeben, um vorherzusagen, welches Land gemeldet hat, ein UFO gesehen zu haben. +In diesem Abschnitt des Lehrplans werden Sie mit einem angewandten ML-Thema vertraut gemacht: wie Sie Ihr Scikit-learn-Modell als Datei speichern können, die innerhalb einer Webanwendung für Vorhersagen verwendet werden kann. Sobald das Modell gespeichert ist, lernen Sie, wie Sie es in einer Web-App verwenden, die mit Flask erstellt wurde. Zunächst erstellen Sie ein Modell mit Daten, die sich mit UFO-Sichtungen befassen! Anschließend entwickeln Sie eine Web-App, die es ermöglicht, eine Anzahl von Sekunden zusammen mit einem Breitengrad- und Längengradwert einzugeben, um vorherzusagen, welches Land eine UFO-Sichtung gemeldet hat. -![UFO Parken](../../../translated_images/ufo.9e787f5161da9d4d1dafc537e1da09be8210f2ee996cb638aa5cee1d92867a04.de.jpg) +![UFO-Parkplatz](../../../translated_images/ufo.9e787f5161da9d4d1dafc537e1da09be8210f2ee996cb638aa5cee1d92867a04.de.jpg) Foto von Michael Herren auf Unsplash ## Lektionen -1. [Erstelle eine Webanwendung](1-Web-App/README.md) +1. [Erstellen Sie eine Web-App](1-Web-App/README.md) -## Danksagungen +## Credits -"Erstelle eine Webanwendung" wurde mit ♥️ von [Jen Looper](https://twitter.com/jenlooper) geschrieben. +"Erstellen Sie eine Web-App" wurde mit ♥️ von [Jen Looper](https://twitter.com/jenlooper) geschrieben. -♥️ Die Quizze wurden von Rohan Raj verfasst. +♥️ Die Quizfragen wurden von Rohan Raj verfasst. Der Datensatz stammt von [Kaggle](https://www.kaggle.com/NUFORC/ufo-sightings). -Die Architektur der Webanwendung wurde teilweise durch [diesen Artikel](https://towardsdatascience.com/how-to-easily-deploy-machine-learning-models-using-flask-b95af8fe34d4) und [dieses Repo](https://github.com/abhinavsagar/machine-learning-deployment) von Abhinav Sagar angeregt. +Die Web-App-Architektur wurde teilweise durch [diesen Artikel](https://towardsdatascience.com/how-to-easily-deploy-machine-learning-models-using-flask-b95af8fe34d4) und [dieses Repository](https://github.com/abhinavsagar/machine-learning-deployment) von Abhinav Sagar inspiriert. + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/4-Classification/1-Introduction/README.md b/translations/de/4-Classification/1-Introduction/README.md index 2b5b794f1..5faf1e216 100644 --- a/translations/de/4-Classification/1-Introduction/README.md +++ b/translations/de/4-Classification/1-Introduction/README.md @@ -1,67 +1,76 @@ + # Einführung in die Klassifikation -In diesen vier Lektionen werden Sie einen grundlegenden Aspekt des klassischen maschinellen Lernens erkunden - _Klassifikation_. Wir werden verschiedene Klassifikationsalgorithmen mit einem Datensatz über die wunderbaren Küchen Asiens und Indiens durchgehen. Hoffentlich haben Sie Hunger! +In diesen vier Lektionen wirst du einen grundlegenden Schwerpunkt des klassischen maschinellen Lernens erkunden – _Klassifikation_. Wir werden verschiedene Klassifikationsalgorithmen mit einem Datensatz über die großartigen Küchen Asiens und Indiens durchgehen. Hoffentlich hast du Appetit! ![nur eine Prise!](../../../../translated_images/pinch.1b035ec9ba7e0d408313b551b60c721c9c290b2dd2094115bc87e6ddacd114c9.de.png) -> Feiern Sie die pan-asiatischen Küchen in diesen Lektionen! Bild von [Jen Looper](https://twitter.com/jenlooper) +> Feiere panasiatische Küchen in diesen Lektionen! Bild von [Jen Looper](https://twitter.com/jenlooper) -Klassifikation ist eine Form des [überwachten Lernens](https://wikipedia.org/wiki/Supervised_learning), die viele Gemeinsamkeiten mit Regressionstechniken hat. Wenn maschinelles Lernen darin besteht, Werte oder Namen für Dinge mithilfe von Datensätzen vorherzusagen, fällt die Klassifikation im Allgemeinen in zwei Gruppen: _binäre Klassifikation_ und _multiklassen Klassifikation_. +Klassifikation ist eine Form des [überwachten Lernens](https://wikipedia.org/wiki/Supervised_learning), die viele Gemeinsamkeiten mit Regressionstechniken hat. Wenn maschinelles Lernen darauf abzielt, Werte oder Namen für Dinge anhand von Datensätzen vorherzusagen, dann fällt die Klassifikation im Allgemeinen in zwei Gruppen: _binäre Klassifikation_ und _Multiklassen-Klassifikation_. [![Einführung in die Klassifikation](https://img.youtube.com/vi/eg8DJYwdMyg/0.jpg)](https://youtu.be/eg8DJYwdMyg "Einführung in die Klassifikation") -> 🎥 Klicken Sie auf das Bild oben für ein Video: MITs John Guttag stellt die Klassifikation vor. +> 🎥 Klicke auf das Bild oben für ein Video: John Guttag von MIT führt in die Klassifikation ein -Denken Sie daran: +Erinnere dich: -- **Lineare Regression** hat Ihnen geholfen, Beziehungen zwischen Variablen vorherzusagen und genaue Vorhersagen darüber zu treffen, wo ein neuer Datenpunkt in Bezug auf diese Linie liegen würde. So könnten Sie beispielsweise vorhersagen, _welchen Preis ein Kürbis im September im Vergleich zu Dezember haben würde_. -- **Logistische Regression** hat Ihnen geholfen, "binäre Kategorien" zu entdecken: An diesem Preis, _ist dieser Kürbis orange oder nicht-orange_? +- **Lineare Regression** half dir, Beziehungen zwischen Variablen vorherzusagen und genaue Vorhersagen darüber zu treffen, wo ein neuer Datenpunkt im Verhältnis zu dieser Linie liegen würde. So konntest du beispielsweise vorhersagen, _wie viel ein Kürbis im September vs. Dezember kosten würde_. +- **Logistische Regression** half dir, "binäre Kategorien" zu entdecken: Bei diesem Preisniveau, _ist dieser Kürbis orange oder nicht-orange_? -Klassifikation verwendet verschiedene Algorithmen, um andere Möglichkeiten zur Bestimmung des Labels oder der Klasse eines Datenpunkts zu ermitteln. Lassen Sie uns mit diesen Küchen-Daten arbeiten, um zu sehen, ob wir durch die Beobachtung einer Gruppe von Zutaten die Herkunftsküche bestimmen können. +Klassifikation verwendet verschiedene Algorithmen, um andere Möglichkeiten zu finden, das Label oder die Klasse eines Datenpunkts zu bestimmen. Lass uns mit diesen Küchendaten arbeiten, um zu sehen, ob wir anhand einer Gruppe von Zutaten die Herkunftsküche bestimmen können. -## [Vorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/) +## [Quiz vor der Lektion](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/) -> ### [Diese Lektion ist in R verfügbar!](../../../../4-Classification/1-Introduction/solution/R/lesson_10.html) +> ### [Diese Lektion ist auch in R verfügbar!](../../../../4-Classification/1-Introduction/solution/R/lesson_10.html) ### Einführung -Klassifikation ist eine der grundlegenden Aktivitäten für Forscher im Bereich maschinelles Lernen und Datenwissenschaftler. Vom grundlegenden Klassifizieren eines binären Wertes ("ist diese E-Mail Spam oder nicht?") bis hin zur komplexen Bildklassifikation und -segmentierung mithilfe von Computer Vision ist es immer nützlich, Daten in Klassen zu sortieren und Fragen dazu zu stellen. +Klassifikation ist eine der grundlegenden Tätigkeiten von Forschern und Datenwissenschaftlern im Bereich des maschinellen Lernens. Von der einfachen Klassifikation eines binären Wertes ("Ist diese E-Mail Spam oder nicht?") bis hin zur komplexen Bildklassifikation und -segmentierung mit Computer Vision – es ist immer nützlich, Daten in Klassen zu sortieren und Fragen dazu zu stellen. -Um den Prozess wissenschaftlicher zu formulieren, erstellt Ihre Klassifikationsmethode ein prädiktives Modell, das es Ihnen ermöglicht, die Beziehung zwischen Eingangsvariablen und Ausgangsvariablen abzubilden. +Um den Prozess wissenschaftlicher auszudrücken: Deine Klassifikationsmethode erstellt ein prädiktives Modell, das es dir ermöglicht, die Beziehung zwischen Eingabevariablen und Ausgabevariablen abzubilden. -![binäre vs. multiklassen Klassifikation](../../../../translated_images/binary-multiclass.b56d0c86c81105a697dddd82242c1d11e4d78b7afefea07a44627a0f1111c1a9.de.png) +![binäre vs. Multiklassen-Klassifikation](../../../../translated_images/binary-multiclass.b56d0c86c81105a697dddd82242c1d11e4d78b7afefea07a44627a0f1111c1a9.de.png) -> Binäre vs. multiklassen Probleme für Klassifikationsalgorithmen. Infografik von [Jen Looper](https://twitter.com/jenlooper) +> Binäre vs. Multiklassen-Probleme, die Klassifikationsalgorithmen bewältigen können. Infografik von [Jen Looper](https://twitter.com/jenlooper) -Bevor wir mit dem Prozess beginnen, unsere Daten zu bereinigen, sie zu visualisieren und sie für unsere ML-Aufgaben vorzubereiten, lassen Sie uns ein wenig darüber lernen, wie maschinelles Lernen genutzt werden kann, um Daten zu klassifizieren. +Bevor wir mit dem Prozess des Bereinigens, Visualisierens und Vorbereitens unserer Daten für unsere ML-Aufgaben beginnen, lass uns ein wenig über die verschiedenen Möglichkeiten lernen, wie maschinelles Lernen zur Klassifikation von Daten genutzt werden kann. -Abgeleitet von [Statistik](https://wikipedia.org/wiki/Statistical_classification) verwendet die Klassifikation im klassischen maschinellen Lernen Merkmale wie `smoker`, `weight` und `age`, um _die Wahrscheinlichkeit der Entwicklung von X Krankheit_ zu bestimmen. Als eine überwachte Lerntechnik, die den Regressionsübungen ähnelt, die Sie zuvor durchgeführt haben, sind Ihre Daten beschriftet und die ML-Algorithmen verwenden diese Labels, um Klassen (oder 'Merkmale') eines Datensatzes zu klassifizieren und sie einer Gruppe oder einem Ergebnis zuzuordnen. +Abgeleitet aus der [Statistik](https://wikipedia.org/wiki/Statistical_classification) verwendet die Klassifikation im klassischen maschinellen Lernen Merkmale wie `smoker`, `weight` und `age`, um die _Wahrscheinlichkeit der Entwicklung von Krankheit X_ zu bestimmen. Als eine Technik des überwachten Lernens, ähnlich den Regressionsexperimenten, die du zuvor durchgeführt hast, sind deine Daten beschriftet, und die ML-Algorithmen verwenden diese Beschriftungen, um Klassen (oder 'Merkmale') eines Datensatzes zu klassifizieren und vorherzusagen und sie einer Gruppe oder einem Ergebnis zuzuordnen. -✅ Nehmen Sie sich einen Moment Zeit, um sich einen Datensatz über Küchen vorzustellen. Was könnte ein Multiklassenmodell beantworten? Was könnte ein binäres Modell beantworten? Was wäre, wenn Sie bestimmen wollten, ob eine bestimmte Küche wahrscheinlich Bockshornkleesamen verwendet? Was wäre, wenn Sie sehen wollten, ob Sie aus einem Geschenk einer Einkaufstasche voller Sternanis, Artischocken, Blumenkohl und Meerrettich ein typisches indisches Gericht kreieren könnten? +✅ Nimm dir einen Moment Zeit, um dir einen Datensatz über Küchen vorzustellen. Welche Fragen könnte ein Multiklassen-Modell beantworten? Welche Fragen könnte ein binäres Modell beantworten? Was wäre, wenn du herausfinden möchtest, ob eine bestimmte Küche wahrscheinlich Bockshornklee verwendet? Was wäre, wenn du herausfinden möchtest, ob du mit einer Tüte voller Sternanis, Artischocken, Blumenkohl und Meerrettich ein typisches indisches Gericht zubereiten könntest? [![Verrückte Mystery-Körbe](https://img.youtube.com/vi/GuTeDbaNoEU/0.jpg)](https://youtu.be/GuTeDbaNoEU "Verrückte Mystery-Körbe") -> 🎥 Klicken Sie auf das Bild oben für ein Video. Das gesamte Konzept der Show 'Chopped' ist der 'Mystery Basket', bei dem Köche aus einer zufälligen Auswahl von Zutaten ein Gericht zubereiten müssen. Sicherlich hätte ein ML-Modell geholfen! +> 🎥 Klicke auf das Bild oben für ein Video. Das ganze Konzept der Show 'Chopped' basiert auf dem 'Mystery-Korb', bei dem Köche aus einer zufälligen Auswahl von Zutaten ein Gericht zubereiten müssen. Sicherlich hätte ein ML-Modell geholfen! -## Hallo 'Klassifizierer' +## Hallo 'Classifier' -Die Frage, die wir zu diesem Küchen-Datensatz stellen möchten, ist tatsächlich eine **Multiklassenfrage**, da wir mehrere potenzielle nationale Küchen zur Verfügung haben. Angesichts einer Reihe von Zutaten, zu welcher dieser vielen Klassen passt die Daten? +Die Frage, die wir diesem Küchendatensatz stellen möchten, ist tatsächlich eine **Multiklassen-Frage**, da wir mehrere potenzielle nationale Küchen zur Auswahl haben. Angenommen, wir haben eine Gruppe von Zutaten – zu welcher dieser vielen Klassen passt die Daten? -Scikit-learn bietet verschiedene Algorithmen zur Klassifizierung von Daten an, abhängig von der Art des Problems, das Sie lösen möchten. In den nächsten beiden Lektionen lernen Sie mehrere dieser Algorithmen kennen. +Scikit-learn bietet verschiedene Algorithmen zur Klassifikation von Daten, je nachdem, welche Art von Problem du lösen möchtest. In den nächsten zwei Lektionen wirst du einige dieser Algorithmen kennenlernen. -## Übung - Bereinigen und Ausbalancieren Ihrer Daten +## Übung – Daten bereinigen und ausbalancieren -Die erste Aufgabe, bevor Sie mit diesem Projekt beginnen, besteht darin, Ihre Daten zu bereinigen und **auszubalancieren**, um bessere Ergebnisse zu erzielen. Beginnen Sie mit der leeren Datei _notebook.ipynb_ im Stammverzeichnis dieses Ordners. +Die erste Aufgabe, bevor du mit diesem Projekt beginnst, besteht darin, deine Daten zu bereinigen und **auszubalancieren**, um bessere Ergebnisse zu erzielen. Beginne mit der leeren Datei _notebook.ipynb_ im Stammverzeichnis dieses Ordners. -Das erste, was Sie installieren müssen, ist [imblearn](https://imbalanced-learn.org/stable/). Dies ist ein Scikit-learn-Paket, das es Ihnen ermöglicht, die Daten besser auszubalancieren (Sie werden in einer Minute mehr über diese Aufgabe erfahren). +Das erste, was du installieren musst, ist [imblearn](https://imbalanced-learn.org/stable/). Dies ist ein Scikit-learn-Paket, das dir ermöglicht, die Daten besser auszubalancieren (du wirst gleich mehr über diese Aufgabe erfahren). -1. Um `imblearn` zu installieren, führen Sie `pip install` aus, so: +1. Um `imblearn` zu installieren, führe `pip install` aus, wie folgt: ```python pip install imblearn ``` -1. Importieren Sie die Pakete, die Sie benötigen, um Ihre Daten zu importieren und zu visualisieren, und importieren Sie auch `SMOTE` von `imblearn`. +1. Importiere die Pakete, die du benötigst, um deine Daten zu importieren und zu visualisieren, und importiere auch `SMOTE` aus `imblearn`. ```python import pandas as pd @@ -71,17 +80,17 @@ Das erste, was Sie installieren müssen, ist [imblearn](https://imbalanced-learn from imblearn.over_sampling import SMOTE ``` - Jetzt sind Sie bereit, die Daten als Nächstes zu importieren. + Jetzt bist du bereit, die Daten zu importieren. -1. Die nächste Aufgabe wird sein, die Daten zu importieren: +1. Die nächste Aufgabe besteht darin, die Daten zu importieren: ```python df = pd.read_csv('../data/cuisines.csv') ``` - Verwenden Sie `read_csv()` will read the content of the csv file _cusines.csv_ and place it in the variable `df`. + Mit `read_csv()` werden die Inhalte der CSV-Datei _cusines.csv_ gelesen und in der Variable `df` gespeichert. -1. Überprüfen Sie die Form der Daten: +1. Überprüfe die Form der Daten: ```python df.head() @@ -99,13 +108,13 @@ Das erste, was Sie installieren müssen, ist [imblearn](https://imbalanced-learn | 4 | 69 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ``` -1. Holen Sie sich Informationen über diese Daten, indem Sie `info()` aufrufen: +1. Rufe `info()` auf, um Informationen über die Daten zu erhalten: ```python df.info() ``` - Ihre Ausgabe sieht so aus: + Deine Ausgabe sieht so aus: ```output @@ -115,21 +124,21 @@ Das erste, was Sie installieren müssen, ist [imblearn](https://imbalanced-learn memory usage: 7.2+ MB ``` -## Übung - Lernen über Küchen +## Übung – Küchen entdecken -Jetzt wird die Arbeit interessanter. Lassen Sie uns die Verteilung der Daten nach Küche entdecken. +Jetzt wird die Arbeit interessanter. Lass uns die Verteilung der Daten pro Küche entdecken. -1. Zeichnen Sie die Daten als Balken, indem Sie `barh()` aufrufen: +1. Plotte die Daten als Balken, indem du `barh()` aufrufst: ```python df.cuisine.value_counts().plot.barh() ``` - ![Verteilung der Küchen-Daten](../../../../translated_images/cuisine-dist.d0cc2d551abe5c25f83d73a5f560927e4a061e9a4560bac1e97d35682ef3ca6d.de.png) + ![Verteilung der Küchendaten](../../../../translated_images/cuisine-dist.d0cc2d551abe5c25f83d73a5f560927e4a061e9a4560bac1e97d35682ef3ca6d.de.png) - Es gibt eine endliche Anzahl von Küchen, aber die Verteilung der Daten ist ungleichmäßig. Das können Sie beheben! Bevor Sie das tun, erkunden Sie noch ein wenig mehr. + Es gibt eine begrenzte Anzahl von Küchen, aber die Verteilung der Daten ist ungleichmäßig. Du kannst das beheben! Bevor du das tust, erkunde die Daten ein wenig mehr. -1. Finden Sie heraus, wie viele Daten pro Küche verfügbar sind, und geben Sie sie aus: +1. Finde heraus, wie viele Daten pro Küche verfügbar sind, und gib sie aus: ```python thai_df = df[(df.cuisine == "thai")] @@ -155,11 +164,11 @@ Jetzt wird die Arbeit interessanter. Lassen Sie uns die Verteilung der Daten nac korean df: (799, 385) ``` -## Entdecken von Zutaten +## Zutaten entdecken -Jetzt können Sie tiefer in die Daten eintauchen und lernen, welche typischen Zutaten pro Küche verwendet werden. Sie sollten wiederkehrende Daten bereinigen, die Verwirrung zwischen den Küchen stiften, also lassen Sie uns mehr über dieses Problem lernen. +Jetzt kannst du tiefer in die Daten eintauchen und herausfinden, welche typischen Zutaten pro Küche vorkommen. Du solltest wiederkehrende Daten bereinigen, die Verwirrung zwischen den Küchen schaffen. Lass uns mehr über dieses Problem erfahren. -1. Erstellen Sie eine Funktion `create_ingredient()` in Python, um einen Zutaten-Datenrahmen zu erstellen. Diese Funktion beginnt damit, eine nicht hilfreiche Spalte zu entfernen und die Zutaten nach ihrer Häufigkeit zu sortieren: +1. Erstelle eine Funktion `create_ingredient()` in Python, um ein Zutaten-Datenframe zu erstellen. Diese Funktion beginnt damit, eine wenig hilfreiche Spalte zu entfernen und Zutaten nach ihrer Häufigkeit zu sortieren: ```python def create_ingredient_df(df): @@ -170,9 +179,9 @@ Jetzt können Sie tiefer in die Daten eintauchen und lernen, welche typischen Zu return ingredient_df ``` - Jetzt können Sie diese Funktion verwenden, um eine Vorstellung von den zehn beliebtesten Zutaten pro Küche zu bekommen. + Jetzt kannst du diese Funktion verwenden, um eine Vorstellung von den zehn beliebtesten Zutaten pro Küche zu bekommen. -1. Rufen Sie `create_ingredient()` and plot it calling `barh()` auf: +1. Rufe `create_ingredient()` auf und plotte die Daten mit `barh()`: ```python thai_ingredient_df = create_ingredient_df(thai_df) @@ -181,7 +190,7 @@ Jetzt können Sie tiefer in die Daten eintauchen und lernen, welche typischen Zu ![thai](../../../../translated_images/thai.0269dbab2e78bd38a132067759fe980008bdb80b6d778e5313448dbe12bed846.de.png) -1. Machen Sie dasselbe für die japanischen Daten: +1. Mache dasselbe für die japanischen Daten: ```python japanese_ingredient_df = create_ingredient_df(japanese_df) @@ -190,7 +199,7 @@ Jetzt können Sie tiefer in die Daten eintauchen und lernen, welche typischen Zu ![japanisch](../../../../translated_images/japanese.30260486f2a05c463c8faa62ebe7b38f0961ed293bd9a6db8eef5d3f0cf17155.de.png) -1. Jetzt für die chinesischen Zutaten: +1. Nun für die chinesischen Zutaten: ```python chinese_ingredient_df = create_ingredient_df(chinese_df) @@ -199,7 +208,7 @@ Jetzt können Sie tiefer in die Daten eintauchen und lernen, welche typischen Zu ![chinesisch](../../../../translated_images/chinese.e62cafa5309f111afd1b54490336daf4e927ce32bed837069a0b7ce481dfae8d.de.png) -1. Zeichnen Sie die indischen Zutaten: +1. Plotte die indischen Zutaten: ```python indian_ingredient_df = create_ingredient_df(indian_df) @@ -208,7 +217,7 @@ Jetzt können Sie tiefer in die Daten eintauchen und lernen, welche typischen Zu ![indisch](../../../../translated_images/indian.2c4292002af1a1f97a4a24fec6b1459ee8ff616c3822ae56bb62b9903e192af6.de.png) -1. Schließlich zeichnen Sie die koreanischen Zutaten: +1. Schließlich plotte die koreanischen Zutaten: ```python korean_ingredient_df = create_ingredient_df(korean_df) @@ -217,7 +226,7 @@ Jetzt können Sie tiefer in die Daten eintauchen und lernen, welche typischen Zu ![koreanisch](../../../../translated_images/korean.4a4f0274f3d9805a65e61f05597eeaad8620b03be23a2c0a705c023f65fad2c0.de.png) -1. Jetzt entfernen Sie die häufigsten Zutaten, die Verwirrung zwischen verschiedenen Küchen stiften, indem Sie `drop()` aufrufen: +1. Entferne nun die häufigsten Zutaten, die Verwirrung zwischen verschiedenen Küchen schaffen, indem du `drop()` aufrufst: Jeder liebt Reis, Knoblauch und Ingwer! @@ -227,27 +236,27 @@ Jetzt können Sie tiefer in die Daten eintauchen und lernen, welche typischen Zu feature_df.head() ``` -## Balancieren des Datensatzes +## Datensatz ausbalancieren -Jetzt, wo Sie die Daten bereinigt haben, verwenden Sie [SMOTE](https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html) - "Synthetic Minority Over-sampling Technique" - um ihn auszugleichen. +Nachdem du die Daten bereinigt hast, verwende [SMOTE](https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html) – "Synthetic Minority Over-sampling Technique" – um sie auszugleichen. -1. Rufen Sie `fit_resample()` auf, diese Strategie generiert neue Proben durch Interpolation. +1. Rufe `fit_resample()` auf. Diese Strategie generiert neue Stichproben durch Interpolation. ```python oversample = SMOTE() transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df) ``` - Durch das Ausbalancieren Ihrer Daten erzielen Sie bessere Ergebnisse bei der Klassifikation. Denken Sie an eine binäre Klassifikation. Wenn die meisten Ihrer Daten einer Klasse angehören, wird ein ML-Modell diese Klasse häufiger vorhersagen, nur weil es mehr Daten dafür gibt. Das Ausbalancieren der Daten hilft, unausgewogene Daten zu beseitigen. + Durch das Ausbalancieren deiner Daten erzielst du bessere Ergebnisse bei der Klassifikation. Denke an eine binäre Klassifikation. Wenn die meisten deiner Daten einer Klasse angehören, wird ein ML-Modell diese Klasse häufiger vorhersagen, einfach weil es mehr Daten dafür gibt. Das Ausbalancieren der Daten nimmt jede Verzerrung und hilft, diese Ungleichheit zu beseitigen. -1. Jetzt können Sie die Anzahl der Labels pro Zutat überprüfen: +1. Jetzt kannst du die Anzahl der Labels pro Zutat überprüfen: ```python print(f'new label count: {transformed_label_df.value_counts()}') print(f'old label count: {df.cuisine.value_counts()}') ``` - Ihre Ausgabe sieht so aus: + Deine Ausgabe sieht so aus: ```output new label count: korean 799 @@ -264,15 +273,15 @@ Jetzt, wo Sie die Daten bereinigt haben, verwenden Sie [SMOTE](https://imbalance Name: cuisine, dtype: int64 ``` - Die Daten sind schön und sauber, ausgewogen und sehr lecker! + Die Daten sind schön sauber, ausgeglichen und sehr lecker! -1. Der letzte Schritt besteht darin, Ihre ausgewogenen Daten, einschließlich Labels und Merkmale, in einen neuen Datenrahmen zu speichern, der in eine Datei exportiert werden kann: +1. Der letzte Schritt besteht darin, deine ausgeglichenen Daten, einschließlich Labels und Features, in ein neues Datenframe zu speichern, das in eine Datei exportiert werden kann: ```python transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer') ``` -1. Sie können einen weiteren Blick auf die Daten werfen, indem Sie `transformed_df.head()` and `transformed_df.info()` aufrufen. Speichern Sie eine Kopie dieser Daten für zukünftige Lektionen: +1. Du kannst dir die Daten noch einmal mit `transformed_df.head()` und `transformed_df.info()` ansehen. Speichere eine Kopie dieser Daten für die Verwendung in zukünftigen Lektionen: ```python transformed_df.head() @@ -280,23 +289,25 @@ Jetzt, wo Sie die Daten bereinigt haben, verwenden Sie [SMOTE](https://imbalance transformed_df.to_csv("../data/cleaned_cuisines.csv") ``` - Diese frische CSV ist jetzt im Stammordner der Daten zu finden. + Diese frische CSV-Datei befindet sich jetzt im Stammordner der Daten. --- -## 🚀Herausforderung +## 🚀 Herausforderung -Dieser Lehrplan enthält mehrere interessante Datensätze. Durchsuchen Sie die `data`-Ordner und sehen Sie, ob einige Datensätze enthalten, die für binäre oder Multiklassenklassifikation geeignet wären? Welche Fragen würden Sie zu diesem Datensatz stellen? +Dieses Curriculum enthält mehrere interessante Datensätze. Durchsuche die `data`-Ordner und sieh nach, ob einer Datensätze enthält, die für binäre oder Multiklassen-Klassifikation geeignet wären. Welche Fragen würdest du diesem Datensatz stellen? -## [Nachlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/) +## [Quiz nach der Lektion](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/) ## Überprüfung & Selbststudium -Erforschen Sie die API von SMOTE. Für welche Anwendungsfälle wird es am besten verwendet? Welche Probleme löst es? +Erkunde die API von SMOTE. Für welche Anwendungsfälle ist sie am besten geeignet? Welche Probleme löst sie? ## Aufgabe -[Erforschen Sie Klassifikationsmethoden](assignment.md) +[Erkunde Klassifikationsmethoden](assignment.md) + +--- **Haftungsausschluss**: -Dieses Dokument wurde mithilfe von KI-gestützten Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, sollten Sie beachten, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle angesehen werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/4-Classification/1-Introduction/assignment.md b/translations/de/4-Classification/1-Introduction/assignment.md index 55c04b794..c3eb3b652 100644 --- a/translations/de/4-Classification/1-Introduction/assignment.md +++ b/translations/de/4-Classification/1-Introduction/assignment.md @@ -1,14 +1,25 @@ -# Klassifikationsmethoden erkunden + +# Erkunde Klassifikationsmethoden ## Anweisungen -In der [Scikit-learn-Dokumentation](https://scikit-learn.org/stable/supervised_learning.html) finden Sie eine große Liste von Möglichkeiten zur Klassifizierung von Daten. Machen Sie eine kleine Schnitzeljagd in diesen Dokumenten: Ihr Ziel ist es, Klassifikationsmethoden zu suchen und einen Datensatz aus diesem Lehrplan zuzuordnen, eine Frage, die Sie dazu stellen können, und eine Klassifikationstechnik. Erstellen Sie eine Tabelle oder ein Spreadsheet in einer .doc-Datei und erläutern Sie, wie der Datensatz mit dem Klassifikationsalgorithmus zusammenarbeiten würde. +In der [Scikit-learn-Dokumentation](https://scikit-learn.org/stable/supervised_learning.html) findest du eine umfangreiche Liste von Möglichkeiten, Daten zu klassifizieren. Mach eine kleine Schnitzeljagd in diesen Dokumenten: Dein Ziel ist es, Klassifikationsmethoden zu finden und sie mit einem Datensatz aus diesem Lehrplan, einer dazu passenden Fragestellung und einer Klassifikationstechnik zu kombinieren. Erstelle eine Tabelle oder ein Dokument in einer .doc-Datei und erkläre, wie der Datensatz mit dem Klassifikationsalgorithmus funktionieren würde. -## Bewertungsrichtlinien +## Bewertungskriterien -| Kriterien | Hervorragend | Angemessen | Verbesserungsbedarf | -| --------- | ---------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- | -| | Ein Dokument wird präsentiert, das 5 Algorithmen zusammen mit einer Klassifikationstechnik überblickt. Der Überblick ist gut erklärt und detailliert. | Ein Dokument wird präsentiert, das 3 Algorithmen zusammen mit einer Klassifikationstechnik überblickt. Der Überblick ist gut erklärt und detailliert. | Ein Dokument wird präsentiert, das weniger als drei Algorithmen zusammen mit einer Klassifikationstechnik überblickt und der Überblick ist weder gut erklärt noch detailliert. | +| Kriterien | Vorbildlich | Angemessen | Verbesserungswürdig | +| --------- | ----------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| | Ein Dokument wird präsentiert, das einen Überblick über 5 Algorithmen zusammen mit einer Klassifikationstechnik bietet. Der Überblick ist gut erklärt und detailliert. | Ein Dokument wird präsentiert, das einen Überblick über 3 Algorithmen zusammen mit einer Klassifikationstechnik bietet. Der Überblick ist gut erklärt und detailliert. | Ein Dokument wird präsentiert, das einen Überblick über weniger als drei Algorithmen zusammen mit einer Klassifikationstechnik bietet, und der Überblick ist weder gut erklärt noch detailliert. | + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, bitten wir zu beachten, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/4-Classification/1-Introduction/notebook.ipynb b/translations/de/4-Classification/1-Introduction/notebook.ipynb new file mode 100644 index 000000000..6529e883b --- /dev/null +++ b/translations/de/4-Classification/1-Introduction/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d544ef384b7ba73757d830a72372a7f2", + "translation_date": "2025-09-04T02:40:03+00:00", + "source_file": "4-Classification/1-Introduction/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/de/4-Classification/1-Introduction/solution/Julia/README.md b/translations/de/4-Classification/1-Introduction/solution/Julia/README.md index 79abfd0ef..90d0e3197 100644 --- a/translations/de/4-Classification/1-Introduction/solution/Julia/README.md +++ b/translations/de/4-Classification/1-Introduction/solution/Julia/README.md @@ -1,6 +1,15 @@ -Dies ist ein vorübergehender PlatzhalterBitte schreiben Sie die Ausgabe von links nach rechts. + -Dies ist ein vorübergehender Platzhalter + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb b/translations/de/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb new file mode 100644 index 000000000..455578f47 --- /dev/null +++ b/translations/de/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb @@ -0,0 +1,727 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_10-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "2621e24705e8100893c9bf84e0fc8aef", + "translation_date": "2025-09-04T02:48:56+00:00", + "source_file": "4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb", + "language_code": "de" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Erstellen Sie ein Klassifikationsmodell: Köstliche asiatische und indische Küchen\n" + ], + "metadata": { + "id": "ItETB4tSFprR" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Einführung in die Klassifikation: Daten bereinigen, vorbereiten und visualisieren\n", + "\n", + "In diesen vier Lektionen wirst du einen grundlegenden Schwerpunkt des klassischen maschinellen Lernens erkunden - *Klassifikation*. Wir werden verschiedene Klassifikationsalgorithmen mit einem Datensatz über die großartigen Küchen Asiens und Indiens durchgehen. Hoffentlich hast du Appetit!\n", + "\n", + "

\n", + " \n", + "

Feiere pan-asiatische Küchen in diesen Lektionen! Bild von Jen Looper
\n", + "\n", + "\n", + "\n", + "\n", + "Klassifikation ist eine Form des [überwachten Lernens](https://wikipedia.org/wiki/Supervised_learning), die viele Gemeinsamkeiten mit Regressionstechniken hat. Bei der Klassifikation trainierst du ein Modell, um vorherzusagen, zu welcher `Kategorie` ein Element gehört. Wenn maschinelles Lernen darauf abzielt, Werte oder Namen von Dingen mithilfe von Datensätzen vorherzusagen, fällt die Klassifikation im Allgemeinen in zwei Gruppen: *binäre Klassifikation* und *Mehrklassenklassifikation*.\n", + "\n", + "Denke daran:\n", + "\n", + "- **Lineare Regression** hat dir geholfen, Beziehungen zwischen Variablen vorherzusagen und genaue Vorhersagen darüber zu treffen, wo ein neuer Datenpunkt in Bezug auf diese Linie liegen würde. So konntest du beispielsweise numerische Werte wie *den Preis eines Kürbisses im September vs. Dezember* vorhersagen.\n", + "\n", + "- **Logistische Regression** hat dir geholfen, \"binäre Kategorien\" zu entdecken: Bei diesem Preisniveau, *ist dieser Kürbis orange oder nicht-orange*?\n", + "\n", + "Klassifikation verwendet verschiedene Algorithmen, um andere Möglichkeiten zu finden, das Label oder die Klasse eines Datenpunkts zu bestimmen. Lass uns mit diesen Küchendaten arbeiten, um herauszufinden, ob wir anhand einer Gruppe von Zutaten die Herkunftsküche bestimmen können.\n", + "\n", + "### [**Quiz vor der Lektion**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/)\n", + "\n", + "### **Einführung**\n", + "\n", + "Klassifikation ist eine der grundlegenden Tätigkeiten eines Forschers im Bereich maschinelles Lernen und eines Datenwissenschaftlers. Von der einfachen Klassifikation eines binären Wertes (\"Ist diese E-Mail Spam oder nicht?\") bis hin zur komplexen Bildklassifikation und Segmentierung mithilfe von Computer Vision ist es immer nützlich, Daten in Klassen zu sortieren und Fragen dazu zu stellen.\n", + "\n", + "Um den Prozess wissenschaftlicher auszudrücken: Deine Klassifikationsmethode erstellt ein prädiktives Modell, das es dir ermöglicht, die Beziehung zwischen Eingabevariablen und Ausgabevariablen abzubilden.\n", + "\n", + "

\n", + " \n", + "

Binäre vs. Mehrklassenprobleme, die Klassifikationsalgorithmen bewältigen können. Infografik von Jen Looper
\n", + "\n", + "\n", + "\n", + "Bevor wir mit dem Bereinigen unserer Daten, ihrer Visualisierung und Vorbereitung für unsere ML-Aufgaben beginnen, lass uns ein wenig über die verschiedenen Möglichkeiten lernen, wie maschinelles Lernen genutzt werden kann, um Daten zu klassifizieren.\n", + "\n", + "Abgeleitet aus der [Statistik](https://wikipedia.org/wiki/Statistical_classification) verwendet die Klassifikation im klassischen maschinellen Lernen Merkmale wie `Raucher`, `Gewicht` und `Alter`, um die *Wahrscheinlichkeit der Entwicklung von Krankheit X* zu bestimmen. Als eine Technik des überwachten Lernens, ähnlich den Regressionsexperimenten, die du zuvor durchgeführt hast, sind deine Daten beschriftet, und die ML-Algorithmen verwenden diese Beschriftungen, um Klassen (oder 'Merkmale') eines Datensatzes zu klassifizieren und sie einer Gruppe oder einem Ergebnis zuzuordnen.\n", + "\n", + "✅ Nimm dir einen Moment Zeit, um dir einen Datensatz über Küchen vorzustellen. Welche Fragen könnte ein Mehrklassenmodell beantworten? Welche Fragen könnte ein binäres Modell beantworten? Was wäre, wenn du herausfinden möchtest, ob eine bestimmte Küche wahrscheinlich Bockshornklee verwendet? Was wäre, wenn du herausfinden möchtest, ob du mit einer Tüte voller Sternanis, Artischocken, Blumenkohl und Meerrettich ein typisches indisches Gericht zubereiten könntest?\n", + "\n", + "### **Hallo 'Classifier'**\n", + "\n", + "Die Frage, die wir diesem Küchendatensatz stellen möchten, ist tatsächlich eine **Mehrklassenfrage**, da wir mehrere potenzielle nationale Küchen zur Auswahl haben. Angenommen, wir haben eine Gruppe von Zutaten - zu welcher dieser vielen Klassen passt die Daten?\n", + "\n", + "Tidymodels bietet verschiedene Algorithmen, um Daten zu klassifizieren, je nachdem, welche Art von Problem du lösen möchtest. In den nächsten zwei Lektionen wirst du einige dieser Algorithmen kennenlernen.\n", + "\n", + "#### **Voraussetzung**\n", + "\n", + "Für diese Lektion benötigen wir die folgenden Pakete, um unsere Daten zu bereinigen, vorzubereiten und zu visualisieren:\n", + "\n", + "- `tidyverse`: Das [tidyverse](https://www.tidyverse.org/) ist eine [Sammlung von R-Paketen](https://www.tidyverse.org/packages), die darauf abzielt, Datenwissenschaft schneller, einfacher und unterhaltsamer zu machen!\n", + "\n", + "- `tidymodels`: Das [tidymodels](https://www.tidymodels.org/) Framework ist eine [Sammlung von Paketen](https://www.tidymodels.org/packages/) für Modellierung und maschinelles Lernen.\n", + "\n", + "- `DataExplorer`: Das [DataExplorer-Paket](https://cran.r-project.org/web/packages/DataExplorer/vignettes/dataexplorer-intro.html) soll den EDA-Prozess und die Berichterstellung vereinfachen und automatisieren.\n", + "\n", + "- `themis`: Das [themis-Paket](https://themis.tidymodels.org/) bietet zusätzliche Rezeptschritte für den Umgang mit unausgewogenen Daten.\n", + "\n", + "Du kannst sie wie folgt installieren:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "Alternativ überprüft das untenstehende Skript, ob du die Pakete hast, die für die Durchführung dieses Moduls erforderlich sind, und installiert sie für dich, falls sie fehlen.\n" + ], + "metadata": { + "id": "ri5bQxZ-Fz_0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, DataExplorer, themis, here)" + ], + "outputs": [], + "metadata": { + "id": "KIPxa4elGAPI" + } + }, + { + "cell_type": "markdown", + "source": [ + "Wir werden später diese großartigen Pakete laden und in unserer aktuellen R-Sitzung verfügbar machen. (Dies dient nur zur Veranschaulichung, `pacman::p_load()` hat das bereits für Sie erledigt)\n" + ], + "metadata": { + "id": "YkKAxOJvGD4C" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Übung – Daten bereinigen und ausbalancieren\n", + "\n", + "Die erste Aufgabe, bevor Sie mit diesem Projekt beginnen, besteht darin, Ihre Daten zu bereinigen und **auszubalancieren**, um bessere Ergebnisse zu erzielen.\n", + "\n", + "Lernen wir die Daten kennen! 🕵️\n" + ], + "metadata": { + "id": "PFkQDlk0GN5O" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# View the first 5 rows\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": { + "id": "Qccw7okxGT0S" + } + }, + { + "cell_type": "markdown", + "source": [ + "Interessant! Vom Aussehen her ist die erste Spalte eine Art `id`-Spalte. Lassen Sie uns ein wenig mehr Informationen über die Daten erhalten.\n" + ], + "metadata": { + "id": "XrWnlgSrGVmR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Basic information about the data\r\n", + "df %>%\r\n", + " introduce()\r\n", + "\r\n", + "# Visualize basic information above\r\n", + "df %>% \r\n", + " plot_intro(ggtheme = theme_light())" + ], + "outputs": [], + "metadata": { + "id": "4UcGmxRxGieA" + } + }, + { + "cell_type": "markdown", + "source": [ + "Aus der Ausgabe können wir sofort erkennen, dass wir `2448` Zeilen und `385` Spalten sowie `0` fehlende Werte haben. Außerdem haben wir eine diskrete Spalte, *cuisine*.\n", + "\n", + "## Übung - mehr über Küchen lernen\n", + "\n", + "Jetzt wird die Arbeit interessanter. Lassen Sie uns die Verteilung der Daten pro Küche entdecken.\n" + ], + "metadata": { + "id": "AaPubl__GmH5" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Count observations per cuisine\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(n)\r\n", + "\r\n", + "# Plot the distribution\r\n", + "theme_set(theme_light())\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " ggplot(mapping = aes(x = n, y = reorder(cuisine, -n))) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"cuisine\")" + ], + "outputs": [], + "metadata": { + "id": "FRsBVy5eGrrv" + } + }, + { + "cell_type": "markdown", + "source": [ + "Es gibt eine begrenzte Anzahl von Küchen, aber die Verteilung der Daten ist ungleichmäßig. Du kannst das ändern! Bevor du das tust, erkunde die Daten ein wenig mehr.\n", + "\n", + "Als Nächstes ordnen wir jede Küche in ihre eigene Tibble und finden heraus, wie viele Daten (Zeilen, Spalten) pro Küche verfügbar sind.\n", + "\n", + "> Ein [tibble](https://tibble.tidyverse.org/) ist ein modernes Daten-Frame.\n", + "\n", + "

\n", + " \n", + "

Kunstwerk von @allison_horst
\n" + ], + "metadata": { + "id": "vVvyDb1kG2in" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create individual tibble for the cuisines\r\n", + "thai_df <- df %>% \r\n", + " filter(cuisine == \"thai\")\r\n", + "japanese_df <- df %>% \r\n", + " filter(cuisine == \"japanese\")\r\n", + "chinese_df <- df %>% \r\n", + " filter(cuisine == \"chinese\")\r\n", + "indian_df <- df %>% \r\n", + " filter(cuisine == \"indian\")\r\n", + "korean_df <- df %>% \r\n", + " filter(cuisine == \"korean\")\r\n", + "\r\n", + "\r\n", + "# Find out how much data is available per cuisine\r\n", + "cat(\" thai df:\", dim(thai_df), \"\\n\",\r\n", + " \"japanese df:\", dim(japanese_df), \"\\n\",\r\n", + " \"chinese_df:\", dim(chinese_df), \"\\n\",\r\n", + " \"indian_df:\", dim(indian_df), \"\\n\",\r\n", + " \"korean_df:\", dim(korean_df))" + ], + "outputs": [], + "metadata": { + "id": "0TvXUxD3G8Bk" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **Übung - Entdecken der wichtigsten Zutaten nach Küche mit dplyr**\n", + "\n", + "Jetzt kannst du tiefer in die Daten eintauchen und herausfinden, welche typischen Zutaten zu den verschiedenen Küchen gehören. Du solltest wiederkehrende Daten bereinigen, die Verwirrung zwischen den Küchen stiften, also lass uns mehr über dieses Problem lernen.\n", + "\n", + "Erstelle eine Funktion `create_ingredient()` in R, die ein Zutaten-Datenframe zurückgibt. Diese Funktion beginnt damit, eine wenig hilfreiche Spalte zu entfernen und die Zutaten nach ihrer Häufigkeit zu sortieren.\n", + "\n", + "Die grundlegende Struktur einer Funktion in R ist:\n", + "\n", + "`myFunction <- function(arglist){`\n", + "\n", + "**`...`**\n", + "\n", + "**`return`**`(value)`\n", + "\n", + "`}`\n", + "\n", + "Eine übersichtliche Einführung in R-Funktionen findest du [hier](https://skirmer.github.io/presentations/functions_with_r.html#1).\n", + "\n", + "Legen wir direkt los! Wir werden [dplyr-Verben](https://dplyr.tidyverse.org/) verwenden, die wir in unseren vorherigen Lektionen gelernt haben. Zur Erinnerung:\n", + "\n", + "- `dplyr::select()`: hilft dir, **Spalten** auszuwählen, die du behalten oder ausschließen möchtest.\n", + "\n", + "- `dplyr::pivot_longer()`: hilft dir, Daten zu \"verlängern\", indem die Anzahl der Zeilen erhöht und die Anzahl der Spalten verringert wird.\n", + "\n", + "- `dplyr::group_by()` und `dplyr::summarise()`: helfen dir, zusammenfassende Statistiken für verschiedene Gruppen zu finden und sie in einer übersichtlichen Tabelle darzustellen.\n", + "\n", + "- `dplyr::filter()`: erstellt eine Teilmenge der Daten, die nur Zeilen enthält, die deine Bedingungen erfüllen.\n", + "\n", + "- `dplyr::mutate()`: hilft dir, Spalten zu erstellen oder zu ändern.\n", + "\n", + "Schau dir dieses [*kunstvolle* Learnr-Tutorial](https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome) von Allison Horst an, das einige nützliche Datenbearbeitungsfunktionen in dplyr *(Teil des Tidyverse)* vorstellt.\n" + ], + "metadata": { + "id": "K3RF5bSCHC76" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Creates a functions that returns the top ingredients by class\r\n", + "\r\n", + "create_ingredient <- function(df){\r\n", + " \r\n", + " # Drop the id column which is the first colum\r\n", + " ingredient_df = df %>% select(-1) %>% \r\n", + " # Transpose data to a long format\r\n", + " pivot_longer(!cuisine, names_to = \"ingredients\", values_to = \"count\") %>% \r\n", + " # Find the top most ingredients for a particular cuisine\r\n", + " group_by(ingredients) %>% \r\n", + " summarise(n_instances = sum(count)) %>% \r\n", + " filter(n_instances != 0) %>% \r\n", + " # Arrange by descending order\r\n", + " arrange(desc(n_instances)) %>% \r\n", + " mutate(ingredients = factor(ingredients) %>% fct_inorder())\r\n", + " \r\n", + " \r\n", + " return(ingredient_df)\r\n", + "} # End of function" + ], + "outputs": [], + "metadata": { + "id": "uB_0JR82HTPa" + } + }, + { + "cell_type": "markdown", + "source": [ + "Jetzt können wir die Funktion nutzen, um eine Vorstellung von den zehn beliebtesten Zutaten nach Küche zu bekommen. Probieren wir es mit `thai_df` aus.\n" + ], + "metadata": { + "id": "h9794WF8HWmc" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Call create_ingredient and display popular ingredients\r\n", + "thai_ingredient_df <- create_ingredient(df = thai_df)\r\n", + "\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "agQ-1HrcHaEA" + } + }, + { + "cell_type": "markdown", + "source": [ + "Im vorherigen Abschnitt haben wir `geom_col()` verwendet, lassen Sie uns sehen, wie Sie auch `geom_bar` verwenden können, um Balkendiagramme zu erstellen. Verwenden Sie `?geom_bar` für weitere Informationen.\n" + ], + "metadata": { + "id": "kHu9ffGjHdcX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a bar chart for popular thai cuisines\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10) %>% \r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"steelblue\") +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "fb3Bx_3DHj6e" + } + }, + { + "cell_type": "markdown", + "source": [ + "Lass uns dasselbe für die japanischen Daten tun\n" + ], + "metadata": { + "id": "RHP_xgdkHnvM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Japanese cuisines and make bar chart\r\n", + "create_ingredient(df = japanese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"darkorange\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "019v8F0XHrRU" + } + }, + { + "cell_type": "markdown", + "source": [ + "Was ist mit der chinesischen Küche?\n" + ], + "metadata": { + "id": "iIGM7vO8Hu3v" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Chinese cuisines and make bar chart\r\n", + "create_ingredient(df = chinese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"cyan4\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lHd9_gd2HyzU" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "ir8qyQbNH1c7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Indian cuisines and make bar chart\r\n", + "create_ingredient(df = indian_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#041E42FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "ApukQtKjH5FO" + } + }, + { + "cell_type": "markdown", + "source": [ + "Schließlich die koreanischen Zutaten plotten.\n" + ], + "metadata": { + "id": "qv30cwY1H-FM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Korean cuisines and make bar chart\r\n", + "create_ingredient(df = korean_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#852419FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lumgk9cHIBie" + } + }, + { + "cell_type": "markdown", + "source": [ + "Aus den Datenvisualisierungen können wir nun die häufigsten Zutaten entfernen, die Verwirrung zwischen verschiedenen Küchenstilen stiften, indem wir `dplyr::select()` verwenden.\n", + "\n", + "Jeder liebt Reis, Knoblauch und Ingwer!\n" + ], + "metadata": { + "id": "iO4veMXuIEta" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "iHJPiG6rIUcK" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Datenvorverarbeitung mit Recipes 👩‍🍳👨‍🍳 - Umgang mit unausgeglichenen Daten ⚖️\n", + "\n", + "

\n", + " \n", + "

Illustration von @allison_horst
\n", + "\n", + "Da es in dieser Lektion um Küchen geht, müssen wir `recipes` in den richtigen Kontext setzen.\n", + "\n", + "Tidymodels bietet ein weiteres praktisches Paket: `recipes` - ein Paket zur Datenvorverarbeitung.\n" + ], + "metadata": { + "id": "kkFd-JxdIaL6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Werfen wir erneut einen Blick auf die Verteilung unserer Küchen.\n" + ], + "metadata": { + "id": "6l2ubtTPJAhY" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "old_label_count <- df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "old_label_count" + ], + "outputs": [], + "metadata": { + "id": "1e-E9cb7JDVi" + } + }, + { + "cell_type": "markdown", + "source": [ + "Wie Sie sehen können, gibt es eine ziemlich ungleiche Verteilung in der Anzahl der Küchen. Koreanische Küchen sind fast dreimal so häufig wie thailändische Küchen. Unausgewogene Daten haben oft negative Auswirkungen auf die Modellleistung. Denken Sie an eine binäre Klassifikation. Wenn der Großteil Ihrer Daten zu einer Klasse gehört, wird ein ML-Modell diese Klasse häufiger vorhersagen, einfach weil es dafür mehr Daten gibt. Das Ausbalancieren der Daten gleicht jede Schieflage aus und hilft, dieses Ungleichgewicht zu beseitigen. Viele Modelle erzielen die besten Ergebnisse, wenn die Anzahl der Beobachtungen gleich ist, und haben daher oft Schwierigkeiten mit unausgewogenen Daten.\n", + "\n", + "Es gibt im Wesentlichen zwei Ansätze, um mit unausgewogenen Datensätzen umzugehen:\n", + "\n", + "- Hinzufügen von Beobachtungen zur Minderheitsklasse: `Over-sampling`, z. B. mit einem SMOTE-Algorithmus\n", + "\n", + "- Entfernen von Beobachtungen aus der Mehrheitsklasse: `Under-sampling`\n", + "\n", + "Lassen Sie uns nun demonstrieren, wie man mit unausgewogenen Datensätzen mithilfe eines `Rezepts` umgeht. Ein Rezept kann als eine Art Blaupause betrachtet werden, die beschreibt, welche Schritte auf einen Datensatz angewendet werden sollten, um ihn für die Datenanalyse vorzubereiten.\n" + ], + "metadata": { + "id": "soAw6826JKx9" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = df_select) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "cuisines_recipe" + ], + "outputs": [], + "metadata": { + "id": "HS41brUIJVJy" + } + }, + { + "cell_type": "markdown", + "source": [ + "Lassen Sie uns unsere Vorverarbeitungsschritte aufschlüsseln.\n", + "\n", + "- Der Aufruf von `recipe()` mit einer Formel teilt dem Rezept die *Rollen* der Variablen unter Verwendung der `df_select`-Daten als Referenz mit. Zum Beispiel wurde der `cuisine`-Spalte die Rolle `outcome` zugewiesen, während die restlichen Spalten die Rolle `predictor` erhalten haben.\n", + "\n", + "- [`step_smote(cuisine)`](https://themis.tidymodels.org/reference/step_smote.html) erstellt eine *Spezifikation* eines Rezeptschritts, der synthetisch neue Beispiele der Minderheitsklasse generiert, indem die nächsten Nachbarn dieser Fälle verwendet werden.\n", + "\n", + "Wenn wir nun die vorverarbeiteten Daten sehen möchten, müssten wir unser Rezept [**`prep()`**](https://recipes.tidymodels.org/reference/prep.html) und [**`bake()`**](https://recipes.tidymodels.org/reference/bake.html) anwenden.\n", + "\n", + "`prep()`: schätzt die erforderlichen Parameter aus einem Trainingsdatensatz, die später auf andere Datensätze angewendet werden können.\n", + "\n", + "`bake()`: nimmt ein vorbereitetes Rezept und wendet die Operationen auf einen beliebigen Datensatz an.\n" + ], + "metadata": { + "id": "Yb-7t7XcJaC8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep and bake the recipe\r\n", + "preprocessed_df <- cuisines_recipe %>% \r\n", + " prep() %>% \r\n", + " bake(new_data = NULL) %>% \r\n", + " relocate(cuisine)\r\n", + "\r\n", + "# Display data\r\n", + "preprocessed_df %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Quick summary stats\r\n", + "preprocessed_df %>% \r\n", + " introduce()" + ], + "outputs": [], + "metadata": { + "id": "9QhSgdpxJl44" + } + }, + { + "cell_type": "markdown", + "source": [ + "Lassen Sie uns nun die Verteilung unserer Küchen überprüfen und sie mit den unausgewogenen Daten vergleichen.\n" + ], + "metadata": { + "id": "dmidELh_LdV7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "new_label_count <- preprocessed_df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "list(new_label_count = new_label_count,\r\n", + " old_label_count = old_label_count)" + ], + "outputs": [], + "metadata": { + "id": "aSh23klBLwDz" + } + }, + { + "cell_type": "markdown", + "source": [ + "Yum! Die Daten sind schön sauber, ausgewogen und sehr lecker 😋!\n", + "\n", + "> Normalerweise wird ein Rezept als Vorverarbeitungswerkzeug für das Modellieren verwendet, wobei es definiert, welche Schritte auf einen Datensatz angewendet werden müssen, um ihn für das Modellieren vorzubereiten. In diesem Fall wird typischerweise ein `workflow()` verwendet (wie wir bereits in unseren vorherigen Lektionen gesehen haben), anstatt ein Rezept manuell zu schätzen.\n", + ">\n", + "> Daher ist es normalerweise nicht notwendig, **`prep()`** und **`bake()`** zu verwenden, wenn man mit tidymodels arbeitet. Dennoch sind es hilfreiche Funktionen, die man in seinem Werkzeugkasten haben sollte, um sicherzustellen, dass Rezepte das tun, was man erwartet – so wie in unserem Fall.\n", + ">\n", + "> Wenn du ein vorbereitetes Rezept mit **`new_data = NULL`** **`bake()`**, erhältst du die Daten zurück, die du beim Definieren des Rezepts bereitgestellt hast, jedoch mit den angewendeten Vorverarbeitungsschritten.\n", + "\n", + "Speichern wir nun eine Kopie dieser Daten, um sie in zukünftigen Lektionen zu verwenden:\n" + ], + "metadata": { + "id": "HEu80HZ8L7ae" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Save preprocessed data\r\n", + "write_csv(preprocessed_df, \"../../../data/cleaned_cuisines_R.csv\")" + ], + "outputs": [], + "metadata": { + "id": "cBmCbIgrMOI6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Diese neue CSV-Datei befindet sich jetzt im Hauptdatenordner.\n", + "\n", + "**🚀Herausforderung**\n", + "\n", + "Dieses Curriculum enthält mehrere interessante Datensätze. Durchsuche die `data`-Ordner und prüfe, ob sie Datensätze enthalten, die sich für binäre oder Multi-Klassen-Klassifikationen eignen. Welche Fragen würdest du zu diesem Datensatz stellen?\n", + "\n", + "## [**Quiz nach der Vorlesung**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/)\n", + "\n", + "## **Überblick & Selbststudium**\n", + "\n", + "- Schau dir [das Paket themis](https://github.com/tidymodels/themis) an. Welche anderen Techniken könnten wir verwenden, um mit unausgeglichenen Daten umzugehen?\n", + "\n", + "- Tidy Models [Referenz-Website](https://www.tidymodels.org/start/).\n", + "\n", + "- H. Wickham und G. Grolemund, [*R for Data Science: Visualize, Model, Transform, Tidy, and Import Data*](https://r4ds.had.co.nz/).\n", + "\n", + "#### EIN GROSSES DANKESCHÖN AN:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) für die Erstellung der großartigen Illustrationen, die R einladender und ansprechender machen. Weitere Illustrationen findest du in ihrer [Galerie](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) und [Jen Looper](https://www.twitter.com/jenlooper) für die Erstellung der ursprünglichen Python-Version dieses Moduls ♥️\n", + "\n", + "

\n", + " \n", + "

Kunstwerk von @allison_horst
\n" + ], + "metadata": { + "id": "WQs5621pMGwf" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Nutzung dieser Übersetzung entstehen.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/de/4-Classification/1-Introduction/solution/notebook.ipynb b/translations/de/4-Classification/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..a0e198cac --- /dev/null +++ b/translations/de/4-Classification/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,735 @@ +{ + "cells": [ + { + "source": [ + "# Köstliche asiatische und indische Küche\n", + "\n", + "## Einführung\n", + "\n", + "Asiatische und indische Gerichte sind bekannt für ihre reichen Aromen, vielfältigen Zutaten und einzigartigen Kochtechniken. In diesem Leitfaden erkunden wir einige der beliebtesten Rezepte und geben Tipps, wie man sie zu Hause zubereiten kann.\n", + "\n", + "## Warum asiatische und indische Küche?\n", + "\n", + "Die asiatische und indische Küche bietet eine unglaubliche Vielfalt an Geschmacksrichtungen, die von süß und sauer bis hin zu würzig und herzhaft reichen. Diese Küchen sind nicht nur lecker, sondern auch oft gesund, da sie frische Zutaten und ausgewogene Gewürze verwenden.\n", + "\n", + "## Beliebte Gerichte\n", + "\n", + "### 1. Pad Thai\n", + "\n", + "Pad Thai ist ein klassisches thailändisches Nudelgericht, das oft mit Garnelen, Huhn oder Tofu serviert wird. Es wird mit einer Kombination aus Tamarindensauce, Fischsauce, Zucker und Limettensaft gewürzt.\n", + "\n", + "#### Zutaten:\n", + "- Reisnudeln \n", + "- Garnelen, Huhn oder Tofu \n", + "- Tamarindensauce \n", + "- Fischsauce \n", + "- Knoblauch \n", + "- Eier \n", + "- Frühlingszwiebeln \n", + "- Erdnüsse \n", + "\n", + "#### Zubereitung:\n", + "1. Reisnudeln nach Packungsanweisung kochen. \n", + "2. Knoblauch in einer Pfanne anbraten, dann Garnelen, Huhn oder Tofu hinzufügen. \n", + "3. Eier in die Pfanne geben und verrühren. \n", + "4. Gekochte Nudeln und die vorbereitete Sauce hinzufügen. \n", + "5. Mit Frühlingszwiebeln und Erdnüssen garnieren. \n", + "\n", + "### 2. Butter Chicken\n", + "\n", + "Butter Chicken ist ein cremiges indisches Currygericht, das mit Tomaten, Butter und einer Mischung aus Gewürzen zubereitet wird. Es wird oft mit Naan oder Reis serviert.\n", + "\n", + "#### Zutaten:\n", + "- Hähnchenbrust \n", + "- Tomatenpüree \n", + "- Sahne \n", + "- Butter \n", + "- Knoblauch und Ingwer \n", + "- Garam Masala \n", + "- Kurkuma \n", + "- Kreuzkümmel \n", + "\n", + "#### Zubereitung:\n", + "1. Hähnchen in einer Marinade aus Joghurt und Gewürzen einlegen. \n", + "2. Das marinierte Hähnchen anbraten und beiseitestellen. \n", + "3. Tomatenpüree, Butter und Sahne in einer Pfanne erhitzen. \n", + "4. Gewürze hinzufügen und das Hähnchen in die Sauce geben. \n", + "5. Köcheln lassen, bis das Hähnchen zart ist. \n", + "\n", + "## Tipps für die Zubereitung\n", + "\n", + "- **Frische Zutaten verwenden:** Frische Kräuter und Gewürze machen einen großen Unterschied im Geschmack. \n", + "- **Experimentieren:** Scheuen Sie sich nicht, mit verschiedenen Gewürzen und Zutaten zu experimentieren, um Ihren eigenen Stil zu finden. \n", + "- **Vorbereitung:** Bereiten Sie alle Zutaten im Voraus vor, um den Kochprozess zu erleichtern. \n", + "\n", + "## Fazit\n", + "\n", + "Die asiatische und indische Küche bietet endlose Möglichkeiten, köstliche und aromatische Gerichte zu kreieren. Mit ein wenig Übung und den richtigen Zutaten können Sie diese Gerichte ganz einfach zu Hause genießen. Probieren Sie es aus und entdecken Sie die Vielfalt dieser wunderbaren Küchen!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "Installieren Sie Imblearn, das SMOTE ermöglicht. Dies ist ein Scikit-learn-Paket, das bei der Handhabung unausgeglichener Daten bei der Klassifikation hilft. (https://imbalanced-learn.org/stable/)\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: imblearn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.0)\n", + "Requirement already satisfied: imbalanced-learn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imblearn) (0.8.0)\n", + "Requirement already satisfied: numpy>=1.13.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.19.2)\n", + "Requirement already satisfied: scipy>=0.19.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.4.1)\n", + "Requirement already satisfied: scikit-learn>=0.24 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.24.2)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.16.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.24->imbalanced-learn->imblearn) (2.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install imblearn" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "import numpy as np\n", + "from imblearn.over_sampling import SMOTE" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../../data/cuisines.csv')" + ] + }, + { + "source": [ + "Dieses Dataset umfasst 385 Spalten, die alle Arten von Zutaten in verschiedenen Küchen aus einem gegebenen Satz von Küchen anzeigen.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 65 indian 0 0 0 0 0 \n", + "1 66 indian 1 0 0 0 0 \n", + "2 67 indian 0 0 0 0 0 \n", + "3 68 indian 0 0 0 0 0 \n", + "4 69 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 385 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
065indian00000000...0000000000
166indian10000000...0000000000
267indian00000000...0000000000
368indian00000000...0000000000
469indian00000000...0000000010
\n

5 rows × 385 columns

\n
" + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 2448 entries, 0 to 2447\nColumns: 385 entries, Unnamed: 0 to zucchini\ndtypes: int64(384), object(1)\nmemory usage: 7.2+ MB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "korean 799\n", + "indian 598\n", + "chinese 442\n", + "japanese 320\n", + "thai 289\n", + "Name: cuisine, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "df.cuisine.value_counts()" + ] + }, + { + "source": [ + "Zeigen Sie die Küchen in einem Balkendiagramm\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD4CAYAAAAtrdtxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAASY0lEQVR4nO3df7TldV3v8eerGZkRRoeAiXtE5UgNIkUCjlwQIzAiC7NscdcSbcmsfkxl5SXX0juuyzK9d3UvlXnpplajma0kMtCUhluImNcr8msGBmb4pZaTQCFQOYom0fi+f+zPkd14hpnzOWefvYfzfKy113z35/vde7/22fvMa3++3733SVUhSVKPbxt3AEnSgcsSkSR1s0QkSd0sEUlSN0tEktRt+bgDLKYjjjiipqenxx1Dkg4oW7dufbiq1sy2bkmVyPT0NFu2bBl3DEk6oCT5u72tc3eWJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqduS+sT69vt3Mb3xqnHH0ALZefG5444gLXnORCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktRtIkokyaFJXtuWz0yyeY6X/29Jzh5NOknS3kxEiQCHAq/tvXBVvbmqPraAeSRJ+2FSSuRi4DuTbAN+E1iV5Iokdye5NEkAkrw5yc1JdiTZNDT+viTnjTG/JC1Jk1IiG4G/qaoTgTcAJwEXAscDxwCnt+3eUVUvrKrvAZ4KvGxfV5xkQ5ItSbbs/tqu0aSXpCVqUkpkTzdV1X1V9Q1gGzDdxs9KcmOS7cBLgO/e1xVV1aaqWldV65YdvHp0iSVpCZrUL2B8dGh5N7A8yUrgXcC6qro3yVuAleMIJ0kamJSZyFeAp+1jm5nCeDjJKsBjIJI0ZhMxE6mqf0xyXZIdwL8AX5xlmy8leTewA3gAuHmRY0qS9jARJQJQVa/ay/gvDS1fBFw0yzbrR5dMkrQ3k7I7S5J0ALJEJEndLBFJUjdLRJLUzRKRJHWbmHdnLYYTjlrNlovPHXcMSXrScCYiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6rZ83AEW0/b7dzG98apxx9CY7Lz43HFHkJ50nIlIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG77VSJJPj3qIJKkA89+lUhVvWjUQSRJB579nYk8kmRVkmuT3JJke5Ifa+umk9yd5NIkdyW5IsnBbd2bk9ycZEeSTUnSxj+R5NeT3JTkM0m+r40vS/Kb7TK3J/m5Nj6V5JNJtrXrmtn+nCTXt0yXJ1k1ih+SJGl2czkm8nXgFVV1MnAW8FszpQA8F3hXVT0P+DLw2jb+jqp6YVV9D/BU4GVD17e8qk4BLgR+tY39NLCrql4IvBD42STPAV4FXF1VJwLPB7YlOQK4CDi7ZdoCvH4ud16SND9z+dqTAP8jyRnAN4CjgCPbunur6rq2/H7gdcDbgLOSvBE4GDgMuAP4i7bdh9q/W4HptnwO8L1JzmvnVwNrgZuB9yZ5CvDhqtqW5PuB44HrWpcdBFz/LaGTDcAGgGVPXzOHuytJ2pe5lMirgTXAC6rqsSQ7gZVtXe2xbSVZCbwLWFdV9yZ5y9D2AI+2f3cP5Qjwy1V19Z433srrXOB9Sd4O/DNwTVWd/0Shq2oTsAlgxdTaPXNKkuZhLruzVgMPtgI5Czh6aN2zk5zWll8FfIrHC+PhdqziPPbtauAX2oyDJMcmOSTJ0cAXq+rdwHuAk4EbgNOTfFfb9pAkx87h/kiS5ml/ZyIFXAr8RZLtDI4/3D20/h7gF5O8F7gT+N2q+lqSdwM7gAcY7JLal/cw2LV1Szve8hDw48CZwBuSPAY8Arymqh5Ksh64LMmKdvmLgM/s532SJM1Tqp54D0+Sw4FbqurovayfBja3g+cTbcXU2pq64JJxx9CY+FXwUp8kW6tq3WzrnnB3VpJnMDhY/bZRBJMkHdiecHdWVf098ITHGapqJzDxsxBJ0sLzu7MkSd0sEUlSN0tEktRtLh82POCdcNRqtvgOHUlaMM5EJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd2WjzvAYtp+/y6mN1417hhSt50XnzvuCNK/40xEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3Ra0RJK8L8l5s4w/I8kVC3lbkqTxW5QPG1bV3wPfUi6SpAPbvGYiSV6T5PYktyX54zZ8RpJPJ/nbmVlJkukkO9ry+iQfSvJXST6b5DeGru+cJNcnuSXJ5UlWtfGLk9zZbuttbWxNkg8mubmdTp/PfZEkzV33TCTJdwMXAS+qqoeTHAa8HZgCXgwcB1wJzLYb60TgJOBR4J4kvwP8S7u+s6vqq0n+C/D6JO8EXgEcV1WV5NB2Hb8N/K+q+lSSZwNXA8+bJecGYAPAsqev6b27kqRZzGd31kuAy6vqYYCq+qckAB+uqm8AdyY5ci+XvbaqdgEkuRM4GjgUOB64rl3PQcD1wC7g68AfJNkMbG7XcTZwfNsW4OlJVlXVI8M3VFWbgE0AK6bW1jzuryRpD6M4JvLo0HL2Y5vdLUeAa6rq/D03TnIK8AMMjqv8EoMC+zbg1Kr6+kKEliTN3XyOiXwc+E9JDgdou7Pm4wbg9CTf1a7vkCTHtuMiq6vq/wC/Ajy/bf9R4JdnLpzkxHneviRpjrpnIlV1R5JfA/5vkt3ArfMJUlUPJVkPXJZkRRu+CPgK8JEkKxnMVl7f1r0OeGeS2xncj08CPz+fDJKkuUnV0jlMsGJqbU1dcMm4Y0jd/HsiGockW6tq3Wzr/MS6JKmbJSJJ6maJSJK6WSKSpG6WiCSp26J8AeOkOOGo1Wzx3S2StGCciUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6LR93gMW0/f5dTG+8atwxJM3RzovPHXcE7YUzEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUbWQlkuTTc9z+zCSb2/LLk2wcTTJJ0kIZ2edEqupF87jslcCVCxhHkjQCo5yJPNL+PTPJJ5JckeTuJJcmSVv30jZ2C/ATQ5ddn+QdbflHk9yY5NYkH0tyZBt/S5L3tuv+2ySvG9V9kSTNbrGOiZwEXAgcDxwDnJ5kJfBu4EeBFwD/YS+X/RRwalWdBPwp8MahdccBPwScAvxqkqeMJr4kaTaL9bUnN1XVfQBJtgHTwCPA56vqs238/cCGWS77TOADSaaAg4DPD627qqoeBR5N8iBwJHDf8IWTbJi53mVPX7OQ90mSlrzFmok8OrS8m7mV1+8A76iqE4CfA1bO5XqralNVrauqdcsOXj2Hm5Uk7cs43+J7NzCd5Dvb+fP3st1q4P62fMHIU0mS9tvYSqSqvs5gN9NV7cD6g3vZ9C3A5Um2Ag8vUjxJ0n5IVY07w6JZMbW2pi64ZNwxJM2RXwU/Xkm2VtW62db5iXVJUjdLRJLUzRKRJHWzRCRJ3SwRSVK3xfrE+kQ44ajVbPFdHpK0YJyJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrotH3eAxbT9/l1Mb7xq3DEkaVHtvPjckV23MxFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1W9ASSTKdZMdCXqckaXJNxEwkyZL60KMkPVmMrESSHJPk1iTfl+QPk2xv589q69cnuTLJx4Fr29gbktyc5PYkbx26rg8n2ZrkjiQbhsYfSfJrSW5LckOSI0d1fyRJ32okJZLkucAHgfXAKUBV1QnA+cAfJVnZNj0ZOK+qvj/JOcDatv2JwAuSnNG2+6mqegGwDnhdksPb+CHADVX1fOCTwM/OkmVDki1Jtuz+2q5R3F1JWrJGUSJrgI8Ar66q24AXA+8HqKq7gb8Djm3bXlNV/9SWz2mnW4FbgOMYlAoMiuM24AbgWUPj/wpsbstbgek9w1TVpqpaV1Xrlh28eqHuoySJ0XwB4y7gCwzK4859bPvVoeUA/7Oqfn94gyRnAmcDp1XV15J8ApiZyTxWVdWWd7PEvlBSksZtFDORfwVeAbwmyauA/we8GiDJscCzgXtmudzVwE8lWdW2PSrJdwCrgX9uBXIccOoIMkuSOozklXtVfTXJy4BrgP8OnJBkO/BvwPqqejTJnpf5aJLnAde3dY8APwn8FfDzSe5iUD43jCKzJGnu8vjeoCe/FVNra+qCS8YdQ5IW1Xz/nkiSrVW1brZ1E/E5EUnSgckSkSR1s0QkSd0sEUlSN0tEktRtSX0474SjVrNlnu9SkCQ9zpmIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqtqT+KFWSrzD7n+adFEcAD487xBMw3/yYb37MNz/zyXd0Va2ZbcWS+u4s4J69/XWuSZBki/n6mW9+zDc/SzWfu7MkSd0sEUlSt6VWIpvGHWAfzDc/5psf883Pksy3pA6sS5IW1lKbiUiSFpAlIknqtmRKJMlLk9yT5HNJNo4pw3uTPJhkx9DYYUmuSfLZ9u+3t/Ek+d8t7+1JTl6EfM9K8tdJ7kxyR5L/PEkZk6xMclOS21q+t7bx5yS5seX4QJKD2viKdv5zbf30KPO121yW5NYkmycw284k25NsS7KljU3EY9tu89AkVyS5O8ldSU6blHxJntt+bjOnLye5cFLytdv8lfZ7sSPJZe33ZfTPv6p60p+AZcDfAMcABwG3AcePIccZwMnAjqGx3wA2tuWNwK+35R8B/hIIcCpw4yLkmwJObstPAz4DHD8pGdvtrGrLTwFubLf7Z8Ar2/jvAb/Qll8L/F5bfiXwgUX4Gb4e+BNgczs/Sdl2AkfsMTYRj227zT8CfqYtHwQcOkn5hnIuAx4Ajp6UfMBRwOeBpw4979YvxvNvUX7o4z4BpwFXD51/E/CmMWWZ5t+XyD3AVFueYvCBSIDfB86fbbtFzPoR4AcnMSNwMHAL8B8ZfAp3+Z6PNXA1cFpbXt62ywgzPRO4FngJsLn9BzIR2drt7ORbS2QiHltgdftPMJOYb49M5wDXTVI+BiVyL3BYez5tBn5oMZ5/S2V31swPeMZ9bWwSHFlV/9CWHwCObMtjzdymtycxeLU/MRnb7qJtwIPANQxmmF+qqn+bJcM387X1u4DDRxjvEuCNwDfa+cMnKBtAAR9NsjXJhjY2KY/tc4CHgD9suwPfk+SQCco37JXAZW15IvJV1f3A24AvAP/A4Pm0lUV4/i2VEjkg1OBlwdjfc51kFfBB4MKq+vLwunFnrKrdVXUig1f9pwDHjSvLsCQvAx6sqq3jzvIEXlxVJwM/DPxikjOGV475sV3OYFfv71bVScBXGewe+qZxP/cA2jGFlwOX77lunPnasZgfY1DGzwAOAV66GLe9VErkfuBZQ+ef2cYmwReTTAG0fx9s42PJnOQpDArk0qr60CRmBKiqLwF/zWCKfmiSme+BG87wzXxt/WrgH0cU6XTg5Ul2An/KYJfWb09INuCbr1apqgeBP2dQwpPy2N4H3FdVN7bzVzAolUnJN+OHgVuq6ovt/KTkOxv4fFU9VFWPAR9i8Jwc+fNvqZTIzcDa9k6FgxhMR68cc6YZVwIXtOULGByHmBl/TXuXx6nArqFp80gkCfAHwF1V9fZJy5hkTZJD2/JTGRyvuYtBmZy3l3wzuc8DPt5eLS64qnpTVT2zqqYZPL8+XlWvnoRsAEkOSfK0mWUG+/V3MCGPbVU9ANyb5Llt6AeAOycl35DzeXxX1kyOScj3BeDUJAe33+OZn9/on3+LcSBqEk4M3i3xGQb70P/rmDJcxmB/5WMMXnn9NIP9kNcCnwU+BhzWtg3wzpZ3O7BuEfK9mMF0/HZgWzv9yKRkBL4XuLXl2wG8uY0fA9wEfI7BboYVbXxlO/+5tv6YRXqcz+Txd2dNRLaW47Z2umPmd2BSHtt2mycCW9rj+2Hg2ycs3yEMXq2vHhqbpHxvBe5uvxt/DKxYjOefX3siSeq2VHZnSZJGwBKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd3+PxNFbW14TY8fAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df.cuisine.value_counts().plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "thai df: (289, 385)\njapanese df: (320, 385)\nchinese df: (442, 385)\nindian df: (598, 385)\nkorean df: (799, 385)\n" + ] + } + ], + "source": [ + "\n", + "thai_df = df[(df.cuisine == \"thai\")]\n", + "japanese_df = df[(df.cuisine == \"japanese\")]\n", + "chinese_df = df[(df.cuisine == \"chinese\")]\n", + "indian_df = df[(df.cuisine == \"indian\")]\n", + "korean_df = df[(df.cuisine == \"korean\")]\n", + "\n", + "print(f'thai df: {thai_df.shape}')\n", + "print(f'japanese df: {japanese_df.shape}')\n", + "print(f'chinese df: {chinese_df.shape}')\n", + "print(f'indian df: {indian_df.shape}')\n", + "print(f'korean df: {korean_df.shape}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def create_ingredient_df(df):\n", + " # transpose df, drop cuisine and unnamed rows, sum the row to get total for ingredient and add value header to new df\n", + " ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value')\n", + " # drop ingredients that have a 0 sum\n", + " ingredient_df = ingredient_df[(ingredient_df.T != 0).any()]\n", + " # sort df\n", + " ingredient_df = ingredient_df.sort_values(by='value', ascending=False, inplace=False)\n", + " return ingredient_df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAeAklEQVR4nO3de7RVdb338fcHRFAhTPBCeNnogzckQJcdb11ES01QSxGLUtNHjl1EM2twhmbUo+PY5dhN07DHII+nuKSPFKe0FPEasTcCG1TUEk8QCmjuJIRg+33+WL+ti82+AWvvORfr8xpjjT3Xb/7mnN85x2J/+M0595qKCMzMzPKiW9YFmJmZlXIwmZlZrjiYzMwsVxxMZmaWKw4mMzPLlV2yLmBn0L9//6ipqcm6DDOzitG/f3/uv//++yPi9ObzHExlUFNTQ21tbdZlmJlVFEn9W2r3qTwzM8sVB5OZmeWKg8nMzHLF15jMzLrApk2bWLFiBRs2bMi6lC7Xq1cv9t9/f3r06NGh/g6mMqhf2UDNxNlZl2G2Q5bfdGbWJezUVqxYQZ8+faipqUFS1uV0mYjg1VdfZcWKFQwaNKhDy/hUnplZF9iwYQP9+vWrqlACkES/fv22aaRYEcEkaYqk81pof4+kme0su7y1WxLNzLpStYVSk23d74o+lRcRfwW2CiwzM6tcuQwmSRcC1wABLAYagQ9IuhrYD/hKRMyUVAP8OiKOktQd+CZwOvAWcEdE/LBknbsB9wD3RMQdkj4FTAB2BeYBn4uIRknrgO8Do4A3gbMj4pWu2G8zqx7lvi5d7muEvXv3Zt26dWVdZ0fl7lSepCHAdcDIiBgGXJlmDQBOohgYN7Ww6HigBhgeEe8F7i6Z1xv4FfDzFEpHAGOBEyNiOMXgG5f67gH8IW37EeCyVuocL6lWUm3j+obt3l8zM9tS7oIJGAnMiIi1ABHxWmr/fxHxVkQ8DezbwnKnAj+OiM3NlgO4D/hpRPwsvT8FOAaYL2lhen9wmvdP4Ndpuo5i2G0lIiZHRCEiCt1377sdu2lm1nUmTpzIrbfe+vb7SZMmccMNN3DKKadw9NFHM3ToUO67776tlnv44YcZNWrU2++/8IUvMGXKFADq6ur44Ac/yDHHHMNpp53GqlWrylJrHoOpNRtLprf1CuLjwOl65wqcgKkRMTy9DouISWnepnjnefON5PR0p5nZthg7dizTp09/+/306dO56KKLuPfee1mwYAFz5szhS1/6Eu/8+mvbpk2buOKKK5g5cyZ1dXVccsklXHvttWWpNY+/dB8C7pV0c0S8KmmvDi73O+BfJc2JiM2S9ioZNV2fXrcCnwMeBO6T9N2IWJ220SciXir3zpiZ5cGIESNYvXo1f/3rX1mzZg3vfve72W+//fjiF7/II488Qrdu3Vi5ciWvvPIK++23X7vrW7ZsGUuWLOHDH/4wAI2NjQwYMKAsteYumCJiqaQbgbmSGoGnOrjoT4BDgcWSNgF3ALeUzL8SuFPStyLiK5KuAx6Q1A3YBHwecDCZ2U5rzJgxzJw5k5dffpmxY8dy9913s2bNGurq6ujRowc1NTVb/b3RLrvswltvvfX2+6b5EcGQIUN48skny15n7oIJICKmAlPbmN87/VwOHJWmNwNXp1dp35qSt58paZ8GTGtt3Wl6JtDm30mZmVWKsWPHctlll7F27Vrmzp3L9OnT2WeffejRowdz5szhpZe2/r/5QQcdxNNPP83GjRt58803efDBBznppJM47LDDWLNmDU8++STHH388mzZt4rnnnmPIkCE7XGcug6nSDB3Yl1p/nYuZbYMsvgJqyJAhvPHGGwwcOJABAwYwbtw4Ro8ezdChQykUChx++OFbLXPAAQdw/vnnc9RRRzFo0CBGjBgBwK677srMmTOZMGECDQ0NbN68mauuuqoswaSOXuiy1hUKhfCDAs2sLc888wxHHHFE1mVkpqX9l1QXEYXmfSvprjwzM6sCDiYzM8sVB5OZWRep1ksn27rfDiYzsy7Qq1cvXn311aoLp6bnMfXq1avDy/iuPDOzLrD//vuzYsUK1qxZk3UpXa7pCbYd5WAyM+sCPXr06PATXKudT+WZmVmuOJjMzCxXHExmZpYrvsZUBvUrG8r+NEqzvMriq3SsunjEZGZmuVJ1wSTpvyXtmXUdZmbWsqo6lZeeYDsqIt5qt7OZmWVipx8xSaqRtEzSz4AlQKOk/mnehZIWS1ok6a7UtrekX0qan14nZlm/mVm1qZYR02Dgooj4g6TlAJKGANcBJ0TE2pJHuH8f+G5EPCbpQOB+YKvvqpc0HhgP0P1de3fBLpiZVYdqCaaXIuIPzdpGAjMiYi1ARLyW2k8Fjiye9QPgXZJ6R8S60oUjYjIwGaDngMHV9eVXZmadqFqC6R/b0LcbcFxEbGi3p5mZld1Of42pDQ8BYyT1Ayg5lfcAcEVTJ0nDM6jNzKxqVW0wRcRS4EZgrqRFwM1p1gSgkG6KeBq4PKsazcyqkart2SCdoVAoRG1tbdZlmJlVFEl1EVFo3l61IyYzM8snB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Uq1fLt4p6pf2UDNxNlZl2GWmeU3nZl1CbYT8YjJzMxyxcFkZma5UjHBJOksSRPLtK5Jkq4px7rMzKy8KuIak6RdImIWMCvD7W/OYttmZtWmy0dMki5MD+FbJOkuSTWSHkptD0o6MPWbIul2SfOAb0m6WNItad5oSfMkPSXp95L2Te2TJN0p6WFJf5Y0oWS710p6TtJjwGEl7YdI+q2kOkmPSjq8pe134SEyM6tqXTpikjQEuA44ISLWpseZTwWmRsRUSZcAPwDOSYvsn/o2Srq4ZFWPAcdFREj638BXgC+leYcDJwN9gGWSbgPeC1wADKe4zwuAutR/MnB5RDwv6V+AHwEjm2+/hX0ZD4wH6P6uvXfksJiZWYmuPpU3EpgREWsBIuI1SccDH0/z72LL0cmMlkKBYmBMkzQA2BV4sWTe7IjYCGyUtBrYF3g/cG9ErAeQNCv97A2cAMyQ1LR8zw5sn4iYTDHU6DlgsB8DbGZWJnm/xvSPVtp/CNwcEbMkfQiYVDJvY8l0I23vYzfg9YgYvo3bNzOzTtLV15geAsZI6geQTuU9QfE0G8A44NEOrKcvsDJNX9SB/o8A50jaTVIfYDRARPwdeFHSmFSPJA3r6M6YmVn5demIKSKWSroRmCupEXgKuAL4qaQvA2uAz3RgVZMonn77G8WwG9TOdhdImgYsAlYD80tmjwNuk3Qd0AP4RepnZmYZUIQvj+yoQqEQtbW1WZdhZlZRJNVFRKF5e8X8ga2ZmVUHB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Urev128ItSvbKBm4uysyzDL3PKbzsy6BNsJeMRkZma54mAyM7NcyTSYJJ0j6cgO9Jsi6bwW2j8k6ddlrKcg6Qdp+mJJt5Rr3WZm1jFZj5jOAdoNpq4SEbURMSHrOszMqlmbwSTpJkmfL3k/SdI1kr4sab6kxZK+XjL/q5KWSXpM0s8lXZPaD5H0W0l1kh6VdLikE4CzgG9LWpj6XJbWu0jSLyXtXlLOqZJqJT0naVQLte4h6U5Jf5T0lKSz29ivXpJ+Kqk+9T05tXd4BCZpfKqntnF9Q0cWMTOzDmhvxDQNOL/k/fkUnzI7GHgfMBw4RtIHJB0LnAsMA84ASh/+NBm4IiKOAa4BfhQRTwCzgC9HxPCI+BNwT0QcGxHDgGeAS0vWUZO2eSZwu6RezWq9FngoIt4HnEwx8PZoZb8+D0REDAU+AUxtYX1tiojJEVGIiEL33ftuy6JmZtaGNm8Xj4inJO0j6T3A3sDfgKHARyg+Fh2gN8Wg6gPcFxEbgA2SfgUgqTdwAsVHoTetumcrmzxK0g3Anmm995fMmx4RbwHPS/ozcHizZT8CnNU0SgN6AQdSDLjmTgJ+mPbxWUkvAYe2dSzMzKxrdOTvmGYA5wH7URxBHQT8e0T8uLSTpKtaWb4b8HpEDO/AtqYA50TEIkkXAx8qmdf8GfDN3ws4NyKWdWA7ZmaWUx25+WEacAHFcJpBcRRzSRoJIWmgpH2Ax4HR6fpNb2AUQET8HXhR0pjUX5KGpXW/QXGk1aQPsEpSD2BcszrGSOom6RDgYKB5AN0PXKE0LJM0oo19erRp/ZIOpTiycqCZmeVAu8EUEUspBsbKiFgVEQ8A/wU8KakemAn0iYj5FK8ZLQZ+A9QDTXcFjAMulbQIWAo03ZjwC+DL6QaEQ4CvAvMohtyzzUr5H+CPad2Xp1OGpf4P0ANYLGlpet+aHwHdUv3TgIsjYmN7x8LMzDqfIpqfEduBlUm9I2JdupvuEWB8RCwo2wZyqlAoRG1tbdZlmJlVFEl1EVFo3l7u78qbnP5gthcwtRpCyczMyquswRQRnyzn+naUpNOAbzZrfjEiPpZFPWZm1r6d+tvFI+J+trzl3MzMci7rryQyMzPbgoPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrO/XfMXWV+pUN1EycnXUZZhVh+U1nZl2C5ZxHTGZmlisOplZIGi7po1nXYWZWbRxMrRsOOJjMzLpY7oJJ0oWSFktaJOkuSTWSHkptD0o6MPXbV9K9qd8iSSek9qslLUmvq1JbjaRnJN0haamkByTtluY9LKmQpvtLWi5pV+AbwFhJCyWNzeZomJlVn1wFk6QhwHXAyIgYBlwJ/JDiIzTeC9wN/CB1/wEwN/U7Glgq6RjgM8C/AMcBl5U8yXYwcGtEDAFeB85trY6I+CdwPTAtIoZHxLQWah0vqVZSbeP6hq1XYmZm2yVXwQSMBGZExFqAiHgNOJ7iE3MB7gJOKul7W+rXGBENad69EfGPiFgH3AO8P/V/MSIWpuk6oGZHCo2IyRFRiIhC99377siqzMysRN6CqTOVPjq9kXduld/MO8ehV5dWZGZmW8lbMD0EjJHUD0DSXsATwAVp/jjg0TT9IPDZ1K+7pL5p3jmSdpe0B/Cxkv6tWQ4ck6bPK2l/A+izQ3tjZmbbLFfBFBFLgRuBuZIWATcDVwCfkbQY+DTF606knydLqqd4au7I9Cj3KcAfgXnATyLiqXY2+x3gs5KeAvqXtM8BjvTND2ZmXUsRkXUNFa/ngMEx4KLvZV2GWUXwNz9YE0l1EVFo3u6vJCqDoQP7Uut/bGZmZZGrU3lmZmYOJjMzyxUHk5mZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFX8lURnUr2ygZuLsrMswq2j+Dj1r4hGTmZnlSsUHk6RvSDo16zrMzKw8Kv5UXkRc39nbkNQ9Iho7eztmZlZhIyZJX5W0TNJjkn4u6RpJUySdl+Yvl/R1SQsk1Us6PLXvLel3kpZK+omklyT1T/M+JemP6YGAP5bUPbWvk/Qf6YGFx2e202ZmVaZigknSscC5wDDgDGCrh0slayPiaOA24JrU9jXgoYgYAswEDkzrPAIYC5wYEcOBRoqPbwfYA5gXEcMi4rEW6hkvqVZSbeP6hrLso5mZVdapvBOB+yJiA7BB0q9a6XdP+lkHfDxNnwR8DCAifivpb6n9FOAYYL4kgN2A1WleI/DL1oqJiMnAZCg+wXZ7dsjMzLZWScHUURvTz0ba3z8BUyPi31qYt8HXlczMul7FnMoDHgdGS+olqTcwahuXPR9A0keAd6f2B4HzJO2T5u0l6aAy1mxmZtuoYkZMETFf0ixgMfAKUA909OLO14GfS/o08CTwMvBGRKyVdB3wgKRuwCbg88BLZd8BMzPrEEVUzuURSb0jYp2k3YFHgPERsaADy/UEGiNis6TjgdvSzQ5lUSgUora2tlyrMzOrCpLqImKrG9kqZsSUTJZ0JNCL4rWhdkMpORCYnkZF/wQu66wCzcxsx1RUMEXEJ7dzueeBEWUux8zMOkEl3fxgZmZVwMFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeVKRf2BbV7Vr2ygZuLsrMswqzrLbzoz6xKsE3jEZGZmueJgMjOzXKmIYJJ0uaQL0/QUSedt53qGS/poeaszM7NyqohrTBFxe5lWNRwoAP/dfIakXSJic5m2Y2Zm2ymXwZRGR9cAQfHBgH8C1kXEd5r1ux4YDewGPAH8a0SEpIeBecDJwJ7Apen9N4DdJJ0E/DtwBHAIcDDwP5I+A9xGMbw2A1dHxJzO3VszMyuVu1N5koYA1wEjI2IYcGUb3W+JiGMj4iiK4VT6uPVdIuJ9wFXA1yLin8D1wLSIGB4R01K/I4FTI+ITFJ9eGxExFPgEMFVSr1bqHC+pVlJt4/qOPkjXzMzak7tgAkYCMyJiLUBEvNZG35MlzZNUn5YbUjLvnvSzDqhpYx2zIuLNNH0S8J9pu89SfMT6oS0tFBGTI6IQEYXuu/dtZ5fMzKyjcnkqryPSSOZHQCEi/iJpEsUn2zbZmH420vZ+/qNzKjQzs+2RxxHTQ8AYSf0AJO3VSr+mEForqTfQkTv13gD6tDH/UWBc2u6hFB/JvqwjRZuZWXnkLpgiYilwIzBX0iLg5lb6vQ7cASwB7gfmd2D1c4AjJS2UNLaF+T8CuqVTg9OAiyNiYwv9zMyskygisq6h4hUKhaitrc26DDOziiKpLiIKzdtzN2IyM7Pq5mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeWKg8nMzHLFwWRmZrniYDIzs1yp2G8Xz5P6lQ3UTJyddRlm1omW33Rm1iVUDY+YzMwsVxxMZmaWKw4mMzPLlVwEk6QLJS2WtEjSXZJGp0emPyXp95L2ldRN0vOS9k7LdJP0gqS90+uXkuan14mpzyRJd0p6WNKfJU1I7TWSnpF0h6Slkh6QtFuad4ik30qqk/SopMOzOzJmZtUn82CSNAS4DhgZEcOAK4HHgOMiYgTwC+ArEfEW8J+kJ8wCpwKLImIN8H3guxFxLHAu8JOSTRwOnAa8D/iapB6pfTBwa0QMAV5PywFMBq6IiGOAayg+PLClusdLqpVU27i+YYePg5mZFeXhrryRwIyIWAsQEa9JGgpMkzQA2BV4MfW9E7gP+B5wCfDT1H4qxSfTNq3zXelx6wCz01NoN0paDeyb2l+MiIVpug6oScucAMwoWVfPloqOiMkUQ4yeAwb7aYtmZmWSh2BqyQ+BmyNilqQPAZMAIuIvkl6RNJLiCKhp9NSN4ghrQ+lKUriUPhq9kXf2uXn7bmk9r0fE8LLujZmZdVjmp/KAh4AxkvoBSNoL6AusTPMvatb/JxRP6c2IiMbU9gBwRVMHSdsVLBHxd+BFSWPSeiRp2Pasy8zMtk/mwRQRS4EbgbmSFgE3UxwhzZBUB6xttsgsoDfvnMYDmAAU0g0UTwOX70BJ44BLUy1LgbN3YF1mZraNFFFZl0ckFSje6PD+rGtp0nPA4Bhw0feyLsPMOpG/+aH8JNVFRKF5e16vMbVI0kTgs7xzbSkXhg7sS60/tGZmZZH5qbxtERE3RcRBEfFY1rWYmVnnqKhgMjOznZ+DyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFQeTmZnlSkV9JVFe1a9soGbi7KzLMLOdWDV9V59HTGZmlitVEUySJkh6RtLf0hfBttbvYkm3dGVtZma2pWo5lfc54NSIWJF1IWZm1radfsQk6XbgYOA3kr7YNCKSNEbSEkmLJD1Sssh7JP1W0vOSvpVJ0WZmVWynD6aIuBz4K3Ay8LeSWdcDp0XEMOCskvbhwFhgKDBW0gEtrVfSeEm1kmob1zd0TvFmZlVopw+mNjwOTJF0GdC9pP3BiGiIiA3A08BBLS0cEZMjohARhe679+2Ccs3MqkPVBlMaSV0HHADUSeqXZm0s6dZI9VyHMzPLhar9pSvpkIiYB8yTdAbFgDIzs4xV7YgJ+LakeklLgCeARVkXZGZmVTJiioiaNDklvYiIj7fQ9e35qc+oTi3MzMy2UhXB1NmGDuxLbRV9XYiZWWeq5lN5ZmaWQw4mMzPLFQeTmZnlioPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYr/uaHMqhf2UDNxNlZl2Fm1qWWd9I33njEZGZmueJgMjOzXKnaYJJ0saRb0vTlki7MuiYzM6vSa0ySttjviLg9q1rMzGxLFR1Mkr4KfApYA/wFqAMagPHArsALwKcjYr2kKcAGYATwOLC4ZD2TgHUR8R1J/wu4Hdib4qPVx0TEn7pqn8zMql3FnsqTdCxwLjAMOAMopFn3RMSxETEMeAa4tGSx/YETIuLqNlZ9N3BrWv4EYFUr2x8vqVZSbeP6hh3cGzMza1LJI6YTgfsiYgOwQdKvUvtRkm4A9gR6A/eXLDMjIhpbW6GkPsDAiLgXIK27RRExGZgM0HPA4NihPTEzs7dV7IipDVOAL0TEUODrQK+Sef/IpCIzM+uwSg6mx4HRknpJ6g2MSu19gFWSegDjtmWFEfEGsELSOQCSekravZxFm5lZ2yo2mCJiPjCL4k0MvwHqKd748FVgHsXgenY7Vv1pYIKkxcATwH5lKdjMzDpEEZV7eURS74hYl0Y1jwDjI2JBV9dRKBSitra2qzdrZlbRJNVFRKF5eyXf/AAwWdKRFK8jTc0ilMzMrLwqOpgi4pNZ12BmZuVVsdeYzMxs5+RgMjOzXHEwmZlZrlT0XXl5IekNYFnWdWyH/sDarIvYDq67a7nurlUtda8FiIjTm8+o6JsfcmRZS7c85p2kWtfddVx313LdXaucdftUnpmZ5YqDyczMcsXBVB6Tsy5gO7nuruW6u5br7lplq9s3P5iZWa54xGRmZrniYDIzs1xxMO0ASadLWibpBUkTs66nNZIOkDRH0tOSlkq6MrVPkrRS0sL0+mjWtTYnabmk+lRfbWrbS9LvJD2ffr476zpLSTqs5JgulPR3SVfl9XhLulPSaklLStpaPMYq+kH6zC+WdHTO6v62pGdTbfdK2jO110h6s+TY356zulv9bEj6t3S8l0k6LZuqW617WknNyyUtTO07drwjwq/teAHdgT8BBwO7AouAI7Ouq5VaBwBHp+k+wHPAkcAk4Jqs62un9uVA/2Zt3wImpumJwDezrrOdz8nLwEF5Pd7AB4CjgSXtHWPgoxSffybgOGBezur+CLBLmv5mSd01pf1yeLxb/Gykf6eLgJ7AoPQ7p3te6m42/z+A68txvD1i2n7vA16IiD9HxD+BXwBnZ1xTiyJiVaRHgkTxKb3PAAOzrWqHnA1MTdNTgXMyrKU9pwB/ioiXsi6kNRHxCPBas+bWjvHZwM+i6A/AnpIGdE2lW2qp7oh4ICI2p7d/APbv8sLa0crxbs3ZwC8iYmNEvAi8QPF3T5drq25JAs4Hfl6ObTmYtt9A4C8l71dQAb/sJdUAIyg+5RfgC+m0x515OyWWBPCApDpJ41PbvhGxKk2/DOybTWkdcgFb/mPN+/Fu0toxrqTP/SUUR3dNBkl6StJcSe/Pqqg2tPTZqJTj/X7glYh4vqRtu4+3g6mKSOoN/BK4KiL+DtwGHAIMB1ZRHIrnzUkRcTRwBvB5SR8onRnF8wa5/JsHSbsCZwEzUlMlHO+t5PkYt0bStcBm4O7UtAo4MCJGAFcD/yXpXVnV14KK/GyU+ARb/gdsh463g2n7rQQOKHm/f2rLJUk9KIbS3RFxD0BEvBIRjRHxFnAHGZ0iaEtErEw/VwP3UqzxlabTR+nn6uwqbNMZwIKIeAUq43iXaO0Y5/5zL+liYBQwLoUq6VTYq2m6juK1mkMzK7KZNj4blXC8dwE+DkxratvR4+1g2n7zgcGSBqX/GV8AzMq4phal87//F3gmIm4uaS+9NvAxYEnzZbMkaQ9JfZqmKV7YXkLxOF+Uul0E3JdNhe3a4n+ReT/ezbR2jGcBF6a7844DGkpO+WVO0unAV4CzImJ9Sfvekrqn6YOBwcCfs6lya218NmYBF0jqKWkQxbr/2NX1teNU4NmIWNHUsMPHO4u7O3aWF8U7lJ6j+L+Ba7Oup406T6J4KmYxsDC9PgrcBdSn9lnAgKxrbVb3wRTvSFoELG06xkA/4EHgeeD3wF5Z19pC7XsArwJ9S9pyebwphucqYBPFaxiXtnaMKd6Nd2v6zNcDhZzV/QLFazJNn/PbU99z02doIbAAGJ2zulv9bADXpuO9DDgjT3Wn9inA5c367tDx9lcSmZlZrvhUnpmZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWK/8fnSxrKwF+wYgAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "thai_ingredient_df = create_ingredient_df(thai_df)\r\n", + "thai_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 11 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAdqUlEQVR4nO3de5xXdb3v8dcbREhBvICJeBkvKAocbmN57eb9btsLFpmkD3nUMT1mdg4dtWNnu/fW3NXOtHQ6JewyE1DTorwcNDVF5TfcBi9gKZ5AVLAaRcQQP+eP9Z36McwMg/5m1vrN7/18PObBWt91+X3WmoE337XWrK8iAjMzs6LolXcBZmZm5RxMZmZWKA4mMzMrFAeTmZkVioPJzMwKZau8C+gJBg0aFHV1dXmXYWZWNQYNGsR99913X0Qc13qZg6kC6urqKJVKeZdhZlZVJA1qq92X8szMrFAcTGZmVigOJjMzKxTfYzIz6wbr169n+fLlrFu3Lu9Sul2/fv3Ybbfd6NOnT6fWdzBVQNOKZuqmzMq7DHufll1zYt4lWA1Yvnw5AwYMoK6uDkl5l9NtIoLXX3+d5cuXs9dee3VqG1/KMzPrBuvWrWOnnXaqqVACkMROO+20RT3FmgomSb+RtH3edZhZbaq1UGqxpcddU5fyIuKEvGswM7OO9ahgkvQ14J2IuF7Sd4HREfEpSZ8CzgcOA+qB/sBvgd8DhwIrgFMj4m1J+wA3AoOBtcAFEfFcDodjZj1Ype9LV/peaf/+/VmzZk1F99lZPe1S3qPAEWm6HugvqU9qe6TVusOAGyNiBPBX4PTU3gBcFBHjgcuAH7T1QZImSypJKm1Y21zhwzAzq109LZgagfGStgPeAeaQBdQRZKFV7sWIWFC2XZ2k/mQ9qBmSFgA3A0Pa+qCIaIiI+oio773NwC44FDOzypkyZQo33njj3+evuuoqrr76ao488kjGjRvHqFGjuPvuuzfZ7ne/+x0nnXTS3+e//OUvM3XqVAAaGxv5+Mc/zvjx4zn22GNZuXJlRWrtUcEUEeuBF4FJwONkYfRJYF/g2Varv1M2vYHssmYv4K8RMabs64AuL9zMrItNmDCB6dOn/31++vTpnHvuudx1113MmzePhx56iK9+9atERKf2t379ei666CJmzpxJY2Mj5513HpdffnlFau1R95iSR8kuwZ0HNAHfARojIjb3ZEhEvCHpRUlnRsQMZRv8l4hY2OVVm5l1obFjx/Laa6/x8ssvs2rVKnbYYQd22WUXvvKVr/DII4/Qq1cvVqxYwauvvsouu+yy2f0tWbKExYsXc/TRRwOwYcMGhgxp8wLTFuupwXQ5MCci3pK0jk0v43VkIvBDSVcAfYBfAA4mM6t6Z555JjNnzuSVV15hwoQJ3HrrraxatYrGxkb69OlDXV3dJr9vtNVWW/Hee+/9fb5leUQwYsQI5syZU/E6e1wwRcRsskBpmd+vbLouTa4GRpa1/3vZ9IvAJuODmJlVuwkTJnDBBRewevVqHn74YaZPn87OO+9Mnz59eOihh3jppZc22WbPPffkmWee4Z133uHtt99m9uzZHH744ey///6sWrWKOXPmcMghh7B+/XqWLl3KiBEjPnCdPS6Y8jBq6EBKfq2NmW2BPF6FNWLECN58802GDh3KkCFDmDhxIieffDKjRo2ivr6e4cOHb7LN7rvvzllnncXIkSPZa6+9GDt2LABbb701M2fO5OKLL6a5uZl3332XSy65pCLBpM7e6LL21dfXhwcKNLOOPPvssxxwQO0+S9XW8UtqjIj61uv2qKfyzMys+jmYzMysUBxMZmbdpFZvnWzpcTuYzMy6Qb9+/Xj99ddrLpxaxmPq169fp7fxU3lmZt1gt912Y/ny5axatSrvUrpdywi2neVgMjPrBn369On0CK61zpfyzMysUBxMZmZWKA4mMzMrFN9jqoCmFc0VH43SiiuPV8mY1RL3mMzMrFBqNpgkTZJ0Q5r+oqTP512TmZnV6KU8SRsdd0TclFctZma2saoOJklXAp8DVgF/AhqBZmAysDXwB+CciFgraSqwDhgLPAYsKtvPVcCaiPh3SfsCNwGDyYZcPzMi/thdx2RmVuuq9lKepIOA04HRwPFAy6vT74yIgyJiNPAscH7ZZrsBh0bEpR3s+lbgxrT9ocDKdj5/sqSSpNKGtc0f8GjMzKxFNfeYDgPujoh1wDpJv0rtIyVdDWwP9AfuK9tmRkRsaG+HkgYAQyPiLoC07zZFRAPQANB3yLDaevmVmVkXqtoeUwemAl+OiFHAN4HyNwe+lUtFZmbWadUcTI8BJ0vqJ6k/cFJqHwCslNQHmLglO4yIN4Hlkk4DkNRX0jaVLNrMzDpWtcEUEXOBe8geYvgt0ET24MOVwJNkwfXc+9j1OcDFkhYBjwO7VKRgMzPrFFXz2CCS+kfEmtSreQSYHBHzuruO+vr6KJVK3f2xZmZVTVJjRNS3bq/mhx8AGiQdSHYfaVoeoWRmZpVV1cEUEZ/NuwYzM6usqr3HZGZmPZODyczMCsXBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrlKr+BduiaFrRTN2UWXmXYVVo2TUn5l2CWeG4x2RmZoXiYDIzs0Kp+mCS9L8lHZV3HWZmVhlVf48pIr7R1Z8hqXdHQ7KbmVnlVFWPSdKVkpZI+r2k2yRdJmmqpDPS8mWSvilpnqQmScNT+2BJD0h6WtL/kfSSpEFp2eckPSVpgaSbJfVO7WskfVvSQuCQ3A7azKzGVE0wSToIOB0YDRwPbDK4VLI6IsYBPwQuS23/C3gwIkYAM4E90j4PACYAh0XEGGAD/xiOfVvgyYgYHRG/b6OeyZJKkkob1jZX5BjNzKy6LuUdBtwdEeuAdZJ+1c56d6Y/G4F/StOHA58GiIh7Jf0ltR8JjAfmSgL4EPBaWrYBuKO9YiKiAWgA6DtkWPUOA2xmVjDVFEyd9U76cwObPz6RjXz79TaWrfN9JTOz7lc1l/KAx4CTJfWT1B84aQu3PQtA0jHADql9NnCGpJ3Tsh0l7VnBms3MbAtVTY8pIuZKugdYBLwKNAGdvbnzTeA2SecAc4BXgDcjYrWkK4D7JfUC1gMXAi9V/ADMzKxTFFE9t0ck9Y+INZK2AR4BJkfEvE5s1xfYEBHvSjoE+GF62KEi6uvro1QqVWp3ZmY1QVJjRGzyIFvV9JiSBkkHAv3I7g1tNpSSPYDpqVf0N+CCrirQzMw+mKoKpoj47Pvc7nlgbIXLMTOzLlBNDz+YmVkNcDCZmVmhOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoVSVb9gW1RNK5qpmzIr7zKsB1l2zYl5l2CWG/eYzMysUHpcMEmqk7Q4TX9C0q/T9CmSpuRbnZmZbU7NXMqLiHuAe/Kuw8zMOla4HpOkbSXNkrRQ0mJJEyQdJOnx1PaUpAGpZ/SopHnp69DN7HeSpBvSdJ2kByUtkjRb0h6pfaqk69NnvSDpjO44ZjMz+4ci9piOA16OiBMBJA0E5gMT0mCB2wFvA68BR0fEOknDgNuATcb1aMf3yYbNmCbpPOB64LS0bAhwODCcrIc1s60dSJoMTAbovd3gLT9KMzNrU+F6TGQj0x4t6VpJR5CNpbQyIuYCRMQbEfEu0Af4kaQmYAZw4BZ8xiHAz9P0T8mCqMUvI+K9iHgG+HB7O4iIhoioj4j63tsM3IKPNjOzjhSuxxQRSyWNA04ArgYebGfVr5ANsT6aLGDXVaiEd8qmVaF9mplZJxWuxyRpV2BtRPwMuA74KDBE0kFp+QBJWwEDyXpS7wHnAL234GMeB85O0xOBRytVv5mZfTCF6zEBo4DrJL0HrAe+RNZz+b6kD5HdXzoK+AFwh6TPA/cCb23BZ1wE3CLpa8Aq4AsVrN/MzD4ARUTeNVS9vkOGxZBz/yPvMqwH8ZsfrBZIaoyITR5aK2KPqeqMGjqQkv8hMTOriMLdYzIzs9rmYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxQHk5mZFYqDyczMCsXBZGZmheJgMjOzQvEriSqgaUUzdVNm5V2G9XB+f57VCveYzMysUBxMZmZWKA4mMzMrlB4fTJI+J+kpSQsk3Sypt6TzJS1N7T+SdENadx9JT0hqknS1pDV5129mVmt6dDBJOgCYABwWEWOADWRDqV8JHAwcBgwv2+R7wPciYhSwfDP7niypJKm0YW1zl9RvZlaLenQwAUcC44G5khak+UuBhyPizxGxHphRtv4hZfM/72jHEdEQEfURUd97m4FdULqZWW3q6cEkYFpEjElf+wNX5VyTmZl1oKcH02zgDEk7A0jaEZgPfFzSDpK2Ak4vW/+Jsvmzu7VSMzMDengwRcQzwBXA/ZIWAQ8AQ4B/BZ4CHgOWAS03iS4BLk3r7lvWbmZm3aTHv/khIm4Hbi9vk7Q4IhpSj+ku4Jdp0Qrg4IgISWcD+3dvtWZm1uODqR1XSToK6Afczz+CaTxwgyQBfwXO68zORg0dSMmvizEzq4iaDKaIuKyd9keB0d1cjpmZlenR95jMzKz6OJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaHU5JsfKq1pRTN1U2blXYbViGV+/ZX1cO4xmZlZodRsMEn6naT6vOswM7ON1WwwmZlZMfWoYJK0raRZkhZKWixpgqRvSJqb5hvSkBbl2/SSNFXS1Wn+GElzJM2TNENS/3yOxsysNvWoYAKOA16OiNERMRK4F7ghIg5K8x8CTipbfyvgVuD5iLhC0iCyEW+PiohxQAm4tK0PkjRZUklSacNaD3RrZlYpPS2YmoCjJV0r6YiIaAY+KelJSU3Ap4ARZevfDCyOiH9J8wcDBwKPSVoAnAvs2dYHRURDRNRHRH3vbQZ22QGZmdWaHvW4eEQslTQOOAG4WtJs4EKgPiL+JOkqslFrWzxOFlzfjoh1gIAHIuIz3V27mZllelSPSdKuwNqI+BlwHTAuLVqd7hWd0WqTHwO/AaZL2gp4AjhM0r5pf9tK2q97qjczM+hhPSZgFHCdpPeA9cCXgNOAxcArwNzWG0TEdyQNBH4KTAQmAbdJ6ptWuQJY2vWlm5kZgCIi7xqqXn19fZRKpbzLMDOrKpIaI2KT3yftUZfyzMys+jmYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKxcFkZmaF4mAyM7NCcTCZmVmhOJjMzKxQetq78nLRtKKZuimz8i7DrBCWXXNi3iVYlXOPyczMCsXBZGZmhZJrMEk6TdKBnVhvqqTWYykh6ROSfl3BeuolXZ+mJ0m6oVL7NjOzzsm7x3Qa2VDmhRARpYi4OO86zMxqWYfBJOkaSReWzV8l6TJJX5M0V9IiSd8sW36lpCWSfi/pNkmXpfZ9JN0rqVHSo5KGSzoUOIVsYL8FaZ0L0n4XSrpD0jZl5RwlqSRpqaST2qh1W0k/kfSUpPmSTu3guPpJukVSU1r3k6m9oj0wMzPbcpvrMd0OnFU2fxawChgGfAQYA4yX9DFJBwGnA6OB44HywZ8agIsiYjxwGfCDiHgcuAf4WkSMiYg/AndGxEERMRp4Fji/bB916TNPBG6S1K9VrZcDD0bER4BPkgXetu0c14VARMQo4DPAtDb21yFJk1NQljasbd6STc3MrAMdPi4eEfMl7SxpV2Aw8Bey4cuPAean1fqTBdUA4O6IWAesk/QrAEn9gUOBGZJadt2Xto2UdDWwfdrvfWXLpkfEe8Dzkl4Ahrfa9hjglJZeGtAP2IMs4Fo7HPh+OsbnJL0E7NfRuWgtIhrIApe+Q4Z5GGAzswrpzO8xzQDOAHYh60HtCfxbRNxcvpKkS9rZvhfw14gY04nPmgqcFhELJU0CPlG2rPU//q3nBZweEUs68TlmZlZQnXn44XbgbLJwmkHWizkv9YSQNFTSzsBjwMnp/k1/4CSAiHgDeFHSmWl9SRqd9v0mWU+rxQBgpaQ+wMRWdZwpqZekfYC9gdYBdB9wkVK3TNLYDo7p0Zb9S9qPrGflQDMzK4DNBlNEPE0WGCsiYmVE3A/8HJgjqQmYCQyIiLlk94wWAb8FmoCWmy8TgfMlLQSeBloeTPgF8LX0AMI+wJXAk2Qh91yrUv4f8FTa9xfTJcNy/wz0ARZJejrNt+cHQK9U/+3ApIh4Z3PnwszMup4iKnd7RFL/iFiTnqZ7BJgcEfMq9gEFVV9fH6VSKe8yzMyqiqTGiKhv3V7pd+U1pF+Y7QdMq4VQMjOzyqpoMEXEZyu5vw9K0rHAta2aX4yIT+dRj5mZbV6Pfrt4RNzHxo+cm5lZweX9SiIzM7ONOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXSo3+Pqbs0rWimbsqsvMswqyrLrjkx7xKsoNxjMjOzQqmKYJK0q6SZeddhZmZdryqCKSJejogz8vhsSb7caWbWjQoXTJKukXRh2fxVki6TtDjNT5J0p6R7JT0v6Vtl6x4jaY6keZJmlA1meIKk5yQ1Srpe0q9T+0fS+vMlPS5p/7LPuEfSg8Dsbj0BZmY1rnDBRDZw31ll82eRDR5YbgwwARgFTJC0u6RBwBXAURExDigBl0rqB9wMHB8R44HBZft5DjgiIsYC3wD+tWzZOOCMiPh4W0VKmiypJKm0YW1zW6uYmdn7ULjLVBExX9LOknYlC5G/AH9qtdrsiGgGkPQMsCewPXAg8FgaXX1rYA4wHHghIl5M294GTE7TA4FpkoYBQTYCbosHIuLPHdTZADQA9B0yrHKjLZqZ1bjCBVMyAzgD2IWsB9Va+TDoG8iOQ2Rh8pnyFSWN6eBz/hl4KCI+LakO+F3Zsre2uGozM/vAingpD7IwOpssnGZ0cpsngMMk7QsgaVtJ+wFLgL1T8EB2CbDFQGBFmp70wUo2M7NKKGQwRcTTwABgRUSs7OQ2q8jC5TZJi0iX8SLibeC/AvdKagTeBFpuCn0L+DdJ8ylu79HMrKYoouffHpHUPyLWKLv5dCPwfER8t1L77ztkWAw59z8qtTuzmuA3P5ikxoiob91eK72ECySdS/ZAxHyyp/QqZtTQgZT8l8zMrCJqIphS76hiPSQzM+s6hbzHZGZmtcvBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKpSbe/NDVmlY0UzdlVt5lmFkX8Dv9up97TGZmVig1F0ySfiNp+7zrMDOzttXUpbw07MVJEfFe3rWYmVnbenyPSVKdpCWS/hNYDGyQNCgt+7ykRZIWSvppahss6Q5Jc9PXYXnWb2ZWa2qlxzQMODcinpC0DEDSCOAK4NCIWC1px7Tu94DvRsTvJe0B3Acc0HqHkiYDkwF6bze4Gw7BzKw21EowvRQRT7Rq+xQwIyJWA0TEn1P7UcCB2VU/ALZrGQG3fOOIaAAaIBvBtssqNzOrMbUSTG9twbq9gIMjYl1XFWNmZu3r8feYOvAgcKaknQDKLuXdD1zUspKkMTnUZmZWs2o2mCLiaeBfgIclLQS+kxZdDNSnhyKeAb6YV41mZrWox1/Ki4hlwMiy+bqy6WnAtFbrrwYmdFN5ZmbWSo8Ppu4wauhASn5tiZlZRdTspTwzMysmB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxS/+aECmlY0UzdlVt5lmJl1q2Vd9MYb95jMzKxQHExmZlYoDiYzMysUB5OZmRVKlwaTpG0lzZK0UNJiSRMkHSlpvqQmST+R1FfSpyT9smy7oyXd1c4+e0uamvbXJOkrqf0CSXPTZ90haZvUPlXSGWXbrymb/h9pHwslXZPa9pF0r6RGSY9KGt5V58fMzDbV1T2m44CXI2J0RIwE7gWmAhMiYhTZU4FfAh4ChksanLb7AvCTdvY5BhgaESPTPm5J7XdGxEERMRp4Fji/o8IkHQ+cCnw0bfOttKgBuCgixgOXAT9oZ/vJkkqSShvWNnd8FszMrNO6OpiagKMlXSvpCKAOeDEilqbl04CPRUQAPwU+J2l74BDgt+3s8wVgb0nfl3Qc8EZqH5l6OE3ARGDEZmo7CrglItYCRMSfJfUHDgVmSFoA3AwMaWvjiGiIiPqIqO+9zcDNnQczM+ukLv09pohYKmkccAJwNfBgB6vfAvwKWAfMiIh329nnXySNBo4FvgicBZxH1hM7LSIWSpoEfCJt8i4pgCX1ArbuoIZewF8jYkxnjs/MzCqvq+8x7QqsjYifAdeR9YTqJO2bVjkHeBggIl4GXgau4B+X59ra5yCgV0TckdYdlxYNAFZK6kPWY2qxDBifpk8B+qTpB4AvlN2L2jEi3gBelHRmalMKQTMz6yZd/eaHUcB1kt4D1pPdTxpIdqlsK2AucFPZ+rcCgyPi2Q72ORS4JfV+AL6e/rwSeBJYlf4ckNp/BNwtaSHZPa63ACLiXkljgJKkvwG/Af4nWaj9UNIVZCH2C2Dh+zx+MzPbQspu7xSDpBuA+RHx47xr2RL19fVRKpXyLsPMrKpIaoyI+tbthXlXnqRGst7MV/OuxczM8lOYYEqPZ29E0pNA31bN50REU/dUZWZm3a0wwdSWiPho3jWYmVn38iuJzMysUBxMZmZWKIV6Kq9aSXoTWJJ3HZ00CFiddxFbwPV2LdfbdaqpVuj+elcDRMRxrRcU+h5TFVnS1iOPRSSpVC21guvtaq6361RTrVCsen0pz8zMCsXBZGZmheJgqoyGvAvYAtVUK7jeruZ6u0411QoFqtcPP5iZWaG4x2RmZoXiYDIzs0JxMH0Ako6TtETSHyRNybue1iTtLukhSc9IelrSf0vtV0laIWlB+joh71pbSFomqSnVVUptO0p6QNLz6c8d8q4TQNL+ZedwgaQ3JF1SpPMr6SeSXpO0uKytzfOZxh+7Pv08L0qDfOZd63WSnkv13JVGuEZSnaS3y87xTe3vuVvrbfd7L+nr6dwukXRsQeq9vazWZWnk7vzPb0T46318Ab2BPwJ7k42KuxA4MO+6WtU4BBiXpgcAS4EDgauAy/Kur52alwGDWrV9C5iSpqcA1+ZdZzs/D68Aexbp/AIfIxtMc/HmzifZSNO/BQQcDDxZgFqPAbZK09eW1VpXvl6Bzm2b3/v0924h2Uup90r/dvTOu95Wy78NfKMI59c9pvfvI8AfIuKFiPgb2YCCp+Zc00YiYmVEzEvTbwLPkg20WG1OBaal6WnAaTnW0p4jgT9GxEt5F1IuIh4B/tyqub3zeSrwn5F5Athe0pDuqbTtWiPi/oh4N80+AezWXfVsTjvntj2nAr+IiHci4kXgD2T/hnSbjuqVJOAs4LburKk9Dqb3byjwp7L55RT4H31JdcBYstF9Ab6cLo/8pCiXxpIA7pfUKGlyavtwRKxM068AH86ntA6dzcZ/qYt6fqH981n0n+nzyHp0LfaSNF/Sw5KOyKuoNrT1vS/6uT0CeDUini9ry+38OphqgKT+wB3AJRHxBvBDYB9gDLCSrAtfFIdHxDjgeOBCSR8rXxjZdYZC/Y6DpK2BU4AZqanI53cjRTyfbZF0OfAucGtqWgnsERFjgUuBn0vaLq/6ylTN976Vz7Dxf6xyPb8OpvdvBbB72fxuqa1QJPUhC6VbI+JOgIh4NSI2RMR7wI/o5ksKHYmIFenP14C7yGp7teWSUvrztfwqbNPxwLyIeBWKfX6T9s5nIX+mJU0CTgImpiAlXRJ7PU03kt2z2S+3IpMOvveFPLcAkrYC/gm4vaUt7/PrYHr/5gLDJO2V/sd8NnBPzjVtJF03/jHwbER8p6y9/L7Bp4HFrbfNg6RtJQ1omSa78b2Y7Lyem1Y7F7g7nwrbtdH/Not6fsu0dz7vAT6fns47GGguu+SXC0nHAf8dOCUi1pa1D5bUO03vDQwDXsinyn/o4Ht/D3C2pL6S9iKr96nurq8dRwHPRcTylobcz29eT130hC+yp5iWkv1v4vK862mjvsPJLtMsAhakrxOAnwJNqf0eYEjetaZ69yZ7cmkh8HTLOQV2AmYDzwP/F9gx71rLat4WeB0YWNZWmPNLFpgrgfVk9zXOb+98kj2Nd2P6eW4C6gtQ6x/I7s20/PzelNY9Pf2MLADmAScX5Ny2+70HLk/ndglwfBHqTe1TgS+2WjfX8+tXEpmZWaH4Up6ZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVij/H6ovFeU7ywQTAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "japanese_ingredient_df = create_ingredient_df(japanese_df)\r\n", + "japanese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfeElEQVR4nO3deZwV1Z338c8XbCEKYlSMiEurISECsl1NULO5xD2aCYgT4hLzkkcn4pgEnyGPJoMTM+OSbTRGJRmFUUcF1GjCqHGUuBL1NggNKmgiPmGJ4tZiEILwmz/qtN603U033O5bl/6+X69+dd1Tp079Thfxl3Oqbh1FBGZmZnnRrdIBmJmZlXJiMjOzXHFiMjOzXHFiMjOzXHFiMjOzXNmm0gFsDXbZZZeora2tdBhmZlWlrq7u1Yjo27TciakMamtrKRaLlQ7DzKyqSHqpuXJP5ZmZWa44MZmZWa44MZmZWa74HpOZWSdYv349y5YtY+3atZUOpdP17NmTPfbYg5qamjbVd2Iqg/rlDdROmlXpMKyDLb30uEqHYFVs2bJl9O7dm9raWiRVOpxOExG89tprLFu2jH322adNx3gqz8ysE6xdu5add965SyUlAEnsvPPO7RopOjGZmXWSrpaUGrW3305MZmaWK7m4xyTpNGAiEMACYDpwEbAt8BowDlgFLAYOjohVkroBS4BRqZlrgb3S9vkR8Zikyals3/T7pxFxpaRa4B7gUeBgYDlwYkS8I2k/4GqgL7AGOCsinuu43ptZV1Tu+9Llvgfaq1cv3n777bK22VYVHzFJGkSWhA6LiKHAP5IljE9FxHDgVuD/RsRG4CayJAVwBDA/IlYB/w78JCIOBL4M/LLkFAOBo4CDgH+W1PhYyADg6ogYBLyZjgOYAkyIiJFkyfLnLcQ9XlJRUnHDmoYt/juYmVmm4okJOAyYERGvAkTE68AewH2S6oELgEGp7vXAaWn7TOCGtH0E8DNJTwN3AztI6pX2zYqIdan9V4CPpPIXI+LptF0H1KZjDgZmpLauA/o1F3RETImIQkQUum/XZwv/BGZmHWvSpElcffXV732ePHkyl1xyCYcffjgjRoxgyJAh3HXXXR847ne/+x3HH3/8e5/PPfdcpk6dCkBdXR2f/exnGTlyJEcddRQrV64sS6x5SEzNuQr4WUQMAf4P0BMgIv4EvCzpMLIR0D2pfjeyEdaw9NM/IhrHoOtK2t3A+9OXzZV3A94saWdYRHyiIzpoZtaZxo4dy/Tp09/7PH36dE4//XTuvPNO5s6dy+zZs/n2t79NRLSpvfXr1zNhwgRmzpxJXV0dZ555JhdeeGFZYs3DPaYHgTsl/TgiXpO0E9CH7L4PwOlN6v+SbErvxojYkMp+C0wArgCQNKxkNNRmEfGWpBcljYmIGcoeJTkgIuZvRr/MzHJj+PDhvPLKK6xYsYJVq1bx4Q9/mN12241vfvObPPzww3Tr1o3ly5fz8ssvs9tuu22yvcWLF7Nw4UKOPPJIADZs2EC/fs1OMLVbxRNTRCyS9APgIUkbgHnAZLLptDfIElfpt7LuJpvCu6Gk7DzgakkLyPr0MHD2ZoY0DrhG0kVADdk9LicmM6t6Y8aMYebMmfz5z39m7Nix3HzzzaxatYq6ujpqamqora39wPeNttlmGzZu3Pje58b9EcGgQYOYM2dO2eOseGICiIhpwLQmxR+c7MwMJXvo4b0n5dL9o7HNtDu5yefBJR8Hl5T/sGT7ReDotsZuZlYtxo4dy1lnncWrr77KQw89xPTp09l1112pqalh9uzZvPTSB1eh2HvvvXnmmWdYt24d77zzDg888ACHHnooH//4x1m1ahVz5sxh1KhRrF+/niVLljBo0KBmztw+uUhMbSVpEnAO7z+ZlwtD+veh6NfVmFk7VOIVV4MGDWL16tX079+ffv36MW7cOE444QSGDBlCoVBg4MCBHzhmzz335OSTT2bw4MHss88+DB8+HIBtt92WmTNnct5559HQ0MC7777L+eefX5bEpLbe6LKWFQqF8EKBZtaaZ599lk98ous+S9Vc/yXVRUShad28PpVnZmZdlBOTmZnlihOTmVkn6aq3TtrbbycmM7NO0LNnT1577bUul5wa12Pq2bNnm4+pqqfyzMyq1R577MGyZctYtWpVpUPpdI0r2LaVE5OZWSeoqalp8wquXZ2n8szMLFecmMzMLFecmMzMLFd8j6kM6pc3lH01SsuvSrxKxqwr8YjJzMxypcslJkn/LWnHSsdhZmbN61JTeWnhv+MjYuMmK5uZWUVs9SMmSbWSFkv6T2AhsEHSLmnfaZIWSJov6cZU1lfS7ZKeSj+HVDJ+M7OupquMmAYAp0fE7yUtBZA0CLgIODgiXk1LugP8O/CTiHhU0l7AfcAH3lUvaTwwHqD7Dn07oQtmZl1DV0lML0XE75uUHQbMSKvfEhGvp/IjgP2zWT8AdpDUKyLeLj04IqYAUwB69BvQtV5+ZWbWgbpKYvpLO+p2Az4VEWs3WdPMzMpuq7/H1IoHgTGSdgYomcr7LTChsZKkYRWIzcysy+qyiSkiFgE/AB6SNB/4cdp1HlBID0U8A5xdqRjNzLoidbW1QTpCoVCIYrFY6TDMzKqKpLqIKDQt77IjJjMzyycnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzy5Wu8nbxDlW/vIHaSbMqHYblxNJLj6t0CGZVzSMmMzPLFScmMzPLlapITJJ2lzSz0nGYmVnHq4rEFBErImJ0Jc4tyffhzMw6Ue4Sk6RLJX2j5PNkSRMlLUyfz5B0h6R7JT0v6fKSul+QNEfSXEkzJPVK5cdKek5SnaQrJf0mlR+U6s+T9Likj5ec425JDwIPdOofwMysi8tdYgJuA04u+Xwy8ESTOsOAscAQYKykPSXtAlwEHBERI4Ai8C1JPYHrgGMiYiTQt6Sd54BPR8Rw4HvAv5bsGwGMjojPNhekpPGSipKKG9Y0bG5fzcysidxNU0XEPEm7StqdLIm8AfypSbUHIqIBIC1/vjewI7A/8JgkgG2BOcBA4I8R8WI69hZgfNruA0yTNAAIoKbkHPdHxOutxDkFmALQo98ALwNsZlYmuUtMyQxgNLAb2QiqqXUl2xvI+iGyZPL3pRUlDWvlPN8HZkfElyTVAr8r2feXdkdtZmZbLI9TeZAlo1PIktOMNh7ze+AQSR8FkLS9pI8Bi4F9U+KBbAqwUR9gedo+Y8tCNjOzcshlYoqIRUBvYHlErGzjMavIksstkhaQpvEi4h3gH4B7JdUBq4HGm0KXA/8maR75HT2amXUpitj6b49I6hURbyu7+XQ18HxE/KRc7RcKhSgWi+VqzsysS5BUFxGFpuW5HDF1gLMkPQ0sIpu+u67C8ZiZWQu6xPRVGh2VbYRkZmYdp6uMmMzMrEo4MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa50iS/YdrT65Q3UTppV6TDM2mTppcdVOgSzVnnEZGZmuVL1iUnS+ZK2K1Nbn2tcdt3MzCqj6hMTcD7QrsQkqXsHxWJmZluoqhJTWvxvlqT5khZK+mdgd2C2pNmpzjWSipIWSbq45Nilki6TNBcYI+mjkv4ntTVX0n6pai9JMyU9J+nmtFSGmZl1kmp7+OFoYEVEHAcgqQ/wNeDzEfFqqnNhRLyeRkUPSDogIhakfa9FxIh07BPApRFxp6SeZEl6T2A4MAhYATwGHAI82jQQSeOB8QDdd+jbMb01M+uCqmrEBNQDR6aRz6cjoqGZOienUdE8sgSzf8m+2wAk9Qb6R8SdABGxNiLWpDpPRsSyiNgIPA3UNhdIREyJiEJEFLpv16csnTMzsyobMUXEEkkjgGOBSyQ9ULpf0j7ARODAiHhD0lSgZ0mVv7ThNOtKtjdQZX8jM7NqV1UjJkm7A2si4ibgCmAEsBronarsQJZ8GiR9BDimuXYiYjWwTNJJqd0e5Xqyz8zMtky1jQaGAFdI2gisB84BRgH3SloREZ+XNA94DvgT2T2ilpwKXCfpX1JbYzo2dDMzawtFRKVjqHo9+g2Ifqf/tNJhmLWJ3/xgeSGpLiIKTcurbcSUS0P696Ho/7GbmZVFVd1jMjOzrZ8Tk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YpfSVQG9csbqJ00q9JhmLWL35lneeURk5mZ5YoTk5mZ5UpFE5OkkyTt34Z6UyWNbqb8c5J+U8Z4CpKuTNtnSPpZudo2M7O2qfSI6SRgk4mps0REMSLOq3QcZmZdWauJSdKlkr5R8nmypImSLpD0lKQFki4u2f9dSYslPSrpFkkTU/l+ku6VVCfpEUkDJR0MfJFsRdqnU52zUrvzJd3eZLnzIyQVJS2RdHwzsW4v6XpJT0qaJ+nEVvrVU9INkupT3c+n8jaPwCSNT/EUN6xpaMshZmbWBpsaMd0GnFzy+WRgFTAAOAgYBoyU9BlJBwJfBoYCxwClqxJOASZExEhgIvDziHgcuBu4ICKGRcQfgDsi4sCIGAo8C3y9pI3adM7jgGsl9WwS64XAgxFxEPB5soS3fQv9+gYQETEE+HtgWjPttSoipkREISIK3bfr055DzcysFa0+Lh4R8yTtKml3oC/wBjAE+AIwL1XrRZaoegN3RcRaYK2kXwNI6gUcDMyQ1Nh0jxZOOVjSJcCOqd37SvZNj4iNwPOS/ggMbHLsF4AvNo7SgJ7AXmQJrqlDgatSH5+T9BLwsdb+FmZm1jna8j2mGcBoYDeyEdTewL9FxHWllSSd38Lx3YA3I2JYG841FTgpIuZLOgP4XMm+aFK36WcBX46IxW04j5mZ5VRbHn64DTiFLDnNIBvFnJlGQkjqL2lX4DHghHT/phdwPEBEvAW8KGlMqi9JQ1Pbq8lGWo16Aysl1QDjmsQxRlI3SfsB+wJNE9B9wASlYZmk4a306ZHG9iV9jGxk5YRmZpYDm0xMEbGILGEsj4iVEfFb4L+AOZLqgZlA74h4iuye0QLgHqAeaHwqYBzwdUnzgUVA44MJtwIXpAcQ9gO+CzxBluSeaxLK/weeTG2fnaYMS30fqAEWSFqUPrfk50C3FP9twBkRsW5TfwszM+t4img6I7YFjUm9IuLt9DTdw8D4iJhbthPkVKFQiGKxWOkwzMyqiqS6iCg0LS/3u/KmpC/M9gSmdYWkZGZm5VXWxBQRXylne1tK0lHAZU2KX4yIL1UiHjMz27St+u3iEXEff/vIuZmZ5VylX0lkZmb2N5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV7bq7zF1lvrlDdROmlXpMMw6xNJLj6t0CNbFeMRkZma54sRkZma54sTUhKSzJZ2WtqdKGl3pmMzMuhLfY2oiIq6tdAxmZl1ZWUdMkraXNEvSfEkLJY2VNFLSQ5LqJN0nqV+qe56kZyQtkHRrKjtI0py0cODjkj6eys+Q9CtJ90taKulcSd9K9X4vaadUbz9J96ZzPSJpYCux1kp6MJ3/AUl7pfLJkia2oa/jJRUlFTesadhUdTMza6NyT+UdDayIiKERMRi4F7gKGB0RI4HrgR+kupOA4RFxAHB2KnsO+HREDAe+B/xrSduDgb8DDkxtrEn15gCnpTpTgAnpXBPJVqptyVVka0YdANwMXNmejkbElIgoRESh+3Z92nOomZm1otxTefXAjyRdBvwGeIMsodwvCaA7sDLVXQDcLOlXwK9SWR9gmqQBQJAtld5odkSsBlZLagB+XXLOAyT1Ag4GZqRzAfRoJdZRZIkO4Ebg8vZ318zMyq3cCwUukTQCOBa4BHgQWBQRo5qpfhzwGeAE4EJJQ4DvkyWgL0mqBX5XUn9dyfbGks8byfrRDXgzIoaVrUNmZtbpyn2PaXeyKbabgCuATwJ9JY1K+2skDZLUDdgzImYD/0Q2UuqVfi9PzZ3RnnNHxFvAi5LGpHNJ0tBWDnkcOCVtjwMeac/5zMysY5R7Km8IcIWkjcB64BzgXeBKSX3S+X4KLAFuSmUCroyINyVdTjaVdxGwOa9SGAdck46vAW4F5rdQdwJwg6QLgFXA1zbjfAAM6d+Hor8db2ZWFoqISsdQ9QqFQhSLxUqHYWZWVSTVRUShabm/YGtmZrmy1X/BVtKFwJgmxTMi4gfN1Tczs8ra6hNTSkBOQmZmVcJTeWZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitb/ePinaF+eQO1kzbnDUpmtqWW+nVgWx2PmMzMLFecmMzMLFe2usSUlkxfmLY/J+k3afuLkiZVNjozM9uULnOPKSLuBu6udBxmZta63I2YJG0vaZak+ZIWShor6UBJj6eyJyX1TiOjRyTNTT8Hb6LdMyT9LG3XSnpQ0gJJD0jaK5VPlXRlOtcfJY3ujD6bmdn78jhiOhpYERHHAaTFBOcBYyPiKUk7AO8ArwBHRsRaSQOAW4APrOvRgquAaRExTdKZwJXASWlfP+BQYCDZCGtmcw1IGg+MB+i+Q9/299LMzJqVuxETUA8cKekySZ8G9gJWRsRTkC2hHhHvkq1Q+wtJ9cAMYP92nGMU8F9p+0ayRNToVxGxMSKeAT7SUgMRMSUiChFR6L5dn3ac2szMWpO7EVNELJE0AjgWuAR4sIWq3wReBoaSJdi1ZQphXcm2ytSmmZm1Ue5GTJJ2B9ZExE3AFcAngX6SDkz7e0vaBuhDNpLaCJwKdG/HaR4HTknb44BHyhW/mZltmdyNmIAhwBWSNgLrgXPIRi5XSfoQ2f2lI4CfA7dLOg24F/hLO84xAbhB0gXAKuBrZYzfzMy2gCKi0jFUvUKhEMVisdJhmJlVFUl1EfGBh9ZyN5VnZmZdmxOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlSh7flVd16pc3UDtpVqXDMLMyWnrpcZUOocvyiMnMzHKlyyamJkutn53eUm5mZhXWJafy0npO74mIaysVi5mZ/a2qTkySvgt8lWxNpT8BdUADMB7YFngBODUi1kiaSrbK7XDgMWBBSTuTgbcj4oeSPgpcC/QFNgBjIuIPndUnM7Ourmqn8tKKtl8mW1r9GKBxTY87IuLAiBgKPAt8veSwPYCDI+JbrTR9M3B1Ov5gYGUL5x8vqSipuGFNwxb2xszMGlXziOkQ4K6IWAuslfTrVD5Y0iXAjkAv4L6SY2ZExIaWGpTUG+gfEXcCpLabFRFTgCkAPfoN8GqLZmZlUrUjplZMBc6NiCHAxUDPkn3tWX7dzMwqoJoT02PACZJ6SuoFHJ/KewMrJdUA49rTYESsBpZJOglAUg9J25UzaDMza13VJqaIeAq4m+whhnuAerIHH74LPEGWuJ7bjKZPBc6TtAB4HNitLAGbmVmbKKJ6b49I6hURb6dRzcPA+IiY29lx9Og3IPqd/tPOPq2ZdSC/+aHjSaqLiELT8mp++AFgiqT9ye4jTatEUgIY0r8PRf8jNjMri6pOTBHxlUrHYGZm5VW195jMzGzr5MRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma5UtVvfsiL+uUN1E6aVekwzKwD+J15nc8jJjMzy5WqT0yS/kXSEZWOw8zMyqPqp/Ii4nsdfQ5J3Vtbkt3MzMqnqkZMkr4rabGkRyXdImmipKmSRqf9SyVdLGmupHpJA1N5X0n3S1ok6ZeSXpK0S9r3VUlPSnpa0nWSuqfytyX9SNJ8YFTFOm1m1sVUTWKSdCDwZWAocAzwgcWlklcjYgRwDTAxlf0z8GBEDAJmAnulNj8BjAUOiYhhwAbeX459e+CJiBgaEY82E894SUVJxQ1rGsrSRzMzq66pvEOAuyJiLbBW0q9bqHdH+l0H/F3aPhT4EkBE3CvpjVR+ODASeEoSwIeAV9K+DcDtLQUTEVOAKZCtYLs5HTIzsw+qpsTUVuvS7w1sun8iW/n2O83sW+v7SmZmna9qpvKAx4ATJPWU1As4vp3Hngwg6QvAh1P5A8BoSbumfTtJ2ruMMZuZWTtVzYgpIp6SdDewAHgZqAfaenPnYuAWSacCc4A/A6sj4lVJFwG/ldQNWA98A3ip7B0wM7M2qZrElPwwIiZL2g54GKiLiF807oyI2pLtIvC59LEBOCoi3pU0CjgwItalercBtzU9UUT06rBemJlZi6otMU2RtD/Qk+ze0Nw2HrcXMD2Niv4KnFXOoIb070PRry0xMyuLqkpMEfGVzTzueWB4mcMxM7MOUE0PP5iZWRfgxGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrlSVV+wzav65Q3UTppV6TDMzDrV0g56441HTGZmlitOTGZmlitOTGZmlitOTGZmlisdmpgkbS9plqT5khZKGivpcEnzJNVLul5SD0mHSfpVyXFHSrqzhTa7S5qa2quX9M1Ufpakp9K5bk9rNpHqji45/u2S7X9KbcyXdGkq20/SvZLqJD0iaWBH/X3MzOyDOnrEdDSwIiKGRsRg4F5gKjA2IoaQPRV4DjAbGCipbzrua8D1LbQ5DOgfEYNTGzek8jsi4sCIGAo8C3y9tcAkHQOcCHwyHXN52jUFmBARI4GJwM9bOH68pKKk4oY1bV1I18zMNqWjE1M9cKSkyyR9GqgFXoyIJWn/NOAzERHAjcBXJe0IjALuaaHNPwL7SrpK0tHAW6l8cBrh1APjgEGbiO0I4IaIWAMQEa9L6gUcDMyQ9DRwHdCvuYMjYkpEFCKi0H27Ppv6O5iZWRt16PeYImKJpBHAscAlwIOtVL8B+DWwFpgREe+20OYbkoYCRwFnAycDZ5KNxE6KiPmSzuD9ZdXfJSXgtILttq3E0A14MyKGtaV/ZmZWfh19j2l3YE1E3ARcQTYSqpX00VTlVOAhgIhYAawALuL96bnm2twF6BYRt6e6I9Ku3sBKSTVkI6ZGS4GRafuLQE3avh/4Wsm9qJ0i4i3gRUljUplSEjQzs07S0W9+GAJcIWkjsJ7sflIfsqmybYCngGtL6t8M9I2IZ1tpsz9wQxr9AHwn/f4u8ASwKv3uncp/AdwlaT7ZPa6/AETEvZKGAUVJfwX+G/h/ZEntGkkXkSWxW4H5m9l/MzNrJ2W3d/JB0s+AeRHxH5WOpT0KhUIUi8VKh2FmVlUk1UVEoWl5bt6VJ6mObDTz7UrHYmZmlZObxJQez/4bkp4AejQpPjUi6jsnKjMz62y5SUzNiYhPVjoGMzPrXH4lkZmZ5YoTk5mZ5UqunsqrVpJWA4srHUcZ7QK8Wukgysx9yr+trT+w9fWp3P3ZOyL6Ni3M9T2mKrK4uUceq5Wk4tbUH3CfqsHW1h/Y+vrUWf3xVJ6ZmeWKE5OZmeWKE1N5TKl0AGW2tfUH3KdqsLX1B7a+PnVKf/zwg5mZ5YpHTGZmlitOTGZmlitOTFtA0tGSFkt6QdKkSsezuSQtlVQv6WlJxVS2k6T7JT2ffn+40nG2RtL1kl6RtLCkrNk+pHW2rkzXbUFazDJXWujPZEnL03V6WtKxJfu+k/qzWNJRlYm6ZZL2lDRb0jOSFkn6x1RezdeopT5V83XqKelJSfNTny5O5ftIeiLFfpukbVN5j/T5hbS/tiyBRIR/NuMH6A78AdiXbFXc+cD+lY5rM/uyFNilSdnlwKS0PQm4rNJxbqIPnyFbNHLhpvpAtqLyPYCATwFPVDr+NvZnMjCxmbr7p39/PYB90r/L7pXuQ5MY+wEj0nZvYEmKu5qvUUt9qubrJKBX2q4hW9vuU8B04JRUfi1wTtr+B+DatH0KcFs54vCIafMdBLwQEX+MiL+SLSh4YoVjKqcTgWlpexpwUgVj2aSIeBh4vUlxS304EfjPyPwe2FFSv86JtG1a6E9LTgRujYh1EfEi8ALZv8/ciIiVETE3ba8GniVb9LOar1FLfWpJNVyniIi308ea9BPAYcDMVN70OjVev5nA4ZK0pXE4MW2+/sCfSj4vo/V/lHkWwG8l1Ukan8o+EhEr0/afgY9UJrQt0lIfqvnanZumtq4vmV6tqv6k6Z7hZP9vfKu4Rk36BFV8nSR1l/Q08ApwP9nI7s2IeDdVKY37vT6l/Q3AzlsagxOTARwaESOAY4BvSPpM6c7IxulV/b2CraEPwDXAfsAwYCXwo8qG036SegG3A+dHxFul+6r1GjXTp6q+ThGxISKGAXuQjegGdnYMTkybbzmwZ8nnPVJZ1YmI5en3K8CdZP8YX26cOkm/X6lchJutpT5U5bWLiJfTfzQ2Ar/g/WmgquiPpBqy/4DfHBF3pOKqvkbN9anar1OjiHgTmA2MIptKbXy3amnc7/Up7e8DvLal53Zi2nxPAQPS0yrbkt34u7vCMbWbpO0l9W7cBr4ALCTry+mp2unAXZWJcIu01Ie7gdPSk1+fAhpKppNyq8k9li+RXSfI+nNKekJqH2AA8GRnx9eadN/hP4BnI+LHJbuq9hq11Kcqv059Je2Ytj8EHEl272w2MDpVa3qdGq/faODBNPLdMpV+CqSaf8ieHFpCNgd7YaXj2cw+7Ev2pNB8YFFjP8jmiR8Angf+B9ip0rFuoh+3kE2brCebA/96S30ge/Lo6nTd6oFCpeNvY39uTPEuSP9B6FdS/8LUn8XAMZWOv5n+HEo2TbcAeDr9HFvl16ilPlXzdToAmJdiXwh8L5XvS5ZEXwBmAD1Sec/0+YW0f99yxOFXEpmZWa54Ks/MzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLlfwHH5sUVMquziAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "chinese_ingredient_df = create_ingredient_df(chinese_df)\r\n", + "chinese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfTElEQVR4nO3de5RXdb3/8ecLHEEdQkU0fngZNBRFBGH0eMtMTSs17QjiL0tMj/ws01ylHUrr4MnWsU4Xu1iGHsPMo1zSBcVKLe+aF2ZAbhJqggWSgOUkGoTj+/fH/ox8HecK35m9v8zrsdZ3zd6f/dmf/d6f9WXefPbesz+KCMzMzIqiV94BmJmZlXJiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtku7wC2BbvttlvU1NTkHYaZWUWpr69fFxEDm5c7MZVBTU0NdXV1eYdhZlZRJL3YUrkv5ZmZWaE4MZmZWaE4MZmZWaH4HpOZWTfYtGkTK1euZMOGDXmH0u369u3LnnvuSVVVVYfqOzGVwaJVDdRMmpN3GLaNWnHtKXmHYGWwcuVK+vXrR01NDZLyDqfbRASvvPIKK1euZMiQIR3ax5fyzMy6wYYNGxgwYECPSkoAkhgwYECnRopdnpgkXSppqaTbuvpY5SBphaTd8o7DzLY9PS0pNenseXfHpbzPAidGxMpuONbbJG0XEW925zHNzGzrdWliknQDsC/wG0l3APsBBwNVwOSImCXpPOBjwI5p+10R8aW0//qIqE7LY4FTI+I8SfsBtwE7AbOAyyKiWtJxwNeBvwHDgP0lfRK4FNgeeBL4bEQ0SjoJuBroA/wR+HRErC+JfQfgTuDOiLixyzrJzHqkct+XLve9yOrqatavX99+xS7QpZfyIuIi4CXgg2RJ5P6IODyt/7eknVLVUcB4YAQwXtJe7TT9feD7ETECaD4SGw18PiL2l3RgavfoiBgFNALnpEt1V5GN5EYDdcAXStqoBn4F3N5aUpI0UVKdpLrGNxra7wwzM+uQ7nz44SRgkqSngQeBvsDeadt9EdEQERuAZ4B92mnrSGBGWv7fZtueiojlafkEYAwwNx33BLIR3BHAQcBjqXxCs2POAn4WET9vLYCImBIRtRFR23vH/u2Ea2aWr0mTJnH99de/vT558mSuueYaTjjhBEaPHs2IESOYNWvWu/Z78MEHOfXUU99e/9znPsfUqVMBqK+v5wMf+ABjxozh5JNPZvXq1WWJtTsTk4AzI2JU+uwdEUvTto0l9RrZfImxdN73vh08zuvNjnlLyTEPiIjJqfy3JeUHRcQFJfs9BnxYPfVOpZltc8aPH8/06dPfXp8+fToTJkzgrrvuYt68eTzwwAN88YtfJCLaaGWzTZs2cckllzBz5kzq6+s5//zzufLKK8sSa3cmpnuAS5p+2Us6tAP7vCzpQEm9gI+XlD8BnJmWz25j//uAsZJ2T8fcVdI+af+jJb0vle8kaf+S/b5Gdp/q+uYNmplVokMPPZQ1a9bw0ksvsWDBAnbZZRfe+9738pWvfIVDDjmEE088kVWrVvHyyy93qL1ly5axePFiPvShDzFq1CiuueYaVq4szzNu3fkHtl8HrgMWpkSzHDi17V2YBPwaWEt2H6g6lV8G/ELSlcDdQIs3eSLiGUlXAfemY24CLo6IJ9JDF7dL6pOqXwU8W7L754GbJX2r6WEMM7NKNm7cOGbOnMlf/vIXxo8fz2233cbatWupr6+nqqqKmpqad/290Xbbbcdbb7319nrT9ohg+PDhPP7442WPs8sTU0TUlKz+vxa2TwWmlqyfWrI8E5jZQrOrgCMiIiSdDRyQ6j9Idv+qtP1pwLQWjns/cFg78X66hWObmVWk8ePHc+GFF7Ju3Toeeughpk+fzu67705VVRUPPPAAL7747lko9tlnH5555hk2btzIP/7xD+677z6OOeYYDjjgANauXcvjjz/OkUceyaZNm3j22WcZPnz4VsdZqa8kGgP8KF0WfBU4P89gRgzuT51fG2NmnZDHq6aGDx/Oa6+9xuDBgxk0aBDnnHMOp512GiNGjKC2tpZhw4a9a5+99tqLs846i4MPPpghQ4Zw6KHZXZjtt9+emTNncumll9LQ0MCbb77JZZddVpbEpI7e6LLW1dbWhicKNLO2LF26lAMPPDDvMHLT0vlLqo+I2uZ1/a48MzMrFCcmMzMrFCcmM7Nu0lNvnXT2vJ2YzMy6Qd++fXnllVd6XHJqmo+pb9+OviOhcp/KMzOrKHvuuScrV65k7dq1eYfS7ZpmsO0oJyYzs25QVVXV4RlcezpfyjMzs0JxYjIzs0JxYjIzs0LxPaYyWLSqoeyzUZptiTxec2NWbh4xmZlZoTgxmZlZoTgxtUMZ95OZWTcp9C9cSTWS/iDpNklLJc2UtKOkMZIeklQv6R5Jg1L9ByV9X9LTkhZLOjyVT5Z0q6THJT0n6cKSY1whaa6khZKuLjnuMkk/BxYDe+Vx/mZmPVElPPxwAHBBRDwm6WbgYrJp1k+PiLWSxgPfYPOcTDtGxChJxwI3Awen8kOAI4CdgPmS5qRtQ4HDAQGz035/SuUTIuKJloKSNBGYCND7PQPLfc5mZj1WJSSmP0fEY2n5F8BXyBLKb7N5AukNrC6pfztARDws6T2Sdk7lsyLiH8A/JD1AloyOAU4C5qc61WQJ6U/Ai60lpdT+FGAKQJ9BQ3vWy6/MzLpQJSSm5r/0XwOWRMSRHawfbZQL+K+I+GnpBkk1wOudjtTMzLZaoe8xJXtLakpCnwCeAAY2lUmqklQ6l+/4VH4M0BARDan8dEl9JQ0AjgPmAvcA50uqTvsMlrR7l5+RmZm1qhJGTMuAi9P9pWeAH5IllB9I6k92DtcBS1L9DZLmA1Vsvu8EsBB4ANgN+HpEvAS8JOlA4PF0WXA98EmgscvPyszMWqQizw2SLqn9OiIObqdqU/0Hgcsjoq5Z+WRgfUR8u8whAlBbWxt1dXXtVzQzs7dJqo+I2ubllXApz8zMepBCX8qLiBVsfty7I/WPa6V8cnkiMjOzruYRk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFUqh/8C2Uixa1UDNpDl5h2HWI6y49pS8Q7Au5hGTmZkVihOTmZkVSq6JSdIZkg7qQL2pksa2UH6cpF+XMZ5aST9Iy+dJ+lG52jYzs47Je8R0BtBuYuouEVEXEZfmHYeZWU/WZmKSdK2ki0vWJ0u6XNIVkuZKWijp6pLtX5W0TNKjkm6XdHkq30/S3ZLqJT0iaZiko4CPAf8t6elU58LU7gJJv5S0Y0k4J0qqk/SspFNbiHUnSTdLekrSfEmnt3FefSX9TNKiVPeDqbysIzAzM+u89kZM04CzStbPAtYCQ4HDgVHAGEnHSjoMOBMYCXwEKJ38aQpwSUSMAS4HfhwRvwdmA1dExKiI+CNwZ0QcFhEjgaXABSVt1KRjngLcIKlvs1ivBO6PiMOBD5IlvJ1aOa+LgYiIEcD/BW5pob02SZqYEmVd4xsN7e9gZmYd0ubj4hExX9Lukv4PMBD4GzACOAmYn6pVkyWqfsCsiNhANr35rwAkVQNHATPS9OUAfVo55MGSrgF2Tu3eU7JtekS8BTwn6QVgWLN9TwI+1jRKA/oCe5MluOaOIZuinYj4g6QXgf3b6ovmImIKWcKlz6ChxZ0G2MyswnTk75hmAGOB95KNoPYB/isiflpaSdJlrezfC3g1IkZ14FhTgTMiYoGk84DjSrY1/+XffF3AmRGxrAPHMTOzgurIww/TgLPJktMMslHM+WkkhKTBknYHHgNOS/dvqoFTASLi78BySeNSfUkamdp+jWyk1aQfsFpSFXBOszjGSeolaT9gX6B5AroHuERpWCbp0DbO6ZGm9iXtTzayckIzMyuAdhNTRCwhSxirImJ1RNwL/C/wuKRFwEygX0TMJbtntBD4DbAIaLr5cg5wgaQFwBKg6cGEO4Ar0gMI+wFfBZ4kS3J/aBbKn4CnUtsXpUuGpb4OVAELJS1J6635MdArxT8NOC8iNrbXF2Zm1vUUUb7bI5KqI2J9epruYWBiRMwr2wEKqra2Nurq6vIOw8ysokiqj4ja5uXlflfelPQHs32BW3pCUjIzs/Iqa2KKiE+Us72tJelk4JvNipdHxMfziMfMzNq3Tb9dPCLu4Z2PnJuZWcHl/UoiMzOzd3BiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtmm/46puyxa1UDNpDl5h2HWY6y49pS8Q7Au5BGTmZkVSsUnJkn/KenEvOMwM7PyqPhLeRHxta4+hqTeEdHY1ccxM7MKGzFJ+qqkZZIelXS7pMslTZU0Nm1fIelqSfMkLZI0LJUPlPRbSUsk3STpRUm7pW2flPSUpKcl/VRS71S+XtJ30hxSR+Z20mZmPUzFJCZJhwFnAiOBjwDvmsMjWRcRo4GfAJensv8A7o+I4WQTG+6d2jwQGA8cnaZ+b2TzzLk7AU9GxMiIeLSFeCZKqpNU1/hGQ/PNZma2hSrpUt7RwKw0c+0GSb9qpd6d6Wc98K9p+Rjg4wARcbekv6XyE4AxwNw0I/sOwJq0rRH4ZWvBRMQUYApAn0FDyzfboplZD1dJiamjmqZIb6T98xPZhIZfbmHbBt9XMjPrfhVzKQ94DDhNUl9J1cCpndz3LABJJwG7pPL7gLGSdk/bdpW0TxljNjOzTqqYEVNEzJU0G1gIvAwsAjp6c+dq4HZJnwIeB/4CvBYR6yRdBdwrqRewCbgYeLHsJ2BmZh1SMYkp+XZETJa0I/AwUB8RNzZtjIiakuU64Li02gCcHBFvSjoSOCwiNqZ604BpzQ8UEdVddhZmZtaqSktMUyQdBPQluzc0r4P77Q1MT6OifwIXljOoEYP7U+dXpJiZlUVFJaaI+MQW7vcccGiZwzEzsy5QSQ8/mJlZD+DEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmhVJRb34oqkWrGqiZNCfvMMxsK63wq8UKwSMmMzMrlB6bmCSdJ+lHafkiSefmHZOZmfXQS3mS3nHeEXFDXrGYmdk7VXRikvRV4JPAWuDPQD3Z3EsTge2B54FPRcQbkqYCG8jeMv4Y2YSDTe1MBtZHxLclvQ+4ARhINj37uIj4Y3edk5lZT1exl/IkHQacCYwEPgLUpk13RsRhETESWApcULLbnsBREfGFNpq+Dbg+7X8UsLqV40+UVCeprvGNjk6ka2Zm7ankEdPRwKyI2ABskPSrVH6wpGuAnYFq4J6SfWZERGNrDUrqBwyOiLsAUtstiogpwBSAPoOGxladiZmZva1iR0xtmAp8LiJGAFeTzXbb5PVcIjIzsw6r5MT0GHCapL6SqoFTU3k/YLWkKuCczjQYEa8BKyWdASCpj6Qdyxm0mZm1rWITU0TMBWaTPcTwG2AR2YMPXwWeJEtcf9iCpj8FXCppIfB74L1lCdjMzDpEEZV7e0RSdUSsT6Oah4GJETGvu+PoM2hoDJpwXXcf1szKzG9+6F6S6iOitnl5JT/8ADBF0kFk95FuySMpAYwY3J86f6HNzMqiohNTRHwi7xjMzKy8KvYek5mZbZucmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFAq+s0PRbFoVQM1k+bkHYaZdTG/S697eMRkZmaF4sRkZmaF4sRkZmaFUojEJOlcSQslLZB0q6TTJD0pab6k30naQ1IvSc9JGpj26SXpeUkD0+eXkuamz9GpzmRJN0t6UNILki5N5TWSlkq6UdISSfdK2iFt20/S3ZLqJT0iaVh+PWNm1vPknpgkDQeuAo6PiJHA54FHgSMi4lDgDuBLEfEW8As2T5d+IrAgItYC3we+FxGHAWcCN5UcYhhwMnA48B9pynWAocD1ETEceDXtBzAFuCQixgCXAz9uJe6Jkuok1TW+0bDV/WBmZpkiPJV3PDAjItYBRMRfJY0ApkkaBGwPLE91bwZmAdcB5wM/S+UnAgdJamrzPZKq0/KciNgIbJS0BtgjlS+PiKfTcj1Qk/Y5CphR0lafloKOiClkSYw+g4ZW7jTAZmYFU4TE1JIfAt+NiNmSjgMmA0TEnyW9LOl4shFQ0+ipF9kIa0NpIym5bCwpamTzOTcv3yG182pEjCrr2ZiZWYflfikPuB8YJ2kAgKRdgf7AqrR9QrP6N5Fd0psREY2p7F7gkqYKkrYosUTE34HlksaldiRp5Ja0ZWZmWyb3xBQRS4BvAA9JWgB8l2yENENSPbCu2S6zgWo2X8YDuBSoTQ9QPANctBUhnQNckGJZApy+FW2ZmVknKaKybo9IqiV70OH9ecfSpLa2Nurq6vIOw8ysokiqj4ja5uVFvcfUIkmTgM+w+d6SmZltY3K/lNcZEXFtROwTEY/mHYuZmXWNikpMZma27XNiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQqmoNz8U1aJVDdRMmpN3GGbWDVZce0reIWzzPGIyM7NCcWIyM7NCqZjEJOlj6SWu5WhrsqTLy9GWmZmVV0XcY5K0XUTMJpuLKa/jv5nHsc3MeppuHzFJOjdN6LdA0q2SaiTdn8ruk7R3qjdV0g2SngS+Jek8ST9K206T9KSk+ZJ+J2mPVD5Z0s2SHpT0gqRLS457paRnJT0KHFBSvp+kuyXVS3pE0rCWjt+NXWRm1qN164hJ0nDgKuCoiFiXplG/BbglIm6RdD7wA+CMtMueqW6jpPNKmnoUOCIiQtK/AV8Cvpi2DQM+CPQDlkn6CXAIcDYwiuyc5wH1qf4U4KKIeE7SvwA/Bo5vfvwWzmUiMBGg93sGbk23mJlZie6+lHc8MCMi1gFExF8lHQn8a9p+K+8cncxoKSmQJYxpkgYB2wPLS7bNiYiNwEZJa4A9gPcDd0XEGwCSZqef1cBRZNO4N+3fpwPHJyKmkCU1+gwaWlnTAJuZFVjR7zG93kr5D4HvRsRsSccBk0u2bSxZbqTtc+wFvBoRozp5fDMz6yLdfY/pfmCcpAEA6VLe78kus0E2ZfojHWinP7AqLU/oQP2HgTMk7SCpH3AaQET8HVguaVyKR5JGdvRkzMys/Lp1xBQRSyR9A3hIUiMwH7gE+JmkK4C1wKc70NRksstvfyNLdkPaOe48SdOABcAaYG7J5nOAn0i6CqgC7kj1zMwsB4rw7ZGtVVtbG3V1dXmHYWZWUSTVR0Rt8/KK+QNbMzPrGZyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUIr+dvGKsGhVAzWT5uQdhpkVzIprT8k7hIrkEZOZmRVKj0pMkv5T0ol5x2FmZq3rUZfyIuJrecdgZmZtq/gRk6QvSFqcPpdJqpG0VNKNkpZIulfSDqnuVElj0/IJkuZLWiTpZkl9UvkKSVdLmpe2Dcvz/MzMepqKTkySxpBNLPgvwBHAhcAuwFDg+ogYDrwKnNlsv77AVGB8RIwgGzl+pqTKuogYDfwEuLyVY0+UVCeprvGNhrKel5lZT1bRiQk4BrgrIl6PiPXAncD7geUR8XSqUw/UNNvvgFTn2bR+C3BsyfY729gXgIiYEhG1EVHbe8f+W30iZmaWqfTE1JqNJcuNdP5eWtP+W7KvmZlthUpPTI8AZ0jaUdJOwMdTWXuWATWS3pfWPwU81EUxmplZJ1T0aCAi5kmaCjyVim4C/taB/TZI+jQwQ9J2wFzghi4L1MzMOkwRkXcMFa/PoKExaMJ1eYdhZgXjNz+0TVJ9RNQ2L6/oEVNRjBjcnzp/Ac3MyqLS7zGZmdk2xonJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxa8kKoNFqxqomTQn7zDMrAL4/Xnt84jJzMwKJdfEJGlnSZ/NM4YUx02SDso7DjMzy3/EtDPQqcQkqXc5A5DUOyL+LSKeKWe7Zma2ZfJOTNcC+0l6WtJcSb9u2iDpR5LOS8srJH1T0jxgnKQHJX1PUp2kpZIOk3SnpOckXVPSxiclPZXa/2lTUpO0XtJ3JC0Ajkzt1aZtH5Y0T9ICSfd1Z2eYmVn+iWkS8MeIGAVc0U7dVyJidETckdb/mSaYugGYBVwMHAycJ2mApAOB8cDRqf1G4Jy0707AkxExMiIebTqApIHAjcCZETESGNdaMJImpsRY1/hGQ2fP28zMWlFJT+VNa7Y+O/1cBCyJiNUAkl4A9gKOAcYAcyUB7ACsSfs0Ar9s4RhHAA9HxHKAiPhra8FExBRgCmQz2G7B+ZiZWQuKlJje5J0juL7Ntr/ebH1j+vlWyXLT+naAgFsi4sstHGtDRDRuRaxmZtZF8r6U9xrQLy2/CBwkqY+knYETtrLt+4CxknYHkLSrpH3a2ecJ4FhJQ5r22coYzMysk3IdMUXEK5Iek7QY+A0wHVgMLAfmb2Xbz0i6CrhXUi9gE9l9qBfb2GetpInAnWmfNcCHtiYOMzPrHEX49sjW6jNoaAyacF3eYZhZBfCbHzaTVJ8eYnuHIt1jqlgjBvenzl82M7OyyPsek5mZ2Ts4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4zQ9lsGhVAzWT5uQdhplZt+qq1yt5xGRmZoXixGRmZoXS4xOTpIsknZt3HGZmlunx95gi4oa8YzAzs80qbsQk6VxJCyUtkHSrpKmSxpZsX59+HifpIUmzJL0g6VpJ50h6StIiSfulepMlXZ6WH5T0zVTnWUnvz+cszcx6ropKTJKGA1cBx0fESODz7ewyErgIOBD4FLB/RBwO3ARc0so+26U6lwH/0UYsEyXVSaprfKOhk2diZmatqajEBBwPzIiIdQAR8dd26s+NiNURsRH4I3BvKl8E1LSyz53pZ30bdYiIKRFRGxG1vXfs38HwzcysPZWWmFryJuk8JPUCti/ZtrFk+a2S9bdo/f5aU53GNuqYmVkXqbTEdD8wTtIAAEm7AiuAMWn7x4CqfEIzM7NyqKgRQUQskfQN4CFJjcB84N+BWZIWAHcDr+cZo5mZbR1FRN4xVLza2tqoq6vLOwwzs4oiqT4iapuXV9qlPDMz28Y5MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4qbwykPQasCzvODphN2Bd3kF0guPtWpUWL1RezI63ZftExMDmhRX1d0wFtqylRx6LSlKd4+06jrfrVVrMjrdzfCnPzMwKxYnJzMwKxYmpPKbkHUAnOd6u5Xi7XqXF7Hg7wQ8/mJlZoXjEZGZmheLEZGZmheLEtBUkfVjSMknPS5qUdzwtkbRC0iJJT0uqS2W7SvqtpOfSz11yjvFmSWskLS4pazFGZX6Q+nyhpNEFiXeypFWpn5+W9NGSbV9O8S6TdHIO8e4l6QFJz0haIunzqbyQfdxGvIXsY0l9JT0laUGK9+pUPkTSkymuaZK2T+V90vrzaXtNQeKdKml5Sf+OSuXd/32ICH+24AP0JpuufV+yWXMXAAflHVcLca4AdmtW9i1gUlqeBHwz5xiPBUYDi9uLEfgo8BtAwBHAkwWJdzJweQt1D0rfjT7AkPSd6d3N8Q4CRqflfsCzKa5C9nEb8Rayj1M/VaflKuDJ1G/TgbNT+Q3AZ9LyZ4Eb0vLZwLRu7t/W4p0KjG2hfrd/Hzxi2nKHA89HxAsR8U/gDuD0nGPqqNOBW9LyLcAZOcZCRDwM/LVZcWsxng78PDJPADtLGtQ9kWZaibc1pwN3RMTGiFgOPE/23ek2EbE6Iual5deApcBgCtrHbcTbmlz7OPXT+rRalT4BHA/MTOXN+7ep32cCJ0hSN4XbVryt6fbvgxPTlhsM/LlkfSVt/+PJSwD3SqqXNDGV7RERq9PyX4A98gmtTa3FWOR+/1y61HFzyeXRQsWbLhsdSva/5ML3cbN4oaB9LKm3pKeBNcBvyUZtr0bEmy3E9Ha8aXsDMCDPeCOiqX+/kfr3e5L6NI836fL+dWLa9h0TEaOBjwAXSzq2dGNkY/VC/81AJcQI/ATYDxgFrAa+k2847yapGvglcFlE/L10WxH7uIV4C9vHEdEYEaOAPclGa8NyDqlNzeOVdDDwZbK4DwN2Bf49r/icmLbcKmCvkvU9U1mhRMSq9HMNcBfZP5qXm4bi6eea/CJsVWsxFrLfI+Ll9I/9LeBGNl9KKkS8kqrIfsnfFhF3puLC9nFL8Ra9jwEi4lXgAeBIskteTe8jLY3p7XjT9v7AK90cKvCOeD+cLqFGRGwEfkaO/evEtOXmAkPTkzfbk93EnJ1zTO8gaSdJ/ZqWgZOAxWRxTkjVJgCz8omwTa3FOBs4Nz0pdATQUHI5KjfNrrl/nKyfIYv37PQk1hBgKPBUN8cm4H+ApRHx3ZJNhezj1uItah9LGihp57S8A/AhsvtiDwBjU7Xm/dvU72OB+9OINc94/1DynxSR3Q8r7d/u/T509dMV2/KH7GmVZ8muJ1+ZdzwtxLcv2dNKC4AlTTGSXc++D3gO+B2wa85x3k52aWYT2fXrC1qLkezJoOtTny8CagsS760pnoVk/5AHldS/MsW7DPhIDvEeQ3aZbiHwdPp8tKh93Ea8hexj4BBgfoprMfC1VL4vWYJ8HpgB9EnlfdP682n7vgWJ9/7Uv4uBX7D5yb1u/z74lURmZlYovpRnZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF8v8BEBScEicaSW4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "indian_ingredient_df = create_ingredient_df(indian_df)\r\n", + "indian_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAAD4CAYAAABYIGfSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5xXVb3/8dcbHCEFp1SyCbQho0hAQAYTNPV4KfOSdhTpRF7SXxz9HbFOWnHSftFJfz/NfuZdo1JILQXKS3KCTPBOyowIwyWsRI8gKd5GkSCEz/ljr5Ev48www56ZLzPf9/PxmMfs79prr/XZCx58WGvv796KCMzMzGz7dCt2AGZmZp2ZE6mZmVkOTqRmZmY5OJGamZnl4ERqZmaWw07FDsA61p577hmVlZXFDsPMrFOpqal5JSL6NLbPibTEVFZWUl1dXewwzMw6FUnPN7XPS7tmZmY5OJGamZnl4ERqZmaWg6+RmpnZe2zcuJGVK1eyfv36YofSoXr27Em/fv0oKytr8TFOpCWmdlUdlRNnFjsM68Keu+y4YodgbWDlypX07t2byspKJBU7nA4REbz66qusXLmS/v37t/g4L+2amdl7rF+/nj322KNkkiiAJPbYY49Wz8KdSDuYpJMk7deCelMkndJI+eGS7muf6MzMtiilJFpve87ZibTjnQRsM5GamVnn4GukDUi6DHghIq5PnycBawEBpwI9gLsi4ntp/3eBLwNrgBeAmoj4kaR9geuBPsA64KvA7sDngcMkXQycDBwBjAd2Bv4CnBYR61I4R0maCOwGfCMitpqJStoVuBYYDJQBkyLinjYfFDMreW19b0VbX0vv1asXa9eubdM2W8oz0ve6kyxh1juVLEkOAA4EhgEjJB0qaSRZMhwKfA6oKjhuMjAhIkYAFwI3RMTjwL3ANyNiWET8FfhNRIyMiKHAMuDsgjYqU5/HATdJ6tkg1ouAORFxIPBPwBUpuW5F0nhJ1ZKqN62r244hMTOzpjiRNhARC4APSvqwpKHA68AQ4DPAAuApYCBZYj0YuCci1kfEW8BvAST1AkYD0yU9DfwEqGiiy8GSHpFUC4wDBhXsmxYRmyPiz8Czqd9CnwEmpj4eBHoC+zRyTpMjoioiqrrvUt7KETEz63gTJ07k+uuvf/fzpEmTuOSSSzjyyCM54IADGDJkCPfc894FuAcffJDjjz/+3c/nnXceU6ZMAaCmpobDDjuMESNG8NnPfpbVq1e3SaxOpI2bDpwCjCWboQr4f2kWOSwiPhYRP2/m+G7AGwX1h0XEJ5uoOwU4LyKGAN8nS4b1okHdhp8FnFzQxz4Rsaxlp2hmtuMaO3Ys06ZNe/fztGnTOOOMM7jrrrt46qmnmDt3LhdccAERDf9ZbNzGjRuZMGECM2bMoKamhrPOOouLLrqoTWJ1Im3cncAXyZLpdGA2cFaaaSKpr6QPAo8BJ0jqmfYdDxARbwIrJI1J9ZVmtwBvAb0L+uoNrJZURjYjLTRGUrd0vfWjwPIG+2cDE5RuM5M0vA3O3cys6IYPH87LL7/Miy++yMKFC/nABz7Ahz70Ib7zne+w//77c9RRR7Fq1SpeeumlFrW3fPlyFi9ezNFHH82wYcO45JJLWLlyZZvE6puNGhERSyT1BlZFxGqyRPdJYF7KWWuBL0fEfEn3AouAl4BaoP4i5DjgxnRTURlwB7Aw/f6ppPPJEvV3gSfIrsM+wdZJ9r+BJ8luNjonItY3uDX7B8BVwCJJ3YAVpGRuZtbZjRkzhhkzZvC3v/2NsWPHcvvtt7NmzRpqamooKyujsrLyPd/53Gmnndi8efO7n+v3RwSDBg1i3rx5bR6nE2kT0lJr4eergasbqfqjiJgkaRfgYaAm1V8BHNNIu4+x9ddfbkw/Deud2URcD5JdDyUi/g786zZPxsysExo7dixf/epXeeWVV3jooYeYNm0aH/zgBykrK2Pu3Lk8//x732z2kY98hKVLl7Jhwwb+/ve/88ADD3DIIYfwiU98gjVr1jBv3jxGjRrFxo0beeaZZxg0aFAjPbeOE2l+k9MDFnoCUyPiqWIH1Jwhfcup9iPczKyVivHox0GDBvHWW2/Rt29fKioqGDduHCeccAJDhgyhqqqKgQMb3n8Je++9N6eeeiqDBw+mf//+DB+eXfHaeeedmTFjBueffz51dXW88847fP3rX2+TRKqWXqi1rqGqqir8Ym8z25Zly5bxyU82dY9k19bYuUuqiYiqxur7ZiMzM7McnEjNzMxycCI1M7NGleKlv+05ZydSMzN7j549e/Lqq6+WVDKtfx9pz54Nn8baPN+1a2Zm79GvXz9WrlzJmjVrih1Kh+rZsyf9+vVr1TFOpGZm9h5lZWX079+/2GF0Cl7aNTMzy8GJ1MzMLAcnUjMzsxx8jbTE1K6qa/M33Zu1VDEeM2fW3jwjNTMzy8GJ1MzMLIeiJFJJJ6U3prT2uLXtEU9XIWmKpFOKHYeZWSlpVSJVpi2S70ls/U5OMzOzTmmbSVFSpaTlkn4BLAZOk1QrabGkywvq3SipWtISSd8vKL9M0lJJiyT9SNJo4PPAFZKelrRv+pklqUbSI5IGpmP7S5qX+rtkG3FWSHo4tblY0qdT+WdSG09Jmi6pV2NxpbITJD0haYGkP0jaK5VPkjQ1xfa8pH+W9MMU1yxJZaneCEkPpfOYLamimXjPL+j/jlS2q6SbJT2ZYjgxlXeXdIWk+an+v6ZySbou/fn8AfhgE32NT3821ZvW1TX7521mZq3T0rt2BwBnAP8N/BEYAbwO/F7SSRFxN3BRRLwmqTvwgKT9gVXAF4CBERGS3h8Rb0i6F7gvImYASHoAOCci/izpU8ANwBHA1cCNEfELSf+2jRi/BMyOiEtTDLtI2hO4GDgqIt6W9G3gG5KubxhXauNR4KBU9r+AbwEXpH37Av9ENpOeB5wcEd+SdBdwnKSZwLXAiRGxRtJY4FLgrCbinQj0j4gNBf1fBMyJiLNS2ZMpQY4D6iJipKQewGOSfg8MBz6RYtoLWArc3LCjiJgMTAboUTGgdB6caWbWAVqaSJ+PiD+mGdKDEbEGQNLtwKHA3cCpksanNivI/nFfCqwHfi7pPuC+hg2nGeJoYLqk+uIe6ffBwMlp+1bgcpo2H7g5zQ7vjoinJR2W4ngstb0zWRKsayKufsCdaSa5M7CioP3fRcRGSbVAd2BWKq8FKskS2mDg/tRXd2B1M/EuAm6XdDfZ+AF8Bvi8pAvT557APql8f225/llO9p+bQ4FfRcQm4EVJc5rpz8zM2kFLE+nbze2U1B+4EBgZEa9LmgL0jIh3JB0IHAmcApxHNtMs1A14IyKGNdF8i2ZQEfGwpEOB44Apkq4kmzXfHxH/0kjMjcV1LXBlRNwr6XBgUsEhG1I/myVtjC2vRNhMNo4ClkTEqJbEm+I8FDgBuEjSkNTGyRGxvEGsAiZExOwG5ce2sC8zM2snrb1x6EngMEl7puXTfwEeAnYjS7Z16bri5+Dd2WZ5RPwX8O/A0NTOW0BvgIh4E1ghaUw6RpLq6z0GfDFtj2suMEkfAV6KiJ8CPwMOIFuGPljSx1KdXSV9vJm4ysmWoyFbym6N5UAfSaNSX2WSBjURazdg74iYC3w79dsLmA1MSIkTScPTIbOBcwuuxX5c0q7Aw8DYdA21gmzp2czMOlCrnmwUEaslTQTmks2eZkbEPQCSFgB/Al4gS4CQJct7JPVM9b+Ryu8AfirpfLIZ4TjgRkkXA2Vp/0Lga8Av07XNe7YR3uHANyVtBNYCp6drlWcCv0rXFiG7ZvpWE3FNIltifh2YA7T41QcR8Y+09HqNpHKysb0KWNJI9e7AbamegGvSteMfpGMWpWS7Ajie7D8GlcBTKcmuIbvz+S6ymfRSsuvX87YV55C+5VT76TJmZm1GpfTSVoOqqqqorq4udhhmZp2KpJqIqGpsn59sZGZmlkOne2h9uinn1gbFGyLiU8WIZ1vSV20OblB8dUTcUox4zMysbXW6RBoRtUBTd/jucCJiW99/NTOzTsxLu2ZmZjk4kZqZmeXgRGpmZpaDE6mZmVkOTqRmZmY5OJGamZnl0Om+/mL51K6qo3LizGKHYbaV5/zYSuvEPCM1MzPLwYnUzMwsByfSIpC0ttgxmJlZ23AiNTMzy8GJtJXSy8FnSlooabGksZKOlLRAUq2kmyX1kHSEpLsLjjta0l0Fn38saYmkByT1SWX7SpolqUbSI5IGpvITJD2R+vhDenk6kial/h6U9Gx6v6uZmXUgJ9LWOwZ4MSKGRsRgYBYwBRgbEUPI7oQ+l+zl5wPrkyTwFeDmtL0rUB0Rg4CHgO+l8snAhIgYAVwI3JDKHwUOiojhZC89/1ZBPAOBzwIHAt+TVNYwYEnjJVVLqt60ri73AJiZ2RZOpK1XCxwt6XJJnwYqgRUR8UzaPxU4NLI3pt8KfFnS+4FRwO9Snc3AnWn7NuAQSb2A0cB0SU8DPwEqUp1+wGxJtcA3gUEF8cyMiA0R8QrwMrBXw4AjYnJEVEVEVfddyttgCMzMrJ6/R9pKEfGMpAOAY4FLgDnNVL8F+C2wHpgeEe801SzZf2reiIjGXhF3LXBlRNwr6XBgUsG+DQXbm/CfqZlZh/KMtJUkfRhYFxG3AVeQzTQrJX0sVTmNbLmWiHgReBG4mCyp1usGnJK2vwQ8GhFvAiskjUn9SNLQVKccWJW2z2iXEzMzs+3i2UvrDQGukLQZ2Eh2PbScbEl2J2A+cFNB/duBPhGxrKDsbeBASReTLceOTeXjgBtTeRnZ9dCFZDPQ6ZJeJ5sB92+nczMzs1ZSdinP2ouk64AFEfHzYscCUFVVFdXV1cUOw8ysU5FUExFVje3zjLQdSaohm31eUOxYzMysfTiRtqP0NRYzM+vCfLORmZlZDk6kZmZmOTiRmpmZ5eBEamZmloMTqZmZWQ5OpGZmZjk4kZqZmeXgRGpmZpaDH8hQYmpX1VE5cWaxwzBrV89ddlyxQ7AS4hmpmZlZDk6kOzhJ/5VeDG5mZjsgL+3uwCQJOD4iNhc7FjMza5xnpDsYSZWSlkv6BbAY2CRpz7TvdEmLJC2UdGsq6yPp15Lmp5+Dixm/mVmp8Yx0xzQAOCMi/ijpOQBJg4CLgdER8Yqk3VPdq4EfR8SjkvYBZgOfLGxM0nhgPED33fp00CmYmZUGJ9Id0/MR8ccGZUcA0yPiFYCIeC2VHwXsl60CA7CbpF4Rsba+ICImA5MBelQM8JvczczakBPpjuntVtTtBhwUEevbKxgzM2uar5F2HnOAMZL2AChY2v09MKG+kqRhRYjNzKxkOZF2EhGxBLgUeEjSQuDKtOt8oCrdhLQUOKdYMZqZlSIv7e5gIuI5YHDB58qC7anA1Ab1XwHGdlB4ZmbWgBNpiRnSt5xqPz7NzKzNeGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7Mc/IjAElO7qo7KiTOLHYZZUT3nx2RaG/KM1MzMLAcnUjMzsxy6XCKVVClpcSPlD0qq2o72zpR0XdtEZ2ZmXU2XS6QGknzt28ysg3TVRLqTpNslLZM0Q9IuhTsl3SipWtISSd8vKB8p6XFJCyU9Kal3g+OOkzRP0p6NdSppiqSbUtvPSDo+lXeXdIWk+ZIWSfrXVH64pIclzZS0PB3bLe1bK+nHKcYHJPVJ5ftKmiWpRtIjkgY26PsJ4IcN4hqfYqretK4u9+CamdkWXTWRfgK4ISI+CbwJ/O8G+y+KiCpgf+AwSftL2hm4E/haRAwFjgL+Xn+ApC8AE4FjI+KVZvquBA4EjgNuktQTOBuoi4iRwEjgq5L6p/oHAhOA/YB9gX9O5bsC1RExCHgI+F4qnwxMiIgRwIXADQV99wNGR8Q3CgOKiMkRURURVd13KW8mdDMza62uugT4QkQ8lrZvA85vsP9USePJzr+CLIkFsDoi5gNExJsAkgCOAKqAz9SXN2NaRGwG/izpWWAg8Blgf0mnpDrlwADgH8CTEfFs6utXwCHADGAzWWKvP4ffSOoFjAamp7gAehT0PT0iNm0jPjMza0NdNZFGU5/TTPBCYGREvC5pCtBzG+39Ffgo8HGgejv6FtkscnbhDkmHNxdrI+XdgDciYlgTdd7eRmxmZtbGuurS7j6SRqXtLwGPFuzbjSzh1EnaC/hcKl8OVEgaCSCpd8FNO88DJwO/kDRoG32PkdRN0r5kyXc5MBs4V1JZavvjknZN9Q+U1D9dGx1bEGs3oH4G+yXg0TQbXiFpTGpHkoa2dFDMzKztddVEuhz4N0nLgA8AN9bviIiFwALgT8AvgcdS+T/IEtm1khYC91MwU42IPwHjyJZV922m7/8GngR+B5wTEeuBnwFLgafSV3N+wpbVgPnAdcAyYAVwVyp/myzJLiZbWv7PVD4OODvFuAQ4sVUjY2ZmbUoRTa0kWmulZeL7ImJGC+sfDlwYEcc3sm9tRPRq2wihqqoqqqu3tTptZmaFJNWkm1Tfo6vOSM3MzDpEV73ZqF1JuggY06B4ekSc2Zp2IuJB4MEm9rX5bNTMzNqeE+l2iIhLgUuLHYeZmRWfl3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWbNeO6y44odgrWCZ6RmZmY5OJGamZnl4ETayUk6R9LpaXuKpFO2dYyZmbUdXyPt5CLipmLHYGZWykp6RippV0kzJS2UtFjSWEkjJD0kqUbSbEkVqe75kpZKWiTpjlR2oKR5khZIelzSJ1L5mZLulnS/pOcknSfpG6neHyXtnurtK2lW6usRSQObibVS0pzU/wOS9knlkyRduI3zHC+pWlL1pnV1bTV8ZmZGiSdS4BjgxYgYGhGDgVnAtcApETECuJktb3mZCAyPiP2Bc1LZn4BPR8Rw4P8A/7eg7cHAPwMjUxvrUr15wOmpzmRgQurrQuCGZmK9Fpia+r8duKalJxkRkyOiKiKquu9S3tLDzMysBUp9abcW+P+SLgfuA14nS4D3SwLoDqxOdRcBt0u6G7g7lZUDUyUNAAIoK2h7bkS8BbwlqQ74bUGf+0vqBYwGpqe+AHo0E+sossQMcCvww9afrpmZtbWSTqQR8YykA4BjgUuAOcCSiBjVSPXjgEOBE4CLJA0BfkCWML8gqZKtX9K9oWB7c8HnzWTj3g14IyKGtdkJmZlZhyvppV1JHyZbcr0NuAL4FNBH0qi0v0zSIEndgL0jYi7wbbKZaK/0e1Vq7szW9B0RbwIrJI1JfUnS0GYOeRz4YtoeBzzSmv7MzKx9lPSMFBgCXCFpM7AROBd4B7hGUjnZ+FwFPAPclsoEXBMRb0j6IdnS7sXA9jwuaBxwYzq+DLgDWNhE3QnALZK+CawBvrId/TGkbznVfmqKmVmbUUQUOwbrQFVVVVFdXV3sMMzMOhVJNRFR1di+kl7aNTMzy6vUl3Z3OJIuAsY0KJ4eEZc2Vt/MzIrLiXQHkxKmk6aZWSfhpV0zM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvDXX0pM7ao6Kiduz9MMzayUPOdHibaYZ6RmZmY5OJGamZnl4ERqZmaWgxOpmZlZDk6kBSTtKmmmpIWSFksaK+lISQsk1Uq6WVIPSUdIurvguKMl3dVEm90lTUnt1Ur691T+VUnzU1+/lrRLKp8i6ZSC49cWbH87tbFQ0mWpbF9JsyTVSHpE0sD2Gh8zM3svJ9KtHQO8GBFDI2IwMAuYAoyNiCFkdzmfC8wFBkrqk477CnBzE20OA/pGxODUxi2p/DcRMTIihgLLgLObC0zS54ATgU+lY36Ydk0GJkTECOBC4IZGjh0vqVpS9aZ1ddseBTMzazEn0q3VAkdLulzSp4FKYEVEPJP2TwUOjext6LcCX5b0fmAU8Lsm2nwW+KikayUdA7yZygenGWQtMA4YtI3YjgJuiYh1ABHxmqRewGhguqSngZ8AFQ0PjIjJEVEVEVXddylvyTiYmVkL+XukBSLiGUkHAMcClwBzmql+C/BbYD3Z+0LfaaLN1yUNBT4LnAOcCpxFNtM9KSIWSjoTODwd8g7pPziSugE7NxNDN+CNiBjWkvMzM7O25xlpAUkfBtZFxG3AFWQzzUpJH0tVTgMeAoiIF4EXgYvZslzbWJt7At0i4tep7gFpV29gtaQyshlpveeAEWn780BZ2r4f+ErBtdTdI+JNYIWkMalMKWmbmVkH8Yx0a0OAKyRtBjaSXQ8tJ1s63QmYD9xUUP92oE9ELGumzb7ALWl2CfAf6fd3gSeANel371T+U+AeSQvJrtG+DRARsyQNA6ol/QP4L+A7ZEn4RkkXkyXdO4CF23n+ZmbWSsou99n2kHQdsCAifl7sWFqqqqoqqqurix2GmVmnIqkmIqoa2+cZ6XaSVEM2W7yg2LGYmVnxOJFup/R1k61IegLo0aD4tIio7ZiozMysozmRtqGI+FSxYzAzs47lu3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWZdzHOXHVfsEIrGM1IzM7McnEjNzMxycCI1MzPLwYm0lSSdLmmRpIWSbpV0gqQnJC2Q9AdJe0nqJunPkvqkY7pJ+oukPunn15Lmp5+DU51Jkm6W9KCkZyWdn8orJS2T9FNJSyT9XtL70r59Jc2SVCPpEUkDizcyZmalyYm0FSQNAi4GjoiIocDXgEeBgyJiONlLtb8VEZuB28heug1wFLAwItYAVwM/joiRwMnAzwq6GAh8FjgQ+J6kslQ+ALg+IgYBb6TjACYDE9KbaC4Ebmgi7vGSqiVVb1pXl3sczMxsC9+12zpHANMj4hWAiHhN0hDgTkkVwM7AilT3ZuAe4CrgLOCWVH4UsJ+k+jZ3k9Qrbc+MiA3ABkkvA3ul8hUR8XTargEq0zGjgekFbTV8hRspzslkSZceFQP8JnczszbkRJrftcCVEXGvpMOBSQAR8YKklyQdQTbDrJ+ddiObwa4vbCQlww0FRZvY8ufTsPx9qZ03ImJYm56NmZm1ipd2W2cOMEbSHgCSdgfKgVVp/xkN6v+MbIl3ekRsSmW/BybUV5C0XYkwIt4EVkgak9qRpKHb05aZmW0/J9JWiIglwKXAQ5IWAleSzUCnS6oBXmlwyL1AL7Ys6wKcD1SlG5aWAufkCGkccHaKZQlwYo62zMxsOyjCl8zai6QqshuLPl3sWOr1qBgQFWdcVewwzKyL6epPNpJUExFVje3zNdJ2ImkicC5bro3uEIb0Lae6i/+FNzPrSF7abScRcVlEfCQiHi12LGZm1n6cSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvAjAktM7ao6KifOLHYYZlYCuvrzd+t5RmpmZpaDE2mRSaqUtDhtHy7pvrT9+fTgezMz24F5aXcHFRH3kr3P1MzMdmCekeYkaVdJMyUtlLRY0lhJIyU9nsqelNQ7zTwfkfRU+hm9jXbPlHRd2q6UNCe9DPwBSfuk8imSrkl9PSvplI44ZzMz28Iz0vyOAV6MiOMAJJUDC4CxETFf0m7A34GXgaMjYr2kAcCvgEZfEtuIa4GpETFV0lnANcBJaV8FcAgwkGwGO6PhwZLGA+MBuu/WZ/vO0szMGuUZaX61wNGSLpf0aWAfYHVEzAeIiDcj4h2gDPippFpgOrBfK/oYBfwybd9Kljjr3R0RmyNiKbBXYwdHxOSIqIqIqu67lLfq5MzMrHmekeYUEc9IOgA4FrgEmNNE1X8HXgKGkv0HZn0bhbChYFtt1KaZmbWQZ6Q5SfowsC4ibgOuAD4FVEgamfb3lrQTUE42U90MnAZ0b0U3jwNfTNvjgEfaKn4zM8vHM9L8hgBXSNoMbATOJZsZXivpfWTXR48CbgB+Lel0YBbwdiv6mADcIumbwBrgK20Yv5mZ5aCIKHYM1oF6VAyIijOuKnYYZlYCutKTjSTVRESjN4h6RlpihvQtp7oL/eU2Mys2XyM1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBTzYqMbWr6qicOLPYYZiZdaj2fFyhZ6RmZmY5OJGamZnl4ETaSUg6U9J1afuc9Do2MzMrMl8j7QTSi8HfFRE3FSsWMzPbmhNpB5L0XeDLZC/nfgGoAeqA8cDOwF+A0yJinaQpwHpgOPAYsKignUnA2oj4kaSPATcBfYBNwJiI+GtHnZOZWanz0m4HkTQSOBkYCnwOqH9B7G8iYmREDAWWAWcXHNYPGB0R32im6duB69Pxo4HVjfQ9XlK1pOpN6+ra4GzMzKyeZ6Qd52DgnohYD6yX9NtUPljSJcD7gV7A7IJjpkfEpqYalNQb6BsRdwGktt8jIiYDkwF6VAyI3GdiZmbv8oy0+KYA50XEEOD7QM+CfW8XJSIzM2sxJ9KO8xhwgqSeknoBx6fy3sBqSWXAuNY0GBFvASslnQQgqYekXdoyaDMza54TaQeJiPnAvWQ3Df0OqCW70ei7wBNkifZP29H0acD5khYBjwMfapOAzcysRRThS2YdRVKviFibZo0PA+Mj4qmOjKGqqiqqq6s7skszs05PUk1EVDW2zzcbdazJkvYjuw46taOTqJmZtT0n0g4UEV8qdgxmZta2fI3UzMwsBydSMzOzHJxIzczMcvBduyVG0lvA8mLHsQPZE3il2EHsQDweW3gstlbq4/GRiOjT2A7fbFR6ljd1C3cpklTt8djC47GFx2JrHo+meWnXzMwsBydSMzOzHJxIS8/kYgewg/F4bM3jsYXHYmsejyb4ZiMzM7McPCM1MzPLwYnUzMwsByfSEiLpGEnLJf1F0sRix9MRJN0s6WVJiwvKdpd0v6Q/p98fSOWSdE0an0WSDihe5G1P0t6S5kpaKmmJpK+l8pIbj/Re4CclLUxj8f1U3l/SE+mc75S0cyrvkT7/Je2vLLtjiJIAAALmSURBVGb87UVSd0kLJN2XPpf0eLSUE2mJkNQduB74HLAf8C/pTTRd3RTgmAZlE4EHImIA8ED6DNnYDEg/44EbOyjGjvIOcEFE7AccBPxb+jtQiuOxATgiIoYCw4BjJB0EXA78OCI+BrwOnJ3qnw28nsp/nOp1RV8DlhV8LvXxaBEn0tJxIPCXiHg2Iv4B3AGcWOSY2l1EPAy81qD4RGBq2p4KnFRQ/ovI/BF4v6SKjom0/UXE6vpX90XEW2T/YPalBMcjndPa9LEs/QRwBDAjlTcci/oxmgEcKUkdFG6HkNQPOA74WfosSng8WsOJtHT0BV4o+LwylZWivSJiddr+G7BX2i6ZMUpLccOBJyjR8UjLmE8DLwP3A38F3oiId1KVwvN9dyzS/jpgj46NuN1dBXwL2Jw+70Fpj0eLOZFaSYvs+18l9R0wSb2AXwNfj4g3C/eV0nhExKaIGAb0I1uxGVjkkIpG0vHAyxFRU+xYOiMn0tKxCti74HO/VFaKXqpfoky/X07lXX6MJJWRJdHbI+I3qbhkxwMgIt4A5gKjyJav659BXni+745F2l8OvNrBobang4HPS3qO7LLPEcDVlO54tIoTaemYDwxId+HtDHwRuLfIMRXLvcAZafsM4J6C8tPT3aoHAXUFS56dXrqG9XNgWURcWbCr5MZDUh9J70/b7wOOJrtmPBc4JVVrOBb1Y3QKMCe60NNsIuI/IqJfRFSS/dswJyLGUaLj0Vp+slEJkXQs2XWQ7sDNEXFpkUNqd5J+BRxO9gqol4DvAXcD04B9gOeBUyPitZRoriO7y3cd8JWIqC5G3O1B0iHAI0AtW66DfYfsOmlJjYek/clululONqGYFhH/KemjZDOy3YEFwJcjYoOknsCtZNeVXwO+GBHPFif69iXpcODCiDje49EyTqRmZmY5eGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHL4Hx9S2FkSapv/AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "korean_ingredient_df = create_ingredient_df(korean_df)\r\n", + "korean_ingredient_df.head(10).plot.barh()" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" + }, + "metadata": {}, + "execution_count": 15 + } + ], + "source": [ + "feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1)\n", + "labels_df = df.cuisine #.unique()\n", + "feature_df.head()\n" + ] + }, + { + "source": [ + "Balancieren Sie Daten mit SMOTE-Oversampling auf die höchste Klasse. Lesen Sie hier mehr: https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "oversample = SMOTE()\n", + "transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "new label count: korean 799\nchinese 799\njapanese 799\nindian 799\nthai 799\nName: cuisine, dtype: int64\nold label count: korean 799\nindian 598\nchinese 442\njapanese 320\nthai 289\nName: cuisine, dtype: int64\n" + ] + } + ], + "source": [ + "print(f'new label count: {transformed_label_df.value_counts()}')\r\n", + "print(f'old label count: {df.cuisine.value_counts()}')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "transformed_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy \\\n", + "0 indian 0 0 0 0 0 0 \n", + "1 indian 1 0 0 0 0 0 \n", + "2 indian 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 thai 0 0 0 0 0 0 \n", + "3991 thai 0 0 0 0 0 0 \n", + "3992 thai 0 0 0 0 0 0 \n", + "3993 thai 0 0 0 0 0 0 \n", + "3994 thai 0 0 0 0 0 0 \n", + "\n", + " apricot armagnac artemisia ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 ... 0 0 0 \n", + "3991 0 0 0 ... 0 0 0 \n", + "3992 0 0 0 ... 0 0 0 \n", + "3993 0 0 0 ... 0 0 0 \n", + "3994 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 0 0 0 0 \n", + "3991 0 0 0 0 0 0 0 \n", + "3992 0 0 0 0 0 0 0 \n", + "3993 0 0 0 0 0 0 0 \n", + "3994 0 0 0 0 0 0 0 \n", + "\n", + "[3995 rows x 381 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisia...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
0indian000000000...0000000000
1indian100000000...0000000000
2indian000000000...0000000000
3indian000000000...0000000000
4indian000000000...0000000010
..................................................................
3990thai000000000...0000000000
3991thai000000000...0000000000
3992thai000000000...0000000000
3993thai000000000...0000000000
3994thai000000000...0000000000
\n

3995 rows × 381 columns

\n
" + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "# export transformed data to new df for classification\n", + "transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer')\n", + "transformed_df" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 3995 entries, 0 to 3994\nColumns: 381 entries, cuisine to zucchini\ndtypes: int64(380), object(1)\nmemory usage: 11.6+ MB\n" + ] + } + ], + "source": [ + "transformed_df.info()" + ] + }, + { + "source": [ + "Speichern Sie die Datei für die zukünftige Verwendung\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "transformed_df.to_csv(\"../../data/cleaned_cuisines.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Nutzung dieser Übersetzung entstehen.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "1da12ed6d238756959b8de9cac2a35a2", + "translation_date": "2025-09-04T02:41:46+00:00", + "source_file": "4-Classification/1-Introduction/solution/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/de/4-Classification/2-Classifiers-1/README.md b/translations/de/4-Classification/2-Classifiers-1/README.md index be9d52967..5ea9cfd5a 100644 --- a/translations/de/4-Classification/2-Classifiers-1/README.md +++ b/translations/de/4-Classification/2-Classifiers-1/README.md @@ -1,17 +1,26 @@ -# Küchenklassifizierer 1 - -In dieser Lektion wirst du den Datensatz verwenden, den du aus der letzten Lektion gespeichert hast, der mit ausgewogenen, sauberen Daten über Küchen gefüllt ist. - -Du wirst diesen Datensatz mit einer Vielzahl von Klassifikatoren nutzen, um _eine bestimmte nationale Küche basierend auf einer Gruppe von Zutaten vorherzusagen_. Dabei wirst du mehr über einige der Möglichkeiten lernen, wie Algorithmen für Klassifikationsaufgaben genutzt werden können. - -## [Vorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/) + +# Klassifikatoren für Küchen 1 + +In dieser Lektion wirst du den Datensatz verwenden, den du in der letzten Lektion gespeichert hast. Er enthält ausgewogene, bereinigte Daten über verschiedene Küchen. + +Du wirst diesen Datensatz mit einer Vielzahl von Klassifikatoren nutzen, um _eine nationale Küche basierend auf einer Gruppe von Zutaten vorherzusagen_. Dabei lernst du mehr über die verschiedenen Möglichkeiten, wie Algorithmen für Klassifikationsaufgaben eingesetzt werden können. + +## [Quiz vor der Lektion](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/) # Vorbereitung -Vorausgesetzt, du hast [Lektion 1](../1-Introduction/README.md) abgeschlossen, stelle sicher, dass eine _cleaned_cuisines.csv_-Datei im Hauptverzeichnis `/data` für diese vier Lektionen vorhanden ist. +Vorausgesetzt, du hast [Lektion 1](../1-Introduction/README.md) abgeschlossen, stelle sicher, dass eine Datei namens _cleaned_cuisines.csv_ im Stammverzeichnis des Ordners `/data` für diese vier Lektionen vorhanden ist. -## Übung - Vorhersage einer nationalen Küche +## Übung – Eine nationale Küche vorhersagen -1. Arbeite im _notebook.ipynb_-Ordner dieser Lektion und importiere diese Datei zusammen mit der Pandas-Bibliothek: +1. Arbeite im Ordner _notebook.ipynb_ dieser Lektion und importiere die Datei zusammen mit der Pandas-Bibliothek: ```python import pandas as pd @@ -19,7 +28,7 @@ Vorausgesetzt, du hast [Lektion 1](../1-Introduction/README.md) abgeschlossen, s cuisines_df.head() ``` - Die Daten sehen folgendermaßen aus: + Die Daten sehen wie folgt aus: | | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | | --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | @@ -30,7 +39,7 @@ Vorausgesetzt, du hast [Lektion 1](../1-Introduction/README.md) abgeschlossen, s | 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | -1. Importiere nun mehrere weitere Bibliotheken: +1. Importiere nun einige weitere Bibliotheken: ```python from sklearn.linear_model import LogisticRegression @@ -40,14 +49,14 @@ Vorausgesetzt, du hast [Lektion 1](../1-Introduction/README.md) abgeschlossen, s import numpy as np ``` -1. Teile die X- und y-Koordinaten in zwei DataFrames für das Training auf. `cuisine` kann der DataFrame mit den Labels sein: +1. Teile die X- und y-Koordinaten in zwei DataFrames für das Training auf. `cuisine` kann das Label-DataFrame sein: ```python cuisines_label_df = cuisines_df['cuisine'] cuisines_label_df.head() ``` - Es wird folgendermaßen aussehen: + Es wird so aussehen: ```output 0 indian @@ -58,19 +67,187 @@ Vorausgesetzt, du hast [Lektion 1](../1-Introduction/README.md) abgeschlossen, s Name: cuisine, dtype: object ``` -1. Entferne `Unnamed: 0` column and the `cuisine` column, calling `drop()`. Speichere die restlichen Daten als trainierbare Merkmale: +1. Entferne die Spalte `Unnamed: 0` und die Spalte `cuisine`, indem du `drop()` aufrufst. Speichere den Rest der Daten als trainierbare Features: ```python cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) cuisines_feature_df.head() ``` - Deine Merkmale sehen folgendermaßen aus: + Deine Features sehen so aus: | | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | | ---: | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | + +Jetzt bist du bereit, dein Modell zu trainieren! + +## Den richtigen Klassifikator auswählen + +Da deine Daten nun bereinigt und bereit für das Training sind, musst du entscheiden, welchen Algorithmus du für die Aufgabe verwenden möchtest. + +Scikit-learn ordnet Klassifikation unter Überwachtes Lernen ein, und in dieser Kategorie findest du viele Möglichkeiten zur Klassifikation. [Die Vielfalt](https://scikit-learn.org/stable/supervised_learning.html) kann auf den ersten Blick überwältigend sein. Die folgenden Methoden umfassen Klassifikationstechniken: + +- Lineare Modelle +- Support Vector Machines +- Stochastischer Gradientenabstieg +- Nächste Nachbarn +- Gaußsche Prozesse +- Entscheidungsbäume +- Ensemble-Methoden (Voting Classifier) +- Multiklassen- und Multioutput-Algorithmen (Multiklassen- und Multilabel-Klassifikation, Multiklassen-Multioutput-Klassifikation) + +> Du kannst auch [neuronale Netze zur Klassifikation von Daten](https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification) verwenden, aber das liegt außerhalb des Umfangs dieser Lektion. + +### Welchen Klassifikator wählen? + +Welchen Klassifikator solltest du also wählen? Oft ist es sinnvoll, mehrere auszuprobieren und nach einem guten Ergebnis zu suchen. Scikit-learn bietet einen [Vergleich nebeneinander](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html) auf einem erstellten Datensatz, bei dem KNeighbors, SVC auf zwei Arten, GaussianProcessClassifier, DecisionTreeClassifier, RandomForestClassifier, MLPClassifier, AdaBoostClassifier, GaussianNB und QuadraticDiscriminationAnalysis verglichen werden. Die Ergebnisse werden visualisiert: + +![Vergleich von Klassifikatoren](../../../../translated_images/comparison.edfab56193a85e7fdecbeaa1b1f8c99e94adbf7178bed0de902090cf93d6734f.de.png) +> Diagramme aus der Scikit-learn-Dokumentation + +> AutoML löst dieses Problem elegant, indem es diese Vergleiche in der Cloud durchführt und dir ermöglicht, den besten Algorithmus für deine Daten auszuwählen. Probiere es [hier](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott) aus. + +### Ein besserer Ansatz + +Ein besserer Ansatz als wildes Raten ist es, die Ideen auf diesem herunterladbaren [ML-Cheat-Sheet](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott) zu befolgen. Hier erfahren wir, dass wir für unser Multiklassenproblem einige Optionen haben: + +![Cheatsheet für Multiklassenprobleme](../../../../translated_images/cheatsheet.07a475ea444d22234cb8907a3826df5bdd1953efec94bd18e4496f36ff60624a.de.png) +> Ein Abschnitt des Algorithmus-Cheat-Sheets von Microsoft, der Optionen für Multiklassenklassifikation beschreibt + +✅ Lade dieses Cheat-Sheet herunter, drucke es aus und hänge es an deine Wand! + +### Überlegungen + +Lass uns überlegen, welche Ansätze angesichts unserer Einschränkungen sinnvoll sind: + +- **Neuronale Netze sind zu aufwendig**. Angesichts unseres bereinigten, aber minimalen Datensatzes und der Tatsache, dass wir das Training lokal über Notebooks durchführen, sind neuronale Netze für diese Aufgabe zu schwergewichtig. +- **Kein Zwei-Klassen-Klassifikator**. Wir verwenden keinen Zwei-Klassen-Klassifikator, daher scheidet One-vs-All aus. +- **Entscheidungsbaum oder logistische Regression könnten funktionieren**. Ein Entscheidungsbaum könnte funktionieren oder eine logistische Regression für Multiklassendaten. +- **Multiklassen-Boosted-Entscheidungsbäume lösen ein anderes Problem**. Der Multiklassen-Boosted-Entscheidungsbaum eignet sich am besten für nichtparametrische Aufgaben, z. B. Aufgaben zur Erstellung von Rankings, und ist daher für uns nicht nützlich. + +### Verwendung von Scikit-learn + +Wir werden Scikit-learn verwenden, um unsere Daten zu analysieren. Es gibt jedoch viele Möglichkeiten, logistische Regression in Scikit-learn zu verwenden. Sieh dir die [Parameter an, die übergeben werden können](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression). + +Im Wesentlichen gibt es zwei wichtige Parameter – `multi_class` und `solver` –, die wir angeben müssen, wenn wir Scikit-learn bitten, eine logistische Regression durchzuführen. Der Wert von `multi_class` legt ein bestimmtes Verhalten fest. Der Wert des Solvers gibt an, welcher Algorithmus verwendet werden soll. Nicht alle Solver können mit allen `multi_class`-Werten kombiniert werden. + +Laut der Dokumentation verwendet der Trainingsalgorithmus im Multiklassenfall: + +- **Das One-vs-Rest (OvR)-Schema**, wenn die Option `multi_class` auf `ovr` gesetzt ist +- **Den Kreuzentropieverlust**, wenn die Option `multi_class` auf `multinomial` gesetzt ist. (Derzeit wird die Option `multinomial` nur von den Solvern ‘lbfgs’, ‘sag’, ‘saga’ und ‘newton-cg’ unterstützt.) + +> 🎓 Das 'Schema' kann entweder 'ovr' (One-vs-Rest) oder 'multinomial' sein. Da die logistische Regression eigentlich für die binäre Klassifikation entwickelt wurde, ermöglichen diese Schemata, sie besser für Multiklassenklassifikationsaufgaben zu nutzen. [Quelle](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/) + +> 🎓 Der 'Solver' wird definiert als "der Algorithmus, der im Optimierungsproblem verwendet wird". [Quelle](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression). + +Scikit-learn bietet diese Tabelle, um zu erklären, wie Solver mit verschiedenen Herausforderungen umgehen, die durch unterschiedliche Datenstrukturen entstehen: + +![Solver](../../../../translated_images/solvers.5fc648618529e627dfac29b917b3ccabda4b45ee8ed41b0acb1ce1441e8d1ef1.de.png) + +## Übung – Daten aufteilen + +Wir können uns für unseren ersten Trainingsversuch auf die logistische Regression konzentrieren, da du diese kürzlich in einer vorherigen Lektion gelernt hast. +Teile deine Daten in Trainings- und Testgruppen auf, indem du `train_test_split()` aufrufst: + +```python +X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) +``` + +## Übung – Logistische Regression anwenden + +Da du den Multiklassenfall verwendest, musst du ein _Schema_ und einen _Solver_ auswählen. Verwende LogisticRegression mit einer Multiklassen-Einstellung und dem **liblinear**-Solver für das Training. + +1. Erstelle eine logistische Regression mit `multi_class` auf `ovr` und dem Solver auf `liblinear` gesetzt: + + ```python + lr = LogisticRegression(multi_class='ovr',solver='liblinear') + model = lr.fit(X_train, np.ravel(y_train)) + + accuracy = model.score(X_test, y_test) + print ("Accuracy is {}".format(accuracy)) + ``` + + ✅ Probiere einen anderen Solver wie `lbfgs` aus, der oft als Standard gesetzt ist. +> Hinweis: Verwenden Sie die Pandas-Funktion [`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html), um Ihre Daten bei Bedarf zu glätten. +Die Genauigkeit liegt bei über **80%**! + +1. Sie können dieses Modell testen, indem Sie eine Datenzeile (#50) ausprobieren: + + ```python + print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}') + print(f'cuisine: {y_test.iloc[50]}') + ``` + + Das Ergebnis wird ausgegeben: + + ```output + ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object') + cuisine: indian + ``` + + ✅ Probieren Sie eine andere Zeilennummer aus und überprüfen Sie die Ergebnisse. + +1. Um tiefer einzutauchen, können Sie die Genauigkeit dieser Vorhersage überprüfen: + + ```python + test= X_test.iloc[50].values.reshape(-1, 1).T + proba = model.predict_proba(test) + classes = model.classes_ + resultdf = pd.DataFrame(data=proba, columns=classes) + + topPrediction = resultdf.T.sort_values(by=[0], ascending = [False]) + topPrediction.head() + ``` + + Das Ergebnis wird ausgegeben - Indische Küche ist die beste Vermutung mit hoher Wahrscheinlichkeit: + + | | 0 | + | -------: | -------: | + | indian | 0.715851 | + | chinese | 0.229475 | + | japanese | 0.029763 | + | korean | 0.017277 | + | thai | 0.007634 | + + ✅ Können Sie erklären, warum das Modell ziemlich sicher ist, dass es sich um indische Küche handelt? + +1. Holen Sie sich mehr Details, indem Sie einen Klassifikationsbericht ausgeben, wie Sie es in den Regression-Lektionen getan haben: + + ```python + y_pred = model.predict(X_test) + print(classification_report(y_test,y_pred)) + ``` + + | | Präzision | Recall | F1-Score | Support | + | ------------ | --------- | ------ | -------- | ------- | + | chinese | 0.73 | 0.71 | 0.72 | 229 | + | indian | 0.91 | 0.93 | 0.92 | 254 | + | japanese | 0.70 | 0.75 | 0.72 | 220 | + | korean | 0.86 | 0.76 | 0.81 | 242 | + | thai | 0.79 | 0.85 | 0.82 | 254 | + | Genauigkeit | 0.80 | 1199 | | | + | Makro-Durchschn. | 0.80 | 0.80 | 0.80 | 1199 | + | Gewichteter Durchschn. | 0.80 | 0.80 | 0.80 | 1199 | + +## 🚀 Herausforderung + +In dieser Lektion haben Sie Ihre bereinigten Daten verwendet, um ein Machine-Learning-Modell zu erstellen, das eine nationale Küche basierend auf einer Reihe von Zutaten vorhersagen kann. Nehmen Sie sich Zeit, um die vielen Optionen zu lesen, die Scikit-learn zur Klassifizierung von Daten bietet. Tauchen Sie tiefer in das Konzept des 'Solvers' ein, um zu verstehen, was hinter den Kulissen passiert. + +## [Quiz nach der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/22/) + +## Rückblick & Selbststudium + +Tauchen Sie etwas tiefer in die Mathematik hinter der logistischen Regression ein in [dieser Lektion](https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf). +## Aufgabe + +[Studieren Sie die Solver](assignment.md) + +--- **Haftungsausschluss**: -Dieses Dokument wurde mithilfe von KI-gestützten Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, sollten Sie beachten, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/4-Classification/2-Classifiers-1/assignment.md b/translations/de/4-Classification/2-Classifiers-1/assignment.md index 4189fed3d..37ae4a66d 100644 --- a/translations/de/4-Classification/2-Classifiers-1/assignment.md +++ b/translations/de/4-Classification/2-Classifiers-1/assignment.md @@ -1,12 +1,23 @@ + # Studieren Sie die Solver ## Anweisungen -In dieser Lektion haben Sie die verschiedenen Solver kennengelernt, die Algorithmen mit einem maschinellen Lernprozess kombinieren, um ein genaues Modell zu erstellen. Gehen Sie die in der Lektion aufgeführten Solver durch und wählen Sie zwei aus. Vergleichen und kontrastieren Sie diese beiden Solver in Ihren eigenen Worten. Welches Problem adressieren sie? Wie arbeiten sie mit verschiedenen Datenstrukturen? Warum würden Sie den einen dem anderen vorziehen? -## Bewertungsrichtlinien +In dieser Lektion haben Sie die verschiedenen Solver kennengelernt, die Algorithmen mit einem maschinellen Lernprozess kombinieren, um ein genaues Modell zu erstellen. Gehen Sie die im Unterricht aufgeführten Solver durch und wählen Sie zwei aus. Vergleichen und kontrastieren Sie diese beiden Solver in Ihren eigenen Worten. Welche Art von Problem lösen sie? Wie arbeiten sie mit verschiedenen Datenstrukturen? Warum würden Sie einen gegenüber dem anderen bevorzugen? +## Bewertungskriterien -| Kriterien | Vorbildlich | Angemessen | Verbesserungsbedarf | -| --------- | -------------------------------------------------------------------------------------------- | ------------------------------------------------ | ---------------------------- | -| | Eine .doc-Datei wird mit zwei Absätzen präsentiert, einen zu jedem Solver, in dem sie durchdacht verglichen werden. | Eine .doc-Datei wird mit nur einem Absatz präsentiert | Die Aufgabe ist unvollständig | +| Kriterien | Vorbildlich | Angemessen | Verbesserungswürdig | +| --------- | --------------------------------------------------------------------------------------------- | ----------------------------------------------- | ---------------------------- | +| | Eine .doc-Datei wird mit zwei Absätzen vorgelegt, die jeden Solver durchdacht vergleichen. | Eine .doc-Datei wird mit nur einem Absatz vorgelegt | Die Aufgabe ist unvollständig | + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Verantwortung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/4-Classification/2-Classifiers-1/notebook.ipynb b/translations/de/4-Classification/2-Classifiers-1/notebook.ipynb new file mode 100644 index 000000000..015e7d91d --- /dev/null +++ b/translations/de/4-Classification/2-Classifiers-1/notebook.ipynb @@ -0,0 +1,41 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "68829b06b4dcd512d3327849191f4d7f", + "translation_date": "2025-09-04T02:22:58+00:00", + "source_file": "4-Classification/2-Classifiers-1/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Klassifikationsmodelle erstellen\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Nutzung dieser Übersetzung entstehen.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/de/4-Classification/2-Classifiers-1/solution/Julia/README.md b/translations/de/4-Classification/2-Classifiers-1/solution/Julia/README.md index 7a4839bfa..dcb4a5f8e 100644 --- a/translations/de/4-Classification/2-Classifiers-1/solution/Julia/README.md +++ b/translations/de/4-Classification/2-Classifiers-1/solution/Julia/README.md @@ -1,6 +1,15 @@ -Dies ist ein temporärer PlatzhalterBitte schreiben Sie die Ausgabe von links nach rechts. + -Dies ist ein temporärer Platzhalter + +--- **Haftungsausschluss**: -Dieses Dokument wurde mithilfe von KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb b/translations/de/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb new file mode 100644 index 000000000..5df4a621c --- /dev/null +++ b/translations/de/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb @@ -0,0 +1,1300 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_11-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "6ea6a5171b1b99b7b5a55f7469c048d2", + "translation_date": "2025-09-04T02:28:50+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb", + "language_code": "de" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Erstellen Sie ein Klassifikationsmodell: Köstliche asiatische und indische Küchen\n" + ], + "metadata": { + "id": "zs2woWv_HoE8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Küchenklassifikatoren 1\n", + "\n", + "In dieser Lektion werden wir eine Vielzahl von Klassifikatoren erkunden, um *eine nationale Küche basierend auf einer Gruppe von Zutaten vorherzusagen.* Dabei lernen wir mehr über einige der Möglichkeiten, wie Algorithmen für Klassifikationsaufgaben eingesetzt werden können.\n", + "\n", + "### [**Quiz vor der Vorlesung**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/)\n", + "\n", + "### **Vorbereitung**\n", + "\n", + "Diese Lektion baut auf unserer [vorherigen Lektion](https://github.com/microsoft/ML-For-Beginners/blob/main/4-Classification/1-Introduction/solution/lesson_10-R.ipynb) auf, in der wir:\n", + "\n", + "- Eine sanfte Einführung in Klassifikationen anhand eines Datensatzes über die großartigen Küchen Asiens und Indiens 😋 gemacht haben.\n", + "\n", + "- Einige [dplyr-Verben](https://dplyr.tidyverse.org/) erkundet haben, um unsere Daten vorzubereiten und zu bereinigen.\n", + "\n", + "- Wunderschöne Visualisierungen mit ggplot2 erstellt haben.\n", + "\n", + "- Demonstriert haben, wie man mit unausgewogenen Daten umgeht, indem man sie mit [recipes](https://recipes.tidymodels.org/articles/Simple_Example.html) vorverarbeitet.\n", + "\n", + "- Gezeigt haben, wie man unser Rezept `prep` und `bake`, um sicherzustellen, dass es wie vorgesehen funktioniert.\n", + "\n", + "#### **Voraussetzungen**\n", + "\n", + "Für diese Lektion benötigen wir die folgenden Pakete, um unsere Daten zu bereinigen, vorzubereiten und zu visualisieren:\n", + "\n", + "- `tidyverse`: Das [tidyverse](https://www.tidyverse.org/) ist eine [Sammlung von R-Paketen](https://www.tidyverse.org/packages), die darauf abzielt, Datenwissenschaft schneller, einfacher und unterhaltsamer zu machen!\n", + "\n", + "- `tidymodels`: Das [tidymodels](https://www.tidymodels.org/) Framework ist eine [Sammlung von Paketen](https://www.tidymodels.org/packages/) für Modellierung und maschinelles Lernen.\n", + "\n", + "- `themis`: Das [themis-Paket](https://themis.tidymodels.org/) bietet zusätzliche Rezeptschritte für den Umgang mit unausgewogenen Daten.\n", + "\n", + "- `nnet`: Das [nnet-Paket](https://cran.r-project.org/web/packages/nnet/nnet.pdf) bietet Funktionen zur Schätzung von Feedforward-Neuronalen Netzen mit einer einzigen versteckten Schicht sowie für multinomiale logistische Regressionsmodelle.\n", + "\n", + "Sie können diese Pakete wie folgt installieren:\n" + ], + "metadata": { + "id": "iDFOb3ebHwQC" + } + }, + { + "cell_type": "markdown", + "source": [ + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "Alternativ überprüft das folgende Skript, ob die für dieses Modul benötigten Pakete vorhanden sind, und installiert sie für Sie, falls sie fehlen.\n" + ], + "metadata": { + "id": "4V85BGCjII7F" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, themis, here)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "an5NPyyKIKNR", + "outputId": "834d5e74-f4b8-49f9-8ab5-4c52ff2d7bc8" + } + }, + { + "cell_type": "markdown", + "source": [ + "Jetzt legen wir los!\n", + "\n", + "## 1. Teile die Daten in Trainings- und Testdatensätze auf.\n", + "\n", + "Wir beginnen mit ein paar Schritten aus unserer vorherigen Lektion.\n", + "\n", + "### Entferne die häufigsten Zutaten, die Verwirrung zwischen verschiedenen Küchenstilen stiften, mit `dplyr::select()`.\n", + "\n", + "Jeder liebt Reis, Knoblauch und Ingwer!\n" + ], + "metadata": { + "id": "0ax9GQLBINVv" + } + }, + { + "cell_type": "code", + "execution_count": 3, + "source": [ + "# Load the original cuisines data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger)) %>%\r\n", + " # Encode cuisine column as categorical\r\n", + " mutate(cuisine = factor(cuisine))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Display distribution of cuisines\r\n", + "df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "New names:\n", + "* `` -> ...1\n", + "\n", + "\u001b[1m\u001b[1mRows: \u001b[1m\u001b[22m\u001b[34m\u001b[34m2448\u001b[34m\u001b[39m \u001b[1m\u001b[1mColumns: \u001b[1m\u001b[22m\u001b[34m\u001b[34m385\u001b[34m\u001b[39m\n", + "\n", + "\u001b[36m──\u001b[39m \u001b[1m\u001b[1mColumn specification\u001b[1m\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", + "\u001b[1mDelimiter:\u001b[22m \",\"\n", + "\u001b[31mchr\u001b[39m (1): cuisine\n", + "\u001b[32mdbl\u001b[39m (384): ...1, almond, angelica, anise, anise_seed, apple, apple_brandy, a...\n", + "\n", + "\n", + "\u001b[36mℹ\u001b[39m Use \u001b[30m\u001b[47m\u001b[30m\u001b[47m`spec()`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to retrieve the full column specification for this data.\n", + "\u001b[36mℹ\u001b[39m Specify the column types or set \u001b[30m\u001b[47m\u001b[30m\u001b[47m`show_col_types = FALSE`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to quiet this message.\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 indian 0 0 0 0 0 0 0 0 \n", + "2 indian 1 0 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 0 0 \n", + "5 indian 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 0 0 \n", + "2 0 ⋯ 0 0 0 0 0 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 1 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 5 × 381
cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
<fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
indian0000000000000000000
indian1000000000000000000
indian0000000000000000000
indian0000000000000000000
indian0000000000000000010
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 799\n", + "2 indian 598\n", + "3 chinese 442\n", + "4 japanese 320\n", + "5 thai 289" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 799 |\n", + "| indian | 598 |\n", + "| chinese | 442 |\n", + "| japanese | 320 |\n", + "| thai | 289 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 799\\\\\n", + "\t indian & 598\\\\\n", + "\t chinese & 442\\\\\n", + "\t japanese & 320\\\\\n", + "\t thai & 289\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 5 × 2
cuisinen
<fct><int>
korean 799
indian 598
chinese 442
japanese320
thai 289
\n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 735 + }, + "id": "jhCrrH22IWVR", + "outputId": "d444a85c-1d8b-485f-bc4f-8be2e8f8217c" + } + }, + { + "cell_type": "markdown", + "source": [ + "Perfekt! Jetzt teilen wir die Daten so auf, dass 70 % der Daten für das Training und 30 % für das Testen verwendet werden. Dabei wenden wir eine `Stratifizierung` an, um `das Verhältnis der einzelnen Küchenarten` in den Trainings- und Validierungsdatensätzen beizubehalten.\n", + "\n", + "[rsample](https://rsample.tidymodels.org/), ein Paket in Tidymodels, bietet eine Infrastruktur für effizientes Aufteilen und Resampling von Daten:\n" + ], + "metadata": { + "id": "AYTjVyajIdny" + } + }, + { + "cell_type": "code", + "execution_count": 4, + "source": [ + "# Load the core Tidymodels packages into R session\r\n", + "library(tidymodels)\r\n", + "\r\n", + "# Create split specification\r\n", + "set.seed(2056)\r\n", + "cuisines_split <- initial_split(data = df_select,\r\n", + " strata = cuisine,\r\n", + " prop = 0.7)\r\n", + "\r\n", + "# Extract the data in each split\r\n", + "cuisines_train <- training(cuisines_split)\r\n", + "cuisines_test <- testing(cuisines_split)\r\n", + "\r\n", + "# Print the number of cases in each split\r\n", + "cat(\"Training cases: \", nrow(cuisines_train), \"\\n\",\r\n", + " \"Test cases: \", nrow(cuisines_test), sep = \"\")\r\n", + "\r\n", + "# Display the first few rows of the training set\r\n", + "cuisines_train %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Display distribution of cuisines in the training set\r\n", + "cuisines_train %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training cases: 1712\n", + "Test cases: 736" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 chinese 0 0 0 0 0 0 0 0 \n", + "2 chinese 0 0 0 0 0 0 0 0 \n", + "3 chinese 0 0 0 0 0 0 0 0 \n", + "4 chinese 0 0 0 0 0 0 0 0 \n", + "5 chinese 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 1 0 \n", + "2 0 ⋯ 0 0 0 0 1 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 0 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 5 × 381
cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
<fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
chinese0000000000000100000
chinese0000000000000100000
chinese0000000000000000000
chinese0000000000000000000
chinese0000000000000000000
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 559\n", + "2 indian 418\n", + "3 chinese 309\n", + "4 japanese 224\n", + "5 thai 202" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 559 |\n", + "| indian | 418 |\n", + "| chinese | 309 |\n", + "| japanese | 224 |\n", + "| thai | 202 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 559\\\\\n", + "\t indian & 418\\\\\n", + "\t chinese & 309\\\\\n", + "\t japanese & 224\\\\\n", + "\t thai & 202\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 5 × 2
cuisinen
<fct><int>
korean 559
indian 418
chinese 309
japanese224
thai 202
\n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 535 + }, + "id": "w5FWIkEiIjdN", + "outputId": "2e195fd9-1a8f-4b91-9573-cce5582242df" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. Umgang mit unausgewogenen Daten\n", + "\n", + "Wie Sie vielleicht im ursprünglichen Datensatz sowie in unserem Trainingssatz bemerkt haben, gibt es eine ziemlich ungleiche Verteilung der Anzahl der Küchen. Koreanische Küchen sind *fast* dreimal so häufig wie thailändische Küchen. Unaussgewogene Daten haben oft negative Auswirkungen auf die Modellleistung. Viele Modelle funktionieren am besten, wenn die Anzahl der Beobachtungen gleich ist, und haben daher Schwierigkeiten mit unausgewogenen Daten.\n", + "\n", + "Es gibt hauptsächlich zwei Möglichkeiten, mit unausgewogenen Datensätzen umzugehen:\n", + "\n", + "- Hinzufügen von Beobachtungen zur Minderheitsklasse: `Over-Sampling`, z. B. mit einem SMOTE-Algorithmus, der synthetisch neue Beispiele der Minderheitsklasse anhand der nächsten Nachbarn dieser Fälle generiert.\n", + "\n", + "- Entfernen von Beobachtungen aus der Mehrheitsklasse: `Under-Sampling`\n", + "\n", + "In unserer vorherigen Lektion haben wir demonstriert, wie man mit unausgewogenen Datensätzen mithilfe eines `recipe` umgehen kann. Ein Rezept kann als eine Art Blaupause betrachtet werden, die beschreibt, welche Schritte auf einen Datensatz angewendet werden sollten, um ihn für die Datenanalyse vorzubereiten. In unserem Fall möchten wir eine gleichmäßige Verteilung der Anzahl unserer Küchen für unseren `training set` erreichen. Lassen Sie uns direkt loslegen.\n" + ], + "metadata": { + "id": "daBi9qJNIwqW" + } + }, + { + "cell_type": "code", + "execution_count": 5, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing training data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "# Print recipe\r\n", + "cuisines_recipe" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Data Recipe\n", + "\n", + "Inputs:\n", + "\n", + " role #variables\n", + " outcome 1\n", + " predictor 380\n", + "\n", + "Operations:\n", + "\n", + "SMOTE based on cuisine" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 200 + }, + "id": "Az6LFBGxI1X0", + "outputId": "29d71d85-64b0-4e62-871e-bcd5398573b6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Du kannst natürlich bestätigen (mithilfe von prep+bake), dass das Rezept wie erwartet funktioniert – alle Küchenlabels haben `559` Beobachtungen.\n", + "\n", + "Da wir dieses Rezept als Vorverarbeitung für das Modellieren verwenden werden, übernimmt ein `workflow()` den gesamten Vorbereitungs- und Backprozess für uns, sodass wir das Rezept nicht manuell schätzen müssen.\n", + "\n", + "Jetzt sind wir bereit, ein Modell zu trainieren 👩‍💻👨‍💻!\n", + "\n", + "## 3. Auswahl des Klassifikators\n", + "\n", + "

\n", + " \n", + "

Kunstwerk von @allison_horst
\n" + ], + "metadata": { + "id": "NBL3PqIWJBBB" + } + }, + { + "cell_type": "markdown", + "source": [ + "Jetzt müssen wir entscheiden, welchen Algorithmus wir für die Aufgabe verwenden 🤔.\n", + "\n", + "In Tidymodels bietet das [`parsnip package`](https://parsnip.tidymodels.org/index.html) eine einheitliche Schnittstelle für die Arbeit mit Modellen über verschiedene Engines (Pakete) hinweg. Bitte sehen Sie sich die parsnip-Dokumentation an, um [Modelltypen und Engines](https://www.tidymodels.org/find/parsnip/#models) sowie deren entsprechende [Modellargumente](https://www.tidymodels.org/find/parsnip/#model-args) zu erkunden. Die Vielfalt kann auf den ersten Blick ziemlich überwältigend sein. Zum Beispiel umfassen die folgenden Methoden alle Klassifikationstechniken:\n", + "\n", + "- C5.0 Regelbasierte Klassifikationsmodelle\n", + "\n", + "- Flexible Diskriminanzmodelle\n", + "\n", + "- Lineare Diskriminanzmodelle\n", + "\n", + "- Regularisierte Diskriminanzmodelle\n", + "\n", + "- Logistische Regressionsmodelle\n", + "\n", + "- Multinomiale Regressionsmodelle\n", + "\n", + "- Naive Bayes Modelle\n", + "\n", + "- Support Vector Machines\n", + "\n", + "- Nächste Nachbarn\n", + "\n", + "- Entscheidungsbäume\n", + "\n", + "- Ensemble-Methoden\n", + "\n", + "- Neuronale Netze\n", + "\n", + "Die Liste geht weiter!\n", + "\n", + "### **Welchen Klassifikator wählen?**\n", + "\n", + "Welchen Klassifikator sollten Sie also wählen? Oft ist es eine gute Methode, mehrere auszuprobieren und nach einem guten Ergebnis zu suchen.\n", + "\n", + "> AutoML löst dieses Problem elegant, indem es diese Vergleiche in der Cloud durchführt und Ihnen ermöglicht, den besten Algorithmus für Ihre Daten auszuwählen. Probieren Sie es [hier](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott) aus.\n", + "\n", + "Die Wahl des Klassifikators hängt auch von unserem Problem ab. Wenn das Ergebnis beispielsweise in `mehr als zwei Klassen` kategorisiert werden kann, wie in unserem Fall, müssen Sie einen `Multiklassen-Klassifikationsalgorithmus` anstelle eines `binären Klassifikationsalgorithmus` verwenden.\n", + "\n", + "### **Ein besserer Ansatz**\n", + "\n", + "Ein besserer Ansatz als wildes Raten ist jedoch, die Ideen auf diesem herunterladbaren [ML Cheat Sheet](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott) zu verfolgen. Hier entdecken wir, dass wir für unser Multiklassenproblem einige Optionen haben:\n", + "\n", + "

\n", + " \n", + "

Ein Abschnitt des Algorithmus-Cheat Sheets von Microsoft, der Multiklassen-Klassifikationsoptionen beschreibt
\n" + ], + "metadata": { + "id": "a6DLAZ3vJZ14" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **Überlegungen**\n", + "\n", + "Schauen wir uns verschiedene Ansätze an, die wir unter den gegebenen Einschränkungen verfolgen können:\n", + "\n", + "- **Tiefe neuronale Netze sind zu aufwendig.** Angesichts unseres sauberen, aber minimalen Datensatzes und der Tatsache, dass wir das Training lokal über Notebooks durchführen, sind tiefe neuronale Netze für diese Aufgabe zu schwergewichtig.\n", + "\n", + "- **Kein Zwei-Klassen-Klassifikator.** Wir verwenden keinen Zwei-Klassen-Klassifikator, daher scheidet ein One-vs-All-Ansatz aus.\n", + "\n", + "- **Entscheidungsbaum oder logistische Regression könnten funktionieren.** Ein Entscheidungsbaum könnte geeignet sein, oder auch eine multinomiale Regression/multiklassige logistische Regression für Daten mit mehreren Klassen.\n", + "\n", + "- **Multiklassige Boosted Decision Trees lösen ein anderes Problem.** Der multiklassige Boosted Decision Tree eignet sich am besten für nichtparametrische Aufgaben, z. B. Aufgaben zur Erstellung von Rankings, und ist daher für uns nicht nützlich.\n", + "\n", + "Generell ist es eine gute Idee, vor der Anwendung komplexerer Machine-Learning-Modelle wie Ensemble-Methoden zunächst das einfachste Modell zu erstellen, um ein grundlegendes Verständnis für die Daten zu bekommen. Daher beginnen wir in dieser Lektion mit einem `multinomial regression`-Modell.\n", + "\n", + "> Logistische Regression ist eine Technik, die verwendet wird, wenn die Zielvariable kategorisch (oder nominal) ist. Bei der binären logistischen Regression gibt es zwei Zielvariablen, während es bei der multinomialen logistischen Regression mehr als zwei Zielvariablen gibt. Weitere Informationen finden Sie unter [Advanced Regression Methods](https://bookdown.org/chua/ber642_advanced_regression/multinomial-logistic-regression.html).\n", + "\n", + "## 4. Ein multinomiales logistische Regressionsmodell trainieren und evaluieren\n", + "\n", + "In Tidymodels definiert `parsnip::multinom_reg()` ein Modell, das lineare Prädiktoren verwendet, um Multiklass-Daten mithilfe der multinomialen Verteilung vorherzusagen. Siehe `?multinom_reg()` für die verschiedenen Möglichkeiten/Engines, mit denen Sie dieses Modell anpassen können.\n", + "\n", + "In diesem Beispiel passen wir ein multinomiales Regressionsmodell über die Standard-Engine [nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf) an.\n", + "\n", + "> Ich habe den Wert für `penalty` mehr oder weniger zufällig gewählt. Es gibt bessere Methoden, diesen Wert zu bestimmen, z. B. durch `Resampling` und `Tuning` des Modells, was wir später besprechen werden.\n", + ">\n", + "> Siehe [Tidymodels: Get Started](https://www.tidymodels.org/start/tuning/), falls Sie mehr darüber erfahren möchten, wie man Modell-Hyperparameter optimiert.\n" + ], + "metadata": { + "id": "gWMsVcbBJemu" + } + }, + { + "cell_type": "code", + "execution_count": 6, + "source": [ + "# Create a multinomial regression model specification\r\n", + "mr_spec <- multinom_reg(penalty = 1) %>% \r\n", + " set_engine(\"nnet\", MaxNWts = 2086) %>% \r\n", + " set_mode(\"classification\")\r\n", + "\r\n", + "# Print model specification\r\n", + "mr_spec" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 166 + }, + "id": "Wq_fcyQiJvfG", + "outputId": "c30449c7-3864-4be7-f810-72a003743e2d" + } + }, + { + "cell_type": "markdown", + "source": [ + "Großartige Arbeit 🥳! Jetzt, da wir ein Rezept und eine Modellspezifikation haben, müssen wir eine Möglichkeit finden, diese zusammen in ein Objekt zu bündeln, das zuerst die Daten vorverarbeitet, dann das Modell auf den vorverarbeiteten Daten anpasst und auch potenzielle Nachbearbeitungsaktivitäten ermöglicht. In Tidymodels wird dieses praktische Objekt [`workflow`](https://workflows.tidymodels.org/) genannt und hält bequem deine Modellierungskomponenten! Das ist das, was wir in *Python* als *Pipelines* bezeichnen würden.\n", + "\n", + "Also, lass uns alles in einen Workflow bündeln!📦\n" + ], + "metadata": { + "id": "NlSbzDfgJ0zh" + } + }, + { + "cell_type": "code", + "execution_count": 7, + "source": [ + "# Bundle recipe and model specification\r\n", + "mr_wf <- workflow() %>% \r\n", + " add_recipe(cuisines_recipe) %>% \r\n", + " add_model(mr_spec)\r\n", + "\r\n", + "# Print out workflow\r\n", + "mr_wf" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow ════════════════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 333 + }, + "id": "Sc1TfPA4Ke3_", + "outputId": "82c70013-e431-4e7e-cef6-9fcf8aad4a6c" + } + }, + { + "cell_type": "markdown", + "source": [ + "Workflows 👌👌! Ein **`workflow()`** kann auf ähnliche Weise angepasst werden wie ein Modell. Also, Zeit, ein Modell zu trainieren!\n" + ], + "metadata": { + "id": "TNQ8i85aKf9L" + } + }, + { + "cell_type": "code", + "execution_count": 8, + "source": [ + "# Train a multinomial regression model\n", + "mr_fit <- fit(object = mr_wf, data = cuisines_train)\n", + "\n", + "mr_fit" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow [trained] ══════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Call:\n", + "nnet::multinom(formula = ..y ~ ., data = data, decay = ~1, MaxNWts = ~2086, \n", + " trace = FALSE)\n", + "\n", + "Coefficients:\n", + " (Intercept) almond angelica anise anise_seed apple\n", + "indian 0.19723325 0.2409661 0 -5.004955e-05 -0.1657635 -0.05769734\n", + "japanese 0.13961959 -0.6262400 0 -1.169155e-04 -0.4893596 -0.08585717\n", + "korean 0.22377347 -0.1833485 0 -5.560395e-05 -0.2489401 -0.15657804\n", + "thai -0.04336577 -0.6106258 0 4.903828e-04 -0.5782866 0.63451105\n", + " apple_brandy apricot armagnac artemisia artichoke asparagus\n", + "indian 0 0.37042636 0 -0.09122797 0 -0.27181970\n", + "japanese 0 0.28895643 0 -0.12651100 0 0.14054037\n", + "korean 0 -0.07981259 0 0.55756709 0 -0.66979948\n", + "thai 0 -0.33160904 0 -0.10725182 0 -0.02602152\n", + " avocado bacon baked_potato balm banana barley\n", + "indian -0.46624197 0.16008055 0 0 -0.2838796 0.2230625\n", + "japanese 0.90341344 0.02932727 0 0 -0.4142787 2.0953906\n", + "korean -0.06925382 -0.35804134 0 0 -0.2686963 -0.7233404\n", + "thai -0.21473955 -0.75594439 0 0 0.6784880 -0.4363320\n", + " bartlett_pear basil bay bean beech\n", + "indian 0 -0.7128756 0.1011587 -0.8777275 -0.0004380795\n", + "japanese 0 0.1288697 0.9425626 -0.2380748 0.3373437611\n", + "korean 0 -0.2445193 -0.4744318 -0.8957870 -0.0048784496\n", + "thai 0 1.5365848 0.1333256 0.2196970 -0.0113078024\n", + " beef beef_broth beef_liver beer beet\n", + "indian -0.7985278 0.2430186 -0.035598065 -0.002173738 0.01005813\n", + "japanese 0.2241875 -0.3653020 -0.139551027 0.128905553 0.04923911\n", + "korean 0.5366515 -0.6153237 0.213455197 -0.010828645 0.27325423\n", + "thai 0.1570012 -0.9364154 -0.008032213 -0.035063746 -0.28279823\n", + " bell_pepper bergamot berry bitter_orange black_bean\n", + "indian 0.49074330 0 0.58947607 0.191256164 -0.1945233\n", + "japanese 0.09074167 0 -0.25917977 -0.118915977 -0.3442400\n", + "korean -0.57876763 0 -0.07874180 -0.007729435 -0.5220672\n", + "thai 0.92554006 0 -0.07210196 -0.002983296 -0.4614426\n", + " black_currant black_mustard_seed_oil black_pepper black_raspberry\n", + "indian 0 0.38935801 -0.4453495 0\n", + "japanese 0 -0.05452887 -0.5440869 0\n", + "korean 0 -0.03929970 0.8025454 0\n", + "thai 0 -0.21498372 -0.9854806 0\n", + " black_sesame_seed black_tea blackberry blackberry_brandy\n", + "indian -0.2759246 0.3079977 0.191256164 0\n", + "japanese -0.6101687 -0.1671913 -0.118915977 0\n", + "korean 1.5197674 -0.3036261 -0.007729435 0\n", + "thai -0.1755656 -0.1487033 -0.002983296 0\n", + " blue_cheese blueberry bone_oil bourbon_whiskey brandy\n", + "indian 0 0.216164294 -0.2276744 0 0.22427587\n", + "japanese 0 -0.119186087 0.3913019 0 -0.15595599\n", + "korean 0 -0.007821986 0.2854487 0 -0.02562342\n", + "thai 0 -0.004947048 -0.0253658 0 -0.05715244\n", + "\n", + "...\n", + "and 308 more lines." + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "GMbdfVmTKkJI", + "outputId": "adf9ebdf-d69d-4a64-e9fd-e06e5322292e" + } + }, + { + "cell_type": "markdown", + "source": [ + "Die Ausgabe zeigt die Koeffizienten, die das Modell während des Trainings gelernt hat.\n", + "\n", + "### Das trainierte Modell bewerten\n", + "\n", + "Es ist an der Zeit, die Leistung des Modells 📏 zu überprüfen, indem wir es mit einem Testdatensatz evaluieren! Beginnen wir damit, Vorhersagen für den Testdatensatz zu erstellen.\n" + ], + "metadata": { + "id": "tt2BfOxrKmcJ" + } + }, + { + "cell_type": "code", + "execution_count": 9, + "source": [ + "# Make predictions on the test set\n", + "results <- cuisines_test %>% select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test))\n", + "\n", + "# Print out results\n", + "results %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class\n", + "1 indian thai \n", + "2 indian indian \n", + "3 indian indian \n", + "4 indian indian \n", + "5 indian indian " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | .pred_class <fct> |\n", + "|---|---|\n", + "| indian | thai |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & .pred\\_class\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t indian & thai \\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 5 × 2
cuisine.pred_class
<fct><fct>
indianthai
indianindian
indianindian
indianindian
indianindian
\n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "CqtckvtsKqax", + "outputId": "e57fe557-6a68-4217-fe82-173328c5436d" + } + }, + { + "cell_type": "markdown", + "source": [ + "Großartige Arbeit! In Tidymodels kann die Bewertung der Modellleistung mit [yardstick](https://yardstick.tidymodels.org/) durchgeführt werden – einem Paket, das verwendet wird, um die Effektivität von Modellen anhand von Leistungsmetriken zu messen. Wie wir es in unserer Lektion zur logistischen Regression gemacht haben, beginnen wir mit der Berechnung einer Konfusionsmatrix.\n" + ], + "metadata": { + "id": "8w5N6XsBKss7" + } + }, + { + "cell_type": "code", + "execution_count": 10, + "source": [ + "# Confusion matrix for categorical data\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class)\n" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " Truth\n", + "Prediction chinese indian japanese korean thai\n", + " chinese 83 1 8 15 10\n", + " indian 4 163 1 2 6\n", + " japanese 21 5 73 25 1\n", + " korean 15 0 11 191 0\n", + " thai 10 11 3 7 70" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 133 + }, + "id": "YvODvsLkK0iG", + "outputId": "bb69da84-1266-47ad-b174-d43b88ca2988" + } + }, + { + "cell_type": "markdown", + "source": [ + "Wenn man mit mehreren Klassen arbeitet, ist es in der Regel intuitiver, dies als Heatmap zu visualisieren, wie hier:\n" + ], + "metadata": { + "id": "c0HfPL16Lr6U" + } + }, + { + "cell_type": "code", + "execution_count": 11, + "source": [ + "update_geom_defaults(geom = \"tile\", new = list(color = \"black\", alpha = 0.7))\n", + "# Visualize confusion matrix\n", + "results %>% \n", + " conf_mat(cuisine, .pred_class) %>% \n", + " autoplot(type = \"heatmap\")" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deWBU9b3//0+ibApWrbYuvYorXaxoaatWvVqpqG2HsCmLBAqoVXBDjCKbKMqOQUDFFVxKqyhVFLUqWKJsxg3Lz2IFGilLiEqptMX0hpzvnJkMCbx5/W5vz5k5Z+D5/OOc85nEz3w8Mw9mMjmo84gocC7qBRDtCQGJKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQijHkLb+NUZVRb2Ahn26OeoVNCxWpyZWi/mbeGbnGNJl42PUmbNiVM+7nohRlz4ao/o/HqOuFc/sHEMasShGdfwsRt3+1qYYNXJ9jLq9MkZNE89sIMUkIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSbI+EVLQktatJvB8FpNGtv9LoqMteTx7d/f2vND6h5M3oIS07xT0XxjyhQJpx+sGNj79pbfCJgkJ6o7V72t/f4FKdFSmkRa3dnNTBgnYHNPneY7GCVPvB1ggg3ezaTZraq+C8RYvGF7a64cbW7rLIIU1sdmR8IE1ynX4957qC9pFDGtvsiDSkywsn+D0eJaRxycWkIC1pcdzYSecUzIwTpP+0YJBOONJ/CTqncP6iI49YsGjRwqMOjhrSS03GTY0PpJNaVia3P92nImJIc5vcWZqG1LVFoInCgPRCkzF3pyF1bLa8snLdd1pGC+nTOy8uvvdLr+iVEZ2KF/hv7WoTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZgHS8cf624sKF5RdO84/+plbEDGk8oWfxQjSt7/pb7vu80ngmYJBWvTa+jpIPz0ickhLFlSmIa1vVuSPR7lXI4V0w9jN6wdM94qu+fCfj3XZ5v+MVDRwi/dKl23eoPFfVD/es3pj+/e3b7xudmaYDUjD3C+fmz+6aee64Zsnfz3QdOF82BAjSFPckOV/nrFfv+AzBf6woQ7SWa3Wr18dLaRkaUiL3FB/MMdNjhLS6sTG5KbcK3ra8zYmKlKQ5nrepsQnqxKbkz8zdStblVjtedu9zDD5zyxpn+wPIUJadFsz5wp7pz5i+P1vH2i372gg7dT9+yfPz/WVwScKC1Lrlh0PdAddvyYOkJ5zd/mDN9ywKCG92b42tS9anHwvl/g4BSl9WJZINbv2ng4ls9Z7mWHye9/4cbL3QoR0T/MzRt91SWHqI4bJzh0+KdBsex6kZw/4yYzfXL7PzfGB1LKw20P3F7mL4gDpSTfVHyxzN0YJaVH77WlIS+ohpQ+XJjJv4zbNG9mhrH64uwJBeuPwE/0Xo66FTya3L44f2ragF5AatPGo7/ovRlcULo0NpLff87dd3ZwYQHrOTfIHZW54lJDWJCo876MXdgNpbWJl8usbvZotyd30wZlhFiA97VJwJrjMLL9wDwGpvrfddf7uCXdPbCCle8IFmi8kSEvcLf7gqfQLU1SQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpgVSD383Wg3+PkbHkyTugVI9ZW7/v7uEXdXbCCtXOlv73fjYgBpQ4uf+4MhrixSSFvu6NJz2rbdQdo8ruslJSu82ll9Ova6+++ZYRYgvdH8mDeSuw7usRcLT/WPLnGTgVTfxq+02pjc9Xa/jwukdwsv9AfnFbwRA0iVlzZ5p7Jy7bHfDjTXHnGt3UB32qgJFxe2XbSo2H332pLzC77zRsSQ5pWW9nADSkvfiQOkTXe6Hz/wxOWFRcFnCgbp2QkTurorJ0xYvL6Paztu1OmuX6DpgkGaO2lSN9d/0qRlle8dfPTQO37QaA6QFo06qWmjlleWLVr0Zkmrps2O7fFqoNlCgNQ7fS2ZezAWkDY9+P39Gp8wZH3wiYJB6ll3Vu5dv3ZM6xZNT5kYaLaAkHrVLWZ6ZeWiC1s0Pe2ZQLPtIZDCjau/ZVz9rQKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEiqmEDqOSJGnXJfjOpw+z0xqtOUGNU76rPRsMvEMzvHkEa+GqMuHBajznv8tRg1IOoFNGzgKzFqiHhm5xjSvZ/GqF/MjFHd3on6zWXD7ox6AQ27oypG3Sue2UCKSUCSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyhQTpraYHhzDLL/7zp/3YY9zg1MFDHQ7Z92sXz0ge3fTt5o2O6j0jWkjLTnHPhTFPGJDmt23e/OTSquAThQFpXcl/NW45bFPwiUKEVJN4f6fxpkTFrjdlGVLVmS5aSL0bH1wH6QeFF155puswc+b1BUf37HWi6xQppInNjowNpJcbtbx90jnuluAzhQEpsc9V0y9xJcEnChFS7Qdbd4W0601ZhjSp8bmRQhrWqPiyNKQS1y25/f43Z8z82qEPzJz58GEHRAnppSbjpsYG0o8O+ONnn1V9Z7+NgWcKAdJsd1ty+/Mzg78kZfGtXRLSv/29oUD6wwEll0YKadyomXWQftT0ofRND/e4zt+d7R6IEFL5ws/iA2nydH/bx/0p8EwhQOrSfF3wSVKF+9auNrFwRP++8z1v9aAuVy9Mv7WrGN6964gN3o4vZQ/SRSeujxZSsjpIh540c2aDH4tmnPDV/3TCkD5siA+kdOceGnyOECAdfW5VVWXwaapC/xmpaOAW75Uu22r7lW6rGpKGdGXptn+MKfEyX8oepIcK5n0aE0gzCs7t8/WC/S9KvQw9dNfw0/e5BkgNe9jdHnyS4JA2FfaadEzBQf0/iR+kuf5buk/+mNjoeUvSkLZ+6XmLO9RmvpT8xgVtkr0dNqQ/HdL307hAut8deuxVN15Y0Ma/qcS5Q274jyfcIyH9utlFsfjUrsId9b0Hnrqq8Gfxg7TY8zYnPi5rv93zPklDWj6kuLhboibzpeQ3lvdM9mHYkLoeviY2kB50zacndz9xtya3U6+/7LSCBJDqG7dPpw0hTBMc0l/cQWuSu8vcK7GDtCSlZX77Ws9bk4K0odPsam+pD2lJBtJuCg7pqYKHKyoquh1csS4GkGY2+6a/HeT61N3cPkUKSKmudIM+DWOeEH5GanGmv/2NuyvwTNmBtDxR6XllKUhlRTWe92j2IfVzdZ0fB0itDvO317orphQP948Gur5AqmtgQWkIs3wWCqQzjve3j7l7As+UHUjVPUq3rrs5BWllYsW/Fg5OVGUb0tsv+LU74IU34wCplytJbs8oHD+14Jv+p3ftUmMgJXvahfWJRQiQxrunk9su+7wVeKbsQPI+ur7z1e8k/uzfNKN7jylbB3bblGVI6aL9GWlonz5nu4v69Jkw86GWTdr3+6E7f+bMn7nju/c+veC4//QaoTAgzSst7eEGlJYGnyq4gcrjDipN9V7gqUKAtK71foPuLnKXB59pz7rWLmJIP657d3nVzJn3tv3KPocVJ/XM6H1046bfuGj6fzpnGJB6163rwcAzBYf0UeYt+GOBpwrjEqGP+3yt0XFj43WtXZC4+lvF1d8yrv62AUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAcl28S9jVKt2Mer4blGfjob9KOoFNOxnV8Soi8QzO8eQ7loVo7r/JUYNf/KNGDXkTzFq1PoYNU08s3MMafLaGNUz6rcJDbvtmWUxanhFjIrV+8z7xDMbSDEJSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIs/yBt6n1EoUsFpFwHJFn+Qbp437a9+6UCUq4Dkiz/IH312WwBAtL/FpBk+QdpvyogRRWQZPkH6ezXgRRVQJLlH6S3f7gYSBEFJFn+QTrzv9x+R6cCUq4Dkiz/IJ3dNhOQch2QZPkHKfsBSQUkWT5C+uyFBx56+Qsg5T4gyfIP0vZBjfzLGvYfD6ScByRZ/kEa7zo+/OIL91/gHgVSrgOSLP8gfeuG9P6K7wEp1wFJln+QmsxP7+c1A1KuA5Is/yDt/3x6/2xzIOU6IMnyD9JZP672d9vanQukXAckWf5Bmldw1JWjbr/8iMJXgZTrgCTLP0jeb7/pf/z93XnZcgQkGZBkeQjJ89a/VV6ZNUZA0gFJlpeQshyQVECS5RmkVqO9VjsCUq4DkizPIJ1W6p22IyDlOiDJ8gxSTgKSCkiy/IPU5sP0/ulvASnXAUmWf5BceWr3P7c1BlKuA5Is3yC5+rhoNecBSZZvkN6/2xWl/uuQl434C5ByHZBk+QbJ8y74U7YAAel/C0iy/IPkbZyS3FTdtglIOQ9IsvyDtPIw/1OGCnfYaiDlOiDJ8g9Sh+Pf8ncfHt8JSLkOSLL8g3ToI+n9/S2AlOuAJMs/SM2eSO9/tV9MIc07t3nzk8ZW+Ie/P9k9GT2kkvSvC86OGtJrmV9cjF+2bNoPvtL4xMFLo4T0/Dn773/SmDUVFdenV3Vm9JCWneKeC2OefwvSjy6o8Xdf/ODMzC01ifdjBOnZfY8eNuYsd2PycHSzI+IA6ZeFd/n9OmpIbw5JdX7Br5ZNKmx1402nuCsihPTbfY8eOvosN6iiom/hWL+ZkUOa2OzIHEJ6ueDYASNH9Dm08OXMLbUfbI0RpNNbvLt2bcW391uz9rdNRk2KA6TuBwSfI10Yb+1eP7TDsmXfOLJs2bJFRx8cIaTTWrxdUbHmW/utqri4RaCJQoP0UpNxU3MIyXuljf9CfHJc/4bs+Lv9bbFbvrbsd2tjAelnRwafI10YkC458NVliwdO9A9/7sqigzRusr/t6d6ruPDweEAqX/hZTiF53mcf/H8N/4vF/lu7iuHdu47Y4FUnXh7cr+9SLzOuTSwc0b/vfM/bPL5Xl8GrPO+1qzoX31u9Y5gFSOnOPiS1iwWks1tVVa0NPk1VKJCeLCzJHC5tfVigqcL4sOHsQyoqzjyxomJlDCAlyzGkXfIhXVm67R9jSpKH1/3Ve7XDlszYKxq4xXulyzZv0Pgvqh/vWb2x/fvbN143OzNM/sP/XJfsy7Ah3eeGxQfSKcd0PsgdNOgvsYB0/qFvpPZvzH34gn3HRg3pHje0ouLklkUHuoOu/WhvgrTbvyHrQ9qatLC4Q21N4jnP2971lczYK5rreZsSn6xKbE7+LNWtbFVidfLrXmaY/IcXtEn2dsiQZjZrVxEfSMcU9pj5UEf30+AzBYf0ZOGg9MFU5w4vDTZXcEiPNDt/TUVFy8JL7r8n4S7YmyDt9m/I+pCWDyku7paoqUksS95w1azM2CtanHxbl/i4LJFqdu09HUpmrfcyw+T3rrg52c4XSQSGNGqfotVr4wPp/RX+trubG3im4JC6Nn49ffC7icPPL/hFtJBu36f9x8ndknJ/cLF7ai+CtNuSkDZ0ml3tLfUh+f9fzCt+nRl7RUtSkJYmquu+edO8kR3K6oe7Kyikfu7aT9bGCFK637hRgecIDGnp13/UYNTXzYgSUl93zZ/rR4+6EUB6v6yoxvMe9SE97XnVnV/LjDOQ1iZWJr9xo1ezJbmbPjgzzAqkqwvG7jiOBaTVq/3tQ25i4JkCQ3rE3eLvXip5xN/d5YZGCGlAwZj0wYoV/vYeN3ovgrR/g3b8DdkkpJWJFf9aODhRVZMYUFE9q+PfMuMMJG9oSVXNi10+f7XPx7Wbh0zJDLMB6VduZP0gDpA+KLzI37UtWBI9pKvdr/zd7wq/tyS56+qmRgfp8cwr0LLCdv7u3ILX9yJIXZO1anRG5w6nFLS5ugEkb0b3HlO2Duy2IfHiTZ37lXuZ8aYMpM3jul5SssKrndWnY6+7/54ZZgHSmmMPHDvOb8naOePGXeJ+OW7cm9FCqurnzp8w+gx3efCZAkP6uft9at/bnXz9ze0KTloSGaRVxxw4JnVBw6KK3u680SN/6PoEmS4MSPNKS3u4AaWl7+QAUrLZJ23wdyu/ObchpB2H74g5/g8FgvR+5oKyB9deWnc0LWJIG8efckDTU0uDTxQc0tmF6f3Swa2aNjuu5+uBJgsE6d3M4/RAxeo7Tm7RtPW4QI7CgNQ788zJDaSTnkrv72tdd8P2jxI7PnWLHlLYcfW3jKu/Vf8WpMavpfezm9TdsLDDqFog5SQgyfIP0hGXpna1XQ8PTgZI/7eAJMs/SLe67147atSAb7nBQMp1QJLlH6TacYf7P5EdMrwGSLkOSLL8g5Sk9Mmypau3Z4sRkHRAkuUjpG1vzfnU+x8g5T4gyfIQ0sQWzi3xhvwia5SApAKSLP8gPeDaT09CenTf8UDKdUCS5R+kk6/0tiUhebecCKRcByRZ/kFq+moa0u8aASnXAUmWf5C+9nwa0lMHACnXAUmWf5B+cs4/fUifn9QOSLkOSLL8g/T6Psdf5/r2PqDRm0DKdUCS5R8k77VT/Ssbfvj7bDkCkgxIsjyE5Hmb3ntvc9YYAUkHJFn+QToje/+JVSD9LwFJln+QvjEJSFEFJFn+QXruW7/9F5CiCUiy/IN09ndd4yOO9gNSrgOSLP8gnXle27qAlOuAJMs/SNkPSCogyfIO0rZlb24BUkQBSZZvkCa3cK5R/y/FNwIpuwFJlmeQnnEtbxh2lrtafCOQshuQZHkG6eyW/v8utm+jvwEpioAkyzNIzYf727dc1i5YBdL/X0CS5Rkkd7+/3eBeFt8JpKwGJFm+QXrQ3250LwEpioAkAxKQ/v2AJMs3SLcsSTbPlfo7IOU6IMnyDVLDgJTrgCTLM0i3NgxIuQ5IsjyDlJOApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZOvQM0Yd/4sYdWq7TjHqB5fGqJ/2iVEXimd2jiFNWR+jij+PUaOWboxRiWkxanTUj03DYvKKBCQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiRbUEhvtHZP+/sbXKqzIodUduEBTdr8KoSJAkNa1No9s+tRFJBGHOWuSx1cf3zjxifcsPNtkUEK7XEKBVJN4p1oIY1tdkQa0uWFE/wejxrS2y2OmzD53IIngs8UFNK45Kl5ZpejKCB1a3xQGs2V7shLLj1s35sa3hYZpPAepz0C0twmd5amIXVtEWii0CB1bvbh559vOumY4DMFhPR8k9GT03zqj6KANKjRJT3TaA498K5p0ya0aNXwtsgghfc47RGQFr22vg7ST4+IBaSqZh393Wj3euCpAkJaPH9jHZ/6oygg3XrLtDSaMe4sf9y2YHz9bZFBCvFxCg1SzbCRNX8d36tzyYfe9sTv+k32No/v1WXwKs+rGN6964gNXm1i4Yj+fednBVKyOkhntVq/fnX0kJa54f5urpsaeKrgHzbU84kQUrI0mjvcef6gixtYf1tkkEJ8nEKDVFrypTfo1i1fPtz1b17RwFX/9AaN/6L68Z7V3pWl2/4xpsRL3rjFe6XLtuS3f74s2d+yAql1y44HuoOuXxMxpBfc3f5uiRsReKo9DdLU/Y7yB23cZTGAFOLjFBakJ/p/4a1OrPW86osXeEVPet6qxGbPq+1W5m390vMWd6j1iuZ63qbEJ8lvX9Am2dtZgdSysNtD9xe5iyKG9Iy7z9+9424KPNWeBmlawv33yNsuaOH6xgBSiI9TSJDGJv7geW+2r00O+v/GKyrzvLJEqtne8iHFxd0SNV7RYs/bnPcB240AABDoSURBVPg4+R2rpyRblxVIb7/nb7u6OdFCmucm+7vF7tbAU+1xkO4+r8C5b13qrowBpBAfp5Ag9RsxsKYO0lVPeEVLPG9pojr1tQ2dZlcnBzWpG9OQdlNYkNI94UZGC+ltN8zfzUn/gReoPQ7StGljS+5M/ow0LAaQQnycQoJUvrXPI94a/43bts7zU2bWJlYmv7LRKyuq8bxHcwVp5Up/e78bFy2kT1sk/N1wtzjwVHsgJL/v7jclBpBCfJxC+7BhRYd3vZKRX2y7r+c/Uma8oSVVNS92+XxlYsW/Fg5OVOUE0ruFF/qD8wreiBbS58VNln/++YZjvxN8pj0O0umHTp42bXDhORZX7iGF+DiF93ukx4u3VN3R89Lbkj/8pCBtHtf1kpIVnjeje48pWwd225RFSM9OmNDVXTlhwuL1fVzbcaNOd/0CTRcCpD98teXwMT9sNDf4TAEhzZ04sZu7auLEpQ2OooB0Q48ep7u2PXqMnHZFwQnFHZp/dWzD2yKDFN7jtEdca9czfYWdu3f92jGtWzQ9ZWKg2UK51m7ZRS2anvFcCBMFhFRcd2rua3AUBaSz6u69z7Rpfb7RqPlpd+58W1SQwnuc9ghIIcfV3zKu/lYByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSRUTSB2LY9SJfWJUm469Y1TLs2NUIurHpmEXimd2jiFNq4xRvaP+c79ht77zWYwatSlGXV8eo24Xz2wgxSQgyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSLagkBa1dnNSBwvaHdDke49FCym5mGd2PYoW0pz/PrjJSZM+DT5RcEh/cnXNjBbSgsw6JpSXzzq7eeOT7oo1pKIlOw1rEu9nBdK4ZkekIS1pcdzYSecUzIwSkr+YZ3Y5ihbSrMKTx0443Q2OA6R1d6UqKng9WkiLh6Y6v2BW+Zz9j7p56GkFE+MKafnHBlLtB1uzAemFJmPuTkPq2Gx5ZeW677SMENLzTUZPTvOpP4oYUsuj13322cbjD40DpHSrDy8OPkkIb+0WHtqxvPyCpi+Vly894RtxhXTbiwaSLBikJQsq05DWNyvyx6Pcq9FBWjx/Yx2f+qNoIVXe8YS/6+HWxQbSZQd/FHySECB1PXB++bKm5/uHg9wT8YQ0pH2n672iV0Z0Kl7geRXDu3cdsSFrb+0q6yAtckP9wRw3OTpIyer5xAJSuk9P+0bwSUKC9Gbh2BBmCQ5pduHN5eVPuwH+8XQ3Ip6QvH7+K9I1H/7zsS7bvCtLt/1jTEkdpPXPJKvKBqTn3F3+4A03DEg7tWH5y50bzQw+T0iQOhz+lxBmCQ6p3aGLyssfcMP846fc1XGG9LTnbUxUeFu/9LzFHWrTkBa0SfZ2NiA96ab6g2XuRiDt1DPOHfWbEOYJB9KbhXeGMU1gSLMLb0xup7nb/MGz7vI4Q1rseZsTH3vLhxQXd0vUZP8VaZI/KHPDgbRTH/1qaseCgcHnCQfS5Y1XhzFNYEjdGi9Mbh90Q/3BU+6aOENakoK0odPsam9pBtJuCgnSEneLP3gq/cIEpJ0a5F4NPEcokCqP+EkY0wSG9NbXz/R3c1x/f3dP+oUp3pDKimo879HsQ9rQ4uf+YIgrA1J9fxz3O3/3azc5HpBecpPCmCYwpBnpl6Jl+5/n7wa4p2IKqf/Df89AWplY8a+FgxNV2YZUeWmTdyor1x777UBz7WmQPio8syq5+6V7Jh6Qhrvgv4z1CwrpGjcrte/Q+Pny8kX/dUKgybIIaW7nPhlI3ozuPaZsHdhtQ3YgzZ00qZvrP2nSssr3Dj566B0/aDQnQkhzJ07s5q6aOHFpg6NoIX12nfvhqImdCr5fFQ9I3d2aMKYJDCnhFqb28w48csCgk/edHldI/5eCQepVd9nU9MrKRRe2aHraM4FmCwipuG4x9zU4ihjSp5NObrb/t66uCD5TKJAuKAxjluCQ/ruw7uDpc/Zvcup9wSbbIyCFHFd/y7j6WwUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkVUwgzXg8Rg2MegENGzY16hU07NqoF9CwWD1O08QzO8eQiPbMgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQghIRCGUl5CmTY56BQ2ad+emqJdQ34d3Lo16CfV9eeesqJfQoBl3ZnX6vISUaBf1Chp0R5uPo15Cfa+2eTzqJdS3tc3VUS+hQb2/n9XpgRQ0IKmAFPeApAKSDEg2IKmAJAMSUfwDElEIAYkohPIDUtGS1K4m8X7ECzFL2JSoyPmqYnAaTDWJd6Jegq7u6ZMpK+cvryDVfrA14oWYJSQh5XxVMTgNpthCWv6xgZSV85dXkGJYElLUS4hFsYV024u5efrEHNKnd15cfO+XXtErIzoVL/Bfk2sTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZruGS1g9qMvVC9Nv7SqGd+86YoO340vZXkPmDqsTLw/u13epZxaQ69PjQ6oZNrLmr+N7dS750Nue+F2/yTvuNadnZ+eGtO90febpk1nH3vjW7oaxm9cPmO4VXfPhPx/rss0/A0UDt3ivdNnmDRr/RfXjPas3tn9/+8brZmeGWV9QgyXU9ivdVjUkDenK0m3/GFPi7Vhd1tdQd4c1iev+6r3aYYtZQK5Pjw+ptORLb9CtW758uOvfkutY9c8d95rTs7NL/fxXpPTTp/6k7XWQVic2JjflXtHTnrcx/ZQtmuu/n/pkVWJz8s1ut7JVidWet93LDLO+ogZL+KO/uCXpVW390vMWd6jNfCn7a6i7w5rEc8l//a6v7LqAnJ+eJKQn+n+RfMDWel71xQu8oie9+nvN6dnZpRSk9NOn/qTtdZDebF+b2hctTr5ZSXycehanD8sSqWbX3tOhZNZ6LzPM+ooaLqH9ds/7JA1p+ZDi4m6JmsyXsr+GujusSSxL3nDVrF0XkPPTU5MYm/hD5gHr/xuvKIl2x73m9OzsUgpS3f3uOGl7HaRF/nPVS/+0mIGUPlyayLxP2TRvZIey+mGWa7CE+f6TZk0K0oZOs6u9pf5TZUluIGXusCaRfI54V/x61wXk/PTUJPqNGFhTB+mqJ1LryNxrbs/OLvV7ccfTp/6k7XWQ1vifiX30wm4grU2sTH59o1ezJbmbPjgzzHoNlrA8Uen/qetDKiuq8bxHcwgpc4c1ieS7lurOr+26gJyfnppE+dY+jyQfsOQbt22d56fWkbnX3J6dXWoAqf6k7XWQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpj1BTVYQnWP0q3rbk5BWplY8a+FgxNVOYOUucOaxICK6lkd/2YWkOvT43/YsKLDu17JyC+23dfzH+lPnOvuNbdnZ5f6P/z3zP3Wn7S9D9KWO7r0nLZtd5A2j+t6SckKr3ZWn4697v57Zpj1Gi7ho+s7X/1O4s/+TTO695iydWC3TbmClLnDDYkXb+rcr9wzC8j16Un9Hunx4i1Vd/S89LZ1db+6ydxrTs/OLs3t3GfHA7bjpO19kGg3NfgTNba/B93rAlLetf0j/zPtdECKS0DKuxZ2GFWbOQZSXAISUQgBiSiEgEQUQkAiCiEgEYUQkPK3X7pMp+32622Pzu169uqAlL+9PnXq1Gtd5+TWXNb9nv+4AimHASm/e92V7u7mKUDKcUDK7+ognXn28984w2vd2j8u+qp3QfLtXhuv7XFrLmze/JLsX8lLQMr36iCdd/I373mhHtKfilz5h17blq1HP3tjwS+iXeFeEpDyuzpIbd2c5HYHJK+f23Hjj74W4fL2noCU32UgNf6XZyE19a/J61UY4fL2noCU32UgHeFvd4V0tD/sx0OcizjL+V0G0tH+FkjRxVnO73aCdOpJ/vY0IEUQZzm/2wnSeYckfyja1CwJ6TL3P0DKaZzl/G4nSJPdmMp3f/ydJKQR7rangZTLOMv53U6Qqm84sknr5we08Ly/nNqoFZByGWeZKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYXQ/wMhANIDIZLX1QAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 436 + }, + "id": "HsAtwukyLsvt", + "outputId": "3032a224-a2c8-4270-b4f2-7bb620317400" + } + }, + { + "cell_type": "markdown", + "source": [ + "Die dunkleren Felder in der Konfusionsmatrix zeigen eine hohe Anzahl von Fällen an, und idealerweise sehen Sie eine diagonale Linie aus dunkleren Feldern, die Fälle markieren, bei denen die vorhergesagte und die tatsächliche Kategorie übereinstimmen.\n", + "\n", + "Lassen Sie uns nun zusammenfassende Statistiken für die Konfusionsmatrix berechnen.\n" + ], + "metadata": { + "id": "oOJC87dkLwPr" + } + }, + { + "cell_type": "code", + "execution_count": 12, + "source": [ + "# Summary stats for confusion matrix\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class) %>% \n", + "summary()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " .metric .estimator .estimate\n", + "1 accuracy multiclass 0.7880435\n", + "2 kap multiclass 0.7276583\n", + "3 sens macro 0.7780927\n", + "4 spec macro 0.9477598\n", + "5 ppv macro 0.7585583\n", + "6 npv macro 0.9460080\n", + "7 mcc multiclass 0.7292724\n", + "8 j_index macro 0.7258524\n", + "9 bal_accuracy macro 0.8629262\n", + "10 detection_prevalence macro 0.2000000\n", + "11 precision macro 0.7585583\n", + "12 recall macro 0.7780927\n", + "13 f_meas macro 0.7641862" + ], + "text/markdown": [ + "\n", + "A tibble: 13 × 3\n", + "\n", + "| .metric <chr> | .estimator <chr> | .estimate <dbl> |\n", + "|---|---|---|\n", + "| accuracy | multiclass | 0.7880435 |\n", + "| kap | multiclass | 0.7276583 |\n", + "| sens | macro | 0.7780927 |\n", + "| spec | macro | 0.9477598 |\n", + "| ppv | macro | 0.7585583 |\n", + "| npv | macro | 0.9460080 |\n", + "| mcc | multiclass | 0.7292724 |\n", + "| j_index | macro | 0.7258524 |\n", + "| bal_accuracy | macro | 0.8629262 |\n", + "| detection_prevalence | macro | 0.2000000 |\n", + "| precision | macro | 0.7585583 |\n", + "| recall | macro | 0.7780927 |\n", + "| f_meas | macro | 0.7641862 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 13 × 3\n", + "\\begin{tabular}{lll}\n", + " .metric & .estimator & .estimate\\\\\n", + " & & \\\\\n", + "\\hline\n", + "\t accuracy & multiclass & 0.7880435\\\\\n", + "\t kap & multiclass & 0.7276583\\\\\n", + "\t sens & macro & 0.7780927\\\\\n", + "\t spec & macro & 0.9477598\\\\\n", + "\t ppv & macro & 0.7585583\\\\\n", + "\t npv & macro & 0.9460080\\\\\n", + "\t mcc & multiclass & 0.7292724\\\\\n", + "\t j\\_index & macro & 0.7258524\\\\\n", + "\t bal\\_accuracy & macro & 0.8629262\\\\\n", + "\t detection\\_prevalence & macro & 0.2000000\\\\\n", + "\t precision & macro & 0.7585583\\\\\n", + "\t recall & macro & 0.7780927\\\\\n", + "\t f\\_meas & macro & 0.7641862\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 13 × 3
.metric.estimator.estimate
<chr><chr><dbl>
accuracy multiclass0.7880435
kap multiclass0.7276583
sens macro 0.7780927
spec macro 0.9477598
ppv macro 0.7585583
npv macro 0.9460080
mcc multiclass0.7292724
j_index macro 0.7258524
bal_accuracy macro 0.8629262
detection_prevalencemacro 0.2000000
precision macro 0.7585583
recall macro 0.7780927
f_meas macro 0.7641862
\n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 494 + }, + "id": "OYqetUyzL5Wz", + "outputId": "6a84d65e-113d-4281-dfc1-16e8b70f37e6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Wenn wir uns auf einige Metriken wie Genauigkeit, Sensitivität und PPV konzentrieren, ist das für den Anfang gar nicht so schlecht 🥳!\n", + "\n", + "## 4. Tiefer eintauchen\n", + "\n", + "Stellen wir uns eine subtile Frage: Nach welchen Kriterien wird eine bestimmte Art von Küche als vorhergesagtes Ergebnis ausgewählt?\n", + "\n", + "Nun, statistische Machine-Learning-Algorithmen, wie die logistische Regression, basieren auf `Wahrscheinlichkeit`. Das bedeutet, dass ein Klassifikator tatsächlich eine Wahrscheinlichkeitsverteilung über eine Menge möglicher Ergebnisse vorhersagt. Die Klasse mit der höchsten Wahrscheinlichkeit wird dann als das wahrscheinlichste Ergebnis für die gegebenen Beobachtungen ausgewählt.\n", + "\n", + "Schauen wir uns das in der Praxis an, indem wir sowohl harte Klassenentscheidungen als auch Wahrscheinlichkeiten betrachten.\n" + ], + "metadata": { + "id": "43t7vz8vMJtW" + } + }, + { + "cell_type": "code", + "execution_count": 13, + "source": [ + "# Make hard class prediction and probabilities\n", + "results_prob <- cuisines_test %>%\n", + " select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test)) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test, type = \"prob\"))\n", + "\n", + "# Print out results\n", + "results_prob %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class .pred_chinese .pred_indian .pred_japanese .pred_korean\n", + "1 indian thai 1.551259e-03 0.4587877 5.988039e-04 2.428503e-04\n", + "2 indian indian 2.637133e-05 0.9999488 6.648651e-07 2.259993e-05\n", + "3 indian indian 1.049433e-03 0.9909982 1.060937e-03 1.644947e-05\n", + "4 indian indian 6.237482e-02 0.4763035 9.136702e-02 3.660913e-01\n", + "5 indian indian 1.431745e-02 0.9418551 2.945239e-02 8.721782e-03\n", + " .pred_thai \n", + "1 5.388194e-01\n", + "2 1.577948e-06\n", + "3 6.874989e-03\n", + "4 3.863391e-03\n", + "5 5.653283e-03" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 7\n", + "\n", + "| cuisine <fct> | .pred_class <fct> | .pred_chinese <dbl> | .pred_indian <dbl> | .pred_japanese <dbl> | .pred_korean <dbl> | .pred_thai <dbl> |\n", + "|---|---|---|---|---|---|---|\n", + "| indian | thai | 1.551259e-03 | 0.4587877 | 5.988039e-04 | 2.428503e-04 | 5.388194e-01 |\n", + "| indian | indian | 2.637133e-05 | 0.9999488 | 6.648651e-07 | 2.259993e-05 | 1.577948e-06 |\n", + "| indian | indian | 1.049433e-03 | 0.9909982 | 1.060937e-03 | 1.644947e-05 | 6.874989e-03 |\n", + "| indian | indian | 6.237482e-02 | 0.4763035 | 9.136702e-02 | 3.660913e-01 | 3.863391e-03 |\n", + "| indian | indian | 1.431745e-02 | 0.9418551 | 2.945239e-02 | 8.721782e-03 | 5.653283e-03 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 7\n", + "\\begin{tabular}{lllllll}\n", + " cuisine & .pred\\_class & .pred\\_chinese & .pred\\_indian & .pred\\_japanese & .pred\\_korean & .pred\\_thai\\\\\n", + " & & & & & & \\\\\n", + "\\hline\n", + "\t indian & thai & 1.551259e-03 & 0.4587877 & 5.988039e-04 & 2.428503e-04 & 5.388194e-01\\\\\n", + "\t indian & indian & 2.637133e-05 & 0.9999488 & 6.648651e-07 & 2.259993e-05 & 1.577948e-06\\\\\n", + "\t indian & indian & 1.049433e-03 & 0.9909982 & 1.060937e-03 & 1.644947e-05 & 6.874989e-03\\\\\n", + "\t indian & indian & 6.237482e-02 & 0.4763035 & 9.136702e-02 & 3.660913e-01 & 3.863391e-03\\\\\n", + "\t indian & indian & 1.431745e-02 & 0.9418551 & 2.945239e-02 & 8.721782e-03 & 5.653283e-03\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 5 × 7
cuisine.pred_class.pred_chinese.pred_indian.pred_japanese.pred_korean.pred_thai
<fct><fct><dbl><dbl><dbl><dbl><dbl>
indianthai 1.551259e-030.45878775.988039e-042.428503e-045.388194e-01
indianindian2.637133e-050.99994886.648651e-072.259993e-051.577948e-06
indianindian1.049433e-030.99099821.060937e-031.644947e-056.874989e-03
indianindian6.237482e-020.47630359.136702e-023.660913e-013.863391e-03
indianindian1.431745e-020.94185512.945239e-028.721782e-035.653283e-03
\n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "xdKNs-ZPMTJL", + "outputId": "68f6ac5a-725a-4eff-9ea6-481fef00e008" + } + }, + { + "cell_type": "markdown", + "source": [ + "✅ Können Sie erklären, warum das Modell ziemlich sicher ist, dass die erste Beobachtung thailändisch ist?\n", + "\n", + "## **🚀Herausforderung**\n", + "\n", + "In dieser Lektion haben Sie Ihre bereinigten Daten verwendet, um ein Machine-Learning-Modell zu erstellen, das anhand einer Reihe von Zutaten eine nationale Küche vorhersagen kann. Nehmen Sie sich etwas Zeit, um die [vielen Optionen](https://www.tidymodels.org/find/parsnip/#models) zu erkunden, die Tidymodels zur Klassifizierung von Daten bietet, sowie [andere Möglichkeiten](https://parsnip.tidymodels.org/articles/articles/Examples.html#multinom_reg-models), um eine multinomiale Regression anzupassen.\n", + "\n", + "#### EIN GROSSES DANKESCHÖN AN:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) für die Erstellung der großartigen Illustrationen, die R einladender und ansprechender machen. Weitere Illustrationen finden Sie in ihrer [Galerie](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) und [Jen Looper](https://www.twitter.com/jenlooper) für die Erstellung der ursprünglichen Python-Version dieses Moduls ♥️\n", + "\n", + "
\n", + "Hätte gerne ein paar Witze eingebaut, aber ich verstehe keine Food-Wortspiele 😅.\n", + "\n", + "
\n", + "\n", + "Viel Spaß beim Lernen,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Gold Microsoft Learn Student Ambassador.\n" + ], + "metadata": { + "id": "2tWVHMeLMYdM" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Nutzung dieser Übersetzung entstehen.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/de/4-Classification/2-Classifiers-1/solution/notebook.ipynb b/translations/de/4-Classification/2-Classifiers-1/solution/notebook.ipynb new file mode 100644 index 000000000..feda28160 --- /dev/null +++ b/translations/de/4-Classification/2-Classifiers-1/solution/notebook.ipynb @@ -0,0 +1,281 @@ +{ + "cells": [ + { + "source": [ + "# Klassifikationsmodelle erstellen\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "from sklearn.svm import SVC\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy is 0.8181818181818182\n" + ] + } + ], + "source": [ + "lr = LogisticRegression(multi_class='ovr',solver='liblinear')\n", + "model = lr.fit(X_train, np.ravel(y_train))\n", + "\n", + "accuracy = model.score(X_test, y_test)\n", + "print (\"Accuracy is {}\".format(accuracy))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "ingredients: Index(['artemisia', 'black_pepper', 'mushroom', 'shiitake', 'soy_sauce',\n 'vegetable_oil'],\n dtype='object')\ncuisine: korean\n" + ] + } + ], + "source": [ + "# test an item\n", + "print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')\n", + "print(f'cuisine: {y_test.iloc[50]}')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0\n", + "korean 0.392231\n", + "chinese 0.372872\n", + "japanese 0.218825\n", + "thai 0.013427\n", + "indian 0.002645" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
0
korean0.392231
chinese0.372872
japanese0.218825
thai0.013427
indian0.002645
\n
" + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "#rehsape to 2d array and transpose\n", + "test= X_test.iloc[50].values.reshape(-1, 1).T\n", + "# predict with score\n", + "proba = model.predict_proba(test)\n", + "classes = model.classes_\n", + "# create df with classes and scores\n", + "resultdf = pd.DataFrame(data=proba, columns=classes)\n", + "\n", + "# create df to show results\n", + "topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])\n", + "topPrediction.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.75 0.73 0.74 223\n indian 0.93 0.88 0.90 255\n japanese 0.78 0.78 0.78 253\n korean 0.87 0.86 0.86 236\n thai 0.76 0.84 0.80 232\n\n accuracy 0.82 1199\n macro avg 0.82 0.82 0.82 1199\nweighted avg 0.82 0.82 0.82 1199\n\n" + ] + } + ], + "source": [ + "y_pred = model.predict(X_test)\r\n", + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Nutzung dieser Übersetzung entstehen.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "9408506dd864f2b6e334c62f80c0cfcc", + "translation_date": "2025-09-04T02:23:27+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/de/4-Classification/3-Classifiers-2/README.md b/translations/de/4-Classification/3-Classifiers-2/README.md index 51394f49f..bcdf77e92 100644 --- a/translations/de/4-Classification/3-Classifiers-2/README.md +++ b/translations/de/4-Classification/3-Classifiers-2/README.md @@ -1,44 +1,53 @@ -# Küchenklassifizierer 2 + +# Küchenklassifikatoren 2 -In dieser zweiten Klassifikationslektion werden Sie weitere Möglichkeiten erkunden, numerische Daten zu klassifizieren. Sie werden auch die Auswirkungen der Wahl eines Klassifizierers gegenüber einem anderen kennenlernen. +In dieser zweiten Lektion zur Klassifikation wirst du weitere Möglichkeiten zur Klassifikation numerischer Daten erkunden. Außerdem wirst du die Auswirkungen kennenlernen, die die Wahl eines Klassifikators gegenüber einem anderen haben kann. -## [Vorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/) +## [Quiz vor der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/) -### Voraussetzung +### Voraussetzungen -Wir gehen davon aus, dass Sie die vorherigen Lektionen abgeschlossen haben und einen bereinigten Datensatz in Ihrem `data`-Ordner haben, der _cleaned_cuisines.csv_ im Wurzelverzeichnis dieses 4-Lektionen-Ordners heißt. +Wir gehen davon aus, dass du die vorherigen Lektionen abgeschlossen hast und einen bereinigten Datensatz in deinem `data`-Ordner namens _cleaned_cuisines.csv_ im Hauptverzeichnis dieses 4-Lektionen-Ordners hast. ### Vorbereitung -Wir haben Ihre _notebook.ipynb_-Datei mit dem bereinigten Datensatz geladen und in X- und y-Datenrahmen unterteilt, bereit für den Modellierungsprozess. +Wir haben deine _notebook.ipynb_-Datei mit dem bereinigten Datensatz geladen und in X- und y-Datenframes unterteilt, die bereit für den Modellierungsprozess sind. ## Eine Klassifikationskarte -Früher haben Sie die verschiedenen Optionen kennengelernt, die Sie beim Klassifizieren von Daten mit Microsofts Spickzettel haben. Scikit-learn bietet einen ähnlichen, aber detaillierteren Spickzettel, der Ihnen helfen kann, Ihre Schätzer (ein anderer Begriff für Klassifizierer) weiter einzugrenzen: +Zuvor hast du die verschiedenen Optionen kennengelernt, die dir bei der Klassifikation von Daten mithilfe des Cheat Sheets von Microsoft zur Verfügung stehen. Scikit-learn bietet ein ähnliches, aber detaillierteres Cheat Sheet, das dir dabei helfen kann, deine Auswahl an Schätzern (ein anderer Begriff für Klassifikatoren) weiter einzugrenzen: -![ML-Karte von Scikit-learn](../../../../translated_images/map.e963a6a51349425ab107b38f6c7307eb4c0d0c7ccdd2e81a5e1919292bab9ac7.de.png) -> Tipp: [Besuchen Sie diese Karte online](https://scikit-learn.org/stable/tutorial/machine_learning_map/) und klicken Sie entlang des Pfades, um die Dokumentation zu lesen. +![ML-Karte von Scikit-learn](../../../../translated_images/map.e963a6a51349425ab107b38f6c7307eb4c0d0c7ccdd2e81a5e1919292bab9ac7.de.png) +> Tipp: [Besuche diese Karte online](https://scikit-learn.org/stable/tutorial/machine_learning_map/) und klicke entlang des Pfades, um die Dokumentation zu lesen. ### Der Plan -Diese Karte ist sehr hilfreich, sobald Sie ein klares Verständnis Ihrer Daten haben, da Sie 'entlang ihrer Pfade' zu einer Entscheidung 'gehen' können: +Diese Karte ist sehr hilfreich, sobald du ein klares Verständnis deiner Daten hast, da du entlang ihrer Pfade zu einer Entscheidung „gehen“ kannst: -- Wir haben >50 Proben +- Wir haben >50 Stichproben - Wir möchten eine Kategorie vorhersagen - Wir haben beschriftete Daten -- Wir haben weniger als 100K Proben -- ✨ Wir können einen linearen SVC wählen -- Wenn das nicht funktioniert, da wir numerische Daten haben - - Können wir einen ✨ KNeighbors-Klassifizierer ausprobieren - - Wenn das nicht funktioniert, versuchen Sie ✨ SVC und ✨ Ensemble-Klassifizierer +- Wir haben weniger als 100.000 Stichproben +- ✨ Wir können einen Linear SVC wählen +- Falls das nicht funktioniert, da wir numerische Daten haben: + - Können wir einen ✨ KNeighbors-Klassifikator ausprobieren + - Falls das nicht funktioniert, probiere ✨ SVC und ✨ Ensemble-Klassifikatoren -Das ist ein sehr hilfreicher Weg, dem man folgen kann. +Dies ist ein sehr hilfreicher Weg, dem man folgen kann. ## Übung - Daten aufteilen -Folgen Sie diesem Pfad, sollten wir zunächst einige Bibliotheken importieren. +Entlang dieses Pfades sollten wir zunächst einige Bibliotheken importieren, die wir verwenden möchten. -1. Importieren Sie die benötigten Bibliotheken: +1. Importiere die benötigten Bibliotheken: ```python from sklearn.neighbors import KNeighborsClassifier @@ -50,21 +59,21 @@ Folgen Sie diesem Pfad, sollten wir zunächst einige Bibliotheken importieren. import numpy as np ``` -1. Teilen Sie Ihre Trainings- und Testdaten auf: +1. Teile deine Trainings- und Testdaten: ```python X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) ``` -## Linearer SVC-Klassifizierer +## Linear SVC-Klassifikator -Support-Vektor-Klassifizierung (SVC) ist ein Teil der Familie der Support-Vektor-Maschinen von ML-Techniken (erfahren Sie mehr darüber weiter unten). Bei dieser Methode können Sie einen 'Kernel' wählen, um zu entscheiden, wie die Labels gruppiert werden. Der Parameter 'C' bezieht sich auf die 'Regularisierung', die den Einfluss der Parameter reguliert. Der Kernel kann einer von [mehreren](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC) sein; hier setzen wir ihn auf 'linear', um sicherzustellen, dass wir den linearen SVC nutzen. Die Wahrscheinlichkeit ist standardmäßig auf 'false' gesetzt; hier setzen wir sie auf 'true', um Wahrscheinlichkeitsabschätzungen zu sammeln. Wir setzen den Zufallsstatus auf '0', um die Daten zu mischen und Wahrscheinlichkeiten zu erhalten. +Support-Vector Clustering (SVC) ist ein Mitglied der Familie der Support-Vector-Maschinen-Techniken des maschinellen Lernens (mehr dazu unten). Bei dieser Methode kannst du einen 'Kernel' wählen, um zu entscheiden, wie die Labels gruppiert werden. Der Parameter 'C' bezieht sich auf die 'Regularisierung', die den Einfluss der Parameter reguliert. Der Kernel kann einer von [mehreren](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC) sein; hier setzen wir ihn auf 'linear', um sicherzustellen, dass wir Linear SVC nutzen. Die Wahrscheinlichkeit ist standardmäßig auf 'false' gesetzt; hier setzen wir sie auf 'true', um Wahrscheinlichkeitsabschätzungen zu erhalten. Wir setzen den Zufallszustand auf '0', um die Daten zu mischen und Wahrscheinlichkeiten zu erhalten. -### Übung - einen linearen SVC anwenden +### Übung - Linear SVC anwenden -Beginnen Sie damit, ein Array von Klassifizierern zu erstellen. Sie werden dieses Array schrittweise erweitern, während wir testen. +Beginne damit, ein Array von Klassifikatoren zu erstellen. Du wirst dieses Array schrittweise erweitern, während wir testen. -1. Beginnen Sie mit einem linearen SVC: +1. Beginne mit einem Linear SVC: ```python C = 10 @@ -74,7 +83,7 @@ Beginnen Sie damit, ein Array von Klassifizierern zu erstellen. Sie werden diese } ``` -2. Trainieren Sie Ihr Modell mit dem linearen SVC und drucken Sie einen Bericht aus: +2. Trainiere dein Modell mit dem Linear SVC und drucke einen Bericht aus: ```python n_classifiers = len(classifiers) @@ -105,15 +114,15 @@ Beginnen Sie damit, ein Array von Klassifizierern zu erstellen. Sie werden diese weighted avg 0.79 0.79 0.79 1199 ``` -## K-Neighbors-Klassifizierer +## K-Neighbors-Klassifikator -K-Neighbors gehört zur Familie der "Nachbarn"-Methoden von ML, die sowohl für überwachtes als auch für unüberwachtes Lernen verwendet werden können. Bei dieser Methode wird eine vordefinierte Anzahl von Punkten erstellt, und Daten werden um diese Punkte herum gesammelt, sodass verallgemeinerte Labels für die Daten vorhergesagt werden können. +K-Neighbors ist Teil der Familie der "Nachbarn"-Methoden des maschinellen Lernens, die sowohl für überwachtes als auch für unüberwachtes Lernen verwendet werden können. Bei dieser Methode wird eine vordefinierte Anzahl von Punkten erstellt, und Daten werden um diese Punkte herum gesammelt, sodass generalisierte Labels für die Daten vorhergesagt werden können. -### Übung - den K-Neighbors-Klassifizierer anwenden +### Übung - K-Neighbors-Klassifikator anwenden -Der vorherige Klassifizierer war gut und hat gut mit den Daten funktioniert, aber vielleicht können wir eine bessere Genauigkeit erzielen. Probieren Sie einen K-Neighbors-Klassifizierer aus. +Der vorherige Klassifikator war gut und hat gut mit den Daten funktioniert, aber vielleicht können wir eine bessere Genauigkeit erzielen. Probiere einen K-Neighbors-Klassifikator aus. -1. Fügen Sie eine Zeile zu Ihrem Klassifizierer-Array hinzu (fügen Sie ein Komma nach dem Element des linearen SVC hinzu): +1. Füge eine Zeile zu deinem Klassifikator-Array hinzu (füge ein Komma nach dem Linear SVC-Element hinzu): ```python 'KNN classifier': KNeighborsClassifier(C), @@ -136,17 +145,17 @@ Der vorherige Klassifizierer war gut und hat gut mit den Daten funktioniert, abe weighted avg 0.76 0.74 0.74 1199 ``` - ✅ Erfahren Sie mehr über [K-Neighbors](https://scikit-learn.org/stable/modules/neighbors.html#neighbors) + ✅ Erfahre mehr über [K-Neighbors](https://scikit-learn.org/stable/modules/neighbors.html#neighbors) -## Support-Vektor-Klassifizierer +## Support-Vector-Klassifikator -Support-Vektor-Klassifizierer sind Teil der [Support-Vektor-Maschinen](https://wikipedia.org/wiki/Support-vector_machine) Familie von ML-Methoden, die für Klassifikations- und Regressionsaufgaben verwendet werden. SVMs "karten Trainingsbeispiele in Punkte im Raum" ab, um den Abstand zwischen zwei Kategorien zu maximieren. Nachfolgende Daten werden in diesen Raum abgebildet, damit ihre Kategorie vorhergesagt werden kann. +Support-Vector-Klassifikatoren sind Teil der [Support-Vector-Maschinen](https://wikipedia.org/wiki/Support-vector_machine)-Familie von ML-Methoden, die für Klassifikations- und Regressionstasks verwendet werden. SVMs "mappen Trainingsbeispiele auf Punkte im Raum", um den Abstand zwischen zwei Kategorien zu maximieren. Nachfolgende Daten werden in diesen Raum gemappt, sodass ihre Kategorie vorhergesagt werden kann. -### Übung - einen Support-Vektor-Klassifizierer anwenden +### Übung - Support-Vector-Klassifikator anwenden -Versuchen wir, eine etwas bessere Genauigkeit mit einem Support-Vektor-Klassifizierer zu erzielen. +Lass uns versuchen, eine etwas bessere Genauigkeit mit einem Support-Vector-Klassifikator zu erzielen. -1. Fügen Sie ein Komma nach dem K-Neighbors-Element hinzu und fügen Sie dann diese Zeile hinzu: +1. Füge ein Komma nach dem K-Neighbors-Element hinzu und füge dann diese Zeile hinzu: ```python 'SVC': SVC(), @@ -169,18 +178,18 @@ Versuchen wir, eine etwas bessere Genauigkeit mit einem Support-Vektor-Klassifiz weighted avg 0.84 0.83 0.83 1199 ``` - ✅ Erfahren Sie mehr über [Support-Vektoren](https://scikit-learn.org/stable/modules/svm.html#svm) + ✅ Erfahre mehr über [Support-Vektoren](https://scikit-learn.org/stable/modules/svm.html#svm) -## Ensemble-Klassifizierer +## Ensemble-Klassifikatoren -Lassen Sie uns den Weg bis zum Ende verfolgen, auch wenn der vorherige Test ziemlich gut war. Lassen Sie uns einige 'Ensemble-Klassifizierer, speziell Random Forest und AdaBoost, ausprobieren: +Lass uns den Pfad bis zum Ende verfolgen, auch wenn der vorherige Test ziemlich gut war. Lass uns einige 'Ensemble-Klassifikatoren' ausprobieren, insbesondere Random Forest und AdaBoost: ```python 'RFST': RandomForestClassifier(n_estimators=100), 'ADA': AdaBoostClassifier(n_estimators=100) ``` -Das Ergebnis ist sehr gut, insbesondere für Random Forest: +Das Ergebnis ist sehr gut, besonders bei Random Forest: ```output Accuracy (train) for RFST: 84.5% @@ -210,29 +219,31 @@ Accuracy (train) for ADA: 72.4% weighted avg 0.73 0.72 0.72 1199 ``` -✅ Erfahren Sie mehr über [Ensemble-Klassifizierer](https://scikit-learn.org/stable/modules/ensemble.html) +✅ Erfahre mehr über [Ensemble-Klassifikatoren](https://scikit-learn.org/stable/modules/ensemble.html) Diese Methode des maschinellen Lernens "kombiniert die Vorhersagen mehrerer Basis-Schätzer", um die Qualität des Modells zu verbessern. In unserem Beispiel haben wir Random Trees und AdaBoost verwendet. -- [Random Forest](https://scikit-learn.org/stable/modules/ensemble.html#forest), eine Durchschnittsmethode, erstellt einen 'Wald' von 'Entscheidungsbäumen', die mit Zufälligkeit durchsetzt sind, um Überanpassung zu vermeiden. Der Parameter n_estimators wird auf die Anzahl der Bäume gesetzt. +- [Random Forest](https://scikit-learn.org/stable/modules/ensemble.html#forest), eine Durchschnittsmethode, erstellt einen 'Wald' aus 'Entscheidungsbäumen', die mit Zufälligkeit durchsetzt sind, um Überanpassung zu vermeiden. Der Parameter n_estimators wird auf die Anzahl der Bäume gesetzt. -- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) passt einen Klassifizierer an einen Datensatz an und passt dann Kopien dieses Klassifizierers an denselben Datensatz an. Es konzentriert sich auf die Gewichte falsch klassifizierter Elemente und passt die Anpassung für den nächsten Klassifizierer an, um dies zu korrigieren. +- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) passt einen Klassifikator an einen Datensatz an und passt dann Kopien dieses Klassifikators an denselben Datensatz an. Es konzentriert sich auf die Gewichte von falsch klassifizierten Elementen und passt die Anpassung für den nächsten Klassifikator an, um diese zu korrigieren. --- -## 🚀Herausforderung +## 🚀 Herausforderung -Jede dieser Techniken hat eine große Anzahl von Parametern, die Sie anpassen können. Recherchieren Sie die Standardparameter jedes einzelnen und überlegen Sie, was es für die Qualität des Modells bedeuten würde, diese Parameter anzupassen. +Jede dieser Techniken hat eine große Anzahl von Parametern, die du anpassen kannst. Recherchiere die Standardparameter jeder Technik und überlege, was das Anpassen dieser Parameter für die Qualität des Modells bedeuten würde. -## [Nachlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/) +## [Quiz nach der Vorlesung](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/) -## Überprüfung & Selbststudium +## Rückblick & Selbststudium -In diesen Lektionen gibt es eine Menge Fachbegriffe, also nehmen Sie sich einen Moment Zeit, um [diese Liste](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott) nützlicher Terminologie zu überprüfen! +Es gibt viele Fachbegriffe in diesen Lektionen, also nimm dir einen Moment Zeit, um [diese Liste](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott) nützlicher Begriffe zu überprüfen! ## Aufgabe -[Parameter spielen](assignment.md) +[Parameter-Spiel](assignment.md) + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, bitten wir zu beachten, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner Ursprungssprache sollte als die maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/4-Classification/3-Classifiers-2/assignment.md b/translations/de/4-Classification/3-Classifiers-2/assignment.md index 8057578fe..1f18cd171 100644 --- a/translations/de/4-Classification/3-Classifiers-2/assignment.md +++ b/translations/de/4-Classification/3-Classifiers-2/assignment.md @@ -1,14 +1,25 @@ -# Parameter Play + +# Parameter-Spiel ## Anweisungen -Es gibt viele Parameter, die standardmäßig festgelegt sind, wenn man mit diesen Klassifizierern arbeitet. Intellisense in VS Code kann Ihnen helfen, sich darin zurechtzufinden. Wählen Sie eine der ML-Klassifikationstechniken in dieser Lektion und trainieren Sie die Modelle neu, indem Sie verschiedene Parameterwerte anpassen. Erstellen Sie ein Notizbuch, in dem Sie erklären, warum einige Änderungen die Modellqualität verbessern, während andere sie verschlechtern. Seien Sie detailliert in Ihrer Antwort. +Es gibt viele Parameter, die standardmäßig festgelegt sind, wenn man mit diesen Klassifikatoren arbeitet. Intellisense in VS Code kann dir helfen, sie genauer zu untersuchen. Wähle eine der ML-Klassifikationstechniken aus dieser Lektion und trainiere die Modelle erneut, indem du verschiedene Parameterwerte anpasst. Erstelle ein Notebook, in dem du erklärst, warum einige Änderungen die Modellqualität verbessern, während andere sie verschlechtern. Sei in deiner Antwort detailliert. -## Bewertungsrichtlinien +## Bewertungskriterien -| Kriterien | Hervorragend | Angemessen | Verbesserungsbedarf | -| --------- | --------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------- | ----------------------------- | -| | Ein Notizbuch wird präsentiert, in dem ein Klassifizierer vollständig aufgebaut und dessen Parameter angepasst sowie Änderungen in Textfeldern erklärt werden | Ein Notizbuch wird teilweise präsentiert oder schlecht erklärt | Ein Notizbuch ist fehlerhaft oder mangelhaft | +| Kriterien | Hervorragend | Angemessen | Verbesserungswürdig | +| --------- | ------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------- | ---------------------------- | +| | Ein Notebook wird präsentiert, das einen vollständig aufgebauten Klassifikator enthält, dessen Parameter angepasst und Änderungen in Textfeldern erklärt werden | Ein Notebook wird teilweise präsentiert oder schlecht erklärt | Ein Notebook ist fehlerhaft oder unvollständig | + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit maschinellen KI-Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner Originalsprache sollte als die maßgebliche Quelle angesehen werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/4-Classification/3-Classifiers-2/notebook.ipynb b/translations/de/4-Classification/3-Classifiers-2/notebook.ipynb new file mode 100644 index 000000000..d79ea7cb0 --- /dev/null +++ b/translations/de/4-Classification/3-Classifiers-2/notebook.ipynb @@ -0,0 +1,165 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Klassifikationsmodell erstellen\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Nutzung dieser Übersetzung entstehen.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "15a83277036572e0773229b5f21c1e12", + "translation_date": "2025-09-04T02:32:14+00:00", + "source_file": "4-Classification/3-Classifiers-2/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/de/4-Classification/3-Classifiers-2/solution/Julia/README.md b/translations/de/4-Classification/3-Classifiers-2/solution/Julia/README.md index f851146cc..c686357d2 100644 --- a/translations/de/4-Classification/3-Classifiers-2/solution/Julia/README.md +++ b/translations/de/4-Classification/3-Classifiers-2/solution/Julia/README.md @@ -1,6 +1,15 @@ -Dies ist ein temporärer PlatzhalterBitte schreiben Sie die Ausgabe von links nach rechts. + -Dies ist ein temporärer Platzhalter + +--- **Haftungsausschluss**: -Dieses Dokument wurde mit Hilfe von KI-gestützten maschinellen Übersetzungsdiensten übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als die maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen. \ No newline at end of file +Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, beachten Sie bitte, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben. \ No newline at end of file diff --git a/translations/de/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb b/translations/de/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb new file mode 100644 index 000000000..3f5c2285d --- /dev/null +++ b/translations/de/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb @@ -0,0 +1,650 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "lesson_12-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "fab50046ca413a38939d579f8432274f", + "translation_date": "2025-09-04T02:37:39+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb", + "language_code": "de" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "jsFutf_ygqSx" + }, + "source": [ + "# Erstellen Sie ein Klassifikationsmodell: Köstliche asiatische und indische Küchen\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HD54bEefgtNO" + }, + "source": [ + "## Küchenklassifikatoren 2\n", + "\n", + "In dieser zweiten Lektion zur Klassifikation werden wir `weitere Möglichkeiten` zur Klassifikation von kategorialen Daten erkunden. Außerdem werden wir die Auswirkungen der Wahl eines Klassifikators gegenüber einem anderen kennenlernen.\n", + "\n", + "### [**Quiz vor der Vorlesung**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/)\n", + "\n", + "### **Voraussetzungen**\n", + "\n", + "Wir gehen davon aus, dass Sie die vorherigen Lektionen abgeschlossen haben, da wir einige zuvor erlernte Konzepte weiterführen werden.\n", + "\n", + "Für diese Lektion benötigen wir die folgenden Pakete:\n", + "\n", + "- `tidyverse`: Das [tidyverse](https://www.tidyverse.org/) ist eine [Sammlung von R-Paketen](https://www.tidyverse.org/packages), die darauf abzielt, Datenwissenschaft schneller, einfacher und unterhaltsamer zu machen!\n", + "\n", + "- `tidymodels`: Das [tidymodels](https://www.tidymodels.org/) Framework ist eine [Sammlung von Paketen](https://www.tidymodels.org/packages/) für Modellierung und maschinelles Lernen.\n", + "\n", + "- `themis`: Das [themis-Paket](https://themis.tidymodels.org/) bietet zusätzliche Rezeptschritte für den Umgang mit unausgewogenen Daten.\n", + "\n", + "Sie können diese Pakete wie folgt installieren:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"kernlab\", \"themis\", \"ranger\", \"xgboost\", \"kknn\"))`\n", + "\n", + "Alternativ überprüft das untenstehende Skript, ob Sie die für dieses Modul benötigten Pakete installiert haben, und installiert sie für Sie, falls sie fehlen.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vZ57IuUxgyQt" + }, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, themis, kernlab, ranger, xgboost, kknn)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z22M-pj4g07x" + }, + "source": [ + "## **1. Eine Klassifikationsübersicht**\n", + "\n", + "In unserer [vorherigen Lektion](https://github.com/microsoft/ML-For-Beginners/tree/main/4-Classification/2-Classifiers-1) haben wir versucht, die Frage zu beantworten: Wie wählt man zwischen mehreren Modellen aus? In hohem Maße hängt dies von den Eigenschaften der Daten und der Art des Problems ab, das wir lösen möchten (zum Beispiel Klassifikation oder Regression?).\n", + "\n", + "Zuvor haben wir die verschiedenen Möglichkeiten kennengelernt, die Ihnen zur Verfügung stehen, wenn Sie Daten mithilfe von Microsofts Spickzettel klassifizieren. Das Machine-Learning-Framework von Python, Scikit-learn, bietet einen ähnlichen, aber detaillierteren Spickzettel, der Ihnen dabei helfen kann, Ihre Auswahl an Schätzern (ein anderer Begriff für Klassifikatoren) weiter einzugrenzen:\n", + "\n", + "

\n", + " \n", + "

\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u1i3xRIVg7vG" + }, + "source": [ + "> Tipp: [Besuchen Sie diese Karte online](https://scikit-learn.org/stable/tutorial/machine_learning_map/) und klicken Sie entlang des Pfads, um die Dokumentation zu lesen.\n", + ">\n", + "> Die [Tidymodels-Referenzseite](https://www.tidymodels.org/find/parsnip/#models) bietet ebenfalls eine hervorragende Dokumentation über verschiedene Modelltypen.\n", + "\n", + "### **Der Plan** 🗺️\n", + "\n", + "Diese Karte ist sehr hilfreich, sobald Sie ein klares Verständnis Ihrer Daten haben, da Sie entlang ihrer Pfade zu einer Entscheidung „gehen“ können:\n", + "\n", + "- Wir haben \\>50 Proben\n", + "\n", + "- Wir möchten eine Kategorie vorhersagen\n", + "\n", + "- Wir haben beschriftete Daten\n", + "\n", + "- Wir haben weniger als 100.000 Proben\n", + "\n", + "- ✨ Wir können einen Linear SVC wählen\n", + "\n", + "- Wenn das nicht funktioniert, da wir numerische Daten haben\n", + "\n", + " - Können wir einen ✨ KNeighbors Classifier ausprobieren\n", + "\n", + " - Wenn das nicht funktioniert, probieren Sie ✨ SVC und ✨ Ensemble Classifiers\n", + "\n", + "Dies ist ein sehr hilfreicher Pfad, dem man folgen kann. Jetzt legen wir direkt los und nutzen das [tidymodels](https://www.tidymodels.org/) Modellierungs-Framework: eine konsistente und flexible Sammlung von R-Paketen, die entwickelt wurden, um gute statistische Praktiken zu fördern 😊.\n", + "\n", + "## 2. Daten aufteilen und mit unausgewogenen Datensätzen umgehen.\n", + "\n", + "Aus unseren vorherigen Lektionen haben wir gelernt, dass es eine Reihe von gemeinsamen Zutaten in unseren Küchen gab. Außerdem gab es eine ziemlich ungleiche Verteilung in der Anzahl der Küchen.\n", + "\n", + "Wir werden damit umgehen, indem wir:\n", + "\n", + "- Die häufigsten Zutaten, die Verwirrung zwischen verschiedenen Küchen schaffen, mit `dplyr::select()` entfernen.\n", + "\n", + "- Ein `recipe` verwenden, das die Daten vorverarbeitet, um sie für die Modellierung vorzubereiten, indem ein `over-sampling`-Algorithmus angewendet wird.\n", + "\n", + "Wir haben das oben bereits in der vorherigen Lektion behandelt, daher sollte das ein Kinderspiel sein 🥳!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "6tj_rN00hClA" + }, + "source": [ + "# Load the core Tidyverse and Tidymodels packages\n", + "library(tidyverse)\n", + "library(tidymodels)\n", + "\n", + "# Load the original cuisines data\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\n", + "\n", + "# Drop id column, rice, garlic and ginger from our original data set\n", + "df_select <- df %>% \n", + " select(-c(1, rice, garlic, ginger)) %>%\n", + " # Encode cuisine column as categorical\n", + " mutate(cuisine = factor(cuisine))\n", + "\n", + "\n", + "# Create data split specification\n", + "set.seed(2056)\n", + "cuisines_split <- initial_split(data = df_select,\n", + " strata = cuisine,\n", + " prop = 0.7)\n", + "\n", + "# Extract the data in each split\n", + "cuisines_train <- training(cuisines_split)\n", + "cuisines_test <- testing(cuisines_split)\n", + "\n", + "# Display distribution of cuisines in the training set\n", + "cuisines_train %>% \n", + " count(cuisine) %>% \n", + " arrange(desc(n))" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zFin5yw3hHb1" + }, + "source": [ + "### Umgang mit unausgeglichenen Daten\n", + "\n", + "Unausgeglichene Daten haben oft negative Auswirkungen auf die Modellleistung. Viele Modelle erzielen die besten Ergebnisse, wenn die Anzahl der Beobachtungen gleich ist, und haben daher Schwierigkeiten mit unausgeglichenen Daten.\n", + "\n", + "Es gibt im Wesentlichen zwei Ansätze, um mit unausgeglichenen Datensätzen umzugehen:\n", + "\n", + "- Hinzufügen von Beobachtungen zur Minderheitsklasse: `Over-sampling`, z. B. mit einem SMOTE-Algorithmus, der synthetisch neue Beispiele der Minderheitsklasse generiert, indem er die nächsten Nachbarn dieser Fälle verwendet.\n", + "\n", + "- Entfernen von Beobachtungen aus der Mehrheitsklasse: `Under-sampling`\n", + "\n", + "In unserer vorherigen Lektion haben wir demonstriert, wie man mit unausgeglichenen Datensätzen mithilfe eines `recipe` umgeht. Ein Recipe kann als eine Art Blaupause betrachtet werden, die beschreibt, welche Schritte auf einen Datensatz angewendet werden sollten, um ihn für die Datenanalyse vorzubereiten. In unserem Fall möchten wir eine gleichmäßige Verteilung der Anzahl unserer Küchenstile im `training set` erreichen. Legen wir los.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cRzTnHolhLWd" + }, + "source": [ + "# Load themis package for dealing with imbalanced data\n", + "library(themis)\n", + "\n", + "# Create a recipe for preprocessing training data\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>%\n", + " step_smote(cuisine) \n", + "\n", + "# Print recipe\n", + "cuisines_recipe" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KxOQ2ORhhO81" + }, + "source": [ + "Jetzt sind wir bereit, Modelle zu trainieren 👩‍💻👨‍💻!\n", + "\n", + "## 3. Über multinomiale Regressionsmodelle hinaus\n", + "\n", + "In unserer vorherigen Lektion haben wir uns mit multinomialen Regressionsmodellen beschäftigt. Lassen Sie uns einige flexiblere Modelle für die Klassifikation erkunden.\n", + "\n", + "### Support Vector Machines\n", + "\n", + "Im Kontext der Klassifikation ist `Support Vector Machines` eine Technik des maschinellen Lernens, die versucht, eine *Hyperebene* zu finden, die die Klassen \"optimal\" trennt. Schauen wir uns ein einfaches Beispiel an:\n", + "\n", + "

\n", + " \n", + "

https://commons.wikimedia.org/w/index.php?curid=22877598
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C4Wsd0vZhXYu" + }, + "source": [ + "H1~ trennt die Klassen nicht. H2~ trennt sie, aber nur mit einem kleinen Abstand. H3~ trennt sie mit dem maximalen Abstand.\n", + "\n", + "#### Linearer Support-Vector-Klassifikator\n", + "\n", + "Support-Vector-Clustering (SVC) ist ein Mitglied der Familie der Support-Vector-Maschinen (SVM), einer Technik des maschinellen Lernens. Beim SVC wird die Hyperebene so gewählt, dass sie `die meisten` Trainingsbeobachtungen korrekt trennt, aber `einige` Beobachtungen möglicherweise falsch klassifiziert. Indem einige Punkte auf der falschen Seite erlaubt werden, wird die SVM robuster gegenüber Ausreißern und erzielt dadurch eine bessere Generalisierung auf neue Daten. Der Parameter, der diese Abweichung reguliert, wird als `cost` bezeichnet und hat standardmäßig den Wert 1 (siehe `help(\"svm_poly\")`).\n", + "\n", + "Lassen Sie uns einen linearen SVC erstellen, indem wir `degree = 1` in einem polynomialen SVM-Modell setzen.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vJpp6nuChlBz" + }, + "source": [ + "# Make a linear SVC specification\n", + "svc_linear_spec <- svm_poly(degree = 1) %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svc_linear_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svc_linear_spec)\n", + "\n", + "# Print out workflow\n", + "svc_linear_wf" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rDs8cWNkhoqu" + }, + "source": [ + "Nun, da wir die Vorverarbeitungsschritte und die Modellspezifikation in einem *Workflow* erfasst haben, können wir fortfahren, den linearen SVC zu trainieren und die Ergebnisse dabei auszuwerten. Für die Leistungskennzahlen erstellen wir ein Metrik-Set, das folgende Werte bewertet: `accuracy`, `sensitivity`, `Positive Predicted Value` und `F Measure`.\n", + "\n", + "> `augment()` fügt der angegebenen Datenmenge Spalte(n) für Vorhersagen hinzu.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "81wiqcwuhrnq" + }, + "source": [ + "# Train a linear SVC model\n", + "svc_linear_fit <- svc_linear_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svc_linear_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0UFQvHf-huo3" + }, + "source": [ + "#### Support Vector Machine\n", + "\n", + "Die Support Vector Machine (SVM) ist eine Erweiterung des Support Vector Classifiers, um eine nicht-lineare Grenze zwischen den Klassen zu ermöglichen. Im Wesentlichen nutzen SVMs den *Kernel-Trick*, um den Merkmalsraum zu erweitern und sich an nichtlineare Beziehungen zwischen den Klassen anzupassen. Eine beliebte und äußerst flexible Kernel-Funktion, die von SVMs verwendet wird, ist die *Radial Basis Function.* Schauen wir uns an, wie sie sich auf unseren Daten schlägt.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-KX4S8mzhzmp" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Make an RBF SVM specification\n", + "svm_rbf_spec <- svm_rbf() %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svm_rbf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svm_rbf_spec)\n", + "\n", + "\n", + "# Train an RBF model\n", + "svm_rbf_fit <- svm_rbf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svm_rbf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QBFSa7WSh4HQ" + }, + "source": [ + "Viel besser 🤩!\n", + "\n", + "> ✅ Bitte siehe:\n", + ">\n", + "> - [*Support Vector Machines*](https://bradleyboehmke.github.io/HOML/svm.html), Hands-on Machine Learning mit R\n", + ">\n", + "> - [*Support Vector Machines*](https://www.statlearning.com/), Eine Einführung in Statistisches Lernen mit Anwendungen in R\n", + ">\n", + "> für weiterführende Lektüre.\n", + "\n", + "### Nächster-Nachbar-Klassifikatoren\n", + "\n", + "Der *k*-nächste Nachbar (KNN) ist ein Algorithmus, bei dem jede Beobachtung basierend auf ihrer *Ähnlichkeit* zu anderen Beobachtungen vorhergesagt wird.\n", + "\n", + "Lass uns einen auf unsere Daten anwenden.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "k4BxxBcdh9Ka" + }, + "source": [ + "# Make a KNN specification\n", + "knn_spec <- nearest_neighbor() %>% \n", + " set_engine(\"kknn\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "knn_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(knn_spec)\n", + "\n", + "# Train a boosted tree model\n", + "knn_wf_fit <- knn_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "knn_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HaegQseriAcj" + }, + "source": [ + "Es scheint, dass dieses Modell nicht besonders gut abschneidet. Wahrscheinlich wird eine Anpassung der Modellparameter (siehe `help(\"nearest_neighbor\")`) die Leistung verbessern. Probieren Sie es unbedingt aus.\n", + "\n", + "> ✅ Weitere Informationen finden Sie unter:\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> um mehr über *K*-Nearest Neighbors-Klassifikatoren zu erfahren.\n", + "\n", + "### Ensemble-Klassifikatoren\n", + "\n", + "Ensemble-Algorithmen funktionieren, indem sie mehrere Basis-Estimatoren kombinieren, um ein optimales Modell zu erstellen, entweder durch:\n", + "\n", + "`bagging`: Anwenden einer *Mittelungsfunktion* auf eine Sammlung von Basismodellen\n", + "\n", + "`boosting`: Erstellen einer Sequenz von Modellen, die aufeinander aufbauen, um die Vorhersageleistung zu verbessern.\n", + "\n", + "Beginnen wir mit einem Random-Forest-Modell, das eine große Sammlung von Entscheidungsbäumen erstellt und dann eine Mittelungsfunktion anwendet, um ein besseres Gesamtmodell zu erhalten.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "49DPoVs6iK1M" + }, + "source": [ + "# Make a random forest specification\n", + "rf_spec <- rand_forest() %>% \n", + " set_engine(\"ranger\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "rf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(rf_spec)\n", + "\n", + "# Train a random forest model\n", + "rf_wf_fit <- rf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "rf_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RGVYwC_aiUWc" + }, + "source": [ + "Gute Arbeit 👏!\n", + "\n", + "Lass uns auch ein Boosted-Tree-Modell ausprobieren.\n", + "\n", + "Boosted Tree definiert eine Ensemble-Methode, die eine Reihe von sequentiellen Entscheidungsbäumen erstellt, bei denen jeder Baum von den Ergebnissen der vorherigen Bäume abhängt, um den Fehler schrittweise zu reduzieren. Der Fokus liegt auf den Gewichten der falsch klassifizierten Elemente, und die Anpassung für den nächsten Klassifikator wird entsprechend korrigiert.\n", + "\n", + "Es gibt verschiedene Möglichkeiten, dieses Modell anzupassen (siehe `help(\"boost_tree\")`). In diesem Beispiel passen wir Boosted Trees über die `xgboost`-Engine an.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Py1YWo-micWs" + }, + "source": [ + "# Make a boosted tree specification\n", + "boost_spec <- boost_tree(trees = 200) %>% \n", + " set_engine(\"xgboost\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "boost_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(boost_spec)\n", + "\n", + "# Train a boosted tree model\n", + "boost_wf_fit <- boost_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "boost_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zNQnbuejigZM" + }, + "source": [ + "> ✅ Bitte sehen Sie:\n", + ">\n", + "> - [Machine Learning for Social Scientists](https://cimentadaj.github.io/ml_socsci/tree-based-methods.html#random-forests)\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> - - Untersucht das AdaBoost-Modell, das eine gute Alternative zu xgboost darstellt.\n", + ">\n", + "> um mehr über Ensemble-Klassifikatoren zu erfahren.\n", + "\n", + "## 4. Extra - Vergleich mehrerer Modelle\n", + "\n", + "Wir haben in diesem Lab eine ganze Reihe von Modellen angepasst 🙌. Es kann mühsam oder aufwendig werden, viele Workflows aus verschiedenen Sets von Preprozessoren und/oder Modellspezifikationen zu erstellen und dann die Leistungskennzahlen einzeln zu berechnen.\n", + "\n", + "Schauen wir, ob wir das vereinfachen können, indem wir eine Funktion erstellen, die eine Liste von Workflows auf den Trainingssatz anpasst und dann die Leistungskennzahlen basierend auf dem Testsatz zurückgibt. Wir werden `map()` und `map_dfr()` aus dem [purrr](https://purrr.tidyverse.org/) Paket verwenden, um Funktionen auf jedes Element in einer Liste anzuwenden.\n", + "\n", + "> [`map()`](https://purrr.tidyverse.org/reference/map.html)-Funktionen ermöglichen es, viele for-Schleifen durch Code zu ersetzen, der sowohl kürzer als auch leichter lesbar ist. Der beste Ort, um mehr über die [`map()`](https://purrr.tidyverse.org/reference/map.html)-Funktionen zu lernen, ist das [Kapitel über Iteration](http://r4ds.had.co.nz/iteration.html) in \"R for Data Science\".\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Qzb7LyZnimd2" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "# Define a function that returns performance metrics\n", + "compare_models <- function(workflow_list, train_set, test_set){\n", + " \n", + " suppressWarnings(\n", + " # Fit each model to the train_set\n", + " map(workflow_list, fit, data = train_set) %>% \n", + " # Make predictions on the test set\n", + " map_dfr(augment, new_data = test_set, .id = \"model\") %>%\n", + " # Select desired columns\n", + " select(model, cuisine, .pred_class) %>% \n", + " # Evaluate model performance\n", + " group_by(model) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class) %>% \n", + " ungroup()\n", + " )\n", + " \n", + "} # End of function" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Fwa712sNisDA" + }, + "source": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "3i4VJOi2iu-a" + }, + "source": [ + "# Make a list of workflows\n", + "workflow_list <- list(\n", + " \"svc\" = svc_linear_wf,\n", + " \"svm\" = svm_rbf_wf,\n", + " \"knn\" = knn_wf,\n", + " \"random_forest\" = rf_wf,\n", + " \"xgboost\" = boost_wf)\n", + "\n", + "# Call the function\n", + "set.seed(2056)\n", + "perf_metrics <- compare_models(workflow_list = workflow_list, train_set = cuisines_train, test_set = cuisines_test)\n", + "\n", + "# Print out performance metrics\n", + "perf_metrics %>% \n", + " group_by(.metric) %>% \n", + " arrange(desc(.estimate)) %>% \n", + " slice_head(n=7)\n", + "\n", + "# Compare accuracy\n", + "perf_metrics %>% \n", + " filter(.metric == \"accuracy\") %>% \n", + " arrange(desc(.estimate))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KuWK_lEli4nW" + }, + "source": [ + "[**workflowset**](https://workflowsets.tidymodels.org/) Paket ermöglicht es Nutzern, eine große Anzahl von Modellen zu erstellen und einfach anzupassen. Es ist jedoch hauptsächlich darauf ausgelegt, mit Resampling-Techniken wie `cross-validation` zu arbeiten, eine Methode, die wir noch behandeln werden.\n", + "\n", + "## **🚀Herausforderung**\n", + "\n", + "Jede dieser Techniken hat eine Vielzahl von Parametern, die Sie anpassen können, wie zum Beispiel `cost` bei SVMs, `neighbors` bei KNN, `mtry` (zufällig ausgewählte Prädiktoren) bei Random Forest.\n", + "\n", + "Recherchieren Sie die Standardparameter jedes Modells und überlegen Sie, was das Anpassen dieser Parameter für die Qualität des Modells bedeuten würde.\n", + "\n", + "Um mehr über ein bestimmtes Modell und seine Parameter zu erfahren, verwenden Sie: `help(\"model\")`, z. B. `help(\"rand_forest\")`.\n", + "\n", + "> In der Praxis *schätzen* wir normalerweise die *besten Werte* für diese Parameter, indem wir viele Modelle auf einem `simulierten Datensatz` trainieren und messen, wie gut diese Modelle abschneiden. Dieser Prozess wird **Tuning** genannt.\n", + "\n", + "### [**Quiz nach der Vorlesung**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/)\n", + "\n", + "### **Überblick & Selbststudium**\n", + "\n", + "Es gibt viele Fachbegriffe in diesen Lektionen, nehmen Sie sich daher einen Moment Zeit, um [diese Liste](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott) nützlicher Begriffe zu überprüfen!\n", + "\n", + "#### EIN DANKESCHÖN AN:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) für die großartigen Illustrationen, die R einladender und ansprechender machen. Weitere Illustrationen finden Sie in ihrer [Galerie](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) und [Jen Looper](https://www.twitter.com/jenlooper) für die Erstellung der ursprünglichen Python-Version dieses Moduls ♥️\n", + "\n", + "Viel Spaß beim Lernen,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Gold Microsoft Learn Student Ambassador.\n", + "\n", + "

\n", + " \n", + "

Kunstwerk von @allison_horst
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Nutzung dieser Übersetzung entstehen.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/de/4-Classification/3-Classifiers-2/solution/notebook.ipynb b/translations/de/4-Classification/3-Classifiers-2/solution/notebook.ipynb new file mode 100644 index 000000000..d30cd1762 --- /dev/null +++ b/translations/de/4-Classification/3-Classifiers-2/solution/notebook.ipynb @@ -0,0 +1,304 @@ +{ + "cells": [ + { + "source": [ + "# Erstellen Sie mehr Klassifikationsmodelle\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 2 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Probieren Sie verschiedene Klassifikatoren aus\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.svm import SVC\n", + "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "C = 10\n", + "# Create different classifiers.\n", + "classifiers = {\n", + " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n", + " 'KNN classifier': KNeighborsClassifier(C),\n", + " 'SVC': SVC(),\n", + " 'RFST': RandomForestClassifier(n_estimators=100),\n", + " 'ADA': AdaBoostClassifier(n_estimators=100)\n", + " \n", + "}\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy (train) for Linear SVC: 76.4% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.64 0.66 0.65 242\n", + " indian 0.91 0.86 0.89 236\n", + " japanese 0.72 0.73 0.73 245\n", + " korean 0.83 0.75 0.79 234\n", + " thai 0.75 0.82 0.78 242\n", + "\n", + " accuracy 0.76 1199\n", + " macro avg 0.77 0.76 0.77 1199\n", + "weighted avg 0.77 0.76 0.77 1199\n", + "\n", + "Accuracy (train) for KNN classifier: 70.7% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.65 0.63 0.64 242\n", + " indian 0.84 0.81 0.82 236\n", + " japanese 0.60 0.81 0.69 245\n", + " korean 0.89 0.53 0.67 234\n", + " thai 0.69 0.75 0.72 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.73 0.71 0.71 1199\n", + "weighted avg 0.73 0.71 0.71 1199\n", + "\n", + "Accuracy (train) for SVC: 80.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.71 0.69 0.70 242\n", + " indian 0.92 0.92 0.92 236\n", + " japanese 0.77 0.78 0.77 245\n", + " korean 0.87 0.77 0.82 234\n", + " thai 0.75 0.86 0.80 242\n", + "\n", + " accuracy 0.80 1199\n", + " macro avg 0.80 0.80 0.80 1199\n", + "weighted avg 0.80 0.80 0.80 1199\n", + "\n", + "Accuracy (train) for RFST: 82.8% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.80 0.75 0.77 242\n", + " indian 0.90 0.91 0.90 236\n", + " japanese 0.82 0.78 0.80 245\n", + " korean 0.85 0.82 0.83 234\n", + " thai 0.78 0.89 0.83 242\n", + "\n", + " accuracy 0.83 1199\n", + " macro avg 0.83 0.83 0.83 1199\n", + "weighted avg 0.83 0.83 0.83 1199\n", + "\n", + "Accuracy (train) for ADA: 71.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.60 0.57 0.58 242\n", + " indian 0.87 0.84 0.86 236\n", + " japanese 0.71 0.60 0.65 245\n", + " korean 0.68 0.78 0.72 234\n", + " thai 0.70 0.78 0.74 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.71 0.71 0.71 1199\n", + "weighted avg 0.71 0.71 0.71 1199\n", + "\n" + ] + } + ], + "source": [ + "n_classifiers = len(classifiers)\n", + "\n", + "for index, (name, classifier) in enumerate(classifiers.items()):\n", + " classifier.fit(X_train, np.ravel(y_train))\n", + "\n", + " y_pred = classifier.predict(X_test)\n", + " accuracy = accuracy_score(y_test, y_pred)\n", + " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n", + " print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Haftungsausschluss**: \nDieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, weisen wir darauf hin, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner ursprünglichen Sprache sollte als maßgebliche Quelle betrachtet werden. Für kritische Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die sich aus der Nutzung dieser Übersetzung ergeben.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "7ea2b714669c823a596d986ba2d5739f", + "translation_date": "2025-09-04T02:32:46+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/notebook.ipynb", + "language_code": "de" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/de/4-Classification/4-Applied/README.md b/translations/de/4-Classification/4-Applied/README.md index 75bf9f892..b847a0ee2 100644 --- a/translations/de/4-Classification/4-Applied/README.md +++ b/translations/de/4-Classification/4-Applied/README.md @@ -1,6 +1,15 @@ -# Erstellen Sie eine Web-App zur Empfehlungen von Küchen - -In dieser Lektion werden Sie ein Klassifikationsmodell erstellen, indem Sie einige der Techniken verwenden, die Sie in früheren Lektionen gelernt haben, und mit dem köstlichen Küchendatensatz, der in dieser Reihe verwendet wird. Darüber hinaus werden Sie eine kleine Web-App erstellen, um ein gespeichertes Modell zu verwenden, und dabei die Web-Laufzeit von Onnx nutzen. + +# Erstellen Sie eine Web-App zur Empfehlung von Küchen + +In dieser Lektion erstellen Sie ein Klassifikationsmodell mit einigen der Techniken, die Sie in den vorherigen Lektionen gelernt haben, und verwenden dabei den köstlichen Küchen-Datensatz, der in dieser Serie verwendet wurde. Außerdem erstellen Sie eine kleine Web-App, um ein gespeichertes Modell zu nutzen, indem Sie die Web-Laufzeit von Onnx verwenden. Eine der nützlichsten praktischen Anwendungen des maschinellen Lernens ist der Aufbau von Empfehlungssystemen, und Sie können heute den ersten Schritt in diese Richtung machen! @@ -8,27 +17,27 @@ Eine der nützlichsten praktischen Anwendungen des maschinellen Lernens ist der > 🎥 Klicken Sie auf das Bild oben für ein Video: Jen Looper erstellt eine Web-App mit klassifizierten Küchendaten -## [Vorlesungsquiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/25/) +## [Quiz vor der Lektion](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/25/) -In dieser Lektion werden Sie lernen: +In dieser Lektion lernen Sie: - Wie man ein Modell erstellt und es als Onnx-Modell speichert - Wie man Netron verwendet, um das Modell zu inspizieren -- Wie man Ihr Modell in einer Web-App für Inferenz verwendet +- Wie man das Modell in einer Web-App für Inferenz verwendet ## Erstellen Sie Ihr Modell -Der Aufbau angewandter ML-Systeme ist ein wichtiger Teil der Nutzung dieser Technologien für Ihre Geschäftssysteme. Sie können Modelle in Ihren Webanwendungen verwenden (und somit bei Bedarf auch in einem Offline-Kontext) durch die Nutzung von Onnx. +Der Aufbau angewandter ML-Systeme ist ein wichtiger Bestandteil der Nutzung dieser Technologien für Ihre Geschäftssysteme. Sie können Modelle in Ihre Webanwendungen integrieren (und sie somit bei Bedarf offline verwenden), indem Sie Onnx verwenden. -In einer [früheren Lektion](../../3-Web-App/1-Web-App/README.md) haben Sie ein Regressionsmodell über UFO-Sichtungen erstellt, es "eingelegt" und in einer Flask-App verwendet. Während diese Architektur sehr nützlich zu wissen ist, handelt es sich um eine Full-Stack-Python-App, und Ihre Anforderungen können die Verwendung einer JavaScript-Anwendung umfassen. +In einer [vorherigen Lektion](../../3-Web-App/1-Web-App/README.md) haben Sie ein Regressionsmodell zu UFO-Sichtungen erstellt, es "eingepickelt" und in einer Flask-App verwendet. Obwohl diese Architektur sehr nützlich ist, handelt es sich um eine vollständige Python-App, und Ihre Anforderungen könnten die Verwendung einer JavaScript-Anwendung umfassen. -In dieser Lektion können Sie ein einfaches JavaScript-basiertes System für Inferenz erstellen. Zuerst müssen Sie jedoch ein Modell trainieren und es für die Verwendung mit Onnx konvertieren. +In dieser Lektion können Sie ein einfaches JavaScript-basiertes System für Inferenz erstellen. Zunächst müssen Sie jedoch ein Modell trainieren und es für die Verwendung mit Onnx konvertieren. ## Übung - Klassifikationsmodell trainieren -Zuerst trainieren Sie ein Klassifikationsmodell mit dem bereinigten Küchendatensatz, den wir verwendet haben. +Trainieren Sie zunächst ein Klassifikationsmodell mit dem bereinigten Küchen-Datensatz, den wir verwendet haben. -1. Beginnen Sie mit dem Importieren nützlicher Bibliotheken: +1. Beginnen Sie mit dem Import nützlicher Bibliotheken: ```python !pip install skl2onnx @@ -37,7 +46,7 @@ Zuerst trainieren Sie ein Klassifikationsmodell mit dem bereinigten Küchendaten Sie benötigen '[skl2onnx](https://onnx.ai/sklearn-onnx/)', um Ihr Scikit-learn-Modell in das Onnx-Format zu konvertieren. -1. Arbeiten Sie dann mit Ihren Daten auf die gleiche Weise, wie Sie es in früheren Lektionen getan haben, indem Sie eine CSV-Datei mit `read_csv()` lesen: +1. Arbeiten Sie dann mit Ihren Daten wie in den vorherigen Lektionen, indem Sie eine CSV-Datei mit `read_csv()` lesen: ```python data = pd.read_csv('../data/cleaned_cuisines.csv') @@ -59,11 +68,11 @@ Zuerst trainieren Sie ein Klassifikationsmodell mit dem bereinigten Küchendaten ``` -### Beginnen Sie die Trainingsroutine +### Beginnen Sie mit dem Trainingsprozess -Wir werden die 'SVC'-Bibliothek verwenden, die eine gute Genauigkeit aufweist. +Wir verwenden die 'SVC'-Bibliothek, die eine gute Genauigkeit bietet. -1. Importieren Sie die entsprechenden Bibliotheken von Scikit-learn: +1. Importieren Sie die entsprechenden Bibliotheken aus Scikit-learn: ```python from sklearn.model_selection import train_test_split @@ -72,20 +81,20 @@ Wir werden die 'SVC'-Bibliothek verwenden, die eine gute Genauigkeit aufweist. from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report ``` -1. Trennen Sie die Trainings- und Testdatensätze: +1. Trennen Sie Trainings- und Testdaten: ```python X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3) ``` -1. Erstellen Sie ein SVC-Klassifikationsmodell, wie Sie es in der vorherigen Lektion getan haben: +1. Erstellen Sie ein SVC-Klassifikationsmodell wie in der vorherigen Lektion: ```python model = SVC(kernel='linear', C=10, probability=True,random_state=0) model.fit(X_train,y_train.values.ravel()) ``` -1. Testen Sie jetzt Ihr Modell, indem Sie `predict()` aufrufen: +1. Testen Sie nun Ihr Modell, indem Sie `predict()` aufrufen: ```python y_pred = model.predict(X_test) @@ -115,9 +124,9 @@ Wir werden die 'SVC'-Bibliothek verwenden, die eine gute Genauigkeit aufweist. ### Konvertieren Sie Ihr Modell in Onnx -Stellen Sie sicher, dass Sie die Konvertierung mit der richtigen Tensoranzahl durchführen. Dieser Datensatz hat 380 aufgeführte Zutaten, daher müssen Sie diese Zahl in `FloatTensorType` vermerken: +Stellen Sie sicher, dass die Konvertierung mit der richtigen Tensor-Anzahl erfolgt. Dieser Datensatz enthält 380 aufgelistete Zutaten, daher müssen Sie diese Zahl in `FloatTensorType` angeben: -1. Konvertieren Sie mit einer Tensoranzahl von 380. +1. Konvertieren Sie mit einer Tensor-Anzahl von 380. ```python from skl2onnx import convert_sklearn @@ -127,7 +136,7 @@ Stellen Sie sicher, dass Sie die Konvertierung mit der richtigen Tensoranzahl du options = {id(model): {'nocl': True, 'zipmap': False}} ``` -1. Erstellen Sie die onx und speichern Sie sie als Datei **model.onnx**: +1. Erstellen Sie die Onnx-Datei und speichern Sie sie als **model.onnx**: ```python onx = convert_sklearn(model, initial_types=initial_type, options=options) @@ -135,25 +144,25 @@ Stellen Sie sicher, dass Sie die Konvertierung mit der richtigen Tensoranzahl du f.write(onx.SerializeToString()) ``` - > Hinweis: Sie können in Ihrem Konvertierungsskript [Optionen](https://onnx.ai/sklearn-onnx/parameterized.html) übergeben. In diesem Fall haben wir 'nocl' auf True und 'zipmap' auf False gesetzt. Da dies ein Klassifikationsmodell ist, haben Sie die Möglichkeit, ZipMap zu entfernen, das eine Liste von Dictionaries produziert (nicht notwendig). `nocl` refers to class information being included in the model. Reduce your model's size by setting `nocl` to 'True'. + > Hinweis: Sie können [Optionen](https://onnx.ai/sklearn-onnx/parameterized.html) in Ihrem Konvertierungsskript übergeben. In diesem Fall haben wir 'nocl' auf True und 'zipmap' auf False gesetzt. Da es sich um ein Klassifikationsmodell handelt, haben Sie die Möglichkeit, ZipMap zu entfernen, das eine Liste von Wörterbüchern erzeugt (nicht erforderlich). `nocl` bezieht sich darauf, ob Klasseninformationen im Modell enthalten sind. Reduzieren Sie die Größe Ihres Modells, indem Sie `nocl` auf 'True' setzen. -Running the entire notebook will now build an Onnx model and save it to this folder. +Wenn Sie das gesamte Notebook ausführen, wird ein Onnx-Modell erstellt und in diesem Ordner gespeichert. -## View your model +## Betrachten Sie Ihr Modell -Onnx models are not very visible in Visual Studio code, but there's a very good free software that many researchers use to visualize the model to ensure that it is properly built. Download [Netron](https://github.com/lutzroeder/Netron) and open your model.onnx file. You can see your simple model visualized, with its 380 inputs and classifier listed: +Onnx-Modelle sind in Visual Studio Code nicht sehr sichtbar, aber es gibt eine sehr gute kostenlose Software, die viele Forscher verwenden, um das Modell zu visualisieren und sicherzustellen, dass es korrekt erstellt wurde. Laden Sie [Netron](https://github.com/lutzroeder/Netron) herunter und öffnen Sie Ihre model.onnx-Datei. Sie können Ihr einfaches Modell visualisiert sehen, mit seinen 380 Eingaben und dem Klassifikator: -![Netron visual](../../../../translated_images/netron.a05f39410211915e0f95e2c0e8b88f41e7d13d725faf660188f3802ba5c9e831.de.png) +![Netron-Visualisierung](../../../../translated_images/netron.a05f39410211915e0f95e2c0e8b88f41e7d13d725faf660188f3802ba5c9e831.de.png) -Netron is a helpful tool to view your models. +Netron ist ein hilfreiches Tool, um Ihre Modelle zu betrachten. -Now you are ready to use this neat model in a web app. Let's build an app that will come in handy when you look in your refrigerator and try to figure out which combination of your leftover ingredients you can use to cook a given cuisine, as determined by your model. +Jetzt sind Sie bereit, dieses praktische Modell in einer Web-App zu verwenden. Lassen Sie uns eine App erstellen, die nützlich ist, wenn Sie in Ihren Kühlschrank schauen und herausfinden möchten, welche Kombination Ihrer übrig gebliebenen Zutaten Sie verwenden können, um eine bestimmte Küche zuzubereiten, wie von Ihrem Modell bestimmt. -## Build a recommender web application +## Erstellen Sie eine Empfehlungs-Webanwendung -You can use your model directly in a web app. This architecture also allows you to run it locally and even offline if needed. Start by creating an `index.html` file in the same folder where you stored your `model.onnx`-Datei. +Sie können Ihr Modell direkt in einer Web-App verwenden. Diese Architektur ermöglicht es Ihnen auch, sie lokal und sogar offline auszuführen, falls erforderlich. Beginnen Sie mit der Erstellung einer `index.html`-Datei im selben Ordner, in dem Sie Ihre `model.onnx`-Datei gespeichert haben. -1. In dieser Datei _index.html_ fügen Sie das folgende Markup hinzu: +1. Fügen Sie in dieser Datei _index.html_ das folgende Markup hinzu: ```html @@ -167,7 +176,7 @@ You can use your model directly in a web app. This architecture also allows you ``` -1. Arbeiten Sie nun innerhalb der `body`-Tags und fügen Sie ein wenig Markup hinzu, um eine Liste von Kontrollkästchen anzuzeigen, die einige Zutaten widerspiegeln: +1. Fügen Sie nun innerhalb der `body`-Tags ein wenig Markup hinzu, um eine Liste von Kontrollkästchen anzuzeigen, die einige Zutaten widerspiegeln: ```html

Check your refrigerator. What can you create?

@@ -212,19 +221,19 @@ You can use your model directly in a web app. This architecture also allows you ``` - Beachten Sie, dass jedem Kontrollkästchen ein Wert zugewiesen wird. Dies spiegelt den Index wider, an dem die Zutat laut dem Datensatz gefunden wird. Apfel zum Beispiel nimmt in dieser alphabetischen Liste die fünfte Spalte ein, daher ist ihr Wert '4', da wir bei 0 zu zählen beginnen. Sie können die [Zutaten-Tabelle](../../../../4-Classification/data/ingredient_indexes.csv) konsultieren, um den Index einer bestimmten Zutat zu entdecken. + Beachten Sie, dass jedes Kontrollkästchen einen Wert erhält. Dieser spiegelt den Index wider, an dem die Zutat gemäß dem Datensatz gefunden wird. Apfel, zum Beispiel, in dieser alphabetischen Liste, belegt die fünfte Spalte, daher ist sein Wert '4', da wir bei 0 zu zählen beginnen. Sie können die [Zutaten-Tabelle](../../../../4-Classification/data/ingredient_indexes.csv) konsultieren, um den Index einer bestimmten Zutat zu finden. - Fahren Sie mit Ihrer Arbeit in der index.html-Datei fort und fügen Sie einen Skriptblock hinzu, in dem das Modell nach dem letzten schließenden `` aufgerufen wird. + Fahren Sie mit Ihrer Arbeit in der index.html-Datei fort und fügen Sie einen Skriptblock hinzu, in dem das Modell nach dem abschließenden ``-Tag aufgerufen wird. -1. Zuerst importieren Sie die [Onnx-Laufzeit](https://www.onnxruntime.ai/): +1. Importieren Sie zunächst die [Onnx Runtime](https://www.onnxruntime.ai/): ```html ``` - > Die Onnx-Laufzeit wird verwendet, um das Ausführen Ihrer Onnx-Modelle auf einer Vielzahl von Hardwareplattformen zu ermöglichen, einschließlich Optimierungen und einer API zur Nutzung. + > Onnx Runtime wird verwendet, um die Ausführung Ihrer Onnx-Modelle auf einer Vielzahl von Hardwareplattformen zu ermöglichen, einschließlich Optimierungen und einer API zur Nutzung. -1. Sobald die Laufzeit eingerichtet ist, können Sie sie aufrufen: +1. Sobald die Runtime eingerichtet ist, können Sie sie aufrufen: ```html + ``` + + > El Runtime de Onnx se utiliza para habilitar la ejecución de tus modelos Onnx en una amplia gama de plataformas de hardware, incluyendo optimizaciones y una API para usar. + +1. Una vez que el Runtime esté en su lugar, puedes llamarlo: + + ```html + + ``` + +En este código, están ocurriendo varias cosas: + +1. Creaste un array de 380 posibles valores (1 o 0) que se configurarán y enviarán al modelo para inferencia, dependiendo de si se marca una casilla de verificación de ingrediente. +2. Creaste un array de casillas de verificación y una forma de determinar si fueron marcadas en una función `init` que se llama cuando la aplicación comienza. Cuando se marca una casilla, el array `ingredients` se altera para reflejar el ingrediente elegido. +3. Creaste una función `testCheckboxes` que verifica si alguna casilla fue marcada. +4. Usas la función `startInference` cuando se presiona el botón y, si alguna casilla está marcada, comienzas la inferencia. +5. La rutina de inferencia incluye: + 1. Configurar una carga asincrónica del modelo. + 2. Crear una estructura de Tensor para enviar al modelo. + 3. Crear 'feeds' que reflejan la entrada `float_input` que creaste al entrenar tu modelo (puedes usar Netron para verificar ese nombre). + 4. Enviar estos 'feeds' al modelo y esperar una respuesta. + +## Prueba tu aplicación + +Abre una sesión de terminal en Visual Studio Code en la carpeta donde reside tu archivo index.html. Asegúrate de tener [http-server](https://www.npmjs.com/package/http-server) instalado globalmente y escribe `http-server` en el prompt. Debería abrirse un localhost y podrás ver tu aplicación web. Verifica qué cocina se recomienda según varios ingredientes: + +![Aplicación web de ingredientes](../../../../translated_images/web-app.4c76450cabe20036f8ec6d5e05ccc0c1c064f0d8f2fe3304d3bcc0198f7dc139.es.png) + +¡Felicidades, has creado una aplicación web de 'recomendación' con algunos campos! Tómate un tiempo para desarrollar este sistema. + +## 🚀Desafío + +Tu aplicación web es muy minimalista, así que continúa desarrollándola utilizando ingredientes y sus índices del archivo de datos [ingredient_indexes](../../../../4-Classification/data/ingredient_indexes.csv). ¿Qué combinaciones de sabores funcionan para crear un plato nacional determinado? + +## [Cuestionario posterior a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/26/) + +## Revisión y Autoestudio + +Aunque esta lección solo tocó la utilidad de crear un sistema de recomendación para ingredientes alimenticios, esta área de aplicaciones de ML es muy rica en ejemplos. Lee más sobre cómo se construyen estos sistemas: + +- https://www.sciencedirect.com/topics/computer-science/recommendation-engine +- https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-recommendation-engines/ +- https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/ + +## Tarea + +[Construye un nuevo recomendador](assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/4-Classification/4-Applied/assignment.md b/translations/es/4-Classification/4-Applied/assignment.md new file mode 100644 index 000000000..655b84ad7 --- /dev/null +++ b/translations/es/4-Classification/4-Applied/assignment.md @@ -0,0 +1,25 @@ + +# Construir un recomendador + +## Instrucciones + +Con los ejercicios de esta lección, ahora sabes cómo construir una aplicación web basada en JavaScript utilizando Onnx Runtime y un modelo convertido a Onnx. Experimenta creando un nuevo recomendador usando datos de estas lecciones o obtenidos de otras fuentes (por favor, da crédito). Podrías crear un recomendador de mascotas basado en varios atributos de personalidad, o un recomendador de géneros musicales según el estado de ánimo de una persona. ¡Sé creativo! + +## Rúbrica + +| Criterios | Ejemplar | Adecuado | Necesita Mejora | +| --------- | --------------------------------------------------------------------- | ------------------------------------- | --------------------------------- | +| | Se presenta una aplicación web y un cuaderno, ambos bien documentados y funcionando | Uno de los dos falta o tiene fallos | Ambos faltan o tienen fallos | + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/4-Classification/4-Applied/notebook.ipynb b/translations/es/4-Classification/4-Applied/notebook.ipynb new file mode 100644 index 000000000..6fca20b62 --- /dev/null +++ b/translations/es/4-Classification/4-Applied/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2f3e0d9e9ac5c301558fb8bf733ac0cb", + "translation_date": "2025-09-04T02:31:24+00:00", + "source_file": "4-Classification/4-Applied/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/4-Classification/4-Applied/solution/notebook.ipynb b/translations/es/4-Classification/4-Applied/solution/notebook.ipynb new file mode 100644 index 000000000..4a32779ee --- /dev/null +++ b/translations/es/4-Classification/4-Applied/solution/notebook.ipynb @@ -0,0 +1,290 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "49325d6dd12a3628fc64fa7ccb1a80ff", + "translation_date": "2025-09-04T02:31:46+00:00", + "source_file": "4-Classification/4-Applied/solution/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: skl2onnx in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (1.8.0)\n", + "Requirement already satisfied: protobuf in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (3.8.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.19.2)\n", + "Requirement already satisfied: onnx>=1.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.9.0)\n", + "Requirement already satisfied: six in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from skl2onnx) (1.12.0)\n", + "Requirement already satisfied: onnxconverter-common<1.9,>=1.6.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.8.1)\n", + "Requirement already satisfied: scikit-learn>=0.19 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (0.24.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.4.1)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from protobuf->skl2onnx) (45.1.0)\n", + "Requirement already satisfied: typing-extensions>=3.6.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from onnx>=1.2.1->skl2onnx) (3.10.0.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (2.1.0)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (0.16.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install skl2onnx" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd \n" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" + }, + "metadata": {}, + "execution_count": 60 + } + ], + "source": [ + "data = pd.read_csv('../../data/cleaned_cuisines.csv')\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" + }, + "metadata": {}, + "execution_count": 61 + } + ], + "source": [ + "X = data.iloc[:,2:]\n", + "X.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine\n", + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
cuisine
0indian
1indian
2indian
3indian
4indian
\n
" + }, + "metadata": {}, + "execution_count": 62 + } + ], + "source": [ + "y = data[['cuisine']]\n", + "y.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.svm import SVC\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SVC(C=10, kernel='linear', probability=True, random_state=0)" + ] + }, + "metadata": {}, + "execution_count": 65 + } + ], + "source": [ + "model = SVC(kernel='linear', C=10, probability=True,random_state=0)\n", + "model.fit(X_train,y_train.values.ravel())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.72 0.70 0.71 236\n indian 0.91 0.88 0.89 243\n japanese 0.80 0.75 0.77 240\n korean 0.80 0.81 0.81 230\n thai 0.76 0.85 0.80 250\n\n accuracy 0.80 1199\n macro avg 0.80 0.80 0.80 1199\nweighted avg 0.80 0.80 0.80 1199\n\n" + ] + } + ], + "source": [ + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from skl2onnx import convert_sklearn\n", + "from skl2onnx.common.data_types import FloatTensorType\n", + "\n", + "initial_type = [('float_input', FloatTensorType([None, 380]))]\n", + "options = {id(model): {'nocl': True, 'zipmap': False}}\n", + "onx = convert_sklearn(model, initial_types=initial_type, options=options)\n", + "with open(\"./model.onnx\", \"wb\") as f:\n", + " f.write(onx.SerializeToString())\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/4-Classification/README.md b/translations/es/4-Classification/README.md new file mode 100644 index 000000000..17558342e --- /dev/null +++ b/translations/es/4-Classification/README.md @@ -0,0 +1,41 @@ + +# Comenzando con la clasificación + +## Tema regional: Deliciosas cocinas asiáticas e indias 🍜 + +En Asia e India, las tradiciones culinarias son extremadamente diversas y ¡muy deliciosas! Vamos a analizar datos sobre cocinas regionales para tratar de entender sus ingredientes. + +![Vendedor de comida tailandesa](../../../translated_images/thai-food.c47a7a7f9f05c21892a1f9dc7bf30669e6d18dfda420c5c7ebb4153f6a304edd.es.jpg) +> Foto de Lisheng Chang en Unsplash + +## Lo que aprenderás + +En esta sección, ampliarás tu estudio previo sobre Regresión y aprenderás sobre otros clasificadores que puedes usar para comprender mejor los datos. + +> Existen herramientas útiles de bajo código que pueden ayudarte a aprender a trabajar con modelos de clasificación. Prueba [Azure ML para esta tarea](https://docs.microsoft.com/learn/modules/create-classification-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +## Lecciones + +1. [Introducción a la clasificación](1-Introduction/README.md) +2. [Más clasificadores](2-Classifiers-1/README.md) +3. [Otros clasificadores](3-Classifiers-2/README.md) +4. [ML aplicado: construir una aplicación web](4-Applied/README.md) + +## Créditos + +"Comenzando con la clasificación" fue escrito con ♥️ por [Cassie Breviu](https://www.twitter.com/cassiebreviu) y [Jen Looper](https://www.twitter.com/jenlooper) + +El conjunto de datos sobre deliciosas cocinas fue obtenido de [Kaggle](https://www.kaggle.com/hoandan/asian-and-indian-cuisines). + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/5-Clustering/1-Visualize/README.md b/translations/es/5-Clustering/1-Visualize/README.md new file mode 100644 index 000000000..c33cf3f52 --- /dev/null +++ b/translations/es/5-Clustering/1-Visualize/README.md @@ -0,0 +1,347 @@ + +# Introducción a la agrupación + +La agrupación es un tipo de [Aprendizaje No Supervisado](https://wikipedia.org/wiki/Aprendizaje_no_supervisado) que asume que un conjunto de datos no está etiquetado o que sus entradas no están asociadas con salidas predefinidas. Utiliza varios algoritmos para clasificar datos no etiquetados y proporcionar agrupaciones según los patrones que detecta en los datos. + +[![No One Like You de PSquare](https://img.youtube.com/vi/ty2advRiWJM/0.jpg)](https://youtu.be/ty2advRiWJM "No One Like You de PSquare") + +> 🎥 Haz clic en la imagen de arriba para ver un video. Mientras estudias aprendizaje automático con agrupación, disfruta de algunos temas de Dance Hall nigeriano: esta es una canción muy popular de 2014 de PSquare. + +## [Cuestionario previo a la clase](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/) + +### Introducción + +[La agrupación](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124) es muy útil para la exploración de datos. Veamos si puede ayudar a descubrir tendencias y patrones en la forma en que las audiencias nigerianas consumen música. + +✅ Tómate un minuto para pensar en los usos de la agrupación. En la vida cotidiana, la agrupación ocurre cada vez que tienes un montón de ropa y necesitas separar la ropa de los diferentes miembros de tu familia 🧦👕👖🩲. En ciencia de datos, la agrupación ocurre al intentar analizar las preferencias de un usuario o determinar las características de cualquier conjunto de datos no etiquetado. La agrupación, de alguna manera, ayuda a dar sentido al caos, como un cajón de calcetines. + +[![Introducción al aprendizaje automático](https://img.youtube.com/vi/esmzYhuFnds/0.jpg)](https://youtu.be/esmzYhuFnds "Introducción a la agrupación") + +> 🎥 Haz clic en la imagen de arriba para ver un video: John Guttag del MIT introduce la agrupación. + +En un entorno profesional, la agrupación puede usarse para determinar cosas como la segmentación de mercados, identificando qué grupos de edad compran qué productos, por ejemplo. Otro uso sería la detección de anomalías, tal vez para identificar fraudes en un conjunto de datos de transacciones con tarjetas de crédito. O podrías usar la agrupación para identificar tumores en un lote de escaneos médicos. + +✅ Piensa un momento en cómo podrías haber encontrado la agrupación 'en la vida real', en un entorno bancario, de comercio electrónico o empresarial. + +> 🎓 Curiosamente, el análisis de agrupación se originó en los campos de la Antropología y la Psicología en la década de 1930. ¿Puedes imaginar cómo podría haberse utilizado? + +Alternativamente, podrías usarlo para agrupar resultados de búsqueda, por ejemplo, en enlaces de compras, imágenes o reseñas. La agrupación es útil cuando tienes un conjunto de datos grande que deseas reducir y sobre el cual deseas realizar un análisis más detallado, por lo que la técnica puede usarse para aprender sobre los datos antes de construir otros modelos. + +✅ Una vez que tus datos están organizados en grupos, les asignas un Id de grupo, y esta técnica puede ser útil para preservar la privacidad de un conjunto de datos; en lugar de referirte a un punto de datos por información identificable, puedes referirte a él por su Id de grupo. ¿Puedes pensar en otras razones por las que preferirías referirte a un Id de grupo en lugar de otros elementos del grupo para identificarlo? + +Profundiza tu comprensión de las técnicas de agrupación en este [módulo de aprendizaje](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott). + +## Introducción a la agrupación + +[Scikit-learn ofrece una amplia variedad](https://scikit-learn.org/stable/modules/clustering.html) de métodos para realizar agrupación. El tipo que elijas dependerá de tu caso de uso. Según la documentación, cada método tiene varios beneficios. Aquí hay una tabla simplificada de los métodos compatibles con Scikit-learn y sus casos de uso apropiados: + +| Nombre del método | Caso de uso | +| :--------------------------- | :---------------------------------------------------------------------- | +| K-Means | propósito general, inductivo | +| Propagación de afinidad | muchos grupos desiguales, inductivo | +| Mean-shift | muchos grupos desiguales, inductivo | +| Agrupación espectral | pocos grupos iguales, transductivo | +| Agrupación jerárquica Ward | muchos grupos restringidos, transductivo | +| Agrupación aglomerativa | muchos grupos restringidos, distancias no euclidianas, transductivo | +| DBSCAN | geometría no plana, grupos desiguales, transductivo | +| OPTICS | geometría no plana, grupos desiguales con densidad variable, transductivo | +| Mezclas gaussianas | geometría plana, inductivo | +| BIRCH | conjunto de datos grande con valores atípicos, inductivo | + +> 🎓 Cómo creamos grupos tiene mucho que ver con cómo reunimos los puntos de datos en grupos. Desglosémoslo: +> +> 🎓 ['Transductivo' vs. 'inductivo'](https://wikipedia.org/wiki/Transduction_(machine_learning)) +> +> La inferencia transductiva se deriva de casos de entrenamiento observados que se asignan a casos de prueba específicos. La inferencia inductiva se deriva de casos de entrenamiento que se asignan a reglas generales que solo entonces se aplican a casos de prueba. +> +> Un ejemplo: Imagina que tienes un conjunto de datos que está parcialmente etiquetado. Algunas cosas son 'discos', otras 'CDs', y otras están en blanco. Tu tarea es proporcionar etiquetas para los elementos en blanco. Si eliges un enfoque inductivo, entrenarías un modelo buscando 'discos' y 'CDs', y aplicarías esas etiquetas a tus datos no etiquetados. Este enfoque tendrá problemas para clasificar cosas que en realidad son 'cassettes'. Un enfoque transductivo, por otro lado, maneja estos datos desconocidos de manera más efectiva al trabajar para agrupar elementos similares y luego aplicar una etiqueta a un grupo. En este caso, los grupos podrían reflejar 'cosas musicales redondas' y 'cosas musicales cuadradas'. +> +> 🎓 ['Geometría no plana' vs. 'plana'](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering) +> +> Derivado de la terminología matemática, geometría no plana vs. plana se refiere a la medida de distancias entre puntos mediante métodos geométricos 'planos' ([Euclidianos](https://wikipedia.org/wiki/Geometr%C3%ADa_euclidiana)) o 'no planos' (no euclidianos). +> +>'Plana' en este contexto se refiere a la geometría euclidiana (partes de la cual se enseñan como geometría 'plana'), y 'no plana' se refiere a la geometría no euclidiana. ¿Qué tiene que ver la geometría con el aprendizaje automático? Bueno, como dos campos que están arraigados en las matemáticas, debe haber una forma común de medir distancias entre puntos en grupos, y eso puede hacerse de manera 'plana' o 'no plana', dependiendo de la naturaleza de los datos. [Las distancias euclidianas](https://wikipedia.org/wiki/Distancia_euclidiana) se miden como la longitud de un segmento de línea entre dos puntos. [Las distancias no euclidianas](https://wikipedia.org/wiki/Geometr%C3%ADa_no_euclidiana) se miden a lo largo de una curva. Si tus datos, visualizados, parecen no existir en un plano, podrías necesitar usar un algoritmo especializado para manejarlos. +> +![Infografía de geometría plana vs. no plana](../../../../translated_images/flat-nonflat.d1c8c6e2a96110c1d57fa0b72913f6aab3c245478524d25baf7f4a18efcde224.es.png) +> Infografía por [Dasani Madipalli](https://twitter.com/dasani_decoded) +> +> 🎓 ['Distancias'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf) +> +> Los grupos se definen por su matriz de distancias, es decir, las distancias entre puntos. Esta distancia puede medirse de varias maneras. Los grupos euclidianos se definen por el promedio de los valores de los puntos y contienen un 'centroide' o punto central. Las distancias se miden por la distancia a ese centroide. Las distancias no euclidianas se refieren a 'clustroides', el punto más cercano a otros puntos. Los clustroides, a su vez, pueden definirse de varias maneras. +> +> 🎓 ['Restringido'](https://wikipedia.org/wiki/Constrained_clustering) +> +> [La agrupación restringida](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf) introduce aprendizaje 'semi-supervisado' en este método no supervisado. Las relaciones entre puntos se marcan como 'no puede vincular' o 'debe vincular', por lo que se imponen algunas reglas al conjunto de datos. +> +>Un ejemplo: Si un algoritmo se libera en un lote de datos no etiquetados o semi-etiquetados, los grupos que produce pueden ser de baja calidad. En el ejemplo anterior, los grupos podrían agrupar 'cosas musicales redondas', 'cosas musicales cuadradas', 'cosas triangulares' y 'galletas'. Si se le dan algunas restricciones o reglas a seguir ("el artículo debe estar hecho de plástico", "el artículo necesita poder producir música"), esto puede ayudar a 'restringir' el algoritmo para tomar mejores decisiones. +> +> 🎓 'Densidad' +> +> Los datos que son 'ruidosos' se consideran 'densos'. Las distancias entre puntos en cada uno de sus grupos pueden demostrar, al examinarlas, ser más o menos densas, o 'abarrotadas', y por lo tanto estos datos necesitan ser analizados con el método de agrupación apropiado. [Este artículo](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html) demuestra la diferencia entre usar agrupación K-Means vs. algoritmos HDBSCAN para explorar un conjunto de datos ruidoso con densidad de grupos desigual. + +## Algoritmos de agrupación + +Existen más de 100 algoritmos de agrupación, y su uso depende de la naturaleza de los datos en cuestión. Discutamos algunos de los principales: + +- **Agrupación jerárquica**. Si un objeto se clasifica por su proximidad a un objeto cercano, en lugar de uno más lejano, los grupos se forman en función de la distancia de sus miembros hacia y desde otros objetos. La agrupación aglomerativa de Scikit-learn es jerárquica. + + ![Infografía de agrupación jerárquica](../../../../translated_images/hierarchical.bf59403aa43c8c47493bfdf1cc25230f26e45f4e38a3d62e8769cd324129ac15.es.png) + > Infografía por [Dasani Madipalli](https://twitter.com/dasani_decoded) + +- **Agrupación por centroides**. Este popular algoritmo requiere elegir 'k', o el número de grupos a formar, después de lo cual el algoritmo determina el punto central de un grupo y reúne datos alrededor de ese punto. [La agrupación K-means](https://wikipedia.org/wiki/K-means_clustering) es una versión popular de agrupación por centroides. El centro se determina por la media más cercana, de ahí el nombre. La distancia cuadrada desde el grupo se minimiza. + + ![Infografía de agrupación por centroides](../../../../translated_images/centroid.097fde836cf6c9187d0b2033e9f94441829f9d86f4f0b1604dd4b3d1931aee34.es.png) + > Infografía por [Dasani Madipalli](https://twitter.com/dasani_decoded) + +- **Agrupación basada en distribución**. Basada en modelos estadísticos, la agrupación basada en distribución se centra en determinar la probabilidad de que un punto de datos pertenezca a un grupo y asignarlo en consecuencia. Los métodos de mezcla gaussiana pertenecen a este tipo. + +- **Agrupación basada en densidad**. Los puntos de datos se asignan a grupos según su densidad, o su agrupación alrededor de otros puntos. Los puntos de datos alejados del grupo se consideran valores atípicos o ruido. DBSCAN, Mean-shift y OPTICS pertenecen a este tipo de agrupación. + +- **Agrupación basada en cuadrícula**. Para conjuntos de datos multidimensionales, se crea una cuadrícula y los datos se dividen entre las celdas de la cuadrícula, creando así grupos. + +## Ejercicio - agrupa tus datos + +La agrupación como técnica se beneficia enormemente de una visualización adecuada, así que comencemos visualizando nuestros datos musicales. Este ejercicio nos ayudará a decidir cuál de los métodos de agrupación deberíamos usar de manera más efectiva para la naturaleza de estos datos. + +1. Abre el archivo [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/notebook.ipynb) en esta carpeta. + +1. Importa el paquete `Seaborn` para una buena visualización de datos. + + ```python + !pip install seaborn + ``` + +1. Agrega los datos de canciones desde [_nigerian-songs.csv_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/data/nigerian-songs.csv). Carga un dataframe con algunos datos sobre las canciones. Prepárate para explorar estos datos importando las bibliotecas y mostrando los datos: + + ```python + import matplotlib.pyplot as plt + import pandas as pd + + df = pd.read_csv("../data/nigerian-songs.csv") + df.head() + ``` + + Revisa las primeras líneas de datos: + + | | nombre | álbum | artista | género_principal_artista | fecha_lanzamiento | duración | popularidad | bailabilidad | acústica | energía | instrumentalidad | vivacidad | volumen | hablabilidad | tempo | compás | + | --- | ----------------------- | ---------------------------- | ------------------- | ------------------------- | ----------------- | -------- | ----------- | ------------ | -------- | ------ | ---------------- | --------- | ------- | ------------ | ------- | --------------- | + | 0 | Sparky | Mandy & The Jungle | Cruel Santino | r&b alternativo | 2019 | 144000 | 48 | 0.666 | 0.851 | 0.42 | 0.534 | 0.11 | -6.699 | 0.0829 | 133.015 | 5 | + | 1 | shuga rush | EVERYTHING YOU HEARD IS TRUE | Odunsi (The Engine) | afropop | 2020 | 89488 | 30 | 0.71 | 0.0822 | 0.683 | 0.000169 | 0.101 | -5.64 | 0.36 | 129.993 | 3 | +| 2 | LITT! | LITT! | AYLØ | indie r&b | 2018 | 207758 | 40 | 0.836 | 0.272 | 0.564 | 0.000537 | 0.11 | -7.127 | 0.0424 | 130.005 | 4 | +| 3 | Confident / Feeling Cool | Enjoy Your Life | Lady Donli | nigerian pop | 2019 | 175135 | 14 | 0.894 | 0.798 | 0.611 | 0.000187 | 0.0964 | -4.961 | 0.113 | 111.087 | 4 | +| 4 | wanted you | rare. | Odunsi (The Engine) | afropop | 2018 | 152049 | 25 | 0.702 | 0.116 | 0.833 | 0.91 | 0.348 | -6.044 | 0.0447 | 105.115 | 4 | + +1. Obtén información sobre el dataframe llamando a `info()`: + + ```python + df.info() + ``` + + El resultado se ve así: + + ```output + + RangeIndex: 530 entries, 0 to 529 + Data columns (total 16 columns): + # Column Non-Null Count Dtype + --- ------ -------------- ----- + 0 name 530 non-null object + 1 album 530 non-null object + 2 artist 530 non-null object + 3 artist_top_genre 530 non-null object + 4 release_date 530 non-null int64 + 5 length 530 non-null int64 + 6 popularity 530 non-null int64 + 7 danceability 530 non-null float64 + 8 acousticness 530 non-null float64 + 9 energy 530 non-null float64 + 10 instrumentalness 530 non-null float64 + 11 liveness 530 non-null float64 + 12 loudness 530 non-null float64 + 13 speechiness 530 non-null float64 + 14 tempo 530 non-null float64 + 15 time_signature 530 non-null int64 + dtypes: float64(8), int64(4), object(4) + memory usage: 66.4+ KB + ``` + +1. Verifica nuevamente si hay valores nulos llamando a `isnull()` y asegurándote de que la suma sea 0: + + ```python + df.isnull().sum() + ``` + + Todo se ve bien: + + ```output + name 0 + album 0 + artist 0 + artist_top_genre 0 + release_date 0 + length 0 + popularity 0 + danceability 0 + acousticness 0 + energy 0 + instrumentalness 0 + liveness 0 + loudness 0 + speechiness 0 + tempo 0 + time_signature 0 + dtype: int64 + ``` + +1. Describe los datos: + + ```python + df.describe() + ``` + + | | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature | + | ----- | ------------ | ----------- | ---------- | ------------ | ------------ | -------- | ---------------- | -------- | --------- | ----------- | ---------- | -------------- | + | count | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | + | mean | 2015.390566 | 222298.1698 | 17.507547 | 0.741619 | 0.265412 | 0.760623 | 0.016305 | 0.147308 | -4.953011 | 0.130748 | 116.487864 | 3.986792 | + | std | 3.131688 | 39696.82226 | 18.992212 | 0.117522 | 0.208342 | 0.148533 | 0.090321 | 0.123588 | 2.464186 | 0.092939 | 23.518601 | 0.333701 | + | min | 1998 | 89488 | 0 | 0.255 | 0.000665 | 0.111 | 0 | 0.0283 | -19.362 | 0.0278 | 61.695 | 3 | + | 25% | 2014 | 199305 | 0 | 0.681 | 0.089525 | 0.669 | 0 | 0.07565 | -6.29875 | 0.0591 | 102.96125 | 4 | + | 50% | 2016 | 218509 | 13 | 0.761 | 0.2205 | 0.7845 | 0.000004 | 0.1035 | -4.5585 | 0.09795 | 112.7145 | 4 | + | 75% | 2017 | 242098.5 | 31 | 0.8295 | 0.403 | 0.87575 | 0.000234 | 0.164 | -3.331 | 0.177 | 125.03925 | 4 | + | max | 2020 | 511738 | 73 | 0.966 | 0.954 | 0.995 | 0.91 | 0.811 | 0.582 | 0.514 | 206.007 | 5 | + +> 🤔 Si estamos trabajando con clustering, un método no supervisado que no requiere datos etiquetados, ¿por qué estamos mostrando estos datos con etiquetas? En la fase de exploración de datos, son útiles, pero no son necesarios para que los algoritmos de clustering funcionen. Podrías eliminar los encabezados de las columnas y referirte a los datos por número de columna. + +Observa los valores generales de los datos. Nota que la popularidad puede ser '0', lo que muestra canciones que no tienen ranking. Eliminemos esos valores pronto. + +1. Usa un gráfico de barras para encontrar los géneros más populares: + + ```python + import seaborn as sns + + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top[:5].index,y=top[:5].values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + ![más populares](../../../../translated_images/popular.9c48d84b3386705f98bf44e26e9655bee9eb7c849d73be65195e37895bfedb5d.es.png) + +✅ Si deseas ver más valores principales, cambia el top `[:5]` a un valor mayor o elimínalo para ver todo. + +Nota que cuando el género principal se describe como 'Missing', significa que Spotify no lo clasificó, así que eliminémoslo. + +1. Elimina los datos faltantes filtrándolos: + + ```python + df = df[df['artist_top_genre'] != 'Missing'] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + Ahora verifica nuevamente los géneros: + + ![todos los géneros](../../../../translated_images/all-genres.1d56ef06cefbfcd61183023834ed3cb891a5ee638a3ba5c924b3151bf80208d7.es.png) + +1. Los tres géneros principales dominan este conjunto de datos. Concentrémonos en `afro dancehall`, `afropop` y `nigerian pop`, además de filtrar el conjunto de datos para eliminar cualquier valor de popularidad igual a 0 (lo que significa que no fue clasificado con una popularidad en el conjunto de datos y puede considerarse ruido para nuestros propósitos): + + ```python + df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')] + df = df[(df['popularity'] > 0)] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + +1. Haz una prueba rápida para ver si los datos tienen alguna correlación particularmente fuerte: + + ```python + corrmat = df.corr(numeric_only=True) + f, ax = plt.subplots(figsize=(12, 9)) + sns.heatmap(corrmat, vmax=.8, square=True) + ``` + + ![correlaciones](../../../../translated_images/correlation.a9356bb798f5eea51f47185968e1ebac5c078c92fce9931e28ccf0d7fab71c2b.es.png) + + La única correlación fuerte es entre `energy` y `loudness`, lo cual no es muy sorprendente, dado que la música fuerte suele ser bastante energética. Por lo demás, las correlaciones son relativamente débiles. Será interesante ver qué puede hacer un algoritmo de clustering con estos datos. + + > 🎓 ¡Nota que la correlación no implica causalidad! Tenemos prueba de correlación pero no prueba de causalidad. Un [sitio web divertido](https://tylervigen.com/spurious-correlations) tiene algunos gráficos que enfatizan este punto. + +¿Hay alguna convergencia en este conjunto de datos en torno a la popularidad percibida de una canción y su capacidad de baile? Un FacetGrid muestra que hay círculos concéntricos que se alinean, independientemente del género. ¿Podría ser que los gustos nigerianos convergen en un cierto nivel de capacidad de baile para este género? + +✅ Prueba diferentes puntos de datos (energy, loudness, speechiness) y más o diferentes géneros musicales. ¿Qué puedes descubrir? Mira la tabla `df.describe()` para ver la distribución general de los puntos de datos. + +### Ejercicio - distribución de datos + +¿Son estos tres géneros significativamente diferentes en la percepción de su capacidad de baile, basada en su popularidad? + +1. Examina la distribución de datos de nuestros tres géneros principales para popularidad y capacidad de baile a lo largo de un eje x y y dado. + + ```python + sns.set_theme(style="ticks") + + g = sns.jointplot( + data=df, + x="popularity", y="danceability", hue="artist_top_genre", + kind="kde", + ) + ``` + + Puedes descubrir círculos concéntricos alrededor de un punto general de convergencia, mostrando la distribución de puntos. + + > 🎓 Nota que este ejemplo utiliza un gráfico KDE (Kernel Density Estimate) que representa los datos usando una curva de densidad de probabilidad continua. Esto nos permite interpretar los datos cuando trabajamos con múltiples distribuciones. + + En general, los tres géneros se alinean de manera suelta en términos de su popularidad y capacidad de baile. Determinar clusters en estos datos alineados de manera suelta será un desafío: + + ![distribución](../../../../translated_images/distribution.9be11df42356ca958dc8e06e87865e09d77cab78f94fe4fea8a1e6796c64dc4b.es.png) + +1. Crea un gráfico de dispersión: + + ```python + sns.FacetGrid(df, hue="artist_top_genre", height=5) \ + .map(plt.scatter, "popularity", "danceability") \ + .add_legend() + ``` + + Un gráfico de dispersión de los mismos ejes muestra un patrón similar de convergencia. + + ![Facetgrid](../../../../translated_images/facetgrid.9b2e65ce707eba1f983b7cdfed5d952e60f385947afa3011df6e3cc7d200eb5b.es.png) + +En general, para clustering, puedes usar gráficos de dispersión para mostrar clusters de datos, por lo que dominar este tipo de visualización es muy útil. En la próxima lección, tomaremos estos datos filtrados y usaremos clustering k-means para descubrir grupos en estos datos que parecen superponerse de maneras interesantes. + +--- + +## 🚀Desafío + +En preparación para la próxima lección, haz un gráfico sobre los diversos algoritmos de clustering que podrías descubrir y usar en un entorno de producción. ¿Qué tipo de problemas está tratando de abordar el clustering? + +## [Cuestionario posterior a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/) + +## Revisión y autoestudio + +Antes de aplicar algoritmos de clustering, como hemos aprendido, es una buena idea entender la naturaleza de tu conjunto de datos. Lee más sobre este tema [aquí](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html) + +[Este artículo útil](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/) te guía a través de las diferentes formas en que varios algoritmos de clustering se comportan, dados diferentes formatos de datos. + +## Tarea + +[Investiga otras visualizaciones para clustering](assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/5-Clustering/1-Visualize/assignment.md b/translations/es/5-Clustering/1-Visualize/assignment.md new file mode 100644 index 000000000..a7e9a6247 --- /dev/null +++ b/translations/es/5-Clustering/1-Visualize/assignment.md @@ -0,0 +1,25 @@ + +# Investigar otras visualizaciones para agrupamiento + +## Instrucciones + +En esta lección, has trabajado con algunas técnicas de visualización para comprender cómo graficar tus datos en preparación para agruparlos. Los diagramas de dispersión, en particular, son útiles para encontrar grupos de objetos. Investiga diferentes formas y bibliotecas para crear diagramas de dispersión y documenta tu trabajo en un cuaderno. Puedes usar los datos de esta lección, otras lecciones, o datos que obtengas por tu cuenta (por favor, acredita su fuente en tu cuaderno). Grafica algunos datos utilizando diagramas de dispersión y explica lo que descubres. + +## Rúbrica + +| Criterios | Ejemplar | Adecuado | Necesita Mejorar | +| --------- | ------------------------------------------------------------- | ---------------------------------------------------------------------------------------- | ---------------------------------- | +| | Se presenta un cuaderno con cinco diagramas de dispersión bien documentados | Se presenta un cuaderno con menos de cinco diagramas de dispersión y está menos documentado | Se presenta un cuaderno incompleto | + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/5-Clustering/1-Visualize/notebook.ipynb b/translations/es/5-Clustering/1-Visualize/notebook.ipynb new file mode 100644 index 000000000..f58461a0b --- /dev/null +++ b/translations/es/5-Clustering/1-Visualize/notebook.ipynb @@ -0,0 +1,50 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python383jvsc74a57bd0e134e05457d34029b6460cd73bbf1ed73f339b5b6d98c95be70b69eba114fe95", + "display_name": "Python 3.8.3 64-bit (conda)" + }, + "coopTranslator": { + "original_hash": "40e0707e96b3e1899a912776006264f9", + "translation_date": "2025-09-04T01:57:50+00:00", + "source_file": "5-Clustering/1-Visualize/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/5-Clustering/1-Visualize/solution/Julia/README.md b/translations/es/5-Clustering/1-Visualize/solution/Julia/README.md new file mode 100644 index 000000000..e45aa1f0f --- /dev/null +++ b/translations/es/5-Clustering/1-Visualize/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb b/translations/es/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb new file mode 100644 index 000000000..3f5ba1a28 --- /dev/null +++ b/translations/es/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb @@ -0,0 +1,493 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## **Análisis de música nigeriana extraída de Spotify**\n", + "\n", + "El clustering es un tipo de [aprendizaje no supervisado](https://wikipedia.org/wiki/Aprendizaje_no_supervisado) que asume que un conjunto de datos no está etiquetado o que sus entradas no están asociadas a salidas predefinidas. Utiliza varios algoritmos para clasificar datos no etiquetados y proporcionar agrupaciones según los patrones que detecta en los datos.\n", + "\n", + "[**Cuestionario previo a la lección**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/)\n", + "\n", + "### **Introducción**\n", + "\n", + "El [clustering](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124) es muy útil para la exploración de datos. Veamos si puede ayudar a descubrir tendencias y patrones en la forma en que las audiencias nigerianas consumen música.\n", + "\n", + "> ✅ Tómate un minuto para pensar en los usos del clustering. En la vida cotidiana, el clustering ocurre cuando tienes un montón de ropa sucia y necesitas clasificar la ropa de los miembros de tu familia 🧦👕👖🩲. En ciencia de datos, el clustering ocurre al intentar analizar las preferencias de un usuario o determinar las características de un conjunto de datos no etiquetado. El clustering, de alguna manera, ayuda a dar sentido al caos, como un cajón de calcetines.\n", + "\n", + "En un entorno profesional, el clustering puede usarse para determinar cosas como la segmentación de mercado, identificando qué grupos de edad compran qué productos, por ejemplo. Otro uso sería la detección de anomalías, tal vez para identificar fraudes en un conjunto de datos de transacciones con tarjetas de crédito. O podrías usar el clustering para identificar tumores en un lote de escaneos médicos.\n", + "\n", + "✅ Piensa un momento en cómo podrías haber encontrado clustering \"en la vida real\", en un entorno bancario, de comercio electrónico o empresarial.\n", + "\n", + "> 🎓 Curiosamente, el análisis de clústeres se originó en los campos de la Antropología y la Psicología en la década de 1930. ¿Puedes imaginar cómo podría haberse utilizado?\n", + "\n", + "Alternativamente, podrías usarlo para agrupar resultados de búsqueda, como enlaces de compras, imágenes o reseñas, por ejemplo. El clustering es útil cuando tienes un conjunto de datos grande que deseas reducir y sobre el cual deseas realizar un análisis más detallado, por lo que la técnica puede usarse para aprender sobre los datos antes de construir otros modelos.\n", + "\n", + "✅ Una vez que tus datos están organizados en clústeres, les asignas un Id de clúster, y esta técnica puede ser útil para preservar la privacidad de un conjunto de datos; en lugar de referirte a un punto de datos por información más reveladora, puedes referirte a él por su Id de clúster. ¿Puedes pensar en otras razones por las que preferirías referirte a un Id de clúster en lugar de otros elementos del clúster para identificarlo?\n", + "\n", + "### Comenzando con el clustering\n", + "\n", + "> 🎓 La forma en que creamos clústeres tiene mucho que ver con cómo agrupamos los puntos de datos. Vamos a desglosar algo de vocabulario:\n", + ">\n", + "> 🎓 ['Transductivo' vs. 'inductivo'](https://wikipedia.org/wiki/Transduction_(machine_learning))\n", + ">\n", + "> La inferencia transductiva se deriva de casos de entrenamiento observados que se mapean a casos de prueba específicos. La inferencia inductiva se deriva de casos de entrenamiento que se mapean a reglas generales que luego se aplican a los casos de prueba.\n", + ">\n", + "> Un ejemplo: Imagina que tienes un conjunto de datos que está parcialmente etiquetado. Algunas cosas son 'discos', otras 'CDs', y otras están en blanco. Tu tarea es proporcionar etiquetas para los elementos en blanco. Si eliges un enfoque inductivo, entrenarías un modelo buscando 'discos' y 'CDs', y aplicarías esas etiquetas a tus datos no etiquetados. Este enfoque tendrá problemas para clasificar cosas que en realidad son 'cassettes'. Un enfoque transductivo, por otro lado, maneja estos datos desconocidos de manera más efectiva al agrupar elementos similares y luego aplicar una etiqueta a un grupo. En este caso, los clústeres podrían reflejar 'cosas musicales redondas' y 'cosas musicales cuadradas'.\n", + ">\n", + "> 🎓 ['Geometría no plana' vs. 'plana'](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering)\n", + ">\n", + "> Derivado de la terminología matemática, la geometría no plana vs. plana se refiere a la medida de distancias entre puntos mediante métodos geométricos 'planos' ([Euclidianos](https://wikipedia.org/wiki/Geometr%C3%ADa_euclidiana)) o 'no planos' (no Euclidianos).\n", + ">\n", + "> 'Plana' en este contexto se refiere a la geometría Euclidiana (partes de la cual se enseñan como geometría 'plana'), y no plana se refiere a la geometría no Euclidiana. ¿Qué tiene que ver la geometría con el aprendizaje automático? Bueno, como dos campos que tienen raíces en las matemáticas, debe haber una forma común de medir distancias entre puntos en clústeres, y eso puede hacerse de manera 'plana' o 'no plana', dependiendo de la naturaleza de los datos. Las [distancias Euclidianas](https://wikipedia.org/wiki/Distancia_euclidiana) se miden como la longitud de un segmento de línea entre dos puntos. Las [distancias no Euclidianas](https://wikipedia.org/wiki/Geometr%C3%ADa_no_euclidiana) se miden a lo largo de una curva. Si tus datos, al visualizarlos, parecen no existir en un plano, podrías necesitar usar un algoritmo especializado para manejarlos.\n", + "\n", + "

\n", + " \n", + "

Infografía por Dasani Madipalli
\n", + "\n", + "> 🎓 ['Distancias'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf)\n", + ">\n", + "> Los clústeres se definen por su matriz de distancias, es decir, las distancias entre puntos. Esta distancia puede medirse de varias maneras. Los clústeres Euclidianos se definen por el promedio de los valores de los puntos y contienen un 'centroide' o punto central. Las distancias se miden por la distancia a ese centroide. Las distancias no Euclidianas se refieren a 'clustroides', el punto más cercano a otros puntos. Los clustroides, a su vez, pueden definirse de varias maneras.\n", + ">\n", + "> 🎓 ['Restringido'](https://wikipedia.org/wiki/Constrained_clustering)\n", + ">\n", + "> El [clustering restringido](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf) introduce el aprendizaje 'semi-supervisado' en este método no supervisado. Las relaciones entre puntos se marcan como 'no puede enlazar' o 'debe enlazar', de modo que se imponen algunas reglas al conjunto de datos.\n", + ">\n", + "> Un ejemplo: Si un algoritmo se deja libre en un lote de datos no etiquetados o semi-etiquetados, los clústeres que produce pueden ser de baja calidad. En el ejemplo anterior, los clústeres podrían agrupar 'cosas musicales redondas', 'cosas musicales cuadradas', 'cosas triangulares' y 'galletas'. Si se le dan algunas restricciones o reglas a seguir (\"el objeto debe estar hecho de plástico\", \"el objeto debe ser capaz de producir música\"), esto puede ayudar a 'restringir' el algoritmo para tomar mejores decisiones.\n", + ">\n", + "> 🎓 'Densidad'\n", + ">\n", + "> Los datos que son 'ruidosos' se consideran 'densos'. Las distancias entre puntos en cada uno de sus clústeres pueden resultar, al examinarlas, más o menos densas, o 'congestionadas', y por lo tanto estos datos necesitan ser analizados con el método de clustering apropiado. [Este artículo](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html) demuestra la diferencia entre usar el clustering K-Means y los algoritmos HDBSCAN para explorar un conjunto de datos ruidoso con densidad de clúster desigual.\n", + "\n", + "Profundiza tu comprensión de las técnicas de clustering en este [módulo de aprendizaje](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott)\n", + "\n", + "### **Algoritmos de clustering**\n", + "\n", + "Existen más de 100 algoritmos de clustering, y su uso depende de la naturaleza de los datos en cuestión. Hablemos de algunos de los principales:\n", + "\n", + "- **Clustering jerárquico**. Si un objeto se clasifica por su proximidad a un objeto cercano, en lugar de uno más lejano, los clústeres se forman en función de la distancia entre sus miembros. El clustering jerárquico se caracteriza por combinar repetidamente dos clústeres.\n", + "\n", + "

\n", + " \n", + "

Infografía por Dasani Madipalli
\n", + "\n", + "- **Clustering por centroides**. Este algoritmo popular requiere elegir 'k', o el número de clústeres a formar, después de lo cual el algoritmo determina el punto central de un clúster y agrupa los datos alrededor de ese punto. El [clustering K-means](https://wikipedia.org/wiki/K-means_clustering) es una versión popular de clustering por centroides que separa un conjunto de datos en K grupos predefinidos. El centro se determina por la media más cercana, de ahí el nombre. La distancia cuadrada desde el clúster se minimiza.\n", + "\n", + "

\n", + " \n", + "

Infografía por Dasani Madipalli
\n", + "\n", + "- **Clustering basado en distribución**. Basado en modelos estadísticos, el clustering basado en distribución se centra en determinar la probabilidad de que un punto de datos pertenezca a un clúster y asignarlo en consecuencia. Los métodos de mezcla gaussiana pertenecen a este tipo.\n", + "\n", + "- **Clustering basado en densidad**. Los puntos de datos se asignan a clústeres en función de su densidad, o su agrupación entre sí. Los puntos de datos alejados del grupo se consideran valores atípicos o ruido. DBSCAN, Mean-shift y OPTICS pertenecen a este tipo de clustering.\n", + "\n", + "- **Clustering basado en cuadrícula**. Para conjuntos de datos multidimensionales, se crea una cuadrícula y los datos se dividen entre las celdas de la cuadrícula, creando así clústeres.\n", + "\n", + "La mejor manera de aprender sobre clustering es probarlo tú mismo, así que eso es lo que harás en este ejercicio.\n", + "\n", + "Necesitaremos algunos paquetes para completar este módulo. Puedes instalarlos con: `install.packages(c('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork'))`\n", + "\n", + "Alternativamente, el siguiente script verifica si tienes los paquetes necesarios para completar este módulo e instala los que falten.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork')\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Ejercicio - agrupa tus datos\n", + "\n", + "El clustering como técnica se beneficia enormemente de una visualización adecuada, así que comencemos visualizando nuestros datos musicales. Este ejercicio nos ayudará a decidir cuál de los métodos de clustering deberíamos usar de manera más efectiva según la naturaleza de estos datos.\n", + "\n", + "Comencemos importando los datos.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core tidyverse and make it available in your current R session\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# Import the data into a tibble\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\")\r\n", + "\r\n", + "# View the first 5 rows of the data set\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "A veces, podemos querer un poco más de información sobre nuestros datos. Podemos echar un vistazo a los `datos` y a `su estructura` utilizando la función [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html):\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Glimpse into the data set\r\n", + "df %>% \r\n", + " glimpse()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "¡Buen trabajo!💪\n", + "\n", + "Podemos observar que `glimpse()` te mostrará el número total de filas (observaciones) y columnas (variables), seguido de las primeras entradas de cada variable en una fila después del nombre de la variable. Además, el *tipo de dato* de la variable se muestra inmediatamente después del nombre de cada variable dentro de `< >`.\n", + "\n", + "`DataExplorer::introduce()` puede resumir esta información de manera ordenada:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe basic information for our data\r\n", + "df %>% \r\n", + " introduce()\r\n", + "\r\n", + "# A visual display of the same\r\n", + "df %>% \r\n", + " plot_intro()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "¡Genial! Acabamos de aprender que nuestros datos no tienen valores faltantes.\n", + "\n", + "Mientras estamos en ello, podemos explorar estadísticas comunes de tendencia central (por ejemplo, [media](https://en.wikipedia.org/wiki/Arithmetic_mean) y [mediana](https://en.wikipedia.org/wiki/Median)) y medidas de dispersión (por ejemplo, [desviación estándar](https://en.wikipedia.org/wiki/Standard_deviation)) utilizando `summarytools::descr()`\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe common statistics\r\n", + "df %>% \r\n", + " descr(stats = \"common\")\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Veamos los valores generales de los datos. Ten en cuenta que la popularidad puede ser `0`, lo que indica canciones que no tienen clasificación. Eliminaremos esos datos en breve.\n", + "\n", + "> 🤔 Si estamos trabajando con clustering, un método no supervisado que no requiere datos etiquetados, ¿por qué estamos mostrando estos datos con etiquetas? En la fase de exploración de datos, son útiles, pero no son necesarios para que los algoritmos de clustering funcionen.\n", + "\n", + "### 1. Explorar géneros populares\n", + "\n", + "Vamos a descubrir cuáles son los géneros más populares 🎶 haciendo un conteo de las veces que aparecen.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Popular genres\r\n", + "top_genres <- df %>% \r\n", + " count(artist_top_genre, sort = TRUE) %>% \r\n", + "# Encode to categorical and reorder the according to count\r\n", + " mutate(artist_top_genre = factor(artist_top_genre) %>% fct_inorder())\r\n", + "\r\n", + "# Print the top genres\r\n", + "top_genres\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "¡Eso salió bien! Dicen que una imagen vale más que mil filas de un marco de datos (en realidad, nadie dice eso 😅). Pero entiendes la idea, ¿verdad?\n", + "\n", + "Una forma de visualizar datos categóricos (variables de tipo carácter o factor) es utilizando gráficos de barras. Hagamos un gráfico de barras con los 10 géneros principales:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Change the default gray theme\r\n", + "theme_set(theme_light())\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "¡Ahora es mucho más fácil identificar que tenemos géneros `missing` 🧐!\n", + "\n", + "> Una buena visualización te mostrará cosas que no esperabas, o planteará nuevas preguntas sobre los datos - Hadley Wickham y Garrett Grolemund, [R For Data Science](https://r4ds.had.co.nz/introduction.html)\n", + "\n", + "Nota: cuando el género principal se describe como `Missing`, significa que Spotify no lo clasificó, así que eliminémoslo.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " filter(artist_top_genre != \"Missing\") %>% \r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "A partir de la pequeña exploración de datos, aprendemos que los tres géneros principales dominan este conjunto de datos. Vamos a concentrarnos en `afro dancehall`, `afropop` y `nigerian pop`, además de filtrar el conjunto de datos para eliminar cualquier elemento con un valor de popularidad de 0 (lo que significa que no fue clasificado con una popularidad en el conjunto de datos y puede considerarse ruido para nuestros propósitos):\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "nigerian_songs <- df %>% \r\n", + " # Concentrate on top 3 genres\r\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \r\n", + " # Remove unclassified observations\r\n", + " filter(popularity != 0)\r\n", + "\r\n", + "\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "nigerian_songs %>%\r\n", + " count(artist_top_genre) %>%\r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Veamos si existe alguna relación lineal aparente entre las variables numéricas de nuestro conjunto de datos. Esta relación se cuantifica matemáticamente mediante la [estadística de correlación](https://en.wikipedia.org/wiki/Correlation).\n", + "\n", + "La estadística de correlación es un valor entre -1 y 1 que indica la fuerza de una relación. Los valores por encima de 0 indican una correlación *positiva* (valores altos de una variable tienden a coincidir con valores altos de la otra), mientras que los valores por debajo de 0 indican una correlación *negativa* (valores altos de una variable tienden a coincidir con valores bajos de la otra).\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Narrow down to numeric variables and fid correlation\r\n", + "corr_mat <- nigerian_songs %>% \r\n", + " select(where(is.numeric)) %>% \r\n", + " cor()\r\n", + "\r\n", + "# Visualize correlation matrix\r\n", + "corrplot(corr_mat, order = 'AOE', col = c('white', 'black'), bg = 'gold2') \r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Los datos no están fuertemente correlacionados, excepto entre `energy` y `loudness`, lo cual tiene sentido, dado que la música fuerte suele ser bastante enérgica. `Popularity` tiene una correspondencia con `release date`, lo que también tiene sentido, ya que las canciones más recientes probablemente sean más populares. La duración y la energía parecen tener una correlación también.\n", + "\n", + "¡Será interesante ver qué puede hacer un algoritmo de agrupamiento con estos datos!\n", + "\n", + "> 🎓 Ten en cuenta que la correlación no implica causalidad. Tenemos prueba de correlación, pero no prueba de causalidad. Un [sitio web divertido](https://tylervigen.com/spurious-correlations) tiene algunos gráficos que enfatizan este punto.\n", + "\n", + "### 2. Explorar la distribución de los datos\n", + "\n", + "Hagamos preguntas más sutiles. ¿Son los géneros significativamente diferentes en la percepción de su capacidad para bailar, según su popularidad? Examinemos la distribución de datos de nuestros tres géneros principales en términos de popularidad y capacidad para bailar a lo largo de un eje x y y utilizando [gráficos de densidad](https://www.khanacademy.org/math/ap-statistics/density-curves-normal-distribution-ap/density-curves/v/density-curves).\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Perform 2D kernel density estimation\r\n", + "density_estimate_2d <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre)) +\r\n", + " geom_density_2d(bins = 5, size = 1) +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " xlim(-20, 80) +\r\n", + " ylim(0, 1.2)\r\n", + "\r\n", + "# Density plot based on the popularity\r\n", + "density_estimate_pop <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " theme(legend.position = \"none\")\r\n", + "\r\n", + "# Density plot based on the danceability\r\n", + "density_estimate_dance <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = danceability, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\")\r\n", + "\r\n", + "\r\n", + "# Patch everything together\r\n", + "library(patchwork)\r\n", + "density_estimate_2d / (density_estimate_pop + density_estimate_dance)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Vemos que hay círculos concéntricos que se alinean, independientemente del género. ¿Podría ser que los gustos nigerianos convergen en cierto nivel de bailabilidad para este género?\n", + "\n", + "En general, los tres géneros se alinean en términos de su popularidad y bailabilidad. Determinar agrupaciones en estos datos ligeramente alineados será un desafío. Veamos si un gráfico de dispersión puede respaldar esto.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# A scatter plot of popularity and danceability\r\n", + "scatter_plot <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre, shape = artist_top_genre)) +\r\n", + " geom_point(size = 2, alpha = 0.8) +\r\n", + " paletteer::scale_color_paletteer_d(\"futurevisions::mars\")\r\n", + "\r\n", + "# Add a touch of interactivity\r\n", + "ggplotly(scatter_plot)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Un diagrama de dispersión de los mismos ejes muestra un patrón similar de convergencia.\n", + "\n", + "En general, para la agrupación, puedes usar diagramas de dispersión para mostrar grupos de datos, por lo que dominar este tipo de visualización es muy útil. En la próxima lección, tomaremos estos datos filtrados y utilizaremos el agrupamiento k-means para descubrir grupos en estos datos que parecen superponerse de maneras interesantes.\n", + "\n", + "## **🚀 Desafío**\n", + "\n", + "En preparación para la próxima lección, crea un gráfico sobre los diversos algoritmos de agrupamiento que podrías descubrir y usar en un entorno de producción. ¿Qué tipos de problemas está tratando de resolver el agrupamiento?\n", + "\n", + "## [**Cuestionario posterior a la lección**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/)\n", + "\n", + "## **Revisión y autoestudio**\n", + "\n", + "Antes de aplicar algoritmos de agrupamiento, como hemos aprendido, es una buena idea entender la naturaleza de tu conjunto de datos. Lee más sobre este tema [aquí](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html)\n", + "\n", + "Profundiza tu comprensión de las técnicas de agrupamiento:\n", + "\n", + "- [Entrena y evalúa modelos de agrupamiento usando Tidymodels y amigos](https://rpubs.com/eR_ic/clustering)\n", + "\n", + "- Bradley Boehmke & Brandon Greenwell, [*Hands-On Machine Learning with R*](https://bradleyboehmke.github.io/HOML/)*.*\n", + "\n", + "## **Tarea**\n", + "\n", + "[Investiga otras visualizaciones para agrupamiento](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/assignment.md)\n", + "\n", + "## AGRADECIMIENTOS A:\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) por crear la versión original en Python de este módulo ♥️\n", + "\n", + "[`Dasani Madipalli`](https://twitter.com/dasani_decoded) por crear las increíbles ilustraciones que hacen que los conceptos de aprendizaje automático sean más interpretables y fáciles de entender.\n", + "\n", + "Feliz aprendizaje,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Embajador Estudiantil Gold de Microsoft Learn.\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "99c36449cad3708a435f6798cfa39972", + "translation_date": "2025-09-04T02:05:14+00:00", + "source_file": "5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/es/5-Clustering/1-Visualize/solution/notebook.ipynb b/translations/es/5-Clustering/1-Visualize/solution/notebook.ipynb new file mode 100644 index 000000000..7fcbdee20 --- /dev/null +++ b/translations/es/5-Clustering/1-Visualize/solution/notebook.ipynb @@ -0,0 +1,832 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Defaulting to user installation because normal site-packages is not writeable\n", + "Requirement already satisfied: seaborn in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (0.11.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (3.5.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.21.4)\n", + "Requirement already satisfied: pandas>=0.23 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.3.4)\n", + "Requirement already satisfied: scipy>=1.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.7.2)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (4.28.1)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.4.7)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (1.3.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (8.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (0.11.0)\n", + "Requirement already satisfied: packaging>=20.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (21.2)\n", + "Requirement already satisfied: setuptools-scm>=4 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (6.3.2)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.3 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from pandas>=0.23->seaborn) (2021.3)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from python-dateutil>=2.7->matplotlib>=2.2->seaborn) (1.16.0)\n", + "Requirement already satisfied: tomli>=1.0.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (1.2.2)\n", + "Requirement already satisfied: setuptools in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (59.1.1)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
\n", + "
" + ], + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Obtener información sobre el dataframe\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 530 entries, 0 to 529\n", + "Data columns (total 16 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 530 non-null object \n", + " 1 album 530 non-null object \n", + " 2 artist 530 non-null object \n", + " 3 artist_top_genre 530 non-null object \n", + " 4 release_date 530 non-null int64 \n", + " 5 length 530 non-null int64 \n", + " 6 popularity 530 non-null int64 \n", + " 7 danceability 530 non-null float64\n", + " 8 acousticness 530 non-null float64\n", + " 9 energy 530 non-null float64\n", + " 10 instrumentalness 530 non-null float64\n", + " 11 liveness 530 non-null float64\n", + " 12 loudness 530 non-null float64\n", + " 13 speechiness 530 non-null float64\n", + " 14 tempo 530 non-null float64\n", + " 15 time_signature 530 non-null int64 \n", + "dtypes: float64(8), int64(4), object(4)\n", + "memory usage: 66.4+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "name 0\n", + "album 0\n", + "artist 0\n", + "artist_top_genre 0\n", + "release_date 0\n", + "length 0\n", + "popularity 0\n", + "danceability 0\n", + "acousticness 0\n", + "energy 0\n", + "instrumentalness 0\n", + "liveness 0\n", + "loudness 0\n", + "speechiness 0\n", + "tempo 0\n", + "time_signature 0\n", + "dtype: int64" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mira los valores generales de los datos. Nota que la popularidad puede ser '0' - y hay muchas filas con ese valor\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
release_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
count530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000
mean2015.390566222298.16981117.5075470.7416190.2654120.7606230.0163050.147308-4.9530110.130748116.4878643.986792
std3.13168839696.82225918.9922120.1175220.2083420.1485330.0903210.1235882.4641860.09293923.5186010.333701
min1998.00000089488.0000000.0000000.2550000.0006650.1110000.0000000.028300-19.3620000.02780061.6950003.000000
25%2014.000000199305.0000000.0000000.6810000.0895250.6690000.0000000.075650-6.2987500.059100102.9612504.000000
50%2016.000000218509.00000013.0000000.7610000.2205000.7845000.0000040.103500-4.5585000.097950112.7145004.000000
75%2017.000000242098.50000031.0000000.8295000.4030000.8757500.0002340.164000-3.3310000.177000125.0392504.000000
max2020.000000511738.00000073.0000000.9660000.9540000.9950000.9100000.8110000.5820000.514000206.0070005.000000
\n", + "
" + ], + "text/plain": [ + " release_date length popularity danceability acousticness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 2015.390566 222298.169811 17.507547 0.741619 0.265412 \n", + "std 3.131688 39696.822259 18.992212 0.117522 0.208342 \n", + "min 1998.000000 89488.000000 0.000000 0.255000 0.000665 \n", + "25% 2014.000000 199305.000000 0.000000 0.681000 0.089525 \n", + "50% 2016.000000 218509.000000 13.000000 0.761000 0.220500 \n", + "75% 2017.000000 242098.500000 31.000000 0.829500 0.403000 \n", + "max 2020.000000 511738.000000 73.000000 0.966000 0.954000 \n", + "\n", + " energy instrumentalness liveness loudness speechiness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 0.760623 0.016305 0.147308 -4.953011 0.130748 \n", + "std 0.148533 0.090321 0.123588 2.464186 0.092939 \n", + "min 0.111000 0.000000 0.028300 -19.362000 0.027800 \n", + "25% 0.669000 0.000000 0.075650 -6.298750 0.059100 \n", + "50% 0.784500 0.000004 0.103500 -4.558500 0.097950 \n", + "75% 0.875750 0.000234 0.164000 -3.331000 0.177000 \n", + "max 0.995000 0.910000 0.811000 0.582000 0.514000 \n", + "\n", + " tempo time_signature \n", + "count 530.000000 530.000000 \n", + "mean 116.487864 3.986792 \n", + "std 23.518601 0.333701 \n", + "min 61.695000 3.000000 \n", + "25% 102.961250 4.000000 \n", + "50% 112.714500 4.000000 \n", + "75% 125.039250 4.000000 \n", + "max 206.007000 5.000000 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsIElEQVR4nO3debyt9dz/8ddbpzI20EETGRKZwpHMGVJyU6ZUJN25C0Uh81CmW4RkCLmLTCXTLXT/lFA3bkPSQETRdKSOBkMpOn1+f3yvzXKcOtN3t9Y++/V8PPbjrH2ta639qWvvtd7rO6aqkCRJ0oq72bgLkCRJWlkYrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJ0ybhzyNf1yf8ZeT7Z4+7PknqLS4QKummkHAe8PwqvjHuWpZHwpwqrht3HZImmy1Wkm5yCasnvDfht8PXexNWH+7bMuGihNcm/D7hvBtr3Uq4S8LJCX9K+EbCBxM+NXL/FgnfS7gy4fSELUfu+3bCWxK+Ozz++IR1hvs2SqiE3RMuAL45HP/3hJ8nXJHw9YQ7D8eTcHDCpQl/TDgz4T7T839Q0qQyWEkah9cBWwCbAfcHNgdeP3L/HYF1gPWBXYHDEja5gef6DPBD4HbAAcAuU3ckrA98DXgrcFtgP+ALCXNHHr8zsBtwe2C14ZxRjwbuBWydsB3wWuBpwFzgf4GjhvOeADwKuAewJrADcNkS/j9IWskYrCSNw7OBN1dxaRULgDcxEogGb6ji2ipOooWjHRZ9koQ7AQ8G3ljFX6v4DnDsyCnPAY6r4rgqrq/iBOAUYNuRcz5WxS+r+AtwDC3sjTqgiquG+18AvL2Knw/dgv8JbDa0Wv0NuA1wTyDDORcv+/8aSTOZwUrSOKwHnD/y/fnDsSlXVHHVjdw/+jyXV3H1yLELR27fGXjm0A14ZcKVwCOAdUfO+d3I7auBWy/yMxZ9vkNGnutyIMD6VXwT+ADwQeDShMMS1lhMzZJWYgYrSePwW1pImXKn4diUtRNudSP3T7kYuG3CLUeObThy+0Lgk1WsNfJ1qyoOXIZaR2f4XAjsucjz3aKK7wFU8b4qHgRsSusSfMUy/BxJKwGDlaRxOAp4fcLcYbD4G+EfA84Hb0pYLeGRwL8Bn1v0Sao4n9a1d8Bw7kOBJ4+c8ingyQlbJ6yScPNhcPwGy1n3h4HXJNwbIGHNhGcOtx+c8JCEVYGrgGuA65fz50iaoeaMuwBJs9JbgTWAM4bvPzccm/I74ApaK9XVwAuq+MUNPNezgY/TBor/EPgssApAFRcOA87fSQtzC4dzXrg8RVfxpYRbA0cP46r+AJww1L8GcDBwV1qo+jpw0PL8HEkzl+tYSZoow3IIn6pavlalhM8Cv6hi/66FSdJSsCtQ0ow2dMHdLeFmCdsA2wH/PeayJM1SdgVKmunuCHyRto7VRcALq/jJeEuSNFvZFShJktSJXYGSJEmdGKwkSZI6mYgxVuuss05ttNFG4y5DkiRpiX784x//vqrmLu6+iQhWG220Eaeccsq4y5AkSVqiJOff0H12BUqSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpkz7gKW1YNe8YlxlzAr/Pig5467BEmSZhxbrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHWyxGCV5OZJfpjk9CQ/S/Km4fhdkvwgyTlJPptkteH46sP35wz3bzTN/w2SJEkTYWlarK4FHltV9wc2A7ZJsgXwDuDgqro7cAWw+3D+7sAVw/GDh/MkSZJWeksMVtX8efh21eGrgMcCnx+OHwlsP9zebvie4f7HJUmvgiVJkibVUo2xSrJKktOAS4ETgHOBK6vquuGUi4D1h9vrAxcCDPf/Abhdx5olSZIm0lIFq6paWFWbARsAmwP3XNEfnGSPJKckOWXBggUr+nSSJEljt0yzAqvqSuBbwEOBtZLMGe7aAJg/3J4PbAgw3L8mcNlinuuwqppXVfPmzp27fNVLkiRNkKWZFTg3yVrD7VsAWwE/pwWsZwyn7Qp8ebh97PA9w/3frKrqWLMkSdJEmrPkU1gXODLJKrQgdkxVfTXJWcDRSd4K/AQ4fDj/cOCTSc4BLgd2nIa6JUmSJs4Sg1VVnQE8YDHHf00bb7Xo8WuAZ3apTpIkaQZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKmTJQarJBsm+VaSs5L8LMk+w/EDksxPctrwte3IY16T5JwkZyfZejr/AyRJkibFnKU45zrg5VV1apLbAD9OcsJw38FV9a7Rk5NsCuwI3BtYD/hGkntU1cKehUuSJE2aJbZYVdXFVXXqcPtPwM+B9W/kIdsBR1fVtVX1G+AcYPMexUqSJE2yZRpjlWQj4AHAD4ZDeyc5I8kRSdYejq0PXDjysItYTBBLskeSU5KcsmDBgmWvXJIkacIsdbBKcmvgC8C+VfVH4EPA3YDNgIuBdy/LD66qw6pqXlXNmzt37rI8VJIkaSItVbBKsiotVH26qr4IUFWXVNXCqroe+Cj/6O6bD2w48vANhmOSJEkrtaWZFRjgcODnVfWekePrjpz2VOCnw+1jgR2TrJ7kLsDGwA/7lSxJkjSZlmZW4MOBXYAzk5w2HHstsFOSzYACzgP2BKiqnyU5BjiLNqNwL2cESpKk2WCJwaqqvgNkMXcddyOPeRvwthWoS5IkacZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktTJEoNVkg2TfCvJWUl+lmSf4fhtk5yQ5FfDv2sPx5PkfUnOSXJGkgdO93+EJEnSJFiaFqvrgJdX1abAFsBeSTYFXg2cWFUbAycO3wM8Edh4+NoD+FD3qiVJkibQEoNVVV1cVacOt/8E/BxYH9gOOHI47Uhg++H2dsAnqvk+sFaSdXsXLkmSNGmWaYxVko2ABwA/AO5QVRcPd/0OuMNwe33gwpGHXTQcW/S59khySpJTFixYsKx1S5IkTZylDlZJbg18Adi3qv44el9VFVDL8oOr6rCqmldV8+bOnbssD5UkSZpISxWskqxKC1WfrqovDocvmeriG/69dDg+H9hw5OEbDMckSZJWakszKzDA4cDPq+o9I3cdC+w63N4V+PLI8ecOswO3AP4w0mUoSZK00pqzFOc8HNgFODPJacOx1wIHAsck2R04H9hhuO84YFvgHOBqYLeeBUuSJE2qJQarqvoOkBu4+3GLOb+AvVawLkmSpBnHldclSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInSwxWSY5IcmmSn44cOyDJ/CSnDV/bjtz3miTnJDk7ydbTVbgkSdKkWZoWq48D2yzm+MFVtdnwdRxAkk2BHYF7D485NMkqvYqVJEmaZEsMVlV1MnD5Uj7fdsDRVXVtVf0GOAfYfAXqkyRJmjFWZIzV3knOGLoK1x6OrQ9cOHLORcOxf5FkjySnJDllwYIFK1CGJEnSZFjeYPUh4G7AZsDFwLuX9Qmq6rCqmldV8+bOnbucZUiSJE2O5QpWVXVJVS2squuBj/KP7r75wIYjp24wHJMkSVrpLVewSrLuyLdPBaZmDB4L7Jhk9SR3ATYGfrhiJUqSJM0Mc5Z0QpKjgC2BdZJcBOwPbJlkM6CA84A9AarqZ0mOAc4CrgP2qqqF01K5JEnShFlisKqqnRZz+PAbOf9twNtWpChJkqSZyJXXJUmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJ0sMVkmOSHJpkp+OHLttkhOS/Gr4d+3heJK8L8k5Sc5I8sDpLF6SJGmSLE2L1ceBbRY59mrgxKraGDhx+B7gicDGw9cewIf6lClJkjT5lhisqupk4PJFDm8HHDncPhLYfuT4J6r5PrBWknU71SpJkjTRlneM1R2q6uLh9u+AOwy31wcuHDnvouGYJEnSSm+FB69XVQG1rI9LskeSU5KcsmDBghUtQ5IkaeyWN1hdMtXFN/x76XB8PrDhyHkbDMf+RVUdVlXzqmre3Llzl7MMSZKkybG8wepYYNfh9q7Al0eOP3eYHbgF8IeRLkNJkqSV2pwlnZDkKGBLYJ0kFwH7AwcCxyTZHTgf2GE4/ThgW+Ac4Gpgt2moWZIkaSItMVhV1U43cNfjFnNuAXutaFGSJEkzkSuvS5IkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE6WuNyC1NMFb77vuEtY6d3pjWeOuwRJmrVssZIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpmzIg9Och7wJ2AhcF1VzUtyW+CzwEbAecAOVXXFipUpSZI0+VYoWA0eU1W/H/n+1cCJVXVgklcP37+qw8+RNGYPf//Dx13CSu+7L/7uuEuQtAKmoytwO+DI4faRwPbT8DMkSZImzooGqwKOT/LjJHsMx+5QVRcPt38H3GEFf4YkSdKMsKJdgY+oqvlJbg+ckOQXo3dWVSWpxT1wCGJ7ANzpTndawTIkSZLGb4VarKpq/vDvpcCXgM2BS5KsCzD8e+kNPPawqppXVfPmzp27ImVIkiRNhOUOVkluleQ2U7eBJwA/BY4Fdh1O2xX48ooWKUmSNBOsSFfgHYAvJZl6ns9U1f9L8iPgmCS7A+cDO6x4mZIkSZNvuYNVVf0auP9ijl8GPG5FipIkSZqJXHldkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUyZxxFyBJmn4nPerR4y5hpffok08adwmaALZYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6mTPuAiRJ0o37wMu/Mu4SVnp7v/vJXZ7HFitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqZNqCVZJtkpyd5Jwkr56unyNJkjQppiVYJVkF+CDwRGBTYKckm07Hz5IkSZoU09VitTlwTlX9uqr+ChwNbDdNP0uSJGkipKr6P2nyDGCbqnr+8P0uwEOqau+Rc/YA9hi+3QQ4u3shk2Md4PfjLkLLzes3c3ntZjav38y1sl+7O1fV3MXdMbaV16vqMOCwcf38m1KSU6pq3rjr0PLx+s1cXruZzes3c83mazddXYHzgQ1Hvt9gOCZJkrTSmq5g9SNg4yR3SbIasCNw7DT9LEmSpIkwLV2BVXVdkr2BrwOrAEdU1c+m42fNELOiy3Ml5vWbubx2M5vXb+aatdduWgavS5IkzUauvC5JktSJwUqSJKkTg9UMlOSuSVYfdx2SJOmfGaxmmCRrA/sBrzNcSdINS5Jx16DZx2A1gyTZqKquAL4ArAnsZ7iaPL6YzyxJHpTELbdWMklSVZXk4Ul2T/K4YfkfzQCjr6PD/sMzhsFqhkiyFvCuJK+rqhOBLwLrYbgam6k//CT3HV681wcYXswNVxNs5NrNo22t9YYk2463KvU0/B0+BvgkcHfgvcBLktx9rIVpiaZC8XD7ecATZlIoNljNHFcB7wPunWS/qjoJOAbD1ViMfBp+PO06vAV4S5KXj74oaDIN1+6JwFHA6bRFjV+U5OnjrUy9JNkEeAGwb1W9BtgV2BjYaqyFaYlGQtVewD7A2VX11/FWtfQMVhNu6pN1Vf0N+D7wQWCLRcLV7YE3Gq5uOsMb8wOBVwDbV9Vjgc/RtnKyW2lmmAe8vqoOBfanhay9kmwz3rK0IjIAHgXcDdg6ya2q6lTaNd5jGKuqCZbk9sAutJ1bzkvy9CQvGFqZJ5rBaoIt0hy6JkBVfRd4D/DQkXD1VWA14NZjK3aWGZqlHw08Blh/OPwd4I/Ag8dVl27YYrpnbwk8D6CqLgV+APwV+I8km9+01WlFjVzfdYA5VfVR4G1AaG/OAL8D/jQc0wRJMjfJFsPtbYA7AicABwMfB3YANgMeO6YSl9q0bGmjPkZC1UuAxwGXJTm+qo4eXkP2SfLGqnpzku9U1V/GWe/KbqT7b1Xgb7TWw7WBVyW5oqp+kuQ0YOcktwT+Ypfg5Biu3YNpQfjrwH8C705ySFXtA9yK1uW+ALgr8MOxFatlNlzfbYE3A/OTXAXsTruuuybZmfae986qunyMpWrxVgVen6RoDQU7AF8BzgVOrqpfD1vlzUtys6q6foy13iiD1YRL8gLg6cCzgYNobwS3q6oPJpkD7J7ktr5QTL/hhfvJwFNp3a8H0bpiLwOOTXIErQXroKq6enyVatRIIN4S+DBwKfAU4LO0cYsHJDkJWJfWjfsU4N7jqVbLK8m9gLcCewOnAZ8BPlZVOya5BtgaOLOqvjqc71jICVJVv03yf7ThFR+oqj/QPtz8EP4+iP35wM6THKrArsCJluTmwLW0N/JnALcAngO8PMkLq+pkYE9D1U0jyYOAdwD/Rev22wW4P23W0adorYofqaqvzLTpwSujoWVxKhBvRlv/7UlV9SjgPOAJwDpV9Qza39UjaIF5N+DT46hZK+Ra4Czg1Kq6uqq2B9YdBkD/N62r9/5JdjRUTYbFdM9/lfa3+Pgk+42c93DgzsBzquqsm7DE5WKL1QRZtHmzqq4BPpZkQ2AbYPeqmp/kdNoMpqOq6soxlTsb3Qv4YVV9D/hekmcArwK+BbwbuJjWgnh6Vf10jHXOekluBxyd5ClDF/lDgS2B+9G6Ft4N7As8J8lqVXV8krsAzwSeUVW/GE/lWlojLZGr0BoJLqe1Os6jffABOJqWra9LciStC/9bhqrxW2QM8bNoYx5/VVVfTXI5cMjQnXsu7UPQW2fK+53BakIk2aCqLhpuvxi4C/Bb4DD+MeDyLkmeBFwC7DFTfslmqpEX7qnAexawbZJ5VXVKVX0+bWHJjavqpCSfA64H/jDWwkVVXZbk+cBGSf5aVR9KchvawPTLh+t1MK3b4aLhMb9J8qqqumqctWvpDH+b2wHPpQ1GP4g27vH9SQ4HrqF1C+4znP834MgxlatFjISqvWmtVB8AvpFkt6o6Ksmew7E5wPNm0vtdDO7jNTSFrkEbE/B24AzauI//on26Xoe2/sqewAOBBwHPrqozxlHvbJO2TtVDgStpM1ReQGuZmg+cTZu+/bSp65FklapaOJ5qBf98DZK8DngjcK+Rwa9bAe+rqhOnQvOkD4bVv0pyT9rr5Ntpr5MH0Lrn/0YbT7UB8PmqOn5cNerGJbk/beHW7WnhandgLdoEgw8Pk4BuPtOGuxisJkSShwGH01pFPlhV30yyHq2raQ1gr6q6Osmaw6A+TbOhX/8IWrfRc2n9/+cDc4GH0WYbfbSqjnXMxmQYaWXcArh0CFOvAl4KPLyqzk3yclq42hm40kA18yS5D+3v8uyqeslwbGvatPxHVtU5YyxPN2Bxr5NJ1qGNb9y3qrZMshvtvfAZVfXFcdS5ohy8PkZTA/eGX7bv0RL7vYFtoc2SAA4EFgIfHD5VG6puAknuAbyI1rJxGO0T1e2A+1XV+6pqR1rztKFqggyhampF9aktht5BW/vt5CT3qKp3M0z6MFTNWL+kDZG4V5KNk6xeVV+n7aM6d7ylaXEWGVP16CTbJlm7qn4PrE7rAYC2FuBngZ+MqdQVZovVmCzyS/Z42to582nrIv0Pbcr+R4b770h7z7hkXPXONsOb80toM41eOoy/WQM4CXhWVf1yrAVqsYYB6F+hhd5TktwXWLWqTh1arl4JbFCu+TZjTXX1DrM+Dwf+AnyDtozGUcB2VfWjcdaoG5bkpbQlhM4AtqB1/60B/DttketNgCdX1W/GVuQKMliN2fBLtj1tZtmjaYui3ZU2yPLDVfXesRU3i4x0Id0VuJo2w2gT2ti2C2ifhEPb/PpJVXXh2IrVP1nkQ8qtaAtEXk5ruXgALRx/oqo+leTudhPNXCN/p3OGmX6r0QasP5j2oedrwwxPW5EnUJL7AW+qqqcm2Qf4t6raKm1NxvsA96XNvD77Rp9owtkVOEZJNgW2rqpHA2sCV9DGfPyANqZnlyRrjbHEWWOkC+mrtG6jH9Fm9x1Fm779OdoL+KsMVZNj5I122yT701ovLqBNuz+etv3F12gTPwBm7Kfg2WhkuMTGQ8s9AEOomlNtY94XAafQpuufaqiaHFPXb8TFwOlJPkob8vLE4fh2wFlV9cmZHqrAYHWTWswv2V+BC5K8FrgHbUXZvyXZrqp+CDxsJk0xncmGF+23Av9RVTvTgtSxwK9os46+B3yb1rK4uGupMRhC1VNoe8KdWlXXV9UhVbV3VR1HC1TPA/7fcL4zNmeIkdC8Ne1v8b9pm2TfHf4pXP2NFq5uD7wGlxGaCEOX7VRL8m2HQeqXAxsBdwd2Ha7hc2kzd283tmI7syvwJrJId8V2tDFV3we+RFt4ctPhl+z5tOUVtq+qy8ZW8CwwMtX+wbSVuA8E9q9/rCf2fmBhVe2btn7YU2kDKj9SVdeNq+7ZLsm6wAOq6rhhnM0RwDtprVEPoW1JczBwW2B/4Iiq+vK46tXySzKPNjP6NcAdaBN8zgX+e6pLd2TM1Wq0lfR/O7aCBfy9N+YOVfWtJC+j/U3eHngTrUHhubT3wKLNsN6xqn42rnp7M1jdxIZ1dPagrX10TpLH0nZevz0taO1IW7bflbunSZJbTA1eTvII4FDaIoL7AseNTBp4FrBZVb1m+P4JwOlOIhivtI12zwN+W1VXJvkEbbunWwA/o6319uuq2iPJetX2ILN7aIZJW9D1QGCbqrrbcOyRwE60iT6fm5pEEtchmyhJ3kRbR+y7tOu1A631+OXAx2jbC92b9r538kweqL44Bqub0NCEfTiw09SnquET91q0T2JXAP+3MvQxT6ph/Zv3Av9GG4fzYdoigh8dWq4Ooy0EeiXwLOC1VfW18VSrUUnuDMwdZvutCRwCfBn4Ou1anVZVP0myCW2R3R2r6orxVaxltWgAHrmW5wAvHlqYt6RtSv+fK9sb8kw30n17M+B1tMkjfx2WpyFtfbkv0Qat/3iMpU4rx1hNo8WMw/k9bfDeaklWG34J/0ZbaPK9VfVxQ9X0GULsvrQ1UtYCHklbM+VZSdYfpmjvDPyaNgPwpVX1NcdTjVeaNWifcj+d5PHV1nP7X1pAfmJVfWwIVU8HPg8caqiaWUbelLdKsnuS5w+vhy+mtUa+Z2iZ+jbwSkPVZBkNxUPr4duAE4G1kzw2yS2r6vu0D0NrjLHUaWeL1TRZZEzVOsBVwHXAMcDxVfWh4b6dacssvKzco2xaDcHq9cDdaDul7wmsQhvTdh1wSFVdPL4KdWOSvJ02Q/M64AND6N2F9vfz7WE5hXcOt4+z+2/mGBnv+CTaZJFX0LqMPlNV+w2t/W8FLq+qF9n1N1kWeb/bmfbB9dqqOjzJvsBmtO7b3wBvALZcmYOxsyemwSK/ZC+j9TGfTpvVsjfwuaHb6Tpgc2AXQ9X0mmodTPIdWqD6dlWdNdz3JVrLx6uT/KdjqCZHklWHVl1oszLXoi2g+/wkVNUnk1wPPCnJVVX1yuFxhqoZIG1B15tV22poHdrr4w60WdLnAc9MW51797TlNFaHv7eIaEKMvN+9ENgN+BSwXZKnV9W2aRsq70UbZrHVyhyqwK7AaTHyS/Zg2oC9F9PW0tmX9on7CbSWq/+jDWI/czyVzg4jXQx3pS0a+TTgZkneOrxofxc4jhZ01xpjqRqRtsnu4UkeMxw6nrbe2xa0BXRflGSbqvo0bZzVuVOPNVTNGA8Dbpe2Jc3vaRN7VqPNHnsE8BhgtyQfqKqzy83nJ8owlmrq9hxa6/FLq237tTWwMMn7hwlBnwTeVbNg1wpbrKbJMNvsi7Tupe8nuQXwJ1oT93pTXYGafkOoegptRe5zaGOoPkKbofKSJO+rqv9Ncma5btgkuT3D/plJPgxcT5t2vxNtvNXNaa2MN6uqI8dXppZXVX06ya2BHyV5TlWdkbb5/I+HrsE70hbs/fp4K9Wi0havXg84a2hEuBj4G21ZjCmvoDUoUFUH3cQljo0tVp0sOsC5qr5DS+g7JFlnmN5/Mm0m01ZJ1nZQ9E1jmInyBmBr2oyUF9FaDd9F+4T18rSFBq8cW5H6F1V1MvAo4J7Ab2lbPR1Nu34b0AapH0ZbD0czyNRrX9rin/ehvVZ+dJi1ex6wZpJDaVtJfbmqTvD1cuJsAvxbkiNpYx4voi3E+5Ekmw/nPBS4e5Jbzqbr5+D1DhYZU/U44DbACVV1VZKDaV0X21XVpcMA6lWr6uoxljyrJNmAtrTC2rQBsDvTllm4HPg4sKDctHViDW++7wXuR5u+vQ3w3ao6cQjELtY6Aw1vvofQuo6+P4xH3Zm2dyq0631VVZ00phJ1I4b3so/RFv98bVV9YDi+J//YZuhBwLNrJVr8c2kYrDrKP3bt/hWtOfQdVXVSkoNog6MfVVV+uh6TJG8DLq2qQ9K2UXgJ8PSqOn/MpWkJhtli7wK2qKo/LDKoXTNMkg1pq+NfXlV7jBx/GfAfwDPLRZInzqKzMZM8ENiK9qH1TODoaqvgP5C2vNB1NQtXwneM1QoY+v+vqKprk2xFm+3wiCSvpg3K3G1ozHpFkmtp61UZrMbnTGDP4ZPW04B9DFUzw7C0wkLgl0nu6RpVM951wBm0mWPbVNXUXo7vSbIKTiKZSFOhKsmuwKrABVX1jiQvoPXM/CnJ2rRemw/O1kkktlgth6GveC5tjMd/0aaWrg3cmjaTZVda8+jHaJtNvrKqvjWeajUlbZHJp9KuzRHliuozztByddWwSKRmiJGZuQ+lvXZeQJtE8jza1ibHVNWJYyxRS2mYCPRu4NO0rr5vVtXBafvcPgR4HPDk2db9N8oWq+WTYbzUW4CX0RZC+yxwWZJ/B/6nqq5J8l3aJpM2aU+AqvojcGSST1fb8Nq1jmaYqTDstZtZhlD1BNqYqvcwbGsCHAssBJ6Xtpny8WMsU0uQtiDv5sBTqurnSR4EvGn4c3xvkk8Ca8z2IS8Gq+Uw0sd8S9pWC0ekLdf/MeB7wKFJ7kGbEfHM2f5LNoEWgmsdzWReu5ljWOtoLdrCvE8FbgucBZxaVZck+Rxt4U93PZgwIy2NUx9k7kSbYPBt4OfAacD+wMFJVquqd+JwF7sCl1eSZwGvAp5Im8XyXOBQ2j50D6cN6PtUVf1iXDVK0qRI8iraAq+Ppc0UOzfJ82jL0JznauqTZZHZ7hvTxlNdO/TK7EdrNPjZsDDofYDLqurCMZY8MWyxWn63A06utv3JR5JcRltT55ZV9VHAKcKSZrUkm9GWmnkTbfLOLsBjhlB1f9qH03Oq6tdjLFOLMRKqprYZujTJfFoL1RzgqCS7VNXptJYrDQxWy+8CYLNhjaT5VfX5YQr/k5McXVV/GnN9knSTG+k+eiTwTGDrJJdW1RvTtinaP8l1tI15XzUspqwJlLaDyJ60HpiNaLPdP0TrDlwP+FCSLavqr2MrcgIZrJbf/wLPpm0a+pMkt6QNVN/HUCVptpkKVEOoehRt1tjewHzgMWn7Ae4wvFmvTVut+8dORJgci7kWC4HTqup3SS6h7YDwAOAhVXVA2h6OhqpFGKxuxA39wQ+rPf8hyV60NP8IYGNgv6o67yYuU5LGKm1/v3sl+XZVLaQNcv5AVX05yYm01ql3DC+ph4w+1lA1GRYZU/Vi4I7AQbSemd2GyVkXJLmetp3N94HLxlbwBDNY3YBFfsm2AwJcX1XHDlP151TV5UneUW2z0FtV1VXjrVqSxuLBtB0nbjV08/0BOCDJMVX1myTfo61b9egkC6rqM+MsVv9q5P3uP2gb1J9aVVcm2Q/YL8kmwC+B+wMHjD5G/8xNmG/AyC/ZC4C30BL6B5K8crj/umEa8dQvlnv/SZqVqurLwO9oM6O3B46n7cd5yDCu6n60/Tp/Baw/pjK1BMOMvxfQZrkvTHJ74ERgX9qMzk2AXarqN2MrcgawxWoRi7RU3Zw2G2LXqvpJkmOAryf5c1UdOjo92OQuabYZfb0cWvBPAp4A/JW2CGiAT9K2sNkdeCCw1bCt1HW+bo7XIu9369AaCJ5SVfOTvAK4ZmhE+HNVvXCsxc4gBqsbMLRUnU1r+rxF2uaTvxmmnu443uokafyGgeqPBu5L29rko0n+TNs26vqqOijJocPpmwNvBJ5abqA9douEqr2Bu9IC8BeHU64Cbj0MhdknybZVdel4qp1ZDFaDJJtU1dnDC8XTaNOEd6INznspbXbLJcCGwC2H7RcWjq9iSRqPkSUVHkLr/jsLmJfku0O4Wgg8Z1g88gu0ldcfRlvT6udjK1x/NxKqXkTrmdkJOBVYL8mBwDXA+2nLKjzXULX0XHkdSLI1bW2OB9LGAbwbOLeqXjzcfwRtevBVtD7m3arK/f8kzVpJNgfeTNtk/owkO9LC05lDuNoJOGtYQJJhyxOn5k+QtI3p3wO8gdaYsC1tS5pbA2fSWh53rqqzxlbkDDTrW6yGT1Sb036xNqVNC/4WsF2SJ1fVV6rq34dPZqvQFgM9f2wFS9JkWAt4PG3xyDOAzwPXM4yhqqpD4Z/WtzJUTZiq+uOwbNA9aV20j0kS4FLgN8ATbKladrM+WA0D884FXk9bDO0xtCbQv9BWUV9YVcdV1Q/GWackTZKqOn4YNvH2JL+tqqOSfJ72AfT0kfPsFplg1fb/uxqYk+S+tBXWvwkcbKhaPrM+WA3OoM2G+COwZlX9PskXaZ++dklybVWdONYKJWnCVNWxw7pVbxm6+o4Ejhp3XVpmFwBfpXULrkfbYNkNlZfTrBxjtchsiNWAhVW1cFgI7bHA/lX1o2EfwCcCX62qi8dYsiRNrCRPAQ6kdQ3+bnQpGs0MwxIYd6TN5pw/7npmslkXrBYzxXRTWkvVAVV1TZLXAg8BDqyq/3P2nyQtWZK5VbVg3HVI4zbrgtWUYYrps2i7dJ8KfAN4Y1Wdm+StwN2B51XVNWMsU5IkzSCzMljdwBTTS2lLLbywqs5JcruqcoNJSZK01GZlsAJIsjptiul7R6aYLgA+QusWdGVgSZK0TGbtrMDFTDG9M22zyY8YqiRJ0vKYtS1W8PdWq31pM1mmppi6wqwkSVouszpYgVNMJUlSP7M+WEmSJPVys3EXIEmStLIwWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRO/j/0nFv+UbvkvAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top[:5].index,y=top[:5].values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Reglas importantes: \n", + "1. NO agregues etiquetas como '''markdown ni ninguna otra alrededor de la traducción. \n", + "2. Asegúrate de que la traducción no suene demasiado literal. \n", + "3. Traduce también los comentarios. \n", + "4. Este archivo está escrito en formato Markdown; no lo trates como XML o HTML. \n", + "5. No traduzcas: \n", + " - [!NOTE], [!WARNING], [!TIP], [!IMPORTANT], [!CAUTION] \n", + " - Nombres de variables, funciones, clases \n", + " - Marcadores de posición como @@INLINE_CODE_x@@ o @@CODE_BLOCK_x@@ \n", + " - URLs o rutas \n", + "6. Mantén todo el formato original de Markdown intacto. \n", + "7. Devuelve SOLO el contenido traducido sin etiquetas ni marcas adicionales. \n", + "\n", + "Elimina los géneros 'Missing', ya que no están clasificados en Spotify.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAHuCAYAAADELJsvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZdklEQVR4nO3debytc9n48c/lHENmcsxzREqGjBkbRMgYGRJShqg0e2gQ9aSJRkoTqUilqJSkNOjXQElFnlQkKZ4iPWnC9fvj+q72sjucs89ea6/7nPN5v177tde613B/73vdw/WdIzORJElStyww6gRIkiTpPxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSRqaCP6v7++BCP7W9/zgUadPkrosHMxW0lSI4GbgeZl8ddRpmRMRTM/kvlGnQ9L8w5I0SVMugoUjeEcEv2t/74hg4fbajhH8NoITI/jfCG5+uFK3CNaK4JsR/CWCr0bw3gg+1vf6VhF8J4K7I/hxBDv2vXZlBKdGcFX7/FciWK69tmYEGcEREfwG+Fpb/twIbojgrggui2CNtjwiOCOCOyK4J4KfRPC44exBSfMDgzRJo3ASsBWwMbARsAXw6r7XVwSWA1YBDgXOjmC9h/iuTwDfBx4JnAwc0nshglWALwJvAJYFXg58JoIZfZ8/CDgcWB5YqL2n3w7AY4CdI9gTOBHYB5gBfAs4v73vacD2wKOBpYD9gT/OYj9I0kMySJM0CgcDp2RyRyZ3Aq+nL7hqXpPJPzL5BhVo7T/+SyJYHdgceG0m/8zk28AlfW95NnBpJpdm8kAmlwNXA7v2vecjmfxPJn8DLqQCx34nZ/LX9vrRwJsyuaFVff43sHErTfsXsASwPhDtPbdPfNdIUjFIkzQKKwO39D2/pS3ruSuTvz7M6/3f86dM7u1bdmvf4zWA/VpV590R3A1sC6zU957f9z2+F1h83DrGf987+77rT0AAq2TyNeA9wHuBOyI4O4IlZ5JmSZotBmmSRuF3VMDTs3pb1rNMBIs9zOs9twPLRrBo37LV+h7fCpyXydJ9f4tlctoE0trfu+pW4Khx3/eITL4DkMm7MnkCsAFV7fmKCaxHkh7EIE3SKJwPvDqCGa2h/mthrLF/8/oIFopgO2B34FPjvySTW6jqy5Pbe7cGntH3lo8Bz4hg5wimRbBI65iw6hym+33Af0XwWIAIlopgv/Z48wi2jGBB4K/A34EH5nA9ksT0USdA0nzpDcCSwHXt+afasp7fA3dRpWf3Akdn8vOH+K6DgXOoRvrfBz4JTAPI5NbW2P8tVGB4f3vPMXOS6Ew+G8HiwAWtHdqfgctb+pcEzgDWpgK0y4C3zsl6JAkcJ01Sx7QhMj6WOWelXRF8Evh5Jq8baMIkaYpZ3SlprtaqGR8VwQIR7ALsCXxuxMmSpEmzulPS3G5F4CJqnLTfAsdk8qPRJkmSJs/qTkmSpA6yulOSJKmDOlHdudxyy+Waa6456mRIkiTN0jXXXPO/mTlj1u+cnE4EaWuuuSZXX331qJMhSZI0SxFxy6zfNXlWd0qSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB00fdQLGu/Osjw19HTOOefbQ1yFJkjQZlqRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkddAsg7SIWCQivh8RP46In0XE69vytSLiexFxU0R8MiIWassXbs9vaq+vOeRtkCRJmufMTknaP4AnZ+ZGwMbALhGxFfBm4IzMXAe4Cziivf8I4K62/Iz2PkmSJE3ALIO0LP/Xni7Y/hJ4MvDptvxcYK/2eM/2nPb6UyIiBpVgSZKk+cFstUmLiGkRcS1wB3A58Evg7sy8r73lt8Aq7fEqwK0A7fU/A4+cyXceGRFXR8TVd95556Q2QpIkaV4zW0FaZt6fmRsDqwJbAOtPdsWZeXZmbpaZm82YMWOyXydJkjRPmVDvzsy8G/g6sDWwdERMby+tCtzWHt8GrAbQXl8K+OMgEitJkjS/mJ3enTMiYun2+BHATsANVLD2zPa2Q4GL2+NL2nPa61/LzBxgmiVJkuZ502f9FlYCzo2IaVRQd2FmfiEirgcuiIg3AD8CPtTe/yHgvIi4CfgTcMAQ0i1JkjRPm2WQlpnXAZvMZPmvqPZp45f/HdhvIKmTJEmaTznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB80ySIuI1SLi6xFxfUT8LCJe3JafHBG3RcS17W/Xvs/8V0TcFBE3RsTOw9wASZKkedH02XjPfcDLMvOHEbEEcE1EXN5eOyMz39b/5ojYADgAeCywMvDViHh0Zt4/yIRLkiTNy2ZZkpaZt2fmD9vjvwA3AKs8zEf2BC7IzH9k5q+Bm4AtBpFYSZKk+cWE2qRFxJrAJsD32qLjIuK6iPhwRCzTlq0C3Nr3sd8yk6AuIo6MiKsj4uo777xz4imXJEmah812kBYRiwOfAY7PzHuAs4BHARsDtwNvn8iKM/PszNwsMzebMWPGRD4qSZI0z5utIC0iFqQCtI9n5kUAmfmHzLw/Mx8APsBYleZtwGp9H1+1LZMkSdJsmp3enQF8CLghM0/vW75S39v2Bn7aHl8CHBARC0fEWsC6wPcHl2RJkqR53+z07twGOAT4SURc25adCBwYERsDCdwMHAWQmT+LiAuB66meocfas1OSJGliZhmkZea3gZjJS5c+zGfeCLxxEumSJEmarznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10CyDtIhYLSK+HhHXR8TPIuLFbfmyEXF5RPyi/V+mLY+IeFdE3BQR10XEpsPeCEmSpHnN7JSk3Qe8LDM3ALYCjo2IDYATgCsyc13givYc4OnAuu3vSOCsgadakiRpHjfLIC0zb8/MH7bHfwFuAFYB9gTObW87F9irPd4T+GiW7wJLR8RKg064JEnSvGxCbdIiYk1gE+B7wAqZeXt76ffACu3xKsCtfR/7bVs2/ruOjIirI+LqO++8c6LpliRJmqfNdpAWEYsDnwGOz8x7+l/LzARyIivOzLMzc7PM3GzGjBkT+agkSdI8b7aCtIhYkArQPp6ZF7XFf+hVY7b/d7TltwGr9X181bZMkiRJs2l2encG8CHghsw8ve+lS4BD2+NDgYv7lj+n9fLcCvhzX7WoJEmSZsP02XjPNsAhwE8i4tq27ETgNODCiDgCuAXYv712KbArcBNwL3D4IBMsSZI0P5hlkJaZ3wbiIV5+ykzen8Cxk0yXJEnSfM0ZByRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpg2YZpEXEhyPijoj4ad+ykyPitoi4tv3t2vfaf0XETRFxY0TsPKyES5IkzctmpyTtHGCXmSw/IzM3bn+XAkTEBsABwGPbZ86MiGmDSqwkSdL8YpZBWmZ+E/jTbH7fnsAFmfmPzPw1cBOwxSTSJ0mSNF+aTJu04yLiulYdukxbtgpwa997ftuW/YeIODIiro6Iq++8885JJEOSJGneM6dB2lnAo4CNgduBt0/0CzLz7MzcLDM3mzFjxhwmQ5Ikad40R0FaZv4hM+/PzAeADzBWpXkbsFrfW1dtyyRJkjQBcxSkRcRKfU/3Bno9Py8BDoiIhSNiLWBd4PuTS6IkSdL8Z/qs3hAR5wM7AstFxG+B1wE7RsTGQAI3A0cBZObPIuJC4HrgPuDYzLx/KCmXJEmah80ySMvMA2ey+EMP8/43Am+cTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdNMsgLSI+HBF3RMRP+5YtGxGXR8Qv2v9l2vKIiHdFxE0RcV1EbDrMxEuSJM2rZqck7Rxgl3HLTgCuyMx1gSvac4CnA+u2vyOBswaTTEmSpPnLLIO0zPwm8Kdxi/cEzm2PzwX26lv+0SzfBZaOiJUGlFZJkqT5xpy2SVshM29vj38PrNAerwLc2ve+37Zl/yEijoyIqyPi6jvvvHMOkyFJkjRvmnTHgcxMIOfgc2dn5maZudmMGTMmmwxJkqR5ypwGaX/oVWO2/3e05bcBq/W9b9W2TJIkSRMwp0HaJcCh7fGhwMV9y5/TenluBfy5r1pUkiRJs2n6rN4QEecDOwLLRcRvgdcBpwEXRsQRwC3A/u3tlwK7AjcB9wKHDyHNkiRJ87xZBmmZeeBDvPSUmbw3gWMnmyhJkqT5nTMOSJIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10Cx7d85Pfn/m64a+jhVf8Pqhr0OSJM39LEmTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA6aPpkPR8TNwF+A+4H7MnOziFgW+CSwJnAzsH9m3jW5ZEqSJM1fBlGS9qTM3DgzN2vPTwCuyMx1gSvac0mSJE3AMKo79wTObY/PBfYawjokSZLmaZMN0hL4SkRcExFHtmUrZObt7fHvgRVm9sGIODIiro6Iq++8885JJkOSJGneMqk2acC2mXlbRCwPXB4RP+9/MTMzInJmH8zMs4GzATbbbLOZvkeSJGl+NamStMy8rf2/A/gssAXwh4hYCaD9v2OyiZQkSZrfzHGQFhGLRcQSvcfA04CfApcAh7a3HQpcPNlESpIkzW8mU925AvDZiOh9zycy88sR8QPgwog4ArgF2H/yyZQkSZq/zHGQlpm/AjaayfI/Ak+ZTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQdNHnQCV687aY+jrePwxlwx9HZIkaTAsSZMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6qDpo06ARu+yD+069HXsfMSlQ1+HJEnzEoM0jdR55+w89HUccthlQ1+HJEmDZnWnJElSBxmkSZIkdZDVnZpvvf384Ve1vuxAq1olSXPGIE0agcM/u8vQ1/GRvb880+W7fu41Q1/3pXudOvR1SNK8bmjVnRGxS0TcGBE3RcQJw1qPJEnSvGgoQVpETAPeCzwd2AA4MCI2GMa6JEmS5kXDqu7cArgpM38FEBEXAHsC1w9pfZLmArtddObQ1/HFfV4w0+W7f/rjQ1/3F5558EyX7/HpLwx93Zc8c/eZLt/nM98d+rov2nermS5/0WdvHfq637X3ajNdfv5n7hz6ug/cd8ZMl1/10eGve5vnzHzdN7/j90Nf95rHrzjT5X8447qhr3uFlzx+psvvePdXh77u5V/41KGvY7zIzMF/acQzgV0y83nt+SHAlpl5XN97jgSObE/XA26cxCqXA/53Ep+fDNftul2363bdrtt1z1/rXiMzZx4pD9DIOg5k5tnA2YP4roi4OjM3G8R3uW7X7bpdt+t23a7bdXfBsDoO3Ab0l0Gv2pZJkiRpNgwrSPsBsG5ErBURCwEHAJcMaV2SJEnznKFUd2bmfRFxHHAZMA34cGb+bBjragZSbeq6Xbfrdt2u23W7btfdFUPpOCBJkqTJce5OSZKkDjJIkyRJ6iCDtJmIiLUjYuFRp0OSJM2/DNLGiYhlgJcDJ83rgVpExKjT0AUz2w+T3TcRMeXnlr9nt4ziGJhbeex2X//x3EZt0GyIiKUiYpX2eJ2IWHRCn7fjwJiIWDMzb46IpwB7AHcAb8vMfwxwHZEd2Om9dETENsD6wM3AtzLzn1O17vZ4WmbeP+x1PkxaFsjMB9rjVYH7M/P2SX7nv7cpItYD7s3Moc2P0ztu2+ODqd/z+8CPM/M3w1rvIIw7FnrH5L9/kzn5nlGLiMcBv83Mu+dkWya57t4+3A5YjLrGf2mq1j9Z7fh9NHAtcG1m/rotf9DvO4rfu2/fLgzcN8rr1ihFxHOAv2TmZ0ew7ik9nyYrIqYD2wOPBdYB1gSelZl/n93vMKfXRMTSwNsi4qTMvAK4CFgZePmclKj1coYRsWFEbNOLpNtJPvJcY0vHk4DzqIPnHcCLImKdYa533E35MOBpo8qVRcQTqBOIiHgp8Hnggog4u+89E/qtImJ94IT2+Bhq/34hIl7dbpwDFREzgFdGxEsj4lDgpcC9wPOA50fEJoNe5yC14/AZbZ+fGxGPz8wHZrXfI2LbiNi1BUQjP6/6zvfHAKcA74qIpdq2TNl1tu2H3YEzqevXmyLiJVO1/slo58sxwI+p69GT2/L+a8a67ca34BSnrReg7QZcALw3Io4d9jrb/8dGxNYRsdyISui3jIjP9y16AnBPfxqHuO6DIuKoiHghwFSfT5OVmfcBvwD2AZ4FnDORAA0M0vr9FXgX8NiIeHlmfgO4kDkI1PpO6Ke27zgVODUiXtaVHH8r4TkaOD4z/ws4FFgX2GmY6+272B4LvBi4cSpK7x7CtsApLWf4RGBX6mR6dC9Qm4Pfam1gzYh4O7BX+97DgH9SAenyg0n6v/0FuII6Tg8FnpeZbwJeQ41RuDV0tzopIh4LvB74CnAT8JmI2LJXovYQn9kS+Ci1X49rwf5IA7W27r2AjwC/A2ZQgdoyU3ljaaXBLwf2BP5GHXdHRMRrpmL9cyLKMsDjgN2BxYH/Ac5p+22h9r7jgfdR1+lDh3AuzSxtK0bE6u333ZE6Vl9DZYQOjYhFhrXuts49gXOBw4EP0zKVUykzv0dd0y5uixYDHtFL47DW24L244GFgadHxDfbOmeZiRu1/vS1WpSPAp+m4ovt+t4368xGZs7Xf7Qq3/Z4IWCbtjNf3pbtALwTeCOw8AS+d1NqMN/12vOnU7nDvUa9ve3v+cDVwHuBxdprOwI/ApYZchqWB74LrEdlFPalAsbNRrA/jgb+X/vNF+87Dq4D9puD75sO7AKc1fZlr0nBBsC3gKcOYRsWpqrnvwt8CJjWlu8MfA1YdJTH3MOkexPgc8CpfcuOpKreV3qIzywNHAVs354fBLwfOHTE27IQ8BngiX2/9+nAB4Gl2rIYchpWpCaMXgfYgiqRWrIdG/8HnDzq37wvrf+xL4BXA98GLutbdhwVmBwEXNnOry+1xycByw8xjesAVwGPbc/3oDJdu7Vrxhpt+doDXOfjgEPa41Xbti4GHAz8EFh22MdR/2/Uu5a059+mgo3XAvu3ffHYdqytPMhjov3OFwDb9C37HDUw/siP3wlsx07tWrAqsBTwJuA0qknKrlRc8LC/53xdkjauGH0pgMy8irq4bt1XovYF6iK8+Gx+70JUcPckYJW2+NtUEfHmA92I2dQX2S8HTM/MD1CBZ1DTdgH8niqZGWguJSJmRMRW7fEu1M3kcuAM4BzqhN+YVr0xTFE9d/+dA8/M9wEfoE6iJ0TEElkle18B/jWb37lhb/9mFW9/FfgUNV/tqyNikcy8nrpprjuAbdglIl7fHk/LajP5ZerieT9wYnvrQu35tMmuc0juoC7Gm0TEqm1bzga+Tt2MHqSVKnwceAmwYVv8ZeqG/ZSIOGJKUj1z04BlGPt9f0FNj7chcHJELNa71gxaK4laHvgksHpm3kRlhC7JzHuA+6jqzyuHsf6JGnfdfUlEvKZVYf4a+AdVAhkRcQAVkN8OJPBs4AXUvn4nlQl5UUSsNOj0tYf7Ar8C7oiInan5qM8FXgXslpm3RMTTWhqWGMB6l6Wa2fTaQN8BXE+VJh0LPDMz/wRsFxFLTnZ9s0hLZLk/InaPave6LbAScDKVET2Kqtp/HXWdmcz6plOBCxGxOXWP+BewQt/bTqBKMDut79h+EfAGqnbmfcAawFuo7TqVysD9cpbXhVFHnV34A14EXEwVJx/Qlj2Ruui9tj1/xOxEz1RbiaBukKdQpWmbtNf2oUpsFmWKckPj0rgrVXp2MfAJqsj62VTAdAXwDWD3Iax3ZSrQ/XzbH0tRua/DaLlQKsd8DrDAELd/b6pk6YlUoNr/2qFUcPVm6oL4S1op6Cy+8+nAz4Anz+S17akA8ItUW5ufAetOchueRpXy7dm/DcDefen5ZnvPl4HHT/Vx9jBp750jGwNbtovWI6gSqNOoIH1rKrjdcNxnN6EC582pavKfA5u315Ztx/HjRrAt69JK/ahc82XArn2//wep0ocnTEGaXgV8FliCuoleQd1QbwO27k93F/7a7/gtYP32fEkqg3Fu+61/QAVlm/S9fj5jJcVfAN4GLDfgdPVK1BcEfgPcDazVln2Kuk5Op66n1wNPH9B6l2vb84J27q5G1b5c1zt+qIz/z3r7bAp+oxdRNQLr9S27FPhc3/MlBrCezYFXtt/+e23ZwcCdwBbt+eHUNbqTNQPjtucpVGZzOlXo85123PSO5fWpDNWsv2vUGzPqP6q66xtUScr57YJ2bHtt+3bQLDub3/UMKtD7AlWS9rh2IbqVasvwTeAZI9rOx1DF5U+kgsTPARe0155JBRMv6nv/QC/mVNXE3cAbZvLaYVRvrg2GuP0rUwHq5uOW7wq8uj0+isrNv6l3UZ7Fd67SLphP6d9n7SL70fZ4h/a7n88kA7T2fScCr5jJ8h+03zGoAO7NwKqjONZmkf7d2kW/dyM+ngrULgSuoarfe0FOb3+u0I7PK/u+5/i273vVi9OncBt66doZuIGqZn4RVWq2N1Vd+17gt1Szhw8Aew4pLWsDS7bHi7b1rtue7wc8F3jaqH/3/v3WHi8EfKxdl9YCjmCss8AMqhrt1VQv5XX7PvND4K1U6fu3gVUGmT4qEPwkVZKzOFWSdgPVdrf3vgupYO3y3rE6yfXO6NvGD1JtCY9vz59CNWH4YDv3b2AIGemHSNfj2j5errf/+177OXBhezzpjDUVEH+Mqm06rm/5UVQNxIeoe8RjR30cz+rYbs/Xp4Ls51LB2lJtG35Ga6oxu39DmWB9btEaff6DurA+h7GSpQ9FxAOZeVZEfD9nozdGVE/BN1O96rYHDqF+nPOoE/4pwFmZ+fkYzbAT/6ByfT9s27NXRHyjNeB/P9XWZ+tWxfDJbEfanJpJB4kvUCfbqyPi7sx8W3vfNlSJyrOzqgSHZWHqInzTuP3/QHuNzHx/RNxJ7aObZ+M776EC/L9GxHLAn6hqmfOAx7Qi/O9SDY2vz8w75zTxffvzLmDTiHgVddFajLqRfIS62G9O3Ty+mpl/ndP1DUNELE41an9hZn47ItaiSk9/T7VFO4dqO3UFPKhR8l1UKeyxEfGyzHx7Zr6jNbr9WFQP1numajsyMyNiM+pcfwYVRB5M5ZrPB55KBU/voEpHtgT+e5BpiIhp1HH7QeD6iPgzFdTcR+3jozLzU33vH3mHpd76I2KjzPxxRNxLNbl4BBUMrEyVSn2tnU9PBXbOzLsiYnpm/jMi9qVKJjagMtO3DTCJ0zPznqjesEtSbc7WjoiVgc9FxJKZeUpm7h811tX0rOrkOdaqVg+jeoAvRF0v/gqsERFPyswrIuL3VEnyMsCRmfmtYfyeM/nOu6iMBhGxcLahqFqTkPUjYg2ohvyTXV9m/isiTgd+AqwaNRTLBe2a/APgf6lhT343xxs4JOOq7x8D3J2ZP2/P16ba3P45In5D3SNumdAKRh2BTuUfDxHxUxHvl2m5MqrK4CfA0hP47mdT3Wt7z59JlW6sTF2oX0RVtU1JlQxjuf1pVC5laermt23fe44Bjm6PF6Sq/FYY1Lrb42dRxdTbtudPbPvlGKrq7m0T2c+TTMvJVEBwAxUQXNx+63uoXNzJzEYJYt++DaptwUVUCdwXqRLK71HF9BcA75md75zANizU9t33qRKFi6kq9Cup3O236EgJ2vjtpkomvgCsM+74eEt7vGpL/4ntuH0SFbwdAyxCNRd4N/Divs+vOUXbsjZwSnu8GNXG5Jd9r29Ptft6bS9NVCna54GNBr1PGeuM8AiqBO8CKkB8PnVj3XZQ6xzwflyJaoz/XCrIfFL73VelArUvU9W1q1LVamvx4Mbry7f/A63yoqrMfw48pj0/hKrqfEZ7vklL9xsHuM7lGOtYtmK7lmzanv8XVfKyA7DgFPwu/deYRdu5uhBV2r1H32sHU22JB5YmWq90WokvVbv1bqqjxqFUU5jOVNM/zHYcR2Xa3w1c3pa9E7iEak93/Zxcm0e+YVO4A1fte/xCKjf2cirHtCBVfL1tuym8D5gxi+/rXSwXaP83pdp5bdb3nvOAHdrjldqPuNoUbvOeVHufi6i2PvtQVU3HtZPiZwyht2Hf+o+jcobPBv4OHNi3r75DBRpDq+Icl5Zem5w9aUOttAvgZlSQ81pmo43AuItZ7zuf2o6ZRalSlc2Bs9tF5lED3IaXAC9oj99KNV7uvXYEVZIy2z2Qp/A47D/3Tmm/e69H8f5t/y/anq9MZZqeRA3JcRRVDfoWapDT3ak2Xi9r7x9aG8Zx2zAd2Kq3LVTPv8uo6sXeNWBHqmqz185yKQbYXqrvmrMbFZSPD1iPoNqlPUC72Xftj7rW7kD1Wjy2b/kLqJvYv6tn2++8B2MB6cHt3H3Y9sGTSNupVHOXR7fnB1CZ9d3b802pJhOPYvIZrwWpzMi72jVoaapU9C19638FdQ/ZidYrfwp+nxdRGYsrqYKGbdr5987291MGWNDQft9fUBnkzzNWzfv8di79io5WcY7bjp2pQpAlqNLhy/teezlVkj5H7YNHvnFTsPOiXSx/TQVgW1E3iSOpUo4LqBzdi6jSlZ/M7s6kbs6voYK+9anqjVdRQcnm1E3m8X3vnzaMbXyItK1P5Ux3o3Ijv6aC0C2pgORshthWBdiIsbr4Y6m2JL9irORuUWazrd8A0rI/Yx0WNqVubou0155GlaYtPcHvPJgqEVySCswuogW8bX1fZYDDA1Bt575EK+mkep6dTpVSPrul5dFTdXzNIq1rAM9tj3cBbqQyMIdTpVBvbMteSZVe7NLeu0D7m0YFvUe15QtTN6v3tOf7MLWdBPo7aPwI+HR7vC7VBvUdjAVqy7T/A7uhjlv/U6mG5Bu1/fgHalaU/vevOOpjYCbbsB9jJYwLUiXql1FV31ABy7btWP4fqnRwK6qk+CNUgHAjQ7hh0xfoUxmdOxgLlA5qv/le7fmkG8n3ras3RuCbqeGIlqSCtrcx1kbtxGEe6zw407lPu46sw1gm6ZlUxukAqn31OgNc9yHUtbhXevkEqqT9+PZ8YWZRWDLC43l8LcFWbV8dT5U+LtSWbzPpdY16Y6dwpz6Rqub6DK0nXjv43tkuAr2c/FKz+X3btIvGkVQwdAJwIBXsXUDlCvaY2Q86Bdv6uHYBfFffsp2pruwDO8nGrXNm4x4tRw3oemV7fjiVy99nCvfF3lTw3QsEprcLwReoG/8PmWAOhwp0v9M7Aalc8KsYG3rjhkHeTKipRD5G6/XUlq1PlT58hhqWYsNBrW8A6d2Cajx/MlVls027IJ9OzYgQVA76mYxrRNt3Hr6SygAt0Z4vTlWFLsEUlZ6NS9djqEB5OnXT/nBbvg5VzXhmez7QtFEZi48wVjr3rHZ+P713DFIl4m/q+0z0/x/RMRDj/r+XKoVZoz1fuB0fd1IlJgdRwe6CVGnadVQQs2K7hhzLAEulZ5Lexfsejw/UDm3n9IxB/L48ODBajwq239rO6aWo6sT3MORM17h0LEe1mz6tb9lGVKe3gV5b+o6Jk4A/Avu259OoQO2bwCtHdezO5jb0MmW9bdmQasP3g773HEZ1MllyUusa9cYOeUeOv1A8gcq5v63vPStRxcwfmd0TkKp2+ThjvUCXaydZ/4Xykf3rnuLtXojqPXc5ldtfuC1/D62Kbhj7uT3egbqZ9UoUngW8vz3el7qhzbLn5ADTdnS7ObyMVk1Cldb0BhKcUFqoAGNXxjqF9KrtZrSL7JMZcJuw9nvuQrV3exVjQxD0jutFpvoYm400b0UN+HlJ37K9qEDtBGYyYDLweKo932rt85+jcvRLU4HJ9xjwcAsT2J79gXf2/R7XA2e3549mCEOdtO99BjXW0vm06njqRv5Z4Ent+QepxshdKUntvx6s2ff4BCpTtGZ7/jzg7dQMDbfz4EDpue29TxpSGpdjbAiX3lRP/QNan0BVffZKeWY6uPKc7huqjdvjqVLnXhXZW6mgbWkqqJ2qYTaOou4Vh1All4v2vfbeQR/bPPie9Nx2LvUGDJ5ODdEzZc2CJpj2Tfsev7idl2+mqqyf1I7lA6kS0B8ygFLQkW/0EHdm/4XiqVSuYLl2gNxEq0ppr6/IBBrMUzf3L7WbSG/8nCWpHPZIL5SM3cAXpNp0vJ+qatihHUCbD3HdL6FKFc9sB+gmbb3nUiU+P2UKA7S+dB1KFUE/hQEENFSQtyNVCvsahjhuT99FfUGqPda7qTYOU1Z1Pom0b0dVx/V3qX9m229rj3vvLlRJyk+pDjbLUaWg51MByfdpY8FN8TZs1C6+C7UbWC9jthAVGJ07pPWuQjVR2IkqSX05lStfo73+ESro3ZkKMCY9vMsQtuFYqm3TJ6lx8Bah2ll9l5qR41dUoHJh+31PGPf5I6jG+osywBLKdi79VzveDmrpeQpVJX85LUCgBmm9a1DrZ6z05cntWvxBqmp3H6oDyClUdef6U3V+t+vYlYy1+/tk+9udCt6uZzbH85rN9R1HlZR9ul0HlqZqo65jgB1shri//h9VS7VF+79vO85/0n7XHaiMx9sYUJA98o2egp36EqrHxclU6ccMqrrq5/SNfTOL7+jdKNemArqFqOLN91DVMo+iqj2uY4Q5gL50Tm//F6KqEq5tJ8TT+t834HU/Hvhse/xixnq39HJGhzAbg8MOYNsfNLVI3+OjqcD66bN7AZzZfmIsCJ5GtWd7OzWu2iCCv5n+Ln3rXIgqxfsIfWPadfmPamd0Da3DQ1u2wrj3rEvdtLajgqLXUVV5M6gb5GNoHUyGcew+TNqXpIL729tNa5t2ju/YXl+QCY55NIF1b0kF5Nu1C/56VMP2C4FHUm2EPtZuDvuO+neeSfp3bGlbrT1+TTtugwo896cC85XaflyRanj9hvb5HdrvvviQ0rch1R7sQ8Bb+5a/h7r59kotJ13FSl9nHqqE+DTGpjXbmhpeYicqMH8TU1eCtgR1/7odOKhv+SktHZ9hgB272rXgJ+233opq+nB+OyZObuf8QoNa34D3Vf995fJ2vTqwb9nuVO/+gWfYR77xQ96xGwBfbo/PoBp3L9ieb9FuHkvP5nc9ncpVfIIa72v1dtG+kCo1uowBjTw90QOHusmtyEwClHYB/CAVrC3HgG5y47+HuqGe3NZzWd/69x32iTduu1ejAqherrU/UDu+HQOzPJHGfefy9AUWfd89rZ2cb2KS1XDj1rcnVUqyx0zWuRBVetK5xuEPc2w8kWq/+R+BJXWT3gh4X287qfZKF1E57kfN7DunYBt6zRW2pHLPX6HGUvwaVQKzTN97h5HpCap6957edYUaluJUqpq9N8DojFHsn4f6zfv+P50aF7J3DVqbaiLSG3H9lVSp+7VUELozVb17DZWZ+gGt1HBI6ZxOBbuntd92+773fJAqXVqESZagUZ2KXsTYgMOfpNq7bdeXlkMY6xQzlKD0YdK3IhUsfYDWbrfvtYH2FKcC0vN6vwN1Dz0P2KotG0lThgkcM/3X6CuAH/c9X5JqjzzwuWRHvgOGsTP7nq9D9WI8kYpyez369mz/Z+sgbAfyNYw1FH91u7gsT1XpvYcqPl9kZukY8oHTP+r5cTx4DKr+ErWLqVKfSY9vw4PHLVqWCv6mUQ30v04LIKib2o8ZUHuO2UjXC6gA8b+pm1kvsOnvvbX0BL/zJe3YuYIHTwTePw7dYgPchqOp0ppXUeM0vbLvtc5Vcfbth02ogHWmVSNULnrbccseT/XifBXV/ueIvteOb8fsd5iikoW+dS9P3ahfS5UCb0vdaHdox/hfh3lMM1Zy+h4qUD2BsaBsFart0meoIKIT40f1nWu9tkZrtevS/r3jhMrg7kt1CPgWFZCvQvWOf3PfteRlDKGDU9+xuj4VmG1Cte97Y7tm9I8hOZCOP1R13npUJ7Vej82Pt9+v10b2QKr6b9qwfk8e3M5s8XGvrd5+g7Pom81gUGlp3/3Gti9+Ahze99q5wKGDXN8wjpn2eFuq9mTZ9vwbVKbtUVSV9Y3DuC6MfCcMaWfuSeXeF2gX+v9hLGB5XrtAPHIW39e76GxOlRJ9iAeP9/Ru4B3t8W7URf1YpnZ6ms2o6H0dqlTvLKrtSn+g1l9VtvIA1rkBYw2WX0rlOK+nOgjsTbUfOptqC/eTQV3sZiNd+7STZoWWhg+Oe312qzj7A7r92sV8ASqYuOyh3jug43aRdtL3ShvWasfuCya7niHt8945shPVfuoTVGbmUGaRo6QaxH+DylycSzWOv4XKUD2Tat/5OCpQuoI2J+4Qt6V3A9+eKt3bmirhuJpqPH0KY5mwKQsaqerez1NBRO/msCodaYNGBVy9HrnHUCWgz6MC3V2oHs8ntmPih1Sv3idTJWVLtc+tQmXunj0Fv+/uVOnN96nBcjejgsNTqNqWgVVf05chppqbvJuxQO3iloYT2zk/tB7vVM/op1FVjAdRvQ7Hz128OlW6+Q4GWGVHjXd2M3BRe74zVV14GtVp4FpG0E55Drbjle1a9SWqrffz2/KvMjZh+lCa84x844ewM4+jSiLWac+fTAUNn6NypNfyMD0u6BsokYqcr6MaDl/MgzsbPIsH9+Z8GgMYrX8C27lEu3n0j3q+HdVo/yT6OjAw2Ea3vXYcz20n2zJUo9tLqaBmdaqq49CpPPnaunenhvnoH6dmowl8xwbjfuPdqdKTV1EldL2q8o0HmO7ezePodpy9j5bB6DuuPjxV+3E207xk3+P1qFKB3hyae1MZlt6YcTNr17cCVdXVm1j7uHbMnky1UXk7fTctpqgahGrv9ytam7O2bMt2bP8L+ERb9qDetUNIx787/7T/K1MZj7czRWMLzmY6F6VK+86lSoMub+ffRdRNbSOqtOoj1M3/KKrqeEbf814J4cmMDdQ8yDHm+tuDrd1+301buo6hSskf347JgbQHo28stXZOH0AFrO+ngsHe0B7nUTUNvZ6NAy8ppzKvZ1LB8dVUwNTreb/AuPeuykx6XU9i3c+lMm3b06oCqWrmx1IFCm+mQ0MHjUt7f+Z5RSo4691TntL2aa938GcY0tBWmfNYkEaVKH2DvhIjKgc+g6q2OoyHiXapnPtXqRKNtagbcy9i3pzK3b+Fyv38mL4R36f6wGnP1+OhRz0faIDEWDCxANUI+CLaBO1t+VZUA9QnTPE+2Zu6uW5Jjbl0Vd9rx1DtXWa3Wvtx7WL9GCr3uRdVuvOpvvccSTXYnlRus/84bBfSK9pF7I3tgtYbtPYIqvdeJ6o62345o124plHV/DcCL+97z4vbeTTTUmUqsO8fZ67XbvJzVLA95eN8UaVnP2JsWp4N+9L3SKrqflidBHrbuyTjmiMwFrCtQgWLnRhmoy99j6GCm+8xNv7k5u2adCJjPSUPbtfMXin8gVS17ZfaMfRrBlw6yFh7sN6wGo8CvtT3+spUoHQZbaiNAaxzUaqK+plUW+Hr27XydCqD+xGqY0yvI8xFVEnpwGtg2vXkGirzvjfwSyoTtOMUHBfLUcFpb6rFzzPWLm+NUR+3E9iO3ahCh5/3XRsWpXrhvnoq0rAAc7E2OW2//6UChYUiYqE28em/qFHO35GZ52TmjQ/xXQtS7WA+SdWdb0c12n1WRKySmT+giop/RbWveElmfnEmaRiK3iSuEbFTRBwREc9r2/JCqvv26RGxQGZeSbVj+vWg1w3/nkz3jVRQsUxEPDkiFs3M71KljUsOar0PlZa+xwtQAfgTqKqU9wM3R8S2EXEEVdR+TraJgR/mOx8fEa/LzJ9SE3y/AnhpZn6ONuxBRGwdES+j9vebMvPeSWzDzsCXImLpNiHv86gJ2O/IzJOAvwDvi4iPUSVsb8ixCeFH7T7q91+EqrI8jSqpXj0i9mjvuYrahoVn9gWZeRdtUOmIeFw7Rz/F2DAji7T35RC3Y7z7qVLzbSPi/VQu/8yIOCgz/wh8PDO/OYzzvZ3Xz6BmL/hCRDw7Ih7dXrs/IqZlTSS+V2b+z6DXPxmZeQNVknY7cFJELNaulR+i2n49KyKWp6qK1qNuemTm+dRx82ngH9RE6r8YcPL+QQVgS0TEJpn5S2CRiHh9S8PvqCDmd8CREbFUu6bMsXZdOIO6hryL6gG4T1vPA1Q708dQ9xLaa/dSmZ5B+yd1nT6gre8Z1DX62RGxN9SE4BExY5ArjYjjqAB9UyrjDNWOc/GIOAT4TDsmOiciVo6IRdrj7akMxJepY/XQiNig/cY3Ufe/6UOPAUYdqU4iwh0/WvIjqIv8Z4Fj+l47iLp5P2zj7vbZ11OlJN+iqr42pEpiTmOKGr8/RNp6pWS7UTeSnakLy9va8nWo0paBj3o+bj8fRDXOP6I9P55qSP1GKtC4hSluX0BVZ19FlYQsTZWefZ66ccxyIEGqZHBL6mbx6rZsO9rwKu35Ce04+AiTzHFTxf2voUoWntj25yuo6r9n9L1vy/b6GqM67h7umKBKCr5JXfgXbPvom+38+S59PVMf4jt6PRW/xNg0UVtQkxFvNBXb0P6vRZVSTWvH9xnAru21o6lqmaHOm0hV/9xA3dQOo9qfnci42U+GmYYBbMOjqHZXH2RsgOeNGLvJvZAqXfsbcNIUpGd8e7DefL2bUG0nz2vH7vVUKem5DLYt1k7UGGuvaM+nU6WHb2IS8zjOQTreTmU8j2/Pl6NqAz5Mta26nMHOL/uCdh1YhRoj8WNUDcU5VMbs/zFF8zXPQdp3owpplqXatf8YOLK9tjFjtQZvpUp+p2aolFHvmDncmf2Bw0upRqgfpHLhq1BVKR+mot9rmUW9d98Feyfg9zy4Gm+bdmK9kylsc9bWvRZjQxAsR93Q1qfaF3yHCoo+1F5fb5gnPhX8fJ+qPrgMuLQtP4oKHN/OEKtiqNzn49vj7YHT+147kQqger2l/j0ExwSOowOoXOeL2vMnUjfoVzDWY20gVRJUMHA91bFiOaoK8bh2vO46lcfYHKT93z0KqZ56l7bjcYG2r84Bnjeb37Uk1VbnVVSGaMt2LE3JecbYsDrnU1Wda/W9tnX7fXaagnTsTBtjsD3flqou7lR7HWYSJPLgjjbrUUHuJ6kqob2oG/YyjE2dtx6VwTx5SGl8uPZgJ1HNMlZo5/YZVND2xJbOh+1MNgdp2YuasuvA9nwaNTfp0Dp9jP+NqEzsoVTJ5nOowoylqHZV72ewk6UvSd2HV6LuE1+mguHPUm3xrqWDARqVCXsE1T7xudQsEOtRhTWf63vftLY/n8FUtrce9Q6a5M7dnIrUt6Lq3L9KRcCLtxPzcMaNbD6zH6j9X5u6eT6RquJ6A2MNLLejgpChDcb6EGk7mCpd6AUJq1GNXH9E3RTXporQ3zOEdfdffKdTJXXb9C37PPDu9vgVDHlIAqrUbjmqncX2VK7sc1SQuAcVqM3RyNhUj9hLqZv11xkrUduaCjpOYIClKVTO8mpa9+22bGUqF3o+8JSpPM5mkdYVaL2a28Xp0nYh3q4t248q/XpmO05eRd0AJ7QN1A31u0zRqOP857A6J1E31FXbefZ5+ko2h5SGNdv/lagbRP+4eO8HnjXq378vPf0ZmpXoC2h48JA8G9BqHqjgYB+qdPArjPUC3YuqLnrkoM6p9r0P1x7sFCoj92r6AhOqDe/QRrun2steQxtmYgp/o31718b2fOd2bTmICQ5DNME0LEyVoH69lyaqyvN0hjCG2IDTvlO7Bvyh73j6Lq2GamTpGvWOmcQO3ZYaFPCk9vwR1PRPl9FX3Tmb37UHFeV/muoY0Out+DrGArWlR7Sdi7eLSK8UaUva8BJUQPk2Bpzbp6oNew1bN283rvN4cI+79WkDkA55+/sHo30c1aum14BzT6oX2U3A34H/noPvX4GqLl2KsarPTwEv7tvfkyrZGXfxXIixxuC94LDXS2hVqh3dyKrWZ5L2M6mqoG2pksZntjT+ggc3Av8K1eN4Nap0e0IXZOqmvsaQt2VWw+q8k7H5OXuB6UCrGBnLFG5MteM6oz1/IVWN8moqc3ATU9wJZ1Zpbo9fRmUwLuHB0331B2q9Xqk7UI3VvzXu88czvJkE9qY6MXyJFnhRmd3XUc1ZLmj/l2qv7cSQS0Wo+8v1VEZsYE1RHmZ9x7d98FYqQ3U+Vcq1K9UmbT+GOybbulQp1IZUxu6TdHQuznHp3o0KKK9gbBikJalS4KFM/zZb6Rr1jpnADpxZUfvbqXrjXjfu3rQ5F1FF7LM8CKlSuB9QN+uDqfr7N1PFml+jStSmbOyz/m2lcj9bUSVV32Os9+GnqJvn7YyVaAwyR7olFfycC3yvLTu4HcBbtOeHUyWXiw7xZF+GsWBxR6rdyzuom+kT+t63PZVTm2VR+vi0UoHRzxgbDmIxKtf9P7RAbVDHLVWleSZtHsO27MR24dy6Pe9EL86+NC9Ma9DOgwfzPbDto53a8xX7XuvaNszRsDpDTM9ubd1vBP5EBRBLUKX/57fz7mHb9I1oP/YyMI+mmoH8jOpANdPfncpgnk5lJHekqtuuYYBVbA+Rzk60BxuXphlTtJ7pVO1Sr1ftiu16dmJ7vj8DGC9zFmlYmCpRv7wdI52r4mzpHH8vWICqqTmIyjz3hhFaqm3LSGZ5GfmOmujOpEq59mKsceoZVGPE5dvzBZlAA1DqJr05NR7V96lG+F+lqjx3ZYgTks8iXVu07epNmfFSKge7avvbFdhhSOtesJ3o9/Dg3PJRVFD8IarkcagD1VLtRU6jqil+0ZYtSuUQ30GVOPRKpWYZSI87jjZgrBr5lVTV6dp92/kG+kpZBrAtL6CGh+k1qP04Y1Wdb6By+JOe/3PA+79/IOT3U21M1mAsE3EocCsdGrtrJtvQmWF1qKqfxaic+n5t2YpUadOb+963xPjjddR/VID2Q+Bdfcs2pdrtnfgwn1upnU9fpBqqT0k7O0bQHmxEv0v/NW3pdox9h74p2Kiqzw9McboWpErVVxn1PpqN/XYkVbr6YqrTwALten0xY52IRnYujnxnTXDHvoQqevwIFenu0Ja/leodNce5FSpX++L2+DlUQLTGiLZzNarq9exxy1/atnPgOVH+c2DDTanc0GlUKdq0vuWrM+TcWF863kqVbvb32F2ipesDwJYT3T6qROtnVBXdvlSnhJdRHTHe1v4PbHBCZt6gttezqjfo8kAbLQ8w7f2B2nlUSeDqfa9PyXEwh2nvjb/2fCoYeg5VEvRVxsZvegzVi/Mkxsb5GuoFmcpg7NL3fDtquIRXDnO9E0zjzGoueqPjb9h3XGxBlfIv+3D7rf0Wk56SboLbMGXtwUb9G1FBxQnt8Q7t/nhIe34w1Xh/sWEf23PbH1U1/DWq0+E3qMzyyu21lzLWCWbo1dQPmcZR76RZ7MAVGSvt2ImxHoUnUF1hz6ENMEmVRqw5iXUdQDUafzl9A22OaLtXoqbDuYb/nPT2FYybA3HA6z6UGk7jae350dR0Jnu0144b5ok+/rupzhHPo3o+HsDYxNcrUqOUT6i9GJXD/gSV63w+NSzAYVQR/Q5UVdQw5g2cWYPa/6UyB1N685rob8GD54D9SDvv1hh1+mYj/SMfVqdvHz6Kagc3rZ1TX2FswOJNWxpv7p13Xfjd2+M923nXK2V+NVXqvBFjgdpAJ+Ie8LZMaXuwEW3jUVSg3KviXJyqcfpFO65uZIqm55ub/qjCkHe3a/MrqHaMb6Mycr35p5cedTp7F5BOaYPDzaBKkz5IHWjLUAfftlSwsAd1w1iHyoF+fZLrXJJqdLoHNQ3PFyfzfRNcd2+g2q2p7f4NNWjuYdTYPhdm5hVTkI49qHZ+H6cGiP1aZp4REc+jqjueQvV4+9mQ1v/vQXMj4tlUidnNmfmliNiPumFcSO2TacBbMvOfs/jOp1EjXX86IlalSrDuzczd2+uHUMfUj4DzM/PPw9i2tq51qfZdL6CqDQ+h2s38ZljrnIi+43BdajDaP/T9HtMz876IWJg67/47a/DfTuof/JkqAbwyMw9or21D5ZwXpbbjD0NOyy5UE4ErqIFLj6XGytuKOtd3okp99gW+nTUg9chFxEuo3pnfpc65j2bmBRFxAtVe9kWZ+ZNRpnF2RMSMzLxz1u+c+0TEI6h2jGdRtT/7UQH0t6nOHSsBf8nM20eWyI5qA9gvS8UQp1Ht0LeiCgR+CDwnOzCI+PRRJ+AhRGbeERGnUkWO/8jMTwJ/jIjnUlN7/D0irgISmPTNIjPvAc6NiI+3m9G/A4ZhazeTp1EN4k+niqZ3p06y+4HD2qjjXxlWGlqwsgXVYPmGiHgC8Pq2G94REedRwc7QLnZ9AcFLqIDsU8CrImJLqsTpASpQ3JoaZPBhA7Tmt8DfImL1zPxNRLwVODUiXpyZ78zM81rgseEwtmmc31AN8E+ncvb7dTBA25mqjvsz8LGI+HJm3tTOiemZ+Y+IOHiqzo050bcta1OZnn2A4yPiDcDbM/OqNrL8XlSJ6tCCtIjYkGo0fyD1+7+I6hhwONUAf3WqTdxqVMeFC4aVlologex2mbldRJxI3eyfGhFk5mkR8U/g7pEmcjbNqwEaQGb+LSIupYKMWxkbf3E74JPZsRkquiRrppM/RMQGwHWZ+a+IWIu6/767CwEa0Pnqzj2BK6kpJQ5vy3amGtqeRTVeH/R8b1NaZ081UlyWGvdrfWpYjZ8wVhWyPBWoDrTBLWPVML3/JwF/BPZtz6dRpWnfZArbylANvT9KVQe+kqqmOouqtuoNVrvkBL9zaSrAO6Y934mqsulvXDuh75zE9nW2QS2wGRUYr0P13juLqv4f2uTBQ9yWkQ6r086fJakqpyupWoAFqGDn7dQ4bL2q+3WpUpAp73XYl97+Ks7F29/q1JArV1Dtmd5JlTAcNOrf178H/XaLUJ1glm3Pe013BjaDwtz8N6t7OmM9/D8K3EbHeqOOPAEPs+Oe1S4IK1B17ldRDSCnU22H3sAUTcswRdv7Kqp7+HcZ6/V3GNUma6BtKcZdkNdlrN3fc6mc2GPb8+nUeE5DG+Nm/AlEVXGuQlX/XEm1gzq6nUSnzum+YGwC9ue1509tF7KjR/3bd+Gv7ff3Ar/sW7Yd1VHgJDo2sfcstmVkw+rwn5mfx1GZrhf2vWdlqld6b7y/abTAcdR/VE+3kxnrPf8KxoayeAEVuHd6UNL59Y/KBBzRjrehDnMyt/yNu9dt0869pfuW9dpVLk8VSnRuPLeuVndCjUb9zaz2Iu+PiD9SdcWLZuYHqJ4Yc7WI2BjYMzNfT+VUD6EGCP1lRGxEBW43ZeavBrne7B29NRHu/sAdEXEbVcowHTg/Ig7JzB9TpRFDMa4N2s5UQ/rfZuZtbXLb72fmP1vVypepmRUemJN1Zeb3ImJX4CsR8UBmfjgi7qdKOuZL/fs/M/8SEe8C1omI91JBxbciYhoV6PxrlGmdoN9SAcVGVLf6jYH3UUNwvA24MzPvG/RK+6pZdwT2joibqKBwD+DL7bh7b2b+LiJela26Pqta5a5Bp2cC6V4gMx+IiF7HoD0z86/t5e9T58w61Nhyu2fmHaNKqx7WIlSNwf5ZE9/P18bdX46keif/BPhuRFyUmTdk5v2tKdEd1OD4ndPJjgMAEbE7dXE7BbitXfwuaS8fnJl/GV3q5lzfhXw7qpHnzsA7MvOsiLgQ+AdwH3VjeV1mXvLQ3zapdGxL5Yp3Atakqlk3pwbyex01btyOOXvtviablsOpXmM3UifRp6kT5gaqGnhHatDUnw9gXZtRN55DM/O8yX7f3Gpcw/rVqWvBByPi0VTv6XuAl7ab9zKZObIgYk5FxBuBOzLznRHxHKo92L6ZecsQ1/kU6rw6k8qdb0iVmt1KNR14Y2a+Z1jrn4jWUennmXlXa0T9XuDzmfn59vz+9vtvSpVCXJa2ceq0qWxLPbdonc6eRBV6PJ665y4AfGwQ95Rh63JJ2reoHPxxwI8iYlGqk8CL58YArXfytBvj9lQPyuOoOvAnRcTCmbl/C56WoUqNrhnUSTeT77kfuDYzfx8Rf6AmPd6EGnfs5Ih4z7ACtHE5nGdRN4DHUu11nkX97qdTweMWVLA6kNLEzLy6dYq4dxDfNzfqKznZjRqF/RXARyJi/cx8eUT8N1Ul+B6qRGpoPV6H7CfAUS3g2Ie6dgwtQGs2oAKxcyNiKSrzc3hmHhIRe1HT13XF5sAtEfG3rI5YdwKPjoiFeud+K+H+aWa+e6Qp1WwxQHuwiFiMai6zYosbrooIqNk9joqIs7qe8VhglCuPtrdmsnx61lAIx1I3iG2pm/dJmXnz1KVwMCJiZeDJreoIquTiPZl5MZV7fRewX+tx+O3M/HxmXgODOenGBUUvbCUMNwAbR8ThLXb8DVVUvl772B8nu97ZSEuvCmUfarT9X1OjPP+BGidutcz8whCqe3+UmTcO8jvnBhGxVkQ8qgVoy1GZhP2pcYJupo7BD2XmTVRp6vsA5rSKuQMupcZ025oKnK4a9Ar6zumeRal2XbRr2LXAUhGxVmZ+LzOvfKjr3lTprT8z30W1+bwmIh5JtQHdCtgmIpZtJRCvoa4LUueNP7datf1zgL9GxFlt2VVUZ5g/MsJmBrNrZNWd427We1K9+R7oVe/F2LhMvVz/Yn3tJOYqbft+QbWVuY/qaXYGVYX366jhAM6l2qV9OjM/MaR0PJ9qBP7DzNyn5ZJfTg2a+z9UddDeLVgaqlb9dAhV5ft+quH6Xllt0DakqmE/nkMew2p+EhEHU8fhj7OG0liNKrU9l2o0uyY1sfeZmXncyBI6YH3XkoFVBUXEEr0S/dZ0YR3g59T+fTk1n/DzIuKx1Bhpzxl1jr2virv3/zCq6v+5VLXs3lSGaWeqTfDi1LRw140qzdLsGhdTPJe6tv25NeNYhToPf5mZx7b3PCIz/za6FM+ekZWk9e3Mo6lee+sB74mIV7bX72vBS++iOtdWT7USs99T7VT2okYbfx/wzohYn6onX4m6wK8yjDS0g/ZoKldxf0QsT+UmjqcmkF2PmkZkKgK0/akqzRdk5t3UjAK3AZ9uVS0/oUoaDdAGKDM/TvXe/UFEPD4zb6Wq365ppWUrUtXMF48wmcNwPwyuKqg1vfhiROzbzt+zqXaTR1NjzF0EPBAR36C69b951AFaszr8e1zG/ajg7O7MfDk16fwlwCWZeQhwDLCPAZrmIgH/7hB3BDULw1kR8ZrMvI063jeNiNOhxpgbWUonYMrbpI2LdhehqlsOzcwfRTWcvywi/i8zz+yvZpkb69r7tzUz/9Qu2k+j5un7LHVQnUeVrh1BTQ+zU2tDc99ktnncfl6OCnL3yOo5+Qrg7y0Q/r/MPGYSmzmhtDSLUyVlG1MTp/8lIo5nbHaJ/Zm7ehN2Wl/Jyc5U84HzgA9ExBFUNedSEXEmVZKyf1avznmmAfKgtyMz742IM6gOFn8FjsjM70QNhHk4NZXbkVEzXPwrM/8w6v3Z2h++JSI2p4b1eQHwxayepgtQPd9OBb4VETvl8NvuSQMREU+iaof+3M7BpwPPoDrBfRt4VkQsm5kviYh9qLEq5xoj6zjQStBupKrZHtGqNX/douADRpWuQWo3xh2oqoSvZeYHIuL/qF6rD2TmW9vNEaqB/Gup6sZJBSjjArTjqIvyfVQOH+rGsnirhn1xROyaQ+pWP5M2aHfm2PAXp0TEHZn5jcz8awsaloK5MyjvqnYcbkGNf/WSdtzdT7XX2gt4CVWa+8nM/FbvM6NJ7dwhMz8bEX+heh8/mZrv91Yq975fe89v+94/ygBtIaqJxaupDjobUYPn7hYRX8vMH1Alf68B/ka1q5PmFpsCv4zqAPPrqKFknkBlOLePmrHm/0XEL7MjPasnYsqCtIhYLzNvbDeMfagL2YFU472XUI2Y/0CNxr5o1Ngl3ZiWYYL6Si62pKo4rwc2i4irWqB2P/DsiJhOXeSXpnqB7ZkDGN+mLyh6AVUqdSA1MPDKEXEa8HdqYtmVqbYyQxsfpi8tL6c6CdwTET8EPkCVJJ4RNWbU5Zl5L3NxtXZXtbZnrwR+kpnfBcjM06Pa2F5OTU916QiTOFfKzK+2dl1vbTeA81smbIPWnODOLgS7We08f0O1R02qZ9uCVKnfc6PGb7umZQ5fP8KkShOWmW+Pmm/4TxGxRmb+b1SHntvaW1ai5hueK69xU9ImrVWzfCkilo6Ix1BtkK7PzDsy8yRqMuf3RcTHqHYdb5hbAzR4UMnF64EDM3M/ajDWDSPi+Zl5ITX9zo2ZeX9m/hF46yACtJ6oCeM3pXrF7ktNIJ5UlcZvgEdR1TTXD2qdD5OWnakqoN2oDgKPpRp0nkO1zXtdRDwiYrS93uZh91Ftjp4QNdk3UIEaNeH70iNK11wvMz9LZTLfGxEXU9WIp7Zr28gDtD5XU80MfkeV4v+eyiD+GnhJRGwyysRJExERK0V1MCMinpGZv6CuZd+N6qn8I2rO5oup2UbelAMeJWCqDL13Zyst+i/gV9QFYWOqF+OeVIPaz7f3bUlNj3LbvNAeImrC9EuBV7VIfzrVc2on4EeZeWZ739DaqkRNHL4+NVjuk1oQdAfVJum0IVZxLthfZdv2xQZUkPh0qsTwHxGxQWZeHxFLZQ1XoAHoK8ndmppg/DfU+XcYFSBfmJlXjDCJ85xWO3AK8PzM/H8daIPW38xgAaqDyDSqynsl4DWZeVPLNO8CnN8CN6nzImJNqgPeD6jOdvtm5h9bW9HdqQKKB6gaql9l5i9HldbJGnp1Z1bj9F9S7SHup6q8/k61fXhGRNyfmZdm5veGnZaplJlfaRfuN0XE71pVyKepC+WP+943tAt5C4TuBaa3XMea1DQ1ZwwxQFsSODAiPk7Nj7k0VYrzTNrvnzWkyvHA1hFxqAHaYLUA7WnUhNinU51Udqd6790PHNaaE3xlhMmcp2TmRRFxZWb+qT3vSoB2JFVqflvWuGgvjYh3A6+NiDdm5g0RcdNk28FKU6F3bGfmzRFxLjWO36tagBZZnQMWoDKm62Tm5aNN8eRNVZu066i2RvcAS7U644uoSPeQiPjHvJizz8xLIuI+4NSooSXOBc6f4mT8BvgCdbNemWp/dOswVtRK0O6JiAeokpvfUyWnC1ETx98HvCAi/kGV6jw7M/8+jLTMr9oFamngKKq35rJUm8gfZvUy/BQ1eO3tI0vkPKoXoI3auDapBwEvBK6MiLWBUzLzhRFxDvCyiDjWAE1zg3GZj0dTVfgHAOdGxF2Z+VGAzHxxRPyOuvYNZVD2qTSU6s5xO3Mhag64+1vj8SdT0/z8IKqL+tOBL2TmPHvTiIg9gNOokqXf5xSP4B41pMeKVFuU22b1/jlcxwbUEBp7tXVdQA2j8eSWy1mTGs18a6rDwPsz82fDSIsgIl5F9ZR9MjXX7S9bI/dvAjdP9TGoqdOaNaxAzWRyLNV56JlU298/Ay/MzLsjYoV0LEJ1XK+tcl9M8TJqwOXDs4aUego1csEhVMHT9pl5/IiSO3ADD9LGBWjHUW2R7gFOzpof7kRgS6pN1P+LubgX50RExIzMvHPU6RimljtfhepN+meqx+5B1CC5P48aQPW6aLNIjDCp86SI2Jhq7/f6iDiF6r33pNb2aCMqcH5+Zn57lOnU1Iiat3BDqtH0kyJidWpWhNcDb5sfrrua+8WD55I9kJoZZ+dWa7N6Zv4mavy/s6lY44U5Dw3CPPDqznFF7ftRN+kfAqtFxGsz878j4g3U+Fw/ml+qu+blAK0XaGfmYRHxQSpXs29mnhE1OvtnonruPjkiDsjqzaoB6OsksB11vu0cNfbca6NGw39dq3LfmGq7YYA2n8gae/ABYIGoyd4fB3we+IQBmrqulaA9GnhHROzWMvYJfAnYKyLWAPaIiJ9TPayfRg0effeo0jwMw6ruXJJqA/Ua6saxK9WrcCXgmJazf6Q367nbuFLT/rkMz6LNBZiZd0bEUcD21CTXQx/yY34wbt9vD3ycKrlcnxrI8TuZ+Y6I2Jaaw+53mXnNqHsdarBm9nv2105EzTbySmBzqgp0n8z8+dSnVJozETGDOn5/TLWnfTGV4Xg78L/UFIMfycxrR5XGYRraEBwx8+Ef7qQm0z7Zxqpzt5lUa69H9dp9bWb+LSLeQwVq+7cG6/8ustbkRMTKwGOAK1tbz2cDq2TmmyNicarU7M3UUBvvHGFSNUQRsUivJiIingAskDV7wL8nlW+Pl6Z6dt+V88DwRpr39bdDa4U+L6bGIHxca+P8iHaf2ZMaVmbvzLx5ZAkeoqENZpuZ/6B6dPaGf9iNmtD7/QZoc7+ZVGufRk3e/qGIWDszj6Pmhfxo63Hobz44m1O9Mxdr1cl/Bp4fEWtl5v9RUxT9CtghIg4aYTo1JO2aenhELN7OwQuA0yLiUvj30EcLtsd3Z+a1BmiaW2QTNX3klzLzVGp8zx9FxEotQHsWFaAdMq8GaDD8IThmNvzDb4a8Tk2RGJvV4AAqUPsRNczG+yPiqMw8NCJWtJPAYGXmxRGxLDXl2KXUyPHvA94ZEa8EFqGaFlxDdeTQvGcVqrf4otQ5uHnrsfmNiLg0M3fNzH/NLx2zNO+JiKcz1q6dzHxla2P57Yh4IvBV4NvDGrGgK4YapGUNpno68AmGOPyDRqP1rjmWqtbee1y19vMi4nXpKOYD01/FnJl/iohvUI1l/0kNWBtUbvM+4Ajq5r1TK1G5z7Zoc7+IWDQz783ML0fEItTwGstTQfndmblDRHw9ap7gbQzQNLcY14RmYWAtasaAJwC3AGTmCa1Jx1eATeaHAoCpmHHgX8BQBk/V6OV/zmqwBlWt/T6rtQerFf/vQLX1+1pmfiBqQu89qEzQWyPizPb2LYDXUsGzv8M8oN2cto2Iu4GNgD9QYxMeDWwTEfdm5i0ts3RpRKyWQxq4WhqkcQHaUsDfMvPMqHFWnx8Rd2fm1wAy87iIWH5+CNBg6mYc0LzNau0h6htmY0uqivN6YLNWWvKBiLgfeHbU/LCfoWYceCI1ZtoNI0u4Bu0+ai7WU4BHAjtm5q3tRnYwMC0iLs/MX2XmrqNMqDS7omYPWAK4JiJeSg1Uu0hEHN16qP+dGrJrwcy8rH1snh3SajyDNE2a1drD1QK0LahBSA/MGhD4AOCJEfH8FqhNA25s1Vt/jIi32pt23pI1GPi3qZ5u3wbWjYjbW9XnfdQQLP+IiN9Qs7xYva1Oa00xXgT8K2rWml2B51Nt0b4RETtk5vsi4hHAcyPiW626f745tg3SNBBWaw/d0lRD8Z2ouXA/Tc19u1PLYZ4JD5qA2ABtHhM1vdx61NRqz6HmZl2aGjz6WmqsvKt6Q29IXRY188y/IuJU4BXA7sDVmflr4C2tk8AVEfG0rIHRl87Me0ea6BEY2hAckgYnM78C7EPlJg9sN+JPA18Drux733yTw5zX9caK6nt8D1XScEhmfgj4BTXMyieoXr5fzczfjSSx0gS0zGSvTdk04NVU54C1ImIzgMx8G3AW8Lk2zubdI0nsiA1tMFtJgxcRuwKnAu/KzHNHnR4NX0Qsnpn/16qGtqRmcvl0q+beCXgy8PHM/OlIEypNUEQcQ3V82ocaTuZ1wN+o47s3MPOymfmn0aVytAzSpLlMq/Y6jar+/P380stpftNKz54InAPslJk3t0Bte+CNwLmZedYIkyjNsXYdOxXYozfQctQUUCdS0z99MDN/2N/zc35kdac0l8nMS4AdMvN3Bmjzlv4qzta28CrgQuDTEbFGa/t5FfBr4BkRscyIkipN1srAJzPzlohYqA28fCfVQeou4LdgEw47DkhzoXYx0zxk3FhRe1Pzbd5Itde5G7goIp5PDVL8AHBoZt41mtRKk3YLsFdEfCYzbwSIiMOAWzLzpJGmrEOs7pSkDomI44EDgW8AywKPAJ5LDVq7KfAY4HmZed2o0ihNVptW8BVUYdFV1FhpLwUOysxfjDJtXWKQJkkd0QYkPgf4rzZQ7YrAscBfM/O0NutAZuZfR5lOaRAiYiVgT6rzwJ+BN5n5eDCDNEkakXFVnEtTN6qrgAsy811t+b7Azpl55MgSKg1RmzUDx3f8T3YckKQRGBegvQA4uj3/L2CXiDikvXURYEZELNbfsUCaV2TmPw3QZs6SNEkaoYg4impz9sxWxbk4NR7a+4DvAZsD+2Tmz0aYTEkjYO9OSRqRNifh04HXAvdGxNHARtTcnJsCKwF/yczbR5dKSaNiSZokjVBEHAkcQ819ez3wG+DxwHHOwynN3yxJk6TR+ijwI+CXmfmniDiAmkh9IcAgTZqPWZImSR0QEQsAhwPHAwc6F6ckS9IkqRsWoWYS2D8zbxh1YiSNniVpktQR8/tk0pIezCBNkiSpgxzMVpIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOuj/A/TuAEmJ9MDRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[df['artist_top_genre'] != 'Missing']\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlmklEQVR4nO3de9yt9Zz/8de7tqLofEsqEokGs7El50PoMNgxv9JBysSWKeeQzISGwaQQid2InFKK0dCMkpQzu6SSoiiVXXuriE46fH5/XNc9Ldve7cP9vVvrvvfr+Xjcj73W97rWWp96rPte7/U9XakqJEmSNHGrDLsASZKk6cJgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmaNAl/Hvi5M+Hmgft7DLs+SWotbhAq6Z6QcBnwiiq+OexaVkTCjCpuH3YdkkabPVaS7nEJqyd8KOF3/c+HElbvjz0z4cqEgxJ+n3DZ3fVuJTwk4ayEPyV8M+HIhM8NHN8m4fsJf0j4WcIzB459O+HfEr7XP/7UhA36Y5slVMI+Cb8FvtW3/1PCLxKuT/hGwoP79iR8MGFBwg0J5yc8anL+D0oaVQYrScPwdmAbYCbw98DWwL8MHH8AsAGwMbAXMDdhyyU81xeAHwPrA+8E9hw/kLAx8HXg3cB6wAHASQljA4/fHXg5cH9gtf6cQc8AHglslzAbOAh4MTAGfAc4rj/vecDTgYcDawO7ANcu5f+DpGnGYCVpGPYADqliQRULgXcxEIh6/1rFrVWcSReOdln0SRIeBDwBOLiKv1TxXeDkgVNeCpxSxSlV3FnFacA8YMeBcz5VxS+ruBk4gS7sDXpnFTf2x/cF3lvFL/phwX8HZva9VrcB9wMeAaQ/Z/7y/6+RNJUZrCQNwwOBywfuX963jbu+ihvv5vjg81xXxU0DbVcM3H4wsHM/DPiHhD8ATwU2Gjjn6oHbNwH3XeQ1Fn2+Dw8813VAgI2r+BbwUeBIYEHC3IS1FlOzpGnMYCVpGH5HF1LGPahvG7duwpp3c3zcfGC9hDUG2jYduH0F8Nkq1hn4WbOK9y1HrYMrfK4AXrXI892niu8DVHFEFY8HtqIbEnzzcryOpGnAYCVpGI4D/iVhrJ8sfjDcNeG8966E1RKeBjwf+NKiT1LF5XRDe+/sz30S8IKBUz4HvCBhu4RVE+7dT47fZAXr/jjwtoS/A0hYO2Hn/vYTEp6YcC/gRuAW4M4VfB1JU9SMYRcgaaX0bmAt4Lz+/pf6tnFXA9fT9VLdBOxbxUVLeK49gE/TTRT/MXA8sCpAFVf0E87/gy7M3dGf8+oVKbqKryTcF/hiP6/qj8Bpff1rAR8ENqcLVd8ADl2R15E0dbmPlaSR0m+H8LmqFetVSjgeuKiKdzQtTJKWgUOBkqa0fgjuoQmrJGwPzAb+a8hlSVpJORQoaap7APBlun2srgReXcVPh1uSpJWVQ4GSJEmNOBQoSZLUiMFKkiSpkZGYY7XBBhvUZpttNuwyJEmSlurss8/+fVWNLe7YSASrzTbbjHnz5g27DEmSpKVKcvmSjjkUKEmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqZMawC2jt8W/+zLBL0DRz9qEvG3YJkqQpwh4rSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1MhSg1WSTZOckeTCJD9P8rq+fb0kpyX5Vf/vun17khyR5JIk5yV53GT/R0iSJI2CZemxuh14U1VtBWwD7JdkK+BA4PSq2gI4vb8PsAOwRf8zBziqedWSJEkjaKnBqqrmV9U5/e0/Ab8ANgZmA8f2px0L7NTfng18pjo/BNZJslHrwiVJkkbNcs2xSrIZ8FjgR8CGVTW/P3Q1sGF/e2PgioGHXdm3Lfpcc5LMSzJv4cKFy1u3JEnSyFnmYJXkvsBJwOur6obBY1VVQC3PC1fV3KqaVVWzxsbGluehkiRJI2mZglWSe9GFqs9X1Zf75mvGh/j6fxf07VcBmw48fJO+TZIkaVpbllWBAT4J/KKqDh84dDKwV397L+CrA+0v61cHbgP8cWDIUJIkadqasQznPAXYEzg/ybl920HA+4ATkuwDXA7s0h87BdgRuAS4CXh5y4IlSZJG1VKDVVV9F8gSDm+7mPML2G+CdUmSJE057rwuSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiNLDVZJjkmyIMkFA23HJzm3/7ksybl9+2ZJbh449vFJrF2SJGmkzFiGcz4NfBT4zHhDVb1k/HaSw4A/Dpx/aVXNbFSfJEnSlLHUYFVVZyXZbHHHkgTYBXh247okSZKmnInOsXoacE1V/Wqg7SFJfprkzCRPW9IDk8xJMi/JvIULF06wDEmSpOGbaLDaDThu4P584EFV9VjgjcAXkqy1uAdW1dyqmlVVs8bGxiZYhiRJ0vCtcLBKMgN4MXD8eFtV3VpV1/a3zwYuBR4+0SIlSZKmgon0WD0HuKiqrhxvSDKWZNX+9ubAFsCvJ1aiJEnS1LAs2y0cB/wA2DLJlUn26Q/tyl8PAwI8HTiv337hRGDfqrquYb2SJEkja1lWBe62hPa9F9N2EnDSxMuSJEmaetx5XZIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGlhqskhyTZEGSCwba3pnkqiTn9j87Dhx7W5JLklycZLvJKlySJGnULEuP1aeB7RfT/sGqmtn/nAKQZCtgV+Dv+sd8LMmqrYqVJEkaZUsNVlV1FnDdMj7fbOCLVXVrVf0GuATYegL1SZIkTRkTmWO1f5Lz+qHCdfu2jYErBs65sm/7G0nmJJmXZN7ChQsnUIYkSdJoWNFgdRTwUGAmMB84bHmfoKrmVtWsqpo1Nja2gmVIkiSNjhUKVlV1TVXdUVV3Akdz13DfVcCmA6du0rdJkiRNeysUrJJsNHD3RcD4isGTgV2TrJ7kIcAWwI8nVqIkSdLUMGNpJyQ5DngmsEGSK4F3AM9MMhMo4DLgVQBV9fMkJwAXArcD+1XVHZNSuSRJ0ohZarCqqt0W0/zJuzn/PcB7JlKUJEnSVOTO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1stRgleSYJAuSXDDQdmiSi5Kcl+QrSdbp2zdLcnOSc/ufj09i7ZIkSSNlWXqsPg1sv0jbacCjquoxwC+Btw0cu7SqZvY/+7YpU5IkafQtNVhV1VnAdYu0nVpVt/d3fwhsMgm1SZIkTSkt5lj9E/A/A/cfkuSnSc5M8rQlPSjJnCTzksxbuHBhgzIkSZKGa0LBKsnbgduBz/dN84EHVdVjgTcCX0iy1uIeW1Vzq2pWVc0aGxubSBmSJEkjYYWDVZK9gecDe1RVAVTVrVV1bX/7bOBS4OEN6pQkSRp5KxSskmwPvAV4YVXdNNA+lmTV/vbmwBbAr1sUKkmSNOpmLO2EJMcBzwQ2SHIl8A66VYCrA6clAfhhvwLw6cAhSW4D7gT2rarrFvvEkiRJ08xSg1VV7baY5k8u4dyTgJMmWpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDWyTMEqyTFJFiS5YKBtvSSnJflV/++6fXuSHJHkkiTnJXncZBUvSZI0Spa1x+rTwPaLtB0InF5VWwCn9/cBdgC26H/mAEdNvExJkqTRt0zBqqrOAq5bpHk2cGx/+1hgp4H2z1Tnh8A6STZqUKskSdJIm8gcqw2ran5/+2pgw/72xsAVA+dd2bf9lSRzksxLMm/hwoUTKEOSJGk0NJm8XlUF1HI+Zm5VzaqqWWNjYy3KkCRJGqqJBKtrxof4+n8X9O1XAZsOnLdJ3yZJkjStTSRYnQzs1d/eC/jqQPvL+tWB2wB/HBgylCRJmrZmLMtJSY4DnglskORK4B3A+4ATkuwDXA7s0p9+CrAjcAlwE/DyxjVLkiSNpGUKVlW12xIObbuYcwvYbyJFSZIkTUXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzNW9IFJtgSOH2jaHDgYWAd4JbCwbz+oqk5Z0deRJEmaKlY4WFXVxcBMgCSrAlcBXwFeDnywqj7QokBJkqSpotVQ4LbApVV1eaPnkyRJmnJaBatdgeMG7u+f5LwkxyRZd3EPSDInybwk8xYuXLi4UyRJkqaUCQerJKsBLwS+1DcdBTyUbphwPnDY4h5XVXOralZVzRobG5toGZIkSUPXosdqB+CcqroGoKquqao7qupO4Ghg6wavIUmSNPJaBKvdGBgGTLLRwLEXARc0eA1JkqSRt8KrAgGSrAk8F3jVQPN/JJkJFHDZIsckSZKmrQkFq6q6EVh/kbY9J1SRJEnSFOXO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNTJj2AVIWn6/PeTRwy5B08yDDj5/2CVI04I9VpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzMm+gRJLgP+BNwB3F5Vs5KsBxwPbAZcBuxSVddP9LUkSZJGWaseq2dV1cyqmtXfPxA4vaq2AE7v70uSJE1rkzUUOBs4tr99LLDTJL2OJEnSyGgRrAo4NcnZSeb0bRtW1fz+9tXAhos+KMmcJPOSzFu4cGGDMiRJkoZrwnOsgKdW1VVJ7g+cluSiwYNVVUlq0QdV1VxgLsCsWbP+5rgkSdJUM+Eeq6q6qv93AfAVYGvgmiQbAfT/Lpjo60iSJI26CQWrJGsmud/4beB5wAXAycBe/Wl7AV+dyOtIkiRNBRMdCtwQ+EqS8ef6QlX9b5KfACck2Qe4HNhlgq8jSZI08iYUrKrq18DfL6b9WmDbiTy3JEnSVOPO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1ssLBKsmmSc5IcmGSnyd5Xd/+ziRXJTm3/9mxXbmSJEmja8YEHns78KaqOifJ/YCzk5zWH/tgVX1g4uVJkiRNHSscrKpqPjC/v/2nJL8ANm5VmCRJ0lTTZI5Vks2AxwI/6pv2T3JekmOSrLuEx8xJMi/JvIULF7YoQ5IkaagmHKyS3Bc4CXh9Vd0AHAU8FJhJ16N12OIeV1Vzq2pWVc0aGxubaBmSJElDN6FgleRedKHq81X1ZYCquqaq7qiqO4Gjga0nXqYkSdLom8iqwACfBH5RVYcPtG80cNqLgAtWvDxJkqSpYyKrAp8C7Amcn+Tcvu0gYLckM4ECLgNeNYHXkCRJmjImsirwu0AWc+iUFS9HkiRp6nLndUmSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpkItstSJI0aZ7ykacMuwRNM997zfcm/TXssZIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGJi1YJdk+ycVJLkly4GS9jiRJ0qiYlGCVZFXgSGAHYCtgtyRbTcZrSZIkjYrJ6rHaGrikqn5dVX8BvgjMnqTXkiRJGgmpqvZPmvw/YPuqekV/f0/giVW1/8A5c4A5/d0tgYubF6K7swHw+2EXIU0y3+daGfg+v+c9uKrGFndgxj1dybiqmgvMHdbrr+ySzKuqWcOuQ5pMvs+1MvB9PlomayjwKmDTgfub9G2SJEnT1mQFq58AWyR5SJLVgF2BkyfptSRJkkbCpAwFVtXtSfYHvgGsChxTVT+fjNfSCnMYVisD3+daGfg+HyGTMnldkiRpZeTO65IkSY0YrCRJkhoxWKmJJJsnWX3YdUiSNEwGK01YknWBA4C3G64kaepJkmHXMF0YrDQhSTarquuBk4C1gQMMV5rK/IDRyiZJqqqSPCXJPkm27bdK0gowWGmFJVkH+ECSt1fV6cCXgQdiuNIUMB6gkjy6/0DZGKD/gDFcaaXRv+efBXwWeBjwIeC1SR421MKmKLdb0ApLci/gScC+wDlV9YEkzwB2AX4HfKCqbh1mjdLiDHxDfw7wEWA+cBnwc+Dw8g+jViJJtgQOAT5fVScneRzwKuDcqjpquNVNPfZYabmNf5uvqtuAHwJHAtskOaCqzgROAO4PHGzPlUZRH6oeB7wZ2Kmqng18ie5SXLOHWpx0D0kPeDrwUGC7JGtW1TnAccCcfg6tloPBSstl/Jt+f3ttgKr6HnA48KSBcPU1YDXgvkMrVlqCfv7IM4BnARv3zd8FbgCeMKy6pHvCwFD3BsCMqjoaeA8QukvQAVwN/Klv03KYlEvaaPoaCFWvBbYFrk1yalV9sf9dfV2Sg6vqkCTfraqbh1mvNG5g+O9ewG10Pa3rAm9Ncn1V/TTJucDuSdYAbnZIUNNR/3uwI93w31VJbgT2AdYE9kqyO10++I+qum6IpU5JBisttyT7Av8I7AEcChyWZP2qOjLJDGCfJOv5C6lR0n+YvAB4Ed1Q9aF0w9bXAicnOYauB+vQqrppeJVKkyvJI4F3A/sD5wJfAD5VVbsmuQXYDji/qr7Wnx+/ZCw7g5WWS5J7A7fSfTi9DLgP8FLgk0nurKqjkvy4qm4ZZp3SopI8Hng/8Aq6OSV7AmfQrYR6AF0P7FFV9d9JVq2qO4ZWrDS5bgUupFt0dAuwU5Izk+wHfAJYh25qx67A8Yaq5eMcK92tJH/1HqmqW6rqU3RdxtsD+1XVGcDPgH9Oso6hSiPqkcCPq+r7VfU+4H+B1wP3Bg6j673aJ8mjDFWaTga2Flm1Hwq/DtgImDVw2heBO6rqduBY4CzgDEPV8jNYaYmSbFJVd/a3X5Pk8CQHJFmLuyY2PiTJHOAa4NlV9YfhVSzdZeDDZPzv3IXAaklmAVTVicBFwBZV9Xu6VYFfBv44hHKlSdMPg8+m+/JwPN2XjCOBjyTZP8kr6IYFL+nPv62qjq2qa4ZW9BTmPlb6G/0H0lp0Y+/vBc4DjgD+E3gM3UqSvej2OXkc8Hhgj6o6bxj1SkvS71P1JOAPwGl0e67NB64CLqZbUv7i8feuQ4CajpI8gu7v93vp/n6/k24o/Da6+VSbACdW1anDqnE6MVhpiZI8Gfgk3Tf9I6vqW0keCLyVLnjtV1U3JVm7qvyWr5GS5CnAMXTDfC+j2wLkcmAMeDLdcPbR/YaITs7VtJTkUXS/AxdX1Wv7tu2ATwNPq6pLhljetORQoP7KwPBJqur7dBPT/w7YEaCqfge8D7gDODLJKoYqjZokDwf+GTiiquYCOwHrA4+pqiOqaldgb0OVVgK/pJu68cgkWyRZvaq+QXd917HhljY92WOl/7PI5p/PARbSDZmsC/wP3TL0T/THH0A3dO8YvEZOkh2A19KtfnpDVf2mnxt4JvCSqvrlUAuU7gHjQ9v9hPVPAjcD3wQW0A2Dz66qnwyzxunIYKW/keQNdN/wz6DbnXoXYHO6lSIfr6oPDa04aTEGNv/cHLiJbtXTlnTzAH9L9+08dJPT/6GqrhhasdI9YOB3YkZV3d5fbeBIuisLnAl8vapOtce2PYcC9VeSbAVsV1XPANYGrgf+UFU/opunsmeSdYZYovQ3+g+QHejmUR0O/IRudd9xdEvKv0T3ofJWQ5Wmo4FpHFv0IwoA9KFqRlX9hW54fB6wBnCOoWpyGKxWcgPXjBr3F+C3SQ4CHg7sXlW3JZldVT8GnuyWCho1/QfJu4FXVtXudEHqZOBXdCuhvg98m64XdnHve2nKGuid2o7uff9fwH5JHgZ/Fa5uowtX9wfehpuETwqD1UpskTlVs/tVgL8GNgT2pht/v6Xf4+SA/rI1tw6vYuku4/tTJXkC3WKKc+lW/VFV7wa+AxxUVT+lmyP4ULoNQGf4LV3TSR+qZtFdVeAFwJvoFh3ttEi4WrXvudoZOKwPWmrMYLUSGwhV+wP/BizoNwT9MN23+xOTHEi3cdyrq+raYdUqjUtyH4CqujPJU+km5T6Kbn+efxg49bt0k3Wpqq/TbY54Yr+ztDRtJLkf8HLgcVV1SVV9j+76f5sDL+lXydJPZF+lqv7Sr/DWJLAbcCXXf5vZGdh+4BftO8D5dFstXE+3iuriIZUo/Z9+T54PJXk+3SU5/hX4SFWdkeTPwNwkD6XbEPQlwEHjj3XzQ00ngyMOVfWnJEcAD0tyJPCaqvpOklWBPeg2AqU/987hVLzycFXgSmbRyYr9RPSPAwcCvwNu67uVNwMud8hEo6JfMn4U8CPgv4Hn0Q17rAvsVVVXJXkk3UrW9YEf9JvaOkFX08rAnKrnAg+i+yz/z75n6kDgBuCNfa/uulV1/VALXsk4FLgSWWRO1Qb9kMqNwOrADn33cCXZnW5i4xpDLFdanKvogtOX6FY3HUI3t+o1STaqql9U1cer6j1V9S24a8hbmg76obxK8g90O6pfCRyS5AP9/mz/DjwA+Gj/EDdwvofZY7WSWCRUvRHYDfgZ3eqRn9J9UF0E3A5sDexZVecPp1rpry3yDf2zwLf73dPHL13zfLovAv/uprWajpI8BFilqi5NsgHd78Eb6FZvHwhsDHyzqvZJsiWwenn91qGwx2olMRCqnkB34eTXAF8HXk+3z8/z6Cb3/oDuorSGKo2ERTb/HANeDKyS5N39MMf3gFPovhSsM8RSpcn0ZGD9/pI0vwfmAKsB7wKeCjwLeHmSj1bVxYaq4XHy+kqkX0H1ZeDDVfXDfijwT8CbgQdW1VFDLVBajD5UvZBu2O8Sui1BPkG3pPy1SY7oJ+qe7x5rmq6q6vNJ7gv8JMlLq+q8JA8Ezu7nUj2AbnPcbwy3UtljNY0tugliVX2Xrvt4lyQbVNXNwFl02ys8N8m6bpyoUZNkG7rVf9sBX6Hb4PB5wAfo5lu9qd+b6g9DK1KaJAM7qm9Ht63IZ4Gj+xWylwFrJ/kY3WWbvlpVp/l3fLicYzVNLTKnalvgfsBpVXVjkg8C29BtALqgX211r6q6aYglS4uVZBO6rRXWpdtdfXe6lazXAZ8GFpYXktU0lmRrui/Ab+hHG95I93uwU3/KY4Abq+rMIZWoAQaraS7dBZX/ke7SHhsC76+qM5McSjfh9+lVtXCYNUrLIsl76Dax/XCSlwGvBf6xqi4fcmnSpEmyKfBB4LqqmjPQ/kbglcDOVXXBsOrT33KO1TTTj7NfX1W39iuonltVT+13UH8y3eTGqqo3J7kVWBMwWGkqOB94Vd/D+mLgdYYqrQRuB84DZifZvqr+F6CqDu83AF1nmMXpb9ljNU30Y+pjwInAfwKfoxs6uS/dipG9gBcCnwIeBrylqs4YTrXS8kuyFvAiuvfxMf1laqRpZWAV7JPo/qb/lm7Bxt501/87oapOH2KJWgonr08fqaoFdNf8242ue/ja/hv9w4H/qapbgO/RDQvadawppapuqKpj6S6x9HUn6Go66kPV84Bj6KZvnA08BTiZrudq7/64RpRDgdPEwPWf1gDuAxyTZI2q+hTwfeBj/eUOnkQXuhz+01R1B7ijuqafJKvQDe29iq53dj3gQuCcqromyZforpQxf2hFaqkcCpxGkrwEeCuwA91qkZcBHwOOp/vG81zgc1V10bBqlCTdvSRvBdYGng3s0e+2vjfd9jiXeSHl0WaP1fSyPnBWf0mPTyS5FpgLrFFVRwMuxZWkEZRkJt0WOO+iW1S0J/CsPlT9Pd2X5kuq6tdDLFPLwGA1vfwWmNnv+3NVVZ3YL0t/QZIvVtWfhlyfJKk3MFH9acDOwHZJFlTVwUkeAbwjye3ATOCt/SbPGnEOBU4jSdam2zjxcroLK69BNyT4uqq6bHiVSZLGLbKB89OBzwP7A48AHg98v6o+1F+GbF3gd1V19uDjNLoMVlPMkn6x+kt63J5kPbqJjw8EtgAOcPM4SRoN/fX9Hgl8u6ruSPJSYOOqen9/LcCZwPvptlX48BBL1QoyWE0hi3zLmQ0EuLOqTu7bxsPVKv1FOdesqhuHWbMk6S793+5fAVfSbf65Ld3O6s+tqt/0KwOPpZtndWJVfWFoxWqFuI/VFDIQqval269qS+CjSd7SH7+9/6UcT8te+0+SRkhVfRW4mm7F9k7AqXRTOD7cz6t6DN21MX8FbDykMjUBTl6fAhbpqbo3sAuwV1X9NMkJwDeS/LmqPja4DNexeEkaDYN/x6vquiRnAs8D/gJ8hW4E4rN0vVj7AI8Dnttfwul2/55PHQarKaTvqboY+CVwn37I7zdJ9gd2HW51kqQl6Vf/PQN4NPCtqjo6yZ/pLtF0Z1UdmuRj/elbAwcDL6qq24ZUslaQQ4EjLMmW8H+/kC+mW477c+Ba4A1015EC2BRYo78gpyRpRIxfeinJE+mG/54BvCXJK6vqOOBrwEuT7ALcAtwbeDLdnlY/H1LZmgAnr4+oJNsBR9F1B28EHAZcWlWv6Y8fQ7cM90a6uVYvd/WfJI2eJFsDhwBvqarzkuxKF57O73uudgMurKqf9eevVlV/GWLJmgCHAkdQkhl0XcH/CmxFt/z2DGB2khdU1X9X1T/134BWpdsM9PKhFSxJujvrAM+hu6zYecCJwJ30c6iq6mNw1zwsQ9XUZrAaQf3qvkuBf6G74Oyz6LqIb6bbRf2Oqjqlqn40zDolSUtXVaf20znem+R3VXVckhPpvhj/bOA8h5CmAYPV6DqPbruEG4C1q+r3Sb5M9y1nzyS3VtXpQ61QkrRMqurk/vI0/9YP9R0LHDfsutSec6xGxCJbKqwG3NHvynsA3RXO31FVP+mvA7gD8LWqmj/EkiVJyynJC4H30Q0NXj24RY6mB4PVCFgkVO1PN6/qBuCdVXVLkoOAJwLvq6ofJFm1qu4YYsmSpBWUZKyqFg67Dk0Og9UISfLPwEuA3YFzgG8CB1fVpUneDTwM2LuqbhlimZIkaQkMViMiyVrA4XQrAXcGdgQW0G218OqquiTJ+lV17RDLlCRJd8NgNUKSrA48AvhQVT2r31huIfAJumFBd+CVJGmEuSpwhFTVrUluAmYkeTTwYOB04BOGKkmSRp89ViOm77V6Pd2KkQcCO1fVhUMtSpIkLROD1Qjqr2b+ALoLc1417HokSdKyMVhJkiQ1ssqwC5AkSZouDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpkf8PwQ8MlHUQ3OMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAJZCAYAAABoaLenAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZx0lEQVR4nO3dd5glZZn///eHIUnWBROCIKKAIAMiomJGZA1gQFFxlTVgWuMuij8UEXXFtGv265gwoCIYQEXAVRFFEIY0BFFYxFVRMIEgkmbu3x9VDWd6eronNVXV/X5d17m6znPqVN3ndLrPXU9IVSFJkiT13WpdByBJkiQtCxNXSZIkDYKJqyRJkgbBxFWSJEmDYOIqSZKkQTBxlSRJ0iCYuEqSJGm5JdkryS+SXJbk4Ake3zzJD5Ocm2RBkieu9Dmdx1WSJEnLI8kc4JfA44HfAmcBz6mqi0f2mQecW1UfT7IdcEJVbbEy57XiKkmSpOW1K3BZVV1eVTcDXwH2GbdPARu02xsCV67sSVdf2QNIkiRp1tkU+M3I/d8CDxm3z2HAyUleBawL7LGyJzVx7aFb/nR57/tv3Omej+g6hCmdd6+dug5hUlf9fd2uQ5jSGlnUdQhT+vfVruo6hCm9aM7mXYcwqSvn9P5PDldxc9chTOletWbXIUzprgvTdQhT+t3q/f55PPyKo3rxJk53rrDmJlu9FDhwpGleVc1bzsM8Bziyqt6f5KHAF5JsX1Ur/M/FxFWSJEmLaZPUyRLV3wGbjdy/V9s26kXAXu3xTk+yNrAxcPWKxmUfV0mSpKFZtHB6b1M7C9g6yZZJ1gSeDRw/bp//Ax4HkGRbYG3gjyvzsk1cJUmStFyq6lbg34CTgJ8DX62qi5IcnmTvdrd/B16S5Hzgy8ABtZLTWdlVQJIkaWhWvJvoqguh6gTghHFth45sXww8fFWe08RVkiRpaBZ1n7h2wa4CkiRJGgQrrpIkSQOzEjNKDZoVV0mSJA2CFVdJkqShsY+rJEmS1F9WXCVJkobGPq6SJElSf1lxlSRJGpplW5Z1xrHiKkmSpEGw4ipJkjQ09nHtryTXdx3DmKliSbJRklfcUfFIkiTNFr1JXNPoTTwrYSPAxFWSJE2fRYum99ZTnSaKSbZI8osknwcuBN6S5KwkC5K8bSnPOWiifZJ8M8nZSS5KcmDbNifJkUkuTHJBkte17VslObHd/8dJtpkkxi2TnN4+/x0j7esl+X6Sc9rH9mkfOgLYKsl5Sd47WcySJEladn3o47o18AJgA2BfYFcgwPFJHllVp47tmGTPdv+J9nlhVf0lyZ2As5J8DdgC2LSqtm+fv1F7qHnAy6rq0iQPAT4GPHYp8X0Q+HhVfT7JK0fabwSeVlV/S7IxcEaS44GDge2rau4yxCxJkrTcyj6unfl1VZ0B7NnezgXOAbahSfhGTbbPq5OcD5wBbNa2Xw7cJ8mHk+wF/C3JesDDgGOSnAd8ArjHJPE9HPhyu/2FkfYA/5lkAfA/wKbA3SZ4/rK8LpIcmGR+kvmf+vyXxz8sSZI06/Wh4vr39muAd1XVJybZd8J9kjwa2AN4aFXdkOQUYO2q+muSHYEnAC8DngW8FrhmrCK6jGqCtv2BTYAHVdUtSa4A1l7WmJc4QdU8mkowt/zp8onOJ0mS1OhxP9Tp1IeK65iTgBe2FVGSbJrkrsu4z4bAX9ukdRtgt/bxjYHVquprwJuBnavqb8Cvkjyz3Sdtcrs0pwHPbrf3H2nfELi6TVofA9y7bb8OWH85X5ckSZKm0IeKKwBVdXKSbYHTkwBcDzwPuHoZ9jkReFmSnwO/oOkuAM3l+8+OzFbwpvbr/sDHk7wZWAP4CnD+UkJ7DfClJG8EjhtpPwr4VpILgPnAJW2Mf05yWpILge9W1UFTvS5JkqTlMkv7uKbKq9J9M4SuAne65yO6DmFK591rp65DmNRVf1+36xCmtEb6/4fx31e7qusQpvSiOZt3HcKkrpzT+z85XMXNXYcwpXvVml2HMKW7LkzXIUzpd6v3++fx8CuO6sWbeNMvfzKtb9Ra99u9F69zvN5UXCVJkrSMFi3sOoJOmLi2khwCPHNc8zFV9c4u4pEkSVqqWdpVwMS11SaoJqmSJEk9ZeIqSZI0NE6HJUmSJPWXFVdJkqShmaV9XK24SpIkaRCsuEqSJA2NfVwlSZKk/rLiKkmSNDBVs3MBAiuukiRJGgQrrpIkSUPjrAKSJElSf1lxlSRJGhpnFZAkSZL6y4prD93pno/oOoQp/ePKH3cdwpQO2eWQrkOY1KVrXd91CFN6OBt2HcKUPr/Wel2HMKUP3HJT1yFMaoeFa3UdwpSecEt1HcIy6Pf3GeD0NdfuOoQpbXlLug5hGOzjKkmSJPWXFVdJkqShWeQ8rpIkSVJvWXGVJEkaGvu4SpIkSf1lxVWSJGloZuk8riaukiRJQ2NXAUmSJKm/rLhKkiQNzSztKmDFVZIkSYNgxVWSJGlorLhKkiRJ/WXFVZIkaWCqXPJVkiRJ6i0rrpIkSUNjH9fZJ8n103DMuUmeOHL/sCT/sarPI0mSNNtYcV315gK7ACd0HIckSZqpXDlrdktyUJKzkixI8ra2bYskP0/yySQXJTk5yZ3axx7c7ntekvcmuTDJmsDhwH5t+37t4bdLckqSy5O8uqOXKEmSNGgmrkCSPYGtgV1pKqYPSvLI9uGtgY9W1QOAa4BntO2fBV5aVXOBhQBVdTNwKHB0Vc2tqqPbfbcBntAe/61J1pju1yRJkmawRYum99ZTJq6NPdvbucA5NInm1u1jv6qq89rts4EtkmwErF9Vp7ftX5ri+N+pqpuq6k/A1cDdVmHskiRJs4J9XBsB3lVVn1isMdkCuGmkaSFwpxU4/vhjLPG+JzkQOBAgczZktdXWXYHTSJKkWcE+rrPaScALk6wHkGTTJHdd2s5VdQ1wXZKHtE3PHnn4OmD95Q2gquZV1S5VtYtJqyRJ0pKsuAJVdXKSbYHTkwBcDzyPtu/qUrwI+GSSRcCPgGvb9h8CByc5D3jXtAUtSZJmrx73Q51Oszpxrar1RrY/CHxwgt22H9nnfSPtF1XVAwGSHAzMb/f5C/DgSc65/dIekyRJ0tLN6sR1JT0pyZto3sNfAwd0G44kSZo1ZmkfVxPXFdROdXX0lDtKkiRplTBxlSRJGhr7uEqSJGkQZmni6nRYkiRJGgQrrpIkSUMzSwdnWXGVJEnSIFhxlSRJGhr7uEqSJEn9ZeIqSZI0NLVoem/LIMleSX6R5LJ2FdGJ9nlWkouTXJTkSyv7su0qIEmSpOWSZA7wUeDxwG+Bs5IcX1UXj+yzNfAm4OFV9dckd13Z85q4SpIkDU33fVx3BS6rqssBknwF2Ae4eGSflwAfraq/AlTV1St7UrsKSJIkaTFJDkwyf+R24LhdNgV+M3L/t23bqPsB90tyWpIzkuy1snFZcZUkSRqaaZ7HtarmAfNW8jCrA1sDjwbuBZyaZIequmZFD2jFVZIkScvrd8BmI/fv1baN+i1wfFXdUlW/An5Jk8iuMBNXSZKkoVm0aHpvUzsL2DrJlknWBJ4NHD9un2/SVFtJsjFN14HLV+Zl21Wgh867105dhzClQ3Y5pOsQpvTO+e/sOoRJfXOHt3QdwpT+PIC/EK+9sboOYUpPzFpdhzCphek6gqkdvfacrkOY0gb0P8bNbu06gqltWzd0HYKWQVXdmuTfgJOAOcBnquqiJIcD86vq+PaxPZNcDCwEDqqqP6/MeQfwb0mSJEmL6X5WAarqBOCEcW2HjmwX8Pr2tkrYVUCSJEmDYMVVkiRpaKr/3aSmgxVXSZIkDYIVV0mSpKHpQR/XLlhxlSRJ0iBYcZUkSRoaK66SJElSf1lxlSRJGpqanRVXE1dJkqShsauAJEmS1F9WXCVJkobGBQgkSZKk/rLiKkmSNDT2cZUkSZL6y8R1nCRbJLlwBZ7305HnP3fVRyZJktRatGh6bz1l4rqSkqwOUFUPa5u2AExcJUmSVrHBJa5tRfOSJEcl+XmSY5Osk+RxSc5NckGSzyRZq93/iiTvadvPTHLftv3IJPuOHPf6pZzrx0nOaW8Pa9sf3bYfD1w87vlHAI9Icl6S1yU5NcnckWP+JMmO0/X+SJKkWaAWTe+tpwaXuLbuD3ysqrYF/ga8HjgS2K+qdqAZdPbykf2vbds/AnxgOc5zNfD4qtoZ2A/40MhjOwOvqar7jXvOwcCPq2puVf038GngAIAk9wPWrqrzlyMGSZIkMdzE9TdVdVq7/UXgccCvquqXbdvngEeO7P/lka8PXY7zrAF8MskFwDHAdiOPnVlVv1qGYxwDPDnJGsALaRJsSZKkFVaLalpvfTXUxHX8O3rNcuw/tn0r7etPshqw5gTPex1wFbAjsMu4ff6+TIFW3QB8D9gHeBZw1ET7JTkwyfwk84/52/8ty6ElSZJmlaEmrpsnGaucPheYD2wx1n8V+BfgRyP77zfy9fR2+wrgQe323jTV1fE2BH5fVYvaY85ZhtiuA9Yf1/Ypmm4GZ1XVXyd6UlXNq6pdqmqXZ26w+TKcRpIkzVrOKjAovwBemeTnwJ2B/wb+FTimvay/CPh/I/vfOckC4DU0VVSATwKPSnI+TfeBiSqoHwNe0O6zzVL2GW8BsDDJ+UleB1BVZ9P0xf3s8r1MSZIkjRnqylm3VtXzxrV9H9hpKfu/t6reONpQVVcBu400vbFtvwLYvt2+FHjgBPucApwy7njrtV9vAR47+liSe9J8SDh50lclSZK0LHo88n86DbXiOhhJng/8DDik7XIgSZKkFTC4iutoRXQZ999i2oJZtvN/Hvh8lzFIkqQZpscj/6eTFVdJkiQNwuAqrpIkSbNej0f+TycrrpIkSRoEK66SJElDM0srriaukiRJQ1MOzpIkSZJ6y4qrJEnS0MzSrgJWXCVJkjQIVlwlSZKGxgUIJEmSpP6y4ipJkjQ0ZR9XSZIkqbesuEqSJA2NfVwlSZKk/rLi2kNX/X3drkOY0qVrXd91CFP65g5v6TqEST31grd3HcKU3v+gQ7sOYUo7585dhzClW3reFe2S1W7sOoQpbV5rdR3ClM6qa7sOYUq/Wb3/7+Oat6zTdQiT2q3rAFrlPK6SJElSf1lxlSRJGhr7uEqSJEn9ZcVVkiRpaJzHVZIkSeovK66SJElDYx9XSZIkqb+suEqSJA2N87hKkiRJ/WXFVZIkaWhmaR9XE1dJkqShcTosSZIkqb+suEqSJA3NLO0qYMVVkiRJg2DFVZIkaWDK6bD6I8lhSf6jb+dPcs8kx7bbj07y7XZ77yQHt9tPTbLdHRuxJEnSzGfFdTlU1ZXAvhO0Hw8c3959KvBt4OI7LjJJkjSr2Me1W0kOSfLLJD8B7t+2vSTJWUnOT/K1JOu07Ucm+VCSnya5PMm+I8d5Y5IL2ucc0bZtleTEJGcn+XGSbdr2pyT5WZJzk/xPkruNhLRjktOTXJrkJe3+WyS5cILYD0jykSQPA/YG3pvkvPa854zst/XofUmSJC27XlRckzwIeDYwlyamc4Czga9X1Sfbfd4BvAj4cPu0ewC7A9vQVDuPTfLPwD7AQ6rqhiR3afedB7ysqi5N8hDgY8BjgZ8Au1VVJXkx8Abg39vnPBDYDVgXODfJd6Z6HVX10yTHA9+uqrEuBdcmmVtV5wH/Cnx2Rd4jSZKk28zSimsvElfgEcA3quoGgDb5A9i+TVg3AtYDThp5zjerahFw8UildA/gs2PHqaq/JFkPeBhwTJKx567Vfr0XcHSSewBrAr8aOf5xVfUP4B9JfgjsCpy3Aq/tU8C/Jnk9sF97nCUkORA4EOC16z+IJ99pqxU4lSRJ0szVm64CS3Ek8G9VtQPwNmDtkcduGtkOS7cacE1VzR25bds+9mHgI+3xXzru+OM/yqzoR5uvAf8MPBk4u6r+PNFOVTWvqnapql1MWiVJ0qRq0fTeeqovieupwFOT3CnJ+sBT2vb1gd8nWQPYfxmO8z2a6uZYX9i7VNXfgF8leWbbliQ7tvtvCPyu3X7BuGPtk2TtJP8EPBo4axlfy3Vt3ABU1Y00leKPYzcBSZKkFdaLxLWqzgGOBs4HvsvtSeJbgJ8BpwGXLMNxTqTp7zo/yXnA2JRW+wMvSnI+cBFNP1iAw2i6EJwN/Gnc4RYAPwTOAN7eziiwLL4CHNQO+BornR4FLAJOXsZjSJIkLd2imt5bT/WljytV9U7gnRM89PEJ9j1g3P31RraPAI4Y9/ivgL0mOM5xwHETtB+2lBivALZvt08BTmm3j6Tp1kBVnQaMn8d1d5q+twsnOq4kSZKm1pvEdaZK8g1gK5pZDCRJklZa9bgqOp1MXKdZVT2t6xgkSZJmAhNXSZKkoZmlFddeDM6SJEmSpmLiKkmSNDSLFk3vbRkk2SvJL5JcluTgSfZ7RpJKssvKvmwTV0mSJC2XJHOAj9IssrQd8Jwk42dVop2f/zU005uuNBNXSZKkoel+Htddgcuq6vKquplmHvt9Jtjv7cC7gRtXxcs2cZUkSRqa7hPXTYHfjNz/bdt2myQ7A5tV1XdW1cs2cZUkSdJikhyYZP7I7cDlfP5qwH8B/74q43I6LEmSpIGpmt7psKpqHjBvkl1+B2w2cv9ebduY9WlWGz0lCcDdgeOT7F1V81c0LiuukiRJWl5nAVsn2TLJmsCzgePHHqyqa6tq46raoqq2AM4AVippBSuukiRJw9PxAgRVdWuSfwNOAuYAn6mqi5IcDsyvquMnP8KKMXGVJEnScquqE4ATxrUdupR9H70qzmniKkmSNDQu+SpJkiT1lxVXSZKkgalZWnE1ce2hNbJsawR36eFs2HUIU/pzz3+63/+gCbsB9cq/n3141yFM6SE7PL/rEKb0+LU2m3qnDj38lrW7DmFKp62xShbdmVbPvaX/fxdPXfOWrkOY0mVr9P9/oLrT83/tkiRJWsIsrbjax1WSJEmDYMVVkiRpaGZpjworrpIkSRoEK66SJEkDM1tnFbDiKkmSpEGw4ipJkjQ0VlwlSZKk/rLiKkmSNDTOKiBJkiT1lxVXSZKkgXFWAUmSJKnHrLhKkiQNzSzt42riKkmSNDB2FZAkSZJ6bFYlrklem2SdkfsnJNmow5AkSZKW36JpvvXUrEpcgdcCtyWuVfXEqrqms2gkSZK0zDpNXJN8M8nZSS5KcmDbtleSc5Kcn+T7bdtd2n0XJDkjyQPb9sOS/MfI8S5MskWSdZN8pz3GhUn2S/Jq4J7AD5P8sN3/iiQbt9vPb49/fpIvtG1HJvlQkp8muTzJviPnOijJWe1z3ta2LXHetv2IJBe3+77vjnhvJUnSzFWLpvfWV10PznphVf0lyZ2As5IcB3wSeGRV/SrJXdr93gacW1VPTfJY4PPA3EmOuxdwZVU9CSDJhlV1bZLXA4+pqj+N7pzkAcCbgYdV1Z9GzgtwD2B3YBvgeODYJHsCWwO7AgGOT/JIYJPx503yT8DTgG2qquyaIEmStGK67irw6iTnA2cAmwEHAqdW1a8Aquov7X67A19o234A/FOSDSY57gXA45O8O8kjquraKeJ4LHDMWEI7cl6Ab1bVoqq6GLhb27ZnezsXOIcmqd16Kee9FrgR+HSSpwM3TBRAkgOTzE8y//gbLp8iXEmSNKvZx/WOleTRwB7AQ6tqR5ok8LzlPMytLP4a1gaoql8CO9Mkku9IcuhKhHrTyHZGvr6rqua2t/tW1acnOm9V3UpTmT0WeDJw4kQnqap5VbVLVe2y9zr3WYlwJUmSZqYuK64bAn+tqhuSbAPsRpN4PjLJltD0bW33/TGwf9v2aOBPVfU34AqaRJEkOwNjz7sncENVfRF479g+wHXA+hPE8gPgme1lfcZ1FZjIScALk6zX7r9pkrtOdN52nw2r6gTgdcCOy/b2SJIkTcw+rne8E4GXJfk58Aua7gJ/pOku8PUkqwFXA48HDgM+k2QBzaX2F7TH+Brw/CQXAT8Dftm27wC8N8ki4Bbg5W37PODEJFdW1WPGAqmqi5K8E/hRkoU01d8DlhZ4VZ2cZFvg9CQA1wPPA+47wXnXB45LsjZNpfb1K/BeSZIkzXqdJa5VdRPwz0t5+Lvj9v0L8NQJjvEPmr6m411BUxUdv/+HgQ+P3N9iZPtzwOfG7X/AuPvrjWx/EPjguFP870TnpekqIEmStGr0uCo6nboenCVJkiQtk66nw5IkSdJy6nM/1OlkxVWSJEmDYMVVkiRpYKy4SpIkST1mxVWSJGlgrLhKkiRJPWbFVZIkaWgqU+8zA1lxlSRJ0iBYcZUkSRqY2drH1cRVkiRpYGqRXQUkSZKk3rLiKkmSNDCztauAFVdJkiQNghVXSZKkgSmnw5IkSZL6y4prD/37ald1HcKUPr/Wel2HMKXX3lhdhzCpnXPnrkOY0kN2eH7XIUzpZxd8vusQpvT1Hd7SdQiTunKNriOY2ke/8/KuQ5jSB5/42a5DmNITb5zTdQhTWrDW7KwkLi/7uEqSJEk9ZsVVkiRpYJzHVZIkSeoxK66SJEkDU/0exjFtrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQwziogSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqdlZcTVwlSZIGphZ1HUE37CqwCiTxA4AkSdI0m5WJa5LnJTkzyXlJPpFkTpLrk7wzyflJzkhyt3bfTZJ8LclZ7e3hbfthSb6Q5DTgC+1+30tyUZJPJfl1ko2THJ7ktSPnfmeS13TzyiVJ0kywqDKtt76adYlrkm2B/YCHV9VcYCGwP7AucEZV7QicCrykfcoHgf+uqgcDzwA+NXK47YA9quo5wFuBH1TVA4Bjgc3bfT4DPL8992rAs4EvTtsLlCRJmqFm4yXuxwEPAs5KAnAn4GrgZuDb7T5nA49vt/cAtmv3BdggyXrt9vFV9Y92e3fgaQBVdWKSv7bbVyT5c5KdgLsB51bVn6frxUmSpJnPwVmzR4DPVdWbFmtM/qPqtnUoFnL7e7MasFtV3Thuf4C/L+M5PwUcANydpgK7ZFDJgcCBAPfe8L5sss49lvHQkiRJs8Os6yoAfB/YN8ldAZLcJcm9J9n/ZOBVY3eSzF3KfqcBz2r32RO488hj3wD2Ah4MnDTRk6tqXlXtUlW7mLRKkqTJ1KJM662vZl3iWlUXA28GTk6yAPgeMFmm+GpglyQLklwMvGwp+70N2DPJhcAzgT8A17XnvBn4IfDVqlq4al6JJEnS7DIbuwpQVUcDR49rXm/k8WNpBlhRVX+iGcw1/hiHjWu6FnhCVd2a5KHAg6vqJrhtUNZuNAmtJEnSSrmtc+MsMysT12myOfDVNkm9mXZWgiTb0Qz6+kZVXdphfJIkSYNm4rqKtEnpThO0Xwzc546PSJIkzVR96IeaZC+aaUPnAJ+qqiPGPf564MXArcAfgRdW1a9X5pyzro+rJEmSVk6SOcBHgX+mmdf+Oe1V5lHnArtU1QNpumC+Z2XPa8VVkiRpYHqwutWuwGVVdTlAkq8A+wAXj+1QVT8c2f8M4Hkre1IrrpIkSVpemwK/Gbn/27ZtaV4EfHdlT2rFVZIkaWCme+Ws0YWRWvOqat4KHut5wC7Ao1Y2LhNXSZIkLaZNUidLVH8HbDZy/15t22KS7AEcAjxqbJrQlWHiKkmSNDA9mMf1LGDrJFvSJKzPBp47ukOSnYBPAHtV1dWr4qT2cZUkSdJyqapbgX+jWcr+5zSrg16U5PAke7e7vZdmgadjkpyX5PiVPa8VV0mSpIHpwawCVNUJwAnj2g4d2d5jVZ/TiqskSZIGwYqrJEnSwEz3rAJ9ZeIqSZI0MD0YnNUJuwpIkiRpEKy4SpIkDUwfBmd1wYqrJEmSBsGKaw+9aM7mXYcwpQ/cstKLX0y7J2atrkOY1C2Luo5gao9fa7Opd+rY13d4S9chTOnpF7y96xAm9dUHHjr1Th37ryd+tusQpvSP9L/T4W/WmNN1CFPaYAB/G/tgtg7OsuIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwPS/R/X0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGZrYuMGbFVZIkSYNgxVWSJGlgCvu4SpIkSb1lxVWSJGlgFs3SpbOsuEqSJGkQpkxck/x0RQ6c5KlJtluR506HJBslecUy7nv9dMcjSZK0ohaRab311ZSJa1U9bAWP/VRgwsQ1SRddFDYClilxlSRJUv8sS8X1+vbro5OckuTYJJckOSpJ2seOSHJxkgVJ3pfkYcDewHuTnJdkq/a5H0gyH3hNkiOT7LuU8/woyXFJLm+PvX+SM5NckGSrdr9NknwtyVnt7eFt+2FJPtOe7/Ikr25PcQSwVRvPe5Osl+T7Sc5pj7vPBK99stf8oDbOs5OclOQebfurR96Lr7Rtj2rPe16Sc5Osv4LfL0mSJIpM662vlrfyuRPwAOBK4DTg4Ul+DjwN2KaqKslGVXVNkuOBb1fVsQBtvrdmVe3S3j9ykvPsCGwL/AW4HPhUVe2a5DXAq4DXAh8E/ruqfpJkc+Ck9jkA2wCPAdYHfpHk48DBwPZVNbc9/+rA06rqb0k2Bs5IcnxVje/uPNFr/hnwYWCfqvpjkv2AdwIvbM+zZVXdlGSj9hj/Abyyqk5Lsh5w49RvtSRJ0sRm6wIEy5u4nllVvwVIch6wBXAGTSL26STfBr49yfOPXsbznFVVv2/P87/AyW37BTQJKcAewHZtQgywQZsUAnynqm4CbkpyNXC3Cc4R4D+TPJLm+79pu98fxu030Wu+Btge+F57/jnA79v9FwBHJfkm8M227TTgv5IcBXx97HiSJEladss7q8BNI9sLgdWr6lZgV+BY4MnAiZM8/+8j27eOnT/JasCaSznPopH7i7g92V4N2K2q5ra3Tavq+gmev5CJE/T9gU2AB7VV2KuAtSfYb6JjBbho5Nw7VNWe7T5PAj4K7AyclWT1qjoCeDFwJ+C0JNuMP0mSA5PMTzL/x9dfOkEYkiRJjdnaVWClp8Nqq5wbVtUJwOtoLvMDXEdzqX5prgAe1G7vDayxnKc+mabbwFgcc6fYf3w8GwJXV9UtSR4D3Hs5zv0LYJMkD23PvUaSB7QJ+GZV9UPgje051kuyVVVdUFXvBs6i6cqwmKqaV1W7VNUuj1hv6+UIRZIkaXZYFaP71weOS7I2TSXy9W37V4BPtoOj9p3geZ9sn3c+TZX27xPsM5lXAx9NsoDmdZwKvGxpO1fVn5OcluRC4LvAu4FvJbkAmA9csqwnrqqb24FlH0qyYXv+DwC/BL7YtgX4UNvf9+1tcrwIuKg9vyRJ0gqZrX1cs+RYJHXt/232vN5/U86dc9PUO3Vsu0VrdR3CpG7pOoBl8MfVFnYdwpR2vqn/66g8/YK3dx3CpL76wEO7DmFK/7e81+Q68I/0/k83d1/Y30vAY/r+V+dVv/liL97EE+/27Gn9gdvrqq/04nWO55KvkiRJAzNbK679L1VIkiRJWHGVJEkanD6P/J9OVlwlSZI0CFZcJUmSBmbR7Cy4WnGVJEnSMFhxlSRJGphF9nGVJEmS+suKqyRJ0sD0f7mL6WHFVZIkSYNgxVWSJGlgXDlLkiRJ6jErrpIkSQOzKM4qIEmSJPWWFVdJkqSBma2zCpi4SpIkDcxsHZxl4tpDV87p/+eoHRau1XUIU1rY8+4/l6x2Y9chTOnht6zddQhTunKNriOY2lcfeGjXIUzqWQsO7zqEKR2yyyFdhzClHW+e03UIU7pijf7/f7l73/94q1MmrpIkSQOzaJbm9w7OkiRJ0iBYcZUkSRqYRczOkqsVV0mSJA2CFVdJkqSB6f8wu+lhxVWSJEmDYMVVkiRpYJxVQJIkSeoxK66SJEkDM1tXzrLiKkmSpEGw4ipJkjQwziogSZIk9ZgVV0mSpIFxVgFJkiSpx6y4SpIkDYyzCswwSa5vv94zybFdxyNJkqSVM+MrrlV1JbBv13FIkiStKlZcZ6gkWyS5sN0+I8kDRh47JckuSdZN8pkkZyY5N8k+7eMHJPl6khOTXJrkPSPP3TPJ6UnOSXJMkvXa9iOSXJxkQZL3tW3PTHJhkvOTnHrHvgOSJEkzw4yvuI5zNPAs4K1J7gHco6rmJ/lP4AdV9cIkGwFnJvmf9jlzgZ2Am4BfJPkw8A/gzcAeVfX3JG8EXp/ko8DTgG2qqtpjARwKPKGqfjfSJkmStELKWQVmha9ye7eBZwFjfV/3BA5Och5wCrA2sHn72Per6tqquhG4GLg3sBuwHXBa+5wXtO3XAjcCn07ydOCG9hinAUcmeQkwZ6LAkhyYZH6S+edcd9mqebWSJGlGWjTNt76aVYlrVf0O+HOSBwL70VRgAQI8o6rmtrfNq+rn7WM3jRxiIU2VOsD3RvbfrqpeVFW3ArvSJMRPBk5sz/symgrtZsDZSf5pgtjmVdUuVbXLzuvfd5W/dkmSpKGbVYlr62jgDcCGVbWgbTsJeFWSACTZaYpjnAE8PMl92/3XTXK/tp/rhlV1AvA6YMf28a2q6mdVdSjwR5oEVpIkaYX0oeKaZK8kv0hyWZKDJ3h8rSRHt4//LMkWK/hybzMbE9djgWfTdBsY83ZgDWBBkova+0tVVX8EDgC+nGQBcDqwDbA+8O227SfA69unvDfJBe0gsZ8C56+6lyNJknTHSjIH+CjwzzTdJ5+TZLtxu70I+GtV3Rf4b+DdK3veGTs4q6rWa79eAWw/0n4V4153Vf0DeOkExzgSOHLk/pNHtn8APHiCU+86wXGevpzhS5IkLVV1HUCT71xWVZcDJPkKsA/NeKAx+wCHtdvHAh9Jkqpa4fBnY8VVkiRJkxgdNN7eDhy3y6bAb0bu/7Ztm3CfdhzQtcAS43yWx4ytuEqSJM1Ui6Z5OqyqmgfMm96zLD8rrpIkSVpev2Pxweb3atsm3CfJ6sCGwJ9X5qQmrpIkSQPTg1kFzgK2TrJlkjVpBr4fP26f42nmuodmHv0frEz/VrCrgCRJkpZTVd2a5N9ophSdA3ymqi5Kcjgwv6qOBz4NfCHJZcBfaJLblWLiKkmSNDB9WN2qnbf+hHFth45s3wg8c1We064CkiRJGgQrrpIkSQPTg3lcO2HFVZIkSYNgxVWSJGlgpnse176y4ipJkqRBsOIqSZI0MH2YVaALVlwlSZI0CFZcJUmSBsZZBSRJkqQes+IqSZI0MItmac3VxLWHruLmrkOY0hNu6f8vzNFrz+k6hEltXmt1HcKUTlvjxq5DmNJHv/PyrkOY0n898bNdhzCpQ3Y5pOsQpvTO+e/sOoQpHfGgt3QdwpTm3tT/IT2Xrdnvv9190f/v5PSwq4AkSZIGwYqrJEnSwPT/uuf0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwCxK1xF0w4qrJEmSBsGKqyRJ0sDM1gUIrLhKkiRpEKy4SpIkDczsrLdacZUkSdJAWHGVJEkaGOdxlSRJknrMiqskSdLAOKuAJEmS1GMzJnFNcv0qOs6jk3x7VRxLkiRpOtQ03/pqxiSukiRJmtlmXOKaxnuTXJjkgiT7te2LVVKTfCTJAe32XkkuSXIO8PSRfQ5L8pkkpyS5PMmrRx57XpIzk5yX5BNJ5rS3I0fO/bp231cnuTjJgiRfuaPeC0mSNDMtmuZbX83EwVlPB+YCOwIbA2clOXVpOydZG/gk8FjgMuDocbtsAzwGWB/4RZKPA/cF9gMeXlW3JPkYsD9wEbBpVW3fHnuj9hgHA1tW1U0jbZIkSVoOM67iCuwOfLmqFlbVVcCPgAdPsv82wK+q6tKqKuCL4x7/TlXdVFV/Aq4G7gY8DngQTVJ8Xnv/PsDlwH2SfDjJXsDf2mMsAI5K8jzg1omCSHJgkvlJ5v/8ustX4GVLkqTZYhE1rbe+momJ69LcyuKvd+1lfN5NI9sLaarUAT5XVXPb2/2r6rCq+itNpfcU4GXAp9rnPQn4KLAzTbK7RKW7quZV1S5Vtcu2699neV6XJEnSrDATE9cfA/u1/U03AR4JnAn8GtguyVrt5frHtftfAmyRZKv2/nOW4RzfB/ZNcleAJHdJcu8kGwOrVdXXgDcDOydZDdisqn4IvBHYEFhvlbxSSZI0K83WWQVmYh/XbwAPBc6nee/fUFV/AEjyVeBC4FfAuQBVdWOSA4HvJLmBJvFdf7ITVNXFSd4MnNwmprcArwT+AXy2bQN4EzAH+GKSDWkqtR+qqmtW4euVJEmzTJ8HUE2nGZO4VtV67dcCDmpv4/d5A/CGCdpPpOnrOr79sHH3tx/ZPpolB3JB0x1gvN0nj16SJElTmTGJqyRJ0mxRvb6gP31mYh9XSZIkzUBWXCVJkgZmtvZxteIqSZKkQbDiKkmSNDB9XiRgOllxlSRJ0iBYcZUkSRqY2VlvteIqSZKkgbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGpuzjKkmSJPWXFVdJkqSBsY+rJEmS1GNWXHvoXrVm1yEsg5u6DmBKGzCn6xAmdVZd23UIU3ruLRt2HcKUPvjEz3YdwpT+kX73Rdvx5n7/rgAc8aC3dB3ClA4+++1dhzClo3Y8tOsQprTebC0lLif7uEqSJEk9ZsVVkiRpYGZrYdrEVZIkaWAWlV0FJEmSpN6y4ipJkjQws7PeasVVkiRJA2HFVZIkaWAWzdKaqxVXSZIkDYIVV0mSpIFxAQJJkiSpx6y4SpIkDcxsXYDAiqskSZIGwYqrJEnSwDirgCRJktRjVlwlSZIGxlkFZpkkVyTZeIL2vZMc3EVMkiRJWrpZm7guTVUdX1VHdB2HJEnS0iya5tvKSHKXJN9Lcmn79c4T7DM3yelJLkqyIMl+y3LsXiSuSdZN8p0k5ye5MMl+bUX0PUkuSHJmkvu2+26S5GtJzmpvDx85xmfafc9Nsk/bPifJ+9rjLkjyqpFTvyrJOe05tmn3PyDJR9rtI5N8KMlPk1yeZN+RmA9qz78gyduW9jra9iOSXNzu+7475E2VJEnqxsHA96tqa+D77f3xbgCeX1UPAPYCPpBko6kO3Jc+rnsBV1bVkwCSbAi8G7i2qnZI8nzgA8CTgQ8C/11VP0myOXASsC1wCPCDqnph+8LPTPI/wPOBLYC5VXVrkruMnPdPVbVzklcA/wG8eILY7gHsDmwDHA8cm2RPYGtgVyDA8UkeCWwy/nUk+SfgacA2VVXL8k2RJEmaTFWv+7juAzy63f4ccArwxtEdquqXI9tXJrmaJo+6ZrID96LiClwAPD7Ju5M8oqqubdu/PPL1oe32HsBHkpxHk0hukGQ9YE/g4Lb9FGBtYPN2/09U1a0AVfWXkfN+vf16Nk1yO5FvVtWiqroYuFvbtmd7Oxc4hyap3Xopr+Na4Ebg00meTvMJYwlJDkwyP8n8+ddftvR3SpIkqd/uVlW/b7f/wO3504SS7AqsCfzvVAfuRcW1qn6ZZGfgicA7knx/7KHR3dqvqwG7VdWNo8dIEuAZVfWLce2Tnfqm9utClv5e3DSynZGv76qqT4zfefzrqKrD22/I44B9gX8DHjv+eVU1D5gH8PZ779/rj1GSJKlb0z2Pa5IDgQNHmua1ucrY4/8D3H2Cpx4yeqe92rzUYJPcA/gC8IKqmrJ7bS8qrknuCdxQVV8E3gvs3D6038jX09vtk4FXjTx3brt5Ek2f1bTtO7Xt3wNemmT1tn20q8CKOgl4YVvpJcmmSe460eto99mwqk4AXgfsuArOL0mSNG2qal5V7TJymzfu8T2qavsJbscBV7UJ6VhievVE50iyAfAd4JCqOmNZ4upFxRXYAXhvkkXALcDLgWOBOydZQFP1fE6776uBj7btqwOnAi8D3k7TD3ZBktWAX9H0if0UcL+2/Rbgk8BHVibYqjo5ybbA6W2efD3wPOC+E7yO9YHjkqxNU6l9/cqcW5IkaWVH/k+z44EXAEe0X48bv0OSNYFvAJ+vqmOX9cC9SFyr6iSaKuZt2oTwvVU1vjPvn7i9Ejva/g/gpRO030qTLL5+XPsWI9vzaTsRV9WRwJHt9gHjnrPeyPYHaQaKjfrf8a+jtesEbZIkSSuk5wsQHAF8NcmLgF8DzwJIsgvwsqp6cdv2SOCfkhzQPu+AqjpvsgP3InGVJEnSzFBVf6YZ2zO+fT7tDE5tt8ovLu+xe5u4jlZEJUmSdLvpHpzVV70YnCVJkiRNpbcVV0mSJE2s5wsQTBsrrpIkSRoEK66SJEkD0/PpsKaNFVdJkiQNghVXSZKkgen5PK7TxoqrJEmSBsGKqyRJ0sA4j6skSZLUY1ZcJUmSBsZ5XCVJkqQes+IqSZI0MPZxlSRJknrMimsP3XVhug5hSqevuXbXIUxps1u7jmByv1l9ra5DmNKpa97SdQhTeuKNc7oOYUq/WaPfMV6xRv8rN3Nv6v86QUfteGjXIUxp//MP7zqEKX19h7d0HcIgOI+rJEmS1GNWXCVJkgZmkbMKSJIkSf1lxVWSJGlgZme91cRVkiRpcJwOS5IkSeoxK66SJEkDY8VVkiRJ6jErrpIkSQNTToclSZIk9ZcVV0mSpIGxj6skSZLUY1ZcJUmSBqasuEqSJEn9ZcVVkiRpYJxVYJZJslGSV3QdhyRJkpbNrE1cgY0AE1dJkjQ4i6hpvfXVbE5cjwC2SnJekvcmOSjJWUkWJHkbQJItklyS5Mgkv0xyVJI9kpyW5NIku7b7HZbkC0lOb9tf0ranPfaFSS5Isl+Hr1eSJGnQZnMf14OB7atqbpI9gX2BXYEAxyd5JPB/wH2BZwIvBM4CngvsDuwN/H/AU9vjPRDYDVgXODfJd4CHAnOBHYGNgbOSnFpVv78jXqAkSZqZ7OM6u+3Z3s4FzgG2AbZuH/tVVV1QVYuAi4DvV/PTcgGwxcgxjquqf1TVn4Af0iTBuwNfrqqFVXUV8CPgwXfEC5IkSZppZnPFdVSAd1XVJxZrTLYAbhppWjRyfxGLv3/jP/os10ehJAcCBwLsv9GuPGLdrad4hiRJmq363A91Os3miut1wPrt9knAC5OsB5Bk0yR3Xc7j7ZNk7ST/BDyaplvBj4H9ksxJsgnwSODMiZ5cVfOqapeq2sWkVZIkaUmztuJaVX9uB1ldCHwX+BJwehKA64HnAQuX45ALaLoIbAy8vaquTPINmn6u59NUYN9QVX9YhS9DkiTNQrN15axZm7gCVNVzxzV9cILdth/Z/4CR7StGHwMWVNXzxx2/gIPamyRJklbCrE5cJUmShmjRLJ1VwMR1Faiqw7qOQZIkaaYzcZUkSRoY+7hKkiRpEGZrV4HZPB2WJEmSBsSKqyRJ0sDM1q4CVlwlSZI0CFZcJUmSBsY+rpIkSVKPWXGVJEkaGPu4SpIkST1mxVWSJGlg7OMqSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqUdchdMLEtYd+t3r/y/9b3pKuQ5jStnVD1yFMas1b1uk6hCldtkb//zAuWKv/P4sb9PxtvPvC/r+Hl605p+sQprRez7/PAF/f4S1dhzClp1/w9q5DUI+ZuEqSJA3MIvu4SpIkSf1lxVWSJGlgynlcJUmSpP6y4ipJkjQw9nGVJEmSesyKqyRJ0sDM1j6uJq6SJEkDs2iWJq52FZAkSdIgWHGVJEkamHJwliRJktRfVlwlSZIGZrYOzrLiKkmSpEEwcZUkSRqYRdS03lZGkrsk+V6SS9uvd55k3w2S/DbJR5bl2CaukiRJWpUOBr5fVVsD32/vL83bgVOX9cAmrpIkSQNTVdN6W0n7AJ9rtz8HPHWinZI8CLgbcPKyHniVJ65JNkryinb7nkmOXdXnmOL8uyT50DQc96lJtlvVx5UkSZph7lZVv2+3/0CTnC4myWrA+4H/WJ4DT8esAhsBrwA+VlVXAvtOwzmWqqrmA/On4dBPBb4NXLysT0iyelXdOg2xSJKkWWy6V85KciBw4EjTvKqaN/L4/wB3n+Cph4zeqapKMlGwrwBOqKrfJlnmuKYjcT0C2CrJecClwLZVtX2SA2iSv3WBrYH3AWsC/wLcBDyxqv6SZCvgo8AmwA3AS6rqkolOlOSZwFuBhcC1VfXIJI8G/qOqnpxkE+BLwD2B04HHAw8C1gO+C/wEeBjwO2CfqvpHkpfQfKPWBC5r45sL7A08KsmbgWcAn27PMz/JxsD8qtqifZ1Pb88xJ8kTgQ8D2wNrAIdV1XEr/O5KkiRNszZJnTfJ43ss7bEkVyW5R1X9Psk9gKsn2O2hwCPaq/TrAWsmub6qJusPOy19XA8G/req5gIHjXtse5qk7sHAO4EbqmonmqTy+e0+84BXVdWDaMrHH5vkXIcCT6iqHWkSy/HeCvygqh4AHAtsPvLY1sBH28euoUlGAb5eVQ9uj/lz4EVV9VPgeOCgqppbVf87xXuwM7BvVT2K5pPHD6pqV+AxwHuTrDvF8yVJkpaq531cjwde0G6/AFiiYFdV+1fV5lW1BU2+9/mpkla44wdn/bCqrquqPwLXAt9q2y8AtkiyHk0F9Ji2YvsJ4B6THO804Mi2Sjpngsd3B74CUFUnAn8deexXVXVeu302sEW7vX2SHye5ANgfeMByvcLG96rqL+32nsDB7es5BVibxRNooCnJJ5mfZP451122AqeUJEnqhSOAxye5FNijvT82DulTK3PgO3rlrJtGtheN3F/UxrIacE1brZ1SVb0syUOAJwFnt6PTViSWhcCd2u0jgadW1fntZf9HL+X5t3J74r/2uMf+PrId4BlV9YvJghktyR+6xf6zczkMSZK0TFZ2rtXpVFV/Bh43Qft84MUTtB9Jk39NaToqrtcB66/IE6vqb8Cv2r6rpLHj0vZPslVV/ayqDgX+CGw2bpfTgGe1++4JLHUC3BHrA79PsgZNxXXM+Nd1BU1/WZh8ANpJwKvS9jxOstMyxCBJkqRxVnni2mbZpyW5EHjvChxif+BFSc4HLqKZC2xp3pvkgvZcPwXOH/f424A928efSTMlw3VTnP8twM9okt7RQWFfAQ5Kcm47gOx9wMuTnAtsPMnx3k4zKGtBkova+5IkSSus531cp036HNzKSrIWsLCqbk3yUODjy9oNoUtD6Cqw5S3LPnVFV7atG7oOYVI/zzpdhzCly9ZY1HUIU1qn+v+zuMGifse4Tu//4sDfBrBcznr9/3Vhg4X9/2Y//YJ+13fW2Pg+vfiF3mDd+0zrN/Nvf7+8F69zvDu6j+sdbXPgq+0ktzcDL+k4HkmSpJU23fO49tUgEtckh9Bc6h91TFW9c7LnVdWlgH1KJUmSZoBBJK5tgjppkipJkjRbVI9nFZhOg0hcJUmSdLvZ2lVgAN3dJUmSJCuukiRJgzOTZ4WajBVXSZIkDYIVV0mSpIGZrYOzrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQws7PeasVVkiRJA5HZ2kdiNklyYFXN6zqOyRjjqmGMK6/v8YExrip9j7Hv8YEx6o5nxXV2OLDrAJaBMa4axrjy+h4fGOOq0vcY+x4fGKPuYCaukiRJGgQTV0mSJA2CievsMIS+Pca4ahjjyut7fGCMq0rfY+x7fGCMuoM5OEuSJEmDYMVVkiRJg2DiKkmSpEEwcZUkSdIgmLjOcEl2T/Kv7fYmSbbsOqZRSeYkuWeSzcduXcc0KskOXceg6ZfkVUnu3HUck0mybpLV2u37Jdk7yRpdx7U0Se6c5IFdxzGZJKsl2aDrOIYmyd2SPLm93bXreJYmyZ2S3L/rOLRqmbjOYEneCrwReFPbtAbwxe4iWlySVwFXAd8DvtPevt1pUEv6WJIzk7wiyYZdBzNekrOTvLLPSVeS9yTZIMkaSb6f5I9Jntd1XOPcDTgryVeT7JUkXQc0gVOBtZNsCpwM/AtwZKcRjZPklPZ7fRfgHOCTSf6r67hGJflSG+O6wIXAxUkO6jquMX3/fUnyLOBM4JnAs4CfJdm326iWlOQpwHnAie39uUmO7zQorRImrjPb04C9gb8DVNWVwPqdRrS41wD3r6oHVNUO7a1XFZqqegSwP7AZcHb7T+/xHYc1aj/gnjRJ11eSPKGHSdeeVfU34MnAFcB9gd4kCgBV9WZga+DTwAHApUn+M8lWnQa2uFTVDcDTgY9V1TOBB3Qc03gbtt/rpwOfr6qHAHt0HNN427UxPhX4LrAlzYeAvuj778shwIOr6gVV9XxgV+AtHcc0kcNoYrsGoKrOo/lea+BMXGe2m6uZ76ygudTYcTzj/Qa4tusgplJVlwJvpqlePwr4UJJLkjy928igqi6rqkOA+wFfAj4D/DrJ29qqVx+s3n59EnBMVfXye97+rvyhvd0K3Bk4Nsl7Og3sdknyUJoPUt9p2+Z0GM9EVk9yD5pKXN+unoxZo+1i8VTg+Kq6hfZvZE/0/fdltaq6euT+n+lnLnHLBO9dn77PWkGrT72LBuyrST4BbJTkJcALgU91HBNJXt9uXg6ckuQ7wE1jj1dVby4ttn30/pXmn8j3gKdU1TlJ7gmcDny9y/hgsRifCHwNOArYHfgBMLe7yG7z7SSXAP8AXp5kE+DGjmNaTJLXAM8H/kTzO3JQVd3S9im9FHhDl/G1XkvT7ecbVXVRkvsAP+w2pCUcDpwE/KSqzmpjvLTjmMb7BE0l83zg1CT3Bv7WaUSL6/vvy4lJTgK+3N7fDzihw3iW5qIkzwXmJNkaeDXw045j0irgAgQzXHtZe08gwElV9b2OQxrre7s0VVWH32HBTCHJj2gSmWOr6h/jHvuXqvpCN5HdFsPZNJfCPg18rapuGnns61XVeVUYoK3+XltVC5OsA2xQVX/oOq4xSd4GfKaqfj3BY9tW1c87CGup2oR6vfaSslZSktWr6tau4xgzgN+Xp9N8OAb4cVV9o8t4JtK+b4fQ/P+D5gPVO6qqTx8CtAJMXGewJO+uqjdO1daVJM+sqmOmautSktdW1QfGtb2mqj7YUUiLSXKfqrp8XNuWVfWrrmIaL8kzgROr6rokbwZ2pvkHck7Hod1mKd0qrmsvI/dCki8BLwMWAmcBGwAfrKr3dhrYiLZbxTtoqoUnAg8EXldVfRoU+hrgs8B1NB9KdwIOrqqTOw2sNZDfl7sDDwEWAWf1KamGZrYa4H+q6jFdx6JVr4/9UrTqTDSI6J/v8CiW7k3L2Nal50/QdsAdHcQkjl3Gti69pf0nvDvNQJ1PAx/vOKbxzgH+CPyS5tL2H4ErkpyT5EGdRna7vg8qgv4PLAJ4YRvjnjT9mP8FOKLbkBbT69+XJC+mmVXgacC+wBlJXthtVIurqoXAoj7OBKOVZx/XGSjJy4FXAPdJsmDkofWB07qJ6nZJ/pmmP+amST408tAGNINiOpfkOcBzgS3HTaGyPvCXbqK6XZJtaEaUbzhukNgGwNrdRLVUC9uvTwLmVdV3kryjy4Am8D2a7iAnASTZE3gGTWXuYzTVpa6NDir6SNsHt2+XzJYYWNS/SS4YC+iJwBfa/sJ9CrLvvy8HATtV1Z8BkvwTTd/Rz3Qa1ZKuBy5I8j3amXUAqurV3YWkVcHEdWb6Ek1F5l3AwSPt11VV50kXcCUwn2aqrrNH2q8DXtdJREv6KfB7YGPg/SPt1wELJnzGHev+NFWtjYCnjLRfB7yki4Am8bt2kODjgXcnWYv+Xe3Zrapue9+q6uQk76uql7bx9kHfBxVB/wcWQTOt3ck0Fes3JVmf5pJ3X/T99+XPNH9nxlzXtvXN1+nB4FmtevZxnQXSrGxyWxWuqv6vw3Buk2SNPvUhHKIkD62q07uOYzLtIIm9gAuq6tJ2uqQd+tKnEKBNZL4PfKVt2o8mcdiLpg/fzl3FNpm+DSqCJQYWrQus36c+kO3AtrnA5VV1TVsx3LSq+vCBtPe/L0k+D+wAHEczvdQ+NB/mF0C/ZoXRzGTFdQZrVw75L5oJ6q8G7g38nP5MWn7OBJc6r6Wpxr5j7FJUF5L8pKp2T3Idi8/9F5qZDzpdJjLJG6rqPcBz224Ni+nT5bCquiHJ1TSjkC+l6Q7StymSngu8Ffgmzff7tLZtDs2cpJ1LcjfgP4F7VtU/J9kOeChNH8heaJOuVwCbAwfS/O25P/2a07WA7WiuWBwOrEuPutcM4Pflf9vbmOPar31a3IYkv2KCeVur6j4dhKNVyIrrDJbkfOCxNKMrd0ryGOB5VfWijkMDbhuBvJCmawPAs4F1aCaA372qnrK05852SZ5SVd9K8oKJHq+qz93RMS1NO/3ZLjSrpN2vnQP3mKp6eMehAbeNQP58Ve3fdSyTSfJdmj63h1TVjklWB86tqh06Du02SY6m6f7z/Kravk1kf1pVc7uN7HZJPk7TNeCxVbVtmuWST66qB3ccGtD/35ehaCvpY9amWaL2LlV1aEchaRWx4jqz3VJVf06yWpLVquqHST7QdVAj9hh3CfaCJOdU1c7pwdrcbUJzUVVt03Us41XVt9qvvUlQJ/E0mimHzoFm6eG2X2EvtJe0751kzaq6uet4JrFxVX01yZsAqurWJAunetIdbKuq2m/sKkBbPezTwCeAh7R/Y84FqKq/Jlmz66BG9Pr3JckuNPOj3puRHKL6t1z3+Ct2H0gz77WJ68CZuM5s1yRZDzgVOKq9/PT3KZ5zR5qTZNeqOhMgyYO5fQnLzvvttQnNL5Js3pd+wWOSfItJli+sqr3vwHCmcnNV1Vi3kPRv6WFoVnE7rZ1BYnQEcp/66/29rSKNvY+70b8lk29Ociduj3ErRlbF64lb2g+lYzFuQr8GZ/X99+UompkFLqBf79tikowWRVajqWKb88wAfhNntn1oRvS+jmZ98w1p+nT1xYuBz7TJdWhGSL+4/UP9rk4ju92daZYOPJPFE5quE8P3dXz+5THR0sOf7Dim8cb67a1Gz/rqjXg9cDywVZLTgE1o5tHsk7fSLDywWZKjgIfTr3mPAT4EfAO4a5J30ryHb+42pMX0/fflj1V1/NS7dW50NphbgV/Rk/7qWjn2cVXnxiaJrqq+VY9I8qiJ2qvqR3d0LEOWHi49PJEk61TVDV3HsTRtv9b707yPv+jjrBxtVXg3mhjPqKo/dRzSEtp5kB9HE+P3e7ikb29/X5I8DngOzSwct1XTq6pXU09lAKsKasWYuM5AE4yEX0zXI+LHtPMTPgPYgsX7SvWpKtxLSb5aVc9KcgETz3rQq/5mfZdkbHT+elW1eZIdgZdW1Ss6Dm0xSR7Gkr8vn+8soAkk2ZQl+z+e2l1ES2q7CtyNxWPsVXegvkryRWAb4CJu7ypQVdWr1bPGxkuMazu7qvqyEp5WkF0FZqCqWh8gydtpJtH/Ak1Csz9wjw5DG+84mj56Z9O/fnDAbf0IPwxsC6xJ0wf37z1I/l/Tfn1yp1EsgzQre70buCvNz2EvphQb5wPAE2guxVNV5yd5ZKcRjZPkC8BWwHncvrpSAb1JXJO8m2YO3MWSGpp+9r2Q5FU0XRquonkfQxNjLz7sDeD35cFVdf+ug1iaDGtVQa0AE9eZbe+q2nHk/sfbKbL6MqryXlW1V9dBTOEjNNN0HUPTuf/5wP06jQioqt+3X3+d5O7ArjT/fM/q02TvrfcAT+nb5djxquo34wbA923E/i7AdtXvy2RPpZnGqZcfRFuvoYmxj6s9Qf9/X36aZLuqurjrQJZiSKsKagWYuM5sf0+yP81qQEXTL6lPswr8NMkOVXVB14FMpqouSzKnqhYCn22n0XlT13EBJHkxzQeRH9BUZj6c5PCq6tO64Vf1+J/wmN+0l+EryRo0yU3fYr4QuDvNVZS+uhxYg55eQWn9hv7NxjCq778vuwHntRP830TPuidV1XHAcRnAqoJaMSauM9tzgQ+2t9HVgPpid+CAvv4BbN3QzvF4Xrtgwu/p17rhBwE7jVWP2oExPwX6lLjObyem/yb9HczxMprfk02B3wEnA6/sNKIlbQxc3M5wMfo+dj3DxagbaH5Xxg/c6c1KbjTJ9SlJvsPiMfZl6rO+/770/SrZmHOTvJKm28Dokue96our5WfiOoNV1RU0U2JNKMmbqqrLaaf+ucNzL6t/oenX+m8004ptRjOgrC/+THMJbMx1bVufbECT0Ow50lZAX/4R04587/XKWcBhXQewDI5vb332f+1tzfbWN73+fWm7J+0ObF1Vn23nwV2v67gm8AXgEpq+64fT/H73uZKtZeSsArPYRKMuO4hhiT+ATlcytSSvbzfnAjvQDHQrmg8qC6rqgG4iG6b2Z+8lLDli3+rMcmoXINi8qn7RdSxa9YayJG2Sc6tZ6nxBVT2w7QL046rarevYtHKsuM5unS7FOPoHkGYN9jWAL9JMWt6pCaaZWkwPujOMTZI/NnH+mOM6iGVSST4HvKaqrmnv3xl4f8+SwuOAHwP/Q88GZU0yvV3fRpuT5Ck0i2OsCWyZZC5weB+6M/R9tbkkb6iq9yT5MBPE2aPuFr1eknbE2BzH1yTZHvgDzUwNGjgT19mt63J7n/8A9nqaqap6W9cxLIcHjiWtcNva8Dt1GM9E1qmqN3YdxETGprcbiMNoZrg4BaCqzktyny4DGjG22tzTaQa5fbG9/xyaqbG6NnYZe36nUUyt70vSjpnXfkh+C033lfXoz4w6WgkmrrNbpxVXevwHsKp+3XUMy6K9xP0GlhyA8NjOglrSaknuXFV/BUhyF/r3t+fbSZ5YVSd0HchUktyVxb/XfZo4/5aqunbctGK9WM9+bLW7JO+vql1GHvpWks6Txar6Vvv1c13HMoW+L0kLQFV9qt38EdCXD09aBfr2z0N3rGM6Pn/v/wCOu0y7Jk13hj4sQDDmKOBomgrxy4AXAH/sNKIlvR84PckxNB+W9gXe2W1IS3gN8KYkN9NcYuzjZfi9ad7LewJX06xO9XOaDy19cVGS5wJzkmwNvJpmlos+WXd0OdAkWwK9+dCc5H7Af7Bkf+u+fBjdBDgW+BtNN69DgT06jWgCrsw4czk4awZr/wB+HLhbVW2f5IE0ixK8o+PQbtPnNbnHS1NG2gfYraoO7joeuH0Jw7EBCG3bWVX14K5jG5VkO2DsH+8P+jZ5eZLVaEYdb1lVhyfZHLhHVf2s49Bu0y4e8ljgf9pBJ48BnldVL+o4tNskWQc4hNtHxJ8EvKOqbuwuqsUl2QuYRzMtVmg+ALy0qk7qNLBW+33+fzQrCt7W37qqzu4sqBFLWUr1tr8/fZHkRG5fmXH0fXx/Z0FplTBxncGS/Ihmns9PVNVObduFVbV9t5EN29ho1a7jAEhyRlXtluQk4EPAlcCxVbVVx6GRZIOq+lvbNWAJVfWXOzqmpUnycZpL2o+tqm3bvnEn9+kDQJL5VbVLm9jsVFWLkpw/bnW8TiXZuarO6TqOqbTVuG3au5f0aaWvsQ+jXccxXpKXA6+guew+OiB0feC0qnpeJ4Ethf/rZi67Csxs61TVmeP6m93aVTBjBjZKenSt69VoZkHoTfUIeEeSDYF/Bz5MMwfk67oN6TZfounCcDaLf7/H1obvU7+zh1TVzu2qaGMDyPo2x+c1SdYDTgWOSnI1/VoJD+D9aZYgPhY4uqou7Dqg8ZI8f1zTjkmoqs93ElBr5APet5K8AvgGiy9A0PUHvS8B3wXeBYxecbquB7FNZBArM2r5WXGdwZJ8l2bi/GPaf8r7Ai+qqiFM/N8LST47cvdW4Argk1V1dTcRaTok+RnwMOCs9ndlE5qKay8q63Db4MV/0HyA2h/YEPhi35KGNnF9FrAfzQepo3vWPenDI3fXBh4HnFNV+3YUEgBpVhAsJh40W1XVpw96vZfkYuC+QJ9XZtQKMHGdwdppaObR/EP+K80v8PPaFbU0AwykH/P3q+pxU7V1Kcn+NInWzsDnaAaQvbmquh7AeJsk7x4/ZddEbX2RZAeaGS/2q6q+Va9vk2Qj4CtVNZSlTLUMktx7ovahzBijpevTmutaxarq8qrag2YU6DZVtbtJ6/JJcp8k30ryxyRXJzmuR/NSQjMLw5toJ9uuqgXAszuNqJVk7fby58ZJ7pzkLu1tC2DTjsNbTFUdRZNkvQv4PfDUPiWtrcdP0NarqydJtk1yWJoFPD5MM6PAvToOayp/B7bsOogxSV7ZJtNj9+/cdh3Q8rlugtuVnUakVcI+rjNYktfQrEh1HfDJJDsDB1fVyd1GNihfAj5Ks1gCNEnhl4GHdBbR4nrZj7n1UuC1NNM3nc3tl0D/Bnyko5iWqqouoVnbvFdGB8UkWTDy0PrAad1EtVSfoZme7QlV1cskIYuvoDUH2Bb4ancRLeElVfXRsTttf+uXAB/rMKYhOgfYjOZqY4CNgD8kuYrmPe7FLA1afiauM9sLq+qDSZ4A/BPwL8AXABPXZbdOVX1h5P4XkxzUWTRL+lOSrWj/Ebf9mH/fbUiNqvog8MEkr6qqD0/5BC3NYAbFVNVDu45hGbxvZPtW4NdV9duugpnAnCSpth9fkjk0c0hr+XyPZoaVkwCS7Ekzr+tnaT4E9KX4oOVkV4GZbazC9UTg81V1ERN3/NfSfTfJwUm2SHLvJG8AThi77N11cMArgU8A2yT5HU2F8+WdRrSkP6RdyjfJm5N8va3+axlU1bVVdUVVPQf4LU23kALWa+eb7VySr7ZfL0iyYOR2wbgqcefaFbQuoalY3xm4uduIlnAicHSSxyV5HM0VnhM7jmmIdhudm7e90vjQqjoDWKu7sLSyHJw1g7Uj4jel6b+1I81lsVP6OEdgX7UjfZemNyN92xHnq1XVdV3HMt7Y5ORJdgfeAbwXOLSqrHgshyT/BhwGXMXty6j2YpR0kntU1e+HMCAmybNofgZPofkg/wjgoKo6tsu4xqRZDOOlNLMdQFM5/FRVLVz6szRekpOB7wNfaZv2o+knvhft7CFdxaaVY+I6g7V/AOcCl1fVNUn+Cdi0HcCjGSDJfwLvqapr2vt3Bv69qt7caWAjxhZsSPIu4IKq+lJ6tIjDUCS5jGa+2T93HcuQtQs4PH5sSrt26rP/6dlCDncCNq+qX3Qdy1Al2Rh4K7B723Qa8Daa1bQ2r6rLuopNK8fEdYZrE5mtaeYrBKCqTu0uomFJsgbNpfdHtk2n0KxEdktnQY2YKAHMBEsydinJt4Hf0VQ7dqaZi/TMPiUKQ5DkhzQJV18G391mYIuKXFBVO4zcXw04f7StS0n2pqkIr1lVWyaZCxxeVXt3G5nUDw7OmsGSvBh4Dc10NOcBuwGnc/ua8Zrax4E1uH1E77+0bS/uLKLFzUmy1tiSlW2lpm/9t55Fc3nufW3l/x40SxFr+VwOnJLkOyy+otJ/dRfSbTGs33UMy+HENEskf7m9vx9wQofxjPdWYFeaD8lU1XlJejNdV98l+UBVvXbc7BG38QPA8Jm4zmyvAR4MnFFVj0myDfCfHcc0NA8eVxn8QXupsS+OAr6f21f4+leaCfT7ZGNgPsDIYKLeTTs1AP/X3tbEUeYrrKoOSvIM4OFt07yq+kaXMY1zS1VdO26KOy+NLruxWWDeN+leGiwT15ntxqq6MQltVe6SJPfvOqiBWZhkq6r6X7htNbLeDJKoqne3o7bHBnK8fXQkbU98h9uXslybZrDgL4AHdBnU0FTV2wCSrFNVN3Qdz5BV1deAr3Udx1JclOS5NFdTtgZeTbOQg5bB2Pys7ewRwG1d5jZzfMfMYOI6s/22XYHlm8D3kvwV6M3o3oE4CPhhksvb+1vQVDV7o6q+SzPPZy+N7zvYToXlSkDLKclDgU8D6wGbJ9kReGlV+V4ugwH1w30VcAhNd5AvASfRzMah5ZDkFGBvmjznbODqJKdV1es7DUwrzcFZs0SSRwEbAidWVd/mLeytJGsD/05T0bwGOAv476q6scu4xiR5OvBu4K40/4D79k94QuMHyGhqSX4G7AscPzYgL8mFVbV9t5FpOlhZXzkjs5m8mKba+taxqfm6jk0rx4rrDNfOnbl1VX22nfZlU2CyuUm1uM/TLFH69vb+c2n6UD2zs4gW9x7gKVX1864DWZokoxWO1WhmFujlcqB9V1W/Gdf3sTfdVrRqJHkY8CmsrK+s1duBoM+iqWBrhjBxncGSvBXYBbg/zTJ3awBf5PZBCZra9lW13cj9Hya5uLNolnRVn5PW1uiI81tp+rz2tX9hn/2mTWqqnabtNUDfv/dafv8NPAE4HqCqzk/yyMmfogkcTtPN4idVdVY7PuHSjmPSKmDiOrM9DdgJOAegqq4cW3pTy+ycJLu1ywSS5CG0I+R7Yn6So2n6MY9OkfT1ziIaZ2RQ0Xrt/eu7jWiwXgZ8kOaqye+Ak2mW/NUMY2V95VXVMcAxI/cvB54xdj/Jm6rqXV3EppVj4jqz3VxVlaTgtmVBtXweBPw0yf+19zcHfpHkAvqx3OYGwA3AniNtBfQmcU2yPU33iru09/8EvKCqLuw0sIGpqj8B+3cdh6adlfU7xjMBE9cBMnGd2b6a5BPARkleArwQ+GTHMQ3NXl0HMJmq6tUMB0sxD3h9Vf0QIMmj27aHdRjT4LST0L+KZmaL2/52O6H6jDNaWb+S5nK3lfVVL1Pvoj5yVoEZLsnjaapxAU6qqu91HJJWoXbWgxfRzIk6uqzvCzsLapwk549f3nWiNk2uXfji08AFwKKx9tH5KiUtm74tja1lZ8V1hmsTVZPVmesLNKtQPYFmMML+9O+y4uVJ3sLtK9o8j2b5Ui2fG6vqQ10HoenVDiL6IM0S3UWzTPfr2j6aWnWsuA6UFdcZaEATbWsljcxVuKCqHtj2iftxVe3WdWxj2lVr3gbsTvNz+WPgbVX1104DG5h2NaWtaQZljQ7EO6ezoLTKJTkD+Cjw5bbp2cCrquoh3UU18yT5/6rKJdAHyMRVGrAkZ1bVrklOpVmN6g/AmVV1n45D0yqW5F3AvwD/y+1dBaqqHttdVFrVJpok3641yy/J/YCPA3erqu2TPBDYu6pchWzgVus6AE2vJLsn+dd2e+N2gIdmjnltRfPNNPM+XkyzklZvJPleu/Tw2P07Jzmpw5CG6pnAfarqUVX1mPZm0jrzfDfJwUm2SHLvJG8ATkhylyR36Tq4Afkk8CbgFoCqWkBTvdbA2cd1BptgAYI1cQGCGWHcalRjMwt8tP3at2nPNq6qa8buVNVfk9y1w3iG6kJgI+DqjuPQ9HpW+/Wl3N7lKzRJVwFeTVk261TVmePmw721q2C06pi4zmwuQDBzjX0f7w88mHaVHeApwJmdRLR0i5JsXlX/B5BkCybug63JbQRckuQsFu/j6nRYM8sbgROr6m/toMadgbfbl3m5/SnJVrR/a5LsC/y+25C0Kpi4zmwuQDBDjaxGdSqwc1Vd194/jGZJ1T45BPhJkh/RVI4eARzYbUiD9NauA9Ad4s1V9dUkuwOPBd5H01fTwVnL55U080Vvk+R3wK9oZjTRwJm4zlBpro982wUIZry7ATeP3L+5beuNqjoxyS40yeq5NMvT/qPToAbI+VpnjbHlXZ8EfLKqvpPEAUXLqZ0+bI+2YLPa2Id7DZ+J6wzVVlqfCbwe+BvNJeVDXYBgxvk8cGaSb7T3nwoc2Vk0E0jyYpplK+8FnEczP+XpNNUkLaNx09ytCawB/N3p7Wac37UFh8cD706yFg6kXm7tgNDn0640N9bXtape3V1UWhWcDmsGS/I54CNVdVbXsWj6JNmZ5vI7wKlVdW6X8YyX5AKafrhnVNXcJNsA/1lVT+84tMFqr6jsA+xWVQd3HY9WnSTr0Cw1fUFVXZrkHsAOVXVyx6ENSpKfAmew5Epzn+ssKK0SJq4zWJJLgPsCvwb+PtY+fo5AaTolOauqHpzkPOAhVXVTkouq6gFdxzZ0YwtQdB2H1Dcu6Tpz2VVgZntC1wFIwG/by3bfBL6X5K80H6a0HJKMVqhXo5nq7saOwpH67gvt2I5vs/gsHH/pLiStClZcJd1hkjwK2JBmup+bp9pft0vy2ZG7twJX0AzecV5XaZwkrwTeCVzD7X3Dy1UFh8/EVZJ6Lskc4NVV9d9dxyINQZLLgV2r6k9dx6JVy5GKktRzVbUQeE7XcUgDchlwQ9dBaNWzj6skDcNpST4CHM3igy1dUUla0t+B85L8kMX7uDod1sDZVUCSBqD9BzxeVZXz4UrjJHnBRO1OhzV8Jq6SNABJ7tOuBjRpmyTNZCaukjQAE81LmeTsqnpQVzFJfZPkq1X1rHbhk/EJTlXVjl3EpVXHPq6S1GPtSmMPADYcN5frBsDa3UQl9dZr2q8/Bw4aaQ/wnjs+HK1qJq6S1G/3B54MbAQ8ZaT9OuAlXQQk9VVV/b7dvG9VLbbQSfshUANnVwFJGoAkD62q07uOQ+qzJC8HXgHcB/jfkYfWB06rqud1EphWGRNXSRqAJO8B3gH8AzgReCDwuqr6YqeBST2SZEPgzsC7gINHHrrO5V5nBhNXSRqAJOdV1dwkT6PpOvB64FQHm0iaTVw5S5KGYY3265OAY6rq2i6DkaQuODhLkobhW0kuoekq8PIkmwA3dhyTJN2h7CogSQOR5C7AtVW1MMk6wAZV9Yeu45KkO4oVV0kajm2ALZKM/u3+fFfBSNIdzcRVkgYgyReArYDzgIVtc2HiKmkWsauAJA1Akp8D25V/tCXNYs4qIEnDcCFw966DkKQu2VVAkoZhY+DiJGcCN401VtXe3YUkSXcsE1dJGobDug5AkrpmH1dJkiQNghVXSeqxJD+pqt2TXEczi8BtDwFVVRt0FJok3eGsuEqSJGkQnFVAkiRJg2DiKkmSpEEwcZUkSdIgmLhKkiRpEExcJUmSNAj/Px/6v9Jq3TQTAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "corrmat = df.corr()\n", + "f, ax = plt.subplots(figsize=(12, 9))\n", + "sns.heatmap(corrmat, vmax=.8, square=True);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGkCAYAAAB+TFE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dWH39m+q9Xuqvde3eTeG7bBdAwm9A6BBEJJvtASSggJCYQk1IQSCBBIqKaYjgvuvTfZktV71/Y+8/2x0tpCkrst28z7PPvM7MydmbNl7m/uveeeI0iSJCEjIyMjIzPAKAbaABkZGRkZGZAFSUZGRkbmJEEWJBkZGRmZkwJZkGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMC1UAbICNzuIiSiD8YwBf04Q368AX9+AKhZfd7b8CHL9j98qNRqjFpIzHrIkmOTMCkjUQQhIH+KDIyMvshC5LMgODyuWlyttLhttLpsdLhtuL0uXAHvLgDHjx+D+6AF4/fgyfg3U9sQgJztBg1EeREZzAsoZCihEFkWFJkgZKRGWAEOVKDzPGm1dXO7pa9lLZVUmtroNbWQIfb2qucVqVFr9KiV+nQqbXoVDr0Ki06lRaNSoNWqUGjVKNVadB0rytD6z22qfbbp9KgUajxBX3YvA7a3Vbq7Y3UWBvY3bqXOlsjAKmmJM7ImsD0zAmYdaYT/RXJyMggC5LMccDld7O1cReb6newq6WUFmcbEBKc1MhEUsyJpJqSSDTGEa23YNGbsehMaJTqE25ru6uTjfXbWVq5hpK2ctRKNWflTGVO4Wyi9OYTbo+MzI8ZWZBkjgl2r4PVNZtYX7eVHc17CIpBIjURDI7PZ1BcLoWxuWRaUlEoTl4/mlpbA/OLF7Csai1KhZI5hbO5uHA2GpVmoE2TkflRIAuSzBHjC/rZVL+dZZVr2dywg6AkkmSMZ0xKEWNThpMfk31SC1B/NDpaeG/7fFZVbyAhIpZbRl/FiKTBA22WjMxpjyxIMoeFJEkUt+xledU6VtdsxOV3E6UzMyVjLFMzxp9WzgE7mnbz+sb3qbM3MjtnGteNuBSt3FqSkTluyIIkc0jYvA6WVqxhYflyGuzNaFVaxqeOYFrGeIbGF5ySLaFDwR/08972+Xy+ZyHJkQn8cuJPyYxKHWizZGROS2RBkukXSZLY3bqXBWUrWFOziYAYoCA2h7NypjIudQQ6lXagTTxh7GjazQtr38Tpc/GzMdcyNXPcQJskI3PaIQuSTC9EUWRt3WY+Lf6Wio4aDGo90zLGc2bOFNItKQNt3oDR6bHxzKrXKG4p5by8GVw74lJUCuVAmyUjc9ogC5JMmIAYZFnlGj7b/R0N9maSjPFcWHgWUzLG/qhaQwciIAZ5Z+vHfFWymEFxufxq0q1Y5HlLMjLHBFmQZJAkic0NO3h7y8fU2RvJikrjkkHnMC5lxGk7NnS0rKhax8vr3yFSY+S+KT8jOzpjoE2SkTnlkQXpR06rs51XN/yXLY27SIqM57rhcxmdXHTaeModTyo6anh6xctYvXZuH3stUzLkcSUZmaNBFqQfKZIk8X3FKt7a/BEiElcOvZCzc6ejUsrhDQ8Hq8fG31f9i+KWvVxUeBZXD7tYblXKyBwhsiD9CPEEvLy07m1W12xkSHw+t4+9jnhj7ECbdcoSCAZ4c/OHfFe2jBGJg7l74s0YNREDbZaMzCmHLEg/MhrtzTy98hVqbQ1cNWwOFxWehUKQn+iPBQvLlvP6pveJM0Rz/5TbSTUnDbRJMjKnFLIg/YjY21bJn5a9CMAvJ95CUeKgAbbo9GN3y17+tvJVfEE/d064kbEpwwfaJBmZUwZZkH4k7GjazV9WvIxJa+ThM+4h0Rg30CadtrS62vnrilco76jmnLwzuHb43AGJZC4jc6ohC9KPgE31O/jbyldIjIznoel3Ea23DLRJpz2+oJ//bfuUr0oWk25O4c7xN5AZlTbQZsnInNTIgnSas6u5hCeWvUiqKZFHpt+DUSsPtp9INjfs4J/r3sbudXBR4Vn8ZPB5cjoLGZl+kAXpNKasvYrHv3+WaIOF38/8NSatcaBN+lHi8Dp5e+vHfF+xiviIGK4ZfgkTUkfJc71kZH6ALEinKY2OFh5a+Bd0Ki1/mHkv0QbLQJv0o2dH0x7e3Pwh1dY68mOyuXLYhQyJL5CFSUamC1mQTkOcPhcPL3waq9fOE2feT1Jk/ECbJNOFKIosqVzD+9vn0+GxkhudycWDzmZ08jCUcqBWmR85siCdZgTEIE8u+wc7W0p4ZPrdDI7PH2iTZPrAF/SzpGI183d/R7OzjWi9hZnZk5iZNZnYiOiBNk9GZkCQBek049+b3ueb0iXcPvY6ZmRPGmhzZA5CUAyysX47i8pXsKVhFwgwInEw0zLHMzZ5uOwAIfOjQhak04hllWt5ce2bnJ8/ixtG/mSgzZE5TFqcbSwqX8nSyjW0uTrQq3VMSB3F9MzxFMblyhE1ZE57ZEE6TajsqOXhRX8hNzqTR864Rx6POIURJZHilr0srVzDmppNeAJe4gzRTM0cx7SM8SSbEgfaRBmZ44IsSKcBDp+T33z3JD7Rz1OzfysnjDuN8AZ8rK/bwrLKtWxtKkaSJPKiM5maOZ7J6WOIlF35ZU4jZEE6xRElkaeWv8S2pmJ+P+P/yI/NHmiTZI4THW4rK6rWs6xyDVXWOtQKFVMzxnF+wSzSzMkDbZ6MzFEjC9Ipzkc7v+SDHV9w86grOCfvjIE2R+YEUdlRy4KyZSytXIMv6Gd44mAuLDiTYQmF8rwmmVMWWZBOYbY07OTPy/7BlIyx3Dn+Rrki+hFi9zpYULacb0qX0OmxURibw2VDL2CoPOFW5hREFqRTlGZnGw989ydi9VH88cz70cruwT9q/EE/i8tX8UnxN7S7OxkUl8tlQy5gaELBQJsmI3PIyIJ0CuIL+nl00V9pdLTw5FkPkihHYpDpwhf0s7h8JZ8Uf0OH28qQ+HyuGHoRhXE5A22ajMxBkQXpFOTl9e+wuHwl90/5OWPkBHAyfeAL+llYtpxPir/F6rExMmkIVwy9iOzo9IE2TUamX2RBOsVYXL6Kl9e/zSWDzuGqojkDbY7MSY4n4OWb0iV8tvs7nD4X41NHcsXQC+X06jInJbIgnUKUt1fxyKK/UhiXy0PT7kKhkGfuyxwaLp+bL0oW8sWeRXiDPqZmjOOyIeeTIGcOljmJkAXpFKHd1clvFj6JUlDy5OzfyLmNZI4Im9fBZ8Xf8s3epYhikJnZk7l08HlyehKZkwJZkE4BPAEvv1v8Nxrszfxx1n2kW1IG2iSZU5x2dycf7/qaReUrUQgKzs6ZxsWDzsakixxo02R+xMiCdJIjiiJ/X/0v1tdt5YEptzMqedhAmyRzGtHsaOWjnV+xtGoNWqWGM7OncF7BTGINcgoMmROPLEgnMZIk8eqG/7GofAU3jryM8/JnDrRJMqcpdbZG5u38ilU1GxGAieljuLDgTLKi0gbaNJkfEbIgnaRIksQ7Wz/m8z0LmTv4HK4cdnw86oJBkU6Hlzarh3abhw6bB5vLh9sTwOUN4PYG8PqCiKLUZReIXX8ZhSCgUSvQqJVdLwUaVWhd27Vdq1ai1SjD65qu99of7NOolSgVB48sIIoSgaCIPyASCIrh9e6XLxDE7xfx+oP4A0F8fhGfP4gvIPZ+7w92lQsd173PH+h5vD8QRBQP7ftUKEClVIReqtBSHV4Xwvu6P7tOq0Kn6VrXdK+r0He912qV6DUqIvRqjHo1Wo3yuEZgaHW281XJYhaWr8AT8DIsoYBz8mYwKmmoHEFe5rgjC9JJiCRJfLDjC+bt+oqzc6dz86grjroS8ngDVDbYqGiwUd/ioLbZQX2Lg8Z2V1hs9ketUqDXqtBrVWg1ShSCgCCA0L0ERJEeFXf3eiB4ZH8phUIgpEn7rkHX9QACAZFgH7YeLoIAalVINNUq5T5RVSm6titRh8U1tO1QxBJCYr2/WAYCUg/h3CegQTy+rpc3cMifS6UUwuJk1GuIMITWTREaok06oiK1RJl0REXqiDJpMUVoD9n2/XH6XCwsW8HXpd/T7u4kRh/FrJzJzMyeTLTectjnk5E5FGRBOskQJZE3N33IN3uXMDNrEreNveawE7OJokRVo40dZW2UVHdQVtdJXbOD7jpPo1aSEhdBcpyR5NgI4qIMxJh0oQqtqxJTq47cpTwoSqFWiD+I1xdqhXi71n1d6/vv6173B8Ww/RBqjUmEBBpCItnd2lB3tz66liqlIiwePxQUjSr0XqtWolYpUSmFky7Omz8g4vUF8PiC4VapZ7/3Trcfh9uPw+XD4fbve+/243T5sTq9uDyBXudVKASiIrXERxlIiDGQEG0gMTqChBgDybERRJt0B/wuujPaLihbxtbGYhSCgjEpRczMmszwxEFyq0nmmCIL0kmEL+jn5XVvs6J6PRcWnMm1w+ceUsUZFCUq6q3sKGtjR1kruyrasLv8AMSYdeSkWMhJNZOTYiYr2UysRY/iCJ6aZU5uPL4AnXYvHTYvHfZQ92uH3Uur1U1Tu4umdhdtnW72b4xF6NWkJ0SS1vVKT4wkPSGSGHNvoWq0N7OwfAXfl6/C7nNi1pmYkj6WaZnjybSknnQiL3PqIQvSSUKzs42/r3yV8o5qri66mDmFs/u9wYNBkbI6KzvKWtle1kZxRRvOrqfjpJgIhubEhF7ZscRHG07kx5A5yfEHRFo6XTS1uahvcVDVZKemyU51ox2b0xcuF6FTkZNqITvFTE6qhdxUM8mxRhQKgUAwwObGnSytXMPG+u0ExSBp5mSmZ45ncvpYYgxRA/gJZU5lZEE6CVhft5WX1r2NKIncOf6GXvHp/AGRvTWd7ChvZUdZG8WVbbi9QQBS4oxdAhTLsJwYYsz6gfgIB0QK+Am6bIg+N5Lfi+j3IPm6lx5EvxcpGABJBFFE+sESQFAoQaEILZXK0FJQIigUoFCiUGsR1FoUGl1o2fU+tK5DUGtCx8j0i9XhpbpLnCobbJTVdlLZYMMfCP0Geq2SrOSQQOWkmMlNtWA2w7r6zSyrXEdJWzkAeTFZjE8dyfjUEXIkCJnDQhakAaTd1cm/N7/PutotZFhS+fWkW0mMjMfl8bO7qoNdFW3sKm9nT3UHPn9IgNITIxmaHRKgodkxRJl0A2K7JEmIHicBa0voZWshYG0l6LKFxMdlI+gOrUs+z1FcqbuVeAycGdRaFFoDCl0ECm0ECp0h/F7Zva17v26/dW2onKDW/ui6pQJBkZomO2W1VspqOymrs1Jeb8XrC/0fNSoFWclmslPNxMYo6FRUU+raRpW1GoBMSyrjUkcwPHEwOVEZcrgrmQMiC9IAYPPY+aJkEd+ULiEgipybcS7p6qGUVHWys6KNijorogQKAbJTzAzOimFIduhlNmpPiI2SJCG6bPg7m7vEpuvV9d5vbUXyunocI6g0KCPMKPQmlIZIlAYTCoMJpcGEUh+JQqtHUOtCrReNLtRy0YRaMChVCIIi1ArqWiIowgIQai0FkcTuZTDUihKDSMEAUsC3r7Xl94aXkt+D6PeFlj43oseF6HEieruXToIeJ6LHBWJvp4AeKJQotPougdonVGFh2/8VFrKe5QXNgZ0ITgWCokRds53yOitldVb21nZSXmcNO1WolAIp8Qb0Ji92ZR2tVCAYbBh1OoYlFDI8YRDDEgcRZ4g+5b8LmWOLLEgnCEmS2NNcwVc717G2pByf3UBkMAWvw4DLHbqRNWolhRlRDM6KYXBWNAUZURh06uNjjxgkaG8nYGsjYG3Bb23eJzrWZgLWVqSAr8cxgtaA2hyHyhyHyhzftYwLb1MYTKdsBSNJElLAFxIs736C1f3yunq++trmdYe6HQ+EoAh1K2r0IbHqWu57b0Ch0XWJlx6FVhfa1lVW2P8Y9ckjbqIo0dju7NGSKqvtDDvXAOgjgohaG0FNJ4LegckE+alxDE7KJD8mi+zoDHSqE/PAJXNyIgvSMUSSJJxuP21WD21WD9XNneysqaOisZO2Dh8Bt5buLiiVUiAzOeT51t0nn51iRqU8ui4NSZKQfO5Q15nTSsDRTtDWRsDW2vUKrQcdnb0qT4XBhMoUh9oSFxab/YVHqYs4KttOd0LfvacPofqhgLlD42k+d3hd9LoQfZ7wtoMKGwBCl0CFBEyhCa0L3evdIvYD8eu9zYCg0YZapsf4+2jpdFNWa6Wy3kpNs4OaJju1zfaec9VUXgStG4XWQ0SERKxFR3KMiYz4WLLj48mMjSc2wiJ39/0IkAWJru4pKfSUFwyK4TkzP1x6fAEcbj82p5dOhwery4PN6cXqCLna2hwBAj/s9VEEUOjcWCwK8pJjGZOVQ0F6LGkJkaiUitAcGzGIFPQjBQKhZdDf1Q3lD73CFZerRwUmda13j9sEnVZElw0p6O/1GQWVBpUpBqUpFpUpBlVk19IUGxYchWZgxqNkehJurXldXb+9p8dvL4X/A/uWkq/7/+HpKhMSONHrOkRxIyRS+7XKBK0ehUoTcghR7XspfvBeUGtQqLTh9X371AgKJYJSCQpV17qKIAKtNj+1rW5qW11UNlmpbu6gpcONwyEhin20+pR+VJoAWp2EwaAkQq/AoFMTodNg1GswGbSY9AZMBi1GvQa9Roteo+5aatCp1aE5a11z2eRpDycnp6QgBQIBGhsbD1jG6vDywgdbcHr8BEWJYFBCEiWCkoQohl5BUULsen+4CIjoFD50gh+d4MOocBOpcGNUeDEpvZiVXqJUoaU6/OQpgtQ10VOSIBgAMcgRDdgLyq6nYy1KnRFBF4nSYAyN1eiMoTEcfSQKgxlVZBSCNuKk6d6ROXFIkgRBf2hczedG9HlDLTG/p2tczbOvZeb3dnk/uhG9XiS/e99DUdCHFPAjBvwQ8IMUPIZWCiAoQBnynHQKejoDeqyiDoeowhnU4BA1OEUNrqAGp6TBJWrwSWpEjrDVJIihCCDCfvde13r39q6gISgEAZPOiFJQ7BetZN+91L3avWV4fhxzz8g9qAmJiYmoVKojs/805ZQUpNraWmbNmjXQZsjIyMgcMYsWLSI1NXWgzTipOCUF6VBaSEdKY2Mj11xzDf/9739JTEw8Ltc4Xsi2Dwyy7QPDqWw7yC2kvjglvw2VSnXcnywSExNP2acX2faBQbZ9YDiVbZfpiey2IiMjIyNzUiALkoyMjIzMSYEsSDIyMjIyJwWyIP0Ak8nEnXfeiclkGmhTDhvZ9oFBtn1gOJVtl+mbU9LLTkZGRkbm9ENuIcnIyMjInBTIgiQjIyMjc1JwSgpSIBCgtraWQK/AcTIyMjKnDz+2uu6UFKTGxkZmzZp13KI1yMjIyJwM/NjquuMuSA6HgwsuuIDa2tpe+xYuXMicOXO46KKLuOOOO7BarcfbHBkZGRmZk5TjKkhbt27lqquuorKystc+h8PBY489xquvvsr8+fMpKCjghRdeOJ7myMjIyMicxBzXWHYffPABv/vd77j//vt77fP7/Tz22GMkJCQAUFBQwOeff96rnM1mw2az9dj2Y2m+ysjI/HiQ67rjLEhPPPFEv/uioqI488wzAfB4PLz66qtcd911vcq99dZbvPjii8fNRhkZGZmTAbmuOwmifdvtdu644w4KCwu55JJLeu2/4YYbem3vDjsvI/Njw+/3U1tbi8fjGWhTZA4BnU5HamoqarX6oGXlum6ABam5uZlbbrmFCRMm8Nvf/rbPMiaTSQ4NIiPTRW1tLZGRkWRmZsoZgE9yJEmira2N2tpasrKyDlperusG0O07GAzy85//nHPPPZeHHnpIvrlkZA4Bj8dDTEyMfL+cAgiCQExMjNyaPQxOeAvp1ltv5e6776axsZFdu3YRDAb59ttvARg6dOgBx51kZGSQxegUQv6tDo8TIkiLFy8Or//rX/8CYNiwYezevftEXF5GRkZG5hTglIzUICMjc+zYtm0bjz76KADbt2/n7rvvPuTyx6KcjEw3siDJyPzI2bt3L01NTUCo5+L5558/5PLHopyMTDcD7vYtIyNzfBBFkT/96U9s3boVp9OJJEn88Y9/5MMPP6Szs5OamhqGDx/OqlWrsNvt/OY3v+Hiiy/mD3/4A1988QUbNmzgySefRBRFAH72s59RVFTE888/Hy7/5z//uc9rNzQ09Cr3/vvv8/bbb6NQKIiNjeWRRx4hKyuLBx98EEEQKCsro729ncmTJ/Pwww8f0FU6GAzyl7/8hcWLFxMZGUlRURFlZWW8/fbb2O12nnjiCUpKSvD7/UycOJH7778flUrFsGHDuO2221i5ciXNzc1cf/313HjjjXz88cd89NFHuN1ujEYjb7/9Nh9++CHvvvsuoihisVh45JFHyMnJOS6/lUwX0ilITU2NlJ+fL9XU1Ay0KTIyJ5Rdu3YdctlNmzZJd911lxQMBiVJkqRXXnlF+tnPfiY98MAD0g033BAuN2/ePOm2226TJEmS1qxZI51//vmSJEnS9ddfL33xxReSJElScXGx9Nhjj/UqfyD2L7dq1SrpzDPPlNra2sL7zj33XEkURemBBx6QLr74YsnhcEher1e65pprpLfffvuA53733Xela665RvJ4PJLX65Vuvvlm6dprr5UkSZIefPBB6T//+Y8kSZIUCASke++9V3r11VclSZKk/Pz88Lm3b98uDR06VPJ4PNK8efOksWPHSna7XZIkSVq7dq109dVXSy6XS5IkSVq+fLl07rnnHvQz98Xh/GY/5MdW18ktJBmZ05SRI0diNpt57733qKmpYe3atURERGCxWBg9evRBjz/33HN5/PHHWbx4MZMmTeL//u//jtiW5cuXc9555xEdHQ3A3LlzeeKJJ8JBly+55BIiIiIAmDNnDosWLeLaa6/t93xLly5lzpw5aLVaAK644grefvttAJYsWcL27dv56KOPAHq5Xc+aNQuAIUOG4PP5cLlcQCh8mdFoDJ+jqqqKK6+8Mnyc1Wqls7MTi8VyxN+DzIGRBUlG5jRlyZIlPPHEE9x0003MmjWL7Oxs5s+fD4DBYDjo8VdeeSUzZsxg5cqVLF++nBdffDF8/OEiSVKf27rz/CiVyh7bFYoDD2+rVD2rrv3Li6LIc889F+5es9lsPdyvu0Wse1u3bft/J6IoMmfOHO67777w++bmZsxm80E+qczRIDs1yMicpqxcuZIZM2Zw9dVXM2zYMBYuXEgwGOxVTqlU9pkA7sorr6S4uJi5c+fyhz/8AZvNhtVq7bf8gc47ZcoUvvrqK9rb2wGYN28eFouFjIwMAL7++mt8Ph9er5dPPvmEGTNmHPDc06dPZ/78+fh8PgKBAJ988kl435QpU3jzzTeRJAmfz8ftt9/OO++8c1B792fy5Ml8+eWXNDc3A/Duu+9yww03HNY5ZA4fWZBkZE5TrrzyStavX8+FF17IFVdcQVpaGrW1tWEnhW5GjhxJeXk5v/jFL3psv/fee3n++ee5+OKLuf7667nzzjtJTU3tt/wP2b/c5MmTufHGG7nhhhs4//zz+fTTT3nllVfCLRudTsfVV1/NhRdeyJgxY7j00ksPeO65c+dSVFTExRdfzJVXXolarUav1wPw0EMP4XK5uPDCC7nwwgvJz8/npz/96WF9d1OnTuXWW2/l5ptv5sILL+SLL77gxRdflCe6HmcEqa+29ElObW0ts2bNYtGiRaSmpg60OTIyJ4zi4mIGDRo00GYcUx588EHy8vK45ZZbDvmYFStW0NbWxpw5cwD44x//iFarDXexnUwczW/2Y6vr5DEkGRmZI6K8vJxf/epXfe7Lysri2WefParzX3311Tidzj73/fOf/+T111/n9ddfJxgMUlhYyGOPPXZU15MZeGRBkpGROSKys7P57LPPjvo8Tz75ZJ/b//e//x3wuDfeeOOory1zciGPIcnIyMjInBTIgiQjIyMjc1IgC5KMjIyMzEmBLEgyMjIyMicFsiDJyMjIyJwUyIIkIyNzTHn++eeZNWuW7AUnc9jIbt8yMjLHlM8++4zXXnuNrKysgTZF5hRDFiQZmVOUxRuqWbCu+ric+6xx6cwck37AMoFAgMcee4zS0lJaW1vJysoiOTmZpqYmfvGLX/C3v/2Nm266iSFDhtDa2spHH33E66+/zvz581EqlUyePJn77ruPhoYGbr/9dtLS0qiqqiI5OZmnn34ai8XC999/z7PPPosoiqSlpfH4448TGxvLzJkzmTlzJhs2bADgT3/6E4MHDz4u34XMiUPuspORkTkiNm/ejFqt5v3332fBggV4vV4mT55MfHw8r776KoMGDaKjo4PbbruNzz77jFWrVrF48WI+/vhjPvnkE6qqqnjvvfcAKCkp4YYbbuDLL78kJyeHF198kba2Nh599FH+8Y9/8PnnnzNq1Cgef/zx8PUtFguffvopd999Nw888MBAfQ0yxxC5hSQjc4oyc8zBWzHHk7Fjx2KxWPjvf/9LeXk5lZWV4dxC+zN8+HAA1qxZw/nnn49OpwPg0ksv5dNPP2X69OlkZmYyfvx4AC6++GLuvfdeJk+eTFFRUTiG2xVXXMGrr74aPu/ll18OwMyZM3nwwQdpb28P51uSOTWRW0gyMjJHxKJFi7j33nvR6XTMnTuXsWPH9pn3qFuAfhhlHAinp9g/v5EkSSiVyl7l98+f9MNjRFHskVNJ5tREFiQZGZkjYvXq1Zx77rlceumlxMbGsn79+j7zLXUzYcIEvvzySzweD4FAgHnz5jFhwgQAKioqKC4uBkK5kqZNm8bw4cPZunVrOKvs+++/H25FAXz55ZcALFiwgJycHDl53mmA3GUnIyNzRFx22WXce++9fPPNN2g0GkaMGBEWj76YMWMGxcXFXHrppQQCAaZOncq1115LY2MjZrOZ559/nurqagoKCvjjH/+IwWDg8ccf584778Tv95OcnMwTTzwRPt+mTZv46KOP0Ov1/QZolTm1kAVJRkbmiCgoKODzzz/vtX3/lBR79uzpse+OO+7gjjvu6HWMXq/npZde6rW925uuL37961//KHIE/ZiQu+xkZGRkZE4K5BaSjIzMgJKamsrixYsP65jDLS9zaiC3kGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMCWZBkZGSOKU1NTdx6663H5FzPPfccixYtOibnkjn5kb3sZGRkjikJCQn861//Oibnuueee47JeWRODWRBkpGROSLWrl3LK6+8gk6no6ysjIKCAv7617/S3NzM9ddfz+LFi2lsbOTee+/FarWSn5/P+vXrWbZsGU6nk8cff5zS0lKCwSC33norF1xwQTgSeGdnJzNmzKC5uZlx48Yxd+5cnnnmGVavXo3VaiUqKooXXniBuLg4pkyZwtlnn83GjRtRKpU8++yzpKWl9bC1v3QVFRUVPProo3R2dmIwGHjooYcoKiriwQcfRBAESkpKcDgc3H777Vx88cUD8C3/uJAFSUbmFMW+bQn2rcdnPk7k8JlEFp1x0HKbN2/m66+/Jj4+nssvv5wVK1aQn58f3v/EE09w7rnncs0117BgwQK++OILAF566SWGDBnCU089hcPh4MorrwxHBW9qauKrr75CpVLx4IMPAlBVVUV5eTnvvfceCoWC+++/n88//5ybb76ZlpYWJk6cyCOPPMKTTz7Jf//73/Bx+9OdrmLx4sU88MADfP7559x3333cdtttzJ49my1btnDPPffw7bffhu147733aGtrY+7cuUyePJm4uLij/WqPiL6C1p6OyGNIMjIyR0xeXh6JiYkoFApycnKwWq099q9cuZI5c+YAcNZZZ2EymQBYtWoV7733HnPmzOGaa67B5XJRWloKwODBg3tE8gbIyMjggQce4MMPP+TJJ59ky5YtPVJdTJ06NWzPD23oZv90FU1NTTQ2NlJdXc3s2bMBGDFiBGazmfLycgDmzp2LWq0mMTGRUaNGsXHjxqP6ro6OH4cgyS0kGZlTlMiiMw6pFXM80Wq14XVBEHo9ySuVyj6f7kVR5Omnn2bIkCEAtLa2Yjab+fzzz8PpKvZnx44d/PrXv+bGG2/k7LPPRqFQ9Dhvtx192dDND9NVBIPBXmUlSQpHLN8/nYUoir1E8oQS8A/ctU8gcgtJRkbmuDFp0qRwANalS5dis9mAUCqKd999F4Dm5mYuuugiGhoa+j3P+vXrGTduHFdddRW5ubmsXLnygKku+uKH6SpSUlJIS0vju+++A2DLli20traSl5cHwNdff40kSdTV1bFt2zZGjx59eB/+GCIGfxyCJLeQZGRkjhu//e1veeCBB/jggw8oLCwMd9ndeeedPPbYY1xwwQUEg0Huu+8+0tPTw04HP+S8887jzjvv5MILL0StVlNQUHDAVBd90Ve6iqeffprHHnuMF154AbVazQsvvIBGowHA4/Fw6aWX4vP5ePzxx4mKijqKb+LocDl6Z+I9LZFOQWpqaqT8/HyppqZmoE2RkTmh7Nq1a6BNOCzeeustqbS0VJIkSdqxY4d0ySWXDIgdM2bMOKz64oEHHpDmzZt3TK59NL9Zd123esnSY2LLyc5xbyF1e9C8/PLLvXKXFBcX8/DDD+NwOBgzZgy///3vB7afVua0R5IkvAEvLr8HT8CDN+jHH/QTlLrHEwRUCiUqhRKNSoNepSNCrUer0iIIwkCbf8qRkZHB//3f/6FQKNBqtfzhD38YaJNOSaxW50CbcEI4rrX/1q1befjhh6msrOxz/3333ccf//hHRowYwW9/+1s++OADrr766uNpksxpjCRJWD02Gh2tNDtbaXW10+7qpNXdQYe7k06PDbvXSUAMHPa51QoVJl0k0XoLcYZo4o2xxEfEkhwZT4opEbPOdBw+0anP9OnTmT59+kCbcdjpKk62DLStVvtAm3BCOK6C9MEHH/C73/2O+++/v9e+uro6PB4PI0aMAEIuls8//3wvQbLZbOGB0G4aGxuPm80yJz+iKNLkbKXGWk+drZE6eyN11kbq7U24A54eZY2aCGIMUUTrzWRYUjFpI4nURBCh0aNTadEoNWiUahSCAoUgIAFBUSQg+vEGfbj9Xlx+Fzavg063jXZ3J+Ud1ayt3UxQEsPXMetMZEelkR2VQU50OnkxWSdUpCRJQpQkRDG0HnrtcxYWAEEIeaEpFAKKrqXMycOB6rqmDlmQjponnnii333Nzc09JpnFxcXR1NTUq9xbb73Fiy++eFzskzn56fTYqLHWU2Otp9paT1VnLTXWenz7eR1F6c2kmpKYnjmBpMh4kiLjiYuIIdYQjValOS52iaJIq7uDelsTtbYGqjprKe+oZkvjrrArcVJkPIPi8hgcl8fg+DxiDdFHdC2vP0hjm5Omdhcqb4DWTjeBoEgwKBEQQ0tRlA57pooggEohoFIqUKkUqLteGpUSjVopC9YJ5kB1XWOnp8/tpxsDNmAj9TFXoK8++htuuIFLLrmkx7bGxkauueaa42abzIlFlETa3Z002JuptzVRbw9V8tWddVi9+54MIzURZFhSOStnGmnmZNLNySSbEjCo9SfcZoVCQXxEDPERMYxIGhze7g34qOiopqStnF0te1lTs4nF5SsBSDTGMTShkCHxeQyJy8eiN4ePkySJDruX6kYb1U126pod1LU4qGt20GrdVxnde2kqnQ4vKoWAUhkSD6VGQKEUUO7X+uluDe1PqBXVNddG7HoFRQJBCY8viMPl79GiUqsV6DQq9BolOq0KjVqJzPHjQHVdu0Ps56jTiwETpISEBFpbW8PvW1paiI+P71XOZDKFXUVlTi0CwQBOvwunz4Xd58TudWD12On02OhwW2l1d9DiaKXJ2dqjxaNVaUmNTGRk8lDSzSlkWFJIMydj1kae9I4FWpWGwrhcCuNyuahwNqIkUt1Zz87mPWxv3sPK6vUsLFsOgEUdQ0QwgYDVQmu9DodVTUgKIEKnIiXeyNDcWFLijCTFRJAQYyDoaCQnxXxcvgdJkvAHRHz+IF5/EK8viNPtx+b0AaBWKYjQqYjQq9FrVSf9b3GqcaC6rsP943gYGDBBSklJQavVsnHjRkaPHs2nn37KtGnTBsocmX5w+z20uTpod3di9dixee04fC6cfhcuvxtPwIs34MXj9+IJeHEHPKGl34P/AM4DkZoIovUWEoxxDE8cTGJXV1tyZALRestpU9lZHT7amtS46tJQ1pvR1+fT6axHEdlGm6mdzsgSiAxAAUQpDKQaU8mPyyQ/PpF0SzKJxnhUin2VUXFx03H7bgRBQKMOddcZu7ZJkoQvIOL2BHB5/FidPjodPpQKgUiDmsgIDTqN7Bl7vHEGdDTZOkkwWQbalOPKCf8n3Xrrrdx9990MGzaMv/71rzz88MM4nU4GDx7M9ddff6LNkemi022lvKOGamsdtbYGGuzNNDpasHsdvcoKCOjVIXdonUqLTqVFq9Ji0kWiU2nRq3To1DoMah0GtZ4ItYFIbQSRWiMmrRGLzoRaqT7un0mSJFx+Nx0eKzaPHbvPidPnxhPw4Au7e4uAhEJQoFKo0Cg16FVaIjSGkK16MzH6qIOORYmiRGO7k/I6K+V1VirqbZTXWWm37etui4/Sk5VsZtqIcWQlm8hKNhNr0VFra6CkrYyS1grKOqr4unwBX5WFOs+UgoJEY3yXV18MI9T5OLzOLtd0FUqF8riKtyAIaNVKtGollkgtoijh8vixu/aJk06jxGzUEmlQh215/vnn+eyzz7j22mu56aabjsqGF154AYC77rrrqD/PgaitrQ1HKT9UZs6cyX/+8x/WrVvHunXrjqN3nsCCbdu4dsrp/dB+QgRp/x94/zwphYWFfPTRRyfCBJn9kCSJBnsTO5r3UNyyl5LWclpc7eH90XoLSZHxjE8ZQbwxllhDNNF6MxadCZM2EoNGj0LoHXVKCvrxNlXha64i0N5AwF6D6HYgBkJdPoJShag1YI0wozLForYkoo5NQR2dhKA4si4JURJpcbZRZ2uk3t5Mo6OZFmcbLc52WlzteAPeAx4vIIBw8GjKJq2RRGOoFZcYkYA2GIXfbqSpOUhFfUiA3N5Qi1CpEEiNN1KUF0tOioWcFDNZKWaM+r5FODMqlcyoVGbnhtyjfQEftbZGam0N1NoaqLc10eRspaS1jLz0VJqc+7q6BUClUIUFSqVQoVaqUCvUqJUhwTqWKBQCRoMGo0FDMCh2CZOXpnYXbVaBqEgdpggNn332Ga+99hpZWVnH9Po/Zlbu2SsLkszpQSAYYEfzHjbUbWNL406anW1AyEOtICaHc/NnkB2VQYYlhQiN4ZDPG3TZcBavxlmyHk/1TqQu8UGhQmW0oNBHIqhDk0pFr4tARyMBpxXJuy8UiqDSoEnMRpeSjy5tELr0wSj1xl7XcvicVHbUUNlZR3VnHTW2emqtDXiDvnAZg1pPQkQsyZEJFCUOIkYfRZTejKmrdWbQGDCodGhUGlQKZVhYQwP9wZCrd8CDw+ui02OnqrWZypYmaq0t1De3Utq0BUm1n8eTT48hMo68kWkMSchnTGYumUnmo3IA0Kg0ZEenkx2d3mvfzl27SDUlERCDLK9cy/LqdSEXb6Twcn8EBBSCIuTu3eXaLnDwFtWMrElMz5pwwDKSJPLXp/5ASUkJra1tJKem8+Cjf+b1l5+lsbGRX/ziF/ztb3/jpptuYsiQIbS2tvLRRx/x+uuvM3/+fJRKJZMnT+a+++7rEcgU4LXXXuODDz4gKioKk8lEUVERAO+88w6fffYZbrcbQRB49tlnycnJYebMmVx00UWsWLECt9vNU089xdChQykuLubRRx/F4/FgNpv561//SmJiIq+++ipff/01wWCQKVOmcN999wGhcEG/+tWvKC0txWQy8Y9//IOoqKh+r3uiMCq9NDRCVWctGZbUgx9wiiIL0mmMKInsbC5hedU61tdtxelzoVVpGRZfwEWFsylKHERCROxBu3yCotTlZizS3ZAINFfg2vgF7j1rQQygjk4icsSZ6NIHoU3IQmWJP2CrJ+hxEmhvwNdag7epEm9dKdYNX2FdOx9JUOBJzqI5KZ0mk4maoIvKzlpaukQUQvN+0s1JzMqeTJo5mRRTEsmmBCI1EYfdheUPiDS2OalttlPT5KCm2U5NU2jd5w8CWgQhlcToAoqSIkmO1hIR5SKg6aDRXc/e9kpKXSspbVjJgjYDQ+LyGZpQQFFCIUmRCce0S00hCGhVGrSAXq1Dreh9C4thgRJD65JEUNoXiFSBAoVCgVJQ9NnSPVQ2b96MWq3mgw8+QBRFrr/+esp3b+L/7nuIDevW8Ps/PUN2Tg4dHR3cdtttjB8/nqVLl7J48WI+/vhjVCoVd911F++9914Pr9nt27czb948PvnkEwRB4IorrqCoqAiHw8HChQt5++230el0PPfcc/zvf//jkUceAUL5jj766CPefvttXnnlFV544QXuvfde7r33XmbMmMH//vc/3nrrLSZOnMiOHTv46KOPEASB++67j/nz5zN69Gja29u56aabKCoq4u677+arr75izpw5B7zuiSBbZ2W3LZt5O7/h/yb/9IRd90QjC9JpSKurncXlK1lSsYZWVzt6tY4xyUVMTBtNUeIgxKBAU5uL6ioXGzsqaLN56LR76XR4sTt9ONx+XJ4AHl8Ary9IUNz31B2jsHORYSMjNNV4JDVrvbms9+fR5opF16xCu8mFXrsHg66MCJ2aCL2aSIOGSIMao0GDKWLfy2xMRR2dgjU1m+qcAio7qqlqKaPG3oRdtEPnToQOidggpOksTE8eQ172WLJjMg866VSURGweO+1uK50eG802Ky02G+1OJ1anC7vLg8Ptx+H243QHkYIKpKAKAipMWiNJ5mhmZSWSlxRHRpKJ9IRIdNr+b5dWZzu7WkrZ0byHnU17WFe3BYBYQ3RYnIYmFGI5hpNlp2dNOGgrphtREvEGQq2/bgcUCQmloCBCY8CoiUB3mOGRxo4di8Vi4b///S/l5eVUVVUR9HtJjTeiVAgEgiI1TaExyGFdLZw1a9Zw/vnnh1NMXHrppXz66ac9BGndunVMnz6diIgIAM455xxEUcRoNPK3v/2NL7/8ksrKSpYvX86gQYPCx+2fE+m7776jvb2dlpYWZsyYARCedP/UU0+xbds25s6dC4RaRcnJyYwePZr4+Phwayw3N5eOjo6DXvdEkK1ppdhbyKqSPZyXX0Zh3IlrnZ1IZEE6TZAkieKWvXxVupgNdduQJImhCYWclXY2OncKNY0uPtti5x/Ni3vMa4HQuIDFqMVi1GKK0BBj1mPQqdBrVWg1StQqJWqlRGL9chJrFiIpFDQkn0ljwmR0aBjf5Srs8QXx+AK4vQFcngBN7S7sbh8unwsPDgSNG4XOhaB1I+icoZfGQ3cdKIhKNKKZCDLJVsYRrzST57WR5CjDXLMH5e5SxJWLqIwZhDN+GPaofDokL62eFjp8LXT627EHOnGLdrw4QTjA3A1JAK0AWglVVM9uLg9QAVR4YUN9BAm2WFLqE0kzJ5MVlUZ2VDpGbUSPY2IjopkWMZ5pmeMBaHK0sLWxmG1Nxayv28qSitUApJqSGBSXS0FsDvmx2YfUQj0WKAQFerUOvVoH+tDEXlfAHXbJt3kdqJWqrkgWRpSKg7ecFi1axPPPP8/111/P3Llz6ejoQJKkcDSIlDgjWkNo3KzVFiBRFUQUe/8mgUBPb0xBEHqUU6lU+Hw+GhoauO6667j22muZNm0asbGxFBcXh8vtnxMJQK3uOWbn9Xppbm4mGAxyww03hJ0tbDYbSqWSjo6OHrE0u3MrHey6J4IsQqk5dO40Xtv4Ln8+64ET4hh0opEF6RRHlEQ21G3jk+JvKGuvQqfUk6Ecga8xlS2bAqwLdAAd6DRK0hIiGZYbS3KckeTYCBKiDcRFGbAYtQeclR+wt9P8yd/x1BQTUTiRmLNuIivCTKfXRqfbRqfHhtVjw+q1d63bET023B4rQbcVAl72T7mmVeowq6OIUMSjk8yo/WYErwm/S4fLHcTh9tPo8VPhDbDUG4kojUCpGEx6ZCWxhgZUUiVtnVU0uVT49rNb8msQfBGoRTNGIRWjMhKT1kS0wUy8yUJSlJnkKDMpcWZMhn2J5URJxB8M4Pa7cfhd2DwOOj1WWl3tNDlaaXS0sKN5D8uq1oaPSTTGkR+bzaDYXIbE55NgjOshLAnGOGbnxjE7dxqiKFLRWcP2pt0Ut5Syono9C7rmIkVqIsiMSiPdnEKaOYkUUyJJkUfW9Xg4KBQKjJoIjJoIREnE6QuFR2pzddDhtoa9IQ/kFLF69WrOPfdcLr30Upqamli/fj0TJ07c7xoCCTEh4Q4ERGqa7YwYNYY3Xv8XV1xxBSqVinnz5jFhQs9W3sSJE7nnnnu466670Gg0LFiwgOnTp7N9+3YyMjK48cYb8fl8vPzyy0RH9x/9IjIyksTERFauXMnkyZP57LPPWLduHeeddx7PP/88l19+OVqtll/84hdccskljBs3rs/zHO51jwcmyUp6QiR48qm2fsb/tn3GDSN/ckJtOBHIgnSKIkoiq6s38v62L2l0NaEKGPHXDcHdnIxdoSY3NYJzJ0WTl2YhN81CUkzEYYWCCYpBGh0tVFZtYe+aebQJIs4Rw7EpPbQvfrJPd3AIjWtYtCYsehOZljRGJg0lWm8hPiKGuK7IBsaDVLa+gI/KzlrK2qsoa6+ivKOaensTjZJIIxChtpCssTDeFyC+vZmEznbi/EHM8VkYcoZhyB2FOikbp9+D1WvH7nXi9Lvw+DtoCDZTUx+K7B1y9VaiVWkxqPVEaiOw6Ewkxcb3WRF3O1Xsba+itK2CrQ27WFYZEql9XXODKEochEm7zylDoVCQE51BTnQGFw86G1EUqbbWU9JWTnlHNZUdNXxXtgz/fpOD9SodsYaoUBw+QxTReksosGswEm/AF3bIOBaipRAURGqNRGqNeANeOj1dDxleOxatCbPO1GeL6bLLLuPee+/lm2++QaPRMGLEiH5zFKUlGGloc5E7eCzjJxZz6aWXEggEmDp1Ktdee22PsoMGDeKGG27gJz/5CSaTieTkZAAmT57Mu+++y3nnnYdGo6GoqCic9rw/uvMd/eUvfyEqKoq//OUvxMfHs3v3bi6//HKCwSBTp07lkksuoa6urs9zHMl1jwfTiuJ4Z0E5s0fP4MuSRRTEZjMhbdQJt+N4IkgH83c9CamtrWXWrFksWrSoV0qL0x1RFPlqxzo+2f0FdqkN0R1BoD6HTEMho/ITGJEfR0FGNNrD8PIKikGqOmspaatgb3slVR211NmbekTFjlDpiDfGEW0IVYxRejMWXcgV3KIzYdZFYtZGojnM2HEun5vKzhoqOmqo6FrW2RoRuwKXmnUmcqLSyezqKsuOTidGHxXu1mmwN1NZt4Pq6q3UtdfQ4nPQqVJgUykIHmFlLQgC0ToLCcZYkk2JpJuTybCkkGVJQ6fe19aTJIl6exM7mvawozn0cvpcCAhkRqWGxakgNgfNQbpXRFGk2dlKvb2JenvIdb3V1R6KWO4OzaOSkLgz5xpSstNCdnanylCqUCtUqJVqNEo1GqWmx2TaI8EX9NPh7sThc6EUlEQbLEfdahNFiaZ2Fw63H4tRQ6xFf9pMgD4QxcXFRzzm1F3XvTk3n/TbXuTnL27hytl5FCu/pKKzht+d8UvyY7OPscUDh9xCOkWwOrzMW72JRXXf4Nc3I3kMpElTmV0wifGXJhIVqTv4SbqQJIk6WyObGnawvWk3e1rL8HTN1+mOWj3EEI9x2wqS9FEMveQBzNHJR2W/w+ekwd5MXdf8mhprA9XWOtpcHeEyFp2JrKh0xqYUdUXNzghHbfAEvFR21LKudgsVHTVUd4Ym8O4fDcISYSIhLokCEYwOB4b2ZiJcdiKCIgatEVNiNsakPAzJ+Wjj0pAUCgLBAJ6u/Eh2376I3i2uNprsLayu2RgO9SMgkGZOJj8mi0FxeQyJzyfFlEiKKZGz86YjiiLlHdVsbdzFtqbdfLFnIZ/t/g61QkVe1zGFcTnkRWdh0PSMv6dQKEiMjCcxMp6+nnkDYpBOj5X68joSjLEExCBBMYhfDBAQAzh8rrCIA6GWn1KDTq1Dr9KhUaoPq/LXKNUkGOMwB7y0uTpocbZh9zqIi4g5qLj2h0IhkBhjoNXqptPuQ5IgLurHIUrHglh9kKE5MSzbVM9ffvkzHl78V55c/k8eOeMesqLSBtq8Y4IsSCc5e2s7mbdsJ+valqGIq0ap1TA+6kxunnQeUcZDDyoqSRKlbRWsqtnI+rqtYRfqFFMi0zLHUxibS2FsDjGGKHxNFdS//QgqcxzJVz2O0nBwzzBPV8XV6mqnxdlGs7ON5q44dU2OVhy+fQnGVAoVKaZEBsXmkmZOJjMqlSxLWjjYaCAYoNpax8b6bextq6KsvZJae2N48qpZG0lmVCrnJJxBmjmZ1C6X7x8GWZUkiUBHA+7KHXhqivFU7yKweyMuwK3SoEnMQpuUQ1RSDolJuaiTMnu5qkuSRIfbSkVnDWVdXXWrajaysHwFEIroPSyhkOGJgxkSn09uTCa5MZlcOuQ83H4PxS2lbG/aw66WEj4u/hppV1ckcGM8GVGpZJhDcfqSIxOIj4jpt4WpUiiJNUTTomzCqInos0xQDOIL+vAG/XgDPrwBL06/O3y8Qa0nQmNAr9IdsgjoVFqSIxOw+5y0uzqotTZ0tY5NRyQkgiAQaw6JUIfNiyDwo2kpHS2i18WM0Wm88MEWGpsDPDz9Lh77/hkeX/Isj0y/m+zojIE28aiRu+xOQiRJYntZKx8sLGFH+1Y0GXsQVH4mp0zi5rGX9PLwOhBNjha+r1jN8sq1tLjaUSlUFCUOYnTSMEYmD+mVEiHg6KDu3/eDoCDlxj+jigzt9/g9NDpaaXK20ORo3a9LKSRCTp+rx3mUgoLYrjGjBGMcica4rmR2ScRHxITHaERRpN7eFB4vKmuvpLKzNtzyMWmN5ERnkhOd3tVll0GU7siDiwZsrXjqSvDW7sFTvxdfY3l4Mq+g1qFJyESbmI02KQdtUjbqmJReIiWKIpWdtexsLmFH8x52tZTiDXhRCgryYrIoShxMUUIhOdEZPcaiXH43e9sqKW2roLyjmqrO2vAE5W4sOhMxhihi9FHhrtHwS2fGUW+lsLAQhUKxX86j0C0s0DvKdyAYwBXw4PK7cfndSJKESqEMhXHSGFEpD/2ZNCAGw7+1TqUlPiLmiD29JEkKt5RizTqiTIfewj+VkCSJ3bt3H5Muu6IbH4b0UVz/2DfMHp/Bz+YW0exo5fffP4Pd5+T/Jt3WI/L8qYgsSCcZu6va+c+XxeyoqcGQuwvR2EJOVCY/H3fNIc/QFkWRDfXb+HbvErY37UEQBIoSBjElfSxjU4f3m65BEoPU/Pd3VLdW4ppxOXWiJ5QEz95Ih9vao6xBrSfOEE1MRDSx+tDge6whmtiIKOIMMUTrLSh+MBDuCXiptYZyB1V21nZFXagNR1rQqrRkR6WTE51BbnQmudEZxEXEHNenZ0kM4m+tw9tYjrexDG9DOb6mCiR/qAtTUGtDApWShy6lAG1qASpjVI9zBIIB9rSVh7rqGoup6KhBQkKv0jEoLpfB8XkUxuaSFZXWqwL3+D3U2ZuotzXR7GylxdlOg72FVkcHNp8dr9jTRf/y1HMoTM5HZ4wAlCAqQFKAqETqWlcoQKlQoFKGch2pVUq0agUajQJf0Ivd58TldyMQSmBo0ZsPuRtOkiQcPhetrnYkJGIN0Uc8tiRJoTElu8tPcmwEEf2EVjpVkSSJtrY27Hb7EYdQ2l+Qhl71f0QWzeCp/6xn295W3vrd2aiUCtpdnfx5+T+osdbz09FXcmbO1GP8SU4ccpfdSUJLh5s3vtjJ8i21RKY2EzlyJwoFXDP8CmbnTjukGfWegJfF5Sv5qmQxzc42YgxRXD70QmZkTSTGENXnMaFupb3sailhR9laqlVWAsmRsOdrtCotaaYkihIGhWK4GeNJNMYSb4ztt9tIkiTsXgel7RXU25qoszdSa2ukztpAs7Mt/DSvV+nIsKQwM3syWVFp5ERnkBKZ2EvEDgdPwEurqz3sumzzOnD6XLj9HnxBH4GuaAUKQYFGoUan1mLURGDSGomKiyUuoyD01K9Q4m+r7xKoMrz1e7Gu/wrrmvkAqKOT0WUMQZ9VhD5zGCp9JEPi8xkSn8/VRRdj8zrY0bSbHU2h1tOmhh0AKBVKMswpZEalkRaZjE6KwufQ0dEGdS0KalsMNLSKuL2R+z6UIojBGMBkEdFFBNlQY0VHExatDoRQNIb9wwUJKFCgROgSK1Gkx8RmpSIU0VutEgjgoy5QiyRJ6FRaItSGQ/7+g6KI3eegNliNVqXBqIk4oqgP3XmgGmolok3aQ5r/dCqh0+mO2UOz2BVua8aYNFZsrWfT7mbGDUkk2mDh8Zm/5tnVr/Hqhv+xt62Sm0dfecRjfQOJLEgDTFCU+Hx5Ge98sxsJH7mTq6jzlzAoNpdfjLuBeGPsQc/hCXj5tnQp8/cswO51UBCbw7XD5zI2ZXif7sv19ibW125lU8N2SlrLCUoiKkFJitvDFH0cKYXnEqNORC+Y8AdCidzwA53Q5lBgUznwCy24JSsO0UqHt51mZyuNjmaaHK24usYtIDRelBQZT050BtOzJpBmTibDnEK8MfaIw9aEPPNqqbbWUd2VxrzB3kSnx9arbPeEUI1SjUro6iaUJHyiH08/KTLiDNGkmpPJtKSSM3g0uVMvJVkdgbepAk/1LjzVu3DsWol98wIQFOhSCzDkjyNi0ATU5nhMWiOT0scwKX0MAFWtLazcu4Pi5nIa2uqpaF2PpNwXf08SFSiJQJ8QSXKamRiDhURzDKmWGNJj4kg0R2PWmfr0nJMkCavHRrW1nsrOGva2VbGntYwOT6hFm25OYWzyCNK1hbQ0CWwva2VraT1ubxCzUcPUMbFIcWUsq1iJUqHkJ4PP4/yCWYfkpSeKIvP3LOD97e9i1pm4c/wNDE0oPLQfcT8a25zc8/clZCaZ+NMdU1DKmWr7RPSEBGlUQTymCA2LN9YwbkgiEJpu8cCUO/hg5+d8vOsbKjpquGfizSSbEgfS5MNG7rIbQOpbHPz93U3sqepg6BA1ttjVtHnauXzoBVxcePZBn1YDYpCFZcuZt+trrB4bwxMHc+ngcymMy+1VttnZxoqqdaysWk+NLTTr26KKI8KfjNgZxcVt3xMlOviz9SJcUtekUUFE0DlR6B0IekdoqXMi6FwIin0eXZIooAgY0EkmIlUW4gyxpEclUpiYzrD0NIx6bS97DhV/0E9FRw2lXS7p5e3VNDiaw/sj1HpSTUkkmRJINMYRHxFDjCGKKJ0Zky7yoAP43oAPm9dOm6uTVlcbjY5W6m2NVFnrqLc1dqWnCIlUYVxoEuzQ+ALiDFF46/fiKtuEq2QDvuZKAJRJ+XTEj2aXkEtpg4fyuk7abfsijsda9GQmR5IYr8Rg8aDUu/EKNto87bQ622lzd4ZdvPdHQMCsiyTGEEVcREzXmFwCqaYk0szJPdJjdHtRbm7Yyfq6LexuLQNgWEIB5+bNZFj8YLaWtLJwfTVrdzSgUCiYPiEKZ/RWtjbtIMOcwu3jrjvkQfLy9iqeW/NvGuzNnJ8/i6uGXXTY7v+LN1TzzLubue3iYVw49fRxYz5awl12lw8jf/oFxJx5IwCvfLyNb9dW8Z/HzukVRX5j/XZeXPsm/qCfa4fPPeQelpMBWZAGiO831vDPj7aiUiqYdZaapS1fYFDr+eWkWxgUl3fQ4zfV7+CtLR/SYG9mSHw+Vw67iILYnvGtAsEA6+q28vWepexpD03kU7qjcTfHI3YkIPn0REVqmWkqZ6p7EWszzqc5Lgar1ESrr5FWT3M4KKeAQIw+hhhdLFGaaIxKC1rJjDIQgd+lpdPuo7XTTVO7i5YOF/v1EoXzAOWkmMlJs5CfFoUlsm+Rsnkd7GktC71ayijrqA7Ph4rWW8iNziQ7Op1MSyoZltTjmszPF/RT2SWGe1rLKW4pDadUj4+IYXBsATHKNALWaNoqGzA0bGawVEKi0opHUlGsHERL8mQSM7PJSTWTlWTCaDh4Rd3t4h2KgmGlw22jw9NJu6uT1i4X7GZXG0Gx67cRBFJNSRTE5jA0Pp9hCYVE7jcxt9XZztLKNSwsW0Gbu4NUUxI/GXIeE9JG0drh4YNFJSxYV41Rr+asszSsbl+AzWvn0iHnc8mgsw8phYUn4OWdrR/z3d5lJEcmcMe46w9rfowkSfzu1dXsqe7glQfP7Pf/8WOju677z7XjyB45kbgL7gCgpLqDXz+3jDsvG8HZE3o/OLS7O3l53dtsadxFUcIgbh93Xb/d9icTsiCdYAJBkdc/28EXKysYnB3NsImdzC/9ioKYbH49+baw63N/tLk6+Pem91lft5WkyHiuH/ETRiUN7VEpO3xOPtq6kMUVy/BILkSvnmBLChGeLIamplGQEUVumgWLRWRP207WrnqXMp0KhxD6KxjUenKiM8iKSg+7JaeYEg7Zo8ofEGlqd4YiZzfZqWywUVFvpa7FEY4WHh9toCDDQkqKgMrUSXuwgZLWcursjUCoqy87Kp382GwKYrPJi84i2mA5/C/8GNE9AL+qZA+baoupdlbgVjchqAJIEqh8FuJUaQyKzWOiyUBCw3rce1ZDMEjE4ElETbkMTdyxmysSFIM0OVuptTZ0ddVVsqetHLffg4BAYVwOE9NGMyl9TDhqRFAMsrpmI5/s+oYaWwPZUencOPJyCuNyqGqw8cIHW9hT3cGZE5OQkrezqmYDhbE53D3x5l7emP2xrbGYl9a/Tburk3PyzuDKYReF4ucdAjVNdu786/ecNzGTn80tOuLv5nSiu65755ZppOcUkHDpvUDo/3j7U4uwROp48hdT+jxWkiQWlC3n7S3zUCqUXDnsIs7KmXrMc2QdS2RBOoG4PH6e+s8GNu1p5qKpWUgp21lYvoIpGeO4fey1B6zwJUliUflK3t4yj6AU5CdDzueC/Fk93HbbnFZeWfEpW9s3ICkCBK2xJElDmJ47krGDk8hIjKTJ0cKqmo2sq91CeUc1AKZAkKFJQxiWMZqCuBySIxOOSxO/3WFnZWkxW+tLqbJWYZWaQNU1lhJQEyHFk2XKZHT6IKYVDiFSN3CuwMGgSEW9jV0VbRRXtlNc2U5bV1BavVZJXloUBRkWTHEunKpGSjpKKWkrJygGEQSBTEsqeaYUUtrbiN6zmRi3B3PRGURNvxpV5PF5UhVFkbKOKjY37GBtzWZqbA2oFCompo3i/PxZ4fxKoiiyono97277jDZ3BzOzJ3Pt8EvQK/W8/XUx877fy5hBCUybAW9seQ+VQsWd429kVPLQQ7LD5Xfz7rbP+G7vMqL0Zm4Y+RMmpI46pJbsix9uYdH6Gl5/+CyiT1NX8MOhu6773+3nkBwfTdLVvwvve3/BHt75ZjevP3QW8dH95zBrtDfz6ob/saN5D2nmZG4aeTlDEwpOhPmHjSxIJwib08fv/rWa8jort186lGJxMatrNnLxoLO5aticA96sVo+Nl9a/w6b67QyNL+BnY68hwRi3b7/TyXPfz2OHbT2SIoDGmcaMtDOYM3YkcVF63H4PK6rW833FKva2VwKQF5PFmITBJH7/EZkJeSRd8dAx/bwev4fKzjoqOqop66iivL2aOltjeGwkOTKB/Jhskgyp4Iiivk6guKKd6iZ7qMWhFMhNtTAoK4aCjCgKM6KIMR/aRGBvwIfVa+/ysHPjFwOIktgVakcV8ijTGDBrI9GrQ2NMHXYPJVUd7KnuYE9VByXVHXh8oS6xuCg9gzKiGZwVzaCsGDKSTH0OvHsCXkpayylu2cvu1r3sbasMu7SrUZDg8REfEElPHUpG4WQSjPHERURj0kYel27Hqs5aFpWvZGnFGtwBDyMSB3PlsDlhYfIEvHy080u+2LMIi87EHeOupyhxEF+vquCf87YxqSiJ6y5O57k1r1PVWcvcwedw+ZALD9kTr6S1nNc2vktlZy1D4vO5YcRlZEYd+H6tb3Xw8ycXccWZBVxzzuE7SJxudNd1795zCQk6iZSbnwrva2xzcuufFnLTBUOYO6P3uPH+SJLEurot/GfzR7S42pmQNorrh19KbMSJDRJ7MGRBOgE43H4eemklNU127r9+NCs7v2Bt7WauHX4JFxXOPuCxxS2lPLvqdRw+J9cMv4Rz8s4It14CgSAvL/mWZY0LQO3B6EvnimEXMnv4EARBoN7exFcli1lWuRZPwEuaOZnpmROYlD6aWEM01nVf0LbgDZJv/DO6lPwj+mzdKcSrrfVUd9ZRZa2jqqOWRkdLWHzMOlMouGhUOnkxWeRGZ/Y7udfh8rGrop2d5aGWSWlNJ4FgyLEgxqwjJ8VCVrKJtEQjmkgXLtppcjVRb2+iydFKq7MtHJ3gUFBIKiSfnoBLj+iOQPBEkmRMYmhKJoMzYxmcFUNc1KFHxNifoBikztYYCqDaWUt1awU1bdVYhWCPcmqFiii9uWsirCW8HmOwEKMPOTFE6c1H5ZX4XdkyPt+9ALvPyRmZE7lm+MXhnFJl7VW8uPZN6myNXFR4FlcOm8MXyyt4ff5Orjt3EBefkcnrm97n+4pVDEso5J4JN2PSRR7kqiFEUWRh+Qre3z4fh8/FjKyJXD7sQqL1ln6Peexfq6lssPH6w7N/9B533XXd+/dfTYyvlbTbX+ix/5fPLEGpEPjbPdMP6Xy+gI/5exbwSfG3CMDFg87mooKzDtsJ5XghC9JxxusP8ugrqyip7uChm8ay1vYdSyvXcP2In3BBwawDHvtN6RLe2vwh8RGx/GrSrT2eLteVlvP8qv/g0zWh8Udz3fCfcPawkUDoyXjezq9ZW7sZpULJlPSxzM6dRk50RvhJXBKD1PzzTlSmGJKv/+MhfRarx0ZVZx011nqqrfXUWOupsTXgDezzIkuIiCXDkkpmVCqZllBA1Cj9kUdW8AeClNVZ2VJRw7b6Emqd1bgUrQgG2z5PP0lAGTCilUwYFJHoBCMaQY9S1CIGlXi94HIHsDq8uHxeUAYRlH4UGh9GcxCd0Y+kduAQO8NOHBqlumsMK4fC2BwK43L6nXt1OEiSRNv2JZQueYs2gviHTsYRHUeH20q7uzO83D8tO4REK9EYR4o5iQxzCjnRGeTFZB1WunmXz83Hxd/wZcki9CodN468jKkZ4xAEAV/Ax5tbPmJh2XIKYnP45cRbeH1eGau21fPMr6aTlWxmcflKXt/4HiZtJL+a9NPDclpw+Jx8vPNrvt67BJWg5IKCM7mo8Kw+x5eWba7l6Xc28uc7JjM05+DTHk5nuuu6Dx+5BXPrbjJ++e8e+z9cVMJ/vio+aLfdD2lxtvH21o9ZU7OJOEM014/8CeNSRgx4CCdZkI4jkiTxt/9uYunmWu6/bgxVwjrm7/6Oy4acz2VDL+j3OFEUeXPLh3xTuoRRycO4e/xN4WCcgaDI0199yib7YgQEzkg+k59NvQClUkmzo5X/bf+MVdUb0Kt1nJN7Bufmz+gzS6mrdCONH/yJ+Ln3Yhw0sdf+dlcne9srKWuvCkfj3n+eT6TWGHZ4SDMnk9710h3iAPbB6PTYwlG0dzWX0OhoAUJCkWVJJ06bhEGMQXKbcNu02BwBbE4fTo8ff0AkKEooBQGtRoleqyLSoCHarCPOoicpNoKUOCOp8UY0+0VFD4pBGuzNVHTUUNZeSWl7JeUd1aFxIQTSLSkMictjcHw+g+PzjkqgAvYOWj5/HnfFNoxFZxB77s9QdD2lSpKE2++h3d1Jq6udZmcbTY4W6u1N1FobaHK2AoSjio9MGsK4lJFkRaUdUoVSa2vglXXvsKetnAlpo/jZmGvCwraiaj2vbPgvepWWn4+6mb/9q5ysZBN//PlkACo6avj7yldpdbVz7fC5nJc/87AqsUZHC//b9ilrajZh0hq5dPB5nJUztcdYqMvj5+pHvubi6TnceMGQQz736Uh3XTfvj3cSUbaSrAff67G/odXJbX9eyK1zhnLRtMPPIruzuYQ3Nn1AtbWOYQkF3DjyctLMRxdI+WiQBek4Mn9ZGf/6bAfXnltIfHYbL61/m9k507hl9JX93sQBMciLa95gVc1Gzs+fxXXD54b77Fttdh747J/YNZWYxCQenv0zMmMS8AV8fFL8LfN3f4cgCJyfP4sLC888YIXZ+OGTeOtKSb/rFVAoQ0nomvaws7mE3a1ltLtDUbgVKIg3xJNmSiE7Oo3c2HQyo1IOmkL8cPEEvOxu2cu2xmK2Ne2m2hrKTWNQ6xkcl8eguDwGxeWSGZV21KkVDgdfwMfe9ip2tZSyq7mEPW3l+IN+BAQyLCkh2+LzKIjNOez05JIk0rHsAzpXfIg2JZ+EnzyAymg56HEuv5vy9iqKW/ayvWk3JW0ViJJIcmQCM7MnMTN78kHFct+k1vnEGqL5v8m3hSNGV3fW8fTKV2hzdTDGOIvvFwo8fddUCjND4w1On4t/rPsPG+q2MjZlOLePu+6wxXlvWyX/3fYJO5tLSDTGcXXRxYxPHRm+L+5/YTmSJPH03dMO67ynG9113cd/uQ/9jq/JeuA9BFVP56efP7mQpFgjv/vpoaWz/yFBMciCsuW8v+Nz3H4P5+RO57KhFxxW6/tYIQvScaKqwcYvn1nKqIJ4rro4gUcX/41Bcbn8dtqd/bpdBsQgz61+vc/xpd31tfx+0QsE1DbGRE3jvtlXoBAU7G4p46X1/6HB3syU9LFcO3zuQd2jg04r5c/fSvOIKawzWNjesgtHsCtWnV9LwBaF6LAgOixIrkiQ9tmrUgrERRlIiTOSlWyiID2KIdkxhzS/Zn+6UzVsayruSoFRTkAMoFaoKIjNoShxEEPjC8iOSj+qcELHGn/Qz972SnY2l7CzuYSStopwYr0EYxx50ZnkRGeQHZ1Ohjm1V5qJvnDuXkPzZ8+hjIwm6apHUEcd3ux6u9fButotLK1cw+7WMrRKDWflTuPiwtkHHespaS3nmVWvYfc5uGPc9eHoEg6vk2dW/4vtTXugOZvxMTP49dVjwsdJksSXJYv479ZPiNZbuGfiLYedl0eSJLY07uSdLR9TY2tgcFweN468nMyoVP716Xa+WVPFh386/7ASS55udNd1nz77CNpNn5Dxy3+jjOg5NeSf87by/YYa3v3jeaiUR36v2LwO3t8+n4VlKzBqI7h62BxmZE06ofefLEjHgaAocd/zy2jucPH0PZP406q/EpCC/GX2b3tMWNwfURJ5ce1brKhaxw0jfsL5+40vbaou4anl/0RC5OpBV3PxqAmIoshHu75k3q6viTVE87Mx11CUePCIwhUdNXy69B22OytxqBRIogLRGoPel0x6RBaZ0UnEWgyYIjTotSqUSgFRlPD4gjhcPtptHpraXdQ2O6husiOKEoIA+elRTByaxPRRqcRaelfCoiRSY63vipBdwq7mknCIoQxLKkUJhRQlDmJQbO5RD7D6gn46PTZsHjvugAdf0B/2stMo1ejVulBQUZ3pkOfI9EcgGKC8o5rdrXspaQ1Fk2h3d4b3xxqiSTMnkRSZQHJXPMD4iBhiDdE9uqk8dSU0vv8EglJD0rWPoYlJOSJ7Kjtq+WLPQpZXr0On0nLZkPM5N2/GAeeedHps/H3lq+xuLePyoRdy6eBzEQSBgBjkjU3vh9Ktdybw+vUPEKnv+duWtlXw3OrXaXV1cMXQC5kzaPZhO18ExSCLy1fx3o75OHxOzs6dTqx7BP/6eDevP3wW8VEn/kn9ZKG7rpv/0p9Rr/4vqT9/AU1Mzy61lVvrefI/6/nr3VMpyDh6r7mKjhre2PQ+u1vLyI5K56ZRl/eadH+8kAXpOPDtmipe/HALv75mNMWB71lSuZrHZ/76gD/qf7d+wme7v+PKYRcxd/C54e2b63bz5LJ/IPnV3D3uZ0wpLMDudfDs6tfZ3rSb6ZkTuHnUFQesWEVRZE3tJt7f8i0N7loUIuQ4g4i6s5hRMJrR+UmH7FK9P15/kJLqDraVtrJhdxN7azoRhFCsrQumZhAZ42ZPWzm7W/ZS3Lo3nKIiISKWoQmFDE0IheE50u6/7lTn3V5sddYGGh0t4WgKh4JBrSc+IoakyATSzElkWEK5mWIMUUc8wNvptlLeUUNVZ23Y8aPB3oRvvxTlAgIWvYlYQzRxhmhiI2KIFgWUaz4nNigw5KrH0cUceV9+ra2Bt7fMY3PDTrKj0rlrwk2kHCCumT/o55X1/2VZ1VpmZk/m1tFXoVQokSSJV5Z/xqL6b0mOSOH3Z97Va/K2y+fm1Q3/ZVXNRobGF3DnhBsP6EXXHw6vk/d2zGfB3uVEqI207cjnz9ddwuCsmMM+1+lCd133xevPolz6Gsk3PYUuuaeLd1O7i58+sYA7Li3i3ElHFlX8h0iSxMrqDbyz9WPa3Z1MyxjPNcMvIeogE/ePFlmQjjE+f5Db/ryQWIue6y6P44mlzzOncDbXDL+k32NWVK3n+TX/5sycqdw6+qpwRbintZzfLXyGgEfLXaN/zvRhuTQ5WvjT0hdpcbXz09FXMTN7Ur/nFSWRlVUbeHfb57S6WxE9BizOLO6xLSN+9AUknHX9MfnMoiTS5GhlQ9UeVpTupNJajajtRFDsS0ZXGJfLoK5YcHERR1bBePweilv3sqNpD8Ute6noqA7HmovURJBqTibJGNflJm3BpDViUOvRqjQoBAWiJOIP+nH5PTh8Tjrc1i6ngdau9A/7opGbtEZyozPJj82mMDaH3OjMo2q5iZJIh9tKk6OVJkcLLa5Q7LruNOWtro4eKeOVUmiuVmZMKHNuYWwOmZa0w+o+kSSJNbWbeG3je/gCPm4dczXTMscfsPz7O+bz8a5vGJcygnsm3oxaqcbl8XPNX99Al7edaIOJ30y7k1RzUq9jv69YzRub3kejVPOL8TcwKnnY4X9RdLW6Vr5Js7uZ4dGjuW/G9SeNW/KJpruu+/LtV1AseIHEqx7FkD28RxlJkrj6ka+ZPDyZOy8bcUyv7/F7+HT3t8zfvRCVQsllQy7g3PwZx20cV472fYxZtL6aNquHu68czr83vUSiMe6AHnV1tkZeWf8OhbE53DzqirAY1dub+OP3LxLwargo5WqmD8ul1tbA498/S0AM8ugZv6Qwrv8WV0lrOa9vei+Um8cVibptDDdMmcnEyHpaP/0ec+G4I/p8oiTS6GihoqOa8vZqyjuqqeioCXe/aZRq8tPSUXvzKNkN1uYIskfkcf3MoYed70aSJKo6a9ncsJMtjbvCkRBUChV5MZlcWHhWV96kzKNyLe/GE/BS3VnX5WUXyg67f+qInKgMBsXlMiguj4LY7MMa9FUIilDiPUMUg+N7xyoUJZFOt41mZys1NTso3TCf5mArOwJulletA0K5i0YkDmZS+mhGJA09aKUgCAIT00ZTEJvD86v/zYtr36TaWs/VRXP67FYTBIErh83BpI3kzc0f8pcVL3Hv5J9j0GlI0eZidKbQplvGw4ue5v4pt/f4HIIgMDN7EgWx2Ty7+nWeXP5PLsifxdXDLznsyisvJotfjb6Hez/8F1vZyMOLmrh/yu0n3STOE4lCE+oBEX+QCBNC331GkomapkPvGThUdGodVw6bwxlZk3hz0we8vXUeSyvX8NPRVx2w/jlSZEE6hkiSxBcrK8hNNdNEMQ32Zh6ceke/eUmCYpAX176JRqnml5N+Gr5xXT43Ty79J15fkBTHbK6ZNZJGRwuPf/8sAI/P/HWvJ9RuvAEf/9v2KV+Xfo+WCHxlRYyIH8Gvfj4Ks1FLy5ffoNAa0KYcPICrJEm0uToo6Yq0XdZeRWVHDe5AKISOWqEi3ZLCpPQx5EZnkB2VQZo5KTxe4Z4V4P0Fe/hkyV62lbXymxvGkptqOeA1nT4X25t2s6lhB1sadoZdzTMtqZyfP4uihEIKYnN6RLc+VuhUWvJjs3sMztu9DkraKkLdji17+aJkEZ/t/g4BgTRzMoWxORTE5pAXk0mCMe6IRVEhKIg2WIg2WCiMy2VyZBqNHz6JIX8sqgvuZ3drGVsbi9lUv50V1esx60zMzpnKufkzDurhFq238PAZ9/DGpveZv/s7Oj1Wbh97Xb/jSuflz0Sv0vHy+nd4cvk/eHDqL8hMMrOzIsBfrrifPy17kT8ufZ67J9zEhLRRPY5NMSXyxJn38/aWeXxRsojStgp+NfnWw+7CUylUBGoKuWTMeBY1f8ZvFjzJb6bdGY4y8WNDodEhApK370nfCdEGtpW2HLfrJxrjeGDqHayv28obmz/g0cV/ZWbWJK4efkk4VuKxQBakY0hZrZXqRjs/u3QQH+96jSHx+YxM6j/+15cliyhrr+KXE38avmElSeLlDe/Q5GzBWzqWO2+ZhNPv5ImlLxAUg/z+AGJUZ2vkbytfpdbWQLZ2BDtXxnLBxDx+evGw8Ix3d9UOdOlDeqXl7qbZ0cq2pt3saN7DnpYy2rrcv9UKFZmWVKZmjiM7KoPsqHRSzUkHfPrVa1XceMEQJgxN4qm3N/DAiyt44PoxjBu8bywjKAYpa69iW1MxWxt2UdJegSRJRKj1FCUOZmTSEIYnDj7ufdf9Eak1Mjp5GKO7up+8AR+lbRXsbt3L7pYyllWt5buyZUCoBZMTHcp4m2lJI8OSSkJE7BF5KRnyRhM963raF75JVFIuUybPZUrGOAJikK2Nu1hQtpwPd37JFyWL+Mng8zkv/8COCyqFkp+OvooovYUPdnyOKEncOf6Gfh0QZmRPQqVQ8eK6N3lq+T/JTTiLpZvdRKrM/GHmvTy14iWeWfUat465qleGUo1SzS2jr2RQXB4vrX+bB7/7M/dN+Tl5MYc+vuELhCYoF1gKmFl0P39a+iK/X/IMD0+/+7DOc7rQLUiiz9Pn/oRoA202D/6AiFp1fLziBEFgXOoIihIK+WjX13y5ZyEb67dz29hrGJsy/OAnOARkQTqGrNhah1IhEDTXYK2x8+uht/X7xNzpsfHRzq8YlTyMifs9Za6oWs+amk0omwYxKnUQOSlmnlj2PO2uDn4341f9itG2xmL+tvJV1EoVV+Vcz7/fbWbmmDRuu2RY2IaAvYNARyOm0WeHjwt1i9WxqmYD6+u2UmcLRduO0pkZFJ9HYWwOeTFZZJhTeniFHQ6FmdH8/ZfTePz1tfzpzTXceFkqisgOdjWXUNyyF3cgFKE6OyqdSwadw4jEIeTFZJ6UUYm1Kg1DEwrCwSmDYpBaW0NXvqYqytqr+LT4O8SusS21Uk1aV86iVFMSKaZEUk2JxB+CUJnHXYC3vpSOpe+iTx+ELm0QKoUyLJBVnbX8b9tnvL11HquqN3DPxJtJjIzv93yCIPCTIeehEATe2z4fo8bAzaOu6Lf81MxxSEi8uPZNnEYJyKShzUlWspmHp9/N31f9i1c3/A9f0M95+TN7HT8pfTSppkT+suIlHvv+GX458ZZDrrhc7tB4WoReTaoplj/MupfHvn+GPy19gT+eef8BHTRORwR1d5dd3y0ks1GLJIHT7T/uqTt0ah3XDr+EaRnj+Mfat3h6xctMyxzPzSOvOKRpDgdCFqRjyMbdzQzOjub7qoXkRmf2mSivm492fok/6OeGET8JC4bD6+TNLR+SpE+hvCqd83+axae7v2V70x5+Pva6fud5rKnZxHOrXyfFlMT9k2/n4Rc3kxIXwR0/Gd5DEL11ewDQpRbi8XtYUrmGRWUrqLLWoRAUDInP48zsKQxPGkxKZOIxCSNi8zrY21ZJSVs5pmFlaBPK+V95qLJJioxnSsbYUAUfX9CvS/yR4Al4aXa00ubuwOoJBVr1Bf1ISCgFZTjtdpTeTKwhihhD9BEN1CoVSjK6cjN1txR8QT811vpwmKUaaz3bGotZWrkmfJxaoSLVnESWJY3s6HRyozPJsKT2EGFBEIg77+d4G8po/vRZUm/9Owrdvu65DEsqv5n2C9bUbOKVDf/lwQVP9hrb6YtLBp2Dw+vki5JFpEQmcnZe/3HQpmWOx+V38+9N76POdFHXPI6sZDNalYb7Jv+MZ9e8zpubP0QhKDgn74xex6dbUvjTmQ/w5PJ/8reVr3Ln+BuZkjH2oN9rpyMUjsoUEeqajTFE8cgZ9/DbBU/y9IqXefKsB49ZVJBTAUGpAoUqnMb8h+g0of+NxxcATkwuqXRLCk+ceT/zdn3NJ8XfUNpawa8n30a65cimLIAsSMcMp9tPVaONM2caWGFv4s7xN/Zbtt3dyeLyVczInkzSfk+0H+36CofPSZ50Dk06D7GJAf628EsmpY1mRlbv8D4Amxt28Nzq18mJzuS30+5kU3E7Da1OfnvjOLTqnhWst6EMr1LJ5+17+Grtyzj9brKi0vjp6CuZkDb6qPuCXX43lR01lLWHInyXtVWGw9woBAUZ5hTOyJrImrVeJHs0j//yHMzGo795XD43e9sr9wt1VEuLs+2wzqFUKEmNTCSrSxwKYrNJMycfUUBTjVIdCib7g4yrTp+LOlsjtbZGam0NVHfWsb5uK4srVgGhMayihEGMSx3BmJQiDGo9Cq2B+Dn3UP/WQ7QtfJO4C37R63oT0kaRHZ3Bn5e9yBNLn+eh6XcxOL7/YLmCIHDt8LnU25t4c8uH5ERnkBuT2W/5c/LOoMXRyed8y5KaZUwZcRUAKqWKX078KX9f9S/+vel9jJqIPsXGpIvk0TPu4cnl/+SFtW+gU2kYc5CWUoc91DW1fwqK+IgYfjXpVh7//lne2foJPx1z1QHPcbqh0OqQ+umy02lDVbnbG+hz//FCpVRxxbALKUos5JlVr/HQwr9w+7jrmZQ++sjOd4zt+9FSXm9FksCqKkev0jEhdWS/ZReWLScoBrmo8KzwtnZ3Jwv2LuOMzIls+x6GZMfy9taP0Km0Pbzv9qfGWs/fV71GujmF306/E4Naz7LNdUSbdIwf0rNLQ5IkVjTt5LOMGOy7vmJMchEXDzr7sGfXd+P2e0KpJbrEp6Kjmgb7vtTisYZosqPTmZUzhfyYLLKjM9CpQuJzdpqVXz+3jH98tJXf3DD2sFpioiTSaG+mtCsh3Z7WMmqtDWF37SRjPHnRmczMmkRiZByxhmgsOhMRGgMapQYFAkFJxB3w4PA66fBYaXG202Bvoqqzlo3121lSsRoIjQkNTxzEqKRhDE8afNSCHaEx9HKakCSJFlc7e9sq2NFcwqb67ayr24JWqeHMnKnMKTwLS0o+lolz6Fz1Ccah09Bn9nanjo+I4fGZv+bRxX/jLyte5snZvyFxvxQlP0ShUHDnhBu579sneGHtGzw9+6EDulZfM+Iivtq4nW3ScopbxoSzGqsUSn458RaeWPoCL637D4nGuD7FTafW8eDUO/j9kmd5bvW/eeLM+w/4JN3a6UGjVvbyzBwSn885eWfwTekSZudOO6qn8VMNhcbQb5edXhOqyj3eYJ/7jzeD4vJ4avZv+fvKV3lu9es4fA5m5x5aBPL9kQXpGFHf4gQkKhyljE4p6vfmFkWRReUrGZE0uEeF8VXJ9wSkIBcVzOabD9eSPzjI6qbd3Djysj7Dv/gCPv6+8l/oVFoemHoHBnWo73ZXRRtjBiX0CLdi9zp4ad3bbBA6yFTo+M2sew74RPxDJEmi3t7E7pa97GkrZ29bZY/cRjGGKLKj0pmWMZ7s6HSyo9IPONk1O8XMdecW8sYXu1i5rZ4pw/uuVDwBL/W2RmqsDVRZQ7mV9ncx16t05MdmMTFtNPkxWeREZxySK7aK0FiQRWfqcz5Nk7OVPS1lbG/ezdaGXays3oBCUDA8cRBT0scxNqXomHUXCYJAfEQM8RExTEofgyiJlLZVsKBsOV+Xfs/i8pX8dPRVTJ5yGY7i1bR+/Sqpt/0doQ/PzUitkd9Mu5MHvn2CF9e8yeOzfn3AFp5RE8Ed467nD0ue49Pd33L50Av7LasQFOSI0ykLfs7za97g7+c8Gp6MrVGquXfybTz43Z95ZtW/ePqch8P/x/3RqXU8MOV27vvuTzy35t88ddZv+h2XbOl0EWfR9/mwctmQ81lSsZpPir/hnom39Gvz6YZCq0Psx8tO26PLbmCI0pt55Ix7+Pvq10Jz34J+Lig487DOIQvSMaLd6kaIsOLwOxl1AM+6nS0ldLit3DTy8vC2QDDA9+UrGZsyHK1kQhQlKoObiNKbe3kwdfPBzi+oszfy8PS7w7HrPL4AVoePlLh9T/K1tgaeWvZP2twdnN9i54LhM4k5BDFy+JxsadjJpoadbG/ajbXL/TpSE0FeTBaT0keHYrYdRHz6Y860HJZuruPV+ZuITvBi83fS7Gyl0dFKk6OZenszba6OcHm1QkW6eZ+LeW50JqmmpGMeZ0sQBBKNcSQa45ieNQFREilvr2Zd3RZWVK3nhbVvoFfrmJU9hXPyziD+CCf59odCUFDQ5Up+6eDzeHn927yw9g06hs/lzNm30Pj+E1jXf4Vlwpw+j4+PiOGGkZfxz3X/YVX1xoOO1wxLKGRS2mjm717A7NzpBwwQm5MUw65Nw2gvXMOHO77g+pE/Ce+L1Bq5Z+ItPLL4r7y3bT43j+7bWcKiN/OzMdfwlxUv8XXpEi4s7LvCau5wE99PHiqjNoIzsiayoGw5Lr+7T/E7HRE0+v5bSF1ddgMpSAAalYZ7J/+M59f8m/9smUdcRAzjD9Bb9ENkQTpGONx+dNGdABQl9J/pcn3dVtRKdQ938K1Nxdh9TmZmTcLtDSDoHDR4q7hq2Jw+5zDV25v4cs8iZmZN6hG/LhgMtVi63T6rO+v4/ZJnUSDw0PCr0H/4d7QHCEfjD/pZX7eNpZVr2Na4i6AkEqk1UpRQyJD4AgbH5ZIUmXBYXWxBMUirq51GRwtNjpZQpAJnK82OVjrSW/EEPTy29Ktw+UhNBInGOIbE5ZMUGR/ySjMnkWSMHxCvO4WgIDcmk9yYTK4cdhF7Wsv4bu8yvipZzNel33N+/ix+Mvjc4zLAnhQZz6Nn/JLn17zBO1s/Jn/mvZhzRtK5ch6Rw2ei1PcdOHVa5ng+2/0dX5YsOiQHgiuGXcTq2k18XfI9VxX1LXQAeekW/EvMTIgfzdd7l3Bu/oweUTfyY7M5K2cq35Ut47z8Gf16/I1JKaIoYRDzd3/HuXln9NlKam53kTOsb49SgPGpI/i69Ht2NpccM5fjkx2FSoMY8PW5T6ftmvs3QF12+6NSKLlz/I20Odt5cc2bpM5OOmSvSFmQjhG+gIjC2ElSZOIBIyzvbNrD4LjcHhM719duQa/WUZQwiKZ2D8qYhlCuo34cGebt/AqVQsWVP6g89FoVKqVAp91Lq6udPy59HrVCxWMzfkVkfSVNgMqS0Ot8br+Hb/cu5auSxXR6bMQYoji/YBbjU0eSE51xSAP7/qCfOlsj1dZ6am0N1NoaabA10ehsISjuu0nUSjXxhhjijbEUxOawu9TD3jIf910xjRHpGUftNno8UQiKrjQYeVwz/BI+2P4F83d/x9bGXTx6xj3H1EuwG6VCyR3jrmdXSylf7FnIXTOupe61e+lc/SkxM6/r184ZWRN5Z+sntLk6iDFEHfAaSZHxjEwaypLK1Vwx7MJ+f++C9FCkhDRGsVnaxNelS7h+xKU9ylw6+DwWl6/im71LuXHkZf1e89z8GTy1/J9sayruFWLI4w3ltjpQUNWc6EwEBKo6a380goRSjeTp28suPIY0wC2kbjRKNfdO+Tn/9/XveX3jezxyxj2H9CArC9IxQgBEnZWsqP6765w+F7W2xnCIfwiNWWxtKqYoYRAqpQqjXo0yqok4TUqfk0E73FZWVW/g7LwzenWvKBQC6QkmSmvbeWblF3gDPp44834SI+Ox2jcBoDLte6KVJIklFav537ZPsXrtDE8cxB3511OUMOiAXWGiKFJtraekrZy97ZWUt1dTZ2sIx5VTCgoSI+NJNiUwJqWIpK4o14nGOCx6U48Kz1rg5fanFvHxV82Mv7PgwF/ySUSsIZo7xoe8iZ5e8TJvb/2YO8YdXmxASZJweUKZbO0uH15/EFGUUCoUGHQqTBFaok1atCoNg+PyKO+oRpuQiXHIFGwbvsEy/qJeqQi6KYwNTTmo6Kg5qCABTE4bw6b67VR01PTyDuwmLkpPfLSB8kofI3OHsrJ6PdcNn9ujoonSmxmZNIQ1NZt6TGn4IcMSClEr1exo2tNLkFo6Q91S/XXZQWgMMFIbQbvbetDPdrogqNRI+wXo3Z/wGNJJ0ELqJkpv5qqiOby28T021m9nTErRQY+RBekYoVKLEHQfsGla0VGDhNTDoaDN3UGbq4M5XbmPRIUbhcGBWew7MOXyqrUEJZHZuX0nLivKi+WrvQtQtlfyq0k/DQ/aBx0dIChQGkIiZvM6+MfaN9ncsJOC2Bzun3r7AWfAt7ra2VS/nS2NxT1SR0RqjeREpTM6eRjplmQyzKkkRsYf8pwes1HLbZcU8bf/buSdr4u54fzBh3TcycKIpCHkx2ZT1lbZbxlJkmjpdFNWa6WiPhTNo67FQVO786BdLAqFQFJMBL6MWrRaJTVNduInX4pj5wqsG74ienrfrs/mrla6w+c8pM8xKD4kYHvbKvsVJIDhubGs2t7ALVOHsaF+Gw32JpJ/8J8fnjiY9XVbaXG2EW/sOwW5RqkmOTKBentTr32tXYIUd5C0EwpBgSiePBXw8UZQqqAfQdJ1tZBc3r73DxSzsqcwb9fXLChbLgvSiUTQecADUbr+n0ZrbQ0APVIEV3bUAJAdFYrRVdpeCYC7ve/B5bU1m8mJyiA5snfXG8CooWa+cZSRpstjYtq+uQBBtw2F3oigUNJgb+aPS5+n023l5lFXMDt3Wp/dNE6fi+VV61hetY7StgoA4iJimJA2isFxoSgOcRExRz2B9oxRqewoa+WjxaUkxhg4e0LmUZ3vRLKudgu7Wko5P29fpAKXx09JdQfFlR3sqWqntKYTmzPU9y8IkBgTSqE+LDeWWLMeS6QWU4QGrUaJQhAIBEVcngCdDi8tHS52teyhXNFER3ked6xcTFJMBLeaC2H911gmzUWh7j2XqzvVx6Hme4rRR6FSqGhxtR+w3Ij8OBasq0bpDbXMam2NvQSp+6GsydnaryBBKPWHJ+Dttb3NGhKkGPOBU6o4fC6Mx6Gb9GRFUKqRgn13ySkUAnqt6oTPQzoYSoWS6ZkT+Gz3dzh8zoPGXTyugvT555/z0ksv4ff7ufHGG7nmmmt67N+5cyePPvoofr+fpKQknn76aUymY5sa+0Sh1YWe1BTB/m+iFmcbaqWaKN2+bpb6rrk73Tdxd+rumkp6xaVy+Jzsba/i0iHn9XuNnfb1CAqRll0ZeM4JhCfMiR4nSl0EzY5WHvv+7+G4eH25f3e4rXy2+zsWla/EG/CSYU7hqmFzGJ864rCdGkRRxOl34faHEuV1p1hQCAq0Kg0GtZ4IjYGfXVJEa6ebFz/cSpvVwxVnFYTj752MBMUgnxR/y4c7vyA9Mo143whe/HALuyvbqW6yI0kh8UlLiGTc4ERy0yzkpJrJTDKFn2YPhZLWcr5ftpwUfSL/d8PNbC/tYPW2Bv5Xmc5dkcW8+/JbjDj/UoZk9/T229NaDoSiORwKgiCgVqh6pMDoi+F5cQgCVNSEhMTudfQqo1WGxkd9/TzNd+PyuYjpI4J3m7X3pNgf0uhoJiAGSD5AqKTTDUGpQgr0/50adCrcnpNLkACGxhfwafG3lLdXHzSJ6HETpKamJp555hk+/vhjNBoNV155JePHjyc3d184nSeeeIK7776b6dOn8+STT/L666/zq1/96niZdFyJMIY83Jy9788wnR4bFp2pR4Xe5upAr9KF58802luIVJto9gjsKm9jeP6+uUpl7VVISAzqJySRP+hncfkqBkcPYeN6Fe8t2MONFwwBQPJ58Ku1PLviJXxBP7+f8X+9JhUGxSCf71nIvJ1fERADTE4fy3n5M8g+QBcOhFKv11obqOysoc7WSIO9mRZnG+3uTmxeR3i+Un8IgoBFayI2M5r0SBUfbqtgZfk2fn7ONIZlnTwxyyRJorXTw5q9u5lf+SlWsRmhI4Xd6/PZLe4kQqeiICOayUXJFGREU5ARddgpN7oJBAPM37OAD3d8QWxEDL+ddidxERbS4iycNymL1s4RNPx7C+mdG3nwHwmMyIvjpguHkJ1iRpREFpavIMOccsDJsfvjC/hwBzwHfYI1G7XkplrYXtYEsfTp+ej0h1pnhgO0zgLBAA2OZob24ZHabvNg1KvRqPvv9t3RXAJwwjKZngyExpD6FxyDToXrJBSkzK6Holpbw8AJ0qpVq5gwYQIWiwWAs88+m2+++YY777wzXEYURZzOUB+32+3GbO49QGuz2bDZbD22NTY2Hi+zjxhTZOjmaW7t2y0TwOl3Y1T37Be3ee09vPI6PJ3EG6OxapQs31rXQ5CqO+sByLKk9Xn+7U27cficXDR+OtEdfj5ZspdxQxIZnBWDFPTzpT5IjbWe3067q5cYtbk6+Puqf1HaVsHYlOFcN3xuv267kiRR0VHD5oYd7GjeQ2lbRfhpWKVQkWCMJT4ilpzoDMw6E5HaCAxqPRqlGqVCiYBAUAriDfhw+d3YvA463Faana0EDE2o0620sIfH1yxBvzKGooQhXDJiKjlxJ25Wvs3po67ZQU2znaoGG5UNNsob2/FG70SZUAUBDVG2iQyLHUb+iGgKM6NIi4/sMSH5SAiIQVZVb+DDnV/S5GhhQtoobht9NUZtT6GItRhQTz2fiO/+zS9mRvGfNZ386pklXDAlm/i8Jmqs9fzyMCaNVnbWApDWT/De/RlVEM9H68rQxNKnw0StNdQ1nWTsv/VS0vWf6SunTofdS9QBWkcAK6s3kGSM77fr+lTkYHXdgbrsAAw6NU73yTWGBIQftp195HL6IcdNkJqbm4mL21eZxsfHs23bth5lHnzwQW666Sb+9Kc/odfr+eCDD3qd56233uLFF188XmYeMzTqrrk/jf03kfxBX695RW6/B4Nq383n8LqIMliYOCyJFVvq+OlFQ8Pdbk3OFiI0hl6VUzebG3aiVWkZllBA4RzYUdbGU/9Zz99/OZ0G0csKlZezc6czIqmn40CdrZE/LHkOl9/NLyfe0sMLcH9aXe0sKlvJ8qq1NDvbEBDItKQyK3sKeTFZZEWlkWiMO+r5Qjavg12NZXyzbRO720tY176UdYuXovHFkBcxgklpY8hIMBMXpcccoT0sEZAkCY8viM3pw+rw0m7z0NbppqXTTXOHm4Y2J42tThz73dhajZL4NAeqwRsJ4mBM/DhuGXspMcZj171s9dj4vmI135Yupc3dQYYlld9Ou5MRSUP6PcY4ZBptC99irK6SKb+5kv98XcyXW9ej8WygIKqgxxjiwVhXtxWFoGBw3MHzZA3Pj2Pezk5g39Pv/uxo3kN8REyvVOf7s6ZmE2qFiqKE3k/MnXYvUQeIWF3ZUUtxSynXFF1yTAIAnywcrK4TlKp+vewg1MVZ23zsk/QdLYIgdD2Eigcte9wEqa/M6Pv/eTweDw899BBvvfUWRUVFvPHGGzzwwAO8+uqrPY654YYbuOSSnum/Gxsbe41HDTTdn620phNJkvq8UURJ6uVOHRCDPSYGeoJetEoNsydksmRjLd9vquXciZkAdLptROv6v8n3tJaRH5OFWqlGrYSHbhrHfS8s4/evrSElyYUaemWvbXd18sclzxOURP4w694+xxxanG18sOMLVlStQ5QkihILuXTweYxKHnpEURoOhklrZELGcCZkDEcUJdaVVvJN8SpKA9vY6V/E9uJVBBbmEGxNQaFQYIrQEKFTo9cqUauUKBQCCkFAlCQCARFfIIjHF8TtCeBw+wkEe98YKqVAXJSBhGgDU0ekkBxnJDkuguRYAwtrv+Wr0qWkmBK5feztRxz/74cExSBbG4v5vmIVG+q2EpREhsTnc8voKxmVPPSg87+UhkgM2SNw7lpJ9MzrGDsBVgQ3I3oi2f59Gt+aqjin679zIDwBL9+Xr2RU8rBDmktVkB6FKqqFSCG2V3mX3822pt3Myprc7/Fuv4elVWsYnzqyT6eLdpuHQZn9Z4edt+sr9CodZ+ZMOaitpxKHVNf1Ua92E2fRs6Wkud/6Z6Bw+z1ISBgPMazXcSEhIYENGzaE3zc3NxMfv68JX1JSglarpago5Ap4xRVX8Nxzz/U6j8lkOiUcHZRdQmNzeahuspOR2NtmhSDg/0FlKAj0+JOJkoRSUDA4K5rcVDOfLNnL7PEZKBUCTr+r31htoihSa2vkvPwZ4W0ZSSYevH4cf3hrOc0pXiYGND0ChIqSyPNr/o3T7+Lxmb/uJUaiJPL57oV8sPMLBODs3OmcVzDrmIfLORAKhcCEgiwmFGQhSVezoW477237ghrtDmIKWhmingmeSJxuPx5fEH8gSFCUQuIvCBh0KixqLVqNEoNOTYROhdGgwRyhwWzUEmXSEmPWYzH2bml5Az7+uvJltjYWc07eGVw7fG6/2X8Ph0Z7M4srVrG0Yg0dHiuRWiPn5s1gZs5kUk0H7zLbn4jCCVjLNvLWqjf4qnY9OVEZ3DX2Nl7x7uEfH22lucPFdecOOmAF9Vnxd9h9Ti7umnpwMFrcLQjGTlT2Eb32rahahz/oZ2rmuH6P/3bvUtx+D+cXzOq1T5Ik2m2efrvsdrfsZW3tZi4bcv5hpZA/FTikuu4Av2OsRY/bG8Tp9mM0HPuMykdKd1ddhHoABWnSpEm88MILtLe3o9fr+e677/jDH/4Q3p+RkUFjYyPl5eVkZ2ezaNEihg3re+7NqYBW2dXFoAyyeU9zn4KkVmqwe3vOC1EqVAT2m0uhFBSIkoggCFw2K58/v7WepZtqmDkmHX8w0G/q7nZ3JwExQOIP+u1HFcZz4XkRfFMPGc0ebE5fOMfM9+Wr2NVSyu1jryMzque4lMfv4ZnVr7O5YQfjUkZw46jLiDX0/9R6IhAEgbGpRYxJGcbyqnW8vWUeqzwfcMOInzA7d9oxfSoUJZFnV7/Gtsbd/HzstczM7v+J/1DPt6l+B1+Xfs/2pt0IgsDIpKHcnDWR0UnDjij5oSRJlJgjeT0tmtba9ZyZM5UbR16GRqnm0ZvH89LH2/hwUSkA15/X9/yu/2fvvMOjKtM+fJ9pmZmUmfTeeyAJCaH3KoioKApi1/WzrH11i72srrruuq517b03RJDeWyChJJCekN57Mpk+5/tjkkBIIaEISO7r8pLMnHPmzWTmPO/7vM/z+xU1lvBTzhomB40Z9MpvRe56JEhpLPbAZhO7A7nNZmNl7kbCXO0WHn3RYdLzc846knxH9Nnv1NZhxmyx9VnybbFZeS/9K9zVriw8Rin/wkHE3oLfN56djcR1zfpzKiDVdlrQePRRUXk8Z3SF9MADD3DDDTdgNptZvHgxCQkJ3Hbbbdx7773Ex8fzj3/8g/vvvx9RFHF3d+f5558/U8M543QJPHp7yNlzuIbLp/WuhFPLVZSZK3s8ppQ5oLcc9ThRSOUYrfbCiPEjfQkP0PD56px+FbG7aO4UP+1L3cHkUIdSlOCr0/PXN7bx1B8m4KZ14LusVUS5h/WSKDJaTDy/9XXyGo7wh9FLmRN+em/2p4ogCEwNGcconzje2PMJ7+/7ipKWCv6QvPS0ia2uyd9CemUmtyQvOaVgZLPZ2FGaxg9Zv1LRVo27ypUlIxcyI3RityjuUBFFkey6fL49vJLDtXl4yBTcYVQzM2VZ9zFSqYQ/LrZL6ny7IR8vV3Wv9F2zoZWXd7yD1sGFm5OvZjBUt9ex5cguopwS2d8ho6HF0H0j3FmWRlV7LQ9OvK3fz8uP2atpN+lY0o+yeF2TfTbtoe2t0vBT9hpKWyp4ePId3VYmFxKiKA4Uj7rfs/pmPaF+/af2f2sqWu3Nz/7OJ66YPaN9SAsXLmThwp4fvHfffbf739OmTWPatKF7ZpyLOHcWGkSEqNm5tZ7mNmMvK2EXhSPtx62QnOTqHtUnKrmKDrM9QEkkAjcvGMFj/9vJ8q2FyCTSfvtEuoKaStZ7ZnmkuYwQuSMeylYamw089N+tLF6koaGjiZuTru5183h/31fk1Bdy/4Q/nLTR1m+Bi9KZv0y5ky8zlrM8Zy06Uwf3jL/5pJxfj8VsNfND1q/Ee0dz0Ul4unSRW1/Ie+lfUdJcTrDGn3vH38L4wOSTHp/VZmVPxQF+yd1AfsMRNEoXbk66mtHl5bSnrsBm1CNxOHojFwSBO69MpK5Jzzs/ZRIT4kaI71Gljr9v/i9txnaenvngoHX4PjnwPTKpnFlBM9nPYbtNhKsKi9XC15krCNb4MzZgVJ/n1uoaWJW3sdOmpO9WgupG+3fB261neqe4qZzvD69kYlDKhaNd1wfCQCsk7dEV0rlERVs1SplDn5Pl4zm92v0XMF2b+wF+CmwibD9Y0ecxeosB4zGKvS5KZ9pNHd1pO2cHxx7NholRnowb4cM36/OQIEdv7tsx0mqz7031dbOraa/HR+GCYOrgxbsmIJdL+WT7JhQSh146YhnV2Ww+sotFsfPO6WDUhUSQcG3iIq5LvIJdZem8uecTbIOo5hmI3PoiWoxtzIuccVIrQ6vNyucHf+SJDf+i3aTj3vG38OJFjzA5eMxJBaNmQys/ZP3K3b88zis736PV0MatyUt5Y8GzzI+agVPwSLBZMVbm9zpXKhF4cFkyjko5r39zAFEUqdU18OTGf1HVXsvDk+84YZ9ZF3srDpJWcZAr4+bj72pXYOhSoFhTsIUaXT3LEi/vtxjj84M/IgjCgIrilXX2z76fx9FKUrPVzOupH+Hk4MStyX3bWlwQdHVb94PWWYlUInRLL50rVLbW4O/sM6jv0nBAOk04KdTIJDJEuYFQPxc2ppX1OsZNpQWg4Rh5FjeVBhGRZoNdJFKrdKHJ0FMw8rbL47GJUFFlpK0fbbKuogrLcdpeFquFDrO+uwTX38nKv++bioO2BX2DC9+sy+9REfnd4ZV4qt1YPIAaxLnIpTFzWBp/KdtL9vB15opTulZFq733o799kIEwWky8sO1NluesZVbYJP497wkmB485KSv0goZi/rv7Q+5c8QhfZf6Mn4s3f558B69e/DQXRU7rNoF08LfblRsq8vq8jsbJgesvjiW3tInv9uzkb+teoFnfwqNT7z5ho2IXbcZ23k37gmCNP5dEz0bRqSBiNttoM7bz3eGVJHjH9rBVOZacugJ2laVzWczcAcVeS6vb8NAoUSuPFo98e3glpS0V3DnmujOiqH7+MHCDuVQi4K5VnZMrJD+XwfWLDWvZnSYkggR3lZb6jkZmjI7ngxWHKatpI9D7aNNrl3dMXUdjt/5X15ezXteEh9oNd5UrOlMHBouxO0/u7aZm6ZwovsjIQilvxSbaet3guo49Xhusq2FVpbKv4Cyt9Tj5u2GVtxOkDePLtblU1LZz39IkmoyN5NQXcm3CIuSnoZrst2ZR7DzqdI38mL2aUNdAxgcmn9R1zDb7ezbUijqrzcrLO/5HRk02t6dcy6yTKEsWRZF9VYf4KXsNufWFqGRK5oRPYV7EtF6acV1IlY7IXH0w1RT3e93JSd58lJ7Pt0dWE6Dx5aFJ/9fv9foa09t7P6PNpOORqXfbU8ed3ltSqcDXmSvQW4zceIxh3/Hnf37wR1yVmhMWIxSUNxPmr+3+uaixlJ9z1jE9dEKv1fwFh8iAKySwp+3qms6dgGQwG2joaBq0H9LwCuk04uXkTl17PdOTA5BIBDbsLe3xvHen0GRNe93Rcxztj3VVonQHLV1Dj3MXTY/ATaXFKlqpbm7ieJw7JV9ajcc1xnV+fgWVfWZpbqxCZ+rAJtqYkxzJjQvi2Hqggife2UV6eTbAoFR5z0UEQeDW5CVEuoXw1t5PqT3uPRwsLg72SUSXS+5g+T5rFQers7ht9LKTCkYZ1dn8dd0/eHHbmzR2NHFT0lW8fek/uCV5yQmDh8IrGFNtSZ/PHag6zF/WPY/FvRBbfRBPT3940MEIYFXeRvZWHOTahMu7qzHbOlN1HTSyrmgbcyOm9hANPpb9VYfJbShi8YgFAxYjtOpMlNe2Ex1sn6TZRBvvpn2Bi4NTL9+lC5OBq+wAPDSqcypl16XVOVhFjeGAdBrxcvSkWlePq4uSsXHebNhbhtlydD/DVaVBLpVT1XZsQHJHQKC63f6H69Ieqz4maAHIpBIun2APFB+vT+N4XDvTgY365h6PKzvL0Y0yGUhkmBoqutN6CqmcxTMjefi60eSWNPLN9n3IJLLzWo5FJpVx38Q/gAhv7fmkzwbtExHQebMubu69D9gf1W21/Ji9hinBY4fcsNmob+al7W/z9y3/RWfq4K6xN/Dqgme4OGrmoNW6Fe7+mJtrekjLlDSX84+tr/P81teRCAKXB1yL8UgcdY39y1sdz+HaPD49+ANj/BNZEHW0b6iqQQeIbK5Zg6NczdUjLun3Gj9mr8ZT7caMsIkDvlZGgf0zPzLcPinbXrKXwqYSrk+88oQaexcCNrMRQT5wObenq4qGFj0229A/92eCyjZ7+nvYMfYs4OvsSZuxHZ2pg4vGh7D7UDWph6u6S7YlggQfR48eKyS5VI6noxuVnaWRvp36cZWtNXBcpXdKWBif5kBqQQFZR1KICz3aoOogU6BxcKa2vb7HORKJBBcHJ5qN7cjd/TDXleEks6eiDJ3FFVOTAnBSKXh+wyFkZhk6gwWnkxQFPRfwcnTnusQreDf9C7YWpzItdPyQzg/U+KOQKjhQmUO4UywmsxWzxYbFasMmit0TValEQCaVIJdJ+LFgDQIC1yYsOuH1jyWt4iBvpH6M2WZhWcLlLIiaeVLpUpnWG2xWLG2N1EisfHd4FbtK01HLlVyfeCXzIqeRX9rKl2ynua235UNfVLXV8q8d7+Dr7MUfx93YY1O6oLwZtVcjeY0F3JK8pF85q6LGEnLrC7kp6aoTFnSkZ9fiqJITHeSK1Wblm0MrCHUNZFJw31JWFxqi2YjkBBMUd40Si1WkrcOExunsl8ZXtNYgCMKgRX6HA9JpxLdzZVHVVktSdDAeWhXrUkt79BD5OHt1B58u/F18Ke/cSHdUqNEqXbq9k47Fy9EduUSG3NXAG98d5NUHpyOTHl3k+rn4dG/IH4u3owfV7bU4eIegLz6Et1yNXCrvsZpKjvEipdyX9JoqXvx4L0/dNh6p9PxdQM8Kn8SmIzv5IvMnJgQmIyCjoUVPXZOe+hY9jS0GmtqMNLcZadHZHVvbOszo9Gb0BjOySBc2tu/j128HsYku2FAm7cHa7MUtT25F46TAzUWJl5saf08ngnxciArU4uvh2H1TF0WRn7LX8GXmcsJdg7l3wi3dk5GTQabxoFoh5ce0z9jTUIBCpuCy2LlcGjOne3Vh7Zw1D8bWo8XQyvNbX0cQBP4y5a7uPruusR/Ir0ERmoe7szezw6f0e50NRTtQSOVMD5nQ7zEAVquNPVnVjI7xQiqVkFq+n1pdAw+NWnxSBSG/R2wmA4Ji4IDUZdnR0GI4RwJSNd6OHoOeZA0HpNNIV6qrsq2GCPcQZo0J5Jv1edQ2deDV6X7p6+zNvqpDWG3WbhHSABcfMmtysNlsSCQSAjV+3YrJxyKVSAlw8cWmspGzqY2ftxZxxYyjDbhBGj+2FO/uVfQQqPFjb8VBFH7TaD+0FWtbI35OXpS39GzSjQvwZ1/DHg4UVfD5mpx+u/vPZdo6TBRX2tW5HZvjKbCt4Na3PqClxLeXDJiDQoqrswMaRwdcnZUEejvjpJSjUsootxk4oNvMLVeE4q52Qy6TIJVKkAgCgmCvwO3SyitoKeCXSgszw8fhEhpAc5uRhhYDJVVtpB6q7g4EWmcHkqI8mZYcQIF5D99nrWJy0BjuGHv9KUkSFTWW8m3RRtKD3HFoOsJlsXO5JGpWDxV5gJoGe4WmxwDW4GD33Xpuy2s06Zt5Yvr9vWa3RRUt1AsFKCQtXJOwpN+Vj81mY3f5flL8E1ErBn7N9NxaWnUmpo6yT962FKfiqtSQ4nd+7meeCUSzAcmJAlKnwkVjq4Ew/7PfHFvcXEaQZvAq/cMB6TTi7ejRYz9o9pggvl6Xx4a9ZVwzNxoAf2dvrDYrtbqG7hmxv4svFpuFWl09Ps5eBGn8WVe4tTtAHUuwawD7KjMZHTuZr9blMjMlsLsBN8w1iDUFW6hsq+mhiRbuFsLGIztpcbcHTENFLuFuwaSW7+/xGl2utaNHy/l+Yz4T4n2JDOy/RPdsI4oiFXXtZBTUc7iogdySJmoajzYZq1Uy5DGuSD3LWRI5HW83NZ5aFe5aJW4uPUuLj6e0WcOBNZtx8+tgaujAN8UjB1ORVkn4w+xpvTbtzRYb5bVt5JU2kVnQwN6sGraW7EYRdohIx3juGnsjMunJNcqWNJfzdeYK0iozUMuUzGrUsXDsUvwS+i7ZP1TUgJNKjo97//sx7UYdz219jfLWav48+Y4+5YR+3VWE3L+QEE0gY/1H9XutI81ltBnbSRlEddyvO4vROjswOtYbk9XMweosZoVOOm3KG78HbCZDn+7Ax3LsCuls027SUd1e10sJZiCGA9JpRCaV4a52pbpzH8fH3ZGECA82pZWxdE4UgiB0b+5VtFZ3B6SuTfTy1qrOgOSHyWqmRlffK40T5hrE5iO7uHJuAPtfq+PrdbncfoX9hhndefPIrSvsEZDivOyWArliB5FyJYaSw8THjWLjkZ3kNRzp9qSJ9ghHJVPi6tuES7Yv7y0/xAt/nHxOyQaJokhuSRNb9peTeri6u8TVzUVJbIgb8yaEEOanIdjXGTcXJSty5Xx28EcWTPdDOwRl8gAXXxykCo40lzGNgfegcuoKCHML7rOCTC6TEOqnIdRPw0XjQ8irO8KTm1YhN/iQsceXx0t38bcbx3brCw6GRn0zX2YsZ2txKiq5kiUjFzI3IIW61+/EsZ/NbKPZyu5D1YyJ8+43Zdesb+G5ra9T0VrNgxNv69P6oqnVwOaiVCQhepYkLBzws5FbXwhAnGfUgL9PWU0badk1XDM3GplUQnZdIWarmQSf3uZ9FzKiyYCgHvgz3GXb0dI+uH3CM0lho73qsy/Nwv4YDkinGW8njx6FBTNGB/Dq1wfIL2smKsi1R0DqKq8O6DRFK2upIsU/sds8r6S5vFdA6vrjdkjqmTM2iNW7S7hyZiQeWhW+zt5olC4crs3rUXbs5+yNl6M76VWHiQ+KRX8kg6RZ1yGXyNhRurc7IMmlciYGpbCtJJVFs8bw0U+FZBTUkxg5uA3JM4nRbGVdagkrthVRWa9DIZOQFO3FVbOiSIz0wNfdsc+bY1cpcnVb3ZACkkQiwcvRvVf5/fGYLCYKmkpYEDXzhNc0WUy8ufdjtEoXXrz0QfbENPHm9wd55M3tvHzf1BNam9tsNn7N38RXh1ZgtVlZGDOby2MvwknhiM2gow4QbX2rVKxPLUGnN3PRuL5vDmUtlbyw9Q1aje38ZcqdJPr0na79Yk0OeBfh6+hDcj9NsF2UtlTi7OB0Qs2+7zbmo5BLuXhiKAAlndWNg1WQuFCwmY1ITpD6lMukyKQCeuPZd449UJWFXCIbkqvv8Hr4NOPp6N7dUwR2gVSpRGBnhn2/pqtooaLtaPGBWq7CXe1KWWchQ6CLL4IgUNrSu+w4RBuATCIjr76Iq2dFYRNFlm+1z0QFQSDeO4aMmuwe8jmCIDAuIMn+eHAc5sZK5O0tjAtIYmtxKh2mo30LC6NnYbFZaVBmoHFS8Mv2otP7Bg0RURTZsLeU255bx/9+zMTZUcF9S5L49Ol5PHbLOOZPCMHPw6nfmbrebJ8pnswejVLmgMk6cIl0Vl0BVpuVEV4DrwLArjhQ2VbDnWOvx0XpzOyxQTx681hKqtv4bkNv2Z9jqW6v44mN/+LjA98R5xnBK/Of4LrEK7oLFrrK2/t6H3R6M1+tzyMu1I0RYb2tQ3aX7ePR9S9htll4auaD/Qaj/LIm1mWnIVG1c8WIi064cq7T1Z+wuqq4qpVN6WVcPDGkO/Vcq2tAIZXjOoD314WIaDIgnCBlB6BykJ31gGSz2dhTvp8RXlFDEsIdDkinGS9HD5oNrd0KCU5qBfERHuw+dLRIwc/Zu1elXaCLb3eRgUKmwM/Ju88+GLlUTphrEHn1RXi5qZmU4Me6PaUYTPYPYLLvCFqN7RQ0FPc4b2rIOKw2K+lK+02kIz+NS6Jno7cYWJW/8ejYXHy4KGIaG4q2kzhKQlp2DW0dg+9bOZ3o9Gae/SCV/3y1Hy83Nf+4axIv3zuV2WODBtz/6UIURTYf2YmTwpGgfpo2B6LVpDuhh0taxUEUUvkJ01LFTeWsyF3PjNCJPeR6Rsd4M26ED+v2lPbbM7W7bB9/WfM85a1V3DPuZv465Y94H3ejFztL+IU+7Ek+/OUwre1G/nDZyJ4mmWYD7+z9nH/vfJdAjR8vzPlbv+kVo9nKK1/uR+lfjouDM5P6cRU+lmZ964BBRRRF3v0pEyeVnKtnH33/Wg1taBycz6lU8bmAbRBFDXBuBKQD1VnUdTSesPfseIYD0mnGs9MzqKHjqJrCmDhvKup0VHdWOfk6e1PVWfjQRYDGj4q2GmydKZdgrT8lTb318ABiPMMpbCrFZDExf0IIOr2Z3Zn2gJfkOxKpRMru8v09zgnWBhDlHsa6in1IPAPR5ewmzC2Isf6jWJ6zjvpj9PWuib8UX2cvsmzrsMraST3Uu5T8TNNhMPPImzvYl1PLbZeP5KW7pzAy3GPQ59tEG58e+J4D1VlcGTd/yH5DTfoWatrr+nTQ7cJoMbGjLI0Uv4R+farAPlt8J+1znBRqrk+8otfzsSFuNLYaet1EbKKNrzNX8O+d7xLg4sPLFz3GlJCxfbsRG+yipBJlz4KF7QcrWLO7hEXTI3oUqByszuJPa/7OhqIdXBozl6dnPNhvak0URf73QwblTTXYnGqZHT55UO9n+wCGkgCb0svIKKjn+vmxOB/j39NhMaD+nZnvnSqiKCKajINaIUkkdrfks4VNtPH94ZW4qbSMGaDopS+GA9Jpxr3zS32sgOqozj2YjAJ7Ks/byYM2Y3sP5e4AF1/MVnN3ui/ENZC6jkba+xBTjfWMxGKzkN9YzIgwdzw0SrYfPJoSTPSOZVdpei/V60tj5lCjqycrOAxDWTaW1nq7JIso8vaez7qPV8qV/HnKnUgkoIpLY2t2zml6dwbPf77aT0l1K4/dMo5Lp4T3cnMdiIKGYh5f/09+ydvAvIjpzD/GRXewrM7fDMC4fqwUADYUbbc3QUcObFHxS94GChqLuSnp6j4bSHUGMxIBFPKj1XYWq4XXd3/E91mrmBE6kadn/mlAgzNLu30CJHXUdj9WVNHCq1/tJzrYlWvn2Vdlte31/GvHOzy35TVkgpSnZj7AdYmLBgwwK3ccYd2eUkaMbUciCMwZoO/oWI7VYzye+mY97/x0iNgQNy4aH9LjOZPFhIP03DGYOyewmADxhHtIYO83G0yv2Zlie8le8huLWRp/6ZDV7YcD0mmmS9G7SX9UBy3Q2xknlZzcEvtNw7PzxnLshrl/pxpuRZs9lRfcWdhQ2kfaLsYjHEEQOFybZ7f4HunL/rw6TGa7JNDUkHE06Js4VJPb47wU/wTCXINYYajEJED7oW14OXlwY9JiMmqy+ebQL93H+jl78/j0+5DJIUe+gu3FveWKzhQ5xY3syqxi2UUxpMQOTsbIYDawtTiVJzf+i0fWv0htRyN3j7uJm5OvHnJj5ZGmMn7JXc/EoJR+Nd9aDW18f3gVI7yiiPHobcbYhb00+2dS/BP7THOJokhadg2Rga7dTc4Gi5EXt7/J9tK9LI2/lDvGXHfCFYml2b7ilmk6pacadDz93m6c1Ar+duMYDNYOPjnwPff/+jT7qw5x9ciF/HPeY8R6Rg543V2Zlbz7UyYpI9ypFrMZGzBqQLXuY3+v/gKS1Sby7y/2YbXauP+apF6TDZPVhPwkHHR/z3SnZAchJWW1ikjOUrqzur2O9/d9RaRbCFNDxg35/OGAdJrp8kVqMR4NSIIgEBGgpaiiGQBPtX1juf6YtN6xKg9Ad6qopI+A5KhQE6YN4lCNfeWSFO2FyWztDnhj/BNxVjiytmBrj/MkgoQbkxbTYGhhY3AQbQc3Ioois8ImMzN0Ij9k/cqqvKP7SSGugdwQeRs2vSP/TX2ff25/u5fG3plgZ2YVMqmEhVMGttSu1TWwvnAbL2x7k1uX/5nXUz+iUd/CdYlX8OrFTzE1ZNyQ9yFKmyt4fuvrODs4cXPSVX0eYxNtvLX3UzosBm5JXtLva3SY9byy8z0cFWpuT1nW53F7s2s4UtnKnHH2HjCdqYPnNv+XjJoc7hhzPVfEzR/U72CqK0OQOyDTeFDb1MFjb+/EZLby15uS2Fy+ibtXPs7KvA1MDhrDqxc/zeIRF5+w0GNfTi0vfZpOVJArCWN16Mx6LjlGz24gjFYToij2qcX3+epsMgvruX1RAn4evZUwjFYTiuEVUg9spk7TTsWJU3YWq62HgstvRYdZz793vIMEgfsm/uGkFDYGNQ1ZtGgRy5Yt45JLLkGlOvGS8UJGLVchFSS0HmOyBxDk68zqXSXYbGJ3rv7YfSZnhSOOclV3U62rUoOTwpHS49QUuoj3iWFFzjo6zHriQu0rrqziBuIj7DIds8InszxnLdXtdT0qnWI9I5kTPoX1hdsI1zfhUXoYVfBI/pCyjHZzBx/t/5YmfQvXxF+GRCJh2ohI3vlmAuGjG8moPsD9q55iQmAyF0VMI7pzpXa6aWjR46FVonI4+vG02KyUt1SR33CE7PoCcuoKuve9PB3dmR02mXEBo4jxjDipL4JNtLH5yC4+3P8tarmSx6bf2z25OBZRFPki4yfSKzO5KemqfhWurTYr/9n5nr06bvr9fV6rpd3IW99nEOjtxMyUIJoNrTy35TXKW6t4YMIfhmSfYawqQOEVQlVDB4+/vZN2g4F5lwi8lP6SvTnVP5GlIxd2txSciLTsGp7/aA9B3s48eEM8j216jnjvmD4bZfui1WBXndc49FSL2La/gm835HPR+GBmjw3q81y92dA9QRvGTvcK6QRFDVabSHuHaUh9bacDg8XIP7a+QVlLJX+ecidejr2rOQfDoALS448/ztdff82rr77K3Llzueaaa4iMHHipf6EiCAKOCjXtx9iSA/h7OmEyW2lqM+DqrEFA6KElJwgC3k6e3cKrgiAQpPHrs/QbYJRPHD9lr+FQTS5jA0bh7+lIfunR682PnMHK3A38mLWaO8de3+Pc60ddSXZdPl/YRHz2LicxeCQyiZQHJvyBD/Z9zfKcteQ1HOGusdfj7eTJ6Bhfsg858O+HL2N1wSbWF25nR2kaHmo3UvwTSPCOIco9rJdUzckgiiJqZyuN1gp+ydlIZVsVR5rLKG2uwNxp365RuhDrEcGlMXMY4RVFQGeZ/Mlgs9k4UH2Ybw+tpLCphJFe0fxx3I19pqVsoo3PD/7Iitz1zI2YyvzIvvembDYbb+z5hAPVWfxfyrXdjcnHYjRb+cfHe2lpN/LITZNpMjTy9y3/pVHfzF8m38Uo38HLNtlMeoyVhYixc3jy9a1YXEpwHlHMryWtxHvHsDT+UiLdQwd9va37y3nly30E+7rw9G0T+Pzw1+jM+iFZQHTthR6775V9pJFXvtpHbIgbty/qX72h1diOywVtxNcbm9mIACcUV23vMGET+U117FqN7by8/W3yGoq4f8Kt/Zo0DoZBBaTk5GSSk5NpbW1lxYoV3HnnnXh5eXH99dczf/78k37x3ytquYoOc09Pki4tu7omPe4aFS5K517OsD5OnhQ2HfVQCtL6s/nIrj4N+aI8wlHLVaRXZjI2YBRh/lpyS44WUriqNMwJn8KvBZtZEDWzx8xYKXPgr1P+yCOrnuG/xhIeL8skJDAeqUTKH0ZfQ5R7GB/s+5oHf7VbIExMTmRXZhXZ+R1cn3QlV41YwO7y/aSW72dj0Y7uAgB3lSsBGh+8HT1xU2vRODjjqFCjkCq6Nzdtog2T1YzBYkRn6qDN1E6zvpUGfTP1ugZqdQ0YrSakUfDJwVQcFWpCtYFcFDmdMNcgItyC8XbyPKWVmdVmpaiplL0VB9lRspe6jkY81G7cNfYGpoaM63OF1W7S8WbqJ6RVZnBRxDRuTr66zzFYrBZe3/MxO0vTuCb+sj6tKDoMZp7/aA9ZRxp46NrRSBxbeXTDm1hsFp6Yfv+gVyHd1yvcj2iz8O/cZszhuYiKdnycw3gg4dZB9Ud1IXb2tH2w4jBxoe48dss4dpTvZHPxLq6Imz9gxeHxFDeXA/Z2BoDS6lae/WA3nloVj948Frms783uDpOeDrMej0HsU11IiF0B6QQrpC4vpC5NuzNNZWs1/+j077pv/K1MCBx9Stcb9M5ha2sry5cv57vvvsPZ2Zn58+ezfPlyNm3axEsvvXRKg/i9oZIpMZh7akl1SXo0ttofd1W60HycAZyXkwe7y/d3C68Ga/wxWIzU6hp6NRjKJFKSfEeQVpmBzWYj1M+FbQcq0OnNOHZaR1w54mK2lKTywb6veWLG/T1utF5OHjw26Q6e2fwqT+38H/dPtc/KBUFgWuh44r1j+CLjJ37OWYdcuglNrD+fbTMyIf4KlHIl00MnMD10AiarmYKGYgoaiylpLqeitZqCxhJ0x60Q+0NAwNnBETeVFm8nT+K9Y/B28mT99kZKim389dZZRAf3X102EFablWZDK3W6Bqrb6yhvraKosZSCxmIMFiMSQUKCdwzXJi5irP+oPgsHRFEkrTKD99K/pNXQxs1JVzMvcnqfwajdqONfO9/hcG0e1yYs4rLYub2OqarX8fxHeyitaeP+pcnIPWp4cuPHaByceXLG/T0knwaDzSayeevPbPJzo05diI+jF9cnXUeKX8KQgrbFauPtHzJYs7uESQl+PLAsmW2lO/lg/9ck+8UP6HfUF5k1uXg7eaJVaaiq1/H4/3Yhk0p4+v8mDDh7L2u1p6jPZ0+uM4HY2eB9oqKGslr7VkGA55lfYe4sTeN/aZ8jl8h4csYDQ55I9cWgAtKf/vQntm7dyvTp03nqqadISkoC4JprrmHixKE1Pl0IOMgUGI/r8O/qQm/pdNrUKF16OZL6OHlhE23UdzTi7eTZ7c5Z3FTWZ8f7uIAkdpSmcag2lxBf+4yyuKq1uxvf2cGJ6xOv4O29n7EqbyOXRM/ucX6IfxwPu8TyVvNhnt/6GvMiprM04VLUchVuai13j7+Jy+MuYmXuRrbYUml2LubWH/cwPjiBkV7RRLmH4u3kSZxXZK+0lMliotXYjs7cgdFiwipaERAQBAG5RI5S7oCTXI2jQt2ten4s430MPPzaNp58Zxd/vXEMo6K8MFnNtBrbaDPqaDO202psp91k/3ebUUebyf7/FmMbLYZWWoxtPZpNZRIZQRo/poWMJ9YzgnjvGJwHSA0VNpbwRcZPZNbkEKjx4y+T7+xXzqagoZhXdr5Lk6GVu8fd1KvCyK44Uca7yzORSgQeu3UMucZd/LxzHdHuYTw0+fY+95kGorShhhdWvUe9tgWlzYGbR13F3MjJfb6fA9HcZuTFT/dyqLCBxTMjWTw7lI8PfMX6ou0k+Y7ggQl/GJLIaauhjYyabOZHTKemsYNH396B2WLjH3dNGlDYFSC/4QgwLBt0PDazESknLmoor2lDIoCf55kzNDRYjHy8/zs2FG0nyj2M+ybc0u10faoMKiBFRkby6KOP4ubWc6Yqk8n48ssvT8tAfk8opAr0lp4rJKfOxr/2jq6A5NzL86gr6FS11eHt5Emgxg+pIKGoqbTPDe5k35Go5Sq2FO9mWexSAAormnvIw8wInci+ykN8fvBHQrSBjPSO7nGNiMlLuet/97IxOoY1BVvYUZbGZTFzmR02GbVCRYCLL7ePuZbrE6/g8S9/oqQjn93CfjYf2QXYV4MBLj74Onvj6eiOm0qLRumMk8IRtVyFUqawBx1BigDYELHZbJhtFpoMLVS116I3G+kw69GZOtCZO7oDTOD4ZnIranhu1wZk+y1YMff7njvKVTg5OOGicMRD7Uq4axBalQY3lRYvR3e8nDzwdvQ44c3aarOyv+oQq/I2cag2FyeFIzclXcXciGl99lRYrBZ+zF7N91m/4qbS8szMPxHhHtLjmNLqVv73YyYZBfWMCHPnhstD+CL7M/IaipgbPpUbkxYPyZTPYDbw3u7lbC3fikRmY3qTnmuveg6N++Bl/rvIKWnkhY/30tZh5v5rEhHcKnlwzdM061u5LGYuS+MvHXKAW12wGavNyki3JP725nb0Bgt/v2Miwb4nDrgHqrLwd/bpbp8Yxs7Rsu+Bi8ryy5sJ8HbuNyV6quyrPMT76V9S39HE5bEXcfXIhUPuNRqIQQWktLQ07rjjjh6PXX311XzzzTeEhw9eOO9CQS6V0WrsefNUyCTIpAI6vf1xrVJDi8E+g+9KrXQJqVa11TDKNw6FVE6Q1p/CxuI+X0chUzApKIXNxbu5cdRiXJ0dyC9r7nGMIAjcNfYGHtvwT17a/haPTbu3x9Ja7uqDe8Is5h3cyOxlf+GbI9v57OAPfHd4JRODUpgclEKMZyRqhYqnrrqSP726ldYKI/dcF4ZZ0ciRpjLKW6s4XJdHY2nzSVmG937/5LgonHBxcCI6wJO6OiuV1WaUUjVjo4MYGxWEm9oFJwdHnBWOOCkch3zTPBaL1UJOfSF7Kw6ysyydFkMrrioN1yYsYk7ElB7mdMeSVZvHe+lfUd5axeTgsdyavKSHMkFVvY6v1+eyKa0MlVLO7YviUfpW8sLulxEEgfsm3MKkoDGDHqfVZmVj4S4+2f8jRrEDrc6d2xtyCR17+ZCDkSiK/LytiI9+OYyrG1w818Z3le/QUNhEhFsIf5r4fyeVgqnTNbAiZz0JnvG8+lE+ZovI3++YSHiA9oTnthraOFyb22slPwzYTPaU3UB7SFabSG5xI1OSBr/XN1ia9S18uP9bdpWlE+Diy9MzHyTGs//+u5NlwIB07733cuTIEcrKyli4cGH34xaLZdinZADkEnl3RVgXgiCgcpDT0SkPo1W6YLFZaDfputNGWqULarmqh+trpFso20r29OmNBHBRxDTWFW5jbeE24kI9OVTY0CPIAagVKh6bdi9Pbvo3z25+lXvG38zYYxQIXKdcRXvmZjT7NvPYogcpbCxhdf5mdpSmsbFoB2q5ihFeUcR6RnDj1T6893UJr31SyAPXjObW0ZO6r2OxWe2pMkMb7SYdBosRg8WI2WrGeoxqhEwiRS6RI5fKUMocUMmVqOUqHDtTeH3J8GQdaeCjX7LYsLqR9B21zJ+gZs5YLRrl0NoQRFGkQd9EaXMlR5pKya0vJLu+EKPFiFwiI8lvJNNCxpPkO7LfmV9FazVfZi5nT/kBPNVu/GXKXYzu9Pyx2UQyC+tZueMIuw9VIZdKWDglnGnjtXyV/T2ZaTmM8IrirrE3DDrNIYoi+6oO8WH699R21GBr1zBGOYcl7auQanzRTl48pPegpd3Iy99sI7P+MK6jmtBJa1lTIjLCK4o/pFxDsu/IkyoasdisvJ76MaIIWTu8kYrwjz9OIthncKnIjUd2YhVtTAkeO+TX/r1zdA+p/3Lu0upWdAYLsSEnt+faFzbRxsaiHXx+8EdMVjNLRi7kspi5Q5biGiwDXvXPf/4zFRUVPP744zz++OPdj0ul0uGy7wGQS2WYrb3TS04qOR16e0A6KjHU3B2QBEEgwMW3RyovxjOctYVbKW4u6zOvHqT1J9kvnpV5G7gs4jZ2ZFRSWtPW6ybgptby7KyHeGnbW7y843/MjZjKsoTLUctVyJzd0Iy/jObt32JImU94YCx/HHcjt45eSkZ1NvuqDnG4Jpe9FQftFwsHqVXFy7t34ZflybioULyd3bpTdY4KFT5OnihlDsilcuQSGVKJtNdNThRFRFHEIlqx2uz/6c162oztWGwWLDZr9/+lzlZuXOJNXqmCnZkVfJ26nW/2bCfQx4m4EFfCAjQ4OUqx2uxVfCarCb3ZQIdZT5tRR5OhhcaOpu4qvi4CXHyZFjKOBO9YErxjUA6waVzeWsVPWWvYVroHhVTBkpELuSR6NgqpnMLyZnZkVLJlXzm1TXqc1XIWz4xkznh/tlVu5amta5FJZPxh9FJmh08ZdK9UVm0enx9cTn5jEaJBjUPDGO6ZMhG/fW9hMenxuuaxE5q2gb1p8XBtHpty9pNeeQjRUYfCEVxdfLk48GKmBI/F5xQs1G2ijXfTviC7Lh9KRuEsOPPsHyfiN8jNdYPFyMrcDcR7xwy6V+pCQrQYEWQKhAEyAXuz7CoviZGD13wciPKWKt5J+5yc+kJGeEVxW8qyM15sMmBACggIICAggDVr1gwr7w4BB6kCYx8ByVEtp11vvxm6q+xFCI36JkJcjy6xg7T+7CpN617ljPSy7/lk1OT0u9G7dOSl/GXt81RJ9yERHNmyr7xP+3Gt0oWnZj7IlxnLWZW3kdSy/SyKm8essMloJy6iLWMT9avfxf/WfyJIpChlDowNGNW9mmrWt1DUVEpxczllLVUcLi+j2lDMz7m5MIiPhyAICJ0Hiognn95Tg0PnVlgNUNMImxr7PrQr/adROuPt7EWCTxy+zl4EuPgSog04obW2TbRxqCaXVfmb2FeZiUIqZ0HkTCZ4T6G8ysTb3x1mf14tDS0GJAKMivLi+vmxjIv3YW/lPp7Z/iIN+iYmBaVww6jFuKoGZ6mQU1fIt4d+IbM2B8xKTOVxzAqfxHVTHWlb+R8sumZ8lj6Gg3dIn+dbbVbyG4rJqMkiozqHgsZibKIN0SpBYfHiougZzI0dc0pB6NjXejf9SzYd2Ym1MgJvInn2ngm4awa/el2evZYWYxtLRi488cEXIKLJeMKm2D1Z1UQGaof0vveFyWrmx6zV/JSzBpVMyV1jb2BayPjfJAYMGJCuueYavvzyS5KTk3sMputmuW/fvjM+wPMRpcyhV9k3gIujorvKritdU3ucAVyYaxDrC7dR3V6Hr7MXWpWGMNcg9lYc5PLYi/p8vRDXAOZGTGVtwVaiR8xlXWopS+dE9xDr7EIhlXNj0mImB4/hkwPf89H+b/nu8CqmBo8leeIlqFd/RMuelWjHX9rrXK1KQ7IqnuRjLKmPVLbw7vIMMksq0Whg/Cg34iI0CFILRqsJk9XUudKx2m+Ix/j2SAQBiSBBKkiRSqTIuv+TIZPIkEokR/8tSJFKJJ3H2/8vdJ5f26gnt7iZ3JImCsta0RsAmwS1QkmAj5ZAb2f8XZzwclbjrlWidXLAxVGBSt7/x7+ypY5NhbvZXpZKg6EBB4maUEkK1IXw6wEj3+p3A/ZVb2KkJymx3qTEeqNxUrC/6hBPbPqEkuZywlyDuG/CLYPKt4uiyKHaXH7I+tWuU2h1wFwRTbA8njuujMarYitNXy1H6qjB97qnUfr37DFqNrSyv/IQ+6oOkVmTQ4dZb3cpdvTHoTmK5kpn5o4cxa2LE05oBjhYWg1t/Hf3h2TUZGOpDCNUksJTd0/ood59IkqbK/gpZw2Tg8acltLh3yM2i2nAptj6Zj15pU0su+jUXHYP1+bxTtrnVLXVMjV4HDeMuvK0NLwPlgE/la+++ioAv/zyy0CHDXMcaoUaY+eN+Nh9CFdnB0qq7KXeWqULSplDt3ZdFzGd7orZdfndRQ7jA5P5IuMnatrrevngdHFtwuUcrM6iXraDZmMKq3Ye4fJp/d8Ew92CeXrmg+TUFbAqfxNrC7exymbBOcKHiMPLGaUWiA5IIFDjN2AFWKifhufumExGQT3fb8xnzfo6NmwyMDHBl9ljIkiI9EB6hnW1wt1gQuevarXaOFLVSkFZM0UVLZRUt7Izo6pPTyeJAA4KGXKZxC7ZL2vH4liNzaUSwcku62RtdcVal4C+0QejQkGQj5xJie5EBGiJDnYlyMcFqURAFEUya3L4JvUX8hqK8Hb04L4JtzAhcPQJ03M20UZaRQbLs9eQ31iM1KbCVBaDxhjBH6d4EWvJpv3nj2k26HAaORX3OTcjVbsgiiIVbdXsLT9IWsVB8juLX9xUWsYHJjPCM4acTIFfNlfg5uzAk9ckkRx96iuiLtIqMng37QtaDO2YikaS4JbEIzeNRekw+GBnMBt4ddf73dWMw/SNzWwYcIW0fm8pogjTk0+uoEFn6uDTgz+wsWgH3o4ePDbt3h6+Xb8VA35yDhw4MODJ/v7Dud6+cO508WwztvdI0XhoVTS1GjBbbMhlEgJcfHtJA/m7+OCq1HCgOouZYfaCgcnBY/gyczkbi3ZyTcJlfb6mUq7koUm38/iGl9EmHOCLDTImxvvh5Tawr0yMZwQxnhHoTB2kV2ayr3QfGeUH2J+9CrJXIREkeDt54OvkhZejBx6ObriptLiqNGgcnHF2sFe5JUZ6khjpSUlVK6t3F7MpvZyt+yvQOjkwMcGXiQl+jAhzP+Oij1KphIgALRHHVXW1d5iobdLT0KKnuc1IW4eZxo4WaozlNFjKaRDLMdIMgLPgRrBqIrGakQTEeuOhVeGpVaF1duhzH2xfZSbfZ/1KfsMR3FWu3DZ6GTPCJp6wHNZkNbO1eDcrctdT1VaLzOqEvDyMOL2SOYFmfExrsOyooFWQ4Bg9Fu3EK1H4hFLUVEpqwUb2lB+gslMdPtwtmCUjFzLaL55gbQCHihp446sDVNTpmDM2iFsuHYmTauiuuX1R3VbLpwd/YG/FQZwl7nRkjmNSVAwPLhuNXDb4v6/NZuP11I8pb6vm0an3/KYz8fMN0WxEoup7r9BmE1mXWsKoSM8T9nn1xd6Kg7yX9iUtxjYujZnLVSMWDOjvdSYZMCB9+umn/T4nCAJz5/buRB8GtCp7QUFzZ/lwF77ujthEuzVAoLczoa6BbC/d20MaSBAEkv3i2VG6F5PVjEIqt2vG+SWwrnAbi2Iv6nfjPUjrz8OT7+CFrW9CxE6e/ULOv25f0Gfq7ngcFWqmhoxjasg4Wg9sIHfN27SkzKbBy4/y1iqq22rJrivo1V/VxbGVcioXJfGzHejogMZmMxsqD7K2RIJCqiDQU0u4rzuR/h64OTmilDngIHOwV9vJlJ0/K06pjPt4DBYjjaZ66sRaysUqSiwVFOlKutOlCqmcWM8IRvnMZrRf/KD2VSw2K7vL0lmes46S5nI81W7cNnoZ00PH91hRilYzNkMHVoMOm7EDm0FHS3s9G6sPsbG5kDbRjIdBYF6DhfEdJSiFIpCBUKdAHhSLJnku6piJHDE1s6ZsH6lp71PX0YhEkDDCK5L5kTMY45/YLdjb0m7kv18fYP3eUrzd1Dx7+wRGRZ2eVVFNex3Ls9ey6chOZFI5kbLxZOxyYe7YUO5anDgkDx5RFHl/31fsqTjATUlXnZXZ+PmEaDYh0Wj7fO5gfh21TXpuWjBiSNdsMbTywb5v2FWWTrA2gL9M6b/x+7fipAPSMP3joT7qdxTaqbYAdFe+lVS3EujtTLRHOOsKt1HaXNGtygAwITCZDUXbSavIYGKQXRtqUew89la8yC95G1g8YkG/rz3SO5onZtzH85vfpFq2loe/aOTFa65FqRj87Ng5cSaBBem479nIlJuexyHevtEsiiJ6s4FGfTPNhhZajG20GtppM+nQmTroMNt1yPRmA+0mHXoM2JwMODrYy79FREqB0lrYVDvwGORSOapjgpRS3hmspAoUUjlyqRyZRNodyLuq9UxWMwazAZ25g1ZjO82G1l4yRt6OHoS6BjE3YirRHuGEuQYNujG1w6xnY9FOVuVtpL6jEV+llpu9kkgRVYhZ+6nfswmrrgWrvg2bob27XBegXi5lm1ZFurMKi0QgWmdkTKMZb7MaR3dfPEZOROkZiIN3CHKvIIpaKllXmsauLS/T0NGETCIjwTuGxSMWMMY/sYfZn9VqY01qCZ+uykZvtHDljAiWzo0+5b0iURTJqS/g1/zNpJbvRypImR0+BUNZKKu3VXPJpFBuuzx+SAaKNpuN9/d9xbrCbVwWM5eLo2ae0hgvBESzsV/ZoLWpJTir5YyP79u7qy8OVB3mjdSP0Zn1LI2/lEtj5p7WBteTZcBP63PPPcejjz7aqym2i7fffvuMDOp856jiQs+7brCvMzKphNySJiYn+nerJhyozuoRkEZ6ReOhdmNd4dbugBThHsL4gGR+yl7DlOCx/e4lAUR5hPHvBY/x9Jq3qTKmctu3+dw+4SomhSYOqlJGEAQ8F9xJ+XsPUfPjvwm45SUkSkcEQUCtUNkVHDRD01wTRRGzzUKHyUBeeR0ZRdVkldRRXNOIFQsSmRUvdzleHg64aWU4O0uwCRYMZgMGixGj1UiHqYNGSxMmqxmzzYLFZum2ahYEAZkgRSGVo5QrcZSr8HfxYaRXNO5qVzwd3fBx8sLf2XvA0u7+qGyqYNXB5WytzcIgWgk1WLm4sY2Yjlok5NEmkSJzckXq5IrMxR2FTyhSlTMSpSNFNgPLGwrIMdYgiAKyBk/UjaH4xMQTOyesh7V4aXMF20v3smPfR9TpGpBKpIzyieOa+MsY7RffpyX4gbxa3lt+iJLqNhIiPLh9UTxBg+z96Y9mQyvbS/awqWgnZa1VOMpVLIyezcVRM1m1uYqftuWxcEoYt102tJ4lo8XEG6kfs7t8H5fFzGVZwuWnNM4LBZvF2GdTbEu7kd2Hqrh4Uuig1BksVgufZ/zEyrwNBGr8eHz6fedUmf2AAWnChAkAXHRR39Vdw/SNo0KNm0pLyXH7Q3KZlJgQVzLy7dL8biqtvYKu/ECPCjqJRML8yBl8evB78uqLuiuPbkxazMGaLF5P/ZgnZzww4IzGTaXlP5f9hXe3rGFd6Rr+u/d/fJnpxYLYaUwMSkF7At00qcoZ78sfoPLTx6ld8Treix9GOAmfoS4EQUAhlaNQyRkb6czYSPvvZDBZyC1uIrOwnszCeg7tbsZitTfR+rq7ER3iSlyQK5GhWkL9NINKP54urGYje/b9zNriXWSJHQhAQruJGTJXIr2jUYwMRu4RgNzVB6mTtkePSE2jjuUZqWwv20q7pAbRIkesi2CkJplZk6MYE+fdvXpp0rewvWQvW4p3U9pSgUSQEO8dw1WdK6G+ghBAYXkzn6zKZl9uLV5uav56wxgmJpy8FYfO1GFXQC9NI7MmB5toI9IthDvGXMfEoBSUMgdWbi/i6/V5zB0XPORgVK9r5F873qGoqZQbRl05rMgwBPor+96UXobFKjJ37IlTbS2GVv69812y6wqYFzGd6xIXoThLe0X9MWBAmjnTvpRetGgRTU1NHDhwAJlMRmJiIi4upzYD+70T7hZMQadQ5LGMjvHm45VZ1DZ14OWq7q6gq2qr7a6qA5gTPpmfc9by2cEfeHrmnxAEAXe1K/+XsoxXd33AR/u+4dbRSwe8IQiCwP9Nn8eM8jH8Y/mP1Kjy+Wj/t3y8/zsi3EOI944hxiOCcLegPkVGlYExuM++kYZ1H9K8/Xtcp5z+KiilQkZilCeJUfYVn8lsJb+smZziRnJKGjmYV8fmdLuVgVQiEOjtTJi/hlA/DSG+zgT5uODaR7HBqdDUVMnqnZ+xpbmQRpkEJ6vIfLUfc6Jm4BuRguS43iWj2UpReSv5pU1klzaQUXuIDk02EnUbWFWEMIGLR0xlbIw/aqU9NWi1WUmrOMj6oh3srzqEKIpEuoVwS/ISJgQmDyi0WlzVyldrc9mRUYmTSs6tl47g4omhJxWsW43tpFVkkFq+n4yabKw2K56O7lwaM4epweN6rIT35dTyzk+ZjBvhw11XDk1NfF/lId7Y8zEWm4WHJ99Oin/ikMd6IWMv++5Z1CCKImtTS4gOdj2hTmBpcwX/2PYGbcZ27h1/C5ODBy9Z9VsyqATz5s2b+ctf/kJkZCQ2m43S0lJeeeUVxow5N3+pc4FYzwj2VhykoaOph9nbpAQ/Pl6ZxZZ95Vw1K4ppIeP5OvNn1hRs6VH2qpQrWRJ/Ke+kfc7mI7uYEWZXVZ8UNIYjTWX8nLMOR4WapfGXnvDGEBngzv9uv4UfNxfw3c50TE6VVNhaKGhYg8ivwFEvIx8nL7ydPPBQ26vptHHjcajMp2nrVyg8A3GMGX8G3q2jKORSRoS5dwvEiqJIfbOBgvIm8suaKaxoYX9uLRvTyrrPcVTJCfB0wtfTET93R7zd1Xi6qvHQqHDTKHEYxI3aJtrIrDzM6vTvONBRg1UQCJepuDpsElOSLkMQZDS2Gsgu76C6oY6qeh3lte2UVLdSWa/DZrMhdavGIbAQ0bcdrdSNeeFXc1nCFOTHyKy0GtpYX7SdtQVbadQ3o1W6cFnMXKaHjMfPZeA9gLzSJr7dkMfuQ9WoHGQsmRPF5dMihlw9V9tez96Kg+ypOEhOfQGiKOKpdmN+5AwmBCYT4RbS6zNV16Tn5c/TCPJx4U/Xjh50Kb/RYuKLjJ/4NX8TQRp/Hpx027C1xMlg7r1CyiluoqymnXuuHjXgqXn1Rfxj6+s4yBx4ZuZDhLn17dR7LjCogPTqq6/y2WefdcsFHT58mMcff5wffvjhjA7ufKZLYSGzJofpoRO6H/f1cGREmDtrU0u4YkYkrioNE4NS2FC0gyvi5vdwypwZNpFtJXv4aP+3xHhGdK+gliVcjs6k58fs1bSZdNySvOSEG5JymYSrZ0dx0fhglm8tZNXOYjqMejz8jASF2VA6d9BibCCvIRV9H0296nBvHPd+gPuRDbhpvNEqXdCqNLgqNbirtbir3XBXu6IYgmr1YBAEAU9XFZ6uKibEH7ULb24zUlLdSml1G2W1bVTWtXO4qIEt+8o5XgBCrZShcXTASS3HUSVH5SBDqZCikEsxCW3UkE+N5RAdgh6V1Ua8XgXWcbSYAviuxMT7KzbQ1mHqcV2JAN7ujgR6OxEea6TIlkq9sRZ/F18Wj1jK+ICkHtqDNe11rMhZz6biXZitZhK8Y7kleQnJfvED/u0sVhu7D1Xx89YisosbcVTJWTInisumhg+6+VQURY40lZFWeZC95Qe7U8mBLr5cETufsQGjCNEG9DuxEUWR177Zj9li4283julhLT8QOXUFvLX3U6raapkXOZ3rEq847Z+PCwex1wpp3Z4SVA5Spozqfw8op66Q57a+hlbpwuPT7ztpa/HfikF9sgRB6KFdN2LEiNOi6vx7Jkjrj5tKy96Kgz0CEsDCyWG88MledmZUMmWUP4vi5rG9dC8/Zq3mxqSjQpkSQcI9427iL2uf5+Xtb/PMrIdwVKiRCBJuS7kGZwdHfspeQ1lLJfeMuwkvpxNrWGmcHLjh4jiunhXFjoxKNqaVcWBbPTbRGXdNMImRHkSFOOHpBTKlkRZjG036Fhrb6qjJ201rXSmF5g5azHbx1ONxU2nxcfLEz8WHABcfgjR+BGkDTrsltdbZAa2zvffpWMwWK3XNemobO6hvNtDUZqCpzUhLu5H2DjM6vZm61jY6HEoxOZVic6wHEcL1JuJaRIraJlAiC0XpIMNJJSHAy5mRYQ5onR1w1yjxdFXj7abGy1VNaWsZnxz4jj11Bfg4eXJv0i1MDBzdIxDV6Rr49vBKthTvRipImRoyjkuiZp2wKKSmsYN1e0pYl1pKY6sBbzc1t102ktljg7rTfgNhsVrIqssnrTKje6UuCALR7mHcMOpKUvwT+/TY6ovdh6rYn1fH/10ePyhtug6zni8yfmJdwTY8HN14fPp9xHufmoLAMD3N+QxGC9sPVjA50b/fCUJ5SxUvbn8TN5WGp2Y8OGjZqrPJgAGpubkZgJEjR/L++++zdOlSJBIJP/zwA+PHn9nUzfmORJAwPiCJtYXbaDO299ijGR/vS6C3E5+vzmFCvC8BLr7MCJ3I6vxNzAid0KPqxcPRjQcm/oHntr7Oi9ve5JGpd6OUK5EIEpYlXE6Qxp9307/gT2v+zlUjLubiyJmDUuJVOsiYNSaIWWOCaG4zsjermvScWtKyatmUZt+zcVTJCffXEOoXRKjvCKaOGoNi3UtI2xrxu/7vWNRONOlbaOhooqGjibqORmra66hqq2VXWXqPcmtPtRsR7qFEuYcS7RFOiGvgGSkzlcuk+Hk44efR88ZpsBg5UHWYHaWZ7KvMxGyz4OPkSYrBkxEF2QREjMNz2V1IHAZuJAb75vB7+z5n05GdaByc+cPoa5gZNqnH76M3G/gxezW/5G5AAOZHzuDSmDkD+vy0683szKhkc3o5mYX1CAIkR3vxx8WJjI71PmGfT4dZz8HqLPZWZLCvMpMOsx65VE6idyxLRi4k2XfkkJtPRVHkq3V5+Hs6cfHEkBMeu7t8Hx/t+5ZmQyvzIqdzTfylJ1XVOExvjlX63plZhd5oZdaYvtNv7UYd/9j6OnKJjEen3nNeBCMAQRxgqRMTE4MgCH2uhgRBIDs7+4wOrj/Ky8uZNWsWGzZsICDg9Ht/nC5Kmyt4aM3fuS7xCi6NmdPjuT2Hq3n2g1RuWTiCRdMjaDW288CvT+OhduW5WX/uFVR2laXz6q4PCHcN4i9T/9hjxVGna+D9fV+zrzITT0d3roybz5TgsUMyfevCZhMpq20jp7iJgvJmCsqbKa1uw2S2AhAkredul3XopM6kBt6Am5cXvu5qvN3sezddBQaiKNJiaKW0pZLi5nIKGospaCimvsOuguogcyDWI5wRXtGM8Ioi1DXwtDbDgn2/5kB1FnsrDrK/6hAmqxmN0oUJgclMDkjGecsP6PP24Dp1CdrJV51wL04URTYf2cUnB77DYDGyIHoWV8TN7+WXtK/yEO+mfUGDvompweNYmnBpd2/a8TS3GdmTVc2uzCoO5NVisYr4eTgyMyWQGSmBeLkOHCCb9C2kV2ayt+IgmTU5WGwWnBWOjPZLYExAIgnesafUdV9S1crdL2/ijkXxLJjcv85cTXsd76d/xYHqLEK1gdyWsqyXUeEwQ6frXvfRFVHEX/dnnEZMAeCxt3dQ09jBO3+b3ad6yD+3v83+6sM8O/Oh8+rvMOBUOicn55QuvmLFCt566y3MZjM33XQT1157bY/ni4qKePLJJ2lpacHT05N///vfaDTnRyQfDEFaf2I8wllbsIUFUTN73HDHxHkzJs6bz1bnMHaED/6eTtyeci0v7/gfnx38gZuSr+5xrQmBo5EKUl7d/QGPrHuBhybd3t275Onozl+n3MWBqiy+ylzO23s/48uM5UwPncC0kPFD6hmSSASCfVwI9nHhIuylpFabSE2DjtKaNipq29lX6sGYis9JLv6EVw/MRicenQErZBI8XdX4ejji46bG290RH/eRJISOw2e0mg5bOzl1hWTV5XG4No/PM34E7M6zMZ4RxHpGEOkeSphrEKohzqxbDW0UNJaQU19AZnUORU2liIi4KjVMD53A+IBk4jwjEQSoXf4qurw9uM+9Bc2Y/huNu2jsaOatvZ9ysDqLGI9w/m/MtQS49HxfzVYznxz4njUFWwhw8eXvEx/uJRZqtdrIL29mf04t6Tm15JU1IYrg5aZm4ZRwJif6ERmoHTA41ukaSC0/QGr5fvLqixAR8XJ0Z17ENMYEJBLlHnbagvuhIruaxZi4vgsuLFYLv+Rt4NvDK5EKEm5KuoqLIqad9snFMCDI7HtITW0GMgrqWTonus/PyeYju0irzODGUYvPq2AEg9xDMplMbNmyBZ1OB4DVaqW0tJQHHnig33Nqamp45ZVX+OGHH1AoFCxdupRx48YREWFXwRRFkTvvvJNHH32UqVOn8vLLL/POO+/w8MMPn4Zf69xhYcwc/rn9bbaV7OmxlyQIAn9cnMjd/9zEy5+l8eLdUxgbMIr5kTNYlb+JQI0fs8In97jW2IBRPDXjAf614x0eXf8S1yRcxsVRM7vVCkb5xpHoE0tmTQ6r8zezInc9y3PWEujiy2j/BEb5xBHlHjZkcy2pRMDP0+mY/YNIOo6EIP/mBV6K3AVzH6LWIKemQUd1Ywc1jR3UNHSQfaQBnaGnUaGrswO+Ho74ekQzwWM02gjokFVTZSglr6GQ/VWH7O8PAl5OHvi7+OCldkercsFJoUYukSMCJqsJnamDJn0LNbp6yluqaNDbBVGlgoQItxCuGrmAJN+RhLoG9hA4bdz0GbrD23Gbce2ggtH+qkO8vvsjTFYztyQvYW7E1F6CqW3Gdv65/W1y6gtZEDWLZQmXIZfKMVusFFa0kFXUSGZhPVlHGugwWBAEiAzUsuyiGMbG+RDq5zJgEDJYjOwqTWdL8W6y6vIBCNL4c9XISxjrn0igxu+M2AM0tRoQBPB07W1pUNRYwlt7PqWkpYKxAaO4JWlJt4TRMKcfobOoIS2rBlGECfG9J5rtJh2fZfxItEf4eamAMag70wMPPEBZWRl1dXXExcVx8OBBxo4d2NVx586djB8/Hq1WC9iba1evXs3dd98N2Cv11Go1U6dOBeCOO+6gtbW113VaW1t7PV5dXd3ruHOV0X7xhLsG882hX5gYlNKjyshdo+L+pUn8/cM9vPV9BvcuGcX1o66ksq2Gd9O/xMnBkXEBST2uF+keyotz/8b/9n7OJwe+Z0dpGrcmL+2eCQmCQIJPLAk+sTTrW9hVto89FQf4OWcdP2WvQS6VE+kWQpRHGGGuQYS5BuHp6D7km5k6NBGfq/9G9bcvIFv9IqOWPYEstndKp73DRFWDjur6DqobdVTV66is17E/t5YNe8uOOdIZd814wrxkOLrrENStGKVNVLXUkV2b36+GnqNCjbejB7GeEYS4BhDhFkK4W0i/aar2nF007/wR56Q5aCYsGvB3FEWRH7NX81XmzwRr/Hmgn5LldpOOZza/SkVrNctiluFiDubDFTnklTZRWN7S3ejr7+nIlFH+jIryJCHCExfHE6fSDGYDq/I3sTJ3A20mHb5OXiyNv5SJgaNPi5fRiVArZYiifX+rq6rParPyU/Yavj28Eo2DMw9PvoMxw31Fp8yJ7nVdVXaph6vxdFUR0kfv0c8562g36rh12pLz0sNuUAEpOzubtWvX8tRTT3HzzTcjiiJPP/30gOfU1tbi6Xm0isfLy4uMjIzun0tLS/Hw8OAvf/kLWVlZREVF9XCl7eLjjz/m9ddfH+zvc84hESRcm3g5z2x+lRU567hyxMU9nh830pelc6L5al0uvh6OXD07ij9NvI2/b3mN/+x8j/sm3Mr4wOQe52iULjw8+Q52lO7l4wPf88j6F5kYOJrFIxf0SCNpVRrmR81gftQMdKYOsuryOVybR05dASty1nXbijvKVQRpA+wVcRp/grR+BGsDUMoGdiJVhSbge83jVH/9PBUfP4rvNY+h8Oy5yeqkVhCpVvSQx+lCb7RQWddOZb2Oyrp2Kjr/O3xAis7gDDgDQUgkAl5uDnh6yvB0dcDLVY2PqzMB7q74urvgrJYP6stnbq6l7pc3cfCLxGPurQOeY7PZeCf9CzYW7WBy0BjuGHMdCpkCURRp6zBT0xlcy2vb2Nj4Ha1CNZb8ZN7f3Qg04qCQEhGg5ZLJocSEuBEX4oary9BSkEWNJbyy631q2utI8h3J5bFzifGI+E1vNNHB9r2vtOwaZowOpNXQxqu73yezJpeJQSn8YfRSnBRDV5gepjcnutcJcgVGs5X9eXXMGRvU63OgM3WwpmAL4wOTe0iRnU8MKiB5eXkhk8kICQkhLy+P+fPno9frBzynv0KILiwWC3v27OGzzz4jPj6e//znP7zwwgu88MILPc658cYbWbSo50y2urq6137UucxI7xjGBybzQ9avTAhM7tUAec3caKobdXz6azZOajkXTwzlkal3849tb/DKzve4Kekq5kfN6HGOIAhMDh5Lsl88P+esZWXuRnaV7SPFP4EFUTOJ9Yzs8X47KtSM8U/snsmarGZKmysobi6jqKmM0uYKthandq9EBAT8XLwJdw0mwj2EGI9wgrT+vVJVysBYfK9/luovn6Xyk8fwXvxnVMEjB/W+qBxkhAdoCT/OKkIURVp1JirrdFTUtVPVoOsOXEVHWtAZepoaKuRS3DVK3DVKXJ2VaJwUuDg64NLZd6RWyVHJJKi2/BuJzYZl8v9R0WhAEIzYbCI2m4jZasNktmIwWekwmFlV9iMFusOEy1KwFCfybEYaDS0G6ps70But3a8t8ypFHlKJn2ECo5JGE+LrQpi/Bn8v5yGpXx9PZVsNT2/+D2q5iqdmPECcV9SJTzoDxIS4EeDlxLcb8ggPk/LPHW/RaGjhjjHXM7OzWXuY08OJ7nWC3IG80iZMZmufvlbbS/aiNxu47LgCqvOJQQUktVrNihUriImJ4ZtvviEsLKy7JLw/vL29SUtL6/65trYWL6+jb6KnpyfBwcHEx9vdRy+55BLuvffeXtdxcXH5XcgU3ZJ0NZnV2byR+jHPzHqox6avRCJw35IkOvQW3vo+A0EQmD8hhMem3curu97nw/3fUNZSyc3JV/eqnFPLVSyNv4yLo2axKm8Dawu2sbfiYHcp+ZTgMWj7KPlUSOVEuIf02PQURZH6jkZKmsspairjSFMpGTXZbC1JBcDZwYkE7xhG+9ldY7uqyxy8Q/C7+R9Uf/UcVV88i+fFt+OcePL5a0EQ0Dg5oHFyIDa0Z3WaKIq0683UNHRQ29RBXbOe+mY9DS0GGlsNFJY309Ju7LV3Nc0hmysc8/msfRJ7384c8PVlgbnIfY9gLo8kt9aLGucGXJ0dCPByYlSUJ16uqs6qQiUv7H0BP+dInpxx/WlduXxy4HukgpRnZv6p2134bCCVCNx66Uie+WwDj6xdidJBytMzHjzvNsvPB050r5PIHcgpse+TRgf3zjhsK9lDoMbvrFtInAqDCkhPPPEE33zzDQ8//DDfffcd1113HQ8++OCA50ycOJHXXnuNxsZGVCoVa9eu5dlnn+1+PikpicbGRnJycoiJiWHjxo2MGDE0P4/zCa1Kw20py/jPrvf55tAvvYz2ZFIJf70xhec/2sub3x1Eb7BwxYwIHpp0O18d+pmfstdQ1FTK/RNu7XPvwMXBiaXxl7Eodj47S9NYX7iNTw9+z2cZP5DgHcP4gGTGBozqU7OuC0EQ8HR0x9PRvVtrrCtIZdXmk1mTw8HqLHaUpiGXyhnjl8CMsInEe8cg13jhd+Pz1P7wMnW/vIGptgS3WTf0EBw9HQiCgLNagbNaQUSgtt/jLFYbbR0mOgwWdLWVSFd8hclzJLNTljDDBlZRBFG0q4RLJUilAgq5lIK2LL4rPMKUwInccukS1Mr+04E5dYU0G1q5Ofnq0xqMrDYrB6oOc3HkjLMajLqICXfCNeEgHWYr872Hy7nPFoLMgZziRnw9HNE49Uyn17TXkddQdN6rpw8qIIWEhPDnP/+Z1tZW/vOf/wzqwt7e3jzwwAPccMMNmM1mFi9eTEJCArfddhv33nsv8fHxvPHGGzz22GPo9Xp8fHx46aWXTuV3OeeZGJRCRnU2P2avJtI9lBT/hB7Py2VSHrlpLK98uY8PfzlMc7uRmxbEsSzhciLdQ3kz9WMeXvs8N41azMywSX3eBB1kCmaETWRG2EQqWqvZWpzKztI0/pf2Oe+mf8kIryjG+CcyNmDUgE2aXXQFqWmh7kwLHY9NtJHfcITtJXvZUZrGzrJ0/Jy9uThqJtNDJ+Cz9DEa1n1Ey55fMNYcwevyB5E5nfh1TjcyqQRXZyVaJ5Hq9V9jkEqIuOoeZC79q1k0G1p57dcVRLqHcuf4ZSds3O1yaw1zPb3aYHqzAZto66GBeDb5eP93mIR2ws3z+PqXCnydvJiZcu7qof1eEeQK8suaeqmTAByszgLoVQR1vjGogFRUVMQ999xDa2sr3333HTfddBOvv/464eHhA563cOFCFi5c2OOxd999t/vfiYmJfPfddycx7POXW5KXUNxczmu7P+S5OX/u1csil0n407WjcXFU8OPmAuqb9dy/NIkx/on8c95jvJH6Mf9L+5w9FQe4bfQyPBz7brgEux36NQmXsTT+Uo40lbG7fB+p5fv5YN/XfLjvGyLdQxkXkMSEoOR+GzePRyJIiPYIJ9ojnBtGXUlq+X5W5m7kvfQv+f7wKi6Lncvs2Tfg4BtO/a//o+L9h/C6/P5B7yudbnTZO9EXHcB97i0DBiOAbzJXYLAYuWvsDYNSkZB27qdZbdYTHDk0lHIlAgI688D7tL8F5S1VbCnezWUxc1kcdzHPvr+b/3y1H4lEwvTkc7cp/feIzizQ2GrsNvo8lqza/G7ZrvOZQUn2/v3vf+eRRx7B3d0db29vrrvuOp544okzPbbfJQqZgocm345CpuCFrW/QYuhd6i6VCNy+KJ6bFsSx7UAFj729k5Z2Ix5quy7YLclLyKrN50+rn2VN/hZsndVy/SEIAmFuQSxLuJxXL36af89/gqtGXoLJauLTg9/zxxWP8dTGf7OxaEef+nT9IZfKmRw8lufn/IUnpt+Pn4s3H+3/lvtWPkmqowzvG55DolBR9dlTNG7+AtFqOfFFTyNWfRsNa9/HwTccl9HzBjy2Sd/CpiM7mRU2Cf8TqG53Edwp8ZTXh83IqSCTSHFVaajTNZz44DPM9tI9SAQJC6Nn4yCX8tgt4xgZ5sErX6SzM6PybA/vwkGmoKre3gfal55gdl1BZ9P3+VfqfSyDCkjNzc1MmjSp++drr72W9vb2Mzao3zseajf+MvlOmg2tvLjtLYwWU69jBEHgypmR/PWGMRSWN/Pwf7dRUdeORJAwL3I6/5r3OBHuIby/7yue3vQKla2D780KcPFl8YiLeemiR/nvgme4auQlNBtaeXvvZ9z+81/5YN/X1LbXD/p6giAw0juaJ2c8wBPT78NNreWdtM/5276PKbnoGtTx02ne8T0VH/0NU23poK97qjSs+whrRxseC+464V7WluLdWEUbl0TNGvT1g7UBeDt6sK5w22kXG/ZUu3XLLJ1NipsrCHDx7dbAUypkPH7rOCKDXPnnZ+lkHTn7QfNCQJApqOwMSP6ePcvsWwytNBlaCD+Pixm6GLQFqNFo7I6+dXV12GwDz8qHGZgI9xDuHX8LhY0lvLrr/X7TPpMS/XjurknoDGYe/u9Wso/Yb1JeTh48Nu1e7hxzPaUtlTy89nlW5Kw/4WrpeHycPFk84mJemf8kz8x8iNF+Cawr3Ma9q57kjdSPhxSYwF7i/vdZD/PnyXcgl8r5795PeVnRTNmsqzC11lP+wcM0bf8O0Woe0nWHii5nN+2Zm9FOvAIH75ATHp9emUm4a/CQmk0FQeDSmLnkNxwhtXz/yQ+2D1yUzrQZdaf1mieDVJBgsfVc2aocZDxx63i8XFU8/9EeGlrOfmrx944gtSuhAPi49wxIpS32lWqgxq/XeecbgwpIy5Yt49Zbb6WhoYF//etfLFmyhGuuueZMj+13z9iAUdycfDVplRl8uO+bfmfZMcFuvHzvVJzUCh57ewd7s+yrIUEQmBE2kX/Pe4JEnzg+Pfg9z25+lSZ9y5DHIggCMZ7h3Dv+Zt5Y8HfmR85gZ1k69//6NJ8d/AFDHx5JA10rxT+Rl+Y+wr3jb8FsM/NGyRbeiA4mKyKW+i1fUv7un9AXD1x+fbKYm2uoW/UWCp/wQbnc2mw2ihpLiPWMGPJrzQybSLA2gA/3fUO76fQFEJlE1isQnA1iPSOobKshr76ox+Mujgoeu2UcBpOV1789OGxHc4YRZDKa242olbJezsAVndmRoWhWnqsMKiAtXryY++67j4ULF2KxWHj22WdZtmzZmR7bBcG8yOlcGjOXtYVb+TV/U7/H+Xo48s97phDk48xzH+5hx8Gj+XtXlYaHJ93OHWOuo6ChmL+u/QcFDcUnPSY3tZYbkxbz2sXPMDloDD/nrOOBX58hrSLjxCcfg0QiYXLwGF6Z9yT3jLsZBAmfWGt4OTaE9Qoz+V8+Tc33/8TcePr2ImxGPTXfvgiiiPeiBxAGodvXZGjBbLPgexJOplKJlDvHXE+rsY330r86mSH3icFiOCWV7tPFrLDJuKm0/HPH/yhqLOnxXKC3M9fPjyUtu4a07JqzNMILA0EipbXdhMaxt3pKi6ENAQGtw/nfrzmogNTe3s6+fft4+OGHue6669i8eTMdHR0nPnGYQbEs4TLG+CfyyYHvOVST2+9xGicHnrtzElFBrrz0WRq7D1V1PycIAjPDJvHc7D8jl8p4evN/yKw5NbV2N7WWu8bdwLOzHkKtUPHS9rd4ffdHQ14JSCQSpoSM5Z/zHuOvU+4iwC2QXx3hH2FevNuSy/pPHqZm5dtYWupOabw2k57qr5/DVFeG1+UPIHcb3IyxyyHXUdFbQHQwhLkFsXjEAnaWprGzNP2krnE89bpG3FVnv+xbJVfy+PT7kAlSHln/Eu+lf9kjjbtgUihebmp+2FxwFkf5+0eQymnRGXFx6j1JaTG04uzg2MMY8nxlUL/B3/72t25lBhcXuypxX7pzw5wcEkHC3eNuwsfJk9d2f0ibsf+CEbVSzlO3jSciQMNLn6Z17yl1EaT15++zHsbL0Z2Xtr9NcVP5KY8v2iOcF+f8jSvjLmZ76V4eXv1cd9/DUJAIEpL94nl8+v38e94TXBQ5nSKtCx/6uvBI837e+Pphdv/4AvqK/CFf29xUTeXHj2Eoz8Xr8vtRhw++H6Pri2w5hfLty2MvItw1mA/3fX3KqTuDxUhFWw1B2nNjT8DfxYd/znuU2WGT2VC4nXtWPcFL294irSIDQRCZPSaIQ4UNtLQPvkJzmKEhSGW09LdCMrahcRia8eK5yqD6kIqLi3nttdcAcHZ25pFHHuHSSy89owO70FDJldw/4Vb+tu4FPj3wA3eNu6HfY9VKOU/cOp6HX9vG8x/t4ZUHpuGhPTq716o0PDrtHv627gX+s+s9Xrro0R4q4yeDTCpjSfxCUvwTeD31I57b8hpzwqdwXeIVQ/YtAnu++6bkq7k2cRHplZlsK9xOak0OO0wluGz+JyNtDozxTyRx5FwcPQP7LWe16lpoSVtFy+6fEWQKfJY8MqRgBODcKQ460ERgIAxGC01tRub4XcLbh9/glQ3fEOcwGZ3BjN5gwWCyYrJYsVhtiCIIgr1xV6mQ4aSSo3FywNNVRaC3M/6eTuTUFWATbcR4RJ7UeM4ETgpH/pByDVfEzWdNwRY2HtlJWmUGrkoNI7SjQC5wpLKFUVFnXoH8QkSQymltMRLZhzpJq6ENjfL8T9fBIAOSxWKhvb0dJyd7/btOpxvexDwDhLgGsiB6Fity1nNJ9KweVubHo3Fy4PFbxvGnV7fw8ufpPHfnpB5inm4qLXeOuYHnt77GuoKtLIgefDnzQIS7BfPinL/x1aEVrMzdwP6qw9w6eimj/eJP6npyqZzxgcmMD0ymw6xnb/FeduVuJq29ip116cg3pBFphpFKDxJcg/Fy8gRRxKprxlh9BEN5DtisOMZOwH32zchchi6146RwxEHmQO1xfT8ms5XGVoNdJ6/FQEPrUc28xlYDTa0GGluN6I1Hiw/kYX5kWNPZc8AZiahA7SBDqZAil0uRSSVIBLCJdmkjg9FCu96M2XK0MlIuk6CNzUWqkqM0eSJ2yhudK7iptVyTcBlXjbyE/VWH2FC4nR1VW1Emwk9FzQQGXH3OKEz8rpBIadWZ+rQsaTG2ndf6dccyqIB0+eWXc9VVVzFv3jwEQWDdunVcccUVZ3psFySXx1zEmvwtrMrbyB1jrx/w2EBvZ25flMB/vtrPyu1FXDq1p3LGKN84oj3CWV+4/bQFJLA3994w6krGBYzinb2f8+K2N0nxS+CGUVeekkePWq5iWuRUpkVOxWQxcfBIKnsLdpLRWk6W2MA3jQ14VFuI7DARZRKJVnvjOm4hzgkzUHgMXjXAbLHS2GqkscVAY5s92ChsTuzOK6A4bVd3EGrr6N0fppBLcXNxwM1FSaifhtExSrTO9p+1zg60ieG8mfEGd93qybyoqYOyRe8wWKht6qC0uo2csjo2dqzDUu/Jw//dSYivC/MmhDBrTCBKxdCMFc8kMom0Wz1+Y0YOr2/+kVxpJvetOszS+Et7GEcOc+oYkWOxir007MBe1KC9kFJ2t99+OxEREezatQuZTMZDDz3EtGnTzvTYLkicHBwZF5hEavl+bktZdkIr6JkpgWw7UMFnq7OZPMoft+M8dyYEJvPR/m9p6Gg67TPXaI9wXpz7CCvzNvJ91ioe+PVpZodPYVHcvEHp5A2EQqZgTOQUxkROQRRFqtpq2F91mIyqLPbVF7DLakIqdBBFLaNqD5EkFQnWBmA0Walt6qC2SU9dpxp4V4Bp6lzZtHX07oFSREmRKVtQd5jwdlMTG+qGm4sSdxcl7hqV3d5Cq8JRKRswyIiiF1/nu5LTkM984cTfEUEQcFTJCVVpCPXTYHQpREw388ilV1Fb5sDaPaW8/UMGX63N5erZUcybEIJcdm7d6EtLrVjLRvD8spv5NvtHPjnwPVl1Bdw/4dZTThUPY0cn2gOR5riiBpPFhN5i6G5cPt8Z9JRrypQppKSkdKfqmpubu91ghzm9JHjHsrU4laq22hP2FgiCwP8tiuePL23k89U53HP1qB7PdzXLVbfXnZFUikwq47LYuUwLGce3h1eyvnAbG4t2MCtsMpfGzBlQa2+wCIKAn4sPfi4+LIiehdlqZl9ZLjuLD5LdkEt23XK+zFwOZgcsTZ5Ym7yxtbqBKEUiEXB1dsBdo8TXw5G4MHfcXZS4uijtAafTQ+nDzDqKm8t45cZTm2gJgkCoWxDlLUMvZbfarKzI3UC4WzDJAdEIgQLzJ4ZyuKiBz1fn8M5PmazccYT/WxTfpx/O2aCtw8Sa3SWMifUm1MOHhyffwaq8jXx84Dv+s+t9Hpr0f8MrpdNAh80eiFyOK2po7dz3vKCKGj7++GP+9a9/YTbbZ5Zdee3s7OwzOrgLlS6BxLqOhkE1u/l5ODF/YigrtxexaHo4AV5HP5xyiX2Gaj7DOnJd9hqXxszhh6zVrCvcytrCrUwMHM2C6FmnJGsiiiJV9ToO5NdxuKiB3JImaho7ACdgNBqtiMa3BZtzDS1e5Vi8ylFIFIz0imNKSAqj/UagHKDwQhRFKttqTnlV14WLgxMFJ6Fvt61kDzXtdVw/6fYeq7ARYe48d+dE0rJreHf5IZ58ZxeTE/34w2UjcdecXKn66UAURV7/9gB6o4Vr58UA9oDclR7++MB3bCrayazwyWdtjL8X2q327/HxK6QWY5v98QupqOHTTz/lyy+//F37FZ1LdKU5hhJErp4VxbrUEr5ck8vD16d0P95uss+gnBTq0zvIfvB28uTOsddz1YgFrMzbyMaiHWwv3Uu0RzjzI2cwNmDUoJS0bTaRnJJGdmRUsudwNdUN9r43NxclsSFuXDwxhHB/LSF+Lj3y6marmUO1ueytyGBP+X72VR9ALpWT6BNHil88CT6xPZTNbaKNX/M2UdJczi3JS07Le2Cz2U6Yaj0ek9XMN4d+Idw1uNvV91gEQWBMnA+jojz5YVMBX6/PIz2nhmvmxnDJ5LDfPI1ns4m8+1MmOzOquPmSOEL9eppAXhw1kx2laazIXT8ckE4DXQFJ69RzYtUlzqy5kFJ2np6ew8HoN6Sj03ZgKOXUWmcHFk4J47uN+SyeFdl9gyjvlBX5rWXpPRzduDFpMVeNXMCmop2szt/Mf3a9h6tKw9zwqcwOn9znrK6uSc/a1BI2ppVS26RHLpOQGOnJ5dMiSIryxNfDccA9HLlUTpLvSJJ8R/KH5KVk1xeQWr6fvRUHSas4CICrUoOPsycyiZTKtloaOppI9IllVtikfq87FOo7GnFT9nbpHYhf8zZR39HInWMHdp6Vy6QsmRPN1KQA3vkpkw9WHGb1rmJuWBDHhJG+SE7BNn2wtLQb+e/XB9iTVc3l08JZNL235JIgCEwOHsNH+7+lSd+Cax+uxcMMHp3FfqvWOh+3QjJ0rpAupJTdpEmT+OKLL5g1axYODkdno8N7SGeGms5O+MF6FHVxxfQIft1ZzAc/H+aZ2ycgCAL5DUfwdvTAycHxxBc4A6jlKhZEz2J+5Az2Vx9mdf4mvj60gu+zfmVSUAoXR80k1DWQrCMN/LSlkNRDVYhAYqQn186LZfxIH9TKk9sYl0gkjPCKYoRXFDcnXU1ZSyWHanM50lRGna4Bg8VEtHsYKQkJTAoac1rKq202G0eayxgfkDzoc5r1LfyQ9SvJfvHEe8cM6hxfD0eeuHUc6Tm1fLDiEC98vJcwPw1XzIhgUqIfMunpXzGZLTbW7y3ls1+z6TBYuH1RPAsmhfb7vjl19nfpLQZcGQ5Ip0KbRYqTSo5c1nPl3dy9QrqAUnbvvPMOJpOJZ555pvux4T2kM8eR5jIcpAq8HQc2lDseJ7WCay6K5t2fDrEjo5KJCb7k1BUw2i/hxCefYSQSCaP94hntF09FazW/5m9iS3EqW4p342DyorU4ALXJj0XTI5g/MRRvt9ObYhQEgSCt/4C9XaeDgsZidKYORngNvqn184yfMNnM3Dhq8ZBeSxAEUmK9SYr2Yuv+cr5el8vLn6fz/s+HmDUmiKlJ/oT4upxyoG1o0bMpvZxVO49Q16QnNsSNP16V2KdR3LEUNBYjk8iGPLEapjdtZila594l3436ZhzlqnNC9/B0MKiAlJExNFHNYU6N7LoCIt1DT0qbasHEUDallfHW9xk4uXXQZtIx0jv6DIzy5PFz9ibeYTqZZe6UmrMQfEtxiNqHt3MlIbFuuGt7f/HOF7aX7kUmkZHkOziH3Oy6fLYU7+by2IvwPckeLqlEYMboQKYlBZCWU8PqXcX8sLmA7zbl4uZrxC/QjMrZhEJpw1Elx1Xlgr+zDzGeEb1eUxRFmtuMFFa0kFPSyMG8OnJKmgAYGe7OXVcmMjrG64RBrrGjmS3Fuxnrnzhc+n0aaDcLuDr3TuE36Jtx+x01Ig8qIJlMJrZs2YJOZ9foslqtlJaW8sADD5zRwV2ItBhaKWkuZ2n8yUkzSaUSHlw2mgf/s4U3Vm8EF86ZgGSziew+VMXX6/MoqmjBx13NXbMWMSXZj7TK/SzPWcebez7h20O/cFnsXGaETkR+Ht3MOkx6thTvZlzAKBwHUURisVl5L/0rPNRuXBE3/5RfXyIRSIn1QuHaiCoqgwNVh9GLJgpFEJukiBY5AiDITSCxq0MorC64mMNQd4TS0SalvlmP3mjX9JMIEB6g5bp5MUwZ5d+nU2lftJt0vLT9LWyiyJKT/BwP05N2o0BoHyukpo7m01Ydei4wqID0wAMPUFZWRl1dHXFxcRw8eJCxY8ee6bFdkHQpdCd4x570NQK9nXlw2Whe3rEXpdUZpXB29o+6sFhtbDtQwXcb8ymtbsPXw5H7lyYxPTkAaedex+TgsUwKGsP+qsP8kPUr76V/xY9Za1gUN4+ZoRORDcJG4myzKn8TerOBhdGzB3X8L7nrKWup5M+T70ApO7VVoc1mY3vpXn7MWk1FWzVOCkemho4lyXcE4a4htLcKFFe1UVbbZm8cbq+lyVaBzqGMeuUBcDiIRhPAqPAERniOIMxfS7i/Zsj7d7n1hbye+jENHU08NOn2k171DdOTNpPQZ8quQd90xtPQvyWD+pZnZ2ezdu1annrqKW6++WZEUeTpp58+02O7IDlYnY2zwpEw16BTus6EeF+0eSaaa5346xvb+fP1KT36k34LWnUm1qWW8MuOI9Q36wnyceZP145myij/Hrp7XQiCQLLfSJJ8R5BZk8O3h37hvfQv+TlnLVePXMjkoDHnrMR+Y0czP+esZYx/4qB0xarbavn28ErGBowipY8y76GQXZfP++lfU9pSQbA2gHvG3cz4wKQeq0t3Rwj27buwoKa9jg1FO9hYtIMDxpWUNe9kkiYFpS6JcEXwCd9zq83Kodpcfs3fzL7KTDwd3Xl8+r3Eep474rDnOwYLvVRYOkx6mg2tv3kF7ZlkUAHJy8sLmUxGSEgIeXl5zJ8/H71+2Lb4dCOKIpk1OYzwjj7lG68oinRYW5kUM5K0jXru+/cWls6J4rKp4b0cJ08nVpvIocJ6NuwtZcfBSkwWG/HhHtx1ZQKjY7wHVZYsCAIJPrHEe8dwoPowX2X8zOupH/FzzjqWJVxGku/Ic0pwVBRF3k3/Aqto44ZRV57weJto439pnyOTSE+p98lgMfLZwR9YW7AVD7Ub90+4lfGByUNWRvB28mRZwuVcNWIBeysOsqU4lZW5G/g5Zx1quYpwtyACXPzwdHTDUa5GEAT0ZgMN+mbKWirIqS9EbzbgrHBkyciFXBw186QU4IcZGHdNz/e0vNXuh/Z7sC7vYlABSa1Ws2LFCmJiYvjmm28ICwvr9kca5vRR015Ho76ZkV6nvucjImIVbQR4arjxoRm89X0Gn6zKZuWOI1wyOYzZY4L6TAGcDGaLlcNFDaQermZXZhUNLQbUShmzxgRx8aRQQnxPriRVEASSfEeS6BPH7rJ9fJn5My9se5MRXlFcn3jFOaNwvKZgC+mVmdwwajHeg5itri/czuHaPG5Pufak8//lrVX8a8c7VLbWsCBqFkvjLz3lSiu5VM7EoBQmBqXQbtRxoDqLrLp8ihpL2HhkJ0ZLT78jmUSGn7M3k4LGkOgTS7LvyPNqz+984/iAVNopTxX4O7Au72JQAemJJ57g22+/5eGHH+b777/n+uuvHy5oOAPkdcrNxHiEn+DIEyMRJDg7OFHf0Yi7RsVjt4wjo6COr9fl8fHKLD79NZuECA+SoryIC3MjzE8zqJWTKIrUNesprmqloKyZ7OJGsosbMZqsKGQSkqK9uHVhAGNH+uBwmlZiEkHCxKAUxvqPYn3Rdr49vJK/rnuByUFjWJpwGV6OQ7ecOF1k1uTw8f5vSfYdycVRM054fE17HZ8d/IEE71hmnmQj7v6qQ7yy8z0cpAoen34vIwfZuzQUnBwcmRw8hsnBYwD7311n7qDDbABRxEGmwFnhdM6mUH+PHC8TVdJcjoPMAc+z+Pk/3QwYkK6/vmfX+A033IAoikRHR/Prr79yzTXXnPEBXkiUNJcjl8jwd/E5LdeL84xkX2UmJosJhUxBQoQnCRGelFS3sjm9nNTDVXz4y2HAXlHl4arGQ6NE4+SAykGGRBCwiSJGk5W2DhNNbQZqm/QYTfYqLEGAYB8X5owJIinGi4RwD5QOZ674QCaVMS9yOlNDxrE8ey0r8zawu3w/8yKmsShuHs4Og6sCO13k1BXw0va38XP25t7xt5wwVWaz2Xg99WMEQeCOsdedVNpxU9FO3k77jBBNAH+Zchduau1Jjn5oCIKAk8Kxu9l1mN8e9+P2kHLqC4lyD/ldidcOePe47rrrAFi3bh3t7e1ceeWVSKVSli9fjovL76Mz+FyiRlePl6PHkHXQ+mN+5HRSy/fzZebP3DDqyu4bYLCPCzcuiOPGBXE0tOjJK22iqKKVqnodDa16ymvbMZos2GwigkRAqZDipFIQ4OVMcrQ3fp6OBPu4EOrnctIqCqeCWq7imoTLmBsxla8PrWBl/kY2FO1gYcxsLo6aiVp+5gVH95Qf4LXdH+Km1vLY9PtQK078mt9lrSK3vpB7xt18Us2iq/M388G+r0n0ieVPE/9vQMHYYX5fKOVCj8leh0lPaXMFi0dcfBZHdfoZMCBddNFFALz//vt89dVX3cvz6dOns2TJ6RGiHOYobcZ2tKrTF+jjvKK4KGIaK/M20GHWc/2oK3rNcN01KibEq5gQf/5tjLqrXblr7A0sjJ7NV5k/882hX1iVt4kFUTOZFzl9UL1AQ8VsNfP1oRX8nLOOCLcQ/jzlTrSDkG3JqM7m+8OrmBoyjikhQ2+ZWFewjQ/2fU2KfyIPTLh1eK/mAkPr2PNWndtQiIhIjGdvHcHzmUHlV5qamjAajahU9lmgTqejpaXljA7sQsRitQxqpj0Ubk6+GkeFmh+yfmVXWTpTg8cxyncEYa5BaFUufS73bTYbbaZ2WgxtNBlaaNK30GxopVnfQrOxjTZjO+0mHQazEaPVhMVmVyWXSqQopArUciUuDk64KrV4OLrh6+RFgMYXfxefM9K1H6jx4+HJd1DYWMK3h1fy9aEV/JSzlpmhE5kbMfW0pEBFUWR/1WE+OfAdlW01zA6fwk2jFqMYRCFBra6BV3e9j7+LD38YPfQ0987SdN5L/5Jkv3genPCH86Ina5jTi1bd829+sCoLuURGpHvoWRrRmWFQn+xLLrmEq6++mjlz5iCKIqtXr+bqq68+02O74FDIFBjMxhMfOAQkgoSl8ZcyITCZ5Tnr2FK8m7WFWwF7lZSzgyMOUvtN1Wy1oLcY0JsNiIi9rqWSKdEonXFxcEar1KByVuIgVXTbSVhFGyaLCZ1ZT6uxjbKWKpr0Ld3XkgoSgjT+RHmEEecVyQivaFxO475PuFswf51yF8VNZfySu4G1hVv5NX8T0R7hTAkeQ4p/4pCr2vRmA6nl+/k1fxNHmsrwdfLikan3MMo3blDn60wdvLD1DWyijYdPogE2qzaP11M/ItojbDgYXcBonY7+3UVRJK0yg3jvmFNuqD7XGNSn+7777mPEiBHs3r0bgL/+9a/DFuZnAHeVK5m1OWfk2sHaAO4dfzMmi4nCphJKmiuo72ik3ajDaDUB9rJfpcwBJ4UaFwdnNEpntEoXXJUatEqXk9qzMFnN1LTXUdZSRXFzGYWNxWwu3s2agi0ICIS7BZPin8BY/1GDMiMcDCGugdw9/iauG3UFm4/sYmtxKu+lf8V76V8RqPEjxiOcUNcg/Jy9cVNpUMtVSCVSzDYLrYY2anX1lLZUkl2Xz+HafCw2C37O3twx5jqmBo8bdFAwWky8tP0tqtpreXTq3UNWLShvreKf29/G28mDP0+5c1CrsWF+n2jVRzMLZS2V1OoauDz2orM4ojPDoKdbs2fPZvbswUmiDHNyhLgGsrUklYaOpjNiNw72VVisZ+Rv1kWvkMoJ1PgRqPFjYtBowK7hVtRYQkZNNvsqD/FV5s98lfkzgS6+TA4ey5SQsadFIVqrdOHy2Iu4LGYuFa3VpFVmcKgml+2le1lXuO2E5we4+DIvYhpjA5KI9ggbUlWcwWLkn9vfIqeukHsn3Dzk0uxWYzsvbn0TmUTG36bePVzddoHjfExA2tvp63UuqPifbobX/+cQo3zi+ARILd/PxVEzz/ZwzhgyiZQojzCiPMJYPGIBjfpm9pQfYEdpGl9mLuerzJ9J8IlldvhkRvslDMphdiAEQSBA40uAxpfLYy/CJtqo1zVS1V5Lk74FvdmAVbQil8hxdnDCQ+1KgIvvSe/ntRnbeXHbW+Q3HuGusTcwKWjMkM43W828vP1tGvXNPDnjgbPaZzXMuYGz6uitOq0yg0i3kN+l6eFwQDqHCND4Eu4azJqCLcyLmH7BNB26qbTMi5zOvMjp1LTXsaV4N5uKdvGvHe/gqtIwJ3wKs8OnDKqabTBIBAleTh54OQ3Nb2owlDZX8M/OYPLAhD8wPnDwRn1g3x/4X9rn5NQXcv+EW4nyCDvtYxzm/EOttqdrG/XNFDaWnLQbwLnOhXHHO4+4LHYuVW21g0op/R7xdvLk6pELeeOSv/PnyXcSpPHnm0O/cNeKR3kj9WOKm8rO9hD7RBRF1hdu55H1L2KwmnhyxgNDDkYA3x1eydbiVK4eeQkTg1LOwEiHOR9xUtlTdukVmQCMOUVB3nOV4RXSOca4gCTivWP47OAPxHlF/q6EE4eCRCIhxT+BFP8EKttq+DVvE5uLd7OleDcjvKKYHzmDFL+Ec2IVWdlWwwfpX5NRk028dwz3jLsJ7UmkU9YX2mWRpodM4Mq431fD4zCnhrPKvkJKqzyIt6MHAS6/H/26Yzn73+ZheiAIAn8ceyMquZJ/bH2DWl3D2R7SWcfP2ZtbRy/l7YXPc13iFdS01/Pyjv9xz6on+Cl7DS2G1rMyrmZ9Cx/u+4Y/rX6W/IYj3Jq8lEen3XNSwWh32T7eTf+CJN8R/N+Ya88pNfNhzj5OjgoMZgOZNbmk+Cf+bj8fwyukcxA3tZa/Tb2bZza9wuMb/smfJ99J+DmibH02cVSouTRmDguiZrK34iBrCrbwRcZPfH1oBSl+CUwLGcconxFnvFfnSFMZawq2sK04FatoY0boRJbELzzpPa69FQd5ddf7RLqF8sDE2065iGOY3x9KBzkZNTlYbBZG+8Wf7eGcMYYD0jlKqGsgT8/8Ey9se5PHNvyTJSMXcknUrOHGSOyKEOMDkxkfmEx5axUbC3ewtSSV1PL9OMpVjPZLYLR/PPFeMTg5nHq5tCiKlLZUkF6Zya7SdEpaKpBL5UwLGc+lMXPwOQVX1J2laby2+0PCXIN4ZOrdv7tGx2FOD4JExr7KdFRy5e9OLuhYhu9u5zBBWn9enPs33kn7gi8yfmLTkZ0sjlvAxKDRp02A9XwnwMWXG5IWsyxxERnVWewsS2df5SG2lqQiIBCk8SPCPZRQ1wACXHzxcvJAq9T0uwoxWIzUdzRS3VZHaUsFRY2l5NYX0mJsAyDKPYxbkpcwOXjMKfcG/Zq3iY/2f0uMZzh/mXLXbyIKO8x5iiBhf9VhEr3jftcr6OGAdI7j7ODEnyb9H/sqD/H5wR94LfVDvsj8iRmhE5gQOJoAF98zmk82Wc006ptp7GimxdhKi6ENnakDvcWAyWrGZrMBdmsIlUyJs4MjWqULHmo3/Jy9T8sKZTDIJFKS/eJJ9ovHarNS2FhCRk0OOXUF7C5LZ0PR9h7HO8pVKOVKZBIZomjDbLPQYdJ3q1Z04ePkSYJPLCO8oknyHXFaej8sNisf7/+WNQVbSPFP5P7xtwyrMAwzIBW6WpoMLST7jTzbQzmjnNGAtGLFCt566y3MZjM33XQT1157bZ/Hbd68mWeeeYaNGzeeyeGc1yT7jWSUbxz7KjNZU7CF7w//yneHV+Hp6M4Irygi3UIJ1vrj6+yFk8JxUEHKJtpoN+po1LfQqG+ivqOROl0jdboG6nQN1OoaulcGxyOXyFDIFN3irGarGaPF1EsDT6t0IcwtmGj3MEZ4RRHuFnzGV3fSYxpvwZ5ya9A3UdlaQ62uniZ9C21GHQaLEYvNgiAIyCUy1HIVLkpn3FRafJw8T6k5tj/qOxp5ddcH5NYXckn0bK5LWHROVAoOc26TVV8IwCjfEWd5JGeWMxaQampqeOWVV/jhhx9QKBQsXbqUcePGERHRM/9ZX1/Piy++eKaG8btCIkhI8U8kxT+RJn0LeysOcKA6m/SKDDYf2dV9nIPMAa3SBSe5GgeZAqlEioCAxWbBZDWjNxtoN+loM+mwibYeryGVSPFQu+Hl6MZo/wQ81G54qF1xU2nRKl1wcXDCSeHY516WTbShM3XQpG+hVtdAVVstJS3lFDaUsK/S3j+hkitJ8h3JuIBRJPmO/E32TARB6Pw9Tl2O6GQRRZFtJXv4cN/XWEUb90+4dbjPaJhBk99QTJDG/7Q1h5+rnLGAtHPnTsaPH49WqwXs3kqrV6/m7rvv7nHcY489xt13382//vWvPq/T2tpKa2vPst7q6uozMubzCVeVhrkR05gbMQ1RFKnV1VPWUkl1ez0NHU00G1rQmTowHbNykUmkOCrUeKjd7AKqSic0Di64qjS4qexWEVoHl5OesXfZpjs7OBGk9e/xXKuxnazaPPZXHSa9MoOdpWk4yBwY5z+K6aHjifOK+l05Xx5LdVstH+7/hv1Vh4lyD+Pu8Tfh4+R5toc1zDnGQPe6Iy1lzAmbcTaG9ZtyxgJSbW0tnp5Hv3ReXl5kZGT0OOaTTz4hLi6OxMT+u44//vhjXn/99TM1zN8FgiDg7eSJ9zl8k3NxcOqujLPZbGTV5bO9dC+7ytLZWpKKl6M7s8ImMyN0wkn18ZyLtBnb+TF7DavzNyOTSLkp6aoLShJqmKEx0L3OaDER4/H7ra7r4owFJFHs7adz7L5GXl4ea9eu5aOPPhpwxXPjjTeyaNGiHo9VV1f3ux81zLmPRCJhpHc0I72juSXpavZUHGB94Xa+zFzON4dWMDYgibkRU4nzjDwvGwBbDK2sytvE6vzNGCxGpoWM55qEy36XYpjDnD5OdK+L8Qg/G8P6TTljAcnb25u0tLTun2tra/HyOtqvsXr1aurq6rjyyisxm83U1taybNkyvvjiix7XcXFxwcXl9503vZBRyBRMDh7L5OCxVLZWs65wO5uLd7GrLB0/Z29mhk1iasi4cz53LooihY0lrCvcxvaSPVhsVsYFJrE47uJe6cthhumLge51KrnqjFnSnEucsYA0ceJEXnvtNRobG1GpVKxdu5Znn322+/l7772Xe++9F4Dy8nJuuOGGXsFomAsLPxcfbkxazDXxl7KrbB/ri7bz2cEf+DLjJ0b5jmBK8FiS/eLPqebRmvY6dpXtY1vJHspaKnGQOTA9dAILombidxqs04cZBuzfjfMxWzBUzugK6YEHHuCGG27AbDazePFiEhISuO2227j33nuJj//9yl8Mc2ooZAqmhY5nWuh4ylur2HxkN9tKUkmvzEQhlZPoE8dovwRG+cYN2ZL8VDFZTOQ2FJFZk8O+ykOUtlQA9obZ20YvY1JQymkvFR9mGP9TUAM5nxDEvjZ7znHKy8uZNWsWGzZsICAg4GwPZ5jfAJvNRk59ATvL0kmryKBR3wyAv4sPsR4RRLiHEuYaRICLz2mTVzJbzVS21VDSXEFRUymFDcUUNpVisVmQChKiPcJJ8U9kbMCoYRO9Yc4IXfe6J95/jmsnLz7bwznjDCs1DHNeIJFIiPOKIs4riluTl1LaUsHB6mwO1+ayqyyd9Z1KDFJBgreTJz5Onnio3dCqNLg4OOKoUOMgdUAhlSMRBETo0ZelM3XQamynydBCQ0cjte0N1HY0dBfnyKVywrSBXBw1g7hOC3iVXHkW35FhLiR+60zA2WI4IA1z3iEIAsHa/2/vTmOjKhs2jl8DbdlKKYUuPKC8AbENYYuC7CU8ULpRdkNZLAqCgCyWSNjEQMSASFKIJGyi4UNRSkGwBAHZZGmDghrW+kLCIn0ZSi1SaEs7Mz3vBx4m1hateRznHvr/JU2Yc8+cueZOOdec6cw9rdQ6uJWGRMWowqqQ/X6+rv76s278+n/Ku29X/oMC/e8vV/WgvLjG+61jq6Mm9RurWYOmatvsf9Sn9Ut6pkkLPdvk0QoYrB8Ib2lav3a8Q5NCgs+rY6ujfwVF6F9BEer9bOUxp8up++XFKnaUqMxZLofLoYr/nPX41amrgLoBauBfT438G6phQIOn9sO58G215SMDFBKean51/dS0QZNa8x8aT6fashI8TwcBwHC14S3fEoUEADAEhQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMIJHCykrK0sJCQmKiYlRenp6lfGDBw9q6NChGjJkiKZPn6579+55Mg4AwGAeK6Tbt28rLS1NW7du1e7du7VtEpZtFQAADjxJREFU2zZduXLFPf7gwQMtWbJEGzdu1JdffqnIyEh99NFHnooDADCcn6d2nJ2drR49eig4OFiSFBsbq3379mnGjBmSJIfDoSVLlig8PFySFBkZqaysrCr7KSoqUlFRUaVtdrvdU7EBwCs41nmwkPLz8xUaGuq+HBYWprNnz7ovN23aVAMHDpQkPXz4UBs3btQrr7xSZT9btmzR2rVrPRUTAIzAsc6DhWRZVpVtNputyrb79+9r+vTpioqK0vDhw6uMT5gwocp2u92ucePG/X1hAcDLONZ5sJDCw8N1+vRp9+X8/HyFhYVVuk5+fr4mTZqkHj16aOHChdXuJygoSEFBQZ6KCQBG4FjnwTc19OrVSzk5OSosLFRpaakOHDig6Oho97jL5dLUqVMVHx+vRYsWVXv2BACoPTx6hpSamqqUlBQ5HA6NGjVKnTp10uTJkzVr1izZ7XZdvHhRLpdL+/fvlyR16NBB77//vqciAQAM5rFCkqSkpCQlJSVV2rZp0yZJUseOHZWbm+vJuwcA+BBWagAAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGMGjhZSVlaWEhATFxMQoPT29yvilS5c0cuRIxcbGatGiRXI6nZ6MAwAwmMcK6fbt20pLS9PWrVu1e/dubdu2TVeuXKl0nblz52rx4sXav3+/LMtSRkaGp+IAAAznsULKzs5Wjx49FBwcrIYNGyo2Nlb79u1zj+fl5enhw4fq0qWLJGnEiBGVxh8rKirSzZs3K/3Y7XZPxQYAr+BYJ/l5asf5+fkKDQ11Xw4LC9PZs2efOB4aGqrbt29X2c+WLVu0du1aT8UEACNwrPNgIVmWVWWbzWar8fhjEyZM0PDhwytts9vtGjdu3N+QEgDMwLHOg4UUHh6u06dPuy/n5+crLCys0nhBQYH78p07dyqNPxYUFKSgoCBPxQQAI3Cs8+DfkHr16qWcnBwVFhaqtLRUBw4cUHR0tHu8ZcuWqlevns6cOSNJ2rVrV6VxAEDt4rFCCg8PV2pqqlJSUjRs2DANHjxYnTp10uTJk3Xu3DlJ0qpVq7R8+XLFx8ertLRUKSkpnooDADCcx16yk6SkpCQlJSVV2rZp0yb3v6OiopSZmenJCAAAH8FKDQAAI1BIAAAjUEgAACN49G9InuJyuSSp1n2KGcDTIyIiQn5+PnkI9hifnI07d+5IUq36wBiAp8uhQ4fUqlUrb8cwis2qbskEwz18+FDnz59XaGio6tat+7fu+/Eno9PT0xUREfG37tvTyO4dZPcOX84u1ewMyel0ym6315qzKZ98hPXr11fXrl09eh8RERE+++yF7N5Bdu/w5ex/xs/P76l9bNXhTQ0AACNQSAAAI1BIAAAjUEi/ExQUpBkzZvjkqrtk9w6ye4cvZ0f1fPJddgCApw9nSAAAI1BIAAAjUEj/cebMGY0cOVJDhw7VhAkTlJeXJ0kqKirSlClTFB8fr3HjxrlXiTBNVlaWEhISFBMTo/T0dG/H+VNr165VYmKiEhMTtXLlSklSdna2kpKSNGjQIKWlpXk54Z/74IMPNH/+fEnSpUuXNHLkSMXGxmrRokVyOp1eTle9w4cPa8SIEYqLi9OyZcsk+c6879692/0788EHH0jynXlHDVmwLMuy+vfvb126dMmyLMvavn27NXXqVMuyLGvp0qXWhg0bLMuyrC+++MKaPXu2tyI+kd1ut/r372/dvXvXKi4utpKSkqzLly97O9YTnTx50ho9erRVVlZmlZeXWykpKVZWVpbVr18/68aNG5bD4bAmTpxoHT161NtRnyg7O9vq3r27NW/ePMuyLCsxMdH64YcfLMuyrAULFljp6eleTFe9GzduWH369LFu3bpllZeXW2PGjLGOHj3qE/NeUlJidevWzfrll18sh8NhjRo1yjp58qRPzDtqjjMkSeXl5Zo9e7aioqIkSZGRkbp165Yk6ejRo+4vGRw8eLCOHTsmh8PhtazVyc7OVo8ePRQcHKyGDRsqNjZW+/bt83asJwoNDdX8+fMVEBAgf39/tW3bVteuXVPr1q31zDPPyM/PT0lJScY+hl9//VVpaWmaOnWqJCkvL08PHz5Uly5dJEkjRowwMvvXX3+thIQERUREyN/fX2lpaWrQoIFPzLvL5VJFRYVKS0vldDrldDrl5+fnE/OOmqOQJAUEBGjo0KGSpIqKCq1du1YDBw6UJOXn5ys0NFTSo2U8AgMDVVhY6LWs1fltRkkKCwvT7du3vZjoj7Vr1859ELl27Zr27t0rm83mM4/h3XffVWpqqvvtxr+f/9DQUCOzX79+XS6XS5MmTdKQIUO0detWn/ndCQwM1OzZsxUfH6/o6Gi1bNlS/v7+PjHvqLlaV0hfffWVoqOjK/28+uqrkh6dKb399ttyOp164403nriPOnXMmjarmnfu22w2LyT5ay5fvqyJEydq3rx5evbZZ6uMm/gYtm/frhYtWqhnz57ubb4y/y6XSzk5Ofrwww+VkZGhc+fO6ebNm1WuZ2L23Nxc7dixQ0eOHNGJEydUp04dnTx5ssr1TMyOmvPJxVX/G/Hx8YqPj6+yvbi4WNOmTVNwcLDWrVsnf39/SY+eMRYUFCgiIkJOp1MPHjxQcHDwP5z6j4WHh+v06dPuy/n5+QoLC/Nioj935swZzZo1SwsXLlRiYqK+/fZbFRQUuMdNfQx79+7VnTt3NHToUN27d08lJSWy2WyVst+5c8fI7M2bN1fPnj0VEhIiSRowYID27dtXacV8U+f9xIkT6tmzp5o1aybp0ctzmzdv9ol5R82Z9VTfi+bOnavWrVtrzZo1CggIcG/v16+fdu3aJenRwahr167usjJFr169lJOTo8LCQpWWlurAgQOKjo72dqwnunXrlt58802tWrVKiYmJkqTOnTvr6tWr7peV9uzZY+Rj+PTTT7Vnzx7t3r1bs2bN0r///W8tX75c9erV05kzZyRJu3btMjJ7//79deLECRUVFcnlcun48eOKi4vziXmPiopSdna2SkpKZFmWDh8+rJdeeskn5h01V+vOkKpz8eJFHTp0SM8995yGDRsm6dGZ0aZNmzR79mzNnz9fiYmJaty4sVatWuXdsNUIDw9XamqqUlJS5HA4NGrUKHXq1MnbsZ5o8+bNKisr04oVK9zbkpOTtWLFCs2cOVNlZWXq16+f4uLivJjyr1m1apXeeecdFRcXq3379kpJSfF2pCo6d+6s119/XWPHjpXD4VDv3r01ZswYtWnTxvh579Onjy5evKgRI0bI399fHTt21JQpUxQTE2P8vKPmWDoIAGAEXrIDABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAp5g/vz52rx581+6zaFDh9yraB89elRr1qzxRDTgqcTnkIC/0YABAzRgwABJ0rlz53Tv3j0vJwJ8B4UEn3Pq1CmtXLlS4eHh+vnnn1W/fn2tWLFCYWFhWrp0qXJzc2Wz2dS3b1/NmTNHfn5+at++vSZMmKBTp06ppKREc+bM0aBBg7Rz507t379fGzZskKQqlx/LzMzUtm3b5HA4dO/ePU2ePFljx47Vzp07lZmZqdLSUgUGBmr48OHav3+/pk+frs8//1wul0uNGzfW2bNnFRcXp9GjR0uS1q1bp7t372rhwoX/+PwBpqKQ4JMuXryoBQsWqGvXrvrss880d+5ctWvXTsHBwcrKypLD4dC0adP0ySefaMqUKXK5XGrSpIl27typ3NxcjR8/Xl27dq3RfRUXF2v79u3auHGjmjZtqh9//FGvvfaaxo4dK0m6cuWKDh8+rMDAQO3cuVPSo1URkpOTdffuXaWmpurgwYNav369Ro8erYqKCm3fvl0ff/yxx+YH8EX8DQk+KSoqyl0oI0eO1KVLl7Rnzx6NHz9eNptNAQEBSk5O1rFjx9y3GT9+vPu2zz//vL777rsa3VejRo20fv16ffPNN1q9erXWr1+vkpIS93hkZKQCAwP/cB/9+/dXQUGBcnNzdfz4cbVq1Upt2rT5qw8beKpRSPBJv12hWnr0FRC/XwWroqKi0lda//Y2FRUVqlu3rmw2W6XbVffli3a7XcOGDVNeXp5efPFFvfXWW5XGGzZsWKO8ycnJyszM1I4dO5ScnPyntwFqGwoJPik3N1e5ubmSpG3btumFF15QfHy80tPTZVmWysvLlZGRoV69erlv83jV9gsXLujq1avq1q2bQkJCdPnyZZWVlcnpdOrIkSNV7uv8+fMKCQnR9OnT1bdvX/d1XC7XH2asW7dupUJ8+eWXdfDgQV24cEExMTH/7RQATx3+hgSf1Lx5c61evVp5eXkKCQnRypUr1ahRIy1btkxJSUlyOBzq27ev+2vGJen7779XRkaGKioqlJaWpiZNmqh3797q1q2b4uPjFRoaqu7du+unn36qdF+9e/dWZmam4uLi1KBBA3Xq1EkhISG6fv36H2bs2bOnZs6cKX9/fy1evFjNmjVThw4d1LZtW+O+wgQwAat9w+ecOnVK7733nvbs2VPj20RGRionJ8f95XTeUFhYqFGjRik9PV0tWrTwWg7AVLxkB/wDMjIylJCQoJSUFMoIeALOkAAARuAMCQBgBAoJAGAECgkAYAQKCQBgBAoJAGAECgkAYIT/B5VRJ992K6JTAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set_theme(style=\"ticks\")\n", + "\n", + "# Show the joint distribution using kernel density estimation\n", + "g = sns.jointplot(\n", + " data=df,\n", + " x=\"popularity\", y=\"danceability\", hue=\"artist_top_genre\",\n", + " kind=\"kde\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "En general, los tres géneros se alinean en términos de su popularidad y bailabilidad. Un diagrama de dispersión con los mismos ejes muestra un patrón similar de convergencia. Prueba un diagrama de dispersión para verificar la distribución de datos por género.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFcCAYAAACwQwV1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABcRklEQVR4nO3deVxU5f4H8M9hZlgVAQGXNHPLLMXSVNxDVEQk1xKXcCkry+v90c2iTK/XpcXqmkm5lNfMSFFEDc1dSVNzqyS8erVMxRIQQUcRmO38/qAZZzlz5szMObN+369Xr3vnzPbMDJ7veZ7n+3wfhmVZFoQQQogfCnB3AwghhBB3oSBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4La8MghqNBlevXoVGo3F3UwghhHgxrwyCJSUlSExMRElJibubQgghxIt5ZRAkhBBCxEBBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL8ld3cDCCGepeBUMb7ccRblldWIjgxBenJ7PNGlububRYgkKAgSQgwKThUja+Np1Kq1AIDrldXI2ngaACgQEp9Ew6GEEIMvd5w1BEC9WrUWX+4466YWESItCoKEEIPyymq7jhPi7SgIEkIMoiND7DpOiLejIEgIMUhPbo8ghczkWJBChvTk9m5qESHSosQY4lcOXT6OdYVbceNuBRqGRmFs3DD0adHN3c3yGPrkF8oOJf6CgiDxG4cuH8eKE9lQaVUAgPK7FVhxIhsAKBAaeaJLcwp6xG9QECQeSYoe27rCrYYAqKfSqrCucCsFQUL8FAVBidCwm+Ok6rHduFth13FiH1pkT7wRJcZIQH8SL79bARb3TuKHLh93d9O8Al+PzRkNQ6PsOk6E0y+yv15ZDRb3FtkXnCp2d9MI4UVBUAJSncT9hVQ9trFxwxAoCzQ5FigLxNi4YU69LqFF9sR70XCoBDxl2O120UFUHsiGRnkD8vCGiEwYj/od+rq0DY5oGBqFco7vytkem34olYapxUeL7Im3oiAoAalO4va4XXQQ5duXg9XUAgA0ynKUb18OAB4fCMfGDTOZEwTE67H1adHN7UHPF+fOoiNDcJ0j4NEie+LpaDhUAp4w7FZ5INsQAPVYTS0qD2Q7/dqHLh/HS/mzMCZnGl7KnyX6XGefFt3wQtfxiA6NAgMgOjQKL3Qd7/bgJQZfnTujRfbEW1FPUAKeMOymUd6w67hQUq6184eMWr65M2/uDdIie+KtKAhKxN3DbvLwhtAoyzmPO0OqtXb+spDdl+fOaJE98UY0HOqjIhPGg5EHmRxj5EGITBjv1OtKlfTjCRm1Ug/zAlSgmhBPQ0HQR9Xv0BfRKS9CHh4NgIE8PBrRKS86nRQj1Vo7d2fUumptJ82dEeJZaDjUh9Xv0Ff0TFCpMjfdnVHrqpJqNHdGiGeRNAjm5+dj2bJlUKvVmDRpEsaPNx2K++677/DBBx8AAB588EHMmzcPYWFhUjaJOEmqpB8pl0UI4cqeqBRzZ7aSivwh6YgQR0gWBEtLS7F48WLk5eUhMDAQaWlp6N69O9q0aQMAUCqVyMzMxNq1a9GmTRt89tlnWLx4Md566y2pmkREIkXSj7szat3dE3WGraQif0k6IsQRks0JHjlyBPHx8YiIiEBoaCiSkpKwc+dOw/2XLl1C06ZNDUExISEBe/futXgdpVKJq1evmvxXUlIiVbOJG/Vp0Q2fpi5Ezphl+DR1oUtP0J6wttNRtpKKPCHpiBBPJVlPsKysDDExMYbbsbGxKCwsNNx+4IEHUFJSgnPnzuGhhx7Cjh07UF5umdK/Zs0aZGVlSdVMr+Ct5c+8ibt7os6wNZTr7qQjQjyZZEGQZVmLYwzDGP5/eHg43nvvPcyePRs6nQ5PP/00FAqFxXMmTpyIESNGmBwrKSmxmF/0Vd5c/sxeUsxbmZcoi++lxc93vud8D3ev7XSUraFcbx7qJURqkgXBRo0a4eTJk4bbZWVliI2NNdzWarVo3LgxNm7cCAA4c+YMmje3TBYIDw9HeHi4VM2UjFgndL7yZ74UBKWYt9KXKNNXaKlgfsOea2fAyLSivYcnsJVU5O6kI0I8mWRBsGfPnli6dCkqKioQEhKC3bt3Y/78+Yb7GYbBlClTsHHjRsTGxuI///kPhgwZIlVzJGGtEDLXCX3ZsbVYufkX3CqOtistXqryZ7aIVeSZ72LA+D6GCYCO1Zk8V+gSBWttNS9RJm9+3hAA7X0PT2ZrKNebh3oJkZqkPcGMjAykp6dDrVZj9OjRiIuLw9SpUzFjxgx07NgR8+bNw3PPPQeVSoUePXrg2Weflao5JsTopZn3MvSFkAFgw5+WiQgaVgNVVBHY4idMHmsrsDhT/szRz8n32ewJhHy9OwAm97FmAVDP1rwVX1vNS5ExgTUOvYc3sDWU661DvYRITdJ1gqmpqUhNTTU59tlnnxn+/xNPPIEnnnhCyiZYEGvYja8QclVb7pOq8UlYaNHkyITxJnOCgLDyZ858TmeKPAvt3en/vy225q342mq+vQ+rCgYTZBkIaW6MEP/ldxVjxKoMwlcIuZmVRARWFSzoNYzp5/3szQ515nM6WuTZPPA62rvTEzJvxdfWV8Z1NuklaoofhKLlGZMhUXvmxnxlwbkv7mdIiKP8LghyBSe+49bwbSLKlYjAagOgKX7Q4rFC8JU/s3ZiduZzOrpBKlfg5aLveXG1JYAJAMvqBAcZvraalyiLYlsjvskDVrND+Xj7gnP930n53QqwqhCombZg0dThoW5CfIXfBUFGHQJWYXnSZNT2VfFPT25v0ssA7hVC7tOi7mSiD05h8nAoL7WCtqKxxWOdwXdiDuAYitQfd+az8RHSwzPueXFlLNq7ea6ttnKXKEsW/Pp6rqotKhbji6N6gWG4q66Blq37jpjAaihaFgEAtBVNeYe6qddIfJ3fBcHay22haFkERnYvQLDaAKgut7XrdWwVQjZPRJDiZMJ3YuYKgACsHjfmaJFna+vR+Hp3zg4vuqogtTctODe/OLqtqrJ4DCPTQd78PLQVTQFwDyuLlSBFiCfzuyAYxbZGxe9/pcsH1oBVBUNT/CCi2NZ2v5Y9hZClKJrMd2KOthKQogUmgTjSXmvr0az17sTKWHTFZq7etOBc6LC0caIW11C3MwlSrkI9VeIsvwuCdcNnKtSebmo4FqSQIf0pcfdzc0USBd+J2R0LpH15PZoz36ery94J7Z3qE7WsDXU7miDlKtRTJWLwuyDoiuEzVyVR8J2YxQxIvpIV6QxHv093lL2zdnFkQieDpvhBxPD8/TuaIOUq3tBTJZ7P74Ig4PjwmdBg4KokCiGVQpx9P3sCursyKF0VpPm+T2vDcu4oe8d1cSQPkCFYFowqddW972gs/3fkaIKUq3h6T5V4B78Mgo6w5wTvyiQKqSuB2BPQ7Q3+YgQvT1i6wDcsd78byt6JNQrgqqQjR3l6T5V4BwqCAtlzgrc6HKUOwZP/2OpxJxPAekCyJ6Db81ixgpcnLF3gG5ab24C/7J0zFwJ8z/WmpCNHeXpPlXgHCoIC2XOCf7Reb+y5vd2kMol+GQYLz5vA5wtI9mRF2vNYsYKXrd/FFUOlfMNykcOtl71z5kLAE3rA7ubpPVXiHSgICmTPCf6HwzKomUcslmHo12QBnjWBzxeQ7MmKtOexYg0Z8/0u9gYKRwMm37AcX9m7dfmzHL4Q8IQesCfw5J4q8Q5+EQTF6A3Yc4Ivr6wGi6YmQY+Lvgfh7p3j+QKSPfNL9jzW3nV31n5Dvt/FnkDhTM/K1rCctbJ3zlwIeNPifUI8mc8HQbH29rPnBG+tZ8D1OE/YOd5WQLJnfknoY+25qBASoLh+l6wfVnO+N1egcKZnJXaFHSEL8L1p8T4hnszngyDXyc3Rvf2EnuC5egbm9D2FygMLLFLofwwGdhV+jVtn1rlkXZ6rFtab9+aeeCAeP14rcnrJibXfJUoRihvqu5zHzTnbsxKzwo6Q793Wc2ltJyHC+HwQtHYSc2RvP6G4egZdH4rFiXNlFj2Fiztv4Kd6QdjVsB5uygMQomWhCmCgDWAAuCbhwRWVXrh6cwWXfhBUMNveAGUIAPqamQxjuE+hYzGo/I7Fc9zRs3Lme+d7rjcmzVDQJu7i80GwXmAYZwFhaBQmN8VeYMvVM5jG8bjTMQ2RV5+B+q+gVy1nLB4jRcID10nn09SFor2+OWeGG+0JUCYBQB/8WBYAEKHRIenGHXS6Y1lXs3OTDtj920HO41JyZimDted6W9KMNwZt4jt8Pgj+df6zPA7TO9y1wHZ3dD2oOYbszAkZlhN6Ne2Ok44zw432DBtyFo9mGESotci8XLdAXR4ebfG8H68Vcb63teOu8vnJddh78XvoWB0CmAAMaNUbzz0+lvc53pY0421Bm/gWnw+Cd9QcvUAAjFxj+P/uXGBbISAAAraH5ewJbO446Tgz3GjPsKG1E/1NeQDebdEQSTdrMeiJ8YKfZ3zc1UN2n59cZ9I71bE6w+3nHh9rtT3eljTjbUGb+BafD4LWNtGFKhgM4PYFtkKKHQtJlrAnsLnjpOPscKPQYUOr3yfD4KZChs2x9RFbPxh9BD5PHzjc0Xvee/F7q8fbxbS22h537CDiDG8L2sS32N5m3MvVXm4LVmc6z8bqGKiLH8Q3Hw7Df94a5NbFtmPjhiFQFmhyTMbIUD8wrC5Ih0aJnjxi7eQi5UnHVcONXN+nMRWrxbrCrYKeZxw4+C4ypMK3MbKti54Xuo5HdGiUXX9D7mLruydESj7fE6wfFogamE8Msqgfxn2idPWQl1iZmUKupvWfjetxUp90HM7wdCJr0loPm+s9+7Tohv9d/81k/u2JB+INrydm71noZwtgAjgDYQATYLM9UhdWF5Mv70NJPJ/PB0FF8/Oo1ZgeYwLqjptzV5aarROWkN2zhawbM79fL9oFJx2HMzxh/++g/z5fyp9l13sWXPrBEHR0rA4Fl35Au5jWgubZpEhKGtCqN+cQ8oBWvfHjtSKfGkL0pqBNfIvPD4dWaZSCj7tjyMsW/TY91yurTYpvF5wqNnmcrSEwzqzJvx73aepC0U5Ahy4fx0v5szAmZxpeyp+FQ5ePA7BvyEus30HM9+R7LX1gK79bARb3Apv+sxecKsaUBbvx5D+2IuvQesGf7bnHx2JQ674IYIz+mWpl2PXrQZQr74CB6TA/DSESYj+f7wlau4JnmACMyZnm8LZBgGuGTu3ZPZvvatoVyTD2ljcbHtkOLb5ZhYvKRSY1U8VqqxhZpcbDi9Ze6yWeQtja8iYm1YN08mpYrgS1/v7PPT4Wzz0+FisP7MCea3U7kzAAIFdBp2MQLAuGiq2hIUQH0AJ9AvhBEOQaJgTuJR2U363AsuNfAnDtkJ1QYu2e7YoMPHvKm+lrpmo4aqaK2VZns0qN39Paa/EFUPOLGFYVDCaoxuKxtj7bvj/2gFGYXgwxASxUKgY5E5bxPldMvhI4aIE+0fP54VDzYULzISQA0Oi0+OLHDW4ZsrPF2iJ+IYv7jYcma9S1kAfITO4Xe/jMnh5c5YFsi5qprKYWlQey7c4WtDYEaw9nMhT5sm3NL1Y0xQ/CPNdFxshsvo9Ozn3RY+24OTG+I1vDvt7EE6c+iHv4fBAE6gLhp6kLkTNmmUWlGL3bqiq7UstdtdYuPbk9ghSmwUvI4n7zE9YddRVYFnYvvbCHPUsvNMobnI/VKG/Y9TuIdWIW8p6OzHdyX6yYXogxXOOjZgI03Bc91o4bO3T5OJYd/9LkO1p2/Eu7vyNfChy0QJ/o+fxwqL34hs+MszRDHgsBOBbhizG8aD7kNCipN344HGjXNj1cJywtq0WQPAirRnzgdBu5cA09yxk5bv/WCk/+Y6tJ2+XhDaFRllu8hjy8IQDhw5hiVr/he09Ht3PSJhebzAnKm58HE2B6IabRaW22N/G+gYY5QT1WK8OA+wba/Fxf/LgBGp3pUKp+9MOe78hagCi/W2Exv+7paIE+0aMgKJA+S1N/Mqu93BaKlmdMTkpiDC9ynWwP1u7EC8+MR58WgwS/jjuudPu06Ibq4nPIvXIENwOABlog/M8YnC+pq9VpvG1Vl4TxJvsoAgAjD0JkgmVJMz6u+pyObudkvqNIQKDlfCBfe40viILlwahVy8DKVAjQhGDAfQPxfEKyzbZzFpDnOW4NX3Uj41444Pnzat5WVYdIR9IgmJ+fj2XLlkGtVmPSpEkYP970BHfmzBnMmTMHarUaTZo0wfvvv4/w8HApm4T6VnaVqB8Yxvs88wQH/a7xQS0uAIpq0a6CxerZuONK93bRQbQ9vBOZRoFNxVZgfWB9nFK1AmCU2fpWXUCvPJANjfKGSXaoPVz1OZ0JtsY7iryUf9zh5KtatgaBQYF4oetktwQZa0lmxryl8DUt0Cd6kgXB0tJSLF68GHl5eQgMDERaWhq6d++ONm3aGB6zcOFCzJgxA/369cO7776LVatWISMjQ6omAQAmdX4ay45/aTI8JA+QYVLnp3mfx5WNqa1oiuqKpvjmQ/ckl/Bxx5UuV7JLIKPF0JCfDEEQuPdd1u/Q1+6gZ85Vm8uKFWzHxg3j/PuzN/nKns9QTxHGWUi+noL/ws+ceeCwskGLpFV0xEQL9AkgYWLMkSNHEB8fj4iICISGhiIpKQk7d+40eYxOp0NVVd0/zurqagQHB0vVHIM+LbphWrd0kwSIad3Sbf5jcCZL0x5i1fV0Vf1I42SRBZEsfqoXZPGYyADTE7CY3xnf5xQzm1HM+pbm23tZ2+5LrAuiyV2ehowxTa6SMTJM7sJ/4cfFOMksWqS/VV/KOiXeR7KeYFlZGWJiYgy3Y2NjUVhYaPKYzMxMTJ48GW+//TZCQkKwYcMGi9dRKpVQKk2ru5SUlDjVNkeuANOT25vMCQLSbMEkZg9O6itd8+G6mwoZ8mLDASjx2J17PcJK3b0ehxTfmSs2lxVr+Gxd4VZoWdMkFS3LnRgjVu9TqqE/sf5WaT9B4k6SBUGW4/KWMcoFr6mpwaxZs7BmzRrExcVh9erVeP3117Fy5UqT56xZswZZWVlSNVMw8wQHqbZg8qa5Cq6TlzqAwa6G9QxBUBegwHdsd7u3rRJjeEzspBkxLirsaZOnXxCJ9bdKyxWIO0kWBBs1aoSTJ08abpeVlSE2NtZw+/z58wgKCkJcXBwAYMyYMViyZInF60ycOBEjRowwOVZSUmKRZOMKxgkOUpKqByf2vAvfBrYAY0h2+UeHvviHne0Uo5qHJ6bB29MmqS6IxPw7EONv1RN/J+I/JAuCPXv2xNKlS1FRUYGQkBDs3r0b8+fPN9zfokULlJSU4OLFi2jVqhX27duHjh07WrxOeHi45Bmjnk6Mk5YUZaKsnbyiwxqi1azlDr0mIN7wmCemwdvbJrEviDyxXJgn/k7Ef0jaE8zIyEB6ejrUajVGjx6NuLg4TJ06FTNmzEDHjh3xzjvv4P/+7//AsiwaNmyIt99+W6rmCMYXcFyVwWa8KL9B83Jom/4MDVu3H5T5SUtom6SYd5Hq5OWOAtqu4u42eeL8m7u/E+LfGJZr8s7DXb16FYmJidi3bx+aNWsm2uty7bkXKAvEC13rhl6t3SfmP9aCU8XI2vst0OQcmL8WVnOV1dLvASi0TWNypnGmtDMAcsY4XoBZigsDa/sA6rd9Io4T++9AyF6XhHgyqhhjxFZtRFdcQa86tBtM80IwMssdxY3duFth11W9VPMuUsxf0vCYdMT8OzCvomRcEYgCIfEWFASNODIMJ3YGW3VUEQJsBECg7qRlq73GvbQwRRjkATKTRdruDizmvcjOTTrgx2tFuHG3AvUCwxAYoECVuspmD1OqYerbRQedrmjjaexZrG+Ltb0uP/z6R3y54yz1ColXoCBoxNZVsisy2KzVljSmD17rCrdabdOhy8ex4tiXUP21Ju2OugoyMKgfGIY7KtuBRWpcCRq7fztouP+2qgqBskBMj+cvESZVood+v0OWY79Dbw+EQhfr28K3pyX1Com38IsgKLSnYOsq2RVDdMGyENTouE4uDBiwFu231qavT+UYAqCeFiwCWdapOUBzjvbCuIZyzQkZbrY30UNoe/n2O/TmIGjPYn1boiNDcJ0nEBrqxFIQJB7M54PgocvHsezYWpPsymXH1gLg7ilYu0qWMoPN+MRs7aK8niIU/xlpugUSX5uWHv0PZ0bNDSs7BzgSzJzphQkdRrb1OHuGsO1pL99+h1KSOtFEzIXpXFWUzPH1FgnxBD4fBFef3GQIgHoaVoPVJzdZnPhsXSVLkQTClZHKpYqjADJgPTElQqPDTbPNePXHbbVBaDBzJt2eb1se88c58jpcz7OnvVz7Hf5ULwi7YsJxS6K981yRaCJmYoxxFSVrPUKxa+sSIjafD4J31ErzjbwNx803AhXzKtlWz0p/v5BAANh/kkq+yyC3Pgt1wL0Pr9CxSL7LWLSPYQKgY02Do5Bg5sz3JWRbHiHDzfZkktrT3kiz/Q5/qheEvNhww/cpxSJzrkQTTf1iLDu7H8t+FWe7LrEzb/VVlMwDOCBNnVhCxObzQVCnCkZAEEeyCWO5EWg9K3sN1rOy16C17EFbPSuhvT89GSNDraYWY3KmIUwRBoaBzeSWAT3HQ1ewCrsignBTHoAIjQ5JN2sx4IlnLd6fZbmzUW0FM2d6FVxDucbZoUJP+LaGqY2HF0MeCwEUlj0Wrvbq5/30v++umHCTCwpA/CUy5kOHsqg/oWhZBPavbGExAq9Uw/quqq1LiNh8PgiGVHRATeyPvOvu9CczlZW5Da7jfNmD637fxTvsJiQpJIAJAMvqEKYIQ422xhCcjfeF4zsp1u/QF4MAdD2QDY2y/K8g/Szqd+iLdfmzBAVgW8HM2V6FWMPL1l7HvHdSe7ktFC3PgJEJWybyc/1grHsgGjfuBoi6d5415okm8ubnLf5uxQi8UtWmdVVtXULE5PNB8Nk+g5C1VwPWRgWWG3cr6pJgOO6r1Vn2JPmyB2/Ecm/TqD9h2jpxGld9eSl/FueGqHp8J0Vrm9YKOXELCWauLHflSMKI+fCitqIpACCoxQVAwT+8KLS3LuYSGfNEE8bKchlX7q7w+cl12Hvxe+hYHQKYAAxo1RvPPT7WZe9PiNR8PgjWnSiH4MsdLf8aEvsOrJUhsbLKu5xDpzqV5Wa/fNmDDR9oxztMyJcUEm12YhZywrP3pGjt/fW9T3uCmSt253Y0YYQrM1Fb0RTVFU3xzYf8AV5Ib13sJTLmQ4oBmhCrf6uu8PnJdSZrN3WsznCbAiHxFT4fBAHTYZpDl5tYHcJbufkXi6FTVhuAkIoOFq/JlT2oP25rmNCemp9CsijtPSkKeX/9jvGeUNDYWmUSW2vQrK1jE5KxyHdhwQCSfSdC/1ZdYe/F760epyBIfIVfBEFjfEN42j5NTIZOWVUwcO0hPDtgkMXrmGcPAgAjD0Jkwnjcb2OY0J5hxLFxw5D1wxdgrcxKOXJStPX+QhJ7XFnx39paM1tr0LjWsQnNWLS6TZQLi3i7e3cF84xhruNUQJt4O78LgoD1ITzzoVO+f9Tm2YPmtSVtDRMKHUY8e/EGdDqAMZpmZNm6eU3zoVN78L2/rULirt6PztEenTMZi55SxJvvd5K6tmkAx9IZ/XGACmgT3+CXQZCPeYZb3bDgcs4rcWuJJ2La98ceMArTXiDDAIw6xKkeCV9vjm89nTv2o3OmR+doxqK7e2G2uKK26YBWvU3mBI2PA44PUxPiSSgI8vCEXbh18mquhFXo5I6Xo7JVSs7aUKB+XSUXsTMWjXs5rcIb4rVeg7H8dJjdPTpnhm5dlfTjSE/VFbVN9fN+1rJDHR2mJsSTUBDk4Qm7cFvLEAzQOF6OylYpOSHVXMw5krFoLUBx9XJi/rsRS4a/iPodLOdn+V7f3RcxfJwZTnRVbdPnHh9rNQnGmcQjQjwFBUEeriyjZk3ifQOx59p2kwXerFaGAfcNtLsNenyl5ADToUAhZd0cmSvjC1AtROrluOsiRmjvzpkyaXzZya7izDA1IZ6CgqAZ85qaXCXFWAAv5c8SHMic6ZE8n5AMHKibG9TJ69aODbhvYN1xB1krJWe8HlI/FDgmZ5rVainOLBXgC1CvitTLsfciRoysV3t6d86USePLTnYVKpVGfAEFQSNCa2oC9gUyZ3skzyck43lwBz1HTtxcpeSsrYeUaqkAX4ASq5djT21TsYZO7UkWcaZMmq3sZFehUmnE23HX9/JT1qqEBDDcX5PxsgE+jvRIXsqfhTE50/BS/iwcunzc6uNWnMhG+V/7EOpP3NYer/dsn0Fgi+Ogqw0Gy6Luf4vj8Gwfy/m2sXHDECgLNDkmxlIBa3OIDUOjEJkwHow8yOS4I70ce9pua1mIUPYki6Qnt0eQ0XZX9pZJq9+hL+7/2wq0mpWL+/+2wqs3+yXEXagnaMTayYZldWAAzmFBIfODUvVIHO1hClkPaTyv1aB5HOo1P48qjRINQ6PQuF4MPjm2Bkt/WO1wPcnOTTpwpt93btJBtF6OPcscxJr/tSdZxNPKpBHijygIGrEVrBzdNsiehdf2BDZnTtx8w1jm81o3i6MRVNII05/qhF/Z70WpJ/njtSLe42KtwRS6zEHIhYqQoWd7k0U8qUwaIf7IL4dDrQ038g2fOTMs2KdFN7zQdTyiQ6PAoG4+jatOKGBfYOMbUnQG37wWXz1Je4iZeSsGW7+v0KHnJ7o0x/SnOiEmMgQMgJjIELzWS41WRxbg4sLRuLL0BdwusuwBA/b9nRBCxOF3PUEhw418V/tSL7wOU4Rxbp0UprDc2Nfe0l7GPRm+zXn55rWCBdSTFMKZDXmlYOu3t6eHbty7q1vz+AU0Aiu7uGKBPiHkHr8LgrZOZuYnIVfspmAcnDgX8IF7D0QhhbD199ULDMNddQ20bF0Pj29zXr55rbs26kkKJWVtTkeXOvAFIEd7rq6o7GIve6rUUIFs4uv8LgjaczJzRcURy81buVfl3VFxb6xr7cRt/rq3rTxfz/hCgG9e61f2Bm89SaHsrc3JF9hMk3jKoW36s0lJODF+M0d7rq6q7CKUPesYqUA28Qd+FwTtOZm5ouKIkM1brbVPjNc1pr8Q4FsE/QT460nawzyAF5wqxpS1uw3BTPFXRmqYIgw12hpodHUnY+PApi1vYnKiro4qQoBZSTjj38zRXqKjPVdPqOxizJ51jFQgm/gDvwuC9pzMXJG8IeS1HBkmdKSNxoGWL3uUr56ko4x7HbKoP1ETW4RaTd2wK9ccqT6w1ZzuZ3Ki5ltr50zP3tFdJTyhsosxe9Yxilkg29V7UBIilN8FQXtOZq5I3rD2HgF/lWzjm+dzpO3WuHs+zrjXwVU5hcuNuxWoNjshs6pgMBwl4RqGRjnds3ckacVTKrvo2bOOUawC2Z5eyJz4N0mDYH5+PpYtWwa1Wo1JkyZh/Ph7V79nz55FZmam4XZFRQUaNGiAbdu2SdkkAJYnM2vJL67YWNXae3Clxtuz43u9wDDIGJkhEQYA5AEyBMuCUaWuQmBAIFQ6NViwCGAC8MQD8Q6dkMSajzPuXVjrzZlrGBqFGrMTtab4QShaFpkEUf1vlvXDas7XkXpZhiv2nRTKnnWMYhXI9oTdWAixRrIgWFpaisWLFyMvLw+BgYFIS0tD9+7d0aZNGwBA+/btsXVrXUmq6upqPPXUU5g7d65UzbHK2SUTzhLyHvrgxtWzs7bj+21VFeQBMtSTh6FKbboMQv+Z2b+ScHSsDgWXfkC7mNZ2fTbzxAlb83F8jHsd1npzxvSBTdu0CbL2fgs0OQcmsAasKhhsRTPUb3LTUOFG/7mtfYcME4AxOdP8YpjOnqLXYhXI9rQ1oYQYkywIHjlyBPHx8YiIiAAAJCUlYefOnZg+fbrFY1esWIGuXbvi8ccfl6o5Vtm7ZEIKfO9hmT1qydqO7xqdFsHBQfjPyA9Mjot1ZW6eOGFv7Utjxr0OTfGDULT6BUzAvUxZBgzqBYZarGs8hOMIbFlk6H0yQTWQx/6JyY8/Y9I7zvphNWfvGLi3xtH8Akis5QGfn1wnSiKRWOwpei1GgWxPWxNKiDHJgmBZWRliYmIMt2NjY1FYWGjxOKVSiQ0bNiA/P5/zdZRKJZRKpcmxkpIS0drp6VepQrI8G4ZG2fU5xPrM5gkSfPNxthj3OqyvlrS0rnAr5wbBQnrHDMeaR/3FgHnWqaPLAz4/uU6UMnPezBXTCoQ4SrIgyLKW690YjhXf+fn5GDBgABo25E4ZX7NmDbKyskRvn56nX6XaCkzyABlq1LVW9/yrF2hZacbez2wt2cU8cYJvPk4Ifa/jpfxZKL9r+olYsIa1jsY9Nr6Abqt3PCZnmtXnirU8gK/MnL8EQVdMKxDiKMmCYKNGjXDy5EnD7bKyMsTGxlo8bu/evXjhhResvs7EiRMxYsQIk2MlJSUmSTbO8PSrVL4sz/p/VYHhWkKgx3EtYtdn5pszNU+c0FY0hVwegPptLlrMx9lDSI9U32PjC+i2erx8z70q0vIAa+Xk7C0z5+2oHBzxVJIFwZ49e2Lp0qWoqKhASEgIdu/ejfnz55s8hmVZnDlzBo899pjV1wkPD0d4eLhUzfT4q9Thke2w5s4RqAPu9aIVOhYTm/fElsr/2awEU8URIO35zHzzh/pNdU3mzQYMkWwOydyNuxWYHj/ZakC3lgij7/HyXQysPn2Td3mA0PnCAJHKzAH+s9bOXz4n8QyS9gQzMjKQnp4OtVqN0aNHIy4uDlOnTsWMGTPQsWNHVFRUQKFQICgoyPYLSsiTr1If+ukwRupuY1fDergpD0CERoekG3fwUPlh3Ii1fSK1NsQp9DPb6k1JsbM4V3Di0jA0ymZA5+vx8j1Xm1xsdXkAZzmxvd/iy0uWPeABrXqLUmbOX9ba+cvnJJ6DYbkm7zzc1atXkZiYiH379qFZs2bubo6BFFewFxeOBnc9UQYfxLXj7TFZW29oj7r5OY5lBeoQVP/UT7KiyuY7XhiXTQP4P5vQ3TJssdbbm7Jgt0kvURb1J+dcqL59YmSHWvsdokOjDD1yX+Avn5N4Dr+rGCMVqa5g+WpP8vWYokUKwlzvwWplUF1uCxbSFVXmKmhgfIHRuUkHw9IHrjWQ+vbeUVchUBaI6fGT7f4urPVyzecFuSrcGC85EaPMnKdnMYvFXz4n8RwUBJ1gfGLmS7d3JhDx1Z683w2L+aEOgepyW2grmhoe44qiysZBke+CwxXVScyzYp1ZHymUp2cxi8VfPifxHH65s7wYDl0+jmXH1hp2GreW7WdP/U4u9Tv0RXTKi5CHRwNgIA+PRnTKiy4tw9WnRTd8mroQOWOWofqnfiYBUM+RosqO4gt0ruhJpCe3R5BCZrjNqoI5HyfmiXtsHP/O977CXz4n8RzUE3TQ6pObLBZpc3EkC9CctdqT7kgiEKuosi182Zd8gc4VPQnzcmIhFR1MaqYC4p+4PT2L2Rah8+Xe/jmJ9xEUBEeMGIFx48Zh6NChCAkR92TnDmKUw7qjVgoqayLlejB3FCZOT26PJTk/QaO9l6wjlzF2F1XmY2szV75A56p1n+bzha5I6/fkLGY+9l6seevnJN5JUBCcPXs2cnJysGTJEgwaNAhjx45F27ZtpW6bJMTaLVunCkaAjSLPQF2CilTclURgnk/saH6xtcBhq1pL5yYdOJcddG7SwW09CTpxW0e7SBBPJigIdu7cGZ07d4ZSqUR+fj6mTZuG2NhYPPPMM0hOTpa6jU4zPtlCHQJN/baAk4kdIRUdUBP7o0lWIMsCxpXh5AEySecyrPWIGqi1uLL0BUn2rftyx1lodaZRT6tj7f7++HoHtjZz/fFaEef9+uPeHJDEKtrtSSjjk3gywXOCSqUSW7duRW5uLurXr4/k5GRs3boVBw4cwKJFi6Rso1MsdmFQVEPRsu5kaZzgYW9ix7N9BiFrrwasfgsfjRyMTGMyRCrFCkzjk2RY2wZApNmJhGXxUFUtNMo7KN++HABEDYTlldWQRf1Ztyzgr62LNMUPopwjWYYPX+8gOrIf77yjr55UxRql8DSU8Uk8maCsjX/84x9ITExEYWEh5s6di82bN+OZZ55BVlYWCgoKJG6ic7hOtoxMB3nz8ybH7E3seKJLc0wfMAThV5JRe2IwZFDAPAdGy2oNuxmIQX+SvF5ZDRaAOvSa5YMYBufC6irwsJpaVB7IFu39AaBB83IoWhYhIKgGDAMEBNVA0bIIDZpbrmXkwxfIzLMvAdPNXK2dPPXHC04VY8qC3XjyH1sxZcFuFJwqtqtt7sI3DOzNKOOTeDJBPcG2bdti1qxZiIoyPfnI5XKsW7dOkoaJxdrJ1nhtlyO7ZQOmyRFP5+zkfIyzSySMCd2/76b8XjTWKG+I9v4AoGh+HrUa02QfRqaDwuyiwha+3oGtzVz5kl+8uTdlaxjYW1HGJ/FkgoLgyZMn8eKLL5oce/rpp7Fhwwa0bt1akoaJxdrJNkATAgYQbd6FUYeAVVierBi1eNm0QvfvizAKUvJw7i2qHFWlUdp13BpbWZx8NUn5TqpT1u4WZQskW/jm7hyd13PV8hN38OZ5WuLbeIPgjBkz8Pvvv6O4uBipqamG4xqNBgEB3rHO3lom4cCHuuK5CeINx9RebmtRP5LVBkB1WbwsWiH79yl0LJJu3AFwr7KMmMSa33G2d2DtpOqK3hRfbxOAwz1R862pAMdHKQghwvAGwddeew1//PEHZs+ejdmzZxuOy2Qyr1kiYSuTUCxRbGtU/A6LhJEoVryesq39+6IUoRhUfged7qggD4+WJDtUzHV49vQOhK7Dc0VvytbcnaM9UVvDwIQQ8fEGwWbNmqFZs2bYtWsX567w3sDanJyYc3WAPkCpUHv6XpZkkEKG9KfEu4rnPEmKsH+fPdwxv2PPYmtX9KYc6W0K7YlKsTUVIcQ63iA4duxYrFu3Dp07dzYJgizLgmEY/Pjjj5I30FlibmrKx1VX8Z5wknT1/I49i61d8TvY6m16+rwebVpLyD28QXDJkiUAgG3btrmkMVKwVrZMinJmnhCgfJG96wKl/h1s9TY9eV6PNq0lxBRvEPz55595n3zfffeJ2RZJRFtJ5JCynBkRl6ctthbS2/TUeT0qYUaIKd4guHbtWqv3MQyDQYMGid4gsbmqoDKRjif+hny9TU8eEfDVajuEOMrhIOgthCRy0ByJZ6PF1uLxtF41Ie7GGwQXLlyIWbNmWSyU11u+fLkkjRIbXyIHzZF4B1u/IQVIYTyxV02IO/EGwR49egAAkpKSXNIYd6A5Eu9GFzH2oV41IaZ4g2D//v0B1G2qW1lZiZ9//hlyuRydOnVCeHi4SxooNZojEZere2V0EWM/KmFGyD2CFssVFBRg8ODBWLVqFZYtW4YhQ4bgxIkTUrfNJWztSECE0/fKyu9WgMW9Xtmhy8c5Hy/Gbg90EUN8SWFhIebMmQMA+OWXXzBjxgzBjxfjcf5IUBBcsmQJvvrqK3z11Vf4+uuvsWLFCrzzzjtSt80laJsX8fD1ysyZbwulr7FpbyCkixjiS3799VeUlpYCADp27IiPP/5Y8OPFeJw/ErSLBMMwJrVCH3nkEbBS7BjrBlLNkfhjsoY9vTK++pv2LC+gRA/iDXQ6Hd5++22cPn0aVVVVYFkWCxYswMaNG3Hz5k0UFxejU6dOOHLkCG7fvo033ngDw4cPx/z587Ft2zacPHkS7777LnS6uiIfL7zwAuLi4vDxxx8bHm+tY3Lt2jWLx+Xk5GDt2rUICAhAdHQ0Zs+ejZYtWyIzMxMMw+C3335DRUUFevXqhbfeegsKhcLqZ9NqtVi0aBH279+P+vXrIy4uDr/99hvWrl2L27dvY+HChTh//jzUajV69OiB1157DXK5HB07dsTzzz+Pw4cPo6ysDOnp6Zg0aRLy8vKQm5uL6upq1KtXD2vXrsXGjRuxbt066HQ6REREYPbs2aLtYMQbBG/evAkA6NChA1atWoW0tDQEBAQgLy8P8fHxojTAE4g9R+ILyRqOBHF70u/F2u2BEj2INzh9+jTKysqQk5ODgIAArFy5Ep999hkiIiJQU1OD7du3AwDy8vKwa9cuvPPOOzh27Jjh+UuXLsXkyZORkpKCc+fOIScnB0lJSZgxY4bh8dY0adLE5HFHjx7F559/jpycHERFRSEvLw8vv/yyoQ3nzp3DV199BYVCgSlTpiAnJwcTJkyw+vobN27EmTNnsG3bNjAMg2nTphnue/vtt/HII4/g3XffhVarRWZmJlavXo2pU6dCpVIhMjIS69evR1FREcaOHYuxY8cCqOu57t+/H/Xq1cPx48exZcsWZGdnIyQkBN9//z3+9re/4dtvv3XqN9HjDYLx8fFgGMbQ63v//fcN9zEMg9dff12URvgab0/WsCeIGwfLeoFhkDEyaNl7PTxrvTIxd3ugRA/i6R577DE0aNAA69evR3FxMY4dO4awsDBERESgS5cuNp+fnJyMefPmYf/+/ejZsydeeeUVh9ty6NAhDBkyxLBJ+siRI7Fw4UJcvXoVQF0iZFhYGABg2LBh2LdvH28Q/O677zBs2DAEBQUBAMaMGWNYY15QUIBffvkFubm5AICaGtP9TxMTEwHUjS6qVCrcvXsXANCuXTvUq1fP8BqXL19GWlqa4Xm3bt3CzZs3ERER4fD3oMcbBM+dO+f0G/gjb0/WEBrEzYPlbVUV5AEy1JOHoUpdxdsro73ziD8pKCjAwoULMXnyZCQmJqJVq1b45ptvAAChoaE2n5+WloaEhAQcPnwYhw4dQlZWluH59uKaymJZFhqNBkDdVnnGx23tHSuXm4YR48frdDosWbLEMHSpVCpNNmPQB079MX3bjL8TnU6HYcOGYebMmYbbZWVlaNCggY1PKoygxBiVSoU9e/Zgy5Yt2LJlCzZt2oTFixeL0gBXECML0R7enqwhNIhzBUuNTotgRRByxizDp6kLrfbQnujSHNOf6oSYyBAwAGIiQzD9qU4eW26MEGccPnwYCQkJGDduHDp27Ii9e/dCq9VaPE4mkxmCkbG0tDScPXsWI0eOxPz586FUKnHr1i2rj+d73d69e+Pbb79FRUXdv+dNmzYhIiICLVq0AADs2LEDKpUKtbW12Lx5MxISEnhfu1+/fvjmm2+gUqmg0WiwefNmw329e/fGF198AZZloVKpMG3aNHz11Vc222usV69e2L59O8rKygAA69atw8SJE+16DT6CEmMyMjJQXFyM69ev4+GHH8bp06fRrZt3DD/x7QIu1QnX25M1hM7tOdvj9eQam4SIKS0tDa+++ipSU1Mhk8nw+OOPY/fu3WjWrJnJ4x577DF89NFHePnll5Genm44/uqrr+Ltt9/GRx99hICAAEyfPh3NmjWDTqczPP6TTz6x+v7Gr/vJJ59g0qRJmDhxInQ6HaKiorBixQpDDy44OBjjxo2DUqlEUlISRo0axfvZRo4cid9//x3Dhw9HaGgomjVrhpCQummNWbNmYeHChUhNTYVarUbPnj3x3HPP2fXd9enTB1OnTsWUKVPAMAzq1auHrKws0fa4ZVgBaZ79+/fH7t27MXfuXEyePBksy+Jf//qX22qLXr16FYmJidi3b5/FH5G5KQt2c849xUSG4D9vSVcA3JuzQ82HOYG6IP5C1/Emn+Gl/FlWd+j4NHWhS9pKCBFPZmYm2rZti2effVbwc77//nvcuHEDw4bVXeQvWLAAQUFBhuFLTyeoJxgbGwu5XI4HHngA58+fR3JyMqqrbWfx5efnY9myZVCr1Zg0aRLGjx9vcv/Fixfxz3/+E7du3UJMTAz+/e9/izbOqydWFqK9vDlZQ2jGpbf3eAnxFRcvXkRGRgbnfS1btsRHH33k1OuPGzcOVVVVnPd9+umnWLVqFVatWgWtVouHHnoIc+fOder9XElQEAwNDUV+fj4eeughbNiwAa1atTIsn7CmtLQUixcvRl5eHgIDA5GWlobu3bujTZs2AOomQKdNm4ZZs2ahb9+++OCDD7By5UrRrx7EzEL0Np+fXIe9F7+HjtUhgAnAgFa98dzjYwU9V0gQp+UJhHiGVq1aYetWy6IU9nr33Xc5j3/99de8z1u9erXT7+0ugoLgnDlzsGHDBsycORO5ubmYMGGCzRTdI0eOID4+3pDCmpSUhJ07d2L69OkAgDNnziA0NBR9+/YFALz44otQKpUWr6NUKi2Ol5SUCGk2gL+yEPd+CzQ5ByawBqwqGLj2ENIHDBH8Gt7o85PrsPu3g4bbOlZnuC00EArhzT1eQggRFAQfeOABvPbaa1AqlYK71WVlZYiJiTHcjo2NRWFhoeH2lStXEB0djddffx3//e9/8eCDD2L27NkWr7NmzRpkZWUJek8usuhrCGxZBA1blxnFBNVA3rIIsujHAPhuUsbei99bPS5mECSEEG8maInExYsXkZKSgpSUFJSWliI5ORm//fYb73O48m2Ms3k0Gg2OHz+OCRMmID8/H82bN+fsik+cOBH79u0z+S87O1tIswHUDdXpA6DhvVkNZz1LX6JjdXYdJ4QQfyQoCC5YsABvvvkmGjZsiEaNGmHChAk2K5I3atQI5eXlhttlZWWIjY013I6JiUGLFi3QsWNHAMDQoUNNeop64eHhaNasmcl/jRs3FvThAO9fuO6oAIb7p7V2nBBC/JGgM+LNmzfRq1cvw+3x48fjzp07vM/p2bMnjh49ioqKClRXV2P37t2G+T+gbt1KRUWFoSrN/v378cgjjzjyGXh5+8J1Rw1o1duu44QQ4o8Edwtqa2sNw5nXr183VDO3plGjRsjIyEB6ejqGDx+OoUOHIi4uDlOnTsUvv/yC4OBgfPLJJ3jrrbeQkpKCY8eOITMz07lPw8Fft0p67vGxGNS6r6HnF8AEYFDrvg7NB94uOogrS1/AxYWjcWXpC7hddND2kwghbvfxxx8jMTHRq7M3pSZosXxubi62bNmCK1euYNiwYdi+fTuee+45jBs3zhVttGDPYnnAuxeuu9vtooMo374crKbWcIyRByE65UXU79DX4vH0XbsHfe/eoeBUMb7ccRblldWIjgxBenJ7SasmJSYm4vPPP0fLli0lew9vJygIAsCJEydQUFAAnU6H3r17mwyPupq9QZA47srSF6BRllscl4dH4/6/rTA5JrTSDBEXfe/ewbyEI1BXNF6MmrkajQZz587FhQsXUF5ejpYtW6Jp06bIy8vD/fffjw8//BCTJ0/GI488gvLycuTm5mLVqlX45ptvIJPJ0KtXL8ycORPXrl3DtGnT0Lx5c1y+fBlNmzbF+++/j4iICBw4cAAfffQRdDodmjdvjnnz5iE6Ohr9+/dH//79cfLkSQB12yc9/PDDTn0eVxI0HHrnzh38+OOPmDlzJiZMmICCggLDlhfEt2mUNwQft2dneWe5uii6J3Pl904cx7eRtLN++uknKBQK5OTkYM+ePaitrUWvXr0QGxuLlStXon379qisrMTzzz+PrVu34siRI9i/fz/y8vKwefNmXL58GevXrwcAnD9/HhMnTsT27dvRunVrZGVl4caNG5gzZw4++eQT5Ofno3Pnzpg3b57h/SMiIrBlyxbMmDHD67bYExQE33jjDUOFmPDwcDAMw7mmj/geeXhDwcddlYmrv6K+XlkNFveKovtrIPTXDGhvI2UJx65du2LcuHHIzs7GwoULcenSJc6OSqdOnQAAP/zwA1JSUhAcHAy5XI5Ro0bh6NGjAOrWhXfv3h0AMHz4cPzwww8oLCxEXFycYeRtzJgx+OGHHwyv+/TTTwOoqzNdWlpq2KHCGwgKgpcuXTJE9/r16+PNN9/EhQsXJG0Y8QyRCePByINMjjHyIEQmjLd4rKsycaW8ovZG/poB7W2slWoUo4Tjvn378OqrryI4OBgjR45E165dOddqBwcHAwBnYqN+qyXj/QFZloVMJrN4vPH+g+bP0el0JnsSejpBQVCj0ZgsiaiqquL8gonvqd+hL6JTXoQ8PBoAA3l4tNWkmLFxwyBjTP/4ZYxM9ExcdxVF91TuzICmzGHh0pPbI0hh+u9DrI2kjx49iuTkZIwaNQrR0dE4ceIE536FevHx8di+fTtqamqg0WiwadMmxMfHAwB+//13nD1bd0G5adMm9O3bF506dcLp06cNu8/n5OQYeosAsH37dgDAnj170Lp1a9E3QpCSoLJpw4cPx1NPPYXBgweDYRjs2bMHI0eOlLptxEPU79CXM+hxYRgArNltkflzUXQu7ipkbp45rFGWo3z7cgAQ/PfiT/TJL1Jkhz711FN49dVXsXPnTgQGBuLRRx81BCwuCQkJOHv2LEaNGgWNRoM+ffpgwoQJKCkpQYMGDfDxxx/jypUraNeuHRYsWIDQ0FDMmzcP06dPh1qtRtOmTbFw4b3t0n788Ufk5uYiJCTEahFuTyU4O3Tfvn04evQo5HI5evTogX79+kndNqsoO9QzuWp/QSmz7Ihw9mQOE+9w9epVpKenY//+/YKf079/f3z55Zdeey4W1BME6nb3ffzxxw3DoDdv3jTsEEGk5S1rwFyVoGHritpbvi9vZ0/mMCGeSlAQXLNmDT788EOo1WoAdZOiDMMYxo2JdMzXgJXfrcCKE3UFxD3txN4wNIqzJyhFgsYTXZpz9vq86fvydvLwhlZ6gtwZxcTzNWvWzK5eIAC7H+9pBCXGrF27FuvWrcPZs2dx9uxZnDt3jgKgi3jTGjBPKFHnTd+Xt7Mnc5gQTyWoJxgTEyNJcWtimzetAfOEnea96fvydvU79MXZ329AfnoLGuAObqEeNA8PR0tKiiFeRFAQ7NWrF77++mskJiYiKOjelR/NCUrPlUOMYnD3TvPe9n15s4JTxcg6rECt+l6meNBhGaY3LaYEJeI1BA2Hrly5EvPmzUO/fv0QHx+P+Ph49OjRQ+q2EXjGEKM3oe/LdahoAfEFgnqCXJvdEtfwhCFGb2Lv90WZpI6jogWer7S0FG+99RY+++wzp19ryZIl6NChAxITE0VomecQtE5QpVLhu+++Q1VVFQBAq9XiypUryMjIkLyBXGidIBED7b7gnCkLdnMWLYiJDMF/3hrkhhYRYj9BPcGMjAwUFxfj+vXrePjhh3H69Gl060YnCeLd+DJJKQjalp7cnrNogRhlwHzV7aKDqDyQDY3yBuThDRGZMF6U6jrHjh3DihUrEBwcjN9++w3t2rXDBx98gLKyMsPi95KSErz66qu4desWHnzwQZw4cQIHDx5EVVUV5s2bhwsXLkCr1WLq1KkYOnSoYYeJmzdvIiEhAWVlZejWrRtGjhyJxYsX4+jRo7h16xYiIyOxdOlSxMTEoHfv3khKSsKpU6cgk8nw0UcfoXlz0/lha1sv/f7775gzZw5u3ryJ0NBQzJo1C3FxccjMzATDMDh//jzu3LmDadOmYfjw4U5/Z3qC5gTPnj2LvLw8JCYm4s0338T69etx+/Zt0RpBiDtQJqlznujSHNOf6oSYyBAwqOsBUtUe6/Rl5urWVrKGMnNi1Vv96aefMGfOHOzYsQN//vknvv/+e5P7Fy5ciOTkZOTn52Pw4MEoLS0FACxbtgyPPPII8vLykJ2djeXLl6O4uG5HltLSUmzevBmvvPKK4XUuX76MixcvYv369di1axfuv/9+5OfnAwCuX7+OHj16YMuWLejatSuys7M528q19dLMmTPxzDPPID8/H2+88Qb+/ve/Q6VSGdqxfv16rFmzBosWLcL169dF+c4AgT3B2NhYyOVyPPDAAzh//jySk5NRXU3j/v7KV+bR3JVJ6ivfH2C9aAGxVHkg21BnVY/V1KLyQLYovcG2bduicePGAIDWrVvj1q1bJvcfPnwY77zzDgBg4MCBCA8PBwAcOXIENTU12LRpEwDg7t27hl2CHn74YZMdIgCgRYsWeP3117Fx40b8/vvv+Pnnn3H//fcb7u/Tp4+hPfrenjnjrZcyMzNRUlKCK1euYNCgumH0Rx99FA0aNMDFixcBACNHjoRCoUDjxo3RuXNnnDp1CoMHD3bwmzIlKAiGhoYiPz8fDz30EDZs2IBWrVoZ9hck/sWXKrKMjRvGOScoZSapL31/xD5Sl5kzXr7GMIzFTj8ymYxz9x+dTof333/fsBa8vLwcDRo0QH5+vmHrJWNFRUX4xz/+gUmTJiEpKQkBAQEmr6tvB1cb9My3XtJqtRaPZVnWsBOG8dZMOp3OIjA7Q9Bw6Jw5c3Du3Dn07t0bMpkMzzzzDJ599lnRGkG8hy9VZOnTohte6Doe0aFRYFBX6FvqpBhf+v6IfezZoFoKPXv2NAxbfvfdd1AqlQDqtlVat24dAKCsrAxPPvkkrl27ZvV1Tpw4gW7dumHs2LFo06YNDh8+zLttExfzrZfuu+8+NG/eHLt37wYA/PzzzygvL0fbtm0BADt27ADLsvjjjz9QWFiILl262PfhefCG02eeeQaM0V446enpYFkW7dq1w44dOzB27FjRGuINXDWMVXCqWJLtVsTga/Norl7c72vfHxEuMmG8ydZTgGvLzL355pt4/fXXsWHDBjz00EOG4dDp06dj7ty5GDp0KLRaLWbOnIn777/f6lDmkCFDMH36dKSmpkKhUKBdu3a82zZx4dp66f3338fcuXOxdOlSKBQKLF26FIGBdWt+a2pqMGrUKKhUKsybNw+RkZFOfBOmeJdI7Nq1C0BdtL5z5w5GjRoFmUyGrVu3Ijw8HPPnzxetIfZwxxIJV6XTe/o2Qa7aLslX0ffn36TKDhXiyy+/RM+ePdGmTRucOXMGs2fPRl5enkve25i9Wy9lZmYaslKlwNsTTEpKAgCsWrUK69evR0BA3ejpE088gTFjxkjSIE/lqnR6viocnhAE3TGP5kvo+/Nv9mxQLbYWLVrglVdeQUBAAIKCgtzWifE0gmYXKysrUVtbi5CQup27q6qqLDKPfJ2rhrE8vQoHVbBxji9/f548jE+Afv36uXUzdD17t16Seqd6QUFw6NChePrppzFw4ECwLIudO3caUlz9havS6aMjQzircERHhoj6Ps5wd5Fsb+eL35/5MP71ympkbTwNABQIiUcTlB3697//HX//+9+hVCpx+/ZtZGZm4rnnnpO6bR7FVYWZ05PbI0ghMznmL1U4Dl0+jpfyZ2FMzjS8lD8Lhy4fd3eTiEBUTJt4K8GLLQYMGIABAwZI2RaP5qphLP1Vs78NK9H6Oe8m5jC+LxUTIJ5PvBWHfsBVw1j+WIWD6nh6N7GG8eliiLiaoOFQQqTmTOIRDaO6n1jD+FRMgLgaBUHiEawlGNlKPNL3HMrvVoDFvZ4DBULXEquYNhUTEN/HH3+MxMRErF692unXWrp0KZYuXSpCq/hdvXoV/fv3t+s5/fv3x9WrV5GXl4fMzEzBz5N0ODQ/Px/Lli2DWq3GpEmTMH68aWWErKwsbNq0yVC54Omnn7Z4DPEPjq6fo2FUzyHGML67ipq7ijvmO7du3YrPP/8cLVu2lPR9vJVkQbC0tBSLFy9GXl4eAgMDkZaWhu7du6NNmzaGxxQVFeHf//43HnvsMamaQbyEo4lH1HPwLb5cTEDK+U6NRoO5c+fiwoULKC8vR8uWLZGVlYW3334bpaWlePnll/Hhhx9i8uTJeOSRR1BeXo7c3FysWrUK33zzDWQyGXr16oWZM2eaFKsGgM8//xwbNmxAZGQkwsPDERcXBwD46quvsHXrVlRXV4NhGHz00Udo3bo1+vfvjyeffBLff/89qqur8d5776FDhw44e/Ys5syZg5qaGjRo0AAffPABGjdujJUrV2LHjh3QarXo3bs3Zs6cCaCuVFpGRgYuXLiA8PBwfPLJJ4iMjLT6vo6SbDj0yJEjiI+PR0REBEJDQ5GUlISdO3eaPKaoqAifffYZUlNTMW/ePNTW1lq8jlKpxNWrV03+KykpkarZxI36tOiGT1MXImfMMnyaulDQicHRYVTimdxR1NxVpJzv/Omnn6BQKJCTk4M9e/agtrYW3333HebNm4fY2FisXLkS7du3R2VlJZ5//nls3boVR44cwf79+w2b516+fBnr1683ed1ffvkFmzZtwubNm7F69WrDuffOnTvYu3cv1q5di23btmHAgAH4+uuvDc+LiIhAbm4u0tLSsGLFCgDAq6++ipdeegn5+fkYMmQI1qxZg4MHD6KoqAi5ubnYsmULSktL8c033wAAKioqMHnyZGzbtg3R0dH49ttvbb6vIyTrCZaVlSEmJsZwOzY2FoWFhYbbVVVVaN++PV5//XXcd999yMzMxKeffoqMjAyT11mzZg2ysrKkaibxcr7cc/BXvlhMAJB21KJr166IiIhAdnY2Ll68iEuXLuHu3bucj+3UqRMA4IcffkBKSophu6RRo0Zhy5YtJlNSx48fR79+/RAWFgYAGDx4MHQ6HerVq4cPP/wQ27dvx6VLl3Do0CG0b38vCcp4T8Hdu3ejoqIC169fR0JCAgBg3LhxAID33nsPhYWFhrqgNTU1aNq0Kbp06YLY2FhDr7NNmzaorKy0+b6OkCwIctXlNt6RIiwsDJ999pnh9pQpU/Dmm29aBMGJEydixIgRJsdKSkrcMndIZaE8jy+XISO+Rcr5zn379uHjjz9Geno6Ro4cicrKSqt7+emDnk6ns7hPo9GY3GYYxuRxcrkcKpUK165dwzPPPIMJEyagb9++iI6Oxtmz9wojGO8pCAAKhcLkdWtra1FWVgatVouJEydi8uTJAOpG/mQyGSorK032DNTvTWjrfR0h2XBoo0aNUF5ebrhdVlaG2NhYw+0///wTubm5htssy3JulBgeHo5mzZqZ/KffPdmV9GWhrldWg8W9slAFp4pd3hZiypFhVEJcTcqqU0ePHkVycjJGjRqF6OhonDhxwuYef/Hx8di+fTtqamqg0WiwadMmxMfHmzymR48eKCgowO3bt1FbW4s9e/YAqBsmbdGiBSZNmoROnTrh4MGDvO9Xv359NG7cGIcPHwZQl6yzZMkSxMfHY+vWraiqqoJGo8HLL79s2L2Ii73vK4RkPcGePXti6dKlqKioQEhICHbv3m1StTw4OBjvv/8+unfvjmbNmiE7OxsDBw6UqjlO85TdHaiaBiHeScpRi6eeegqvvvoqdu7cicDAQDz66KM29/hLSEjA2bNnMWrUKGg0GvTp0wcTJkwweUz79u0xceJEjB49GuHh4WjatCkAoFevXli3bh2GDBmCwMBAxMXF4cKFC7zvp98vcNGiRYiMjMSiRYsQGxuLc+fO4emnn4ZWq0WfPn0wYsQI/PHHH5yv4cj72sK7n6Cz8vPzsWLFCqjVaowePRpTp07F1KlTMWPGDHTs2BG7du3C0qVLoVar0blzZ/zrX/8ybKLIxx37CT75j63g+qIYAN986Jr5J1ftaUgIIf5C0nWCqampSE1NNTlmPA+YlJRk2LPQ03nC7g6+vibOnRuOAtTLJsQfUe1QG/QnxjttKxCsCoH6SltoK+qGBFy9u4Mvr4m7XXQQ5duXg9XULZPRKMtRvn05ALgkEFLNSkL8E5VN42FckgsAmMBqBLY6A1nUnw6XhXKGL6+JqzyQbQiAeqymFpUHsl3y/lSzkhD/RD1BHlwnRgRo0TTuKj5Nneby9vjymjiN8oZdx42JMYzpy71sQoh1FAR5eNqJ0ZVr4lw9PyYPbwiNspzzOB+xhjF9vWYlIYQbBUEennhidEU1DXfMj0UmjDeZEwQARh6EyAT+oghiJQv5ci+bEGIdzQnykHJxqydzx/xY/Q59EZ3yIuTh0QAYyMOjEZ3yos2kGLF6675cs5IQYh31BHn4a0kudw0D1+/Q1+5MUDF7675as5IQYh0FQRv88cToicPA1tAwJiHEGTQcSix40zAwDWMSQpxBPUFiwduGgf2xt04IEYdfBEEqh2U/CiyEEH/g80GQymERQgixxufnBKkcFiGEEGt8Pgh6WtUXQgghnsPng6AvF50mhBDiHJ8Pgt6U7k8IIcS1fD4xxtvS/QkhhLiOzwdBgNL9CSGEcPOLIEiINbSGlBD/RkGQ+C1aQ0oI8fnEGEKsoTWkhBAKgsRv0RpSQggNhxK3cfd8nDdtGUUIkQb1BIlb6Ofjyu9WgMW9+bhDl4+7rA20hpQQQkGQuIUnzMfRXoSEEBoOJW7hKfNxtIaUEP9GPUHiFlTTlRDiCSgIEreg+ThCiCeg4VDiFlTTlRDiCSgIEreh+ThCiLtJOhyan5+PIUOGYODAgcjOzrb6uIKCAvTv31/KphBCCCEWJOsJlpaWYvHixcjLy0NgYCDS0tLQvXt3tGnTxuRx5eXleO+996RqBiGEEGKVZD3BI0eOID4+HhEREQgNDUVSUhJ27txp8bi33noL06dPl6oZhBBCiFWS9QTLysoQExNjuB0bG4vCwkKTx3z55Zd4+OGH0alTJ6uvo1QqoVQqTY6VlJSI21hCCCF+SbIgyLKsxTGGYQz///z589i9eze++OIL3qC2Zs0aZGVlSdJGQggh/k2yINioUSOcPHnScLusrAyxsbGG2zt37sT169cxatQoqNVqlJWVYdy4cfj6669NXmfixIkYMWKEybGSkhKMHz9eqqYTQgjxEwzL1WUTQWlpKcaOHYvc3FyEhIQgLS0N8+fPR1xcnMVjr169ivT0dOzfv1/Qa1+9ehWJiYnYt28fmjVrJnbTCSGE+AnJEmMaNWqEjIwMpKenY/jw4Rg6dCji4uIwdepU/PLLL1K9LSGEECKYZD1BKVFPkBBCiBiodighhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiAhhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C1Jg2B+fj6GDBmCgQMHIjs72+L+PXv2IDU1FSkpKcjMzIRKpZKyOYQQQogJyYJgaWkpFi9ejK+//hpbt25FTk4Ofv31V8P9d+/exbx587B69Wps374dtbW12Lx5s1TNIYQQQixIFgSPHDmC+Ph4REREIDQ0FElJSdi5c6fh/tDQUOzfvx/R0dG4e/cubty4gfDwcKmaQwghhFiQS/XCZWVliImJMdyOjY1FYWGhyWMUCgW+++47vPbaa4iNjUXv3r0tXkepVEKpVJocKykpkabRhBBC/IpkQZBlWYtjDMNYHOvXrx+OHTuGf//735g7dy4+/PBDk/vXrFmDrKwsqZpJCCHEj0kWBBs1aoSTJ08abpeVlSE2NtZw++bNmygqKjL0/lJTU5GRkWHxOhMnTsSIESNMjpWUlGD8+PEStZwQQoi/kGxOsGfPnjh69CgqKipQXV2N3bt3o2/fvob7WZbFzJkz8eeffwIAduzYgc6dO1u8Tnh4OJo1a2byX+PGjaVqNiGEED8iaU8wIyMD6enpUKvVGD16NOLi4jB16lTMmDEDHTt2xPz58/HCCy+AYRi0adMG//rXv6RqDiGEEGKBYbkm7zzc1atXkZiYiH379qFZs2bubg4hhBAvRRVjCCGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8lmS1Qwkxd7voICoPZEOjvAF5eENEJoxH/Q59bT+REEIkQkGQuMTtooMo374crKYWAKBRlqN8+3IAoEBICHEbGg4lLlF5INsQAPVYTS0qD2S7qUWEEEJBkLiIRnnDruOEEOIKFASJS8jDG9p1nBBCXIGCIHGJyITxYORBJscYeRAiE8a7qUWEEEKJMcRF9MkvlB1KCPEkFASJy9Tv0JeCHiHEo9BwKCGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/JZXrhPUarUAgJKSEje3hBDirxo3bgy53CtPocSIV/6C169fBwCMH08ltwgh7rFv3z40a9bM3c0gTmJYlmXd3Qh71dTUoKioCDExMZDJZFYfV1JSgvHjxyM7OxuNGzd2YQupPY7ytDZRe2zztDa5qj3UE/QNXvkLBgcH4/HHHxf8+MaNG3vUFRu1xzZPaxO1xzZPa5OntYd4JkqMIYQQ4rcoCBJCCPFbFAQJIYT4LZ8OguHh4Zg+fTrCw8Pd3RQA1B4hPK1N1B7bPK1NntYe4tm8MjuUEEIIEYNP9wQJIYQQPhQECSGE+C2fDYL5+fkYMmQIBg4ciOzsbLe1486dOxg6dCiuXr0KADhy5AhSU1MxaNAgLF682KVtycrKQkpKClJSUrBo0SK3twcAlixZgiFDhiAlJQWrV6/2iDYBwHvvvYfMzEwAwNmzZzFq1CgkJSVh1qxZ0Gg0Lm1Leno6UlJSMGzYMAwbNgynT59269/3/v37MXLkSAwePBgLFiwA4L7fbOPGjYbvZdiwYejSpQvmzZvnEX9DxEuwPqikpIRNSEhgKysr2aqqKjY1NZW9cOGCy9vx888/s0OHDmUfeeQRtri4mK2urmb79evHXrlyhVWr1eyUKVPYgoICl7Tl8OHD7JgxY9ja2lpWpVKx6enpbH5+vtvaw7Ise+zYMTYtLY1Vq9VsdXU1m5CQwJ49e9atbWJZlj1y5AjbvXt39vXXX2dZlmVTUlLYn376iWVZln3jjTfY7Oxsl7VFp9OxvXr1YtVqteGYO/++r1y5wvbu3Zu9du0aq1Kp2LFjx7IFBQVu/81YlmXPnz/PDhw4kP3zzz89oj3EO/hkT/DIkSOIj49HREQEQkNDkZSUhJ07d7q8HRs2bMA///lPxMbGAgAKCwvRokULNG/eHHK5HKmpqS5rV0xMDDIzMxEYGAiFQoHWrVvj0qVLbmsPAHTr1g1ffvkl5HI5bty4Aa1WC6VS6dY23bx5E4sXL8aLL74IAPjjjz9QU1ODRx99FAAwcuRIl7bn4sWLYBgGU6dOxZNPPomvvvrKrX/fe/bswZAhQ9C4cWMoFAosXrwYISEhbv3N9ObOnYuMjAwUFxd7RHuId/DJIFhWVoaYmBjD7djYWJSWlrq8HQsXLjQp7+bOdrVt29ZwIr906RK+/fZbMAzj9u9JoVDg448/RkpKCnr06OH2327OnDnIyMgwpNebtycmJsal7VEqlejRowc++eQTfPHFF1i/fj3+/PNPt31Hly9fhlarxbPPPosnn3wSX3/9tdt/M6DuwrempgbJycke0R7iPXwyCLIcqz4YhnFDS0x5QrsuXLiAKVOm4PXXX8f999/v9vYAwIwZM3D06FFcu3YNly5dclubNm7ciCZNmqBHjx6GY+7+zR577DEsWrQIoaGhiIqKwujRo/Hxxx+7rU1arRZHjx7F+++/jw0bNuCXX34xzHe7oz1669evx+TJkwG4/zcj3sUrC2jb0qhRI5w8edJwu6yszDAk6U6NGjVCeXm54bar23Xq1CnMmDEDb775JlJSUnD8+HG3tue3336DSqVC+/btERISgkGDBmHnzp0mO4O4sk3ffvstrl+/jmHDhuHWrVu4e/cuGIYx+Y6uX7/u0u/o5MmTUKvVhsDMsizuu+8+t/1u0dHR6NGjB6KiogAAiYmJbv3NAEClUuHEiRN49913Abj/3xnxLj7ZE+zZsyeOHj2KiooKVFdXY/fu3ejbt6+7m4VOnTrh999/Nwwpbdu2zWXtunbtGl5++WV88MEHSElJcXt7AODq1at46623oFKpoFKpsG/fPqSlpbmtTatXr8a2bduwdetWzJgxA/3798c777yDoKAgnDp1CgCwZcsWl35Ht2/fxqJFi1BbW4s7d+5g8+bNeP/99932952QkIDvv/8eSqUSWq0Whw4dwuDBg936d/S///0PDzzwAEJDQwG4/++aeBef7QlmZGQgPT0darUao0ePRlxcnLubhaCgILz77rv429/+htraWvTr1w+DBw92yXuvWrUKtbW1hqtlAEhLS3NbewCgX79+OH36NIYPHw6ZTIZBgwYhJSUFUVFRbmsTlw8++ABvvfUWqqqq8PDDDyM9Pd1l752QkGD4jnQ6HcaNG4cuXbq47e+7U6dOeO655zBu3Dio1Wr06tULY8eORatWrdz2mxUXF5vsG+jOf2fE+1DZNEIIIX7LJ4dDCSGEECEoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiDxW5mZmVi1apVdz9m3b59h54SCggIsWbJEiqYRQlzEJ9cJEiKVxMREJCYmAgB++eUX3Lp1y80tIoQ4g4Ig8TjHjh3DokWL0KhRIxQXFyM4OBjvvvsuYmNj8a9//Qvnzp0DwzDo06cPXnnlFcjlcjz88MOYOHEijh07hrt37+KVV17BoEGDkJeXh127dmHFihUAYHFbLzc3Fzk5OVCr1bh16xamTp2KcePGIS8vD7m5uaiurka9evUwYsQI7Nq1Cy+99BLWr18PrVaL+vXro7CwEIMHD8aYMWMAAMuWLUNlZSXefPNNl39/hBDhKAgSj/Tf//4Xb7zxBh5//HGsW7cOM2fORNu2bREREYH8/Hyo1WpMmzYN//nPf/D8889Dq9WiQYMGyMvLw7lz5zBhwgSTHTz4VFVVYePGjVi5ciUiIyPx888/Y/LkyRg3bhwA4Ndff8X+/ftRr1495OXlAairnJKWlobKykpkZGRg7969WL58OcaMGQOdToeNGzfi888/l+z7IYSIg+YEiUd66KGHDEFs1KhROHv2LLZt24YJEyaAYRgEBgYiLS0NBw8eNDxnwoQJhuc++OCDOHHihKD3CgsLw/Lly/Hdd9/ho48+wvLly3H37l3D/e3atUO9evV4XyMhIQHl5eU4d+4cDh06hGbNmqFVq1b2fmxCiItRECQeyXhXAqBu9wTzCn86nQ4ajYbzOTqdDjKZDAzDmDxPrVZbvFdJSQmGDx+OP/74A126dMH//d//mdyvL8xsq71paWnIzc3Fpk2bkJaWZvM5hBD3oyBIPNK5c+dw7tw5AEBOTg46d+6M5ORkZGdng2VZqFQqbNiwAT179jQ8Z8uWLQCAM2fO4Pfff0fXrl0RFRWFCxcuoLa2FhqNBgcOHLB4r6KiIkRFReGll15Cnz59DI/RarW8bZTJZCZB+KmnnsLevXtx5swZDBw40NmvgBDiAjQnSDxSdHQ0PvroI/zxxx+IiorCokWLEBYWhgULFiA1NRVqtRp9+vTBiy++aHjOjz/+iA0bNkCn02Hx4sVo0KABevXqha5duyI5ORkxMTHo3r07/ve//5m8V69evZCbm4vBgwcjJCQEcXFxiIqKwuXLl3nb2KNHD/ztb3+DQqHA7Nmz0bBhQ3To0AGtW7eGQqGQ5HshhIiLdpEgHufYsWOYP38+tm3bJvg57dq1w9GjRw2bvbpDRUUFRo8ejezsbDRp0sRt7SCECEfDoYSIYMOGDRgyZAjS09MpABLiRagnSAghxG9RT5AQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/Nb/AzTNtGFHfP2fAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.FacetGrid(df, hue=\"artist_top_genre\", size=5) \\\n", + " .map(plt.scatter, \"popularity\", \"danceability\") \\\n", + " .add_legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.9" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "c61deff2839902ac8cb4ed411eb10fee", + "translation_date": "2025-09-04T01:59:15+00:00", + "source_file": "5-Clustering/1-Visualize/solution/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/es/5-Clustering/2-K-Means/README.md b/translations/es/5-Clustering/2-K-Means/README.md new file mode 100644 index 000000000..b98d94761 --- /dev/null +++ b/translations/es/5-Clustering/2-K-Means/README.md @@ -0,0 +1,261 @@ + +# Agrupamiento K-Means + +## [Cuestionario previo a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/) + +En esta lección, aprenderás cómo crear agrupaciones utilizando Scikit-learn y el conjunto de datos de música nigeriana que importaste anteriormente. Cubriremos los conceptos básicos de K-Means para el agrupamiento. Ten en cuenta que, como aprendiste en la lección anterior, hay muchas formas de trabajar con agrupaciones y el método que utilices depende de tus datos. Probaremos K-Means ya que es la técnica de agrupamiento más común. ¡Comencemos! + +Términos que aprenderás: + +- Puntuación de silueta +- Método del codo +- Inercia +- Varianza + +## Introducción + +[El agrupamiento K-Means](https://wikipedia.org/wiki/K-means_clustering) es un método derivado del ámbito del procesamiento de señales. Se utiliza para dividir y particionar grupos de datos en 'k' agrupaciones utilizando una serie de observaciones. Cada observación trabaja para agrupar un punto de datos dado lo más cerca posible de su 'media' más cercana, o el punto central de una agrupación. + +Las agrupaciones pueden visualizarse como [diagramas de Voronoi](https://wikipedia.org/wiki/Voronoi_diagram), que incluyen un punto (o 'semilla') y su región correspondiente. + +![diagrama de voronoi](../../../../translated_images/voronoi.1dc1613fb0439b9564615eca8df47a4bcd1ce06217e7e72325d2406ef2180795.es.png) + +> Infografía por [Jen Looper](https://twitter.com/jenlooper) + +El proceso de agrupamiento K-Means [se ejecuta en tres pasos](https://scikit-learn.org/stable/modules/clustering.html#k-means): + +1. El algoritmo selecciona un número k de puntos centrales mediante muestreo del conjunto de datos. Después de esto, realiza un bucle: + 1. Asigna cada muestra al centroide más cercano. + 2. Crea nuevos centroides tomando el valor promedio de todas las muestras asignadas a los centroides anteriores. + 3. Luego, calcula la diferencia entre los nuevos y los antiguos centroides y repite hasta que los centroides se estabilicen. + +Una desventaja de usar K-Means es que necesitas establecer 'k', es decir, el número de centroides. Afortunadamente, el 'método del codo' ayuda a estimar un buen valor inicial para 'k'. Lo probarás en un momento. + +## Prerrequisito + +Trabajarás en el archivo [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/notebook.ipynb) de esta lección, que incluye la importación de datos y la limpieza preliminar que realizaste en la última lección. + +## Ejercicio - preparación + +Comienza revisando nuevamente los datos de las canciones. + +1. Crea un diagrama de caja, llamando a `boxplot()` para cada columna: + + ```python + plt.figure(figsize=(20,20), dpi=200) + + plt.subplot(4,3,1) + sns.boxplot(x = 'popularity', data = df) + + plt.subplot(4,3,2) + sns.boxplot(x = 'acousticness', data = df) + + plt.subplot(4,3,3) + sns.boxplot(x = 'energy', data = df) + + plt.subplot(4,3,4) + sns.boxplot(x = 'instrumentalness', data = df) + + plt.subplot(4,3,5) + sns.boxplot(x = 'liveness', data = df) + + plt.subplot(4,3,6) + sns.boxplot(x = 'loudness', data = df) + + plt.subplot(4,3,7) + sns.boxplot(x = 'speechiness', data = df) + + plt.subplot(4,3,8) + sns.boxplot(x = 'tempo', data = df) + + plt.subplot(4,3,9) + sns.boxplot(x = 'time_signature', data = df) + + plt.subplot(4,3,10) + sns.boxplot(x = 'danceability', data = df) + + plt.subplot(4,3,11) + sns.boxplot(x = 'length', data = df) + + plt.subplot(4,3,12) + sns.boxplot(x = 'release_date', data = df) + ``` + + Estos datos son un poco ruidosos: al observar cada columna como un diagrama de caja, puedes ver valores atípicos. + + ![valores atípicos](../../../../translated_images/boxplots.8228c29dabd0f29227dd38624231a175f411f1d8d4d7c012cb770e00e4fdf8b6.es.png) + +Podrías revisar el conjunto de datos y eliminar estos valores atípicos, pero eso haría que los datos sean bastante mínimos. + +1. Por ahora, elige qué columnas usarás para tu ejercicio de agrupamiento. Escoge aquellas con rangos similares y codifica la columna `artist_top_genre` como datos numéricos: + + ```python + from sklearn.preprocessing import LabelEncoder + le = LabelEncoder() + + X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')] + + y = df['artist_top_genre'] + + X['artist_top_genre'] = le.fit_transform(X['artist_top_genre']) + + y = le.transform(y) + ``` + +1. Ahora necesitas elegir cuántas agrupaciones apuntar. Sabes que hay 3 géneros de canciones que extrajimos del conjunto de datos, así que probemos con 3: + + ```python + from sklearn.cluster import KMeans + + nclusters = 3 + seed = 0 + + km = KMeans(n_clusters=nclusters, random_state=seed) + km.fit(X) + + # Predict the cluster for each data point + + y_cluster_kmeans = km.predict(X) + y_cluster_kmeans + ``` + +Ves un arreglo impreso con agrupaciones predichas (0, 1 o 2) para cada fila del dataframe. + +1. Usa este arreglo para calcular una 'puntuación de silueta': + + ```python + from sklearn import metrics + score = metrics.silhouette_score(X, y_cluster_kmeans) + score + ``` + +## Puntuación de silueta + +Busca una puntuación de silueta cercana a 1. Esta puntuación varía de -1 a 1, y si la puntuación es 1, la agrupación es densa y bien separada de otras agrupaciones. Un valor cercano a 0 representa agrupaciones superpuestas con muestras muy cerca del límite de decisión de las agrupaciones vecinas. [(Fuente)](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam) + +Nuestra puntuación es **.53**, justo en el medio. Esto indica que nuestros datos no están particularmente bien adaptados a este tipo de agrupamiento, pero continuemos. + +### Ejercicio - construir un modelo + +1. Importa `KMeans` y comienza el proceso de agrupamiento. + + ```python + from sklearn.cluster import KMeans + wcss = [] + + for i in range(1, 11): + kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) + kmeans.fit(X) + wcss.append(kmeans.inertia_) + + ``` + + Hay algunas partes aquí que merecen explicación. + + > 🎓 range: Estas son las iteraciones del proceso de agrupamiento. + + > 🎓 random_state: "Determina la generación de números aleatorios para la inicialización de centroides." [Fuente](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans) + + > 🎓 WCSS: "suma de cuadrados dentro de la agrupación" mide la distancia promedio al cuadrado de todos los puntos dentro de una agrupación al centroide de la agrupación. [Fuente](https://medium.com/@ODSC/unsupervised-learning-evaluating-clusters-bd47eed175ce). + + > 🎓 Inercia: Los algoritmos K-Means intentan elegir centroides para minimizar la 'inercia', "una medida de cuán coherentes son internamente las agrupaciones." [Fuente](https://scikit-learn.org/stable/modules/clustering.html). El valor se agrega a la variable wcss en cada iteración. + + > 🎓 k-means++: En [Scikit-learn](https://scikit-learn.org/stable/modules/clustering.html#k-means) puedes usar la optimización 'k-means++', que "inicializa los centroides para que estén (generalmente) distantes entre sí, lo que lleva a resultados probablemente mejores que la inicialización aleatoria." + +### Método del codo + +Anteriormente, dedujiste que, dado que has apuntado a 3 géneros de canciones, deberías elegir 3 agrupaciones. ¿Pero es ese el caso? + +1. Usa el 'método del codo' para asegurarte. + + ```python + plt.figure(figsize=(10,5)) + sns.lineplot(x=range(1, 11), y=wcss, marker='o', color='red') + plt.title('Elbow') + plt.xlabel('Number of clusters') + plt.ylabel('WCSS') + plt.show() + ``` + + Usa la variable `wcss` que construiste en el paso anterior para crear un gráfico que muestre dónde está el 'doblez' en el codo, lo que indica el número óptimo de agrupaciones. ¡Quizás sí sean 3! + + ![método del codo](../../../../translated_images/elbow.72676169eed744ff03677e71334a16c6b8f751e9e716e3d7f40dd7cdef674cca.es.png) + +## Ejercicio - mostrar las agrupaciones + +1. Prueba el proceso nuevamente, esta vez configurando tres agrupaciones, y muestra las agrupaciones como un gráfico de dispersión: + + ```python + from sklearn.cluster import KMeans + kmeans = KMeans(n_clusters = 3) + kmeans.fit(X) + labels = kmeans.predict(X) + plt.scatter(df['popularity'],df['danceability'],c = labels) + plt.xlabel('popularity') + plt.ylabel('danceability') + plt.show() + ``` + +1. Verifica la precisión del modelo: + + ```python + labels = kmeans.labels_ + + correct_labels = sum(y == labels) + + print("Result: %d out of %d samples were correctly labeled." % (correct_labels, y.size)) + + print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size))) + ``` + + La precisión de este modelo no es muy buena, y la forma de las agrupaciones te da una pista de por qué. + + ![agrupaciones](../../../../translated_images/clusters.b635354640d8e4fd4a49ef545495518e7be76172c97c13bd748f5b79f171f69a.es.png) + + Estos datos están demasiado desequilibrados, tienen poca correlación y hay demasiada variación entre los valores de las columnas para agrupar bien. De hecho, las agrupaciones que se forman probablemente están fuertemente influenciadas o sesgadas por las tres categorías de géneros que definimos anteriormente. ¡Eso fue un proceso de aprendizaje! + + En la documentación de Scikit-learn, puedes ver que un modelo como este, con agrupaciones no muy bien delimitadas, tiene un problema de 'varianza': + + ![modelos problemáticos](../../../../translated_images/problems.f7fb539ccd80608e1f35c319cf5e3ad1809faa3c08537aead8018c6b5ba2e33a.es.png) + > Infografía de Scikit-learn + +## Varianza + +La varianza se define como "el promedio de las diferencias al cuadrado respecto a la media" [(Fuente)](https://www.mathsisfun.com/data/standard-deviation.html). En el contexto de este problema de agrupamiento, se refiere a datos cuyos números tienden a divergir demasiado de la media. + +✅ Este es un gran momento para pensar en todas las formas en que podrías corregir este problema. ¿Modificar un poco más los datos? ¿Usar diferentes columnas? ¿Probar un algoritmo diferente? Pista: Intenta [escalar tus datos](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/) para normalizarlos y prueba otras columnas. + +> Prueba este '[calculador de varianza](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)' para entender mejor el concepto. + +--- + +## 🚀Desafío + +Dedica tiempo a este notebook ajustando parámetros. ¿Puedes mejorar la precisión del modelo limpiando más los datos (eliminando valores atípicos, por ejemplo)? Puedes usar pesos para dar más importancia a ciertas muestras de datos. ¿Qué más puedes hacer para crear mejores agrupaciones? + +Pista: Intenta escalar tus datos. Hay código comentado en el notebook que agrega escalado estándar para hacer que las columnas de datos se parezcan más entre sí en términos de rango. Descubrirás que, aunque la puntuación de silueta disminuye, el 'doblez' en el gráfico del codo se suaviza. Esto se debe a que dejar los datos sin escalar permite que los datos con menos varianza tengan más peso. Lee un poco más sobre este problema [aquí](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226). + +## [Cuestionario posterior a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/) + +## Revisión y autoestudio + +Echa un vistazo a un simulador de K-Means [como este](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/). Puedes usar esta herramienta para visualizar puntos de datos de muestra y determinar sus centroides. Puedes editar la aleatoriedad de los datos, el número de agrupaciones y el número de centroides. ¿Esto te ayuda a tener una idea de cómo se pueden agrupar los datos? + +También, revisa [este documento sobre K-Means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) de Stanford. + +## Tarea + +[Prueba diferentes métodos de agrupamiento](assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/5-Clustering/2-K-Means/assignment.md b/translations/es/5-Clustering/2-K-Means/assignment.md new file mode 100644 index 000000000..5bb8e93ed --- /dev/null +++ b/translations/es/5-Clustering/2-K-Means/assignment.md @@ -0,0 +1,25 @@ + +# Prueba diferentes métodos de agrupamiento + +## Instrucciones + +En esta lección aprendiste sobre el agrupamiento K-Means. A veces, K-Means no es adecuado para tus datos. Crea un notebook utilizando datos de estas lecciones o de otro lugar (da crédito a tu fuente) y muestra un método de agrupamiento diferente que NO sea K-Means. ¿Qué aprendiste? + +## Rúbrica + +| Criterios | Ejemplar | Adecuado | Necesita Mejorar | +| --------- | -------------------------------------------------------------- | -------------------------------------------------------------------- | ---------------------------- | +| | Se presenta un notebook con un modelo de agrupamiento bien documentado | Se presenta un notebook sin buena documentación y/o incompleto | Se entrega un trabajo incompleto | + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/5-Clustering/2-K-Means/notebook.ipynb b/translations/es/5-Clustering/2-K-Means/notebook.ipynb new file mode 100644 index 000000000..289eca6f1 --- /dev/null +++ b/translations/es/5-Clustering/2-K-Means/notebook.ipynb @@ -0,0 +1,231 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "3e5c8ab363e8d88f566d4365efc7e0bd", + "translation_date": "2025-09-04T02:09:26+00:00", + "source_file": "5-Clustering/2-K-Means/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "Comienza donde terminamos en la última lección, con los datos importados y filtrados.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
\n
" + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "Nos centraremos solo en 3 géneros. ¡Quizás podamos construir 3 clústeres!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
\n
" + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/5-Clustering/2-K-Means/solution/Julia/README.md b/translations/es/5-Clustering/2-K-Means/solution/Julia/README.md new file mode 100644 index 000000000..d92796796 --- /dev/null +++ b/translations/es/5-Clustering/2-K-Means/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb b/translations/es/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb new file mode 100644 index 000000000..282fa229f --- /dev/null +++ b/translations/es/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb @@ -0,0 +1,642 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "colab": { + "name": "lesson_14.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "coopTranslator": { + "original_hash": "ad65fb4aad0a156b42216e4929f490fc", + "translation_date": "2025-09-04T02:17:58+00:00", + "source_file": "5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb", + "language_code": "es" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "GULATlQXLXyR" + }, + "source": [ + "## Explora la agrupación K-Means usando R y los principios de datos ordenados.\n", + "\n", + "### [**Cuestionario previo a la lección**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/)\n", + "\n", + "En esta lección, aprenderás cómo crear grupos utilizando el paquete Tidymodels y otros paquetes del ecosistema de R (los llamaremos amigos 🧑‍🤝‍🧑), y el conjunto de datos de música nigeriana que importaste anteriormente. Cubriremos los conceptos básicos de K-Means para la agrupación. Ten en cuenta que, como aprendiste en la lección anterior, hay muchas formas de trabajar con agrupaciones y el método que utilices depende de tus datos. Intentaremos K-Means ya que es la técnica de agrupación más común. ¡Comencemos!\n", + "\n", + "Términos que aprenderás:\n", + "\n", + "- Puntuación de silueta\n", + "\n", + "- Método del codo\n", + "\n", + "- Inercia\n", + "\n", + "- Varianza\n", + "\n", + "### **Introducción**\n", + "\n", + "[La agrupación K-Means](https://wikipedia.org/wiki/K-means_clustering) es un método derivado del dominio del procesamiento de señales. Se utiliza para dividir y particionar grupos de datos en `k grupos` basados en similitudes en sus características.\n", + "\n", + "Los grupos pueden visualizarse como [diagramas de Voronoi](https://wikipedia.org/wiki/Voronoi_diagram), que incluyen un punto (o 'semilla') y su región correspondiente.\n", + "\n", + "

\n", + " \n", + "

Infografía por Jen Looper
\n", + "\n", + "\n", + "La agrupación K-Means tiene los siguientes pasos:\n", + "\n", + "1. El científico de datos comienza especificando el número deseado de grupos a crear.\n", + "\n", + "2. Luego, el algoritmo selecciona aleatoriamente K observaciones del conjunto de datos para servir como los centros iniciales de los grupos (es decir, los centroides).\n", + "\n", + "3. A continuación, cada una de las observaciones restantes se asigna a su centroide más cercano.\n", + "\n", + "4. Después, se calcula el nuevo promedio de cada grupo y el centroide se mueve al promedio.\n", + "\n", + "5. Ahora que los centros han sido recalculados, cada observación se verifica nuevamente para ver si podría estar más cerca de un grupo diferente. Todos los objetos se reasignan nuevamente utilizando los promedios actualizados de los grupos. Los pasos de asignación de grupos y actualización de centroides se repiten iterativamente hasta que las asignaciones de grupos dejan de cambiar (es decir, cuando se logra la convergencia). Por lo general, el algoritmo termina cuando cada nueva iteración resulta en un movimiento insignificante de los centroides y los grupos se vuelven estáticos.\n", + "\n", + "
\n", + "\n", + "> Ten en cuenta que debido a la aleatoriedad de las observaciones iniciales k utilizadas como centroides iniciales, podemos obtener resultados ligeramente diferentes cada vez que aplicamos el procedimiento. Por esta razón, la mayoría de los algoritmos utilizan varios *inicios aleatorios* y eligen la iteración con el menor WCSS. Por lo tanto, se recomienda encarecidamente ejecutar K-Means con varios valores de *nstart* para evitar un *óptimo local no deseado.*\n", + "\n", + "
\n", + "\n", + "Esta breve animación utilizando la [obra](https://github.com/allisonhorst/stats-illustrations) de Allison Horst explica el proceso de agrupación:\n", + "\n", + "

\n", + " \n", + "

Obra de @allison_horst
\n", + "\n", + "\n", + "\n", + "Una pregunta fundamental que surge en la agrupación es esta: ¿cómo sabes cuántos grupos separar en tus datos? Una desventaja de usar K-Means incluye el hecho de que necesitarás establecer `k`, es decir, el número de `centroides`. Afortunadamente, el `método del codo` ayuda a estimar un buen valor inicial para `k`. Lo probarás en un momento.\n", + "\n", + "### \n", + "\n", + "**Requisito previo**\n", + "\n", + "Continuaremos justo desde donde lo dejamos en la [lección anterior](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb), donde analizamos el conjunto de datos, hicimos muchas visualizaciones y filtramos el conjunto de datos a observaciones de interés. ¡Asegúrate de revisarlo!\n", + "\n", + "Necesitaremos algunos paquetes para completar este módulo. Puedes instalarlos como: `install.packages(c('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork'))`\n", + "\n", + "Alternativamente, el script a continuación verifica si tienes los paquetes necesarios para completar este módulo y los instala por ti en caso de que falten algunos.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ah_tBi58LXyi" + }, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork')\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7e--UCUTLXym" + }, + "source": [ + "¡Vamos a ponernos en marcha!\n", + "\n", + "## 1. Un baile con los datos: Reduce a los 3 géneros musicales más populares\n", + "\n", + "Este es un repaso de lo que hicimos en la lección anterior. ¡Vamos a analizar y desglosar algunos datos!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Ycamx7GGLXyn" + }, + "source": [ + "# Load the core tidyverse and make it available in your current R session\n", + "library(tidyverse)\n", + "\n", + "# Import the data into a tibble\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\", show_col_types = FALSE)\n", + "\n", + "# Narrow down to top 3 popular genres\n", + "nigerian_songs <- df %>% \n", + " # Concentrate on top 3 genres\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \n", + " # Remove unclassified observations\n", + " filter(popularity != 0)\n", + "\n", + "\n", + "\n", + "# Visualize popular genres using bar plots\n", + "theme_set(theme_light())\n", + "nigerian_songs %>%\n", + " count(artist_top_genre) %>%\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\n", + " fill = artist_top_genre)) +\n", + " geom_col(alpha = 0.8) +\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\n", + " ggtitle(\"Top genres\") +\n", + " theme(plot.title = element_text(hjust = 0.5))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b5h5zmkPLXyp" + }, + "source": [ + "🤩 ¡Eso salió bien!\n", + "\n", + "## 2. Más exploración de datos.\n", + "\n", + "¿Qué tan limpios están estos datos? Vamos a verificar la presencia de valores atípicos utilizando diagramas de caja. Nos concentraremos en las columnas numéricas con menos valores atípicos (aunque podrías limpiar los valores atípicos). Los diagramas de caja pueden mostrar el rango de los datos y ayudar a elegir qué columnas usar. Nota: los diagramas de caja no muestran la varianza, un elemento importante para datos que se puedan agrupar bien. Por favor, consulta [esta discusión](https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot) para más información.\n", + "\n", + "Los [diagramas de caja](https://es.wikipedia.org/wiki/Diagrama_de_caja) se utilizan para representar gráficamente la distribución de datos `numéricos`, así que comencemos *seleccionando* todas las columnas numéricas junto con los géneros musicales populares.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HhNreJKLLXyq" + }, + "source": [ + "# Select top genre column and all other numeric columns\n", + "df_numeric <- nigerian_songs %>% \n", + " select(artist_top_genre, where(is.numeric)) \n", + "\n", + "# Display the data\n", + "df_numeric %>% \n", + " slice_head(n = 5)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uYXrwJRaLXyq" + }, + "source": [ + "¿Ves cómo el selector `where` facilita esto 💁? Explora otras funciones similares [aquí](https://tidyselect.r-lib.org/).\n", + "\n", + "Como vamos a crear un diagrama de caja para cada característica numérica y queremos evitar usar bucles, reformateemos nuestros datos a un formato *más largo* que nos permita aprovechar los `facets`, es decir, subgráficos que muestran un subconjunto de los datos cada uno.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "gd5bR3f8LXys" + }, + "source": [ + "# Pivot data from wide to long\n", + "df_numeric_long <- df_numeric %>% \n", + " pivot_longer(!artist_top_genre, names_to = \"feature_names\", values_to = \"values\") \n", + "\n", + "# Print out data\n", + "df_numeric_long %>% \n", + " slice_head(n = 15)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-7tE1swnLXyv" + }, + "source": [ + "¡Mucho más largo! ¡Ahora es momento de algunos `ggplots`! Entonces, ¿qué `geom` usaremos?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "r88bIsyuLXyy" + }, + "source": [ + "# Make a box plot\n", + "df_numeric_long %>% \n", + " ggplot(mapping = aes(x = feature_names, y = values, fill = feature_names)) +\n", + " geom_boxplot() +\n", + " facet_wrap(~ feature_names, ncol = 4, scales = \"free\") +\n", + " theme(legend.position = \"none\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EYVyKIUELXyz" + }, + "source": [ + "¡Fácil-gg!\n", + "\n", + "Ahora podemos ver que estos datos están un poco desordenados: al observar cada columna como un diagrama de caja, puedes notar valores atípicos. Podrías revisar el conjunto de datos y eliminar estos valores atípicos, pero eso haría que los datos fueran bastante mínimos.\n", + "\n", + "Por ahora, elijamos qué columnas utilizaremos para nuestro ejercicio de agrupamiento. Seleccionemos las columnas numéricas con rangos similares. Podríamos codificar `artist_top_genre` como numérico, pero por ahora lo descartaremos.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-wkpINyZLXy0" + }, + "source": [ + "# Select variables with similar ranges\n", + "df_numeric_select <- df_numeric %>% \n", + " select(popularity, danceability, acousticness, loudness, energy) \n", + "\n", + "# Normalize data\n", + "# df_numeric_select <- scale(df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D7dLzgpqLXy1" + }, + "source": [ + "## 3. Cálculo de agrupamiento k-means en R\n", + "\n", + "Podemos calcular k-means en R utilizando la función incorporada `kmeans`. Consulta `help(\"kmeans()\")`. La función `kmeans()` acepta un marco de datos con todas las columnas numéricas como su argumento principal.\n", + "\n", + "El primer paso al usar el agrupamiento k-means es especificar el número de clústeres (k) que se generarán en la solución final. Sabemos que hay 3 géneros musicales que extrajimos del conjunto de datos, así que probemos con 3:\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "uC4EQ5w7LXy5" + }, + "source": [ + "set.seed(2056)\n", + "# Kmeans clustering for 3 clusters\n", + "kclust <- kmeans(\n", + " df_numeric_select,\n", + " # Specify the number of clusters\n", + " centers = 3,\n", + " # How many random initial configurations\n", + " nstart = 25\n", + ")\n", + "\n", + "# Display clustering object\n", + "kclust\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hzfhscWrLXy-" + }, + "source": [ + "El objeto kmeans contiene varios elementos de información que están bien explicados en `help(\"kmeans()\")`. Por ahora, enfoquémonos en algunos. Vemos que los datos se han agrupado en 3 clusters de tamaños 65, 110, 111. El resultado también incluye los centros de los clusters (medias) para los 3 grupos a través de las 5 variables.\n", + "\n", + "El vector de agrupamiento es la asignación de cluster para cada observación. Usemos la función `augment` para agregar la asignación de cluster al conjunto de datos original.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "0XwwpFGQLXy_" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "augment(kclust, df_numeric_select) %>% \n", + " relocate(.cluster) %>% \n", + " slice_head(n = 10)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NXIVXXACLXzA" + }, + "source": [ + "Perfecto, hemos dividido nuestro conjunto de datos en un conjunto de 3 grupos. Entonces, ¿qué tan bueno es nuestro agrupamiento 🤷? Echemos un vistazo al `Silhouette score`.\n", + "\n", + "### **Silhouette score**\n", + "\n", + "El [análisis de Silhouette](https://en.wikipedia.org/wiki/Silhouette_(clustering)) se puede utilizar para estudiar la distancia de separación entre los clústeres resultantes. Este puntaje varía de -1 a 1, y si el puntaje está cerca de 1, el clúster es denso y está bien separado de otros clústeres. Un valor cercano a 0 representa clústeres superpuestos con muestras muy cercanas al límite de decisión de los clústeres vecinos. [fuente](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam).\n", + "\n", + "El método de Silhouette promedio calcula el promedio de Silhouette de las observaciones para diferentes valores de *k*. Un puntaje promedio de Silhouette alto indica un buen agrupamiento.\n", + "\n", + "La función `silhouette` en el paquete de clúster se utiliza para calcular el ancho promedio de Silhouette.\n", + "\n", + "> El Silhouette se puede calcular con cualquier [métrica de distancia](https://en.wikipedia.org/wiki/Distance \"Distance\"), como la [distancia euclidiana](https://en.wikipedia.org/wiki/Euclidean_distance \"Euclidean distance\") o la [distancia Manhattan](https://en.wikipedia.org/wiki/Manhattan_distance \"Manhattan distance\") que discutimos en la [lección anterior](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb).\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Jn0McL28LXzB" + }, + "source": [ + "# Load cluster package\n", + "library(cluster)\n", + "\n", + "# Compute average silhouette score\n", + "ss <- silhouette(kclust$cluster,\n", + " # Compute euclidean distance\n", + " dist = dist(df_numeric_select))\n", + "mean(ss[, 3])\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QyQRn97nLXzC" + }, + "source": [ + "Nuestro puntaje es **.549**, lo que nos coloca justo en el medio. Esto indica que nuestros datos no están particularmente bien adaptados a este tipo de agrupamiento. Veamos si podemos confirmar esta sospecha de manera visual. El [paquete factoextra](https://rpkgs.datanovia.com/factoextra/index.html) proporciona funciones (`fviz_cluster()`) para visualizar agrupamientos.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "7a6Km1_FLXzD" + }, + "source": [ + "library(factoextra)\n", + "\n", + "# Visualize clustering results\n", + "fviz_cluster(kclust, df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IBwCWt-0LXzD" + }, + "source": [ + "El solapamiento en los clústeres indica que nuestros datos no son particularmente adecuados para este tipo de agrupamiento, pero sigamos adelante.\n", + "\n", + "## 4. Determinando el número óptimo de clústeres\n", + "\n", + "Una pregunta fundamental que surge a menudo en el agrupamiento K-Means es esta: sin etiquetas de clase conocidas, ¿cómo sabes en cuántos clústeres separar tus datos?\n", + "\n", + "Una forma de intentar averiguarlo es usar una muestra de datos para `crear una serie de modelos de agrupamiento` con un número creciente de clústeres (por ejemplo, de 1 a 10) y evaluar métricas de agrupamiento como el **índice de Silhouette.**\n", + "\n", + "Determinemos el número óptimo de clústeres calculando el algoritmo de agrupamiento para diferentes valores de *k* y evaluando el **Suma de Cuadrados Dentro del Clúster** (WCSS, por sus siglas en inglés). La suma total de cuadrados dentro del clúster (WCSS) mide la compacidad del agrupamiento, y queremos que sea lo más pequeña posible, ya que valores más bajos significan que los puntos de datos están más cerca entre sí.\n", + "\n", + "Exploremos el efecto de diferentes elecciones de `k`, desde 1 hasta 10, en este agrupamiento.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "hSeIiylDLXzE" + }, + "source": [ + "# Create a series of clustering models\n", + "kclusts <- tibble(k = 1:10) %>% \n", + " # Perform kmeans clustering for 1,2,3 ... ,10 clusters\n", + " mutate(model = map(k, ~ kmeans(df_numeric_select, centers = .x, nstart = 25)),\n", + " # Farm out clustering metrics eg WCSS\n", + " glanced = map(model, ~ glance(.x))) %>% \n", + " unnest(cols = glanced)\n", + " \n", + "\n", + "# View clustering rsulsts\n", + "kclusts\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m7rS2U1eLXzE" + }, + "source": [ + "Ahora que tenemos la suma total de cuadrados dentro del grupo (tot.withinss) para cada algoritmo de agrupamiento con centro *k*, utilizamos el [método del codo](https://en.wikipedia.org/wiki/Elbow_method_(clustering)) para encontrar el número óptimo de grupos. El método consiste en graficar la WCSS como una función del número de grupos y elegir el [codo de la curva](https://en.wikipedia.org/wiki/Elbow_of_the_curve \"Elbow of the curve\") como el número de grupos a utilizar.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "o_DjHGItLXzF" + }, + "source": [ + "set.seed(2056)\n", + "# Use elbow method to determine optimum number of clusters\n", + "kclusts %>% \n", + " ggplot(mapping = aes(x = k, y = tot.withinss)) +\n", + " geom_line(size = 1.2, alpha = 0.8, color = \"#FF7F0EFF\") +\n", + " geom_point(size = 2, color = \"#FF7F0EFF\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pLYyt5XSLXzG" + }, + "source": [ + "El gráfico muestra una gran reducción en WCSS (lo que indica una mayor *cohesión*) a medida que el número de clústeres aumenta de uno a dos, y una reducción adicional notable de dos a tres clústeres. Después de eso, la reducción es menos pronunciada, lo que da lugar a un `codo` 💪 en el gráfico alrededor de tres clústeres. Esto es una buena indicación de que hay dos o tres clústeres de puntos de datos razonablemente bien separados.\n", + "\n", + "Ahora podemos proceder a extraer el modelo de clustering donde `k = 3`:\n", + "\n", + "> `pull()`: se utiliza para extraer una sola columna \n", + "> \n", + "> `pluck()`: se utiliza para indexar estructuras de datos como listas \n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JP_JPKBILXzG" + }, + "source": [ + "# Extract k = 3 clustering\n", + "final_kmeans <- kclusts %>% \n", + " filter(k == 3) %>% \n", + " pull(model) %>% \n", + " pluck(1)\n", + "\n", + "\n", + "final_kmeans\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l_PDTu8tLXzI" + }, + "source": [ + "¡Genial! Vamos a visualizar los clústeres obtenidos. ¿Te interesa algo de interactividad usando `plotly`?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "dNcleFe-LXzJ" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "results <- augment(final_kmeans, df_numeric_select) %>% \n", + " bind_cols(df_numeric %>% select(artist_top_genre)) \n", + "\n", + "# Plot cluster assignments\n", + "clust_plt <- results %>% \n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = .cluster, shape = artist_top_genre)) +\n", + " geom_point(size = 2, alpha = 0.8) +\n", + " paletteer::scale_color_paletteer_d(\"ggthemes::Tableau_10\")\n", + "\n", + "ggplotly(clust_plt)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6JUM_51VLXzK" + }, + "source": [ + "Quizás hubiéramos esperado que cada clúster (representado por diferentes colores) tuviera géneros distintos (representados por diferentes formas).\n", + "\n", + "Echemos un vistazo a la precisión del modelo.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HdIMUGq7LXzL" + }, + "source": [ + "# Assign genres to predefined integers\n", + "label_count <- results %>% \n", + " group_by(artist_top_genre) %>% \n", + " mutate(id = cur_group_id()) %>% \n", + " ungroup() %>% \n", + " summarise(correct_labels = sum(.cluster == id))\n", + "\n", + "\n", + "# Print results \n", + "cat(\"Result:\", label_count$correct_labels, \"out of\", nrow(results), \"samples were correctly labeled.\")\n", + "\n", + "cat(\"\\nAccuracy score:\", label_count$correct_labels/nrow(results))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C50wvaAOLXzM" + }, + "source": [ + "La precisión de este modelo no está mal, pero tampoco es excelente. Puede ser que los datos no se presten bien para el uso de K-Means Clustering. Estos datos están demasiado desequilibrados, tienen poca correlación y existe demasiada variabilidad entre los valores de las columnas como para agruparlos de manera efectiva. De hecho, los clústeres que se forman probablemente están muy influenciados o sesgados por las tres categorías de géneros que definimos anteriormente.\n", + "\n", + "¡Aun así, fue un proceso de aprendizaje interesante!\n", + "\n", + "En la documentación de Scikit-learn, puedes ver que un modelo como este, con clústeres no muy bien definidos, tiene un problema de 'varianza':\n", + "\n", + "

\n", + " \n", + "

Infografía de Scikit-learn
\n", + "\n", + "\n", + "\n", + "## **Varianza**\n", + "\n", + "La varianza se define como \"el promedio de las diferencias al cuadrado respecto a la media\" [fuente](https://www.mathsisfun.com/data/standard-deviation.html). En el contexto de este problema de clustering, se refiere a que los números de nuestro conjunto de datos tienden a divergir demasiado de la media.\n", + "\n", + "✅ Este es un gran momento para pensar en todas las formas en que podrías corregir este problema. ¿Ajustar un poco más los datos? ¿Usar diferentes columnas? ¿Probar con un algoritmo distinto? Pista: Intenta [escalar tus datos](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/) para normalizarlos y prueba con otras columnas.\n", + "\n", + "> Prueba este '[calculador de varianza](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)' para entender un poco más el concepto.\n", + "\n", + "------------------------------------------------------------------------\n", + "\n", + "## **🚀Desafío**\n", + "\n", + "Dedica algo de tiempo a este notebook ajustando parámetros. ¿Puedes mejorar la precisión del modelo limpiando más los datos (eliminando valores atípicos, por ejemplo)? Puedes usar pesos para dar más importancia a ciertas muestras de datos. ¿Qué más podrías hacer para crear mejores clústeres?\n", + "\n", + "Pista: Intenta escalar tus datos. Hay código comentado en el notebook que agrega escalado estándar para hacer que las columnas de datos se parezcan más entre sí en términos de rango. Descubrirás que, aunque el puntaje de silueta disminuye, el 'codo' en el gráfico de codo se suaviza. Esto se debe a que dejar los datos sin escalar permite que los datos con menos varianza tengan más peso. Lee un poco más sobre este problema [aquí](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226).\n", + "\n", + "## [**Cuestionario posterior a la lección**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/)\n", + "\n", + "## **Revisión y Autoestudio**\n", + "\n", + "- Echa un vistazo a un simulador de K-Means [como este](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/). Puedes usar esta herramienta para visualizar puntos de datos de muestra y determinar sus centroides. Puedes editar la aleatoriedad de los datos, el número de clústeres y el número de centroides. ¿Te ayuda esto a tener una idea de cómo se pueden agrupar los datos?\n", + "\n", + "- También, revisa [este documento sobre K-Means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) de Stanford.\n", + "\n", + "¿Quieres probar tus recién adquiridas habilidades de clustering en conjuntos de datos que se presten bien para K-Means clustering? Consulta:\n", + "\n", + "- [Entrenar y Evaluar Modelos de Clustering](https://rpubs.com/eR_ic/clustering) usando Tidymodels y amigos\n", + "\n", + "- [Análisis de Clústeres K-Means](https://uc-r.github.io/kmeans_clustering), Guía de Programación en R para Análisis de Negocios de UC\n", + "\n", + "- [Clustering K-Means con principios de datos ordenados](https://www.tidymodels.org/learn/statistics/k-means/)\n", + "\n", + "## **Tarea**\n", + "\n", + "[Prueba diferentes métodos de clustering](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/assignment.md)\n", + "\n", + "## AGRADECIMIENTOS A:\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) por crear la versión original en Python de este módulo ♥️\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) por crear las increíbles ilustraciones que hacen que R sea más accesible y atractivo. Encuentra más ilustraciones en su [galería](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n", + "\n", + "Feliz aprendizaje,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Embajador Estudiantil Gold de Microsoft Learn.\n", + "\n", + "

\n", + " \n", + "

Arte de @allison_horst
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/5-Clustering/2-K-Means/solution/notebook.ipynb b/translations/es/5-Clustering/2-K-Means/solution/notebook.ipynb new file mode 100644 index 000000000..33b14c4fa --- /dev/null +++ b/translations/es/5-Clustering/2-K-Means/solution/notebook.ipynb @@ -0,0 +1,546 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "e867e87e3129c8875423a82945f4ad5e", + "translation_date": "2025-09-04T02:10:57+00:00", + "source_file": "5-Clustering/2-K-Means/solution/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "Comienza donde terminamos en la última lección, con los datos importados y filtrados.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
\n
" + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "Nos centraremos solo en 3 géneros. ¡Quizás podamos construir 3 clústeres!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
\n
" + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "df.head()" + ] + }, + { + "source": [ + "¿Qué tan limpios están estos datos? Verifica los valores atípicos utilizando diagramas de caja. Nos concentraremos en las columnas con menos valores atípicos (aunque podrías limpiar los valores atípicos). Los diagramas de caja pueden mostrar el rango de los datos y ayudarán a elegir qué columnas usar. Nota: los diagramas de caja no muestran la varianza, un elemento importante de los datos bien agrupables (https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot)\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADFQAAAxLCAYAAAAjUVg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdsU5bZxiA4R/XFalaEEsHS1xCOpbroL3Qluug3Zp7YGAzqdRIwe7QMBAlEBrsY/w+z2QfWfgbLMv/d/SKg/V6PQAAAAAAAAAAAAAAAEpmUw8AAAAAAAAAAAAAAACwbYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyJlv+w0PDg4Oxxg/fXh6Pca43fYMAAAA7Lxvxhg/fnj813q9fjflMPBc7EUAAAD4QnYj7B17EQAAAL7QVvciWw8qxn+H4z8meF8AAABepp/HGH9OPQQ8E3sRAAAAnspuhH1hLwIAAMBTbXwvMtvkHwcAAAAAAAAAAAAAANhFU/yHiuu7B5eXl2OxWEwwAgAAALvs6upqnJ2d3T29fui18MLYiwAAAPAouxH2lL0IAAAAj9r2XmSKoOL27sFisRinp6cTjAAAAMALcvv4S+DFsBcBAADgqexG2Bf2IgAAADzVxvcis02/AQAAAAAAAAAAAAAAwK4RVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5MynHgAKVqvVWC6XU49BwGq1Gjc3N/euHR0djdlMP8fmHB8f+4wBAMAn2AfwMed2do0zPQAAAAB8PfcDdoc9/PbYL7NPBBWwBcvlcpyfn089BsBGXFxcjJOTk6nHAACAnWMfAOw6Z3oAAAAA+HruB1Bkv8w+kQYBAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx4Aqv5+/etYzw+nHoN98/6f8cOb3+9devv6lzHmryYaiH1z8P7d+P7Nb1OPAQAAL5Z9QJxzOxNypgcAAACA7XE/YCL28Bthv8y+E1TARNbzw7H+9rupx2DPHHzq4vyVzxoAAMCOsA9oc24HAAAAAGhwP2Aa9vDA/zGbegAAAAAAAAAAAAAAAIBtE1QAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx5g16xWq7FcLu9dOz4+HrOZ9gQAAHj5nHmAh/iOAAAAdo1zCgCwLX53AAD7zG+dzxNUfGS5XI7z8/N71y4uLsbJyclEEwEAADwfZx7gIb4jAACAXeOcAgBsi98dAMA+81vn8yQlAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAwL/s3bFOXGcax+FvWMJqdtcYuYi3MJeQckpzEUlBJJB8AUikyAXkCtIQcQGRQApFvO7T2SVlcgVhG9NZFLMmxLNFtljHY3xsw5x3zv95JDdnBnhlffqY8838bAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAACiXF5e9j0CUJg9gq4qr5XKswEAQCWCCgAAAAAAAABiTKfT9vXXX7fpdNr3KEBB9gi6qrxWKs8GAADVCCoAAAAAAAAAiHF0dNR+/vnndnx83PcoQEH2CLqqvFYqzwYAANUIKgAAAAAAAACIcHZ21k5OTlprrZ2cnLSzs7OeJwIqsUfQVeW1Unk2AACoSFABAAAAAAAAwODNZrN2cHDQrq6uWmut/fbbb+3g4KDNZrOeJwMqsEfQVeW1Unk2AACoSlABAAAAAAAAwOA9ffq0nZ6evnbt9PS0PXv2rKeJgErsEXRVea1Ung0AAKoSVAAAAAAAAAAwaNPptB0eHs597PDwsE2n0wVPBFRij6Crymul8mwAAFCZoAIAAAAAAACAQTs6Omrn5+dzH3v+/Hk7Pj5e8ERAJfYIuqq8VirPBgAAlQkqAAAAAAAAABisX3/9tZ2cnFz7nB9++KGdnZ0taCKgEnsEXVVeK5VnAwCA6gQVAAAAAAAAAAzSbDZr3333Xbu6urr2eVdXV+3g4KDNZrMFTQZUYI+gq8prpfJsAACwDFb7HqCaV69evXHtxYsXPUzCkMxdQ25QgWU0Z+/yexJguczbt+fdBwGZnIvcLOcBQCnu6QFYUh97lvH06dN2enra6bmnp6ft2bNnbWtrq/P3B5abPYKuKq+VyrMtG+ejwIfyfgCD53x5EHxe5O1uPKgYjUYP3vGUf970z7xJFxcXb1x79OhRD5MweL+/bK39re8pAN7P7y/fuOT3JMDyu7i4aPfu3et7DBgE5yK8k/MAoC/u6QEYkK5nGdPptB0eHr7X9z48PGyTyaSNx+MPHQ9iLdu5iD2CriqvlcqzLSPno8CN8n4AQ+J8ebB8XuQPK7fwPc/e8adbEg0AAACwfJyLAAAAFHF0dNTOz8/f62ueP3/ejo+Pb2kiGLylOhexR9BV5bVSeTYAAFgWtxFUAAAAAAAAAEBvLi8v2+PHjz/oa3/88cd2eXl5wxMBldgj6KryWqk8GwAALJPbCCo23/Fncgs/EwAAAKAC5yIAAAAFrK2ttc8///yDvvaLL75oa2trNzwRRFiacxF7BF1VXiuVZwMAgGWyetPfcDab/fu6x0ej0U3/yBt1586dN659//337e7duz1Mw1C8ePGiPXr06PWLf/lrP8MAfIw5e5ffkwDLZd5r03n3QcCHcS7C/3MeAJTinh6AJfUxZxm7u7vtp59+aufn551/3v3799vOzs57zQj8YdnORewRdFV5rVSebRk5HwU+lPcDGDzny4Pg8yJvd+NBxbJbWXnzP+24e/du29jY6GEaBq3YYRFAJ3P2Lr8nAZbfvPsgIJNzkQVwHgD0xT09AAPS9SxjPB63vb299s0333T+3nt7e208Hn/oaMASsUfQVeW1Unm2ZeR8FLhR3g9gSJwvD5bPi/zB3wIAAAAAAAAAg7S1tdUmk0mn504mk/bw4cNbngioxB5BV5XXSuXZAABgGQgqAAAAAAAAABik0WjU9vf32+rq6rXPW11dbfv7+23kX5GFKPYIuqq8VirPBgAAy0BQAQAAAAAAAMBgbW5utu3t7Wuf8+WXX7bNzc0FTQRUYo+gq8prpfJsAABQnaACAAAAAAAAgEHb3d1tn3766dzH7t+/33Z2dhY8EVCJPYKuKq+VyrMBAEBlggoAAAAAAAAABm08Hre9vb25j+3t7bXxeLzgiYBK7BF0VXmtVJ4NAAAqE1QAAAAAAAAAMHhbW1ttMpm8dm0ymbSHDx/2NBFQiT2CriqvlcqzAQBAVYIKAAAAAAAAAAZvNBq1/f39trq62lpr7ZNPPmlfffVVG41GPU8GVGCPoKvKa6XybAAAUJWgAgAAAAAAAIAIm5ubbXt7u7XW2vb2dnvw4EHPEwGV2CPoqvJaqTwbAABUJKgAAAAAAAAAIMbu7m777LPP2s7OTt+jAAXZI+iq8lqpPBsAAFSz2vcAAAAAAAAAALAo4/G4ffvtt21tba3vUYCC7BF0VXmtVJ4NAACq8T9UAAAAAAAAABDFB0yB69gj6KryWqk8GwAAVCKoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAKrtqYAAACAASURBVAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDirfQ9Qzfr6envy5Mkb1wAAAIbAPQ9wHXsEAABQjfsUAGBRvO4AAIbMa523E1T8ycrKStvY2Oh7DAAAgFvhnge4jj0CAACoxn0KALAoXncAAEPmtc7brfQ9AAAAAAAAAAAAAAAAwKIJKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiLPa9wCQanT1su8RGKKr/8y9Nlr8JAyUvQsAAD6O19Th3LfTI/sPAAAAACyO87ieOIe/FdYzQyeogJ78/ZfHfY9AiH/88q++RwAAAOB/nAfwZ+7bAQAAAACGx/sBdTiHB95lpe8BAAAAAAAAAAAAAAAAFk1QAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcVb7HgASrK+vtydPnvQ9BgFevXrVLi4uXrt2586dtrKin+P2rK+v9z0CAACU5DyAP3PfTjXu6QEAAADg43k/oA7n8IvjfJkhEVTAAqysrLSNjY2+xyDEvXv3+h4BAACA5jyA+dy3AwAAAAAMi/cDanEOD7wvyRUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAwH/Zu+8w6YoyYeP3Qw4CgqCIqAQjgooCKyDyIqYFQWFFQFExYVhZw+oiqyzgmpVVVIwgQQwogih8JhAMyC6goIgiBkBQkIwE4SU83x9V7RyaDjPzdvf0TN+/6zpXn9OnzjnVXWd6uqrrqZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNnGXm4JpLt1auvPLKObi8JEmSJGnctdUXl+6WTpqHbBeRJEmSJPVl24gWKNtFJEmSJEl9jbpdJDJz2Ne49wUjNgPOGelFJUmSJEnz2eaZee5cZ0IaBNtFJEmSJEmzYNuIFgTbRSRJkiRJszD0dpGlhnlySZIkSZIkSZIkSZIkSZIkSZKkcTQXM1QsD2xSN68B7h7RpddmaqSDzYGrRnRdDZ5luXBYlguHZblwWJYLh2W5cFiWC4vlOX1LA2vV9Qsy8465zIw0KHPYLjITflZpEnnfa1J572sSed9rUnnvzz+2jWjBmSftIhos//9oUniva5J4v2tSeK9rkozj/T7SdpFlhnnyTuoLGvl0pBHR3LwqM68YdR40GJblwmFZLhyW5cJhWS4cluXCYVkuLJbnjF021xmQBm2u2kVmws8qTSLve00q731NIu97TSrv/XnLthEtKPOhXUSD5f8fTQrvdU0S73dNCu91TZIxvt9H1i6y1KguJEmSJEmSJEmSJEmSJEmSJEmSNC4MqJAkSZIkSZIkSZIkSZIkSZIkSRPHgApJkiRJkiRJkiRJkiRJkiRJkjRxDKiQJEmSJEmSJEmSJEmSJEmSJEkTx4AKSZIkSZIkSZIkSZIkSZIkSZI0cQyokCRJkiRJkiRJkiRJkiRJkiRJE8eACkmSJEmSJEmSJEmSJEmSJEmSNHEiM+c6D5IkSZIkSZIkSZIkSZIkSZIkSSPlDBWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJs5EBFRExMMj4pCIuCgibo2I6yPinIh4W0SsNNf5m2QR8cCIeG5EvCsivh0R10ZE1uWoWZzvnyPixIi4IiLuqI8nRsQ/DyH7aoiIzSLivyLie433/5aIuDgijoyIp87wfJblHIiIVSNij/qZ+cOI+H1E3BQRiyPi6og4IyL+IyIeMM3zbRURx0bEZRFxe0RcFRHfjYg9h/1a1FtEfKDxeZsRsWgax/h3OYfayqvXcsY0zmVZjpGIeFhEHBwR50bENfXz8vKI+HH9jrRxn+MtzzlQ/ydO9++y72et5Shp0EbVFuLnl8bNMO/9iFgpInaNiE/Vc94QEXdGxHURcVZEHBQRaw/qtUjTNarP/LZrrhQRf2x81710GNeRehnlvR8Rz4iIo6K0l94apc304og4PiJeFxH3G+T1pG5Gcd9HxHpR2o9/FhE31u8710fET6P8DvTAQVxHkjS/WN/WpLCOrUlivVqTwrq0FroYcD/saV5zzyh9ha+K0s/psij9RLccxvVGITJzrvMwVBGxE3AssGqXJBcDO2bm70eXK7VERK8b8OjM3Hua51kK+Czwyh7JDgdek5n3TD+Hmo6I+BGwzTSSHgO8OjMX9ziXZTmHIuIZwPenkfRaYK/M/G6Pcx0EHED34L1TgBdk5u0zzaeWTEQ8ETgHWKbx9HaZeUaX9P5djoE+/zObfpiZi7qcw7IcMxGxL/A+YOUeyQ7NzDd1ONbynENRgpe2ncEh9wAPy8w/t53HcpQ0cKNoC/HzS+NomPd+RDweOBPo98Pe34B9MvO4mV5Dmo25av+OiA8D/9546rLMXG+Q15B6GdW9HxGrA0cCz+uTdNPMPH9JriX1M6Lv+S8BPgOs2CPZ9cAemTmd3xIkSQuA9W1NCuvYmiTWqzUprEtrEgyqH/Y0r7UicDywQ5ck9wDvysyDB3XNUVnQM1RExKbAcZQPw1uAdwBbAdsDn6vJHgWcEhGrzEkm1fQn4HuzPPY9THXiOA/YE9iiPp5Xn38V8O4lyaC6Wqc+/gU4FHgB5f3fEngL0Oo4+FLgqD7nsizn3uWU4Jc3ArtSynFrYHfga8DdwJrANyPiCZ1OEBGvAQ6k/J/5A6VMtwCeD5xek+0IfH5or0IdNTq+LQNcPc3D/LscL58CNumxvLzHsZblGImIdwIfowRTXAy8DVgEbAo8o27/lFLZ6MTynFsvp/ff4iaU/50tp7UHU1SWo6SBGmFbiJ9fGisjuPdXZapzx5nA/sAzgScBz6b8WHJPTffFcJYWjcBctX/X674JuB24eVDnlaZrVPd+RKxGGXym1enjRODFwFOAzSltp4cCV8z2GtJ0jeK+j4itKb/hrEj5XnMkpU1/C8rvPt+qSdcAToqIDWZzHUnS/GJ9W5PCOrYmifVqTQrr0ppQS9IPezo+z1QwxelM3e+vpPQTXQo4KCL2GWIehiMzF+wC/AhI4E5gyw7731b3J3DQXOd3EhfgYOC5wIPq9nqNMjlqmud4VC3jpIy4vmLb/pXq86174RFz/boX2gKcDLwQWLrL/jWB3zbK9mmW5Xgu3cqwLc3zG2V5Qof9awA31v2XAWu2XwP4ZuMci+b6dU/SQmmMSeA3wHv7lYN/l+OzLOl3FstyvBZKBb1VpkcDy/ZIu5zlOT8X4AONct7LcnRxcRnFwgjaQvz8chnHZdj3PuVHluOAjXqkeR7lB5MEfk+dHdjFZVjLKD7zO5xzaeDces4DgEvr+qVz/X64TM4yqnufMuhMUjo27dwjXQDLzPX74rKwlxF9zz+5cY7Xd0lzSCPNJ+b6fXFxcXFxGf5ifdtlUhbr2C6TtFivdpmUxbq0y6QsDKAf9jSv8/TGeb9JW19TSj/hy+r+G4DV5/q9mcmyYGeoiIgtgG3q5hGZeVaHZIdQOpQCvDEilh1J5vQPmXlgZp6cmX9dgtO8iTLSOsC+mfn3tmvcBuxbN5cB3rwE11IHmfnczPxqZt7dZf+13Ht6whd0OZVlOce6lWFbmm9QAmRg6nO26VXAanV9v1r+7dd4PWWmCyhfTjUCEfEw4L/r5muBxdM4zL/LhcOyHBN1pphP1c1fAK/MzDu7pc/MTn+rlueYq+X84rp5C3BCh2SWo6SBGmFbiJ9fGiujuPcz86eZuXtm/rpHmpOY+p+/IWXmMWko5rD9+43AkyltQx8YwPmkGRnVvR8RTwVeUjffmZnf7JY2i7tmeg1pukb4mb9VfbwuMz/ZJc27GutbzuIakqR5xPq2JoV1bE0S69WaFNalNUkG1A97Ot5aH++iBBDdq69p7Se6X928P6Uf6byxYAMqKCOotxzZKUFm3kOJhIRSeNsNO1MarIgIpqYFuygz/7dTuvp8qwP48+pxGq3TG+sbtu+0LOed1lSTK3TY1/r8/RudO4+SmVcAp9bN7Qc5JaZ6OowyZe7RmfnDfon9u1w4LMux8yzgkXX9AzNtHLI8543tgYfU9eNr5+J/sBwlDcnQ20L8/NKYGqd2wJ7tH9IAjfy+j4iHM/Xj32u7BH9Lwzaqe/8N9fEm4BOzOF4apFHd98vVx0u6JcjMm4DWIErLdUsnSVowrG9rUljH1iSxXq1JYV1aGqDav3P7unlq7f/ZyQmUfqMAuww9YwO0kAMqnlofbwV+1iNds0Pp1sPLjoZkfWCdut6vc3Br/0MoU9potJZvrHeaBcGynCci4tHAE+vmRW37lgO2qJtn9an0t8pxeWCzgWZS9xERL6RM7XU9U9Gi/fh3uXBYluNlt/qYlOkfAYiINSLikRGxRp/jLc/54aWN9WM67LccJQ3DKNpC/PzSOBqndsB+7R/SoMzFff9JYGXgC5l5xhKeS5qtod/7tY2zFUD6/cy8vT6/dEQ8NCLWi4hOA81IwzKqz/xWQPT63RJExKrAmm3pJUkLl/VtTQrr2Jok1qs1KaxLS4O1OVMBQV1/I679RVsD8m0+oFm9RmIhB1Q8tj7+vs+ov83OwI/tmkrjaqPG+kVdU913v2U9ets21n/TYb9lOcYiYqXayfctlH+Iy9RdH21L+ihg6bpuOY6JiLg/cGjd3K9OrzUd/l2Op90i4tcRcVtE3BwRv4uIoyOiV6S8ZTlenlIfL83MmyPiRRFxAXAdcDFwXUT8NiLeGhHLdzje8hxzEXE/piLtLwPO6JDMcpQ0DKNoC/HzS+NonNoB+7V/SIMy0vs+IvYAdgBuAP59tueRBmAU9/4TmJqZ94KIWDUiPkoZSfBPlBEHb4qI70fEohmeW5qNUX3mf7o+PiAiXtslzQEd0kuSFi7r25oU1rE1SaxXa1JYl5YGaza/ES8DPHI42Rm8BRlQUSMYWxFd3aYVASAzb6BEoQE8dJj50lCs21jvWdbA5Y11y3qEImIp4O2Np77aIZllOWYiYu+IyIhIyufkxcAhwINqkvcDX2o7zHIcTx8E1gbOBI6YwXGW53jaiFKJWxG4H/AIykj4P4iIEyNitQ7HWJZjov5PfEzdvDYiDgW+CGzclvRRwIco5Xr/tn2W5/j7F8qoQgDHZmZ2SGM5ShqoEbaF+PmlsTJO7YAR8QRgx7p5QWbawUNDMer7PiJWZ2pQjbdn5jWzOY+0pEZ47zd/HFwKOBd4I9Csny8HPINSb99vhueXpm3En/mfZ2qWzcMi4nMRsVNEbBYRu0bEiUzNfvyezDx1FteQJM0T1rc1Kaxja5JYr9aksC4tDcWC/414QQZUAKs01m+ZRvrWB+L9hpAXDddMyvrWxrplPVpvBrao6ydkZqdptCzL+eN8YIvM3L9DB1HLccxExDbAq4C7gNd26dTbjeU5Xm4DvgK8GtgG2BR4FvAeyswGAM8HTuowXZplOT5WY+o7+CbAvwFXAnsBawArUUZZak1/txWlAt5keY6/lzbWj+mSxnKUNGijagvx80vjZizaAevMYoczNWvjOwZ5fqnNqO/7D1EG2DgL+NwszyENwqju/TUa6/tRRlH7DqWNewXggcDrgJuAAN4fEc+b4TWk6RrZZ35m3p2ZLwN2A35BaVf+JnAO8HVK2+PpwDMz850zPb8kad6xvq1JYR1bk8R6tSaFdWlp8Bb8b8QLNaBihcb64mmkv6M+rjiEvGi4ZlLWdzTWLesRiYhtKTMZAFxN+ULciWU5fr5B6ey7CaVSsydwIvBE4MsR8dwOx1iOYyQilgM+S6mAfiQzfzXDU1ie4+UhmblnZh6emT/JzPMz8/u1wvU44Lyablvu+1lrWY6PlRvrK1ACZbbLzC9m5g2Z+ffM/BHwdEplG2CXiPintuNaLM8xExHrAovq5v9m5sVdklqOkgZtVG0hfn5p3IxLO+AngM3q+tGZ+a0Bn19qGtl9HxFPA17B7AZqkAZtVPd+e939+8BzM/OczLwjM6/JzE8DzwXuqeneFxExw+tI0zHS7zoR8VjKQBGbdEmyJfDKiHjIbM4vSZpXrG9rUljH1iSxXq1JYV1aGrwF/xvxQg2ouL2xvtw00i9fH/8+hLxouGZS1ss31i3rEYiIx1E64C9DKavdMvPqLsktyzGTmTdm5q/qck5mfiUzd6V8AdyAMgr+3m2HWY7j5T+BxwB/Ag6exfGW5xjJzBt77Psr8ALgzvrUvm1JLMvxcXvb9uGZ+dv2RJn5d+49ytLuXc5heY6fvZiqZx3dI53lKGnQRtUW4ueXxs2ctwNGxP6UUaegjDr1r4M6t9TFSO77OhJsa6CGQzPzguXcewAAIABJREFUlzM5XhqCufi+A7BfZt7dnigzfwKcUDcfS/cfzaUlMbLvOnW247OAnYA/Ay8B1q7XfSjlO85twB7A2fU3IEnSwmV9W5PCOrYmifVqTQrr0tLgLfjfiBdqQMXNjfXpTBfSioqczvQ+Gi8zKetm9KtlPWQRsT7wPWB14G5gjzridjeW5TyRmV8Avkb5H/KJiGhO1Wc5jomIeAywf93cNzNv7ZW+C8tzHsnMP1JGdgB4RESs09htWY6Pm9u2v9cj7WmUEWoANu9yDstz/LykPt4BHNcjneUoadBG1Rbi55fGzZy2A0bEa4D31s2LgB1mWf+SZmJU9/07gEcDlwMHzvBYaRjm4vvONZl5XteU8N3G+uZdU0mzN5L7vnbw+zKwGnAV8JTMPDYz/5qZd2bmFZn5SeBplB/Q16H3QBKSpPnP+rYmhXVsTRLr1ZoU1qWlwVvwvxEvM9cZGIbMvD0irgMeAKzbK21ErM5U4V0+7Lxp4K5orPcsa0rEX4tlPUS1E++plC8BCbwiM0/qc5hlOb+cBLyQ8vn5HOBL9XnLcXy8mRIN+kdgpYjYo0OajRvrT4+Itev6t2qDpOU5//wa2KGuPwT4S123LMdEZt4REdcAa9Wnur7H9TvttZTRC9Zq7LI8x1REbAZsVDdPzswbeiS3HCUN1AjbQvz80liZy3bAiNgT+GTdvAx4ZmZeu6TnlfoZ4X2/X308FdgpIjqlaZ175Ubbw9WZ+YMZXkvqa4T3fjP9FV1T3TftWl1TSbM0wvv+OZT2RICPZ+ZVXfJzYUQcSxkt/MkR8YTM/MUMryVJmgesb2tSWMfWJLFerUlhXVoaivbfiM/tkXZe/ka8IAMqql8D21BGaF4mM+/qku4xjfXfDD9bGrBfN9Yf0zXVffdb1kMSEWtSRkjfoD61b2YeM41DLcv55ZrG+sMb6xdTZiRZGstxrrWmztqAEg3dzwGN9fWBW/Hvcj7KLs9bluPlQmBRXV+6T9rW/uZ3WctzfL20sd5vZAnLUdIwjKItxM8vjaORtwNGxM7AMZTZG68Ets/Mfj8OSoM0ivu+NW33y+vSy5pMtT/8ELCzh4ZlFPf+hY316dbb4d51d2mQRnHfP7ax/vM+aX9G6QTSuqadQCRp4bK+rUlhHVuTxHq1JoV1aWmwZvMb8V3A74aTncFbaq4zMEQ/qY8rA0/ukW7bxvqZw8uOhuQSpkbf3rZXQsrUSQB/Bi4dVoYmWUSsRpmKrTUy89sz87BpHm5Zzi8Paaz/Y1qmzFwMnF03t4yI5eiuVc530DtiUXPHv8v5Z6PG+l8a65blePlRY32DbokiYlVKgymU8mixPMdQRCwLtEYLugb4dp9DLEdJwzCKthA/vzSORtoOGBHbA1+lDFZzHWWkzD/M9nzSLNn+rUk19Hs/My8D/lQ314suQ8dWGzbW/9w1lbRkRvGZ3+xY0m9AvmW7HCdJWnisb2tSWMfWJLFerUlhXVoarHOAxXW962/Etb/oU1rHZOadw87YoCzkgIpvNNY7RvZGxFJMjSJ7I3D6sDOlwcrMBE6qm4+JiKd0Slefb0U9nVSP0wBFxErAKcCT6lPvycwPTPd4y3Le2a2xfkHbvtbn76rArp0Ojoh1gWfUzdMy8+bBZk+ZuXdmRq8FOLhxyHaNfZfWc/h3OY9ExPrAM+vmHzLzH40NluXY+XpjfZce6XYBWo1LP249aXmOrX9mahraL/UY4QKwHCUNzdDbQvz80pgaWTtgRGxF+RtYHrgJeHZmXtj7KGkoRvGZ37NdobYtXFaTX9Z4ftEMX4s0E6P6zG/V3VcFtu+Rrtn++ZOuqaQlM4r7/pLG+jZ90jZ/NL+kaypJ0kJgfVuTwjq2Jon1ak0K69LSANX+nafVzWfU/p+d7Er57Ac4cegZG6AFG1CRmWcz1fHslRGxZYdk/87UtDuHzqdIGN3LR4G76/rHI2LF5s66/fG6eVdNrwGqUWUnAlvXpw7NzHfO4lSW5RyLiL0jYoU+ad4M7FA3L6HRybc6nNLIBfD+iHhA2/FLA59katq+Dy1RpjVs/l2OgYjYKSK6RrNHxIMoDRKtWWE+2SGZZTkmMvOXTM1esGcdceleImJt4N11czFwZFsSy3P8vLSxfsw0j7EcJQ3UINpCImJRRGRdjupyKT+/NFZGde9HxBMpg0msDNwK7JiZPxvEa5BmaoSf+dJYGfH3ndvr+v/UWSTvJSL2AhbVzVMy8/LpvxJp+kZ0358G3FbXXxcRm3TKS0T8M1MDhPwZOH/6r0SSNN9Y39aksI6tSWK9WpPCurQ0M7XfaOt+P6hLsg/Xx2WAw2o/0OY51gRag7DfSOlHOm/0m2ZmvnsjZRqeFYHvRcR7KVFkKwJ7APvUdBcDh8xJDidcRDwVeETjqTUb64+IiL2b6TPzqPZzZObFEfEh4O3AZsCZEfEB4A+UacH2AzatyT+Umb8b2AtQy5eBZ9X1HwBHRMTGPdIvzsyL25+0LMfCQcAhEfF1SuT3H4BbgFWATYAXMxU4sxjYJzPvbp4gM6+PiP2ATwMPB/4vIt5DmcliHeBNwHY1+Zcz84xhviAtGf8ux8bHgWXr3+ZZwKXA3yn/NxcBr2Hqf+hPgMPaT2BZjp03AVsC9wdOjoiPAv+PUq5bAPsDrWjuA5ozjoDlOW4iYnXguXXzV5n58+kcZzlKGpKht4X4+aUxNdR7PyI2BL5L+f4G8E7gpj7tH1dn5tUzvZY0A7Z/a1KN4vvOnyLiv4APUtpFz67fd37J1My8r6vJ/wa8eXYvRZq2od73mXljRLwfeBfl94CfRsTHge8DNwAPAp4HvJqpAfvenpn3zPoVSZLmC+vbmhTWsTVJrFdrUliX1kQYRD/s6cjMH0TEVyh/PzsD36/9nf5C+ax/B/Cwmny/zLxhNteZK5GZc52HoYqInYBjmZpCpN3FlOj2348uV2qpkXsvm276OsVdp/MsBXwOeEWPw4+gdP72H9KARcRMP0guy8z1upzLspxDEXEpJQiinyuAV2Tm93uc62DgAKDj3y2l4/C/ZObtXfZryGo06YF1c7tuwS3+Xc69Gfxtfh14VWbe2OU8luUYqRWa4ymV6E4SeE9mHtDleMtzTETEa4FP1c3/yMxpz75kOUoahiVpC4mIRUxNaXx0Zu7d5Rp+fmnsDPPer43N7bOG9XNwZh40w2OkGRnFZ36f619Kqa92be+ThmFU935EvI8SLNqtjfNq4PmZedb0ci7N3rDv+4gI4H8oHU663fMAdwL/mZkf7pFGkrSAWN/WpLCOrUlivVqTwrq0JsEg+mG3fS/v+n07Ilak9HXaocvp7wH+ez5+X1+qf5L5LTO/BTwe+Ajlw+82ylQi51JHTDSYYv7LzHsy85XAjsBJlIinxfXxJGCHzHyVnTjGn2U5555Nmc7sBEpU+F+Bu4CbKaPNfh14OfDoXsEUAJl5IPBU4EvA5ZRyvJoShfuizNzRYIr5wb/LsfAySvDLdyjfZ66n/G3eSJn95TPAVpn5gm7BFGBZjpvM/AnwOOBg4BeUkTduBy6hVFKe3C2Yoh5veY6Pl9THu4EvzuRAy1HSMIyiLcTPL40j2wE1ibzvNalGde9n5v6UGXu/QJkx9A7gJuAcymAyj7LTh0Zl2Pd9Fm8GNqfMQP0rym8Dd1Pu+59ROolsbAcQSZos1js0KbzXNUmsV2tSWJeWBisz/56ZOwIvpvQDvZryG/HllH6iT52PwRQwATNUSJIkSZIkSZIkSZIkSZIkSZIktVvwM1RIkiRJkiRJkiRJkiRJkiRJkiS1M6BCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJGjMRcVREZERcOtd5AYiIvWt+MiLWm+v8SJIkSZKkyRARixptEovmOj+SJEmSJEmSJGnhMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEnSEhm3GTUkSZIkSdL4ioj1GrNO7D3X+ZEkSZIkSZIkSZNtmbnOgCRJGm+ZeRRw1BxnQ5IkSZIkTZjMPAOIuc6HJEmSJEmSJElauJyhQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSNKci4qCIyIjIun3/iDg4Ii6MiFsi4vqIOD0i9pzGudaLiI/UY2+OiNsi4ncR8ZmI2KTPsVmXg+r2MyLimxFxZUTcHhF/jIhPRMRDpvtaeqRb1Ljeon6vq8PxK0fE7hFxeEScHxE3RcSdEXFNRPwwIt4aEfeb4et9ekR8LSIur+e6tJF270b69dpfL/Cy+tTDG+n+sdS0Ozee22Mar/GQmvauiFhnpu+RJEmSJEnDFBEbR8Q7I+K7EXFFRNxR2zF+FxFHR8RTpnmerWv9/rcR8beIWFzPd3JE/GtE3L/HsTtFxPGN618XEWdFxNt7tQsMsv0iIp4cEUdExMURcWttQ7k8In4WEYfV9oBopE/gksYpjuzQlnDQTPLQSLtDRBxb23BaebkkIr5e2zZWakt/r/aOiFgqIvaJiJ9GxA31HL+MiHe0H9vl+ktHxMtq2f2lUSY/iYi3RMSKfY6f0XvZOG6FiPi3iDgjStvQnVHa034bEd+u116vX/4lSZIkSVqIImK72lbzxyh9SP4WERdExIe69UVobzupde+3RcTPo/RFuTkizo6IN0TEMtPIwwo17WkRcVVt/7k6Ik6NiFf2OkdEXFrzclTdfnJEHFXbPO7o1L4TEStFxAG1XePWRvvEK6Lo2N4SEY9vPP/2abyufRvpt+iXXpKkcdb3H7okSaMSEesD3wc2bDy9MrAIWBQRzwdenJl3dTj2pcBngeXbdj2iLq+MiAMy833TyMeBwEFtT68P/CuwV0TslJk/ntaLGo5TgG07PL8m8LS6vD4idsjMi/qdLCLeA/znYLN4H6cAVwIPBvYGvtIjP8sAe9XN72TmX4acN0mSJEmSpq3+0Hx6h13LMdUO8dKIeH9m7t/lHCsCRwCdBpB4SF12BNairY0iIlYAvgTs0nbcGsBT6rJvROyYmedP71XNXES8Gfgw9x24ad26PAl4PbAKcMsQ8/EA4Dhg+w6716vLrnX7qC6nWQn4XodzbFKXnSPi6Zl5a5c8PAz4JvCEtl1rAFvX5XW1TC7ucPys3suIeDBwKrBR23Gr1+VRwHOAdYC3dsq7JEmSJEkLUW0/ORLoNODjxnV5XUTsmZnf6nGeBwHfAZ7YtmvzujwrIp6fmfd0Of4JwEnAw9t2rUVph9geeE3th/LXPq/ptcDH6dHnMyLWBX4APLLx9EpMtU/sAnys07GZ+cuIOKe+rpcB7++VH+Dl9fHCzDy7T1pJksaaARWSpHFyHCVw4dPA8cBNwOOB/Sg/AL8Q+Avw5uZBEbEj5QfxoPyofAjlx+S7gK2A/SnBBu+NiBsz81M98rAjsBnwW+CDwC+B1YDdgFfX9ZMjYuPMvHyJX/HsLANcQPmh/lzKexKUCvgulPdpfeAbEfHEzLy9x7l2pXQMuAD4CPArYEXu2xjQyScp5fRu4Hk1H8/ulDAz764jJuwPPDMi1s3MK7qcd0fggXX989PIhyRJkiRJo7QMcCtl8IAfABcBf6PUZR8H/Buljv72iLg4M49sHhwRS1F+SH9mfep3lDr2ucBtlMEItqLU7zs5mqlgil9Q2kF+Q+m8vwdlIIN1gNMi4vGZ+ecle7n3FRGPZyoA4BLgE8D5wPWUTv+PBrajtBc0bVLz9t26/U7Ke9F09QzysRIluKU1M+nPKANu/Aq4A3goZeCJ3fuc6nOUQJSjga8CVwEPA/4D2BLYoub1PgEyNaDjJ/Vad9Rz/RC4FLgf8CzgjZRAm29HxJMy86bG8bN9L6F0omgFUxwLnEBpn7mbch9t1uU4SZIkSZIWrDrD4/GUvgcA36LU9/8I3EOp5/87pe5/fERsnZnndjndCZS698fqea6n1NUPAB4L7ETpS/KZDvl4BKWNYDVK29FhwNnA5cADgJ2B11ACGE6KiG0y884u+dicMjDl5ZR2hHMpbVTbNK63LKW9qhVMcQqlneIKyoAN+wDPpQRzdHN4vdZjImLLzDyrU6IaKLJp3bRfhyRp3ovMnrN6S5I0VBFxEHBg46kXZeaX29KsAvyYMsrfPcATMvNXdd+ylB+o16EEU2zTPvpiRDwcOIvyQ/JtwMMz89q2NM1/iD8Hts3MW9rSvAQ4pm5+LTNf2Lb/H68lM6PHa17E1EiW22XmGW37j6JE+1+Wmet1OP6Rmfm7Hud/BqVjwlLAqzLziA5pmq/3NGDHzLyjy/n2pozcALB+Zl46k/w20m1I6SQSwDsy871d0p1EaTi4BnhIjwYDSZIkSZJGLiLWBO7KzBu77F8OOJkSMHEZsGFm3t3Y/2/AoXXzRGDPTnXyGnjx4GZARB1U4uS6eRqwQ2Yubjvu1ZSgAoCvZububfsPYgnbLyLiXZSOA7fW19dxBMWIWA24uTlKY0SsRwkcAHh5Zh41mzzU/f/D1MAbhwH7ZocfPWqZrN7MZ1t7B8BLMvPYtuOWp3RQ2Bi4Dli7febUiPgi8CJKWW+XmZfQJiI2pbRtrQy8NzPf0dg3q/eyjrT5N2BZ4JDM7DoDRUSskZnXd9svSZIkSdJC0mgbuRPYOTO/0yHN6pS6+uOAMzPzqY19BzHVj+VO4Fkd2iTWAH4NPAj4ZWa2z1pJRJxJGTTjvHqOazukeQ4l8GEpYJ/M/Fzb/kuZmt3iAuBpPdqk3gh8tG5+NDPf3CHNx4E3NJ5qb/NZBbiS0obxuczcp8u1DqUMKnInpV/HNZ3SSZI0X7RPHy1J0lw6uT2YAiAzb6ZEykP53/Xaxu5dKMEUAO9uD6aox18GvK1ursTUtIPd7NMeTFHP8wXg263rRsTafc4zFL2CKer+UymzVwA8v8/p7qEEXXQMphikzPwDcEbd3LtTmjpd5g5181iDKSRJkiRJ4yYzr+32w3Xdv5ipdoiH05gFsgZJtPZdAby0W508M+/pMLvEv9bHOynBCIvb9lN/eD+1bu4aEQ/u85Jmo9UmcnG3AICal5uawRSDFBH3p4ziCGVmijd2Cqao+VjcK5/ACe3BFPW4OygzRkAZOXKj5v4aHNIKWHlDp2CKep7zKAEfcN82kdm+l2tQgikAftTtuHqswRSSJEmSpIlQZ6fYr25+rFMwBUBm3sBUG83WEfHITumAj7cHU9Tjr2dqoIZN6kAIzXxsQwmmAHhZp2CKep7vUGbTgC79KBr+tVebFFN9aa4A3t4lzX9QZrfsqPbP+Wrd3D0iVmxPUweueHHdPNlgCknSQmBAhSRpnBzZbUdmng1cWDef0djVWk96TyP4NeCmDse3uyAzf9Zjf+saywCLeqQbmYhYKyIeGREbtxbK7A5QZvXo5cz2GSeG7PD6+MiIeGqH/XtR3ltwWkhJkiRJ0jwQEctHxMMiYqNGvbw580Ozbv5EYN26/rlOAzr0uM4ywLZ183uZeXmP5K3RDIfVfnFlfdwoIrYYwvmn4+mUgTOgdJC4u1fiPr7YY1+znWiDtn07AktTZkT9Nr21gh7WiYiHNZ6f7Xt5HdAKqHlJvT8kSZIkSZp0GwEb1vXjeyXk3gMUbNklzXTaDAJYv23fzvXxt5l5wTTzsXmP+v3lmfnjbieIiIcAj6mbX+sxgMffKf1nemn161gV+JcO+3eiDDwB9uuQJC0QBlRIksbJOX32n10fH1Uj3gE2ro+X9Ip6ryM2ntd2zJLkAWCTPmmHJiK2jojjIuI64GrgYsr0jq3l1TXpmn1O9cvh5bKjE4Ab6nqnmUJaz52Tmb8aTZYkSZIkSZqZiFg5IvaPiF8AtwKXUQaCaNXLz2skb9bNN22sd/0RvIsNmAog+L8+aZv7e7WDzNaXKbNkLA+cGRHfiojX1oCS6HPsoCzJe9nuoh77mrM7rNK2b7P6uBJwV0RktwU4uXFcc9bTWb2XtWPEcXXzBcDvI+KDEbFDnb1DkiRJkqRJtFlj/aw+dfXmQBdr09mSthk8ulceaj5as2MuS5mRspN+fTua7T+9BhEFOLfXzsz8KfDrutmrX8eV9B9gQpKkecGACknSOLm6z/6/1scAVq/rrcpkv2MBrmo7Zkny0O88QxMRBwE/AV44jTzcZ/rFNjf02T9QmXk7cGzdfGFErNzaV0dhfFzddBQDSZIkSdJYioj1KEET7wUeT5mhoJdm3bwZXHFle8I+mm0A/dovrmqsD7z9IjMvAvaktCssAzwX+BTlfbk6Ir4QEdsM+rptluS9bHdbj333NNbby/qBs7xeKzBmSd/LNwDfqusPB94GnAJcFxHnRMTbImK1WeZRkiRJkqT5aInr6k2ZOWdtBm369e1YvbHedTDSae4HOKI+blfbwgCIiAcDz6mbxyzhjKGSJI0Np4CWJI2TnKNjh3GeoYiI7YED6+YfgQ9Tgiv+BNyamXfVdO8CDpjGKeeicns4sC9wP8oIikfX51ujGPydMjqjJEmSJEnj6AvA+pQ2hCOBrwC/ofwYvTgzMyKWYqrOPYwZG+a8/SIzvx4RpwK7A88GtgHWogQ67AXsFRFHA6/IzHu6n2lea3WWuBbYbgbHXdLcmO17mZl/A3aug1S8EFgEPLHma7O6vDUinp+ZZ8385UmSJEmSNO80Axt2Ai6d5nHTGcRzNvn4BaVuP11/7vL8qPt2HAO8D1gOeBlwcH3+pUy9NgfKlCQtGAZUSJLGyYOAy/vsh9JpoBV9f33bvl5aUzRe3yNNv/M097ef5x8/aEfEUj06C6zc5fnpeHV9vAF4SmZ2GzlgTmbPmI7M/GVEnANsTgmiODoiVgD2qElOyMyb5iyDkiRJkiR1ERGPAZ5aN9+bme/skrRbvfzaxvqDgYtmcPlmO0S/9ou1G+tDa7+o9ffP1oWIeCzwPMpACutQfnA/Dzi037lmof29vKRbwiG6rj6uAvxmSUZlXJL3MjPPBs6ux61CCazYG9iVMiLm1yNiw8z8+2zzJ0mSJEnSPHFdY/3GzPzVHOfjfiPKQ3MGi7X6pO23n8y8NiJOAnYDXhYR78rMpLQ3AJyZmRfPKqeSJI2hpeY6A5IkNWw+zf2/y8zFdb1V8Vw/IrpW+iJiWWDTtmOWJA+dznNzY311untUn2v08rj6eHqPYAooIxCOymxGxTy8Pj4tIjag/MB///qcoxhIkiRJksbV4xrrx/VI161e/vPG+tNmeO0/ArfV9X/qk3aLxvrI2i8y8zeZ+X7gKcCt9ekXtieb6Xm7WJL3clDOq4/LM+C2mGm+l52Ouzkzv5WZ/wJ8rD79YKYCgSRJkiRJWsjOa6xvPWe5mMrHBhGxds+Ug3FhY/3JfdJOtw2j1a9jfWBRRGwFPKY+Z78OSdKCYkCFJGmcvKzbjojYHNi4bp7a2NVaD8psB928AFitw/HtNomITXvsf0V9vBs4o21fcyTEXhXQPXrs66c1u1TXUSJr/vt1rBik2+vj8jM45suUzgBBGcGgVXaXAKcPLGeSJEmSJA1Wc9bnXjM4vLbL879ganbOV0XE/aZ74cy8C/hh3XxmRKzbI/mr6uNdzEH7RWZeDrRGKVyzbfftjfWZtCW0O52pQIN9I2LpJTjXbH2LqQCRNw3jAn3ey35Oa6zP9FhJkiRJkuajnwNX1PV9ImKFOcrHN+tjAG8c9sUy8wqm2g92i4iObS71/dhtmqc9Fbisrr+cqX4dtwBfnWVWJUkaSwZUSJLGyc4RcZ+R9mrngs/UzXsa6wDfAP5S198REZt0OP6hwIfr5m3AkX3y8dmIuE+niIh4EbBD67qZeWVbkp9SOioAvDkiosM53sa9R4mcqd/Vx6dGxCM6nH8t4AtLcP7ZaL0PD4yIVaZzQGbezFQF+zXA0+v6UXWaSEmSJEmSxtHvGut7d0oQEa8DntdpX2beA3yobq4LHBMRy3U5z1IRsU7b04fVx+WAI+qMnO3HvQJ4Vt08YRjtFxHx/Ii4f4/9D2VqxMJL2nZfB7RmHt2w2zn6ycwbmWojejLw0U6vpeZn2Yh44Gyv1SMPvwW+Vjf3iIi39EofEetHxJ5tz83qvYyIDSJi2z5ZfFZjvb0cJEmSJElacGrby3vr5gaUtpeuAzpExKoR8YYh5ON7wNl1822d+sK05WOTiNhpCS/baidZF3h/lzQfAtrbmzqq72VrJop/AXav61/LzFtmm0lJksbRMv2TSJI0MucCX6o/Bh8P/A14PLAf8Oia5rDM/GXrgMxcHBH7UEYEXBU4MyI+RBmB725gK+DtQOtH87dm5rV98rAZcG5EfAC4gDKzxQsoHf8Bbgbe2n5gZl4dEV8D9gSeDXwzIg4D/go8DHgJpZL505qv2TgG2IkyCuYPI+L9wM/qvq2AtwBrA2cBW87yGjP10/q4FPDpiPg48I/3ODN/3+W4wykjGLTK5h7gqCHlUZIkSZKkQTgP+BVlFs3XRMTqlIENrqT8WL0XpQ3hTGDrLuc4jFK3fyawC3BBRHyS0iZxG6Ve/xRK+8KXgINaB2bmKbXtYTdKZ/n/jYj/AS4CVqfMKtGaXfN6SjvBvQwiEvFtAAAgAElEQVSo/eJNwBcj4hTgB8BvgJtqHjYD9gVWrGk/3Xb9uyLinPr+vCIizgPOB+5s5Tszr+9y3XYHUN7HTYA3AFtGxGco7TmLKWWyTX2t72Q47Q6vo7zmDYBDIuJ5lPabC4E7gAcATwCeQxlQ4kTKzJ0ts30vHwacHhG/ruc8F/hz3fdQSieHVmeN84H/G8zLlSRJkiRp7H2aqXaX3YAn1faCsyl17lUpgxcsAnamzKb5iSHk40X1mmsAx0XEXsBxlAE77qb0ldiU0k70FOAQSt+X2foEpQ/GxsCb6iCdn6PM2LEusA+wY81TayCNfgNefh44EFip7TlJkhYUAyokSePkhZRAiNfXpd3X6dwR4JSIeDkl2n4V4F11abobOCAzP9UnD6fU5UA6z2TxN2DnzLy0y/FvpvzY/UjguXVp+golkODUPvnoKDOPj4gjKZXgdYCPtSW5u+ZhdUYXUPED4H8pFfwX1aWp4+iQmfnT+qP/RvWp0zLzT0PLpSRJkiRJSygzMyJeQqkLr05py2gfYfACyo/1f6GDzLwnIp4PHE0JvngU8NEZZOOllLb9XYAnAcd2SPMXYMfM/HOHfTCY9ouVKK9zty777wEOzMxvdNj3PkoHgQdQgkaaDqYRRNJLZt4WEU+ntBk9jTJTxWenc+ygZOb1EbE1ZSbObWo+ntbjkL91eG5J3suNmGpb6eQiYFdnBJUkSZIkTYrafrM7cCjwWsoMmR/sccjVQ8rHHyJiS0q7xcaUwIles1B0ajOYyfUWR8SOlHarDenc5vM94CPAt+v27X3OeUVEfBf45/rUxZn5kyXJpyRJ42ipuc6AJEktmXkJ5Yfv91JG47uNMjrAj4C9MvMFmXlXl2OPpowgcGg99lbg78AfKBH3m2bm+6aZj4MoowaeQhmdcTFwKfBJ4HGZ+cMex/4V+CfgA5RRBe6gjAjZeg17UoIeZi0zX0EZLfLHlNky7gAuo4yIuVVmHrok559Ffu6hjIr5buAXwC30H8Wgpdnpw1EMJEmSJEljLzPPB55IGe3wMsrMCtdTRvd7K7BFZl7Z5xy3ZeZulBkLvgBcQmnHWAxcTgk2eA1lZML2Y2/PzF0pIyieQAmeWAzcQJmFYH/g0TWf3a6/pO0Xe1JGNfwSZfaDq4C7KG0CFwKforTFvLvL9U8BtgdOqvm/s1O66cjMazNzW2BXyoynV9TXczvwR+BrwIu596wQA5WZV2Xm0yidFL5Yr3sb5XVdQ5nt4xBg29qu0zTb9/LHlJE03wecDvye0k50J6U963uUTiNPrG1ukiRJkiRNjMy8MzNfT5k18uOUATBuorR33ESpgx9BGezisUPMx8WUdqQXUQIr/sRUG9CVwBmUvhZPzsz2gUNnc70/UV7zgZRZVv8O3EgZJPP1lMCIFRqH3DSN036hsd5pYFJJkua9cFAiSdJcioiDKBU5MrPjTAYjykfrH+LBNaBCIxARX6Q0HNwAPDgz75jjLEmSJEmSJEmSJEmSJC1IEfFO4L8pAzqskpk9Z6mIiPcA/0kJRnlov4FEJEmaj5yhQpIkzYmIuD+wS938osEUkiRJkiRJkiRJkiRJwxERAexeN8+fRjDF0sBL6+a3DaaQJC1UBlRIkqS58m/AinX903OZEUmSJEmSJEmSJEmSpPksItaLiGV6JHkXsHFdP3oap3wxsG5dt1+HJGnB6vXPU5IkaWBqpX09YHlgO8qUkADfzMwL5ypfkiRJkiRJkiRJkiRJC8DewMsj4kvAmcBfgGWBxwIvAxbVdL8GPtfpBBHxiHrMZsBH6tO/AP7fsDItSdJcM6BCkiSNyrrA79qeuwl4yxzkRZIkSZIkSZIkSZIkaaF5GPD2HvsvAnbMzDu67G/v13En8LrMzEFkTpKkcWRAhSRJmgtXA2cB78jMP8x1ZiRJkiRJkiRJkiRJkua5IygDWz4LeASwFrAScD1llokTgc9n5uJpnOsG4OfAf2XmWcPJriRJ4yEMHJQkSZIkSZIkSZIkSZIkSZIkSZNmqbnOgCRJkiRJkiRJkiRJkiRJkiRJ0qgZUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZL+P3t3kNPWFQZQ+OK6IlUbxKQDpGQH6bCsg3Yj7KxlHbSzZg8ZZBIMlRopmA6aSIWQAk3ws32+b2SuLN4/ssV/dQQAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmq37gzs7O7hjjh/c/vh5jXK56BgAAANbeV2OM79+//uPq6urtlMPAl2IvAgAAwD3ZjbB17EUAAAC4p5XuRVYeVIx//jj+bYLnAgAAsJl+HGP8PvUQ8IXYiwAAAPBQdiNsC3sRAAAAHurR9yKzx/zlAAAAAAAAAAAAAAAA62iK/1Dx+sOL09PTcXBwMMEIAAAArLNXr16Nw8PDDz++/q/3woaxFwEAAOBOdiNsKXsRAAAA7rTqvcgUQcXlhxcHBwfj2bNnE4wAAADABrm8+y2wMexFAAAAeCi7EbaFvQgAAAAP9eh7kdljPwAAAAAAAAAAAAAAAGDdCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmUw+wbpbL5VgsFtfO9vb2xmymPQEAAADYNrftgqa2XC7H+fn5tbOnT5/aT30G+z0AAAAAAFjPe5FVK93DuB+B+xFU3LBYLMbR0dG1s5OTk7G/vz/RRAAAAAA8ltt2QWwf+z0AAAAAAHAvUuN+BO5HdgQAAAAAAAAAAAAAAOQIKm44Ozu71xkAAAAAAAAAAAAAALC5BBUAAAAAAAAAAAAAAEDOfOoBAAAAAGCd/Pni53E1351ugHd/je9e/nrt6OLFT2PMn0w00GbZefd2fPvyl6nHAAAAAACAjTD5vciqbek9jPsR+P8EFQAAAADwL1fz3XH19TeTPX/ntsP5k0lnAgAAAAAAttPU9yKr5h4GuGk29QAAAAAAAAAAAAAAAACrJqgAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMiZTz3Aulkulx+dvXnzZjx//nzMZvoTAAAAYHstl8uxWCyune3t7dmJAHwmn68AAAAA28W+B4BN47vr0wQVN1xcXHx0dnx8PE5OTsb+/v4EEwEAAACsxmKxGEdHR9fO7EQAPp/PVwAAAIDtYt8DwKbx3fVpkhIAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAPibvfuJjeuq/wZ87Lj5ya/SNEZq+6LWYovUIL1ITXYNKxYsQIioiaNEqhDQFJImFFg6RaLuFikhEW1ZISVK0qqoArGhK9JVky4imggQC6SGqmoiZJpatX6uY78bbDnj8Z07M/fM3Lnf55EQ9vjc8+/eOb33jD8xAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQEVJH330UfrHP/6RlpaW0sLCwvrrCwsLaWlpKS0tLa2/tvZ962vtbCy3VZnW8v0oe3y/7Qyr7rrJMdatrqvWtiLNM0TlfQ5EYb3Lx9wCADRT0X1eu591W77b9te+n5+f37L8Vsd02mevuu/dau1n0++xo4wzl17nzXx3VsUc1WWec/UjR70bPzMdRXU550A9WSMgJu/9wSrz+3WDOied2nFtAECzCVSU9MMf/jD94Ac/SN/97nfTgQMH0vz8fJqfn08HDhxIzz//fHrhhRfS4uJiWlxcTC+88EI6efLkfa/99Kc/TYuLi/fVuVb2hRdeSPPz823LtJbvVKZI2eP7bWdYdddNjrFurHOrr3O1DdSL9zkQhfUuH3MLANBMRfd57X7Wbflu21/7/p///Gfav39/+uijjzaVX9snbz1m4775IPrerdZ+ltnnH2Xtzgvl9XpNenbrrIo5qss85+pHjnrXPifdKixXd3U550A9WSMgJu/9wWrdD+j2ub/qvhS149oAgOYTqOjShx9+mD777LN06tSpNDs7mz777LP097//Pd28eTNduHAhnT9/Pt28eTP99a9/ve+1999/P124cOG+utbK3rx5M83OzrYt01q+U5kiZY/vt51h1V03Oca6sc6tvs7VNlAv3udAFNa7fMwtAEAzFd3ntftZt+W7bX/t+x/96EdpZWUlnThxYlP5tX3y1mM27psPou/dau1nmX3+UdbuvFBer9ekZ7fOqpijusxzrn7kqHftc9JTp05VVucg1eWcA/VkjYCYvPcHq3U/oNvn/qr7UtSOawMAmk+gokc3btxIN2/evO+1ixcvposXL2567dKlSymllC5fvpxu3bqVUkrp1q1b66+nlNbr2lhmo1u3bqXLly8XlilS9vh+26miD02QY6wb67x06dL69bPx68uXL6erV6+GmWeIKtJ6CsRmvcvH3AIANFPRfV67n3Vbvtv2N+5Vrv0rjnfu3El//OMf18tv3Ce/dOnSfT3bnlAAACAASURBVMes7Zu37oHm6Hu3Nrax1s9O+/yjrN14mzjOXHq9Jj27dVbFHNVlnnP1I0e9V69eXV8Lbty4ka5evdp3nYNUl3MO1JM1AmLy3h+s1v2Adr9fN6hz0qkd1wYAxCBQUaF79+6llZWVTa/du3cvpZTS559/ns6cOZNWVlbS6dOn11/faK3M6urq+murq6vpzJkzaXl5ecsyRcoe3287VfShCXKMtbXO5eXl9etn49eff/55mpubCzHPEFWk9RSIzXqXj7kFAGimovu8dj87ffp0On36dOnyne4Z2x2zca9yo1/+8pdpeXl50z758vJy22Na90Cr7nu3Wtto1bR77K3G27Rx5tLrNenZrbMq5qgu85yrHznqXVlZSXNzc/e9Njc3t+kz0rqqyzkH6skaATF57w/W6urqpv2A1t+vK3rur7ovRefetQEAcQhUDNi1a9fSq6++mt57773CMu+8887691euXEnXrl0rLFOk7PH9tlNFH5ogx1jb1bmVu3fvVto2UC+R1lMgNutdPuYWAKCZiu7z2v3svffe27RPXVS+0z1ju2Na9yrX3Lt3Lx0/frztPvlWx+Tse7fK7Nc26R67aLxNGmcuvV6Tnt06q2KO6jLPufqRo95XX31101p99+7d9Nprr/Vc5yDV5ZwD9WSNgJi89wfrypUrhb83l1Lxc3/VfSk6964NAIhDoKLF22+/nb2NN954o2OZc+fOpcXFxbS4uJjOnTtXWKZI2eP7baeKPjRBjrEW1VlW0+YZooq0ngKxWe/yMbcAAM1UdJ939uzZdPbs2dJ1FZXf6p6xlz3Mv/3tb12VL6OXvnerm7E24R67zHibMM5cen0G8+zWWRVzVJd5ztWPHPXOz89v+Tnn66+/nubn57uuc5Dqcs6BerJGQEze+4O1uLjY1R5FqyrPSadzPz8/79oAgEAEKlr8/ve/z95GmT95+/HHH6cLFy6k8+fPp9u3bxeWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd592+fTvduXOndF1F5be6Z6xiD7MKvfS9W92MtQn32GXG24Rx5tLrM5hnt86qmKO6zHOufuSod3Z2dsvPOVdWVtKpU6e6rnOQ6nLOgXqyRkBM3vuDdf78+a72KFpVeU46nfvZ2VnXBgAEIlCxwf79+4fdhftcvHgxXbp0qbDMpUuX0q1bt9r+7IMPPkiXL1/uePy7775bqtxW7RQp24de6q6bHGMtU2dZTZlniCrSegrEZr3Lx9wCADRTlXuIZbTeMw66/X70e7/by1hH+R67m/GO8jhz6fUZzLNbZ1XMUV3mOVc/ctT77rvvpps3bxaWuXHjRrp69WrpOgepLuccqCdrBMTkvT9YH3zwQcffgyujinNS5tx3uve9dOlS+vDDD/vqBwBQHwIV//Xpp5+mf//738Puxn3u3buX7t27V1hmeXk5nTlzJq2urt73+urqavrVr36VlpeXOx7/8ssvlyrXrp0i3fSh27rrJsdYy9ZZVhPmGaKKtJ4CsVnv8jG3AADNVPUeYhkb7xmH0X4/+rnf7XWso3qP3e14R3WcufT6DObZrbMq5qgu85yrHznqXVlZSS+//HKp9ufm5rb8KxbDUpdzDtSTNQJi8t4frNXV1XTmzJmOvwdXRr/npKq9jOXl5fSb3/ymrzoAgPqYGHYH6uKb3/zmsLvQs2vXrqV33nkn7du3b/21K1eupGvXrpU6/u7duz23U6SbPnRbd93kGGs3dZY16vMMUUVaT4HYrHf5mFugrHa/+PTJJ58MoSeD03Z8PiAdbW3OX9OvY+qv3TVYxS+b5thDLGPtnnF1dXUo7fej1/vdfuZ6FO+xexnvKI4zl16fwTy7dVbFHNVlnnP1I0e9r776aunPE+/evZtee+219Nxzz5UqPwh1OedAPVkjICbv/cG6cuVKeu+99yqrr59zUuVeyvXr1ze9Zh+SUeBzkQbz+Qgd5PqsogkqD1SMjY093qHI/626zX5V8efEhu3cuXNpz549aXJyMi0uLqZz585lb6dIL30oW3fd5BhrHc4hUA+R1lMgNutdPuYWBmsU90U2+vTTTze99swzzwyhJ0N2739TSv9n2L2gV/f+d9NLIa9jau/TTz9NX/jCF3o+PuceYhlnz54d2X+hs9v73SrmepTusfsZ7yiNM5den8G+8pWveHbroIrn27o8I+fqR4565+fn0xtvvNFVna+//no6ePBgmpqa6uq4HOpyziGKUdsXsUZATN77g7W4uJjOnj1beb29nJNB7KXYh2Rk+VykGXw+Qg/6/ayiKcYz1Hmrw/9q989VvfLKK8PuQt8+/vjjdOHChZRSSufPn0+3b9/O3k6RXvpQtu66yTHWOpxDoB4iradAbNa7fMwtDNzI7YsAMJpy7iGWcfv27XTnzp2htd+Pbu93q5jrUbrH7me8ozTOXHp9BpudnfXs1kEVz7d1eUbO1Y8c9c7Oznb9LxWurKykU6dOdXVMLnU55xDISO2LWCMgJu/9wTp//nyW/YNezsmw91IAgPrKEagYKX/+85+H3YXKvPnmm2lhYSH97ne/y97O0tLSlj9fWlrquQ+d6q6bHGPtp85+2wbqJdJ6CsRmvcvH3AIANNMg9hCbruz9bpVzPQr32FWMdxTGmUs/83fz5s2ejosy31U839blGTlXP3LUu7Cw0PO1eePGjbSwsNDTsVWpyzkH6skaATF57w/W0tJSevPNN7PV3805sZcCABTJEaiY7vC/PRna7NnXvva1YXehMvv37087duxI3/nOd7K3s3379i1/vn379p770Knuuskx1n7q7LdtoF4iradAbNa7fMwtDMVI7YsAMJoGsYfYdGXvd6uc61G4x65ivKMwzlz6mb8nnniip+OizHcVz7d1eUbO1Y8c9e7YsaPna3P37t1px44dPR1blbqccwhmZPZFrBEQk/f+YG3fvj3t378/W/3dnBN7KQBAkYmqK1xdXf1X0c/HxsaqbrJvzz33XHrllVeG3Y2+PProo+nw4cMppZSOHDmS3n777Sx/omxjO0V66UPZuusmx1jrcA6Beoi0ngKxWe/yMbcwWKO4L7LRgw8+uOm13/72t+mhhx4aQm8G45NPPknPPPPM/S9u+5/hdIZqtDl/Tb+Oqb92a027NbcbOfcQy3jkkUfS6upqunPnzlDa70e397tVzPUo3WP3M95RGmcuvT6Dzc3NpaNHj3p2K1DF821dnpFz9SNHvXNzc2n//v1pZWWldJ3j4+PppZdeKl0+p7qcc4hi1PZFrBEQk/f+YB05ciT96U9/qnz/oJdzMoi9FPuQjAKfizSYz0foIMdnFU1ReaBiFM3MzIx8oOLYsWNpcnIypZTS5ORkOnbsWPr5z3+etZ0ivfShbN11k2OsdTiHQD1EWk+B2Kx3+ZhboBvj45v/mOlDDz2Udu3aNYTeDFHNfsGDLrU5fyGvY2qv3ZrbjZx7iGUcP348ra6uDq39fnR7v1vFXI/SPXY/4x2lcebS6zPY1NSUZ7cOqni+rcszcq5+5Kh3amoqPf300+ny5cul6zxw4ECampoqXT6nupxzoJ6sERCT9/5gTU5OpuPHj1e+f9DLORnEXop9SEaWz0Wawecj9KDfzyqawiz81x/+8Idhd6Fne/bsSU899dR9r+3bty/t2VPur2Xu3Lmz53aKdNOHbuuumxxj7abOskZ9niGqSOspEJv1Lh9zCwDQTDn2EMtYu2ccVvv96PV+t5+xjuI9di/jHcVx5tLrM5hnt86qmKO6zHOufuSo9+jRo6U/T9y5c2d69tlnS5UdlLqcc6CerBEQk/f+YO3bty89+eSTldXXzzmpci/jq1/9aiX1AADDJ1DxXw8++GB6+OGHh92N+2zbti1t27atsMzExEQ6ceLEpj+NOTY2lk6cOJEmJor/CMnExESanZ0tVa5dO0W66UO3dddNjrGWrbOsJswzRBVpPQVis97lY24BAJqp6j3EMjbeMw6j/X70c7/b61hH9R672/GO6jhz6fUZzLNbZ1XMUV3mOVc/ctQ7Pj6eZmdnS7U/Oztbu3/ZsC7nHKgnawTE5L0/WGNjY+nkyZMdfw+ujH7PSVV7GRMTE+n73/9+X3UAAPVRr92sIXvjjTeG3YX7HDp0KM3MzBSWmZmZSdPT021/Nj09nQ4ePNjx+L1795Yqt1U7Rcr2oZe66ybHWMvUWVZT5hmiirSeArFZ7/IxtwAAzVTlHmIZrfeMg26/H/3e7/Yy1lG+x+5mvKM8zlx6fQbz7NZZFXNUl3nO1Y8c9e7duzc98cQThWV2796d9u7dW7rOQarLOQfqyRoBMXnvD9b09HTH34Mro4pzUubcd7r3nZmZSY899lhf/QAA6kOgosW3vvWt7G2U+VdZHn300XT48OF05MiR9MgjjxSWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd5z3yyCNd/XXmovJb3TNWsYdZhV763q1uxtqEe+wy423COHPp9RnMs1tnVcxRXeY5Vz9y1Ds3N7fl55zj4+PppZde6rrOQarLOQfqyRoBMXnvD9aRI0e62qNoVeU56XTu5+bmXBsAEIhARYuvf/3r2dt4+umnO5Y5duxYmpycTJOTk+nYsWOFZYqUPb7fdqroQxPkGGtRnWU1bZ4hqkjrKRCb9S4fcwsA0ExF93nHjx9Px48fL11XUfmt7hl72cP88pe/3FX5Mnrpe7e6GWsT7rHLjLcJ48yl12cwz26dVTFHdZnnXP3IUe/U1NSWn3MeOHAgTU1NdV3nINXlnAP1ZI2AmLz3B2tycrKrPYpWVZ6TTud+amrKtQEAgQhUDNiePXvS0aNH05NPPllY5qmnnlr/ft++fWnPnj2FZYqUPb7fdqroQxPkGGu7Oreyc+fOStsG6iXSegrEZr3Lx9wCADRT0X3eVj9r3afuVL7onrHdMa17lWu2bduWzp4923affKtjNnryyScr7Xu3yuzXNukeu2i8TRpnLr1ek57dOqtijuoyz7n6kaPeo0ePblqrd+7cmZ599tme6xykupxzoJ6sERCT9/5g7du3r/D35lIqfu6vui9F5961AQBxCFRUaNu2bZv+zO22bdvStm3bUkopPfDAA+nkyZNpfHw8nTx5cv31jdbKjI2Nrb82NjaWTpw4kSYmJrYsU6Ts8f22U0UfmiDHWFvrnJiYWL9+Nn79wAMPpFOnToWYZ4gq0noKxGa9y8fcAgA0U9F93lY/O3nyZFfli+4Z2x2zca9yo5/97GdpYmJi0z75xMRE22Na90B//OMfV9r3brW20app99hbjbdp48yl12vSs1tnVcxRXeY5Vz9y1Ds+Pp5mZ2fve+3FF1/c9BlpXdXlnAP1ZI2AmLz3B2tsbGzTfkDr79cVPfdX3Zeic+/aAIA4RmNnq4Z2796dnnjiifteO3ToUDp06NCm12ZmZlJKKR08eDA9/vjjKaWUpqen119PKa3XtbHMRtPT0+ngwYOFZYqUPb7fdqroQxPkGOvGOmdmZtavn41fHzx4MO3ZsyfMPENUkdZTIDbrXT7mFgCgmYru89r9rNvy3ba/ca9ycnIypZTSww8/nL7xjW+sl9+4Tz4zM3PfMWv75q17oDn63q2Nbaz1s9M+/yhrN94mjjOXXq9Jz26dVTFHdZnnXP3IUe/evXvX14Ldu3d3/BeG66Yu5xyoJ2sExOS9P1it+wHtfr9uUOekUzuuDQCIof0/n8SWHnvssTQ/P59eeumllFJKhw8fTtPT02liYiIdPnw4pZTS9evX08rKShofH19/7S9/+cv612uOHDmSrl+/nlJKaW5uLr344oubyrSWb1dPWWWP77edYdVdNznG2lrnVl9HmmeIyvsciMJ6l4+5BQBopqL7vHY/67Z8t+2vff+Tn/wkfe9730tnzpzZVH5tn7z1mF/84hf37Zvn7nu3WvvZ2t+m2eq8UE6v16Rnt86qmKO6zHOufuSod25uLh0+fHj9M9NRU5dzDtSTNQJi8t4frHb7Ad0891fdl6J2XBsA0Hxjq6urg21wbOzxlNKtlFK6detW7VKb77//fnr++ec3vf7rX/86TUxMpC996UtpaWkp7dixI6WU0sLCQtq+fXtKKa3//9LS0vpxG19b+3qjtbLbt2/fskxr+U5lqji+33aGVXfd5Bjrxjq3+jpX20C9eJ8DUVjv8qnz3P7rX/9K09PTa99Or66u/muY/YGq1H1f5D//+U/69re/fd9rb731Vtq1a9eQepRfuzEv/L9DafWBySH1KKWxzxfTjusX73tt2H0aJe3mr+nXMfU36PW16D6v3c+6Ld9t+2vfz8/Pp6mpqbblU0ptjynaA83R92619rPO99hViDLOXHqdN/PdWRVzVJd5ztWPHPUuLCysf2Y6iupyzrdib4Qmqvu+yEZ1XyOAPLz3B6t1P6Db5/6q+1LUTrufR9xPpxnq+LnIoDX1cxifj9DJKP23a9D7Iv5CRUlf/OIX1y+YjTdH7TYJ291cbXXDtfH1Mjd//d4glj0+541opAePHGPd6pppbSvSPENU3udAFNa7fMwtAEAzFd3ndbN/3elnZY9Z+75dmKJTnzrtoVfd92619rPp99hRxplLr/NmvjurYo7qMs+5+pGj3lEOU6RUn3MO1JM1AmLy3h+sMr/rNKhz0qkd1wYANNv4sDsAAAAAAAAAAAAAAAAwaAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOBPD7kDd7NixY9Nrp0+fTjt37hxCbwAAAAAGZ+fOnemtt97a9BoA/bG+AgAAADSL/R4ARo3/dm1NoKLF+PjmP9qxa9eutq8DAAAANMn4+HjatWvXsLsB0DjWVwAAAIBmsd8DwKjx366tSQkAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAWz1K/gAAIABJREFUAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFTw/9m783iJ7vl+/K93FhJLEEEsrRDVSqmqWBJClKpd7UuVaC21Vf3Kl1aRllpKS2upJYi9VAVBpaioWCKofYkgUYkgSBCSiHx+f5wzvZObmbvMnTtz753n8/E4jzln5nPO58ycz+fMOZ/zeZ8DAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALZ7d5rwAAAAAAbCV1/rnzXYHzzxn5Xs1+TbaluW8/AAAAAADYRhauXX2HXodZuO0IUySgAgAAAACGXPILb5v3KlzEpb5w1LxXAQAAAAAA2IG24nWRWXMdBhbbLvNeAQAAAAAAAAAAAAAAgFkTULHMZS5zmTW9BwAAAAAAAAAAAAAAbF8CKgAAAAAAAAAAAAAAgIWz27xXYKvZa6+98va3v/0i7wEAAACw84xqC5q3Cy64ID/5yU8u9N6lL33p7LKLe6NMSvseAAAAAABszesis7ZI12FcH4G1EVCxzC677JLLXvay814NAAAAAGZgq7YF7b333vNeBQAAAAAAYIfZqtdFZs11GGDYzgunAgAAAAAAAAAAAAAAWIWACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4ew2hzx3HYx85zvfmUP2AAAAbHXLzhd3HZcOtiHtIgAAAKxK2wg7lHYRAAAAVjXrdpFqrW12HhfOsOrAJCfMNFMAAAC2sxu11j4575WAadAuAgAAwAS0jbAjaBcBAABgApveLrLLZi4cAAAAAAAAAAAAAABgK5rHEyounuR6/eT3k/xypiuwNvtm6a4IN0py+hzXBaZFuWanUrbZiZRrdiLlmvXaNckV+vHPt9bOnefKwLSMaBe5QuwfWeL/kgFlgQFlgWHKAwPKAsOUh51L2wg7zgb6i9jXbS+21/ZhW20vttf2YnttH7bV9mJ7bS+21/axFbfVTNtFdtvMhY/Sf6Et/TjSqhqePL219u15rQtMi3LNTqVssxMp1+xEyjUTOmXeKwDTtrxdpKqGOw7YPy44/5cMKAsMKAsMUx4YUBYYpjzseNpG2FEm7S9iX7e92F7bh221vdhe24vttX3YVtuL7bW92F7bxxbeVjNrF9llVhkBAAAAAAAAAAAAAABsFQIqAAAAAAAAAAAAAACAhSOgAgAAAAAAAAAAAAAAWDgCKgAAAAAAAAAAAAAAgIUjoAIAAAAAAAAAAAAAAFg4AioAAAAAAAAAAAAAAICFI6ACAAAAAAAAAAAAAABYONVam/c6AAAAAAAAAAAAAAAAzJQnVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcHZ0QEVVXb2q/qGqvlJVZ1fVD6vqhKp6QlVdYor53L6qjqqqb1fVuf3rUVV1+2nlAQObWa6r6hJVdfeq+pd+mT+qql9U1Q+q6mNVdXhV7Tut7wIDs9pfL8vzElX1japq/XDyZuTD4pplua6q21TVkVV1Up/XWVV1YlW9taoeUVWXmmZ+LLZZlO2q2q+qnlNVn6qqM/vjkR9W1Uer6qlVdcVp5AMwTdogGNjk8/ZdquqAqjqsql7SL/fcofOaQ6f0NZgS7TgMbHJZuE5VPbqqXlNVn+7/G87p8/lGVb25qu5aVTWt78PGaAtjYJP3DYcNbe/VhsOm9JWY0Cz3C6UtEZiT6tp9H1NV/15VX6uqn/XHrd+uqrdX1X2rard1LO+6VfWyqvp6Vf28qr5fVR+uqj9dz3LWmNf9quo/q+r0fp1PqarXV9VB08xnK6mqS1XVLarq8VX1lqr65nqPJavq5HUcjwyG/SZc3yM3O4+tbErba791/IZHTmm9d+vr7If7Ovzzvk6/rKp+cxp5bDVT2la79Mt4ZlUd2++bzquqH1fVF6prN/ytKa2vurXB7bVsef675qi69tL1/i8dPmFeh252Hjtdv39b0284xTwP7uvJKX29Ob2qjqmq+00rj52qpnysv0I+6tYqyjXriVVrU9ufbClVdeckr0+y15gkJya5Y2vtpA3ksUuSlyf5kxWSHZHk4a21CybNBwY2s1z3J1MfSbJaQ/mPkzystfbm9eYBo8xifz0m3+cl+Yuht05pre03zTxYXLMq11V1uSSvTnLXVZLeoLX2mY3kBcnMjrH/KMnLkuy5QrIfJrlva+19k+YDME3aIBjY7LJQVQ9KcuQKSW7VWjt2kmUzfdpxGJjBvuH1Sf5wDUk/lOQerbUfTJIP06EtjIEZ7BsOS9dutBYPbq0dOUk+bJy2RGARVNXTkzw5yWpBvickuWdr7VurLO+hSV6U5GJjknwi3b7zjPWu67J89kzy1iR3GJPkgiR/21r7m43ksxVV1QeTHDrm4zUdS/adja++jmzPSrJva+2cdcwzyOvIJA9aY/JrtNZOXm8eW9mUttd+Sb65xixf01o7bI1px+W3T5L3JLnRmCTnJnl0a+2IjeSz1UxpW30rya+skuyCJM9L8qS2gc6B6tbGt9fQsvx3zVnfufpp65zt/q21N02Q16FJPrjG5H/TWjt8vXnsdFV1bJJbriVta23DN5Lpy8dTMv4m9e9Od5y67uOUnW7ax/qr5HVo1K2xXLPemKlGNm4VVXWDJG9O1wnrp0mela4S7ZnkvkkemuTaSd5dVQe21n4yYVZ/l6VC8T9J/j7J15Psn+T/JblBkock+X6Sv5owD0gyk3K9V5Yuwn8kybuSfDLJD5JcIcnd+zz2SvKGqvpxa+0/NvSlWHgz3F+PyvfPk5yT5BdJLj2N5UIyu3JdVZdJ8r4kN+zfOipdw8jXk/wyXSPaLZPcY+IvA0NmUbar6mbpOonukq4x7zVJ3pHktCS/mq7B9s5J9k7yjqq6bmvtGxv7ZgAbow2CgRmVheHG6F8k+XyS3ZNcbwOrzibQjsPAjPYN5yc5Pl1Z+HyS09P9H1wuyW8keXiS66Y7Rzy6qm6+3S5k7BTawhiYQ1n4/XTn1uN8e4PLZ0LaEoEFcuV057Rnp9sHfSDJ19Idn1wnyZ+l61R9oyTvr6rfaa39dNSCquoOSV6arh35u+naTI5P12780HTnQzdOclRVHdpa++UG1vtVWeqQ+sEk/5TuP/V66dpf9k9yeFV9p7X28g3ksxUNt0H8MN0558FZPbB/2G0zvuPwwG2SPL8ff8sUOimelu7YZyWnbjCPrWga22vYX6e7PjPOjyZcbpKkqnZNty8YBFO8Lckr0q37Tfr8r5jkZVV16g5r05jGtrpK/3pSkn9P1x5wWrpjyFsleVy6NoH/l+5YbxrtxerWBuqW/64t4yXpzoNWsmuS/07XrvrjJG+fQr5/nK4j+Tjfm0IeO9knkzx4MzOoqodnKdjm60mema6d9SpJHptu33rHdPXr/pu5LtvU1I7110ndGuKa9RS01nbckO5PraW7MHDQiM+f0H/ekhw+YR7X7pff0lXKPZd9fon+/cF6XGvev4thew+bXa7THfC/OckBK6S5a7rOjS3diVnN+3cxbO9hFvvrEcvcNd3BdksXWXxyP37yvH8Pw84YZlWuk7y2X8Y5Se6yQrpKstu8fxfD9h9mdIz9rqFlPHJMmn8YSvOief8uBoPBoA3CMOOycOMkj0ly0yR79O8dPrTcQ+f9OxhmUx6042yfYUb7hhXP+fq2kH8fymfsOaRh+5eHMdtfW9gWG2a0bzhsaBn7zfs7G+ZXFvrlaEs0GAxzHZI8J13nmkuP+XzX/hxnsM976ph0u6frrNPSPc1g/xFpXjy0nMM2sM6/O7ScdybZddnn+yQ5pf/8R0kuN+/fecrb7GFJ7pehdqbNOJZctt1vvoHlHLnIx7nT2F5J9ptG3VljXn88lNeLR3x+rb6Ot3QdMnfM8cmUttVH0wU3jGzrSdeh8XtDx5nX3MD6qlsb317+u7bRkOT2Q7/hERtYzqFDyzl03t9rOw5Jju1/v2M3OZ+9k5zZ53VKkn2Wfb5rX59sz/G/4VSO9deYl7o1/rdxzXqDw7jH02xbVXXjJIf0k69srX1sRLJ/SPLlfvyxVbX7BFn9eZae8PGY1trPhz9srf0s3QXu9OkeN0EekGQ25bq19tHW2n1aa19aIc070t0ZIOlOwG6wnjxg2Az318s9Nt1duL6a7oAOpmZW5bqqbp7kj/rJv26tvXNc2tY5f715wLAZ7rMP7l9/0Fp7yZg0fzs0ftAEeQBMjTYIBmZVFlprn2itvbC19vHmsdJblnYcBma4b1jxnK91dzV87tBbh4xLy+bRFsbAHMsCW4y2RGCRtNae2Fr7+zbmLqj9Mesjk5zXv3XPMYu6W5Jr9uPPaq19fUSaJ2Tp7vlPmHCVk+Tx/ev56W4AdKG7hbfWzkjyxH7ysunuwrpjtNZe3lp7U2vtpM3Ko3+C0l36yW+01o7brLx2ullsrykb1K8fZkQ97b/Hs/rJa6Wr+zvCNLZVa+3g1toxre+5OOLzr2fpetpuSf5g0rwW3ZTqlv+u7eWBQ+OvndtaMEsPSXKZfvyJfT35P0PHqYP6tJE6uiNN8VifCblmPR07LqAiFz4IfPWoBK17nPngD++y6R7Js2ZVVenu8JYkX2mtfXxMPh9Pd5EiSe7azweT2PRyvQ4fHBrff5PyYDHMvFxX1dWz1HDwp62181ZKDxOYVbl+dP96VpIXTTA/rNesyvbg0d/fHJegtXZWkkEjxmqPCgfYbNogGNhK5+3M31YqD9px5msrlYXhi1l7bFIerExbGANbad/AfGlLBBjSWvtBks/1k+POX4b3nUeOWc7Pkrylnzygqq693nWpqksnuXU/+f7W2rfHJH1bkh/34zumw/cM3TtL5yc6rS6Ivk5ep598S19nRzlyaFz9Wj9tQluH/65toqr2ytL1mG8m+fAcV4fZGdTRH2fpBkUX0ten9/eTt+7rG+uwxmN9Juea9RTsxICKm/evZyf51ArpPjQ0frN15nGNJFcZsZyV8rlqusfjwSRmUa7X6uJD478cmwpWN49y/ZIkl0zyutbasRtcFoyy6eW6qi6WpQPU9w3uTFxVu1bVr1TVflWlcwzTNqt99uCk6hrjEvQNWfssSw8wL9ogGNhK5+3M31YqD9px5msrlYX7Do1/ZZPyYGXawhjYSvsG5ktbIsBFDc5hxp2/DPadX22tnb7Ccjb6P3qjLN3QZ2x7TB+wOuhIdCNPlVq3wV3AW5LXzXNFmKmbD42vVL9OT3JiP+l4eP20CW0d/ru2j3sl2bMff924p8Cwc/TnzDfuJz+2ys1IBvXq4kkO3NQV27lWO9Zncq5ZT8FODKgYRDGftMojaYcvGl1nbKrRDhiznGnnAwOzKNdrdcuh8S+PTQWrm2m5rqr7JrlDusck/sWky4FVzKJcXz9Ld+v5fFXtVVUvSHfH/m+lu1PCWVX1vqo6dJ3LhnFmtc9+af96+ar60zFpnjIiPcC8aINgYCudtzN/W6k8aMeZr7mWharap6oOqqpXJnly//YZSd4wrTxYF21hDMxj3/Dqqjqtqs6rqjOq6uNV9YyquuoGl8vGaEsEGFJVV8zSfu4i5y9Vdakkv9JPbnYbySTtMbsl+bUJ8lpIVXWNLHXiOq619o0pLfryVfWhqvpBVZ1bVd+pqmOq6tFVdYkp5bEIHlNVJ1XVOVV1VlV9sapeWlW/M4VlT1K/fqWqLjmFvBfJtNuE1K0J+O/adh44ND7NJyf9XVWd0tedH1XV/1TV8yd5EsmC+o2qOr6qzuz/l75dVe+oqgdOISDo2kl27cddg9tEqx3rT0jdWuKa9RTsqICK/g4qg7vVjntsVZKktfajdNE4ydKBy1pdbWh8xXyS/O/Q+HrzgVmW67Wsy/WT3LGf/HxrzYV4JjLrcl1Vl0vygn7ySa2170+yHFjJDMv18AHqLkk+meSx6R7HNnCxJLdJ8l9V9cR1Lh8uZMb77FdlqXHqxVX1iqq6c1UdWFV3r6qjkjy+//zvWmvvH70YgM2nDYKBrXTezvxtpfKgHWe+5lUWqurYqmpV1ZJ8P8lHk/xxkkrXefZurbUzN5IH66ctjIE5/k8cmuTKSXZPcvkkN0kXaHVSVT18g8tmAtoSAUZ6QrqOnUnylhGfz7KNRHvM5ntguvOUZLqdVi+V5BZJ9k73H7dvktsmeWGSE6vq4CnmtZP9TpL9091Jeq90xxQPT/KpPrDi4ivNvIpJ6lctm48V9AEOf95PnpvkHVNYrLo1Gf9d20RV7ZfkkH7yI621r09x8Qcn+dV0deeySX47XR39clUdXlW10szkSumeInGZdP9LV01ylySvSfKZqtpIZ231ZnZWO9afhLoV16ynabfVk2wrlx4a/+ka0p+d7nHXl9rEfM4eGl9vPpDMrlyvqD8hPiJLUZlPXiE5rGbW5fq56Q6wP5bkFRMuA1Yzq3K999D4E9PdYe69SZ6a5HPpGjXvkeTZ6U4on11VX2mtTaOhjMU0s312a+2XSR5UVUcn+askD+mHYR9M8kzBFMAWoA2CgS1x3s6WsSXKg3acLWFLlIUh/5zk6a21MzZp+axMWxgDsy4L30jytnRlYXAh85rp2o7uma5d6aVV1VprL58wDyajLRFgSFXdJEudf7+d5F9GJJtlG4n2mM33R/3rzzOdTnUtyceTHJ3k00m+m+5/73pJ/iRdR8yrJvnPqjqktfY/U8hzJzozyVFJjk3ytSTnpAvMvW263/FS6QIrLp3kDyfMQ/3afM9J18E0SV7cWjttA8tStzbGf9f28UdZCvR7zZSW+Z105+THpTs/Pz9d3bxTusDC3ZM8LV1n8L+aUp47yQVJPpDkPUk+m+QH6cr576T7L7pOuoC/D1bVjVtr35ogD/VmBtZ4rL8e6taFuWY9JTstoGKPofHz1pD+3P51z03M59yh8fXmA8nsyvVqXpTkwH78Na21o6e8fBbLzMp1Vd0i3Z0Yz0/yp621tt5lwBrNqlwPP852jyTvS3KnviN60t2B9KVV9YUkH0p357lnVdU7lX8mNNNjkf4OEg9M1xA7ykFJ/qSqvtxaO3WSPACmRBsEA1vlvJ2tYauUB+048zevsvDgdOeNle6uXAcmeUSSRye5ZlU9pLX23Q3mwfppC2NglvuGo9L9BywvAyckeXNV3Sndxefdkzy/bzs6fYJ8mIy2RIBeVV0pyVvT9V9pSR7UWvvZiKSzbCPRHrOJ+jvZ799PvqO19uMpLPZxY57G97GqekWSZ6TrUHfJJEdU1YH+6y7itCRXHVH//ifJe6rqxUnen67D4v2r6s2ttXdOkI/6tYmq6g/TtQEkyZeT/PUGF6lubYz/ru3jAf3rOZlOoN8JSa7eWvvFsvc/neTtVfXyJP+ZLrD9Sf0+9bNTyHcnufuY/c+Hq+ol6W4i8qB0NxV5QZK7T5CHerPJ1nGsv1bq1kW5Zj0lu8x7BabsnKHxi60h/eARdD/fxHyGH3O33nwgmV25Hquq/jJLd4c+IcmjprVsFtZMynV/R86Xp+tE8E+ttc+tZ35Yp3kchyTJE4cugP6f1tpx6S6KJ11k/rjO6bCamR2LVNUh6e6aeeckp6a7E8i+fb6/ku4Y5GdJ7pvkE1X1m+vNA2CKtEEwMPfzdraUuZcH7ThbxlzKQmvtm621L7TWPt9a+3Br7flJfivdndzulOSEqrraykthE2gLY2Bm+4bW2lkrdWRqrb0ryd/2k5dId3dZZkdbIrAlVVWbwnDYOvK7dJJ3Jxkcoz6ptfZfY5LPso1kW7THzHp7TdEDh8anchfwMR0uB5+11tqT093lOunubH3wNPJdj62+vVpr563UwbG19rUsdThOksdMmNWWr19bfVutsN6HJnllP/nDJPdorW20nUHd2hj/XROYw/HITZNcu598R2vtrI1+h9ba2SM6fA9//oksBT/V0Pi2spnbapX9zy/StYF/tX/rblV11Qm+wo6pN2sxh7q1nmP9NVmUurVOrllPyU4LqPjJ0PhaHhMyuCvLWh5zMmk+w3d+WW8+kMyuXI9UVQ9P8sx+8itJ7tBaO3uFWWAtZlWun5zk19M9zv5p65wX1msexyHfX+WxqccMjd9onfnAwEzKdnUdf96U7k4Bpye5aWvt9a2177bWftFa+3Zr7SVJbpHuRO0qmd7jVgEmoQ2Cgbmet7PlaMdhYMvsG1pr56R7csXP0gUq//2082BV2sIY2DL7ht7L090dMEluuUl5MJq2RGDhVdUeSd6R5Ib9W89rra10rDrLNhLtMZukvxZw737yO+menjQrLxsad+wzgdbah5N8qZ+8eVVN0u9M/doEVXVgknem68D403RtQl+eUfbq1nj+u7aH4UC/184w339NMnhKk7qzTq2187MURJZM9huqN5tkgmP9aVq0uuWa9ZTsNu8VmKbW2jlV9YMkl89SVNNIVXW5LG20/11nVt8eGl/tbl6/MjS+3nxgluV61PLul+Ql/eQpSX6vtXbGRpcLMyzXT+xf35/kzlU1Ks1g2Zesqvv249/baEQsi2eG5Xo4/bfHprpo2iusMx9IMtOyfbskg7tGvLC1dvqY9fliVb0+3R0nblhV11+ARzQCW5A2CAbmed7O1qMdh4Gttm9orZ1RVR9J8ntJ7lpVu690Jy+mS1sYA1tw3/C9fn32ydI5OTOgLRHYwq4zhWV8Z7UEVbVbkrckuVX/1hGttSesMtupQ+Ob3UayvD3mk5uY10bMZHtN2Z2TXK4ff+OoJydtoi8Njc/j2Gc7bq9RvpTkgCR7pDuW+f46519ev1ZquxjUr5bVj2WmaVttq+qe6P7eJJdOcm6SP2itHT+r/KNurcR/12Rmtk2r6mJJ7tNPfjcXDjTfVK2186vqxCQHZvuek8+7/m10/7No1+C28rH+1OyQurVmrllPz44KqOh9KckhSa5VVbv1kWij/MbQ+Hojcod3xL8xNtXG84GBWZR7s5/AAAAgAElEQVTrC6mqu6SLut0l3R/hrVtrszxBZeebRbkePF7qwf2wkn3S3Rk9ST6UxEVkJjGLcv3FofFdV0k7/Pm4dYG1mEXZHj55//QqaT+VLqBikKeACmBetEEwMPPzdrY07TgMbLV9w6CTyyXStYNshY44i0RbGANbbd/QVk/CJtGWCGw5rbWvbHYe/R3tX5euY32SvDnJw1ebr7X2k6r633Sdcza7jWSS9pjzk3xtgrwmNovttQmG7wI+66dQz/W4Z5tur1E2+jsur1+fWSHtoH797yyfwLmdtlVV7Z/uSS+XT7cfuk9r7QMzXg11awz/XZOZ8Ta9U5K9+/E3zDjQL9nm5+RboP5t9Pc7Mckv050P7/hrcFv5WH8TbOu6NQHXrKdgkkevbXXH9a+XzNLjYkYZfpTLR9aZxzeTnDZiOaPcon89NcnJ68wHBmZRrv9PVd06XZTgbkl+kO6Ohl+fdHkwxkzLNczIppfr1topSb7VT+5XY2432dt/aPzUsalgdbPYZw+f0K0W+L37mPkAZk0bBAPObximHYeBrbZvGL4b17Z5zPYOstXKA/OzZcpCVV0hXXBNsnTMyexoSwQW1cuSDJ6UdXSSB7TWLljjvIN9569X1b4rpNvo/+gJSc4bsawL6e9qfdPBPJ4Ct7L+2ON2/eRnWmufn/EqHDA07thncoPf8dx07RDrddzQ+Er1a98k1+4nnRuNUFVXS/eEwisnuSDJg1pr75jDqqhbK/PftbUNB/q9dpYZ93fxH+zn1J3JbGj/01o7L8kn+smD+voxzqBenZuVnwCz6DZyrD8VC1q3XLOegp0YUPH2ofGRd2Dqo6AGf4ZnJvngejJorbUkgwPQ36iqm45K178/iLR5Rz8fTGLTy/XQcg5OV74vnuSsJL/fWvviynPBRGaxv67VhiSn9MlPGXr/0HV+FxiY1f763/vXvZLceoV0dx8aP25sKljdLMr2N4fGD1kl7fDJ2TfHpgLYfNogGJjZeTvbgnYcBrbMvqHvZHFQP3lKa+0nm5EPK9IWxsCW2TckeViSQQf7D21SHoynLRFYOFX1j1l6+vAHktxrhbunjjK87zxsTB6XSHLvfvJLrbUT17ue/fHy4A7vt+mPp0e5e7r9a5Ictd58FtD9snTDpFk/nSK58N2RHftMoKpuluQ3+8njJukg2dfJwZ2K793X2VEOGxpXv5apqiumC6bYr3/rT1trb5zT6qhbK/PftUVV1eWT3KGf/Gxr7bMzXoX7JLlMP67urFPfaf6Ph9767wkXNaije+XC58XDeV0tyW36yQ9oWx1tCsf607KIdcs16ynYcQEVrbVPJPlwP/knVXXQiGR/keQ6/fg/LY+0rKpDq6r1w5FjsnpBusf9JMkLq2rPZcvYM8kL+8nz+/QwkVmV66r67STvThepdnaSO7bWPjWN7wDLzXB/DTMz4+OQc/rxf6yqvZYnqKoHJDm0n3x3a+1/1/5N4MJmVLY/kORn/fgjqup6o9alqm6f5G795KlZ+VHQAJtKGwQDzm8Yph2HgVmUhaq6dlX97krrUVWXSfLGJIM7rM30bnt0/FcwMKN9w35VdYOV1qOq7pTkqf3kz5O8eh1fgynQlggsmqo6PMnj+smPJrlra+3cdS7mqCTf6Mf/sqr2H5HmuUkuNzQ+al0OG9p/Hj4mr+f1r7sleXFV7bpsGfskeU4/eWaSI9b2FRbaoAPX+enOUdakqg4f2l6Hjfj8plV15RXmr6p6RpY6Qn42nnhwEVX1B1Xjn2ZVVdfKhbfbS8akW3F79Qb1a+8kfz9iGfsn+ct+8qQseKfv5arqskmOSfLr/VuPa629YoLlqFuz4b9r6xoO9Ftze1l/zj3YFseO+PxyVXXoKsu4cZIX9ZMtyb+sNf9FUFW36vd14z7fPV35HZwvHz3qPHa1bdU7It3NipLk2dUF2gwvY9d0/3mD+jSyji66aRzrq1uTc816Onab9wpsksemO0DbM8l/VtUz00XT7JnucTIP69OdmOQfJsmgtXZiVT03yZOSHJjkI1X1nCRfT/dI3CcmGTRWP7e19rUJvwsMbGq57g/Yj0kyOBj56yRnVdV1V5jte6217603Lxiy6ftrmINZHId8q6qemq6B8XpJPtEfh3wuS1Hzj+iT/zhLJy2wEZtatltrZ1bVs5P8bZJLJ/loVb0wyfuS/CjJlZLcNclDsxQY/qRZPx4SYARtEAzM5PxmxMXN3x4av11V7Tc0fVJrzd2F50M7DgObvW+4SpIPVNVn092F6lNJTk93sWLfJDdL8if9eJJ8IcmzJ/omTIO2MAY2uyzsl+SDVfWxJEen69g0+A+4ZpJ79sOgw9zjW2unTpAPG6ctEVgIVfWYJE/rJ09N8v+SXGOFvttJ8tXlnXxaa7/ol3V0un3YR/rOvJ9I1xH1oUnu0Sc/LsnrJl3n1tp/VdW/ptsf3yXJ+6rqBUlOS7c/fXKSX+2TP7G19qNJ89qK+s7zN1/29qUGryPaJ97bWjt9heUdkOSGQ2mneX56uyRPqqr3prum8KV0HYUvnuS30t29+iZ92p8leeh2ulPuWkxpex2V5KSqelu6OvXtJOcmuXKS3093bjlY5ltaa2/bwCq/Jt12uVmSR1XVvkleke560I2TPCVdHb8gyZ/N6e7Wm2Kj26qqLp7uBhuDNsE3JHn/Km1CZ7fWJnniu7o1hbrlv2tLGw70e8MUl3uZdOfkn8tSe9130nVC/tUkd0ryR1m6+cnz3CjnIh6U5J1V9c4kxyb5arrz1UulO554WJID+rTfS3duPZHW2g+r6olJXprk6kmOr6q/S/L5dG2vf57kVn3yN7XWjp00r51qWsf6a6Burcw1641qre3IIcmd00WOtTHDV5Nca8y8hw6lO3KFPHZJ8soV8mjpIth2mffvYdgZw2aW63SPlVupLI8aDp/3b2LY/sMs9ter5H9yP//J8/4tDDtnmFW5TvKsdA2J4/L5bpKD5v17GHbOsNllO11HjuevUq5bkvPSdfaY+29iMBgMrWmDMMy8LKznvH3scgzbuzxEO862Gja5LBy6jjLwriRXmPfvsejDLP4rVsn/5GgL2xLDFtk3nJ3kYfP+LRZ9mNV+IdoSDQbDHId0HeHWew6z3wrLe2i6jt7j5j0+yT4rzH/YUNrDV0i3Z7qOy+Py+eVK82/nIes/7zx0leU9eyjtvda5LocPzXvYKp+vNJyS5Gbz/m236vZax7wvSXLxSbfXULp90nUoH5fPOUkeMu/fdqttq3TB0+vdnx47ybZSt6a7L4z/ri01JPmNod/k3eucd7geHrvK5ysN56frhF7z/j222pDkyDX+hp9LcsCk22pZ2r/JyufM706yx7x/m604ZErH+urWVLaFa9YbGHbqEyrSWju6qn4rXdTNHZNcLV3Hq5OS/FuSF7XWfrbBPC5I93iUf08XvXOjdAf8ZyQ5IcnLWmv/sZE8YNgsyjXMmnLNTjSrct1a+8s+Iv8RSQ5Jd4eYc9JFE78zyQtba2etsAhYl80u2607+3pcVb0+yUPS3fHl6kkukeSnfT4fSnecfeJGvgvANGmDYMD5DcOUBwY2uSx8JN2dQm+T7o5QV0v3dLdLpLtr2zeTfDzd3dM+spHvwXTYNzCwyWXhU0kekOSgdPuGK6c7dtwt3V1/v5jkA0mOaJ5eNHfaEgHWr7X2iv5JTH+W5Nbp7h58dpIvp7vD9BFtCne0b639PMkdq+r+6TqyXj/dkwK/m+TD6fbRH9toPjtdVe2S5A/7yTPT/e9M06vTBwamu2v+FZNcPl1nujOSfDrdneHf2Fo7Z8p57yR3Sfcb3iTdtZl9klwy3bnlN9KV+Ve11r4wjcxaa2dU1cHpOpnfP8l1+vxOS3es+k+ttS9OIy8mpm5Nkf+uLeePhsZfO+Vln5bkXunqzo2TXDXdPnWPdB2dv5quA/oRrbWTp5z3TvGcJJ9J9xsekOQKSfZOF5T03SSfTPLWJEe11n45jQxba0+rqmOSPCrdOfOV0h23fDbJq1trb5pGPmyIurUK16w3pvqIEQAAAAAAAAAAAAAAgIWxy7xXAAAAAAAAAAAAAAAAYNYEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFwDZVVYdVVeuH/ea9PrBcVZ3cl88j570uAAAAsJOs1C5UVUf27588l5UDAAAAmJKd1DemqvYb+i6HzXt9AIAlAioAAAAAAAAAAAAAAICFI6ACgKmrqsMHUfXzXheWVNWx/XY5dt7rAgAAAAAAAAAAADBvAioAtqnW2pGtteqHk+e9PgAAAADMX2vtsL69aL95rwsAAAAAAMBWJ6ACAAAAAAAAAAAAAABYOAIqAAAAAAAAAAAAAACAhSOgAmCbqqrDqqr1w37LPju2f//YfvqqVfWPVXVSVf28qn5QVcdU1e1XyWPXPp9jqur0qjqvqs6qqq9V1Qeq6q+q6oDl65TkaUPvtRHDfkOfL1/XX6uqF/V5/Gw4/Urfedl67zeU7rARnx/Zf3ZyP71vVT2vqk7s8zy1qt5SVb85Yrn/3Kf7eVV9t6reUFX7r/Q7Ds1/q6p6TVV9o8/nx1X1+ap6blVdZYX5Dh98n356j6p6QlV9uqp+0g+fqKpHV9Vu475vklv2b91yxDY5edk8l6yq+1TVEVX1mX67/6Kqvl9VH6qqx1fVpdbyvcd8p0OH8j60f+/efbn6fv/7frWq/r6q9l7jMv+gqv6tqr5VVedU1ZlV9cmqelpVXW6Vea9dVS+sqi/0v+d5VXVa/91f1f8WFx8x37rqCAAAAGy25e0eQ+8/dehc/NfWsJxj+rTfqapdx6SZ6Fx8RNvMZavqb6vqi1V1dr+c/66qP1zjd75MVf1lVX2kb1c4r1/vo6vqnlVVq8x/t6p6e1V9u6rO7dsGvlFVH66qp1fVjcfMd5WqenbfRjNoO/lu397zpr7NYK+1fAcAAABgMlV1hap6RlX9T9+mcE5VnVxVr6uqm68y76Ct5PBV0l2ob8uYNLtW1SOr6vjq+oOc1bcZPH5Uf4MR82svAYA5uUinSwB2lqq6WZK3J9ln6O09ktw2yW2r6gmtteeNmO9SSd6T5JBlH+2eZK8k10ryu0l+J8k9p7Sud03yhiSXnMby1pjn9ZO8N8m+Q2/vmeReSe5QVbdrrR1XVb+b5G1JLjOUbo8k909y+6o6pLX2xTF57JHk1UnuO+Lj6/bDI6rqfq21o1dZ3yv16/vbyz66UT/ctqr+oLV2wUrLWYN3ZykAY9g+SW7RD4+sqju01r6ywbx2qarXJXnAsvevneQJSe7W/76nj5q576Dx1nTlcdjFk9ywHx5ZVXdtrX18xPz3SvL6JBdb9tGV++H6SR6c5HpJvjA038zrCAAAAGzAG5P8TT9+/6Hxi+jbH27dT/5ra+2Xyz7f0Ln4smX9erq2jv2WfXRIkkOq6qDW2qNXmP/WSd6c5PLLPto3yZ364T1VdZ/W2k+XzbtrkjelawcadrEkl0pyjSQ3T3L7JAcum/eQJO9K1wYw7Ir9cN10bUFn9OkAAACAKauq2yb5t1z0/Pzq/fCAqnpxkj+bQj+KldZjXP+BG/TD/ZI8ZB3L014CADMkoAJgZ7tyumCKC5I8KclxSc5Ld2Lz1CSXTfKsqvqPEcEAh2fpRO9d6QIdvpXknHQnOTdId4LVhuZ5e5JPJnlkkkf0711vxHqdOuK9X03Xqf1nSZ6e5MNJfpkuSOCnI9JPwyWSHJXupO+vknyoz/N2/fQlk7yuqn4v3Xc7K93vdny6/9B7JPnzJJdL8sokN12eQR/R/9Ykd+zfOjrJW5J8I912uXGSv0j3/d9aVTdrrX1yhXV+W5IDkvxzv6wfJvn1JE9Jcp0kd07y0CQvG5rnyUmely6o48B02+jBy5Z73rLp3ZJ8Psk7+/SnJal0DQ53S3LvdCfJb6+q326tnbPCOq/m6UkOTvcbvzbJKUmulORR6X63ayV5froGhgvp7+Lw/nRBC79M1znkPUm+mS6w4RZJ/r90ZfY9VXWD1topQ/NfKd3vcrEk30vyoiQfT3fyvmef9y2T/MGI9T48668jAAAAMBettZOq6vgkN8kqARVJ7pNk8FSKNwx/sNFz8WUuka594/JJntEv96fpzqmfluRqSR5VVUe31o5ZPnN/I5H/6PP9bpIXJvlsunaMq/Tf4wFJ7pDkNenacoY9IkudA45LckSSryc5u1+n30rXTjR8g43Bb/Cv6ToH/CTJvyT5YLq2hYulazM5OF0bCgAAALAJquq307UrXCzJL9Jd739nuvP6G6TrJ3ONdH0Pzk7yxE1cnddnqf/AJ9L1cfhaur4Ph6Vrf3jZyDkvSnsJAMyYgAqAne3a6Tqn36y1NhzEcEJVnZDkv9P9FzwsyWOXzXvv/vWtrbXlUedJFwn/rKrae/BGa+3MJGdW1feG3vvCiHlHuUa6k7eDWmvfGnr/+DXOP4krpAsSuHFr7evDeVbVGelOtvdL8tEkp6f7Hb8/lO4jVXV+uqco3KTvIPA/y/J4SLqggF8kuUtr7b3LPv94/3SGDyf5zSQvSBfwMs6Nkty2tXbs0Hufrqpjknwp3cn4IzN0It5v+1Or6uz+rbPXsF0e3Fr72oj3j0/ylqp6ZZJj0gVz/GG6gJJJHZzkr1trfzf8ZlW9N105u22Se1bVny37/ZMuwOV3kpyZ5DattU8t+/y4qnpDko+lCzB6Zr++A3fM0hNRbj3id/loktdW1ag7O6y7jgAAAMCcvSFdQMW1q+rAFW7qcP/+9cQRaTZ6Lj7sCukuqB+07GYfn6qqY9Pd7GGPdG0dF+ogUFW7p+ussHu6c/B7tNZ+NpTk00neVVX/neTlSe5eVb/XWnvfUJrBuf3xSW7VWjt/2fq9P8k/jji3v1m6DghJcv/W2vI7Kn48yZuq6nHpOkEAAAAA0/fydO0Kv0xyp9bafw59dkJV/Vu6gIADkjy+ql474majG1ZVd0xy137yPUnuuqyN4T1V9dSsfHOLYdpLAGDGdpn3CgCw6R6zLJgiSdJaOy5LwQrLHzmYdI/5S7qO/mO11n64sdW7kCctC6aYhacsC6YYeFW6Jw0k3cnqqM78SRdRP3Ch37F/OsXgDgf/PCKYIknSWvtRuqCMJLlZVf3aCuv7wmXBFINl/DDdkxaS5HpVdZnladZjTDDF8OfvT3dnh2T00xvW41PpOlcsz6Ml+cd+crckBw1/3j8y81H95FNGdOAYLOeUdE/BSJJ7VdUlhz4elPMfrRRk0lr7eWvt58venkcdAQAAgI14c7pOBsmYIIeq2j9d0EVy0adTTONcfLmnjOrM0Fo7Kd3TLJPRN5+4b7obYZyT5IHLOgcML+cV6e4MmXR3hBw2OLf/6IjOAcPLWH5uv+/Q+H+vMN/5rbUfj/scAAAAmExV3TjdDSmT5BXLgimS/F9fjIf1k7ukC0DYDIPlnpvkoWPaGJ6RZK03JE20lwDATAmoANjZzkzy7hU+H1z0vuaIz77Tv96nqmYRGX5ekn+bQT7DWpK3jPyg6zw/CCr4UZZF9Q+l+2a6RxUmF/0dD0iyfz/+1lXWZfhk8qCxqZZ1ZFhmsD0r3RM/pqaqrlBVv1ZV1x0MSQYBJtff4OLf2AdPjDLcMWP573vLLD1Ccq2/7+5Jbjj0/qCcX66q7pr1mXUdAQAAgA1prX0vyeCOg/epqlHXCO4/NP7GZZ9N41z8Qqs0Io9hg3aBvavqsss+u0v/+qExN8EYtS7L21wG5/Z3rqp9VlnGqPmS5MHrmA8AAACYjtsMjb9yXKLW2keSfHnEPFNRVbsmObSf/M/W2mlj1uOCJK9Z42K1lwDAjAmoANjZvtaflI0ziBa/9IjPBidyByf5ZlW9qKruVlVXmOoaLvlaa+2c1ZNN1RmrPD3gzP71pBU6/A+nW/47Hjg0/rGqauOGJD8dSrtvxvvKCp8Nf5dR23RdqupmVfXmqvpBku8lOTHdoyMHw0P7pOs5gR5l0u80/Pt+Z5Xfd/hOD8O/7zuztP2Oqqr/qqrHVdUN+4aPlcy6jgAAAMA0DG7WcOUkvzvi80FAxfH9XQ+HTeNcfNgZrbUfrLCua2kX+P2V1qNfl8ePWY/Buf21kpxUVa+qqvtV1dVWWKckOS7JN/rxF1TVJ6rqL/u2lIutMi8AAACwcdftX89L8plV0h7fv/7aJpy3759kcAPGE1ZJ+4lVPh/QXgIAMyagAmBnG/noviGDYItR/wdPT/KqdJHvV0zyqCRvS/K9qvpCVf1NVV1pamvaPQVi1tb6+6w13fIO+Fdc9xp1xj7tYNzjGJetx6h1WZeqOjz/P3v3H2x5Xddx/PVZl18J62YqrNoPBc0SSlFBERVFsdA1QENNR9Py56gpTU6NYzWWTuOgVFKCWZZFKZktkZo/Mk2jxJ+TRDlqgGRIGMGCprHspz++3+teLvf3nnvP3X0/HjN37vn1PefDuXuH+/2c7/PzHXZ2z0xy5yUefsjevFYWeX/nBEETf3/HSYgnJflqhjN7PDrJG5N8Ksn1rbV3t9aeuMDzrPfvCAAAAEzCjuzZF3/G7Dtaa8cmud94db6zZE56rmO5cy7JZOYFbjOH0Xv/gySvS7Irw5k3npNhBcirW2tfaq29obV2uzO79t5vSbI9e1a4fMj4PB9PckNr7W9aaz+1jMUaAAAAgNWZOY7h+t77riUe+7Xxe0vy3Ws0jmRYqHIx1y7zOc2XAMA62zztAQCwMY07Oj/TWntDkqdnWLHwwUkOTHL/8eus1toze+8XTeAlb53Ac2w0s3cCtye5cpnbLbWTvaZaaycn+ZXx6r8nOTvDDu5XknxjZjKitfaaJK+eyiAHs9/fY5Pcsszt/mP2ld77x1prRyV5cpJTkzwyyT2TbElyepLTW2vvT3LG7KBlCr8jAAAAsNd67ze31i7KsC97RmvtRbPOGjpzdopbk7xzns0nsi8+ITNjeV+SV672SXrvr2qtvSVDXHJykodmCECOTHJWkpe21l7Wez9vznaXt9aOyTDnsz3DfMJRGQ5CePz4dVZr7dTe+1TnegAAAGA/1qc9gFk2wljMlwDAKggqAFhU7/3yDAfNv7q1dnCSEzN8uP6sJIcm+bPW2pG992vWYTizK/vFzrJ0x7UeyDLNPgXjDb33y6Y2kpV53vj9f5I8tPd+3QKPW+rMFWtt9vt7Xe991QdnjAeOXDB+pbV2ryRPSPLSJPfNsFP/2iSvmGfbjfQ7AgAAAMtxQYagYkuSJyZ5V2ttU5Knjfd/cIEPtSe2Lz4B/53k7kkO3Ns5l977VRlWTHxda+2ADCsonpnkBUkOTvK7rbVP9N4/O2e7WzOc8WNHkrTWtiX5sQxnsXzQ+HV+hgUbAAAAgMm5fvz+Pa21zUucpeKI8XvPcBzEbD3DmSsWOwYlWfg4lNnPd/gSz7HU/ZNgvgQAVmGpPwQA4Dt679/qvX+o9/7cJL8w3nxIhg/eb/PQNRrCTbMuL3Yaxvuu0euv1OydxodPbRR7LPfncv/x+98tElMkw9kYpmnN3t/e+xW993MzTAjMHBxy5jK2W+7vCAAAAEzT+5N8fbw8c1aKRyW5x3j5ggW220hzHTNjeXBr7cBJPWnv/Zbe+yW995dnz3vTkjxlGdte03t/W5KHJfnMePMTW2uHTGp8AAAAQJJkJhY4MMkDlnjsceP3L/be/2/OfTPHoSx4DEprrWU4y8J8vpzkf8fLD1liHEvdPwnmSwBgFQQVAKzW3866fJc5931r5kJr7aAJvuYVsy4vdjD/0yf4mnvjM9lzMP7zx7MXTNPMz2Wpn8nMGawWPNNHa+2BSY6fxKD2woeSfHO8/LJxEmOieu87k3xyvDr33/lSFvsdAQAAgKkZV228cLx6amtta/Z8GP7NjCsIzmPN98VX4K/G73dK8pw1eo1V7dv33m9J8tHx6uYkWyc5KAAAACAfmnX5uQs9qLX2sCQ/PM82M2aOQ1nsGJQfzwL79uMcy0fGq6eMZ2OYbxybkjx7kdeYFPMlALAKggoAbqe1dufW2vYlPhQ/ZdblK+bcd82sy0dObmS5LHtO2/iS+WKN1tqZSX5ygq+5ar333RlOf5gk907y9sUCk9baltbaS9ZwSDM/l3sv8bP94vj9xNba7VZZaK3dNckfT3pwK9V7vyHJuePVE5KcM05CzKu1dnhr7Wfn3Pb4hSY0xvvvlD2rVVwx6/a9/R0BAACAaZs5C8VBGWKKJ4/XL+q93zzfBpPYF5+gP0py9Xj57NbaIxd7cGvtxNbao+bc9szW2uaFtskC+/attUfMN2cy6/4DM5zxI0luTrLYGUABAACAFeq9X5rkU+PV57XWTp77mPHz/vPHq7uTvHmep5o5wP/41trtzsbZWjsiyZuWGM7M8x6U5PzW2h3mecwvJTlmieeZBPMlALAKi/2PD4C6tmSo1q9srb07ySeSXJVkV5JtSbYnmfkw/KtJ/nrO9pfMunxOa+21GQ7m7+NtV46V/or03ne11s7PsKN5dJIPt9Zen+QrSQ7PEFL89Pj6J6z0+dfIeUkel+T0DOM7dvxvuDTJjRne6/slOSnJkzKcReLceZ9p712SYQWCuyV5Y2vtT8YxJMktvferxstvz/AzvmOSj7bWfiPJp8f7TkhyVpIjkvxjhlMyTtMvZ9jhPp31x/UAACAASURBVD7JzyU5qbX2e0k+l+QbGU7Lef8kj82wasTnk7x11vZPT3Jxa+2DST6QPdHOYRn+jb0kyT3Gx543a7u9/R0BAACAqeq9X9JauyLJvZK8NntWBbxg4a2S7P2++KTG/+1xYY2PJDk0wzzROzKcXeOKDAtKbUvyoAzzMsckeWn2HCiRDAtGnD3u21+S5MsZ5mYOzzCf86LxcTfntu/LyUle3Vr7WJL3JPnnDAcBHJLkvklemOTY8bG/v5p5MAAAAGBJz8vwWf2BSd7bWntTkoszzE88MMkvZlj8MknO7r1fNs9zvCXJizMcR3lxa+01ST4+PufDMxwfcUCGhSnvM98geu8Xt9YuznCcwPYk/9BaO2fc5m4ZjmN5aoYAZLEzYew18yUAsDqCCgAW8wMZdg4Xck2Sn5i7amHv/UuttQuTnJmhTD9lznb3SnLlKsf060keneShGQ7u3zHn/o9kOAh+vh3hddd77621pyb5rQw7h0cmef0im/zXGg7nHRlilHsnefn4NeOqDD/v9N7f1Vp7W4b44u5JfnvO89ya5BUZDpCYalAxTgY8LskfJjkjyY9m8SBl5zy3HZDk1PFrIefl9u9DssrfEQAAANgg/jTJq7Inpvh6kvcvtsGE9sUnovf+T621k5JcmOR7kzxj/FrJWA7PcCDAi+a5LxkWo3ha7/3qObdvyhCWPOr2m3zHRRnmYgAAAIAJ671/rrW2PcmfZ1gU8efHr7l+Jwvsn/fe/6W19sokb8xwDMQ5cx5yfZLTkvxaFggqRs9I8r4MEcbxGY7PmO2zSV6QPYtZrhnzJQCwcoIKAOZzVZLjMhxgfkKS78+ws3RokhuSXJ6h6n9L732hD8WfmaGuf0qSH8yw4v+mvR1Y7/2brbXHZDig/2lJjkpyS5IvZDh14XkZdgg3jN77LUle3Fp7c4YVEk5K8n0Z3s+bM6wC8OkMO9drdiaD3vvNrbUTMuyYnpLh5/pdCzz2ua21Dyd5fpIHZFh94WtJ/j7Jub33S1trv7pWY12J3vtNSZ7cWjsxybOTPCJDCHJIhh3/L2c4I8h7MpyFYrZXJPlgksck+ZEMKzHcNUM0cnWGs3C8tff+8TnbTeJ3BAAAAKbtggxBxYwLl7M64F7ui0/UeJDAfTKs9rg9wwqUd0myO8MqiP+aYZXFv+i9f2HO5kcneUKSEzMsgnF4hrjkpiT/liEueXPv/do5252dYZXFx46vd/cMK04mw/zJpUne3nt/z8T+QwEAAIDb6b1/oLV2VIYFJU/NsMDkQUmuTfKxJOfN83n/3Oc4p7V2eYbjB47LcBzFfyZ5b5LX996/0lpbahw3jRHDC5M8K8kPJekZ5kjemeQ3kxyxyv/MFTNfAgAr03rv0x4DAAAAAAAAAAAAAADAutrrlcIBAAAAAAAAAAAAAAD2NYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5Wxe7xdsrR2U5Jjx6nVJbl3vMQAAALDh3SHJXcfLn++9f3uag4FJMS8CAADAMpkbYb9jXgQAAIBlWtd5kXUPKjLsHH9yCq8LAADAvukhST417UHAhJgXAQAAYKXMjbC/MC8CAADASq35vMimtXxyAAAAAAAAAAAAAACAjWgaZ6i4bubCpZdemm3btk1hCAAAAGxk11xzTY477riZq9ct9ljYx5gXAQAAYEnmRthPmRcBAABgSes9LzKNoOLWmQvbtm3LPe95zykMAQAAgH3IrUs/BPYZ5kUAAABYKXMj7C/MiwAAALBSaz4vsmmtXwAAAAAAAAAAAAAAAGCjEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmbpz0A9t7u3buzc+fOaQ9jw9i9e3duuumm29x22GGHZdMm/RCL27Jli38nAAAAwLLsS3Ny5sumy5wTAAAAAPOZb47RXBIArD9BxX5g586dOe2006Y9DNjn7dixI1u3bp32MAAAAIB9gDk5lsucEwAAAADzmW+O0VwSAKw/KSMAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAABgHd14443Lug0AWFuCCgAAAAAAAAAAAAAAoJzN0x4Aa+MbR5+RvvmgaQ9jOnZ9K4de9pe3uenmo09PNh88pQGxEbVd384dL3v3tIcBAAAA7Ec27Jyc+bJ1Y84JAAAAAABg3yKo2E/1zQelH3DItIcxFW2+GzcfXPb9AAAAAGB9bNQ5OfNlAAAAAAAAML9N0x4AAAAAAAAAAAAAAADAehNUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOZunPYCNZvfu3dm5c+dtbtuyZUs2bdKeAAAbh79ZAIBp8XcIADDD3wUAAACwert27VrWbQDA2hJUzLFz586cdtppt7ltx44d2bp165RGBABwe/5mAQCmxd8hAMAMfxcAAADA6l177bXz3nbkkUdOYTQAUJclggAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAA+H/27i7EqvPcA/g7H1WmWuNI1VOI0ptCYSyci4wpLfE2lEapSvxASS4KsaA4aAuFMqZQp4XeTJmJXhgopEFRE9R0YihpoRRDW/y4OFAHAr3TQIi22hjt4HScORfn7OBst9u9ZvaatfZ+fj8I4trr43nfvffqs177nwEAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAaHN3794tuoRZJicnS33+vOsrWruPr1q08WZlfoB63CMAgKJV+pFG+pKH95mcnAzVy1SPNa+xZzlv1hoivV8VRYw5y3eq2dednJxMt2/fznxcnsq2bgqUy5kzZ4ouAQAAIDcXL14suoRSEagAAGhjt2/fTtu2bcv8j5V5mZiYSD/84Q/TxMREKc+fd31Fa/fxVYs23qzMD1CPewQAULRKP3L79u0n9iUP9y4TExPpwIED6cCBAyF6meq+La8+Lst5s9YQsfcsYsxZvlPNvu6BAwfS3r1709atW9PHH3/c8HF51lm2dVOgXEZGRtJrr72WRkZGii4FAACg6cbGxtKPf/zjNDY2VnQppSFQAQDQxgYHB9O///3vdOjQoaJLSSmldPz48fS3v/0tnThxopTnz7u+orX7+KpFG29W5geoxz0CAChapR8ZHBx8Yl/ycO9y/PjxND4+nsbHx0P0MtV9W159XJbzZq0hYu9ZxJizfKeafd3x8fH097//PU1PT6f9+/c3fFyedZZt3RQol3Pnzs36EwAAoJ0MDw/P+hOBCgCAtnXp0qU0Pj6eUkrp6tWr6dKlS4XWc/369XT69OmUUkqnT59O169fL9X5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L6nTp1KJ0+e/Py1U6dOtXUvU923Xbp0KZc+Lkt/mLWXjNh7FjHmLN+pZl/31KlTs7bdvHkzvffee088Ls85Ktu6KVAuzz//fN2/AwAAtLKXXnqp7t+jEqgAAGhD09PTaWhoaNa2oaGhND09XUg9MzMzaXR0NE1NTaWUUvrPf/6TRkdH08zMTCnOn3d9RWv38VWLNt6szA9Qj3sEAFC06n6kolZfUr3v1NTUrLWPqampNDIy0pa9TK2+bWhoqOl9XJb+MGsvGbH3LGLMWb5Tzb7uyMhIevDgwSOvDQ8P19xeq95m11m2dVOgXG7dupXu378/a9v9+/fTrVu3CqoIAACgee7du5euXbs2a9u1a9fSvXv3CqqoPAQqAADa0LFjx9KdO3dmbbtz5056/fXXC6nnwoUL6fLly7O2Xb58OX3wwQelOH/e9RWt3cdXLdp4szI/QD3uEQBA0Wr1IxXVfUm9fSuuXLnSlr1MrbFXrwU1o4/L0h9m7SUj9p5FjDnLd6rZ171y5UrN1x48eJBeffXVxx6X5xyVbd0UKJctW7Zk2g4AANBKXnjhhZrbN27cuMCVlI9ABQBAm7l9+3Z6++23a7721ltvpdu3by9oPRMTE+no0aM1Xzt69GiamJgo9Px511e0dh9ftWjjzcr8APW4RwAARavXj1RU+pJG9q04cuRIW/UyWcY+nz4uS3+YtZeM2HsWMeYs36lmX/fIkSN19/nzn/+cPv7440eOy3OOyrZuCpTLyMjIvF4HAAAos7Gxscf+BtDp6ek0Nja2wBWVi0AFAECbGRwcfOyvqJ+enk6HDh1a0HqOHz+ebty4UfO1Tz75JJ04caLQ8+ddX9HafXzVoo03K/MD1OMeAQAUrV4/UlHpSxrZ4JWy9AAAIABJREFUt+LGjRtt1ctkGft8+rgs/WHWXjJi71nEmLN8p5p93Zs3bz5xv/379z9yXJ5zVLZ1U6Bczp07N6/XAQAAymx4eHher7c7gQoAgDZy8eLFND4+Xnefq1evpkuXLi1IPdeuXUunT5+uu8+pU6fS9evXCzl/3vUVrd3HVy3aeLMyP0A97hEAQNEa6UcqTp48mU6dOpXp/CdPnmyLXibLPFXMpY/L0h9m7SUj9p5FjDnLZ6WZ17527VrD38+bN2+m99577/Pj8pyjsq2bAuXy/PPPN3U/AACAMtm9e3dD+7300ks5V1JeAhUAAG1ieno6/fznP29o36Ghocf+NLZmmZmZSa+99lqampqqu9/U1FQaHR197K+Vy+v8eddXtHYfX7Vo483K/AD1uEcAAEVrtB+pePDgQXrw4EGmazx48CCNjIy0dC+TdZ4qsvZxWfrDkZGRNDo62nAvOT09Ha73LKLfzvpZada1Z2Zm0ujoaKbv5/DwcJqamsp1jsq2bgqUy61bt9L9+/cb2vf+/fvp1q1bOVcEAADQPPfu3UsfffRRQ/teu3Yt3bt3L+eKyqm76ALKptYC2aefflpAJY2rWV8bLDBDrmp8R8r+XQd4WK171htvvJHu3LnT0PF37txJr7/+evrBD37Q7NI+d+HChXT58uWG9r18+XL64IMP0oYNGxbs/HnXV7R2H1+1aOPNyvwA9WS9R/z1r399ZLvnKSKyJkdN1pwIptbney7/R+Qs/ch8XLlypaWfd+YzT1me9bJc58qVK5lqOHbsWLjn0yKeyefyWWnGtS9cuJDpM5HS/4Wd9u3blz788MOG9p9LnceOHSvVuilQLlu2bMm8/5/+9Kd8igEAAGiyF154IdP+GzduTH/84x9zqqa8mh6o6OjoePoJu/xXs6/ZTJ999tkj215++eUCKpmnB/dTSl8sugoorweP/pSRlvyuAzzk/PnzmfZ/66230vbt21Nvb2/Ta5mYmEhHjx7NdMzRo0dTf39/6unpyf38eddXtHYfX7Vo483K/MDCarV1kbncI379618/ss3zFPw/a3JYc4L02WefpRUrVjS8/1z6kfk4cuRISz7vNGOeGnnWy/v9ePvttzPt3+rPp0U8k8/nPZzPtScmJtKRI0fmdN1GwxQVWeq8fft25s9dnuum0O5abV1kZGRkzscNDAw0uRoAAIDmGhsbm9Nv+hwbG0ubNm3Kqapy6szhnNef8F/+P2IIACCgrD8Bcnp6Oh06dCiXWo4fP55u3LiR6ZhPPvkknThxYkHOn3d9RWv38VWLNt6szA8suJZaF5nLPeKf//xnTtUAABHNpR+Zjxs3brTk804z5qmRZ72834+s61et/nxaxDP5fN7D+Vz7+PHj6ebNm3M6NqssdQ4ODpZq3RQCaKl1kXPnzi3ocQAAAAtpeHh4QY9rZXkEKgAAaBFXr15Nd+/ebeo5Jycn09mzZ+d07JkzZ9Lk5GSu5797926u9RUt7/kvm2jjzcr8APXM5x4BANAMRfUjrfa808x5qjf2svaHrfZ+VRTxTN6M93Au1y7is9NInXfv3k3j4+NzOn8e66ZAuZw5c6bQ4wEAAPJ08eLFQo9vNXkEKtY84b/+HK4JAMAcrFu3Li1durSp51y0aFHasmXLnI7dunVrWrRoUa7nX7p0aa71FS3v+S+baOPNyvxAIVpmXWQ+9wgAgGYoqh9pteedZs5TvbGXtT9stferoohn8ma8h3O5dhGfnUbqXLp0aerr65vT+fNYN4UgWmZdZOvWrYUeDwAAkKdnn3220ONbTXezTzgzM/NRvdc7Ojqafcmm+tKXvvTItt/85jfpqaeeKqCaxnz66afp5Zdfnr2xa3ExxUCrqPEdKft3HeBhtf73v7OzM9Ovr+/s7EyHDx9udmkppZR2796d/vCHP6QbN240fMzq1avTrl27FuT8eddXtHYfX7Vo483K/MDCarV1kbncI7785S+nf/zjH7O2eZ4iImty1GTNiWBq3Qtr/TtLPXPpR+Zj1apVLfm804x5auRZL+/3I+v6Vas/nxbxTD6f93A+1969e3f6/e9/n27evDmn47PIUufQ0FDaunVradZNod212rrI5s2b07lz5+Z0HAAAQNkdPHgwDQ8Pz+m4aJoeqGh1nZ2P/tKOp556Ki1fvryAauahZAsRUDo1viMt+V0HeMjGjRvTb3/724b337ZtW+rt7c2llp6enrR3797005/+tOFj9u7dm3p6ehbk/HnXV7R2H1+1aOPNyvwA9czlHvH9738//fKXv5y1zfMU/D9rclhzgpr/zlLPXPqR+di3b19LPu80Y54aedbL+/148cUX0+nTpxvev9WfT4t4Jp/Pezifa/f09KR9+/bN6bpf//rX04cfftjw/lnq7O3tzfy5y3PdFCiXgYGBOQUqBgYGcqgGAACguTZt2pR+9atfpZmZmYaP6ezsTJs2bcqxqnLKtqoNAEBpvfzyy2nZsmUN7bts2bL0yiuv5FrPhg0bUn9/Y7+9u7+/Pz333HMLev686ytau4+vWrTxZmV+gHqy3iO++c1v5lwRABBNln5kPlr9eWc+85Rl7Fn7w2eeeabhfffs2RPu+bSIZ/K5fFaace0NGzY0/Hmo6OrqSkeOHMl1jvbs2VOqdVOgXM6ePZvr/gAAAEU6f/58pv3ffffdnCopN4EKAIA20dnZmQYHBxvad3BwMPNPjMyqo6Mj7d+/P3V31/+laN3d3Wn//v2Zf9X3fM+fd31Fa/fxVYs23qzMD1CPewQAULRG+5GKrq6u1NXVlekaXV1dLd/LZJ2niqx9XNb+cGBgoOF9Ozs7w/WeRfTbWT8rzbp2R0dHGhgYyPT9PHjw4OfXz2uOyrZuCpTLihUr0uLFixvad/HixWnFihU5VwQAANA8S5YsSWvXrm1o37Vr16YlS5bkXFE5WQ0CAGgj69evT319fXX3WbduXVq/fv2C1LNmzZq0ffv2uvvs2LEjrVmzppDz511f0dp9fNWijTcr8wPU4x4BABStkX6kYufOnWnHjh2Zzr9z58626GWyzFPFXPq4LP1h1l4yYu9ZxJizfFaaee01a9Y0/P1cuXJl+u53v/v5cXnOUdnWTYFyef/995u6HwAAQJm8+eabTd2vHQlUAAC0maGhocf+FLXOzs50+PDhBa1n9+7dadWqVTVfW716ddq1a1eh58+7vqK1+/iqRRtvVuYHqMc9AgAoWr1+pKLSlzSyb8WqVavaqpfJMvb59HFZ+sOsvWTE3rOIMWf5TjX7uitXrnzifqOjo48cl+cclW3dFCiXzZs3z+t1AACAMjt48OC8Xm93AhUAAG2mt7c3vfjiizVf27ZtW+rt7V3Qenp6etLevXtrvrZ3797U09NT6Pnzrq9o7T6+atHGm5X5AepxjwAAilavH6mo9CWN7Fuxb9++tuplsox9Pn1clv4way8ZsfcsYsxZvlPNvu6+ffvq7vPtb387feUrX3nkuDznqGzrpkC5DAwMzOt1AACAMtu0aVPq6Oio+VpnZ2fatGnTAldULgIVAABtaM+ePWnZsmWzti1btiy98sorhdSzYcOG1N/fP2tbf39/eu6550px/rzrK1q7j69atPFmZX6AetwjAICi1epHKqr7knr7Pu6YdlFr7NVrQc0Ye5b+MGsvGbH3LGLMWb5Tzb7uM888U/O1rq6u9LOf/eyxx+U5R2VbNwXK5ezZs5m2AwAAtJLz58/X3P7uu+8ucCXlI1ABANCGOjs70+Dg4Kxtr7766mN/pX3eOjo60v79+1N3d3dKKaUvfOELaWBg4LHJ54U+f971Fa3dx1ct2nizMj9APe4RAEDRqvuRilp9SfW+3d3ds9Y+uru727aXqdW3HTp0qOl9XJb+MGsvGbH3LGLMWb5Tzb7uwMBA6urqeuS1H/3oRzW316q32XWWbd0UKJcVK1akxYsXz9rW09OTVqxYUVBFAAAAzbNkyZK0du3aWdu++tWvpiVLlhRUUXlYGQIAaFPr169PfX19KaWU1q1b99ifCLdQ1qxZk7Zv355SSmn79u3p6aefLtX5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L47duxIO3fu/Py1HTt2tHUvU9239ff359LHZekPs/aSEXvPIsac5TvV7Ovu2LFj1raVK1em73znO088Ls85Ktu6KVAu77///qy//+53vyuoEgAAgOZ78803Z/39jTfeKKaQkhGoAABoY0NDQ+mLX/xiOnz4cNGlpJRS2r17d/rGN76Rdu3aVcrz511f0dp9fNWijTcr8wPU4x4BABSt0o8MDQ09sS95uHfZvXt36uvrS319fSF6meq+La8+Lst5s9YQsfcsYsxZvlPNvm5fX1/62te+ljo7O9Po6GjDx+VZZ9nWTYFy2bx586w/AQAA2snBgwdn/UlKHTMzMwt7wY6Op1NK11NK6fr166X7STP/+te/0ve+971Z29555520fPnygip6slo13/3vnWnmCz0FVVSsjv9MpKX/c3LWtsjzQW21Pidl/64DPCxLz3L37t20dOnShSrtiSYnJ9OiRYtKe/686ytau4+vWrTxZlXm+fnoo4/SmjVrKn9dMzMz81GR9UCzlH1d5GGPu0e04toJ5KGV1uSsly0ca05Ek3dfUOlHGnl2eXifycnJlFIq7fNOs1XPT17PelnOm7WGMj+f5qWIMWf5TjX7uimldO/evdTb25vpuDzrLNu6aTVrI7SjVloXOXPmTNq6dWvRZQDQ5v7yl7+kn/zkJ7O2/eIXv0jf+ta3CqoIgCguXryYnn322aLLeKyFXhfpzvPkAAAUr2z/KJj3P9bO9/zt/o/37T6+atHGm5X5AepxjwAAilbpRxrpSx7eJ1ofUz3evMaf5bxZa4j2nqVUzJizfKfKcN286yzbuilQLsIUAABAOytzmKIInUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHC6iy6gbJYtW5beeeedR7YBAJSJngUAKIo+BACo0BcAAADA3K1evbqhbQBAvgQqqnR2dqbly5cXXQYAQF16FgCgKPoQAKBCXwAAAABz19396P99s9Y2ACBfnUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAA/pe9Ow+X5yrrBP59fwkBEkgCBIkgEhYVUFSGRcMiQTaFAMoIMi4QhUEYZRTFCYhL1FEQhhFkGRAYAwoIKiEBRQhLkE0JOGyyLwECgSQsISwh25k/qi63c+nbd+v11ufzPPXc6ttVp6r7rVNVfareUwAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAINz8KJXgNmoS7+56FVYnEsvGvu/mv+asMQGXUcAAACAmVja9gbtZXOztNsAAAAAAAAAY0mo2KcOe9/LFr0KS+Vq7ztl0asAAAAAwD63Sm1y2ssAAAAAAAAgObDoFQAAAAAAAAAAAAAAAJg3CRUAAAAAAAAAAAAAc3TEEUds638AwGxJqAAAAAAAAAAAAAAAAAbn4EWvAHt3+OGH5+Uvf/miV2NpXH755bnwwguv8L+rX/3qOXBA/hCTHX744YteBQAAAGBFrFKbnPayxdLmBAAAAMA449oYtSUBwPxJqNgHDhw4kCOPPHLRq7FUrnnNay56FQAAAADYx1atTU57GQAAAAAsl1VrYwSA/UoXZAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAACdn8Y+AAAgAElEQVQAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBOXgByzxobeScc85ZwOIBAABYdht+Lx602XSwgrSLAAAAsCVtI+xT2kUAAADY0rzbRaq1NutlXHGBVbdOcuZcFwoAAMAqu01r7R2LXgmYBu0iAAAA7IK2EfYF7SIAAADswszbRQ7MsnAAAAAAAAAAAAAAAIBltIgnVFw5yS36l+cluWyuK8DQHZ31Hi9uk+RzC1wX2IrtlVVhW2WV2F5ZFbbV7pGN1+7H39ta++YiVwamRbvIyrAfHgZx3v/EeP8T4/1PjIdBnPc/Md4dbSPsOyvSLmKftdzEZ7mJz/ISm+UmPstLbJab+Cw38VleqxKbubaLHDzLwsfpP5DHkbIQVTX68nOttbMXtS6wFdsrq8K2yiqxvbIqbKvf8slFrwBMm3aR1WA/PAzivP+J8f4nxvufGA+DOO9/Yrwn2kbYV1ahXcQ+a7mJz3ITn+UlNstNfJaX2Cw38Vlu4rO8Viw2c2sXOTCvBQEAAAAAAAAAAAAAACwLCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHCqtbbodQAAAAAAAAAAAAAAAJgrT6gAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqWElVdYOqenJVfbCqvlZVX6yqM6vqt6vq0D2WfaCqbl5VJ1TVM/tyv1lVrR+Om9LHYCBmvL0eWlX3q6r/05f5paq6pKq+UFVvq6qTquroaX0W9rcZb6s3q6pfq6rnV9W/V9XZVXVRv5yPV9VLquq+VVXT+jzsX7PcVics89B+W107HzhrFsth/5nxvvWEkW1yq+GEKX0kgJVVVYdU1UOr6tVVdU7/W/+rVfWhqvqrqrrdNsv5yao6pT+n/Wb/95Sq+slZf4ahqqrvqKrjq+qPqupVVXX+yDHu5F2Ut+cYVtXBVfXwqnpTVZ1XVd+oqo9V1bOr6vt3uk5DN40YT7uNpC/vf/RlfbE/l/tgf253g11/2AGbdl3eUPaufrOJ83TNIsZVddeqOrmqPtrH54Kq+nBV/X1VPaKqrrbF/GI8RdOMcVUdU1V/VlXvrKov9/vsL1bVW6vq96vqO7ZZjhhPUVXduv/+XzNyrvTVvt79VVXdYYflOe8CpqKqDq+qB/b79zf25wYXVNXFVXVuVZ3RHw+uNcVl2odt07ziU1P63devz7ba1veyvstijvGZ6jWLIZznzSM21Z13bzcuE39TD63uTFLdb5nRz3zclMr9L9Wdi3+uuvspPllVf1NVx+6gjH1fd7YyzfhU1RFV9fPV/R56d19HL6nuuP6GqvqtqjpyG+WctZf6t19MOTYn7WC/tuVyquqo6to73lNVX+mH9/T/m9o55jKbVnyq6rhdHHvO2KSsQdWdvX5fu1ie486o1prBsFJDknsnuSBJ22T4UJKb7KH8B08ouyU5btHfgWF1hllur0l+MMmFW2yvrV/+zy76uzAs9zCHfevfbGNbbUnOSHKtRX8fhuUdZr2tTlju/9qwnLMW/V0Yln+Yw771hG3uW1uSExb9fRgMBsMihyQ3SPK+bewv/yJJbVLGgSTP3WL+5yQ5sOjPu9+GLb7zk3dQzlRimOSoJG+fUMZFSR666O9tlYa9xjhTbiNJcpMkH96inOMX/b2t2jCturxJ2Tv+zSbOyx3jJNdI8vJt1OsfFuPVi3GSX0zy9S3K+0KSu21RjhhPN77/so0615I8P8khW5TlvMtgMEx1SHLXbe6jzktyjz0uyz5sCeOTKf7uS3c9cjvr2xb93a5KfPrlnLDd7zVbXLPIQM7z5lR3jtlBXNaGV29S1qDqzoTv9IeTXLLhMx+3xzKvmuQfJ3ynlyX5g22UM4i6M6/4JPnJdMfrrbb5c5LceYuyztpm/Tlr0d/hKsSmL++kHezXJi4nyY/0cdxs/s8mue2iv8NViU+S43YQm7Xh2ZuUNai6s4Pv64w9LsdxZ8xwcGCFVNUtk7wkXYX+apLHJ3lD//qBSf5rku9N8o9VdevW2oW7WczI+CVJ3pvkSklusYdVZ4DmsL0enmStB7a3JHllkneku9B07ST365dxeJIXVtVXWmuv2tOHYl+a07710iT/lm5bfW+Sz6Vr+LlGkpsm+ZUkP5DkTkleUVV3aK1dvpfPxf4zp211s+X+RrrGkkuSXH0a5bK/LWB7vUe6hpzNnL3H8gFWVlVdKV2j4FrPj+9J8r/TJbZdPckdkvxWksOSPDLd/vQJY4r6kyQP6cf/X5InJvlYkhsn+R9JbpnkoenOc39nBh+FzqeSfDDJ3Xcx755jWFUHJTklyW36f70s3Y00X0x30eV3k3xHkmdX1Wf8Dt+V3cR4am0kVXX1dPuM7+n/9Zwkf5vkG0nunOSxfTkvqarbt9betYP1ZN1e6vIV7OY3mzjPxa5jXFVHJDk9ya36f52S5O/T7bMvS3L9dG1I/3lCGWI8e7uKcVXdPsnJ6W5WvTzdzfmnpjsH++50nV7dO8k1k5xaVT/QWvv4mHLEePqu2//9bJK/S/KmdHE+KMmx6c6Zr5fkQemum/3chLKcdwGz8Ol0bazv7MfPSXc8+a4kP5PuvP+oJKdV1W1ba+/e5XLsw3Zn1vGZxbXxdyT5pR2ux6qaV/1Zs+trFgM8z5t1bD6T7d3v9Nisn989f4tph1R3rqCqDiT5yyQHJzk33b58Gv5vknv2429I8tR0degW6Y41N05yUlWd01r7y03WbWh159vMID7XSnLldL9dT0/yz0neneTL6erozyf52SRHJ3nlNr/XU9OdB2zm4j2u81KaYd1Zs9V+7hObvVFV10/yinTnE5emu370yv7t45P8ZpLvTHcv061aa/vuuvsM4nNmtnfseXq6Nr5k62PP0OrO/0nyzAnvf22P5TvujLPojA6DYSdD1nvHuSTJsWPe/+2sZzedtMtl3DbdDRQ/muQq/f9OGin3uEV/D4bVGGa9vSa5XbobNW8+YZr7pjuxb0k+mk16WjUMe5jTvvXgLd4/KMk/jCznPov+XgzLN8xjWx1T5kHpGgVbkt/Levb7WYv+PgzLPcxp33rCSBnHLPozGwwGw7IO6S48ru0v35rkoDHT3CpdY2tL8qWN56/pkuDWeuY5M8lVN7x/aP//tX3/1J+YNeQhyR+mu3Bxnf71MSMxPXmbZUwlhkl+eWTZzxjz/k2y/oSqj2z1W8gwnRhnim0kSf5oZNm/vcmy1ralMxb93a3SMI26PKbMXf1mE+fljnGSF/TzXJQJbUTpOkcau58V4+WNcbqbEtbm+W+bTPPkkWmeLsZzi+8rkzwgY86X+/ePSpeUvPa9/9gm0znvMhgMUx822zdtmOanRvYbL9vlcuzDljQ+me7vvjOGdI4wx/pzwkgZx+xhfQdznjev2GxnPdIlXrQkX9m47xuZblB1Z5Pv4Df67+ADSf50JDbH7aHMHx8p57SN20W68/BPZr3t+hqblDOYujOv+KRLlnhWku+eMM0jR5bz+gnTnZU9tIGt+jCjunPSWjl7XLcXjKzP/ce8/4CR9/dl/GYRn20s88isPwHmIxOmG1TdGfnuT5rhMhx3NhkOBFZEVd02yR37l89rrb1tzGRPTrdjT5Jf73uh3JHW2ttba09rrf1ra+2iXa4uAzeP7bW19tbW2s+21t4/YZpT0/V4knSZg7fcyTLY/+a4b710i/cvS/KkkX/dcbNpGaZ5batj/Hq6Gyw/lOTPplAeA7DA7RWA8W43Mv74/tzzClpr78x6j0NHJrnZhkl+I/nWk14f2Vr7xob5v57uwkn66R6115VmXWvtD1prr2ytfX4PxUwrho/u/34xXYLkxnX9aLonUyXdDTI/vYd1Hoy9xnhabST9Odl/719+IN0527ctK8nz+pd3qqrbbJyG8aZUlzfa8W82cZ6dacS4qu6Q5Bf7l7/bWjttwvLauDYnMZ6dKdXjtXOzL7TWNutp749Gxo/d+KYYz0Zr7fjW2kvHnS/375+f7ikVa35mk6KcdwFTt9m+acM0L093Xpjs/jqTfdguzCM+ro3v3hzrz54N7TxviWJz16w/rezvN+776FTVdyf54/7lwzO93tDXjhmXpks6v8J20Z+Hn9i/PDLdU5I2rtug6s44s4hPa+0lrbWHt9Y+NWGap6Xr7CPpvtej9rrc/WaGdWfPqurodE8aSZJXt9b+buM0rbWXJnl1//IX+3n2jQXG52fTPQEmSf56Tsuk47izCQkVrJKfGhn/q3ETtNYuT5c1mHSV+c6zXinYxDJtr28YGb/xjJbB6lqmbfXCkfGrzGgZrK65b6tVdYOsX8B/eGttaX7Ys/SWad8KQHLIyPjHJ0z3sXHzVFWl6+EwST7YWvvXcTP3/1+7uHnffj6WwLRiWFXfm/Vkm5f2N9KMc/LI+ErfFLMPbdVGcuckR/Tjz+/P2cY5eWRcjBdkD7/ZxHm5/Vr/94IkT99lGWK83NbOsz6x2QSttQuSnL9h+lFivDgTj6XOu4AlsHatacfXmezD5mLX8dkB18Z3bx7x2YrzvPFmHZsHjYw/f0bL2A+ekeRq6bbNN06jwKq6epK79C9f21o7e5NJX5bu6SHJ+G1e3ZlBfHbgjP7vgSQ3nPOyV8EiY7OV+2T9Huqx1/V7J/d/D/Tz7CeLis/asadl/b4JZsxxZzIJFaySO/R/v5bknROmG92x3352qwMTLdP2euWR8S17OGBwlmlbfeDI+AdntAxW1yK21WcmOSzJX7fWzthjWQzLMu1bAVi/ySFJbjRhurWL7C3JR0b+f8Os99C2VWPy2vvXS3LMNteP2ZtWDO8wZrpv01r7XJIP9y8d45fLVm0k24pxul7n1m6KEuPF2e1vNnFeUlV1SNZvYjx97QnSVXVQVV2/qo6pqu3cQCTGy23t3GzTm0yq6vAka716fmjMJGK8OFsdS513AQtTVd+X5If7l7u5zmQfNkNTiM92uTa+C3OMz1ac520w69j0N1audRR2VpJ/mfYy9oOqekCS49M9eejRW0y+E7fJehL5pGPGxUnWEv1u0/cMPmrQdWeG8dkux55NLEFstrLdurMvr+svKj5VdeOsP8H0Ta21s+a1bBx3JpFQwSpZ68Xho+Me4z1i9AfEzTadCmZrmbbXO42Mf2BGy2B1LXRbraqjqurYqnpeksf1/z4/yQuntQz2jbluq1X1wCT3TPKlJL+123IYrEXsW/+qqj5bVRdX1flV9a9V9T+r6np7LBdgP3hx1ntRObGqDto4QVXdMsm9+pcvaq19ZeTtm4+Mb3XRUpvEcppWDHdTzvWr6rAtpmV+tmoj2VaM+3O8j/Yv1fUF2ONvNnFeXj+U9R5X31tVh1fVU9K1FX0q3RMNLqiq06vquAnliPFye1b/91pV9fBNpvm9MdOPEuPFmcqxdMz7zruAXamqQ6vqe6rqN9PdyHNw/9ZTdlGcfdiUTTk+27WTa+M3rap/q6ovV9VFVXV2VZ1aVQ8ac9PYvjPj+Oz2moXzvMy97vxMkkP78b9urbVtzDOoulNVRyZ5av/yxNba+ZOm36HdHDMOTvI9uylnP9adGcdnu9aOPZdk/fvdzI9V1buq6sKq+npVfaKqXlJVP7Xfnno9z9hU1Wuq6tz+uHNuVZ1RVY+pqmtsMeta3bmgT3Ydq7V2TtavM6k7e7ebJyMNpu707l9V7+8/64VV9ZGqen5V3XmP5TruTCChgpXQ9zq11hvRZo+ZSZK01r6UrjfgJLn+LNcLxlmm7bWqfijrNwW9t7UmoYJvWdS22v9waVXVkpyX5K1JfjlJpbtA/tOttS/vZRnsL/PeVvsf1WsNko9prZ23m3IYpgWeBxyX5DuTXCnJtZL8SLpEtY9W1a/ssWyAldY3Av9iuh5Qbp/kzP7i3o9W1V2r6g/SXZg8JMm/59tvzP2ukfGJ+/Yknx4Z1yaxPKYVw92UUxvmY0G22UayFquvbeN36VqMr11VV544JVM1hd9s4ry8Ri/EHUjXg9mvJzly5P+HJLlrktdX1YmblCPGy+3/JnlBP/6MqnpOVd27qm5dVferqlOy3ivin7TWXjumDDFegKo6kOQxI/966ZjJnHcBM1dVJ4xcZ/pauqc8PDnJdfpJnpDkRbso2j5sCmYYn+0se6fXxq+T5LZJjkjXu/j1ktwn3Y1976qqpb/pa6fmGJ/jsrtrFoM9z1tg3Rm9qfUFm051RUOrO09McnSStyR53pTLnvaxZ3B1J7ONz5aq6l5JfrB/+eoNnTWNc8N0HUpcLclV0z3p6gFJTknypn3WWd48Y3O3JNdOd9y5drokl8cn+XhV3XfCfGt1Z6v6l6zXnf1y7WchdadPfviF/uU3kvzdNmcdUt1JunbSm6X7rFdLcpN0x+zXV9UpVXXELst13Jng4K0ngaVw9ZHxr25j+q+le9z71WazOjDRUmyv/QHouUnWel993ITJGaal2FZH/EWSP15QjwEst3lvq09K1xD4tiTP2WUZDNe8t9ePJ3lZuu117YfojZL853S9Cl0lybOqqrXW/nKXywBYea2106rqVumSJR6Sb+/x5vPpekJ+Tmvt6xve28m+/Wsj49oklse0YmhbWFE7aCNZi/F2z+PWXC3JN3e3duzCXn+zifPyuubI+Inpfs/8c5LfT/KeJIen+63zhHQ37jyhqj7YWjt1QzlivMRaa5cleXBVvSLJ7yR5aD+MekOSP90kmSIR40V5VLob55LkZa21d46ZxnkXsEjvSvKw1tqZu5zfPmy29hqfiXZ4bfzyJK9L8k9J3p3kC+ni9p+S/Eq6m9dunuQNVXXb1tqnZrHOS2Za8dnrNQvned9uZnWnqr476z3rv7W1tlXP+oOrO1V1x3S/Vy5N8vBtPsFjJ6Z97BlU3ZlDfLZa/jWTPKN/eVm69ovNXJzktCSvSfK+JBek60Di2CSPSHez8u2TnF5Vx7bWLpjVes/DHGPz3iQvT/L2JJ9Nl1DxfUl+Psnd033H/1BV926tvWrM/LupOyt/zrbgunOHdOcGSXJKa+3CLaYfVN1J1zncaemOtx9Mt22uJQk9PF2i6k8lObWq7tZau2SH5TvuTCChglVxlZHxi7cx/Vqlu+oM1gW2sizb69OT3Loff35r7RVTLp/Vt6ht9ZfS3Txc6U5yb53uJPfXktyoqh7aWvv8HpfB/jK3bbWqfizdE1MW0ujCvjDPfesp6Y7xG7fTM5O8pKqOT3fh4kpJ/ryqTpv0qFKA/ayqDknXc8t9052HbnSddD3ifCJdQ+WonezbRxsBtUksj2nF0LawurbbRrIW452cxyViPDdT+s0mzsvrsJHxqyQ5Pcnx/Q34Sfek02dV1fvSPV3qQJLH97912oZ5EzFeWn2PtQ9KcotNJjk2yUOq6gOttc+MeV+M56yq7pQumSlJzk3XnjuO8y5gHl6e7klWSVfvb5yud9qfTvLiqvqN1tord1Gufdh0zCo+W9nJtfH7bdKT7puq6pnpErcfnK696ClJ7jfVNV2sWcZnGtcshnyet4i68wtZbyvdztMpBlV3+jblv0z3Hf15a+19M1jMtI89g6k7c4rPpOUflOSFSW7Q/+t/ttb+34RZbrtJ/Tmjqp6e5O/TJQDcLMkfJPnNaa7vPM0xNk9prZ005v//luQF/RORnpUu2fK5VXXj1tpFG6bdTd1Z2XqTLL7upHui/JrtHHsGU3d619vk855eVU9L8qokt0yXYPGIdJ0X74TjzgQHFr0CsE2jB7NDtjH92qNhvjGDdYGtLHx7rarHZr1XrzOT/Oq0ymZfWci22lr7RGvtfa2197bW3tRa+/N0j0D8pyTHJzmzqvbFY42Zmrlsq33vRWs/HJ/aWnvPTuaH3tz2ra21CybdQNY3rP9R//LQdD2yAwxOVR2W5LVJHpuu5+snpmtYvXK63q3vnuTN6S66v7yqNja27mTfPvqoWm0Sy2NaMbQtrKAdtpGsxXgn53GJGM/FFH+zifPy2nhR+8SRZIpvaa29Od2NWEl3TN94U74YL7G+F8S3Jbl3ks+ku5B+dLp4XT/dfvrrSR6Y5O1V9f1jihHjOepjcEq6jvouSnL/1tq5m0zuvAuYudbal/vrTO9rrZ3ZWvvb1tr90iXr3Shdb60n7KJo+7ApmGF8NrXTa+Ob3KS29t4lfVkf6v/101V1vWms5zKYZXymdM1isOd5i6g7Wb+p9ZtJXrKddZzw3n6sO7+T5KZJPpXkD2e0jGkfe4ZUd+YRn0memeQn+vFXJvnjSRNvUX8uTJdA9cX+Xw/rb3pfVXOJzaTvtH//2Ume17+8brqnJW20m7qzyvUmWWDdqaqrJLl///Kz6a7dTTSwurPV5/18uid+rT2V4pG7WITjzgQSKlgVo4/22c5jk9Z6strOI2Vg2ha6vfYZtn/av/xgknu21r42YRaGa2n2rX0W+C+lu1h6/XQ3ucGaeW2rj0v3+MdPp8tch91Ymn1r7y+TrF3AuNOkCQH2sZOS3LEff0hr7cTW2gdbaxe31r7SWjs9yZ2TvCHdTbpPqqofGpl/J/v20Z61tUksj2nF0LawYnbRRrIW452cxyViPC/T+s0mzstrdD973hY9O756ZPw2m5QjxkumT4x6cbqk1s8l+dHW2t+01j7fWruktXZ2a+2ZSX4s3YXZ6yZ5/piixHhOquqGSV6T5BpJLkvywNbav0yYxXkXsDCttb9O8nfp7oN5elVdc4dF2IfN0BTiM9Ysro231i7N+g2YyQDa1mcVnzG2umbhPG+DGdad26a7oTZJTtvqxuTt2E91p6pumq6DniR55AzvuZn2sWcQdWeO8dls+Y9P8rD+5ZuSPGBchxA70Vq7IMnf9i8Py/pTl1bKomMzxrNHxqd13FnJepMsRXzuk+TIfvyFe603yf6pO9vVWvt4uqf6JslNquq6OyzCcWeCgxe9ArAdrbWLquoLSa6VZGKv5VV1jaxXwk/Pet1go0Vur1X1X9JlQSfJJ5PcrbV2/l7LZX9atn1ra+38qnpLkrsluW9VXanvyYKBm+O2emL/97VJ7l1V46ZZK/uwqnpgP35ua+31O1wW+9QS7lvP7dfnqCSr3hMQwI5Vd0D/5f7lh1tr427IS2vt0qr6vXRPqjiQ5IQkj+rfPntk0q2epHb9kXFtEstjWjHcWM6k39tr5bQN8zEnu2wjOTvJj6Q73z9yi5sJ1mJ8XmvtmxOmY3qm9ZtNnJfX6H53q33n6LTX3vCeGC+vn8j6b9OntdY+N26i1tp/VNXfpOvh9lZV9UOttXePTCLGc9BflH9tusSWluSXW2unbjGb8y5g0U5N10vtYemOOy/awbz2YbO3l/h8mxlfG3//yPhQ2tanGp9xtnHNwnneeLOIzYNGxl8whfLW7Je686h0vW5/PMmhI20Mo35gZPzHq+rofvwVO7hJeeMx4x0Tpt3q2DOkujOv+HybqjoxyWP6l/+e5PjW2rR6XN8P9WdhsdnEVt/p2Umuk63P/ZL1urPK134WHR/Hnul4f5J79uPXS/e0j+1y3JlAQgWr5P3pepS8SVUd3Gc2j3PTkfEPzH61YKy5b69VdZ90JxsHkpyT5C6ttSE0vLE3y7ZvPa//e2i6hrRzZrgsVss8ttW1R9H9Uj9MclS6HhWT5I1JJFQwatn2rZs+YhtgAK6TZK3Xtkm9XCfJO0fGR/fR79/k/+Nok1hO04rhxnLetY1yPr0EvXANzh7aSN6f9Ue/3zTJv25S/sFJbty/VNfnZ1q/2cR5ef3HyPhBW0w7+v7G31xivLxuNjL+71tM+850CRVJF8fRhAoxnrGqOipdj4c36v/1yNbadm52cN4FLNp5I+M32OG89mGzt5f4XMEcro0PsV19avHZwqTv1nneeFONTVVdKcm3OiFI8s97LXPEfqk7V+7/3ijr7QuT/N7I+A2TbHefvptjz6VJPjKmnCHVnXnF5wqq6r8leUL/8gNJ7tFa+6RtGjwAACAASURBVMpuytrEfqg/C4nNBFt9p+9PcqskR1TV0Zt1/FBV35nk8P6lurMLVfUdSe7Rv/z31tr7dlvWGPuh7uzEXj6v484EBxa9ArADb+7/HpbuQLaZ0cczvWV2qwMTzXV7raq7JHlpukS5L6TrfeNjuy2PQVm2fetopvBSP+aLuVu2bRUmWZrttaqune5msmRnPRMA7BejN1hu1bHIlTaZ7xNZ34du9Zj6H+v/fibJWVutHHMzrRi+eWR803L6Hpu+t3/pnHTO9thGsq0Yp3ts+NqTEMR49YjzkmqtfTLJp/qXx9QmjyHp3Xhk/DMb3hPj5TWNc7NEjGeqqo5I8uokN+//9ZjW2jO2ObvzLmDR9nKdyT5s9qZyHXBO18ZvPjI+lLb1mV+n3cY1C+d54007NvdK96T1JHnRhI7BdmOIdWcvzkxycT8+6ZhxSJIfXZuntXbJhknUnRmrql9M8vT+5ceT3HWKT0Vao/5M31bf6XbrjvtQ9u7nst4WNM2nUyTDqzt7+byOOxNIqGCVvHxkfGwPZFV1IOuPBvpykjfMeqVgE3PbXqvqduke8XjlJBeky4D+j8lzwbcszb61qr4rybH9y0+21i6cxXJYWTPfVltrtdWQ7pHRSbeNrv3/uB1+Fva/pdm3JnlYkrWbkN44o2UALLMvJlnrIerYvieUzYw2+H1ibaS11tL95kqSm1bVj2aM/v9rvbWc2s/HEphWDFtrH856DzoPqKpDN1nkCSPjp+xqpdmVKbSRnNHPlyQPnnAz9wkj42I8J1P8zXZGxHmZ/UP/9/Akd5kw3f1Gxt+84b0zIsbL6hMj43fcYtqx52a9MyLGM9Gf3/xjkv/U/+tPWmt/tt35nXcBS+D+I+Pv3cmM9mFzsev4rJnHtfG+/eiXR/71L9Msf4ntOT7bsNU1izPiPG+cacfmQSPjz59CeUn2V91prZ2wjTaIPxyZ5c4j7521g+VcmOR1/cu79vdMjHO/rPeOP26bPyMDqjvzis+aqrpfkr9Kt/86O91TkaZ603af2L725JivJ3nHNMufl3nHZht+ZWR83HHntCSX9+OTnoh7Qv/38n6elbTg+Kwdey5J8qI9lvUt+6XubFdV3TDJ3fqXH2utbexoZiLHnckkVLAyWmtvT/Km/uVDqurYMZP9VtYfGf3UjZlRVXVcVbV+OHl2a8vQzWt7raofTndx47B0j9W6V2vtndP4DAzDPLbVqvreqvrxSevRn+C+KMkh/b+mnY3MinMewCqZ0771mKq65aT1qKrjk/x+//Ib6Rr6AAaltXZ5ut9MSXLdJI8bN11VXSPJ6I1ir9wwyVOSXNaPP62qrrph/qsmeVr/8tJ+epbLtGL4v/q/10zyxI1vVtWNkzy2f/nRrEAD8X4xjTaS1trFSf6if3mzJI8es5xjkzykf/nG1tqZu15pFkKcl95TklzUj//vqjp84wRV9QtJjutf/mNr7dOj74vxUntduovbSfKIqrrFuImq6ieT/HT/8jNJ3jX6vhjPRt/74ClJbt//66mttd/dRVHOu4Cpq6oTquoqW0zzqCT37F9+IutttGvvb+cagX3YLswrPtP43VdVd66qIye8f6Ukz816+/0rNp5vrpp5xGda1yyGdp43x33b6PTXTPeEiiR5b2vtXZOmH5lvcHVnGvoYr8XnpE0mWztmHJzkGVV10IYyjsp62/WX033PVzC0ujMt24lPVd09yYuTHJTk3HRPpjhrh8v5iY3nFBvev1q6Jy+tPTnmea21b+5kGfvNVrGpqltU1U22KONhSR7av/xcxpxvtdY+l+SF/ct7VNXPjCnn/knu0b/8636eQdvmvm10+u9Psnae8M+ttfO2uZxB1Z2qundN6Biuqq6TrjOatXvrnjlmGsedPdjqcbqwbH493aNfrprkNVX1p+l6871qukyzh/XTfTjJk3e7kKo6YcO/fnhk/Ceq6piR1x9trW3sAQuSGW+vfUPbq5Os/Wj93SQXVNUPTJjt3NbauTtdFvverPet103yuqp6d7pe29+Z7sfKpUmOTneB7iH9eJK8L8kTdvVJ2O/mch4AUzLr7fWYJG+oqrcleUWSd6drxEuSGyX5mX5Y6wng0TvtnQBgH/mjJPdNcmiSk6rqVul6Xvt4kquke2TtbyT57n7617XWXjNaQGvtw1X1pCSPSfd42rdU1Z8l+ViSGyc5MeuNwU9qrX1kth9pWKrqDklGL44cNTJ+k43tOK21kzeWMcUYPj9dT3u3T/KrVXV0kuck+VKS2yb5vXS99lye5L+31i7d/icdrr3GeMptJE9K8rNJvjfJE/sLc3+b7maPOyf5nXTt6t9It+9gm6ZRl6dInGdgSvvrT1XV76e78fAWSd7e76/fk27/er8kj+gn/0qSR22yOmI8A3uNcWvty1X1hHTnZ1dP8taqelqS09MdS6+T7rztv2a9U7jH9EmyG4nx9L04yd378dcned4Wx9KL+17Yr8B5FzAjJyV5clX9Q7qnU30syVfTHU9ukeTns54QdnGSh7XWLhtTzkT2Ybt2UmYcnyn+7ntwktOq6rR0Pet+KN155dWS3Cpd2/3N1+ZP19a/6k7K7OvPMZneNYshneedlDns2zZ4YNZvxNzJ0ymGWHfmorX2+qr623SxuU+S06vqKUk+m247eFzW265PbK19aZOihlR35qK6p1Kdkq7OXJKuDeJKWxx7zm6tfXnD/x6T5IVV9bJcsa4fkeR2SR6e9Rh/KN2+gcluleS5VfWGJK9K9/SeL6Tbxm+abv+59vv2snT7z69tUtbjkvxEkmsneXFV3TrrnW4dn66jxCQ5L935Bzv34JHxnRx7hlZ3npZuH/MPSd6W5Kx0++yj0nUu8ytZb4t7c5Jn7GYhjjsTtNYMhpUaktw73eNi2ibDh5LcZJN5jxuZ7uQJy9is7HHDpuUYDLPcXtM9Emkn22pLctKivxPDcg4z3laP28E2+sok117092FY3mEe5wFbLP+sfv6zFv1dGJZ/WJJ969fSNRAt/PswGAyGRQ5J7pqusXur/ebrklxjkzIOJHneFvM/N8mBRX/e/TYkOXknv30nlDOVGKZrsH77hDIuSvLQRX9vqzTsNcaZchtJupuFPzxh3guSHL/o723VhmnV5S2WcVa2+ZtNnJc7xkken+4Gw83m/3ySY8V49WKc7ia6P98ivi3dDWOPFuO5xnenx9KzJpTlvMtgMEx1GDnP22r4dJK7bVLGcSPTnTxhWfZhSxifTOl3X7Z/PvOeJDdf9He7QvE5bpvL2NY1iwzkPG8esRkz/b/2016a5OgdrOvg6s42vpOTRj73cZtMM7rvOmlCWVdN9wSezb7XyybNP1LOIOrOvOKzoYztDieMKeeMbc57RpLrLfq7W5HYnLDN7/T8JPfdxjr9SJJzJpRzTpIfWfR3tyrx2TDtgXRPH21JvpjkkB2sy6DqTrZ/XvD3SY7cS2ziuDN28IQKVk5r7RVV9YPpspnvleS70jWsfzTJ3yV5emvt6xOKgLmxvbIqZrytviXd4+/umq43n+9K19vcoel6rfhEuoabF7fW3rKXz8H+Z7/KKpnx9vrOJL+Q5Nh0+9bvTHeB7uB0vZz9R7qbgp/bPJ0KIK2111bVTdM9Ge0nk3x/uh4NL0339LQzk7woyWmtbwEcU8blSR7S9wzzsCS3SbfvPb+f/9mttVfN+rOwe9OKYWvt/Kq6Xbres38u3eOMD0vXe8/rkjy1tfYfs/kUzENr7aNVdcskv5rk/ukuChyS7gaGf0oX408ucBWZAnFebq21x/Y9nz4iyR3T/ea5KN0FutOSPK21dsEWZYjxEurPtR5VVX+T5KFJ7pDkBunaCr+a7jfzG9Mdl7/t6QcbyhLjJeW8C5iBe6RrY719uv39dZJcK11vp+cmeVe6TrteutdrBPZhuzK3+EzBn/Xrc2y63vSvneSaSb6ZLmn3HeluUjul7f1JAMtiHvGZ6jWLAZ3nzbXuVNX3pLtpOElOb619bgezD7HuzE1r7RtJ7lVVP5fuZtgfStd+/fkkb0p3TfFt2yhnKHVn1Tw6yV3S1Z/vS7d/PDLJ19OdF/xbuicGvmaz6xN8m39Kd73n2HRPD1vbf1a6m/bfneSf0yWafWWrwlpr/1ZVt0h3Xf+n0j15KenuZzo1yVNaa1+Y8mcYirsk+f/s3XmYJVV9N/DvD0FFBHFDUFRcYoxCVBQTNwSj0biCor4aE8HEXZNINJvhFZNoXhNMosHgLmiMcQUVNW4Rlxijxg2XuERARFQUcVA2gfP+caqdy+XeXmZ6pme6Pp/nuU/f6qo6dW518wz16/M954bD+ze21i5Zwblj+2/nsUnumf55b57+eXdLr5edmeTjSU5Yzr8HS/Hvzmy1Pn6PAAAAAAAAAAAAAAAAlm+Hte4AAAAAAAAAAAAAAADA1iZQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVADAGquqfaqqDa/DN6Odwyfa2WfVOggAAAAAAAAAjE5VHb0wDmGt+7I9qqqDJsZxHLTW/QEAZhOoAAAAAAAAAAAAAAAARkegAgAAAAAA1jGrWgIAAACT1ArYEqzIAcD2SqACANaJ1trxrbUaXqevdX8AAAAAAAAAgO1Xa+3ohXEIa92X7VFr7ZSJcRynrHV/AIDZBCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACgFVRVTesqv9XVZ+pqh9X1c+q6ntVdWpVvaGqDq+q3abOacPr6GH73lX1jqo6u6ouqqpvVtWxVXWjZfZh/6p6aVV9tap+UlU/Hd4fV1W32opt7FtV/zh89h8N9+K7VfWBqvqjqtprGW3cp6reOZx3cVWdNvRh70XOOXzinu4zY/8pw75Thu0bVdXfVdU3qurCqvphVb23qn5jmZ9zz6p6XlV9uqrOHfp5ZlW9qaruvcS5Vxn6+97hM14y/N58vao+WFV/VlW3mXPurYb7+8WqOn849ztV9bmqenVVPbKqrraczwAAAADrWVUdVFUtyWsmvn3aRP1g4XXQjHMPqao3V9W3hjrNeUMN4DlVde1Frnn80Obpw/aeVXVMVX2tqi6oqrOG2sFtp87bp6pePBx34VBXen1V3WKRax298BmG7d2r6rlV9aWhrnNuVX2oqh61zPu1T1X9/XD++UN/v15VL6uq/ZbTBgAAAGzLVlormH72ntHe6cP+44ft/Yfn+TOH5/tvDOMSrjd13l2n6g7/W1UvqKpdl/EZrlJVj62qk4exAhcP4x0+VlVHVtXOm3p/lrjuvaqPfzlt+GwXVNUZVfWJofZxrxnnHLRY/WXiuJtUHxNy2nA/vlNVJ1XVwcP+pX4O0+NvDhj6+u3h/pxVVa+rql9a4jPevKr+sPp4ldOHz3nh8DnfWFX3m3PePkPfPjTx7Q/N+L06fOKcK9SQFunTUmNhpn8H7zi0fdrw2efds80eHwTA+lGtzfz3AgCWrarukeTkJLstceiDWmsnT5y38I/Qc5O0JEfPOe/Hw7kfnXP9HZIck+QPktScNi5N8tTW2su3YBtXSfK3S7SRJCe01g6fOG+fJKcNm0ck+cUkfzLn3HOS3LO19pUZ1z88G4seN2utnT61/5Qk90zy4STPTnJSkisULSY8q7V2zLwPUFW/meRlSXaZd0ySVyV5Umvt0qlzr5nk3Unusci5SfLW1tphU+c+PMk/J7nqEufu11r74hLHAAAAwLo2/KH+Q0sdl+Tg1topwznXTvKWJFcaBDDh+0ke0lr7xIxrHp/ksUnOSPKQJP+WZM8Zbfw0yf1aax8bBhy8Lcm1Zhz3oyT3aK19aca1jk7ynGHz5knen2ReAONNSX5zuk4x0dZvJ3l5knmTNFyW5KjW2l/P2Q8AAADbvJXWCiafvVtrVxoHMQyGv2mSE5J8MMkrM/vv+V9LH+vw3ap6ZpK/yexxFZ8ZjvvJnP7fJMk7ktxukb5/I8kDWmtfW+SYFamqv08fC7KYH7bWpoMjB2Xj/f55/WXqmHsleXuSa85osyX58/R7utjPYXL8zfeTvCjJjjPauyDJb7TWPjKjjZsl+eaMc6b9c5IjJmssU+NeFnNEa+344ZzjM9SQWmv7zDthGWNhTs/G38FPJPnHTH32yXu2GuODAFh/Zv2jCQDLVn0lgH9ND1Ocn+S49IfB76c/0N0syV2THLpIMw9IcqckX01/aP5C+h/QH57k8cP7k6tq39bamTPO/8ckTxnefyTJ8ekPeRekP0T/QZLbJnlZVX23tfaOLdTGy5M8bnh/dpJjk3w8PRBy/SR3TnLYjPMmPT79fn04PbDwtSS7J/nt4XX9JK9Ocpcl2lnMXulhisvTgxsfS3JJkrsn+b/D9f66qt4zZ7DCI5K8Lv3B8pvD5/xyethjnyS/k+T+w9cNSY6cauLobAxTnJzk9Um+leSiJHskuUOSB6YXBiave4P0h+Srpv9+HZv+MPyDJDsnuWV6YOSQFd4PAAAAWK8+lWS/9GDDXw3fu2+S70wdd1ry8zrPB5Lsnx4g+Jf0SRFOS7JTkgPTn/P3SPLuqrpDa+2MOde+RpIT05/j/yy91nFZkvsN27skeV1V3Se9TvHj9LrEf6X/7eJh6fWYa6dP2vCrS3zWN6bXoV6aHgj5cZJfTvLHSW6V5BHD537G9IlV9YD0WlAl+UmSFw734dL0Os2fpk9K8fyqOq+1dtwSfQEAAIBt1YpqBStwuySPSg8zHJPk1CS7po+heEz6s/kxVfW29IkqFwa+fzX9mfv30scZ7J8eILjSJJRVdd308Q03TnJxklek1xtOTw8j/HqS308fO/Ceqtq/tfbjFX6OK6mqB2ZjmOIL6eNivpJee9g9fSzJvdPHhKy07ZunB0R2Sa9DHJdeJ9mQZN8kz0ryvPR6yXLcd+jHqemhilPTx1Mcmn5vrpFej/mF1tolU+deJX3syHvTJ634cpJzk1wn/ef31OGzPiZ9rMhzJs49K/336oD0MS1J/9l/auoa317m59gUBwx9OzP9d/DT6TWm6ck+V2N8EADrjBUqANgsQ1L+g8PmFVagmDpuxyTXaK1tmPje5D9CM2cZqKrfSvLaYfPNrbVHTO2/T5L3DZu/21p71YxrXz3Ju9JnVjwjyS2nkvKr0caD02cMSJL/THL/1tp5c+7FjSeDITOS+q9I8sQ29Y90Vb0iye8Om/u31j47tf/wLG+Figyf4W6ttbOmjrl7+gNjJXlxa+33p/ZfL70Acq30h+AnzprZsaqelz444vIkt2mtfXVi37fSCxxvaa09fPrcieOu01o7d2L7cekDKJJFVqCoYfnO1tqF89oGAACAMVmqZjBx3MLz/HlJ7t1a++8Zx9w0vfaxV5J/aa395tT+49NnF0z6JAi/2lr736ljnpo+UULSJ2g4L71Occ7UcX+TPnAgmV0LOTpX/OP9o1trb5g6ZtckH03/g/jlSW43WVOoqp3SB17cMD1McY/W2ucW+cwXJLlpa+0HAQAAgO3UCmoFR2d5K1QkfcLJ+7TWLpg65s3pk09elh5C+FCSR7bWLps45irpYYlfTfLDJHtOj0WoqtcneXT6eIeDW2tXCn1U1R3S6wC7JHl+a+3Zc27BslXVa5P81nDdfRdZPeMKYxyG7x2URVaoqKoTs3HSyENbaydN7b/GcP7PwxpLrFCR9MkxDp0OTFTVs7MxRPPQ1tqJU/t3SbJba+3sOZ+v0seJHJ6+8uiNpgMry1mRY+LY47O6K1QkPUBy4CLjdTZ7fBAA69MOa90BALZ7e068v9KSgAtaa5dOhilmeMKsh87W2uuSvGfYPLSq9pw6ZGFWgrfOetAZ2rgoydOGzZsmOXgLtnFBksPmPZwNbc1aZWPB2UmePh2mGBwz8X46Qb9ST58OUwx9+1g2zmww6xpPTg9TnJXkKYs8ND5nOGaH9JU1Ji38DD+6WAenCw0T5/1oXphiOO9CYQoAAABYmaq6ZvpMg0ly1KwwRZIMK1L85bD58OGP7fMcNR2mGLw6faXKpK/G+XvTYYrB5EoQS9VCTp4OUwz9PT/JE4bNHZI8aeqQQ9PDFEnyV9NhiqGNM7Ix2HGNJEcs0RcAAAAYm5Y+QP2CGfv+afh6lSRXTx8fctnkAcP2y4fN6ya5zeT+YaLKRw6bT5sVphja+WySlwybh6/oE8y3MFbhM/PCFMO1p8c4LKqqbpjkQcPmW6bDFEObF2RjXWM5LkpyxIzVJ5LkxekrUCQz6iyttZ/OC1MM+1uSP0wPxuySvirHtuapi43XyeqMDwJgHRKoAGBzTT5Mbeofk0+d90f6wcJygDsmOWjhm1W128T2Wxa7QGvtK+mzIibJXVa5jeumz5KQJG9srU0vhbkSb2mtXTzn+l9NnykxSW6+Gdc4Lz1NP8/Cz2LWNR48fD15Xj+THqBJn7kxmbhXg4XfmUcOsyks18J5166qh6zgPAAAAGBp90yfRCFZokaSjZNq7JTkjnOOaUneNHNHnwjh68Pmj5K8d85xpyU5f9hcqhbymnk7WmufTPKlYXP6j/0L2y0ba1CzvDl9Fs1ZbQAAAMDYfWEYUzHL5yfev3+R4MHkcdN1gAekBzIuyMZJOedZqFvcsKpussSxy7EwVuHAqrrFKrS34OD0z5Qkr5t3UGvt87nivVnM+1tr35/TzvnZWI9ZcsxJVe1UVXtX1S9V1b5VtW/6pBQ/HA653TL7tLWc2VqbO7HnaowPAmD9EqgAYHN9LMk3h/f/UFWfrKo/raq7VdVVl9nGp5bY/8mJ9/tNvL9DNv5b9oaqaou9klxvOHbPVW7j9kkWllRcdNWFZfifJfb/aPi662Zc4+uttcsX2b9QvLjCNYYlNm8/bD5xGffqsOHY6VVFThi+3jXJaVV1bFUdWlXXX6Lf70gPgyTJiVX171X1jKq649A3AAAAYNPdaeL92Us880+uHDn93L/gB0vMzLjwjP+NOSt1Th+3VC1kufWlW03VrPYdvp42Z5WMJMkws+Nnp84BAAAAuq8tsm9yxYDlHjddB1ioW1wjyaVL1C1OnjhvXt1iJV47fL1uki9W1b9W1RFVdcvNbHeyvrDYJKRJ8ulltrnUmJOZ40EWDCGKp1bVJ9In/DwzyZeTnDrx2mM4/Hqz2lhDX1hi/2qMDwJgnRKoAGCztNZ+lr4E4cJMAwckeX560OK8qvq3qnr0EgPeZ6bjJ3xv4v11Jt7vMX3gMk2uirAabUw+JM5d/nCZZi1/OWkhCLE5AYLlXmP6/xOuk75KyEpNr0Lxl+kzPrb0+//UJG9L8v2q+mJVPbeqbjDdSGvth+krZJyVHmA5OMnfpRcOzq2qt1XVAzehfwAAAMDq1EgmLbf+sFq1kOXWlyrJtSe+v1BrWur8JPnu1DkAAABAN/f5fmrCx8XqAJPHTdcBVrtusWyttQ8meVqSC5NcPckj08c8fL2qvl1VL62qTVmtYbI+MXeSh2XuX7DJdZaquk6S/0xybJJfSbLUJKo7L7NPW8uPlti/Zr9DAGz7NmVQJABcQWvty1W1X3qw4kFJDkxyy/SHp/sOryOr6v5zlhZcbBbCxUw+4D0xyceXed7kQ9RqtDEWk/fqlUletMzzLpncGEI4v1NVL0zyqCT3Sp9N4qpJbju8jqyqx7TW3j517keHWR4eluT+6b9reyfZLcmhSQ6tqvcmeWhrbalCAQAAALDR5HP//kl+tszzvr0F+rIpNrW+tFrnAwAAAFvOQt3iB+mTLy7Xaatx8dbaS6rqzUkeneQ+Se6W5FpJbpQ+1uQJVfX81tqfr8b11siLktxxeH9SemjkC+mTUFy0sMJoVX0ryY3TJ63Ylly2xH7jgwCYS6ACgFXRWrss/YHqpCSpqr2S3C999YE7Dq+XpQ96n3al1QgW2X/uxPsfTry/oLX2xRV2e7Xa+MHE+7024fztxeS9r028Vz/XWvtykqOSHFVVV09y9/Tiw28nuWb6Eou3aK2dPXXeRUleP7xSVTdL8oAkT09yq/QAz/OSPGNz+gcAAAAjM1kjOae1tq0EJZbrBknOXGJ/0oMTk38IP3dq/2L2nDoHAAAA2DoW6ha7JvnKMEZlqxomEP2HJP9QVTskuX36GJinJdk9ybOr6lPTE0cuYrI+cf0kZy1y7PU3ocvLVlW7pa+8kSSvb609ZpHDr73IvpVYWC1jhyWO22WVrrca44MAWKeW+scIADZJa+3s1tprktwlyWeGbz+wqmYt+XfAEs1N7p98oPlcNs4eeLdN6ujqtPHZiTYO3MQ2tnmttUuSfGnY3NR7Na/ti1prH2itPS7Js4Zv75zkgcs497TW2rHpvycLgz0esZr9AwAAgO3cclZf+OzE+1V97t9Klltf+vpQ41iwUGu6WVXNHZxQVTslucPUOQAAALC92t5WalyoW1wtyZ3WsiNJ0lq7vLX2mdbaUUl+bWLXSsYqfGni/R3nHtVt6c/8C0l2Gt6/cd5BVXXr9Aky51nJ79X5w9fdlzjuVitoczGrMT4IgHVKoAKALaq19rMkHx42d8zsB6H9quoOM76/4HHD18uSnDLR9jlJPjFsPnqxP3ov0r/VaOPcbFwK8BFVdcOVtrEdecfw9dZVdd8tdI0PTry/3nJPaq1tSPKplZ4HAAAAI3DRxPurzTnmA0kuGN7/XlXVlu3SqnvsvB1VdUCSfYfN9bePyQAAIABJREFUD0ztXtiuJEcs0v5hSa41pw0AAADY3iynVrAteWc2Dob/g7XsyLTW2meycbWJlYxVOCUbV2n4rXkHVdXtktxukzq3fDtOvF9sRYgnLdHOSn6vThu+7lpVvzjrgKq6apKHLdHOsqzG+CAA1i+BCgA2S1Xdo6puucj+qya557D5kyTnzDn05VV1pYeyqnp0kvsPmye11s6eOuSvhq+7JXlLVc1NrlfV1arqqVV19S3QxguGr9dI8uaqulbmqKq95+3bDrwo/eeYJK+pqtsudnBVPaCqfnli+zpV9aAlBmX8+sT7hQfoVNV9q2qvRa51rSR3nj4PAAAAyGQ95RazDmitnZfk2GHzrkn+vqrm/g2hqm5QVb+7el3cbA+uqivNAllV10zysmHz8on3C05K8p3h/bOrar8Zbdw4yTHD5gVJXrMqPQYAAIC1s2StYFvSWvtqkjcPm/+nqo5c7PiqullVPWo1rl1Vj6yqnRfZf6ck1x42lz1WobX27STvGjYPq6pDZrS9c5KXr6C7m+ob2RhYeeysMR1V9aAkT1uinZX8Xn144v0fzjnm75LcaIl2VmI1xgcBsA7tuPQhALCoX0tyVFV9NP1B7wvpoYmd05fde1KS/YdjX9Vau3RGG59OX57w01X1giSnps/4d1iSJw7HnJ/kmdMnttbeXVUvSvL7SQ5M8pWqemmSjyX5YXpy/pZJ7pHkoekPsSdsgTbeWVWvSvI76YMOvlxVxyb5jyQb0mchuFOSRyb5fJLDZ97NbVxr7XtV9dgkb0myV/rP7Pgk70ny7fQlIPdODzYcluTmSR6U/nuR9IfSdyQ5vareluS/kpyR5NKhvQclWRiMcVaSkycu/6gk76yq9yd5X5IvJjk3ya7ps0w+LRsfpF+6mp8bAAAAtnOfTZ8h8OpJ/rKqfpb+PL4wC+JZrbULk/zf9IkxfiW9TnJQVb0iyeeS/DS9JnLbJPdO8hvpNZxXbsXPsZhPJ/mXqrpnet1iQ5JfTvLHSRZmOXxJa+0Lkye11i6pqiekz3S5W5L/qKq/TV9B87L0Os+fJNljOOWZrbUfbOkPAwAAAFvYcmsF25Inp4+7uHmSF1bVQ5K8NsmXklyc5LrpKzncL8m9kpyY5A2rcN0XJHlpVb09yUeSfC29TnLdJHdP8vThuMuy8jrJkenjbhYm7zxu6PeG9HEQf5TkNkk+leSAzfsY87XWflhV707ygPT7976hL2ek10Qelj7O5ZtJdk8yc3WH1tq3qurb6eNGnjm8/2r6vUmS77XWzh+O/WxV/WeSuyR5/DBh6wlJfpzkF5I8If3n+PH0+sxqfM7NHh8EwPokUAHAatgh/Y/t91zkmLcn+dM5+941vJ6T2TP8bUjy4Nba6XPOf0b6wPqjkuyZ5OhF+vHTbHxQW+02npjkwiRPTXLDJM+fc/7nF2l7m9dae9tQmDg+yXXSQzPzlnW8PP1+TdsnvTAwz9lJHtJa+8nU93dKX7Hk/lc+5edemuTFi+wHAACAUWmtnV9VL07/I/z+6RMVTDo4ySmttYur6j7pz/wPTR+EcGzm27AFurupHpEegnjK8Jr21sypRbTW3lVVR6SvXrFrkr8YXpMuS3JUa+24VesxAAAArJHl1gq2dr8W01o7t6ruluRN6QPeDxxe86xm3WL3JI8dXrNcnORJrbVPr6TR1to3hpUpTkwfzP/0bAxoLHhu+ricA9JDMFvKk9ODBTdJn0zj3lP7v5XkkCTvXqKd5yf5pyQ3Sx8rNOmI9LrTgselr1SxR2bf32PSAzOrEqgYrMb4IADWmbnLdQPAMh2TnkQ/Lskn0h+gLhpep6c/yD6wtXbIYrMXtNaOTk+5vyvJ95JcMpz/T0lu21r78CLnttbaX6SviPE36TMSnpv+UHN+ki8neX36g9des/qxSm1c1lp7evqMCC/PxlkJfpbku+kFiCMzY6WN7U1r7Z3pD7/PTPLv6T+zn6UHSk5LX1niyCT7tNY+NHHqGemrVxydfj++muS89BUqfpA+m8Ozkty6tfbfU5d9RpLHJHl1+s/nrPTfkwvT7/UJSe7RWntya+3yAAAAAJP+JMnjk3w0G2seV9JaO7+19rD0gQmvTH92Pz/92f3c9BkRX5I+2cF9tny3l6e1dlqSO6b/0f4rSS5In9HwI0ke01o7bM7KqQvnn5Dk1kleNJz/0/Saw/8meUWSO7TW/nqLfggAAADYupZVK9iWtNa+21o7MMkD08dwfDO9BvCzJOekr2bwwiT3bK09bpUue3D6igZvTV+t85z0OsmG9JU+jklym9ba8ZvSeGvt/emrUbwsfUzFJeljMN6V5H7DeJrdhsN/vKkfYhn9ODM9XPO36WMwLh6u9/n0UMftW2tfXkY7x6WPI3pfku+n36t5x/7PcM2F1TAuSb+//5bkAa21Z23GR5p3zc0eHwTA+lOttbXuAwAjVVUL/wg9d3gABAAAAIBlqaqj01c8TWut1rY3AAAAAFtGVX0gya8l+Vhr7R5r3R8AWG+sUAEAAAAAAAAAAACwjamqGyY5cNj8xFr2BQDWK4EKAAAAAAAAAAAAgK2sqm65yL6dkxyfZKfhW6/dGn0CgLHZca07AAAAAAAAAAAAADBCr6yqXZK8Kcl/Jzk3ya5J7pTkKUkWAhevaq2dujZdBID1TaACAAAAAAAAAAAAWHeqao8ke2zCqZe01r622v2Z407Da54Tkzx9K/UFAEZHoAIAAAAAAAAAAABYj56S5DmbcN4ZSfZZ3a7MdGSSQ5PcK8neSa6fpJJ8P8knkpzQWnv3VugHAIxWtdbWug8AAAAAAAAAAAAAq6qqjs4mBipaa/usbm8AgG2RQAUAAAAAAAAAAAAAADA6O6x1BwAAAAAAAAAAAAAAALY2gQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGZ8etfcGqulqS/YbNc5JctrX7AAAAwDbvKkmuP7w/tbV28Vp2BlaLuggAAADLpDbCuqMuAgAAwDJt1brIVg9UpD8cf2oNrgsAAMD26YAkn17rTsAqURcBAABgpdRGWC/URQAAAFipLV4X2WFLNg4AAAAAAAAAAAAAALAtWosVKs5ZePPJT34ye+211xp0AQAAgG3Z2WefnTvf+c4Lm+csdixsZ9RFAAAAWJLaCOuUuggAAABL2tp1kbUIVFy28GavvfbK3nvvvQZdAAAAYDty2dKHwHZDXQQAAICVUhthvVAXAQAAYKW2eF1khy19AQAAAAAAAAAAAAAAgG2NQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKOz41p3AABgW3L55Zdnw4YNa92Ndevyyy/P+eeff4Xv7brrrtlhBznfzbXbbru5jwAArEvr/TnNc9Km8xwEAAAAAPOt99rqWlLX3brUgtnSBCoAACZs2LAhhxxyyFp3A1bspJNOyu67777W3QAAgFXnOY15PAcBAAAAwHxqq6wXasFsaeI6AAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjM6Oa90BAIBt3U/3fWjajldb626sD5delGt+8cQrfOsn+x6a7Hj1NerQ9qkuvTi7fPFta90NAABYM+vqOc1z0rJ4DgIAAACAzbeuaqtrSV13i1ELZi0IVAAALKHteLW0nXZe626sCzXrmzte3f0FAABWZD09p3lOAgAAAAC2lvVUW11L6rqwvuyw1h0AAAAAAAAAAAAAAADY2gQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdP4/e3fwG2XV7wH8tLdyU4OFcQE3Rv4CYGFi2cHfYCRQE0hYCSZNcOF20AV16YY3XYArE0gsROPeHaykGxPhH5DrAjYNhdiIvNO78L2R4kynffqcPuf09/kkbKYzh29Mf8/MOY9fRqECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIZ6rrAAAlGwwGaXV1dcNjMzMzaXJSHw0AqJPPNwC0zXsLAHg/BAAAumdfAgBsxmeF0RQqADaxurqaPvjggw2P/fDDD+ngwYMdJQIA2BmfbwBom/cWAPB+CAAAdM++BADYjM8Ko6mUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUbOLFixddR4DiNJ2L3PPU9vrmHwAAiC7HvqjUvVapuQAAgPFKvXcF1M01Iq/nz593HWHLaspao5pmraasAABsj0LFCGtra+mzzz5La2trXUeBYjSdi9zz1Pb65h8AAIgux76o1L1WqbkAAIDmzGtMAAAgAElEQVTxSr13BdTNNSKvlZWVdPbs2bSystJ1lLFqylqjmmatpqwAAGyfQsUIN2/eTL/88ku6detW11GgGE3nIvc8tb2++QcAAKLLsS8qda9Vai4AAGC8Uu9dAXVzjcir3++n33//PV25cqXrKGPVlLVGNc1aTVkBANg+hYohHj16lJaWllJKKS0tLaVHjx51nAi613Qucs9T2+u/vt5vv/2244wAAAA1ybGPK/WspdRcAADAeKXeuwLq5hqR1/3799PDhw9TSik9ePAg3b9/v+NEo9WUtUY1zVpNWQEAaEah4jXr6+vp2rVr6eXLlymllP7888907dq1tL6+3nEy6E7Tucg9T22vP2y9r7/+upWsAAAANcixjyv1rKXUXAAAwHil3rsC6uYakddgMEgLCwsbHltYWEiDwaCjRKPVlLVGNc1aTVkBAGhOoeI1d+/eTcvLyxseW15eTvfu3esoEXSv6Vzknqe21x+23s8//9w4HwAAQG1y7ONKPWspNRcAADBeqfeugLq5RuR1/fr1tLq6uuGx1dXVdOPGjY4SjVZT1hrVNGs1ZQUAoDmFilesra2lxcXFoT9bXFxMa2tru5wIutd0LnLPU9vrb7YeAABABDn2caWetZSaCwAAGK/Ue1dA3Vwj8lpZWUl37twZ+rPbt2+nlZWVXU40Wk1Za1TTrNWUFQCAnVGoeMXNmzfTkydPhv7s8ePH6datW7ucCLrXdC5yz1Pb62+2HgAAQAQ59nGlnrWUmgsAABiv1HtXQN1cI/Lq9/tpMBgM/dlgMEhXrlzZ5USj1ZS1RjXNWk1ZAQDYGYWK//j111/T0tLSps/59ttv06NHj3YpEXSv6Vzknqe219/KegAAAHtZjn1cqWctpeYCAADGK/XeFVA314i8fvrpp/Tw4cNNn/PgwYN0//79XUo0Wk1Za1TTrNWUFQCAnVOoSCmtr6+nf/3rX+nly5ebPu/ly5fp2rVraX19fZeSQXeazkXueWp7/a2uBwAAsFfl2MeVetZSai4AAGC8Uu9dAXVzjchrMBikL7/8ckvPXVhYGPnNELuhpqw1qmnWasoKAEA7proOUIK7d++m5eXlLT13eXk53bt3L506dSpzKuhW07nIPU9tr7+d9f7f06dPt/V8oC5DZ9whGKUZ8jvp/YmtGva74sYPxJZjH1fqWUupuWo37H3EZxPaZJ9GSsk+iOLZa0F+pd67AurmGpHX9evX0+rq6paeu7q6mm7cuJE++eSTzKmGqylrjWqatZqyvs45HfA6Z6tUyVlwNs4wR2u9UDExMfHumKf8T9t/506sra2lxcXFbb1mcXExzc7Opunp6UypoFtN5+L48eNZ56nteW2yXkopXbhwYduvASr37z9SSm92nQL+9u8//vGQ9yd24tmzZ+ntt9/uOgbsCc5Fyj1rKTXXXvDs2bN/POazCdnZp8VjH0SF7LWgPaXeuwI2ci7Cq1ZWVtKdO3e29Zrbt2+nubm51Ov1MqUarqasNapp1mrKOoxzOmBLnK1SOmfBu8oZ5l8mM6z5aMyf7f1T8JndvHkzPXnyZFuvefz4cbp161amRNC9pnPR7/ezzlPb89pkPQAAgDHCn4uUetZSai4AAGC8Uu9dAf8Q/lyEv/X7/W3/a7eDwSBduXIlU6LRaspao5pmraasAAC0J0ehohovXrxI33//faPXfvfdd+nFixctJ4Lu7WQuHj582Oh1W5mntud1J+sBAADsBTnORUo9ayk1FwAAMF6p966AujkryOv58+eNr8EPHjxIz58/bznRaDVlrVFNs1ZTVgAA2pWjUHFkzJ/ZDH9nI/v27Usffvhho9eePn067du3r+VE0L2dzMXRo0cbvW4r89T2vO5kPQAAgE2EPhcp9ayl1FwAAMB4pd67AoYKfS7C3/bv39/4Gnzs2LG0f//+lhONVlPWGtU0azVlBQCgXVNtL7i+vv6/m/18YmKi7b9yR86fP59+/PHHbX1d2+HDh9O5c+cypoJuNZ2LhYWFdOnSpWzz1Pa8NlkvpZRu3LiRDh06tK3XAPV4+vRpunDhwsYH/+u/uwkDowz5nfzmm2/SgQMHOghDbYZd5956662O0sDe41yk3LOWUnPtBcPeR3w2oU32aaSU7IMonr0W5FXqvStgI+civGphYSGdPn06DQaDLb9mcnIyXb16NWOq4WrKWqOaZq2mrMM4pwNe52yVKjkLzsYZ5mitFypqMz09nebn59MXX3yx5dfMz8+n6enpjKmgW03notfrZZ2ntue1yXoppXTo0KF08ODBbb0GqFxhB/ww7HfywIED3p9obHIyx5cXAjXIcS5S6llLqbn2gmHvIz6bkJ19Wjz2QVTIXgvaU+q9K6Buzgry6vV66cyZM2lpaWnLrzl79mzq9XoZUw1XU9Ya1TRrNWUdxjkdsCXOVimds+Bd5QzzL/4rpJROnTqVZme39s2Ss7Oz6eTJk5kTQfeazkXueWp7/e2sBwAAsBfl2MeVetZSai4AAGC8Uu9dAXVzjcjr0qVLaWZmZkvPnZmZSRcvXsycaLSastaoplmrKSsAAO1QqEh/fa3k5cuX09TU5l/YMTU1lS5fvlzc11BCDk3nIvc8tb3+VtcDAADYq3Ls40o9ayk1FwAAMF6p966AurlG5DU5OZn6/f6Wntvv9zv913FrylqjmmatpqwAALTDp/v/OHLkSJqbm9v0OR999FE6cuTILiWC7jWdi9zz1Pb6W1kPAABgL8uxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHN33OsWPH0okTJ3Yp0Wg1Za1RTbNWU1YAAHZOoeIV58+fT4cOHRr6s8OHD6dz587tciLoXtO5yD1Pba+/2XoAAAAR5NjHlXrWUmouAABgvFLvXQF1c43Ia2FhYeQ3OkxOTqarV6/ucqLRaspao5pmraasAADsjELFK6anp9P8/PzQn83Pz6fp6eldTgTdazoXueep7fU3Ww8AACCCHPu4Us9aSs0FAACMV+q9K6BurhF59Xq9dObMmaE/O3v2bOr1erucaLSastaoplmrKSsAADujUPGaU6dOpdnZ2Q2Pzc7OppMnT3aUCLrXdC5yz1Pb6w9b77333mucDwAAoDY59nGlnrWUmgsAABiv1HtXQN1cI/K6dOlSmpmZ2fDYzMxMunjxYkeJRqspa41qmrWasgIA0JxCxWsmJibS5cuX09TUVEoppTfeeCN9+umnaWJiouNk0J2mc5F7ntpef9h6H3/8cStZAQAAapBjH1fqWUupuQAAgPFKvXcF1M01Iq/JycnU7/c3PPb555+nycny/telmrLWqKZZqykrAADN+aQ/xJEjR9Lc3FxKKaW5ubn07rvvdpwIutd0LnLPU9vrv77eO++8s+OMAAAANcmxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHU0opHTt2LL3//vsdJxqtpqw1qmnWasoKAEAzChUjnD9/Ph0/fjydO3eu6yhQjKZzkXue2l7f/AMAANHl2BeVutcqNRcAADBeqfeugLq5RuS1sLCQ3nzzzXT16tWuo4xVU9Ya1TRrNWUFAGD7proOUKrp6en01VdfpX379nUdBYrRdC5yz1Pb67+63h9//NHKmgAAADXJsY8r9ayl1FwAAMB4pd67AurmGpFXr9dLt2/fTvv37+86ylg1Za1RTbNWU1YAALbPN1Rswodg+Kemc5F7ntpe3/wDAADR5dgXlbrXKjUXAAAwXqn3roC6uUbkVVNBoaasNapp1mrKCgDA9ihUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAADA/7F379HWnHV9wL+/NxcgJCFyUVpAwkVcICqsJkgQ4VVRqwsERClasa9KEVpslaqwrNrUeqOWBVphRbyQIF6gSCJFQaAYigISoBZSCBclUeSSIBJCQhJCpn/MnJz9npy9z97n7LNvz+ez1qx37/fMfp6Z+T3zPDOz5zcbAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgOScuewEAVtnpp5+eiy666Fb/BwCwrhzfADBvxhYAMB4CAADL57wEAJjEscJ4EioAJjhy5EjOOOOMZS8GAMDcOL4BYN6MLQBgPAQAAJbPeQkAMIljhfGOLHsBAAAAAAAAAAAAAAAAFk1CBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADTnxGUvAADAqqubblj2ImyOm67f9f9q8Uuy1rRJAABat1HHxM6TprJRMQcAAACAJXGdbU5c1z002ijLIKECAGAPt7/0lctehI126qUXLnsRAACANbPp52nOkwAAAACAw7Dp11aXyXVdWF9Hlr0AAAAAAAAAAAAAAAAAiyahAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDknLnsBAABWyemnn56LLrpo2YuxsW6++eZcc801x/3faaedliNH5Pke1Omnn77sRQAAgEOx6edpzpP2z3kQAAAAAIy36ddWl8l13cVyLZjDJqECAGDEkSNHcsYZZyx7MTbaHe94x2UvAgAAsEZaOE9zngQAAAAAzFsL11aXyXVd2BxSoQAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaM6JS6jzhK0XH/vYx5ZQPQAAAKtux/niCePmgzXkuggAAAB7cm2EDeW6CAAAAHta9HWR6rrusOs4vsKqs5JcstBKAQAAWGdnd133jmUvBMyD6yIAAADsg2sjbATXRQAAANiHQ78ucuQwCwcAAAAAAAAAAAAAAFhFy/iFitsk+crh7VVJvrDQBWjbXbP9tIezk3x8icvCfInt5hLbzSW2m0tsN5fYbi6xXU0nJLnL8Po9XdfdsMyFgXlxXWQsfTHjaBuMo20wjrbBONoG42gbjLPstuHaCBvHdZG1suw+kNmJ2foRs/UjZutHzNaPmK0fMVs/6xKzhV4XOfEwC9/NsEJ+jnQJqmr07ce7rvvIspaF+RLbzSW2m0tsN5fYbi6x3Vxiu9KuWHM3WBcAACAASURBVPYCwLy5LrI7fTHjaBuMo20wjrbBONoG42gbjLMibcO1ETaK6yLrY0X6QGYgZutHzNaPmK0fMVs/YrZ+xGz9rFnMFnZd5MiiKgIAAAAAAAAAAAAAAFgVEioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmlNd1y17GQAAAAAAAAAAAAAAABbKL1QAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQsWaqap7VtVzq+qyqrq2qj5VVZdU1Y9X1SkHLPv+VfWMqrqgqt5VVR+pquuHev6mql5WVY+tqprX+nC8w4zvhDpPGeLbDdPlh1FP6w553z02Er+9pmNzWiUGi9xvq+pRVXV+VX1oqOvqqvpAVb2iqp5eVafOs77WHVZsq+rMGfZZffMhWMR+O8T5OVX1zqr6dFV9fqjnLVX1M1X1xfOoh+MtKLb3qqrnVdWlVXXNUM8Hq+qFVfUV86gDYD+q6our6tFV9bNV9Zqq+uTIscT5+yjvW6vqwuHawA3DvxdW1bfOUMaJVfW0qnpzVV1VVZ+rqr+uql+fpc+sqjsP6/XuqvrMML17+L87zVDOA4e6/3pYlquGZXtaVZ04QzkH3jaLNI+2UXM+76z+WsRPDOP0p4bx9LJhHL/nDOs2l7G/qh5WVS+tqiuqvxb28ar606r67mnLGMr57qp63fD564fyXlpV58xSzqJU1VnDsenrRtrzZ6s/z3xxVT18xvL0G+PLWbd+48BtQ78xdTlr029U1elV9aRh+72p+utTV1fVjVV1ZVVdPMRoqn1slbbhpravRZlH26iqozP0GedOsUzGkzVQ/bWz0dgeneIzjjfGl7NR7QM2UW3gOVhVPaD6Y51XV9Xl1R+7XFdVH66qP6iqb5tlnSbUs5Tvwzc0ZpdPuR0vn2Xd9qhzYWPUpsWs+nsDZv1e+dgs6zhSV/P7WVXdpqoeWlU/XFW/U1Xvr6qbt9Z7H+u2yHtJFnosuIlxm/c6Tajn3Bn2taPzqHOodxNjNu12vHiWddujzoVdy9u0mFV/fWjWMe3oLOs4Upf9rOpLquopVfV7VfXeYTlurKqPVdVrq+qpVXW7GZZlY8e043RdZ1qTKcljklydpBszvT/JfQ9Q/ksnlD06XZzkTsveHps2HXZ8J9T733bUc/myt8WmTQvYd49Nue92SY4te3ts0rSo/TbJFyW5aIr4PmjZ22RTpsOMbZIzZ9hnt6Y/XfY22ZRpEfttkicnuW6PmP5Dkm9a9vbYpGlBsX1qkhsm1HFDkmcse1uYTKY2pz3GnfNnKOdIkt/co7zfSHJkj3LunOTtE8q4PslTplier0nysQnlfDTJQ6Yo51/v0Yf/ZZI7L2LbrGPbyBzPO5PcN8kHJnz+6iSPnmKZ5jL2Jzk3yRcmlPPqJLfdo4zbJfnjCWV8Icl/WnZb2LHM/3vKeF6Q5ORF7BvRbyy9XcyzbUS/sYn9xqOmjOdVSb5lXbbhJravdWwbSY5OWUaX5Nw9lsd4sgZTkgcl+fyOdTh62NtA+1h+7E2mVqds4DnYsKzTrNNrk5xxwO13bMq6uszp+/BNjNlQxuVTrtflc9iGCx2jNjFmSc6foe1vTefYz/YXsyQvnvT5GddtUfeSLPxYcBPjNs91mqKuc2fY146K2cRlmXY7XjyHbbjQa3mbGLP09xxPG7OtbXo3+9nsMUt/reGmKZblA0m+aop129gx7VbLcFgFm+YcqOTB2b4x75okP5nknCTfkORFOxrnafus4/wkb0vy3PQHyv88yT9LfzH8GUneM1LPWw6zYbY2LSK+E+q9KcnnknxmqOPyZW+PTZoWtO8eGynnm5M8cMJ0oItVpsXGdqjnDkneMVLeK5N8T/ovbM5K8vgkz0/yd5FQsRaxTXLSHvvp1vS7I3V9z7K3yyZMC+qTvzbbNz58IclvJ3lskrOTPCHJq0bquS7JvZe9XTZhWlBsnzRSzqeT/PQQ77PSn5B+cPjbzUmeuOxtYjKZ2ptG+qguyRVJ/nTk/fkzlPOLI59719D/nT38+66Rv/3ChDJOSPLmkXn/MP01hock+eEknxgZK791Qjn3SHLlMO/nkzwnydcN03OyfQPWJ5LcfUI53zYyPn98WIaHDMv0hyPL+eYkJxzmtlnXtpE5nXcmOW0Yj7fKetEwXp8zjN/XDP9/bSac32ROY3+SHxqZ90NJfmCI6WOTvHHkb7+3x/b5/ZF535jt478fGMrd+ttTl90eRpZ5a7n+Pv055ROGZX5okh9N8pEZ1l+/cYjbZl3bRvQbm9hvPCrJ36b/0u/fpb8m9dAkD0vyxCQvz/YXdTck+epV34ab2r7WsW3k+ISK78/kPuOLJyyL8WQF2sQUbeZItm8s/MTI8h89zG2gfaxH+zCZNnXKBp6DJXnDMM8/JPn1JN+d/hjo7PQPJ7psR1+27/tLsoTvwzcxZkM5lw/zXbTHdrzfHLbhQseoTYxZkrvtEacHpj8G2TqmeL/97EAxO39kvs+kv/n3liTaGdZrYfeALXo/29S4zXOdpqjr3JGy9tq/by9mE5dlq4wX7rEd7zWHbbjQa3mbGLMk95qizT9xpJ7X2c/2F7MkPzX8/Yb0xx8/lOQR6cen78zx3xNemcnXLjZ6TLvVMhxWwaY5B2o7g+nz2SWbOMmPjzSYc/dZx4l7/P2EHH8B79uXvV02ZVpEfMfEc+sm7Z/O9onz5cveHps0LWjfPTZSxpnLXudWpkXtt0leMpRx/aR+N0nt1Y+bViu2eyzDCekPsrdORm637O2yCdOC+uRXj5Txb8bM89yReX5t2dtlE6bDjm2SU7J9YfuaJA/cZZ7Tk7x7mOfjSU5d9nYxmUxtTUn+c5JHJ/mS4f2ZI33f+VOWcb9s3/xzyc5jkKE/vGSkz931aSPpLyBv1f2CXf5+32w/yeSD445jR46FuyTftcvfRy+s7rqO6ZNZ/3qY5+ok99llnheMlHPsMLfNGreNYyOfOfMAy/KzI+X8+C5/f9jIdr54QjkHHvuT3DF9kmSXPtHkzjv+fkKOT4Y9OqacbxiZ51XZcbNb+icRXjH8/R+TfNGy28SwXK8e9qFdb84blnv0JuNHjJlPv7Fh/cYc24Z+Y/P6jbE3847M87iRdXvlqm/DTWxfa9w2js5j3WI8WZnxZI84/ciwvO9L8gtT7POONxpqHybTpk7ZwHOw9E8qfmqS24yp45QcfzP59x1g+x0bKedMMTvQOHb5pDFqjttv4WPUpsZsivV++kg9P3WA7Wc/S/7FsB2+IkMSWEaeqD7Dei3qXpKlHAtuYtzmtU5T1nXurG1KzMau14H3oynrWfi1vE2N2RTr/ZyRdfreA5TT9H6WPoHjl5LcZcLyjt639NsT5tvoMe1Wy7GoBmM6QJD67OStRnfemHmOJHnvSMd80iEty0NHluWXl71tNmFaVnyTPHMo77IkJ0dCxdrGNhIqNjm2Dx+p58eWvd4tTKsy5ib5lmkOXE2rF9sknxo+/8kJ89xhZFneuexts+7TImKbPkt/q46fmzDfo0bme8ayt43JZGp7yv5umn/hyGceOmae0esCt/oicJhnq8/9hySnjJnn2SPl7HYT0l2z/WS1105Y5tcO83whyV13+fvozUzPHlPGKSNj+P87zG2zCtM+28axkc+cuc96T8r2jaLvzfifIj5vpK6zd/n7XMb+JD8xUs6TxpRz92w/UfuPx8zzJ9m+gLvrU3xy/C9d3eqG3VWd0ifibC33r46ZR7/RQL+xz7ah32iw3xiWfetJxFet8jbc1Pa1ytMebePoyPofPUAdxpMVH0+SfGm2f/3lkTn+qZG7xn5e20D7WP32YTK1PmXNzsGmXKcHjpTxqgNsm2Mj5Zy57Fitc8yyuISKlRyj1jFmU6zTW4fP35zkngfYNs3vZ2M+d/HW56acf2H3G6zqfraOcZvXOk1ZzrnzXrZWYzZSz7mHvG1W8lreOsZsj/KOZPtXHK7JmLFzyrLsZ3svy8lJPjqU8enscm00DY5pR8I6eNzI6xfvNkPXdTenfyJKkpyR5OsPaVmuGXl920OqozULj29V3TP907eS5Gld1914kPIYa5X2XeZrUbF9xvDv1Ul+bR+fZ3arst9+38jrCw6h/BYtKrYnD/9+eNwMXdddneSTO+Zn/xYR27NGXr9mwnwXp/9FoaRPwgBYG1VV6X+iOEku67rubbvNN/z/+4e3jx0+N1rO/ZLcf3j78q7rrhtT5fkjrx+/y9+/PbnlutWu/fuOco4Mn9lpdJw4f5e/Z1jGlw9vHzCswy3mtW3I16dPLE2SC4bxeTfnj7zerW3Ma+zfKuczSV45ppyPJHnD8PYbq+q00b8P779xePuGYf7dvHKoJ9l9nVbVn428vs/OP+o3mu43JraNOdJv9Nap30i2v0PY7fuDVdqGG9e+1sCktnFgxpO1GU9ekOTU9Pvdm/aa2fFGc+0DWrdu52B76rru0mx/H3KY5w7LsnExm4cVH6M2KmZV9WXpby5Mkjd1XXfFrGWsgYXEbI4W8p30Cq73TusWt2ks6nrYsmxizA5sxa/lbVrMvjHJ3YbXr5gwdq6zlYnZcL/wXwxv75DkTrvM1tyYJqFiPTx8+PfaJO+cMN/ohcevPaRledLI68sOqY7WLCO+L0xy+yS/03XdxQcsi/FWad9lvg49tlV1crYPFl7fdd31w/+fUFX3qKozq0pi2/wtfb8dTsi2DkovT//zaRzcomK7dfB+r3EzVNXp6X/Ob3R+9m8RsR09efzEuJm6rrsp/ZMDk+ScqjpxxnoAluleSf7p8HqvG5u2/n639L92MOrhu8x3K13XfTzJB4a3u/XLU5WTvfv3rXLeP9S5n3LmtW1aN21M35Fk60L5pJjue+wfzrceMrx96x4Pmtgq5zY5PskySc7OdoLspPZ+Y5KtC8BnV9VJE+pbJbcZef2FXf6u3xhfzqb3G3u1jXnRbwyfWZd+o6q+PMmDhreX7fjbqm3DTWxfK2tS25gj40lvZceTqnpi+qcxfirJj035Mccb48vZqPYBJFm/c7BpbR27Hea5w7JsaswOapXHqE2L2ehD+l4ydq71tqiYzcuivpNetfXead3iNo1FXQ9blk2M2Tys8rW8TYuZMW3xMdtreZob0yRUrIetrOUPDTdpjTN6Efr+Y+eaUVXduarOqarfSvIfh//+ZJLfnVcdjVtofKvqSUm+Lf1P7PyH/ZbDVJax7764qj5aVTdW1Ser6m1V9XNVdbe9P8oMFhHbr87209reU1WnV9Xz0/e/f5v+6fdXV9Xrq+rojGUz3lLH3MF3pv8596RPfOvmXH6rFhXb84Z/71RVTxszz0/vMj/7t4jYfnbk9R3GzTRkwJ8+vD05yX1nrAdgmR4w8nqvm9wm9an7KeceVXX7MeVcPekGo67rPpbtp/4ctyxVdWqSe8y4LLcqJ/PbNptiv+edU23HYTz/0PB2t204j7H/fklO2GtZpihnP23jxCRftse8q+KRI6/ft8vf9RvbWus39mobO+k3tm1cv1FVp1TVl1XVM9N/obWVWP78HbOu2jbcxPa1UmZoGzv9fFVdUVU3VNU/VtX/qarn7Xw6/y6MJ+PLWbqqOiPJrwxvn9V13ScnzT/C8ca2jW0fwC3W7RxsT1X14GxfM5/m3GEaq/R9+DrH7BFV9VdVdU1VXVdVH66ql1XV4+bwtN9VHqPWOWbHGeL0vcPb65K8YtrPTqHF/WxeFvWd9Kqt907rFrdpzHo9bE9V9bqqunLY166sqour6tlV9UXzKH9G6xyz76qq9w7j2TVV9cGquqCqZn5S/i5W+VreOsfsOMN58tYve1yR5OI5lm0/28WQ9HPO8PYTXdd9apfZmhvTJFSsuOHp41tPMB73k0FJkq7r/jF9NlCyfSFuv/VeXFVdVXVJrkryliQ/kKTS38z7+K7rPn2QOlh8fIeBYOvLimd3XXfVfsphb8vad5McTfJPkpyU/mnaX5M+EepDVfVDByybLDS2owcLR9I/De/fp/95rC0nJ3lUkjdW1bNmLJ8dlrjf7tRC1vVCLTi2v53tuL2gqn6jqh5TVWdV1XdU1YXZfgLfz3dd94Z91MFggbEdPZl95Ni5kgcnOXXk/ZfOWA/AMt195PXEPjXJ34283tmn7qec2vG50XL2KmO0nHksy2GWsymOZn/nnVvb8dopriltbce7VNUtT8iZ49ivbeyhqo4kefbIf718l9n0G9u0jcmORr8x73KWqqqOjXx/cG36J6o+N8mXDLP8UpLf2/GxVduGm9i+lm6fbWOnh6U/nz45/bXQByX5kSTvq6pzJ9zgZzwZX84q+K9J7prkL5L81gyfc7yxbZPbBzRvTc/BpvGTI6+nOXeYxtGswPfhGxCze6V/wN+pSW6X/gm/T0xyYZI3H/DG+ZUcozYgZjs9IttPZr6w67prZvjsXo6mvf3swBb8nfTKrPdO6xa3aezzetg0vinJXdLva3dJ/z30Lyb5m6p67Jzq2NMGxOwB6W+svl36ce2+6e+7eWNVXVhVYx+YOIWVXO8NiNlOT0iylVT40jk/eNZ+trunZnvM+h87/9jqmHbi3rOwZKeNvP7s2Lm2XZu+czl1rxn36VeT/JcZnhzDZIuO7y+n/+LirUl+Y59lMJ1Fx/ZvkrwyfWy3Bo57pz/g+M70v3RwXlV1Xde9aJ910FtUbO848vpZ6WP42iQ/k+Td6Z/m8oT0X0LeIckvVdVlXdf90Yz1sG3pY25VfWm2b9Z+S9d1H5o0P1NbWGy7rvtCkn9VVf8z/RcFTxmmUX+W5BckU8zFomL7miQ3pT9/emZVvWTn8fBwAvzzE5YPYNXN0qdeO/J6Z58673Km7d8XsSwHLWfdHfS8cz8xTfrteMOOMmYpZ7exX9vY248mecjw+pVd1+32c86rth31G4sxTdvYot9oq20kyV8leWrXdZfs8rdV24ab2L5W2aS2seVj6fuMP0/ff9yUPrHi0elvhDgpyX9Kn2jxk7t83ngyvpylqqqvS3997KYkT5vxxohV25baB3BY1vEcbKKq2jruT5J3ph/nD2LVvg9f15jdmORVSV6X5NIkV6dPYj0nydPT35j2tUleX1XndF139R717WZVx6h1jdk4ow/pu2CGz03S8n42D4u832CV1nundYvbNGa5HjaN9yS5KMnbk3w0/fnulyf5l0m+OX2//IdV9Ziu615zwLqmsa4xuy79mPa/0j+1/rPZvmH+aekTwh6X5I+q6pu6rvv8PupYxfVO1jdm4xzGg2ftZ2NU1b2zfW/LZ9MnmBxkWbaWZ+3HNAkVq++2I69vnGL+rQv5tztgvd+fvoFX+s7jrPQnT89Icu+qekrXdZ84YB0sML5V9Yj0vzKynwvWzG6R++6FSS7YJaaXJHlZVT06/UnvSUmeV1WvmvRT1OxpUbEd/TnP2yZ5fZJHDzdrJ/2vB51XVZcmeVP6X7H4xSG+9u/9WdaYO+p704+9iV+nmKeFxraq7p/+hO8rx8xyTpIfrKr3dV339/upg1ssJLZd1/1dVZ2X/lj4bkn+oqp+In1yzI3pn5Z5bpJvGd6fvJ96AJZslj71hpHXO/u6eZdzkP591dZpnc3jvHM/MU2O347zGvu1jQmq6pHpk/eT5Mr01wR3s2rbUb9xyGZoG4l+Y7dlmWc5y3ZR+l9TTfplu0/6p9k+PsnvV9WPdF336h2fWbVtuIntaxXsp20kfd9wz11ubnhXkouq6kXpb/q7Q5JnV9XLuq77vzvmNZ6ML2dpqurkJC9Kf83zeV3XXTpjEau2LbUPYO7W+BxsrOF7khcPbz+X5MkH/P5ypb4PX/OYPWTML7RdXFW/luQV6W8yvH/6ZNZn7lHfblZujFrzmN3K8NTorYSlv09/M/FBtb6fzcMiv5NepfW+xZrGbaIZr4dN4/ld1527y///ZZKXDL8Cc16SE5L8ZlXdp+u66w9Y51hrHrO7jRnTXl9V/z39QxMfnD7B4unpHyQ+q5Vb7zWP2a1U1d3T/zJSkryt67oPzKFY+9n4ZTkl/Xi+9cstP9x13UcPuCyjy7PWY9qReRfI3I3uqCePnWvb1s9Nf+4glXZd9+Gu6y7tuu49Xde9ueu65yX5qiR/kv5pQJcMnRkHs5D4Dj9DvnXB+le6rnv3LJ9nXxa273Zdd/WkC1DDF1Q/O7w9JckPzloHx1lUbHceqD1rJJniFl3X/Xm2n+hy/4y/gZu9LWXM3eHJw783JHnZHMtt3cJiOzxx761JHpP+AuaTk9x1qPceSf5t+iclPCnJ26vqK2atg+Mscr/9sfTHwklyv/Q3iVw9lPXW9MkU70jyWyOfmefPKwMctln61NuMvN7Zp867nIP076u2TmtrTued+4lpcvx2nNfYr22MMRyfXpj+QTzXJ/muruuuHDP7qm1H/cYhmrFt6Dd2X5Z5lrNUXdd9evj+4NKu6y7puu4Puq77jvQPF7h3+if/HdvxsVXbhpvYvpZun20jXdddO+lJkV3XvT39Qw7y/9u773BbqvLw498XEFGkgwo2lKIi/ARBIwH0Ioiggr0glgtGjYVEDRgbckGi0Whi7CJR7A0iFmyxXIrGCKgRjYoIFytVmvTy/v5Ya3vm7rvrOfucfc7e38/zzLP37JlZs2bWlD1rVqG853hZh9m8n3QPZ5xeCzwA+A1wzCyWX2z70uND0kgt8WewjiJiK0pe+gZAAodl5s8HWbabxfQ+fKmnWZeCp61p11Iqw/6p/vTCWjlyWIvqHrXU06yLJwIb1u8fz8zbB1yuK8+zkVjI95aLabuBJZ1uXQ2bHzaIXtfhOv0DzLxv3orSQ8y8WOpp1ueedgml4lkrr+HwWa5mUW33Uk+zLp7NTDn2kfS45HnWNS7rAJ8DHlx/el9mnjiCuDTjs6TvaVaoWPyahbAG6aKk1aL5IN2sDKXWwjqUUgjwXsBbR72OKbRQ6fs6SpdFv6W0IqD5t2jO3ep4SoYVlJq3mr2FStvmei7LzB/1mPfrje8PHXI9mjHW8zYiHkZ5uQjwxX5/8DWUBUnbWoHxU5Sa3BcDD8/Mj2fmJZl5S2b+LjPfCzyC8kCwFaPrgndaLdh5m5k3USrKvAD4MTP3VSitCPwTsBczvcwAXDnseiRpjIa5pjZ7U2u/po46nLlc3xfbNk26fs+ds0lTWH0/jure77HRQUTcl9L69ybAbcAzM/P0Hosstv3odWOezOLYGJTXjdmHsyhl5scoL+XWAt4dEZs2Ji+2fTiJx9ei1efYGNSngWvq917XDPB+siiOjYh4APCaOnp4Zl43i2AW2770+JA0MhPwDLaGeo//BrB1/enwzPx0v+VGZN7fh09imrXLzKsp/7taYe02bBgsonvUBKfZcxvfPzrgMqMwyefZKCxkeYPFtN1LPd06msf8sEF8oPHdc22WMvMC4L/q6La10uewFs12T3Cajavh2ak6zyIigBOBx9afPkvnBktmE5dmfJb0Pc0KFYtcrcRwRR3t2SNERGzCzAHz23mKz+XAd+voEyLiDvOxnmmxgOn7j/Xzm8CBEfHM9qER9vqN3x815HpULcJz99JGfO4xH+uYFguYts35fzfEvFsMuR5Vi+C8HVfG18RbwLTdn5lr7Lu6dXObmT8DPl5Hd42IB3eaT/0t9Hmbmbdn5gmZuQul4sx2lDTfMjNfX+OzXWOR/5vNeiRpTJr/Ofv1SHmvxvf2a+pswknW/M/bGh+kd8xWOO1x+f0s4tIpnFHtm4k2wHNnaz+uHxEb9wmutR8vq5UaW+sY1b1/nMd7p3DGrr5M+ial0m+rBdEv9FnM68YMj41Z8LqxtI+NHlrHx/qU5+SWxbYPJ/H4Wuy6HRsDycxbgfPqaK9rBng/WSzHxisoLQteANy5y7upHRvzP6oxrXW++H9jxqQdH9JUm5BnsNVExAbA14BWz9xHZeZ7+oQ/MvP9PnwS06yH5ruN2ezLRXGPmtQ0i4i7AfvV0XMyc8HeRU34eTZnC/zectFs91JPt07mMz9sQHO9Dvc0iWnWg/e0YlGmWUTsBuxQR7+cmQvZYOW0nWfvAQ6p378KPLtXD1fTek+zQsXS0Dp5t63drnTzgMb3OXWZ2Mdl9fPOwObzuJ5psRDp2+oK51BKy9mdhlZabt747Q1DrkerW2znbtfuGTW0hUjbnzW+r91n3ub0W4dcj1Y3lvO2VlB8Zh29lJLhrNFaiLR9YOP7D/vMe06XdWp4YzlvM/PazDw/M//QetCMiLWBnessF9TKyJK0VDQzDvvdm3pdU2cTzm87tFbbCmejiLh7twAiYktmurdfLS6ZeS0zmWkLvU2dwpkGvZ47B9qP9X6+TR3ttA9Hce8/j9IaUM+4DBDObI6NW4Ff9Zl3QUXE5pSWuu5Xfzo8Mwep5O11Y8ZEXjfmcGwMw+tG/3AW3XWjj8sa3+/T+L7Y9uEkHl+LXbdjYxhzvma0Tfd+Mr/uWD/vR/d3U09pzH9U4/dWw0H+35gxaceHNLUm6BnsLyLiTsCXgIfWn/4lM4/rE/Z8mJf34ZOYZn3MdT+O/R414Wl2CDPlAz4ywPyjNqnn2ags1HvLRbHdE5Ruf7FA+WH9zFv5rklMsz7GcU8baV7ehKdZs+HZhb6nTc15FhFvAV5cR08HnpKZtwwRn6m4p4EVKpaKM+vn+sCuPeZrdj3z3a5zzV2zRpbdws7d0d1e9wAAIABJREFUYktfjc6iSduI2IKZSjN/mI91TJl5T9vMvAj4TR3duna91c02je+/7zqXBjGu8/ZxwGb1+ydri3sarYVI22a69XqYAGj28mV6z82iud8CezNzLi9kd5SSNAoXMvOs0K9r20fUz98Dq9qmndn43jWcWvho+zra6bo8UDj0v763wrl/rwJPfcIZ1b6ZaAM8dw6aprsx05JNrzSd9b0/M28GflBHd4+IdemuFc5NwNlt084Cbu6wvtXU8B/eWmbAjOoFEREbAV9nphWoVw/RgqjXje7hLPnrxhyPjUHX4XWji8V83RhAx/cHi3AfTuLxtdjN6d1SfXHbug/M+prh/WTJ8f9G93A8PqQlaMKewVrz3QE4uRHW+zPzVX3iN3Lz9T58EtNsADs0vs9mX471HjUFadYqfHoLpSLqgpnw82xUFuq95di3e8LSDViY/LABzfU63NEkptkA5rovx5qXN8lp1tbw7GWUXhMW0lScZxHxeqD13/ws4PGZecOA8Zmae1qLFSqWhlMa3w/tNENErMXMn+argO/MR0Qi4p7A7nX0otqKiuZm3tM3M6PfAFxUZ7+o8fuyIbdFq1s05y7wQqBVIP+0eVrHNFmotD25fm4I7NNjvic3vp/ZdS4NYlzn7ThrXU+LhUjbCxvf9+ozb/Mh4MKuc2kQi+J+Wyu+raijtwAfHPU6JGk+ZWYCra5mHxARD+80X/291frHF+pyzXDOY6ZFkKdHxJ27rHJ54/vnO0z/ItDqarbj9b0tnNvrMu2a94nlHaZT4/j0Ovp/dRv+YlT7Zgr0e+5cCVxdvz+vR6Xx5Y3vnY6NUd37W+FsyOrPVM1w7gnsW0e/1Z4PVse/VUf3rfN38mRmWijutE1jUY/9U4GH1J/+KTPfMujyXjcm97ox12NjCF43lth1Y0BPa3w/t23aYtqHK5mw42sJ6HVsDOIZwEb1+xrXDO8ni+9+kpnLB3g3dUxjkb0b01bVMPy/UUzc8SFNowl8Bmv12vxJ4ID608eAl/TYjPk08vfhk5hm/dRCgK3Cjdczi0q847xHTXqaRcROwIPr6Fdy4XtKn9jzbIQW5L3luLd7AtNtIfPDBvGixnfPtVmKiPsCj66jv87MoRuoHWde3hSk2QHM9E45joZnJ/48i4i/B95YR88F9h8yP3Eq7mntkXFYAgOlq5WkFM7avcP0I+v0BFZ0mL6sMf3EDtO3Bx7VJw4bNeKRwLHj3i+TMsx3+g4Yh1V1+VXj3h+TNCzAubs1sEufODye0mJZUjI97jHu/TIJw0Kct8C9gRvqPD8BNuwwz7Mb4Xx53PtlEoaFviYDmzbO0Z+Me/sneViAa/LGwHV1+jXATl3icQBwW53vd8Ba4943S31YoGvyZsAdu0xbG3hPI4xjxr1PHBwcHOqzwlDPiZS8gVvrMmcBd2qbfqf6e+uau12XcA5rrPvdHaZvQynAmJRuj9fpEs5HG+E8tcP0pw1w/b4D8Os6z9XANh3maV7Dl8/nvlkMw7DHBiN87gSObaz7yA7Td6/7L4GVPdY3p3t/nWdTSuZuUvJENmubvjal8FsrnGVdwnlUY54vAGu3Td+c0ohFAlcCm4z7GKjxWpfSSlIr7u+YZTheNybsujGKY8PrxsReN5YD6/WZ5xWNbbugw7Ytqn04icfXUjw2gE36bQ/wsJqWSSmgvmuX+byfLJL7yRDHz4oBznn/b0zp8eHgMEkDE/gMRilU/aFGOCfR9r9swG1a1uu6yZjeh09omu3fvv626Xdp2+Z3zibNRrnd055mHZZ5WyPMJw+xTZ5nszzeKJXxE8ghlhnFM+KiPM8mNd1GuE3Le6UtsBOwbZ8wXtgI44/A+qZZx/kPpMd1E7gb8MPGNr9yNmlW51nwvLxJTLMOy5/U2L6HDLGc59lg/0MOpeShJfBL4G6zjM9E39PWiMd8BOowDwkFu1D+kCZwLfAaSjdBewMfaBxwvwQ26LB8z4OyMf3HlMzLA4GH1vUeABxXLx6tMM4F7jzu/TIpw3yn74BxWFWXXzXu/TFJwwKeu9+rYT+W0g39bpSWiz7buDkm8JJx75NJGRbqvGX1Px6/oPzh2bWu513M/Jm4er7+LEzbsNDXZEpLPa35/2Hc2z/Jw0KkLXBUY55rgTfV8HcGHgO8l5nCGAk8e9z7ZRKGBUrbpwIXA+8AnlSvxXsALwZ+1Fj+K8C6494nDg4O0zcAe1IyEVvDEY1r05lt05b3COfNjeV+SGkJeLf62cx8flOPMNau62zNe1K9Dz4MeBlwSf39NuCAHuHcC7iUmcyxf67buWf93rqnXgrcs0c4j2WmMuPFNQ4Pq3FqZtieQY8X/6PYN0vx2GCEz53ABpT7cWveD1Du1w+vYV9bf78e2LlHOHO69zfCeVFj3vMpz1u7AQcB325M+2SfffypxrzfrsvvVsM7vzHtheM+HhpxPrkRr29RXjLs2GPY3uvGdFw3RnFs4HVjUq8bq4ArgOMprY7tQWkZdU/Kc1HzHL4J2Hex78NJPb6W2rHBTGXP/6X0VnAQ5f3UQ4AnAicwU3Argbf2iIv3k0VwTAx5/KxoxH/ZfO4Dj4+ld3w4OEzSwAQ+gwFvbyx/LuXe3WubduwSzrJGOCf2mL6g78MnNM1WUv63fRB4HuXetTOlV/XXMFMYNCnvpTedTZqNcrunPc06hPeHuswVDPEuql+a4XnWCuPutOWV1nOhtWz7tI4FdhnBM2K/NBvXeTap6TaqbaJ/Qe/llDI+/wW8ktJ7wkMo14Xnsnph7FuBA02zrmm2Cvg98E7gYEqjGDtTevY8DrisEd4ZdG84sWeaNeZb0Ly8SUyztvA2AW6sy5475L7pmWZ4nkHJT2uWJ9y/T1x2pEulEib8nrZGHOYrYId5SKxSyeHqxoHRPvyy28Wo30HZNr3f8GVgi3Hvj0kb5jN9B1z/qrr8qnHvi0kbFsm5ex2L6AXspAwLdd7WPwy391jPJXSoBeqw+NO2zv99Zv6o333c2z7pw3ynLaVFpn/rc84mcDNwxLj3xyQNC5C2T+2TprcD/0GXzBgHBweH+R6AEwd8Nkgge4SzVr2e9Vr+BPr0sERpkecHPcK4EfibAbbrr1i9gYf24Y/AXw0QzgtYvSBe+/A/wOZ9whjJvllqxwYjfu4EtgXO6xHO1cDjBwhn1vf+tnCOofd/t1Pp3+r2nep83cK4jR4vY8Z0XAx8TNRh1XyfG3jdGPtxMapjA68bk3rdWDVguv4WePRS2YeTeHwttWOD1XvP6jXcChwNRJ/4eD9ZQgODV6jw/8YUHh8ODpM0DHivaw6reoS1KK6JDP4f4C9Dl3CWNeY5sc/0XsNI34dPaJqtHHBbVtKj94F+aTbq7Z7mNGsLa//Gcu8Zct/0TDM8z4bdD61heY+w5vSM2C/NxnWeTWq6jWqbGKyg9yDhXw48wTTrmWarBlz2JGDjHnHpmWaN+RY0L28S06wtvL9tzLtGr7F9lu2ZZniewZDvBeuwrEd8JvaetkYc5itgh3lKMLgP8K/1ILyO0k3QWcCr6NFjRL+DktK17H7AWym16M6rJ8EtlJrNZwPvBvYY9z6Y5GG+0nfAda/qd7F2WHxpS2lF7ZB6fn6f0mrEdZQM+IspNR5fC9x13PtgUoeFOm8ptak/ClxIyVi5ipL58npgo3Hvh0kcFiJtge0a83513Ns8LcMCpe2uwPsorTJdQ3npf1X9T/V2etQ2d1icaUvpFvQISg8UF9Twr63rej8DvCR3cHBwmM+BEVWoaIT3WOAUSgs/N9XPUxigtbRGGOtQWiU+g5IxeQPwa0rrxQ8aIpzNgTfW++q1dfhJ/W2zIcLZsa771zUul9e4/S09uoaej32zlI4N5uG5E1i/3p/Pqvfr6yitGf0rcJ8hwpnVvb9DOH8NfAL4Td2uS4BvAAcPua+fVZe7pIbzmxruoqsAP8wxwYD5RV435nffLKVjw+vGUPt7KV037k9p1e1kSk8CF1PeH1xDaYnvJMoLy4H242Lah5N6fC2VYwNYl9KIwdsp19gL6rI3U1qUPJPSuuTWQ8TJ+8kSGRiwQsUo94HHh4ODwzgGJvAZjIWrUDGW9+ETmma7Af9Y1/lzyn+tWyhlg35OyUN6DP0rsPZMs/nY7mlNs7ZwPtGI+1DvpDzPBkszRl9geNbPiIv1PJvUdBvVNtG/oPddgcMoPQWdTWl44HrKdeH3lPfQfwdsaJr1TbNHAm8Avko5x66g3NOupDyXvZ8B8ob6pVmH+RckL28S06wtvO/W+W4Fthpy33ie9UkzRlyhooZ5HybwntY+RI2AJEmSJEmSJEmSJEmSJEmSJEnS1Fhr3BGQJEmSJEmSJEmSJEmSJEmSJElaaFaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1rFAhSZIkSZIkSZIkSZIkSZIkSZKmjhUqJEmSJEmSJEmSJEmSJEmSJEnS1LFChSRJkiRJkiRJkiRJkiRJkiRJmjpWqJAkLZiIWB4RWYetxx2fSdbYzyvmEMayRjjLOkxf0ZreZfmVdfrK2cZBkiRJkiTNnXkynUXEiXWfrBp3XCRJkiRJ0poiYlV9dj9x3HGZVpb9kCRNAytUSJIkSZIkSZIkSZIkSZIkSZKkqWOFCkmSNBaj6EVDkiRJkiSpyd44JEmSJEmSlo6I2LqRl7N83PGRJE2ndcYdAUmStDhl5kog5rD8spFFRpIkSZIkSZIkSZIkSZIkacTsoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSdLIRMQmEfHPEfGLiLghIi6NiG9GxNMGWHbdiDgwIt4dEWdFxJURcUtEXBER/xMRKyJi8z5hrIqIjIgT6/j9I+KD9febIuKSiPh8RDx8wO3ZOiLeEhHn1HjcEhGXR8QZNT7367HsRhHxmoj4bkRcFhE3R8QfI+JLEfHUiIgey64fEc+IiBMi4scRcXVd92URcVpEHBERdxlkGxph7hsRX6xxuDEiLqj7+h49lllW92dGxLJh1leXX1mXXdn2+6qIyMZPRzfW0xpOrPP+Zx2/MiLW67O+dSLi4jr/V4aNryRJkiRJ0ywi1o6I50XElyPiDzUv5YqIODMiXhkRd+qx7Gp5ABFxj4j414g4v+YRXRERX4+IAwaMy3NrHsiVEfHniDg3It4QERvW6a38gxWNZZbV/IYPN4K6sEOew7Ie6904Io6NiJ9FxHURcVVEnB4RhwwSb0mSJEmSJl0tK5Gtd/61bMRREfGj+hydEbG8bZlZl58YIl7bRsS/1TyEq2t+xAURcWJE7NZn2S0j4iURcVJE/KrmCdwUEb+PiC/U8hs9y1lGxHoR8Xc1j+SyWsbjTxHxy4j4as1b2brH8rPOl5mriHh4RHyulre4MSIujIjjI+L+Ay4/6/1Xj6MLGz99uENezoouyz4kIt5f9/Gf63p/GRHvi4jth94RkqSpts64IyBJmgwR8UDgm8BWjZ/XA/YB9omIDwOn9wjieOB5HX7fFHhYHV4WEU/IzO8OEJ8nAR8H7tz4+a7AE4EDI+KQzPxMj+WPAN4E3KFt0mbAnnVYVof2ZfcBPlPnbbo78Pg6fCUinpGZf+6w+lOBR3b4fXPgEXV4SUQ8NjN/0W0bGvE5GljR9vN9gZcCz46IAzPzjH7hjMkJwJOAjSlp9+ke8z4WuFv9/qF5jpckSZIkSRMjIu4NfBF4cNukTYE96vDiiHhcZp7XJ6w9gFMo+Rgt6wH7AftFxJGZ+bYuy94B+BzwhLZJO9bh2RHx6MG2aji1kMDXgK3bJu0F7BURu2fmy+Zj3ZIkSZIkLUURsR3wDdZ8lm7OM9fyE4PEo1v5jvvW4bkRcVxmvqHDsmsDv6Nzw9RbAQfV4fkR8eROcYyILSnlZXZom7RJHbYH9q/hHdFh+ZHlywwrIl4BvI3Vt39r4AXAsyLi6X2Wn/P+m0Wc16pxfjnQXhln+zr8TUS8NDOPn+v6JEnTwQoVkqQ5i9I64NeZqUzxGeAjwKWUB5VXAodSXnx3sw5wAfB54AfAb4BbgfsA+wKHUR6wPx8RO2bmpT3C2gl4BvBH4O3A2ZSHqMcAr6a8xD8+Ir6dmZd12J6jgGPr6FXAe4HvAFdQCvY/BHgykB2W3QP4KuVB/RLgXcD/An+o++cZwLMphf8/Ajyly744l/LAfHZdNuq+eBLwdMpD/ykRsXNm3thjXzwO2A34JfBW4CfARsDTKA/AGwFfrvv0tz3CGaX9gHUp2wjwPso+brqyfn6N8vB9T8ox1KtCxaH183LKvpMkSZIkSX1ExGbAmcC9gJuADwKnAauAu1Ce4/8e2Bb4akQ8JDOv7hLclpTKFLdT8mDOBG6mNEzxBkq+ypsj4quZ+bMOy/87M5UpfkZ5Of5TYENKnsiLKflOnZxFyRN6AnBc/e0xlHyVpgtZ052BL1Hyno6jFIL4M7ALcDQlX+KlEfGlzPx6l/VLkiRJkjRtTgLuQSkX8UXKe/7tgItgZOUneoqIIyllIaCUh3gf8CtKWY/7Ay8DdgeOiojLM/Od7UHUz2/XuJ4LXAZsANyPUq5id+DRwHvo3FDou5ipTPFx4D/rNt5GySvZjTUbj2jFf5T5MkOpDZX+ax29GngLsLKOPwp4FfAJyv7oGkz9nO3+24lyLLTyW14PfKFtnvbyQe8CXlK/nw6cSClvdD2lUsrLgQcBH4iIizPT8iOSpL4ic42yoJIkDSUi/oWZWvSvzcw3t02/A/BlyoNey30zc1Vjnm2AC7LLjSkidgK+R3lgPC4zj+owzypKpQOAc4BHZeY1bfMcQnmABXhlZv5b2/RdKJUY1gLOA/bJzN91idO9mpUQ6naeR6mt/zXgKZl5fYflXkDpkQNgv8z8r7bp22Xmrzqts07fl/IwuRbwN5n5Hx3mae7HHwKPbK/pHxHPAT5aRz+XmU9vm76MUpEEYO/MXNk2fQWlUAGZuUYXnBGxktLTxmmZuaxHHI/JzBVrbOjMfMcCR1EKY9ynU3pExF0pFS/uAPx7Zr68W3iSJEmSJE2biFgOfLiOtufJfAJ4FqWww96ZuUaFg5pfcgawPvCmzHxd2/SVzPS2eRGwR2b+vm2ePSkvuQN4Z2b+fYd1nFOn/zclT+aGtnmeSunBomWNPIVe29phu05k5kX+1TXeP2ubZ1tKYYD1gC9mZscCEJIkSZIkTYNmOQHKO/wDMvMbHeYbVfmJVZRyIB/JzOVt03YAfkwpJ3AMJZ8g2+ZZi1JZ49mUxhPunZlXNqYHsE1mnt9jm4+hNBSRwP2b5TkiYj3gmhqHt2fmGj1QNObdNDP/1PbbnPNlZiMi1qU0OrEVJU9k98z8eds8OwLfpTR0AR3Kfsx1/9XpWzPTAMahmXlij7AeTekVBbqXl1kPOJVSKeQiYNvMvLVbmJIkQeeuliRJGlh9yHp+Hf0J8M/t82TmLXWeW7qFk5m/7laZok4/Fzihjj5xgKgd1l6ZovokMy0T7tVh+pGU+2MCz+xWmaLGqb1Hh2dSMgNuBJ7bKTOgLvdBSi8cAMs7TO9amaJO/yYzPTAMsi9e2KnbxMz8GKWFAIAnRcTdBwhrHD5ESY+16NzaA5TMjzs05pckSZIkSX3UF9bPqKMv6/TSHiAzf0RpRRA65GW0Oby9MkUN40zgf+popzyZFzLTquEL2itT1DBOovRuOh+O6tRrRi0QcEod3XOe1i1JkiRJ0lJ0YqfKFNVIyk/08Q+UcgJn06EyRQ3/duBwSu8PdwGe2jY9e1UGqI4FLqfkWxzUNm1TZsoqnN4rkA6VKbZm9Pkyg3oCpTIFwBvbK1PU9f4U+KdegYxg/w3r1fXz5E6VKWqcbqT0TAKlMs7ec1ynJGkKWKFCkjRXuwKb1O8f6VYpolZM6PYgvYaI2CQitomIB0XEjrXm+1V18g61NYNuzs3Mn3SJRwI/qqP3a1vnWsABdXRlfSgdRuvB77TM7NXlIcw8SO/eL9CI2CIitmvth7ovWuE/uM/i52bmOT2mtyofrAMs6xeXcagtSX6zji7vMtuh9fOcbmkvSZIkSZLW8DhgbeB6Zhpd6KaVl7FVRNy7yzxXUVoA7KaVR3G/DtP2rZ8/6lSxoeGjPabNVlIa4eimFe9NI2LjeVi/JEmSJElL0Sd6TJuX8hNtDqyfJ/dpwPMqSu+TfdcREWtFxFYRcf9G+YwHAq3GONvLaFwB3Fy/Pyci1hki/qPOlxlGKx8mKT14dPPhOs9AZrH/BhYRGzJTruWkXvPWCiKX19FhjytJ0hQa5gYuSVInOzW+n9Vn3h9QHgg7ioidgFdQKjX06i1hLUoljku7TP9Fn3i0av1v0Pb7fYHWS/Ez+oTRyW718zERMegDZcftjIg9gL+jPMRu2mP5zfuEP0iatOwEfLrP/ONyAvBoYNuI2Csz/5I+EbEbsGMdtXcKSZIkSZIG18rLuDNwa0T0mrfp7sBvOvz+q9ryYzcd82QiYj1g2zraq2EIKK1OjtrlmXlFj+nNFiQ3YKbRD0mSJEmSplmvxg5HVn6ik4i4D7BFHX1zRLx5tuuIkiFyCPB84K+AO/VYfrUyGpl5U0R8BngOpfeLh0bEZ4GVwPdqZY5uRp0vM4xWWZ8LM/PybjNl5mURsYpSnqajuey/Ie3CTAPin4qITw243MDHlSRpelmhQpI0V83C/t0qOLRc0m1CRDwfeD+D35t6PYB17CqyofVif+2235sPbn8cMB5Nd53FMmtsR0SsAI6e7fJthkmTXhU3xu0USusBm1N6o2hWeDmsft5I79YkJUmSJEnS6maTlwHlRX8ng+bJtPee3ez1oV+rlf2mz8ag8YY185MkSZIkSZpWV/aYNpLyEyMOH9ryNGojD/9JafhzEJ3i+DJK3saBwH2AI+twe0T8EPgscHxmXt223KjzZYbRKh/Sr0wJlHIlHStUjGj/DWqc+0uSNOGsUCFJGqWBu/lriogHMFOZ4lLgX4BvA6uAazPzljrfYcB/tBaba2TnQeuF+leBV80mgIjYh5nKFBcAbwPOpLQucF1m3lrnOxY4aoAgZ5Umi01m3hwRH6P0YPK0iDg8M6+rD+cH19k+36d1B0mSJEmStLpWXsblwN5DLHfhPMRFkiRJkiQtIZl5W4/Jcy4/0UezwYNjgc8NuNx1beOvY6YywGnAe4AfAhcDN7R64oyI04G96FBWJTOvAQ6KiIcBTweWATvXOO5WhyMi4omZ+d8dtmGc+TJzLVMy5/03hGaavwj43oDL9ar4I0kSYIUKSdLcNR887gac12Peu3X5fTnlnnQb8MjM/EWX+ea7B4VmN4ZbzmL5K4CtgHUz86ezjMML6ueVwMMzs1uri4Pui277vNP0Pw0Y5ricQKlQcRfgacCJwBOZacXyQ+OJliRJkiRJS9YV9XMD4Od9CkLMp2YDCVv0mbffdEmSJEmSNH6jKD/RL/yWW2azjogI4G/q6BnAo1oVADroW0YjM38A/KCGvQGlYsVy4MmU3hVOjohtMvOGtm0YR75Mq6xPvzIlXecZ9f4bQDPNr5+n40qSNKXau9WWJGlY5za+P7TPvN2mP6h+/m+PyhRQau3PpwuZeYH/iFks/6P6uVtErDvLOLT2xXd6VKaAwffFMGmyqB82M/P/gFZrDYfWz8Pq50XAtxY8UpIkSZIkLW2tvIw7Mv/5Ll1l5o3Ar+vorn1m7xfPieitU5IkSZKkJW4U5Sd6uQC4un7fY5ZhbArcvX7/XLfKABFxF+D+wwScmddm5pcy8ynAO+vPWwJ7NmYbZ75Mq6zPfSNis24zRcQWwNZdJo9q/w2al/PjxryzTXNJkjqyQoUkaa7OYabm+nNqDfQ1RMQ9gP26hNHqMWn9biuJiC2Bg2YbyUHUh7tT6+gjI2KXIYP4Yv3ciJkC/8MaZF/sAvzVgOHt1Gc7WhUSbgNWDhjmqNxYP+84xDIn1M+9ImJvYJ86fmJmWmBCkiRJkqThfImZF9EvH2dEmGkoYZeIeFCP+Z7bJ5wbG9+HyXOQJEmSJEmjM4ryE13V3hy+Ukf3i4gHziKYdRrfu5bRoPTCsE6P6f00G4fcvPF9nPky36yfQe+8luV1nk5Gtf8GysupjZJ+v44+q1b2kCRpJKxQIUmak8y8CfhwHd0ZOLJ9nohYB/gg0K3VgV/Vz+0i4q87LH9n4JPAneYc4f7eBtxOeSD8dETcs9uMHaZ9BPhtK5yI6NnLRUTsGRGPbPu5tS/2jIhtOyyzBfCxXuF2cHxErPHwGhHPAh5bR0/JzD8OGe5ctda3zRDLfAa4lpI+n6T8l0lmjkFJkiRJkjSgzPwl8Lk6+syIeGWv+SPivhFx8DxF53hmChF8MCLWyAeKiKcAT+oTTjN/Y5g8B0mSJEmSNDqjKD/Rz5spjUeuBZzUp3zH2hFxSNs8lwFX1e8HR8Qahfkj4qHAG3uEe78B4t1sfPTC1pcx58ucwkweylERsUYPEhGxA/C6HmHMef9VVwA31+/98nKOq58bUtJ8424zRsQdI+KlEbFenzAlSbJChSRpJI4Ffle/vyUiPhkR+0fEQyLimcD3gAOAs7ss36ogsBZwakS8NiIeEREPi4gXU7qQ5UZvAAAHxklEQVTtWwZ8d/42ocjMHwNH19HtgXMj4riI2Ccido6IZRHx8og4nbaKDbVyydOBm4C7AN+OiI9HxFMjYteIeGhEHBQRx0TET4AzgJ3aovDR+rk+cFpEHB4Rf12HI4D/BXYA/nvATTqb0jXk2RGxvMbjURHx3kb8rwWOGDC8Ufpe/TwoIl4UETtGxLZ1uGunBTLzOuDTdbTVdeS3M/Oi+Y6sJEmSJEkT6sXABfX72yPitIh4fkQ8PCJ2iYh9I+IfIuK/gPOBp8xHJDLzHEqDHAC7A2dFxPNqXsbeEfEuSkMLP2gu1iGoHzHTsuEbI+LREbF9I89hIRrskCRJkiRpqo2o/ES/dZzLTFmHHYCfRsRba3mVXSJi94g4OCLeSanc8XFg48bytwOfqKP/Dzizzr9bLSPyduB0Sj7DeV2icW9gZUT8rJYteWLdtodGxJMj4jPAS+u8Pwb+p235seTLZObNwOF1dBPg+xHx6rre3SPiNcyU6Ti/Sxij2H9k5q3AWXX0sBrGAxt5OZs25v0K8O919BHAzyPi6EaZnj1qftIJlAoj72ZuvYtIkqaENwtJ0pxl5tURsT+lS8C7AwfXoelE4DQ69CSQmWdFxNHAMZSH13/qsJq3Az8F9hhdzDvLzOMi4vZGfF5H51r3p3VY9vsRsQz4LHAv4JA6dHNN2/InRcSHKV1ebgW8s23+24BXUB5odx9gc06tw9F07sXhGuCgzFw1QFij9jbgqZQuG9/fNu0jlK4jOzkBeEFj/EMjj5kkSZIkSVMiM/8UEXtQ8jL2oryM7tVq5DU9ps3V4ZT8kMcDD6LkJzVdCDyLmRf5N7ZNJzOvrQUlXgU8BPhG2yx7AytHFmNJkiRJktTRXMtPDLiOd0TEdcA7gI2AI+vQyc2smZfwOko5lJ0pjVV+sm36nyiVGI6lNMrZzQ516OYXwJMzc7XGIcaZL5OZJ0fEkcBbKWVj3tw2y/WUSjFHAtt2CWZU++/NwJeAzTqEcQywojH+ihruUZQySivo7jpKORtJknqyhwpJ0khk5s8oL7rfCvyK0srA5cB3gGdl5qF9lj8WeBzlJfeVlAfZ3wH/CeyXmQvag0JmvonysPsOSkWOa4BbKV0Wnga8HnhOl2W/D2wH/C2lMsMfmHkw/y1lG18HPCAzP9ph+cNq2GdQeo+4CbiI0qPEX2fmv7cv02dbVgD717hcUuOyCngv8KDMXKNiyEKovYHsDnwK+A1lOwdZ7gfMtF5wFeUYkSRJkiRJs5SZF2fmIygVGT5BaRnxeuAWSl7I9yiNXTyy5lvMVzxuBg6iNDRxJnB1jcfPgTcBuwJXNBa5uktQr6Y0xnAG5QW7L84lSZIkSRqDuZafGHAdHwTuR2lo8ruUsiq3UgrTnwecXNd/j8w8v23ZqykVAo4Czq3x+jMlL+JtwIMz8/Qeqz8DWEapEPAdSiMQ11LyVC6p2/e3wM6ZeWGX+I8tXyYz3wbsSSl3cSkz5VM+BOyWmaf2WX6u+68VzqnAPsAXKMfILT3mzVrGaHtKGaWzmcn/uRb4P8p+fB6wZWbe0G/9kiRFW6VHSZKkRS0iNgQuBu4EvC8zXzLmKEmSJEmSpAUSEXtSCisA7JuZ3xpnfCRJkiRJkiRJ0tJmDxWSJGmpOZhSmQLgP8YZEUmSJEmStOAOrp+3AOeMMyKSJEmSJEmSJGnps0KFJElaMiJiHeCVdfTszLTghCRJkiRJEyIiNo+IjXtMfwzwojr6xcy8amFiJkmSJEmSJEmSJtU6446AJElSLxGxKbApsBnwD8D2ddKbxhYpSZIkSZI0H3YEvhARnwO+CfwauB24D3AQ8GxgbeAG4LXjiqQkSZIkSZIkSZockZnjjoMkSVJXEbECOLrt5y9n5oFjiI4kSZIkSZonEbEM+E6f2a4BnpaZ35j/GEmSJEmSJC0+EXFX4K6zWPTmzDxv1PGRJGmps4cKSZK0VNwKXAR8CnjzmOMiSZIkSZJG72xgObA/8GBgC2BjSiWK84GvAe/OzMvGFUFJkiRJkqRF4CWs2TDlIC4Cth5tVCRJWvrsoUKSJEmSJEmSJEmSJEmSJGkJiIgVzLJCRWZuPdrYSJK09FmhQpIkSZIkSZIkSZIkSZIkSZIkTZ21xh0BSZIkSZIkSZIkSZIkSZIkSZKkhWaFCkmSJEmSJEmSJEmSJEmSJEmSNHWsUCFJkiRJkiRJkiRJkiRJkiRJkqaOFSokSZIkSZIkSZIkSZIkSZIkSdLUsUKFJEmSJEmSJEmSJEmSJEmSJEmaOlaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1/j+aeOcrmpqnWAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(20,20), dpi=200)\n", + "\n", + "plt.subplot(4,3,1)\n", + "sns.boxplot(x = 'popularity', data = df)\n", + "\n", + "plt.subplot(4,3,2)\n", + "sns.boxplot(x = 'acousticness', data = df)\n", + "\n", + "plt.subplot(4,3,3)\n", + "sns.boxplot(x = 'energy', data = df)\n", + "\n", + "plt.subplot(4,3,4)\n", + "sns.boxplot(x = 'instrumentalness', data = df)\n", + "\n", + "plt.subplot(4,3,5)\n", + "sns.boxplot(x = 'liveness', data = df)\n", + "\n", + "plt.subplot(4,3,6)\n", + "sns.boxplot(x = 'loudness', data = df)\n", + "\n", + "plt.subplot(4,3,7)\n", + "sns.boxplot(x = 'speechiness', data = df)\n", + "\n", + "plt.subplot(4,3,8)\n", + "sns.boxplot(x = 'tempo', data = df)\n", + "\n", + "plt.subplot(4,3,9)\n", + "sns.boxplot(x = 'time_signature', data = df)\n", + "\n", + "plt.subplot(4,3,10)\n", + "sns.boxplot(x = 'danceability', data = df)\n", + "\n", + "plt.subplot(4,3,11)\n", + "sns.boxplot(x = 'length', data = df)\n", + "\n", + "plt.subplot(4,3,12)\n", + "sns.boxplot(x = 'release_date', data = df)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import LabelEncoder, StandardScaler\n", + "le = LabelEncoder()\n", + "\n", + "# scaler = StandardScaler()\n", + "\n", + "X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')]\n", + "\n", + "y = df['artist_top_genre']\n", + "\n", + "X['artist_top_genre'] = le.fit_transform(X['artist_top_genre'])\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "y = le.transform(y)\n", + "\n" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 1, 0, 0,\n", + " 0, 1, 0, 2, 0, 0, 2, 2, 1, 1, 0, 2, 2, 2, 2, 1, 1, 0, 2, 0, 2, 0,\n", + " 2, 0, 0, 1, 1, 2, 1, 0, 0, 2, 2, 2, 2, 1, 1, 0, 1, 2, 2, 1, 2, 2,\n", + " 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 0,\n", + " 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2,\n", + " 1, 2, 2, 2, 0, 2, 1, 1, 1, 2, 1, 0, 1, 2, 2, 1, 1, 1, 0, 1, 2, 2,\n", + " 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2,\n", + " 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 2, 0, 2, 2, 0, 2, 2, 1, 1, 0,\n", + " 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 2, 2, 2, 1, 1, 1, 1, 1, 0,\n", + " 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2,\n", + " 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 1, 2, 1, 2, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 1],\n", + " dtype=int32)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ], + "source": [ + "\n", + "from sklearn.cluster import KMeans\n", + "\n", + "nclusters = 3 \n", + "seed = 0\n", + "\n", + "km = KMeans(n_clusters=nclusters, random_state=seed)\n", + "km.fit(X)\n", + "\n", + "# Predict the cluster for each data point\n", + "\n", + "y_cluster_kmeans = km.predict(X)\n", + "y_cluster_kmeans" + ] + }, + { + "source": [ + "Esos números no significan mucho para nosotros, así que obtengamos un 'silhouette score' para ver la precisión. Nuestro puntaje está en el medio.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.5466747351275563" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ], + "source": [ + "from sklearn import metrics\n", + "score = metrics.silhouette_score(X, y_cluster_kmeans)\n", + "score" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.cluster import KMeans\n", + "wcss = []\n", + "\n", + "for i in range(1, 11):\n", + " kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)\n", + " kmeans.fit(X)\n", + " wcss.append(kmeans.inertia_)" + ] + }, + { + "source": [ + "Utiliza ese modelo para decidir, utilizando el Método del Codo, el mejor número de clústeres para construir\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAFNCAYAAACAH1JNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5hdZX33//d3coIQgSQEUkJMQE4iVMABgyIp4SyHhD3wCLWK/VEpLSii9Kn2oG3110ptK1JbWypWeMoD8kNIEJCDnEU5hIMEpEIKBMIpkUA4J4R8f3+sNWYnmWRmktmz9t7zfl3XvvZa91p7z3c5l5kP973WfUdmIkmSpNbRUXUBkiRJ6h8DnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASdI6RMSnIuKndfsZETtWWZMkgQFOkoiIJyPizYh4re717arrkqR1McBJUuHozBxT9zq96oIkaV0McJLUPx+NiMcj4tcR8Y2I6ACIiI6I+IuIWBARiyLiwojYojx2QUR8odyeVA7FnlbuvycilnR/jyT1hf9gSFL/HAt0AnsDM4H/p2z/VPk6ENgBGAN0D8PeCvxOuT0deBw4oG7/9sxc2diyJbUTA5wkFWZHxMt1r0+v47yzM3NJZj4FnAOcWLZ/HPinzHw8M18DvgScEBHDKQLc/mUv2wHA3wMfLj83vTwuSX1mgJOkwqzM3LLu9R/rOO/puu0FwLbl9rblfv2x4cA2mfk/wOvAnsBHgKuAZyNiFwxwkjaAAU6S+mdy3fa7gWfL7WeBKWscWwG8UO7fChwHjMzMZ8r9k4CxwAONLFhS+zHASVL//ElEjI2IycAZwA/K9ouBMyNi+4gYA/wt8IPMXFEevxU4Hbit3L+l3P9pZr4zaNVLagvDqy5AkprEjyKiPkjdAMzp4bw5wL3AFsD3gfPL9u9RDKPeBmwCXAd8pu5ztwLvYlWA+ykwum5fkvosMrPqGiRJktQPDqFKkiS1GAOcJElSizHASZIktRgDnCRJUosxwEmSJLWYITeNyFZbbZVTp06tugxJkqRe3Xvvvb/OzAlrtg+5ADd16lTmzp1bdRmSJEm9iogFPbU7hCpJktRiDHCSJEktxgAnSZLUYgxwkiRJLcYAJ0mS1GIMcJIkSS3GACdJktRihtw8cA21ciUsWgTLlsGoUbD11tBhRpYkSQPLdDFQVq6EefNg2jSYOrV4nzevaJckSRpABriBsmgRzJwJC8oJkxcsKPYXLaq2LkmS1HYMcANl2bJV4a3bggVFuyRJ0gAywA2UUaNgypTV26ZMKdolSZIGkAFuoGy9NcyZsyrETZlS7G+9dbV1SZKktuNTqAOlowP22APuvBMefxzeeqvY9ylUSZI0wEwXA6mjAyZOhGuugUMPhSVLqq5IkiS1IQNcI9Rq8M47cOWVVVciSZLakAGuEfbaq5gL7vLLq65EkiS1IQNcI0QUvXA33ACvvFJ1NZIkqc0Y4BqlqwuWL4err666EkmS1GYMcI0ybVrxQIPDqJIkaYAZ4BqlowOOPbZ4IvWNN6quRpIktREDXCN1dRXh7frrq65EkiS1EQNcIx1wAIwbBz/8YdWVSJKkNmKAa6QRI2DmTPjRj4oHGiRJkgaAAa7RajVYuhRuuqnqSiRJUpswwDXawQfDu97l06iSJGnAGOAabZNN4MgjYfbsYnktSZKkjWSAGwy1GixeDD/9adWVSJKkNmCAGwxHHFH0xDmMKkmSBoABbjCMGQOHHVYEuJUrq65GkiS1OAPcYOnqgoULYe7cqiuRJEktzgA3WI46CoYPd1JfSZK00Qxwg2XsWDjooGIYNbPqaiRJUgszwA2mWg3mz4eHHqq6EkmS1MIMcINp5kyIcBhVkiRtFAPcYNpmG/jIR5xORJIkbRQD3GCr1WDePHjssaorkSRJLcoAN9hqteLdXjhJkrSBGhrgIuLMiHg4Ih6KiIsjYpOI2D4i7oqI+RHxg4gYWZ47qtyfXx6fWvc9XyrbfxURh9W1H162zY+ILzbyWgbM5Mmwzz7eBydJkjZYwwJcREwCPgt0ZubuwDDgBOBs4JuZuSPwEnBy+ZGTgZfK9m+W5xERu5Wfex9wOPCvETEsIoYB/wIcAewGnFie2/y6uuCee+Cpp6quRJIktaBGD6EOBzaNiOHAaOA5YAZwWXn8AmBWuT2z3Kc8flBERNl+SWYuy8wngPnAvuVrfmY+npnLgUvKc5vfsccW77NnV1uHJElqSQ0LcJn5DPAPwFMUwW0pcC/wcmauKE9bCEwqtycBT5efXVGeP76+fY3PrKu9+e28M+y+u8OokiRpgzRyCHUsRY/Y9sC2wGYUQ6CDLiJOiYi5ETF38eLFVZSwtq4uuP12eOGFqiuRJEktppFDqAcDT2Tm4sx8G7gc+DCwZTmkCrAd8Ey5/QwwGaA8vgXwYn37Gp9ZV/taMvO8zOzMzM4JEyYMxLVtvFqtWFJrzpyqK5EkSS2mkQHuKWBaRIwu72U7CPglcDNwXHnOSUB3grmy3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSMpHnS4soHXM7D22AN23NHpRCRJUr818h64uygeRrgPmFf+rPOAPwU+HxHzKe5xO7/8yPnA+LL988AXy+95GLiUIvxdC5yWme+U98mdDlwHPAJcWp7bGiKKXrgbb4SXXqq6GkmS1EKi6OQaOjo7O3Pu3LlVl1G4+2744AfhwgvhE5+ouhpJktRkIuLezOxcs92VGKrU2QnbbecwqiRJ6hcDXJU6Ooo54a69Fl57repqJElSizDAVa2rC956qwhxkiRJfWCAq9r++8OECU7qK0mS+swAV7Vhw2DWLLjqqqInTpIkqRcGuGZQqxX3wP3kJ1VXIkmSWoABrhnMmAFbbOHTqJIkqU8McM1g5Eg4+uhiWa0VK6quRpIkNTkDXLOo1WDJErj11qorkSRJTc4A1ywOOwxGj3YYVZIk9coA1yxGj4YjjoArroCVK6uuRpIkNTEDXDPp6oLnnoM776y6EkmS1MQMcM3kyCOLBxqc1FeSJK2HAa6ZbL45HHJIcR9cZtXVSJKkJmWAaza1Gjz5JDzwQNWVSJKkJmWAazbHHFMsr+UwqiRJWgcDXLPZaiuYPt3pRCRJ0joZ4JpRrQaPPFK8JEmS1mCAa0bHHlu82wsnSZJ6YIBrRttuC/vt531wkiSpRwa4ZtXVBfffD088UXUlkiSpyRjgmlX3MOoVV1RbhyRJajoGuGa1ww6w554Oo0qSpLUY4JpZVxf87GfF+qiSJEklA1wzq9WKd4dRJUlSHQNcM9ttN9h1V6cTkSRJqzHANbtaDW65BV58sepKJElSkzDANbuuLnjnHbjyyqorkSRJTcIA1+z22gumTHEYVZIk/YYBrtlFFMOo118Pr7xSdTWSJKkJGOBaQVcXLF8O11xTdSWSJKkJGOBawX77wcSJTuorSZIAA1xr6Ogolta65hp4882qq5EkSRUzwLWKWg3eeAOuu67qSiRJUsUMcK1i+nQYN86nUSVJkgGuZYwYAcccU8wHt3x51dVIkqQKGeBaSa0GS5fCzTdXXYkkSaqQAa6VHHIIjBnjMKokSUOcAa6VbLIJHHkkzJ5dLK8lSZKGJANcq+nqgkWL4I47qq5EkiRVxADXao44ouiJc1JfSZKGLANcqxkzBg47rLgPLrPqaiRJUgUMcK2oVoOFC+Gee6quRJIkVcAA14qOPhqGD/dpVEmShigDXCsaOxZmzCjug3MYVZKkIccA16pqNZg/Hx56qOpKJEnSIDPAtapZsyDCYVRJkoaghga4iNgyIi6LiP+OiEciYr+IGBcRN0TEY+X72PLciIhzI2J+RDwYEXvXfc9J5fmPRcRJde0fiIh55WfOjYho5PU0lW22gf33dzoRSZKGoEb3wH0LuDYzdwXeDzwCfBG4MTN3Am4s9wGOAHYqX6cA3wGIiHHAV4APAvsCX+kOfeU5n6773OENvp7m0tUF8+bBY49VXYkkSRpEDQtwEbEFcABwPkBmLs/Ml4GZwAXlaRcAs8rtmcCFWbgT2DIifgs4DLghM5dk5kvADcDh5bHNM/POzEzgwrrvGhqOPbZ4dxhVkqQhpZE9cNsDi4H/jIj7I+K7EbEZsE1mPlee8zywTbk9CXi67vMLy7b1tS/soX3oePe7YZ99DHCSJA0xjQxww4G9ge9k5l7A66waLgWg7Dlr+DwYEXFKRMyNiLmLFy9u9I8bXLUa3H03PP107+dKkqS20MgAtxBYmJl3lfuXUQS6F8rhT8r3ReXxZ4DJdZ/frmxbX/t2PbSvJTPPy8zOzOycMGHCRl1U06nVivcrrqi2DkmSNGgaFuAy83ng6YjYpWw6CPglcCXQ/STpScCccvtK4JPl06jTgKXlUOt1wKERMbZ8eOFQ4Lry2CsRMa18+vSTdd81dOy8M+y+u8OokiQNIcMb/P2fAS6KiJHA48DvU4TGSyPiZGAB8L/Kc68BPgrMB94ozyUzl0TEV4HuhT//JjOXlNt/DHwf2BT4cfkaemo1+NrXYNEi2HrrqquRJEkNFjnElmLq7OzMuXPnVl3GwHrwQXj/++G88+DTn666GkmSNEAi4t7M7Fyz3ZUY2sEee8B73uOkvpIkDREGuHYQUUzqe+ON8PLLVVcjSZIazADXLmo1WLECrrqq6kokSVKDGeDaxT77wKRJDqNKkjQEGODaRUdH0Qt37bXw+utVVyNJkhrIANdOajV46y348dCcTUWSpKHCANdOPvIRmDDBSX0lSWpzBrh2MmwYzJxZPMiwbFnV1UiSpAYxwLWbri549VX4yU+qrkSSJDWIAa7dzJgBm2/uMKokSW3MANduRo6Eo4+GOXOKeeEkSVLbMcC1o64uePFFuO22qiuRJEkNYIBrR4cdBqNHO6mvJEltygDXjkaPhiOOgCuugJUrq65GkiQNMANcu6rV4Lnn4M47q65EkiQNMANcuzrqqOKBBp9GlSSp7Rjg2tXmm8PBBxcBLrPqaiRJ0gAywLWzWg2eeAIeeKDqSiRJ0gAywLWzmTOho8NhVEmS2sx6A1xE7BMRE+v2PxkRcyLi3IgY1/jytFG22gqmT3c6EUmS2kxvPXD/DiwHiIgDgK8DFwJLgfMaW5oGRFcXPPJI8ZIkSW2htwA3LDOXlNsfA87LzB9m5l8COza2NA2IWbOKd4dRJUlqG70GuIgYXm4fBNxUd2x4D+er2UyaBPvtZ4CTJKmN9BbgLgZujYg5wJvA7QARsSPFMKpaQa0G990HTz5ZdSWSJGkArDfAZeb/C3wB+D6wf+ZvJhTrAD7T2NI0YGq14t1eOEmS2kJvT6GOBu7NzCsy8/WI2CUizgR2z8z7BqdEbbQddoA99zTASZLUJnobQr0WmAq/GTb9ObADcFpE/F1jS9OAqtXgZz8r1keVJEktrbcANzYzHyu3TwIuzszPAEcARzW0Mg2srq5iSa3Zs6uuRJIkbaTeAlz9IpozgBsAMnM5sLJRRakB3vte2GUXJ/WVJKkN9BbgHoyIfyjve9sRuB4gIrZseGUaWBFFL9wtt8CLL1ZdjSRJ2gi9BbhPA7+muA/u0Mx8o2zfDfiHBtalRqjV4J134Ec/qroSSZK0EXoLcGOAH2XmGZn5i7r2pRQPOKiV7L03TJniMKokSS2utwD3z8D4HtrHAd8a+HLUUBFFL9z118Orr1ZdjSRJ2kC9BbgdM/O2NRsz83bgtxtTkhqqVoPly+Hqq6uuRJIkbaDeAty71nNsxEAWokHyoQ/BxIlO6itJUgvrLcDNj4iPrtkYEUcAjzemJDVURwfMmgXXXANvvll1NZIkaQMM7+X454CrI+J/AfeWbZ3AfjiRb+vq6oJ/+7fiXriZM6uuRpIk9VNvPXBHAr8H3AFMKV+3Ar+dmY82uDY1yvTpMHasw6iSJLWo3nrgtgPOAd4LPEgR5BYBo4G3GluaGmbECDjmGJgzp3igYeTIqiuSJEn9sN4euMw8KzM/BGwDfAlYAvw+8FBE/HIQ6lOjdHXByy8XKzNIkqSW0tsQardNgc2BLcrXs8BdjSpKg+CQQ2DMGCf1lSSpBa03wEXEeRFxB/ADigcXfgYcn5mdmfn7g1GgGmSTTeDII2H27GJ5LUmS1DJ664F7NzAKeB54BlgIvNzoojRIajVYtAjuuKPqSiRJUj/0dg/c4cA+rFq4/gvAPRFxfUT8daOLU4N99KMwapRPo0qS1GJ6vQcuCw8B1wA/pngS9T3AGQ2uTY02ZgwcdlgR4DKrrkaSJPVRb/fAfTYiLomIpyjmfzsK+G+gRrGgvVpdrQZPPw1z51ZdiSRJ6qPe5oGbCvx/wJmZ+Vzjy9GgO/poGD686IXbZ5+qq5EkSX3Q2z1wn8/MH25MeIuIYRFxf0RcVe5vHxF3RcT8iPhBRIws20eV+/PL41PrvuNLZfuvIuKwuvbDy7b5EfHFDa1xSBs3Dg48sJhOxGFUSZJaQl/ngdsYZwCP1O2fDXwzM3cEXgJOLttPBl4q279ZnkdE7AacALwPOBz41zIUDgP+BTgC2A04sTxX/dXVBY89Bg8/XHUlkiSpDxoa4CJiO4r1VL9b7gcwA7isPOUCYFa5PbPcpzx+UHn+TOCSzFyWmU8A84F9y9f8zHw8M5cDl5Tnqr9mzoQIJ/WVJKlFNLoH7hzgfwMry/3xwMuZuaLcXwhMKrcnAU8DlMeXluf/pn2Nz6yrXf01cSLsv7/TiUiS1CIaFuAi4ihgUWbe26if0Y9aTomIuRExd/HixVWX05xqNXjwQZg/v+pKJElSLxrZA/dh4JiIeJJieHMG8C1gy4jofvp1O4oVHijfJwOUx7cAXqxvX+Mz62pfS2aeVy7/1TlhwoSNv7J2dOyxxbu9cJIkNb2GBbjM/FJmbpeZUykeQrgpMz8O3AwcV552EjCn3L6y3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSPLn3Flo66n7U2ZAp2dBjhJklrAYDyFuqY/BT4fEfMp7nE7v2w/Hxhftn8e+CJAZj4MXAr8ErgWOC0z3ynvkzsduI7iKddLy3O1oWo1uOsuWLiw6kokSdJ6RA6xub86OztzrqsO9OzRR2GXXeDcc+Ezn6m6GkmShryIuDczO9dsr6IHTs1q553hfe9zOhFJkpqcAU6r6+qC22+HRYuqrkSSJK2DAU6rq9Vg5Uq40udBJElqVgY4re63fxt22MFhVEmSmpgBTquLKIZRb7wRXn656mokSVIPDHBaW60Gb78NV11VdSWSJKkHBjitbd99YdIkJ/WVJKlJGeC0to6OYmmta6+F11+vuhpJkrQGA5x61tUFb75ZhDhJktRUDHDq2f77w1ZbOYwqSVITMsCpZ8OHw8yZxYMMy5ZVXY0kSapjgNO6dXXBK68UU4pIkqSmYYDTus2YAZtv7qS+kiQ1GQOc1m3UKDj6aJgzB1asqLoaSZJUMsBp/Wo1ePFFuO22qiuRJEklA5zW7/DDYdNNfRpVkqQmYoDT+o0eDUccAVdcAStXVl2NJEnCAKe+qNXg2WfhrruqrkSSJGGAU18cdRSMGOEwqiRJTcIAp95tsQUcfHAxnUhm1dVIkjTkGeDUN11d8MQT8ItfVF2JJElDngFOfXPMMdDR4aS+kiQ1AQOc+mbCBJg+3fvgJElqAsOrLkAt5NRTi4cZ5s+HMWNg662LXjlJkjSo/Ourvlm5EnbaCc48s3ifNg3mzXNuOEmSKmCAU98sWgTHHgsLFhT7CxbAzJlFuyRJGlQGOPXNsmWrwlu3BQuKdkmSNKgMcOqbUaNgypTV26ZMcV44SZIqYIBT32y9NcyZsyrETZkC3/senHyyT6ZKkjTIDHDqm44O2GMPuPNOePLJ4n3XXeHVV4tJfs86C95+u+oqJUkaEgxw6ruODpg4seh9mzgRtt0Wbr8dTjsN/vEfYcaMYtF7SZLUUAY4bZxRo+Db34aLLoL77oO99oKbb666KkmS2poBTgPjd38X7rkHxo0rFr7/u79zjjhJkhrEAKeBs9tucPfdcPzx8Gd/VswT99JLVVclSVLbMcBpYL3rXXDxxfDP/wzXXQcf+EAxtCpJkgaMAU4DLwJOPx1uuw1WrIAPfQjOO8854yRJGiAGODXOtGlF79v06fCHfwif+hS88UbVVUmS1PIMcGqsrbaCa66Br3wF/s//KULdo49WXZUkSS3NAKfGGzYM/uqv4Mc/LuaJ6+yEH/6w6qokSWpZBjgNnsMOK4ZUd9sNjjsOPv95V2+QJGkDGOA0uN797uLhhtNPh29+Ew48EJ55puqqJElqKQY4Db6RI4tpRi6+GB54APbeG266qeqqJElqGQY4VeeEE4rVG8aPh0MOgb/9W1dvkCSpDwxwqtZ731us3vCxj8Gf/zkccwwsWVJ1VZIkNTUDnKo3ZgxcdBF8+9tw/fXF6g1z51ZdlSRJTcsAp+YQAaedBrffDu+8Ax/+MPz7v7t6gyRJPTDAqbl88INw//0wYwaceiqcdBK8/nrVVUmS1FQaFuAiYnJE3BwRv4yIhyPijLJ9XETcEBGPle9jy/aIiHMjYn5EPBgRe9d910nl+Y9FxEl17R+IiHnlZ86NiGjU9WgQjR8PV18Nf/3X8F//Vaze8KtfVV2VJElNo5E9cCuAL2TmbsA04LSI2A34InBjZu4E3FjuAxwB7FS+TgG+A0XgA74CfBDYF/hKd+grz/l03ecOb+D1aDB1dMCXvwzXXgvPPQf77AOXXVZ1VZIkNYWGBbjMfC4z7yu3XwUeASYBM4ELytMuAGaV2zOBC7NwJ7BlRPwWcBhwQ2YuycyXgBuAw8tjm2fmnZmZwIV136V2ceihxZDq+94Hxx8PZ57p6g2SpCFvUO6Bi4ipwF7AXcA2mflceeh5YJtyexLwdN3HFpZt62tf2EN7Tz//lIiYGxFzFy9evFHXogpMngy33gqf/Syccw78zu/AwoW9fkySpHbV8AAXEWOAHwKfy8xX6o+VPWcNf8wwM8/LzM7M7JwwYUKjf5waYeRI+Na34JJL4MEHi9UbfvKTqquSJKkSDQ1wETGCIrxdlJmXl80vlMOflO+LyvZngMl1H9+ubFtf+3Y9tKudfexjxeoNEyYUw6tf+5qrN0iShpxGPoUawPnAI5n5T3WHrgS6nyQ9CZhT1/7J8mnUacDScqj1OuDQiBhbPrxwKHBdeeyViJhW/qxP1n2X2tmuu8Jdd8GJJ8Jf/iUcfbSrN0iShpRG9sB9GPgEMCMiHihfHwW+DhwSEY8BB5f7ANcAjwPzgf8A/hggM5cAXwXuKV9/U7ZRnvPd8jP/A/y4gdejZjJmTDHFyL/+azGUuvfert4gSRoyIofYTPednZ051z/07eWee+C44+D554uHHE49tVjZQZKkFhcR92Zm55rtrsSg1rfPPnDffXDQQfDHfwyf+ISrN0iS2poBTu1h/Hi46ir46lfh//7fYkkuV2+QJLUpA5zaR0cH/MVfwPXXwwsvQGcnXHpp1VVJkjTgDHBqPwcfXKzesMcexbQjZ5wBy5dXXZUkSQPGAKf2tN12cMstRXg791xXb5AktRUDnNrXyJHFU6mXXgrz5sFee8ENN1RdlSRJG80Ap/Z3/PHFHHHbbAOHHVY86ODqDZKkFmaA09Cwyy7F6g0f/zh8+ctw5JHw4otVVyVJ0gYxwGno2GwzuPBC+M534KabitUb7r676qokSeo3A5yGlohipYY77ii299+/WI5riK1IIklqbQY4DU2dncXqDYccAqedBr/3e/Daa1VXJUlSnxjgNHSNGwc/+hF87WtwySXF6g2PP16sqbpgQfHuww6SpCZkgNPQ1tEBf/7nxeoNkyfDk0/CtGkwdWrxPm+eIU6S1HSGV12A1BQOOgh22gkOOKDofYPifeZMuPHGItANG1ZpiZIkdTPASd0yV4W3bgsWFCs4vP/9sO++sN9+xWvaNNhqq2rqlCQNeQY4qduoUTBlyuohbsoUGD8ePvUp+PnP4eyz4Z13imM77bQq0O23H+y+u710kqRBETnEpk/o7OzMuXPnVl2GmtHKlcU9bzNnFiFuyhSYMwf22KO4Vw7g9deLVR1+/vNVr8WLi2ObbWYvnSRpQEXEvZnZuVa7AU6qs3IlLFoEy5YVPXJbb70qvPUkE554YvVA94tf2EsnSRoQBriSAU4NZy+dJGmArCvAeQ+cNNA22wymTy9e0HMvnffSSZI2gj1wUhXqe+nuvLN4X7SoOGYvnSSpZA+c1Ew2ppdu2rSil264//eVpKHKHjipWdlLJ0lDnj1wUqtpRC9df5+ylSQ1JXvgpFbWn166D30Inn56/fPcSZKaitOIlAxwamvrm5fu8svhzDPXXmnijjtg0qTqapYkrZNDqNJQEAE77FC8Pv7xoq27l27s2J7Xep0/v1jrdfvtV7122GHV9pQpMHLk4F+LJGmdDHBSu+u+l+7553te63XMGDjuOHj8cbj/fpg9G95+e9U5EUUP3ZrBrvu17bYOwUrSIDPASUPF1lsX97z1dA/cv/3bqvPeeQeefbYYin3iiSLYdW//5CfFsfpbL0aOhKlT1w523a9x44oQKEkaMN4DJw0lA/EU6rJlRQCsD3b1ryVLVj9/8817DnY77FAEv9GjB+zyJKndeA+cpCKsTZy4cd8xahTsvHPx6snSpT0Hu1/9Cq67Dt58c/Xzt9lm3fffTZ7shMWS1AP/ZZQ0sLbYAvbcs3itKRNeeGH1YNfdk/fzn8Oll66a1w6KNWEnT+453G2/fRH+6odnnedO0hBhgJM0eCKKHsCJE4u56db09tuwcOHa99498QRcfXUR/uptuumq++8OPBD23x9OOGHVPX6zZxf3+A0bNiiXJ0mDxQAnqXmMGLGqd23GjLWPv/EGPPlkz/ff7bzzqvAGxfusWXDOOXDqqcXDFP15bb65vXeSmpYBTlLrGD0adtuteK1pwYKe57mbOhWOOaZ4uGLJEnjqqWJy4yVL4LXX1v2zOjpgyy37H/zGjvW+PUkN578yktrDqFE9z3M3cSKcd17Pn1m+HF56aVW4W9/r17+GRx8ttl9+ef21bL75hgW/TTbp/Tq9z08SBlFgrMMAAApnSURBVDhJ7WJd89xtvfW6PzNyZPEgxDbb9O9nvfNOEeLWF/jqg+HTT6/arn9IY02jR68e6NYMeTvvXDzUcfzxq67x8suLkDpsWBHoNtmkeG/VufcMqFKfGOAktYeOjuKBhTvvbPwf/2HDYPz44tUfmfDqq33r8VuyZFWP34svFr2Fl1++KrxB8V6rwTe/WbzX6w5z9a+e2vpzvD/fsSHDyCtXwrx5PU82bYiTVuNEvpLU7DKL+fOeew523HHt4w89BLfdBm+9tfZr2bKe23s7vrGGDet/APyDP4ATT1x7GHz2bLjnnqLHdOTI4ju6t9fcX9exESOaIwTaw6h+ciJfSWpVEcXw6mab9Xyf3/jx8Ed/NHA/L7Po8duYANiX40uXrn78U5/q+UGUpUvhlFM2/rpGjOh/8Ovvues7tuWWxZPUtdqqHsYrrijmNxw2rOi17A6arToEDu0fUpvk+gxwktQqNuQ+vw0RUfxhGjVqYL+3N88/33NA3WGHYn7AZcuKYNn9qt9f37H+nLtsWdHbuXTp+j+3bNnqawL3xeWXw5lnrj4EfuyxPQ+BjxixKtDVb6/53te2RhzrqW2zzYr7P+tD6uzZxe+wo6M4b/jwIrC2YkhtomF+h1AlqZU0yX/9N0QT/XHskxUr+hcSp07teQqcBx8slpl7++3iO99+e/XtNd/7e6y38wcyB6wZUqH4PfYUUrsDXXfv48ZsD8R39GV7zz3hqKPWvr4779z4ZQrXwSFUSWoHA7GebbMazAdRBkL3H/fRo/t2/rp6GCdMgLPOakyNfbFy5cAFxV126XkYfMcd4e//vngKe8WK4jVQ28uXb9hn69/76pZber6+Zcs2+tfQXwY4SVLzaOeAOlhD4P3V0TFwQ+brC6l/8icb//2NkFmE2L4Ev2HDer6+wb7dAAOcJEmDo9V6GDdEs4bU9Ykogln3XIrrs3Jl01yfAU6SpMHSzj2M0P4htYmur+UDXEQcDnwLGAZ8NzO/XnFJkiQNXUMhpDbB9bV0JI6IYcC/AEcAuwEnRkQPj/hIkiS1j5YOcMC+wPzMfDwzlwOXADMrrkmSJKmhWj3ATQKerttfWLZJkiS1rVYPcH0SEadExNyImLt48eKqy5EkSdoorR7gngEm1+1vV7atJjPPy8zOzOycMGHCoBUnSZLUCK0e4O4BdoqI7SNiJHACcGXFNUmSJDVUS08jkpkrIuJ04DqKaUS+l5kPV1yWJElSQ7V0gAPIzGuAa6quQ5IkabBEZlZdw6CKiMXAgl5P1PpsBfy66iK0Ufwdtj5/h63N31/rG6zf4ZTMXOsG/iEX4LTxImJuZnZWXYc2nL/D1ufvsLX5+2t9Vf8OW/0hBkmSpCHHACdJktRiDHDaEOdVXYA2mr/D1ufvsLX5+2t9lf4OvQdOkiSpxdgDJ0mS1GIMcOqziJgcETdHxC8j4uGIOKPqmtR/ETEsIu6PiKuqrkX9FxFbRsRlEfHfEfFIROxXdU3qn4g4s/w39KGIuDgiNqm6Jq1fRHwvIhZFxEN1beMi4oaIeKx8HzuYNRng1B8rgC9k5m7ANOC0iNit4prUf2cAj1RdhDbYt4BrM3NX4P34u2wpETEJ+CzQmZm7U6widEK1VakPvg8cvkbbF4EbM3Mn4MZyf9AY4NRnmflcZt5Xbr9K8YdjUrVVqT8iYjvgSOC7Vdei/ouILYADgPMBMnN5Zr5cbVXaAMOBTSNiODAaeLbietSLzLwNWLJG80zggnL7AmDWYNZkgNMGiYipwF7AXdVWon46B/jfwMqqC9EG2R5YDPxnOQz+3YjYrOqi1HeZ+QzwD8BTwHPA0sy8vtqqtIG2ycznyu3ngW0G84cb4NRvETEG+CHwucx8pep61DcRcRSwKDPvrboWbbDhwN7AdzJzL+B1BnnYRhunvE9qJkUY3xbYLCJ+r9qqtLGymNJjUKf1MMCpXyJiBEV4uygzL6+6HvXLh4FjIuJJ4BJgRkT8V7UlqZ8WAgszs7vn+zKKQKfWcTDwRGYuzsy3gcuBD1VckzbMCxHxWwDl+6LB/OEGOPVZRATFvTePZOY/VV2P+iczv5SZ22XmVIqbpm/KTP/Lv4Vk5vPA0xGxS9l0EPDLCktS/z0FTIuI0eW/qQfhgyit6krgpHL7JGDOYP5wA5z648PAJyh6bh4oXx+tuihpiPkMcFFEPAjsCfxtxfWoH8re08uA+4B5FH+HXZWhyUXExcDPgV0iYmFEnAx8HTgkIh6j6Fn9+qDW5EoMkiRJrcUeOEmSpBZjgJMkSWoxBjhJkqQWY4CTJElqMQY4SZKkFmOAk9Q0IiIj4h/r9s+KiL8aoO/+fkQcNxDf1cvPOT4iHomImxtZV0RMjYjf7X+FktqBAU5SM1kG1CJiq6oLqVcuOt5XJwOfzswDG1VPaSrQrwDXz+uQ1MQMcJKayQqKSU3PXPPAmj1VEfFa+f47EXFrRMyJiMcj4usR8fGIuDsi5kXEe+q+5uCImBsRj5ZrwxIRwyLiGxFxT0Q8GBF/WPe9t0fElfSw2kFEnFh+/0MRcXbZ9mVgf+D8iPhGD5/50/Izv4iItSb9jIgnu8NrRHRGxC3l9vS6ybPvj4h3UUwa+pGy7cy+XkdEbBYRV5c1PBQRH+vLL0ZSc/G/xiQ1m38BHoyIv+/HZ94PvBdYAjwOfDcz942IMyhWLvhced5UYF/gPcDNEbEj8ElgaWbuExGjgDsi4vry/L2B3TPzifofFhHbAmcDHwBeAq6PiFmZ+TcRMQM4KzPnrvGZIygWMf9gZr4REeP6cX1nAadl5h0RMQZ4i2IR+7MyszuIntKX64iILuDZzDyy/NwW/ahDUpOwB05SU8nMV4ALgc/242P3ZOZzmbkM+B+gO7jMowht3S7NzJWZ+RhF0NsVOBT4ZEQ8ANwFjAd2Ks+/e83wVtoHuKVckHwFcBFwQC81Hgz8Z2a+UV7nkn5c3x3AP0XEZ4Ety5+5pr5exzyK5X/OjoiPZObSftQhqUkY4CQ1o3Mo7iXbrK5tBeW/WRHRAYysO7asbntl3f5KVh9pWHPtwAQC+Exm7lm+ts/M7gD4+kZdRf/95hqBTX5TZObXgT8ANqXoWdu1h8/26Toy81GKHrl5wNfKYV9JLcYAJ6nplL1Tl1KEuG5PUgxZAhwDjNiArz4+IjrK++J2AH4FXAf8UUSMAIiInSNis/V9CXA3MD0itoqIYcCJwK29fOYG4PcjYnT5c3oaQn2SVdfY1d0YEe/JzHmZeTZwD0XP4avAu+o+26frKId/38jM/wK+QRHmJLUY74GT1Kz+ETi9bv8/gDkR8QvgWjasd+wpivC1OXBqZr4VEd+lGGa9LyICWAzMWt+XZOZzEfFF4GaKnq+rM3NOL5+5NiL2BOZGxHLgGuDP1jjtrykegPgqcEtd++ci4kCKHsWHgR+X2++U/3t8H/hWH69jD+AbEbESeBv4o/XVLak5ReaaIwqSJElqZg6hSpIktRgDnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASZIktRgDnCRJUov5/wEEXUm8vjXJ1AAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(10,5))\n", + "sns.lineplot(range(1, 11), wcss,marker='o',color='red')\n", + "plt.title('Elbow')\n", + "plt.xlabel('Number of clusters')\n", + "plt.ylabel('WCSS')\n", + "plt.show()" + ] + }, + { + "source": [ + "Looks like 3 is a good number after all. Fit the model again and create a scatterplot of your clusters. They do group in bunches, but they are pretty close together." + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd3gUVduH7zOzNZWE0BKqVAHpAgpSFBTBil2wI2Lvfnasr72j2MWCBVGQpqgIAtKl914SSoD0bJ853x+zCdnsbFhCAop7X5eXZHZ2zskmOc85T/k9QkpJjBgxYsT476Ic7wnEiBEjRozjS8wQxIgRI8Z/nJghiBEjRoz/ODFDECNGjBj/cWKGIEaMGDH+48QMQYwYMWL8x6k2QyCE+FQIkS2EWB3hdSGEeFsIsVkIsVII0am65hIjRowYMSJTnSeCMcCACl4/F2ge/G84MLoa5xIjRowYMSJQbYZASjkbyKnglguBL6TBAqCGEKJedc0nRowYMWKYYzmOY2cAu8p8nRm8tqeiN6WlpcnGjRtX47RixIgR48Tj77//PiClrGX22vE0BFEjhBiO4T6iYcOGLFmy5DjPKEaMGDH+XQghdkR67XhmDWUBDcp8XT94LQwp5YdSyi5Syi61apkatBgxYsSIUUmOpyGYBFwbzB7qDuRLKSt0C8WIESNGjKqn2lxDQohvgD5AmhAiExgJWAGklO8D04CBwGbABdxQXXOJESNGjBiRqTZDIKW86jCvS+D26ho/RowYMWJER6yyOEaMGDH+48QMQYwYMWL8x4kZghgxYsT4jxMzBDFixIjxH+dfUVAWI0aM/xYysAu8vxtf2PsjLPWP74ROcGKGIEaMGP8o9OLPofBVQBoXCl9HJj6IEn/tcZ3XiUzMNRQjRox/DDKwM2gEvIAv+J8XCl8xTgkxqoWYIYgRI8Y/B+9vgG7ygg7eX4/1bP4zxFxDMWIcJQd25zD5velsWbGdFqc24/wRZ5NSO/l4T+tfijzeE/hPEjMEMU54pJRIKVGUqj8Ab125g3t7PYHf68fvDbBsxiomvDWVd+b/j/ot0qt8vBMee38ofMvkBcV4LUa1EHMNHWN25uex/sB+NN3s+BujKinOL+bl60cx0Hk1A2xXcn/fkezaYCpwW2neuvVDXAVu/N4AAD6Pn+I8F+/dM6ZKx/mvICyNIOEewI6xT7UY/064B2FpeETPklJH+jciAxHVl2MEEYbkz7+HLl26yH9jP4LMgnxumfIT2/JyUYXAplp49ewB9G180vGe2gmJlJI7uj3CtpU78PuMRVoIQXxyHGM2vk1yWtJRj6FpGufar0Lq4X9DVruFae5vjnqM/yoysB08wZiA42yEpfGRvd87D5n/AEgXSB3U+oiUdxGWJlU+138LQoi/pZRdzF6LnQiOAbqUXP3jODYcPIAnEKDY7yfX4+b2aZPZlpd7vKfHrvx83l44n2dnz2Tuzh382zYHZqxbuImd6zJLjQAYxsHn9fPLp39UyRiKomCxmntX7U57lYxRFUj57zt9CktjRMJw478jNQLaHmTuraAfMAwBHtC2IHOGIqW/Wub7bydmCI4Bi7IyyXW70cstsAFd5+tVK47TrAymbtzAOWPH8O7iBXy2fCkjpv7ELVN+qhbXVXF+MZuXb6Mwt6jKn12ezA27Ta/73D62rqwaV4EQgn5De2G1W0Ou2xxWBtx0ZpWMcTTorono2b2Q+1qhZ/dEd/1wvKd0TJCu8UCg/FXDKHjnHo8p/eOJBYuPAftdxabXA7pOVmHBMZ7NIVx+Pw/9/gueQCDk2rzMnUzfspmBzVtUyTi6rvPhg18yefR0LDYLAV+As4b24u73bka1qFUyRgl5+/NZ+vsq8g8UoJu4bOxxNpp3qjp33K1vXMfuLXtZv2gTqkVF82u069OGG569ssrGqAy66ycoeBLwBC9kQ8Ez6IASd8nxnFr1o+8FTHb+UjdOCTHCiBmCY0CnuukETHbYTouV3g0bH/sJBVmUlYlqkknj8vv5acPaKjMEP7w+hSkf/IbP48fnMf5A/xg7h6TUBIa9OLRKxgCY+M40PnzoKyw2FYEg4AugWo3FGUBRBPY4O+fc0LfKxnQmOHn1j6fYtnonmRt206hNAxq2yjC9t8TlJoSosvEjUvwmpUagFDcUvQUnuCEQttOQ7qkY/a7KooOt0/GY0j+emGvoGJCRlMRlrdvitBxyIdhVlXqJCVzY6uTjNi+LokRM27apVbdHGP/6ZLwub8g1r9vHpPemV1k8YsuK7Xz88Fj8Xj/uQg+uQje6piMAZ6IDq91Ct0GdeXfRiySmJFTJmGVp0rYhZ1zS3dQI7N2ezaPnPs8A25UMdF7NC0PfoiCnsMrnEIIWoeurvveEiAFViONssDTEyDwqwQmOAQhL0+M1q380sRPBMeLpPmfRqV4GX6xchsvnY2DzltzQoRMOi/Xwb64mumbUR1XCd6dOi5XLW7etsnEixQQ8xR50Ta8S99D0MTPxe8PdATaHjQc+u50zBnc76jEqg6vQzZ3dHqHgYCG6LtE1ndnjF7B15Q4+WP5qtdQ2AKDWB21n+HUl/dicSMohpRf0IlBSEKJ6959C2CD1W6TrS/BMBuyIuCHgvKhax/03EzMExwghBBe1OpmLjuMJoDw2VeWD8y7ipkk/AqAFC6+uansKPRs2qrJxWnRuypp5G8KuN2iVUWUxAneRxzQmIKXEU1zeRXLsmPHVbDwub8jcAr4A+7bvZ8WsNXQ885TqGTjhfsj/P0LdQw5IuK9Kh5FSgn8J0vMHiHiE84KQfH8pfciC58A9AZCgJCMTn0BxDqjSeZRHKHGIhFsg4ZZqHedEoVpNsxBigBBigxBisxDiYZPXGwkhZgghVgohZgkhYlqzx5iuGfVZcNMInjuzP4/27M3PQ67j8V59q3TXeOsb1+OIs6METx9CCOxxNu5456YqG+OMwd1xxIenbGoBjc7921XZOEfKttU78RR7w65rms6u9eaZTVWB4jwXkl8CtSGgGv9PfgEl7oIqG0NKicx/CJk7DFyfQPF7yAOD0F0TD92T/zi4J1IqIqfvh/yHkL5FVTaPGEdPtZ0IhBAq8C7QH8gEFgshJkkp15a57VXgCynl50KIM4EXgGuqa04nGlJKxq5awUdLl5DncXNqen0e7tmLZqk1j+g58TYbF7asvpNKy1Ob8c7CFxj7/A9sXrqVRm0aMOSxS6o0e6fLOe3pfHZ7/v51BZ5iL0KAzWnjuqevILVuSpWNEwktoFGYW0RiSkLIKadp+8Y44u1hxkBVFRq1rt59j+I8F5znVt8AvjmGSJx0By8EjP8KnkA6zgQkeKZhKIiWxYMsGo1I7Vp9c4txRFSna6grsFlKuRVACPEtcCFQ1hC0BkrOqjOBifzLkVJG3E3vys/npw3rKPL5OLPJSZyannFUO+8X587mq1XLcQfTP2du38rCrEymXX0tDZL/WaJnjds04LGv76m25yuKwlWPXMzmpdvwuo0UwabtG9NvaK9KPa+in+OcHxYw7tVJ5O8voMs57YlLdDJ59K/4fQFsDitDn7yMS+4ZhBCCM6/uyedPjcPn8aNrRuaY1WYho3k92vVuXblv9h+CdE8NFmyVQ1jA9xeozUBYQZY3BJjHL2IcN6rTEGQAZQXEM4HyEbsVwGDgLeBiIFEIUVNKebDsTUKI4cBwgIYNj0xv5FixKCuTZ/78g3UH9pNkt3NTx87c2qVbaXrmTxvW8cjvv6JJHb+u8+XK5XTLqE+yw8HO/Dy612/A9R06USsuPqrx8j0evli5DK+mlV6TgCfg5/2/F/H8mcdWoCtvfz5/TViE3xug23mdqNekzlE/c/nM1Ux4exp5+wvocVFXzrulP3GJzpAxJ749jaUzVpNat4ZxGiiTnbRh8Rbu7/sUn6x5I2qDu2XFdt654xPWzt+AI87OucPO4qYXhmALFo19+ez3fPfyT3iDO/wpH/wWIjHh9/r5/IlviUt0MHBYP5wJTkYtfIF37/qUxb8sQ7Wo9LmyByNevfa4BG2rFGEBBOapZxawNDBy98NQwNqheucW44ioNq0hIcSlwAAp5bDg19cA3aSUd5S5Jx0YBTQBZgOXAG2llHmRnlsVWkP5Hg/j1qxi2b49tKyZxlVt21E7vvIphWuy93H5+G9Ld+YATouFy9ucwsjeZ1Lg9dL9k/dDCrdKKPkzsikq8TYrk6+6hvTEw+vgLN+7h+smjqfQF77balUzjWlDrotq7gFd5+OlS/hq1XKKfX56NWrMQz3OICOKOZQwe/x8XrpuFIoQ6MF6iasfu4Qhjx1Zvrqr0M3fv61ECNi1Pouxz/9YmnZqc9qo3aAm7y15CWeCk4N7chnR8UGK812m2UIlOBMdPDvpYdr3bnPY8fft2M/Np9yHu+hQgNXmtNLl7A48PeEhivOLubzecHwekx1uOWo1SOPrHaOj+K7/vUjfEmTOTYA79AURh6g9HyGc6EXvQ/HoMu4jAcKJqPlDLJXzGFOR1lB1ngiygAZlvq4fvFaKlHI3xokAIUQCcElFRqBKJlVYwKCvv6DI60NH8uvmTXy4ZDHjL7+Kk2vVrtQz3160IGyRdwcCfLt6Jfd278G8XTuNnH0TSsywT9fQvDpvLPiLV/of3q+bnpiIr8xpoAQBnJSSGvXcH/j1Z6Zv2VR6spiycT1zd+7gt2uuJ9UZd9j3F+QU8tJ1o/C5QxfHb/73I90GdqJZx+hEvmaPn8/L149CtahIKXEXhmb6+Nw+sncdZOqHv3Ppfecz9rnxFOYUoQXCP4OySF2yd1t2VIZgwttTS1VED43rZ8n05ezZto+DWTlY7ZaoDEHu3iPTkFo+czVf/+9H9m7LpvXpLRn6xKXUb17viJ5xrBG2Lsj466H4U4zfPAWQiBqjEMI4uYn4W0BNRxaNNqp6bZ0g4U7wr0Z3jTdE4ByDEEp0J+EY1UN1Zg0tBpoLIZoIIWzAlcCksjcIIdLEoaTiR4BPq3E+APzfb9Mp8HrRg0uwDri1ALdPm1LpZ248eMD0cGxVVXYXFmAxydU3Q5OSOTui08GpHZ9A38YnYVdD0y8dFgsjuhwKwi3bs5sLv/2KZu+8TocPRvHmgr9Kq5x35efzy+aNYe6lAq+Hb1atjGoeC6csRVXDf438Xj8zvp4T1TMOZB3kpetG4XX5cBW4w4xACT63j/mTjdPg4p+XH9YIgOHrj9YYbVq6jYA//NRmtVvJ3LCb1HopISJ2FdHgZPPqYjP++HYuj5//AstmrGLP1n3M/GYut3V5iB3rMqN+xvFCSbwXkTYVkfgQIulJRO25CHtPpLYbGdhmSEFru0E/CLIQApmQOxxZMBJcnyALnkfuP8toUVkBUi9Gun9CFn+O9IenIsc4OqrNEEgpA8AdwHRgHTBOSrlGCPGMEKIkh60PsEEIsRGoAzxfXfMpYUGWed/T7fm5eE1cN9HQKi0Ns6Xer2lkJCbRo0GjqKs5kx2OqMd9/Zxzuahla+yqikVRqJ+UxHsDL6BtbcM/v+ngQYZO+J5V2fvQpaTA6+XDpUt4YubvAKzdn43fRPpCk5KZ27dGNQdN002/NymJaqEG+HPcfFMp5/IIASl1awCQWPPwrjy700a7Xm1o2r5xVPNo3qmJqZqo3+unfst00pvWpWWXplhsFR+k7U4bt7wSXaN1TdN47+7P8LoOnTJ0TcdT5GXM499G9YzjjbA0RMQPRcQNBj0X/cCFyP3nIA9cBPs7Q9EokHmADtqmMqqgAG6QeciCxyM+X/qWI/efgcwfiSx8BXnwMvT8h0/8CuljSLXWEUgpp0kpW0gpm0opnw9ee1JKOSn47/FSyubBe4ZJKcMTrquY8gqgZamsIbiz62k4LKGLg9Ni4aq27Ui023Farbw38AIcqorDYsGqKMZBulyw0GmxMKxj56jHdVisvNDvbFaMuJPFw27lz+uG0bvxod3v6CULQ3b7AJ5AgInr15LjdlHk90VsDGgWezCj28COpdkwZbE5bfS+7PSonuEp9kZlNGxOGxfdYbjNLr3v/LC6AdWqUDMjleS0JNLq1+TKhy/i6YkPRjUHgMF3D8LqKKck6rRx6oCOpcHvpyY8SPverbHarTgTHCSkxHPF/11Iiy5NSUiJp/XpLXh+6qN07t8+qjFz9+WHxCRKkFKy+q91Uc+99H2BzUjvQqRezRIWZmPLADJnCAQ2YNQNuIML/uF+l3TwLUKaZBdJqSHzbgVZhKEd5AM84P4ZvNOr+luocqS2Fz1/JPr+/ugHr0Z6Zh7vKZnyn6ssTrDZKDJZ5FQhiLfZKvXM1rVqM+aiS3jmz5msO7CfZLudG4NZQyXUS0ykZlw8+13FKEJgV1XqJyWTWViAVVHwaRpDTmnPpZWQdrCpKjY1vEJ37YH9pobPpqrsys+nht1hBHhN7qkZRXwAIKVODW598wZG3zsGLaChazo2h43+1/biQOZBJrw9jdant6Rll8iBwVPP7cA3L04I0yMSwpCIUK0qWkDnllevoW2PVgD0vbIH21fv5Ic3pmC1Wwn4AjTr2IRnJv0fSamJUc29PLUb1uLNOc8y6s5PWDPPyBoaOLwfNzx3Vek9SamJvDj9CXL35VGYW0xGs7pHVR0dnxwX8TSUcgT1D1I7gMwdDoHNpSmbMuEOlGNZWeubG1ywKyNhXhJjKId/FUgzV6Eb6RqHcFRvhfLRILV9yAMXBD+TAGg7kHlrkIn3osRff7ynF8J/zhDc2+10np/7Z8jiJ4Ahp7Q3VeKMxAGXi+/WrGTDgQO0q1OXy1q3ZfJV5rVwmq4z9Mfv2e8qDtmBZxYW8N7A87GrFlqmpUUVnD0STk6rxeacg2ELvVfTaJCcTIPkZCxBI1QWu6pyXouWUY9z3vD+dDyzLTO//Qu/x0+Tdo14546PmTF2DgGfhqIqdOp3CiPHP2C6aLbo3JRmnZqwZu76kOsd+rZlxOvXU5hTRItTm+KMP+Q2E0Jw4/NXc+n957N1xQ7SMlKrpEdwfHIcaRmpJNSIIy7R+LfFGj7nlDo1SKlT46jHc8Y7OPPqnsz89q+QgLs93s7Vj1xc+rXU9iILXwPvbBBOiBuCiL8BIYw/YZl3OwTWA4FDC2fxe0hLC4Sj6tRWK0TLjpAuejgsYO9V+r2EEgBTxysgK3eCP1bI4g8PGYFS3FD4BjLuitKA+j+B/5whuL5DJ3I8bj5eagQddQmXnNyax87oE/UzNh48wGXff4tPC+DVNH7ftoX3/17ExCuGUD8pvJBrfuYuiv3+MDeMX9OYtWM7T/WuniYmt3bpyq9bNoWktTosFi5o0arU6NzZtTvvLV5Yeo/DYqFRcg0Gnxy52ElKyboFG1k4bSlxiU76XtmDjGb1GPr4pUgpubH1PRQeLKSs/Vn6+yqmfvg7F9x2Ttjz9mzbx6YlW8Kur5m3gcTUBE5qZ657tG/HfsY+/wMr/1xDrQZpXPXwxXTqV3k5idx9edza5SGKc4vRdUnBwSI+e/xbdqzN5L4PR1T6uYfjrneH4ff6mfPDQiw2FalLhj55GX2u6AGA1POQBy8GPQ/QQOZC0TvIwDpEjdeRgUzwryWsGYt0I12fVbkhkHoe+DeAWi+0j7C1IxHlbEMQGMqgunF6UVIRSc+a32pth7kH24mI+4eLyHnnE94gBxAqBLaAteqEHY+W/2zPYpffT2ZBPnUTEkiyRx+gBbjs+29Yumd3yK+8KgRnNWnK++ddGHb/lI3refj3X3EFTNQxVZWArtM8tSaP9+pDjwZVJ/YGRtbQU3/+wersfSTa7VzXviN3dj0tJJ11zs7tfLliOXleDwObteCKNqfgtJqrokopeeWGd5kzfgEetxeL1YKiKjz02e30vvx0dm/Zy/D294cEP0to2qEx7y99Jez6uFd+4rMnviVQLiPH5rAy7MWhXHzXwLD37Nm2j1s7P4SnyIMWMHah9jg7t799A+feeNYRfUYljHnyW8a9MimsLsHqsPLF5lGkpRtpuWvmbWDCO9PI2ZNL9/O6MGh4P+KTKj7NSWmksVpsFmrVN5cAKcgpJGdPHvVOqh3S6lIv+gCK3iW8v4AdkTYNZAEy55rg7rMcanOUWlONOfhXGgJw/lUgEiDuGkTCbRF24ubfgyx8FVxfgLCB9IO1PSLlPYRiuOP03HvAO5NDtQV2YywZAArA0goSH0GgQWAjqI3BfkaFc5De2cjcOwEN8IGIA2tnRMoHUc/9eKDn3Gi4y8KwIWr9jlDrHtP5HK86gn8Ufk3DHQiQaLMhhCDOaqVFzbQjfk5A11m2d0/YvkeTktk7t5u+p1PddFMjAJS6ZTYcPMDNkyfy5cWX0rleaOphkc+HVVGwW478x9WxXjo/XVlx85czGjbmjCgb5Cz+ZTlzflhQWsFbsni/cuO7nHpuRwJ+LWLFbMBvHhAO+DVTP7muy4jv+eqZ8bgLPSGBaq/Lywf3f0H/a3pH7CUspWTt/I0cyMqhRZeTQiqgV81ZZy5lbbeybeUO0tJTmfrRb4y+93N8bi9SGtXLU97/ldF/v0R8snku/Nr5G3hhyFvkZucjdUmDVhk8Me4+MpqF1gkkpSaaxzd8Swg3Ahi76cA6sPfBfCduA4dx2pSBrUFjEVygZT4Uf4zU9yKS/2c67zA8E8H1FeCFkrwO/zJk/oOIlPeNKdV4DekaB+5vjHscgxDxNyIUkywve4+ohhX2XlDrV6R7MugHEfaeYDut2uWsjxYRfzPS9zehBXc2sHU95kbgcJzwhsCvabz412y+Wb2SgK6TFhfHYz37ALD2QDZNaqQwqHnLiDvg8ihCoEYIsJbP6S9ha14uFqEQOIz/1BMI8Mb8v/hq8OUALN2zm0dm/MrW3FwUAec0bc5zZ/YnyX78GqPPGDvHVE1Ttags/X0lPS7qSmJqQtg9NqeN/teY6/6cfuGpjH3+h7DMIUURnH6h6QaGFbPWmGYraZrO3m3ZpvGCg3tyefCsp9ifmYMiBAF/gL5X9eS+j0agKAoNW2Wweu76sOcGfAHqNK6Nx+Xl/fs+Dwlq+9w+DmTl8NN707n6kcFhY+buy+Phc54LyQzaunIH9/V6krE7Rkc0WCFYmoJvHuHtFzVQ6yOEDZn4BBQ8hZGtIwG7of0ffyNQ4q8OF3/DPQmZ+ABCOXwRoiz+lLAqYnzgnYvU8xFKMkKoiPirIP4qs0dUGqHWQSQMq9JnVjfCfhoy6TEofBGjZ7LfMGA1Xj/eUwvjhDcEI2fNYOL6dXg0Y+e6t6iIu36Zgk1V8WoacVYrL/01hx8vvzoqoTZFCAY2b8G0TZvw64cWLruqRsz4yfO4sVssBPyHT8ncmGPILO3Kz+eaCeNxB08SmoTpWzax/sB+GiQnE9B1Lm7VhvNbtDyiIPfRoloij6WoCkIIHvvmXh4Z8BxaQMPn8eNMcNDw5AwuutO8YrpxmwZcev/5/PDa5NKCLavNwlWPDg7ZNWdu2sOPb0xh+5pdYW6kEjS/RlKaedbQ81e9QdamvSEL/azv5nFyt+YMGt6fwfcM4rcvZ4cs9Fa7hZanNsMRb2fRz8tMTyh+r5854+ebGoJfv5gVZuCkLnEXe1n08zJOv+BU07mWRcQNQbq/MRaSQzMDtTnCasRylLjBSEsTZPFnRs9e2xmI+GsQSjCg7V+L4Vop/3A7BHaALYpqdD1S0b8SdEslG7n93llI93cgPQjH+eC8ACGOXwOmo0EGthlGWCSC/awjroBW4i5HOi8yPmMlBaEeuRfiWHBCG4ICr5cf163Fp5f7Q4TS/HqX348nEODhGdMZG9yJH46n+/RjW14em3MOIjBqEzrWTef+08yPul3SMwjo0RVXNUsx/Mefr1iKTwtd7Py6zubcHDbn5gCwZPduJm9cx8fnX1ytAmYuv5+J69eyKCsTxzn1UX9LQNsT6o+WuiwN1LY5vSVfbBnFjLFz2J+ZQ7szTqbbeZ1QI5yYAG545krOGNyNOeMXIISg9+Wn0eSUQ/GSNfM28PA5z+L3+tECuqlBsjqsdBvYydS9krsvj/ULN4ft9r0uLxNH/cyg4f1p0DKD56c8wmvDRrM/0zDI7fq0IXvHAW5oeRdSyogGyBWhGjp754HSPs1l8Xv9HMzKifh5lEVYGkDKp8j8R0ELVhvbe4e5dIStI8LW0fwhlpMNn3z51E7pBbWB6VvCsPcM9hYo97usJIBiGGxZ+CK4vqXk5CB9y4ymNKmfYyjT/zsw4iHPgWuccUFYgKcg5SOELfpaHwh2TLM2r/I5ViUntCHYX1xkWjlbHl1KFmVl4g0EovLDJ9ntTLj8albu28u2vFxa1kyrUKeobkIiN3ToxOcrlpfu8C2KgqbrIZ5dh8XCPd2NIqwV+/aiHSaQ7w74WZiVyfzMXZzeIHpV1vUH9vPrls1YFIWBzVvQuEbkfPVct5sLvv2KHLcbd8CPTVWRD7Yl/f31OHcUBbWB4Inv78cRd8hlVaNWMpfcc17UcwJo1qEJzTqYy0G8ccsHIe6mkgCxoirY42wEfBqnntOBh8bcbvp+T7EXRTU3lmXdNu37tOHzTe9QcLAQCdx08t0U5hRxuJyKSIa4bqNaptcDvsARyVAIW2dI+yVYoWtHKEeWaiwSbkZ6fiHUteMw+vgGd6lSSmMnX/QB6MXg6A2Jj6KoKcFn3GV0IpPFGIVdCmBDJD2LEAoysAtcX2O4p0pwQ2A1eGeBo3JB/OOC709wjaf0ewnGRGTuCKg97197wonECW0IFCGQUaWzAYgj2lULIWhftx7t60YnDPbg6WfQOT2Dr1Yup8jnY1DzlhT7fHy6/G9yPR6apqTyRK++dM0wmpWYCcqZ4fL7mb1je9SG4NV5c/h0+VL8moYiBKMWLeDhnr24tr35TvKthfPILmNQfZoGCgQe6MJNRRk4E5z0HNy10kVc0eBxedm1Psv0NavDyltzn6NGnRqk1I7s2qvbpDaJKQl4XaG7cIvNQs9y/YyFECSnJTFj7Bz83sBhjQBAk1PMP//c7ALT64qqkL3D6JsgpWTy6Ol8/cIE8vbl06h1fW557To6nRXaxlIIAaJyTXaEpRmkfo4seBoCa0HEg/NqROLdpffIvLtCq3U9P4FnOnqtuShqEk0NypcAACAASURBVEKth6z5FeQ9adQsqDUh4T5EyQLvW4hpqqd0Ib0zD933L0C6xhMeDwEIgG8p2I9PD+zq4oQ2BGayz2aoQtCzYUPT6tyqQgTTS89qElphe3vX7qZNUOKt0VU521SVFGd06a9r92fz6fKlpZ+LJiV+dF6Y+ydnN21G3YTwxXz6lk2mp6oDXjc9h/WhTkLl5bujxVqBto+qKCEupEgIIXjo8zt44oKX0PwBAn4Ne5yd5FqJpr59gANZOaZunfCHw3m3mPd/MAtog/E9lcQbvn1xAl//78fSE8/WlTt48oIXeXH647TtWXWd44StAyJtgunvmx7IiiDZ4IHC56DGy0htH+RcazShxwuaG/IfRirxCHtvUJJAKCYJTBaIIhj9j8KsmQ5g1EBE8TvxL+OfnX91lFgPE0S1KArxVht14hN48axDhU5+TePzFcs4/5svOe/rLxizfGnUO/TKYHYS6dO4ScQspLIoQhDQJW/M/4u/du2oUIhr2qaN+Ew0fYQQzNh2SGRu6Z7d3Dx5Av2//MxUjgOMQjx7FTWej4pK1Lvous5vX/zJnac9ys3t7mPt/A28Pe85LrzzXHpc1JVhLw7ho5Wvk1TT/DTTqlszrPbD75UsFpVNS7eZvnbGJd2xx4UbdV2XdB3YEb/PzzcvTAjLsvK6fXz2RKjonJRepG8Z0r8pKsE16d+AnncP+v4B6Ll3If2GdpHpydddQXNA75/G84pGgZ7PIdePDniQ+Y8hpQ723pjvLS0I55H1pjjeCOcFRgV3GDrYzDPZ/s2c0CeC+snJEfsnNUhKZsgp7WlcowZ9G5+ENbjoSikZNnkCS3ZnlVbbvjxvDr9t3cxXF192zLpKXdn2FMasWMpBl6t0R25TVQSUzlXTJbrUeXex0Q8hbrmVjnXr8ekFg0vvKYsiBMLkAykrgPf71s3c9ctUvIEAEvPiflUIOtdLp4ajakvkc/flsXDqUhCC7ud1okYtw9Xj84ZXZZegaTq7t+wlOS0xLI//zVs+ZOa3c0sX2a83/8isb+fx7pKXSjuOVUS7Xq1peWoz1i/chNcdOeMr4NeY++NCrvy/8ErXlqc2xRHvCCuwa9Q6g7T0VA5kHYx4atix9pAMte6eDAVPAgKkBmo6pHwQUtkr/auRxV+CtsdIOXX/gOHL10HbjvT+CamfIMwWMrUCl5N0oe8/G7S9mFbK6gWg70GoGZA6Bpl7c7BeQRhjJ72IsFRtoWS14zgXPJMNd5d0AVZAhaSXEeLIClD/DZzQhqDA60URwjToWuD1MHP7VlrXqk2X9IxSyYXFu7P4e8/uEFkGTyDAin17KwzKegMBpm3ayF+7dpCRlMTlbU45oi5f5UmyO5h85TW8t2Qhv23dTKLNELK7oEUrlu/bg1/TueeXqRxwH+oZ6/L7WbpnN+PWrGJIu/BWgOe1aMnHy5aglXOZ6VLS76SmSCl5cuaMEJdaySenCIFDtSAE1IqP580B4dW+R8PPn85g1B2foAR7G7xz+0fc+9EI+g3phTPeQUbzemRu2B32Pr/Pzy0dHkALaPQc3J37Px6B3Wkna/MeZoydHeLa8Xn87N2ezZ/j5tH/mt6HnZMQgv/9/BgT357GL5/+gdftI2dPrmkKaXIt81PF/ElLwpr2AOxav5utK3dQv2U6IkK/igYtjVoI6V8H+Y8RUlSmbUPmXg9pvyOEgu6eAvmPUrrw+xcSavF1wI0seBaR9lP4YI5LoOAZzAXjvKBtN51jcDJGzAEQ1jZQaw74VxgBVlvHals4pdQNgyPiqnyDJoQKNd4H3zzDgCo1EM4LDWN3jJHSjXRNBv8SsDRGOC9FqJVrohWJE9oQFPv9WBUVTQvfxeR7vSzMymRhViafL1/K95ddRcd66SzZnWUaW3D7/SzZnWVqCIp8Pi4Z9zVZhQW4/EZmzcdLl/DR+RcfUTZPeWrGxfFEr7480StUK+bU9Pqs3Z9tWq3sDgQYv26NqSFoUTONu7qexlsL5wHGQiel5Nm+/cj3eFiTvY8ct1mADOIsVp7qcybpiUl0zagfJqF9NOzdns2oOz4J88e/cfP7dOjblrT0VO4ZPZzHznsBv9doAq+oCrqmowd0PAFjx//XhIUAPDr2btbO2xgUuAt9pqfYy9+/rohoCApyCvnh9SnM+2kxiakJDL5nEJc/eCGXP2hIh9zc7j52rssK2cU74u1cfNcg0+ctn7XaVGYaYM1f6zmpXSMuvf98vn91ckj9gt1p47qnrwBAur4mXMpZBz3XqOy1ngIFIwmtPo5whgqsN40RKIodPfl1yL+PI1MPtRpFUsohAT4hVKMTWclM9ELwTEVq2QhbJ7CdflRVwVJKZPEnwRaYLlBqIBPuQ4m7rNLPNEMIAfYeiCgroKsDqecgD14CWg5G8NpmFAemfoGwVl5XqzwntCFolFyDRLsNj6vioLEO3PDTDywfcSdpcXE4LBZc/tAFxGGxUis+1PXg9vvJLi5m/LrV7MzPK61NKIkn3Dd9GvNuuqVKF80SKtoBVfTaiC5dGdi8Bb9v3YJFUWhXpw4P//4ruwryUYQIq7kooVZ8PINPPny7x8ow+/v56BGkmMc8/i2tujWnw5lteWfB//j+1UnsWLOLA1k55OwNLXDyefzM/XEhhblFRgMbk8/BYlOp1cC8qKc4v5hbOz9E7t680paVm5ZuZfN927j+6SsBeH7KIzw84Dn27zqIalHxe/0MefwSupxt3n8gLSMVm8MaZuRUi1raZOfakZfjKfLw06hf8PsCJKTGc8fbN9Ghb7BAUduH+eIsQM+BwKYIr5vhiPj7oTgHIu09kK7vjE5ingoa44jEoNZQK0SNVyPepvvWQM6VlMQVZLECluZQczxCVK5CXhZ/CkXvUJrVox+EgufQsSNsHYzCLaX6stiOJbLwneDPv2QN8xkS43kPIWr9UmXjnNCGQBGCV/qfy4ipPxHQNAIVBNgKfD6KfT4GNm/J83Nmhb2uCsGg5i0AQ1b6xbmzGbt6BYoQuE2URQGK/D625ebQNNVcZOxI8QYCjF6yiB/WrUGLUB/htFi44jA9DRom1+DGjp2RUtL3i0/ILCiosGGP02JhROfDV8BWloBfQ5r4yX0eP398M4dZ4/5C6pJzbzqLBz+7HSEEQ5vcZvos1aqSv7+Ajme1JT7ZiafYE6JjpFpUBt5snsY45YPfyMsuCOlb7Cn28v0rkxh81yCSaiZSu2EtPlnzJpuXbSP/QCEtT21KYkrkzKn+1/bh6+d/DLkmhJH22nWgsWte9sdqJr//G1rwM/C5fLx/7xja9WptCNTZ+wZTM8ud1qTPUPyUbiNuEA3iMJWxIgFh64BUalVgCASixpug1EVUUCglpYTc6witK9AhsAFZ8AoiOXJXsgqfWfw+4amdbih4CIkd0JCOsxHJz/+jpJ4rhfdXTOMyWiZSO4hQq2ZtOaGzhgB6NWrMlKuuYWi7jmGpm+XxBPwk2GyMHXw59ZOScFqsxFmtpCcm8uXgy0pVSt9ZtICvV6/AEwjgimAEwAjmOixVU3gipeTaieP5cOlisgoL2FtcZNQCYCzUFkXBabHSo0EjLomyuc2yvXs44HKZGgFFCBJsNhwWC8M6dalUw5xoOe2CLqgmmv8Afm8Ar8uHz+Nn+piZLJjyNwBterQqjSeEzFsR1GlcC1VVeW3m0zRu0wC704YzwUGNWkmM/OHBEKG5siz+ZbmpP99is7ChjEy2EILmnU6iy9ntKzQCAGnpqTw35RFS69XAkeDAHmcjo0U6r816GpvdipSS14a9h9flLXU3+Tx+CnOL+Hzkd8Z4cReDmgGU9bU7IX4YQk0zKo8tzYEosrjkwYgZR9K/Cbm/NzL3FiiMIAsNYDkFYT+jQiNgPG8DSPM6Cjw/HH6upniN3semGHEQ8IHnN2Tew5Uc459EpFOTNEQHq4hqPREIIQYAb2H8hn4spXyx3OsNgc+BGsF7HpZSTqvqeZyUksqTvQ0/e9O3X4u4cCcGF/q2tevw53XD2JKbg5TQLDW19DgtpeTTZX+HBJPNUISgaUoKGUmVDxiXZcmeLNbszw6JX/h1nTirlUtatSY9KYmu6fXpULde1IGzHLcrotuqe0YDHunZi0Y1UkioZOe2w5G5cTcrZq0hLskZMWBaFk+xl2kf/c5p53fh2qcuY8GUJXiKPKVuJUecnZv+dzVWm/EHkt60Lh+ueI2szXvwunw0alO/QpmLWg3TEIoIU0LVNZ2UOkYGk6ZpfPviRCa+M43ifDdtTm/BrW/cELFnAkD73m34ZtcH7FibidVmIaP5oZ9Rzt48cvflh71HC+gsmrYUwAi21vzeiBV4poOShIi7JqTPgEh5D5l7Y1CCQjWXpAZjx2/yM5dSN96vZ0f8PgziIGX0Ye4Jou+P/Fqlu9LaQUmLYp5e8M5A6rkIpXJFeFJ6ka4Jxq5cSUHEDTFiHMeSuCtMJMhVsHVGKFWztkA1GgJhCIu8C/QHMoHFQohJUsq1ZW57HKOp/WghRGtgGtC4uuYEMLB5C6Zu2hh2/ZTadUIKyoQQNDNx6fh1neIKxOPirFYEgkS7jfcGXVA1kwZW7ttHwMQd5PL7sVss3NK56xE/s0PddNP6CKfFwoBmzWlT23znfLRIKXnrtg/57YvZCGHoFEVVuAV4PcZnn9GsHu8ufokvnx7HqjnrSMuoyVWPXMxp54enRpaXe47ExXeey5zv54ekiiqqQr2T6tC0fWMA3hrxIX98M7c0HXT5zDXc0/NxPlj+KvVOivx5KYpCk7bhiQOOeHvEVpXxyYdkJIQSj0i4GRJuNr1XqHWg5hRDllo/gCz+Dny/hd9o624+Qf+yCMZDgNrU0COyd0fEXR29b9/awXi/2dZLqVw6qRACmfBAMJXWPAh/6GarET+ohCGQ0os8eAUEtmGcMgTS8xsy8X6U+OsqM/VKIeJvRPqXgXeeUayHACUNkRze1+NoqM4TQVdgs5RyK4AQ4lvgQqCsIZBAiVlLBsLzA6uY58/sz7oD+9mZn09A17EoCikOJ+8PCm8oY4ZNVWmQnMzO/PBdXKuaadzYsTO14xPo0aBhlaqCZiQmYVXUsIXbabHQMLlyLRPT4uK4pfOpfLz071INJLuqUi8xsdoCwwBzfljAjK/mmLphKsIRb+esq88o/bp+83o88tXdEe+XUjLzm7lMGj0dT7GXPlf04MI7BoS0vCxLi85Nuf+T23jr1g/RdYkW0DjplIaM/PFBhBDkZufz+1dzwnoW+Dx+xr3yE3ePHn5E3w9AfFIcXc7pwJLpy0ME7exxdi4yachTEUIICKqRyvxnzG/yrTG/LoswrxqRoNZDSf3giOYCoKiJ6PZzwVv+kC8guQLX0+GeG3cRUnEiC98EbXewSU4BpgYnWkG9ckjXhDJGgOCzPVD4KtI5+JgFo4WwIlLeR/rXg3+NUT9i61blvRiq0xBkALvKfJ0JlBfoeAr4VQhxJxAP9DN7kBBiODAcoGHDyqdjgpGfP33I9czeuZ11+/fTuEYK/U5qekTyEiN7n8nt0yaXumkEhmDcM3370SW9evKMz2xyEvE2K+6AP8Snb1EUEu12vl29klPTM0wD05qus7eoiES7PayXwb3de9Cudl0+X7mMfI+Hc5u1IMFmY8BXY8h2FdMstSaP9ux9VGmw5Zn64e+mPQ3MUC0qWkDDkeDg5O7NOWvIGYd/U5C3bvuQGV8d6p+wa0MWM7+ZyzsLX4hYUNb3yh6ccUk3tq/eRUJKPHUbH8rXztywG5vDGmYItIAWEkM4Uh4aczuPn/cCW1bswGJV8Xn99Bt6BuePOLvSz0TPNL8ud5umj2LtVE7mOohwHlWDeFHjNWRhBrg+B3yGSqnzCigciZ67A9S6kHAvitM8/Tbicx3nIByGGoAM7EQevChY+KWXzpuEeyqdmWQEaU1SqYUV/EuDVdTHDmFtBdZW1ff86mpVKYS4FBggpRwW/PoaoJuU8o4y99wXnMNrQojTgE+AtlJG7uBSVa0qD8fyvXuYtGE9Esn5LVrRqV5oo5M/tm3ludl/sK+4mPqJSTxzZn+6BQXjqov5u3YybPKE0viERQgcVitI0KShZDqoeUte6ndOqe9/2qYNPDlrBi6/YUD6NWnKS/3OIT6C33/M8qW8Mm9OWJ/jMRdeUiqId7Tce8YTrP5rfYX3WG0WajeqRd+relBwsJCu53bi1AEdUKI8Ze3Zuo9hbe8Nczk54u3cPXo4/YaaN8mpiAO7c7i26R1hhkBRFfpf04sHPjVXPo2W7Wt2sW97Nk07NCYt4+iyQfTsPqCbHLCV2ii1zdongl48FgpforQoTThBbYao+Y0hpXwUGOuMZhRo5d5BqFvHAUkjUeIqL0MhAzuQRW+DbxEotREJtyIcpvvKqNDz7gfPFMLL8OMRKZ9Glvv+B1NRq8rqzBrKAsqey+oHr5XlJmAcgJRyPkZaxHHv3PDyX7O5+sdxfLFyGV+sWMY1E77nf2VSSrfm5nD/rz+zt7gYdyBAZmEhd/08hT2FkbIZjh5vIMCt0yaFLNABKSny+Sjy+3AHAniC1c2TNhiL7N97snjwt1/IcbvxBAL4NI0Z27Zw1y9TTMfQdJ03F84LC4R7AgFemTenyr6XM4ecgT0ufKdmsVmIS3KSUCOec27oy6iFL3DdU1dw5zvD6DawU9RGAGD1X+tNexZ4ir0smb68UvNOS0/ltAu6YHOGLopWu5XLHozOtVgRjds0oNugzkdtBABIuJvQLCMAJyTcFfEtSvwQROqX4LwI7GciEkdWiREAw20lhAVZ+Arhvn0PFL0elX5SRLQd4F9pBKi1LYYmk4xOdNJ0vnFDCM/YESCSwGpeM/JvpjpdQ4uB5kKIJhgG4Erg6nL37ATOAsYIIU7G+M2tINWg+tmcc5AxK5aFZOe4AwG+WrWCwSe3oVVaLR774zcKvJ7SvYI74MenBXh+zixGDTy/WuY1ddMGCryHd6e4A36+Xr2Ci1qdzAdLFodVSXs1jXm7drK3qJC6CYn4NI13Fs3n61UrKPb5I7bT3BTsnFYVDLixL398PYcty7fjLvJgtVlQLApPfHcf3QZF3/Rj7YKNfPjAF2xaupXkWklc/uCFJNSI589x83AVutG18IXFYrVELCgDw300+r7PWTlrDc5EB+ffNoCrH7m4tKXk/31xJx899CU/f/IHPrePxqc05K53h9Ho5CM7LXlcXhZOXYq70E2n/u2oXcGcKoMSdzE6ASh6IxgwTYX4u1HiKm6+JGztEbZqXOgC282v6wcx6g2OXI5C+paHnjKkC1xfIvX9RnBc2MDex7xvcgSErRMy8X4ofDWYpilBJCFSP/3H90quDNVmCKSUASHEHcB0jNTQT6WUa4QQzwBLpJSTgPuBj4QQ92Kcwa6X1eCryi4u4vu1q8kqKKBb/Qac26xFxJjAH9u2mhZr+TWNGdu20iy1Jot3Z5k2r5+5fWvY+6qKP3dsj/reksV/Z0G+aaqsVVXZV1xM3YREbp36E39u345+mL4NjSoZkDbDarPy0m9P8sVT45g/eQk1aiVxw3NX0rZH9JLLm5dv46F+z5TKMuzfdZD37vkMRVXQSrSATGKfqlVl4DDzgrIDWQe5s/ujuArcSCnxun2Me2kimRt28+hYIyhts1u5/a0bue3NG9ACGharhaK8Yia8PZVtq3fRvGMTzhrai7jEyIVMq+eu47FBLyCRSF2iBXSufPgirh0ZXYe8aFHiLoO4y5DSB1iPmWBihah1jd17eUQikXPmK0YWjcL0lOGZiPROx3B86FBjFMIefYxJib8O6RxsxASCJ4ET0QhANdcRBGsCppW79mSZf68FqlXIY8nuLK6Z8D1+TUMHxq9dzdsL5/PTlUNN8+MjGQghBPag+qcSoXm9Ral6WeZV2fuYu3M72UXRuZ0cFgsXtTQW1K7pGWzNzQlLO/VrOk1TUtmWm8Os7dsO27rHYbFwb/fQH9OWFdtZ/PMyHAkOel92Gil1ojcUPq+fh/o9zZYVO/AUedhtU3n47Od4/Lv76H5edCeCL54ah88dekKSukQrK5ERlE+12a2oFhWLzcL/fXFnxDTPCW//jM/tC3FReN0+5k5YSPbO/dRueKjbmBACi9VC1uY93HXao3jdPrwuHzPj7Xz5zPeMWvSi6S7f5/Xz+Pkv4ioMDUSOe2USJ7VvTFp6Cg1aZRCfdGQdyCqiIteODGwH7wxAAcc5CDU94r1VgtrY3BAodStvqDRzCXAgqIIa/GfeHVDrryM7GSiJxzwwfDw4oSUmpJQMnzyhVAMIDL/6trxcHp0xnR4NGtG4RgpdM+qX/hKeVr+BaSOWgK5zWn0jJfScps34dcvmkPtsqsrgk1tXOB+338/M7Vtx+f30bNjItBHM6ux9rMneR/2kZCasX8u0zRvxa5ppYl8JJYYpzmqlWWpNrj7FEKMa0aUrkzaup8jrK93xOy0Wbul8Kgk2G9+t3hrRCAiMxa5uQgKP9uxNz4aNyCosoIbdwSf3fs6vn88i4NNQrSof/99XPPrNPVE1YgeY/tlMNi/bVpqLH/BpBNB48Zq3+X7fx6UFYRWxZfn2qFoUOOIdDHlsMF3O7kCTUxoGhejMWb9oE36TnsQ2u5UdazNDDEEJb474kMLc4tJaAE+xF5/Hz+h7xjDyhwfC7l/+x2pTX7jX5eWZS1/FmeAg4NO47MHzue6pK6p1F68XvR8sVtIBAYWvIxMfMpQt9SKjbqCq1Tb9y8yva5uRMoAQlViSLCcHC+kO9wuhGL0VjjBD6b/ACW0ItuXmkhfBrz5l00ZmbNuKIgTpiUl8c8nlpDrjWLJnN6qJdLWKYMmeTNrUrs2zffuxOSeHXQX5pal4LWumcUOHTvyxbSu14+NpU6t2yB/xoqxMbpo0obTZvSZ17ujandtPNQp8vIEAN0+eyN97jHi6LiU+TYuq0WaduHjibDb6NG7CLZ1PZfzaNazdn03rWrX5ZvAVfLR0MfMyd5LmjGN451M5v4WRhmapIPiakZjI79fehE1V+Wb1Srp89B5+TUPTdOLz9pHi9SM0I9ce4IUhbzFu78cRc/TL8sfYOWH6/GAY7o1LttLm9JaHfUaDlulk7zxw2PsURdCwVX2adTTvhVyWJqc0ZM28DYdcS0H8Xj/pzeqGzHPD4s3kZhewYtYa00rkRT8vNR2jfMZRWaQucRUYO9gfXp9CRrN6UcllVwbp3xQ0AuX+PgqfReI0BJEKNGTcdShJ4Qat8kQK4EqOTPX0ECLhDqR3DuatJcuPUdmK5hObE9oQZLuKK3y9JDtme14uj/3xG6MHXchBl8u0f4GG5IDL0P6v4XAy7eprWZSVyba8XFrUrMnPmzZyzldjsKkqmi5pkJzM5xddQu34hOAiPyGsIvm9xQs5rX5DOtVL570lC1m8OzPk9BIt+90uAsVFZBUWMGb5UmyqijsQwGmxEGe1MuGKIbyeFF6c1L9pM56ZPdPU2JzfohU2VeX3rZt5dvbMUGmLjqlofo1a47eXXlNUhWW/r+L0Cw9/KrCZdOwCYyG0OaLTTxn65GWsnru+woYxYFT0dhkQKsl9YHcOOXtyadAyHWfCIV/+4LsHMf2zmSGGwOaw0r5Pm9Lq5L3bs/m/s58ld28eiHA5ihJKgsvl6dC3jWk/g/J4ir2Me+Wn6jMEnulEXpTdhzbX7i+R9tOqTorZ3hc8vwBlPwMB1k6Vzk4S1laQ+gWy8CXwrwIRFyyQK2d0pQa26GME/yVOzMhHkBY1a1boUinBr+vM2LYVv6axsyAv4n078w69JoSgW/0GXNm2HVmFhXy9ehVeTaPQ58MV8LM55yC3T5sMwNxdO0zdGJ5AgO/XrgZg3JrVlTICQGkMwBMIoElZauDcgQC5Hg8jZ80wfV96YhIXt2qNWs79UMPhYHhQsuKdRQvCMo+kTaWwW210W+ivT7Rx/vOG98cRHx4YTEiJj2rnDtC2Ryue+P5+0pvWQVEEzgQH3c/vjM1hJS7JSVyik+S0RF6c/nhp8Zir0M1j5/2Pa5vdwYNnPc1ldYbx7UsTSp+Z3rQur8wYSbOOjVEUgdVupd/QXjw5/oHS7+/x815g79Z9uIs8uAvNd6BWuyVi4Vt8cjztelfsQiwhLzu8er3qiDInQ7oNWeoqQiT+X7B/cYkBdoBIRFRQaazrPvSDN6DvbYW+twX6vu7onlmhz7W1R6n5NUrdVYjaC4wOY6XKo4oxTuL9CDXcvRfjBD8RpDrj6Fa/AQsydx32Xl1KdCnJLop8isguNn/NEKErV20qJauz97G3qBCvSZ9gMP4U3cG+B9H2RLapKrXj4vFoAfI9HtN4Rll0KZmz0yQ4F+Tl/gPoULceY5Yvpcjno99JTbm72+kkOwwXT8TaCCnR4ywowZ7GAb/GytlrWT5rDb0u6U7bnq1M/dsBf4AeF3el34ze/DpmJkJRUFUFi03l2UkPH5FPvNvATnQb2Amfx4fFZkFRFNxFblbOXofdaeOUM04OiQm8fP0ols1Yhd8bwB8sNBv73A9kNKvHGZcYLrpWXZsz+u9X8Hn9WKxqSO3CjrWZ7Nu+37R3gqIqWO3GHBq2rs/NLw81nfOB3TmsnBVB5qHs8xRB+z7Vp/gqHOcgiz8idGceAXk4l8sRjKvWhbRfke5JEFgFluYI58UhjW3CODgoNMAscyBvOHrq9ygmqa5CCEh+BXwLjJOPcBrdxaqxMvffzgltCADeH3Qht02dxOLdmShCwa8ZvXjL/ikLoH2dutgtFlrXqsXcXeYL58m1zHcTkfL7VUWh0OujR4OG+E0avsRZrQxqbvjDzz6pGT+sXxOW4VMStC3pV/zewAvo3bgJGw8e4OLvxh7WEABYKkh5U4RgaLsODDXpaAbQvm49/ti2JWz/KAISa3EAq8OKpunoAY2J7/yM1HV++WQGfa7owX0fjShd2H//6k8+zyHhdgAAIABJREFUfngsOXtySa6VzDUjL+OD5a+ycvY6kmom0HVgp6j6CJthcxxyKTgTnHQbGK4QWZBTyKJpy0J6DYDhgvnu5YmlhqD0mSZzKc53oZgUqQHUb1GPwXcPolGbBrQ5vWVEg7Z23gYsNkuFInuqVcURZ+eG566MeM/RIqwtkAkjoGg0hjEQhLlSAHAinOeVfiWlBN8CoxWlmg6O/kes+S+UeET8VcBVh71X9601zzICoytb2kRjXtp+pOszQ5xNTUfE34Swn4awn3ZEc/uvcsIbgiS7na8GX0ZWYQH7i4tJttu56sdxFHp9uAN+HBYLNlXlxbMM3ZI7u57GJ8v+No0TTNu0kXFrV9Mtoz6P9Oxdqk7a/6SmfLZ8Wdhib1ctnJSSgqoojOx9Js/MnmkEXIMZPj0aNOSsk4weCfef3pM5O7eT5/Xg8vtxqBYsqsKzfc4is7CARJudQc1bUjPOSCtsHmWzG6uicl6LwwdfI3H/aT2Yt2tHSLWxTVW5rV0H0kY2R9d0xv7vBwLlmrnM+u4v+l/bm3a9WjPru794c8RHpTn/edn5fPjglwx/eSgX3FZ5HZsjoTCnCNWi4Dex2eU7nUWiWcfGpqcBm9PG2df1YdDw/od9Ro3ayaYuNEUR1G5UC0ecnVN6ncwVD11EnUbV68ZQEm5DOgaA5//ZO8/wKKo2DN9ntqZ3IEDoTXoTEFFRARVQUBAQ7KBi7+WzYu8FCypiwYKAgAoCIoh0lI50pNdACOnJtpnz/ZhkSbKzyZJkQ8t9XVyY2Z2Zs7iZd+YtzzMPhAmJGbLeRa8deIBQsLYFu95lI6UDefxW8GzVZaSFHTJfhbgJCHPJXh9lxrXM/2v5w2lSPYI8ds2JuoBnC9K5BBn5Mkpo+Se+zwXO+kBQQK2ISK+Z/J833c4v27awPvkwTeLiGdi8BdF2/a4mzGrll8HDuPXXaaTmG8MX3I0XFJ8X7NnNykMHmT3sFmpFRHJXh078tn0bxx26lINJCCwmE69f3tOrQDqkZWvaJ9Zk6pZNZLuc9GrQmIvq1vNqAsWHhjL3ptv4ddsW1iYfokF0LAObt/Re+IuT4XT49UQQgM1sRhGC+tExPFvM8/hkiAsJ9RafC9CkpFPrJnTpncTvX83HbDYVCQSgB4OXB72HxaYPXBX24wW9XfLbF38qdyBIO5LOjrW7ia8VS/1WRaWNVVVlxqd/MOPTP3DmOr0OYIVRTArtewTm/WoLsXHnWzfy8f1fFplajogN5+q7rwjoGC27NSMiJhxHjrNIodlis/Dy9Keo16JsapmBINVD+vCVcykosYiwEWDvjQjXVVMFIG0XI/OmgpaOsF0Gtkt0D2JA5ozTFTALOm9kDpCLTH8EEf9rcBZtMX5SBfThNEBmf5pvVlPwHSxQCn0ZGdIbUYEGLmcrQROdCxaVJToH+kRyam4u106e4JPDtygKQ1u14YVLLgP09NCkjf+yeN9eakVGckubdjSLL/mOzuFx88fOHRzKyqJ19RpcUDsp4Bz5T5s28OSffxi+Zsl/AmkUG8f5NWuVqxf9vlkzmLXD178hxm5n1R338OcPi/nwni/8GrSXhBAwy/Gj3w6bkpBS8vmj45n+6R9YbGZUj0adZrV4bfbTRCfoJjKv3vA+y2es9gYhk9mEqqrevKDJbCIkws5na94O+O77f1e9wrr5m/C4C0lGh1j5YMkrJRa6NU3zGtMIRfB8vzc5svcYJpOCUASPfDGSiwcGnsaQUtMN4XMnAW6w90OEDvTbeaPfNffNv2su+C7bwXoByHTAjAi9HuzX+J2e1VIuB9Wo3mZFJPwVtEKsdrSL7s1cnOgvUOyX+F+XCEXETUGYGwVlXWcaJYnOnTNPBCdDptPJO8sWM2P7Njyaavgo79Y0Zu/Yzv6MDNrUqMHQlm24o8P53BGgt++utOMMnjIRR75YnM1spll8At9fOzAge8ukqCi/r4VbrQxtdaKIpknJsdwcwq02Qi0nd3c0b7exvHKaw8HBrCy69O3AByNPXqseIDYxpkxBAGDe94uY+cU83E63tzd/1797efWGD3h73gvs23qQZdNXFfE8UD0qVruFWo0TkZqkdfcWDH6iX8A6P0f2pvDvws1FggDo08KT3v6VZyY8ZLjf+oWbeO2GD8jN1v2TE5LiGDX1MRCCvKw8GratF9AQXWFkxpO6VHJBIde9BemYBbHfGl7IZc6X+TLNhW9oHOD668R7MjeCYwEi5gM/Jy3ppjGIN5TxsyD1hkITxFaIeArFnt9aq8QZBwLpAVE2d7JzjapAUAxV0xg0ZSJ70tNK7eQ5lpPD/JxdLN2/l6/WruHnwUOpFx3YF++h32dyPC/P++uT63az6egRPl+9kgc7dzXcx6WqfLNuDZM3b0DVJBZFMSwWj2h/IujP3bmD5xbMI8Ohi+Rd1agJr17WM+CAYOSKVkCOy0nt+ASenfgIrwx5D0VRUD1qQG5jtlArt79WXIMwcKZ98JuPp4HqUdm0dBtpRzPYtmKHoaexy+Gmfuu6/O87/yqc/ji67xgWm8Xn80lNcvC/w4b7HDt0nGf7vl5krQe3H+LRS0cxYd9nZSqQS/c23bKyiL6OAzwbwbUIbN19d3L9g3ExuPCB88D5F9K9CWExMCYK6Qc54yg6lCXAXE+fRg4SihILCXPQNBeQi1Ksw0iEDUemP0HRgTILWDtVmLn72c5ZPUdQFhbu3cPBzIyA2jkLLpH6/ICTVxcvDOgcx3Jz2X481eceyqmqTNls3FoopWTE9J/54J9l7EpLY29GOkjpMyfRq0Ej7u6o+/+sSz7Mg3NmcjQnB6eq4lJVft+xnYfnzAxonQDVQsMMtwsgKV+IrkvfDny6+i26XdeZDr3aYPZjRF+Y869sV65hqazjxq28ikmQk5FLfO1YjDJiFpu5REvJkqjborbhZLDZaqL1xcaCeXO/XeA1pS9ASnA73F5P4pPG9Q+Gd+AyF+n0U1w11cbYgaw4Hl3T3wARdgeYG+sDWwCE6oqcUe8FcNzyoyhWnyAAeiss4SPRZxLCAZs+oBb9fqWs62zgnH0i8Ggax/NyibaHFBGa23IshTy3cRG2YPDKqKNIk5IlJfTrF0aW8Bjt77W1yYdZffhQ0QlfKQmzWBjRrgMJYeH0atiY+ELF5U9XrcBpIEO9cO8ejmRnUz28dPGt5y65lAdm/1bkMwv0yeOCp4q/Ji3lndvH6PIZmoaqaigmxecCWJgl0/7hiye/5863bip1DUbUbpLIkb2+iuWqW6Vmw+rUbFid6IQonLmuIuswmf2rj5ZGZGwE/e67iulj5njrDooisIfZGfiIsfz4sYPHDZ+QVI+qTyfnM+/7RfzwylRSDx2nYdt63PHWTTTv0sR4IUosCLOBAbwFXOvR0u4G68WI0P7e1k4RNgLpXELpMgwWvx6/QgmFuCngWoR0/asL1NmvQijGNwuViRJ+NzL0JvBsByUBYQ5e0f1s5Jx8Ivhm3Ro6jB1D9/Ff0u7zT3hn2RKvmmjdqChCDPLWYRYL93Xqwie9r8biR2XUaD8jEkLDaBAd43N/ZjOZuLap8dTpuuTDhrMIOW43uW4PQ1u1KRIEAPZmpBuGFavJRHIxNVOZP1AHsGz/PoZOnUy3r8fy2/atDG/XAatiQhECBejTuAlv9tC7ZDJTs3jntjG48lw481y4nZ78bhiJ2WIynCAuYOr7xgY5geCv5VMCGceyUBSFd/4aRbPOjbDYzNhCrFSrE89rs54pl/b/HW/eyL2jb6POebWIrhbFJYO7MmbVm37NZNp2b0lIuLH+UosL9QGnaR/O5IORYzmw/RB52Q42LtnKEz1eYtvKHcaLsPdAV3Yvjhs863U10aw3kMf6IzXdkF5Y20HU6/k58xDAguGvv1DA5r8NVggFYeuOEvGAXpw+DYJAAUIJR1jbVwWBMnDOPRFM27LJx4rx63WrsSgKD3bpSs8GjXh18QKvXAPoQ1cOj4exq1diVhRUTfURprOZTAxu0SrgdXxwZR8GT5mIS9XI87gJs1ioFx3D3eefsHXOcbmYsGE9v+/8j1y322++PsRs/L+xY2Itdh1PxVPsCcatajSIiQX0yebXlixk6pZNOD0e6kXHcDAr05saK5gstppMaJrEpphYsHcPO9OO0zyhGv/MXGPoBCYl9L6jBwMe7sstje83XJ+majjznNhCTl6HPi/LuEvJYjWTk5FLTLUoqiXFM3rJq6QdSceZ56J63QTdhP5IOmlHMqjVuIbhuXeu38OaeRuIiAmja//zWTFrLb9/NR9N0+h1y6X0uqU7Vw0P7Kmia7/zSWpWiz2b9nsL1/YwG136dqBB67p43B6+fWGyYXvtV8/+yJtznvM5phB2XVsnbWS+abvILwQXFm7LA/UQMnc8Ily30FRCeiPtV4B6EJRIcG9Fpj+Ibk1Jvg3jmKBf3KVnPzLnK91RzNIYETai1M4e6VyGzBmvdw/ZL0OE3lhpBvLnAudcIPhoxd8+/fd5Hg9frl3N/Z0vwGY2M2XQUJ6aN8crTWE1mXB4PEX2U6TEajJhNZlwqxoXJtXhIT9FXiOaxMWz+LY7mfnfNg5lZtK6Rg26163vnTvIc7u5dtIP7M/MxKmWbLnnz1Xs7o6dmLF9CznuE4b3IWYzw9t1JCLfxP6u334tIna3Oz2tyDEKQkjB605NxelSeXjOLObceCuapvlNZ5mtZmo2rFFimqjwVPDJ0Llve2Z+PtdHwM1kNvH1MxMIiQjhytsvo3H7+mz5+z8cuU4kks8eHs/K39dhsZnRVI1bXhzsTetIKXl3+BgWTF6G6tEwW0y8f9fnuqF8fnrnv9W7WDx1Oa/M+J+3LVdKydYVOziw/RD1WiTRuH2DIut5b+GL/Prx7/z5w2LMVjNXj+xFz1v0+kj60Qw8BtLXALvW7/H7+YWlOSQs1Ien3NshcxSQW+xdTnDMhvATXspCmMBcR//B1gWqLQPPJsAM5mZBN16R7u3I44Pz01oe8GxG5s2G2C8RVsPORrScryBrNN60VvZWZN4UiPv1pLwFqvDPORcIjuRkG27P87hxejyEWCzUiojku2uvx+nxsPVYCkOn/eRzqdOAdjUSual1O5rGxdEwwEnfwoRbrX6fIqZu2cTBrNKDAICRAKaUklqRkfwy5EbeXbaEvw/uJzYklDvbd2TAeXpHyM7jqaw6fLBMYnd7M9JJycmhU+/2aPd84fO61W6l+2BdsbL74K7Mn+BrmN6+Z+siMw471u5m4U/LEIpC90FdadC6rs8+BQx7ZgCLp/5Ddlo2Lodb7xCSEpfDzaIpfyOEyD+nxGKzIKXEkeNEUQSqR/MWfce/MInEBtW5sH8nlvy8goU/LS/kk6D/27sKBTFHjpN/F27m34WbadO9BTkZOTzZ6xX2bt6PEAJNkzQ9vyGvznwae74vsy3ExqDH+zHIwNc4Ms7/XW2N+iUXtYUQYGkOIgzpT8JZlHzXLIQJLIEN1FUEMuv1/EG0AlQgD5n5AiLet4lBatmQ9T5FO5WcoB5F5k7wDsOVaS3OJfowmnoIrB0Q4fchzPXKfLwzmXMuEDSLi2fdkWSf7SFmCzf+/BNxIaHc2rY9XZPqYDObcaoqJsW428KtqvRu7KegV07+3L3T7+RwYULMFno0ODHeP23LJt5ZvoTk7GwSwyN4rGu3Ij7KblVl8uaN/LxlE5lOZ5kNw6WUmBRBTLUo7vt4OB/f9yWaJtFUDYvVTN+RPTmvc2MAnhh/H2lHMlg7f4P3EaNZ58bc+tIQprw3g8i4CPZs2s/0T37XL9BCMO3937jhf9cy7NmBhuePqR7NFxve5bfP/mDNvA2YzCY2Lt3qTb9IKb0X+8L6QmqxqOnIcTLxjZ+5sH8n/vjmL5+WVCMcOU7WLdhIm+4t+OTBr9m1fk8RQ5stf//H2Ce+5eq7ehGVEElsDf8txVa7lWvuvYLpY/4okh6yhVq5+YXrS10LgDDXRZrrguc/imr6hyBCy1aMDxqu1cbbPTuR0okQxVJ17o2657BPYdwJzr+gjIFAy50KmS/hfcpwHEY6/4S4aQhzYAq4ZxNBDQRCiCuB0eiVrXFSyjeKvf4+UKB/EApUk1JWnDmuAU91u4Rbf51apPtGAE7Vw9pkvRd86f69PNzlQka070jLatUNPYztJhO9GjYO2jqrhYX7tcQsINRs4aK6dflt+1bGrVlFhM3GjG1bcBTk97OzeGb+XACubdYcTUqGT/+Z1YcPBhRkSiIpKorYEL04fdXtl9P20pYsnLwct9PNBdd0pFHbE79MJpOJt+Y+T9qRdA5sP0z1egmMe+p7Hr/8RVSPismkFPMV0P2CJ7z+M5cMvpDajRMN1xAZG8HQpwcw9OkBvDt8TJHhsZMh9bCeDlP9qMQWxxpiJSouEiklf01c6pPacTvdzBjzB/O+W4zH5aHtZS15ZsKDhEUVzb3n5ThwO9wMf30YZquZXz6cjcvpJjo+kjvfvZnzr2wX8GcQ0Z8ij9+UbwKfXysIHazLMZ9OKBGgGdV3LPl/ir8/BmPfBAFK2Yr+Unog63WKdlBpuuR29ofnZNtp0AKB0AVKPgF6AgeAlUKI6fk+xQBIKR8u9P77gcC/+WWkU63afH/t9byzbAlbU1Owm82k5uYWGczK83h4d/lSBrVoRaTNxjMXdfcWkCW6h29ieESR6d2K5sbWbZmxfWuRgKUIQUJoGJfVa4AqNRLDw/l8zSqvkJ3At7vc4fHw7vIl9G96Hkv27WVN8qESg4BAdy4TgNlkwuF2GyYdMhwONCm9WkmJ9asz5Mn+JX6mmOrRxFSPZv6ExSyfvsp7B+xvNZqqsXz6Kq5/1Lg1szBh0WGltqwaoZgU2l6qyz23urg5K39fV+o+UpPMGf8XUz/4zW9+H/D6Faybv4FXh47mtZlPA3qn1du3j2HVHP1cifWr8dhX93DLi4NxZDsIjQwtgyyIlp9ycaJ/CxRQDWQZTjWhN0H2GIoOw9kgZKBxfcLcRJ+B8Oyi6FS0HRF2S9nWoCaDNBqu08BVOfI1pxsBBQIhxGrgK2CClDKttPfn0wnYIaXclX+MiUA/YLOf998AvBDgsctF+8SaTBgwCIAhUyeRnO1bN7CaFDYcTebCpLoMbdWGZvEJjF+/hqM5OfRs0IjBLVoRZi1boTMQWlWrzsuX9uCFBX+iCIGqadSMiOTLa66lTlQ0blXl/C8+LRIo/D07HMrKotFH72H2M4ks0AviqpR0qZ3ECxdfSkJYOMdycxgydZLXma0wOW43R7KzSYwwzkE785ws/WUlacnpNO/alGadGnkvbrO/nB9QCkZRREDDaQBX3HYpv332R6mOZT5IyfWPXQPAvq0H/b7NFmpDMQk0VUNqkh1rSjBML4bb6WHd/I2kHk4jtkY0T/Z6mT0b93kL3fu3HeLJK17hy43vGfoiB/QxUgfnawYVoIFzOjK3LSLM2BvhVCDC7kCq+yHvVxA2kC6wdUdEPmX8fiEgZhwy7U7w7ANh0p3GIp7yW1wuFSUavz4MQZyQPp0J9IlgMHAb+l39KuBr4A9ZcoK5FlBYAOQA0NnojUKIukB9YH6A66kwEkJDDe+kPZokxn5CZ719Yk3aJ9as1LUNOK8FfRo3YePRo0TYbDSJjfNeTLccS0H10y1khAS/3gUSePLCi7m1bVEd/0ibjWh7iGEg0KQk3E8g3L1xH49d+gJulwe304PZYqJN9xa8+PMTJ4TfAuSiAYZfGR/qt6zD3R/cypgHv8FsNeFxqwGlikwWE4umLKd+yzqk+PFADo0M4daXBlO3RR2eu/p1wwGxgqcRIYwlecxWM+lHMzh2IJUD2w/5dDt5XB6mfzqHEa/rF+2czFzmfP0XGxZvIalpTfqO7OV3/kFzbwGZavwBsz+FcgQCKSW41+laPpbm5RZwE8KEiHoVGf6wrh1kStLNakrax5SIiJ+B9OwALR3MzfXhtrKuQQlH2q/Kt8wsfEMSgggbWer++myGPKvaVwPqFZNS7pBSPgM0ASagPx3sFUK8KISIrYB1DAGmSCkNrxBCiDuFEKuEEKtSUnynScvDLW3aYy/Wh28SgloREZxXinpoaTg9HlYcPMC65MMl5vpLwm620LFmLZrGxRdJF4RZLOXO8xfG3/ruaNfBZ07BajJxab363hbUwkgpeWngO2SmZpOX5cDj8ujF1b828tvnulpqr5u7eztqimMLtWEPtWG1W3jg0zv8DmoZ0eeOnkw6NJbHv76X/vdd6XeQqzBup4c/f1gMQMdebbCG+AY3j8vDpTd0w2ozY7EZ3zvF1ojm0iEXct4FTYq4ohUgpSSpaU2S96QUcT0rfI79Ww8BcDw5jeHNH+KrZ35kybR/mPLuDIa3eIhN859HS+mJduxaZN7PJwr9nv/8f0BZdrtLqaUhU/sh025DZr6APHYdWtpdSFm2WkxhhCkeYT2/1CBQZB9zI4S1Y7mCgPdYUS+DvSdg1SUzRJhuZWn3P0wn1UNoqcOQRzshj3ZGOzYQ6dlV7rWcDgRcIxBCtEZ/KugNTAV+ALqh38UbiYYfBAqP+NXO32bEEOBeP68hpRwLjAVdhjrQNQdCx5q1ePqi7ry2eAFmRcGjaSRFRvFlv+vKJd88d+cOHp07G9AvAmFWK+OuvpaW1cqmc1Mcm8nst+PHoiioUmISIiAHM5vJ5FeEbmDzluw4fpxv/12L1WTCpWp0SKzJWz2MfQQO7Uwm5YDv3akz18V3L/7E/AlLqNsiicYd6vPf2j04sh1Y7RYUReHRr+4hJz0HIQQXXNORmOon3zcQHh1Gt2s706JrU375aHZA+7idHqa+/xvV6iYQERtGZorm7QKyhVpp36M1rw0bjSPb6W0tLYwQcF6XJjw94SFSDqRyV9vHyM3M8xaf7aE2Rrw+FKvdSsO29fAYFKVtIVZadtMnjb9+9kfSj2Z693e7PLhdHt4duY5xi3QZE5kxClwbEFHPg6WD/w9nKvtTrMx4Gjw7KFLFcS5DZn+OiDAeEjxTEMKOiH4PqWXoBXZTbb8S3gBSuvT0m5aCtzPLswGZOgQS5p/x8wwB+RHk1wjSgS+BqVKe6OUSQkyTUl5nsI8Z2A5cjh4AVgJDpZSbir2vGfA7UL+UVBMQPD+CXLebjUePEG230yTu5LsRth5L4c0li1idfIhom53DWZk+WchIq5V/RtyNzc8k8MmwPvkww37+iVy3b5qiaVw8s4fdwiNzZjFj+1ZDbaTC2Ewmltx2p18THIC0vDy2px4jMSKCOlH+L9D7tx3kno5PllgDMJkVLDYLt782jOPJacQkRHHp0G7EVPMvrV0Wprw3g2+en4jb4UbTJEIRRcxgQL+ImyxmvThuMxMWFcYFV3dg7fyNRMaGgxDsWr/H+3mEIkBSJAjbQq28Ne8FrzZQyoFUfnx9GmvmbSC+ViyDn+hXpAPo5cHv8c9vq731DJNZITIugq+2jCY8OoyB1YeTkZLp83nMVo0JqzcTFVfwzbIiEuYhTDXQjl2bPxhW5NNB9NgTcs0ngZQO5JH2GJbylWoo1XznQs5mpGMOMuOpYjMQAKGIyKcRoYNOybpOhorwI7i+oOhb6KD1pZS7jYIAgJTSI4S4D5iD3j76lZRykxDiJWCVlHJ6/luHABMDCQLBJNRioVOt2mXad1facfpP/B5X/t13tsv40Tnb7eavPbu5slH5204bxcYZpnMsikK3Ovog1t0dOzPrv20+gnGgO5gJ9JTQWz2uLDEIAMSEhNC5dukaLrWb1CQyLqLEQKB6NFSPkz++mc+nq98u9ZhlZeAjV5PYsAY/vj4NR46TTr3bMXf8Apx5LjwuFU1V0VTp7fxxuzw4c10c3nWEr7eMZvvqnTxyyQtF+vtlfkAxm02YbRbMFhP3fzKiiEBcQu04HvjkDr/revqHB/np3RnM+GwOjhwnXfp04LZXbyA8Wm8vtYfaMEzoSLDYCv0/F1ZdpsFUAxH7HTLtHnCvzH/RAhHPlCkI6OcqIe3o09N/ZiK1THDMQHoO6FpMtsvQ718NUA/4+dy5SHVfQLqupzOBBoIpQHFH8ClACc+kIKWcBcwqtu35Yj+PCnANFcahrEy+WruadUeSaRIbx4j2Hb3aO2Vh1II/vUGgJDQp2Xg0uUICQZjVykOduzL6n2XeWoFZUYiw2bizvW6Ok+fRh7MKowjBRXXqcln9hlgUhR4NGpUaBE4GIQTPTHyYp654Gc2jldjFs3PdXn2OwCCnXhH88e0CRt/9BZpHRfVoJO8+yiWDLqBz7/akHkpj/AuTyMkoWgjXVI21f27E5XCxbv5GHxMa0INB/4evoveIHtRsWOOk128ymxjyZH+/7bZ9R/bi+5d/KpKGMps12l2cTWh44e+ZBoqeahRKOCLuW6R2HLQ0MNUpl0WjUMKR5obg2VZ89WAru/Xp6YJ0b9bnLqQHyEPmhYKpDsT+aKy1ZG6eP9hW7PsgQhGWlpWy5mBSYiDIT9u0AKKEEIXv/COB0itxpwlSSlYeOsjRnGyi7XbumTUDp8eDW9NYn3yYX7dtYXz/gXSsWatMx1916FDA7y1emC4Pd3Y4nwYxMYxds4qUnBwurluPezp2JiFM/yJ/tmoF7mIdOqqULD+wnzd7XOl9X0XTvEsTvt81hvkTlnDsYCq/jpmDw8DK0mw1G5rHBIoj18m87xaxfsFGqtdLoO9dvahRT2//y0rLZvTIL3A5TlxMnblOFv20nMuHXczFAy/g2xcn+zmyRNMkkXERWKxm1GIdPla7hep1qpHUtGzfl9K4/tGr2b56Z76gnwmpqSTWyeSxD/YVepcJlEQfeQihxOoy1QEitex8g3gT2Lp6ZasBRNTr+RdLN7owXQgoYYiIR8v1+U4HZPoj+T7HBRtywbMLmTMWEfGw7w7WLmBqlB8YC54MLKDUAFvZZM1PJ0q7KjUF+gLRQOGpnizA/7PvacSF1AToAAAgAElEQVThrCyG/TyZozk5CPRhscIpFVVK8jwenpk/lzk33lq2kwT4XGgSgjY1jKdky0qPBo3o0aBoS19ydhZ70tPZfvyY4WyBBAb+9CNhVitDWrRiaKs2mA06WcpDZFwE/e/Xp1oX/rScZINAEBJhL3NBPistm3vPf4q0I+k4cpyYrSZ+/eh3Xp7xFG0vbcmqOesxWZSic0vo8hALJi6h/eWtqNciiY1LtvocO7paFPZQGxcN6MyYh7/2eV0xKXQfErjA4MliMpt4fvKj7N92kB1r91C9XgLN2h6EzKf1C5ZUwdISET26XA0NWt5MyPif7m2gb4HoDxG2iwH0O934ObovsrpDN3sJGXDGF0alekRP9fjggrzpYBAIhBC64mvOJ5D3i/7/wN4HEfFguZ68ThdKDARSyl+BX4UQF0gpl1fSmiqU+2bPYH9GRqkF051px3F43AH5BRenY2Itluwv3ZRGk5J2NYI3i+BSVR6fO5s/du7AajL5rVW4VJX9mXoW+s2li1i8bw9fXH1t0NZl1EUEkHksq8ypoYlv/ELKgVRvft/jUvG4VN685SMm7P3MUBob9F9oU/6QWsp+47mBzOPZqB6VsKgwnpnwEC8OfMerV2S2mHjsq3uITqjYwrYRSU1rFXrqaIK0LQF1ry4XbSpf95lUD0LGU4CzyBCNTLsfqi1E5DuBCVO1M75DyJcSvm/C/2tCCUVEPA4RjwdhTaeWEm8DhRBP5P/nUCHEh8X/VML6ysWR7Gw2pxwtNQiAnl/3ZzhTGqO6X4bNVPq+ihAs2BO8vuP3li9l7q6d+daZroDsxPM8Hpbt38e/BkJ8FYXZz4VeMSllTg0tnvq3obxD1vFsDu86Qscr2qKpvv8C1hArPW7UC6iZqcZKtJpHw5HrRPWofPrIeNRCshWapjH28e9wGVhWVjSappGVlu1tIxXChDA38AYBKR1Ix19Ixx9eA5pAkXm/gZF4iAAcc8u58tMbYYrXLTd9Ln92CDEWOTzbKe23cEv+36uA1QZ/TmvyPO6AsjY2k4lrmzX3egGcLA1iYvl58DC6161PhNXq1yhGlZJ9GWUf8CmNCRvXF5GcCBRVSlYfDrzOcdL4SV+UI6uBzc9AmqZJbKE2QiNCeG7Sw9hCrNjD9AE1q93CgIf70KJrU0BXQDUirlYMoREhrJi9luPJaWieQoFAlWQdz2bpz8a+vhXF3O8WMqTWnQxKvIP+sbfy1bMTikxkS+cy5NELkBmPIjOeQh69AC13eglHLIbMwbA1VKr5JjdnNyL6A13QToQBFhAhYGmLCLv9VC/tlFBaamhG/t/jK2c5FUudqGgfd67CRFituFSNrklJPH9x+TohmsUn8FU/vZ5++6/TWLDXWItGKc/VrxSMZgoCwaIoVA9S4RjwKwSnqbpsdVlSQ/3uvZLPHh1fpLVTMSk0aluPuERd9rlznw5M2P8ZS39egSPHyflXteXvGau5PnEEWalZJDaogdVuwe3yeOcLbKFW7vtwOEII9m4+YChTkZftYM+m/T7bK4q/f1vN6LvHFvFFmPbBLKQqGf76MKSWhUy/G2Qx/+HMZ5DWtogC45kSELbuuuOXj4exAraLKuaDnMYIc13d2Mc5H9TDetHd0r5cNZczmdK6hmbgX8sMKeU1Fb6iCuRYbo6hhDRA9bAw3ul1FXUio0mKqth8b4uEaizcu9vnH86iKNSNDp7Kdutq1Q29FkpCF5wzc3n9hqW+t6y0uLAp6+Zv9NneoE3dMreO9r7jcjYt38aiycv0YwiIqRbFs5MeKfK+yNgIr63k18/+yNQPZnqDx4Hth7DaLbS9tCXJu49Qq3Eiw54dSMt8L+E6zWphDbH62GKGhNupe15wOoYAvh01yWeC2Znr5JePZ3Pzi4Mwq/NAGl2wVGTedETEfaWfxNIO7FeA84/8JwAB2CF0CMLcoLS9y4XUMpF5U/UZCHMTRMgghOnkjZ3KixBWsBtPyJ9rlNY19E6lrCJIHMjM9BvF0hwOLkzy74BVHga1aMW4tat8nL9CLBYuqxe8X7IXL+3BDVMn4fJ48EiJWQjMJhOtEqqzNTWFmJAQrmjYmN+2bSXd6UACtSIiGdP7mgqZdvbHPe/fyoPdnsPlcKG6VRSTomsJfTKizMdUFIUnv7mPG58dwLYVO4irFUuri84z1PEBvdW0cBAowOVwY7Ga+XbHJz77dO7TnuiEKFx5bm+e3mRWCIsOo9uALmVee2kk7zXW09JUjey0HKLDczDM76OCDKxWIISAqDfB1QeZNwOECWG/FmEL3ucCXa9Hpg4ALQe9pWseMmccxE5EWILn71FFyZSWGlpYWQsJBpEGomgFBFLcLStJUVF8cEUfHps7GyEEUkpCLVbGXXNtUC+4rapVZ+YNN/PFmpVsTjlKi2rVGdGuo89TyFMXXszu9DTMilKiXERFUb9VXcauf4cp781g28qdNGhdh+sfvYbaTcrfQVWrUSK1GpXeknvs4HEUP05zuzfsM9xuMpsYvexVPr7/S5b9uhKpSTr3bc/9Hw3Hagtey2DDNvUMn6CsIVYi4yNAXgxZb/ruKEIQ9sB72oUQYLsEYSvj9HEZkJmv6wNv3kDmBOlCZj6LiJtUaeuooiilpYYmSykHCSE2UDRFJAAppaw8s9MyUC86hjCLhRyD3PkVhdzFPJrGHzv/48/du4gPCWVwy1blmjQGuKJRY7rXq8/a5MPYTCba1EgMan2ggLrR0bxymX8FRdAvAOX9fCdLjXrVuO/D4ZV6zsLE1YzxW6uo28JXWiQvOw+z1UxMtSiem/SIV1uoMnLIt786lMcvH1UkPWQLtXHbKzdgMpmAOsjQWyD3O/S7aqkraFq7g6WMGv2VhWsRvk8zEtzrkdJVovBbFcGjRNE5IUSilPJwvl+AD1LK0pvnK5iTFZ2buX0bj86djSs/TaMIQbTNxqxht1AtLByXqjJs2mS2HEsh1+32plPe6nEFfZs0C9bHqOIUMPaJ75g+Zo6PN3BhwbhNy7bx/p2fcWD7IRRF4ZLBXXngkxGEhIf4O2xQ2Lx8G+Oe+oGd6/cQXyuWm18YxCWDig6xSdcKPdcu3Qj71frdvZHL12mEduR8P9LYFkT19f61fqooNyWJzgWkPpp/kBrormMSWCmlDF7jeQmURX10/ZFkxq1ZxYHMDC5MqsOtbTsQn6+v8+OG9byyeIGPtn+oxcKqO+4u04BZFSdPekoGnz78jd6WKQQXD+zCyHdvITKuZPMPj9vDkb0pRMVHekXb/KFpGhPf+Jkp784gKy2HOs1rc+8Ht9G+h/5ge+C/w9zd/vEignkWm4WW3Zrx1tzn/R22ipNAy3wDcn+gqCGMBexXoES/d6qWdU5Q7kAghBgBPI/uPSCAS4CXpJRfVeRCA6GiZaiHTZvM8gO+rYDhViuf9+nHBUmlt+JVUT7cLje3n/cQKftTvUVZs8VEjfrVGLfxfb+dRTO/mMsXT3yPmi8q1+26zjzyxUi/pjeFkVL6pHk+um8cM8fO8zGxt4VY+Wzt2xVS0zjXkdKBTLsLXOtODJKY6iFixyOU4E9rn8tUhAz140A7KXU/PCFEHLAM3ansjCbUYpyTlFIS4sespSxIKZm+fSvfrl9LjttN70ZNuL1dB792j+cSy35dRUZKZpELsMetkno4jX9mraHrNef77LNi9lo+ffibInn0pT//g5SSZyY8VOo5jXL9ezbt9wkCoIvjHd51pCoQVABC2BGx45HuzbqAm6k+WNqcs/37pwuBBoJUdKG5ArLyt53xDG3VmmX79+mSzYWIsNpoXT1wG73SGLVwPlM2b/SmoPampzFj+1Zm3HDjGZ9+klKyYvZaZo/7E6fDxeVDL+LSIReWOiOgqipH9x5j+6qd5BmI0jlzXezddMAwEEx4bZpPr73L4WbpzyvISssmIubkhdGaX9CELX9v9+oKFeB2uqnXsurJsCIRluZgaX6ql1FFPqV1DRVM5+wA/hFC/IpeI+gH/BvktVUK3evW56bWbRm/fg0mRUFBYDGZ+LLfdRXW5XMwM5PJmzYUmStwqiqHsrL4ddtWBrdoVSHnOVV8/th4Zo6d582tb1y8hXnfL+K1WU/77etfPO0fRt89FkeOE4/L4zV/L4wt1ErtpsZ34cf8CNmZLCYyUjLLFAj639+b3z6bi8etFpk0vmjgBSTUrvyBpyqqqCxKeyIoqNTtzP9TwK/BWU5wyHI6mfXfNpJzsmlXoybd6tT1XuSFEDzV7WJuatOWFQcOEGW3c1GdulgqcM5gTfIhzIriM2CW53GzcO/uMzoQHNqZzIxP/8DlOPFE5chxsmnZNlbNWU+nq9r57LNt1U7evPlDQ//fAkxmE5GxEVxwtbH3UYtuzUg5kOoTPBRFUL1eQpk+S1xiDB+veJ0vnvyetfM2EBIRQv/7ruT6x07rAfoqqig3pQ2UvVhZCwkWm1OOcsPUyaiaRq7HTajFQrO4eH64blCR4a5aEZFce15wHlUTQo27WcyKQq2IyKCcs7JY++cGhMFdvyPbwd+/rTIMBFPem4Erz3e2Q1EECD04d+nbgQfGjMBsMf6K3vzC9fw9YxWOHKc3GNhCbQx/fRgWa9lTbbUaJTJq6tknM1xFFSURUI1ACJEAPIHuVuZ1JpNSXlbKflcCo9EFwMdJKd8weM8gYBR6ymm9lHJooIsvDSkl98/+jSzXiVa1XLebzSkpfLl2Nfec37miTlUinWrVJtoe4mOKY1YUhrZqUylrCBbhMeEoJt8Umtli8tv6mbzrCEbdaiHhdl785QlaXdzcb0qpgFqNEhmz6k2+HfUTGxZvJqF2HDf87zq69C3RPbWKKqowINBi8Q/AJHS3spHALYCxIEo+QggT8AnQEzgArBRCTJdSbi70nsbA/4ALpZRpQohqJ/8R/HMwK5PD2Vk+2x2qh2lbN1VaIFCEYMJ1g7jrt1/Yk5GOSeh1iHd6XkX96JhKWYM/NE3jzWWLmbjxX1yqSrsaNXm755XUigzsSaVzn/aGF22T2cQVtxorura5tAU71+3BXcxPwO3y0KBNvVKDQAG1GiXyv+8fCOi9VVRRhX8CDQRxUsovhRAP5usPLRRCrCxln07ADinlLgAhxET0IvPmQu+5A/hESpkGIKU8enLLLxmBQNWM5yQCnKOrMJKiopg17Bb2pqeT63HTODauwu0hy8LAn34solj698H9XPrtlyy97Q4SwkovuNpDbbz++7M8d/UbuJ1uELo42uNf30tiA2MXrQEP9WX2l/PR0nNQ87X+7WE2rn2gd5mKvFVUUUX5CDQQFCR0Dwsh+gCHgNLEamoBhSe1DgDFb8GbAAghlqKnj0ZJKX8PcE2lUjMiAn8q2pUhtmZEMGWoT5atKSmGstUeTWPUwvl80juwIul5nRsz6dBYNi/fjtvppsWFTbGF+B/qiqkezWdr3ua7l35i1Zx1RMVHMPCRa7hsaLcyf5Yqqqii7AQaCF4RQkQBjwIfAZGAr8Nz2c7fGOgO1AYWCSFaSSnTC79JCHEncCdAnTqB93MfzMr0O6iyLyPdcPu5xG//+Rq3F/D3ASNzb/+YzCZaXXRewO9PqB3HI2NHntQ5qqiiiuAQUCCQUv6W/58ZQKBWXgeBpEI/187fVpgDwD9SSjewWwixHT0wFEk7SSnHAmNBl5gI8PwIhN9ZgMpQAj3dKempKDak7CJrUkp+/nAWk9+ZTlZqFk06NmTke7fStGPJ5jcZxzJZMWstCL32EBlbss5QFacHUkrQjoCwIZRTW/OqomwElKQWQjQRQvwphNiY/3NrIcSzpey2EmgshKgvdG3ZIUBxU9Vf0J8GEELEo6eKKszdvVZkpGF7pt1sZuB5LSrqNGcsA89r4bdO8XCXC8t83HFPfc9Xz/xI6sHjuBxuNi7ZymPdXyjR3vGPbxcwtM5IPrpvHB/dO46hSSP5a9LSMq/hZJBS4nK4DDuZqigZ6VqFPNYDmdITebQbWuqNSLVCS31VVAKBViu/QO/ucQNIKf9Fv7D7RUrpAe4D5gBbgMlSyk1CiJeEEAXJ5zlAqhBiM/AX8HiBnlFF8dFVfYmy2Qi1WFCEINRioXX1Gtzatn1FnuaMRFEUJg4Y7GPSc3vb9vRu3KRMx8zNyuOXj343cAJz8cMrUwz3ObovhdEjx+JyuMnLdpCX7cCZ5+Kd28aQejitTOsIlD8nLOaGpLu4OvxGrou/jUlv/1oVEAJEqoeQacNB3Y+uJuoG92rk8Zuq/g3PMAKtEYRKKVcUy7d7/L25ACnlLGBWsW3PF/pvCTyS/ycoNItPYOntdzF7x3aSs7NpXyORLrWTqkSu8mmfWJMt9z7Esv37SMnJpmeDRoSWQwgvefdRzFYTrmLSQZom+W+N8cPewsnLvZIORRCweOrf9L/vqjKvpySW/bqS9+/8zDvhnJ2Ww/cv/QRSMviJ/kE559mEzJ0IsvhlQNXTRO5VYPXViKri9CTQQHBMCNGQ/BYcIcRA4HDQVlXBhFosDKhKBZVI1wqS205IivMRbQNdcbjOeb5OYAAupxuPgeqn6lFxO3wnkCuKr5/70UfmwpHj5MfXf2bgo1fnu4FV4Rd1LycaCgsjQK1cuxIpXeD4A+n6B0y1ECHXIUwVOpZ0VhNoauhe4HOgmRDiIPAQcHfQVlXFGUtETDg9b7oYW2jRpwpriJVhzwww3Kdz7/aGgx2aR6NTn+Cl8JL3GM9EOnOdOAzUUKsohqUTYNBUID1gaVlpy5BaNjL1OmTGs5A3CbI/Rh7rhXRVnG/J2U5AgUBKuUtK2QNIAJpJKbtJKfcEdWVVBIRbVflz904mb9rA7vTg5tMD5f5PRtDv3iuxh9kQiqB2k0Re/PkJmp7fyPD9qYfTUAwkq01mhdRDwftMdZoZK5uGRYUSEnHiApednsP8CYuZ9/0iMlN9J9XPVURIf1BigMLaTnaw90CY61faOmTOV+DZC+Tmb3GBzEWmP1JVqwiQQLWGXgPeKujvF0LEAI9KKUvrHKoiiOw4nsoNUyfj9HhQpUSTGv2bNue1y3ue0hqI2WLmjjdvYvjrw/C4Vay2kkXgtq3Yger2TQ1pmmT7yh20vzw46qzDX7+R5695A2deMZP4V2/wylwsmrKcN2/5GJNJ/1n1qDz42Z30url7UNZ0JiGUMIifhsz+BBxzQdghdBgi9MbKXYhjJkWtL/PRMvT0lble5a7nDCTQ1NBVhYe88iUhegdnSVUEgpSSO2f8wvG8XLLdLvI8bpyqyoztW5m+3f+gWGWiKEqpQQD0uoI9zHcS2RZiJSEpPhhLA6D95a148ZcnaNimHla7hZqNavDI2Lvoc0dPANKOpPPmLR/jynN5u5lcDjejR47lyN4SpbbOGYQSixL5HEq1RSgJf6CE3YIuM1aZi/DX3KCV8FoVhQk0EJiEEN7fVCFECFC6MWwVQWPH8eMcycnxEdDI9bj5YcP6U7KmsnLJoK6YrWYKP8QIIbDYLXS7rlNQz92hZxs+W/s2M3MnMH77R1w29CLva4un/oPRc5WmSRZOXhbUdVVxEtj83JMqsQhTlb1oIAQaCH4A/hRCDBdCDAfmAuODt6wqSsOpevxORzs8weu0CQahESG8t/Al6raog8VmwWKz0KB1Xd5f9HKJmkXBxuVwoWmaz3bNo+J0+DfVAUhPyWDF7LXsWLu7Kk8dbNTDYBSytSx00YIqSiNQiYk3hRD/Apfnb3pZSjkneMuqojSaxSdgMSk+3Xt2s5lrmgSu+XO6UL9lHb74911SD6chBMTWOPVSBZ37tOfr5yb6bLfYLVzQt6PhPlJKvnpmAtM+mInFZkH1qNSoX5035jxLXOKp/0xnJe6lGIpLCi2/RmDcpFDFCQLWQZZSzpZSPpb/pyoInGLMisL7vXoTYjZjUfScbKjFQqPYOG5sfeaa3cQlxpwWQQAgqWktBjzUB1uo3v0khMAeauOq4ZfTqJ1xV8ziqX/zy0ezcTnc5GTk4shxsm/LAV4c8HYlr/4cQvHjJy09IE6P79LpTqBdQ9cBbwLV0J/BBPpg8Jnts3iGc0m9+sy58VYmb9rIkZxsLqpTlysaNq5Qv+WKYvvqnYx/YTK7/91LUrOa3PTCIFpe2OxUL6tUbn91KBdccz5//rAITZNcNuRCWpSw7qkfzMSRU7SDRVM1dq7bw9F9KVSrUzY/5bIgtRxk3m/g2QLmpoiQqxHK2ef3IMKGI9OfAPIKbbWAtTPC5CdIVFGEQCeL3wKullJuCeZiqjh5akdG8cgFZReIqww2Lt3KU1e8givPiZSQciCVTUu38cLUxzj/Sl9P49ON8zo35rzOjQN6b3ZatuF2k8VEdnou1SpmgLtUpHoYmToAtBz0C2QIMns0xE1BmI0nvM9UhP0KZPhuyB4DwgzSDZa2iOj3TvXSzhgCDQRHqoJAUaSUrEk+xJ70dJrExdOqmrEbV0Wfc+n+fUzdshGPJunXtBmX1W942ktqf/boeB8ROmeei08e/Jpvtp3+geBk6NrvfA7vPOJjw2kym6jbvPIuwDLzJdCOAwXF7jyQTmTmKETsuEpbR2WhhI9Eht4Inv9ASTjrgl2wCTQQrBJCTEKXjfb+RksppwVlVac5mU4Hw6b95J3klVLSqnoNvr7mOkIspffNl5VXFy/gx40byMvvCvprzy4uq9eA0Vf2Oa1F9Hat32O4/dCOw6geFZPBVPGZyvWPXcP8CUtIT8nEledCUfQ22Ic+u6tyP6dzESeCQAEauJYipTytvy9lRSjhYD27biwqi0ADQST6/HavQtskcE4Gguf/+pPtqcdwF2otXJ98mHeWL+G5iwP17Tk5dqUd54cN/+JUT9xp5rrd/Ll7F6sOH+T8mqfvHVBkfCSpB4/7bA+JCEExnXrf5ookMjaCsevfYebYeayas45qdeLp/0BvGrWtPMkFHRPGgnBnT9AtCSldyNzJ4JgBwo4IvQFsV5yVAbAiCLR99LZgL+RMQZOS2Tu2FwkCAE5VZeqWTUELBIv27sGoRS7P4+av3btO60Aw5Mn+jHvqhyLpIVuojese6ntW/mKGRYUx6PF+DHq836lbREgfyJtO0WBgAfvZfzGU0oM8fiO4t1FQQJaudRDyNyJq1Cld2+lKoF1DdmA40AKwF2yXUt4epHWdtmhSovoZEHKpvno5FUWY1YpJUaDYOSyKQrj19B7y7nfvlWQcy+Snd2agKAJN1eh7Zw9ufM5YjbSs5GTkMPHNX1j403Jsdit97+5F37t6npNy0iLif0j3Zr2PXqogTGCqjYh8vvSdz3Sc88CznaJdRHmQNxUZdhvCXLdchy8YEDybAmqgqaHvgK3AFcBLwDB017FzDrOi0L5GTVYfPljk/lxBcEndekE77xUNGzFqwXyf7SZFoV/T03uATAjBLaMGM+TJ/qQcOE5czRhCwuyl73gSuBwu7uvyNEf2pOB26nfBXzzxPRsXb+GZHx+u0HOdCQglEuJ+AdcKvYBqbqi3U4qzKxVnhHQuAZlr8IoCrpVQxkAgtePIjFF6oEEibRcjIl9EmGqUZ7mnBYF+KxpJKZ8DcqSU44E+QOfgLev05rXLexJhs2E363E0xGwmJsTOs0FKCwFE2ux83rcf4Var90+I2cw7Pa+kVuSZMc5hC7FRu3FihQcBgL8mLuXYgVRvEADdV2D59FXs23ow4OO4XW7mfb+Ilwa+w+h7xrLTT6H7TEAIgbB1RoTdiLBdcE4EASB/wMygaUMo+bLZJ4+UKjJ1SH4Q8AAqOBciUwci5ZnvXRHoE0HBb1e6EKIlkIw+XHZO0ig2jvk3385PmzayNfUYratXZ8B5LYm0BTdF061OXVaOuJvlB/ajahpdaicRVg5bybOJdX9t9BnkAhCKYMvf26nTrFapx3A53Tx6yfPs2bQfR44TxaQwd/xC7vt4OFfedlkwll1FEBAhA5E5X+NbLLeC7SKjXUrHuQi0FIo69Gogs8HxO4Sc2damgQaCsfkeBM8C04Fw4LnSdhJCXAmMRm9VGCelfKPY67cCbwMFt2wfSynPiCbn2JBQ7uoYXGVMI2xmM93rVXYHyulPjfrVsNjMPjaZQhHE14oN6Bhzxy9g98b93qK2pmo481x8fP9XXDKoa1CeZKqoeIQ5CaJHIzMeQ2+w0EBEI2I+R5RVllrdBdLA80DmIt3/IQyM2s4kSgwEQojCpvIFnUOf5P8dVsq+pvz39gQOACuFENOllJuLvXWSlPK+wJd8+uBWVTKdTqLtdr2QW8Upo/eIHkx5d0aRQKAogojYcNpeFpht4sKflvsMvoHulLZ52TY69DxzNZzONYT9UrD9De6NIGxgPq98xV1zI/04spgftwhFWJqWb7GnAaU9EUTk/90UOB/9aQDgamBFKft2AnZIKXcBCCEmAv2A4oHgjENKyUcr/uaLNStxaxp2k5kHu3TltrbB89etomQSasfx6syneeOmD8lMzUJTJQ1a1+G5yY8G3DUUHm18byOlLGJdWcWZgRCWihsws3YDpYbeheVND5lARIH9ioo5xymkxEAgpXwRQAixCGgvpczK/3kUMLOUY9cC9hf6+QDGBeYBQoiLge3Aw1LK/cXfIIS4E7gToE6dShJrKYHPV6/k89UryPPoXwiXqvLOssVEWK0MbF55pt1G7E1PZ9zaVWxKOUqLhGqMaNeRutHRp3RNlUXri5vzw55PSd59FIvdQnzNwFJCBfQd2YuVs9fiKPZUEB4VRrNOVVLG5zJCmCDuR2Tma3pNAA1slyEin6WQZ9cZS6D5jOpAYScOV/628jIDqCelbE0JZjdSyrFSyo5Syo4JCZWn3uhnLXxWKAgUkOfx8OGKv0/RqnQ2Hj1Cnx+/ZdLGf1mXfJhJG/+lz4/fsvHokVO6rspECEFig+onHQRAt64c/GQ/LHYLoREhhEaEEFM9mtdmP+P1MK7i3EUo0SjRb6HU+BelxkaUmKyH6lIAABJdSURBVA8RprOjZybQYvG3wAohxM/5P/cHvilln4NAUqGfa3OiKAyAlDK10I/j0FVOT2vcmkaW06BoBBzNMVaerCxeWPAnue4TnRIeKfG43Yxa8CdTBg09hSurHHIyc/np3RksnLQMW4iVq+/uxVUjLj+pi/iNz11Pnzt78u+iLUTEhNGme4tyawTl5TiY+t4M5v+4FLPFRJ87e9D3rl5nlcZSFWc2gUpMvCqEmA0U9F7dJqVcW8puK4HGQoj66AFgCFDkaiSESJRSHs7/8RpO0yE1l6rywd/L+GHDOnLcbsyK4iMxAXpb6alk/ZFkw+3r/Gw/m3A5XDxwwdMc3n0Ut0MPhp8+Mp5/F2/hf989cFLHioyPoF7LJMKjw8p9sfa4PTx80XPs33oQV/66vnjyB9bO38ioqY+X69hVVFFRBPpEgJRyDbDmJN7vEULcB8xBbx/9Skq5SQjxErBKSjkdeEAIcQ169eU4cOvJLL6yeHzu78zdtQNHfjpIM5CYsJvNPN3tkspeWhFCLRayXb5eumFBVEQtTF6OA03VCIsMrZTzFWbh5OUc3XfMGwRAHyhbMu0f9j97kKSmpc8RACz5+R/ev+tzXA43qkelWafGPDf5EWKqRZVpXUt/WcmhHcneIFCwrlVz1rFj3e5TIEZXRRW+BDXxKaWcJaVsIqVsKKV8NX/b8/lBACnl/6SULaSUbaSUl0optwZzPWUhOTuLP3b+5w0CBShCEGsPIdJmo0NiTb7pN4CuSae2kH1Dy9beaecC7GYzw1q1Dep5Uw+n8b8rX+Ha2FsZEH8793R8gt0b9gb1nMVZM3+D4UCZogg2L98e0DF2rNutdx0dy8KR7cDtcLN5+TaevurVMq/r30WbyMs2mDyVsCXAdVVRRbAJ+IngXGVPejpWkxlnMbE3TUrqREUxbfCwU7QyXx69oBuHs7KYu2sHVpMJl6rSs0FDHurSNWjnVFWVRy5+jiN7U1A9errsvzW7efiS5/l2x8dExkaUcoSKoXrdBCxWs48hjKIoxAVYOP7lw1lFnigAVLfK/m2H2PXvXhq0PnmNmoSkeKx2S5EnAtCNagJdVxVVBJuqVohSqBcdXcQDoACzEDRPOL06BqwmEx9e1Zf5Nw/nsz79mH/zcEZf2RdrENU31/65kbSjGd4gUIDH6eGP8QuCdt7i9B5xOSZL0c+pKIKw6FDaXR5YS2/ynhQ0zTftZ7aYSD3k66cQCL1uvsSnziCEwBZq4/yrgvukVkUVgVIVCEqhRngEVzRs5JNysZrNjGjf8RStqmQSIyK4IKkOiRHBvxs/vOsImse3cO7Mc3Fg22GDPYJDtaR4Xp7+FHE1Y7CH2bDaLTRoU493F7wY8EBZ+56tsdp9JQjcTjeNOzQo07pia8Tw2uxnSEiKxx5qwxpipV7LJN5b+CIWa+XUbqqoojTOidSQ0+Phrz27OZKTRbsaNWld/eRkY9/ueRXv/72UCRvWk+N206Z6DUZ1v5x60WVTMjybaNSuPkLxHd23h9k4r0tghu8VRdtLWzJh32cc2pGM1W6hWp2Tmzm5emQvpo+ZQ0ZKJp78FJM9zMY1915JdELZisUALS9sxg97xnBwRzIWq5nqdU/tLEwVVRRHSD8mK6crHTt2lKtWrQr4/bvSjjN4yiQcHjceTUMRgs61k/i8Tz8s56BhSUUjpeTxy19ky9/bvXlwk8VEfM1Yvtz8PraQM2vqMj0lg4lv/sLyX1cRERvGgIevpvvgrmeVCUkV5yZCiNVSSsM0xlkfCHr/MJ5tqceKmMiEmM081rUbt7XtUPELPAdxOVx8/8oU5nz9Fx6XyoXXduL2V28o1110FVVUUbGcs4HgUFYml3/7lU/HD0Dj2Djm3HhrBa+uiiqqqOL0pKRAcFYXiz2a5veR3mMwGfz/9u4/yKryvuP4+7PL7soiIhTGqFB3VaISlR9FA0karUqLP4KdmEZMmpBEy8SqI8ROitKxE1NnqjP1RyamDqYmnalKq8aUAadqiWmjbQQUURQRlE2BIGADQfm1LPvtH+esOSzrsqR7Oefe83nN3Ln3POe5dz/cs8v3nufc8xwzszKq6UIw6pghjGg+eGrhpvr6wl/n18zsSKnpQiCJ70y9lEENjR98/bO5oYFThg4r7Fc/rfqtemENN0y+halN0/mTj1zN/DueoNN7oFZgNX2MoMuvdu/ix2+sYuN7OzjnhJFcdPIpDPC0wlYB61b+DzdMuuWAK501NTdxyTUX8uf3fLWXZ5pVVm/HCEpxHsGwgc18bby/IWSV9/Dtj9O+58CJ//bu2suiec8w41ufZ9CQXq/wapaLUhQCq007fvUeC+9/muWLV/KRlhF8dtaltJ51+PMB9ae1y9uInqapaBzApnVbPNuoFZILgVWlbZu38/UJ3+T9be/TvmcfdfV1PDv/eebOn83kz+R3/KflzFFsXLOJ7kOuHe0dPqPYCssD5VaVHr79R+x4d8cHZzN37u9k7+527vqz+3M9MPvFuVfQOPDAOYSamhuZ8uXzGDz06JxSmfXOhcCq0s8XvkjHvoNPFNyzcw+/fCu/azSfOr6V2xfdQutZybUpmo8ZyBWzP8MN370mt0xmh+KhIatKRw9thraD2/d3dDJoyJG/QlrW2PM+xrwVf0dnZ6cvem9Vwb+lVpU+O+syjhp04IR2Axrq+dgnT/utLyvZ31wErFpU9DdV0lRJqyWtlTSnl35XSApJPsvL+uSiP/00l86cQsNRDQwaMpCm5iZazz6JuY/MyjuaWdWp2AllkuqBN4EpwAZgKXBVRLzerd9gYBHQCFwfEb2eLfbbnFBmtWvb5u2sXb6O4ScOy/2ro2ZFltekc+cCayPi7YhoB+YDl/fQ79vAHUAPV/g2693Q447lnKnjXQTM/h8qWQhOBNZnljekbR+QNAEYFRGLKpjDzMx6kdvRLEl1wF3ATX3oO1PSMknLtm7dWvlwZmYlUslCsBEYlVkembZ1GQycCfxUUhswCVjQ0wHjiJgXERMjYuKIET4708ysP1WyECwFRktqldQITAcWdK2MiF9HxPCIaImIFuDnwLRDHSw2M7P+VbFCEBEdwPXAU8Aq4F8i4jVJt0maVqmfa2Zmh6eiZxZHxJPAk93abv2QvudXMouZmfXMpz6amZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJVbQQSJoqabWktZLm9LD+65JelfSypOckjalkHjMzO1jFCoGkeuA+4GJgDHBVD//RPxwRZ0XEOOBO4K5K5TEzs55Vco/gXGBtRLwdEe3AfODybIeI2JFZHAREBfOYmVkPBlTwtU8E1meWNwAf795J0nXAN4BG4IIK5jEzsx7kfrA4Iu6LiFOAvwT+qqc+kmZKWiZp2datW49sQDOzGlfJQrARGJVZHpm2fZj5wB/3tCIi5kXExIiYOGLEiH6MaGZmlSwES4HRklolNQLTgQXZDpJGZxYvBdZUMI+ZmfWgYscIIqJD0vXAU0A98GBEvCbpNmBZRCwArpd0EbAP2AbMqFQeMzPrWSUPFhMRTwJPdmu7NfP4xkr+fDMzO7TcDxabmVm+XAjMzErOhcDMrOQqeozArD9FBGteeptfrn2H1rNP4qQzRuYdyawmuBBYVXh/+07m/NHf8IvX11NXV8f+jv2Mu+BM/vrxv6ChsSHveGZVzUNDVhXuvXYeb61oY8/Ovex6bzd7d7ez/Ccreejbj+UdzazquRBY4XXs6+C5J5bQ0d5xQHv77nYWPbA4p1RmtcOFwApvf8d+Ovd39rhu7+69RziNWe1xIbDCaxrYxMljTzqova5OnDN1fA6JzGqLC4FVhZseuJaBgwfS0JQcGG4c2MjgYYOZeeeXck5mVv38rSGrCqeOb+XBVfew8P6naVu5njMmjebiay7kmGGD845mVvVcCKxqDD9hGF+5bXreMcxqjoeGzMxKzoXAzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxKzoXAzKzkXAjMzEpOEZF3hsMiaSvwiz52Hw68W8E4/aVackL1ZHXO/lUtOaF6sh7pnCdFxIieVlRdITgckpZFxMS8cxxKteSE6snqnP2rWnJC9WQtUk4PDZmZlZwLgZlZydV6IZiXd4A+qpacUD1ZnbN/VUtOqJ6shclZ08cIzMzs0Gp9j8DMzA6hZguBpKmSVktaK2lO3nm6SHpQ0hZJKzNtwyQ9I2lNej80z4xpplGSnpX0uqTXJN1YxKySjpK0RNKKNOe30vZWSS+k2/+fJTXmmbOLpHpJyyUtTJeLmrNN0quSXpa0LG0r1LZPMx0r6TFJb0haJWly0XJKOi19H7tuOyTNKlLOmiwEkuqB+4CLgTHAVZLG5JvqAz8EpnZrmwMsjojRwOJ0OW8dwE0RMQaYBFyXvodFy7oXuCAixgLjgKmSJgF3AHdHxKnANuDqHDNm3QisyiwXNSfAH0TEuMxXHIu27QHuBf4tIk4HxpK8t4XKGRGr0/dxHPB7wC7gCYqUMyJq7gZMBp7KLN8M3Jx3rkyeFmBlZnk1cHz6+Hhgdd4Ze8j8r8CUImcFmoGXgI+TnKgzoKffhxzzjST5g78AWAioiDnTLG3A8G5thdr2wBBgHemxzqLm7JbtD4Hni5azJvcIgBOB9ZnlDWlbUR0XEZvSx+8Ax+UZpjtJLcB44AUKmDUdbnkZ2AI8A7wFbI+IjrRLUbb/PcA3gc50+XcoZk6AAJ6W9KKkmWlb0bZ9K7AV+EE63PZ9SYMoXs6s6cAj6ePC5KzVQlC1Ivl4UJivckk6GngcmBURO7LripI1IvZHsts9EjgXOD3nSAeRdBmwJSJezDtLH30qIiaQDK9eJ+nT2ZUF2fYDgAnA30fEeGAn3YZXCpITgPT4zzTg0e7r8s5Zq4VgIzAqszwybSuqzZKOB0jvt+ScBwBJDSRF4KGI+FHaXMisABGxHXiWZIjlWEkD0lVF2P6fBKZJagPmkwwP3UvxcgIQERvT+y0k49nnUrxtvwHYEBEvpMuPkRSGouXscjHwUkRsTpcLk7NWC8FSYHT6jYxGkt2xBTln6s0CYEb6eAbJeHyuJAn4B2BVRNyVWVWorJJGSDo2fTyQ5DjGKpKC8Lm0W+45I+LmiBgZES0kv48/iYgvUrCcAJIGSRrc9ZhkXHslBdv2EfEOsF7SaWnThcDrFCxnxlX8ZlgIipQz74MnFTwocwnwJsl48dy882RyPQJsAvaRfKK5mmSseDGwBvh3YFgBcn6KZFf1FeDl9HZJ0bICZwPL05wrgVvT9pOBJcBakl3xprzf00zm84GFRc2ZZlqR3l7r+vsp2rZPM40DlqXb/8fA0ILmHAT8LzAk01aYnD6z2Mys5Gp1aMjMzPrIhcDMrORcCMzMSs6FwMys5FwIzMxKzoXArJ9IasnOKnsYz/uvzPO/0P/JzHrnQmCWk64ziiPiE2lTC+BCYEecC4GVRvqJ+w1JD6Vz1z8mqVnShemkZa+m14toSvu3SbozbV8i6dS0/YeSPpd53fc/5Gf9TNJL6e0Tafv5afsCkrNgs8//W+D30znrZ0v6T0njMq/5nKSxFXuDrLRcCKxsTgO+FxFnADuAb5BcI+LKiDiLZCKzazP9f522f5dk9tC+2gJMiWTitiuB72TWTQBujIiPdnvOHOBnkcxdfzfJFB9fAZD0UeCoiFhxGBnM+sSFwMpmfUQ8nz7+J5L5adZFxJtp2z8C2Zk2H8ncTz6Mn9MAPCDpVZKpI7IXRloSEev68BqPApelk/99jaRgmfW7AYfuYlZTus+psp1kzpe+9O963EH6IUpSHdDT5SVnA5tJrppVB+zJrNvZp6ARuyQ9A1wOfJ7k6lZm/c57BFY2vyup65P9F0gmLGvpGv8HvgT8R6b/lZn7/04ft/Gb/5SnkXz6724IsCkiOtPXrO9DtveAwd3avk8yrLQ0Irb14TXMDpsLgZXNapILrawimanybuCrwKPpME4ncH+m/1BJr5Bca3h22vYAcJ6kFSTDRT19wv8eMCPtc/qH9OnuFWC/pBWSZgNEciGbHcAPDu+fadZ3nn3USiO95ObCiDizj/3bgIkR8W4FYx0qwwnAT4HT070Ls37nPQKzgpL0ZZLrRM91EbBK8h6BmVnJeY/AzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxK7v8A+me/ab3a2nMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "from sklearn.cluster import KMeans\n", + "kmeans = KMeans(n_clusters = 3)\n", + "kmeans.fit(X)\n", + "labels = kmeans.predict(X)\n", + "plt.scatter(df['popularity'],df['danceability'],c = labels)\n", + "plt.xlabel('popularity')\n", + "plt.ylabel('danceability')\n", + "plt.show()" + ] + }, + { + "source": [ + "La precisión de este modelo no es mala, pero tampoco es excelente. Puede ser que los datos no se presten bien para la agrupación K-Means. Podrías intentar con un método diferente.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 811, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Result: 109 out of 286 samples were correctly labeled.\nAccuracy score: 0.38\n" + ] + } + ], + "source": [ + "labels = kmeans.labels_\n", + "\n", + "correct_labels = sum(y == labels)\n", + "\n", + "print(\"Result: %d out of %d samples were correctly labeled.\" % (correct_labels, y.size))\n", + "\n", + "print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/5-Clustering/2-K-Means/solution/tester.ipynb b/translations/es/5-Clustering/2-K-Means/solution/tester.ipynb new file mode 100644 index 000000000..d111b50a1 --- /dev/null +++ b/translations/es/5-Clustering/2-K-Means/solution/tester.ipynb @@ -0,0 +1,343 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "6f92868513e59d321245137c1c4c5311", + "translation_date": "2025-09-04T02:12:23+00:00", + "source_file": "5-Clustering/2-K-Means/solution/tester.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "Comienza donde terminamos en la última lección, con los datos importados y filtrados.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
\n
" + }, + "metadata": {}, + "execution_count": 105 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import numpy as np\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "Nos centraremos solo en 3 géneros. ¡Quizás podamos construir 3 clústeres!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 106 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
\n
" + }, + "metadata": {}, + "execution_count": 107 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "scaler = StandardScaler()\n", + "\n", + "# X = df.loc[:, ('danceability','energy')]\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "Unknown label type: 'continuous'", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;31m# we create an instance of SVM and fit out data. We do not scale our\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;31m# data since we want to plot the support vectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0mls30\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 30% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0mls50\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 50% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mls100\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 100% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/semi_supervised/_label_propagation.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 229\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mX_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 230\u001b[0;31m \u001b[0mcheck_classification_targets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[0;31m# actual graph construction (implementations should override this)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/utils/multiclass.py\u001b[0m in \u001b[0;36mcheck_classification_targets\u001b[0;34m(y)\u001b[0m\n\u001b[1;32m 181\u001b[0m if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',\n\u001b[1;32m 182\u001b[0m 'multilabel-indicator', 'multilabel-sequences']:\n\u001b[0;32m--> 183\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Unknown label type: %r\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0my_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 184\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unknown label type: 'continuous'" + ] + } + ], + "source": [ + "from sklearn.svm import SVC\n", + "from sklearn.semi_supervised import LabelSpreading\n", + "from sklearn.semi_supervised import SelfTrainingClassifier\n", + "from sklearn import datasets\n", + "\n", + "X = df[['danceability','acousticness']].values\n", + "y = df['energy'].values\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "# step size in the mesh\n", + "h = .02\n", + "\n", + "rng = np.random.RandomState(0)\n", + "y_rand = rng.rand(y.shape[0])\n", + "y_30 = np.copy(y)\n", + "y_30[y_rand < 0.3] = -1 # set random samples to be unlabeled\n", + "y_50 = np.copy(y)\n", + "y_50[y_rand < 0.5] = -1\n", + "# we create an instance of SVM and fit out data. We do not scale our\n", + "# data since we want to plot the support vectors\n", + "ls30 = (LabelSpreading().fit(X, y_30), y_30, 'Label Spreading 30% data')\n", + "ls50 = (LabelSpreading().fit(X, y_50), y_50, 'Label Spreading 50% data')\n", + "ls100 = (LabelSpreading().fit(X, y), y, 'Label Spreading 100% data')\n", + "\n", + "# the base classifier for self-training is identical to the SVC\n", + "base_classifier = SVC(kernel='rbf', gamma=.5, probability=True)\n", + "st30 = (SelfTrainingClassifier(base_classifier).fit(X, y_30),\n", + " y_30, 'Self-training 30% data')\n", + "st50 = (SelfTrainingClassifier(base_classifier).fit(X, y_50),\n", + " y_50, 'Self-training 50% data')\n", + "\n", + "rbf_svc = (SVC(kernel='rbf', gamma=.5).fit(X, y), y, 'SVC with rbf kernel')\n", + "\n", + "# create a mesh to plot in\n", + "x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n", + "y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n", + "xx, yy = np.meshgrid(np.arange(x_min, x_max, h),\n", + " np.arange(y_min, y_max, h))\n", + "\n", + "color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)}\n", + "\n", + "classifiers = (ls30, st30, ls50, st50, ls100, rbf_svc)\n", + "for i, (clf, y_train, title) in enumerate(classifiers):\n", + " # Plot the decision boundary. For that, we will assign a color to each\n", + " # point in the mesh [x_min, x_max]x[y_min, y_max].\n", + " plt.subplot(3, 2, i + 1)\n", + " Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n", + "\n", + " # Put the result into a color plot\n", + " Z = Z.reshape(xx.shape)\n", + " plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)\n", + " plt.axis('off')\n", + "\n", + " # Plot also the training points\n", + " colors = [color_map[y] for y in y_train]\n", + " plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black')\n", + "\n", + " plt.title(title)\n", + "\n", + "plt.suptitle(\"Unlabeled points are colored white\", y=0.1)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/5-Clustering/README.md b/translations/es/5-Clustering/README.md new file mode 100644 index 000000000..11b4221b3 --- /dev/null +++ b/translations/es/5-Clustering/README.md @@ -0,0 +1,42 @@ + +# Modelos de agrupamiento para aprendizaje automático + +El agrupamiento es una tarea de aprendizaje automático que busca encontrar objetos que se asemejen entre sí y agruparlos en grupos llamados clústeres. Lo que diferencia el agrupamiento de otros enfoques en el aprendizaje automático es que todo sucede automáticamente; de hecho, es justo decir que es lo opuesto al aprendizaje supervisado. + +## Tema regional: modelos de agrupamiento para los gustos musicales de una audiencia nigeriana 🎧 + +La diversa audiencia de Nigeria tiene gustos musicales variados. Usando datos extraídos de Spotify (inspirados en [este artículo](https://towardsdatascience.com/country-wise-visual-analysis-of-music-taste-using-spotify-api-seaborn-in-python-77f5b749b421)), analicemos algo de la música popular en Nigeria. Este conjunto de datos incluye información sobre el puntaje de 'bailabilidad', 'acústica', volumen, 'hablabilidad', popularidad y energía de varias canciones. ¡Será interesante descubrir patrones en estos datos! + +![Un tocadiscos](../../../translated_images/turntable.f2b86b13c53302dc106aa741de9dc96ac372864cf458dd6f879119857aab01da.es.jpg) + +> Foto de Marcela Laskoski en Unsplash + +En esta serie de lecciones, descubrirás nuevas formas de analizar datos utilizando técnicas de agrupamiento. El agrupamiento es particularmente útil cuando tu conjunto de datos carece de etiquetas. Si tiene etiquetas, entonces las técnicas de clasificación como las que aprendiste en lecciones anteriores podrían ser más útiles. Pero en casos donde buscas agrupar datos sin etiquetar, el agrupamiento es una excelente manera de descubrir patrones. + +> Hay herramientas útiles de bajo código que pueden ayudarte a aprender a trabajar con modelos de agrupamiento. Prueba [Azure ML para esta tarea](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +## Lecciones + +1. [Introducción al agrupamiento](1-Visualize/README.md) +2. [Agrupamiento K-Means](2-K-Means/README.md) + +## Créditos + +Estas lecciones fueron escritas con 🎶 por [Jen Looper](https://www.twitter.com/jenlooper) con revisiones útiles de [Rishit Dagli](https://rishit_dagli) y [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan). + +El conjunto de datos [Nigerian Songs](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify) fue obtenido de Kaggle como datos extraídos de Spotify. + +Ejemplos útiles de K-Means que ayudaron a crear esta lección incluyen esta [exploración de iris](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering), este [notebook introductorio](https://www.kaggle.com/prashant111/k-means-clustering-with-python), y este [ejemplo hipotético de una ONG](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering). + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/1-Introduction-to-NLP/README.md b/translations/es/6-NLP/1-Introduction-to-NLP/README.md new file mode 100644 index 000000000..f267e04ab --- /dev/null +++ b/translations/es/6-NLP/1-Introduction-to-NLP/README.md @@ -0,0 +1,179 @@ + +# Introducción al procesamiento de lenguaje natural + +Esta lección cubre una breve historia y conceptos importantes del *procesamiento de lenguaje natural*, un subcampo de la *lingüística computacional*. + +## [Cuestionario previo a la clase](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/31/) + +## Introducción + +El PLN, como se le conoce comúnmente, es una de las áreas más conocidas donde se ha aplicado el aprendizaje automático y se utiliza en software de producción. + +✅ ¿Puedes pensar en algún software que uses todos los días que probablemente tenga algo de PLN integrado? ¿Qué hay de tus programas de procesamiento de texto o aplicaciones móviles que usas regularmente? + +Aprenderás sobre: + +- **La idea de los idiomas**. Cómo se desarrollaron los idiomas y cuáles han sido las principales áreas de estudio. +- **Definición y conceptos**. También aprenderás definiciones y conceptos sobre cómo las computadoras procesan texto, incluyendo análisis sintáctico, gramática e identificación de sustantivos y verbos. Hay algunas tareas de codificación en esta lección, y se introducen varios conceptos importantes que aprenderás a programar más adelante en las próximas lecciones. + +## Lingüística computacional + +La lingüística computacional es un área de investigación y desarrollo que, durante muchas décadas, ha estudiado cómo las computadoras pueden trabajar con, e incluso entender, traducir y comunicarse en idiomas. El procesamiento de lenguaje natural (PLN) es un campo relacionado que se centra en cómo las computadoras pueden procesar idiomas 'naturales', o humanos. + +### Ejemplo - dictado en el teléfono + +Si alguna vez has dictado a tu teléfono en lugar de escribir o le has hecho una pregunta a un asistente virtual, tu voz fue convertida en texto y luego procesada o *analizada* desde el idioma que hablaste. Las palabras clave detectadas se procesaron en un formato que el teléfono o asistente pudo entender y actuar en consecuencia. + +![comprensión](../../../../translated_images/comprehension.619708fc5959b0f6a24ebffba2ad7b0625391a476141df65b43b59de24e45c6f.es.png) +> ¡La comprensión lingüística real es difícil! Imagen por [Jen Looper](https://twitter.com/jenlooper) + +### ¿Cómo es posible esta tecnología? + +Esto es posible porque alguien escribió un programa de computadora para hacerlo. Hace unas décadas, algunos escritores de ciencia ficción predijeron que las personas hablarían principalmente con sus computadoras, y que estas siempre entenderían exactamente lo que querían decir. Lamentablemente, resultó ser un problema más difícil de lo que muchos imaginaban, y aunque hoy en día es un problema mucho mejor entendido, existen desafíos significativos para lograr un procesamiento de lenguaje natural 'perfecto' cuando se trata de entender el significado de una oración. Este es un problema particularmente difícil cuando se trata de entender el humor o detectar emociones como el sarcasmo en una oración. + +En este punto, podrías estar recordando las clases escolares donde el profesor cubría las partes de la gramática en una oración. En algunos países, se enseña gramática y lingüística como una materia dedicada, pero en muchos, estos temas se incluyen como parte del aprendizaje de un idioma: ya sea tu primer idioma en la escuela primaria (aprendiendo a leer y escribir) y quizás un segundo idioma en la secundaria o preparatoria. ¡No te preocupes si no eres un experto en diferenciar sustantivos de verbos o adverbios de adjetivos! + +Si tienes dificultades con la diferencia entre el *presente simple* y el *presente progresivo*, no estás solo. Esto es algo desafiante para muchas personas, incluso hablantes nativos de un idioma. La buena noticia es que las computadoras son muy buenas aplicando reglas formales, y aprenderás a escribir código que pueda *analizar* una oración tan bien como un humano. El mayor desafío que examinarás más adelante es entender el *significado* y el *sentimiento* de una oración. + +## Prerrequisitos + +Para esta lección, el principal prerrequisito es poder leer y entender el idioma de esta lección. No hay problemas matemáticos ni ecuaciones que resolver. Aunque el autor original escribió esta lección en inglés, también está traducida a otros idiomas, por lo que podrías estar leyendo una traducción. Hay ejemplos donde se utilizan varios idiomas diferentes (para comparar las diferentes reglas gramaticales de distintos idiomas). Estos *no* están traducidos, pero el texto explicativo sí lo está, por lo que el significado debería ser claro. + +Para las tareas de codificación, usarás Python y los ejemplos están en Python 3.8. + +En esta sección, necesitarás y usarás: + +- **Comprensión de Python 3**. Comprensión del lenguaje de programación en Python 3, esta lección utiliza entrada, bucles, lectura de archivos, arreglos. +- **Visual Studio Code + extensión**. Usaremos Visual Studio Code y su extensión de Python. También puedes usar un IDE de Python de tu elección. +- **TextBlob**. [TextBlob](https://github.com/sloria/TextBlob) es una biblioteca simplificada de procesamiento de texto para Python. Sigue las instrucciones en el sitio de TextBlob para instalarlo en tu sistema (instala también los corpora, como se muestra a continuación): + + ```bash + pip install -U textblob + python -m textblob.download_corpora + ``` + +> 💡 Consejo: Puedes ejecutar Python directamente en entornos de VS Code. Consulta los [documentos](https://code.visualstudio.com/docs/languages/python?WT.mc_id=academic-77952-leestott) para más información. + +## Hablando con máquinas + +La historia de intentar que las computadoras entiendan el lenguaje humano se remonta a décadas atrás, y uno de los primeros científicos en considerar el procesamiento de lenguaje natural fue *Alan Turing*. + +### La 'prueba de Turing' + +Cuando Turing investigaba la *inteligencia artificial* en la década de 1950, consideró si se podría realizar una prueba conversacional entre un humano y una computadora (a través de correspondencia escrita) donde el humano en la conversación no estuviera seguro de si estaba conversando con otro humano o con una computadora. + +Si, después de cierto tiempo de conversación, el humano no podía determinar si las respuestas provenían de una computadora o no, ¿podría decirse que la computadora estaba *pensando*? + +### La inspiración - 'el juego de imitación' + +La idea para esto provino de un juego de fiesta llamado *El juego de imitación*, donde un interrogador está solo en una habitación y tiene la tarea de determinar cuál de dos personas (en otra habitación) es hombre y cuál es mujer. El interrogador puede enviar notas y debe tratar de pensar en preguntas cuyas respuestas escritas revelen el género de la persona misteriosa. Por supuesto, los jugadores en la otra habitación intentan engañar al interrogador respondiendo preguntas de manera que lo confundan o lo engañen, mientras que también dan la apariencia de responder honestamente. + +### Desarrollando Eliza + +En la década de 1960, un científico del MIT llamado *Joseph Weizenbaum* desarrolló [*Eliza*](https://wikipedia.org/wiki/ELIZA), una 'terapeuta' computarizada que hacía preguntas al humano y daba la apariencia de entender sus respuestas. Sin embargo, aunque Eliza podía analizar una oración e identificar ciertos constructos gramaticales y palabras clave para dar una respuesta razonable, no podía decirse que *entendiera* la oración. Si a Eliza se le presentaba una oración con el formato "**Yo estoy** triste", podría reorganizar y sustituir palabras en la oración para formar la respuesta "¿Cuánto tiempo has **estado** triste?". + +Esto daba la impresión de que Eliza entendía la declaración y estaba haciendo una pregunta de seguimiento, mientras que en realidad estaba cambiando el tiempo verbal y agregando algunas palabras. Si Eliza no podía identificar una palabra clave para la que tuviera una respuesta, en su lugar daba una respuesta aleatoria que podría aplicarse a muchas declaraciones diferentes. Eliza podía ser fácilmente engañada, por ejemplo, si un usuario escribía "**Tú eres** una bicicleta", podría responder con "¿Cuánto tiempo he **sido** una bicicleta?", en lugar de una respuesta más razonada. + +[![Conversando con Eliza](https://img.youtube.com/vi/RMK9AphfLco/0.jpg)](https://youtu.be/RMK9AphfLco "Conversando con Eliza") + +> 🎥 Haz clic en la imagen de arriba para ver un video sobre el programa original de ELIZA + +> Nota: Puedes leer la descripción original de [Eliza](https://cacm.acm.org/magazines/1966/1/13317-elizaa-computer-program-for-the-study-of-natural-language-communication-between-man-and-machine/abstract) publicada en 1966 si tienes una cuenta de ACM. Alternativamente, lee sobre Eliza en [Wikipedia](https://wikipedia.org/wiki/ELIZA) + +## Ejercicio - programando un bot conversacional básico + +Un bot conversacional, como Eliza, es un programa que solicita la entrada del usuario y parece entender y responder de manera inteligente. A diferencia de Eliza, nuestro bot no tendrá varias reglas que le den la apariencia de tener una conversación inteligente. En cambio, nuestro bot tendrá una sola habilidad: mantener la conversación con respuestas aleatorias que podrían funcionar en casi cualquier conversación trivial. + +### El plan + +Tus pasos al construir un bot conversacional: + +1. Imprimir instrucciones que aconsejen al usuario cómo interactuar con el bot. +2. Iniciar un bucle. + 1. Aceptar la entrada del usuario. + 2. Si el usuario ha pedido salir, entonces salir. + 3. Procesar la entrada del usuario y determinar la respuesta (en este caso, la respuesta es una elección aleatoria de una lista de posibles respuestas genéricas). + 4. Imprimir la respuesta. +3. Volver al paso 2. + +### Construyendo el bot + +Vamos a crear el bot ahora. Comenzaremos definiendo algunas frases. + +1. Crea este bot tú mismo en Python con las siguientes respuestas aleatorias: + + ```python + random_responses = ["That is quite interesting, please tell me more.", + "I see. Do go on.", + "Why do you say that?", + "Funny weather we've been having, isn't it?", + "Let's change the subject.", + "Did you catch the game last night?"] + ``` + + Aquí hay un ejemplo de salida para guiarte (la entrada del usuario está en las líneas que comienzan con `>`): + + ```output + Hello, I am Marvin, the simple robot. + You can end this conversation at any time by typing 'bye' + After typing each answer, press 'enter' + How are you today? + > I am good thanks + That is quite interesting, please tell me more. + > today I went for a walk + Did you catch the game last night? + > I did, but my team lost + Funny weather we've been having, isn't it? + > yes but I hope next week is better + Let's change the subject. + > ok, lets talk about music + Why do you say that? + > because I like music! + Why do you say that? + > bye + It was nice talking to you, goodbye! + ``` + + Una posible solución a la tarea está [aquí](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/1-Introduction-to-NLP/solution/bot.py) + + ✅ Detente y reflexiona + + 1. ¿Crees que las respuestas aleatorias podrían 'engañar' a alguien para que piense que el bot realmente las entendió? + 2. ¿Qué características necesitaría el bot para ser más efectivo? + 3. Si un bot realmente pudiera 'entender' el significado de una oración, ¿necesitaría 'recordar' el significado de oraciones anteriores en una conversación también? + +--- + +## 🚀Desafío + +Elige uno de los elementos de "detente y reflexiona" mencionados arriba y trata de implementarlo en código o escribe una solución en papel usando pseudocódigo. + +En la próxima lección, aprenderás sobre una serie de otros enfoques para analizar el lenguaje natural y el aprendizaje automático. + +## [Cuestionario posterior a la clase](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/32/) + +## Revisión y autoestudio + +Consulta las referencias a continuación como oportunidades de lectura adicional. + +### Referencias + +1. Schubert, Lenhart, "Computational Linguistics", *The Stanford Encyclopedia of Philosophy* (Spring 2020 Edition), Edward N. Zalta (ed.), URL = . +2. Princeton University "About WordNet." [WordNet](https://wordnet.princeton.edu/). Princeton University. 2010. + +## Tarea + +[Busca un bot](assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/1-Introduction-to-NLP/assignment.md b/translations/es/6-NLP/1-Introduction-to-NLP/assignment.md new file mode 100644 index 000000000..2dbb10608 --- /dev/null +++ b/translations/es/6-NLP/1-Introduction-to-NLP/assignment.md @@ -0,0 +1,25 @@ + +# Busca un bot + +## Instrucciones + +Los bots están en todas partes. Tu tarea: ¡encuentra uno y adóptalo! Puedes encontrarlos en sitios web, en aplicaciones bancarias y por teléfono, por ejemplo, cuando llamas a empresas de servicios financieros para obtener asesoramiento o información sobre tu cuenta. Analiza el bot y observa si puedes confundirlo. Si logras confundir al bot, ¿por qué crees que sucedió? Escribe un breve informe sobre tu experiencia. + +## Rúbrica + +| Criterios | Ejemplar | Adecuado | Necesita Mejorar | +| --------- | ------------------------------------------------------------------------------------------------------------ | ------------------------------------------ | --------------------- | +| | Se escribe un informe de una página completa, explicando la arquitectura presumida del bot y describiendo tu experiencia con él | El informe está incompleto o no está bien investigado | No se presenta ningún informe | + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/2-Tasks/README.md b/translations/es/6-NLP/2-Tasks/README.md new file mode 100644 index 000000000..279b4a59e --- /dev/null +++ b/translations/es/6-NLP/2-Tasks/README.md @@ -0,0 +1,228 @@ + +# Tareas y técnicas comunes de procesamiento de lenguaje natural + +Para la mayoría de las tareas de *procesamiento de lenguaje natural*, el texto que se va a procesar debe descomponerse, examinarse y los resultados almacenarse o cruzarse con reglas y conjuntos de datos. Estas tareas permiten al programador derivar el _significado_, la _intención_ o solo la _frecuencia_ de términos y palabras en un texto. + +## [Cuestionario previo a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/33/) + +Descubramos técnicas comunes utilizadas en el procesamiento de texto. Combinadas con aprendizaje automático, estas técnicas te ayudan a analizar grandes cantidades de texto de manera eficiente. Sin embargo, antes de aplicar ML a estas tareas, entendamos los problemas que enfrenta un especialista en NLP. + +## Tareas comunes en NLP + +Existen diferentes formas de analizar un texto en el que estás trabajando. Hay tareas que puedes realizar y, a través de ellas, puedes comprender el texto y sacar conclusiones. Por lo general, llevas a cabo estas tareas en una secuencia. + +### Tokenización + +Probablemente lo primero que la mayoría de los algoritmos de NLP tienen que hacer es dividir el texto en tokens o palabras. Aunque esto suena simple, tener en cuenta la puntuación y los delimitadores de palabras y oraciones en diferentes idiomas puede complicarlo. Es posible que tengas que usar varios métodos para determinar las demarcaciones. + +![tokenización](../../../../translated_images/tokenization.1641a160c66cd2d93d4524e8114e93158a9ce0eba3ecf117bae318e8a6ad3487.es.png) +> Tokenizando una oración de **Orgullo y Prejuicio**. Infografía por [Jen Looper](https://twitter.com/jenlooper) + +### Embeddings + +[Word embeddings](https://wikipedia.org/wiki/Word_embedding) son una forma de convertir tus datos de texto en valores numéricos. Los embeddings se realizan de manera que las palabras con un significado similar o palabras que se usan juntas se agrupen. + +![word embeddings](../../../../translated_images/embedding.2cf8953c4b3101d188c2f61a5de5b6f53caaa5ad4ed99236d42bc3b6bd6a1fe2.es.png) +> "Tengo el mayor respeto por tus nervios, son mis viejos amigos." - Word embeddings para una oración en **Orgullo y Prejuicio**. Infografía por [Jen Looper](https://twitter.com/jenlooper) + +✅ Prueba [esta herramienta interesante](https://projector.tensorflow.org/) para experimentar con word embeddings. Al hacer clic en una palabra, se muestran grupos de palabras similares: 'juguete' se agrupa con 'disney', 'lego', 'playstation' y 'consola'. + +### Parsing y etiquetado de partes del discurso + +Cada palabra que ha sido tokenizada puede etiquetarse como una parte del discurso: un sustantivo, verbo o adjetivo. La oración `el rápido zorro rojo saltó sobre el perro marrón perezoso` podría etiquetarse como POS con zorro = sustantivo, saltó = verbo. + +![parsing](../../../../translated_images/parse.d0c5bbe1106eae8fe7d60a183cd1736c8b6cec907f38000366535f84f3036101.es.png) + +> Parseando una oración de **Orgullo y Prejuicio**. Infografía por [Jen Looper](https://twitter.com/jenlooper) + +El parsing consiste en reconocer qué palabras están relacionadas entre sí en una oración; por ejemplo, `el rápido zorro rojo saltó` es una secuencia de adjetivo-sustantivo-verbo que está separada de la secuencia `perro marrón perezoso`. + +### Frecuencia de palabras y frases + +Un procedimiento útil al analizar un gran cuerpo de texto es construir un diccionario de cada palabra o frase de interés y cuántas veces aparece. La frase `el rápido zorro rojo saltó sobre el perro marrón perezoso` tiene una frecuencia de palabras de 2 para "el". + +Veamos un texto de ejemplo donde contamos la frecuencia de palabras. El poema Los Ganadores de Rudyard Kipling contiene el siguiente verso: + +```output +What the moral? Who rides may read. +When the night is thick and the tracks are blind +A friend at a pinch is a friend, indeed, +But a fool to wait for the laggard behind. +Down to Gehenna or up to the Throne, +He travels the fastest who travels alone. +``` + +Como las frecuencias de frases pueden ser sensibles o insensibles a mayúsculas según se requiera, la frase `un amigo` tiene una frecuencia de 2, `el` tiene una frecuencia de 6 y `viajes` tiene una frecuencia de 2. + +### N-grams + +Un texto puede dividirse en secuencias de palabras de una longitud establecida: una sola palabra (unigramas), dos palabras (bigramas), tres palabras (trigramas) o cualquier número de palabras (n-grams). + +Por ejemplo, `el rápido zorro rojo saltó sobre el perro marrón perezoso` con un puntaje de n-gram de 2 produce los siguientes n-grams: + +1. el rápido +2. rápido zorro +3. zorro rojo +4. rojo saltó +5. saltó sobre +6. sobre el +7. el perro +8. perro marrón +9. marrón perezoso + +Podría ser más fácil visualizarlo como una ventana deslizante sobre la oración. Aquí está para n-grams de 3 palabras, el n-gram está en negrita en cada oración: + +1. **el rápido zorro** rojo saltó sobre el perro marrón perezoso +2. el **rápido zorro rojo** saltó sobre el perro marrón perezoso +3. el rápido **zorro rojo saltó** sobre el perro marrón perezoso +4. el rápido zorro **rojo saltó sobre** el perro marrón perezoso +5. el rápido zorro rojo **saltó sobre el** perro marrón perezoso +6. el rápido zorro rojo saltó **sobre el perro** marrón perezoso +7. el rápido zorro rojo saltó sobre **el perro marrón** perezoso +8. el rápido zorro rojo saltó sobre el **perro marrón perezoso** + +![ventana deslizante de n-grams](../../../../6-NLP/2-Tasks/images/n-grams.gif) + +> Valor de n-gram de 3: Infografía por [Jen Looper](https://twitter.com/jenlooper) + +### Extracción de frases nominales + +En la mayoría de las oraciones, hay un sustantivo que es el sujeto u objeto de la oración. En inglés, a menudo se identifica porque tiene 'a', 'an' o 'the' antes de él. Identificar el sujeto u objeto de una oración mediante la 'extracción de la frase nominal' es una tarea común en NLP al intentar comprender el significado de una oración. + +✅ En la oración "No puedo fijar la hora, ni el lugar, ni la mirada ni las palabras, que sentaron las bases. Hace demasiado tiempo. Estaba en medio antes de darme cuenta de que había comenzado.", ¿puedes identificar las frases nominales? + +En la oración `el rápido zorro rojo saltó sobre el perro marrón perezoso` hay 2 frases nominales: **rápido zorro rojo** y **perro marrón perezoso**. + +### Análisis de sentimiento + +Una oración o texto puede analizarse para determinar su sentimiento, o cuán *positivo* o *negativo* es. El sentimiento se mide en *polaridad* y *objetividad/subjetividad*. La polaridad se mide de -1.0 a 1.0 (negativo a positivo) y de 0.0 a 1.0 (más objetivo a más subjetivo). + +✅ Más adelante aprenderás que hay diferentes formas de determinar el sentimiento utilizando aprendizaje automático, pero una forma es tener una lista de palabras y frases que han sido categorizadas como positivas o negativas por un experto humano y aplicar ese modelo al texto para calcular un puntaje de polaridad. ¿Puedes ver cómo esto funcionaría en algunas circunstancias y menos en otras? + +### Inflexión + +La inflexión te permite tomar una palabra y obtener el singular o plural de la misma. + +### Lematización + +Un *lema* es la raíz o palabra principal de un conjunto de palabras; por ejemplo, *voló*, *vuela*, *volando* tienen como lema el verbo *volar*. + +También hay bases de datos útiles disponibles para el investigador de NLP, en particular: + +### WordNet + +[WordNet](https://wordnet.princeton.edu/) es una base de datos de palabras, sinónimos, antónimos y muchos otros detalles para cada palabra en muchos idiomas diferentes. Es increíblemente útil al intentar construir traducciones, correctores ortográficos o herramientas de lenguaje de cualquier tipo. + +## Bibliotecas de NLP + +Afortunadamente, no tienes que construir todas estas técnicas tú mismo, ya que hay excelentes bibliotecas de Python disponibles que hacen que sea mucho más accesible para desarrolladores que no están especializados en procesamiento de lenguaje natural o aprendizaje automático. Las próximas lecciones incluyen más ejemplos de estas, pero aquí aprenderás algunos ejemplos útiles para ayudarte con la próxima tarea. + +### Ejercicio - usando la biblioteca `TextBlob` + +Usemos una biblioteca llamada TextBlob, ya que contiene APIs útiles para abordar este tipo de tareas. TextBlob "se basa en los hombros gigantes de [NLTK](https://nltk.org) y [pattern](https://github.com/clips/pattern), y funciona bien con ambos." Tiene una cantidad considerable de ML integrado en su API. + +> Nota: Una útil [Guía de inicio rápido](https://textblob.readthedocs.io/en/dev/quickstart.html#quickstart) está disponible para TextBlob y se recomienda para desarrolladores experimentados en Python. + +Al intentar identificar *frases nominales*, TextBlob ofrece varias opciones de extractores para encontrarlas. + +1. Echa un vistazo a `ConllExtractor`. + + ```python + from textblob import TextBlob + from textblob.np_extractors import ConllExtractor + # import and create a Conll extractor to use later + extractor = ConllExtractor() + + # later when you need a noun phrase extractor: + user_input = input("> ") + user_input_blob = TextBlob(user_input, np_extractor=extractor) # note non-default extractor specified + np = user_input_blob.noun_phrases + ``` + + > ¿Qué está pasando aquí? [ConllExtractor](https://textblob.readthedocs.io/en/dev/api_reference.html?highlight=Conll#textblob.en.np_extractors.ConllExtractor) es "Un extractor de frases nominales que utiliza chunk parsing entrenado con el corpus de entrenamiento ConLL-2000." ConLL-2000 se refiere a la Conferencia de Aprendizaje Computacional de Lenguaje Natural de 2000. Cada año, la conferencia organizaba un taller para abordar un problema difícil de NLP, y en 2000 fue el chunking de frases nominales. Se entrenó un modelo en el Wall Street Journal, con "las secciones 15-18 como datos de entrenamiento (211727 tokens) y la sección 20 como datos de prueba (47377 tokens)". Puedes ver los procedimientos utilizados [aquí](https://www.clips.uantwerpen.be/conll2000/chunking/) y los [resultados](https://ifarm.nl/erikt/research/np-chunking.html). + +### Desafío - mejorando tu bot con NLP + +En la lección anterior construiste un bot de preguntas y respuestas muy simple. Ahora, harás que Marvin sea un poco más empático analizando tu entrada para determinar el sentimiento y mostrando una respuesta que coincida con el sentimiento. También necesitarás identificar una `frase nominal` y preguntar sobre ella. + +Tus pasos al construir un bot conversacional mejorado: + +1. Imprime instrucciones aconsejando al usuario cómo interactuar con el bot. +2. Inicia un bucle: + 1. Acepta la entrada del usuario. + 2. Si el usuario ha pedido salir, entonces sal. + 3. Procesa la entrada del usuario y determina una respuesta de sentimiento adecuada. + 4. Si se detecta una frase nominal en el sentimiento, pluralízala y pide más información sobre ese tema. + 5. Imprime la respuesta. +3. Vuelve al paso 2. + +Aquí está el fragmento de código para determinar el sentimiento usando TextBlob. Nota que solo hay cuatro *gradientes* de respuesta de sentimiento (puedes tener más si lo deseas): + +```python +if user_input_blob.polarity <= -0.5: + response = "Oh dear, that sounds bad. " +elif user_input_blob.polarity <= 0: + response = "Hmm, that's not great. " +elif user_input_blob.polarity <= 0.5: + response = "Well, that sounds positive. " +elif user_input_blob.polarity <= 1: + response = "Wow, that sounds great. " +``` + +Aquí hay un ejemplo de salida para guiarte (la entrada del usuario está en las líneas que comienzan con >): + +```output +Hello, I am Marvin, the friendly robot. +You can end this conversation at any time by typing 'bye' +After typing each answer, press 'enter' +How are you today? +> I am ok +Well, that sounds positive. Can you tell me more? +> I went for a walk and saw a lovely cat +Well, that sounds positive. Can you tell me more about lovely cats? +> cats are the best. But I also have a cool dog +Wow, that sounds great. Can you tell me more about cool dogs? +> I have an old hounddog but he is sick +Hmm, that's not great. Can you tell me more about old hounddogs? +> bye +It was nice talking to you, goodbye! +``` + +Una posible solución a la tarea está [aquí](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/2-Tasks/solution/bot.py) + +✅ Verificación de conocimiento + +1. ¿Crees que las respuestas empáticas podrían 'engañar' a alguien para que piense que el bot realmente los entiende? +2. ¿Hace que el bot sea más 'creíble' identificar la frase nominal? +3. ¿Por qué sería útil extraer una 'frase nominal' de una oración? + +--- + +Implementa el bot en la verificación de conocimiento anterior y pruébalo con un amigo. ¿Puede engañarlos? ¿Puedes hacer que tu bot sea más 'creíble'? + +## 🚀Desafío + +Toma una tarea de la verificación de conocimiento anterior e intenta implementarla. Prueba el bot con un amigo. ¿Puede engañarlos? ¿Puedes hacer que tu bot sea más 'creíble'? + +## [Cuestionario posterior a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/34/) + +## Revisión y autoestudio + +En las próximas lecciones aprenderás más sobre análisis de sentimiento. Investiga esta técnica interesante en artículos como estos en [KDNuggets](https://www.kdnuggets.com/tag/nlp) + +## Tarea + +[Haz que un bot responda](assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/2-Tasks/assignment.md b/translations/es/6-NLP/2-Tasks/assignment.md new file mode 100644 index 000000000..45062e651 --- /dev/null +++ b/translations/es/6-NLP/2-Tasks/assignment.md @@ -0,0 +1,25 @@ + +# Haz que un bot responda + +## Instrucciones + +En las lecciones anteriores, programaste un bot básico con el que puedes chatear. Este bot da respuestas aleatorias hasta que digas 'adiós'. ¿Puedes hacer que las respuestas sean un poco menos aleatorias y que se activen si dices cosas específicas, como 'por qué' o 'cómo'? Piensa un poco en cómo el aprendizaje automático podría hacer este tipo de trabajo menos manual mientras amplías tu bot. Puedes usar las bibliotecas NLTK o TextBlob para facilitar tus tareas. + +## Rúbrica + +| Criterios | Ejemplar | Adecuado | Necesita Mejorar | +| --------- | -------------------------------------------- | ------------------------------------------------ | ----------------------- | +| | Se presenta y documenta un nuevo archivo bot.py | Se presenta un nuevo archivo bot pero contiene errores | No se presenta un archivo | + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/3-Translation-Sentiment/README.md b/translations/es/6-NLP/3-Translation-Sentiment/README.md new file mode 100644 index 000000000..d61fd22c1 --- /dev/null +++ b/translations/es/6-NLP/3-Translation-Sentiment/README.md @@ -0,0 +1,200 @@ + +# Traducción y análisis de sentimiento con ML + +En las lecciones anteriores aprendiste a construir un bot básico utilizando `TextBlob`, una biblioteca que incorpora aprendizaje automático detrás de escena para realizar tareas básicas de PLN como la extracción de frases nominales. Otro desafío importante en la lingüística computacional es la _traducción_ precisa de una oración de un idioma hablado o escrito a otro. + +## [Cuestionario previo a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/35/) + +La traducción es un problema muy complejo debido al hecho de que existen miles de idiomas, cada uno con reglas gramaticales muy diferentes. Un enfoque consiste en convertir las reglas gramaticales formales de un idioma, como el inglés, en una estructura independiente del idioma, y luego traducirla convirtiéndola nuevamente a otro idioma. Este enfoque implica los siguientes pasos: + +1. **Identificación**. Identificar o etiquetar las palabras en el idioma de entrada como sustantivos, verbos, etc. +2. **Crear la traducción**. Producir una traducción directa de cada palabra en el formato del idioma de destino. + +### Ejemplo de oración, inglés a irlandés + +En 'inglés', la oración _I feel happy_ tiene tres palabras en el orden: + +- **sujeto** (I) +- **verbo** (feel) +- **adjetivo** (happy) + +Sin embargo, en el idioma 'irlandés', la misma oración tiene una estructura gramatical muy diferente: las emociones como "*happy*" o "*sad*" se expresan como algo que está *sobre* ti. + +La frase en inglés `I feel happy` en irlandés sería `Tá athas orm`. Una traducción *literal* sería `Happy is upon me`. + +Un hablante de irlandés que traduce al inglés diría `I feel happy`, no `Happy is upon me`, porque entiende el significado de la oración, incluso si las palabras y la estructura de la oración son diferentes. + +El orden formal de la oración en irlandés es: + +- **verbo** (Tá o is) +- **adjetivo** (athas, o happy) +- **sujeto** (orm, o upon me) + +## Traducción + +Un programa de traducción ingenuo podría traducir solo palabras, ignorando la estructura de la oración. + +✅ Si has aprendido un segundo (o tercer o más) idioma como adulto, es posible que hayas comenzado pensando en tu idioma nativo, traduciendo un concepto palabra por palabra en tu cabeza al segundo idioma, y luego diciendo tu traducción. Esto es similar a lo que hacen los programas de traducción ingenuos. ¡Es importante superar esta fase para alcanzar la fluidez! + +La traducción ingenua conduce a malas (y a veces hilarantes) traducciones erróneas: `I feel happy` se traduce literalmente como `Mise bhraitheann athas` en irlandés. Eso significa (literalmente) `me feel happy` y no es una oración válida en irlandés. Aunque el inglés y el irlandés son idiomas hablados en dos islas vecinas, son idiomas muy diferentes con estructuras gramaticales distintas. + +> Puedes ver algunos videos sobre las tradiciones lingüísticas irlandesas como [este](https://www.youtube.com/watch?v=mRIaLSdRMMs) + +### Enfoques de aprendizaje automático + +Hasta ahora, has aprendido sobre el enfoque de reglas formales para el procesamiento del lenguaje natural. Otro enfoque es ignorar el significado de las palabras y _en su lugar usar aprendizaje automático para detectar patrones_. Esto puede funcionar en la traducción si tienes muchos textos (un *corpus*) o textos (*corpora*) en ambos idiomas de origen y destino. + +Por ejemplo, considera el caso de *Orgullo y Prejuicio*, una novela inglesa muy conocida escrita por Jane Austen en 1813. Si consultas el libro en inglés y una traducción humana del libro en *francés*, podrías detectar frases en uno que se traduzcan _idiomáticamente_ al otro. Lo harás en un momento. + +Por ejemplo, cuando una frase en inglés como `I have no money` se traduce literalmente al francés, podría convertirse en `Je n'ai pas de monnaie`. "Monnaie" es un 'falso amigo' complicado en francés, ya que 'money' y 'monnaie' no son sinónimos. Una mejor traducción que un humano podría hacer sería `Je n'ai pas d'argent`, porque transmite mejor el significado de que no tienes dinero (en lugar de 'cambio suelto', que es el significado de 'monnaie'). + +![monnaie](../../../../translated_images/monnaie.606c5fa8369d5c3b3031ef0713e2069485c87985dd475cd9056bdf4c76c1f4b8.es.png) + +> Imagen de [Jen Looper](https://twitter.com/jenlooper) + +Si un modelo de ML tiene suficientes traducciones humanas para construir un modelo, puede mejorar la precisión de las traducciones identificando patrones comunes en textos que han sido traducidos previamente por hablantes humanos expertos de ambos idiomas. + +### Ejercicio - traducción + +Puedes usar `TextBlob` para traducir oraciones. Prueba la famosa primera línea de **Orgullo y Prejuicio**: + +```python +from textblob import TextBlob + +blob = TextBlob( + "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife!" +) +print(blob.translate(to="fr")) + +``` + +`TextBlob` hace un buen trabajo con la traducción: "C'est une vérité universellement reconnue, qu'un homme célibataire en possession d'une bonne fortune doit avoir besoin d'une femme!". + +Se puede argumentar que la traducción de TextBlob es mucho más exacta, de hecho, que la traducción francesa de 1932 del libro por V. Leconte y Ch. Pressoir: + +"C'est une vérité universelle qu'un célibataire pourvu d'une belle fortune doit avoir envie de se marier, et, si peu que l'on sache de son sentiment à cet egard, lorsqu'il arrive dans une nouvelle résidence, cette idée est si bien fixée dans l'esprit de ses voisins qu'ils le considèrent sur-le-champ comme la propriété légitime de l'une ou l'autre de leurs filles." + +En este caso, la traducción informada por ML hace un mejor trabajo que el traductor humano, quien innecesariamente pone palabras en la boca del autor original para 'claridad'. + +> ¿Qué está pasando aquí? ¿Y por qué TextBlob es tan bueno en la traducción? Bueno, detrás de escena, está utilizando Google Translate, una IA sofisticada capaz de analizar millones de frases para predecir las mejores cadenas para la tarea en cuestión. Aquí no hay nada manual y necesitas una conexión a internet para usar `blob.translate`. + +✅ Prueba algunas oraciones más. ¿Cuál es mejor, la traducción de ML o la humana? ¿En qué casos? + +## Análisis de sentimiento + +Otra área donde el aprendizaje automático puede funcionar muy bien es el análisis de sentimiento. Un enfoque no basado en ML para el sentimiento es identificar palabras y frases que son 'positivas' y 'negativas'. Luego, dado un nuevo texto, calcular el valor total de las palabras positivas, negativas y neutrales para identificar el sentimiento general. + +Este enfoque es fácilmente engañado, como pudiste haber visto en la tarea de Marvin: la oración `Great, that was a wonderful waste of time, I'm glad we are lost on this dark road` es una oración sarcástica y negativa, pero el algoritmo simple detecta 'great', 'wonderful', 'glad' como positivas y 'waste', 'lost' y 'dark' como negativas. El sentimiento general se ve influido por estas palabras conflictivas. + +✅ Detente un momento y piensa en cómo transmitimos sarcasmo como hablantes humanos. La inflexión del tono juega un papel importante. Intenta decir la frase "Well, that film was awesome" de diferentes maneras para descubrir cómo tu voz transmite significado. + +### Enfoques de ML + +El enfoque de ML sería recopilar manualmente textos negativos y positivos: tweets, reseñas de películas o cualquier cosa donde el humano haya dado una puntuación *y* una opinión escrita. Luego, se pueden aplicar técnicas de PLN a las opiniones y puntuaciones, de modo que emerjan patrones (por ejemplo, las reseñas positivas de películas tienden a tener la frase 'Oscar worthy' más que las reseñas negativas, o las reseñas positivas de restaurantes dicen 'gourmet' mucho más que 'disgusting'). + +> ⚖️ **Ejemplo**: Si trabajas en la oficina de un político y se está debatiendo una nueva ley, los ciudadanos podrían escribir a la oficina con correos electrónicos a favor o en contra de la nueva ley. Supongamos que te encargan leer los correos electrónicos y clasificarlos en 2 pilas, *a favor* y *en contra*. Si hubiera muchos correos electrónicos, podrías sentirte abrumado al intentar leerlos todos. ¿No sería genial si un bot pudiera leerlos todos por ti, entenderlos y decirte en qué pila pertenece cada correo electrónico? +> +> Una forma de lograr eso es usar aprendizaje automático. Entrenarías el modelo con una parte de los correos electrónicos *en contra* y una parte de los *a favor*. El modelo tendería a asociar frases y palabras con el lado en contra y el lado a favor, *pero no entendería ninguno de los contenidos*, solo que ciertas palabras y patrones son más propensos a aparecer en un correo electrónico *en contra* o *a favor*. Podrías probarlo con algunos correos electrónicos que no usaste para entrenar el modelo y ver si llega a la misma conclusión que tú. Luego, una vez que estés satisfecho con la precisión del modelo, podrías procesar correos electrónicos futuros sin tener que leer cada uno. + +✅ ¿Este proceso te suena a procesos que has usado en lecciones anteriores? + +## Ejercicio - oraciones sentimentales + +El sentimiento se mide con una *polaridad* de -1 a 1, donde -1 es el sentimiento más negativo y 1 es el más positivo. El sentimiento también se mide con una puntuación de 0 - 1 para objetividad (0) y subjetividad (1). + +Echa otro vistazo a *Orgullo y Prejuicio* de Jane Austen. El texto está disponible aquí en [Project Gutenberg](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm). El siguiente ejemplo muestra un programa corto que analiza el sentimiento de las primeras y últimas oraciones del libro y muestra su polaridad de sentimiento y puntuación de subjetividad/objetividad. + +Deberías usar la biblioteca `TextBlob` (descrita anteriormente) para determinar el `sentimiento` (no necesitas escribir tu propio calculador de sentimiento) en la siguiente tarea. + +```python +from textblob import TextBlob + +quote1 = """It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.""" + +quote2 = """Darcy, as well as Elizabeth, really loved them; and they were both ever sensible of the warmest gratitude towards the persons who, by bringing her into Derbyshire, had been the means of uniting them.""" + +sentiment1 = TextBlob(quote1).sentiment +sentiment2 = TextBlob(quote2).sentiment + +print(quote1 + " has a sentiment of " + str(sentiment1)) +print(quote2 + " has a sentiment of " + str(sentiment2)) +``` + +Ves la siguiente salida: + +```output +It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want # of a wife. has a sentiment of Sentiment(polarity=0.20952380952380953, subjectivity=0.27142857142857146) + +Darcy, as well as Elizabeth, really loved them; and they were + both ever sensible of the warmest gratitude towards the persons + who, by bringing her into Derbyshire, had been the means of + uniting them. has a sentiment of Sentiment(polarity=0.7, subjectivity=0.8) +``` + +## Desafío - comprobar la polaridad del sentimiento + +Tu tarea es determinar, utilizando la polaridad del sentimiento, si *Orgullo y Prejuicio* tiene más oraciones absolutamente positivas que absolutamente negativas. Para esta tarea, puedes asumir que una puntuación de polaridad de 1 o -1 es absolutamente positiva o negativa respectivamente. + +**Pasos:** + +1. Descarga una [copia de Orgullo y Prejuicio](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) de Project Gutenberg como un archivo .txt. Elimina los metadatos al inicio y al final del archivo, dejando solo el texto original. +2. Abre el archivo en Python y extrae el contenido como una cadena. +3. Crea un TextBlob usando la cadena del libro. +4. Analiza cada oración del libro en un bucle. + 1. Si la polaridad es 1 o -1, almacena la oración en un array o lista de mensajes positivos o negativos. +5. Al final, imprime todas las oraciones positivas y negativas (por separado) y el número de cada una. + +Aquí tienes una [solución de ejemplo](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb). + +✅ Verificación de conocimiento + +1. El sentimiento se basa en las palabras utilizadas en la oración, pero ¿el código *entiende* las palabras? +2. ¿Crees que la polaridad del sentimiento es precisa, o en otras palabras, ¿estás de acuerdo con las puntuaciones? + 1. En particular, ¿estás de acuerdo o en desacuerdo con la polaridad absolutamente **positiva** de las siguientes oraciones? + * “What an excellent father you have, girls!” said she, when the door was shut. + * “Your examination of Mr. Darcy is over, I presume,” said Miss Bingley; “and pray what is the result?” “I am perfectly convinced by it that Mr. Darcy has no defect. + * How wonderfully these sort of things occur! + * I have the greatest dislike in the world to that sort of thing. + * Charlotte is an excellent manager, I dare say. + * “This is delightful indeed! + * I am so happy! + * Your idea of the ponies is delightful. + 2. Las siguientes 3 oraciones fueron puntuadas con un sentimiento absolutamente positivo, pero al leerlas detenidamente, no son oraciones positivas. ¿Por qué el análisis de sentimiento pensó que eran oraciones positivas? + * Happy shall I be, when his stay at Netherfield is over!” “I wish I could say anything to comfort you,” replied Elizabeth; “but it is wholly out of my power. + * If I could but see you as happy! + * Our distress, my dear Lizzy, is very great. + 3. ¿Estás de acuerdo o en desacuerdo con la polaridad absolutamente **negativa** de las siguientes oraciones? + - Everybody is disgusted with his pride. + - “I should like to know how he behaves among strangers.” “You shall hear then—but prepare yourself for something very dreadful. + - The pause was to Elizabeth’s feelings dreadful. + - It would be dreadful! + +✅ Cualquier aficionado a Jane Austen entenderá que a menudo usa sus libros para criticar los aspectos más ridículos de la sociedad de la Regencia inglesa. Elizabeth Bennett, el personaje principal en *Orgullo y Prejuicio*, es una observadora social perspicaz (como la autora) y su lenguaje a menudo está lleno de matices. Incluso Mr. Darcy (el interés amoroso en la historia) nota el uso juguetón y burlón del lenguaje por parte de Elizabeth: "He tenido el placer de conocerla el tiempo suficiente para saber que encuentra gran disfrute en profesar ocasionalmente opiniones que de hecho no son las suyas". + +--- + +## 🚀Desafío + +¿Puedes mejorar a Marvin aún más extrayendo otras características de la entrada del usuario? + +## [Cuestionario posterior a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/36/) + +## Revisión y autoestudio +Hay muchas maneras de extraer el sentimiento de un texto. Piensa en las aplicaciones empresariales que podrían utilizar esta técnica. Reflexiona sobre cómo podría salir mal. Lee más sobre sistemas sofisticados y preparados para empresas que analizan sentimientos, como [Azure Text Analysis](https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/how-tos/text-analytics-how-to-sentiment-analysis?tabs=version-3-1?WT.mc_id=academic-77952-leestott). Prueba algunas de las frases de Orgullo y Prejuicio mencionadas anteriormente y observa si puede detectar matices. + +## Tarea + +[Licencia poética](assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/3-Translation-Sentiment/assignment.md b/translations/es/6-NLP/3-Translation-Sentiment/assignment.md new file mode 100644 index 000000000..d96d8ff03 --- /dev/null +++ b/translations/es/6-NLP/3-Translation-Sentiment/assignment.md @@ -0,0 +1,25 @@ + +# Licencia poética + +## Instrucciones + +En [este cuaderno](https://www.kaggle.com/jenlooper/emily-dickinson-word-frequency) puedes encontrar más de 500 poemas de Emily Dickinson previamente analizados para determinar su sentimiento utilizando Azure text analytics. Usando este conjunto de datos, analízalo utilizando las técnicas descritas en la lección. ¿El sentimiento sugerido de un poema coincide con la decisión del servicio más sofisticado de Azure? ¿Por qué sí o por qué no, en tu opinión? ¿Hay algo que te sorprenda? + +## Rúbrica + +| Criterios | Ejemplar | Adecuado | Necesita Mejorar | +| --------- | ------------------------------------------------------------------------- | ------------------------------------------------------- | ------------------------ | +| | Se presenta un cuaderno con un análisis sólido de una muestra del autor | El cuaderno está incompleto o no realiza el análisis | No se presenta ningún cuaderno | + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/3-Translation-Sentiment/solution/Julia/README.md b/translations/es/6-NLP/3-Translation-Sentiment/solution/Julia/README.md new file mode 100644 index 000000000..19b11973d --- /dev/null +++ b/translations/es/6-NLP/3-Translation-Sentiment/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/3-Translation-Sentiment/solution/R/README.md b/translations/es/6-NLP/3-Translation-Sentiment/solution/R/README.md new file mode 100644 index 000000000..412650613 --- /dev/null +++ b/translations/es/6-NLP/3-Translation-Sentiment/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb b/translations/es/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb new file mode 100644 index 000000000..e879f1967 --- /dev/null +++ b/translations/es/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb @@ -0,0 +1,100 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "27de2abc0235ebd22080fc8f1107454d", + "translation_date": "2025-09-04T03:09:43+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from textblob import TextBlob\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# You should download the book text, clean it, and import it here\n", + "with open(\"pride.txt\", encoding=\"utf8\") as f:\n", + " file_contents = f.read()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "book_pride = TextBlob(file_contents)\n", + "positive_sentiment_sentences = []\n", + "negative_sentiment_sentences = []" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for sentence in book_pride.sentences:\n", + " if sentence.sentiment.polarity == 1:\n", + " positive_sentiment_sentences.append(sentence)\n", + " if sentence.sentiment.polarity == -1:\n", + " negative_sentiment_sentences.append(sentence)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n", + "for sentence in positive_sentiment_sentences:\n", + " print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n", + "for sentence in negative_sentiment_sentences:\n", + " print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/6-NLP/4-Hotel-Reviews-1/README.md b/translations/es/6-NLP/4-Hotel-Reviews-1/README.md new file mode 100644 index 000000000..0712c2c17 --- /dev/null +++ b/translations/es/6-NLP/4-Hotel-Reviews-1/README.md @@ -0,0 +1,418 @@ + +# Análisis de sentimientos con reseñas de hoteles - procesando los datos + +En esta sección, utilizarás las técnicas de las lecciones anteriores para realizar un análisis exploratorio de datos en un conjunto de datos grande. Una vez que tengas una buena comprensión de la utilidad de las diferentes columnas, aprenderás: + +- cómo eliminar las columnas innecesarias +- cómo calcular nuevos datos basados en las columnas existentes +- cómo guardar el conjunto de datos resultante para usarlo en el desafío final + +## [Cuestionario previo a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/37/) + +### Introducción + +Hasta ahora has aprendido que los datos de texto son bastante diferentes de los datos numéricos. Si el texto fue escrito o hablado por un humano, puede analizarse para encontrar patrones, frecuencias, sentimientos y significados. Esta lección te lleva a un conjunto de datos real con un desafío real: **[515K Hotel Reviews Data in Europe](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)**, que incluye una [licencia CC0: Dominio Público](https://creativecommons.org/publicdomain/zero/1.0/). Fue recopilado de Booking.com a partir de fuentes públicas. El creador del conjunto de datos es Jiashen Liu. + +### Preparación + +Necesitarás: + +* La capacidad de ejecutar notebooks .ipynb usando Python 3 +* pandas +* NLTK, [que deberías instalar localmente](https://www.nltk.org/install.html) +* El conjunto de datos disponible en Kaggle [515K Hotel Reviews Data in Europe](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe). Tiene un tamaño aproximado de 230 MB descomprimido. Descárgalo en la carpeta raíz `/data` asociada con estas lecciones de NLP. + +## Análisis exploratorio de datos + +Este desafío asume que estás construyendo un bot de recomendación de hoteles utilizando análisis de sentimientos y puntuaciones de reseñas de huéspedes. El conjunto de datos que usarás incluye reseñas de 1493 hoteles diferentes en 6 ciudades. + +Usando Python, un conjunto de datos de reseñas de hoteles y el análisis de sentimientos de NLTK, podrías descubrir: + +* ¿Cuáles son las palabras y frases más utilizadas en las reseñas? +* ¿Las *etiquetas* oficiales que describen un hotel se correlacionan con las puntuaciones de las reseñas (por ejemplo, hay más reseñas negativas para un hotel en particular por *Familia con niños pequeños* que por *Viajero solo*, lo que podría indicar que es mejor para *Viajeros solos*)? +* ¿Las puntuaciones de sentimiento de NLTK "coinciden" con la puntuación numérica del revisor del hotel? + +#### Conjunto de datos + +Exploremos el conjunto de datos que has descargado y guardado localmente. Abre el archivo en un editor como VS Code o incluso Excel. + +Los encabezados en el conjunto de datos son los siguientes: + +*Hotel_Address, Additional_Number_of_Scoring, Review_Date, Average_Score, Hotel_Name, Reviewer_Nationality, Negative_Review, Review_Total_Negative_Word_Counts, Total_Number_of_Reviews, Positive_Review, Review_Total_Positive_Word_Counts, Total_Number_of_Reviews_Reviewer_Has_Given, Reviewer_Score, Tags, days_since_review, lat, lng* + +Aquí están agrupados de una manera que podría ser más fácil de examinar: +##### Columnas del hotel + +* `Hotel_Name`, `Hotel_Address`, `lat` (latitud), `lng` (longitud) + * Usando *lat* y *lng* podrías trazar un mapa con Python mostrando las ubicaciones de los hoteles (quizás codificado por colores para reseñas negativas y positivas). + * Hotel_Address no parece ser útil para nosotros, y probablemente lo reemplazaremos con un país para facilitar la clasificación y búsqueda. + +**Columnas de meta-reseñas del hotel** + +* `Average_Score` + * Según el creador del conjunto de datos, esta columna es la *Puntuación promedio del hotel, calculada en base al último comentario del último año*. Esto parece una forma inusual de calcular la puntuación, pero es el dato recopilado, así que por ahora lo tomaremos como válido. + + ✅ Basándote en las otras columnas de este conjunto de datos, ¿puedes pensar en otra forma de calcular la puntuación promedio? + +* `Total_Number_of_Reviews` + * El número total de reseñas que ha recibido este hotel - no está claro (sin escribir algo de código) si esto se refiere a las reseñas en el conjunto de datos. +* `Additional_Number_of_Scoring` + * Esto significa que se dio una puntuación pero el revisor no escribió una reseña positiva o negativa. + +**Columnas de reseñas** + +- `Reviewer_Score` + - Este es un valor numérico con un máximo de 1 decimal entre los valores mínimos y máximos 2.5 y 10. + - No se explica por qué 2.5 es la puntuación más baja posible. +- `Negative_Review` + - Si un revisor no escribió nada, este campo tendrá "**No Negative**". + - Ten en cuenta que un revisor puede escribir una reseña positiva en la columna de reseñas negativas (por ejemplo, "no hay nada malo en este hotel"). +- `Review_Total_Negative_Word_Counts` + - Un mayor conteo de palabras negativas indica una puntuación más baja (sin verificar la sentimentalidad). +- `Positive_Review` + - Si un revisor no escribió nada, este campo tendrá "**No Positive**". + - Ten en cuenta que un revisor puede escribir una reseña negativa en la columna de reseñas positivas (por ejemplo, "no hay nada bueno en este hotel en absoluto"). +- `Review_Total_Positive_Word_Counts` + - Un mayor conteo de palabras positivas indica una puntuación más alta (sin verificar la sentimentalidad). +- `Review_Date` y `days_since_review` + - Se podría aplicar una medida de frescura o antigüedad a una reseña (las reseñas más antiguas podrían no ser tan precisas como las más recientes debido a cambios en la administración del hotel, renovaciones, adición de una piscina, etc.). +- `Tags` + - Estas son descripciones breves que un revisor puede seleccionar para describir el tipo de huésped que era (por ejemplo, solo o en familia), el tipo de habitación que tenía, la duración de la estancia y cómo se envió la reseña. + - Desafortunadamente, usar estas etiquetas es problemático, revisa la sección a continuación que discute su utilidad. + +**Columnas del revisor** + +- `Total_Number_of_Reviews_Reviewer_Has_Given` + - Esto podría ser un factor en un modelo de recomendación, por ejemplo, si pudieras determinar que los revisores más prolíficos con cientos de reseñas eran más propensos a ser negativos que positivos. Sin embargo, el revisor de cualquier reseña en particular no está identificado con un código único, y por lo tanto no puede vincularse a un conjunto de reseñas. Hay 30 revisores con 100 o más reseñas, pero es difícil ver cómo esto puede ayudar al modelo de recomendación. +- `Reviewer_Nationality` + - Algunas personas podrían pensar que ciertas nacionalidades son más propensas a dar una reseña positiva o negativa debido a una inclinación nacional. Ten cuidado al construir este tipo de puntos de vista anecdóticos en tus modelos. Estos son estereotipos nacionales (y a veces raciales), y cada revisor fue un individuo que escribió una reseña basada en su experiencia. Esta pudo haber sido filtrada a través de muchas perspectivas, como sus estancias previas en hoteles, la distancia recorrida y su temperamento personal. Pensar que su nacionalidad fue la razón de una puntuación de reseña es difícil de justificar. + +##### Ejemplos + +| Average Score | Total Number Reviews | Reviewer Score | Negative
Review | Positive Review | Tags | +| -------------- | ---------------------- | ---------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------- | ----------------------------------------------------------------------------------------- | +| 7.8 | 1945 | 2.5 | Este no es actualmente un hotel sino un sitio de construcción. Fui aterrorizado desde temprano en la mañana y todo el día con ruidos de construcción inaceptables mientras descansaba después de un largo viaje y trabajaba en la habitación. La gente trabajaba todo el día, es decir, con martillos neumáticos en las habitaciones adyacentes. Pedí un cambio de habitación pero no había ninguna habitación silenciosa disponible. Para empeorar las cosas, me cobraron de más. Me fui en la noche ya que tenía un vuelo muy temprano y recibí una factura adecuada. Un día después, el hotel hizo otro cargo sin mi consentimiento por encima del precio reservado. Es un lugar terrible. No te castigues reservando aquí. | Nada. Lugar terrible. Mantente alejado. | Viaje de negocios. Pareja. Habitación doble estándar. Estancia de 2 noches. | + +Como puedes ver, este huésped no tuvo una estancia feliz en este hotel. El hotel tiene una buena puntuación promedio de 7.8 y 1945 reseñas, pero este revisor le dio un 2.5 y escribió 115 palabras sobre lo negativa que fue su estancia. Si no escribió nada en absoluto en la columna Positive_Review, podrías deducir que no hubo nada positivo, pero aún así escribió 7 palabras de advertencia. Si solo contáramos palabras en lugar del significado o sentimiento de las palabras, podríamos tener una visión sesgada de la intención del revisor. Curiosamente, su puntuación de 2.5 es confusa, porque si esa estancia en el hotel fue tan mala, ¿por qué darle algún punto? Al investigar el conjunto de datos de cerca, verás que la puntuación más baja posible es 2.5, no 0. La puntuación más alta posible es 10. + +##### Tags + +Como se mencionó anteriormente, a primera vista, la idea de usar `Tags` para categorizar los datos tiene sentido. Desafortunadamente, estas etiquetas no están estandarizadas, lo que significa que en un hotel dado, las opciones podrían ser *Single room*, *Twin room* y *Double room*, pero en el siguiente hotel, son *Deluxe Single Room*, *Classic Queen Room* y *Executive King Room*. Estas podrían ser las mismas cosas, pero hay tantas variaciones que la elección se convierte en: + +1. Intentar cambiar todos los términos a un estándar único, lo cual es muy difícil, porque no está claro cuál sería la ruta de conversión en cada caso (por ejemplo, *Classic single room* se mapea a *Single room* pero *Superior Queen Room with Courtyard Garden or City View* es mucho más difícil de mapear). + +1. Podemos tomar un enfoque de NLP y medir la frecuencia de ciertos términos como *Solo*, *Viajero de negocios* o *Familia con niños pequeños* según se aplican a cada hotel, y factorizar eso en la recomendación. + +Las etiquetas suelen (pero no siempre) ser un solo campo que contiene una lista de 5 a 6 valores separados por comas que se alinean con *Tipo de viaje*, *Tipo de huéspedes*, *Tipo de habitación*, *Número de noches* y *Tipo de dispositivo en el que se envió la reseña*. Sin embargo, debido a que algunos revisores no completan cada campo (pueden dejar uno en blanco), los valores no siempre están en el mismo orden. + +Como ejemplo, toma *Tipo de grupo*. Hay 1025 posibilidades únicas en este campo en la columna `Tags`, y desafortunadamente solo algunas de ellas se refieren a un grupo (algunas son el tipo de habitación, etc.). Si filtras solo las que mencionan familia, los resultados contienen muchos valores de tipo *Family room*. Si incluyes el término *with*, es decir, cuentas los valores *Family with*, los resultados son mejores, con más de 80,000 de los 515,000 resultados que contienen la frase "Family with young children" o "Family with older children". + +Esto significa que la columna de etiquetas no es completamente inútil para nosotros, pero requerirá algo de trabajo para hacerla útil. + +##### Puntuación promedio del hotel + +Hay una serie de rarezas o discrepancias con el conjunto de datos que no puedo resolver, pero se ilustran aquí para que estés al tanto de ellas al construir tus modelos. Si las resuelves, por favor háznoslo saber en la sección de discusión. + +El conjunto de datos tiene las siguientes columnas relacionadas con la puntuación promedio y el número de reseñas: + +1. Hotel_Name +2. Additional_Number_of_Scoring +3. Average_Score +4. Total_Number_of_Reviews +5. Reviewer_Score + +El único hotel con más reseñas en este conjunto de datos es *Britannia International Hotel Canary Wharf* con 4789 reseñas de 515,000. Pero si miramos el valor de `Total_Number_of_Reviews` para este hotel, es 9086. Podrías deducir que hay muchas más puntuaciones sin reseñas, así que tal vez deberíamos sumar el valor de la columna `Additional_Number_of_Scoring`. Ese valor es 2682, y al sumarlo a 4789 obtenemos 7471, lo cual sigue siendo 1615 menos que el valor de `Total_Number_of_Reviews`. + +Si tomas la columna `Average_Score`, podrías deducir que es el promedio de las reseñas en el conjunto de datos, pero la descripción de Kaggle es "*Puntuación promedio del hotel, calculada en base al último comentario del último año*". Esto no parece tan útil, pero podemos calcular nuestro propio promedio basado en las puntuaciones de las reseñas en el conjunto de datos. Usando el mismo hotel como ejemplo, la puntuación promedio del hotel se da como 7.1 pero la puntuación calculada (promedio de las puntuaciones de los revisores *en* el conjunto de datos) es 6.8. Esto es cercano, pero no el mismo valor, y solo podemos suponer que las puntuaciones dadas en las reseñas de `Additional_Number_of_Scoring` aumentaron el promedio a 7.1. Desafortunadamente, sin forma de probar o demostrar esa afirmación, es difícil usar o confiar en `Average_Score`, `Additional_Number_of_Scoring` y `Total_Number_of_Reviews` cuando se basan en, o se refieren a, datos que no tenemos. + +Para complicar aún más las cosas, el hotel con el segundo mayor número de reseñas tiene una puntuación promedio calculada de 8.12 y la `Average_Score` del conjunto de datos es 8.1. ¿Es esta puntuación correcta una coincidencia o es el primer hotel una discrepancia? +Sobre la posibilidad de que este hotel sea un caso atípico, y que tal vez la mayoría de los valores coincidan (pero algunos no por alguna razón), escribiremos un programa breve para explorar los valores en el conjunto de datos y determinar el uso correcto (o no uso) de los valores. + +> 🚨 Una nota de precaución +> +> Al trabajar con este conjunto de datos, escribirás código que calcula algo a partir del texto sin necesidad de leer o analizar el texto tú mismo. Esta es la esencia del NLP: interpretar significado o sentimiento sin que un humano tenga que hacerlo. Sin embargo, es posible que leas algunas de las reseñas negativas. Te insto a que no lo hagas, porque no es necesario. Algunas son absurdas o irrelevantes, como "El clima no fue bueno", algo fuera del control del hotel o de cualquier persona. Pero también hay un lado oscuro en algunas reseñas. A veces las reseñas negativas son racistas, sexistas o discriminatorias por edad. Esto es desafortunado pero esperable en un conjunto de datos extraído de un sitio web público. Algunos usuarios dejan reseñas que podrían resultarte desagradables, incómodas o perturbadoras. Es mejor dejar que el código mida el sentimiento en lugar de leerlas tú mismo y molestarte. Dicho esto, es una minoría la que escribe este tipo de cosas, pero existen de todos modos. + +## Ejercicio - Exploración de datos +### Cargar los datos + +Ya es suficiente examinar los datos visualmente, ahora escribirás algo de código y obtendrás respuestas. Esta sección utiliza la biblioteca pandas. Tu primera tarea es asegurarte de que puedes cargar y leer los datos en formato CSV. La biblioteca pandas tiene un cargador rápido de CSV, y el resultado se coloca en un dataframe, como en lecciones anteriores. El CSV que estamos cargando tiene más de medio millón de filas, pero solo 17 columnas. Pandas te ofrece muchas formas poderosas de interactuar con un dataframe, incluida la capacidad de realizar operaciones en cada fila. + +A partir de aquí, en esta lección habrá fragmentos de código y algunas explicaciones del código, así como discusiones sobre lo que significan los resultados. Usa el archivo _notebook.ipynb_ incluido para tu código. + +Comencemos cargando el archivo de datos que usarás: + +```python +# Load the hotel reviews from CSV +import pandas as pd +import time +# importing time so the start and end time can be used to calculate file loading time +print("Loading data file now, this could take a while depending on file size") +start = time.time() +# df is 'DataFrame' - make sure you downloaded the file to the data folder +df = pd.read_csv('../../data/Hotel_Reviews.csv') +end = time.time() +print("Loading took " + str(round(end - start, 2)) + " seconds") +``` + +Ahora que los datos están cargados, podemos realizar algunas operaciones sobre ellos. Mantén este código en la parte superior de tu programa para la siguiente parte. + +## Explorar los datos + +En este caso, los datos ya están *limpios*, lo que significa que están listos para trabajar y no tienen caracteres en otros idiomas que puedan causar problemas a los algoritmos que esperan solo caracteres en inglés. + +✅ Es posible que tengas que trabajar con datos que requieran un procesamiento inicial para formatearlos antes de aplicar técnicas de NLP, pero no en esta ocasión. Si tuvieras que hacerlo, ¿cómo manejarías caracteres que no están en inglés? + +Tómate un momento para asegurarte de que, una vez cargados los datos, puedes explorarlos con código. Es muy fácil querer centrarse en las columnas `Negative_Review` y `Positive_Review`. Están llenas de texto natural para que tus algoritmos de NLP lo procesen. Pero espera, antes de saltar al NLP y al análisis de sentimientos, deberías seguir el código a continuación para verificar si los valores dados en el conjunto de datos coinciden con los valores que calculas con pandas. + +## Operaciones con el dataframe + +La primera tarea en esta lección es verificar si las siguientes afirmaciones son correctas escribiendo código que examine el dataframe (sin modificarlo). + +> Como en muchas tareas de programación, hay varias formas de completarlas, pero un buen consejo es hacerlo de la manera más simple y fácil posible, especialmente si será más fácil de entender cuando vuelvas a este código en el futuro. Con dataframes, hay una API completa que a menudo tendrá una forma eficiente de hacer lo que necesitas. + +Trata las siguientes preguntas como tareas de codificación e intenta responderlas sin mirar la solución. + +1. Imprime la *forma* del dataframe que acabas de cargar (la forma es el número de filas y columnas). +2. Calcula la frecuencia de las nacionalidades de los revisores: + 1. ¿Cuántos valores distintos hay en la columna `Reviewer_Nationality` y cuáles son? + 2. ¿Qué nacionalidad de revisor es la más común en el conjunto de datos (imprime el país y el número de reseñas)? + 3. ¿Cuáles son las siguientes 10 nacionalidades más frecuentes y su conteo de frecuencia? +3. ¿Cuál fue el hotel más reseñado por cada una de las 10 nacionalidades de revisores más frecuentes? +4. ¿Cuántas reseñas hay por hotel (conteo de frecuencia de hotel) en el conjunto de datos? +5. Aunque hay una columna `Average_Score` para cada hotel en el conjunto de datos, también puedes calcular un puntaje promedio (obteniendo el promedio de todos los puntajes de los revisores en el conjunto de datos para cada hotel). Agrega una nueva columna a tu dataframe con el encabezado `Calc_Average_Score` que contenga ese promedio calculado. +6. ¿Hay hoteles que tengan el mismo `Average_Score` (redondeado a 1 decimal) y `Calc_Average_Score`? + 1. Intenta escribir una función en Python que tome una Serie (fila) como argumento y compare los valores, imprimiendo un mensaje cuando los valores no sean iguales. Luego usa el método `.apply()` para procesar cada fila con la función. +7. Calcula e imprime cuántas filas tienen valores de columna `Negative_Review` iguales a "No Negative". +8. Calcula e imprime cuántas filas tienen valores de columna `Positive_Review` iguales a "No Positive". +9. Calcula e imprime cuántas filas tienen valores de columna `Positive_Review` iguales a "No Positive" **y** valores de columna `Negative_Review` iguales a "No Negative". + +### Respuestas en código + +1. Imprime la *forma* del dataframe que acabas de cargar (la forma es el número de filas y columnas). + + ```python + print("The shape of the data (rows, cols) is " + str(df.shape)) + > The shape of the data (rows, cols) is (515738, 17) + ``` + +2. Calcula la frecuencia de las nacionalidades de los revisores: + + 1. ¿Cuántos valores distintos hay en la columna `Reviewer_Nationality` y cuáles son? + 2. ¿Qué nacionalidad de revisor es la más común en el conjunto de datos (imprime el país y el número de reseñas)? + + ```python + # value_counts() creates a Series object that has index and values in this case, the country and the frequency they occur in reviewer nationality + nationality_freq = df["Reviewer_Nationality"].value_counts() + print("There are " + str(nationality_freq.size) + " different nationalities") + # print first and last rows of the Series. Change to nationality_freq.to_string() to print all of the data + print(nationality_freq) + + There are 227 different nationalities + United Kingdom 245246 + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + ... + Comoros 1 + Palau 1 + Northern Mariana Islands 1 + Cape Verde 1 + Guinea 1 + Name: Reviewer_Nationality, Length: 227, dtype: int64 + ``` + + 3. ¿Cuáles son las siguientes 10 nacionalidades más frecuentes y su conteo de frecuencia? + + ```python + print("The highest frequency reviewer nationality is " + str(nationality_freq.index[0]).strip() + " with " + str(nationality_freq[0]) + " reviews.") + # Notice there is a leading space on the values, strip() removes that for printing + # What is the top 10 most common nationalities and their frequencies? + print("The next 10 highest frequency reviewer nationalities are:") + print(nationality_freq[1:11].to_string()) + + The highest frequency reviewer nationality is United Kingdom with 245246 reviews. + The next 10 highest frequency reviewer nationalities are: + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + Saudi Arabia 8951 + Netherlands 8772 + Switzerland 8678 + Germany 7941 + Canada 7894 + France 7296 + ``` + +3. ¿Cuál fue el hotel más reseñado por cada una de las 10 nacionalidades de revisores más frecuentes? + + ```python + # What was the most frequently reviewed hotel for the top 10 nationalities + # Normally with pandas you will avoid an explicit loop, but wanted to show creating a new dataframe using criteria (don't do this with large amounts of data because it could be very slow) + for nat in nationality_freq[:10].index: + # First, extract all the rows that match the criteria into a new dataframe + nat_df = df[df["Reviewer_Nationality"] == nat] + # Now get the hotel freq + freq = nat_df["Hotel_Name"].value_counts() + print("The most reviewed hotel for " + str(nat).strip() + " was " + str(freq.index[0]) + " with " + str(freq[0]) + " reviews.") + + The most reviewed hotel for United Kingdom was Britannia International Hotel Canary Wharf with 3833 reviews. + The most reviewed hotel for United States of America was Hotel Esther a with 423 reviews. + The most reviewed hotel for Australia was Park Plaza Westminster Bridge London with 167 reviews. + The most reviewed hotel for Ireland was Copthorne Tara Hotel London Kensington with 239 reviews. + The most reviewed hotel for United Arab Emirates was Millennium Hotel London Knightsbridge with 129 reviews. + The most reviewed hotel for Saudi Arabia was The Cumberland A Guoman Hotel with 142 reviews. + The most reviewed hotel for Netherlands was Jaz Amsterdam with 97 reviews. + The most reviewed hotel for Switzerland was Hotel Da Vinci with 97 reviews. + The most reviewed hotel for Germany was Hotel Da Vinci with 86 reviews. + The most reviewed hotel for Canada was St James Court A Taj Hotel London with 61 reviews. + ``` + +4. ¿Cuántas reseñas hay por hotel (conteo de frecuencia de hotel) en el conjunto de datos? + + ```python + # First create a new dataframe based on the old one, removing the uneeded columns + hotel_freq_df = df.drop(["Hotel_Address", "Additional_Number_of_Scoring", "Review_Date", "Average_Score", "Reviewer_Nationality", "Negative_Review", "Review_Total_Negative_Word_Counts", "Positive_Review", "Review_Total_Positive_Word_Counts", "Total_Number_of_Reviews_Reviewer_Has_Given", "Reviewer_Score", "Tags", "days_since_review", "lat", "lng"], axis = 1) + + # Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found + hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count') + + # Get rid of all the duplicated rows + hotel_freq_df = hotel_freq_df.drop_duplicates(subset = ["Hotel_Name"]) + display(hotel_freq_df) + ``` + | Hotel_Name | Total_Number_of_Reviews | Total_Reviews_Found | + | :----------------------------------------: | :---------------------: | :-----------------: | + | Britannia International Hotel Canary Wharf | 9086 | 4789 | + | Park Plaza Westminster Bridge London | 12158 | 4169 | + | Copthorne Tara Hotel London Kensington | 7105 | 3578 | + | ... | ... | ... | + | Mercure Paris Porte d Orleans | 110 | 10 | + | Hotel Wagner | 135 | 10 | + | Hotel Gallitzinberg | 173 | 8 | + + Puede que notes que los resultados *contados en el conjunto de datos* no coinciden con el valor en `Total_Number_of_Reviews`. No está claro si este valor en el conjunto de datos representa el número total de reseñas que tuvo el hotel, pero no todas fueron extraídas, o algún otro cálculo. `Total_Number_of_Reviews` no se utiliza en el modelo debido a esta falta de claridad. + +5. Aunque hay una columna `Average_Score` para cada hotel en el conjunto de datos, también puedes calcular un puntaje promedio (obteniendo el promedio de todos los puntajes de los revisores en el conjunto de datos para cada hotel). Agrega una nueva columna a tu dataframe con el encabezado `Calc_Average_Score` que contenga ese promedio calculado. Imprime las columnas `Hotel_Name`, `Average_Score` y `Calc_Average_Score`. + + ```python + # define a function that takes a row and performs some calculation with it + def get_difference_review_avg(row): + return row["Average_Score"] - row["Calc_Average_Score"] + + # 'mean' is mathematical word for 'average' + df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + + # Add a new column with the difference between the two average scores + df["Average_Score_Difference"] = df.apply(get_difference_review_avg, axis = 1) + + # Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel) + review_scores_df = df.drop_duplicates(subset = ["Hotel_Name"]) + + # Sort the dataframe to find the lowest and highest average score difference + review_scores_df = review_scores_df.sort_values(by=["Average_Score_Difference"]) + + display(review_scores_df[["Average_Score_Difference", "Average_Score", "Calc_Average_Score", "Hotel_Name"]]) + ``` + + También podrías preguntarte sobre el valor de `Average_Score` y por qué a veces es diferente del puntaje promedio calculado. Como no podemos saber por qué algunos valores coinciden, pero otros tienen una diferencia, es más seguro en este caso usar los puntajes de las reseñas que tenemos para calcular el promedio nosotros mismos. Dicho esto, las diferencias suelen ser muy pequeñas. Aquí están los hoteles con la mayor desviación entre el promedio del conjunto de datos y el promedio calculado: + + | Average_Score_Difference | Average_Score | Calc_Average_Score | Hotel_Name | + | :----------------------: | :-----------: | :----------------: | ------------------------------------------: | + | -0.8 | 7.7 | 8.5 | Best Western Hotel Astoria | + | -0.7 | 8.8 | 9.5 | Hotel Stendhal Place Vend me Paris MGallery | + | -0.7 | 7.5 | 8.2 | Mercure Paris Porte d Orleans | + | -0.7 | 7.9 | 8.6 | Renaissance Paris Vendome Hotel | + | -0.5 | 7.0 | 7.5 | Hotel Royal Elys es | + | ... | ... | ... | ... | + | 0.7 | 7.5 | 6.8 | Mercure Paris Op ra Faubourg Montmartre | + | 0.8 | 7.1 | 6.3 | Holiday Inn Paris Montparnasse Pasteur | + | 0.9 | 6.8 | 5.9 | Villa Eugenie | + | 0.9 | 8.6 | 7.7 | MARQUIS Faubourg St Honor Relais Ch teaux | + | 1.3 | 7.2 | 5.9 | Kube Hotel Ice Bar | + + Con solo 1 hotel que tiene una diferencia de puntaje mayor a 1, significa que probablemente podamos ignorar la diferencia y usar el puntaje promedio calculado. + +6. Calcula e imprime cuántas filas tienen valores de columna `Negative_Review` iguales a "No Negative". + +7. Calcula e imprime cuántas filas tienen valores de columna `Positive_Review` iguales a "No Positive". + +8. Calcula e imprime cuántas filas tienen valores de columna `Positive_Review` iguales a "No Positive" **y** valores de columna `Negative_Review` iguales a "No Negative". + + ```python + # with lambdas: + start = time.time() + no_negative_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" else False , axis=1) + print("Number of No Negative reviews: " + str(len(no_negative_reviews[no_negative_reviews == True].index))) + + no_positive_reviews = df.apply(lambda x: True if x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of No Positive reviews: " + str(len(no_positive_reviews[no_positive_reviews == True].index))) + + both_no_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" and x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of both No Negative and No Positive reviews: " + str(len(both_no_reviews[both_no_reviews == True].index))) + end = time.time() + print("Lambdas took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Lambdas took 9.64 seconds + ``` + +## Otra forma + +Otra forma de contar elementos sin Lambdas, y usar sum para contar las filas: + + ```python + # without lambdas (using a mixture of notations to show you can use both) + start = time.time() + no_negative_reviews = sum(df.Negative_Review == "No Negative") + print("Number of No Negative reviews: " + str(no_negative_reviews)) + + no_positive_reviews = sum(df["Positive_Review"] == "No Positive") + print("Number of No Positive reviews: " + str(no_positive_reviews)) + + both_no_reviews = sum((df.Negative_Review == "No Negative") & (df.Positive_Review == "No Positive")) + print("Number of both No Negative and No Positive reviews: " + str(both_no_reviews)) + + end = time.time() + print("Sum took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Sum took 0.19 seconds + ``` + + Puede que hayas notado que hay 127 filas que tienen valores "No Negative" y "No Positive" en las columnas `Negative_Review` y `Positive_Review`, respectivamente. Esto significa que el revisor dio al hotel un puntaje numérico, pero se negó a escribir una reseña positiva o negativa. Afortunadamente, esta es una pequeña cantidad de filas (127 de 515738, o 0.02%), por lo que probablemente no sesgará nuestro modelo o resultados en ninguna dirección en particular. Sin embargo, podrías no haber esperado que un conjunto de datos de reseñas tuviera filas sin reseñas, por lo que vale la pena explorar los datos para descubrir filas como esta. + +Ahora que has explorado el conjunto de datos, en la próxima lección filtrarás los datos y agregarás análisis de sentimientos. + +--- +## 🚀Desafío + +Esta lección demuestra, como vimos en lecciones anteriores, lo críticamente importante que es entender tus datos y sus peculiaridades antes de realizar operaciones sobre ellos. Los datos basados en texto, en particular, requieren un escrutinio cuidadoso. Explora varios conjuntos de datos ricos en texto y ve si puedes descubrir áreas que podrían introducir sesgos o sentimientos sesgados en un modelo. + +## [Cuestionario posterior a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/38/) + +## Revisión y autoestudio + +Toma [este Learning Path sobre NLP](https://docs.microsoft.com/learn/paths/explore-natural-language-processing/?WT.mc_id=academic-77952-leestott) para descubrir herramientas que puedes probar al construir modelos basados en texto y voz. + +## Tarea + +[NLTK](assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/4-Hotel-Reviews-1/assignment.md b/translations/es/6-NLP/4-Hotel-Reviews-1/assignment.md new file mode 100644 index 000000000..657f19bcf --- /dev/null +++ b/translations/es/6-NLP/4-Hotel-Reviews-1/assignment.md @@ -0,0 +1,19 @@ + +# NLTK + +## Instrucciones + +NLTK es una biblioteca muy conocida para su uso en lingüística computacional y procesamiento del lenguaje natural (NLP). Aprovecha esta oportunidad para leer el '[libro de NLTK](https://www.nltk.org/book/)' y probar sus ejercicios. En esta tarea no calificada, tendrás la oportunidad de conocer esta biblioteca más a fondo. + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/4-Hotel-Reviews-1/notebook.ipynb b/translations/es/6-NLP/4-Hotel-Reviews-1/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/es/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md b/translations/es/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md new file mode 100644 index 000000000..b75ef597e --- /dev/null +++ b/translations/es/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/4-Hotel-Reviews-1/solution/R/README.md b/translations/es/6-NLP/4-Hotel-Reviews-1/solution/R/README.md new file mode 100644 index 000000000..30759bd6d --- /dev/null +++ b/translations/es/6-NLP/4-Hotel-Reviews-1/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb b/translations/es/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb new file mode 100644 index 000000000..5c5fb0e80 --- /dev/null +++ b/translations/es/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb @@ -0,0 +1,174 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2d05e7db439376aa824f4b387f8324ca", + "translation_date": "2025-09-04T03:09:25+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# EDA\n", + "import pandas as pd\n", + "import time" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_difference_review_avg(row):\n", + " return row[\"Average_Score\"] - row[\"Calc_Average_Score\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "print(\"Loading data file now, this could take a while depending on file size\")\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n", + "end = time.time()\n", + "print(\"Loading took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What shape is the data (rows, columns)?\n", + "print(\"The shape of the data (rows, cols) is \" + str(df.shape))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# value_counts() creates a Series object that has index and values\n", + "# in this case, the country and the frequency they occur in reviewer nationality\n", + "nationality_freq = df[\"Reviewer_Nationality\"].value_counts()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What reviewer nationality is the most common in the dataset?\n", + "print(\"The highest frequency reviewer nationality is \" + str(nationality_freq.index[0]).strip() + \" with \" + str(nationality_freq[0]) + \" reviews.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What is the top 10 most common nationalities and their frequencies?\n", + "print(\"The top 10 highest frequency reviewer nationalities are:\")\n", + "print(nationality_freq[0:10].to_string())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many unique nationalities are there?\n", + "print(\"There are \" + str(nationality_freq.index.size) + \" unique nationalities in the dataset\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What was the most frequently reviewed hotel for the top 10 nationalities - print the hotel and number of reviews\n", + "for nat in nationality_freq[:10].index:\n", + " # First, extract all the rows that match the criteria into a new dataframe\n", + " nat_df = df[df[\"Reviewer_Nationality\"] == nat] \n", + " # Now get the hotel freq\n", + " freq = nat_df[\"Hotel_Name\"].value_counts()\n", + " print(\"The most reviewed hotel for \" + str(nat).strip() + \" was \" + str(freq.index[0]) + \" with \" + str(freq[0]) + \" reviews.\") \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many reviews are there per hotel (frequency count of hotel) and do the results match the value in `Total_Number_of_Reviews`?\n", + "# First create a new dataframe based on the old one, removing the uneeded columns\n", + "hotel_freq_df = df.drop([\"Hotel_Address\", \"Additional_Number_of_Scoring\", \"Review_Date\", \"Average_Score\", \"Reviewer_Nationality\", \"Negative_Review\", \"Review_Total_Negative_Word_Counts\", \"Positive_Review\", \"Review_Total_Positive_Word_Counts\", \"Total_Number_of_Reviews_Reviewer_Has_Given\", \"Reviewer_Score\", \"Tags\", \"days_since_review\", \"lat\", \"lng\"], axis = 1)\n", + "# Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found\n", + "hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count')\n", + "# Get rid of all the duplicated rows\n", + "hotel_freq_df = hotel_freq_df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "print()\n", + "print(hotel_freq_df.to_string())\n", + "print(str(hotel_freq_df.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# While there is an `Average_Score` for each hotel according to the dataset, \n", + "# you can also calculate an average score (getting the average of all reviewer scores in the dataset for each hotel)\n", + "# Add a new column to your dataframe with the column header `Calc_Average_Score` that contains that calculated average. \n", + "df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n", + "# Add a new column with the difference between the two average scores\n", + "df[\"Average_Score_Difference\"] = df.apply(get_difference_review_avg, axis = 1)\n", + "# Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel)\n", + "review_scores_df = df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "# Sort the dataframe to find the lowest and highest average score difference\n", + "review_scores_df = review_scores_df.sort_values(by=[\"Average_Score_Difference\"])\n", + "print(review_scores_df[[\"Average_Score_Difference\", \"Average_Score\", \"Calc_Average_Score\", \"Hotel_Name\"]])\n", + "# Do any hotels have the same (rounded to 1 decimal place) `Average_Score` and `Calc_Average_Score`?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/6-NLP/5-Hotel-Reviews-2/README.md b/translations/es/6-NLP/5-Hotel-Reviews-2/README.md new file mode 100644 index 000000000..291837856 --- /dev/null +++ b/translations/es/6-NLP/5-Hotel-Reviews-2/README.md @@ -0,0 +1,384 @@ + +# Análisis de sentimientos con reseñas de hoteles + +Ahora que has explorado el conjunto de datos en detalle, es momento de filtrar las columnas y luego usar técnicas de PLN (Procesamiento de Lenguaje Natural) en el conjunto de datos para obtener nuevas perspectivas sobre los hoteles. + +## [Cuestionario previo a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/39/) + +### Operaciones de filtrado y análisis de sentimientos + +Como probablemente hayas notado, el conjunto de datos tiene algunos problemas. Algunas columnas están llenas de información inútil, otras parecen incorrectas. Si son correctas, no está claro cómo se calcularon, y las respuestas no pueden ser verificadas de forma independiente con tus propios cálculos. + +## Ejercicio: un poco más de procesamiento de datos + +Limpia los datos un poco más. Agrega columnas que serán útiles más adelante, cambia los valores en otras columnas y elimina ciertas columnas por completo. + +1. Procesamiento inicial de columnas + + 1. Elimina `lat` y `lng`. + + 2. Sustituye los valores de `Hotel_Address` con los siguientes valores (si la dirección contiene el nombre de la ciudad y el país, cámbialo solo por la ciudad y el país). + + Estas son las únicas ciudades y países en el conjunto de datos: + + Ámsterdam, Países Bajos + Barcelona, España + Londres, Reino Unido + Milán, Italia + París, Francia + Viena, Austria + + ```python + def replace_address(row): + if "Netherlands" in row["Hotel_Address"]: + return "Amsterdam, Netherlands" + elif "Barcelona" in row["Hotel_Address"]: + return "Barcelona, Spain" + elif "United Kingdom" in row["Hotel_Address"]: + return "London, United Kingdom" + elif "Milan" in row["Hotel_Address"]: + return "Milan, Italy" + elif "France" in row["Hotel_Address"]: + return "Paris, France" + elif "Vienna" in row["Hotel_Address"]: + return "Vienna, Austria" + + # Replace all the addresses with a shortened, more useful form + df["Hotel_Address"] = df.apply(replace_address, axis = 1) + # The sum of the value_counts() should add up to the total number of reviews + print(df["Hotel_Address"].value_counts()) + ``` + + Ahora puedes consultar datos a nivel de país: + + ```python + display(df.groupby("Hotel_Address").agg({"Hotel_Name": "nunique"})) + ``` + + | Hotel_Address | Hotel_Name | + | :--------------------- | :--------: | + | Amsterdam, Netherlands | 105 | + | Barcelona, Spain | 211 | + | London, United Kingdom | 400 | + | Milan, Italy | 162 | + | Paris, France | 458 | + | Vienna, Austria | 158 | + +2. Procesar columnas de meta-reseñas de hoteles + + 1. Elimina `Additional_Number_of_Scoring`. + + 2. Sustituye `Total_Number_of_Reviews` con el número total de reseñas para ese hotel que realmente están en el conjunto de datos. + + 3. Sustituye `Average_Score` con nuestra propia puntuación calculada. + + ```python + # Drop `Additional_Number_of_Scoring` + df.drop(["Additional_Number_of_Scoring"], axis = 1, inplace=True) + # Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values + df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count') + df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + ``` + +3. Procesar columnas de reseñas + + 1. Elimina `Review_Total_Negative_Word_Counts`, `Review_Total_Positive_Word_Counts`, `Review_Date` y `days_since_review`. + + 2. Conserva `Reviewer_Score`, `Negative_Review` y `Positive_Review` tal como están. + + 3. Conserva `Tags` por ahora. + + - Realizaremos algunas operaciones de filtrado adicionales en las etiquetas en la siguiente sección y luego eliminaremos las etiquetas. + +4. Procesar columnas de los revisores + + 1. Elimina `Total_Number_of_Reviews_Reviewer_Has_Given`. + + 2. Conserva `Reviewer_Nationality`. + +### Columnas de etiquetas + +La columna `Tag` es problemática ya que es una lista (en forma de texto) almacenada en la columna. Desafortunadamente, el orden y el número de subsecciones en esta columna no siempre son los mismos. Es difícil para una persona identificar las frases correctas de interés, porque hay 515,000 filas y 1,427 hoteles, y cada uno tiene opciones ligeramente diferentes que un revisor podría elegir. Aquí es donde el PLN brilla. Puedes escanear el texto y encontrar las frases más comunes, y contarlas. + +Desafortunadamente, no estamos interesados en palabras individuales, sino en frases de varias palabras (por ejemplo, *Viaje de negocios*). Ejecutar un algoritmo de distribución de frecuencia de frases en tantos datos (6,762,646 palabras) podría tomar un tiempo extraordinario, pero sin mirar los datos, parecería que es un gasto necesario. Aquí es donde el análisis exploratorio de datos resulta útil, porque al haber visto una muestra de las etiquetas como `[' Viaje de negocios ', ' Viajero solo ', ' Habitación individual ', ' Estancia de 5 noches ', ' Enviado desde un dispositivo móvil ']`, puedes comenzar a preguntarte si es posible reducir enormemente el procesamiento que tienes que hacer. Afortunadamente, lo es, pero primero necesitas seguir algunos pasos para determinar las etiquetas de interés. + +### Filtrando etiquetas + +Recuerda que el objetivo del conjunto de datos es agregar sentimiento y columnas que te ayuden a elegir el mejor hotel (para ti o tal vez para un cliente que te encargue crear un bot de recomendaciones de hoteles). Debes preguntarte si las etiquetas son útiles o no en el conjunto de datos final. Aquí hay una interpretación (si necesitaras el conjunto de datos para otros fines, diferentes etiquetas podrían incluirse/excluirse): + +1. El tipo de viaje es relevante y debería mantenerse. +2. El tipo de grupo de huéspedes es importante y debería mantenerse. +3. El tipo de habitación, suite o estudio en el que se hospedó el huésped es irrelevante (todos los hoteles tienen básicamente las mismas habitaciones). +4. El dispositivo desde el que se envió la reseña es irrelevante. +5. El número de noches que el revisor se quedó *podría* ser relevante si atribuyes estancias más largas con que les gustó más el hotel, pero es poco probable y probablemente irrelevante. + +En resumen, **mantén 2 tipos de etiquetas y elimina las demás**. + +Primero, no quieres contar las etiquetas hasta que estén en un mejor formato, lo que significa eliminar los corchetes y las comillas. Puedes hacer esto de varias maneras, pero quieres la más rápida ya que podría tomar mucho tiempo procesar tantos datos. Afortunadamente, pandas tiene una forma sencilla de realizar cada uno de estos pasos. + +```Python +# Remove opening and closing brackets +df.Tags = df.Tags.str.strip("[']") +# remove all quotes too +df.Tags = df.Tags.str.replace(" ', '", ",", regex = False) +``` + +Cada etiqueta se convierte en algo como: `Viaje de negocios, Viajero solo, Habitación individual, Estancia de 5 noches, Enviado desde un dispositivo móvil`. + +A continuación, encontramos un problema. Algunas reseñas, o filas, tienen 5 columnas, otras 3, otras 6. Esto es resultado de cómo se creó el conjunto de datos y es difícil de corregir. Quieres obtener un conteo de frecuencia de cada frase, pero están en diferente orden en cada reseña, por lo que el conteo podría estar desfasado, y un hotel podría no recibir una etiqueta que merecía. + +En su lugar, usarás el orden diferente a tu favor, porque cada etiqueta es de varias palabras pero también está separada por una coma. La forma más sencilla de hacer esto es crear 6 columnas temporales con cada etiqueta insertada en la columna correspondiente a su orden en la etiqueta. Luego puedes fusionar las 6 columnas en una gran columna y ejecutar el método `value_counts()` en la columna resultante. Al imprimir eso, verás que había 2,428 etiquetas únicas. Aquí hay una pequeña muestra: + +| Etiqueta | Conteo | +| ------------------------------- | ------- | +| Viaje de ocio | 417778 | +| Enviado desde un dispositivo móvil | 307640 | +| Pareja | 252294 | +| Estancia de 1 noche | 193645 | +| Estancia de 2 noches | 133937 | +| Viajero solo | 108545 | +| Estancia de 3 noches | 95821 | +| Viaje de negocios | 82939 | +| Grupo | 65392 | +| Familia con niños pequeños | 61015 | +| Estancia de 4 noches | 47817 | +| Habitación doble | 35207 | +| Habitación doble estándar | 32248 | +| Habitación doble superior | 31393 | +| Familia con niños mayores | 26349 | +| Habitación doble deluxe | 24823 | +| Habitación doble o twin | 22393 | +| Estancia de 5 noches | 20845 | +| Habitación doble o twin estándar | 17483 | +| Habitación doble clásica | 16989 | +| Habitación doble o twin superior | 13570 | +| 2 habitaciones | 12393 | + +Algunas de las etiquetas comunes como `Enviado desde un dispositivo móvil` no nos son útiles, por lo que podría ser inteligente eliminarlas antes de contar la ocurrencia de frases, pero es una operación tan rápida que puedes dejarlas y simplemente ignorarlas. + +### Eliminando las etiquetas de duración de la estancia + +Eliminar estas etiquetas es el paso 1, lo que reduce ligeramente el número total de etiquetas a considerar. Nota que no las eliminas del conjunto de datos, solo decides no considerarlas como valores a contar/mantener en el conjunto de datos de reseñas. + +| Duración de la estancia | Conteo | +| ------------------------ | ------- | +| Estancia de 1 noche | 193645 | +| Estancia de 2 noches | 133937 | +| Estancia de 3 noches | 95821 | +| Estancia de 4 noches | 47817 | +| Estancia de 5 noches | 20845 | +| Estancia de 6 noches | 9776 | +| Estancia de 7 noches | 7399 | +| Estancia de 8 noches | 2502 | +| Estancia de 9 noches | 1293 | +| ... | ... | + +Hay una gran variedad de habitaciones, suites, estudios, apartamentos, etc. Todos significan más o menos lo mismo y no son relevantes para ti, así que elimínalos de la consideración. + +| Tipo de habitación | Conteo | +| -------------------------- | ------ | +| Habitación doble | 35207 | +| Habitación doble estándar | 32248 | +| Habitación doble superior | 31393 | +| Habitación doble deluxe | 24823 | +| Habitación doble o twin | 22393 | +| Habitación doble o twin estándar | 17483 | +| Habitación doble clásica | 16989 | +| Habitación doble o twin superior | 13570 | + +Finalmente, y esto es satisfactorio (porque no requirió mucho procesamiento), te quedarás con las siguientes etiquetas *útiles*: + +| Etiqueta | Conteo | +| -------------------------------------------- | ------- | +| Viaje de ocio | 417778 | +| Pareja | 252294 | +| Viajero solo | 108545 | +| Viaje de negocios | 82939 | +| Grupo (combinado con Viajeros con amigos) | 67535 | +| Familia con niños pequeños | 61015 | +| Familia con niños mayores | 26349 | +| Con una mascota | 1405 | + +Podrías argumentar que `Viajeros con amigos` es lo mismo que `Grupo`, más o menos, y sería razonable combinarlos como se muestra arriba. El código para identificar las etiquetas correctas está en [el cuaderno de etiquetas](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb). + +El paso final es crear nuevas columnas para cada una de estas etiquetas. Luego, para cada fila de reseña, si la columna `Tag` coincide con una de las nuevas columnas, agrega un 1; si no, agrega un 0. El resultado final será un conteo de cuántos revisores eligieron este hotel (en conjunto) para, por ejemplo, negocios vs ocio, o para llevar una mascota, y esta es información útil al recomendar un hotel. + +```python +# Process the Tags into new columns +# The file Hotel_Reviews_Tags.py, identifies the most important tags +# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, +# Family with young children, Family with older children, With a pet +df["Leisure_trip"] = df.Tags.apply(lambda tag: 1 if "Leisure trip" in tag else 0) +df["Couple"] = df.Tags.apply(lambda tag: 1 if "Couple" in tag else 0) +df["Solo_traveler"] = df.Tags.apply(lambda tag: 1 if "Solo traveler" in tag else 0) +df["Business_trip"] = df.Tags.apply(lambda tag: 1 if "Business trip" in tag else 0) +df["Group"] = df.Tags.apply(lambda tag: 1 if "Group" in tag or "Travelers with friends" in tag else 0) +df["Family_with_young_children"] = df.Tags.apply(lambda tag: 1 if "Family with young children" in tag else 0) +df["Family_with_older_children"] = df.Tags.apply(lambda tag: 1 if "Family with older children" in tag else 0) +df["With_a_pet"] = df.Tags.apply(lambda tag: 1 if "With a pet" in tag else 0) + +``` + +### Guarda tu archivo + +Finalmente, guarda el conjunto de datos tal como está ahora con un nuevo nombre. + +```python +df.drop(["Review_Total_Negative_Word_Counts", "Review_Total_Positive_Word_Counts", "days_since_review", "Total_Number_of_Reviews_Reviewer_Has_Given"], axis = 1, inplace=True) + +# Saving new data file with calculated columns +print("Saving results to Hotel_Reviews_Filtered.csv") +df.to_csv(r'../data/Hotel_Reviews_Filtered.csv', index = False) +``` + +## Operaciones de análisis de sentimientos + +En esta sección final, aplicarás análisis de sentimientos a las columnas de reseñas y guardarás los resultados en un conjunto de datos. + +## Ejercicio: carga y guarda los datos filtrados + +Nota que ahora estás cargando el conjunto de datos filtrado que se guardó en la sección anterior, **no** el conjunto de datos original. + +```python +import time +import pandas as pd +import nltk as nltk +from nltk.corpus import stopwords +from nltk.sentiment.vader import SentimentIntensityAnalyzer +nltk.download('vader_lexicon') + +# Load the filtered hotel reviews from CSV +df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv') + +# You code will be added here + + +# Finally remember to save the hotel reviews with new NLP data added +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r'../data/Hotel_Reviews_NLP.csv', index = False) +``` + +### Eliminando palabras vacías + +Si ejecutaras el análisis de sentimientos en las columnas de reseñas negativas y positivas, podría tomar mucho tiempo. Probado en un portátil de prueba potente con un CPU rápido, tomó entre 12 y 14 minutos dependiendo de la biblioteca de análisis de sentimientos utilizada. Ese es un tiempo (relativamente) largo, por lo que vale la pena investigar si se puede acelerar. + +Eliminar palabras vacías, o palabras comunes en inglés que no cambian el sentimiento de una oración, es el primer paso. Al eliminarlas, el análisis de sentimientos debería ejecutarse más rápido, pero no ser menos preciso (ya que las palabras vacías no afectan el sentimiento, pero sí ralentizan el análisis). + +La reseña negativa más larga tenía 395 palabras, pero después de eliminar las palabras vacías, tiene 195 palabras. + +Eliminar las palabras vacías también es una operación rápida; eliminarlas de 2 columnas de reseñas en más de 515,000 filas tomó 3.3 segundos en el dispositivo de prueba. Podría tomar un poco más o menos tiempo dependiendo de la velocidad de tu CPU, RAM, si tienes un SSD o no, y otros factores. La relativa brevedad de la operación significa que, si mejora el tiempo de análisis de sentimientos, vale la pena hacerlo. + +```python +from nltk.corpus import stopwords + +# Load the hotel reviews from CSV +df = pd.read_csv("../../data/Hotel_Reviews_Filtered.csv") + +# Remove stop words - can be slow for a lot of text! +# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches +# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends +start = time.time() +cache = set(stopwords.words("english")) +def remove_stopwords(review): + text = " ".join([word for word in review.split() if word not in cache]) + return text + +# Remove the stop words from both columns +df.Negative_Review = df.Negative_Review.apply(remove_stopwords) +df.Positive_Review = df.Positive_Review.apply(remove_stopwords) +``` + +### Realizando análisis de sentimientos +Ahora deberías calcular el análisis de sentimiento para las columnas de reseñas negativas y positivas, y almacenar el resultado en 2 nuevas columnas. La prueba del sentimiento será compararlo con la puntuación del revisor para la misma reseña. Por ejemplo, si el análisis de sentimiento determina que la reseña negativa tiene un sentimiento de 1 (sentimiento extremadamente positivo) y la reseña positiva también tiene un sentimiento de 1, pero el revisor dio al hotel la puntuación más baja posible, entonces o el texto de la reseña no coincide con la puntuación, o el analizador de sentimientos no pudo reconocer correctamente el sentimiento. Deberías esperar que algunos puntajes de sentimiento sean completamente incorrectos, y a menudo eso será explicable, por ejemplo, la reseña podría ser extremadamente sarcástica: "Por supuesto que AMÉ dormir en una habitación sin calefacción", y el analizador de sentimientos podría interpretar eso como un sentimiento positivo, aunque un humano que lo lea sabría que es sarcasmo. + +NLTK proporciona diferentes analizadores de sentimientos para aprender, y puedes sustituirlos para ver si el sentimiento es más o menos preciso. Aquí se utiliza el análisis de sentimiento VADER. + +> Hutto, C.J. & Gilbert, E.E. (2014). VADER: Un modelo parsimonioso basado en reglas para el análisis de sentimientos en texto de redes sociales. Octava Conferencia Internacional sobre Blogs y Medios Sociales (ICWSM-14). Ann Arbor, MI, junio de 2014. + +```python +from nltk.sentiment.vader import SentimentIntensityAnalyzer + +# Create the vader sentiment analyser (there are others in NLTK you can try too) +vader_sentiment = SentimentIntensityAnalyzer() +# Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. + +# There are 3 possibilities of input for a review: +# It could be "No Negative", in which case, return 0 +# It could be "No Positive", in which case, return 0 +# It could be a review, in which case calculate the sentiment +def calc_sentiment(review): + if review == "No Negative" or review == "No Positive": + return 0 + return vader_sentiment.polarity_scores(review)["compound"] +``` + +Más adelante en tu programa, cuando estés listo para calcular el sentimiento, puedes aplicarlo a cada reseña de la siguiente manera: + +```python +# Add a negative sentiment and positive sentiment column +print("Calculating sentiment columns for both positive and negative reviews") +start = time.time() +df["Negative_Sentiment"] = df.Negative_Review.apply(calc_sentiment) +df["Positive_Sentiment"] = df.Positive_Review.apply(calc_sentiment) +end = time.time() +print("Calculating sentiment took " + str(round(end - start, 2)) + " seconds") +``` + +Esto toma aproximadamente 120 segundos en mi computadora, pero puede variar en cada equipo. Si quieres imprimir los resultados y verificar si el sentimiento coincide con la reseña: + +```python +df = df.sort_values(by=["Negative_Sentiment"], ascending=True) +print(df[["Negative_Review", "Negative_Sentiment"]]) +df = df.sort_values(by=["Positive_Sentiment"], ascending=True) +print(df[["Positive_Review", "Positive_Sentiment"]]) +``` + +Lo último que debes hacer con el archivo antes de usarlo en el desafío es ¡guardarlo! También deberías considerar reordenar todas tus nuevas columnas para que sean fáciles de trabajar (para un humano, es un cambio cosmético). + +```python +# Reorder the columns (This is cosmetic, but to make it easier to explore the data later) +df = df.reindex(["Hotel_Name", "Hotel_Address", "Total_Number_of_Reviews", "Average_Score", "Reviewer_Score", "Negative_Sentiment", "Positive_Sentiment", "Reviewer_Nationality", "Leisure_trip", "Couple", "Solo_traveler", "Business_trip", "Group", "Family_with_young_children", "Family_with_older_children", "With_a_pet", "Negative_Review", "Positive_Review"], axis=1) + +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r"../data/Hotel_Reviews_NLP.csv", index = False) +``` + +Deberías ejecutar todo el código del [notebook de análisis](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb) (después de haber ejecutado [tu notebook de filtrado](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) para generar el archivo Hotel_Reviews_Filtered.csv). + +Para repasar, los pasos son: + +1. El archivo del conjunto de datos original **Hotel_Reviews.csv** se explora en la lección anterior con [el notebook de exploración](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb) +2. Hotel_Reviews.csv se filtra con [el notebook de filtrado](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) resultando en **Hotel_Reviews_Filtered.csv** +3. Hotel_Reviews_Filtered.csv se procesa con [el notebook de análisis de sentimiento](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb) resultando en **Hotel_Reviews_NLP.csv** +4. Usa Hotel_Reviews_NLP.csv en el Desafío de NLP a continuación + +### Conclusión + +Cuando comenzaste, tenías un conjunto de datos con columnas y datos, pero no todo podía ser verificado o utilizado. Has explorado los datos, filtrado lo que no necesitas, convertido etiquetas en algo útil, calculado tus propios promedios, añadido algunas columnas de sentimiento y, con suerte, aprendido cosas interesantes sobre el procesamiento de texto natural. + +## [Cuestionario posterior a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/40/) + +## Desafío + +Ahora que tienes tu conjunto de datos analizado para el sentimiento, intenta usar estrategias que has aprendido en este curso (¿quizás clustering?) para determinar patrones alrededor del sentimiento. + +## Revisión y autoestudio + +Toma [este módulo de Learn](https://docs.microsoft.com/en-us/learn/modules/classify-user-feedback-with-the-text-analytics-api/?WT.mc_id=academic-77952-leestott) para aprender más y usar diferentes herramientas para explorar el sentimiento en texto. + +## Tarea + +[Prueba con un conjunto de datos diferente](assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/5-Hotel-Reviews-2/assignment.md b/translations/es/6-NLP/5-Hotel-Reviews-2/assignment.md new file mode 100644 index 000000000..8dadbaa59 --- /dev/null +++ b/translations/es/6-NLP/5-Hotel-Reviews-2/assignment.md @@ -0,0 +1,25 @@ + +# Prueba con un conjunto de datos diferente + +## Instrucciones + +Ahora que has aprendido a usar NLTK para asignar sentimiento a un texto, prueba con un conjunto de datos diferente. Probablemente necesitarás realizar algo de procesamiento de datos, así que crea un cuaderno y documenta tu proceso de pensamiento. ¿Qué descubres? + +## Criterios de evaluación + +| Criterios | Sobresaliente | Adecuado | Necesita Mejorar | +| --------- | --------------------------------------------------------------------------------------------------------------- | ----------------------------------------- | ----------------------- | +| | Se presenta un cuaderno completo y un conjunto de datos con celdas bien documentadas que explican cómo se asigna el sentimiento | Al cuaderno le faltan buenas explicaciones | El cuaderno tiene fallos | + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/5-Hotel-Reviews-2/notebook.ipynb b/translations/es/6-NLP/5-Hotel-Reviews-2/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/es/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb b/translations/es/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb new file mode 100644 index 000000000..5ecde766f --- /dev/null +++ b/translations/es/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb @@ -0,0 +1,172 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "033cb89c85500224b3c63fd04f49b4aa", + "translation_date": "2025-09-04T03:10:02+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import time\n", + "import ast" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def replace_address(row):\n", + " if \"Netherlands\" in row[\"Hotel_Address\"]:\n", + " return \"Amsterdam, Netherlands\"\n", + " elif \"Barcelona\" in row[\"Hotel_Address\"]:\n", + " return \"Barcelona, Spain\"\n", + " elif \"United Kingdom\" in row[\"Hotel_Address\"]:\n", + " return \"London, United Kingdom\"\n", + " elif \"Milan\" in row[\"Hotel_Address\"]: \n", + " return \"Milan, Italy\"\n", + " elif \"France\" in row[\"Hotel_Address\"]:\n", + " return \"Paris, France\"\n", + " elif \"Vienna\" in row[\"Hotel_Address\"]:\n", + " return \"Vienna, Austria\" \n", + " else:\n", + " return row.Hotel_Address\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# dropping columns we will not use:\n", + "df.drop([\"lat\", \"lng\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Replace all the addresses with a shortened, more useful form\n", + "df[\"Hotel_Address\"] = df.apply(replace_address, axis = 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Drop `Additional_Number_of_Scoring`\n", + "df.drop([\"Additional_Number_of_Scoring\"], axis = 1, inplace=True)\n", + "# Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values\n", + "df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')\n", + "df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Process the Tags into new columns\n", + "# The file Hotel_Reviews_Tags.py, identifies the most important tags\n", + "# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, \n", + "# Family with young children, Family with older children, With a pet\n", + "df[\"Leisure_trip\"] = df.Tags.apply(lambda tag: 1 if \"Leisure trip\" in tag else 0)\n", + "df[\"Couple\"] = df.Tags.apply(lambda tag: 1 if \"Couple\" in tag else 0)\n", + "df[\"Solo_traveler\"] = df.Tags.apply(lambda tag: 1 if \"Solo traveler\" in tag else 0)\n", + "df[\"Business_trip\"] = df.Tags.apply(lambda tag: 1 if \"Business trip\" in tag else 0)\n", + "df[\"Group\"] = df.Tags.apply(lambda tag: 1 if \"Group\" in tag or \"Travelers with friends\" in tag else 0)\n", + "df[\"Family_with_young_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with young children\" in tag else 0)\n", + "df[\"Family_with_older_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with older children\" in tag else 0)\n", + "df[\"With_a_pet\"] = df.Tags.apply(lambda tag: 1 if \"With a pet\" in tag else 0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# No longer need any of these columns\n", + "df.drop([\"Review_Date\", \"Review_Total_Negative_Word_Counts\", \"Review_Total_Positive_Word_Counts\", \"days_since_review\", \"Total_Number_of_Reviews_Reviewer_Has_Given\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_Filtered.csv\n", + "Filtering took 23.74 seconds\n" + ] + } + ], + "source": [ + "# Saving new data file with calculated columns\n", + "print(\"Saving results to Hotel_Reviews_Filtered.csv\")\n", + "df.to_csv(r'../../data/Hotel_Reviews_Filtered.csv', index = False)\n", + "end = time.time()\n", + "print(\"Filtering took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb b/translations/es/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb new file mode 100644 index 000000000..9745f40b0 --- /dev/null +++ b/translations/es/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb @@ -0,0 +1,137 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "341efc86325ec2a214f682f57a189dfd", + "translation_date": "2025-09-04T03:10:19+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV (you can )\n", + "import pandas as pd \n", + "\n", + "df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# We want to find the most useful tags to keep\n", + "# Remove opening and closing brackets\n", + "df.Tags = df.Tags.str.strip(\"[']\")\n", + "# remove all quotes too\n", + "df.Tags = df.Tags.str.replace(\" ', '\", \",\", regex = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# removing this to take advantage of the 'already a phrase' fact of the dataset \n", + "# Now split the strings into a list\n", + "tag_list_df = df.Tags.str.split(',', expand = True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove leading and trailing spaces\n", + "df[\"Tag_1\"] = tag_list_df[0].str.strip()\n", + "df[\"Tag_2\"] = tag_list_df[1].str.strip()\n", + "df[\"Tag_3\"] = tag_list_df[2].str.strip()\n", + "df[\"Tag_4\"] = tag_list_df[3].str.strip()\n", + "df[\"Tag_5\"] = tag_list_df[4].str.strip()\n", + "df[\"Tag_6\"] = tag_list_df[5].str.strip()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Merge the 6 columns into one with melt\n", + "df_tags = df.melt(value_vars=[\"Tag_1\", \"Tag_2\", \"Tag_3\", \"Tag_4\", \"Tag_5\", \"Tag_6\"])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The shape of the tags with no filtering: (2514684, 2)\n", + " index count\n", + "0 Leisure trip 338423\n", + "1 Couple 205305\n", + "2 Solo traveler 89779\n", + "3 Business trip 68176\n", + "4 Group 51593\n", + "5 Family with young children 49318\n", + "6 Family with older children 21509\n", + "7 Travelers with friends 1610\n", + "8 With a pet 1078\n" + ] + } + ], + "source": [ + "# Get the value counts\n", + "tag_vc = df_tags.value.value_counts()\n", + "# print(tag_vc)\n", + "print(\"The shape of the tags with no filtering:\", str(df_tags.shape))\n", + "# Drop rooms, suites, and length of stay, mobile device and anything with less count than a 1000\n", + "df_tags = df_tags[~df_tags.value.str.contains(\"Standard|room|Stayed|device|Beds|Suite|Studio|King|Superior|Double\", na=False, case=False)]\n", + "tag_vc = df_tags.value.value_counts().reset_index(name=\"count\").query(\"count > 1000\")\n", + "# Print the top 10 (there should only be 9 and we'll use these in the filtering section)\n", + "print(tag_vc[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb b/translations/es/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb new file mode 100644 index 000000000..6d383d204 --- /dev/null +++ b/translations/es/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb @@ -0,0 +1,260 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "705bf02633759f689abc37b19749a16d", + "translation_date": "2025-09-04T03:10:38+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "[nltk_data] Downloading package vader_lexicon to\n[nltk_data] /Users/jenlooper/nltk_data...\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import time\n", + "import pandas as pd\n", + "import nltk as nltk\n", + "from nltk.corpus import stopwords\n", + "from nltk.sentiment.vader import SentimentIntensityAnalyzer\n", + "nltk.download('vader_lexicon')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "vader_sentiment = SentimentIntensityAnalyzer()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# There are 3 possibilities of input for a review:\n", + "# It could be \"No Negative\", in which case, return 0\n", + "# It could be \"No Positive\", in which case, return 0\n", + "# It could be a review, in which case calculate the sentiment\n", + "def calc_sentiment(review): \n", + " if review == \"No Negative\" or review == \"No Positive\":\n", + " return 0\n", + " return vader_sentiment.polarity_scores(review)[\"compound\"] \n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "df = pd.read_csv(\"../../data/Hotel_Reviews_Filtered.csv\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove stop words - can be slow for a lot of text!\n", + "# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches\n", + "# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends\n", + "start = time.time()\n", + "cache = set(stopwords.words(\"english\"))\n", + "def remove_stopwords(review):\n", + " text = \" \".join([word for word in review.split() if word not in cache])\n", + " return text\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove the stop words from both columns\n", + "df.Negative_Review = df.Negative_Review.apply(remove_stopwords) \n", + "df.Positive_Review = df.Positive_Review.apply(remove_stopwords)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Removing stop words took 5.77 seconds\n" + ] + } + ], + "source": [ + "end = time.time()\n", + "print(\"Removing stop words took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Calculating sentiment columns for both positive and negative reviews\n", + "Calculating sentiment took 201.07 seconds\n" + ] + } + ], + "source": [ + "# Add a negative sentiment and positive sentiment column\n", + "print(\"Calculating sentiment columns for both positive and negative reviews\")\n", + "start = time.time()\n", + "df[\"Negative_Sentiment\"] = df.Negative_Review.apply(calc_sentiment)\n", + "df[\"Positive_Sentiment\"] = df.Positive_Review.apply(calc_sentiment)\n", + "end = time.time()\n", + "print(\"Calculating sentiment took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Negative_Review Negative_Sentiment\n", + "186584 So bad experience memories I hotel The first n... -0.9920\n", + "129503 First charged twice room booked booking second... -0.9896\n", + "307286 The staff Had bad experience even booking Janu... -0.9889\n", + "452092 No WLAN room Incredibly rude restaurant staff ... -0.9884\n", + "201293 We usually traveling Paris 2 3 times year busi... -0.9873\n", + "... ... ...\n", + "26899 I would say however one night expensive even d... 0.9933\n", + "138365 Wifi terribly slow I speed test network upload... 0.9938\n", + "79215 I find anything hotel first I walked past hote... 0.9938\n", + "278506 The property great location There bakery next ... 0.9945\n", + "339189 Guys I like hotel I wish return next year Howe... 0.9948\n", + "\n", + "[515738 rows x 2 columns]\n", + " Positive_Review Positive_Sentiment\n", + "137893 Bathroom Shower We going stay twice hotel 2 ni... -0.9820\n", + "5839 I completely disappointed mad since reception ... -0.9780\n", + "64158 get everything extra internet parking breakfas... -0.9751\n", + "124178 I didnt like anythig Room small Asked upgrade ... -0.9721\n", + "489137 Very rude manager abusive staff reception Dirt... -0.9703\n", + "... ... ...\n", + "331570 Everything This recently renovated hotel class... 0.9984\n", + "322920 From moment stepped doors Guesthouse Hotel sta... 0.9985\n", + "293710 This place surprise expected good actually gre... 0.9985\n", + "417442 We celebrated wedding night Langham I commend ... 0.9985\n", + "132492 We arrived super cute boutique hotel area expl... 0.9987\n", + "\n", + "[515738 rows x 2 columns]\n" + ] + } + ], + "source": [ + "df = df.sort_values(by=[\"Negative_Sentiment\"], ascending=True)\n", + "print(df[[\"Negative_Review\", \"Negative_Sentiment\"]])\n", + "df = df.sort_values(by=[\"Positive_Sentiment\"], ascending=True)\n", + "print(df[[\"Positive_Review\", \"Positive_Sentiment\"]])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Reorder the columns (This is cosmetic, but to make it easier to explore the data later)\n", + "df = df.reindex([\"Hotel_Name\", \"Hotel_Address\", \"Total_Number_of_Reviews\", \"Average_Score\", \"Reviewer_Score\", \"Negative_Sentiment\", \"Positive_Sentiment\", \"Reviewer_Nationality\", \"Leisure_trip\", \"Couple\", \"Solo_traveler\", \"Business_trip\", \"Group\", \"Family_with_young_children\", \"Family_with_older_children\", \"With_a_pet\", \"Negative_Review\", \"Positive_Review\"], axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_NLP.csv\n" + ] + } + ], + "source": [ + "print(\"Saving results to Hotel_Reviews_NLP.csv\")\n", + "df.to_csv(r\"../../data/Hotel_Reviews_NLP.csv\", index = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md b/translations/es/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md new file mode 100644 index 000000000..7267c6dfe --- /dev/null +++ b/translations/es/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/5-Hotel-Reviews-2/solution/R/README.md b/translations/es/6-NLP/5-Hotel-Reviews-2/solution/R/README.md new file mode 100644 index 000000000..10167492d --- /dev/null +++ b/translations/es/6-NLP/5-Hotel-Reviews-2/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/README.md b/translations/es/6-NLP/README.md new file mode 100644 index 000000000..6048f910b --- /dev/null +++ b/translations/es/6-NLP/README.md @@ -0,0 +1,38 @@ + +# Comenzando con el procesamiento de lenguaje natural + +El procesamiento de lenguaje natural (NLP, por sus siglas en inglés) es la capacidad de un programa de computadora para entender el lenguaje humano tal como se habla y se escribe, conocido como lenguaje natural. Es un componente de la inteligencia artificial (IA). El NLP ha existido por más de 50 años y tiene raíces en el campo de la lingüística. Todo el campo está dirigido a ayudar a las máquinas a entender y procesar el lenguaje humano. Esto puede ser utilizado para realizar tareas como la corrección ortográfica o la traducción automática. Tiene una variedad de aplicaciones en el mundo real en varios campos, incluyendo la investigación médica, los motores de búsqueda y la inteligencia empresarial. + +## Tema regional: Idiomas y literatura europeas y hoteles románticos de Europa ❤️ + +En esta sección del programa, se te presentará uno de los usos más extendidos del aprendizaje automático: el procesamiento de lenguaje natural (NLP). Derivado de la lingüística computacional, esta categoría de inteligencia artificial es el puente entre los humanos y las máquinas a través de la comunicación por voz o texto. + +En estas lecciones aprenderemos los conceptos básicos del NLP construyendo pequeños bots conversacionales para entender cómo el aprendizaje automático ayuda a que estas conversaciones sean cada vez más 'inteligentes'. Viajarás en el tiempo, conversando con Elizabeth Bennett y el Sr. Darcy del clásico de Jane Austen, **Orgullo y Prejuicio**, publicado en 1813. Luego, ampliarás tus conocimientos aprendiendo sobre el análisis de sentimientos a través de reseñas de hoteles en Europa. + +![Libro de Orgullo y Prejuicio y té](../../../translated_images/p&p.279f1c49ecd889419e4ce6206525e9aa30d32a976955cd24daa636c361c6391f.es.jpg) +> Foto por Elaine Howlin en Unsplash + +## Lecciones + +1. [Introducción al procesamiento de lenguaje natural](1-Introduction-to-NLP/README.md) +2. [Tareas y técnicas comunes de NLP](2-Tasks/README.md) +3. [Traducción y análisis de sentimientos con aprendizaje automático](3-Translation-Sentiment/README.md) +4. [Preparando tus datos](4-Hotel-Reviews-1/README.md) +5. [NLTK para análisis de sentimientos](5-Hotel-Reviews-2/README.md) + +## Créditos + +Estas lecciones de procesamiento de lenguaje natural fueron escritas con ☕ por [Stephen Howell](https://twitter.com/Howell_MSFT) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/6-NLP/data/README.md b/translations/es/6-NLP/data/README.md new file mode 100644 index 000000000..628ed0a7f --- /dev/null +++ b/translations/es/6-NLP/data/README.md @@ -0,0 +1,15 @@ + +Descarga los datos de reseñas de hoteles en esta carpeta. + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/7-TimeSeries/1-Introduction/README.md b/translations/es/7-TimeSeries/1-Introduction/README.md new file mode 100644 index 000000000..bfa1dffe2 --- /dev/null +++ b/translations/es/7-TimeSeries/1-Introduction/README.md @@ -0,0 +1,199 @@ + +# Introducción a la predicción de series temporales + +![Resumen de series temporales en un sketchnote](../../../../translated_images/ml-timeseries.fb98d25f1013fc0c59090030080b5d1911ff336427bec31dbaf1ad08193812e9.es.png) + +> Sketchnote por [Tomomi Imura](https://www.twitter.com/girlie_mac) + +En esta lección y la siguiente, aprenderás un poco sobre la predicción de series temporales, una parte interesante y valiosa del repertorio de un científico de ML que es un poco menos conocida que otros temas. La predicción de series temporales es como una especie de 'bola de cristal': basada en el rendimiento pasado de una variable como el precio, puedes predecir su valor potencial futuro. + +[![Introducción a la predicción de series temporales](https://img.youtube.com/vi/cBojo1hsHiI/0.jpg)](https://youtu.be/cBojo1hsHiI "Introducción a la predicción de series temporales") + +> 🎥 Haz clic en la imagen de arriba para ver un video sobre la predicción de series temporales + +## [Cuestionario previo a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/41/) + +Es un campo útil e interesante con un valor real para los negocios, dado su aplicación directa a problemas de precios, inventarios y cuestiones de la cadena de suministro. Aunque las técnicas de aprendizaje profundo han comenzado a utilizarse para obtener más información y predecir mejor el rendimiento futuro, la predicción de series temporales sigue siendo un campo muy influenciado por técnicas clásicas de ML. + +> El útil currículo de series temporales de Penn State se puede encontrar [aquí](https://online.stat.psu.edu/stat510/lesson/1) + +## Introducción + +Supongamos que mantienes una red de parquímetros inteligentes que proporcionan datos sobre la frecuencia y duración de su uso a lo largo del tiempo. + +> ¿Qué pasaría si pudieras predecir, basándote en el rendimiento pasado del parquímetro, su valor futuro según las leyes de oferta y demanda? + +Predecir con precisión cuándo actuar para lograr tu objetivo es un desafío que podría abordarse mediante la predicción de series temporales. No haría feliz a la gente que se les cobre más en momentos de alta demanda cuando buscan un lugar para estacionar, pero sería una forma segura de generar ingresos para limpiar las calles. + +Exploremos algunos de los tipos de algoritmos de series temporales y comencemos un notebook para limpiar y preparar algunos datos. Los datos que analizarás provienen de la competencia de predicción GEFCom2014. Consisten en 3 años de valores horarios de carga eléctrica y temperatura entre 2012 y 2014. Dado los patrones históricos de carga eléctrica y temperatura, puedes predecir valores futuros de carga eléctrica. + +En este ejemplo, aprenderás cómo predecir un paso de tiempo hacia adelante, utilizando únicamente datos históricos de carga. Sin embargo, antes de comenzar, es útil entender qué está sucediendo detrás de escena. + +## Algunas definiciones + +Cuando encuentres el término 'series temporales', necesitas entender su uso en varios contextos diferentes. + +🎓 **Series temporales** + +En matemáticas, "una serie temporal es una serie de puntos de datos indexados (o listados o graficados) en orden temporal. Más comúnmente, una serie temporal es una secuencia tomada en puntos sucesivos igualmente espaciados en el tiempo". Un ejemplo de una serie temporal es el valor de cierre diario del [Promedio Industrial Dow Jones](https://wikipedia.org/wiki/Time_series). El uso de gráficos de series temporales y modelado estadístico se encuentra frecuentemente en el procesamiento de señales, predicción del clima, predicción de terremotos y otros campos donde ocurren eventos y los puntos de datos pueden graficarse a lo largo del tiempo. + +🎓 **Análisis de series temporales** + +El análisis de series temporales es el análisis de los datos de series temporales mencionados anteriormente. Los datos de series temporales pueden tomar formas distintas, incluyendo 'series temporales interrumpidas', que detectan patrones en la evolución de una serie temporal antes y después de un evento interruptor. El tipo de análisis necesario para la serie temporal depende de la naturaleza de los datos. Los datos de series temporales en sí pueden tomar la forma de series de números o caracteres. + +El análisis que se realiza utiliza una variedad de métodos, incluyendo dominio de frecuencia y dominio de tiempo, lineales y no lineales, y más. [Aprende más](https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm) sobre las muchas formas de analizar este tipo de datos. + +🎓 **Predicción de series temporales** + +La predicción de series temporales es el uso de un modelo para predecir valores futuros basados en patrones mostrados por datos previamente recopilados tal como ocurrieron en el pasado. Aunque es posible usar modelos de regresión para explorar datos de series temporales, con índices de tiempo como variables x en un gráfico, dichos datos se analizan mejor utilizando tipos especiales de modelos. + +Los datos de series temporales son una lista de observaciones ordenadas, a diferencia de los datos que pueden analizarse mediante regresión lineal. El más común es ARIMA, un acrónimo que significa "Promedio Móvil Integrado Autoregresivo". + +[Los modelos ARIMA](https://online.stat.psu.edu/stat510/lesson/1/1.1) "relacionan el valor presente de una serie con valores pasados y errores de predicción pasados". Son más apropiados para analizar datos en el dominio del tiempo, donde los datos están ordenados a lo largo del tiempo. + +> Hay varios tipos de modelos ARIMA, sobre los cuales puedes aprender [aquí](https://people.duke.edu/~rnau/411arim.htm) y que abordarás en la próxima lección. + +En la próxima lección, construirás un modelo ARIMA utilizando [Series Temporales Univariadas](https://itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm), que se centra en una variable que cambia su valor a lo largo del tiempo. Un ejemplo de este tipo de datos es [este conjunto de datos](https://itl.nist.gov/div898/handbook/pmc/section4/pmc4411.htm) que registra la concentración mensual de CO2 en el Observatorio Mauna Loa: + +| CO2 | YearMonth | Year | Month | +| :----: | :-------: | :---: | :---: | +| 330.62 | 1975.04 | 1975 | 1 | +| 331.40 | 1975.13 | 1975 | 2 | +| 331.87 | 1975.21 | 1975 | 3 | +| 333.18 | 1975.29 | 1975 | 4 | +| 333.92 | 1975.38 | 1975 | 5 | +| 333.43 | 1975.46 | 1975 | 6 | +| 331.85 | 1975.54 | 1975 | 7 | +| 330.01 | 1975.63 | 1975 | 8 | +| 328.51 | 1975.71 | 1975 | 9 | +| 328.41 | 1975.79 | 1975 | 10 | +| 329.25 | 1975.88 | 1975 | 11 | +| 330.97 | 1975.96 | 1975 | 12 | + +✅ Identifica la variable que cambia a lo largo del tiempo en este conjunto de datos. + +## Características de los datos de series temporales a considerar + +Al observar datos de series temporales, podrías notar que tienen [ciertas características](https://online.stat.psu.edu/stat510/lesson/1/1.1) que necesitas tener en cuenta y mitigar para comprender mejor sus patrones. Si consideras los datos de series temporales como potencialmente proporcionando una 'señal' que deseas analizar, estas características pueden considerarse como 'ruido'. A menudo necesitarás reducir este 'ruido' compensando algunas de estas características utilizando técnicas estadísticas. + +Aquí hay algunos conceptos que deberías conocer para trabajar con series temporales: + +🎓 **Tendencias** + +Las tendencias se definen como aumentos y disminuciones medibles a lo largo del tiempo. [Lee más](https://machinelearningmastery.com/time-series-trends-in-python). En el contexto de series temporales, se trata de cómo usar y, si es necesario, eliminar tendencias de tus series temporales. + +🎓 **[Estacionalidad](https://machinelearningmastery.com/time-series-seasonality-with-python/)** + +La estacionalidad se define como fluctuaciones periódicas, como las compras durante las vacaciones que podrían afectar las ventas, por ejemplo. [Echa un vistazo](https://itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm) a cómo diferentes tipos de gráficos muestran estacionalidad en los datos. + +🎓 **Valores atípicos** + +Los valores atípicos están lejos de la varianza estándar de los datos. + +🎓 **Ciclo a largo plazo** + +Independientemente de la estacionalidad, los datos podrían mostrar un ciclo a largo plazo, como una recesión económica que dura más de un año. + +🎓 **Varianza constante** + +Con el tiempo, algunos datos muestran fluctuaciones constantes, como el uso de energía por día y noche. + +🎓 **Cambios abruptos** + +Los datos podrían mostrar un cambio abrupto que podría necesitar un análisis más profundo. El cierre repentino de negocios debido a COVID, por ejemplo, causó cambios en los datos. + +✅ Aquí hay un [ejemplo de gráfico de series temporales](https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python) que muestra el gasto diario en moneda dentro del juego durante algunos años. ¿Puedes identificar alguna de las características mencionadas anteriormente en estos datos? + +![Gasto en moneda dentro del juego](../../../../translated_images/currency.e7429812bfc8c6087b2d4c410faaa4aaa11b2fcaabf6f09549b8249c9fbdb641.es.png) + +## Ejercicio - comenzando con datos de uso de energía + +Comencemos creando un modelo de series temporales para predecir el uso futuro de energía dado el uso pasado. + +> Los datos en este ejemplo provienen de la competencia de predicción GEFCom2014. Consisten en 3 años de valores horarios de carga eléctrica y temperatura entre 2012 y 2014. +> +> Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli y Rob J. Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond", International Journal of Forecasting, vol.32, no.3, pp 896-913, julio-septiembre, 2016. + +1. En la carpeta `working` de esta lección, abre el archivo _notebook.ipynb_. Comienza agregando bibliotecas que te ayudarán a cargar y visualizar datos. + + ```python + import os + import matplotlib.pyplot as plt + from common.utils import load_data + %matplotlib inline + ``` + + Nota: estás utilizando los archivos de la carpeta `common` incluida, que configuran tu entorno y manejan la descarga de los datos. + +2. A continuación, examina los datos como un dataframe llamando a `load_data()` y `head()`: + + ```python + data_dir = './data' + energy = load_data(data_dir)[['load']] + energy.head() + ``` + + Puedes ver que hay dos columnas que representan fecha y carga: + + | | load | + | :-----------------: | :----: | + | 2012-01-01 00:00:00 | 2698.0 | + | 2012-01-01 01:00:00 | 2558.0 | + | 2012-01-01 02:00:00 | 2444.0 | + | 2012-01-01 03:00:00 | 2402.0 | + | 2012-01-01 04:00:00 | 2403.0 | + +3. Ahora, grafica los datos llamando a `plot()`: + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![gráfico de energía](../../../../translated_images/energy-plot.5fdac3f397a910bc6070602e9e45bea8860d4c239354813fa8fc3c9d556f5bad.es.png) + +4. Ahora, grafica la primera semana de julio de 2014, proporcionándola como entrada al `energy` en el patrón `[desde fecha]: [hasta fecha]`: + + ```python + energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![julio](../../../../translated_images/july-2014.9e1f7c318ec6d5b30b0d7e1e20be3643501f64a53f3d426d7c7d7b62addb335e.es.png) + + ¡Un gráfico hermoso! Observa estos gráficos y ve si puedes determinar alguna de las características mencionadas anteriormente. ¿Qué podemos deducir al visualizar los datos? + +En la próxima lección, crearás un modelo ARIMA para realizar algunas predicciones. + +--- + +## 🚀Desafío + +Haz una lista de todas las industrias y áreas de investigación que se te ocurran que podrían beneficiarse de la predicción de series temporales. ¿Puedes pensar en una aplicación de estas técnicas en las artes? ¿En econometría? ¿Ecología? ¿Retail? ¿Industria? ¿Finanzas? ¿Dónde más? + +## [Cuestionario posterior a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/42/) + +## Revisión y autoestudio + +Aunque no los cubriremos aquí, las redes neuronales a veces se utilizan para mejorar los métodos clásicos de predicción de series temporales. Lee más sobre ellas [en este artículo](https://medium.com/microsoftazure/neural-networks-for-forecasting-financial-and-economic-time-series-6aca370ff412) + +## Tarea + +[Visualiza más series temporales](assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/7-TimeSeries/1-Introduction/assignment.md b/translations/es/7-TimeSeries/1-Introduction/assignment.md new file mode 100644 index 000000000..2f62a32c4 --- /dev/null +++ b/translations/es/7-TimeSeries/1-Introduction/assignment.md @@ -0,0 +1,25 @@ + +# Visualiza algunas series temporales más + +## Instrucciones + +Has comenzado a aprender sobre la predicción de series temporales observando el tipo de datos que requieren este modelado especial. Has visualizado algunos datos relacionados con la energía. Ahora, busca otros datos que se beneficiarían de la predicción de series temporales. Encuentra tres ejemplos (prueba [Kaggle](https://kaggle.com) y [Azure Open Datasets](https://azure.microsoft.com/en-us/services/open-datasets/catalog/?WT.mc_id=academic-77952-leestott)) y crea un notebook para visualizarlos. Anota cualquier característica especial que tengan (estacionalidad, cambios abruptos u otras tendencias) en el notebook. + +## Rúbrica + +| Criterios | Ejemplar | Adecuado | Necesita Mejorar | +| --------- | ----------------------------------------------------- | --------------------------------------------------- | --------------------------------------------------------------------------------------- | +| | Tres conjuntos de datos están graficados y explicados en un notebook | Dos conjuntos de datos están graficados y explicados en un notebook | Pocos conjuntos de datos están graficados o explicados en un notebook o los datos presentados son insuficientes | + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/7-TimeSeries/1-Introduction/solution/Julia/README.md b/translations/es/7-TimeSeries/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..ff6617cd1 --- /dev/null +++ b/translations/es/7-TimeSeries/1-Introduction/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/7-TimeSeries/1-Introduction/solution/R/README.md b/translations/es/7-TimeSeries/1-Introduction/solution/R/README.md new file mode 100644 index 000000000..1bf0a688c --- /dev/null +++ b/translations/es/7-TimeSeries/1-Introduction/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/7-TimeSeries/1-Introduction/solution/notebook.ipynb b/translations/es/7-TimeSeries/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..75d0db8fe --- /dev/null +++ b/translations/es/7-TimeSeries/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,171 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Configuración de Datos\n", + "\n", + "En este cuaderno, mostramos cómo:\n", + "- configurar datos de series temporales para este módulo\n", + "- visualizar los datos\n", + "\n", + "Los datos de este ejemplo provienen de la competencia de pronóstico GEFCom2014. \n", + "Consisten en 3 años de valores horarios de carga eléctrica y temperatura entre 2012 y 2014. \n", + "\n", + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli y Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, julio-septiembre, 2016.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import matplotlib.pyplot as plt\n", + "from common.utils import load_data\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cargar los datos del archivo CSV en un dataframe de Pandas\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ], + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
load
2012-01-01 00:00:002698.0
2012-01-01 01:00:002558.0
2012-01-01 02:00:002444.0
2012-01-01 03:00:002402.0
2012-01-01 04:00:002403.0
\n
" + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "data_dir = './data'\n", + "energy = load_data(data_dir)[['load']]\n", + "energy.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Trazar todos los datos de carga disponibles (enero 2012 a diciembre 2014)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhb5ZU/8O+r3bYkO7bl3YljZ3dCnJBASCCQFkqBgUDpBrRMZ6YLMJ2l26/TTjtDmelMp09nOtNOaUt31tKFtRToQAkpSUhIiJPY2Z14X+VFkiVL1vL+/pBkjHESL5Ku7r3fz/P4IbF07z1Gsa1z3/OeI6SUICIiIiIiIgIAg9IBEBERERERUfZgkkhEREREREQTmCQSERERERHRBCaJRERERERENIFJIhEREREREU1gkkhEREREREQTTEoHoITi4mJZU1OjdBhERERERESKOHDggFtK6ZruMV0miTU1Ndi/f7/SYRARERERESlCCNF2rsdYbkpEREREREQTmCQSERERERHRBCaJRERERERENEGXexKJiIiIiIgAIBwOo7OzE8FgUOlQ0sJms6Gqqgpms3nGxzBJJCIiIiIi3ers7ITD4UBNTQ2EEEqHk1JSSgwODqKzsxOLFy+e8XEsNyUiIiIiIt0KBoMoKirSXIIIAEIIFBUVzXqVlEkiERERERHpmhYTxKS5fG1MEomIiIiIiBRkt9tTcp57770X3/rWt+Z9HiaJRERERERENIFJIhERERERURaQUuILX/gCVq9ejTVr1uDxxx8HAIyOjuLd73431q9fjzVr1uDpp5+eOObrX/86li1bhssvvxwnTpxISRzsbkpERERERATga88242i3N6XnXFXhxD/fWD+j5z7xxBNobGzEoUOH4Ha7sXHjRmzduhUulwtPPvkknE4n3G43Nm3ahJtuuglvvvkmfvnLX6KxsRGRSATr16/HxRdfPO+YuZJIRERERESUBV577TXcdtttMBqNKC0txZVXXok33ngDUkp8+ctfxkUXXYSrr74aXV1d6Ovrw5/+9CfccsstyM3NhdPpxE033ZSSOLiSSEREREREBMx4xS/THnnkEQwMDODAgQMwm82oqamZ9ViL2eBKIhERERERURa44oor8PjjjyMajWJgYAA7d+7EJZdcAo/Hg5KSEpjNZrzyyitoa2sDAGzduhVPPfUUxsbG4PP58Oyzz6YkDq4kEmnQSGAcDpsZRoN2Z/4QERERac0tt9yCPXv2YO3atRBC4Jvf/CbKyspwxx134MYbb8SaNWuwYcMGrFixAgCwfv16fOhDH8LatWtRUlKCjRs3piQOIaVMyYnUZMOGDXL//v1Kh0GUFj2eMbznv3ZiZbkTP7pzA/JzzUqHRERERJS1jh07hpUrVyodRlpN9zUKIQ5IKTdM93yWmxJpzL///jhC0RgaO0bwgR/uRo9nTOmQiIiIiEhFMpYkCiF2CCGCQojRxMeJSY/dLoRoE0L4hRBPCSEKJz1WKIR4MvFYmxDi9innPeexRHrzRusQnjnUjbu21uLnf7ER3SNB3Hr/bpzq8ykdGhERERGpRKZXEj8tpbQnPpYDgBCiHsAPAXwUQCmAAID7Jx3zPQDjicfuAPD9xDEzOZZIN6IxiXufaUZ5vg13XVWHzUuK8finNiEck3j/D/Zgf+uQ0iESERERkQpkQ7npHQCelVLulFKOAvgqgPcJIRxCiDwAtwL4qpRyVEr5GoBnEE8Kz3usAl8HkaJ+tb8Dzd1efOn6lci1xHtS1Vfk44m7N6Mwz4I7frwXe1oGFY6SiIiIKPtouU/LXL62TCeJ/y6EcAshdgkhrkp8rh7AoeQTpJQtiK8cLkt8RKSUJyed41DimAsd+zZCiE8KIfYLIfYPDAyk8EsiUp5nLIxvvXgCl9QU4saLyt/2WHVhLn5z12UoyrPg/h2nFYqQiIiIKDvZbDYMDg5qMlGUUmJwcBA2m21Wx2VyBMYXARxFPIn7MIBnhRANAOwAPFOe6wHgABAF4D3HY7jAsW8jpXwAwANAvLvpnL8Koiz0nZdPYSgwjl/cuApCvHPsRZHdilsvrsL3XjmNfl8QJY7Z/aAgIiIi0qqqqip0dnZCqwtJNpsNVVVVszomY0milHLvpL/+QghxG4DrAYwCcE55uhOAD0DsPI/hAscS6cLpfh9+sbsVH964EKsr88/5vO0NFfjuH0/jd4d68JeXL85ghERERETZy2w2Y/FivjeaTMk9iRKAANAMYG3yk0KIWgBWACcTHyYhxNJJx61NHIMLHEukC//yu2PIsRjx+fe8o8r6bZaUOFBf4cTTh7ozFBkRERERqVFGkkQhRIEQ4lohhE0IYRJC3AFgK4AXADwC4EYhxBWJRjX3AXhCSumTUvoBPAHgPiFEnhBiC4DtAB5KnPqcx2bi6yJSWlOXB6+eHMCnty1Bkd16wedvb6jAoY4RnHX7MxAdEREREalRplYSzQD+FcAAADeAvwFws5TypJSyGcBdiCd8/YjvJ7xn0rH3AMhJPPYYgLsTx2AGxxJp2iN722AzG/DhSxbO6Pk3rq2AEMAzjVxNJCIiIqLpZWRPopRyAMDG8zz+KIBHz/HYEICb53IskZZ5g2E8dbAbN62tQH6OeUbHlOfn4NLFhXj6UBf+9t1Lpm1yQ0RERET6lg1zEoloDp58swtj4Sg+smnRrI7b3lCJMwN+NHVNbRxMRERERMQkkUiVpJR4+PU2XFSVj4uqCmZ17PWry2E2Cjzd2JWm6IiIiIhIzZgkEqnQvrNDONU/OutVRADIzzXjquUlePZwN6IxjgwlIiIiordjkkikQg+93ganzYQbL6qY0/HbGyrQ5w1h75nBFEdGRERERGrHJJFIZQZ8IbzY3Iv3X1yNHItxTue4emUp8ixGPM0up0REREQ0BZNEIpX51f4OhKMSd2ya2diL6djMRly7ugy/b+pBMBxNYXREREREpHZMEolUJBqTeHRvOzbXFaHOZZ/XuW5uqIQvGMGOEwMpio6IiIiItIBJIpGK7DjRj66RsTk1rJlqc10RFuSa8YejvSmIjIiIiIi0gkkikYo8/HobShxWXLOqdN7nMhkN2LykGLtPD0JKdjklIiIiojgmiUQqMRIYx46TA/jghmqYjan51t1SV4xebxBn3P6UnI+IiIiI1I9JIpFK7GkZhJTAthWulJ1zy5IiAMDu0+6UnZOIiIiI1I1JIpFK7GpxI89ixEVVBSk758LCXFQW5OA1JolERERElMAkkUgldp8exCWLC1NWagoAQghsWVKEPS2DiMa4L5GIiIiImCQSqUKPZwxn3H5sWVKc8nNvWVIMbzCC5m5Pys9NREREROrDJJFIBXafHgQAbK5LfZKYPOeuxDWIiIiISN+YJBKpwK4WNwrzLFhR5kj5uV0OK5aXOrC7hfsSiYiIiIhJIlHWk1Ji9+lBXFZbBINBpOUam5cUYd/ZIQTD0bScn4iIiIjUg0kizUgwHMWxHi9+d7gbD+xswcvH+uAeDSkdli6ccfvR6w1ic2JcRTpsqStGKBLDm+3DabsGEREREamDSekAKDtJKfHKiX48tq8DJ/t86BgKYLrml1ULcrC2ugAbFy3AbZcuhNVkzHywGre7Jb5XcEsa9iMmXVpbCKNBYPfpwbTseyQiIiIi9WCSSG8TjUk8d6QH979yGsd7fShz2nDxogXY3lCJJSV2LHHZUZ5vw6n+URzqGEFjxwga20fw3OEetA4GcO9N9Up/CZqz+7QbFfk2LCrKTds1HDYz1lblY1eLG5/H8rRdh4iIiIiyH5NEAhBPDn9zoAPf39GC1sEA6lx5+M8PrMVNDRXTzuW7ZHEhLllcOPH3e59pxs93t+JdK0qwdZkrk6FrWiwmsefMIK5eWQoh0rMfMWnLkmLcv6MF3mAYTps5rdciIiIiouzFPYmEPm8QH/nxXnzxt0fgsJnxg4+sx/995krcenHVjAe3/8N1K7CkxI7P//oQhv3jaY5YP472eDESCGNLGvcjJm2uK0Y0JrH3zFDar0VERERE2YtJos69enIA1//Pn9DYMYJvvv8iPPPpLXjv6vJZd9G0mY347w81YMg/jn986giknGYDI81acixFJvYJrl9UAJvZgF2nOQqDiIiISM+YJOpUOBrDN54/jj//6T4U26149m+24IMbqudV0ri6Mh+fuWYZfn+kF0+82ZXCaPVr1+lB1LnyUOq0pf1aVpMRG2sKOS+RiIiISOeYJOqQJxDGh364Bz94tQW3X7oQT396C5aUpGZI+11X1mFjzQL88zPN6BgKpOScejUeiWHf2SFsWZK5bqNblhTjZN8o+n3BjF2TiIiIiLILk0Qd+u4fT6GxYwTfuW0d/u2WNbCZUze2wmgQ+K8PNgAAPverQ4hONzeDZqSxYwRj4WhGR1Ikx2zsSYzdICIiIiL9YZKoM10jY3jw9Tbcur4KN62tSMs1qgtz8c83rsK+1iE8d6QnLdfQg90tbggBbKotvPCTU2RVhROFeRY8f6Q3Y9ckIiIiouzCJFFn/uelkwCAv79mWVqvc+v6KlQW5OA3BzrTeh0t2316EKsr8lGQa8nYNY0GgQ9cXIX/O9aHPi9LTomIiIj0iEmijpzq8+E3Bzpx56ZFqCzISeu1DAaBW9dX4rVTA+j1MNmYrWA4ioMdw9hcl/7RF1PdfulCRGMSj+1rz/i1iYiIiEh5TBJ15Ft/OIE8iwn3bFuSkeu9b30VYhJ48iA7nc7W8V4fwlGJdQsLMn7tRUV52LrMhV/u60AkGsv49YmIiIhIWUwSdeJg+zBebO7DJ7fWojAvM+WLNcV52FizAL850MG5ibN0pMsDAKivyFfk+h+5dCF6vUG8dKxfkesTERERkXKYJOqAlBL/8cJxFNst+MvLF2f02u+/uAotA340doxk9Lpq19TpQUGuGVUL0lsWfC7vWlGC8nwbHtnbpsj1iYiIiEg5TBJ1YOcpN14/M4S/eddS5FlNGb329WvKYTMb2MBmlpq6PVhTmQ8hhCLXNxkNuP2ShfjTKTfOuv2KxEBEREREymCSqHGxmMQ3XziO6sIc3HbJwoxf32Ez47rV5Xj2UDeC4WjGr69GoUgUJ/t8ipWaJn3okmqYDAKPvM7VRCIiIiI9YZKocS8296K524vPXrMMFpMyL/et66vgDUbw0rE+Ra6vNicSTWvWVCqbJJY4bLi2vgy/PtDJBJ+IiIhIR5gkapiUEv/7ymnUFufhprWVisVxWV0RKvJtLDmdoaYuLwAoniQCwB2bFsIzFsbvDvcoHQoRERERZQiTRA3bcXIAzd1e3HVVHYwGZfa2AfEB7e9bX4WdJwc4oH0GjnR54LSZUF2oTNOayS6rLUKdKw8Ps+SUiIiISDeYJGrY/a+cRmVBDm5Zp9wqYtKtF3Nm4kw1dXmwWsGmNZMJIfCRTYvQ2DGCpsRYDiIiIiLSNiaJGrX3zCDeaB3GJ7fWwmxU/mVeXJyHDYsW4DcHOjkz8TzGIzGc6PVlRalp0vvWV8FmNuCxfe1Kh0JEREREGaB89kBp8b0dLSi2W/ChjdVKhzLh/RdX4XT/KB7Z285E8RxO9vkwHo2hPouSxPwcM66tL8NzR3owHokpHQ4RERERpRmTRA063DmCnScH8FeX18JmNiodzoSbGiqwqbYQX3mqCZ986ADcoyGlQ8o6yZLObFpJBICbGyoxEgjj1ZMDSodC0+gcDuDh19vw6/0dCEeZyBMREdH8ZHayOmXE/a+0wGkz4SObMj8X8XxyLSY8+vFN+Omus/jmiydw7bd34uu3rMF7V5cpHVrWaOr2wGE1YVFhrtKhvM3lS4tRmGfBU41duGZVqdLh6F4kGsP+tmG8crwfr5zox8m+0YnHfvBqC7503Uq8e2VJVuxrJSIiIvXhSqLGnOrz4YXmXnxscw0cNrPS4byDwSDw8Stq8bu/uRxl+Tbc9fABfO5XhxCKcA4fABzp8mJVhRMGBbvRTsdsNODPLirHS0f74AuGlQ5H18YjMXzkJ3vx4Qdex093nYXLYcVXbliJlz57JX505wZICXz8wf247Uev40gnmw0RERHR7DFJ1Jjv72hBjtmIj21ZrHQo57Ws1IEn79mCe66qw2/f7MTTjd1Kh6S4cDSGYz3erCs1Tbp5XSVCkRheaOpVOhTdklLin55uwutnhvDPN67CwX96Dx75+CZ8/IpaLCmx45pVpXjxM1tx3/Z6nOwbxY3/+xq+8fxxpcMmIiIilWGSqCEdQwE8fagbd1y6EIV5FqXDuSCLyYAvXLscRXkW7GkZVDocxZ3uH8V4JIY1VdmZJK6rLsCiolwm9Ap6cE8bfvlGB/56Wx3+Ysti2K3v3DFgNhpw52U12PGFq7C9oQI/3NmCloHRac5GREREND0miRryfFMPojGJj22pUTqUGRNCYFNtEfa0DOq+4+mRRNOa+orsTBKFENi+tgK7Wtzo8waVDkd3dp12477fHcXVK0vxuWuWX/D5TpsZX/2zVbAYDXjg1TMZiJCIiIi0gkmihuw4MYDlpQ5ULciupicXsqmuCL3eIFoHA0qHoqjmLg/yLEbUFucpHco5bV9XCSmBZw9xNTGTWt1+3PPIm6hz5eG/P9ww4z2rxXYrPrihGk8c7ESvh4k9ERERzQyTRI0YDUXwRusQrlruUjqUWbustggAdF9yeqTLg/qK/KxrWjNZncuOi6ry8VRjl9Kh6IYvGMbHH9wPIYAf37lx2hLT8/nk1lrEJPDTXWfTFCERERFpDZNEjdh92o1wVOLKZepLEutceXA5rNhzRr9JYiQaw9EeL+ornUqHckHbGyrR1OXF6X6f0qFonpQSn/3VIZx1+3H/HeuxsGj2VQLVhbm4YU05Hnm9DZ4AO9MSERHRhTFJ1IhXTw4gz2LEhppCpUOZNSEELtP5vsQzbj+C4VjWdjad7Ma15TAI4KmDLDlNt5/tasX/He3Dl69fic11xXM+z11X1sE/HsXDe9tSGB0RERFpFZNEDZBSYseJAWxeUgyLSZ0v6WV1RXCPhnTbhTE5z04NSWKJw4YtS4rx9KEu3Sb1mXC4cwT//vwxXL2yFH85z2ZUqyqcuHKZCz/bdRbBMGeSEhER0fmpM6Ogt2kZGEXXyJgq9yMmTexLPDOkcCTKONLlQY7ZiFqXXelQZuTmhkp0DI3hzfZhpUPRJG8wjE8/ehAuuxXf+sBFEGL++1TvvqoO7tFx/PpAZwoiJCIiIi1jkqgBO04MAIAq9yMmLSrKRXm+Da/rtHlNc7cHqyqcMGZx05rJrl1dBpvZgGc4MzHlpJT40hNH0DUyhu/ctg4FuamZeXrp4kI0VBfgRzvPIBKNpeScREREpE1MEjXg1ZMDWFJiV93oi8mS+xJfP6O/fYmxmERztxerK7K/aU2S3WrClrpivHJiQHevV7o9tq8Dzx3uwefesyyle4yFELj7qjq0DwXwfFNvys5LRERE2sMkUeUC4xHsPTOEq1S8ipi0qa4Ig/5xnOzT177ErpExBMajWF6mniQRAK5aUYL2oQDOuP1Kh6IZx3q8+NqzzbhiaTHu2lqX8vNfs7IUda483L+jBbEYk3siIiKaHpNEldvTMojxaAxXLS9ROpR5e2teolvhSDKrdTCeZC0uzlM4ktlJ3ph45Xi/wpFox33PHoXDZsa3P9SQlnmZBoPAX29bgmM9XrzYzNVEIiIiml7Gk0QhxFIhRFAI8XDi71cJIWJCiNFJH38+6fmFQognhRB+IUSbEOL2Kee7PfF5vxDiKSGE+mZAzMOOEwPIMRuxcfECpUOZt+rCXFQtyNHdvMRWtzqTxOrCXCwtsU/siaX5cY+GsPfsIG6/pBrFdmvarrO9oRJ1rjx8+6WTiHI1kYiIiKahxEri9wC8MeVz3VJK+6SPX0x5/jiAUgB3APi+EKIeABL//SGAjyYeDwC4P91fQLaQUmLHyX5sriuC1WRUOpyUuKy2CHvPDumqFO6M248csxGlzvQlBuly1XIX9p0dgj8UUToU1XvpaB9iMt4UKJ2MBoG/v3oZTvaN4rkjPWm9FhEREalTRpNEIcSHAYwAeHmGz88DcCuAr0opR6WUrwF4BvGkEIgnjc9KKXdKKUcBfBXA+4QQjtRHn33Ouv3oGFL36IupLqsrwkggjGO9XqVDyZhWtx81xXkpGXOQaduWl2A8GsNunXalTaUXmntRXZiDVeXp35t6w5pyLC914L9fOslOp0RERPQOGUsShRBOAPcB+Ow0D5cIIfqEEGeFEN9OJIcAsAxAREp5ctJzDwGoT/y5PvF3AICUsgXxVcdlKf8CslCyzE8L+xGTLqtL7kvUT9LROhjA4mJ1dqbdUFOIPIsRr5zgvsT58AbD2HXajffWl2XkZoHBIPCZa5bizIAfT3OMCREREU2RyZXEfwHwEynl1EnOxwE0ACgH8C4AFwP4r8RjdgBTl5Q8AByTHvec5/EJQohPCiH2CyH2DwxoYw/VjpMDqHXlobpQnQnGdMrzc1BTlIvXdbIvMRyNoX0ogJoide1HTLKYDLh8aTF2HO/nKIx5eOV4P8JRifemudR0smvry1Bf4cR3/ngKYa4mEhER0SQZSRKFEA0Argbw7amPSSl7pZRHpZQxKeVZAP8P8RJTABgFMLX2ygnAN8PHJ1/nASnlBinlBpdL/eWZwXAUe88M4koNjL6Y6rK6+L5EPTTV6BweQzQmVde0ZrJty0vQ7QnqbnRJKr3Q1AuXw4p11ZlrQCWEwGeuXoa2wQCeeHPqvTsiIiLSs0ytJF4FoAZAuxCiF8DnAdwqhHhzmufKSXGdBGASQiyd9PhaAM2JPzcn/g4AEELUArAmjtO0vWeHEIpoY/TFVJtqi+ALRtDcPXWRWHvU2tl0suS/QZaczs3YeBQ7Tgzg2vrStIy9OJ93ryzB2qp8fOfl0xiPcDWRiIiI4jKVJD4AoA7xstIGAD8A8ByAa4UQ24QQi0RcNYBvAHgaAKSUfgBPALhPCJEnhNgCYDuAhxLnfQTAjUKIKxL7GO8D8ISU8h0riVpzsH0YQgAXL1L/6IupLqoqAACc0sHK1BkNJIll+TasLHdyXuIc7Tw1gLFwFO+tL8/4tYUQ+Mw1y9A1MobH93dk/PpERESUnTKSJEopA4my0l4pZS/iZaJBKeUAgHUAdgPwJ/57BMDfTjr8HgA5APoBPAbgbillc+K8zQDuQjxZ7Ed8L+I9mfialHa404OlJXbYrSalQ0m5YrsFADDoDykcSfq1uv1w2EwozLMoHcq8bFvuwv62YXiDYaVDUZ0Xm3qRn2PGpbXKjHi9cpkLGxYtwHdePgXPGF8/IiIiUmZOIqSU90opP5L4839JKSullLlSymop5d9OXgmUUg5JKW+WUuZJKRdKKR+dcq5HE5/Pk1Jul1IOZfrryTQpJQ51jGBtYsVNa+xWE6wmA9yj40qHknatg34sVun4i8m2rShBNCax65Rb6VBUZTwSw0vH+nD1ylKYjYr8OIYQAvfeVI8h/zi+8fwxRWIgIiKi7KLMuxKal87hMQz6x3FRtTaTRCEEiu1WuH3aX0k8M+BXdalp0rrqAjhtJu5LnKXXzwzCG4xktKvpdFZX5uPjly/GY/s6dDV+hoiIiKbHJFGFDnWOAAAaNLqSCMRLTgdGtZ0kBsNRdHvGVDv+YjKT0YArlrnwyokBjsKYhReae5FrMeKKpcVKh4K/v3oZFhbm4stPHkEwHFU6HCIiIlIQk0QVOtzpgcVkwPKyd4yD1IxiuxWDGi83bR8KQEp1N62ZbNvyEgz4QmjunjralKYTjUn8obkP25aXwGY2Kh0OcixG/Pv71uCs24/vvHxK6XCIiIhIQUwSVaixYwSryp2wmLT78hXbrXBrfCXxrAY6m06WnNn5R3Y5nZE324fhHg3hWoVLTSfbsqQYH7i4Cj/ceQZHmewTERHplvZaY2pcJBrDkU4PPrSxWulQ0qrYYcGgfxyxmMz47LhMSc5IrNFIkuhyWLGpthC/3NeOu6+qU6wRi1q80NQLi9GAbctdSofyNv94w0q8cqIf//DEYTxx92aY+DoSERGd15mBUfzxeD9CkRhCkRjC0RjGIzFYTAasKHNgVbkTi4vzVPU7lUmiypweGMVYOIq11flKh5JWRXlWRGMSnrEwFqh8PMS5nHX7UZhnQX6OWelQUuYTV9Tir36xH78/0oPtDZVKh5PVdp1249LaQjhs2fX6F+RacO9N9fj0owfxs12t+MTWWqVDIiIiykrjkRh+8GoL/vePpzEejU183mI0wGIyIBSJIhyN92qwJraKbawpxKe3Lcn697dMElXmcIcHADQ7/iKp2GEFALhHQ1n/TTRXZ93a6Gw62bblJahz5eGHr57BTWsrVD/aI11GQxGc6PPh2vrsKTWd7IY15fjVsk78cGcLPn7FYr6OREREUxxoG8I//PYITvWP4sa1FfjSdStQZLfAYjRM/N4MR2NoGRjFsR4vjnZ7cbTHi1/sbsVTB7vwTzeuyur3SupZ8yQAQGPnCBw2kyY6Yp5PsT2eGGq5w2nroF9zr6PBIPDJrbU42uPFrtMcpXAuhztHICXQsDA7b/YIIXDd6jK4R8cn9s4SERFR/EbvV546glu/vweB8Sh+9rGN+O5t61BRkAOryfi2pM9sNGBFmRO3rKvCP96wCo98fBOe/ZvLUVWYi7/7ZSM+9rM30DEUUPCrOTcmiSpzqGMEa6sKNLtPL6nYnlxJ1GaHU38ogj5vCIuLc5UOJeW2N1Si2G7FA386o3QoWauxI/vH2GysWQAA2N86rHAkRERE2ePeZ5rx6N52/OWWxfjDZ7Zi24qSWR2/styJJ+7ejH++cRXeaB3Ce769Ez/fdTZN0c4dk0QVCYajON7r0/x+ROCtJHFQoyuJrYPJzqZ2hSNJPZvZiL/YUoOdJwdwrIcdMqfT2D6CmqLcrC6lrnPZsSDXjP1tQ0qHQkRElBU6hwN46mAXPrZ5Mf7pxlXIs85t557RIPAXWxbj/z57JTbVFuLeZ4/iV290pDja+WGSqCLN3V5EYxIXZfHqQ6oU5JhhNAjNjsFodcdLC2o0uJIIAHdcuhC5FiN+xNXEd5BS4mDHCNYtXKB0KMnIF7IAACAASURBVOclhMDFixZwJZGIiCjhRzvPQAjgE1sXp+R8lQU5+NGdG3DF0mJ85akmHGzPnt+5TBJV5FCyRK1a+0miwSBQmGeB26fNctOz7lEA0NyexKSCXAs+uKEazzR2o8czpnQ4WaXbE8SAL6SK7+MNNYU44/Zr9mYNERHRTLlHQ/jlGx24ZV0lyvNzUnZek9GA7962DmX5Ntz18AH0e4MpO/d8MElUkUOdIyhz2lDqtCkdSkYU260Y9GvzzelZdwClTuucyxTU4K8uXwwJ4Oe7WpUOJas0tqvnZk9yX+KBtuy5s0lERKSEn+06i/FoDJ+6si7l5y7IteCBOy+GdyyCux4+gFAkmvJrzBaTRBU53OnRxX7EpGK7BQMabVyjxc6mU1UX5uL6NeV4dG87fMGw0uFkjYPtw7CYDFhZ7lQ6lAtaXZkPi8mA/a3cl0hERPrlC4bx4J42XLe6DHWu9PSTWFHmxH9+cC3ebB/Bvc8cTcs1ZoNJokqMBOKt6PWwHzGp2G6F26fVlUQ/al3aThIB4JNX1MIXiuDxLNuMraTGjhGsrnDCYsr+H79WkxFrq/LxBvclEhGRjj38ejt8wQjuuWpJWq9z/Zpy/PW2Ojy2rx2P7G1L67UuJPvfpRCA+CoioI4StVQptlsw6A9BSql0KCnlGQtjyD+u+ZVEAFhTlY/lpQ7sOu1WOpSsEI7GcKTLg4bq7G5aM9mGmkI0dXkwNq586QsREVGmBcNR/OS1s7hiaTFWV6a/ou+z1yzHtuUu3PtMM9oGlZtVzCRRJZJNa9ZU6anc1IpgOAa/xt6ctiaGk9cUaz9JBID6CieOchQGAOBErw+hSAwNC9Vzs2djzQJEYhKHOkeUDoWIiCjjfn2gE+7REO6+KvV7EadjNAj8x60XwWQw4JsvnMjINafDJFElDnV6UOfKg9NmVjqUjEnOStRayenZRJJYq5MkcWW5E33ekGZnXs5GsrX1OhVVBKxPjOrgvkQiItKbSDSGB3a2oKG6AJfVFmXsuiVOGz51ZS2eO9KjWPM4JokqIKVEY8cI1upoPyIAFNnjg8a11n7/rNsPIeKNXfRgVUW8QcuxHp/CkSjvYMcIiu0WVC1IXevsdCvItWBZqZ37EomISHd+d7gHHUNjuOeqOgghMnrtT26tRYnDin997qgiW6+YJKpAjycI92gIa1W0+pAKEyuJGutwetbtR0V+Dmxmo9KhZESyi+cxlpyisWMEDdUFGf9FM18bagrxZvswojFt7Q8mIiI6l3A0hv9+6SRWlDlw9crSjF8/12LC59+zHAfbR/D7I70Zvz6TRBVINq25SEf7EQHA5UgmidpaSWwd1Edn06TCPAvKnDbdJ4meQBhnBvxYt1A9TWuSNtYsgC8Ywck+rgYTEZE+/Gp/B1oHA/jCtcthMChzc/fWi6uwosyB/3jheMZnJzJJVIFTiTdmy0odCkeSWYV52is3lVLirFv7MxKnWlnu0H3zmsZE4xc1dijesKgQAPclEhGRPoyNR/E/L53ChkUL8K4VJYrFYTQIfPn6lWgfCuChPZkdicEkUQVO9o+iakEO8qwmpUPJKLPRgIJcMwY1VG46HAjDF4xgUZE+9iMmrSx34nT/aMbvgmWTxvYRCKHOioCqBTkodVqxX6HN80RERJn0892t6PeF8MXrVii+RWTrMhe2LnPhu388jZFA5t4TM0lUgVN9PiwtsSsdhiKK7VZNrSR2DAUAAAt10rQmaVWFE5GYxKm+UaVDUUxjxzCWltjhUGGHYiEENtQUYj+b1xARkcZ5AmF8f8dpvGtFCTbWFCodDgDgy9evgC8Yxnf/eDpj12SSmOUi0RjODPh1V2qaVJRn0VaSOBxPEvXS2TRJ781rkh2K1VhqmrRx0QJ0jYyhe2RM6VCIiIjS5vuvtsAXiuAL1y5XOpQJK8qc+OCGavxidyt2t7gzck0miVmufSiA8WgMS/S6kuiwaqq7afuQPpPEmqI85JiNuh2D0TYYwHAgjIZq9TWtSdqQuJvKklMiItKqXk8QP9t1Fjc3VE7c4M4WX7p+JRYX5+Guhw7gdH/6K7OYJGa5U4l/BEt1upLo0ly56RgW5Jph19n+UqNBYHmZA0d7PEqHoojGDvU2rUlaUeZAnsXI5jVERKRZ3/njKcSkxGevWaZ0KO+Qn2PGTz+2ERaTAX/x830YTPP7YyaJWS7Z2VS3K4l2C3zBCIJhbTQ86RwO6G4VMWlluRPHenyKDIRVWmPHCHItRiwrVe/3sclowPpFC7DrtBsxzkskIiKNOTMwisff6MAdly7K2vdq1YW5+PGfb0S/N4RPPLg/re+PmSRmuVP9o6gsyNHdylNSkT0+K3HQr42S046hAKoXZOcPnnRbVeGEZyyMbk9Q6VAyrrFjBKsr82EyqvtH7vaGSrQM+PHs4W6lQyEiIkqpH/3pLCxGA/562xKlQzmvhuoC/PeHGnCwYwSf+/WhtN24Vfc7Fh042TeKpSpefZiv4mSSqIGS02hMomtkDFWFOUqHoohV5fGS6WPd+mpeE4nGcKzHizWV6ht9MdX71lWivsKJ/3j+uGZW94mIiCLRGF5s7sU1q0rhcliVDueCrltTji9dtwLPHe7Bt/5wIi3XYJKYxaIxiZaBUd2OvwDi5aYANLEvsc8bRDgqdbuSuLzMCSH01+G0ZcCPUCSG1ZXZtQF+LgwGga/csArdniB+8tpZpcMhIiJKiX2tQxjyj+O61WVKhzJjn7iiFu+/uArff7UFQ2mouGOSmMXahwIYj8R027QGeGsl0e1Tf7lph047mybZrSYsKszFUZ0lic3d8WY9qyvUv5IIAJfVFeE9q0px/yun0e/TX+kwERFpz/NHemEzG3DlcpfSocyYEAI3N1RCyvTcgGeSmMWSTWv0vZIYTxIHNLCS2DEcny9XvUCf5aZAfF+i3lYSm7q8sJkNqHVp5/v4S9evxHg0hv/6w0mlQyEiIpqXWEziheZebFteglyLunqArExu5WGSqC96H38BADkWI/IsRgxqYFZix1AAQgCVOk4SV5Y50ToYwGgoonQoGdPU7cGqcieMBqF0KCmzuDgPd15Wg8f3d+CozvaYEhGRthxoH8aAL4T3qqjUNKnIbkWJw5qWKi0miVnsVJ8PFfk23XY2TSrSyKzEjuEASh02WE1GpUNRTHIw7YlefSQWsZjE0W4vVmugac1Uf/uupcjPMeNfnzuqy7EmRESkDc8f6YXFZMC7VpQoHcqcrKpwpuWGLZPELHaqfxRLdLyKmFRst2giSewcGkO1TjubJq2qiCeJR3t8CkeSGW1D8VVTrexHnCw/14y/f/dS7G4ZxMvH+pUOh4iIaNaklHihqQdblxbDYTMrHc6crCx3omVgFOORWErPyyQxS0VjEqf7R7FMx/sRk4rtVm2Umw7rd0ZiUnm+Dfk5Zt2UKDZ1xZvW1Gugs+l07ti0CLWuvLS13yYiIkqnQ50edHuCeO/qcqVDmbNV5U6EoxKn+lN7A55JYpbqHA4gFInpekZiUrFD/eWmoUgUvd4gqnTa2TRJCIFV5fppXtPU7YHZKLC0RJsVAWajAe+/uArHe30YCaj/Rg4REenL8009MBkErllZqnQoc5bcynMsxVVaTBKz1Kk+Nq1JKs6zYCgwjkg0tcvomdQ9EoSU+u5smrSy3InjvV5EY9rfx3a024vlZQ5YTNr9Ubu2qgAAcLjTo3AkREREMyelxPNHerF5STHyc9VZagrEm8nZzIaUV2lp952Lyp1MLBkvYbkpih1WSAkMqXilQu8zEidbWe5AMBxD66Bf6VDSSkqJpi6PJvcjTpZsynO4c0ThSIiIiGbuaI8X7UMBXK/CrqaTGQ0Cy8tSX6XFJDFLne4bRXm+DU6VbqJNpeSsRDXvS+wYZpKYlGxeo/WS025PEMOBMOo12Nl0svwcM2pdeWjs4EoiERGpxwtNvTAI4JpV6i01TVpV7sCxXm9Ku40zScxSJ/t9XEVMKMqzAICq9yV2DI3BbBQoc9qUDkVxS0rsMBmE5pvXJJvWrK7QZtOaydZWFeBQ5whHYRARkWr8/kgPNtUWoSixGKFmq8qdGAmE0eMJpuycTBKzUCzZ2ZT7EQHEy00BlSeJwwFUFORoaqD6XFlNRiwszEVbogRXq5q7PDAaxMSGci1bW5WPAV8Ivd7U/XIiIiJKl1N9PrQM+HGdyktNk95qXpO6G/BMErNQ5/AYguEYlnIlEYA2yk07hzj+YrISpxX9Gk8omrq9WOKyw2Y2Kh1K2l1UHW9ec4glp0REpAIvNPVCCODaem0kiSsSSWIqq7SYJGah5JwTjr+Ic9pMsBgNGFD1SuIYqgvZ2TSp1GlDn1e9r+dMNHV5NDsfcapV5U6YDAKH2LyGiIhUYF/rEFaWOVGikW1AdqsJi4pycayXSaKmneqPj79YotHZarMlhECR3QK3T50rif5QBEP+cTatmaTUaUO/L6jZPWz9viD6fSHNdzZNspmNWFHuYIdTIiLKerGYRGPHCBoWFigdSkqtKndyJVHrTvb5UOq0Ij+HnU2Tiu1W1e5JnOhsynLTCSUOK4LhGLzBiNKhpEVz4od0vQ6a1iStrSrA4Q4PYjqYf0lEROp1xu2HLxhBQ7W2ksSV5U60DQXgD6XmvRWTxCzEpjXvVGy3YNCv0iRxaAwAx19Mlizv0Oq+xOZEZ9NVOksSfaEIzmp8/iUREalbY0e86mWdBpNEKYHjvb6UnI9JYpaJxSRO9Y1y/MUURXarastNO4aSK4nck5hUmuhYq9V9iU1dXiwuzoNDR3NO1yZ+2bLklIiIslljxzAcVhPqXNp6r528MX00RR1OmSRmma6RMYyFo1xJnKLYbsWgP6TKPWwdwwHkWowoTMx7pPieRCC+d0+Lmro9uio1BeLzL3MtRnY4JSKirNbYMYKLqvNh0NhYsop8G5w2U8rGYDBJzDKnJ5rWaOvuxnwV2y0IRyW8Y+rbw9YxNIbqBbkQQls/jOajxKndlcSRwDg6h8ewulIfTWuSjAaB1RX57HBKRERZKxiO4niPT3P7EYF4o8dVFalrXsMkMcu0J0oTa4ryFI4kuyRnJapxDEbncIDjL6bItZjgsJrQp8E9icmmNXrpbDrZ2up8NHd7MR6JKR0KERHROzR1eRCJSTRUL1A6lLRYWe7EiV4foiloIsckMct0DgdgNRlQbGdp4mTJJFFtHU6llOgYCqCKnU3focRp1WS5aXN3vNxSb+WmAHBRVQHGIzGc7EvNpnkiIqJUSjat0eJKIhAfgzEWjqItBU3kmCRmma6RMVQuyGFp4hTFjnjSrLYkcTgQhn88ys6m0yh12jRZbtrU5UVlQQ4W6HAPavKXbvKXMBERUTY52DGCyoIcuBIN9LRmZXnqmtcwScwyncNjXHWahiu5kuhTV1LBzqbnVuq0aXIl8WSfDyvK9Nl4qmpBDhbkmtnhlIiIslJj+wgaFmpzFREAlpbaYTKIlDSvYZKYZbqGx1BZwIRiqgW5FhgNQnV7EjuGE0kiVxLfocRhRZ9XnR1rzyUWk2gd9GNxsT73FAshsLa6gB1OiYgo6wz4QugaGdPcfMTJrCYjlpTYU9K8JuNJohBiqRAiKIR4eNLnbhdCtAkh/EKIp4QQhZMeKxRCPJl4rE0IcfuU853zWLUJjEcw6B9HFVed3sFgECi2WzCgupXEMQBMEqdT4rRhPBKDZyysdCgp0+sNIhiOYbFLn0kiEN+XeKrfB39IfZ2IiYhIu7S+HzFpZbkTx3rm3xtAiZXE7wF4I/kXIUQ9gB8C+CiAUgABAPdPef544rE7AHw/ccxMjlWV7pF4QsEkcXouh1V9SeJwAAtyzbBbTUqHknVKNTgGo9Ud3yi+WMfdiRuq8xGT8Q5yRERE2aKxYxgmg9D8iKrlZQ70eoPwBud3Ez6jSaIQ4sMARgC8POnTdwB4Vkq5U0o5CuCrAN4nhHAIIfIA3Argq1LKUSnlawCeQTwpPO+xmfqaUqljmEni+bjsVvWVmw4FuIp4DqVOGwBoal/i2UQ3sRqdlpsC8ZVEADjcySSRiIiyR2PHCFaUO2AzG5UOJa3K8+Pvr+a7sJKxJFEI4QRwH4DPTnmoHsCh5F+klC2IrxwuS3xEpJQnJz3/UOKYCx2rOl2JJLGygEnFdFS5kjgUQDUbEU2rxKG9lcSzA37YzAaUJRJgPSq2W1FZkINGNq8hIqIsEYtJHO7waL7UFHir2aNqkkQA/wLgJ1LKzimftwOYesvZA8CReGzqzsvkYxc69m2EEJ8UQuwXQuwfGBiYQ/jp1zk8BrNRTLx5prdzOaxwj44jloIBoZkQjUl0jYyhqpArw9MpccQTqT6vdlYSWwf9qCnKg8Gg7xE2a6vzcYQriURElCVaBkbhC0XQUL1A6VDSLjneQxVJohCiAcDVAL49zcOjAKZOnXYC8F3gsQsd+zZSygeklBuklBtcLtfsvoAM6RoZQ0VBju7fYJ5Lsd2KaExiODCudCgzMjgaQjgq2a32HHIsRjhtJvRrKEk8444niXq3qCgPPZ4x1dzQISIibTuok6Y1QOqSxEx107gKQA2A9sSQeDsAoxBiFYAXAKxNPlEIUQvACuAkgBgAkxBiqZTyVOIpawE0J/7cfJ5jVadzOMD9iOcx8Y9+NIQie/avtvYnvjmTK2b0TvFZidooN41EY+gYCuDa+jKlQ1FcqcOKcDR+Q0cN36tERKRtjR0jcNhMqNVBz4D8HDPMxvmPjctUuekDAOoANCQ+fgDgOQDXAngEwI1CiCsSjWruA/CElNInpfQDeALAfUKIPCHEFgDbATyUOO85j83Q15VSnJF4fqmqsc6UZEOWEiffJJ9LidOqmXLT7pEgwlGp686mScmmRL0aeW2JiEjdGttH0FBdoItqPSFEvNmjGspNpZQBKWVv8gPxMtGglHJAStkM4C7EE75+xPcT3jPp8HsA5CQeewzA3YljMINjVSMYjqLfF0IVm5ycU3Il0a2SDqf93uRKIpPEcyl12DTTuOaMexQAdD0jMak00VmtXyOvLRERqdfYeBQn+ny6KDVNSkWzR0WGt0kp753y90cBPHqO5w4BuPk85zrnsWrS44nfcedK4rmlqsY6U5JllC4miedU4rSh3xeElBKJUnTVSs5I5J7Et1YStbJKTERE6nWky4NoTOouSewemd/v4IzOSaRz6xwOAOCMxPOxW02wmQ0qShKDKMg1w2rS9jye+Sh1JveuzW/gazZoHQzAbjWh2G5ROhTFJUvDtbJKTERE6tXYMQxAH01rklyO+c8WZ5KYJToTMxKrOHj9nIQQqpqV2O8NTbxZpuklV5yS+zfV7Izbj8XFeapfEU0Fi8mAojwL+jTwuhIRkbod6vSgakGOrhqpuexWDI6GEJ1Hl3EmiVmia3gMRoNAKUsTz8tln/+dkUwZGA2xac0FJPdramHFqdXtR40OuqbNVInTpqnxJkREpE5Hu71YXZGvdBgZ5XJYEZPAkH/uY+OYJGaJzuEAyvNtMBn5kpyP2lYSOf7i/LSyd208EkPncACLi1gJkFTqtLK7KRERKcoXDOOs24/VlVPHqmtbKvp4MCPJEl0jHH8xE2pJEqWUGPCF2Nn0ApI/xNS+4tQ+FEBMsrPpZFrqXEtEROp0tNsLAKjX4UoigHlV3zFJzBKdw2McfzEDLrsNw4EwxiMxpUM5L89YGOPRGDubXoDNbERBrnmiE6xasbPpO5Xm2+AeDSESze7vVSIi0q7mZJKot5VEe7xSiyuJKjceiaHPG0QlO5teUDLpGvRnd1KRTHpKnCw3vZASh1X15aZnE0niYu5JnFDqtEJKwD069/0QRERE89HU7UGJw6q77T/FjnindSaJKtfrCSImOf5iJtQyKzE5RJzlphdW6lR/WeLZQT8W5JpRkMvxF0mlDm3sNyUiIvU62u1FfYW+VhEBINdigt1qYpKodp0jiRmJ3JN4QapJEhOt/5kkXliJQ/1dMNnZ9J200pSIiIjUKRiO4lT/KFZX6ms/YtJ8ZyUyScwCEzMSuSfxgtSTJLLcdKZKnVb0+0KIzWOWj9LOuv1YzP2Ib1OaGP/Sl+Xfq0REpE3He32IxqQuVxKBxNi4ecwrZpKYBbqGxyAEUJbPhOJCiu3zr7HOhH5vCLkWI+xWk9KhZL0ShxWRmMRwQJ1718bGo+jxBLkfcYoiuxVGg0CfhyuJRESUec3dHgD662yaNN+JAEwSs0Dn8BjKnDZYTHw5LsRqMiI/xzyv5fNM6PcFWWo6Q2+VJWb3a3ourYOJzqZMEt/GaBBw2dXflIiIiNSpqcuL/Byzbnt+MEnUgK6RAGckzoIaZiX2+0K666Q1V8mS3L55lEQoqZWdTc+p1GlluSkRESniaLcH9RVOCCGUDkURLocV3mAEwXB0TsczScwC8RmJTBJnKl5jnd1vPAd8IbicXEmcieTeNbU2rznLlcRzKnGqvykRERGpTzgaw7Fen26b1gDx98sA4J5j9R2TRIVFojH0ejgjcTZcDuuc/8FnSr+X5aYzlWxG1K/SctOzA364HFbuP51GqZPlpkRElHmn+0cxHonptmkNMP9mj0wSFdbnCyESk+xsOgvZXm7qD0XgH4+y3HSGrCYjFuSa1VtuOuhnqek5lDpsGA6EEYrMrdSFiIhoLpq7vQD027QGYJKoel0T4y+4kjhTLocV/vEo/KGI0qFMK/nNyJXEmSt12lTbuIbjL84t2ZRIravERESkTk1dHuSYjbq+iTuRJLLcVJ06hwMAwMY1szDfGut0e2tGIpPEmVLr3jVfMAz36Dj3I55D8nuAJadERJRJR7u9WFXhhNGgz6Y1AFCYZ4EQXElUreRKYgWTxBmb7/J5uvUnyiZdXEmcsVKHdSK5VpNWd/wmj57vVJ5PcvarWleJiYhIfWIxieZuD1breD8iAJiNBhTmWpgkqlXn8BhcDitsZqPSoahGsT3Lk0RvstyUexJnqsQZTxJjMal0KLNyxj0KgEniuZQ6kkkiVxKJiCgzWgf98I9Hdb0fMWk+fTyYJCqsa4TjL2ZrvjXW6dbvC8FsFFiQa1Y6FNUoddoQjUkM+seVDmVWkiuJi4rYeGo6BblmWIwG1TYlIiIi9ZloWlOp75VEIJEkck+iOnUOB7gfcZYK8ywwzKPGOt36fUG47FbdDm+dixKVrji1DvpRWZDDSoBzEELEV4lZbkpERBnS1O2B2SiwtMShdCiKm89scSaJCorFJLpHghx/MUtGg0DRPP7Rp9uALwSXk6Wms1GaaHDSr7IVp9ZBP1cRLyDeuVZdrysREanX0W4vlpc5YDExzUmWm0o5++08/L+noIHREMajMVSy3HTW5nNnJN36vSGOv5ilEpWOSujzBCeas9D0Sp1WJokAxiMx/Pvvj+GKb/4RX3riMHafdiOqsj24RJQddre48b77d+Hzvz6kdChZR0qJpi4PVnM/IoB4khiKxOCbw9g4UxrioRnq5IzEOZtPjXW69fuC2FCzQOkwVCU51kRNXTBjMYl+XwhlXDU+rxKHDTtPupUOQ1EdQwF8+rGDONQxgksWF+Lpxm48tq8DLocVN6wpx63rq7Cmim9oiOj8Tvf78I3nj+OlY/3IsxjxZvsIrl5ZiveuLlM6tKzR7QliOBBGvc47myZNngjgtM2uVwaTRAV1jcSTRO5JnD2Xw4qTfT6lw3iH8UgMw4EwO5vOksVkQFGeRVUNTtz+ECIxyZXECyjLt2E0FMFoKAK7VX+/cp4/0oP/99vDgATuv2M9rl9TjrHxKF450Y9nD3Xj0X3teHBPK35792asW8ibS0T0ToOjIXz7pZN4bF8Hcs1GfPG9K/DRyxbh/d/fjXufacaWJUVwzDIB0KrmLg8AoL6SN96At27CD/hCqHPZZ3XseX9jCyEeAnDBehgp5Z2zuioBiJeqAeCbzDlwOaxwj8ZHJhiyaFBqcnUzOUScZq7EaUO/isoS+zzx17qUK4nnNbHf1BuEfZa/oNQsFIni688dw4N72rC2ugD/e9s6VBfG96/mWIy4fk05rl9TjmH/ON77Pzvxlaea8MynL9f14GcieicpJT72szdwtMeLOy5diL9791IUJd74f+PWi3DL/bvwrRdP4GvbVyscaXZo6vbCIICVZVxJBOY3W/xCexJPA2hJfHgA3AzACKAzcex2ACOzvioBiHdyzDEb4dDh3fX5ctmtCEclPGNhpUN5m2SSwz2Js1fiiM9KVIvexGvNctPze2tWonpe21S4/5UWPLinDZ+4YjF+/anLJhLEqRbkWfDVP1uF5m4vHn69LcNRElG2e7N9BEe6PLj3pnrct331RIIIAA3VBbhz0yI8+HobDrYPKxhl9jjd78OiojzkWNh1HEhjkiil/FryA8AyADdIKe+QUn5ZSvkRADcAWD77kAkA+nwhlDo5KmEusnVWYjLJYbnp7KmtwclEkshKgPOaaEqkolLi+RqPxPDI3na8e0UJ/vGGVRfssHfDmnJcsbQY33rxhK7+PxHRhT2ytw12qwm3rKuc9vHPX7scpQ4bvvTEEYSjsQxHl33ahwJYeI6bcnqUn2OG2Sjm9H55Nt1NNwF4fcrn9gK4bNZXJQDxlcQSrkLMSTJJdGfZytNEkshy01krddow4AuppuNjnycIo0Gg2M7X+nyS5aZqugEwX8839cA9GsKdm2tm9HwhBL52Uz1CkRj+7blj6Q2OiFRjJDCO3x3uwc3rKs65p9thM+Nr2+txvNeHH//pbIYjzD7tg0wSJxNCzHkiwGySxIMA/k0IkZO4aA6ArwNonPVVCUC8NJGlanOTrSuJA94ghACK8ixKh6I6JU4bYjK+QV8Ner1BuOxW7iG7ALvVhFyLEb0edbyuqfDQnjbUFOXiiiXFMz6m1mXHXVfW4qnGbuxu0Xc3WCKK+82BToxHYrj9kkXnfd619WV4z6pS/M/LJ9E+AeO7GwAAIABJREFUGMhQdNnHEwjDG4xwfvEUyVmJszWbJPFjALYA8Agh+hDfo3g5ADatmQMpJfq8oYm77DQ786mxTqeB0RCK8qwwGTmCdLZKHeoag9HnDaKUpaYXJIRAqdOmqs6189Hc7cH+tmF8ZNOiWTfVumfbElQX5uCrTzVhPMKyMSI9k1Li0b3tWL+wAKtmMM7ha9vrYTIY8Fe/eAMH2vS5P7FtyA8A59wDrldpTxKllK1Sys0AlgC4CcASKeVmKWXrrK9K8IUiGAtH2RlxjhxWE6wmQ9Ylif3eEJvWzJHa9q71eoIo402eGSl1WlXVuXY+HtrThhyzER+4uHrWx9rMRtx302q0DPjx49fOpCE6IlKLPWcGccbtxx2Xnn8VMak8Pwffu2M9fMEIbv3+bnzxN4cx5B9Pc5TZpX0ovorKctO3m+ts8Vkvd0gp2wHsA9AphDAIIbhkMgcTXTCZJM6JEGLOd0bSqd8X4n7EOXpr71p2vabn0sty8RkrddpU87rOhycQxlONXbh5XQXyc+c2s2zbihJcW1+K77x8SjeJNRG90yN721GQa8YNF5XP+Jgrl7nw8ueuxKe21uK3b3biXf+5A7/c146YSvb6zxeTxOm57FYMjs6+58OMEzwhRIUQ4kkhxCCACIDwpA+apeQbplKuOs3ZXO+MpFO/LzgxuJRmp9huhRDqaHASGI/AF4yw3HSG4kliEFJq+43Krw90IBiO4aObauZ1ni9fvxLjkRh+9CeuJhLp0YAvhBebevH+9VWwmWc3yiHPasKXrl+J5/72CiwrceAfnjiCL/72cJoizS7tgwEU2y3I42i5t3E5rIhJzHpleTargD8EMA7g3QBGAawH8AyAu2Z1RQIQL1UDOIh7PubarSldojEJ9+g4VxLnyGw0oCjPqopy0+T3L1cSZ6bEYUUoEoN3LKJ0KGkTi0k89HobNtYsmNH+ofNZVJSH7Q2VePj1dt2VixER8Kv9HYjEJG67dOGcz7G8zIHHP7UJt1+6EE8e7NLFz5L2oQD3I05jrn08ZpMkbgbwl1LKRgBSSnkIwF8B+NysrkgAMNHEgQnF3GVbuemQfxzRmOSMxHkocVjRr4KyxIkZiUwSZyR5M0zLzWtePTWAtsEA7rysJiXnu+eqOgQjUfz0Nba0J9KTaEzisX3t2FxXhDqXfV7nEkLgo5sWIRKT+N3h7hRFmL3ahwJYxCTxHeY6EWA2SWIU8TJTABgRQrgA+AFMP92TzqvfG4LDZkKuhUvic+VyWDEUGM+a4bHJFTA2rpm7UqdVFYlEsiSW5aYzk0wSkyuwWvTg7la4HFZcW1+WkvMtLXXgutVl+MXuVnjGuKuDSC92nhpA5/DYjBvWXMjKcidWlDnwxJtdKTlfthqPxNA9Msb9iNNw2eO/g9O5krgXwPWJP78I4HEATwDYP6srEoBE+3yuQsyLy2GFnEONdbr0J775uDo8d2ppcJKc+cfv4Zl5qymRNpPEtkE/dpwcwO2XLITFlLpebn+9bQl8oQge3N2asnMSUXZ75PU2FNutuGZVacrO+b71lWjsGMGZgdGUnTPbdI+MISY5/mI6xY747O50JokfBfBq4s9/D+AVAE0Abp/VFQlAMklkMjEfyQYx2VJyOpBIblhuOnclThvcoyFEsmR1+Fz6vEHYrSbYuTl+Rkonxptkx/dqqv3ucA+kBG6fx/6h6dRX5OPdK0rwk11n4Q9pdz8nEcV1DAXw8vF+fHhjdUpvOG1vqIRBAE8d1O5qYrKz6aKiPIUjyT65lvj7lbQliVLKESnlUOLPY1LKf5FS/n/27jy8zbPKG//31m7ttmXZlvclq90szdq00JbSBei0tEBLYYBSBjoF5jcsA7zDDMsLww868w4wzFtm2AtlK2UoOwUKbWmzJ03TJI0d77skW7K1Wvv9/iHJMSGJJevZZJ3PdeW6Umt57lSW9JznnPucj3DOZ4pcK0G2uyllIUqz2o24YsmXm9ZRuemqOXPZYZ9CssOXQhd5imPQqmGr0q7ZTOLZmSBaaqpE+Ux/zyu6sRBN4nuHxwR/bkKIsnz30BhUjOHNe4W94FRvNeDqbgcef2FqzXaZHqPxF5e1mokAxYzA0DLG/jdjbIQxFmOMDef+W1f0Sisc5xzeEJWblqohtx9sOrAo80qyvKE4rAZN0e2qyXlLDU4UHky4g7Gl3z9SmHqrXvGv62r1uUPY2FBaR9NLubK1Gtd0O/DVP40glkyLcgxCiPwWE2n88OgEbulpQKOtSvDnv2N7Eyb8izg2Ni/4cyvBhD8KnUZFfSEuITsRoLjv4GJy2f8K4JUA7gewFdnRF68A8GBRRySYjyaRTHOakViieosBOo0K476o3EsBkG1G5KTAvyTn964pIzt8KZ4AXeQpVrnsNy1WLJnG8GwYmxosoh3jva/oxlw4jkePToh2DEKIvH72whQCi0m89SphGtZc6OaeBlRp1fjJ85OiPL/cxn1RtFRXQaVici9FkVYzEaCYIPENAG7jnP+Oc97POf8dgDsA3FXUEcn5zoh0klkSlYqhtcaIUV9E7qUAyJab0hWs0pRDJjGT4fCG4jT+okhOi0HRr+tqDXrDyHBgY6M4mUQA2NNRg13t1fjvZ4Yom0jIGsQ5x8MHRrGxwYLdHTWiHMOk1+CW3gb88sWZNfk5MuaP0n7EyxA7SLxUaE4he5HyM9Yo61S69lojxpSSSQzFKUgsUa1JB8YAr4KDiblIHKkMp3LTIjXY9PCG4khn1tZ+mLMzQQDARhEziYwxfODGDZgJxPC53/SJdhxCiDyOjs6jzx3CvfvawZh4p9V3bG9CKJbCH/u8oh1DDpxzTPijtB/xMuosegRjqaIuEBQTJD4G4BeMsZsZY5sYY7cA+Gnu56QI3qVMIgUUpWqtMWHcH5V9IzbnHLMhKjctlUatgsOsV3QXTA+Nv1iVBqsB6QyHr8iN80rX5w7BoFWJfgX7qq5a3LuvHQ8fGMWzA7OiHosQIq1vHxiFrUqL27eJO3r86m4HnBb9mpuZOB9NIhxP0fiLy8gnMYqp6CkmSPwwgCcBPATgOID/RHYMxoeKeA6C8/utqAtm6dpqjYgm0kV3bBJaMJZCPJWhTKIAlN7gJF8JQOWmxWnINWKYCSj3tV2NPncQG+otUEuwD+Z/vWoj1jnN+IfHTmIhquwOwISQwswEFvHEGTfu3tWCKp24je/UKobbt7nwdL9XMTOmhTCW23bURkHiJTXZs9/BUwuFN3u8bJDIGHtF/g+AawA8DeBdAP4K2QY2T+V+TorgCcZQY9JBr6EumKVqq81+IMhdcuqhEmLB1FuU3eBkKUikctOi5INqt4IvAKxGv4idTS9k0Krxhbu3wR9J4J8eP11QBUUmw/HQU4PY+///Afd89RA+95s+PHF6BjMK6QpNSKX7/uFxZDjHW/aK07DmQndsb0Yqw/HLF6clOZ4U8jMSW2spSLyUxlyQOLNQ+HfwSpOgv3GJn+e/mVju750FH5HAE6S9a0LJl3iN+aLY1S7OZu9CuAOUXRKK02rAyckFuZdxSZ5ADGoVg8NM7+Fi5INq9xrKJM6G4pgLJ7BBxP2IF+ptsuH9N67Hvz7RjxtOOHHnlc2XvO9CNIEP/Ogk/tjnxVWdtYgkUvjGc8NIprNf4V11JvzwXVdRVQshMomn0vjBkXHcsNEpWankZpcV6+vNeOK0G2+9ql2SY4ptIhcktlRTkHgpjfmxcUVkEi8bJHLOO0pbErkYmpEonCZ7FdQqhnGZO5x6qARRME6LHr5IAsl0Blp1MRXx0nAHY6gz6yUpL1xLak06aNVsTWUS+9y5pjWN0gWJAHD/y7vwdN8sPvGzM9jdUYPmi5wYvTi5gHd/73l4gjF86vYevGVvGxhjiCXTODsTxPGxeXzm12fxyMFRfOCmDZKunxCS9asXZzAXTuBt+9olPW6Py4YjI35JjymmMV8UTote9HLdcmbQqlFr0mG6iAu1K2USiQg8wRg2SVSetNbpNCq47AaMKqbclK7Il6reagDnwFw4LspA4VJ5gjHUU6lp0VQqBqfFsKYyiX0zIQCQrNw0T61i+Pe7tuJV//Es3vO953HH9iZUm3SoNelRbdLi+bF5fPqXZ1Fn0eOxv92HbS32pccatGpsb63G9tZqHBr24buHx/Hu67th0NLJFSFSymQ4vv7sCDrrTLim2yHpsV12A9zBGNIZviYueI5TZ9OCNNoNwmUSifDSmWwXTOpsKpz2WhPG/PIGie5gDHajlk60BJB/b3iCygwS3YEYOutoFtNqNNjWVpB41h1EvVWPGpNO8mO31Bjx2TuvwAcfO4mTv3jpL26/bkMdvnDXNlRfZm33Xd2BJ88exs9emMLdu1rFXC4h5AI/fn4SL80E8cW7t4k69uJimuxGpDMcnmAMLrvyvmeLNeGPYm9nrdzLUDyXraqo2eIUJEpsLhxHhlODEyG11hjxq1Mzsq7BHaDh6kLJl2IrtcOpOxjDvi76MlqNBpsBL00H5V6GYPpmpGtaczF/tdWFV1/RiIVoAvPRBPyRJPyRBNQqhhs2OqFaIUNwVVctNjZY8M3nRnHXzhbJT1QJqVTheAr/9tt+bG+14/ZtLsmP77Kf359W7kFiPJXGTDBGTWsK4LJX4eCQr+D7K2/DzxrnWZqRSAGFUNprTViIJhGIJmVbA+0zFU6+qZNXgUFiNJFCKJaictNVarBmM4lyzzUVQjKdwaA3LPl+xAupVQy1Zj26nRbs7qjBLb0NuHFz/YoBIgAwxnDfNR3o94Swf7DwEwdCSGm+/NQgZkNxfPzWzbJcnFnNOASlmpxfBOegctMCuOwGhOIpBGOFnS9TkCixfGt/KjcVTv7q0ZhfvuY17kCMXlOB1Jr1UDHAG1LeGAzqYluaRpsBi8k0gospuZdSstG5CBLpTNnvL79tqwsOsw7f3D8i91IIqQgT/ii+/twI7tjehO2t1bKswbWGgsSl8RcUJK4ov4Wn0DEYFCRKjDKJwpN7VmIqncFcmMpNhaJWMdRZ9IosN3XT+7ck9WtoVuJZd7ZpjZTjL8Rg0Krx5j1t+GOfF0OzYbmXQ8ia99nfnIWaMXz4Fvm6Cpv0GtiN2qKamCjVuI+CxEItLzMuBAWJEvMGY1CxbDt4Ioz8B8O4TM1r5sIJZDioBFFA9VbDUtZdSbxLlQD0Wq9Gfk7TWggS+2aC0KgYuurMci+lZH+9tw06tQoP7x+VeymErGmHhn349Sk3/vbaLtkbs7lsVZiaXwNBoj8Kg1ZF814LkM8gTwcUFiQyxr7LGJthjAUZY+cYY3+T+3k7Y4wzxsLL/nxs2eP0jLFv5h7nZox94ILnvYEx1scYizLGnmKMtUn1b1oNTzAOh1kPjQLnv5Uro04Dp0WP0Tl5yk2XsksWChyE4lR4JrGBLgisylImscAvKCXrc4fQ7TRDpyn/z/I6ix63bXPhx8cnsRBNyL0cQtakdIbj0798CS6bAe96eafcy0FTdRWmCyw7VLL8+AtqvLUyp8UAtYopstz0swDaOedWALcB+BfG2I5lt9s55+bcn08v+/knAawD0AbgegAfZozdAgCMMQeAnwD4GIAaAMcAPCr6v6QEHmpwIgo5x2As7VOjwEEwTqsBswrdk2jWa2DWU2Po1TgfJCrvtS1W30wQG8u81HS5+67uwGIyjR8enZB7KYSsST8+PoEz00F85FUbFTH0vcletWbKTanUtDBqFUODtfBZiZIFiZzzM5zz/JkBz/3pKuChbwPwac75POf8LICvAbg3d9udAM5wzh/jnMeQDSi3MsY2Crp4AXmCcQoSRdBaa8RYEbNfhET7TIVXbzHAF0kgkcrIvZQ/4wlSg6JS6DQqOMw6uIPlfWISiCYxHYhhY2N5N61ZbrPLiqs6a/HtA6NIppX1viOknKUzHF9+ehD//NPT2NlWjdu2Sj/y4mKa7FUIxVMILMrXGb5UnPNcJpFmFxeq0WZQXrkpADDGvswYiwLoAzAD4NfLbh5jjE0yxr6VyxCCMVYNoBHAyWX3OwmgJ/f3nuW3cc4jAIaW3b782O9ijB1jjB2bnZ0V8p9VFC+dZIqivdYITzCOxURa8mN7gjFoVIz2mQoo/x6ZDSsr4+QOxihjXKIGm2Ep+16u+tzZWY9rKZMIAO96eSdmAjE8cnBM7qUQsiaMzkVw11cO4l+f6MeNm+vxtbfuVExZ5NL+tDLOJs6FE1hMptFaU96zHqXUaC+8zFjSIJFz/m4AFgAvQ7ZMNA5gDsAuZMtJd+Ru/17uIfmOAIFlTxPI3Sd/+/LbLrx9+bG/yjnfyTnfWVdXV/o/ZhXiqTR8kQRlnETQWpu9iiRH8xp3MAanRV/QXDJSmPx7RGn7Ej0BKhcvVYPVgJmyDxKznU03raFMIgBct6EO166vwxd+fw7eUHm/RoTIiXOO7x4aw6v+41kMeEL4jzduw0NvuhLVCrqYnO90Wc7Na8Zzo8/yo9DIylz27IXaTGblecWS77jnnKc5588BaAbwAOc8zDk/xjlPcc49AN4L4CbGmAVAvh/38m9iK4BQ7u/hC2678HZFye+xokyi8NqXxmBIX3LqCcaos6nA8l3KvArqcJrJcHhDNOqkVA02g+KC/2L1uUOwG7VwrrFueowxfPK2HsRTGXzu131yL4eQssM5x9P9Xrzxq4fwzz89jR1t1fjt+1+O27c1KSaDmNdUXVynSyU6PyORyk0L5bJVIZHOwBdZuUmZnG3ZNLj4nsR8aKvinM8jW5a6ddntWwGcyf39zPLbGGOm3HOegQLlW/o76SRTcG25Dwg5ZiV6ghQ4CC2frVNSNmMuEkcqw6nctEQNVgPmo0nEktKXhgulz51tWqO0kz4hdDhMeNfLO/GTE1M4POyTezmElIV4Ko0fHZvALV98Fvd+6yhG5iL49Gt78Z37dss+6uJSHCY9dGoVpsq43HTcl117c7Uy/x8rUTFlxpIEiYwxJ2PsjYwxM2NMzRi7GcA9AP7AGNvDGNvAGFMxxmoBfAnA05zzfBnpdwD8M2OsOteQ5p0AHs7d9jiAXsbY6xhjBgAfB/Ai51yRl0C9NCpBNDajFnajFmN+GTKJVIIouFqTDmoVU1TGyROgGYlCaMidMCnptS1GJsPR7w5hY8PaKjVd7j3Xd6PJXoVP/PwMUtTEhpBL4pzj2wdGcc2DT+HDP34RjAH//oateO4jr8Bb9rYpehuKSsXgshvKutx0Yj6KeqseBq383WLLRX5e8UwBGWSpMokcwAMAJgHMA/g/AN7HOf85gE4ATyBbInoa2X2K9yx77CeQbUYzBuAZAP/GOX8CADjnswBeB+AzuefdA+CNEvx7VuV8F8y1VaKkFG01RskziZF4CqF4igIHgalULDcrUTnlpkszEum1Lkn+/1+57kucmI8imkhjU+PaalqzXJVOjY/duhl97hC+Q01sCLmodIbjYz87jU/8/AzWOc145B278Zu/fxlet6O5bOanusp8DIY7EFNsplap8pnEqQKa10gy7CsXzF17idt+AOAHl3lsHMB9uT8Xu/1JAIodebGcJxSHVs1QbVTOxuW1pLXWhJMTC5Ie8/xwdQr8hZYNEpUTSJx/rSlILEX+vaKk17YYZ2eyW97XciYRAG7uqV9qYnPr1kY4qQKGkCWxZBrv++ELeOKMG/df24mP3LxR0VnDS3HZq/DcwJzcy1g1dzCG7jrzynckS6qNWhi0KswopdyUZHmCMTgthrL8ICkH7bVGTC0sSjrji2YkisdpNSw1e1ICTyAGtYrBYaYLAqXIl5uWaybxnCcbJK6rX9snJtTEhpCLC0STeOs3juCJM2587NbN+MdXbSrb87omexU8oZjiZhIXyhOgsVTFYozBZasqqGERBYkS8gbjcFKpqWhaa4xIZ7ik9fUUJIqn3qq8TGKdWQ91mZ4MKIVZr4FZrynbWYmjvggabQYYdZIU4siqw2HCO1/egZ+cmMKgV5FNwwmR1ExgEXd95SBOTMzjS/dsxzuu6ZB7SSVpsleB8/Ks7AjTdp9VcxU4K5GCRAm5gzHazySidkeuw6mEsxLduWYm9LoKr96S7YIZTymjCyaNOhFOg81QtkHimC+KtgqayfWmPW0AgGfOlW9JGiFCWEyk8eavHcbUwiIefvtu3LbVJfeSSpbfnzZZhs1r8t8htN2neI02g6Ia1xDkTjIpmBBNW430sxI9wRgseg1M+rWfVZBaPuuulFmJnmAM9WtsLp5cGqyGpT2e5WbMF0F7beXM5GqyV6HDYcKBQQoSSWX7wpPnMDwXwVfesgNXdzvkXo4glmYllmHzGqrkWr1GexW8ofiKZcYUJEokmkghFEtRuamI6ix6VGnVknY4peySeJxLsxKVEiTGae+DQMo1kxiOpzAXTqCtgoJEALi6uxaHhn2S7vcmRElOTizg688O457drWsmQATOj0MoxyBxKZNIQWLRmuyGgsqMKUiUSD4bQjMSxcMYQ1utUdJMojsYo5EmIsm/V7wKyDjFkmkEFpN0xVIgDVYDZsPxspvBl/9saa+gclMAuLrLgUgiLXn3aEKUIJHK4MM/fhFOiwH/+OqyaKZfMINWDYdZj6lyDBKp4/iq5ceGrHRxgIJEiVBaXBrZIFG6TKI3GKfXVCT54FsJG+rzF3mcVG4qiAabAekMx1w4IfdSipL/bKm0TOJVXbVgDNg/6JN7KYRI7qGnBtHvCeEzd/TCatDKvRzBNdkNZRkkeoIxWAyaimgiJrT8XtSVuoxTkCgRT65kjrJO4mqrNWHcH0Umw0U/VibD4aFmRKKpNuqgUbGl946cPCG6yCOk/Hum3PYljuYyiZXUuAYA7EYdrmiyYT/tSyQVps8dxENPDeL2bS7csKle7uWIItvpsvyCRHeAzr9Wy2XPlRmv0LyGgkSJ5EvmnPQLLarWGiPiqczSSb2YfJEEUhlOpQ4iUakYnBa9IvauUSWAsPLvGSW8tsUYm4uizqKvyEZV+7oceH58HpF4Su6lECKJVDpbZmqr0uITf9Uj93JE02SvwtTCIjgX/+K6kDxBmpG4WkadBrYqLZWbKoUnGINBq4LVUHknF1LKdx2UouQ0Hzg4aZ+paDrqTBiek26P6aV4glQJIKTzQWJ5Xb0e9UUqbj9i3jXdDqQyHEdG/XIvhRBJfHP/CF6cDOCTt/WgxqSTezmicdmrEEtmMB9Nyr2UorhpYkBJXPYqzKwwK5GCRIl4cnvXGKNB3GLqrMsGiX0zQdGP5aFN06LrrjNjyBuW/QqnNxiDTqOCrWrt7UeRQ41RB51aBbdCxpsUKjsjsbL2I+btbK+GTqPC/gEqOSVrXybD8V9PD+G6DXW4dUuj3MsRVX4MxlQZzUpMpTOYDcWp3LQELtvKe1EpSJSIOxijzqYScNmr0FxdhYPD4jdYWOqsRR9Soul2mhGOp2Tfu+bJdbGlizzCUKkYnFZ9WWUSFxNpuIOxis0kGrRq7GyrxnO0L5FUgLPuIOajSdy21bXmP/ebck1Myql5zVw4gQwHjSArgcteRY1rlMJL8/Qkc3WXAweHfEiL3LzGE4hBxQCHee2Wocit22kBAAx6w7KuwxOM00UegTXaDLIH/8UY91dmZ9Plru52oM8dwly4vDLAhBTr4FD2QvNVXbUyr0R8+U6X5dS8hi7Sl67RbkBg8fIlxhQkSoBznjvJpP1MUtjXXYtgLIUz0wFRj+MJxuEw66FR09tILN1OMwBgwCNzkBiivQ9Cq7cayqpxzejSjMTKDhIB4MAQjcIga9vBIR86HaaleXJrWbVRiyqtuqwyifnvDgoSV89VwO82nd1KIBRPYTGZppNMieSv/Ik908tNnbVE5zDrYKvSYnBW3iDRG4zDSU1rBJXPJMq937RQY7kgsbVCy00B4IomGywGDe1LJGtaKp3B4RE/9lZAFhEAGGNw2Q1llUlc6jhuo+/l1cpnkC+HgkQJnB9/Qb/MUnBaDFhfb8aBIXFPZDzUWUt0jDGsc5plLTcNx1MIx1P0Wgus3mpALJlZsdxFKUZ9UdSYdBXdvEitYriqsxbPDc6VTXBfaYKxJE6Mz+OxYxP4/O/6MeEXv9P3WnNqKoBwPIV9FRIkAuU3K9EdjEGjYnCY6Lx6tRoLSHLQPAYJnG+fTyeZUtnX5cAPj44jnkpDr1GLcgx3MIad7dWiPDc5r9tpxu9e8sh2fO/SjET6MhJSvozLHYzBblT+vt4xXwRtFZxFzLtmnQO/e8mDcX/ldnpVmlgyjQ/9+EUcHvbBG/rz/aJP9c/ifx7YB52GcgKFypdT7+2snCCxuboKv5egK7xQPIEYnBY9VKq13VRITA02A1bqyUSfGhKgQdzS29dVi1gygxPjC6I8fyyZxkI0SfXwEuh2muGPJOCPJGQ5/tJFHmpcI6iGXJnQSt3VlGJ0LlrR+xHz8vsSqcupcjxycAy/ODmNvZ21+MgtG/G1t+7EHz94LR5605U4NRXAl/4wIPcSy8rBIR82NljgMFfOhUGXrQpz4QRiybTcSymIm5pBlkyrVsG5Qq8UChIlkD/JXOnFIMLZ01kLFQMOiHQi46XssGTyzWvkKjn1hvLl4vRaCyn/3vGUQZAYT6UxHVikTCKATocJDVYDDoi855sUJhhL4qGnB/GydQ586Z7teOC6Lty4uR6ddWa8ZksjXr+jGV9+ehDHx/xyL7UsxFNpHBvzV0RX0+XysxLLpeTUHYzRRXoBrNSYiYJECXiCMVj0Gpj0VN0rFVuVFlc027FfpC58bsoOS2apw6k3JMvxPVRuKgqnJVvqUg6ZxAn/Ijiv7M6meYwxXN3twP6hOWREHjNEVvaVZ4awEE3iI7dsvOjtn/irzXDZq/D+R08iHE9JvLry88L4AmLJDPZ1OeReiqTOj8FQ/ucxkL24SOdfpWtaoXkNBYkS8ARj1LRGBld31eLkxIIoX4z5wIG6m4rPZathi8JhAAAgAElEQVRClVYtWybRE4zDqFPDTBd5BKXTqFBr0i+9l5Qs39mUMolZV3fXYiGaRL9Hngs3JMsbjOEbz43gtq0u9DbZLnofi0GLL9y9DZPzUXzqF2ckXmH5OTDkg4oBuztq5F6KpJrKaFZiKJZEJJGm8y8BrNS8hs56JOChUQmy2NflwJefHsLRET+u3+gU9Llpn6l0VCqGbhk7nOa72LKVdniTojXaDGWRSRz1ZTtEUiYxq8eVDUj63SFsarTKvBp59LmDeNs3j8AX/vO90nqNCp9+bS/uvLJZ9DV88Q8DSKU5PnjT+sveb1d7DR64rgsPPTWEV2x04pbeRtHXVq4ODvnQ22SruC7G+SYmk2UQJC5dpKfzr5KtNAaDgkQJeIJx7Kmwq1JKsLO9GjqNCvsH5wQPEt2BGKq0algN9BaSQrfTjEPD8uyB8gbjtJ9YJPVWAybnld+if8wXgdWggd1YWSeOl9LhMEGjYjhXoZnExUQaf/f9E0hngPuv7fyz2w4O+fDhH7+IOoseL1tXJ9oahmfDePToBN68p7WgLrN/f8N6PHNuFv/4k1Mw6TXoddlQbVJ+V2EpLSbSODExj/uu6ZB7KZLTqlWot5THrER3gHpCCOWW3obL3k5nuCLjnMMbilHTCxkYtGrsaK0WZV+iOxhDvVVP2SWJdDvNePzEFMLxlORln55QDFub7ZIes1K47AYcHvGBc67o99KoL4p2h0nRa5SSTqNCu8OEARnnl8rp0796CQPeMB55x+6/CASDsSTu+u+DeOC7z+NH91+FzS5xMq3//rtz0GtU+LtXrCvo/jqNCl+8ezte+9B+vOUbRwBkM/mbGq3ocVlx77521FZQN8+LOTbmRzLNK24/Yl5TdXnMSnTTdh/BrJRJpD2JIpuPJpFMc2p6IZN9XbU4OxOELxxf+c5F8AbjdBVLQvnmNUMSn5RyznPlpvT+FUNrjRGhWArz0aTcS7ms7IxEKjVdbp3TjIEKzCT+5tQMvn94HPdf23nRTKHVoMW33r4LZr0Gb3/4iCgn3ScnFvCrUzP4m5d1oq6IKodupxnPfeR6PPKO3fjHV23Eno4aTM5H8dBTg/jgYyfBeWU3Ijow5INGxbCrQucfu+xVmCqDIJHKTaVDQaLIaO+avPblZnodGha2/beb9plK6nyHU2mDxGAshVgyQ+9fkXQ4soHXyFxE5pVcWjKdweT8ItpqqGnNcuvqLRjzR8tmrpoQphYW8ZH/eRFbm2344I0bLnm/RlsVvvX2XYjG07j3W0cQWBTuIgjnHA8+0Ycakw7vfFnxZZF2ow4vW1eH+6/twhffuB2/e/+1+OirN+Hp/ln84axXsHWWowNDPmxrscOoq8wiO5fdgJmFmOK7FrsDMVgNGlTp1HIvZc2jIFFk1D5fXlubbTDrNdg/JNy8RM45zeiRWFuNEVo1k7x5jTdIMxLFlA8SRxUcJE7NLyKd4dTZ9ALr683gXL75pVJLpTN43w9PIMOBL92zHTrN5U+fNjVa8d9v2YHh2Qj+9pHjiKeECaafHZjDgSEf3nt9NywGYfbIvm1fO7qdZnzqly9VVNC/XDCWxKnJBeyrsPmIyzXbq5BIZzAncOWV0OgivXQoSBRZfui600K/0HLQqFXY01GDA4PCBYmz4TgSKcouSUmjVqHDYZL8hNSTe//WU+MaUbTUGKFWMUVnEkdz4y/aHVRuutz6egsA+eaXSu0//ziIo6Pz+JfX9hZcenx1twP/+votODjsw+d/f67kNWQy2Sxic3UV3ry3teTny9OqVfjkX/Vg3B/F158dFux5y8mRYT8yHLiqQvcjAuf3pym95DTfcZyIj4JEkbmXMhF0kimXq7pqMeqLCvbBd3x0HgCwteXic6mIOLqdZgzNSh0kUrm4mLRqFZqrqzDiU26QOJYbf0GZxD/XXpvtcDrgWfuZxAl/FP/5xwHceWUTXru9qajH3nllM964qwVf+9MwXphYKGkdvzw1gzPTQXzgxvXQa4QttbtmnQOv6m3AQ08NlUXzEqEdHPZBr1Fhe2vlNilzLc1KVPZYIneAKrmkQkGiyDzBGKqNWsE/0EnhrlmXvTL4TP+sIM93eMSPKq0aVzRV7peJHLqdFoz5IpKWQ3lCdJFHbO21JkWXm475ojDq1Kir8M6PF9Jpstn9cxUQJD4/Po8MB975ss6V73wRH33NJtRbDfjQYydX/fmVSGXw77/rx8YGC27fVlygWqh/es0mcHB85tdnRXl+JTs45MPO9moYtJV7rtZUnc8kKncsUSpXDkvlptKgIFFkHuqCKbsN9RZ0OEz4+ckpQZ7v0LAPO9qqV9yTQoTV7TQjw8+X/0nBG4zDYtBUbCMDKXQ4skGiUjsr5jub0viLv7Su3lwR5aZnpoPQaVRLDbSKZTVo8dk7r8CAN4wv/WFgVc/xw6PjGPNF8ZFbNkKtEud3sbnaiAeu7cavXpwRdIuG0iXTGZzzhLClwkcdWQ1aWPQaRWcSZ8NxZDiNv5AKneWKzBui2mm5McZw+zYXDo/4MRMorYxmIZpAvyeEPR01Aq2OFKq7LnuCJuW+RNr7IL4OhwmRRBqzIWU2Sxj1RdBOpaYXtc5pwbg/isXE2m52cmoygE2NVmjVqz9lum6DE3ftbMZ/PzOEk0WWnUbiKXzpDwPY3VGD6zb85dgNId1/bSeaq6vwyV+cQTKdEfVYSjHujyKV4UvfMZWsqVrZYzDcARp/ISUKEkVGM9aU4bXbmsA58PMXpkt6nsMjfnAO7K3gDmhy6awzQcUg6R4oev+Kr13BYzDSGY4J/yLNSLyE9fUWcA7J9wpLiXOO09MB9LqsJT/XP71mM+osenzoxyeL6nb6jedGMBdO4H+9aqPoGW2DVo2P3boZ5zxh/OT5SVGPpRT5C49dq8wUryUuexWm5pUbJFKfAGlRkCiidIZjNkTlpkrQ7jBha4sdj58oreT08LAfeo0KW5qpaY3UDFo1WmqMGJTwhNQTjKOeOhOLqiMXgElZRlyomcAiEukMZRIvYX19fn7p2i05HfdHEYql0NtU+me+rSpbdnrOE8b//eNgQY/xheP46p+GcXNPPa5slWbI+02b69FoM2D/oE+S48ltKUiso4tBLrsB0yVWXIlpKZNI5aaSoCBRRL5c7TTNWFOGO7a50OcOod+9+hOawyM+XNlaTY2IZNJdZ8aQROWmnHN4QzF6/4rMZTdAq2YYmVNes4TznU3p5PFi2h0maNVsTTevOT0VBABcIUCQCACv2FiP113ZjC8/PYQ/nPWseP+HnhpCNJHCh27eIMjxC8EYw/ZWO05MzEt2TDkNzYbRYDUINneynDXZjViIJhGJp+ReykW5g3Fo1Qw1Rp3cS6kIFCSKiGasKcutW11Qqxh++sLqsomBxSRemgliTyftR5RLd70Zw7MRpCTYKzMfTSKZ5lRuKjKNWoXWGqMiO5yen5FImcSL0ebmlw541m4m8fR0AFo1w7p64UoRP37rZqxzmvGObx/DRx8/ddET8mAsiQef6MN3Do7iDTta0O20CHb8QmxvqcaEf1Gxe4WFNOQNo8tJF4KA7EU7AIodg+IJxuC0GKASqXkT+XMUJIqIaqeVxWHW45puB37+wjQymeI7KR7N70fspP2IcumuMyORzmBCgj0T9P6VTofDpMg9icOzERi0Kio5vox1TssazyQGsKHBImj1iM2oxU/fczXuf3knfnBkHK/6j2dxbNQPINtp85GDo7ju357Gfz09hNu2uvDRV28S7NiFys8LLHW2o9JxzjE0G6GmNTnNS2MwlBkkugMxKjWVEAWJInLTSabi3LG9CVMLizia+0IuxuERH3QaFba1VHabbDnlW9BL0eH0fJBImUSxtdeaMOqLrOrijZgGvGF0O8101foy1tWbMTG/Njuccs5xeiqAXpfwe9ANWjX+8dWb8Oi7rgIHx11fOYiPPn4KN3/xT/jYz85gfb0Zv3jvNfj83dtgM0pfBtnbZINGxXBifG2XnHqCcYTjqVWPN1lrXHZlB4meYIw6m0qIgkQReYMxMAY4zFQ7rRQ3bq5HlVaNn66iy+nhET+2tdgretiu3PJf5FI0yvDmysWdlEUSXbvDhHgqs3RhTSmGvGHKMKxgLXc4nVpYxHw0iR6B9iNezO6OGvzm71+Ou3e14PuHxwEAX3/rTvzgnXtxhYwN0gxaNTa7rDgxvrYzieeb1tD7HMh+32lUTJHlppxzuGkslaQqMkiMJaW54ukJxuEw66EpYbYSEZZJr8FNPfX49akZJFKF72sLxZI4PRWgUlOZWQxaNNoMOFdC86FC5TOJTsokiq4jNwZDSfsSI/EUphYWKcOwgnyH03NrcF+i0E1rLsWs1+Czd27BU/9wHX77vpfjlZvrRR91UYjtLXacnFxAWmEZfiHlL27Q+zxLrWJosBkwvaCsC3YAEIqnEE2k0WCj72SpVGT0MuANYz6SEP04nhClxZXotdubEFhM4ul+b8GPOTY6jwwH9nZQ0xq5XdlWnZtXKe6JiycUQ7VRS51sJZAPEocVFCSeP3mUtmFIuWmrXbsdTs9MB6BWMWxskOZ3oMNhglZBF5W3t1YjmkivyQsAeYPeMCx6DeqoweASpc5K9ARoC5fUlPNpJLHnJaiz9wTjtJ9JgV7W7UCtSVdUl9NDIz5o1QzbJZpTRS5tX1ctZgIx0RudZN+/9GUkhQarAXqNSlGZxHwZGmUYLk+rVqHTYV6THU5PTQWwzmmu2C0G+eY1a7nkdNAbRpfTrIjMrVI02asUuScxvx2Bki/SqcggkQE4NiZ+kOgN0ow1JdKoVbh1SyOePOtFMJYs6DGHh/3Y2mxHla4yTxaU5OouBwBg/5C4g57p/SsdlYotNa9RikFvGBoVQ1stjb9YSXe9Geck2CcspaWmNSKXmipZa40RNSbdmm5eMzQbpgtBF2iyV8EdjEkyaqoY7lwmkbqbSqcig0SDVo3jo+J+6CVSGfgiCWqdrlCv3d6ERCqDx59fOZsYiadwivYjKkZbrRFN9iocGJwT9TieYJxmnEqo3WFU1BiMAW9YceV/SrXeacHk/CKiCWUO4F4NbyiOuXACvS6r3EuRDWMM21vsa3YMRjCWhDcUp6Y1F3DZq5DOcHgVNiOTxlJJryK//Ux6DU5OLhTVuKRYs+Hsm4vKTZVpW4sduztq8J9/HED4IoOMlzs2No90hmNPJ+1HVALGGPZ11eLgsE+0kQnpDMdsmMpNpdThMGPcH1XM1eshL2UYCrW+3pztcOpVTpBfqlOTAQCQtcOoEmxrsWPAG0ZgsbCqm3JCJeUX15Sblai0DqfuYAx2o7Ziy7/lUJFBolGnRjyVwZnpgGjHcNMGW0VjjOGjr96EuXACX/3T8GXve3jYB42KYUcb7UdUin3dtViIJvHSTFCU5/dF4khnOF3kkVCHw4hkmiuiq148lcaoL0InjwVaV59t7LKWGpycng5AxYBNjZWbSQSwtA//xcm1l00coiDxoprs2fNWpe1LnFmgZpBSq8gg0aTTAACOi7gv0Uvt8xVvW4sdr9nSiK/9aXjp9bqYwyN+bGm2wZj7vSHy25fbl3hgSJyS06UZifSFJJn22myH0xEF7EscnYsiw+nksVDttUbo1Ko1tS/x9FQAXXXmiv/c39JiA2Nrs3nN4GwYOrUKLbnMGcly2bP/P5QWJE4HYktrI9KoyCBRo2ZoqakSNUik2uny8OGbNyCVyeALTw5c9PZxXxQvTi5gD+1HVJR6qwHdTjP2D4rTvIbev9JT0qxEKkMrjkatQmedCQNraAzG6algRTetybMatFjnNK/J5jVD3gjaHUaaZX0Bo06DaqNWceWmM4FFNFLTGklV7DtjZ1sNjo3NizZrzROKQ6NiqDHqRHl+Ioy2WhP+em8bHj06/hct3EfmIrjrKwdh1mvwhh3NMq2QXMq+rlocHfWLsrfYE6Q9xVKrs+hh0qkV0bxmwBsCY6CGFkXodpoxsEYyibOhONzBGHoquGnNcttbqnFiYkH02bRSo86ml6a0WYnRRAoL0SRlEiVWsUHilW3VmA3FMSnSm8ATjMFp0UOlotk7Svd3r1gHk06DB5/oW/rZoDeMu79yEMl0Bj9411500smi4uzrciCaSOOkCHtlPMEYGAMcZgoSpcIYQ7vDpIggcdAbRku1kRokFGF9vQUT/rXR4fR0rl/BFZRJBJCdl7gQTWLUF5V7KYKJp9IY80XoQtAlNNmrFLE/PC+/FpedMolSqtggcWeuCcmxMb8oz+8NxlFPafGyUGPS4YHru/DkWS8ODftwzhPCG796EBkO/PBde7Gxga4mK9FVnbVQMWC/CKMwvKEYak16Gn8gsXaHMmYlDlJn06Ktr8/+/8qX6pazM1PZIHEzZRIBnG9es5ZKTsd8tO/4clz2KkwtLComezwTyCZ0Gm2USZRSxZ4Bra+3wKLX4JhI8xI9wRjNSCwj913dgUabAR//2Wm88auHoFYxPHr/3qWufUR5bEYteptsODAk/L5ETzBOpaYy6Kg1YXJ+EUkZx2CkMxzDc9TZtFj5jMzwrPxBfqlOTQXQ6TDBYtDKvRRF6HaaYdZr1lTzmvzFDMokXlyTvQrheArBmDIqA2bymUQKEiVVsUGiWsWwrdUuWvMaTzBGJ5llxKBV44M3bcA5TxgGjQqPvusq+vIoA1d11eLE+LzgJW6jcxHa+yCDdocJ6QzHhF++srYJfxSJVIaCxCK11hqhYsCwAsqFS3V6KogeKjVdolYxbG2x4cTE2skk5oPEzjqTzCtRJqXNSpwOLIIxoN5G59VSqtggEcg2r+n3hBCMCTskdjGRRjCWovb5ZeaO7U34l9f24kd/exXaHfTFUQ6u7nIgmeY4KmBFgDcUw/BcZKkknUgn3+FUzn2J1Nl0dfQaNZqrjRieLe9y0/lIAlMLi+ilUtM/s72lGmdnQlhMpOVeiiCGZsNosldV/IiTS1kag6GQ5jUzCzE4zHroNbRPXEoVHSTuaKsG58LP/6H2+eVJrWL4671taK42yr0UUqBd7TXQqVU4IOC+xCMj2X3KNPZEekoIEgcoSFy1zjpT2Zeb5l//jY0UJC63vdWOdIbjVG6/Zrkb9IbRRe/xS8o3iJkOKCNInA4swkV9PiRX0UHitlY7VAyCl5yeDxIpLU6ImKp0amxvtQu6L/HQsA8mnZoyCTKoNmphNWhkbV4z6A2j3qqHlfajFa3TYcbIXASZjDKaXaxG/nevvZYuFi63rcUOAHhhDZScZjI8O/6CtpRcksOkh06jwpRSyk0XFqlpjQwkCxIZY99ljM0wxoKMsXOMsb9ZdtsNjLE+xliUMfYUY6xt2W16xtg3c49zM8Y+cMHzXvKxKzHrNdjUaMVxgTuczgQok0iIVPZ1OXB6OoCFaEKQ5zs07MfO9hoasCwDxhg6HCaMzsm3J3HQG6Is4ip11pmwmEzDHVRO6/xijfui0KgYmmhP8p+pNetRZ9FjwFPe5cRANisVS9K+48tRqRhcNoMiyk0555gJxKhPgAykPAv6LIB2zrkVwG0A/oUxtoMx5gDwEwAfA1AD4BiAR5c97pMA1gFoA3A9gA8zxm4BgAIeu6IdbdU4Mb6AlIDd9I6N+WHSqZdKpwgh4rm6uxacZzOApZoLxzHoDWMvlZrKpt1hkm1fG+ccQ7MRyjCsUr4JSDmXnI76ImiqrqKLRBfRVWfCUJnvOQWWdzalc7TLaaquUkTjmuBiCtFEmmYkykCyT0HO+RnOeTz/n7k/XQDuBHCGc/4Y5zyGbFC4lTG2MXfftwH4NOd8nnN+FsDXANybu22lx65oR1s1ook0+tyh0v6ByxwY9GFPZy3NWCNEAltb7DDp1Hh2oPR9iYeHs1UFeztrSn4usjqbG62YDsTgDUmfjXIHYwjHU+im0Ter0unIjcGYK99AYtwfRVstBQ8X01VnxtBsRDGz81aLmlMVxmWrUkS5aX4NVG4qPUmjGMbYlxljUQB9AGYA/BpAD4CT+ftwziMAhgD0MMaqATQuvz33957c3y/52ELXtLM9ezIo1L7EqYVFDM9FsK+LMhGESEGrVuH6jU788sUZxJKldd47NOyDUadGL7W/l00+i5sP2KWUL6WjTOLq1Fv1MOnU5Z1JnIugrYb2I15MV50ZgcUkfBFhSvvlMjQbQbVRi1oz9Y24HJe9Ct5QHImUfHNrAWAm1zynkTKJkpM0SOScvxuABcDLkC0TjQMwA7iwXVYgdz/zsv++8Das8Ng/wxh7F2PsGGPs2Ozs7NLPXTYDGqwGHBMoSNyf67J4zTqHIM9HCFnZm3a3IrCYxK9PzZT0PIdHfNjZXkNVADLqcVlh1msEKR8uFmUYSsMYQ0edqWxnJS5EEwjGUmijpjUXtRbKiQFgyBumOcgFaKquAufnmzHKZTrX58NFmUTJSX4mxDlPc86fA9AM4AEAYQAXthG0AgjlbsMFt+dvwwqPvfC4X+Wc7+Sc76yrq1v6OWMMO9qr8bxAQeKBwTk4zDpsoHIlQiRzVVctOhwmfP/w+KqfYy4cxzlPmEpNZaZRq7CzvRqHR6TPJA7OhmE3auEw6yQ/9lrR6TCX7azEUV+2YRKVm15cPrAq932Jw3MUJBYi37xpUubmNTMLi9CoGOoslPmVmpyXyzXI7kk8A2Br/oeMMVP+55zzeWTLUrcue9zW3GNwuccWs5BdbdWYWlgs+YOPc479Qz7s63KAMVbScxFCCscYwz27W3BsbB7nPKvbX7w0H7GDSsXltrezFoPeMGZD8ZXvLKBBT7YtPn1+r15nnQlTC4sll37LYSw3/oIyiRfXZK+CXqPCkLd8g8RwPIW5cAJtDnqNV5IPEuVuXjO9sIh6qwFqFX0uS02SIJEx5mSMvZExZmaMqRljNwO4B8AfADwOoJcx9jrGmAHAxwG8yDnvyz38OwD+mTFWnWtI804AD+duW+mxBXn1lkaoVQw/OjZR0r9zIHdSc003lZoSIrXX72iBTq1adTbx8LAPVVo1tjTTfkS57enIZnMPj0hbcjo4G6ZS0xJ11pnBOWSddbla47lMYivtSbwolYqhs85c1pnEpQsBNZQtXklDbni97EFiIEadTWUiVSaRI1taOglgHsD/AfA+zvnPOeezAF4H4DO52/YAeOOyx34C2WY0YwCeAfBvnPMnAKCAxxbEaTHgho1O/M/xSSRLGIXxXK674tW0H5EQydWYdLi5twH/8/wkFhPFZzGy8xGraT+iAvQ22WDSqSVtXuMLx+GPJChILFGno3z3rY36omiwGmDQquVeimJlx2CU32ubN75UUkwXAlZi0KrhMOtl73A6E1ikzqYykeRsiHM+yzm/lnNu55xbOedXcM6/tuz2JznnGznnVZzz6zjno8tui3PO78s9rp5z/vkLnvuSjy3G3btaMBdO4A9nvav9Z2L/4Bzaa400hJcQmbxpdytCsRR++eJ0UY/zRxLo94RoPqJCaNUq7GyvkbR5DTWtEUbHUpBYftmmcX+EgocVdNaZMTkfLctyYgAY8+eyxfQ6F6SpWt4xGJkMhzsQg4vOq2VBl8xzrl1fh3qrftUlp8l0BodH/LiaSk0Jkc3ezhp01pnw/SPFlZweyZU1UtMa5djTWYMBbxhzYWn2JQ7OUpAoBJNegwaroWwziRQkXl5XnQkZDozlMnLlZswXRbVRC6tBK/dSykJ7rVHWPahz4TiSaU7lpjKhIDFHo1bhDTta8HS/d2kmSzFenFxAOJ6i/YiEyIgxhjftbsWJ8QWcnQkW/LhDw35UadW4osku4upIMfJZ3SMSdTk9NRmA1aChNusC6CzDMRjRRAqzoTh1Nl1BuXc4HfdH0EqvccF6XTZMB2LwyzQbMz/+gspN5UFB4jJ37WxBhgM/PjZZ9GOfG/CBsWwrfkKIfF53ZTN0muIa2Bwa9mFHWzV0GvpIVIormmww6tSSlZweGfVjZ3sNVNRBr2SddSYMz4bBOZd7KQUbo71qBcnPSizXDqdjvijaqDFRwXpc2SlzZ6YvHEkujZlcqWujjTKJcqAzomVaa43Y11WLR49NIJMp7stt/9Acel022I00X4sQOVWbdHh1bwN+emIK0URqxfvPRxLoc4eo1FRhtGoVdrRVSxIkzoXjGJ6NYHcH/Q4IodNhRjCWgk+m7MNqLAWJ1PXysow6DZrsVWWZSUykMpheWEQ7XQgoWI8r2+379FThlTlCymcSaU+iPChIvMDdu1owOb+Ig0WcmETiKZwYn6f9iIQoxJv2tCEUT+EXJ1duYJMf2k5Na5Rnb2ctznnC8Im8L/Fo7ndgVzsFiULIZ5vKaV9ifjQCNTRZWTmWEwPA1MIiMhxUbloEm1GLlpoqnJYxk2jQqlBtpD2kcqAg8QI39zTAVqXFD48W3sDmyKgfyTTH1d10kkmIEuxqr8bGBgsefKJ/xSveh4Z9MGhV2NJM+xGVRqp9iUdG/TBoVbiiiWZkCqHTkd23Vk4dTsf82YYmtio6GV1JV50ZQ97yKicGls1IpAsBRelptOGlabkyiYtw2arAGG0DkAMFiRcwaNW4Y3sTfnvajfkCS2UODM5Bp1HRVWhCFIIxhv/66x1gAN7y9cOXbEZ1bNSPn74whV3tNbQfUYG2NNtQpRV/X+LRUT+2tdjpd0AgTdVV0GlUZZVtGvNFqGlNgbrqTIgk0vAEpek8LJRxf76kmILEYvQ2WTEyF0EolpT82NMLMTRSZ1PZ0DfiRdy9qwWJdAaPn5gq6P7PDfqws62aBvASoiAdDhO+fd9uhGIpvOUbR/7ios9PT0zhTV87jGqjDp+6vVemVZLLyc5LrF4qCRZDKJbES9NB7O6gShChqFUM7bXG8sok0viLgpVrh9MxXxRVWjXqLHq5l1JW8vsS5cgmzgQWqbOpjChIvIhNjVZsbbbh0aMTK5ZTzIXjODsTpP2IhChQb5MNX3vbToz7o2+OHqYAACAASURBVLj34aOIxFPgnOPzv+vH+x59Adtb7Xj83fuWBoAT5dnbWYs+d0i0FuzHx+aR4cBuqgQRVKfDXDaZxHxDE8owFabLWb5BYmuNkUoXi9TTlO9wKm2QmExn4A3FqWmNjChIvIQ372lDvyeEb+0fvez9fvJ8dlzGPhp9QYgi7e2sxUNvuhKnpwL42+8ex//3wxfwpT8O4g07mvHIO/ZQR2KF25PrOHpkRJyS06OjfqhVDNtbaU+qkDrrTBj3RZFMZ+Reyoom56PIcFC5aYGcFj3Mek1ZNSYC8jMS6UJAsZwWA5wWveTNa9yBGDgHXDT+QjYUJF7C63c046bN9fjMr8/iwNDcRe/zVL8Xn/tNH27Y6MS2FjrBIESpbtxcjwdftwXPDszhFyen8ZFbNuJfX7+F9qCVgS3Ndhi0KhwaFqfk9OjIPHpdVpj0GlGev1J11pmRynBM5PaBKdmYn2YkFoMxhq46U1llEjnnGPfTjMTV6nFZJS83ncmNv2ikTKJs6AzpElQqhs/fvQ2dDhPe873n/+KL7qXpIN77veexqdGKL92zncoXCFG41+9oxn+9+Up8577deOC6LnrPlgmdRoWdbTWiNK+Jp9J4YXKB5iOKIF/CXQ7ZprG5fNdLyiQWqjPX4bRceENxxJIZuhCwSr1NNgx4w4gl05IdM99wjjKJ8qEg8TLMeg2++tadSGU47n/kOBYT2TeHJxjDO759FBaDFt942y66Ak1ImXjVFY14+fo6uZdBinTt+jr0uUPocwt7JfvFyQASqQx1phZBV35W4pzyA4kxfxRGnRoOM5WeF6qrzoTpQAyReErupRRkdC4/B5MuBKxGj8uKdIajzx2S7JjTC5RJlBsFiSvocJjwpXu246w7iI/8z4uIxFO47+GjCC4m8c17d6GBrnAQQoioXr+jGXqNCt8+MCbo8+bnL1KQKDy7UYcak648Mom+KNpqTVRdUIR8h9ORMmlONEbjL0qS73B6RsJ9idMLi7AaNDBTIkY2FCQW4PoNTvzDTRvw85PTeNV/PIuzM0H83zddic0uq9xLI4SQNa/apMPt21z46YkpBKLCzeo6MuLHOqcZ1SbKIImh02EqkyAxQsFDkcqtw+m4Lwq1iqGpmrJSq9FcXQVblRanp6TblzgTWKTOpjKjILFA776uC6++ogHj/ij+9209uH6jU+4lEUJIxXjrVe1YTKbx2PEJQZ4vneF4fmye9iOKqLPOpPgxGOkMx4R/kfaqFamt1ggVA4bK4CIAkM0kuuwGaNV02rsajLFc8xopM4kxNFK1nqzo3VIgxhi+cPc2/Py9V+MtV7XLvRxCCKkovU027GyrxncOjiGdufz82kKcnQkiFE9RkCiizjoz5sJxBGPCZX+F5g7GkEhnqGlNkfQaNVpqjGWUSYygnV7jkvQ22XDWHZJsrM1MYJH2I8qMgsQi6DVqbGmmUReEECKHt+1rx7g/iqf7vSU/F+1HFF9nrsPpoIK7YJ7vbEqZxGJ1lVGH0zF/FK1UUlySHpcViVRGkvfzYiKN+WgSTRQkyoqCREIIIWXhlt4GOC16fPtg6Q1sjo760WSvoj0vItrUmN23L/V8tWLQjMTV66ozYWQugowAmX0xBRaTWIgm6TUu0fnmNeK/n6dz4y+o3FReFCQSQggpC1q1Cm/e04Y/nZstqcyNc46jo37soVJTUeWbXUhxUrlao74ItGqGRhtdLChWV50Z8VQGUwuLci/lssZ92QsBrTVUblqKDocJRp0ap6fE35c4kx9/Qe9LWVGQSAghpGzcs6cFWjXDIyVkE0fmIpgLJ7CLgkRR5ZtdSNk2v1jjvihaqo1Qq2j8RbHKpcPpmJ9KioWgVjFsapTm/ZzPJLrslEmUEwWJhBBCyobTYsBrrmjEj49PIrzKQd77B+cA0H5EKfS4rOiTsNlFsUZ9UQoeVik/K1HJe06B7BxMALQnUQC9Litemg6KXmKczyTSLHJ5UZBICCGkrLx1XzvC8RR+8vxk0Y89NRnA537Th94mK7rqqPxMbD0uGxKpjCKzTZxzjPsi1Nl0lWpMOjjMevS5Q3Iv5bLGfVE4zHqYaCh7yXpcNkQSaYz6xB19MrWQfc30GrWoxyGXR0EiIYSQsrK9xY4tzTZ8a/8oYsl0wY8b80Xw9oePwG7U4Rtv2wXGqMRQbL1N2eY1Ug7hLpQvkkAkkaZMYgl6m6yS7FErxZg/Qq+xQHpy72ex9xmfngpiQ4NZ1GOQlVGQSAghpKwwxvD+G9djZC6Cj//sNDhfufRpNhTHW795BOkMx3fesRv1VipjkkKHw4wqrVqR+xJHcuMvaH7e6vW6bBjwhou6WCO1cV8UbVRqKoh1Tgt0ahVOi/h+DsdT6HMHsaONtgPIjYJEQgghZef6DU689/pu/OjYJH5wZOKy9w3HU7jv4aPwBGP4xr27lvZSEfFlm11YFNnhNF8mub7BIvNKyldvkxXpDEe/QktO46k0ZoIxtFImURA6jQrrG8yiZo9PjM8jw4GdbdWiHYMUhoJEQgghZen9N67Hy9fX4RM/P40T4/MXvU8ilcED3z2Ol2aC+PKbr8SVrXTiIbUel02SZhfFOucOwaLXwEXNMVYtPztPzMxSKSb8i+CcOpsKaXd7LY6OziOaWF3jsJUcG52HigHbW+2iPD8pHAWJhBBCypJaxfClN25Dg82AB777PGZD8aXbOOd4qs+L2x/aj2cH5vDZO6/AKzbWy7jaytXjsiIcT2E8N7heKfo9IaxvsNDe1BLkZ2Eqcc8pAIznxl/QjEThvHKzE4lUBs8OzIny/MfH5rGhwQqLQSvK85PCUZBICCGkbNmNOvzXm3dgPprA3/3geaTSGRwb9ePurxzC2x8+ikg8hYfedCXu2tki91IrVm9TNtukpJJTzrMlkuvrqdS0FIwxXNFkU2zzmvz4C8okCmdXew2sBg2efMkj+HOn0hmcGJ+nUlOFoCCREEJIWettsuGzd16BQ8N+3PTFP+H1/30QI74IPv3aXjz5gWvxmi2Nci+xoq2rN0OjYooqSfSG4ggsJrGR9iOWrKfJin53CImU8mZhjvmiMOs1qDXp5F7KmqFVq3D9Rif+2OdFWuAS8j53CJFEGjvbKUhUAgoSCSGElL07r2zG31zTAV84gQ/fsgHPfOg6vGVvG3Qa+pqTm16jxrp6ZTWvyTdaoUxi6XpdNiTSGQx4lde8ZswXQWuNkUqKBfbKTfXwRRJ4YeLie8FX6/hY9vl2UCZREejbkxBCyJrwz7duxomP3Yh3X9cNo44GZytJr8uKM1OBgsaVSCEfJG6gTGLJlsqJFbgvccwfpVJTEVy7oQ4aFcPvX/IK+rzHxubRYDWgyV4l6POS1aEgkRBCyJqhUlHGQIl6XFb4Igl4gvGV7yyBfk8IdRY9aqgMsWRtNUaY9RpFlRMD2c7G474oOhzUtEZoVoMWeztr8eRZYfclHh/1Y0d7NWV+FYKCREIIIYSIqmepeY0yAol+dwgbqNRUECoVw2aXVXHNa0Z9EaQynEqKRfLKTU4MesMYmYsI8nzTC4uYDsSoaY2CUJBICCGEEFFtarSCMWV0OE1nOAa8ISo1FVCvy4aXZoKCNzIpxTkP7TsV0w2bsiOF/iBQNvFYbj/izrYaQZ6PlI6CREIIIYSIyqzXoKPWpIhs04Q/ilgyQ5lEAV3RbEUsmcHwbFjupSw55w5BxYDOOio3FUNLjREbGyz4vUCjMI6P+mHUqbGpkd6XSkFBIiGEEEJE19NkU0QmsS/f2ZQyiYLpdWXLiZW0L/GcJ4z2WhMMWrXcS1mzbtxcj6OjfsxHEiU/17GxeWxrsUOjptBEKeiVIIQQQojoelxWTC0sYiFa+gllKc6XIZplXcda0llnhkGrwqlJ+S8C5J3zhqjUVGSv3FSPDAee6i+ty2k4nsLZmSDtR1QYChIJIYQQIroelxWA/PsS+z0htNYYaUyKgNQqhs2NVsVkEmPJNEbnInQhQGRXNNngtOhL7nL6wvgCMhzY0U77EZWEgkRCCCGEiK7HpYwOp/1ualojht4mG16aDiKjgOY1w7MRZDiwjjKJolKpGG7YVI9n+mcRT6VX/TzHxvxgDNjeahdwdaRUFCQSQgghRHQ1Jh1cNoOsmcR4Ko2RuQg1rRFBr8uGcDyFMX9U7qVgwJstKaaLAeK7cbMTkUQah4b9q36O42Pz2FBvgdWgFXBlpFQUJBJCCCFEEptdNlk7nA7PRpDOcGpaI4Kepmw5sRI62Pa7Q9CoGNprqbOp2PZ1OVClVePJVXY5TWc4TowvYGc77UdUGgoSCSGEECKJ3iYrhuciiCZSshy/P9fZdCMFiYJbX2+BTq1SxL7Ec54wOutM0GnoNFdsBq0a12+sw09fmMJcOF704/vcQYTjKZqPqED07iGEEEKIJHpdNnAOnJqUJ5Do94SgVTN0OCjDJDStWoWNjRacmZK/w+k5T4j2I0roAzeux2IijQd/01f0Y4+PzQMAdlBnU8WhIJEQQgghktjdWQONiuGZc7OyHL/fHUJXnRlamsUmih6XDaenA+BcvuY1i4k0JuajWO+kIFEq3U4L3nFNBx47PrkU9BWCc45fn5pBg9WA5uoqEVdIVoM+JQkhhBAiCatBix1t1XiqX74gkWbniae3yYqFaBKT84uyrWHQGwbnwIYGGn8hpb+7YR0arAZ8/GenkS6ww+33j4zj0LAf73lFNxhjIq+QFIuCREIIIYRI5vqNTpydCcIdiEl63FAsiamFRep4KaJeBYw56fdk951Suam0zHoN/uk1m3BmOojvHx5b8f4T/ig+86uzuKbbgb/e0yrBCkmxKEgkhBBCiGSu3+AEADxzzivpcc95wgBA4y9EtKHBAq2a4fnxBdnWMOAJQadWoa3GKNsaKtWtWxqxr6sW//bbfvgu08Qmk+H4h8dOQsUYHnz9FsoiKhQFiYQQQgiRzPp6M1w2A57qk7bk9JyHZueJzaBVY29nLZ58ySPbvsR+TwhdTjM0tO9UcowxfOr2HkQTaTz4xKWb2Hz74CgOj/jxsVs3oclOexGVit5BhBBCCJEMYwzXbXTiucE5JFIZyY7b7w7BqFPTSanIbuppwPBcBIPesCzHH/CEsb6e9iPKJd/E5kfHLt7EZmQuggef6MP1G+pw184WGVZICkVBIiGEEEIkdf0GJ8LxFI6N+SU7Zr5pjUpFpW1iumlzPQDgd6scrl6K/L5Tak4kr3wTm3u/eQT3P3IMjxwcxfBsGOlcmalOrcLnXkdlpkqnkXsBhBBCCKks+7pqoVOr8HT/LPZ1OSQ55jlPCK/cVC/JsSpZvdWAbS12/PaMG++5vlvSYw/kspcUJMrLrNfgm/fuwncOjuLZgTn89kz2gkG1UYv5aBJfuHsr6q0GeRdJVkRBIiGEEEIkZdJrsLujBk/1efHRV28S/Xhz4Th8kQTtR5TIzT0NePCJPkwvLMIlYXnvQG7fKZWbym+zy4rPvW4LOOcY90fx3OAc9g/OocFahddua5J7eaQAVG5KCCGEEMldt6EOA94wJvxR0Y91bDS7N6rHZRX9WAS4qSebsf29xCWn5zxhGLQqtFRTZ1OlYIyhrdaEN+9p+3/t3XmU3VWV6PHvTmUkEwkZCIGEKQMQmiGAIE8IIDg1zVOUp9KIz25A1O7WFlkuZwXn7nZoWxREBARFUZ8KikpAUEAlqCEMSRiSAGYmY2WqpGq/P+6viktIVZLKrXtvVX0/a9VK1W84v31z1q/q7nvObx++fv50Pnb24U4z7SZMEiVJUtWdNrW0FMZv53d9ldOZjy9j6MC+HDtxRJdfS3DI6CEcOmYIv3p0aVWvO3/ZeiaN8blTqRJMEiVJUtUdPGowE0buxT3zuna9xJaW5O55y5kxZQz9XBahal51xFj+uGAVqzc0Ve2a85etZ5JTTaWKqMpvy4gYEBHXRsSiiFgfEX+NiNcU+w6MiIyIxrKvj2537rcjYl1ELI2If9+u7TMiYm5EbIyIuyNiYjVekyRJ6ryI4LQpo7nvyefZvLW5y64z+7k1rGxs4pWHjemya+ilzjp8X5pbkrvmdu2HAK3WbtzKsnVbmGLRGqkiqvWRWl/gWeBUYDjwEeAHEXFg2TF7Z+aQ4uuKsu2fACYBE4HTgMsj4tUAETEK+DHwUWAkMAu4pUtfiSRJqogZU8ewaWszf1rQdUthzHx8OQ19glMnj+6ya+il/m7/4YwbPrBqU07nL28tWmOSKFVCVZLEzNyQmZ/IzIWZ2ZKZtwELgOm7cPqFwBWZuTozHweuAd5e7HsD8Ghm/jAzN1NKKI+KiKmVfxWSJKmSTjp4Hwb07cPdXTjl9M7HlzF94gj23qt/l11DLxURnHX4WO59YgWbmrpupLjV/KKyqdNNpcqoyeT8iBgLTAYeLdu8KCKei4jrihFCImIEMA6YXXbcbOCI4vsjyvdl5gbgqbL9kiSpTg3s18BJh+zDb+d1TfGa51ZvZO7S9U41rZGzjtiXzVtbuPeJri9ONH/pegb3b2B8FZfckHqyqieJEdEPuAm4PjPnAiuB4ylNJ50ODC32A7R+HLS2rIm1xTGt+8v3bb+//LoXR8SsiJi1YkXX/7KSJEk7d9qUMSxYuYEni+mCldT6PNwZh42teNvauRMOGsnwQf2qMuV0/rJGJo0d6vIKUoVUNUmMiD7AjUAT8B6AzGzMzFmZuS0zlxXbz4qIoUBjcWr5wkbDgNa/JI3b7dt+f5vMvDozj8vM40aP9rkESZLqwWuO3JdB/Rr48p1PVLztmY8v56BRgzlktFMQa6FfQx/OmDqGmY8vZ2tzS5ddZ1tzC48tWWfRGqmCqpYkRumjnWuBscC5mbm1nUOz+LdPZq4GlgBHle0/ihemqT5avi8iBgOH8OJprJIkqU6NGTqQi085mNseXsKfn1ldsXY3bNnGA089z+lTnWpaS2cdsS9rN23lwS4sTvSnBatYu2krM6Y4CCBVSjVHEq8CDgPOzsxNrRsj4mURMSUi+kTEPsBXgd9mZus00huAj0TEiKIgzUXAd4p9PwGmRcS5ETEQ+BjwcDGNVZIkdQMXn3Iwo4cO4NO3P05m7vyEXfC7J1bS1NzCGT6PWFOnTh7NoH4N3Prn57rsGrfPWcKgfg3MmGJfS5VSrXUSJwKXAEcDS8vWQzwfOBi4g9IU0UeALcBbyk7/OKViNIuAe4AvZuYdAJm5AjgX+DSwGngZ8OZqvCZJklQZgwf05f1nTuahRau545HKPL828/FlDB3Yl+MPHFmR9tQ5g/o38JYTJvDTvy7m2VUbK95+c0vyq0eXcvrUMQzq31Dx9qXeqlpLYCzKzMjMgWVrIQ7JzJsy83uZeVBmDs7McZn5tsxcWnbulsx8R2YOy8yxmflf27V9Z2ZOzcxBmTkjMxdW4zVJkqTKedNxBzBl7FA+d8dcmrbt2fNrLS3J3fOWM2PKGPo11KSQu8pcdMpB9Am4+t6nK972Hxc8z8rGJl575LiKty31Zv7mlCRJNdfQJ/jQ6w5j0fMbufEPi/aordnPrWFlYxNn+DxiXRg3fBBvnL4/t8x6luXrNle07V/MWcLAfn04barPI0qVZJIoSZLqwqmTR/OKSaP46swnWLOxqdPtzHx8OQ19wkImdeSSUw5hW3ML1/5+QcXabG5J7nhkGadPHcNe/ftWrF1JJomSJKmOfOi1h7Fu81a+dteTnW7jzseXMX3iCPbeq38FI9OeOHDUYM4+aj+++4dFe/QBQLk/LVjFysYtTjWVuoBJoiRJqhuHjRvGm6bvz/UPLOSJZS9Z9ninnl7RyNyl63mlVU3rzrtmHMqGpma+c//CirT3y0dKU01d5kSqPJNESZJUVy47awrDBvbjkhsfYt3m9pZVfqltzS184NaHGTqgL/9w1PgujFCdMWXfoZx5+Fiuu28hjVu27VFbzS3JLx9ZymlTnGoqdQWTREmSVFfGDBvI188/lmdWbeS93/8rLS27tnbi1+5+kocWrebK109j3+EDuzhKdca7ZhzC2k1bufmPe1acaNbCVaxY71RTqauYJEqSpLrzsoP34WNnH85dc5fzpTvn7/T4hxat4qszn+D1x4znnKMdRaxXx0wYwcmH7sM1v1vA5q3NnW7nF3OWMKCvU02lrmKSKEmS6tIFJ07kvOP257/vepI7HlnS7nHrN2/lvbf8lfEjBvGpc46oYoTqjHefdigr1m/p9LOJLcVU0xlTRjN4gFNNpa5gkihJkupSRPCpc6Zx9AF78+8/mM28pTsuZPPxnz7K4jWb+fL/OZqhA/tVOUrtrpMO3oczDx/LF+6Yy52PLdvt82ctWs1yp5pKXcokUZIk1a2B/Rr4xj9OZ/CAvlx0wyyuv38h9z25kmXrNpOZ/PSvf+PHf/kb/3L6oUyfOLLW4WoXRARfefPRTBs/nH/53l+Y/eya3Tr/F3OW0L9vH844bGwXRSgpMnftYfCe5LjjjstZs2bVOgxJkrSLHlq0mktunMXKxhfW2Bs6oC9NzS1MGz+cWy4+kb4NfvbdnaxYv4U3XHUfm5qa+fGlJzNhn706PH7Dlm3c8MAivnbXE5x86CiufttxVYpU6pki4qHM3OGNZJIoSZK6hcxk+fotPLW8kSdXNPLU8kaWrdvCh193GAeM7DjBUH16akUj5151PyP36s+PLn05Iwb3f8kxG5u2ceMDi/jmvU+zakMTp04ezRXnTNtpUimpYyaJ2zFJlCRJqg+zFq7ird/6I0eOH84V50xjzcYmVm1sYvWGJhav3cwPZz3LysYmXjFpFO995WSmTxxR65ClHsEkcTsmiZIkSfXjF3OW8O6b/8yO3paWksNJPnMqVVhHSaJ1gyVJklRTrz1yHLe+8+UsW7eZkYP7M3Jwf0bs1Z8Re/XzWVOpBkwSJUmSVHNOI5Xqhx/NSJIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2kRm1jqGqouI9cC8WsehLjUcWFvrINRl7N+ezf7t2ezfns8+7tns355jSmYO3dGOvtWOpE7My8zjah2Euk5EXJ2ZF9c6DnUN+7dns397Nvu357OPezb7t+eIiFnt7XO6qXqqn9c6AHUp+7dns397Nvu357OPezb7txfordNNZzmSKEmSJKm36ign6q0jiVfXOgBJkiRJqqF2c6JeOZIoSZIkSdqx3jqSKEmSJEnaAZNEdWsRMTIifhIRGyJiUUS8tdj+uoj4fUSsiYilEfGtiNhhiV/Vrw7697SImFP07/PFMeNrHa92T3v9u90x346IjIhDaxGj9kwH9/CMiGiJiMayrwtrHa92T0f3cESMjoibI2JtRKyOiJtqGat2Xwf374e2u3c3FffzqFrHrMrprUtgqOf4H6AJGAscDdweEbMpreFzJXAvMAC4Gfgi8M4axanOaa9/HwNelZmLI2IAcAVwFfAPNYtUnbHD/s3MRwEi4n8Bh9QwPu259u5hgMWZuX/NIlMldHQP/xh4EJgAbASm1SxKdVZ7/fsZ4DOtB0XEJ4BTMnNlTaJUl/CZRHVbETEYWA1My8z5xbYbgb9l5ge3O/YNwCcz88jqR6rO2NX+LZLETwDnZObhtYhVu29n/RsRfSm9wbwQmA1MyswnaxawdltHfQzcAXzXJLH72kn/3kWpIMYhmdlcuyjVWbvxNziApyi9x7q+JsGqS9TddNOIGF7rGNRtTAa2tf7yKswGjtjBsacAj1YlKlVKh/0bERMiYg2wCbgM+EL1Q9Qe2Nn9+z7g3sx8uOqRqVJ21sdjImJZRCyIiC8Vb0rVfXTUvycC84Dri0cCHoyIU2sRpDptV99jvQIYA/yoWoGpOuomSYyIQRFxLfB0REyodTzqFoYA67bbthZ40bOHEXEmpdGIj1UpLlVGh/2bmc9k5t7AKOAjwNzqhqc91G7/RsQBwCV4z3Z3Hd3DcylNXxsHnA5MB/6rqtFpT3XUv/sDZwF3A/sC/wn81GfWupVdeo9F6f3VrZnZWJWoVDV1kSRGxBBKzxONApZTer5I2plGYNh224YB61t/iIgTKT2P+MbtPg1T/dtp/wJk5irgekpvQHzOuvvoqH+/DHwqM9dWPSpVUrt9nJlLM/OxzGzJzAXA5cC5VY9Qe6Kje3gTsDAzr83MrZn5feBZ4OQqx6jO25X3WHsBb6L0N1g9TE2TxIgYFRH9ik8ffgJ8GDgHuCAiXl7L2NQtzAf6RsSksm1HUUwrjYhjgJ8B78jMmTWIT3umw/7dTl9K0122/4Om+tVR/54BfLGoTLy02PfAjqqfqq7tzj2c1MkH19plHfXvw5T6tJxFMLqXXbl/Xw+sAn5bxbhUJTUpXBMRBwKtpZDXAR8E5mXm5mL/NcBRmXlC1YNTtxIR36f0h+efKU1d+gXwciCAmcC/ZuYttYtQe6KD/p1C6Q/VE8A+lCqwHZqZx9YoVHVCB/27ghcnDEuAk4DZmbmp2nGq8zro4zHA08AzlKYm3kBp5On/1ihUdUIH/buEUjGT9wLfpZRMXA1MtgJm99Fe/5ZVoP418IfM9NGAHqjqn9pFxCDgW8BDwBsoDWd/AnhL2WHvBo4oXzMpIvyEUTvyLmAQpWnK3wMuLX55vR8YDVxbto6PhWu6n/b6dzyl6ojrgTlAC6U3Iepedti/mbm8mI64NDNbRxJXmiB2S+3dw8cA9wMbin/nAP9aqyDVae3dw6soLUl0GaXn2D5IqQK1CWL30t79S7E28emUPuBRD1T1kcRi2Po64J8zc25EDAP+DTgNuLi1xHlEvA+4PDPHFT8Pzcz1ERHpuh2SJEmS1CVqMToXlBZUXQuQmesoLbi6GLgUSqOGQZwyKgAACatJREFUmfklYFVE/CwiNgKfLY43QZQkSZKkLlL1JLGoMDmHF5c2n0tpusmBEXFwZrZExBhKCeWxwPsz8z3VjlWSJEmSeptaPef3OeD1ETEZIDObgceASbywJsts4M+ZuX9mXlWbMCVJkiSpd6nVmmJ3Fl83ACcW2x4p/h0OrAQmuTCnJEmSJFVXTZbAgLYFOGdTWofld8AFwCzgosxs6uC8ccBFwN2Z+TsL2UiSJElS5dRqJJHM3BgRZ1Na++o1wLeKYjU7szdwMhARMcuS6JIkSZJUOTUbSXxRELs4Gth6XERcCpwBfCczb+v6CCVJkiSpd6iLBep3J0EsfrwFaATOjIh9W/d3YYiSJEmS1CvURZJYrr1krxhBnBwRZ2TmKuBnwIHAq1v3Vy9KSZIkSeqZ6i5JLJLB9uI6D7g9IvoDPwEWAqdExOHgaKIkSZIk7am6SxIj4tXAlRGxX/HzKa37MvNKYDHw0WLk8BZgBKXCN44mSpIkSdIeqrskEWgAzgJOjojXAddExKll+/8N+EBETMjM+yktm3FsRJxWg1glSZIkqUepuyQxM28H/gS8EmihNK30PWX7f17s/2yx6fvAaGB6RDRUN1pJkiRJ6lnqKkkse6bwK8BhwETgAWDviHhb2aH3AG8uitg8BVyWmf+Rmc3VjViSJEmSepa6ShKLojWRmfOAX1NaC3Fr8f3FETG8OHQt8CBwcnHewwAdFLyRJEmSJO2CqNdaLxExFPgxcBfwG+AKYBylQjWzgLdn5vraRShJkiRJPU/fWgewIxHRJzPXR8QNwNspjRqeB/w90JyZP9ju2JbaRCpJkiRJPUvdjiS2iojvA88Dn8zM5WXbG3wGUZIkSZIqq26f4SsrYvPfwHTgwPLtJoiSJEmSVHl1myQWRWz6ZOZ9lOJ8Vev2nZ0bEQdHxLDi+9jZ8ZIkSZKkkrpNEgEysyUi9gI2AfN25ZyIeDfwCHBW0UZ9z6eVJEmSpDpS10li4X8Df6FU6XRXHAWsBk6IiEldFpUkSZIk9UDdoXBN7OIU04bMbI6ID1BaKmM68B3g5szc0sVhSpIkSVKPUPcjie0liBExoPi3oTiutZDNScB1wG3AOcBBVQhTkiRJknqEuk8StxcRIyLi28A34IXkMCJaX8uzwAHAtcBA4C0RcWVE/F0t4pUkSZKk7qRbJYkRcSTwE+B4YHJEvKHY3iczW4rDjgHmZeYqYCvwYeBI4OkahCxJkiRJ3Uq3ShKB/sCNwNuBmcBFEdG/qILavzjmj8AnI2IOMAz4PbAQGFz9cCVJkiSpe6nrJDEipkbEqRExptg0B7g1Mx8CfgUk8B6AzGwqppyOA44AvpyZpwKfB0ZWP3pJkiRJ6n7qsrppUYzmG8B5wEOUEr/LM/PnZccMAf4JOBe4IDMXFdsPApZl5saqBy5JkiRJ3Vy9jiQeARwKHAKcRWkpi69ExCmtB2RmI6Upp4uB95Wd+2xmbmwtZBMRUa2gJUmSJKm7q5skMSKGl1UoPRGYmJkrgZbM/DylZw0vjIiDy06bD3wPmBYRn4mI+4AzAFoL2ezKGouSJEmSpJKaJ4kRMSkifgXcBPwoIiYCjwHPRMTRZVVLPwscBbQtZZGZTUAzpaTyQuCazPxVVV+AJEmSJPUgNU0SI+KfgLuAvwCXUyow81GgL7CM0lRTADLzYUqFay4ozm2IiDOBW4GvZ+b4zPxOVV+AJEmSJPUwNS1cExFXAosy85ri5/2BucBkSsngscA3M/OuYv/ZwOeA44vnDscDGzJzTU1egCRJkiT1MH1rfP1vAFsAImIAsBF4ChgE/JBS4Zr3RsRTRfXS44Fft1Yuzcy/1SRqSZIkSeqhapokZuZzUKpAmplbIuJwSlNgny3WPfwqcCVwe0SsAaYA59cuYkmSJEnq2Wo9kgi8qALpDGBeUZCGzHwkIs4FjgGOyMzraxSiJEmSJPUKdZEkRkRDZjYDJwB3FNsupTRy+OnMnAXMqmGIkiRJktQr1EWSmJnNEdGXUnXTMRFxL3Ag8I7MXFHT4CRJkiSpF6lpddNyEXEkMJvS0hf/mZn/UeOQJEmSJKnXqacksT/wHkprHm6udTySJEmS1BvVTZIoSZIkSaq9PrUOQJIkSZJUP0wSJUmSJEltTBIlSZIkSW1MEiVJkiRJbUwSJUmSJEltTBIlSQIiYkJENEZEQ61jkSSplkwSJUm9VkQsjIhXAmTmM5k5JDObq3j9GRHxXLWuJ0nSrjBJlCRJkiS1MUmUJPVKEXEjMAH4eTHN9PKIyIjoW+z/bURcGRH3F/t/HhH7RMRNEbEuIh6MiAPL2psaEb+JiFURMS8izivb99qIeCwi1kfE3yLisogYDPwS2K9ovzEi9ouIEyLigYhYExFLIuJrEdG/rK2MiHdFxBNFe1dExCFFnOsi4getx7eOVEbEhyJiZTFyen51/oclSd2VSaIkqVfKzAuAZ4CzM3MI8IMdHPZm4AJgPHAI8ABwHTASeBz4OECR8P0GuBkYU5z39Yg4vGjnWuCSzBwKTAPuyswNwGuAxcU01yGZuRhoBt4HjAJOAs4A3rVdXK8CpgMnApcDVwP/CBxQtP+WsmP3LdoaD1wIXB0RU3brP0uS1KuYJEqS1L7rMvOpzFxLadTvqcy8MzO3AT8EjimO+3tgYWZel5nbMvMvwI+ANxX7twKHR8SwzFydmX9u74KZ+VBm/qFoZyHwTeDU7Q77Qmauy8xHgUeAX2fm02VxHrPd8R/NzC2ZeQ9wO3AekiS1wyRRkqT2LSv7ftMOfh5SfD8ReFkxRXRNRKwBzqc0igdwLvBaYFFE3BMRJ7V3wYiYHBG3RcTSiFgHfIbSSGBn4gJYXYxatloE7Nfe9SVJMkmUJPVmWaF2ngXuycy9y76GZOalAJn5YGaeQ2kq6v/jhamtO7r+VcBcYFJmDgM+BMQexDaimA7bagKweA/akyT1cCaJkqTebBlwcAXauQ2YHBEXRES/4uv4iDgsIvpHxPkRMTwztwLrgJay6+8TEcPL2hpaHNMYEVOBSysQ3yeLOF5BaWrsDyvQpiSphzJJlCT1Zp8FPlJMD31jZxvJzPXAWZQK1iwGlgKfBwYUh1wALCymj76T0lRUMnMu8D3g6WKa6n7AZcBbgfXANcAtnY2rsBRYXcR1E/DO4rqSJO1QZFZqpo0kSaonETED+G5m7l/rWCRJ3YcjiZIkSZKkNiaJkiRJkqQ2TjeVJEmSJLVxJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTGJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTm/wOL0q2viKFO9gAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "dddca9ad9e34435494e0933c218e1579", + "translation_date": "2025-09-04T01:50:58+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/es/7-TimeSeries/1-Introduction/working/notebook.ipynb b/translations/es/7-TimeSeries/1-Introduction/working/notebook.ipynb new file mode 100644 index 000000000..e7cc766cd --- /dev/null +++ b/translations/es/7-TimeSeries/1-Introduction/working/notebook.ipynb @@ -0,0 +1,63 @@ +{ + "cells": [ + { + "source": [ + "# Configuración de Datos\n", + "\n", + "En este cuaderno, mostramos cómo:\n", + "\n", + "configurar datos de series temporales para este módulo\n", + "visualizar los datos\n", + "Los datos en este ejemplo provienen de la competencia de pronósticos GEFCom2014. Consisten en 3 años de valores horarios de carga eléctrica y temperatura entre 2012 y 2014.\n", + "\n", + "1Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli y Rob J. Hyndman, \"Pronósticos probabilísticos de energía: Competencia Global de Pronósticos Energéticos 2014 y más allá\", International Journal of Forecasting, vol.32, no.3, pp 896-913, julio-septiembre, 2016.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5e2bbe594906dce3aaaa736d6dac6683", + "translation_date": "2025-09-04T01:51:57+00:00", + "source_file": "7-TimeSeries/1-Introduction/working/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/es/7-TimeSeries/2-ARIMA/README.md b/translations/es/7-TimeSeries/2-ARIMA/README.md new file mode 100644 index 000000000..dba1e1f76 --- /dev/null +++ b/translations/es/7-TimeSeries/2-ARIMA/README.md @@ -0,0 +1,406 @@ + +# Pronóstico de series temporales con ARIMA + +En la lección anterior, aprendiste un poco sobre el pronóstico de series temporales y cargaste un conjunto de datos que muestra las fluctuaciones de la carga eléctrica durante un período de tiempo. + +[![Introducción a ARIMA](https://img.youtube.com/vi/IUSk-YDau10/0.jpg)](https://youtu.be/IUSk-YDau10 "Introducción a ARIMA") + +> 🎥 Haz clic en la imagen de arriba para ver un video: Una breve introducción a los modelos ARIMA. El ejemplo está hecho en R, pero los conceptos son universales. + +## [Cuestionario previo a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/43/) + +## Introducción + +En esta lección, descubrirás una forma específica de construir modelos con [ARIMA: *A*uto*R*egressive *I*ntegrated *M*oving *A*verage](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average). Los modelos ARIMA son particularmente adecuados para ajustar datos que muestran [no estacionariedad](https://wikipedia.org/wiki/Stationary_process). + +## Conceptos generales + +Para trabajar con ARIMA, hay algunos conceptos que necesitas conocer: + +- 🎓 **Estacionariedad**. Desde un contexto estadístico, la estacionariedad se refiere a datos cuya distribución no cambia cuando se desplazan en el tiempo. Los datos no estacionarios, por lo tanto, muestran fluctuaciones debido a tendencias que deben transformarse para ser analizados. La estacionalidad, por ejemplo, puede introducir fluctuaciones en los datos y puede eliminarse mediante un proceso de 'diferenciación estacional'. + +- 🎓 **[Diferenciación](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average#Differencing)**. La diferenciación de datos, nuevamente desde un contexto estadístico, se refiere al proceso de transformar datos no estacionarios para hacerlos estacionarios eliminando su tendencia no constante. "La diferenciación elimina los cambios en el nivel de una serie temporal, eliminando la tendencia y la estacionalidad y, en consecuencia, estabilizando la media de la serie temporal." [Artículo de Shixiong et al](https://arxiv.org/abs/1904.07632) + +## ARIMA en el contexto de series temporales + +Desglosaremos las partes de ARIMA para entender mejor cómo nos ayuda a modelar series temporales y hacer predicciones. + +- **AR - de AutoRegresivo**. Los modelos autorregresivos, como su nombre lo indica, miran 'hacia atrás' en el tiempo para analizar valores anteriores en tus datos y hacer suposiciones sobre ellos. Estos valores anteriores se llaman 'retardos'. Un ejemplo sería datos que muestran las ventas mensuales de lápices. El total de ventas de cada mes se consideraría una 'variable evolutiva' en el conjunto de datos. Este modelo se construye como "la variable evolutiva de interés se regresa sobre sus propios valores retardados (es decir, anteriores)." [wikipedia](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average) + +- **I - de Integrado**. A diferencia de los modelos similares 'ARMA', la 'I' en ARIMA se refiere a su aspecto *[integrado](https://wikipedia.org/wiki/Order_of_integration)*. Los datos se 'integran' cuando se aplican pasos de diferenciación para eliminar la no estacionariedad. + +- **MA - de Promedio Móvil**. El aspecto de [promedio móvil](https://wikipedia.org/wiki/Moving-average_model) de este modelo se refiere a la variable de salida que se determina observando los valores actuales y pasados de los retardos. + +En resumen: ARIMA se utiliza para ajustar un modelo a la forma especial de los datos de series temporales lo más cerca posible. + +## Ejercicio - construir un modelo ARIMA + +Abre la carpeta [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/working) en esta lección y encuentra el archivo [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/2-ARIMA/working/notebook.ipynb). + +1. Ejecuta el notebook para cargar la biblioteca de Python `statsmodels`; necesitarás esto para los modelos ARIMA. + +1. Carga las bibliotecas necesarias. + +1. Ahora, carga varias bibliotecas más útiles para graficar datos: + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from pandas.plotting import autocorrelation_plot + from statsmodels.tsa.statespace.sarimax import SARIMAX + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + from IPython.display import Image + + %matplotlib inline + pd.options.display.float_format = '{:,.2f}'.format + np.set_printoptions(precision=2) + warnings.filterwarnings("ignore") # specify to ignore warning messages + ``` + +1. Carga los datos del archivo `/data/energy.csv` en un dataframe de Pandas y échales un vistazo: + + ```python + energy = load_data('./data')[['load']] + energy.head(10) + ``` + +1. Grafica todos los datos de energía disponibles desde enero de 2012 hasta diciembre de 2014. No debería haber sorpresas, ya que vimos estos datos en la última lección: + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ¡Ahora, construyamos un modelo! + +### Crear conjuntos de datos de entrenamiento y prueba + +Ahora que tus datos están cargados, puedes separarlos en conjuntos de entrenamiento y prueba. Entrenarás tu modelo en el conjunto de entrenamiento. Como de costumbre, después de que el modelo haya terminado de entrenarse, evaluarás su precisión utilizando el conjunto de prueba. Debes asegurarte de que el conjunto de prueba cubra un período posterior en el tiempo al conjunto de entrenamiento para garantizar que el modelo no obtenga información de períodos futuros. + +1. Asigna un período de dos meses desde el 1 de septiembre hasta el 31 de octubre de 2014 al conjunto de entrenamiento. El conjunto de prueba incluirá el período de dos meses del 1 de noviembre al 31 de diciembre de 2014: + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + + Dado que estos datos reflejan el consumo diario de energía, hay un patrón estacional fuerte, pero el consumo es más similar al consumo en días más recientes. + +1. Visualiza las diferencias: + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![datos de entrenamiento y prueba](../../../../translated_images/train-test.8928d14e5b91fc942f0ca9201b2d36c890ea7e98f7619fd94f75de3a4c2bacb9.es.png) + + Por lo tanto, usar una ventana de tiempo relativamente pequeña para entrenar los datos debería ser suficiente. + + > Nota: Dado que la función que usamos para ajustar el modelo ARIMA utiliza validación dentro de la muestra durante el ajuste, omitiremos los datos de validación. + +### Preparar los datos para el entrenamiento + +Ahora necesitas preparar los datos para el entrenamiento realizando filtrado y escalado de tus datos. Filtra tu conjunto de datos para incluir solo los períodos de tiempo y columnas que necesitas, y escala para garantizar que los datos se proyecten en el intervalo 0,1. + +1. Filtra el conjunto de datos original para incluir solo los períodos de tiempo mencionados por conjunto y solo la columna necesaria 'load' más la fecha: + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + Puedes ver la forma de los datos: + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +1. Escala los datos para que estén en el rango (0, 1). + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + train.head(10) + ``` + +1. Visualiza los datos originales vs. los escalados: + + ```python + energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12) + train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12) + plt.show() + ``` + + ![original](../../../../translated_images/original.b2b15efe0ce92b8745918f071dceec2231661bf49c8db6918e3ff4b3b0b183c2.es.png) + + > Los datos originales + + ![escalados](../../../../translated_images/scaled.e35258ca5cd3d43f86d5175e584ba96b38d51501f234abf52e11f4fe2631e45f.es.png) + + > Los datos escalados + +1. Ahora que has calibrado los datos escalados, puedes escalar los datos de prueba: + + ```python + test['load'] = scaler.transform(test) + test.head() + ``` + +### Implementar ARIMA + +¡Es hora de implementar ARIMA! Ahora usarás la biblioteca `statsmodels` que instalaste anteriormente. + +Ahora necesitas seguir varios pasos: + + 1. Define el modelo llamando a `SARIMAX()` y pasando los parámetros del modelo: parámetros p, d y q, y parámetros P, D y Q. + 2. Prepara el modelo para los datos de entrenamiento llamando a la función fit(). + 3. Haz predicciones llamando a la función `forecast()` y especificando el número de pasos (el `horizonte`) para pronosticar. + +> 🎓 ¿Para qué son todos estos parámetros? En un modelo ARIMA hay 3 parámetros que se utilizan para ayudar a modelar los aspectos principales de una serie temporal: estacionalidad, tendencia y ruido. Estos parámetros son: + +`p`: el parámetro asociado con el aspecto autorregresivo del modelo, que incorpora valores *pasados*. +`d`: el parámetro asociado con la parte integrada del modelo, que afecta la cantidad de *diferenciación* (🎓 recuerda la diferenciación 👆) que se aplica a una serie temporal. +`q`: el parámetro asociado con la parte de promedio móvil del modelo. + +> Nota: Si tus datos tienen un aspecto estacional - como en este caso -, usamos un modelo ARIMA estacional (SARIMA). En ese caso, necesitas usar otro conjunto de parámetros: `P`, `D` y `Q`, que describen las mismas asociaciones que `p`, `d` y `q`, pero corresponden a los componentes estacionales del modelo. + +1. Comienza configurando tu valor de horizonte preferido. Probemos con 3 horas: + + ```python + # Specify the number of steps to forecast ahead + HORIZON = 3 + print('Forecasting horizon:', HORIZON, 'hours') + ``` + + Seleccionar los mejores valores para los parámetros de un modelo ARIMA puede ser un desafío, ya que es algo subjetivo y requiere tiempo. Podrías considerar usar una función `auto_arima()` de la biblioteca [`pyramid`](https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html). + +1. Por ahora, intenta algunas selecciones manuales para encontrar un buen modelo. + + ```python + order = (4, 1, 0) + seasonal_order = (1, 1, 0, 24) + + model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order) + results = model.fit() + + print(results.summary()) + ``` + + Se imprime una tabla de resultados. + +¡Has construido tu primer modelo! Ahora necesitamos encontrar una forma de evaluarlo. + +### Evaluar tu modelo + +Para evaluar tu modelo, puedes realizar la llamada validación `walk forward`. En la práctica, los modelos de series temporales se reentrenan cada vez que se dispone de nuevos datos. Esto permite que el modelo haga el mejor pronóstico en cada paso de tiempo. + +Comenzando al inicio de la serie temporal usando esta técnica, entrena el modelo en el conjunto de datos de entrenamiento. Luego haz una predicción en el siguiente paso de tiempo. La predicción se evalúa frente al valor conocido. El conjunto de entrenamiento se expande para incluir el valor conocido y el proceso se repite. + +> Nota: Debes mantener fija la ventana del conjunto de entrenamiento para un entrenamiento más eficiente, de modo que cada vez que agregues una nueva observación al conjunto de entrenamiento, elimines la observación del inicio del conjunto. + +Este proceso proporciona una estimación más robusta de cómo el modelo funcionará en la práctica. Sin embargo, tiene el costo computacional de crear tantos modelos. Esto es aceptable si los datos son pequeños o si el modelo es simple, pero podría ser un problema a gran escala. + +La validación walk-forward es el estándar de oro para la evaluación de modelos de series temporales y se recomienda para tus propios proyectos. + +1. Primero, crea un punto de datos de prueba para cada paso del HORIZON. + + ```python + test_shifted = test.copy() + + for t in range(1, HORIZON+1): + test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H') + + test_shifted = test_shifted.dropna(how='any') + test_shifted.head(5) + ``` + + | | | load | load+1 | load+2 | + | ---------- | -------- | ---- | ------ | ------ | + | 2014-12-30 | 00:00:00 | 0.33 | 0.29 | 0.27 | + | 2014-12-30 | 01:00:00 | 0.29 | 0.27 | 0.27 | + | 2014-12-30 | 02:00:00 | 0.27 | 0.27 | 0.30 | + | 2014-12-30 | 03:00:00 | 0.27 | 0.30 | 0.41 | + | 2014-12-30 | 04:00:00 | 0.30 | 0.41 | 0.57 | + + Los datos se desplazan horizontalmente según su punto de horizonte. + +1. Haz predicciones en tus datos de prueba utilizando este enfoque de ventana deslizante en un bucle del tamaño de la longitud de los datos de prueba: + + ```python + %%time + training_window = 720 # dedicate 30 days (720 hours) for training + + train_ts = train['load'] + test_ts = test_shifted + + history = [x for x in train_ts] + history = history[(-training_window):] + + predictions = list() + + order = (2, 1, 0) + seasonal_order = (1, 1, 0, 24) + + for t in range(test_ts.shape[0]): + model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order) + model_fit = model.fit() + yhat = model_fit.forecast(steps = HORIZON) + predictions.append(yhat) + obs = list(test_ts.iloc[t]) + # move the training window + history.append(obs[0]) + history.pop(0) + print(test_ts.index[t]) + print(t+1, ': predicted =', yhat, 'expected =', obs) + ``` + + Puedes observar el entrenamiento ocurriendo: + + ```output + 2014-12-30 00:00:00 + 1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323] + + 2014-12-30 01:00:00 + 2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126] + + 2014-12-30 02:00:00 + 3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795] + ``` + +1. Compara las predicciones con la carga real: + + ```python + eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)]) + eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1] + eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h') + eval_df['actual'] = np.array(np.transpose(test_ts)).ravel() + eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']]) + eval_df.head() + ``` + + Salida + | | | timestamp | h | prediction | actual | + | --- | ---------- | --------- | --- | ---------- | -------- | + | 0 | 2014-12-30 | 00:00:00 | t+1 | 3,008.74 | 3,023.00 | + | 1 | 2014-12-30 | 01:00:00 | t+1 | 2,955.53 | 2,935.00 | + | 2 | 2014-12-30 | 02:00:00 | t+1 | 2,900.17 | 2,899.00 | + | 3 | 2014-12-30 | 03:00:00 | t+1 | 2,917.69 | 2,886.00 | + | 4 | 2014-12-30 | 04:00:00 | t+1 | 2,946.99 | 2,963.00 | + + Observa la predicción de los datos horarios, comparada con la carga real. ¿Qué tan precisa es? + +### Verificar la precisión del modelo + +Verifica la precisión de tu modelo probando su error porcentual absoluto medio (MAPE) en todas las predicciones. +> **🧮 Muéstrame las matemáticas** +> +> ![MAPE](../../../../translated_images/mape.fd87bbaf4d346846df6af88b26bf6f0926bf9a5027816d5e23e1200866e3e8a4.es.png) +> +> [MAPE](https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/) se utiliza para mostrar la precisión de las predicciones como una proporción definida por la fórmula anterior. La diferencia entre el valor real y el valor predicho se divide por el valor real. +> "El valor absoluto en este cálculo se suma para cada punto pronosticado en el tiempo y se divide por el número de puntos ajustados n." [wikipedia](https://wikipedia.org/wiki/Mean_absolute_percentage_error) +1. Expresar la ecuación en código: + + ```python + if(HORIZON > 1): + eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual'] + print(eval_df.groupby('h')['APE'].mean()) + ``` + +1. Calcular el MAPE de un paso: + + ```python + print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%') + ``` + + MAPE de pronóstico de un paso: 0.5570581332313952 % + +1. Imprimir el MAPE de pronóstico de múltiples pasos: + + ```python + print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%') + ``` + + ```output + Multi-step forecast MAPE: 1.1460048657704118 % + ``` + + Un número bajo es mejor: considera que un pronóstico con un MAPE de 10 está desviado en un 10%. + +1. Pero como siempre, es más fácil ver este tipo de medición de precisión de forma visual, así que vamos a graficarlo: + + ```python + if(HORIZON == 1): + ## Plotting single step forecast + eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8)) + + else: + ## Plotting multi step forecast + plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']] + for t in range(1, HORIZON+1): + plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values + + fig = plt.figure(figsize=(15, 8)) + ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0) + ax = fig.add_subplot(111) + for t in range(1, HORIZON+1): + x = plot_df['timestamp'][(t-1):] + y = plot_df['t+'+str(t)][0:len(x)] + ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t)) + + ax.legend(loc='best') + + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![un modelo de series temporales](../../../../translated_images/accuracy.2c47fe1bf15f44b3656651c84d5e2ba9b37cd929cd2aa8ab6cc3073f50570f4e.es.png) + +🏆 Una gráfica muy buena, mostrando un modelo con buena precisión. ¡Bien hecho! + +--- + +## 🚀Desafío + +Investiga las formas de probar la precisión de un modelo de series temporales. Tocamos el MAPE en esta lección, pero ¿hay otros métodos que podrías usar? Investígalos y anótalos. Un documento útil se puede encontrar [aquí](https://otexts.com/fpp2/accuracy.html) + +## [Cuestionario posterior a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/44/) + +## Revisión y Autoestudio + +Esta lección aborda solo los conceptos básicos de la predicción de series temporales con ARIMA. Tómate un tiempo para profundizar tu conocimiento explorando [este repositorio](https://microsoft.github.io/forecasting/) y sus diversos tipos de modelos para aprender otras formas de construir modelos de series temporales. + +## Tarea + +[Un nuevo modelo ARIMA](assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/7-TimeSeries/2-ARIMA/assignment.md b/translations/es/7-TimeSeries/2-ARIMA/assignment.md new file mode 100644 index 000000000..99aaccdc1 --- /dev/null +++ b/translations/es/7-TimeSeries/2-ARIMA/assignment.md @@ -0,0 +1,25 @@ + +# Un nuevo modelo ARIMA + +## Instrucciones + +Ahora que has construido un modelo ARIMA, crea uno nuevo con datos frescos (prueba uno de [estos conjuntos de datos de Duke](http://www2.stat.duke.edu/~mw/ts_data_sets.html)). Anota tu trabajo en un cuaderno, visualiza los datos y tu modelo, y prueba su precisión utilizando MAPE. + +## Rúbrica + +| Criterios | Ejemplar | Adecuado | Necesita Mejorar | +| --------- | ------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------- | ----------------------------------- | +| | Se presenta un cuaderno con un nuevo modelo ARIMA construido, probado y explicado con visualizaciones y precisión indicada. | El cuaderno presentado no está anotado o contiene errores | Se presenta un cuaderno incompleto | + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/7-TimeSeries/2-ARIMA/solution/Julia/README.md b/translations/es/7-TimeSeries/2-ARIMA/solution/Julia/README.md new file mode 100644 index 000000000..a8cbb918b --- /dev/null +++ b/translations/es/7-TimeSeries/2-ARIMA/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/7-TimeSeries/2-ARIMA/solution/R/README.md b/translations/es/7-TimeSeries/2-ARIMA/solution/R/README.md new file mode 100644 index 000000000..2f385d982 --- /dev/null +++ b/translations/es/7-TimeSeries/2-ARIMA/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/7-TimeSeries/2-ARIMA/solution/notebook.ipynb b/translations/es/7-TimeSeries/2-ARIMA/solution/notebook.ipynb new file mode 100644 index 000000000..a8e9922c3 --- /dev/null +++ b/translations/es/7-TimeSeries/2-ARIMA/solution/notebook.ipynb @@ -0,0 +1,1091 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli y Rob J. Hyndman, \"Pronóstico probabilístico de energía: Competencia Global de Pronóstico Energético 2014 y más allá\", International Journal of Forecasting, vol.32, no.3, pp 896-913, julio-septiembre, 2016.\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Instalar dependencias\n", + "Comienza instalando algunas de las dependencias necesarias. Se sabe que estas bibliotecas con sus versiones correspondientes funcionan para la solución:\n", + "\n", + "* `statsmodels == 0.12.2`\n", + "* `matplotlib == 3.4.2`\n", + "* `scikit-learn == 0.24.2`\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "source": [ + "!pip install statsmodels" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "/bin/sh: pip: command not found\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from pandas.plotting import autocorrelation_plot\n", + "from statsmodels.tsa.statespace.sarimax import SARIMAX\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape\n", + "from IPython.display import Image\n", + "\n", + "%matplotlib inline\n", + "pd.options.display.float_format = '{:,.2f}'.format\n", + "np.set_printoptions(precision=2)\n", + "warnings.filterwarnings(\"ignore\") # specify to ignore warning messages\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 18, + "source": [ + "energy = load_data('./data')[['load']]\n", + "energy.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2012-01-01 00:00:002,698.00
2012-01-01 01:00:002,558.00
2012-01-01 02:00:002,444.00
2012-01-01 03:00:002,402.00
2012-01-01 04:00:002,403.00
2012-01-01 05:00:002,453.00
2012-01-01 06:00:002,560.00
2012-01-01 07:00:002,719.00
2012-01-01 08:00:002,916.00
2012-01-01 09:00:003,105.00
\n", + "
" + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2,698.00\n", + "2012-01-01 01:00:00 2,558.00\n", + "2012-01-01 02:00:00 2,444.00\n", + "2012-01-01 03:00:00 2,402.00\n", + "2012-01-01 04:00:00 2,403.00\n", + "2012-01-01 05:00:00 2,453.00\n", + "2012-01-01 06:00:00 2,560.00\n", + "2012-01-01 07:00:00 2,719.00\n", + "2012-01-01 08:00:00 2,916.00\n", + "2012-01-01 09:00:00 3,105.00" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Representar todos los datos de carga disponibles (enero 2012 a diciembre 2014)\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Crear conjuntos de datos de entrenamiento y prueba\n", + "\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00' " + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e5wtV1Xv+5tVtR792u8kEoMkIGAUJEjwwEE9IHh5eHzCiYr40XPPJSjnw8XrkQN6RRHPOXJ8AKLyFHzw1vBSQQnEhMBNQtgJeZNkJ+wk+5Gd/eze/V6rqub9Y9aomlVdtXqO2btXr+4e388nn97pXnNVrVr1mGOO3/gNpbWGIAiCIAiCIAiCIABAsNE7IAiCIAiCIAiCIIwOEiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDkSJAqCIAiCIAiCIAg5EiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDnRRu/ARrBv3z598cUXb/RuCIIgCIIgCIIgbAi33HLLSa31eXV/25ZB4sUXX4z9+/dv9G4IgiAIgiAIgiBsCEqph5v+JnJTQRAEQRAEQRAEIUeCREEQBEEQBEEQBCFHgkRBEARBEARBEAQhZ1vWJAqCIAiCIAiCsL3p9/s4fPgwlpaWNnpX1pVut4uLLroIrVbLeYwEiYIgCIIgCIIgbDsOHz6MqakpXHzxxVBKbfTurAtaa5w6dQqHDx/GJZdc4jxO5KaCIAiCIAiCIGw7lpaWsHfv3i0bIAKAUgp79+5lZ0slSBQEQRAEQRAEYVuylQNEwuczSpAoCIIgCIIgCIIwZKanp/Hud7+bPe5lL3sZpqen12GPCiRIFARBEARBEARBGDJNQWIcxwPHfeELX8CuXbvWa7cAiHGNIAiCIAiCIAjC0HnTm96EBx98EJdddhlarRa63S52796Ne++9F/fffz9++qd/GocOHcLS0hJe//rX48orrwQAXHzxxdi/fz/m5ubw0pe+FD/0Qz+EG264Ad/5nd+Jz33ucxgbG1vzvkmQKAiCIAiCIAjCtub3/+lu3HP07Dl9z++9cAd+7ye+r/Hvb3vb23DXXXfhtttuw3XXXYcf//Efx1133ZW7kH7oQx/Cnj17sLi4iGc/+9l4+ctfjr1795be48CBA/j4xz+OD3zgA7jiiivwqU99Cq961avWvO8SJAqCIAiCIAiCIGwwP/iDP1hqU/Gud70Ln/nMZwAAhw4dwoEDB1YEiZdccgkuu+wyAMCznvUsPPTQQ+dkXyRIFARBEARBEARhWzMo4zcsJiYm8n9fd911+PKXv4wbb7wR4+PjeP7zn1/bxqLT6eT/DsMQi4uL52RfxLhGEARBEARBEARhyExNTWF2drb2bzMzM9i9ezfGx8dx77334qabbhrqvkkmURAEQRAEQRAEYcjs3bsXz3ve8/C0pz0NY2NjuOCCC/K/veQlL8F73/teXHrppXjqU5+K5zznOUPdN6W1HuoGR4HLL79c79+/f6N3QxAEQRAEQRCEDeJb3/oWLr300o3ejaFQ91mVUrdorS+ve73ITQVBEARBEARBEIQcCRIFQRAEQdi2/Je/+Qae/pYvbvRuCIIgjBRDDxKVUk9WSi0ppT6S/f/zlVKpUmrO+u+XrdfvUUp9Rik1r5R6WCn1ysr7vTL7/bxS6rNKqT3D/kyCIAiCIGxOrrn3OGaX4o3eDUEQhJFiIzKJfwngG5XfHdVaT1r//W3l9T0AFwD4RQDvUUp9HwBkP98H4Jeyvy8AePd6fwBBEARBELYW29GjQRAEoYmhBolKqZ8HMA3gGsfXTwB4OYA3a63ntNZfA/CPMEEhYILGf9JaX6+1ngPwZgA/q5SaOvd7LwiCIAjCVmWpn270LgiCIIwMQwsSlVI7ALwVwG/U/Pl8pdRjSqmDSql3ZMEhADwFQKy1vt967e0AqNvl92X/DwDQWj8Ik3V8Ss32r1RK7VdK7T9x4sQ5+ESCIAiCIGwVphd7G70LgiAII8MwM4l/AOCDWuvDld/fC+AyAI8D8KMAngXg7dnfJgGcrbx+BsCU9feZAX/P0Vq/X2t9udb68vPOO8/7QwiCIAiCsPU4M9/f6F0QBGGbMT09jXe/269S7p3vfCcWFhbO8R4VDCVIVEpdBuBFAN5R/ZvW+pjW+h6tdaq1Pgjgv8NITAFgDsCOypAdAGYd/y4IgiAIgrAqkkkUBGHYjHKQGK3bO5d5PoCLATyilAJMBjBUSn2v1voHKq/VKILX+wFESqkna60PZL97BoC7s3/fnf0/AEAp9UQAnWycIAiCIAjCQAIFpBqYWZBMoiAIw+VNb3oTHnzwQVx22WX4sR/7MZx//vn4+7//eywvL+NnfuZn8Pu///uYn5/HFVdcgcOHDyNJErz5zW/GY489hqNHj+IFL3gB9u3bh2uvvfac79uwgsT3A/iE9f+/CRM0/ppS6gUAvg3gEQAXAXgbgM8BgNZ6Xin1aQBvVUr9XzCy1J8C8O+z9/kogBuVUj8M4FaYmsdPa60lkygIgiAIwqpMtCPMLseYXpQgURC2Nf/yJuDYnef2Pb/j6cBL39b457e97W246667cNttt+Hqq6/GVVddhZtvvhlaa/zkT/4krr/+epw4cQIXXnghPv/5zwMAZmZmsHPnTrz97W/Htddei3379p3bfc4YitxUa72QyUqPaa2PwchEl7TWJwA8E8ANAOazn3cC+L+t4a8FMAbgOICPA/g1rfXd2fveDeBXYYLF4zC1iK8dxmcSBEEQBGHzE4UKALDUTzZ4TwRB2M5cffXVuPrqq/HMZz4TP/ADP4B7770XBw4cwNOf/nR86Utfwhvf+EZ89atfxc6dO4eyP8PKJJbQWr/F+vfbURjV1L32NICfHvD3jwH42LncP0EQBEEQtgdZGQx6sbTAEIRtzYCM3zDQWuO3fuu38JrXvGbF32699VZ84QtfwO/8zu/ghS98IX73d3933fdnqH0SBUEQBEEQRonAxIhYliBREIQhMzU1hdlZUyX34he/GB/60IcwNzcHADhy5AiOHz+Oo0ePYnx8HK961avwhje8AbfeeuuKsevBhmQSBUEQBEEQRoFUm5+SSRQEYdjs3bsXz3ve8/C0pz0NL33pS/HKV74Sz33ucwEAk5OT+MhHPoIHHngAb3jDGxAEAVqtFt7znvcAAK688kq85CUvwYUXXripjWsEQRAEQRBGjn5igsNeIkGiIAjD52MfK1fNvf71ry/9/5Oe9CS8+MUvXjHuda97HV73utet236J3FQQBEEQhG1LHiRKJlEQBCFHgkRBEARBELYtcWL0plKTKAiCUCBBoiAIgiAI2xKtNeKsKFEyiYIgCAUSJAqCIAiCsC3pZ1lEAFiOpU+iIGxHtNarv2iT4/MZJUgUBEEQBGFb0rfMaiSTKAjbj263i1OnTm3pQFFrjVOnTqHb7bLGibupIAiCIAjbktjKJIq7qSBsPy666CIcPnwYJ06c2Ohd4bF0FujPA1OPc3p5t9vFRRddxNqEBImCIAiCIGxL+qlkEgVhO9NqtXDJJZds9G7wectO8/P3pgGl1mUTIjcVBEEQBGFbInJTQRA2Ncuz6/bWEiQKgiAIgrAtEbmpIAibmvn1k8lKkCgIgiAIwrakJ5lEQRA2I91d5ufCqXXbhASJgiAIgiBsSyiTGAUKyxIkCoKwWRjLgsT5k+u2CQkSBUEQBEHYllBN4ng7lEyiIAibh7Hd5ueCBImCIAiCIAjnFAoSJzuRZBIFQdg8UJAomURBEARBEIRzS5wauel4J0IvTlhjj04vYn45Xo/dEgRBGEzYNj/7i+u2CQkSBUEQBEHYllBN4ng7ZLub/vu3/Rt+4QM3rcduCYIgDCbNFrXipXXbhASJgiAIgiBsS1JtgsRu5FeTeMfhmXO9S4IgCKujKUhcXrdNSJAoCIIgCMK2JMnkpp1WgFQDaapXGVEeJwiCsCGkmdRdMomCIAiCIAjnliTLJHaiEADQT92yieKEKgjChkL3KskkCoIgCIIgnFtSK5MIFDWKq7HU55ncCIIg1LHUT3DVLYehNVOdMIRMYrRu7ywIgiAIgjDC5HLTiBkkMp1QBUEQ6nj3dQ/iXdccwHg7xMue/jj3gVKTKAiCIAiCsD6knnLT5b7ITQVBWDvLmSrh4Ml53kCpSRQEQRAEoY5/vesYzsz3Nno3NjXU9UIyiYIgbAT7JjsAgJNzzIxg6plJnH4EWDjt9FIJEgVBEARhk3F2qY9f/cgt+JW/vnmjd2VTkxvXZDWJfcdeiUuSSRQE4Rywa7wFADg5x1zw8+2T+M6nA+/8fqeXSpAoCIIgCJsMynjdeUT69K2F3Lgmk5vGjq0tlsW4RhCEc8jJWWZGkGoSEw81SW/W6WUSJAqCIAjCJiPOMl7Srq+gn6S4/zG3yQ+x0rjGMZMoLTAEQTgHUF00X24qNYmCIAiCIFToOQYz24m3f+l+/B/vuJ5lAFENEvvSAkMQhCFCt/JF7j3FtyaRgQSJgiAIgrDJcDVY2U7cc/QsAODgyTnnMVST2G2R3NTR3VQyiYIgnAPoHpRwZSG+NYkMJEgUBEEQhE2GazCzndgz0QYAnJ7vO4+RTKIgCBsJ1UW71kPnSJ9EQRAEQRCq9OJiQsFegd6i7B43QeL0gruRQ94nkTKJjjJe27gmleMvCIIndP/mZxKlJlEQBEEQhAp2JnFZevYBAHZnVvKnGb0jVxjXOE7U7BYYUh8qCIIv6VrlpkkPWCdliQSJgiAIgrDJsPv5LUvPPgBAKwv0zjAyiTQxo5pE1z6JdmAux18QBF+8M4naWhxMHCWnzGBSgkRBEARB2GTYtXOSyTLQJIuTSczlpnkLDLeJWi+WTK4gCGuHjGvYdeapdd9xlZym7vXagASJgiAIgrDpsDNePXHaBFDUBi4xMnt0GAu5qdtYW5bK2Z4gCIJN6l2TmADRmPl34hj8ub4uQ4JEQRAEQdhk2BkvyWQZKHBzlYwCdiaR5KZuEzV7QtcXp1lBEDyh25WXcU2LgkRH9QSZ3TgiQaIgCIIgbDJsian07DNQwMfJrObGNS3/TKL0rBQEwReSm6aa6ZSsE6A1bv7t2gZDgkRBEARB2NrYgckw5KZxkmKxN9oZSwr4lhiZVRrTDnl9EkuZRKkJFQTBEzswZNWXlzKJjjJSO0jUq9/rJEgUBEEQhE1Gf8iZxNd/4jZc+rv/uu7bWQu0Is+pEUy1hlJAm2lcYweJ7CbYgiAIGbFPkEiKB67c1A4mHbKKEiQKgiAIwiZj2MY1n7/zUQDAqTlHWdMGQCvynBrNJNUIlUIUKAC+clPJJAqC4EeqPVQhFOCxaxKtINFBoipBoiAIgiBsMvpDlpueP9UBANz/2Ny6b8uX2MfdVGsEgULElpsW23AdI9Rz6PQCrr33+EbvhiBsCLYqwfleTj0S2UGi3Vtx9TESJAqCsClZ7CV455fvF2dHYVtiZ7yGITd94nkTAIADx2fXfVu+FC0w3O8JaZZJbIVZJtExK1jKJIq76Zr4lb++Gf/5b77B+t6Gzen5Hv7y2gf4DpSCsApeQWKeScyMa3zkppJJFARhq/I3NzyEd375AP72hoc2elcEYejYk4lesv6T670TJpN4cs69Uf2woZpETtAcpxphoBAFQf7/LqTibnrOoMzvPY+e3eA9aeZPrr4Pf/zF+/Clex7b6F0Rthi23NTZBCutZBJjD7lpIkGiIAhbFDKaODq9tMF7IgjDJ/ZZfV7T9sw2RjnbQ/OrXpw6W8mnWZBImUTXSVos7qbnjEsftwMAcOfhmQ3ek2a6WR/Nh0/Nb/CeCFsNO5PovMBVDRJ9+iQ6BJYSJAqCsCnZN9kGAJxgGmn8fw+cxB/88z3rsUuCMDTiIbubUrZslNtgpB6TrUSbIFEphTBQ4m66AZyX1bsenV5kjbv67mO4+eDp9dilFVy4qwsAOMLcR0FYjZJxjeuCU16TSHJTx3lQYgWJkkkUBGGrQn3NTszygsRf/Kuv44NfOzjSGRFBWI3esPskZoHQ4ghfN3EpSHTbzyQFAmWyiFGgWJlEbvZRqKdwpeUdxys/fAuueN+N67FLKyD32yNnJEgUzi1rq0nk9km0axIlkygIwhaF6o9OMoPEnWMtAMDhITzse3GKV37gJtz6yJl135awvRh6JnETyE3tFXlXh1MjNzX/boUBqyaRJIhiZrI2fGpJhw2dF6fmeTW5n7rlMH77M3euxy4JWwR7jYlfk8g0rrHlpunqgaUEiYIgbEpoYnaSKTd93E4jGzp0ZuGc71OVgyfnccODp/DGq+5Y920J24t+kqLbMo/wYUyuqc3DKAeJiU8mURt3UwBQqhxoDiJONTotEySKcc3aSPJM4uieW3T+a8fzg/hv/3A7Pvb1R9Zjl4QtglefxGoLDAenUgAVuakEiYIgbFFoYsHtUZYHiafXP0ikDEXCnFgIwmr0E412GKAdBkORmyabQG6aeGYSg0xKGAbK2fAmSXUepPelBcaaiD3lpsOEMve+SeNRXlwRNhY/uWk1k+gqN43r/92ABImCIGxK6MbKlXrtHjeGN4/OrL8rKu2a68RTEFzpJylaYYB2NJwgkSbJXOOaWx4+jW+fmFuPXVqBfZ25TsrJuAYAQqWcg4A4TdGVTOI5Ia9J9AykuNk9H/qezxuCq3gZJp++9TAuftPnMb+8etAgnHvsxa2+6/lFQWLUzd7E8fyyJaYSJAqCsFUhiQa3kTWtWg/jgUiTd8kkCueaONFohQE6UTAUmV4hN+Vdby9/z4340T/9ynrs0gpinyAxteWmyvlaTVOgk7XhEeOatUH3cN9M4jCy27RI4uw+mUELEMeZtfPD5P3XfxsA8JC099gQ0lQX95L1Nq6xXydyU0EQtio0IeQu7CZ5kLj+EwuavIsaTTjX9NM06+8XDCVIoetmlGVzdibRVYaealtu6p6VKmUSmTehmQXHCd02gU7fZeYCBDE9hONJ3zE3a7973BilcV24fZhZ7OMFf3Id7j7K6zdJZm5yXm4MiRUkOi96U01i1AFUwDCuse7fkkkUBGGr4ivhpAn1Qm/9M4m0Mi7uh8K5hprAR6F7b7+1QHV3m6Um0TVwtjOJgVLO16pdkxgzgvTbD03jGW+9Gp+/41HnMVudJM8kup9bdjA/s7j+wQ2dT9wgcVdW3jCMTOI3Dp7GwZPz+JMv3scaRyUY00M4jsJKUq3zBaee672cArwgAsK2u3FNSW4qmURBELYovoFXLjcdQlPwZZGbCutEolFkEoewCEGBKCdIHHYtbpLqvH+qqywwSZFnEgNWTaJGJ2uBwTHPuvfYWQDAtfcddx6z1aHDx5Gb2vf/YQSJdP5zpd0TbXOODKO8YaobAQBml3jb2pVlO08z23sI54Yk1ei0uHLT7HUqBMKOp9xUMomCIGxRfJMnvjWJj5xawPGzPLMbWnUehrGCsL1ItUaggFaoWJksX2gbHLnp0pBbGpgVeV6dYKqLPolB4B7YJqlGFCiEgWLVRbczWdkwzIY2C4lHTaIdmA+zTyj3e6MFCF8pLYdWdm5xg8Qdmdx0lM11tjKJRt5z1flekmcSQyBsefZJlCBREIQtSmLdTDlZRZrscoPEH/nja/GD/+sa1hiRmwrrRZpqBEohCoZTkxjnNYmpcyA1jLpfmzgpZFs+clPjbsoIEkOFKODJfVuhn9nNLQ+fxus+/s0t6ZScZ+kYCxB2ptjXFZUDBaVc45rcuXUICyb0nJld8susSpC4MaR2JtH1XkI1iUFo5KbO7qZ2kChyU0EQtij2s5qzukuT3YUhyE17EiQK60SS1SS2QsWSOx6fXcJv/sPt7FYWJedQxwkvdxtrxa7t8TGuCZRyViiY4x9kxkHuxz/KtsXNSL3mw7fgn24/uiUn8hSYczKC9vHjBm4+0OJiP9GsQL2f8D+bL7TwwM0k0riZRWmBsREkJek6N5MYAWHk1ydR3E0FQdiq2Cv+rCBxqMY1mbupxIjCOcbITRWiMGDJHd/xpQO46pbD+OxtR1jbsycvrtfbQn+4k85Sg3sf45rAPZMYpxqhgjEOYhz/nmdGigxQTm3BurE45QdSPucjMbccs0sA7EUSzncXe5jy+JJnEpkqGcrk9oYsDxcMiS6k6+5BYvZdqdAEiqnjdyfupoIgbAdsiddy4v5wW2sLDE5NFtWhSCZRONeUMomx+/k1lmXa5pjZhiTVGM9MOJyDxCFnEhONIpPouI9xdhwBIFC8msQwCDK5r/vxp2PHzSztGhteK4Vh4yPJ9A0Spxd6eNrvfRHvuuYB9x1E5XnjoVwZRk2ir8uxb72lcG5IrXu583dIwV4QmUBRuwaJUpMoCMI2IPHMJPYtl0af4O3RGXfzGlpxFndT4VyTaJP5Mu6m7uf/JDkgemQbKEh0nSTbctNhmDel6epy05mFfqkeOS0FicyaxHxix5dJsvvtTZhMIjdIvPngadz07VOsMcOGAql+op3vyXaQyAna5rLv/sM3PczYw7KhCE+5Mny5KX+c3z7e8vAZfO3ASa9tCgWJzoLEIHDPUuc1iYF/JlHkpoIgbFXsFX/OQ9uehPhITh9jOJzS6vFWNJsQNhatM7kj0zhlqmOCRG4msZ+mGG+bsa6TUTuTOJS6sdTuN7Zye8txgme89Wr8n3/zjfx3NEEDqE+i+7bCMOtTybi+SdLn25Sd22/vivfdiJ9//02sMcPGvie7ZhN7sd/9n9YATs/zjqO96MCSmybDl5v6juMGiS9/zw141Qe/7rVNoYBMyFpRwMgkZvdvFRrzGtcgUYvcVBCEbUApk8h4aNtZFx9jDc6YXiaDjVP3FXJBcCGhiUXIczfNyu8wt+zugJimGlqjkJs6B4nFJGSpt/5BYppqdKPmmsQv3fMYAODrB0+XxgTkbhoo54xnkqYIPdxle7kBCu94kCvq8VleG57NQClIdJRlluSmnPt/9lru7dg3k9j3DMB88O2XSsdE5KYbA0neI5+axCACVMCUmyrr34ORIFEQhE1Jcg4yiT7ZDU4zcXvCM4yVZGH7kKS6kJsyzmOarM4x5Ka0sDLGrEm0F1SG0TMx0UVbirpjctZyb6TG4eVMors03J7YcRaAcrkp895Dn4ebAd4M+NyTfeWmnKxveXtre95waxJnFvus+ncAJdkzR71SSGLlGbURFPXljPpmuwUGV24aROY/kZsKgrBV8Q0S40R729ADPOOaci8vWaUVzh2pNq6cfLkj3yafJpETTLmpvaAyjHYYaSm7uvKY2L1V7zl6Nvsd8kyicTd131YUGHdZH+MaV2MdYpi1bcPGDsxdzy373sqrSfc7fnHit+DX95SbPuP3r8YV77uRNWbtDqx+x2YY9cZbGbqXm3ZGHpnEIHTKCppxcTamJX0SBUHYungHiWmaZ0RcJ3f2Q9A3kziMTIqwfbBXnzk1iTR55ARtNPkcYxrX2Nfo0DKJmZlM3T3Bvt7vPjoDwDRip7YZgVLOGRiqSWwxW2Ask9yUmdGi13OzS5sBe+HO9Z7cL7mNMs5laxwnuIlTv8XFtQT3dxyeYb2+5MDKWJSk69tXbroVFy6GSele7novyVtgBEx308QElWHLKfsoQaIgCJuSUh0Ly0igcGl0XbWzJyRLjIevPXnhjBOE1SjcTRUra5BnsjzMN7gtMOxrdBiZxDgxEtx2VC/Bpf2Z6ka451GTSVzqJ3lbkJDpbhoq09vMR27KzWhR5nHJc0I+yvVmqS4Mh1ydYu1MLHeRkOD1ZeS3gLG3N4zjX/5s/MDZN9ibZzolC2XS7F4ehUHJkGnwoOyYk3TUNbjUWZAYhCI3FQRh6+LbAiNOde7S6Dq5th++nJX8cnC59TIAwsZRuJsGrBYMNHnsMbKPlGko3E0dAynPa9SXQrZVHyTS5/j+i3bi3kdnARhlAAUoSrk7RFJmybcmkS03JUmg533Ex8l5WBhXWjMd9alJ9GmBBPDuyXGSYiJzBmYtSg7RuMa3l2MuifU8tzj1zcJKzIIT0OaoEko1iUGz3HTuBHD7JwtbX5GbCoKwHfBtgREnKbvhtu/EoiS3kyBROIeQu2nEacAMv0xW3zOTaF+jw5gkk2wrCtXAmsQnnTeJQ2cWoLXGUr+Qnxt309W3Q58rDAIEilcTSseSU8dov943kzg/hEyuL2mq0Ykok+h2XEo1iUwlCcFRd5jFRX4mnc6nYZjCeGcSSW7qWa/JqW8WVkImZBHHhMzOJA6Sm978fuAzVwI3vTsbl5jXhy1xNxUEYfTRWuNPr74Pdx3h1V/41iT27Ye9aybReh1r9Tn1m5AI24s/+eJ9+B//fA9rDE0s2iGjATP8gsQkzyTyZNqx5zXqS6oLx9e6Y0L78117xrHQS3B6vmcyiVFRk+jibkrvE2V9EjlOkra7Ka8mbm3ZnlGWBMapRqfV3LqkDgqax1ohq/6u760KSTFJmUTnxUU/aauvEYxvWQSdz/3Er1XTKJ9bm4GScY2z3JRqEsndtOE76M2Zn49kJkh5JjEEEgkSBUEYcZbjFH/+bw/gP72X5+SWpBqtMDMSYE541zLZ5RjX2PVNYlwjNPEX1z6Av/raQZzJ2jK44O1uSpksD4ketwXGRmQSoyxwrvt8JvsKPH7POADg2yfnAQDd7HMZd9PVjyVNpAOl2JlE+17FykDGfNmiHWyM8kTe9LfkmYnRvXuiE3lnElmtMxKrTMFxnP39cgJZ3566vu2dYk/pLiFy07VRaoHBNa6h+sImE5o50xsWi9PFuCAUuakgCJsDWs3lSl0Sy+zA9cGmtVkpHcvH8SYkAH+FtpNlKXwzAML24dZHzji/NpdWBkEma3OU6eWZLPeJKE0+qQWGa01WqSYxGYbczm6BUZ9JjIIAF+0eAwA8cNysslOAEii3/nKU1aOaRFezG6B8r2JJfj0yiXaQMr88uvefONWW4zTPFGm8HbLLDQieKiTFRIf3vKFtTbRDLMeJ8zXq28ux1KaD85zydIolJEhcG7YCwvmeUO2TqBvGzR03PxdOF+PI3VSMawRBGHU4mTmbcrDHW9nlTkjshygrk5jq3OxA5KZCE1mbPtY5Qo547Yhkem4Ty+U1yE3JXMQ1Czl0uWm+Il+f3TZb/koAACAASURBVIuTFGGg8LidJkh8iDKJJXdTl+2Yn2Fg3E05NaF29spZWobiHsSpSbSP+ShP5BPLuMbVuMM3SLRbj3BNyMbyTKLbuNzwqRMh1e7BX6m/LqcnY+oX7NnZK86CKyH19muDnJJbnPryUk3iIOMayiSeKcbljqjSAkMQhBGHrPG5dRip9qkt9KutKtWWeK4+y4NUaIL6r3Emdmnubkr95dzOZZ+aRMqU5Zl7x7FDl5vqQrZVN9mNU40oVNg11kKggCPTiwCAsbaZCinl5lRKk+oo9G+BAfDUEz4OlH3PrJkvWmvcd2yWPS7RhdzUVd1RLFyEzHYP1jFhnJNpqjHOPP/pecOtZbQDBU4GOPG83nwkuL01SlSFgsJwi1FfXqpJHCA3na0JEvM6RskkCoIw4vhmEuOkkJu6TpxolXqsxast8TUESFNLoicPUqGBKMgkyYxzpHA3zTIwTFdIn0wiN3OfpEWWdDjGNWZ7g/okRoFCECjsHm/jaBYkUoASBnCSjtLCVrcVGrkvR25q7ZePw6xvJtH3PsvhM988ghe/83pce+9x5zFUApD3SXTMJNL3NNYKvdo9AHwTMlKguEo5i7pJ5nPK2sc5hnOor1FOkupckeAacNvnljzb1kaqTX1zOwwYmUSSm2ZZwTp30zQBlmeAqAvEi0B/MatJjERuKgjC5oAe1Ipmk46k2kyS21HgXCPlm0m0Jy6cyZbJJJLcVDKJQj2UDeScI2lKdSxZJtFxcl1kEt3rGCkIakUBAuV+3aS6kIQPYyKpS30Sa+SmqUaYBeR7Jto4Or0EwDKuUW71hTSR7rZCBMxMov1aTpBIUsUk1c59Me1jvjiEFhgHshrPex496zyGDgfX3dSWQPOCbc92RtrUlyvF6a9bqeV1XZS0a0kZ/S1LGcF1d271M8kRVmIyieY54FWTqMJ6uWmSGaFNfYf5uThdMa4Rd1NBEEacxZ65KXLlpiTR6DRIy+qo1iS6mnfQA7EVKubEoghIpSbR8PCpeQmYK4QhyU0Zq/9WQATw5aZmjNv5n/cFVM1SzjriNC2Mm4bkbhoo1TjZShKdB+S7J9o4djYLEsm4xjHgo3vWWCtExAwS7Yk8K0i0gxsPSeAwMom0IMA1hAEKKbPrOZlYEmiO0YuvuQvVu7YZ5z/15eTLTf2ydLGv3NRy/HaWm9qyackkrolE230SGTWJKjDSiSAsCqVLb5wFiZMXmJ+LpwvjmqAhsKwgQaIgCBuKt9yUHtoRb9IKFJMZd+Makg1FvCAxTdEKA7TDQFpgwEy0/sMfX4fXfPiWjd6VkSKvSWTZ5Jughsa6ypRKxinMrA1db64TySQFojBgXaNrgcx8muoE6Z4BAHsn2vnvx6xMosta1VKeSQxMb0VmJrGQ4PrJVF3vQcOuSSTzGU7Wkua2RQsMXr1rJ2JI9FANpHiZRO75TxP+8TxIdP3e/DKCcZJighnsme2leZDoLFuXIPGckWbGNa5ydzMoMRlEoDngIzlpHiSeKYxrRlVuqpR6slJqSSn1Eet3r1RKPayUmldKfVYptcf62x6l1Geyvz2slHpl5f0axwqCMPr4Bomp9ggSK/3euC6NE21eT64kNRPrTiuQ7BmKie5X7j+xwXsyWtC8gG1cE4CdSbRf5xwk6qIvYLvBpn16oZe3lMj3MZv8dMLAy1qfg873McsI1ky2kjRFlGVt91hBIgU3oYJTfSEFQV6ZxDRlL1IBJgDgZmV7Q5ab5plEjpFMnknk1dbSoetEIdMAiF9frrWGzurGOpG7uUhhXMN14fYzN4pTzQ5IgbJTuLMiQYxrzhm0ABFyFpx0VlsImGCxriZxRSbxjGVcM7py078E8A36H6XU9wF4H4BfAnABgAUA7668vpf97RcBvCcb4zJWEIQRZ4ncTZnjyDa6zXho0ypdO+TVltgGBJwHYpKmCJVCtxWK3BRicNAELUJwjk+ayU0p6HGV3PnUEtktH5oWZa78u1vword/pfQ3mvx0WuufSaSPHygz2arrd2hnEi/ZN5H/vuiT6FaTSAtbVJPIkjt6TMgBE3BMMuubh21c08k+F8lxXbBdSgFOdjvNthk412gCfn0S7Ux6JwqdM/5Jbq7j727K6ndoyUa57VW4x9/XpVcoYy9ABEH9fasWqi0EmttZ1AaJqdUCY8SCRKXUzwOYBnCN9etfBPBPWuvrtdZzAN4M4GeVUlNKqQkALwfwZq31nNb6awD+ESYoHDh2WJ9JEIS14Z1JzLJ0vBqR4mHfYthNF4Y3ETNI1AhDhW4rYMmGtiqbZcX50OkFPP0tX1yRGVsv6LzkSZk1VBYQ2e+xGmlmwAG4139RZsPYtNcHRd8+aY7VNx85U9rHIDCLMuu9QJBamcSwIZMYJxqtzLjmPz3r8ZjqRHjy+ZO4aLfpm2gmaatva8kKEqPALbC094HbSoReO9nNgg3HwGHYQSKdi5xM4ooenIyaRLqPO9dxoTCFiQLlvJ90LuWLJEyZ9rinKyrAbWWRoh3yzKUAY3pVmLm5LjZJJvFcYM9JQlV/36qlFCQ2tMDI5abnm5+53DQEwmi05KZKqR0A3grgNyp/+j4At9P/aK0fhMkcPiX7L9Za32+9/vZszGpjBUHYBPjXJKZsuWk+kcwMb1xXW/0ziZncLgqlJhH+9v/D5ot3H8PsUoyPfv3hoWwv74HH7NsWZu0cAPcgMU5Sttw61ZWJTM22Ln+CqfT4xkOn89+ZlhMBOi3edeMD7aNSymQEazZnZxJ3jrdw3Ruejy+8/ofzNiKBGlwTdHR6EX/wz/fkjenH2iHCQLEyWYmd7WHW0o0x20T41DGuBZrgLjGkrf6ZROSZdK5sNwp46g463CS37rkGlxWjNFcJqG/dZD/RiMLAGKC4thJJTSYrb0EictOhYi9AhA0LcLWQbBRolpvGy+bn2C4jL12wjWtaI9cn8Q8AfFBrfbjy+0kAM5XfzQCYyv5W9VKmv602toRS6kql1H6l1P4TJ6QeRhBGBaqV0ZrncJpkJhW8lV3zM1QKrYZeanXQ6jO7JlHrbEISiNwU5cnELKP/17CZyjI2w9pHmkyy3U2DIpPoms1KUs02CbGvm6Z6P5oIn5zrlfYxUGBl+32hXQoyA4i6QNauSQSAvZOdvKYTQKPhDfHaj96KD37tIG552GRLu1Gw6pgqdr891yCdeglyW/fQMVdqODWJeUacaQgDFCUArkFKqk2WuhUEbLlvFJrWMa7bKibyYC1KJvlzg2cmY58X3PKGKFBoBcq5tjN3/GZmt0t9Ekd4wW/UsRcgmmTyOUduBW77uPm3XZPYmEnM7sVhBxjfUzauGSW5qVLqMgAvAvCOmj/PAdhR+d0OALOr/G21sSW01u/XWl+utb78vPPO430AQRDWDXuFm51JUTwpWyHtMO0sfNxN+4l2rhtIEmNt3Y3CdTfu2AyU2y+M7sRistMCAMwurb7Sula01kVNIqtPIgVEzEyiFaRwZXNBgIH1fgBwZsEKEhPbEZJ3/p+YXWYtGjnJTa1MYh1KKQw6jLcdmgZgMoqACYyjhm01kaQpO2tGGccJZisF+t6mOtFQ5Ka0PU5ASsFMECi0gsC5LRGpNFphgCR1vyf3kxStwGTbONsCkPfl5dbAj7eZ7qZraGURhbwFUNrHDlPuW5LEygKoN/YCRNN9K+cDLwA++6vm3yQbBVZ3Nw1bwNjuirtpBCQjEiQCeD6AiwE8opQ6BuA3AbxcKXUrgLsBPINeqJR6IoAOgPuz/yKl1JOt93pGNgarjBUEAcCdh2fYPQiHiT154fXXMo2xfVZ2wyDg9XuruKI6T67zTKIY1wCbxzad4ohhZBLtua1r/zuAMonI2yk4q5S0ZvekK8lNm9pLZNfEmYUisDaZRJ4jJGBqQp/9P7+M91//becxtnFN0BDIGvlrc5AYDjCuse+hD59aAGAMb1x7KxK2bNS9Kbt53Rjze6PAfbITse8/X7rnMRyfXWKNKWpreQZMAPXgZGT3UuotZ75PV3llnJhAqsmlt3YfS8Y1/OfNGLMmsdwnkRdwR4FCFLjXadI+diKe3NSupRPjGn+SpFiAoBY8qy54mBetLjfNM4ltK0hMTX/FEZObvh/AkwBclv33XgCfB/BiAB8F8BNKqR/OjGreCuDTWutZrfU8gE8DeKtSakIp9TwAPwXgw9n7No4d0ucShJHmhgdO4if+4mv42xse2uhdaaRsyc/IHKRmksx6aNuyoTBwlskULTD4GZggl5tKJrGXJNa/R3diQSv5wwgS7foyTiaRMimUGXOVm5oghdc2I58QUgDWkKUDTCsMIs0yG9w+iYfOmCDs2vuOO48pahL9M4mDahKnreD30ZkltKMg71PJChIT7R3s+daSTnZ5/V37SYpX/91+/ML7b3IeA/gZMNGhC/Nm4u6fzRjXZEEiw4QpCgNPuSmzT2jubsqUm9oOxMyFo4AbbGu/mlA6J8dboXONprAS+9yiBaxVlQn9hUomMQJ0ihVNXmuDRKtP4qjITbXWC1rrY/QfjEx0SWt9Qmt9N4BfhQn4jsPUE77WGv5aAGPZ3z4O4NeyMXAYKwjbmqMzZiX4jsPV0t3RwW4o7WrIAJSbG7Nlc5nhQeK82lpeyeesJEeBQqcVSpAIv0buGwFNwochN7UDDNdJpM4DIp67adWkghtsDGxUn32fp+fLNYnUpoblbuohfEita3twJrF52jMoK3h8drn0/3QvCDKJqqtaI7FrEpmZLG7rjNiSqXLkpvT+D56Ydx4DFOcgp0aQxihlen72HcfG2b2Vakpdg6J+otHKA1LHTLotN2UoUGjcONu4xs/dVFuOr67fAT0D2e6y1sLFKKtCRh06jtFqJmR2zeHybGFAAxQ/q3WJJblpVpNItYyBm9w0Yn2ac4TW+i2V//8YgI81vPY0gJ8e8F6NYwVhu9NmNl/eCEqZREZvpzSTm4bKPWizZXOuPdEA+4FobpnuTZHNym43ErkpsHnkpjRJOzuUTCI/SLSlXjSxcKnJ8jWpKGUSA4W6eWSRSeyXxgVMiZ4vhdy0CNxW7GOSIuw0T3tI7lVHVXo5s2g+Z2RN7GxTnCbiNGUHiXRsua0zKCMx2Ylw5Myi0xiAdx+u2x4ns2rfk1uhcl+4yO6t5EzrnElMKJPIWFystsBYd7mpX01ikmp0IrMAyv1s3pnEdjjSqpBRp7oAZ/+uxOyx4t9LZ4uMIGDko0AmObXub6VM4i7jbjp1QeZuGo2U3FQQhDXywj+9Du+65gBrTCcPEkc3i2WvmrrWlZhxmXGNT03iANlc07aAYkWYs5JM7qaj/B0Mi81iXEOGFq4T1rVgZ7Nd5aYl23RXiRKKyUeX2YKh3MurPiClie3ccpx/zySJbUchLyPi/MqCct1kfaASpzqXJ9YxyKn0+FmTSXzXLzwTAPLG9hSku2Ru0lQj1cjdZbkZKTIX4d7vuq2Qdb35TvppeyyXauuezMqAZdLhVkByU8dMIkmgmfWP9j46t5cgU5goRKA4clNPCbouDICcXWLpHIm4EnTzuu4Q2ttsZexza6AqZO6x4t/LsyZrqCy5KbBSPmoHieN7gHgRWJ4bPbmpIAhr58ET83j7l3ieTO1w9DOJJbkpoyaRshQst7ncpbFZNte0LYCfgaEaKDGuMdjHbZTPSQoOOa6VvvhkEm3b9IAhN61mErkOiIOuG/t304u9/Hdcsw/AL0gp9UlsqEmk/WlCDahJJLnpC7/nfNzwph/FVb/2XADlTOJqFFmbTCLpev/R1e+Nd98yQaL7uey7gEPb41w39rnFzYAFypabussrI7bcFPk+NvXgrN1W9jpzDbg7XNvnBeda0NosnLYi9xYYeQuSiFknm1iZxBG+l486SWVOAqD+/Fo8U/x7ecYEiXYLDGB1uSkALJzMjGuyFhirXKsSJArCFoYewCM9IfdssJ7qwgLdNeNjZ2CaZHODxo1xM4lajGuI47NLeOT0Qv7/nEnrsKHsNkc250viMSG0DZgo5nGZl6+sP3LNGpiflIGvCwLs7MqZeTM5IXMRbk0iyfIUVpdvEqU+iQPadAyqSRzkbnpybhljrRATnQgX7hrD93yH6b7FyeRWG8e7Zntyd2V2w/kiS8QJNtYcJHLkptaCRxS414mnWcBPEl9+cMmXZJo2Be6fzx7XablfA3RejLVCVnuJhCS4Ab9OP8qMU7jn1ng7kiBxDdjuvmGuSqg5nqUgkWoSs3sZBYtVh9OqcQ0RRMbdFFg1m7ghNYmCIAwHmogPK0j85DceQT/ReNVznuA8piQ35TSqz2RDYcOktWkMQBNJtzouoJhcjzObItvmCnGq83qY7ciL33F9qT3CKE8s6LpxlSOvBbu9AXeCxu2TWM1IcV2Bg6yXV924JNW59Jt6JcapRrelsl6m7osk9FrlHiM69UlcLZPYVMsIAGfme9gz0V7x+/z4OwQ3lCGiMgDXTGIuE/YMEsfaoXNACvhfm7Q9zgJQecGDUSeusxpByiS6SkDTwtxlftmt5rh6vbk+b2zDmxYjc1n0xeTJtFOSm4bumUQ7S9piuMvaC6dSk+hPXX157fllB4krahKbMokVuSlBfRKBItvYwPacrQjCJsO3zyE9OIc1IX/jp+7E73z2LtYY2ySBNbnIVk2b5G9aa9x88HTp2Ln0e6vdlsfkmpwkA6XyzA2nD95Www4QgRGvSbRq6tabYkU+dM6Ia11MPnO5qcM9wrffXt4nbsAkOU40zpvsACjaYJC5SKfFk5v6LGoVxjVFv7HqfTNO04F9Ege5m55e6GHv5Mog0dm2HkWGqBUGCBRDIukpd7eDy1S7n8/eNYmagkTeYh9gudIyArBAIV9048grw4AXtK0wPGOWKVB7g8S1l2P2uolOxFpcoWNiFiX5WdJWqNhS5vE2L5AVypSk/MpVblqtScxCuYFyUzuTGDbXMVaQIFEQNgH2M8n1AQUUN/JRNk3pJWmxss6ZXGQP+yCon1h8+tYjuOJ9N+Ifbz9ajHGQzdVuK3v45sYRDvtJ7x1lNYkAz4RgK1EntR3lIJEmWKle//20nSvZbqOlOhaG3NHTXTMKgsZJcpym2DdlgkRaEEh01gImNFI718UuryAx2yfqkwisDIqSZPU+iUD9otzp+R52j68MEgfa1lfIj2OY1cS5TuQ9jWuqmUtncxdPKXiRSeTV0QHFuez6eDMBf8CXm6aF3NSnTygnk5hYizlhoJwzx3kmsR3x3E01SXCD3Hxr1THZORgGASuTaEugOV4CQhl7TjJwwWnhNNAaB6CApWkgXgYic791k5tWMomOclMJEgVhE2CvCp5l9G7L5aYjbJoSp2ku43TtkQUU0rGo4eF7Ys4YTdxp9YgsisTNpMR10koGNO3QPZNoF6STm+F2zSQePrOw4nejvPpsT5LXez9tSWA/0U7nZGKvPrMyWVSj5tenj66bpkb1lEkkuWmSIjeXMttzDBI9FlNKNYkNxyROB7epGOQueHq+h701clOWcY0VbLcCvrlIKwwQetSNcWWqa61JdD2P7TEmk8io96Nzi5lJTK1MIru/LilQuBn4PJPIG8fN0qVUbxlwnFvNz9xd1ssUaXTv5aNOseBnLTjVfQeLZ4DxfUB3pwkYe3NAe9L8LZebVt1NKZNYlZuGIjcVhK2EfeOuyvYGjzM375GekMca41n/QU7LAbLXb5KW7R43K2VnKn3bgCIjwnloh9ZklxMkRoFCK8oK0rfpw/S+Y3MrfjfKEwv7+11vwyHbJRBwC6RSa2LHcTeljHtuwOTRJ85cNytfEycak50Q3VaAM/MUJKYIlXF25GzPT25aBLJBg2yLFnuayHtO1hzK0/M97K4JEn3cZSNPd2WqwfNxNwXcg3Tf1i9rMWEKVLMqpA4T7BVBOqedBTcgKpmLcBQoFaM0tpstN0hMC8dXbrAXBibD7dO7M041S+EkFKSlbLP5XWNN4vhuE+wtngZ680B7wvyt0d20B0CZv7fGgKhrfq9EbioIWwr74cKZtFJmrjfCctN+UjSXdq2jAIpMYpO0jAJPqo8CKiYJDHdTckXMg8Rk5fH8i387gN/69B24+eDpyrYUwoBpVJFqPHB8ZWC1WbnuvuPY0S37pI2ycY19HnImaV89cAKv/8Q3WduqTuQ5UuYwKKSVLvPWYmKXZfYcm6bb2Z6m2ipjJBVg93i7kJtWFldcM4R0zDnGQS6TrThJB7qb5sFlZdxSP8FCL6k1rqHMpMu1TRmCoiaOL3dshfXGQYPGceWm9jno0/PQbMv1Xmd+hllNlrNxTRbsUU0iJysYBp5yU2Zwn1avG+eg1PzstkJWVj3VyB1f2e1tlFmAcD+OabaP2bnFeHYLBSXjmkELTr05oD1lZKML1SCR5KaV7yDpmSwiOYCR5LQkN5VMoiBseuybBmfSSquro9xuoJekrCwKQe0lmqVl5rOftoJE+6HNcjfNahIHZRL/5Or78fGbD+GK992IfpKWJoQcSRoA/OW1D+BFb/8K7j121un1o843HjqN5z5pb+l3o5xJtIMnzqLML33wZnzutqOsjDGdp/k14GiKBBQSPYAnd+TKFlOHSXI/MaYwO7otzC5RCwyUM/CumcTsmHMWEkp9EhuCvSTVA41rKLisjiP5bL27aZC/92rQd21qEhlyUzuTGPGCS/u+5VOTyHre2EEio00QULibOgdg2f2fKzfNyxQYQbptLsLJdpaDy4C1SBgoE9xzTISSVENlxjXceldauHA9jnYmEeD1OBYK6koHas+veAmI2sD4XiuTSHJTunHVyE1D657VGjM/o7YxswGARDKJgrDpsSednJVFegAMw8rflzjR7P5fQDHha5KW0UR/ukZuynY3zbIkrSxrsFowe9O3T1UyiSSJctve/oeNk9mjM0tOrx915pYT7J3s4KcuuzD/3ShnEvul642/nwse1yjHudJe/We5myaWBJqTSbHkdkGDuQi1pJnsRpjLWgvEaZo1EqdMIk9uypkg0z4FypabVoLELLBoomkl/9ScCRLrjGsG1TFWia37T8QJGnR5Is9pXRIFQR5IubdgKN5/scdz16x7j9X2EciC+6DB2bFuXJ5JpHuy6/aKWkZ32a75mctNnWWjxbiIE1za/UUZ95+idzC/3jVgZiATK5AFRnvRb5SxnaOjQfOEuGfkouN7gPlTWWaxkkmsk5uGloJn/qT5ufe7RW4qCFsJezLBWdmlh+AIx4joW5lE1web1tr0hBrgCEYrqTOLVpBYmVy7PrTjrNYjbMhQAMDFe8fxI085DwBwx+GZFfbngHsmMWdI35tp17F+G1vqJxhrhXjnz12Gg3/4MgBwdt9bK4fPLLAmukDZQInjDEyqnoVl9zFxNUhk1Lty3U2LYCNgGXcUxjUmA9+cSQww2YkwtxRn4zIZGzeTmB1z7gQZKDelru5nqgf3XiwykOXfUyaxrgUGp0+lHaRHoXKW18drkKkGAdiBlP06TqBuP6e45xZ9b5wsHfUEBNxNz9JUI1TwkpsGWZlCqt1kuFXDJ86iQJDV8nKNa9hZ0pKUOXA+jlSCwZX7CmXq5Ka110CyXLiUnj0MQAOdLJMYNBjX2L0UAWA5M/E7/3utIFHkpoKw6Vmr3NS10J745zuO4rl/eI230QqrcXOS5vWDPi0AmhzBSO5kZ15dZHP120tzswl7+6XtJRr7Jts4f6qDgyfnV9imA7yay2HyxN/+Al79d7esy3trrbGYBYlKKSiqfRlSJvGH/ve1+JW/vpk1pl8yrnHfT1pEWOi5NekGyu6mgNtEPq2RKLn1SSyClDazcTZtp6mXIGX2J7sRZrNMopH2oTCucfzOKTjkmXaYn0o1N6XW2eS7CUoyVgPu0/MDMoke7qZhEBhXZm62R5HclKGAyBYEAEZNonXcfSS/Zlt8SSanLVGRNeO1T1qL3DQsLRQ6bMvKAHP6JOb9RaOA5SeQpOb8bwX8fod5nSaj3tUYKbmpa7YD/STFc/7XNfjCnY86j6m2SQEa7iXU8mLc6ndImURyN622wKgGia3s9XueaMlNJUgUzhHfevQs2+lvqZ/g7/cfWtcsxXbAfpj5GNckzEzR737ubjw6s8RyUrVhrT4nujCu8XBbJEf7Ort7oNx2ouo2594nsZy1qbuJx2mKVhDg4r0TePjUPMqZRPe6pY3iy996bF3et59oJGnxHQO8Vfy1QOf81zMzIVdKclPGJI2CkwVG5nJFJtHFuKbG3dStT2Ka72crDBjGNUUA3GQu0k81wlBhysokmuCyMHxyPZYUHLIaieeTrWJfq3NyrYtAsI6mmiAKEge2wHAK0ouaRE5GkD4HjeP1BISH3NRzUdJDblrIhHmN6qmdScQMgPM2EZnc1KnlTGlxsfw7m8NnFvCK99yAB0/MlV6T90lkyFvDQKHTCljHX5PjaxiwgmaAn6WOE53J1vk9jrcqZxf7OHZ2Cb/9mTudx9jGTU2LWwBMkBi2gZ3fVfyuXckkVo1rdFoEkADw6muAV3zIBIjSJ3HzsBwnePuX7mdLoobJ3HKMl/7ZV/Hrn7iNNe7PrjmA/37VHfji3eszAd0u+GYS7ZVLzkofTVg5Aan9sOXIxPpJionc3ZS/+tkUuNFEyg6Qy8Y1ylmGm2S1VQODxMRMWp6wdxwPnVqoZDvB+nz5e45wUOkK3dfI4AAAy3xjLfgev36q88DGL5PIWf2vGtes3GetNQ48Npufx7ZtfRHYrL6tUk1ixHNApHO4KQOfpBotkptWMokUpLjeu3K5KWuCbH4OcjdNtYZCc5SoGuo7z8z3EChg51hrxZh8YueQJbLb4nCUDBRcGgdKnkwyCoO1yU2ZLRi44+zWJWFDvWvTtuxyA86zw86AObnSljL3zQt+f/gv92L/w2fwtzc8lO8jUDiOskx5FNAJTZDo3HOyEgC7jin20V1umqQpwlCxs9TbAc68yXaqF4ndvAAAIABJREFUHliWkiybmsS93138Ls8kknFN5TtIkyKABIDzLwWe9nLz7yaJagUJEkeAq245jHddcwB//m8HNnpXGqFVomvvO84aR/2yaCVW8KNck8jIUlgPCk52j2ytZ5fcZXM+9Shaa8Spxpiv3NSSllVX/+Oa1fCytKn+Znzw5Dw+d9uR8ntVTHLqVvr6SYpWGOBxu8ZwYnY5f2iuJZM4DEnmemf5F7MH5ljLziQOR27qO3HpxymmOuac5FxvFLDNM+SmeYP7vHfhyu296VN34sfecT2uu+8EgKpxjXmNk9yxaoDC7C0HoNbdUWudT76nui0s9BIkqc7HdVru/UWB4l7iU5NY7pNY2U+4ZRKrl8Sp+R52j7drTW+Kid3q+1gyrmFMyNdiXBMo/kTetybRq0+ifS9vuCfXjssk0JxMOo0LAl4GMneqXqWX3R2HpwEY4zLA+r4V0900+2wdhroAoMxxJhtlupuyHb+1zg2wAKDnqErYytCx5CwsVheu7fcpEfeM3HTvE4vfVYPEWrlpiFpEbrp5oMnT0enFDd6TZmhVitvkmGu9LdRTCnhYWTr+yi5Q1EdRRsBtW5ZEz3Efaf/GmDba9PwzRhr1N1Z7f/LMRvYSCi7rbsav+quv4/WfuK20GkgP7UEmIfkkOQsuzmZtAErupswgkROg+OKbbZtfjnHF+27Etx4d3KYjDxLbxeOmHQ0pSPScuPSTFJNZX0fO9UYxBEcVssLdtGafb88mn7dkrrd0bnZbYeMiyaBtsWsS08IVtM7dkc6hVuZuCphrLk3LbQpcnx/0/pwaXrsFRl3GX2sNrYtsYR1NAffMYr82iwjAurY5mcQArUAxJIHIximWAUpSkQS6Zpd6npnEtbTACAKemViSOtRx1W0vLdcyuhyTUplCw/NmOU5w5IyZwx3LXKntzxaxauCLmkTA/TvQuliU1NrtmNgLEFzH79A6t0a13n6Y+DxL6/wVagP13LjGrklcTW6alOWmNtIncfOwO6tzODXC2TbfGwDdQEbZ7n4z4Nvc2x7HChKzCSv1O3PBnpC7Bjc0Se22AijFr0kcZCZjP/wLt0VL2tQwIaHj+/Cphfx3caLzZs9A/cOgnxYtAIDCVTUKbHdTt89H81jOiqQv3IUf4u6jZ3HzwdN406fuGPg6CpjsTGLEmOiuBV/HvX6qMbmWTCJjcYWOw/gA4xp637uOGnc6krOOt0OvFgx5TaJzc+/CuKZuIlm4bwb5IsnccpxnG7iTXXp/15oxs4/mZylwsMbSP93cTcvbTFKdP8uqcIKUkrogZAR7ltw0DNzr9ijbljuAOh5/+16+3sY1tikMJ0hMMylzfv473k5IFdJmSHBL2Z6Gifyh0wtINXDJvgmcXYoRJ2lu5gR4uJta1w1ncSVQQCsa/NkOnV7I72vV+mZnx++kGmzLHM+nV2StcU31O0gTkxWMOub/f+6jwFNfZuSjgCU3rWYSk7JxjU1T24zqy5w+hbCu0DPr5NwIB4mezlV5kCg3kDVhT0BYxjWemUSqH+NkEu3veLWH2kIvxs0HT+cPllYYoBUEzm0RYsuAo2mSFtdmEldfNf2uPabhLJkPAMUkOQgUVIMkJ07SvCYLKIJE++bPvY6GkUnk9N20oaDmW8dmB75usb+yJpFjGrQW7IkLx1ihH6f598iqScy+50WPPondAS0w6Ly568gMtNZ5kDjWDlnupoldk8iobYutya6ZSFb/TtexlUlcik3rmMBqgcEMEgH3YEPnk616uSn9a7C7ab3hDX2OQWOcatusTG4UcMxFzM/8vsVoE2Fne5zdTS3Jc538uQkf4xp6Gd0n2XLTvBzLPbhky01pUTJsnsgfPGkWFZ/5+F0AgOnFfqkvJ8/d1ARtbWaQSMFlK2j+bEv9BD/8R9fijVeZxT27vQc7kxgWfSpFbuqXTKk6rgM1C07xsvlJQeKl/xH4hY8DnSnz/6ohk1itSbSh/okiNx19aOXm5NzyBu9JM76rRNzJwUZxz9GzI+3O5es2l5QykO4Pe8r6nGXUJPYZQeJrPnwLrnjfjTiSSaxbkTFXcP0OckewAatv9v5QbWVV2lG3avr4PeMAgG9bQaI9SQ5rbNrT1PRttDOJ05kzbGQ9SLk1ib5ZPt9tuE60gOK+tdq1vVRTkxgFakXLkvXAPgc4Tr2JZyaRAob5NfRJrLvX0uTj5FwPj51dxmLfnM/j7YjnbupZ20YmIWZs3YJM8b6TeSaxn0v7OIEsUH5/14nXaplE2/20iab9tDNCTWNcMp55C5KQmUmsyB2dM4nVINFxnO/iYppqlksvjQGKHoSua0d0TjY50jaRZK0zBjYur46xMolN19vcsrm/XLzP1IlNL/Ty8x/gZRITMq7JWse4LuSRc2shW1z5Glr8/OxtR/MxtH+cxTvqk9iWTGKOj3u5XafcqApJstgg7NS/SVNNok6Kv1URuenmga6tUyMcJPpKw0jSMcqZxIdOzuNl7/oq3vYv9270rjRSdjf1M67hBByUJZrzDBIHTSzSVOOrB04CAG7NaqxaAbNJtOUI1vTQtidEttsiUPS7qrup00Pv2NmlYnt2TVbNw76fZ1IKuZ2dSeTY5AOFNI5TD+eLfV6wDFcc7wmLVtaL4PRDWwv2+XSWIZ1OtXE3DZSf5JfTJ5HO2+6AyXWcaly022S47zoyU5ab5pPk1bdl18RxHGYp2ADqs8BF8BPkiySzS3Ge7eEaN9nv796mw7xOWZlEe3t2zWIT9KcVJljW56/S1G5j0D5GQYAo4PQ7LGSqfplEntzUvn9zyxu6TJOicgDsfo90MROr3V46WIFSR7Vur2579KzdO2nKh84s9PNWFgBYNYmU7cxl2kyDqaa2UADwwPG50v/bvVPDNSxASE2i3zzZNiFrziRmKsNoZQseM7gpkxg3y03JuEbkpqMPnRBDKNHxxneViO5Rrg+njYAmXBS4jCK+NYl2oMQJ1EmKw6lJLE8smm88C9aqKBlxtMIgc2RzfEBZNVCNmURrf+hzVFtn1Pc7NL+zHXmrtSXVB6n9vhNZkEjOvu0wGGibXvv5stcNRW5qbYMjL3adTNS5m3LqqtaCLYGioN0Fkol1opD1HdA1xmqBkZ23FEQ3yU2fduFOACYTYAfeTWYrdRSr1mDb5OeZxJqJZN7/L1ClRRKtzXa4xk2px31LW5MtOib2LcGlJrGp3iwdkElsCizrKGoSefLDct2YW0BqxvnVjfnWsqfp4Ix47RirJrFp4a4OWrjjupumWS9BTgbSPv5N2R56n32TJttzer6Xt7IAzLPKuU9itriSy00dF6pSvXoAbAeJcZKuqLd0D9LTkimSyE09axJtdVNDTbRzJnG1Fhg29HuRm44+rjKJKtfddxyv/rv953hv6ilnpDg1ceakXRrCZNcXuhFzMg2AWdG/4n03smoEfbGPP2d7sWN2rwrduDgtMFxrEhesQOTmrMl5txWixWkAXJNJrHNc3D1uVstOZfW+qdZQymQTlFppdQ8U56wdJNqZBDORqY4pVmNJbndk2mQid4y1WNImwK9PnC/2BMS35ckgqV1dTWK0ATWJZxlBIsnEuq2AlUmka9PnWutGNLleeVz6SYpd4y20QoXpxX5Rk9gK83PZ5TlS1L8ErJrENK0Y1zRkUaKgkFsfzc7/yU5UZNIZNZAEtyl7U20P7bJTTWJ1IT/rkzp4zOrHn2TIE50ok9fzguYwZJqLeMpN7UPOWVyM0zRv5cI5twBzT2bJTXVFyswMnBXjeysZnjXVwKflIHF6oVfKwLMyido8Z3K5qcP9pAj2it6ddZ/txGyhWDs13ysFKWqVBYhvPXoW33zELOyuyFKPsFpsWPhkU0t1ymHDuZzXJHbr32SQ3LTRuMZNbtowWhgmvlLO//w334DWZmJiT8DWA/sG0E80Oo5nDhmRLDBqdIYN3Ug5k0gAeMs/3o39D5/BnUdm8OyL9ziPO3R6AbNLMb73wh3OY8p9EjkPbWtF3mPcepjkULYqChSOZlbh5+/oIAoVQ35VrH7SBLR6f+4lKXZPtLEcp3g0247d762uthAoJrzVTGIrk1EFNRkACm5bYYCpfJJs6i13jrXYNu30HQ8nk1h8FlYT4NJEXqMd1U+i6T3H2xXjmiFkEu37FjeTGDIziVrr/FhyJkx0/6EWIb2a7cWpcc7dOdbKP0fLamS9WgbmzHzPuAdbExJWn0RdTI4DZSbyWut8om3X2tEiCZ3/U90IIaNxOVA9t3gZKXuSXFeTOCCR2LjglKQ6X0yswpH70ne3c6xlMrmOk8pyvz1eU3bTOD4LEhk1qJ3INHJnLXhoq5UL814+qHdt0zgaY7bNk3IWGUGHbdXJTWuyzQCwN3Orn8mMa2yZNieTrhTy/qIu9yA7IzuoKbt9jz8xu1x211xlAeKlf/ZVAMBDb/vxXO4r7qYFSWW+1XTPsKm2gAFqgs08SGyQm+ZBYk0msakFhvRJ3Dz4yq7oYTzNMGTwxZ68s1wCs9dyap2GDV3Y8wyJGFBkRjg90QDgh//oWrzsXV9ljbFXmzh1ar6ZRBrHkra6ZhKz4/WcJ+7Nf3fBVBetwL1Gim6sUWBL2VYGbu0wwHfs7OKxrL7Qdpvjyk1JMlqXBbMnyRN5JtFMknd0rUyia5CYfcfDqEm0Jw0+GTBg8CSmriaRIytbC3YQxDFhSlMzaeJkEntJmmdBfBqQU9ag7hyJkxRREGDHWAszC30s9pKSfHeQ4cRiL8Ez/+BL+Pn331S0Ugh4fRKNSYj5d90k2V60mWib858WZqa6LVabjurruPcEZUkC+e6m5fci4lQ3juPIfWcW+2iFCmOtkGXelE/kA54zMEkyI2a2J9F6oPy5eXtp/lx0DUjt3rUcuSM5eapcgsuQcioF6mjC6S9K/XXrxtF1S5n0hV5SMnziyYtpkcq9vjOpCTbqzknbefnUfG+Fu6bLeZykusgkZvvo64C/lXBVQDw6s4g3XnUHTs0tl6XMTRng1eSmJB2tbYHRZFwjLTA2Db6TpTxIXFz/1hmlGgWfIHGEM4m+x58ehkORm2bHf7zNq5GKU42JtrtkxR5nxjAyibFbQEo95J77pCJIPH9HJ5ObOsqo8prEZmlNPzHZl8ft7OLRGROw2W5zTe6mdKzPLPTzB6jJQCIft1JummUSgwCtMEC3FWBmsQ+lTCYlz2w4ThJ85ab7HzqNf9h/iDVmuVRL6hskNo/L5aZRuSZxOJnEYhssuanlLuh6DdjHwDUjDhTHkVbkmxYuoqDIJC70Yoy3CznHIMOJq+85BgC499jsykwioyWFLTcFqpmbIkgMMsk1XXM7uhG7JjHROpexudY62XLSukC2CCKb36NpkjbI3XSQtI948MQc/vBfvoX3fuVB7BxrQSkTuLnKP9P8ewvY5iKRR5BYcill3RP4NYnaDoCVapSuL8dJ6W8lVQgzcA6DQm7KMa4ZlIGk92lHATpRgMVesuK6YfVJtGpJ3eSm5udAAxQAi/00L8M4aWUSBzl+m/cvfn90ehFxYtxNWyNuTviV+0/gtR+9ZSjbsucvg87/6+47gU/uP4TXfvTW0gJQY3Z7NeOaphYYA+WmFCRKJnHk8a3NGWYmMS5lEt33ly4UTt+wYeMr9yUXt2F8NjrmY+2QffzHs/OE1e8q+944E4RyTeIA45oss/SsJ+xGGCjsHm+h2wozuSlXWtb80O4nKVphgAt2dPHY2eX8NeXawma5aZLqvE41tjKJZlx5Y7ZkCgCecoHpXzTVMQEiO5PoKTd9xXtvxBuuGtzcfuW21p5JHLRQsthP0ImCUp+5oQWJ1ufhBIk0uWNlEu0g0aMBOU22miTQURhgVx4kJiX5bhis7F0IAP9272N4/SduW7Ffud29ax2XZVxT10uQtk1/M0FiVpPYjQbK32q3l+p8Ec69BYYlN61xvKT50yB308aaxKS4/pvGDHqMv/pv9+N9X/m2eS8r4HNV5ayQm3ICIlX0zeN83+0ogFLcrHjhbspxzgWK9hJ158hDJ+fxg//zGvzyX38jb01Uctxl1GnSuDzbzMwkUgayTpJMrxlvh5jvxaXrJgrcg/siSHR/bhQOrM2tXABgqZfgot2mzdOp+eWycc0AhccpS1lz8OR8lqXGwJ6Mo8Avf+hmfOHOY0NdzAcGXzekUpq2FqJNltr8fcV5EmdO69yaxDQWuelWwD4hOFLOiaHKTYv94gQptAo8yn0S15pJ9JUEcmTGtI9jrZBVHB0nRSbRpyaRJzd1yyxRTeLeiTaefP4kLthhbnxRGDCMFezVz/Lviv0xze3Pn+ri+OwStNYlt7kgm1hXV67tc52uLdvdMKzNJGYTv+yh/qwn7AaAPNuzWk3ib3zyNnz06w/n/0/Hz6f9Ahf7/OVmqYtxzfu51EtKUlOAt/K/FnxrEknKxskk2tczZ8JELyXZVt19oZ+maGU1iYfPLOCf73g0zzIAJjtWd2792TUPlP7/WLZYEgVmsus6sS4b12T7XVfvl11bk90onwhNdfk1uXaQyDWuKfXOs4bqPNvZ/B5Bw34OzCQ6yE3tY0WLFT7GNZRtY7mbZgsC5hxhZI6VkSRzF45INu3TAqNp8eiT+w9hZrGP6+8/gZf+2Vdxer63MkjkyE0DW9rnMCY//s0OlPbnGG9Hudw0v244fTHTausYhtxUDXZ8XYoT7J1soxMFODnXK7fAGLB4R8oAwGQSE51lEkdcbkrJFK7nhA/VOv0mjmflL3GaluYy9H2vOE+SLEBfTW5avZ8PdDelTOLgMgwJEkcA+wHCWbUjg4wZptz0riMzuPfYWdaYkgGKh9x0VFeZAP8gkWQ1vpnEBY4pTPaQ6LZCZ0MAwHxvY1mg4pMl8qljXG0c9ZCb6ET47Zddije8+KkATE9N9zoWa2LR8NCOM7np7vEW+onGfFX+05A1sM+HIpOYWpPklavWFLjTxP3fXWKMjKjXYuPNP+PT3zyC//czd+X/P8zr5pzITQcEs4v9cv0cMMQWGNnxCxS3T6IZ02FkEn3v43QutcP6bE+aamhtjtnOsRbOZAsX9z02m7+m7pwEgGdctLP0/4dOLwAoZHPOQZu2g8RsP637UCH1ND8nLWezqW5k6gQ5hisluaN79gUwgWp9IGt+DjauMT+rC0eJ1rn5zsoxq2ekOlGAx+8ZK+1HKwycgwY7+xgGjGDb+t4irtwxMC0YuPcEqnd1fU7Zmawmx2m6vzzniXuwHKe4/dB05Zx0y4prba4l2hbt86r76GBcU7RlUhhrh0Zuqv36JCa63MrCRb5ebWVh3mfluMVMhbBvsoOTc8srAuCmXTx+tnBFnVnsW865oy03naz0LV5PSjWJA66b45nD7NxyXDauqblvmV9QkNiqf8O8BUZdTeJq7qYSJI48pZ5QjBsyGQRwT/7/+Odfw0veyTNOKWUSGZksGjfKmUT78wyy8q9CshpfGcM8oyddbpPfClnZ5lTrXJbGqklM+JlE+8Y2KPuS28C3I/zIU87DCy+9AEAmv2KsdAPZ6ltY/9Amuenu8ay58XyvMrFA/bi0yL6eXYzz15QnJCsDUvMZzGue9937Sn93zaQcs1xY6TP4wBlnf1fr8X0v9GqCROU+YV0LNLnaMdZiZfwpk2Iyibxz0myXH2xHDRO7vrUAsXO8qEn59Rc9Of93U8BH991PXPkcAMBDp+bz1wcDAnWtNZb6CU7OkUzb7pOIFftZbVS/Y6yYzNBiJqcmK041W7ZY7pNYY1xjTcaaaDLYsevfqrjUJJ6a6+HyJ5QdsM3xYEppA14WPl7lvtVEcf67O+Ca/TTncTvimJAh378mx+lUa+wca+GPX/EMAMaVczlO0c2yWIFiykaDASYhteOyfbSMa5rMy0huWhjX0OcziwIucwytTQ183qjeJUi0FmryGuCacYv9BN0oNPXNC/1KANz8jJpdLuaZ04t9JNQnccTlphMd8+wZSpDoWJOYB4lLcVnK3JQBpuCvKSvY5G6qk+JvVYLA/E3kpqNP1TbXFbLXHe2aRH6wMWzs5zRn4kqyGt9MIqdxeV6T2ApZN+M4KYJEbr8rwL9GzcW4ZrxTvuG1IkZzb1vH3zCx6yfG/GJXVqQ/vdBHkhSTpqY+WXGSYs9kYWMOIJPWNE+2cuOa7KE+1W3hZ5/5nXjjS74HQBEA1F07dtBvT8oBdxv5Kpxm7v6ZRLdxdS16ht0CY7ITsXq1kk1+txVg2fH6tu8jPsY1ZOe/olG9tQDxuJ1FTcqvv+gp+b+bDCfmlmM8cd8ELnv8LgQKuPvoWShl7iNNE/K7jszgkt/6Ar7nzf+Ky//Hl/N9oIzBoB6EFEa94Knn5X+j+yTH3THVhWxxLXLTsnFNto8DahKLe0L599Q4vI4mRQKRpBpnFnq4aLfJJP7c5Y8HALQC0/LHJWiw73dqgLlLFVvuGAXumcskLRxwOc8A6kPL6cFZ1CQ2Z8Tp+O/N7suPnF6A1oWT6GoB8D/sP2T6FtYpUBiZxCBAY30tffYgMEFi1bgmb9Xk8BXQokyxAOogN01rPltdTWI/Qbcd5iZY1QC4aQGCFkyVMs/SOCmkzIEaYblp1zz/h5NJdKtJpF6V870kv74GZanzbF9TVrCxJnFAJhEw2UTJJI4+9rXlI/fiBBs2HPmVffJzgpQ8kziiq0yA/2ejuQZnQm7DySTGudzU3QEUKNf2cDMpAK9GzX4gDTqP53sJ2lFQqqkCaNLkOCG0JDLNzY2zTGLWt+pMNkmwHfGq+w2Yh92eLGND10iSWK0zarI2VeMaAHj7z12GX3v+k/L9bKoJsq8NamafZxI9F1c4bVl826TYX9VqxjUrahIZRhNrwQ4SOec/NepmZRKtz8Ptk6gUCklmzfkImJrdJ+wdr32Ppkzi/HKMiU6EbivExfsmABRmSk0T8ruPzpT+f6mfYCkuAv26zJntLAoAL3/WRbjs8bvww08uMurcTCLXJdMONmqNayjbOeA9Gt1NrcWlKvTrpvN5eqGHVJsa7IN/+DL871d8PwDzfdr7PYi4EgC4LrD4ZhJNf0WzEM0KEtPClZNjQkbnv2qotyQZ63g7wng7xMEsIz6VBQCDsqsPHJ/DG666A//t728vOYCqmnOkibpsz8rnTbGQON6OsNAvG9c0tWoCjJHJV+4/seLz0vu5LDrZmfJBypWlfoqxVhEklrLUA2o7Z7Nn4eN3j2Nm0dSERtbC0TBqzH2YzBajh5FMca1JnLXm3o/NLqEVmqx9Y3Y7d91qqi9saoERN2cfARNASpA4+pTkph4BmK/c8aGT84xtuZ38K8eNvtzUviB9zF18g3ROWxDa1lg7dG7ADGQudaGxqeadW1kmyzNoWC2TONFeeePiGDnYxfZ1E0J6TRCo3O77zEIvzxABzdKyOE2xd9IUiJ+tySTWrbZWjWvqaKoJsoMXenjQ+/tKeDjZ7bLhkPs410xitacfwDNxWAt0Hk51I7aUljKJrvdXX0WILWWsM+Ao6l0VLt47UfseTe6m88tJLrd6aua4uzO7Hpom5NWs77GZJSz2iiCx7rqxJ5qA6Q362f/6PHz4v/y7/DWsmqxU543EnWvbaibJ57JPYtO1nWcfGz4buULuneyUspgc4xSSLfrUdtL3FTHlraFS/CBRm/PDtFdx/66Lhbv6oM02Dto72c7nLlRvNsi45vAZU4d777FZK5NoHX+Hj1c2Sqv/vu2eiGPtEAvLSSWT2xy4vfajt+CXP3Rznu3S2XGkhQSX761kXNMQbGit8xrxnWOtTDZqBcADgr3ZpRidKMD5Ux2cmaeaxCA/LsOoMfdhw2oSBzy7l/opdmRZ8Eenl7Cj28qv7er7ALDkpg0h26AWGE2BJQCEkchNNwOJZ5BCF7evA+JjViHyatjZBk5N3GYwrrEDE+6qKcDLCNqwahKzfey2QvQdH75AxUjA49zykR+GgVrV3ZRkQjatMHAOgJNVJoRA8aDdlWUFpxf6pZrEoGGSEKcaU5ltf55JTMu1jHWBJX2GJpomd/axml2Kc6MSwP+6IXMgF3yDG1d308V+uiLw4PR6WwsUAE92Il5WPDWTLU4m0ZYAsmoStbVwUVfvak1Qv2NHvQW6qpGpAtm1lk2SSO441aHsS/2EvLpQc3RmEctxmgf6dQ6geU3igDxdyJI7WplE5+NvfpZqEq3N2S0ymhjkbtqUSVwt2Ds1lwWJE+UeZ6ohIK2jdN8aYC5SJU7T3HCHW5NYGNcwFo60aYvQbqhlPDK9iFe85wbcdaTIVqcapYW7erlpEYDtm+zg7qPGeM+WmzYdx4dPmSBxoVfUfwVWKwuX478UJ1lLkGZTmFImsWVqEqvmOvS6KofPGOdQkiHSceS0TqrPdpZf0090pi4KsGuc5KZWAKwUtK73Zji71MdUt4Vd4ya4NPeWYuFoGIt+Pvh6d/hQqklsuG9RoL5vyixEH51Zyuu2m0pn/OWmqchNtwK+kzRqF+CbSfSdELq2KQCKVeBRziQmjpPdKnRMvOWmjIk8bavLbIFBK7DcFWEK1nhBovk53hrcNmB2qZ9PVG1YEqXK6iew8qFNMqZdY0UmsbRqXWPAASBvErxjrJXXYZRlW8GqxjV1NNUE2d/L3HJckS36PXhZctNUZ/LfwcF9FTsoGVS3t1QnNx2SPCmXm3Zb7ExiGBh3U9dJMn2eDqO2Fihne+rqBPN618D0mvyjl38/Pvdfn1d6TdPxnO/Feauk86e6+WvzbdWcj3R/+dirTRbw6PRSKRtcV+9EbzMgSWcyiYya47X0SRzobjooSMz+uMJcUOvcoXjlmPL2q5yaNxN/UicQTUqGOlZbpGqCMntAlklkZGXzFhiMBQ+ti/5+dZPk+46dxf6Hz+An/+JrpW3RMVQNQUpqZXL3ThTHcYc1uW7aTTJrml2K8wXuMODJTRetvqRNE3n7O5roRHlQavdJBFB7DVA/Wj7xAAAgAElEQVTd/PHZwrgsUGpgLXsVbZ3fTXJTUph0WyF2jLXQi1Ms9OKS3L1uHACcXYqxoxth51gbMws98xzP5L7DqjH3gfaKSjnWk8ShJpGeQ/uy+8HR6cXc6IuO/4ognYK/1eSm1XFp3Jx9BDK5qWQSRx5fuSmdkEueARinuXrfYYWkdlz22jjVIytH8K0lWqsDJUemmmRyI5+MYOgRJPq0wKDjONYOB46bXarPJHImMXUuddWHlNbIiv8DTHUj07i2krWpG2dcURV2dKPCuMaepKmVE8KqcU0dzZnE4jqcXeqXF428M4m8msQoyLJmDFWCcyaxl2CsVT4uISNgWAv9JEWgsoULj5rEFqOOznYg5sq07ex2o3FNNkm+4tmPxzMev6v0mtVqEgHgvGzlms63Jtkc3esfnzXcfuzsUqmutP66KTI0TXBqElNttcBwDmyQ78Mgd9NBxjWN7qaJbvxsTdlHgjKJeyqZRJ67piVJHrDAshwn+Mw3D+P+rD2KLdMMQ2Ym0VNuOqgmkXY71cU9syw3ba73o9e85Se/N//9ZIeClObjSJnEONWYph6VAc+4Zn45yTNSjXWr1jNirB1isZ9ktZ10/JvbIO3MggRqM0HjBmUfq7g8EymhMJYZ1wDA6fl+yZQNqA+cZ5diTI21sG+yjRNzy1jqp5jqrJ7J3WiKns9+i/k+2wKaF3jpOUT345nFfk0msTIol5uukkms1iSuKjdtAYlkEkceX7kpnYTcTCKt2nFkiyW5qUcLDGB0zWt8J+VrDRJZRjLZSjan1xWQyY3oYc90RQXM8XAN7ul14+3BEr3ZbEWySothm17n5NbkNgcAu8fbKzKJTXUbVJC/d7JTyH/SsrtpNZitM66p0lSTVZWblnqS+hrXMO4JJJMy5winJtExSKzrk9jgrHmu6SUpojBgZQSpl5pZWQ+gtaMDYnYIui338xgoZ1JqjWuyN44GLEAMcjedXBEkZtmUplrebN+N4U2AmcU+FvtJXiNYd93YAVoTUejublpqgeF4DZT7JK68J1TNdepokoAOqklsyj4Sp+Z7UAp5bXSxLV5NXEmS2XA+/uNtR/H/fPJ2/PKHbobWujSO426apshko9wFj2wxs+F5Y2//geNzKz9bg3TXDrYu2l2YN+Vy0wFmPpRJBICT2f28VKbQcEg+dcth/M5n78RiL8FiPy4WSRom8kZ9QO7WEfqJxtxSXMrk0uetkgeJWSaRFqlUlk10KfGptrKgfbLJg8SWHSQu5+dwMOCcPPv/s/feQbdlV33g74R775df6he6X7ekDpJaCSGU0BiQhMCWisIYCxFcDBhmbMAe12AzpgjWmMwUEpjgGRMNA7YZwxQYDLKEJIJQtpAsulupWy11fvm9L990zp4/9ll773POWjvc773PUs1bVV3f63vvvmffE/Zea/1+67f2Z9hYKnH3yTXje1Jwk1JvfNhGa85hsNnawjX88WhvPr1uSwc2CJGVWAmLtsCo5wG66U0k8fPCWrStJOGIxYJEos1MUmoLIzIk7LjPgyBx0ZpEWoBTFx9yRFID0jxPC6T0OJ1BHhZptSWxUs7dOQIaSfEGiRNLU3GNJOGjjtXaEP1IIqAdtKt7Wu67K1zDoYJlnuPs0WU8cW0fSilM57Vx0jlHnp6PgUe4JhcCfPe6bI3dupn0BAS1xQnRTX/yv3wcb3vgHAAKinOMynwhBVwgrG661KGbanpS9KEWtnmlMMi1clxqv0O3B2dUJl85SGLis+3Wm3WHuiJNknFO8ryqMZ7VBgGhIJGulYSAmeMVGdaXdC+1qVOTyDnJtIf5qJyxSCLV5I4S1U25PolsL0fPd8SgRF2jl6Wkx+WdCY6tDHtBvkR356ybpJLGvO/hywCApzbHuO+JTUyaWjqaZzSS2ARlet9ITHjkMpLoHv89D10C0PQEbH6bGKQL6rIGgRHOSVUrPHZlz4g2kYiQDsD6cyJ7+8fO43t+96P4d+9/FL/+3s80SCLV5PLjtAKu/vfZo7r+95Ere+bzPnVT8snObVJS0iYRSo/I19XdKV7z03+OX3jng61epRySDlhfZVDkZj14anPcojIDEpKoEa+7T62Z1wzdNKC4+6o3/Rl+5V0Pi+/fSDOsqEPYcNoCj/zxaP2986QVIaP7OGvuy766KdFNJeEaX03iTXXTz3tbFEmk7FIykpgvfiwgtQXGwVGRG20L000N2paWQaMFfBEFxJTeWnpcbaT8F+15GOsk0MIWQhJ3xhbdcG1Q5NGiSK4AgYQI1koZh/DoyhDX9qa6Po4QkYCU+W1Hl/HU5j7GsxrzWpk5c0puNG+pbkm/xyMpbSTR0k1Te2ICmo4M+OmmO5M5fukvHsZ3/NZf6bnXtaUkJ/XSDD83Va0D7JVB+3qXh0RPIpRiaVBgPKvietJFJCCkYwHAUpl23driFn3HLqbeVSOJ7dfoviJEjmpgjjVCTlJARPfAINc07YtN704TJDJOMv0rWJOYGGwDB+uT2KabNu/7SnQYwRvA3ycxF5JNZFd2pz2qqZ5HAt20I1wjiYv81SNXce8ZHRA9dGGnhSRrJDF+fdXCTWlrAil8Dgu+LpfWjJPrI/zqX37G/DbTJiKi3s81QwEV0NUnr+1jVim86Gmank19aNtIYn/c+x++jOVBgXvPrOPdD15qahLteeTGuXWrdxzXaOe1vZl5zYckUqKQyhu0KirM8aQyjIcv7eDTF3fx02//lEnatOr0pQRQnuFpzRw/c2m3pa4szVG3zihxTytIDPepnFU1Pnt5Dz/+lo+z799oW6R0ZvFjOcl14XjUr/fE6tCwCzacpDmLiofoplILDBXok1gMcFPd9PPA3DU4JWtn6aZpNz8tWklN2Z2bNqVP3zziobme9rsfegzv/fSlpDGLCtcsgiQqpczmkkzjaTK09P8xRoIrwwQkxR2XMk8T3AwLUchEKaVrG7iaRMGx8B3LrS3p3s59JHGKHadGS1Q3rTSydvbYMmaVwsOXNC3KrRvoZnZdBUrJJCTFvS47k3nrPKYkBACLZPrUTf/68WvtubtoW0rdXkSQaGtg+jWJKSrJixrR1EZljlrFIYIuLdGqC4bnqkxwky5c4zrJonCNj26aMcFl5548vjrET3ztC/Cr3/oSMwZgAqLKouIbSwNDgVvuCHe06aaq9R5nseqmdP+PygVbYLh00+Q5tucA0JotP9tBuunOtKds6o6LozL3++11hyml8OS1fbzoacfMcV0kOb1PYhMkprbAyBvhGhZJ1K+95t5TOLc1xu5krtkdvd/GBWD2/P/I1zwP955ZbymHcr+NVEO/4PYmSGzopkVLAbc/7uruFCfWhjh7dBmb+zPsTudGuIbuke69TGwfwNbzAu1AihsH2D2AFM9deq1GEvlr4Pb+u9KgpNL9T3ME9N53ZmPJIMU9uq8wx9Egx5HlAU41KGQLSRQegD2n1VfKXna9jM73YfifMTWJxPJZHhRGzMplVnEJP6tuugDdVEIfgZtI4ueLLdqnb1G6aarzD7SdwKQ+fbUyi+thPKT//P/9a/y9X/lA0phF1WUXqUmsatveIClD22waRFmKdULrejF103llr1uquuPyoBR/G6FyLN20yOJbYDgOcC5QZDT1Sf/76MoQ13Zn2JvOHaeJHzevtXDN7Q1liEQgXGeL6z9F70km1iQ2gdmxlQG2HbrpqCQkJX5jpeP7xjzwhJaPp0xyVSsURYM2L5A48ql57js1MK6lyPgfxAiBp3MZkyhx6b6LIImjQYGqVkkiIV7hGof+KRlHQaTvcZ3rv/fyp5maLhFJdxQg15dKI6axVMrCNUZZ0fM7Y1U56dkqc0Kk0pBEiW4XczkyJnComPPomqGbCge4tDsxKK5rPpGQrrntFaTjXd2bYVYp3H1yFVmm200AMH0yfbTFrtFzkyx41tSBDwSBNUpAUDuWpzbHLdRMqtN06xYB4Fte8Qy89bu/zPy/tJ5s7uvA6a6G2nexERGidg/03V27sqfRX2o4vz+tsDJqi4t0n1NNCSbUfmjWvCMd5UrfHkCK5/o8hmtJ3SDxsaYfpIuScnX6QBMk5xluP66vg2UJyPfkZF6ZxM0zT2s00Q2ApWTHjpOwvNSc/8M0OgcpSfKDHgvwJU7166NBjqtNYP+Ku0+Y93Mv3VQKEov258jqyk83LW62wPi8sEWFU8ihPpQWGI4TmIYkuip18cd76MIO3v6x89GfP4i1H+y036bH3Hj6raGbNo5ibDBFiGAqbWhe2wx07DxbwjUCIkXN4qU+iUqlOZJ5npmNuer8Pv01hCQOsT2ZY3N/ZpFExkmoa4sa3NYEiZ88t9OaMxfsuVQ3yWQkUT+/t6yNNN2Ugu1hGt1OGwWJ8pjzWxoZoqnOGucmtScaCa4MPXWylDXt9kksE5QWD2JUI0WiK75WHWQu3TSpT9mCNMkW3Y4J9mi99SUguJqgELotoQazWmFQaNEMjSQ2QaKpyeo7kpbKeXAk0Z231EqBM1uTeAAFViZIpPlIvy2kUirSTQUklzO3rleiqRLie+bIEo4sD0yQ6NLkk9RNF6Cgq0ZwZSCMo+MTHfPc5tiItAC2TpMVE/PSrfnzT/TNs0eXUeYZSzflLtvV3SmOrQxxZEXX5O5O51jpBlIckthMMcsynN7QiYEjDaXQ1/KEKIgGSaxVS/BGYl1cc3r/PXZlzxzHR9t1fwMhnsea+9OHbk/mtalvveekDhKJJukT1NtzVNx3JnP81SNX8HPveJD97I2ww6SbRtUkzu2e+K++4QvxPV/5LLzszuPmfZ5u2nxXiG7KBZch4ZqbdNPPfXNviJQAzCCJiTc/LQCpQYNRm0us21teAEn8ip/5C/yD3/xQ9OcPYouqSdYLLD5ucJfWg1A1TlO64h8JEKQGpRZJjA9IAX9N4nazYXDqpoSUxNxf9JEW3bT36NhN+8Sa3gTPb01MZp1z7uj6DIoctx3V6mOEJK45waWUofX4MSjznG37QNflxNpQI4kVBRvpzxs5wj4qJ9GSKAtdNfVW2iFPS5KUee5Fe1zJdddCQgfXyyyS2ASJEfcyPdd5o25K3xMep/8ulWnXrXaQRFaAxrknJePQbat2yI8Tm4I3wk0AsLFsn9Nen8QWShdz/8epm7rnf1DGK3K6dcrcmmCRRvk7OHXHEJJo0cf+e7OqxrW9mVl/+GOFf9/eZN6qv3PnRUaI76n1JRxdHhiq5epITm5J1uqTuEALjJGwJtC1JCTxyc39FmrGJSBoXCi4534bBYlHVwY4e2wZn720az7vQ4AvN4H90WWdXNwez7Ey6vRJZBgobk06JRUJSfS1SjFIYkPNdGtQy0JuDbW5Z5E5ChLz3K/cDdhnn2ijRIeW1gQSbyNGxkvvPI71UYlb1ofmt0lJErfV1950jtf/m/fhX73jUwurwqeaaYFxCMermvp+QPavxw7d9MuedRL/5DXPbL2vUfFukBhJN3VrEpXS9FNfC4z8JpL4eWEu/zypTtBpVJ/Sg3ARjvasUqZwOwVtq9RiSOJhWrtPZboCaBKS6JzzRfodpqgt0ueIbhob7Cml9PUepQWJdB6HZS46g9TQlqtJHCTUytL3a+Ga9vHNfJTd0J9/9oh5nZwmztlyRULWlwbYWCrxyXPtIJHLyJv/9TigoZrEW9ZG2BnPzX21yHNjKNCe+4MU/rYakRxSDhwUeTKVPM918CIFlxLdtMjjaHYHNepBmEI3tagwDogkRgY3qtMnUUASk9VNjUPIj5GClFll2z24tPAeJY0JEn0PQAySNa/qFr22zOORLHPdcn5NcGtNJeOo6/Y8BoJ05rcRneyEh24aI1yz6zRzlxx5QnxPrY9wZGWIJxr6obtuxfephBWzWqAFhrQm0PU/e1QjWE9dG7eSJNI9WddyCxJADlI292co8gxroxJ33bKKB5u2G0UuB3uAgyQ2SZI95vz36aZttJlExI4uNwGYpwaSGBw7Bkm08xsUHrpp02MvyyyVs5UkCSCJpHAaQjtp3aRk21e94FZ86I1fYXxCXwsSV0Rtb1qZdYzaS91oWySZDwDX9qYmyRBr81rZJKGwJ7pIImdcyYGmkWZyhivL9PtuTWJI7AYAips1iZ8XVrk31oKiMAsJriQFpFYCPUVwYl4frCbxMAqdF0US6TQk0XYXpBYTJY3QhJhjkpR8nqcJENAUVxLpppT95PoIkhm66YivSQTingGXkiY5TW7/uefdtmE+t9qlzblBonFQ9Xk+e2zF0rZcJbcercOiGJIVApLSChKntk9iarAB2IDChzQTkqiU7n01rxUGRdODM5HJUOY5BiUvUgG0i/RdK/K8qc+9sc831aVaJDGCbsrdWxHnpTbXLQ1JrOra9klknK0Y4Zos6zONavM7EpHEujbHWndUiJe6qsAu3bT5G0YS+fOolMI3/vL78Dd/9l0tJHF4ULopK1wjf4cVobHjQkgifSfn/FNCxidcE4Pu7TtBihRIXW6olCfWhji6PMBWk5CjcWXzzMVY7dBN57WKSkKb859n4ppAa9vysMCxlQEu7oxbSRJJlEeXTXiCdCFIubY3w5HlAbIsw90nrSpnkecO3bQ9bjyrsDutcHx1gKMr9rqtDNsCNH1RmLYCLu0hR1fCNYlUp0aCY93eqT7hmuOrQ6wNS2w1e6ur7tsLEjv7FCGJNGtJzI18FVpHM6fOm8ZJy10bSawMtfVcU/Zwo82CImllWV/4I2/HC3/4T5LGVLXCsNT3VqgmkdbTrmlWSOfFOkAbBTSa6NYkGvQxIFxzk256uPYb7/kMPv7UVtKYWinTEyopAHMcl5S6xMVoksrU9aQKtSxCNyU7jGLjlnBQkpNcN2Pi5zhtIYlp14xqdIA0ZCNVuIau72qqcE2Npm5SRqR2PEgibaoxzwAttMuDQnS26trSmAZFbihOXSTR3ettKwuq2Vg27/laYFj0KRAkMpdt4khiU+AGOEHiAkkI3/1xeWdinIire1NTt1omiIQAbQq09AzsNetSt0+izapHH24hM3TTZu2KUYJu1bua5y1+HF23FFVgF0nsNel2kDXJOIpSCEmUUIN5Zeu/nnvbhnmdxFcKxpFUkUkS6b585PIe3v/wFTx8cddQ0ss8S+oL66qX+hRYQ2gngNY1oGvvqwnNBHXHyzueIDEJSZwb4RQpAJgZR74wgQngrHcJSGKlFIrM9l2N2eNcuq+EANOeWeYZTqyNcGl72gqIDAWUoUl6bv/mueGRRKJ7un3pWkhiZ5pUF7i+NDAIG6DFaOj3AQySqNr3CCGJlCDzXW+rblrZ30t0U0/y7lrz+9aWSoN6ucmtHgW9hvkMYGsRbd0z/ZYOkmjEVnj0y9fSyFXa3pvMcbwJvM9vHk6QaGoSD6lPYpHnorov4NTplwKSmDHodj33C9AA+n0XSQyJ3QAN3fRmkHio9kP/+WN43c/9ZdKYeaXMguKjifXGNVkLwELYMUY3YBq1tcaAbv7IOSqlFf6WE4UcXAs1Bb8e5i7AaUpu+u8iYjeLHMutSYwJpFy56xQBAhqXiiQSauPb1Hx005RngGiMozJ3nNb2OIU2O4PEI2wLDP06Ry0jh/yL77KqY2tOcNl1tmJQCglJtDWJ2gm/2tQKHoRuKo1RSuHy7hR33qIdJq2mamsSY51IOlaRZxjknppEEUlsz/dGWUXCNUQ3jUimuQqAC6mbJtYktlsA9B07E+wFArDuFC0iym/z5LR2/ZFZpcw68+pnn8LL7zyO/+lL7sQzmnuGcySNroJnjj4k0UUbnmhq6WxT9kj0y0nUcI68pZvK30HT59RNve1tsowVQLm8a9E9bow7b5/tTysjnOKr2wP0eb71SD+5FVsTCjjCNUVCLW8zHQpSOPTRZYDcsjbEpZ1Jq72HTzk0hCRKdNONJkg8sWopv26ZgtQmoiwynG3Ey77iOafxd150Vr8uUNDdejTAqsq664n+XH/+lCicVrUuH1L2OvtUaccNwrw2Kk1y0UUSe3NU7XvZ+BNOgO+eg+78aG3rWu5JQOw4LTB2pxWOrerrcf6QkMTDFK6pGmV0X+I0SDfNOLppoLYQ0EiiW5MYSzet/HTTAH5501IspS7QNaLp+VSsOJtXNdZGJa7Mp9H9zZRyWjAkqptSjUjsHOl0HARJ3J9VOJY8Ks1iGqD6xpHcvc+JIHMdxzTnv27ukfjMrus0DIsiiTYK2OsWi+YSalM2NRTKESQgI0rMOkM3NcI1EcebzCosDXK9kTYf725SSrWdVsrm0+LMbYjGIWzee81zTuFH/uhjACxti6sZoP/t/l7XJEoU1QRSxvtaI0ZAdJRFhJGkZ3Q8qzGZ13ja8RU8dGEHW+OZqUFLebYBq5yrqWX82ie2wEhAUQ5ipBKYVFvYQkTiKdD0WyhxF1//5ReucZFNyTKG7ti9l7tmUJsukljX5lnM8wz/zz/84tZ9bZ8be6/QsX2iMIWnKbhbt0SCK2UApe6aOwcOEYypSeTqxmKCxDzj93+LJPZrEqXzz9mu09/VCge1P1PVuv1Enmf4wjuYGuwEOjk9N6ZXZVSQ2D7/HLJKtO0yz3DL2gj3P7GJ46tDhm7KBYnysYs8A5dP3tqf4UiDXNH6CujgyDJJ5KTMs06v4wM/8BqcWh/1xHW4pIx7j/zw334+TqyN8CXPvKUZZz/Xtcms1n1q5zX2pvMWulp6knCzusbaoMTaUolPX9T1lnnmC7bbqPgLmlr913/R2dbr3fPfrUnsWiHc/4BFZgFgfzo3pSYXdw6nJvEwW2CQwJJPzI1qFYdSwM0K18TQTTtIYkjsBkBMn8SbQeJ1tBTRB9cslTCN7jWrFY4STTWxvxyQTjctC4LR4zYaK8DRIFILIImLtveYV7WhL4aMejsplU6lJZtVNYoQHQBdumkitS/LMCwbZzfiGrhIQgrd1G1lkTJPyj6XxkHriw0QYsC1wDB004h7eX9WtWg8nJNcK9Uilh1rnAWqi+Q2xK5D/vQTq3jT130BPvLYNadvVd8BUlFOMl9bQsEWnROiDaUi8FSDCsj3B53/W49o5VbqyzgcFCgTnm2gSVxk/nVrX1A3TQnaDmJW8Cke3TOoWJ6mbkpfTahlrEPuyvtzAhxRgiuZD0nkx8nqpu12A93Eh2k54wZg5rPiFL1I4q5DSXu8EVzRqswybatr7nniaIsxgawvceRvwSDQTXcnrQRQd0z3WJK1hVOaeTHBDc3xRU+zqVVSqE1pO0M18Cl00y7dl1vG20jiCJd2prj7ZB9J5GrpSg+SmGVC8DWvjd6Dew2OrQzlY3Wem9MbS6336Tbw9UkEdCuSn/jaF5j/l4Rr6lphWtW47cgSntwcY2cyN/s9oGv1petGz+raqOwhufxva8/ljuMr+Oz/8VW9OfaQxFkgSPQ8224LjN1pZZ7nw0D2AOtPLHq8WVV768Fdc3156XjTqmpdo64VTMmBppsG5tCjmzb/vkk3/dyxFAfLNaISpjtpyhFJiF/8yVKFawaJgaylLaYhUq7tLxgk7iWMI+GOIs+SAzey2HPZFq5JudZo9QSMUwCljCgM3TQG7aZxy4k1iYSI+BRYt8dzrA4LdoEcJgjX7E+rFjrF0Y1ItIfsNc85DcD2eOI2RPoKd3ZveMkdrc2eq3+JQimEjZTonkTBpdYUS6ZPYmxSJnw/En2bHJ/t8cwignkenWzS80YwuSX1SUwR7TiI1UbwKYE2aihZbjAb8bw140ZlfLLDzDECSfTxFDgkKxQkyuqmfqeIQ0SiahILWYBjn0ESc2IlJKBfepwObLvnhP7lVzfto0ShfpP0nRwofqVRyeRQYK4mumsXtsbY3Ju1BOAy4bq5SNbpjSX84jd/Ef7kn36ZSVoUCcI1tN8Mk5BE+7sk9WKaY5ZlOLk+ws5kjsu7U9teyIMk+ntw8nRT95wc7dQXSkH6oskVLinKjuscj9bq4w0leW9aGeEgGic9A7MmGe6Wb2SZ3BbKlqDwc5TOiaWb8gGHhBwDOjBcHhTIMh0w0l6xqL+cavRTFg0SUxRO68aX97FrNJ3ftwYxgo2qiqCbZgLd1DOuGATppjeDxOtoKVQt1zQnn6SO42mjrihMStaabCG6qadnj3SsReimVAsRIzTBWUotY9Vk43zFxuy4Bc4lff/SILX/lKbblJ5A6r9+9gq+8Ef+xEhLm82uyE0AliJ4s7yIAEeWeVtZbI9nLIoIICoAJkl5t7k0gKbvXvuzdYMQk732+WfwwR98DV7e1BlaJbd+kJjakyu6JpE5/RSkkRNIaF8qkuiuHdIzSojNmQ2LJM4rXUdRJDa4rxpa4tBTNzYWW2Dwju71NnISbYuh8PFcRCSlJpF+yyhRqdpFDbhEQmwCoudYO8JV0hj3c2TzSGe3jcDrvwsjiQ7aQHV8tCYnt8Bwz2Uykth8lkUSPYGzgGRd2pkawZPeGAERJDu/NcbLfuKd+Mf/4cMA0Go3ADC1q1UbyXrt82/Fs06vm//3NTzvGu03wyJ+D6Dfn2Uear0TtFEf2o89uWWCHKlO00XbOZOO5waJLSTRobh2T3+3bq9rnCgSHSsmAdG93rS+U6uMncnc9KkE4BWCm1U1hkVugmyad1Hw62ut/PeydG9NQ3RTz7M9q2qMBjlWBgX2ppX5rpSE5EGMjhOr0tu1a04vypARK81Hk5/Oa+PfcpZzIlj/HemmN4PE62iLqicZSlRCzYCRyS/TxC0WQb8ATaUdFPlCSOLSAsI1lGlZlG66lxIkKpfum4bkkkU78s33rw7LJHVTQzf10OYeeGIT1/ZmuP+Jzdb8ykTaHK3dqQhw1yHnjrUzmbd6r7kWcsh/5u2fwot+9O148Pw2xrOqpQ7GZd+6NYmAbjTdOx5LN+V/I43rB4nNPIJIYv9ckgNEgRSJ+ywlCtfMI+5Hei5OboyQZcBWQzfVSGIik0GRmq1HyW1WwVXlJTs0ukjtVbgAACAASURBVKmyAij6eDF0UxskpvQltTWJaUrVLkrCBXsxwU3G0k318SUERkJzZ1XtDYh8CPyi6qZ0Xw7LHFd3Z2beKftN9zx1BSAsJTwtALbKj+lI1pXdKStaQ/MD5PXudz/0GADg3Q9dAoB+n0QmAAjN0efIP+eNb8XvNMe05Q3xSKJygisuAae/17aJeO6tuh5uWtUmcWhowh6UlDNJ3dRtSr/iJBUHRe5VUqXfwR5LQnJVOJBlxzX/T7TgvUllBLdoHiLdtEnouHtq4SCJ3ectqHgsIolNkCi0bciFIB2wzITlYdmim6a0WzqIue2LFvHRSUguxqiWd1jkorbCrKrFekRASHjUVVjdtNsCQ0UI1+TlTbrpYdridFPbAy/aIazaKF20mIzzsWQkkTbtSMeOFqRF+iQOSLV1gdYeQDszHTLjJKe2AHCpu5G/jZzUlVGRtGCRA+ALpKj/3YMXtlvHcoU7YhqYd5HE1CDR1+9wezxvZT1d84mZKKXw8+98EADw0IUdXZPYQxL7TpOfotc/ly6KJBkfJMagFHwvKeoBRud7Z9KpSYw9/875lp5RkiNfG5VYG5bYHs8MZUlT+1KQ9NrU+0n3//60bqhG7RNzWMI1um7SBqVpdNPMqb+LGNdBEpNQmwgkMYSAcc29gTCS2I2b50E6FIckhpF0H5JIQeKZjSWTudeCW2lBYpbZILB7Lm0gK38H1wMyRriGC9IB3W7mOCNa436f1Cv0yU6LgJUAJXPe6dPXNY0k8ufywfN6Tf2pt35Sf3eTuDDMlRi6tZNcKZjzqOdog7a7T66aZ6VLN+XElLzqvpzYB9oofW8NCtQkBp+bzuHmVZgS6zveRhPo7UzmqGs7Py1cIwSJDXrcRRIpx8PVPwLy/ibdW1a4RqabSmv5rFHvXx0V2JvOzXfd6AQhmXsPLlLytJVAN43xJadzP52f9DFaFkM37dYkEkLoG3eTbnq4ltLPzDW3B148kki0RRKuiRvnPjBJIjnkSObxCqzdmsSkILF5iFJqEtuLQRpKtwjd1L1W8ZTA5pwMyuQgPRQkXmqCxIcuaJUztyeSGZfQFHyUGiQ2yQ6fAI0vi+aTCH/0yp7597mtsVCT2B6jEBL7aD7njIt5jLj6C4NSeMLSMudl4YnuTPRZ6pVl6aZxz/asRTf1I4nLgwLrS6URrikbhzCpBU9zT/oc+fG8YilKkkDC9TYSk7BU5vhgzyclz1lX3TSFcUHH0VSj9vsK4cQF3yex9o6TBVDSkcS4HoS5B0mcI8uAk+sjk7k3SOI8Pth2f2uRdemm+m/oPALtNSFE26Vjcc/2tf0ZjjKiNe6xpGfgwtYY955Zx0ufcQzroxLPOt2tpW5/PoS2+RApYp+c3tABLSUuBikMFDq/DpLIBUR0Hssix11NfbhFEgUKaA1DoUz5bbXnnEhBuvv8cyahnXUASfTRVAGYVh27RDdtHkEtXCOjUoMiM2MB4Jb1obi+hlFS+i3t18mf8u3dfiQxM/uNRRIPh266aInVImPcGni5JjGAJHL3ckyfxF4LjGbeQbqpPwi+qW56HW2RPoCApUSUCTWJBklMpHIuXJNY6+xymUDJdDPrWZYG9S9Sk9j+bfHOJ9US+DJ20jh6oGOPR9dtZVTgwnYaaun2/+IbN+taHgoS3SbQKU3B3UzqsMzjhWsc2jTA00mqWolZNJ9E+Hs/fdn8+9zWGPuzGsdX7eKXZby6qQ814APuSIe8cxpjUIqQuqmhmzYo+GiQHmyQyXRT/d2roxLrS4O+cM0C6LZvQ5wLG2JKrd9BrK71fWXu/4jfR9fSvZdj+stZddN4xxqwlFg6ptReJVTvJDmfUn2h5LROK4WlQToior9THBaoSaywOixxZHlgEoNFlmFQpiCJaKFN3VY1sQJAQPu3hWi7NI5Fsiq5vtO3lgPAhe0JTm8s4de+9SWolXXQpR6jXVXarvlqEj/21BYAm9Aln6TwrOVds+JFcisFYk2QHW965hGKJiUuqgCSmOe8cJCLXALA97/uXiNgk3uCbUB+brKMV9Oe134kUaKu0/9vNIHy3nRu9nvAL1xDdNMzjgLridWRTNsNMGVuhLopAQzHVoa4ujc1fmBKQvIgNq+1wON4Vi9EN01jfFkxN2mc24eWM7kFRihI7KqbNn5b5qudGQDVzSDx0OwgNYnUkysVNSB102gFuBaSmIIa6OxyiiS5zVrlGHooaZzRhpiCJLq/LUm5tcluDhMcEkAvuMuDAjuTeUJNaEM3Hcb3LQR0ADb0NI4HbE+uBy/sGGEjwC+Jzc7RoduNElpnuCq9AI++6AXbv0H1VUoVfuqtn8Dzz27g6u4M5zbHmHTophzdRSl4OXqckxbjkHPKfXHjeEoaCcAMmhYzO+M23TSaylyFn21CEleGBTaWS2ztzzW9MM9RFnp+dcDZMcerLQVdCr6kDfGwgsRK2d8GxDkmFklAkpNs1E0TEWBdx4LmmH1HPpbK3EdfQogIv5bMq4Cwgpdu6r//pftkfzbH8rBoqTSmC9e0haq6iL+l7YYDYE6UxxekSHRTX52aJJxCdr5BErutnHyIlB9ty0UmCZVnkOiZTq7YtTxl32jRTbtBSieQJTEeQzf1/bZAkM4F265yMAB8xyvvbo1x503WbSzPGUdvDYnrhOitJKyzPZm36ulDwjVlnuPWo/1aey6QDSaOBP8ihm4q3SPTud4DjiwP8PjVfStcc4hI4sqwxHg2xWQBjYvYHuR0rDzT/uuOUPI0CdBN2SBRRQjX5DnfAsOLJN5sgXGotmhNImXkh2V8Jp8eyOUD9ElMUZcyDbdT0E4XkUqotwSscE3KQ91CUhIDsKLIvDUb0vFSRXnoHlkZlknno5vZ5TZEqkncHs9xcXvSokmlCIW4dQvU4DfGSKWXqGrcvezbSKXAYVYpXN2b4W899wzOHl3GU5vjpk+iXb66NYluVlsyLuCOUillFvG4ZuJ+JBHQ9HHaXG6IcM3EBom3rI1wcWeij19YcZfYfq8kuDIoc7Gdy7ShGnXNdx9fT3NZAgBQxbSOMeJFaU5yV900ZU2m81HknCKh/huqSZQEOFKft7kH/QJ4uiP91FAgK51GjSQWBlECGrqpp5F41+q6TTftHi+ml6lBidw1oY5bSzgk0YcuSWgPAPzOf30M57cmvR59dCxunE7ayC5dWchIIq3xF0gZu6GbGlXgGMEnJ5i2wUb7M11kj5BLSvjJTeADVFqB7ujWJHaN2qR06aYhBVCa5yJ0X/f73XGA9gnyzAqX0efLPBODe6IuUt9b1zjk3iSORQo6vy5PA3RTqU8ooNfBYZEZJJF8oEMTrqmVTbguEJhOEtk1IcEtrUjrv09Y4ZpgC4wu3TQSSQzYzSBRsKpW+Nd/+iAuNRS+GHOdYqkYXToWiYtE90RrPreUmLV2KaApWfx5XeuMfMIcTSa7CYAXqklMUCltifIkIonUFDyVpmr6VCaIuwB6c5xV8ZLM5AD5EJire1PcdXIVgEYT6R5JbgreQhLjEc8Y4RqqY+NMkggnZ3tQ5rj92DIev7LXBIlFa6z702KRve7xYpzdrEFt3Gc8RjlRajDtBs7LgwI7jZOwPEylkrs1iSEkscTpjSWc3xyDFAd9NGH+eCooLjITsqY+RPx6Wkzvzt4Yx5FKSa7Qs0WOVAq7Q2rbAMBATYsgG/SdnEl0x1ld99Cr1jiGEhiHJMrrz950juVhaRQegQZJLOPr9CfzuqW+mHeCPWVe96Pk3eDSBunpdFNSO2THeBIlb7n/KQDAq559KnrcQWoSaY3fm1bYbZq5U5AOIKmWPctgkHGONuomILoK2qK4S6jej6FpA/2gtDeOCS7tvikOQ54LaGfgGdWfa79ukrlFhtVGTAxwgkRPrThRjF3VbjNH5rdZ9e7AmsAkINw5cb9NWstJ3fTYygCb+zMjRniYdNNFdDHIUntnG8VvwZcM1SR2fRkADd00EK6JdNNATWLAbgaJgv3Fpy7gzX/yKfzUWz8RPcYNTFJUlGzdTHzW1LTAWLAmcVSm1d9RdjmFktmtbUt52GitXVRtNLXfYZGn1b/QOHP+Ixc8+n6zaCVc7zKXaTyAvkbPuXUDgK5LtBnRxZzdPKOaxEThmlxGUnyOjCQRTottmWd4+olVPLk5xrW9WadPYjoiyG2IJBISQ0lrj/Mfi+bPXrfa1umsDAvsTrvCNenIvZT535vOMWpoy6c3lrA9mWNzf6bFXYq04MbUMnoo6FJjdkmi/Xqb2bQDwjUfefQqvud3PorN/VkrwZDUOkbZtVUfazHhmkVqEjMmAREKEr3qpgHURo/rB2BeJNGDNkwrTad3pfyPrw6TFL+n87pVM9UNimLWBKAveBPDSpBaANC6LR3H/X7Xnry2j7/53NN48dOPRY87iLqpW3d+rVFzdJHEFOEmX3lDN2gjpJR+k6Wbtr87CkmUgvRAcCkj8H7xJg7t9CHwRnFUQvfyDCujwiCJ9CxxawKgr7+uSbRlKM8/u2HneAAkUWLKSOfSV+86m+vzcnRlCKVsovKw6Kb1AkGi+2yliiCGkMSQuimbcIqhm/ZaYETQTSOQxJs1iYI9fHEXgOXMx5jrgIxnlQkgQkZ1MwXihVrmnWAjOvuvKNtdYH8a3yaCnL20Xo42Ozgs0+im9FGJxsaPcR/sBYLEBeimhlqWrPiq76tpVUfdJ7T4+JDEea1w25ElrC+VeOjCDl5wu+5D1R4XQRtqPmJrEtOEawpvTaKsnCg5CBTwDMscJ9etnPwtjrR8F0mx9M80+o8VoIkZZ1/rKitylgsbqYskuvdCKkvAZRf4+iTSmnHmCCkZ6my1TSTE0/sGg9yb3CLBq65J6ofX2/rPDT/Pb/jl92M6r/G655/BqpHjT+vn2A0SUxSnWz3RJCqz5zs42lxIlVMWCWmLi/THMUmSWLRTRERqDPIMx1dsT8Fb1kdJLTAm87pVM9VtSm0RQf/3dGu5TJAeCDZ6WhMOk4YdIyBLSik8fnUfX3LPyaRxMUhirfiaY3e/pBYkhSP4FMVAcZKLUiuFbrnBd77ybozKAl/34tubsWDHBRHBnG8v5PZJZMdljJKqCYjEYb17C7DUdskkKiet22WeYXVU4lqj7kuJLZZdALu+UELnw2/8yp7it9gDUghmJbTTJqr43yYhuYD2cdYHJY6ttgOSw2iBQYH0cmKQ6E4tBdxQSu8bvvKqWVWbPYYztp1LPV+gBQbRonx0U76Ha+trg5/4/6k91kjuc1xvyVzKYVLrhtoiMLHBRg9JTHDsAO3IpDyklBFNQTtdJDG5B2Hze1LGtEV5EummeZ4kt67nqJIdeUIcUzNbJEnu6y9Hzt09p9bw4IXt1vlPQhKdTTIFSTRCJrmMSPkcGUndlK7loMjx9BOr5vWvf8kd5t9ZL/tPr8vzZWurIlCDjHFkahWmsRUMRQloO0CuGA9RmVPovjROSuS4ySu33olaYNB8Yqz13FSKRUSkrGnpuY+vpxkpfw8FGrBJniu7U5s1z9KSK1bdNNyW6ONPbeHTF6lVjdMnkUGkYhIXktMKhIOUPnKp/A4yc+1iAjBWkKExYqrcfmzZvLY+Ks29FWOTTruVrlJsDCWcGxfHSuADG0AO0qX17ureDHvTCmedcxEzzodauvPgAo5pK0i0LUgskhhfk5h7GC9dddOlQYHvetXdjnJrf1xdKyglo1h6nET3DScu+mgbJbcDlEDmuQkdS3+/hNLpfoeXd3WJE63/Ek3YBJfNw3p8ddjuHczMMYQkSvdWSARLQnIBqknMcXSlHZAcBpJIP8P0fI72r+3nkuimjr6IiCQ2rAnJWFZClLpppyaRAsabdNMbY49f3QcQzjq65t4UKUW5VkpeFoDoWrcFRiqSmBwkVprWkJLZbdUkJqqb0ti05t7296T2trF94tIWhGSRCoMAl0nzpODK10uQ6Eb3nFzDQxd2WzSWJJVGZ0MYlXm0uhcVbfvaDcSo/fWcLSfT+pxb1/FNL7sDf/CP/waOrAxaY91hMY61FOy577HzZDb7rrIiZ2XO1wFXDk1sxdnkyzxP6t1pkSwZSXSD9FMOKusG9ynHKzKYInxuPZHqL/JcHnM9jX5v1gR80nNK6+il3UmLWnUgJNFzHn/g9+/DD/3hA3qODtohOZ+APyHM1bEsKlxTK+Xt98nd/1GBbDNHLpkwq3Uy4fZjK+a1rKkTr2rFPjddm8zaNYkagbHvx8yR3u+yBGg+vjGp9V9W3bQ97tzmGICcoJZUoMNIokydnsxrHF/VTjwFia2a3MQWGDF9EjnjEhAmaZlYkwuEKbh86xj7neLxmOetDgSyUoLX1vvp9Z9UyimZJ4nykK/CMTWAprxBYBcEKehdNkPtHychuYCmmw6KvLXfAIeDJPaYW4kJVyCdlZZnmTe5NQuqR/dLAKDqCLqpVJPoc2ZuCtcsbIQEpgQbLrycXBPXZLvjkUT9uUV7qQ0b4ZpYgR29iWdehTTpWLbfXkrgpv8uSjdNRRIpkE26bpVFElPquIBFkEQ0TYqbYzOLOG1Szzy9hks7E7PZtBGReGdXO8nxAkfufQzwdZqVR7hGyrTSczUsc4zKAj/5d78AL7zjaOszedYP2gA/RY8TT4kVoHGPoceFE0pi3ZJzTlp0oUQE3g1SpA3KDUiOu3Rdp01E9L1cWSQR4O/lmdC7Tao/vd5Gzw3gr5uh6315Z2quUZb43Nh67/CacHlnahKRLtrBZeQNKu45Nkc3DUn5S+0GiDIlGSv4ZJ4bzziBTg5YAY4zncBoUBICHH4GJvO285VnfJ1yKO/bXUtikdzu7woiiZJwUPNblwb8RfCq0nppwu15uTaZV7hlrQkS96dmfoRSpQieuS0wkmmjzLgQRRJomCQ9BF61nn/peH20rS2iw49j9uCALxVucN8gid0gUUASibkmI9VM4iICEWTnGAjUSybYNvOsagzKHLceWe68fnhB4nJHIClk7jOSCjiYfVsYp9k1oQRENwMx92cJAb34LtICI2A3g0TB6CKlBCnuTZ+SJaEMoG4vkRZs2BYYceMoQzFKGFc1dI8yzxtKrDxmazzDL7zzQcyquqWIlSpcQw/34nTTlPNfW0psCt3UQRJTxUXShWvqlnBNb2Nz6o/uObUGAPjk+W39WpEmQOBSUnRSID4B0VZS7Y+j5r+ciZlWgySGFMEcx45eT6wRMZSpACICtLN9KqImsSxkmXY6J0tskBj5bDcf81FdXAU+6stFczPCNQnXu8z995YoXJMQfB3E9O/V/5bqqZVS2Gvqs1t009wRYUpA4Ak59bEStsYzPHlt3/QzpVPEZeRJTCk1SKE1ItTMvS9SEZkk4ZIrPgRSoLIBlobYRZ1T0O1ppyax61xHI4l51gq4o+imOVMTGhmkc5RMPX+53QAg1ZKGrxt3/qfzGres6aSRSzdNa51kjyOqlAaQPY4pE6JIAn2KMGDXw9C4/nm070nGismouH3DJybjtsZadoJEqUwB0KrfnPFUWv3XF1gCMpLoQ8UlgGPa1BsfW+nUJB4C3ZT2stSew66a70LqpqXc3zWobspRd2PopnmBG9EC46ZwjWDkmCUhUgsiieRIDfJ4ahl9zsjkJyhQApYSVdUKId0UOpZWN/XP8f/804fwS+96GGePLeNMU/NU5jlGnuai7DwXCBIPKlyTSjed1ypdpGJB+gOhDfLma7Ot95xcBwB88tyWfq0J7oG4GjB3Q/DJpvfGKdUkEij7zwdEqUiirUkMOclpyIbP2fU5hDSN1JpEnwLiSnN93GbiFCRGq8sSkjUoxKDGbS7tXoelQWEEEKJb3Kh2704OFZw2WeSuHWaQaJDEgq/5nla1cSgv7UxadLMiQbiD7p1BAJFVSmGrUVG9tjdrobtcbVVU4iLzBBsSapD3HXKaXwwC746zSRl5nK+eeu700/zNb38ZTjSoVqiW1LXJvMKxVVv31BeuCa8JQB/NpdMaouBy7A7AhyTqv93TEaQJC4nCeV1jNPAIYnie00krSCQGinutY2oS7drpS/j5gi+uBCBEkaT3RJXS4L7Rfm0ehSTyvXK9+4ZwTtyyEFfQxEUSpQQcYBMp3PH64kb6BTHY8yCJ4fPBv0f+rZt4kn7T9Ta6bVdGiUGic41S1E0pweZtCyUkTsnYcxmlbtqlm96sSbyhRjdTShZh1goSU5AsjSQMCj9K1x0DILkFAy0SKQiYyVgVOrPuG0PzeuLqfotrny5ckx4kLipcQ9mfZLpprRxqWVpw3+0PFTXHPFzXUOYZzh5bRpFneOSyFl9qSZnHICKdmqyUvpgU2EjH8jV8lgIHV7hGMq2caP/fMC1ikMQWJU3/9TmEXCY/piaxyPvZfzo+OYRuM/EizzBcqCYxx6yuWSr5XKB/Pu34SnILDFMnKyAb9F1c/YVvzPU0Eq4B9PrFOSbjqT2/l3cskpiqbtoNmqUxO5O5uc+e3NxvNYHnsv9RCQ8GbQjJ1kvqpgrhgLQ7LkRjA2QHFCCGgZ7Qlz3rJJ53m1ZmtvdkHN3UJ1xjnu3Ac5p1nDQVcf67YwC0mDScyW0iGkc+GNz3g41QIAXwz9xkXmNjucSgyLC5b/v0+RJ+XWu1wBBq513WhG+O7nWrDJMkhOz1j0XvyeN44SZ3LtI8OQVQH7XVd04AHcyujaxDvzzMzfyVYujklR3HGYtuB4I9Trmb/t+PyMqJtHmlDG2c7DX3nkpSkl/U+khiXMDX0rdI8UEbP21Q5KgVf04mMS0wehcgQt201wLj+iCJN4NEwcgxSwkaXGpqCpQ+qxwkK5Z+6CycpQfq75pV4IuvNaDvLpu6JZ8TSV/32NW9Ftc+WbiG6L5JaqP23ynHIgpk6Le5RjSxJVMTGu9Y55k9/ymZrfbmK2Ujdc+kU+sjPNHUPNG9xY2T5gjAKO5G1yQ2m6RVyWSEazyOjBQA07n1LaxZtniNVFvcwmbDJeMRyDCSWOR8HbBbp7PhUkDztN6dtfNsK2GDkhT4nnFixVy3WDSdKNCSSiZAWdP+8XzUt+tp7v1WCHRTV4l6azxrBTyp6qZFpkVyfGvy1tgyKs5tjjXa2tzbnHCNqUkM3JNd359+q/i8CdctlPDIsoyp9wvP0RekzBpKWtd8ipxd67bA6KNL4aBBj+N/WyjhJAcboZY/aQiYNC6kbupF/Jtzt7E0wFVG3TR135CoxV11U3GOzrBQsK3fY+i35vzLc+aYMvOYoJQJwOoAAm/6JPaum00KuC3X6F4uhWtA40rhB/KKx/5gzyC53Xu59q8JRZ57eqDa9e3X//5L8eY3vBBHlgdJ4o6LGs1pkb7UZLHCfXQ8N1HO7d0huinL3qrrOLop1wLjZk3ijTFy3lNpo/bf8Q/AvK4xMFLyaTexCdwS6Y60AMXM0zrpDdrmcZgubGtltocv7rbQrcOoSVxUuIYy+WkiIfqvre2MRRI1kkaLROyiRXOUHK0uRenWI7pROoAOuhFPGypyTbdL6ZtXZA76wiKJck2KlGk1SYpABtrdtOlf/hoRO2/zG4yzm5ZtjUISBeEOt05no0M3TUG3Y/r0SUH6HcdXkpQMgWbfCiCJErXmMFtgWOEafu2iesSjKwNsj+ctJJ2uWay6Kd1TvjV5q0FqAOCRy3vYHs+NsiQvXBOJiCQjibzzGZPwKPN2/Tz9K7WWkUy6L/OEe3Iyq1rOV5feHRPs0fttUarm/Hv75snsDilI8fUS1ONkhEiPa78eRBI99zK1D1lfKrHpqJsaVkjU/a//Zpk/APYjgs3nmISfN7hk6+9inhtOpZSut38ch8B79w0hMUbHK/MMawzdVFKCNn6ZZz/lflscktg/l8EgXbhH3D3g1feewte9+PamldqNDxJpuT9QTeJCvmQmjp0J7BoytlWQim2BkUg3LW7STRc2urgptW1uXWAKlE49onzqe/0x1nEeBCigrtHNN0xBEp2MlUY75TEXtnWPnyt709Zmt2iQmHIe3QcrGUlssj/JPekMbTc2SK+b2s7FkETJ0erWUbhKYm6j9LiMsP5LEuixaA9liX0CKF4kkbKYnQWSnsUQj59TN/UhglxwE4ckghkXh1AAUnZdj1136aYZ3ZOR95YJEuWsKaG9ZF/xnNMAtENiRFoSkUQfjVDqk5hCfz6IuUI9A0E4iJDEU+sjbI9nLecyzzO23i94LM+a7AaJ9z+xCQCmHozLIhvn23Nsrt41hMBI6poxCY+8UzuZ8txwp3JWKRYRCSUT/vNHn8SzfvC/YGcyx7Rq003zrF3vF1uTqM+lO86+LlnG1ag57A7OgvTDQDKNRxL94l7u97vznDW929aXBlbdNE9D0pWy95tMpY1UN3XG2edRPjb9tpbgUOA86nH+0g3J+H6mcTWJEnJZ5JmpnQOs3oQUuHX7JHYtyxg/IVATKq0JlUPb50xq0wHoZ7vLJhkkJJ8PYpXj72ZZvL/lzi1Nld/2SQT6WiFVrRodkMQgMZpu6gaJES0wbiKJi5tFEv3OwcXtCX7t3Z+BUqqDJKYFKYMiT2pU36oTTKBJWiQxoSaxRW31t8642ASJ1/ZmrSAxpQckYBe31Ob2ZCnZH1tLtwAim9gCg6jFyUFi1an/CjgWbo+tk+ujYJ0U9115nlZgbvj4zbG4Z8dHiQqpm3qFa3K+t5lvgeSy3TFIIufIhEQLAOsschlvgyQu28xenkg3Var9bHP3JKG9ZL/0P74Yn/yx1wIIC650rWqQRE7tlYxzEAAZabjeFkM3HTdB4umNJdQK2G7ooHQ9u6iZ71hWJEdekx94csv8+z4TJGokkastpP8NKSd2T2UIkaLXu2u5Uv6aXKDvFNqkTBil4GsSeVpyaN363373o5hWNR69vKf7JEapm4pT1O93qIRRCSemJi6MJLa/vztOOpeZeXbar8ciiVISblQW2FguDd20yNKQ9G5yBeAYLwF1U2YPiEX2uIBD1gAAIABJREFU3Dm4cw6dEy5odr+TPR7zvNUqXLeaBRD/FpLYrONSgtcmT+XnO1VcJxfurdpZ29hxZg/on0suKAqp5F8vc6/lsMgxSWwVBySKICrLSgP6PpDRVyj9z0DvcYtRN+3VJEbQTW+qmy5u9ACGVEP/yW9/GO9/+Ape+ayTrSAoiW5a1aZIPB61IeQojabqZlaAuAy5Kxziqs0NmRv9yq7OQl7bm5px9NtSHEJa4JOCvQWRRFdwJfk8FjpDFZNppWMNitzQDaZVZCF1k8njUCygX390+zGLJK6PSpNhjrne3WbivsX8rx65gloBL33GcYN2Sr216lq3Ugln1oWFNVTs3UH26HV5TH9js+0G5HG8I+MPLPU4/Ze7dnROXOEaAEnCNabeeCCLfXQdSZ14aGpfkltgNEii8Lvou1i6qamRjTrUwlYre52l53tvqp/Bk02zZ1e4g/76ar5//p0P4hV3n2i1QdHtjPgxP/uOTwEAVocFHrywAwC4pTn2wsI1jPNpgkRhoHWs26+HEBEAvR5sLtXQN0Z/lrlPhB5/oZo4cuAu7050TaLTW1BSNw11Suyrm9L59yNS3T3frRNnxyxck9jMi2GTxARg3XNJNVejMsf6aGDpprlF0mMcehdxlRVYA8EGsweYfJ/n2C4rhJzaqOCS8UtikESOXRDTBol7vt1gdtWpSSQkUWyVEtgXOXZBKJEg3VtBwRsHgcydK0X0/u4cBwn72kGsy2aLrS9cuE9ijU6Q2B5rwB0P4s8hwFHqpou0wLiJJC5uFByGgpSHL+4C0Nlo15FIyZLMak037aIhXdufVnjksj7ezEH3knqpdZDEGIdw7mxavoJcpRS2xzOsDAvUCrjaSGlTL7UUMR/apA+jJpEWTuLJSyhpa0xlN6BBnkery87rukNHiEVt9Bw50Qh6H7COxZ0n18x7blPw1D6JRQBFef2/eR/e8IvvA9Cvm5QWyFCNTi9IdFBzyYpeHVHznVHIhn0tBUlsOzJ+0QJ9vBgkcdAcQ7+XVidLz7aPbio7MilKhoCljklOjGZX8NQaGnOjKUdVbXsQSnWC+1Oim2r0nYJEozia95UMyR66sIOfefun8L/+9kdajpSUXNmdzLE1nuO7XnU3XnrncfP6yYZuSntAq742JkhhKEqxtW19umlEm4h8gefNQ0ueNzT8rsXS5EkAyKduShYMgLOuuql93TdGqhMXW5AI5yNINxWCbWKbiHMUxpHE/7CpSaR1w63lja3JBfT5ldcEv3AKN8fY8w+02Qyh80/jpOcmtSYxJlGY5577pEM3XSrbdFMpuJRbrPT9yVh10/49GXi2BWG8mcACSmEoHcTc+vJRWUSDDvQ7dJlUfAsM2m+kmkTXb5SsL7gFHfAF6aYFjyR6axJvBokLm0ESAzfV1lg7FFv7s9Zn02oStXCNlMUBgMev7uFVb/4zvPJNf254zQA1wY7nd9ODmSZc09QkuvVmnAM0rVArLacP6J5jgEWkUpQMDd104SAx/li0cA6NKmdEIOUUm2tqWeT5b1oQUJAYS3/o9rfroVGdrPWdJ1Zb71tnK164Js+zpo6LH+P2vdwa235vA+E8hjLrkvNDCZvrXZPIobJxjbN5RyacRW6Ox2z2tMmSChvVlKbQtGtnYwP4Z7SqZQn6FAVcOp7bXkVSpeWU3KQx19uq1nPDO7v7hm6qAzViQ9D9poNE/hl42wPnAAC3H1tpOVJSQPrUphb2evbpdbz5DS80r5uaRIbupRAObKgFgxtcVrVGBCXHVUJ7FNIRkdg2HTSvrkmtWaTESve1J65pJWefumkMJZbm2aWS63GeMZxDHpkUk8eFEMj263PPsw3INZCExo7KvKWuvDIghoF8/7vmMlAkcZ1gL0Hmt7ktacRxTMIjlCSh46UG6fSdbCJHnqL5zkpAnLvCNd1+tt093/avFu4Tpt5y0URCsN5SYgEJe3dZ+MuWrpe5dNNRgi4Grd0rwyKZbupTNzVBa+Bc9msSK/8DAGiksXZ6kd9sgXHjjDLgQBhqHjfw9eb+rOXMxTdJV6iVXohdyL5rr37zn+P8ViMKszttt6UIUAK7xwPSWmAQHWt1VFi6KbNpkCDD0080QeJ205SXkMSEIJE+mxLsuRt7knBN1aZJxvWOtNnWlF6CtJGPClltq6oVfvSPPoaHGioavUb3h+4J5d/Yzjp0UyBNKKSNJMrX7b7HN1v/pjnKmU+6Z0OZ9fbrIalvgDZE+//GafVs2xwqG4fa0DHaxws58nKW1tLEbjuyjG99xdPxG9/2UgBIElOir/XVG1e1HAD4kB7OKLgN0YS5622TFlGHWthq57kZCGwGqkkkuun5LR3IUVafzew2RomwQZmZmlx9LB4BfmpTBzO3HlnCLWsjvOufvxo/9XVf4IhU6M91A7CYoA1oC7VUyi9kIt2PsYgIJ1wTajivv7/vgLp9Ettz1H99zcQBmHY/XXXTVrBHifUgksjXKYfUZXs96YLBHs1LSPiJNYn8uGBNoiCcRU4wIYlk7v2fpm6aiddaiyKF11Y2AeHrXcusQTFBIsfectEn3/H4eteI5IqnBvVuhwFkxkj7aaBWnws2QgI0Pgp0FALZDWQlumkCs+kg5l7LFPFEOtcrgyLJl1TN/S0h6eae9Lbz6tc3Q9VhJDEv2lC6uSkP1gLjZk0iYy5EHAtPbzZIIhXLR6uUOs595txYg851dYOQi9uT1riD1CTGjKPgb2Np4G2UToIPT29QrIsOksgVUUvmbn5JSKKD7iXJFiurbqqPGbEhNl9P41KQ3FYLDGYBuv+JTfzauz+Dt3/sPN71va+GUjqR4FLZpADMraP6qdd/AZ5z60br9ZgAwN1cfQjw5d2J+ffjV/dMcbso9d381LC0ezfY8G+GgN7c3ADA1LFEBG5dlVL9fZ4xzO+LcazJWeRqYOic5HmGH/6a55v3hmVCTaKhm8r3sU8C3Vczxhk1qhdpwp6aGTvmxkaJ7rmVxGRoLaU2FOcatI+QFB/ddKdZ867tzXDrEeuAScciJJGQ4qedWMHTmqQawF8DfW/5f6dNXNiaIC2k4xnjQQ2Cz43oJHvGBGhznJS/D0l099jHru4BQI9u2nq2QXMMBMALoKScKm2oT5/kWNMzUUjOv3DdQuqm0rmcO468q65MqFYsC8iiNvK1VoF7mWVpNH9D59+dAxAb7DHBdqC/KM3Tfbxj0GYax4m7AHrNWB31XXJpP7VJV0ndlBfl8VIdBZTaV6YA8PX9gLx3u4y0rq97Pc20CsyQ1KvbBImj0iQCY8eRKrx7/O73epViGQRYB4kBTK8rXBNTkxjRAuNmkMiY61z5HLSJw1W+1gSJK4MC25N5PP3QQUnovgj5aBe2x478cSZSmzhzudbu//uMgr+N5YFTt8QgiQ319nm36cDkU+e39RwJ7Yydo4o7/71xzfcvJWZ/yJG0ojzxSGKRparL1i26KTfPDz1yFQDw6JU9jGeVOeduIBHqkwgAX//SO8y/TQ+8qIywdYp8NYnuebq4PcF4XmNpkIeRRE/mkxtngo0AKsIHe2GHMLVxNk839Tvkeo76L0fDldDVlASQVTeVe3e6iHRvfgsgiW4LDDG45+imAmp8Pa2rUljmOfbm897n6PdSkPjktX2MSkut1wERP9HdqQ0SXQdM13H1x5xvgsTTR0bs93HXQEUkIFw1SdrUJTEY37HoeDGoeGqbiJB6sa8FBk9RtRN49LIOEl0krN/KIhzs0Tj3cDF9KrOMo5tS4i5VuEb/9dWaAVxwGYkkSjV4Wdbq00qN3Ys8TvPApZvSp/s9PyPRZobdEVNf3kquRCCJHEvAUgJ98+wq4Oq/qUlJoI8cv+OffRmeuDZujQG4gKP9Pnesri8Zqkmk+XPBpW9cKZSYuIw311xG2jJuXJToUsyHZR4NHtDavTIsosVuAPsMWg0IgW7qS94xwX1UkNgVromhm95EEhcz13H3CYvsTuwFISRxeaiDxFj6oStAQzd0dxHpBhJtJDEPiou45gZS7vG7n/kPH3wUUAp/+okLeOWzTgLQG7BPuMbSTVdx9ugyHm8oQPqh0UFwKJPlzlGan2R0/pYG8cgeHc99sOOypvqvRtvihYOoBQb9x6mbPvCEpXF+4DNX8MV3HTfHor8+hTTOUmrAqtZvk+st3Wfj0s4U+9MKy4NClPoO0X+CtBom2CDrOmmxDmEX4Y5Tkuxv2rVSwbYBco9Lq27atRSpcDpvpPAo0k0Tzz9nrlKtNI6OP2SSAhKKcj3NZRYAcp0gnd+TayNkma6tpoCR5ir5FtsGSZy2aKHSsSbz2ogocMadlxi1UbpfVecZWIQiFnUvd7LdsQqs+rPt1300dJ/AkevwPdkE3yQ+BDQZeSbYCCP+3TUBzTh5TJ5xdNPm+4SB0npQdVgh4jjmPPoVOfnn1GXFuDWJqw3dVCOJ4f3UDTbpke+hZoF72QbA7pj2e5xlTOAcou3SuH5wr5H0oHANizbHoNT94wH2et9zah33nFo374cDDuk+4emOMWtC715W/mDbtmXh/ZJuYtgkrQ+hTy6QXvJE45YH8WI3AIyatpQQsyi1r3SGYd2pKgJJFIRrDtgC42ZNImOuc+W7QXYd4Y7N/Rmmc2WEJ+Jl660jIy3iVCPzL77qOQA0jdNkaAq9IHNiN5zRQ7I0kJHEjzx6FW/8T/fjjX/wAP7skxdNsLe+VJqHnQuKDOK4VOIFZ4+Y13W9XzyS1QoSk1pZ6L/DQnasdyZz/NAfPoBv+/UP4uGLO+Z4ZZ4nISkuvTNFOEhTiXMzTw5J3JtWeNrxFQzLHO956JJDmWiCRG+xvRxsAJE1iU4mVTtM/P1Fz8b6qMT5rTH2ZxWWKfvMzDGkxkbBZXeDmlayE0nWfQaiRSo6m3ZUbRWTkVcIoy/SM+BDEjUCv2hNYv+aEUWUsxS6qZsRlcb56KYmQLmBUGJXpVBK5riJs+MrOjikdZzmKp0T2gN2pxXGs9qi/Vw2GIs1E48J2jg0l5SUJeMCSyDuXu7RTc13hlEiKQnEqpsWPIrijnONxIeAxajk9D7bpy+AZIn1R8GkTPv1UHCTm+u2WADQd+TtXnZsxSZHCEmMZSq5wZyPbupHm+lzaQkIi0Da17rPPz+Or+307TX0ndzzHaxJzPnjAfLeLQYcEckEtrYwgjbavSe1crk4jD3/dDxujpZuemPLDej5J+2IVD95dVTq8rEEf77I5SA4BkksmMQFVO0P9oC+cE1UC4ybdNOFzHXcfbTFnU6QOK9rs7BG1yQ6ClUK+t/dxf9C06D+7lNrWBuVuLg9MbUD1F4iliJmHCJSN2V2X1KKI3vkyh5GZY5RWXjpP0Q3XV8a4M6TVl1zWORiAMzOccHaQoukFOL5f/eDl/Ab7/0sAOBLn3kRd51cA4l5+NT3pGNZtC3u/FPdKkABQH/crKqxvlRiWK7gsSt7vYWF7e0UqKOQJKo5q53NlWgh3f5HNE8AuM1BjZcbhNov9R1QKRV+m0/dtOvIW6dVHNIcr0sbbV4P0EGAft1YTEAKdKmEyuvcaWXBuHur2wJDQhLFeySBAupeS2nczHNPWpGu8LEWNZf+BkB0ElwU/uT6CJd3p61+Zb4MtLsHnNsamwBdCixDzcQ5hdkY+ieHLlV1gGon3I+x9NZUtFNucSMLU0koCmDXhfWl0iQoT21YJHERKjnNk6u39A3LBIfc/Q294xhkVRgn9kkUgu1AcCPWijvPiYugU6IkuibROOQAaj6w0cI18nf4+iR6gxQmcWd+VyC4587/ouq+UckVie4r7DmSyFcMUt1DH4NJquZzzHWLoTKLVPJukNj8f2zrsEXNUI4zQhIjg71m3iQoNq1qr3CeOV7DJvFRwoGQD8T4aUpF0k3djDcpdX2eIIlZlv27LMueyrJsK8uyT2VZ9j83rz8jyzKVZdmO898bnXGjLMv+bTPuXJZl/6zzva/JsuwTWZbtZVn2Z1mWPf2gcyW1r7VR6UUEXSRxZzw3dFMgHkl0e8BJiz8FqktlgSPLutlt1WSJSUkplrZlkUQ9z64cMwDj8P/iN38RAODtHztvaj2kOgrAIonrSyVuPbLUfF7XP5qFLmKetTPHlJpE6yTnYubn4rbl+lPwTT26pNoqzlyqR5JwUK1M4MUVsQN6QRoUOW49soQnr+23aDxAAEmU2hsYZyt+s6c+ie73u2aDxCU8ekXXBJFjUWT93xbTpLhg6Dizqm6JIXDWLdKPqWMB+ghAjCMpoj0hJJERruFqSdtj4ikyvR6oAmoWEg6KeUZbDAhBNdGXITciRTfQSeiKBBQC4l85dEdSOHX7leUM2kC2M56b831ha2xVSjNGoQ7xSGLb2Q3fx1wtUTD7zwRtMQER0H++Q6qVNIY+65pJAvmSCdz605xgah+yNMhbLQS6SKJVyfRbF4GJqonjaIsBOmCIli/WJBpkyb7m0r8lM+MEJLfIM5xwgkS3BUxan0QXSWx/RiGANjN+QgyVk1uTQ8E2fSe3boWRxP4zqr/PO4zd821S3F+72l27bDKXPxaxgFpjlD8AJsVvDqWOovuKaHq/BQbA+5/X07p005R6e8CKl8UrjOtyDokBESNcw9JN6xi6aUe45jrVJB4m3fQnATxDKbUB4G8D+LEsy17svH9UKbXW/Pejzus/BOCZAJ4O4NUAvjfLstcCQJZltwD4PQBvBHAcwIcA/MeDTpSc39WRn49MWeSVYYGdyRyzucKw0DU6sciSW9ibMwsk4KqPZTi6MtCopdNXShcoxx2P6F3GkRSQxGMrA5w9alX3Lu3YdhYAv2mPZxWyTH83qfe5dXT6+OF5upTYWsWhX+6chqVco3lhe4I8A85sLOFCQ+Otaz9Fhp2js7GmCAdRuw0ayznk80rfR2ePLuPJzbFzjzjjehQlP/XE/raE2pI88waXhBSdObJsGpAvexQhQ/QYfUyGtljXXhQR0Ituux5L/w06u4Ijme5cR2SfSbjGeQbmAUemSKhJpOlQTSK3dvmEC6S+eZzNnXtEcv7tBt0fb+jPNzBINDRtem48FFBAX1eqaXORREmEBtB7ACXELmxPzP2fZXywHXJAOZGKWqlgZMPVEvmoxXqO/SCF/pWaXIlBO6X11Ye4+dZk2qdvWdOBzXJHJrEX7DV/Y4LZ9vm33ydZl5Gg5xxe73y0/BAC6V5rqfardSzBv6ic4O7Ict9p1HXR4X3DPU+SSE4IcaZz7A5TEeefu09iHHKuTcS8DusmLJJIoHmmIomicE0guMwYRKqq/b00AZ4qHwouxQSQUG/sa6V2Pc29txepSSS12RRV1MJBEjkkF/DTTbkWZ4sJ1yj7umSfS0iiUuoBpRRpyarmv7sjhn4rgB9VSl1VSn0cwK8A+PvNe38XwANKqd9VSo2hA8oXZll270HmSjfE6qj01sSRcM2ZjSXsjOcaAWpQs1hkyV3cuV5XQLtp6pHlAa7tz1rUEqn+xXe80aBo/b9rT1zdx9ljyzi+Nuy9JwWyAFrCJRZJzMzv08eL2Gw6aGfsuWwjiUKQuDXBibURbj261EYS80ThGocSWwo90TibOwEPV8QO6N9bFhluPbKMi9sT09ybKMZsk9zAhliYRSv+t7XEfJjzSYg7oS+ApWdwTlM8ktgJEucqGCR2M7sxjgW9z9Uy+rxyjtpX13Gqie1jRCCJKfWuHbop9wxQQoSzlPvfnbc0zt5HHiQxMrm1iHUbF0uoLKGrWZaZmrZWvz0m4QFox3BnMsdtR3VCbF6rVpJEorb60B6pV24sldk9ZBWJ7rECHN5RfSe5VvEKrAvVrnLnsrm/CUm84/hK6/28E+xZR947zV6AH5M44uu/9F+vmAyD9oTWcl9PwNRAyv3/ssjY4MhHed+dzPGrf/kwZlXdaoEhifLo+0ScoqU7Jt6TXAAcovvSexzaFkQSBSpz6vPmzlPWE5DAg3Bw2QUP5gFEUH8ff0/G1bv2x7nvk6VoJBzE2gKDKTWJeiD5M5OIIJFalbnJdY5urecTr9SuvzwiSOwK10TVJBYIrfaHKlyTZdn/lWXZHoBPAHgKwFuctx/JsuzxLMt+vUEIkWXZMQC3Avio87mPAnhe8+/nue8ppXYBfNp53z32P8yy7ENZln3o4sWL3nnSpqXppvJNRXTT0xtLGkmsagyLDMMiXu3ScrZzdoHU89H/30YSLUe627PHezwHpXOP79r2eIajy0Mj4gAA3/HKuwD40Yb9WWWcpDNNkHiqcbqSHFC1WJBoahLLQnSsL2yPcWp9hNPrSzi/NW71IExRXHSRlEGgBca8qs294tLNuCJ2QP/eQZHj1qP6HD54QQvskPLcQtnnPOO57o198tw2fvYdn2pq5GCOU3oyfnqeGY6v2GxUy0kWaGV+JJHbRP0CHADntMY5hBIFxe8Qto8BAArhzZerN7PXTXYQYhNAtgWGzBKgwnrOkoRrnPtfZkDIWdPUdhsp9kd//SSe8X1/jKt7bfaDP3DTn3n2Ga0qSP0MgbbytGvjWY1a2Z6HALA0dJB0Dkms/A4oRwkMKUICwj2p/LW1dDw2uRI4YB9JDM9Rql31oWB+JgPV8Ov/f+kzjnfm2KffAnHqpnx7g0CwJzAnUhHIeKVq+5pCeL2TnrlQgOmjvH//792HH/vjj+O9n77MJxc740KMCx8FOqZO3L1uLookGYe2hSjhNM9uTS4QkVzh9sXaf+2knrJuvR07jilDikH8WVRc+dcEju4OyIlhK4B4OEhikTesnMj9xijllylBov5L9Y9A37/27Ylk3RY8+ssj6KZd4RpTkxjqzeVHEw81SFRK/SMA6wC+FJomOgFwCcBLoemkL27e//fNkLXm76bzNZvNZ+h9973u++6xf1kp9RKl1EtOnjzpnadBEoclplUtUjmJbnrmyBK2xzPj3Kdk/y1KKAunuMIdR5YHuLbXRhJT1E2NcI0HSSRKwrKj8Pf9r9PKqr5gb39Wme89sTrE97722fi/v+1lzRzjkSz6vUtGyj/tt4XopqfWRzi1McL5rXEr05UirlM7i5+PjgYAb/yDB/C8f/k2fODhy5jOa5NF44rYAWBaaeSMlOYeaXqAERXI2yfRQyUpPYvkV//rd+Nn3/EgLu9OWwIEXrrXXN/vxxixAw7djpkjF1xSEO+zRRBBM082uExzZKKQFOYZuJ41iW6SBOApMj66qa/eWDpWq09igvOZkjRKtTe97ZMAgPubVjJG3VSghbsUUOrx+tlLu+b9XLgG1CPRVdQ0wk0cZQhhB9TQ9Dr3cujeyphrEKKIAXxtYYxxzcRj2mYAXBLUllz05udJXNA1+dovOovveOVd+Kdf+aze2K4CMRDjJEv1zb4xHLtD//Wudxy1z0G2OaOXuTYdiyCJLitGGic9p39831MAdGLZfd4l4Y5ahYK2vsJ1Sk2iG3MsvN9EBIl9lJpe9w4TkMTae72l5EoIKe3OEQgL0NDxeghwreBjqUrPqb0GfJ/EG1luADh1mw0FOr50Sf8lfyaGblo560TofISEa1i6aVDdtCtcE4EkAsG6xENXN1VKVQDenWXZNwP4LqXUz0PXEgLA+SzL/hcAT2VZtg5gp3l9A8DY+fd28++d5v9dc99fyCamJlGfnlmlMCz7T0gXSZzOKUhMQBJrCgDl2h6X131keYgtqkksbIY8mm5akSMpSxDPa1vL8tUvvA0vv9NmaKXFHwAmMyvck2UZ/tGr7jHvLULlXPKoNPrG+eimu5M51k+u4ejyoNXP0s1+xsT3rkx5WWTYn8m/66OPXQMAvPWBc9ibVlgbWQVQ1pGsagxLjRoDMKIwG8u2vYQso+3fELnzX9fKLIKPXdlr0Z0GntoxSoocdRBnQlJ8GdMQ3Y5zYkIZ2i5tKHbTzvNObzmqYws4MjQve7wwksIJ14RrSXV/0RDdR3+v/jss5WumxUzSnBHOXFGOMN20fzwSSLgRQSI1P/7Ueb0N0O8S21I4dcJ33qLzkq96tk0kSkk4WpdOrPWDRBFJbESyJOPW15jsP4cu1cpfj0Xj+Ocm5Ei2z0kcQtFHewB7DwyY8yJl5AHbHmljaWCSmN3jsZTAYDDL91wNBWDSvu1v+cCvkzHiRlxw76dyCv5Fh+Hx3u/78tZz4uvVOmioqJe2J0bZPc/tGeb6JIasn7jTf31XjUuuRFFwGZqw6//Ic+wG6c2xQsFlztXqhymx+nNSwCEFiTzdMaqXI/OMhmpr6ftdk1BxSze9sUiiuwf5kuS9cc3nLN2038+6ay67xqxb0jVLXEvi6KYd4Rqim4aCywCS+N+zBUYJvibRJPyUUlezLHsKwAsBvL15/YUAHmj+/QB0zSIAIMuy1eY76f2FbDzVJ5ec8llVt2pUyHamcwzLHMdWBqiVVvccFDkGeXxNoi1uz9mNXh+fNtEcR1cGmFY1ticz86Bx9RBkv/yuT+OeU2v48ntPA9AbV5ZZR5KTIHYXhF/4phe13vMFUhpJFGhzCS0YumhnfNGw/jss5RrBWRNcbywPoJRt26Gd3eZ7Ijay2ln8BoUfSbzQKKre9/gmdidzk3yQCqlnlUYbCTl87EobSeSCvZgMldSqg2h5APDY1f3W5uOrSZxWCsMyx1FH7MBVN5VrL9KcJoUwStelDcU7u1JTZM8YJkuokUTvoQyS4l6DmJpEgHre+Rf7rrop2wLDhyQm1AmapsAOapDaAkAKpA5iu5M5rjT384cf0ckZWkdKX+BGrIw8wwd/4DWtpuJlnntr4taXSvNMLreQ9P78wkgiFwDEoNT02fa9HLone89NBG2R5tlF0mNEO4D++uptleJjMjSvcQlcM0eOEhhKrPcCAHrdnzjq9ZbzJEnssbiEn79NinXI7WuGWRaFJPrnSTW27jhpf1sblRjPpri0M8Xtx2w9uphMjrlPeucyHOzxbYnC55+9brXyKqLSd3bvfyBMNy3G0Ln8AAAgAElEQVRYPYE6GDToz3XGBX6fxMoJJ04ZJDEQXMrqprxwjWmBcUjqpiRcE824a87bcoIPGkO3DokUAdROR69XmYbVmzdShWsiWmAAnxt00yzLTmVZ9o1Zlq1lWVZkWfa3AHwTgHdmWfbyLMuenWVZnmXZCQA/D+DPlVJEI/1NAP8iy7JjjSDNPwDwG817vw/g+VmWvT7LsiUA/zuAv1ZKfeIg8x03WYONRihEukGm8xpLZY61pj3Elb0phmWGgacFQ9dMAJhnIq/bpaQea9Clt9x3LogkKqXwE2/5BL79Nz6ET57TWfV5rTDIcxNgcs2sfVkjXyBFwjX8uHg1QxskpikgWuEO3qmj7y7zzFxbEoUp8zS6qZsh8/VJ3J9WRhn2/ic3cXVvamTaJbrprKGbUlD4aCdI5JICMaIwOovZv97UugTQASk5l5lTk8g5CboGN281YPapm8Zk1rnWAbH1ThxFKbkmq/nrDRJNJr87x7Dz484NCNdp+vqSds0g6R6adlWF1U3j7n+7JknOZ1BMKWHTjrW3PXAO03mN244s4X0PXwZgs8FFnrPJjq6YzKmNJRNYAvoeYoNEBwGjZ3ppYB1lrkzBpbZyxgnXqAgkXUa3Y5BExtmNQAV7NO1IJLFfTiEL15h9iqObemiqZo4LJo64YMOP0vWvt9QjrnUsJnERQrKMn9Bat8LBvbR3h2ogyyITnXl6/eL2pFUDKAvXxPTT7NJNYb5XMs4pjxEO4nQBopDEznND538x4ZrwHIH+dQshpRxzIn5NaL8WUkqWwANpfzMtMG4Ak8S1bluW1NINt09i7Jgiy8S91FK7w+JlZmiMAA3QF665TnTTw6pJVAC+C8DjAK4CeDOA71ZK/SGAuwC8FZoiej90neI3OWP/JbQYzSMA/gLAm5RSbwUApdRFAK8H8OPN974cwDcedLL7U6KxWCSRM0IYyUFQSl/8Ms+8TUI/+JkrpubFbCSFiyTym2iZ5/jK554xr/salwM2AAKAX3/PZwDYAFCCw93PcCYt/kC7JrFrKQ7oosI1FkkpMK8V66Tpnoi56fvoilv46l+kOdI46Xc9cU0HeK97/hkjdOEiiVKfxGGZtYLEMs86ARifsfNlTaX6NjdIfKLpy2h6y3mCFE2vznBs1RGuMXRTX32CLyPM1LFEKofyPdEiHMKWIxnOWnNOWgzaw6HpoXNC5z8m49pXNxWQRE/Q1p2fZO3Nt318c6wQkpjFb9qx9sCTW1geFPg5hwFB7SyK3FODnejIA+11mdBb3zMKhNVNubp0TeUMIYl9J82nZEvWdVpjpfw5xctYJDElwWXQd5ZxEX52WEqmd5Z9dCkmuOQSfjEURE6kIoRkcb3sYgIpae8OBRss/a0x2psv7Uxac5Ap6JFruXvdzPw8YxiUOkY4iEfbYltg2P+PTUBwTJmqrr3Ho/WCqxME/P00u5ctBvHn9uAg3VRgoUj7m08Q73qaEeEL+Gldo99h6Kaz+BYwWSbvpTHCNb1zGStA0xOuoZsyhCT6CaWHEiQqpS4qpV6plDqqlNpQSr1AKfUrzXu/rZS6Uym1qpS6VSn1LUqpc87YiVLq25txp5VSP9P57ncope5VSi0rpV6llPrsInO8vDPBM77vj/GnnziP8Yzopg2SKAWJc4UytwEHoLOhg0JGEt9y31P4+l96H17903+OT53fNg+Jr5k7bYbDIsfx1SG+5gtvA6Az3gBfowYA57cm5t8ff2oLAEx/RZ9DWCnZafKNG898SKKMSPWOb5DEVLppc55KOUtFgj90ba/tOXTTlEDWyZBJQTqg6ZsA8IaX3G5ec4NEnsama/2WBoX5LUeWByYI4dRso9pLCJs9UW4BTdernE3SRwuhmkRqzQHA1KX46KZe+hUTOMcoh3briOifIYdEog3FZK3TFSj791eoTnOQkHGlS+ulm3o2e6m5N9lkXuE/feQJjGdV634Tnc+Ak8wp2R7UZlWNpUFumAIAsDJykEQxcPM7aSzd0VGdHpog0VWcXiAg5YK9GCSdcdJi6KZdpzX2cvQc+Ui0H+gjzn51U5nxQvf3UPC4ZOGaUDDbCcAigpSMpY3Sb/AnxTgkK6oFQyLaac6lsC77xLOk57QVJDrnySLi7c/HrOXdgNsc2oeSMmuQGyBIljHBfQQojiJD7/4HImjazL4Yut6S6F9MP00ucRETpPfqhpU/2WHoppEJIKN1cKPppiaZT0nyNF/S0E1j+oQ610NMkgT2e4Ch7kYHiQUdpPn7+YUkfs7bx5og6hf/4mHsz+LoprOqxqDMsDayJ3lQZl56xrsfugRAL0Rvvf+cCTbKPBN53S61CwBONkIJp9ZtewnOITnfNIu/++QqzjX/ruoahROQSs3cRcfOM248q1qKqK6ZvjExohgmSJSdXc5c4RpAQA0qHdjTtXWRRE5+XpyjiyQKQTqge04CwHNvPWJeW2+CRKmWdNbMEYBBqd1ehJyQRkwAVuQ8LXbbCRL3plWjZEZIohykUJAIAB/8gdfgF77pRWa+PgXWEG0lVREP6DtbsYjIIs4WVzscg/bwlCi/g7ZIcsXUG3N9EgNZcqnhPAD84O/fj+/+j/8Nv/W+R/i61e49GaDbSa0lDmKzpjXQmpO4ozpZuSbR32C66xC64wD9jJB4zbJTk7uYumn/eseg1HxNVjqSSJFUOk01QhBDUDd16/K54wD9YANw90WZbtoNtoEFkKzmn6F6v+6tFYtkcUGb7x6xc7T/H6UAKp7/ULAhl7PQGnNpZ2r8pGGZ2/pmBkkMRWBZ1hYTUxE1idya7AYI4jjmOY1PSnL3iHcYmxgLKY5K180tC+GME+WJXUu44MarbhpAqbvPtiljudHCNQ5KzpXASNYNEqOEaxyfMNTbMoq6a5DEBLqp+3lVA8giMuU3g8QoI0SpqhUmswpZ1lY35WzaOMnkGAM6q+lrrn7f45v4G/ecwAvOHsF7HrrkKJc6dNPO0C6thhwSOm6W8cEXBYkvvOOorhmoFWa1DkDomeV8tDoCSQz1SeyN89S2dc0EiUbdNM6R7DvJTPa5URck9JeuewtdZU7KY1f28IO/fx++//fuw7yqe06yhCQ+fnUfgyLDqfWRcVZDSOK0ST4AljL83V9h5d05IQ2336ZknGoZAGw1dNNT6yPsTyu4amu+mkQSrgE0qv3VL7zNvOdTYPU6ydwGFRFILFpb1b0GKmIcTb9Lbw1mn5n7K6RuavrERTwDrpR9mfPiWS6VmDMfKv7hR68C0HV/7rWUas1CfcpSakRibVYpDDtrsqWb6mvNNZheCEl0kne3NqwOSppIa0JIlITrVakQI0DDJS5UsCa36zgtiojoJEn4WO4xyHyIm01AcEhiOAnhrlsxzzYg15v5fp9E0fPNT4/r003jauI6NZAmuJfHSPtbSOBFah3j7ssXtyfYawT/lgeFvJdGJtNSa0lNCYAb3EegNmz9XQRNuys4ZESRIpIynLqsv0ykr4oNhNfyrJMkaSYa9Zx2z0mYbtpffwAPkmjoptd3/e9az0+LRBLpXKe0wHADUqmdXYxwTY/RRkhisAUGZWYoSIzorQgEkUQvGTXLst+CZWmIppT6lvBMPrftyWsa8alqhfG8xlJZeIMNen1Y9Ommw0KWjP70xR1840ufhiu7E3zksWstypLE66bjE0TffeC4hQfQCzcAvODsEfzeh5/ApZ2Jaebso1b66mZ8gdT+VK5JXESAI7UmsVuTJWX/XbopBWGt3k7MuH/7ns/g33/gUQDAd77yrh7dTlp7Hr+6h9uOLiPPM6wMS+xNK6yO3FrS/ph5c18BwPe97l4oBbz2+bYWNc899V++PolMHRFgaxLPHFnC3nTeoo75rttsXvupXlwWGYEAjEOXVIQAjVjHEs4Iu9cgBoHk6JU3GkmMem5q66hwjp1SSqNLgSCdSwBVtcLjV/Qa+dePb5pnsoUkdp3PCITiegvXzCudBFp1GA0rToN7oI8cBtUkJeEaIzqW48wRHSRe3rHrCbcmhBxCjpIZV5Oo/3bRvfD93x8DRKANeR9ti3GQARlJ5OZq15/+97n9g9nj5W2VwDR2gf3/GCTRJybmrUlkardj1DX7DAj7umTS+Q/RFos8F2vnAc1yubg9wfntsU6SF7bVAJfwiwtSuHvSM4ZB0mNQmyyTETrvHDsJ15hAFtB78HjeT6bF1Ptx7RRC43h1U/8cNejAXbe0IF3/P58EPawWGG6iMk24Rv9NKXlikUQh4e1N5nfBoli6KYckhgJL4MA1iQ9Bi8Z8GrpJ/d8BUEAL0OQAvgbAtfAsPveNgsSre9Mm2MlNkDgR6aaqhyTqPoky93kyr7EyLLAyKrE7qVqUGZHXXemFlW4e+ku0SgmRmsx1k9bbj60AAM5tjk3W3FuTWCuRouGvSayDwjUxDylt/sl005qCRJ5uR/SYMs96wjVlIT/YQHuRuLY3i27S+vjVfZxtJMUpOLTqpjw9o1bW8fnOV96N73pVu1MMJ3gTVZMo0Ia29jWaenJthL1p1dp8fAJHMwfx7FqW9bORMVLmEpIY49gxifUIatniSnqp9V/c/RVy0Og+iHluamW/Z1D02Qz0FeFemv3Xz2+NMa1qPP/sBqZVjccbGjUJdXV/F2DXsUVqnRY1er5dCqKL3LvzItOBmx9tYGn5jgP05feeAgDcc3qteY1HwEPUVo5aFuu00mftuDhqWRs1o9fDx+srqfrHcAqsgL92zI8kkiqqfH/psao5rn49qgdk4m/TtdTt1+rA/a+PxQeXPicS8NBNA3N0P2vGhoLETFj/mz2RWmY8dmXPURLuJ9Lo2CExsUwMgOUxnF9i9ugQ3bRzPhTikiTtREL4/AN8YiwU7PkEh0LjFg3SObQ5JgERK0pl/IobXJPo3tsp+00XqJBigPYY/df11RcSrqGAm85ldG1hE4eQeE19CEiiUuqH6d9Zlr0NwFcppf7See1LALwxPIvPfXtqU1Mzn7o2NrRJA4l7kMRBkRknBNAbVlnk2J32Ocx1rVDVOrBcHRbYncxbMtkSr3vWKHKSfcNL78AnntrCd75SBw8s+gJLo6LaRU051Zl2n0hF5dmk5GywwrSqg8I1UaIwPSQxLfsjCdfQ/xZ5bnpOUnLAp8gG6ACY7Ore1Fn8ci/d9OL2BC+78zgAK+oy9AT3brsTyfhmt2F1U0m4Zns8x+qwwNpSif1Z1cpsSmIHNFe39qt9LD6LSfOXjGs2HJP97NK9XPVNn4l9Er3H6t8nSvnPvTSucu4jdn4eJ7lrleMAcEFiiNqq58ivCY9c1iq9X/rMk7j/iS18+qJWZ85z2fm01BoBSbwhQWLdQ5YoaSQGs3VI3ZRHUuYOC+QVd5/EB3/wNTi1rhFFqY5rXiusRMmft++tcPa/k31GpEMo3P+hqLQv+BR2/iW6qe++9CUX7Vop1CQ6Ca6ySHPk+6I84fVHcpBTHfm4msQuJdl+n2RBJFGkhUvCTfr8nz26hI8+plW43T65QD8ho7AIlbm5boF9o3u82FrGXpAYkxToJHgNkhhD706ku4uCQypcOrBITWLBJHjj6ab8HtAdm5L8PIi1Vejl1mi9cc3nfCKIXXOBAxFJrCPuya5YnVmTY4VrHCQx1CMRuK41iV8M4P2d1z4A4BUJ3/E5a0S5m1Y1zm2OtbJkc7G8wjWFRRwBfVMN8oyF0d0altWRdshJSXVU5mKQMm/qbMjWRiXe9IYX4tiq7k8nIUREoyJHfnc6x8xFicRx8qYozZEKe91z4Ron/y8ZOTqL0k0lmnA3AHv68RV8pmlFUuY5K/5ANm7qVAFgc3/WylK6VKauXdmd4nhznf6Hu08AgFED5YI9ovBINE6ADy5jC6K5zN3OZIa1pRIrQ41u1871p+vNXYPJvO+Qm2MJWUwgJArDBZdx9X5dxxqIcAjzrkPSvB7hkPSofREOAtBBEiP7JMYkSlxnlqX7UmlD4B7hnlGqb37FXfoefvjiTjO/3Js4AnzOp5xcWdS4IDHr3MucSqCfAso7M13hFAoQATlxFw5IGUQkAkmkr0wNLnvzdLLh4XHOMBXn/AN96qivJi7PM5b+BrT7VHJWdp7TyPi31zogLknFOOQxQSJzn8wDzdW5cZZq7h8D+Oqk5PMo1c4DwK1HNJL46JW9Vlsud16ADr5UTJDC3FtAXADcVpwOj+u2O6FxQeS+s3bFJiW7CDDN2V+nrP+yYjKBdlLdyxaH+HMIsJ82LYouCloJPq2D62mxjK+u0ed8IojSGLdOX1KkjemT2KtJjKab1vZvFJJ4/VpgfATAT2RZtgwAzd8fB/DfEr7jc9ZI0RQAHrmyi9EgpiZR9RySMqcWGFzmrQliityIKVxsalhWR6UTpLTHUZ2NZJJjR84PqWluj+eoKmVqGyWRinktH09CDUIbtk8lkzs+sFifxDyzc+A4/IB1Hu44vmLahLQpuP3vHs+q/4+9d421LcvKw7611t7nnHvuvdX16mr65Wrc3XQDbTcCxLOJTUMEthTkOIEIS8QojuNECkqIHVsxWIqFJVs4TqQosWKTOH+sOAgpOCFxlETmkcSY4E4cFAgY6AYaupuuoqpuVd17z2PvvVZ+zDVfY445xzf3PdWpNndKV/uevffcc+6155pzjPF94xtBnOKVBwJJrDjbD6/3uNgd8Mwd5yT+e3/og/jvv+cj+MJnb4cxC9qokWcD1Bww99iut1RXUz3ZjDg/mXBxvc8kuZs5iYd6TqJm/MTDvjpF9bstsA9tmaS/ENfDj6fmvzR2xmiQx+d6kJS8lte6jmqGbkcJjMy51xCKYIy356jtCS+tubsfeudbMA6OWuY/yzI+6zS2m0cS9/PS2IPWeR7KeVpiMq2cRFVwpYEkWk4DgCLfiUG/AC0nsd2vRBLzz6v3k44sQ9Fb31usE/fYFqDRrn8UfVPnKIICy9JWgwzzLL4bVzZgXnLqOhW4G0qaaioc1h6vL7hVQ3ssWuxYuf7ennn7mo+7LMjUzeVewjrp0klhEOBacAWwaKr69egVrmG3sWks1/++EZR3fco9wfez1tYxqRuanXCYDXVTC0kUnb0NyrLEjm1xP3M2aK1+tmz+PUwJqlcf7vAPP/5SUTsbUJztBFyotaLuMF0CQwjXzAcb2gZuFEn8bgBfD+DVYRg+C5ej+BEAn/eiNYBzAp5djfnffPkCt7ZjWCAW3TRtT98+cSUwlAjJPkGyfO2uF193Efpb20mNBgNORdJSrdTWcKC2rk7ig6t9ZqTURCrmxiFVjQYbBuFGHNitFvngbSRXNk+TjPQMQbcLKrHu9eefOQ+vuRs7fo5sl/sD3rYehvcudsWGoG0iXsTimRVJ3EwjPvTOWApDM8hjnk07sbkYjzBkaonbPgfm/GTCw90BF7sDznzZgIrD7ea6VJHjNpLYjkjq9B/rYCsNZIBAN45AEjXkjHFkVSSRVTel7pv4OVpuYUAMWihpZU94+cEVpnHAk7e2ePr2aRJcGU3jsy6I8cbQTWv0w7os+WzQvep0fkB38GvfzRTJURERzrBz743POefGRqR6c9tiv/S+4fYfoLz+Qbim5qRUHO7rhO7bHG9930w4275fNyK7vi4RSMBCYPTr0QoK+/Hkb+0/r9Zqe4lFi62tf38uP/fEWdhnz1MnUaBm/hModdNOB1gLsIf/N4bTEGAG7SxtLntvBfQzf56NEjyV382xV/rOUhYV1wJ+luAZgCLgUctJ/FyVwEgDlRtlj6z2W21JP+3W+fvtf+On8Z0/9DP47TVlbRxi6lgBVISATNueB5Iz4FFKYFB005Pmy7STuCzLry/L8nUA3gfg2wC8b1mWrzu2eP2brT28PuD5Z26Hv8+2UzDUa0mr1wrd7v1vu6PmAwGRnpGK3bzw2hXOTyaMYz0nbq84o2mrqu+tDuH5yYRhAO5f7bMDqCZS0aK7jBVHyhJOiflYTAkM93hMCYyUDy77xXIj7nUv6OOfqyWIA0659fbJBnfPNrj3cBeKO3tqgbaHeOXUp2+fli9CN8j9wduu23bc5m8ZrrdOJiwLcO/hdaANWTmJrehzgQiS0e6StkXWNlOcRMsslOqmPQIQUvCGyX8EajmJbUOXOUwPczTUa6qJ6WfWxqsFPJ46P8E4Dnj2zkmouzoNQzVwZKsmvjHCNX6vTINAbrxKbg9hpNWCK4B+4Nf2BLZOogxcMIqEgAyUMEGS/tw2oNyDFrIPoF1/99grcLRf95+aQS+DAkz9O0ARTpkZsY/1vZlzQyp5Kk4blZM49/1utfPNFK4ZK+kz63NnmzGccalwXU05l0G3ex3gsXL93Xjta3KcuEt5r1lj+dfV37uTSgt4dM84S5XvxqLiaVsWq9zGOqdKAEiurVbw+SZbWHMN+1prh9ld92Hwgjf6+fvgao9f/qxLvfj7v/iCG2sYIk2+Yie3AL4iNYsugeGFa3pLYNwc3dSNuyyfBPCzAH5rGIZxGJhZvPnbxe6QGRW3kpzEmpPi1B3zr//80+eOHmPQTb2IyQuvX4X/t6icbUW8Sk2uVelvGAbcOdngvkASR2URe5l8C0lki6b61rMp+M/yBw7LW/e0MY8kyN9AUvve9kR03qxNxCm3jnjq/AT3Hl4Hx8IjkFof7yR6uqlsLSSxNyfxGGqZb16W/3y93i/dvy7KBlQRyEZOYg1Zak1Tp5vy6qbeMGCorW68440tiaQwBqHsx0Tx0/e12rK0841T9LvWtDxZwNFNPSL+1rvxvrlztlENNMBO0tei+I/a9klO4v/yvX8Av/QD3xpeq0nJM3QvXbgmDzrlffQ9waS2VmijjGEHlDlg3cJN/v/EWi7FXYw5Vilp9RIYfqz6/tP63fKgwLzYwSZAc1IYJz13SF0/G8mtU/v6+nH53kYwp3H9WzmJJ5sx7AklkqjN0Q549OYWquwOMigptyCW3q1/t3Y/FUlc+gNH7m9rL9dyEpk8ZeUeNfaSGr2ytrYi3fRzhCQOfU5iqjFQ238AhNqgAPCx33h5fb/7W6PJz8a9BiT2RTfd1AvX7GM/qgTGDdFNh2F4xzAMPzoMw0sA9gB2yb/P+3Z5fcCTt05CuYKzEy4n0RvzT527C72ZRmw3o+pYpnRTX8frxdevYt08xUDw428NeFrjWacO4Z2zDe5fOjVV/1na5s8iGzXhlJuo9+bfc+ukk266UiKiYS2Ea8QcU6GJFEms0U3PthOevn2Clx5cZxGympMekMRz3UnUkthjbmebbiovozOACNSsZrhOQwhWvPzgOjjoMSex/A2c4pk+lra2KNrQWFJWqO8m6EaMsp02T8rYCusknSNnEAI1JLEWXOFzEtODXFuTLJKo002vQ7Dj2TvRSXzmzoktXFNzgCt1Ox+lpdT8k82YIRveadACXBYFVM+Jy4NOaasqThPlNtyc4nPHrH///27hGvF5bD9mjtY6aZ0dteBWUwBCBAWYexQ4PicRyOmmziBv9xuGslYuhyRKcRd7v/MfWdsXmsI1yhrxJTBOpjGk6vgzxH+e5rRRjpQIdlj9amJiQPs3kL81QAYl5foPomDNbmrwzl7HtfumTZNXz4Ajg8mHuU2b1ujufs7jUPb1SNsbXQJDq13IgA5poGYzDkUeu2/XyUb9mYRu6h/rpco6fm+2BIYUrrmhEhg9KODfAHAN4JsA3Afw5QD+OwD/esdnvCnbsix4uDvg1kksivzFX3A30Jba6qbuPT/xZ/4gfvbPfxMAYDsOqmOZ5pv5PMEX70cksUrbUgRy0lYXSYh0wNunm5VumtfAq9FGW7L1gBJpIlUaa0bhJ168Hw4DP6fTTrqpj8jVUEs/R3+DPpcgIq1kY8AFEc62E567e4oXXrvKKFK13E5PU67WjlSS2P1aa9KLtYNtsRVAa7klTvF2DHmyv3P/KtBN/TWpBT1qm52kcQJ8tLuQTSe+m6R7MUqebi79AhD+Ky+iH4skpuMxlMz0fa2WOgXammSENLToM5Cr9HqD8GQz4u7ppm7ELPl3KMfiixuzbX+YcVKp3VnNyTIct7GGJDYCOjWU1HRIVTo/g9K5x2MQyGMpgb05iVVhNuPMmcZRdVIsg1cGBTyzxmrSAViM3C83lnvsFfPRauXOhJNYQ9taww3DUNBUAZ+T3nYA9HSDdf1vRrz1Tkk31XI7AZgCX4UoT/J8dY5KACJek05Hambp1vFvH5Sk6isqQZK2kIkevD4sRsBPAQ8oUR7FTnC2VaNPJQDRqvm5XYVk3ogW2AN+b+lEEtMczBaSeJUIXr74usvT97a9RpNna3dm8wxIokU3lSUwFjIn8ebopl8H4F9ZluX/BrAsy/JzAP4EgD/d8RlvyrY7uPqFt7ZT2L6+4vmnA5W0LVzj3vPk+QmeW9UvN9NY4fB7o2II6OFhXgKqWKNttdRGXb9SWc31S5DEU083jZ+lRTospbN6raV2Ll3L2P0nv/06PvrXfgr/2U99ws1hfU93CYw1+uM3JRml2ok5PpMgIre2U3UzBoDLvaObPvfEKV54/TKjSGmOjZtPW5TkJoVrFnComXb9Q6mUdXObl0gbapUumRuH1DSU65GJJGs5IsvS3lTdZ+bzpOk/0kieiah1xSBhkcT0NziIPFnZgmND3ANp7lSLJdAyeGuo+MPrfVgfb1v3OZ+zUau5yqz/G6ebNoySqMKaX0vLcashKVZ9v2qeuFEDFSgdAFY4pcxJtI1d3bBudlPQHo7GBihOkXHm1CL5acCz1g+I95tVV843GWCZl+PUZemcxE76odaPCW75fqWzYYiSVM6N64MzRrfTiPc+dweAU/72rUbJNAMeRwQu9FxeIihZcaSsH1wikPT1H/TrzwiZaA6HmTpQ9AHx3fop0LV819Y9upn0XNdHbf/x3/8VvPfP/z3sDnMI5qcgACue6N+/mer1FT2S+OR5ROP8/zVVYEq4Rq7lYDhZRpCPXvfmJHTY2G4AACAASURBVN4ckniAo5kCwL1hGN4K4AGAd3Z8xpuy+fIXt042+Ev//Ifw7V/xLnzle56KdRI7SmAAWNVNtchbiSQCMfJQu9GuD/XcLyDJExRDHhIaw92zCpJYQxsMZKNMUI4Rm2Y/5bq8dN9FYH7s5z6dzeF0M2IYOkpgrIddrQaPpPal3/FD73yLkZN4wK3thOfunuGVhztc7qJxL/PhfGPEfGoGk6UkpuV/UQaJZriuEXZfvxGIUubB4TaQatlUZ+/I4sY96o6Bxr8+323sJvO3xjp0GoTaYW/WSezI5U0PNu2gD2qjRkReWyPpvvFFb7sLIC8bVKMotcZ7I4RrNDEx3yKbIX9+P89tx61iJIegnyZcUwncmeqmyh7Ul5MYn6PW5Fj2ST+vNV56SWYK7dfPDubMUYNbhjMlgwLzbCOCvp9EiXgnPT7H7FuDZsgTAaeauinlgCnOhrUml0VjvazrfxrwbR9+B4B8nzoGEfTj5d/NPfbSTSlWiHpOEdfRjyeDku1uhZowsOZEE8EOLTDfdNzEdQT4POUi5cOYo8aSAaJtobVaaZtHbX/nZz8JAPjHn7wX9ppxqOdNai11it3+o9ugV6sd+K6nboXnnlrTizTmVgzU1seW9V2juqm1KIVwzQ2VwGjjjHn7PwD8YQA/CuB/AvDDAC4AfKzjM96U7WJNPr21nfDBL3gCf/XbPwwAGAf3IzF007SdVJHEWHz5C544w+9962184sUHAVWsHqKHGdvmDeoeZdQmRRJvn2zw2dcusRnHYPhrIhUWbbTmyD5KTuJrly728JlXL7LPHscB22msOumyRSTRoy/5WP76p9/t3/zG9+EdT95ykaZKxG5ZFlcWYjuFBP3APx9zGkOKpIacrAa6WuYMrK8ZTopmWDCbv44kLjjdjrh7FreDIidR+Q0OjYNDQztn4tCu1YBkapsB8d6hjd3CILGNLS3/iDEIN8ohJcWUyj4dOYkJTaqFJFo5iTUEzM//S97xRPF6Lf+lNZ5bjzcbSd7PdSXoGEnuQxLrjnOdPZEG7tKXzTqJfg8Sxq6NUmMdL3cuGYM8DcKxNpsU5qGQxAYikr6uzVFDnNO6oFpTkUTGSRTnYs/+04sAa/cAQ68fhlIkZ32l2U+jwLHqmodlwZh8vl83p5sR7376HH/ru78SH3pHWuIpD0Cw7I4SpfP97Dl27+VJMGcI+/qC0TCu43jumgSH1LDJ1bqMhJMO6MI1TVZIsiaDIjfa1wOolGUxUPjavX1oBOBqVQAetX3pO96Cz7x6iZ/++O+E4LlXKQX4gKu/ZjUhSiACSO9+6hw//6nXAEQkUQtupUI6tTbKeT6KcM3nGEn8LgA/tf7/3wbwEwB+HsAf6/iMN2WLSGJ+OTxEzdBN07YZR8xLecOkdNNhGPAdX/luAMC9h077p3aj7Q+2uimg0718v+eeOMWn711mZQs0ZCnC4Zazlz9vilQ0jN17Dx1F5ZX1OoRk42FYHW7OcvFqXzX0SxNI+DPf8gH8sa/+PQAUmH9t14cZy4KQkwg4hza9jum8W+OlTXWIZvZgKw3yXtTMN5+TmDqJQd20gWS1jOuWuqn13Uon0TaaJN2LcUjdPI/IY/EOqejHXH8gv5Yscs8cps64Wec41nNC24ZFJZcuydvzwjVf9u4n4zwVR8pCSd8IJHHX2CvrEXmbtqgKdzS+n5aj5v9mDMKyTmK1C4C4XqWYBoNI5XPkgyulkmd7jrVIvhVgrCEOFt1UGtdpEKXVxkHmGx+n3MpekwLtgW3IS5pkRM3seWqKiy0kfaqkHMjUiI9+8G0h5cbPUat3SOXtdSOCKObIBiXTMXw/Zv0D8cxnlVtV4Roj2FGj81t5gpO2J5CBI42Cy6D2qjJ/7b6e6s7XozQ/3AuvX2WBoVoJJK1lwjUNgTWPJL7n2Vg+L9VzqFcBIAIe0km0lEqLOomHz21O4rIs95ZleXn9/8WyLD+wLMufW5blM+xnvFnbw2vned/alhdrUugBgDs4WnRToDTsZHmDb/7i5wAAv/Dp18JY7rPzz9vNdQoV0MoTjDfIh975Fty/2uNXX7wfNv1JMSStvCWJ2Mh+x+QkeucQcNc1NZy3U91Jl83LFtcKtbaKX6dzlBudp5aebka8Y1W//eTLDzNqH4CComE5AFoSO+OkqGUiFk5dU9vsPAUuo5sW6qalYTEvfQ5A+LPlJA7l+vfPt5pEuOmotZhnV1Hwol+7o3bYSwq0bNuKgaa1VN1UE8Sw6J+AgSQm983Hvv+b8V/9ya8W/cr5APXfTtt/HrXVAneAEqFdm+W4jaNOt9uHoJ9ONwV0o4lSN5VIYrXHOl4V3W73kygdH1wp8/aYPkB5dljqmu4eVZgMhsEr9y6Xw9WcopunuAcYIRONbsqgq8Og7K2EIS+de8aRAnRU1kISa2eAlT8vz7fF2A/CHAe5JrngYvpe+f9qP8WeOYbeHc5tazzVcWhT0AE9UHIw9hLpyPp59geO7IBTQC0Ve7IFHOxumEkCAK+vzLQHV3vMczyXayWQtJaWF9k0BHZ8Xu6XvD2ya8J4CnPrkCCbtVbYF91I4hz7MSUwbgpJHIZhOwzDXxyG4deGYbgchuET69+6vv/nUbsMSGJ5QZ1BXhehOdmUl3BbQV9SuikAvPetd/BHv/yd+I/+JU9vde9TkUQmYqo4bj5f5ve909FAliVu+qNiSFpR3ZZCmpuLlQ9UXst7FzHZ/XI3Z1L9PZQEH/2pXf8gWV+ZY01d1q+Ps+2Ed67c89965SIgKnGDrDjOjfE0Jc/0M9V+FQeMiSKrAhzr+jpPlOluecXdmmGdoL21sYp9laCA6hRcPifRXxc2sl4UBacMO2+Q9/UDysP+ptVN0zyKOt20/hkaAunGz+XWn71zmsvda5Fu40CcKsb/o7SWErRG9wUIx63i3BzmGcOg/3a1ckbHIIlcTlz8/NCPdNw0cREmULLPxiIM68b1N4WDlPVvCneIe4cVrnGKx8k4DJJYQW04JLHPIAcaNHmL7qg5AEs738x/N7kHRSXuyvlWoM3ukQl4qOyORs9aoDydvzqWGvA7ht5tn21+npqd1kJy/eeqojDNgGsZOGJR8QI8IFFLDaiol3e6eSYJALx+5UCH+5d7h4CGM7GNJP7FH/sFfOff/Bk8vN4HwMH1q8/T3wNfmCCJvk2TztRridb48fx7AYAvgSGEa9gSGDeYk/iDAL4KwJ8C8BsAngfwFwA8AeB7Oz7nTdcurt0PfUspVVCjusQoWnnH+U1TIlkp3RRwG9F/+B1fFl6v1ekzI0YSnl6bL5IOOIc0fqd6ncTooLWj3d3Uyoaxe+9BRBJfu9xlvO3tNIYEeat5lbYp0E0lkthWYK2py/qN4GQz4omzLZ442+C1yz3e8eRZ9t2q5UQqm7KWxE4hiSpFicuJ05FEhxKlhkJEEnWlWDPfUo2Qu0dLSKAUVuAQQeAI+k+BpNiHqO8no89MP/n9bHVT/fprzUVN4zi1HME2/arcR4DjZPIZ1b6bTkmp5YkDjYCH9d0SNDc9InaNfnpx78WmSCr9epCsYk0SqsAS/XKf1+6XOrPjOFDqyr7fMeqa6r61tGlbMijACtekdC/vjL1hOaEKvZtDsvIgVRROYZzLviB0Lbgi7RnZtDIpfg7tOeasnJ46ifl9wwVc3Rj5eGxQIJ43+fOt8bTgnRW8qPZrOvfxfb5xiL8muGXkJFaYE20kkWeJ9bT7K5LohBpTRLAeSACA//If/DoA4Kd/9aWcbjo2hGtW27AGMKlIopm36u+39Qm6BIYQrlkWjm46tt3AHifx2wF8eFmWl9a//8kwDP8XgJ/D57mT6CFjDRXUogFAm2rhkUIpuGLRM+KGpSEp9fnXoP79PON0pdCebEY8sxaCj0hivU5iuyaOVoPNlrsHdAP0lYcRSXztYpc5IF100/XG9je3NKwjksgbdunfvt+7njrH//uZ1/D2tzhUsS7/7GgkdSSl3FSjAmjtW9aRxGPyIdw8yyCEz8+dxmGlRNWUYmsOtx6xBtqRZM2IXGBTOTdiY/UfYZmEg3BUmOsIeOMu78ciiel1odWEK4fUqw93eO1yh3c/fZ7ljUzjUAhuMZS0WuBoMQzyWuDIUnFjlObY5qnqNlNA7gvtotStfla5jfRns+6ZtN8hW1sLJVsPlI4D49zI/EfX7L3EzdMJd/BBkvKcYoQ7aqV7mJzEfuGadV6LFyXhnG03pxyRsoaT+4+cQ32OuiqziVwqZ4BF25180Lt2LrbophqSSDhEaYA97FsMAt9JnQ6OlKRkNmeopDfMtiML6E66C6YR16T3d1OvCecA9zr3LUHD2ne7dTKFVJ6bbIFu6hHBdfiacJls96/2WYCnhSR6J/FkGvE/f+8/k/0etTPRCghE5F4aM73CNQd7QQLA1CaD9gjX1EYjZvHmbruG81BDEq8FdTRtXom05qRUOfwVuqOjP9TnX1e/yg/FUN8syUmsJ9YaSKLhSBV9KpQVIN7UwIokJlTGbrrpOITvV6V/Gk66doimr7/n2XMAUcCj1s8SxKgpeQIW/1+nqTLRfzXgoeRE3DmNFATtHrDoxVqEnHJSKtfE/G5iY2XKbQClo84oCwJaMWuunxSOOBiBi23Ib9YPqW/8az+Jb/jBn3CfNYuDrYYkGgGgWuCoWbuzSoeyjP+bMxIsZKNW85OlgKqFohtIuuwT7pmWSIgSTFvAI3uHDIEhkQ1BmwYxnkRu5gWUQaIHGO11Ug1uGXtJOkfGQAN0VgKL5KZLhEUgtTJIvarMrJqzljs8N9Yx0KYSpq9r/TRng3HANOXWZnBRsZ0Y6rQmFthD7/bdWCddzS082Ai3Rks+GL9bELNKr8lsB45KKvP6PHOvidu0Fcg5P9kEPZCbbN6evH8pSr41KMnpc8FJTBDIWrqHdxJPtyO+6G138b7nImNvGsv6rhb66/sBiV2ysHRTKVxD5iQadNMeJ/FHAPzYMAzfMgzDFw/D8K0A/u76/Od1awoQVNCXWCNLcSwD3TTvd92gqALReNOQFIZXbylLPXPHRQzONlF9qZc26vvVnYbad3O5jLUb1NMbX7vYh/eMo5dJ1m9Q2fzhWsstDDmhlTnWi4L7a+J+oG/7sCsNemdVA9USxAGsdSrbv1u1TmIzKKAYFgQlrRqRT2jJ7183uY+879msXzW/rTKkjnauh7aREye/m3PcyI3VCwl4QbBOdHUh+gAlIsjksfh5zprj0LhvAF2E4TAveHktXr0/zBmaqdJ2CUra0YpslTXSjD6PJW36UZp3OOtMDT0nxQzm+PtbCfr1lPyh9laFNkrVNlPODhY1mMU69s+3x8vXJRtcqSHVTce5yoBooxsyKGDl3vmmiZKw118GnKjAXRHMYejF/ahZbTxauKYSdGrtXVnQIszddrilKJLVT0sViY6bfW9nCDyREyrvb4bK719flnw8i8oPVBDg2UASgyOb39/U2lLYBa0p+utf1Io+1PfW2ycTHl4f1NeObZe7Q7Cz718dcnXThgjcvYTN9sDXEyeQRM/WOZ0Uuuk4VlLH2te/qOcb1E07hWvYnMS3f1nz5R666Z8F8P0A/lMA7wDwKQD/NYAf6PiMN2Vr5apV87g8AqAhiT76L6LkJt1UoQwB9qHRokmmC/JT91wdwq/6wqcA6A6wvxYWjaFwpAy5e/9arSj707dP8Kl7F3j1QuQkbvqRxJqzHZHEPoNESvl/y5e+Df/5v/yV+Jr3PhP6AHnEzn0vI9emgggCBNp2RB6L9rv5efo1+8N/6msxIOfYa+pekRKsr2WZ6wR0IIkKAsny+P367VE3zQ7Emc9JlMIdTD+5n/g1WzNKWnkUv/LC6+H/L7x+VSbbF8Em1yxWQomYtYMrQD0Hsu0Q1fNDfGuplZbvre/JQFk3zzcrIl9HEucm1Q5AJSDQUiSMc/LNIVLVLq6fQvfinJsKamPtJeLMsSTy034aImsjzuU6MUsAiKAAiyRKh69H7TL/3WznfqjcNwy9OC93Qv5uyrW0frtWkARo6RCUVEc3d3uOGUpKpGBo678rt1CyQohzw4/hHvPPq7XUudwkjCcGXdKCroxwU2/gSMvTB2x2E2DboGk7P9ngky8/bE+msz24ciji2XYM6qZ+bq2z9JXCSUSCJNbLsF3tnZN7ulVS1UbleixtfRFAuZasuumxJTCe/9rmy00ncRiGj4qnfnL9NyDaHB8B8OP2TN68LaKCek6injTvD/zy87xRI50bnm7a5wDU6vvJ/JyPfuA5fOLFX8NH3v/Wde66shpgR7ur1JNOtMHP2zuJmXDNOOCkIyfxsLhrUdSZWduOiORrCqASARiGAd/8JW9LvpcfXzE+O68Hg4Clkvx5kVz7oLHqjT19u+SnyxwR3wfgDQSAow3pYj68uuksDm3G2JX5KLQAR6dBDpSBGba4uva73U9o2p++d5FdJ00UhglA1GijgH1v66qhrT5j00n81L0LfP1f+XH84L/4+0NN2VaLJYYqyEbYX9N8p4UuS6EJg2lMEiAJHCmGfJMlUDV2+5ANPza1/gWS7uZooA0Cue+hcmoId1OAZhpCPbK0sXTTkJNoII9hjgLNZdCXWKcyPkc56cr9Brpf1mWdR7NbgRIBbbQHKANwvvn7qHZNS+Vcfo56PyJQXjhE3DqWlGvauUwCCW6O7X5pwMkb39Y+6fv10uR1xV37HpCBCyq4WwmktfKAz98AJNGjiM/cPsWn7l3gOsk3lznKaXs5EU+8f3XIAlCttIjrJCdRNu18c6yt9nco6aa9JTASdVNDlIZp1if8F5Xnw560/v/3PvJM/n9s+0MdSdQUioC4iWk3TohYi+jDrjEOUHf2rENKM0j856Q36J/7Qx/Ev/EH34s7p5vQr4YkWhGqmgPQUjPcVIzC/bzgmTW/77WLXYh2DUNfTqITrtENJve3/26tOZY88nBNDOOzV1q/Ke5CGJJeNML3Y6LdOnW6LsABOGS8pBfP2Vy0ORbrOJlHrenOJU//8fPkcxKVEgC2HYlJoKvM9dfGs2pk1ZQFgZgPAQCffvVS5CRquU7u0RSuWeS+ZQdXXL/8uTSKq/dpI4mfePE+AODv/uNPUU7i3kISA90omeM6PEMB1Sj21p5QrC3YzjYgjd1++htAUsskkh6iK81uRc7lPNtov59ngSQaTspYOYMt+qhGCWRA6ZBfGOimNpW2VricctrkfUOgPcNQQ+n6nQ3LmdIEUACYgivSTogqpcaaHGr9Gn2UfZJB4CN7Kz7H5CRKJD06Uu3xJJXZfwblJCr2nRXwk2OxgaNuuqlyHV3f+pq8fbrpchL3hxk//LHfxHd85burQIs/A95ya4tP3bvA65f7eCZWQBgAIW0DKOmmm2nAZUVh/3rv1LS1fUhXeOdTB8Kex5bAkMI184HLSTRa00lcluULH3mEz4MWECbNSaygX60Dv4YkhtqKhnCK5oA1o89VJDE3QLfTGJwxAIXUdPoZvYIrj4ok3tqOmMbB1UlMok+bacQDciOJdFP9Olr0GECnQ9momX79TdU+jVq5PrLIsZfkZwzCVgmMY/LN/Gu1OVZz4ozDphS8IYw0EZhhHKIwTzEem5MoxUXYnMQeJLEV/fRUFwD4zZcfZhFwzahgKGkaAhl/65ZwTemUUutKoT8f26ycYw0RYYNiQHl/t4Irmropg4iEvGiBJLLrv5tadgRqkI2XOGAaE0c2dX1ZSGJr32rMU+Yk0mindIAZRGp9uTv/S3XauNy2fYaIu0fr22m0cItuXaNp9wqz9cxRXkf/fKvJ/WQhgivht+5khUS6qe/DOcAa64hZl7UzuL2/5nPz82Xy+yUiDlgMlDintLXSNxySyAvX/J+/8Qq+70d/Hs8/fRsfef+z6nv8GfDkuRNjefVil9iS9bPU01S304D716VwTS2YebWfm/b8Mfe2P2fDGcCWwJB003kPbE7r7ydbj3DNP7XNI4naIVdDv9K8uaJPRZGQzUnUI4u2EaM5RVauzbHCNaUhaect1erNeGPr1nbCxe6QbX4n04DdnkMSvSS0pcbWuiaac0OXKZDXnzCSl0UWZbcjwlowgc01qCG5bSOhnpNYV3fUcwsBxkkpHWfG2AXyPCJrLN8vPxDf2JxEec9ZlKFhGAqRCt9SCt7HX7if3TcabZQJQGgIJJOTeJwR0y6B0es/BrqpUsoI0CPJzH5Xy2Vp0SQ1Y5BVdywcN/Drvzcnbhzz8ybuP+3x5JljyfGHeSrry14n9TOYKwIf85SpOoniuzlno91HDwqQqI0SFGaCAvnvls+j2U853xj7oqiVayHAo+4kHsXuAHcP5Oq+XOH4dIzwf6ufcIp6HOC0n/9/S7gJ0APzVn1RtSwLOJRau/7tc6N/j7x9usHusBSlmmrt4c45P69e7Krv8WfyU+cubea1xEmsMb6A1Lk8UYRr6jmJ1/u5ft7UUHuLbip/N5puKuokzvsbQRIfO4lIaUrlYm7lcQH6phwKYCvCNcNQdzYGsfH4Ns9o7j41NU+T7qhtPI3vFfoplEAp7qL3ayNZZ9sxOonrd9pOIy2TP6+f03LagDYltuU416J9tc3nMM+cIIaIYqafqfZTDcL+wvFxnkcUSicc55I2zTnAx0jCTyJKyDikbi79hrWfZ5rbxkQIY784nnWP+j46kujGf+eTt/CrL95fjdIh9KmWwDAoSlV131ZwRUMoDISoRuX37WI1ClhnMdJi+RI3LAMCUPaThrqpLq2fv1ZrMi+3J7dK5h9R1D5l/zHRBvH9LGpxNp6yvtrCNTpFbF5IVc5OJHEQ+zmL7Pk5+UYhiSpzwv7daoY8FShU9gULyU3H8I25v1VKrGXrrsHT2M892qUbtMAp+bulJgbxu8k9oSe9wY3HBwp9v1I/wmYqAWVZFoZKmwWuCZ0Ez4CQoouHuV5y43wVx2PRRB8UvX9VdxK9s/eWFUm89zA6iTVHNu331Pk2OIkcknjA6UZ3xKr3GrGOgeS86c5JTOok3kBO4mMnEVGFVEP4pDHoW6CbNpBE2W13aFNyagIJgJ3Hlc7JN8b41zZ+oF+4hjEkN+OgRmS8BPTZdsLl7pBFyHpKYPhDq+a0McIRGh3KQiBj5Lns159/RMxRiVovTNRacTYY4Y7NWIoHWTWy9LzV9TXDSSxpklz9Kfdeb9hxh7bMZZkJ1MCPJwueU0iiuHesMilAHXG7XJ2oD73zCfzqC/ezA0jNCSWi3ZpwE+tI9dZJ1FD7tHnjYQF3/0emhj6mVifRqlMJ1PfllhFaQ/sBDhHJBW/61UYBvgSDhnayCExwwAyHIfSr0B3bTkopJc/0k0ahhTzKfiGQT0T//cd25ySO5XnD/m6LsraYoEDBsKGFa/rtCxWRMgIQ41BB4Jn7RgZO211UxJ/Zy2MOng+S5M/XxyvPfEvd1/cr6m6b+yuKsdjv1muTaP0Ad+bU5nj7xDkwbDqRT69I62rL5q/Rk7eck/jC65e4fRJLvgFlsA8Arn2/85MoXOPP0qkuXNNi60ndAoClm4rzhi2B4esdHlYn+oaEax47iWjnqmmCDEAbSZE0F9+sw6ZNN63302gFgKPRvhG5hY9iSNYO+82UOInJ4bOdRpqO4KPZ0TgQry/MHOvOZc2RktST7Hu1rqMSxYxR02o3tVA3E7X29FYZxQSOoxL61/Q5NkR5GnN0yEb+3AICJQ33XDQI0+etfqmSIZ9bmCCJjYhp2U8YCJaTWEHcPJL4nmdu4+H1wSXpr0u0WYPTiv7XAkCdCDyDULRyEh9c9Snf+WtUr5NYGruxwH3juw1lP6DtpNTQfqCfbsesfy1vkkXAtDnawjW5E8zUaQUawYTO/Yfpp9VJfMNyEpVAIbcn95e8cnPU6abWt9NQkXmxnT1AT9+w7YRkjusj4+wdQ1OVTgqL5AIKAt+eYsIU8H04R1YGsC3bIu2nIYkM3TrSphcuT3MsUzD8860m6b6Ap8Tq7/dlti46kcSmkzh7RNDRTefF0VoBDkl88lZEEkMuYwNJbNW4nAY9sMgG/MJ5QyOJq5M4eyfxMd30xprPSdQ2vI2BJOp003Lj8X+3IXv3qBlbx6qbmuUe5IHN1DtsGJIW/aeWEzetOYmXuznPSdz0lMDwSGL8O20MbaVWx8vPX2vaQZN+r+pYrbwlA20DNJpktYvrJxwiP8f0M7W2mfpzEv1Bs4jDF7Bz4rTakUxkHcgRQT+PVpPGdU9uYRrZdYY81y9dJxYl2ffR7hsfWX3mjjsQX3pwHagvrZzQ1vfTnD2KSn4EQjEqyHbaLq576aZczndvTmJNuMaX3Gn1yRFBzpIfh+MQwWI8sl8uwLSeaywikjhg7H1TqOBatMVRj+QzdEcgDxyxaCcg2QWcs9G7J2voC6uKKnPN0nlU+yl7Cc14UYKn7eufG8lMuoGfY06R9P2a3VSl3l6nDSDVTUU9U9oBFmhWPH/b/TZKKTZTXVZ8N97ZRoHIAhzdV6Ob1tVN3VnFBgMZJNGzzjzd1I0T1fz9nIp+a8D1Lbe2LuUp2dtr6R5Aew/Scql7yhmFvZxVNw1Iolc33XN1Eo322EmEUzfdjHpBaw3mB2IESXOKQsT6IDd/m9ctb1Dfr9dpANoS7X7uNbppb2SXzfer5Xc6uumIi+tD5hRvRr4ExmGNZteuIyulreUW+vnXvpf/Htr3qo6lUsTy12pzBPrzLyaNbhfQlz7n3ioMruVDYD20TSddi74RimzpvBhqcdovFbw5JreQiVr7fhLJMpHEmpO4izWhAODF169CdLZWbxKwiyLXFI97qetMcKtFN33g6aadTmLN6fZ7U47k2uqm1aBf4/7WWAKskSavJbX+BbLh/m+j2yXd1D1aK7kQrqEdsHJfZpwUje11MNBLeW+3nPp8jtqe0O4T97u+Pbkm1NVbJoKmO2pnvuns1e0Lk12gOhvNKSp54ms/LBHg8QAAIABJREFU4gyQAVdGyAcQlMyZDwqkKF36fHU8cS0ju8lGErVALVMCxnc7Nm+VpqBra7nhRJ1tfU4i6yTaOYmSbgog0E1rAo9A1Au5c7ZxNui8BMZWC0lsiTdpudQM46KwJ1l1U08tPazlPB7TTW+uebqj1lpUF0CnCWtRXf83E2kqE9nbh1Rt8T+KIElr869RHwC0ndKxrEEIuBt0Gle66f6QCUL05CS6yGYyVhVJMebYiyQqB43vx0Roe2sStahsrab1s5w9P88aklgX81nfJ5DE3hxBYHXAyAK0h2AQ2sEOQDu0qTKJBVWSUST085FOup2TWCK5gDs0p3HAU7fjgXhr6/Mvyv2AcQC0g83nbFsBJ20veRS6qTceLvecEeH3iVrAoxUkYZBErVZotU6oxhKAfW+7vkoAwhT7cI9HCadojix937i/LaXF0K9y5ljrREMS0/1e77cKyPmyOInhZ80RiHsqdx3do9yTGSdd3gKUKuego22MfdEbzKyVDnBOSnuOcj365805KvcNgwrKGqhmsEMN5vA5iTGQAG6OYz4eiyRqdqGZ8y3W5Eze2zUxK8YB1sTLav1ON3qpuLT9xksP8IufeQ1AdBKbSOIcVUp980hiTaUacDmJ22kMZTlSBHQa6zZoiy2m5VKzecrZPFm66bR+5/lxTuKNt91hrgrK1PLoWsI1tURv5rAZVPqJ4dgoUWRGkERyz91nEE5KE0lsOUW6sRuRxAkX10K4ZjPgmkQS93PMwdRKALAO2DH5d0AZIT/MRk6oFsUkHdl0XgCfkyjH81RrqwSApFxb10TPkeKLUhcOGPvd1s08rmPWKXV/L4Rh58eTzgaDpMj1xamblmsL8MpqI+6cRifRK8ZNwxB+W98YSpq233GOFEoEcjEoqmOZI5s2L1xz/4rLWdmTdFM1J5FAUspc5brzptMP89dqrUCJiPUvHSLfzzY+S0aCm4PdD0gMUMNg9a0qXGMwJ9RArUE3HcUc2XvUT6WHShsUUZNpcs6GgjZQwTT93GAMUGnvtiiBQAwgaikmfUgit7acA3yMc1kGXFnnvlQFbs9RnsE9cwSSYGag8tsK173BFQ0RBzhnOx2qh+4rTeUWclarJ+7bZ169wB/4qz+J7/yhnwEAXK1Cba3zwO9/5ydTKE1xZ3USR2X/9213cPUOz082mBcXmMzVTfU5tvZYvQYqwfiSZwftJCp008c5iTfTWgpFrTw6oF42A9A2f4620pvsKg/D9P9tlVJ9ju4zjUO7OGg42pYG9Xta7K3thKv9nOU6nExjYezWWnq4apsqY6RpqpxR2IiX1vf9qE1cOUhbv7eGVDMKfBpyaTl7/jUZSbNyEtU5osNp60REpAM8E98LKI0E5joCa+1IYZBTVLYjkEStTiXgIqvOSYzRQo8kagEghpKmBVes9Q/ozmWrkDKgBwTS9nDNVXlI5qywJTDynFD7u9WKibfzUcqxjkV7loVBROKc0vF6xT7ifO1+6fvd3mtMEp462mfs1s5gq+xGoBd3UmL9e4JyZUeQSuZgc05b33kPaGweLiimiWlYdXKPEW4Cyu/Ws7Yy55IIXPt5yvqidHAxvd+InEQpVNTjAKfjMWryQC0Nwz6307l1OdvavsWo0nbYvJaT+I9+/RUArowFAFyuSOJrTXXTmHJwtjqJUrhGC0ruDzO2qw0KAA+u9mHdb6Z6TmIbSez/zdJ59pfA8HUSHwvX3HjbzzM2DUU8LScxblyKk1jh8FNRhFGTxOaQxPTGZgvHlxzy9bXmePpBk85F7TfWcxK34xhyElOa5nYaMS86RUD7HN9Poz4wRppWpiM4UjWRloqxy9B9Zb9HE67hNh8NSWnmJCpJ857+VRuzVtybMX6AHJWiEEhxTQLdtNe5JK4jsEbyJZJI9JOBEjYnUQuuXO1mnG4m3D1LnMQVSaypGAJ2AKKKJFp1EpXxmkaMQv9Mm89JfECq33lj42RTD/gBOdrG1ncFdCSlZ/0z9zZQ5h8xwRUtD9s5KfZYyxLntoTnm93K+20mgySFc0PkxNXODWt9KXsClzcp9wTG+I9z8o0SqRComevH0oTz3zqde3U8bV8w2Ax1zYM63RooA97RtmhOUUEg3SOnyimvf3us4+uL+vcu2SPrlPr3h3OUOAPU60/sWyFPv8ORlUEqgAxuKTZXbY7eSbyuUDl/7cUHAIAnVxGagCRe1nMSrwMzagy/xTlZAmOz0k3dGPvw/lZOopWXfhRQJM+bUALDcPiGwTmKvgTG4zqJN9dc/cJ6RLiVk6jdAHUkkUva7s1l1MbjkERdbAKw8pZ06sM4tDc7DbZfliUYCbfWnMR5iQa3FW1algX/z2+9GuYQ6KZKxDoYaY1vpxkxFpU23tT586z6nrYhtzaSqmw3e0CpSGILSWmom9Y2SOWaLMT613O57INN5huEII6JJObXZF7YnMSYb7AsizMkSZRin13/maqTqCOJB5xucyTxPBWuKe5t99hkJSgHGyPuUsuZsUSK/Pu0drEK87AlcPw8a6hgpEDHz2P2ybC2OoJAtdxagDOSS9pcu4/vVzopdh8gpc2RjqwSXKHopqPCQiH2ydoZbAUlgTwnkQoAiUDVstjCQVoJDNZJ1wxJzk7I+wCcIa+qcDf6afVF3d/2nqCKIpkBj1ysis3lLRxnQiREO0upmsPi3Ajfrd2tzIFf1xhzBhSqwJZwU3G2+etor+VFWVvMtexRNw05iZX9/dd+5z6AeE2ZnMR9kpfuh5V0Uw1J9HRTH2R9cB3pprU0KaAdKKkhiWw5r2DyBiSROATGrUASHzuJN9L2hzqSWC3k27hxak7iwhwayiZuRRa1aBgrSHIMkqjllVhKZ36eNZQuy0nMkET3WMtL/KH/7RP45/6T/x0f+/WXM0OlLVxTn6PuABuomeLY+O/GCGJodRK5nMS0H5/vpyGJN52TqNVyZIw0PZervx9D6wDK6OIC+zD0/fbCQGBzstJDyqIk+7H0nERHN72t0E115VD7sK/RAQE74KTtJYwRX6Ob+sgxq26826/zNJR68/Vvi/LUhGtaCFg0PuNzXWiPMNKYPFkNXeqladOOrKTNEYi466cjshbiXKWbtvZXsQfxSOL6+SmSaDG91MAdh2TNS05TpZDEUeat5nOvNS3gdDCQxJjLJc+AdvkeKYpE57sK+4JFEvX7xh4LyM9Sd/3b/UJt6nBu8A6YG8+9P+w/FAIsrv9iCTeVZyLTxkEi4n7uVj/dKardoxFJrDiJLz0EEJ3DqG5q10ncTCPe88xtADm7xr1HdxJTuikQbZg2kli3M7QSTz3odvgN2BIYADBtk5zEx0jijbXd3K9u2sp5qi1GKrJ7BEStHlCzvSFrDilLSes96AGjlMI04HTNSUwN54AkVqJNP/Kx3wIAvC4KoEqlM/fdEF6rNS3STddJlN/t0F8nkbn+miPFHGxa8KJVIzTtV3XujZzEPNeDN1plRNjygGV5gwOLvhTOpW1YuPHioX0gjZ/QL/m9D429J52jpu7onMSYoA8At05i/kUNSTxW3dfMP9L2LUP9ENAju0A0HuYFVF6yV7Y7aVhO8vuxDrA2z1bwonVv24hIiUAya1ITCmHQFyAGqlhHVjNAjxF88p9hB6n0QG3LuB6GIb9PDeQxnSOQ5nJ1CKAUezKHGkjkxpqlDAj0UJn1s7vep1YCZm8E/aRSsv8fcwb00kbd54rrT4ylqQL3pG6E+4YsQVIyXvLPq85T2DORgdUWJkzHAnlvSxuURRK1VCkXuNff7wGAWhDQ00qjk7jmqF8fqudBULgeB3z9+54J7weU65H1m1d10+hUpXUSD/NSoKRAm/KraXCw6SxZYJ4tgQE4pzBFEhnH0prLI3/CPwVtb6ib1gr5+te1PoBOG+UihPlzVj8tGjY35pf2qyGJlpNYyMGTiEirvERIGr6OfPBIN9UNyV95wVESQn3FcGPrRp353SqRbqCONtSQYxNJVJ09e0PW1hdXAFhxEhkkUc1JXK9JZcxaLUeGDgWU6BJ72Kd0Uy63MD/sGYPQ9/OOsx+TFa7JcuLmBeeUsl35vFc3TVsQrhlirllUXuQCEPU6iQ3na+g/EGvS+r75OpCAcxhrbA/fgsBO432bMS/DQ6mbNu5vE0lUjC0r4iEdKcbZAHIEZlkWirkinVkt91Vrkk7LKKkCOgulRUkDfJBEcRLnNgIM5AEuC3lM5+jnBfC0Uf9e3zgn3T0elgUjosPIlCBR0R4KbSv3ciYnsaz7TJTYUoIklgc8KAjkMQGIvhz4tB9BGxXOJa0cKs63iHzZzqWWg9rD1OhRKQXi2cEiueOIwpFq3dvb9eyqpRPskvN1d5iz8+DB1QFvOS/XbBSuGfE9H30/zjYT/siXvRNA3S53c3AlMDzqCCBjpfl5yN+ppeDt9p78uzEUaMAHXdc/WOEaYEUSH5fAuPHWUjd1qFn5fDAMG3TTclNleN2ac2MUwFbUTWdiP1bppiwlrdgM2knUgB4RTiWgb5+6G/T1y30YvxVtSj/r9ctdFinWhGtYURjNGPTz15qG5AJrlMmoGyn7cWhPPi+A23w0Bywigi0joeTkW0GIWr4lEyEHSuPaOtiOVzJE1s8VUja7ZVFCJiCj9fPzpPJRNCRxNwcU0Y9dJOmL6w9YdOvSQd+RaHNx31j7loEkXiX1ET2VtNX8PFsiTJICRDnANSexQV889vq714+rwZnmYbNOg3SIepwNQNxvpCHfTTetlmBoC6cAOb3YQh59k/mFPXXzSifFDgrr/aw5lg4pwOXEaYg/JbDWGRgu0c74fHOOYg9iWDL+c8t+/WfiQvxuJd3UP9+eo2QltOxIOc8UrIjpHu0+6XuDk0iglmm/GLhudlMDQK2Ax4kBAKQ239V+DogiALxWEa9JBRvPthO+55veHxw/DUxJx9puonANEK9fKy2iZfdOCuBzIJlKWdB16aCbjluHIAKPcxJvsjm6aV3GVi3keySSyGwimnNjIXtyPMYhGgcNtYyvNeeoGExUUXCxIfhru52GkGD8yoPrYOidNAqufubVi/D/1y8F3VQxRhYct9FZaEPNSbQcgJoCKNA+7DU11S6UrhdJVO4BqyxCTRCAUXEDlO9mCkes8+o1COWBCHssP8+9OOhZA1TmhHIIfPn8bl4C0v7WO6cAgLNtXcmNUeBr1Qm18mtLVoJRAqNx+AJ5rsrVwS6DEahGBpKo527zEXnfGCTxWLSnl7bo+3WjBoHumBuELAKTIfdUUKaCJBpMBqC/BIPrOyZ5kyTav74lzUk0g1vrkpMlMKzh/PzTS8I6N3oAwnZKy7SIdoC3JdxkBo4Um8S8JkOZb8kiiTK4SCOJvddfOHsMA8jPEcjTIgBbuEYyzKL92WZ3pGOxiGC0J5E99tJU/di1r2aJEmZO4u6Ay108A2p5iZFuWl6XFpLohGvynMSUbuq/i2wt8SaNhcgylbL7m1U3BYBpVTedZwAL18doj51EeLpp5bBXjB8gRiM0wzAgiYXRRG7iWjSmZWxpqI3/PAOR0qKKgEFJq6BttrGrU7bca9FJ/O3XLsP/W3TT33w5dxJTpFajxLK5BnXhDqtOYv685QBoUWTmsK+hFOzB1puTKCl66WdUi4n7DVmI8hwzRxeNbHYLv02gv5FGqzSSWUMyRcXDIdrZz43HqZtqSGLa9613nZPogysy1wwgRanC76YEEpq11Eoj0lK8bB2+gENK/aVhFE4jksij4v66HoOktNAzNbd2ad8zad+i3iHDNDpiTcrvxpwbab8UTT9GuAlw66Z2/qZzUUUxCCTRrwuWEisdAIuOmfXJnA0iuLW+3Isc1/LGjglCz8uRdOsGkg6sAddsju7RuibDIMqykEh6mcvIMbeAfuZKzZGigyvrPH2w1bpP5bkRg1v2HHsRQf8dJFPGDDiNuSqq79tyoqZxqO7t1/s5OG0eSfSgQU3hNK2TqI3n3lOeN/uDE148V+imMo80bS02g8ZCtO61tG90Ev3iYpHEXUQTHzuJN9NadFOphudblNgv+9Q2VVZIoEcgwc2hjJAwN7Ymk78Qm52Wf2TllQC6UmyKZN1Z673NC3DnbBueB3Qj8TdfeRj+H5HEdY7Kd6OcFKWfn2PtWh6rbqrVtwyHfWvzr1Kb6n3cPBUnkUESlWKysV/NcXaPvcZPzIeIzzGRZKncyioZankbVG7VmOc6ARwlaiPQdBpJVPaglO71de91SfqnG48kuveoSGJrLAUB4yiZY3kgzjZqmX6+bFf7OQSLapSktO0PM4bBMniR5yQSdRKrdW8bgQhpRLr/e0PeMlw145pYy0PqJHJOg1bKws3BHguIgbEDwRLwnyt/bkvgq41ktcfbTHnuMOPISirhTIwj+wDreUOqosoAby8iGAJABCJVBjPbgaqacc3k3GviOqwDlgYuGPRlGI5QN1XORHfeWGMhnyMRgEvHi0JR9vnrPzcPLi7h+VafdIweRDDvx+5bus3b6redhiqSeH2Yg014tZ9xvZ/x9PkJAOD+lU433TXsGS0gk461FUrhPthYC1L556paFUOJJLLCeCqS2JOT6Cmqj+mmN9N281yNPtcMtKZwzSNEPjVqmWUk606De7Roo7VagqYCovLdjjF2I5KY13vz/w81mpQb+9WHbqO4e7rB/atdZqho321eFtPW0tXf3CFa+w2q6qZGBLqdt0QEBToNC208LidRpxenn1nMsWL8sEWK82tCRNan/Joc2ARxMU/WkExpi9a1SJs8FKmcRIXGE/qu3/vf/ZYP4O/8ya/B73vXWwBUrn/P2uqmZPYHxSwk8Xo/4+4aLKKQxHmpCpD5Jmt+xvVvG8kqklLdE+J7fItISruVOd8ddRKDAJOfB2kQCnVT27l0j5Fu2kGJ1RBZBhGRTgrhmG7GMaje9lBigXgNmYBT7JPvW+yenNNUSRX0zgAQUC9n1LouNZqelZM4FXmT7rGb7jizStUoHGc2J/dYEbhe4RoZvGP2Vt8v1yCw+0madi8FvdcB1lJ15kVn2/m2ncZqCYzdYcHd4CQesJ9nPHXbOYktJNHVSCzHHIZB1fxwYzm6aYokPnErKoUDDSexdgaMZXkbxgcAxLUMJTCIm2DcOBQxIImPncQbaQ5q1n+Amvx26+ZuIYm2kyI3OvvGVqNhhEVSQ9uMblUFVmsNa7lt3mDejINwEqNKI6DfoH5zeebOiaObJjes6twvXBRTV387wog0jJ9jEeBq3h4bNe10AKRhDQCHQ5umV8uTpaPIhdHEGbuxdiFvWAN5ZJczJOM1iUgi4VwKVNZCUXyf6gG19t1MI752RRPd/MpAAqtu6vol4xi/tR9Po5v2qvT6tiwLrvaHYCRc72e88uA6y0OWbbefm6I1fkzNAT6ObopqFFkPHHHrRO5dh5mLPjsxkz6DUBqtbCkF+dtZNdvCHBUWCq2uKaPyREBnmyKJDac+Hy/Oy4/D0hZLRIpzUlJK4OKiacYcRU6i+Dy2nx+bQhIVe8ZKp9ByElmULkXAjglAUMwVlc3DM1dmcd/QTmkSlPRzb44nWFhMLmOp0svd2zJVhN9LBlXdtPXdTqaxKkp4mBfcXW3Cq92Mw7zgqXMXNKw6iXO7Xnet7rkvgTEMQ1h/PkDZyp3fN+4djabK2yXJ2dFTAsMjid5JZPoY7bGTCLdAakiKVhATSCI5jYiF7qT0GTEMIqg5G+E1g46wLGX00+o3Kd+NidpNYz23bRoj3RQA7pzmN6j23bza1VO3T3D/ap9FfDVjhM1JLGg1hIobUG4i+8Nslg0A8lxG6veuIMfHIYmcAyClnAMFt+YkanMk0AbNuF7AU5SC0WocTrGfe+xXaUzQxw4kcTOO3UiipBr51jqgtIPN/7f19TSaalrLtDVHTZWZCa5o++t+XhztfDUSrg8zvv+//Xl87V/+cfzDj7+kft5+rguQ+SbTB1ImgzXPku7YzkdJPx/oo3vJXF5qTSp00977LawRYiwgN0BZdVMteEo56fL6EwjfZhqDc8nuCX7P9nseM44ugNJfODuiNna/3uCin6eco3V21IIklkEu2Ty0I6s5N0yQZJBOac+ZGJ+zhAKBhF4c5rg+b8xRXkveSdQZQD0IMM8uQNaP3be0c2o2AlzbaVSVq/0ZmdJNd4cFT523kURny7dsZR1w2B2Wgk34xJmNJM6NPeXYgDcAfOMHnsOXvOMJ90evuunhOqKPN4AkPq6TCDsaoMHT1s2toS9sTqKakN7s49+bj5W+prV08fsbi3VKj8m3nBSHO43k310dQyBuDq28pav9ASebEXfPtnj5wRWWJfLIa5RYykA7EknsNZL10iXl96yO14vSKddyR+RkaXm5Vi7FsdLu6sY625LkMm/mQG7GGt2UE6AZgxHpvyJjJKfIBrCuLaJGli6/Xf+OmrPNOA5aACLsdYYhqSGJDGqpsgT2uZFwvZ/xy7/9OgDgb/6vH89Q09DnUE8bCGOOOd2uB0nsKd2gKhAHxLk5RUzjkFGwaBGm5DcIRmtn4IgpgST7sTUZ5Rx9o9U1RUSecQI2SdCPZwnkwQsmcKSzQniHyHfrcaS0AARTF1NNNzCYJOl7076Wk6JRYhkbKH1/+lyrTWMugsKdN/ncAK7kRumA9d03vcrY8vdm+sX7BtlcewMXPfnNZapU+97ZbvScRP+ctwmv9gcc5gW3TydsxqGak7hXnL201VI3rvfx7PBL4YlbAkmsBDNNJ1EEypl98q/8C78//hEcPhJJnPd9fYz2GEmEd5JqOYnO2ZMwulVzJqX+pH2YaIwaIWxtxhVkyX9etV8l0gHYwinld+tHSdM5b6YRZ9s4qKebykLgabvezzjdjLh7usFnX7sCEOvE1TYsJtJ3Y5Hu2cjJanw3K5fUfX4+x16DMP1/K/qm0R0tmqr23RbwyIbMpTMPqPX1XGyCNwh7VRrdWkYYCyDrKybIBuDQKEb+XFVka/RVkUT/eQwFVNlLLDS9l12wCWOVr3mWQBSumcP1/Qe/+pIauPP5KK2mqcsCBuI55Iadb609r3UdzZSDsQwUskhiKclv9JHr36utG+Ol8vUsGiLn6JuFpvuzL70H2DFTejfLEvDfLRWmsmvLIbzXNy4ojDA33yd9vtpvzPOd6NIlwnHjWAL5e30zfzfBVIqOrD1HQKQAEHtr6ZTa61izL3rSG2QuLyPel47HnL+As0PnuW/9x0BtHszszdOkHeABhZ1s5Q2fTCOuVCfRfY4PEl7uZnfeTSPunG0adNP2eVqrVrA7zDjZ5P2e8HTTRjCzqd6q2uXcWs5ajwiNpJs+zkm8mdZaWMGQEevDiuRIFUP/GYwhn47FUMRauW1MJF+TyW/NsuZIWZu/hkilkfz02hR004oheboZcfdsgxdfv1r7eQSyjPxTzsZY5ltaOTM14Rorct3KJWURYN96op9pP0ul1PUrAyWeNmw6KUciidmaBHfYTwlKdFh4o9WNFw0ZjpI2ZDS2dO5Wv90hXktG3VTW9vOtlRPXqsFJra3OvWQadeOfGUurQ+sRgVS4xhsG14cZv/PgqujTUqlOx9TXP2NsKUZy7fqrTjpvbKW/N6scmn431iCURjKLGqSiGD1062rOdytIpZxv7Jie3h1olcw9OuXrksll1EpgMOe9XFts3pgcj6cSDrqz0egn99a0b0+uPp3v6h3uZE1SKLVCpTXPm0qA3RrPvyzRNisAVEMS7QB77qQzZ44MJtOI4JEOsEo3NRx1RzetI4nennPCNa5Uzt2zDe5X6aZtJLF2lu6U1CBGuIZBEmcRzGf2yawF4RoCFXxcAuONaa1cqZohYx1SGmpG5SgMpfHvnmc2g7JfUxVVyT9iDBm9liODZI1KTqIeyQ9000p5CcAZjidTrop6fhpv7BLZIIq5D4ox2BA2Sufei6RIWgfQhwB3J9sr4zE5iVqgxEISR6UP46TXSjewkeRcbMLuI6XreZGQuL56cxKBeF2onEQluOL61oNbtTqVAJqGjJoTSkSSa3TT1v3WyqW+2ruDMQjXHGa8drHD88+cAwA+fe+y6MPQTSXlnTG2NCfF961dE/+0FvDrFRdhlUNTFgotNiEMybBEzIBfzNtjv1eYo7AJLYRPy11lAzOe3h3QcGKO/veOpTNs51JDpLjzfljfi+yR3ic7EUh5n7J7l1uT+XP7Rk5u+pky39L6BUq6o/29APeeR1X8Do6sMVaNgm7NM1JA3cVkgrRAiQAzv1v1+hMOKZCyC7i1paYhGefwyUYXrolBwihc40Xe7pxu8VpD3dRSqlZz4BXdiSfObF2MVqBE8x0YdLto8wHAEPOTWm3aAofH6qY33hjaVlkDrG04TaNWI4WIxoz9Cel6UXai37E0VS1iNDMHVElZ2QtE6sPvfhKAVhRcdxJPt1NAGwDg9klURT2mTqK20Zk5icHRyJ+3nBuJYvk+ACkuIn5vGklMJsrkJOqbnRuvXhYkvi+fox2NBDQE0t5Y0yg5L1wjo6asuEXukKZzb/Zb17U/GJlC3bW86HYU0z1m9wDp7Ml+zJ6gGf8s3VRTQJd008vdAQ+uD/jA2+4CAD5zr1Q53R/sEhjSAduF/YdR1xRO4lJX9Gzd24zjcAxFKaVW0oiU2EtYtGcb1vGSoCH2HMdBcbaX/iAcm8vltAFSSqw9R596konymPUOEd7rm0tvIK+/MOSZcyodz18aezxHAQ37JLH/A/7MV5BEQ8wKiHsri6RrYkrU/i+DK4yTPupOOk/JjGMx/YrceTLYIc8A5syJ5737AVgKelWUx7wmeX1j17d9nm6nUa2BWyKJjm66nVYksVYn0QjoawJrgLv/ZKqCzEnUA7X1AFeNldPrI2Le84jguHFIoldEfewk3kxrRQpDVLHYIN1jK4ogjR9K3GWoOYn2ZtCtinq0k6KgdFRtodHMbfuh7/oKfNfXPI8v/z1PZc9XhWtioWzSAAAgAElEQVRWjrpv5ycRSVTpn53X343djk75/E0tb5X53dLNhzHSdNluvraTWiidoHtJwRVOuTVfk+wcpZAAs7FmjhtxPdx47rFf3TQaWwGlIKzk7ZT/5gyS6Iry6gdUFUl8hABQ2c82LqaxRPut+83Po003dffzyw+uAQAf/ALnJH5KcRJ3hxnbTftaVnMSiTqJqnCNZSAo15+hXEtqJbO2Uuey39iV/dpjeUdqP8/9dFNh7C4LmoESTbgm5E5axvXk6N1Mbr8cz9dXtFSqAf33XhY7+C+vfz8CLJx7Y7wY0FyyR2sP2ij2jLV3yb2VzXeNZ4D7my0bUOo5dNTl7bz+o/xu5L0d6j4n+z/AOekZkk78bjJ4zez/ab8yJ7HZrUCpGeXc7TSodRL9cx4AuNofAtp397Sek7gz2CSa7Qrkwdpv+/A7ACSpSw0btBUoqacFdXqJy4F39oqcxMd00xtpTdqWYjQB8Sat3Tha5I3btPpVy2pCJoCdWwgIuimx2Unuv5+n9d00lcZAt1hvtOeeOMMP/JEP4Wwr6iQqUP/1fl7VTeMNdHsVvNHpb4BFJNE2ERpJLJxSi+6rOencZizHmwlH6vicxNKZdcp29bFG9bvZUTSd7shtrNMUAwOskyjHsxT7fNsk904PkpLT9BYK8dQCHkAbhdQDR/Y8WzRVaw/S8pQ5kZzyNU839Qf179x3TuK7nj7HZhzw0uo0pm1nBC78mHt1/dv3d9ovRPJr54Ya7LADQL5vavzT6388gm4q9gTWkAyO1GHpQtIlU0bu/2ofZX8NjqlllK/XkkUefR8gEa4hrn9dzZl00iUCTJxTwPEIZOmkGPfNVNoz+7l9f8vfjc+Jc4+p42ZdD6A8u4/JSaQDOYEm3Hf9i5xEMsAiz1O/NpuaB5O+ttg9IaKk+Ryqc6zYrlZO4rWWk7iWxciFa1xQwiGJjTqJRsCvphTu7/v/4Ns/jH/0fd8crkNLuKY/UHiEcM184Osdjl7d9HGdxBttLUNNRn5881zr2iGgIYnMpjWOudHEcOT9/i7RF8BApBRDnss/0vLvOLrjYRYCKCEnrm3sSpQOcNEmr27q2+31/zqtgKOfaLlHveqmTPStJm5xnAKobZBoEXmmUPpW0K+AVSSks7bcshD5KEpQgFGlBfJoay/dNKOWkcau78dSjQCdpmciiWM/kthSPG4ZXDWaqr1vlXvJwZD7buUbX+1yJPGl+06o5omzDU43umHBqJtKQ5Kh26nfzYjkt/LEKXERaaCRdOteZ68qd2+Mlaqb9iDpVSn/Rt+NQN/Zfq6vy3k6Jm8430vafVQ1Z8K5LJy99Xk64HfIfzfeAVidjXAdjX4Km4E9FwNtdH2+N1C4EIFTAEXeHnP9I93Uz5EM5BzpAMtyIoy6suun36fNnFAR3GIp6P7l3nxXp2ZbBiVba6u2l18Huqlzci52Lmi4mVzJs2adRMMu0WzX1F442Yx4693TrA9QcRKX3jOYC15nbe5BEjcrknhzdRIfO4loG5S1BWJRgNxizBc/e2hoyF7T2TiWIhYOtvhcNCTrTat1xURbNSdlbxhpcTMuX7vazaFOom+3E7ppMUdCAEJDRNiIqSZ33zLIa5TAYymZxziXjAR6LSexaVhrRjJFSfbXMj63gDSSEwf/sHDUMumUss5lpKEvtMEK5DQ95tr7z9WEolpzbeUptyhpR69JxblflrZxPQWDqWUkuHvbI4dPnG1xUjEsLKqRH1Nd/50siIAeW+dGJ5Lr+0oDjcmlSwOMbFkWmTsZDXl7TY6D2797kHRppO1nO0g1jWWQiqWPbtc8zWPyhn0dVEZdVmNbcCUw8v1u6aRkFnRHC4GUzg2LJFaCp8y5EdFO7jeQ59u8kDmJIjDcc/27adqj7OeDK33rxNs1jHhZOh5z5kjwoBftjKVLOOdS2lyH2e63UVKQgJiTeLaZsJ0GPFiRw2kccPu0rm7q6iS2HefCljeupWZvAZEqX01VUwAmtk5iPtDe5q2HyZ4Ah+vHTuJNt5bDt1E2f8A2Jp1RkT/HbloqRYwwyDUk0UIEAZ1uauUtHZPvNyrX0sqJa6qbHkq66flpIlxzTE6ogtosREDAfZe8j5tHeyw/r3SOPG00Psd+N9evNJIZdVNp3FFR5CXfIO0Dyj0erW6a1DazqGjZPBMEhis3EA3XA3GP+pZS2R4FSTQPtqP3BH1Nsvd2T9RUo8n75n/HW6sQ1b2H1+Hv080U6Khp2x3q9W59K3MS3XczqVRjRRW18v1agSMmmCONQVq4o5d+KAKFbL09YEXp5rkr30+mKjB5aloQlKWPulJUfbUcJXLp9hI2uNUXXPHT6aUJF2gbuN9N0slZJHEzlrVarfztkkoLbo6F49ZObfDNObLxb4buW+btkcGV4Eghe7R+N6lu2oskytIZbRu0FGBi5igDpz17iVZOzbKdtJx07ySebEacbqbgJG6nwQUJ13QN2Zxd0ihXpgQ7zJrPyZmt9evTBbBZCUXryUncnAH7KzzOSbzhNs8MktW5QSpIIpujoCJSnbRRZrN7FOEarbD0MXRH9karqptuRrzlVkQSz7c+J7Hsw8xRF7xpb5B+6qoiZGuDVIzkLkRQjPcowjWMEyyLWfd+t2NyEn1OVq+R3Es39b8XrSSZrGV/WPUU6t4dEiSxU5ET4A82DX1pzfLYumG6c2ncN4pKr2/++51tRwwDQg7KyWZsIoknRmRgHMqcRCuPESgDYxZ9MRr/8TlNQl0dayydBmYtp85ldNyMPoW6afwsq21Xx6En30+mKgQkkUGkFCeRFa5h3w+kecPrXmIECYHj9zuN7g70lzOiUSJxVrE5iTXV7540jF6ULr0HmJzEYVD2LaOP/9plbqHRT1xHxk4DSiTR2sd9Cw5fhyqqfynSTf3zZOBI1FdkrokU3LL6aWcbEJ3E7TTidDOG/X8a3d+Arja6M2rlyiAhEOds1nwu2HPtPUVShH2ffrrpns8t3JwB+4vHTuJNt1a9n1pOomUka5E3ZzS151LSTbkbtOi3PlISyXM5Xq/gSlcJhmSe+xBJa+ckahvJ1X7GyWYKtdOASOfT6KYLuENb9vNoQ60Ng6NedTvpng6S0RF6Cs7n41lbj4okrmu0VTqglhPULkAe3+fbgg7jRxitzL6aHjgHcjOWh70V/An9wmE/B8Owi8o2dyCJCkXGOthU4RT/GhFwKvJdmzOsOJfGWo41I8t723/Odhpxtpnw2oU79E43zki4UnMSbYdvI4J3h3mm6cWZA+CdjsoX1PdWNPukfWVuIau4WyJSnHPTi2QBbq/dHzqRRBHJ78lJ1JxEKwd160tgGPdL2qZxwDC4e5sVDhrXPunaYvsBCSXQP2+dARXaqNlP5Jeze5CkWzM01VIUhpyjRLeJPr5ftpcw1786x75+jEMEJI7DIf/d7NzaeN7k49X7SbukVzgopftaYwGlw8dcy1SRPG3X+7j/n25GPLw+rH8PSV6/cgbM7ZQDKa7j+rR/g5oNagIcSnCdCbgWrScncXPmOOv7Vf37Md300ZuX6a0vED1qYeVk1fKIeiF7+gYV9EoWEQRQOJf0AdUZIZEbJFDWSZTNVDedRgzDgD/9z34RvuH9z2b9JCLIonRFTcyFy0nppu1Wrz9n2EkDtNcBc/+fMQwG4qnkjpmKr5qTwtAWJdVFPN9qKcI9k0hiQYkygj++hQLrc4pqmN2CE+OQRI5q5JQFOw+2CrIBGHvCUP5uzL2tq6JaRdLdo1rcOLk25ycTXr1wdbG2UwNJnGdsN4xKYxqkskuQACUzxFLlHAbnNGjqpkxZhJBbO3OGHZAHE3qRjaIfgdxspwG7eaFLG/j3qOqmTUQkN5DTfuZeuf7efr2ckFwvb7z20FSnYSjORKuXTBVhkUR5v9G/tzg7/DVlHABNFbh1Ocs5+v7WGYxsjgxLxs+xoLtbgjziDO69b0Le3twWMpT9CiSxs5+/pi3UzPc7Nie0V5SnqPFN3DsacwtI6aYDTrdTgiQOkY2zV84No06ihlweWBtUAYrcZ+qLLNgInTZQ0eYDZ1wAwPbMPV4/cI834CQ++id8njc2t6eXblqjZDI5Cr2y9YBbQ6pB0qRJ5gayH68naXtld64Jue05TlPpcNNJwxUk8XTrPvN7vun9Rb/eum2un04r4JzLvt+tJjhkb8Yo+lFIrjLejjCSt+KA8p/BCNf00A+B8vfuQTZOphG71RhkaR3yQDwYjo3st0uQFI5uGqOLj4IkmgebukbW1wgKaDqcC640p1jQ2PxnULnUyr2dXptbJ1MQrjlpIIm7wxzWaq1pOYmWcBBQ7idUMetBGq0w+4SxApLe4aQo/exzQwRlvEFIBjz2mXKo3aeubmrXSdTORQs53o6ObhqcRCOIEMeU3429/vFvJigpgzk82uweYzCN+71rtQuZvOjDoe93q+kJ0GsyPQOI/b9wUshzG8jTG4AOFe71+rG1TIdhyBkv/joSiDiQOpe8cy8DQN3odge6mm7lzHibSUcSJd304fWakziOWFabU6uvaImXOdHF/LkoIMc7e0CaF10fK/189xlcwCNr874PSQSAq/vrJB4jiY/crEMgRnDK/MI2+qJTxCi6o+JsMKplmkHSiyQ6ONyeYzo3wFM5+6KYgB2RlzljabvaH6qRYZ2ix0Vai34zF+nrpVrotdQ6In2dDphMZPf/N5EshTZhIYm1pG12bRWS/MTG6hPaXX+S/iaQy8PM9dsqtNGeHMj9vJjKvr616ovWDjYVESRQqUdV3O35vVtU8hQpvbWNeRUnDSRxb+SjACik/FkkUd7fjPMgVaCZnFAgp0QFlLoTSaEd0sJIBjVHYDXwMnVT4n4bnSG5LPn3a6vgKvsPe++slNirXicxqKKu86avf64AzeaElkii0a+gSWLt1+cU0WyGccxz2Qn67qNSOcNwpGGt2UD29YjvTce0GS/uMTrbfK5ZCiCw+bxhrxQlT5hcWUlJZtdWN9106M8btnISN9OI0+2EB1eH8P6TJK9fNrNO4lAGJa1gbU24Jjr4hnNZgDDV6emtR7hme8s9Xq9OIhPtM9pjJ9Ew8FJamexn1ajRnBQmiqMpEjJQfzdqcCxtsWpItucYFbrSnCB/g+pLcRCbcdq8cI3WRoXGwNWp1G9s07kpqEZ+/u01ApSGtX1AVfp1ilQAq2S0lcelSjmTNbKWvrVVO7SZ83e71kTz82PUTeV3Y9XH8jpx9mEo+6WKi5ZjM44DliVfk+zBJnNCAY4C3au4e0zAoyYIkM57M444P4lO4nZVu9PVTZkSGEKA5kAKHNUQMOP+npXrT4lnrW/uUc5NnVI6/0usE7ZOHOAc9usUSSevo5uf+5sRb9LWJBuY2ayU2G4ncXQOMFOiI8xzkCkf/U4b66TIa8KcbWm/AskynUThADDF3MUc/bFvBwrXMZK1zBjW0uGgcqk11BL2/ebz/dJgB7P+gTwvmhau8Xl4QRV1nT9hT5aBhPb85D3Ks9kqyvyNfptxrArQAI4JcLoZg7rpZhqw3bgPrAYKm6yEsQB8QqCkcmG0/QewzwBZp9L3OaoERo9wDQBc3HOP3ml8hPbYSbSMLZEwHPvZXGvpJFJOioDsefqJfoMykfxctpiXuy/7cdGwtB+bW6U5fL4ERq1fIVxDOOnH5ltKp5Shex1TNgDQKbgUSqoY5Yd5Jur0lTRhhyQyogXxuR4HuDSaSKN17w/RPnXTrHA2MVaaW8hGyF2/OB6rbqqppFkIgKQRAsdToBeDNVHrdzB+bxpJPCmRRJ1uuphOoqQ30eqmoxSuyb9DrU++l/OO20Gsf4oCnTilMZeRdFK8U0oan0BEEnvW/yQCVQzlWt6jAIdkAatwzWEO+8Ipm5M4jTmSyOwlU44kHiPmRqubivuNOdu08WjKuzDmqfqWco7r8zQFNHMSiSDJMCA98hfY95rMHQ6OlDlajvjPC3fPADmSOJPXX7KAekpnRFEk7j4NKOkRKLWWcmOlZWn7f+qsZ07iOGYBWtlcoLA+XlpLNoxl7OXa/gPYe5Bmp7H3aTHBXrrpxcv534/QHjuJBlWmlpNoITc1umkvZM9KmZdUC3tDqNWks6mtWj+C7qg43AfjsKkZkofZqc7VjMJRGHVujsfWe7M343HIKbHMYaOjNnykT6rg9kZNAY5uF2v75QhwW7TAPcoN8tjILrOtbjcjrhM6DifjH5E9P98uuulh6TSs4wHHGmjammSjmDdTToeRktcDHhbSJvv45n+PzTjg/CQekCdrjooeRW4bCEBu2LmxOXVTSSVkaHpDbS8njC1pxNNIinA27LWVz409b9xnr8qhxhmaj5fvecx11PYt1kj2jrpHnn0Ou9UckpjkJDLXv2CTdOTErd3YoJiWt8esERmEYyiBwOpsKE66RbeWc2RaISbGdcM49Ad3AWSqqD1IukTuWds/zYtmkcQ0Bx5IgjlEPz9G79oqcxKb3Yr1z+wLTiCq3MvT8+10M+HBdaSbeptPy0ncz+1AoaZVYZXhqQrXGGi65lyyTKWszXtuQwaicM3FK+vfj44kPhau8YZaZYFotf3832aEREWy2vORtFHWsBgqCGSrV41uSkc/xTxtGknZb2fklmg0NoDJJQW0OpU0StdJt5O/d1QyZIzk+BxFyRzX6Gf6u6EDJU2dRIJupxtpBpKoIFkLeKPpGHXTY5BEjW5KIYJBhCkxkimaanQu2XwgWUg5/b+Vy1vQr9h7tPN3kzmQTH3L2r2dznuaYk7idhowjkMTSdxYSOL4CDmJWRCIuL8lu6ODblcINxFzTJWZg/pnJwLM5kgBq7rpYaFQVWu81m+g1tclcxL9/XaxGpknE0fb8ohzT76xDEwygVP/sUWZAmOssnQJX0sWSJBEMpjgcnnLNJGmcy/m6DdzRik8HYNVqi50AWbS2Utowj3MlXGI7++hm6aorHfue2tMs2JRKbpH00aDkw7Rz7ZLNBv0mJzENHiRBna20xDmsZMKNHBOdCt9QwYJ07HMlLOKDWqVwHjkOok9OYmb1Sl8TDe9uWYiiTUn0aBg6UgiRyNZskXlHm0qYYnaAH05A3683kgT26/G0QYaSGItimP024yjev2tVqv31q9u6h7bRrJ/b27IU6iBGrU2+lSRREMh8Ig6ifp15GjT7r3CaCKuyclmiJFWgiIJpLTRePgyh32s1RTpdpRTOpbOpYn2aFRO42DT1GUZqktNuObY+paW+qccyze/1rbjGOimPkLschJzJ3FZFlcCwzRAxyK308oJdf0EkkKgx5LdwQY80nu7RzhlMw5ZTq41P6Dcy7vW8pTXIKTUTQsk0R5vbJwbjHANgIBEdKmbzkuXky5rcB4TOI3ndm8/m0mS9vNONh1MGPPSUIyTXs33Y50U74CRe7KWE8ecG6kyfI+adnp/s3ME1nWSXP+eYKakqTKpCr200ZoCLqXMr96j7flpOYnp2ZjqTqRIoipcY6QcbMQaAewyPHXhmlVh1nAuU1VgNpiTtaNyElckcfPYSXzkxvKKCz6yUY9FSq0DfJ04FZGyDhvFabD6HVuCoZq3dKSTkr5W7VO5sVtGstx7GCNZR0k5Woe8Hm4ejT6V68/StmRxb2vz8cn2krZl11oqVVH389w0QPVAQj+StXQYySmSyPzWQHL4BuOa66cJ1/SUwNgdFhNFD3OsILnpa7LFdRyf6wkk9AYu5O/NFJfWKKq+pU6AF67xBr6jmx6K9y9LnX7umxMykfU+iZzEKpJS71MTcrCWiRcqWpalywHbbhTVxE4kMSogsk7pknwvu49/T0ApiHn6e1SjO7JUeS+h3ydcEwM5zL2dIlKAp9dzQZnSSekMyhB9gBIVsUrphH5Tvv4ZOnMZgHDP29ckH4MJQANlUCb9LKufpLZyzmW8vx9F3bQruCic+z7hml4nvS9QK9lUXMrTWIiyATlT7HSTCJdNYzxDK2WQrPzmqkpp5RyoC9e4x54a38fXSWTVTRMncRiBads5WNl+1zuJe5JXrCKJLSNZ2bBYARRJWQGIjXXUk4Z7848cJY2LPvc6N5pK5mF2N3VtzEIO2/czDGypxuY+o6O4rjDIe517351SdxQOaW8eBdDhFAkpcyaSqdEdrcNNDyR0yG8fgSSm6qaODm738d9tl0WE+X5pCQDKsE5oqmztNi+xrSOJtYNtfZ9Yk0wpHff58TkKARb9GASmRuUH4r68GSPd9GSKTqJEEiP91lY3ldfxqBIYRCS/QBJZByC5d3pEYeT69/NujiV+gx5EZLuWl2BRS6BUuGaQRI2BwuZy+aCBl9DnS2CMGd2UEq4Z5Z7cIdQlHalOJ9EXc7earN3G1oGU9kzP7xaonHQtx+O/27wkBe7ZgGtydi+E3ZTOM6VN00hiInDk9h97TUo9h1CnlbBn5Hej82QLdNvup9eKtgNARU3xOfYtkMSNnpO4LMtaAqNRJ3GoI4m1bjWgyKpVqQW3WPsua/MBGI9AEje3OMPJaL/rnUQrIqbVlgNsnrxWJJRZINMYb2agb2M9CKcB4IRT8vwjDrUEBEpE8P/rKpktZ9s9ak460OaDS/SRddLTz/f9KNl6dYOs95HKanGs5lBhvF4EGHCHisztYQopu/fmSEqT+x+ib/E5KrdNiZADJJK4yXMSGcMuFjdOnUvOIAcEkkhFhFen9LAEg75W69O3Zn1RI4qZ560ypSxQjMUhkHk/im5aYQm4z5kxDG4debqpf7+vh5nuk7H4sh3w6Nl/Qj+xnzMI31QJ+LF7kFPXPNJJZI1/iSwRNWF9OyZvr8iJC+u4swQGXSfRve7VEa17LfRbkcQeloBcW/PC0TiBxJHyTooxlkQpWOOzyG0jfztZq5XpJ/cS1gEu1yRfpiYdh70maYCd2bd8S39vCzTI5imQRMa3rOck2usrOtvuOZbNE68jZ4NK9pZf0xaY4t4r7Lskz/ksqZO7GdM6ibqz10o50NLAoghWRQRROUvTOVupUlK4phtJXDqcRJ+DePFKRBUfsf2udxJZuqMmf9vm44/FomIM+QKRCje2HX3O819s40LPP+o35H0/67uptDnDSakiuRaSIqJabo4dggCCNsQUu9WELbp/t4WkugwCpUN/HgXA0e2OQRL9S71RtKjc6vtwBxTgjGQfXbSUNdPma6LF6CznNABYjeR87tYcAeecs0iiVgLDUnfUhWt4GlupuEtGnwvaHNFHQxIThM/TTf13Od04ilJqJIS6WqZwjesbjeQ2PSn205HE1vUchjzg10Pb8u/3Q7J5sh6BZeYH6AgwLaS30rsjtbjfSaEQqQS19401kj1V7fXLHYAeJPE44Zru+roiL50NisXc7aQ/GVwESieRCRRm15/op4lZAf3F3FkHTF7LnmsiHSLm5JjGmFvIiusA+V5yMJCvdCwAxf3N0MmlY2mLICIbgw1uSfZWDJ7W+2i1s93YHqUDbiclkDZTvQRGYJ90qptatNGWeCWAagkxeZYyYm5qOyYncTncSD4i8NhJNHMiWk5KW5ShdCwZI03SOugozqgr6TGR/NIgtMeS/ag5DuWGYEXyNbTN9wPaOVmFuiz6k7b9/81C9YOk7frn7ahpyVlnDsQy34ntJ+m+Jvqi0B33BuKmoUSM0TSs1zmlDLkX7O92uulXNwU8ApPkf/UiiST1B8hpQ96htQzXgG4nRtreyCXS8iEY2pZKEyYQyFKkIp9Hu0/5Wvr73Tl1eRWyIHpKNwolM8y1nO9BjLov4JzL1Chh0OMqu6PjN4jOnjlFR/9c0UcW3Q7BHH+/GedaPp5zpPz36kESo7FL1NvTgosEAgkAd05dLs/LD52TeNqVk9gnXKMF/BhVcqAvuALo5xSbbgBoSGI/Tdvqp9FGASLgKgMX5F4+yL2LuP7AGnANhvz6HF0Cxjtg3PoH3DXz/fbk/RaCi/J3Y4LX8vqT6LY8gxm7MEP7Z9+v794GIggzDAPOT2M+3mYckrz+/ODwueYte0ZDEtmawwVQZPwGcq/rCfhlrScnMa2L+BhJvJlmJQDXKFEzgSTqOYnt+UyjKAjLRnEqzmWr27ElGOqF0jkDLVNJm2c7j2hQKAJGLuk4RPEH37pyRI5AV9Xr3x6uQDxZikw5Xn8eBfDG5SRqKHXf2ooHvfu8ZjcAOd3OISJkZHfNEenJP/L1FVPhDuZ380bq1S7JSSTKNgASSeSCW0W9w06qF0AGt8Qco4HQ6OMj1grddHeIuTrP3DkBENEgjw5d7aJ4zXWgm5KoeBKRZ9RN3RrRnPSbz0mMueJcXo9vIXAxz2YQoRgrQW14BH7MxF2Y203mpTP13oJjs+T7luvXHs87ia88uAbQQzd1yq1WMDJtKY0QIM97sd+xzCEtd5tikoi9nBVAkQEP5voXewJpy/iXszXZEYBIHW7mmuhlIrg9IeQIEgHQ0G8csrq87NoCYlCFRRLTHDxW7EkGGHtyGeW5AbTXlqZT4f6O/e6cTtn7fZCwyEsn9jzVljTu8WoJDAKoAFJKOL9PZq0nJ3F7K6KON1D+AnjsJJo320bcnGm/NpJSLnwmt20cdMjeRLLGiuBNy0hT8o84ldKyH+PcxANK5LYRhkxBETA2vBol9hgqLY0AC0TWzb3ZTclbInMLiw2ZNRLGwtlgcxIP8nczInaARFc7FHDDxuqeZ3MS5wXBcO2hm+4SRKRXFZWlvgEI+RWXuwPt2IzK9T9GFZhCBKsUdK5fzO2xr4lX29XopmmR+2dXJ9G/TUbVgWggsKh4qhJIqZuOQ0ZvDQaCkZcrWRqAvb7SoEBPvmtag5NWySyclL7gSorAc+IuEhGxa4WqebIkAnZ7NTBfenCNzTh0fbdMuOYNYnfIcg+9lOSI3Nu2Rd5PlEohcnm7kUTpyJKMC3l2sOh2sZaPCLgqW1G1pTmJc8d5kwYT6Jzo9T27Q/y9/Wc1+02l4jEjQJO+nwOUT14AACAASURBVN23pAPGnIs1JDGlvZ+f5EjiSZVu6tkkDeGasUxDOjrlzLie2j0KHEE37clJHAbg/Gn3/8d005tpbEReyubOc3uzk8Y4QKo7jtLZ4BaWFLwBkZOo002Xbtnu0M/4brWiyEwh3zJpmMzJEhRc+vAVjhTj3EiHCGCcy37Uxo9XIolmNxe8ELTF45FE20CQjnOvslpPjkikgLpcLj5HZBTOHtHHU17mfnGRaRxwuT8EJNGiwMX7Jj5n7VuqcE1HIOfYAFCvYZFSttK2n5fg9Dxz+zTvsz5/nUSSd6TDvRV0UyZI4j83R+Bt56bK7jDGStWje5yUWPNzphA6ORbAozaAQ9P383HqpjInsV1OSqe7W/2AHElk8xH957o8Zfc3m5MohWts5H59r7gH2H0ypUlSSK7YS3pKKfTmJJbOBufYlMIp/PUH8jxNZiXngit995t3THrSG/KcxJnqJ1M+WHXfNH2ph6IKRCSwL+Up/s0EPDTbAvB2ofvOt1MkcUxyEgWS6BXKW4FCKcAEwBTBqgrXdAIVPUHorPXkJALA+bPu8THd9GaaFe2wONO1ppdg4KIxalH2Zq8GktVyEiuUQBbt2Rf9uM2ncDbMOn1lzUNe3TE+55CUPicF4KiLko4TkVyinxiLPdhymjAXbS1LYMxmXo8WKHE5iY35KUgi891knprvzSKJgHMeXN1IswuANdp66DPIPd00q6VGGglnmxGXO74EhpbLa+Vk1ZB0Jkjl39vVTxitvGFR0nj8vAOSeDd3Ek8UJHFH0D8BnW7HUtl2WQ4kYSSP8h5dnyfRvVS4hqJAJ7maPeqHfiz3yBsx241DEtl1nI7XU6rDv5SfG+1C1r7d9jmJvU6iL4HREzgahwJJp/e7zvumQNsIhzQbzwdJWERKoKSW/D+QOMBrN1Y4xU8lpa4zW+sk+jHpDX6esgRJPwJ5pLrpwlGZN0fcN/71VCWW6ROuvwj4MSw4oESOrbSsdCzfUvbK7QRJnMZYAqNQN/VIYuMMSOtGhn7GPLUgbdqviiRWgiSkmRBbT04iAJw/4x4fI4k302i6qcJHbtZ/eYScxNxoYjfWfsEb3SDsr9HkP4M92GRE2DLshqHcROz6lu6xRLLIOXaie8OQO7JLx2EvkePjqE38gShpQ6bYh1K6xEIS/RzldWQPmmA0zXY00rcTjzCtRnKXummCCFLUvk2C2qxfkR3vbDtldFNW3TTP5TWCW8Fpi8+xQSoARQCC3RNkkfRedV/f0n0hVbcDEhQ3ddpmfy3b420TtA1wxjKHJOp14tqlGyrqpibdDuvcli7D4iShmzI0TqD8vdmadIDLDb1K1jEjClMgiYRz78vUzOr155zE68NM5yP6z83zLYk9eShpizzdtK+fPKcWMrgokZtDMKzt8TKU1CtCMikHYi8/hk3CnolAitywzmV/wXkgCjf5MWkkccqRRLYGpx8HSJgTHYJDrAiTXJO0LVMECvPP01oNSUyv5+1EuOb8ZApIoayTGAKFrTWpnDf+e9b2IC3dA4jrky2f1xOAyAfa83RTINJNHyOJN9NYuqm2sCzhDt1J5JyN5YhDQ8t/aXXTkUReybA3/0ItgUFsrqXjnN7Yel9dOIXPEZFztDdIiZrln9caT1ICOdrokB2G7rPsfjJ4kZYaqPaZyk2SymUcynxLa44yT62HopGqXvYd2o4215NbmOaILKTx75tzEudAl7EokrVcXjf3yvpXaGzM9Q/R4CJI0u4ngzJ+WIbuqDmJ6e8nHU1NAn1HRJHT+aS0LQ5JHIsgCWDkJA5lkMQ/32rpHsRSxIAK3ZSlOyZoA3vf3NpOuNzPuFwFhE63tiGzEShwuOcINknupHD36p3EwOxBEk83I672fTVQ0wAcuyfX6PWWxyfPKfZ309a/m7t9/Y+hW6djsXuCtC/Y7+a/Q2o7UeqmiX3B1hL08wwCWAuH9rt+Y+ZcUkiiKDq/P7i93PzdMrppfK7VJHjA5jdr9S2tfhLZ9i1l6p0nQcKnb58UgT7f/JpsnadyHbt+9j2u0VT3xveTudT+kfIRf+l/AH7grcBnfwFY5j4k8daT7vHsLXyfRvucOYnDMPztYRg+MwzDa8Mw/PIwDP9q8to3DcPwS8MwPByG4SeGYXg+ee10GIa/tfb77WEY/h3xudW+TLMO4VpOonVzSzU8gETpQhRn7RMWYrNbVUmvV354QQ/akEcWbbShpBbsDnYkX4v+sMnGpbpjcyjVkbUCAn68XiRX70cebMNxEaq0H8A76YAQCpltCq6kEnY5wOKAYvqluQpd6qajo8315hYCyGiqLJJ4uh1dTuLBFYxnhYM0uldXTi6x/9TopsfmkvYzJ1yTwYu//Se+Gv/jv/UNAJBIoKf7iO20pa/799M5ieOAvHQPIbhSYXdYo6W/d08JhpSGRYuEiN+tpyj42dYFnB5cOSeRQeqqxdwpxLkUbmLunVur89rjJN462eBid+h20gsUhb633d80JVka5J1oW5Tl566jDC4y16XuNLTnWDjA5F6uUd6ZpZyKwPn60gwrxwcXAazCNfZYgNtLUpXSnnxjT6ncEarwbo5DEZCh9wRvg3YGt7LanWj/3lUkMdFKSAM9w+DEp9yZfYS66VimLjFleGS+MZAgiZUfXqoyM2JuccAtcLgGdpdrTmKHq3bvk+7x+Y/wfVpTuZFP4dpfBvCeZVmeAPBtAP7SMAxfMQzDswD+GwB/AcDTAD4G4IeTfv8+gPcDeB7ANwL4s8MwfCsAEH3NZkWENQPN92vy8RXHpkc5VNJPmAR4WQDez6Pep2YQtueo5ZsxCOQxpRT8eHX5YSMnq9PYredy2RvkMYJDcp0sC1fMWqORMGeUdEqdk04Kp2TCBbZzX6Ck4A7EtJ/vTdFNJZJIGrtelKQHSZxGV7+zF4EEEpre3lHgWCpnj3BEDUk3HRQtAMQEt8R9Qwtu1eimh1zQ4SPvfxZf/PYnAJQGk/u/+wxbuEYIQBx4ddPuYuLjceqm6bVk6t36tg3odlyT1r1dGNYdSKJX6n31Yi1NsuVzEkOdShIRdGIf8e/gcBBz9XS1J29tzff6dms74eL6kDjbxL6l7cmmQ+QeexFImSfF/m7yXDxGACWdbx+S6GyE7r2E3MvleAvIPM0hZeW45zjHLUESO+6bdC/Zz3wJHv9+wO1bW/L3Ds42ybaQa5JX3F37iQBvOyexPNv8Z/jfM62T6Nt2GjPhMoATL5tEsC8d21rLVVVUEknsCeYHquj+oj8n8QN/2D2+96N8n0b7nDmJy7L8wrIsV/7P9d97AfxRAL+wLMuPLMtyCecUfngYhg+u7/3jAH5gWZZXlmX5RQA/BOC719esvmazIHEtH8v3s+BpuRgZlEgWhH2U3Darn17vsGMTT1EiYo41Kf9j6iTGnMTKWCJCDpA5carjTCIiYqx0Hq1+x+Qkpk5pD9qglsAgqF5Av3M/FY4zi3aWyfY96N7F9QHzwhfOntaoZC8iuJ1GXB/mLgQScAjM5W7G1X7uEvvQ65S1g1sHsSZZylBJ027PUVNbTJ+vNY3+A7RpoP53TnNSGGQvfT0VgODoXmOBpFvjFeyOgFK0x8qcxGBomVPMaLiRRtjuIwN+88IHOwon8YicRDYnbhxzJJFx0n3zddbe9dS5+V7fbp2MDknsCRwN6HY2SmpfX78oQMPS5EWeFOukT7k9w9CttcBRjwJuioD10E39NNmcxFSVszfguk++G7v/5zmJfSUwYnCLRBLHMaPEAv10016afHF2t+zkSp3EtBTPuUJjl0EjIGEXGCkAwiyn1rI2nhUoKXMSOVvedV5FZ3YX/TmJX/WvAd/3WeDOW/k+jfY5zUkchuGvD8PwEMAvAfgMgL8H4EsB/Jx/z7IsDwB8HMCXDsPwFIC3p6+v///S9f/VvuycaERKOokGBcLD2lK4gHE2/Hvdo3ueSTaW0X8AzXIWo4j8ABwiqKEUPTmJ0tlgKEPyBrWSjVVHlrn+quNsH241J93aD2T9qXnhDqjNlCrpuec4Kmf+uzE5WV444pj6loW6KTXH+Hv35AR5h+v1yz0ADtkAVgGCw9J1HYGVgnhYYq4Ha1xvnHDNjhTT0PYgc9+q3qPcWGWQpC/6z1LLak7iYV6qEeG0HmCcI+c0bGVEfrbVlf3nashlW0mvn93h5liqlDKIiEY3pRCYZO86kPcogEDj9E5iz1ouirkzdfo6giRpe+uqjvuup3i1v1vbCYd5weXOVvH0bUoomTTdWhjWNCVZnFOs4FD1+hP3tyqc1UU3JRG6QOX3VE72+rvHlPLLpmAUOfBkUCb9vXl10zHbJ9l7FIjXfTcvzVIPvqVgxbEUdDblSQbmmf1O1k31LQ0M+HX0x7/2+dhvOhIRHHObMB3bWstarXSgIXgz5J/fVSdxmzqJnUjiMNyYaA0AdIz86O3/Y+9dY23LsvKwb67H3udx3/fWs6u6u6qrmqYbKN79wNAQwGDAsUgHuR0S4SQGYhsbh6AkljAgISRH+EcUJYpC4jwcxxa2ZAs7kZFCTKxEUaTwAz+IiSPLEBv6XVX3cR57r1d+zDXWHGuudfb6xrr3nLvPuXtIpXtqnz3PmnvtueYcY3zf+EbTNH/COfenAHwcwLcCWAG4BuAL0VvvA7je/k7+P/4dJsb2zDn3IwB+BADe+973dq9PZVzPgsOnKBDaaZIMhZfln9iMB3xw8tBIhs3VAU64Zm4vtbmqqH2Vuuk+Qc7FPSAN6o5RADadocVgXEV8b2MCNPrvnX296HuDgSJjzPQB/QMK4JGUWDiCCS7jwJlBcoH20I6ykcxBupfFyAaXfcvafm8Mhao3LvV9sqzS1nt5goerwtNNLUjiCJJ1JpKeeDqs+Rk9I0liQb9kjH79LItp2mIMkjjWkmJ675Lsrk3dVNf26PFTSIqeI+ts6SDYEuz16KaGtawFpixNwTWSuMimadOAyq5X/eebQxKHSRJmru+5tY//C+/g7rXl5HvF9lvZ/Uergpof4B1Qs9hH9LyFRBV5Tql90oRIKSTdOaJ20vWdcopKOPhsXClFTK1kklvAMHltSkrGQToZuGlGwnJCWVksS+yqqKHlUjuO6G8MjNckMnuyf7//fxbdPitRuOkZHdOAAIb7/2//+e8djBvUCBIUe/F/tGI3s5ZH+ytOnMGxKrPFT+sFiU1l65P4hO3C1U2bpqmapvnfAbwC4I8DeATgRvS2GwAetr9D9Hv5HSbGxtf9xaZpvr5pmq9/7rkAw07K37bf52CBTFAgzqJkTq0P+b3m1fvXpzfxWCQE2Lz5n1l/t3mKZ8rkT+1Zj4UkDh7QzTSlmHoC2D5bfC+tAdHcmiwLRWYOjUFTogCPOjA1WXniejWJjJjPeC9HYo6JGxw0DJVWVNDeOV4D4OmmcpBaawvz1KGoG7rWRkzUTdcVGSSOJDyY+pKxtTXJEohqov04QwIoYkAw4+JaD2Bz8BaLz/j3N73fnWUhkApICutcx31C5fWzLHFnKU5PzFEFwayDBgQksawaOkgH0BOYstRW7S/89e6fFCZqNzCibjpxzfj+W4Lgj73u+4Y9f90QJLYB8KNWlIet9wuBjX+NDfbmthuwCg4l8f03JAk1M4pF0mVuci1LD9rCWO8X70FMwhvos7C6721yVL8tjk3dNLAS2M8mST/xewqivzEwrJsE+ER5UIkVX2Z6jv79oMeN9QAGOBCmioCbABycfb0YhAHYtTxkvDB13z65YvfTkOmaRCPd9AnbhSKJI9f+AIDfhK87BAA45w7l9aZp3nHOfQbAWwD+5/Ytb7VjsGksO4mpheWcaymB8SKegtGHjp0JpTMuLBc55My4sfo7Zo5jaBuD0o3dk6JqsJfbAilgmlow1ifR4uxaaXpxQMQ6d3HDbbonlHJA2aw1EFAzMRZJGUMSp4N7RHRTFu2ch5JKkPiuBIkk3VQOUmttoa/3sInkAKpPYvkYdNOm/7sxS2IkF8QzOpemGo2z1VIPXy83ZMrlnvXWMUk3zSLhGktNolW4Y0y4yb8+cS3lJE9lq/vjJACuJ5kW2uI+cXRtrULuLQkZQNckNt0cNs4xWsviXDOJmT/8Da/i1TsH+MQH7lJzBEIA/KilrrMsjTpa/3RSMgpSWFXUnriLAUmsjYGbRnx0Td2mdTkWyFI1iR2SXndzpertR6i7zFJOXDhnLAqUupWFRd10kSVdPfW6qnFtj3PDs8QnJYFWuIYSvEl6a8TPezq5C/T3ciYJKn829ks2InRn1CROa34kQySx+3ybkMTh3+/2cmN/RabuO07AATOQxLp6qkHihSCJzrnnnXOfds5dc86lzrnvAvBHAPwvAP4mgK9wzn3KObcH4KcB/IOmaX6rHf6XAPyUc+52K0jzwwD+2/Z3U2MnjXEMx+Rv/SI7+++e1UqBcZoAKCeZW1hjDjmwuSbxLIeQpZZZVVHPEkChatsiJHFqAzq7bnLzHJPo/svfsN5/3kmO7iNZf9FHEiff3lmWDhERTl2tf9g0ROZ0KFzDNXzWznVAGqbH7XdIotRIkXTTNOkpQtJIYuZbZxRVPamqqU2Ea9YlN268JnFa8CNWZDPtPzOTW1X0vVH9XUeRxLPXZTZCN2UP4Fi4xiOJXEa+GG3BsFlJLxZuAqadrUUW5mhxWnu1jAaHJN5L6NrahQ4SuWctnAE2ddO4drU0JGacc/imN+7RSD8QkMSjVUnND/AsDY3QMePG2jYA08HloN6PYHbo+eiaRCZJMkAgKWpfHGxwaFuX7FD3kvmuh6J/hqRk9L3R6qa1DREE2h6cba0rewb464UzuGRbYCSut9cBXEIG0IggeR8HdF//uhVM8WM3+1w+URH3SZz+fGPACMMKGdXFIM4ALRzEsPs6y2PhmqeH510U3bSBp5b+CwDvAPgLAP5M0zR/q2maLwD4FICfb3/3UQCfVmN/Bl6M5ncA/D0Av9A0za8AADF20pjDPhuBtqc25bniLrFCFCuBfhbdcdN6HKPE1o2lbkkHN0S95ciGMFvddOLBHgtkKWc3yn524xgnZsQhZK5nDdJlnFZxY64FtAGRMUgH+kgi3aMsHanTZD7bzEP7oK0jeufIRjcV2pAp0wdPiyqqmq4tFFtmKVZtn0RmXDbynFLqmgOUevrZdm6sltHQFse6b7mhAAGwOXgb65M4JSIQj9UULApJTBI0zUi9zcQZMIduHRS1azrYBoJwU6+WkXy2ZQ/xCbHpOQIKSTw2IIlxMoFEBOMgsSJq2R/HQk2iBInTY3SwHXrSTSdAASX20b5uPYPNiKCRyhkjkMz+M9YnkfnKpJarMgZggYWF7rpsUlILN8lrU6b9QgsCv8xSrBSSyJ4dOuArKpYB0WcJODe9JuVjaESQ+d7O6otpBVPk/6fqvYfAzbTC9WjpBjMumRmUuv59lNcmTeimxTGA5qnWJF5IeNoGc5/c8PtfBTDatqJtm/Fvtf+ZxjLGKD6N1cTVE5vyGIzOOGlnNSSd5IMPqE1ox00HsjECZnUI/bjpjTWWBPY/E/32RrI4U07a46KkVgTSubj+iPzekmEtKdsnca3qGvTcN5lX5OwjIiySUg6ut3lcTAlhJdDH2nswn21Qk0jSTYU2JM8cL1zjUVnLQQ94uumq4IPLsbYUVVdHwR1QAFeTCJyVuGCd1jBG5rDJxp5toM2UnzF4VLiG2MeBPpLSNA3vJHdiGjXSJO2uvTn7HLM7pu8joBDB0pa40HTTDhWf8byxtVWC3FvWf3f/jTWh8Zqsak5MZq7FSCJ7/+MkCatcGVAb7rmJEUGmRnxsnDUA68ZVdoecRTuBfi0djWQN1E35zybPs2yX7J5QGO8j4JOX69KzBFiFa8AnXTskkWSvZG0is5vjTESQE5wb910ZJDEO+Mop/zoZAgdyHDBtWUbbGU1dr3+5kIjb1DojDeU9LHAAwDuO2T6wPmoHXX0kcWuNRhLjBTkDSaRaMIzIOOu/d/a4WEnSgCTqbDdzrblUzvb3dpXMvrMLTNckjvZ7g6EmVNNNiSzhGLUPzPUi54duOD8jaw2M0E0rviZRrifB6VRNRJoM22awh3atDl+Ac7aWWQLnAt2UpcDlrZNgobbK31+VFVZFTSMpgO/btq5qPFqVs3rLARYk0ZbIAYa1jHXD0N/8v/Y+icNnG9hck9gJYM1CEhVKRyLiY9cUVGRKGCyuiWb8yFwFpOE+MuNC8FzVHGrg/3YI1C31tXsqCcMjiX3J+7rhmQwDJJEtApthQbjGQDdNxpQkp6+VuGF5CStu1GvmTlIyExcHbgbKe9xzb2L9yzUA8X+47yxPk44p4IO96TEDddOaD26GzJXp62n651RLNG2SUFmVNV2XLtfr0YTJFhjWOQ5pwqzgHLrrAJwPNAYcyNjNa2tYkyi+BhOU1nX/7JjaK8daYHBI4rCdF816z/eA1YP2D13xmsRttuBgn/2ecWh7OtOh/z7AZcSGvWa4hTXI/hMZaHkmhs3cJ641irYxyq1DESCqJtENaxKn6sfOqgllkcRS3X+2Jit2CAGutiS+jxz/f0jt40QBkq62qq4b1M20IiTgD+2uR1O7602hB7EiIS1AMJZZJ8Y553CQp0G4xqJuqhQh2dql/TzFSVFhZUQSbx4sAACfe3BKBbJBAa5/sE3R9MYo6NRhHyU8wKz/aN+qiX1VxsUOAuA/31lJiNAPcFiTOOXM62CP7dGn/26/lmvzh4vZHWxGPg729PU32UL1SbQEexrxrGoDkqiaXNPtZjqGTVsnRUr5P05N4hwT4ZoHp20LDMKR19+3RQSrP05e2zzGP/vhPtY1x0AB2uBGKIEVF4DF/gxTEx37MiwlFhDF6YCAsbWFQFynOX2tRKFEloRrqtg1bAIOCOfSuqpRVA1ysnVGnjoUZXhuqOSKQjvZ9jZScqDVTdl1LO8HAvjAJBJGNT+MSGLoVMAnLuRak6UzI+cU2zoj9uXZdYL8ADh+2/+8OOTGnIPtgkRGSj4ZiitMLaxEOSNijJMW01RlNKOSOSpcs2GYZBUH44hr+ffOQ8B6SCLRgiEZeUCnkIMxARpmIx/2Wuq/vmlc3G5Dz+Msi1uXmHo7xQ45gzaowI1VhIyvV3RI4kSQmA4DYO6QUtlIsrZNbH+RBSTRTDedzgxq21ukOCls2WAAuLWfAwC++GiNO4f55Pt1n1UxBoEfBinNRiErsWEt43R/s7OEa6ZbAAwTQPJ3zqxJjCTy9XWng8SAZFmQxIDc8HVSY+wOCqFQNZc25WIZV5uQDY1QsGgnEPokAtMJo3iOge7I1RbGfdFYKuFck8/2zpHfS3RAfJbpXmqW4D5VzwB73sv1CvW8sfdD7+VMssOP6SM+LJPBj0H3L0837SOJFnXTXr0rmXDtAiLDGTDod0gux2W7lrqSA1JgLU+DKmpJtsDINdppuv/9di6mIDHySzYNDcn8YfeAqbU1QBIn2GVjc/TXJvfyqCyCuV6aDNvi0EFitgccfdH/LEI2T8F2QWL7xW3OWgyh7amFFSNZgkhNBmARakDXKLjIIWn/pQQBjI7MeMNtLkseiwBtqj3ScxzQTScOqTEBmjnKrSFbNDUuphb7f5mM8BwkcZQiwzhbbQN4PY6uSZQeTaUfNxUkxpQQVrhAI1lWCujBIsX9EyPdtM1aWxw7ADjIU5ysS6xKG9301kEIDG8fLibfn0Z7AtA618yzHa1J5nxK3JhwjS1x1KlyTowbywgDm1UXg3DNsCZxMkhU8vqlYf3HQTCTyR8+22SfuF6fRP7Z1ghrRSINQITaGIKNZZZ0yRFrn8R+kGILpAAeSZlrIoL1diuCtUcknBJ1tlmUkudS0np0RwtKl+h6PxbJ9f/qlg/+9U0Ouf+3Rzclt8k8jXoJkglowH+m2nAmjvVJZEXgdJDIJmWWHd3Ui5exSOIiS/rCNSQDoqp9/bUlsRInoZlRMUrHrJG4RlmsnEgejbalI5E9PUd/relEyZhwTUX45nrfslCZAfjA8PhL7c8H5KAnb898kMgUnyZRAABMZ7eGfPz2b00hie1iDUGKf53JyMdKesz1BoI3DNoWcc/lelQAEAWlVd1M0r3GoP6pwvkxSixFG40CYJaCOEbtY8ZpqoufI38fB4GsMfvJiG/o61lrEuMAoCYP0t4BZaBtAUG8BrDVSZVVY1K2A7xwx0lRYV1WdEAKALf2Q2B454AIEkeQe8a5Tly8JlkBiGHiwqq2aEHg4wSc/J2pZ1sLMLFqnkGAxooktoFpF9xM18QNBYDYJt1KpZRIYopJwLZukUQWEc/TvrgFu/6dc7h3za9fvidpvybRUqcc16CyTvkcO1z65/lLRysAQcl1k+lErY1uOkyuMIh/lgbBFUsAoOuraOEg8UtiJHHD54uZSkxtv5hPXEhwwwd7fo62M7FX398Fl8QckxDIsqJsgA4SPZK4JDOgi9QL3gB+/2GEa3K1300FXtpidgGbXAS0cI28viFoO6tP4sR3Hu8HAKe6Psbw41kh/deEBTFV8hEDPnQrHh0k7uimT884ZaMzkMSJxSHvA3gaSZexq/qHxnSwF94LGIRTRrLdU0u4cwi1k0Y6oHHgUNYN8ilnNwHqGOqfcArj/lN+jtNIohwOwxqRaWd30O6BGJeqQzTMcd7BxiqyWXt5ASK/3Q8upyiWA+Ea8iDVNahWdG9/RpCYZ66rDwFCnzrmWidrewsMjSTeYZDEkYOtZpIrSbwm2ebSseKuvb9rcJKnx431SdzEMHDOYRG1cmHbsnRBSlV3a9PiJAtSxATpMd2arVvKFFJqyT53QWJZ0wkZoP9sW2mcz11fAuBR+wEtmcjiy7hecrE5XyRxmaV+jVUNFlnCJbfU921BEnt0Uzk36CBFBdsWJFEl4eYgiawwkv7ebHNsSwAMSRItnGKqLXSuu+8WNe0s9bXzdc2rJAPhXDpeVQCmGTlin+LqEQAAIABJREFUiyzBylqTmISEU0X2YPbj+v6FKUhv+s/AHHVTXz959rXivVXmCUwEl9Ec/bWng+cxJJETXRzWG9P71uIQOH3X/7xDEp+eMZtCvECY7FZMN+WlrWMk0RDsRagBQAreGOv2OkUq9YzSohgxBZGoSYw/m1zPz2Uz2lD30FXuPgJDha5puqm9T2U3rkcjZIVr5om7aEls+R6mEMF4nnRN4kgCwipSYUX3ekgiUUcEeJRgXdY4LfyhzTq8+4puahOumRckWpHEOPvZgEQ2krhOlhBgiujdbE3i2LMNEHR+JeLg58itE40kioNtQxJbxK3ihGuswllACPZ6NYmMk5b44HlV1ibaqKaxWRARIIgwvecWVzMzphI7W7jmHINEIKCJeyyVdqwEwFg6cBF0Rx2UlgRt3Y+RmsSAODPPjU6eNiQiCASULiQJp8foPchSy54kI+e9oQa4aqmcPN3Ur6uHrSgSe3YssoAkFmQLDK2U7BMC1KV65SVsQmZQqkMkeM9SN91Uk+7/Zj9JqP8GJVzT87mIYG+EzVYzZ7AL99GSlAQAHNwLP++CxKdnTPHp0Nn1/05J3wLDIHHaaWrnFWUfJhEwN8xa63mcOS4ZEbcwom1Sb8kgYGmCqCZxmls/JlwzWZM4QomllFvP+N4YJHFsjVAI5Fzabucg9Oe+yfK0n332f4uoSVT9frogceJwi4vLaUlyFdxYFcE0lZNFEkWk4uGpl7tnD21RN10baxKvL0PPI6omcSTbyhxsmuoFGBI58V5CiFLFIhWypKfnOI4kTjWL1mq7AOiATwuniMPFfN9jtXST1NYkTsBxjqQWoLGKKS2yBKuiNiEbfUTKQIdC6CP4xvPXqPcnSV+V00J37Dl2pCrq49i1Pf+c7pHJJp3wsPRc1UkZps5JbC7dcYBAGtZkr1WKNeFXc/sP0KpwGxWn9TNqqWXXa0v+5a6nUTo73fRh++ywSOIy08I1fE1iN0fDGolLPizCNRZg5CwksZoIaMdqEikkcSThyiQ8PCLYf41RWPb3Eb1r0vvWtefDz4tdkPjUjNmU4wCAyW4NVErJoCHO2FmQxLE+fZNI4sCR4cYAY/WWHJJldXZ1k+Ju3FSfxAjZADh1x1iAIwTp53j/jfcDGBeuoaTMVbDHUvTkPV1NYitcM0U3jZMrrCS5puAyMtra3nPbIxrO8bQOObRF8IZVKt1fpKgb30vNgiQ65/DyzT0AwEvtv5tsLPvJF9tHiCBdkxj+nwnu5VYPe2QR1zoTSTz78+Wp6xwm//6aor9puqmMZ747GRdq9+rp5FbSF+liEFkAbZ2Ln2Nl2FsBv5ZXZWVyWrVqogVtANC1m3n9Ob5mZqAKadx/AAkuz9d9OVzYg8SmaemHliDFBQfUUssYlw7QoiRp/+xggo0gqKeCe5LxUqkAmO+T6BEYi2OtS0wsSG7qhoENcz2N0lnuv+w3j4xJyV5NIpkkkdYtot5tQZt1IoFCjSPfyRK0jYnCTAE3cU2iBUm09+rul84AfMmHbvej5zBph8+Fn3dI4tMzpvh0KOU/vfjnqpTGGTu6lcJI1lrPY9M8e4I3BGowJ2Ok56kDvoJSN03OLFI+66Aac6w93WVifmd8tqlzdPb9j8bxDW/taCcgjeO9IIBkoWnhiPZ6oU+i7Xtjs91jdFPWcZXgi0W2geAEPjixtc4QWfx3jwtTCwwA+Ls/+a341Z/4Frx0c5qmF69J+ZlB6eI1SdUkJmPqppvHxCIVMlWKbloPX/fCDJuchKQnXMNmyUeRRANty4okameEbRPknEOeJFi3zynA1agBLdpQ1rDI3eda8dhYk/inv/1NADySCPSfb0bdGvBrua9mu3l9PAm73iKJTPsLQKnS1rUpSElc2OcsNdi5SrjWDU/l9BS4sI4t7VV0cEmjpIpxZFVgrSbOeW2hxKShqI5hXEASLT2HNUpXN5ZEjl9Pj1okkT07NN20rOuuFdAmC/tdbarjjWtJbS1I/P8z4EHcEkdsCr0cq0lkFK5j31V+tpZuyPUoJLEdZy2d6SGJTzFIzKbfcrWNOUxjBT5m4zpLpZQNwEIjWUxeS8b1+/T5f6eWo26kLONYalnsELJUKl003zTT9/+sxqnJBuRgXLiGUxsFRgIwYo2M3v+p4NINBW/YGpE5joVkFqs6NBNnMsn6O5hTk2ihJGsKrlXd9D237ZupyNtL42wLkggAJ0VFB5bhmineeP469d6zsp8cRSZKkrDZ/znjlGNBC9e4IW0ImHZC88z1+iSytMUk8cFsWTWdCISFbirX5FpgJOb9R0xaAFiCDcDX4a5Kn/jkg0QlXEMGDWJ/6Kvfgz/01e+h3w/0e+CxwWyeDhkX5ylcAwCHS0ESjT0gFU3SGkhZHEmP9ug2EdQ0+1RCtt5skCSpu7Nk8lrqnKIp0K3ibldbSCYyAf+cWfuLxklJ5hHQAQ5L5QdCEnJWTWIVUCkr3bQ0IInxPWETyQAG95ISeIxRwYl1GdPP9XWZ6+kjh0USx1puWMZ1wjXsg3q4o5tuhTH9xsZoc8BExiJSKWXph6FxNnrjJp2tBBFq0M5jKuCL0Aaql2AUgI01wz57nn35bYDot5cOof4pul0cyAJcvd8gY0rWRCSufx94evGwJQiHyA5FQrg+ieFgC/QM5rBPBuqmzPfWCX0YAtnHUTd98YZHEr/2vbeo9wMaSfSZXVbwRovksA2R51iM0gGBAbHJ4rXFOjIxus0Kruj6wrnqymJTQXCuBJgAXqURCA7oquSFinKVXJH5TQtuxUwGa01WbVLJBALd1CLsItcC7Oqmc0yfARWJJGqRFsDvQcy+9TgmQSK7H3TUPiMCNpYUYxN+c4RrdH9FlrY41qieRYADK4pHO/OWShsCjekx8qfN6qZpP3EN2BOulgB4bk2ippvahWuaVjGURxLntKmR9wOczxv7kmJltXk9xywNfd0pmmp8PV6ErP8a8+zErAn5W5TtkMTtsKqerl0a1PYQ2d0YSWwMrRSAsKBoummU/WeD0li4hkF7Ou559JDy2U9bADCGJPpDcfN1gKFwzVRN4ln1lhytYHj/p/bWGIG0UDsGTWspummorbJw5HWh+LrigvuxDC172KxKW7Ah9uGXb+CPf+sH8EMffz/1fiAgBdaaRF2rZKlJnGNxLS9zQI2qaxJVcTG6zTaBj0Uq5LWNc0yCSm93vY5hsKkmMYnoh7yTtt+ibXOEawJyM013lGy3p/m6traTmqL/fO19APj1L5S0LEnogHSh+yQaKIFzTTt47Pem1RYBv/7P+5m7vrTVJMZKkgCPgMWUNBZdnSNcEwcAXE1uPwCYEpYK10IvccSuSa+CXpmTi0Bf3ZSum1RKnuz1ArugNqmbzq5J7NFNbS0wKmPdZJYkHbrH1jfHvhMTcAuzY4wpNoUIjvqEbrP/Gphi/bNjupZ9KLDGIKxa3XRKkX9gz32Zmvj5JaGnbBck1jVV77cu+4sK2AwbD1RKWSSxo0xEzpYhcEsS19UfWSXoTeqaTezIc+O0/DbABelx1qicyP6Mcc8bYo4DKX+SNpc4L1rQOYQkAhmjDexhP7dPos72sfcf6IskFGQtlzSpB2ziRlrd1NICAPCf7z/47g9R7xWTRtkPTgs4x7UEAfq1SuftsMa1vMyBH4/xdEfuWvFzQ41zwz1h+hAdOgjM/pqlfeECC/3Qty6puj2dUaaVhIhWF2QcBMDf99TxNYn+er7Fh3xG1q9Ytr3UlpkFSdRIiiHTPdN0PZFFuEZ/30Xd4MBYB2w1QRL3SbqppoVbgg3NQrHQ6+egPYDcf1sNaowSlRVJN1V7gklMKfEBsGX/13O0qZvqhuf+Naq+P2Ll8Oqm/ZpE9rzpBYlVQ91/6UEtSrGWPonzkUQJitrXJ5l6Z/Qhn0QSh2I3k2JuUd2knydXujG4HnFfsjQkvM3CNTnXVui8bRckkgukhxIRG3msUiqj2Xq/GG1jauKANlsHxyvpDdAGy7gwRs9hk8XKdsA8JHGKFhXqE/rfGxM0+7mF6wCccJAf52sF5tJN6V6Cbl4dS9fvrQo1iVMKXcAZNYkTwjU9JJEMtgGMq5ueo+O6VMI1izSh68Zu7Id+h5YWGHNMI/CAYd/Sz00DOLLfWEydpvsrKoRI5jA15szakg1jBWnTY2gkcdG2LjGom8r3K04aE5Rqheu0RUz5INE7TuuqQpo4yiH08/SfzTv/3Jg8TbrEj58rNWy2aaeQRhLTpF+DWtWdA3xe9tz1JQDgtBhRVhoxzdKwCde4QVKSQhJVEs6CZGmNBWsAoL83ShU16VPQaUpsmwSyMEm0DoFJJVbP0XBOSYnBuqxNVFpJLnbMFQOSuGr3rIIUbuoFzjMTCRafxF8L3TUBu8I7c80zkcSJWym/12PZmsSY8UKLx0VAkSkJ9+m/Avzeb/DvPwfbBYkk1GytSTxTpZR4YPT76Yy8gvoz8FnruHE2P244RytKIYc+pW46QBs217KMZYwYZ1f+pLW9R3z/bXRT7ewa2hR02ef+HDZZkMQOjgyjkqaVSi01iZ0zYqTxxDTV8yw/6oRrTgoTIqjbV1xEkKgpMlQWM2JAVE1DftdDmqqVXcA6yWMJoIJAuAVpE7M4QHuqvyXA0Yvl+12VPJI4pgLN+gdZ2+JjVdR0M3eZ57sna1Owl6euC7it6qZzLKYlLwg6Z5721z8r3PE49lXvuQkA+Cefe0i9v6v3NgrX9Pe79jUmuEmdasli65OomUqWRunyfDPCTTJOn1PsPp6lSU8l1qxuarn/qT1xDYQ94Xhd0nME/HmzSBN8/sEKAF/esExFuZgT/AOU4m7bTmdOIoHvZRojidP0T2C8ncXUNcdqEqfYZX5cvwxM5jsbSTSAABahwM4+9L3+v6doO+EaYpMcZPGJjSs4CH0+MotkhU0Lk9fS16sVujdHyZBteK7HsfWWQJ+CGDZkW789GbuxBUn7Jwd9EiemGIuEWOim/npyrf7rZ9k4krj5WoBkaP3PFmqNVuCz1yT699tqEkP/NcCQWZ9RbznXOuGa05ISMRG7d23Z/Xz+NYn9Q5E6ENNhT1Ir3RfgaxL7IhVsAmjYJ3GqByogSFsUJJJrZD9PcKqCREaZdhEhiSUhnKLl5wEekQUEJao9dZSsiZN5iiNp6ZMowYbQ5c/TJAAGbEiWPoNZdc3Hsa98xQeJuvZ1k/UTcP41XrjG/xxqGaevN5duGusCcPt/y4wSdd+aEw7SfoIlAZG3c5yjbmrvkziC9hDXk3PjZF21158cAsD7GLcOcnz+YRskGpBEADgt/PUY4Zo+ksiJRAFDFhBLf/bv9/9P17JHCSDmmqmqmRTj1Eb9v3Pq+2MRbrq/YswKPOf99UnbM48kMn2CBrU9xMYVqEb+/2U4A737cfGmNTXO/6trgpi16Ole4f9t42IYnRmn6hosNYnRQT2VyYwznwBXkyhjzbVVI/cfIISDRsRFrE2KLQFYL7NoyGxphdmuT+IUkpiM1XpMXqqXWbdkhOeaHPaPViVuKgrplOk5ve8u30x8jo3V4Flp2jxtKEqu1KA46Fqkgk1AxEg6oDOuZ6+vLE1w1DpnQHs/2FrSha9JXJmQRL9GViUf3ARkw/+/BUmUFh+rsjKh1FKTaKL2RYm780zIAH2VRhbJyltkSaysm3Onm17fy/Effeor8darnFKyzEcrRzPBnmbl2IRrNN2Udz6z1HUUWr51DLr3A54FxNAd9b5lqYnL2t6dlgRoKLmxBXvZyHnPzFMYKLIPsc8bANw+WOD/aRFqWt0067dqYvaFWM3cIm6kz+A5aHNV8/d/rE/iRiQxHUESCcXvWHPCz7OZTBSOljwRlOtUJ7ytwjVbYs98kMh80XFhLbNxDfsdcojIoJk7GQDE1Kam4eifiRu2bmAd+XjxcxtCgpOq6s11+v6PIIlTnPUR4RoLImJtCj68/9z3liYx3ZTL5EuQ3qisKUc3DYeGOF20cIQ4CKXQTfnvzaRSN0JbPE90Q9P55tJGv8bQcmOOZUnsJNdY5pu37zQ6fC0qdfHzRmfkjXvCKJJYTx+mImwhNtUSR9t+nuLd48KkbhqQRL93MU5yYIUEIQdLTWJR1TgtamOQmGJV1HTwBfiA1IrsPY4tI5XGOcI1Pvt//kSoP/wN76Xfq/UETHRHN9wnWeSmRzclb8ciTbp2P94ZZ9RN+zQ9X3vPjSsVm8Qk3FTbEEG51XXdmJDcNEnQNPZxkjiy0k0B4OZBSEZeW3JuuCSzpJaRUd2V701QWZ7u67CSRMJEOwqxmG5qEkEc8e+mQIAhu8xQlqWRxLrB/pR/N0ZvZeimKpg1C9dsiT3zdFPmi47FFZiN6yyVUosACqACUpKmKgFHw0L90WdjaxL7FA3/GltLp7nueu5njhnJGk05QUl0/2WedL2fESWN73+4J9Pj9Gdj+73lap1YhGvk0CiquqNrMHVqWhK7qGo4x2zIiUIS+URC6vpiB/5vnT+SCNhpo7//wy/g5n6OG3s8AjnH8plIog6kmPproEW3Iwo0xxLQAhxhDpPXGskIA9N0U00DrMg5AqomcY5wTVV3/06NizPr3kkm55gJ2lnRLRgAT51dVzXFkBETaitgC2Tn2jJLux6VTL9PICSpJPnm+8Rtl7M1xtJglarn9EnM0z6Vk+9BGJ4d7/9Mj4nLYIqK+97y1HXaAxa6qZzB1tpOIIi0+Nemr6UTpyxzCwhI4rEgiYbn5rYKEm8fLqgxi6zfz3efCRJVWxbb/e+f3VSNbEQ3ZZOSZ6mbTvVJLAYU1eme52MMM0qELGITAiS99YJ9mfOwHZJIfNFjtC1g85ets4qArd8eMIIkssFll8m313+ZxqmHRg5uZunrOrWAGNih/qneNmNIorQFmbJRKX/j5mMRvOkVUZMbeZ6JQ9KYHQugrUk0IpDy/nXVICdUQPX3xt5HQNBt//OFqJs+BpL4X/wbX4fo7DgXy6IaPKZP1iAB1LCZ9b7gjalPYpcU4xoHx0i6HzuNJA7ot0SNpth+nuLUSDeVgFCy654GutlJGyT8DCjdwSLFZ+4XuFbakMRFmmDV1lte3+OO9zxNUDfonPLzVjddZEmHvljUTQFBsBytrnmRNh5sGJFEwz6pnWtLo3TdSqEikcQYJSrrpguSNs4x1UiigRKbJLOCbcDvV7NUUWubKqo8/0dtKwuL83/7wAeGeepwuOCSQLIHCZK4T4zTGgRsbaGM0/vWXs7ff90Cg+4TOnIGTPVJFPRXrsHWCMrf711rqnVGMl7yRMUOkXDNZQsSd0gi8UXHi5jZuFK1YQG8SmOXjVHjKIpexLVm61/iz1Y3DVd/pIVrojlsnKeiDbHwu2S1miZ2CqeRxP5nY+smh5LkLN00zhpNIomDmkRbbeG6V7fBZ1t13Qw7Tt5fVDXlWMsYTYmlhVMGCOTksNmWpUkXPFuRROecqRZlrmWJ67UAYA58aaPQjWmmJcKB8cSRVcyKCfTk92M0HmDzulykSYfqyRhagn4R1E0XGdfyJEscnFNIIhG8jbFCWCftYJnhpKiwKmqTmNIy9zWJpwWPQEpwI075eSOJiyx8dzWR7NBzDNQtTjjlIq3H0jAEN/0+lXxwqXvFWVCiRVu3CvgaW2bPi1Eilt6t9y2WkSBzlCb1AL//+DnagkTtc1mCdK2KDXACWGK32iDx1sGCLqXoahIlSLTQTbsEEI/kalEk0320CtdEZ0DTNJMBpvg/MQuLqRH0c7QhiVpcqhtHCeWomlyDD7RNtl277FMwFjKOlfSAzYs4pmewTnIc3FQ1n/0H+kgWsxTTyCEEGaT4AMD/bBGu0RkqVrgmUHfDa1N9wOIgHWiRROKuaMc1IIKbxwzvP/991014P0tJW0SOHXMtQG2uVR0EaEgnoVDCNZRogXoGTCp1ri/RLq+dp4lS6XmrlM61PE2GNXhETVwVHaJz1E3Z2hLNLpDxk/1dR2g8DMMgRhJZcQXAO1cnhadyLknYzDnXicIAaBvWTwSJI/XlNJKYpzhel36OBudzmaUo6wbHaz5IXCiapEXwZq4tsyTUO5FIVp70ncKy5oRTLtJkPn26I4kIVvZgr+slWDcm5dylCtLXpDBSjBL5IJ07b7rPZlj/Urdqae+kz2BrAhTwiWdLkL5Uqth+znwy54Ub/ryJEbRNJrXz7xyv/f8b6aZs2xIgYnwZgQrNFOMT0Jq5EuawaYxcQ4wtHfPX0OPqSdGzLD0D7ZzyXUfaq1w24Zrt9Igu0CiIOh0qgAIckmhVadT0AKB10Kjsv8wNahzjEAb1PZkn5xCGzyTXtFLS2GbusQAEMJ390QEKwGWnxHo1IuT3Ft9/9p7IGurolSzdNHLsmDkC/fsijgLblFfoHUXFyc+n2mnq5jg5bLQm9LwpGs/f8D0PLQf9RVqs5sYITmikAeDX1kDdtCF7oPaQRE4UKUbSgaCeO1WTGNNv2eBmL09xWtQ0iiKmVTlXxfTYGP2yBAD7ixTH68osXCPoxjvHa7q/ou7vdyHqpipIYQV2QvlGENM47xYYVhsTrqEQQV1bSCaF/bgERdWYmCRAvyZxXXHrKz5P2T6VuibRom66zDwFWmpXTeqmtf3+A96/qBv+Pi4j+idDvxX74AvXAQBvH63pMaK8/dn7p/T1ulpqUTwm778WamEEYYBxn5cFDuL2NvrvnTVGv1eux5w3eo7y85zaeYamqhNAcj8vgnn0JG27dtmnYEw2wDsyfYcE2BzcDLLIVgEahaRYePVaOMUatMk4ZgnH9RAA50iOKV5OCadkyfDBnnIKx+4HQKKyM9TmzqKbTiOQ6K7TNHxGuAsSS5siW6aCS7aVBdB3Elak45pHVBfAXu8a1tb5bqwvtpndA7I+5KItT/pCLWxN4kDsZo6YFelc6HY6tHBNhKTLPIHNyYtcBWwAT1sEQi3Pg5PCFCQu8yC4YqlJ1NR1mm66CMI1lj6Jh61S4sPTkkYS+wmn83didLDNBvd5x5zw97Ko63NvgWG1vnCNf40V/OgFUqwCZYvAWFAzINz/pmnoREm8lguyT2WmAlLL2urq/QyiMMF3stWy65pEiwDWMkvgXAgSLQnGN1+4Rr9XTCiqn33gg0SmJlG37rEguX0/bVoQBtBIrv9/C910tMWcAYQB+NIxIOqTSJyLWeQny7Wn8iQ9KnmzQxIvpTGO05gCJTCBJKb9RczWtg1oqqSy1NwsTpwhYdVNE4U2sCItfp7JjJrE4YM91Rg23A///7UZyZJx/l+rKq2Mm6xlVEkBCyIrwjXrqjY1YNbCNeuulYWhBUBV45RUXByl8ViDdAP68jgmh+mHX75x7teaY3P6JMY1iTXpkM8Vs0p77ALu+46RdICrScwjZJXpkSUmtTz3Twq7KExZo2yDKZZu2lMJZOmmC08bfbQqTXPUcvossiF7glBpzxtJlLpJgEcS+43qfTLtIlpgWKzXk85QS50lSV/cyCDuYm23AQThmrK9j1R9ebSW2e8tj5xkliEsa/dkzYvCyFs03Ze7/xLcNKY2HUJB72oSDc/pc215A9uDExgiiUxNYhDcqkwKuDpRaKGN+vfbhIriunSGdRQj2wCJJEbJDj/f6XG65Vh/HMHmEX/XmMzZFnvm1U1ZKfl4UQEcHB7qUTA5Rv9e17GYetT0KKDzsjiz20RQAdgwcGb6JALoWjDI2E33sjswoto2rgdh+EyhtnDzmLNrEifGqSxm4vhAtleTaHASJBhaKyQxJw43OZBO1hWNJMby2+wc+0Xz5++0AsAXHq4AAB968fq5X2uOxc3jy4kkCTBEBC0Jp1jMyko3ZRNAmUqmxXvf5prEqAVGzaubClr89tHaiCT64EYCnKlawVF1U3It7y/80fzOcWFCKA4WOki0IYnyuc7bh1mkaaSuyZ9vZdV03/vWqZsq4RomkSyWpqHeuyLPe0B6CdpEcgAfOJR1g9PC7ydMzWuc9C5JNeFevaUhAAs9CFu6KTHOOS8uVTfBmbck2CXgtjjxyyxVSCK/lzjn8H/8h/8SbuzzrZNutW0zPmMIEmVOq7I2KeD2lcltpSwdm4Qtb4jPqc6/3qQ5kfTeC/DsGpmbvh4reFM36BIdfu/aOCxS9+UT5dtk25WKewpG0U3PyHRs+rKTOPNGIlkxTXWuuilANjKNkUTSIdS91CxUQt1/h+GeA0A6omQ1lcl0zvkAOApkuZqsJ0c3ZZHjqrHVUcztySWHxmlRdRQnJpMsTutJ2zrAhCTWDUUhEVtkAW220K8ex/7s93wIH3/9Lj72+t3zv9gMi5vHs8mtfh0vX5OrD1GWAt0XruGSJEm03wFcgJm3FL1GJYHYoOFO25fst794ZOpvKTQ9tnXGMOHHq/RKIMuoqGo7XIbnklc3FdSm6v3/eVncgoFFpIC+KvNVEa7Jo4SrRYGyt7fSwaX/fh+1rRss5QYyT1q8TNckGgLgZdyDkL0n7dldGc7SrPe92Zz4vTwJQaKBFg4AL9/a7yH/09dKscgSfK6lm+5RdNNQkzi3TyLL0oiFa9izO1PsMj9e/JlNY4ZIIpNgGfrJvACNnhvgz7ipRIk+p2SuO7rpJTNWxnaMM80gicMaNRuSyG5aAySRHKfbDQC+nQUVXPYCMP8aKyUv90I2BlbddKBkRXxvRbdhta/R6o79z0Z/b0pd1o+buNZIsT0zxzHhGuZAFMdxVdaKbjo9rkMSiwqnBaeI11M3JYMGGdfVsRiyn49jX/XKLfzVH/lYD4nZJovppgWhVBfXJLIqpboBMMBT12PhmjRxRJLE/xtndoHNSFEsgW5BKSRIPFpX3c+MieKi1CVOOYXxnmBx0nRtLBvsAX26KRtcCitBggZrr1CribpmXTeUsiCgpPyrWp0b2+W+zBeuSXqUtNnCNeQ2Kd+v9PdbEEh1nPRm+1TmiUJSGh7tlDk+PJU5ct+1nN0WxW/92SxtOgD14AvOAAAgAElEQVT/bM5BEufarf28+w72iO8tSxOkicOqrFGUvCJwD0k00EYBVeJD7slnI4lnj9WlLHoc60vGNYlTe8lYMpMJSnV/V4ty7jbZdu2yT8H4jPwQSWQW8aD/0cRD45xD4vp0U4uyl7UmMW6BMadxNkutlHGx2hOrSBWrmzLfm2wigW5KzNENEUgrImIOLmvbwdb1SSxV1tqAJK6KqssGM8G9OK1elp9DNzQlxJJZz9LQF9PSW+4qW5YmXcIDaCXoJzYGfR8BI/0n2hM4mnak0mjKPutDm1C361q5hM/GZmh1YGgLEr1wjbRvMPdJNASymkpmQxLtdFOh9j089c7uebeB0fXNc5BEeQ62D0lsE3dGCqhG/C1tUkS4h1ED1raIAjBLwk/ORbZPpU5usX1a/ZykvUS7Jkl0W85um+K3/9t1G1za6KahvvZCgsSWcpomjl7/fo4VrSUgf1/ThJlnNG6TwiYFvLhLX6VU/72zxgB9n7Ak9tdRRJD0JYF+MpMp+YjrlC8bigjsgkTqAUiSIP/vx0z395Ngb9Dvjdy0NJXTwquXZ6Zu7LWFYdzksJ7gTYckkj0IYyrnlHDKmJIVmzWKg3QrR56tmxzefy4oTdTmY6ENLbKwSYYifSJIbGk8py2SyIjWAEFJTZBEqkdT0t8g2TnmapyFonSVbZH2KTkFkcmP+4uyQUriXK8tTkPuCTrhZN+3hnTTTc+3OEjSSoFRthObGyQKTVKuyaqbauo0jyQqRNAgrX84oyZRnNsHhqDhcUzXSbHIWZqEpEC3PrasBYZuX2Wpwe4FUoYgRT6/JC3YfVICLgtKJ3MqVIKX7ZOoWSF0TWIuc7S1lxDROYu6aYwA2+im8xD/uXZr3+9X+3lKK35LIMtqCQBxP2uj4I1KSlLnxhlIorVPYk2dicLAsgV7nZ+me/MSiVDtA1nu4zbZdu2yT8EYxynOIlhUOeOaRI4C2q9J5II99K7TgKwtTFxPWbAxBJe1uhZgQBIV111e22RxvzGA5ZEHqovl0Nbqjiy6N7j/VnXHGiba0Nw+iZ0kdlG3SCIZJGrhGhpJDJlFi5CACOmIKM9lUwM7D8uSfk1iWdWTrWMCm8GGUmhxKYCvSdRy32zQNiYkwKmbBvohYHOuNSXTSjcVZwuYdq41QtHNkRauCQ7ngakFhnZauWe7awp+cjFIouwdx+sSTcPVcskZUNRBcGvbsvK6vZBFpEK3k7IwJ7r7WLQKoOS4QU0i8X2LkufK2Keyl6g17OVyTt0/kbpJ7hmQxLxFTE+Xs9QGBVAAvZrmi0ASX7jp+/laAtJlluK0mIEk9r437lq9ceSePGDqEc/OWbTRSbXRNPgk+nqT6vXtr2Mkcbp1RjinLG2atsl2QSKxkGMlJdYp13V7srZoJNH4oHW1baomjms3EGVjZtUfCWo2E6Uj7iMQoQ0Ej7yv0PW4c7Rx1nm6qf9XC9dQYgc9uqlca3JYR1NZlRXWVUM7hIFuakcSi0rPkTs09Lgd3VTopmFN1s00Aq+RDeDx6KbM2tJy36xDOPZsMwyDsZpE1gHVe4AVSVzpmsRJuikGc2Qd0OevL7uf33P7gJ5jT92UVEUNSKK939scm0N3zDWSSLI7Ltp0sNEhWayTXNkSOUBA245WNnEXuf+PjMjxIku6BAmDvgD9ekubumm7JjtRGL4msW6MLZdUMs2SyAGA22r/sArXzLGXb+31/mVsmSc4WlVoGj64jH0gtv43LtU5v5rEfrmBjJvaEuJWLjJu0gdN+zGA/xmT9dS6v6ul3nibbBckUkGi/1cXbQNEcONcz0EAOEc+UYFb1dhqe/qNm4lrDeim3EJOkkCtZIM9eU+HyJIU0LlKVj2n1Ug/ib/rqT2yc3YHiq+bx/WEawzB9qhwDX0ApzhtkUS21mNPCddYkcSysvWt0igRW5N71S1PgyPJtgAY1kXzQg5D4RrOISyMyN7Yoc3VJPrfifjSuuKagou91GbkLUHifp52SDrABIktkqgz8uQz+vKt/e7n997hg0R9z1iHcK9DEi+GbrqIAgAL3dE78oIkbtfGMNonkUncpZpxxNcW7mWhThzgkcQuSDcgiYDU5NZtzR8XpOepw7ryTJKaTFwDAQV/eGoThYnVTU2JqnaOFubKnYOLRRJfafcFiyrzMkvM4jraT7ME91kSekyzCV6NpAMc6ytT+0E3jkASk8SXgQW/kPvO464D/mcCSYyEay4j3XQ7pfwu0Dh1034Wga0B62VjjGpnGklkEaLeHEnaRCxcU9UsvdX1HEI9h83jkq6+k0XpxnricNmfId2XCTg0lZae4xlIIt0Cw3iwhQyV6snFOhe5L2RnZcyBgCR6J7misqZCGy1rRYk1BcD2GpGralomXNb01HeXR9nPiqQNDZFENnHhejVLrLqynqP+edPzvYiQREvCAwD+1o/9Pvzl//N38I2v3aHH7C88bWvd9UmcqEmMAmAL2qnf98rt/Q3vPNtouukASTxvumkrlGNQU+2Ea6qmqyfaOuGaqE+ic+Rzo5xk9rwHQnDf9RI8ZyRR1H2DcBDzvSkn2UBbDMI1dnVTEaABbMyVsmq67401jSReBJXw1oG/HvtsA/5eds82jST2/TT2e/Ogg18fjYW5opOShD9ztgDN9BxF0A0IfiGtsN/E1+PGSenMjm56CY2pnYlbMLDIWRzsAZyTnEQIpEklsAnXm9U423C9mMpp6UlU1k2HjMxFEqfGxYevzHvKelRaMnATZyDQfY3BfZvFlOtPWa9PoiEAAwKSaBGuERqbp5vW2CMO7UUU7AG2NSKfbRckhsbZQKjDm06u9LOtNEtArX+pJWW+gTztP2/MgZhGz42fL+8kFB262tBrGQCeu77Ev/udHzS1PDlYpDhukyTAjD6JzTz580NDLzUAuNs6ruy19i64JnGOcEqnZltvbwsMjVJUBtRYzuDGqK6pazvl+ozJ/X+0stGLRSWTbV0FROiqhW6aR2izQd1UAlKAZGFFiVoTkqiCRFZI5nHszReuAQC++yteoscssiTQdlkkMULFpxC6blzSF65hfaBYpRTY7M/ELBm5HqW4qwLZAHBMI5AABi03LHoalnKDbbJnHklkHKckcrZYmqQO9roAgKRkzuF1A4FWyfQRBPoNsAFb3VJA29rXSAfUj+Gbi2oBFDGmJkLLOFsomX0qLRfIjqmbUm0DRummk8NCTWJl77+z7CGJNrTB0ji4l0UzBOla7t5So3OVTSsgirpmPnHg6wx50zQ2UaouSPSv0bShGfWPwFlI4nRNYhckGhIec21/keGkqHBSSJ9EW5DI1Mxo+zs//s34zP0T8zz/qx/6evz0L/8m3nj+GvX+ziG/oJpECUrvH6/p6+m1LMmSbatJBFSrGkNCII8ccp6S6e+b1CRa6aYW4Rp537pVpAVIxotGVw2iMLoFRpY4Wsl2jrppv58vfx8B4PYBT1d/EvahF2/g13/qO3Dv2nL6za0ts6RDZC01iYDU11qRRFtSLE3cIPiSv3WWZWewy9jrFRErZ9qXbK/RxEHpFMARSmfYViLbZs98kMg0hc2iAIClV+pgrzIEALGyFBcktnPTSCKZyY9bYJjRNsOhobnk3Tjy/sdFykwj07gmlHVcA5W2P4ezx7Tz6gkHTV6qhyRa5tihdKVdAVRqSyzCNUnisJ+neLdz7AiqkeqH1hgyu72N1VgjclVN6jaaJrQAyCfXZP+g169NjdMteABuLWu6Kc2AkL3VrG4qCYgQOOfZ+a6T/S644bLyMZJrzSR/+Us38OUv3TDP82veext/+0/9Pvr9UtsmNYnnjSSKAuvbRzy60WegCN10u5BEAL3evDySGEQ4LEkxoRx2NYnk7RgguYZE4aqsu8Qrc/8zRROuyTNRrgUAp0XdlTowliR9dVPW3wJaNo+RbmqpaX5SZgkQgfk1iYBdzKcnFkgixxp9BECVpowhiayYUq4YfvKsTpeOSVBqU0XVCSC2BGPb7JkPEpmFHDdzZx2uONhjxsh7NBw+S7iG5D+P0U2ZjbzfONv22fx1AiJipW3JzwyPfKA2aqTSskji2P23IInmmsRMo3S27OcyS3BaeNqQpY7rYJHi7aM2SCQykl3dWNV0dEULlXbd1vbsYsTosCH7xGkFUMvaci48L5bnRrfAYPetQOUPrwU67aYgMUISjTWJc0ycVXkGpqiqoU9lOAO2Ud0uTx2cAx6uLqYmUeiz77QJJ4puqhAptkzhaZj0BUwSR88vPNu2hN8yiwWHuGBqoC5L166mnm4q6AuB5GZqL69qnhKu16BlPYrGgqVOv0OlKhvdFwA+8rJP4rz1yk16zEXbMks7f8aKJEr9NUs3HZRKPY666Yb1Fc6NcHAwfQvleoEVyLXTOavkiUcSLy8r6pkPEplgaow2BHA1QbEACkt/ENCsMkD28RzZgEite54mpnsJGkRhMnUgFiWXER7rk8jQaTUiaEFE9PfGUmsG9UeGDdK/n++tCAzVTS3lOV64xgdglkbd1/YyfPHRCoAt+19Udfc5OSqtzj5fzo31SVumAu4gHMGuybpjQbAsAU13p+eYKHVTsh4liRJwAFQQfPYfEId4XdZgW4I8rknvwi91QeKEcE3EgLA6oBdl0gOvQ0gNe8Ick/v2joFuqvcE6dV3EWqSVhO0bZkldHIrVoG2KoDeN9aSSp/QLx35vZxGEvMER6uSpugBge0g4jrsHJ1zXQ2wBdmWBK+pL3L75610X8ALyfzWz313t+9to+nnmRcpikWRuGvpUgVfcjM95qw+iRSSWGmfcFpttLteTDc1stlEFXWyx7rq71peUrrp9u2yF2xVxdAW+wEAU1gLjCOJVOCmkMSarGOJhWv4LE74XFK3ZO1tM6cnUVU3WFcVUiLjOlfdNE9H0E7SSdabgZ73WTa8/2xWC924Ob0E15L9NCGJQje11XHdPljgs/dPAXAZyV4ga8nsKpEKi9N0la2r71TNxOk+iT2nafpamm5qaW+Tq7rJquJEBOJaXgCUeqI4O1JbO/X+J2ES3Hzp0RrO8XRTjSRuq3DBXp4GJclzvo8SpHSsBErdNOwlp63jamkoflG2l3sF3NpAk88U4m9JinW1nUYqoVAkf+9dv5ezipeLtE83pURC2s92tLKvrVv7vs2DpUZ2Tp9EXd/GKnJq28tTXDe0pLho0+uCfWZkjNRfs/uWBjj4XrnJaE2iXd10unRJxsq47uyY6rkdXY9XRVVI4hbv/5tsFyQSSOKgUTpZSxdnVfTf2mSaJkn3G2vf0zS2cUmv/qj/t6bGyftZZBXQ1F0vZc4cGmNQf0kgpWnSb+4t854yzVm3iuv0BYcmL9Wnm9a8I++cw6KlNllrnZZZglUr5W8LEnP8XhskXlvydNOimtfeY13uWmCI5QpJZNUFY4QC4PskNo3fSyzfm68BVkiiMUkixnw+yY6fFnUQ8jlnIZMuSDxaYT9P6fY2VvrV07Aeve+cgy+h6UqQyCBFISlQ47RVl93fwiBRkEQLbTTv1omt/muu4NDBIsVenuDtozXy1OGQrPlbtgwUoSBOCWcB4ZkURMqC/kq7ByvddE4NNhB0Aa7aeaNp8XRbnK7e1X9vLALWAzjIRIkuUwDCWbDpexinf7JIYoJC/DuCtQKouuEYdJhCIDsGxOUVrnnmg0Qm2Ih7pNCBgwvcZ6sCqM5YsI6dvg4dXLqhuA6zjrMer1sCsOlxPSSx5Pr0jambMhL7XuxDEFn/GkXlzPpNwQGuJyYQIbmGA0oX27OHVJ46FGVtpmTu5R5JLIwNyLWS2/PX9ybfr+mmXW2bgUrbOU2XcGN90qbvJYuc6ZpEi3CQfkYtGfk88apxTSP1F5NDBgk4AFTNmTjEq7JCQTa3f1yTLPyXHq0pMY1RddMtXcsaYThvJHGRJVikCd4lBYCAML9V6Vvw6Ne2yTok0RBs6GROXXPnKKBrEm00Yecc7h568ZPbBwu6dcMyS7Eu6+7+M0G6JI6PWnEdS1LyVtuo3nJGiQp0l/A2sHKquqbLey6T3VXiOny7k5Zu2iLA7FqOAQ5WTbuvi9H+rQ2+4Ri7jFX01y0wuppElpUT9waf+Hw95eJLmoB45oNEJtgY1pb4hTIpeJO4LmirDYGUD1ICBXSOuqlFgn6gZMjWMqp2D/K3pkzD9uuqxsIif65osX5DmKYIDPsdTl4Oeeo6dIKl28XOrqW2U8aZg8Qs6QQBLAjFwSLFo1VJI7lit1SQ+Nz1aYW1Mbopm4AApN/Y1Tu055iWkpfnYMrh0skVC5I4V3FXDlppb8OIHcSUTAAo6qYVU9kUJLbIUlGr5urnTTeVWq51V5+4yXJFNQJ45einYXI/nbuYJvUHy7SriWOQS612eVoI3XT73JcOSTQkBGKBKau6qZVuCgTKqUWd09NNqw7JZe6/nPfHK1tNIhCSkpbPtWzPxE7d1JC4llZBW9hZ5bHsnjqraSSx68EpNYkkkhj12GXupQYcgBC4WZFEujevYph1ZwcLAgz8yWmgws+zRRIv4eLavl32Aq0LNkjaUMiQ+NeZ4DJA77yztZgjJR+pa7JKSj1qmaVuL+lnyPlx4UBclzUWBiRRO1sAp0hVxHRTChEJSGJJOteD+iMya9S1ADBSZAAvXe/rX2x009uHC7x7vKaRXLE7h6Hu4i7hXOSabmr4bDq4LMg1ctVNS8kLcmYptq8MCaBe6wzDOC0wVZMOwqgAQVVPUtcDssQjq49rgh7ePylwkE9rvmkFYkD28vOb3+OY3M9FmlxIU/DDRdYhUlTJQZogSxxWZehTuc1IokUAJU7msOP8dwXcN6qbAiE4tPT5E7rpqeH+y/kiSKIlSLx5YK9JXGYpVkVt9EnUfndJ0Z5Npltm8EhiGyQWtiAxTsyzScm6waA0a9M1w7mhg0sSSVT0Vl4pvB+Udm1upnxQ1arpsrbA2NIj62KsCzbYjHxHJazhHEdBLKPMA0u3CyqB89RNmeA3HmcJZHNVf2RCEtX1WLpjLHcv12WyOHPEdfIsBJcskhgQQXTjLPejVPefDfj2FylOCjuSeOdggaJq8KWjlenQ1kgi09x4ob436/r34wRtfqa3KQDBuSqququnYNVNy7rpUH8b/co2rod2ssI1ktzSSGI1nXHVwjVdTeI5rxNNr6OQxGjfYus0n4bJ/bwoxdBDVdPMt2BIWiRx+9VNLXL3uuenpXRAVGlDTSJ/P+5em4ckarrpHhFwSFBi7ckIBOEay3PtA9nKVksd1yRu6TM61+5dC9+xiEZNmaD7Qje1IImdWGNNJhcH/rV/fdOZM4okks+O9BwGgkgaW5P4uMI121pusMm2b5e9QLMEGwB6srmss6WRJYB3ktdKXXOuuqkpuGyCQ8hkkvP2wADCfbHUOxVVTQun6KABCJz1SVXU1HWbgBXJErSGHSf+sG4LYm9l0c6blkBvs9akkqqYOAZF1ZhU2V64MV2HqK3LopV1aO9hQqTqFm1+prcpAMG5sqgLamTPqm4K9BFIU3ubdpy1RlmsrKf3hT7dVBCp8z2AtYPF1CRqBWKAb4vzNEwQpYtC57SYBvt8+1rqCquiwjK7GMTTarInSxsMxrQDak347eVpdw5bkmkffsn39ztuET7Ghkji9PX2FfpunaOsSTmLqTmqIB2w0eu7+v4tXFePYxpJZO//gG5qQMV7as4UmyQKwIjSrPFzY0ZNYkc3JWsSB3PkkMSy9onTXZB4yYxVCQyZPiMFVHGfHydIMQmgKMie4WcHmqriWRPrOE/noaSySa0rXjhFNxvW/zJ00zjzQ80xTXrBZeKmA+e5dF8dJFqEgwB/SAe6KTcG6GePr+/xrVK/9cueww983Sv48W9/k3p/aNvQUNlBsYBItZTkLUQMLtqWPXolV4MXpN1tTlNPkr/btzhKIOCzszTdPcoiA2hRyKnDN0GauL7a4jknE27u591nYkQ7nHNeXEohidvqJLz+3DUAwHvvHFzI9XpIosFxlZpEBsl9GqbnyAbcWpTKimQd5Pb7CADf9qHnAaBD4RmTpuwSWDKf77BNBtxve2JaEn7f+NodvPXqLfzrH3ufaY6+JtT/P/O8yd66bhO1lrP0MpjoB7z16i16zNwWGGnk81rZVDLOv372F6HPKMD7W03DAxVyhnYJV0PP4f4cJ2IHBTBts7r1JuM9xCtooZHm5l1BBzYA16MPkJq4IAcMcE7yIus3gbeKTQCcaqsfh26cVaSim6NhnDhXp2ufbWUcO/l+1kZ0L0uSbsMSH5TZ6zzdNwSXln5vQTiIrD/NAtoQxI1IummbtV5XNrTtdi9I5JHEPE3wCz/wFv3+XpuODkkkrqNquVhxo6tuC/UMhBo87mCz1oSGQzuI5FCCTwqBLOsGBxa6qcoIF1VD7QveIb+4PolJ4nD7IMcXH3HCNTKnsqpNPWifhr1+7xAAcEjS0R7XhLq+MCCCosqcOI7q+DRs2c7RgiT26N1GJOvGvm9LlCaOKgEQe/3eIX7++78C3/Lmc/QY8YPuG9RUBXF/59iOJL716i388p/8Jvr9QGjvFDQIpsfsKVGkq1iTuJen+Gs/+nF86KXr9BgJnKW/JY0kakX/hlM37RKFyucCNp85WRy0kfRPwO/JEvyypRuZOkv9dbmka48VVdW4ZkjKb4tdvhk/QaOzAVGQwgdgDidFvxiXUdvSNYksj3kUyTK1zmhMlEAJpHQvNeYB7YLEtgm2DUlsev9OB4m6BYkNyRXqz+MIB7EBKeCpLpY6CkAaYBdYFbVNtEDVFt44500ra9t0dC0YDM2Ny2pHNxUTh2xVVrRst65jnFOjY+2v2GV3K7twTUw3ZVTghFq2Ljlk9UnYncMFvki2wADCPmm5j0/Dnrvh0YbX2mDxvO3Flrq+ZwgaFm1SwGE7lU0BP69VUeG0qHqU2k2WKeaEtU3KrU7cxXY/nHP4wY/yCB0Qzu63j3zAxyCJ8py8O4NuOseEEls3DRzBAAKCKJKwcrYV7X8c+8bX7pjeL+vp0comOJSlDqsyBFJTqqFAPykJcKVZYz1oAV6/QxBEvnRjnBI7KR6n6o29n7ad+9Yme6aDRLYmUb5YjWSxUrtxD0KKbqeRLDKzNSbRy84RaNU1TZTM8JBaHlA5WE7WPgBgDlIdSMlc9dzPsrEWGFQArJAslkc+tyfaWE0i60h6JLHGqqxMh++da/PopnNMEh4WJ1kLOXgk8eod2lbrI4m25FZRhSCdc5rCs20TsxJ6Md8CYDRIJOimgFDLApJ4EetEqNpsAODry2tTbefTsE+++Rx+/vu/At//Ne+5kOu90AalN/Z5JoMgiQ7bqWwKBLrjaVHjziHvWAOCJNpa/tzat7eJmGs39v2a//yDUwAc5fogppued5DY0U3ttZ2nbTsdhjl01W0Zocbs86ZbYJRVQ6HbY76Tfn3MOiTRKDAo7+mEayoy2IuCUlb1PlP1luvKlszfFnu2g8QZzhYgtSUclSqu22MDh7WiqVrl5wH/8FiFayyBrEYNLOPkYDkpKt+njzg0dG0boGjCFJIodFN+jote4Gbsd9j6urOEa4w1ics8wcnaJpIA9AU4LHTTOZanSVuTaBGukXqDHZIoFtQ8627fmnp2OiSxtNWEaiTXtCfE9RfG/UesqDgauqAGF0U3BYKQwwee4xC3vEXSRWxrW5UTk8SOLD2OiQgWi8gCoQYb4HorPg3by/3ZfVJUtEMYzrcaZV2b+vTdmtEmYq7dbAP6zz9cIU0c9bzt5b5NR4cknvMz6tkFPEspHrcuq0uJ9jxpk/X0wNiDsx+AcS22huqm075yjCSyQRvQBw8EKLL0HAYCM5AVjyuquhPcumx2+Wb8BC1AxmRNoiCJZKY7VcIpFuGIQZ9E4tAIgU0ISi1007puTI5MR8HVKBGDJC5CQTTbp08EIMoqpo5OPdiJKqL2r1lbMJR1TQpw+H+twjUdQmSsGwN8wL0q2yBxptN0/kiid5Itmb4ekrgTrgEQDm1dk8gKbulnlFIpVQewLbgPB6KVph2r1DF00722J9pFBon/9POPAAAfe/0u9X5B0mtDkupZMFFc3CcRWUB64FU4XVcmmupFmnau2dYeuUq4sm0DxHRt53mbBImfe3BK33/nHA7yFO8ceSTxvJ/RZZaiqBocr20OuSCJu5ZL3vLUIXF2JHGR9XtMW/QcykFN4tnPgXNu1L/mkEQ1RxIoGiCJFXee6uSu99Mu39q6fDN+gsYiUsM+fXyWvFvEVuEURW21BG0huPQtIJg5Ai2SaKBEdXWCygFiHtCuCXYh2T422zpscD81T6/A2g8sGSbJHGd3KFxD0k0VtdVC9wX8vTxZV4+VoboQJLGqTTLtogi2KneHtthCHTZdkDiV3IoQcWBebSHA0uRVcMmyLYTuHiGJjHMhPdGkxcRFBIn/8ae/Bt/85j288fw16v156jySbqw3vur28q19AMB3feQFesyetGAoeeXQizaplbx/Upgca8AngNhSFjFBEnWS5bzsxl5AEi33/2CZ4UHbJ/G8kRRxwh+cliZ0dZknOC2rS1s39qTN9+BMu++NrQHut0bjEuyabq3/nTpzdB/yziekhBCDX84mGAeBLAlULNIEiYNqi7Od+9Yme6bpphVZk6gdNIAXk0kTZ4LQxTJVk8iqnaWJz/yEILHmxqlMvsWR7KNt/Gfr6KYtTZKln3gpebmX8r1NP9hB3dRG9wVsh3aMiLC1pLresjEGift5itO2BcD8IPECkMSWj+8cl0hIEofrexnePV6jqhss0su3sT5pC3XRVfe8TaHwY+1VrOqmYmyTYiDQVCnhmu65Ca+VVUMxDKTdgCTULoKW/J0ffgHf+WE+sJGEn4VJ8izYa/cO8b/9+9+GV27v02OWWdqJi2yrcI04gWXdmFp7AOiawJuEa1p0T2i452mCJN4/KfCeW/z3pinF51+T2AaJBk8rL7QAACAASURBVCQXCKyEXVIy2DJPgpItGdx4JDEEbsw+Ln5c186C1I/Q/Q4tZRFjweV0TWJ/jqxYo3MO+5LMN2pHbItdvhk/QQv9xiaCxIjKWRqEayq18Fm1rUXqsG7FJixqZ7qW0dLLEfB9Ek291KSOorI5QHmrJHbSIYn8Z5MAWNQMp5pnZ2mCsu4rsLJ9EoFWuMYoHKT7VFoccu/I9//WlO3lXoX10cqWNQWAv/LHPoo/+NbLuH7OkvfiJEttISt3f3M/xxcergBcDJVq262HJJacIptO5FiEm+YK12glNy/4NP29xTRtf10SSYyEa/ItFDgS+pWVSv4s2Kt3Duj9AAhI4oOTskO1ts32F2HdsmibppLX5Hkj9lIbrH2ppXOep2mRIUsApkWeLkK4BgAenBamxGnHStjVwHe2zJKuJtGCJK7KQOVkhGt0CxgZp18/y3SwZ1HYzxR4wKub9msS5V/mPN1fpDhalygqPnG0TfaMI4kkZDxQN60NUrtK7ZLc/LsahVbtjD1IF2mCQskPc2in/7dPNyUCKS2vbw5uFP+f3JCzVD3YNflgd1Q2vq8NEN1/sj4qCNfYvm/pJbiubHRfIDgh941ZUwD4xBv38Ik37pnGzDEJ7lfG2sJbByFIZLKRV930HiSo7DSS6LoxtSHTqgVo5JG2IPBl7RV3mTUZZ2gBH2Tu5Qx1PcHbR3XnlGyjc+d75dqC9J2NmyCJp0XdoVrbZncPl93PbC/HRVy3ZEj4ffMb9/Cvft0rePnmnm2iM2wvT7HIPJ3Q0qeyhyRegHAN4JFEVoEY8N/VaauTsEtKevNJuFX3MzcmJPOLuqZaYAQRmr4oDIckBqFGZgwQwAOAB4qGLTfCHKZsf5Hi3WMbIrtN9kwHiWxN4pDKySGJWeK6BV83PNUoVwGYR6SoYcjVA8rSVjRN0tQTTfd2MjSuBdpauqJCUXIqhkAfSWRli0Mz8RpS8mSR8l+XNV1/GhBZKaTm6h/lerpNgaUmEYBZ3fQizdeFivwzP8eb+zn++dsnAC5G3n3bLWv3IC+vX2E/TyeTRyEBEdqrWBBBLdpkYReUVYPToqYk8hOVpBIra25fOFhkOFqXOFr7upmLagRvMWF3CHN3J1wz3w4WKd49KdA02Nog8UUVrLGJO003ZZMrYkni8Bd+4C3bJB/DhOFhuf8SJDp3/ki6rkm8rfoBT9lenuDzDwuUNae4/iyY3k95JNF1ZTpNMw3AAEMkka9JVK3ijEiiIIFsz+G45YaMY87F/VwHiZdvbV2+GT9BY2sSAZ/ts1I5NRxeN40haFABmAmBDKqodW2jVpb1vEDKI4nemWQRz/2FlzK38P+llYJcU899ao79AJi4Vg8l5e9/4oJAkaW2JM/svQSBfp+qbc1QZW0hu5XGc2t/saObKnPOdXuQRbgjVpdllpZWcqsNLAFdA3laVJRjIc9Wj25Kqkdf28twtCpxtCqRJm4rD+BFlvgazS3vk3gZ7N61ZXdGiWDLtpm09gBAK4DKuj1e+7ZQFpTuou3F9vO9RraAAYKSraXcYK7NUZeVcQ87cZ3tvf8XaVqvwFKTuK5qFXxZkERe3RSIaxJ5X14z/Niewx3goEAAgPt8+3natYDZqZteMmMRKSBSbTIEibXKjrDBxkIFYDWpbgqIAmjIdHDtBkQ4xRhI9UQxbBny/TzFccvR5pHE0AKj46xPKlIF2ty8mkRbTWgsVMQGe4sWJQ2yynzdntg2OshAKy4iQaIFSTzIcdKKMeyCRG/SAuBkzaF0QEhAWFRKs5Hnhmqd0e5bpy0Czzi7cSNloFU3Jfbka8sMD09LHK0qHC6mkdWnYXkrQrYTrnl8u3c9IEM3thRJvLGn0RdSubtVQHxwYlOSfBomgjWv3+ODRBEn2jf0xJxruuWAJdjbyxM8OG17Oe7OGwD9tcz6F3nqdRLEV+b6JPq/HVNHp/ygUXVT0ueNW1lM+aGh5UYfgWT28708xf1jXzN8GRMQz/TTEHq3MSIJM5BEpwprDcGeDsBYkRwgiCQ0ja9lpFpnSK2TbsFgqj9qTCgp4B8aORDZzIpugVGQWaoO7azrWeqmgu4xDqv8bS1URNOL0wTrssGq9EER61zcPgxO07ZmqA4XGU7WpT1IVE7gTt3UWx9J5A9taw9OXaRv6+8a6oEAbh13NO0e3ZTrr3VtmWFV1rh/UuDaFlJNgcDu2AnXPL49dy2gdNtKN9WJCiuSdd/YuPxpmNBpLfdfAsvzVtIG+nuOtU+i7Fu7INGbtMdapAntu8q9O1l7X+ax+iROnDm5amVh2V99cBmCPZYGnUXMQHltyg4WKd45vrxraztP1gsya/ZB9y7k1E2TzslqjEED4NE9GyXTtaiB/39b4/KAPFJog4zr2kTYNuTPPzwFAFpdM9fSypWom04IDvVaWfjXOOGatiaxDdItgkOSQWPVTYEQ3IsAB+tc3FFB4jaKdgC+ruFoZaMWA0HaHbicG+t52DJr+8StebqpoNQmddOulrdBlhja2yyCkBLAISJxPQogqnjT15Oamc89OMXBlgaJWVuTuOuT+Pj23PUgCrOtQSLg23v8sy8emVDjRRaQrG3tAQkAf+Y73oRzwPd91cv0GOmJeX15/t/ZjX07+gX4ey5b0HJLz9KLNgnqLckO8UOOJEi09OruqJzcWdVTNzUIs+WtmFjTNJ7NRvquWeJCTaKB9bW/SDtW1DYngM6yyzfjJ2gCHTOQuK5J5Nsi9HnWlho1ADgpKlR1Q0PUIu5SWmotew23Zd4GtK2t97P4Pjf2cvzuu16U5BqZXfQPtgjXsEiiQgQ7J5m4lupdaAn2tLJXRdaE+uu5fpBIbiR3DjSSuJ2OxeHSyz+baxIPdkFibIs2SDxphWsY6xJHFnXTNNB/LDRtmdPbrRw/sybl7/bVTWvq4L6ugsRtFK0BQpC+o5s+vt27Fva7WwZRkou2H/u2NwDA1Kaj325gO/dywN/3n/mDHzFRR1+9cwAA+K6PvHhe0+pM33MLtU+fudvKyrlo64JEw32Us/q4FRMzIYlSX0i3D0u6oK0LEpn+uu3z5Vs1caUNMs8YSWTmORfd3hbbzpP1gqwwZAO0umZdN9RGosdYggapSXy08g+aRdxlXQWxCVMz9yr0JmOmuVCBlKVuDwDuHi5wWvhJstlF3QKjCxINrUssTrIWDvL93ngkUa8RWpVW2kQUFZzjUcHrM2oGLtoOFhmOV3ZpcY0U7FpgeFu0SPVpUdFBkawtE91UqQIv64QeJ4fhO239BePsxv1FAdAUb7kHn3+w6qlKbpN54SBbe6GdjZtWq3zxxnZ+3wDwqa97BV/93lumur1+4/Lt3Mvn2mv3DvF3/71P4v13+fsx155IL8cdkggg0E0bVQowZeI7nRiQxEGfRJK9pWmjFiRRnq/TsjKVc2VtvaXMUeYwZboFzGWsSXymg0RLTeIi7QvXHDBjMl8gW7X99ixBAwAcSZBIDly0lFiLHLBca102WGYWtCFkfywoKdCvpaORxDTBw8Lfj1BsvPmauv9UbUBE+sqttiCx66VpQY7b4F5aWbACHJqOsa2OxeEixbqqcbQucffacnpAazf3FUq6pZ/tom2Z+15eJ0WNO4cGtbmyMa3/UJPY0G2CgPA9idw3o+4Y9xcFWiSR2PNk73i4KnFo6Il2keZFEuzKxTsbWpI4/OpPfBJ3DhcXIoLyOPaB566Z3r9Ik05dc5uRxLn2uvF+zLXDRdppA1jOjduHO+ZKbJKEFp+GMfFVj9sgkUnwxnTTiiw3yFKnhBrt59SqqOmzRuY5CEoZuqlGEi8hSn35ZvwEzVSTmHlHHhCl0um/L1mDdRukWGsSBUlkF1aetSIJhsaiuQ72jDWaAFrk0hYk3lEbMlvMLs4WEJDEqYe7QxJ1ewnTZ/MBMFtvuVB1k7VV3XRGI2Vt25qhklqxd4+L2XTTba4/uki7sZfh0ar0fRJJJ1mQRAHqmKWs5b7ZxsaAF+3Yz1MTkpi0/R8l8QOAzu5eW4a/v610U0kcWVqJ7Oxse+P5a71a7KtiyywIp1xGR3JbzDnX+RSWYFuj1Lsg0ZsgiVJmxVge0U2pPolpP0hk9/9MCwUafFfxlVZlRde/A77kSc4pCZwZn2b/ktNNL9+Mn6BZahKXaYJ1qz7pW2BwiqhAK5zyGEEi61xLL8GgDsVfS8vkm4JLo7gL0N+QWbpprummkjWaQhKj2kKA3ETygECWRlXaTgHXVIMqNYmVeRP5o594P4AgM75tJo78O8dr02fTgeGLN7fzs1203djLcf+k8EEi6UgKA4KlaAPo6gErTVOle6CmuH9sq63K0qRTLAZEuIZRNw1r5HC5nUmSvM127/ok7myTLfMED1e7Pn1PwoRVYDlvLoMI3EXbay09+Ac/+j56zABJNJQ3hHYWNbX/Z6q8xwL4aP+uqGsaBEiVmqqAAUxC4bqqk7XUKW+LbWf69YLMUpO4yJJOoagmMx2B7liZ0DZZxFZJZlFgDUW8hEMojeONlLRecGkIpADgrhIgYJHETAVg0i9xStxCI4mdKI9BgON0XdHfNeBrSddKAdeiivrotMSqqM1Z5J/9lz+Cn/yuL9vaFgBS63G8rmzqpgpJ3NbPdtF2Yz/Hg5MSZV3TAVieOayKGqu2BphqcJ+GQ9vauqGPJJL7lsrQAr5lDZO4047dNiOJvgcqH6Tv7NkzHZhsc5/Ey2ASHFqCbX3ebKsI3EXbV75yE//wZ39/L8iZsmXWDxKZYC+N+iSWFedz5anrtC0sNd+yLk4LjySymgdZEvorsmw2AHjpVqiffmGLa6nPsmd6N7LUJOYqACjqmlNRUjVxVcM7WpIJe6drwMkGiVFPLmO7B2EVmFpgtFlyU03igd25045k94BO3Jd+Cww/lonbxAE/LaoWNSaDxKwvXGNDIJvZdNNtDqI0wmPJ0LLqnc+S3dzP8eCkwMnaom6adCg1wKF7knwpjXRTwCe43pmBJEoQVdUNmobbk3VLhDcuqObJalKXLk7TZaQb7ez8TQcmV7Em8SJNHHlLwnWHJI6bJUAEHk+4plQoHRN8ZYk6NwyAj0YSTwu+nZTugx2CxOnrSQsY4HJSmS/fjJ+gWSBqHQCsy5rqpRMLp7CMTFFDEmfL2gLDQm3SLTBC3Z59nIVu+ppSfTOhpF0LDK5IeVTdlKxJTBOH07JCVdez+iRWDX9PFi2V+bSw00233XqqcYbPxor3PEt2Yz/Dum2VQiOJbQJCMq7M+grNjW2JI6Af3O/R+5brKORse5vYPvb6XdP7L8rCXs63BdnZs2f6udwFiY9n3/LBewCAb3ztDj1mV5P4ZEzu3VHXAsMiXBMa3DP7fz4iXMMhiUG4RsQCGctUG7a1AUl8z63LXS6zvRDEBVhlyAboAICV89cFsrUhkDrsxD68Y2ELpBoVEDEIaQj2GgNkn8VBogFJvHWw6BoOs5alQRQmqJtu/nxagMZCNwW8MuPJut1EWNpcmnSKtFXNoy8HixTH68rk/F8WO5wZJALAp7/hVbz5wvUnPaVLa7pOk10niwhJZBJOOrNr6S8KREGi4bkpyn5tCUsB+k//ta/Br/yjz3a92LbN9hdBuAnYIYk7Gze9N+7WyOPZn/u+D+OnvvfDprNUv1czFHZmM9m3O7opI1wT1ySSdFNP/2yZWw3PCpTvelVWXgdiDpJYcj4oANwzqLpvoz3TQaIVSVyrLAIVJOYBybLQFoWiJ02pbX0Sa/W5uDEAeuIKTE1iT5THGCQCwN/58W/uJL8ZW2ZaOKiGc9PfWywcBHB0U8ALcJy26B6LiCyUAm7d8C1Pru/leHhazhKu2XbTtR7WIPHPf+qrnvR0LrXpone2dYwwIFZljcRxwZdWHLX0FwXQU11lD98sdcpBsNXufd9XvYzv+6qXqfc+DTuIekdeted7Z0/G9Blz1RKFF21zhX9++U9+E24fLHZq2o9hcsaLuumcFhhlzbWl0L2zLT6vLgM7LWqTLoZmvKSJo/zeNHH46Gt38G0fep66zrbZLkiEvU/iuqwp3rpQUldl7SmqpIOwSBNkiTNnnxepayli9p6Aum6PFa7JEoeTojK19xDby1PTYbjMEqzKEKQzm0hPuKZukDiexrjMfE+606KmERGhjQI24ZrrbWuD43WF569frUfyxZt7cA5oml2tx+Oadl5eILPdyyzByVqozCm9/rPU19JZ9kig7+CytbJ5MqSSs0jitpsk/Lq9fBcA7GzEXroZBC2Y/qI7e/L21qu3nvYULr3F6qYUK01q4BVTjC0LElVsC3tOC9esyhrPsaUbieuSmL6/In9G/dKPfpx+77bZM70bdcI1xJfdQxJZumneDxJZJMU5h4NFOgtJLKrGBL075zrBG0ubCMBTy07W85BEqy3zFKvSU2LLqqGklbVwTW0U19nLE6wKW2Gz5shbhGskk/X20frKyZ/naQLpk37v2tXrb3aRputmWJW0a0ufgLDQpgFPASqrUMvL0k3lWZGm1tS1ehlhqUm8GkfT/kwRsp09WyYtjNLEXZm1v7NnzzokcdW2wGDUTaM+iUXNtUDKkhEk0cCCW5U1VgYdiMUMoOIq2LPxKc8wWWCcCqivm6nb7LqlJnFd1jRFVexwmXWOBd0nsQ1ku89FXi5vUYPaKFKxt0hxYlQAnWt7undhxfXR6dp7tGI+FjGUvTzF8bo01QlqcSOLcI3QCL/4aHWlGyl/7ftuP+0pXGp7/71Qd8cGidf3chyvKxyteNo00B7AuucqnTjy65elwwJ9UaqSFKW6LDYUIbu6z/fO5tsrt/2zvVsfO7vMJuUGD079fjdH3bSsaq6/otKpENEbquuA8iUt/p0veQpI4rPCjHo2PuUZVta+TodBfARJFDSRCfh0n0SWoip2sEi7B4ClKIm4joU22htnrNvzaFtlRunmmKYIrEmJ5B6SaFRg3c9T3D+xSfn31E0NgbMgiUXVXEkn4YMv+PYEH3rxxlOeyeU2LUfOorKytr50ZEtAeLqpfS+RBveWtixxrQfAZaAvg4mQz7sdkni1mAI7ezL2cttLbaesubPLbNfb/V/o9QybTc6WTt20amh1U2GerA1lCp1wTWFTlF/oILHkfNCrYFerAMpoZd3QtTZC5ZSm1FRNopLatdBNgb6TxQaXgrZJ0TArIy+ZfEubCKClmxaVuQXGHIuRRE6RNtRb1oY+lf56KX7v3ZPetaevFyjJdWOhm6pGvlfQifyrP/wxfPHR+twTCc+SsZS0G20d4xcerkwJiKxVcrPuCXfb4NVygOpaj9JQAnAZTLfAcKRw0M6ePXv1zgG+4f238ae//c2nPZWd7Wy27eW+fZgk2DmV0qhPYl3jWj4dmvg+iX3BM5NfXtam3tSLLO38u6KqkWfPxl7+TAeJVc1lLICwsKT/iwVJFARyYQgA5vSXEyU9UQ1lingBL3jT769oCxJLEtl7HNtTSGJJfm/OOc8jr3xgaa1JfNeIJC413dQoXCN2aEBgLovdvbbE3UsuA70t9jf+xCe65AVjsra++GhFU1QBH+StFLuAXct326bUknFlTNckdn0S2SLILTfZx989KrDMkl3/z52NWp4m+Ov/ziee9jR2trPHMuccDhdpVyrF+GlJ4uBcEJ9hWViipQHo/ro8w2xV+BYYNmHCXU3iM2VFZWmU7t/3qO2Dx2UsAqxtpZuKKp7/O9w44YN3wQ0reJP1+yuy1LJlnnrlxLLqMubnZUKVOy1qn8WhA2D/YHvuOX//l3naUcRMSGIrrlM3fJ9EHSS+cGMXTO3sbPva9942tXyQtWVFEkW4KQjXcGv5ThskrgxBolapK6+YuqnsyQ9X5ZVkCexsZzvbmTapgwd4RkmWOFVywDH8dOukwlDL7pzDMktwvK7aEh9ec2K1q0k8H3POLZ1zf9E59zvOuYfOud9wzv2B9nfvd841zrlH6r8/F439r51zD5xzn3XO/UT0t7/dOfdbzrlj59yvOefeNzWff/yZB3hwWvi2FIYsAqCCREq4pg9rW+imdw9DsMAuxtC4ua1/sdTSqYbzLOC2n/s2ESfrCnvnHCQKkrgqq1Z+mOeRS584y/3fz9Pufuwb7mPdhA2LTUDcUqqVLxrQnp3tbMpEFKlubFTmZZZiVVZegMmAwAvd1BwkdnTTq6VuqpNnV7HeeGc729nOtOlSKXbPE2FIAHQ5UZYkqOoGTdOYa9n3F2knJsaCAL4Nmw9+iwtgz22LXRS3LQPwzwF8EsD/B+B7APw159xXqvfcappmrLv6zwJ4E8D7ALwI4Necc/930zS/4py7B+BvAPhjAP42gJ8D8EsAPrZpMmXd4HRdmfjIopR5ZAgSO7ppWWNdVlgYsuNvtmIfAJ/F35/ZuDlLHAoleGOhm362qHGyruhAaq4J5fO0qOnCZiAgiWvDd+2vF+4dG2zL931aSo8g7lq3VcP5F27ugsSdPTnTKLUVSTwtarNy8Z02uSX9QhnTUuZdn8QrUr+ap0nXGucqKxfvbGc72xnQV7ame+X2EoVcCwwJJIvKt0VLHO+73tzP8fmHpwD4czFWN70qbJcpu5BTq2mao6ZpfrZpmt9umqZumuZ/BPDPAHwdMfyHAPxc0zTvNE3zjwH8lwD+aPu7fwXAbzZN89ebpjmFDyjfcs59aOqPHndBog1JPDLQTbPEIXFtn0RjC4wPvnAdAHDDICUfgkRbLZ2gbdInkQ1K9/IEJ0WFk+L8g8RAN62wJltgAEGRalXyKlZAHz1kWwfIpnFaeAeZvY+6TslSN7aznU2ZFkVi9wN572lRmVWBhW7Krn3gjBYYVyhLK47Sjm66s53t7Kqb7Hf7eWrz07QoDNkCA/Dsk6K21Qje3M/x+QcrADY/eV35cqJ1uatJPFdzzr0A4IMAflO9/DvOuX/hnPtvWoQQzrnbAF4C8PfV+/4+gI+0P39E/65pmiMA/1T9Xl/zR5xzv+6c+3UAOCkqrIqKDtzkfSIKw4xzzmE/T3G8rszqpl/2og8Sf+DrX6XHdDWJRiRx0dJNOySRdAr32z6JJ0XVXfu8LNBNa6yKuuvHNjmuRUSsdNOb+9q5tq2R03Xbs8fgXH/guUMAwPPXdzWJO3tydnM/77KrliTJMktwWlaoapsq8I29DD/6ydfxl//tj9JjerUlHd306mRpdz3wdraznT0rJkHidQPA4RlfolTKMcWk/rCoGnNLih6SaCg5axqPdBZG0Ocy24VLKTrncgD/A4D/rmma33LOXQPwDQB+A8BdAP9Z+/vvAiCcy/vqT9wHcL39+RqAL0SX0L/vrGmaXwTwiwCwfOnN5qSobI3SYySRXCDX93K8e7JG3QCLlA+kXrixh1/7yW/Fe+8cTL+5tQ5JPLI1bl6KSEVXk8giiSmOVyVOC/4+zrU9hSQeFyWev84hbofLDEfr0oQaA/0gkQ2AZY2cFEI35R3dX/rRj+OffPbhM5Od2tnFWJo4vHB9id+7f2qqG97L03ZPaOgaZcAnxv7sH/hy0xz79ShCN706z8H77x3iH/7u/V2QuLOd7ezK26wgUSGJvsSBoZu2SGJVo6xt9M+b+3lg3BmEawBfPrarSTwnc84lAP57AGsAPwYATdM8AvDr7Vs+55z7MQCfcc5dB/Coff0GgFP188P250ft/2vTvz/TTta2RpqyIES4hh13Yz/DFx95ZM+aeXjt3qHp/bonF8DX0u1lvnF8oJty19vPUxy1Klbnrm6qWmAcG2ogDxcZjlYlqga4pQK/KbuhkURyE5FAWdqksME2ANy7tsS9N3Yo4s6evEmS432GhNNenrZIoq0mcY7laVC2K6urhyS+/66/77s+oTvb2c6uut3YlyCR97cWOlFIBnxyRgiyZylR0CAAjST2gsRdTeITN+cLr/4igBcAfKppmuKMt7Z4FpKmad4B8BkAb6nfv4VAU/1N/Tvn3CGAD6BPYx21E6lJNIqSPFr5oIhFBa/v5fjSo1Xvb5yXiTN439gCY9lSMq10U40enr9wTVCKPV3z9NaDhaf7WqjFQEw3tQWJxys7kriznZ2XiRz5G89fm3hnsGXW7glGddM55psit/Uo9dVqgQEAb7b15ayIw852trOdXVZ76eY+gKBUzVieuYAkki0whG1SVC2yZzintH+n1eU3mfiPojGyQxKfvP3nAL4cwHc0TdN1g3bOfRTAuwD+XwC3AfwnAP7XpmmEYvqXAPxUW0v4AoAfBvBvtr/7mwB+wTn3KQD/E4CfBvAPmqb5ranJCN3UjiT6AIwNOG7sZfjdd05MY+bavkIS08TRmZW9Vu5+XdamcT1K5rkL1ygkseD7MgrdNE8TE91Lbxz3rnGbiNx/QZst4h0729l5maxHS5Do6aYVquoCgsQ0qJt2SOIVopt+z1e8iOd/5GOdGNnOdraznV1Ve+W2DxLfPT4LBxqablTPonQdklh5JDGfCQI8d41jcEk5kSCJuz6JT9Da3oU/CuCrAXxW9UP8QQCvA/gVeIroPwKwAvBH1PCfgRej+R0Afw/ALzRN8ysA0DTNFwB8CsDPA3gHwEcBfJqZk0cSebqpBHhHgiQaahK/dOSRxOU5L6p91Sbi/2/vzoMkuasDj39fX3P03DPSwOhcSUggtCABkkBrc6wEmCtYEAiEECAsc8hgBwEGggUB5jCLN/AuYQ6DZS0IcZrDBmyFIYwIbwBhZHMYeWVAIHGIEbpmpkfTPdPH2z8yK7vU9MxU9XRVdlV9PxEV012VWfW6pjt/9fK9/P3amqRidLic3GW2rV/8bU1/XJ1eJ7F5zcl2ltxYOzbMvv2z7J9ubwmM5oNI68n2fVuSW1nYVeq0v3j+wzn/gUdXE6i0YtXoEFMzc0zNzHb8euPR4aFqwpr52U37529nZHiIR560tZr5VZL6VWOc2TPZepLYWKsbGktgtDe7aVF9bH3M2NS07NhRLU4W2ChUs0uoiQAAGwxJREFUHJidbXuinF7WlUpiZt4KHOp/8BOH2Hc/8OLyttjjXwUOu+TFQsXspq0nDo3kqTG7aavtUOtXj1Rrf3W6kjg6PFSsOTaX7c9k2KistrGWV3OFreOVxJHiZ9szNc3+mbmW200blcSIWHK7aasWtvs6UYVWgvNO2cZ5p2xra5/VI8McKE/ItHpN7lI11hGE+dlNB2UAlqR+ckxZSZzYv9iy54sbGxliYmqGzGR2rtV20/nZTdtt/zx+y/x8H+1OXlm1m470z4nMQxnYiySKdtPZtpc3mJhqbw3C5glQujFl7tqxYfZMzbS9Jtr+6caC820kiU1nYDo9cU1EsKFpbZuW203HRpianmM4Ztr62dpZn7KhkSjvLicO6nQFRuqUxsmi3ZPTLR8jl2pkaIjZuSQz5yuJVuElqedsXDPKxeccx9MesqPlfVaNDHH37Fy1FFIrx/+qkjibzLSZJJ6+Y+F8l63FCEW76dR050+erhQDmyQWk5m0XklsVA7vLCeh2dDizE3N0wB3o4d5y/gYe6baS4hWjxal/n0HZttqybxPu2kXEqINq0e4fU8xyW3Ls5uuasw4OttWlXRkeIg/euJp/FYbFZjGe7DLSqJ6XGMA3D05fZ8TXZ3QOLZOl9eWQOst3pKkleVPnvmQtrYfLa9JnL/c4PDH/0ZL6vRckVy2uwRGu5onrunG2uArxUAmiUMRbbdXNhKAnbunWDs23MbENd2tJG5bt4pb7trXVrLX2HZiarqtGJurbd2YuW/DmlF2NpLEsdZeb23Tdu1eE/r7jzulre0bvyON9Xfa+T+QVpLG7/LuyemWr9lYqvtcW9KHs5tKkg6usU7i/OUGhz/+N2Y3nZlNDsy0twQGwNWXnc3aNoob1QoHUzNkDk6n2EAmiRHF5CIHZltvr2xMOnDvgVnuv7G1hdwBdmya37adxUWXqlHda6dq1mgna7cCGRE86qStbFgzwqnbW585cak2rB7lJ3fcC7TRbrpqfrtWlztZqsaZpV3VOpVWQ9SbGseBXfumuzJxDcD0TPbl7KaSpIMbLddJbOdyg/nZTYuTi+1eFvG4045ua/tqTJxs75KzXjeQSeJQBLvbrPasHh1m3aoR9u6faatUfXzTAtYnbet8IrVtfZHMttMv3Vw1aPdavE+85JFtbX8kNqwZqWYObX1206ZKYocruY3ZTfdU61QOxkFE/adxTJic7vzspvMzF89WE9h4TaIkDYZGJXGmjcsNmme8n56d63gRZrzslru7XK2g09fqrxSD8VMuMBzBHeW1he0kDlvL2TzbuUanedr5jWs7e20PzFcS2zkR33gPdk+2127abc2tu632g29tmoG100niyPAQY8ND89ckDshBRP2nuQK/usN/N42ugH0HZpmZm2MoXGNUkgZFY53E6TYuN2h8BpycLk4udrr7pHFJ1V17i06xTs/ov1IM5KfY4aGoJkBp54P81rLldFMbSWK3S9KNM/CntbFwcyPGPZPTK/o6uubkvNVrIJsrud1IgFePDlWLyDpxjXrV+qYTMp0+hjUG230HZov1rpy0RpIGRqOSeGBmrvr+cBrjxuSB2WJx+w4vSdE4mdkoMA1KkjiQ7abDQ8GvdhdJYjstgVvGiypduzMjveMZZ7B1vLOTPzT8t7OO4Ve7p3jt77S+dGSjbL6/zSUwuq25Ffbko1pr3d3atID10etbv5Z0qVaPDvPrif3V11Iv2rhm/m+t020182eEZ5iezWr9K0lS/2tUEqskcfjwn50aSdrUzCwzs3MdrySOj923kjgon+8GMkkcGY7ql3HzeOsJXyPhaDdJvOTcE9ra/kgcu3kt73jGf25rn+bqYacndzkSxzVVBVttN42Y/8B59n/asuwxLdQc10pOuKVD6WYlsXHdcKPddNS/G0kaGKPDQ8xl0ToKrVUSV481VxKzrXUSl2JoKFg7Nlwtg2eS2MeGm85Ut1Phu+D07fzs7n089aGtLxLaC5orBd1Yy3GpnnD6/QA4adt4W/td9Ihj+emd93ZlmY7mFoSV3LorHUrzJACdTxLnB/tBWqRYkjSfFN5bTkzYTrvp1HTRbtqNZZPGV400VRJX7mfl5TTwSeK2NtYAe/zp23n86ds7EVKt7jMD6Ar+xV8zNsw/vOrRbVdy3/2sh3Yoot/UHJuVRPWq+57s6Fa7aXtr10qSel8jKZyYKpLEltZJHB5iZCiYnJ5lZi6rJTE6ad2qEX5+9z6g9W62XjeQSeJIBLPl183XrA2qLePdmwH0SJ3axoQ8ddi8tngvx4aHnKFRPau5TbtblcR9B2bZPz1nJVGSBshYmeA1Komtfg5dPTrM5IE5pmfmOt5uCsWs3zPlDKyDMk6t7IygQ4aHu/cBqBdsalqaYyUvgdELNpcJ90pPtqVWdXN206mZWSuJkjRAGpfmTEwVM8O3MnENlEli2YHSjc+u401dd4NSSRzI0bi5vVLFH+h4+QvvdXRHZks5EZLJtvrFeIcHw6rd9MCMlURJGjCNMWD3ZOvXJBb7DTExNc2B2TnWdeFzffO8FoMyTg3kJ9mRoeCZDzuGi885ru5QVozx8pffCtiRabSbHpidqzkS6chc8KDi+utHn3pUR19nbHiI4aEo2k2tJErSQGl0k+yaLCaFaTlJHB3m7nuLfdZ2YWLCdat7Y/6O5TSwJbX3XHRm3SGsKFn+240ZQPtZI0mcPDB7mC2lle39lzyMucyOt5tGBGtHh4t20+k5towPxuArSZq/Ln33vrLdtI0ksTHbaKc7XgCO2bQGKD4nD0pBxYxAANxRLgD/8BM21xxJb2tUZI9vWtNR6kXdbJleMzbMZFVJHIw2HklSc7tp45rE1ieu+eWuSaA7lcRTjl4HFB13zZO79bPBSIV1WI1f/tPvv6HmSHrb2Sdu5oIHHc1HXnxO3aFIPWN81Qj3HphhanpuYM7QSpLmk8RdbSaJa8aGubOLlcTG5+RBmrneSqIA+NRLHsnE1MxA/fJ3wtZ1q/jLF55ddxhST9mweoQ9UzPsn5lzxmlJGiBrR4tUpKokttFuWj1HFyauaSSJr378qR1/rZXCJFFAkdxsXbeq7jAkDaANa0bZPTldtJtaSZSkgVFVEtu8JrF5+bbxVZ0/ubh2bIRb3vWUjr/OSuJoLEmq1cY1o+yZnGb/9JzL8EjSAGkkiXsmpxkeCoZb7GhrTBQILm3XKSaJkqRabVwzyj37DnBgdo7VAzK1uCRpvm30wOxcy9cjAmwZn08Su1FJHESOxpKkWm1cM1q1GllJlKTBMTwUVYtpO7NqW0nsPJNESVKtNq6Zv7bEaxIlabA01kpsJ0ncsq45SfTkYic4GkuSatWcJDq7qSQNlrXlcb+tdtOmSuJoG/updb6rkqRaWUmUpMG1egmVxEa76fYNzszfKTbxSpJqdXTTIH//jatrjESS1G1bx8f4yR33tnWS8NjNa3jlfz2Fix5xXAcjG2wmiZKkWp20bV319QnbxmuMRJLUbffbuAa4h/u1cZJwaCh49RNO61xQst1UklSvzU1Tmd9/g5VESRokO8rk8NjNa2qORM1MEiVJK8ZQiwspS5L6Q2MJi3WrRg+zpbrJdlNJUu0+d8V5TE3P1h2GJKkm7Uxco84zSZQk1e5hx2+uOwRJUg0ufdQJ/PD2CS4778S6Q1ETk0RJkiRJtdgyPsb7LnlY3WFoAeu6kiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKkSmVl3DF0XERPAfyxh143A7hW+nzHWu18vxLjU/Yyx3v16Ical7tcLMS51v23AnV16raXu1wvv41L364UYl7qfMda7Xy/EuNT9eiHGpe5njPd1WmauX/SRzBy4G3DDEvf70Erfzxj92Qb5Z+uFGP3ZejPGI/jZVvx40wvvoz+bMa60/XohRn82Y2xhn4OOUbabtueLPbCfMda7Xy/EuNT9jLHe/XohxqXu1wsxHsl+3Xwt3//6Xqvb+xljvfv1QoxL3a8XYlzqfsbYokFtN70hMx9RdxySpP7meCNJWqkONUYNaiXxQ3UHIEkaCI43kqSV6qBj1EBWEiVJkiRJixvUSmJHRMSWiPh8RNwbEbdGxPPK+x8XEf8WEbsi4q5ym2PqjrffRMQrIuKGiNgfEf9nwWPnR8RNEbEvIr4WESfUFGbfOtj7HxGXRMTeptu+iMiIeHiN4faViFgVEVeVx52JiPhuRDxpke2uLN/7C+qIU+qUg42/5WOvjIifRsSe8hj1W3XG2o8Ocfw/sTzmNI8Bb6ox1L50qDEgIh4ZEV+JiLsj4o6I+ExE3L/umPvJ4cbgiLg8In5c/v5fFxE76oy3VSaJy+t9wAFgO3AJ8IGIeDDw78ATM3MTsAP4EfCB2qLsX7cBbwf+qvnOiNgGfA54E7AFuAH4VNej63+Lvv+ZeW1mrmvcgCuAnwD/WkOM/WoE+DnwGIopsN8IfDoiTmxsEBEnA88GflVDfFKnLTr+RsS5wLuAZ1H8bVwFfD4ihmuLtD8tevxvsqlpHHhbF+MaFIcaAzZTtBSeCJwATABX1xFkHzvo+x8RjwXeCTyd4jPoT4FP1BRnW2w3XSYRMQ7cA5yRmT8s77sG+GVmvr5pu1XAW4CnZ+bpdcTa7yLi7cCxmfmi8vuXAC/KzPPK78cp1i07KzNvqi3QPrXw/V/k8a8B12fmW7sa2ICJiO8Db83Mz5bfXwe8F3g/cHlmfrXO+KTlcqjxF/gO8OrMPKdp273Ajsz0hMkyW2T8PZHiQ/FoZs7UF9ngWTgGNN3/MODrebC18bQsGu8/8ChgTWb+fnn/Dopj0ymZeXONIR6WlcTlcyow0xigSt8DHgwQEcdHxC5gEngN8O7uhziwHkzxfwFAZt4L3Fzery4q23wfDXy07lj6WURspzgm3Vh+/2xgf2b+Xa2BSZ1xqPH374HhiDi3rB6+GPgusLP7YQ60WyPiFxFxddndow5aOAYs8OiD3K9lssj7H80Pl/+e0dWglmCk7gD6yDpgz4L7dgPrATLzZ8CmiNgC/B5gBat71gF3LLiv+r9RV70A+KfM/GndgfSriBgFrgU+kpk3RcR6ilaXx9cbmdQxhxp/J4DPAv+X4sPZLuBJaRtVt9wJnE2RmG+laAu+FnhinUH1s4VjwILHHgJcSdH6qA5YZAy+DvhkRHyQ4nKzK4EE1tYYZkusJC6fvcCGBfdtoBigKpl5N/AR4G8iwiS9O1r6v1FXvIDi918dEBFDwDUU12a9orz7LcA1mXlLTWFJnXaoY/zvApdRVBXHgOcDX+qViSN6XWbuzcwbMnMmM2+nOC49oTx5pWV2kDGg8dgpFJX1P8zMf6ohvL632PtfXtrxZoqTVbeUtwngF7UE2QaTxOXzQ2AkIh7QdN9DWbykPwIczW8OauqMGyn+L4DqmpSTsd2iqyLiv1BM3PTXdcfSjyIiKCbl2A5cmJnT5UPnA38QETsjYidwHMUF9a+rKVRpuR1q/D0T+FJm/jAz5zLzOorJm86rIU4VFRTw8+eyO8QY0LjU46vA2zLzmppC7GuHev8z832Z+YDM3E6RLI4AP6gn0tb5R7pMyuvcPgf8cUSMlx+Inw5cExHPjIjTImIoIo4C3gN8p6wqaplExEhErAaGKa5BWV1Waz8PnBERF5aPXwl830lrltch3v+GFwKfzUwruJ3xAeBBwNMyc7Lp/vMprn04s7zdBryUou1L6nmHGn+BbwNPiYiTovB4imuFVvwHtF5ysON/eS1o4/PPVorJs67PzN31RtyXFh0Dolhy7R+BP8/MD9YV3AA42Pu/OiLOKI8/x1PMNPu/M/OeugJtlUni8roCWAP8mmJ625dn5o3AMcB1FOXlfwPmgGfUFWQfeyPFxECvp2gpmgTemJl3ABcC76CYAe9c4Ll1BdnHFn3/oThIAhdhq2lHlGeJX0qRBO6M+fXILsnMuzJzZ+MGzAL3ZObeWoOWltfBxt+PAp8Erqe4bvG9wEs9SbjsDnb8P4n5zz8/APYDF9cUY9861BgAXE7x//CWpvs9/i+jw7z/q4GPU7TF/zPwTYol2VY8l8CQJEmSJFWsJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpEpfJYkRcUtE/Doixpvuuzwirq8xLElSnynHm8mImIiIXRHxjYh4WUT01bgqSRpM/TiYDQN/WHcQkqS+97TMXA+cALwLeB1wVb0hSZJ05PoxSfxT4DURsWnhAxFxXkR8OyJ2l/+eV97/nIi4YcG2r4qIv+1SzJKkHpWZuzPzb4HnAC+MiDMiYlVE/M+I+FlE3B4RH4yINY19IuLpEfHdiNgTETdHxO/U9xNIknRf/Zgk3gBcD7ym+c6I2AJ8GXgvsBV4D/DliNgKfBE4LSIe0LTL84CPdyNgSVLvy8x/Bn4B/DZFZfFU4EzgFOAY4EqAiDgH+CjwR8Am4NHALd2PWJKkxfVjkgjFQPzKiDiq6b6nAD/KzGsycyYzPwHcRNEutA/4G+BigDJZfCBgJVGS1I7bgC3AS4BXZebdmTkBvBN4brnN7wJ/lZlfycy5zPxlZt5UU7ySJP2GvkwSM/MHwJeA1zfdvQO4dcGmt1Kc3YWianhx+fXzgC+UyaMkSa06BhgB1gL/Uk5qswu4DmicuDwOuLmm+CRJOqy+TBJLbwZ+j/kk8DaKyQWaHQ/8svz6K8BREXEmRbJoq6kkqWURcTbFmPMFYBJ4cGZuKm8bM3NduenPgZPrilOSpMPp2yQxM38MfAr4g/KuvwNOjYjnRcRIRDwHOJ2i4khmTgOfoZj4ZgtF0ihJ0iFFxIaIeCrwSeBjmfk94MPAn0XE0eU2x0TEE8tdrgIui4jzI2KofOyB9UQvSdJv6tsksfTHwDhAZt4FPBV4NXAX8FrgqZl5Z9P2HwcuAD6TmTNdjlWS1Fu+GBETFJXB/04xIdpl5WOvA34MfCsi9gBfBU6DaoKby4A/A3YDX+c3O10kSapNZGbdMUiSJEmSVoh+ryRKkiRJktpgkihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSp0tNJYkSsioirIuLWiJiIiO9GxJOaHj8/Im6KiH0R8bWIOKHpsYsi4hvlY9cf4jVeEBEZEZd3+MeRJEmSpNr1dJIIjFCsT/UYYCPwRuDTEXFiRGwDPge8CdgC3AB8qmnfu4H/BbzrYE8eEZuBNwA3diR6SZIkSVph+m6dxIj4PvBWYCvwosw8r7x/HLgTOCszb2ra/nLg+Zn52EWe64PA94GLgI9l5l92/ieQJEmSpPr0eiXxPiJiO3AqReXvwcD3Go9l5r3AzeX9rTzXOcAjgA8uf6SSJEmStDL1TZIYEaPAtcBHykrhOmD3gs12A+tbeK5h4P3AKzJzbrljlSRJkqSVqi+SxIgYAq4BDgCvKO/eC2xYsOkGYKKFp7wC+H5mfmvZgpQkSZKkHjBSdwBHKiICuArYDjw5M6fLh24EXti03ThwMq1NQnM+8JiIeHL5/RbgrIg4MzNfcYj9JEmSJKmn9XySCHwAeBBwQWZONt3/eeBPI+JC4MvAlRTVwZugaikdpXgPhiJiNTBbJpkvAlY3PdfngL+mSEYlSZIkqW/1dLtpue7hS4EzgZ0Rsbe8XZKZdwAXAu8A7gHOBZ7btPulwCRFkvnb5dcfBsjMXZm5s3GjaGPdk5kLr3GUJEmSpL7Sd0tgSJIkSZKWrqcriZIkSZKk5WWSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIERMTx5Vq7w3XHIklSnUwSJUkDKyJuiYgLADLzZ5m5LjNnu/j6j42IX3Tr9SRJaoVJoiRJkiSpYpIoSRpIEXENcDzwxbLN9LURkRExUj5+fUS8PSK+UT7+xYjYGhHXRsSeiPh2RJzY9HwPjIivRMTdEfEfEXFR02NPjoh/j4iJiPhlRLwmIsaBvwd2lM+/NyJ2RMQ5EfHNiNgVEb+KiD+PiLGm58qIuCIiflQ+39si4uQyzj0R8enG9o1KZUS8ISLuLCunl3TnHZYk9SqTREnSQMrMS4GfAU/LzHXApxfZ7LnApcAxwMnAN4GrgS3A/wPeDFAmfF8BPg4cXe73/og4vXyeq4CXZuZ64AzgHzPzXuBJwG1lm+u6zLwNmAVeBWwDHgWcD1yxIK4nAg8HHgm8FvgQ8HzguPL5L27a9n7lcx0DvBD4UESc1tabJUkaKCaJkiQd3NWZeXNm7qao+t2cmV/NzBngM8BZ5XZPBW7JzKszcyYzvwN8Fnh2+fg0cHpEbMjMezLzXw/2gpn5L5n5rfJ5bgH+AnjMgs3enZl7MvNG4AfAP2TmT5riPGvB9m/KzP2Z+XXgy8BFSJJ0ECaJkiQd3O1NX08u8v268usTgHPLFtFdEbELuISiigdwIfBk4NaI+HpEPOpgLxgRp0bElyJiZ0TsAd5JUQlcSlwA95RVy4ZbgR0He31JkkwSJUmDLJfpeX4OfD0zNzXd1mXmywEy89uZ+XSKVtQvMN/autjrfwC4CXhAZm4A3gDEEcS2uWyHbTgeuO0Ink+S1OdMEiVJg+x24KRleJ4vAadGxKURMVrezo6IB0XEWERcEhEbM3Ma2APMNb3+1ojY2PRc68tt9kbEA4GXL0N8by3j+G2K1tjPLMNzSpL6lEmiJGmQ/QnwxrI99FlLfZLMnACeQDFhzW3ATuB/AKvKTS4FbinbR19G0YpKZt4EfAL4SdmmugN4DfA8YAL4MPCppcZV2gncU8Z1LfCy8nUlSVpUZC5Xp40kSVpJIuKxwMcy89i6Y5Ek9Q4riZIkSZKkikmiJEmSJKliu6kkSZIkqWIlUZIkSZJUMUmUJEmSJFVMEiVJkiRJFZNESZIkSVLFJFGSJEmSVDFJlCRJkiRV/j9YJ750IxgAtQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2014-11-01 00:00:000.10
2014-11-01 01:00:000.07
2014-11-01 02:00:000.05
2014-11-01 03:00:000.04
2014-11-01 04:00:000.06
2014-11-01 05:00:000.10
2014-11-01 06:00:000.19
2014-11-01 07:00:000.31
2014-11-01 08:00:000.40
2014-11-01 09:00:000.48
\n", + "
" + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.10\n", + "2014-11-01 01:00:00 0.07\n", + "2014-11-01 02:00:00 0.05\n", + "2014-11-01 03:00:00 0.04\n", + "2014-11-01 04:00:00 0.06\n", + "2014-11-01 05:00:00 0.10\n", + "2014-11-01 06:00:00 0.19\n", + "2014-11-01 07:00:00 0.31\n", + "2014-11-01 08:00:00 0.40\n", + "2014-11-01 09:00:00 0.48" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Original vs datos escalados:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 24, + "source": [ + "energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)\n", + "train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAZ+klEQVR4nO3df5BV5Z3n8fdHoOjwKyq0ZFYGOroRGBEDNNHEgJg4cUdXolIzi8YVzRiyZq1UyspkslZQRl3N7jBOyk00YWOUKJgfikw07tRIIok6M2rjChFtpSxFWX8UkAnQ/Ea/+8c5rZdL3+5z6T739u3zeVWdou95zjn3e56+fb8853nOcxQRmJlZMR1V7wDMzKx+nATMzArMScDMrMCcBMzMCsxJwMyswAbXO4BqjBkzJlpaWuodhplZQ1m7du3WiGjuqqyhkkBLSwttbW31DsPMrKFI2lSpzJeDzMwKzEnAzKzAnATMzAqsofoEzKz/OnDgAJs3b2bv3r31DqWwmpqaGDduHEOGDMm8j5OAmfWJzZs3M3LkSFpaWpBU73AKJyLYtm0bmzdv5qMf/Wjm/Xw5yMz6xN69exk9erQTQJ1IYvTo0VW3xJwEzKzPOAHU15HUv5OAmVmBuU/AzHLR8s1f9unxXvv2eX12rHPPPZcVK1Zw9NFHV9zmuuuuY/bs2Zx99tlVH3/NmjUsWbKEhx9+ONP6IzFnzhyWLFlCa2trr47jJGBWAKVfyH35ZdpoIoKI4JFHHulx2xtuuKEGEdWfLweZ2YBx6623MmXKFKZMmcJ3vvMdAF577TUmTpzIZZddxpQpU3jjjTdoaWlh69atANx4441MnDiRT3/601x88cUsWbIEgMsvv5z7778fSKasuf7665k+fTqnnHIK7e3tADz99NN88pOfZNq0aXzqU5/ipZdeyhzr73//ey644AKmTp3K6aefzvr167s95p49e5g/fz6TJ0/mwgsvZM+ePX1SZzVpCUj6GPA74P6IuDRddwlwCzAGeBT4YkT8vhbxmNnAs3btWu666y6eeuopIoLTTjuNM888k2OOOYaNGzeybNkyTj/99EP2eeaZZ3jggQdYt24dBw4cYPr06cyYMaPL448ZM4Znn32W22+/nSVLlvDDH/6QSZMm8fjjjzN48GBWr17NtddeywMPPJAp3uuvv55p06axatUqfv3rX3PZZZfx3HPPVTzmHXfcwbBhw3jxxRdZv34906dP73WdQe0uB30PeKbzhaSTgR8A5wHPAkuB24H5NYrHzAaYJ554ggsvvJDhw4cDcNFFF/H4448zd+5cJkyYcFgCAHjyySf5/Oc/T1NTE01NTZx//vkVj3/RRRcBMGPGDFauXAnA9u3bWbBgARs3bkQSBw4cqCrezoTxmc98hm3btrFjx46Kx/ztb3/LV7/6VQCmTp3K1KlTM79Xd3K/HCRpPvAH4Fclq78APBQRv42IDmARcJGkkXnHY2bF05kYemPo0KEADBo0iIMHDwKwaNEizjrrLJ5//nkeeuihPrlbOo9jdifXJCBpFHADcE1Z0cnAus4XEfEKsB84qYtjLJTUJqlty5YteYZrVjgt3/zl+0ujmzVrFqtWrWL37t3s2rWLBx98kFmzZnW7zxlnnPH+F21HR0fVo3a2b9/O8ccfD8Ddd99ddbzLly8HklFDY8aMYdSoURWPOXv2bFasWAHA888//34fQm/lfTnoRuDOiNhcdhPDCGB72bbbgcNaAhGxlORyEa2trZFTnGbWx2o9Cmn69OlcfvnlfOITnwDgyiuvZNq0abz22msV95k5cyZz585l6tSpjB07llNOOYUPf/jDmd/zG9/4BgsWLOCmm27ivPOqO9/FixfzxS9+kalTpzJs2DCWLVvW7TGvuuoqrrjiCiZPnszkyZMr9l1USxH5fK9K+jiwHJgWEfslLQb+fURcKukfgCcj4n+WbL8TmBMRaysds7W1NfxQGbPqVRoi2pdDR1988UUmT57cq2PUQ0dHByNGjGD37t3Mnj2bpUuX9lmnaz109XuQtDYiuryhIM+WwBygBXg9bQWMAAZJ+hPgH4FTSwI8ARgKvJxjPGZmh1m4cCEvvPACe/fuZcGCBQ2dAI5EnklgKfCTktdfJ0kKVwHHAf8iaRbJ6KAbgJURsTPHeMzMDtN5nb2ocksCEbEb2N35WlIHsDcitgBbJP0XkstFo4HVwBV5xWJmtRERnkSujo7k8n7Npo2IiMVlr1cAxU7BZgNIU1MT27Zt83TSddL5PIGmpqaq9vPcQWbWJ8aNG8fmzZvxUO766XyyWDWcBMysTwwZMqSqJ1pZ/+AJ5MzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMcweZ9QN9+YQvs2q4JWBmVmC5JgFJ90p6S9IOSS9LujJd3yIpJHWULIvyjMXMzA6X9+WgW4C/jIh9kiYBayT9X2BbWn50RBzMOQYzM6sg15ZARGyIiH2dL9PlxDzf08zMssu9T0DS7ZJ2A+3AW8AjJcWbJG2WdJekMRX2XyipTVKbn1hkZta3ck8CEfEVYCQwC1gJ7AO2AjOBCcCMtHx5hf2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrIqIjItoi4mBEvANcDXxO0shaxGNmZolaDxEdTNd9ApH+6yGrZmY1lNuXrqTjJM2XNELSIEnnABcDv5J0mqSJko6SNBq4DVgTEdvzisfMzA6X5xDRAK4Cvk+SbDYBX4uIX0i6GLgZOA7YATxKkiDMrB8ovYMZfBfzQJZbEoiILcCZFcruA+7L673NzCwbX4M3MyswJwEzswJzEjAzKzBPJW1mPfJU1wOXWwJmZgXmJGBmVmBOAmZmBeYkYGZWYO4YNsuZO1WtP3NLwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCizXJCDpXklvSdoh6WVJV5aUfVZSu6Tdkh6TNCHPWMzM7HB5twRuAVoiYhQwF7hJ0gxJY4CVwCLgWKAN+GnOsZiZWZlcbxaLiA2lL9PlRGAGsCEifg4gaTGwVdKkiGjPMyYzM/tA7n0Ckm6XtBtoB94CHgFOBtZ1bhMRu4BX0vXl+y+U1CapbcuWLXmHa2ZWKLkngYj4CjASmEVyCWgfMALYXrbp9nS78v2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrgA5gVNlmo4CdtYjHzMwStR4iOpikT2ADcGrnSknDS9abmVmN5JYEJB0nab6kEZIGSToHuBj4FfAgMEXSPElNwHXAencKm5nVVp6jg4Lk0s/3SZLNJuBrEfELAEnzgO8C9wJPAfNzjMWsX8h7WmlPW23Vyi0JRMQW4MxuylcDk/J6fzMz65mnjTAzKzAnATOzAnMSMDMrMD9j2Kyfceeu1ZJbAmZmBeYkYGZWYE4CZmYF5iRgZlZg7hg2s6q443pgcUvAzKzAnATMzArMScDMrMAyJQFJp+QdiJmZ1V7WjuHbJQ0F7gaWR0T5oyHNLAfuhLW8ZWoJRMQs4AvAHwNrJa2Q9Ke5RmZmZrnL3CcQERuBbwF/TfKcgNsktUu6qKvtJQ2VdKekTZJ2SnpO0p+lZS2SQlJHybKoL07IzMyyy3Q5SNJU4ArgPOBR4PyIeFbSvwP+BVhZ4dhvkCSM14FzgZ+V9S8cHREHexG/mZn1QtY+gf8F/BC4NiL2dK6MiDclfaurHSJiF7C4ZNXDkl4FZgBrjyxcMzPrS1mTwHnAnoh4F0DSUUBTROyOiHuyHEDSWOAkYEPJ6k2SgqR18VcRsTV76GZm1ltZk8Bq4GygI309DPgn4FNZdpY0BFgOLIuIdkkjgJnAc8Bo4Htp+Tld7LsQWAgwfvz4jOEWi0eQFFvp778321d7HBsYsnYMN0VEZwIg/XlYlh3TVsM9wH7g6s79I6ItIg5GxDvp+s9JGlm+f0QsjYjWiGhtbm7OGK6ZmWWRNQnskjS984WkGcCebrbv3E7AncBYYF5EHKiwaVQZj5mZ9YGsl4O+Bvxc0puAgI8A/ynDfncAk4GzSzuUJZ0G/AHYCBwD3Aas8U1oZma1lSkJRMQzkiYBE9NVL3Xzv3oAJE0AvgzsA95OGgWQrnsPuBk4DthB0jF8cdXRm5lZr1TzPIGZQEu6z3RJRMSPK20cEZtIWg2V3FfFe5sNOHl3xLqj17LIerPYPcCJJKN53k1XB1AxCZiZWf+XtSXQCvxJRESPW5qZWcPIOhrneZLOYDMzG0CytgTGAC9IepqkoxeAiJibS1RmZlYTWZPA4jyDKCrf6ds4/LuygSrrENHfpEM+PxYRqyUNAwblG5qZmeUt6+MlvwTcD/wgXXU8sCqvoMzMrDaydgz/V+AMkhu7Oh8wc1xeQZmZWW1kTQL7ImJ/5wtJg/lgvh8zM2tQWTuGfyPpWuBD6bOFvwI8lF9Y1hfcmVk/vlvXGkXWlsA3gS3A70jm/nmE5HnDZmbWwLKODnoP+N/pYmZmA0TWuYNepYs+gIg4oc8jMjOzmqlm7qBOTcCfA8f2fThmZlZLWS8HbStb9R1Ja4Hr+j4ks77Xl53k7nDvmuulMWW9HDS95OVRJC2Dap5FYGZm/VDWL/K/K/n5IPAa8Bfd7SBpKHA7cDbJpaNXgP8WEf8nLf8s8D1gPPAUcHn6IBozM6uRrJeDzjrCY78BnAm8DpwL/EzSKUAHsBK4kuR+gxuBnwKnH8H7mJnZEcp6Oeia7soj4tYu1u3i0NlHH05HGc0ARgMbIuLn6fEXA1slTYqI9myhm5lZb1UzOmgm8Iv09fnA08DGrG8kaSxwErABuApY11kWEbskvQKcDLSX7bcQWAgwfvz4rG9nNVL0zsCin781vqxJYBwwPSJ2wvv/c/9lRFyaZWdJQ4DlwLKIaJc0guQO5FLbgZHl+0bEUmApQGtrq+crMjPrQ1mnjRgL7C95vT9d1yNJRwH3pPtcna7uAEaVbToK2JkxHjMz6wNZWwI/Bp6W9GD6+gJgWU87SRJwJ0nCODciDqRFG4AFJdsNB05M15uZWY1kaglExH8HrgD+LV2uiIibM+x6BzAZOD8i9pSsfxCYImmepCaSm87Wu1PYzKy2qrnhaxiwIyLuktQs6aMR8WqljdPHUX6Z5MH0byeNAgC+HBHLJc0DvgvcS3KfwPwjOgMzqxtPmd34sg4RvZ5khNBE4C5gCMmX9xmV9klv/FI35auBSdUEa2ZmfStrx/CFwFxgF0BEvEkXI3nMzKyxZE0C+yMiSKeTTjtyzcyswWVNAj+T9APgaElfAlbjB8yYmTW8rHMHLUmfLbyDpF/guoh4NNfIrKH5Ttq+5zq1PPSYBCQNAlank8j5i9/MbADp8XJQRLwLvCfpwzWIx8zMaijrfQIdwO8kPUo6QgggIr6aS1RmZlYTWZPAynQxM7MBpNskIGl8RLweET3OE2S9404/q4bv1LW+0lOfwKrOHyQ9kHMsZmZWYz0lgdJpH07IMxAzM6u9npJAVPjZzMwGgJ46hk+VtIOkRfCh9GfS1xER5Q+GMTOzBtJtEoiIQbUKxGqrUsdiaad0lm36s952nla7vztrrRFlnTvIzMwGoFyTgKSrJbVJ2ifp7pL1LZJCUkfJsijPWMzM7HDVPFnsSLwJ3AScA3yoi/KjI+JgzjGYmVkFuSaBiFgJIKkVGJfne5mZWfXybgn0ZJOkIJmd9K8iYmv5BpIWAgsBxo8fX+Pw6iNLB2OjdM5aMVV7B7zvmK+fenUMbwVmAhOAGSSPqlze1YYRsTQiWiOitbm5uYYhmpkNfHVpCUREB9CWvnxH0tXAW5JGRsTOesRkZlZE/WWIaOfdyP0lHjOzQsi1JSBpcPoeg4BBkpqAgySXgP4AbASOAW4D1kTE9jzjMTOzQ+V9OehbwPUlry8F/gZ4CbgZOI7kucWPAhfnHEvduNPrA64L61RpAIQ7lWsr7yGii4HFFYrvy/O9zcysZ74Gb2ZWYE4CZmYF5iRgZlZg9b5j2I5Qlk61RuWOQbPacUvAzKzAnATMzArMScDMrMCcBMzMCswdw0egUkfkQOuUbcRjZnmv7jqSB8Lv0KwabgmYmRWYk4CZWYE5CZiZFZiTgJlZgbljuJfckfiB3tSF67EY+uoz4jvD+45bAmZmBZZrEpB0taQ2Sfsk3V1W9llJ7ZJ2S3pM0oQ8YzEzs8Pl3RJ4E7gJ+FHpSkljgJXAIuBYkofO/zTnWMzMrEzeTxZbCSCpFRhXUnQRsCEifp6WLwa2SpoUEe15xmRmZh+oV8fwycC6zhcRsUvSK+n6Q5KApIXAQoDx48fXMkbrZxrlbmbrO/795K9eHcMjgO1l67YDI8s3jIilEdEaEa3Nzc01Cc7MrCjqlQQ6gFFl60YBO+sQi5lZYdUrCWwATu18IWk4cGK63szMaiTvIaKDJTUBg4BBkpokDQYeBKZImpeWXwesd6ewmVlt5d0x/C3g+pLXlwJ/ExGLJc0DvgvcCzwFzM85ll5p9A6qRo/fzPKR9xDRxcDiCmWrgUl5vr+ZmXXP00aYmRWYk4CZWYE5CZiZFZinku6G71DNl+uiGPrD77lSDJ6S2i0BM7NCcxIwMyswJwEzswJzEjAzKzB3DJfpD51Y9gH/Pqwr/lz0HbcEzMwKzEnAzKzAnATMzArMScDMrMAK2zFc2rHkuwar404566/8d109twTMzAqsrklA0hpJeyV1pMtL9YzHzKxo+kNL4OqIGJEuE+sdjJlZkfSHJGBmZnXSH5LALZK2SnpS0px6B2NmViT1TgJ/DZwAHA8sBR6SdGLpBpIWSmqT1LZly5Z6xGhmNmDVNQlExFMRsTMi9kXEMuBJ4NyybZZGRGtEtDY3N9cnUDOzAareLYFyAajeQZiZFUXdkoCkoyWdI6lJ0mBJXwBmA/9Yr5jMzIqmnncMDwFuAiYB7wLtwAUR8XIdYzIzK5S6JYGI2ALMrNf7m9nAlmV6E08z0f/6BMzMrIacBMzMCsxJwMyswJwEzMwKrLDPEzAzq6RIHcZuCZiZFZiTgJlZgTkJmJkVmJOAmVmBFapj2A9IN7PeyPod0kidyW4JmJkVmJOAmVmBOQmYmRWYk4CZWYEVqmPYzKySSp2+RzKgpNo7jittX4s7l90SMDMrsLomAUnHSnpQ0i5JmyRdUs94zMyKpt6Xg74H7AfGAh8HfilpXURsqG9YZmbFUM8HzQ8H5gGLIqIjIp4AfgH853rFZGZWNIqI+ryxNA14MiKGlaz7OnBmRJxfsm4hsDB9ORF4qaaB9t4YYGu9g+hHXB+Hcn0cyvVxqL6qjwkR0dxVQT0vB40AdpSt2w6MLF0REUuBpbUKqq9JaouI1nrH0V+4Pg7l+jiU6+NQtaiPenYMdwCjytaNAnbWIRYzs0KqZxJ4GRgs6WMl604F3ClsZlYjdUsCEbELWAncIGm4pDOAzwP31CumnDTspaycuD4O5fo4lOvjULnXR906hiG5TwD4EfCnwDbgmxGxom4BmZkVTF2TgJmZ1ZenjTAzKzAnATOzAnMSyEDSUEl3pvMb7ZT0nKQ/S8taJIWkjpJlUdm+P5K0Q9Lbkq4pO/ZnJbVL2i3pMUkTan1+R0LSvZLeSs/rZUlXlpRVPKeBWh9QuU6K+hkBkPQxSXsl3Vuy7pL0b2mXpFVp32BnWbfziXW3b6MorxNJcyS9V/b5WFCyfb51EhFeeliA4cBioIUkcf5HkvsZWtIlgMEV9r0FeBw4BpgMvA38h7RsDMkNcn8ONAF/C/xrvc83Y52cDAxNf56UnteMns5poNZHD3VSyM9IGv8/ped2b0kd7QRmk9wwugL4Scn29wE/Tcs+nZ77yVn2bZSlizqZA2zuZvtc66TuFdKoC7CeZO6jnv7A3wQ+V/L6xs5fEsl0GP9cUjYc2ANMqvf5VVkXE4G3gL/o6ZyKUB9d1EkhPyPAfOBnJP+B6vzCuxlYUbLNiSSTSI5Mz20/cFJJ+T3At3vat97n2ss6qZgEalEnvhx0BCSNBU7i0BvbNknaLOkuSWPS7Y4B/ghYV7LdOpLsTfrv+2WR3DvxSkl5vybpdkm7gXaSL7xH6OacBnp9QMU66VSYz4ikUcANwDVlReXn8wrpl1y6HIyIl0u2764uSvft97qpE4DjJL0j6VVJf69kgk2oQZ04CVRJ0hBgObAsItpJJneaCUwgafqPTMshaZ5B0nyj5OeRJeWlZeXl/VpEfIUk1lkkN/7to/tzGtD1ARXrpIifkRuBOyNic9n6nj4f3c0n1qh10alSnbSTTKX/R8BnSD4jt6ZludeJk0AVJB1F0hTbD1wNEMk02G0RcTAi3knXf07SSJL5keDQOZJK50dq+PmTIuLdSKYBHwdcRffnNODrAw6vk6J9RiR9HDgb+Psuinv6fHR3rg1XF526q5OIeDsiXoiI9yLiVeAbJJeaoQZ14iSQkSQBd5I8AGdeRByosGnn3XdHRcS/kVwSOLWkvHR+pA2lZWkT8EQac/6kwXwQe5fnVLD6gA/qpNxA/4zMIekHeV3S28DXgXmSnuXw8zkBGEoyl1hP84l1t29/N4fKdVIu+OC7Of86qXdHSaMswPeBfwVGlK0/jaQT8ChgNEkv/mMl5d8GfkMy8mMSyR9858iPZpKm2zySkR//gwYY+QEcR9LBNQIYBJwD7ALm9nROA7E+MtRJoT4jwDDgIyXLEuD+9FxOJrm8MYuk0/NeDh0d9BOS0TDDgTM4fCRMxX3789JDnZxFcqlQwB8DjwF31apO6l45jbCkv6AA9pI0vzqXLwAXA6+mf/BvAT8GPlKy71CS+ZF2AO8A15Qd+2ySa4J7gDVAS73PN0N9NKdfWn9Iz+t3wJeynNNArI+e6qSIn5Gy+BeTjoRJX18CvJ7Wxz8Ax5aUHQusSsteBy4pO1bFfRtp4dDRQdcA/w/YDbwB3EbJ6J6868RzB5mZFZj7BMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswP4/zu7dqmtpqTMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAaCklEQVR4nO3de5RV5Znn8e+PSyjlIhEK1GBZagJeQBQL7ehSM9EWO2omhjjRqOOltaIOsTNZzdLJ0oTYtunOmpl0JEokbTAg2iRpcKKxXYKXVmNPQsE0ERQ0LsHQogIJSCF3n/ljn9JjUUXtU5x9Tp3av89aZ8m+nf285+B5ePfz7ncrIjAzs3zqU+0AzMysepwEzMxyzEnAzCzHnATMzHLMScDMLMf6VTuAUgwfPjwaGxurHYaZWU1ZsmTJhoio72hbTSWBxsZGWlpaqh2GmVlNkbSms22+HGRmlmNOAmZmOeYkYGaWYzVVEzCz2rJr1y7Wrl3L9u3bqx1KLtTV1TFq1Cj69++f+hgnATPLzNq1axk8eDCNjY1IqnY4vVpEsHHjRtauXcuRRx6Z+jhfDjKzzGzfvp1hw4Y5AVSAJIYNG1Zyr8tJwMwy5QRQOd35rJ0EzMxyzDUBM6uYxlt+Vdb3W/1355f1/To8x+rVXHDBBSxfvjz1MVdddRUXXHABX/rSl1Ktr0RMnXESMMuB4h/fSvxwWu3w5SAz67W2bt3K+eefz/jx4xk7dizz5s0DYPHixZx22mmMHz+eU045hS1btrB69WrOOOMMJkyYwIQJE3jhhRf2er89e/YwdepUJk6cyAknnMC9994LJCNzpkyZwpgxYzjnnHN45513uoztySef5KSTTmLcuHFcc8017NixA4Dbb7+diRMnMnbsWJqbm2l7+uOSJUsYP34848eP5+677y7XR1SZJCDpU5K2S3qgaN1XJK2RtFXSw5IOrkQsZpYfjz/+OIcddhjLli1j+fLlnHfeeezcuZMvf/nL/OAHP2DZsmUsWrSIAw44gBEjRrBw4UKWLl3KvHnzuOmmm/Z6v/vuu4+DDjqIxYsXs3jxYn784x/z+uuvs2DBAlatWsVLL73E7NmzO0wgxbZv385VV13FvHnzePHFF9m9ezczZswAYMqUKSxevJjly5ezbds2Hn30UQCuvvpqpk+fzrJly8r6GVWqJ3A3sLhtQdLxwL3AFcBI4D3gngrFYmY5MW7cOBYuXMjNN9/Mc889x0EHHcSqVas49NBDmThxIgBDhgyhX79+7Nq1i+uuu45x48Zx8cUX89JLL+31fk888QSzZ8/mxBNP5NRTT2Xjxo28+uqrPPvss1x66aX07duXww47jM9+9rP7jGvVqlUceeSRjB49GoArr7ySZ599FoCnn36aU089lXHjxvHUU0+xYsUKNm3axKZNmzjzzDMBuOKKK8r2GWVeE5B0CbAJeAH4ZGH1ZcAjEfFsYZ/bgJclDY6ILVnHZGb5MHr0aJYuXcpjjz3Grbfeytlnn81FF13U4b7f//73GTlyJMuWLeP999+nrq5ur30igunTpzNp0qSPrH/sscfKEu/27du58cYbaWlp4fDDD2fatGmZ322daU9A0hDgduAb7TYdD3zQp4mI14CdwOgO3qNZUouklvXr12cZrlnuNN7yqw9evdGbb77JgQceyOWXX87UqVNZunQpY8aMYd26dSxenFyc2LJlC7t372bz5s0ceuih9OnThzlz5rBnz5693m/SpEnMmDGDXbt2AfDKK6+wdetWzjzzTObNm8eePXtYt24dTz/99D7jGjNmDKtXr+b3v/89AHPmzOGss8764Ad/+PDhtLa28otf/AKAoUOHMnToUJ5//nkA5s6dW54PiOx7An8D3BcRa9vdxDAI2Nxu383A4PZvEBEzgZkATU1NkVGcZlYBlR6Z9OKLLzJ16lT69OlD//79mTFjBh/72MeYN28eX/va19i2bRsHHHAAixYt4sYbb2Ty5MnMnj2b8847j4EDB+71ftdeey2rV69mwoQJRAT19fU8/PDDXHTRRTz11FMcd9xxNDQ08OlPf3qfcdXV1TFr1iwuvvhidu/ezcSJE7n++usZMGAA1113HWPHjuWQQw754JIVwKxZs7jmmmuQxLnnnlu2z0htledyk3QiMBc4KSJ2SpoGfDIiLpf0f4BfR8T3ivbfAnwmIpZ09p5NTU3hh8qYla6zIaJZDx19+eWXOfbYY8v+vta5jj5zSUsioqmj/bPsCXwGaATeKPQCBgF9JR0HPA6MLwrwKGAA8EqG8ZiZWTtZJoGZwD8VLf81SVK4ARgB/JukM4ClJHWD+S4Km5lVVmZJICLeIxn6CYCkVmB7RKwH1ku6nuRy0TBgEXB1VrGYWfVEhCeRq5DuXN6v2LQRETGt3fKDwIOVOr+ZVV5dXR0bN270dNIV0PY8gY6Gtu6L5w4ys8yMGjWKtWvX4uHdldH2ZLFSOAmYWWb69+9f0lOurPI8gZyZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOee4gsx4g6yd8mXXGPQEzsxzLNAlIekDSOknvSnpF0rWF9Y2SQlJr0eu2LGMxM7O9ZX056LvAX0bEDknHAM9I+n/AxsL2oRGxO+MYzMysE5n2BCJiRUTsaFssvI7O8pxmZpZe5jUBSfdIeg9YCawDHivavEbSWkmzJA3v5PhmSS2SWvx0IjOz8so8CUTEjcBg4AxgPrAD2ABMBI4ATi5sn9vJ8TMjoikimurr67MO18wsVyoyOigi9kTE88Ao4IaIaI2IlojYHRFvA1OAcyUNrkQ8ZmaWqPQQ0X50XBOIwn89ZNXMrIIy+9GVNELSJZIGSeoraRJwKfCkpFMljZHUR9Iw4C7gmYjYnFU8Zma2tyyHiAZwA/AjkmSzBvh6RPxS0qXAncAI4F1gIUmCMLMeoPgOZvBdzL1ZZkkgItYDZ3Wy7SHgoazObWZm6fgavJlZjjkJmJnlmJOAmVmOeSppM+uSp7ruvdwTMDPLMScBM7MccxIwM8sxJwEzsxxzYdgsYy6qWk/mnoCZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeVYpklA0gOS1kl6V9Irkq4t2na2pJWS3pP0tKQjsozFzMz2lnVP4LtAY0QMAT4P3CHpZEnDgfnAbcDBQAswL+NYzMysnUxvFouIFcWLhdfRwMnAioj4OYCkacAGScdExMosYzIzsw9lXhOQdI+k94CVwDrgMeB4YFnbPhGxFXitsL798c2SWiS1rF+/PutwzcxyJfMkEBE3AoOBM0guAe0ABgGb2+26ubBf++NnRkRTRDTV19dnHa6ZWa5UZHRQROyJiOeBUcANQCswpN1uQ4AtlYjHzMwSlR4i2o+kJrACGN+2UtLAovVmZlYhmSUBSSMkXSJpkKS+kiYBlwJPAguAsZImS6oDvgX8zkVhM7PKynJ0UJBc+vkRSbJZA3w9In4JIGky8EPgAeA3wCUZxmLWI2Q9rbSnrbZSZZYEImI9cNY+ti8Cjsnq/GZm1jVPG2FmlmNOAmZmOeYkYGaWY37GsFkP4+KuVZJ7AmZmOeYkYGaWY04CZmY55iRgZpZjLgybWUlcuO5d3BMwM8sxJwEzsxxzEjAzy7FUSUDSuKwDMTOzyktbGL5H0gDgfmBuRLR/NKSZZcBFWMtaqp5ARJwBXAYcDiyR9KCkP880MjMzy1zqmkBEvArcCtxM8pyAuyStlPTFjvaXNEDSfZLWSNoi6d8l/UVhW6OkkNRa9LqtHA0yM7P0Ul0OknQCcDVwPrAQuDAilko6DPg3YH4n7/0HkoTxBvA54Gft6gtDI2L3fsRvZmb7IW1NYDrwj8A3I2Jb28qIeFPSrR0dEBFbgWlFqx6V9DpwMrCke+GamVk5pU0C5wPbImIPgKQ+QF1EvBcRc9K8gaSRwGhgRdHqNZKCpHcxNSI2pA/dzMz2V9oksAg4B2gtLB8IPAGcluZgSf2BucBPI2KlpEHARODfgWHA3YXtkzo4thloBmhoaEgZbr54BEm+FX//+7N/qe9jvUPawnBdRLQlAAp/PjDNgYVewxxgJzCl7fiIaImI3RHxdmH9uZIGtz8+ImZGRFNENNXX16cM18zM0kibBLZKmtC2IOlkYNs+9m/bT8B9wEhgckTs6mTXKDEeMzMrg7SXg74O/FzSm4CAQ4AvpzhuBnAscE5xQVnSqcAm4FXg48BdwDO+Cc3MrLJSJYGIWCzpGGBMYdWqffyrHgBJRwBfBXYAbyWdAiisex+4ExgBvEtSGL605OjNzGy/lPI8gYlAY+GYCZKIiNmd7RwRa0h6DZ15qIRzm/U6WRdiXei1NNLeLDYHOJpkNM+ewuoAOk0CZmbW86XtCTQBx0VEdLmnmZnVjLSjcZaTFIPNzKwXSdsTGA68JOm3JIVeACLi85lEZWZmFZE2CUzLMoi88p2+tcPflfVWaYeI/mthyOenImKRpAOBvtmGZmZmWUv7eMnrgF8A9xZWfQJ4OKugzMysMtIWhv8bcDrJjV1tD5gZkVVQZmZWGWmTwI6I2Nm2IKkfH873Y2ZmNSptYfhfJX0TOKDwbOEbgUeyC8vKwcXM6vHdulYr0vYEbgHWAy+SzP3zGMnzhs3MrIalHR30PvDjwsvMzHqJtHMHvU4HNYCIOKrsEZmZWcWUMndQmzrgYuDg8odjZmaVlPZy0MZ2q/5B0hLgW+UPyaz8ylkkd8G9Y/5calPay0ETihb7kPQMSnkWgZmZ9UBpf8j/V9GfdwOrgf+yrwMkDQDuAc4huXT0GvA/IuJfCtvPBu4GGoDfAFcVHkRjZmYVkvZy0H/q5nv/ATgLeAP4HPAzSeOAVmA+cC3J/QZ/A8wD/qwb5zEzs25KeznoG/vaHhH/u4N1W/no7KOPFkYZnQwMA1ZExM8L7z8N2CDpmIhYmS50MzPbX6WMDpoI/LKwfCHwW+DVtCeSNBIYDawAbgCWtW2LiK2SXgOOB1a2O64ZaAZoaGhIezqrkLwXA/Pefqt9aZPAKGBCRGyBD/7l/quIuDzNwZL6A3OBn0bESkmDSO5ALrYZGNz+2IiYCcwEaGpq8nxFZmZllHbaiJHAzqLlnYV1XZLUB5hTOGZKYXUrMKTdrkOALSnjMTOzMkjbE5gN/FbSgsLyF4CfdnWQJAH3kSSMz0XErsKmFcCVRfsNBI4urDczswpJ1ROIiL8Frgb+VHhdHRF3pjh0BnAscGFEbCtavwAYK2mypDqSm85+56KwmVlllXLD14HAuxExS1K9pCMj4vXOdi48jvKrJA+mfyvpFADw1YiYK2ky8EPgAZL7BC7pVgvMrGo8ZXbtSztE9NskI4TGALOA/iQ/3qd3dkzhxi/tY/si4JhSgjUzs/JKWxi+CPg8sBUgIt6kg5E8ZmZWW9ImgZ0RERSmky4Ucs3MrMalTQI/k3QvMFTSdcAi/IAZM7Oal3buoP9ZeLbwuyR1gW9FxMJMI7Oa5jtpy8+fqWWhyyQgqS+wqDCJnH/4zcx6kS4vB0XEHuB9SQdVIB4zM6ugtPcJtAIvSlpIYYQQQETclElUZmZWEWmTwPzCy8zMepF9JgFJDRHxRkR0OU+Q7R8X/awUvlPXyqWrmsDDbX+Q9M8Zx2JmZhXWVRIonvbhqCwDMTOzyusqCUQnfzYzs16gq8LweEnvkvQIDij8mcJyRET7B8OYmVkN2WcSiIi+lQrEKquzwmJxUTrNPj3Z/hZPSz3exVqrRWnnDjIzs14o0yQgaYqkFkk7JN1ftL5RUkhqLXrdlmUsZma2t1KeLNYdbwJ3AJOAAzrYPjQidmccg5mZdSLTJBAR8wEkNQGjsjyXmZmVLuueQFfWSAqS2UmnRsSG9jtIagaaARoaGiocXnWkKTDWSnHW8qnUO+B9x3z1VKswvAGYCBwBnEzyqMq5He0YETMjoikimurr6ysYoplZ71eVnkBEtAIthcW3JU0B1kkaHBFbqhGTmVke9ZQhom13I/eUeMzMciHTnoCkfoVz9AX6SqoDdpNcAtoEvAp8HLgLeCYiNmcZj5mZfVTWl4NuBb5dtHw58B1gFXAnMILkucULgUszjqVqXPT6kD8La9PZAAgXlSsr6yGi04BpnWx+KMtzm5lZ13wN3swsx5wEzMxyzEnAzCzHqn3HsHVTmqJarXJh0Kxy3BMwM8sxJwEzsxxzEjAzyzEnATOzHHNhuBs6K0T2tqJsLb5nmnPtq5DcG75Ds1K4J2BmlmNOAmZmOeYkYGaWY04CZmY55sLwfnIh8UP781n4c8yHcv0d8Z3h5eOegJlZjmWaBCRNkdQiaYek+9ttO1vSSknvSXpa0hFZxmJmZnvLuifwJnAH8JPilZKGA/OB24CDSR46Py/jWMzMrJ2snyw2H0BSEzCqaNMXgRUR8fPC9mnABknHRMTKLGMyM7MPVaswfDywrG0hIrZKeq2w/iNJQFIz0AzQ0NBQyRith6mVu5mtfPz9ZK9aheFBwOZ26zYDg9vvGBEzI6IpIprq6+srEpyZWV5UKwm0AkParRsCbKlCLGZmuVWtJLACGN+2IGkgcHRhvZmZVUjWQ0T7SaoD+gJ9JdVJ6gcsAMZKmlzY/i3gdy4Km5lVVtaF4VuBbxctXw58JyKmSZoM/BB4APgNcEnGseyXWi9Q1Xr8ZpaNrIeITgOmdbJtEXBMluc3M7N987QRZmY55iRgZpZjTgJmZjnmqaT3wXeoZsufRT70hO+5sxg8JbV7AmZmueYkYGaWY04CZmY55iRgZpZjLgy30xOKWPYhfx/WEf+9KB/3BMzMcsxJwMwsx5wEzMxyzEnAzCzHclsYLi4s+a7B0rgoZz2V/78unXsCZmY5VtUkIOkZSdsltRZeq6oZj5lZ3vSEnsCUiBhUeI2pdjBmZnnSE5KAmZlVSU9IAt+VtEHSryV9ptrBmJnlSbWTwM3AUcAngJnAI5KOLt5BUrOkFkkt69evr0aMZma9VlWTQET8JiK2RMSOiPgp8Gvgc+32mRkRTRHRVF9fX51Azcx6qWr3BNoLQNUOwswsL6qWBCQNlTRJUp2kfpIuA84EHq9WTGZmeVPNO4b7A3cAxwB7gJXAFyLilSrGZGaWK1VLAhGxHphYrfObWe+WZnoTTzPR82oCZmZWQU4CZmY55iRgZpZjTgJmZjmW2+cJmJl1Jk8FY/cEzMxyzEnAzCzHnATMzHLMScDMLMdyVRj2A9LNbH+k/Q2ppWKyewJmZjnmJGBmlmNOAmZmOeYkYGaWY7kqDJuZdaazom93BpSUesdxZ/tX4s5l9wTMzHKsqklA0sGSFkjaKmmNpK9UMx4zs7yp9uWgu4GdwEjgROBXkpZFxIrqhmVmlg/VfND8QGAycFtEtEbE88AvgSuqFZOZWd4oIqpzYukk4NcRcWDRur8GzoqIC4vWNQPNhcUxwKr9OO1wYMN+HF9r8tZecJvzwm0uzRERUd/RhmpeDhoEvNtu3WZgcPGKiJgJzCzHCSW1RERTOd6rFuStveA254XbXD7VLAy3AkParRsCbKlCLGZmuVTNJPAK0E/Sp4rWjQdcFDYzq5CqJYGI2ArMB26XNFDS6cB/BuZkeNqyXFaqIXlrL7jNeeE2l0nVCsOQ3CcA/AT4c2AjcEtEPFi1gMzMcqaqScDMzKrL00aYmeWYk4CZWY71qiSQdi4iJf5e0sbC6+8lqdLxlkMJbZ4qabmkLZJelzS10rGWS6lzTkn6mKSXJa2tVIzlVEp7JU2Q9KykVklvS/qrSsZaLiX8vR4g6UeFtv5R0iOSPlHpeMtB0hRJLZJ2SLq/i33/u6S3JL0r6SeSBnT3vL0qCfDRuYguA2ZIOr6D/ZqBL5AMST0BuBD4aqWCLLO0bRbwX4GPA+cBUyRdUrEoyyttm9tMBdZXIrCMpGqvpOHA48C9wDDgk8ATFYyznNJ+x38FfJrk/+PDgD8B0ysVZJm9CdxBMlimU5ImAbcAZwNHAEcB3+n2WSOiV7yAgSR/aUYXrZsD/F0H+74ANBct/yXwf6vdhizb3MGxdwHTq92GrNsMHAm8DPwFsLba8WfZXuBOYE61Y65wm2cA3ytaPh9YVe027Gf77wDu38f2B4E7i5bPBt7q7vl6U09gNLA7Il4pWrcM6OhfD8cXtnW1X09XSps/ULj0dQa1eWNeqW2eDnwT2JZ1YBkppb1/BvxR0guS3ilcGmmoSJTlVUqb7wNOl3SYpANJeg3/UoEYq6mj36+RkoZ15816UxJINRdR0b6b2+03qAbrAqW0udg0ku9+VgYxZS11myVdBPSNiAWVCCwjpXzHo4ArSS6RNACvAw9lGl02Smnzq8AfgP8oHHMscHum0VVfR79f0PX/9x3qTUmglLmI2u87BGiNQt+qhpQ8/5KkKSS1gfMjYkeGsWUlVZsLU5V/D7ipQnFlpZTveBuwICIWR8R2kuvEp0k6KOMYy62UNt8NDCCpgQwkmYWgt/cEOvr9gm7Ou9abkkApcxGtKGzrar+erqT5lyRdQ6GgFBE1OVKG9G3+FNAIPCfpLZIfh0MLIyoaKxBnuZTyHf8OKP6HTK39o6ZNKW0+keT6+R8L/6iZDpxSKJL3Vh39fr0dERu79W7VLoKUuaDyTyTd34HA6STdpOM72O96kmLhJ0hGFKwArq92/Bm3+TLgLeDYasdciTaTTJN+SNHriySjLw4huURU9XZk8B1/lmR0zIlAf+D7wHPVjj/jNs8C/hk4qNDmbwL/Ue34u9nmfkAd8F2SQngd0K+D/c4r/L98HDAUeIoUg0E6PW+1G17mD/Fg4GFgK/AG8JXC+jNILve07SeSSwV/LLy+R2EKjVp7ldDm14FdJF3JttePqh1/lm1ud8xnqMHRQaW2F7iB5Pr4n4BHgMOrHX+WbSa5DDQXeAfYBDwPnFLt+LvZ5mkkvbfi1zSS+k4r0FC07zeAt0nqILOAAd09r+cOMjPLsd5UEzAzsxI5CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5dj/BywbGaIaCXKXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Vamos a escalar también los datos de prueba\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 25, + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2014-12-30 00:00:000.33
2014-12-30 01:00:000.29
2014-12-30 02:00:000.27
2014-12-30 03:00:000.27
2014-12-30 04:00:000.30
\n", + "
" + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.33\n", + "2014-12-30 01:00:00 0.29\n", + "2014-12-30 02:00:00 0.27\n", + "2014-12-30 03:00:00 0.27\n", + "2014-12-30 04:00:00 0.30" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "source": [ + "# Specify the number of steps to forecast ahead\n", + "HORIZON = 3\n", + "print('Forecasting horizon:', HORIZON, 'hours')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Forecasting horizon: 3 hours\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 27, + "source": [ + "order = (4, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)\n", + "results = model.fit()\n", + "\n", + "print(results.summary())\n" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " SARIMAX Results \n", + "==========================================================================================\n", + "Dep. Variable: load No. Observations: 1416\n", + "Model: SARIMAX(4, 1, 0)x(1, 1, 0, 24) Log Likelihood 3477.239\n", + "Date: Thu, 30 Sep 2021 AIC -6942.477\n", + "Time: 14:36:28 BIC -6911.050\n", + "Sample: 11-01-2014 HQIC -6930.725\n", + " - 12-29-2014 \n", + "Covariance Type: opg \n", + "==============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "ar.L1 0.8403 0.016 52.226 0.000 0.809 0.872\n", + "ar.L2 -0.5220 0.034 -15.388 0.000 -0.588 -0.456\n", + "ar.L3 0.1536 0.044 3.470 0.001 0.067 0.240\n", + "ar.L4 -0.0778 0.036 -2.158 0.031 -0.148 -0.007\n", + "ar.S.L24 -0.2327 0.024 -9.718 0.000 -0.280 -0.186\n", + "sigma2 0.0004 8.32e-06 47.358 0.000 0.000 0.000\n", + "===================================================================================\n", + "Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 1464.60\n", + "Prob(Q): 0.83 Prob(JB): 0.00\n", + "Heteroskedasticity (H): 0.84 Skew: 0.14\n", + "Prob(H) (two-sided): 0.07 Kurtosis: 8.02\n", + "===================================================================================\n", + "\n", + "Warnings:\n", + "[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Evaluar el modelo\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Crea un punto de datos de prueba para cada paso de HORIZON.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 28, + "source": [ + "test_shifted = test.copy()\n", + "\n", + "for t in range(1, HORIZON):\n", + " test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')\n", + " \n", + "test_shifted = test_shifted.dropna(how='any')\n", + "test_shifted.head(5)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
loadload+1load+2
2014-12-30 00:00:000.330.290.27
2014-12-30 01:00:000.290.270.27
2014-12-30 02:00:000.270.270.30
2014-12-30 03:00:000.270.300.41
2014-12-30 04:00:000.300.410.57
\n", + "
" + ], + "text/plain": [ + " load load+1 load+2\n", + "2014-12-30 00:00:00 0.33 0.29 0.27\n", + "2014-12-30 01:00:00 0.29 0.27 0.27\n", + "2014-12-30 02:00:00 0.27 0.27 0.30\n", + "2014-12-30 03:00:00 0.27 0.30 0.41\n", + "2014-12-30 04:00:00 0.30 0.41 0.57" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Hacer predicciones en los datos de prueba\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 29, + "source": [ + "%%time\n", + "training_window = 720 # dedicate 30 days (720 hours) for training\n", + "\n", + "train_ts = train['load']\n", + "test_ts = test_shifted\n", + "\n", + "history = [x for x in train_ts]\n", + "history = history[(-training_window):]\n", + "\n", + "predictions = list()\n", + "\n", + "# let's user simpler model for demonstration\n", + "order = (2, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "for t in range(test_ts.shape[0]):\n", + " model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order)\n", + " model_fit = model.fit()\n", + " yhat = model_fit.forecast(steps = HORIZON)\n", + " predictions.append(yhat)\n", + " obs = list(test_ts.iloc[t])\n", + " # move the training window\n", + " history.append(obs[0])\n", + " history.pop(0)\n", + " print(test_ts.index[t])\n", + " print(t+1, ': predicted =', yhat, 'expected =', obs)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2014-12-30 00:00:00\n", + "1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323]\n", + "2014-12-30 01:00:00\n", + "2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126]\n", + "2014-12-30 02:00:00\n", + "3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795]\n", + "2014-12-30 03:00:00\n", + "4 : predicted = [0.28 0.32 0.42] expected = [0.26812891674127126, 0.3025962399283795, 0.40823634735899716]\n", + "2014-12-30 04:00:00\n", + "5 : predicted = [0.3 0.39 0.54] expected = [0.3025962399283795, 0.40823634735899716, 0.5689346463742166]\n", + "2014-12-30 05:00:00\n", + "6 : predicted = [0.4 0.55 0.66] expected = [0.40823634735899716, 0.5689346463742166, 0.6799462846911368]\n", + "2014-12-30 06:00:00\n", + "7 : predicted = [0.57 0.68 0.75] expected = [0.5689346463742166, 0.6799462846911368, 0.7309758281110115]\n", + "2014-12-30 07:00:00\n", + "8 : predicted = [0.68 0.75 0.8 ] expected = [0.6799462846911368, 0.7309758281110115, 0.7511190689346463]\n", + "2014-12-30 08:00:00\n", + "9 : predicted = [0.75 0.8 0.82] expected = [0.7309758281110115, 0.7511190689346463, 0.7636526410026856]\n", + "2014-12-30 09:00:00\n", + "10 : predicted = [0.77 0.78 0.78] expected = [0.7511190689346463, 0.7636526410026856, 0.7381378692927483]\n", + "2014-12-30 10:00:00\n", + "11 : predicted = [0.76 0.75 0.74] expected = [0.7636526410026856, 0.7381378692927483, 0.7188898836168307]\n", + "2014-12-30 11:00:00\n", + "12 : predicted = [0.77 0.76 0.75] expected = [0.7381378692927483, 0.7188898836168307, 0.7090420769919425]\n", + "2014-12-30 12:00:00\n", + "13 : predicted = [0.7 0.68 0.69] expected = [0.7188898836168307, 0.7090420769919425, 0.7081468218442255]\n", + "2014-12-30 13:00:00\n", + "14 : predicted = [0.72 0.73 0.76] expected = [0.7090420769919425, 0.7081468218442255, 0.7385854968666068]\n", + "2014-12-30 14:00:00\n", + "15 : predicted = [0.71 0.73 0.86] expected = [0.7081468218442255, 0.7385854968666068, 0.8478066248880931]\n", + "2014-12-30 15:00:00\n", + "16 : predicted = [0.73 0.85 0.97] expected = [0.7385854968666068, 0.8478066248880931, 0.9516562220232765]\n", + "2014-12-30 16:00:00\n", + "17 : predicted = [0.87 0.99 0.97] expected = [0.8478066248880931, 0.9516562220232765, 0.934198746642793]\n", + "2014-12-30 17:00:00\n", + "18 : predicted = [0.94 0.92 0.86] expected = [0.9516562220232765, 0.934198746642793, 0.8876454789615038]\n", + "2014-12-30 18:00:00\n", + "19 : predicted = [0.94 0.89 0.82] expected = [0.934198746642793, 0.8876454789615038, 0.8294538943598924]\n", + "2014-12-30 19:00:00\n", + "20 : predicted = [0.88 0.82 0.71] expected = [0.8876454789615038, 0.8294538943598924, 0.7197851387645477]\n", + "2014-12-30 20:00:00\n", + "21 : predicted = [0.83 0.72 0.58] expected = [0.8294538943598924, 0.7197851387645477, 0.5747538048343777]\n", + "2014-12-30 21:00:00\n", + "22 : predicted = [0.72 0.58 0.47] expected = [0.7197851387645477, 0.5747538048343777, 0.4592658907788718]\n", + "2014-12-30 22:00:00\n", + "23 : predicted = [0.58 0.47 0.39] expected = [0.5747538048343777, 0.4592658907788718, 0.3858549686660697]\n", + "2014-12-30 23:00:00\n", + "24 : predicted = [0.46 0.38 0.34] expected = [0.4592658907788718, 0.3858549686660697, 0.34377797672336596]\n", + "2014-12-31 00:00:00\n", + "25 : predicted = [0.38 0.34 0.33] expected = [0.3858549686660697, 0.34377797672336596, 0.32542524619516544]\n", + "2014-12-31 01:00:00\n", + "26 : predicted = [0.36 0.34 0.34] expected = [0.34377797672336596, 0.32542524619516544, 0.33034914950760963]\n", + "2014-12-31 02:00:00\n", + "27 : predicted = [0.32 0.32 0.35] expected = [0.32542524619516544, 0.33034914950760963, 0.3706356311548791]\n", + "2014-12-31 03:00:00\n", + "28 : predicted = [0.32 0.36 0.47] expected = [0.33034914950760963, 0.3706356311548791, 0.470008952551477]\n", + "2014-12-31 04:00:00\n", + "29 : predicted = [0.37 0.48 0.65] expected = [0.3706356311548791, 0.470008952551477, 0.6145926589077886]\n", + "2014-12-31 05:00:00\n", + "30 : predicted = [0.48 0.64 0.75] expected = [0.470008952551477, 0.6145926589077886, 0.7247090420769919]\n", + "2014-12-31 06:00:00\n", + "31 : predicted = [0.63 0.73 0.79] expected = [0.6145926589077886, 0.7247090420769919, 0.786034019695613]\n", + "2014-12-31 07:00:00\n", + "32 : predicted = [0.71 0.76 0.79] expected = [0.7247090420769919, 0.786034019695613, 0.8012533572068039]\n", + "2014-12-31 08:00:00\n", + "33 : predicted = [0.79 0.82 0.83] expected = [0.786034019695613, 0.8012533572068039, 0.7994628469113696]\n", + "2014-12-31 09:00:00\n", + "34 : predicted = [0.82 0.83 0.81] expected = [0.8012533572068039, 0.7994628469113696, 0.780214861235452]\n", + "2014-12-31 10:00:00\n", + "35 : predicted = [0.8 0.78 0.76] expected = [0.7994628469113696, 0.780214861235452, 0.7587287376902416]\n", + "2014-12-31 11:00:00\n", + "36 : predicted = [0.77 0.75 0.74] expected = [0.780214861235452, 0.7587287376902416, 0.7367949865711727]\n", + "2014-12-31 12:00:00\n", + "37 : predicted = [0.77 0.76 0.76] expected = [0.7587287376902416, 0.7367949865711727, 0.7188898836168307]\n", + "2014-12-31 13:00:00\n", + "38 : predicted = [0.75 0.75 0.78] expected = [0.7367949865711727, 0.7188898836168307, 0.7273948075201431]\n", + "2014-12-31 14:00:00\n", + "39 : predicted = [0.73 0.75 0.87] expected = [0.7188898836168307, 0.7273948075201431, 0.8299015219337511]\n", + "2014-12-31 15:00:00\n", + "40 : predicted = [0.74 0.85 0.96] expected = [0.7273948075201431, 0.8299015219337511, 0.909579230080573]\n", + "2014-12-31 16:00:00\n", + "41 : predicted = [0.83 0.94 0.93] expected = [0.8299015219337511, 0.909579230080573, 0.855863921217547]\n", + "2014-12-31 17:00:00\n", + "42 : predicted = [0.94 0.93 0.88] expected = [0.909579230080573, 0.855863921217547, 0.7721575649059982]\n", + "2014-12-31 18:00:00\n", + "43 : predicted = [0.87 0.82 0.77] expected = [0.855863921217547, 0.7721575649059982, 0.7023276633840643]\n", + "2014-12-31 19:00:00\n", + "44 : predicted = [0.79 0.73 0.63] expected = [0.7721575649059982, 0.7023276633840643, 0.6195165622202325]\n", + "2014-12-31 20:00:00\n", + "45 : predicted = [0.7 0.59 0.46] expected = [0.7023276633840643, 0.6195165622202325, 0.5425246195165621]\n", + "2014-12-31 21:00:00\n", + "46 : predicted = [0.6 0.47 0.36] expected = [0.6195165622202325, 0.5425246195165621, 0.4735899731423454]\n", + "CPU times: user 12min 15s, sys: 2min 39s, total: 14min 54s\n", + "Wall time: 2min 36s\n" + ] + } + ], + "metadata": { + "scrolled": true + } + }, + { + "cell_type": "markdown", + "source": [ + "Comparar predicciones con la carga real\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 30, + "source": [ + "eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])\n", + "eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]\n", + "eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')\n", + "eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()\n", + "eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])\n", + "eval_df.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestamphpredictionactual
02014-12-30 00:00:00t+13,008.743,023.00
12014-12-30 01:00:00t+12,955.532,935.00
22014-12-30 02:00:00t+12,900.172,899.00
32014-12-30 03:00:00t+12,917.692,886.00
42014-12-30 04:00:00t+12,946.992,963.00
\n", + "
" + ], + "text/plain": [ + " timestamp h prediction actual\n", + "0 2014-12-30 00:00:00 t+1 3,008.74 3,023.00\n", + "1 2014-12-30 01:00:00 t+1 2,955.53 2,935.00\n", + "2 2014-12-30 02:00:00 t+1 2,900.17 2,899.00\n", + "3 2014-12-30 03:00:00 t+1 2,917.69 2,886.00\n", + "4 2014-12-30 04:00:00 t+1 2,946.99 2,963.00" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Calcular el **error porcentual absoluto medio (MAPE)** para todas las predicciones\n", + "\n", + "$$MAPE = \\frac{1}{n} \\sum_{t=1}^{n}|\\frac{actual_t - predicted_t}{actual_t}|$$\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 31, + "source": [ + "if(HORIZON > 1):\n", + " eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']\n", + " print(eval_df.groupby('h')['APE'].mean())" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "h\n", + "t+1 0.01\n", + "t+2 0.01\n", + "t+3 0.02\n", + "Name: APE, dtype: float64\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 32, + "source": [ + "print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "One step forecast MAPE: 0.5570581332313952 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 33, + "source": [ + "print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Multi-step forecast MAPE: 1.1460048657704118 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Traza las predicciones frente a los valores reales para la primera semana del conjunto de prueba\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 34, + "source": [ + "if(HORIZON == 1):\n", + " ## Plotting single step forecast\n", + " eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8))\n", + "\n", + "else:\n", + " ## Plotting multi step forecast\n", + " plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']]\n", + " for t in range(1, HORIZON+1):\n", + " plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values\n", + "\n", + " fig = plt.figure(figsize=(15, 8))\n", + " ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)\n", + " ax = fig.add_subplot(111)\n", + " for t in range(1, HORIZON+1):\n", + " x = plot_df['timestamp'][(t-1):]\n", + " y = plot_df['t+'+str(t)][0:len(x)]\n", + " ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t))\n", + " \n", + " ax.legend(loc='best')\n", + " \n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "No handles with labels found to put in legend.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHjCAYAAAB7INHwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xV9f348de592bvhDBkhhEggCICIqCCgoJ7K462Wm1rtV+7tFpb/XVpq6211tFaR93WPVBQQXAwFBXUMMLeSHZyM26Se+/5/fG+J+ecDJYhN+P9fDx45JxzRz6xac59fz7vz/ttmKaJUkoppZRSSqnuxxPtASillFJKKaWUig4NCJVSSimllFKqm9KAUCmllFJKKaW6KQ0IlVJKKaWUUqqb0oBQKaWUUkoppbopDQiVUkoppZRSqpvyRXsAh1uPHj3MQYMGRXsYSimllFJKKRUVn3/+ebFpmtktPdblA8JBgwbx2WefRXsYSimllFJKKRUVhmFsa+0xTRlVSimllFJKqW5KA0KllFJKKaWU6qY0IFRKKaWUUkqpbqrL7yFUSimllFJKqa6ioaGBnTt3EggEmj0WHx9Pv379iImJOeD304BQKaWUUkoppTqJnTt3kpKSwqBBgzAMo/G6aZqUlJSwc+dOcnJyDvj9NGVUKaWUUkoppTqJQCBAVlaWKxgEMAyDrKysFlcO90UDQqWUUkoppZTqRJoGg/u7vi8aECqllFJKKaVUN6UBoVJKKaWUUkp1UxoQKqWUUkoppVQnYprmQV3fFw0IlVJKKaWUUqqTiI+Pp6SkpFnwZ1UZjY+PP6j307YTSimllFJKKdVJ9OvXj507d1JUVNTsMasP4cHQgFAppZRSSimlOomYmJiD6jO4P5oyqpRSSimllFLdlAaESimllFJKKdVNaUColFJKKaWUUt2U7iFUSqluYv16+O9/ITsbfvxjiIuL9oiUUkopFW26QqiUUt3Es8/Cjh3wxRfw5pvRHo1SSimlOgINCJVSqhsIBGDzZvt84UKor4/eeJRSSinVMWhAqJRS3cCmTeDsX1tVBUuWRG88SimllOoYNCBUSqluoKCg+bX5891BolJKKaW6Hw0IlVKqG1i/vvm13bvhq6/afyxKKaWU6jg0IFRKqS4uFIKNG+1zj+Mv//z57T8epZRSSnUcGhAqpVQXt3071NXZ52efbR/n58POne0/JqWUUkp1DBoQKqVUF+dMF83IgDPPhLQ0+5quEiqllFLdlwaESinVxTkDwtxciImBk0+2ry1ZAhUV7T8upZRSSkWfL9oDUEopdfiYZvOAEGDGDHjjDQgGoaEB3n4bZs2C2lr7XyDg/mr9a2iAkSNh6tTo/ExKKaWUajsaECqlVBdWVATl5XIcDMp+wscfl8CuulqCxXAY1q2Dr78Gr/fA3nf7dhg8GI444vCNXSmllFKHn6aMKqVUF+ZcHSwpgS1bYPNm2LNHgrlQSFYR6+oOvrjMunVtO1allFJKtT9dIVRKqS7MCghNE3w+d8uJlBTo1UsCRa8X9u6Fk06ChAT7X3y8+7iiAl59VV5fUCDPV0op1T3V1Ei16pwcyM6O9mjUodKAUCmlujArIKythaQkOc7MhCuvlCCvoADuvtt+/vjxMHp06+8XCsG8ebKvcPdu8PslsFRKKdX9vPqqZIv4fHJfGTAg2iNSh0JTRpVSqouqqoJdu+TY74esLDkePhzS0yEuDsaMgb597dfMm7fv9/R6Ydgw+9yZkqqUUqr7qK6WSUWQPepPPy371lXnowGhUkp1URs22MdVVdKDEOxKowCGIdVFLV99JSt/++J8vQaESinVPa1dK9sRLLW18OSTMgGpOhcNCJVSqouyZm5DIUnn8fmkB+GgQe7nTZ7sTvvcX6P63FwJJAE2bpSZYaWUUt1Lfr59bO1PLy+Hp56SQmWq89CAUCmluihr9c7vl32DADk9/PjMBtfzYmOlL6Hl44/3PcObmAj9+slxfT1s29aGg1ZKKdXh1dRI1WqQycbvfU/uJSBVrJ97TiYjVeegAaFSSnVBDQ32zbqyMhIQLlxI7vWnyAbCX//aFfWdfLLc1K3Xvv/+vt9/+HD72FqJVEop1T2sWyc9bAGGDpUqoxdfbK8UbtoEr73mTilVHVe7BoSGYXgNw1hpGMbcJtfvMwyjynEeZxjG/wzD2GgYxieGYQxyPHZL5HqBYRintt/olVKq89iyRVI5TTNSUIZiWLaUYWaBTO3eeadUh3n0UQiFSEuT1FHLe+/tOxW0aUCoN32llOo+1qyxj0eNkq+5uXD22fb1VatgwYL2HZc6NO29QngDsNZ5wTCM8UBGk+d9HygzTXMo8HfgL5Hn5gGXAKOAWcCDhmF4D/eglVKqs7FW7QIBSeOJ37aeLErIpMx+0t69cPXV0mti8WJXcZmKCli2rPX379ULUlPluLRUehkqpZTq+gIB2T8OUnnaOUE4bpy7P+2HH8Knn7bv+NTBa7eA0DCMfsDpwCOOa17gbuCmJk8/G3gicvwScLJhGEbk+vOmadaZprkF2AhMPNxjV0qpzsbaP1hZGWk3sWEDubRSEnTVKpg+nf43nMeo3nZkN39+6yt/hqFpo0op1R0VFNj7A4cMkZ62TtOmyTyjZe5cqUiqOq72XCG8Fwn8wo5r1wNvmKa5p8lz+wI7AEzTDAIVQJbzesTOyDWllFIRpmm3nPD7ITOpDnbsYBiOPhRxcc1f+OqrzL73VPjic6ivZ/v2fd/Ene0nNCBUSqnuYfVq+zgvr/njhgFnnmlPGpomvPACbN/ePuNTB69dAkLDMM4ACk3T/Nxx7QjgQuCfh+H7/cAwjM8Mw/isSDtkKqW6md27pWFwKCRfs/xb8NHAQLayl55sy51JaO16mDOn2WuPDH5OnzUL4fXXYP165r/Vepm4IUPsQjTbtkkakVJKqa6rvt6ecPR4YOTIlp/n8cBFF9kVqa3G9cXF7TNOdXDaa4VwCnCWYRhbgeeBk4DVwFBgY+R6omEYkYxkdgH9AQzD8AFpQInzekS/yDUX0zQfNk1zvGma47Ozsw/LD6SUUh2VtVrn90vfweQdaxnMZh7lak7nLc6vfIwpcwZwcehZbr58Jw/n3MF7zGATg2kghlnMlyZSn37Cyj+9zZ7nFrf4fWJiYPBgOQ6H7T0lSimluqb16+2CY4MGSRui1sTGwuWX222PamvhiSegqqr116joaJeA0DTNW0zT7Gea5iCkKMz7pmlmmKbZ2zTNQZHrNZEiMgBvAN+NHF8Qeb4ZuX5JpAppDjAM0K2qSinl4No/mBHG2LSJNCp4jKvkgbR0gkEpC75gbV8ezryZW3Ke5+KYV5nKx/yT6/maMRSQy+6KRJ64dB51s8+ROuNN6D5CpZTqPpzpoqNHS7XR226DJ5+Eb75p/vykJPjud+UrSOP6J5/UxvUdjS/aA2jFo8BTkRXDUiSIxDTN1YZhvACsAYLAdaZpattLpZRysNpA+P3QJ6MYArWsZCwmBnh9kJzU5BUGZGZBejrhvXvZ8Y0PfziF8khCxpccyQvztzPgnQIGH7WHnIsnMvXUJI4+2r2PcMMG+b6G0X4/q1JKqfbR0GBPOBqG9B88+WTZMpCQIMVjJkyAmTPhqKPse0FmJlxxhXQ5amiQxvXPPy+rh17tFdAhtHtjetM0F5umeUYL15MdxwHTNC80TXOoaZoTTdPc7HjsT6ZpDjFNc7hpmvPaa9xKKdUZlJXJHo1AQG68WWUbSaSGBcyUJ6Slkp5uMHOmew8gAB4v9DkCRo8mJcOHgZQYNfFQSSo7zb58uCqFJ36znmvOLuSDxSbp6dKCAmS/4q5mSfxKKaW6gg0bZA8hwMCBsHChBIMg6aAbNsBXX8Hf/ga//CXMmyf3BYC+fd2N6zduhNdf1x62HUVHXSFUSil1CJzpoh4PpO/Ip5BsaonUBU9L59JL4apI9mgoBDt3SiP7zZutr7FsSRpI0pY6qooDEAxSSSppVGBYL9qxnb/9qJzjvsolN1daGoKsTlpFBJRSSnUdTauL3nef+/EdO2TVMD4eCgvh2WfhpZdgyhRZNRw+HM46C157TZ6/cqX0s50xo/1+BtUyDQiVUqoLsQJCvx8yEmoxi4v4nKmNj8dlp3LeefbzvV6Z6R04UHpHWcJhWLEijtt+G0vVthKqtpSS3VBENcmNweXugkqevXMb0783kI8+ktcVFEgKkVJKqa4jGHTvEx8yBD7/3D7PzJRJyNJSOOII+3p9PSxaJP9GjJDA8IQTpGE9wAcfQFqapJqq6Gn3lFGllFKHj9UwuLoasgK72M4Aqolk5CencMY5PtLT9/8+Hg8ceyycOM1g8MQeHHlBLhOmp/JswtXE0ND4vMfuLibRV9/YmHjPHlmdVEop1XVs2mQXgunfH774AkpK7MeTkyElBWpq4PrrYdKk5vsD162Df/4T3nhDAkzr/d58s8WaZaodaUColFJdRCAgjX/9ftmXkVm8gU0MadwLSFoal112cO85e3bkwOtla98pVP/1IebwXOPjNdUm//7OEoYNs19jrVIqpZTqGpzpoqNGSSqoJSHBDv4aGmDpUrjuOrj3XjjvPFkBdCovl3vV8uWyylhaKo3rd+w4/D+HapkGhEop1UVs3GhXFyUcomF3EWVkND5+wowYBgw4uPccOxZ697bP59WdxFUXVpFBWeO11xelELdna+O5tp9QSqmuIxRyr+ANGACfOpq+JSXZbSUAXn5ZCpylp8O550pgeN11uCYOPR7Zb15SImmjCxbAPffICqNqfxoQKqVUF7F+vQSElZWQGi5nnZlLPAF5MDaOy67PPOj3NAw49VT7fOVKqP7dX/lRqr1KaJrwxu9XysZDJLXIalyslFKqc9uyRaqIguwPXLcOiork3DBgzBjpNWgJBOCZZ+xzn09SSG+7Df7wB9lD6PPJquLgwdLAvqwM3n8fXnyx/X4uZdOAUCmluoiCArvdRELFXnbRFx/SqnVETh3jjjm0BoHHH2/P/pomvLMik3P+czpD2NT4nFUl/Ql8JFPGDQ2wdeu3+lGUUkp1EE3TRd94w24/kZAgAd5FF8keQssLL7S8n3zQILjmGqlQevHF0rZo4EAJLMNhWSlcu/aw/jiqBRoQKqVUFxAKScqo3w9gUlYUJM5aHQQuu8JzyA3j4+Jg+nT7/MMPoe6M8/n5SV+6nrf8oyChvcWAFghQSqmuIBx2B2h9+sCKFfZ5cjJMnSpfL7nEvl5TA8/ZiSTNpKTAGWdImuikSZCdLde/+UYCTk0dbV8aECqlVBewfbvM2FZWQqg6wJ5gVmO6aE9vCTN/Oupbvf/MmXbRgLo6KSF+7HM/5fj4zxqfU0kya19aDeFwY/qqUkqpzmvbNru5fO/esjWhsFDOPR7o0QOOPFLO58yBxET7tc89B1VV+35/jwcmTpT3jo+XVNSKCnjrrbb/WVTrNCBUSqkuwNluorZMAsE4JKfnkrEF+JLivtX7Z2ZKGwrLu+9CKKsnP73rCLyRtFQfQb4q60dgyeeUldl7TJRSSnVO+fn2cV6e7POrqJDzxEQ47jjZDwjSZP6ii+znV1VJ6uj+jB0rgWH//rIiWVQEX30Fa9a03c+h9k0DQqWU6gLWr5d00XAY/H6DOOoxMEmglnOuzNj/GxyAWbPs49JS+M9/oP+Pz+TCUZJPZAAGYb74sApKSrT9hFJKdWKm6Q7KsrKksJglORmmTHG/5rLLZJuB5Zln9p/+mZ4OOTmyV71nT0kbBelPqKmj7UMDQqWU6uRM0w4IqypCmKFQ4/7Bs3md1PNntsn3ycmRggKWJUvgkUcNrnllNqk+uWvHE2CtmUvZa4spWBtuk++rlFKq/W3fbqd8ZmfDhg125ofXKymekye7X5ORAeefb59XVLh7Frbm6KPla69esvXBNOV7a+po+9CAUCmlOrmiImn0W1kJ5SUhvASJpw4DkzlHrnE3EvyWrr1WigpYPvoIXvqoF9dcIxVrrDTVT/f0Z/vLKxpLlSullOpcnKuDeXkyCWgFhElJMHx4pBhMkw3j3/mOtJKwPP20VMDel3Hj5KvHIyuRVoVSTR1tHxoQKqVUJ2e1m6ishPq6MLHU4yXIdBbR97xj9/8GByEtDW65xR1jLl4M1eOmMqCXBKFx1LGDfmxbsJ6Ni3a06fdXSil1+Jmmu91EcrJkojQ0yHlSEkyZbMKNN8qy4IwZ0mUeKTRzzjn2a0tL4dVX9/39BgyQverWe2c4djpo1dHDTwNCpZTq5Kx00fIyE1+4nngCGMDlPC11vdtYRoYEhT172tc++MAg76IxmB5vY3XTT0LHsOaXjzU2rFdKKdU57NplF4/JzJS2RtbqoM8n+wQnBz+Av/5VnrhwIfzoR42v/+537WIzAE8+afcubIlhSHEZSzBo32OqqzV19HDTgFAppTo5qwx4dVU4ki4aYDT5jOlVZG/MaGOZmfDrX8tMsGVbWSqZw3sSRx0A5aTz2tphhB/692EZg1JKqcPDuTo4ciQsX+5OF01JgSPfu8f9opdekka1yF7AM8+0HyoqkpW+fbHSRkH2L06fTmP/XE0dPbw0IFRKqU7M74cdO2DPHiAUIoYG4qjncp7GOON02ZBxmGRlwa23yldLUu4R+BN6EYPkFS3nONbe+Jg0s1JKKdXhNU0XjY2VSUdrxTA5GSaN9uOd38Ky3U9/Kj2QgO99z30L+u9/7ZTTluTlufceFhXB8cfb55o6evhoQKiUUp3Yhg2yP6Oy0oRQiARqOILdTGfRYUkXbapHD1kptPZ7pKQYpOb0oAG5qweI45+1V8E112ineqWU6gS++QbKyuQ4LQ02bbJXB2Nj5d+UyvktbwdYuRKeeAKAvn3htNPc7/v2261/35gYGD3a/VbTp2vqaHvQgFAppTqx9eth82YwwyY+giQQYA7P4Y31ySb/dtCzpwSF6elynjs6loakdALEAzCfWWx/bx08+mi7jEcppdShc64OjhgBn33mThcFk8kf39X6G/z6141lQq+6yr1K+PjjjQuILXLucsjPl5jzvPM0dfRw04BQKaU6sfz8SBPfkLSbyKSUs3kdpk2TvJ520ru3FJpJS5PZ49wj46nzJFJHPHXEcRc3wi9+ATt3ttuYlFJKHZym6aKGIStzxcVynpQEIzIKydrymf2k2FhpSmjZuxfuvBOQ6qEzHa1wd+6Ed95p/fs7C8s0NMhY+vbV1NHDTQNCpZTqpOrrYdGiyJ6MUIg46riQF0mipl3SRZs64ggJClNSICfHICE1htpIQLiQk1lRmQs/+IGmjiqlVAdVWGgHfykpkoFSXi73mbg4Seuc4p/vftE558Avf+m+ds898mLg+993P/TYPopPp6fD4MH2+cqV8rVp6ujcuYfww6lWaUColFKd1KZNUgocTDDDJFPFHJ6XB08/PSpj6ttXgsLUVMgd4QVfLLUkUEYm9/BzwvPmS/1xpZRSHY4zHXPoUAnICgvlPDkZCAWZsuoB94uuugp+9SuZFbTU18NNNwES4J10kv3Q1q3SpaI1zrTRlStlDtHnk9RRK/306681dbQtaUColFKd1BtvyEyppIuGmcECerNXaoQ7p1jbWf/+cPPNUjEuIcULhodKUlnBMbzBWVKFbvfuqI1PKaVUy5zpouGwrAw69w+m1u5ldJ0jXbR/f9mvnpzcmCba6OWX4YMPALj6avdDjz7a+iqhMyAsL5cAEmTCcepU+zFNHW07GhAqpVQn9corkc35Iek/eC0PyQNRSBdtauBA+M1vYMgQA2JjMYFisvkDv6G6vB6uvVZTR5VSqgMpLpbtfyDB3+bNEAhIfZiEBPB6YVLle3hw/O2+8kp5AODyy2HCBPebRtpQ5ObCCSfYlzdubGxZ2MyAAe52RlbaKGjq6OGiAaFSSnVCBQVSYRRMCIcYxFbG8pU82AECQoCcHNlWkp7hAV8MIbxsJYdbuEOmdp97LtpDVEopFeFcHczJkXNnMRlqa5m65wX3i6680j72eODee92Pr1olDQhpvkr4yCMtzwsahru4jDMg1NTRw0MDQqWU6oQefBCCQSI5NyYXEblJp6fD5MnRHJrL9OkwezZ443yEjBhM4Dnm8DLnwk9+Yk9HK6WUiipnQFhfL7eXwkIJ0JKSgOJiJrHcftLJJ8OgQe43mTwZLrnEfS3ShiIvD447zr68bh0sXdryWJxpo1u32n0RQVNHDwcNCJVSqpMpLJSy3Va6aBx1fJ9H5MFZs2QKtYPIzpZGwxMmGBAbh4lBGC+383s+Ks2DW2+N9hCVUqrbKyuDPXvkOCFB0kXDYVkhTEgAjxEmr3wpmTgis6blQy1/+Yu7DUVhIdxxB3Dgq4R5edLNwuJcJQRNHW1rGhAqpVQn8+KLUFUVuYmGQwxlI72I7PrvIOmiFsOA3FyYNAmye3kIxyUCsIc+3M2N7H5svuS/KqWUihrn6mC/frLHr7xcMlGSk4HycqbUv28/KT0dzj235TcbMABuvNF97e9/h82bOeooGD/evvz117BiRfO3iImRyURL04BQU0fblgaESinVidTWSuG26mrADOM1g8zkXQyQO+OsWVEeYXMjRsjNe+pUSMqIw4jcwfMZxVxzNvz2t1EeoVJKdW/OgDAQkK+FhXJbSUgAiouZwhL7SZdd5l4FbKqlNhSRILGlVcKWjBvnHl99vftxTR1tOxoQKqVUJ/Lmm1BaajWjD5NKBdOQst5MnuwuzdZBDBoks705OdCzl0FKD0lprSCdF7iI8hffhS++iO4glVKqm6qogJ075Tguzm7zUFQEiYngCdaTVrmDPBxLcK2li1qSkuDPf3Zfe+UVWLyYY46Bo46yL3/xRcu3AGdhmYYGyM9v/pymqaPz5u17WKplGhAqpVQnEQ7Ds8/KDGgoBEY4SBalHM9H8oQoNaPfH59PGhwbBhx7LMRlJGN45fazljzmcroUHVBKKdXunKmW2dmwY4esEvr9kXTRkmIms9RuN3H00e6qL6257DKYONF97ac/xQiHDmiVMC0Nhgyxz1etav6cllJHm64kqv3TgFAppTqJDz+UWdzqagCT5HAluRSQSCS/p4PtH3TKzZWvPXvC6NEGyT3iAAgQz7/5IYF3FsPixVEbn1JKdVfOdNHaWvlaVCTtBePjTSguYTKOcqD7Wx20tNSG4ssv4fHHmTRJCsdYPv1UgrmmnHHnypUtF6Dp29cudhoK2Suc6sBpQKiUUp3EM8/I15oaIBwmgzKO4ku5OHAgjBoVtbHtjxUQWsc9+iU0VkNdxwhe5Ry45RZtVq+UUu3I74ft2+U4JsadLpqUBEaVH6M+wHEskwfi4uDSSw/8Gxx3HMyZ4752660Y/soDWiV0po2Wl7ce7A0dah9v3Hjgw1NCA0KllOoE1qyR2dFQCOrqINGoJZY6O130jDMkJ7ODSk2FPn3k2OuF8883SMyUggRhvPydnxNa/qlsklRKKdUu1q615+HS06GkxG43YfUeHMVq0qmQJ513HmRkHNw3+ctfIpVpIgoL4U9/4vjj3ZOFS5bA+vXulw4Y4N4a37TaqEUDwm9HA0KllOoEnKuDpmmSHiwmjnomEKnX3UH3DzoNH24fjxkDg0fEyZQ0sIkhPMsc6UsYCkVphEop1b04C7VYFTqtJvBxviCUlbmrix5ouqhT//7N21Dcey/G5k3N3q5pP0HDcK8StlZ/rHfvSACLrG5WVBz8MLszDQiVUqqDC4fh44/luKoKYr1hEkOV5LCFZGqkDNz06dEd5AFwBoRbt0qGaFy6PWt8NzcRyl8Nzz3X/oNTSqluprraTsH0+WDbNjluTBctKwXTtAPCQYMO/V5z002y2c8SaUMxfbp7BXD+/OZzgs59hNu2SaXtpgxDVwm/DQ0IlVKqg9u2zSokIzO4SR6Zxj2ayFTpjBn77gfVQfTta8/g7t0rFUePOTYGYmMB2EVfHuYHcNttWiZOKaUOM2e6aGKiTDiCZHQmJwPFxWRQxgjWyQNXXmmX8zxYLbWhePVVPB8scrXPLS2VAjNOeXmyddHSUrVR0IDw29CAUCmlOjgrpcfaPxhfX4mBY9a2A1cXdTIM936RDRvgjjsgJtVeJfwHP6VmyzetdypWSinVJpzVRa1Jx9pauc/EBmugpsZuN2EY8L3vfbtveOmlMhPo9LOfcdqp7iXBpr0EY2Jg9Gj7vLW0UWeLik2bJLtGHRgNCJVSqoOzAsLqatk/GF9XQTLVjLKaBJ92WvQGd5CcAWFBgewlnDnL1zj9W0Q293ID/P739icUpZRSbaqmBjZvlmPDsBvTFxXZvQcBe+Jx5kyp8PJttNKGIvfjxxg82L60aJHd/sLiTBtdvVqC1qZSUmQvIcjr9+z5dsPtTjQgVEqpDs4KCKuqIIYGvATpy06yKJG7pHNfRgc3dKidcbR5s5QRv/NOiHWsEj7K99mz14D77ovSKJVSqmtbt85eQYuNtQOswkJISgxDSQkewkxiuTxwKMVkWjJpkjSsdzB+cyuzT6xpPK+thQ8+cL/MWVgmGHSvbjpp2uih0YBQKaU6sEBAUitNU2Z048IybXoMn2NAp0kXtcTH2zfsYBBeeEHaUZx7gbdxH2QF6dzFjXDXXXa5O6WUUm3GGVBZewfDYbnPxFSVQyjEaPJJxS9VX84+u+2++Z13uttQFBUxa/XfXE95+233S9LS3Cmh2n6ibbVrQGgYhtcwjJWGYcyNnD9jGEaBYRj5hmE8ZhhGTOS6YRjGfYZhbDQM4yvDMMY53uO7hmFsiPz7bnuOXyml2ps1i9vQAA31JvH1fmJpYJxVUKYTtJto6rTTGuvIsGMHLFwIv/sdJGYmgGFgYvA6Z7OqfKAEhUoppdpMba3ssQOZbNy9W45LSyPZ+8WSLjqVSHnryy93V3X5tvr3l6qjDn0e+QPjhtq9IpYvb15N1Jk2unKlXRDHacAAqZgKsH17y6mlqrn2XiG8AVjrOH8GGAGMARKAqyPXZwPDIv9+ADwEYBhGJnA7cCwwEbjdMIyD7I6plFKdhzWLW1MD4VCYeGpIoZLhrIfsbJgwIboDPARZWXDWWfb5Rx9Jz6iLLvE0rhL6SeUubiR87326EUQppdrQujTM7GEAACAASURBVHV2awePxw6sioshKaYO/JUATGapPHDVVW0/iJtugn797POGBmZveajxNByGd991v8QZEFZUwJYtzd82Jka6Y1jv0dJzVHPtFhAahtEPOB1oLB1nmubbZgTwKWD9ZpwNPBl5aDmQbhhGH+BU4D3TNEtN0ywD3gNmoZRSXZRz/6ARChFHPT0opj87ZHXwUEuAR9lRR7lv7i+9BNdeCxl94sEwCONhBRN4K3AS/PGP0RuoUkp1Mc50Ub/fPg4EwFtWAkAWJeSyHsaPhyOPbPtBJCY2a0Nx8qd3EFNb2XjeNG20f393z0JNG2077flJ4l7gJqBZEdhIqugVwPzIpb7ADsdTdkautXa96fv9wDCMzwzD+KyoqKhtRq+UUlGQny+znIEAxIYDeAkxji+kDHgn2z/Y1BlnyCInSEHRjz6CCy70QEIiAJWk8U+up+bfT9n5TUoppQ5ZIGAHScGgFJEByUKprzcbq4s2tptoq2IyLbn0UikyE5GKn+NDixvP16yRPrwWw2ieNtoSDQgPXrsEhIZhnAEUmqb5eStPeRD40DTNj9ri+5mm+bBpmuNN0xyfbX3aUEqpTqa0VLIl6+ogWB8m3qwhGT95rJW8mJkzoz3EbyU2Fi66yN7vsXmztKHoOzgWPB6C+NjOAP4buhxuvz26g1VKqS7AmS5qmnaSSWkpJIX8UF8PRNpNxMfDJZccvsEYRrNVwtmbH4BQsPG8aU9CZ0C4bVvzfYYAPXtKCwqAkhKtTXYg2muFcApwlmEYW4HngZMMw3gawDCM24Fs4OeO5+8C+jvO+0WutXZdKaW6HGf/wVBDiHgCpFJJHmvghBMgNTW6A2wDvXu72ygWFMCUqR68SVKBroI0nuJydj+zCL7+OkqjVEqprsGZLlppZ2dKcFgqWXUewhzLJ3DBBZCefngHdMIJOJsQTmlYREpNYeP522+7i8eMHOmub7NqVfO3NAz3KqEmmOxfuwSEpmneYppmP9M0BwGXAO+bpnm5YRhXI/sC55im6UwlfQP4TqTa6CSgwjTNPcA7wCmGYWREismcErmmlFJdTn6+3Airq4FQmDgC9KCYwWzu9OmiTuPHw6hRcmyacrMfNDwOvF7qiaOSVO7jJ3DrrdEdqFJKdWJ1ddLGCGQhsLxcjsNhKC0KNl44ii9JoerwpotaDAO+853G01gamFk3t/F89273XGBMjGSSWL74ouW31bTRgxPtagT/AnoBywzDWGUYxm2R628Dm4GNwH+AHwOYplkK/AFYEfn3+8g1pZTqcvLz5abdUG/iMRtIo4JRrMFHqEsFhIYB55xjT0QnJ0NWD4O4VJkGriCNBcxg5Zs7YOnSKI5UKaU6L2e6qGGA1yvHFRXgqyxpXIqbzFJp+nfiie0zsCuucJ3O3vYQ1AUaz5sWl3E2qV+9uuXWEs6ehZs2SdCrWtfuAaFpmotN0zwjcuwzTXOIaZpjI/9+H7lumqZ5XeSxMaZpfuZ4/WOmaQ6N/Hu8vcevlFLtIRyWG10gAA11drroSNZCbq57+rMLiI+Hiy+W/SyGAT16QN/B8eD1UUsi9cTwN35B+OZft9x8Siml1D4500UDdryF12PiiRSTgcj+wSuvlD/G7WHwYJg6tfH0KL6kT71dTebdd6UXr2XsWHtowaD757IkJUGfPnIcCMAu3WC2T9FeIVRKKdWCbdskVbSmBsLBMHHU2QHh7NnRHt5h0a+fXSenf38wMUjpIR3sK0hjHSOY+1EqvKM7BZRS6mA400VDISm2YinbWSXd6oFsihhmbILvfa99B+hIG/VgMrvkGUAm/yorYdky+6lpaa5th5o22gY0IFRKqQ4oP19mPuvqTAiFSKKadMpl/+Csrtt+dcoUGDZMUplyciApKwHTF0M1yQTx8gDXUXPz7zX/RymlDkJBgdxTwE4VBYkD/dvtMpyTWYoxexb0bdbV7fC68EJXtZhZJU9DVXXjedO0UWe10VWrWk4c0YDwwGlAqJRSHVB+vqS5BOvCgElPCsllA774mPbb1xEFhgHnny8lw3NypIBASo84whhUkkoJWTz+5dHSyV4ppdQBcaZVOvfcxXiCeMvt5cIpLIGrrmrHkUWkp8PZZzeeDmYLw0P2oD/8EKqq7KePG2cfV1RI26KmBgyQewjAzp3uNFnlpgGhUkp1QM79gz6CZFEi6aInnggJCdEe3mGVlCTVzuPj5YaemB6HGROLn1TCGDzDZey+5Z/2dLdSSqlW1dfD+vVybJp2M3qAmk17GivNeAkxsccWOPPMKIwSV9oowGm7HoFIE4L6enj/ffuxfv0gK8s+b6n9hM8nE4sgSSUtBY1KaEColFIdTF2dpPcEAhAOmSRQSzJVEhB24XRRp8GDJfYdOlRmeJOz4gjixU8K9cTyj81nwH//G+1hKqVUh+dMF42JsSuNhkKwe72dljmWVSR/5zyIjY3CKIFTTpGu8tZp7Wt4Ksobz51po4bhThtdubLlt9S00QOjAaFSSnUw69ZJMZlggwnhEGmUk0Cgy+8fbGr6dMjLk0pxaVmxmDHxVJCGCSzkZL649eXGQghKqY7LNOHLL2H+fPD7oz2a7seZLupMrIitq8R05GFGLV3UEhMDc+Y0nmZTzISgXU3m889h71776c6AcNs2d6EciwaEB0YDQqWU6mAa9w8G5M7dkyKGsQHfwH4wfHiUR9d+PB646CIYPVpmgzN6xVJLAtUkAfC3wssJ3/9glEeplNqXDRvg97+HO++Ef/0L7r5bO8e0J2e6KLgDKrNJhDTlqGoYNaqdRtaKpmmjO/4NQek5YZruItMjR7rq0LSYNtqjB6SmynFZGZRq9/IWaUColFIdzNdfR/YP1ocxgD7sIY81sjrYXn2hOojUVLjmGtkrkpzuIybORzFZmEABw5n7h5VSk1wp1aF88w3cd58Eg/n5kvmwaRPMmwdvvhnt0XUfGzbYPfwSEhxJFeEw3xTYfzt7UsjgH3eADJSjj3YFpdPDC4irLGo8d6aNxsTAmDH2eUtpo4ahq4QHQgNCpZTqYD77TNJ6wkGTBGpIINCt9g82NWKEVB4F6NE3lhqSqSYRgPv936Hmwf9Gb3BKKRe/H556Cm6+GVaskH1qW7fa+9YCAVktnD9f60K1h/x8+9j63wAgruwbiuuSG8+nxnyCccnF7TiyVhiGa5UwkVqm1cxrPN+40e6nCO600dWr3RVULRoQ7p8GhEop1YGUlsL27RCqDwFhMignlnpyvDvgpJOiPbyo+dGPoHdviEv0kZIYZi+9MYFSMln47N79vl4pdXjV18PcufCLX8C770rwYZqwY0fzVZqqKgkaH3pI2gGow6OhwZ0u6qwuam7bjjPf5MTpXju3Mtouu8yVDXPa3sdc+8Xn2fEhY8faTw0G3QGwZcgQ+zmbN7sDYyU0IFRKqQ7E2j/YENk/mE0huazHN3VSx7lZR0FMDFx/vTRUzuwTS4B4SskEYOnqNHeDKqVUuzFNWLIEbroJ/vc/d52nigopCjVjhqT2zZwJGRnyWEEB7NoFDz8M772nq4WHw4YNEqiD3D7KrYKdpsnOLfWNz0vBz8SrRrf/AFvTt6/80kQcyydkVNszB/PnSxsJkJ9ryBD7pS2ljSYmwhFHyHFdnU5CtEQDQqWU6kA+/VRmdYMNJgYmvdjbrdNFnU47TWrq+BJiiTMaKCWTAHEsD08gtGBRtIenVLezejX89rdSLMZZ4dHjgaOOkq1gw4fLRM6MGXDDDTBokPwLhSR9zzSl6biuFrY952qZFUABUFlJcW1i4+k0z0fEzJ5Bh+JIG/UR4pSy5wGpRlRYKBVHLc600VWrWi5apGmj+6YBoVJKdSBLl0I4bBIOhYmlodv1H9wXqyJ5VhYkJpg0EEspmVSSwurnvor28JTqNnbtgr/+Ff78Zyn373TMMfCb30jAFxMj10aMgOOPh4EDYfJkSE+Xa6WlkhEB8iH/4Ycl3VRXC7+9hgZZhQVJlywuth8zdu10pYvOOKa042WgnHsuJCU1np5W+TxU2j1LnGmjzoCwosK9x9CiAeG+aUColFIdRDgsM+7BWvk0lEY5cdQzuFeNTLcrZsyAnBxIz/RiArUk0EAMSxYGtJa9UodJfb3sbS4pgUcfhVtukb6CTkOGSCD4k5/A4sV2FndmphSFsvZwXXAB+Hzyr29fCQ6TI7VNTBM++ggefFBXC7+tjRvtdNGMDKn6atm92c7rTcHPxEuHtfPoDkBSkvyyROSxhgEBe0PkwoV2AZl+/aBXL/ulK1Y0f7v+/SE2Vo537dIWtk1pQKiUcgmHpcrlCy/Ali3RHk33smGDVOgL1ln7B4sYTgHeWTO7XbuJ1iQnw7Rp0HtwIh7C1BFHgHiWluTqtK9Sh8HGjXD22TB9uqzEPPmkuyhHdjZcdx3cfrukh777rgSPYK/qx8fbz+/RQ/YSWtavl8/9Rx5pXysqktXCd97R1cJD5WxG71Tvr6Os3D6fxmJizj6tfQZ1sBxpowYwe+/jEJZfvupqmTwAuT1OnGi/7NNPm88Per0weLAcm6YUl1E2DQiVUo2sDf6vvy698J54Qv9otqcFC+RGFWww8RImkzJNF23B7NmQmuElMSaIiYGfZNYyktJXFkd7aEp1Kdu3ww9/KIU6ysvlQ3h+vqwA7t4tgdxdd8GkSfKhPD9f0t4tZ50l1YGbOussKfQBMgk5dy5ceCFceql7tfDjj2W1cMeOw/6jdinBoPR9tDibsRvf7HGli87M2SRpFx3RtGmytBcxu/516S4f4exJ6AwIS0ul52VTzrTRltJKuzMNCJVSBALSKPjf/5ag0BIKwbPPwp490Rtbd7JsGYSDIcImeAmRTjkjWeeeTlf07CkZtEnJ8rGmlkRMDJa/vGs/r1RKHai9e+HHP5ZJQauxOUjgFxcnH7r/+U9pH1FdLXsAX33Vft7EidISoCXJyXDmmfb5Z5/JB/SRI+H//s+dIV9UBP/5j6wWOsehWrdxo51OmZ3t3ue5d7NdkTkFPxMuGNjOozsIHg9cfnnjaT92cWTdZ43nS5bYlVMHDpSf1dJS2mjTfYS6y8CmAaFS3Zhpyj6Qe+91p1gkJMi+D5CbypNPuibl1GEQDsvserBWPvEkUkUqleRMzJYqKspl4kTo0UcqVtQTSx0xLFmZaFeoUEodstJSuPZaWSH0R+p4xMTIql7fvnJ/8Hrlw/gDD0gF4Ouvh8pKeW6/frKSvy+nnGLfZwCef17uQQkJsvJ42WW6WnionOmiPp99b6+pClNRYufgTmcRMeec3s6jO0hXXOE6nb3nscbNkaGQZNbAgaWNZmbKnlWQ4jPOyrjdnQaESnVThYXw2GPw0ksyu2sZN05Kg191lV10rKpK0kedz1Nta9MmmQkP1oXwYJJJObmsxzv7lGgPrUMaNw4yjkggzmjAxKCKFJYFxxP+8ONoD02pTq2yUvYEbtsmgaFpSjGO6dNlf+DFF9vVQ8FuPv/RR9KHcNUqCfZ8vn1/n9hYKTZjWb/e3UNuxAhZLXSuMhYXy2phS83HlQgGYe1a+9w5mWsWF+MJ2wHhjLTP4Nhj23F0h2DkSJgwofF0Ju/iLbNLpraWNlpc3LwOgmFotdHWaECoVDdTXy9NgB94ALZuta/36gVXX21Xek5Lg+9+V2ZrQWbSnnrKrlqm2tbChdJuIhh0povq/sHW9OkDQ4YYJMZLc60qkqkklTXProryyJTqvGpqJAjbsEGqMNbWSmA3caLU9xg5En79a9lnPmeOpI5WV9sVG4NBua9cdpnsLXRWtmzJ1Kmy4mj53//cBWsSEiRovOwySEmRa6Ypew6tlEjltmmT/d+mVy930FO82W7bkEolE87sLUu9HZ2juEw6FUypeRerJ+FXX9lbXXJy3Ak1n37a/K00IGyZBoRKdSNr18J990kTYKtJbWysxBzXXis5+E49e0r6vjXTu2sXPPec+4at2sayZRCuayCMgccKCFN3u2ZGldsJJ0BKunyYCZBACIOl7+kytlKHor4efv5zWX0zTZkE9HrlT9CIEe6tzD17wi9+IROLOTn2imFKigSJ9fVSqfqcc+APf2g9zdPjkRVHy+7dcn9qasQIaWdhtRZwVphUbs500fh4u0qr3w/+YjulvkNXF23qkktcS86zS5+R2YsIqydh07TRFSuap40OHmwX7d6yRT/PWDQgVKobKCuDZ56RAjEVFfb1UaMkPXTKlNYnCQcMkBu29Qd040Z47TXdjN2Wysrkv2swEMTAxEuIbArJOTW3c8zeRsn48ZDVPwEPYUJ4qCaJJbsHaQMzpQ5SMAi/+pUUdwG5T4TD0mQ+I8M9MWjx+6XQy/jx8nn99NPhiCOav+/rr8sq329/23LV6rFjJeCzvPJKy6t/CQnufYnOgiJKhELudFHn/T5UUYW33m6+N8O7WHJ7O4MePeQXLOIEPiSxwq529/bb9mcSZ0BYWOguqAPye9SvnxzX1+ueVIsGhEp1YcEgfPCBVIJzlqDOzJQMjEsusfcJ7suIEdKHyrJqlewlUW2joMDeP+glTCp+8liL97RToz20Dm3oUOjdN4ZEnxTi8ZPKGvIof21xdAemVCcSDsNtt9krbsGgBBJHHy2fw8eNgzG+tbJn4IUX4J13CC1Zzv/u3UPVHj/U19Ont8n998Nbb0nKqbNYjPU95s2Diy6SLBXnhKJhyL3IUl4O8+e3PNYhQ6TXoTXO995ru/8OXcGmTXZdrT59ZF+mpWSLHR2mUsnEExMO7ANAR+FIG42jnhnlL4EpqU7bt9uB8JAh7t+//aWNavsJoQGhUl3U5s2SzrNggV2q2+uVwgDXXw/Dhh3c+x1zDJx8sn3+8cfuflPq0H3+OfgrwgTDjnRR1sKpGhDui8cDxx8PiUmyfF1ttZ94Ydt+XqmUAgnM7rjDPcFXVgZjxkh6pq+8iMvmXQ55efKB/OKLYdYs3p36O7bd9gj8415i7vojc27sR3zfLBJHD+Y7fz+aNwMzuYm76LnnS/m0vmuXbCgsLeHJx4Pcf797HEOGuFd25s61q5s2deqp8v99kP1jmhBgc6aLJifbWZWVlVBdZK8OTmMxvrM7eHXRpk4/XZarI2bVvAIVlY3nVnEZw3DvtGip2qjuI2xOA0KlupjqanjxRXj8camyZRk6VPZgnHSSu0LcwTjxRPcf2nnz5IasDl1dnaRphevqCOPBS4g0yskbYcoUr9qnE06AtCz5hW4gljpiWfppjL1xRinVItOEv/9dtgBYAgEYNAj6xhXD++9z+txr6fneM67X5TOKpUxuPD+LN+gd3i0lSbdsgVWriPtoARd9/ite3z2e3xT9H/2+WQG7dsrjX+fzxD3FPP6Y+1P6hRfaGfKBgHtcTtnZze9DuoWhebpold1ukEBVAzE1dn7tDBa4G0F2BnFxrg2n4/mM7Cq7jOg779h/9p2TC3v3Nk8L7ddP3g6kz7JWUNeAUKkuJRSCO++ERx6RVJFgUDb5X3yxTO5+23Z2hgFnnCGTxZZXXpE0FXVoNm6UG1awNoiXMAbQi0IGnTkm2kPrFMaMgeyBCcQiy+CVpLKs7mjCy1vIE1JKNfrPf2RfucU0YXB6KQM2LIT588jYnc+ZvOl6TRE9eJVzG88nsIKxfNnq94ghyDm8zsuczxU8JRdDUor0gRvW88K9uxuf27u3ZLBYFi6UPWAtmT5dCqaALEA6V8a6qy1b7Gqvffq4t4mUb2uSLppXLdWAOhtH2qgHk1nFTzdGgWVldnrosGF2v0Fonjbq8ciqNMjvfUt7W7sbDQiV6kJeeQXefFMqta1dC19/Lfv/hg+3i8J8Wx6PzOQOGiTnoZB8qNi9e58vU60oKIDCQpNgfRgvIXwEOYbPdf/gAYqNhaPHeUiKl1JxVSRTRgbrnv0iyiNTquN65hl4+GHHhSo/UwtfIW3JW7BH/pjP4TnisPsM1Y07jueOvJP6QcOhzxH061nPadmf2Ust++AlzP9xHxfwkut73vXzPbx92TONVWTOOccO9EIhyXZpSVKSZKxYnKtD3ZWzN2NGht1/sLISaorsipzTWIzvzNl0SpMmufI9Z4fehLLSxnNNGz10GhAq1UXs3Qv332+3kxgwQG4KL74o5cEXLWq78so+n/SFskqA19fDk09KxpA6cOFwpKDMrgaCePEQIo0K8uK3wOTJ+38DBcje1sQUKYHY2H5iXsV+XqVU9/Tqq5IqCkCVH9YXcE7Bn6nbubfxObmsZxLL5WTyZMz57/DajUsoOutquPxyEn/yfS5Z/wd8hbslvzMQkJvQ+vWSA79wocxQPv443Hsv/O53GNdey03x/2Q28+zBmCb/79lhLBr2A/jgA9LS4DRHJ4Tly5s3F7dMmmRvKSsvl9Y93VXTdNFae7sg/sowsVUljeczea/zpYtaDMO1SjiMDQyptvetLFpk75t0po3u2dN80rppQNjd0441IFSqC7AKA1gBWWqqO12irAweewxuukkKwVhB47cRHy9/l9PS5Ly6Gp54wr1vQe3brl1ykwr46wEDD6YUlJmaJUtf6oBMngzpfeLxECaMQRXJLN16hHsTrVKKd9+FO+4wwV8ps1EFBZzpf5a+7KKaZAAMTL7Dk9RPOYndz3/Ilw98zOu1p5C/WtJMDEOqhVp/+wFZJezZU3L1jjlGNqufey5873vS2+i22+DBB/Gs/prbZy7jRD5ofGkYD7/e8SM+mXYTXHUVsyeWuN77+edb/rDu87nrbn3wQffdC7Z1qx0INU0X9e+pwgjLbHAqlUzI2iLRdGd1+eWNhwZwWslTUCelVevqYPFieSw31/07+skn7rfJyLCrkVZWSqXv7kwDQqW6gHfflZshSErntGkSII4b535eYSE89BDceqtUtvy2M2KpqfDd70pfH5CA9KmnWu4hpZpzt5uQG3Y2hQw69+goj6xzSUuD4aNjSfDa7SfyGUXl64uiPDKlOo4PPzD57Q0VmOsKZCWvys9JLORcXuF1zqaIHuykH77eWfzvB+/zx2kLeCj/eF562eDzz+33Oflke//VQRs8GN87b3HnU/2ZmGDnODYQwy/4G18+/jnxY0dwbvJ7gNyg1qxxp0M65eXBwIFyXFcH779/iOPq5Jz/fXr1khUxkECnttiOkqezCN/pp3bu/rY5OVJNLGIW86HEXgG10kY9HumRadlf+4nunjaqAaFSnZzfD3/9q50O2r+/VBMdMAB+9jO4/XZpQO+0c2djFg/5+d8uMMzOhiuusCuX7t4Nzz3XdumpXdm6dVC4J0gwaOKJBIQTWIF3didpFtyBTJ0KSYlyXEMSITwsf35rVMekVIdgmiy55xN+fvo6/Ot2UlllUEoGyVSRQC03cB+bGMKupOFUDhtPjytOx99zSIsbz0ePdn0WPzSGQezlF/HXDWczJtfeoxggnhv4BwXFmUz7yyx6f/iiRDS0vkpoGO5m9StWtF6IpqsKhyVotlh9CEGyg+L8drA0gwVSGa6zc6SN9qKQY/wfYE0gfPqpnRziTBu1MnKcNCC0aUCoVCd3113S3gkgMRF++EOp1mYZOhRuvhluucX9xw+kOuhf/iKVSb9Nc9b+/aWSqdUbatMm2T7S3XPy96W8XLbcFG2tJoQXD2HiCTCh7zeds/pblJ16KiRmSJptEB8B4li6zGib/GilOimzNsC/xj7EnF/0YVd1GmVk4CeFdCo4jmXsYADFSQNh8BDIGcyICSmNNWKSk6V42PjxMGsWXHmlpIq2VYGyxL4Z/GPFZIadPLCxkkwVyVzP/eygPxdtv1saEn79Ndu3hlrte9u3Lxx1VOTnNVtvat9VOdNFe/d2N6OvKg5g1EuEmEolE3yrukZ/2wsusKsPAadV/a9xv0o4LFtYQQrqpaTYL2u6Sjh4sP25ZevW7l2YSANCpTqx5cvlfglyk5482b0h3ykvT7Zx/PznEsA5rV0Lv/893HOPlPA+FMOHw9ln2+dffSWV31TLCgrk5lNUZGIgeyHSKWfEjH7RHlqnlJMD/YdJ+wkTqCSNpdVHEl6ljTJV9/XOd57hz1/NpgFf47VsipnJuxg5g1iTdyHxIweT1ieJ0aPl/vDDH8q2gl/9Cr7/ffm7PmWKfHhuq2DQkpoKD7yQzYBT8+CIvmAYlJHBj3mQvuxkaLgAvlwFc9/ixXt30dDQ8vvMnCl7CkEmN7/NBGdn40wX7d/fbqFQWQmBEntT/3QW4Zs2Vf6jd3ZpaVKSNmI6i/CV2kvD1mcPr3ffaaNxcfbnoYaGQ//80xVoQKhUJxUIwB//aM9o9e4tKaL72hpgGHD00fCnP8F117lXEgFWrpQPAg88YO9BOBjjxsGMGfb5kiXdu/LbvqxbByUlJg2BcGO6aDZFDLpwwn5eqVpiGDDhWA+JcXb7iVIy2fDsiiiPTKno2L6yhPte6UsdsuQXSz2D2czd4//H9/83i+G3z2Ho0SmMGCETKr/9rdSD6dfPtfhy2GVmwoP/8tBrbB/Z35CSSiE9uY4HOZXIJ/vKCkpeep/3zvxHi+Ws09Ikbdwyf373SA5omi7qDJiLiyGhugumi1ocaaOp+Dmu3P4f/auvJAMH3GmjO3bYGVUWTRsVGhAq1Undfz9s2ybHcXFw1VWyb/BAGIYUGfvzn+Hqq5s3rF++XGaHn3vu4G+qJ5wAxx5rn7/zzqEFl11ZXZ2UUi/aXEXQ9DQWlBnr/RrvSSfu59WqNSefDEkpMiNSTyz1xLBkblmUR6VU+6uuhmdu+IR14VwA4gkwyLeb199J5NQVfyJj+lgWL7ZX/CZOlCySaOndWwqeZfaJh9xhkJPDDl8Of+dnjMSOeN54J47qEce02KDw+OMlzRVkH6GzEE5XtW2bXVm1Vy/3yqi/PIhR7Qci6aKs6LztJloyc6bd+wo4pWGu7MWIeO89+TpypP17Ac1XCTUgFBoQKtUJrV0rm+wtxxwD559/FZMnqQAAIABJREFU8O/j9Upz37vvlkrOzkwS05RqXffdJ30GD5RhSNrq8OFybjUXbi3VpzvatEn+uxRu8mNiRFJGTU4YXWaXbFUH7fjjIb1PHB5MwnioJoll67Ok8pJS3UQ4DC88UsmXS6upJR4fITIo45zTG+hxipSefvZZO7skNhbmzInigCMGDJDslJQUAzKzYNRoNvU4lpWMIxT5uFpNEm8WHSubGa+4AirsfqOxsRIjWBYu7PoVr53pooMH270IKyuhvqxJddG84fKkrsJqiBxxIh8QW2b30nz3Xfnq9cpnJEvTgPCII+wV8T17um/rLA0IlepkQiGpHGrd6LKypPG8VeXzUMTEyD7zv/0NLrxQitNYPv9cis4czGdqj0daUCUlyXlRkT1bp2T/IMA39r2LZPyMPUP3D34bMTFw5Ph4Ejzyfw4/KXxpjsH/1odRHplS7WfRItj0/KesCQ3HADIoxevzctFfJXdu9WrpHW854wzo0SM6Y21q2DCZhExIQD7wDxzEluGz2JUwjHDkI+s7nEoJmfD003DkkXbPJWDsWHsrRHU1fNiF/6/fNF00HLYzevbuhcSAnVrbqZvR74sjbTSRWqZWvNU4+7xmjVRUB3fa6LZt7kq0Ho+7jcqmTYdzwB2XBoRKdTKPPWbPAsbEyCRpbm7bvHd8PJx1lqSSOtNPN26UFhV797b+2qaSkiQotCxb1r3TMSymKQFhrb+B8trYxnTRHhQz8JLjojy6zm/KFHtCo5Z4Gojh02f1F091DwUFsPitaopWbKOIHqRRTiwNTJ1i0ndoAqGQ9Iq19OgBp58evfG2ZMwYmZxsnORMTqFi2HhWZc8kbHgJ4uNhfkAt8VIFZPp0uOkmqKvD43G3oVi61JVF2KWsX2+vZvXs6Q5kqvxhPJXyg6dSyXg+61r7By1HHSWTAhGnmPNde0ytiehRo+wJapD2JE6aNqoBoVKdyrZt8Mgj9vmoUa6MiTaTkQG/+Y30nLLs3StB4cHMng0f7q7w9cordnns7mrXLpm5LlpdiIkHT6R30pjELXhHjYjy6Dq/GTMgOUM+SYbxUUMCSz8KaQ8U1eWVl8PLLwPLlrE6lEsiNSRSA74YLv7dSAAWLJC/QZZLL5VUy45m4kSZmLRaAvhiPNQm9+TLwedhpmWwhjz+xK2UkS7/3777btm8np/P4MEwIvKnNBi0Uwe7gvJyWfV84AF45hn7em6uFFKBSLpoZaCxGfBJvI8vKx2O66ITjo5Vwql8TEKZ/QtuBYRerxS9s3zyifstmgaE3fF2oQGhUp2EacL/+392QJWaCjfeePiqwSUkwC9/KfuyLH4/3HEHfPHFgb/P7NlSRc56/RtvdM8/tpZ16+Rr4YYKwtg13KeMD7R9TfduaMAAyMmT9hNhDKpIZln5CMz13agOvep2gkEpAlZbXE3tinx20o90KjCAgXlJTDw+Hr9fJuUseXnuCbuO5sQTZRLS+rOYng6lNfHkDzwNc0Qe2xjI77id3fSRJ3z5pWwWu+ceTp0Zbgwmv/5aqkt2Vn6/ZNg8/LCsnL73nrtSptcrQb2113/PHkiss1fJZrBANvbvqwR5Z3bppY0zB/HUcXz1fKiVD0rr10t/QXCnjW7ZYjevB/ndstKmq6oOLhuqq2jXgNAwDK9hGCsNw5gbOc8xDOMTwzA2GobxP8MwYiPX4yLnGyOPD3K8xy2R6wWGYXSB7ppKHZiXXrL3fXg8sqfekSlxWHi9cM017tTP+nq4916ZaW5NeTk8/risMn79texLtG7Oq1fLfbu7svYP7t5jB38+gky/uFcrr1AHwzBgwiQfibFSMaOaRL6hFxuf0v4nqut6+23YvRtYtowNoUGRYNCEmBguvnEAHo8U97ImFD0e2W7Q0eegZs+Gm2+WY49H9geWlHqYV3gM72VcxKveC5jBAn7Iv7iLG3m0/nJe+cXH5M/6JT1jSqmslC1lb73VuSYia2tl//7jj8vi59tvNw9qk5IkyPnRj9zVRSsrwRdJF02jQtJFu+L+QUufPnDKKY2np/CuFC6IsFaIR49210fQaqNuvv0/pU3dAKwFrFqGfwH+bprm84Zh/Av4PvBQ5GuZaZpDDcO4JPK8iw3DyAMuAUYBRwALDMPINU0z1M4/h1LtqqQE/vEP+3zYMGkY3B4MA847T4rXPPaYbFo3TXjiCZlhu/hi+0PFrl2SxvL663bRmw8+kFnpadPg/ffl2ty5MHCgpKZ2JxUVMrNrlpVTWJ+GB6kAkEkpgy6ZFOXRdR3Tp8PT93soL4EQMQRIYNmbxQz7Y7RHplTbW7UqsiequprQii8oZjI+ZEIkcUAPzjgv9v+zd97xUZVZH//eKZlk0nsBkpDQQXoXpSPoKlZ0UbGtrmVddXd1d33fXVdd17K6vupr3dXXCtjQdW10QUGa9JIQCC0kJCG9TcrMff84M3NnIDQNmZTn+/nkw9yZO5MTIPe55zm/8zvs2wfffGO8Z8oUmTfYHrjiCqnavPCCJIUJCbImVlXZaIxIobomko8briCeIkJxZ7ybwLXlIIWRwbhsdiwWqaCmpclalp4um6rJyQH90fxoaBB/gG3bJCFxNnNnGxwsld1zzhHDUJNJztu0SV6vrISmugaodwBud1GL5pcwdUhuukmGTwJjWU1oyUFqUrqAxcKiRbKxbbHIHOZVq+Qt69ZJ4dRDjx4ycgvk7993rmVnoNUqhJqmdQUuAv7lPtaAScBH7lPeAi51P57pPsb9+mT3+TOB+bqu1+u6vg/YA/gUgRWKjslf/mK4a9vtIhX1navjS02N6ON9XbRagvHjxc3UV6L6xRfw0kvSu/DHP0ol8YMP/K2+6+pkZ3r8eOMGpL5eel06w+BgXzzVwcodh2jC6hWM9oktxhwTGbC4OhqDB0NyWhAaOk5M1GBn1Y4ocDgCHZpC0aIUFooMH4DvVxPqrKAe90XaauXimxMICYG33zYqZOHhssnXnrjhBpm1C7IBGRvr3lDUTBAWjh4aTpGWRCXG7CSTq4nwsgNQXkZTo4u9e0Wh8u23Yqxz9dWBX4eamsQN8/33pWfyo49knfBNBq1WSQBnz5b5wJddJsmLR3WTnW2YyxQUQGij4aIzlcWy+EZ28PXlssu8NxhBNDLBtQyOSpVw/36j4ucrG927VzYWPKSnG5vbhw51vvuT1pSM/g/wAOD5K44FynVdd0/CIQ/o4n7cBTgE4H69wn2+9/lm3qNQdEgWLzZctTVNlB++g989NDTIInfxxXDXXbLzNWeOSE48GvrToqhINCpz5kgm56OzGThQZKCetaW4WOSjM2bI5tyJLqAffyyynSuvNJzjDhyA7747g7g6AN7+wd3lOH36B0cOUyKHliQyEnoPsWPX6tHRqCGUTc4B1CxaFejQFIoWo75eql6NjUBNNWk/fEIOPrq3pCSuvs7K6tX+ErirrvJ3XGwv3HEHPPusFIMuu0wcsUeNkk1Ss90GkZGUWBIpJQbPqhVKDRZHNRQX46yr95sxV1srI5Xuussttz0DamqMgfA/hupq+PRTSQLnzZN5gr6zes1mMca56iqRzM6aJQPWLc3o+n74wXhcVgbWqjKgk8hFPVitcPfd3sNpLJJ7GV1uSjzmMuec47+p7es2arMZI0saGvxUp52CVpGMapr2M6BI1/UfNE2b0Arf7zbgNoBUX+98haKdUV0tC5YnJ0tNhV/9yv8cl0v6C15++fhG6J075evFF2X3a+JE+erb95jeEV0X67JXXjGyN5AM8xe/kA9wW9GlpIhZ2aOP+l8wCwrkYmqxyO5taqohY6mogK++gksvlUT13/+W55ctk53OlJQW+etq0zQ0QG4u4HRy+IgJfBLCqXPakG6pgzBunMai+To1NdBAELXYWf/uD0y4ZHKgQ1MofjK6LlJ8T4UjdP0KBjeu5RXcZTSrlTEXxRIUJEPoPaSlScGoPaJpYnLma3QGkkw99xzU1Jipr4+gIesoPbJWM871DRVEsYu+rHaNwVEaQr2Wgi0mkfpGox6yfr1UC+++WzYtTScplRw4IMoYj0vlpElSbQ0PP/2fIzsbPvnk+IRS06B7d9l47dfPPYvxFOi6kRBWVoKryQnVMjR4Essw4+qY4yaa49ZbxYWotpaRrCOisYTKsjKIiWXRItlQsFrFbXT1annLunUwfbrxEV27yr0MSJUwsRO19rdWD+G5wCWapl0IBCM9hM8BUZqmWdxVwK6Axyv2MNANyNM0zQJEAiU+z3vwfY8XXddfA14DGD58eDtqI1Yo/Hn8cSPpCg4WyWZUlBzrulzUXnjh9Bqg9++XauH//Z/0YEyYABOHVzF065uYX3vZGG54LP/6F+TkUPPWRyxYGce8ebLxFhIiMXlUeI2N4ob2hz+IvKe0VHZwPVXDuXNh5kwxgcvOlmqZ0ykSGc+FuiOzd69bBpR3iFJXpDcdDDU5GDKrhQZJKryMGAFxCSaK94ELE7XYWb2ikQmBDkyhaAFWrzaGkms11Vy9/ne8zSzjhKQkJl9g4bHHJFHwMGfOyROe9siAAaJcefppKC/XsA/N5GjGHLI3wL1H/kAIdbzBzewnHUrgHHsFey/7HR+vSvJ+Rl0dPPWUmKX9+c/+/ZW6Ln/Xn38uyacvS5ZIT9rMmXDBBc1X8Dw0NsLChcePPEhNlcrVgAEnbgU5Efv3G5sCBQVgb6ryvjaFJbL76zt1vSMTHQ033ggvvYSVJiaxjE8LkyAmhrw8jV27JNEeMcJICHNypKrq8TPo1s2oGh461LZdeFuaVrks6Lr+R13Xu+q6no6YwizTdf1aYDlwpfu0GwB33YDP3Me4X1+m67rufv4atwtpd6AncIxPkELRMVi3ThYgD5MmSRIHsjjdfjvcc8/xyaDFIjuWkyadeCRF0b4aPnhqP3dMyWHaff14eNdVrOQ86jl+IFUxcTy/YiAX9tnLc0/UeXsTzWapCIaGyliJYcOkcrh2rSR7SUkSg4fcXPmZNE0qhR7JUnFxx5oTdSI8ctGmnH2UEuN9PjO+ArO1g92htQEyMsRu30ojLszSR1jUA/1gO/afVyiQKpXvNXPK4beIqj/CQtzG61Yrsb3iWLTIfyj7RRfJvLqOSFoaPPSQj9okKopdE+/i0VGfU0osM/hKXFeB7YciuPnlEbw87j1Skv1rBhs3wjXXSE9fY6OYjPzpTyLtPDYZ9FBXB/PnwwMPyBrXnJtpYaEIcHyTwYQEuPNOKWyNHn3mySD4y0VLSiCoRsZNdCq5qC/33ON9OI1FoguullKsRzY6cKDIQz34yka7+ZSc8vLOZqBtj9Z2GT2W3wPzNU37K7AJeN39/OvAO5qm7QFKkSQSXdd3aJr2AbATaALuUg6jio5IQ4Msbp7qWlKSGMnk5Yl680QjH6ZPlwXGsyjW18uCtnw5rFzupPJAqWRgPtPhK4jkP1zMf7iYEOoYw/dMTNlNGgf4MH8sXzGDJizgALJ2yZ12ZBSaJgnfdddJgvrFF8b3fOYZMQCYPds/1rlzpecjNFR6QN59VxbPFStkrmJUlNzAeL4qKiTBvfhi6NKOu4V1XeYhAZTsLqHR59I7dGgb931vp4SEwKDhQXy/qJKKRiv1BJNHF/a9t5qMP14d6PAUih9FdbUkK561oU9SOec9fT9vcjUN7g29+rgUnJipMopFXHSRyCI7MnFxkrz9z/+4DbzMZvJ6TuLhLpu5f82VDM7fzCaGoKPxVeNkbnjuOuZPfp//nf4uH3xtmNHU1srn/PWv4uh9bL9lVJRUA0tKpO3B829RXCyKnZ49Ze3r0UOu/WvWSALf1GR8xsiRsl7/VGWMZxRVRQW4nDpapbjPeeWinS0h7NVLJLKff84wfiCGUkoLCyEsjMWL4de/lu6XIUMMR9H16w0T1thYWTvq6kQJ5XCcvVnPbY1WTwh1Xf8G+Mb9OJdmXEJ1XXcAV53g/Y8Bj529CBWKwPPss8bulNUqydUbb0h7X3NW1CNHyoWuTx//5202GB+3g/Elr+Dc9C4bq3qwnIl8wwSKSDjuc+qiUliWcDvLwsNl9arM9fYjAOByEbRnJz+b7uS6V8aRmibJzMCBshh7nOxcLlGaXnKJyGE88tDPPxcpjsUiC9iWLbLb7XJJ4ti7d/OSm7174ckn26/U6fBhtwtcVRVlpS50jAHBE2Z3ggbKADF6NMyLgIoSj2w0lNWfFJLxx0BHplCcOS6XuDh7Er3oaLg8+3Fcjno+cout6i2hFLvi6B9nvG/mTBnd0NZnDrYEYWHixPnKK8acuTJ7Vx6dupJfHPkr2xc20oiVvWTyCZdx7tJVPLA5g8kPfsyflownO9vdi+dO8goLJcdIT5dNyQsvhHPPNdapqVOlOujplweRIT78sCQdwcFGTxqIAc5llx2/Vv8YjhyRtcXz2K7Vem8QprJYpDujO+E4o3vvhc8/x4yLySzlw/IYaKjnyBEb27bJ/cqIEUZCmJ0tG9BRUfI70rWrMdfx8OHOo7gNdIVQoVAcw86dssCALEoRETLaoa7u+HN795ZE8DjXUc9ch1deEY9twAyMYAMj2MD9/J1d9GU5E1kechH7owdLRmf1kYxarNCrJxw8CEePEkEls/iAWXxAzNdl8Jcb5fPd2ospU2T9efFFqXCC2KFXVPib3cybB/37y+OwMEl46+tFnpOXJ9KfY29cjhyR5HHIkB/1VxpwNm50P8jN5SjGnZrZojHx0g5uBx5AevWC7j0tHCrRcWKWPsItdq5rajp5s49C0QZZuhT27ZPHFgv8fHIRIWNeYBnjKSSRemwcsaXTNVnzVp4uv1wSkM6E1Srma++9Jz17AHXOIF5KeoRhN22kaO5SqHewiSFsYggJJUXU/vYL4noGURg+kvJyY8PO6ZS/87g4Ud+kpfl/r5QU+M1vZJzF3LmyXIIkle+8I2t4ZqZci/r0kcT8TAxomsPhkITFd65kURHE1olcNIpyhvEDXDi7c17nJk2Spsxt25jKYj7kKvkL6tqNRYskIRw0SCqFDQ2yib1hg9zDgMhGPQnhwYOdJyFsp/vtCkXHxOWS5vjGRkmk8vNFlnJsMpiSInKWd945JhlsaJAXunaFa6/1JoPHomka/Wakc9dn0/mochofrUrhrnuD6Nfv2BNNpIxJ4/4bivlCu5jbeZUYxNKaN9+EyZP9Bh4OHQoPPui/4CUl+Usu8vIME1OzWSqIngSwslIW4O7dJfmLjTXe59H/tzeqqnwSwr17KcSwLesSW/+j+kYUp0dqKqSdE0EI9bgwUYeNDQ3nULti/anfrFC0IbKyxAjaw89+BslvPwl1dcznGhzYOKKl4LIFk54u58ya1fmSQQ+aJu0Ms2cbzzmdsKZ+KM5f3AapqZQTxQaG809u5V2uY1eOmcQ93zGyTwV2u1TzkpPlKy8Pfv5zSTKbG6/Uv784b994o5iU5OaKyMblkj7/7GxJNOz2M/9ZqqtlDZk3T1pJfvlLMcDxVEArKiSp0So6uVzUg6ZJlRAYzGbiKYbio+BysmSJ/JvYbDKv1oPqI1QVQoWiTfHPf8LmzZIENjZKMuXb/BwZCbfcItbYQcf6v6xfL9rSE3W+A8THywfcdptkXW7S02W20003STVvxQpZxIYPh8mTNczmGTD7E7nDcC86gNirjRwppcCBAwHZTXvoIfjHPyShNZmk7XD3btmsNJvl5/jZz0SiERUlVdEffpCfKThY5kJFR0s++9pr8q22bRPpTfJpTmjQdZF77NghefKUKadn493SfP+9W8XjctF130qOcq73tYFDzCd+o+InY7HA8BEmvnrPRW0tuDBTQSQb3vqO8yePCXR4CsVpUVYmgg8PQ4fCsC5H4OWXyaEHqxnLERLRQ0KJjdUIC5Pk5cILAxdzW2HGDFlLXn1VEjSTCQ5VRBJzyfVs/+IQpfvKvTMLHQRzuCaIzO+X8fg1QRwaMIMFn5i8JjENDdLOsXSprHHHVguLi8Ws+5xzZK3JyZFqZWqqJIJvvikbmz//uSyXJ5LwlpcbTtzZ2eJ2eTIKCiDcVg/1Yvk9hSVy8bvggh/999bumT0b/vhHTEVFTGUxc12z4ehRjpoS2bxZfodGjDCS6l27ZEM6IsLfr+DQIXey3Qnk1iohVCjaCA6HFPeOHpVju92wQrbZpOA3Z04zTmR1dbI6PfPMiSfDjx8vtqSXX95MJulPYqLkfccxbZqI7i++2N/a9MABGDtWtk5nzvR+xt/+JqMnQkNlIb3oIpGGglxkZ8ww1Cz9+8simJcn53z0keSto0aJDMczTHjJErj++pOGT1ERbN0qX2VlxvMVFbJj3Jo4HMaCQ34+5roqnJ7LrqZx7iWxJ3yvomXo0we6dXFRnIMhG13u4PxAB6ZQnAZNTVIZ8oz3SUpyj5X7/VNQV8cL/EqSQc0MwTbS0uQa6THJUEgbXWSkmM14/NRKy010PTeNpJ6hlHy7i4q6ILqQRwa5hOgOsueBOaOUn193MUvWR/kKYdi6VZK622+XNUXTxD104UL597JY5Lpz6aWSZHz/veE8eviwjMcYMEBylq5dZQM4K8tIAI8cOb2fq1s3aRs5fBj0I2In65WLnj9BfujOSnCwzLN6+GFJCJkNhUWQkMDChRpDh0qF0GqVzXePbHTSJEnm4+Mlwa+rk3+fuLhTf8v2jpKMKhRthKeeMpJBk0kqYWazSH4+/VT6F45LBr/7TsTwf//78clgZKQ0GO7YIc0G11xzymTwlPTpIyvf5GOGe9fUSKBPPOFd+cxmuaja7VIFvOgi4/SiInE+9WAywVVXGeEdPCg/WlAQTJxonLdypXFj5EtZmbz2v/8rLm8rVvgngyALbWvLP9atM5Lg9JIf2EF/72smq5kJk1WF8GyTmQkZA8Ox0oQLM3WE8F1eGnpRcaBDUyhOyddfG6YkNpskItYSqQ6uZjTvcw06JgixExKi8cADKhlsjr59Zb5gTIz/8/G947j3neEsve5NHuIRMsn1vubM3U/Z3//FoJDd9Owp13LfauHzz8tG7TPPiMu2x0XUbpdk79prJSd55BH5/r5s3w7/9V8yJeG++6SCuWLFiZNBk0muZRdeKD2LL78sm64jR7rnTFZIQtjp5aK+3HEHBAUxgO0kUwAN9VBezrJlotoJDpbbJw/ezVs6p2xUJYQKRRtA10VO4sFuF7XH++/LohEff8wbqqsl2Tv/fKP72ZcbbpAmhuee4/jGwJ9ITAx89ZVkqMf+EH/8o5Qxm8narrnG/3jevOM/dsYM43jpUpGcTppkyDUcDkkUQXrzvv9eFtJ//EOkOL7mNSA5cWqqcXyicR1ng8ZGic/DeQfeZSNDvcfhkRo9erRePJ2V5GRI7xuC3dKACw0XJnLJ4OC8VYEOTaE4KQ0N/nPmrrjCndA89RSbHH34A0/KSCBNg2Ab118vrpeK5unSBf7yF0mi+vWTzol//AMuvCKEsHdeZtCHf+L2qPe5hdfpyy6ZW1hXh2XB+/TY/QVjRjTS1CT7n7ou69G334qMdNMmSTIyM8XQxjcBTE+XpfG++6TC60HXj9+49OCpMs6cKa6pr74qsf/859Jf79kcXrIEcDZBlchopuBe5FRCKFKl2bPRcLuuAhQWUVZmjOsYMcI4fdcuw8HXNyE8lWS3o6AkowpFG+CTT/x3BkeOFFlJs7r1JUtkku3+/ce/1rWrNN35ZlZnA6tV7ET795fE1HcWxrvviqT0k0/8Vr+MDBlc70mStm6VXdIBA4y3Dhtm9E64XCIdveMOeX7DBtmBfecdqSDu39/8AODQUPnMgQPlol5bK4t+Q4OMr9i/H6/pwtlk82ZD6poUXk3G1gXs5Vnv6737B7XbMRrtCU2T/w+J0Y1UFHtko6Gs+qiAtHtO/X6FIlDs3WtUnbp3dycZBQVseHEtL3APubj7wENCSE7W+MMfAhZquyE6Gu6++wQvXnkl2qhRpM+ZQ/o38yghhu8Zw0aG0rhxI4kHDnLhJZex8XASO3b4L3sbN4q88Nprm3cR1TTpWxs4UGYXfvKJsT6AVH979pQksHdvSSxPNaNQ191ma5WVgG7IRfv06TzWmKfi3nvhzTeZxiLeZo6M0aqtZdEiO6NGSXJtsRgGQD/8ABMmyK2Uh86SEKrbEYWiDfDkk0ZyExQkkpDjksGKCkkEp05tPhn85S9FHnq2k0Ff7rxTJu56mh09rFkjW2++w5nwd3wD6Q/0RdOk78IzCLi4WIqRaWli/b1jhyy869b5J4PBwbLY3ngjPPCA9Nh43EtDQ/1HMS1Z0nwi2ZK4XP4Gr+fp37KJIdThdrUxmxk1vpNMu20DZGZCjz4WNHRc7j7CVRtsJ+65VSjaAFlZxmNPxWntffN5oeE2CkimDjtoGvHdbMya1blbxlqMbt1kkXj8cWItlfyML7ifvzONRUSU5GJ56w1GOr/nogt177JntYqKp6JCjNmef95oFTgWi0UkvU8/LX3y114rlb9XX5VK4MyZks+dzsD6rCxR0VCu5KInZNAgmDiR3mTTDXdmV1jIsmWi4gkJ8frhAYZsNCHBaGEpLDRGaXVkVEKoUASY9evFZdND9+7+fXOATHTv31+mvR9LRoZsOb7yilhktTaTJklfYe/e/s/n5cG4caJ7dTN6tJ+5KUuW+E2tACSB87VKX79eqoMul5HI5ebKgulpzP/97+U9mZnND68fN85waz1wQHbezyY7dhhSoOhoGLDzA5ZgaLlMQRbGjTu7MSgMMjOh26AYQnDgxEQTZlY7BuNYtzXQoSkUzeJyiVrCQ58+sPqzo7z4YQIuTBwgHQ2dhAQICzMdJ8lX/ATMZvjDH2D1aujZkxAcnMd3/IZ/cJVrPilL3yZhyXtcOrmKSy8VZaIngXO54O23Rdq5efOJv0VoqFSipk+X65P5DNvJGxulyoiue52/lVz0BNx3HxowjUVyXFZKVWkDa9fK4ciRxqlgtL07AAAgAElEQVQ7d0rl1mQy3EZdLnfi3cFRCaFCEWCeeMKQBZlMonDwJjUlJWIZd/HFYiXmi2fWztatzWSQrUzPnlIVPNbmurZWmgcvuwzy8tA0WSg9uFzwwQfHf1zv3v7afk2TRVPTJOcNCpLd1auvlp3zU83eDQmBc41pDyxdevaqhLruPy9snGUNpg/msxZjYGRwmMVvV1JxdomOhm7pZqLtDeho6GhUEMkPb6qEUNE2OXxYetVAqhXbt8Mrf9iH7nJRTRglxJJgKSW0SxSDB8vgc0ULM2KESFJuuQUAMy4Gso3beYU79j3A3e+N5uWx7/DeOy769PF/68GDIuh56inD2fSnouuySfD00yIEWrAAqKkGp9OQi8bESG+GwuCii6BHDyMh1HUoLmaR+3DIECMhdzqNucGdrY9QJYQKRQA5eNDfbTMmRpIcQBro+vWTnrxj6d1b3FWefdbQVwaaqCipZN7TTGPWp59K5vb881x4gdOvkLlggfReHMv06SIV1TSpKt5+u6zPGRnGjMIzYexYYw5hXp7/7ntLsmeP0Q8aeng3Q+6fgu5wkIX7jkHTSOoWRELC2fn+iubp0QO6p8rOi1c2uqiF7tQUihbGVy7qcMA/n69FzxYDsUN0I4FC7ClRoJmMNUPR8oSFiTLno4+8rREakEIByWU7Yc4cet10Lm/9aj133+1v5K3rsuF59dV4q1E/htJSmer085+LxHT+fK9KFMqlOjiVxSIX9Z3npBBMJrjnHjLJJcPjIltczDfLnDQ0iInfOecYp3tko53NaVQlhApFAHnqKUObrmkifwypLJTJ81dddbye0iNl2bxZMpy2hsUiw55ee+34JojqarjnHoInjOaKkcZ2W2UlfPnl8R/lqQI+/DDcfLNU+CZNMl5fseLMdP02G5x3nnF8tqqE3urgnj2MffdOrA01HKQbR3HPHLTbGTpcXXpbm8xM6DEsEgtNODHRSBDL96W5DRkUiraFJyE8cMA9x277DnA5AR0XGnarE+LiSEgIvECkU3DFFbBli+g8j2XNGsxjR3HDyluY93yx3ygDkLEhd90l4ydO93LT0CBr1L33yubos8/6j//1UlHOUDbyC9ztJEou2jw33giRkUaVsKmJ2rxSVrnNpn1lo9u3S1XX11jm4MGz7z0QaNRdiUIRIKqqpHDmcSoLDobf9P5CqoIff3z8GwYOlG3Gxx+Xk9syt94qjX+jRh3/2oYNXPX3kZgPH3Tf4MgIiub8PTTN31zHd/xhdbX/WIfTYdQoo6B65Ij0+p0OxcUiI1m9Wiq6X30l/Rvz58Nbb4khwHPPwYMPSv/Iso9LWfZ+EXMbr+AX/JO7eFFmhdntmEKClaInAGRkQExaBOHmOlyY0YE99ODQB2f4n0ihOMuUlcleYEOD9DTZtVrYnUMQDQxiCyZ0SE4CzcQVV6iCUKvhMZx54onjZ/rqOrzxBmmTe/DPPs9w/31NXkWKh88+g1mzZDOzOXRd1qQnn5Qk8Pe/FyFQc2tjXBzMmVHMB45LeI1fEkup/Ec4tm1DIYSFwa23GgkhQGERixdJltecbDQszPDLq67u+HuHKiFUKALE88/7X2DGn1NC4m0zRR/ii9UqZbL162X+Qnth4EBYtQpeeuk4s5sE1xGmHHlHVr+KcvbvlxbEU5GU5D9IdvHiM9u1CwqC8eON42XLTm00uW0b3H+/7NC+/DK88Ya4oy5YIMOIlyyRRXvDBqkOlh6opHLXYYL1WmoIox4b5USBPRSCQwgORvUPBgC7XUwCusXVoQM6Jmqxs3r+wUCHplD44akOFhbKBpa2cwdmVwO/4++s5lywBkFcHFarvwGXohUwmyVT27lTLEGPpbIS0wO/4+pHB/D+L5f5VZ4Ajh6F3/5WNg89xmNFRbKxeNVVMkL4ww+bTz6CgsSh9PnnZe35dcy7ZLDPOOG886R1Q9E8d99NqjmfXuyWY0cdK/9TTl2dJH/9+xunNicb7eh9hCohVCgCgGeenqc6GGTV+fXh3/sPNgIYPlwG4/z5z8fvSLYHzGYZJLhrl6x2PsxmrmyB79kDuXuZ96/qE3yIP76Dlw8cgJycMwtpxAgjPy0uloTvRNTUiPr12H+W5nA4oCKvAg4cQMNFPMUAVBDJwejBEByMpsmO47EGBIrWITMTeve3oAFOTDiwsXxtSMfXAinaFZ6EMD8fIoPqYHcO/dlBGTEcJNVbHZw61T2oXtH6ZGaKxGfhQv8p9B6ys0m5fjIvHvgZf7ol3ztI3sOiRdIZcuedMibphReanyYFsoH44IPyrf72Nxg7Rse8c5s0Fvqi5KInJzUVrriCC1jofcpx6KjXj8A3ed+2Te7TOtM8QpUQKhQB4N13ZffXU53qGVnE+L1v+J/0+OOiifTtdm6vpKRId/1//iMXZaA/OxmI2+WxrIzv38oh95F3T5l9DRwoNt8eFi8+s1AsFv82kGXLTvwt33vPp3kfSeaSkmSwfZ8+Uq0cORLOPx+S6/bS6+Ay+rGTy/mEG3mLCCrYmzyOiJRwUlLkR+/fX6pVitYnMxO6DEkkBJGNgsaq6kHUbz/DXQWF4izhcEhi0NQkG1ZhB6V3cDgbeJ+rvdVBQI2aaAtMmya9hc8+2+wgSO3LL5h5TzofnvMI54/2b3qvqJBKVHMqlcRE6Z1fsEBUKZeff5Twz+dJL1yXLrIQ/vCD/5tUQnhq7r2XqfjcNFRWsHh+CeCv3Glqkt9DVSFUKBRnDV0X6aFn1ITF7OKGo89IX4iH2bPFPKajNYf87Gcitfnd78BsliqhB5eT+Q/tFPeYrSceB6BpMGWKcbx+vSG9OV2GDjWUNaWlzc+L2rzZ38l0wgSR6vz97/Doo/Bf/yU/xt13w6zgz4j+ci799O30Iptz2Mr/cC9r064mJCWG4GAxtbFYZHCxIjCkpYEtzEpiaBVO929cOZFsfH1ToENTKABRPLhcsmFot9Rj3rMbDZ1EjrCasd7q4IAB0m6uaANYreL+kpMj/fO+je8AjY3E/+9DPPNRGn+buJioqOYVCcHBcOGF0mXxnwWN3DlgJamv/bfIWhIS5L7grbfEpeZY+vYVK2XFyRkzhpRRqfTHMBBY9WU5NTWy4Rsba5yakwPJycZtWH6+cd/WEVEJoULRyixbJhcaT1UqyVTM5Q6f0RLh4ZJ1dFRCQ+Xn27CBicOrSaTQ+9Ln/IyKtbskY/v9741BXMdw/vmGgtbp9B/dcTqYzf6OpcuX+1/oa2pkV9ZDbKysxc3y0UesuvGfuHSoIpz1jOBxHuRo2nCIi/ee1q+frOXTpp1ZrIqWw2qVKm2PNM/4CRN1hPDtV1UBjkyhEDxy0YICiKjMA5eT3mTzNTPQrTZvdVCNmmiDxMdLj8GGDf6Db91ohUeY9vQ0PiyfxgXnGJPOhw6VrpBFr+7jkeSXGfm3SzHFx0rD+2OPyeedTNYeFCRaUsXpcd99frLRhqIKVvxHmjZ79jRO27NH7hVSUuTY6TRGSnVEVEKoULQyTz8tO8C6DiacTKn6mBR8dvwefti4AnVkBg/GvGYVV18XJHOCgAaCWMDlcuV96ikYMAC+/vq4t9rtMG6ccbxsWfM7d9XVstv65z9LE361T5vioEHeeysqKvzVN++95191vOUWjnOMA+CDD6i9+ibWuoaxmcF8xBXkkwJp6d4Pt9vhgQfgzTebbzVRtC6ZmdBrRJR7/IQZHRMLczKbH4apULQiTifs3i3rw5EjEFF2AIABbOPfzBQdoWYiJsZfJaFoYwwdKvKS994TeecxRP+whMfe7MJ/Mu5h4d2f81rQr7jktz2xD8iQpsJ//1tsyE+G3S4D159/XnaYL730LP0wHZDLL2dK8k7jWHex6AUZTOybEObkyH1aZ5GNqoRQoWhFdu6UzT6pDupENR3lKj7EKzAZMAB+9avABdjamM1c+uJUQob192o4P2AWjbg1Gvv3y6DdsWPhmWcgN9f7Vl9zGU8vhi/r18su+htvyJzDhx6S6txvfysN/Q6Hf5Xwm2+gsVHaQXylouPHn6CNc/58mD2bt12z+YBZbGAYVpoISu/iTQanTJEJIrNmeXNeRYDJzISQrrHEmCpxuZfAvXo6+Z/8hMnRCkULcPCgXJeKiyHI7CToqGwUlhJDDaEQJT1qV1xx/JhXRRvDM1g4K0v6C2y2405J/vB5Ym+8GF588QRDBo9h8GBRzixbJr0On38uPQvuvnzFaWK1knDvbAZj9IqsWW+msqTRLyEsK5O/5s5iLKNuURSKVuSJJyQZdDpBczYxrGkNQ3wuSrz4Yqdb6SMi4OIrbZDZAzJ7UGztwlIm+5/0/ffSsJeZKQODHn2UrhU76NfXkNF4zGUcDlGk3nGH9OH40tAgM6AefFASynfflWSyqUmqhytXwuuvG+fHxJxAKjp3LuWz7+TPzj/xKH+SsRJAWNcoiI0jJUU2bp94QlREirZDSgoEh2ikJ9TgcvcR1hLKpn+r8ROKwOLrLhrRVAq6i3T28RUXSkJhC8ZshssvD2ycijMgLAz++lfZDT7TGSEJCXDddTLctqAANm2SRWXixGYTTMUZcOutTAsyBkI2NbpY/thqUlP9Dd1zclSFUKFQtDBFRTKzzukE3eUitLGc6SwkGreN5fXXS3NcJ8TrlhcVBQP6M7fvo+jaCS5PmzeLBnTAAKa+eqUskiVH2bNH56uvJIF7//1Tf8/6eli6VL7ee08qhA8/LP9OHm655XhHUP2dd/nsug+4XP+ID5jlrTIFxUZgT4nm5pvFUHXs2DP+a1C0AiaTDKnv1Ufq8k7MODGzal0HM3BStCt0XRJCl8vdP1iVB0AU5eSSARFSHZw8WW0ytUsyMsQydPHiE7sBWa3iXvb44zIZvaBA5lNdf73YWytajuhoplyXhAnD4nXRu0WYTTrduxun5eTIpnV4uByXl/u3nnQkVEKoULQSTz8tSYjTCVpjIwPZwgjWy4sREdIz10lJTfXpCTSZ2WkfwbZ520+ZIA85+CmxO1bg+moh2e9v5o6rSzi4owp8HFtHjBAzl9/8RhS5xxIcLOqeXbtEZrpwoZicduly/Lqd+/QCbpvj4BH9v6kggmrcw6WiohkxIYx586QFJDj4x/9dKM4+mZmQ2DeWIBq8Cf36Q0nN+78rFK1AcbHI00pKJDkMKZL+wd30khMiZXiqGjXRzpkyRTY1n3sOeveWReZXv4LPPpP/AMuXi8P4kCGqz+AsE/P7WxmGYR6wvjiNsq/XHmcso2mdo0qotkQVilagvh4+/FAWemejE5urlqFsNKyPH3200+8Azp4N331nHL+3sS8DV6yQxppPP5Xd1W+/9btpN+OiL7v4NzOpbIxAa9SJrsrBbDFhiwnj1zdVcdVD/TCF2OjfX75Hfr5UahcuhOxsudiHhsLRo/KZ9fVyzqJFkiBOnixr+PoX1vD2u11wIv0adYTgxExwXARTLg3h1VfV+t1eyMgALSaGaO0gRXoc0MgeZ3cc2/cQPLBXoMNTdEJ83UUjg2rRqquIopy1jJKLVHg4ffp0jLG0nR6rFX79a/lSBI5evZg69EPWb5RDFyaWPbKCni+O9p5y4IC0mnTrJqpfgLy8jmkQpxJChaIVeOklqKwEp1OHhkZ6k80QNmOnTqah3nlnoEMMOCNGSOVm7145Xr5cbo6SU1ONxbOoSHZSFyzAtXgpbzf9nH9xC1WInkNHo4pwxjWt4pGiP5P65CF4OUIyuuhoCA4mxWZjTnAwc3rbOJgaz+L9PXl59UBoigZdQwfsWgOmmiYqak0seFdjwSs1cMi4XOpANeH06mtl5EVhzJ6tksH2RGwsREZpJIbXUlip4UKjjmB2/XsHQ1RCqAgA2dmyYVhQAMkO8bbXkZtUwsLAZGbWrONH3CkUih/PpD+P48lLnTgxA7BwTRRPW/YD6YAouvbtUxVChULRArhcxky7JkcjVhoYwQYGsUWefPHFjjeA/kfgMWV79FE5drmkF++ee3xOSkiAX/yCg9N+wV8ebGDr6iooKyO0vIZqwtBwkc5+XuNWgnDPoaislOpiM6QCIziHb7ifGBLYQX+cmGkqduEqLvTrL/AljhKGTI4leUw8ERGS0yvaD5ommw+pKU1srZSb7kaC2LCsgiF/CnR0is5GTY3cZJaXi0IhrEQMjg6QJidERBIc7O+srFAofjpRl5zPqNi5rC7pDcAmBlP/8hskJDzi9RPIyYELLpBNX5cLDh+WPzvaJnAH+3EUirbHggUiQXQ1OXE1NNGNgyRxhN5kww03+A/U6+RMn+6dPgHAJ59Aba1xrOsivZ09G7ZmBUFMLGT2IKJfV8Ljgzm360GSraVsYfBpfb9aQnidWwBIpIi+ZHEDbzGTTxnD96SQ73d+EA3cob3KzFsTSR4jnefnnivDaxXti8xMSO8Tgobu3R1evS0iwFEpOiOe6mB+PkSEuTAVFWChSWaaAkRGMGHCCWahKhSKH4+mMXV2gvdQR2PpW3n07ObwPpeTIypfT1dPQ4O/+VxHQSWECsVZ5vnn5U9nbT1mnIxiLf3ZgSUyDJ58MrDBtTFsNrjySuO4ulpGLYGMkPjVr+SvzGFcqzGZ4Jd3mJlzeygRE4bBVVey+Mb34LbbpKJ4EuYym1JivMe/4+8E0UgspSRSyHvM5m3mcBP/x3W8yweWa5n0yiwKEiXhDAmB4cNb7MdXtCIZGRCcnkQYxviJzSVd0R31gQ5N0cnwlYtGOEuhqQkdZD6txQohIUyfHuAgFYoOyoQ/nYfVR6S1qG4cPXO+9B7v2SO/nx19HqHSqSkUZ5G1a2HHDtAbGnA26SRQTAr5MhD1r3+FxMRAh9jmuPJKePNNmQ0IMv89NFRmCx5r99ytm4yKGDgQVq+Gl18GTGZ2NfXi0COv0u2ll+QfISdHtFj19ZJN1tez7WAkK1aNdQ+GdHFe7E6mp0VRnBPG7opEGp1NfBt8Gxfav6GfY7kMJXz4X7yVZ8xIHD3af2aRov0QFgbx3cOIs+RT1RSGjkYx8RQt30HijKGBDk/RSWhqkstTVZVIR9ObZNyEVy4aGUFkpMbo0Sf5EIVC8aMJjw9mzPBGVq6RGdBbGcgdnz4KEy8FzURlpbgAd+sG69bJew4dEt+DjoRKCBWKs8gTTwDo6DV1gIWRrCOSStIHRcHttwc4urZJXBxMmwZfujfoDh6Ehx46/rxZs+Duuw0Z1ciRMHeuDJoHcRK96SazDAQ8ZihgbS3864+A+74/Ohque2I02G9mcj7sflmeX2eew7n3QaSMACM/H/Z8I4+tVtRNWjsnLQ1Soh3sK5Y+wnpsbP38IFNVQqhoJXJzobFRri12O1h259GIlUoipEIYEcnUqarNXKE4m0z7dR9Wrs2VUiCwMz+S4OI8HAniKp6TA336GOd3xAqhkowqFGeJ/fth1SrA4aBJ1winkh7sZSBb0V5+Sa3wJ2H27BO/lpAgPjwPPODfU2OxwKRJxvF338mOe3PMny8jnzzcfLMxgD4lxbCUdjplYL2Hb781Hg8ffvzQekX7Ij0d0t1DiF2YcWHiu2/VLEJF6+EZN5GfD5HB9VBWhhMzXjPRiAglF1UozjLnz4zGFm/0kC9hKhmHjQU/J0dEQp41/+hRqKtr7SjPLiohVCjOEo8/LjMH9dpaXJgZzgZMuBh0TT8YMybQ4bVp+vSBoc0UaS68EN5/H0aNav59EycaBi8NDbBy5fHnbNsmIy08nHceDD7Gg2byZMPefeNGY2D0DvfYSJNJzGQU7Zu0NEjqHYmVRpzu5XDd3rgAR6XoLOi69A/W1IgZckRtPi40DuFuVrKHktTVolyMFYqzjN0O46YYO8y76EtM1ippM6H5AfV5ea0d5dlFJYQKxVmgshK++AKorcWFiWDq6M8OEkOqSHr+wUCH1y647TbD1jk6WnoIH3kEwsNP/J7oaH9d/5IlXgUIIDt6r79uHEdFwbXXHv85iYkwYIA8drkkgfzuO+OzBg0yZKSK9ktUFET1TiKacnRkHuHu2hQai8oCHZqiE1BQIGtFfr4YatmK8qghjEakl4nICK/dvUKhOLtMvbGL/CK6KXVGwIH9gLSuOBwd21hGXWYUirPAM89AXWUDNDTgxMIAthNEI4PuGAvx8YEOr10wfLiYyzz8MHz8sVT/TgffWV1FRbBli3E8b55U+jzcfLMY1jTHpElGlXDLFti0yXhNTQrpOKT1spEQXAVIH2ENoeR8tivAUSk6Ax65aEEBREboaEcKaMDqIxeNZMaMQEWnUHQuxp6rYY2P9h7vphfszQVkMzg3t2MPqFcJoULRwjidMPc9HWpq0QETToaxES0piYH/dXGgw2tX9OsHF10EEWcwHq5nT5ECeli8WP7cvt1fKjpuHAwZcuLPiYszpKS6Lv+uIP2Fp5hmoWhHpKdDt0SRBXkG1K//sjiwQSk6BVlZolooLYUIVznO+iYKSJYXzWYyB9rp0SOwMSoUnQW7HUZMNm42djCA2JJsqBSnupwc6NLF2CjOy/NXILV3VEKoULQwr78Opfl14HLixEwP9hBKDem3TCYyRk0wP9tomn+VcOtW2LcP/vUv47moKLjuulN/1sSJx8u1zjuvZeJUtA3S0iCjlwUNMZYB+O6H4MAGpejwVFZKZfDIETHECi3Lo4xoNNx3mOERTJ+hbtEUitZkwiURECZ9KS5MODF7q4Q5ORAcbIi8HA4xl+koqKuNQtHCvPpCvdd+SkNnFGth8BAGXZYR4Mg6D2PGyJw5D088cfpSUV+io2HYMOM4Pd1fMqJo/8THQ2yfBOzU4HLfjm/OT+hYW7+KNoevu2h4OGgF+TiwYfIkhO7+QYVC0Xqcfz4QF+s9LiIe9uWC7mLvXlkWOqqxjEoIFYoW5MsvYf/uBgB0IJkjxAbXYZk2kf79AxtbZyIoCMaPN45ra43H5557cqnosUyaBMnJIlu96KKWi1HRNtA0SBuRQBwyh8SFmYKmeEq3HQ5wZIqOTFaWGBgePQoRIY00FJdTRKL39UGjQ0hJCWCACkUnJC4OBoyN9EqDcsnAWeuAI4VUV0tFv6P2EaqEUKFoQZ797xKZdwCAJtXBSRPpPSSUYKVCa1WmTDG0/h4iI09PKupLWBjceSfcfz8kJbVcfIq2Q1qGmZTIagCcngH1C/YEOCpFR6WhQQwqCgvlOKK2gGLiseGQJ4KDmX5F2Ik/QKFQnDXGT7FClJjLuDBRTRjk7gVENtpRnUZVQqhQtBBb1tWzaYvxKxVDCV2TnSIXHRTAwDopcXHHzzK8+WZ/KalCAdJHmN61CZAbABcmVi3pYFOHFW2GPXvEpCo/X65H5iP51BLilYuaIiOYMiXAQSoUnZQJE/DKRjXAQTAcPASNjezZI20GnukUhYU+NYB2TqskhJqmBWuatk7TtC2apu3QNO1h9/OTNU3bqGnaZk3TvtM0rYf7eZumae9rmrZH07S1mqal+3zWH93PZ2uaphT2ijbD47/Yg+5yuY90BrMFbcYMQkJN9OwZ0NA6LTNninwUxCCmuWH3CkVyMqT2DcVCEy73bfnaXWdgbatQnAFZWdDUJGNxIiJ0HIdLKMOwux89Sic6+iQfoFAozhrp6ZDaLxyscvNQRCK6swkOHmD3blGTduki5+o6HO4g3QWtVSGsBybpuj4IGAxM1zRtNPAycK2u64OBucB/u8+/BSjTdb0H8CzwJICmaf2Aa4D+wHTgJU3TlG2jIuDUHSxmxTajETmKCnoNtkNKCgMGiIucovXp3h0eewwefBBuuinQ0SjaKmYzpI9KIgqxF3dhYldZAq6GpgBHpuhouFyQnS29SC4XRFBJfl0kdtyNzprG9BuVNl2hCBSaBuMnaBAr93SNWCknCvbmkp8vngQdsY+wVRJCXah2H1rdX7r7y7MNGwnkux/PBN5yP/4ImKxpmuZ+fr6u6/W6ru8D9gAjW+FHUChOypKnN9OAFZD/1P2sOZgnTwBQctEAk5QkswOP7SdUKHxJGxpLgtljLGOiSg8nd/HeAEel6Gjk5ckNZUEBhISA7Wg+1YRhRtQltshgJlxgC3CUCkXnZvx4vAmhjXoxfCoqRK+qZu9elRD+JDRNM2uathkoAhbrur4W+AXwpaZpecD1wBPu07sAhwB0XW8CKoBY3+fd5LmfUygCyldfuvyOuw2KhhA7UVGQmhqgoBQKxWmT3l2jW5xUaVyYacTKuk87iBZI0WbIypL+wcJCcS6uPlRGHXbv6+OH12C3n+QDFArFWWfgQIhODobQUEy4qCBSXsjNJSfn+ISwI0wparWEUNd1p1sa2hUYqWnaAOA+4EJd17sC/wf8oyW+l6Zpt2matkHTtA3FxcUt8ZEKxYlxOlmzz5D42Kklpr/sUwwapCpTCkV7oGtX6JEpq7qnj/DbVeqXV9GyZGVBcbH0EEaENXG42IqdGu/r0+ckBDA6hUIB0id43nl4q4T1BFFNKOTmsidHx26HmBg5t6YGyssDF2tL0eouo7qulwPLgRnAIHelEOB9YKz78WGgG4CmaRZETlri+7ybru7njv0er+m6PlzX9eHx8fFn5edQKDwULtrCYZckhDoQaypH6yIDpAYODGBgCoXitLFaoddw6eXSkaRwy4GYQIel6ECUlkoymJ8v/9/slUVU6BFYcAIQYatnzNVpAY5SoVCA2200JgY0DRv1FJII1VXsWVV43ID6jiAbbS2X0XhN06Lcj0OAqcAuIFLTtF7u0zzPAXwG3OB+fCWwTNd13f38NW4X0u5AT2Bda/wMCsWJWPSvAzQhrjEuTKQmOMBkIjkZEtRmr0LRbkg7L5U4SgD5XT5YG0t1Yc0p3qVQnB5ZWWIkc+SIyEXL95fh8rkNm3JOEdYgVZVWKNoCo0ZBcKgFoqII9iSEQN2ufRw+7J8Q5uUFKMgWpLUqhMnAck3TtgLrkR7Cz4FbgY81TduC9BDe7z7/dSBW0zgyv20AACAASURBVLQ9wG+APwDour4D+ADYCXwN3KXrurOVfgaFolkWrjQaPlyY6XWOGAIoMxmFon2Rfk44ScFlgCSE9djY9klOgKNSdBSysqCkROaWRURAfr7mLxedpUadKBRtBZsNRo8GYmOx0EgVEdRjgwMHyNleryqEPwZd17fquj5E1/WBuq4P0HX9Effzn+i6fo6u64N0XZ+g63qu+3mHrutX6breQ9f1kZ7n3a89put6pq7rvXVd/6o14lcoToSrrIIfjoprjA6EUo29TxqapuSiCkV7IzUVuifXA7K548TEt/+pCHBUio5AXR0cOCByUZMJwrQayupDsCKjTRIoZvAtwwIcpUKh8GX8eCAiEs1idbuNJkBjIzkfbSEx0RgpVlAgfcHtmVbvIVQoOhI731rvHSjsxEyyrRwiI8nIgPDwAAenUCjOiJAQGDIYzLjcc5E01mwJDnRYig5ATo64ixYUQFgYlO4txYQhcJrePRtTTFQAI1QoFMdy3nlgMmsQG4MNh1c2umfpAcxmY0C953e7PaMSQoXiJ7D0wxIa3fMHnZjJ6NYAKLmoQtFeyRiTSCRiGefCzM7CuA5hKa4ILFlZUFYGDgdERkL+IRehvnLRS4ICGJ1CoWiOqCgYPBiIjcVGPUeJpQkzBfvrqc4p6FCyUZUQKhQ/Fl1n6SZxIfTcL2YODkfTZBC6QqFof6RP7E4CMq7IiYnyplDyNh8NcFSK9ozTCbt3i1wUINTuorTKipVGADLIpefsEQGMUKFQnIjx44EQO7ZgMy5MHCUe0Nnz4kK6djXOUwmhQtFJqd68h+11GQDomIiigqDMVJKSIFipzBSKdklaLxvdIisBMZZpwMraD/YHNihFu+bAAakMFhSA3Q5l+ysJ0uvw+IlOD/0ObdjQgMaoUCiaZ/x4+dMUF0MQDYZs9OMtdOtqyEdUQqhQdFLWvbGdOsRh1ImJLhFVYLXSvXuAA1MoFD+aiAgY3KMakB5CHY1vlzUGOCpFeyYrCyorZYB1RAQc3t+AnVrv6xdMcYLZHMAIFQrFiejaFTIygNgYgt3GMjoaOXnBROT8QITbHLiiAqqqAhrqT0IlhArFj2Tlwloa3P2DLkz0yJCdovT0AAalUCh+MoPH2AmhDpDf7U27wwIckaK9ouuwa5chF7XboazCjA1xsx3IVrpcNjKAESoUilMxYQJgsWILtdCIlVJi2Esmzv97u8P0EaqEUKH4EeiOepbvTQU0dMCMk25D49A0lRAqFO2dtPHpxHoH1JvZVxGDo045yyjOnKIiKC+XhDAoCMqLGwlpqjTkonwN06YFNEaFQnFyJkyQP21xYh9fSAL12Mibu5JuSYaCRCWECkUn49CnP3DIlQKIrCzaVIk1OZ7ERLGuVygU7Ze089NIMomxjAsTdXoQO75uxyu9ImBkZUF1tUjJIiIgP9fhHUZvwsWU/kcgOTnAUSoUipPRpw/Ex4MlJgKz5vL2EeaUx9Ft91LveSohVCg6GWvm7cOBZH5OzHSNrQNNU9VBhaIDEBtvok9iGQAuNFyYWPlxcYCjUrRHsrMNuWhwMFSU6wTjAGAUa4m5aEwAo1MoFKeDyQTnnw+ayYTNbqYOO5WEs4ceJH/+T28LcH6+uAq3R1RCqFD8CL5drdGAzI3SMdGjj/QSqoRQoWj/aBqcN6wWEy5ANn2+X6ud4l0KhT/V1ZCXJ+6iZjNUVOiENFV45aIz+AqmTw9ojAqF4vTwyEaDo8VMsJBEcuiJ9avPSAoVN5nGRigsDFCAPxGVECoUZ0hjXiGrjvZ2OxBCEA0kDkoCVEKoUHQUep6bSCTG+IkdhyMDHJGivZGdDbW1MpA+PBwKDjQQ6pT/U0E0MMG+Hs49N8BRKhSK02HYMDGFskXawGSmkESKSKCyKYRue5Z7z8vLC2CQPwGVECoUZ8jWNzZQQRTg7h8MqiUoyk5CAoSGBjg4hULRIqRf0Jt4igBJCI/WhVGU1xDgqBTtiexsqQ4CWCxQXe4kxC0XHc8K7JPHiNOMQqFo8wQFyf5NUJCGFhxEJZE4CGYPPei28j3vee21j1AlhArFGbLmP8U4kMnzLsx0S5abRFUdVCg6DomDkugefASQhLARC2vePxDgqBTtibw8o3+wqgpCnFVuXYnbXfSCCwIYnUKhOFMmTJB+wqAwGyCy0d30olvWIrEURiWECkXnwOVi1dZw6pGLgYZOWl8pC6qB9ApFx8FkgnE9Crz9Xi5MrPiyOqAxKdoPtbVw9CiUlIDVCoUFLkLrSwGIoJKxrFb9gwpFO2PsWOkHttnNYLFSSCJ76EEU5YTu2gDI73xtbYAD/RFYTvaipmnvAKccvqTr+pwWi0ihaMOUrtzO1oZe3v5Bm1ZPXN94QFUIFYqOxvAxNoK211OPDRdmNu4IDnRIinZCUREcOSKD6V0uqKtqJB65S5zMUqyZaZCZGeAoFQrFmRAeLr2Ey5YBNhslTbFk0xsnZrpt/YKs86aDyUReHvTqFehoz4xTVQj3AHvdXxXApYAZyHO/dyZQfjYDVCjaEuve2uUdN6GjEWVvJCTUTFwchIUFODiFQtGidJ9oDKh3YmJvSSSNjSd/j0IBkhB65KLV1RDiqsWk5KIKRbtnwgQZIUOQFR2NfJI5SCpdK7ZDbi7QPmWjJ00IdV1/2PMF9AIu0nX9Wl3XH9R1/TrgIqB3awSqULQFvl/u8OsfTO0mC7yqDioUHY8u088hBbmrd2GipslK1vqqAEelaA/k50Oxe3RlRQXYG0QumkARQ9ik5KIKRTtl/HgxiTJbTBBko5AkMZbhEGzdCnTAhPAYRgNrjnluLaCmqio6BXpVNd8fSMbh7h+0Uk9KX3EbVf2DCkXHwxIdzvCYfd5jJxZWzD0cwIgU7YWsLLdUtA6a6p2ENMq4iQtYiMlqgYkTAxyhQqH4MSQmQp8+7iqhzUYx8eyiD104jJadBQ4HeXkiF29PnElCuAn4m6ZpIQDuPx8DNp+NwBSKtsaeuesoIAndLfwJNjuJ6x4OqAqhQtFRmTS4zDug3oWJ1d85AxyRoq2j67BnjzyuqgKLqx4z8v9mOl/DuHGqx0ChaMeMHw82G2C10GQKYjXnYqOBBGc+7NxJfb2hEGgvnElCeCNwLlChaVoh0lM4DlCGMopOwfcf5vn1D0ZEQEgIxMRARESAg1MoFGeFPuMTCUdkoi7M7NhnD3BEirZOdTUUFkpiWFsLNmctGpDOfnqxW/UPKhTtHG9CiAY2G7vpSRlR7Vo2etoJoa7r+3VdHwv0AC4Beui6PlbX9f1nKziFoi2xZoPZ2z+oA93SzWiaqg4qFB2Z1Av6kuAzoL6gKoyysgAHpWjTFBZCeTnU1ICu69jqRS46na9ljInqH1Qo2jU9e8q9n6YBQTaKSCSbXpIQ5h2C0tKOmxB60HX9ILAOyNM0zaRpmpplqOjwOLL2s6miu7d/0I6DhF7RgOofVCg6Mrah/elnygZkI6hRN7PmP+1MC6RoVQ4fhspKkYuaXE6CdAfglosmJcHAgQGOUKFQ/BQ0TdqAg4IAsxmHJYyVnC8JIcDWreTlBTTEM+a0kzlN01I0TftE07QSoAlo9PlSKDo0G1/fRA2huDCjA0E2jdgkK6ASQoWiQ2O1Mik91zug3omZbz4pDWhIirZNVhY0NYlcVHM2YKOeAWynK4dh2jR3WUGhULRnxo93G8sA2GysYDxxHCWGUnrv+pSBA1ztyljmpIPpj+FVoBaYDKwAzgf+AnzZ8mEpFG2LNV+X+8hFNcIiLYSFQVQUREYGODiFQnFWGTNWw5rbQANBuDCxcbO6oVecmOxsqK+XHkJrkxjKTGORvKjkogpFh2DIEPGQqKgAgoLYWTOAJizcx/8g42svBW1CYIM8A85E7jkWuFnX9c2Aruv6FuAW4LdnJTKFoq3Q2Mj3WVHehNBCEykZQWiaqg4qFJ2B7pMyiEGqgi5M7M6PwOUKcFCKNomuw7594HDIgc1VgwYMZrNUBqdODXSICoWiBTCbYdIk94FmojIoljWMNk54662AxPVjOZOE0IlIRQHKNU2LB2qALi0elULRhij88gdym7p5HUZDTQ7i0sVWVBnKKBQdn7Dxw8hA5hHqaFQ1WMnJUuMnFMdTXg4lJVIhNOlNBFOPhSZ6sAeGD4e4uECHqFAoWojp02VIPQA2G59xsfHiRx+Js1Q74UwSwrXAhe7HC4H3gQXAhpYOSqFoS6x5by9NWHBiBsBqDyIuXiRjqkKoUHQCundndLAxcteJmeXzjwQwIEVbJT9fJGQOB2jOJoKopxe7CaJRjZtQKDoYo0dDaKj7wGpllXWi8WJ1NSxYEJC4fgxnkhBej/QOAtwLLAe2A7NbOiiFoi3x/+zdd3Rc13nu/++eMw0DYNDZAHawiKJEioJIVavLkmwV21KsuMf2spO4XFtOu7lxHKfd6zT/YieOb/yLEjtOcZMsWbZkFauQkigWQSQBNoAESJAEARKVKDOYmbPvH2c4pLooETiYmeez1izOOVPwgLYIvHP2++7n1qdzy0VdDLGqMPG4t/dgZaXP4URk8hnD9ef3nLZBvcNzj4/5HEqmo5YWSKUgnbYEMikiTLCCnd6DKghFCkosBqtWnTwy7AstZ4DTBksUYkForR201vZn749ba//MWvv71truyYsn4i+39zibjs7NFYQljDFjQWmuf1DD4kSKw6qrqinFW/6TIcCOPRGfE8l0tHu3t1wU1+KQwiHtFYQVFd7lBBEpKKd/zpMOlfCLwK1w++1w333wgx/4F+wMncm2EyFjzFeNMR3GmIQxZn/2ODyZAUX8tPO7mxkmfqp/MJyhZo73i6CWi4oUj8orVzGHI4DXR9g1WMbIiM+hZNppa8sOlHEzlJDAgFcQXnvtac1GIlIo3vteCJysppwgP3/Pd7xi8PbbsxsV5oczWTL6V8B1wKeBVcBvAtcAX5uEXCLTwsafHiWNQzq7Q0uoLEpNjfeYBsqIFA+z9iIuoDl3PJEJsPGphI+JZLrJZODQIe8KobEuERJESbCQDrj8cr/jicgkmDED5s49dbx5W8T7UCjPnElBeCdwq7X2EWvtHmvtI8B7gF+bnGgiPrOW516M5paLBsgQqoxRWQnl5d7+MyJSJGprua5uW26DepcAT/7omK+RZHrp7YWBgexAGdebMLqMPTi4sG6d3/FEZJJccsmp+6OjsGmTf1neqjMpCF+rW0pdVFKQRjbvYsfY4lxBWMYoNXNLCQS8q4PqHxQpLldekiJICvAGy2x9XltPyCk7dsDEBGQyloB1iTDBubR6G5ZdcIHf8URkktx006n7ExPw2GP+ZXmrzqQg/BHwM2PMO40x5xhjbgR+mj0vUnA2/2sLLoFcQRgrDVBT5/0no/5BkeJTf9VSaugDvInDuw6WYK3PoWTaaGk5OVDGxck2G6xgJ5x/PpSU+B1PRCbJlVee2n7CWq8gdF1/M52pMykIfw94DPhHYCvwTbytJ353EnKJ+O65x0bIECCF1xTsVMRyewqrf1Ck+Jh1a1nGntzx0HiEAwd8DCTTyt69JwfKuERPHyij5aIiBa28HBobTx339norBvLJ6xaExphrTt6Ay4EngU8Bt+ANl3kie16koNjRMTbun5G7OhhhHFNWTlWV9ynQycJQRIrIBRdwBc/kDtM2wK/uP+FjIJlOOjpOXSGMMk4ZIzRwCNau9TuaiEyySy89dT+ZhCef9C3KW/JGM5D/5TXOn1wkY7L3F521RCLTQNdPNnHEnZUrCOPBBFWzIjiO+gdFilZJCTcvbecv97q4BHAJ8MzPB/j4/yj3O5n4LJGAnh5IJCzGzRAlyQp2EsDqCqFIEbjqKrjnHq8YPFkQfv7z+fP74usWhNZadUpJUdr4gwPAubmCMBoPU1Pr/Vet/kGR4nX+lVXE9o4xQhkuAba1nEnnhRSqHTu8otDNWAK4REhyDru8tWTLlvkdT0Qm2dKl3hYUXV3eFjT790NnZ/78zqifZCKvYuNGi0uACcIYLE5FufYfFBGcS9Yyn1ONg53Hy7xlglLUtm071T/o7Vyb9iaMNjV5U0ZFpKA1NHi3kzIZaG/3L8+ZUkEo8jKp/V1s6V9EgghgiDNEqiROdTXEYt4nQCJSpNaupYktucOJlOH5jRo1Wux27z69f3BCA2VEikwgABdf7BWFa9bA5z4H11/vd6o3b0oKQmNM1BizyRizzRjTaoz5ava8Mcb8hTFmrzFmlzHm86ed/4Yxpt0Ys90Ys+a09/qoMaYte/voVOSX4rLj37YyRiy3XLS8xKWi2iEUUv+gSNFbvpwbw0++ZIP6J+4b8DORTAP79p0qCCOMU8UAM+nRQBmRIrJ8ubfLzKxZcPCg32nOzBsNlTlbksA11toRY0wI2GCMeQg4B5gLLLfWusaYk9debgKWZG/rgH8C1hljqoGvAE14w2y2GmMesNbqp7GcNc892Ac0nJowWhXTclER8TgO11x0guAzaVIEcQmw6alxv1OJjzIZOHQIkgkL1iXGOCvY6X1ooCuEIkVjyZJT97u6vGXk0ah/ec7ElFwhtJ6R7GEoe7PAbwF/aq11s8/rzT7nNuB72ddtBCqNMbOBdwKPWmv7s0Xgo8CNU/E9SJHIZHiutRwXwwQRQqSw8QrtPygiOfHLz6eOHsD7QbZzf578xJdJsX8/DA97A2UMligJr3+wvh7mzPE7nohMkcZGqKz0Wofvuiu/NqefqiuEGGMcvA3tG4F/tNY+b4xZDLzfGPMe4BjweWttG1APdJ328kPZc691XuSsGHj8BXZPLCJJBIuh2gySCM6kutr7lGfmTL8Tiojv1q7lXHZyJPvjp380zJEj+t2/WG3bdmq5qEOGIGlvwqiWi4oUldJS+MY38rO1aMqGylhrM9ba1UADsNYYsxKIAAlrbRPwHeCes/G1jDGfMsZsMcZsOXbs2Nl4SykSz39vD0BuuWhppUN5uSES8a4OBjSGSUTWruUqnswdZjLw+C/T/uURX7W0nJowGskOlDmXVi0XFSlC+VgMgg9TRq21g8ATeEs9DwH3Zh+6Dzg/e/8wXm/hSQ3Zc691/uVf45+ttU3W2qa6urqz+w1IQXvuqQngVEEYqSnXclERean6et5dt4kA3nogF4f1Pxv0OZT4Ze/elw6UmUkP1QzoCqGI5I2pmjJaZ4ypzN4vAa4HdgM/Ba7OPu1KYG/2/gPAR7LTRi8Ghqy13cAvgRuMMVXGmCrghuw5kbfNDgyy8VADFkgSpYwRJkqrcgNl8mVzURGZZMaw5NIZlDIKZCecbc2jZhE5azIZb5pgMmEBlxIS3nYTxniNRCIieWCqeghnA9/N9hEGgB9aax80xmwA/sMY80VgBPhk9vm/AG4G2oEx4DcArLX9xpg/AzZnn/en1tr+KfoepMC1/8fz9FGT6x+siYyScCPU1EAk4o0RFhEBMOvWsuj+/WxjFQCdPSWkUhAK+RxMptSRI9DXBzY7PaKEMa8gXLECyst9Tici8uZMSUFord0OXPAq5weBd73KeQt85jXe6x7OUq+hyOk2/uQwUJNbLhqriZKOQUkJzJ+v/kEROc3atazj+VxBODERYMMGuPrqN3idFJSdO2F0FHBdAriESXn9g1ouKiJ5RL/iigBYy3NbvI/2E5QQIEOwRttNiMhraGridu7DYAHIWPj5fUmfQ8lU27HjVP9gODtQZjm7NVBGRPKKCkIRILF9Ly+OLM72D0aoNoOMRyrVPygir66igsuWDVCCtym9xfD0IwmfQ8lU270bkkkLrkuUBHPpIs4JXSEUkbyiglAEeOHftjFBmAnCuASoLk8znnSoqYFwGGbP9juhiEw34YvXsJj23HH7gZB3tUiKQiYD+/bBRNJCdkP6Fez0+gxWrvQ7nojIm6aCUATY+PAQcGq7idiMUqJRiMVg3jxwHD/Tici0dPXVXMvjucOJJPxSc6+LRnd3dqBM5mUDZdas0XQhEckrKghFkkk2tlUDXv9ghCTU1FBT400OV/+giLyqa6/lPfwUhwygPsJis38/DA0Bros5/QqhlouKSJ5RQShFb/TZbezPzMcCCSLUBocYpTQ3UEb9gyLyqhoaWL0smduPEOCZX6kgLBY7d8L4OOC6hEgRxGUZezRQRkTyjgpCKXrtj3UCkCKEi0N5HMbGDDU13qqf+np/84nI9BW+/kpW0Jo77joaZGDAx0AyZXbuzG5Ib10iJFlAJzHGdYVQRPKOCkIpem3P9wOn+geD8RjhMJSVwdy56h8Ukddx3XXcxEO5w1TK8POf+5hHpoTrwp49MDHhbTsSJeHtP1hbqz4DEck7Kgil6O3d7fX/nCwITXlprn9Qy0VF5HVddRXv5DHCpACw1vLzH4/5HEomW3c39PbiVYZACeNe/+C6dd4PDxGRPKKCUIpbKkV7d1m2fzBKlASJUDy3/6A+6BWR11VRwbnryihnOHdq87NprPUxk0y6jg4NlBGRwqGCUIqau3M3be4i0gTJEKQ8MMZYKkxNDQSD0NDgd0IRme6C11/NBTTnjnsGQhw65GMgmXT79sHICOC6BEkTJcES2jRQRkTykgpCKWpHntjDOCW55aLhUgfHgYoKrxgMBn0OKCLT33XX8W5+hsG7LJhJW+7/qS4RFrJduyAx7g2UCZNiKW3esuGLLvI7mojIGVNBKEVt74Ye4LSBMrGo+gdF5MxcfDGXRV8kQgIAC/ziRyf8zSSTxnWhpQVSE17/YIQE57ALGhuhutrndCIiZ04FoRS19u3jACSzBaEtKVH/oIicmUiEc66aSRWDuVM7dhgyGR8zyaTp7oaeHl4yUOZcWrVcVETylgpCKV7WsvdABBdDiiCGDJlIjMpKb6uJuXP9Digi+cK5/houZmPueOBEkN27fQwkk6azEwYHyQ2UiWigjIjkORWEUrw6OmibmEeKMGAoYQIbChOPe/2DoZDfAUUkb1x3HTfwCA7eZcFMxnLvj3SJsBB1dMDwMOC6OGQoY5RF7NcVQhHJWyoIpWiNPredw9QzQRiAcNQQjRqiUS0XFZEztHIla6v3U8J47tSj9434GEgmS1sbjI24gCVImhXsxAk5sGqV39FERN4SFYRStPY92QWQKwidaIh43HtMA2VE5IwEAiy/YR61HM+d2rsvwJj2qC8orgs7dkA67U2RjZBkJa1eMRiN+pxOROStUUEoRWvvVm8K4ARhLGAjESoqIBBQ/6CInLnA9dfyDp7KHQ+PB9m61cdActYdPQpHjpAbKBNl3JswquWiIpLHVBBK0Wpr98bDTxDGJUCoNEI8DvX1EA77nU5E8s511/EONhBmAgDrWn78n0mfQ8nZ1NEBAwOcNlAm6U0Y1UAZEcljKgilOPX00HZiFhmCuAQIksYp8a4Qqn9QRN6SefNomn+cGKO5U+sfTfgYSM62zk4YHrK5gTIVDDOXLl0hFJG8poJQipK7tZl2GnP9g6EgBBxDWZkKQhF565bc1MhMenLHXUcCHDvmYyA5q/bvh5ETJwfKZDiPHQQq4rBkid/RRETeMhWEUpS617czRoxktn/QCQcpL4dgEObP9zudiOSrwPXXchVPEsAbOjKaCPLMMz6HkrPC2uxAmZT3v22QFKvYDhdd5DWfi4jkKf0LJkVp78Z+4LT+wRKHigqYPRsiEZ/DiUj+uvpq1pmtRPCWilpr+cn3NWq0EHR3w+HDnDZQJts/qOWiIpLnVBBKUWrbmQJOFYThWJCKCm03ISJvU1UVTeclKePUHoSbn02drCEkj3V2Qn8/pw2USXgTRjVQRkTynApCKT4nTtDWG8fFkCaExRAujxKPq39QRN6+xe9azmyO5I57+xz27/cxkJwVHR0wNOiC9QbKVNPPbLpVEIpI3lNBKMVn2zbaWJLbfzAYsBAIUFmp/kERefu8/QjXEyQDQGLC4bHHrM+p5O3q6ICRYe9Sr0OGc2nFzJsHs2b5nExE5O1RQShFZ+z5HRyiIVsQBgiHLCUlXjEYjfqdTkTy3iWXcFFoOyV4vYMWy4M/GH2DF8l09sqBMhnW8IKuDopIQVBBKEWnfX034PUPZggQjgaIx9U/KCJnSTRK0zrnJX2EO3dkSGhLwrx19Kg3VMZmvCuEISa8CaMaKCMiBUAFoRSdtm3ep/YnB8pEsgNl1D8oImfLwltWMo8DueP+IYft230MJG9LRwf09QGuzQ2UWcFOXSEUkYKgglCKy8QEbQcjWCBJGBeHcHmYigr1D4rI2WOuv45LeJ4ISQCS6QC//EXG51TyVnV2wkB/BvAGytRxnNrAAKxZ43c0EZG3TQWhFJfWVva6i0kTxMXBwcUJB2lshJISv8OJSMFYtYoLy/YS49QehI/dP/I6L5DprL0dRoZODZQ5h12wciWUlfmcTETk7VNBKEXF3dpMO43Z/kGHSMjFceD88/1OJiIFJRCg6cpSyjmRO7V/f3bZoeSVkwNlMmmvIAySYRXbtFxURAqGCkIpKt3P7GeM2KkN6SMQj8OiRX4nE5FCM/+21czlIAG8QuLEaIDnnvM5lJyxnh7vZjPehFGHNOt4XgNlRKRgqCCUotK2ZQiAJBFcHCIljgbKiMikMNdfxzo2U4I3XjSZcXjk5xM+p5Iz1dEBA/0Wmx0oE2aC89mhK4QiUjBUEErxcF3a2ry7CaJYIFweZv58iMV8TSYihWjBAi6ceZjYadtPbHh0HNf1MZOcsc5O6D+eBiwOGWbSQzyWgRUr/I4mInJWqCCU4tHeTltyLi4BJghjgHBJkJUr/Q4mIoWq6doK4gznjo8e9XoJJX+0tcHI8MnlohmW0gZNTRAM+pxMROTsUEEoxaO5mTaWnOofdDJgDE1NfgcTkUI19/YLmcshgqQBGBsP8OST/maSN89a2L4d3NMGypzHdi0XFZGCooJQisbYphYO0ZDdfzBAJOwtFT3nHL+TiUihMtdczUVszW0/kXQd1IPfdQAAIABJREFUnnho3OdU8madHCjjZgfKBMhwEZs1UEZECooKQika+zYew2Ky/YOGcEmA+nooLfU7mYgUrJoaLlw8SNlp20+8sHGCZNLHTPKmdXbCwMCpgTLBkxNGdYVQRAqICkIpDtbS1uL9BjaOtwN9pDTIsmV+hhKRYtD0zhrKOYHJHg8MWF54wddI8iZ1dMBAbwqL1z84ix7KZ5bB3Ll+RxMROWumpCA0xkSNMZuMMduMMa3GmK++7PFvGGNGTjuOGGN+YIxpN8Y8b4xZcNpj/zN7fo8x5p1TkV8KQHc3bcMzsHhbTgCEy8KsWuVvLBEpfHNuX0sDRwhnt58YTwR44lfW51TyZuzZA6MnTg2UWUy7t1zUmDd4pYhI/piqK4RJ4Bpr7SpgNXCjMeZiAGNME1D1sud/Ahiw1jYCXwe+ln3uCuAu4FzgRuBbxhhnar4FyWvNzexlKROEyOAQDFgcx2jVj4hMOnP5ZTQ5L1LKKAATNsiGR8Z8TiVvJDdQJnNqoMy5tGq5qIgUnCkpCK3n5BXAUPZms8XcXwO/97KX3AZ8N3v/x8C1xhiTPf/f1tqktbYDaAf0L7O8IfuCN2F0nBIshkjIUlYGCxf6nUxECl5JCReuTFJ+Wh/h3p1p+vt9zCRvKDdQJjthNECGNbyggTIiUnCmrIfQGOMYY14EeoFHrbXPA58FHrDWdr/s6fVAF4C1Ng0MATWnn886lD338q/1KWPMFmPMlmPHjp39b0byTvdznYwRYxxvB/pw1LBggVb9iMjUaHrXTEoZJ0AGgJETrrafmOY6O2GwP4O1vHSgjPYqEpECM2UFobU2Y61dDTQAa40x7wDuBL45CV/rn621Tdbaprq6urP99pKH2pq9C9TjRAGIxBxtNyEiU2b2ey+hnsOUnOwjTDqsf8r1OZW8no4OGDyewsXgkKGW48xYWg2VlX5HExE5q6Z8yqi1dhB4ArgaaATajTGdQMwY05592mFgLoAxJghUAH2nn89qyJ4TeW2Dg+w9Wo4FJk4bKLNmjb+xRKSIrF5NU0krZXgfTk0QZNOTo1jNlpm2du2CsZFTA2UW0oG5WMtFRaTwTNWU0TpjTGX2fglwPbDVWjvLWrvAWrsAGMsOkQF4APho9v4dwK+stTZ7/q7sFNKFwBJg01R8D5LHXnyRNpbkBsoYYygrD7B8ud/BRKRoOA5NayzlDOe2nzhyMMPevb6mkteQGyiTPjVQ5hx2aaCMiBSkqbpCOBt4whizHdiM10P44Os8/1+AmuwVw7uBPwCw1rYCPwR2Ag8Dn7HWZiY1ueS/5mbaaWQUbwf6cNClvBwaGnzOJSJFpem2esKkCJICYGzU5fHHfQ4lr6q31xsoY08bKLOKbRooIyIFaaqmjG631l5grT3fWrvSWvunr/KcstPuJ6y1d1prG621a621+0977C+stYuttcustQ9NRX7Jb+ObW+hibm6gTCQC8+ZBNOpzMBEpKjPeeznz6CKGt+XEeMph44a0z6nk1ZzqH/QGyoSZYE1wB5x/vt/RRETOuinvIRSZavs29+NiSGQHyoRLHM491+dQIlJ8Fi2iqXJfro8wRYjtz4+RTPqcS16howOG+tJYAtmBMn3MWT0TwmG/o4mInHUqCKWwjY+zd79DBocUIQBKK4MsW+ZzLhEpPsZw4bogZYxg8IaVDB5Ps3Gjz7nkFVpaIDHm5iaMzqabskvO8zuWiMikUEEoha2lhXZ3EUkiuDiAoaYuyLx5fgcTkWLU9L75BMkQwbssOD5mtR/hNJPJwLZtYNPeiAKHDEvZg1mngTIiUphUEEpha25mL0sZI4YFgo63hZQKQhHxQ+17rmA+ByhlFIDxdJDNz2jN6HRy8CD09lrcjHcVN0ia89ihCaMiUrBUEEpBsy80s5clpwbKhC11dVBT43MwESlOtbU0zT5COScAr49w/84Ex475nEtydu2CoWMTuBgCuERIsrLsIDQ2vvGLRUTykApCKWjdm7oYJp7rHyyJGRobwZg3eKGIyCS58LIoJYzj4C1JHBtK8atf+RxKcnbuhKH+DJYAQdLUcpzZa2brB4eIFCwVhFK4MhnaW5NMECGDA0BFraPloiLiq6b3LyaApYRxAMbGYP16n0MJAK4LmzZBKukNlAmSpo5jzLhsid/RREQmjQpCKVx797J3Yj5JwtmC0FA7M6SCUER8VX3zxSwKdOa2nxh3w2x7fhxrfQ4mHDjg9RDaVBqbLQiX0EbJZWv8jiYiMmlUEErham6mjSUkKMHFYAKGuhlGBaGI+CsWo2lBH6XZ7SfSBDnWlaC11e9gsmsX9Pa4uK7N9Q9eQLMGyohIQVNBKIWruZlWVjCBt5FwNOQSjUJDg8+5RKToXXhVOREmCJEGYPxEmscf9zmUsGXLS/sHGzhE/UwX6ur8jiYiMmlUEErBGt/SSgcLyWT/b15ebpkzB8Jhn4OJSNG78APLMEDs5PYT47DxOdffUEXOdWHDBmBiItc/OJ+DzFijTxFFpLCpIJTCZC37XhgiQTQ3UKaqNqDloiIyLVRetZrG0AHKsttPjNsIu5oTHD/uc7Ai1tUFXV02WxAGCJGmgS5m3qLloiJS2FQQSmHq6qJteMZLJozWzI6qIBSR6cFxaFo2QhmjOGRIEyTRP8ZPfuJ3sOK1bRsc78lgXe9K7Sy6qQiMMuuuq/wNJiIyyVQQSmFqbmYHK0nj4OJgjKG6RgNlRGT6uPDaShxcSk8uGz2R4dFHfQ5VxB55BNzEBBmc3HLRhefGcKrifkcTEZlUKgilMDU38yKryeBggUh2oIwKQhGZLi786EoMlgoGMVjGkgHa9rh0dPidrPhY6+0/yEQKNztQZh4Habyx0e9oIiKTTgWhFCT7QjN7WZpbLhovcykrg8pKn4OJiGTFVy9iSewIpYzhkCZBFHf4BPfe63ey4tPZCYcOZrCZNBkcKhmkgkEWf/hSv6OJiEw6FYRSkI5uPcwQFa8YKGOMz8FERE4yhqZVEzi4lDFKGofEsRF+9SvIZPwOV1weeQSSIyksBgMsYj9VDeXUrJztdzQRkUmnglAKT18f247UkCZIBgeDpWpWiZaLisi0c83nVgJQzjABLMPjQQ7tS7B9u8/Bisxjj5GdLuoQJMU8DrL4ijn6EFFEioIKQik8zc08zzoAMjgEDMQrteWEiEw/q+46h3lVI5QyRpAUI5SRPjbA/ff7nax4WAsvvpCBVIoMAaIkmEUPjXes9juaiMiUUEEohae5me2cj0sAi8EJQlmZBsqIyPRjDNxyRzg7bXQEF8PoQIpn16cZG/M7XXFobob+3jQWcHGYx0GcyjiL3rnE72giIlNCBaEUnuZm2llyaqBMaYZQCOrrfc4lIvIq3vXlCwkEA5QzgkOGYVtGz55Bb+qlTLr77iM3XdRgaaSdOWtmESvVelERKQ4qCKXgHN+8n2PU5X64V1Y5zJ4NwaDfyUREXmnG3AgXr0oQY4wgacaJkjw2zM8esH5HKwpPPelCaiK73USKuRyi8ealfscSEZkyKgilsIyOsqF9FpZs/yAu8RkRLRcVkWnttrsX55aNGmB4IsK2pwfp7fU7WWEbG4O9rSmwlgwOMzhGJBqg8bZz/Y4mIjJlVBBKYdmxg81cBHgFoWMs8aqgCkIRmdauuGMm8doIZYzikOYE5fS2D/Pss34nK2wPPgipsZP9gwEWsY/w8oXMXaglJSJSPFQQSmFpbqaFc7EY7wphMEB5uQbKiMj0Fg7Dze+NZKeNpkkTZHQozUM/GcV1/U5XuB78mYXURHZFiWUZe1j4jnk4jt/JRESmjgpCKShjm1vpYl62fxCiEYhEVBCKyPR3691LCETClDLq7UlIOe3P9NDe7neywuS6sGl9ElwXlwBlnKDCGWPxrVouKiLFRQWhFJSO53vppzr7aW+GeAVUZG8iItPZ0mWGZSuDuWWjo5Ry9GCK59an/Y5WkFpaoP9YBvBaDOZyCBYtpPH8mM/JRESmlgpCKRypFM17S0kSzg2UKa/VQBkRyR+3fmYeMTNOiDQWw4lMCU/8+yHGx/1OVngefBAyyRQuBothCXuJr1pIba3fyUREppYKQikcu3ezNX0ekB0og0u8OqSCUETyxo3vjRGpqyDGmLcnIeV0beujpcXvZIXnkZ8lIJPBxSFImkV00HjzMoy2HxSRIqOCUArG+PPb2UcjAC4OJuhooIyI5JWKCrjy3WWUMopDhiQRDg2W8uxPuv2OVlC6u2H/nhQAGQLM4BiB+jk0NlX6nExEZOqpIJSC0bn+IH3UZAfKuARCDmVlKghFJL/c+okZxEoNQdLenoRUsOW+gxw75neywvH005AYyWS3m3CYzwHMsqUsXux3MhGRqaeCUApG5wsD9OUGyriUlXmj3GfP9juZiMibd/HFMGtJnBjjuT0JD7UnefGZUb+jFYxf3J8kk8rgZn8NWsZuZl++mJjmyYhIEVJBKIXBWva2G4aJZ/sHM8Srg9TXo/2kRCSvBALwrt+YQamTIEiGDAEOuPVs/M4O7Ul4FoyOwqanEoC3GX0pI9RUQ+Pls3xOJiLiDxWEUhASuzvZnZiP9RaLYoDy6rCWi4pIXrrldodYXSkBMtk9CSvYu6GX/fus39Hy3saNMDpwsn/QYTbdmGXLaGz0OZiIiE9UEEpB6Hy0jT5qcscm6BCvMCoIRSQvzZsHa66uyC0bHSNGx3AVzd/XuNG366lfZUiM22z/YIBF7Ce0Yglz5/qdTETEHyoIpSB0PtdNPzVYDBbACWrCqIjktVvvKqW03BDEG37SyQKa/3sviYTfyfKX68ITDwyRIYCLQ5gJ5pUcZ+EVDQSDfqcTEfGHCkIpCJ07TtCfHSjjYAlHDZGICkIRyV/XXQc188qzpUuGYeIc3DtOy+M9fkfLWzt2QE/Xqe0m4gwTXzqLxUv065CIFC/9Cyh5L5GAw50p+qnObTkRr3SoqoKyMr/TiYi8NbEYvPPOOCXBFA4ZUoTYw1Kav/Wc39Hy1tNPWRIn0oC33UQDh9Q/KCJFTwWh5L2DLxxndNSSJIzBegNlakK6Oigiee+WWw2lNREcMhjgIPPY+8Qhjh9O+h0tLz11/yAJN4SLweCyIHCI8vMXUlfndzIREf+oIJS8t+/xTvqoBsj2DzrEKwIqCEUk761eDUvXxAkADmlGKKNrvIYX/3GD39HyzqFD0NaSIIODS4AYY9QtKKXxnBDG+J1ORMQ/U1IQGmOixphNxphtxphWY8xXs+f/wxizxxjTYoy5xxgTyp43xphvGGPajTHbjTFrTnuvjxpj2rK3j05Ffpm+rIXW54bpz04YtQQgqIEyIlIYjIHb7whSUhbAwdtIfScraP7P3dqT8Aw9/TSMD3pXVjM4VDBEfEWDlouKSNGbqiuESeAaa+0qYDVwozHmYuA/gOXAeUAJ8Mns828ClmRvnwL+CcAYUw18BVgHrAW+YoypmqLvQaahw4dhqHOAfqpOzhfFBB3KylQQikhhePe7oXxmCQFcAlgO0UDvgVE6fr7T72h5Zf3Ph0lMeD8pLAHm0YVZuoTFi/1OJiLirykpCK1nJHsYyt6stfYX2ccssAloyD7nNuB72Yc2ApXGmNnAO4FHrbX91toB4FHgxqn4HmR6am0Feo7STw1B0higrNwQjcKsWX6nExF5+2bMgKtuiBIIBnFIM04J7Syh+e+f8jta3hgZga3rx0gQxSVAlHFm1FlmL45RWup3OhERf01ZD6ExxjHGvAj04hV1z5/2WAj4MPBw9lQ90HXayw9lz73WeSlC1kLLpjHS/UMMEcfgrZ8qrw7R0AABdciKSIF4z3sgVhEiSAaAVlaw86njJI8O+JwsPzz7LCT7R8gQxCVAKaPULq3RclEREaawILTWZqy1q/GuAq41xqw87eFvAU9ba9efja9ljPmUMWaLMWbLsWPHzsZbyjR05AgMNncwQBUOLhmCEHCIVzpaLioiBeXKK6FufhRjDA4u3cxmOB2l5a9+4Xe0vLD+kXESo14xfbJ/sGLVfBWEIiL4MGXUWjsIPEF2qacx5itAHXD3aU87DMw97bghe+61zr/8a/yztbbJWttUp1nSBau1FWhvZ4BqShgnRRjCIQ2UEZGCEw7D+94XwJREcEiTJsgOzqP5+61ouszry2TgmV8MkSCKBUKkmVU6QnhmtX5WiIgwdVNG64wxldn7JcD1wG5jzCfx+gJ/3Vp7+k+0B4CPZKeNXgwMWWu7gV8CNxhjqrLDZG7InpMiYy207HBhXzt9VBMmSZoghMLE4zB37hu/h4hIPnnf+yBWeWpPwt2cw4FjJfT/5Am/o01r27bB0JFRxrP9gzFGqZ1fxvz5EAz6nU5ExH9TdYVwNvCEMWY7sBmvh/BB4NvATOA5Y8yLxpg/zj7/F8B+oB34DvDbANbafuDPsu+xGfjT7DkpMt3dMNDaDWNjjFLmzRc1hnAsSCSiK4QiUniWLYNzVjqYcBiHNMeoZYg4zX/3K7+jTWtPP54iPTxKhiAZHMoYpfbcmVouKiKSNSWfjVlrtwMXvMr5V/362amjn3mNx+4B7jmrASXvnFwumsHhBOXectFQiHiFobYWYjG/E4qInH0f+hBsfT6KMzFCmiAvsIZ5Gx/gmv0dmEUL/Y43LT19Xx8JGwEggKU0mKRiyQwVhCIiWZrDKHnHWmhpAdrb6WY2ATJMZAvC6mpdHRSRwnXLLVBWGSQQMASwtLGEIeJ0fO2Hfkeblg4ehINtyex2E4Yo49TODFIeN8yY4Xc6EZHpQQWh5J2eHujvGoHuIxyjjhCpbEEYZsYMFYQiUrgqK+Ed7zCYkigOaYaJc4TZNP/nLkgk/I437Tz9pIsdGMztP1jKKDWLK2lsBGP8TiciMj2oIJS8410d3IcFjlMDwIRTQjQWIB5XQSgihe3jHwcTCeNk915t5gJaR+aR/P6PfE42/Tx97zHSGUuaIBZDzCSpXVGn5aIiIqdRQSh5xdpT/YNDVDBGjBQhbDjCyR1GVBCKSCG74gqYMTNAIOoVhR0sJEGE1q8/4ne0aWV4GF7cNJHbbiLCBKGKEiqqgyxe7Hc6EZHpQwWh5JXeXjjek4F9+zj+KstFo1HUFyIiBc1x4N3vBiLestEEUdpppHlnGDZt8jvetPHMM+AODJGgBEuAEsaoqY8yZw6UlfmdTkRk+lBBKHmlpQU4dAgmkgxSgQEmAiUEwg41NdDQoL4QESl8n/oUmKCDEwxggG2sopMFDPzdv/odbdpYf38/NpEgQZQMAUoZo3ZpjZaLioi8jApCySvectE2JgjTzWwsMB6ppKbGEAxquaiIFIfGRliyhOxwmQxHmMMYMTb/5CDs3Ol3PN+l0/Dso6OkCZImSJgJgqURaueEVRCKiLyMCkLJG729cOwY0NZOP1U4ZEgQZcIpyfUPrlrla0QRkSlzxx1AKIRjMqQJ0soKnk1fRO/7fgvGx/2O56vmZhjpHc31D0ZJEqwsp6ZGHxyKiLycCkLJG62twNAgHD/GKGUYYJBKCIWYMQPmzIELLvA7pYjI1PjEJyAUMjixEhwytLKSNA73716KvftLfsfz1fqHTsDISG67iRij1MwvY+FCCIX8TiciMr2oIJS8cXIzeovhIHNJEiERLKesPEAs5g1ZUP+giBSLykq48EIgEiYcgkEq6GUGB5nH5m9vgXvv9TuiL6yFp+/rByBBCQEyRKIBahpKtFxURORVqCCUvHDsmLdklLZ2RokxTgmDVOSuDtbUwCWX+J1SRGRqfeADAAZTVkrAeMNlLIZHuIHhj38BDh70O+KU6+yEQx2pXP9gCQmIx6mtRQWhiMirUEEoeaG1FUiloLOTJBFShBgjBuEwdXVw000QDPqdUkRkat15J5SXAyaAUxajg4X8khsYpJIHhy7HfuCD3oSVIvL0o0kYHmacKC6GSLZ/sKEBZs70O52IyPSjglDyQksLcPAApFMcYQ7DVIBxCEYc5s6Fq67yO6GIyNQLh+Haa737JhTEjZXRxTzu5T08yvXsfKYf/uzP/A05xZ764VGwLgmiAMSCaaobSryprGorEBF5BRWEMu0dPw49PUBbO2DpYAEjlEE4RF2d4cYbIRLxO6WIiD+++EVYtMi7b6MxJoIxxojxMO/kD/jfnPjTr8NTT/kbcoo8+yxsf9ECkCBKjDFMRTm1tUbLRUVEXoMKQpn2WlvxpgS0t+PiMEwFFgPhMHPmwPXX+51QRMQ/K1fC7/wOXHQRRCIGyspImBgAW2jiFu7n4Pt/F/r6fE46uVIp+JuvZWBokDRBUoSIMQbxcmprYfFivxOKiExPKghl2mttxftFZnCAw8zmBOXeA6Eg73sflJX5Gk9ExHe/9mvwrnfB5ZdD3YwAxEoYpwSAPSzjfT3/wM9v/kesa31OOnn+67/g4LNdkE6TIEoVA0QDKZzyMpYty/ZaiojIK6gglGmtvx+6u4H2diIk2cjFWAIQClFVFfA2ZhYRKXLGwKc/DStWeFcKz10Vxg2XkMRbT3+UWfzxppv58k1bGB31Oewk6O2F7/xFj9djACQJM4fDUFVJTa1h6VKfA4qITGMqCGVaa2nJ3mlvI0CaPmq941CISy/1tpsQERFvwMwXvwh1dV5P4RXXhHGdMCnCpAlygnIefjTAB9415K28KCDf+KNextsO544XcIB0NA4zZ1FTo+WiIiKvRwWhTGutrUAyCQe72M4qXBzvgXCYT37S12giItNORYXXTxiLQXVtgEuvCBAkQ4YgI5STsg6HN3bx8Y9l+O53wXX9Tvz2NW8Y5eHv9YL1vplyhqkzfYzOXQ4Bh5kzYcECfzOKiExnKghl2hoYgCNHgI4Oou4Im7jIeyDgMGOWwxVX+BpPRGRaqq+Hz38eHAdqGkppXBaggkECZBikEptMkOno4pvfhM9+NrfKMi+5Gctff7AZkoncuXfxC5Kr1mIjJTgOrFoFoZCPIUVEpjkVhDJtnb5cdJgKhqjyjkMhbrpJ+0mJiLyWc8+F3/gN737D6jpKq6PM4ijlnGCMUug7Dv19bNoEd90FGzb4m/et+smnHmbvwWjueBXbKL/0PE5UzQOguhqWLfMrnYhIflBBKNPWye0mbFs7m2nKnY+WOdx6q3+5RETywZVXwi23eFfHZl84h2Q4Th3HWMh+Mjhw4AAkEwwOwhe+AH/7tzAx4XfqN2/w8a3807+eKgYNlvcv2MSzCz/IiRPeudpatP+giMgbUEEo09LgIBw+DPT0MDgaoouG3GO1c8KsXetfNhGRfHHnnbBuHdTMCFK6vIHjzCCAy238lCr3OOzvyPXe/dd/wcc+BocO+Zv5Tenv51t3PM6wPbWXxLtDj/DQVf+HRCpIIgHBICxfDrNm+ZhTRCQPqCCUaenkclHb1s5RZjKAN040HDFcdnmAWMzHcCIiecIY+NSnYMkSmLu0FDNnFgeYzy7O4U/4KpeOPQqHj+Sev3ev9/zubh9DvxHXZfd7/5D7Bq/OnSpnmLK73k3vRBV9fd65VavgvPPUXiAi8kZUEMq0dHIket/uXo4wB4v3E72yymiYjIjIGQiH4e67Yd48mLmiBsrj7GQF/8mv87/5A+7u+T2Co4O55/f2wm//NrnCarqx/+dr/NVTa3M/FwAuv2iCh46sYudO6OmBuXO9m5aLioi8MRWEMu0MDWWXLI2N0dETY4RSAEKkiNWVqiAUETlD5eXwpS/BggWG6OJ6CIbYwOV8j4/wAf6Lf+t9F9Wlydzzu7q8onB42MfQr+bJJ3noj55hO+djgQnCBEpL+HnqBnp6IJ2G0lLv6mBVFZxzjt+BRUSmPxWEMu2cXC461NLFGCUcZwYAFeFxFiwJ09DwOi8WEZFXNWeOt3H9gsYQZt5cXBz+hU+ymQtZ3v8s/5D+TcrLbe75+/bB5z4HY2M+hj7d0aOMvv/jfN1+PvuzoY5jzCC9oJFU2vt1JhCAm27yeic/9zmIRt/gPUVERAWhTD8nl4u27UgQJE2SCA5pyqpCXH65v9lERPLZihXeHoU188pgxgyShPkDvsYgcZY++2/8/ep/o6Tk1PNbW70iMpl87fecEuk0w3d+gt/r/RK7WMEAVUwQoqKhjJSJYAxUVnrf2x//MaxZo70HRUTeLBWEMq0MDXlLlUZHXLp7A4xml4tWMIyprFRBKCLyNl1xhTc4JlRfB7FSeqnjbv6ONA7n/8On+NuP7XhJMbV1K/z+70Mq9frvay2Mjp7drSushYMH4Yd3/og/2nADP+V2Mid/dSktI1RZxsyZ3tLQm2/29l7UEBkRkTMT9DuAyOl27vT+bNs8SDzTzyEaCOBSHhglVlfK6tX+5hMRKQR33QW7dgW4b2wutLWzxW3i63yB30n/LWs/cxFfu+tb/E7Lx3CzxdeGDd6Vty99Cfr7vYEzx497t5P3+/ogkfCWaX7sY3DZZW89XzoNO3bAxo1w5Kk27E/beZYbcbODZIIRh/pzy1nc6C0TLSuD3/xN776IiJwZFYQyrbS0eL9QHGxLMpsxhqikkkEClXEuudRoCZCIyFlgDHz5y7B7d5hd4/XYgwf4MXcwnwOcm9yJ/e53eWd8hH+PfIJUKEY6bfjOd+Chh7ytHF5PIgHf/rY37fM97zmzK3ajo14RuGlTtndxaBDuv58DzOcI9ZQwTqmThIVLWNxocgXgJz/pDZEREZEzp4JQpo3hYW9p0P79YIaHGKcEgyXOMFTM03JREZGzKBSCv/97uPPOCobG6hg7fox7+Dh1HPeeMAzz2UxLaA3ESsFx6OryNnx/M9M777vPKwo/+ck37uc7ccK7Crl582lLU9Np+Mm9hBODtHMpMzmKg8vw7BUsmh/KFYPXXAMXXviW/xpERIqeCkKZNnbu9H4R6NgzQTzRw3HqKOcEDhmIx9/W8iMREXml2bO9K4V/+D9nMRGJ0H00QDCTpoIhAljm0UU6FWL30HKIlkDknzh1AAAeyklEQVRJlI6OAGVl8I53QE0N1Nae+hPgnnu8Ag/g2We95aRf+IK39cXLDQ7C+vVen2Im87Jsz93LJUe+yUbWkSKMg8vErLmEK2LU1XnPqa+HD35w8v5+RESKgQpCmTZaWqCzE1KDJ4gzzB6WM4tuKC1lxfkhqqv9TigiUnhuuAE2bzbce281qXgFB3urKOs7wEL2s5IWbuEBnuVSHkncQDBjCM6dzchIJcuXGz7wgVe+37x58Dd/A93d3vHevfAnf+L1H86Z453r64Onn4YXXwTXfenrlyyBK4d/xryn3k83s/l3PgKAjVfQ78xg3TLvecEgfOYzEA5Pzt+LiEixUEEo08KJE9DR4e17FTgxTIogURKESEPFDG1GLyIySYzxNqF3HOjrc4hE6gkcC8LDbYx1ldLDLO7gx9RynJ+m3gP790E8zt/95TxKS6PcdttL32/GDPjKV+Ab3zg1KKy3F776VfjQh+DoUW9gjLUvfd0558CVV0L9yB5o8irN/48vMEEYwmH6KxZRP9sQi3nP//Vfh7lzJ/kvR0SkCGgel19++ctXro8pYjt3ev2DiXGXipHD9FFHBYPegxUV6h8UEZlE1dVw993e9NH584GZM+EjH4Hbbqe3dBG/5EYmiDCfTsaJYoeHYWcrf/6bXTxy//gr3q+0FH73d70CD7wBMa2t8NnPwoMPnioGjfGG1Hz2s/CBD0B9/ATccQeMjLCJi/gV14AxjNUvIeU6LF7svW71arj++qn5uxERKXS6QjjVJia8XX6/9S34wz+Ev/gLvxNNCzt2QFsbMDZKhdvPAAuIMAGhEDVzYyxb5ndCEZHCFolAU5N3O3YMmpsNzeXnMbJ0KTz9NHbTJpbb3XQzh4PMo8SOETvax5fvPE7sjwa4/MtXv2SkaDDoLUfdtQseeeTU13nhBRgdTPHrl3RwZelWare+CN/f5T1x/35wXdI4/DW/C0C6fh7HR0pYtcq7illR4e2jqP0GRUTODhWEU+nwYe+Tz40bveO//EtYtw5uvdXfXD4bGfEGD4yOestFHTLY7F5TxCu47DKjvaVERKZQXZ1XzF13HbS1RWhecz27n14Fv3iYqw48yWNcRxcNjFBGOJXit77i8O0H/geX/ftvYZefQ2cnPPmEZf+OUWLHj3NR+Tgv7C3HTSSpTvUQaOniyAMbiPN/gVfueP8D3k8HC7GV1Ry3tVRWwqxZ3mOf/vSrD6gREZG3RgXhVAoEvKkpp/vwh2HLFq+Lvkjt3OkNHQCIjx4hRJooSe+ElouKiPgmEIBly7zb2K0z2PahD9P8/2/l2h89x8MjQY4yiwlCHKeWD2y9m8+f+49UrF7Igd4Sb7xoMgHAfNJcxiGeZy3jeE2Am1hLHzV8ka9TwXDua/ZRzf/l0xCJMlw9n8SQ4aKLvMduvvmN90EUEZEzo+suU2n2bPjhD2kPLOUBbvHODQ/D+97nXR4rUg8/DENDwESSyvGjwMlJA4ZgdTkXX+xjOBERASAWg0suNfz2PU18/oXf4H/d2sIsenOPTxDmm/a3aW524fAhSCYIM8EVrOdL/C2f4B7+kv9FPYdzr9nHYv6EP+EQ9blz34z/EWNV9SQXLGFgyGHBAigrgwUL4M47p/AbFhEpEsa+fMzXZHwRY6LA00AE76rkj621XzHGLAT+G6gBtgIfttZOGGMiwPeAC4E+4P3W2s7se/1P4BNABvi8tfaXr/e1m5qa7JYtWybnG3sLRkbgw5e207VjkFt5gN/na16v3Ic+BN/7XtE1RYyOwrvf7X2QHOg/xjVHvsezXEaGIJSXs/ZDy/jWt/xOKSIir+b4M3v44K3D7O2vIUkUC0RIUkM/MznKLI4SJEMAF4PFYMkQoIXz6QvPgnAYEwkTLAlxwfkutQvLeXpjGNeFI0e8K5RXXukVo3/+597nqiIicuaMMVuttU2v9thULRlNAtdYa0eMMSFggzHmIeBu4OvW2v82xnwbr9D7p+yfA9baRmPMXcDXgPcbY1YAdwHnAnOAx4wxS621eTGu01pvL6au8GKo2s8DA7eyh2X8Fb9H/fe/Dxdf7G2qVCSOHIFvf9srBgHiYz0sopP1ZMfSabmoiMi0VnvZMr6/y/LJdx3h4Iv9jKcdwFvn0ctMes1sKIlCNJrb2J5oFBuOkOgPeBvYW2AMjmyEmjaIx6G/H1IpOP98bzjNRz6iYlBEZLJMyZJR6xnJHoayNwtcA/w4e/67wO3Z+7dlj8k+fq0xxmTP/7e1Nmmt7QDagbVT8C2cFem0t+wFjLf2JRplD8v4EN9nA5d500efe87nlJMvnYbHHoN/+Ad49NHsSddlyfAW+jht93kVhCIi017dDMM/3V/PrKuXUza/lrKGagKNjV6z35oL4JwVsHCRV9FVVkG0BBMIUFPjbXdxur4+b5/CEyegshLq62HtWnjHO/z53kRE/l97dx4fVXX3cfzzS0ISthAggIRNQZbiBhoUrVallipVoGqBFtEWWpG61/Vxq6I+VlyxWoUqKGKtqBSx6qtUBOqDUAERlUU2o+w7BBQISc7zx7nDTDBRIMnMJPf7fr3mlZkz95577v0lDL85554TBnGbVMbMUvHDQo8GngJWANudc0XBJqth/00ELYBVAM65IjPbgR9W2gKYHVNt7D5Jr1Ytv1jv8cfDQw+lsq9dO1i8mJ0l9bmOx/ntvme5/KJfkDJ/nl8DqgZauxYmTvQf+B9+6IfQpqVBy1obGVTyPH/if/yG6Rm07pBJ69aJba+IiHy/3FwY9Wwajz7ahLVr/YiYkhL/M/IoKfHbxpY3bQrbt/t1aCPlRUXQsCGccALk5MDgwaG7m0JEJK7ilhAGwzq7mFk28A+gU1Udy8wuBy4HaJ1kGYUZXHghdOoEt9xSm3W7j4KVKwB4lt/y2bpjue+iIWRPn+QzpRqiuBimT4f//Md/6C9aBBs2+A/9Fi3gzDXv0YwNbKGx36FBA04/Xf8DEBGpLlq3hscfP7x98/Ph0Udh27ZomRkMG+YXuRcRkaoT91lGnXPbgWnAqUC2mUWynpawf+qxNUArgOD9BvjJZfaXl7FP7DFGO+fynHN5TZo0qZLzqKjOnWH8eDi1V0NodsT+8tl0Z+DMYSwc+kQCW1e51q6Fp5/2CWFJCaxeDV984UfNtmkD7Y92DP7iTmYSMz5Uw0VFRELjyCP9Pfax3+H27euXuxARkaoVl4TQzJoEPYOYWW3gJ8BifGJ4cbDZZcAbwfPJwWuC999zfjrUycAAM8sIZihtD3wYj3OoCg0awMiRcPkfm2P16+0v30AzfjvmVF6/aRZxmAS2yhQXw9SpMGqU7w0Ev7xEfr7vIc3O9pMHXPvTJaSvXsn/RRJCS6FOs3p07ZqwpouISJw1agR33eWX573iCvj5zxPdIhGRcIjXmMTmwAvBfYQpwATn3D/NbBHwdzO7D5gPPBds/xzwopktB7biZxbFObfQzCYAi4Ai4MrqMsNoeVJS4PJhqRzbqil3XLSFgsIMAPZRiwceTWHBN5u57ZEcMjMT3NBDtG5d9F7BiNRUf69Iy5bR19deC40nvclWGrKQY/wbWfXpfloqtWrFv90iIpI4GRnQs2eiWyEiEi5xSQidc58A3+rvcc6tpIxZQp1ze4Ayl591zt0P3F/ZbUy0085vxPhXM7il7+csdsEYmZIS3h6znqUbGjDi0VrVYoKV4mKYMcM/IhMIgB8i+/nnlOrxvPRS6NABeOstZvLD6BsaLioiIiIiEhdxv4dQypfbO4/nHivgQiZGC/fsYfl7XzFokGPGjMS17WCsW+fXFZw2LZoM1qkD/fv7WeNWrIhue/bZ0KMHvstw5szocFGABg344Q8REREREZEqpoQwyaRfcwW3XbKKP3IP6RT6wm3b+HrlRm64Af78Z98Ll0yKi+G993wyGDtE9Jhj4Jpr/ALDU6ZEyzt08L2DAEyZQlGxn0wHgMxMOnfJoHHjuDVfRERERCS0lBAmGzMYNYoLjvuS5/k1LSKTqK5eDbt28sILcOWVPslKBuX1Cvbr53sG16+HsWOj2zds6JPE/StqvP02H9OFrwnmFddwURERERGRuFFCmIzq1IGJE+nQYCMvMogzeB9wsGIl7Ctk7lwYOBA++SRxTXQO5szxM4iW1St43HF+RtGRI/1wUfBJ4HXX+dlVAZg9GyZM4H3OiFbQIFsJoYiIiIhInCghTFZHHw3jxpHFTh7hBn7PX0gp2gsrV4IrYdMm+N3vYMIE4r40RVERvPEGTJ4cHb4a2ytYt67fZuTI0osMDxkCbdsGL5YuhfPPh927o/cPpqbRqHVdOnWK6+mIiIiIiISWEsJk1rs33HYbKTgGM5YnuYrsXathtR9GWlwMI0bAvfdCYWF8mrRjBzz7LMybFy1r1w6uvtr3Cpr5BPX552H58ug2555LtOdv/XpfsGULq2nBl7Tx5S1bcvoZKaTot1JEREREJC70X+9kN3w4nHMOACczh5cYyLEbp8K26E2EkyfD5ZfDxo1V25T8fHj6aVizJlr2ox/5CWLq1YuWTZ1KqRlRO3eGAQOCFzt3ws9+Bl98QQnGG/Tx5c2bQ06OhouKiIiIiMSREsJkl5oKL79MZBHCZmzkr/yOi1aNhD2792/22WcwaFDV3FfoHHzwgZ8c5uuvfVl6uk/yfvITSvXoLVkC48dHX+fkwFVX+dNg3z64+GIKPlrGOAbRhzcYy2+gcWPIzSUtDU45pfLbLyIiIiIiZYvLwvRSQTk58NprfsxlYSG1KOJ/9g2n47atjMh9jCLnw7hli+8pvPVW6Nu3/OoKC2HzZv8oKfFDPuvXL3vbfftg0qTSiWbjxvCrX0HTpqW33bIFnngiel9hejr84Q9B3c6xrN/tvDKlG+9wF3vJ8BtlZUGbNoBxyin+/kMREREREYkPJYTVRbdufhHCoUP3F1249knatdjDTRmPs3WPz6SKivwo0w8/hAsv9Pf8RZK/TZv8zx07vl19mzZ+aGfnztCxI9Su7SeE+dvfSs8i2rEjXHwxZGaW3r+wEB57zI8IjRg6FHJz/RqFf79hDh993K/0TnXq+GzUUsjLg1tuqehFEhERERGRQ2Eu3lNUxlleXp6bO3duoptROZyDIUMoHDuezeSwiSZsJofl1p4xjW9mVUprilza/h66Ro2ga1fIyDi0w6Sk+KUhNm/2HXiNGvkhnz16wFln+YljDmzW00/DrFnRsh49/HavvgobPt0Iq74qvVNGBhnHd+S83un07w/t2x/y1RARERERkYNgZvOcc3llvacewurEDJ56iikz6vPKyph4Ojh68yz22C5Wp7eDOrXBUti6FWbOhJNOiln7L0Zqqv8ZSSDBJ3fr1sH8+dHlLGrV8olgQYGfObRt2+i+AO+8E00GCwpgzx4YPdoPN2X7tm8lg83Tt/CLe7vQd2g6WVkVvioiIiIiInKYlBBWN7Vrk/PY7TB4HmzZvL84hRKOdwvI2rudxXuPwdWujWVmUlycwoIF/p7CHj2gSRN/S2KTJpCd7Yd6Ll0KCxf6+wTffx+2b48eLjMTjjrKDzd97bVoWceOfnhp3brRYaX5+bBrlx8mmpIC7Nrp100M5DGXARmT+NH04aR0bxaf6yUiIiIiIuVSQlgNNTmmKZx7Lmlr8slZ8B4525aSw2Zy2EwTNrGOIxi5+1q+3puFNW8OjZswc2YqRx7p14KP7d3LyPDrBzZv7petOO00PznMpk2+h7BevdLbg+8BnD8fpk/3w0pXrfJlKSm+npQU/Ayoy5eT6XbTi7fpzyu0S/0SXn8Dup8cx6slIiIiIiLl0T2E1VBRkZ+8JTsbrLgIxo2Du+/2mVlgLc25kYdZSgdIqwW5fp2/k09J4YEHSg8hXbLE9/7t3etfm/nlJE4/3Q8BXbwYPv3UDz9dtswnjFu3lh5qCtCsmZ8nhn2F5C6bQb/dL9CbyWQRzDTz3HMweHCVXhsRERERESntu+4hVEJYU+zdC6NGwX33+e49YA8ZDOcuptDTb5OeAbm55B7biEceNY4+GqZN84+I2rWhf38/THT5cpg71z/mzfNrEBYVwe7dvkdw925KTWDToAGc3GUvA6ZdwekrXyCFmN+t4cPhzjvjdDFERERERCRCCWEYEsKIXbtg5Eh46CHYsQMHvMgg/szVOILpQTMzSW/dnDP6NiI93Zc559cNbNXK9wjOm1f28hSxnPMJYu3a/h7Ffn320vbK80pnmOAXR3zmmW9PTyoiIiIiIlVOCWGYEsKIrVthxAi/Uvzu3XzAqdzO/ezEr0C/jWy+ScumU+cUCus1ZNcuIy3t4HK29HQ4/njIy/OPY46BWqklcMkl8PLLpTe+4AKYOBHSdLuqiIiIiEgiKCEMY0IYsW6dH0Y6ejSrio7gBh5hJW0pJoVNNKGEVLKsgLq1werW8UtW1Knju/0sBfCTyhx7rE/+unXzyWB6+gHHuekmePjh0mXdu8PUqcGNhSIiIiIikghKCMOcEEasXAn33MM3417jLu5hOmdRSC0cRgaFpTZNoYQf2BLyjlhD3gn7OOHMbOqcchyccIK/WfBAjz8O119fuqxDBz8LTU5OFZ6UiIiIiIh8HyWESgijFi6k5I67GDOpIaMYisMwHO1ZRjfmkMdcujKfenxd9v6tW0PXrtCli/+5aZO/RzD296hZM79S/VFHxeecRERERESkXEoIlRB+25w55N/xLOtn59O5YFZ0aYiKqlcPZsyAE0+snPpERERERKRCvish1EwfYdWtG0f+qxtHOgerV/uV5j/+OPozP//Q60xLg9dfVzIoIiIiIlJNKCEMOzO/1kSrVtC7d7R82zZYsKB0krhokV9nojxjxkDPnlXfZhERERERqRRKCKVsDRvCWWf5R8SePT4pjE0SFyyAWrXgwQdh0KBEtVZERERERA6DEkI5eJmZfjiohoSKiIiIiNQIKYlugIiIiIiIiCSGEkIREREREZGQUkIoIiIiIiISUkoIRUREREREQkoJoYiIiIiISEgpIRQREREREQkpJYQiIiIiIiIhpYRQREREREQkpJQQioiIiIiIhJQSQhERERERkZBSQigiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERERERCSklBCKiIiIiIiElDnnEt2GKmVmm4AvE92OMuQAmxPdCPkWxSX5KCbJSXFJPopJclJcko9ikpwUl6rVxjnXpKw3anxCmKzMbK5zLi/R7ZDSFJfko5gkJ8Ul+SgmyUlxST6KSXJSXBJHQ0ZFRERERERCSgmhiIiIiIhISCkhTJzRiW6AlElxST6KSXJSXJKPYpKcFJfko5gkJ8UlQXQPoYiIiIiISEiph1BERERERCSklBAeBDMbY2YbzeyzA8ofMrMlZvaJmf3DzLLL2f/eYJuPzWyKmeUG5WZmT5jZ8uD9E8vZ/1wz+zzY7taY8qPM7L9B+Stmll6Z553skjguZmb3m9lSM1tsZtdU5nknsySISYWOXxMlcUy6mNnsoN65ZnZyZZ1zdVCFcelkZrPMbK+Z3fgdxz/JzD4N4veEmVlQ3sjM/m1my4KfDSvzvJNZssYkeO/qoA0LzWxEZZ1zdZAEcbnfzFaZ2a4Dyv9gZouCuqeaWZvKON/qIIlj0trMppnZ/KD+XpVxvqHgnNPjex7Aj4ATgc8OKO8JpAXPHwQeLGf/rJjn1wDPBM97Ae8ABnQH/lvGvqnACqAtkA4sADoH700ABgTPnwGGJfpaKS4O4DfAOCAleN000dcqDDGpjOPXxEcSx2QKcF5MXdMTfa1qSFyaAt2A+4Ebv+P4HwZxsyCOkViMAG4Nnt+qv5WkiMnZwLtARqS+RF+rkMWlO9Ac2HVA+dlAneD5MOCVRF8rxYTRBP8XBjoD+Ym+VtXloR7Cg+Cc+w+wtYzyKc65ouDlbKBlOfsXxLysC0Ru3OwDjHPebCDbzJofsPvJwHLn3ErnXCHwd6BP8M1hD+C1YLsXgL6HfnbVVzLGJXhvGDDcOVcSHGfjoZ9d9ZTgmFT4+DVRssYkqCcreN4AWHsQp1NjVFVcnHMbnXNzgH3lHTuIU5ZzbrZzzuG/wIp8fvTBf55AyD5Xkjgmw4A/Oef2Ruo7pBOr5hIZl2C72c65dWWUT3POffN9x6+JkjUmhPxzpSLSEt2AGmQw8Ep5b5rZ/cClwA78t0oALYBVMZutDspif8nL2uYUoDGwPeYPL7KvlBbvuAC0A/qb2c+BTcA1zrllFTiHmqaqYlIpxw+pRMTkOuBfZvYw/vaF0w6xzWFwOHE5GC3w8YqI/fxoFvMfrfVAs0OoNwwSEZMOwBlB3XvwPSdzDqXRIVBVcTlYQ/C9uhKViJjcDUwxs6vxieY5lVRvjacewkpgZrcDRcBL5W3jnLvdOdcq2OaqeLUtzBIYlwxgj3MuD/grMKaS6q32Ev23cjDHD5sExmQYcH1Q7/XAc5VUb42Q6L+VoH5HtEc49BIYkzSgEX6Y3E3AhNj7C8Mu0X8rZnYJkAc8VJn1VmcJjMkvgeedcy3xtyK8aGbKdQ6CLlIFmdmvgfOBgcGHJ2Y2NrhR9u0ydnkJuCh4vgZoFfNey6AsVnnbbMEP0Ur7jn1DK4FxAf/N7sTg+T+A4w/zNGqUOMTkkI8fdgmOyWVE/05exQ/DFiocl4OxhtJDuWJjtyEy9Df4GarhieVJcExWAxOD4dkfAiVAziGeQo0Uh7h83/HPAW4HekeG9IZdgmMyBD+/Bs65WUAm+ls5KEoIK8DMzgVuxv9DEBlHjnPuN865Ls65XsF27WN26wMsCZ5PBi41rzuwo4wx0XOA9uZnFE0HBgCTgz+yacDFwXaXAW9U8ilWS4mMS/DeJKLDH84Ellbi6VVLcYrJIR8/zBIdE/y9HWcGz3sAGlZNpcTlewVxKjCz7kFP06VEPz8m4z9PQJ8rQFLEZP9nipl1wE9ktrkCp1QjxCMu33P8rsCo4Pj64oTExwT4CvhxcIwf4BPCTZVUd83mkmBmm2R/AC/j74vZh/+mbkhQvhx/D83HweOZcvZ/HfgM+AR4E2gR+dIEeAo/W+WnQF45+/fCJxUrgNtjytviZyVbjv+GPSPR10pxcQDZwFvBvrOAExJ9rUIUkwodvyY+kjgmpwPz8DP0/hc4KdHXqobE5YigvgJge/A8q4z984L9VwBPAhaUNwam4hP0d4FGib5WignpwPjgvY+AHom+ViGLy4jgvZLg591B+bvAhpjjT070tVJM6AzMxH+ufAz0TPS1qi6PyD82IiIiIiIiEjIaMioiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERELHzFqb2S4zS010W0RERBJJCaGIiISCmeWb2TkAzrmvnHP1nHPFcTz+WWa2Ol7HExERORhKCEVEREREREJKCaGIiNR4ZvYi0Bp4MxgqerOZOTNLC96fbmb3mdkHwftvmlljM3vJzArMbI6ZHRlTXycz+7eZbTWzz82sX8x7vcxskZntNLM1ZnajmdUF3gFyg/p3mVmumZ1sZrPMbLuZrTOzJ80sPaYuZ2a/N7NlQX33mlm7oJ0FZjYhsn2kB9LMbjOzzUGP6MD4XGEREamulBCKiEiN55wbBHwFXOCcqwdMKGOzAcAgoAXQDpgFjAUaAYuBPwIEyd2/gb8BTYP9/mJmnYN6ngOGOufqA8cC7znnvgbOA9YGQ1XrOefWAsXA9UAOcCrwY+D3B7Trp8BJQHfgZmA0cAnQKqj/lzHbHhHU1QK4DBhtZh0P6WKJiEioKCEUERHxxjrnVjjnduB781Y45951zhUBrwJdg+3OB/Kdc2Odc0XOufnA68Avgvf3AZ3NLMs5t80591F5B3TOzXPOzQ7qyQdGAWcesNkI51yBc24h8BkwxTm3MqadXQ/Y/k7n3F7n3AzgLaAfIiIi5VBCKCIi4m2Ieb67jNf1gudtgFOCYZ7bzWw7MBDfOwdwEdAL+NLMZpjZqeUd0Mw6mNk/zWy9mRUA/4vv4TucdgFsC3ojI74Ecss7voiIiBJCEREJC1dJ9awCZjjnsmMe9ZxzwwCcc3Occ33ww0knER2eWtbxnwaWAO2dc1nAbYBVoG0NgyGtEa2BtRWoT0REajglhCIiEhYbgLaVUM8/gQ5mNsjMagWPbmb2AzNLN7OBZtbAObcPKABKYo7f2MwaxNRVP9hml5l1AoZVQvvuCdpxBn5466uVUKeIiNRQSghFRCQsHgDuCIZ4Xny4lTjndgI98ZPJrAXWAw8CGcEmg4D8YAjoFfjhpDjnlgAvAyuDoaa5wI3Ar4CdwF+BVw63XYH1wLagXS8BVwTHFRERKZM5V1kjaERERCRRzOwsYLxzrmWi2yIiItWHeghFRERERERCSgmhiIiIiIhISGnIqIiIiIiISEiph1BERERERCSklBCKiIiIiIiElBJCERERERGRkFJCKCIiIiIiElJKCEVEREREREJKCaGIiIiIiEhI/T/TYeQPsPM8oAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "c193140200b9684da27e3890211391b6", + "translation_date": "2025-09-04T01:48:06+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/es/7-TimeSeries/2-ARIMA/working/notebook.ipynb b/translations/es/7-TimeSeries/2-ARIMA/working/notebook.ipynb new file mode 100644 index 000000000..8dd999c9c --- /dev/null +++ b/translations/es/7-TimeSeries/2-ARIMA/working/notebook.ipynb @@ -0,0 +1,50 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "523ec472196307b3c4235337353c9ceb", + "translation_date": "2025-09-04T01:49:59+00:00", + "source_file": "7-TimeSeries/2-ARIMA/working/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli y Rob J. Hyndman, \"Pronóstico probabilístico de energía: Competencia Global de Pronóstico Energético 2014 y más allá\", International Journal of Forecasting, vol.32, no.3, pp 896-913, julio-septiembre, 2016.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pip install statsmodels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/7-TimeSeries/3-SVR/README.md b/translations/es/7-TimeSeries/3-SVR/README.md new file mode 100644 index 000000000..3f3caeff6 --- /dev/null +++ b/translations/es/7-TimeSeries/3-SVR/README.md @@ -0,0 +1,393 @@ + +# Pronóstico de Series Temporales con Support Vector Regressor + +En la lección anterior, aprendiste a usar el modelo ARIMA para realizar predicciones de series temporales. Ahora exploraremos el modelo Support Vector Regressor, que es un modelo de regresión utilizado para predecir datos continuos. + +## [Cuestionario previo a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/51/) + +## Introducción + +En esta lección, descubrirás una forma específica de construir modelos con [**SVM**: **S**upport **V**ector **M**achine](https://en.wikipedia.org/wiki/Support-vector_machine) para regresión, o **SVR: Support Vector Regressor**. + +### SVR en el contexto de series temporales [^1] + +Antes de entender la importancia de SVR en la predicción de series temporales, aquí tienes algunos conceptos importantes que necesitas conocer: + +- **Regresión:** Técnica de aprendizaje supervisado para predecir valores continuos a partir de un conjunto de entradas. La idea es ajustar una curva (o línea) en el espacio de características que tenga el mayor número de puntos de datos. [Haz clic aquí](https://en.wikipedia.org/wiki/Regression_analysis) para más información. +- **Support Vector Machine (SVM):** Un tipo de modelo de aprendizaje supervisado utilizado para clasificación, regresión y detección de valores atípicos. El modelo es un hiperplano en el espacio de características, que en el caso de la clasificación actúa como un límite, y en el caso de la regresión actúa como la línea de mejor ajuste. En SVM, generalmente se utiliza una función Kernel para transformar el conjunto de datos a un espacio de mayor número de dimensiones, de modo que puedan ser fácilmente separables. [Haz clic aquí](https://en.wikipedia.org/wiki/Support-vector_machine) para más información sobre SVMs. +- **Support Vector Regressor (SVR):** Un tipo de SVM, que encuentra la línea de mejor ajuste (que en el caso de SVM es un hiperplano) que tiene el mayor número de puntos de datos. + +### ¿Por qué SVR? [^1] + +En la última lección aprendiste sobre ARIMA, que es un método estadístico lineal muy exitoso para pronosticar datos de series temporales. Sin embargo, en muchos casos, los datos de series temporales tienen *no linealidad*, que no puede ser modelada por modelos lineales. En tales casos, la capacidad de SVM para considerar la no linealidad en los datos para tareas de regresión hace que SVR sea exitoso en el pronóstico de series temporales. + +## Ejercicio - construir un modelo SVR + +Los primeros pasos para la preparación de datos son los mismos que en la lección anterior sobre [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA). + +Abre la carpeta [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/3-SVR/working) en esta lección y encuentra el archivo [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/3-SVR/working/notebook.ipynb). [^2] + +1. Ejecuta el notebook e importa las bibliotecas necesarias: [^2] + + ```python + import sys + sys.path.append('../../') + ``` + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from sklearn.svm import SVR + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + ``` + +2. Carga los datos del archivo `/data/energy.csv` en un dataframe de Pandas y échales un vistazo: [^2] + + ```python + energy = load_data('../../data')[['load']] + ``` + +3. Grafica todos los datos de energía disponibles desde enero de 2012 hasta diciembre de 2014: [^2] + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![datos completos](../../../../translated_images/full-data.a82ec9957e580e976f651a4fc38f280b9229c6efdbe3cfe7c60abaa9486d2cbe.es.png) + + Ahora, construyamos nuestro modelo SVR. + +### Crear conjuntos de entrenamiento y prueba + +Ahora que tus datos están cargados, puedes separarlos en conjuntos de entrenamiento y prueba. Luego, reformatearás los datos para crear un conjunto de datos basado en pasos de tiempo que será necesario para el SVR. Entrenarás tu modelo en el conjunto de entrenamiento. Una vez que el modelo haya terminado de entrenarse, evaluarás su precisión en el conjunto de entrenamiento, el conjunto de prueba y luego en el conjunto de datos completo para ver el rendimiento general. Debes asegurarte de que el conjunto de prueba cubra un período posterior en el tiempo al conjunto de entrenamiento para garantizar que el modelo no obtenga información de períodos futuros [^2] (una situación conocida como *sobreajuste*). + +1. Asigna un período de dos meses del 1 de septiembre al 31 de octubre de 2014 al conjunto de entrenamiento. El conjunto de prueba incluirá el período de dos meses del 1 de noviembre al 31 de diciembre de 2014: [^2] + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + +2. Visualiza las diferencias: [^2] + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![datos de entrenamiento y prueba](../../../../translated_images/train-test.ead0cecbfc341921d4875eccf25fed5eefbb860cdbb69cabcc2276c49e4b33e5.es.png) + +### Preparar los datos para el entrenamiento + +Ahora necesitas preparar los datos para el entrenamiento realizando un filtrado y escalado de tus datos. Filtra tu conjunto de datos para incluir solo los períodos de tiempo y columnas necesarios, y escala los datos para asegurarte de que estén proyectados en el intervalo 0,1. + +1. Filtra el conjunto de datos original para incluir solo los períodos de tiempo mencionados por conjunto e incluyendo únicamente la columna 'load' más la fecha: [^2] + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +2. Escala los datos de entrenamiento para que estén en el rango (0, 1): [^2] + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + ``` + +4. Ahora, escala los datos de prueba: [^2] + + ```python + test['load'] = scaler.transform(test) + ``` + +### Crear datos con pasos de tiempo [^1] + +Para el SVR, transformas los datos de entrada para que tengan la forma `[batch, timesteps]`. Por lo tanto, reformateas los `train_data` y `test_data` existentes de manera que haya una nueva dimensión que se refiera a los pasos de tiempo. + +```python +# Converting to numpy arrays +train_data = train.values +test_data = test.values +``` + +En este ejemplo, tomamos `timesteps = 5`. Por lo tanto, las entradas al modelo son los datos de los primeros 4 pasos de tiempo, y la salida serán los datos del quinto paso de tiempo. + +```python +timesteps=5 +``` + +Convirtiendo los datos de entrenamiento a un tensor 2D usando comprensión de listas anidadas: + +```python +train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0] +train_data_timesteps.shape +``` + +```output +(1412, 5) +``` + +Convirtiendo los datos de prueba a un tensor 2D: + +```python +test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0] +test_data_timesteps.shape +``` + +```output +(44, 5) +``` + +Seleccionando entradas y salidas de los datos de entrenamiento y prueba: + +```python +x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]] +x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]] + +print(x_train.shape, y_train.shape) +print(x_test.shape, y_test.shape) +``` + +```output +(1412, 4) (1412, 1) +(44, 4) (44, 1) +``` + +### Implementar SVR [^1] + +Ahora es momento de implementar SVR. Para leer más sobre esta implementación, puedes consultar [esta documentación](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html). Para nuestra implementación, seguimos estos pasos: + + 1. Define el modelo llamando a `SVR()` y pasando los hiperparámetros del modelo: kernel, gamma, c y epsilon. + 2. Prepara el modelo para los datos de entrenamiento llamando a la función `fit()`. + 3. Realiza predicciones llamando a la función `predict()`. + +Ahora creamos un modelo SVR. Aquí usamos el [kernel RBF](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel), y configuramos los hiperparámetros gamma, C y epsilon como 0.5, 10 y 0.05 respectivamente. + +```python +model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05) +``` + +#### Ajustar el modelo a los datos de entrenamiento [^1] + +```python +model.fit(x_train, y_train[:,0]) +``` + +```output +SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5, + kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) +``` + +#### Realizar predicciones con el modelo [^1] + +```python +y_train_pred = model.predict(x_train).reshape(-1,1) +y_test_pred = model.predict(x_test).reshape(-1,1) + +print(y_train_pred.shape, y_test_pred.shape) +``` + +```output +(1412, 1) (44, 1) +``` + +¡Has construido tu SVR! Ahora necesitamos evaluarlo. + +### Evaluar tu modelo [^1] + +Para la evaluación, primero escalaremos los datos de vuelta a su escala original. Luego, para verificar el rendimiento, graficaremos la serie temporal original y la predicha, y también imprimiremos el resultado de MAPE. + +Escala la salida predicha y la original: + +```python +# Scaling the predictions +y_train_pred = scaler.inverse_transform(y_train_pred) +y_test_pred = scaler.inverse_transform(y_test_pred) + +print(len(y_train_pred), len(y_test_pred)) +``` + +```python +# Scaling the original values +y_train = scaler.inverse_transform(y_train) +y_test = scaler.inverse_transform(y_test) + +print(len(y_train), len(y_test)) +``` + +#### Verificar el rendimiento del modelo en los datos de entrenamiento y prueba [^1] + +Extraemos las marcas de tiempo del conjunto de datos para mostrarlas en el eje x de nuestro gráfico. Ten en cuenta que estamos usando los primeros ```timesteps-1``` valores como entrada para la primera salida, por lo que las marcas de tiempo para la salida comenzarán después de eso. + +```python +train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:] +test_timestamps = energy[test_start_dt:].index[timesteps-1:] + +print(len(train_timestamps), len(test_timestamps)) +``` + +```output +1412 44 +``` + +Grafica las predicciones para los datos de entrenamiento: + +```python +plt.figure(figsize=(25,6)) +plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.title("Training data prediction") +plt.show() +``` + +![predicción de datos de entrenamiento](../../../../translated_images/train-data-predict.3c4ef4e78553104ffdd53d47a4c06414007947ea328e9261ddf48d3eafdefbbf.es.png) + +Imprime MAPE para los datos de entrenamiento: + +```python +print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%') +``` + +```output +MAPE for training data: 1.7195710200875551 % +``` + +Grafica las predicciones para los datos de prueba: + +```python +plt.figure(figsize=(10,3)) +plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![predicción de datos de prueba](../../../../translated_images/test-data-predict.8afc47ee7e52874f514ebdda4a798647e9ecf44a97cc927c535246fcf7a28aa9.es.png) + +Imprime MAPE para los datos de prueba: + +```python +print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%') +``` + +```output +MAPE for testing data: 1.2623790187854018 % +``` + +🏆 ¡Tienes un muy buen resultado en el conjunto de datos de prueba! + +### Verificar el rendimiento del modelo en el conjunto de datos completo [^1] + +```python +# Extracting load values as numpy array +data = energy.copy().values + +# Scaling +data = scaler.transform(data) + +# Transforming to 2D tensor as per model input requirement +data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0] +print("Tensor shape: ", data_timesteps.shape) + +# Selecting inputs and outputs from data +X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]] +print("X shape: ", X.shape,"\nY shape: ", Y.shape) +``` + +```output +Tensor shape: (26300, 5) +X shape: (26300, 4) +Y shape: (26300, 1) +``` + +```python +# Make model predictions +Y_pred = model.predict(X).reshape(-1,1) + +# Inverse scale and reshape +Y_pred = scaler.inverse_transform(Y_pred) +Y = scaler.inverse_transform(Y) +``` + +```python +plt.figure(figsize=(30,8)) +plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(Y_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![predicción de datos completos](../../../../translated_images/full-data-predict.4f0fed16a131c8f3bcc57a3060039dc7f2f714a05b07b68c513e0fe7fb3d8964.es.png) + +```python +print('MAPE: ', mape(Y_pred, Y)*100, '%') +``` + +```output +MAPE: 2.0572089029888656 % +``` + +🏆 Muy buenos gráficos, mostrando un modelo con buena precisión. ¡Bien hecho! + +--- + +## 🚀Desafío + +- Intenta ajustar los hiperparámetros (gamma, C, epsilon) al crear el modelo y evalúalo en los datos para ver qué conjunto de hiperparámetros da los mejores resultados en los datos de prueba. Para saber más sobre estos hiperparámetros, puedes consultar el documento [aquí](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel). +- Intenta usar diferentes funciones kernel para el modelo y analiza su rendimiento en el conjunto de datos. Un documento útil se encuentra [aquí](https://scikit-learn.org/stable/modules/svm.html#kernel-functions). +- Intenta usar diferentes valores para `timesteps` para que el modelo mire hacia atrás y haga predicciones. + +## [Cuestionario posterior a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/52/) + +## Revisión y Autoestudio + +Esta lección fue una introducción a la aplicación de SVR para el pronóstico de series temporales. Para leer más sobre SVR, puedes consultar [este blog](https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/). Esta [documentación en scikit-learn](https://scikit-learn.org/stable/modules/svm.html) proporciona una explicación más completa sobre SVMs en general, [SVRs](https://scikit-learn.org/stable/modules/svm.html#regression) y también otros detalles de implementación como las diferentes [funciones kernel](https://scikit-learn.org/stable/modules/svm.html#kernel-functions) que se pueden usar y sus parámetros. + +## Tarea + +[Un nuevo modelo SVR](assignment.md) + +## Créditos + +[^1]: El texto, código y resultados en esta sección fueron contribuidos por [@AnirbanMukherjeeXD](https://github.com/AnirbanMukherjeeXD) +[^2]: El texto, código y resultados en esta sección fueron tomados de [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/7-TimeSeries/3-SVR/assignment.md b/translations/es/7-TimeSeries/3-SVR/assignment.md new file mode 100644 index 000000000..c664909f3 --- /dev/null +++ b/translations/es/7-TimeSeries/3-SVR/assignment.md @@ -0,0 +1,27 @@ + +# Un nuevo modelo SVR + +## Instrucciones [^1] + +Ahora que has construido un modelo SVR, crea uno nuevo con datos frescos (prueba uno de [estos conjuntos de datos de Duke](http://www2.stat.duke.edu/~mw/ts_data_sets.html)). Anota tu trabajo en un cuaderno, visualiza los datos y tu modelo, y prueba su precisión utilizando gráficos apropiados y MAPE. También intenta ajustar los diferentes hiperparámetros y usar valores distintos para los pasos de tiempo. + +## Rúbrica [^1] + +| Criterios | Ejemplar | Adecuado | Necesita Mejorar | +| --------- | ------------------------------------------------------------ | --------------------------------------------------------- | ----------------------------------- | +| | Se presenta un cuaderno con un modelo SVR construido, probado y explicado con visualizaciones y precisión indicada. | El cuaderno presentado no está anotado o contiene errores. | Se presenta un cuaderno incompleto | + +[^1]: El texto en esta sección se basó en la [tarea de ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/7-TimeSeries/3-SVR/solution/notebook.ipynb b/translations/es/7-TimeSeries/3-SVR/solution/notebook.ipynb new file mode 100644 index 000000000..0ffb77d0c --- /dev/null +++ b/translations/es/7-TimeSeries/3-SVR/solution/notebook.ipynb @@ -0,0 +1,1023 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "En este cuaderno, demostramos cómo:\n", + "\n", + "- preparar datos de series temporales 2D para entrenar un modelo de regresión SVM\n", + "- implementar SVR utilizando el kernel RBF\n", + "- evaluar el modelo utilizando gráficos y MAPE\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importando módulos\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [ + "## Preparando datos\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### Cargar datos\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2012-01-01 00:00:002698.0
2012-01-01 01:00:002558.0
2012-01-01 02:00:002444.0
2012-01-01 03:00:002402.0
2012-01-01 04:00:002403.0
\n", + "
" + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAH1CAYAAABbUbvGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC4S0lEQVR4nOzdd7wU1d0G8OfcQu9dQUA6goI0RQXFimL3jb3FrjHRmNg19hJrYo29d8WKFQQFC0WlSu8gvVzqBe695/1jd/bOzk7vs/t88/GTy+7M7NnZmTOn/o6QUoKIiIiIiIgIAIqiTgARERERERHFByuJRERERERElMFKIhEREREREWWwkkhEREREREQZrCQSERERERFRBiuJRERERERElFESdQKi0KxZM9m+ffuok0FERERERBSJX375Za2UsrneewVZSWzfvj0mTZoUdTKIiIiIiIgiIYRYbPQeh5sSERERERFRBiuJRERERERElMFKIhEREREREWUU5JxEIiIiIiIiANi1axeWLVuG8vLyqJMSiFq1aqFNmzYoLS21vQ8riUREREREVLCWLVuG+vXro3379hBCRJ0cX0kpsW7dOixbtgx77rmn7f043JSIiIiIiApWeXk5mjZtmncVRAAQQqBp06aOe0lZSSQiIiIiooKWjxVEhZvvxkoiERERERFRhOrVq+fLcW6//XY89NBDno/DSiIRERERERFlsJJIREREREQUA1JKXHvttejZsyf23ntvvPPOOwCALVu24LDDDkOfPn2w99574+OPP87sc88996BLly446KCDMHv2bF/SweimREREREREAO74dAZ+/2OTr8fca/cGuO24Hra2HT58OCZPnowpU6Zg7dq16N+/PwYPHozmzZvjww8/RIMGDbB27Vrsv//+OP744/Hrr7/i7bffxuTJk1FRUYE+ffqgb9++ntPMnkQiIiIiIqIYGDduHM444wwUFxejZcuWOPjggzFx4kRIKXHTTTdhn332weGHH47ly5dj1apVGDt2LE466STUqVMHDRo0wPHHH+9LOtiTSEREREREBNju8QvbG2+8gTVr1uCXX35BaWkp2rdv73hZCyfYk0hERERERBQDgwYNwjvvvIPKykqsWbMG33//PQYMGICysjK0aNECpaWlGD16NBYvXgwAGDx4MD766CNs374dmzdvxqeffupLOtiTSEREREREFAMnnXQSfvrpJ/Tq1QtCCDzwwANo1aoVzjrrLBx33HHYe++90a9fP3Tr1g0A0KdPH5x22mno1asXWrRogf79+/uSDiGl9OVASdKvXz85adKkqJNBREREREQRmzlzJrp37x51MgKl9x2FEL9IKfvpbc/hpkRERERERJTBSiIREVECvPbTIrS/YQQ2le+KOilERJTnWEkkIiJKgOfHLQQArNuyM+KUEBFRvmMlkYiIKAF2VVQBAEqLRcQpISLKP/kcp8XNd2MlkYiIKAF2VaUe8qXFfHQTEfmpVq1aWLduXV5WFKWUWLduHWrVquVoPy6BQURElAAVlameRMGORCIiX7Vp0wbLli3DmjVrok5KIGrVqoU2bdo42oeVRCIioiTJv4ZuIqJIlZaWYs8994w6GbHCSiIREVHMtb9hROZv1hGJiChonNhARESUIHk4ZYaIiGKGPYlEREQxtbOiCss3bs96TbIvkYiIAsZKIhERUUzdOHwaPvh1WdZr7EkkIqKgcbgpERFRTH0/NzfSHuuIREQUNFYSiYiIYqqqKrdKmI/reBERUbywkkhERBRTlToVQtYRiYgoaKwkEhERxVRlJWuEREQUPlYSiYiIYoo9iUREFAVWEomIiGKqUm9OIkPXEBFRwFhJJCIiiqkqdhsSEVEEWEkkIiKKKZ2ORA43JSKiwLGSSERElCCsIxIRUdBYSSQiIkoQrpNIRERBYyWRiIgopoTOa6wiEhFR0FhJJCIiShB2JBIRUdBYSSQiIoopodeVyL5EIjKws6IKOyuqok4G5QFWEomIiGJK6Aw4ZU8iERnpe9c36Hn7V1Eng/JAaJVEIcQYIUS5EGJL+r/ZqvfOFEIsFkJsFUJ8JIRoonqviRDiw/R7i4UQZ2qOa7gvERFRvmEdkYiMbN5RwZ5E8kXYPYlXSinrpf/rCgBCiB4AngFwDoCWALYBeEq1z5MAdqbfOwvA0+l97OxLRESUV9iTSEREQSuJOgFIVfw+lVJ+DwBCiFsBzBRC1AdQBeAUAD2llFsAjBNCfIJUpfAGs32llJsj+C5ERET+0ZmTKNmXSEREAQu7J/E+IcRaIcQPQohD0q/1ADBF2UBKOR+pnsMu6f8qpJRzVMeYkt7Hal8iIqJE041bQ0REFLAwexKvB/A7UpW40wF8KoToDaAegDLNtmUA6gOoBLDJ4D1Y7JtFCHEJgEsAoG3btm6/AxERUaQ43JSIiIIWWk+ilHK8lHKzlHKHlPIVAD8AOAbAFgANNJs3ALDZ4j3YeF/9+c9KKftJKfs1b97c25chIiIKgd4SGKwkEhFR0KJcAkMiNZJmBoBeyotCiA4AagKYk/6vRAjRWbVfr/Q+sNiXiIgo0XSXwOCcRCIiClgolUQhRCMhxFFCiFpCiBIhxFkABgP4EsAbAI4TQgwSQtQFcCeA4elex60AhgO4UwhRVwhxIIATALyWPrThvmF8LyIiorCxJ5GIiIIW1pzEUgB3A+iG1DzDWQBOVALSCCEuQ6rC1xTASAB/Vu17BYAXAawGsA7A5VLKGQAgpZxhsS8RERERERE5EEolUUq5BkB/k/ffBPCmwXvrAZzoZl8iIqIk45xEIiKKQpRzEomIiMiE3hIYnJNIREGZt3ozpi/XLhxAhSjMJTCIiIjIAaHTlcieRCIKyuGPfA8AWHT/sIhTQlFjTyIREVGCsI5IRERBYyWRiIiIiIiIMlhJJPLJ4nVb8cmUPxzvd9JTP2DIQ2P8TxARJZ7enEQiIqKgsZJI5JNj/jsWf3vrN8f7/bZkIxau3RpAiogo7qSUeHHcQqzfujPqpBAREWWwkkjkk607K6NOAhElzIw/NuHOz37H1e9M1t+AXYlERBQBVhKJiIgi8vuKTQCA7+essb2PZHhTIiIKGCuJRD5jAY6I7KpToxgA0KJ+Tf0NmJ1Q2kWvTMTDX8+OOhlEVCBYSSTy2UWvTIo6CUSUEPVqppYr7tqqfsQpobgbOXM1Hv92XtTJIKICwUoikc9GzVoddRKIKF9wTiIREUWAlUQiIqKAfDx5OS54eaLh+0JY1AI53JSIiCJQEnUCiIiI8tVVb08GAJRt24WGdUp9OSbrjUREFDT2JBIREQWs911fR50EIiIi21hJpIK2bssOLF2/LepkEFGeMwp6bDnlkHMSiYgoAqwkUkEb+t+xGPTA6KiTQUQFznDlHI4tJSKiCLCSSAVtzeYdUSeBiMgRLsVKRHomLlofdRIoj7CSSEREFBGr4KYcbkpEdt328Yyc16SUeHzUXKwsK48gRZRkrCQSERFFTBqNK2WvYd56b9JSrN3C0SwUrFkrN+Phb+bgyjd/jToplDCsJBIBWLaBwWuIiCgcK8vKce37U3Hxq5OiTgrlkcqq3FYl5bVtOyvDTg4lHCuJRAAO+jeD1xBR+ATHkxakXZVVAIDVm9iTSP6p5IRl8hEriVSwynexVY2I4sGwbKdbh2RBkIhyVen0JCqYa5BTrCRSwXp05Jyok0BEZI4lOyKyyawnkWMWyKmSqBNAFJW1m3f6cpzv56xBw9qlvhyLiAqLZXRTykv83SkIVRxuSj5iJZEKlmE0QYfOfXGCL8chosLFsl1hkvzhiSimONyUChafzUQUe+xxyksi3ZXIxxD5SS8QVlH6WlP3Mj4/dgG63vJFaOmiZGIlkQpWWC24H/22HJvLd+m+t2jt1lDSQETxpBTpnKyTGOcGrvJdlfjHu1OwehMX7jbDuj8FQW8Yc1G6pK+uJN49YiZ2VFSFlCpKKlYSqWCFUc6avrwMV78zGTcMn6b7/v/976cQUkFEFI6vZqzEB78uw90jZkadlERwU+HfsNWf+fRUGKp7EnPf43BnMsNKIhWsMPLG7ellNlaV6beqbzLoYSQiSjIG0DDnJXDNlW/96l9CKK/oXVaZ0Qo69yRvUzLDSiIVLL/zRr2HfvVQMoN9fE4DESVMOhPIt8La4nXbok5CIrgJoLZq0w7sqqxC+xtG4D9cyok8YGMOmWElkQqW35mjWYWPQzqIqBDMX70FADBteVnEKYk3vQAjdkkpM6NUnh+70K8kUZ4yK33oDUElUrCSSIXL58xRqLoSf/9jU/o1849i3ZGInAo623hy9Dy0v2GEq333bdcYANBj9wZ+JilvuX0GmA0hpMIlbI5jVjZjTyKZYSWRCpZf6yTqOeaxsem/zDNsvQy6bPsuXPTKRKzdsiOAlBFRnCg9SnEqqj341WzX+yo5XpO6NfxJDOWQqA5GYve6WbJuG76cvjKwNFE82O2fVq6fu0f8HlxiKPFYSaSC5XcDWpHenMT0a78t2aifBp3X3hy/BCNnrsZz3y/wLW1ERE556aWy26NB7giHc1mP+s/3uOz1X4JLEMWW3jWilFde/3lJuImhRGElkcgnenNM1K+Up+eQqOkVwooshqgSUWGbuWJTKJ9T6WLCEvMte6ymIpiS6j/tHWG7zvOHiMgMK4lUsMJu6NYbWqpXBsvMFeCM8oJVUVnlqoBOySOsQiDr+NfHMwJJi5arSzC9D/sRzXk9P5lhyswmSI03HvmIlUQqWF6iyxkcMPclVU3U7sM8jnOUKDyPfjMHnW7+AvvfNyrqpFAI4limY1CL8Lg5xRIeeyIpb+nlJ3q9zb6XfygvsZJIhSv4OmLWa3Yf5k7nmlB++e+ouQCANZsZuIiiUZzOhNibHU/qaQp25o2+/8uyIJNDMTV69uqok0AJx0oiUYDUQ1rtBoFQeh/Zik9UOIKMtuyUl14q5Xswbo25f3+ZiiDr9jw5eTx8O2uVuw+hxFGPXvrzSxMjTAnlA1YSqWD5XYYp0nnaq4d02G2UZ9mKqHDEp2qYy1N0Ux/TkY8++DXVu+d2uGnmbxv7c2ghEbnBSiIVLL9DtPt1uEx0U/YkElEEvMyLZrbljJvnhvoc2zrdrCMWNCf35KpN5cElhBKHlUQin6ifw8qD300BoHq4qfc0EVEyxKlytbOyyvW+yvfgOonhqKyS2OXh96L8YvuuM9jwtpAiJyv63zMS170/JdTPJPtYSaSCFWQRRikouSn4Vc8HilGpkYgCFZe7/ZfFGzJ/e6m4soqY6/1fluHH+Wt9OZb6+fD82IWm2/K3KBxmbTPz12zFjgrz9TLDjoWwZvMOvDuJgZXiipVEKlh+N3RbtpzbnZMouP4VUaGI233+q6qS6KbmGrOvEyv/fG8KznxuvOfjaBsQN27b6fmYlL/UeczwX5ebbssRTKTGSiIVLL9bV/06nnIcZtZEFLYKjxmPMpeao02D47RhgUN/SWE9NNnZ8iqU31hJJAqLzed09fOcGTRRofhl8QZUxGBuWWVVdRo45J0oWawi2RYXmb/PxmlSYyWRClboras2M98iDjclKhjqitiIaSsiTEku5kHxJKWzCKfqJ907E5cEkSSKCb1ijTqPKU5vYFT6Ufce8v4nVhKpYMV1AE71cFPm0Em0s6IKm8t3RZ0MSqBdldHf814bz6q/QVxz2MKj/kmv/2BadAmhyBVZ9CRKg7+pMLGSSBQz6gf6hq070fGmz32LiEfBO+3Zn7D37V9HnQxKiM3lFZm/LcpvoVDnP14KiZwGRxQ/xRY3ZtTDTacvL8MZz/6M8l3mUVgpHKwkEsXMD/PWZf7+fcUmVFZJPPHtvAhTRE78tmQjAGDUzFXRJoQS4dLXfsn8fc278VovzE3gCg6ACJ/V78T6emFYvnE7Zq3cnPO6+vKwmpOYPdw0/Jv55o+m46cF6zBzxabQP5tysZJIhcuHJ+fcVbkZshG7QSA+mfJHansJ1CpN3aI/zl/HSGMJc+Erk6JOAiXcHxu3Y/OOCusNfVTkuQswHd3Ue1LIhJOnAaObFoY5OhVELcvhpg7mugaJpZ14CL2SKIToLIQoF0K8nv73IUKIKiHEFtV/56m2byKE+FAIsVUIsVgIcabmeGemX98qhPhICNEk7O9EyWQVBcyOYY+N8yElxkqKqm/Ruau3BPpZRBS9h7+enfl74qL1oX++OlfkcNPgrdm8A1tMGgKqqiQe/no21m7ZEWKqKF9lAtcY3J9Rx0JgtmHfmNmrA4+IHUVP4pMAJmpe+0NKWU/13yua7XcCaAngLABPCyF6AED6/58BcE76/W0Angr6CxApdgZ4g0pkt+pbr29EREn3eIyGlrspL3LAg75/fzkr8/eOiuz5Vp9M/sNwv58WrMPj385Dv7tHGm7z3NiFqDKZTMaCd2GwM1rJat5z1PevMhdx47ad0SYk5sbOXYPzX5oY+PMi1EqiEOJ0ABsBjLK5fV0ApwC4VUq5RUo5DsAnSFUKgVSl8VMp5fdSyi0AbgVwshCivp3jj1+wDi+OW+jwW1C+CH0FDIvMd+zcNVn/fv+XZY72JyLyymu+qGRTfozUyCdPj5mf+fus58ZnvWdWuK+0GUlEHQApB3+KglDlcztyFGUOZU7lKz8uxtotO2KxdmwcrdmcGlmweN3WQD8ntEqiEKIBgDsBXKPzdgshxCohxEIhxKPpyiEAdAFQIaWco9p2CoAe6b97pP8NAJBSzkeq17GLnTSd9uzPuPOz3x1+E8oXcXtuXmQxhy3qYSBElP/UlTt15eWn+euwZN22KJKUdyYt3pD1b7Os3ajSrp2jbnfOu9rMFZtQto3L9eQLP0oIRTGJVLJ+6070u3skbvloetRJiaWwOjnCvBzuAvCClHKZ5vVZAHoD2A3AoQD6Angk/V49ANoQR2UA6qveLzN5P0MIcYkQYpIQYtKaNWu0bxMFzk0Grn7wRx2amojynzCYlHjGcz9j8IOjQ09PoQuyR/bo/47FKf/7MbDjU7j8aEiOywgAZXrNiKkrIk5JYQulkiiE6A3gcACPat+TUq6UUv4upaySUi4EcB1SQ0wBYAuABppdGgDYbPN99ec8K6XsJ6Xs17x5c6zjJPCCF0ZLjJPW3R0VVbhV02qmzvPZk0hUWOJyy1/99m+2t1XSzMA19ml/5q07KnDxq5Owsqzc9nk07Y00KfjPY0C0vGEUAV3v5bhUBo0oS3VUxiUTjKmgz05JwMdXHAKgPYAl6VDM9QAUCyH2klL20WwrUV15nQOgRAjRWUo5N/1aLwAz0n/PSP8bACCE6ACgZno/Uzd9OM3VF6H84XcmaXWz6mXgQmRn4K/9vNjwmFwCg4iCpl4uQclxPjIJrGJ8HJ8SVAg0eftnU//AN7+vQuM6pTixd+uIEkVJY2e0kdUm6vvWzRBmvzEb0RdWJT+s4abPAuiI1LDS3gD+B2AEgKOEEEOEEO1Eyh4A7gfwMQBIKbcCGA7gTiFEXSHEgQBOAPBa+rhvADhOCDEoPY/xTgDDpZSWi8WU7+JkWAqenzcyh5sSUdCyRpu6iW4ag4Jl0hidMSlhWEr28yyzATI/+DLcNMTWHSX4ihmu8Wku6Fs3lEqilHJbeljpSinlSqSGiZZLKdcA2BfAjwC2pv9/GoC/qXa/AkBtAKsBvAXgcinljPRxZwC4DKnK4mqk5iJeYSdNvO7Ib3qXlLrA5GpOIh/eBWX15vKok0AxEkWFy3N0U2W4KfsAbNMuX6GcOwn759HLlaKNpE3JZNSQrJePxKEMPPA+44UOWPQxF9bvF9Zw0yxSyttVfz+C6kA1etuuB3CiyftvAnjTaRpicH9QwlRUVuHmD6fj0oM7oEPzer4cU8D84Z493NSXj6QYu+uzmVEngWIkiopWdtwa55lOZg8+ZN1TnTu9de2276rMfdGDiYvW40/99vD1mBQ+vxuVrQ737qSlqKySOGNAW1fHr7AxPIrZiLmgi4UxCXYbPjtd2Lsqq3DfFzNRtp0hovOR05aYacvL8M6kpfj7O5MDSY8edSZt5wGwdssOrN7E3qikYs8xqUXR2p81J9HD5cjCnX1mw031yirrt+YuNO4l72C2kx/srqnpl+ven4obhwcT34OXZDwUbiXRxjafTP4Dz3y3AL3u+JqFtzzk9CdV8t8ivabdAD4vvVfmr5ttrBfU7+6RGHCv8RAOireiOIwBotiI4nrwPtyUz0q11ZvL0f6GEabbaE+Z8hOY9eRKhlUgDaNbL4m3pKwet04RKtxKoo0Lr6KqOhdesp6LCBc6JdMKM89SZ+4MVZ7/WEekqBksk+j8OLyYAQA/zV9nuY32PKvPndFp/HJG9vpxCawHUATiXmFsUb8mAKD3Ho2iTUhCBN0oV7CVRDtFffV8kLjfWBQ8Zfx8SZH+bWO1no/+5HHz65CXHVH+mr/GvOEnkrVRs4abMgeK0ufTVujOSQSAbTuz5yU6qZKPmb3afaIocdZtzY0iGtcmnCFdWwAA9mhSB0B80xk1PxrhKqskllp0gBVsJdHW+c1aL4YKnTLev9jgqa19aPuBZbTCwuGmheWwh7+LOgk5eAX6y05hTlsZV/Yo31WFFWX+zzH/x7tTsGQdR0cVigtenhR1EmxTbhdtxF/S5+Us/XfUXAx6YLTpNgVbSSRySmbmJLo9gJvPZEZZSNwU0KWU2LgtN5AFJdf4Bevw9oQlkXx21mLarvKs9HH8SU5BUv8GO3xY01lbT5UABj84OuvfZuav2YLut35p2etA5BfWEc35kb/+NH+t5TYFW0nkA4zcCrPe5uSjrIauUfwN/225433eGL8Eve/8BvNWbw4gRRSF0579GTcMnxbJSIKbP7QOkGVGGVbPTvGUiQvXe9rfaMixk2tDu63Txsd3Jy3F9l2V+GzqCuuNKW9E2UZdnY8wIwmKnSWWCreSaOO6y5rAzx6dvJOEvMfJZXfuCxOCS0iBWrZhG35eYB14wg9uK3ljZq8BACxYs9XP5FAMWK1T+Pd3JuO0Z34KKTXOJCB7DcVrPy92vI/62WRUSI6iROJm3UwiNzIjEpiRmPMUXcx6k8KtJPIRVvDCrvfrfZzVVejkobyrkjHR/Tb4gdE4/dmfDd/fsHUnDn5wNOau8t6Lt7PC2wXJ4lv+scqjPvxtOcZ77Kny8vl+7UPZ7JRPnDRc6w039cPOiqrQ1+Yjb5LSQ8erypwfP5+dQxRsJdEO9U1UJYFHvpmDdVtyo0RRYYh5nhr79CWRVfln1KzVWLxuG57+br7nzzL6/Rau3YoFmqHEUkpsLt9luh+RV256jqp7APL7whw3dy3m+NA4BJj3NtqtDDr5pTZu25X17/d/WYZtOyscHCGlyy1f4JJXkxMUheJj8TqLkS9sbbJl4dpgRxAVbCXR6fPrg1+X4bFRc3HD8GnBJIhiZdHarfjvyLm+DjPWHmre6s2ZZTX8wMiYEQrweTbkoTE4VBMF85UfF2Hv279mIIk8l+RyUr7nRme/MB5HPvq9L8darIk0mhU8yJdPsLZms3EDuNKzqXc9jprF5TTyVZDDi697f6rFZ6fkez7ilnJP/r5iE1ZvdhcB2U6RkZVEm54ek+opKN/l/zIHFD8XvzoJj46cg+Ubtwf2GfeMmGm9kSaPvvDliZi4SH94GSuJ4YvqjH/9+yoAwBJWEhNl9SZnD/NI1klUSXIlNV8Y5THa38ZrXmT2W/PRkj/iEn3Y6HJT0lcoIxL8sGn7LuuNXCrYSqIdepdm1A9tCsf2dGNAlc40P7eXgLZVrkPzejb2yTZq1mpc/vqvutsyL02mnRVV+G3JBle/n/paZNbkr/Vbd7oagmfG6UiUqH9SN58fdZrzgbpg7PV8bi7fhfd/WebxKJQE+VQGYJCkeGAl0UQ+3XDkTlaUOb+P7XI/o4YK9iQG58o39Svmfrh7xO846akfMX917twCOwsK81cPRp+7vvFtOKGioIJL8cIM1akGUW4XrXU+2mDgfaNw84fmDRoVhXQtJ4TfDYWBNjwaHFspxlRlehRZWQzC6s3l+HmBddAzVhIB/DjPekFJBa/XwhDE7xx0pEDWEYNjtT6Y2c/065IN+HXJBsP3Z/yxCQCwYdvOnPfu/3KW6efurKzMDD0l/y3bENxwc1sift54KqDxWelaVlZucB61PS3zDZbAcfNcWFFWjjfGL9FPT9oRPjegEAE6w6hZsAnE9OVltrYr2EqiOsT0mc+Pt70fK4nkhNn1UlRkI8y5TgnBqODGnsTw2TnlJz/1I05+6kfjY5js+87EpabHvuBlRhbMZ1FPb+DjLhp2zntYl0ZllcRTY3KjNwcdVZGcS1IRwO5wUvYkplz19m+49r0pvh3P7jKABVtJtHOB6t1wHCdNflwD4+auxQQb65vp5Y9Gn56g5wOpmD3Y+YDML05/zsok//7MkALl95VhdLytPs/LpeA4yi5s3J+u5iTbXbLFYLNZ6WVlkpz1BeHjyX/gPT/nFtvMnwu2kmiH3Zo25a9Vm8pxxCPfYUWZu2FnRqHMz35hPCYv3Wi5v14+aZR5JqkVMR8NfmA07v7sd8f77apM/aC6v7XBPvq/NZ+qcee0ZzDqdco9FdR4OTqiLlyrb+84NUw/+NVsXOxiXcQZf5RhU3lwERjJviCvpslLN2LPGz/HKU8bj5wxS0f5rkpM0ZSL4nP1x8sTo+eF8jkFW0l0WwFk60ZhUB7Yb09cirmrt+DtCebD/oyP4086zLw9YQmG/7qMw019UlFZhR0V9pa6GTN7DYDU77Rk/TY8P26ho89qf8MI08aCzeXeW/F/XrAOX0wzn1NJ4dq6owIPfz3bcjunPcnTl5f5vHam8wyMuZA7Tp8Vdrf3+7HwjYs50MMeG4dzXpjgb0IoR9RFgO/npJ6Hvyw2noOv0MvbWL62b+aKTaF8Tkkon5JHeA0XBt2FXDUZcKXDZn43Qwf1exKrXy3fVZkJq9+lpfWSGmTtlKd/xJRlZVh0/zDLbT+Z8kcIKfLm9Gd/BgBb34eCpdy6j307F898t8ByezvRbdWOfXwcAPe/tR/DmwvhGTnCIpCVG07P2xfT7aXBy4ioMbNXo0+7xq73V9P2EFH+aVK3hm/HUnrQN27bhV2VVSgtLtg+rUDYzRV41k3otsoUwhOQbHlz/OLgP0RvTqLqtb+/MznzN3sS3Zm+vCyrcDxlmb2oX75jM2reUwo+uyrs/daJHm6ax9nRXwJYEsdoKLLRbzDVZj7l5bFwz4iZ7nemxHPaaNSpRaqheq/dGlgfW/c1/c/7/Y9wes0Kid2osawkqjz89Ww8GdI4X0oGs/toqcPw+K6WwLBolRg3t3r5FoaKdm7k76tw7OPj8N6k6Beb9lofYB0z/pTfyEZg49T2wSVF//M0H+jl84f/utxTWgpN1Pev7vA/l8cq274LW3cw4E2cBVFaUBqq69YsttxWNyif6jV1D3iiA3jFFHsSXXj823l48CvzeSJxmkROwVHyJCWjkjrv2RkKFkTBX/2SehkNVhGdW7QuFcZ9djqi2uJ17sK6M1cgO5TrxM7yNwCj2xYSo7KF17Y/z/u72KfXHV9j/3tHeftgsuXzaStQtj38oEB6gYiUa83tCIiscpbqX06H3ZM1u/lC4VYSTU7Q6k3l+GLaCuyoqMp5j8/swpDzwPaxldUJvbxRXXAsVhU2iwr3brZUtm0XHvl6ds48UqX3VRnqFcQwMqIMpfHJbk+iy0xm2rIyvDvJXbAtPz6f/OP1N3AyJ1FKiW0el7xYsi4VOGkzexIDt2TdNlzxxq+4+u3fbO/jpOHJbMur3rL/mXaPnZU21Z+sI0aHgWt0nP7cz1iwRr9HgddqYbCTj0ZVgFJ/bFYlkcNNDd3x2QwM/3U59tq9IYb2bJV5XTl9ym/p92/65vgltrdlgTz/KY1PdgvubkeuHPdEKoDNqf32cLSf9tMKceTMzwvWoXZpMXrt0SjqpADwXuaw3SAB4JUfF+H2T6uX8XHTkz34wdGO9yF3lCjcTqe+AN6np/wwf52n/S0b3lXJcxokkKzZfQax70HHsvXGNxyH/+QPO3nkqs3lAIAvpq/E4nXZoeXtFKC8Xi9W+wuDvylb+a7Uw7SiKnt0gHLOlJ5E9TUxdu4a28c3+pmeH2sdwdINvQyeOVP8ZYaxB9yTGKWk50OnP/szTnjyh6iTEYnPp68M9Phz0sP6yR/akTBh2qkz0k659+2Ue/R7EvU3iOL7xVX7G0bgl8XrPR+Hw029MDl5DA6SP+zkO6s37QAAzF29BTeml5pwsr+X7QEbGakKr01jmbmlmnOnnDPtHFQAvqzrFfWjbf6aLZm/35m4BO1vGIE1m3dEmKLClpmTaPNW9bsBvbJKmhbgtO/5lWcl0bsTvQ/XdcLoXHsfbhot9TV15KPfM6CNj5SRRFHM2atR4q36oHtd6482ZSVR45vfVxu+V7bNXtAoBq4JyC+LN6CiMrcFhfKLkiUN6twMAHDGAGfDtrTHcZ0O3cA1+ke1W/AsSOlz8+Toefh5QfUwmcxwU2UYoMtz+NvSDV5Sl0pDAA/CP780MfP3u+kIrm6D8xSqXT7m98pvbHeoj5+Fo9Wby9Hxps/R/56Rtvcp5LLZXSN+t94oIOp8yE2eJKXER78tx/adlf4lyid6sR7IHeX5FVQd0ez+b1yn1NuxdcoxRmWbfB1uumzDNrz0w0Jfj9nrzq9x8INjMGfVZl8aulhJdGHiIv0C4QUvT8TR/x0bcmooCJnMMZ0Jq+f7KW85LcC5m9+jk5HmZ34ZKOXXm7Vyc2ZxeUA9XCd7O6eWmgxRV3w+zf8FuNX0rot8fbiG6ZYPp/t2LKc9iX5auj41XH7tlp2G2/BqUYnwZHjN439esB5XvzMZd0dY0QWqg9hQMErSC8wr0yncNnLO+CO15mbZtl34fk7uNIu3JizB+AXZcxC9xkCwWgJDLV97Es95YQLu+PR3rN9qnCe7sXbLDhz56Pe47oOpno/FSqIOq0vfqLD/7azVmLmCi37mBzvzDUNIhcUSGBxhaq3LzV/gs6n6FTTl/GV68Xw+oerewWvenezbcfWSWSUlFqzZkikwGKbJt1QUhtGzjYf2OKVcDjsr7f0Kfg4jc3MoNw1b+ZIlqb95ZZWMZJkBAK6GZ25OL0+walO5p/mvdn99ox6Ls18Yz0bNACk/rZLnuz3XF7ycGnGy0GCUyY3Dp+E0VeOq+rMBYK6Luaa6kdvVf6u+TFWedj4recrHk52tKetLQDHOSQyQx99n5opNmLeaE7gTweS3ttO6lRXRuYDn90Rpp8lwQe1cxSALuOW7vD3pnvvePAjO7JWbcejD3+HKN72FJqdsxT52+yn3s93AA352BNta11Wa/9sOo4Jekt37+Uz0uuPr0ObTqSt2d4+Y6WL/cEOajZy5Svd1zj8Mll93V7FRAByTD1BfYyc99WP6tdS/Z610V741yi8q8yQf0VLO4B2f/o5py8oCmVu6elO5wWczuqlrVmPmJyzyFlno6P+OxeGPfO/pGBQuiznWgbniDZ11+/Izv4xEdU9i9r/1+BH0ZYyqV2re6i1Z71n9rPd8bl5YfGL0PADAD/PWukob6fO1iJ2+0OxWPP1cgiKKbCPJZTt1gfWTKX8AALZYVHoWrNmC92K0PqXT47i91jmiJRrKNZqZHePydyguVhpL7V8w6s/Srq25bWclVm/Wr5xk9td5zaiOlK/TJtTn8LgnxuGpMfPs7ejgdAy4d5SzRGkUbCXRS572n5FzfUsHRccsQ/VvnUT/Mzd1wdHJQsmUS3v2rM6mk6AfQO6vP2VpWebvwx/5ztGxAOCf701xtR+QP8MAw/ZHWblvc0aqpzrbDVzjy8emj2UnLL33D1R/syQX7bKG9SuvWXyhYY+Nw7XvT0VVlcS7k5ZGFuQuk16Px1mwZis2bvM2zFabBm1FZM3mHbju/SmWw+TJH3rXcLEmyrcd6vKT3m6bLIZn6ze8V786alZ1g2q+zknUmvGHvelqTs/GpvJdmLpsY9ZrXAIjYIMe+FZ3gi8lh62KoOn+TgPX+MNLfjlh4XrL1vBCNn9NdJE/7eTZ7/+yLKcHkoL3x0bni1XrUe7dIrtPXpOb/YNfljn8cPVh7WUihTzcVJ30zIgDi1x8e7qi8+6kpbju/al4YZy7yIVee+a8RkdVG+NhTu66rTstowPfPeJ3vDtpGb6YHmxgr7zm022mbZQyu96zgvnpBk1zkQDVcRaonsV52pEIt023z1pMPdG68OWJOP6JH7IarbgERsCWrt+Ouz6LNnIYBUf7YNVb5DWq8o/bj924bSdOfeYn/EVvCGvMbSrfhdd/XhxYoVNCYsrSjZEFpwjDpMWpqMwJLrdHxu9zdnj3lvY+1+S9f7w3xdFnqgtaRsO3zCKfupHkBim9AvI2m0tKbEj3vjnpgfbzGssJyGUvBQ5ete/tCUtsbcdRMc75nS9pe+xeNGnk0P+1ql+1GiKqt3+hPZr8GqZt1QOprMjgprLNSqIHhXZBFyKzFhs7Q7OyA9dEe8UoAVyUcNdJctPwabjlo+n4JV3RscvJEKalG/wP154bB4C5RhL5NdxJ+f1Li8N/9Kq/g1Fh4cD7v836t9n1+v4vy9D+hhFYu8V4nu4kg+WikkDvJz/s4dyh3qN0grb8OD81L9jtVeOl52T7zkps2VHp+Th+2WURyZeNVt45OYXf/J66XvXKI9qXHvvWeI6csKjhWOWZusNNDXaJuuwUFO0ZdPs1r3p7sq3t3JQ/WEkkcimqB7A6w3TSElXkYt5BXCgt8k4jhB7/xDhb24n0/4KWxHNP/jUIhh3KfUVZ9TBZ9XewW+k12+ytdA/RorXZQ7TVd1GSoxJmz0k0zhv+Oyo3RsHYualK4uZy+z2p6t/k6THzbe+nddC/v8Xf3vrN9f5aej+h+roCzM+PtmDa925n87rJmpNK1Aid9XqXbdju+DhBBCtiI6p7QURGBVhJjJRRaFqKI3c3oM4oVc/cHifB5TXXD6Q5q8zn772dXt8raQ8npRCqh5EGvdMWlqIKnLBhm7fhnwPvq+4ZVH+HIL9Osu4kEzpzEnU3s1GRtmPQA6Mzf7tdb3nrjgqsUw1xdTTY1EEvzvkvTrS9rRXmV965uefUPYEV6QqGk3qG5XribuYz503mYY+f1/75L+vfk2puzm/BVhL9mCvhtQv89Od+tt6IYiFOmZfbtCgVIT6Uq01eutHxPk7u+ygqn1bJy9ehO0Hy65wpR7F7D77+s/1KhuVnZw039f597JyTfMlqwvgefkTQvert7B5EKaXttBtdk3q/8sbt+mnVC9RjnR9ZJIwsuauQZe80fXmZz0vuOD9WoV0K2h54L+c/qECaBVlJ3FVZhTGzo49MunS9/3OgyD7zglryijeW2Utmg+R9N0WQlS67Bffpyzeh/Q0j8OsS6/lWS9dnD8sqtIdgvvBrJI9SMBs1033ESPefXf237eGmAOasyl4Y+5UfF5lWELOWcU9wi1TSRhcAwLTl0c439zIHNcGXSuT8uFa/nL7SUT5ntakfFVdyxur82Q28pVaQlcSdFbkTQ+K+WGdFZRV6/OtLvO807DkZcpIfZQWgUXrknO7n0yXm9mHqtBcjTuIU+W50OiT8yN9zA1ZYMitch/TDqD+nz13f4IQnfwjlc5NE+zP5Pd/j21nhVxLVX8HJ3MgjH/0+69+3fTLDdLizWnzuWueyl8CwP+fOi1+XbPBUUI5TPqmw+21YP3DO9agigx29jzDwNlrB65qcSWMaRd+F58aaL43R565vVJ9tL68oyEqinns/n+l4n/lrtqL7rV/mvB7EorBbd1Ri685K3PnpDN+PTdbcFASs1odyS8pUJn/HpzOwoqx6XqvdOQLxK0Yki3Ie3eTnFSaVjShaUddv3YkpLobcFhr/ehL9OY67z/ZvuGlFVVWmkKE9Ur6U9Z2cox0VlWh/wwjPn3nyUz/i48l/uN4/kGAiOqdh1SbjiLZ29idnKqsk+tz1DdrfMALbdXqDnJ5jve2FgK83r9NDjZu7FrVKi/1LQAL4fbsGMUKFlcS0r39f6Wq/7ToVwnNeGO81OYaY34bDjxaeN8cv0RT8/fv11mzegZd+WJT1mtXRlUJPEnsSFUEWOJyeFjdpeWrMfMNeqQmL1js/oI4k/75x5VdvUZRDGLN6Ej3eSEJU91mZHaperRJPnxMXVoFrynzsAVmwxjzYlhkvIfWNtn35x0Vuk+MI8y1jM/4oy8xZXaUT8NDp3ay3vYD3fMHLkl9Tlm309NlJlITh+KwkBmDiog3YXG790GALW7JZ3d/aHmU/h5gVFznPXDKVxAT2JQadl0pp/zMmLfZWmTN6EH8+zV1DFQXPr7w62jxf3ZNob48dJqNiitJ5kNlUjfoxriSe/uxPePZ746UmnBTgrvRxyYnFPsYqcNooofeVl3hMj1UaWAxyRr2sTObcOu5J1O9KtJM/zVq5yVY8DaejL1I9pIV9NcTx27OSGJC9b/8a60wWGaZk8ePmvffzWT4cJUUvAw4iJDXlUuZjue0V4s8Qf9rfyK8lMOLy29tt5T/tWeMI3Eo7lfZY6n/HOc/5ecF60zzZSU/IhIX+jAIA4HG4afZT4Id563Dow9/Z2vfcFye4/lyKmMNGVC89iUP/MzZruRbDz3B470e1zBCZK8xKos4NtarM/wrd2i3eQ1pnJK/zJ6+4DRgURLYnhH4Bxm60sQSMcDAU1GPE1TlxHTTA3X52uYlgRub8jm4ajeqL3PP3kUBR+qaJecw3X7hdJzFJ1PPbnfKyvNKnU1KV4nw5j0FQj/7RPcU+zUn0ei+rd3caDFKC14CRHRX+P9Pt3quFWUnUsTOgICNmvNwPqzeVBxIgp5C4jhIag4zMukKYuwVb6oylTo2zCyLO53PMbHdDmx/5Zo6rtSPzndvfWrseb6RVRNXl7ce1W1GZOsbaAhgxk5Qh+ss3brfeKABm58fupZbkxsugqc9NaXF1sd3/R5B/BzzD4TrgcX6eBmHasrKc+9XoFFzx+q+2junkDNo93QVZSYwiL9pRUelPtMv0Dzvg3lG45LVfvB+vgJndJGbXyKTFG2z9lqkeP+fpCsLGbTs9DWOiXK7Dj4dQVZjucr20x0bNxYlcEiO3kcXlT/aSdnHxCPMDdZ5WWSXx6ZQ/bE2JaFG/pu7rSqCl+75wHhk8acKuwOzesFa4H5gAqzeX44lv5xb8WnpFevEIHF6f67fuxKZyTQNW1Kc16s8P2fiF62xvOyqCJZMUBVlJDItSGPx1yQZ0veVLHP3fsabbX/TKJAy8b5Tue3oPqe/nrPGcRnJn644Ky9blIDNdp8f+61u/4dGRc4JJTIjOC3DeTFgFwcgfxuSYf9FNo6Oer7Z6czn++tZvuOx164bGFg1yK4nq8+FTfToxtOujBvF9T9y3dQBHtRZEj6lflbqr356Mh76eg2kuG8DyhW50bIeneLTOSBMlrJ1tesnw8FNXSeNctnCemeF9UbvlnfiGHssjJz/1IwBg3mrz0NYjZ7pYnJsiISXwzqSlUSfDkDZa5x+qYQ2Fk+Ea+993xlEN7YrzaTTtJeewrtDkLqUTj6tmy47UVAWrZxKgfy0p+wPxvg/8ov4ZL3p1UvCfl0f3qF+X/Nb0XGunc93ygdH1oD0Tdiv5ur+JlJFedzHJGhPNzwBaClYSffDl9JUY2rNV1MkgH1lllmXbrZc4ESLaddHUZNbf8UiTE36vJ/Ts9wsy60655Xq4acSnP+rPLyRxWgdLnZLvZqdGoWxwub7f31RLPuzfoamXZCVC2L9j0u5RP05PnO6VODO7Nuw+2/W2M9pzktH6vT7/XIUWuCbq693up4c+3FQI0VkIUS6EeF312plCiMVCiK1CiI+EEE1U7zURQnyYfm+xEOJMzfEM9zXi93VoZ8iObjoK6Y7IMxURt2ZaPQx+nL8Oxz0+DjsrcudOJiUIQ5C0996KsnLHZ8VtZTuMCfpe5zBUVklURBDMKy6C+oXiErjGz/0O794i+4UEP9aWbdBf/y3sZ3VS60t2071w7VYAyFlvr7JK+hO7Ic+oLz8/nh96hzA67DXvTjE4iN4xjNO2futOHPrwGMxfoz96odAC1+hRTsE3v69C+xtGYOM2H1dIcCmKOYlPApio/EMI0QPAMwDOAdASwDYAT2m235l+7ywAT6f3sbNvpPy85hesSWWqvI3iwfaQF81m/e7+xtZCtF5d/8FUTFtehhVl23PSkbSexN53fh34/Ntx89Zie0jRgiWAH+evDfQzJi/daHiN2inIHfHId+h08xc+p6rwaM91XApCPVs3AAC0b1rHctuYJDkUhz9ib01BNTb2VtOtfOhsp0Rf1i67cc4L49GZ+Y6prFFBmhNue7ip7mv617FfedZXM1ZiwZqtePa7Bfpp4m2U+QWe/T41HWb2ys3RJSYt1EqiEOJ0ABsBqKOznAXgUynl91LKLQBuBXCyEKK+EKIugFMA3Cql3CKlHAfgE6Qqhab7hvSVAvHl9BU5rzHiYLyMmOouUujaLTttLURrxSpDVR4eykNjQbrlNok2uhwS55TTJWXcDzeVuPuz6CJCSplKQ5nJeU3y9RIEt791nHrt1RVW5fvUqRHsjJOkFfzKd1X3YqmTzuGm5r6YvtLwPbNeK+1p/XF+KuLjNe9O9ill+UF9Ds0aJWw3AOsc48nR3ufpm1Eqm0p0Vu33kFImrgHbC70cRWT+P32OADw+am5YSdIVWiVRCNEAwJ0ArtG81QNApj9bSjkfqZ7DLun/KqSU6rCMU9L7WO2bWJfZXBOFgmNVuHvs23m2jhFVlqfMmYxi/U8ypxSEtMIsh743aRl63fl1eB+YMH4V0nMD1/hzXDfUeZqT3oGkDn1MsiQWlX//Y5Pu63oF/6pMI2Y19d/Df13uY8qSQ0qJqcs2mm6jN0BkZ2WVo/VKja4vr0N9za5bJd16K3hY7VuoVm0qx8PfRBuVPsyexLsAvCClXKZ5vR4AbUzjMgD10+9pcx7lPat9swghLhFCTBJCTCrbGE4I5SAKBNrWl0KeNxSUHRWVWLmp3HpDC0G2ilkV8pRIcB/9VpgPWyt6Z+/6D6aF8tmXGqxvWhRiafy7uVw+JwzaXzRuPUR2kuM0zfnSGyCl90Kzl89Omh0V9kdizF21BUvWbcPERRsyr5llf1VVMpknxaGXf1yE45/4AePmZk9HyL6npM5fwKK1Wz2PXAgycqxSdlWec9re+QL4eR2LwzkJpZIohOgN4HAAj+q8vQVAA81rDQBstnjPat8sUspnpZT9pJT9GjZq6Cj9dmjXTgKsW2Dd/P7aG8uPUP6UbcTU3OG+bjlp3bNLADjo3/aGrEYdYCdoOyoqM+tGrSjbjvY3jLA13y+sIaxO+P2A5lwp/1z4irtlD/SWwIgqhL9e5W3mik0FuaSAXW/8vDjqJCSKXplHLxt6Z9JSDH5wNP795Sxbx+1w0+eYsiz/10ecm16SZuE64+H+Rtm6H/fxrkpvxzB75CjpU3oStc+nKiljUSkK2sqycoyyudxdHEZxhNWTeAiA9gCWCCFWAvgngFOEEL8CmAGgl7KhEKIDgJoA5qT/KxFCdFYdq1d6H1jsG6q/vzPZ8T5+3BCrN/tfCSkURjdghceMMnN8CFz19mRfjqXmJHX5XFHYVVmFrrd8iXs+T83vU9YIemtCfNevVMQh89dyeq38sngDbvt4el5fY17ptezHIXqj+hfTi4Cs5uVaTUKv4rotO/DjvLW6QSK2hRTMSisJ500reSmOn+L0zValqfBlzUk02NdJHVF7fKvX/ZAZbmow3lTCOG9M4v1g5OSnfrBudAyhfGA3Xw9rncRnAbyt+vc/kao0Xg6gBYCfhBCDAPyK1LzF4VLKzQAghBgO4E4hxEUAegM4AcAB6eO8YbZvmNxewj/MW4sDOzUzfH/Zhm245aPpLo9OZozKtkH3vg3Ys0kgi57qimFlxC870oXbF8YtxEn7ts68zkpLypxV1gule3HK0z8CAG4/vofFlskTVKEkqCtTSuksuIoqIRVVVQCKTY7tPl1JcNOH0/DVDP2WfTvffVYQEQgjOuc/LdCfL+2F3YbszeUVvn920giDXjY19VQTt0tjuG0HX1nmfhqO9XBTieOfyP8AjX+kz2FSstVQehKllNuklCuV/5AaJloupVwjpZwB4DKkKnyrkZpPeIVq9ysA1E6/9xaAy9P7wMa+kfrWxlplE40WKk178KvZGDOb84fCVFkVbEu/0cRtu+zs3muPRgCA/u0slw1NLPV5GO1xXcB8dMxjYx1tn++VgTgI6hzbOW52b0T1P/wf5uzr4QK3fZd1fh92W1vCTqGptyYssbXdjcPDmRMeZ0oFSvv7Zy97ob+vk0rivZ+7i6598IPm01zMGte0wYpyo5u6SlKifD3DOApwXEWxTiKklLdLKc9W/ftNKWVbKWVdKeUJUsr1qvfWSylPTL/XVkr5puZYhvtG7cGvZltuM8MgIhhFJ+iexKAO/9uSjZm/pyzdaLhdvsgK6R9dMhLH7fDBdVt24KYPp+UEqCiEh7tbOXMSY9hDaVVJjOPQaKfem7QU7W8YoTu01nRJgYgubo6GqA66NlnzLAt7OZIoaG9JadB7qF7X00ljj9G2VhXNHRX6S8TYYTnctAAuebsjyLbvjGaYu55IKomRC/FifHeS+fyob35f5WmOSiHcWGHLp0AOepl+vlwz6vleUlYXHsL6etrCS1K4/f3v+2IW3hy/BJ9O8S+wU1y5PUc7KipN8w8ZUJBGp5UK9eZW+Z2X9MYhr6mqkrj2/akAqpcGsiuq9I/iyAhcnY7z8M5Eez2R+SDTk6jtZVP9bTRCxI9rVe8Qduvkn08zfy5k1kk0OKBZBTUO+Ygf1F/9rs9+N9xu2vJUkCanazcHoTAriSH6dEr2ouvrdKJdOhkmQMELvJIY4s9dKFdWFBPbk1pJ1LN43VbLM6jkU+zlMNb1li/xt7d/M3w/qHlXdn4Ro+AXXkdOXPv+1KyAF3G7OoarlgFymk9E9V0WrDGObhlXeoF//KCtVCj/mrpso+2hrElRPScx+3U7eW7Y5UhtVe+KN37Fui07DbdXklfI6yQ67QXfYRFUzBt7aSnMSmKEoxUuf/1XR9vn/8CK+Al+uGl42WE+l+ezhpuqvueIqSssIzYWMr3n1BnP/my9H6zny5D5Ejrbd1Vixh/+h/J3vJahg4AXVuWanRVVWLZhu7MEhGjjNuOCK5DfeWSYgppTqK0krihLXWvHP/FD3s1jzCwPoclV7VyjfjRuO7kX9DY1q9Qo6Xvlx0WOP7sARhjrCvZr2/uxC7OSGOFwnxWbch+mnobzsIjmmlHG41cY6ELN2KIgkZ2hrglgfcp8oZffbNtVaZmHFdL1HOQ6mr+v8H8euvMesurtreJ02Xk+1SjRL0q8+MNCJ8mKhNm5YwXSGa+Luesp1nQ9XeawoT1JlAqxtghip0jiR+Oz12Ns32k8UkI59laD+Xbmc4M9JSs2rO4O7bracfjahVlJDIDRhW9nzb0+d33jd3LIBm3Gs3pTORau9W+Yj1HGFocbPx9MVS+unBMpLd5nOdEVrnifWl8c8eh3Oa/5dU1FdWmqP1Zd6Hx+3ALPxy4t1r+gP578h+7rcWL2e7ARNnqJziud8jTctHoeZ1Q2mQynt6roxu1OW7R2q/9LlVlcy1OWlWHVpuplRoJ9VnC4aSzYWXdom04Fc/ivy2wdP+Zl4UQZcO8oDHlojGH0Lb9wDqo/Tn3mp8zfOUMgeYoNCQEsW78t53WrU2Z0V8S9Qu6G3txBv+YqR3W+3hi/WDcNr/60WG9zR9TfKNaXQ5zTRrqMAp3ko+oh/dkXqp2sx5fhph73b1DL/dLrcSsXHfLQmKwyhh/s9LSvUa0runuj2r5+vhusJMbUNe9OwdRlG6NOBnkQ12dbvLJif8Ts+RJrK8rKMWWZ+3lx2gLMywZzTEhfEI1Qdq5/9Xq76iH1bRpHXxAJklWwCNOeROW9mOblhUA73DSfGQausfHUNqpkOWmUirLBj8/wlGMfH5f5++JXJwX2OWc8Zx2HAGAlMda27sjtYdyyI5joeBSeOGWG23dW4sVxC32bhxmVpA0LC2Lujl1/e0s/+qbVdakuwPy2ZEPm9btHuFuYuVDFodCr/qkvGdzB+/EScvutKCvPeW3WSuM5ojLnDwpbXBtbg5AJXONioXlflsDweAwvu+fLLbZk3TaUbd+Fj35bjvY3jMC/v5yVeS9O17Ld4H6sJMbYVzNWWm6TLzdWnAR9I8dp6YSHvp6NOz/7HZ9PT/bad6l1ErP/HWdJq9SqCQGMnLkq6mSEzq9fLIr2GG2hU52Glg1qeT++6uyMivG1ccKTP+S8tsEsSFHcM5ICUBynknXAjALX6NHe034MN/U65NOssVn9K+r1WMZtuKlbgx8cjWGPjc3MD316zPxoE+QRK4kxxmFcpMfpWjtmlMWl9ebFJknusgz58cAJk9U5Uz/DR89aY7yhjrcnLMEXFostF4wACkPLNmzH4Y/kBttRaMtu6kLapa/94j0BquPn00LwVTIVcXCBjwHN8loA9bkCqiNmTp+dCtNFr9gbiugku/FazzTbXf07rtyU26NvtnPS6o9xXhLIKVYSY06vQrCjorpA/+b4/FpMNkxGD5+4T5TPx0AhXmlPyRGPfh9NQmJm+cZgHlZOl3G4Yfg0XP5G/oaudyKInsRXflyEeau3GL7vV9CdpNi+sxIPfz0bOyuqPNVbhAA+mxL/CK35LMqh+WFTynu50U1zt9U2xsThDh+/wF400IH3fZvzWpwadjeVB7MEUhKvZFYSQ+ZH+f41TTS6VXqtMmTJ6LdI4o3s1S+LNlhvFGPPj80O4293vD1VY9uDOTfnR6+R77ZPZviQGme0PRN+D+2K26Xz5Oh5ePzbeXhz/GLrjU1MSni+mHTvTFxSWD2JypxEF/v60XjsNcjNlzamSBkfz/Wuvrv2vSm+Hm/qso147efFibyWWUmMue/m5A7r2qEpAMfp5qJkemfS0qiT4ElFlcSCNckZEpbk1vEkpz1fWRU+7v9iVta//X5mxO0ZVL4rNdpmZ6W3xqKfFqzD7Z/+7keSCoPP18H1H0wrqNxGGC2U6EGUt+bslZszf1s9N+w0XC1etxVnPvez4wCOs1ZuwtcOKrArN+3IeW1XZRV63/k1Pp683NFnA8DxT/yAWz+a7ni/OGAlMSaMWnDWb91pvW/s2nGTza/WnrFz1/pzIMqxUidK4SPfzIkgJe4k5Z79Q2e4anlFsuevFiLt/PZ8H32axBZ7MlBAP6YS3fSxb+dlvW7neTF6tve5wE7qpnZiIxz1H/vTPuzkSQ9+NRs/zl+Hbx3Oex76n7G4xOPc643bdmHjtl246zP3jUZPjk5eEBtWEkNmdBM+/V3yLp585VdPiV4vsB/8DFyjNW/1Frw1wd95rs98Nx8/zPO3wuzk4RNH05c7m9MXtI3bdmGXTq/LIQ+NAQBMXLQec9Nz3v71cfjDJePAacW+orIqtKVlnHY8JCmS4KbyXbju/Sm+Lv9UaHM0QxNE4Br/DxlbXh7tn09zP9RT4SSP8zs2gpNlPqJYRUgpF63dsjPxS4Y5wUpiTLw9IdnD/fJJvjVc/roke16NWWZ87ONjcePwab5+/n1fzMJZz4/39ZhKVFbyj17jgDK380//+ylWS7ckQaebv8A9n4ezhuRrPzube6ct4D3w5SxPlbAge8af/W4B3p20DC//sNDW9l9OX4Hnxppv+6f//ehH0igE+fY8NhNEA3A+BbpTGreiCC6oHqn0kYshp3ExZvZqHPrwGNvblwSXFApKPt30FDyzqIfbNUtflO9KVQqqqiSKYrDoN4VH+e1JXz5nu0+NmR/bsO1OK6CXvV4dRVe7fqri1yUbPaaKwlJIc6CN6j5h5T1Bfo5Vvc7sfSVZSiUx6itio9naqjF3y0fTHeX17ElMIDvhkcmaUaYU5HDOsAmR26iwdssOvJ3uNRoR4tp1c1dttt6IIsN8pHDo/da6a5fFAK/LwjZ12caokxCaFRujvQeDvNUWWqw16mS4adhlNO1oLMXKsnK8m/Cgf1ZYSQxZUOuWkXOFUPiQUn9C+A0WQ0q9nJrPp63A8F+X5bx+p4cJ3xSd+76wHjI5f41xbzXFj9797WWenp95aWWVxJnP/Zwzj1lbMPx5wTosXb/Nvw+mWNKuB5jP9mxW1/djOrk19e7jpev9KbN++Fv2EM1ZK+03Gi9Zvw0/zluLr39fBSD8OYknP6U/PP3sF8bjuvenoixBPYtO69esJCZQAdRtIpU//YgpYQepuOKNX3HNu/6uM+QGh2U7YzSs75nvFui+rnbYw9/5nRwKkN6tYVRJDHtgxfqtO/Hj/HW46u3fABg/705/9mcMemB0eAmj2EhSodwJw+GmIX1+lFG3zfKZx0bNxZmquAZBz0m0e/S1W1JLZSQpEJjT4dusJMbEEraIUiBk3vWY6kXh1KMN+0/m8u06oRS7BeqKKv37Kuzr4kWbAWr0LF6XO6Qt3xr9CLj142SuOaf1/Zw1pjED/OCktz2oe/3dif4OySyKuOYiBDBn1eZEz020i5XEPHDJa5OiTkLiVFVJwwXk8y1ei5setTj3wh3z37G2tvtkyh8BpyS/vOShcK5Yun4bNpXn/4MzSf7+7uSc1/R6DHZVeBhu6nrPXE+PUZaDcp4RD0kv2ULRGDE1nDnuW31cDiVK5744AYc/Yj0Kw8vz+NAYjPK47oOpvh7P7ZzEt31c3mu0ahj0Z1OTU9bgcNMCoO3ajtuaa0nwzcxVhu/lU+AawHyR2holycsC5tpsec2vXzF4m8q9F7wGPTAaxz0+Luu1z1XBkX5esM7zZ0Qlxu0mpvR6EvS+y06bPfRB2lFRmfOa1Xmfvrws87edaZXKsi6UXAm9FcnEuvTQTTvcPtutYjG4dWuC1g52eu6SV0KkggoJbaR8VyWeHD3P9tBDLe3SD/lKSvNWyL5tG9s6ztRlG3HCE+NQvis55y3fKvtJsXhddqXkijeqlyS47PVfcrYv31WJKVyDMTB2G1XiMK/mnBcmGL5ndDsf+/g4LHAQOIkjb5Lv2wIIZhPFaB4nn+l36pwsS+NkTuK2nc4aP//61m95vSbw+q07HW3PSmICRTm5OC6eGj0PD341G2/bHOv+5fQVGK/qxVhr0mpV4SHKXxyt3ZKbKdQoTt36RgVD7au3fzIDU5aVZbXaOxX2M49VxPip0rm3bhw+DSc8+QNWxXQJBkU+5bt638TL/elXgXbCwvWZv7XlQLOPMCr46O0yZvYaFykjCpc6q8yfnMcfTiqJ/3LYy/dpnk9TcTpiiJXEAvXOxCWJbi3Zke5B3Gxz/tNlr/+K0579OfPvLi3rG257V54t1fDE6Hk5r11w0J4A7BcMlc20efOWHRW6BX8rr/+8GCc/9YPj/SjZ9C4VpRdxsw/DXcmmGPQaSinx1oQlvswvi/7bEPkrmp5E+9tG2QhbUmz/01eWZTc+qkefVVZJxz2NQOq7a8tCFTEYrh8EVhIT6MVx3gNMXP/BNJz4ZHIL6UpP2LxVWzBzhfmcTL1CSHG+RacxYJTnl6YzWaPeEeOHRfV5K9u+Cz1v+wqPfDMn85rdOWe3fDTddHjJknWpACj3fW69Rp9hSgvjJ06+zO/Eon5YdHsSQz7/P85fhxuHT7PdKOf2fuawc0oi9d24YmN2RSeoCqSjNRUDSYE9JQ7Kb9rb/45Pq3sWbxw+FXv96ytf0nTxq/k5jL0gK4nbEj4fzY8AE0mnPPiH/7YcR1tEuzz3xdx5LjFoSI8F9dpovyzeYLid3vnauC01xEsdRfRckzlFeoxa8QY/OBrHPz4Oz3xvvUafEc7djR+9X0R5Le73ZNzT54Tf38XN8bakG+/enrjUNGiFncrrpu2MqEv5RX1P3fRhMAFXzD7TinbuuZFpy9xPUTFSUuy+6jJ27loAqXS9O2kZAH8q3aPzdBh7QVYSV8Z87gvZ4OCm1qv8JLlx2UnSrU6TevjfaJNgAEbDTYHUGp8bbEyGlpB47adFWZ/T966RhtsvsvkQMpTg3zjpjnvcfpAj9vSEL6r5lT1v+wrPfDc/53W9dYK1V4VZo8+Fr+RnKz4VLrNAUkE1WAWRL7wxfrHvx3TSk6ilnLtx89ZmXut/zyhnx0DhNEIXZCWRkm/+mtxFk/UYzZdzMvE5n8msv6Xu32pGZ+2rGSstP+uHeetw68cz8OeXJ2Ze276rEr8sXm+yFyXRtOVlmPGHvRZk5ZrKs3hRsdGwdmnOaxWV0ZzsLTsqcN8Xs1ztKyHx0FezMXGR/fxixcbtrj6L8s+slZsw6IFvbTVoFqr/jJzr+zHjFghQKfqpyzhmgQx1j2Hw+pVv/mrwTnKxkpgnFq6trjTNWrkJve/8Gqs352+PaZHNlqRXf1oUbEISYO/WDXVfr6yS9pce0DRdbtlRgeUbqgtges8Bu9ffKU//hImL1mNnRZWjUPaUQDq3rd5DO47inTpjemuh6g3jDns47aWvVS+H8t9RJoXTdLoEBJ4YPQ9/+t9Ptj/jlZ8WJ3rUCPnniW/nYen67fh+bjKGBebL8PbKkCuJU5ZuxH9HzjWcyrLFh+laRqNfPpu6Qvf1JGMlMU8MeWhM5u8Xxy3Exm27TIcPJp3d5/6KPBxa7KRlTkKiY/O6uu8tWpfdG2vnoaRkjn/630848/nxmdczQ2NUP8xRj35vO52TFm3ALR9Nw6EPf+d4HR/DtPpyFHJr2QZ7vThKr77Z9Tdn1WbMs7neXxy4Xb81CHbvgygLpXrLUqzevANL128zHepuxzPfuZ/XTPknKcPbTYebhpgOr4LoSTTLq0548gc8OnIOznp+vG4ZeN3WnabxFygbK4kF7u0JS7J6IePq31/OwnMugpjU9DDBOV+4yaLVmXD7G0ZgimbyuTairJQSW3dUYGdFdeF4wzb7wSQkJH6cn4qM6kdLH4VPG6Dgqrcn52yjt8yFUmgzKxQd+ej3OPyR77wl0CMnwQ1e+XFRcAkpIOph7G4bj5ZzyCklUJIqgmbM8vUg/bZkY9bUFrVpyzbmVDRXlDGf0MMSdJ7ZWVGlithkvf0Nw6dl9ULG1dNj5uOez2diqU6AAzNGpyDuQ9v8YnQN6LWl2jkjZm2wz4/1tjSL38MOE9JgnDfemrjE1X5JiW7qRKFFoA7yt1Mq5896iHRM+euXxettlQuSlr2YNUpFsYaiW3FMq15vspORT3H8TkEpMXtTCPEabNxbUspzfUsReZLvraZnPPczxl1/qO3tC+heNuTncDPDYXRCoNLjyV66frvtdNhRKNHH4sLt76Y8r6NqcfZLVsEhRt9l9WZnQRmC4qZglZShgRSdM54bj50VVXjjov3Qv30TPP7tXFxxSCfUrlGcvWHujIhYU+6WpFdIgki+hMSuyip88MsyfPjbckgJvHvZQE/HdNKwN2VZGXrs3sDT5yWFVU/iPADz0/+VATgRQDGAZel9TwCwMbjkkRfTlvu/Pk3Ytu+sxOs/V4dQtjvPSWFUxpi0qHDGpBv2prrIvP/PJGiEl4dvEA8Sli/D5u5HnPFHaujyu5OW+pkY3zn5dh+r1g5NiqAaGNdt2YELX56IjQ6GnxPZpUxxmLliE94cvxiPfzsP174/xXD7uDSkf2KRR8h0e+x2naWEHvxqdhBJCkRQjX/Pj12IG4ZPw/iF6zHBQcRjp/TmNX742/LAPi9uTCuJUso7lP8AdAEwTEp5lpTyJinl2QCGAegaRkLJHnWr0xvj3Q3/ipP7vpiJWz6anvO63WxHW0846tHvUVkl8cg3czynLQmcZM+FMgSXglHlMVbLhIX5sxSK3YWm84VZ3vH8uIUYNWt1VmOfo2MzWyIbqqTEjnSF8bOpK/Ca5npTrtH7XS7B4re/vfWb6ftKevWW69KLThxXQQU33bDNfYA7Iez30L4zMd6Nl0FzMidxfwA/a14bD8BbHy+RCSfBT3RpMtjZqzbji+n5F6bYjXdM5pB95FNLmZsoj361PLInMVxef7ekr12ar5UZJyHs9cLOK+flYZcNc7NXbXa1HxUW7WV6q07jcpLkS34SxHBZJ4fMl/MYFSeVxN8A3CuEqA0A6f+/B8DkANJFLuXb/VCsKTc2rVsDgP2MR6/YuWpTPOboRO05baAZ1Sm9Yfg0R8cS0K+UPfHtPMfp8usa5pzEcHmdkxr3SuKM5Zsw9D/fY3P5LuysSM2HSfp8ITtmrbRfSbvJYb5hRQAYO3etr8ek/GTVQ6iOvB1X6uzkg1/zI38JqidRe27mh7zGclzmegfNSSXxfAAHAigTQqxCao7iQQAYtCYmKiqrsGNX/DNCJ7QFRyVbOKRrC1v765U7K2K0hlnQpJT4eLK9+VF28/IbHRQEV5Y5X6cyD56LZKJcZ44NAJRoW4Ri5t9fzsKslZsxafEGPDF6Hv7x3hSMmFY9KqGQL9u/pofOfWQzryEK08qycoycaX/d6LLtu7B6c7RrLN89Yia63PJFfgX0CtAx/x3raHuvySqUaMu2K4lSykVSygMAdAJwPIBOUsoDpJSLgkocOXPOCxNwzGPObpS4KyrKLjgqGWaphwJlEIu7FpK3JgQ71/Wn+ew5SCSbt5XReqd1tNEIY0YZdllSJDKt1pu2F9ZSF0amLkt+kDTKP+PSvdCL1jlbC/qA+0ZhwD2jgkiSrtWbUhVSbaP2rkqJ0bPWhJaOIARR3NI75A4HPcXxbo6MF8frJEoplwCYAGCZEKJICMG1FmPipwXrok6C70q0lUSHOY7ekMOKSlYS9Whb/EbNXOVof71z7SYYzq0fz3C8j56Yj17MO3Z/6Z0GPfkn79vGv8Q4MHHRenS86XOs22I+fEhpXCouEhgxNdWDOHc158tZYUAsiorSG+i03LB1p/5oh6Bc/8FUAPpBUnZWhpsWv4V594/TGZr+o8dG5/Vb3QfIyQe2K3hCiN2FEB8KIdYBqACwS/UfJcAP89a6Gv4XpeIi/eGmdukON/UahjEPvP/LspzXtMMvLnxlkufPsTukIx/mXhQ6L/OEgdxRAwqnBTw7pizdiD/970eU76rEs98vQGWVxKTF5sviKMPUi4XAkK7NAQA1SqofobyG7XNyrgZ1bhZgSiifaK8qpfc/7oOHdqUbrvXm/yZ9dkwQ+beRs18Yn/v5Bh9vN1VBLq+RBE56AZ8BsBPAYQC2AOgD4BMAlwWQLgrAWc+Px7GPJ2s4qrYn0Wk5TK/YuYs9ifjD58YC9tqR7Yn8qovlDxtrlm3RiZjp1a0fT8fERRswc8UmKFmM7UquEPht6UYAwDPfLcDTY+b7nr5898qPi2xtJwRb8sm9rTtSeUfc5/UZNZAB4VayghDEuffcIGdQYEn6uQ6Ck0riAQAukFJOBiCllFMAXAjgH0EkjPz13ZzUuPa1W5L1wC0uyr5Et+yoMAx8ccHLE3HUo99nvcbANQ629fA5N3+oH26cWW7h+HG+8+HuB9z/bQApsaY0PlVUScxckWq9tyofKEG0Kqtk1n317y9TURV5rRvQOTHz19ibI1ZRKTHjj00+J4gKxe2f/g4A2FQe7wFvJnVEz1Gjo5ak5L9ks/GqkJQ42LYSqWGmALBRCNEcwCYArX1PFfnuvBcnRJ0EV4p1mjG+naUfpczodS0GrgmGXoXc7mTyJD1IKPmUYeyjZ63GkvWphe+tWryFqsdROwyegrGLUwPIgUkGQwP/+d6UkFPizJjZawwbr52sUxpHce3F1UvWwrXhLqORBE56EscDOCb991cA3gEwHID3iUsUC19OX4F/vOt/Zrp2yw4sTRfEnNqu02voJNMUOjUXzkkMz6dTGBKf9H2uWj5Ca9Ki9Xhx3ELD971SegWf0hkq+vDXs3X3qVDNb9LWEd+ZGGzE33wzZ5W9gD9c65ScMFrmojwBS4MZ9a7HtZJlVxDJlx6Py1zFPieVxHMAfJf++2oAowFMB3Cmz2miiFz2+q/44NfcgCZe9bt7JAY9MNr2OPK5qzZjQ3oeygKdjLNKSt3Kn9ro2avx6k+LdN8rpOimTiILRvksSvqQGrJPiSJ6xRu/Gm7zf//7CXd+lhoqFsSlodcTqHzO49/O091n3upUK3OVlDnrt9704XT2hjvgdTTHR78tz3ltcnqeKJETb01YgiXr3DVi+0nJX7SSPk8uSdGNmYfncrJO4kYp5fr039ullHdJKa+XUho3B1Pird5cjkEPfIuFa52tM6RHWVvMyhGPfo9hJus92rmR//zSRPzr4xm6QyCZEejzmpl7aZ37z8i5nj6b4kmvYeiN8c563fzIe4DU3EGlIqFXSbTbYl+lM9w06UPCgqR3ZryO1tWbO3Tikz94OygVnIrKKtw4fBpO+d+Puu/b7fH2w1/e1G80S3qbdhyzxls+mp6oymuUnCyBUSqEuEMIsVAIUS6EWJD+d40gE0jR+nzqCixdvx0v/2A99Kt8VyV2VBiv6WMnXsy89LpjSvTNnq0b5mzjZPhFoQ9XWmM34iTyr/I8VmfNJAqX3lIrRoxGGjgt/G/dUZHT+i6lxNNj5meOpe0JdEJK/f3zcZ1aP0xYmDtPzO75//r3lbqvL/Kp4YAK100fTsusyWsUQfd/MYhcnPSldYKJbur7IcmAk+GmDwA4HMClAHohtfTFoQD+HUC6yEd2wsxbsXNPdrv1Swy8zzhaoZ3W49krs3sbm9bNbYNw0jKl25NYQC1I934+K+okUAH7LeQhgOW7KtHjtq9w14jfs17XFipm66xHZrfgUVklUaTz5Jy+vMxuMguK3jBQu3X035bk7gsAZdvjHa2S4u/N8Uvw1gTzUQ12Kzgv/7AQz3wXTIUy6aMUdgQ0HzTZZyU5nFQS/wTgeCnl11LK2VLKrwGcBOBUOzsLIV4XQqwQQmwSQswRQlyUfr29EEIKIbao/rtVtV9NIcSL6f1WCiGu0Rz3MCHELCHENiHEaCFEOwffKe9t3VHhKsz86k2pnjyruX9aZmta2TnU+IXZrfF6GYFVxm3V8sZWKH165+0TB4FnuFYiaVU6GCslhICU0vYaenq2pNdFe+mH7GNoU6E34sFu41GVlDisW8vc1xNemAuTXh58wcsTw08IkQm7d/Ttn/6O+74IpkE26fP1f18RzBI2Xk/LN7+vynltlk7jYaFzUkk0KgLaLRreB6C9lLIBgOMB3C2E6Kt6v5GUsl76v7tUr98OoDOAdgCGALhOCDEUAIQQzZCKsHorgCZIRVp9x2Z6CsLzY51HCDzs4TEYcO8ojJ27JvOa9obcsHVnZqFa+6wvlVd/Wmy5jZNKIOst9umd1Z8crH2X8GcZBcCogKM0QqlJmVoT77ZPZvjy2epKmzbP0BvuaPf6vWH4NOzeqFbO60kvzIVJ71TZXcKIyG9GvXVxuKXjkIa4sRvfwoze+qthzkFNCieVxPcAfCqEOEoI0T1dUfso/bolKeUMKaUyQUqm/+toY9fzANwlpdwgpZwJ4DkA56ffOxnADCnle1LKcqQqlL2EEN1sfqe856bgooRinrqszLB3aN+7vsHgB0Y7Oq5VT5Ne5U9vF6u5jRe8Ut0irT/clPQ46TUkssOod+2Qh8bovr5Tc3M7HWqlzkLULdjaoxSZRDe1YjRagh2J9u2wM0GdKCCjDRokpJR4d+LSzL/jsPxE0oebBuG696cGMm2I69/mclJJvA7ASABPAvgFwONILYNxrd0DCCGeEkJsAzALwAoAn6veXiyEWCaEeCndQwghRGMAuwFQL943BUCP9N891O9JKbcCmK96nzywypzWmQwt1aO+/aSUeGfiEmwu36V6zd5x9DLu1ZureybGzK7uAS30wDVO1KtZEnUSKM8YNVJt26kf4Ep7tz7wVfYQrh/n2Q9GdOzj4zJ/a5OhVxbwWuTgcFP7pnC5CorQiwaB+L7+fRWu+2Bq5t9md/TqTeWOGlbXbdmB35ZssL29Ig4V1ULB0mIu00qiEOJQ5T8ABwEYA+ASAMchFcBmdPp1W6SUVwCoD2AQUsNEdwBYC6A/UsNJ+6bffyO9S730/6sjApSlt1He10YLUL+v/i6XCCEmCSEm2U1vvlrgoqvej1YbIURm/cPflm7E9R9Mw00fTneeFp1M8+j/6C+ZwSUw7Ou5e24kWc4zJC+c3mvaOdDfz8muFFoNBzLKp9Sv76qsQrHucFOJmR7mz7AwR5QMemslby7fhW07s6fQmE1tOffFCfjbW79hU7l1EKUVZdvR9+6ROOkp/aU2zLDtSV8Q2e2GbQyIpWXVdfCCwevKzyPSf3ew+4FSykoA44QQZwO4XEr5GFJzCQFglRDiSgArhBD1ASi1mQYAylV/KyWFLel/q6nfV3/uswCeBYCau3Uu6Ntu0qLc1qxxBssFvPFzKvqXHz1y170/BRMXbcCEmw/LRLxapZqbpPej6AeuyW3xcdKrWUjRTZ2oqOIQMPKXo+Vq0oFr1HL+7fDzpZTp41a/tnzDdv3hpjDOB+1gYY4ouf47ci722j27OGmWfS1PR41fuMZ6OZabhk9znS6OUKAomfYkSin3NPivQ/q/PaWUtiuIGiXQn5Oo3BFFUsoNSA1L7aV6vxcAJbLBDPV7Qoi66WP6E/kgT+n1Dj3zfW74ZgFgdrrl3o9W8onpyunqTTsyY7+NMsD6JkMfqySreUHY5XHV3oe/meNTSihfOLmipJQ5DVjabMcqG9pcnt0T8PDXudfkP96bor9On9Sfq2hX0tczIyoUeiWIiiqZk7+YlXuUsoveEi9aK8qqG8OdzjHkCAWKkpM5ia4JIVoIIU4XQtQTQhQLIY4CcAaAUUKI/YQQXYUQRUKIpgAeAzBGSqkMI30VwC1CiMbpgDQXA3g5/d6HAHoKIU4RQtQC8C8AU6WUXBzOhJvIfm+MX+JbIUhKoDh95annLO1SBTOoU7PYcH9n6yQyco1d7Ekkv81xGFL8ns9nZv1bW0CyKjBpF79+buwCzPijDP/6uHpY+9otO3QDFEhIW2u5GmGACaL4cdITp51D/atqnc7yXZVZx9qanletXbYLSDUYPfHtXKzZnIrVqM5vXvtpke306KWJUtgoF45QKolIFcsvB7AMwAYADwG4Wkr5CVJDVb9EaojodKTmKZ6h2vc2pILRLAbwHYAHpZRfAoCUcg2AUwDckz7ufgBOD+H7JJreQtB6LWva+tXqdIZnZwy+mSopMxXV35ZsxB2fpjp++9090tb+Ukrbg1/1tmPWom/e6ty5qms379DZksieuTrXlBPaSuEPFoFrtOXByiqJs58fj3cnLcu8Vr9WCXq1yZ1/K3WGsTvBOiJR/CzbsD3nNaP6xV2f/Z71b6WSt21nBbrd+iUe+Gp2zj6fT1uZ89pvSzfioa/noP89IyGlRK3S6kbvlZucPVNZF6IohRLOMF2ZO9jgvbcAvGWy7w4AF6T/03t/JAAueeGA7lArHdpeOKXAVm4QmdAubcHvpR8W4bbjemQWwna6vxkGXrFvlc7Da9pybVwoovBo7/TRqsjFerT3u97Q9KoqoGm9mrqf5SUEOoeFEcXP4Adzl+pauyX3WSelzBmuDgA7K6pwXDpS8ge/LsMNR1sXN9W9XD8tWIcaxdUt8//7bj5qltjvn+GcRH08K+EIqyeRYkRvCKad8s3dn83E7JWbPQ9/8HpzO1liSy+pHKZgXwUfUBQS7RqJgPNW9Pd/WZb1b73L16gyVyUl5yQSFYD5OsFmjO7eyUs3Zra3mz2oG+K37ajMaXx6asw8ewcCh5sa4WkJByuJBUh3jTAbN9yIaStw1H++1w0f7YSU3iqKTlrs2brvTQUXvaaQfKqz5pgfFa+NmrDmRsNKpYTu0hh2FXphbun6bVEngcg1o9tX1QloO8p7qWqnKilzRjg4iRbPnkSKEiuJBUg3cI1Otc3r3ENj0nLIqt7Qx8zeEfdkFhKvDQJEdukVnIIoHxk1HEnYH4qvf1zXu+aFQQ/kDusjSgrjmOnVecLKTeXYWWHdcKquJOov7eWkodv2pgXlqxm5c0HJf6wkFpjm9Wvq9iT+vGB9zmvPfLfA9edMWrQevyzOPSaQyvSe/i53yQ2tsu36lVQnmaZegbDAG/wdYU8shcVuQK2znv8569/v/7IMPy/IjTBoxLDHj8NNiQqW0e2rbTd675elhseYvXIz/vLmr1mRwvV6Ap2UYQp9hIKR1QyqFwpWEgtMav1B/6K5/LExN3IYAPzf/37CKU//pPuelMBYG4tWGwWyeeSbOboTzPWwFc6brR6DFBF5obcqyw/zsiuE/3xvCk5/9ufcDR1K9SS6359LYBAl19xV+pGYtVnCbJNlfa5+ZzJGTF2RdSy9bMFJgxIbnyhKrCQWGgHsqPCv4D9q1mrT99cZRBHr1qq+5bFfNVlP6I3xiy33T32Wzmu29iSiMOk1/FgVkBavyw1AYWWBTtCK1GdxuClRoZqwSH/kkzbQ36s/GZc9StKtTOoROJVS4oCOzbK2c9STyIyFIsRKYr7TFrIkcNXbk3075LxV5otlT166MXd/ADVV6wYZ+W72GsMhIDP+2GS5f+qz9IabMtMlipupy3KXW7G6Uw9+cIxvny89Djfl0Gyi/OMkR1B6GV/8YWHmtaoqiab1arj+fMaOoyixkpjnfl2yMdDj92iduyi1ml65yW5hSi8kvlMstxEl14qy8tA+S8JbdFNGISQqDBu27tR9XSmzTF9e3YjttSeQjdoUJVYS89y4edlz/xa6GJ6lpe6de/SbOTnv3//FLKsD2Jr7I2XupHGn9DJYZrlEyTdrZfZogvlr9OcU2VUlgcZ1Sm1tu01nri7riET5R68Mcvkbv9je3+sIA45QoCixklhg/M5v9Fr6/6eKXKof/tneEI6Fa7dik0GEU7t0C27Mc4kSbfryMgz9z9is17Z7DLLkpMX+PyPn5rzGwhxR/tFbmsfJCAev+QJXoaIosZJIjjnJ83R78mTuZHCjAtpTY6yXyjD/fE+7E1EMLTeIquzFJ1P+8NR+xEoiUf7R60l0cq9XeBxi8OmUPzztT+QFK4kUKKOFZDs2rxvS5+sNN2VhjijJ9MpoO2wscm1GL3COE3rLdRBRsulWEh3c65yrTEnGSiIFauqyjTmvSQk0qpMd7euFcQtztvOD3rAwIso/Teq6jyCo8NIZWMFaIlFBcBKMprJKmi7nRRRnrCSSY07KUU+Ozh0uKgE8+/2CrNce0QmAExSOCiNKutyb2EtkUj+MnGm+ZiwRJY/enEQnw02rZHa0U6IkYSWRPBt43yhH2+tlsGHO52ElkSjZ1m/NDWjlRx2RQ9GJSG3jttzlLpyMIOVcZUoyVhLJsW07K7L+7XgtM921Ez0kiIgKyk0fTst5rcxjJGQiIq3Vm3fkvOYkErLXwDVEUWIlkRwr2+atMLZYZ63GMCd3s7eAKP/MWbXZ8zHWbsktEBJR4dIrL6zbmtu7COivs/r4KMZFoORiJZFMHbFXy5zXvNbntuouRM3hpkQUra+mr4o6CUQUI07KCwd3aZ7zml55hygpWEkkUxWVuRH7KnVyzclLN9o+5gadVrgwR2R8/TsLgkT5psKHVaeLi6INfkNE8eJoXejgkkEUCVYSyZTe2mN6vX5/eeNX28d8PqDlLoiocK3a5HButI4iVhIp5m48ulvUSSgoExett70tRylRvmElkUzpRQzUm7TtZCHrw7u38JIkIqIcDztYRmeRzrxoAChmHZGIVN6euNTT/t1a1fcpJUThYyWRTOmuEaRTH9ygEybaSMsGtbwkiYjIk20G84TYk0hxF/FyoOTQQZ2aRZ0EItdYSSTH9EZUVDqYVMgRGUQURyWsJBKRS0s3bIs6CUS+YiWRTE1YmDse32skUo7bJ6I4YuAaiju90T0UD78t2Rh1Eoh8xUoimdqpE900zDUNiYjCwwI4ERERwEoiucA6IhEl2Y/z10WdBCJXvMxJfOvi/f1LCBHlPVYSybHN5bs8HoG1TCKKn7cmLIk6CUSBGdixadRJIKIEYSWRHLvxw2lRJ4GIiIgo1kbPXh11EohcYyWRHPMaeIaBa4jM1Shh1kxElHTz1+ivyUqUBCyJUOi8Lk5LlO9qFDNrNjOwA4fNUWESXCiRiELCkggRESXKTwsYeIYKE6uIRBQWVhKJiGKGBUEi0sOORCIKCyuJRERxw4IgEelg1kBEYWElkYiIiCgBOCeRiMLCSiIRUcywGEhEerR1xMO7t4wmIUSU91hJJCIiIkoAbQPSg/+3D/Zu3TCStBBRfmMlkYgoZjikjIh0MW8gopCwkkhEFDMsBxKRHm3WwLyCiILCSiIRERFRArBSSERhYSWRiChmWA4kIj1Ckzto/01E5BdWEomIYubqw7tEnQQiCthZ+7V1vA97EokoLKwkEhHFzHkHtI86CUQUsA7N6zneh3VEIgoLK4lEREQxN//eY/Dcuf3Qv33jqJNCEcrpSWStkYgCwkoiERFRzBUXCRyxV0vs25aVxHzhpn7HOYhEFBZWEomIiBKCVYTC1rxBzax/252j+MJ5/QJIDRHlM1YSiYiIiELw6Gm9Mn+7CUJzUKdmrj53UOfmrvYjosLFSiIRERFRCKSs/ttpHbF5/Zo5r9k9hlGF9JZh3R2mgogKBSuJRERERCHIqiQ67EosErmVQqfH0Gpcp4an/Ykof7GSSERERBQCVR3R0XDTxnVK8a9je+S87nWOKtddJCIjrCQSERERhUCquhKd1M9++9eRGLbPbq4/V/msDy4fmP26zUQc12t3159NRMnESiIRERFRAmiHlzrtCey9h7slVNo1qeNqPyJKrtAqiUKI14UQK4QQm4QQc4QQF6neO0wIMUsIsU0IMVoI0U71Xk0hxIvp/VYKIa7RHNdwXyKiKLRuVDvqJFC+4vBAUrG7bqLR3EW7+5/Wfw/baSKi/BBmT+J9ANpLKRsAOB7A3UKIvkKIZgCGA7gVQBMAkwC8o9rvdgCdAbQDMATAdUKIoQBgY18iIiKiWCguUlXKXEwIzA1c421/u1o2qIWmdZ0FuWFjGVGyhVZJlFLOkFLuUP6Z/q8jgJMBzJBSvielLEeqUthLCNEtve15AO6SUm6QUs4E8ByA89PvWe1LREREFAttGlcP28z3TuFLBneIOglE5EGocxKFEE8JIbYBmAVgBYDPAfQAMEXZRkq5FcB8AD2EEI0B7KZ+P/23EuLLcF+/0vyvY/fy61BEVCAYMZCc6Ni8btRJoJAM2LMJTujtPgiMNm+xm9com2m3LyqyO1zV3ucQUf4ItZIopbwCQH0Ag5AaJroDQD0AZZpNy9Lb1VP9W/seLPbNIoS4RAgxSQgxyct3ICKyol4LjcjK0J6tbG9rdw4Zxc++bRsBAOrUKIk2IWktG9RE/VrxSAsRxU/o0U2llJVSynEA2gC4HMAWAA00mzUAsDn9HjTvK+/BYl/t5z4rpewnpeznKL1ONiYiIiKywU3vXE50U4eNBur9j9nb/ZIaVo71sFwHEcVDlEtglCA1J3EGgF7Ki0KIusrrUsoNSA1L7aXar1d6H5jtG2jKiYiIQnK0g55GSgJvzc//OKJL5m/bw011tnNSwXRanz2oUzOHexBR3IRSSRRCtBBCnC6EqCeEKBZCHAXgDACjAHwIoKcQ4hQhRC0A/wIwVUo5K737qwBuEUI0TgekuRjAy+n3rPYlIkqkvu3srWd27kCu+pPvnj67b9RJIB8pw9H9GDrs5QhBzzOUHHdPlGhh9SRKpIaWLgOwAcBDAK6WUn4ipVwD4BQA96Tf2w/A6ap9b0MqGM1iAN8BeFBK+SUA2NjXM87+ICKn/Ch8fXD5AZh2+5GW23VpmTMFm4gS4qZjvAVjN1r/0Na+Drd3UuVj9ZAo+UKZsZyuzB1s8v5IALo5ZXrZjAvS/znal4goCn610NevVYp2Tetg8bptgX8WEQWrxGYkUSfsHlGvMukk73BaGWW2RJR8Uc5JTAS2hhERUVywUSC5erVpBEA13NSH39LLMYQQqFlivxjo5KOKA6gQE1G4WEm0wGyOiOKMSyIQJcP1R2cPeor6zi0tFhjYoanh+/u0aZj1byeN5nbnVBNRfLGSSAWvZ2vtKipERET+Ki32v8glhIB0OebpikM6QQhhGIn0kC7Nqz/HwXHbNa2DDs3rWW9IRLHGSqIFDjclIqe89O79eusRPqaEkoC9wYXFbaWuen/Nv10erm7NUMJSEFFCsZJogY9uInLKyzyhJnVrONrea4GTkoXPpOQ7Yq/Uupe92zby1EBw6eAOvqSHeQgR6WElkYgowbgUGVGyHLFXS8y/9xh0a+VuqoNSrVSGr3rNA4z2V78sBNc9JCo0rCRaYJZIRE457RuoX8v9sC/mUUTJk4Ton9o6od28hnXJ5KvhIOot5S9eBRbin40TUdw4XVPs9P57uP6sejWLXe9LRPHVrVV9W9t5rZPpVeqeOadv1jBUIQQrf0R5poZFMC1WEi1wTSpyom2TOlEngRLIbeHrvpP3xrH77O5vYogoFjq31K8k5gauCaf2ZvdzvJSbju/F/IwoLBNvPtz0fVYSiXz0xVWDok4CFZAzBrRFaXERFt0/LOqkEJGPtGsUBkkvcI2U0Qw3bVSn1P3ORORIQ4v7reAriQPaNzF9nx2J5ARDihMRkVcP/amX7W2D6kjMOazmhRfP76e7n15P4lWHdcbHfznQl3QREXD90G6Bf0bBVxJf+nN/0/edzi0iIvIz12AORFR4Si3mCgH+TYfRq2SmoplqttNsc2i3lrrHq6fTWPrXQzuh1x6NLNPC/I7Inoa1g+91L/hKotOen78d2imglBBR3vCxpMNYEUT5y6ii17ZJHctsRKnEBbHOoV7F0e6cxGfPze1hZIM7kbFHTrU/ckARxvqmBV9JdOKF8/rhmiO7Rp0MIiIqUCxr5xe9etewvXdDcZEIbckJo921hVC7H9O6UW3XaWFlkig+WEl0gHkXBaFJ3RpRJ4F8VuLjGmjMdohIT5BlEiGQUyv0UhllPhae9y4bGHUSKAQihLuKlUSiiI265uCok0A+e05nuJVbR/VsFfpnElE4/Kjouam77dawlvkxpc5SGx6Gt9n9nlU6NdHdLdJK2fpbBGSk+Cn2sWHZT6wkEkWsMXsS8067pnV9O9Z1R9mLYHbEXvpBJCj+OEolfx3evYXjfZxWxlrUr+lo+3cvHYiPr1RFGjX4uO67pdZpfD7dAFW3hvvo3XaHkeoVlgd1bu76c4mSoFk9Z/cwwDmJscCHN4Xh4C58CBYys6w+ri2M5B8nw/jCGGJE1to1rRN1EjLXzRNn9nG034A9m6BFffPeuSIBnNi7Nb66ejAOTzdAvXNp8MMY/3po58A/oxCds3+7qJNABkb942Ds7mEeb5BYSSSKgRfP74+R1wyOOhmUIG2bRF9IJX+wHSB51D9Zg1pmPWzB/7he57Xr9Uh0360BhBDo2qp+5rVOLeq5Ov55A+1XUOrWLHb1GWSOazjHV8fm7u6rMLCSSBQDxUUCNYr5cCT7vrx6UNRJIL9wyArpMLoqlHl7fjUunNKnTda/595zNPZgIxRRaOL6BGAlkYgoJv4ypKPlNq9dOAAfXD4QdTzMD6J4iWsBgYyp59gFNTPIcGkK5Q2fGhdOH9A269+lxdEVDfWGU7MNxbsw5q9R/mEpwwLzJiIKS6Pa1sPGGMQh/xSxFJy3gvhpM3VE/w8dCFZPose5zPEW10cAexItMHPLf0nJPBvWLo06CUQUgJP7tMbvdx6FOjU45LzQ9G3X2PlOmeGm4T+72qcD9hzWzTpqq15ldux1Q/xPFLlyxoA9ok4CxRwriRp/Oyw7spY65HNSKhPkTFyGYajT0WP3Blnv3XlCD8/BCYgofprWrYE9mtRBnRoltiLZxrXFudA4nbM3qHMz3df3bdsYjeo4awB0OtrUTXh9IyOvORgz7jgKz9pYl1UZFqsemmt13vS+k5Pov2TffSfvE3USKGCXDO7gaX9WEjW0+VPP1g0jSQcVttP7Z7fwndafLX5BOWu/ttYbBWhoj1aZv4OuAAzmUitkU7N6bJQy8/jp+9redv69x+CVPw8wfL9WiX4PsjSoHWUqXzY//2+HdbK5pbWS4iLUrWmvQcNu3a5XG5azqLC56YSy03hySFdvz3xWEjW0Qz+6tqrPNewofJraAnuxg9OrTaNIP/+Cg/YM7bOasjeabBrMua+mGtrs/RNIRa8uchGK1KgQqEQ3tduoFPXTwyqd+6jyYL1NhQDevXQgWjUwX9uRzD12hv2GjbA0dtiLTtWs7quaJUU4oKP+CAa7WEnUULe0H7vPbhGmhMISy6EssUxUftIbbtzPzTwhl4QI7+c26pmgYLEHN1muOszhgu4h31bVw03t1hKjqSYq+Y0fjZwD9myClg1ZSSRSWN1XfmRLrCQ6EXVzHAWiyoc7qW+7xrj/5L29HyitRkn2rcl5SP54+c/9bW33wP+FN1eDP23+e/E86/lbAGw91e0M86P48JJ3G82Xt9PWc/eJPd1/sAMfXnGA5TZOzoHtii+ZOrlP66iTYAt/b/fCOHWsJDrhY2vh//VtY70RhcKP3pU3Ltovs9aU24nC6mQICNx0TDfVv8kPh3TNjcin1xrXoXm9zN9+lMn3bdvI8D0+I/Nficm6c05/f/W1GST2OUfP6NGkRME1i4ZbU9XQGFUWw4EL0Xno/3pl/Ts1YoU/SD4Jo72QlUQTQbZw7NHYWWQ0Cs7h3Vt6Pkat0uqH9U3HdPd8PABZi6WbFTIp/gZ1Mp4X0HuP8Ia2sogQH3pL2uzXoYnlfsdFNA2ifq3CWVY5Lg03RmX6SwZ3wLVHdcXZ+7cz3FcdDTuq76P0hDr5+Jic+sRzMweWkiWMWBUseZrIucd8/D06twynNZis/f2ILlEnQdfp/ffAzcd0x+y7hwJgK2BQolwCpW+7xhw+WKAuHpQbsOjxM/pY7hfW8Cztp9QsYXHBjSAKcrVKi/GXIZ1QatJ42KhOKY7cq2VgabCjegkMf45DROFirm8iyGz1mL0ZFCcu4lJI1z4HS4qLcPHgDqhpEB6d4u2Zc/qiZ+sG1huGiIWt+ND7LWqbDB8MW27y4pFPhsFppSqo28pbA5bI9CZG3TNq1bBRpbkZDu2WOy2A8pPelXHtUV1DT0ciWd3X6dvq1H7up7exkmjCKGO79yRvAUqizrCJKHhH9Wjly1BmIiPa9VSD1KB24Qw3dSqoR7qXRh0hVEtl+JQep+wmX72dEMBTZ2X3qLPMFJxR/zg40s/Xu0a4VJO+SwZ3QIv6NTP/tntbaJf2c4KVRBPKD6C9iM+MePFtKgB8KIbGr961R07tlfNa5tgxKeWwIzG/7NEkvLntr15gvBg8Ad130x814C26qXvqj40q+6mdnqtft4Z5A4M2D1bP8TfdkDzrGFIgLCPaS/OoHi1Rs5RVEz03HdPdcyeVU/wlTDA0L/nBqPAAABeGuJB6ITu1Xxu8f9lA3fesbnM7xZKhPVrh5D65QzqUeaRRjmhuwlZZ8kEbBlsz9eZF+/l+TG89iaJ6TmBErY5n7tcW1w3tiksPNo/4vbtq/UOzctfVMY0fQNkO7NTU9rba33u3hrX9Tk5eaaAKeBZGHaWgK4lfXT1Y93VljTTWEckPB5lkmGcMYK90GC4e1AH92ltHjnTq8O4tsOj+YfjfOX1131fW4Cy2yEyCDJ7z5VWDqj+HLfGxYfRLxGGo1fPn2lzXkVJEMNFfzZbOsVK/Vgl67J5qoGzXNJoKfmlxEa44pFNOz+Bz5/bDF6p86fJDOto63hCdJYzIvrCy/wM6Gkfz1mI529w/NA0jA/asLsdYT0n0/oMXdCXRMOPMtL6l/xnxuH4jtwzzZ6kFigd1AV7vWmPx3p3apcXo3LK+4ftuHpw3Z5Y5Mc8VLjhoTxzWrQXOGagfqt5unjL2uiH2E6fRokEt640odNXXXfZV8MMNh+LjvxwYenrUCmm5C78E0ap/+cH2Kk9aNUuK0LF5PZx3QHt8efUg7NfBfs9OGI7Yq2XWCBsu8VS44laujhu9YGZdQlwdgXemjsxkb83VG7fhp/Vq8kGeBH5dN9oIcGRPozq569E54eW0N6lbAy+c3x+N6njrHfJr7pnfV1BMAgPnlVqlxei1R6NQCwJaRUWCvc4eqAMKeXlOFxUJjPrHwXj9QmdDWQd1TvXkCCHQrVWwEZa9NEK1N+nhfPhPvTI9oZS/Ylasjh298qNe1nzD0d2Mj+GhKl7QlUSji1MZGlG/lrfCpVrH5nU9H+OdS/bP+jdvruTjbxi8IE5xlGsrmvn+2iEYd/0QvHXx/tYb++CCA/fEDzccGspnFZo6FsE+gOCGD1vdM1H3dMadOl+/9bi9PB2rY/N6OKiz/eF7qc8P78HSulFt9GrT0NW+I/42CJNuOVz3vVP6tsFZ++mPwCDnBOL53GpSt6b1RgXAyW+jbFmkqsGpo576qaAriUaO67U7bji6G/55ZGqtFqkZfuqGH5m2dshIVJPRyT8dmtlvPGDDfnwUpe/nGiX278GR1xwc+Nygtk3roE3jOhjYMfjhZQvvOwY3D+uO1o3yN9DA3w7rHNixlUKB0aNBud3NAl+5cf1Q4xZnhRDC9JnVa49GlscYEMAc4LC4KUwbna0GNhqb/S68N/Y4esKp3V3mAXVrlqBZPePCLRtRk8nJ7/bS+f2DS0iCGJXvdKce6WxcFNDNUtCVRKNKVnGRwGUHd8wZCxxlhqU7R4QZaOj+fYp/4YdP7tPasCBmd4gBWQuiVX1Itxa4eNCeuPOEnrb36dSiHhrWNi+8Bd4D4OM1ZFWRIH/ce5L9a8wvJT4MN90rwUMFw26ArfLxvrz9uL3wr+N6+HdAG/hsIrdaNeScecDZo1nZtljVldiwTilqBDC3t6AriXZlWnx9enD4laGyeBa+/+vrfPFqu7+T+rI4umernPcHd3E25IjsMbod37lkf3xypf6wumIhcPOwvUxbwXU/S/NhSh3Lj9EKFIy/DHEXPCRIx/XaHUBwhfN9XA4fzBfe2z68HaBPW/eLX59/4J6e5kH+X9/cpXysRD2M0U7PNtnPL7wOJ2ejgXNGjXJ6eZEyuqR/e1U+IYGJtxyOy1TBrvz4HQq6kqic/KfP6mO6XVVV9vZ2jfnnIbhKNVzpuqFdnR3AAlvxw1W3RjGK3UTqcLjLns3qoq7OQ/7OE3p6inJJ+ox+nv06NMU+bRrp7+Py1jMqTEmDYFl+i7owlzQCwB4BrQ9o+QDPXBO5F8V/TuuNWXcNDSBVwKHdWvDZ4oKXU6a+Fu4+sWek6+c+9KdekX22ltU9MvyKA/Cf03qbLjNFznmtdFd56BqXUrKSaeGh/+uF9y8biN0a1sbBXZpnXm9YuzQrgI1BAG1HCrqSqBjSzd7aO07Pc/tmdXHM3rtl9j13YPvU33z+Epz3TJcWF/kW5ZKqRfk80lZAgs4aBjpYv8qJ/57e23Kbs/bjmqB+KS4SOWvP+cXuNaj0ZpL3+/a6o6obkM/ev11BVtIfP2NfHKopi1WkW+hLDYbR9WnbGCfu29rX4brkHX8Oc91a5S7J5eSc1a5R7GjdZy8NnQVdSbQ/DND+zzfqHwfrf5bwGPjG5msUnKAf3MrE45olBX1bOvbA/+1j+r7Xn0290PMeTVIBGtwOPde2kN6dnm+mvBzUNXbXiT3x5wPb42wfKmpNXC723r6p9wjPUYhzgSeItNk95uNn7BvAp8eDADBY1UKvMFuKwsu9e2p/59MY8s1xvXbHi5ogJrsqU1ejupL4+d8G5ezLnid7wjpPXpfryvc2kncvGxjq53kJZMfSqA2Z693GhduxefbaVn7PZ1TL9xspXxQJgTMGWBcC2jetg78d2gnPndsvhFQlzyl99OfKBH0bqKNB+v2QVZY5yMxJDOjLnLN/O9x2XA9fKqFfXjUIH1we7kOuEDl47JDPhABO2je3p1S7FEUDvYByKLxnc1CVjwPTw0iP2bt6jr5eQKQoh+cmRZDPFq2uLXN7ypxQrqcTe+fnaAW9iMdG91CJT4sR7+UySnZBVxKdFpjcVPT0Cn8F9vzIG0a/2wUHWj+g7jt5Hyy6f5j58YXANUd29TSk9Nh9dnO9b9zZ6dG/9djcNcmsbnO/Czhmy1wYfVZUcwWP6tHS8T4tGtRC33bOlzfo0Tp50S6DLOwH/Yt3alHPeiPy5LtrU3PEtWWJPRPaa+6Weg6928Konm6tGmDR/cMsh9Y1r1/Tt8I02Xf90G6468Ts6MutG9XG0Xv7Uw4phGHXd55gHon4yB65QQzV9E7Rl1enetuP6O78+a5V0JVEhWUh0mS7ujXM54WoC4Verne9m6UA7p94MTjf/7JYLDnMoTBt83TO4msXDjAsVavvjVqlzrM0V2uiGVwLc+85GqOu0R9ybpqGCKKbfv33wXjmnH74/lr7wZBaNXAXrrxj87ro1ip5lcQwBPWbN3cYeZec0+YDs+8eitcv3M9Vz9Yxe7dCjwiXDRnU2f185dtVS24YRYSmcFxlsLbrgZ38n4+unoqhUCKzu31WFBolVoleAadGcRFaWpxHvfJlt1YNMPa6IXjMYkrA8TbmlbOSaEMm8qDOe1YtHVU6EeqctI6oIxXlfDb7JEkjn6dmGH039V2gl2EeuZd5S5yjNFic4NLiIpS4WKuoOgpZePd0l/SQoLYGPZ96w56N5lxb0a45W4isWoz9ZqfxY2CH3LkqfKqkntFuGvdqlhTjoM7NUOSiV+ups/pihM58u7C88ucBmH/vMa72bVinevicm/yP/NOigX7j0AFOg5blc2Eihtx2Jhh1Yu3RpA5qqOJb6BUtWEm0oD1nRuUzZc2i5vVzbz67jwIBd5W64nSilLT944gu1cfk0zxUPN3RsrOOkN49cdMx3S2O6yVVzlh9VJyusSP2yh2qorc0ix0MLKFuMU7z4aToHWLSLYfbXirnsO65kb2dpOqukCu+cZNP13VRkXC3xBMlhvpyfeWCAZm/7zmpp8628bi4/3pop6iTEAq3Z1tZbiSoe7egK4kKpfJWZFDruvaorvjq6sHo0Nz9HA+9OYk3mvQSKpRC2eXpBTIbpSMLdmxe1zAsNPlLyUDdtA5rvXAeg9K4ZRTyX31vdW6RO2HeKvOMw6Mw6MA1QSuEuSN+s7lMouNrolm9mtijSR3dCozRUDS3GtZxF+m2EJyzfzvm9yHyGlEzCf7mscLUXjVqpGHt6t7fIV1zG4uiXFZkUOfmqF1ajAsO3BN92jW23iGBXvpz/6ylo9xGtT9jQCpieVedZTX8EEotQwhRUwjxghBisRBisxBishDi6PR77YUQUgixRfXfrZp9XxRCbBJCrBRCXKM59mFCiFlCiG1CiNFCiNxQS4bp0vzbYLuS4qKcH2CYMjHX4gFePdzUXQGwtFhg0f3DcOnB2WO/99MZJkTOWQV6admgJo5KTxwu9qEgfJgPE4kLkZTAjQY9gsqY/b8f3kX3fVsHt72pt0XvjXpDq4e0+1fZGnvdEHz998G2ttVGkbtyiLPCiNH3UiS1DpnkIf16v4idOcvKN/ZSRoxybl1c3HViT+b3Icr/KiJQXycqppZZntWvfRPdOBp6584qTzf8fIssU5mzCAD1daIDS6RG7c28ayj2btPQVRqSYEjXFjihd+vMv9u5DHY1bJ/dsOj+YWhR33zuottncFhdUSUAlgI4GEBDALcAeFcI0V61TSMpZb30f3epXr8dQGcA7QAMAXCdEGIoAAghmgEYDuBWAE0ATALwjtPEZZapcHASnzhzX1w8aE+8c4m9UPB6N24hZGpxd9/Je5u+37F5PTSqXYp92jTEQ3/qFVKqgjPhpsOiToJr6pZPtQM6NsNbF++PK122srq5D/3uOftTv9TyHgf5GFxgjyZ1MvMOreybHlJ/7sB2WHT/MPxTtbi3Hwqgkd8xpYfby6WkHRLWulHtzN+DdK4lvyvrRgXJfxzpssEmRnjNOvOPI7pkXX9hMxoJlk/0vuLhOkPGzdiNenzzMPOAfH6wOyy+UDj9Lb2yk8WFUkmUUm6VUt4upVwkpaySUn4GYCGAvjZ2Pw/AXVLKDVLKmQCeA3B++r2TAcyQUr4npSxHqkLZSwhhPY4T1QW96mE99jMZIQRuHraX7po9amZDhrw+hPI/Swye2W9+zv7t8PRZfVFSXIRPrjwIQ7qlbuBbhpnPcYuzFnkWcUxpiRzYsSmKi4Tr1k+7gjp633ZNsOj+YYZBZCg6QV1SyggFo/D+btbY/eyvB2X+/ouN3mCzqNmF/HwpgPqG7/56WGf8cMOhkX3+x3850PEIiHxQsySYoGAXHrSn5bJdeqzK0er8tJ7OHPecvdlY4wu3z7FIJrUJIVoC6AJghurlxUKIZUKIl9I9hBBCNAawG4Apqu2mAFBmy/dQvyel3Apgvup9W2qWFGFoj1Z46fz+jr8LoB8F8E99Uz0DmeGmqveUe0i9QCwAnLRva/xlSG5IYYrGXSf2zIralgSF1vp9Wr89HO+jHVrp5py5LUN6/X2Caqn3WrkutOvOq26t6qP7bg3w5dWD8LDBCAVlkeo9mtj/zRvXrZ4jaGcOtf4W6cZTG5+XpLmoHZoHt3ZhHE7Dp1cehBfPL4w5kBcP2jNnFFDP1g3x9yOS34NtJqp8ttcejXw7lnr0g5J/PHpaL9X7hSvI3zcxlUQhRCmANwC8IqWcBWAtgP5IDSftC6B++n0AUPrFy1SHKEtvo7yvfk/7vvpzLxFCTBJCTNJ5D/87p6/rdWS0UQAX3T8MD6Yf/O3T44zPO6B99eelH8LtmtZFE9VD/dHTeuPao7I7QY0ewjF4JuWFfDiPb128f+ZvdQZ8u2b9xu4+LnIcV3bywYdP7Z29T4hPXjfrpynGXT8En18VTIh8JUiB2yFb6qAR56vyuqTzu/DftG52oJdurRoYBmQ6rX9bLLp/GBrFODhMmPeOZw6SmsS5qHu3aYhDuxXGHMibh+2VCdhBwfru2kPw5kX7Zf7d0aKxpXpOs9H8+9xth+1tshRD8m5FU+qoskkQaiVRCFEE4DUAOwFcCQBSyi1SyklSygop5ar060cKIeoD2JLeVV26bQBgc/rvLZr3tO9nSCmflVL2k1IG0tR2+SEd8YbqRlI0rlsDi+4fhpP7tNHdz8tDNkGP54KmzSz1llLxYmBHVRAj1UdpC5/vX2Zv/iwZ81omPrW/855PRZvGdQznZTpRotPDVOUxIM+ezaoLDt13y50HmaS6hNrhPgceefVCfwsIrnrBLX5js/fvO3lvy3ncQDwrWXeekBvm34zRqb3x6G544szUItWV6R+gEObDJUFB/go+fGmzcmi7pnWzlj76+MqDDLd1mh692ybnXkros8NIP5NorWZftVk9b+VGt6cxtEqiSHWJvQCgJYBTpJS7DDZVvkuRlHIDgBUA1ONxeqF6mOoM9XtCiLoAOiJ7GGsorh/azVVPZJRhhim4YUIjrzGOKnmtz0FB7HK7xl2+0f7kdm7Bz/56ED658sDqYyS4NDL6n4fgNU1lRRnR0EozZ9Vug8a+bRujWzoCdFBzZMJWJGA55zyJslryHV7HZwxom9genIM6+xMU6tKDO+LYfVI9H41ql2Lfto3w6Gm9fTk2eVOIxamz9gv3ftSbR6imNBAZ1TvVLysj5azWOi4UetFeAeCl8/vj078eqPueF3Y6qcLsSXwaQHcAx0kptysvCiH2E0J0FUIUCSGaAngMwBgppTKM9FUAtwghGqcD0lwM4OX0ex8C6CmEOEUIUQvAvwBMTQ9jTYTO6UhTI/6m3zpjGDIf2YVd7dBCCo76JzGKeNqkrr+9hXZlZ8CRJCFSblr07fTG9GzdEPu0aRSbBYa92KNJHQzq3DzrtZP2bY3/nt47Zzjso5qhuWY+vOJAfPbXg3QfdIV4LcaR3WWfgvisuOlr0qIvBHBgJ+tlpkqKi/DhFQfi4C7NLbel4BUJoG6NYtx1gqOwFIl2QEdnjR9un2ATbjoM319rHY1Uue/dfk7OKISY5yNOmeWLRqMdhnRrgd0aeotH4HbUYljrJLYDcCmA3gBWqtZDPAtABwBfIjVEdDqAHQDOUO1+G1LBaBYD+A7Ag1LKLwFASrkGwCkA7gGwAcB+AE4P4zt5orpInj+vH16/cD/02F1/PZjcrndleAtQW7XejR8LvRcir8OiDunqvnAQRCGqqsC7ps2Gchhx8jsc3yvVg2BnvaokEULghN6tUVLs/pFQu0YxerZuaBjJOVHz1xBMUJbK9P1ZUuzPsYM4o6cYTI3QU7dGfo5O6NS8HnZrWDvTiEvJIITAjDuH4pyB7Q23MRvlE3du42aoKVMLnK773KJBLc/Rt4dfcYBuo6w6JTlF2WQ9NiyZlTn9mE5ixO0ItlByeCnlYpi3B7xlsu8OABek/9N7fyQAW0texFGjOjVMh8Fo72OlDiAgslovE1b+yntRVdnV0Q3jOC8oaEVFAod0bY4xs9cYbuOl7H/D0d3x18M6Ww65KWRVVfqvVyasAUOp1PrZe6wM51UaG+JoaM9WOa/pRfAGgMNCXtcrLIeng9El64oltc/+ehCOfXxc1msjrxmMTi3srR0bR3vt3gCtG9XG8o3brTc2oOTPes/BejVLMP2Oo1wfG1AFrjG4eU7vvwdGzlxluH++d3g4Kn/4eCoOczm/PpIlMAqVcnG0d9Aak1tJrO5JFEKwpdMjNxWGRh6Xxdg9PWygY3Nvv13/9o0x/qbDsl67ZHAHT8eMKyeFNacNJk62Ly4SaJBnvYh+KzZ4yHsJ2LR7w/xY37NFg1r4/c6jcPEgf+7TP/VtgxY+B8LSM7iLfkOmECIzFzVf1GcDUF7o2Tp3dFYSKoin9tPvyf/Xsf5MKVIed+qyj1JxdFu2ee+ygTlLuhk9tQ/fy7yykvP0yO86o7mAW6nsHJ6VxBDVLCnG8+f2wxsX7W+9cZq2N6h/euFlbauAm8rOuQPbOd+JsoZjGZ12s9/joM7N8M4l++NSjxW6ejVL0FITaKRUPVywkDNXB9o24QL2RipdDFE4uEtz/PPI3PXKhBC4yMMSIGHza7jp13/PHt5Wp0aJb8feo0kdTLj5cF+OVYieT/eQZjXcqn4a9RDpmiUsLlHwtM90hdFSOU7t0TjVSK1u7FQa8P55pL0hiY+e1gsn92md+Xf/9k2wV3qJLSVrO6pH7ogE4/KS0P0bQKK78/U6hJIWCZlNZiGzakXRUs87BFKtYwvuPcaXLnn2QrpTVCTQuE4pNmwzCtBrbb8O1kERrKgzU6/pKSTah1DHFvXQoVldLFi7FX8+sD1O7N3aYM/Cc2DHpjhvYDv8ZUgn2z2BRUUCVx7aGQ99PSfg1CWDUc+qn64f2g1bd1RYbicgsobP2i1/5evQ9T3Ta75lFVINth39z0OCTxCRAbO6xah/HIzDHv4OgM6cPo2HTu2F8QvWYw9V42jtGsVYdP8w22k5ad82OGnf7B5PbXviHcf3wBvjl2S9Zqdx7NBu+TOEvYZOw1LC6oisJMZRn7aN0LddY+zeqDaO0BlHnO9jtsmem4d1z/z95dWDsXT9tuwNEtwC54Wbr92iQU0sWLsVR3RviV57NPI7SYlVUlyEOxyuL2fmgE5N8fy4hb4dj1IuP6Sjre3q1CjOKszlWwAmJ4TB32rqvGT3Rt6iC1J8Jb2RtWPzeph6+5F49Js5OHFf80bOBrVKcYTDzgonlAYlJ0HQ1PffgD2bGL+ZEOcObIdXf1qs22uYtK/D8RMxNPyKA3HzsL3w5wP3ZIUwYG5bdarH9esfIIxAQuo5jS0b1EK/9k1MtiYjwvAf5LdDu7XEftpCgA1BRBq1q4aHiK9AvC4pbeHwZJMCpZf1FLX7x1UmjVnrtMXpF6MwXHlo56iT4FmDWqW47bgevg1LdcrO7e7qztIc+MyQ14V06oFT9sHp/Y3T6Ch/CTgrspNHs5JI5EK7pqlhSkah7KtiUELKhzX9FEG3lcTg58o7XVpWN2KoT+8rFwzI2daqIhZlud2qZd5KXOagdGpRD0KIzDy7Kw7piKIigZYNrIcRx+Mb+E85F+rv9w/1fFrmCwUhyuV56tawV6lTrtGYZCc5TunbBrs1rIXT+u9huE1c0+6nU/vvkVX2Gn7FAfjf2X0y/05avw8riVTQ3M61een8/nju3H6GkS5ZtvCX0zWdnKruUEhYDh5jH/3lQN3X9Vq67zt5b9NjNa0XfARPI6XFRdijifuhhnEtGCnpOmd/6wBm+d67pv5+56rW2Lvq8OT3MFG8/XzTYXjyzD7WG6bFtUGzdaPa+OnGw7LmOtqVb9mL8hsJIdCnbWMM7blb5r2k5aWsJCacl/wiYcuWxUqTujVMx/XHYVH7uD5M3FAePEbrtak5bRUuLSnClUM6AUAmQht5V8fBQutWz83nzunrMTXO+fUoj7LhQT2012j9sisP7aw7hEs9GsLNN4iyd8YundGmWU5gEKu85KRSFrT6tUrR2OOyWklhNapCL4Kwen3dL68e5HuaghT/6qB1Hs1KYsLdMqw7Wjao6ar1Jt/Wt3JDybP2bFY36/X/nt7b03Eb1alhvVHA4l9Es2f3hrUy17ffE+4fOGUftG5UG4O7NMei+4ehYYE8rOPGqj7RwiAsfBLUqhHdY/a1C/fDhJsPQ8Papbjh6G4A9HvN7z0ptydXvTRMwhq/M1pZXDdKRTip34/c6dk6Xo2B+fKsNnNI1+bosXvqvH9w+QG44/gemfeEELh+aDd8cuVBOfvtld7nrP3aolurBq4rXrcM646R1wy23tCl64Z2xTuX2F/ezsjTZ/XBn/rqr5UZBVYSE+6Qri0w/qbDUVMzp6dj87oGe1TbrWFtLLp/WM6C7IXoq6sHY9ZdQ3HGgFSLeo/dcxfidaJGSRGuH9rNj6Tl+OyvB+GnGw91vf9/TuvtX2JC4LTCfc+J5kMXFbVLi3GqyfyJoOzTJnVt2RnmR9FRVxzcdoo1rlOKFvWjq+DWKClCi/q1MOW2IzNr61YPhTLf9+9HVM/NczNEKkkFXw4zLyyVmpE+UXd66/Xad9eManHTkNG3XWMPqfJuSNfmmb9f/vOATD7St11jnHdA+6xtLz+kI7rqdFzs3ihVTr0n3ZDl9qe6aFAH1K2pP7pljIPlbYbqrP944UF74opDOmWWNtPLY/WWw9Bz9N674Y4Telhv6AM78+VZScwT2oL0gZ2a2d7XaPHWQqDcIjVKilCrtBi3HbcX3r10IDr5sIak0hLfvql1hd2Jnq0bYreGxnOkzkoPHTN68LWwEagiydrqLGCrddeJPfHpX3NbLcMw/PIDMOfuo3HXif4tLZFv3vahRTYO4jhcUQmqYFU8KPUY1TXqgrcVIeKfRgqGWYH9FtXSUmHRuw4Nl2VxcNG+d+lAdwnyyUt/zg1SFqXdGtZGqSbY4LC9d0P7ZvbLaPu2bZT175l3DsWtx+6V9Vq7ZqkyyKUHVy9N9PnfDordM79hbeuRU6wk5om9dm+AeqpWknoGLSZkrlZpce46PS4ds3crvHvpQJwecm/V3Sf2xLx7jg71M5PmnP3b+dIQ4EZJcZHtVsWke/yMfV3tt3+6RRaIblh83vcuBTnGUsQruvL9BoGRlFNQWpLnvzVladO4Dv53dt9MhSHqa1Xdk9gw3eBvtF6vm5R2sDGyrFBccNCeWf9+1GBk1XfXHqL7uvb819aJTtugVikW3T8Mx/faPfNapxb1bY8eCuPZ89gZ+2Z6Ps2wJpFH9m3bCGPnrgUA/O2wznhqzPyIUxQfJ+3bGh/+tjzn9SAjTQkhfKtwOv3ckmKR9eA7yWMYfyI3tHN9rTSsXYqH/tQr67Uvrw5uHompPK03mHVEnNzHp3wiPvVDAMDgLqlhb69dOADnvDAh83rXlvVx6eAOOHv/dhDC+5qYFC992zXGL4s36L43tGcrjLv+UCxcuxVTl20MN2Ea6tuldaPa+OyvB6FLy/p4a8KSzOtKxcFJ73dRkcCrFwzIzOuLygEdrSsjYdlNM3LOqMG2nWYE2PArDsCkRevzJuCjugJrhjlinvK6oOqlB3fwKSXB+vvhXaw3Ilw3tGvUSXCNQSWSS2khtyp7K7/xPm0a+h6cKEqNYhgIySii56L7h+GRU3s7P55BoSmOQzkHdW6e9W8hBG48pjv2aFIHbRrXSXSAJMp18SDzckzLBrWwf4emWdeqMk/rSE0+dGeQ88Q090rP1g0NKy9O12Ae3KU5mkW4hNC024/Eyz4OO/VaHFAvcaM2/IoDTONz9GnbGJcM7hjLfC1IrCRSjssP6YhaJd4qmXFzyWD9h0U+1z8KITMzqkAWJ23F2jxVP72OaI/dsgNB9dHM64jjtWq0BqoTVxzSyYeU+CykiJ5R/6R+Be14/cL9YrVkAvlvSLcWmb+VR0dNTUO7NtiNn2xV/NLpivq+cqp+rdJYTa8oKhK6C9r3advYVnwO9TIduzcMplEpTg3j8fnlKFJ7t04V4jq3qIfrh3ZLXEZkRRsprBDE7Tfs1cZbxFgnfrrBffRX8s+ezerivcsG5kRrG37FgXjzov0cHevvh3fBX4Z0tFzWwA+n9dsD719WHfThvpP3dpWHxKlwpFDKul4D01iJsuJ/3dCu+ODyA3w51kGdm2HYPrtZb0ix1tlkDnqXlvXx4vn9sE+bhpnAZ600Ad6cBDdxyuheeeWC6h64gZrImUBuY1uhUpctTlZNrRnStTk6taiXs6SEcgof+L99HH/W2ap5hR/95UDH+ydN/J5gFAnlZklaD4yTCeeP6QTRiFOLTb5r61OUVztrEXHYWHz0b99Ed/j7AaoIzCXF1jfiVYd3xrVHuVtWpqRI4A0HldJ//98+WYXCQZ2b44urkrWQs5FLDu6AMwa0xZ8PbB/ch4jgWtnt4NxCUjtir5b45pqDTbc5tFtLfHLlQRjStQX+e3pv/POo7Ckafdo2zkQO95u6FKMugim94TVKilRrYVdv/ebF+REF2it1T7DafSfvg5HXHIwHNfPclYq2m1gNNUqKAh++q6QvqOL4Ww6uG+akBKB6KEXSKolO2J2omy+chMoOwlNnWQ/ROrx7S/z1UGdD8rpHPAmf/PPoab3QqE5pJhpzUIGkhHC2LJBddWoUY6RF4TNuGtQqxX0n7406NYKNW3f5IR2tNwqY2eVkZ40wSraKqioAzhoNhBA4oXdr1FRNuenVpqGt5QLcUvcINqtfXQFRrlB1saxLy+poz15jTySRXqnGaHRJK4uGKr0coEGt6nwxqoA7lemyW1B51EAH34uVRAIAdG1VH0f3bIWHT021uNSM4TApv117VNdAo5tGzWlkST+df0D7rDldtx67Fy4etGfOdoM6N0OL+s5a5epzeZe8cdK+bTD5X0dmHoZB3Y1BhRT/8YZDc5ZS+eDyaNcmi4uSAHrz2ttYAxWoHubbMz2NorZOYZqVxPynVOzUFSsnBmqWCPDa7HpUD/2gXE3r1cTsu4fipfP7o0/b3Lm06vzr6bP7ekxFsmnbvls1qIXTdJYZa26jXKGXB4y97lD8kJ6u4mfAHSeK0+lSpoFFKf9rAjr8CEiQb0qLi/D02X3RrVWql+bCg3IL9FGK49yeuNNG8jOinRumXWzWjd6aNZ4uPGhP7NOmke62VrT5uBACNxzdLfM3JZ8ybDywgQwmx92/g/1laq7VDEFrlF7TTK1vu/CXvUmq58/thwkmEQW1zjGITKh1ev/UsMBHTu2F9y4biMZ1c3+nIj5S8t6gzs3x6gUDcKXD0SqK64/OHt7udXBOh+bZDUrqXquaJcU5wyarZG6+GGSPZjJk/wg/3HAohBB4WDWk9JMrD7Q1PUCv+NCwTilaN6oNwKzcmU5DQM+r2jWK8f5lA/Hcef18Pa7TBnmgQCuJ7ZrWwZy782+x8RN6OxtfbTafr1ZpMerqLBIalYPSQ8Ue1owtP7onAwqYUYZhmD3cDtAMw/NjPs+JqrH+lkM2LCp6eb+oOaF5vdR1ql7Py8/8x68rSJ2+OK39FRS3EUL72dxvr90b5Mwf1vbMKt68eD/8+YD2lsds3ah2pnBXv1Yp+rfXr7SzJ7EwDO7S3LdpNEfspT/3za2PrzzI9H1lOOnNw/by9XOTTFuW0ftt92nTyHTeoLI0kdtGZmUNRb0RCn7p176J7x1a3/7zEEy65XBH+xRkJRHIz56p/+vbBtPvOAq/3XpE1Enx3X0n743zBrbDoC7ZFZqureqjfi3z4YePnFpdsSyEYbReHbuPs7mbn/3V/EGn9o8jste1FAKGNdibj+nuKB2UXHu3aYjhVxyQte7pN9ccjDcvdhYBVXGQpuFDKQv08DifdZDquBfpDJ9Wq5cHw6LfuGg//OrweXJQp2aZpU/cMGqkOqBjMxTpFAjd5hMchUBOHdrN3zVcraaElBYXYdH9w3BmQAFzkshquRA7nb0f/+VAPHCK88imiufO7YeXzu/vKZ+LQr2aJY6D7rDEnGfq1SzRHVqjx8mckTaNa7tNki9aNqiFO07oiRIbY4Q+ufLArNZodYvxb//Kvwq03+45qaejhoaeDsbN//Wwzln/FkIYZurKkgNmZTkW8/JHn7aNs/Kk3RvVxgEd3QWb6dA8u/Cl9EZfdrC3YColxUU4pGvuMO6R1wzO+vd/T++NEX+z33gSV7VKi9HE4nly9N6tbB/PbpCq/57eGz1bW1foG9QqwcUGa+BayeMYbUR5y6gR20mwl3ZN6+JUnXmMdjWpW8Mwomq+YSUxj1mNyW7uoEXh1QsG5MzHiQ1NLWOfNo1w94k9LXezOyQq31hFRCspLrLd0KBHKUQrw5nN8uxiIXQ7Ev/Utw3qmfQQx3HxdYov5Rr047LRu5x3b5TdiHZC79aZIUn57m+HdrbeyKETerfGoV2tC2Fe1kK84/ge1hsR2XDvSXtHnYSCMbiLfqyFqkyE/jBTk/94OvOYdvHnq1S9OEf3bOVoyG2H5vXwlyHuJn8rtAuamnlcZ01DILuAdmN6UrlVwU9dSVHPb9uvQ/7PKaoOCFL9vXu7DCCj5/lzcydW/y8dfU0Zr9+mkXFEwgM6NtVdquPaodUNEqbtguwNIB3aS0pkXmfrgt+KigSuPaqr71GHq2z8VEbzF+0olEo8Bc9oGssNmsA3dqPzknOH79USuzWshYsHuRtZYOTdSwfi87/lxxq5brCSWEDCmIJx23F74VODydjaBU2NXDmkE0ptNAcpPWLqgl/bJsyE1ZSClnpoVVGRwK3HOp8IP0RnmN2h6SEX6uHIyu/St11j/Oe03rjdoMW+daPaaN+sru7coBb1a5kW6JWIlAcbtCpS4WpUp9RyfSzy11+GdMKTFuuitmxQE5cM7oCvrh5sOje8ab3UKAazwGpAqkdBL++oWWr+7GjftA7OHdjOdBsiQDX/zaLwNGwf/QB6dTUNJ6f22wNvX2J/IXOyr1m9mvjpxsPQ2eVyJ0YG7NkkK2BZoWElsYA0chk6+dlz7K/L8+cD98TebarnqC26fxgePa1XzpwdM5cd0hFG/YNZvYI6Q8jeT69RZrSMQ6HFKlCGYGgLUxcc2N7Rcb75+2C8eH7/rNf2aFI7E0hiuM6wLyEETty3NWobRKlUkqS3xhFQ3fup1+O9b9vGWHDvMa7nrFFyWQUueOz0fXGpZp6acv3r7ao0SHnJGxiB1/r8jb/pcNSvVYqureqjQfpZpBeZ8L+np0aRFKsO2LpR7px4ozmFL5zXX/+NtDHXDsGdJ1hPRyDKDGG0uLaLiwR6aZZ9ApCT4QghsL8PI5jG33QYxl43xPNxkur241KN3COvOTjilOQ/VhILxC3DuuPs/Z21niq9UAd1dlcQP65XaoLxSfu2QacW9lp3SosF6tUsycpbXzpf/6FfPYSs+rUW9VM9CHoL0hai24/vgSZ1a2RCPiuEEHjyzD44y2bUNCFS+3x1dXVlX10w1oaxd6JWabFuIXDv1g1x+SEdM4VGLb1Ih2ov/7k/PrnyQNfponjSDkM8vHtuxEFtUC6jK+XSwR3w0J964YcbDsWkm52FBqdsTkby3nbcXmhat0YmKM47qt4V5bVLVUGG9AqD6iH06nlKVhEjiexqn76WrMpORiOf1K/bfdba0bJBLexRwKOmzj9wTyy6f5in4eZkT/JjdJMtF7kYp6202LtpJZ9+x1Go5WG5CXV5wyyASWrb3NKJEALH9dodn075w3Ua8sFxvXbPVNa1hu2zm+EwGSNdW/k3lMNqiYCiIoHrh3Yz3cbMITYCX1DytG5UC2u37Mj8u2ndGqhfswSbd1QY75QZdZCdV9zo0zIrhTZCwakLD8peLuTYfXbPilKoNz+8bs0S1Cgpws6Kqqzze+ngDnjm+wU4qkd148AL5/VD55u/8D/hVNCa1auJRfcPM93mSpNYDW2b1MEhXZtjzOw1jhvpieKAPYlkSClOuSkA1atZ4miJDYVSITVqlc7qRUgnrD0DEPjmUFVY5w4WLfJeC8YvqHqIrYYQEile0IwsOKx7C4z6p/mwo4dtzoe+ZHAH1DUYHq1Q8iAOMc1mlh/cMsy/NU9vPKY7fr/zKJzWv7pnxs4cdqIgGE2nULz85wH4/c6jsgIJPnJqL9x/MiOiUvwxZy1Qdgr4FxyYav0N8gGsjcBq1OKvqFuzWLspXr/I3YLblOuF86qjlV5zZBeTLd178fx+ePuS/bOGmNpZ24gIQM5iwEf2aIUW9Wthvz2bZL0+/IoDsrYBgGP2Nu85v+mY7phx51DTbZQGDfVw51qlxbjqsM749h+FO0dGeU5oh7YD7heulwZrn9WpwUFQFI3rhmYvBabtJVdrnQ7opr1eT+7TBqcP8G/4KVFQWEkkQzcc3Q0L7ztGN7gAkBpm8fFfvM35+uKqQVnrFerNM1SrWVKMM9KZq1Ju0BYaFXq9UyXp73K8wRDMQmdcmMt9XfvKjzccip9uPNTyMw7t1jJn8v4rFwzAX4Z4W+icCpuSTykVCr15yTVLirF364Y5rztRmQlmkX0H/P2ILujQvHDnyOy3ZxPcfEx33OtjD4mylq/RM4gobFccUj28tKRIVK87rClv9GnbiMusUOKxkkimzFqAD+veQj+il4lDdJZReOWCAarPS/2/+eBDe0MTa6RbttWLx5cUF2HR/cPwmME6jIWqY3Orh1nuOb9JM59r90a1sVvD3AA0dnRqUQ/XHuV+/iHRnSf0xOHdW6Bfe/OgVUrj0WHd3M1ZzVQSWXHJIoTAxYM7oEEtd1G09bx72UD857TePNeUOC09BHMjiguO2ShQUU0Bu+6obhgze03Wa+q1hJR5Pt1NAqRIm3OC/nXsXtitYS3d6IeU7b3LDsCidVuzXquoNL9IlCF8RHHQqUU9PG+x/AFQPafw70e4G069355NMH7heuzGtRgD16ZxHbRpXLhRHCm5jtiL5Q5KPvYk5rmz92+rO4zP7RQwo+Uo7LJaIFlJV+eW9dHDYAHTiwZ1QJvGtXFkD/NMuHHdGrhuaDe2QtvQpG6NnOF5Q3uyEkj5x2iem11XHd4F3117SCY8PhEVpscNRiTNvHMoTu7TJuTUEPmPPYl57u4T9eeHuA0koLewuRNWPZhPntUn87d6mKhapxb1MO767LlvU28/ErLKU9JIo1ZpMTo2r4v5a7Zab0wUgZzAVxoHd2mek2cpeVCRy6ysuEhwrlEAztyvrWVEZTN/PrC94fx0oiAcrQqEpRRtPvrLgZYRT4mSgpXEAhVVNEmrSuIQ1dp2ytwfO2n1cx4MVevUoh7mr9mK2owmSDH0zqX7m76vnu+sqPLYk0j2PXduP3w8ebmtbe89yVvAm9uO6+FpfyIv+rRtjKnLytC0bo2ok0LkGw43LVAn92nt27GchH2vWZq65Pq0bWS5SG1FVaprsLSYhbmoPHxqb7x6wYCs5SoAoFYpsw6KnpvGIWURd/Y6Be+IvVriiTP7WG9IlHA3D+uOr64ejD2acA4t5Q92DxSY58/th84t6/k6XMpJ2PcuLevjoT/1whE2gskM7NAU05dvQov6DBARlXo1SzC4S3ZE2gk3HYaaJRxOQ8n010M74cJBe6JeTT7+iMgfpcVF6GoScI8oifiULDCH+xhxq62qxWzfto0ya1pZ+b++9iZ0Xz+0G84d2B6tGEUwVlowtDdF7L+n90b5rkpX+xYVCVYQiYiILPBJSa4M2LMJmqoqhR9ecaDvn1FSXMShG0SU44Te/g2XJyIiolycWESulHBZCSIiIipAnJdPhYA9ieSKVZRSIiIionwz886hrteaJkoSVhLJEa9rjBk5e/+2KGauS0RERDHGdRCpULCSSI4EtcbY3Sd6WyOLiIiIiIj8wUHV5IhSSRTs9SMiIiIiykusJJIj3Vo1AACc2s/eMhZERERERJQsHG5KjrRqWAuL7h8WdTKIiIiIiCgg7EkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIsoIpZIohKgphHhBCLFYCLFZCDFZCHG06v3DhBCzhBDbhBCjhRDtNPu+KITYJIRYKYS4RnNsw32JiIiIiIjImbB6EksALAVwMICGAG4B8K4Qor0QohmA4QBuBdAEwCQA76j2vR1AZwDtAAwBcJ0QYigA2NiXiIiIiIiIHAgluqmUcitSlT3FZ0KIhQD6AmgKYIaU8j0AEELcDmCtEKKblHIWgPMAnC+l3ABggxDiOQDnA/gSwMkW+xIREREREZEDkcxJFEK0BNAFwAwAPQBMUd5LVyjnA+ghhGgMYDf1++m/e6T/NtxX5zMvEUJMEkJMWrNmjb9fiIiIiIiIKE+EXkkUQpQCeAPAK+nevnoAyjSblQGon34PmveV92CxbxYp5bNSyn5Syn7Nmzf39iWIiIiIiIjyVKiVRCFEEYDXAOwEcGX65S0AGmg2bQBgc/o9aN5X3rPal4iIiIiIiBwKrZIohBAAXgDQEsApUspd6bdmAOil2q4ugI5IzTXcAGCF+v303zOs9g3oaxBRgC4d3AEvnd8/6mQQERERFbQwexKfBtAdwHFSyu2q1z8E0FMIcYoQohaAfwGYqgo88yqAW4QQjYUQ3QBcDOBlm/sSUYLceEx3DOnWIupkEBERERW0sNZJbAfgUgC9AawUQmxJ/3eWlHINgFMA3ANgA4D9AJyu2v02pILRLAbwHYAHpZRfAoCNfYmIiIiIiMgBIaWMOg2h69evn5w0aVLUySAiIiIiIoqEEOIXKWU/vfciWQKDiIiIiIiI4omVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDCGljDoNoRNCbAYwO8CPaAigLEHHDeP4PHb+HZ/H1tcMwNoAjx9E+pN6HSY13UEfO+jjJ/XYQR8/yXlLEu/RpB476OMz7eEfO+jjB3nsrlLK+rrvSCkL7j8AkwI+/rNJOm4Yx+ex8+/4PLbh8ROXvyT1Okxqupl2nheXxw8sb0niPZrUYzPt+XfsJKfdLF/hcNNgfJqw44ZxfB47/47PY0cjiPQn9TpMarqDPnbQx0/qsYM+fpLzliTeo0k9dtDHZ9rDP3bQx48kbynU4aaTpJT9ok4HEeUf5i9EFATmLUTkN7N8pVB7Ep+NOgFElLeYvxBREJi3EJHfDPOVguxJJHJLCPEygGVSyluiTgsR5Q/mLUQUBOYt5Fah9iQSZRFCjBFCXBR1OogovzBvIaIgMG+hoLGSSERERERERBl5WUlk6wq5JYQ4XwgxTvOaFEJ0iipNFC/MX8gN5i1khXkLucG8hYKSl5VEIiIiIiIicievK4lCiMZCiM+EEGuEEBvSf7dRvT9GCHGXEOIHIcRmIcTXQohmUaaZiJKB+QsRBYF5CxHFQV5XEpH6fi8BaAegLYDtAJ7QbHMmgD8DaAGgBoB/hplAIkos5i9EFATmLUQUuZKoExAkKeU6AB8o/xZC3ANgtGazl6SUc9Lvvwvg+PBSSDG0FUAd5R9CiFYRpoVijPkLOcS8hWxh3kIOMW+hQOR1T6IQoo4Q4hkhxGIhxCYA3wNoJIQoVm22UvX3NgD1Qk0kxc0UAD2EEL2FELUA3B5xeiimmL+QQ8xbyBbmLeQQ8xYKRF5XEgH8A0BXAPtJKRsAGJx+XUSXJIoxmW6ZvRPASABzAYwz34UKGPMXsot5CznBvIXsYt5Cgcnr4aYA6iM1ln+jEKIJgNsiTg/FVwMA6wBASnkPgHtU772u/CGlPD/cZFGMMX8hO5i3kFPMW8gO5i0UqHzuSZQA/gOgNoC1AH4G8GWUCaJ4EkL0ANAdwG9Rp4USg/kLWWLeQi4wbyFLzFsoDEJKGXUafCeE+BXAnVLKj6JOC8WbEOLfAM4G8G8p5WNRp4fij/kL2cG8hZxi3kJ2MG+hsORdJTHdujIJQDcp5eKo00NE+YP5CxEFgXkLEcVNXg03TbeufA3gemayROQn5i9EFATmLUQUR3nXk0hERERERETu5VVPIhEREREREXnDSiIRERERERFlJLqSKISoKYR4QQixWAixWQgxWQhxtOr9w4QQs4QQ24QQo4UQ7VTvnSqE+DH93hjNcbsIIT4WQqwRQqwXQnwlhOga4lcjoogFmL80E0L8IIRYJ4TYKIT4SQhxYIhfjYgiElS+ovmMc4UQUghxUcBfh4jyWKIriQBKACwFcDCAhgBuAfCuEKK9EKIZgOEAbgXQBKmoYe+o9l2P1FpE9+sctxGATwB0BdASwAQAHwfyDYgoroLKX7YAuABAcwCNAfwbwKdCiJJgvgYRxUhQ+QoAQAjRGMBNAGYEkXgiKhx5F7hGCDEVwB0AmgI4X0p5QPr1ukgtTLuvlHKWavuLAJwtpTzE5JhNAKwD0ExKuS7A5BNRjPmdvwghigAMQ6pRqqWUcnWw34CI4sbPfEUI8T8AUwGcCuB1KeXzwX8DIspHSe9JzCKEaAmgC1ItaD0ATFHek1JuBTA//bpTgwGsZAWRqHD5nb+kC4blSFUQn2cFkajw+JmvCCEGAOgH4H/+p5SICk3eDG8SQpQCeAPAK1LKWUKIegDWaDYrA1Df4XHbAHgSwDW+JJSIEieI/EVKuY8QohaAkwDU8C2xRJQIfuYrQohiAE8BuFJKWSWE8D29RFRY8qKSmB6y9RqAnQCuTL+8BUADzaYNAGx2cNzmSC1w+5SU8i0fkkpECRNU/gIAUspyAG8JIWYKISZLKadY7kREiRdAvnIFgKlSyp99SyQRFbTEDzcVqeayF5AKMHOKlHJX+q0ZAHqptqsLoCNsTuZOT/7+GsAnUsp7fE00ESVCUPmLjlIAHTwklYgSIqB85TAAJwkhVgohVgI4AMDDQognfE08ERWMxFcSATwNoDuA46SU21WvfwigpxDilPSQrn8h1co2C0gNzUi/XgKgSAhRKz30A0KIBgC+AvCDlPKGML8MEcVKEPnL/kKIg4QQNYQQtYUQ1yNVWBwf5hcjosj4nq8AOD99zN7p/yYhFQzn5uC/DhHlo0RXEtPrB12KVIa4UgixJf3fWVLKNQBOAXAPgA0A9gNwumr3cwBsRyqzHpT++7n0eycB6A/gz6pjbhFCtA3jexFR9ALMX2oiNc95HYDlAI4BMExK+UfgX4qIIhVUviKl3CilXKn8h9Qw1k1SyrKQvhoR5Zm8WwKDiIiIiIiI3Et0TyIRERERERH5i5VEIiIiIiIiymAlkYiIiIiIiDJYSSQiIiIiIqIMVhKJiIiIiIgog5VEIiIiIiIiymAlkYiICIAQom16zbriqNNCREQUJVYSiYioYAkhFgkhDgcAKeUSKWU9KWVliJ9/iBBiWVifR0REZAcriURERERERJTBSiIRERUkIcRrANoC+DQ9zPQ6IYQUQpSk3x8jhLhbCPFj+v1PhRBNhRBvCCE2CSEmCiHaq47XTQjxjRBivRBithDiVNV7xwghfhdCbBZCLBdC/FMIURfAFwB2Tx9/ixBidyHEACHET0KIjUKIFUKIJ4QQNVTHkkKIK4QQc9PHu0sI0TGdzk1CiHeV7ZWeSiHETUKIteme07NCOsVERJRQrCQSEVFBklKeA2AJgOOklPUAvKuz2ekAzgHQGkBHAD8BeAlAEwAzAdwGAOkK3zcA3gTQIr3fU0KIvdLHeQHApVLK+gB6AvhWSrkVwNEA/kgPc60npfwDQCWAvwNoBmAggMMAXKFJ11EA+gLYH8B1AJ4FcDaAPdLHP0O1bav0sVoDOA/As0KIro5OFhERFRRWEomIiIy9JKWcL6UsQ6rXb76UcqSUsgLAewD2TW93LIBFUsqXpJQVUsrfAHwA4E/p93cB2EsI0UBKuUFK+avRB0opf5FS/pw+ziIAzwA4WLPZA1LKTVLKGQCmA/haSrlAlc59NdvfKqXc8f/t3LFqVGEQhuH3K9QmGsUuiIJg0AsQsRCsLGwsFAtD+qS3EhsbxSuwsFVEbCziBWztDaQSgxA2VUIiWAiOxflz3GK32Syo2feBA2fhMDPtMB9bVQPgE/AQSZImcEmUJGmynZH3H2N+L7T3S8CNFhHdS7IHrNBd8QDuA3eBrSSDJDcnNUyynGQjyTDJPvCc7hI4zVwAu+1qeWgLWJrUX5Ikl0RJ0jyrGdX5Bgyq6uzIs1BV6wBV9bmq7tFFUT/yJ9o6rv8rYBO4UlVngCdAjjDbuRaHPXQR2D5CPUnSMeeSKEmaZzvA5RnU2QCWk6wmOdGe60muJTmZZCXJYlX9BPaBXyP9zydZHKl1un3zPclVYH0G8z1rc9yii8Z+mEFNSdIx5ZIoSZpnL4CnLR76YNoiVXUA3KH7w5ptYAi8BE61T1aBry0+ukYXRaWqNoF3wJcWU10CHgOPgAPgNfB+2rmaIbDb5noLrLW+kiSNlapZJW0kSdK/JMlt4E1VXfjLo0iS/iNeEiVJkiRJPZdESZIkSVLPuKkkSZIkqeclUZIkSZLUc0mUJEmSJPVcEiVJkiRJPZdESZIkSVLPJVGSJEmS1HNJlCRJkiT1fgOD879bTFUuuQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7gkyVUmjL+RmVV1bdvpHitpRiOLJCQhCdCHkxAsEny4FQiz2mXNhzD74yfWsAgjFrMLfBghBAtIeCuMkLBCFllkRjNyYzTe9vS073v7+qrKjO+PyBMZmRURGSdv3+rb3fE+Tz/3dt2Kyqw0kXHO+573CCklIiIiIiIiIiIiIiIiIiIAILnQOxARERERERERERERERGxexCDxIiIiIiIiIiIiIiIiAiNGCRGREREREREREREREREaMQgMSIiIiIiIiIiIiIiIkIjBokRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNDILvQOXAhcccUV8vrrr7/QuxEREREREREREREREXFBcMstt5ySUh6y/e2yDBKvv/563HzzzRd6NyIiIiIiIiIiIiIiIi4IhBAPuf4W5aYRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNCIQWJERERERERERERERESExmVZkxgRERERERERERERcXljNBrhyJEj2NzcvNC7sqOYmZnBddddh16vFzwmBokREREREREREREREZcdjhw5gsXFRVx//fUQQlzo3dkRSClx+vRpHDlyBDfccEPwuCg3jYiIiIiIiIiIiIi47LC5uYmDBw9esgEiAAghcPDgQTZbGoPEiIiIiIiIiIiIiIjLEpdygEjo8h1jkBgRERERERERERERETFlLC0t4Td+4zfY4772a78WS0tL53+HDMQgMSIiIiIiIiIiIiIiYspwBYnj8dg77u1vfzv27du3Q3ulEI1rIiIiIiIiIiIiIiIipozXvOY1uO+++/Cc5zwHvV4PMzMz2L9/P+68807cfffd+KZv+iY88sgj2NzcxKtf/Wq86lWvAgBcf/31uPnmm7G6uoqXvexl+NIv/VJ85CMfwbXXXou//du/xezs7Lb3LQaJERERERERERERERGXNX7q72/HHUfPndfP/Lxr9uB/fv0znH//+Z//edx222349Kc/jfe///34uq/7Otx2223ahfT3fu/3cODAAWxsbOAFL3gBXv7yl+PgwYO1z7jnnnvw5je/Gb/927+NV7ziFfjrv/5rvPKVr9z2vscgMSIiIiIiIiIiIiIi4gLjC7/wC2ttKt7whjfgbW97GwDgkUcewT333DMRJN5www14znOeAwB43vOehwcffPC87EsMEiMiIiIiIiIiIiIiLmv4GL9pYX5+Xv/+/ve/H+95z3vw0Y9+FHNzc3jRi15kbWMxGAz072maYmNj47zsSzSuiYiIiIiIiIiIiIiImDIWFxexsrJi/dvy8jL279+Pubk53HnnnfjYxz421X2LTGJERERERERERERERMSUcfDgQXzJl3wJnvnMZ2J2dhZXXnml/ttLX/pS/NZv/Rae/vSn46lPfSq++Iu/eKr7JqSUU93gbsDzn/98efPNN1/o3YiIiIiIiIiIiIiIuED43Oc+h6c//ekXejemAtt3FULcIqV8vu39UW4aERERERERERERERERoRGDxIiIiIiIiIjLFv/pDz6BZ/3kOy/0bkRERETsKkw9SBRCPFkIsSmE+JPy/y8SQhRCiFXj33cZ7z8ghHibEGJNCPGQEOI7G5/3neXra0KIvxFCHJj2d4qIiIiIiIi4OPHeO09gZXN8oXcjIiIiYlfhQjCJ/wfAJxqvHZVSLhj//rDx/iGAKwH8GwC/KYR4BgCUP98I4N+Wf18H8Bs7/QUiIiIiIiIiLi1cjh4NERERES5MNUgUQnw7gCUA7w18/zyAlwN4rZRyVUr5YQB/BxUUAipo/Hsp5QellKsAXgvgXwshFs/7zkdERERERERcstgcFRd6FyIiIiJ2DaYWJAoh9gD4aQD/1fLnw0KI40KIB4QQv1IGhwDwFABjKeXdxns/A4C6XT6j/D8AQEp5HxTr+BTL9l8lhLhZCHHzyZMnz8M3ioiIiIiIiLhUsLQxvNC7EBEREbFrME0m8WcA/K6U8kjj9TsBPAfA1QC+EsDzALyu/NsCgHON9y8DWDT+vuz5u4aU8k1SyudLKZ9/6NChrt8hIiIiIiIi4hLE2bXRhd6FiIiIywxLS0v4jd/oVin3+te/Huvr6+d5jypMJUgUQjwHwFcB+JXm36SUx6SUd0gpCynlAwD+B5TEFABWAexpDNkDYCXw7xERERERERERrYhMYkRExLSxm4PEbMc+uY4XAbgewMNCCEAxgKkQ4vOklF/QeK9EFbzeDSATQjxZSnlP+dqzAdxe/n57+X8AgBDiiQAG5biIiIiIiIiICC8SARQSWF6PTGJERMR08ZrXvAb33XcfnvOc5+Crv/qrcfjwYfzlX/4ltra28M3f/M34qZ/6KaytreEVr3gFjhw5gjzP8drXvhbHjx/H0aNH8eIXvxhXXHEF3ve+9533fZtWkPgmAH9u/P+/QwWN3yeEeDGA+wE8DOA6AD8P4G8BQEq5JoR4K4CfFkL8P1Cy1G8E8H+Vn/OnAD4qhPgyAJ+Eqnl8q5QyMokRERERERERrZjvZ1jZGmNpIwaJERGXNf7pNcCxW8/vZ171LOBlP+/888///M/jtttuw6c//Wm8613vwlve8hbcdNNNkFLiG77hG/DBD34QJ0+exDXXXIN//Md/BAAsLy9j7969eN3rXof3ve99uOKKK87vPpeYitxUSrleykqPSSmPQclEN6WUJwE8F8BHAKyVP28F8P83hn8/gFkAJwC8GcD3SSlvLz/3dgDfCxUsnoCqRfz+aXyniIiIiIiIiIsfWSoAAJuj/ALvSURExOWMd73rXXjXu96F5z73ufiCL/gC3HnnnbjnnnvwrGc9C+9+97vxwz/8w/jQhz6EvXv3TmV/psUk1iCl/Enj99ehMqqxvfcMgG/y/P3PAPzZedy9iIiIiIiIiMsEZRkMhuPYAiMi4rKGh/GbBqSU+JEf+RF8z/d8z8TfPvnJT+Ltb387fvzHfxwveclL8BM/8RM7vj9T7ZMYEREREREREbGbkKgYEVsxSIyIiJgyFhcXsbKiquS+5mu+Br/3e7+H1dVVAMCjjz6KEydO4OjRo5ibm8MrX/lK/NAP/RA++clPTozdCVwQJjEiIiIiIiIiYjegkOpnZBIjIiKmjYMHD+JLvuRL8MxnPhMve9nL8J3f+Z144QtfCABYWFjAn/zJn+Dee+/FD/3QDyFJEvR6Pfzmb/4mAOBVr3oVXvrSl+Kaa665qI1rIiIiIiIiIiJ2HUa5Cg6HeQwSIyIipo8/+7N61dyrX/3q2v9vvPFGfM3XfM3EuB/4gR/AD/zAD+zYfkW5aURERERERMRlCx0kRiYxIiIiQiMGiRERERERERGXLca50pvGmsSIiIiICjFIjIiIiIiIiLgsIaXEuCxKjExiRERERIUYJEZERERERERclhiVLCIAbI1jn8SIiMsRUsr2N13k6PIdY5AYERERERERcVliZJjVRCYxIuLyw8zMDE6fPn1JB4pSSpw+fRozMzOscdHdNCIiIiIiIuKyxNhgEqO7aUTE5YfrrrsOR44cwcmTJy/0rvCweQ4YrQGLVwe9fWZmBtdddx1rEzFIjIiIiIiIiLgsMSoikxgRcTmj1+vhhhtuuNC7wcdP7lU//+cSIMSObCLKTSMiIiIiIiIuS0S5aURExEWNrZUd++gYJEZERERERERclohy04iIiIsaazsnk41BYkRERERERMRliWFkEiMiIi5GzOxTP9dP79gmYpAYERERERERcVmCmMQsEdiKQWJERMTFgtl96ufaqR3bRAwSIyIiIiIiIi5LUE3iXD+NTGJERMTFg9n96ud6DBIjIiIiIiIiIs4rKEhcGGSRSYyIiLh4QEFiZBIjIiIiIiIiIs4vxoWSm84NMgzHOWvs0aUNrG2Nd2K3IiIiIvxI++rnaGPHNhGDxIiIiIiIiIjLElSTONdP2e6m/9fP/zO+47c/thO7FREREeFHUSa1xps7tokYJEZERERERERcliikChJnsm41iZ89sny+dykiIiKiHZKCxK0d20QMEiMiIiIiIiIuS+Sl3HTQS1BIoChky4j6uIiIiIgLgqKUukcmMSIiIiIiIiLi/CIvmcRBlgIARkUYmxidUCMiIi4oaK6KTGJERERERERExPlFYTCJQFWj2IbNEc/kJiIiIsKGzVGOt9xyBFIy1QlTYBKzHfvkiIiIiIiIiIhdDC03zZhBItMJNSIiIsKG33j/fXjDe+/BXD/F1z7r6vCBsSYxIiIiIiIiImJnUHSUm26Notw0IiJi+9gqVQkPnFrjDYw1iRERERERERE2vOO2Yzi7NrzQu3FRg7peRCYxIiLiQuCKhQEA4NQqkxEsOjKJSw8D62eC3hqDxIiIiIiIiIsM5zZH+N4/uQX//vdvutC7clFDG9eUNYmjwF6Jm5FJjIiIOA/YN9cDAJxaZSb8uvZJfP2zgNd/ftBbY5AYERERERFxkYEYr1sfjX36tgNtXFPKTceBrS22onFNRETEecSpFSYjSDWJeQc1yXAl6G0xSIyIiIiIiLjIMC4Zr9iur8IoL3D38bDFD2HSuCaQSYwtMCIiIs4DqC6aLzeNNYkRERERERERDQwDg5nLCa979934V7/yQZYBRDNIHMUWGBEREVMETeUb3Dmla00iAzFIjIiIiIiIuMgQarByOeGOo+cAAA+cWg0eQzWJMz2Smwa6m0YmMSIi4jyA5qCcKwvpWpPIQAwSIyIiIiIiLjKEBjOXEw7M9wEAZ9ZGwWMikxgREXEhQXXRofXQGrFPYkREREREREQTw3G1oGBnoC9R7J9TQeLSeriRg+6TSExioIzXNK4p4vGPiIjoCJq/+UxirEmMiIiIiIiIaMBkErdizz4AwP7SSv4Mo3fkhHFN4ELNbIER60MjIiK6otiu3DQfAjukLIlBYkRERERExEUGs5/fVuzZBwDolYHeWQaTSAszqkkM7ZNoBubx+EdERHRFZyZRGsnBPFByygwmY5AYERERERFxkcGsnYtMlgItsjhMopab6hYYYQu14TgyuREREdsHGdew68wLY94JlZwW4fXaQAwSIyIiIiIiLjqYjNcwOm0CqGoDNxnMHh3GSm4aNtaUpXK2FxEREWGi6FyTmAPZrPo9Dwz+Qt9XIgaJERERERERFxlMxisyWQoUuIVKRgGTSSS5adhCzVzQjaLTbEREREfQdNXJuKZHQWKgeoLMbgIRg8SIiIiIiIiLDKbENPbsU6CAj8OsauOaXncmMfasjIiI6AqSmxaS6ZQsc6A3p34PbYMRg8SIiIiIiIhLG2ZgMg256TgvsDHc3YwlBXybDGaVxvRTXp/EGpMYa0IjIiI6wgwMWfXlNSYxUEZqBomyfa6LQWJERERERMRFhtGUmcRX//mn8fSfeMeOb2c7oIw8p0awkBJCAH2mcY0ZJLKbYEdERESUGHcJEknxwJWbmsFkAKsYg8SIiIiIiIiLDNM2rvnHWx8DAJxeDZQ1XQBQRp5To5kXEqkQyBIBoKvcNDKJERER3VDIDqoQCvDYNYlGkBggUY1BYkRERERExEWG0ZTlpocXBwCAu4+v7vi2umLcxd1USiSJQMaWm1bbCB0TYccjZ9bxvjtPXOjdiIi4IDBVCcFzOfVIZAeJZm/F9jExSIyIiLgosTHM8fr33B2dHSMuS5iM1zTkpk88NA8AuOfEyo5vqyuqFhjhc0JRMom9tGQSA1nBGpMY3U23hX//+zfhP/zBJ1jnbdo4szbE/3nfvXwHyoiIFnQKEjWTWBrXdJGbRiYxIiLiUsUffORBvP499+APP/Lghd6ViIipw1xMDPOdX1wfnFdM4qnV8Eb10wbVJHKC5nEhkSYCWZLo/4egiO6m5w3E/N7x2LkLvCdu/NK77sIvvvMuvPuO4xd6VyIuMZhy02ATrKLBJI47yE3zGCRGRERcoiCjiaNLmxd4TyIipo9xl+zztrantrGb2R5aXw3HRbCVfFEGicQkhi7SxtHd9Lzh6VfvAQDcemT5Au+JGzNlH82HTq9d4D2JuNRgMonBCa5mkNilT2JAYBmDxIiIiIsSVyz0AQAnmUYa/3LvKfzMP9yxE7sUETE1jKfsbkps2W5ug1F0WGzlUgWJQgikiYjuphcAh8p616NLG6xx77r9GG564MxO7NIErtk3AwB4lLmPERFtqBnXhCacdE0iyU0D10G5ESRGJjEiIuJSBfU1O7nCCxL/ze98HL/74Qd2NSMSEdGG4bT7JJaB0MYuvm/GtSAxbD/zAkiEYhGzRLCYRC77GGFH5UrLO46v+uNb8Io3fnQndmkC5H776NkYJEacX2yvJpHbJ9GsSYxMYkRExCUKqj86xQwS9872AABHpvCwH44LfOdvfwyffPjsjm8r4vLC1JnEi0BuambkQx1OldxU/d5LE1ZNIkkQo5nJ9tCllnTaoOvi9BqvJvevbzmCH33brTuxSxGXCMwcE78mkWlcY8pNi/bAMgaJERERFyVoYXaKKTe9eq+SDT1ydv2871MTD5xaw0fuO40ffstnd3xbEZcXRnmBmZ56hE9jcU1tHnZzkJh3YRKlcjcFACHqgaYP40Ji0FNBYjSu2R5yzSTu3muLrn8ZeH0Q/ttffQZ/9vGHd2KXIi4RdOqT2GyBEeBUCqAhN41BYkRExCUKWlhwe5TpIPHMzgeJxFDkzIVFREQbRrlEP03QT5OpyE3zi0BumndkEpNSSpgmItjwJi+kDtJHsQXGtjDuKDedJoi570oa7+bkSsSFRTe5aZNJDJWbju2/OxCDxIiIiIsSNLFypV7755ThzWPLO++KSrsWuvCMiAjFKC/QSxP0s+kEibRI5hrX3PLQGdx/cnUndmkC5n0Wuign4xoASIUIDgLGRYGZyCSeF+iaxI6BFJfd64JRx+cNgat4mSbe+skjuP41/4i1rfagIeL8w0xujUKvLwoSs5nyQwKvL1NiGoPEiIiISxUk0eA2sqas9TQeiLR4j0xixPnGOJfopQkGWTIVmV4lN+Xdby//zY/iK3/5AzuxSxMYdwkSC1NuKoLv1aIABmUbnmhcsz3QHN6VSZwGu01JkmD3yRKUgDjBrJ2fJt70wfsBAA/G9h4XBEUhq7lkp41rzPdFuWlERMSlCloQchO7uQ4Sd35hQYv3qEaLON8YFUXZ3y+ZSpBC981uls2ZTGKoDL2Qptw0nJWqMYnMSWh5PXBBd5mALt8tZgKCsDSF40nnmMva759TRmlcF+4uWN4Y4cW/9H7cfpTXb5LM3OJ1eWGQG0FicNKbahKzASAShnGNMX9HJjEiIuJSRVcJJy2o14c7zyRSZjy6H0acb1AT+CwN7+23HVDd3cVSkxgaOJtMYiJE8L1q1iSOGUH6Zx5ZwrN/+l34x88+FjzmUkeumcTwa8sM5pc3dj64oeuJGyTuK8sbpsEkfuKBM3jg1Bp+6Z13scZRCcbSFI5jxCQKKXXCaRg6l1OAl2RA2g83rqnJTSOTGBERcYmia+Cl5aZTaAq+FeWmETuEXKJiEqeQhKBAlBMkTrsWNy+k7p8aKgvMC2gmMWHVJEoMyhYYHPOsO4+dAwC8764TwWMuddDh48hNzfl/GkEiXf9cafd8X10j0yhvWJzJAAArm7xt7SvZzjPM9h4R5wd5ITHoceWm5ftECqSDjnLTyCRGRERcouhKnnStSXz49DpOnOOZ3VDWeRrGChGXFwopkQiglwoWk9UVtA2O3HRzyi0NVEaeVydYyKpPYpKEB7Z5IZElAmkiWHXR/VJWNg2zoYsFeYeaRDMwn2afUO55owREVyktB73y2uIGiXtKueluNte5lJFL6J6rwXOJZhJTIO117JMYg8SIiIhLFLkxmXJYRVrscoPEL//F9+ELf/a9rDFRbhqxUygKiUQIZMl0ahLHuiaxCA6kplH3a2KcV7KtLnJT5W7KCBJTgSzhyX17aTezm1seOoMfePOnLkmnZM3SMRIQJlPc1RWVAwpKucY12rl1CgkTes6sbHZjVmOQeGFQmExi6FxCNYlJquSmwe6mZpAY5aYRERGXKMxnNSe7S4vd9SnITYcxSIzYIeRlTWIvFSy544mVTfz3v/oMu5VFzTk0cMHL3cZ2Ydb2dDGuSYQIViio45+UxkHhxz8rt8VlpL7nj2/B33/m6CW5kKfAnMMImsePG7h1ASUXR7lkBeqjnP/duoISD1wmkcYtb8QWGBcCeU26zmUSMyDNuvVJjO6mERERlyrMjD8rSJyqcU3pbhpjxIjzDCU3FcjShCV3/JV334O33HIEf/PpR1nbMxcvoffb+mi6i85ag/suxjVJOJM4LiRSAWUcxDj+w46MFBmgnL4E68bGBT+Q6nI9Ela3xuwSADNJwjl34w6mPF2hmUSmSoaY3OGU5eERCrmspOvhQWJ5rkSqAsUi8NxFd9OIiIjLAabEaysPf7httwUGpyaL6lAikxhxvlFjEsfh19dsybStMtmGvJCYK004goPEKTOJuUTFJAbu47g8jgCQCF5NYpokpdw3/PjTseMyS/tmp9dKYdroIsnsGiQurQ/xzP/5TrzhvfeG7yAaz5sOypVp1CR2dTnuWm8ZcX5QGHN58DmkYC/JVKAoQ4PEWJMYERFxGSDvyCSODJfGLsHbY8vh5jWUcY7uphHnG7lUzJdyNw2//hfIAbED20BBYugi2ZSbTsO8qSja5abL66NaPXJRCxKZNYl6YceXSbL77c0rJpEbJN70wBl87P7TrDHTBgVSo1wGz8lmkMgJ2lbLc//HH3uIsYd1QxGecmX6clP+uG77eMtDZ/Hhe0512mZEhVyWQWKShLPUuiYx6c4kRrlpRETEpQoz4895aJuLkC6S0+MMh1PKHl+KZhMRFxZSlnJHpnHK4kAFiVwmcVQUmOursaGLUZNJnErdWGH2G5vc3tY4x7N/+l34j3/wCf0aLdAA6pMYvq00LftUMu5vkvR1bcrO7bf3ijd+FN/+po+xxkwb5pwcyiYOx93mf8oBnFnjHUcz6cCSm+bTl5t2HccNEl/+mx/BK3/34522GVGBTMh6WcJgEsv5W6TKvCY0SJRRbhoREXEZoMYkMh7aJuvSxViDM2ZYymDHRXiGPCIiBDktLFKeu2lZfofVrXAHxKKQkBKV3DQ4SKwWIZvDnQ8Si0JiJnPXJL77juMAgI8/cKY2JiF300QEM555USDt4C471AYovONBrqgnVnhteC4G1ILEQFlmTW7Kmf/L93Kn465M4qhjANYFXful0jGJctMLA5K8Z11qEpMMEAlTbiqM3/2IQWJERMRFifw8MIld2A1OM3FzwTONTHLE5YO8kJXclHEd02J1lSE3pcTKLLMm0UyoTKNnYi6rthS2Y3LOcG+kxuF1JjFcGm4u7DgJIC03Zc499H24DPDFgC5zcle5KYf1rW9ve88bbk3i8saIVf8OoCZ75qhXKklsfEZdCFT15Yz6ZrMFBldummTqX5SbRkREXKroGiSOc9nZhh7gGdfUe3nFLG3E+UMhlSsnX+7It8mnReQ8U25qJlSm0Q6jqLGrk8fE7K16x9Fz5WvQTKJyNw3fVpYod9kuxjWhxjqEada2TRtmYB56bZlzK68mvdvxG+fdEn6jjnLTZ//Uu/CKN36UNWb7Dqzdjs006o0vZdBcrtoZdWASkzSIFVTjxuWYXuyTGBERcemic5BYFJoRCV3cmQ/BrkziNJiUiMsHZvaZU5NIi0dO0EaLz1mmcY15j06NSSzNZGxzgnm/3350GYBqxE5tMxIhghkYqknsMVtgbJHclMlo0fu57NLFADNxFzonj2puo4xr2RjHCW7GRbfk4naC+88eWWa9v+bAykhK0v3dVW56KSYuponaXB46l+gWGAnT3TRXQWXaC2IfY5AYERFxUaJWx8IyEqhcGkOzduaCZJPx8DUXL5xxERFtqNxNBYs10ExWB/MNbgsM8x6dBpM4zpUEt5/ZJbi0P4szGe54TDGJm6NctwVJme6mqVC9zbrITbmMFjGPmx0X5Lu53qyQleFQqFOsycRyk4QEXl9GfgsYc3vTOP7178YPnLsGe2tMp+SIOopyLs/SpGbI5B9UHnOSjoYGl7IMEpM0yk0jIiIuXXRtgTEupHZpDF1cmw9fTia/HlxeegxAxIVD5W6asFow0OJxyGAfiWmo3E0DA6mO92hXVLIte5BI3+Pzr9uLOx9bAaCUARSgCBHuEEnMUteaRLbclCSBHeeRLk7O04JypVXL0S41iV1aIAG8OXmcF5gvnYFZSckpGtd07eWoJbEdry1OfXPEJFTCCehzVAm1msTELTddPQl85i8qW98oN42IiLgc0LUFxjgv2A23uy4sanK7GCRGnEeQu2nGacCMbkzWqCOTaN6j01gkk2wrS4W3JvHGQwt45Ow6pJTYHFXyc+Vu2r4d+l5pkiARvJpQOpacOkbz/V2ZxLUpMLldURQSg4yYxLDjUqtJZCpJCBx1h0ou8pl0up6mYQrTmUkkuWnHek1OfXPEJMiELOOYkJlMok9uetObgLe9CvjYb5TjcvX+tBfdTSMiInY/pJT45Xfdhdse5dVfdK1JHJkP+1Am0XgfK/tcdFuQRFxe+KV33oX/9Q93sMbQwqKfMhowo1uQmGsmkSfTHne8R7uikJXjq+2Y0P48/sAc1oc5zqwNFZOYVTWJIe6m9DlZ2SeR4yRpupvyauK2x/bsZknguJAY9NytS2ygoHm2l7Lq70adVSEFFohJDE4udpO2djWC6VoWQdfzKO/Wqmk3X1sXA2rGNcFyU6pJJHdTxzkYrqqfD5cmSJpJTIE8BokRERG7HFvjAr/2z/fiW3+L5+SWFxK9tDQSYC54t7PY5RjXmPVN0bgmwoVff9+9+J0PP4CzZVuGEHR2NyUmq4NEj9sC40IwiVkZONu+n2JfgccdmAMA3H9qDQAwU34v5W7afixpIZ0IwWYSzbmKxUCO+bJFM9jYzQt51d+SZyZGc/f8IOvMJLJaZ+RGmULgOPP8cgLZrj11u7Z3GneU7hKi3HR7qLXA4BrXUH2hy4RmVfWGxcZSNS5Jo9w0IiLi4gBlc7lSl9wwOwh9sEmpMqWzehxvQQLwM7SDkqXoygBEXD745MNng9+rpZVJUsraAmV6mskKX4jS4pNaYITWZNVqEvNpyO3MFhh2JjFLEly3fxYAcO8JlWWnACURYf3liNWjmsRQsxugPlexJL8dmEQzSFnb2r3zz7iQhuM0zxRprp+yyw0IPFVIgfkB73lD25rvp9ga58H3aNdejrU2HZznVEenWEIMErcHUwERPCc0+yRKx7jVE+rn+plqHLmbRuOaiIiI3Q4OM2eiHuzxMrvcBYn5EGUxiYXUZgdRbhrhQtmmj3WNkCNePyOZXtjCcmsbclMyFwllIacuN9UZeTu7N84LpInA1XtVkPggMYk1d9OQ7aifaaLcTTk1oSZ7FSwtQzUHcWoSzWO+mxfyuWFcE2rc0TVINFuPcE3IZjWTGDZOGz4NMhQyPPir9dfl9GQsugV7JnvFSbgSYr399kBOyT1OfXmtJtFnXENM4tlqnHZEjS0wIiIidjnIGp9bh1HILrWF3WqrarUlHbPP8UEa4QL1X+Ms7Artbkr95cKu5S41icSUaeY+cOzU5aaykm3ZFrvjQiJLBfbN9pAI4NGlDQDAbF8thYQIcyqlRXWWdm+BAfDUE10cKEcdWbOukFLirmMr7HG5rOSmoeqOKnGRMts9GMeEcU0WhcQc8/qn5w23ltEMFDgMcN7xfusiwR1uU6IaUaEy3GLUl9dqEj1y0xVLkKjrGCOTGBERscvRlUkc55XcNHThRFnq2R6vtqSrIUBRGBK9+CCNcCBLSkky4xqp3E1LBobpCtmFSeQy93lRsaTTMa5R2/P1ScwSgSQR2D/Xx9EySKQAJU0QJB2lxNZML1VyX47c1NivLg6zXZnErvMsB2/71KP4mtd/EO+780TwGCoB0H0SA5lEOk+zvbRTuweAb0JGCpRQKWdVN8l8Thn7uMpwDu1qlJMXUisSQgNu89qKz7btoZCqvrmfJgwmkeSmJStoczctcmBrGchmgPEGMNooaxKzKDeNiIi4OEAPakGryUAUUi2S+1kSXCPVlUk0Fy6cxZZiEkluGpnECDuIDeRcI0VBdSwlkxi4uK6YxPA6RgqCelmCRITfN4WsJOHTWEjKWp9Ei9y0kEjLgPzAfB9HlzYBGMY1Iqy+kBbSM70UCZNJNN/LCRJJqpgXMrgvpnnMN6bQAuOessbzjsfOBY+hw8F1NzUl0Lxgu2M7I6nqy4Xg9Ndt1PKGJiXNWlJGf8saI7jjzq3dTHIiJqGYRPUc6FSTKFK73DQvjdAWr1I/N5YaxjXR3TQiImKXY2OoJkWu3JQkGgOHtMyGZk1iqHkHPRB7qWAuLKqANNYkKjx0ei0GzA2kKclNGdl/IyAC+HJTNSbs+td9AYVbymnDuCgq46YpuZsmQjgXW3kudUC+f76PY+fKIJGMawIDPpqzZnspMmaQaC7kWUGiGdx0kAROg0mkhADXEAaopMyh12RuSKA5Ri9dzV2o3rXPuP6pLydfbtqNpRt3lZsajt/BclNTNh2ZxG0hl2afREZNokiUdCJJq0Lp2geXQeLClernxpnKuCZxBJYNxCAxIiLigqKz3JQe2hlv0QpUi5lw4xqSDWW8ILEo0EsT9NMktsCAWmh9xS++H9/zx7dc6F3ZVdA1iSybfBXU0NhQmVLNOIXJ2tD9FrqQzAsgSxPWPbodkJmPq06Q5gwAODjf16/PGkxiSK5qUzOJieqtyGQSKwluN5lq6Bw07ZpEMp/hsJa0tq1aYPDqXQcZQ6KHZiDFYxK51z8t+Od0kBh63roxguO8wDwz2FPbK3SQGCxbj0HieUNRGteEyt3VoFwxiIA74CM5qQ4Sz1bGNbtVbiqEeLIQYlMI8SfGa98phHhICLEmhPgbIcQB428HhBBvK//2kBDiOxuf5xwbERGx+9E1SCxkhyCx0e+N69I43+f15MoLtbAe9JLInqFa6H7g7pMXeE92F2hdwDauScBmEs33BQeJsuoL2HfYtC+tD3VLCb2P5eJnkCadrPU5kHofS0bQstjKiwJZydoeMIJECm5SgaD6QgqCOjGJRcFOUgEqAOCyssMpy001k8gxktFMIq+2lg7dIEuZBkD8+nIpJWRZNzbIws1FKuMargt3N3OjcSHZASlQdwoPViRE45rzBkpApJyEkyxrCwEVLNpqEieYxLOGcc3ulZv+HwCfoP8IIZ4B4I0A/i2AKwGsA/iNxvuH5d/+DYDfLMeEjI2IiNjl2CR3U+Y4so3uMx7alKXrp7zaEtOAgPNAzIsCqRCY6aVRbopocOACJSE4x6co5aYU9IRK7rrUEpktH1xJmVf90S34qtd9oPY3WvwMejvPJNLXT4RabNn6HZpM4g1XzOvXqz6JYTWJlNiimkSW3LHDghxQAccCs7552sY1g/J7kRw3BKZLKcBht4tym0lwjSbQrU+iyaQPsjSY8c+1uU53d1NWv0NDNsptr8I9/l1deiPqMBMQSWKft6yg2kLA3c7CGiQWRguMXRYkCiG+HcASgPcaL/8bAH8vpfyglHIVwGsB/GshxKIQYh7AywG8Vkq5KqX8MIC/gwoKvWOn9JUiIiK2ic5MYsnS8WpEqod9j2E3XRneZMwgUSJNBWZ6CUs2dKniYsk4P3JmHc/6yXdOMGM7BboueVJmCVEGROZntKEoDTiA8PovYjaUTbs9KLr/lDpWn3r4bG0fk0QlZXY6QVAYTGLqYBLHuUSvNK751uc9DouDDE8+vIDr9qu+iWqR1r6tTSNIzJKwwNLcB24rEXrvwkwZbAQGDtMOEula5DCJEz04GTWJNI8H13GhMoXJEhG8n3Qt6SQJU6Y919EVFeC2sijQT3nmUoAyvarM3EKTTZFJPB8w1ySpsM9bVtSCREcLDC03Pax+arlpCqTZ7pKbCiH2APhpAP+18adnAPgM/UdKeR8Uc/iU8t9YSnm38f7PlGPaxkZERFwE6F6TWLDlpnohWRrehGZbuzOJpdwuS2NNIrrb/08b77z9GFY2x/jTjz80le3pHnjMvm1p2c4BCA8Sx3nBllsXsrGQsWzr+U9QlR6fePCMfk21nEgw6PHumy6gfRRCKEbQsjmTSdw718P7f+hFePurv0y3EUmEvybo6NIGfuYf7tCN6Wf7KdJEsJis3GR7mLV0s8w2EV3qGLcDWuBuMqSt3ZlEaCadK9vNEp66gw43ya2HocFlwygtVALatW5ylEtkaaIMUEJbiRSKydItSKLcdKowExCpIwFnBclGAbfcdLylfs7uU/LSddO4prfr+iT+DIDflVIeaby+AGC58doygMXyb00vZfpb29gahBCvEkLcLIS4+eTJWA8TEbFbQLUyUvIcTvPSpIKX2VU/UyHQc/RSs4Gyz+yaRCnLBUkS5aaoLyZWGP2/po3FkrGZ1j7SYpLtbppUTGIom5UXkm0SYt43rno/WgifWh3W9jERYLH9XUG7lJQGELZA1qxJBICDCwNd0wnAaXhD+P4//SR+98MP4JaHFFs6kyWtY5ow++2FBunUS5DbuoeOuRDTqUnUjDjTEAaoSgBCg5RCKpa6lyRsuW+WqtYxoduqFvJgJSVz/dzgmcmY1wW3vCFLBHqJCK7t1I7fTHa71idxFyf8djvMBIRLJq/x6CeBT79Z/W7WJDqZxHIuTgfA3IG6cc1ukpsKIZ4D4KsA/Irlz6sA9jRe2wNgpeVvbWNrkFK+SUr5fCnl8w8dOsTa/4iIiJ2DmeFmMymCJ2WrpB2qnUUXd9NRLoPrBvJcWVvPZOmOG3dcDKi3X9i9C4uFQQ8AsLLZnmndLqSUVU0iq08iBURMJtEIUriyuSSBt94PAM6uG0FibjpC8q7/kytbrKRRkNzUYBJtEELAdxg//cgSAMUoAiowzhzbciEvCjZrRozjPLOVAp23xUE2FbkpbY8TkFIwkyQCvSQJbktEKo1emiAvwufkUV6glyi2jbMtALovL7cGfq7PdDfdRiuLLOUlQGkfB0y5b00SGxOgnWEmIFzzlsZvvxj4m+9Vv5NsFGh3N017wOz+hrtpBuS7JEgE8CIA1wN4WAhxDMB/B/ByIcQnAdwO4Nn0RiHEEwEMANxd/suEEE82PuvZ5Ri0jI2IiABw65Fldg/CacJcvPD6a6nG2F0yu2mS8Pq9NVxRgxfXmkmMxjXAxWObTnHENJhEc20b2v8OICYRup1CsEpJSnZPuprc1NVeorwnzq5XgbViEnmOkICqCX3B/34P3vTB+4PHmMY1iSOQVfJXd5CYeoxrzDn0odPrAJThTWhvRYIpGw1vyq7eN8s8bxS4Lwwy9vzz7juO48TKJmtMVVvLM2ACqAcng90rqLecOp+h8spxrgIpl0uvdR9rxjX8580ssyax3ieRF3BniUCWhNdp0j4OMp7c1Kyli8Y13ZFTkqSct6REe8JDvaldbqqZxL4RJBaqv+Iuk5u+CcCNAJ5T/vstAP8I4GsA/CmArxdCfFlpVPPTAN4qpVyRUq4BeCuAnxZCzAshvgTANwL44/JznWOn9L0iInY1PnLvKXz9r38Yf/iRBy/0rjhRt+RnMAeFWiSzHtqmbChNgmUyVQsMPgOTaLlpZBKHeW78vnsXFpTJn0aQaNaXcZhEYlKIGQuVm6oghdc2Qy8IKQBzsHSAaoVBKEpmg9sn8ZGzKgh7310ngsdUNYndmURfTeKSEfw+tryJfpboPpWsIDGXnYO9rrWkCzO8/q6jvMB3/9HN+I43fSx4DNDNgIkOXaqbiYd/N2VcUwaJDBOmLE06yk2ZfUK1uylTbmo6EDMTRwk32JbdakLpmpzrpcE1mhGTMK8tSmC1KhNG6w0mMQNkgYkmr9Yg0eiTuFvkplLKdSnlMfoHJRPdlFKelFLeDuB7oQK+E1D1hN9vDP9+ALPl394M4PvKMQgYGxFxWePossoEf/ZIs3R398BsKB1qyADUmxuzZXOl4UEenG2tZ/I5meQsERj00hgkolsj9wsBWoRPQ25qBhihi0ipAyKeu2nTpIIbbHgb1Zfn88xavSaR2tSw3E07CB8K4972M4nuZY+PFTyxslX7P80FSSlRDVVr5GZNIpPJ4rbOGBsyVY7clD7/vpNrwWOA6hrk1AjSGCFUz89R4NhxObdSTWloUDTKJXo6IA1k0k25KUOBQuPm2MY1JpMYft9Iw/E19BzQM5DtLmskLnazKmS3g45j1mZCZtYcbq1UBjRA9bNZl1iTm5Y1iVTLmITJTTPWtzlPkFL+ZOP/fwbgzxzvPQPgmzyf5RwbEXG5o89svnwhUGMSGb2dilJumorwoM2UzYX2RAPMB6KaMsObIqvM7kwW5abAxSM3pUXauakwifwg0ZR60cIipCarq0lFjUlMBGzryIpJHNXGJUyJXldUctMqcJvYx7xAOnAve0juZUNTerm8ob5nZizsTFMcF8ZFwQ4S6dhyW2cQI7EwyPDo2Y2gMQBvHrZtj8OsmnNyLxXhiYtybiVn2mAmMScmkZFcbLbA2HG5abeaxLyQGGQqAcr9bp2ZxH66q1Uhux3NBJz5Wg0rx6rfN89VjCCg5KNAKTk15rcak7hPuZsuXlm6m2a7Sm4aERGxTbzkl9+PN7z3HtaYgQ4Sdy+LZWZNQ+tK1LjSuKZLTaJHNufaFlBlhDmZZHI33c3nYFq4WIxryNAidMG6HZhsdqjctGabHipRQrX4mGG2YKj38rIHpLSwXd0a6/NMkth+lvIYkeB3VqjXTdoDlXEhtTzRBp9T6Ylzikl8w3c8FwB0Y3sK0kOYm6KQKCS0uyyXkSJzEe58N9NLWfdb10U/bY/lUm3MySwGrJQO9xKSmwYyiSSBZtY/mvsY3F6CTGGyFIngyE07StBlZQAU7BJL10jGlaCr981Mob3NpQzz2vKqQlaPV79vrSjWUBhyU2BSPmoGiXMHgPEGsLW6++SmERER28d9J9fwunfzPJn66e5nEmtyU0ZNIrEULLc57dLols25tgXwGRiqgYrGNQrmcdvN1yQFhxzXyq7owiSatukJQ27aZBK5Doi++8Z8bWljqF/jmn0A3YKUWp9ER00i7Y8LwlOTSHLTlzztMD7ymq/EW77vhQDqTGIbKtamlEiGzj+yed5485YKEsOv5a4JHNoe574xry0uA5YIU24aLq/M2HJT6H109eC0bqt8n7oHwh2uzeuCcy9IqRKnvSy8BYZuQZIx62Rzg0ncxXP5bkfeWJMAsF9fG2er37eWVZBotsAA2uWmALB+qjSuKVtgtNyrMUiMiLiEQQ/gXb0g79hgvZCVBXoo42MyMC7ZnG/cLJdJlNG4hnBiZRMPn1nX/+csWqcNYrc5srmuyDssCE0DJop5Qtblk/VHoayB+kkMvC0IMNmVs2tqcULmItyaRJLlCbTLNwm1PomeNh2+mkSfu+mp1S3M9lLMDzJcs28WT7tqjxrDYHKbjeND2R7trsxuOF+xRJxgY9tBIkduaiQ8siS8TrwoA36S+PKDS74kU7UpCP9+5rhBL/weoOtitpey2kvkJMFN+HX6WWmcwr225vpZDBK3AdPdN9WqBMvxrAWJVJNYzmUULDYdTpvGNYQkU+6mQCubeEFqEiMiIqYDWohPK0j8i088jFEu8covfkLwmJrclNOovpQNpY5Fq2sMQAvJsDouoFpczzGbIpvmCuNC6nqYyxFf8ysfrLVH2M0LC7pvQuXI24HZ3oC7QOP2SWwyUlxX4KTs5WUblxdSS7+pV+K4kJjpibKXaXiShN4rwmPEoD6JbUyiq5YRAM6uDXFgvj/xuj7+AcENMURUBhDKJGqZcMcgcbafBgekQPd7k7bHSQDVEx6MOnFZ1ggSkxgqAS0qc5e1rbCa4+b9Fvq8MQ1vegzmsuqLyZNpFyQ3TcOZRJMl7THcZc3EaaxJ7A5bfbn1+jKDxImaRBeT2JCbEqhPIlCxjQ5cnquViIiLDF37HNKDc1oL8h/+61vx439zG2uMaZLAWlyUWVOX/E1KiZseOFM7diH93qzb6rC4JifJRAjN3HD64F1qMANEYJfXJBo1dTuNKiOfBjPiUlaLTy03DZgjuvbb033iPIvkcS5xaGEAoGqDQeYigx5PbtolqVUZ11T9xprz5rgovH0Sfe6mZ9aHOLgwGSQG29ajYoh6aYJEMCSSHeXuZnBZyPDruXNNoqQgkZfsAwxXWkYAlgjopBtHXpkmvKBtwvCMWaZA7Q3y0F6O5fvmBxkruULHRCUl+SxpLxVsKfNcnxfIRtRRk/KLULlpsyaxDOW8clOTSUzddYwNxCAxIuIigPlMCn1AAdVEvptNU4Z5UWXWOYuL8mGfJPaFxVs/+She8caP4u8+c7QaEyCbs26rfPhq44iA/aTPzsqaRIBnQnApwSa13c1BIi2wCrnz+2k6V7LdRmt1LAy5Y0d3zSxJnIvkcVHgikUVJFJCIJdlC5hUSe1Ck12dgsRyn6hPIjAZFOV5e59EwJ6UO7M2xP65ySDRa1vfgD6OaVkTF7qQ72hc02Qug81dOkrBKyaRV0cHVNdy6ONNBfwJX25aVHLTLn1COUxibiRz0kQEM8eaSexnPHdTSRLcRJtvtY4pr8E0SVhMoimB5ngJRNRhrkm8Caf1M0BvDoAANpeA8RaQqfk2TG7aYBID5aYxSIyIuAhgZgXPMXq3abnpLjZNGReFlnGG9sgCKulY5nj4nlxVRhO3Gj0iqyJxtSgJXbSSAU0/DWcSzYJ0cjO8XJnEI2fXJ17bzdlnc5G80/tpSgJHuQy6JnMz+8xissogMWMa1zTuG1ejemISSW6aF9DmUmp7gUFih2RKrSbRcUzGhb9Nhc9d8MzaEActclOWcY0RbPcSvrlIL02Qdqgb48pUt1uTGHodm2MUk8io96Nri8kkFgaTyO6vSwoULgOvmUTeOC5LV1C9ZcJxblU/tbtsJ1Ok3TuX73ZUCT8j4WQ7BxtngbkrgJm9KmAcrgL9BfU3LTdtupsSk9iUm6ZRbhoRcSnBnLibsj3/ODV57+oF+Vhiruw/yGk5QPb6LmnZ/jmVKTvb6NsGVIwI56GdGotdTpCYJQK9rCxIv0wfpncdW514bTcvLMzzu9OGQ6ZLIBAWSBXGwo7jbkqMuzZg6tAnTt03k+8Z5xILgxQzvQRn1yhILJAK5ezI2V43uWkVyCYO2RYle1zQPScth/LM2hD7LUFiF3fZrKO7MtXgdXE3BcKD9K6tX7ZjwpQItyrEBhXsVUE6p50FNyCqmYtwFCgNozS2my03SCwqx1dusJcmiuHu0rtzXEiWwimiQlFjm9VrzprEuf0q2Ns4AwzXgP68+pvT3XQIQKi/92aBbEa9LqLcNCLikoL5cOEsWomZG+5iuekor5pLh9ZRABWT6JKWUeBJ9VFAwySB4W5Krog6SMwnj+ev//M9+JG3fhY3PXCmsS2BNGEaVRQS956YDKwuVrz/rhPYM1P3SdvNxjXmdchZpH3onpN49Z9/irWt5kKeI2VOk0paGbJurRZ2JbMX2DTdZHtctVXKSCrB/rl+JTdtJFdCGUI65hzjoJDF1jgvvO6mOrhsjNsc5Vgf5lbjGmImQ+5tYgiqmji+3LGX2o2DfOO4clPzGuzS81BtK3SuUz/TsiYr2LimDPaoJpHDCqZJR7kpM7gvmvdNcFCqfs70UharXkhox1d2exuhEhDhx7Eo97G8thjP7ogKNeMaX8JpuAr0F5VsdL0ZJJLctHEO8qFiEckBjCSnNblpZBIjIi56mJMGZ9FK2dXd3G5gmBcsFoVA7SXc0jL13c8YQaL50Ga5m5Y1iT4m8ZfedTfefNMjeMUbP4pRXtQWhBxJGgD8n/fdi6963Qdw57FzQe/f7fjEg2fwwhsP1l7bzUyiGTxxkjL/9ndvwt9++iiLMabrVN8DgaZIQCXRA3hyR65ssQhYJI9yZQqzZ6aHlU1qgYE6Ax/KJJbHnJNIqPVJdAR7eSG9xjUUXDbHkXzW7m6a6M9uA51rVZPIkJuaTGLGCy7NeatLTSLreWMGiYw2QUDlbhocgJXzP1duqssUGEG6aS7CYTvrwWXCShImQgX3HBOhvJAQpXENt96VEhehx9FkEgFej+OICrbSAev1Nd4Esj4wd9BgEkluShOXRW6aGnNWb1b9zPrKzAYA8sgkRkRc9DAXnZzMIj0ApmHl3xXjXLL7fwHVgs8lLaOF/pJFbsp2Ny1Zkl7JGrQFsx+7/3SDSSRJVNj2bn7oLADgseXNoPfvdqxu5Ti4MMA3Puca/dpuZhJHtfuNv5/rHe5RjnOlmf1nuZvmhgSaw6QYcrvEYS5CLWkWZjKslq0FxkVRNhInJpEnN+UskGmfEmHKTRtBYhlYuODK5J9eVUGizbjGV8fYxNiYfzJO0CDrC3lO65IsSXQgFd6Cofr8jSHPXdP2GW37CJTBfeJwdrSN00wizcmh26tqGcNlu+qnlpsGy0arcRknuDT7izLmn6p3ML/eNWEykLkRyAK7O+m3m2E6R2e+dcJ4qOSicweAtdMls9hgEm1y09RQ8KydUj8PPinKTSMiLiWYiwlOZpcegrs4RsTIYBJDH2xSStUTyuMIRpnU5Q0jSGwsrkMf2uOy1iN1MBQAcP3BOXz5Uw4BAD57ZHnC/hwIZxI1pnTeVLuOndvY5ijHbC/F67/tOXjg574WAILd97aLI2fXWQtdoG6gxHEGJlXP+lb4mHEzSGTUu3LdTatgI2EZd1TGNYqBdzOJCRYGGVY3x+W4UsbGZRLLY85dIAP1ptTN/Sykv/dixUDWXycm0dYCg9On0gzSs1QEy+vH25CpJgnYgZT5Pk6gbj6nuNcWnTcOS0c9AYFw07OikEgFOslNk7JMoZBhMtym4RMnKZCUtbxc4xo2S1qTMifBx5FKMLhy34g6bHJT6z2Qb1UupeeOAJDAoGQSE4dxjdlLEQC2ShO/w59nBIlRbhoRcdFju3LT0EJ7wj989ihe+HPv7Wy0wmrcnBe6frBLCwCXIxjJnUzmNUQ2Z99eoc0mzO3XtpdLXLHQx+HFAR44tTZhmw7wai6niSf+6Nvx3X90y458tpQSG2WQKISAoNqXKTGJX/r/vg///vdvYo0Z1YxrwveTkgjrw7Am3UDd3RQIW8gXFolSWJ/EKkjpMxtn03ZcvQSJ2V+YybBSMolK2ofKuCbwnFNwyDPtUD+FcDelluXi2wUiGZsB95k1D5PYwd00TRLlysxlewTJTRkKiDIhADBqEo3j3kXyq7bFl2Ry2hJVrBmvfdJ25KZpLVEYsC2DAeb0SdT9RbOE5SeQF+r67yX8foe6TpNR76qMlMLUNZcDRnmBL/7Z9+Lttz4WPKbZJgVwzCXU8mLO6HdITCK5mzZbYDSDxF75/gNPNOSmMUiMOE/43GPn2E5/m6Mcf3nzIzvKUlwOMB9mXYxrciZT9BN/ezseW95kOamaYGWfc1kZ13RwWyRHe5vdPVBvO9F0mwvvk1hnbWyT+Lgo0EsSXH9wHg+dXkOdSQyvW7pQeM/nju/I545yibyozjHAy+JvB3TNf7w0EwpFTW7KWKRRcLLOYC4nmMQQ4xqLu2lYn8RC72cvTRjGNVUA7DIXGRUSaSqwaDCJKrisDJ9CjyUFh6xG4nqxVe1rc00uZRUI2uCqCaIg0dsCIyhIr2oSOYwgfQ8ax+sJiA5y045JyQ5y00omzGtUT+1MMmYArNtElHLToJYzteRi/TUTR86u41t+8yO47+Rq7T26TyJD3pomAoNewjr+khxf04QVNAN8lnqcy1K2zu9xfKni3MYIx85t4kffdmvwGNO4yZXcAqCCxLQP7H189Vq/wSQ2jWtkUQWQAPDd7wW+5fdUgBj7JF482BrneN2772ZLoqaJ1a0xXvarH8IP/vmnWeN+9b334H+85bN45+07swC9XNCVSTQzl5xMHy1YOQGp+bDlyMRGeYF57W7Kz366AjdaSJkBct24RgTLcPOytsobJOZq0fKEg3N48PR6g+0E6/vpz9zFQWUoaF4jgwMALPON7aDr8RsVUgc23ZhETva/aVwzuc9SStxzfEVfx6ZtfRXYtG+rVpOY8RwQ6Rp2MfB5IdEjuWmDSaQgJXTu0nJT1gJZ/fS5mxZSQsAdJQpHfefZtSESAeyd7U2M0Qu7AJbIbIvDUTJQcKkcKHkyySxNtic3ZbZg4I4zW5ekjnpX17bMcgPOs8NkwIJcaWvMvTvh93P/dCdufugs/vAjD+p9BCrHUZYpjwAGqQoSg3tONgLg0DHVPobLTfOiQJoKNkt9OYCzbjKdqr1lKfmWqkk8+KTqNc0kknFN4xwUeRVAAsDhpwPPfLn63SVRbSAGibsAb7nlCN7w3nvwa/98z4XeFScoS/S+u06wxlG/LMrERnRDvSaRwVIYDwoOu0e21iub4bK5LvUoUkqMC4nZrnJTQ1rWzP6PLdnwurTJPhk/cGoNf/vpR+uf1TDJsWX6RnmBXprg6n2zOLmypR+a22ESpyHJ3GmWf6N8YM72TCZxOnLTrguX0bjA4kBdk5z7jQK2NYbcVDe4170LJ7f3mr++FV/9Kx/E++86CaBpXKPeEyR3bBqgMHvLAbC6O0op9eJ7caaH9WGOvJB63KAX3l8UqOaSLjWJ9T6Jjf1EGJPYvCVOrw2xf65vNb2pFnbt+1gzrmEsyLdjXJMI/kK+a01ipz6J5lzumJOt40oJNIdJp3FJwmMgtVN1Sy+7zx5ZAqCMywDjfAumu2n53QYMdQFAzHEpG2W6m7Idv6XUBlgAMAxUJVzKoGPJSSw2E9fm59QwHiq56cEnVq81g0Sr3DSFFVFuevGAFk9HlzYu8J64QVkpbpNjrvV2hB21gIfF0vEzu0BVH0WMQNi2DIle4D7S/s0ybbTp+aeMNOwTq7k/mtko30LBpW0yfuXvfByv/vNP17KB9ND2mYToRXIZXJwr2wDU3E2ZQSInQOmKrmzb2tYYr3jjR/G5x/xtOnSQ2K8eN/1sSkFix4XLKC+wUPZ15NxvFENwVCET7qaWff5Mufi8pXS9pWtzppc6kyS+bbFrEovKFdTm7kjXUK90NwXUPVcU9TYFoc8P+nxODa/ZAsPG+EspIWXFFtrgCriXN0ZWFhGAcW9zmMQEvUQwJIEoxwmWAUrekASGskvDjkzidlpgJAnPTCwvAuq4bNsr6rWMIcekVqbgeN5sjXM8elat4Y6VrtTmd8tYNfBVTSIQfg6krJKSUoYdEzMBwXX8To1ra7fW208TXZ6lNn8Fa6CujWvMmsQ2uWlel5uaiH0SLx7sL+scTu9itq3rBEATyG62u78Y0LW5tzmOFSSWC1bqdxYCc0EeGtzQInWml0AIfk2iz0zGfPhXbouGtMmxIKHj+9Dpdf3aOJe62TNgfxiMiqoFAFC5qmaJ6W4a9v1oHcvJSHYFN/FDuP3oOdz0wBm85q8/630fBUwmk5gxFrrbQVfHvVEhsbAdJpGRXKHjMOcxrqHPve2ocqcjOetcP+3UgkHXJAY3966Ma2wLycp9M9FJktWtsWYbuItd+vzQmjG1j+pnLXAwxtKvYe6m9W3mhdTPsiY4QUpNXZAygj1Dbpom4XV7xLZpB9DA42/O5TttXGOawnCCxKKUMuvrP3A6IVVInyHBrbE9joX8I2fWUUjghivmcW5zjHFeaDMnoIO7qXHfcJIriQB6mf+7PXJmXc9rzfrmYMfvvBlsxzVel16RVuOa5jkocsUKZgP1/2/7U+CpX6vko4AhN20yiXnduMaEq21G821B3yJiR0HPrFOruzhI7OhcpYPEOIFsC+YChGVc05FJpPoxDpNonuO2h9r6cIybHjijHyy9NEEvSYLbIowNAw7XIm1sZRLbs6aPP6AazpL5AFAtkpNEQDgkOeO80DVZQBUkmpM/9z6aBpPI6btpgoKazx1b8b5vYzRZk8gxDdoOzIULx1hhNC70eWTVJJbneaNDn8QZTwsMum5ue3QZUkodJM72U5a7aW7WJDJq28bGYlctJJt/p/vYYBI3x6p1TGK0wGAGiUB4sCH1YssuN6Xf/O6mdsMb+h6+MUG1bQaTmyUccxH1U89bjDYRJtsT7G5qSJ5t8mcXuhjX0NtonmTLTXU5VnhwyZabUlIydS/kHzilkorPfdw+AMDSxqjWl5PnbqqCtj4zSKTgspe4v9vmKMeX/cL78MNvUck9s70Hm0lMqz6VUW7ajUxpOq4DloTTeEv9pCDx6f838B1vBgaL6v/CwSQ2axJNUP/EKDfd/aDMzanVrQu8J250zRJxFwcXCnccPber3bm6us3lNQYy/GFPrM85Rk3iiBEkfs8f34JXvPGjeLSUWPcyZa4Qeg60I5gn+2buD9VWNqUdtqzp4w7MAQDuN4JEc5GcWmzai0L1bTSZxKXSGTYzHqTcmsSuLF/XbYQutIBq3mq7tzctNYlZIiZaluwEzGuA49Sbd2QSKWBY20afRNtcS4uPU6tDHD+3hY2Rup7n+hnP3bRjbRuZhKixtoRM9bkLmkkcaWkfJ5AF6p8fuvBqYxJN91MXXPtpMkKuMSGMp25BkjKZxIbcMZhJbAaJgeO6JheLQrJcemkMUPUgDM0d0TXpcqR1IS9bZ3gblzfHGEyi635b3VLzy/VXqDqxpfWhvv4BHpOYk3FN2TomNJFHzq2VbHHyPZT8/JtPH9VjaP84yTvqk9iPTKJGF/dys07ZqQrJy9ggHdg/xFWTKPPqb01EuenFA7q3Tu/iILGrNIwkHbuZSXzw1Bq+9g0fws//050XelecqLubdjOu4QQcxBKtdgwSfQuLopD40D2nAACfLGusegmzSbThCOZ6aJsLItNtEaj6XdkmdXroHTu3WW3PrMmyPOxHmkmp5HYmk8ixyQcqaRynHq4rzOuCZbgSOCdsGKwXgdMPbTswr6dzDOl0IZW7aSK6SX45fRLpup3xLK7HhcR1+xXDfdujy3W5qV4kt2/LrInjOMxSsAHYWeAq+El0kmRlc6zZHq5xk/n54W061PuEwSSa2zNrFl2gP02YYBnfvwlXuw3fPmZJgizh9DusZKrdmESe3NScv7nlDTNMk6J6ABw+R4aYiVm3V/gVKDY06/Zs26Nn7cEFVT50dn2kW1kAYNUkEtupZdpMgylXWygAuPfEau3/Zu/UdBsJiFiT2G2dbJqQuZnEUmWYTbbgUYNdTOLYLTcl45ooN939oAtiCiU6ndE1S0RzVOjD6UKAFlwUuOxGdK1JNAMlTqBOUhxOTWJ9YeGeeNaNrCgZcfTSpHRkC3xAGTVQTibR2B/6Hs3WGfZ+h+o105G3WVvSfJCanztfBonk7NtPE69tuvX7le+bitzU2AZHXhy6mLC5m3LqqrYDUwJFQXsISCY2yFLWOaB7jNUCo7xuKYh2yU2fec1eAIoJMANvl9mKDVXWGmybfM0kWhaSuv9fImpJEinVdrjGTUWHeUsaiy06JuaUEFKT6Ko3KzxMoiuwtKGqSeTJD+t1Y2EBqRrXrW6say17UfgZcesYoybRlbizgRJ3XHfTouwlyGEgzePvYnvoc65YUGzPmbWhbmUBqGdVcJ/EMrmi5aaBiapCtgfAZpA4zouJesvwIL2omSJFuWnHmkRT3eSoiQ5mEttaYJig16PcdPcjVCbRxPvvOoHv/qObz/Pe2FFnpDg1ceqi3ZzCYrcraCLmMA2Ayui/4o0fZdUIdoV5/DnbGweye03QxMVpgRFak7huBCI3lU3OZ3opepwGwBYm0ea4uH9OZctOl/W+hZQQQrEJQkxa3QPVNWsGiSaToBYyzTFVNpbkdo8uKSZyz2yPJW0CuvWJ6wpzAdK15YlPamerScwuQE3iOUaQSDKxmV7CYhLp3uxyr81ktLiePC6jvMC+uR56qcDSxqiqSeyl+loOeY5U9S8JqyaxKBrGNQ4WJUsqufXR8vpfGGQVk86ogSRwm7K7antol4NqEpuJ/LJPqn9M+/EnGfL8ICvl9bygOU2Z5iId5abmIeckF8dFoVu5cK4tQM3JLLmpbEiZmYGzYJy3muGZqwa+qAeJS+vDGgPPYhKles5ouWnAfFIFe1XvTtt3O7lSKdZOrw1rQYpoSUB87rFz+NTDKrE7wVLvYrXYtNCFTa3VKaeOa1nXJM7YP8QnN3Ua14TJTR2jI6aJrlLO//AHn4CUamFiLsB2AuYEMMolBoFXDhmRrDNqdKYNmkg5i0gA+Mm/ux03P3QWtz66jBdcfyB43CNn1rGyOcbnXbMneEy9TyLnoW1k5DuM2wmTHGKrskTgaGkVfnjPAFkqGPKrKvtJC9Dm/DzMC+yf72NrXOCxcjtmvzdbbSFQLXibTGKvlFElFgaAgttemmBRL5JVveXe2R7bpp3O8XSYxOq7sJoA1xbyEv3Mvoimz5zrN4xrpsAkmvMWl0lMmUyilFIfS86CieYfahEytGxvXCjn3L2zPf09ekYj6zYG5uzaULkHGwsSVp9EWS2OE6EW8lJKvdA2a+0oSULX/+JMhpTRuBxoXls8RspcJNtqEj1EojPhlBdSJxOb4Mh96dztne0pJjdwUVnvt8dryq4ax5dBIqMGdZCpRu6shIc0Wrkw53Jf71rXOBqjth0ecNdbJwVsyyY3tbDNAHCwdKtfLo1rTJk2h0kXArq/aMgcZDKyvqbs5hx/cmWr7q7ZkoB42a9+CADw4M9/nZb7RnfTCnljveWaM0w0W8AAlmBTB4kOuakOEi1MoqsFRuyTePGgq+yKHsZLDEOGrjAX7yyXwPK9nFqnaYNu7DWGRAyomBFOTzQA+LJfeB++9g0fYo0xs02cOrWuTCKNY0lbQ5nE8nh98RMP6teuXJxBLwmvkaKJNUtMKdtk4NZPE1y1dwbHy/pC022OKzclyaiNBTMXyfOaSVSL5D0zBpMYGiSW53gaNYnmoqELAwb4FzG2mkSOrGw7MIMgjglTUahFE4dJHOaFZkG6NCAn1sB2jYzzAlmSYM9sD8vrI2wM85p812c4sTHM8dyfeTe+/U0fq1opJLw+icokRP1uWySbSZv5vrr+KTGzONNjtelovo87JwhDEsh3N61/FmFcSOc4jtx3eWOEXiow20tZ5k16IZ/wnIFJkpkx2Z5cSq/82b29Qj8XQwNSs3ctR+5ITp5CS3AZUk4hQB1NOP1Fqb+ubRzdt8Skrw/zmuETT15MSarw+s7cEmzYrknTefn02nDCXTPkOs4LWTGJ5T52dcC/lBCqgHhseQM//JbP4vTqVl3K7GKA2+SmJB21tsBwGdfEFhgXDboulnSQuLHzrTNqNQpdgsRdzCR2Pf70MJyK3LQ8/nN9Xo3UuJCY74dLVsxxagyDSRyHBaTUQ+6FN1ZB4uE9g1JuGiij0jWJbmnNKFfsy9V7Z/DYsgrYTLc5l7spHeuz6yP9AFUMJPS4SblpySQmCXppgpleguWNEYRQTIpmNgIXCV3lpjc/eAZ/dfMjrDFbtVrSrkGie5yWm2b1msTpMInVNlhyU8NdMPQeMI9BKCMOVMeRMvKuxEWWVEzi+nCMuX4l5/AZTrzrjmMAgDuPrUwyiYyWFKbcFGgyN1WQmJSSa7rn9sxk7JrEXEotYwutdTLlpLZAtgoi3Z/hWqT53E190j7CfSdX8XP/9Dn81gfuw97ZHoRQgVuo/LPQ5y1hm4tkHYLEmkspa07g1yRKMwAWwild3xrntb/VVCHMwDlNKrkpx7jGx0DS5/SzBIMswcYwn7hvWH0SjVrSMLmp+uk1QAGwMSp0GcYpg0n0OX6rz69eP7q0gXGu3E17u9yc8AN3n8T3/+ktU9mWuX7xXf/vv+sk/uLmR/D9f/rJWgLIyW63Gde4WmB45aYUJEYmcdeja23ONJnEcY1JDN9fulE4fcOmja5yX3Jxm8Z3o2M+20/Zx3+uvE5Y/a7K88ZZINRrEj3GNSWz9Lwn7EeaCOyf62Gml5ZyU660zP3QHuUFemmCK/fM4Pi5Lf2eem2hW26aF1LXqY4NJlGNq2/MlEwBwFOuVP2LFgcqQGQziR3lpt/yWx/FD73F39x+clvbZxJ9iZKNUY5BltT6zE0tSDS+DydIpMUdi0k0g8QODchpseWSQGdpgn06SMxr8t00mexdCAD/fOdxvPrPPz2xX9ruPrSOyzCusfUSpG3T31SQWNYkzmRe+Zt1e4XUSbjwFhiG3NTieEnrJ5+7qbMmMa/uf9cY32P8u//wZrzxA/erzzICvlBVzoTclBMQiapvHud897MEQnBZ8crdlOOcC1TtJWzXyIOn1vCF//u9+K7f/4RuTVRz3GXUadI4zTYzmURiIG2SZHrPXD/F2nBcu2+yJDy4r4LE8OdG5cDqbuUCAJvDHNftV22eTq9t1Y1rPAqP04ay5oFTayVLDW9Pxt2A7/q9m/D2W49NNZkP+O8bUiktGYloxVKrv09cJ+PSaZ1bk1iMo9z0UoB5QXCknPNTlZtW+8UJUigLvJv7JG6XSewqCeTIjGkfZ3spqzh6nFdMYpeaRJ7cNIxZoprEg/N9PPnwAq7coya+LE0Yxgpm9rP+WrU/qrn94cUZnFjZhJSy5jaXlAvrZubavNbp3jLdDVMrk1gu/MqH+vOesB8ANNvTVpP4X//i0/jTjz+k/0/Hr0v7BS7M65fLUlfj3Pu5OcxrUlOAl/nfDrrWJJKUjcMkmvczZ8FEbyXZlm1eGBUFemVN4pGz6/iHzz6mWQZAsWO2a+tX33tv7f/HymRJlqjFbujCum5cU+63rd6vvLcWZjK9EFqc4dfkmkEi17im1jvPGCo12+n+jMSxn14mMUBuah4rSlZ0Ma4hto3lblomBNQ1wmCOhZIkcxNHJJvu0gLDlTz6i5sfwfLGCB+8+yRe9qsfwpm14WSQyJGbJqa0L2CMPv5uB0rze8z1My031fcNpy9m0Wwdw5CbCr/j6+Y4x8GFPgZZglOrw3oLDE/yjpQBgGISc1kyibtcbkpkCtdzoguadfounCjLX8ZFUVvL0PmeuE7yMkBvk5s253Ovuykxif4yjBgk7gKYDxBO1o4MMpaZctPbHl3GncfOscbUDFA6yE13a5YJ6B4kkqymK5O4zjGFKR8SM7002BAAUOdttgxUurBEXeoY28ZRD7n5QYYf/dqn44e+5qkAVE/N8DoWY2HheGiPS7np/rkeRrnEWlP+42ANzOuhYhILY5E8mbWmwJ0W7l90gzIyol6Lzsm/xFs/9Sh+7G236f9P8745L3JTTzC7MarXzwFTbIFRHr9EcPskqjEDBpPYdR6na6mf2tmeopCQUh2zvbM9nC0TF3cdX9HvsV2TAPDs6/bW/v/ImXUAlWwuOGiTZpBY7qcxD1VST/VzwXA2W5zJVJ0gx3ClJncMZ18AFajaA1n1029co342E0e5lNp8Z3JMOyM1yBI87sBsbT96aRIcNJjsY5owgm3jvGVcuWOiWjBw5wSqdw19TplMlstxmuaXL37iAWyNC3zmkaXGNRnGikup7iXaFu1z6z4GGNdUbZkEZvupkpvKbn0Sc1lvZREiX2+2slCfMzluo1QhXLEwwKnVrYkA2LWLJ85VrqjLGyPDOXd3y00XGn2LdxK1mkTPfXOidJhd3RrXjWss85Z6gYLEnv0DdQsMW01im7tpDBJ3PWo9oRgTMhkEcC/+//vXPoyXvp5nnFJjEhlMFo3bzUyi+X18Vv5NkKymq4xhjdGTTtvk91IW21xIqWVprJrEnM8kmhObj33RNvD9DF/+lEN4ydOvBFDKrxiZbqDMvqX2hzbJTffPlc2N14aNhQXs44qKfT23MdbvqS9IJgNS9R3Ue77kSVfU/h7KpBwzXFjpO3QBZ5x5rnbifK8PLUGiCF+wbge0uNoz22Mx/sSkKCaRd02q7fKD7cyxsBsZCYi9c1VNyg9+1ZP1766Aj+bdP3/VFwMAHjy9pt+feAJ1KSU2RzlOrZJM2+yTiIn9bDaq3zNbLWYomcmpyRoXki1brPdJtBjXGIsxF1wGO2b9WxMhNYmnV4d4/hPqDtjqeDCltAmPhR+3zFsuVNd/uAOu2k91HfczjgkZ9P65HKcLKbF3todf/JZnA1CunFvjAjMli5UIpmw08ZiEWMeV+2gY17jMy0huWhnX0PdTSYGQNYaUqgZeN6oPCRKNRI2uAbaM2xjlmMlSVd+8PmoEwO5n1MpWtc5c2hghpz6Ju1xuOj9Qz56pBImBNYk6SNwc16XMLgaYgj8XK+hyN5V59bcmkkT9LcpNdz+atrmhIHvd3V2TyA82pg3zOc1ZuJKspiuTyGlcrmsSeylrMh7nVZDI7XcFdK9RCzGumRvUJ7xexmjuber4HQu7Ua7ML/aVRfpL6yPkebVocvXJGucFDixUNuYASmmNe7GljWvKh/riTA//+rnX4odf+jQAVQBgu3fMoN9clAPhNvJNcJq5d2cSw8bZWvRMuwXGwiBj9Wolm/yZXoKtwPvbnEe6GNeQnf9Eo3ojAXH13qom5Qe/6in6d5fhxOrWGE+8Yh7Pedw+JAK4/eg5CKHmEdeC/LZHl3HDj7wdT3vtO/D8//UevQ/EGPh6EFIY9eKnHtJ/o3mS4+5YyEq2uB25ad24ptxHT01iNSfUX6fG4Ta4FAmEvJA4uz7EdfsVk/htz38cAKCXqJY/IUGDOd8Jj7lLE6bcMUvCmcu8qBxwOc8A6kPL6cFZ1SS6GXE6/gfLefnhM+uQsnISbQuA/+rmR1TfQpsChcEkJgmc9bX03ZNEBYlN4xrdqingFFBSpkqABshNC8t3s9UkjnLM9FNtgtUMgF0JCEqYCqGepeO8kjInYhfLTWfU8386TGJYTSL1qlwb5vr+8rHUmu1zsYLOmkQPkwgoNjEyibsf5r3VRe7FCTZMcORX5sXPCVI0k7hLs0xA9+9Gaw3OgtwEh0kca7lpuAMoUK/t4TIpAK9GzXwg+a7jtWGOfpbUaqoAWjQFLggNiYy7uXHJJJZ9q86WiwTTEa+534B62B0oGRu6R/LcaJ1hYW2axjUA8Lpvew6+70U36v101QSZ9wY1s9dMYsfkCqctS9c2KeapajOumahJZBhNbAdmkMi5/qlRN4tJNL4Pt0+iEKgkmZbrEVA1u084OGf9DBeTuLY1xvwgw0wvxfVXzAOozJRcC/Lbjy7X/r85yrE5rgJ9G3NmOosCwMufdx2e87h9+LInV4w6l0nkumSawYbVuIbYTs9nON1NjeRSE/Sy63peWh+ikKoG+4Gf+1r8v9/y+QDU+TT324dxIwAITbB0ZRJVf0WViGYFiUXlyskxIaPrXzjqLUnGOtfPMNdP8UDJiC+WAYCPXb33xCp+6C2fxX/7y8/UHECF5Rpxwcb2TD5vqkTiXD/D+qhuXONq1QQoI5MP3H1y4vvS54UknUym3Kdc2RwVmO1VQWKNpfbUdq6Uz8LH7Z/D8oaqCc2MxNE0asy7YKFMRk+DTAmtSVwx1t7HVzbRSxVr72S3teuWq77Q1QJj7GYfARVAxiBx96MmN+0QgHWVOz54ao2xrbCLf3Lc7pebmjdkF3OXrkE6py0IbWu2nwY3YAZKl7pU2VTzrq2SyeoYNLQxifP9yYmLY+RgFtvbFoT0niQR2u777PpQM0SAW1o2LgocXFAF4ucsTKIt29o0rrHBVRNkBi/08KDP7yrh4bDbdcOh8HGhTGKzpx/AM3HYDug6XJzJ2FJaYhJD59euihBTymgz4KjqXQWuPzhv/QyXu+naVq7lVk8tHXf3lveDa0HeZH2PLW9iY1gFibb7xlxoAqo36N/85y/BH/+nL9LvYdVkFVI3Eg+ubbMsks9nn0TXva3ZR8d3I1fIgwuDGovJMU4h2WKX2k46XxlT3poKwQ8Spbo+VHuV8HNdJe7sQZtpHHRwoa/XLlRv5jOuOXJW1eHeeWzFYBKN4x/w9epGafbzbfZEnO2nWN/KG0yuO3D7/j+9Bd/1ezdptkuWx5ESCSHnrWZc4wg2pJS6RnzvbK+UjRoBsCfYW9kcY5AlOLw4wNk1qklM9HGZRo15F1ywmkTPs3tzVGBPyYI/trSJPTM9fW83PweAITd1hGy+FhiuwBIA0izKTS8G5B2DFLq5uzogHjcKkdtgsg2cmriLwbjGDEy4WVOAxwiaYNUklvs400sxCnz4Ag0jgQ7XVhf5YZqIVndTkgmZ6KVJcACctywIgepBu69kBZfWR7WaxMSxSBgXEoulbb9mEot6LaMtsKTv4IJrcWceq5XNsTYqAbrfN2QOFIKuwU2ou+nGqJgIPDi93rYDCoAXBhmPFS/UYovDJJoSQFZNojQSF7Z6V2OBetUeuwW6sMhUgfJeKxdJJHdcHBD7Yl+QNxM1R5c3sDUudKBvcwDVNYkeni5lyR0NJjH4+KuftZpEY3NmiwwXfO6mLiaxLdg7vVoGifP1HmfCEZDaUJu3POYiTYyLQhvucGsSK+MaRuJIqrYIfUct46NLG/iW3/wIbnu0YqsLiVrizi43rQKwKxYGuP2oMt4z5aau4/jQaRUkrg+r+q/EaGURcvw3x3nZEsRtClNjEnuqJrFprkPva+LIWeUcSjJEOo6c1kl2trP+nlEuS3VRgn1zJDc1AmAhIKXdm+Hc5giLMz3sm1PBpZpbqsTRNJJ+XdDVu6MLajWJjnmLAvUrFlUi+ujypq7bdpXOdJebFlFueimg6yKN2gV0ZRK7LghD2xQAVRZ4NzOJeeBitwk6Jp3lpoyFPG1rhtkCgzKw3IwwBWu8IFH9nOv52wasbI70QtUES6LUyH4Ckw9tkjHtm62YxFrW2mLAAUA3Cd4z29N1GHXZVtJqXGODqybIPC+rW+OGbLHbg5clNy1kKf/1B/dNmEGJr25v0yY3nZI8SctNZ3psJjFNlLtp6CKZvs+AUVsL1NkeW52grndNVK/JX3j55+Nv//OX1N7jOp5rw7FulXR4cUa/V2/Lcj3S/PJn361YwKNLmzU22FbvRB/jIekUk8ioOd5On0Svu6kvSCz/OGEuKKV2KJ4cU99+E6fX1MKf1AkEl5LBhrYklQvE7AElk8hgZXULDEbCQ8qqv59tkXzXsXO4+aGz+IZf/3BtW3QMhSNIKQwm9+B8dRz3GItr126SWdPK5lgnuNOEJzfdMPqSuhby5jmaH2Q6KDX7JAKw3gNUN39ipTIuS4Tw1rI3IY3r2yU3JYXJTC/FntkehuMC68NxTe5uGwcA5zbH2DOTYe9sH8vrQ/UcL+W+06ox7wLaKyrl2EnkATWJ9By6opwPji5taKMvOv4TQToFf21y0+a4YuxmH4FSbhqZxF2PrnJTuiA3OwZgnObqo4AMiXVc+d5xIXetHKFrLdF2HSg5MtW8lBt1YQTTDkFilxYYdBxn+6l33MqmnUnkLGJsLnXNh5SUKIv/EyzOZKpxbYO1sY1TrqgCe2ayyrjGXKSJyQVh07jGBjeTWN2HK5ujetKoM5PIq0nMkpI1Y6gSgpnEYY7ZXv24pIyAYTsY5QUSUSYuOtQk9hh1dKYDMVembbLbTuOacpH8ihc8Ds9+3L7ae9pqEgHgUJm5puvNJZujuf5xZcPt4+c2a3Wl9vumYmhc4NQkFtJogREc2EDvg8/d1Gdc43Q3zaXzu7nYRwIxiQcaTCLPXdOQJHsSLFvjHG/71BHcXbZHMWWaacpkEjvKTX01ibTbhazmzLrc1F3vR+/5yW/4PP36woCCFPdxJCZxXEgsUY/KhGdcs7aVa0bKWbdqPCNm+yk2RnlZ20nH390GaW8ZJFCbCRrnYx+bCHkmEqEwWxrXAMCZtVHNlA2wB84rm2MszvZwxUIfJ1e3sDkqsDhoZ3IvNKqez92S+V22BbgTvPQcovl4eWNkYRIbg7TctIVJbNYktspNe0AemcRdj65yU7oIuUwiZe04ssWa3LRDCwxg95rXdF2UbzdIZBnJlJlsTq8roJQb0cOe6YoKqOMRGtzT++b6foneSpmRbKLHsE23Obm53OYAYP9cf4JJdNVtUEH+wYVBJf8p6u6mzWDWZlzThKsmqyk3rfUk7Wpcw5gTSCalrhFOTWJgkGjrk+hw1jzfGOYFsjRhMYLUS01l1hNIGeiAWB6CmV74dQzUmRSrcU35wZknAeFzN12YCBJLNsVVy1vuuzK8SbC8McLGKNc1grb7xgzQXMjScHfTWguMwHug3idxck5omuvY4JKA+moSXewj4fTaEEJA10ZX2+LVxNUkmY7r8e8+fRT/5S8+g+/6vZsgpayN47ibFgVK2Sg34VEmMx3PG3P7955YnfxuDumuGWxdt78yb9JyU4+ZDzGJAHCqnM9rZQqOQ/LXtxzBj//NrdgY5tgYjaskiWMhr9QH5G6dYZRLrG6Oa0wufd8mdJBYMomUpBIlmxhS4tNsZUH7ZEIHiT0zSNzS13DiuSbPbYywZybDjYcW9NqTghtOvfG0QXPONNRsdeMa+/bo2XzlYlU6sIcYWZcqoWsLjGLcIjeNTOJFgZpsi2Uc0S1IJNnMFqe2MCBDYh13EQSJXWsSaQLmTj60EOEGpEnCC6TUOJVB7qe82pJQK+fmPgKKSfEGiVuVTMUEWcIHbav2QPQziYBaoJ1dV3bfTeMaGyuYJQmu3TeLR5c2IKXEcFzoRbptIU/3R89jXJM4AnzzvJzbNOtm+AkIaovTJjf9uX/6HN55+zEAFBQnGGRJJwdcoN3ddKYhN1XypOBNdcY4l+glyjmO2+/Q7MEZlMmXBpPIvLfNerPmUNOkyQXbInmcF9gcFZoBoSCRzpWLAdPbSwUWZ1QvtaFRk2hbJNMzzCflDGUSqSZ3wHQ3tfVJtPZy9HxGCEvUBL3sSnqcXt3C/rn+RJDvkrvb0ExSucZ89P7TAIDHljdx66PL2Cpr6Wg/g5nEMihTzw1mwiNxM4nm9v/l3lMAyp6A5XdzBukOd1nNwDiOSV5IPHJmXZs2kYmQCsAm94nw7juO47/91WfwJx97GL//kQdKJpFqcu3jlAOu+v3afar+96Ez6/r9PndTWpMdW6akZJVEyDwmX2fXhnjJL78fv/bee2q9Sm1MOlCtVXppoueDx5Y3a1JmwMUkKsbrxsML+jUtN21x3H3RL74Pv/3B+51/30loVdQUHjh1g0f79mj+veFQZUJG17Eor8tJd1OSm7qMa3w1idHd9KJHVyaRsktsJjHpvi2A2wJj+6zITqOz3FSzbbwMGk3gXRwQOb211LhCW/l37XkYukigia2NSVzdrNgNE700CTZFMg0IXIxgIaVeEO6b62Npfajq44gRabEyv2bfLB5b3sDmqMC4kHqfbU5utN+uuiX1NzuTUmcSK7kptycmoOTIgF9uuro1xhs/cD++549vUfteFJUkmdVLs/2+yQsVYM/16uc7m5I8iViKmV6KzVEe1pMuIAHh2hYAzGS881Y3t5hc2IXUuyomsf4aXVfEyFENzP7SyMkVENE10EuUTPtk2btTB4mWRTL91lqTyAy2ge31SazLTcu/+0p0LIY3gL9PYuJINhHOrA0npKZqPxhy04Zxjctc5JaHzuJpV6mA6N4TqzUmWTGJ4fOrMm7izQnk8NlP7XW5NGccWhzgdz70gP5uuk1EQL2fCS0BdbCrR5c2MMolnvv4fQCqPrR1JnFy3MfuP43ZXoqnXbWID99zqqxJrI6jbZxZt/q4A4rtXFof6dd8TCIlCqm8QbmiQm/PVYZx/6lV3HdyDb/87rt10qZWp+9KACUCjy/38YFTazV3Zdc+qtYZGZ5UCxLb+1SO8gIPnl7H/37756x/32l0KZ3pvi0jue7YHvXrPTjf1+qCPUbS3MqKt8lNXS0wZEufxLSH6G56EcCcgzlZu0puyrv4adJiNWU3LlpOn75xwE1zPvFXNz+Cj9x3ijWmq3FNFyZRSqkfLmwZT5mhpf+HgAxX+gwmxRzH2U8d3PRTp5GJlFLVNthqEh0LC9+2zNqS5uU8ySQOsWrUaDndTXPFrF27fxajXOL+U0oWZdYNNDO7pgOlCy4mxTwvq1vj2nHkJASAisn0uZt+9shSfd9Nto1TtxcQJFY1MJM1iRyX5K4gmdogS1DIMEbQlCVW7oLt+yp1cMM3rjEXyU7jGp/cVFiCy8Y1eWC+j5/95mfhd77r+XoMYAmI8ooV3zPT0xK42YZxR11uKmt/syHU3ZSu/0HWsQWGKTdl72N9HwCas933dqvcdHU44WxqjguTMk/222sOk1Li6NIGnvv4/Xq7JpPM75NYBoncFhhJaVxjZRLVay952mEcO7eJta2xUndMfDdbAFYd/5/+xmfgaVct1pxDbd+NXEM//7p9ACq5aVpzwJ0cd3ZtiIMLfVy7bxbLGyOsDcfauIaukea1TGofoKrnBeqBlG0cUD0DyPHclNcqJtF+Dszef2dKltR1/dM+AurZd9WeGc0UT8h9Hfs46CXYO9vD4ZKFrDGJjhtg3Wj1xXmWnS/Q8Z7G+jOkJpFUPrO9VJtZmcoqW8KvcjftIDd1sY9AZBIvFnTt09dVbspd/AP1RSCrT18h9eQ6jZv0h97yWXznb3+cNaaru2yXmsS8qNobsDK05UODJEuhi9Ci6OZuOs6r88Z1d5ztZc7vRqycVW6aivAWGMYCOHFIZJT0Sf2+b66PpbUR1odjY9FkHzculHHNdaVkiEwgzMWWrf8U/c0FZ01iGZjtn+thxZCbDjJiUsIfrLR935jbH1X28ZRJzguJNC3Z5g6JI5+b54ZRA2OCY+O/HRADT8cyJFFiyn27MImDXoq8kCyTEK9xjSH/dMEmQaTPMRfX3/lFj9c1XU4m3XCAXJzJtJnGTOY2rtHOip7vGerKSfdWlhAjxWMSXXK7kNMhLIFDbjmOJrTc1LGBU2tbmsU14TMJacJsr+Da3tn1EUa5xI2H5iGEajcBQPfJ9MkWm6D7hm14VtaB9xwGa5SAoHYsjy1v1lgzV52mWbcIAP/uhdfjHT/45fr/rvlkeUMFTk8spX0nSxMhavdAn93EmXXF/lLD+Y1hjrlB3VykeZ8qSTCx9n095+1tOFf6ngHkeK6OY3stqRkkPlL2gzRZUludPlAGyYnAdQfUeahUAu5rcmuc68TNk69UbKIZALuSHatGwvJUefynCToGnCT5drcF+BKn6vVBL8HZMrB/4Y0H9d8Tr9zUFSSm9fcRitwvN01jC4yLAl2NU2hBPZUWGMYikMckmi514du798Qq3n3H8eD3bwf1G5v33dSYnZffarlpuVAMDaaIEeTKhsZFlYEO3c+acY2DkaJm8a4+iVLyFpJJIvSDOW98P/UxxCT2sbI1xvLGqGISLYuEoqhYg2vKIPGuY6u1fbYFe6bUzQU3k6ju3ysWBkpuSsF2nye3U6Ag0T3m+DnFDNGujsrFDbcnGhmu9D11spQ1bfZJzBhOi9sB1UiR6YqvVQfBlJuy+pR1lEnW5HaWYI/mW18CwlYT1MZuu1iDUSHRS5VphmISyyBR12RNLiQrKef2mURzv12tFGyoahK34cBqCRJpf1zfrc2l1Ck3dTC5Nph1vS6ZKjG+V+2dwd7Zng4STZk8y920gwRdloYrPcc42j7JMY8tb2qTFqCq07SaiXnl1vbjT/LNa/fNIkuEVW5qO21n14bYP9fH3jlVk7s2HGOuGUjZmMRyF4UQuHKPSgzsLSWFvpYnJEHUTGIha4Y3LtXFktH775Ez63o7Ptmu+R2I8dxfXp8+dntrXOj61icdUkEiySR9hnrrhov76tYYtzx0Br/6nnus790JTFNuGlSTOK6eib/ybc/Bf/vqp+ALbzig/26Xm5af1SY3tQWXbcY1UW66+2FeEJwATDOJzIufJgBu0KDd5ph1e7MdmMSvet0H8N1/dHPw+7eDrm6SRYfJxwzueD0IZblo4jv+kQEBNyitmMTwgBTw1ySulA8Mm7spMSUh1xe9pSY3nbh1qof2wQX1EDx+bktn1m2LOzo/vTTBNfuU+xgxiQtGcOnK0HrWMciSxNr2gc7LwYW+YhJzCjb49xsthH1STpIlURY6L+ut1IKclyTJksTL9piW6ybajA7OFyomsQwSA65luq+T0t2UPqd9nPo5k/HOW2EwiVYDGuOadMHGblduh/ZxzqbgpXETAOyZre7TiT6JNZYu5PoPczc1j38vC3fkNOuUbXNCxTS6P8Pm7tjGJFbs4+TfRnmBpfWRnn/s22r/futb41r9nblfBGJ8Dy/OYN9sT0st5wfu5JYLtT6JHVpgDBxzAp1LYhKPLm/UWDNbAoLGtQX3tu9GQeK+uR6u3T+LB0+t6ff7GODTZWC/b1YlF1c2x5gbNPokWhQoZk06JRWJSfS1StFMYinNNGtQs9TdGmp5vWLmKEhMEr9zN1Dd+yQbJTm0a04g8zZSZLzghgNYHGS4YrGvv5srSWK2+lofjvHy3/wofuU9d3d2hedCt8CYwvbysr4fcK+vNw256Zc/5RB+4CVPrv1dseLNIDFQbmrWJEqp5Ke+FhhJZBIvCpj6c1adoNGontODsItGe5RLXbjNYdty2Y1JnCbqfSr5DqAsJtE45l36HXLcFul9JDcNDfaklOp8D3hBIh3HfpY4F4PU0NZWk9hj1MrS5yvjmvr29f7I6oH+zGv36tdp0WRbbJkmIYszPeyZyXDXsXqQaMvI6/96FqBtNYlXLAywujnW11WX+0ZLoD3XBzn8nStNcsg5sJcmbCl5kqjgxRVcuuSmaRIms9suqAchR25ascLYJpMYGNzIRp9EB5PIdjfVC0L7GFeQMsqrdg+mLHxCkmYJEn03QAiTNc6Lmrw2S8KZLH3eEvucYNaaumCTrlfHsSVIt3w3kpMd9MhNQ4xr1oxm7q6FPDG+hxcH2DvXx6Ol/NCct8L7VKIys+rQAsM1J9D5v3afYrAeW9qsJUlc12RRuFuQAO4gZXljhDQRWBhkeOIV87inbLuRJu5gDzCYxDJJsm45/pNy0zrbTCZi+2bLAMxTA0kKjlXNJFb710s9ctOyx54QlZSzliRpYRLJ4bSN7aR5k5JtX/esq3Hza79Krwl9LUhME7X1Ya7nMWovtdPokswHgKX1oU4yhGJcyCpJ6HgmmkyiDbaSAyUjFe4MlxDq72ZNYpvZDQCksSbxokBuXlgdTWE6Ga6wAtLKAp1jODEutleTOI1C565MIh0Glmy3o7SYJGnEJoRsk6zkk4RnQEC7OMeUm1L209ZHkKDlpgN7TSIQdg+YkjTXosnsP/eMa/bo9803ZXNmkKgXqOo4X7t/rpJtmU5uE7KOisVwIXUwKbUgcVj1SeQGG0AVUPiYZmISpVS9r8aFRC8te3AylQxZkqCX2U0qgHqRvok0Scr63J29v6kutWISA+Smtmsr4LgU+rzxmMS8KKo+iZbFVohxjRCTSqNCfw8mk1gUeluLhgvxTNMV2JSblj/bmUT7cZRS4tvf9FH8q9d/sMYk9rcrN7Ua17g/ozKhqca1MYn0mbbFPyVkfMY1IezehhGkuAKp06WU8uBCH/tmezhXJuRoXFbecyEoDLnpuJBBSWh9/BPhnBNobpvtp9g/18PJ1c1aksRlyqPKJjxBuiNIWVofYe9sD0II3HiocuVMk8SQm9bHbY5yrA1zHJjvYd9cdd7mjJp0wGYKU3fApWfIvrn2mkSqUyPDsWbvVJ9xzYH5Phb6Gc6Vz1bT3XciSGw8p4hJpL12mbnRWoXmUWHUedM413RXZxJzLW09VpY97DQqUoRXlvWcn343nv1T72KNyQuJfqaurbaaRJpPm1CqkMaLRYtsFFBsolmTqNnHFuOaKDedLv7gXx7A5x47xxpTSKl7QrECMGPhwqlL7CaTlLquh2vU0kVuSphGsXHNOIi1SC7KMeH7OKwxibxzRjU6AI/Z4BrX0Pmd5xrXFCjrJt2M1KqHSaSHasg9QBPtbC91LraKopIx9dJES5yaTKL5rK9aWVDNxqz+m68FRsU+tQSJltO2ZVhiU+AGGEFihySE7/o4vbqlFxFn14e6bjVjmIQAdQm06x5YL+elZp/EKqsevLlO0HLTcu4KcYKu1bvq+y18HJ03jiuwySRONOk2mDUXbBKlNibRxRqM86r+6/Ou2aNfJ/OV1LKQlIFJEtd1+dDpdXzs/jO4/+SalqRniWD1hTXdS30OrG1sJ4DaOaBz76sJFQ53x9OrniCRxSSOtXGKKwAY6YV8qgMTwJjvGExiLiVSUfVdDXnGmXJfFwNMz8wsETi4MMCplWEtINISUItM0nP5l/eNnUkkuafZl67GJDZ2k+oCF2d6mmEDlBkNfT/AwiTK+jVCTCIlyHznu3I3zavvS3JTT/Juqfx+CzOZZr3M5NaEBL2Afg9Q1SJWdc/0XRpMojZbsbNfvpZGptP2+tYYB8rA+/jydIJEXZM4pT6JaZI43X0Bo04/czCJwsJuF2O/AQ2g/m4yiW1mN0ApN41B4lTxk39/B172qx9ijRnnUk8oPpnYxLgyawFUFHYI6ALkSVsL9OjiD9xHKZXD3yzTyMFEW1Pw8wFzAuY5uamfXcxuumzLrEkMCaRMu2uOAQGN4zKJxNr4Hmo+uSnnHiAZ4yBLjEVrfZxEXZ1B5hFVCwz1uk1aRgvyL35i5Tq2YASXzcVWCEvhYhKrmkS1CD9b1gpuR27qGiOlxOm1IW64Qi2YlJtqVZMYuoikbaWJQC/x1CQ6mcT6/u4UcjKuIblpQDLNdADs5G7KrEmstwCYXNjpYK8lAGvuYsWI2h/ztGhtrkdGudTzzIufehhfdMMB/KcvvQHXl9eMbSGpfRU8++hjEk224dGylq5qyh7IfhmJGttCvpKbuj+Ddt/mbuptbyOE1QDl9FrF7tnGmPvtw8Yw18Ypvro9QB3nq/dOJrdCa0IBw7gmZdTylrtDQYqNfTQVIFcs9HFqdavW3sPnHNrGJLrkpnvKIPHgfCX5NcsUXG0islTg2tK87KuefiW+6bnXqtcdEnSzHg2oXGXN+US9b3L/KVE4zAtVPiSr8+xzpd0sGeaFQaaTiyaTOLGPsn4t6/WEEeCbx6C5fzS3NZF4EhCrRguMtWGO/fPqfByfEpM4TeOavHRG9yVOW+WmwiY3baktBBSTaNYkhspNc7/ctIW/jOCAUxdogmR6PhcrG8Z5gYVBhjPjYXB/MymNFgxMd1OqEQndRzoc22ESN0Y59rNH8RDSANU3juzufYsIgrlw5C3+i/IaCc/smouGfpqyZKNAdd5C2VxibbKyhkIahgQEksQsWuSm2rgmYHtboxwzvUQ9SMu3Nx9SUtYXrZTNp8nZ9kDUC8Lyby95+mH89D/cAaCSbdlqBui/ze9rwiWJoppAyngvlWYEJEfpYozkukc3RwW2xgUef2AO955YxbnNka5B49zbQOWcq6Rl9rnP2QKDwaJsB+QSyKotrDEi4RJo+i6UuAuv//Ib15jMpgvCIndsXstNaNamySQWhb4Xk0Tgz1/1xbXrurpvqmuFtu0zhUk9TcHNuiUyXMlaWOomzH2wMYIhNYm2urGQIDER9ud/xSRO1iS6jr8Na0Z/18o4qP6evFDtJ5JE4DmP26tfrzGJjNZJpuFTUHlD4/jbmFWSbWeJwBULA9z26DIOzPctclNbkOjedpoI2PLJ5zZG2FsyVzS/Aio4qpQk7qTMU65cxMd/9CU4vDiYMNexJWXMa+SnvuGZOLgwwJc++YpyXPW+JrZGhepTOy6wPhzX2NXMk4QbFQUWehkWZjLcd1LVWybCF2zXWfFnlbX6L/+Ca2uvN49/syaxidRx/QMVMwsAG8OxLjU5uTqdmsRptsAggyWfmRvVKvZdAbfVuCZEbtpgEtvMbgCE9EmMQeJ5BMf0wUQlJeTJvUaFxD6SqTL7ywF8uWmWEo0e9qCpDDhKRqoDk9i1vcc4L7R8sQ3U20lKvpSWMMoLpG1yADTlpkxpnxDoZ+ViN+AcmEwCR25qtrLg7CdlnzO9QJs0GyDGwNYCQ8tNA67ljVFek/HYFsmFlDVh2f5ysUB1kbYHYnNB/oSD8/jFb/l8fOqRJaNv1eQCSAYtku21JRRs0TEh2RCXgacaVMB9fdDxv3qvcm6lvoz9XoqMcW8DZeJC+OetDYe7KSdo2w4qw6dwdk+zYgnP3ZQ+mljL0AW5ae9vM+AIMlwRPibRPs7tblpvN9BMfOiWM2YApt/r3EUvk7hmSNKOlIYrypXZLdtqwjxONtliSCDrSxz5WzA45KZrW7UEUHNMc1su1I1Tyv2yBDe0j899fJVaJYdaTtsZqoHnyE2bcl/bNF5nEgc4tTrEjYcmmURbLV3mYRKFcARf40L7PZjnYP9c372txn1z5Z6Z2t/pMvD1SQRUK5Kf/eZn6f+7jGuKQmKYF7hm7wyOLm9idWusn/eAqtV3nTe6VxcG2QSTa/9u9X153IE5PPjzXzexjxNM4qglSPTc22YLjLVhru/naTB7QLWe6Lq9UV5468FNmGt51/aGeV47R02klpIDJTdt2YcJuWn5e5Sb7h5wFlgmSErIX6RJwyQhfPIncI1resxAtpIt8hgpExsdg8R1xjgy7kgTwQ7cCKHHsm5cwznXqPUEDHMApYwotNw0hO2mcbPMmkRiRHwOrCubY8z3U+sE2WcY12wM8xo7ZZMbkWkP4SVPvxJA1ePJ9kCkjzD37luf/7jaw95W/xLEUjgepCT3JAkutaaY0X0SQ5My7dcjybdp4bOyOaoYwSQJTjap/UZrcsvVJ5Fj2rEdFNrwiSEb1ZIsM5gNuN/KcYMsPNmh9zGASfTpFGxMVluQ6HY39S+KbIxIUE1i6jbg2LAwiQmpEhjslxqnAtvmMaHf/O6mkyxRW79J+kwbKX6mdMm0scC2mugmTpzbxPL6qGYAJxznzWSyrtwzg9965RfgXf/ly3XSImUY19Dzps9iEqvv5XIvpn0UQuDQ4gCrW2OcXhtW7YU8TKK/B6ddbmoek32N+kJXkN41uWJLilrHNbZHc/WBUpK8Psy1cRCNc90DozIZbpZvCOFuC1WVoNj30XVMKrmpPeBwMceACgxneymEUAEjPSu6rpe5oK/SNUjkOJwW5Vrep65Rcn7fHGQxbJR5gNxUOOSmnnFpr1VuGoPE8wiOVMuE0uST1XG4bNQ0heFkrQmd5Kaenj2ubXWRm1ItRIjRhA2cWsa8zMb5io2t4zocS/r8mR63/5SS22SeQOoTD57Bc376XdpaWj/s0kQHYBzDm9kuBhxCeFtZrGyOrCwigKAAmCzlzebSAMq+e/X3FiVDTHjpM6/CTT/2EnxRWWdYOblNBoncnlzBNYmWw09BGi0Cie3jMonm3OG6R4mxuWpPxSSOc1VHkTIb3OelLLHvqRvbdLbAsC90zzdokVi1GGrfnsmIcGoS6bsMmE7VJmtgSySEJiAmFtaGcZVrjPk+wjhwsVtn4NXPzkyiwTZQHR/NyewWGOaxZDOJ5XutTKIncHYwWadWh9rwZGKMgxEkHD+3iS/82ffiP//ZJwGg1m4AsNSu5nUm66XPvBpPuXJR/9/X8LwJet700/BnAH1/ITzSeiNooz60dxw9p4McV52mybbb4NqeGSTWmERD4to8/M26vSZspki0rZAERPN80/xOrTJWt8a6TyUArxHcKC/QTxMdZNN+p6l9fi2k/1p2XVvDNrmp594e5QUGvQRzvRTrw1x/FichuR3QdkJdeptYMnpRtoFUaT6Z/HBc6PWtDYnNBOsCyk1jkHge0dU9SUuiGDUD2iY/45lbdGG/ACWl7aVJJyZxpoNxDWVauspN1zlBojTlvjwmlxC8kC8/f76fsdxNtdzUI5u7/dFlLK2PcNujy7X9y5iyOZq7uQxwc0Fu29bq1rjWe81E24L8de++G8/9mXfjnuMr2BzlNXcwW/atWZMIqEbTE9uzyk3t35HGTQaJ5X60MomTx5IWQBRIkbnPDNO4ZhxwPdJ9cWjPAEIA50q5qWISmUoGSW62Hie3UQ7TlZcwNbmprAxQ1PZC5KZVkMjpS1rVJPKcqk2WxBbshQQ3wio3Vdt3MTAuNneUF96AyMfAd3U3peuynyU4uzbS+8153jSPU9MAopKE8wLgyvmRz2SdWRtaTWto/wD3fPdXNz8CAPjwvacAYLJPoiUAaNtH30L+6a99B/6y3GZV3hDOJEojuLIl4NTnVm0iPu/qveqz80InDrVM2MOS2uByNzWb0s8ZScVemnidVOl7WLflYnJleyBrHVf+n2TB61u5Ntyi/XDKTcuEjvlMTQ0msXm/tToeO5nEMkh0tG1IHEE6UCkTZvtZTW7Kabe0HZjti7qs0clILgRUy9tPE6e3wigvnPWIgCPhUeTt7qbNFhgywLgmyaLcdJroLjeteuAFLwjzOksXbCZjvI3NJNJDO3BhRxNSlz6JPXJt7dDaA6hnptugF8ncFgCmdDfwu9EidW6QsiYsWgD4Ainqf3fPiZXatkzjjpAG5k0mkRsk+vodrmyOa1lPEz4zEykl3vDeewAA955YVTWJE0zi5KLJL9GbPJYmi+SCPUgMYSnsvaSoBxgd79WtRk1i6PE3jrfrHiU78oVBhoV+hpXNkZYsKWkfh0kvdL2f6/rfGBal1Kh+YKZlXKPqJquglCc3FUb9XcC4BpPIYm0CmMQ2BszW3BtoZxKbcfO4VQ5lYxLpvnHvo49JpCDxqj0zOnOvDLd4QaIQVRDYPJZVIOv+DFsPyBDjGluQDqh2MwcspjXm57l6hR5ttAiYa5Fkjht9+ppQTKL9WN5zXM2pv/COu9Rnl4kLrVwJkVsbyZXUchzVPlZB242H5vW90pSb2syUvO6+NrMP1Fn6iTmopSax9b5pbG6ct0tifdvbUwZ6q1tjFEW1f8q4xhEkluxxk0mkHI+t/hFwP99c11ZlXOOWm7rm8lHp3j8/SLE+HOvP2ukEIcG8BruUPJ1jyE1D1pLDsV/OT/4YNYTITZs1icQQ+sZFuel0welnZsLsgRfOJJJskYxrwsaZNwzLJIcWkkm4A2uzJpEVJJY3EacmsT4Z8Fi6LnJT81yFSwLLY9LL2EF6W5B4qgwS7z2hXM7Mnkh6HKMp+IAbJJbJDp8BjS+L5rMIf/jMuv792LlNR01ifYxEm9lH+T5jXMhtZKu/0CyFJyzNErstPMmdST5LvbIquWnYvT2qyU39TOJsL8XiTKaNa7JyQchqwVNek76F/OY4t0qUXAYJ5xtkJlFJmcODPZ+VvA1Nd1OO4oK2o6RG9b9LtCcu7H0SC+84twEKn0kM60GYeJjEMYQADi0OdOZeM4nj8GDb/K6paMpN1c+24wjU54Q22S5ty3ZvL22MsM9iWmNuy3UPnDi3iaddtYgXXL8fi4MMT7myWUtdf38b2+ZjpEh9cuUeFdBS4qLHUaDQ8TWYRFtARMcxSxM8sawPr5hEhwS0gJZQcr5b4TkmriDdvP9tcLGdRQuT6JOpAtCtOtZIblregsq4xs1K9VKhxwLAFYt95/zazpLSd6m/Tusp37PbzyQK/bypmMTpyE27llh1GWPWwLtrEluYRNu1HNIncaIFRrnfrXJTfxAc3U3PI7r0AQQqSUTGqEnUTCJTytm5JrFQ2eWMIck0M+tC8Kj+LjWJ9e8WvvikWgJfxs41jm7o0O3ReZsbpDixwmMtzf5f9sbNqpaHgkSzCTSnKbiZSe1nSbhxjSGbBuxykryQziyazyL8I/ed1r8fO7eJjVGBA/PV5CeE3d3UxxrYA+7ABXnjMIawFG3uplpuWrLggx4/2CC45abqs+cHGRZnepPGNR3Ybd8Dcex4IHJq/baDolDXlb7+A74fnUvzWg7pL1e5m4YvrIFKEkvbdLVXaat3ci0+XfWFrkXrMJeY6fEZEfWZzmEtNYk55vsZ9s72dGIwFQK9jMMkosY2NVvVhBoAAfXv1ibbpXFWJit313f65nIAOLGyhSv3zOB3v+v5KGS1QHf1GG260jbhq0m847FzAKqELq1JUs9c3kRlXuRupUCqCcKBsmcesWiuxEXewiQmid04yGQuAeBHXvY0bWCTeIJtwH3fCGF30x4XfibRJV2n/+8pA+X14Vg/7wG/cQ3JTa8yHFgPzg/cst0WpcxOuJsSwbB/ro+z60O9DuQkJLeDcaEMHjdHRSe5KU/xVZm5ucaZfWhtcLfAaAsSm+6m5bpN+GpnekAeg8SpYTs1idSTi8sakLtpsANcjUnksAYqu8yxJK+yVgn6HkmaDfRA5DCJ5ndjObeW2c0+Y0ECqAl3tpdidWvMqAkt5ab98L6FgArA+p7G8UDVk+ueE6va2AjwW2Jb99GQ2w0YrTNMl17Azr6oCdv/gJp0KZX4hXfciWdeuwdn10Y4tryJrYbc1CZ3kRJejZ5tkRayILc594WNs0vSyACmV7aYWd2sy02Dpcx5+71NTOJcP8We2QznNsZKXpgkyFK1f0XLYkdvr6gk6K7gy/VAnFaQmMvquwFhC5OKSQBrkazdTZkMsKpjQbnNyYV8qJR5kn1pY0Tsc8k4bzFW8MpN/de/6zrZGI0x209rLo1845q6UVWT8a9ku+0BsM2UxxekuOSmvjo1l3EK4XjJJDZbOfkYKT/bljiVJFSeQaZnKrlSzeWc50ZNbtoMUhqBLJnxaLmp77u1BOm2YNt0DgaA7/mKG2tjzP0mNBvL22CTt7aZ67TJW8lYZ2VrXKunbzOuyZIEV++brLW3BbKtiSPH+iJEbuq6RoZj9QzYO9vDkbMblXHNFJnEuX6GzdEQWx08LkJ7kNO2EqHWr6uOkqetFrmpNUiUAcY1SWJvgeFlEmMLjKmia00iZeT7WXgmn27I2W30SeS4S+mG2xy202SkGPWWQGVcw7mpa0wKMwBLU+Gt2XBtj2vKQ9fIXD9jHY9mZtf2QKSaxJXNMU6ubNVkUhyjELNugRr8hoBcekmqZruWfQ9SV+AwyiXOro/wNZ93Fa7dN4vHljfLPonV9NWsSTSz2i7YAu4gl1LLJB7WTNzPJAJKPk4Plx0xrtmqgsQrFgY4ubqltp9W5i6h/V7JcKWXJc52LsNSatSE7zo+nzBVAgCQh7SO0eZFvEVy092UMyfT8UgTmyOh+tlWk+gy4ODeb2MP+wXY5Y70VdsCWddhVExiqhkloJSbehqJN1EUdblpc3shvUw1S2TOCUXYXGJjEn3skovtAYC//MQjOH5ua6JHH23LNk4lbdxLuix1M4k0x58gZ+xSbqpdgUMMn4xgugo26u9pMnvEXFLCz90EvkVK65A7mjWJTVCblKbctM0BlPazi9zX/HxzHKDWBImojMvo/VkinME9SRep760JG3OvE8dOCbp9Xh62yE1dfUIBNQ/2U6GZRFoDTc24ppBVwrVDYLrFVNe0GW4pR1r/dWI1rmltgdGUmwYyiS2IQaIDeSHx6/98D06VEr4QmItiVzG6a1tkLhLcE6183wwza21KQDlZ/HFRqIw8Yx91JrsMgDvVJDJcSmumPEwmkZqCc2Wquk8lw9wFUA/HUR5uyUwLIB8Dc3Z9iCcemgeg2ES6RthNwWtMYjjjGWJcQ3VsNrgswmmx3csSXLd/FkfOrJdBYloba361UGavub2Qxa4oWRvzHg9xTnQ1mDYD59leitVykTDb50rJzZrENiYxw5V7ZnB8eRPkOOiTCdu3J1vNRUaOrKmPET+fCOndOTHGWEhxkit0b9FCiqPucLVtAKCppi7MBn2mDS6546goJtir2jiLJDCMSXTPP+vDMWb7mXZ4BEomMQuv098aFzX3xaQR7En9up8lbwaXVZDOl5uS26F1jCdR8vbbHgMAvOiph4PHbacmkeb49WGOtbKZOwXpAFi17EJAM+M22aiZgGg6aDvNXdrq/SwybWAyKJ0YZwkuq+emcxiSxMF2ttyj6n3113UyNxWYL83EACNI9NSKk8TYdO3W+2j5bpV7d8ucYElAmPtk+26uuZzcTffP9bC8MdJmhNOUm3bxxSBwe2drx2/HWrKtJrG5lgFQyk1bwjWn3LSlJrEFMUh04AN3n8Avvetu/MI77gweYwYmHBelqm4mPGuqW2B0rEkcZLz6O8oucySZzdo2zs1Gc21Xt1Fuv8M04dW/0Dh9/AMnPPp8PWkxzneWuGU8gDpHT796DwBVl1hlRLstdhNBNYlM45rEzaT4FjIui3CabLNE4AkH53F0eRNL66NGn0Q+I2h7IJJJSIgkrT7Ovy3af+t5K6o6nbl+irVh07iGz9y7Mv/rwzEGpWz5yj0zWNkaY3ljpMxdUl5wo2sZPRJ0V2N2l0X7+YZ+aLcY13zq4bP4b3/5GSxvjGoJBlbrGFnNrWpb3YxrutQkCksCoi1I9LqbtrA2atxkAOZlEj1swzBXcnrTyv/AfJ/l+D0cF7WaqWZQFDInAJOGNyGqBFcLAJq3XdsxP9/E0aUN/KvPuxLPe8L+4HHbcTc1686XSjdHk0nkGDf5yhuaQRsxpfSdKrlp/bODmERXkN4SXLoZeL95k43t9DHw2nHUxe4lAnODVDOJdC/Z5gRAnX9Vk1iVoTzz2j3VPm6DSXQpZVzH0lfvOhqr47Jvrg8pq0TltOSmRYcg0by3uCaIbUxim7upNeEUIjedaIERIDcNYBJjTaID959cA1Bp5kNgLkA2R7kOINpAdTMpwo1axo1gIzj7LynbnWJjGN4mghZ7vF6OVXawn/HkpvRWl4zNPsa8sTsEiR3kplpaxnZ8VdfVMC+CrhOafHxM4riQuGbvDBZnMtx7YhXPum4vADTGBciGyrdUNYk845rUW5Podk50LRAo4OlnCQ4tVnbyVxjW8k0mpZJ/8uQ/lQFNyLjqtaazog2J40FqMonmtcBVCZjqAl+fRJozrtpLToYqW10lEsLlfb1e4k1ukeFVEy73w/ONyfvGvp/f9qaPYTgu8LJnXoV5bcfP6+fYDBI5jtO1nmguKbPnM2yyuTZXTrdJSN1cZHKcJUkSynY6GZECvUTgwFzVU/CKxQGrBcbWuKjVTDWbUleMoP9zmrVcOkhvCTYmvCYMJY11jINZklLiyNkNfOmTDrHGhTCJhbTXHJvPS2pBkhqGT0EKFCO56Gql0Cw3+N6vuBGDLMW3PO+6ciys41oZwcTeXsjsk2gdJyxOqjogcg6buLaAStrugkvKSfN2lgjMDzIsle6+lNiyqgtQzS+U0Pnka796wvHb2QPSEcy62M4qUWX/bi4mF1BrnMVehv3z9YBkGi0wKJCeZQaJ5q5xyA0p1XPDV141ygv9jLHB2s6lGHdogUGyKJ/c1N7Dtfaxre+4TPFIablv03q7YEoOWa0bioqBCQ02JphExsIOUAsZzk1KGVEO22kyiewehOX34Yypm/Iw5aZJwrJbV/so2Qt5Yhy5mS2yJPf1l6PF3ZMOL+CeEyu1489iEo2HJIdJ1EYmiZuR8i1kXO6mdC57aYInHJzXr7/i+Y/Tv4uJ7D+97t5fa21VAGsgLAuZQrbL2FKLRAmoL4BMMx6SMnPkvjTOlcgxk1dmvRO1wKD9CUHtvsmllRFxZU0zz3V8PqGt/D0SaKBK8pxZG1ZZc8FLrlTupu1tiT732Dncd5Ja1Rh9Ei2MVEjiwrVoBdqDlEnmUvoXyJZzFxKAWQ0ZSpBS5br9s/q1xUGmr60QbDXarTSdYkMk4bZxYaoEe2ADuIN013x3dn2E9WGOa41jETLOx1qa+2ELOIa1ILFqQVIxieE1iYlH8dJ0N53ppfi+F91oOLdOjisKCSndLJYa55L7ticuJtk2Sm63SAIt903bttTnu1g61e/w9JoqcaL53yUT1sFlebMemO/Xewdb9rGNSXRdW20mWC4mF6CaxAT75uoByTSYRPoauudz8Pq6eh9Lbmr4iziZxFI14YJVlRDkbtqoSaSAMcpNdwZHzm4AaM86mjAvCk5RbmUl7zaAaKLZAoPLJLKDxFzJGjiZ3VpNItPdlMbymntX34fb26bqE8ebENgmFZoBzlj7ScGVr5cgyY2edGgB955Yq8lYWC6NxgNhkCXB7l5UtO1rNxDi9jex2DIyrU+/ehHf8YWPw9/+5y/B3rlebaw5LGRh7Qr2zL9Z99PysG86K9qQJfY64NyQic0ZD/ksSVi9Oysmy80kmkH6YYOVNYN7zvZSAV2Eb5tPXPUXSeIecz5B31eUAZ/rPqV59NTaVk1atS0m0XMcf/Rtt+In/+52tY8G2+FafAL+hLCtjqWrcU0hpbffp+36Dwpky320JRNGhUomXLd/Tr8myjrxvJDW+6aJrVG9JlExMNXfQ/aR/t5UCdD++MZw678qd9P6uGPLmwDcCWqXC3Q7k+iWTm+NCxyYV4t4ChJrNbnMFhghfRJtsCUgdNKSWZMLtEtw7a1jqs90bs9yvxUtgawrwVvV+6n5n1zKKZnnMuWhtYpNqQGU5Q0OdUGrBL2pZij841xMLqDkpr00qT1vgOkwiRPKLWbCFeCr0hIhvMmtUat79GQJAGQRIDd11ST6FjPRuKYziAnkBBsmvcyuiSuz3eFMonpf115q/dK4JtRgRz3EhdchzbWtqt8eJ3BTP7vKTblMIgWyrPOWV0wip44L6MIkomxSXG7bMonTQ+rJVy7g1OqWftjUGZHwxa5aJIcbHJnXMWCv08w9xjWuTCvdV/0swSBL8XP/+vPx7Mftq70nEZNBG+CX6NnMU0INaMxtqHHtCSVn3ZJxTGpyISYDbwYprgeUGZAcMOW6RpuI4Gs5r5hEwH4tjxy921z1p+cbdN8A/roZOt+nV4f6HAnmfVPVe7fPCadXhzoRabIdtoy8ZsU927bJTdus/F3tBkgy5YLV8EnfN55xDjk5UBlwXNUIjHoZMcDt98DWuL74SoS9Trkt79ucS0KZ3Ob3amUSXcZB5Xed6dlPgteV1isTru+Xia1xjisWyiBxY6j3j1gqjuGZ2QKDLRu1jGuTSAKlkmSCgZe1+9+1vUm2rW6iYx9neQa3rKXaG9yXTGIzSHQwiaRcczPVlsRFACNo3ceWQD2zBNt6P/MCvSzB1XtnG69PL0icbRgktcG8R7iEg35uO8YpdU1bAqKZgRj7s4SAmny7tMBoQQwSHaCTxAlSzIuekyWhDKBqL8ELNqoWGGHjKEMxYIzLS7lHliSlJNY95tzmCL/23nswyouaIxbXuIZu7u5yU87xLypJLEduajCJXHMRvnFNUTOumXiwGfVHTzq8AAC46/iKei3lGRCYkhSVFAhPQNSdVCfHUfNfG5yZVs0ktjmCGQs7ep1ZI6IlUy2MCFDP9smAmsQsddu00zGZsQaJgfd2+Taf1MV04KO+XLRv2riGcb6zxH9tOY1rGMHXdqC+r/rdVU8tpcR6WZ9dk5smhgkTg4En5tSnSji3OcLRpQ3dz5QOkS0jT2ZK3CCF5oi2Zu6TJhWBSRJbcsXHQDqkbEAlQ2yyzhx2e9ioSWwuroOZxETUAu4guWliqQkNDNJtkky1/+52A4CrlrT9vNmO/3Bc4IoFlTQy5aa81knVdpwupS3Mnk0p0yaRBCYlwkA1H7aNmzyO1d9csJrJyLDnhs9MxmyNNWsEia4yBUC5fttgl9Kqn77AEnAziT5W3EVwDMt64/1zjZrEKchN6VnG7Tlsuvl2cjfN3P1dW91NbdLdELlpkmInWmBE4xoHaGHGYqQ6Mom0kOol4dIyep+2yWc4UAKVJCovJNp8U2hbyt3Uv4//55/vxRs/eD+u3T+Lq8qapyxJMPA0F7XuZ4cgcbvGNVy56biQfJOKjvIHYhvcD98q2/qkQ4sAgLuOnVOvlcE9EFYDZj4QfLbpE+OkLBMJlP23B0RcJrGqSWxbJPOYDd9i17cgpN3g1iT6HBDnyvNjNhOnIDHYXZaYrF7qDGrM5tLmeZjppdoAIbjFjaz37rSxgsMyi9zENINEzSSm9prvYV7oBeWp1a2a3CxlGHfQtdNrYWSllDhXuqgurY9q7K6ttioocSE8wYaLNUgmF+S0fyEMvDmuSsq4x/nqqcdGP80/+o9fiIMlq9VWS2pia5xj/3xV9zRpXNM+JwCTbC4d1jYJrk3dAfiYRPWzeThaZcKOROG4KDDoeQwxPPfpVi1IJAWKea5DahKrudOX8PMFX7YSgDaJJP3N6VLa+tyovzYOYhLtvXK9zw3HMTHLQkxDE5NJdCXggCqRYtvepLmResEZ7HmYxPbjYf8brW/NxJPrO51v0GU7N2AGicY54ribUoLN2xbKkTglWI9lkLtpU24aaxJ3FHQxcbIIo1qQyGGyFJPQS/0sXXMMAHYLBpokOAyYzlilKrPuG0P79ejZjZrWnm9cww8SuxrXUPaHLTctpCEt4wX3zf5QQfuYtNc1ZInAtftnkSYCD51W5ks1K/MQRqRRk8Xpi0mBjWtbvobPrsDBNK5xQTknVv/XSosQJrEmSVM/fQtCWyY/pCYxTSaz/7R9WhCazcTTRKDfqSYxwagorFLysUP++fgDc+wWGLpO1sFs0GfZ6i98Y84nyLgGUPOXbWGyOayO7+nViknkups2g2bXmNWtsb7Oji5v1JrA27L/QQkPC9vQZlvvcjeVaA9Im+PaZGyAewEKkMJA7dCXP+UQnnHNXgAwrskwuanPuEbf2y33qWgs0mTA8W+OAVBT0tjgbhNRLuRbg/vJYKMtkALs99zWuMCe2Qy9VGB5o+rT50v4NVFrgeGonTdVE759NM9brpUkbcze5Lbob+5xduMmc19c+2lzAPVJW33HBFDB7MKgWtDP9hO9/1Ja5OR5Nc4GK7vdEuzZnLvp/35G1p1IG+dSy8YJL3naYZaTfFdMMolhAV/N34KzBi3Xab00QSHtx2QrpAXGxAkIcDedaIFxfpjEGCQ6QAszTtBgSlM5VPooN5isUPmhMXFmHqq/icqBL7zWgD47K+uWfItI+rhHzq7XtPZs4xqS+7LcRqvfOdsiCWTbdzNBMrEZXRMavrBORHX8OZmt+sPXlY1UPZMOLw7waFnzRNeWbZxrHwFox93gmsTyIVm5ZFqMazwLGVcATMfWN7EK0b1Gqm5uUWXDXbAzkO1MYprY64DNOp09pgQ04fXuLIx7WzoeUC4HvusPzunzFsqmkwTa5ZIJUNZ0cns+6dv5hHm9pQ65qelEfW5zVAt4uO6mqVAmOb45+dxmpag4tryp2Nby2rYZ1+iaxJZrsrn2p+/qvN8c560t4SGEsNT7te+jL0gZlZK0JnyOnE00W2BMskvtQYMaZ/9ubQknd7DR1vKHx4C5xrW5m3oZ//LY7Znp4azF3ZT73HBJi5vups59NIa1Bdvqbxb5rT7+7n22KWXGIUGpJQArWhh43Sdx4rxVSQGz5Rpdy5njHNC4zPEF7Y7H/mBPM7nNa7nwzwlpknh6oFbz2+//+xfgl7712dg722OZO3YF7VOXvtSEUOM+2p6ZKLc9u9vkplb1VlGEyU1tLTBiTeLOgBbvXNlo9Xv4DTAuCvS0lTzvItaBG1PuSBNQyH5Wi/SSbfMsmE6sKGe2+0+u1ditadQkdjWuoUw+zyRE/axqO0OZRMWk0SQROmnRProWWk2J0tV7VaN0AA12I1w2lCZKbsfpm5cKg32xMonumhRXplUnKVoy0OZDm37z14hU+62/g17s8rKtQUyiw7jDrNPZ05CbctjtkD59riD9cQfmWE6GQPncamESXdKaabbAqIxr7HMX1SPum+thZXNcY9LpnIW6m9I15ZuTz5VMDQA8dHodK5tj7SxpN64JZETYTKJ98RmS8MiSev08/catZSS4rsuEcU1ujfLa4qsp7w4J9ujvdVOq8vh7++a51R2uIMXXS1CNczNEalz99VYm0XMtU/uQxZkMy4a7qVaFBF3/6qcQ/gDYzwiW77Mk/LzBpbX+LuS+sbmU0vn2j7Mx8N7nhiMxRtvLEoEFi9zU5QSt12We56ntu4UxiZPHsjVId1wj5jPgxU87jG953nVlK7WdDxJput9WTWKntaRwjh051DUEa6sgGdoCgyk3TaPctDPo5HJq28y6QA6VTj2ifO57k2OqhXOvRQJqgi6+PodJNDJWiu10jzmxonr8nFkf1h52XYNEznE0byw2k1hmf9g96bRsNzRIL8razm5Momuh1ayjMJ3EzEbpYRlh9ZMs0EPZHsoS+wxQvEwiZTEbEyTdi206fpu7qY8RtAU3YUwiLOPCGArAlV1XYxdNuamgazLw2tJBojtrSmwv4auefiUAtSDRJi1MJtEnI3T1SeTIn7cD06in5zAOIibx8OIAK5uj2uIySYS13q91W5452QwSb3t0GQB0PZgti6wX355t2+pd2xgYl7tmSMIjadROcu4b26Ec5dLKiLQlE/7+M0fxlB/7J6xujTHM63LTRNTr/UJrEtWxNMdVr7sgbDVqhrrDhlb5YUsyzc4k+s29zM8393NU9m5bnOlV7qYJj0mXsrre3FLaQHdTY1x1P7q3Td+tZjjUchzVOH/phgv2fqZhNYku5jJNhK6dAyq/CVfg1uyT2IQQlnVCS02oa07IDdm+Da42HYC6t5tqkh4j+bwd5MZ6V4jw9Za5bzxX/qpPIjDpFZIXsvQBYQaJwXJTM0gMaIERmcTuqJhE/+Lg5MoWfvfDD0BK2WASeUFKL01YjeprdYIMmWTFJDJqEmvSVn/rjJNlkLi0PqoFiZwekEA1uXGb2xM42Z+qlq4DI8tsgUHSYnaQmDfqv1oWFmaPrUOLg9Y6KdtnJQmvwFzr8ctt2e4dnySqzd3Ua1yT2Hub+SZIW7Y7hEm0LWTaTAuAarFoy3hrJnG2yuwlTLmplPV723ZNEttLeOO/fR7u+l8vBdBuuNJEXjKJNrdXgm2BALiZhvONELnpZhkkXrlnBoUEVko5KJ3PJmvm21ZlkuOek28/ek7/fqsOEhWTaKstpP+2OSc2D2UbI0WvN+dyKf01ucDkorBKyrSzFPaaRLssuW3e+u9/9RkM8wIPn15XfRKD3E2du6j+3pASBiWcLDVx7Uxi/fOb41zHUuh7p/56KJPoSsINshR7ZjMtN00Fj0lvJlcAm+Klxd3U8gwIZfbMfTD3ue2Y2IJm8zOt27Pcb4Vsr1sVLYx/jUks53FXgrdKnrrvb665TuK4tgpjbrOO08+AyWNpC4raXPLPF8xz2U8TbDFbxQFME0RZqdKAyTWQ9lfI/PfAxO0W4m46UZMYIDeN7qbdQTdgm2voD7z5k/jY/WfwFU85VAuCWHLTvNBF4uGsDTFHPJmqmVkBwjLkpnGI6TbXt1zoZ9ZUFnJpfajH0XfjLAhpgmcFex2ZRNNwhX0cU5WhCsm00rZ6aaLlBsM8sJC6zOTZWCxgsv7ouv0Vk7g4yHSGOeR8N5uJ+ybzWx46g0ICL7j+gGY7Xb21ikK1UmnPrDsm1rZi7wazR6+7x0w+2Kp2A+5x9oWMP7BU49RP27mjY2Ia1wBgGdfoeuOe2+yjuZBUiYey9oXdAqNkEh3fiz7LKjfVNbJBm+qMQlbn2XV/rw/VPXiobPZsGnfQT1/N9xveew9eeOPBWhsU1c7IPub177kbADDfT3HPiVUAwBXltjsb11gWnzpIdAysFtb119sYEQATPdhMqaFvjHqv5Tpx9Phrq4mjBdzptS1Vk2j0FnS5m7Z1Spx0N6Xj72ekms98s07cOqZzTWK5XxY1SUgA1jyWVHM1yBIsDnqV3DSpmPSQBb3JuLodWFuCDcszQOf7PNs2VSG0qA0KLi3rkhAm0aYuCGmDZLu/zWB23qhJJCbR2Sql5bloUxe0JRJc11ar4Y3BQCbGmSJ5f3Mfe4zn2nbQVLOF1hd27pNYoBEk1sdqcsfD+NsY4CB30y4tMCKT2B0UHLYFKfefXAOgstHmQoKTJRkVSm7aZEOa2BjmeOi02t7IYPdYvdQaTGLIgnBsPLR8BblSSqxsjjDXT1FI4GxppU291DhmPvSQnkZNIk2cpJN3saS1MXn1AOolSbC77LgoGnKEUNZG7aPNNIL+DlQLixsOLei/mU3BuX0S0xYW5eW/+VF86299FMBk3aRrgmyr0ZkIEg3W3IV0oo6o/MwgZqN6jcMk1hcyftMCtb0QJrFXbkP9jVcnS/e2T27qXshwnAyBSjrmWsQodYVdWkNjdlpylBdVD0JXneDGkOSmin2nIFE7jiaTToaEe0+s4nXvvhuvfvOnagspV3JlbWuMc5tjfN+LbsQLbjigXz9Uyk3pGVCrrw0JUiwSpdDatkm5aUCbiKTD/eaRJY9LGX4ToTJ5MgDyuZsSWgNg0XQ3rV73jXHViTtbkDiOR6vc1BFsk9rEuY+OcWTx3y9rEmneMGt5Q2tyAXV83XOC3zjFto+hxx+oqxnajj+Nc9033JrEkERhkniuk4bcdCary01dwaW7xcrkejLU3XTymmy5tx3GeCOHCoijUNoOzPryQZYGkw70PVSZVHgLDHreuGoSzXWjC5OGW1ABX6vcNLUzid6axBgkdoZmElsuqnObakFxbmNUey+vJlEZ17iyOABw5Ow6XvRL78NX/OL7ta4ZoCbY4fpuujF5xjVlTaJZb2ZbAA1zFFLZ6QOq5xhQMVIcJ0MtN+0cJIZviybOvnblDAikjGJzJS0LPP5lCwIKEkPlD83+dhNsVCNrfcPB+drfq8VWuHFNkoiyjss+xux7eW6z6vfWcxzHtsy6a/FDCZvzXZNoY2XDGmfbFzLtWeRye5aHPT1kyYWNako5Mu3CeLAB9ns0L9wW9BwHXNqe2V7F5Uprc3JzjTnfyGv3jX2xu6HlpipQIzUEXW8qSLTfA++8/RgA4Lr9c7WFlCsgfWxZGXs99cpF/NK3Plu/rmsSLXIvifbAhlowmMFlXihG0LVwdbE9EnxGJLRNB+1XE67WLK7ESvO1R5eUk7PP3TREEkv72ZSSq3GeMbYFeWBSzD2ujYGsvz723NuAuwaS2NhBltTcled6pDBwX/8mTAWKy1yntZeg5buZLWmc4ywJj7YkCW2PG6TTZ1oTOe5d1J+ZOxjnpnFNs59t85lf9a92XCeWesuuiYTWekuXCsjx7M5Sf9nS+YIpNx0wfDFo7p7rp2y5qc/dVAetLcdysiYx998AgGIaC6MXeWyBsXOgDDjQTjVvlvT18saotpgLb5IuUUg1EZuUfRMv/qX34/i50hRmbVhvS9EiCWxuD+C1wCA51vwgreSmlocGGTI84WAZJK6UTXmJSWQEifReTrBnPthZxjV5XSYZ1juyyrZyegnSg3yQut228kLiZ/7hDtxbStHoNbo+VE8o/4PtWkNuCvCMQupMovu83XpkufY77aM780nXbFtmvf56m9U3QA/E6v960ep5bNtY2TDWhrZR317bQt6dpa1kYtfsncV3vfAJ+IP/8AIAYJkp0cf66o3zwh0A+JgeGyi4bZMJ2853lbQI2lRnFMZ903OoGagmkeSmx8+pQI6y+tbMbglKhPUyoWty1bbsDPBjyyqYuXrvDK5YGOCDP/Ri/MK3fL5hUqHe1wzAQoI2oG7Ukku/kYnregxlRGzGNW0N59XnTy5AzT6J9X1UP33NxAHodj9Nd9NasEeJ9VYm0V6n3OYuO9GTrjXYo/1yJPycNYn2ca01iQ7jLFoEE5NIMK9/nrupcJ5rZYrUPrdaExC+3rWWOSgkSLSpt0z2ybc9e71rQHLFU4N6o6EA0mNcz9OWWn1bsNFmQOOTQAcxkM1A1iU3ZSibtgPzXHLME+lYz/VS1lpSlte3i0nX16S3nddkfTNk0c4kJmmdStcX5fZaYMSaRAtMijiUnl4umUQqlg92KTUW98K4sHqN82oGISdXtmrjtlOTGDKOgr89Mz1vo3QyfHhCyWKdNJhEWxG1C+bDj8UkGuwey7ZYVu6mapsBD8Ty42kch8mttcCwTEC3PbqM3/3wA3j3Hcfxwf/xYkipEgmmlM0VgJl1VL/w8s/H06/eU3s9JAAwH64+Bvj02pb+/cjZdV3c7rT6Lr9qu7V7M9jwPwwB9XAzAwBdxxIQuDVdStXnecZYvl/IwpoWi7YaGDomSSLwU9/4TP23fsaoSdRyU/d17LNA99WM2UCN6p0yYU/NTDVmZ6NE89i6zGRoLqU2FMdKto+YFJ/cdLWc85bWR7h6b7UAc22LmERiih9/cA6PL5NqgP0cqGvL/z2rxEVVE6SMdDxjPKxB633jXCR7xrTI5mxW/j4m0XzGPnJ2HQAm5Ka1exu0jy0BcAeW1OZK29anz7WwpnsidS3+Heetzd3UdSzHxkLedFcmVitUBVSxNu5zLVuuZatKo/zZdvzNfQBCgz1LsN3SX5T207y9Q9hmGmczdwHUnDE/mFySu56nVdLV5W5qN+XxSh0dLLWvTAGw1/cD7me3qUhrrnXPJ3SrQAFWr24dJA4ynQgMHUeu8Ob2m5/rdYq1MMAqSGzh9JrGNSE1iQEtMGKQaIG5uPIt0LYMrfJSGSTO9VKsbI3D5YcGS0LXRdsa7cTKpmF/LJzSJhtMrbX5fx8o+Nsz2zPqlixMYim9fcY1KjC5+/iK2kdiO0P3UYYd/4lx5efPMLM/tJCsTHnCmcRUcN1li5rc1LafNz90FgDw8Jl1bI5yfczNQKKtTyIAvOIFj9O/6x54QRnhalHkq0k0j9PJlS1sjgvM9JJ2JtGT+bSN08FGCytiD/baF4Tcxtl2ual/Qa72Uf20yXBd7ConAVS5m7p7d5qM9MT+dWASzRYYzuDeJjd1sMbnE02XwixJsD4eT7yPvi8FiUeXNjDIKmm9CojsO7o2rIJEcwGm6rgmxxwvg8Qr9w6sn2c7BzIgAWG6SdJD3WUG49sWbS+EFee2iWhzL/a1wLBLVKsdePi0ChJNJmyylUV7sEfjzM2F9KkUwiY3pcQd17hG/fTVmgG24DKQSXTV4AlR69NKjd3TJMzzwJSb0rsne34Gss0WdUdIfXktuRLAJNpUApUk0LefTQdc9ZOblAQmmeP3/Ncvx6NLm7UxgC3gqP/dtq3mWrKtJpH23xZc+sZljhITU/FmwlSkzWLnokRTYt7PkmDygObuuX4abHYDVPdg5QHhkJv6kneW4D4oSGwa14TITSOT2A3mwt1nLLK2VZ0QYhJn+ypIDJUfmgY0dEE3J5FmIFFnEpNWcxETZiBlbr/5nj+76WFASvzznSfwFU85BEA9gH3GNZXcdB7X7pvFkVICpG4aFQS3ZbLMfXTtnwt0/GZ64cwebc+8scOypuqnYtvCjYOoBQb9s7mb3l7a4gPAxx84gy9+4gG9Lfrpc0izgVMDlte+m7ve0rw3Tq0OsTHMMdtLnVbfbfKfVlmNJdggNBdpoQvCJsMd5iQ5+dAupGxtG+DucVm5mzbBsQqn40YOj065KfP422A61brG0fb7lqSAi0U5nzCVBYC7TpCO76GFAYRQtdUUMNK+utYWK5pJHNZkoa5tbY0LbaJgg+24hLiN0vUqG/dAF4lY0LXcyHaHOrCq99Zf98nQfQZH5oLvaBl8k/kQUGbkLcFGO+PfnBNQjnOPSYRNblp+nmOgaz7IG6oQ5zjLcfQ7ctrvU1MVY9YkzpdyU8Uktj9PzWCTbvkJ1qzlWq4CYHNM/W82CEvg3CbbpXGTwb1i0luNa6xscwhLPbk9oDrfTzq8iCcdXtR/bw84XNeJXe4YMidMXMvSH2xXbVns65JmYlgnrafQJxfglzzRuNleuNkNAO2m7UqIVSy1r3TGorqTeQCT6DCu2WYLjFiTaIG5uPJdIGuGccfyxgjDsdTGE+G29dVCxjWJU43Mj3/d0wEoGafO0KRqQraZ3dhAN8lMz80kfurhs3jt39yG1/7t7XjfXSd1sLc4k+mb3RYUacZxJsOzrt2rX1f1fuFMVi1IZLWyUD/7qXthvbo1xk/+3e34D79/E+4/uaq3lyUJi0kx5Z0c4yAlJU70ftqYxPVhjscfmEM/S/Av954yJBNlkOgttncHG0BgTaKRSVULJvv1RffG4iDD8XOb2BjlmKXss2Uf29zYKLhsPqCGuXsRSWjeA8EmFY2HdlBtlSUjL9HOvrjuAR+TqBj4rjWJk+eMJKI2cOSmZkbUNc4nN9UByg5SiU2XQlcyx0ycHZhTwSHN47SvrmNCz4C1YY7NUVGx/bZsMLo1Ew8J2mxsLjkpu2ALLIGwa3lCbqo/s50lciWBrO6mqZ1FMceZIPMhoJuUnP5u7dPXwmQ5649akzL119uCm0Sft24BwORCvnqW7Z+rkiPEJIYqlcxgzic39bPN9D5eAqJiIKvXmve/fZy9ttP3rKHPtN3frTWJiX17gPvZ7Qw4ApIJ1trCANlo85pUzuXOYdbjT9uz7WMlN93ZcgO6/8k7grtOnh9kqnyMsZ5PE3cQHMIkppbEBWThD/aASeOaoBYYUW7aCebC3SdbXG0EieOi0BNrcE2i4VAloX5vTv4nygb1Nx5ewMIgw8mVLV07QO0lQiViekFE7qaWpy85xREeOrOOQZZgkKVe+Q/JTRdnerjhUOWu2U8TZwBs3ceOtYUVk5I6j/+H7zmFP/jIgwCAL3vySTzx0ALIzMPnvufaVsW2hR1/qlsFKACYHDfKCyzOZOhnc3jkzPrExGLt7dRSR+GyqLahMB6uJAtp9j+i/QSAawzWeLZkqP1W3y0upY7v5nM3bS7kq0Wrc0i5vaZstHy9RQ4CTNaNhQSkQFNKKL2LO+UsGHZtNVtguJhE5zXCkICa59I1buS5JiuTrvZtdYUpfwPgXCSYLPyhxQFOrw1r/cp8GWjzGXDs3KYO0F2BZVszcZvDbIj808Yu5UWL1M5xPYbKW7lsp7vFTfUMnNhHB4sCVPPC4kymE5SH91RMYhcpOe2nrd7SN0w4FuTmd5jYjmZWHeOcfRIdwXZLcOOsFTfuE5NBp0RJcE2iXpADKOyBjTKucX+Gr0+iN0ixJO7092oJ7m3Hv6u7b1ByxSX3dTxzXCZfIUz1BPvYmqQq32c5byFSZqeUvBkklv8PbR3WFVpyLIhJDAz2yv0mQ7FhXniN8/T2SjWJTxIOtK2BLOs0KQPlpmbGu/z9YmmBIYT4EyHEY0KIc0KIu4UQ/0/5+vVCCCmEWDX+vdYYNxBC/F457pgQ4r82PvclQog7hRDrQoj3CSGesN19JbevhUHmZQRNJnF1c6zlpkA4k2j2gHNN/hSozmQp9s6qZrd5mSUmJ6VQ2VbFJKr9bNoxA9AL/t965RcAAN59x3Fd6+GqowAqJnFxJsPVe2fK96v6Rz3RBexnYewjpyaxWiQnzszPyZVK60/BN/XoctVW2WBKPVjGQYXUgZetiB1QE1IvTXD13hkcXdqoyXiAFibR1d5AL7bCH/bUJ9H8fBNVkDiDh8+omiBaWKRi8ruFNClOLXKcUV7UzBBsaBbph9SxAJMMQMhC0sn2tDGJFuMaWy1pfUy4RGaiB6qDNWszDgq5R2sKCIdroi9Drk2KdnCR0DQJSB2Mf27IHcnh1OxXlljYBsLq5lgf7xPnNiuXUmFxqEM4k1hf7LZfx7ZaotbsvyVoCwmIgMn7u821ksbQe03oJJAvmWCbf8oDTO1DZnpJrYVAk0msXDL9aDIwQTVxNtliixywTZbvrEnUzFL1min/dkGPczC5aSJw0AgSzRYwvD6JJpNYf49EC9tsWSeESDltc3JbsE2faZu32pnEyXtUfZ53mPWZXyXF/bWrzbmrSubat0UqoNoY6Q+AyfHbxlIHyX2dbPpkCwzAvv48n2jKTTn19kBlXhbuMK7KOVwKiBDjGqvctAiRmzaMa85TTeI05aY/B+B6KeUeAN8A4H8JIZ5n/H2flHKh/Pczxus/CeDJAJ4A4MUA/ocQ4qUAIIS4AsBbAbwWwAEANwP4i+3uKC1+5wd+PTJlkef6KVa3xhiNJfqpqtEJZZbMwt7EMkECpvuYwL65nmItjb5SqkA5bHsk79ILSQeTuH+uh2v3Va57p1ardhaA/aG9OcohhPpscu8z6+jU9tv305TEFjKM/TL3qZ+5azRPrGwhEcBVe2ZwopTxFoVfImPdR+PByjEOonYbNNa2IB/n6jq6dt8sji5vGteIMW5CouSXnlTfjVFbkghvcElM0VV7Z3UD8lmPI2SbPEZt0yJbLAoviwioSbdej6V+ti52HQtJ/uI6IPtMxjXGPTBuWcikjJpE2h2qSbTNXT7jAlffPBvGxjXiWvxXD+jJ8Vr+vINBopZp033jkYAC6rxSTZvJJLpMaAD1DKCE2ImVLX39C2EPttsWoDaTikLK1sjGVkvkkxarfZwMUug3bnIlhO10za8+xs03J9Nz+ooFFdjMNmwSJ4K98mdIMFs//tXnudBUJKh9bp/vfLL8NgbSPNeu2q/athzri9wI7vbOTi4aVV10+3PDPE4uk5w2xpmOsTlMBhx/23USsiC3tYkYF+2+CV0SCbSfXCbRaVzTElwKCyOVF/5emoBdKt8WXDoTQI56Y18rtfMJ89ruUpNIbrMcV9TUYBJtTC7gl5vaWpx1M66R1esu7CYmUUp5u5SSvGRl+e/GgKHfBeBnpJRnpZSfA/DbAP59+bd/DeB2KeVfSSk3oQLKZwshnradfaULYn6QeWviyLjmqj0zWN0cKwaoZM1CmSVzcrf1ugLqTVP3zvawtDGqSUtc9S++7Q16ae3/Jh49u4Fr98/iwEJ/4m+uQBZAzbikYhKF/n5qewEPmwbbGXos60yiI0g8t4WDCwNcvW+mziQmTOMaQxKbOXqi2TA2Ah5bETugvm+WCly9dxYnV7Z0c2+SGFub5LY8EFM9aYV/t5qZj+V4EuNO7AtQyTNsi6ZwJrERJI5la5DYzOyGLCzo77ZaRt+q3CbtK4ow18T6NgKYRE69a0NuarsHKCFiA+f6N/fbNa66jjxMYmByqwuajYtdrCyxq0IIXdNW67dnSXgAamG4ujXGNftUQmxcyFqSxCVt9bE9rl65oVJmc5N5ILtnNeDwjppcJBcy3IG1U+2q7ViW1zcxiY87MFf7e9II9qqFvHc3JwL8kMSRvf5L/fSayVjYnra53NcTkBtImf/PUmENjnyS97WtMX7nQ/djlBe1FhguUx51nTh3sZI7Mq9JWwDcJvelv9nYtlYm0SFl5t5v5n66/QRc5EF7cNkkD8YtjKD6PPs1GVbvOjnO/DuB45GwHdQNBjk1iWogrWe2AoJEalVmJtdtcmu1P+FO7erDA4LEpnFNUE1iirbZfqrGNUKI3xBCrAO4E8BjAN5u/PkhIcQRIcTvlwwhhBD7AVwN4DPG+z4D4Bnl788w/yalXANwn/F3c9uvEkLcLIS4+eTJk979pIeWkpu6LyqSm165Z0YxiXmBfirQT8PdLivNdmKdINX+qP/XmcRKI93s2ePdnsHSmds3sbI5wr7ZvjZxAIDv+YonAvCzDRujXC+SriqDxMPloou1AJXdgkRdk5ilzoX1iZVNHF4c4MrFGRw/t1nrQchxXDSZlF5LC4xxXuhrxZSb2YrYAfV9e2mCq/epY3jPCWWwQ85znbLPibBr3UvcdWwFr3/P3WWNHPR2Mk/GT+2nwIG5KhtVWyQ7ZGV+JtH2EPUbcAC2RWvYgtAlQfEvCOvbAACJ9oevrd6sOm/uBUJoAqhqgeFWCVBhvQ0s4xrj+ncrINxZU267DQ7+4bNHcf1r/hFn1+vqB3/gpt7z1KuUqyD1MwTqztMmNkcFCln1PASAmb7BpNuYxNy/ALVJAtscIQHHNSn9tbW0PWtypWWDk0xi+z66ald9LJhfyUA1/Or/L7j+QGMfJ+W3QJi7qb29QUuw51BOcBnIcKfq6jWJ9vnOdc+1BZg+yfuPvPVW/K9//Bw+ct9pe3KxMa5NceGTQIfUiZvnzWSRXLCxbW2ScNrPZk0uEJBcsT0XC/+5c/WUNevtrOMsZUghjL+VFZf+OcEmdwfcieHKAHE6TGKalKqcwOeNdsrPOEGi+kn1j8Dk+tr3TCQ0W/CoDw+QmzaNa3RNYltvLj+bONUgUUr5/QAWAXwZlEx0C8ApAC+AkpM+r/z7n5ZDFsqfy8bHLJfvob+bf2v+3dz2m6SUz5dSPv/QoUPe/dRMYj/DMC+cUk6Sm161dwYrmyO9uOdk/yuW0G2cYhp37J3tYWm9ziRy3E21cY2HSSRJwqzh8PcjL1POqr5gb2OU6889ON/H/3jpU/GH/+ELy30MZ7Lo+85oK3/ed2uTmx5eHODwngGOn9usZbo45jqFMfn55GgA8Nq/vR3P+J/vxMfvP43huNBZNFsROwAMc8WckdPcQ2UPMJICefskeqQkmWeS/Ppf/zBe/557cHptWDMg8Mq9xup6328xO7Cx2yH7aAsuKYj3oQsjqPfTGlzyFjJBTIrlHjifNYlmkgSwS2R8clNfvbFrW7U+iYzFJydpxMUvvvMuAMBtZSsZ7W7qkIWbElDq8frgqTX998RxDqhHoumoqY2bbJIhtC9AtUyvcS23XVvCcg7aJGKAvbYwBLZm4iFtMwBbErQquZjYP0/igs7JN3/Btfier3gi/stXP2VibNOBGAhZJLvqm31jbOoO9dM739mkfQazbQO9bGvT0YVJNFUxrnGu+/Qfb30MgEosm/e7y7ijkG1B26TDNacm0Yw5Oj9vAoLESZaaXvcOczCJhfd8u5IrbUxpcx+BdgMa2t4EA1xI+FSqrvu0Ogf2Pok7WW4AGHWbpQQ6vHRJ/aT1TIjcNDfmibbj0WZcY5WbtrqbNo1rAphEoLUuceruplLKHMCHhRCvBPB9Uso3QNUSAsBxIcT/D8BjQohFAKvl63sAbBq/r5S/r5b/N2H+vRO2dE2iOjyjXKKfTd4hTSZxOKYgkcEkFhQAumt7TF333tk+zlFNYlplyIPlpjktJN0WxOOiqmX5+mdfgy+6ocrQuiZ/ANgaVcY9Qgh8/4uepP/WRco543Fp9I3zyU3XtsZYPLSAfbO9Wj9LM/sZEt+bNuVZKrAxcn+vzzyyBAB4x+3HsD7MsTCoHECtC8m8QD9TrDEAbQqzZ7ZqL+G20fY/EG3HvyikngQfObNekzv1PLVjlBTZZzDOxKT4MqZtcjvbIqYtQ9uUDYU+tJOk0VuO6thaFjK0X9X22pkUm3FNey2p6i/aJvdRn6t+9jP3OVNmJrzFiA2mKUe73HRye2SQsBNBIjU/vvu4egzQ93K2pTDqhG+4QuUlX/TUKpHoSsLRvHRwYTJIdDKJpUmWC7b5NST7b2OXCumvx6Jx9vumbSFZPyZhDMUk2wNU10DPclxcGXmgao+0Z6ank5jN7Vklga3BrL3nalsA5npu+1s+2OfJEHMjW3Dvl3I61hcNhcdHXvOVtfvE16u1V0pRT61saWf3JKmOsK1PYhsmE3fqp++s2ZIrQRJci0zYXP+497EZpJfbagsuE1utfrskVr3PFXC4gkS73DGol6PlHm2rraXPN+FixSu56c4yieYzyJcknxhXvq+Sm072s27CVNfoect1zphzSZjctGFcQ3LTtuCyhUm8kC0wMthrEnXCT0p5VgjxGIBnA3h3+fqzAdxe/n47VM0iAEAIMV9+Jv29EzaH6uDSonyUF7UaFcLqcIx+lmD/XA+FVO6evTRBLwmvSayK2xPrg15tnx6iCfbN9TDMC6xsjfSNZquHILzpg/fhSYcX8JVPuxKAenAJUS0kbRbE5oTwa9/x3NrffIGUYhIdsjlGC4Ym2xleNKx+9jN3jeCoDK73zPYgZdW2Qy12y88JeJAVxuTXS/1M4onSUfXWI8tY2xrr5IOrkHqUK7aRmMNHztSZRFuwF5KhcrXqIFkeADxydqP28PHVJA5ziX6WYJ9hdmC6m7prL3iLJol2lq4pGwpf7LqaInvGWLKEikn0bkozKeY5CKlJBKjnnX+yb7qbWltg+JhERp2gbgpssAbcFgCuQGo7WNsa40x5PX/yoSUA1TyS+QI3UmUkAjf96EtqTcWzJPHWxC3OZPqenK0x6ZP7184k2gKAEJaa3lu/ltuuyYn7JkC2SPvZZNJDTDuAyfnV2yrFp2QoX7MlcPU+2iSBbYn1iQCAXvcnjiZ6y3mSJNW2bAk/f5uUakFevaaVZUFMon8/qcbWHOd6vi0MMmyOhji1OsR1+6t6dGcyOeQ6mTiW7cGevS1R+/G3nrdCeh1R6TOb1z/QLjdNrX4CRWvQoN7XGNfy/VyqnPbEqYVJbAku3e6mduMa3QJjSu6mZFwTrLgrj9ssYw0aIrduMykCqJ2Omq+EotXLP3CNa2hS2F6QOBW5qRDisBDi24UQC0KIVAjxNQC+A8B7hRBfJIR4qhAiEUIcBPAGAO+XUi6Xw/8IwI8LIfaXhjTfDeAPyr+9DcAzhRAvF0LMAPgJAJ+VUt65nf3dLLMGe0qjENcFMhwXmMkSLJTtIc6sD9HPBHqeFgxN6AAwEU5dtylJ3V+yS2+/9VgrkyilxM++/U78xz+4GXcdU1n1cSHRSxIdYNqaWfuyRr5Aioxr7OPC3QyrIJHngFgZd9gXdfTZWSL0uSVTmCzhyU3NDJmvT+LGMNfOsLcdXcbZ9aG2aXfJTUel3JSCwocbQaItKRBiCqOymJPnm1qXACogpcWlMGoSbYsEVYOb1Bow+9xNQzLrttYBofVONokSuyar/OkNEnUmv7mP7Ysfc9+A9jpNX1/SJjST7pFp53m7u2nY9V/NSa7FZ6uZEuOhHYp33n4Mw3GBa/bO4KP3nwZQZYPTJLEmO5pmMof3zOjAElDXkDVINBgwuqdnetVC2VamYEpbbbAZ18gAJt3NbocwiZbFbgArOCHTDmQSJ8sp3MY1+jllk5t6ZKp6HzsmjmzBhp+lmzzfrh5xtW1ZEhdtTJZeJ9Tmrfbg3vXsbquBzFLhXMzT6ydXtmo1gG7jmpB+mk25KfTnumBblIcYB9l8AYKYxMZ9Q8e/m3FN+z4Ck+etjSm1KSfC54T6a21OyS7ywPV80y0wdkBJYqLZloVbumH2SQwdkwrhfJZW0u528zI9NMSABpg0rjlPctNp1SRKAN8H4AiAswB+CcAPSin/DsATAbwDSiJ6G1Sd4ncYY/8nlBnNQwA+AOAXpZTvAAAp5UkALwfwv8vP/SIA377dnd0YkoylYhJtIIaRFghSqpOfJcLbJPSmB87omhf9IElNJtH+EM2SBF/9eVfp132Ny4EqAAKA3/+XBwBUAaCLDjffY4Nr8gfqNYlNcBagXY1rKiYlxbiQ1kWa6omY6L6PprmFr/7FtY80zvW9Hl1SAd7LnnmVNrowmURXn8R+JmpBYpaIRgBmz9j5sqau+jYzSHy07Muoe8t5ghQlrxbYP28Y12i5qa8+wZcRttSxBDqH2nuiBSwIawvJ9qy1bZEWwvbY2PS2Y0LHPyTjOulu6mASPUFbc/9cqD9869vX22pjEkX4QzsUtx89h9leil81FBDUziJNPDXYzIU8UJ+Xib313aNAu7uprS5dSTnbmMTJRZrPyZbQXLSGWvnbHC9DmUROgkuz71bFRfu9Y5Vkevdykl0KCS5tCb8QCaLNpKKNybL1sgsJpFzP7rZgwyp/K0HP5lOrW7V9cEvQA+dy87zp/fOMsbDUIcZBdrYttAVG9f/QBIRNKZMXhXd7NF/Y6gQBfz/N5mkLYfxtz+BWualDheJ6vvkM8c4ntAlfyzqtCfoeWm46CmES1U8h3M/SEOOaiWMZakAzYVxDF2Ubk+gXlE4lSJRSnpRSfoWUcp+Uco+U8llSyt8u//ZmKeUNUsp5KeXVUsp/J6U8ZozdklL+x3LclVLK1zU++z1SyqdJKWellC+SUj7YZR9Pr27h+tf8I/75zuPYHJHctGQSXUHiWCJLqoADUNnQXupmEt9+62N4xRs/ihf/8vtx9/EVfZP4mrnTw7CfJjgw38c3PucaACrjDdhr1ADg+Lkt/fvnHjsHALq/om9BmEv3osk3bnPkYxLdjNTE9jWTyJWblscpc2epyPCHzu3SuiE35QSyRobMFaQDSr4JAN/6/Ov0a2aQaJexqVq/mV6qv8ve2Z4OQmxutkHtJRwPe5LcAkqulxsPSZ8shGoSqTUHAF2X4pObeuVXlsA5xDm0WUdEv7YtSFyyoZCsNd+BcvL6aqvT7DEyrnRqvXJTz8Pe1dybsDXO8TefehSbo7x2vTkXny2LZJuT7XYxygvM9BKtFACAuYHBJDoDN/8izSp3NFyn+zpINB2nOwSktmAvhEm3LNJC5KbNRWvo6ZhYyAey/cAk4+x3N3UrXuj67jtWXG7jmrZgthGABQQpwiobpe/gT4rZmKygFgxMtlMfS8e87DPPct2ntSDROE4VI15/f8hc3gy49aZ9LKllDjIDBBeEJbgPIMWRCkxc/0CATNvyXGw73y7Tv5B+mrbERUiQPlE3LP3JDi03DUwAaa+DnZab6mQ+Jcl5a0ktNw3pE2qcD2eSpOV5D1iku8FBYkobKX9eXEzirscdZRD1Wx+4HxujMLnpKC/QywQWBtVB7mXCK8/48L2nAKiJ6B23HdPBRpYIp67blHYBwKHSKOHwYtVewrYgOV42i7/x0DyOlb/nRYHUCEhdzdydCzvPuM1RXnNENaH7xoSYYugg0b3YtcE0rgEcrEGuAns6tyaTaLOfd+6jySQ6gnRA9ZwEgM+7eq9+bbEMEl21pKNyHwFoltrsRWgz0ggJwNLELotdMYLE9WFeOpkRk+gOUihIBICbfvQl+LXveK7eX58Da5tsheuIB0wutkIZkS6LLVvtcAjbY5dE+RdoXZIrut7Y1iexJUvuajgPAD/2ttvwg3/xafzxRx+y1602r8kWuZ2rtcR2MCpbAy0YiTuqk3XXJPobTDcXhOY4QN0jZF4za9TkdnM3nTzfISy1vSaLzyRSJMWXqQYYYjjcTc26fNt2gMlgAzCfi265aTPYBjowWeWvbfV+zUsrlMmyBW2+a6Tax+r/QQ6gzuPfFmy4y1lojjm1OtTrpH6WVPXNFiaxLQITom4mJgNqEm1zshkgOMdZ7tPwpKTtGvEOsybG2hxHXefNLAuxwWbKEzqX2IIbr7tpC0vdvLd1GctOG9cYLLmtBMaFZpAYZFxjrAnbelsGSXc1k8iQm5rvlwUAEZApj0FiEIhRyguJrVEOIerupjYMy0UyLYwBldX0NVe/9cgyvuRJB/Gsa/fiX+49ZTiXGnLTxtCmrIYWJLRdIezBFwWJz37cPlUzUEiMChWA0D1rW6MVAUxiW5/EiXGe2rYmdJCo3U3DFpKTi2RL9rl0FyT2l857jV21HJRHzqzjx952K37krbdinBcTi2QXk3jk7AZ6qcDhxYFerLYxicMy+QBUkuEf/KrK3t1mpGH223TB5loGAOdKuenhxQE2hjlMtzVfTSIZ1wCK1f76Z1+j/+ZzYPUukm0PqIBAomttVfMcyIBxtPtNeWtr9tlyfbW5m+o+cQH3gGllnyV28yxTSmyDjxX/5MNnAai6P/NcumrN2vqUcWpEQjHKJfqNObmSm6pzbWsw3YlJNJJ3V5eqDkqauOaENlMSW69KiRADGlviQrbW5DYXTl0ZEZUkad+WuQ2Cj3GrEhA2JrE9CWHOWyH3NuCuN/N9P5dEz7d/atyk3DSsJq5RA6mDe/cY1/OtzeDF1TrGfC6fXNnCemn4N9tL3c/SwGQat5ZUlwCYwX0Aa2OtvwuQaTcNh7QpUkBSxuYu6y8TmXTFBtrnctFIkpQ7GnSfNo9Ju9x0cv4BPEyilpue3/m/iYl1WiCTSMea0wLDDEhd7exCjGsmFG3EJLa2wKDMDAWJAb0VgVYm0StGFUL8MSqVhhNSyn/Xvie7G0eXFOOTFxKb4wIzWeoNNuj1fjopN+2nbsvo+06u4ttf8HicWdvCpx5ZqkmWXLpu2j5R9M0bzjbxAGriBoBnXbsXb/3kozi1uqWbOfuklb66GV8gtTF01yR2MeDg1iQ2a7Jc2X9TbkpBWK23k2Xc7/3LA/jTjz8MAPjer3jihNzONfccObuOa/bNIkkE5voZ1oc55gdmLenkmHF5XQHAa172NEgJvPSZVS1qknjqv3x9Ei11REBVk3jV3hmsD8c16ZjvvI3GhV/qZcsioyUAs7FLMsCAxlnH0p4RNs9BCANpk1fuNJMYdN8U1ULFtrCTUip2qSVItyWA8kLiyBk1R372yLK+J2tMYnPxGcBQnG/jmnGukkDzhqJhzmhwD0wyh61uki7jGm06luCqvSpIPL1azSe2OaFtQWiTZIbVJKqfTXav/fqfHAMEsA3JJNsWskAG3EyibV+r+Wfy88z+wdbtJXWXQJ66oPp/CJPoMxPz1iRaardD3DUnFRDV6y64jn+bbDFNEmftPKBULidXtnB8ZVMlydOq1YAt4RcWpNiuSc8YC5MewtoI4WbovPvYSLiGBLKAegZvjieTaSH1frZ2Cm3j7O6m/n1UpIPtvPGCdPV/exJ0Wi0wzEQlz7hG/eSUPFmZREfC25vMb5JFoXJTG5PYFlgC265JvBfKNOY+qCb13wQghTKgSQB8I4Cl9r3Y/aAg8ez6sAx2Eh0kbjnlpnKCSVR9Et3a561xgbl+irlBhrWtvCaZceq6czWx0sVDP0lW6WKktsaqSet1++cAAMeWN3XW3FuTWEinRMNfk1i0GteE3KT08GfLTQsKEu1yO5LHZImYMK7JUveNDdQniaX1UXCT1iNnN3BtaSlOwWHlbmqXZxSyWvh871fciO97Ub1TjM3wJqgm0SEbOreh2NRDCwOsD/Paw8dncDQyGM8mhJjMRoZYmbuYxJCFnSWxHiAt6+6kx63/sl1fbQs0ug5C7ptCVp/TSyfVDPQR7b00J18/fm4Tw7zAM6/dg2Fe4Egpoyajrub3Aqp5rEutU1fQ/W1KEE3m3twvggrc/GyDVZZvLIC+8mmHAQBPunKhfM3OgLdJW23SstBFK723GhcmLauzZvR6+/YmnVT9Y2wOrIC/dszPJJIrqvv6UmNluV31elAPSOZ3U7XU9deKlutfbcseXPoWkYBHbtqyj+Z79di2IFE45v/ymUgtMx45s244CU8m0mjbbWZiwhkAu8fY1iX6Gd0mN20cD4mwJEk9kdB+/AF7Yqwt2PMZDrWN6xqk29jmkAREqCmVXlfscE2ieW1znjdNosIVA9THqJ/mWr2TcQ0F3HQsg2sLyziEzGuKKTCJUsqfot+FEO8E8HVSyg8Zr30pgNe278Xux2PLSpr52NKmlk1qStzDJPZSoRchgHpgZWmCteGkhrkoJPJCBZbz/RRrW+OaTbZL1z0qHTkJ3/aCx+HOx87he79CBQ9W9gWVjIpqF5XkVGXafSYVuech5c4GSwzzotW4JsgUZoJJ5GV/XMY19N80SXTPSUoO+BzZABUAE86uD43JL/HKTU+ubOELbzgAoDJ16XuCe7PdiQv2Zrft7qYu45qVzTHm+ykWZjJsjPJaZtNldkD7atZ+1bdlz2LS/rtgazYckv1syr1M900fnH0SvduavE6k9B9717jcuI6s++dZJDeRGwsAW5DYJm1V+2ifEx46rVx6v+zJh3Dbo+dw30nlzpwk7sVnJa1xMIk7EiQWE8wSJY2cwWzR5m5qZ1LGhgrkhTcewk0/9hIcXlSMoquOa1xIzAXZn9evrfbsfyP7jMAFoeP6b4tKJw2f2hf/Lrmp77r0JRerudJRk2gkuLKUt5CfNOVpn39cC2TuQj6sJrEpSa4+z4VWJtEpC3cZN6njf+2+GXzmEeXCbfbJBSYTMhJdpMzleWt5bjS3F1rLOBEkhiQFGglezSSGyLuZcnen4ZBsLx3oUpOYWhK84XJT+zOgOZaT/NwO6i707tZoE+PK9/lMEJswiQMnk1gEXJNNszo9J4ca1xhMYluPROC81iR+MYCPNV77OIAXMj5j14Ikd8O8wLHlTeUsWZ4sr3FNWjGOgLqoeomw0uhmDcv8QC3IyUl1kCXOIGVc1tkQFgYZfvFbn43986o/nYshIhkVLeTXhmOMTJbIOc79UHTtIxX2msfChM3+3wVa6HSVm7pkws0A7AkH5vBA2YokSxKr+QNhs6xTBYDljVEtS2lKmZo4szbEgfI8/V83HgQA7QZqC/ZIwuOScQL24DK0INqWuVvdGmFhJsNcX7HbhXH+6XzbzsHWeHJBrrflyGICbaYwtuAyrN6vubAGAhaESXNBUr4esCCZkPYFLBCABpMY2CcxJFFiLmatcl8qbWi5Rmz3KNU3v/CJ6hq+/+RquX+JN3EE+Baf7uRKV9iCRNG4lm0ugX4JqH0x0zROoQARcCfu2gNSCyMSwCTSR3KDy4n9NLLh7eOMYTJs8Q9MSkd9NXFJIqzyN6Dep9KGrHGfBsa/E60DwpJUlgV5SJBouU7GLc3VbeMqqbl/DOCrk3IfR1ftPABcvVcxiQ+fWa+15TL3C1DBlwwJUizXFhAWANcdp9vHNdud0LhW5r4xd4UmJZsMMO2zv05Z/bSaybS0k2qetjDG38YA+2XTTtNFh1eCz+vgfCJU8dUEvc9ngugaY9bpuxxpQ/okTtQkBstNi+pnEJN4/lpgfArAzwohZgGg/Pm/AXya8Rm7FuRoCgAPnVnDoBdSkygnFiRZQi0wbJm3MohJE22mcLKsYZkfZEaQUh9HdTYuuBZ2tPghN82Vzf+PvT+NtmTbzsLALyL23qfLzJuZt3vvvr650tN7T3pCEtJTh1os0ckGWbRFQRmQjI1MW1AYYfCQGaYQrqrhYVcVyOAqFwUlMwYYsA1VBgRlG1OgKiMjGdGo19Nr7715sztnNxFRP1bMWE2s5ptxmnsyc88xcpyT++y1Y+1o1ppzft/85g5t24+1jSmRil2XPl4KNSht2DmVzNjxgXl9EuvKziHG4Qes8/Cuu8djmxCfgjv97LNtO4pTvPEoQBITwfbjzQ6n2xbP3zBB4h/8JR/Cf/ndX4P3vXAyHnNCGy3U2QCpAMz8zPdbSquprhY1jlcNTjc7T5I7W5PYpmsSY86P3eyTU4x+tx7lTTss0u+J8yHHi9a/ZFZG65Db1zRIit/La7iPUo6uogWGF9zHEIrRGc/PMbYmvDbU7n70Hc+hrgy1TD6r5HymaWwXjyTuuj6zBg3zbKfzLInJ5GoSo4IrGSSxFDQAmNQ7MegXEKtJzI+bIon+56XHhYEsQ9Eb3ju5T8zPvABN7Pxb0bfoHIOkQN/n1SDHeU6+G9c2oOt96jqVuKumNFVXOCx/PF1yK4X2lGixdeL8iz/z9qEet+/hqZuHawkbpIdBCoMAp5IrQImmGj8fWuEadhlr6un9v8sk5c2Y6Zog40r31pzSjZif0HYFddMSkhgMFh+UZYnNNbueGR801T87NHkP04Lqzcdb/A8//tqkdzYQCbYdcCFlk77DdAuMQLima8vQNnChSOJvBvDVAN6squrTMDWKXwPgiRetAUwQ8MLgzP/s66c4WtbjDVKim7p292RlWmBEMiQ7B8mS3l2ffWAy9EfLJpoNBoyKZEm1MnYPj9TWIUh8tN55TkpKpKLLbFLJbHDBIVwEG3bOLB88j+SGJjRJS88I6HajSqz5+3uePx7/Zh5s+zmhne1avDxshvdOt5MFIbaIiIjF8wOSuGhqfPQdz3nHDI9l62zyhc2T4xGOTKpwW2pgjlcNHm9bnG5bHErbgETAbebaJ5HjPJKYz0jG6T+ljW3qIAMEujEDSYwhZ0wgG0USWXVT6rmxnxOrLRwRgxxKmlgTXn+0RlNXuH20xN2TAye5Uhedz7QgxuXQTVP0w7QseVege6Xp/EA8wE99t6JIThQR4Rw78177mgluyoiUtrbNjnOfG279AabnfxSuSQUpiYB749B9s8cb3tcRwbaMUyOyw99DBBIoITDx85FLCsvxwmstn5ey1FpSosWm7n/Zl1+6dTius8dukBigZvIJlLqpMgCOJdjH3zOHiyHADNo59bnKaysQ3/O7rtCCJ3HdDHtFt5eyqHgs4VcSPAMwSXikahKvqgWGm6hcRNbI5LjBl5Rp5/bf7/hTfw+/7vv/Pj41lKzVlS0dmwAVY0Im788Dzh5wnhYYFN10lf0zHST2ff9Tfd9/FYAPAvg2AB/s+/6r5javv272eNPiPc+fjP8/XDajo54qWt1E6HavvnwjWg8EWHqGK3bzmftrHK8a1HW6Jm4XCUZdS6rvDQHh8apBVQEP1ztvA0qJVOToLnUikCoJp9h6LKYFhvk5pwWGywcPx9l2I+bvIugjr6UKxAGj3HqyWuDm4QL3Hm/H5s5CLYitIaKcevfkYPpHxB1y2XjzfdvmLf4lx/Vo1aDvgXuPNyNtqFSTmMs+TxBBMts9pW2Rvc0iQWLJLQzVTTUCEKHgDVP/CKRqEvOOLrOZtp111FOqie5npo6XSnjcOV6hriu8cGM19l1tqiqZOCqrJl6OcI2slW4SyBwvUdtDOGmp5AoQ3/BTawLbJzFMXDCKhECYKGGSJPraNmC6BvXkGCB2/s1PrcDRblh/Ug59mBRg+t8BEeGUjhH7GN7rBTekkmckaKNqEjvddUvtb0XhmjpRPjO8drioxz3OFa5LKecy6LY2AK4T598cL39O5om7TJ+10rHk79HrraTSAoLuFfbSyHdjUXHX+r7UbmOYUyIBFN5bueTzRdp4z2X865i1nTnvVSWCN/H999F6h3/2aVN68bf+yWfMsarK0uQTfnIO4JuUZtEtMES4RtsC4+Lopua4ff8zAP4BgJ+rqqquKmYW199Ot63nVBw5NYmpIMWoO/pf/z13jw09pkA3FRGTzzxYj7/nqJx5RbxET65B6a+qKtxYLfAwQBLryE0sMvklJJFtmiqmWRTks2TDYXnrQhsTJCG8BiG17+VbNngrLSJGubXGneMV7j3ejIGFIJCxMRIkCt00tBySqK1JnEMtExNZ/uPhfL/2cDNpG5BEIDM1iSlkKTfNON2UVzcVx4ChtprjzXe2QiSFcQjDcUwW331fzvo+X2/sot8pi9XJAoZuKoj4izftc3PjcBF10IBykX4si39e2zk1if/N7/46/Nj3fuv4t5SUPEP3igvX+Eknf0x8TShSWxO0UcaxA6Y1YGrhJvmduJen4i6FOSYpaekWGHKs9PqTu25+UqDry8kmIBakMEG6H5CacWUkN03t043j6r0LyZzM+c/VJK4W9bgmTJHE2BzLCQ9tbWGU3UEmJcMliKV3x79bflwUSez1iSPz/9JaHqtJZOqUI89oYS1J0StT95alm14RkljpgkRXYyC1/gAYe4MCwA/99OvD+83/YzT5rvCsAY5/oaabinDNzo6jWmBcEN20qqpXqqr6y1VVvQZgB2Dr/Hvi7WzT4vbRamxXcLjiahLFmb9zbE70oqmxXNTRwNKlm0ofr88+WNu+eREHQY6/LMDTMZ61GxDeOFzg4ZlRU5XPii3+LLKREk65iH5v8p6jlZJuOlAirGMdCNcEc3SFJlwkMUU3PVw2uHuywmuPNl6GLBWkj0jicTxIjBWx29rOPN00PI3GASJQs5Tj2lRjsuL1R5sxQLc1idNrYBTP4seK3VsUbaieUlao7xbQjRhlu9g8KWdrvE/cOXIOIZBCElPJFb4m0d3IY/ckiyTG6aabMdnxwg0bJD5/Y1UWrkkFwIm+necxl5q/WtQesiFBQyzBVaKAxmvi/KSTa0nFaaLdhpmTfW3O/S+/q4Vrgs9jxzFzLN0nub0jldzKCkAESQHmGQXm1yQCPt3UOOT5cVU17ZXLIYmhuEt5vZOPTK0LWeGayD0iLTBWTT2W6sgeIp8XC9qoQCpIdpTGpcTEgPw1CK81QCYlw/t/FAXLDosm78r3ceq5ydPko3vAzGRy2+Vp0zG6u8y5rqZjBWm77BYYsd6FDOjgJmoWdTWpYxfbOAv1Jx26qfxMtypTXG+2BUYoXHNBLTA0KOCfArAB8E0AHgL4EgB/FcC/rviMa2l93+PxtsXRyjZF/oK33RxpS3l1U/OeH/x9X49/8G9/EwBgWVfRwNKtN5M6wc8+tEhikrYVEchxLS2SYOmAJweLgW7q98BL0UZzsvVAJNNEqjSmnMKf+OzDcTOQOR0o6aaSkUuhljJHeUBfchCRXLExYJIIh8sGL908wGfurz2KVKq2U2jKyd6RkSJ2udey9OLYxtaXFUBTtSVG8bYe62Q/93A90k3lnKSSHqnFLqRxAny2eyKbTny3kO7FKHmauegFIOQr98E4Fkl0j8dQMt335cwNCmL3JCOkEcs+A75KrziEq0WNmweLtBPT+99heiy+uTFru7bDKtG7M1mTVQjc6hSSmEnopFDSYkAapfMzKJ35OQeBnEsJ1NYkJoXZCntOU9fRIKXk8IZJAWHWlCwMAPpC7Zc5lvmpFfOJ9crtiCAxhbblDldV1YSmCkhNej4AiJcbDPf/osaLN6Z001htJ4CiwNdElMd5PTnHSALCnhNlINWxdGv7f0lKUv0VI0mSvJBJPHnd9oWEXwQ8oER5In6C8a0yYxIJiFzPz+UgJHMZNrIHZG1RIoluDWYOSVw7gpeffWDq9MW3j9Hk2d6d3jxHJLFENw1bYPRkTeLF0U2/CsC/1vf9PwLQ933/wwB+C4Dfq/iMa2nb1vQvPFo24/L1pe+5O1JJ88I15j23j1d4aVC/XDR1gsMvTkU1oodt14+oYoq2lVMbNeOmympmnIMkHgjd1H5WLNNRUjpL91rK19LlnN1/+qkH+Mb/4O/i//x3f8LMYXiPugXGkP2RRSnMUm2DOT7vICJHyya5GAPA2c7QTV+6dYDPPDjzKFKxwMbMJy9KcpHCNT041Cx2/sdWKcPi1vWWNpRrXdJlNqmmmt6PTCY5ViPS9/lF1XymP0+a/hM6yR2RtU44JCyS6F6DNqiTDW0MbIhnwK2dyrEEcg5vChV/vNmN98fLwzonNRupnqvM/X/hdNOMU2JVWP1zWQrcUkhKqb9fsk680AMVmAYArHDKtCax7OzGHevssAjaw9HYgEhQVNhzUpl8N+GZGgfY563UV04sTLB0/Tx1WbomUUk/jI1jklsybhpsFERJEvvGpjXO6LKp8YGXbgAwyt9iKUpmMeExI3ERr+UlkpKJQKp0wUMEkj7/Vfz8M0ImsYCjWDowGQPiu+kp0Kl619wzumjita7ntf/wb/1zfODf/q+xbbsxme+CAKx4orx/0aT7KwqSePvYonHye0wVmBKuCe/l0XEqOUGSvdbWJF4cktjC0EwB4F5VVS8CeATgHYrPuJYm7S+OVgv8e7/yo/iOL30nvuy9d2yfREULDACDumks8zZFEgGbeUg9aJs2XfsFOHWCwSFbh8Zw8zCBJKbQhgKyMS1Qthmb7LjIeXntocnA/LUf/nlvDgeLGlWlaIExbHapHjwhtc/9jh99x3OFmsQWR8sGL908xBuPtzjbWuc+rIcTY8R8Ug5TSUksVv9FOSQxx3XIsEv/RsBKmY8BdwGpDi0a7M1sbqxRdxxp/MPramfXmX/pWK3SIYxt9sU+iYpaXndji230o9poISMfu0fcdePzXr4JwG8blKIo5Y53GcI1MTExMctm8F/fdV0+cEs4yWPSLyZck0jcFdVNI2uQribRvkbdk/V0jPt5ueO5p6Sj0P743sHsOdHkViGYCpMCXVdGBGVciBLxQbp9jVm3qpgjTyScUuqmVAAWCTZK92Tfx1gvw/3fVPi2j70CwF+n5iCCcjz/u5mfWropxQqJ7lPEeZTjhUnJ/LCJmjAw1EQTyY5YYj4buAXnEeDrlCclH4U5xlgygPUtYpZqbXNe+wv/4GcAAP/jz9wb15q6StdNxswNis36E/dB14Mf+M47R+Nrd4byohhzyyZq08cO+7taddPSTRkI11xQC4w8zujb/wfALwXwlwH8PwH8AIBTAD+k+IxraadD8enRssGH3nYL3/cdHwMA1JW5SAzd1LVVEkm0zZffdusQ73/xBD/x2UcjqpjcRNsOy+wDan6GWRsXSTxZLfDp+2dY1PXo+MdEKkq00VQge56axPtnJvfwyTdPvc+u6wrLpk4G6aFZJFHQF/9Ycv7d7/Y7vuGDeOX2kck0JTJ2fd+bthDLZizQH/nntU9jcJHUsSYrg65OawaGvxWClJhjwSz+cSSxx8Gyxs1DuxxMahIj16DNbBwxtFP+W6INzXOahjkN55N2dicOSdnZitUfMQ7hIrJJhWJK0zGKmkSHJpVDEks1iSkETOb/4VduTf6eqn/JHc/cjxebSd51aSVom0nWIYnpwDnNnnATd+6fi30SZQ0KnN0ySo3heH5wyTjkbhKO9dlCYR4KScwgIu7fY3OMIc5uX9CYRZFEJkgM9kXN+qNFgGPPAEOvryoEcxzTYtlxMQocq67Z9j1q5/PlvjlY1HjX3WP82d/8ZfjoK8/ZcUECgmV3TFE6GVeeo3otd5I51biu96gLzrU9njknY0Ba8MmjfRmJIB2IC9dkWSHOPTkqciN/PoBEW5YCCp96tttMAi7VBeC89pFXnsMn3zzD3/vxz43Jc1EpBfiEq5yzlBAlYAGkd905xo984j4AiyTGkluukE7K6nCe5xGuuWIk8TcC+LvD778LwA8C+BEAv17xGdfSLJLonw6BqBm6qWuLukbXTx8Yl25aVRV+9Ze9CwBw77HR/kk9aLu2rG4KxOleMu6lWwf4+XtnXtuCGLJk4fBSsOe/XhSpyDi79x4bisobw3kYi42ragi4Oc9F1L5S6FdMIOH3fcvn49d/xbsBRGD+wTZth77HWJMImIDWPY/uvHPHcy0aEHXsxjZ1yLWomZjUJLpB4qhumkGycs51Tt209N2mQWLZaQrpXkxAauY5o45FAtJgHHP+Af9cssg9s5ka52aYY52uCc07FolaOqduT4Rrvvhdt+08I4FUCSW9DCRxm1kr0xn5Mm0xKtyR+X6xGjX5P+MQTvskJocAsPdrKKbBIFL+HPnkylTJMz/HVCa/lGBMIQ4lumnoXLtJlJzVVVhvPE+5lT0nE7QHZUc+pEla1Kw8z5jiYg5JbxIlB2FpxDd+6OWx5EbmGOt3SNXtqRFBTObIJiXdY8g45v4H7J7PKrdGhWsKyY4Unb9UJ9jE1gQycRSj4DKofVSZP/VcN+ng6zwmh/vMg7WXGEq1QIqZJ1yTEVgTJPG9L9j2ea6eQ7oLAJHwCIPEklLppE9ie7U1iX3f3+v7/vXh99O+77+37/s/0Pf9J9nPuK72eGMi76Pl9GQ1EXoAYDaOHN0UmDp2YXuDb/6ClwAAP/rz98djmc/2P2/bpSlUQK5O0D4gH33Hc3i43uFffPbhuOg3EUeyVLcUIjbhuDk1iRIcAua8uo7zskkH6aGJbHGqUWuu+bU7x3ChE2rpwaLGK4P67c+8/tij9gGYUDRKAUCsiJ0JUqJtInpOXTO22AkFzqObTtRNp45F1+sCgPG/uSCxmt7/8nrOQoSbzloH81Q1BZ+Myw+MbfYhBTq0ZcJBi5mrbhoTxCjRP4ECkug8Nz/0Pd+MP//bviIYN50PkL52sfXnvJZK3AGRDO1gpcCtruN0u92Y9IvTTYG400Spm4ZIYnLEcLwkup0fF6J0fHJlWrfHjAGme0dJXdM8oxEmQ8HhDdcuU8OVnaKZZ/AMMEImMbopg65WVWRtJRz5MLhnAikgjsqWkMTUHlCqnw/3t76wHoxzrMJ7kksuuu8Nf0+Oi/gzc+jd475dOl40cMhT0IF4oqQtrCVhICvz1CeOygmnEbWM+JM54GB7wUwSAHgwMNMerXfoOrsvp1ogxcxtL7LICOxIXe6H327ZNePxIsyt1kE2UzbxL9RIYmfHMS0wLgpJrKpqWVXVv1tV1U9WVXVWVdVPDP+P6/s/QXY2IonTE2oc8rQIzWoxPYXLBPri0k0B4AMv3sCv+pJ34H//az4GIJ4NA/K8biCPZEm9zBe+4zkAZjORz6ojjmQpq5tTSDNzKdUDTc/lvVNb7H627Typfg0lQbI/qfM/StYn5phSl5X743DZ4B0D9/zn3jgdERW7QCYC58zxYkqe7mdGxyUCMCaLHBXgGO6vY0eZ7kgUd1OOtYP2po41WVcJCmicgsvXJMp5YTPrk6bglGMnDrluHDDd7C9a3dSto0jTTdOfEUMgzfF9ufUXbhz4cvexTHdhQ2wSzv95LKcEHaP7AkTglghu2q5DVcWvXaqd0RwkkauJs58/jiMDt5i4CJMo2XnHIhzrzPkvCgdF7v+icEfw7LDCNUbx2DkOgyQmUBsOSdQ55ECGJl+iO8YCgD5fbybfLVyDrBJ3Yn+boM3mJ5PwiLI7MiNTiXJ3/tFjRRN+c+jd5b1N5hnz03JIrnxuVBQmm3CdJo5YVHwCHpCoZQyoSLd3ungmCQA8WBvQ4eHZziCg456YRxL/3b/2o/h1f/rv4/FmNwIOZlx6nvIMvM9BEsWaJs7Uy4nWyPHkvQDAt8AIhGvYFhgXWJP4JwB8OYDvAvDTAN4D4A8DuAXgdys+59rZ6cZc6KNIq4IU1cVm0aZPnCyaIZLl0k0BsxD97371F49/T/XpK2aMQnh6MGmSDpiA1H6ndJ9EG6Dls91qamXG2b33yCKJ98+2Hm972dRjgXzJRKWtGemmIZKYV2BNqcvKQrBa1Lh1uMStwwXun+3wyu1D77sl24kkFuVYETuFJEYpSlxNXBxJNCiR6yhYJDGuFFust4xmyM3PkpDAVFiBQwSBGfSfCZJS3kRlXJh9ZsaF36+sbho//zEzWVN7nFSNYJ5+NV1HgHky+Yxq30WXpKTqxIFMwqP03Rw0190itplx8ebefZkiGRmnQbIm9yShChyiX+bz8uPcYLauK0pdWcbNUdeMrlt9nrYVJgVY4RqX7iXB2KXVhEbo3RyS5SeprHAKE1zqktCp5Eroz4QWa5Mic8jP0WflaPok+s8Nl3A1x/CPxyYF7H7jv547Xix5V0peJMdlg3v7PjEO8Y8JbhVqEhPMiTySyLPENPZwQBKNUKOLCKYTCQDwn/73PwUA+Hv/4jWfblpnhGsG3zAFMEWRxGLdqjxvwwt0C4xAuKbvObppnQ8DNUHidwD4WN/3rw3//6dVVf3/APwwnvAgUSDjGCoYywYAeaqFIIWh4EqJnmEXrBiSkp5/CurfdR0OBgrtalHj+aERvEUS030S8z1xYj3YynL3QNwBfeOxRRLvn269AERFNx0ebHm4Q8faIom8Y+f+X8a9884x/udP3sfbnzOoYlr+2dBI0kjKdFG1CqCpb5lGEufUQ5h5TpMQUp/b1NVAiUopxaYC7njGGshnkmNOZI8ylXMRLKzyESWXsAoCFeY8AuLc+eNYJNE9L7SacGKTevPxFvfPtnjX3WOvbqSpq4ngFkNJSyWO+oJDnkoclVTcGKU51oSqXmYKhOtCvil1blyp3YZ72UrPjDuu9e6tnpKtB6aBAxPchPWPxspriZmnEe7gkyTTfYoR7ki17mFqEvXCNcO8ehEl4YJtMycfkSodLlx/wjmk5xhXZS4il5E9oETbbSTpndoXc3TTGJJIBERugn1ctxgEXkmdHgOpkJKZnWGkvKErB7JAPEg3yTTinGivW/SccAGwNrjPCRqmvtvRqhlLeS7SRrqpIILD4VPCZaE9XO+8BE8OSZQgcdXU+H/97l/kXY/UnlhKCFjkPnRmtMI1bfmGBIAmTwbVCNekjkbM4nrbNhM8pJDETUAddU2USFNBSpLDn6A7GvpDev5p9St/Uxz7mzk1ienC2gKSWAikJmMSlBXAPtTAgCQ6VEY13bSuxu+XpH8WgvTYJur+/b0vHAOwAh6pcSVBjJSSJ1Di/8dpqkz2P5rwiNRE3DiwFITYM1CiF8cy5FSQkjgnxe8WLKxMuw1gGqgzyoJArJk1Ny4UjmgLiYvlWN8c36S+4T/4O/jaP/GD5rO6YGNLIYmFBFAqcZTt3ZmkQ5Wc/4tzEkrIRqrnJ0sBjTaKziDp4ZjxmcmJhESSaT14ZK/1EBgS2Qho0yCOFyI3XQ/KIYknGMv3STK5VVhL3DkyDhoQZyWwSK57i7AIZKwNklaVmVVzjtUOd5n7GMhTCd2/x8bFgg0mAIspt2aTixHfiaFOx8QCNfRuGcYG6dHawraMcMdoyW3huo1iVu456cqJoymVeXidedaCxzSXyDleLUY9kIs08ScfngUt3zKUZPe1MUh0EMhUuYcEiQfLGp/38k188CXL2GvqaX/XEvor4wDHL+lZumkoXEPWJBboppog8S8C+GtVVX1LVVVfUFXVtwL4L4bXn2jLChAk0BfbIysSWI50U3/cJkNRBazzFkNSGF59SVnq+RsmY3C4sOpLWtqojEsHDanvZmoZUw+o0Bvvn+7G99S1yCTHH9DQZHNN1RaONaGJOaabgss5MRfo2z5mWoPeGNRAYwXiAIY+lfnrluyTmE0KRBwLgpKWzMg7tORXh0Xuaz74gjcuWd+WOGQc7Rw27UJNXPjdTOBGLqwiJCCCYEp0tSfGAFNEkKljkXl2scAh89wAcRGGtuvx+tC8etd2HpoZpe0SlLTZimyJeySbfa6ntOnzmAScaaZGvCalmMyR5zuS9NO0/KHW1ghtlOptFtk7WNSgC+5jeT1/PP++ZJMrKaQ6GzgnGRB5dCNMCpRq78RioiTs+Q8TTlTibpLMYejFetQsdTxauCaRdMqtXV7SYpx7OeAORZFK42KlIjZwKz/bHgJP1ISGzzdD5Ze/971/vBKVH0ggwF0BSRwDWf/5pu6tCLsgN0U5/5Ne0W16bT1ZNXi8aaN/m2tn23b0sx+uW1/dNCMCd89hsz2SfuIEkihsnYMmQjet60TpWP78T/r5juqmSuEatibx7V+cn0/5E0b7/QC+B8B/DOAVAJ8A8P8A8L2Kz7iWlqtVS9ZxCQIQQxIl+x9kyYt00whlCChvGjmapHtDfuKe6UP45e+7AyAeAMu5KNEYJoFUQe5e/pZqyn73ZIVP3DvFm6dBTeJCjySmgm2LJOocklDK/1s+8jL+k//ll+HjH3h+HAP4GTvzvQq1NglEECDQthl1LLHrJvOUe/YHvusrUcHn2MfUvSwlOH4vh7VOgAJJjCCQLI9f7l+Nuqm3IXZ8TWIo3MGMC9cTuWdTTkmujuKff+bB+PtnHqynxfaTZJOxEithipjlkytAugYyHxCl60PEcmql0/em12Rg2jdPrJSRTyOJXZZqByCREMgpEto5iRlEKjnEjIvQvbjgJoHalNaSYM8pSeS742KIbBlxnt4nxRYAQVKARRLDgE+jdulft3JwXyWeG4Ze7Lc7Ia9b5FyWrl0uSQLkdAimVEcz9/IcPZSUKMGI3f+q2sKQFULsG3IM89P/vJS5weXCYTwx6FIs6coIN2kTR7E6faDMbgLKPqhrx6sFfub1x/nJKO3R2qCIh8t6VDeVueX20jcmQSIcJDHdhm29M0HuwTJSqlZHzkef1xcBIueSVTed2wLjPV+Z/XM2SKyq6huDl/7O8K+C9Tm+BsDfLs/k+ppFBeM1ifGiednwp58nTk0Y3PB0U10AkOrvF9bnfOPnv4Sf+OxP4mtefXGYe1xZDShnu5PUEyXaIPOWINETrqkrrBQ1iW1vzsWkz8xgWyKTH1MADRGAqqrwzR9+2flecvyI86k8HwwC5kry+01yyxtNqd/Y3ZMpPz2sEZExAO8gABxtKC7mw6ubdsGmzTi7YT0KLcChdMiBaWKGba4eu24PHZr2z9879c5TTBSGSUCkaKNA+dmOq4bmxtTZIPET907x1X/8b+NP/KtfNPaUzZltMZRANsb11a136um2FDFhsBiTBHASRxFHPssSSDq7OmRDjk3d/wGSbuZYQBsC5F5D5Ywh3FkBmqYa+5G5xtJNx5rEAvI4zjFAcxn0xfaptK9RQXrkeQM9zhsyzCM7bIISAXm0B5gm4MTkOUqd06lyLj/H+DgiUT4JiLj7OKRc08Glk0gwc8yPcxNO4nyX1kkZp6XJxxV3y89AmLigkruJRFquDvj4EpBEQRGfPznAJ+6dYuPUm4c1yq697ognPly3XgIqVxaxcWoSQ4vtb4a1lf8OU7qptgWGo25aEKVhrPQJfybx+rgmDb+//9wzeQtt16aRxJhCEWAXsdiDM2asg+zDNnMcIB3slTapmEMin+M+oH/gl3wIv/3rP4AbB4txXApJLGWoUgFATs1wkXAKd12P54f6vvun2zHbVVW6mkQjXBN3mMz/5bvl5jjlkY/npOB8aqX1s+IuhCMpohEyjsl2x6nTaQEOwCDjU3px580lNsfJfezMI2Xx4JKn/8g8+ZrESAuAsh+JJkBXmfMfO16pR1ZKWRCw9RAA8PNvngU1ibFaJ/OzKFzTh+tWOblixvmvuVnc+Jg8kvgTn30IAPgv/sdPUEHiroQkjnQjZ47D4RkKaIxiX1oTJvcWysE2EDq7evobQFLLQiR9zK5kh01qLruujPbLPCdIYiFIqRN7cIk+GqMEMqD0WF840k3LVNpU43IqaAufGwLtqaoUSqcPNkrBVEwABUBRcCX0E6xKaeGerFLjMmMi6ySDwFv2ln2NqUkMkXQbSOWPF1KZ5TOoIDHi35USfuGx2MSRmm4aOY9mbPqePDlYqILEXdvhB37oZ/Grv+xdSaBF9oDnjpb4xL1TPDjb2T0xAcIAGMs2gCnddNFUOEso7G92Rk07tg7FFd750oFxzWNbYITCNV3L1SQWLBsk9n3/vnMf4QmwEWGKBYkJ9Cu34aeQxLG3YkE4JRaAZbPPSSTRd0CXTT0GYwAmUtPuZ2gFV86LJB4tazR1ZfokOtmnRVPjEbmQWLpp/DyW6DFAnA5VRs3i57+o2hejVg4/WeRYJPkZhzDXAmNOvZn8LTXHZE1cYbOZCt4QTlqQmGEConGewfHYmsRQXIStSdQgibnsp1BdAOBnX3/sZcBjTgVDSYshkPZa54RrpkEpdV9F6M9zrVRzHENE2KQYMH2+c8mVmLopg4iMddEBksje/2pq2QzUwDueE4DFmDihRe+vEpKYW7cy8wxrEmm0MwyAGURq+LO6/isatHG1bTsPETc/S98uRgsv0a1TNG2tMJtmjuF5lNdzFq4nPZFcGa+1khVi6aYyhguAY6wj5r5M7cH59dWfm8yXqe8PEXGgxECxc3ItV75hkEReuOb/+9Nv4A/95R/Be+6e4GtefSH6HtkDbh8bMZY3T7eOL5neS4WmumwqPNxMhWtSycz1rsv683Oebdlnxz2AbYER0k27HbA4SL+fNI1wzVNrgiTGNrkU+uXWzU3GJBQJ2ZrEeGax7MTEgqJSrc1c4ZqpI1muW0r1mxFn62jZ4HTbeovfqqmw3XFIokhCl9TYcuckFtzQbQrC8084yX0fNmUvZ4RjyQS21iCF5OadhHRNYlrdMV5bCDBByjRwZpxdwK8jKh1Lxvkb4uXWJIbPXIkyVFXVRKRCzKXg/fhnHnrPTYw2yiQgYggkU5M4z4nJt8DQxo8j3TTSygiIZ5KZ9S5Vy5KjScacQVbdcRK4gb//tTVxde3vN3b9yR8v3HNKcvzjPCP3V/k+Se/BXBN4W6dM9UkMvpsJNvJj4kkBErWJJIWZpIB/3fx5ZMdF9jfGv5j0yi0hwHU8SJzF7gD3DPjqvlzjePcY4++lcUFQpAmA3XHye064CYgn5kv9RaNtWcCh1LHzn9839GvkycEC27aftGpK2eOtCX7ePN0m3yN78p1jUzZz3wkSU4wvwA0uVxHhmnRN4mbXpfebFGpfopuG142mmwZ9ErvdhSCJ+yARLk1pejPn6riA+KI8NsCOCNdUVTrYqIKFR6zrkF19UmqeRbpjbOHJfK9xXIQSGIq7xMflkazDZW2DxOE7LZualsnvhs/JBW1AnhKbC5xT2b7U4tN2HSeIEWQx3c+Mjos6hPrG8XaeMxqlE4HzlDbNBcBzJOGbIEvIBKRmLnrHWubp1rYxGUI7zh6v9IzKmDiSaI7/jttH+BeffTg4pdU4JtkCo0BRSqr75pIrMYSigBClqPxip4NTwAaLlhbLt7hhGRBAZD3JqJvGpfX9v6UsrMvV1FaF9UcUtS+y/hTRhuD7lajF3vEi91deuCZOEet6UpVTiSRWwXrOInsyJzEKSYwyJ8rXLeXIU4nCyLpQQnLdY4gxz3eUElvydYfkqR1nfpZbN8QSp+R1c10M4rqFa4KmvMEcj08UyripfkSZqQRM27IwVFovcU3oJAgDIhRdbLt0y43jQRyPRRMlKfpwnQ4SJdh7bkAS7z22QWIqkHXH3TlejkEihyS2OFjEA7Hks0bcx4Cz36hrEp0+iRdQk7gPEmFVSGMIX+gMio100wySGA7btnlKTkogASjXcblzEmOc/9jCD+iFaxhHclFX0YyMSEAfLhucbVsvQ6ZpgSGbVipoY4QjYnSoEgJpM8/Tcfr6I2KOkax1z2StI8EGI9yxqKfiQaUeWfG61eFvhSBxSpPk+k+Z94pjx23aYS1LR6AGcryw4TmFJAbPTqlNCpBG3M6GIOqj77iFf/GZh94GFK0JJbLdMeEmNpDS9kmMofauifPQg3v+LVMjfsxYn8RSn0ogvS7nnNAU2g9wiIgveKNXGwX4FgwxtJNFYMYArBAwjOMSdMd8kDKVkmfGhU5hCXkMx42JfCL7Lx+rrkmsp/sNe936yL3FJAUmDBtauEbvX0QRqUICoq4SCDzz3ISJ0/yQKOLPrOW2Bk+SJP7r6eNN9/ySuq+Mm/TdLq6vmByL/W5anyQ2DjB7TmqOJysTwLDlRFJe4fbVDk3O0e0jEyR+5sEZTla25RswTfYBwEbGHa+scI3spU1auCbH1gt1CwCWbhrsN2wLDOl32A5B9AUJ1+yDRORr1WKCDEAeSQlpLmKlzSZPN02Pi9EKAEOjvYzawvM4kqnNftE4QaKz+SybmqYjSDbbOgfB33tmjungMhVIhdQT73vlzmMki2mzpslh0UbdTNZa6K1hFhOYRyWUv8XnmBHlyczRIBv+az0IlHR85qxD6L5eGucqGfK1hQ6SmMmYTscFDkIpSEwgboIkvvf5EzzetKZIf7hFsz04S9n/VAJIicAzCEWuJvHRWqd8J+co3Sdx6uzaBveZ71ZNxwH5ICWF9gN6uh1z/8fqJlkELDbHsnCNHwQzfVqBTDJBuf4w42J9Ei+tJjGSKOTWZH3LKzPHON209O1iqEjXl4M9IF6+UfYTnDkOP5lgbw5NNQxSWCQXiCDw+Sk6TAEZwwWyYQK75Fu442JIIkO3trTpnqvTrKclGPJ6zkK6LyCU2Pj7pc3WqRJJzAaJnSCChm7a9YbWCnBI4u0jiySOtYwZJDHX47Kp4olFNuE37jc0kjgEiZ0EiXu66YWZ1CTGFrxFAUmM002nC4/8Pw/Zm58xZ2uuummx3UO4YTP9DjOOZIn+k6qJa4aaxLNt59ckLjQtMARJtP93jaGtpPp4yfxjFtto3O+VPFaubqmAtgExmmRyiBkXBEQyR/czY7Zo9DWJstH0weYLlGviYr0jmcw64COCMo+chc61prbQzewaR54b594nJUqyjIk9N5JZff6G2RBfe7QZqS+5mtDc94sFexSVfAZCUUeQbddON1q6KVfzra1JTAnXSMud3BgfEeQ8+bqahwhOjkeO8wWYhn2NRUScAIx9biYquCXaYh3P5DN0R8BPHLFoJxCyC7hgUa45QgAA3VBJREFUQ7smx9AXVhU1rDVz55EcF1lLaMZLJHmaP/++k8yUG8gcfYqkjMsOiyr1aoM2gFQ3DfqZ0gFwgGbZ/Tc/bhFpxVZUlw2+Gx9sY4LIAhzdN0Y3Taubmr2KTQYySKKwzoRuao5j1fxlTpNxQ8L1uaOlKXly1vZUuQeQX4NitdSadkbjWs6qm45Ioqib7rg+iQXbB4kw6qaLOt7QOgbzAzaDFAuKxox1Gy7+ZV53+IDKOG3QAOQl2mXuKbqpNrPL1vul6jsN3bTG6ab1guJFzbfAaIdsduo8slLasdpCmX/qe8n3iH2v5LGiFDH/b6k5Avr6iyZGtxvRF11wX2oMHquHwLBpF4P0WPaNUGRz58VQi91xruDNnNpCJmst40Ikq4gkpoLEre0JBQCffbAes7OpfpNAuSlySvFYS11nkls5uukjoZsqg8RU0C1rk4/kltVNk0m/zPMdYwmwTlp4Lqn7P0A2zO9ldHtKNzU/S3fyRLiGDsCm6zITpMTYXm0BvQyf7VxQ788xtibkx9j1Trcmp4S6tG0iaLpjbM8vBntp/6LILogGG9kpRurEh3HEHhAmXBkhHyCgZHZ8UsBF6dzXk8cLzqVlN5WRxFiilmkBI8Pm1q3SFPTYvZwJog6XUpPIBonlmsSQbgpgpJumBB4Bqxdy43BhfNCuHxlbOSQxJ94Uq6VmGBcTf5JVNxVqaTu089jTTS/OhO4YsxzVBYjThGNZXfk/k2maFrLnN6nUzX8eQZLc4p+iPgDIB6X1tAchYB7Qph7oprvWE4TQ1CSazKZzrCSSUpijFkmMbDQyjsnQansS5ahsOYuNKwV7Ms8UkpgW8xneFyCJ2hpBYAjAyAa07egQlpMdQGzTptokTqiSjCKhzCcM0ss1iVMkFzCbZlNXuHNiN8SjpdRfTNcDJgCIbWxSs11KOMXWkvPQTcV5ONtxToSsE6mERy5JwiCJsV6hyT6hMZYAys+2GRtJQBTFPszPWcIpsUCWfm7M/0tKi+O4xJ5Tuk9iSKK73sfHDQJy0hbHcfxKcwTsmsqdR/MzXJOZID18BChVziqOtjH+hTaZmWodYIKU/BzD+1FeL84x8twwqGDYA7WY7Igmc/iaRJtIADfH2j8eiyTG/MJizXdwT3bks50Ss2IC4Jh4WWrcwSLeKs61n37tEf7JJ+8DsEFiFknsrEqpmCCJKZVqwNQkLpt6bMvhIqBNnfZBc2yxWC01W6fszZOlmzbDd+72NYkXbtu2SwrKpOrocsI1qUJvZrOpovSTQmATySIzgiQh99x8BhGkZJHEXFAUd3YtktjgdBMI1ywqbEgkcdfZGsxYCwA2AJtTfwdMM+RtV6gJjWUxyUDWnRfA1ySGxxOqdakFQEi5Lp2TeI0U35R6EoCx321YzO19zAal5v894djJ8cJgg0FSwvuLUzed3luAKKvVuHFgg0RRjGuqary2YgwlLbbecYEUpghkX6Co1tMaWddEuObhmqtZ2ZF002hNIoGkTGuV08FbnH7o/y1lE5SIuP/DgEjGlZ3PKSPBzKE8DnAc0ILDKpYUrikwJ6KJ2gLdtA7myD6jMhUNlXZURHWmyQUbEbSBSqbF9w3GAQ393RwlELAJxFiJiQ5J5O4tEwDPCS6nCVc2uJ+qAufnGO7BmjkCTjJzpPKXFa61yZUYIg5wwbZ7KA3dN3SVc8hZqp+42CffPMXXfd/fwa/7/r8PAFgPQm25/UDWv+NVM7amuDEEiXVk/Rfbtqbf4fFqga43iUlf3TQ+x9waG++BSjC+wr2DDhIjdNN9TeLFWE6hKFdHB6TbZgCxxZ+jrWiLXcPN0P09r1Ian6P5zMKmPdloONpWDOoXWuzRssF613m1Dqumnji7KXM319iiyjhpMVVOK2zES+vLOGoRj2ykuesdQ6oZBb4YclkK9uRvYSatVJMYnSMUQZsSEQkD4I74XsDUSWDOIzD0jgwccorKNgNJjPWpBExm1QSJNlsoSGIsAcRQ0mLJldL9D8SDy1wjZSCeEHDt8VCr8pisWWFbYPg1oeXvlmomnq9HmR5rLtrT9wwiYufkHk8r9mHnWx7nvt+svYVJQqijOmc3tQeX2m6M9GIlJVbeMypXKpJUYQ02F7Tp9nsgxubhkmIxMY1Sn9w5wk3A9Ltp7i0vuCQS1zLPsL8onVx0nzeiJjEUKtIEwO7xGDV5IFWGUd633bmpgu3YusWo0ip83lKQ+A9/6g0Apo0FAJwNSOL9rLqpLTk4HILEULgmlpTctR2Wgw8KAI/Wu/G+XzTpmsQ8kqi/Zu489S0wpE/iXrjmwm3XdVhkFPFiNYl24YoEiQkOP5VFqGOS2ByS6D7YbOP4KYd8+Fv2ePGNxp1LdFydrklc1vVYk+jSNJdNja6PUwRinyPjYtQHxkmLtekYA6mUSEvC2WXovuG48wnXcItPDEnJ1iRGiuaF/pU6Zqq5N+P8AD4qRSGQwTkZ6aba4JI4j8CQyQ+RRGJcmChhaxJjyZX1tsPBosHNQydIHJDElIohUE5AJJHEUp/EyPGyTkyE/uma1CQ+ItXvxNlYLdIJP8BH29j+rkAcSdHc/8yzDUzrj5jkSqwO2wQp5WP1vZ1bP76eHTZ93joySTIJboiauNS+Ubq/ImsCVzcZrgmM82/nJEaJVASomRnH0oT9a+3OPXm82LpQYDOkNQ/SdGtgmvC2vkV2ihEE0vzkVDnD858/1vz+ovLe3vvJBqXy/nEfJfaA6Pkn1q2xTl8RyIZJKoBMbkV8rtQcJUjcJKicP/nZRwCA24MIzYgknqVrEjcjM6oer8Ux2QJjMdBNzTF24/tzNYmluvRZQFG434wtMAoBX1WZQFFaYOz7JF6cmf6F6YxwriYx9gCkkUSuaFtbyxg7HockxsUmgFLdUpz6UFf5xS4G2/d9PzoJR0NNYtdbh7uUber7Hv/4594c5zDSTSMZ69FJy3y7mBNTotLah9p/nVXfiy3IuYUkKdvNblBRJDGHpGTUTVMLZOSc9MT9H6/lKm9sYb3BmMQpIon+Oel6tibR1hv0fW8cSRKl2Hnnv6P6JMaRxBYHSx9JPHaFaybPtvmZZSVENjZG3CVVM1MSKZL3xex0EOZhW+DIPFOooKVA289j1snx3lIkgVK1tQDnJE9pc/kxMm4apJTHAC5tjgxkI8kVim5aR1goxDqZ2oNLSUnAr0mkEkBBoqrvy8JBsRYYbJAecyQ5P8EfA3COfFSFOzMu1l/U/L+8JkRFkYoJD1+siq3lnQTOhEhIbC+leg4H+8b43fLDpjXwwz3G7AETVeCScNNkb5PzWL6X+8i9xZxLjbrpWJOYWN9/8nMPAdhzytQk7py6dDlsSDeNIYlCN5Uk66ONpZumyqSAfKIkhSSy7bxGl3dEEolNoF4GSOI+SLwQ27VpJDHZyDfz4KSCxJ7ZNCKLeCmzGMuGsYIkc5DEWF1JSelM5plC6byaRA9JND9TdYnf/9/+BH7Ff/Tf4Yd+6nXPUckL16TnGA+AC6hZJLCR78YIYsT6JHI1ie44vt4vhiRedE1irJcj46TFa7n04xhaBzDNLvYob4Yybhc4CGxNlrtJlSjJcqx4TaKhm55E6KZx5dDyZp+iAwLlhFNsLWGc+BTdVDLHrLrxdjfMs6DU69//ZVGelHBNDgGzzqd9TYX2BE4aUycbQ5e0NG06kA1pcwQibsbFEdkS4pykm+bW12AN4pHE4fNdJLHE9Iom7jgkq+t9miqFJNZh3ao/95TFEk5tAUm0tVzhHpBv3xOKItH1roF/wSKJ8eemfCzA30vN+c+PG3tTj/sGH4CZ45n3j+sPhQAH578vCTdN90TG6ipExGXupXHxoCj1jFokMREkvvYYgA0OrbppuU/ioqnx3udPAPjsGvOeeJDo0k0B68PkkcS0nxFr8aRBt8drwLbAAIBm6dQk7pHEC7Ntp1c3zdU8pW5GKrM7A6KOblBdeUGOBaQsJU270QOFVgpNhYOhJtF1nEckMZFt+os/9HMAgAdBA9RQ6cx8N4x/S1ks0033SQy/W6vvk8ic/1ggxWxsseRFrkeoOy4Z3BdqEv1aD95pDTPCpQg4bG/QsujLJLgsOxbmeHbTbknnZxznXO82s/a4c4ypO5og0RboA8DRytZfpJDEueq+xfqj2LpVUD8E4pldwDoPXQ+qLlmU7VYZzyn8fmwAHJtnLnmRe7bLiMgUgWTuyZhQCIO+ADZRxQayMQd0juCTfEY5SRVP1Oac66qq/Oe0gDy6cwTcWi6FAMpkTeZQgxC5Kc0yTAhoqMzxvTs9JtUCZldI+oVKyfIbswdoaaPmc4PzTxwrpgqsKd0YnxuyBcmU8eJ/XnKegT9jGVh5YUL3WCCf7dAHZZHEWKmUSdzH3y8AQCoJKLRSGyQONeqbNrkfjArXdYWv/uDz4/uByPnwxnWDuqkNqtw+iW3XT1BSIE/5jWlwsOUsXmKebYEBmKDQRRKZwLI0l3N/wlNgu4K6aaqRr/w9NgaI00a5DKH/WmlcLBvWZebnjkshiaUgcSIHTyIiufYSY9HwxvLBLd007kj+888YSsLYX3F8sONOXfG7JTLdQBptSCHHRSQxGuyVF+TY/cU1AI4EiQySGK1JHM5J4pipXo4MHQqYokvsZu/STbnaQn+zZxxCGSeBsxyTFa7xauK6HseUst30dVE3dW0UrqlsrZlVXuQSEOk+iZngq9JviClpfTHpAwmYgDHF9hAbBXYy71vUfhseSt0083wXkcSIs1XKeISBFBNsAD4C0/c9xVwJg9lY7WvMQjoto6QKxFkoOUoaIEmSSJDY5RFgwE9wlZBHd44yL4Cnjcp7xbgg3fxs+x41bMDItCCJoj0U2jZdy5maxGnfZ6LFViRJUoqAqwgCOScBoauBd8cRtNEguKSVQ4P9zSJf5eAyVoOqYWpoVEoBu3ewSG5dYxJI5Z7t5bB3pcoJts7+um07bz94tG7x3PH0nrXCNTW++xtfxeGiwb/yxe8AkPbLzRxMCwxBHQF4rDSZR3idcgreZu3xvxtDgQYk6Tr8hxWuAQYkcd8C48Itp25qULPp66NjmKGbThdVhtcdC24KDbAj6qYdsR5H6aYsJW2yGOSLqIF4RtiVgD45MA/og7PdePxctsn9rAdnWy9THBOuYUVhYs6gzD9mMSQXGLJMhb6R4TgO7fHnBXCLTywAs4hgzkmYcvJLSYhUvSWTIQemznVpY5uvZAhvnGmkXBzmZQmZhExsnMyTqkeJIYnbbkQR5diTIv3g/AMluvU0QN+SaPPkuSmtWwUkce30RxQqac5knjkRppACRAXAqSAxQ1+ce/7N3+f14HTrsNmgIQyINMEGEDxvpCOvppsmWzDkhVMAn15cQh7FwvpCTd+8aZBSTgrHx5XmOA1IAa4mLob4UwJrysTwFO20r2fnGKxBDEtGPnc6Tr8n9sR1m9JN5fX8HENWQs6PDOfpghW23CM/xn3vGCQSqKU7ziaus8OiCaBcwmNVAABcn2+960ZEEQDuJ8RrXMHGw2WD7/6mV8fALwamuMdaLqxwDWDPX64sIuf3NhHApyWZSl7StVfQTeulQRCBfU3iRZqhm6ZlbKONfGciicwiEgtuSsheeDwmIKqrGGpp/5adY8RhopqCBwuCnNtlU40Fxm882oyO3irTcPWTb56Ovz84C+imEWekx7yFroQ2pILEUgCQUgAF8pt9TE1VhdJpkcTIM1Bqi5ASBGBU3IDIdysKRwzz0jqE4YaI8rFknrtgo2cd0LAmlEPgp69vu35E2l+8cQAAOFymldwYBb5cn9BSfe2UlVBogZHZfAG/VmXdlttgjFSjApIYr93mM/JiDJI4F+3R0hZlnBo1GOmOvkPIIjAeck8lZRJIYoHJAOhbMJixtVM3SaL9w1vcmsRicmu45cIWGKXDyfzdU8IGN/EERDkonZZF5BO8OeGmYuIo4pMUz0k1rbdkkcQwuUgjidrzHwR7DANI5gj4ZRFAWbgmZJhZ/zPP7nCPxSKC1p+E91NLU5Vjp75aSZTQCxK3Lc62dg9I1SVauun0vOSQRCNc49ckunRT+S6h5cSbYixElqnkPd+suikANIO6adcB6LkxBdsHiRC6aWKzjzg/gM1GxBzDEUmcOE3kIh7LxuScrRhqI59XQKRiWUWgQElLoG1lZzdO2TJ/s0Hip+6fjb/n6KY/+7ofJLpIbYwSy9YapIU7Sn0S/ddLAUAsi8xs9imUgt3YtDWJIUXP/YxkM3FZkANRnjlzNNnI7LDx2oz0N9JpDZ1k1pF0UfFxE1WOM8fj1E1jSKI79sWbJkiU5EpYawaQolTjdYskErK91KZOZEnxMrf5AgYplVPDKJxaJJFHxeW8zkFScuhZtLa2zz8z7thJv0OGaTTjngy/G7NvuONcNH2OcBNg7pvU/uvOJSqKQSCJcl+wlNgwACjRMb0xXrBBJLeGP2uR41Td2JwkdNfPpFtnkHRgSLh6czQ/S+ekqoK2LCSSPq1l5JhbgJ65kgqk6OTKME9Jtpae03DfsMmt8hy1iKB8h5ApU0w41b4qqozNBVFNXSXX9s2uG4M2QRIFNEgpnLp9EmPHM++Z7je71ggvHkfopmEdqWs5NkOMhVh61tyxNkiUm4tFErcWTdwHiRdjObppqIYnZiX2p2NSiyorJKARSDBzmGZImAc7JpPfE4tdrP6oVFcCxJViXSTrxtDvreuBG4fL8XUg7iT+7BuPx98tkjjMMfLdqCAlMk7mmDqXc9VNY/0tx80+t/gnqU3pMWaekSCRQRIjzWTtuFTgbH5qnR9bD2FfYzLJoXIrq2QYq9ugaqtqv9YJ4ChRiwBNp5HEyBrk0r2+6gOmSP9gIUiieU8UScwdK4KAcZTMerohdmXU0v380Na7bkwWpShJru3aDlVVcnjh1yQSfRKTfW8ziYjQiTS/iyNfclxjzjVxL1dukMgFDbFWFmYO5WMBNjHWEiwB+dzwcpcEvvJIVv54i8avHWYC2ZBK2BHHCccAw35DqqKGCV4tIjgmgAhEaprMzCeqUs41U3MfE9dhAzA3ccGgL1U1Q900siea/aZ0LPhzJBJw7vGsUFR5/5XP9ZOL/fh6box7DA0i6I9j1624z5sbt2yqJJK4abvRJ1zvOmx2He4erwAAD9dxuuk248/EEjLusZaBUrgkG1NJKnktqVVRTZFEVhgviiRqahKForqnm16MbbsumX1OOWhZ4ZpzZD5j1LKSkxwPGszPEm001UuwqIAY+W5znF2LJPr93uT3sUdT5MF+87FZKG4eLPBwvfUcldh36/q+6GvF1d/MJpq6Bkl100IGOl+3RCQFlI5F7HhcTWKcXux+5mSOCeeHbVLsnxMis97456RlC8SDebKOpEtbLJ0L18JNkapJjNB4xrHD9/5ff8vn4y/8to/jC9/5HIDE+dfcW2pKpj4pVkISN7sON4dkEYUkdn1SgEws7Plp7/+ykxxFUpJrgn2PmEVS8jat+Vb0SRwFmGQepEMYqJuWg0vz09JNFZTYGCLLICJhkEIEpou6HlVvNZRYwJ5DJuFkx/jrFrsm+zRVUgVdmQAC0u2McuclRdMr1SQ2k7pJ81NNd+xYpWpMAme2JneuCJxWuCZM3jFrq4zzNQjK40KatpaCrg2AY6U6XR9n24ktmzrZAmPb9rg5Boktdl2HOycmSMwhiaZH4vSYVVVFNT/MsQzd1EUSbx1ZpXAgEySm9oB62t6GiQGA4FyOLTCIh6BeGBRxRBL3QeKFmIGa4xcgJb+de7hzSGI5SAkXuvKDHc2GER5JCm0rDEsqsJbu4VhtmzjMi7oKgkSr0gjEH1BZXJ6/sTJ0U+eBjQb3PZfFjKu/zXAiC87PXAQ4WbfHZk2VAUDoWANA2+Zpeqk6WTqLPHGaOGfX9i7kHWvAz+xyjqQ9JxZJJILLAJUtoSgyJrlBDWMXTY2vHNBEM79pIoFVNzXjnOMUrrUcL0Y31ar0ivV9j/WuHZ2Eza7DG482Xh1yaNtdlxWtkWPGAuB5dFMks8jxxBF3n4RrV9tx2WcjZqJzCEOnlW2lEF67Us+2cY4RFgqtrhlm5YmEztJFEjNBvX88Oy85DktbnCJSXJDiUgJ7k00rzDGoSQw+jx0nx6aQxIg/UyqniNUksiidi4DNSUBQzJUom4dnrnTBc0MHpU5SUuaePV7AwmJqGacqvdyzHZaK8GtJFVU3zX23VVMnRQnbrsfNwSdcbzu0XY87xyZpmAwSu3y/7lTfc2mBUVXVeP9JgjJXO7/LPDsxmirvlzh7h6YFhiCJEiQyYwq2DxJhbpAUkhJriAk4mZxMxiIepOicGAYRjAUb498KdIS+n2Y/S+OayHdjsnZNna5ta2pLNwWAGwf+Axr7bqJ2dedkhYfrnZfxjTkjbE3ihFZDqLgB00Vk13bFtgGAX8tIXe8EcjwPSeQCgFDKeaTgpoLE2BwJtCHmXPfgKUqj01rYnOw481Ov0uigjwokcVHXaiQxpBqJ5Tao2MYmv+a+Xoym6vYyzc0xpsrMJFdi6+uu6w3tfHASNm2H7/krP4Kv/Pf/Nv6HH38t+nm7Li1AJhaWD7hMhtI8p3THfD2K+/mAju4V1vJS92SEbqp93sZ7hDgW4DugrLppLHlKBenh+ScQvkVTj8EluybImi1rHnOcuACKvnG2RW3K47TJRZlnOMfS3pFKkpQc8pDNQweyseCGSZJUYVCq2RPtayWhQMChF49zHF4vzDE8l3yQGGcAaRBgnl0Abxy7bsX2qa6Q4Fo2dVS5WvZIl266bXvcOc4jicaXz/nKccBh2/YTNuGtwzKS2GXWlLkJbwD4hs9/CR9+5Zb5j1bdtN1Y9PECkMR9n0SUswExeLr0cMfQF7YmMVqQnh0j7/WP5f4tZu7NLw8WG5TOqbdsIgG3m8m/OQSGgF0ccnVL612L1aLGzcMlXn+0Rt9bHnmKEks5aDORRK2THG9dMv2eyeNpUbrIudwSNVmxutxSLcVcaffowtqVJcnDupmWXIxjdFNOgKYenUj5ioyT7CIbwHBvET2y4vLb6e8YC7aZwCGWgBjXuoIjGUMSGdQyyhLY+U7CZtfhn33qAQDgT/+/f9xDTccxbbpsYDxm7dPtNEiipnVDVIF4RJyzU0RTVx4FixZhcq7B6LQqE0dMC6RwHNuTMZyjGK2uGWTkmSBg4ST9eJaAn7xgEkdxVggfEMkwTSAVS0AwfTGj5QYFJon7XndsKUiJUWIZH8h9v/tazpraF0Hh9ht/bgDXcmMagOmeG60ydni9mXH2uYE3V23iQlPfPC2Vyj87y0W8JlFeE59wvWvRdj1ODhos6ipZk7iLBHuupUo3Nju7d8itcOsoQBITycxikBgkypl18o9/+xfZ/4wBH4kkdjvdmILtkURIkJSqSTTBXgijl3rOuNQfdwyTjYlmCHOLcQJZks9LjktkOoCycMr0u+lRUnfOi6bG4dIeVOimYSNw1za7DgeLGjcPFvj0/TUA2ycutWAxmb4Ly3R3hZqszHcr1ZKaz/fnqHUI3d9z2bcY3bFEU419tx48shHW0hU3qOHvvtgE7xBqVRrNvYzxWADZX9FBNgCDRjHy51FFtszYKJIon8dQQCNrSQlN17ILFuOxpn8TloAVrunG8/vf/4vXook7qUfJWUxdFiggnpXv2Inl1rzceSyWHNTTRCGLJE4l+Qtjwvtf1NYLx3Pl61k0JJyjWAlNl73PfQbYY7r0bpYlIN/NFaYq95bD+F4xLimMcW4yxn09Oa72653o1iVB4MaxBPz3ihWvW8BUsoFseY5AUAJArK3ToLR8H8f8C015Q1jLy4j3ucdj9l/A+KFdp7v/baLWT2Zq6zTpALjCxE8u1Q2vmhrraJBoPkeShGfbzux3TY0bh4sM3TS/n6a6FWzbDquFP+6W0E0zycysemvUL+fuZc80IjQh3XRfk3gxlruxRkcmuD9KmZxQxVA+g3Hk3WMxFLFcbRuTyY/J5OdmmQqkSot/DJFyM/nuuZnQTROO5MGixs3DBT77YD2MEwRymvmngo16Wm9ZqplJCdeUMte5WlIWARbTZD/dcSWVUjNumigR2nAxSJmJJHr3JLjNvnFQorbnnVZzPOvIcJS0yqOxuXMvjdu29lwy6qZhbz+xXE1crgcndW8p15Kmjjv/zLFifWgFEXCFa8Qx2LQdPvdoPRmTU6l2jxm//xlnK+Ikp85/NEjnnS33erPKoe53Yx3C0ElmUQNXFENDt07WfOeSVJH9jT2m0LtHWiXzjDb+fcnUMsZaYDD7fXhvsXVj4fF4KmEVDzYy48K11R2rqdWn610l4HbuSQqljlBpi/tNIsFeOp78OUTbSgmgFJJYTrD7QTqz54TJZBoRnBkAR+mmhUDd0E3TSKL4c0a4xrTKuXm4wMMk3TSPJKb20m2kNIgRrmGQxC5I5jPrpGejcA2BCu5bYFyO5WqlUo5MaZOKoWZUjUI1df7N68xiMB2XVUWN1B8xjky8lyODZNWRmsR4Jn+kmybaSwDGcVw1virq8YF9sKfIBtHMvYo4gxlhI3fuWiQlpHUAOgRYXWwfOR5TkxhLlJSQxDoyhgnSU60b2EyyLzZRHhNK1/MiIfb+0tYkAva8UDWJkeSKGZtObqX6VALIOjLRmlAik5yim+aet1wt9XpnNsZRuKbtcP90i/c8fwwA+Pl7Z5MxDN00pLwzzlYsSJGxqXMiL8cSflpxEVY51GWh0GITgSM53iLFhJ+t22O/1zjHwCcsIXyx2lU2MSP07hENJ+Yo19u2zigHlzFEitvvq+G98H7S66QSgQyfU3btMvek/9ouU5PrfmZYb1m6AlO6Y/l7AeY951X8HgPZwrFSFPTSPC0F1JxMJkkLTBFg5rolzz8RkAIuu4C7t6JlSIV9eLWIC9fYJKEVrhGRtxsHS9zPqJuWlKqjNfAR3Ylbh2VdjFyiJBY7MOj2xLoWQGXrk3LWLIF2r2564cbQtqY9wPKOU1PHeqQQ2ZhaX5Aeb8pOjJtLU41ljDpmg5pSVnYBIvWxd90GEGsKHg8SD5bNiDYAwMnKqqLO6ZMYW+iKNYljoOG/XgpuQhRLxgCkuEhwvWkk0ZkoU5MYX+zM8dJtQez7/DmWs5FADIEsL6xulpwXrgmzpqy4hR+QunPPjhvua9kYmUbdqbrofBbT/PSeATLYC8cxa0LM+WfppjEF9JBuerZt8WjT4vNfvgkA+OS9qcrpri23wAgDsO24/jDqmkGQ2KcVPXPPNhM4zKEoudRKGpEK1hIW7VmO93HvoCHlOdZVJNju9Uk4tpbLaAO4lNjyHKX0xBPlKfY7xPheMVPeQJ7/wJFn9in3eHJqysczFNBxnSTWf0D2/AiSWBCzAuzayiLpMTElav0PkytMkF7Hg3SekmmPxYyb1M6TyY5wD2D2HLvfmwvAUtCTojzFc+L3NzZj8/vpsqmjPXCnSKKhmy6bAUlM9UksJPRjAmuAef7CUoWwJjGeqE0nuFKsHG2MiG7HI4L1wiCJooi6DxIvxnKZwjGrOFkgzc9cFiF0fihxlyoVJJYXA7Uq6uwgJYLSUb2F6mJt2/f/xi/Fb/z4e/Al777jvZ4Urhk46mLHK4skRumfyvNvjp3PTkn9Zqxulblu7uLDOGlx2W6+t1O0UTpB9woFVzjlVv+eZOcYCgkwC6sXuBHnwxzP/NSrm1pna0QpCC952fjXnEESTVPe+AaVRBLPkQCajis7F009RftLz5vMI083Nc/z6482AIAPvc0EiZ+IBInbtsNykT+XyZpEok9iVLim5CBEzj9DuQ6plcy95QaXemc3HJc/lgRSu67T000DZ7fvkU2UxIRrxtrJknPdGHo3U9sfHk/6K5ZUqoH49e77cvI/PP96BDgI7gvHswnN3vtZWoMWEX+mtHaFaytb72r3APN/tm3AVM9B0ZdXef7r8LuRz/bY99lZ/wEuSPeQdOK6hclrZv13x01rErPDJig1o5y7bKpon0R5TQCA9a4d0b6bB+maxG2BTRLzXQE/WfttH3sFgFO6lPFBc4mSdFmQMkrsWz7Ym9Qk7ummF2JZ2lbEaQLsQ5p6cGKZN27R0quWpYRMgHJtIRDQTYnFLuT+yzxL3y2m0jjSLYYH7aVbh/jef+WjOFwGfRIjUP9m1w3qpvYBOhkEb+L0N6BEJIktIjSSOAlKS3TfWJDOLcbh8ToikJpfkzgNZo2yXfpYdfS7lbNocbojt7A2jU0MsEFieLySYp/Ywnl2NEiKT9PrKcQzlvAA8ihkPHFUnmeOplpag2J1ypxIzvRvQjeVjfpzD02Q+M67x1jUFV4bgkbXtoXEhRxzF73/y8+3O27M5Kf2jWiyo5wAkrGu80/f//UMummwJrCO5BhItb0KSQ+ZMuH6Hx0TWV/HwLTklA/nkkUeZQzgCNcQ5z+t5kwG6SECTOxTwHwEchqkFJ6bZurP7Lr88x1eN74mzvx0A7fS+QCme/ecmkQ6kTPShHXnf1KTSCZYwv1U7s2s5kETv7fYNcGipP4cknNM+K6lmsRNrCZxaIvhC9eYpIRBEjN9EgsJv5RSuDz3f/I7PoZ/+Ie+eTwPOeEafaJwhnBN1/L9DmtRN933SbxQyzlqYeZHTLjWqU0ghiQyi1Zd+04Tw5GX9T1EX4ACIhVx5Ln6o1j9HUd3bLtAAGWsics7uyFKB5hsk6ibip0Mv8dpBRz9JFZ7pFU3ZbJvKXGLeQqgZYcklpFnGqUvA/oVMIiEKHvL9T1RjxJJCjCqtICfbdXSTT1qGensyjiWagTEaXpFJLHWI4k5xeOcw5WiqZbXrela0hbkvnP1xuutjyS+9tAI1dw6XOBgEXcsGHXT0JFk6HbR71bI5OfqxClxkdBBI+nW2mAvKXdfOJarbqpB0pNS/pmxiwB9Z8eZsabmaU7dsL+W5MdE1ZyJ4HIS7A2v0wm/1r9ufAAwBBvjeSyMi7AZ2H1xpI0Or2sThT2ROAUwqdtjzr+lm8ocyUTOzAA4bCfCqCubcfHnNFsTGiS3WAq6/Flb72rUbKdJydy9lVrLNyPd1AQ5p1uTNFw0puVZtk9iwS+J+a6uv7Ba1Hjx5oE3BkgEib12D+aS1551GiRxMSCJF9cncR8kIu9Qpm6QEgXI3Iz+zc9uGjFkLxtszKWIjRubfc06kmmL9bpisq2xIGVXcNLsYjz923rbjX0SxU4cuulkjoQARAwRYTOmMbn7nEOeogTOpWTOCS4ZCfRUTWLWsY45yRQlWc6lfa0H6SQ7AX7bc9SyMChlg0tLQ+9phxXwaXrMuZfPjQlF5eaaq1POUdJm35OR4L7v8851MzpMOSfBPNuCHN46XGKVcCxKVCM5ZvT+V7IgRvS4tG8okVwZGzpoTC2dm2Bk27KEtZPWkS/fk3Vl1m8Nkh46abuunKRq6mmSiqWPLoc6zTl1w9IHlVGXjbEtuBYY/nrXKymZE7pjCYEMgxsWSUwkT5l9w6Kd3DUI97euJ2sSg8Sw5vyradp1OE6SK7r7RPwaRrzMPR6z54TggRbttK1LuOAy9LnarjxuESlBAmxN4uGiwbKp8GhADpu6wslBWt3U9EnMB84TX75wLmP+FmCp8slStQjAxPZJ9A+0K/PWx8mugHazDxIv2nIB3yKy+ANlZ9I4Ff5r7KIVpYgRDnkMSSwhgkCcblqqW5pT71dHzmWpJi6rbtpO6abHB45wzZya0Ahq0xMJAfNd/DFmHvljybzcOfK0Ufsa+93MuKmTzKibhs4dlUXu/QWyvEGZn7PVTZ3eZiUqmjdPB4Hh2g1Yx7UlnlExl8p2HiSxuLHNXhPi9yT7bGuypjGavJhcx6NBiOre4834/4NFM9JRXdu26X63YtOaRPPdilSqOqGKmvh+ucQRk8wJnUFauENLPwwShWy/PWBA6bpOVe8XliowdWqxJChLHzWtqHS9HEPk0qwlbHJLl1yR6WhpwhO0Ddx1C+nkLJK4qKe9Wkv121MqLbg5TgK3fGmDmAlk7f8Zuu+0bo9MroyBFLyfpesWqptqkcSwdUbeB50KMDFzDBOnmrUk1k6t5DvFatIlSFwtahwsmjFIXDaVSRIO5RqhGb8k064skuwo9nx29uzYOJ0uQJmVMDFNTeLiENitsa9JvGDrOgbJUi6QESSRrVGIIlJK2iiz2J1HuCbWWHoO3ZF90JLqposazx1ZJPF4KTWJ0zHMHOOCN/kFUqYeVYTMLZARJ1mFCAbHO49wDRMEh82std9tTk2i1GRpnWQt3VSuF60k6dzLsllpGnVvWwdJVCpyAvzGFkNfcrOc2zcsHlwWnpuISq+YfL/DZY2qwliDslrUWSRxVcgM1NW0JrFUxwhME2Ml+qJ1/u1rMQn16LHqadDA3MtucGkDt8KYibqp/aySLYfAQVPvF5YqjEgig0hFgkRWuIZ9P+DWDQ9rSSFJCMxf72J0d0DfzohGiYK9iq1JTKl+a8owtCid+wwwNYlVFVm3CmPka09rCwvjgvPI+GnAFEksreNiY8CnUEWVP1m6qbxOJo6C/orMOQkFt0rjYnsbYIPEZVPjYFGP639Tm/8DcbXRbaFXbpgkBOyciz2fJ+y5/JoSUoRljJ5uuuNrCxeHwO50HyRetOX6/aRqEktOcizzZpym/FymdFPuAZ2MG35SEsnd9HhawRVVCwZnnrsxk5avSYwtJOtdh9WiGXunAZbOF6Ob9uA27XCcoA0pqypDvVIH6UIH8egImobz/vFKS08USRzu0VzrgFRNUL4BuX2fWA+F8xM4rcy66m44LbkYh5t9Kfkzjhs3+250DFVUtk6BJEYoMqWNLSqcIn8jEk6TetfsDBPBZeFetj0jp8+2fM6yqXG4aHD/1Gx6BwvjJKyjNYnlgG8RJO/arqPpxV4AIEFH4gvG11Zkx7hjw9pCVnF3ikhxwY0WyQLMWrtrlUhikMnX1CTGgsRSDepSWmAUnhfXmrpCVZlnmxUOqocx7r3FjgMcSqC8XtoDErTR4rigvpxdg0K6NUNTnYrCkHMM0W1ijIzz1hLm/CfnqBvHBESAEzi0/nUr19ba/cY/Xnpc6JdohYNcum/pWMA04GPOpatI7tpmZ9f/g0WNx5t2+H/l1PVH9oAuX3IQiuuYMflrkPJBiwBHJLnOJFwnpqlJXBwazvpuUP/e003PbyLTm75B4lmLUk1Wqo5IC9nTD2hAr2QRQQCT4JLeoJQZknCBBKZ9EkMrqps2Naqqwu/9xZ+Hr331BW9ciAiyKN2kJ2bP1aSoabvJ8885dqEDqg3AzO8dqqqAeEZqx4qKr7EghaEthlSX4PWcuQh3RyKJE0pUIfkjNjZY71xUozhsDGIMkshRjYyyoHJjSyAbQGFNqKbXjXm246qopSbp5me0ubFzbo5XDd48NX2xlk0GSew6LBeMSqObpCq3IAGmzJCSKmdVmaAhpm7KtEUYa2s7zrED/GSCFtmYjCOQm2VTYdv1dGsDeU9U3TSLiPgOsjuuuFYO11vulxXJ9RLnVUNTbapqsieWRoWlIiySGD5v9PUO9g45p0wAEFMFzp3O6RxlfGkPhjdHhiUjc5zQ3UuCPMEerH1uxrq9Li9kGI6bIInKcXJOc6iZjJtbE6oV5Zn0+CaenRhzC3DpphUOlo2DJFaWjbOL7BuFPokx5LJlfdAIUGQ+M36TjT6C0geaWNdyzgUALA/Nz80j8/MCgsTzf8ITbmxtj5ZumqJkMjUKWtl6wNxDUYckS5P0HWQ5nqZoe2B3DgW5+Tk2zTTgpouGE0jiwdJ85nd/06uTcdq+bWZcnFbABZe665YSHCovxpiMo5DcyPG2hJO8DDYo+QxGuEZDPwSm11uDbKyaGtvBGWRpHeGG2BYCm3Dc1kFSOLqpzS6eB0ksbmzRe2T4G0EBdQ9nkivZKU5obPIZVC115Nl2z83RqhmFa1YZJHHbduO9mrJYTWJJOAiYridUM+sqdFpRHDMea0TSFUFKZFx53wiSMuIQkgmPnaccWh6TVjct90mM7Ysl5HhZG7rpGCQWkgj2mOF3Y8+//T+TlAyTOTzabH7aZBp3vVO9C5m66LbVXbeUngB9T7p7ALH+T4IUct8G/PIGQKHCPZw/tpdpVVU+40XOI4GIA25wyQf3YQJIjW4r0FV3KWeOt2jiSGJIN328GWoS6xr94HPG+iuWxMuM6KL/mhWQ44M9wK2LTh/L/XzzGVzCw7Nup0MSAWD9cJjEHkk8t5U2AZvBmdYX5tGXOEWMojtGgg1GtSzmkGiRRAOHl+fozg0QKqcuiwmUM/JhzZhr612bzAzHKXpcpnUyruMyfVqqRbyXmiLTpwzAwkJ2+b2IZEVoEyUkMVW0zd5bE0l+YmGVgnYznqS/Bchl23HjlhHaqKYGctf1RWVfsVx/0dTGFkUECVTqvIq7muudo5K7SOnR0tZVrDJI4q5QjwJgIuXPIonh880ED6EKNFMTCviUqBGlViIpdEA6cZJBzREYHDxP3ZR43mrjSPa9//3yKriR9Yd9dgZK7FobJI6qqMO86fPvK0CzNaFTJLEwbkKTxDBOFxTRbIa69mvZCfrueamc4+FIxzrmA5XPh32ve8wy48X8tME2X2vmAghsPe+4VgYtT5ha2ZCSzN5barpppa8bLtUkLpoaB8sGj9bt+P6VU9cfWrFPYjVNSpaStSnhGhvgF4LLCQiTnF7cNMI1yyPzczMEiUy2r2D7ILHg4Lm0snBcqUdNLEhhsjgxRUIG6lejBnNpi0lHMj9Hq9Dl1gTJAxq/FatgMXZNhGtiVkdoDFyfyviDXQxuJlQjmX/+HgGmjnV5g0qMU4pUAINkdKmOKyrlTPbI6nX3VmrTZvbf5dATTebHqJuG341VH/P7xJU3w3Ccq7hYCmzqukLf+/cku7GFNaEAR4HWKu7OSXikBAHceS/qGscrGyQuB7W7uLop0wIjEKBpSYGjFAJWeL67yPmnxLOGN2uUc92glK7/Cu4Ttk8cYAL2jYukk+fRzM/8nxFvit2TbGJmMVBi1UFibQJgpkXHOM8qLPnQB21skBKeE2Zvc8dNkKxikBgEAEwz92COsu2XE4XDMZx7mXGsw4CDqqWOoZYoP29S7+cmO5j7H/DromnhGqnDG1VRh/kT/uQ0kZCfX/iM8my2hDJ/ZtyirpMCNIBhAhws6lHddNFUWC7MByYThVlWQj0BfMZESeLExNYfoLwHhH0qZcysFhga4RoAOL1nfkrQeA7bB4klZysoGLbjylzrMEikgpQAsufpJ/EHlMnk+7LFvNz9dByXDXPHsbVVsYBPWmCkxk2Ea4ggfW69ZRiUMnSvOW0DgDgFl0JJI05523VEn74pTdggiYxogX1NEwBPnSbSad3JJqpTN/UaZxPHcmsL2Qy5GWePx6qbxlTSSghASCME5lOg+wJrIjWuLVxvGklcTZHEON20LwaJIb2JVjetQ+Ea/zukxvhrOR+4tcH9T1GgnaDU1jKSQYoEpaTzCVgkUXP/N0GiiqFch88owCFZwCBc03bjunDA1iQ2tY8kMmtJ4yOJc8TcaHXT4Hlj9rbY8WjKe+DMU/0twzkOr9MUUC9IJJIkVQV3y+9RftbC2uExkCoezUf8u557ZgAfSezI8x+ygDStM6woEvecjijpDJQ6VnJTKsuKrf9usO4FiXXtJWhDM4nC9PHcXrLjsQpreWz9AcprUMxPY5/TyQS1dNPT1/3/n8P2QWKBKpOqSSwhNym6qRayZ6XMp1SL8oKQ6klXprbGxhF0x0jA3RY2m5Qj2XZGdS7lFNaBU2fmOLffW3kxriufEstsNnHUhs/0hSq42qwpwNHtbG8/HwHOixaYn+ECOTezyyyry0WNjUPH4WT8LbIn81XRTdte6VjbDY510GL3JJvFvJh2OoyUfDzhUULawjFicj0WdYXjld0gV0ONSjyLnHcQAN+xM8fm1E1DKiFD06tSaznhbIVOPI2kBMFG+d7y58buN+azB+XQwh7qH89f85jzGFu3WCdZAnVBnqWGvWQGSXRqEpnzP2GTKGrihmFsUixWt8fcI2ESjqEEAkOwEQnSS3TrcI6MTcTEuGGoK31yF4CniqpB0kPknvX93bpoFkl0a+ABJ5lDjJNjaO+taU1idtjk/mfWBSMQNV3L3f3tYNHg0cbSTcXni9Uk7rp8ojCmVVFqw5MUrimg6bHgkmUqedbtuAUZsMI1p28M/z8/krgXrhFHLXGDxHr7yf+LGZIokpWfT0gbZR2LKoFA5kal6KZ09jOYZ5lGMh23LdSWxGhsAFNLCsT6VNIonZJuF15vq2TIOMn2NYqSWQ/ZT/e6QYGSukEiQbeLO2kFJDGCZPXgnaY56qZzkMQY3ZRCBEcRJsdJpmiqNrhk64HCRsru76Va3gn9in1GldctrIFk+lumnm133k1jaxKXTYW6rrJI4qKEJNbnqEn0kkDE8x2yOxR0u4lwEzFHV5l5VP9UIsBsjRQwqJu2PYWqlo6XuwbR/rpkTaI8b6eDk7lqONqWIM6aeuMwMckkTuVjJ20KCseati7he8kCDpJIJhNMLe+0TCQb3AdzlMWcUQp3j8EqVU90AToy2HNowhrmSl3Z92vopi4qK8G9tsc0Kxblons0bXQM0hGMK/slMR90Tk2im7xwEzvLphrnsQ0VaGCC6Fz5RpgkdI9VLDlL+KClFhjn7pOoqUlcDEHhnm56cVZEElNBYoGCFUcSORpJ791U5meZSjhFbQBdzYAcT5tpYselONpABklMZXEK4xZ1HT3/JUv1e9Orm5qfeSdZ3us78hRqEM1aF8YkkcSCQuCMPonx88jRps17A6eJOCerRWUzrQRFEnBpo3bzZTZ726vJ0u2ooLSeBpdFtCdG5SxsbDF1WYbqkhKumdvfsqT+GR5LTO61ZV2PdFPJEJuaRD9I7PvetMAoOqD1pLazVBNqxgVICoEeh+wONuHhPtsa4ZRFXXk1uaX5AdO1XHUvN34PQkrddIIklo9XZ/YNRrgGwIhEqNRNu14VpIc9OOckTu2+rR1XZpK44yTIppMJtd8aignSk/V+bJAiARi5Jsdq4ph9w1WG16hpu883O0dguE+c869JZoY0VaZUQUsbTSngUsr80Wc0P79YTaK7N7q6Ey6SGBWuKZQcLIJ7BCi34UkL1wwKs4Xg0lUFZpM5ns2qSXxj+P8+SDy3sbziCR+50I8llFoH+D5xUUSqtNlEgobSuLktGJJ1SzODFPdvyTGJBzvnJIdrD+Mkx1FSjtYRng8zj8yYxPlnaVthc+/S4iPF9iFtq9xraaqKuuu6rAMaTyTokaxe4SS7SCJzrQFn8x2da25cTLhG0wJj2/ZFFH2cYwLJdf8Wmr2P7WuaRII2cRFeb6a5dIyiKuYGASJcIw6+oZu2k/f3fZp+LmaETMJ+n0RNYhJJSY9JCTmUbhMRKur7XhWALRcR1UQlkmgVENmgtHe+V3mMvGdEKYh5yjMaozuyVHmR0NcJ19hEDvNsu4gUIPR6LikzDVKUSRliDDBFRUqtdMZxjX//M3TmaQLCvF4+J/4xmAQ0ME3KuJ9VGhdSW7ng0j7f51E3VSUXg+BeJ1yjDdJ1idqQTcWVPNUTUTbAZ4odLBzhsqa2e2iiDVKpvjmpUprYB9LCNeanpsf3/D6JrLqpEyRWNdAslQeb2jMfJO5IXnEUScw5yZEFixVACSkrALGw1vGiYW39kaGkcdlnbXATU8lsO/NQp445kcOWcQUHO1RjM5+haK4bOOTa4F6GU+qOQUCqraMAFEFRIGXOZDJjdMfS5hZPJCjkt2cgia66qaGDl8fId9t6GWF+nNsCgHKsHZoq27tNJLbjSGJqYxveF9yTTCsd8/n2NQoBDsYxCEyKyg/YdXlRW7rpqrFBYogkWvptWd00PI+zWmAQmfwJksgGAM6zoxGFCe9/mXf2WME10CAiy6G9BItaAlOFawZJjDFQ2FouSRqIhD7fAqP26KaUcE0drskKoa4wkFIGidLMvWRh7za2D2Toz2iu20jlpHs5zv9uXe80uGcTrs7e3RN+kztPlzZNI4mOwJFZf8r3ZKjnMPZpJfyZ8LvRdbITdLs8Lt4rupwAmvQU7+zYCZK4iNck9n0/tMDI9Ems0khialgKKCr1qowlt1j/zrOuBeoZSOLiiHOcCvbMB4mljFistxxQ5snHmoQyN0hT24cZ0C2sbRA0AJxwil9/xKGWQIASEfz/tEpmLtg2P2NBOpDng4foIxuku58v4yjZ+ugCmR4TKqvZY2UPNR5PiwADZlMJa3uYRsrmvT6SkuX+j9k3+xpV2xbJkAMkkrjwaxIZx842N3aDS84hBwIkkcoID0Fp248OfarXp1i2v2ghi+nXrTKtLDA5FodA+uMoummCJWA+p0NVmftI6KbyfumH6a6TtvlyOeGhWX/GccF6ziB8TSLhx65BRl1zZpDIOv8hskT0hBWbU7c3qYkb72NlCwy6T6L5u6gjlp61cdyAJGpYAuG91fUcjRNwAikJUgrHClEK1vmc1LaR1y7s1cqMC9cSNgCe3pN8mxr3OOw5cRPszLol5l7vEmjgzTNAEpnYMl2TWL6/bLBtXmPZPPY8cj5oyN6Se7oEppj3Bv6dU+d86PTJXdRun8R4sJcrOYiVgVkRrIQIYmQvdedcKpUKhWvUSGKvCBKlBvH0DYsqntOe+SCRpTvG5G/zfPx6clMxjvwEkRof7HL22a9/KTsX8fojvSMv40rfLUqbKwQpSSS3hKQEWS0zR4UgQEAbYprdxoQt1NetJ6kuVYDSQV9HAXB0uzlIovxJm0Wzyq0yhtugAOMkS3axpKzpmvREs9lZLmgAMDjJ/txLcwRMcM4iibEWGCV1x7hwDU9jmyruktnnCW2OGBNDEh2ET+im8l0OFoai5DoJY1+tonCNGWud5Dw9yY6LI4m581lVfsJPQ9uS98sh2TpZQWCZ+QFxBJgW0hvo3ZZarA9SKETKQe3FWCdZqGoPzrYANEjiPOEadX/doC6dTYrZ2m1nPJlcBKZBIpMo9M4/MS4mZgXom7mzAVh4LjXnJAyImJ2jqW1tISuuA/hrSVtAvtxjAZg83wydPAwsyyKI8I7BJrdC9pZNnqbHxHpnm2MLSgecOC2QFk26BcbIPlGqm5ZooznxSgDJFmLhXsqIuUVtTk1i315IPSKwDxKLNRG5ICUvyjANLBknLaR10FmcOq6kx2Typw5h+VjhOGqO1XRBKGXyY2ibjAPyNVkTdVnoi7bl92Kj+iqk7crr5azplLPObIjTeid2XEj3LaIvEbrjroC4xVAixmmqhvPsUobMH8rf7WChVzcFBIFx6r+0SCJJ/QF82pAEtCXHdUS3HSdtV6glitVDMLStKE2YQCCnIhX+PPJjpn9zr9+NA1NXETZEd+lGY8uM4r3sr0GMui9ggkvXKWHQ4yS7Q3ENbLBXnKKhfw7oI4tuj8kced4K+5p/PBNIyffSIInW2SX67cWSiwQCCQA3Dkwtz+uPTZB4oKpJ1AnXxBJ+jCo5oEuuAPF9ii03AGJIop6mXRoXo40CRMI1TFyQa3kVrl3E+QeGhOvoyA+v0S1gJADj7n/AnDMZtyOftzG5GF43Jnkdnn8S3Q73YMYv9ND+Tsbpnm3AgjBVVeH4wNbjLerKqev3Nw6pNc/5MzEkke05PAGKCtcgXOs0CT/PNDWJbl/EPZJ4MVYqAE5RojoCSYzXJObn09RBQ1g2i5MILnPD5rZgSDdK5xw0TyWt68p1RFWEIlCoJa0rK/4gpqoRmYGuRs9//nATxJOlyEyPp6+jAC6vJjGGUuvuLbvRm8/LDgPg0+0MIkJmdocaEU39kfRXdIU7mOsmTup669QkEm0bgBBJ5JJbk36HSqoXQCa3gjlaByEzRjLWEbrptrW1Os/fWAGwaJCgQ+utFa/ZjHRTEhV3MvKMuqm5R2JB+sXXJNpaca6uR2xMXHRdMYkwOZaD2vAIfO2JuzCPW1iXzvR7GwOb3l+3zLj88SRIfOPRBoCGbmqUW0vJSNdcGiFA7vfBescyh2K12xSTJFjLWQGUMOHBnP/JmkD6MvJn755UJCDcgJs5J/E2EdyaMNYIEgnQcVxdeX152XsLsEkVFkl0a/BYsacwwaipZQz3DSB/b8V0Ksz/7bgbB433fkkSTurSiTUv6ksWnvFkCwwCqABcSji/TnqmqUlcHlnU8QLaXwD7ILH4sC2Ch9Mdl0dSpjc+U9tWV3HIvohk1QnBm5yTFqk/4lRKp+OY4MZuUEFtG+HITCgChQUvRYmdQ6WlEeAAkTVzzw6L1C2RtYWTBZl1EupJsMHWJLbhdStk7IAQXVUo4I4Lq3mdrUnseoyOq4ZuunUQEa0qKkt9AzDWV5xtWzqwqSPnf44qMIUIJino3Dhb21M+J6K2G6Obuk3uXxiCRHlbmFUHrIPAouKuSiClblpXHr11dBAKdbkhSwMo319uUkBT7+r24KRVMidBii654iLwnLhLiIiUe4VG62RJBOxkcDBfe7TBoq5U380TrrkkdkfY7kFLSbbIfdm38McFrVKIWl41khgGsiTjItw7WHR7ci/PSLhGlqKkuTWJnWK/cZMJdE308J5ta6+3fFZ2XDNVPGYEaNz3s+tWGIAx+2IKSXRp78crH0lcJemmwibJCNfU0zKk2SVnhfMZe0aBGXRTTU1iVQHHd83ve7rpxRibkQ9lc7suv9iFzjhAqjvWYbDB3Vih4A2ImsQ43bRXy3aP4wrfLdUUmWnkOy0aJmuyAgouvfkGgRQT3IQBEcAEl3rURo43RRKLw0zyIqAtzkcSyw5CGDhrldU0NSKWAmpqufgakToI9ogxQnnp9OIiTV3hbNeOSGKJAmefG/taad2KCtcoEjlzE0Bax8KlbLm26/ox6Hn+5MAfM7y+cTLJWzLgXgZ0UyZJIp/rI/Dl4CbJ7igcy1WP1gQptudnRyF04bEAHrUBDJq+6+apm4Y1ifl2UnG6e2kc4COJbD2ifK6pUzb/Z2sSQ+GaMnI/vDd4Bth10qVJUkhusJZoWiloaxKnwQYX2EyFU/jzD/h1msyd7Auu6J43CUw05Q1+TWJHjQtLPlh1X7d8SUNRBSwSqCt5sv9nEh4x3wIQv9B85xMXSaydmsQASRSF8lyiMBRgAlAUwUoK1yiBCk0S2jNNTSIAHL9gfu7pphdjpWxHiTOdsngLBi4bE23Knh2VQbJyQWKCEsiiPbvJOG7xmQQbxT59056HvLqjfc0gKbogBeCoiyEdxyK5xLjgWOzG5tOEuWzrtAVGV6zriSVKTE1iZn4RJJH5bmGdmoxmkUTABA+mb2RxCIAh29rqHHKhm3q91Egn4XBR42zLt8CI1fKWarJSSDqTpJL3qsYFTivvWExpPDLvEUm86QeJqwiSuCXon0CcbsdS2bZeDSThJNfhMzq8TqJ7rnANRYF2ajU16odyLPOTd2KWC4MksvexezxNqw75k79v5BtZi51ITaI2SJQWGJrEUV1NkHR6vVM+NxO0jQhIveNJkoRFpAKUtCT/DzgB8DCMFU6RqbjUdWZpbYJxTHmDzDNsQaJHIGeqm/YclXkx47mRv7sqscyY8fwHCT+GBQdMkeNSWZZ7LDGXvXLiIIlNbVtgTNRNBUnM7AFu38hxXGGesSStOy6JJCaSJKSbYE1TkwgAx8+bn3sk8WKMpptG+MjZ/i/nqEn0nSZ2YdUL3sQdQn2PJvkMdmMLM8Ilx66qpotIub+l+TlFssg5KtG9qvID2V6x2YfI8TxqE78hhrShothHpHVJCUmUOYbnkd1oRqepK2cjxVaCMA1Oskrd1EEEKWrfwkFthq/IHu9w2Xh0U1bd1K/lLSS3xqDNvsYmqQBMEhDsmhA2Sdeq+4q564Krbgc4KK4btHVyLvPHWzpoG2CcZQ5JjPeJy7duSKibFul2GObWqxyLlUM3ZWicwPR6sz3pAFMbunbuY0YUZoIkEsG9tKnpouefCxI3bUfXI8rn+vWWxJpcTWmLPN1UNy7cp3oyuRgiN+3oWJeP56GkogjJlBwEa/kcNgm7JwIucsMGl/qG84AVbpJj0khi4yOJbA9OOQ7gMCcUgkOsCFN4T9K+zCRR6H9ezFJIons+TxzhmuNVMyKFYZ/EMVGYuycj+418z9QaFCv3AOz9ybbP0yQg/APteLopYOmmeyTxYoylm8ZurJJwRzxI5IKNfsamEat/yQ2LI4m8kqG2/iLaAoNYXKeBs/tgx8fGhVP4GpFwjuUFMkTN/M/LHS+kBHK00crbDM1nlceFyQu31UByTDNdJKlaxmpab1maY1inpqFouKqXuk3b0OY0tYVujUhPOv9iJkjsRrpMiSKZquU1c0/c/xEaG3P+x2zwJEmSHxcmZeSwDN0xFiS61y8MNGMS6Fsii+zOx6VtcUhiPUmSAIWaxGqaJJHXc+auQSxFDEjQTVm6o4M2sM/N0bLB2a7D2SAgdLAsOzKLAAUenzmCTeIHKdyzesNxMDVI4sGixnqn64HqJuDYNTlFry9FfOE+xV632P1v5l4+/3Po1u6x2DUh9C/Y7ybfwfWdKHVTx79gewnKPEcBrJ5D+8242gsuKSQxaDq/a81aXrxuHt3UvpazEDxg65tj/S1L40JkW8xl6h07ScK7J6tJok9M7sncfhrex2Zc+RmP0VR3he8X1lLLTypG/LH/CvjeF4FP/yjQdzok8ei2+Xn4HD8mY1cWJFZV9eeqqvpkVVX3q6r6Z1VV/Vbnb99UVdWPVVX1uKqqH6yq6j3O3w6qqvqzw7hPVVX1e4LPTY5lrLQJp2oSSw93qIYHkCjdmMUZxow3YnZYUklPKz/cQ4M2+JnFMtowpRZs23ImP5b9YYuNp+qO2UNFA9lSQkCOp0Vy4+PIja2al6FyxwF8kA4EQiFdmYIbUglVAXCwQTHj3FoFlbppbWhz2tpCAB5NlUUSD5a1qUlsTcN4VjgoRvdS1eQS60+Kbjq3llTPnDAWJi/+3G/5Cvz13/m1AOBIoLvrSDloc/8u76drEusKfuseQnAlwe4oHc293poWDC4NixYJCa6bpin44dIknB6tTZDIIHXJZu4U4jwVbmKenaMheNUEiUerBU63rTpIn6Ao9LNt/k9TkkOHXIm2WVl+7jyGyUXmvKSDhvwcJwEwuZbHKO/MreyKwEl/aYaVI8lFAINwTflYgFlLXJVSTb2xUCq3hCq8mWM1ScjQa4L4oMrklte7E/nrnUQSHa0EN9FTVUZ8yuzZM9RN62npEtOGJ6w3BhwkMXHhQ1VmRszNHnAJtBtgezbUJCpCtXs/Y36+52v4MbmpXMincPbvA3hv3/e3AHwbgH+vqqovrarqBQB/CcAfBnAXwA8B+AFn3B8F8CqA9wD4BgC/v6qqbwUAYmzRShnhmIMm47J8/Ehgo1EODeknTAF82ABe5pEek3II83OM1ZsxCOScVgpyvLT8cKEmS+nspmu5ygvkHMGh8D7pe66ZdYxGwuxRYVBqgnRSOMUTLigH9xOUFNyG6I6T0RTdNEQSSWdXREk0SGJTm/6dWgQScGh6O0OBY6mcGuGIFJJeDFBiCSAmuRU8N7TgVopu2vqCDl/z6gv4grffAjB1mMzv5jPKwjWBAETLq5uqm4nX89RN3XPJ9LsVW47otr0nS8/2xLFWIImi1Pvm6dCaZMnXJI59KklE0Ih92P+PAQcxV6Gr3T5aFt8rdrRscLppnWCbWLdia3IxIDI/tQhkWCfFXrdwX5wjgOLOV4ckGh9BvZaQa3l4vB5knWblsnLMa1zg5iCJiufGXUt2Hd+CR94PmHVrSV7vMdgm2RbhPckr7g7jggRvviZxurfJZ8j1dPskii2b2hMuAzjxsiZI9rnHLt3LSVVUEknUJPNHqujuVF+T+Pm/1Pz8wDfyYzJ2ZUFi3/c/2vf9Wv47/PsAgF8F4Ef7vv+Lfd+fwQSFH6uq6kPDe38TgO/t+/6Nvu//CYDvB/Cbh7+VxhatBInH6rFkXAmeDm9GBiUKG8Kep7atNC7e71CxiLsoETHHlJT/nD6JtiYxcawgQw6QNXHRwJlERIJjufPIjZtTk+gGpRq0IdoCg6B6AfrgvpkEzizaOS2216B7p5sWXc83zm6GrKQWEVw2NTZtp0IgAYPAnG07rHedSuwj3qcsn9xqg3uSpQxNadr5OcbUFt3XUxaj/wB5GqhcZ7cmhUH23L+7AhAc3aueIOml403YHSNKkT+WFySOjlZxih4N19II82PChF/X88mOSZA4oyaRrYmrax9JZIJ0Memz9s47x8X3ih2taoMkahJHFdTBxpTapxtnBWhYmnxQJ8UG6Y3vzzB061jiSKOA6yJgGrqpTJOtSXRVObUJ153z3dj1369J1LXAsMktEkmsa48SC+jpplqa/GTvzvnJiT6Jbiue4wiNPUwaAQ67oFACELjl1L0cO14pUTKtSeR8eTN4EJ3ZnuprEr/8O4E/9Gngxov8mIxdaU1iVVX/x6qqHgP4MQCfBPBfA/gIgB+W9/R9/wjAjwP4SFVVdwC83f378PtHht+TY9k50YhUGCQWKBACa4fCBUywIe81P83rTLFxmP0HkG1nUQeZH4BDBGMohaYmMQw2GMpQ+ICWio2jgSxz/qOBc3lzSwXppfUg7D/V9dwGtWhcJT3zGkfl9K8bU5MlwhFz+ltO1E2pOdrrrakJkoDrwdkOAIdsAIMAQdurziMwUBDb3tZ6sM71wgjXbEkxjdgaVFy3ks8od6xpkkSX/WepZakgse36ZEbY7Qdo58gFDcswI9+V1ZXlc2PIZV5JT8/uMHOcqpQyiEiMbkohMM7a1ZLPKICRxilBouZenjRzZ/r0KZIkrr04qOO+8w6v9ne0bNB2Pc62ZRVPscahZNJ068CxpinJwT7FCg4lzz/xfEeFs1R0UxKhG6n8QuVkz7/56VJ+2RKMSQ08mZRxrzevblp76yT7jAL2vG+7PtvqQcwFK+ZS0NmSpzAxz6x3Yd9UMTcxIPfRb/rK99hxzUxEsPZ9QvfYpXs51isdyAjeVP7nq/okLt0gUYkkVtWFidYAgOLI57e+7/+Nqqq+G8BXAvh6AGsANwB8NnjrmwBuDn+T/4d/Q2GsZ1VVfSeA7wSAd7/73ePrpYxrCg4vUSBcp0kyFEaWv7AYT/jg5KZRT5urA5xwzdxeanNVUX2VunKfoKoKe0Aq1B2DAKycocVkXEtct5gAjft56eMF1w0Kiowy0wf4GxTAIymhcAQTXIaBM4PkAsOmHWQjmY30cBEiG1z2bTH0e2MoVN64xvTJ0kpbHy5rPFhvDd1UgyRGkKwkkl4bOqz6GU0kSTTol4xxX09ZSNMWY5DEWEuK8tol2V2duqlb2+OOLyEp7hxZZ8sNgjXBnkc3VdzLrsCUpim4iySuFmXaNOBk11v/+eaQxGmShJnrO24f4R/iDTx/46D4XrGjQXb/4XpLzQ8wDqha7CN43myiitynnHVShUg5SHpVEbWTle+UU1TCyXfjSilCaiWT3AKmyWtVUjIM0snAzWUkHBSUlcUWtV4V1bZcGsYR/Y2BeE0isyab95v/s+h2KlGYe0ZjGhDAdP3/qT/+yybjJjWCBMVe/B9XsZu5l6P9FQt7cKjKrPHTvCCxb3V9Ei/YrlzdtO/7tu/7/w7AOwH8dgAPAdwK3nYLwIPhbwj+Ln9DYWx43D/d9/2X9X3/ZS++aGHYovztcD0nN0iBApGiZJbuD/m7y6s3r5cX8VAkBMgv/sn6u/wUkzL5pTXrXEji5AHN05RC6gmg+27hudQGRHNrsjQUmTk0BpcSBRjUganJWtaVV5PIiPnEezkSc6yryUbDUGlFBe2NxxsAPN1UNlJtbeGyqbDterrWRkzUTTctGSRGEh5MfUns3iqyBIKaaDNOkQAKGBDMuLDWA8gHb6H4jHl/7/0tZTaQskgK61yHfULl9ZTVVUpxujBHJwhmHTTAIom7tqeDdACewJSmtupoZY735ulWRe0GIuqmhWOG518TBH/8/aZv2Es3FUHiEAA/HER52Ho/G9iY19hgb267Aa3gUB2ef0WS0GVGsUi6zE2OpelBu1XW+4VrEJPwBnwWlmVglc1ti6NTN7WsBPa7SdJP/J4t0d8YmNZNAnyi3KrEii9TnqN5P+hxsR7AAAfCtAFwY4GD9PFCEAZg7+Up44Wp+zbJFb2fhoVbk6ikm16wXSmSGDn2BwD8KEzdIQCgqqoTeb3v+zeqqvokgI8B+G+Gt3xsGIPcWHYSpRurqqqBEhjexCUYferYqVA65Y1VBQ45My5Wf8fMMYa2zaGkAWYjOFzqAimgTC2I9UnUOLtaml4YELHOXdhwm+4J5TigbNYasKiZGIukxJDEcnCPgG7Kop3zUFIJEu9JkEjSTWUj1dYWmnoPnUgO4PRJ3J2Dbtr7f4tZHSK5IJ7RuTTVYJyulnr6+i6TKZdz5t3HJN10EQjXaGoStcIdMeEm83rhWI6TXMpW++MkAO6KTAvXwj5xdG2tg9xrEjKAW5PYj3PIzjG4l8W5ZhIzv+YXvgvvunuMr/rA89QcARsAPxyo6yxLowvufzopGQQprCqqJ+6iQBI7ZeDmIj5uTV3uvowFslRN4oikd+NcqXr7CHWXuZXryu4zGgVKt5WFRt10tajHeupN2+HGIeeGL2qTlAQG4RpK8Kb27hEz73JyF/DXciYJKh8b+iVZhC5Rk1jW/KinSOL4/XJI4vTzx7Vc2V+RqfsOE3DADCSxa9/SIPFKkMSqql6qqurXVlV1o6qqpqqqbwHw6wD8LQB/GcBHq6r69qqqDgH8OwD+p77vf2wY/p8B+J6qqu4MgjS/DcD/ZfhbaWzRGMcwJn9rbrL056ZaKTBOEwDHSeZurJhDDuRrElMOIUst06qipgRQqNq2AEksLUDpusn8HOvg/MtnaM8/7yQH55Gsv/CRxOLbR1s0U0SEU1fzN5ueyJxOhWu4hs+uc22RhvK4oxFJlBopkm7a1J4iJI0kLkzrjG3bFVU1XRPhms2OGxevSSwLfoSKbKr1Z2Zyqw2uG9XfNYokpu/LRYRuym7AoXCNQRK5jPw22oIhr6QXCjcBZWdrtbBz1DitXi2jwiEJ1xK6tnblBoncs2b3AJ26aVi7ulMkZqqqwld/8AUa6QcskvhovaPmBxiWhovQMeNibRuAcnA5qfcjmB3ufNyaRCZJMkEgKWpfGGxwaNuY7HDOJXOtp6J/iqRkcN1oddNOhwgCQw/OodaV3QPM8ewevGNbYNSVt9YBXEIGcBFB8jxO6L7mdS2YYsbmfS6TqAj7JJa/XwwYYVghUV0MYg9whYMYdt9oy1C45q3D866KbtrDUEt/DsAbAP4kgN/V9/1f7fv+swC+HcAfG/72FQB+rTP2j8CI0fw0gL8L4Pv6vv8bAECMLRqz2S8i0HZpUZ4r7hIqRLES6Cm6Y+5+jFFiu15Tt+QGN0S9ZWRBmK1uWniwY4Es5ewG2c9xHOPERBxC5njaIF3GuSpuzLGAISBSBumAjyTSPcqaSJ0m891mbtrHQx3RG490dFOhDakyfTC0qG3b0bWFYgeLBuuhTyIzbhF5Til1zQlKXX62qypWy6hoi6Ndt6qpAAGQD95ifRJLIgLhWJeCRSGJdY2+j9TbFPaAOXRrq6jd0cE2YIWbvFpG8tmWNcQkxMpzBBwk8bECSQyTCSQiGAaJLVHLfh6zNYkSJJbHuMG27UlXToACjtjH8Lp2D1YjgkoqZ4hAMutPrE8ic8mklqtVBmCWhYXxuGxS0hVuktdK5vqFGgT+YNFg7SCJ7N7hBnzblmVA+CyBqirfk/I1XESQuW6pvphaMEX+X6r3ngI3ZYXraOkGM66eGZRW/nmU14omdNPtYwD9W1qTeCXh6RDMfV3m738TQLRtxdA2418b/qnGMsYoPsVq4rrCohyD0RknLdWQtMgHn1CbMIwrB7IhAqZ1CM248sIaSgKb34l+e5EsTslJOy9KqkUgqyqsPyKvWz2tJWX7JG6cugZ37jkzipw+IsIiKbvJ8fLjQkoIK4Eea+/BfLdJTSJJNxXakDxzvHCNQWU1Gz1g6KbrLR9cxtpStGMdBbdBAVxNIpBKXLBOqx0jc8hZ7NkGhkx5YnBUuIZYxwEfSen7nneSRzGNDk3djMfOZ59Ddkf5PAIOIrjTJS5cuumIis943tjaKkHuNff/eP6VNaHhPdl2nJjMXAuRRPb8h0kSVrnSojbccxMigkyNeGycNgAbx7V6h5xFOwG/lo5Gsibqpvx3k+dZlkt2TdgqzyNgkpebnWEJsArXgEm6jkgiyV5ZDInMcY4zEUFOcC7uuzJIYhjw7Ur+dT0FDmQ7YNqyRNsZlY7nH84m4nKtMxpb3sMCBwCM47g4AjaPhkFPP5J4bY1GEsMbcgaSSLVgiMg4u5+XHhcqSSqQRDfbzRxrLpVz+LteJdN3doFyTWK03xsUNaEu3ZTIEsaofWCOFzg/dMP5GVlrIEI3bfmaRDmeBKelmoimnrbNYDftztl8Ac7ZOljUqCpLN2UpcMvBSdBQW+Xz17sW621HIymA6du2aTs8XO9m9ZYDNEiiLpEDTGsZu56hv5mf+j6J02cbyNckjgJYs5BEB6UjEfHYMQUVKQmDhTXRjB+5dAJSex6ZcTZ4bjsONTCfbQN1TX3toZOE4ZFEX/K+63kmwwRJZIvAZpgVrlHQTeuYkmT5WHU1LS9hxY28Zu4kJbOuwsBNQXkPe+4V7n85BiD+D3fNlk09MgVMsFceM1E37fjgZspcKR/PpX+WWqK5JgmV9a6j69LleB5NmGyBoZ3jlCbMCs5hPA7A+UAx4EDG5u+taU2i+BpMUNp1/t5RWitjLTA4JHHazotmvS8PgfX94YOe8prE62zWwU6/Jw5tlzMd7ucDXEZs2muGu7Em2X8iAy3PxLSZe+FYUbSNUW6digBRNYnVtCaxVD+WqgllkcSdc/7ZmqzQIQS42pLwPHL8/ym1jxMFqMfaqq7r0fVlRUjAbNpjj6Zh1SuhB6EiIS1AEMusE+OqqsLxsrHCNRp1U0cRkq1dOlo2ON22WCuRxOeOVwCAT98/owJZqwDnb2wlml6Mgk5t9kHCA8z9H6xbHbGuyrjQQQDM90slIWw/wGlNYsmZd4M9tkef+7l+LVf+y4XsDjYjHwZ77vFztnL6JGqCPRfxbDsFkug0uabbzYwMm6FOipTyP09N4hwT4Zr7Z0MLDMKRd6+3RgTLHyev5ceYZ9+ex67jGCjAENwIJbDlArDQn2FqokNfhqXEAqI4bREwtrYQCOs0y8eqHZRIk3BtHHYNm4AD7L60aTts2x5LsnXGsqmw3dnnhkquOGgn295GSg5cdVP2Ppb3AxZ8YBIJUc0PJZJoOxXwiQs5VrF0JrJPsa0zQl+evU+wPAYev25+X51wYy7B9kEiIyVfT8UVSjdW7TgjYoyTFtJUZTSjkhkVrskMk6ziZBxxLPPeeQiYhyQSLRjqyANaQg5iAjTMQj7tteS/nhsXtttw55GysHWJqrdT6JAzaIMTuLGKkOHxtiOSWAgSm2kAzG1STjaSrG0TO1otLJKoppuWM4OuHa4anG512WAAuH20BAB87uEGd0+Wxfe7fVbFGAR+GqT0WSErsWktY7m/WUq4ptwCYJoAks9J1iQGEvnucctBokWyNEiiRW74OqkYu4NCKJyaS51ysYzrVMiGi1CwaCdg+yQC5YRROEdLd+RqC8O+aCyVcK7Jd3vjkVlL3IA4ZW4vNU1w3zjPALvfy/G2zvPGng93LWeSHWaMj/iwTAYzBuNPnm7qI4kadVOv3pVMuI4BkWIPmPQ7JG/Hg+FeGksOSIG1ZWNVUXdkC4yli3aqzr/fzkUVJAZ+SW6oTeZPuweU7q0Jklhgl8XmaI5NruVBWQRzvKaetsWhg8TFIfDoc+Z3EbJ5C2wfJA4XLp+1mELbpRsrRLIEkSoGYAFqQNcoVIFDMvykBAGUjky84TaXJQ9FgHK1R+4cJ3TTwiYVE6CZo9xqs0WlcSG12PxkMsJzkMQoRYZxtoYG8O44uiZRejTtzLhSkBhSQljhAhfJ0lJAj1cN3jxV0k2HrLXGsQOA42WD080O652Obnr72AaGd05Wxfc3wZoADM4182wH9ySzP9VVTLhGlzgaVTkL42IZYSCvumiFa6Y1icUg0ZHX3ynu/zAIZjL502eb7BPn9Unkn20XYW1JpAEIUBtFsHGwqMfkiLZPoh+k6AIpgEdS5pqIYL0+iGAdEgmn2tnbNErJcylpHt1Rg9LVbr0fi+San27LB/N6ziE3Pz26KblMLpuglyCZgAbMd+oUe2KsTyIrAucGiWxS5mCkmxrxMhZJXC1qX7iGZEC0nam/1iRWwiQ0MypE6Zh7JKxRFtsVkkfRtnQksufO0RyrnCiJCde0hG/urlsaKjMAExg+fm34/ZgcdPH2zAeJTPFpHQQAQDm7NeXjD59VQhKHm9UGKeZ1JiMfKukxx5sI3jBoW8A9l+NRAUAQlLZdX6R7xaD+UuF8jBJL0UaDAJilIMaofcw4l+pi5sifx0kgq8x+MuIb7vG0NYlhANCRG6m3QSloW4AVrwF0dVK7tlcp2wFGuON022Kza+mAFABuH9nA8O4xESRGkHvGua6r8J5kBSCmiQut2qIGgQ8TcPI5pWfbFWBi1TytAI0WSRwC0zG4KdfETQWA2CbdjkopkcQUk4BtMyCJLCK+bHxxC/b+r6oKL9ww9y/fk9SvSdTUKYc1qKxTPsdODszz/NqjNQCr5JozN1Gro5tOkysM4r9orOCKJgBw66to4SDxS0IkMfP9QqYSU9svZhIXEtzwwZ6Zo25P9Or7x+CSmGNtA1lWlA1wg0SDJB6QGdBVYwRvALP+MMI1S2e9KwVeroXsAja5CLjCNfJ6JmhL9UksXPNwPQA41fUYw49nhfivCQuiVPIRAj50Kx43SNzTTd8645SNEkhi4eaQ9wE8jWTM2LX+plEO9ux7AYVwSiTbXbqFR4fQddJIBzQMHHZdj2XJ2a2BLoT6C05h2H/KzLGMJMrmMK0RKTu7k3YPxLjG2UTtHOdtbKwim7aXFyDy235wWaJYToRryI3UrUHVontHM4LE5aIa60MA26eOOdbpRt8Cw0US7zJIYmRj65jkSh3ek2xz6VBxV9/f1TrJ5XGxPok5hkFVVVgFrVzYtixjkNJ2472pcZIFKWKC9JBuzdYtLRykVJN9HoPEXUcnZAD/2dbSOF+8eQCAR+0ntGQiiy/jvORif7lI4sGiMfdY22O1qLnklnO9NUiiRzeVfYMOUpxgW4MkOkm4OUgiK4zkXjfdHIcSAEWSxBVOUdUWVtV43jVq2ovG1M53Ha+SDNh96fG6BVBm5IitFjXW2prE2iacWrIHsxnn+xeqIL33n4E56qamfjJ9rHBtlXkCheAymKM5djl4jiGJnOjitN6YXrdWJ8DZPfP7Hkl864xZFMIbhMluhXRTXto6RBIVwV6AGgCk4I2ybm9UpHKeUVoUI6QgEjWJ4XeT45m55NGGzkNXufMITBW6ynRTfZ/KcZxHI2SFa+aJu7iS2HIdSohgOE+6JjGSgNCKVGjRPQ9JJOqIAIMSbHYdzrZm02Yd3iOHbqoTrpkXJGqRxDD72YNENuqwTpYQYAro3WxNYuzZBgg6vyPiYObI3ScukigOtg5JHBC3lhOu0QpnATbY82oSGSetNsHzetepaKMujU2DiABWhOkdt7mamZhK7GzhmksMEgGLJh6yVNpYCYCydOAq6I5uULojaOtmjNQkWsSZeW7c5GlPIoKARelskrA8xl2DNLXsdR3Z7xU1wO1A5eTppua+ejCIIrF7x2phkcQt2QLDVUo2CQHqUF55CZuQmZTqEAnelLppribdfKafJHQ/gxKu8XwuItiLsNk6Zg+u7HnUJCUBAMcv2N/3QeJbZ0zx6dTZNT9L0rfANEgsO03DvILsQxEBq6ZZa3ceyXF1RNxCibZJvSWDgDU1gprEMrc+JlxTrEmMUGIp5dbEdWOQxNg9QiGQc2m7o4Pgzz1ny8bPPpvPImoSnX4/Y5BY2NzC4nJaktwJbrSKYC6Vk0USRaTiwZmRu2c3bVE33ShrEm8e2J5HVE1iJNvKbGwu1QtQJHLCtYQQpQpFKuSWLs8xjiSWmkW7arsA6IDPFU4Rh4u53rFauiK1tQ4TcJwj6QrQaMWUVosa622nQjZ8REpBh4LtI/jBl25Q769rX5VTQ3f0HDtSFfU8duPQPKeHZLLJTXhoeq66SRmmzklsLt1xgkAq7kmvVYo24ddx6w8wqHArFafdZ1RTy+7eW/KTO56L0unppg+GZ4dFEg8WrnANX5M4zlFxj4QlHxrhGg0wkkIS20JAG6tJpJDESMKVSXgYRNB/jVFYNucR3jHpdevGS/b31T5IfMuMWZTDAIDJbk1USsmgIczYaZDEWJ++IpI4cWS4MUCs3pJDsrTOrtukeBxX6pMYIBsAp+4YCnDYIP0Sz7/yfABx4RpKytwJ9liKnrxnrEkchGtKdNMwucJKkrsUXEZG27V33DGIRlXxtA7ZtEXwhlUqPVo16HrTS02DJFZVhVeeOwQAvH34mbNY9pMvtg8QQbom0f6fCe7lVE97ZBHHSiKJ6e+3bKrRYTLv7yj6m0s3lfHMtZNxtnavKye3al+ki0FkAQx1LmaOrWJtBcy9vN61KqfVVU3UoA0AxnYz73+Rr5mZqEIq1x9AgsvLdV9OVvogse8H+qEmSKmsA6qpZQxLB2hRksbfO5hgwwrqOcE9yXhpnQCY75NoEBiNY+2WmGiQ3KaaBjbM8VyUTnP+Zb15qExKejWJZJJEWreIercGbXYTCRRqHPhOmqAtJgpTAm7CmkQNkqjv1e2XzgB8yYfb7sedQ9FOXrS/75HEt86Y4tOplH/55p+rUhpm7OhWCpGstTuP3Dw9wRsCNZiTMXLn6QZ8W0rdtE4WKac2qphjbeguhfklvltpH519/oNxfMNbPdoJSON4IwggWWhaOGI4nu2TqLtubLY7RjdlHVcJvlhkG7BO4P1TXesMkcW/93iraoEBAH/79309/ubv+UV4+3Nlml54T8rvDEoX3pNUTWIdUzfNjwlFKmSqFN20m75uhBlyTkLtCdewWfIokqigbWmRRNcZYdsEVVWFZV1jMzynAFejBgxow66DRu5+6SoeK2sS/61vehUAjyQC/vPNqFsD5l721Wzz98dF2M0BSWTaXwCOKm3XqYKUurLrnKYGe+kkXLuep3IaCpy9jzXtVdzgkkZJHcaRVoG1LezzrtkSk56iOtpxFknU9Bx2Ubqu1yRyzP30cEAS2b3DpZvuum5sBZQzu951qjresJZU14LE/J8BD8KWOGIl9DJWk8goXIe+q/yuLd2Q41FI4jBOWzrjIYlvYZC4KL/l6TZmMw0V+JiFK6VSygZgtpEsiseScX6fPvOzdDu6jZRlHEstCx1ClkrlFs33ffn8pxqn1hnkIC5cw6mNApEAjLhHoue/FFxWU8EbtkZkjmMhmcW2s83EmUyyew3m1CRqKMkuBVerbvqOO/rFVOTtpXG2BkkEgNNtSweW9pgNPvjSTeq9qewnR5EJkiRs9n/OOMexoIVrqiltCCg7octF5fVJZGmLdW2C2V3bjyIQGrqpHJNrgVGr1x8xaQGgCTYAU4e73pnEJx8kOsI1ZNAg9i9/8TvwL3/xO+j3A34PPDaYXTZTxsVlCtcAwMmBIInKHpAOTVIbSGkcSYP2uG0iqGn6VEK23mySJOnGvaR4LGefoinQg+LuWFtIJjIB85xp+4uGSUnmEXADHJbKD9gk5KyaxNaiUlq66U6BJIbnhE0kA5icS0rgMUQFC/dlSD93j8scz91yWCQx1nJDM24UrmEf1JM93fRaGNNvLEabAwoZi0CllKUf2sbZ8MYVna0aAWowzKMU8AVoA9VLMAjAYs2w0/P05bcBot9eM4X6S3S7MJAFuHq/ScaUrImoK/888PTiaUsQDpGdioRwfRLtxmbpGcxmX0/UTZnrNgp9KALZ86ibvu2WQRK/5N23qfcDLpJoMrus4I0rksM2RJ5jIUoHWAZEzsJ7i3VkQnSbFVxx6wvnqiuLlYLgpSPABPAqjYB1QNc7Xqho6SRXZH5lwa2QyaCtyepUKpmApZtqhF3kWIBe3XSOuXtASyKJrkgLYNYgZt06j0mQyK4HI7VPiYDFkmJswm+OcI3bX5GlLcYa1bMIsGVF8WjncqDS2kCjPEY+Wq1u2viJa0CfcNUEwHNrEl26qV64ph8UQ3kkcU6bGnk/wPm8oS8ptmvz93PI0nCPW6KphsfjRcj815hnJ2RNyGdRtkcSr4e1Xbl2aVLbQ2R3QySxV7RSAOwNRdNNg+w/G5SGwjUM2jNyz4OHlM9+6gKAGJJoNsX8cYCpcE2pJjFVb8nRCqbnv7S2hgikhtoxaVpL0U1tbZWGI+8Wim9aLriPZWjZzWa90wUbYh9+5RZ++9d/AL/pK99LvR+wSIG2JtGtVdLUJM6xsJaX2aCi6ppEVVyIbrNN4EORCnktO8faqvSOxxsZBrmaxDqgH/JO2tGAts0RrrHITZnuKNluQ/OthtpOaorm+w3nAeDvf6GkLeqaDkhXbp9EBSVwrrkOHnvdXLVFwNz/l/3M3TzQ1SSGSpIAj4CFlDQWXZ0jXBMGAFxNrh8AlISl7LHgJY7Ye9KooLfq5CLgq5vSdZOOkid7PMsu6FTqprNrEj26qa4FRqusm1zU9YjusfXNoe/EBNzC7IgxxUqIYNQnrPL+q2WK+XtHuZZ9KrDGIKyuumlJkX9iL36+M/HLS0KXbB8kdh1V77fZ+TcVkIeNJyqlLJI4UiYCZ0sRuNV1NdYfaSXoVeqafejIc+Nc+W2AC9LDrNGukP2Jcc97Yo4TKX+SNldXRrRgdAhJBDJEG9jNfm6fRDfbx55/wBdJ2JK1XNKkHtCJG7nqppoWAID5fn/gWz9EvVdMGmXfP9uiqriWIIBfq3TZDmtYy8ts+OEYQ3fkjhU+N9S4aromlDfRqYPArK+Lxhcu0NAPTeuSdlzTGWVaSYi46oKMgwCY895UfE2iOZ5p8SHfkfUrDoZeagcLDZLoIimKTPdMc+uJNMI17vXedj2OlXXAWhMk8Yikm7q0cE2w4bJQNPT6OWgPIOdfV4MaokS7lqSbOmuCSkypNgGwZv1356hTN3UbnpvXqPr+gJXDq5v6NYnsfuMFiW1PnX/pQS1KsZo+ifORRAmKhteLTL1EH/IikjgVuymKuQV1k2aeXOnG5HjEeVk0NuGtFq5Zcm2FLtv2QSJ5g3goEbGQhyqlMpqt9wvRNqYmDhiydah4Jb0J2qAZZ8e4c8hZqGwHzEMSS7QoW5/gXzcmaDZzs8cBOOEgM87UCsylm9K9BKt5dSxjv7fW1iSWFLqARE1iQbjGQxLJYBtAXN30Eh3XA0e4ZtXUdN3YrSPb71DTAmOOuQg8oFi33OemByqy31hInab7KzoIkcyhNCZZW5IZK0ibO4ZGEldD6xKFuqlcX3HSmKDUVbhuBsSUDxKN47RpWzR1RTmEZp7muxnnnxuzbOox8WPmSg2bba5TSCOJTe3XoLbd6ABflr148wAAcLaNKCtFzGVp6IRrqklSkkISnSScBslyNRa0AYB73ShV1NqnoNOU2CEJpGGSuDoEKpVYd46KfUpKDDa7TkWlleTiyFxRIInrYc3aksJNXuA8M5Gg8UnMsTAeE9ArvDPHTCKJhVMpf3fHsjWJIeOFFo8LgCJVEu7X/nng5/8R//5LsH2QSELN2prEpEop8cC476cz8g7UvwCftQ4bZ/PjpnPUohSy6VPqphO0IV/LEssYMc6ufKS2vUd4/nV0U9fZVbQpGLPP/hxyZiWxrSPDqKS5SqWamsTRGVHSeEKa6mWWH43CNadbFSLotq+4iiDRpchQWcyAAdH2PXmtpzRVLbuAdZJjCaAtgXAL0iamcYAOnf6WAEcvluu73vFIYkwFmvUPFkOLj/W2o5u5yzzvnW5Uwd6yqcaAW6tuOsdCWvKKoHMuG//+Z4U7zmNf9I7nAAD/7NMPqPeP9d5K4Rp/vRteY4KbpnJasuj6JLpMJU2jdHm+GeEmGefuU+w6vmhqTyVWrW6qOf+NPnEN2DXh8WZHzxEw+82qqfGZ+2sAfHnDQSPKxZzgH+Ao7g7tdOYkEvhepiGSWKZ/AvF2FqVjxmoSS+wyM84vA5P5zkYSFSCARihwtA/9MvPvLbS9cA2xSE6y+MTCZR0En4/MIll20ULxWO7xOgfdm6NkyDY8d8ex9ZaAT0G0C7Ku356MzbYgGT5y0iexMMVQJERDNzXHk2P5r6csjiTmjwVIhtb8rqHWuAp8+ppE835dTaLtvwYoMusz6i3n2ihcc7ajREzEXrhxMP5++TWJ/qZIbYjNtCeplu4L8DWJvkgFmwCa9kks9UAFBGkLgkTyHjla1jhzgkRGmXYVIIk7QjjFlZ8HeEQWEJSoM9RRsiZO5imOpKZPogQbQpe/TJMAGNAhWe4ezKprnse+8J0mSHRrX3PmJ+DMa7xwjfnd1jKWjzeXbhrqAnDr/8CMEnXfjhMOcv0ETQJiOcxxjrqpvk9iBO0hjif7xummHY5fHALA+Bi3j5f4zIMhSFQgiQBwtjXHY4RrfCSRE4kCpiwglv5s3m/+T9eyBwkg5piNUzMpxqmNmp9z6vtDEW66v2LICrzk9fWi7ZlHEpk+QZPaHmLhslQj838ZzkDvZly4aJXGmZ9uTRBzLxq6l/2/blwIozPjnLoGTU1isFGXMplh5hPgahJlrLq2KnL+AUI4KCIuom1SrAnAvMyiIrPlKsyOfRJLSGIdq/UoHsrLrGsywnNNNvuH6x2ecyikJXPn9J7n+WbicyxWg6elafO0oSC50oHioLsiFWwCIkTSATfjmr6/Fk2NR4NzBgzng60lXZmaxLUKSTT3yHrHBzcW2TD/1yCJ0uJjvWtVKLXUJKqofUHi7jITMoCv0sgiWcsBWRLbdf2l001vHi7xv/32L8TH3nWber/Mx1WOZoI9l5WjE65x6aa887loqpFCy7eOwfh+wLCAGLqju25pauIWQ+9OTQLUltzogr1FZL9n5ikMFFmH2OcNAO4cr/BPB4SaVjdd+K2amHUhVDPXiBu5e/ActLnt+PMf65OYRRKbCJJIKH6HmhNmnn0xURgteSIo142b8NYK11wTe+aDROZCh4W1zMI17XfIISKTZu5kABBSm/qeo3/W1bR1A+vIhzc/tyDUOG1bb67l8x9BEkuc9YhwjQYR0TYFn55/7ro1dUg35TL5EqT3TtaUo5vaTUOcLlo4QhyEndBN+eumUqmL0BYvE91w6XxzaaO/QNFyY44t6tBJ7nCwzC/fTbD5alTqwueNzsgr14QoktiVN1MRthArtcRx7WjZ4N7jrUrd1CKJZu1inGTLCrFCDpqaxG3b4WzbKYPEButtRwdfgAlItcjeeewgUGmcI1xjsv+XT4T6Nb/w3fR7XT0BFd2xmq6TLHLj0U3J07Fq6rHdj3HGGXVTn6Znau+5cTuHTaISbup0iKCc6q7rVUhuU9foe/04SRxp6aYA8NyxTUbeOODccElmSS0jo7or101QWZ7uW2EtiYRCOwqxkG6qEkGM+HclEGDKLlOUZblIYtfjqOTfxeitDN3UCWbVwjXXxJ55uilzoUNxBWbhSqmUagRQACcgJWmqEnD0LNQffDe2JtGnaJjX2Fo6l+vuzj05JpI1KjlBdXD+ZZ50vZ8SJQ3Pvz0n5XHud2P7vS2d+0QjXCObxrbtRroGU6fmSmJv2w5VxSzItYMk8omEpvLFDsxnXT6SCOhpo//Sh1/Gc0dL3DrkEcg5tpyJJLqBFFN/DQzodkCB5lgCrgCHnUPxWJGMMFCmm7o0wJacI+DUJM4Rrmm78WdpXJhZN04yOceFoJ0t3YIBMNTZTdtRDBkxobYCukB2rh0smrFHJdPvE7BJKkm+mT5x18vZirE0WKXqOX0Sl41P5eR7ENpnx/g/5TFhGcy25a7bsqlG7QEN3VT2YG1tJ2BFWsxr5WO5iVOWuQVYJPGxIImK5+aOEyTeOVlRY1YLv5/vERMkOm1ZdOff37upGtmAbsomJVPqpqU+idsJRbXc8zzGMKNEyAI2IUDSW6/Yl7kM2yOJxIWO0baA/MV2s4qArt8eEEES2eByzOTr679U45yHRjZu5tZ369QsYqCH+ku9bWJIorQFKVlUyl+5+GgEb7wianIhXy7EIenVjgUw1CQqEUh5/6btsSRUQN3rxp5HQNBt8/uVqJueA0n8U7/xSxHsHZdii6AGj+mTNUkA9Wxm3Re8UfVJHJNiXOPgEEk3Y8tI4oR+S9Roih0tG5wp6aYSEEp23dBA807aJOGnQOmOVw0++eYWN3Y6JHHV1FgP9ZY3D7ntfdnU6HqMTvllq5uuFvWIvmjUTQFBsCpaXfMqLR5sKJFExTrpOteaRuluK4WWRBJDlGjX9WOQlJ1j4yKJCkpsXc8KtgGzXs1SRe10qqjy/D8aWllonP87xyYwXDYVTlZcEkjWIEESj4hxrgYBW1so49x163DJn3+3BQbdJzSyB5T6JAr6K8dgawTl871jlVpn1PGSJyp2CIRrnrQgcY8kEhc6vImZhatxFiyAV2kcszHOOIqiF3Ct2fqX8Lt1fc/VH7nCNcEcsvN0aEMs/C5Zrb4PncIykuh/N7ZucipJztJNw6xREUmc1CTqags3Xt0Gn21162bYcfL+bdtRjrWMcSmxtHDKBIEsDptti6Yeg2ctklhVlaoWZa4t6sprAcBs+NJGYRzTlyXCgXjiSCtmxQR68vcYjQfI35erph5RPRlDS9CvrLrpasG1PFnUFarKQRKJ4C3GCmGdtOODBU63LdbbTiWmdLA0NYlnWx6BlOBGnPLLRhJXC3vtOiLZ4c7RUrc44ZSrNI+loQhu/D6VfHDp9orToESroW4VMDW2zJoXokQsvdtdt1hGgsxRmtQD/Ppj5qgLEl2fSxOku6rYACeAJXZ7CBJvH6/oUoqxJlGCRA3ddEwA8UiuK4qkOo9a4ZpgD+j7vhhgiv8TsrCYGkEzRx2S6IpLjeMooRynJlfhA10nu16r7FtgLGQcKukB+Zs4pGewTnIY3LQdn/0HfCSLuRWbwCEEGaSYAMD8rhGucTNUrHCNpe7a10p9wMIgHRiQROKsuI6rRQTzY6bnn7/eXW/fz1LSVoFjxxwLcBbXtrMCNKSTsHWEayjRAucZUKnUVb5Eu7x2mSZKpZetUjrXlk09rcEjauLaYBOdo27K1pa47AIZX+zvGqHxMAyDEElkxRUA41ydbg2V84CEzaqqGkVhAAwN6wtBYqS+nEYSlw0eb3Zmjgrn82DRYNf1eLzhg8SVQ5PUCN7MtYNFbeudSCRrWftO4a7jhFOu0mQ+Pt2RRARbfbA39hLsepVy7oETpG9IYaQQJTJBOrffjN9Ncf9L3aqmvZO7B2sToIBJPGuC9ANHFdvMmU/mvHzL7DchgpYzqZ1/4/HG/F9JN2XblgAB40sJVLhMMT4B7TJX7BxyY+QYYmzpmDmGO64rip4tmgTaWfJdI+1VnjThmuvpEV2hURB1M1UABTgkUavS6NIDgMFBo7L/Mjc44xiH0KrvyTw5h9B+JzmmlpLGNnMPBSCAcvbHDVAALjsl5tWIkNctPP/sOZF7aKRXsnTTwLFj5gj450UcBbYpr9A7ti0nP9+4TtM4x+KwaE3oZVM0Xrpleh5qNvqrtFDNjRGccJEGgL+3JuqmPdkD1UMSOVGkEEkHrHpuqSYxpN+ywc3hssHZtqNRFDFXlXO9LY8N0S9NAHC0avB406qFawTdeOPxhu6v6Pb3uxJ1UydIYQV2bPmGFdO47BYYWosJ11CIoFtbSCaFzbga27ZXMUkAvyZx03L3V7ifsn0q3ZpEjbrpwcJQoKV2VaVu2unPP2D8i67nz+NBQP9k6Ldin/fyTQDA64829BhR3v7Um2f08cZaalE8Js+/K9TCCMIAcZ+XBQ7C9jbu56XGuO+V4zH7jTtH+X1O7TxDU3UTQHI+r4J5dJF2vVbZt8CYbIBxZHyHBMgHN5MsslaAxkFSNLx6VzhFG7TJOOYWDushAM6RjCleloRTFvX0wS45hbHzAZCo7Ay1uRTdtIxAYjxO3/MZ4TFI3OkU2RZOcMm2sgB8J2FNOq7LgOoC6Otd7b11uQvr24bM7jFZH3LVtqx9oRa2JnEidjNHzIp0Ltx2OrRwTYCkyzyBfPJi6QRsAE9bBGwtz/3TrSpIPFhawRVNTaJLXafppisrXKPpk3gyKCU+ONvRSKKfcLp8J8YNttngfjkyJ8y53HbdpbfA0JovXGNeYwU/vECKVaAcEBgNagbY89/3PZ0oCe/lLdmncuEEpJp7a6z3U4jCWN9JV8vu1iRqBLAOFjWqygaJmgTjqy/foN8rJhTVT903QSJTk+i27tEgub6fVhaEAVwk1/xfQzeNtphTgDAAXzoGBH0SiX1xEfjJcuxSnsSjkvd7JPGJNMZxiilQAgUksfFvYra2bUJTJZWl5mZxwgwJq25aO2gDK9Ji5lnPqEmcPtilxrD2fJj/d2okS8aZn1pVWhlXrGV0kgIaRFaEazZtp2rA7ArXbMZWFooWAG2HM1JxMUrj0QbpCvTlPCab6YdfuXXpx5pjc/okhjWJHemQzxWzajx2AXe9QyQd4GoSlwGyyvTIEpNanjdPt3pRmF2H3RBMsXRTTyWQpZuuDG304XqnmqMrp88iG7ImCJX2spFEqZsEeCTRb1RvkmlX0QJDY15POkUt9aKufXEjhbiLtt0GYIVrdsN5pOrLg3uZvW7LwElmGcJy755ueFEYeYtL9+XOvwQ3vapNh1DQx5pExXP64lDewPbgBKZIIlOTaAW3WpUCrpso1NBGzft1QkVhXTrDOgqRbYBEEoNkh5lveZzbcswfR7B5xN9VJnOuiz3z6qaslHx4UwEcHG7rUVAc4/7drWNR9ajxKKDzsjiz20RQAdg0cGb6JAIYWzDI2Ny5HDeMoLaN60Fov5OtLcyPSdckFsY5Wcy64gNZryZR4SRIMLRxkMQlsbnJhnS6aWkkMZTfZufoF81fvtMKAJ99sAYAfOhtNy/9WHMsbB6/KyRJgCkiqEk4hWJWWropmwBaOMm0cO3L1yQGLTA6Xt1U0OLXH22USKIJbiTAKdUKRtVNyXv5aGW25jceb1UIxfHKDRJ1SKJ8r8v2YVZNE6hr8vvbru3H637t1E0d4RomkSzWNLbeuyX3e0B6CepEcgATOOy6Hmdbs54wNa9h0ntHqgl79ZaKAMz2IBzopsS4qjLiUl1vnXlNgl0Cbo0Tf7BoHCSRX0uqqsLf+998I24d8a2Tbg9tMz6pCBJlTutdp1LA9ZXJdaUsI5uELW8I96nRv85pTtTeewGeXSNzc4/HCt50PcZEh1m7ssMCdV8+UX6d7Hql4t4Co+imiUxH7mLXYeaNRLJCmupcdVOAbGQaIomkQ+j2UtNQCd3+Owz3HACaiJJVKZNZVZUJgINAlqvJuji6KYsct72ujmJuTy7ZNM627UhxYjLJ4rSeDq0DVEhi11MUErHVwqLNGvrVeewP/tIP4Svf/zw+/v7nL/9gMyxsHs8mt/w6Xr4m191EWQq0L1zDJUnqYL0DuABzOVD0eicJxAYNd4e+ZD/1uUeq/pZC02NbZ0wTfrxKrwSyjIqqaycH9rnk1U0FtWm9/1+WhS0YWEQK8FWZnxbhmmWQcNUoUHprKx1cmuv7cGjdoCk3kHnS4mVuTaIiAD4IexCy52TYu1vFXrrwrpvOiT9c1jZIVNDCAeCV20ce8l8+VoPVosanB7rpIUU3tTWJc/sksiyNULiG3bsXDrvMjBd/JjdmiiQyCZapn8wL0LhzA8weV0qUuPuUzHVPN33CjJWxjXGmGSRxWqOmQxLZRWuCJJLj3HYDgGlnQQWXXgBmXmOl5OVcyMLAqptOlKyI67YdF6zhNVrd0f9u9HVz1GXNuMKxIsX2zBxjwjXMhiiO43rXOXTT8rgRSdy2ONtyinieuikZNMi4sY5Fkf08j33RO2/jL3znxz0k5jpZSDfdEkp1YU0iq1LqNgAGeOp6KFzT1BWRJDE/w8wukEeKQgl0DUohQeKjTTv+zpgoLkpdYskpDNcEjZPm1saywR7g003Z4FJYCRI0aHuFak3UNbuup5QFAUfKv+2cfeN6uS/zhWtqj5I2W7iGXCbl+kp/vxWBVIdJb7ZP5bJ2kJSeRztljg/OZI7ctZa9W6P47X43TZsOwDybc5DEuXb7aDleg0Piui2aGk1dYb3rsN3xisAekqigjQJOiQ+5JqeRxPRYt5TFHcf6kmFNYmktiSUzmaDU7e+qUc69Tna9Vtm3wPiM/BRJZG7iSf+jwkNTVRXqyqebapS9tDWJYQuMOY2zWWqljAvVnlhFqlDdlLlusohYuikxx2qKQGoREXVw2ek2trFP4s7JWiuQxPW2HbPBTHAvTquR5efQDZcSosmsLxrbF1PTW+5ptkVTjwkPYJCgLywM7nkElPSfYE3gaNqBSqMq++xu2oS63djKxX43NkPrBoa6INEI10j7BnWfREUg61LJdEiinm4q1L4HZ8bZvew2MG598xwkUZ6D64ckDok7JQXURfw1bVJEuIdRA3ZtFQRgmoSf7Itsn0o3ucX2aTVzkvYSwz1Jotuyd+sUv81nd0NwqaOb2vraKwkSB8ppU1f0/W/m2NJaAvL5Lk2YeUbDNilsUsCIu/gqpe7npcYAvk+4I9bXKCJI+pKAn8xkSj7COuUnDUUE9kEi9QDUtZX/N2PK/f0k2Jv0eyMXLZfKqeHVyzPT9fraQjuuOMwTvBmRRLIHYUjlLAmnxJSs2KxRGKRrOfJs3eT0/HNBae0sPhra0GphF0lbpE8EiQON52xAEhnRGsAqqQmSSPVoqv0Fkp3j0hmnoSg9zbZqfErOlsjkh/1F2SClriqvLU5Prgluwkm/bk3pprnnWxwkaaXAKNuJzQ0ShSYpx2TVTV3qNI8kOoigQlr/ZEZNoji39xVBw3nMrZNikbOmtkmB8f64Zi0w3PZVmhpsL5BSBCny/SVpwa6TEnBpUDqZ09ZJ8LJ9El1WCF2TuJQ56tpLiOicRt00RIB1dNN5iP9cu31k1qujZUMrfksgy2oJAGE/a6XgjZOUpPaNBJKo7ZPYUXuiMLB0wd7op7m9eYlEqOsDac7jdbLrtcq+BcY4TmEWQaPKGdYkchRQvyaRC/bgHacHWVtYV56yYK8ILjvnWIACSXS47vJazsJ+YwDLI7dUF82m7ao7suje5Pxr1R07qGhDc/skjpLY225AEskg0RWuoZFEm1nUCAmIkI6I8jxpamCXYYvar0nctV2xdYxlM+hQCldcCuBrEl25bzZoiwkJcOqmln4I6Jxrl5KppZuKswWUnWsXoRjnSAvXWIfzWNUCw3VauWd7bAp+ejVIoqwdjzc79D1XyyV7wLazglvXLSvvthfSiFS47aQ0zInxPG4HBVBy3KQmkbjeouS5Vvap9BK1irVc9qk3T6VuknsGJDGvEdNzy1k6hQIoAK+m+SqQxJefM/18NQHpwaLB2XYGkuhdN+5Y3jhyTZ4w9YhnJ0UbLaqNNtYncY9XVK8f/hwiieXWGXaf0rRpuk62DxKJGzlUUmKdcrduT+4tGklUPmhjbZtTE8e1GwiyMbPqjwQ1m4nSEecRCNAGgkfuK3Sdd446zjpPNzU/XeEaSuzAo5vKsYrDRprKetdi0/a0Q2jppnokcdu6c+Q2DXfcnm4qdFN7T3Z9GYF3kQ3gfHRT5t5y5b5ZhzD2bDMMg1hNIuuAumuAFklcuzWJRbopJnNkHdCXbh6Mv7/jzjE9R0/dlFRFtUiivt/bHJtDd1y6SCLJ7rhqc4ONEclineRWl8gBLNr2aK0Td5Hz/1CJHK8W9ZggYdAXwK+31KmbDvfkKArD1yR2vbLlkpNM0yRyAOCOs35ohWvm2Cu3D72fjB0sazxat+h7PrgMfSC2/jcs1bm8mkS/3EDGlZaEsJWLjCv6oI0fA5jfUayndvu7auqNr5Ptg0QqSDQ/3aJtgAhuqspzEADOka+dwK3tdbU9fuNm4lgTuil3I9e1pVaywZ68Z0RkSQroXCUrz2lV0k/Ca11aI0dnd6L4mh/nCdcogu2ocA29ATc4G5BEttbj0BGu0SKJu1bXt8pFidia3Kfdlo11JNkWANO6aF7IYSpcwzmEWyWyF9u0uZpE8zcRX9q0XFNwsbcPGXlNkHi0bEYkHWCCxAFJdDPy5DP6yu2j8fd33+WDRPecsQ7h4YgkXg3ddBUEABq6o3HkBUm8XgtDtE8ik7hrXMYRX1t4uLB14gCPJI5BugJJBKQmtxtq/rggfdlU2LSGSdKRiWvAouAPznSiMKG6qSpRNcxRw1y5e3y1SOI7h3VBo8p8sKjV4jqun6YJ7he17THNJnhdJB3gWF8LZz0YxxFIYl2bMjDrF3LXPOw6YH4nkMRAuOZJpJteTym/KzRO3dTPIrA1YF42Rql25iKJLELkzZGkTYTCNW3H0lsrzyF055AfV4/1nSxKF+uJw2V/pnRfJuBwqbT0HBNIIt0CQ7mx2QyV05OLdS6WppCdlTEHLJJonOSWypoKbXTXOZRYVQCsrxF5Ws2VCZd7unTtlkH2syVpQ1MkkU1cVF7NEquu7M7R/T33fK8CJFGT8ACAv/o7vgZ/7u//NL78fXfpMUcrQ9vajH0SCzWJQQCsQTvd973zzlHmnWmj6aYTJPGy6aaDUI5CTXUUrmn7sZ7o2gnXBH0Sq4p8bhwnmd3vARvcj70ELxlJFHVfKxzEXDfHSVbQFq1wjV7dVARoAB1zZdf243VjzUUSr4JKePvYHI99tgFzLsdnm0YSfT+NvW4GdDD3R69hrrhJScKfSQvQlOcogm6A9Qtphf0+PB43Tkpn9nTTJ9CY2pmwBQOLnIXBHsA5yXWAQKpUAnt7vFmNsxXHC6mcmp5Eu64fkZG5SGJpXLj5yrxL5lFpycBNnAFL91UG90MWU45fMq9PoiIAAyySqBGuERqboZt2OCQ27VUQ7AG6e0S+2z5ItI2zAVuHV06u+NlWmiXg3P9SS8pcgWXjP2/MhtgEz42ZL+8kbEd0tafvZQB48eYBfvcv/jxVy5PjVYPHQ5IEmNEnsZ8nf36i6KUGAM8Pjit7rMMrrkmcI5wyqtl217cFhotStArUWPbgXqmu6dZ2yvEZk/P/cK2jF4tKJtu6CgjQVQ3ddBmgzQp1UwlIAZKFFSRqVUiiEySyQjLnsVdfvgEA+NaPvp0es1rUlrbLIokBKl5C6MZxtS9cw/pAoUopkPdnQpaMHI9S3HUCWQtwlBFIAJOWGxo9DU25wXWyZx5JZBynOnC2WJqkG+yNAQBJyZzD6wYsrZLpIwj4DbABXd2SRduG10gH1Izhm4u6AihiTE2EK+OsoWT6VFoukI2pm1JtA6J00+IwW5PY6vvvHHhIog5t0DQO9rJoiiDdlbvX1Og8zeYqIIq65rKw4bsZ8r7vdaJUY5BoXqNpQzPqH4EUkliuSRyDREXCY64drRY43bY43UqfRF2QyNTMuPbXf+fX4pNvnqrn+Z/8pi/Dv/NXfhQffOkG9f7RIb+imkQJSt98vKGP597Lkiy5bjWJgNOqRpEQWAYOOU/JNOdNahK1dFONcI28bzMo0gIk48VFVxWiMG4LjEVd0Uq2c9RN/X6+/HkEgDvHPF39IuxDb7uFH/qeb8YLNw7Kbx7sYFGPiKymJhGQ+lotkqhLijV1NQm+5LNStkiwy9jjbQNWTtmXHI7Rh0FpCeCwpTNsK5HrZs98kMg0hV0EAQBLr3SDvVYRAITKUlyQOMzNRRLJTH7YAkONtik2DZdLPo4jz39YpMw0Mg1rQlnH1VJp/Tmkxwzz8oSDiofykETNHEeUbqdXAJXaEo1wTV1XOFo2uDc6dgTVyOmH1isyu97CqqwReVpN6jb63rYAWBbvSX+jd18rjXNb8ADcvezSTWkGhKytanVTSUDYwHm5uNz75GgMbrisfIjkajPJX/D2W/iCt99Sz/MXvPsO/tp3fw39fqltk5rEy0YSRYH19Uc8uuEzUIRuer2QRABeb14eSbQiHJqkmFAOx5pE8nRMkFxFonC968bEK3P+Fw5NuCP3RDkWAJxtu7HUgbG69tVNWX8LGNg8Srqppqb5okwTIALzaxIBvZiPJxZIIscu+giAKk2JIYmsmNLSYfjJs1ouHZOgVKeK6iaA2BKM62bPfJDI3MhhM3fW4QqDPWaMvMeFw2cJ15D85xjdlFnI/cbZuu9mjmMRES1tS35neOQTtVEllZZFEmPnX4MkqmsSFy5Kp8t+HixqnG0NbUhTx3W8avD6oyFIJDKSY91Y2490RQ2VdjPU9uxjxGCzIfvEuQqgmnurquzzonlu3BYY7Lplqfz2NUunzQWJAZKorEmcY+KsyjNQoqraPpV2D7iO6nbLpkJVAQ/WV1OTKPTZN4aEE0U3dRAptkzhrTDpC1jXFT0/+2zrEn4Hi1BwiAumJuqydO1qY+imgr4QSO7CWcvbjqeEu/eg5n4UjQVNnf6ISrU6ui8AfOQVk8T52Dufo8dctR0smtGf0SKJUn/N0k0npVLnUTfN3F9237AbB9O3UI5nWYFcO51UyROPJD65rKhnPkhkgqkYbQjgaoJCARSW/iCgWauA7MM5sgGRc9/zNDG3l6BCFGbhbIjbHZcRjvVJZOi0LiKoQUTc68ZSayb1R4oF0ryf760ITNVNNeU5RrjGBGCaRt03Dhf43MM1AF32f9t24/fkqLRu9vnJXFgv2hZOwG2FI9h7shtZECxLwKW703OsHXVTsh6lDhJwAJwgOP0B4hBvdh3YliDnNeld+NoYJBaEawIGhNYBvSqTHngjQqpYE+aYnLc3FHRTd02QXn1XoSapNUHbDhY1ndwKVaC1CqBvKmtJpU/oa4/MWk4jicsaj9Y7mqIHWLaDiOuwc6yqaqwB1iDbkuBV9UUePl5L9wWMkMyPfe+3juvedTT3eeZFikJRJO5YbqmCKbkpj0n1SaSQxNb1Cctqo+PxQrqpks0mqqjFHutOf9fdE0o3vX6r7BVb2zK0RT8AYAprgTiSSAVuDpLYkXUsoXANn8Wx30vqlrS9beb0JGq7Hpu2RUNkXOeqmy6bCNpJOsnuYuDOO2XT889mtTCOm9NLcCPZTxWSKHRTXR3XneMVPvXmGQAuI+kFsprMriNSoXGanmYb6zudZuJ0n0TPaSofy6WbatrbLJ26ybblRATCWl4AlHqiODtSW1t6/0WYBDevPdygqni6qYskXlfhgsNlY5UkL/k8SpAyshIodVO7lpwNjqumofhV2eHSKOB2Cpr8wkH8NUmxsbZTSSUUiuTP3zNrOat4uWp8uiklEjJ8t0dr/b11+8i0edDUyM7pk+jWt7GKnK4dLhvcVLSkuGpz7wv2mZExUn/NrlsuwMH3yq2jNYl6ddNy6ZKMlXHj3lHquR0cj1dFdZDEa7z+52wfJBJI4qRROllLF2ZV3M/KmUuTpPuNDe/pe9242qs/8j+rNE7ezyKrgEvdNVLmzKYRg/p3BFLa1H5zb5l3yVzOulZcxxccKh7Kp5t2vCNfVRVWA7VJW+t0sKixHqT8dUHiEj8/BIk3Dni66bad195js9u3wBBbOkgiqy4YIhQA3yex781aorlupgbYQRKVSRIx5vtJdvxs21khn0sWMhmDxEdrHC0bur2Nln71VphH77vk4EtouhIkMkiRTQp0OBvUZY+uYZAoSKKGNroc7xNd/ddcwaHjVYPDZY3XH22wbCqckDV/BwMDRSiIJeEswD6Tgkhp0F9p96Clm86pwQasLsDTtt+4tHi6Lc5Y72quG4uAeQAHmShxyxQAuxfkrkOc/skiiTW24t8RrBXAqRsOQYcSAjkyIJ5c4ZpnPkhkgo2wRwodOFSW+6xVAHUzFqxj5x6HDi6rqbgOcx8vPF63BGDlcR6SuOP69MXUTRmJfSP2IYiseY2ici78puAA1xMTCJBcxQblFtuzm9SyqbDddWpK5uHSIIlbZQNyV8ntpZuHxfe7dNOxtk1BpR2dpidwYb1oc88li5y5NYka4SD3GdVk5Je1UY3re6m/KA6ZJOAAUDVn4hCvdy22ZHP785pk4V97uKHENKLqptf0XnYRhstGEleLGqumxj1SAAiw81vvTAse97XrZCOSqAg23GRO13H7KODWJOpowlVV4fkTI35y53hFt244WDTY7Lrx/DNBuiSOHw3iOpqk5O2hUb1mjxIV6DHhrWDltF1Hl/c8Sfa8I67DtzsZ6KYDAszeyyHAwapp+7oYw2dlfMMYu4xV9HdbYIw1iSwrJ+wNXvh+nnLxE5qAeOaDRCbYmNaWmBulKHhTV2PQ1ikCKROkWAroHHVTjQT9RMmQrWV02j3IZ5XMhe03bYeVRv7cocWaBaFMEZj2OyweDsumGtEJlm4XOrua2k4Zpw4SF/UoCKBBKI5XDR6udzSSK3bbCRJfvFlWWIvRTdkEBCD9xp6+TXuOuVLy8hyUHC43uaJBEucq7spGK+1tGLGDkJIJANuuH8RUckHigCxtO6e5+mXTTaWWazPWJ+Zs6VCNAF45+q0wOZ9VdTVN6o8PmrEmjkEuXbXLs63QTa+f+zIiiYqEQCgwpVU31dJNAUs51ahzGrppOyK5zPmX/f7xWleTCNikpOZ7HQx74qhuqkhcS6uga9hZ5Vz2grNX00ji2INTahJJJDHoscucSxdwAGzgpkUS6d68DsNs3DtYEGDiT5aBCjPPAUl8Am+u67fKXqGNwQZJG7IZEvM6E1xa6J13tlZzpOQDdU1WScmjlmnq9mo/Q86PsxviZtdhpUASXWcL4BSptiHdlEJELJK4I53rSf0RmTUaWwAoKTKAka439S86uumdkxXuPd7QSK7Y3RNbd/E84VwsXbqp4ru5weWWvEeednOl5AU50xTbt4oEkNc6QzHOFZjqSAchKkDQdkXqukWWeGT1vCbo4ZunWxwvy5pvrgIxIGv55c3vPCbnc9XUV9IU/GS1GBEpquSgqbGoK6x3tk/ldUYSNQIoYTKHHWeuFfCmUt0UsMGhps+f0E3PFOdf9hdBEjVB4nPH+prEg0WD9bZT+iTOeveEoj05c1tm8EjiECRudUFimJhnk5Jdj0lpVu6Ydt9wg0sSSXTorbxSuB+Ujm1uSj6o06rpSW2BcU23rKuxMdhgM/IjlbBDVXEUxF2QeWDpdlYlcJ66KRP8huM0gezSqT9SIYnO8Vi6Yyh3L8dlsjhzxHWWCxtcskiiRQQxjtOcj51z/tmA72jV4HSrRxLvHq+wbXu89mit2rRdJJFpbrxyrpv2/jfjBG1+ppcpANa52rbdWE/Bqpvuun5E/XX0K904D+1khWskueUiiW054+oK14w1iZd8n7j0OgpJDNYttk7zrTA5n1elGHri1DTzLRjqAUm8/uqmGrl7t+enpnRAVGltTSJ/Pp6/MQ9JdOmmh0TAIUGJticjYIVrNM+1CWRbXS11WJN4TZ/RufbCDXuNRTSqZILuC91UgySOYo0dmVyc+Nfm9dyeE0USyWdHeg4DViSNrUk8r3DNdS03yNn1W2Wv0DTBBgBPNpd1tlxkCeCd5I2jrjlX3VQVXPbWIWQyycthwwDsedHUO23bjhZOcYMGwHLWi6qoTTUuAlokS9Aadpz4w25bEH0ri2HetAT6kLUmlVTFxDHYtr1Kle3lW+U6RNfGLNqus+09VIhUN6DNz/QyBcA6Vxp1QRfZ06qbAj4CqWpvM4zT1iiL7bryuuDTTQWRutwN2HWwmJpEV4EY4NvivBUmiNJVoXOumAb7fJta6hbrbYuDxdUgnlqTNVnaYDDmOqDahN/hshn3YU0y7cNvN/39Hg8IH2NTJLF8vCMHfdfOUe5J2YupOTpBOqCj14/1/dfwvjqPuUgie/4ndFMFKu6pOVNskiAAI0qz4vvGjJrEkW5K1iRO5sghibvOJE73QeITZqxKoM30KSmgDvf5PEGKSgDFgewZfralqTo8a+I+XjbzUFJZpDYtL5ziNht2fzJ00zDzQ82xqb3gsq7KgfNcuq8bJGqEgwCzSVu6KTcG8LPHNw/5Vqlf//kv4ju+9J34nd/0KvV+27ahp7KDYhaRGijJ1xAxuGo78OiVXA2elXbXOU2eJP+4bnGUQMBkZ2m6e5BFBjCgkKXNt0ZTV77a4iUnE547Wo7fiRHtqKrKiEs5SOJ1dRLe/+INAMC77x5fyfE8JFHhuEpNIoPkvhXmzpENuF1RKi2SdbzUn0cA+IYPvQQAIwrPmDRll8CS+X4nQzLgzaEnpibh9+Xvu4uPves2/hcff49qjqYm1Pyfed5kbd0MiVrNXvokmOgHfOxdt+kxc1tgNIHPq2VTyTjzevpCuHsUYPytvueBCtlDx4SrouewP8dC7OAATNdZ3TpnvIf4FJptpJlfFdzABuB69AFSE2flgAHOSV4t/CbwWrEJgFNtNeMwjtOKVIxzVIwT5+psY7KtjGMn12ejRPcWdT0uWOKDMmudofva4FLT780KB5H1pwuLNlhxI5JuOmStN60ObbvjBYk8krhsanzfd3yMfr/XpmNEEonjOLVcrLjR024r5xmwNXjcxqatCbWbthXJoQSfHARy1/U41tBNnYzwtu2pdcE45FfXJ7GuK9w5XuJzDznhGpnTru1UPWjfCnv/CycAgBOSjnZeE+r6SoEIiipzXXFUx7fCDoY5apBEj96tRLJuHZm2RE1dUSUAYu9/4QR/7Fd+FL/o1RfpMeIHvalQUxXE/Y3HeiTxY++6jb/yb341/X7AtneyGgTlMYeOKNLTWJN4uGzwn3/XV+JDb79Jj5HAWfpb0kiiq+jfc+qmY6LQ8bmA/J6zCIM2kv4JmDVZgl+2dGPh7KXmuFzS1WNFtR1uKJLy18WevBlfoNHZgCBI4QOwCqdbvxiXUdtyaxJZHnMUyVK1zuhVlEAJpNxeaswDOgaJQxNsHZLYez/LQaLbgkSH5Ar15zzCQWxAChiqi6aOApAG2Fust51OtMCpLbx1yYvWYmjTMbZgUDQ33rV7uqmYOGTrXUvLdrt1jHNqdLT9FcfsbqsXrgnppowKnFDLNjsOWb0Iu3uywufIFhiAXSc15/GtsBdvGbThfUOweNn2toG6fqgIGlZDUqDC9VQ2Bcy81tsWZ9vWo9TmbOEwJ7RtUm6P4i6681FVFX7DV/AIHWD37tcfmYCPQRLlObk3g246x4QS2/U9KoIBBFhRJGHlXFe0/zz25e+7q3q/3E8P1zrBoUVTYb2zgVRJNRTwk5IAV5oV60EL8PodgiDypRtxSmxRPM6pNzZ+2vVct3L2TAeJbE2iXFgXyWKldsMehBTdzkWyyMxWTKKXnSMwqGuqKJn2IdU8oLKxnG5MAMBspG4gJXN1556yWAsMKgB2kCyWRz63J1qsJpF1JA2S2GG9a1Wb790b8+imc0wSHhon2RVyMEji07dpa81HEnXJrW1rg3TOabLPtk7MSujFfAuAaJBI0E0BoZZZJPEq7hOharMBgKkv71S1nW+Ffd2rL+KP/cqP4lf+gndcyfFeHoLSW0c8k0GQxArXU9kUsHTHs22Huye8Yw0Ikqhr+XP7SN8mYq7dOjL3/GfunwHgKNfHId30soPEkW6qr+08G9rpMMyhp90OAtSYfd7cFhi7tqfQ7Zjv5L4esxFJVAoMyntG4ZqWDPaCoJRVvV849ZabVpfMvy72bAeJM5wtQGpLOCpVWLfHBg4bh6aqlZ8HzMOjFa7RBLIuaqAZJxvL6bY1ffqITcOtbQMcmjCFJArdlJ/jygvclP0OB193lnCNsibxYFnjdKMTSQB8AQ4N3XSOLZt6qEnUCNdIvcEeSRSzap7duG6Vnp0RSdzpakJdJFe1JoT1F8r1R2zbcjR0QQ2uim4KWCGHD7zIIW7LAUkXsa3rqpxY13pk6TwmIlgsIgvYGmyA6634Vtjh0uzdp9uWdgjt/tZh13WqPn23Z7SJmGvPDQH9Zx6s0dQV9bwdLk2bjhFJvORn1LALeJZSOG6za59ItOeiTe6n+8oenH4AxrXYmqqbln3lEElkgzbABw8EKNL0HAYsM5AVj9u23Si49aTZkzfjCzQLGZM1iYIkkpnuxhFO0QhHTPokEpuGDWxsUKqhm3Zdr3JkRgquixIxSOLKFkSzffpEAGLXhtTR0oNdO0XU5jVtC4Zd15ECHOanVrhmRIiUdWOACbjXuyFInOk0XT6SaJxkTabPQxL3wjUA7Kbt1iSyglvuM0qplDobsC64txuilqYdqtQxdNPDoSfaVQaJP/6ZhwCAj7//eer9gqR3iiTVs2CiuHhEIrKA9MBrcbZpVTTVqzTXuWZbeyydhCvbNkDMre28bJMg8dP3z+jzX1UVjpcN3nhkkMTLfkYPFg22bY/HG51DLkjivuWSsWVToa70SOJq4feY1ug57CY1iennoKqqqH/NIYnOHEmgaIIkttx+6iZ3jZ/25N1bT96ML9BYRGrap4/Pko83sVY4xaG2aoI2G1yaFhDMHIEBSVRQosY6QccBYh7QsQn2VrJ9bLZ12uC+NE+jwOoHlgyTZI6zOxWuIemmDrVVQ/cFzLk83bTnylBdCZLYdiqZdlEEW+/2m7bYytlsxiCxlNwKEHFgXm0hwNLkneCSZVsI3T1AEhnnQnqiSYuJqwgS/w+/9hfga199AR986Qb1/mVTGSRdWW/8tNsrt48AAN/ykZfpMYfSgmHHK4detUmt5JunW5VjDZgEEFvKIiZIoptkuSy7dWiRRM35Pz5Y4P7QJ/GykRRxwu+f7VTo6sGyxtmufWLrxi7aTA/OZrxubA2w3xqNS7C7dGv3Z2nPcfuQjz4hJYRo/XI2wTgJZEmgYtXUqCs4bXGu57qVs2eabtqSNYmugwbwYjJNXakgdLGFU5PIqp01tcn82CCx48Y5mXyNI+mjbfx3G+mmA02SpZ8YKXk5l3Ldyg+2VTfV0X0B3aYdIiJsLalbb9krg8SjZYOzoQXA/CDxCpDEgY9fVVwioa4r3Dxc4N7jDdqux6p58hbWizZbF92Oz1sJhY+1V9Gqm4qxTYoBS1OlhGvG58a+tmt7imEg7QYkoXYVtORf/OGX8Ys/zAc2kvDTMEmeBXvfCyf4b3//N+Cdd47oMQeLZhQXua7CNeIE7rpe1doDwNgEXiVcM6B7QsO9TBMk8c3TLd5xm79uLqX48msShyBRgeQClpWwT0paO1jWVsmWDG4MkmgDN2YdFz9ubGdB6ke4/Q41ZRGx4LJck+jPkRVrrKoKR5LMV2pHXBd78mZ8gWb7jRWCxIDKuVMI17TOjc+qba2aCptBbEKjdubWMmp6OQKmT6Kql5rUUbQ6B2g5KImdjkgi/90kABY1w1Lz7EVTY9f5Cqxsn0RgEK5RCge5fSo1Drlx5P3PKtnh0qiwPlzrsqYA8Od/61fgV3zsFdy8ZMl7cZKltpCVu3/uaInPPlgDuBoq1XU3D0nccYpsbiJHI9w0V7jGVXIzgk/l6xbStM1xSSQxEK5ZXkOBI6Ffaankz4K96+4xvR4AFkm8f7obUa3rZkcre9+yaJtLJe/I/Ubs7UOw9tpA57xMc0WGNAGYK/J0FcI1AHD/bKtKnI6shH0N/GgHi3qsSdQgieudpXIywjVuCxgZ576eMjfY0yjsLxzwgFc39WsS5Seznx6tGjza7LBt+cTRdbJnHEkkIeOJummnkNp11C7JxX+sURjUztiNdNXU2DrywxzaaX76dFMikHLl9dXBjcP/JxfkReM82B35YI9UNr6vDRCcf7I+ygrX6K639BLctDq6L2CdkDeVWVMA+KoPvoCv+uALqjFzTIL7tbK28PaxDRKZbOTTbu4aJKhsGUmsxjGdItPqCtDII61B4HedUdxl7skwQwuYIPNwyVDXa7z+qBudkuvo3JleubogfW9xEyTxbNuNqNZ1s+dPDsbf2V6Oq7BuSZHw+9oPvoB/9UvfiVeeO9RNdIYdLhusFoZOqOlT6SGJVyBcAxgkkVUgBsy1Oht0EvZJSWMmCbcef+fG2GT+tuuoFhhWhMYXheGQRCvUyIwBLHgA8EDRtOWGnUPJjlYN7j3WIbLXyZ7pIJGtSZxSOTkkcVFX4w3f9TzVaOkEYAaRooZh6TygLG3FpUmqeqK5vZ0UjWuBoZZu22K741QMAR9JZGWLbTPxDlLypJHy3+w6uv7UIrJSSM3VP8rx3DYFmppEAGp106s0Uxcq8s/8HJ87WuJnXz8FcDXy7tfdFsMaZOT1Wxwtm2LyyCYgbHsVDSLoijZp2AW7tsfZtqMk8msnSSW267h14Xi1wKPNDo82pm7mqhrBa0zYHcLc3QvXzLfjVYN7p1v0Pa5tkPg2J1hjE3cu3ZRNrojVdYU/+R0f003yHCYMD835lyCxqi4fSXdrEu84/YBLdris8ZkHW+w6TnH9WTB3PeWRxGos0+n7MgADTJFEvibRaRWnRBIFCWR7DoctN2Qcsy8eLd0g8cm7t568GV+gsTWJgMn2aamcLhze9b0iaHACMBUCaVVRu05Hrdx18wIpgyQaZ5JFPI9WRspcw/+XVgpyTHfupTn6ATBxLA8l5c9/XVmBIk1tyXKh7yUI+H2qrmuGajEUsmtpPLePVnu6qWNVVY1rkEa4I1SXZW4tV8mtU7AE3BrIs21LORbybHl0U1I9+sbhAo/WOzxa79DU1bXcgFeL2tRoXvM+iU+CvXDjYNyjRLDlupm09gBAK4DKfft4Y9pCaVC6q7a3Dd/vfWQLGMAq2WrKDebaHHVZGfdgFNe5vuf/Ks3VK9DUJG7azgm+NEgir24KhDWJvC/vMvzYnsMj4OCAAAD3/Y6WzdgCZq9u+oQZi0gBgWqTIkjsnOwIG2ysnACsI9VNAVEAtZkOrt2ACKcoAylPFEOXIT9aNng8cLR5JNG2wBg560VFKkubm1eTqKsJDYWK2GBvNaCkVlaZr9sTu44OMjCIi0iQqEESj5c4HcQY9kGiMWkBcLrhUDrAJiA0KqWLyHNDtc4Y1q2zAYFnnN2wkTIwqJsSa/KNgwUenO3waN3iZFVGVt8KWw4iZHvhmvPbCzctMnTrmiKJtw5d9IVU7h4UEO+f6pQk3woTwZr3v8AHiSJOdKToiTnX3JYDmmDvcFnj/tnQy3G/3wDw72XWv1g2RidBfGWuT6L57JA6WvKDouqmpM8btrIo+aG25YaPQDLr+eGywZuPTc3wk5iAeKafBtu7jRFJmIEkVk5hrSLYcwMwViQHsCIJfW9qGanWGVLr5LZgUNUf9SqUFDAPjWyIbGbFbYGxJbNUI9rZdbPUTQXdYxxW+WxXqIimFzc1Nrse650Jiljn4s6JdZqua4bqZLXA6WanDxIdJ3CvbmrMRxL5TVvbg9Mt0tf1d7X1QAB3H480bY9uyvXXunGwwHrX4c3TLW5cQ6opYNkde+Ga89uLNyxKd13ppm6iQotkvalsXP5WmNBpNedfAsvLVtIG/DVH2ydR1q19kGhM2mOtmpr2XeXcnW6ML3OuPomFPWfptLLQrK8muLTBHkuDXgTMQHmtZMerBm88fnLvreu5s16RabMPbu9CTt20Hp2sXhk0AAbd01EyqwE1MP/XNS63yCOFNsi4sU2EbkH+zIMzAKDVNZeutHIr6qYFwSGvlYV5jROuGWoShyBdIzgkGTRW3RSwwb0IcLDOxV0nSLyOoh2AqWt4tNZRiwEr7Q48mQvrZdjBYugTt+HppoJSq9RNx1reHota0d5mZYWUAA4RCetRAFHFKx9PamY+ff8Mx9c0SFwMNYn7PonntxdvWlGY6xokAqa9x09+7pEKNV4tLJJ1XXtAAsDv+uZXUVXAL/+iV+gx0hPz5sHlX7NbR3r0CzDnXJagg2u6l161SVCvSXaIH/JIgkRNr+6RysntVZ66qUKYbTmIifV9b9hspO+6qCtbk6hgfR2tmpEVdZ0TQCl78mZ8gSbQMQOJuzWJfFsEn2etqVEDgNNti7braYhaxF12mlpLr+G2zFuBtg31fhrf59bhEp+4Z0RJbpDZRfNgi3ANiyQ6iODoJBPHcnoXaoI9V9mrJWtCzfEqP0gkF5K7xy6SeD0di5MDI/+srkk83geJoa2GIPF0EK5hbEwcadRNG0v/0dC0ZU6vD3L8zD0pn+urm3bUxn3TCRKvo2gNYIP0Pd30/PbCDbve3VaIkly1/Y5v+CAAqNp0+O0GrudaDpjz/kd+xUdU1NF33T0GAHzLR952WdMazT3nGmqfu+deV1bOVdsYJCrOo+zVjwcxMRWSKPWFdPuwegzaxiCR6a87PF+mVRNX2iDzDJFEZp5z0e3rYtdzZ70i2yqyAa66Ztf11ELijtEEDVKT+HBtHjSNuMumtWITqmbure1Nxkxz5QRSmro9AHj+ZIWzrZkkm110W2CMQaKidYnGSXaFg0y/Nx5JdO8RWpVW2kRsW1QVjwrenFEzcNV2vFrg8VovLe4iBfsWGMZWA1J9tm3poEjuLRXd1FEFPuhqepxshm8M9ReMsxv2FwVAU7zlHHzm/tpTlbxOZoSDdO2F9hY3V63ybbeu5/UGgG//0nfii999W1W35zcuv55r+Vx73wsn+Nu/9+vw3uf58zHXLqSX4x5JBGDppr1TClAy8Z1OFUjipE8iyd5yaaMaJFGer7NdqyrnWgz1ljJHmUPJ3BYwT2JN4jMdJGpqEleNL1xzzIxZmALZdui3pwkaAOCRBInkwNVAidXIAcuxNrseBwsN2mCzPxqUFPBr6WgksanxYGvOhy02zh/T7T/VKRARX7lVFySOvTQ1yPEQ3EsrC1aAw6VjXFfH4mTVYNN2eLTZ4fkbB+UBgz135KCk1/S7XbUdLE0vr9Nth7snCrW5Xa+6/21NYk+3CQLsdRK5b0bdMewvCgxIIrHmydrxYL3DiaIn2lWaEUnQKxfvbWp1XeFv/p6vw92T1ZWIoJzHPvDiDdX7V009qmteZyRxrr1feT7m2smqGbUBNPvGnZM9cyU0SUKLT8OY+KqPhyCRSfCGdNOWLDdYNJUj1Kjfp9bbjt5rZJ6ToJShm7pI4hOIUj95M75AU9UkLowjD4hSafnzJWuwGYIUbU2iIInsjbVcDCIJisaiSzfYU9ZoAhiQS12QeNdZkNlidnG2AIsklh7uEUl020uovpsJgNl6y5VTN9lp1U1nNFJ27bpmqKRW7N7j7Wy66XWuP7pKu3W4wMP1zvRJJJ1kQRIFqGNuZVfum21sDBjRjqNlo0IS66H/oyR+ANDZ3RsH9vOvK91UEkeaViJ7S9sHX7rh1WI/LXawsMIpT6IjeV2sqqrRp9AE2y5KvQ8SjQmSKGVWjC0DuinVJ7Hxg0R2/V+4QoEK31V8pfWupevfAVPyJPuUBM6MT3P0hNNNn7wZX6BpahIPmhqbQX3StMDgFFGBQTjlHEEi61xLL0GrDsUfy5XJVwWXSnEXwF+QWbrp0qWbStaohCQGtYUAuYgsLQK5U6rSjgq4qhpUqUls1YvIb/6q9wKwMuPXzcSRf+PxRvXd3MDwbc9dz+921XbrcIk3T7cmSCQdSWFAsBRtAGM9YOvSVOkeqA3efKyrrVo09ahYDIhwDaNuau+Rk4PrmSRZDtnufZ/EveXsYFnjwXrfp+8iTFgFmv3mSRCBu2p730AP/g1f8R56zARJVJQ32HYWHbX+L5zyHg3g4/p3266jQYDGUVMVMIBJKNx06mQ1dcrXxa5n+vWKTFOTuFrUo0JRR2Y6LN2xVaFtchNrJZlFgdUW8RIOoTSOV1LSvOBSEUgBwPOOAAGLJC6cAEz6JZbELVwkcRTlUQhwnG1a+loDppZ04yjgalRRH57tsN526izyH/22j+D3fcvnX9sWAFLr8XjT6tRNHSTxun63q7ZbR0vcP91h13V0ALZcVFhvO6yHGmCqwX1jN21t6wYfSSTXLSdDC5iWNUziznXsrjOSaHqg8kH63p49cwOT69wn8UkwCQ41wba731xXEbirti9853P4x3/0X/KCnJIdLPwgkQn2mqBP4q7lfK5lU43aFpqab7kvzrYGSWQ1Dxa17a/IstkA4O23bf30y9e4ljplz/RqpKlJXDoBwLbrOBUlpyau7XlHSzJhb4wNONkgMejJpWz3IKwCVQuMIUuuqkk81jt3riM5PqCF8+K3wDBjmbhNHPCzbTugxmSQuPCFa3QIZD+bbnqdgygX4dFkaFn1zmfJnjta4v7pFqcbjbppPaLUAIfuSfJlp6SbAibB9cYMJFGCqLbr0ffcmuy2RPjgFdU8aU3q0sVpehLpRnu7fHMDk6exJvEqTRx5TcJ1jyTGTRMgAucTrtk5KB0TfC1qZ99QAD4ukni25dtJuX2wbZBYPp60gAGeTCrzkzfjCzQNRO0GAJtdR/XSCYVTWEamqCGJs6VtgaGhNrktMGzdnn6chm76Pkf1TYWSji0wuCLlqLopWZPY1BXOdi3arpvVJ7Ht+XOyGqjMZ1s93fS6m6cap/hurHjPs2S3jhbYDK1SaCRxSEBIxpW5v2xzY13iCPCD+0N63apGCjnb3ia0j7//edX7r8rsWs63Bdnbs2fuc7kPEs9nv+jzXgAAfPn77tJj9jWJF2Ny7h6NLTA0wjW2wT2z/i8jwjUckmiFa0QskLGF04Zto0AS33H7yS6Xub4QxBVYq8gGuAEAK+fvFsh2ikDqZBT7MI6FLpDqnYCIQUhtsNcrIPtFGCQqkMTbx6ux4TBri8aKwlh10/z3cwVoNHRTwCgznm6GRYSlzTX1qEjbdjz6crxq8HjTqpz/J8VOZgaJAPBrf+G78OrLNy96Sk+suXWa7H2yCpBEJuHkZnY1/UWBIEhUPDfbnV9bwlKA/qNf/wvwN37kU2MvtutmRysr3ATskcS9xc1dG/f3yPnsD//yD+N7ftmHVXup+16XobA3ncm6PdJNGeGasCaRpJsa+ufA3Op5VqBc6/WuNToQc5DEHeeDAsALClX362jPdJCoRRI3ThaBChKXFsnS0BaFoidNqXV9Ejvne3FjAHjiCkxNoifKowwSAeCv/86vHSW/GTtYuMJBHaqqfN1C4SCAo5sCRoDjbED3WERk5Sjgdj3f8uTm4RIPznazhGuuu7m1Htog8Y9/+xdd9HSeaHOL3tnWMcKAWO861BUXfLmKo5r+ogA81VV28100leMg6Gr3fvkXvYJf/kWvUO99K+w46B35tD3fe7sYc/eYpy1ReNU2V/jnr/ybX407x6u9mvY5TPZ4UTed0wJj13FtKdze2Rqf1y0DO9t2Kl0Ml/HS1BXl9zZ1ha943118w4deoo5z3WwfJELfJ3Gz6yjeulBS17vOUFRJB2HV1FjUlTr7vGqqgSKm7wno1u2xwjWLusLptlW19xA7XDaqzfBgUWO9s0E6s4h4wjVdj7riaYwHC9OT7mzb0YiI0EYBnXDNzaG1weNNi5duPl2P5NueO0RVAX2/r/U4r7nOy8tktvtgUeN0I1Tmhr7/F42ppdOskYDv4LK1sst6SiVnkcTrbpLwG9fyfQCwt4i9/TkraMH0F93bxdvH3nX7rZ7CE2+huinFSpMaeIcpxpYFiSq2hj3nCtesdx1eZEs36mpMYpr+ivwe9QPf9ZX0e6+bPdOr0ShcQ1xsD0lk6aZLP0hkkZSqqnC8amYhidu2V0HvVVWNgjeaNhGAoZadbuYhiVo7WDZY7wwldtf2lLSyK1zTKcV1Dpc11ltdYbPLkdcI10gm6/VHm6dO/nzZ1JA+6S/cePr6m12luXUzrErajQOTgNDQpgFDAdq1tpaXpZvKsyJNraljeRlhqUl8Oramo5kiZHt7tkxaGDV19dTc+3t79mxEEtdDCwxG3TTok7jtuBZIizqCJCpYcOtdh7VCB2I1A6h4GuzZ+JYJkxuMUwE1dTPdkF3X1CRudh1NURU7OViMjgXdJ3EIZMfvRR5uOaAGnVKk4nDV4FSpADrXDt3ehS3XR2ds7zGI+WjEUA6XDR5vdqo6QVfcSCNcIzTCzz1cP9WNlL/kPXfe6ik80fbeF2zdHRsk3jxc4vGmxaM1T5sGhg3Y7blKJ47M/cvSYQFflGpHilI9KTYVIXt6n++9zbd33jHP9v7+2NuTbFJucP/MrHdz1E13bcf1V3R0KkT0huo64PiSGv/OlDxZJPFZYUY9G98yYbvO1OkwiI8giYImMgGf2yeRpaiKHa+a8QFgKUoirqOhjXrjlHV7Bm1r1SjdHHMpAhtSItlDEpUKrEfLBm+e6qT8PXVTReAsSOK27Z9KJ+HzXjbtCT70tltv8UyebHPlyFlUVu6t1x7pEhCGbqpfS6TBvaYtS1jrAXAZ6CfBRMjn3ogkPl1Mgb1djL0y9FLbK2vu7Um2m8P6L/R6hs0me8uobtr2tLqpME82ijKFUbhmq1OUX7lB4o7zQZ8Ge7oKoJS263q61kaonNKUmqpJdKR2NXRTwHey2OBS0DYpGmZl5CWTr2kTAQx0022rboExx0IkkVOktfWWnaJPpTleg5+/d+odu3w8S0nueg3d1Gnk+xQ6kX/ht30cn3u4ufREwrNkLCXt1lDH+NkHa1UCYjEouWnXhOeH4FWzgbq1HjtFCcCTYG4LjIoUDtrbs2fvunuMX/jeO/i3vunVt3oqe9vbbDtcmvZhkmDnVEqDPoldhxvLcmhi+iT6gmcqv3zXqXpTrxbN6N9t2w7LxbOxlj/TQWLbcRkLwN5Y0v9FgyQKArlSBABz+suJkp6ohjJFvIARvPH7K+qCxB2J7J3HDh0kcUdet6qqDI+8NYGltibxnhJJPHDppkrhGrETBQLzpNjzNw7w/BMuA31d7C/9G181Ji8Yk3vrcw/XNEUVMEHe2mEXsPfy80NTasm4MubWJI59EtkiyGtuso7fe7TFwaLe9//cW9SWTY2/+K9/1Vs9jb3t7VxWVRVOVs1YKsX4aXVdoaqs+AzLwhItDcDtr8szzNZb0wJDJ0y4r0l8pmzbahqlm/c9HPrgcRkLC2tr6aaiimc+hxsnfPAxuGEFbxZ+f0WWWnawbIxy4q4dM+aXZUKVO9t2JotDB8DmwTbcc/78HyybkSKmQhIHcZ2u5/skukHiy7f2wdTe0vYl776javkg95YWSRThJitcw93Ld4cgca0IEl2Vut1Tpm4qa/KD9e6pZAnsbW9725trUgcP8IySRV05JQccw89tnbRV1LJXVYWDRY3Hm3Yo8eE1J9b7msTLsaqqDqqq+jNVVf10VVUPqqr6R1VV/ZLhb++tqqqvquqh8+8PB2P/bFVV96uq+lRVVb8n+Oxvqqrqx6qqelxV1Q9WVfWe0nz+ySfv4/7Z1rSlUGQRACdIpIRrfFhbQzd9/sQGC+zNaBs3D/Uvmlo6p+E8C7gdLU2biNNNi8NLDhIFSVzv2kF+mOeRS584zfk/Wjbj+ThSnMeutwsWm4C47ahWvk2B9uxtbyUTUaSu11GZDxYN1rvWCDApEHihm6qDxJFu+nSpm7rJs6ex3nhve9vb3lxzS6XYNU+EIQHQ5USLukbb9ej7Xl3LfrRqRjExFgQwbdhM8Lu9AvbcdbGr4rYtAPwsgK8D8DMAfimA/7yqqi903nO77/tYd/U/CuBVAO8B8DYAP1hV1f/c9/3fqKrqBQB/CcBvBfDXAHwvgB8A8PHcZHZdj7NNq+Iji1LmI0WQONJNdx02uxYrRXb81UHsA+Cz+EczGzcv6gpbR/BGQzf91LbD6aalA6m5JpTPs21HFzYDFkncKK61OZ49d2ywLdf7bCc9grhj3XEazr/83D5I3NvFmYtSa5HEs22nVi6+OyS3pF8oY66U+dgn8SmpX1029dga52lWLt7b3va2N8BXtqZ75XqJQq4FhgSS29a0Rasr3nd97miJzzw4A8Dvi6G66dPCdinZlexafd8/6vv+j/Z9/1N933d93/+XAH4SwJcSw38TgO/t+/6Nvu//CYDvB/Cbh7/9KgA/2vf9X+z7/gwmoPxYVVUfKn3o4zFI1CGJjxR000Vdoa6GPonKFhif9/JNAMAthZS8DRJ1tXSCtkmfRDYoPVzWON22ON1efpBo6aYtNmQLDMAqUq13vIoV4KOHbOsAWTTOtsZBZs+jW6ekqRvb295K5ooiseuBvPds26pVgYVuyt77QKIFxlOUpRVHaU833dve9va0m6x3R8tG56e5ojBkCwzAsE+2na5G8LmjJT5zfw1A5ydvWlNOtNntaxIv1aqqehnA5wH4Uefln66q6ueqqvpPB4QQVVXdAfB2AD/svO+HAXxk+P0j7t/6vn8E4Medv7vH/M6qqn6oqqofAoDTbYv1tqUDN3mfiMIw46qqwtGyweNNq1Y3/fy3mSDxO77sXfSYsSZRiSSuBrrpiCSSTuHR0CfxdNuOx74ss3TTDuttN/ZjK44bEBEt3fS5I9e51t0jZ5uhZ4/Cuf7AiycAgJdu7msS93Zx9tzRcsyuapIkB4saZ7sWbadTBb51uMB3fd378ed+y1fQY7zakpFu+vRkafc98Pa2t709KyZB4k0FwGEYX6JUyjHFpP5w2/bqlhQekqgoOet7g3RulaDPk2xXLqVYVdUSwP8dwP+17/sfq6rqBoBfCOAfAXgewH88/P1bAAjn8k3nI94EcHP4/QaAzwaHcP8+Wt/3fxrAnwaAg7e/2p9uW12j9BBJJG+Qm4dL3DvdoOuBVcMHUi/fOsQP/r6vx7vvHpffPNiIJD7SNW4+EJGKsSaRRRIbPF7vcLblz+NcO3SQxMfbHV66ySFuJwcLPNrsVKgx4AeJbAAs98jpVuimvKP7A9/1lfhnn3rwzGSn9nY11tQVXr55gJ9/80xVN3y4bIY1oadrlAGTGPuDv+QLVHP061GEbvr0PAfvfeEE//gTb+6DxL3tbW9Pvc0KEh0k0ZQ4MHTTAUlsO+w6Hf3zuaOlZdwphGsAUz62r0m8JKuqqgbwfwOwAfA7AKDv+4cAfmh4y6erqvodAD5ZVdVNAA+H128BOHN+fzD8/nD4v2vu35N2utE10pQbQoRr2HG3jhb43EOD7GkzD+974UT1frcnF8DX0h0uTON4Szfljne0bPBoULG6dHVTpwXGY0UN5MlqgUfrHdoeuO0EfiW75SKJ5CIigbK0SWGDbQB44cYBXvjgHkXc28WbJDneo0g4HS6bAUnU1STOsWVjle127dOHJL73eXPe931C97a3vT3tdutIgkTe31q5iUIy4JM9QpA9TYmCCwLQSKIXJO5rEi/cKlN49WcAvAzg2/u+3ybeOuBZqPu+fwPAJwF8zPn7x2Bpqj/q/q2qqhMAH4BPY43aqdQkKkVJHq5NUMSigjcPl3jt4dr7jMsycQbfVLbAOBgomVq6qYseXr5wjVWKPdvw9NbjlaH7aqjFQEg31QWJj9d6JHFve7ssEznyD750o/BOaweLYU1QqpvOMdMUeahH6Z6uFhgA8OpQX86KOOxtb3vb25Nqb3/uCIBVqmZsuagskki2wBC2ybYdkD3FPuX6d666fM7EfxSNkT2SePH2fwLwBQC+ue/7sRt0VVVfAeAegH8O4A6A/xDA3+n7Xiim/xmA7xlqCV8G8NsA/K+Gv/1lAN9XVdW3A/ivAPw7AP6nvu9/rDQZoZvqkUQTgLEBx63DBT7xxqlqzFw7cpDEpq7ozMrhIHe/2XWqcR4l89KFaxwkccv3ZRS66bKpVXQvd+F44Qa3iMj5F7RZI96xt71dlsn9qAkSDd20RdteQZDYWHXTEUl8iuimv/Sjb8NL3/nxUYxsb3vb296eVnvnHRMk3nucwoGm5jaqZ1G6EUlsDZK4nAkCvHiDY3BJOZEgifs+iRdoQ+/C7wLwxQA+5fRD/A0A3g/gb8BQRH8EwBrAr3OG/xEYMZqfBvB3AXxf3/d/A///9u48SLKrOtD4d2rprVq9S4LWOpKQQGhAAiSBxmYZCTBbMCAQCCFAWGaRwQ4CDAQDAsxiBk/gGcIsBssaEGI1iw3YCkMYEZ4AwshmMfLIgEBiES20dXepu7q7ljN/vKVSRS+Z1ZX5KjO/X0RFV2W+l3kqO+vdPO+cdy+QmXcAFwLvAO4BzgWe205MRSWx/XbTKsHbVVUSO7gm8a5dRSVxZZffVKtblonoaJKK8dFycpfZjt74W1r+uLq9TmLrmpOdLLmxZsUou/fOsne6syUwWg8i7Sfb921JbmdhV6nb/uL5D+f8Bx5VT6DSjpXjI+yZmWPPzGzXrzceHx2pJ6yZn910cP52xkZHeORJm+uZXyVpUFXjzM6p9pPEaq1uqJbA6Gx206L62P6YsaFl2bEj25wssCpU7Jud7XiinH7Wk0piZt4KHOx/8BMH2Xcv8OLya3/3fxU45JIXCxWzm7afOFTJUzW7abvtUEesGqvX/up2JXF8dKRYc2wuO5/JsKqsdrCWV2uFreuVxLHid9u5Z5q9M3Ntt5tWlcSIWHS7absWtvs6UYWWg/NO2cJ5p2zpaJ9VY6PsK0/ItHtN7mJV6wjC/OymwzIAS9IgOaasJE7u3d+y5/u3YmyEyT0zZCazc+22m87Pbtpp++fxm+bn++h08sq63XRscE5kHszQXiRRtJvOdry8weSeztYgbJ0ApRdT5q5ZMcrOPTMdr4m2d7pacL6DJLHlDEy3J66JCNa1rG3TdrvpijH2TM8xGjMd/W6drE9ZqRLlHeXEQd2uwEjdUp0s2jE13fYxcrHGRkaYnUsyc76SaBVekvrO+tXjXHzOcTztIVvb3mfl2Ah3z87VSyG1c/yvK4mzyUyHSeLpWxfOd9lejFC0m+6Z7v7J0+ViaJPEYjKT9iuJVeXwznISmnVtztzUOg1wL3qYN02sYOeezhKiVeNFqX/3vtmOWjLv027ag4Ro3aoxbt9ZTHLb9uymK6sZR2c7qpKOjY7wR088jd/qoAJTvQbbrSSqz1UD4I6p6fuc6OqG6tg6XV5bAu23eEuSlpc/eeZDOtp+vLwmcf5yg0Mf/6uW1Om5IrnsdAmMTrVOXNOLtcGXi6FMEkciOm6vrBKAbTv2sGbFaAcT1/S2krhl7UpuuWt3R8lete3knumOYmyttvVi5r51q8fZViWJK9p7vjUt23V6TejvP+6Ujrav3iPV+jud/B9Iy0n1Xt4xNd32NRuLdZ9rSwZwdlNJ0oFV6yTOX25w6ON/NbvpzGyyb6azJTAArr7sbNZ0UNyoVzjYM0Pm8HSKDWWSGFFMLrJvtv32ymrSgV37Zrn/+vYWcgfYumF+204WF12sqrrXSdWsaifrtAIZETzqpM2sWz3GqUe3P3PiYq1bNc5P7tgFdNBuunJ+u3aXO1ms6szS9nqdSqsh6k/VcWD77umeTFwDMD2TAzm7qSTpwMbLdRI7udxgfnbT4uRip5dFPO60ozravh4Tpzq75KzfDWWSOBLBjg6rPavGR1m7cox79850VKo+vmUB65O2dD+R2nJEkcx20i/dWjXo9Fq8T7zkkR1tfzjWrR6rZw5tf3bTlkpilyu51eymO+t1KofjIKLBUx0Tpqa7P7vp/MzFs/UENl6TKEnDoaokznRwuUHrjPfTs3NdL8JMlN1yd5erFXT7Wv3lYjh+ywVGI7ijvLawk8RhczmbZyfX6LROO79+TXev7YH5SmInJ+Kr12DHVGftpr3W2rrbbj/45pYZWLudJI6NjrBidGT+msQhOYho8LRW4Fd1+e+m6grYvW+Wmbk5RsI1RiVpWFTrJE53cLlB9Rlwaro4udjt7pPqkqq77i06xbo9o/9yMZSfYkdHop4ApZMP8pvLltMNHSSJvS5JV2fgT+tg4eYqxp1T08v6OrrW5LzdayBbK7m9SIBXjY/Ui8g6cY361REtJ2S6fQyrBtvd+2aL9a6ctEaShkZVSdw3M1f/fCjVuDG1b7ZY3L7LS1JUJzOrAtOwJIlD2W46OhL8akeRJHbSErhpoqjSdToz0juecQabJ7o7+UPlv511DL/asYfX/k77S0dWZfO9HS6B0WutrbAnH9le6+7mlgWsjzqi/WtJF2vV+Ci/ntxbfy/1o/Wr5//Wut1WM39GeIbp2azXv5IkDb6qklgniaOH/uxUJWl7ZmaZmZ3reiVxYsV9K4nD8vluKJPEsdGo34wbJ9pP+KqEo9Mk8ZJzT+ho+8Nx7MY1vOMZ/7mjfVqrh92e3OVwHNdSFWy33TRi/gPn2f9p05LHtFBrXMs54ZYOppeVxOq64arddNy/G0kaGuOjI8xl0ToK7VUSV61orSRmR+skLsbISLBmxWi9DJ5J4gAbbTlT3UmF74LTj+Znd+/mqQ9tf5HQftBaKejFWo6L9YTT7wfASVsmOtrvokccy0/v3NWTZTpaWxCWc+uudDCtkwB0P0mcH+yHaZFiSdJ8UrirnJiwk3bTPdNFu2kvlk2aWDnWUklcvp+Vl9LQJ4lbOlgD7PGnH83jTz+6GyE16j4zgC7jN/7qFaP8w6se3XEl993PemiXIvpNrbFZSVS/uu/Jjl61m3a2dq0kqf9VSeHkniJJbGudxNERxkaCqelZZuayXhKjm9auHOPnd+8G2u9m63dDmSSORTBbft96zdqw2jTRuxlAD9epHUzI04SNa4rXcsXoiDM0qm+1tmn3qpK4e98se6fnrCRK0hBZUSZ4VSWx3c+hq8ZHmdo3x/TMXNfbTaGY9XumnIF1WMap5Z0RdMnoaO8+APWDDS1LcyznJTD6wcYy4V7uybbUrl7ObrpnZtZKoiQNkerSnMk9xczw7UxcA2WSWHag9OKz60RL192wVBKHcjRuba9U8Qc6Ub7hvY7u8GwqJ0Iy2dagmOjyYFi3m+6bsZIoSUOmGgN2TLV/TWKx3wiTe6bZNzvH2h58rm+d12JYxqmh/CQ7NhI882HHcPE5xzUdyrIxUb75rYAdnqrddN/sXMORSIfnggcV118/+tQju/o8K0ZHGB2Jot3USqIkDZWqm2T7VDEpTNtJ4vgod+8q9lnTg4kJ167qj/k7ltLQltTec9GZTYewrGT5by9mAB1kVZI4tW/2EFtKy9v7L3kYc5ldbzeNCNaMjxbtptNzbJoYjsFXkjR/XfqO3WW7aQdJYjXbaLc7XgCO2bAaKD4nD0tBxYxAANxRLgD/8BM2NhxJf6sqsse3rOko9aNetkyvXjHKVF1JHI42HklSa7tpdU1i+xPX/HL7FNCbSuIpR60Fio671sndBtlwpMI6pOrNf/r91zUcSX87+8SNXPCgo/jIi89pOhSpb0ysHGPXvhn2TM8NzRlaSdJ8kri9wyRx9YpR7uxhJbH6nDxMM9dbSRQAn3rJI5ncMzNUb/5u2Lx2JX/5wrObDkPqK+tWjbFzzwx7Z+accVqShsia8SIVqSuJHbSb1o/Rg4lrqiTx1Y8/tevPtVyYJAookpvNa1c2HYakIbRu9Tg7pqaLdlMriZI0NOpKYofXJLYu3zaxsvsnF9esGOOWdz2l68+znDgaS5IatX71ODunptk7PecyPJI0RKokcefUNKMjwWibHW3VRIHg0nbdYpIoSWrU+tXj3LN7H/tm51g1JFOLS5Lm20b3zc61fT0iwKaJ+SSxF5XEYeRoLElq1PrV43WrkZVESRoeoyNRt5h2Mqu2lcTuM0mUJDVq/er5a0u8JlGShku1VmInSeKmta1JoicXu8HRWJLUqNYk0dlNJWm4rCmP+x21m7ZUEsc72E/t81WVJDXKSqIkDa9Vi6gkVu2mR69zZv5usYlXktSoo1oG+fuvX9VgJJKkXts8sYKf3LGro5OEx25czSv/6ylc9IjjuhjZcDNJlCQ16qQta+vvT9gy0WAkkqReu9/61cA93K+Dk4QjI8Grn3Ba94KS7aaSpGZtbJnK/P7rrCRK0jDZWiaHx25c3XAkamWSKElaNkbaXEhZkjQYqiUs1q4cP8SW6iXbTSVJjfvcFeexZ3q26TAkSQ3pZOIadZ9JoiSpcQ87fmPTIUiSGnDpo07gh7dPctl5JzYdilqYJEqSJElqxKaJFbzvkoc1HYYWsK4rSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmomiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqJomSJEmSpJpJoiRJkiSpZpIoSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmqRmU3H0HMRMQn8xyJ2XQ/sWOb7GWOz+/VDjIvdzxib3a8fYlzsfv0Q42L32wLc2aPnWux+/fA6Lna/fohxsfsZY7P79UOMi92vH2Jc7H7GeF+nZeYR+70nM4fuC7hhkft9aLnvZ4z+bsP8u/VDjP5u/RnjYfxuy3686YfX0d/NGJfbfv0Qo7+bMbaxzwHHKNtNO/PFPtjPGJvdrx9iXOx+xtjsfv0Q42L364cYD2e/Xj6Xr39zz9Xr/Yyx2f36IcbF7tcPMS52P2Ns07C2m96QmY9oOg5J0mBzvJEkLVcHG6OGtZL4oaYDkCQNBccbSdJydcAxaigriZIkSZKk/RvWSmJXRMSmiPh8ROyKiFsj4nnl7Y+LiH+LiO0RcVe5zTFNxztoIuIVEXFDROyNiP+z4L7zI+KmiNgdEV+LiBMaCnNgHej1j4hLIuLelq/dEZER8fAGwx0oEbEyIq4qjzuTEfHdiHjSfra7snztL2giTqlbDjT+lve9MiJ+GhE7y2PUbzUZ6yA6yPH/xPKY0zoGvKnBUAfSwcaAiHhkRHwlIu6OiDsi4jMRcf+mYx4khxqDI+LyiPhx+f6/LiK2Nhlvu0wSl9b7gH3A0cAlwAci4sHAvwNPzMwNwFbgR8AHmgpygN0GvB34q9YbI2IL8DngTcAm4AbgUz2PbvDt9/XPzGszc231BVwB/AT41wZiHFRjwM+Bx1BMgf1G4NMRcWK1QUScDDwb+FUTAUpdtt/xNyLOBd4FPIvib+Mq4PMRMdpYpINpv8f/FhtaxoG39TCuYXGwMWAjRUvhicAJwCRwdSNRDq4Dvv4R8VjgncDTKT6D/hT4RDNhdsZ20yUSERPAPcAZmfnD8rZrgF9m5utbtlsJvAV4emae3kSsgy4i3g4cm5kvKn9+CfCizDyv/HmCYt2yszLzpsYCHVALX//93P814PrMfGtPAxsyEfF94K2Z+dny5+uA9wLvBy7PzK82GZ+0VA42/gLfAV6dmee0bHsvsDUzPWGyxPYz/p5I8aF4PDNnGgxt6CwcA1pufxjw9TzQ2nhaEtXrDzwKWJ2Zv1/evpXi2HRKZt7cYIiHZCVx6ZwKzFQDVOl7wIMBIuL4iNgOTAGvAd7d8wiH14Mp/i8AyMxdwM3l7eqhss330cBHm45lkEXE0RTHpBvLn58N7M3Mv2s0MKk7Djb+/j0wGhHnltXDFwPfBbb1PMrhdmtE/CIiri67e9RFC8eABR59gNu1RPbz+kfr3eW/Z/Q0qEUYazqAAbIW2Lngth3AEQCZ+TNgQ0RsAn4PsILVO2uBOxbcVv/fqKdeAPxTZv606UAGVUSMA9cCH8nMmyLiCIpWl8c3G5nUNQcbfyeBzwL/l+LD2XbgSWkbVa/cCZxNkZhvpmgLvhZ4YoMxDbSFY8CC+x4CXEnR+qgu2M8YfB3wyYj4IMXlZlcCCaxpMMy2WElcOvcC6xbcto5igKpl5t3AR4C/iQiT9N5o6/9GPfECive/uiAiRoBrKK7NekV581uAazLzlobCkrrtYMf43wUuo6gqrgCeD3ypXyaO6HeZeW9m3pCZM5l5O8Vx6QnlySstsQOMAdV9p1BU1v8wM/+pgfAG3v5e//LSjjdTnKy6pfyaBH7RSJAdMElcOj8ExiLiAS23PZT9l/THgKP4zUFN3XEjxf8FUF+TcjK2W/RURPwXiomb/rrpWAZRRATFpBxHAxdm5nR51/nAH0TEtojYBhxHcUH96xoKVVpqBxt/zwS+lJk/zMy5zLyOYvKm83ofpigqKODnzyV3kDGgutTjq8DbMvOahkIcaAd7/TPzfZn5gMw8miJZHAN+0Eyk7fOPdImU17l9DvjjiJgoPxA/HbgmIp4ZEadFxEhEHAm8B/hOWVXUEomIsYhYBYxSXIOyqqzWfh44IyIuLO+/Evi+k9YsrYO8/pUXAp/NTCu43fEB4EHA0zJzquX28ymufTiz/LoNeClF25fU9w42/gLfBp4SESdF4fEU1wot+w9o/eRAx//yWtDq889mismzrs/MHc1GPJD2OwZEseTaPwJ/npkfbCq4IXCg139VRJxRHn+Op5hp9n9n5j1NBdouk8SldQWwGvg1xfS2L8/MG4FjgOsoysv/BswBz2gqyAH2RoqJgV5P0VI0BbwxM+8ALgTeQTED3rnAc5sKcoDt9/WH4iAJXIStpl1RniV+KUUSuC3m1yO7JDPvysxt1RcwC9yTmfc2GbO0xA40/n4U+CRwPcV1i+8FXupJwiV3oOP/Scx//vkBsBe4uKEYB9bBxgDgcor/h7e03O7xfwkd4vVfBXycoi3+n4FvUizJtuy5BIYkSZIkqWYlUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1UwSJUmSJEk1k0RJkiRJUs0kUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1QYqSYyIWyLi1xEx0XLb5RFxfYNhSZIGTDneTEXEZERsj4hvRMTLImKgxlVJ0nAaxMFsFPjDpoOQJA28p2XmEcAJwLuA1wFXNRuSJEmHbxCTxD8FXhMRGxbeERHnRcS3I2JH+e955e3PiYgbFmz7qoj4296ELEnqV5m5IzP/FngO8MKIOCMiVkbE/4yIn0XE7RHxwYhYXe0TEU+PiO9GxM6IuDkifqe530CSpPsaxCTxBuB64DWtN0bEJuDLwHuBzcB7gC9HxGbgi8BpEfGAll2eB3y8FwFLkvpfZv4z8Avgtykqi6cCZwKnAMcAVwJExDnAR4E/AjYAjwZu6XW8kiQdyCAmiVAMxK+MiCNbbnsK8KPMvCYzZzLzE8BNFO1Cu4G/AS4GKJPFBwJWEiVJnbgN2AS8BHhVZt6dmZPAO4Hnltv8LvBXmfmVzJzLzF9m5k0NxStJ0m8YyCQxM38AfAl4fcvNW4FbF2x6K8XZXSiqhheX3z8P+EKZPEqS1K5jgDFgDfAv5aQ224HrgOrE5XHAzc2EJ0nSoQ1kklh6M/B7zCeBt1FMLtDqeOCX5fdfAY6MiDMpkkVbTSVJbYuIsynGnC8AU8CDM3ND+bU+M9eWm/4cOLmhMCVJOqSBTRIz88fAp4A/KG/6O+DUiHheRIxFxHOA0ykqjmTmNPAZiolvNlEkjZIkHVRErIuIpwKfBD6Wmd8DPgz8WUQcVW5zTEQ8sdzlKuCyiDg/IkbK+x7YTPSSJP2mgU0SS38MTABk5l3AU4FXA3cBrwWempl3tmz/ceAC4DOZOdPjWCVJ/eWLETFJURn87xQTol1W3vc64MfAtyJiJ/BV4DSoJ7i5DPgzYAfwdX6z00WSpMZEZjYdgyRJkiRpmRj0SqIkSZIkqQMmiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqfZ0kRsTKiLgqIm6NiMmI+G5EPKnl/vMj4qaI2B0RX4uIE1ruuygivlHed/1BnuMFEZERcXmXfx1JkiRJalxfJ4nAGMX6VI8B1gNvBD4dESdGxBbgc8CbgE3ADcCnWva9G/hfwLsO9OARsRF4A3BjN4KXJEmSpOVm4NZJjIjvA28FNgMvyszzytsngDuBszLzppbtLween5mP3c9jfRD4PnAR8LHM/Mvu/waSJEmS1Jx+ryTeR0QcDZxKUfl7MPC96r7M3AXcXN7ezmOdAzwC+ODSRypJkiRJy9PAJIkRMQ5cC3ykrBSuBXYs2GwHcEQbjzUKvB94RWbOLXWskiRJkrRcDUSSGBEjwDXAPuAV5c33AusWbLoOmGzjIa8Avp+Z31qyICVJkiSpD4w1HcDhiogArgKOBp6cmdPlXTcCL2zZbgI4mfYmoTkfeExEPLn8eRNwVkScmZmvOMh+kiRJktTX+j5JBD4APAi4IDOnWm7/PPCnEXEh8GXgSorq4E1Qt5SOU7wGIxGxCpgtk8wXAataHutzwF9TJKOSJEmSNLD6ut20XPfwpcCZwLaIuLf8uiQz7wAuBN4B3AOcCzy3ZfdLgSmKJPO3y+8/DJCZ2zNzW/VF0ca6MzMXXuMoSZIkSQNl4JbAkCRJkiQtXl9XEiVJkiRJS8skUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCQJiIjjy7V2R5uORZKkJpkkSpKGVkTcEhEXAGTmzzJzbWbO9vD5HxsRv+jV80mS1A6TREmSJElSzSRRkjSUIuIa4Hjgi2Wb6WsjIiNirLz/+oh4e0R8o7z/ixGxOSKujYidEfHtiDix5fEeGBFfiYi7I+I/IuKilvueHBH/HhGTEfHLiHhNREwAfw9sLR//3ojYGhHnRMQ3I2J7RPwqIv48Ila0PFZGxBUR8aPy8d4WESeXce6MiE9X21eVyoh4Q0TcWVZOL+nRSyxJ6lMmiZKkoZSZlwI/A56WmWuBT+9ns+cClwLHACcD3wSuBjYB/w94M0CZ8H0F+DhwVLnf+yPi9PJxrgJemplHAGcA/5iZu4AnAbeVba5rM/M2YBZ4FbAFeBRwPnDFgrieCDwceCTwWuBDwPOB48rHv7hl2/uVj3UM8ELgQxFxWkcvliRpqJgkSpJ0YFdn5s2ZuYOi6ndzZn41M2eAzwBnlds9FbglM6/OzJnM/A7wWeDZ5f3TwOkRsS4z78nMfz3QE2bmv2Tmt8rHuQX4C+AxCzZ7d2buzMwbgR8A/5CZP2mJ86wF278pM/dm5teBLwMXIUnSAZgkSpJ0YLe3fD+1n5/Xlt+fAJxbtohuj4jtwCUUVTyAC4EnA7dGxNcj4lEHesKIODUivhQR2yJiJ/BOikrgYuICuKesWlZuBbYe6PklSTJJlCQNs1yix/k58PXM3NDytTYzXw6Qmd/OzKdTtKJ+gfnW1v09/weAm4AHZOY64A1AHEZsG8t22MrxwG2H8XiSpAFnkihJGma3AyctweN8CTg1Ii6NiPHy6+yIeFBErIiISyJifWZOAzuBuZbn3xwR61se64hym3sj4oHAy5cgvreWcfw2RWvsZ5bgMSVJA8okUZI0zP4EeGPZHvqsxT5IZk4CT6CYsOY2YBvwP4CV5SaXAreU7aMvo2hFJTNvAj4B/KRsU90KvAZ4HjAJfBj41GLjKm0D7injuhZ4Wfm8kiTtV2QuVaeNJElaTiLiscDHMvPYhkORJPURK4mSJEmSpJpJoiRJkiSpZrupJEmSJKlmJVGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1f4/WCe+dKm1/scAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ahora, necesitas preparar los datos para el entrenamiento realizando el filtrado y la normalización de tus datos.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Escala los datos para que estén en el rango (0, 1).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2014-11-01 00:00:000.101611
2014-11-01 01:00:000.065801
2014-11-01 02:00:000.046106
2014-11-01 03:00:000.042525
2014-11-01 04:00:000.059087
\n", + "
" + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.101611\n", + "2014-11-01 01:00:00 0.065801\n", + "2014-11-01 02:00:00 0.046106\n", + "2014-11-01 03:00:00 0.042525\n", + "2014-11-01 04:00:00 0.059087" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2014-12-30 00:00:000.329454
2014-12-30 01:00:000.290063
2014-12-30 02:00:000.273948
2014-12-30 03:00:000.268129
2014-12-30 04:00:000.302596
\n", + "
" + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.329454\n", + "2014-12-30 01:00:00 0.290063\n", + "2014-12-30 02:00:00 0.273948\n", + "2014-12-30 03:00:00 0.268129\n", + "2014-12-30 04:00:00 0.302596" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [ + "### Creando datos con pasos de tiempo\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "Para nuestro SVR, transformamos los datos de entrada para que tengan la forma `[batch, timesteps]`. Por lo tanto, reorganizamos los `train_data` y `test_data` existentes de manera que haya una nueva dimensión que se refiera a los timesteps. Para nuestro ejemplo, tomamos `timesteps = 5`. Así, las entradas al modelo son los datos de los primeros 4 timesteps, y la salida será los datos del 5 timestep.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=5" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1412, 5)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0]\n", + "train_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(44, 5)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0]\n", + "test_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 4) (1412, 1)\n", + "(44, 4) (44, 1)\n" + ] + } + ], + "source": [ + "x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]]\n", + "x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]]\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5,\n", + " kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Fit model on training data\n", + "\n", + "model.fit(x_train, y_train[:,0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "### Hacer predicción del modelo\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 1) (44, 1)\n" + ] + } + ], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = model.predict(x_train).reshape(-1,1)\n", + "y_test_pred = model.predict(x_test).reshape(-1,1)\n", + "\n", + "print(y_train_pred.shape, y_test_pred.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)\n", + "\n", + "print(len(y_train_pred), len(y_test_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)\n", + "\n", + "print(len(y_train), len(y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:]\n", + "test_timestamps = energy[test_start_dt:].index[timesteps-1:]\n", + "\n", + "print(len(train_timestamps), len(test_timestamps))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABasAAAGDCAYAAAAlN0y0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9eZxtV13m/aw9n7GmOyY3E4QhITIHERkUacjbIrZt+wrd7dCKgratre3Urd2grSD42ohoMwiKAxAwKCAaDGMSEkJIIGRO7s2dx5rrjHtYe6/3j7X2ObvqVtU5dc+vbt3K/X0/n3xy65xTq/Y5Z++113rWs56fUEqBYRiGYRiGYRiGYRiGYRiGYbYSa6sPgGEYhmEYhmEYhmEYhmEYhmFYrGYYhmEYhmEYhmEYhmEYhmG2HBarGYZhGIZhGIZhGIZhGIZhmC2HxWqGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhthwWqxmGYRiGYZgLGiHEzUKIn6B+7agIIZQQ4urz8bc2m+J7EUK8TwjxP8+xnZYQ4im0R8cwDMMwDMNcLAil1FYfA8MwDMMwDPMkQwjRKvxYBhABSM3Pb1JKfeT8HxUtQggF4GlKqQMDXnclgEMAXKWUPB/HtlGGfS8rfucrAP5WKfXBTTswhmEYhmEY5qLC2eoDYBiGYRiGYZ58KKWq+b+FEIcBvFEp9YWVrxNCOBeqgLtd4c+UYRiGYRiG2a5wDAjDMAzDMAxz3hBCfI8Q4rgQ4jeEEKcB/KUQYkII8VkhxIwQYsH8e1/hd74ihHij+fdPCiG+KoT4/8xrDwkh/p9zfO1VQojbhBBNIcQXhBB/JoT423WO/deEEKeEECeFED+14rnvF0J8SwjREEIcE0K8tfD0beb/iyYm47uEEE8VQnxJCDEnhJgVQnxECDG+zt9WQohfFEIcNK//QyGEVXifdwgh3iWEmAPwViGEb973USHEGRPtURryvXxYCPF7hZ9/UAhxn3lvTwghbhBC/D6AlwH4U/Oe/rRwnHmcyJgQ4q/N93pECPHbK455ze+GYRiGYRiGuThhsZphGIZhGIY53+wBMAngCgA/Cz0m/Uvz8+UAugD+dJ3f/04AjwHYAeCdAD4khBDn8NqPArgbwBSAtwL4sbX+oBDiBgC/CuBfAXgagFeteEkbwI8DGAfw/QB+Tgjxb8xzLzf/H1dKVZVSXwMgALwdwCUArgFwmTmG9fghAC8E8HwAPwigKDJ/J4CDAHYD+H0AfwDg6QCeC+BqAJcC+F9Dvpfi+34RgL8G8Gvmvb0cwGGl1G8BuB3AL5j39Aur/Pp7AIwBeAqAV0B/Pv9pxTEP+z0yDMMwDMMwFwEsVjMMwzAMwzDnmwzAW5RSkVKqq5SaU0p9UinVUUo1ocXWV6zz+0eUUn+ulEoB/BWAvdAi7dCvFUJcDuB6AP9LKRUrpb4K4DPr/M3/F8BfKqUeVEq1sUJYVkp9RSn1gFIqU0rdD+Bj670HpdQBpdTnzWcwA+D/DHjPAPAOpdS8UuoogD8G8IbCcyeVUu8x8R8h9CLAL5vXNwG8DcDrh3kvK/hpAH9hjjVTSp1QSj064DghhLDN3/vvSqmmUuowgD/C8gWBjXyPDMMwDMMwzEUAZ1YzDMMwDMMw55sZpVSY/yCEKAN4F4AbAEyYh2tCCNsImSs5nf9DKdUxZtzqKq9b77U7AMwrpTqF1x6DdjivxiUA7i38fKT4pBDiO6HdzNcB8AD4AP5ujbYghNgN4N3QURo1aBPJwlqvLxxf8e9fssZzO6GLWt5bMCoLAPYw72UFlwH45wHHtRo7ALgr2j4C7fDO2cj3yDAMwzAMw1wEsLOaYRiGYRiGOd+oFT//NwDPAPCdSqk6+rEZmxkJcQrApBHKc9YSqvPXF5+/fMXzH4V2Zl+mlBoD8D70j3/l+wW001kB+A7znv8jBr/flX//ZOHn4t+YhY5SeZZSatz8N1YoejnovRQ5BuCpazy32vsqHkMCHe1S/Dsn1vkdhmEYhmEY5iKHxWqGYRiGYRhmq6lBi6uLQohJAG/Z7D+olDoC4B7oYoSeEOK7APzAOr/yCQA/KYS41gjcK4+xBu3UDk3O878vPDcDHX3ylBWvbwFYEkJcCp0JPYhfM8UoLwPwSwA+vsZ7ywD8OYB3CSF2AYAQ4lIhxGuGfC9FPgTgPwkhvk8IYZl2nmmeO7PiPRWPITV/5/eFEDUhxBUAfgXAmgUsGYZhGIZhGIbFaoZhGIZhGGar+WMAJWg37l0APnee/u5/APBdAOYA/B60+But9kKl1M3Qx/klAAfM/4v8PIDfFUI0oQsZfqLwux3oHO47hBCLQogXA/gd6EKJSwD+CcDfD3G8n4aO77jP/M6H1nntb5jjvEsI0QDwBWj3+jDvpYdS6m7ooojvMsd6K/pu6XcD+HdCiAUhxJ+s8uv/Bbrw5EEAX4V2n//F4LfJMAzDMAzDXKwIpdbbvccwDMMwDMMwFwdCiI8DeFQptenO7o0ihFAAnqaUOrDVx8IwDMMwDMMwmwU7qxmGYRiGYZiLEiHE9UKIp5p4ixsA/CCAT23xYTEMwzAMwzDMRYuz1QfAMAzDMAzDMFvEHuj4jSkAxwH8nFLqW1t7SAzDMAzDMAxz8cIxIAzDMAzDMAzDMAzDMAzDMMyWwzEgDMMwDMMwDMMwDMMwDMMwzJbDYjXDMAzDMAzDMAzDMAzDMAyz5VzQmdU7duxQV1555VYfBsMwDMMwDMMwDMMwDMMwDLMO995776xSaucobVzQYvWVV16Je+65Z6sPg2EYhmEYhmEYhmEYhmEYhlkHIcSRUdvgGBCGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhtpwLOrN6NZIkwfHjxxGG4VYfyrYmCALs27cPrutu9aEwDMMwDMMwDMMwDMMwDMNsP7H6+PHjqNVquPLKKyGE2OrD2ZYopTA3N4fjx4/jqquu2urDYRiGYRiGYRiGYRiGYRiG2X4xIGEYYmpqioXqERBCYGpqit3pDMMwDMMwDMMwDMMwDMNcMGw7sRoAC9UE8GfIMAzDMAzDMAzDMAzDMMyFxLYUqy8UPvWpT0EIgUcffXTd1/3xH/8xOp3OOf+dD3/4w/iFX/iFc/59hmEYhmEYhmEYhmEYhmGYCx0Wq0fgYx/7GF760pfiYx/72LqvG1WsZhiGYRiGYRiGYRiGYRiGebLDYvU50mq18NWvfhUf+tCHcOONNwIA0jTFr/7qr+K6667Ds5/9bLznPe/Bn/zJn+DkyZP43u/9Xnzv934vAKBarfbauemmm/CTP/mTAIB//Md/xHd+53fiec97Hl71qlfhzJkz5/19MQzDMAzDMAzDMAzDMAzDbAXOVh/ASLzpTZvT7vvfP/Aln/70p3HDDTfg6U9/OqampnDvvffi7rvvxuHDh3HffffBcRzMz89jcnIS/+f//B98+ctfxo4dO9Zt86UvfSnuuusuCCHwwQ9+EO985zvxR3/0R1TvimEYhmEYhmEYhmEYhmEY5oJle4vVW8jHPvYx/NIv/RIA4PWvfz0+9rGP4dChQ3jzm98Mx9Ef6+Tk5IbaPH78OH70R38Up06dQhzHuOqqq8iPm2EYhmEYhmEY5pyQErj9duA7vgMYYMRhGIZhGIY5F4YWq4UQNoB7AJxQSr1WCPFhAK8AsGRe8pNKqfuEEALAuwH8awAd8/g3TRs/AeC3zet/Tyn1VyMd/RAO6M1gfn4eX/rSl/DAAw9ACIE0TSGEwPXXXz/U7+uPSBOGYe/f/+W//Bf8yq/8Cl73utfhK1/5Ct761rdSHzrDMAzDMAzDMMy5cfvtwI03Ap/8JPCnf7rVR8MwDMMwzJOQjWRW/xKAR1Y89mtKqeea/+4zj/0/AJ5m/vtZAO8FACHEJIC3APhOAC8C8BYhxMQIx75l3HTTTfixH/sxHDlyBIcPH8axY8dw1VVX4TnPeQ7e//73Q0oJQIvaAFCr1dBsNnu/v3v3bjzyyCPIsgz/8A//0Ht8aWkJl156KQDgr/5qNB2fYRiGYRiGYRiGlNOn9f+TZGuPg2EYhmGYJy1DidVCiH0Avh/AB4d4+Q8C+GuluQvAuBBiL4DXAPi8UmpeKbUA4PMAbjjH495SPvaxj+GHfuiHlj32wz/8wzh16hQuv/xyPPvZz8ZznvMcfPSjHwUA/OzP/ixuuOGGXoHFP/iDP8BrX/tavOQlL8HevXt7bbz1rW/Fj/zIj+AFL3jBwHxrhmEYhmEYhmGY88rYWP/fWbZ1x8EwDMMwzJMWoZQa/CIhbgLwdgA1AL9aiAH5LgARgC8C+E2lVCSE+CyAP1BKfdX87hcB/AaA7wEQKKV+zzz+PwF0lVL/34q/9bPQjmxcfvnlLzhy5MiyY3nkkUdwzTXXnPMbZvrwZ8kwDMMwDMMwzNDcfDMe//CdeNrYNMTbfp9zqxmGYRiGWYYQ4l6l1AtHaWOgs1oI8VoA00qpe1c89d8BPBPA9QAmoQXpkVFKfUAp9UKl1At37txJ0STDMAzDMAzDMAwzKlGEN93+H/FEYydw5sxWHw3DMAzDME9ChokB+W4ArxNCHAZwI4BXCiH+Vil1ykR9RAD+EjqHGgBOALis8Pv7zGNrPc4wDMMwDMMwDMNc6EQR4szGA/OXsljNMAzDMMymMFCsVkr9d6XUPqXUlQBeD+BLSqn/aHKoIYQQAP4NgAfNr3wGwI8LzYsBLCmlTgH4FwCvFkJMmMKKrzaPMQzDMAzDMAzDMBc6UYQkF6tnZ7f6aBiGYRiGeRLijPC7HxFC7AQgANwH4M3m8X8G8K8BHADQAfCfAEApNS+E+N8AvmFe97tKqfkR/j7DMAzDMAzDMAxzvohjJJmN++cvBToPbPXRMAzDMAzzJGRDYrVS6isAvmL+/co1XqMA/Oc1nvsLAH+xoSNkGIZhGIZhGIZhtp4oAgAcbOwEut0tPhiGYRiGYZ6MDJNZzTAMwzAMwzAMw1zsRBEEACEUi9UMwzAMw2wKLFafA7Zt47nPfS6uu+46/MiP/Ag6nc45t/WTP/mTuOmmmwAAb3zjG/Hwww+v+dqvfOUruPPOOzf8N6688krMcqYcwzAMwzAMwzCjEEUQQsERGWQ72uqjYRiGYRjmSQiL1edAqVTCfffdhwcffBCe5+F973vfsuellOfU7gc/+EFce+21az5/rmI1wzAMwzAMwzDMyJgYkLITo91It/hgGIZhGIZ5MsJi9Yi87GUvw4EDB/CVr3wFL3vZy/C6170O1157LdI0xa/92q/h+uuvx7Of/Wy8//3vBwAopfALv/ALeMYznoFXvepVmJ6e7rX1Pd/zPbjnnnsAAJ/73Ofw/Oc/H895znPwfd/3fTh8+DDe97734V3vehee+9zn4vbbb8fMzAx++Id/GNdffz2uv/563HHHHQCAubk5vPrVr8aznvUsvPGNb4SOEWcYhmEYhmEYhhmBOAYAVNwInSaL1QzDMAzD0LOhAovMcqSUuPnmm3HDDTcAAL75zW/iwQcfxFVXXYUPfOADGBsbwze+8Q1EUYTv/u7vxqtf/Wp861vfwmOPPYaHH34YZ86cwbXXXouf+qmfWtbuzMwMfuZnfga33XYbrrrqKszPz2NychJvfvObUa1W8au/+qsAgH//7/89fvmXfxkvfelLcfToUbzmNa/BI488gt/5nd/BS1/6Uvyv//W/8E//9E/40Ic+dN4/G4ZhGIZhGIZhnmSEIQDjrG6xIYZhGIZhGHq2vVh9ww0AZRzzjh3A5z63/mu63S6e+9znAtDO6p/+6Z/GnXfeiRe96EW46qqrAAC33HIL7r///l4e9dLSEvbv34/bbrsNb3jDG2DbNi655BK88pWvPKv9u+66Cy9/+ct7bU1OTq56HF/4wheWZVw3Gg20Wi3cdttt+Pu//3sAwPd///djYmJiQ58BwzAMwzAMwzDMWeTOaidGJ7SAJAFcd4sPimEYhmGYJxPbXqweJCxvBnlm9UoqlUrv30opvOc978FrXvOaZa/553/+Z7LjyLIMd911F4IgIGuTYRiGYRiGYRjmLLJMi9MAyiWFtvSBbpfFaoZhGIZhSOHM6k3iNa95Dd773vciMQO6xx9/HO12Gy9/+cvx8Y9/HGma4tSpU/jyl7981u+++MUvxm233YZDhw4BAObn5wEAtVoNzWaz97pXv/rVeM973tP7ORfQX/7yl+OjH/0oAODmm2/GwsLCprxHhmEYhmEYhmEuEoyrGsJCpZyhIz0tVjMMwzAMwxDCYvUm8cY3vhHXXnstnv/85+O6667Dm970Jkgp8UM/9EN42tOehmuvvRY//uM/ju/6ru8663d37tyJD3zgA/i3//bf4jnPeQ5+9Ed/FADwAz/wA/iHf/iHXoHFP/mTP8E999yDZz/72bj22mvxvve9DwDwlre8Bbfddhue9axn4e///u9x+eWXn9f3zjAMwzAMwzDMk4woglKAEgLlEtBOWKxmGIZhmFtv3eojePIhlLpwC2O88IUvVPfcc8+yxx555BFcc801W3RETy74s2QYhmEYhmEYZiimpyF/6y14yT/9Fn7kBQdxWecxvP5PXwrwfIJhGIa5iLn6auDAga0+igsHIcS9SqkXjtIGO6sZhmEYhmEYhmGY9YkiJJkN11EoV9DPrCbgiSeAN72JpCmGYRiGOW8oBZw4of/P0MFiNcMwDMMwDMMwAzl5Evi939vqo2C2jDjWYrWrUKlapJnVi/c+gf13nNFFHBmGYRhmm9DpAGHYqz/MEMFiNcMwDMMwDMMwA5mZAW6/fauPgtkykqTvrK5aaBOK1fFHb8LpEylw990k7TEMwzDM+WBuTv8/DLf2OJ5sbEux+kLO2d4u8GfIMAzDMAzDbAQpgTNntvoomC1DSi1W2wqVmnFWxzFJ03Fq41RnDFhaImmPYRiGYc4HuVjN9YZp2XZidRAEmJubY7F1BJRSmJubQxAEW30oDMMwDMMwzDaBxeqLnDQtZFYLtBMfiCKSpqPMwWJcQZjYJO0xDMMwzPlg7owEwM5qapytPoCNsm/fPhw/fhwzMzNbfSjbmiAIsG/fvq0+DIZhGIZhGGabIKWOAskywNp2lpeLDyl1hmapRNRgHgPiFpzVFGJ1liFO9bT09LyHK0dvkWEYhmE2n6NHMfdHtwB4I4vVxGw7sdp1XVx11VVbfRgMwzAMwzAMc1GRJECa6i2vO3du9dEwg7j5ZuBrXwPe9jaiBnvOavQzqyliQLpdxJkRq88IFqsZhmGY7cHtt2OuW4ZAhjDkVXxK+NNkGIZhGIZhGGYg8r4HAQBnjtJEPzCbSxQBjz9O2KCUkJkFx1GojNl0mdXtNuLURtUNcer06M0xDMMwzHlh927MRRXsLjURtuRWH82TCharGYZhGIZhGIYZiLzlSwCAM5/75hYfCTMMaQrs30/YYF5g0QHKdRdt6ZOJ1VHm4IrqHE5Pc2Y1wzAMs01wHMyHFVxaWUR4dHqrj+ZJBYvVDMMwDMMwDMMMRGYWSnaM6YPtrT4UZgjSMzM4sD8DWV36XKx2gUrdpiuw2G4jTh1cUZ3H6dltl1LJMAzDXKxIibmogn2VBYRHuAI1JSxWMwzDMAzDMAwzEKksXFpZwJmT6VYfCjME6T/8IzpdC6cfmqNpsCBWl+oubQxI5mAqaKHVFqO3xzAMwzDnAykxF1a1s3q2tdVH86SCxWqGYRiGYRiGYQaSZDYurSzizPTFKyjeeSfw0ENbfRTDkSoLjkix/6tEbq+8wKIL2CUPmRI0YnWngyh1UHdDhF0qGzjDMAzDbDJSopkE2Bk00W1nW300TypYrGYYhmEYhmEYZiASLnYGLSx2faDb3erD2RJuvx34xje2+iiGI1UWrqrP4uDDIU2DBWc1fF8/RhED0mohzmzUvRAh1+5kGIZhtgtSQioLNS9E2GGxmhIWqxmGYRhmizh6FLj55q0+CoZhmCHIMkgJTAUtLMUlYHFxq49oS5AS6HS2+iiGQCnIzMLOoInFU0QLC7lY7QHwPAih6GJAUgc1NyTRvhmGYRjmvJCmkJmFqhOxWE0Mi9UMwzAMs0Xcc8/FLVa320BIZPhjGGaTiWNIZWPKb6ORBBetszpJtslbzzKkysKk30FjmtpZLQDP049RqMudDuLM0c7qxNYrAgxDxPw8cOONW30UzLC0WsD09FYfBcMMSZIgVRbKTswxVsSwWM0wDMMwW8TMzDYRPTaJP/9znkAyzLYhjpFkNnbkzuoLvPNSCvj85+nb3TbOaimRKgsTfhuNxQzICBxfRWd1HgMSx/rDHoUwNJnVXUSpu00+YGa7cPTo9hlrSAn84R9u9VFsLbfcAvzZn231UTDMkKS64HTgJCxWE8NiNcMwDMNsERe7WB2GwNzcVh8FwzBDEYaQmc5l7EjvghcUowh49auB97+ftt0kueDfusaI1eNeF42YyAkvJaSy4bgCsG0IAWSp6k3WR2m3l1mdOhf3jfEiJ4qA7/5u2jaTZPs4dcMQeOc7R1//2c5ICSwtbfVRMMyQSAkBoGSzWE0Ni9UMwzAMs0Vc7GJ1kgALC1t9FAzDDEUcQyoLrmWEyQu880oS4OlPV/jMZ2jb3V7OaoEJv4Nm4uvcpVFJU+OsFgCAwEkRpc7oudVJgjh1UPeMs5oiB5vZlnz0o8Cdd46+/lFESj3e2g4kCTA7C5w5Q9vu4uI26bfAYjWzzTCxVYGdIIzEFh/MkwsWqxmGYRhmi5iZoc9s3k5Rn1LqLEmGYbYBUQSZ2XCEiZO40MXqL38VU41DaJyhPc5tk1ktJdLMwoTfQSMu0YjVvRgQPYUM3BRdSSAuS2liQIyzmsXqi5YbbwSe9jSdW0yFlNvHWZ2P4e6/n7bdD3wA+Nu/pW1zs0hTFquZbUQuVjsJwtiiidxiALBYzTAMwzBbxmY4q3/914GPfIS2zc2CndUMs42IIsjMgmNlEACy9oWt2MqbPoUxt4POEVqVans5q01mdRIQi9X6x8DLEKbu6EUWkwRx5qBcsyEzm8Xqi5hOW+HyyxWpWJ0kQKNBUwt0s8nF6gceoG03joGHH6Ztc7NgsZrZVvSc1VIv3nLleDJYrGYYhmGYrWB2FnPHOuRidbMJ/M7vbA+HdZKws5phtg1RhCSz4YgUVTdEayHZ6iNal2TPZXCFyRIgnDxut8zqmhuhTRUDkovVvg0AKPmpFqspYkAyG17VqOAsVl+cnDoFeeAQxjunyJ3VwPaIAkkW27hib4QHHqDNvpWSxer/8B+4TgqzCeQFFu1E3w+3xdar7QGL1QzDMAyzFbzzncDsLOJFAgGhQD4pO3yYtNlNgZ3VDLONiGNIZcO1Uox5XSzNE4bKbgJJUOvnaz/xBFm7281ZbeexLRQH3XNWm8zq3FlNlFnt1Xz9M4vVFycPPIA0ExifP4jWHJ0NOjHrattBrJY3/QMuV0dx5gH6HSHbRazerMzqI0eAb32Lvl3mIqeYWc1iNSksVjMMwzDMFqAWlyCEonG7FUgaXeyYSNFskja7KXBmNcNsI/IYkGqgxeqFCzuXMQlTOJY+RtWg6xC3k7NaZlqsJrvX5AUWfSNW+0pvex41X0FKRJkWq4VQ2yOvgaGnVEKmLNS9EM27HyFrVsa6H9gOudXywccwFbSwdILQWg493jp1anvEa2yWs1pK4JvfpG+XuchZJlY7HANCCIvVDMMwDLMFNJIAdTekdZAtLEDe9yAmpx/ZFmI1O6sZZhsRRZDKglMvY8wLsbRIu02dGhmlcK0UJTtBtECnLku5TYxTxlndE+ybBOJXkiwrsFjyFamz2h8L9M/srL44kRIKQM0N0Tq+SNZs8k+3YMpvYWY/XZsAoDahC0x2XYqqEyFKnb4lnAApgac+FXjsMbImN43NFKvZWc2QY/qtUt3V90MWq8lgsZphGIZhtoDZZBw7ghaUzOhmPDMzSDIbk24TzTMXuPVPKSQP70dzKePC2QyzHcgzq+tl7awmFBP+/M/po4uSKINrpah7XTSm6SaP2zEGJLATRA0Ct3LurA70FDIIQFhg0e7HgBA6q9/yFuDb3yZrblORshd/enFixNmqG6G1RPdByEPHcEllEdP3HCVrEwB+8RfpxU/plvrxRVSdolKQ334Qe5yZbbGbLU31ehW15pdl20OsZ7YZubN6zOcYEGJYrGYYhmGYLaBbmkTZMe6xxUWaRpWCVBYm/A4aj52iaXOz6HQgz8xiwmuhsXRhOzQZhoGJAbHh1ksY87poNAVZ03fdBdx/P1lzAIAkSuFYKWpuhMYsnVN3O8WApErAtpT+DOYIXJomWsTxdIHFwM90DMgoCqtSOgYkdeCNlfRDEd33deQI8NWvkjUHQL/dP/gD2jYB4E//FPjEJ+jb3TYY0afqhmg16cYFUtnYW17CzCxdnwUArRZw4ABpk8vii8i2yLVaSE7OYqJzAs35C7swLtCvvULtrhZC/8cwpEgJAcAfCxBKFqspYbGaYRiGYbYAmSg4VqrzOakmJHGMJLMx4XXQfOICD2fsdpFkNnaXGpg/vh2UH4a5yIljLVSOV7WzumVTNo0TJ8iaAwDIWPWd1RRCbd5uO0QSbQP7q5RIMwt2taQ/g3lJ0qbOrDbO6jwGZBSxOk3NQqsNu+zDs1LEHYJjNcQxcM89ZM0B0FrE7/1eX1Sjot0GTp6kbXNbkSQQAKpORBpllmQ2pvw2+cK4lMDx46RNQsYZHCuFIzIkTSJrcZJAZsbIcITWWv3KV5I2B0B3CZZFLFa328DcLBwZkl+3zEWOuf85YxWkyuIYEEJYrGYYhmGYLSBJANdKYYsMskm0Ch/HkJmNyaCN5gzdYEkp4Kd+CvjlXyZrsidW7yo1sXCSxWqGueAJQ51ZPVbRzseuBaoMnyShF6t7MSBuSCPUAjoK5dGDcFvbIGw/jwGpllB3QzSXCL6rFWJ1L7N6FPXH/K4QAsL34NsJojadmpQkwL33kjXXa7PdBh54gL7dM2do29xW5JnVXohWm84Cmwu11LU8pASOHSNu02Ttj/sdLE0TxeEkid5153XQPEZrV370UfromjRJMTmpaMXqL3wBaLdRmT1MXdecuchRiblfVSpQABcIJoTFaoZhGIbZAmSi4FoZSk6C7iLdhCTJbEz6HRphwhDHehs16cS800GS2dgZNLF4ml0IDHPBY3ZuOCUHpQDoSo9sUkYuViuFJMrgiAx1L0Rjkag/XFrSgr1IoeQF7q7OxepaWX8GDZo2dWZ1HgOiEKbOaGpVXkROCMDzENgSYYfo+1IK8fEzWJhJSKNbcm3+zjvp2gT0RzF9gW+K2lTyzGonohOrs8yMi9potmmlj80Qq/N+a8zrYnGOqI8pGhlOERRaLRBFdEl2Oemtd2AymSaNb8r7qKoToUX4ERw7Bvzu79K1x2w/0kTvhkClAgFwgWBCWKxmGIZhmC0gSQBHpAjsBGGDaGATx5DKwqTfRqMJssKNcQzs2AHSAT46HcjMxpjXRWeOxWqGueBJU8jMhuPZKJWgs4qJxGryGBCTrayd1V0aoRYAmk0kmY2yEyNZoBV9yMkzq8u+/gzaBLEtvQKLfbG6K73RxOpc+RUAfF8Xg6RyVj/6KOITM7hCHcHMDE2TgL5/79sHfP3rdG3m7V7UYnUvszpCs2PTjGGiqDcuanZtUtfjpjqrvS6W5oiuAzM2nPA6pLvuAP0ZzM2RNgk538Ck38bSfsKLoV4HYIp3nqbru6engc9+lqw5ZhsiY73AhEpFP8AxIGSwWM0wDMMw5xulejEgJTtBd4lQrM4dRJFHVgUsmV1COV5AEhPmPZoYkLoborPILgSGueCRElJZcH0LQQAd/0DkICJ3VhsXuOsJ1P0QjRZRZEmjYRbZQnRmLvC95Lmzuuyj5kVodJzRPwOzeycXq0sljB4DssJZ7VM6q1stxKmDcb9D6qxOEuDyyxSpAA7oj/GijgHJndVuhFZCtHMjinQtD7+DZhyQ2oCThDhjXCmTWZ1h3OtgcYFozGXGhhN+B03CeBVAn7Ozs4QNKoXULC4snSYsVFc8t56gu8jiGHjoIbJELGYbktcg6sWAsLOaDBarGYZhGOZ8k6Y911/JidFtEBX/ygss5pMyosC/5G9uhDt9AlgkzGk1MSB1j8VqhtkW9JzVFkplgW5K56xOWhG6VAIl0BNVHVegXlVoxD5IgkobDSSZjZobojt3gWftSwmZ2bA9G/WyRCMJRp9Er+Kspo8BSRCFRCKdbSM2O3jI4rYAJLfeicmTD6A5QyimgZ3VkBICQM0N0UoCmms2DCEzGyVH9wno0n1nUupCgAlV/VYTs+OIVBexXaQUq01ud4euMC6g3zupszpNkSqBqaCFpTOEDlXT91XdCK3DdOp6kmhfyOHDZE0y2wmlIBMFWyigXIZrpUg6dAWdL3ZYrGYYhmGY800+IbEyBLakE6vNjKnudbUwQSVWP3YQniVBWp3IOKvHvC46DS7NzjAXPCZaw/FtLVZLj8ZBND2N5ImjGO+cpCt8ZcQZ1xOojwk04hJNjlGjAQUteHTmaYVKcpIEqRJwPAv1Sqo/g1G2J2cZkGWIMweer92ZQZ5dTuCsVrDondVhqJ3VXhedM3T3r+Sz/4K620X3xDxZm0BfrCZK8Np+mAKL2lnt0+wOC0O9wGKZBRVKsTrJcOmlim6BIYoglW0KLHaxuETkgs5jQPyO3nU3yvW6AnJndRwjzSxM+p1NEqtDtGbp2s1vgQ89RNYks53IMshMwLEyoFRCxYnRblzg9Sy2ESxWMwzDMMz5Ji9SZZzVYYsul1ABqLkRmpRi9diO/kSPim4XUlna8dZksXo78MEPAkeObPVRbC0/8RNbfQTDc//9oxlezyJfZMud1VSZ1SdOIM5sXBrMY/oMnZMwyWy4ro4qbcQBjUhlwq9LTozOPJ1Td1NIUx0D4tmoV1J9Txji+/rCF9bQsszJ1E4DVKp9sTpMXXJnNVnkp1kUrbm0sS1S6Z1RlKIfoD+Kchl0GevbjUJUQzMJyMRqmemiqEIoOrG61YJ87CB2tI9SDbX6RWzzGJAGkVTTiwFp032u0OtXShE7q5MEUuk4u6VZQodqLlY7EVpLdDfGJAGuvhp48EGyJpnthJRIMwuOnQG+j4oTod26WFcb6WGxmmEYhmHON3n2a55ZTSXWmsF4pazQkR5ZNmNSn4JrpXBEhuQMkZOsFwPSRafJLoTtwF130ReT2m7cfvtWH8Hw/Nf/CnziE4QNpqnutwIbQcXWIiWFWG3bSDIbO4IWlo4sjt4esDyzug6904RQrC47MTrzF3gRJTOJtl0L9ZrSgv0QKvDbfzfGmQ/+I3D69FntAUAn9VAu64dKZTF6DIiUSDMB21aA78O3JaIukbPafOdlJyaNbUnqhQVcKhu0UkgefAz7qosXb261Oce8soModWhE1YJbGQBUh0isfuIJSAlMdk+gsUh0vpodIY4rdAxIiyiywzirx72udqwTCfb5Wg25s1oJLVYvKbrrKx8fuzFaTToxMf7Gt7EvO4LZ02y6uChJU0hlwzH3r7ITo9NmsZoKFqsZhmEY5nzTiwFJUXISdFtEYq0ZjItdO6GUoBOrQ12dvupGaO8nqiZkJqF6YMeVabYDUcRFzjsdspjmTUdK4I/+iLZBmdn9GBCqAovdLpQSGPc6WDpIZNGLYz2B9CzUxu3RIzByGg0I6H6rvUCbtf+qV5E2Z2JAtLO6VlVasB908jabkAeOoPnlbwB/93fLnzPKVFv6qFT0Q0EAhHJ0Z3WS2fActSnOasDcZ2YJxWq/CkdkEABdwb5GA8ncEi7BCUyfvvDvifPzwMGDtG2qWDtpxVhdu6AJY0AcK6O9bj0P0hQCbBwhqucRRXpBsOphzOtiseXQtGuc1YGt+wSqvCUpdZFVUmd1HgMStLEUDbcbZNh2AR0D0iYUE5Pb78J4No/OwdODX8w8+cjj0YxYXXHZWU0Ji9UMwzAMM4D3vIdsbK8xk3PXSvXEnMpFlm+nnpzU/yfa6tkXqwmz/ooiQoe2Oj2zOcQxi9WSOLp9M5FSz/MzKt3LOKsd30ap5uisYgohwfQFY14XjaOLo7cHFJzV0JnVyXCu4oEYZ3XNjdBapHXSHThA2lw/BsS1+rndgz6Dxx6DzMxrH3xQK5I5RqyOUheepx8KypZetBglDkNKRJkDz83oCyx2uxBC6UVhygKL5p7oWCniI6doGjXn7KTfRmuWNg99M5zaX/kK8Cd/QttmlugdXBgb0w9QDLyiqFfQuuaGaM4TRUtEEaT5vhoHiEKr8xiQkouKl6AT2zRRM4V4EQBkY0PZTbB7IsbsNG1x3FSZzOq4RBdZEsawhNIxIC26MWdewLVDZTphthdmp6xj68XWihOjzXMaMlisZhiGYZgBfPKTwDe/Sdhg7lC0FEpOjC6VyyOOtdOrVtM/EymLcaR6zmoysbrorA7FRVxRavsQRdvHVbxZbDexenyc8HjTVAsevo2g6pA6qwGg7oVYOkFQBBEoiNUWahOOzmml6A/Nh1lzQzQJc08BrctRfJw9pESqhM6szgX7QRewcWA2kwDHW+PAHXf0nzOLocLS8dKAdlVSZFaH0kXgqX6BxZjonlBcFF2iy79Noqwvfs7QLeAmma2LQRLmawPADTeQNgdA9y/79xO3GaWwrQyoVvXuMIoLouCsrrshmgu0NULG/S6ds9pcf65voVy1dJwbRWSHiQFxRKrHiFQxIJ/+J+yRxzH3KFWFSRSKQbb1ohmVsB5KOCLT41hCMbF3zdJt3GC2E/l8zgYQBHr3BovVZLBYzTAMwzADiCLgW98ibNCIPm7J0ZnVHSKhNndW1+vwbImoRTM51y6yTDtS5onUlKKIkHhkExJm8+AYkO0lVqcpMDVFWKytEANilzxkSpA7q5fm6SKRZGbB8SzYZV8fK4VAUywAt0S7wCYl/Q6eXgzImIXmMJnVxiXWKO/Biz/9m1C3f7Vvzc/7aKs/fQxKgkSs7kgP5SAFhEDgZYhSt38/GwXznZfsmO4+i76zuuZGaM4R3RONqDrmddGmWhQ2zMzQrwen6SaI1XGmndXVKhwrRdIm+GzzaI2xMmoe4SKT6fvqbheNWaJzoNdv2SjXHS1WU4yN8naNs1q1iGJAvn6vPl8pi82aGJDA1n0RqVidmy46dBJYnDraWd1lgfKiJI8BMTFWFTfS5wIbcEhgsZphGIZhBhCGxGJ1HgNSdvX25C5tARnU69gRtDA7RzN4zl1kVTdCc4HInZaL1RWzjZxUpWE2gzhmZ7WUQIvI/Hs+GBsDlpaIGssLw5YcwPO0Q486BqRNNDXJndW+pe2/wOgrLUr1hNuaG6JJfB6Qn1tSarHad+BWdL7ucM5qC3MTV+NEewKHj9nAww/r5/KDs/pF34KyhS5BZrUWq/Vn63uZLtpIEX9gvvOyE5OKSTJK+85qKrE6d1b7HXQWaDvaMKRfaJQSOHSI5mvqtZlkcKwUKJdRcyO0GwTCcu6sHqvoxQWqRSYz3qp7IRpNonMrj+vwLFRqxllN8cXFse4L6hWdqUskLsugCtcybm0q8mMVxJElRWd1OGJ0Ua9RiThzMO51WKy+WCkWWLQsVPwU7cSjWWxlWKxmGIZhmHVRCipO8OADhJl8+Up82TOTaItmFd5sS0W9jp1BCzMLBMV5lEISF2JAFmmLQZZ3lPWEjMXqCx52VmtNjtpZff/9wKc+RdsmlILqdFEvJXRidZoiUwKW5wC+rx+jdlZTFRTLFwQDS1cBBEY/eQviRs0N0aIS1g1JQixWp2nPXY4g0LEKgz6DJIFUNo7M6yip++Yu09nVQO/gVNFZXba0s3oU4acnVut7YOApXbSR0lntJOiGRGKSUkgSwLEy2gzkMITMndXExTuThHCHhSFN9dd++DBhm1Hac1ZX3RCtBsG4y2RLO+MV1NwQjUWisVxPrO7SidVRBKlMDEjurCaKAQEAMTGuz1miKBQZaAc8qYd0s8TqKDXO6hAt6dN8rlHU2w3BtVcuUpIEMrNgmzXccpChLX12dhDBYjXDMAzDrMdDD8GePgl5mrDcuZQ911+1nKFN6J4BANRq2Bk0MbPkjd6mlEhSqy9WU2yhVaonbrBYvX242J3V+WlLLVYfOADcfTdtm3j0UWBmBmN3fx6NaaIVhlyQtG3A97VAQZRZLYRC3etiqU0kVvccijZQKsEWGWRrxM8hF0+F0IJP1yHd6kvurC7EgAy9uGAm3odnqxirpVqsfuwx/VyrhSSz4Hp9Ucb1LSSZPZqzWkp0Uw/lUu6sVogyGme16nShlOjXRqAgd+1bqY6VoCq0aZzVY14XnUVasVpKerFaSr1zgzIKRCZKZ1ZXKnonV4Pg+gpDXWBxooa616Xrv3sxICEaHXvAi4ck77fyugDEYjXGtVjdmKNZYJFeWS8uAHR9YRzrrH2hd/TFS0T52qHU49iyQishEqu7XcSpjYobQyaKox8uRvLC02boUillek5zMQ+WCWGxmmEYhmHW42tfAwC4cWuk+fgypNTuGReoVoFWEpDmqaJex85SC7NL7uhtGueIZ0ntSGkSDMZ7H6RAMB6wWL1NuNid1Xl0L7VYnSRk9a76LOiCX3W3i6U7Hxq9PaX6161tA55ZCCNyVisltLO6Q9BnAb0iXa6vXcV1L0RzaURHpRFPlRCoVhSaiU92QeQf72bFgCAIYAmFrDOEszqzcWS2jFd8j8C35q8ATp7USmerhY70UCn37wHCsXt/65zJndUmrSXwjbOaQKxOuzEcK9WFjCMiQdHcE3uZ1VSxEgWxmiT+osBmLLKlKXDVVcDx43RtFjOrq05Ecz3kAnAeA9KiW7QATAxI16OJlcizpX0bokwUX2TaBWDE6ogst1sKF46VDte3DIspMulYmb4nzBG5wI1rv7KjpMfcFI5tEzHjWRJQ2SbcyJkLHimRZhbyW2GlrHQMCIvVJLBYzWwJr33tVh8BwzBPRrJs82LCAlvSjUONs9pxhRGraVweWZTo7MBqFTuCFmaawehOj3xi7ig9eaQQq/NJnRCw6lW9PZ1QpZmZIWuKKRDHF7dYnZ+21KKPlJswx01TCKF0DvQMwaRJ5a4xoQvs+T4EABUSZ1ZHXn9VYBQKu1cQBNr9OOr2fxODIoRArS50wUKiLy5fB6COAUmzvrO6NkysQpJAKguHp8t43vMtHEt268cPHgRaLbQTH+VKQezL7WQjOqu1WG1iQHzjrB71Zp5liLsSnpVqZ3Vs05xbRWe1S7AIkhOGkMrSzuoWvVi9GTEg1Sph36UUpFT9zGovpLke8qz98Qqqbog2VVxDLla7XSwlJZoF9xWLbAA2QawO0SSKQkkivbhQshN0Ty2StNmLAXH1tbA0SzCoV0ofq5X1d/NROaszB65lrtftUn2ZocOYj/JbYbkMjgEhhMVqZkt4/HGa8SLDMEyRW24Bfv/3iRsVemJTcmK6SVmep+oJVOuWFqsJJiRpmOhBs+9jZ7WLmW519G36+cS86ukYkDZBlevednoAlYr+N6Gz+tWvJmuKKRBFF/f4e1uJ1eYaG/O6NJnVvQUm87PnwbcTRJ3RRbWsG8EywvpSXKIRZ4pidamkc2VHFetMRIbrZKjVhc49JcpTzbvETYsBCQL9GQwSqYyz88Ssj6kpwA0cxKmt3dW5s7pamD7mQZ2jiNVhqMVqI4L7Pmic1cap7LkK5bKg25odRfo8yMVqqv7AnPcVJybdaJRl+j/yfutr30B15hDCLtGETkrtqLUVEAR0zurcHDBWQdmJ0e4SjGGA5c7qOKAZw5ixoePb/cKwmxADQrXAIkMJx8r0rrsTRMURkkTHgIzX9D1hgeBY0xQy1TnzVr2qI6wondW27P3MXGTkNYjyGJCq0NGOF/NgmRAWq5ktIYq4SCrDbBc+/GHg535ueywwdTrA9DRxo2ZSU7IThB3KSZnO/qzUbRpntVJI4ky7kjwPO8djzITV0QfPUYQ4s+H6NqoVk/U36iBfSmPSFJsiVs/OcnTgZsDOav3/7SJWKyW0kEJR/KuwGwIA4Pu6aF179D4xaUVwrRSlAHSCYppq4csVQBCg5kZojPq9GYemYynUxiw0qeKb0P94SdOQ0lSLPj1ndYSlxoBzwQjcWSYwOQk85coMB5s7emJ1W/oo1wrTx3yGPoqwbETw8phuKwhA46yOY8SpA8/NUKpYOv+XSKxOMhtOVbvVyWIlzLlEWnQZ/XUEcmf1gUOoxvPonqYUKS0tVnt6cbxJkQVtRHC37KLspejENBEziCIoJRDYiS4ySqGsm37L9cTmOas9unM2L1pYcWK0zxDdGHNnNaVYnUeLONDWV4BMrI7NLgulBFSHY0AuOvLMapNgVqkozqwmhMVqZktgsZph6FFqE4p0QYu/n/gEcNtt9G1TkyTA/Dxtm7LRgS0y7ayeo3HRIU1N8S8L1TGbpjJ5PiGzM0AI7ByXmOnWRp/o5M5qXx9rM/FHn5TlrkdbF1ISQpGqNFHE0YHkfP7ziNrJRT3+TvXudFr3K3S/Rb4IUHRWNwmG+0bxUiiI1XaCbmdEQU0pxB1d+EpMTujHiPL7lzmr3S4ag4RaAP/4j+vc6/I+1slQrjtoUxXpQl87Iz23smxZgcWKE6E7KF4iSVB2tLA1MQE841kOHl/cvcxZXa4VimDato5xGsVZ3ROrdQ46mbM6jhFnDjxHoVwxzmqKCy2PxqqVtPDXJhKWe87qCO3EJTu38vkW+SKbslF1I4RNogKTZhHftgH4vt7J1SHou3JndeDoPFmqLfpGABaeUakoxjC5S9Prx4BkbWpnNV1utwylzoF2I7TniYqC5sLyeBX1YaKLhm7TuF8pHev57g0rhWdLJM2LeDX/YiXfEdKLARF6bEBRfJoZXqwWQthCiG8JIT5rfr5KCPF1IcQBIcTHhRCeedw3Px8wz19ZaOO/m8cfE0K8hvzdMNsGFqsZhh4pgZe/XLtKqdvds4deoNkMkqRXV4yMaClEYEstzFCJ1YUYkMqYQ+OszosIGSPSzgmJmZBQrPYExsaF3qY/qiPF5KK6juo5q1WLTqzejGJSFzVLS8BNNyFuS7rdBdsQKbWAty2c1b0t6l0stZ0BLx6CnnDYF6sDO0E4agxIFCFJLXhOBpTLunUKQdEsCLq+zteueyEabXugqPjo/TEevm+NSWYuetmAVS3rreQXslhtBGTh2IDrInAShPGAqV+SoObqz39yEnj68yp4fGk3cOYMsLSEduKhMrZcrLaEQpqM0C/kYvWED0BrdGHqjj5RSBLEqa2d1VUb3dQlc6kmmQ237KBWStGMicTPorNaemQnQ35ukTurlUDNDdGlEqvNuMAxYnXNDWnEauN8dH0L5TLQkS6Zwx6AvikAZGJ1bmRAqYSSEyNsEkyY41gvKo2N6d0ARAssMtY50FUnQmuR6DyIY70jZKKm3fUU99sk6ecK+7qfIam3EIaIU51ZXXZidBYu4tX8i5VeDIgeG1Uq0DEgFLs3mA05q38JwCOFn98B4F1KqasBLAD4afP4TwNYMI+/y7wOQohrAbwewLMA3ADg/wohiMoyM9sNFqsZhh4p9bX1F39B3261uj12NElJ76yOFrvw7QSBk6A7T6Qo5QV/fAtuLYDM7NFFjzxP1daiQS8Le9QvLneR+RbGxkCTKdsTfRRQrcK3JaIlOkeKlNtjcWXbYBYnMgiEs9vjg73vPuDAAdo2pQQmxlI0KYqMrmiXXKyWsl9gsUsgVufCZz5z8Dy926Q94mdhMj9dR/Ucb6pLk1ktM0tnvzoO6qUYjchff/CZZZD/8kU0bvyn1fu4PL6pcKyUmdUenT6pyTItUFkWYNsIbIkwGuCojGM4VobAz7RY/SwXj0VX6JO00zEOaLf/ettGyYkRxSM4NY1YXRo3YnVJIEqd0Sf7SdJzVlvlAJkSpDEgrmfpQpuJTyNUmk6g4kvt/iVaFduU+KIsQ5pZqLgRwhals9qG46i+szocvMA0kDwHOnBQqRJml+fOyclJAEQL7vnYMNA582UnRqdJUGwzP1bfR62S6XOW4KYjoxSOSFFxY7QblGK1BXu8buqk0LQpMwuui96uIJJFgG4XcWbDs6T+rhbZTXvRYQos2svEap/FaiKGEquFEPsAfD+AD5qfBYBXArjJvOSvAPwb8+8fND/DPP995vU/COBGpVSklDoE4ACAFxG8B2aboZSeA/DuCIahRUrg6quBW2+lbTdJtFi9HbJqyWNAlELYiPvO6gWiD2GFewYASQxIkk/0AIgSUd5hQawen7S0WE10rLmzmnqQz2I1Md0ulAJ8SyKa2x4f7C23AF/5Cm2b8p77MDF/EM3Dc7Ttbqaz2g2xFBJMnFY6q11X94nRiM7HYl8QBLpoY4NASCoWWARQL0ndd60nUnW7SDoJGqEP3Hzzmm06jurnnhI6qycmNsdZDVsL9oGdIBwkKpvvuV7VYvU11wCPZM/oPd2p7UZlRWZ1YCcbv80sLOh7k1J9Z/WUvhf6PqGzOrN7AhUAshgQqWy4gY36mKDLLjfH5u2e0GI9obO6ViN2VhunatWJ0KUSq82Cu2MDsCxUA4lmHIzed+X59b6NchlkW/SzKNERZhMTqDgxOvN0hWEdVwClkh4bjSoCK9XvCxwH9ZrSn+uoC21KQUYpXCvV0TUNAlEd6IvV9You3EiRWx7H2rXvAAgCVNyIJl4kX2wNbP1dLbET70Lna18DPvpRwgbzhXFX31tLZUETY8UAGN5Z/ccAfh1AflVPAVhUSuXfwnEAl5p/XwrgGACY55fM63uPr/I7zEWElPq+yc5qhqFFSmB8nF702G7OatIYkDBEFAG+nehiYsRidZ6nCmCoL+7b315nwpmmepujbVxIVMV5CpnV5TGXJqc1SUy+thGrbdpBfpJwDAgp3S6kslB1Q4SL2yMMXEpgcZG4zX++BRN+G80TtPvpk2TzCizW3FCLaQRFUQH0tGo4ju4T4xGFhNz96mZAEOg2F+nF6mopHex2MoJGM/GBu+5atU2p+i5wAaI8WfTv39RitRBquVg9aHEhX+SoKYyP63t/x64jfdPPA69/Pdrf9wM9nR5Az7G9oUWLY8eA3/5t4L3v1Sd+lqGjSijX9LkUlC1dYJEiszp14HmKvFhdYsRP7awOaNo1bYhdO/XPhM5q8vgiKZEqgaoboduiKzydKqvnUKyWM5rdYblbueSgXLXQSWmc1Wk3hmulwMQE6l4XjXkCcaogrPfE6lGd1UoBSunauJZFVxw2TbVIZ2XaAd0g2nGU50uPV3W8SEiwMyjPwTYLV1WHTqyOUwfeZJVmYYHZdI4eBe65h7DBvMCiOU39QOjFVharSRg4shBCvBbAtFLq3vNwPBBC/KwQ4h4hxD0zMzPn408y55l8fMBiNcPQIiVQr5PtSu6x3ZzVi4tARhWr22wiTF3jrI4RNojcv/l2V1NERwg11MThAx8AvvnNNZ7sxYBsjljtlWyIMrULHHpC5sZ6F/UoRboMSm0vZ/V737sNri0zIRvzutti0QrQfcHSEm2bsj6Jkp0gTgkmz8V25SacA2aiZFtKxx+MGlOQX5vCqNW2bZy6I2af5vn9xvEWUG3PNgKV42sBtOyn6Ep3/T7GHEsjLukbycovpZBZjVJJu/6IclqTToJxr00joOTkN8Jlzur1p35ZLCEA/M2fNnqT76uvBp6oPgf43u9FR/p5mYFe2yUnHhwvUuDRP/4cfvOOH8Cxe84Ac3qXQgflngjuB8aZRuKsduC56N8PKWNAAlsLfzGtWI0dO/T/idTlJNFJFeTO6swUWOwSnbN5ZrXZHVarKjKxOlMClufoLfoUbSKPwMiAeh11N0RjkeBzyOt5+FY/BmTUqKUk0V20uUR7YvWo94Qo0t9X7qxuEYnVSaIXLaol1LwIzWhAvz0MvTGnADwPVTdCu0nwfZkCi+5EVbvrKSJbmE1FSuLaTkmCtOCstjxHj7lYrCZhmGXw7wbwOiHEYQA3Qsd/vBvAuBAiH63vA3DC/PsEgMsAwDw/BmCu+Pgqv9NDKfUBpdQLlVIv3Llz54bfEHPhw2L15nDHHeuIWMxFgZTapEt9bcn9h1BdOrEtRKok0boJmUjVaiFKnb6zukH04eYCTaDdM66VIm4NFsLXdWCagmL5RA++D0soZB2iGJCAPrLEdRQgBMYrCU3hRvT1me0iVn/848CJs0ZDFxjdLqLUQd0LEY7qpD1P5AtXlKS1cTiWOcEIFlZyNiMGJAtj2FZhMk7grM6UgJXPHIRAyZVaAB5ldXBFDEjJTtClEKuLBRYBlPxMZ9Wud4M07rtGbITN06eXP58vCLraWV1zIzQXaCak8ubPY3zhMFr7T5G0B6B/jprMat+WA8XqNJJwrBQvfnH/sec+V2fAA1rfWuasHlIE77G4iI98+RKc7tbxP+95HfDQQwCALoK+WF22aZzV5j7reYo2BiTfbVRy4FR8pMoavd18lRXoF+yjigE5ehITzSNoThN2MsYFXXUjdKkMErmr2KgL1SrQkjRiNQDAceBVPR2xQiFWh/paQa2mndUUiwH5OM7XmdUVJ0ZnVOd6miJTArZlFgHGLJrM6tytLDKdWU1VIzuPAQlcVCt0Cxa6CB6AINBOcIrLK18QGy/T5Yszm0qaEovV+a5WI1bDcbQBiYUuEgaOLJRS/10ptU8pdSV0gcQvKaX+A4AvA/h35mU/AeDT5t+fMT/DPP8lpZQyj79eCOELIa4C8DQAd5O9E2bbwGL15nDXXcCXvrTVR/HkJE3pq6hvBlKiN8gnI4qQHDiC6tGHEXZpi4ptBlJq4x9ZbnUU9Z3VToxuh8hBVBRSSiXt8lgaPDE3Na7WfFIqSzsUgZ5LMWqN7k7Tx6onT5ZQo299z9t09Tk1WZOYjyokk/P83rJdxOokAaant/ooBtDtIs4c1NwQsRyhkNp5RMpNcFanQosTANQZui9tM8TqnusvV5dHFavzLd92/z5QciW66YhV702usGcE4JITo9skEICLC4IAyiWlxeoBMSBJZqORBDjeGkd2coVYXdwRUi6jRuislvfch3Gvg9YM4YlQFKuHFJV7543bL6L4nOf0xepOB6vHgAy7iHX0KGbCKn7+2lvx+NJunLlDV0HtZKVeu7ZnI80sGmd1asPzAAQBHJEhaRPsjsrPLU/QObazDCoz9td6XT9GFQPysb/DZDaLxv7Tg188LGbhpuqG2lU/ahFEYLmgCC1WN5OAVKwWvqeFpFEzq7MMMlF68bJS0bUBGgT3RrPrLh8blp1Yd92jfL4mvsjJxepJlyYaKo/rcIXeZdImGhsUnPBarA5G/77yz8BBv3gnkVidZDa8CVN7hSoSh9k0pARIwxtWZFb3OjBCQ8PFzChVUX4DwK8IIQ5AZ1J/yDz+IQBT5vFfAfCbAKCUegjAJwA8DOBzAP6zUoq/xYuQfMzBBRZpSZJt4M47D2yGqHzrrcDv/i59u9QksYKTxQAIRWUzGK26EV0EhuEd7yBtDoC+DqamCHOrw9A4q6WekFPpCPngxhRYHDY/b11n9YoCi3BdBE6CcFSBXUrEqdObPNXcEI2F0bdkyqwvrE+NScyFldG3paI/L90umdVxvA3E6sJ1kGUgzNnZPDbDWS1DCUfofM72E3TCz2ZkVssohS0yYGxMZyu3RndW6y3fBbHaGyJaYxDFhSvfR2BLhBRide7SDHQnUw4ydNPBMSAy01vkf/HO1+Obd54dA9LLpjSLjE2inFaZWah5oT5GKooxILat7wfJ+qKyjDO9ION5vceuvRZ45BFtgv7MZ/TPPSxLi+DSHk5QO3oUM90adu5QeN7UMRx8QPf5nczvi+C5UE7grI4zB54nAN9H2Ylpdkfl96/ApnNs59EHlgJqNbhWimSJxrIsWyEqToxYjlgMdVmjxlntRLoPoHAg9epu6B/LVUu3PYpYXXSsOw7g+1BKjC6A50KtDSAIUPdCNJpUYrWJL3IclD2JTmyPdi3kbZqFxtK4rxfuSGJAbDhlDxUnRrtDJFYXCsNuirPa97W4TuastuGOs1i9XSB3VufjAq8vViuOASFjQ3ctpdRXlFKvNf8+qJR6kVLqaqXUjyilIvN4aH6+2jx/sPD7v6+UeqpS6hlKqVXKbDMXA9vNWf2e99C7szYDKVmsBoBXvIK+zdWiKy9E5L98Ee7D99GGVhunWdWNEDVoP4Q/+zP6c1ZKYNcuWmd1lDkIAoWSHdMJSkmCRPVjQKpDViYf6KzOt9MDfSfdqF9bz1mtxeoxr4ulhREH5KbN3IAwOaG0s5pQrKZ2VifJ5ri1t5Oz2rfMh7sNOsRNEaujFI6VYtJvY/4I3WqIlHrRgnINID9WjI2h4kbozI/4na1cDAMQeNnohYRWZFbrHSw0Ls1lzupguBiQxMSAnOqM4dj+1TOrXSNW19yQTKxOMlsXa6NCqWWiT+6AjpL1M8b1ebPcWX355boo1V/+JfC2twFPeUrhF0wcTDjsosXRo5gJa9j5wy/Hnj3Aqc4YAKAj/V7KFNk26jjWrn3jrC47Mbotgs84vxZMzQkAUF2a68u1M6Bc1uLfELuthmraCeBYKUj3xBix2rV0xATJPSFNkSrRK7DoVxxE6YhitTknFYTedpcvwlCI1Xm+tu/rGJA2QUSWlEiU3c/aD1Ldb41yvLmYZsRqstojuWBfclHxJdox3aKFAADH6bvrSZzVxv2aF1jsECzerHRWE9cMYujZHGe1yUMH+s7q7SJ0XeAQLrEyzHBsN7H65pvphYQkAb7+dfo2WawGDh+m33nTbG6P81V+5atwRAY1T2UrRm9AXnVDcme1lMDdxGFQSaLFajJndRwjlC78sqMzq7t02xxlpqvT6/y8EK3mYNFjOGd1vwCab8nR41uKok8QYNzvYGmRqE2jh0xOgkys3qwYkFtuAf7wD2nbBC5wZ3WS4Ja/b+F3b3waotSBZ28fsXpTYkCMs3rSb2NumjazWhDpPTlpbETHsTEtqs6PeBNLU0SpC9/tK+okzuq8L/AA+L7OrCYUFHOxulSCFn0GOauVhUZaweluHceOrFg9yCelruiL1URrFjKz6MXqHKGFusBN9eLCWp9Bluk4sWJ8DLTWDQD33gu88IVn/9rAdoscPYq29FB57tOw9/WvwOnrfwB4+cshy7W+Pk7prE4deIEWKUtUzsf83DJF8EpOjM7SiNdXbyEk67nAqVya0tERKKRBbrlTNc/Fp1jJ74k++kfhe1oIH0WoXFkYliq2xRSYdGxosdoNacRqE7fUW2Tz0sHxRYPIP9c8wimvkDqqsmrqmTiehWpNaAc0xXlQdFbn7ZI4q82YM48BoRCr852HkzWUHcLcbmbTSFM91SDfKWsWmOC6EEJBJeyspoDFaua8k0/GtoP4B+h7OfWx3n038Na30rYpJXD8OG2b24041k466oiZbSNWw4FjZXBVQne8ubPaiRBRFL0qkCTAN75B2iTk/kPY2T6MxQWiaVkYamd1xUbJienEpFxY9u1eZfJWd/BEZ11ndZ4pW3RWO5vkrB5CrP7iF4GvfW3tNqUqiNU7LMxHZRKFWUod+UkdAxJF9E5dYPOc1V/+MvC+943WRvvPPoxv/+EteOShDHGmC7QB2BZi9WbFgNhWhqmgjfkZWrG6WqWNAullD9dq2kW2NHp0T1e6KPv9dkp+pjOrR4wBiVMHnhERAjuhqY+QZ/iXTAzIhjKrSzjVGcPR0ysE2HyR0YXOrPZCNFs0C5gys7SgqIgWRI1NXxX8tD0n/FrflxHrHVP4tsiVVwKHDunF4JUEbqrjSwYJaq2WXkkWFsTuXdh7icAp61I88Oz/ADiF+BMqZ1oxBsTztADcJnTtG7G65oZoLo5+ffWc1b6v2yQ6txLL74vKVOSxJcK0S3FPWJFZ3fvHiEItUDidPU9HrHRGX1zoRWsEAca8LhodGmf1svgiPx28yDaIXr0B811RFcrO3eWeQKVmoS09mp2daaoXVhwHbsmBVBZdDIi5z1SGHHMPJL8OJuqoOBFdFAqzaeTdCVkUiIkvsgtGIc9KkUQcCUMBi9XMeWe7Oas7HXrx88476fMpkwQ4eXJbRIluGvmNh6DI9zK2jVg9sROOldJuRTPVvqtuhLBNu0pcLtOL1cnBo6g1jiOcJ/oAokg7q6uudvxFRLfN4mTXdVFxYrTCAdUxswzJ4ePo7l9jVaq4nR4w274TXfxoFIqFyoxYvdgY/Dncdx/wrW+t8WQu1puCJJM7bcyHFZKJjpTAxAS9s1rKzcnE3yyx+m1vAx588Nx//+8/FuFVb/8+PLawC0eWxrWr1pJa+tomYjW1szqN+s5qsqgh6GOt14nF6jx7uFbTi2GjitWpFk3K/irOaooYEJMrrHewjHaoAHqij+3rDrFUArpDxIDIzIbMLOwst3GsObF8v3Cv3wLguqh5pt8myKZc5lKlYKWjFEPEtpj376yi4TzjGcB1163+a4GXDhcDcuwYZGbB8h1ACOzZo8etL3kJMDdXeB2ps9rcZz1P38MpImaKC7hBgBpFdnnv/q1jJXaWmphe9Ab/3hBI4cKxUl0cOSYaxxWc1UIoMketVHZ/3SKPgyEQq3vXgREqO02CuhvKuJV9X2dWdwjy5osRM9DxRa0kIOlje9e16+pio+GIn0HeX3g2qnVLO6ApJh/5e7ULmfAUYrWy4bh6zF11Td896qQ5jqEAiGoFVS9GK7Qv7on4NiBN9QYLMrG6WIMI6EUwUus8FyssVjPnHRarN0esllKP70lzmLYZueBz0TqrgyockWmxeppIqevFgESI2rT5Kjt2EGZLG5IY+lhbRF9YnlldNTEghGK1zGzt+hNCi0mxt/4g99AhJLMNdO59ePXM0VUmeoEtEYWEMSClEsa9Lpaagz+HJOmLu+997wp9c0UMyNRuB3NRhcxZvRlidZpuTtFGy6Lvt48f18XQRpk3/s5bUizGJTwwfynmwwriVGe/KmBbiNVS6nOQPgfaiNULdA4qKYFajV6sto2zuuaGQ2Xir9+gREd6KBXE6sBXo2dW92JAcrGaLrMaAIRZvbM8R0cKDIgBSTIbk9UY1181h+PtceB0oZCmETxcV8dqVCtK56kSfHHkmdXmfRbPUv19OWt/BisKsRW57jrg+utX/7XSsDEgR49iLqxgalL/uHevHg9XKn0TLQAtUgJQMUVmtQPPLzirKdax83O25PRd0EujX1+9gn2+jz2lBs4sBQQHq/sCNzcynKHKrZHLndVUYnVmLYsyyx8/Z3p9k2nTnAftJtH35SjAtlH3IzSiEeM68naVBbesB0fVQKKdjNhuPjYsFN+ueQQRRnlmtWehOu7ovpDIWS2A5WL1qBO7NO0vNAqBajlDS/okWdgA9A7JcoY2RWQJs6lIqe89ZONu0xf2xOq8uD3FDjGGxWrm/BNFelBKLShuFu027bEqBTzxBH2R2CTR2zQv5iiQXKy+aJ3ViYJjGbH60BmaRgsFFsMOrVtgnRpP54bJ26w6EcIW0QWWO6vrent6Nya6bZqtg5ZnxOog0a6U9SZlSkEqS28JXc0y2tui3i/yMUyBRaWAD3xg/WNd6axeag3ePhlHGRpL+kt+17v0FvKz2jTVsyd2ezqzmkL0SYDx8c1xVm+GWD0+Tpixblhc1EXQznXeGIZAJW3gZXsO4Fh7AmNeF80kgF9xtDuvc+GL1UkCTE3RuuFlnMERKSaDNuYWCbYQ5+1KhWpFka4B6GPNgHodVTca/dzNndVBwVkdqNEzq3tRDehnVocECwFFdx4wXKSAWZydqiV4yuVSO7FXiNXFHSG1KpFYnWWQqYAjjPs1Ihhw5Ks0hY8y8JV2QK/nrFb2cuHY8IY3AL/1W6v/WuBnw8WAmOKKuy7R38muXcBjjwFvfjPwe79XeJ3rwiNcaPUC46x2EnQJI2byAosk2eU9Z3UGeB52lxo43SiTrLblWfsVJ0LrNNGN0YxhHLPAMnKBSaAvgBcKlalBC0xDtAmgfx2YQpsj54HnfYENQAjUqxkacYlE/OxFxAGollItqo6cWW31i2+7Lk3MjBHBXRcoj3t6bEqcWQ3f1+cASca41eu7qxWlheVRb7r55NB1USkrmnxtZlNJU2DPHlqxeqWzukRR3J4BwGI1swVEkXYQUYt/d9wB/P7v07YJ0DurpezHhVEiJXDJJYTbWrYh+Y3nonVWRykcYdwzc0QWvV4MSIioe4FvbQtDJJmNihsj6hA51HJn9ZguzkTmrM5db8b1V/WlHuQO2KKeZLYWUA4fPvv5XoFF8/OQMSBpCrz73eu8IJ/wl3S+9pgfYqk7IENRKSRf+ioan70V8vffgUMHMxw7trzN4sTBr7qIU4fkQpOzi5hoHkVznrYjSNPNiQHZDPJYiXMt9tO4dz/q8Ry+c+9RPO2pGS6rzuOJxk54VQ++JRE1L/zVZin17g2yKJA07S0ITvltzDcIxeqHHkdt+gl0m0SLbEr1CyxWq3rnxhAFXNc/SIlu6i4Xq4cVKddjRQzIMAtsA1GqL/IVxOqBkQKmj52sJ9hzmY5OkCcKC7+56GMW2Wp1QeMm7HR6kQqBnSBaJBR8ijEgg5zwuaDjnH2uCIFVRWwACNxs6BiQmbCKnZfpQbDjADt3As99LvD61xdely+0jrpAHseIC2K1dlbTLIT0FnB9nya7vFdgEYAQ2F3v4ky3TjKgzXeEVN0I7WmiCnDmWrCFgm9LxE0Cga7nrDY/UzqrRd9ZXXFitFsj9odpavLd9Y/1aoZGEowuVK4cG5YzPTYcVaxW1rIYkJobotkecTzbE+kERKWsHxu1L8wyQCm9g8vS161nS8St0RcBpLJ0DAi0WN1KRnRWK7VMrK5WoRcWWKy+oJGS2NDS29W6MaMQMxwsVjPnnc0Sq2+9FThxgrZNgF6sjqL+riZKkoR+G/F2Y3paj20uWmd1nPWd1QtEH0KhwOLI2ccFlKnfJOiaBMLQRJaEdGJ1GJrMag8llyCfNSdvw8x0qoHUg9z1JmVRBJnZ2r1y5MiqbUrVF1J6BRYHfG9JMmDQliSI84m52freGuRIiSIkSx00Ih9HHmxAphaO3nt29mvxWHsHMyLy7/4B9eZxdI7QZmtslrM6h3KnQV5k8lznjY2vPYQxr4t/9R934/U/7uOK6jz2L+2CXzPbGxsXvlidJFqsJiuyGEWQZtv7pN/GfJMmTxYAksUW6lYL3aNE52yaQmZCF9Qql3UMSHtwZ3vmDPDOd67d5urO6tELLJ6VWT2qs7rophQr+phBzurMxmQ9xd4rfewtL+HkocK9dKWzui7QTPzRB16djhZSrFRfXxQ1F1Zx5A4lVhcEuGEp+QOysAH93MwMZsI6dl5R7j28Zw/wnOeseK3ratF+1GFMXryz56yOyVz7PbE6z6weVfgoZlYD2D0eabGaYECbhNrIUHFitGeI6nkUCiwGdoLuEsE9Ic8VzscFtq0XjKLRxGqlsCyzmqTQZpLovOZcrK4p7aweRaFShcU0I9T3oiU2MO787GdXdMl50caCs7pOIVb3BHvRd2GNKlavXGQzMTsjx1ilqf4Mcmc1hbCcLyyY+0y1Chq3NrOppClxQet8kXdlZjXFvYZhsZo5/0SR7iSoxb977qG/PyhFL1bHMfR2V2LyzMuL+R45Pa1zqLaLs/oDH6AVv5Io6xdYXCI64GJmdUJ3401TwBEpFKVCZ5zVNTdCeI5i9dwc8Pa3Fx6I435mdVnoCTnFCZafUAWxeuCEJIqMs9oFjh49+/kVQgpsG74lEcbrf29SDhare/mc0AV/2kMUKksyG80kwP6l3bh24iSO3lrIAVkpVrsuBNH29+TUrM5+Jc5a2pTMaqWAOILnZuQ7eMbGzn3euHSmi7rXxeUv3IWf+29lXHlNCY+lV8OreNox0rzwV++SxTZ2lNp0zmqzWOSUXEwGHcy1fZpAbCMk1NwQ3RbRIlteXNAGEAQ6BmQIsXp6WmcIr9VmR3oolfp9NmVmdZ4rXHJiHbc0ymdrjkcVpzkmUkAl6xyr6eue94wOrnlegMsqCzh2VC17vpeBDPSLihGI1XlmdWAnCJdoXKqZEssWhAdmVueCzgY3DfTOg/UWLWZngSzDjLUbO/f0/8CHPqQj7JbhOPBtOXrmZ5IgSp3erqCyE6MTEkx9i9FYeQxIa3SXarGOw56JCKc7BGJ1lvWMDBUnQmuBqO/OnapWqqN7KHaFrJJZPXLdjXwRP89h9zxUnGj0aOXesep2yzVbj4sIxE+g7+ToZStvoI/99V9f4Wfo5Wv3x1s1L0SzM+LuoLy/8CxdMR0YvS8sCsAA4Ps0BYKNoJiPOStVsytmlElzPgY2B1upWeys3gbIKEWtJOnE6nzRxu/v4tJGIaL2L3JYrGbOO2G4fcTqONbzpW3hrI4y1GvqondW79tHP05oNDZHrH7nO5fHYY6KTFS/iE6DSKgzomPFjRBJuirXyR13wzl+CE5riU5TzGNAnAjROU5yH3wQ+NSnCg/kmdUVB6WKpYViihNMSr3N0cxMq6V0cAyIcXZ2Uk+r6isxEwe3WGBxSGf1unERxWJSACpBOlhYN+dNQ9Vx4JU/g++79FEcO5Iuq7DbkV5vfgPX1YUbh8jCHoTMLNpCZXm7m+CsVvd9G+LMaVTnj51zZMdq5HFT59pvNWZi1N1QV6oUAs/46Zfi/oXL4JcsncV3oYvVSQJ58Ah2PPF1LC4QLYhFkc5o9W2MjyksxSUaa45x1da8EN15yvgms+3biNWtznBFUddcuOo5q/ufZylQJDEgcWrD9S1ACAQ+dKTEKAOvlTm1QE8AjbvrF1iUysJ/ff1pPP8VNVxencex025/24OUaMQB6jX9c23cpsmsbre16GNcquEiwWA2TZEqAdvqf1++j/UXF7JszQKL6xF42cDs8uzkaZxoj2uxemf/8Re+cJUdVoTO6rb0UakJwHVRdmJ0KXaIFe+JQYC61x1d+OuJ1fqz3zWRYDqsjT7eMIYDx0pRcQkKC+YkCdLMgh2YBUyK3TZGWLbdvkPRt0csVNbLljZtmMzq9qhidV5s1TirRUCQrbxKdE9vJ9swfaxSyB5+FAcPquU1QlYWWHQcvRuA4JzVcW4AymXYIoNsjtgXrlIQs+pEaDYoYlvsnvu1XCUYz68Qq6s1cdFmVn/4w8A73rHVRzEc6W1fRfWbt9LFruU7F87KrGZnNQUsVjPnlyxDtP8oqkFCKgBPTwPBiAukq5GvvJM6q7/xbfj7H4RIYrpt31mG5FsPonbf7Re1WD0zo8Vqamd1u00vVs/O6kKblGMamSg4wsSANInEOiN6eJZ2aVFdZPJTn4VjZSg1z9Cds8b5WHWjc87XfuIJLM9WDkNEmQO/4sAvWXqiTyRWA+hv9cyL6AyIAUkzM8BerSKfcXstz02TCAfkbCeJfktrzoVWOKsrpUxHkQzhrG4kAfYfK+GVz53H0caErqYFaNEnCVCvm9e7ro5WaGxw//kqyMzSheWIyTOrKTcDJPd8G66VohIvkIvVrnvux9qYlxjzujrYD8B11+n7rFeyaRfDNotuF0lmY0fQwtJJomDCKOrlc1YnXC1SUnxpnY7ut5yIxlEL9IufOeg5P1tDCBNJArSb6ervS+qCg+V+ggNKJZAUWEwyI1bnbabeaDfyVUQfOI4WKzvrXBSm33LLLuB5uGyqg2ONsf4qlZRYiku9fqs24dCI1csyqyXNeZBlWkwsdP9DidXK3rhYHQx2Vj92bwu/cMfrMZNNLROrVyV3Vo863IhjtBIftTHtrC7ZCTqhPXonnosTgRarK06MdmiN1m4xsxqAV3GRZPbo440w1IvYVoqqG+rrmwJTDNGpBjq6h2JXSJoiXZFZHYx6HuTfVcFZrQttjh41tCxf2/d1Jv4o39cqi2zlkkJ7GGe1UsDf/i1Ove0vEUUCh/YXXt/Lojc/e57eDdAlEKuV3YsBqbkRmvMjTpZMH6IKMSAlJ0HYHvH8WlEEL6g6o4/nV4jVXtXTtVcuQrH6+HFdJPfBB7f6SAYj2xFqboTuLG1+/zJntZ0M3NXKDAeL1cz55ZvfRHTHPagee5RU/JudBa64YnuI1dFHboKXdhEsnqY73m5Xb2tJ5um2EW9DOh1tBKQeJ9g2vVh99936/2THqtTyzGpSsdqGnYt/RMqyLNfhWqmZNJA02XNWV93onK+tJ57Qua29a944q4O6BxH4vcdGRko9H8ljQIYpohNFcK1UD7DD8OzvIt+W6ha30CYD41vkKZ2T255b40Nb6awuK73ddRhndRzg8GHg+d87jvmo3BerkwRLcQljY+b1uVjddNdqcWiksnVhOWKk1PMoyvtM4pS0WO1G5GK1I86xD0gSLDUt1H2T2QUdrzQxAfgVLfh1Wtuj2OqOoIXFo0R2eLOzwfEsWJWSdtFRfGntNpLMRt0L0V0kuiHkW/QdaGeaG6EZugN3xiRf+wbaB04B/+N/nL0gZmJAyoUYEC1WD+gLhjjWYiRQqSy0AD7gQssy4Jd/ee02AawqVq+7/T93pJd0P3TZpRmOtSaA+fleu8V+qzLh6V0mo2YKmPO1FwNC4VJNU50pXHBWO76NNLMGxIBs3FldGiIOJjo1r53V8dhgsZrQWd1MAlTHbMC2UfYSdJN1YlCGpXhPtCxdaHTU3QD5ok1+C/S1U1eNupc8DHsLuBUnRnvUQqs5uQu6XtHnbJumlkfR/dobw4wYA1LMAofj0BTL7hXs64uqAIjE6n6/Zbm2NooM6GNn7z2CxpfuwRONnbi6fgYHv1iwVhezpYF+gcXuiOOtvL8wMSB1r4vm4ujX1jLyorsbKLaaJMA//MPZD+b3bwAQnqvv4aNM7pLkrDz0kRcsCtx9N2ERwE1GSuDSS/X86UInzSwdu0bprF6xIyRwEnQpIqcYFquZ88z0NKLUQc3uIInp7Gl5ccHtIFbHmXaMlNChE+mMMFRzQ5rto9sUKXVsGrWz2qZLv+hx993AJZcQnrP5oFGktGKS+TB7Y2eikzYpj/W3PFN9BkZMqrohoujc+pcnngCe8Qzg5Ml+mx3poVR3+5ORUU8wU0RnWQxIINFKgoECsBD6fd03uw9q/mwxSarlRQsDOxnsrP7YTQCA1nv/Zo0XmEJKgT7WSikb7PSJY8SZjUbk49QpYO+1E7CFQnxmoXesjYJDEa6LyYBGrE5S69yF2nXI9Q3KKJDYCuBZKapOhNYinVtZfvFWOF/5AoQ8h3N1YUFHHYxbvQtfCO2u9sraWd1uXOCLosZNuCNoYfEkUUGxPLPas4FKRT9GJFZLZWHC76C5QBff1Cv+lRdFlYMLPyWPPIFW4qPVVJj77NeWP9np6L6w1t/94HgWpFpH/ByGPAc6MI638nA7WJIE+NKX1nhSSiSZBdcu3AeNSLVuYbU4XtbXXXa5wNHWZF+4NztCxib0sVqVkhaSRr0v5iKd0GI1lUtVKksX2cyxbX0PWavvVsqIWucYA7LOQEnON7RY3SkP76weNbIjSdBKfC1WAygF0LuCRr2Hm/u35Zk6DiU1ersrMqvh+6i40ej1R0yti15mNZX4lY8L6hVtOqAwSKxccM/HMCOK1R3poeynvTZLdoJuQhGBYS9zVo8cA7LaIlt+QgwQq//yT5r45KHn46C6Eq+69FEcOlD4PlYeq+MYsXrEnWx5H+OKXiHf5tLohRABQBQE4I2K1fffD/zWb61yrCuiGop/75zIF5jyxb38HCCa1Pzf/ws8/DBJU5tOXrTwgq+bZeJgyMXqfKcNUNjVys5qClisZs4vExOIUgdVN0TSouvR4njzxGohiJ3VIoBnS5REROoolcqsFFI5s7YhUmoNgfL7ynd1Um79B4BTp4CnPY3QWZ1v88ud1aNWOs9Z+WFSOauDar8wz3rbsjdC7qx2onP+XA8dzPDyF7T7USBRhNmoih17XRrnDKBPpvyEsvRtuFrFYGd1oYN7w5feiIXDKyrH5dmMK1xJ4YBJWTKthZjWI8dWf4E5JuEWnNVDZla3Y09HUuyawPN2HMW9D5rPMHdWj/edPpN+B/Pt0QP9pdIORQHa61ZK/XU1GnRtJu3YOKtjtM/QWWiSbz0IJ4tXzzYfxOIiGkkJ9Ynl58111wF+HgMy6hbqzcYsXO0IWliaJupkTQyIXRSrR67ShV4ExI6gRZevbe4HtrMiS3OQWB3phaibDj4fN/zadyDuFK7xRkOLPhOFa9Rx9A6RESf8UerAL5sYkNxZPeBGLuU6b8cIVBWvcPy2PnfXvYXlLjtTBfuSKz2c7Iyd5ayuj5nzv1TS4u+o50G+jdjKdJ2BFsEkuhcDUjinBgk0vQKLGzsPXRcDFy2SKMPp7hjmG25/kXKdBkeOfwC0WC191Cb6ovLIETOmXQC9z7McZHqHwSjXQb5g4a4Q6UZ12YdhbyGkSrmDJz9n6+UNi4lrkoufhTGMjoMZ4X6Ti9VBX6zWW/SJ8poLYrUlFNLO6GK1KuaAmKi4QedWcvwMFqMSnpj6Trzy0kdx+Ezp7GPNF0LyAouRRxJdkzura25EJlb3PgLP21ix1UcewV2//VkcO5otf2urjI/XXbgbhnyh1TXvmWqOgH4z1OarzULKbSJWJwlSJVB1I3Spaq+YXUzLM6vjgXMvZjhYrGbOL1IiyhxU3QjJzNLg1w9JkuhOkjr+odMBxsaIxeryBHxLouQkdIKicU7U3BDdpe1xZzt+fEU28KhkGeRiExWrS3oehKHOQ6cmivS5RSpWmyI620KsNkXwSk6M7gyRSFeMATmXLZ5RhPj4NK7efzOO3X1Ku8SSBHNhFVN73J6AMfKXZia6ouCeCQIMLlRmvgsFgcPNKZw5uGLWaSYkRWe1b0uE8fqfhbzkcgDQ0R4r9/BlGZCm2i1iJk2eLxClzlBitetk+mObmMDL9+zH7Y/s6B1rz70LAK6LKb+FuRaBWG1EH99Ozjm7fDXSVEc4Uzqrk5aOdqk4EdrTdDkguTjhJF0knQ0OyBcX0YgDjO30lj38i78IvOw7Y92/XOjbG82MadzvYHGWaEISRf0t6pUKbCuDbBCI1aa43pTfwhLVsKiXJap/rNWFzlYeMJOMwwztxMNCXEEjdHHjHxZu0s0mutJFeaogguRCygYn/MtuI6YIXrVqYkCqtu4LBxyrlOt0xVKinfgoF8VqU2BvUAxI/lpAL7LJzD47BmS8Lygu+71zpRDbEtgSYYco/1ctz6zunRADCyxu7E85rtD5ygPE6kxZWGxaZxdUXEke/zBq5meSoBkHqIzr77NUAjqjxnUA2lmtRO88KfmmjsOIwtcyZ3UQILAlotaI/VceAxI4tHFTJrPaHqvqAq4UwzjjUMwX2fq7w0YTq9vSQyUXq4VAyZUDdwIMdazKhuMtX1yImqNl7WuBdXl8EQCoeJ3zIAwhGx0syCoOxZfimp1zOi837+xyoTb/XC0LNT9BMx5QJ2WI4+25lUsl7awedXyU6vo4oiBWb2gH5nveg7sO7EBJdZbfT1dkVg/rWC/y7W8DP/dzhbnryogZ34dtZaMtWBQIw+0Tf71txGqz66zmhuieww7kMAR+/udXPLhaZrXDmdVUXOCzDeZJR5oiSl3U3AjJPN2MP471nIHa/dpua3GCNAbECuDZRqSbI9qebAajdS+kceScBz7xCeAznyFs8O67Ic/Mo3zrzaTfV7OpXfvURBFQrxMORPJt375D63zMoydKRqCgigGJMhMDIhHOEPUF5jqoutE5TXI7n/48KlkLl1UXcOz2Q70LX8K4nahcE6ts9RSOrSe/AzKrlRLoqDLC1MPpIyuOY6VzJJ/oJQNiQKQ+jlYS6ByUtY41j4RwBwgeQE+snqzE2LsXwNgYXn7pE7jt8GX696TEUlLqbafvxYB0hl8ZOnkS+LM/W/Fglulzy0q1UL9AV3FWSnqxOm7F8CyJihuhdYZQrK5N9HdZHJ3d2C8vLmr36M7lCwfPfCawa4+1bZzVADDmdekE4DRFqkRvy3PdDdGcJejAOx1IZWEqaGOxSTQsl1Ifq7lUh3ZWxwptGWDh0uvwA1fcj298frH33KGjto4BmSpUWBwkfq5CGALPec7yY20lPip1E9VQsbRLdUA/O5Sz2i8cl9n+v+65mw8e8oXJyUk4Vgo5u9hrtxGXMDZpJqWuCwEgi0ccd+WiR9nVjqw2wSJblmkx0V7FWb1uDMjGndWOJ7Sov55YbaL/JieGaDt31I7qTDP3Ia+8Iq5jlJzaLNOTDYHezqiyn+p2R3RWF7Pb4ft6wXXULGiz89Kt+qg4MVoduj5GZjaceln3sy0CF2FetLFYd8MZMbs81d9NJTDXVFGsHtUJny3PgS458fAO4NUwu0wCt3BcZhwXh+v0CWahY1HWMD1rYc8VPlwrRXLsdP9Yi659ALVyikYSjHYtFDOri2L1iG7tZbn55hwYZLoAoLe9pSkeXLgE/+qSh3D8YGEyuEoeulJiQ+fA3/0dcPvtwH33mQeSBF3pouSZ7yYItPGAKCaNndWbQNFZfQ67QWZngfe+F3jggcKDUiJMXXil/rggsCW6o+7eYACwWM2cb6TsxYDEbboeODl6Cu7RAwBo1epOR4sTlMX1olDBtxO9HfXEPFGjkSnQ1KXLYNpkTp8mLlpoQoZ9FZKuRDcfOopq8xSoz61crCa7secxIGUXZTdBJxoxRzQnHymNjelJeZvIWR1KHQPixOhO0xVASzIbJSdGLDcupi3un8G438FVtVk89qgCjh8/q3iKJRTSLoUrC8vMM0O5PMyJXSoDAhlOH1txAUmptyT6yyd6gyb8MtR/s514hbDufpsAIIqjhWGO1YgEO+oR9u0DYFm4Yl+KE+1xYHERaLe1szoXRC1Lx4CE5aHdTrffDnz2syse7Hb1xDwvVEYoVqepLjK4GTEgVSdCe5ZQWE8UHCtFxYnRmd9gJ9NqoZEEqE+tkh/uujpHdbs4q70uFjseTVxH7iJzBVCpoOaGaMwR3MSM1XHc62Cp7dCsuq/IKPWrrs6BHrDYmET62jtduhLfc8l+3PdETZ/4SuGVH/1ptKSP8s5K/xfOIffzyBFg/369u0r/0UQ7H2sms7rq6GMdMQakLf1+Ti3QiwFZV6xeEQOCiQnsDFqYPW7+UKeDtvRQHjfPuy6qbohWe3QHsMxsOGVP99lEkQpnOasHOeFz8WmDUbauM0QMSKwgkGHnjiEatG14luwtpG6EhQXgb/4G+j4ipV5szx3QZaEXQkYshAgsjxUuBWrwzqgh2j1brJaji9W5kaHiayGtS9R3G9HHrpUx7nWw2Box/xjon39+McpsxDiYJNG7LIL+NRV4me5jRo5tWZmvPeKxpila0kc1KNxXHGewc90cy0JcwcICMHHVOHaVmph+dL7XrsysvmsfWqxujipWm7/renqXQS1I0IxHvL5W9lvmc42GafKBB6AUYAmFK6tzOHZnYWdQvvMw6LtfLaGQRsNfXwsn2njetRFOmzUAxDFaiY9ayXyGvq+/qwbNjr7t5qyuVLaBWF10Vp/DkHtxUdeb+vM/LzwoJeajCiZ3mT7QshA4EuGouzcYACxWM+cbKRGmjnZWR3QXcPyxm+AdfIy8bG4uVpM6q8MUXp7Vu0DUq5tiUjU3QpfCkXMeIBerJycBAL4tEXfpin9F7/0LBNNHgRad6xEAolNzGFOLpM7qxBT/qtWAZhzQCDQFsdq3E8RNmgOWsXZWl+yEeIeBDUdkfffTBliaiTHmdfGCZ4W4Z+YKyBtv0gPRcj+PrmQnoy8I5Q6qFYWv8ufWJIoghEK57uK6yZM4fWjF55ZnM1YKYrUtEQ3KrDZ9cUv6Z4vV5iJVq2xLHUasnqonuPRS89jkpG5lehpYXEQ39RDsndDPCYHJaoz5qDx0x3DvvehPGnJMpELPtU9YcFZKLVaTO6ttqTOrF+huNDJRcIRxVi9s8JrtdLR7dEUMCADA0Ts32uEF7hgxM6Yxr4uluATMzIzeZjH3s1xG3euiOU9wEzP9dO9YKQYc5ljz7fSiZHYsDCpaaNyvJ2Z8XL43QSvxkE7PQXW6ONEex7HOFMpjBcXD9FsqGb5PPPRQB4Gf4WtfTXvH2k58VOt6SuKWXR0pMcgFnqwfA7IspxboxYB018u/XemsnpjQos9JvRtE2/QFxKTptxw9nm22RhSr83Or7JkYECqxWpzlrLaEQhqvMUbKsl4cyUZwPGtwDEgC7C0vDS6uCGix2pZ60XmD9/H3vAd4xzuAY/cv4O4zV+hzNHdAVwRJIUQAy9TqckAQAyIl4tTuLzb7PnxLImyPOJ7NBeCKFtLaVAuNUiJTFqxaBeN+F4tdf3RhppdZbe4ved2NATvlokiPB9Zqsy19VMr986jkZ0TOanu5C9xORnNW532hv0KsHlQY0yx2LcZlZBlgX7Ibe0oNnNnf6B9rUVgHUCvJ0cXqFUULa1Wl5x6j7MDMxeq833LdoQqFAwDm5xGmLkp2gn3VBRx7uOAsyD+DgrN6Q074dhsLtz+Ea458DmdOZ702m0mAasmcR76vjQdEzurtJlZvH2e13oHbPYcdgouLwA/+IPDVr5oHzFxzKS7sFAVQ8lKEqUMsdFycsFjNrEu7Taz/Soko1U6UJKJzqiaZLqhF3atvhlgdhVpQLTlEFd+BXjGpqhvSTHJWQB2vAmyCWG0mDp4lEc3RnbR5trJICM+tgwcRHZtG/d4vEWdW23A9LagtxOVNEKvl6MV+DDJK++5XquiaMIQQSidWmJ83wtKcxJjXhf3D/wav2LsfX/pagOmwhl27zQs8TzvBCcRqqax+BXFAFyoTav3t5LmzetzDd+09gtPT9nLl1Gx37YnVeQyIHCxWC2Q6BmQNZ/UyG5kpTLNuhmIcI84cTI1J7awGgIkJfQ499ET/PRdsf1qsrmxIrD5LOO529aKNlen3vkR33aaxxHg1oc2szgssOhFaLbqOViYKrsmv37AI3m6vGgMCoJ/7G13gYrW5Vhwr0/EEVGK1MrmflQpqboTGIsH91jir616oxWqK2Z6peF8s/gVg/baV6l16x08KjF1SwdPHprH/niUsnWghyRzsX9qFciEFBI6jt5sPaz44dQqH3vNZvO7Sb+LOvz+lHzNF8Cpj+mBF4Ot9TEM6q1cdn+Rb/1c4q0tOsv6ugLy/yz+4ceNQnBG9c0gVxE94HupeF43WiNOp/P5d2WA+63r0CiwWHsuzoNfK8s+ycyuwOGQMyNVjM9h7yRACgWXBs1PE6cZ2GnS7wE1/p2AhxU1/ehofOfAi9KvKmYiZIVz767JKEbxSCSTiZzMJUKv2828DJ0E0an55Hg9W1rtiWiHR7o3cYe46GK8kWIzLNNntRQE4r7sxQKjcvx9429v0v9/7XuD971/eZkd6KJcKYrWXju6E7y1erhhvjXLt5pFI/vIYkGGc1UlmYzE2cX0TE9hdauD0if6C4LLPFUCtkmlhedTPQPWzems1aAF8lLlHvshmFWJAhigUDgBotbBoRMPLKgs4fqgwlsw/g0Ku8IYKvB84gIW4jGvGTuL0Y0YETxK0Eh/VgqGlQpXfjm0WA7LUQtVqk4vr7343bXv5LmTPknptbYMLbAt3PIyd930eOzCDU6fQvx8I0RsWAGb3xqj3BAYAi9XMAP7mb4C//mvCBvMYECdCEhM6q1MHni3JOwVysVopxJGCZ0mU7BjdUR0TOWZ0VLITdEdZ1V+F+Xng1a8mbRIAcOoUsVidJFAwzuo5OjVJC18p7VaeVgtR6qDuhvQxIJ6NiQlo0Y8iX7ogVo9cPKaAzhXOyBdtlNKDcQVs7P1nGZbmU4x5XeDZz8Z/fPlRfPixl2CmW8POfUboyZ3Vo4rrSYIodeE6hXPKdXVkw3oFP8wosFyx8F3XNXG6UwcOHuw/LyU60kW5WtxCmyBM1p+cyki/72/P7cM7vvyi5Z9bkiDNlg/C4Lp6e/J6k2jjrH7V8xfwgheYx6amMBW0sHDr/frnFfa9yZouZjlMx6CUzo4bG1txaXY6+joQeiEkatCNnOWtd6D28N10RWyVQtJJdAwIZeErAFKqfmb1Rp3V7baeME+tkh/eE6sv8OHjyo6VQqw2DkXb1QUW614XzUWCvstM7B1Li4sks708s7ogpABYf4xkrlkAOHlSYPzyOp42No1DD3Uwc0Qf41y30itfAKDnThs44ZcSuPFGHHvLB3Fofgz/7in34lv3mXPIbNPPxephawPkGsuq3UWSoJ14y7b+w3F0tES8zrHmnYnV70N3TSSY7laBgwd1VHGx+qDrou6GaLRHXLzJBcWKbwQvgnHcSoci0BPU1vy+egUWN5hZnRdYXGecJBOFG/Y91BMVB+E5CnHmbGhc/+m3P4zXuTfjGZ378MnP+jjSnIJX6vdVQdkaPQZklQVc27ORKmvkGJBmEqBeM5+958G3BtxnhyFfuPIdVAJdQJVk8C2lHme5LsZrKZbiYPS+q9jHAkMX2kyWOph/5DTwvvfh7i828b9/N8NsXqrB9AWV0ioxIBv4vtIUuOWWFceq7LPytUcadpv4omppedZ+1Y3Wjxoy4/+Tzbrun8fGsKfc6NfLlhJxVigGCcAtOTq6Z8hzodEAbr11xYPFaCwYZ3UyorNaSqTFIq+9QuFDLHI1m9rhusvXtWeOF8YpqxTBKznx8Ie6fz8WojKeOX4apw8YNdostNbKBWe1S2c82DbO6iiCvPd+VO+4hdxZ/fa3E5sm41jn4luZ7r82eMCL9z6BCSzgFfYduPUTZwp9yPLzM/AVuumIu20YACxWMwOYnSXuKNMUUaZvvAnhamHPWd2rpEwDuVhtimfkzupOk0gAzR2XToIusYhw443AoUOkTQLYBGe1acyzJaJ5OtWnf24RitW2jTB1UffC0fMIc+K4t82vFwNCceLGsRaAN8FZ3cusphKrVw46NuLuaDaxFAUYq2aAbeNFP/YMHGzuwEMLl2DXU0yFTd/X2wZHjdpZrfiXbaPqhmivM8jNwhiWUPhvvxjjVa8CTnfryy/O3EGUi9VCIHDNVrR1RIQkVpjwO/jSmWvxvkdeDnWqkK1h3F71oPC9O47OvlxvQG6Er3//6llcc4157MUvxqTfxtwZqau9rxCrg5JANOS2ufkv3YedncOYrESYL0b/t9vaoWilOvuV6HwFgDSSqHkhumeIKvZFEeLUgmec1e1Rc29zsgxSCjhCO6s7SxvsaM11I6qVs58zMSCdmCCfdDPJBy6XXAIAUDMbLDK5Gkb8czwLKJd1/EODYMCR99O5+EUx21uRWb2R6B7fTjA/D9Qun8DOoInpg03M/M3n4Nv6PAqKaxi2Pdwi+YMPAl/+Mr7/k/8Jnzz0fDxv6hiWlpRedUoSxJkNr+IOf6yFp/OP633vAz79afNkvsskWL4g6FjZ+t3LSrEawK5dwHS3Dhw4YOIECq93HNS9EM3O6GJ1HtWgxWqCvmC1zGrHgbeeEz7LjAC3sT/lemL9zOosQyIFPDvtF6EagOdkiNP13dor+euP+/iJp38Nzxw/ja9PX4X9jV2o1vqfpRWYeJcRxeo4teEVF5vzGK8RndWNOEC9bn7OF4VHnYPlWb2eQLUm0JaDC60ORX4hOQ7G6xkWozJJ8em04NTtLbhH618P8jP/jIXpBPjWt3DgjtP4lSv/Hh/4H4f1k/kui8LtrBQovWixge/r3e8G3vzmwgMmY3x5QesRM6tzZ3Ww3FldcQaI1Wax6/DiGHbsAFCrYU95Cadn+vFy7cTHslt63s8OeS3ccYd2ra/8u0UBuFbJaKJFlH12DMgwxepaLSxGZYzvLeGKySYOz9V6O5dWusB739ewBq/9+5FkNi6rLuD0KXPtJwmacYBqHjETBDoGhGgKum2c1VHUK24fEhmacqQEHn6YsMEkgVQWbGG+w41csGmKhVMhxr0OXrz7EO7+WtozYXrO8r4k8BXHgBDBYjWzLvPzxB2lEWurbkSbA53pAbinIrp+IcvQueNbGF88THesUaQHuZYczo00LKazHfqGvgE+/vGzDJAjkyR6IYT03JISAoBvScQtwuxXZZkMZELXfhwjUwJlJ0a0RLQMnRdo8m2IYIgt38OSf0n1uj6/mjQXmEwyEwNCkMmYkx+r6+o17o24OxYXtSNj3GS8Xv9C/MyLH8TbH/wB7LrCWAl9X1d4HlWs7m1RX8U9s46DIOlKOCLDK77PxSXfMYXZsLo8tHmlWK0PeaCDKIkyjHtdPDy3G7NhFU/cV9iZYNxetRUFfypOvP6A3JzjdqmQe3zJJZjcV8HjS7vxO/e+FrX6it9xXe10GKITb33qC6jLBew59S2cOVX4PsygWceASLLzFQBkZqPqROiu537fCO12bzGs4sZod4jE6tylaWWoOBE6jQ0uiOVf7LK8B0PPWX2Bi9V537dvn15gOrUwepvFbd+VCupuF40mwXeWX5tGTVEhjbN62RZ1W+e4y/V2tJnonomgi1oNsHbvxM5SEzP3n8bMmQzfMXkCZU8uSwTqb30f8DksLgLQO34OtXbgsr0SdiYhT04vixPIjzV/DwPeIgD9VaepdmD1JrXGoVh0U8LW19q6zebild0fR+3aa2O6WwMOHND3iLHC611XF9qkEKuVBbcWaHcmUQyILpZYGGfaeqfYmudBz1m9sT9luTYyJdYW//I6DY5aHim1Dp67QWd1luH0goenjU3jmonT+I7JE5ju1lAbL/RVeRb5KBOFfOu/t/yeCGDkSIVGUkLNrI3D87RBYNTdkoWs3nLNRjshEqvNmBuui7G60jEgQ4jV/+7f9bqDdY8VQCGzen25QjY6WIj0/aqZBHjTM27Fxz/l6VMnL7ZajAHxMy0kbUCs/su/1LfEniFqlRiQkh0PFNbXxeRrV1f0W1U3QquzzmdgBLhMWVqsrtexu9TEmfl+Mey29FGtFs6lYQplF3j44VW+t17GuD62sVqGxWjEugtmV1CvC87d9XIIySp3Vu9wMP6USR2rdeJEr90odeEFyzOrh5omZBlw9CgAoOpGej0/y3rO6mqlH91TcWO02jTy2rZxVpvzr+JECKlqcRmk1GvdZMSxdu5b5yBWnzyJxa6Pcb+DHUELC3PaJDkXVjBVWn4i9RbE2Fk9MixWM+syN0e8KJSmiFIHNTckbTeBq4UvK6YTJ44eRefwNMYf+zrikM4BHWXaWV12YrpiiIV8zjRbZ8JwDrTbWOZIoGB6Wm/f3xxndYqI6vtC31ltZSndx2q+r8BO6ArAxbGJARH9bdQEqwG9wln1us5oXaJZYEkiZQosEi7ayP6xKmBjzuqlJSzGZYxN9l0XP/bx1yKtj2PnLjP5yDOrR71u8y3qxVxC112/iI5SkKHULn/Pg3XJHiSZjcaRggi3ilitV/fXyU1TCjLOMO53kGYWfvxpd+GWLxSGBkmi3V6lFWK1O9hZDaAvDhimXvQU3HrqafiD+16D+viKIUi+yDCMWI0qqm6I3eUGTn+zkLOdu53yPHSqhRClkCqhndVU/XangyTTBbWqbohWl2ih0UwcnDyzeoPFfpJGV0cfrdbx587qAdEyW04+AdmxQxcunCc4D4rbvstl1LxQF9Yb9XMoiNUlJ6bJWTf52nmBxd73tt5Ci3FWj5cijI8D2L0bu4Imprs1zIRVPG/qGMrlFe/VcfSOrkF9+OIi0kxgT6mB//v2Bvxrn4pLKws4+aVH++8/F09MP5Al639nycFjAIDoyGn882/ehslsBjPTqvf+V+bUwnHgiBQyWeNYlep/lwVBddcVJUx3a1BnpnGsNbGsiFIvs7qzQSvySvIFpmqgF9lGEbxyejEghcccRy9arPUZnGOBxd4fWWsHj+mX3Q18TJ6TIR6Qg72MkychVAbs2IEXvesN+H+feg8m/A6qE4U/mi+IjiimtaR/1gJu/tywHDiwouvIndXjfaeub0tEo0bCFIrgWSV/4xFp67QLALBt1OsYOm9/ZgZYWGvtcEXBvn4ExPpyRRIrzEcVtH7pt1B9xj5UqgLPqh/Ho/e2gUZDmwMm+mORIMCGhKQ0TuFnXezcoXSN1fxYVwrrDlFm9YrCsFqsXt9ZLTMbFS/uO6tLSzi9VNLXZJrqdiuFNjYw3gKARx5ZQ6wu5EBPjme6Xs4o11eaLs/adxz9uSb24Httq6XF6ikX2L0bjpUiOWkiwKREM/FRm3B67epdQUMc0+IiVKp3XWJsTOcMLiyY72t5znzZiUnKBQF6qrgtxGpz/lXdCCGVAavfNB56iLDBUZzVR45gMS5jwuvoceWiAqTEfFTBVGX5ieS6Wj9gsXp0WKxm1oXcWd0rsBghkYLmIlYKsdRh+YEtaRxUho70UPdCxHONwS8ehijq5WsPfZMcst2cc8lgWo/N0CNOnQIuu4xYrDbnkmdJxITFO6URq13EdMdrvi/flmQZ0HmBJsezAd/Xg7T2iG0rhTTJtHBVq2HC72Bxicb9KeNCZjWhWC2EAup1WEIha5+Ds3qqP0v3Agsf+YjAy19uHsgzq6liQIoTEttGxY21+LUaSYIkteDYmd6ivns3fut5N+PnP/l9/UmjlOiudFZ7SkdrrNXXGpFkPAhhWQo/cMX9eOKQWPZ8IymhviJDsTyEsxrAWWL15GVV3GtdDyUsjF1aW/47rqu/v2HE6khnfO8uNXHmUGFmkDsUqcXqfDDuROeUWZ6mqxSKCUPEqQO34mmn+nqF3zZCvstCZIMFylUOdL7hYDLorMh7MAiBip9qd96FXDgmvydOTuKS8hL2nyRYcTV5qo5n6azikkQjGjH/1rQLAKhWMeZ1sThLMC5axfVXGZSLXhCrx8YA7N2LnVMZZsIaZro1PPcN16BUW6E25u60Qc7qhQU9oXtKHW/+jTHghS/ElbU5HP7M/XqQUSxaaNoc5CiV934bABD+6QfxV5+s4Nef/mlMHzJvsNvVfWy1cFyOo2NA5BrHqpTOpAaWi9X/+oWYzqbwwPyleNlnfg31qcJn4OjaE43uiGJ1fs1WAxN7YI0++Mqys2NAbL3jQkZrx3Usi48Zlvy7W6tPyMVqb/jxg+cqXWBxyH4mfPQwAjsBrroKVz+7jN/85Rh7d0hUdxVC1vP70SgKkBGoqsHyeyKADfWJP/zDK0SYJEEjCVAfM5+RiT8YlNc8zPEmea5wEOhYNwoFrCBW2yVPO+uHaFfKdTJo88xqb0UMyCBndawLRD96tIyrnyaAffuwr7KAUw/M4vN31dCWHsq7qr3Xl/xMF1gc8vuav+lLmGocxCXp0X4NanPN9s7pPFZilIUmI1b3CvYBgK134647LDLX185aqMVqx8HuHSnOdEwMhpRoS29ZJE5v5WiYic3Jk3jkznl02iv6pBXRGhPjakNFslclj9ty+guHgTtEsTqlTIHFMsZ3ecCuXbi8Oo+jD7d6x9pMguVi9bDRmXNzZqeOAnbv1uPfQ9NAHKOZ+Kjmp5bZebbROM5mE/ipnzr78TDcJjEgRgDWYjXtAY+PEzurk8RkVqd6UXwj88RTp7AQlTH+1CktVi8JoNXCXFjBZHX5Oe96gsVqIlisZtZlfp5eUFTQgmKibJrVfSmRpH1xIlogWtI0A7yqGyKepROro9SBb+nMajKxeqU4Tdbw5jAzA1x66eY4q32bVqxOhAfH0pEVSUhXCBAAfDtB1CL6EPICi74F+D4m/A4WZkevIi8zC66dAaUSJvw2FhoE7k+lIBPVFxSp1lak1BOxWk0XJtrICv/SEpbikh7kFnjJS4Ddu80Pvk9z3ebbUldUfPftZO0s0Xyyn+f4eR5+9EWH8PD8HvQqCUmJMHXhV/pKQ29r/VqD/DiGVFqguvLSBJdV5jE9XZjQJAmaiY96uTDgyotBrtfVriVWTwL3PVHHD/+IjfGpFeeSmTz13Pzr0G5mqLoRdpcaOHN8lYrvgUsrVpuiLFU3QngOGevz88Cv/Mry1JZcHHTLDipegna8sYJPa5L3BabAYnsjYnWng7moiqlKuOZ2/XKQoSOJinRtEirPUZicxBuf+VW8567rR280n5jnxaTqQtcGGDWgsuCsHid0gadquVhdduKzxYYi5nycKMfaWS0Edl27wzira7jmJRN46lNX/M6QOa3TxyKc7Ixj925zPNddhysmmjgyW9H59W5BHc1jhgbE4shQf26nF3wcaU3hVZc+gpnj5kBaLS1QjS0XlteNAcldxfby62XnVVVM15+Gx596A37yX53AT/1yIQfE1bUnmqE7mricLy6UHJQCE1FAsAhylrPaddePAckXZM7VWT0gBmQjWdgbjQFpHJhG3QuBK67QD7z+9djzgktRqxemuhuMPlgV49BcJlabmJ1BY8S/+zvgC1/Qp8qBA8Btt61styBWmxiQaNTxbH5ueRZ61VGJnNUK0N/9kEVRoRRks4PmyTWKoEupd5+W+s7qwEkQJQOc1eZWdM+DAa6+GsC+fbiksoSTjzXxho++Fs04QGV3X6x2fUsLSUOeWzOfugM7gxb2Nh7DqRPm2smvlQ3maxeZnQUef7zwwGrxRfki23qFYc29qSdWA6jv8LTbvdHoO7arZ4vVKh6ioPUf/R+0p9twuyvqdaxwwgcVW5sjRnRWyxX9lu+pwQUxu11dKD2r6R2Su3bhqtocDj2e6AsuTdGVHkrVYmb1kPOP2VksRGVMjGfA7t3YW17CqUeXgDjWC1f5qZXfZ6ONzZNuuQW4+eazH9+WzmrC6D1A14zoFUulwCwy2ULp738jdW1aLSzGJUw8fSfqbhdLLRuYm9Nj5h3Lr/teH8Ni9ciwWM2sy2Y4qwFo4S8jEqtNzqJnG+FrgUioNYPrihMjphIUo6h3rCV7A1WIh2h3GdTleImJY6Ba3TxnNeXNXWZ6IcS1UiSEDnsAepJ/Di7NVckLLBpn9YTXwcL86JMcHamgtFjtdbDQJBCr80G+SGkXbQoxIL69QbF6fh5LcYCxvavk9Ob4Pk1sSb5FPVgxIRHrTEjyLad24fk9e2AJhfTE6V67AJYLP4NEBCNQ7am18eLrM+wqNTG9UPh9KdGIS/1q5+ZYK4OKyKwVAzKltb3f/E3gf//vFb/j6jinpDv4mmi10Beri5nVeQxI2dNbRztEkR0mZqfqRuieQ5tzc9p8d+ONhQeTRN8PPIFq3UIrCWjuifkuC5Gi7oVoraELrEq7rfP3amvf+Hti9QU8CJfdREfmjI/jxXsO4+DiJNqjFjQ2EzLbCMD1OtBICMTq/NqsVOgiS1ZzVg8SgHNndSXp5TLveNFTMBtWMd2tYddeG1/+8orfMTnQg+7lv/OPz8NH9r8Iuy4x/ZHr4sprSrh39gocbk6hVCocl23rCX93gFht3MH3ZM/Hd+06iEm/jfkZ89k1m7qPnfD7v+A4Wqhd67TNhRdr+XnieUAoHTwx+SK88icvxwtfVJg6WRZqXoRGHKxbxHYg+Y4Q30ZQtrWLcNSBTJqa6I0VmdXrZZcrpfsOarG6FwMyvJDX20Y9pKC4dHgBY263V1QVAPbuRV9IMsc5TMTMuuTO6hW7jYapQ3PoEPDEE3rRcudO4PbbC0+ayK3aWDECI0E0aiRMfm55AiiV9O4l4hiQXKwemLf/6KNITs6i+e6/0LkSq7TZkR4qtWJmtUQ4QKzOz+e77/N6YvXe8hIevuU45roVHGtPorKnv5NL5KHsw9zDlpZ0/1dqapHy3pO9310WtWTE6o24aj/6Ue2w7x1Gu62d1ePLF+8cK4Ucwlm9oxb3xGoxVtfftRGr24l/lrPatdLeot96zM1m2Bk0z47Wy+cIfr9fB0ATA1KYavTi7Nb7vlotPLywFwtqTC+27tyJq2qzugZ5fq4KQFj976vkxOgOc33NzWlH7bjoO7Yf6wKLi2glPmq7zC60cyxA/Y//qIcRxa7ORGJvG2d1qnScXdimGxeq4UscDE8cI1X9AuTdjTjBWy19Hjx9F2xLIZMpMDuL+aiMyV3Lv3N2VtPBYjWzLpvhrAa0WB2nDlkBuDxXOHASmrxHoDfAqzgRhlh4Ho7cWe0YkY6i4jvQ/xzNQPxCd1ZLqQuVUBfvVDDOaqp2lUKSAI4wYnWD6HMtOqupbuzFyuS+j8mgPbpYbUQv18mAINBu7bY32qQc6F2zjie0+Eux5Rnoj/RqNVMMcgMnwtycjgHZV1v7NZ439HXbaAAf+cgaT5otmZUVearugMJX2lldGM3u3q0LoD02r3/O37+zfKKT/81VMd/F3rEOPvJxHf8w1/T7rzcFFuuVFWK1G6O9npi0jrMaAK66Sm/vW4b5DJLOgA43y9DqCFScCHvKDZyZKQxlcpGu4sO3JMIukVhttg7W3BDd9dypazA3B7z61Vgu9hW2xns1n24B1zir3aqPca+DxdYGFpg6HcxFFUzV1+6XgpLQW6gvYGd10kl0YdwgAEol7Co10JoZ8bNNUz3JMVvUx8cUFqPhioqtS8FZPeZ1sbhA0BeulVk9YDdEktmYqCa9a9P9nu9GMjaFmb3Pxs6dq/zOoH7LEHUyfOnkM7FrX188vub5Jdx06Pn4n/e8brmIMsxiGPpi9fQlz8XYDS/Wk8cw7m0Hbyc+KpMrxGqRrX3aKmXGkme/l127gDvuwNnOcgD1ss4aHrVoXy76BCWhhZlRz6ssOztuqid8rbMouhnOarNNfEOZ1a5CnG5ArD7W0M7q9cRq46Ycya1sXKq10vIYr2Hq0EgJtJoZ9t94L37gukN46H7ZH07lu4JK5kPyPH0PGxCBMZCi+7Vc1tcAxVh2hVhd80K0FgeMZxsNSGWhlfhofvyf8aY3rRj6GbG6XOu7lX3b5BWvQ37pfeNbjharn/lM7C0v4WvTTwEAPNHahXJ9+SK+UkNGUT74IGbCKnYGRqx+zJhWpERXuihVCi5wO0G4gdiWb39bRyL+1V+ZB5aWdFzHZGHcNGhHiDkWmdn42VcewItfbB6r6wrWaqnRy1nvLQIAPbE67gz+DObDCnYELQSqu3zanpsoAvPZmvHeMG7tnCgCvud7gHvu6b8XvSOk/zkGXrZ+nB0AtFr4z199A74xfYVebN21S4vVJwq7wMTy+0zJTtAdJn7NiNUTO2xg925cXp3HkccjYG5O77LYa6qFWxbKboJO4m5onnTffcB3f7eu55STd//bwllt3MpVJyL1ymUZNn4vGkTurLYyvVjR2MB9u9XSUTJX7dALM5kCjh/HXFjF1CX+spf2xOoLOS5vm8BiNbMmSm2Cs9pctJ5N7ay2TWY1YcE6s2JcdmLECZGobJzVfk0XautQidX53Wx8HAqA6tCK1ZY1uj5ZREq9G3FTnNW2HD3jL8cU1HKtFK5IETeJRg25WG0RFM/JMYNV17cAz9Mu6MURP4d8Am0DsCxM1CQWosroi0x5MUjXQlC29JZnihFOfkLVatpZvZHtXblYffnY2q/xfd3HDMhSBYCTJ4FPfnLt41zVWb3eVs88S9Ra7qzeW1rCqf39TL68rWK7y55bSeG7gOPA3r1DZ0+e7LuHGvEqYrUTob1edfp1xOrJyd48ajmuC2+YuJ1uV7uEjLP69FxBAckXWCrGWU3VFZqdC1U3Oqfb1tx0imfsXsRCUYjMF1o9XbBvw0VB1yIvsFgrYdzvYrG1gYiCdhvzYQVT42t/B8LbQNblFpF0TTHSIADKZS3Uzo0uVhe3PE/W5ej5nCjE3lQqOld6VAc40F+08ftCir5mh3BWV2XPWQ3LQlap49RiqefYW0ZetHA9vSPUBbW/OXsZdu/rX6vXvGwH7njdO/HQwiWojC3vs4ZxVuf9xMySh/rush5UZBlUqw20WrqPnSzkrueiz1qndi7U2md//i94AfAv/7KGWF1JtcN+lPMgFyp9G0HFphGrc+EvWMVZvVkFFikzq70NxIA0m2gsKYyV42WroK95DfCKVyw/zpITIxxld9RqucJG+Fo3Zgf6FGk9cgwHPvUgnr7wdbwsuAf/8umw/6RpC4DOrHaS0cWqYq5wqYSqG6E9T5tZDV8vjA7cFWLGG80kwG1f9/DhDyt88YvLj7Wd+H2xOo8ZStY/IWWiYIsUDz8q9DW6axcu+e2fwjemr4QtUhxpTCyvF7yRjPEHHsB0t45dlwe4pLyEk8f6NULaRQE4LwQ4jLO63Qb++q/x4D8fwXuvfQ8+9D4zXlpaQisJUNlRyFkftMgG9O75L7lmod9Pj4+j5oZoHpkHUl1noroiEsez5VDxhotqDONeF+NuBwszhc5+ZRSK56HuhmguDX8Pe8cvn8Z1e2bxX39J9dpcllkN9BfwBojVSWbjzqP79P2rXMZTdrdxcGFCuwUAmIoEGpNZPVRsy+wsFuIyJnZ7wNVX44r6Ao4elMCZM7rA4r7+vKHsy43FpEUR7LCFS/ZkOHWq/3AYArXaNhGrTR9TdSO6+bdudnmMFQV5ZrUj9GLFBsVqABC1as95ox56GDNhFVP7SsteymI1HSxWM2vSbAKV0edhy8md1SWHVKzuOattSZeXlMeAuLRidZQ68OrBORVhWK9dAMD4uBZ7WnR3NyHMdkzC82AzxOosSmCLDL4l9fdF4dTtxWCYzOpRCxYa0m4MSygzsCU6t4q5hHlm9ahidZ5Z7eiB50Q9xUJUHv26LbisSlVbV2UnEOmUTHsFFjeUB64UsLCAZhKgetnE2q/LM6uH+M6kXEd/NxOHSnkVZ/U6IoJ2VhcmAXv24JLKEk4djvR7WDnZBYaOAemJCE/RTiR14An9c6eDRhKgNrZ8kO8N2sGwhli9Y8fqgk/+WtdKEXcHi9Uts6V1R9DCbNPvX+8FZ3Vgy6EWFoYiSZBmxll9DouMczd9GZc/8jm0ZwvXThwjTm14gaDNEi1EoYyXYyyGGxDS2m2dvzexzmRz0ALIBYCMdZ8N1wUqFS0kLYzugNZRS/q+PT6msBCXR7uRKQWZ6t1mKJdpCriaY80nZACGE4DN+fh9z57Bb/xG/+FqVQt+1mrDlbxg31r9FgAsLiLJbChY2LW78PevuAKXVhZxYGnn8m3vpthsO1x/lpq7uWcWHb34NTWFmhuidXS+L1ZPrRB9rAxyrQKLeR+7irP6BS/Q6x75zpAi9bLU2eWjitXKgltyUKpYWuwYdQG3J1avdFavEwNyrgUWhxWr/Y0UWATiYSf7p05hKS6hPukuc08+97nA85+//DgpiuA1kwDV0vLPtTxEDIiMM7QePIwDjV24uj6Nn3vKv+C9f7Con8zHQOVyr03fkgPzmgeSL7K5elG04kSDHdBDtisA/d0HwXC7QsyYupkE+OKJa/B7L/4n/Pmfxcuel8qCGyx3Vq/7GSiFRAI7ghYmJoAJM4Tb+6xJdFMPz548gUxZvY81b1cINfjckhJ4+GEdA/LSp2tn9RnRe65VjNawbZSGKAYJALjxRiS3fw1SAlc0H8Qlrcdx/7d1ZEc78VDduVq/tX5m9bI4DgC4+mpM+h3M33cUSJK1ndWDxlsAFsMA434H434Hi48X7L/5faYgVk/6bczPD/4IAADHj+PWTy/id/y3wV88o38vL7JZdFb7Spta1htzhCGkstCJ3d561RXXVnCkNQU8+qhu01q+cKdjW4boC+bnMR9WMLnXByoVXPHsMRxpTOjM6jRAdXd/JaQcqA3FpKlbPg/MzWHv8W8sE6ujSJs6tksMiMxsVNxI74KgmH9Df4TkzmpjPLHrFT2fa26gL8y3e1UqwNVX64XPRoxvzFyJ571khVi9wRgrZm1YrH4S8fa307Y3Pw/s2bM5mdVWraJdZFTO6lSLJ4FNGwPSd1YTXSphiDiz4Y8FelJKJFarMNJb2sbG9LYW4mq85GL1Q4+hdORRJOtNcDfaZpzBsTJ4dopIEhQnAvpibZ5ZTSRWR20J39L/ka1CF90zuVjdGPH8KjqrYba9xyUSsTqvTl+qOehKd/Q2s6wv+lSrG1u4WlrSxYIsG1bgrf26PLM6HBxbkiTraA15ZvWKGBBHpOtnVmcW3ILbBHv26MnTMQk0m8gyQNhiuRVhGGe1srQjHwCuvhrjfgdLDxzVP8/PoxkHqO8826G4bsGfNcTqeh34/OfX+J283UGZ1e02WlLnOjr1MtJM6O8Q6J9bFd9s916/qaEpVDsfanJTZH4ec08sYspvA8VdLz23YaHwFZWz2jiAx+sZFuMNRFXklc13rNN3uK6+31zIzupYwbFSff4bZ3V3cXSnatFZ7fg20swavZhUvmMiCLTTiyK6Jne8ef3s14o7XGZ1rQbs29d/eN8+4Ed/dI3fGRQrAQBRhCSzETgJdu0qPF6pwPFt7AhaqEwt71+GyqyOU3hWgul5B7UagKkp7AxamHmi0SuwWNlZUKjyPnYdsVoqe1Vn9QtfCFx99er5mbVKtmFn9WOP6ZzS/pvpO6srNQtt6ZHFgCxzVg/6vrLs3GJA8pWMtbbgmfG06w0/JvE86LjAYSb7J0+ikQQY2x2s/7q8CN4o6wBJcrazesic9WR2Ca0mcCi+FFf91PfiusmTOH5K55qmSy1YltJ2SqBfYHHU+UdRyCyX9e6NRYK+e4WzuuzEg3eFmILOzUufia8uXIufueoLOPJo4Z63MsrMZOLLbJ3PNcsgUwu7Sk1cfXX/dZUKUPMjvHj3QVgi69WAzNsfKgbk4EEgijBj78bO5+3DvsoCjs3qHRx5nFvPrdyLARni+3riCTy+uBvPeEEVCAK8oLYfj307RLLQ0qLyroINvGdkWKe9PPorKIz9nvEMTAVtzO+fA+bndQTleEFQc114lhwsVicJFjo+xr0uJrwOFk+u8315HiaDNuYXhzxnjx/HfFTGVNDGU50jOLBfrVoYdqjManOeA+jtDAqe8wwdH/Ltb+v4hqBwr85z5ocphtjpYDasYsclejx7+fc+FUdaU/jogevRzKrLYqzKvl4kHFakDO9/HIGdYG/3IE4f7ndMYajHy9vCWW3Gx4Gt58xUB70pYnWSIFMC1lhNf//DFkxP0/6u9XIZeOYzMeZ1cbpTR1e6mHra8pVszqymg8XqJwlSAn/2Z7Rt5mI15Xy0t901H4xRiNVmIqSd1QldwTozeQjsBJkCTYcTxz1ntXZo0uxvSeNUT8zrdS2CE4nVSgHIMj1pINS/5R1fR+nY40gadOFWMkrhiAy+nWg3DkWsRM9ZnertcpRitS3NRITSWd3PrB73OlhojHh+5S4XI5BOTIDGWR3HPadPqeagkxI4q/PvylZAubwxZ3VuA7EHjIosCyU/0+L6gP5gXWd1kujto6s5q9dq1rj+lgkp9Tr2jnVwcrEEHD+OMHVQ8leIEEM6q3ui1tVXY1fQxPSD07oDWFxEIwlQ37Nc9BlYVG21SBJDL2JgJXmBxSFiQFpJoF1CU1MAgGx2vvd3pbLg1gJ9P6Aa6McxUmWh5MRIUmtj94OvfQ3zUQVTQRtQhe/PfPaeL8w5KxEtEtwTexEQNsbqZoFpI2J1VMHU7nWuhfw7vVDF6ixDklraIWtZ/RiQxRH77+LuFaC/EDPK2CBv0876i2HnkIl+FnmRTa8vpJSdGJ318jnzXRbB8vvGX/818NKXrvE7JlZi0Bb1JLPxhuc8giuvXPHc296GK59dR2WisKhl2zqypDugqFqUoeLGmJmztbN6xw6d4X9gCQhDdKS/3FltWUb4WmOxcbXdK4YrrwRuuWX146iWMzQ3KFa/+93AO95ReCBfZAsceFVPT3KpYkBKy92Eg2NA7H5hzmHZlBiQjTurxy6prP+6XFDc4I6bU6cKebK5o7ay/P5dchJ0BjmrFxpoJT4W7Km+uJFIqMUltKSP/5+9946XZDurQ1fl6nj65Mkzd8LNSVlXCIEEKBAkFDEPMGCEn8A8kgFjwGCDwAEeGQuEJWEZkBA85CeCJYEkJF3JQlfh5jgzd/LMOXNip8pV74+9d1V1n67au6pr0J37zvf7zW9mOuzeXb1rh/Wtb612zU+Af0WBofiEqTiteWdIE9K1GjFa7VbA9hsDq2uKxwd+KKjaDRoIGjPoGFZiYB9FyfdMXQNFiuAHOeOGjq2l+oDoVadi32ENL371LOoNaTTRpJB9PdO9zwwqh7YaLWHpIAGRh54GrK3F42DEDFL1uGaQke3gvseauGTP4eCdc8DyMubNAdbP9vG69387vrR2aISpy02yAZOZ1bUa5pZVrFl1nN9sIoIMqZPafInutwYDbDk1zBpDIit2JbWxZWufkmZWD4XB6v6ZNTRUsi4fMy/i1Je7iWa1mnxf1VBI4ooDVgPA/tlBIvly++1oaA76j5wl2tLmmCmqCGksIoakV+0WFveTdWruZbfjkc19+I6PvxUXBp0RTkZsQC24HgzkFhqqS4gn96/EjztXNtFuBNcRs1qGKtGxVAXpAglYrfGPXOJBL6jUbonNWSwGA9iBhpoekqz1TTdhRrfw4Qu34Z7jaxjNhgGyrhJS5i6zeurYBaufJdHtApub1ba5sQEsL1cMUnoRYT62WiSrXaHBom7IZKNQsQyIKtOJpqK+ujS7XVNcWG4FYHUUwXPC+LoSY7lqrkHwufugXjwDbXutWmZ1KKOmevAEXKiF23RDAirLAcmkVwhWx8xqHuNTMJxhAEPxCDjlVmQumC5RpyyXqS8BO0BTsLozJxOWZhUyICFxp2/PKqSEeto2498qBGo1cm2HgpsEBlar/PuxZkYErOYACblgNWNWp8tSRTSrIwWaknpekrD3kIbLwxngscd2tknbjTs0KRhAxZjVe/ZgacbG1dWInM43N9F1a2jtTblU8SRLAAR+BEUKM7QDMoIdnhzOwXw4JKWybRmYm8O82cfG09vx9/RDBWqTgtVV+QIwtrJE+1YESDp3Dut2A/NGH2rgJnOp58EN1RhEaGk2ehsVTLSULa/qMrS6Br9I8q7fJ2Yxe3Kc0DQNshQhdJ+hjJEYAKbjk4HV21NeW2ompWh0TGsaVBFDUE6b3hizuhJ/ZFZKrSVgNRcAzgCr9ZxiE5G5gM3Nv/LNn2W5pSTabRw+ru8wwaurLgYOR6fWDdFUHVxdl2IZkOVaDytPdXGuP4s1t416I3X/SxJUlew/Jh4gGatYnvxddvSdhmxo4mZtILfivfcSXC6WUmXrt6kmh95pF/CYWb3TGyEvKXqtDBZHkqICQQwWxZnV224N7f05Bsm0n2Xk197zHpK0AQB0u+j7Blqzo9I1RAYkvx1vgzBnt4IWZo4RceEZuYfuWbLOtpup7ypJMI2IbyzHi7QJXr2Opuagvz0lgBKGQBQRMEaWE4k0noQRnQvOrTcwv5esMbo/JN4t7HeWpKSEQVGgSgGpnsraJ1Mz2RfuPY/v/M7Rp37iJ2W84K13odEY+70VRWyuvXoVALBqt4jB7N69JCnx5AUKVptozozra+fvI52zV/DWT30Xtmp70ZmVgKUlLJh9rD/dxdPdOZzqLo0awzKppbwhwPYnxuhnzx1o4MPnb8cPf/bbAE0dLQ1RFOiyABg6HGLLraOjD4lh8yp9QxSNJiwAQNOIDMi22Nn2yYdd3DhDANrj7VWc+sJmSr4oGUuSJiA9Rp/7x7f/ffI19+3DDXNdPLm9hE2ngdZMql9Ms5rHhLcsIIqw5s1gYYm8VmrUMT/j42v3PkGA6VTUaxEh4Ajes4N1G03NwZ7aNi5fCuPPtH/td9G+8sT1waymCQZZovdoxWC1WcERMY6Ut1FddTHoC56/+31qrEt/15kZzByawV+v34OXve3Wna/nrYm7IRy7YPWzJLa3ydxQJbA8GBAmZZUgpW1FMBQfcdqzilmYGixqs7T0f1Ads5oBlQAqA6udMMWs5piGCAUr95Wj5FDereYa+H/+QahSCH31QrVJi4jKq0zjyD7eJmVWEzaOWpn2qx/JUKVqNasJWE2Z1YFazU3GQDpTBXRqLjctUMfaZBWZDZOY71XArCYHVwlq04QfyZWA1T5jVtdqdC4Q2yS8+09N9FwjAWxzolYDLAHzK89LXvLgg8CpU6N9HXj6DsMfEc3q8RL1fbd2cGnQAT76UWJMNE4sEzJYTIEIkoSlQzX86ckX4sInTxEZEM8cBQE0jcumdD2JzJ1lwGoRZrVvkEMiA6hOUy05Boo0zYTlVIU7rOsiiCQoUkh0OousXZcuEbayOUBH7mJ7Kxrpq2bIgGmirdnoblXQ15QMSAx8FWVW781BKEXlWr5SwdZuqrVfGVgd63MmYPWcMcTmxnRmbSQJFVKw2q3mUMb6WoZZXSuwLxEEUvKAyiNHsGMubGhOfl+jCJ4boanZ6HalmFm9v7GJi6dsfOfHvw9fd/zsDnMmVcsxPcphVueGphH9W8F1/OGHgRfc5eA1XzNIJJEY+7WmFr9nsyKTWR3A93I0qyMZak6uamIoCiQQ34iJkZ7rBEM3JHGDxUuX0HVrmDmS4zlB+2kqfuHt/LlzwOOP0/90CTu6uTAqXSNimu5vE8DDlQzoLQPodLBodnH1gUvouiZazdHXGwam3yOmq+5qNZK0mtbENQgQRSnskxIkuHMX3W88eamJPQc1oNPBwdoaLnz5KuD7FI8eTTApCkjClZMIOTa/hVe/evSpt76VyBg1JuyLhPwBKJ2+75kkoXbLLTjaWsPTHzudkA7aatymqXhcEpJ/4Qo2nAY2jT1EX3t5GfNGH2tnB/BCBYoUjJIO6L4od45NJ7tSMXe4if+9chTn+3OQxjNQbB3nkQMGA2y5tUSzeo12JN5XpZILTLO6K7aGPPGkhJs7V4AXvhDH2ldx8okA8H2S3O+kvjDTGBdhVi+l7hVJwg2HAnzLh/8V3vHoy9CaS01sTLOaRxqjg3rNbZOEBY0PvKuHn/vae9Fsjc5pMbNaEKzur9loqA5hVq/SvmxtwQlUzGgWnKowjWsZdH6K54OKkGV/4EAdbMHUw0ogGADJXNpuo63b6PUE3zcYUPmnZB6aecFN+IezR/GiV0yo6NkFqyuLXbD6WRJMrpP9XUXYPQ9tw6kUpHRcCYbsJwYiFYHVXqhAn20QJl0V5kTATrC6Qn1to21AVSKiwzYtkJI+mJsmWro9PWuChqfVoTJWcYVJCy9UUFNceBWC1UyjVGk3iI5o5czqcDoGXSqcYQBD9iFLlJlSUV/9UCblu6YpbCL00ENEP3NisAMm23dWZQIXl6gryVwwbSaeMhQ1NSRgvSLOnnr/38/jVHdxRHcuK8yaBNvXuJnBNLP6T/+UMLPi8DxyyEmzfaiWaK6eaiiPMqsBHHjzPTjVW8Sfn34ufuJzb0K9ObasixospkCE5311HQ9v7sP/+B8Aej0iA3KgPdJX3pzg+RSsLmLlTTUUuWD1cEjKbzsaMDeH5VoXK+foWsLuA1OFaYr9VkLBAGC5ILPacYCrV4lp4VyEjjbA1lm6UNNEq15TAF1HW7fQ3a6+ygJAIWZ13zPQ2pNTTi+aVPhKRQwA02vZIEY6wyJGOpOC6UsbdEKkLLL1jenM2mIWOCulr6IaYFyyhALAuaaFZcFqKUAWRsn6MomxzeKrvxq4447UAyLMaqYhr5N7mzGrDzS2cOGqgb5n4Lfe8pkdb9M0kOToJCCBAbUlwOookoTnmY2/+yIWH/4Env/Ie/HgfU7MUIyZkaZZTeUhA6vHgC9iiJnxHmawqBU8HspyvhY2nT8LgdW6oEFVrwf0+9gOmmjva+a/lsmAFGRWj4DV29vEYHFpVBqrrroY5mnCex68vou+bwIaTQZSVu3aw1fQ9Wpoz4y+vxKwmjGrY83qAmzCnDaDKGVYZxgk0Tbk3DuehwjAU5fq2LtXAo4excHmJs59aQ0IArihCl0Z/b1VXUYQZVRDAEmiR5v8nZpN4G1vG3uQaZdz5GB+/38dxunuAqCpBIh77nNxtH0VT39hHbBton2rq6NtckhI3sVVrNtNbCoLBKymY+DKWRtzxgDvestHR7dNVLIkVwaEgYXa6GfPH5vFl9YO4lx/FpK+E6zWFZ9PGhoOseXU0dEtdHQLWxv0N/Z9BOGYvApbE7sC2a4owslzOk7MrAK33YZj7as4dckEggAbTgNzM6mxpGnxZ2aG75M0xxgof/NthEX/xbXDaC3uTDBZHCY8O5tcdVpYWEgevu0bD+Oe//Z9OHbz6Het1SAOVvs+Bts+GpqDeXOATcZId13YgYa2bsGtUC7zmsX4d62IWR387UegnHsatavnqmNWs3W61SLVjH3BtaBPqmLS8k8zM+TP/v0TXn8dGJFfL7ELVj9LgoHUW1vVtWn9yV+i9dkPV3ogdRwQZnW9TlgIvQradhy4gQptrkk2CrzNkmgw7dNrwayuq0lt7bSAPQP+KKO0pTnodity4tVqUOWwWrA6imIZkFx364LhuyEp0a9SD50eIGMZkIruBccKyX3ADqVV9DWtWcfAWgHzxr//e+DjH89ukwDg9P+1GiQA4aA6GRAGgEeDKTc3rE0lSjbMA0NIYsV3AlwadhKjnJyoNWRhZjWbMs6eBT6Txk0GAwIizKZKPXnMaiYXMAZWK3sWcefRAX7uvtfhMyvHUG+OUwkFZUBSQNJrvm8fPvD1f4i/+9Ic/t+n78S54cIoCM7T146iBKye5EiWFbRd1+bLgPQ9E82OmoDVF+kERUEszVRgNhRiylPR3B1EMhQpJAkm0Xn7yhUgitCNWmgfmcOsMcDm6c24r/G113XCrO5O39UYGKqpNHFVwMeg3wcASOMUv3Q805nV4/cKM1icdr+RNrEFAE0jBlabU4DLDEhSUzIgJcDqzU3gN35jvK8TNKvzfDKmYlbz9VSz9Iq//uuBV75ytM0Gr6+OAz9U0DTIfd9qAdizB/v3A0/3Foh828GDO95GZEAyAFCW8FQK7ktEgJRUrH/pLOb0AY7XL+Hkg4P4fU6okWtkGJCkCKFVkcFibdQI8JoYLDItbJdjsFgQrBbSrL58GQDQVTqY6XDuHQYoipjgpWJlBcnczJjVY7rCuhzAzdsnOw78UEbPr0GSaT+Xl7Fo9rHyyBr+ywOvxNe+YDDyFsOUyBo2zQY8XdlQr6Op2WyaLx8UrI4lc3SdJNo4BpPwPDRUF92Bij17ABw8iEPNDZx7tB8zlRv66HdVVZpg4knMZCRYJAn4yZ8ce5ABlXka42GIL5yexQPrBxLG8sICjh708R/+8VX4rS+/LOlg3KYH2+cwqzd7sAIdl4cz6HQALC1h3hzg8a09WDT7+O7XrI6+QVXJvcVJCAJI5iIaczfMwA01BJE8arRK29V5RtlAwqxeNjBnDLC2Qa9zEMAONNS11O+l6yQZwvEbAECIEJaGmXYEHDiAlu6gPyS/87rTwPxs6guLAH80ETI+eX3bd6j461f/Lh7e2IfWcirBpChkzLqcyY6ez9xIG5clRr2+8/yk6AqpQBVZD7pdYgSsumhqDnpDOf5MJ1DR1mw4vetAtNrzyFmWRVXM6ocfhyqFMHur14RZ3dJs9AaCa0G/j55rotlMvufMDPDCF2Ycc3aZ1ZXFLlj9LAkGVlepW233fbQ1G26/OsEkAlZ7QKNBSrfXKtBsZszqdg0Nw0fProhJx8A/plFakayEE6gwmlp1pZ4M8FAiWkpuodutRqfVV00iraH41THs6eFck4NKJ/FYD71NGaBVrGxsE8wA+6qY1QysZk5zFYHVac1Lwh7iT/G+j2yAjCZC0szqtm6huzElSMXkVTQp1lAcTGt+lgaoZBl7mn2sDNtCG0bPDnF5OINmh88GqdUAy9cLaVafO0cOu/F5s9cjBovzoywPVQrh5QHAoRKbXabjNa8Kocohtt0a6jNj30GAWT3CwASATgfLr34O+p6BX3vwG3DvD/zpqJoH09fOAqhYX+WwFFjNPTxZFga+juasBszPk/LJy/RzWMmzoRAWfFVgNRuzlFkdWYJtXrxI/tY0SIsLhJl0kQISbO2qyZRZXaAkMS/SppmGQUp31wXn2l6PHDqaOWC1qLb4VyriihA6jmo1AtROa1zIJLfYvcL0OQXNpCZG2hiWGSyW8LI4exaJpARt1w9lKHqip9pQXQzyAGDfJ8xGs8D3iVl/Oa8pKgERM6vzgXU/lNHQyQe32+R9B37q/8Dnt05g/2EVeO1rdzbNZECymNUTEoLcoDIgUS5SmcTGBjBvDnC4uY4zTyfyISFkMl0zhn13eo31oa+hnvKYjIGvPM1qtjYXCTYOsubudGJOMHRDEtKs/sTfDLFuN7AdzcTbv8wQZFZHEfD5zyf/DkNgaYn46mF7myRL96TmSF4SAIjXkKtWMy5Sw223YdHs4W/O3YGG6uLNrx3dVximJMystm3g7W+fkJ9npAtTSQwWhzka0CLBNPEZWE2BWq5ZneehpZO1c+9exGD1+dNeUgkwBlYrmpytMw8kxKIi0jUUqMzdGmxtwQ8kPDg4hoXF5Hsdu1HBo5t78cT2ctwW+1uEWc0SOqev1Amz+sABzB+fxRPbe7F88yzwpjeNviEmB+QnBKNI2gHUzs1LUOUAL1k+PaqDnWpXiFnt1tE50sGeehcrm/RCT/q9dB26LHhetCxYvoZai5AOAEAKfESejw27gbnOaJKN6wvAxsfYQJBvOIwbWutwAnW0YkzTiBSjzxmzA7pfE5W0U1VxD4OtLQw8YrYuSxEiP6ncswMNLd2GW9G585pG6rtKAMJ+RZrVrVmockATYZU0mcylzSYBq4eCa9JwSJjVqWn/4EHg5S/PeP0uWF1Z7ILVz5LY3iYC9FUyq+1AQ0uz4VUtA0KZ1cu1LlbWK9Bsdl1iUlVTsW/WImZjVciL0AkmxloqNFjU6wRQlOhjUwVjlKoRBRNtdKsAPMCY1RXLgDAwSQ6ShbmKZp2AAEmMWV2htEalBotRlFQYzMwQHbaqwGoGCBgGdZHnT/GelyMfxICUFLN6RrfQ25zyOrB2qYZiRx9ia2161mMaoFpuW7hizQjdX74b4NJwBs25PCcxErWmIsSsToPVlgW8+MXAAw/QJ/t9sslfHHN8zyvPZgzMCUDK679/Ae/+mv+OG2dWUJ/ZWeopAdlmeEyndRxI+tZvxS980xfwJ694F/Y/d3lHm7lzQlntV1GwmjKwak2iWX1Dew2nL9fI4ZslmAwFRkMlv1VVzOqQMKsL6dezDLJKgPWOMcTmJStu0w1UaLQaoqXZ6PYr2JaxiggqKTBSupsXYZgczHaIfKbiOmBWx2siAOg6Aat5rL9UTEz8p6UaAMqs7mN9a4qkOwOSlIiwE1UPVkHWJ0AA0BG2JJsvGLBODeBy2crsvs1gQE8MWabgZz6QMklPNTOoGeQwj/HmuvAjBU3Th64nuf/O8QVctmZx6CUHsYMGByoDkmOwOKJ1LhpMU1bEMDoMsd5VMWcMoCsBvIGHiCH9bLNpmkSypQJd4R0yIIwJn8usVqCoxcHq3GqbEprViibnM2ppvO+vmvjc6g3YDhpx/j+vnyIGi54H/Mt/Sf69vU38e26+GXj4oShhVu9N+TjQJEDAAau9UMHqsEUYtQBw111YXJbw9xdvxlftOYkRnQGQc50TioHVa2vAv/t3wC//MnDmTOqJ9P0ny2jUQgw8fsI9Nxizmq3xqiqWaPM8GLIPVY1iZvWJmRU89rQJeB7x8tBHB5GqSUQGJGtwMYmuIgkWVYWpevnM6l4Pfqjggc1DWFpKHn7pV0X4+Df/Oq5aLQJIyckcayoebF/NTQSwJO+piwYBqzUN2i/8DLS6hqXnThDYpvesF/BlQHYwq+eAG24AbvjqA6OVALRdXfbFmNUOAauXa12sbJvk+/k+rEBDTUv9LrpOAGBP4LdwXfL+GggLxDDQUGwMN2ysOw3MdVL9ot8rysuKZsiAoNOB8R1vwoFlD61OanyyOSvvugKAZcENFPFkSBH5h60tQlxZpJN0GJBrS5nVpuJfH2AnG3+1GkzFq0y6xG/NEma1ypfsEW+U/i7NJlq6je5QcF9i24l2PY3Xvhb4kR/JeP0uWF1Z7ILVz5LY3gYOHaoQrA5D2IGKpubAy9t8FYy0ZvVyLZWhnSYYO62uYt+cjYuDTjVg9XhZS5VM3bpeObOayYC0dQvdXjW3NmNWCwFIosHYaVJIFuaKwveIZjWaTcJyGlYoraHL1cmAuC5h12shUK9XKgMSl6hrGkyVupJzNNF9L0L3S0/hj3/u8ZgEGgdLhLBDQK2GtmZje3P6Q7TPQJF6XRxMywumU0sBqj0dGytWiw9WWxb8QMJle47ISnCi1pAJs5rTLjNYdF1A0yLceCLE6dP0SQpW1xZShwe6cc7TrM5iVjcOL+BFR1Zx08wK6gs7DySKFCJwM8ZuEIxctzjqdXzTu9+EQ7/7b4DXv370OZ7hD+3ruPYkN0TBatdFFEmQdA2o13Fsfhunt2bJHM1YVjUVjZZMtAMrWg+YDEgh1mO3Sw46hgTMz2NWH2Jr1Y3bjGUXKLO6ErCascANhTCr9aHY/WVZ8AKJSFLkaY0/05nVbN5OgdUi5mcs1teJNMWkdv0oxVamBouiZlJZfSWyC1FSmu7mgx2TYnMzyTOwdoMxFnjcdlaUAavjA3/OazL0VPPaJMzqnP2h48ALFTRr/gibVpKIfuThw5PfpupyvmZ1ODkhmBv0fnCHYmXfG3YD820PkGUsqetYPe/AC1PAn2GgWYUJHpMBSYPVqko0xrMk2JgUSgmDRVXOMd0tAVaLHvb9vo0zvQVYoQHTzH1pYrDISQj5PuIql3MPbOLQ4DF8R+tD+I1f8/EPF47Dk7RRuRyWbOaZ4IUELI/BalnGwre8BE/3FnHXW24Gjh4deYtRk4WZ1ZYFvOpVBLT+9V9PPcGqzmiSrdGU0PeN6XRlx5nViiLErA4dD7IUoVUPCLN6Zga3HujhkbUl4MknqZfH6HsUVco3WOTIDE0MNm/lnW9puw+sLI8Y60nLS7i5cwUXhx0Y9dT3lSRiBMepBoiZ1QysprGwgBFQPA5ZJvdsKGevC75PiC9jQO3yMvDz/17BgTvnduaf2bzFy7sPh2Q/tziD2ZkQG3adDDaWDBsDqwmzWuC3cBxYvo5aQyYT99wc0W8/N8SG08D83KgxrKH4+XsOJgMyae/y8pfj6M1GzGVibapyAC/Iua70+6/ZTSzMCO75ioDVvR5JfM3pJDMVRUQS0bZhBxpMxZuuAuKfKth3bbcJsNythuXoyzpUmey57dUqNPKQ3Jv0PNuzNbFrbNvktxLwNgKQjINdsHrq2AWrnyWxtUUc1SuTAXEc2L6GmuoBQUUH0igaZVbXu1jZ5DMZuUFNqrS6hr1zDi4NxdiU3GCTL939VgJ+0n5Jhh5rVkfOlH2NS+CYDIiN7qACeRUQBpIqB0SLr18RxZ5pbMshpKom8SgiYLUUAo0GmppTjckkA0AbenVgteMQsNqIEsPCyljgCtSaRjbNTAKBB6pudNE9vYa/+FMH73vv2GYs1gKk/2eAWm9KmRkKgqsagFoNs8YQm1tTtjkGUC13HFwRmQvW1+GFCi55i2g0+X2ImdUCBotBADz9Px/AwY0HceDB/4UL5+mGqN9HBECeSe2cmVFZXnl2Xon629+Om954O+qdsTmVlSdnaYmGIQFKJrGSJIlQyia4yKtSPrDulmFWaxphG/LA6jSLSJKwZzkiFTW93ogMSKOtoO8ZlTGrI5BLUlNd2D3Bg8v2NrbdGjozAObm0DEsbF714+/hpQ0WNas6sDpUYkmgjmFha1NgM97roeeaaNU4h6zrwGBxxBg2ZlaLXdtuF7j/fuyUZEmNLdburDHAZneK9ZZpSysAJAk1E0Lzy3jsYFaPs5lFWGQlwWoRzWoAO1h/maGqaGguhnnl9FQGpFkLdkg/HDiQA1arOaZ9cUVIcbBalwO4lsD90O1i3W5gfq8OzM3hePsqTn5xG5tOA3M1Ok8xZnV3yvtrErM6BlU5Ek5FxgBAxpeUb7BYVAZEFKz2+jYe39qDWktgfAlqVqfB6rN/8GEc9E7jno2/wd7+SfzOwy/HX33Hn+1oNzcJAMTEmo7pjICUi887BAC443uet0M2q4hmtWUBe71z+DHpN3HhTGoO9/0RI8BmExh404PVxGCR/j9OhnH0mh1SpdhsRASsliQot9+COWOAJ//481i1W6i3RtsgBotSrmb1DikzXigKFCniy7aEMk5vzI6CyIuLaGs2Lg1m0GyP9lU3JDiBJgRW2448UgkwP0/A5R0hSbQiJAewz2BWaxrwnd9J5Ap2KHsphFDAXWpY24YBudMmBJvt7Xh+qempPsXMaoHfgjGr63TMz81h3hhg/ZKDdbvJlEFIMPmeQc5cwFlnjh7FKFgtE4+b3CQAEIPVi7OC8zHdL+eywFk4DtGsbkrAzAxamo3+pW7MrDYU//oAqz2PJEvabfI7bVcjH0sqpgPiu3J5q5I243Gi62jVA/Q8Q2y/RcHq1ozgPMPWr12DxaljF6x+lsT2NgGrK2NWU72kmuJWx34NQ9i+ClMlxnLLtR5Wtng0CIFIMavNukw07iqSAZGkCGg2yeJbhckBmxA1LdEVnjYDyQBFFQSs1gtoMHHCd4KEWd2ryN0gZlZXqFkdH/gjWvY+xOZGBQs8A0AbRnXgjOfBCVUYOgDTrJQFni77NmsSbF9ArmKzj65bw7pVxwffN/Ybx4kQupnUNAKoTZsMYUwfTabM6uH0c5fvEwYrxTc67RBbbo2/CdnchB/KuGx1cmV6WRgmva48thfdnzz+7s/icG0VB/qP48IpJ6FcS9JomTpjVmeBSTnMagBAo4FvfnMN99wz9jgFJwIvD6wux0rK7GtsVHbtZEAAxIcSqd2CLEUItvvJfFjTINcMcrCqqCoGQKIn2xPcgHa72HLrmJmVgYUFzBoDbLHKBFplwQx320VKEjl9TTOr25qVLfWTjn4fPc9Eq86Z59jv9AxmVsemhUAMVnP1VGn0eqQg5XOfG3siCODSvQYAQFVhyP502w02F9Ima3VJqHJjPDY3J4DVoQKFmY7FJl0CYHVB9qsqcUBwdu+IuvYxZrWbAz66LvxIRrMWjgIQAI4dA06cmPw2zZCzQZ8wTPYRRUJVoSu+2P5ge5uUuC+pwMICbmit4cxjRHN5rkHnKcMgusKD/Ka4MYlZzZKXPGZ1CbA6l1nM5mVRKRjaJutTZvR68JwIH798M47dJLAvYaAXB6z2POrlsbWFx0/ruLlzBQDw+zf/Jv6fV/4B9h8ce78Is5rOy7N1O2FWA1hcJGN2fBwDgGYqJLkiAFYPrw5Qu3Iae3tP4uKp1J6SdUpJMas9oyIZkBSzWvG4YLXnhFDlAN/6ymHyfb/6q/Hipafxoj96G/7g0ZehMea7Iav0ns2RAfFKyICoeckVIF5HAIwwq7G0BEkiSa9GZ2dfI/rerGD7m2YjHMFVM5nV4CTZ0p+XMce+4AXAK16xs1EhiUfGWNY0oN0mbOS1bSID4uuop2VbqA60m5e8ZOE4BOxu0HtpdpYwq+0GAXBbqXtM06ArPuxhzp6Dcw1+8ieBl7xk9DFVk/LHFgAMhzjdW8CeRXGw2lB8seSl4xDNagpWd3QLWxf6MQZz3TCr2SCamYGpeBh2qwFofTdMZEDWpnWFpcHuIUVBqxGi55licyFjVrcLgtW7zOqpYxesfpbE9jZhklQNVptVMqt9n4B0WgAYBpEB6db47+MF0/1kOtBShNCuAFhmk2+rhRndwvZ6BZMvO4DqelKavD2lGDTTKlZJu23DQdfWK5kgfZcYt+myX5kGVQwkyGGsMTt1xIA9MamaNSoAP4GEodekYLVTlQyIBkOPYuOvwWY1lQB+mDDpDINqHXKyut5mH13PxNDX0Q428Mgj6SfHDgGahhm9AvYnSy4wzWrDwtb29MzqgW+gYZLvKxmUYcwDfWg5+aVeUwisllSxbDk7kJzensf+xhYONDZx4ckh0OvhdHcBgaSOsqh4DEVaoq5p2RvXF7wAO8FqhZjE5jGr/RRYJhSMWZtlTFNWs1qwLDWuRqHVKWi1cKCxiYunUjIgphJXxVQlAwIAaDZJubMoWM2Y1Qsq0OlgqdbH5Q2TzM+eh223hpk5yqzWrcQNfsq+xgxgwyBA7UDgtxgOKVjNee11IgMSAwGaRvWaxa5tvw/s2wfce+/YE8zHgs0Buj69n0MQwA5UmJSdZtak0szqcRmQga+jwZh/DEzLA5WDgFR8KMWZ1bl6qkWZ1YpCNKs9Pfug7jjwQwWNerSDWf2Hfwjceefkt6kacg0WcxOCWaFp0CRxZvWG08DcXgOYnyeGZeccUvbeGGNWTwtWBwHsQINRS4372GCRkxQtWvQoy/n3wrViVm9uwo9kPLqxF8ePC4zbAsxqxwG8k2fx6OZe3PocA/j2b0/W7Jtu2tEuMVjMb9QLFXTq7ghYvbwMvOMdk98i6fSeEWFWf/4h1BSPVCel/QTY9aOLfKcVYMutT7f3ZjIgDKxmBos8c0FKgPntt/eS7c+JE3jjXSfxxhu+jEc29+2oDovn21yDxXIVIUEeE54mbhQ5HAWR6UZx3hygOT92owiU/vtOgJriYnZmdP08cSK/IiRXv53JVmbMscePA294w85GRcwQA8eHLEWk7ZkZLNV6uHrOSrxDjFSfVBW6EsARkCCE6yYyIACwuIh5c4B1m1xfaf++5LUCsi2Rl6FZTeOWW7BjrVB1OXs9YO0OLfz6g9+A73uDYOk6NQge9gX2R7ZNzi0tGZibw4xuYevcGLM6vI7A6lYL88YAGxvVNBu4QSK9J7rn5jaazIetFsTBaschBoszgmuYohASTZYE424Ixy5Y/SyJawNWU3H/qpjVQUBAOi1KwOpeBWA1Y5GZGqDrWDT7uHqlgj4HAVn8m03C/BQpo+ZFGqxmIELBCTgMgZ//+dQZLs2sliS0myG6nlkJm9B3w8RcsCpmdcpgEUClRoiqAgJW6xXISqTbbZoERLOrGQNOoMZg9ZwxwKaAuWAUAT/90/l9DSIZskE2q4quIMwrnWRv6w6x7ZL78Odu/HP8u58ZLR/1QwWqnoDVbd3G9mBK9iczQNMlKgMywGZvyjYpONOs0e+r61ClkG+ER4G9K926EFgNRSEVF7zr+o9fBACs2i10jhHA+sK5EGG3j1f+7Y/gtbecHH0Dc3znsJVVueAY5MmAlGHSxcAXJoNJ15hZ7dkBdMVPDiWtFo6113DqySApCa5pCXO9IhkQ9lk11YXVF1hjogj/8eMvwvn+LDqLGqCqOHHIwVPbi4QK67rYcuvozDMGtI3usAIfh3hNVAHTJCCCiDmN4xCwuiEIVj9TZUCYJv64DIgjNsf0+8A3fzPwoQ+NYca+T/YEbNxR2Rp3GrCastNqBrnmZkMhlRslmNWDQep29H0Cii6kmdUcBnQUke+Xp1c+Hmx+CaRsYLkos1qSUDcCDPycpDuVAZlpBXxTvVSoeaZ9TLO6KFit69BFmXTb23ADFcZ8E1hYwHKtiyuXIvJbNehvXhWzOgggIQX2AXwGNAOri7BU43ZzwCRq+FmUtS/R92YGBYBlKcTx42JtmqoYWA0Avfsex+Nbe3DzC9vA134t8Ku/Cvyn/wR84zeOvkFViaxE3nbedeGHCmYbo2C1LAPf8A0Z79EKgNXn11BXyRjSAyuZQsYYp4uzPtbs5nRyiROZ1S4sT0wGZARUlSQ876tM/NRdH8HJ7iLqs2PGqGzPxWNWF5EBUdX8fRFt1w8V7O8MRsFqSQK+53uwsN9Ec7E++h6B0n/PA5brXczOjN4rv/VbwI03Tn4PVwaEwyqeGILMantIwEIGVi/XSIINQQDL11BPy4BIEgxTghuqQkQRK9BQa9E+HztGmdVNQFYwcpOwvubsOTyHnFeLXANN4yQBADx5Rse82ceJmwTHVxGw2nHQ9wySVN6zBx1jiO3z26Oa1eCfN77ikdKsXqr1sLJeQYUgEsKcqXiw+xWB1WwfpyjFqkwsixgsCngbAUgqUJ+ppI7rKHbB6mdJbG9HOLwwwGYVgCowWoJSJbM6oMxqXScLXn/c8aFEMPMegwDA+xubuHSpGgkIAIkBXLcC8JPpOlGwuqZ4sApOwO9+N/BLv5TS04xN8Mh/2zMSum6tEtM+slBQsLpfJVhNDBYjoLISfVL2jVijdXO7gumNMfTqGjQlhOdjev0pz6Oa1aBg9VAoC+37BDzJfQFSJlaCJh9e1yJgtarhq5aewuqZIdbWkr4OfB11llPSNGLgOa1UQfpwUauR+6uvTFfu5vuknM6k8xWdY1avcOYvOnb8QBYDqwVNM7wV8qNeXbgF7RfchJpKNluP3u/iBYtn8Ivf+qXRNzCzlxwtUT8qaXyVx6wuo1EqSeR+CDN+M9amWhKs5hyehpZEDuXsYjBm9fkwke6hQK0qB/AHFTCr2cGr2aTztliJ58fPH8cDW4cJexpA49A8Br6B6Nz5+P5qzJJKm5Zmo2tXAFazecskIHhNdWGJyJPaNnqewQerReVavlKRTuACpIpJ8TDklKiz6PeJxufrXw/80R/RB0NaCSQhYVcy0N6bYm9AD/w1nVxz4YqQsdjYIJqn8ZkrCNB1a2jPJeuBCLMaAEHPREOSoMmkOiPP/AuAOLMaRPvVDXIqgxwHfqTgyB4H73mPeHc1PafsO06ylZABEb0fmB7PzAywsIA99W1cWZWJDEgzDVY7GEwhKQxgpNw5jrRsy6Tfi/oN6EYJzeq8uZtd26oNFimgeKjTEwOrVULCsXmgKh0e3U8/QAC1m4iuNFotjAhOp9rN9ZxgfY1kdOrexCYmRgGwetgLiM8QgH3qVVy6EMbzlgTE9/VMi0qkTcus3qFZzWdWMxmQHXPBkSM41NxAEClozI/JQ/L2XPRMUXRscZMLdB2948Am9u8fe+6ee7Bw88JOnxOBfbfvhlgye+h0xOcZVZO4MiASYz8LN0rki1zO+mUNI9TYfqvdxp5aF1cu+IlmtTG6X9BNagrKW8NcF2EkQTFpn48cwbzRx7n+HBr1aLTykJl651S3svNqEbBa1WWiWZ3ze1k9H3PGIPEY4gWt5BI6glPN6uaMTMBq3cLWhQFgWWRfQJNPlfhwXctIMauXaxX5kSH5TWsqR6+8UKNJYkeqFai+pPvj5qy498Yzep98HcUuWP0sie0zmzjy3l/E5vmKNH1cF7ZPweqqmNUxWE3A2qbmYOjyXVjDEDh5MucFYzrQ++rbuHixQmC5XicGcN3pM4W+7UORQtJXXafl5MWu73vfC7zylcDly6xRf8QEr9VCpcxqVQoJe6wKzW4gxRClG5wKzQU1jcmADLDVraicnupA6wbdLE67aXBdUpprImZWbwjoa3seJ/+QyhYDEAOrPQ++7ePSsIPWHsIQefmex/HpTyfPr9lNLM7T30rTKPuzAmY109dWVXQaHrac+nRyDUwGpJaA1Uu1HlZXOe+jwBYwwYBmUtDryzNP8alG9Eq0jPbxJUDTIHsOPvkxHy/dc2rnh/EM0Ma0bYVDkPFWSO8RZArLLJ+cllnNOUNbw4gwfZgMCK1+2V4j+n5WoMOsSYmG/1Y1WvMAKLPaE5PV6HbhhQoe6x9AZ5Ze36NHsWT2cPX+i6OJVqZZbVewyU9LApkmAdcFD04910SryZmPnukyIGz8pYxh66qLoSvIrN7y0Vo/g2/cdz/u+3wUtxmx8/MOsHqKvvo+rEBHzUz0tQEIrTOf/3xSab2xQQD2mI07ZqoWzwN5ZlJhSPY8RcBq0BL1ML9EPa88O6vR3AoW6lWimQoWFgo0mwf6RFGS9C4SikJAH4e/jgdbPVJS32oRGRBaYbjhNDDfoX0yTTQ0F4NpJYEsixAC0iCLJEHVcn6vMh4GQJIU5TG2qwar6f73x1/+Zdx+u1ibpuJxwWoGMDyyuReH2ls7ZT8mtKvKYX4Om/b1+N4+DhwQ6CtQjFk9CInPEICD9TWcf5joCgehBDlVkSUbGtkrTglWB2kZEEmiYHX+mY6dKSaB1abqY299C/WFDLZyzvxSilktBfkyIFRS7AM/9GliBjkWi4sT9owiMiBehEPNDRw9UgCsFpABGfl8kWAJJg6YZlkYZVbXu1i5HMZrV90Y7ZNhAK6Izjrb77MKOE3DgtnHl9cPYnlmbMNC55e8Jsswq+P1gKMxrslBsjbzgnouDAcCv69tE5LNjAYsLxMZkCs2YNs4P5jFgcYWkZKwriOwut7FyraR/3rBiDWrFcE9Ny+iCBEjYMoykY4FxGVAPAPNOXE5s12wuprYBaufJeGu99AxLFgr3WoaHGFWVw1Wh4AsQ9I1spHmLGinTxNjhMxg76c60HPGAJuC0lK5wb53rUZkQHpT3i5BgIGroqm5ZPPFGG8iDL1U9PvArbcCV67QBzxvhHHZaCukrKUCZrXnRlBlarBoVVeC40fEYFECEFkVMavHZUCmlZUAEoaiIScu39Pq38bMagKmzRkDbGzyx5bncczbx9lrIk7EdJNv+TrmDjYBWcbX6P8bn/qYF7933W5ifjYBq2d0C11rSvYnSy7Qg+vsTIhNpz7dmPV9DDx9BKyuqQIMWM+DBGp4IwhWG4oPx8rfOPlOiLrqYHVDxcyCBtx0E/bUt/Hu99fw0j0nd4rnyaTawMsCk5hmddESdQHN6hFgTzByy1Jpm3rRvlINRS5YbYEwq9mhpN0muufrVFNYkgieaBiErbxVwSY3LQOiuLCGYixKP1Tw2OaepKL16FHc1FnBE1/oAq6b6EzSBG7fqQCs9jwiCaSrdJ3xMLQEwCfbJjIgE4y+RoKBtM/UTTjba7DzkqqirlEghaejCaD36fvR/NKncOCTf0J05gFqrkj0OOOItdunSI4z3c9URQgAIbD6Z34m2QdsbxOd7X4fZP4YM1WDJEFVpXzAI0wd4goEAVIEStSLTDK89YvKgKhGMbNfWVeJPFZekq3EvKXJgRBY3e0CM7pFAGSq0bpmNwmz+iCtNNR1wqy2cxILE+Kznx0z2WQbhvoo+KcqFPjK0+0uZbCYz6wOIykx/BRsEwAinw9W//N7nkJDpFCTGSzymNWXSJb7/sEJHH/d7XxWJZOV4DGrQxk//8ZH8cIXCvQVKAxW11UXWFjAgcYWLjw1TJJhaqpjdI6JvR/KRBBQM1L6f0lCzQiJ3j6HVbxDBgQADhHm+pHW+g7Nai5YzXwqihrDyiHfYJF5P0yIhQXsHHMiMiAuAavf8wfi11/LSzABCL2AJMEKJgR1OYCb5T1Cw7Kwk1m9KqfWrtFrGJ+VeFWo7CyVAoHn3/J1+PjFm/Ca7xzLQIrIgDBQucA1UDQZQdZcyNr1AE0OxeWxVJX4UYmA1ZRZ3ZhRgaUldAzqj9Xv4+neAo601oiueP+ZDVaHLtULb7WwXOthtWvy3iIUvhclMiAiUna8YOuQHI2a3BeRAZkTBOJFDUx3gxu7YPWzISjF1lA8OFIFGtDAqMFiWJFeEjNY1IsxiFx31DjoHe8AHnhg7AUAWaB0XQhIEu1vFElEBsSwsDUt+Om6ZKIzklLPWsls4d69KWZ1XPJMDhcS02yoQgbEi6BKAQGQqtInjTWrKQjer6BEnxn2aVIiA9Kvppzepwe3hZYzvc4fkGhWm0Svec4cYGObvwnKZVaH4U5WHDsM8EpoIxkNzcH8sgrccgvuWTyJez9mx8+v2U0szEdxm23dxrY1JaBGNasZE2ZuNsK63ZgerPYNUj4IEB1RWUBH1PPQ1sn3FZUBISXa+Yd5z43Q1BysrisEl77jDvz8c/8GP3z7x3HH/o2dtuSSJAQAl2H9KXmHMmqwWBSciN3pM0AfN1BLGyyKyIDUVHcHs3prg34e+yqmibZmo7ddzXrAPqupORj0BTbO/T78SMYTa/OJru4NN+DmzhW89xOHcK7XIZtmWabszABukAP6FeyrpFGwWnFhOQK/L9OsbnNeyzbhz1Rmte/DDVUYRsL600xFjO0FoH/VQlNzSGUG87+gB/O6lnq/ppE5pgIZkHqKWS1JkdDhyfcpOPnUUwhXr2Km7pL/hyTppSnBSCk1t+R5CrA6t0S9DOuPVxnEkt5F2JS03UzGNjObvYYyIIN+hIbqkLmr1YK8MIcokgiz+jjVhpAkNGoh+qLGTyCX6Z/9MwJYswj6FgGwxoBWVZNy15kgkouBygBlkeUzq6NIKja2KAAeeBxd4ahA0oIyq7lGgE89DQB4wj+OffsF7u/YuDLnNa5LkohagQRLERkQi7CbsX8/9jc2cfFpL5EZ0lIdo3JuU62LQYAgkhJmNUDA6jydeTAZkHAnS9UwgF/5FRx56cGd0hpszFTJrOZVnAFJ1WpGu8vL2KmXL8isVuUJ7PKc4MmAeG5EGOuFwWoxcsAOzep1FRgMyNrVHL0+uiGRtZYHVrvJWZjFwqufD1mR8brvnRt9raZxNcY9Jyx8DWLZxLwx65JzsHC7RZL5jkPOLR3iadKZV7Dl1ICLF9F1TcyYLgzFhzt4ZiOegRsQCZZ6nWhW95uV4EYMg6ipnhhBhNsg8XZSWKWJYUCRQr5UYBQBto2+Z6C1IAhWKwo06Rm8T76OYhesfjbEo49CAggrbwry6x//cYp0lDJYlKQI0VQOQjSYwaKeTBLss/LC80bB6s99jrCtR14AxDrQVYHVoeunZEAG04OfnkdKSAz6IzHGm4gJA43hkJw7xsHq2KwOSA4mVcmAUFBZyDxIqFHKgoi1sCsAqxmzmmpWzxoDbA2q035VDQXLsy5WrVYlYLUV6ITsxDSrpwWr2aYwrfFWgFk9Xxtibg7A856HhubiBuMyPv95JGA1IzmoKtqaNb1UwdjhYn4uwrrT4FDHR+PDH8ZoBUVADLnSYLWh+HCGfLC6pniQ5agAWO1y9UR9L0JTdbC6JhGw+gUvwAtfouK7v82B/NM/hUl1wLmgD2O8lWD9qVKO6z0DwYvKgOj55fTTMBR565hlS8nhCQBaLXSMIba6ErwwZfpkmoRZvV0NIwMAUK+jqTnoDQS2TzTZ5fpKwqxuNPC655yD5Wt41+MvRcek87QkQTINwvGfdo5Jmy3RdcayBforClZfJ8xqPe3hVUALut+L0NRsyFKE0PHjNgeejoY+ClZXway2Aq2UDIjnUe+KX/s1YGihcfEpslfyfWw6Dcyao3sAWVMQXitmdQ7rL5ZMKqinCiC3r37J5F2UxawuO8cqCklaCNy2wyGtCtF1sl7ffDMUOcSl4Qzmbk5c3Br1CANPFwarP/hB8pXOnEkes3o++axxZrUaZSct6BgYMWUUCaqFnXkvsLFV0LyTy1hPVb+JtmmqHmyfA1ZTZvWT20sTJSB2hIgmPEsi6gXuA02DBCC0OYMrCMi6qHrA3r1YrvWwcilI5hd9FKxeMPtYW59u3gpYNSMNXUc+SBkQmTNNCSbPMfPzeO2bdJw4Mfa4CLOaeTSIBjPEzAOrPQ8RkEgpjcX3fR/wPd+T0dc8drlXEPwEJ8FEP06Vg2L3F6sI4WlWs3FFweo99S6ubOrAYEASuDOj3yMGgEXB6lTiYnYW+J3fIf4LI8HTxAe5rhNZ+3khojHug7RbgFldBKzuexSsBjBzaAb3rhzHvVeOkc+cmYEuB3D6z2ywOpb30XUsz3lYsdrVYBBeBKViZrUfyVAZkcYwyH5+kzNWfR/veezFODeYQ71d0GDxmbpPvo5iF6x+NgSt+5MkCJW4TooPfxj4ru9KmfY5Dixfh6l45GYbVFCC4nkEANeTSSKKJO6hbFz+4MqVxKMmfgEQl1Ibig/Hnh6sjsvVmAHctOCn6xKw2kzA9boqWE5OY+W8iz3+eezF5Qma1XTDYdLymyoWCj9KDBYrZ1ZXCFYzlpWGRAZkWJ32q2YqWOq4WKkCrPY8wnSpS4lmdY8/tjyPbJom7qnogxFSm05VJRljm6NZHSqYr9tkc/ic5wCKgh878kH81q+RD1yzm1hYTDRa27qNrjOlHhndMLADZq0hww40YQ3Fv/1b4M1vBj7xidHvMvAMNOtJOb1Q4opq07frvrAMSENz0O/nbPAjcghqajaGQ4mwbxoNomf0trch6/SrMRAhi/VXQltaRLO6sJYoOC7qTF+7BENRkwO4bv53HNryqAxIq0VNOjUC0tXo3Mc0q/N+K9Fg37PRIHIdA4E2KesPGDW2P3BzE//ips/gwY396NRS83QBoDI3xsDquurCckTBagOtGc5racn7M3YTzmRAzFGDJpH9BgD0B0BTJeuSGVkkSRgEhAE1CazOA6h4EQSw/FHNakUK4Q/5/WTMai+UocoBmvYa+n3gIx+O8Ndn78BcbSyjxg7bWfNsSbA6ngsy9p+BQ706CuqpAshlgZMkfaGu5gNftM3CAHgBGRBiVpbS2z90CAtmH6e6izj2goRN2GgAA98QBqvvv5+siTFY7XlkntS8HeANkYPJABXZbygVHNMyISBkYj5lzDsVhcgU5F3XoqxaWYapBgSszjkvMTbcE+frYmA1M67kyIAAENe+BQBVJVWzvLFlWQQ4bEjA/Dxhv64gmV+01HjXdSyafVxdnwICoDIgafwuBuGzLgJjwedgfv/sn6E4WF2WWS0FXI3xWKZrQhjGCCl4tK9Z1yCK4PlSMfATqTk2o90YqC1y36pE1oorA2LTSjZVBZpNLDf6WOnVgc1NkghpjV0fjTMOaISWQ04sqYsoy8AP/MDkvmpymMtSjWVACibEAOQzqz0Ukxdh/jM5LPA4bJsk1lvkGtzwvDnIiPDWT/5zHGxsAu02uf+vA7BaodUCnZmIGLhWgEEEbgBVCinhopp9fBCOMqvbusX3tbFtvOeJl2Bvsyc+vAQSLLshFrtg9bMgvL5DDgIApKgcSPvbvw3ccQfR0wNAndblaqUaXJcwq9kBkm3YCjKrV1ZS/aTtxu3pOpnYq5BBZgtfvU5KzKcFP2Owmk6KrDy7CFj94S9juX8Kez70Tly5Qt/neURLk633tRoB6barYFZH1GBRzDxIKJgEhFTh2EpLoTAZkKFZSO9xYvg+vIhsghfnAly1q2FWx4cKplnd548ttuBNZFczxo40ClabPLCWMasbFgGr63Xg1lvx4qXTeOTLTlwN0GjJcZtt3ULXNaa7tuNagGwTKLiqf/azwFveAjzySOrBICB9ZYAzkwHhJa7oZ7bqgZjmpaKgqToYWDnLJzX/ahkuJGmCrmFGqLqczVYuq6fKNKvzZEBKgOC5faVtlmdW5ycCLEdOmD5Aolnt1rDp1DFbT4x7WpqNbq9CsLpeR1Oz0RcxP6Mmd8AoWI29e3GouYEH1w9gtpGaT3SdHN6qAqs1LdZP5JW9A0gMFjuc3fgznVkdBFSzOtU/0URAFKE/kNGi0kAH9BVcPB8CQYChr6ORZijqemlmddoI0fJHmdVCWvugYHUvwmObe3HTzAqaUQ/9XoQ/+3MZf3zyRZirje0BBNjKhaUaAKhKlMv6i/dSVTLeYlmkgteeIwNSmlmt8BmKwBizGgBe+ELsmXXxfd+8AklO3t9sRBj4uvCB37aBW25JgdXDIc705rGv3d8BYBGWZnZSlH2nQsE0gHNkQAq3K2JcSQFF2RAfW6YekuR4nlSDG6KlEfk/UWa1wmNWpyULRUNVadKdMyaHQwIcNmRgbi6RamDzyyRm9caUYHUoQ03fKzygNt6nF/wsIWa1XIxZLaJZzT6vjHxRrr42vQYFgGVFV/Ln2ICcqcowq3nrV1zJRqtBZpZNYoh+/jw5y8yOIfaC+3l7SBizQskbTSPJII4MSFHNapG+el5BLWxNI5XugsxqCYBUIySzoy87gL95ze+ioTm4YXYTaDaJDMiwIs+oaxQxs1pVIdVMso+oQorUR6JZLSJlJ9Ag0dpPwOqWZqPX5ZwTbRteqODj3/ke8c/aBasri12w+lkQg20fDY0ezksCSFeuAHfeOQpWs9DloBq9pLRWLyBs8jEOVucyqw0DhuzDsfnX4eLFfJw8zayeNYbYHE7HJv2Pv1nDpWEHzRrdbLBDaYH5/MqpAfbUuthb38blp2nnfR/bbg0zraT0va3Z/EyhQDBttUqZ1YxdIYcETKxibDHwU5MARcFs3SG6X7wyNKF2ySZYrWkIQrkiGRDKrDZNzJlDbAxNblUED6wm8gepNigjxx7wNavnGg6RAQGAO++EJAFzShfr22RzFjNmJAmaoXDds7nBmLcMrKYgXeiIjQXLAp7//DGwOtasRtymCLOaSRztmfe5HkoAiAyI5uZrVjsO/FBGU/fQboufSXLZylOUvauygMFiQc3qWAYkQ7PaLykDois+YapmrWVM41f3ElBNVdFeMrFNwepOjd6jVAZESLKDF2mwWnXQtwQOhQGpHpltOKPalnv34kBjE0/35tHZmyrRr4pZndYIVlXijSACVjODRR5YTQ+5uQf9r2QwfwwjNaaZFjTv2g6H6LkGmi0Z6HSwv7aJi4916fyio26k7k06Xl1fEd57Pfgg8P3fDywu0q4wAzQ29+g6+b0EweremoMvXD2M5y+eRUOxMVjp44v3y/jcytEkaZPqb/zGCREF5YDKXPATJUEEEWZ1yUqTzHaZaVwJZrUu+0LghGWPgdX1On7h/30u3vYHzx15XasZoeeawglc2wZuugk4e5Y+MBzik5dvxMuOXpzU3VyDRQCFExbxwTwL+AqCUU8NwTa58irpKhLBMI1ICKyeNUhlwr59Yn1VpRB5XpA8pu7EoIaQ3DONZcHyddRbBKyeNwdY76rJ/JJmVjOwerNgQiIdrNLEHJ0Po0jKZUCX2heIMKujbCPEiSFoiClJUWEAGEA+uzyUCxtaS6pCJMIyZNf8UC7OrJakxCcj5/wxTg6QFqhGx9mzhLXfyQCrOWcEqx8QxvYOevqEEJQBUYsmRYWY1RLRGL9GMiAAkmtA5QG/8/g/4raXLwGGQWRABtcBWM3W+FqN3Fv9KQlzUUTAaomME9vNrt4S76hPtPZTzOqG6mLY5TOrvVCBVi82dz+jSR3XUeyC1c+CGHSDuGQ1CorfFOyM1emkQOAUiqvJAbxhBYCi5xGwukaHnWGQAy9H2N73CRvFdYlMydWrKVA9COgBi4CUMAzoSsAvmQPwn//zqBnNju4yw4p6neih2tOB1R/+BwOPbu5NwGrDIIy3AjpMK+ccLNe6hI17iaKWnocNp465WTqJmyZhv25MubixklgpqNZMiwJZcbuCEjO///s5ksZjut21hkxcyStgKMagahUO6rSvlq8TBowkYa7tY8NpcBlUbJM28Rr4PracOjq11L2kKDAVP1/nizJd3vriR/DSl9LHjh8HANzVOo0HLsyTzXp688f+Pc21ZQkLVrapaZjRLWxvio0xyyLJtZMnUw9SMClmMVNmNe+QFzg+VCnEJ/7gSbFztKIQg0UOs9qPZDRNf6cBT04IaVYXVSPiyYCEISmLK2ioRXRq8zWrC8uASBK0PONGIK5MqOmjY0VdmkMQyYRZzdjKhkFka6oGqzUHfUcAHKE37UtvXh9l1+/dC1P1sVTroXM0ZSSk69VrVssyahoxB+Ru9B0HG04DnQXOdxM0wvynih398P3RKi5AfP7udtH3DTRnNWBxEfsbW7j41JCAM56BhpEal5IETctJ2kyIX/gF4DWvAV72Mqq5zwzQ0mC16gqB1Z4H9K/08cW1w3je4lk0NQcrj22gphKQZa4z1gYHRChVSg6+wWIMVj9DNKsz251Ca19XBDWrLXnUHBbAkSM7PBAx0wqx7dUKgdWzShdDZthtWfjU5RP4mptXdnaX6d9mAPYASsmA5IJ/ZUBwKgOSe9hPV5EIBmFWq7n3rOeEmDMGqJkh8ZwQ6KsqhwjymNWlZUAECDjDIVkXmyowNwdZihD5QcKsNkbB6sVaD1c3pzCNDwKi4W+m1pTriVnNNKs5yQUA1YKf7ExR4hpIWe2yKpOihtbU1DvXHDeKYLkKakpKdm1+nsx3fVolOmeOvkcUrB6ECWObFwJgdWG5DtougPzE1bXSrPZ92I4EQ/WTPlMdlB/9xTl8z6/eHleLP9OZ1YGXMrc0TbQ0B/2N6fexfkgS0mZDheVr07O1Gf6Q8rWpqy7fMJ2ezxkDXih2Nasri12w+lkQg26QYlYXBxRXV4HlhQDtVpSAwKldty5XVILCmNUMrNZ1YnTSy9+MM2b1Bz8I/PAPE+OFGFSnoJfGFmkmAyJQLsJA8LzPHdGstsVkJVZXJz++3ZVwureQaOoaBmFQieow+T6uXAywp96FJBFGaBSRjm46DczO0L7VamhrNrpbU4LLzLRQDgm7vgLZcgCJvrQuF0qE/OVfElZ9dpvJBlAyqR76tJpZdHOtmQSs7hhDbK1PeS8wGZAW2fi0ZyR0PVMYrM5iVm86dcymwWrKyOGB1X6o4PlHN7C4SB/buxeo13Fn4xQ+9dAsOro1ulkvINnhuiTJsCMY87amxm3Om32sr3ObBEDuW3aAjLvh+wRMaiXziyEgX+PZxMW60RbfiDY0J59ZTbPwTdMXO+jS0DRkgwhMo7UMWC2F8HMMFtnrioSs5TB9aIlwYdAHSA5PWQcdZhhljM1v1JFn002B1YxZPZyCQcaCfc9ajYDVtsZfD+h7PvSz/ziK/dC68kPNDXROLCSPC0pjcWOMbVgzQpK84xweI8vGmd48Dh4RY1Y/Uzbhr3kNsLGRemCSZrWuE6NRi7OQ9XpErmtOB+bncaCxiQun3UQGxBi9hppJK00EF8izZ4Fv/VZgYYH22SeJhB3M6gF//fZ9oL86xP3rB3D3/AU0VAf3fgZ47uEN3Dp7GbP7Ro31eCCCF8jFNT9Bwc8c48ZYBqRMeXbVzOq8dpm0QQm2tohRGaIIQ0sizGrORN5uhth2a8Ljyl7rw/z934TZXYVlAdFgiHP9WRzZv3Odjpnwk64Bm9NKyIDE+u2T5sVpZEDyLgFjvxYYW4omI8gzGgVJ3MwZQ+xdDMRwe6ZZHeZUBZXoK1QVhuzzt7KWRUDpFgGLUK9DiiKEG1vUYDE1n+g69XiYDqwe+jrqabCajukoyyE5bYReJNiYyUq2jsvKCbapSgGCvCWxBGtfiFkdlbsGmfstRiySi5/5dC0ipphZ+/lYRiaVxJyfx5LZw6rVImvX3FimTRSsHtfvzwuezBCmXGfymNVMY1y0XdHKM8fBlltPPFZY3H03pG/4eiILxZjVPKP4r2SERP5IlUMCttdqhNCzOT2xi90rjbZCPBymBat9H0EkQ2HoJ/V0Gfb5RA4AiSeYSMTVRqV6uhup2AWrnwUx6EdoqGRSKKNZfebzqzhy6bNon30oAattO7ZqKwIo/uzPjkl0pMN1SWluilltKh63vMXzyJ8rV4APfQi48UaMgOpuoEJTEwDYkH2hs34QcMDqlM6iqsvZIFIqogh45SuT9v/n/ySeaqdPA9s9Gae7iyMGcEQGRPBgdPEiVoZNLNfIl59Tu+Sw63kEqJylr6MAzYiud5lgoDIzQhQxixBtN1SgtmqFxhYzkwLIdY7NQIFkE6wnYwtAJaCPHypQTZW4HNe6WFmZUjfL8xJtQQBSvSak78X2kl/8Iin3vffe0X5uuvXRsm9WPiqgWT1iridJwLFjuGv+PP7qzO2Yrw2RINmI3elFmITr68Dv/u6EJ1IJCwCArmPeGGB9Q+zaWhZQWz2LN36jhTe/mZ4NJzCrRRhJvhMUY/0pChqqi4GdczByXfihgmYtKARWq4ylmceeKXHIUaQQftZtVpZJl7fJL9tXcORFAGIcNi7HAMRjdNNpYHaRfjBlVvcsberywdAPybhXVTRrRB+dCyRlHXYNA/jX/xqHnreIzkJq3FE5nKmrN8Y+1zAAh8MkBICTV5o4MbPKZ48wZvUzZBP+1FNjSWLfhxsqo9XFug5d8fnltP0++p6JxrwJzM8TZvX5MJYZGh93qi4ToFYgeWfbxERV/uy9RP5pA4RZzWShaD9rqisGVts++p/+MixfR/O2w2hqDv72S3vxDdaHcNvsJcwdbo2+QYBZrcpBcYNFlaNZPY2WKIdZXVS+SGTeKpwQVFXCAOaBE0EAy1dR13wuaGvWZdg+P8EEAIgi2E+egwkbN2un8chDIbZXHSyYg52UbXCSC2WMEAFAkqDKdBxMmmuDoLgeOjNY5MiARJFUmE3J28P4XohZY4C9y4IgkSQl1UZZa01aslA0CjCrrUBDfYa2vbhICABPrpNKPmMUVObKq4zF6urY12IyILVRZrWep6/refCjctVh7DMnRhkpMwHwsxRYrSiQpQihm51sL1shByDHI0RJSFsFIt5v5Uis7CAHzM9jT72LK9YMLgw62HdsbI4RNFgkYHV1MiCEYFbSyDeHWR4T1wowq1VZQLPacUZl6yaFqFH8VzKYfFaKrdzUHPS3pid2EXlPYLYTYcOpV8Sslkc0q+uqi+FAjFktNFZZxMzqcl3djSR2wepnQQz6UcKsDqPCstVnPvhlHGlcxcz5hxKg2U2Yabmbj7G47z5gbS3jSdel8gd0QyHC/ESyv7t0iTCRbtrfH2FW9z0DTSMprzMEyzF5zOq4JFbThLVEgwAxO/SDHwTe8x4C3n/uc8B2X8HTvXk0G8kkWVNcDG3B2/DqVWzYDczdeQCQZRw1L+P0kz7g+0QGhFWTqyotfZ+STUhZt6pOdAO9qgwWGVDJwGpLbGx5HgGogwD49m8nf0b6mmZZGYaYPqnAh/qRDLWmUbC6h5XVKcHqMWZ1nKkVZFafOgU897kkCRLf675PQLrGGFitCjCrI5mA8em49VbcPX8Bd81dwJ7lMSYQY8+4fHCm2yXa8DuCGqDpNSVuc94cYGNT7NoOrw5Qf8/v4d9K/wmWFRHXe9+HHWgw6wkArgskrnwnIIwA0dODqvJlQByHGCzWg0IyIFzN6qgkszrPSGgKQ60okvK1X4vKgIBcAzcPWGXriDnW9sICGqqLi4MOZm+ljliShFY9IJULU84FgRcSI2NFQbMRoe9PAVYDwI034ugdTSykiNUMUJ1Kxz8Md/ymkibGdLr36X146Z6T/A15zKwu382qIgjIHLO+TuZEAAmzupa6R9mhjwdWd7uIACgzTQpWb+LiZZlWbuijGq1I6fkLgIpPPgncpJwE/sf/wNylh8lewffJeE6D1YonZLzsDV2sWi1y4P+Wb0HT8NDQHHzToYfwb+/+MF72jc3RN/DAalbuXNRgUZRZXaacnmuwWKir+e0ytnaJNnXZ5zOrmYSRyQce4nElIgPS7cIeBDAVDy9ZPoXPfLiHq5d9LJo9Ypo8FrkyIGU1qwGoKpFRmQjWlmVWXwPNahE2pe8BR1rr+PbXixMeYi3wHOAPQDnNal43mAxIm7a9sEDIFU91qQzIKLNaV8SrJft94EUvGpNNDAJCDkiD1cwfIWvuiiUwymlWR1maHey+1QuMWSZbkyfbUnJsqVKORwg7V1UphcI8YOTi+y1di/L3W0y2MD1+5uawp76NC4MO/FCBPjvmIK6qQh40lgUiA1IArM6TGYrZ5QUTYgC4iRBVicQJHWx/xJu6bZswqxt8sNq1nsHMaibXkQKrG5qDwdaUOnGMBa3KUJsmqYapAKwOIjlZhgyDXykLlJu7dw0WK4tdsPpZEP0+Yma1JnmFS3PPnFdwpLVOpCO2yXtDyyFgX6tVGFBMmyGOhOuSzU2TDjsRTV0kc8TFTzyJQ8113Hjmo+h2o7jNnmeiNQZWO+6UMiBRBM+nZS2SJAxW+z6wtUX+/cADwFvfCtxzDzlIdwcKVqyZBKzWddRVF5YreBuur6PnmWgfbAOLizjavopP/k0fv/ShuwhQOUe/s6YRzer+lLd3SgdOU0K4fgXmBrRdL1SgtuuFEiGeR8b6+94HLC2BAJQjfVVGmNVVyYBEkUTAHsPAUq2H1bVi17XbBX7gB1IPMDmcJl30ajVIUoRoKMasvnRqiLvuItLSMbuayYA0UquiqpL7K+8SpGVO0nHXXZClCO/6mvfiv7zt9OhzmkY2+ZYYWL21lTDi05/rjoPVRh/rm2LX1rpEdFlx5QqOtDaIqRTdxcbAnKgMiEO11oowqzUOs5oZLDai6pjV7EBSouxdlQMEOTIghY2vAD7oE8rQtBKHJ53KgHDKUuvjgE+ng44+xNO9eczecSB+uN0M0ROQ2cmNKELgU9YpA6unYVbTePvbga//+tQDuk4qg6Yx02GfKUnJ4UpAlxEA7r+8B89bOMsvdYyZ1RW4s08Zly+Tr3XhAvDOd9IHg2CnZrWmiV3bXo+sHa0WMD+PffVtXLyq0/3LGJMQKCSL9Mhnt3Fb+BAAYH77dCwDYgUa6o0UWK2KgdW+G+Lp3gKWblsCbrwRx9/yXPz8c/8GuhLgps4KOreOOcNxxsFIKW+BiMHPayADkikpMK3BYh6zuoRmtSYHcHn7TpaoHk+0ZbQJQAystm2SqFU8fNWeU/jsp3ysrQRYMPuTwWpWDZBxDQCUAqs1Jco02oyBxoJAksZjVqfNZAu0CyC/9N+NMKsP8a++Xzwjl+vjAEzHrBYAqy1fR22GnlUWFwm54sltAmI3UtedMqtFQZTf/32CJ545k3qQafjXR5nVpuplSxYwQLEoj4ZWhwVexvmD7Y2KgNWKQjWrBTTGC44tVQ6yweqUDm+h4Gjt+6E8HbM6F6zWRskBCwt47sI5/Nmp5+OG9trO8cw0/O38/lgWCsqA5AB/7CyjFrwGvKQoJVcVWhNEwWrKrJ5t5ryQkW6eycxqRkBjYHWtRkzIeaaFvGAV05qUVAhVIANCpIjGmNU5xEX2PgCF5+5nyj75eo9dsPpZEIMB0KAGi7ocwO0VkD6wLJy8YOKG1hpmdAvdVXKgdwY+TMUD2m3SpmBWjwtWpzVlRZnVFHy/eCHCj97+MbzywKOJzrXnEbC6RicSwyAbOx7DBRywmpVqqRSs1jQC6HBWHyZVEQTAww8Dt99OpFTPn0e8kWgu0CyyaZJDqcO/DVdWgLWne+h6JtoHZoC9e3FDax2/954a/uqhw9h2a5iZTa5rW7PRHU6hRwckZiiaRHU55enBXyApw2nXocmhsAwIA6t/+7eBn//5sT0b6+uYDEhkTykDwjQGKbu+oTr8cqGxeOc7gXe9K7XGMgBcT8DquupiuJnf1xis/uRJdDZO43WvAz71KfokA6ubqYOVopD7a5gvAxKEMmR9bKxQ/V9JAswTB0ef0zQyJwgkGZhUyw52Nfvx2MJPmdXrWwKnGMvCcMslup8ADrtPxWA1k2lgbYokrgrLgFBmdd/Oub8chxgsNqJiBotMbihTl7CkwaKUU+4ahsXLs2m7khRxDH8K9hWAZshCMiA7qtuPHUNnUcXTynHMLieHn1YL6Lq1qcFqP5ShSIRdY9QV2IHGlxnigNW6PnbZKTDBWxOFPhOpcS+iIRkEsDwVTd3lH86fQQaL586RW/eRR0hybDhEzKzWzQnMap72I9vANBrA3BxqqkeGTrdLNKs7YzegYMkzAJx8yMKJGaJXMmcOsXE1SAwWGbOaGS/zwGrXhe9FON1bwNINBJC84bteiv/r3m8DvvZrgW/+5p1JB87B3PdBqgdKgNWZjFqUZFarKhQpROhxgK+i2xwGgk9iaZadY1WVMFUFmNUTq0ImhaYROQEOOxEA4DiwA7KfvrlzBY8/pWBtDdlgdY4pKDEsRzlmtRLBjyavX4VNygA+m5I1DJQz78yVASk+ZhVVygTrAUwFVgtpVgcazHYCVt/QWsPJMyqsQEe9kwIENY2AiYLz98oK8PKXE739OGLN6tRYpqziwM1nQBdOBjHzyiywms47klIMrFalID9/yyRmCv5eqhTCd7LHAJEsEW8SgBizugRYresgmtV5YHUwNmfNz+NrDp/FB888B7d0JhgJUZ31XIA1imDZEjFuFAGrY+Av4/n4zM5vaiR4iSt6bQutCQU0qzedOjqtnEHISDf2M5hZPcG0sKk56Hcr8M2KErDaVDxYm1NiEOOa1apKzt88HMb3iWZ8wcTVM2WffL3HLlh9vUcUYWBJaGoO0GoRc8FuAYDu0iU8vLEPt81eQlu3sb1CJgI7DVYrfmXM6hH5AwamceYeb41oflwazuC1Rx7AcxbOJ5qeE8FqD44AWzkIcvrKFj4lYUEDfC1Rtt53u4SFcHi/j/kZH6dPA8cWiYh0c5mW5qoqAas9lctY/rM/A/78Y3MEpNk3C+zbh6OtqzhzycDl7TrCSIJsJMAf0WmdUgaEmRZqEvSaQkrFptWApu2GkQyl3SATueAi7PsE/PR9Yk4lSanLNs5WMAzC8OhPuUqkDxe6LpRcGY/3vQ9485uBhx6iDzCaENugMcM2jnOyd3kNuuzh8nAGnS9+DCfmN/DUU/TJGKxO3acsGcRhVgOpkuN0/NzPAW98I6n/TAc96IjMCUw3/S//Evid30k9wW4UtlHUNKKvuC0wZvt9AkTJpI3DwWlyiHJdsplg11Ulr3G8/Lkg1mktwKxuag6XWe2FCu440sNrXyvWLMAxLWQAcAlGTq4MSFmNUo72aynJEggYLLruzsMTfePNb7gNmJ3DkSPJw+0ZCT3PmA6sDgIEkRQfBiXTiPuSG0XLiFnJN0+flPOZUQREUkGwmo5ZzVT45a6yTBKNQUXVNlPEuXPAbbeR5DCAWBJokgyIiFl0zOTVdWBuDpAkKKGH4OoGBr6O+uxYybKgmRQADDZdtDQyDuf0PtbPDyfKF5mKzycQnTmDMJJwureIpb2p8SVJRCPrW75l53s48gdBAFJlUrUMiFeCWc3mrSzQhwLLhdiUrN0sQC2eY4s1yeQquAwqtgeuCdzfuk7MYbsCr3UcUkmg+JClCHNaDyfPKLlgdZYMSGwmVoZZzWRAJoyDWPe1ILM6d+2iDRc2LRRgVvteWEweDOS65hk3xtJpZZjVPNY+3cvJJt3/LCzgxcun8b9Xj5JkWCc1b9FkIze5QsOygJtv3glWD3wDjfoYWJ3HKk5LKhQJ5ruR0y6AcmMr7/jBfseCCRY1D6iMz1UlK9ly9lulZEAMSUAGZIxZLUmY/fHvxa2dy7j1zgn3nQizmiVpdV/sd2OJq6wjXcyY5Tc13ldZirKTojEIXoxZrUoCnh7MYLGV88KYWf3MMLOeGONs5VqNSGtUAVazNb5ex4LZx/rKlDrYQTAq9cXA6rzzHO0Le71wiDLsd4Mbu2D19R6um+go1mpkU9MTL1sL1rdgByoamou2ZqG7Rt5rD0KYih/LgIgyq103H6y2AupWDcQlY1xm9aWrUKQAFwcddHQr+SAAv/qOJnqegVY9YVcYsg/H5w/tXGZ17Fodxe3qcgC3LwZWX/mP74HZvwr5p38Kc+//rzh9OsKJDhHzbu6nVEtJQq0GWL4uJi+yTn4DaXEBeNGLcLS9hhvaazjU2iSZcbYBVlXyWw5LIEXpSJXgaDWVHEKmLcEBkotUrxcCqz0PWH16gJriAE8+idnZCJubqb5GKaNAKrEy7E2ZjU6zdhgAXgBIYprSX/3VwJe+RB9kvzX7vWo1cijdzF+E3YeewIxu4fKwjY5h4dh978fJk1Hcz013rJysAFg98fB08CBxCx0HrthBR5BZfegQ8F//K/CZz6SeYBvuFAu6pgiajdIvJO3fB9RqOKxewNmnHETbFBlvUVMxRSGMBA6A4NllDBYdDBwOszpUcGS/h2/6JrFmWdsAqjX/ogyiTCwtishhv4RmNYB8pk8Zg0WDU5bq+xj62iQMBj/zM8QfIDabBdBoSuhPq1lNmSMxG0NQFmpHUoYXdMwWKfl88kkigRGH5yFIl2QCfEkFAHAcuKGSSPPkhSQlSYWv8E78/HngOc9JkoFXroCA1WGGZjWHWe3ZAQzFJ/OBqgKLi1iqdbHyhfOkMmx+jK1cAKy2ex4hAQCYMwfYuGzH908sX6RpqCkuLF5uZXsbTc2B7WtYWuJ+9Ghfc2VASmpWZzFKwxCeL0NTCrbLYyiyhFgJg8VMQC2WLyrWZAzOCDGrJ89dk9ps6xa2twT2GzRRKy2TgXCktoL7Hq5jsdYn6/h407qc+XuVApWTLme3y0DwMsAfh1ldmP0qBFaD3AsFFjHCLM8GqwPHLyY5BlCwWkCzetxocnERd85dxAPrB8i5azY1b+k6NQQV9AgZErD63Ln0lwnI2XMcrOaAyn4ZzWpZJgmmHCkz9jrhYAB4zv4wcsslQlSZp1ldznsEQH7VXVEJDFByQEY1BIDEYHG8ku3mm/ETvzyLl/3cyyY2ymVW+z4hX2mCZzSaZMxMCJYBlVPtZv5eZfayMUjJTzBxmdWsWnwaAsO1jnGPGl0nMiA8HWhejMmALJh9rK1MeaYPAgRhSrNaVdFQXQwczrpUpoKHMat3ZUCmjl2w+noPy6K6YREBq2W/ELP65CNOXJY6o1vobvjEWZyatTAZEC/rwDAWucxqxuI0EuajIfPL27zLRKJk4JuYee3XAABkz0UYAr/yznlsOg206kkG3FB8OD5/ZeGB1SMlRcz4igPQsfns8/cBN8lPAYMB5gfn8PTpCHv1NdRVB80Dnfj1tboES6Cc3PdSwOz8PLBnD+afcwhffP0v44h5hSQWUsBfW7fRtSoAq6MxsLoKGZBxsFpQY90bODj//3wes6tPAP/3/41lbTPRrWaZXcayUhQCfg6mz+wCiJnVIuM1Hf0+0GwSQ8QYrGZtMsDLMMjCznFO9gYu2rqNFXsGnVaA5qkHMNgm7xn0QsKsbqfuU2awWBaszgrmJC+QwOp2gVtvJTIg588njztWSACh1JgVzkCzL1SrAQcP4nBzA+eecuBsWaRNBlYzRhKPWe1SzeoC7NeG5vLB6kjeqQXOizzTwrIardSZPPPAPy2zOlOzusTBAYCmc2RAWCl9Xew6yIZG2OpTgtUEAKbzCbt3OfN2DA4XkJgxBKo3oogYDgPAH/8x8Ed/lHqSeQ2kS4LZpjkvMWjbk/XrM4KrdflPFOfOkfn11CmCy125Ajh2RJjV9dR3YWA1JxEwHEREYoiN70OHcKCxhYuPEu3XxsLYqb0IWN2nYLVpYt4YYGPVj2Wh4nZoxZXNK0v1vJilLQxWC8iAlGFWa3qOZjXbSxUxqKJ9FWJplij7VuUQnjMZrCbM6uKsR00OiK9HXjCDxXHgZ1JoGtmTdwVey+ahvXsBRcER4zK+cH4JC/UhcODAjpfHTPjrgVkt5TOr4zm2SoPFKEr6W5BZnadZ7bthsSou2ldTYB+zA0yZm4NqqujoFs7351CbSw06tocrwKw+fBhYXR39vIFvjCZe2D2bWw1RVgYkfy4AUGxsyTJlVmdfg3hvWBCgUvP0tZlnT4mKEAD5VXfTMKuzNt/MYHHCnPV//J8tHDg+wd+CJe/yzgiMsW2Ig9W5wB8Dq0sZkOecQ6kfUqF2RUFKz8OWWxs9t41HLAPyDNesTmvRszPScEqIkZLQVF2mYPUAa1enBO1ZZUOKiEhkQDjrRxmz1V2wurLgjiRJkkxJkj4vSdIDkiQ9IknSf6CP/5EkSU9LknQ//XM3fVySJOm3JUk6KUnSg5IkPTfV1ndLkvQU/fPd1+xbPcvjne8E/uRP6H8cB33PQKMBwDDIAsFh/6bj/gdl3DV3Adi/n8iAbEekLNVTYGp+DCi6gkwvzyMAcBgCf/EXY0+Oyx+IgGkAvK6Fjm6hWQ+hfsPLAQAtqYfLlyJs9VSc7c2hVU82K4biwwmUhNaaEUFA+hpFwJveBGxvj/aVLHxJplDEnMnbIkj9Ixv7cOhWAprNGQNsbcuYibawaPZHwWojxNDXIF1fVwABAABJREFUuQddr2dj0zbJZow5J995J2aNIQ43NzBnDkjJMpAYLE4LVjPTQk2CXlfhhtXJgAAA6nVafiNzfysA8C0P5/qzmNVJhmGPtJKA1QxYZxtAtgAV1JfeEWzMqiopzxYYr+lYXSVAwp13AvfdR75mLCXD7gNNQ0u30R9wGMCWj7ZmIwhldG4jxlkteYhuF3jjvzmGj1y4bXTToygEXM/7yUpqKOqCjPhuF7jlFgImpRNDfUdDU7MngNViJc8AiB7rwYPYV9/CpQsRBlse0e5PMatFZEA8xqAS0c0DqOO9C8vjy4Co9YLChAJs5bKb8cxy17KGWlymT4mSTBDgy81j7FKmj1ApPZCM7WkYwFRnX2GHQcOALEUIrPy1NvQCogEseiFYspXDonnqKeBHfoT8+/LlsaoFthkfY1bXFA9WP//wWAisfoYwq69eJay/KALuvhv4yEeA7/3jr4M7zqxmGvacazsYgIDVbD44fBjH26v48c+9GZ++chz1xcboGwoY4dn9AKbqATffjDljgPW1KHGfbdB2FYVoVguA1bocQFVCLC5yPzpuW87RgY4NFgtWWciqTOQPJknCxCBCScZb1ppAE2KKXjAhmKcnSkuEyxgs6iKHUiYD0hA4vGoaZnQb212B17J9imnGWsVPbS9j4Uhz4tyjGXKmDIjry9CLMqBpqCoymcXlmdU5iVYAgRsUZkBzTdXY+iUXMx6OkwBZ2u12UFhahKwJXv4+DiCeHWkWsCQB+/bhpXtO4qMXbkFtITVvseo4gQpUgIDV9Trdv7Jbg2pWN9LToQCzupSXBTNDzJkLAJRIhAQI8si/blhKvkjJm7eYGV3FxrClkgBIJZ3zmNW+BrNWoL+MKJK31jL5K12wzzz9+imY1VpegqUMCC4wbwGImdU8sFqXn+HMajam2W2ikfNdvwqwOpShaHLCrF6fEvilkn5pZnVddTF08yelyBvzRBKJXbC6shAZSQ6AV0RRdBeAuwG8WpKkF9PnfjKKorvpn/vpY68BcIL++ZcA3gEAkiTNAfgFAC8C8EIAvyBJUqpYdzdE4uRJIiUbszQti+iGNSXANMkCUUCn96mnVdzUWQFuuIEAnH1iojfwDdT0MNF5FMzqMWb1vfcS2cRPfCL15DhYrSgwFQ6YBmLOM6Nb6MyEBIgyTbSVAR79EkENz/bn0WrQ/kkSDD2CE2i5JX5Awqy+7z5y2P/P/3n0i4wsUIyVxQGr/ZNnAACP+cex71V3AC9/OVQ5RFuz0NZs/J+3fhq1ZjIpEhkQgb4OXawM29DTJa/HjwMAjrTWSdk7ozhoGlqag65T1MFjLFgJji5Dq2vVM6tVFQda2zg/mBNipXlOiPP9OczeRGhky+FlUvId91UZZVaLmFTR+PjHgfe+F3jiCYwymdJsFZawKIDXr6wAy8vkDHn0KPDoo4Brh0mZOQCoKpqqg96AA6o6IdpUBqdzG2FLHW+t4ORJ4NJVDRcHs5idSd2nDADOw9PKgNW6Tg46AnNCrwe87GVEr1pJnY17loqW5oxoVhdmVhsGcPAgFDlCYDm43G1guTkcua5EBiR/ExIfSArIgKhyiCDPRZ7KgKi1gsgy1/G9HCOHHPQynp/CYBFAtfraAHSTw6xm5aMNwf6KSnbkBTVlSZc5NlQHw22O4a4TFAP/NI2w6ByONJaXzFOXLxO95rR+vxOo0NMlwapK5sO8ShPfhxuo0A2x3+yZwqy2rETp4O67iT7+xkAn3yUtaUI17Hnz1nBIwWo2Hxw6hB+/8+/x3q99D37p+R/CDbeNaTgUMFi0hyEM2QdOnMCMbmGrqyRgdTPlZaF4sDiHp9AhJepN0y8kA5KpAx1F8ANqsFiEAQ1ibJaptc+SbCV0anlsyggEKC/cbhagFkXl5i02tgTAaivQxKpCNI3IufUFvh/blBgGsLyMI611AMDCTfOTuyvCrC44BmiXrwGzOv+wX9ggmbabOV5pZ0c8UAQjVw4HJfYaQCKpwPHhibwxGRAA2L8frzzwKC4NZ0fBal0nhqAFwOoaLCwuRAm7OggwmARW50lghCGR6yvJrM5kK5fWlg7hB9lkmZgJX5C1n8suZ2dLo/i8JSHDGJZJVcglDBZNWcBgcYIMSF7Q5J2bt4+h+5SaIdhnVhGTw6wmSYAC/WTtisiAFJkLYjNIERmQBjozOdeJMaun2L5e82AyeePSGvb0YHUQjcmAbEzZpu/DCTTENk2U2DZw8gdO4BYkngCjYLUAIW83soP7q0ck6G4aGv2Td9VfB+C99H2fA9CRJGkvgFcB+LsoijaiKNoE8HcAXj1d9///F7//+8CP/Rg5oAKgwLKOZktKZEAKaFYPuj4pJT1yBBozMrFtbDk1zDbdBKQtCFa/733AH/wB8B/+Q+rJca3e2GAxf0L33RAdY0gmdEkClpawaPZx36cIcHe2P4dWMxmSsUkZ5/DIwOq/+Auiqfu3fzv6RUipiBT32VA8rt6lf5qIuj26sQf79oGUZQKYN/uY0S3825d8cuQMoOoywoxDw0i7QxfnB7NoN1Kvo+WdN7TWML+QupWZZrU9ZgRVNNIGiw2tOs3qlF7x4bkezvbmhLRfPQ8415/D7K17AUnCsnseK5eCpK+hDNVQ4rbrqpst8zIWDz4IfOxjwC/9Ekm0xDFusKh6sB3+puX3fg947DHKrJ4PgCjC618PvOMdwFpXH2XuUcM+Xhbac0K0adl3567DAIBj8tM4dQpQIx/fdvQ+tPakTg4i2f2yMiCKL8ysXtY2cI/yeezbF5F5KwzRd3ViCssOrozpwzMRAhAxMVfTBPbsAQAsK2v4zJVjOLGUKo9g7I68A1kQUDZhAQZVzFTOB6u9UIFWrxCsZqBPUY1Wjut9GESQpWIMMgCJDnLG4cmPSrDAQVh/uYxdJgMiClZrGjmMWBUyq3VdyO28cBkxZdE5vGojjySCADLH3HNPysDV97HhNDDXSGXV2HzYzweri4yvGKz+CjOrLQuYlzZQ1z085+Aarl4FejaZW2MdaECYWR2D1exQcvgwVBW4ob2Otxz7IvTFmdE3iDKrowi2FRJm9YkTJMnmBckPmZIvqql8sDpwfGhygFatAFjNAWqDkJTGFwYqReatqrVEw4SgUCgomDSx7JseugvPsZIETQlJYjTvUMqY1U2BuYvKgGz3xMBqCSB7ikYDR1rEH2Xha2+f+HLVUDLlKqaRASGa1dntFtZDF9jDeG5ExmyVzGoKKBatDMr7/nFfSwAeInJmDptb0m3Pz+PFy6fR1OxRzWoqAyIKogzXh6j/8s/iTvkhPPAAfTAIiATlDrA6P8FUquKKx1Yuw6yWCLsylwlfcmzlVoSkKlYLRV7yLoroebVYkwA5g+YmnZkMiKDsGmmU6qwLMavFweprKgMySRaqbLsFZEB6noF2O+c1VIK0iqJmFmEI/N3fVdfeDnNLTSP7Y6vEgJzUrpFiVm9N3+a2W8NMIyHNNVQHQy+/3djbqMhNJhM5Pi8nIbYbYiE0s0uSpEiSdD+AVRDA+R/pU79MpT5+Q5IkhoztB5BSJ8UF+ljW4+Of9S8lSfqCJElfuHr1arFv8ywPzwM++lHgrW9Fwii1bbJhaEpUBiSAOxA/PA57IRqaAxw5AoACD7aNLbeOTsMHdJ0cnARBPwZWf/azwHd/N/n/xgZ5zrc8kplKy4AIGId4boSObmGGnRGXlvCchfP40Ic1zLY8nO3Nj4DVse4rh63MZEA+9Sng1a8mc1D8Fpb9ZocWlt3kaVYPyJd5eqU+BlYPSP+/67tG3yBg9AIAnuWNMsgBsjE7ehSv2Pc43v7LqUWRykqIMqv7fSKDsvNDE3ZJY0ZFzzOqlQFRVRye7+NMf54PVl+6BD+Use40Mbe/Buzdi2VzGysnu3FfvVDZAVaLYuuXLhHW8wMPpORgwpCytyjrVNcJ61EAUH3kEVIFsfqlC1j6xPuBH/9xvOHu0/C9CD/9qW9EbQysbmm2ILPahmFEMI/tB3QdB5RLOHfShRx4eP/X/zfIy6l68Lxy57jR8jIgIgaL3c0ArT/6HeBd78LB5hbRrfZ99DwTLSP1mzMAXICk6fTcWPcVy8sAgBtbV/C352/H8X2piYrJgOQxq8scSlWVMJXzwGrmOG0UYPrQtgHkalaX24xnH/g9Nypens3azTJAC0N4ZWVADP7haejrqImYlAGArqOl2+h1p9gsxprViQxIU3XQ3+YkL72IADSi11bQx8H3E2a175P5+8/+jD7peVi3d4LVNcXLrzTxPGKweB0yq2sf+O9Y1Ldx55f/O9ptwPaSdSAOUbDakkaZ1bUacOxY8oJxuSBVJZIwDuc6DIewPRVmXQHZHABa6GA4CIkWuknBJEUhMkMcsNqzA6hSiMUZF/OTCbQ7I09TlrIeVaU4O0/IGLZouzyjsjAkAG2JeStzXSyrgy1J0LWISKXl7eVook1cBsTCtgizmu2fDAO49Vbsr29hrm7BuO34xJerusxnVpeUAcliVvtBORmQ3NJ/kH1RYRBBVcnYyfqtKFGjaNJC0eRcg0XfR/FrwM5JnH3nYCgRGbT0BmF2Fpoc4p+f+BzmF1Lvl4lkhJsn/8DC82CfW0UtGuJ5/ufxxS/Q+zEIYAVj8hACCabSOvN5OtAlpcxUhVSrZYHVMWu/jMFiLlgtl6qQy7y2NJleeI4FIKn8xI0VaOLkACBea3OPdQysNgT3Zew8k7XvjpOi4t0caTfr92LX9hqB1X3PJGTDrChR0cuLwQD4qZ+qrr1JOtBNzeabFvKCkQY1GajXsWD2cXWrOAPmscdSt3gQYNutodNKzM/rqouhp2XOA0BqnSl4AMvzcdgN8RCafaIoCqIouhvAAQAvlCTpdgD/FsDNAF4AYA7Av6miQ1EUvTOKoudHUfT8RWEhvv9/xBNPAHfcASwsAFtb9MHhkJRitRUqA8Jn/8YRRRgwM6HlZaBWg4wIweo6ttwacajVdXJwEgT9XJeAn6pK9mOvehUB2GlX0RgD6UyFz1T1PGL+2OnQ1y0t4QWLZ/CPj7Rw1w1dwqxupd4gCAD7PjDY9uE6IWo1cgliDeRYs5r+n7pnc5nVboiGaiOKJHIePXAAkCTM1WzMvO3biXhvOgTNmXyLlAu1W2NP/Kt/BeWnfxJz99yUPKYohCUfimXz1teB+++f9KGJtlqtrcEOtMplQPbPWbg46PDB6rU1Mk4BInmyfz/21rdx+ZyX6usoWF1TPGFm9eXLBFx+7LHUvcWAXEkif3SdaAcKgNW+T67rygNXsGx2geEQ9U/8DX7ih2w8sr4HNT21AVZVMWa1G6GtWyMVBgcaW3jgCy4WdIpcLSwkb2Asl6rBasaC5kgVAEDv9GosXXJQOh+D1X3PQNNIJdViGRD+tR1ue2QsmCaRvmm3cePMCv7+4i04fnAUoItlQLLuA+bMXoT1F2sdcsDqEmXE10Rag8MEL82kY0DCpMMTM1ichlmdc3iKACimoMyRppFk0PYUBjU0+aCwS2QYQszqwkCKoGa17xNCbkCr9V/3OuCv/5peMsqsnm+m5lRFIUnnPBkQdtgTLE/mMuD/icIeBKidewJ/8op345B3Er/wb2wgikh1VRoUYtVRnPl7aE0Afb7ma7LfwEp+eZUmtg07UGG2ddJ2u42jrTU8srGPSK4xhjBjVnOYPr7tQ5UDfOK/fEEc+2KashlAbazTWzRoiXrVzGoemzICSs1budcgkoszq0G2tdzkDTNYbAr8YMwou89/rT90CRHEMIDnPx/Kj/5feOe7sydfwqzO0JZmch1lZEB0kHbHr0EUwQtkaEVZ+2ztyrmkhQ2SabvXQgYkBv6ymNVl2OUU+LPzPDLAwGp39Do8//nAiRP4vV+zRraGAJV/yDPWY7G1hTCSIEsRnrdwFl/6LN1j0e8opQWoeTIgZTXheQBwWbBaBYIcYpPnodTYymWXTyEDkmlIH2uBl5i7eTJWBb0sAMSEltx9jOfBDtTYgokbPEmgKRMhecmFwsxqdvbKI7QAgOcRybZ6TqcZUa7CbZbnAWtr1bVHZPKkEWZ1Q3XRt6f0zWLnKGqw2NGH2B4UZ8C84Q0EP2Ntbrs1zDSTyqy6yfcOK8WsBqBp0TOC1HG9R6HZMoqiLQCfAPDqKIouU6kPB8B7QHSoAeAigIOptx2gj2U9vhuCsb1NPPRG9nqDAfqeicacQcBqARPAOIZDDF0N9QZhjaLTIWZlj25hy6mj0yabX1P1hMFqzyMs1VmqRv6KVxDmMu3qDvkDEVmFGKyeo8N1eRl3zl2AKgW4a+Ys7EAfBat5Tt80/KGL4anLwMWLwP/+3zh0CARMox9KmNX0/xSo5IPVAebNAWQ5IqW59Trw9rdj/oXH0J6Z8D0FwWrPIs+3xyqQ0WyOsr4AMkAK6GhubRGwdgeeR0tiVUNJWF8VgdURQA75Ji1H5YHVnkfkakDH1sICDjQ2ceGiFD8/SQbE4kjMsLh0CbjrLvJzpcHqKEJywxkG0VjnaAfSt2JjPcLqORtLNVrm/cgjODB4Ak91l4i8eAqcaGk2+haHSeeEVLudPrC4iAONTXzpfhlL6nr8WBwMmLgWMiCyoAzIuhdLl+y3T+PSJQBBQJjV5iizmjAR+B9v9XzUGLMaAJaXcWNnBUPfwPEbUn2SJBhaCCdQszPmzJizKLNaDuHngdVU+7TMgQRAvolOKRmQ7HHg+yh+gGbtZpVPUtCnjGa1oiv50khFx6ymoa3Zo1r0RSMIiERCSrO6ztOABmVWFznsMukaDqDKZEDW1sgtbxjAi15E/Bfg+1i3G5hvpe4vplmdt46zQ5koWP1MYFZHEcK1dchShK/acwqaHOLHg18FAtqndI061X7lJdmGtjzKrAYI6PPd3w389E/vfAMDq7PKiFm4LmGS1en1XVjAjZ0V3L9+EDUz9V7mt8ABpxjrr90pcN/mlenTe1YpCVZngn+MWV3CtJAkW/8JZUCm0drXonztVyAhQYjIQzGj7CEfJLIH1LhT18n1uO02vPHbsuccVc82WPRCeQpmtQQ/msAii3XLS7DrOXuYuDKoYHUYgFxfhMpN8JBiVheUQollQHLIJwNLJlWy6eug68BP/ATwmtfseL1qKIQFzgOrbUK+AYDjM1fx1BMJs5r1L2lUhSrlECSY78Y1SFwBKAVW58m2xJVRVcuARCWZ1Zy5u4zBIpfcRceHpBe7v7jM6iCA7RdgVstkXsqUVGASTqXWmXDyegDE+6JCvxdLLAR8k2RJikblysaDyYAIkKREw3WnA6vf8Y4xKIBhBWpypm1qDgZOBTIgKc3qtm6jOyzW5uoq8PjjxJSctUnA6mS8G6ZEyHh5YHWZCh4AWk610W6IB/fukyRpUZKkDv13DcA3AHic6lBDkiQJwLcCeJi+5UMA/rlE4sUAtqMougzgIwBeKUnSLDVWfCV9bDcEo9sF2nUf2N6GaVL54H4fXc9Ea8FIDBZFwWrLIvp5LbpYdTo43NrAuSeGRAZkJqLMak8Y9AvDCGcf7WPBuwScPInFxQT8GwxANlMjMiAc8C8M4fnAUq2HpWXah8OHYao+7l44j7vlBwEArZlUG4pCXLE5h+igb2HbNdFUbOC//3cc1Fdw7hx9MmZWJJq6hsI3Z/KdEAtmH8vzfjKnLSzg+39Qwx13THiDquYzPFi7FBgc+Z55IaqjCZIEGQ4T6czkQ1M6VHRs2d0KXB5SzGroOhqag/4WZ8y6LkzFhyyFMVg9ZwywsSknfY3kBGih7DRRZvXmJvDSl5I/sQwIM3dgh3dNI+WYHO1A9hU3zvaw0jWxvEcCvuqrgCiC+b73oK66qDVSG3yqWd3jgdVuhLZmo8NsaZeWsL+xhceeNrGsbxHwlpl00WtADEnyGi2rWS1osNiX4yRDZ3AR26tOilmd6lgMVvOv7bAXEDCJUTL27MGNM6vo6APM7R2laeg64IQqnzVS1OlbosY8WUFlIwqbf+Ul2sKQtKmVkOuQw+qZ1XkgHTOlKbNXFWD6jLyOF7pOmNXTyIDQyo34XE7lsYYiYHWRDa6gNBZjVl++HMu244UvBL74RfLkutPEXCs197PEVRbbC4jnO0UXG1/PCGb1+fNUB6QGvO1tBKi7cCE5zKaz2KoKXQngcJawiWC1JAEveQlwww0738CSdwJgtRuoyRo1P4+bZlbwJydfiNsOjGrtE4NFvoaiKhfQQwfyS8nDcDQhUySuqWY1B6AqCqrmlX2zipASzGpNA2GqcsBqSYp2Sslk9NOQfSEfB7vvE2ksQZqioiuTZUCiCF6gTG+wON7utFIwOQzFUiACBT9DL98ErwygCCDTINkLZZK8LHJtZRmGGpCkOw+sHmdW50QMPgqA1XFXpAgHW5t4/HFkg9UcZrWXBrVEgxks+tlSDaSDxX4vRZXyZVvcchIzuRWNVLO6DJEhk10+DbNaIHEz8jrBNnWedIXvwwnVmHPCDUmCpmFyMgwonxTNk4UCynnF8IB1FiJ7WSoD4gpUnYqG55HbWvR8PB7veheReo1jgmZ1Q3XQnxasZiC4TsDqlmajV5Ct/elPA8ePA08+mbS55VDlABpxsiAPrGZJ0cJg9a4MSBUhMlvuBfAJSZIeBHAfiGb1XwP4E0mSHgLwEIAFAG+nr/9bAKcBnATwhwB+EACiKNoA8Eu0jfsA/CJ9bDcEY3sbmHnks8C/+3fYu+ASs7J+H5avoTZfB0wTuuLDFWA8AgAcB0NfJ3rXANDp4FBzA2dP+eRm7kSJZrUjtrDWNQ9nTodYWHsC+NVfRevx+2JGGymvLSgDQpkoX33wDH711+jr9u4F3vY2fPybfh03d4h4d+toilEqKgNiueh7BpZaFhBFODh4PGFWMwaMnmQKDVmgPNuLsGD2sW9pdNJ7+csTtvlI0PLZ0OXIgNg+WpqF9qzgwUzTSFmuAJDAkgmXLo1/aIppZxhYMntYvVrBgpne5Oo6Djc3cPZM/nWNHHLIa5o+uY7z82S/H/hkL+B5sH0NRiOR1qirLiwBM0QW//pfEx2vNLOabH7CuE1SjslfrHwf2DizjRWrjaW79wHf8i1kQ2LbONjYHC0DZjIgeWYUASl/m6sNk6TN0hKamoO27hD29sLC6CEo3oRlNxu5JLNflJVEzBA5rwuJxqAiR8CePWhrFrZX7Vizummmxryui2m8AbD6AWpqill9++042NjAD9z6KUhjOjm6IREAIbfctyCoKhMTsiDKMSeieqqSUvxAIklRJugDAJJc8B6k/fXDyUZCpbREaV/zylLLyoDECbysucvzCNOrALO6pdvo9qaYu4IAQSQll8gwiDxWngY0CPu1ELOasuh41Ua+T/6c+ccV7L30ReD978fznxfhC18AlQGpY34mdX/xQATWKCB8XblyLf8UwTYXR48Cz3kO0R0DYS960EfBCyYDwrm2A1sZNVjkBZsPLc6+i06YkkH3PwsLuKmzgk9evglveFFq8ZVlsufytdyDbjy2ioLVWeOAmqKq8jXSrFbLAZWZABXTrK5SBmSKJJtuSPxD6bjJeF6wpLAAP8AeBIXA6szDeVlQmYaqSZPlRaYBqyWODAhLCBa8DxQpypVqKLV+cSujqCZ8wUSAqdMKsZz9/MBWiHxRgXkriiT+/O04IwmWf3HL5/Cud2EyWM2TwGDVYaWY1VEmoBgEBEgvuodRVSDIkMMhiRuJzLEFddZVKX/eKitXoUn5+61S5AAeWO15ZJ4tCFYbCqeKiZ7ZhJnVANQ84I/NMWUNFnOY1YW9YiQJmorcRAiA5H7OS16qKnQ1gONla6sXDbamlGVXd7vA3/996gG2d2DXSNMICU3QNyszKAiuaArRwTZ99FyjEEHi3nuB7/3eFFjNmNXt1O8tQO5znSnB6l0ZkKmCu8uLoujBKIqeE0XRnVEU3R5F0S/Sx18RRdEd9LHvjKKoTx+Poij6V1EUHaPPfyHV1rujKDpO/7zn2n2tZ2d0rzpob58HHAd7lau4fBnYWPEwawwJo5LJgAwFJzTHwSDtTN7p4HBzHWfPyYRZ3ZFizWre4RkAwiBCS+rjqt3G4iyVrfjYB9HdCok+9lAalQGhLLJcZjUDjQ15dL9w991otSXMGQMAQPOWlMIMz+mbRuS4qKsulu4k1LSD9lMTZECkuE0RVpbvhjjY2MSbXj3IfyELWp5tDzgGi06ARbOP1pw4QAMQMJIX29vk5Zcvjz2RLler1bBc62J1rbhD/I5Ib36oiVB3i8NQtH1ocoBmLYiZ1QAwq/awuUm+5xWrTVjMtO2a4mJo5fe31wN+71eHqIUDzD76Gez3zyZgte/D8jWYWrIpNxWPGPZxtMA9D1i/YKPrmmjdfYxkKu6+GwBwqLmBeju14DGDRTtnEXQceKGCA50BPvCBBKwGgAP1DSzVujtZf6wkM++gVwbwoKyJzM0di+1tABHQbgPz8+R33ghiZnWrNsr81OQArgizuh+OMqvvvhvKD/xL/MoPXtihCS+rMgE+c1gjhQ8OkkSMlLIOOcBUeqoSMJnxxcZcifJsRUGuRmlhtheQz9adopw+TrRVyKxuazZ6/enAattPOddTGZAhZ5r3PBDwr6gMiACzGgCe/OPPY+/gKeATn8Dt3c/i4YdBDRabmJ9J3V8M9BEBqwXHl8bAua8ks5rpmtRq5G/qNNjSbMjj7D2WcOZc24nM6rxgVSECzGoAyf7nxAncOLOCA40N3HNXiuIkSagZIaxAyz3oxuZfBefuTNZfFFF2VAl2HpvnJh2myxpfMeCLV/pfdN6iIPjEYRtFoxVaBUJIBqRIQogmcEUYdQSs9oXB6kyAKgaVy7HAtCzAfhoZEB6zugzjLU8OB0gqK6tkVjOgtkQyyDDALVMnMiDFkmwAxJnVN94ISBK+ufEJ/N1HI/h9m+wb2NxL28yVwGAmriV9N7IAYN+LSlWHqVoOs5oxoNWCeyOWGM4z7CspMZPHrCZJgBJgpiizuoRUYK50BTNYrIlfByKpkPF7MX3jsprVnGqAotU2qsaXSfNtn3gN5HVakmAYEklWiWQuBYLd8uvr5d4vScA//EPqgXFmtapS36wpyW2+T6qbdRmQJMh1k5yrRHVpQXCNr/96IgPiOEjA6lbq99Y0buKulNwUUnJ5u8zqqaIC5Gk3/qli++kNzFCzsn24hAsXgCfPGrhpZoVoMzIZEB7Dh4Vtw/J1mE06w8zN4VBzA+c2W8RgcU5OmNUiOr2Pn0JH6QMAFv7Z1wGHD6Nhr2OwYaO3FWDVaqGhe8mGgjGr89qmIN0OcweqyzxnDtBQbcgzo+W+shQhcHOuw/Y2pMBHXfOxeMsCYBg4FDyNc6fpLD5ugqGqhJXFkWz2vQgdY4if/qF+/gtZKAop+eWVk1N5kfa8YKZSVaFIIQJHTLP6xInJzGqflUKaJpZqPayuT+nuCyDyg7iPzDyCpwXuWQSsbjGwenYWkCQcMK7ix380xJ88eAc2nAbmluhYZg6/dv64vXgR+KGfqmNf93Hgve/FzAf+EFtbdDPoebg07GD/DEWkJAmGHpFDAyfD7XsRrl6NoEgRpFtuJg8eOQIAONjcQG0m9TsyZrUAWK0ZclI2t2cPuQbNTSzfsUxcJNLBNs15eo9lSmgZsMwDZ9hOaH4emJlBW7exvRnGmtVNM/WbUwNTj2dIAsAahKgxg0UWz30u8P3fv7N8gadfHzt9FwNoFFVCkKerXFJDMde0MAjIhqpom6DajBmHslgGpHJmdTmjMt7hybP8Ykw6ZrAoCFb/zd8ADzww9mAQwAp01Jl0DVsXLX6lTaH7i60zAprVAPDk1VnsrRMJCe1/fQi6HmHYD4lm9Uzqt9a0/AM0APh+IQaVZihfebCaASlsLpibAwC0NGcnbkelvLgGi45SDKwuoFkNIAGrb7oJbd3GY2/595C9UQS9ZoSEWc3RUCzDKM08mI+biBaJPIPFaTSr80AElhCsUgaEMatLJNk0XYIb5lTxAMWqQmhSWAistiLCrBaRFwGypZZisLqcZJLKZBUy2i0sUxCbA2e/pLAvAGtXCuE7ORVXJUFVAPkGySVY67H3Rs7YGjhqMWa1pgnJJfp9m7CW221g3z5okg8dDrauekTWsd1OXswDasuyimWZaFbn+W5IYbWa1SxhUfTIw0uyUd3uUt4jOZrVZGwV7CvAB6snMegF2uRqVlOwWthgEWTayvy9pmBWa3kmrozQUnAuiCWR8u7ZAdAc15mfEIYpkURoRWD1tMzqRoNs++KtH/0tdTam2feJIi6xi0UUYaevDEvssKQhS4wVAKu7XeDQIeDpp4GbbiJtxjK3LAQSd54TQlf8EgaLAsbLu8GNXbD6OoruuS20KVj9Mv1z+OhHIjx5oY4bZ1YSZrXCl6qIg1KMJJOuFvPzONxax9n+HDFYnFdIubPqCsmAuGtdNDUHshRiYVEGDh2CJBFw8t3/LcRvPPR1aKQBKmawKMis3hGdDjq6hbY+hiArCmFQWTmbwl4PUSShUQuwtEcGDh/G3vo2rpylszgzXtPlkTa5PoBOQWdyEeMrEBbVUq2H1qKgwBdje1n8CXJ7G7j1Vg6z2jCwVOthZXNKd18Q1micTRY0rmRg9du/5yRZr1QV6HRwsLGJP3mfhEdWiQxMXN6qaVS+hg/6HGhu4fY5gtTPhJvYXvfjJy8MZnFgNkk8mEYEm6dLCcDvWXhkfQ/2ztpAp0MepGD1oeYG6rOpQyVlVguB1emkTbsN/MAP4GVvWsKJH/lG4g6ZDmYklSOt4bsU8BA95NJ2dYWvpRmtrRMAY34eaLUwo1uEbM2Y1fVRME1I4w0ErK6Pg9VZwauyYEyfgpt8Sc05lNJ2AVRuWliqTeSXu/qBVNpgMROsZpvMa1CWag2jwszXtm6j2xf7fp/9LPCRcTeNIMDQ11FjzGq2LlocuY5SmtV8QJVdmqe6S9jzspvIHLO1hRv3D/HkWR3rTgNzM6NrbS6TkDYaAdeVDEjQt8gcw+YCmqxqaTYMYyezWlc44F8YYuhphKEoej+oKkm0CYDVI5JLqgq02+SwyoTHaRCwWucyq8vJgOSYdJXVPc0zWJxGs1oO4eeU0wMoPcdmMRSjSCruNQCyhPI0qwM3gCJaaaFp0BVfyHTYHoaFZEAyD+dlGdA0MllkLClclPkpSYk/xCSCQBjCCyTCBC9oWqjKAYIs804GUBnFE7gAspnVUblraxjgy4A46k6DxbwQlAGxul6y36J72P2tLp68UCOPp30BWAVPHrM6LCipELebLa3h+eX2MIomZzOrWeKqRIJFkaLsy1o2IcaSopn7rZKya5w9clydW1SzmreP8X3YgVqIWR2zlfPWmYLEk9jbh2OwWLTaRgSs7veBpupwz1+6KcMJtMrB6jLMap/itTfcAJw5Qx8MAnKma6S04/OqrSbEffcB3/EdOz8sJswBQK1G9nsFwOpejxyVf+M3yDbZsSPCrJ5JvUjTyJ7AvobM6l2weqrYBauvo9hesWJm9UtmHsF9n/PxyMUObuwkYLUu+3ALgNWSFCUb3IUFLNd6uDycgRVoMNs6AVO1AJbHB+i8oQdd8VE3AiwuAvFsEAS4uhLgi2uHUTdSEzcty7XzDOsYSFebsFB+7/dC3b+M7/vnY/1ipdR5ACidret6QNQUDh0i4Gbfj58fWaCYIze3PDsqZnrEzJTymNVRBM+L8FN3fQSveI34YUSTA3hDMc3qW27JYVZrEmCaRAZkq0AaPCNigJSC1brMN+vzLB+qFOJNX7eZPHjwIA40NrFv3sFja4swFD+57jGzmm9a+OoDD+MXnvfXwNGjhA0wTIPVHRyYS0q0VY0yajklPV7fxqrVxuGDqe91kEjVvP7I/fimV43eB03NQc/O2bBkVRjcdRf+7a8v4dixCe/hMQZATLrKlJLreRpvNNyVTZKJjpnVFtEN9n30PAPNWuoayETmJ8jQVU7HcBChpnhiYDWPNVJWT1WgXQDVMqvDkMzXpZnVEzZMUQQvkMsZauUZ00wjAyIAVtdUr7jB4lDsug2HwIMPjj0YBMQbwkjA6rrqYshLMhZl/SkKDF61EZJL88TWMva+8CCYe+9NjQt44oyJLbeO2ZnUGIrLswVkQESZ1WZ5ZvVv/uaYQU/JsPv+aJVFGqw2x8aeppEkdh5Y7XnEdNosUPodV5pw9l3jzGoA+PmfB97yFuAVrxjtqsABJ15Hi8qASBkHc2rg+swyWMzxXCgrA8KuwaR2p0gIxprVOb9ZnGgTBavlAK6AobM9DGGqJZjV4xchiqbTrNblyczHsoxtSUrWrgz2a9xukXEgpFldojJIiFldrEmAgtV5rP0ooszqAjIgPCNjGlbXS/ZbrDpQX8W9Zw/hUGtrpwzItWBWx4mryU/HvhslmNWZ+3kGAJfR2hcA7EvLVeQaLJa4b5lkZEb5wsh5TTTYGSFvaPk+nKIyIHkAcLyXF+8mAL4uPjX5KwNWZ7LAafQGMklWc66tUZMrZVZ79HYuw6xm4O/x48DJk/RB6kPUqo9Ka4j6ZgHEF/vTnx67XEzahYHVmgZFCoVwDRbDIZmiXv960ucLVw24oQKjlvo9mcdV7xoYLO4yqyuJXbD6OopuV0Jbs4E9eyBLEb71RVfwt6duxHPmz4/KgIiC1bZNMuvsoDc/D1mK0NIc9DyTMK4lCbW6RFg+nInSG7jQ5AANwyeSwpRRKgUB1ld89D0TjdaoARxhVufs3hhoPA7SAcD+/cC///f4pXcsjD5OD/y5zGqPGMvVDQpW0/LheKYclwFRFH6mGIDvRlClYkw6Uk6e8xrXhR/KODzbRaMtbrCoyQE8AbPN7W3gzjuBU6fGnmA6VKaSyIBsVwBWexTQpwaLIjIgE/U5b7sNL9/3BH73jf+Af1w5jL217eS6s8WHUxHg9hxosk/ugf37yYNeCqzuz+LAfOrH4YGUrL9DF/NGH0eOpj7fMIA77sDRQz5uetly8jiVw7G8nN/WceCGCvRagZOOplFWUg6zOv1biIagweLw6oAczGdmgHabaJh5YWpjM/qbS7qWb6xHw7IhzqzmyYCwg0OJUk9euwBKm39lgUml2gQrd+UYX5UBfbIYKVMaLALIHAeWBXJ4LsCsbmoO+kOxH9myJoPVBMRMJIxqigfLyW+zDLOaC6iCzId11cGKNYO9LzgA3H47AOCm6HE8cb6GIJShmKnrw0CEvARTURkQBlaX2IR/8YvAlSuF37YjrG2XjAUGmNC/W7oNQx/7rrEMSM794/sJWC0agjIgkTMBrG61gK/7up3XXGCd8d2wpGZ1Bls5ngvLa1ZPBDzixFXBNvM0Wmm7En1doWC/VwZYXcprAKTSwOWAE8NhgbmL7uFEfBxsG9VoVseJhSkNFrPkRUrooatqlO0PwQgVRQGqPO121m4kV8usZuzyEoCiaUSEWZ0j1dD3DCKzWCDJJiIDQgyt6X5r714AwMHgDD568Vbcsmdz9PN41zUMy1VcKQqRAclo1/NLGCEitS/KYu2HClS5bEVIxvNhCC+aQgYkR7NaHfdpEGxXk4NMSRzHjggRqIxUoACzegQ05ISmRpNlhoCp9NAzSRe0n9dKs7o/kAhYzWNW15RKNatdl9zKZZjV3S7Ztpw4QXSgAcTSjq1mMWmNdFy+TPbeDz2UenC8wl3X0dYt9LYK6D9HIaRP/gOwtoaDB4HzV02Ce6XnCro3tHP83jwP5cDqXWZ1JbELVl9HsT1QCbP6zjsBAL/4VR/BQ2/6RexbcMmNx8BqDvs3DvZCtsGl0govXHoaEqKYpVRryMTsh9OwZ/nQpAANMyRgNWVW65KLyxdDaLKPxsyosZzG06l1HAJ6TGJWZwVjQeeB9lQ7sFXzSQUuBavVyMOlS8CXn2pi260lcmwMROCWZxdkVjMG8CAfRPDSpTAiwQ5kAmD11hbwnOeQkp6RdSU2AiGa1YtmD6u9WkYr4uG7YVK+zGRA8hILyGAA3347buqs4FvU/wUJEdFuZQsQlVcZcsAkr2uRdptNYJkCyIzK5ftEBmQhNe55ICVrd+hhud7F4VvGpDl+8AeB//gfRw+VqgpJArnnssK2s5M2WRGbE+X005egSQX1imMtzfyXWUPKgNb1RNcwCIDhEFetFqm+SEcW22u8XQviJc9CMiAlDk/XQuePtpvHVi7VJnI0q9khp+iBjPYjT7O68JzFgjF9Mmg5wyGKyYCwhBhn7mZhWWQuHDkXBAGsQEONOdfTeTs3GRaG8AJ6bUXBL7Z2cZjV3noXc8YALd1GY84Ajh4FANwUPIoHT9Oy7PSgVtV8thdQmFmtGgoZUyWY1efOFarkzAyrN8aspsBJS3NgaGNjnYHVeeCf52HgG6jXCtwPggaL7tAnh34R9isvyYaU5FgpGZAMwGMKZrUqhZNlFaZhvOVUBoVBBLmETm1uOf0UCcFYGirnUDq0pILMaj9XxotFrFktClZnrbXstyphAgjky4CUZWyrSrbfQmlwPW+8ApRZXb0MSGnNap7Boudh4OujMou8EASTrJ5P9nGGEcsVHVQv49OXj+OWg2PePKyCJweoLZXEpnvZrOkw9oYomHAnyZVspm6p5J0IYB+WM1jMS7L5kVwqGcRLtjp2BEMuCFbHc1fOa5h5XoF7jC8DUlJiRg7h5RhiltnLCsmADGUxzepatTIgnkfA6jLM6m6XHOdGwGoq7dhspK6hYOUGi8uXgde8Bvj4x1MPUla7oitxm23NRndLcA4NQ2B1FXjf+4Df+i0c3Bfg/BrFMMb2xzy8pDSzehesriR2werrJYIAXUtD23CA224jjz38MPm72SR/UxkQx4GQqH0wsIl+XnqDa1l40dLT6OgWqZkABat9LTEzyghv6EGTA3Sao8zqljLE0+cUvGDxDOpjxnKqFCLIA6vzmNVZwYDlPGkJuuL/t+/6JBHdp8D8vN7HBz4A/OHHj2Fl2Mae5Shpk6d3CcqsLsikq6kurGE+sF64DKkgs7rTAV7ykrHS7PSG3TSJ5rCtCxsmZIXvg1wjRUlKXTkl1J4d7NRWXlggf2wbR1rr2NvqJ5tVynwc5rH2AXg9G7ockMoEClbroUPuIaZZvZgCq0V0/qIIvu1jyezh8F2d0efSWl4s2AEn77rmyeFkBQOo8jSrfRQvn1RV6ErGpjkVw0FKWzgGq0Og2yWaYUtjB2u2ucnbkEURbFsiJc9VyICUPUSLMqtLSGuoObqEAMoxq9mhLNNQqwQ4kcdIoYmusgaLeYcnywYBKAswq0WSK3H7FlHVYMsrgBSzOoz7WFM9DN2c+9H3i5cRM0CVU/rvr21h1hhiT4euye020G7jmHEB/+/n9+ANN3x59Pqww36W/i+QgBaCa5ek0bmwBFh9/jx3OyEUVj/YKQl0/Dhamg19YWb0xYpCx0GOLn5aBkQ0qD4nTxbJHgTiJni8JBtYeXZxsDovGeaHCpQpEldZxo1lja8yy95Bhp0ql6gIYVrQFcuAxHuDHHDCsgrMXXSddQV8HGxHKmawmAVUTsGABug6k2OwWI5ZnW+qRtjKxQFFJc+8k1VWViwD4kflEsOGKeUzq30fA89AwygAiKgqJAChm/+eYS9IKtmaTaDRwIHmJtxQwy037PQLEpIBKTEX5DKrAzk5UxRpNk+zuiwAzOYtHmBfhlnNkwEp6RGSJ8VYllmtKxwJo4LJcUBQBqQUWJ0jNzWtZnUes9pS0NRsvgxIXancYLEsWJ2WAUmD1T3PGJGvj0knghvvy5eBH/5h4L3vJfgya3ekwoX6z/S6gqaNT59JSJarqzjUfRinVxo7DeVZJYCVA1YXNUun8Uzwdnk2xC5Yfb1Ev4+uZ6I9qxDdMEVJqEmNBvlbUWDoEdncCtwYVj/YWU5fr+OepdO4YbEfb9gJWK3zmdUUrP7of7mf7JkpWN2W+7iwquPr9z+OhT1jbC85X6agFEjH2Gl5bF1qdhQzpylYvaht4gtfAC5tmrhitbG8lDDpRNh5sSt1Uc1qO19Hc6QURiQKGiy228ArXwl87GOpJxiz2iAA60zDR9c1p1swoyhhVqtqwnrkSNfEMiDjhzGqoXekScFqFgxA4JTQej07YVZT1khH7uJ97wMC28NVu4mFTuoaisiAdLvwfeBfv+BTuP3FzdzPH2kz7xKUBKt5lQvEmKYgO02kxA8pfc4Us1qJPPjbAwCA1Bq7NiKZ+DCEE6gwVUGAXVHyD2TMVKxqZnXZEnUOmASgWhkQpstYBqymDKJMpk+oQClTlqqqMBQv8/A0tOTCBosibGUWlgW8+c3AX/5l6sEggOXrqJlJ8rKmuLDykmFMRqnIEKCSQLk+DgD89W3MGkPsXUyNv4MHYao+Xnf4fvzQbZ/ASOkCj+2FlIRDgUQrAG6VyXgEAdEnrAysVr1R3dQf/VG0vu0bYcw1Rl8sSTD0iGi/5jAUh75ejFktKItUCKxmJfp5BotlZUCygBSmWV0GqOQk2cqDCDk6tWyvVXSOlWUKAis7y/+nAasVhSurUIhZLUnQNL5pI6IItivDVAsASllr7ZRgdXwwz2JWlwarqzfBU5ks2aSgmtWVGyyWvAbEYDGHWe37hFldK5Fk45wRrEFI5ljTJImhPXtwsLGJlmZh34Gx+4RXwVNWrkImYHQms7oM6QLI96CZcmwFAYepW4JZnTkfTjG2citNQI79huKVkwHh+EOw1wo3m8eEpyzcayED4kdycbDayEmE0OhbipDBolrTyLxaIbN6bg4YDIq/lzGrl5dToDKVARlnVov6ZgEErL71VuD7vx/4wAeSdoMxsLpVgFntbA7JnovGwf5jeOTSLNq6NTruBMh9notdg8WvYOyC1ddL9HpEh3KGGCkyKRAAMWAHkAycE/BZ0AAw6FKwOs2s/r7vw4Hn78H7/yFxp9fqGpl0OWC1O/ShKz7ml+kk0GwCsoy21IeCAP/h+X+Fl3916oZl2XIBZrVqlgGr80ueo0hKJp5WC5BlLCqb+MJ9ES5t1rFmN7G4PGawmAfQRRFlDRcz1OJqVjOWRxF2uWBpMkD0lbUPfgDHDjg4dy79BHPiJZ/baMnoe+Z0KEO8AaSMKCYDwjNYdDIO5ocPAwBeuuckblu+mjzO5BQ4OArRrKZg9eIiMZLU1vGzPxPiH77QRBRJkI1RhiIPRECvhyCS8c3Pu4x6Q2DjFI8VAWZ1vYQ+aZ5mdRljGioDwmVWD1MssnodUBS01SE2zvUJCybOFCXtSkD+os507sb1aHP6mgd8TmN2AyCXWV1K+/QaaVYrqjR540wNtcqW/pOy1Ml9jQDIajmGoi4HmQksy5aKaVazhBinKiZu3yKed3/1VylCI2NW1xKwuq66AszqguAfreBx8vTrkciA7N2Xur7UwPUvvuGd6BgWcODASLt5LFUgNccWWLsAFAarV1bIYSm9jEQR8Hd/V6gZAGN6qiw0Da397YmKCDFDMWvyomB1ozH56YnBOeyzIGC1oAwIvbZZUjikq1Fxg0UGeGQYuJbS70+3mwGklAIqOcCXH0jk+5cxQ1QjuJOSFmXlmwChRLZlS4USbbpJdbDzFlu6Jpp6ARmELGZ1QEB8XSvJrDaUfIPFkmA1l01ZojJKlQMEWfNhGYIIbRfgaLeXWGtlXUWYV9HneYRZXUQGhFUccfbe1iBETUnNsXv2YF9jC9994+cgzezcw/H0mv2opFRDVpKNmkSrUvEqi1hjPS+5UGZs5RnDRlHpscU1tC7NrPYzq1tLM6uZhFFWVQj7MQsMBjFmdZl1JsyWW2IgeMHEVa5kCQ3CrObLgEiGTvCKCpnVnQ45oxWN7maA1pWnIG2kBK+pDMg4s1pX/Fy2cjquXiVH8L17CYGOtTtusNjWbXS7Yn3trTloaQ5w7BgA4ODgcfyvRw/huQvndxjD8vASz5emkwEpUYG4G0nsgtXXS/R65G82G9xzT/Lcq18d/5NoG6lCgpDDXoC6MnbQO3EC+LEfG2Vlsed5zGqmK8xOibIMtNto6zbmDcp6nUmV5rINYyjArC4C0rFy3zxpCTbps4OjLAOzs1gw+3jiSQlrfYMsUDVtpM3c8mw6sWpqAWdyxtDjgNUjE7Zgu6IyIFi7CnzsY1j61F9gZSX1+FgJjlwzCAA3JVjtRynTEl0XlgHJY1b/4G2fxItuTq1gDJzJS4QA8PopsFqSgEOH8O6veS/+8GfP4od+6zi+4cBjoxsJulDlgQjxolRAt5w0WrEMiERY05kGMmyTX1TrjzJyeJI4I9rCkgTMzmJGs3DygQGWaj2M7mwgpqHoebB9DaYueIBgwGeWgecUQAqAa2KwmFVOHwVTMKuzGERTaIkm+toTnptCXzseXxlzgmVLhOlVWAZEnFk9N7ezzNHytYRZzZKMeaAyS/YVZFbrss81VfMtD4ebG7j9ttQ1SiWtUaslpsFAAiLkgdVsji3KrC7IGDl3jhSxpNc8xwF+4icKNQOAACmTzFZbrcnyvSIMxbLMai5YzXSFBZnVOqcs1Wea1aLSD0AKSMmW7plGszqr3bKSCjxmdRmdWgCUsTxZFglAqTZFZECGtkwSbYL3mG4IsLJ8n6yJWjG5IfbekWDEiLLM6iwWWQymFW9X0wA/ypEBicpVRuXJSpT2XFAUyFKE0KvWYDGutMhlVhto1EtUhHDApBFmNQDccgs0OcTvfNX7d0qxsQqerOE6BatYyQGr4+qwgvetrOQwq8tqVvMMFqdgAOdXspXQwabtankyIA6Ka1bLMnQ1JIm2SWcPIBnLBfaImZUbQAqsLsmszvq9fB8RUp4Eos3qSn6CCUDfVtESkAGJ13hhQ7L88DwCxZRiVj90Bu0n7gN+5mcAROTYygwW00c6ti8SqO4GyDBRFLJ3i8FotodmiQJdR1uzhMHq7rpHWNT79wOtFvbgCv7LC/8Cv/KCD8aV1CN9zcJLogiuJ+2UDxEIzZDhRbvM6mljF6y+XqJPwV42G9xxB/CqVwH/4l/EEhYAcY11Q0VoUhv2QzQ0h2/Kwp7naVZb/k5Acf9+tDQb8wpNlaXBalWFIkXw88BqplldkFEqYrAoSdHoItHpYLHWg2mEmDVt8jzb1ItoVlON0kIbZ0WBqXr5l7aM2QtzkhfJatJJdOHxe7G2Fo087qU/l21MpwGrY0CfbmBiGZD8t3lZB/NDh5IN6pvfnDwemwtywOqBC132EymdI0cgSxFesedRXFgz8dab792h/arzkgClweqc15TRTZMkvoFMJBMzpYJgtSYHcDnGTzEDlv1mc3No6zaeOiVhudZNtPZZaBq5BJyDuROqMA3BAwTPbLXsYZejKRsGEZQy5l+x2cvOp8qWugI55ZNlD2Ssr1KGMc0U+trQNBg5ycahXVAGJGZWi/XFtsmSd+utwBNP0AepwWIMYmoa8RrwcvrA5s8iY0tEGgvEUOrFS6fxcz+akj66/fbk3+HYPR3r12e36TkhdMUvNG9xq0wmxLlzJCeeXkZcF9jcLNQMgJSJ6xho8oIXAN/7vTtfb5hSPlPVdeGWqGLSRcDqYUjAakG94prqwhpkHPRpFVdhpk8e8zGKiHRPaWZ1MFlWoWxCkGOw6AdSORkQALoWZYKq7LMLh4DOeDx3Cf5mqqHwWVm+DzsokMAFsvVEyyYWaKh6Ruk7k5sqwfwUkQEpx37N0ayexgiQYzRalv0KgG+wWEQGhPnFcJjVMemAnQOf//yksveGG0ZfzNNrpnNMaYPFSZ4L6WrNghEDkHmGmCUSIWpeVWcYIoyk4lVnedc2vr/KyYBkaviDyYAUBKvBEoL5Ouvs84W7qmVUCALl5y5eNQD7rKIDgVd5FkXoO6oQsxq6TvZaFTKrm81y2HfvyhBtnWzeGmGPkA58H26gQq+l1s0CUqS+n1yudjvhZiZSpGOa1b2JzeyI7maAtmaTyt7DhyFLEX7g1k9BadVHz5+8SnR2/lZROCGWm2DZDeHYBauvk3DWeuQgycBqWQbe8AbgRS8aed3MDLDl1IUAxWF/MitpR5gmYYzwmNWWT4CvdHvf/u1oN0PMmxnMaukaMKvp4sMzk4oiaRT8XF7GgtnH4YUhlhs9zBmDZBFhoFce4MEY0EUyuzE7kWOwGMlQjGJuzCIyIIHjQ5HIZ6tyiGCY+o19H056AaK/a2RPkd1lbG22pmkakQHhrMGZ+pymCfzIjwA/+qMgTpk0GDgjAFbHzGoglhUxL57CI7/1MZyYWd3BrDYUD/aQb95ZRLccAKI8ZjU78BfciGlqxGUilHE71+UAHo9ZbY2VPM/PY0a38OTWMpZrvYkyIACEWGRFZEB0OacUrWzpoKLkGm3G5l9lmdUT5gPPLw/OZB74KzBYnDgOpjQq03MSDJYjk7LkoprVPt+ojIUkkekkDVYP05rVikJkQDw1t8zVL+pOH8sXCXgjyGPJO01LAOs77hh9A8/4CoDrRMWYI6qA2eyEOHOGXNv0FsXzgK2tQs0AoGD1uGY1SP7+Oc/Z+XpdR75RGd0XSHqx/YaQZrUVEWNYQRkQM2+dSSdCCiYaMwFgpg9ZBkyLK0IqZlbnmar5U8iAaFQGZILBIIDS8xaAfINFp1iiTdIE18QSYLUxqXqFHcqLgok0rokMSB5ANVUiJJ9ZXVaqIdMbgCbGCxnusuDtjZjBYkFmta743DNCbArKznWSBPzgDwJvfztwyy072hSRASlzXTMlI2OTzXJ7GADZGshl/DwUhZCwssgc01bdTRpbUQSvLLOarV9ZMiCuVAqs1vV8g8HQ9YnsXxEZkDz9Xza2yjDWpSBbBqQEA3zk9VnrQRCg7xpoGh5/LLA9Q4Wa1bperoCIAMCkLK4jdQnJYFLiQVWhSWJg9fo6sLBA/t1u72RWK/qYZnVPrOPdDZ8A6/U6cPRo8sTy8ugL2Zk2ay6kFUd6keolGjFYvSsDMlXsgtXXSXRXbczo1s7S+bFYnnWxYrWFboxBP0Jd9cSZ1UVlQABgcRHtl9yOeYPWm4yB1QqPRea6RPvULFbqmuv0DUwGFO+5B4tmH4e1i9hX38KeWjdZJBSFgKo8sLroYS82PMoHq4HUwUWwXRGwenBuHQ11FKBO67S6gQqjQT9X12EqHpz+FJNuXBo/LgOS/7ZMzWqAbJizNs1B/hTnDogpaMysptpWOHkSh4yVuI/pdk3Fhz24RszqLOCrpNM1j4lQSpOvCLM6LdcwP4+2buGp7hKRARlnVouA1Z5XmFmtyhlMJ6C84Q8HmCht/pVjWui50XTM6knjoKzjPZACqyc8Nw1DkTG+Ju3LwxBDV0Vd88TbVhRSkhqohdgN42C15esJJirLqKk+MR7OA6uLsvYZmJiXwAUZCxP1ir//+0kS+9u+bXK7HGa1JhWTASnDrD51imDpaRkQ1yVsmkK4dxRRZrVAwp0G0azWsvdHvj9aUSUSbK3lLIuEWS2oWU33BYGbcW1ZYrxERUgmADxNlYUsZ+t+lly7eNVR8RxbVgYkj1ld0mAx7lhGDB0iH1RYaidvcAUBAatF10TarjnJ2HtKsFpSlcnVUWVNNsESrXmmaiVMQekZIZPQwqQayt5fGZrwXlFZKBYCYLUVaOM5O26bIsxqy8LO6hVJIlKR4/deXMHDMRcsc12zCEjsusrl9jCsXzuC+XmUYVbnVTFNAVarcsYcy/byZe5bBtRlVAbZTjmwOp5jM+YuooVdzLhR0WQEvCqLEusMkQHhaGsXHQi85CXVeW7UBPZPFYPVrltMPSwd3c0ALcqs7qh9QjKYBOgX8M3qdoF2tAW8971oXXgsAauDgOA/uhq32dJs9AZi905vOyQyK7XaKHshLXML8PGSNLO6YGimsmuwWEHsgtXXSXTXXFLOwAGrzbqcbyCUih3lXVlBn48sjgwIAxTHZsHWHUcwf+sSOUSnJ3yagQ7CHMYb+x5FdRnlIBugAil/3HEoPXECt9wc4a3H/wH7lBUs17sjMiA6D6BjbKeCzGrC8Mh5TQkjCtGFov/0VVKGRGPWsJJybHbt2QKk62jrNrbXp5h0Y0ZYAlZzjSvBwJkC+pwM9OOA1bF0DQOrZ2dJ1tVxgM98hjxG2dYAYsabY1XIrJYkQJbJeMzSd2MbsYKO1DwDmfLMar4G8HDcTGpuDnfOXcTfXbiF3FsTwGoJQOhwSp59DYYpeI9pGgHpshJXZXVaOUCd55XUU81hzxA2bUmwWpfJgT8DRCgFUMUsqskHSAClGYoTWX8A4HmwAh21ImZiEDDWSwVrdhKzul5PXsd1+WbmMEWAFCatEuSzwGOgblKlyateNbFqIbc8G/QAU1AGRJFC+E4xsPrkSUIAH5cBASCsRcjeNPR11AzxCgYRg0UA1wastiGuWZ1nhEj76UdTAMAZRoiFk+0j7WZrYZcGq3NAHz+UyZ6gjAyIPrlEPfRDwvYrOW/l6goDsFylkAxIprZ0OjyPGiwWSDqrKmoKlZ9LzzPsUF4SyMgE7KdlVnP2MFqJ9ZvHrC6rWZ3LrE5L4BXsLwCupEIM6gi2madVDIAkBB1KOuCdE2mbZH7JWJuZDEiJKotcZnVUnlkdRdLkfTdLhFStWT0NWJ01H05rsKj4mTgokQEpBioDRG8/TwbEsSOSvC3Sbl5yoWT1afJ7ZRssAigvA5I1EFyXJhkF2tLLGSx+8YvEKHw8PMohEiw0HInudkSwKACzSpeA1ZOuUQEZkG4XaK2eBj7zGbT/9PfR2/LjjkaRlFzLrIqgvL7qFgGr9+1Lnhj/LVlfs/ZbUyRxY2b1Llg9VeyC1ddJbG8EhFmdPi1PCl0nBM1xLboJMbQkwqrlsZIMgwCKHEata4dE/3esvRe9WMJrf/wEOUSnQ5IgKxJhYuSAdACKHUg45aMAENjezsO+JGHueTfgzUe/hAONLeyrb0+QAcnpB9OWLgJWxxsQPrO61AGax6y+sIkm03QCsFzrJiaL7NqzzzUMtDUb3c0ptJeCgGjr6QkATxjrfLB6osFiVjBwJsxxo6bt6spYuzffPNLOiHEZBdJsq/rfC0D2glZyIxZrFWeVzZUpn1RV6EoAjyNVEJc8pzSr33jDl3D3/AUcWrB2btapezRPD9wONFEiZTIXZAFqU2xwAWT+Xn5AS9SLAimaRsDKCSyX2I26YmZ1aUOtPBmQaTSraTJkYgJr3OhQMIyaDGdS2f+kiCLgz/8c7VNfxtYW8IlPINasTjPXuCX6ZcA/SUqYhFlrIgDfj7IrTSYFrzwbqWSzaIcVBQ3VxcAq9htvbpJzw7gMCHtOOByHjIUCbEKuBjB7vKAOtC5na36yKGSwyECvrHmLlqWqRQ9Peaw/qtNbSrOarbc5jNLKDRa98pUmWSXq0/gCxHJeWWK1UUSY1UoBsJpJ7fCY1X5BZrUsw1TJXDqyJsSH8nKa1ZlswmnAahW5MiClEix5RqOpdksngzLug9LJIAGWZhRJ5eatvDNCEGDo6ajrvtg9weatrC0cIweUNBec+PXLki5ou6xfk9otVXUWX4NsGRBJiorPMUwirOpEo5pvEOy4UnGDRfDNYePkbUGwOpMkQtevsgmmTBmQsntZjlQgq8QWWhfpJuf/Y+/Pg23Z7rtO8Jtz5h7OcMc3T9KTLdmSLEtGtrEtY4XBZUDF4HZB0w4bUy6qu6MKKNu0HQW0C6q6mKEg6KKhKLo6gDDNFBDuCgzYBhuwMMaWZcuy9aSn4Q333fkMe++cM/uPtVbu3JlrZe71W3n87kPnF/Hi3XvuuXny5s5cudZ3fX+fb73SS0T8kR8BfviH+18nO6vrGucrNMzqI5zg4UPhki921zsazurzkxLL4gEAYOGlOBcaQ1eD4GvEfTX7szMwYV1MEr/ne5gZ7Vu+Zfcb93VWE8TqfYI2L2u8LsXqt0idnVtsgBgbYTiAfnUy/mBsNthvxzwIWNjPaviYzWK3c7y3vQ34+q9X/KU9RDoAei8KdyTpG0CRlnBsiTONB4Z85zt+Gv/nd/2r7fXmrOK0GDgP4aSb2llNET+bncLhidbqzgZzNwPe8Q4AwE3vQSNWV3kJ26p3nNWHfozTE8KkUFRRYJWHWITbtiHfLoeDK6tqu4jcdyVtWbAcu/n7qspziejT5r0+/ngvYHGQJcoOyv5PEatVi5GqQlnbcDRxFZ43vNCjOqsZBmTMWe3ssoWvXoVlAf/8N/9FfO1XbJTHHdyJ5xz1vcVqgT8YWpQS21IBtTBBFj3EeCBZ7BYlXax2PO6sljBaSSgYYD8MiImzWjYh5W7aWah3vrbv7u9MOT0F/sW/AP7qX8Uf+oM1/vP/HFJnNVx3OBCU6PrzfL6xMDC5bZjVGi7o0YDFrIavI1a7LuZeivVm/zEpTdkrNQzlzmotbnWSaLe+NxsMUzqrRZjxyIarlrN6SPzl50nCF405qylIhfZxp3RWi7FbJvrUNXdWE7pXwJ3VVd/113SvEAMWBzdGxRgSaJzzvjkOOhu4vCKf/b2dY5cl0srdPxOiWyrxzwQDMhQSLY6re8+6I7k24lkgiKrKtUfTxaR3SADjOBhZYPxYCeFnyKWY52xDMNjzfdt08KiFWjIGRDiru+YTgWwhzmGGxE/Sudo2XLtmWUyytUdVsbkIcW6omm+RMSAja7A0t/tC5B7l+ZZ0jBXVbN5qbrAoBWBTDIhqc4FimGt//8AG097dG4eHWHgp1vfi8e9t1cc+xv77gR8AfuZntl8XzmpvgIgmrbMznKUBDg7ZxtiRdYqTewXO1zYzvcmc1UPmI17nr55i6bIJoW3V23WVwLK1NIh98kGa467AMCBi4v6BDwB//I8DN27sfmMjrKtRMGQ81j7dUZc1Wpdi9VukTs9t5qweE5Y9DzejM7xxd/yjjVOLiUlji6cwROTkiM8HBp26VmJABmsPkQ6A3ot9jzCpIimYs7p7rhzCHzgFouuLXWa1XSAtRpzVNQUDMiwiXKSzerVmO5miReaGdRd37vA/29hsoBefke/jwI9xdqq/kPnX/5rPMTmnaxltOWD7ONabF4VmmBSAwZdElll9sfrLvxz48IfZrzsBpoL1OCkGBNgrjAPAVoDfs1xvwN1ADZCxbfgO45kPbQRsMnfXWX31KnDzJtzHr8P6P/2e/l8Qos9QWyp3Vu+NARFYBdVz0Ag0+x2uqRGmbBOGSHTPSJnVOZGDDeYolQqgzYKMIE7wz0slfAGgiT5Dbal5zgRKTWf1XqIPgHyTw12dNL//vR+5j6MjtnGXlS68sPXv2ePdRdkIadreVeda18gLG64OX9rzRp3VWQaas1pDrP7c54Dnn0gQru/3mNWAplidprsc8X3K8wZRDc28QPNdGzjFuFidsnnF3mL1EL6ocWXtf5oAtq4/xTNbtsOPdWoIt2QasCg7V8GTtYnMat9CVvY378j4JmDUoci4wlys3vtE+f06pChQAhYBhF7FxOr2sYtC/5lql2qcNcAU7BWwSBConKGsGB42arsUVMMQE57YxSRc+/kwBkR/jVCNi9Wlv//7dqyDR3TzaeLsYFlwbLZB1ROr+caVNgoGGHdWU7sBnBpFrd5g2fnZ+9aQa108XwYBiyoEQhOwqPmQ7eWs1uH3A/thQHTvrWYjBPIuXKqzegQViCzb/3wPD3Hkb3ByeyTcqVOf/SyLCfubfxPbjmlsndWz2W52yGg9eICzLMLy8QVwdITjYIOHr8dcK0h3P0sxjx9h4gPA+asnTGsQVbJ7phGtxXGH8mxkx13ZjK899kIbe3e3NQjd2nPtcVnDRWkauaw3oc7WDktg3cNZ/Vh0hjduH+DFoe+rKqSFg0M/GR+EubN6MFSuZFgAz9Xc3d9TpNPGgNglykI9SJZZKQ+ounJla/v6nb9zu2hxHCbQDYnVwlmt04Y0tCATRWxN3sdZvV6BoWCuXwdcFzftu7j9Wg7Aw+nGY7wn8XODAIcaYvXpKfv/YgF85CPAK68A86LAeR5isdi+hAInH3bp8pe69kSs/ZJQbPLkOeAFnfvAsoBv/3YmWF+50jtm4BQ7rkDpQQGaWD3WYaA5wW0ctVM6q9Fpo5aNSWWJOHcRea32UccBfuiH2PWViQHinh3aiS8KJOUMYbS/M82zSxQqJnpVIa88eJ4m2kaEw6al9CXaYEB0J7iexxywMmd1QRdS/FDBTeP3wILYPupaJTYyHcUEA8InpFIMSJ4zd2J0MWL15tYpIru1IHjpJRwcXMNqw/4dVlvJcxzGt1UJSZx5GWg+X7Zro1SJM/znNe+Zfe+FsfZstFBLGs7qmZthnew/Jr386QovfPbHEf3ZH0WS/EWAXcHmEmqJ1VmGB+kch4vT/f+OGJMVn1m8rtgCWtNZ7TvFKMoqSSzG/twXA2JVKFS5G032g/47UTnfaFrJCZivkS4LIwyIilNb2bRQNQw4q/Naf7Oidb6D7y8+du3tUgU0nNXu/u9EXqFfMgxIR6xOdDqXujXgrC4qAlYD487qgjKHaQwtij/nopWlu3MzlJdjsjEsNsfzSr5op6wRPA++vR4WqwV2a9971mabqI2o3H0/8Q0x7U0AMAG4zPh7sT2vMMndEMcZYlZTNlhcbDnr3ZveAAPCxm7JPWnwfAkcjCqDpnFW62JA/JGAxRT6eJEhJzwP49M19DAnfIW8dJT3rPjZWrWHtrE3tuTwEEfBKzi5V+CpPX/8yQmLLnn3u4GPfpRdb1F5DnjIMJv52Gz6ESfKWq+xKQ4QHYdAbuPI3+DV2ynOa4eJzc7x9ns9D55d7eesfn3VEavZ38nSDl7E8/ZCromKY2B2mI2L1WOd6E2WwwXkDVzWXnXprH6L1OnKYc7qfcTq2Rlu3xsZWDnnLvAlg3O3goA5q1cDg06aXgj7lY4BqQfRGkVawpEtSiwL+K//a+C7v5u1jLTOk2FAxpzVRAzIELNaXBtNxzpbPI5gQNYWc1b7PnDlCo6DDU5usZfG2cZlvKeWWH3gJTjdMwTrL/0lRhf5n/4nxiJdrdA4qxfRVqz27XIYr5JlNH7gHi+JPAfjrMsmTFev9p8Nx2Fc5SHHOtEJb4E5OKVFbB20PYehCpTOEVrgD2vxGwiNEKJiF9dgDwhsrgvPGher09Ld31ntjgcp0ZmXame1CQZE6awu6YFiXmDLw26oIULAdoI35Kw2wYDkkpbfPKc5//ZsxYsfxIjclm3jU5/C0RFwcs6vefva78GoLWp9N+EoC1uHdSiq2RRV/50s5wGLOhgQN8Um2f8zvvtqipuzM4ROgWS9HRsyjvHVYlZnGf7dnefw/ucf7P93PG+QI5lsKtaarDN22zaCPTpN0szSw4DYFQrVe0YsdCnj1qAATA/pGnKUkuaGgq+tDFUjtv5D7fprNmyIHSFj3MtN4elttO3DrBbOah1mNYDIL/sYEFNntUqgoTqgcUHOan5vqXQkE07tsLPahkd5vvhGSBarkQIAtOecvlMMG1p0N4ctazQQEyAIigAcV527UdQOLbhyD6cuWaweuGdJGJChjJC6Rq7b1ds6WSVaoa65WJ3rY0BCZzBg8SKc1QBIc07Pw+g9q/1OGEKWAHrYksUCR0HCDGB7ip6f/CTwZV8GfMd3AL/n9+yK1dmnPgv/r/0VzOo11joYbH4QKwwaZ/XJ3Qznsct0hI6zem9m9Z2YYW45jtStCxQFsElsRG1UjOcx0+CeYnWSWizEcyzrbczcZ4CxuhSrp6lLsfotUmcbhz3M+2JAxsTqokBauQj3cRSGIWZuhs16YMKSJOQFCYDpndUjoYVFWqqZn297G8M/tEU112UYkHLMWa15DfZgiVI5mmwiOvxt69jeitXLJWNS32cnc5YwRvUuBiTB2fl+/77zc+CP/lHGywoC9ntwZ3WDAdkzuJKUUL+PWC1ERd3gxoFNgCbcVNNZ7VgVynTCTRtg+PlqnNV6hwTUAVVNZZk2T3avQI48Z63qwZ4nLRylqnZ6EyFlgIXdYEAIE1yVuG4S/qVMpDYJWBSu9aIvKldFxTyzFLHasjhmRuKmEwxNXTFlzwljfJIydM1iwb7w8Y/j8KDGyVmrO6B1zNDJ1R1HwvFFQMwMnqsI19Pp4BH31UAoak7BgHh6AYsPXk9w7G9YgGZLeMky1tyj46y++0aJmZthfqDxjI2wXxuxWtdF5tVIy4EAz7pGllv7bwbsMW4x4YvA6lXNN/jGFTlgcYxZrTvGWtb2nu1uWlHDgXn5gXyz1YhZvUcrcazrrPY82FaNKtuDWa3trK4RdzEgkiBZrVLNN0zF6gEhifQciM6ogU1sADSxWnVcA/Fz6/yT3ztlWrB8Gc3uS98u98CA6GG3GqFWEeoNgBYS7dQoZfeBwTx2PGCRiAEZ6gYwvbeU3G4CYx3gmxaKrpiyZOYQVx+3NIoBEULiVNk+FZ9zUjB5LpTYliovaXPZkVwbFMX+JizLwuGywkkWbVuWR+rsDDg+Br76q5mcseOsvn8O384xL06wkcQHKStNmbM9CIDjYxz5Gzy8V+HBysdxsJEHLI50dwPA+VnNnNXPPgsAWLobnJ8Dceaw+XhLrGb5IHt8FnmOJLcRenvcYwMmIQBAWSKr3Eux+k2sS7H6LVKnG39vZ/XN6Ay37488VUXBnNUj2jcAwGcD0cPzgYlQmiIrXfghbUAfZVZrsopZeIr6W8pUwaweOE9HhGbIuFbAbnv2vtWwRAf+fSYYkJEdyNXGZhgQzwMWCyZGPyyBusZZzMI6ewGL5/tNBjYb4P3vB/7H/5GF765WAMqSOatn/HP1PIYBKS8YA6I6dG73mdVDNZT2zqvKCrlrf+RcXbtUi9VlSWsdHOpc4MnslMm472PQNUHCNQinz5BYresgGttcoDoUXR7iKrsP6ppjQAg8VTHBkzmrCyJaBC2xWhawSFyQCReVbEFiJPoA8P0aqSycJ8+xKf1Ro0SvNMTqyMmBF19kqeGrFY7qhzhZ8b/fEatZ8PAQs5omKAIYZB2y9lHCpugIBkQ7YNFNsU73f3ge3M5xJVyzx6L178tzlnmjI1b/y48G+KYnflWv42iEAZxsKvb5a65KggDDnSa6i/6xcYuKFLAsuE6FQhb+VddsI9AACSQ1CJiI1SqHouiIIWJAVJ0m2iicdgnn40ArMfmdOIbGKggBi0GFpIsB4ZkQJhgQi5/TTpkELPoDKDPqhuCQAxowFBQVm9giI4QYYMruA/ncKEsqdYegqoYctaKE015HrBZCrUKsJrmKMSAommxcXaSzWpU7QcWANOOh6hrQAxaVAcHC1EbAHzi+IieFFxOrJ3RWG6DnXFdtvmlMIkTGuBQJBGzHrj3XtUdHNU7SGU5eXe31/avV1nMRBB1nNc8Xm9UbLbG6TlL2/AqxOohxclLjM3cP8LaDu7vzJh1n9YZjRG7eBAAs7TXOTqpt7pGYM/k+R9bscc3imL0X5+74nGusE/3SWf2m16VY/RYpJhzuIVb7PkuNjUceTh1nteviWrjCvbOBny3CAi4KA0JgVg8GLAoMyL4vSotNsKz2OfUOWrDWVF1m9UUGLI7saq7azurFgonRJ4wJdpaHOAjS7UAfBFh6Cc5W+/371mvWffO938s2TIWzekes5knUaeGqNwGoSbxjok9db53VGgKNa5VqliiAPCn1BHB+XMeqB510AKblphkwq73A3gsDouXQcoeDXgAARcGwJhruT+Z0GnAo6qJ7WseVYkB4+BeJL+2qA1dNnNV24LHrpgq+okzCwNPEJSJ4kdfkcwWAwKuZmNQVFQ2c1dJ/f6fi0wyRm7OBi2Ogjjav4+HK200lBwDH4TiLAbGaiJjB0LnyTVFv3+4CfsyxTdEsl4TNjhxz7qVazOoHd0tcCfjqqDUmZRlbp+iI1V94zcWLh3e0xWpAHVSWxLU+sxrsFNIuUqFdfL4V+JpBZUPO6prArLYsuA7k4h/fvKS685QM4KpCDZA5tdJzNXh3AS3XX3fcKkAOsd3LWV1qYkA4o1OJfwAY0k8ndJhX6Fd9DEjJONbRjHAPAOqx61HDgDQuVcWfU8Vq2x5kwpOd1UJYVrigs7jUD8HjrOIxDEhc6t0PgwHBBs5qp82B7hyTfF1HAxZpm3eOo3bq1qUBrsKtBzvkSGO34ADL5gZFgbT09n9vtWoMZ5Zk9rRitUGot+fWyu6NPAfNJLIHFkonEPLo2Mar62P8J99xba/vX62A+Zz9uitW5ykzJsyqcy2xOjnPGSaPi9XXwhVu33fx0u0lXjy8zdIcRe2pQQBcrPYT4LHHAAAHOMf5Sck2d/18u44Sm7dD5j5RWcY2Xmd7XN9GrB7KNnK0pprtYwO4FKsN61KsfitUXeM02dNZ3UxARo6p46wWYvVqwG7RTBqnDb4iteA4DhP+hjons4q9gHRGnz1FBO32bGu4PZuKAdnHWb2OmeAA12XOai/GGReVz7IIB2HrRvJ9FrQ5FC7Yqs1m+7JcLDoYkPl2whZ4FWuhVonVdc1Tuff7uU2Jz2sgAK1Z6OwrKg4tynkVSaFGzAycK9uFH8HhUJ3VA+FEFKeP5w+3+ImWZy0HrFiQxXs4q3U3F1QTJpPF7hCbsiZyoB0HnlhEt5+HukZeEtEigHqcFc8AUfRpxOquQ1FgUIhidYNVkDmrCx/RXH8TwEIL0aMoJlZnbODiLYlH1QO88cDvO249b9g5Q2UA74EBKWrCe8YumaNWVnXNQnd0HESOg7lmwOKD+zWOAw5JLHbF6uvX9ZjVaczdhJQsh3iAo0lxVvs1w9YMfGZai37hhB/sCKF1xbgDog8prI4fVDnfoKDcxGFVwldzrtNiQKZxVg8xq2kbuJnCUSuOW9UWbF/vnKNQggERTlqqWK0yCFDd9cC2e2cA1UDtjFJ2XxqYA5wRZrURBkQhfDFnteZ9K/ivI87qjeY8bmxzgeQqBuA6kAcPiw7BqZ3V4rgm6BqFU5c6N3JVbGU+56Q8X7AseE7Fulu7RiyREUMQq8eQW02GA0WsVnSKAqBfV4ULvJkXERnjyg1n8Q7f8zM7uubgFx88idVqv89i2FnN3nOz4lyLWX12UrFu6zAEjo+x8FLE6wqffPAYXrx5LndW7yFWn8Uull4KHB0x3Ki7wdntmL0v24ZK32fvw33Eap0uobGuqLJETpxvjT0Hl7VfXYrVb4UqCpxlIQ6iYnzAFA/z2HOhE8oixOr1wCxbTEYJ7Djx92WVF5Z+Cw5f6JUDzOoyK/VT38eQJZxBpe+sVjgxeFVpznh0FGf1GAYkdrBwO87qMzYZOs0iHEStA/hMsEnS/V6uwlkNAMtlJ2Bxtn2B267NXI9jorLuvSWu10A7vfZu6RhLFJyHruPa58d1rAqFqt1XCJdTMqu5A5iSTu/4DqqBFj9kmfYiZy/GWZ6zzSsdsXosYJGImHGsCkWqcuQ48Jw9ula6xVs9ewJw+xnQdWvz8wXQ/7zqmp4iD9GibcsdigbOat+rkSkwIGVtwws1V/zckTEo+gCIz3ImSs9mwJUrAIDD6iFu3fOYiL1cbr9ZbFjI7gGALk7ssSmaV87+3HZ+zMFN0apCVjF25d6fGQED8vAEUmd1ngMvvAB89rN7HwppUjE3oaazOnDUTtUkrvU5muDOatn9Kkp30b/HuGUW/iV35xWVDcejhaIqu9lMOLUjrf9UDIgfWn0MSBvfRAyGZYLiCLNaA6nAXI8jrdRFwQRAzZshDOo+BoS7/bTGlnY5Diyr7gdFXxQGxMhZPYBFMglYHGBWU8XPMTGl2bgjrBEGxeo81wu0xsVhQBxXwS5v5rHahwQchzHhZSYRwzFWKqyDuKYVx3UUoio/V0e30wZgGSFuJd8QEu8tzfBWAKOh1klqsfe35jrJtmp5R6PJe2ZgQ6zpEiRhQCrkqvmhLgbkqotffPAEkmS/7x8SqxnyrcA8fzicRdap89MKB17CJjxHRwCAdx98Ab9w/ynceKLzOeo4q2OPYUDCEDg4YB3ct9bcWd26f/j7MCv2ZFaX7n5ZDuJcVSK4wWbraIf3Ze1Vl2L1W6GyDKdZhMPFHjf7PrvlQOsltMfP52L1/c0ezmqqi0zxIJNa38VCb8RZ7ei6X8cGHYqI4A4k3ovDJgRhfU+xep3yFF/OrA6cgjmn8xxnWYjDqPWG832ETo443e+zaDurl8uOs7ql+YxeV2rL75joUxTISnfvNiwAWyf8wEZIznlguo4/x6oH+WYASBMmKUOSH5PqztvH/ZlVDrxQ71nw7Gp0YV4DmozxAYeiEQZE4aoV9yuVp+rxNv2OiEB2PQKjzmrSQg8th70KA0JkVgd+LcfM5Dlb7Oqu+F0ekDvk2gcQnxcMAxJFLJ0GwFFxDy+9sWQi68HBzjFdu1SL1eLa6n5mLk+RH3jPFLoBi7bN295teQcLBbXkMp6gFrP61Nk6qzsYkKtX2amdn+93rCytWWDhXpOY7Tn7A/cB2VkdQI6tEVWWyHQ2RvcJWKxt0kbjkLOazKxub4ZIwhDF90x5roz/S3NWe77d3wxrukwIWQP8ZAfnXPzdZQeaqIaBzRVxXPG9OsWc1f7uNeDCt0VKq4OatU5FIgHbc1F2hxEE4OY8FX9uyKyWDt2GGJChMMQsrfUxIAIxM8R/5feG5e9/3DFnNQDyxpXSWU0NiR7rkLuAUNAir9lGPmGMUXY08k0ACmoJYLeN9P3VbLISDjqyRqBiQLyBTdGaf49uea4CjYXW5gLRWa3cvCxLlLUNx9/vfI+u2vjkyeNIMw2x+tZLwA/8AIL//R9txeqybJBvMyvB5sGerdJgzuqll7AJz8EBYNv46psv49nlfVjHR7vfzOdao8ZJAOeptz3ucomr4Qr3XokZNqsnVu+JAeGbw1pi9UDAokkQvQUMhyRf1mhditVvhdJxKYqHeWyA4Jy7fZ3VV8M17q0HTqARq6cVFEkOPeFSHcOATO2sFmFtOsKXENaH1iJpqd+aOrZTyGuVugwDwsVqywKsuuTM6ggHs9aJBQFCN0ey58uy7axeLDoBi/PWfTImfF4QYkZsLmiJ1U3A4jAP3dVlVgtxYsClCYA0YaqBEWa13iEBjF9bvlums8jZx1ndYBy0MCDjDkXKYtex6uF2X6KwLA0tbCZLNHFG2YpGHbd5qRZPeW7AfgVr05cygClIJGAr+myGJ4yb8xKRwzEg8zngeTiyTvDTrz6Fdx3f2lpV+DFdVcgmwJyaNcGNsScGRGsjaCisjv+svHLgexr3l+Ng7mXYZPu/l/IM8Gz2M6yqaHTNLGMf6dd+LfDTP73fsdIECHQxINxZnSby+50qVrP7dThwVttZPTSHaYQUAlZB3AcyZzVVrLbZeFeUkuBGw+ArZcCiwRjrh3Z/3BKdccSxcJ+Axbq2tFENjFW8BxpLc6wNQyDpClRlSdsMFKW6BuI9Q3Gm7ZO7QdhsdqxKbXYzEasHmNXkELwRl2IaV2zjTnONEDjFsPhF2BxunNWyRSg1KByKeRFgxq8Xa0XZO1yMMZQxdkCwJwf2QWzeya8B9boCrJNN6azWyVroniw/Rq/qGklus3wIzXvWtSr5c2CEAVFvLpDnsq4LzxpGSwDYe2Pw8NhBXrlI9wkXBLA6LbD4lz8CPHyI4PXPbuc8mw2b6zklZm6Gzd39OSBn59YWA2LbwOEhPvT4S/jamy83TuummjFr5KBVhTj3MPP4vOvgAE/MTnHrFY4gCnbFaoYB2eOacXrAvobMQb3E5P01xi6/rL3qUqx+K1TKElitcI+nTjzMYwMaXzztxfMRGJB4rv6esmRtxLqC4hgGhPKiEOFnKvdrzRys2oLimIjAXR5ak5umHVH9dxq+9kVgQBKPYUC4WA0AKKsWeqZ1gCBgGJBsv2GjaBk9Gmc1D2zZ2e3cQ6xmDuC9fuz+xxVitaabcJAlipYTXnMS5liKwD4AdUGciI0w3sjp9O5IYJ248TTd5WOBP3la6TmIRCveIAZEE93THFdxH4jrSuSpel7dR2sUBe0Z2B60Oc5OmQhUaC3KVM5q4oF9H4wBLAlYBKAvpnjefs7qVbkNWLQs4MoVHPoxPnt+HV92o5927toDGBDxPiCMW5ZVD+KLCkKr/mB7dlkiKzXHAoEByTQ+i9a/KUDauH3ynH3mH/oQ8D3fA/wv/8v4obKsZtgSHWf1yH0QxyAFLAahJcfWiBJBVfu2049hQKiufbTuAxWzmooEUuFFjJnVFxCwGPKA4I5Qa8LvH51z5Tl7rrVD8Epkis0VAGRndRiCYUA6gj0A8iajMjDcpI16hCtM2my1bbgOe/dLA9MNmNVsviH5M822/50aEauzpGIbd5r31j5itfjevQ8r0GAK9BwAuqCo2mSrbH0zCz8P11YgIw26zhpRWeHUpaKGlKKqQfcKMIBdE85qzfBWdrK8Q0yBg0kKD6Gr3zXt2SVyGS6xqlgXKfE9o8KAkLEt/FyV73DNsfboKvu+JN/v+1evnGBhM+Ra4BRIhVFjs0FWsXObuRnW9+K9jgcAZ2fAgRdv51zHx3jX8S385V//wwNi9chzyUOwrDBgc+7lEo/PTnHrVs3F6tZn4jhwHKCsJZvi3crz/TuZxCbrmLOa8v7aB295WaN1KVa/FUowPfYRfjyPpaWOidUiQXyfdZ7j4NCPcZKG6hA8A4eiOB9ZkTEglmTCLIqLCI4Nbcf20LkyJ52mWO2OByzmKXeBazrI2E7h8LetMw9zL2uY1QBgVSWqrMCDdI6j+S6zOnRyxJnGS/vOHeCHfgiLT3+MidViN7mtuu2xCUCaNLou45ulw2K1H06MmBFCnebCwbUqJQakKms4lFCWvZjVeofcOe6YWE1hKKra5gAk65ItyrSc1aW63Ve0kBLbiFXsPBMhxXUlDiLBEjXFgKic1ZQ2TwBeYEsxICxBXXPDplVBACWzmv1gAgZkwFErKl5XmLnZtiXk+BhHPpvMv+uZ1e4374uYmToYloKbwkh7diP66J3n3ONitWpe0KqqAux6+3mGVoaYr5My/gr61m8F/vJfBj760fEfnyZA4OTTOqszizGrNT+0IABzVg9gQLSc1WMBi4auP5VDsahsOA4tXM9za+VxAVwABsTAWT1z+8zqsmQCiqeY343VRTirxQbuPs5qXQzIzGIYkM6mKIV/3ZRKoLhAZzUJ4wVs+b+K8RCAPqpBPLdKZzWRWS1a6gcwIDRndY40H5hTivtB11mtyjOZYuNK6azWPuQwY5yv58icdcU1KEp6+LQq0Jp8v4rj+pY8ILgs9YKB26WacwKNYzv0NQ0dQgCWOOHJhh5w9J7KCS/Wc0R+/Zizet9n4fAqu57H0X7YjtXrZwzxCS5Wr/nPW6/ZutcumNngfjKq+4o6X4E5q8Wc6+rV7R92xWqhQYx1+QvHgnBOHhzgidkJXr/tsIDF9j1itbo8xg6ss9EmznUg04WaubDFwVw6q03qUqx+K1SWsQnDPouyfdNSxctiH2e1xVhYgxxNaoAKZ+qqeD4N30vTWe3YAwJwnnPH27QucDMMyICz2gADkg1NRKsKq9xnYrXjNGL10t1gdVrilfUxnrqy2X6/7yNy8713dgEAf+7PAbduYflvf7QJWBTn1z5XAGrh0wADMpjGLLjK2hiQYWc1FQPiDLg0GQ6H0IommNVDvEcDDtekzuo9dqDTpNZzPop7YKCd3qSNWMouN2xR93yLORQ7rr+iJjwDogaY1QUla6B1rnJmdaU/brfK9yHFKpQJIWwWAByHBeuNBSxuaoaBEGL1lSs48jdwrRIvPtvpZxzDgAin6sQ5DgID4mqGTA65vZrOKB3MjGVh7hdYF/64ywXA2WmNQ3f7PonsBEnM7meBAXFd4Ou+br+gxSwDfEI2wFDQZpJYZAyIlLEuir9r/EDTWT2EAalpY7fvKwQPA+EPGBCWDdqzHVexwdKE2NLGQ8d3+mJSUSAufUQ+Uazeg1kNQJ8r7KhFSoDNNxzdTi60MCCta1DnBEG9XSoGsEHA4j4YEMpmq+Oox8OqrGkuTcHUVYjVJuaAQQxIUrOxUNdZbReDYrU2dg0YDcQEYMZrVvHrifeWEhNn4qxWdYSAaMBqH1cmgtc1e24NnNXSd4LAV2k0LzXleUy3kD0MRYGkIIjgLssJkQl/JqHeQ11nxszqicRqbxHgWniOq1G8jzcAq5O8JVbnSDf85202bN3LndV/5u8/j7/wF/Y6BZytHBz48VZY/oZv2P5hO88FGHcri0pT1qUrbrKDAzw+O8Xr94K+sxpg9xWA0WA2nfetONcLCli8dFab16VY/RaoOuE7T/ssykTb4JBICWxfFhptqQCbzEqrqpBThC/BjlPgD/KC70LrTG6E61GFARFBQrrv9X1wFbqLPdvmAYuK4CsYYkCGNi14UJcfWOz6RhFg2zhw1ji9z7EDbSHX91kAY+7u5aRDngEnJwCApZ82AYvi/Joa2wQwCO90rQpFMiGzeowlCpa0THZWK+7ZogDNjcFxHbUMik4ValvHVV2IKsnYhIKwwTI0uUkEp3bf4wrnzIjo43j619W1K5QKZrUJX1rqfBTOakraOz9fcRzZuVK1CS+wpZP8IqdzGQGBVegfN9lUiNyMhAHx7XFndRLXWwwIAFy9igM/wVfd+By848XuNwtBUfHuIl9b3hGiDGThm61azGoMu72oYtI8LLHOA/U7sVUPXk9YuGIYNl06yRlbcAhnNcByLR8+HP/ZaWYxJJCus3rgPkhSi3R/BaGCsS5KFwOyj2uf+NwqhXUe+GRgqpUigcxZomoXOHVDsOns6orVhYfIH7+X5Sc7sigVGBDtd2I1uMmWJjWpGyCaWYgLf2fRX2SVEb5JGYB2Uc7qZtyidBjwwD6Z+9XQTanMsiA6dcfmRlnG3JNan5voMhlYK+ZxoT2XbeYvkpMtS7DNZkoInmJj3CgkWpgOBgIWycxqFQO5sOiiqmojwGCMBbizWoUBqVwEEeG43NAiXdvnOcvMIjqrlWI1MSdlDANCMl7sgZZgP3zPGzcM8Ve/7m8jsPNRnRYAVrGLhZcAV68idAqk8VaszisH/tzD+669gv/q634er7++3ymcrR0svXQrLL/jHcCv//VsvvzCC7vfvCeKtIpTtlYUx1wusfRTrDY24sLHLOx81p43jKAUlefsuPuMXWN6CTdzXGJA3ry6FKvfApVvcjZh2NNZ7duFup1BlAiT2ZfV6rpY+glWJ0NcYcKLne+UqsRqkqNUTBhV10CwRHWZsnuIqtpIgbHgKzAMCEX8bAZflbDMmU7NfWVZwMEBDv0Yn//kBsfBZvdFatuwPQdVbY224NQ10PR4A1i4CVbnbFOiN1l1R9JyuXOCem8NOavzytETfYYWI7yo4Z3KoBewxRMJA8KPK722ZcndeQRRdSQYNVmXTPTRdD2yyc0ABiSu9RLExT0wIPoAgOVMyKw2bFH3PO5Q7LSoZ6VmAF67VJuNJu1tYIsnJQaE4PYTxZjV/cXTZl0zTMdFYEDqGnFisYDFKGJfe8c74NoV/s1H/jQD73eO6VoD44voXNCd4Aq318i4pY0BUTlf+blS2K/zoMC6CNTvxFY9fCNl75TZDAhDhE6B+IRtxOf57mvIVmjq7cpywKcGLKbyP04ymwl/mveXFzpyZ5oowf7c16HmjgTDGvBvVc8W6poszgADbkITDIhnMUFR4aakaqrSzbuyRFx6u23HOjXiziI5oN3xHIdkU+m9E3mFc6cXsBjHYO9tKrNaOB+708OqYrk7FFbDGAaEKig66vGQ7NIU/37ZPWBwrqwjRJ1FlKU1Gwt1xi3bRuAyPJGqM6Z53+o4qwNneqQCxMb4QNgqpUOQz+Ok+D2DzQXHVYufDQaEItirMCAXFbAo8FUUZzXvYpLypXn43V6d3Z1jqjjQjUloYgwI2Vk91tmri8QJQ/zOF34egZ0p5y/tWqUe5m4GXLnCnNUip4OL1e6zT+JquMb/8YWP4v79/U7hbOPsMqsB4Du+g3VQHx7ufnODIh0e79KzlL2/Ws5qAEBZYl34mEWd6zeEl2mXDjKw0UsUn/EUzuoxh/llDdalWP0WqHSVs13zfd4YTVrquLMa6LCDR4575G9wcn9iDIjrwrFqtUhHaZkSwt9A0ndRO9DVp+A4wzt6xDbawfZsEMVP24bnKCYgomQ7j8fHOPASfOxnMjy/vLd1GIoKAjYpGtnaTVMgKLYpw0svwfmDAus1WKBjBwPiOwWyeOjeIrj2xYJfFYBGZVYP8dAhnPD6YrVrqzsMyqKmLZ5GnD5kt65oxVJciHhdIdJtp2+caepvoWBABp3wYpFG2gRQjFuGLepSAVi0qAdEIcXz4MscKUJQJYrVUpGuro0S7wEWgJZWfQZwvKnZfaUjUAKNWJ0NceOqCnHuIvJaDjXuFrEs9O/1xlk9wqymbrKpxq0sQ1nb+wXHtA87FLDYdANoitVRxTAgezirNw/TLQ88ihC5GTYnW2d1+x586ing1VeHj5dm9v7zIlEjmxZMrNbHgFge7zRRrUiEQ003YFF1WQ14qsxFJ3coToIB6aJ7iprsphwKFDNl+NfdTfeyZG3HoSkGRIFqiCuS+3UMA5IkIInV0dzuOauZWK1/rKZsmwk0ZcckYeL83MtZrX/YxiQyJVd4QEwzcgCPYUBEl4nmwQO/HmTtN+9bXWa14j1D7hCEouMMaCGRtA/JO1sVgZgGnYdeYKsFezE3IqBQmu4o1YagkbN6AANCDFhU8vaLAklJY1a7ViU9JjkIEcPoGvZ50RCM0o279oH59+1VXNkPrHxcrK5rlBU3+h0f73aTrdm63Hr2GQDAtex13Lu733v0PHYZs7o95xLugm7tKdIm5znbIBU7F9wUcujHeGNziFl3zTOy9myKJFYPM6t1lx07x750VhvVpVj9Fqh0XbDW9z0DFvcSq3VbUER7n2oBTd2FFjvbKmd1SWjBEW7tAVh+WVskZ7Vt1ajyIWc1QaxWTUB45VlN4hU3bXM6IXjHxzj0Y3zsF208v7zPerLb5ftskTfyttycFZgXp+w3N29i4aU4Py1x78TFlWDdE6sDe0CsprY8C/erame7KFhrj46zekxEAB0DMuisLi0ys1q5u0/pBGidr21VyvDKzYoH1Wm6Hlk4rPpbtDEge7BfAdAcVJYiRd4UreFLuIRNizrdWe3ZZb+dXCyg9+2wkZ1r1Wn9b4QkTXxTq4KZw9yfnU2xzUbf6QWgWTilQ9k0ec6clWHrM23/nK6zemx8MWBWqxZkALYbzb6mWD30niFuWnged+nu4axOVzlzLUcREIZYuCnWJ+y+yTpDxfPPj3Ors9wiOauHgsoasZpwfwEYdVbvvTHaBLWpndVUl6Yf2sMBi0TUkMr1Z+J4U4aCGmJAmhu9N8b65s5qxfsrWZf6GyFi3B7YwE0SsA1cXWf1wkVSejtjLFX4bsqy4MpMEibBjXsELFIcb45roVShGnLQWv/F2C0bBsQG0wW485qARV18USDPhhAVr/WxW0POahMEhnI9Y8gCV5o5RJ4H4fNSOqBhgJVAy9ikCrGlOqsDxbUtS1S1DccnmA5Uc06gwWKFgeb4PYBUaPKtTDZCpnRWT8ysFmJuaKVIxjIWswwWeLbLfL67QS/+8sEBcHCAq94Z7t/Zb4P2LPYYs3ofg4AwoY04q5NzPi8Ux+QO7cdnp3jp9AaiWefvj821eBVJwe6HfQYG24bnMJSttMvk0ln9ptelWP0WqHRT7s9m9Dw4dj2OFM5zvSCVMZcqdfE0FHCBVju5prN6zE1ZUNKjx9p6iG1+g+3ZaO3ETy1WZxlzg7Unoleu4KnFQ/zoJ59hzuorVzoHlSzyJLW+vcLMSVlC8LPPMldjXOLzdyI8t7wvdVY3bUrdom6EeN6w6JNlqGoLTqAxy22C9RR/XtdkxrhrK8RP8IkY0emjRAo0zhG9QwIAHEfu1OW1Wdf67Nd9Fuappbcwb0QfxZ9T0+mHRHCBGbKJzGpfIiaVJWub1J3ct85XOnEuCuS1Jre9fdjAQd4NgxQtnh7RoQjAjxzm9OncDPEGNGb1PhiQPGdiVdfJ8Sf+BPDhDwPf+q29Yw6iGgyc1YPvmYzz4DVtHo6rDn2iuv6azqw9xOrkLNuGV4YhFl7aYMXyrIafnDVuzGefBb7wheHjpbmtz6wW94Fsr7Wuyc7qfcTqurZg+7qbbMNOH4pA4weWHAMisjyozGqPB8N2xWoDfv24m5I+HlpWvXvfliXbEDToXmGLUvlnlia1vvvV5Rk0+zirNa9vtOAYkLazOrGYk5bMVwFcp+477CnhkqL2CFgkYUBcsPt1yhC8xlkt+TMDdI/YbFViQHKLBSwSnNXJAGs/jqF9P9iuzTYBFM5qEwyIepONGD495IQX72/Co6AMg6zZs0F1Vg9dA5OARc9XvBNkGUN7H1TRzcePm1Ac20MYEKqoDIVBpHVc16JtXO3FrN73uFzMDaxsNHulmeCEITCb8bkv/zMx3vs+R4QU2/DFoSoKnKUhlv6emKjm3z8iVot5oRCruZnh6x77NP7dnecxuz7vHXewi00cV+Cx9nznDG0woSzZ/M0lrJN4t1FeKoTwy9qrLsXqt0AxDEi+326W47CXYF0PPxi6zmrPg2tXcv4U0OKG7Xe4plwXjj3sKKVjQIaZ1Y49MVaCOHEeSo4GiO5yjAy+wHawby/2j4/xX3zpT+E73/FR/Lobn+s7q8e43bzW9xPGy5rNtoJ3UeKzt2d9sZoLn8oXppGzehgDAkB78Tjo1OXIEtfW5McNYSXQYihSW9FkE0bhpqS400R7siL4Kd4Q2MKiK2RgctOESelgQOxhJBAAMgtcusipa3o6PQAv4ONBFwNSdFy/WgflrvWuWC2EdaqzWmBAOu30SekipPK1AfgzlwXWdVTFZvGs24/HWcVDoo+4xj2O4o0bwLd/O3p/0Liy1JtsJEFROLYHxq3eJuMeZfsDoahEZvUYu75dyTnHmQlntZdifcr+XvaZL8D7638F+MEfBF57DYsFsNkMHy8rbOYmpDCrMzlTNi74JovueDC2iSucpfuO33sFLNIwICxgUS5WFwQWuigVBqQRqwkiQuP4kzqrJ2BWd8bYjSzQad8aYVancaXXFQQ0nQBj3UYUznq4cPsYkIQHjBqI1Q1+rnNtAdDEtH0wIATH21AIHhlXweeceReDAhh3sg0iZlIesKh7D4TDzurNBtrzOGl4KbZfomJAGrSG0llNC+90Ve5XEwyIyigkNix01568GK5Ccs+K3xM72ZTOah2UQreEs1Y25zJgVqvWM0aboqrrWtfGzmrl1IhvYO891loWEASMP30+krAo3NNBsBWrxVS6LVYfHbFf72E2QJriLA8ZUnqf+0yMWSP5acmqYKKyuBksC7h2Db/3S/4troRrzB476B0XwOick4nV+4+JY2I1APpmkCt5J16WVl2K1W+B0nJWW9Z+D7PujumeGBDSwtxSs3pNAhaV469wEOmKdGMiAmc+Op7eY6VsdeXFdnb1J3hjzuoqzRlLsoMBcewa//1X/WO8eHinL1ZzR1IvqK1Tm5OMTXKjCLh6FQBglQVeurVgYnX7Z3KRciyobHKHorguOmLHmFO3KNiChMDXdqxKHvQCoCgNFk8Daedkp48QlhXols0GJGZ1MOAeAoA41WzTF8/sQJeFBZAXpVInvFiQkJnVEg50WZoxq10XniVxrRcFW+wTndVSsbookBQeIn9cwFRVMHfZIrqHAQENA+I4DAMyRC+SYUCGSvDrB9o8SW3EQ90Q/DzF92nVRbBfhUN1H7FaLEo4s3rhpVidsXPJ7q+YM/DhQ+Cv/BWETt7O55VWLriyU4nVeU7vXtjDWS1+/r7HG+0O0wnIbpUX2HI+aaEZut2pZh6jwoBQAsUCe0BYJ4aqAYDn9ZnVprkAI9zLxlmt+U70nT0wIARntTvz2efVxoCkFlvgUwMWAbgirKx90iYOzdGARdo967g8vFOJaiDMt2wW3F7IXHQm862ReyvLeNisrrM6AMuGGHJW62SE8HMFMIzAoKAaZB1ngFnuxpizurJJc6PGAS1zVtcGc0PFGFuV9FwAYJhZzb6BJlZ7qq4Qo4BFOWPcZFNU2cEjjCcUpJ1AAin0ySov9TawASAIEDoFkrNhsTo7T9l8KgyBKIJt1ajFeNQ2qXGx2qmL8SlcmuI8C7Gc7/l+HONA80pWBeuWbZsxr15F5Ob4Nx/503j2yxa947oDCMrmuHGttVZUdkMARiHRAOB9yfPIf9NvMXqvfrHXpVj9FqjGkbHvC0NwhQd2cRqxcd+Hh+9oDguKBPbpkEMRQF7arAVH5wUkzrVSt9AWVLF6SETgrVi2o/dSczxbHXyFCTAgivugYaF3xOqdkjirA6dAthnBgJxkmHspE6u5s/rdN27jRz7+DJ5b3ttNDt53I4QaVDYm+mjjOgZEhKKgLaKHghABFNRJ/tC1NUg7b1r8FJ0WjbNas0U/dHOkA2L1amNj4aX7L8oa0Uc9FtQAmVk9tMihi9W2tI06LjxEEemQagyIEFQNMCC9cxXIEgNndbRwEHd4qoBw/tEDFqUipSi+gNr7Go88s4JRSkJj2QP4IjFxnlispo6xymN2ijGr2xiQBKsz9m/JNzkTWwDg/n1ED18bFqvrGqhrtn7UFqtzufiX56wjQHcBDciduu3SdVE1HSHq7jAyBiSUBLjyY5aVDdsjOqt9+TwmLyx4unM4Xo3o0z3XhotPOtXtPdO+EQQGhNq90jir0XfVQn/xDKDVbaT+FiYwE9AdkmsQp7a5s9rjXN2pxGr+d2pZe1RZoqxtkgYwhN8zwlW4tRSHI+YapFZyx2Eu1dyW3lsNEonKrFYFLMbQvx8G3gmkTlleF8KsviAzh+M7qGQGpKabkTY3UmFATHjNAHsnZJJAa2Nntcq1zg0NNLFaPu9uQlEJg4HjO2zjShHkS/q8RjIMipywiRuGbB67Gnborh5kWHhJ46wGsJ03Zhmbi3heI1ZfiWI8fDjys9OUrRdn+2+4s/ehfMwSxbIcit3OxWvXAABvP7wL6/q13b8wYpRqjjsxBgQAXax+5gnk73yP0Xv1i70uxeq3QDUp4vu+MMT3DdgxirTUC+QQ/N8BDAhpwiBYvTJndV1vg+V0djUFUmEgYLGoHP1xZ49ALfF9OmW5AyIC9RpggG/Gq9nR7DCrd0q0CYlyXeZ62wwv6DanBRMrWxiQD177DH7pzg08u3iwK1YPtHYBMA4qm9ShKO6BgXuLTW70xepBZzW1fVII9hflrFZgQCjto8JZnWSOcnKzTh3M3VQbAzKU8gyAhgFRbVoY8lSlAk1R6Ll+uzXErDYJWFRgQOLS0096bx935vUFDwCbxNa/r4Cto3bMWV34+19jzxtGNVA7QkSnycBxSd0AQ+5fMW4RApKVx+xUs3iIIuasdlOszpjonMUFW7j9ht8AAAjvvTYcIiTuC8/Tey/yBbR006LZrKBhkQYT6nUxCGMtxMR8DIDz4If4pNQFmSpgUbRRU5zVoaTLBOBjrAEGxPfh2BXKuCNW62xWdcuyeEiTI0XwkZ3VdoFsYJONGrCoFKtNmdWuxCShu1nTriEkDr/OFmHXomGsK0RVegieGgFB5grbDNeWl3Lhpwmb1XVWh9ZwwKJgmOvcswPvBGqXKDA2FhBNF2JjWMEYLyqHFjir2hhuNtkMnNUysdpgcwVovRM6F6JKc3owqhi7ZM7qPEdaEZjVngfXkgvAJs5qy3XYsynZXCB/XmNidVax89W5tmG4FwZk9TBnGE7urAawI1YD2BGrr4Ur3L8/8rOFyL2vOcC2mQteFVrIK17zeWH7uLwbm51cR6wWeJkxsTqu+/rGQA12ohsGmHreJQHEtC7F6rdApSm0hWXLqgefjiTmE2fdxdOQs5oyYXBdJiyr2K9iF1pnQWozN3ZZSbhxQCtIiMisHhOrCcIXAKVYzcRP/UAOpSuJV7op+87qw0Pg5s3+uYniYnWyHmFWnxbsZdlyVn/1/OO4EqxwEKQsibh1zNHgShNntUr0obgGBLZmADHDFtGEe8suURZDzGqCa4Cf79BknNo+6dsDzGpK+6htI/Aq1paquMCr2NVzVgtsy8DmgvjZWiVa0WQYEBOnD7hDsdvqWZYMrWHIrJZhQIraJnNqncDtL56Ea8anByxKnY8A4oTg9AKa+3XcWe3qOavHAhapocMj4yGpG+AiMCCOYpEnqWRdssVDO2BxBeD8HFluw1/4wLvfDQCI7n5h2Fnd5i7qlNi0kHVvCAyI7gIaaHAoVTbCrNbCgJSDrH2qQNO4yCTOau225FapGMAmIoLj2ahk95do0adiQIKAsaDb5gtTZjWG3VkNV1iXWT3SEcJCQfWFyqbtuocBMROrPZ87ljuudbLoNbT2MBARWEejOgiQLKp6Cse2qeCh4p5WFef364vrzFmtVlIaxIzmBosKDdXMY4kYEGm2zwR4FdVGiGXVsByaEx6AfNyqGSqGUm7gSJGRJpsAABBEttRh33SDUF40wtCicFZrBQ6LEgKw5JgmAYvKz0vMi4jO6qEu3Dyr9Z3gYcgwIKthc0DTxSYRq/OkZNephQG56p3i3r2Rny3LuBqpMRQp0LrH2sdt/7prv+ddvXuJ1TrO6iFzn6mz+lKsNq5LsfotUFmiiQFxXbaAHBgg0rjSm5SKttQhVAMRA+LapdxRKlqTdV8UljUcWigcbyRn9a+xWF2WTPwkBHKMvSjSTdl/SVgW8H3fB7zjHcBHPiI918jJkcQjzuqzYsus5onE7z56Ff+Xd/0rYLncvUaC7TXmrKaIPkOBmFSxep/2bN2d+GbTRv7HRQE4ZGf1xTCrfadQfmaNA1ZTTAr8enDxtE4cJlbr7O47TNiQ7u6bBizKbi0RpHQRzuoZLUCncTl0WZp8zGlCkTTL8vmz02VWlx6d/QqoxerUoQUscvbr4IQxz1HWNuxAM7xTtmEB0J8vMR4OsLAB0N8zisk4la+tPGankg2fx+yI1TVw/z7yyoF/7QB429sA20Z471UkQwn14r7YJ3S6XY7DnEm5pHsjz9kmC5FZPbR5R8kIYffWcAcPVaDZOSdRuqHb3cP6NnOqdh4yk+ArJV6FmpEiKgj6rcRlqddZIalGrJbM5Vg4sL7wFzoF0lz9rJtgQCwAddpyVmcO22Q2YVYLZ3Fr7C6Sgs1fqM5q1aaggVvZdSFv/YchW9mFUlS2LM3g7Vb5PuT89qJgLlW/1ja02IGnDt0F22DRdu0PvBNMMCCNUCsbCwxMFyqnrhGnVnUNxLkSndVKDEgBIwxIENnMJNK5EPG60nfWixJzLpkJuCjYfUcwHajWM829Rfy8LKuedlNUdDMq5pykLAfhrB7BgGTrnBkc+dobAFCxf8N6VTNEZ0usvmY/HHVWV0nGuOhTi9WyDbF3vIP9v+2wFiWuq0ovEMeNa61N3MFzLUt2v16K1W9aXQJU3gKlnfTsSQSETiVxrZdMLtpvhgRFIp/TUbmVDbiEjtsKouj+G/m5OlMHLFInoyMBMtQ2pO3ERt4ylKxLBE7Vv68ODoDv/V75QTlXOF4PvyjiVckckDPuoL5yBe7mVfyJr/onwNEzvWMyd4PiXqTyVD0Prp2pHwMqs3rEqcu6ASg8dMWmDVptqSRmda58vkyY1Z4dqzEgicU+f12GomhLzXPILK6r1MP8SAMDgpbjr5CE1Aqkgu4kpJk0S/6s4cnSZiduKHErcyGFJKTx2nFmCZHPsPVf2sUjmNW+wexMfE4dbscmtfEYBQPCxcTBCSNFULRK5QaTyTvRVT2z/LjUexbA8HuGEJC8d8BiXG2d1WnKxOr7NnD/PrIqgnf9iC2uDg8R3UkRn+UAFP9GqrPashD42La+t+8jHrAZzggLfsFET2rIMJxlVrCFnpY5YAADQs0I4ccGoBarp3ZWG2BAms9HIfqYYECazIWai3ymG4JojbGSDy5JLZKzmm2uDIjVmU0KWITvY+49wGZdY86/1DCrSZMCfsq+haLcFWvZcXPA1XxeAf4sqOcwAMihakPOajJbWQRMTu2sVm2EFAWy0oXvTR8Mm2S2nlGqfcyhTQDCWNBsqKtQDURmtRK3ZPJ5jWJAaBv5ju9ITVimGBAn9FgHS1espjDLRfF1nZRGSmXYc7e2DOuX53TXftMhpuKha+6Ji2M2zGZJNZxxzYDFwC6QrofnW9k6Z/dDEABzPrpX7J5ZbWws3BTwDhqx+ggPcfKwBjCQF3RSYOklWnMu34ccOdaqBmPVHmNu3gT+2B/rY0iBcWOAOK7YxNVlVitMgwAuxeo3sS6d1W+B0har+S5hE6KoOKbWjvmYq5jK5xxqpxduL8KLfdBZXVUoKc5qgQEZaPsGML2zurLhuYRrIMMJtCrdlPoMxT2d1cmG78gLwbHNwu6+gPYIFGOhhfuf5va4EwcsjjmrG8cXwVk90DJWlsS21BHeI5lXzNmvUh4dgJjIFh4M/KlrrFJPDwPCTlX5HFQFfYPJtUs5/YDji6hCitRZLXiqBkKK71V9IUU408gnKxGTeBikibAuxPS26w9oiR4UsVqGQWmX7njgecMBi1Se6lBrMj/uhWFAqM7qfQIWk3obpCMCFjdCrHbgX+c5BlGEyM0QrwbeeWITQ9dZDcD3amWYVFa68EKaM8sfYPinuuYAMdcYeM+Qw9ou1FndH2dNMCBDDkUT1BJsG75bIitb52sasIgRZzUFA2LbCJwSaSHnYAP6i/KmfB8HXoKz1fZzWWcee2+bOKu9vrO6cc8RRS/l2sPArex4tlxUhllYW/Pvl9yz7AcbMuFl41blUoZC9WYQryS19J3VAx08jaiq6QAHoB4LeJCx9ruLH1P5Dqd2MAGDWAmSmYWX7TlSJ3ye07E1AJQGt3hT053Vnsd5+5I/E+eve1zbhueU/Q5BAHlp0zdFLwgDMpQ7QXVWh26OZDN8PiywutxiQCwLdVUDVYX1Gtvu1DAEfB9hnYwK4GcnFROrNT6z/Z3VEh3iySe3Qnu7xFx+TKzWRBg1eLRLZvUjWZdi9VugmmAWjYWOY1Uo0+EBQnfxNMYVLmtbf/EkgspUzs/KJrmKWYufgqVJDecZEv74ccX36R4XwMC52iQMSNOir5qIUnhk7n4BizthWsBuO087XJEfc5RZTWynHxJ9mnR5nc9rLGCxwYDonWrDwh50VtOZ1arJOLl9cg8MCGWSG4ZAUnrycNiiwLrwMQ/1FjtDG1cmwZWOVcsfLY7u8ShOJ7TaXbscaJPwLwCeUyOT8KUB0MUJWZt+46w2w4BEbrbbwVHX2KQuE1MI7aOeXSKTsYpF6YrVYiwYcL8C0F+Y75uNQHVWqzAgxMwJ8ffHKkm5AzQImFjtpljFNnB+zjAgVxbsG2czxmUcWpBRndUY2BDjXGkSEkc4YBP5M58lFWvL3fe+tdh4P4QvqmuLtnhSCVSGY4HrD7WoE4UUFdKOuoHdKt+tmetL3Et8jA0i+rJonFmt/04M/Fraoi8qyWwmKOp+bp6HpZfgbM2ROHWNW6slHp+dGjGrGVt4l1ndBPURW/SVcxjxHBBFZSkGxCDUXBxXFoJHfh/w8r0aWSl3VqelSxkKR53VaaYQkojHLCqbvAkwtMlGRiI17lfJnwlMFNWpy8+te0yTgEXVNTDBqwDYfr5d7NqmppkD+DGVBoGiYB5ewjjjOpB2ROQm7nLRIaZwwlMxIK4ld4EDzFmtHbDoshB61TxDVLYpthgQywJmM9bBfrrGamMzDIgIp44ilkN1Pqymnp1UOPD1nNV7idW6GCtuDNjJm5BUnFhaAYvNvE8xPyZ1M/K6FKvN61KsfguU9iSXA+jzeARqrzPB9Ty4imADAM2kUTuMQoh0Q0FlFLFahHEo+Zy2/rgjJs0qDAh1MroPBoSydlDxHnmlccU2QXRmuRwDkoy8LJuWb6GuPfvs9g+7ipt4qQ/cW2Vt6zuAR5zwZV7pT5yF+DuIASFMbvgGkzJotORMOorwpUo7N2RWe0PO6ozIrB5Kp89zrPIQi0gvuO9C2n0FtqVEn31rgC8CWqn3HQ50RQmkaR/Xk7Soi+A3U2e1TKyW8RD2Ld/H3M2wXrWurXA++oTPS0xwVc8toN+aKsYX1WvWQFRWPrMAqpxPnC/AWU3JnAAw2MUlKsms7ftmNmMYkI0DxDFzNC+4NXA2Q+RkiAfE6jLOGAN3SrGa0mkjaqTTRNtwYFmsI0QW1AaYOX1U8wLTVtdAPucywoAMsV+pCCtennDYCzWFL0i1OyF2jjkgVmcWKQixCcEbQDVoC4oA4Dg4CFKcpQH77MsSr68P8eTijCyoAhwDUkvEaipeRCBxZPNuA/erMrBPCIpEsdrzFfMNMU+gPl8q4SfPWWdKYOBWVm2EiA3GKZjVdY28tMnXdZQDTWVW26U8G8DEWa3axBUZRNRgWMVx87ymmVlEKTYwGwwIUawO7KJLctv9OYR5p3SMbTaY6GK1NChabOJTPq9mI0R+rzdueJ3PzPcb3NhQZZuCOatFu8V8zv7eww3WMceAiLlTGDKxeiS08ey0xoEfX4hYrXWPibXnXhgQPUMmAOm5lnkF26Bz4VKsNq9LsfotUGlmkVzQQ2mpzTG10ukvxu2lFOnEi50gVjfM6iG3MolZPdD2TZ2MjjneqG1InjcYtNmI1ReCAeFtz0KY/uqvBp56iv26LVwD423vfMJA2lwY+LyyjBD8NOZ4a8I7afdWWSrE6oqHbBI2QobSzk2Y1f7A5lXjgNV1kYmgF5kdI8uwLnwsZnrPQoMBmTJIybLgOrX8PhDccqKQ0jCrOwIw1YkiynP7k/xG+KQeV7bYLQokpWscsDhzM6w3rfs9z7EpfNpxBecuUz8/dZaza6HzThwJWARA5Myrx8OypG+wNAeQHJSKARmcF7SqYet6HrBcInJzxKkNJAkb3+d8dyOK2IbowDsmXfE2V5JYzZ2qEtGnri2yoDa0iEwTTQwI+CbbwBzGsurJHYoAjJzVcsfbBMFXUzOr0XKqCjWFGvrVqmZxLvnMksxmphNdsdqv1WgsAElu0zAgAA6iDGd5xN63aYrXN0d44kqifZx2NQ77qZzVnqcOnDV4DpSb2GJeROQKKzEgJuInBjZCOLM6CCcUgHklua2/RhDdEKqwOkfPbDB6riamC5s5vfPSkpoOAJhhJRQdIVQMiOq4Rc7NLNSxy/fZZ9aZd29i/txSjut523d859qWKd0koRKr88qBZ7oRomSMEz4vm2FJ8rL/7weIGBDPY8LymFgdl+zYwjGyWDRiNXNWt9ZmQqweCrQGcH5W40CTWa0KBG1XIyprzLv3woDo4rGGWPsmIdG4FKunqMuAxbdApZmFA82ARd8pBsXqBmq/78MnFtADzGo6+1XtrKYm8TYtfgr+UElxVvO2b6UDWPBfJw5YLCqblEujXOjx2mJAFlrHDJ0ccTw8IUgSIFy0nNWWBfzgDwIvvwy8/e29Y7p2PMisrmoLtkdwKFpq0Yc0WbCsXRGh+1lT28aaTRvJnzUCOI2b5lrqABnSdQW24p/CSbjJHNY+qOusjmz1wrwosMoDzCNNsVrVlgsDDAjYbVPk/D5o30MNt1z7kAAAbxGw+6ttSRFCigFLlIkzu9eWcYSJIgKw/XzbixzeTm/urE6xXre+xgPwZhFh4SDcGIqwG4AFzupObscCFgGQXOBDuKlcLExtfW43gOFNUV2xWswLkgJjZ5MKUc33gSiCbdWoywpYr5mjdcbfFVGEyMkRx+pjZZtCvyuIlx/YvecAwPb3RK7u0HhI4RUPjVvkuQY/VwC/dszqwqBFfcRZbSJWz8MS6yLYjrOGYj0w7qxe6obVQaCx1CFVSeaQedAHUY7zPGDjd1HgQTqTZlrpVOOwbz1fDaqE+Gx5qnm3gQCsZFaL8FKiWN04yycOWPQDi3UCSDbZjDEgSsQM4d7iSIU6L3bj2gR+kYA03DlXyXWtaovG77cseG69ddi3/52GAYuW4lzzyoE/NQYkJ6xlZMeVBiwSMSCWhdAvt2NX6xhpXJHHLNcFisTePddm3UU0SKiCosUmvkdQGsW9VUvuLYiARU1ndbMpPvxteVLAt6uts3o2Yy73+yusc577I35uEDBzwHpYrD47g3bA4t4YkLk+OSBLh+eqaQrMdXQzcT0kYyFJK2iV5zFN5LLodemsfgtUmukHLI4xfdIUzJm078uCh0nlU/Oahxbm3FFLwoAokunFueaUtrERrMRFBSySd3bHeHSiNVnXWT3iegNaoQlt5IfrAu94R//6jDmrjUQf9edFfQGx9mx1eCedhz6waUOd5A91A5g4fYT4J2MAlyXi3MPMy7WP3WBAZM7qPMe6CDCb6Z1qs7kwJQYEgOsBpcKZZRL+ZUcBS2Zvq3WGQhIgF1Li1EBEAORidVkiLnyzgEXfx9xLsY5bn0ue4zwPtZ31ALgbQ92SCTA+Iyl0eAAJBIA2bg28Z4q8pnE/BbKjUL8TSQHJdqneaBRV10hyZ7sZ4DjAfM42YO7fZ/8XuxuzGRen1IdLVzljMhJSxVQYkDLO4Ng0tEiziJS1PAPI0hq+rrNaYECmDvwZYFZT+b+AWly/KAyIUcAigEVUYSWEWmCaMXbAWZ0KDA7JWa3AgFQVksJF4NLeYctZibOMO6v5+6bZNCLWoLOauhGkYt8aPAfKLAsRkGyg+0mDEKcI6VJiQIjOas9jJgkZYqWutxuMms5qX/ZOMHGpAmoxyaTLBK3PSxWIacBArjLVJtu0zuo843MCg3mc2GBoF3tuCRkhvKKgRlz4vfl8Y5SaylnddCAbXtcpmdUY6LIA0a3LMSBjwmcWV/CdFgZEOKvvr7DKw93cnzDkGSHD/8azc4sxqzXGgia0cMBWvNNxt08NbV62ir1v9VjYAC6d1Y9oXTqr3wKVZhaCSM9ZPcb0yTJNp49wkQ24igGQhFrHqpWs3rxyEBFeFI6n4NHxcyW9gBwHnp2jUIV0XYRYzYXKiLJj7CrCiXg1rkpdZrUTj74s0xS7AYtDJRzrYw5F4kaI6rh5DiZ4OHoW0MH2bLG5oDuyCme1wgFNDRodvAaGgofvKCYMAtcQ6p8vc1YrFuZZhqq24AR6F1fJpkTLpUppI3awdU20y4ShCGyfmY6zGoCZ68+3kK93RYQkAW/P1hf9APDJcNY716QMEEZ07mnDrE54C6VlAXmOu/ES1w8UiuBQCTTWgLM6Xld6oaAN71Lx5waBu0PMahZYR+WsVyizsj/xM8CADHZcicpzFl4XWttF0sEB+/+dO+z/4RYDYlmQY5Z4pZuSYTUoGJDQkmJAms+fIlYPhUnBwFk9hgEhupVtfh+078yqqGCbiD6hK12YNwu9ifnapNDlVi1n5Y5Y3ThBL8hZnWQ2whkBAyI2cGUDQp4jKV22MUhofz+YlThbhUCW4fxugqWH/eZsA+UFNtJuwKLotJrYWV0VFfkzU7aoNwYRorM6kM836tJQrFa5FEXAIpFZHfAw215/ZVWxe8vTfHbFuzatsTOSNggMovt1gAMNgMxZ99waRSp32AMgi9Xint2ZWYm5oamzunOujemC3M7nMTFzU6K9GopTm+6sBhCFNe6e+r2xizmr9Tfu+Kn2n4OpNkIUXRbUsHTPrZWbl6SARY4BUW2Ki2oQl+Jzm89ZAPS9c6xzH4tl63yCAKFzNhxoDSZWH2o6qy3PlQeNtirONLn4rgvf3iBLh5/LLLcQeHomTwDDGws27fn67b99cDp7WXvUpbP6LVCpYN1pOauLQWd1lkHP6dNwNEeY1dSgMpmj1GC31PFsedI3sOVb6b5/R5jVzWKPKlYrnDNkl8dYi1+iv4BuMCDJwMSw7aLbx/nWOKvViBkApHBBb0BMIjGrsYezurL1JzeOA2cgaJTaYQDHYS6XixCr7QKZ7LhZxnANmg5oALBDn7mKZaqP+CA1H9whd4NJirrjqpmXRq4/Idq1nNVVRk9PF+UHkDreqA4XAEAQ9FmHPGCRslnRlGVhHhRYt52PfBNkPiccz7bZ/Vo6ylljvK5Y0IvWBu5AwCJ1sduMW4qOECpWQYjrMmG5LFGDEC7Hu1fGktmFWL2zgbFcAuB7EcBWJOMDRz0wu8/WORkDohL/NuclibMPgIk+qjApXAAGhAdaU93Kss67JOFhWgYBcD1xXTjTHKJY7XmwrRpld24ggq8C+hJmMa9wnofNRlueVmat9Bhue04p/F/wTgAZ/gFgG4OFR+5iOZiXDbP61qsFnpidGIvVbtBxVtf11j1HvF89xRyGtdLT7i0/ULjguUGEKiiq5humqAY/tJENBSyGtOcrdHKksWSsFRuMuvvY3Anf21wwmcfy40rNNyZsafD5fD3grJ7ynjWdGyoENWa6MAtYDOyidx/EiUV/JwKIggpJ6fWd1QnoGBAP/ffiBBgQW+GEZ58XfSNEJVaTjDIjHVyistxi+o449myGx6IzvPr5EqsiYM5qUYJZPdItHcfA3Eu1zW0WMIwByR3W0ajFrC6RjTmrc5u5y6cUq4nP13IJHB6S/upl8boUq98CleaaAYvC5TPkrM41F08CA6JqzaUunlwXjj3iKCW82G3PYTt6Ct4jWay21KKqieMNULRnU13gAOB50tYuUWwBrekkcxy1o1YUD1jb2+3DRZ+he0v8bK3iTsIh9itJrB5xVhe1rY/sEMgS2UfFN21I70nhcpF1A0wwGZcG1glnNWXN63LOusJFBkBfrPYVbErwgEUis9p1Id8QE+MW1fUnxOpW+0LTqWDUom4z5mWbJSqSuA3aR22rRpV2AxY9M2c1GFN2024hFedNcb5a1lacUEyc4xgEZ3WlRosYbuCqWNgNZ53o2Ja+v6i8XnfPgMUsQ1q6u/fEwQEiJ8df+cQ3snu7hQEBMOqs9qnOakX3RryujMRqtoBSnO/UzmoTN6GYH3b42pvEZv9+KrM6cPrBsEXB5y/EcxUOxS5SQOQ4+PQlzHJe7zirNxsY/fuBlltXgpZIC4eGARE5DrJxS2wCEfMBDhYVzjLmrH7tlRpPzE9hFjYABJGzG5Jc14gLDxEBCwag2XDPin6YsQlixvMtufhr0skGqNntOchzDWAkYJGKAXEHgmHznLYR4jhyfr+p+1UlJhl2namua2M+Mhm3ZII9MYcJgNxZXdd8TmCw0eZ5jFvc6Zhlzmq6WB2GQCwTq2MCgrI5Vck8TqyTDZzV0hBXk/U3+AauAkdKGrsEBmQgKBwA8rxmXcPi+i4W+PrHP42f/PgR1nmARdR1Vo+L1QxlpiH+AqOGOUBw8XUxtwWyoZDJumbOap01k+MoO9FNmdWXZV6XYvWjXnWNNHe0mdWiDUtVWWbpOaublufpMSCuVaEs5AtotqtJc5TunFe7TJjVtiIEDwb8W47B6LmH+LmSg4TE7n6iEKsz6L0k+DGVgX2ixAJq30nuCFuaLPrwDRbVuZLFasESHbi3tIVK4ayWGRRNFk9i0qwIbgRggAEp5MfNc8RUsVqIT7IDiwmv5oPreWr2K9tgIorVKi6+cP1RFyQSsZoF3dBdjwDgCbG2jQERSdwGwTzNokw8p2VJb0tuVROAxs83W2VGra6NOKHqNNlQnNXl9MxqsTGsGLfI96wQlmV86bJkDhiqC3wPsTqvHLhB6z5bLvHCwV18bnUV//Rb/9IOBgTAoFidxSXZWR1FPLCus4DerGv2+ZOZ1TlSxSKy2RjWEasFvkj2AqtrOqeVO6t7YnXqMLGW6lCc82DYTtiqyWJ/O4fpjLFFwTAgBmL1YoEdZ3Uzxk6cCwCgGRMDr9IWv1SMdQDGYbYHy7q5Br/8KRcvHt42dlbPFvYup5YH40Y+0fXIg8oG3cqE97cXOkpntYmo2mBAuudqkI+xc74SZ3VSeDRntegIkTmriwJp5erfW42RofP1plOWjgGRul9Ng2EV8/nGyEAZD1VidVnSMm1axwWwew/UNdLSQegV5HurcVZ3BMA4tfU28DsVRWBjQWfsMnFWN/P5TsAi1dgGoNXdK99gITOrVTx0ENEtohNiRKxm+k7r2PM5vv6xl/CTn7rJQupnrX9PGEo3KvrHrPUNAqp8DFHtLmwN46RyTStKrEEcjXmyOFfJIjzLDXI3LmuSuhSrH/WqKqSloxegwtNSBzEgucVaJHQxICpHLTXkgot0UgFYBMtRxod9xGoCs1oZBgmGFCA73lTuNCoDGdguShU7kElikZzVzpCwDOgvoMSC9KIcigNitU91Vg9iQAj3Ft8MUuFwSmr75EALrWmADGMAW31RKc+ZWBsRbloxYZCccBaX+jv7GBZ9jDAgglktCfwhbViIaocW8mtrFFDFy+u2Z6PlnKEe17Lguezf2/Qm8qA2yzOLxJjPKqzzrehx73aJ69E5WUxpnNWKWW5zjTXSw4c2w4zGLXvEWW2wKToYtkrNBRgLWOSfoRW03jUHB/j//Ib/N/7sV/8DFpopfnYjVqvHuzSu6AGLkc1ak7sYkJWBs9rzWEiRIqG+2RTSEatdKINhUZbMBUTkQMvMDOvEMXNWRx4TETr8+rjwEPkjmBhVCdxU13jBRXAjZ/WCO6v5+W5iy0isB1pjbHeMaXebaRbD1ihyHASzmihWLxd146z+F//+AB9+4lfMxeqlzTpixDXggbvkewBQitUmbmUlKtAg2B3ANmBSimqgi9V+aCOTbVoUBZtvhbSNq0FnNWUjRGCGumtFEVxpunHVPa64zgZitXQjxGRzwXXhWXJn9SQYkE73SlJ4CF368yVE0K671og1DyFWS961YqylYEB8SfdK46ymY0Ckc6MG60g7bLN5qcKA6OoF4nkdE6uFuNoSq69HK5xtXDxI51jMd8XqwB4PbUxTMM1IUy8AoBarOTIw9DXGcI4ZGjJjNt0mOtNDrm2UqRwD4huM3ZdlXpdX/lGvPEeqyw3bx1mdazqrPe/C+JyuPcDqpb4oBvhDRs7qAawEmZ83xBKlip/8uIGKRwce3KlzD4hzHbgGALbtg/tOcpu294ld+0NoDRgwq0eCr0gICBE0KnNp1jV98TS0C20iVlsWfA9s8dS9wEQH9M7fkfTTr08LLDQDPgDenj6EASFOQlzPQllb6oBF3bA6UVZLhOIzyDgG47oZCCl+YDFm85TOaoAFTbZFqrKkuz5bNY/qHWf1nVslboTn5DZ19u9XtNMDiDc1u8YaG7iuXaKoLAZe7lQTqEUQgD27hIwKBRgE1g1tihqE2O7rrK5ra/fZ5cxqALsCGceAuCjUY3dSkQMWG8G8M8bEm5otoCnOat9H5GRKsfo09nDoxwRntXzcqkuzgEXf7odBbjJDZ/XMZwvz9qq36bKiuynVDkUzDMhiaTFXsdgMO/VwNVhPI1ZL3K/a83heduCxHAeFWJ2aOKsPLZzlIYpVgs+8FuHFwzsTOKudXXyTMC9QndUAfK9mCKuuAGyAAWk2U6UYEIPW/0COAWnETwNmdVpJxGoiHg3AVvxSOKuTwtPHiziOPGy2Ca7UP01xrqqxQPxcSnkepPPDPKPz0JUdjaYYEP4Z19muWB2XvtHz1QQsdljIcWYjcgwwIJElZVafbxwsvYTmrJblAhjiOhoUZffzMjGLQb3JBhDHA99H4ORIsvFwwR19h8+13nP8Kv7dned7YnXo5khGQxsJ5rYhHQagbbYKE94+zmqd7KgGL9J/jkyZ1ZdlXpdi9aNeec7aB3UmDGLnaYRZ7euIFILPqRogqMKX6zJntWxhbuJwGHJWmzCrB8RPcnu2OK5SrKZjQJSuCQBJZjFxRvPl49oKXIUoEcwS7d8JMNjWI4QgqutPcVzqC4gF6ymc1dRJE0cKSK8rb5+kitUsCFEyfhhO8n0fcheZyeLJ85ioJfnQVmcV5gQ3xlBQWcP/JTqzpMc1QfeIEq3iLbHa3FntyJ3Vjmnre717XEOnk6j5rMa68BsR/O6dGtejFVlM8QJ7EAOi7ay2LLgDY0GZV3As/bb/LWtf/sdFZdM6eIY2RQ2Z1aPOahlvvJ04016t8M83stN2xuhOpZuSuXwo6p8vF6s3G01mebs48zPObOnGxcnGx5G/oWFAFPcWmX/L54fdz2yTmInVzjxkTlWZs5oYADjkpiy6WBnNWiytHWb13VMfN6Jzo3HLjxyl+zUtXQQ+zXSgzHHgjm0SrxjAwc0IZ1mEj/9Cjfc9c48NVcbO6r5YbeSuR0v06VwDk4BF5RrBlFmtCFhsnJQUBjKAaGYhKSQO+8IgfNnzmKFFJlTlOVIKC1uFARHBlVRBUWwOd99fvJOL7KxWzA+NnNUDYrWRs9r3GTaz7f4UXRsGz1fjrG67a+saceaaOatnFmNWdy7Eam1h4aVksbrX0VgU7N6iGkSazvF+NkJuYDyRhg7zYkYZzXkc7+BKR8TqPMdu5zyfa33F1Vfwq6eP7YaUhyHvChsTwLm7eEoMCKV7Q+gFqowrftyscvTet1wvkYrV1FDzy5qsLq/8o15ikquzJhMYkIEQvCy39VrqxWCucL+SXWRcqFU5q8nt9EPtJ1Rn9QhWosGAUB1vivZs8uSGc8hUDvs0s5k7TedCjLmgASDPUQOwfR2H4gW49m0WdFhUElQF6K6cJrxT5aymCJUCrzJx0ChsG55TIS/74URGzmqw20bmdjJyVvOJUC3ZNl+twCa4EwYsmridGmb11BgQoOesNg5CBOCFfQxIk8RtclwhJLSc1aSw3U7NlzbWeQCs1wCAO3eAG9EZ3VkdKlr0ecUJ2MJM4/5qeJdDiBmSqKwObiQLNCPvGfE9+uc68j4AgCxjglt7ofPEE9tftwUy/uvQSpWtqVla67t8RCm4+E3AHmXcsixEfiXlcwLA6YY7qzXOt+ngUdxbLtXpw+eHfWe1yzYDic+tFfJJalesLn1EF+CsrgFYZJsmsDxydpjVd058XA/PjcatYGbvhguKEqYTwt7KoDstzxkijCjaLx5f4jwPceuVAk8fnLEvGgYszg5ctskonoOiYMzqkChSorUhOqGzekisNmJWh470ncCeWSIDGYAbutObA4ShRSZWFwWq2oITaM4NVBgQge6hTjUakap/XJNOLhVnnox1BIad1QaIGfg+M+C0EZ9lyTpZTZzVvo/Q7WxaiOc2MNtg2eHX8zqPXbKzWroZZOiAHsKAGDGrxblKxWrC2kNsLuUjwnJh953Vto33XXsFANuobSoI4Nt7oEVEzhklYHFKsVo4oGUGLFFcN9PKzVFkeQCG75nLmqQuxepHvcTu9tQYEDGY7fvwed6gUEt2+ghmtWxhLgI5iAgMcYxemQYsDjqrDViiKmd1TThXoHFQqZzVaWbpJzILYXloE1/XWTnEVQbooioP5lG50xiHioBA2IOHri1Ucoei0lldE4NGLWs7GZeIqgDoDEUfDCuhWjxRhCQR3Cjh7a/PK8zdVPu4tuco26jz0qYHLPo2c3ioMCBEzh2A7flwa2nj+jXBgIRyZ7UpBsQTbN2pndVHHhM9NhsAwN17Fq6HK7KYwpzVAxiQRN9l3jhnZIJiXtPuLdvmGBD5JptRNoItSbwHfk0wIAB23zVXr/b/nB8TjoPIyRCfK8KBk1rf5SNK4ayOY9AxIADCoJaysAHgNA70MSCBM/juoo5bUudjVWGTe5h5Gd09FCjE6sK7ELGa7CbltTiwd53V5yFzVhuMhY4K2SFQGBFB9BnIcTASKgHYV45QA7h/u8C14Jx90dRZfeD2MSCGYhpDjg0ELFLEtCFnNXXODXVHhEkYJNDClqjmW1Rnta0Qq/Oc5lhWiUllaRaCpxCAy7wyGgtUQdlGjHHVmsZ0bsgF+533LR9bTDoX4LKgzSRtIc1EUDp17EbLWd15164S18hZnXc3g/KctqYXxTfyZRiQoraNnNVSDEhVoSht/fFAZGMUw++oHrPasoDDQ7z3KhOru85qywJQD3/OTc6ZZie20+0EaBfvitjb2MaP6TvlsFhdlsh0O5kuMSCPdF2K1Y96UTAgvPVf6ayua6S5rRewOOL2ativRGeWVKQzcZTuE7Co+wIaCVhs0qMpbOWBgEVyKIngkKkwILnNUng1d0qHwr8A6C+gxDGnDirDsPORnPA7tFssNlh0J022zXE4Ev5t05aqeUxeKudIVfBJPhUDogisK+IctlWT2+kDp0C67l/bxllNWDyxE5s2YDHwa6QyBjIfXxzP4PXawYCcbHwc+DQniigvdJhYKxYOPIk7csxCxVxxf/EVb11MxKw+8rDKQ/bBA7hz32HOR6KYYvuuEjEDAElKcFZfBGLGsti4JdsIgUFLIp+MS+cFJrkAlkIAb1Wd8nuuvdBpC0z37u3+hSBgbcln8l7PJAHbaCWK1RaAKu04qxNL+/NvVxTWLEyq66qta5wIsVrjfB13YCPEMPyrx5QtS2wKHzNP9RLeoxRidVJ6dP1zLFTNYIxZHrtYFUEzxt458VmAq4mzWLERQjKdiBpxVgMg37M4PgYA3Ltb46rPndWGYvX8yOtjQC7QWU12v6quq5hzUzEgArfVec+Y5GMAUG5a5EnJxoKpndXUe0uEb8vE6tqA16zYGE2Tmq1jiHMjpbN6CgzI1AGLvs/MQkkXA+IhpCCGRFkWQr9kXSHiOhQFNoVv9NyGc4eha7oYkI3NnNWE9zfrXOh8Xty1b4wBUTirycxqVcAi1QneYB0H7sm6ZmbEbqDz4SEO/QRf99hL8KLW18VLSYIva1eac4Ojplg9iKSljDGKzI3ucdNK01nNjVKDGJBLsfpNq0ux+lEvEcyizawecFZXFbLKge9qtPeIiYIM1wED14AIllPgD8jt9BcRsCjaqIcwICbOapkI3rQkap4r0OyWSwf1ukaaOyRntfLzEqXr9GgCxRSfc0UXVVkrtVxMIr+ARjZCipoQsMgFKmk6vWHroIotbcR7hBoDEq8rukNROH0kGyzrNQ0DohwLarYAdm1am2MQWkys7ll9WIu67dAxIJZtM4ceF1I+c/cALxzcNXNAd53VNRPXQs+MxeZ1xOo0rowWj6KuPebiXrJoMCBfuBPgmcUDupg05FAEd1ZrYiD2QjWYbLIp0DUkV62KJQoYYUDYIm/ElbPO5U5osVDqfia+j8jNlc5qxnCnjzEzN8Nm1WE2x7aZszqENEwKRYHTLMLRLNMaZ5rNlYlZ+02bfo7tAlWI1b6BWN0WasVxubM6NGVWdx/ZCbo35lcC5qwWnRtnPgtw5QGfpFJlLgh3McVZLf6NCma1+LmkOjrC3M3whTshrjqn7GuGYnV06DOxWiigRcEcmgail69wKBqxRAed1USDCKAMdDYSPwHA86Ts8s2aB8NSnoVGrJb8WwVegzDf8p0SeXc9IzAgVDyacL92DB1pahY+reqQI2Md+bkOBiwaOKubjIjW2M1CbA3EagCBV+8Ky3mOszzE4YL+TghntrTb6DzmzmrCu9ZVBCzGhcGGmKprmmpsE4f1FJkmvFvWczVd654HywLqIWGZC+G+W+/ON46OAAA/9ZE/K88LkXTxtSvLLX2DgJhzDojVNaA3xggckMI4CQAoCuas1tHNfJ9hQC6Z1Y9kjV55y7JCy7J+xrKsX7As6xOWZf13/OvPW5b17yzL+rRlWX/Xsiyffz3gv/80//PnWsf6Qf71X7Us6zdd2L/qP6YiBiwqF6VA8yDrJqUOuV+LgtjyzBnIZQm5o5S6Ez8WsEgJY9gnYNGIWa3CgBDbkPikUcWjS0uXtWbqnC8PAtwLA6LjrLYq5IrrWuUlbOKkcchZfSFitQE7Temk462DJrv70hZaw8WTylkdnxf0xZPvK9PpVyuQMCDKz0s4qGxam2MjVktEcBPHOtC6b4VYff8Ibzu4a+asjtxeEGJSeohM3JRoidX8uHFiGaNFAODa4x7utsTql2/P8cLBPbqY4nlsYqwSqwUSRQfVoFqMoBWoRRy3lCnyBpuiPUctr7pgGyxUvnYx4qxON6W8i+e3/3b2/2/6pt2vBwEiN0N8Kp/ExInFxhhiwOLcS/tidWLTmdVgt2UscZEhz3GaRTicaz5nAyizpkWd8ozZrKsuK1v3bVliXQSYBQat5LYNvpKezlWrEqvFeRuMh+7Rgm0Oi86Ns8gowBWAekNMtKkHhHctF8Br2QTJBAEBAIsFrkVrfOr+FVyt7rKvGYrV3iJg4l+WsfMrywmc1XxjvLvhbpA5ocy1MTGIoIXrUAUsmkzkJMc1Yu03YrVkfUG9txxn6/5sr+moXYeiLAueW/WcqklqGW2Oq9YIDWppSmY1d5eTmdWOA8/hxh5xDZqARQNmNYDQr5izusWaP8tCHMzo7wQ79JnpoocBcchitedLskfynG22hsRrwA1jMtyUCV7EC+wRZ7Xmul6cyNDtUxTMjNi9tFysBgC87W3bX+/jrBZubQKzWsWBBkB3VjsjzOqSdQlo3V7iuPFAN+Ols/pNq31mTimAb6rr+r0AvgLAt1iW9dUA/hSAv1DX9dsBPATw+/j3/z4AD/nX/wL/PliW9S4AvwvAlwH4FgD/T8uyLj/5sSoK9nLTCVAZw4DwwUyX58MERUXoE7Udz7LgOjWbLHR39vjk5sIwIBRmtaXe0SMHqAgRXNGeTW5Dct3BpO+k9PTX+lycKPdxVuuGdyrvLTqfc8j5SN4tHXNWEyc3jmuhlLkpuahKfU823LRu+6iBmAawwLpMctzNumZ8Zaqz2smlzmpygviAs5pthhHF6gBsci/5vAAY7cKHQc1Yf0KsfmAuVvszh4nrHbE6NGASAsCNoxy3NweNky6JzdpyRdkHC+ZS5GJ1nDoM02DqrFYxq1POrNbGgEwcsMhPVTpu1TXyyqZxWpvg5f7n3WROEDFeyrwBXsm6ZO637pjwjd8I/Lf/LfBt37b79SBgbMaV6rMyQHb4PmZOhs16d4xpBHDiyjSMLLmzOstwQhGrB0KiTTcaPbfe7YrhLd9GzmoAsPj5dF21VP3T8+DJOOsTYECwWLD/c7H6/ibE1WBl7KyWuV+NHNB8EZ3Hks/G1FltWbh2mONXTx7D1foeu5/EdaGWZaG2+eeyWm1d5QZ0FRWqgaE16B0GAKbPnFDMN4q82uXI6pZiI8TcWa1eI9S1pX9vcVE564p0RWHGrAbgOXVvLpskYPMNasCiwrVvgohrxOrummaC8G3X4XMDcQ1EwKKps9rvO6ur2tYP2GyXIsz4PPHMMCDtfz/QbIqSh+5mDdr5uhgLqMxqxbjVYEt0jXj8WbTqSi0uczNi77FtD8DPP9/7ujXkrC5LJoB7mni/AQ40ANqGmBDAh8TqPKc7qyU6zKVY/ebX6Chcs1rx33r8vxrANwH4+/zr/xuA38Z//Z/y34P/+Ycty7L413+4ruu0ruvPAvg0gF83xT/iP+riD7Pl6+08MWaY4s+Fs1pz12lQUDRACjiOYmHetONpH3LQlURu7dkjYJEkIoxgQMgTZ44BUU1E09JFEBGRJSpkBxiz2LEqTWb10EaIgUNRlhwNMNGn5Nz2ycVqGy5hctMgSySLp5L6HKC1uz+lKwlskp9JMBgNBoTIrA6dAkkswYBsLMwpbgyV6CM2gmzaJH8IA7Lzcwn12NUMb2wOm4DF2+dzPBadGfFUD48dnOXhVkwTrZOGjpznHk/xudXV5rirDXeomk7sZjPmdDjZ4PQUOPDZtTARqy1A7azOuBiu46z27ZGARSIGRMXCFl0Wdq3/nhHzAsn7IM9qMr9fynrsVLwqEch4h5YFPPNM/+cGwWDAItu4ICI7fJ9hQDpi9SZ16GgRcGe1AgNSVA68kJiNoELBmGw0dsNxBQbExFkNADa/J8U14JviZLHaZuzNrNw1M+RZTXeWi2qL1XmOqgLLGTBJxlU5qwVSgRqCp8geKRODfAhe166U+NzqKq6Ga+C552jdCt0SYvXZ2STM6gZl1hWrDQVFAOqOK6r7VSFW5znRzNI6rmtVKNLd8zVyVnPsWpL1r1+VFezeItyzvithjJclssqlc4XB2OVFJyQ6STmewCRgUYJteSQDFgG4bkew58+XqVgdhth1Vpvy8Pnftax6951Y11ilHh0DErr99Qx/f5HHmKa7We6sJq+9xEaIYozRFqttG7BtZqxWictFgUzmKm6fQ3sOLb6xrlFXivPJMqYZhYSclCFmtRgfCGiRfECDaJBDBJNnJunqzQr7Uqx+k2uvO8+yLMeyrI8BuAPgnwP4DICTuq7Fm+hVAE/yXz8J4BUA4H9+CuBq++uSv9P+Wf+FZVk/a1nWz969e1f7H/QfXZm0SQxhQAgtEq5dKfEPzeKJyBWWOkpNdqEHXEkmAYvS3VdeRUlszW1Y2HJnNdmN4Hms3Vd2H/BFpLbuIybMAwYs1vKt0S40wqxmzmrai0Ip+oiJs0PgFQ/dWwIxQ7hnHQcoZYxSk00bqJ0jRpNxqDEgm1VFF5KEs1qGAdnYWLgGzGqFg4q6KA0iG2npSe+tnZ9LqCdvFHhtfQRsNijyGnZdstvUwPV35ZqN+8mi76yeQqw+v9a4KV+/H+DJ+YmxsxqLBW5GZ3jjtoXPfAZ42wEP4aMqX0PsVwBxRmBW+7Y6YNGAealkVjdhq4R7Vjg0p3SO7BmwGG9qvY2mIEDo5kjWkglHXSPOHda9QUQNzdxMoIqb2mSOGbM6spgzTeKstqx6uk02mIe1NeJfywE9iVjdCYZthBQKq5mXJxG+GLPcsHvD95kLOC9QPzxhLtLZjJRfsD1ZPnZIAhYB0N2vihyHKfIBrj2/BAAWAPolX0I+zk45/L7kzuq48BHNDO4B32JO3R7KjBjsDgCuC9uqUWade76uUdQGIXhKsRpwLTNndejmiDe798F6Y5kzq7P+Z6NEN+1zqm7NjAzt99cEbGXXtXZRZjDHgDRmjl9LZ7WJu9zFrmAv5nEGnQuA3FnNfuAEm3ft8bAocJ6FWEYF6dr2cHb8XDeFb+Ssdu1Kim0xwYAozQwmIvhI9ooQanvTjW/+ZuDpp4Hv/u7dr3MB3LPL3kZY+5hpqRlYCGzzMRTzwyLO2RyZErBY2Gp3OR93LB2Wk9BLusiSukZeWiyw0mRucFlGtddIUdd1Wdf1VwB4CswN/aUXdUJ1Xf+1uq4/UNf1B65fv35RP+atU5Q2P97um0kmIOKYUqbRUI0gMEyEL8bqVe0+El8UfPJay9R16guocRVL/qxmO/6uRRM/mbNa8meGIZPKFr8sY24X3QWEQJYMrGmTjeYCymbc4LzjnhJV5DVZ9Bna2Sa1YQH7OasJn1ezaSOZ2Jgwq/1ghPdIbSUPHekCMt7UdKePYFZL7tnVxp4WAyLCbhwiBiSymbO6ex9M0KL+5FNgYvX5OV55KcHTIljQAC1ydM3FaRb1ndUGjjcAeO6pAp87v9oIX688mLHzNXUhzOd4YnaKW3ddJlYv77CvGzCrAQyI1a42vqZZjMi4wgYt6sqOEB7MQxKreTCNbPOS7AJvOq6Gv61pVd/32vo+IidHvJK/v+PCR+QTupiAbcBiR6yOU8eMWT23mbNawismtdMPhERPkTeQVe5WrC5LbAoP89BMrK67GBAxxpgIlRKxOkkto1A1UZFfISk9vP5LD3BzdmbMaxbdG1XWb/sGYOaslmzgNnMtA0Hp6q97O64Ea+ainUistoRYfX7ewk0ZMKsvKGDRG+DUGovVnXdCmlnanTs75XmInLzXdbaJDfBFnofQyZHm/evXoJsozmqv7odvlyVjK0+Bg2m9xNLcNsrIUOVOGHWvcPEvLzuCGjWAvVW+V+129E2EAekGBKfrggl0hhuCvcDZLMMqD7CY087XC52eu15siM3m9PBOJQaktuH6xDWSilktnL+US+v7gx2CyHOm73SF5cND4I/8EeCDH5QeM3RyJOfqY5KugzBOKpjVpDHGsnhnmCQvqHW+4ufvXcJZ3Z0fC3OjQ+hmvKzJSuvOq+v6BMBPAPgaAEeWZYk74SkAr/FfvwbgaQDgf34I4H7765K/c1mqIjJ9AqeQTkAAMFep7i7ZHu5X6qTRdWu1o5Qo/MFx4FhV3zXBj1vVFmv51DwmcxVLzqdpHSQIX6oWJH6uRU1MjxaOHBnbiS+gbV9f+HOsahADQllAKRmtYF9yiKKP7/UZdwAuTqw2CVj0FMKXeA7Izmo5BsSYWR05bMLQebtvNtz1ZtCWKhOr14lthgFRdW5QndVBp21SlIkwwevJpx28tjkCzs7wiz+X491XXjMWUnphNxM5q599qmRiNT/uK/fneHr+cBJn9eOzU7x6L8Tf+Ts1PnD8GfZ16mp3yFld10hyW5uD3Cx0JcdsOkIo45ai7b2ZOFPGLeFykfzzTTAgrq14d7WqEav3vbZhyBZPMmd1UTABlMpalzmr6xqb3GVho8T7VsWsTlc5W/RP1RECs042oOVU3RGrDQKqRHXF6jxnCCviYh9gTsILcVYDePJ4jc+eX8OP/4sK3/j4p8x41QDfbO13BlVpzgQGimtfmA4kzmo21zITlK49GeDqYx7wW38r8KXT+JCYuGwje8Cc1TWgP9dslaqLyzRgUY1qIAa78+MC6J1rktlGuAohLHed1Y1YbeSs7v9REtcM3USYxzXz7vb7S4S6m2xaSMTqi3JW56VNx7ZY1naTreMuN2EgA8A8YGN1Lyjb0HQQiEwTjp47vV+wbgvD3QXbqlGlu2K1SbeNG3l9ZzV/f5FPlZvxZGI1oOnQbZXj2WzOrTBLaeWGtc4VAGoV51Uwq3XCfHnXhiojRFwYLRwtsOVLD4nVhLWi76O/GdYu/s7RNnnKhPVGKzCcG12WUY3ezZZlXbcs64j/OgLwzQA+CSZai1Sc7wTwj/mv/wn/Pfif/3hd1zX/+u+yLCuwLOt5AC8C+JmJ/h3/8RalFUe1Q9Q6JslZbatFyqblmfBidxz5zrZAKlBdxa5docwlA4xw7xJcZEpXsWgdJLZnKxf8wlVLvAYMA6IQqwH9xRMP1CoHxOo0rrQn5UonIcza6ZmDTO2s9ikvoH0CFonM6lLJbjfgpimY1UauJDCxOq8dqVhtxFBUOatj1wwD0l2V8utKXZQ6occmoioMiImz+oUAr66O8Tf/1Qv4uf9Q431XXwHmc/LxAPTDbiZgiQLA4sjdWTy9ci/C04uHZoscAPA8PL5c4Qc/+hG868UCv+mJX2TX1DSgSoHviQsPoaf3PAw5q002cH1fHd5ZVHwRrVsDzuo8J4o+ouNqJGCR5KyWtLyLkzW6b4WzOm6N0VmGB+kcx7OU7J6JFg7iwu+NM6cPKxz5sf64NYoBMQzHLbvOanOx2hLM6hZeBICR81fprJ5ArP7Ql9zGv7r1In7s30b48JO/Momz2rfLHqOTuigHsBUUlWK1mbP62jXg6hMh8Ft+y2TOsdkM2BQ+fvcffyd++dN8k9Tgs2ryMdrPQlUhF2OhibNaJlYbYNekm0xVhbRwmIuQ2h3leYjcrCHsiNoktnknm4RZ3SBmKBgQjzPxe85qM1xFE2gsE6uNnNX9eXdRmofY9sRq4ag1cFbPwgrrItjpkEsMUUsAEM4dttnKd3FP7uY49GKzMVE4djet8ZCftxXQcFvezOuvZ/h6lrwh1u7ubTvhTcPSVd1RZcmwGh6tQy5wcqQrxaRLrG11Li/fCFOK1VSMldCiVGI18f2lDK4URVmDNUSCztdNDCKXNVnt8wQ+DuAnLMv6OIB/D+Cf13X9IwD+bwD+G8uyPg3GpP4b/Pv/BoCr/Ov/DYAfAIC6rj8B4P8L4JcB/FMA/9e6rg0BeV8EdVHO6krfWe3aJXIFJ4i1EdNbnssBRykVA+JaFYpsQKwmsaUV7vJGRKA5dYcCFsmTG/FSk90HVB6ZuK5Dzuq41ndW+4oNC5g7FKXtQjzd+EIwIMQ2P8dVXANTZ7WKyVeAPbNUR0rkSp3VcQw6+1UsniQL83XiYO4RHESKRHIjHjygnoiKXX0TZ/XbI/yz196F3/ePfyt+5J8H+MprX5jI9VdsFw6moTSigoCJoGt2fV95MMfT8wfmwg+AJ66m8O0CP/T7b7EvhCFdUPE81m2TyKzFOUNLaJ4yY1YrOkIMNnCV41YjpFCd1QVyyfy+yGvawnxfDIhw/2kwqyM3Q7yWvL8FA9fUWZ20/q15jvvJAlcPRlT3gfIil22MdsbD0wclc6gRNoYBTL4RArScqi2xel0E5s5q22LTw65YbSJUShamccr58oYYkA+9+wF+5PPvwc9+aon3XZ1gjFUgO+JVqc3D3zmmglmdGAiKoh5/HHjiCfJfl9ZsbmGdB/jYywf4+KdCY/e3FAPSON6IBxXs066QYjLnBuScXiEoegbPl+sidArEye55GTmrHYfdr4XTQ/AlcW2OAekyqwvPKL/T8yXO6twxC1gMnP6Gc10zHro1gVjduWeL2tZzvXZqHlXMHNAyHSSGjnUACJberrNavLdMPjDfZ+/x9qaz+OyI2RBe5LLPq4MBsQD6OGhZ8JyqnxNC1QpEDYS4ZpVLc1aLNdJaLSxLMSBDNSZWUzedHUedmwWhFeh3bzQmtF8LDIh4z1ADdy9rkhr9JOu6/jiA90m+/jIYv7r79QTA/0FxrP8BwP+gf5pfvFVlhEGYT5izQvFCpMDyLQuug+1LvTMIFCU96MRxeJiUzPlo4Cp2VGI1dbe04TVbTLBviyYmSIEGLyL5MzG5McCAnKdR/3zznPZyH3HYA3y3lNBOr3RWC2Y1RfRRvdRMgjNEG1ZRoncVBAaE0PbMNm3kTt1JAhbzeOfreVoZJRyHc4cxWrvO6tjSxik0JUSqpP+MrRIXCy/Rd+yqWMXc5bKYWKxu7gsDIeXxt8/x0ukSH7zxMl569Rk887UPgOjp8b84VL6Pq+EKD849PAEARYE78RLXD2RQe42KIjwxP8Hrtyw8B+DW2QyPTcF/BfAbv+IO3h/9RXh3fgf7gmFLqsddj70zE25dzVO2fRfVAL6IuoEbBJCPW8070YRZ3R+7GyQQEQOSqzbGeW1iSw/bEAQInaLHZxUnS/msmmrE6tb4lOcMDRbQBTXLZ7zinlh9UuNgYmd1M98ycFaftZnVImDRUKx2XTDsx5RitVsjT2XOajqnVtS73lHg5+49g7/wn/wzOHY9kVjdR3bE60qbh9+U67IW7aT/R3EMJtQZiNXPPAP88A+T/7q0Zgsbd5MlPntvgZ/4uUM8t3zd6B7wQxt5ZQNF612V50YByUpntWFGCPuMy57zk4nVBv4s7qyOd6dx2KQO5pSOMwCwLIYzEwzkljB5IRiQypRZbSHPO2J1Zk+PAanr7XqOuDnejFs9DIgNN6CPW7Owwvq8K1ZP4KxeeEhKAJs1AOD0pGJitck8zvMQOonEWe2SxWoVBqQGjN4HrltvUZTdjWKqs3pQrHbgU/YBhBlR5awuCmSVDz/UxIA4hRy7BvB7zSflBQ11+VOd1Y2ZYyBkEgABA1L2u3pNkKGXNVnRt/cu69ek8rTSDzngA4TSWc2ZRrrJrqPuVyKqQemsFiIdkVnt2qUcAyKc4brnallwHRak2AsCFI43qlgtSyLmxyW7PGwbvluxdrzO+dZpps90EueqcpfzouyWDjKrDRbmfiBpHwWMmdWuNYyYaQKGdA476Kw2CFiM5EGIjWOdeOBg7rJFjspZTVk82TYOwgxnWdCbiKwSjgHRdXqI0KtU4qyuDdiUCrGaNGZ3KpzZuBat8P/6+r+N7/qmL7D1kikGxHFwNdzg/iZk95jgJxq4fAAAyyVuRme4fZv9tiy5SDuBWO09cZ0J35/4BPvC0ZHBwTiTLpZMyLmYoH3KQ6iG0iY7s3wfSEtvWma1bTOXi+R90CCBCGK1lrN63zEhCBA5GWKZWC2c1dSOAN/H3Nt1Vtepmdtr5+92xq3z0woHXjJpwGJe0F37AAuHTSQYENMuizCometvSrHa7/OKG2e1IQbEWi7wyW//v+N33fhx9oUJMCAyjFW8qekbuCJ7ROKsPl/ZOPAT4+tgmoXbrdnSwX+4+wxevPoAP/GxIzy/vG90bb3A7s9hGsOBoVjdDVg06egEtqFyPWe1a5YPwZ3VSgwIdR7XFqvbx92AfM82THwZBsRE+/QtFHWrI6SqkJYOQrcgi8rSgMWiMOOWYwQDYsDwn8/qXWY1z6AyEcABIFj6OxgQtslKMIfsHDToOauLTQbHqsjvWif0WBB9ZzMIgNE46Lry7g0A5hgQScAiw4AQjilc0BvFWCKY1TooSnFMlVhNdVaLObdCrI7XFek9Ln0ftIuCAfF9Jqx3M75M3zOXNUlditWPeKVxxXa3dR463tqVKZAdKApSsuuQ+9WEoej4jtJZTU7MFS5oBQcaADEMEvK2byEokgMW1RgQk0COwK/ZRLQrqMUFfLsktSY7doWimhYD4vpyVAVgthHih7Y8iEFwvSgvIIFtGULMUO4t35Yzq7kbw3GJDg8Vs1qEqhEneFbIReOuszq1ETlEDAiAg1mJsyxCd8W/Tl22KCM4q0NZQJVwwVPbfRViUpyYMRRF/dPv+Dt479VX8ed+y79kXzB1/VkWrswSPEjmrFVwUxg565s6OMDN6By379o4uVdg6Sbs/jcR/kTduMH+/7GPsf+b9KuLgMFEMiHPMlSUwFkxxnUXI3XNN9lMxi05a58F+Wofkh1XETjbYEB07wXbZmNhZfU3cFulzVUNAuYmjSV/ludMWKWKHo7DnNW515zz6qTAwiO6E0XJ2v8BnK+ApZeQ3rU1MLCBS2dWLxbAeRbuCB6loeMPAK4f5biXLCAUtSYEysRVKzace5xac2c1Dg9xFMTbe3cKZ7VEWI7XlXmOg6Qj4nTlMPejyX17ATU/dPEzd5/DR972Cbz0+gLPL++xm45Y0jkMF/5MMCAXwqyWdXIVBZLCMMzY89gGXrr7zG9Sh35vAQhCSxoUvd5YzLFNwYAI52NHqE0KD2FIdwA364Q2r1lkTVAd0KGjFpUN9oBUAYtlbcPx6NLLLKoZs7rlrAYAi/wgsFoeu1jlQUushnnAYhQhcnLEq+01WJ/ydy11fij+Xut90HQzGuKmemHZU2FAZBjK0qURVnyfvWM2amFZm999UcxqEbB4ARgQ2TxWVJnksK1a73yFua/oo2CM3jOXNUlditWPeKVJrd/mZ1ncmaVISyW+3JowKckAwficNOHD9fhuubLl2QADohCAARicq5qvTWdWD2NAqIJa4FXS+yBelbQJrutyZrV66EgSaLflNa79iRfmQxiQrHTpPHR7Yh46WHJ0j5kG8PBO+j2gYlZnuWUkVjeTxo6ovIkNAn8AHC5KnHbF6rpGVYG1ahOc1aErcSIUhVm774BYrYU8UNT7v5S1YzaWZVMhBcDVeYL76QJIU9y6BTw+OzU+TywWzFn9wMO/+YkMX3PzZeaimyKs6+ZN9n/xzjERqwUGQxb2kufMDTcVqqGumTPLpi2ig2CIWU1vffd8OV4kF8gS3XHLsraOJBnDn1ecao4Jvs8WuRL0gXAlBVTRw7Iwi3bdafdul7genpuJfpJFNACcn4EmhLsubKvud4TAnFm9PLCwKoJGVJ4iFBYAblwtcSdeNsfNUsL8tVNel68NIM4ctiFqOnY93UErTcWs7jirN+uazqwWbd8SWtPZysaB9+iJ1bOjAD9560V8y42fR+AWeG5536gziGFA+q7H1MStLJzVRWccMTHJAIDvw7Gr3eeWIzBIjFpRYh6TdpjVQqymOqtDS9oht16DZYRMhQERaxmDDbFmLBDnKhAYBpsAzbpWxpY2cVaLkMmOWF3XlpGwPJ8D67azWpy34dh99TEP99P5lll9Zk0iVs+9FOvV9jqenfBOIwOx2rLqHR2iQRoaOaslOFID8xGAQQxIWrm0SyDeBypmNaWbib+3htza4vu0ynGGMSAEYxsg1vUKfQtAllQkhFHD2pduil46q9/MuhSrH/FK4woBQfhgzEsF04fYmskERYmYBrPFE2vzlLuVawC2R3gJj6Aa6toycFYrUA01HSshdXjw41a1RbsGAIJAMvgC2Kwq2uKJo1DKWu2ka8RqirN6KGCRyqwewoCYhHdO7doXGyGSIMDShFkdudJd6DTjoip1kqsQZ1iLNj306WBe4iwLd8XqogDAd8oJAYuhI2F+ilZP6jpfIVYnqTVJizoOD9n/33iD/X8Ksfogx/2ELUhee7XGU/OHZosRAPA8PHYY4431Aj/14zm+4fFPTYIAAbB1Vot6/HH6sUSASiIZt8SzQQ3BUwUhEkVlP+BuN8l7hpyNAMAXYXXdLovCJrvsPbdWbjSK0nb/hSEiN0ccSwRpfu4WqYeWVVesvnunxvXo/GIwIOfcWU1poZUFwMEMMQMAy0N7x1ldZQUTAAwFj+vXatxNlo3gEW9qI54sAHiB0xOrk9whh7/t1JNP7l5DE8wQwFqJHf6Ztboa4xhmzGqnL1ICwNnGZYKS6XWYuGZLB6f5HB+6+St47vDE3FkdOv15nKlQKTptpBgQejcjfB+uVe128EzmrM77zurMNXNWBxw51V0jJDaZhc0wIG5PAAZgNMZ4XWc1vwcCg+BKN3D67y9TIwPU3G4ARtdgPu9gQAo+dhuOAQfXA2YSEc7qc9ucWR0EOA5iPDx3m/Xi3Ts1roUr+rvW83qYnc2qMtqwARSd46Z4kTFnNTFgcQwDAkDvnMV7S4bIg0GHFOdA99AavJKEJlZ7gS1f1/PK0pqhGDWfM9YR0u/gSQrPbKPxsozrUqx+xKtxVmsOEvs4q3WP6fr2gPuV6MyC2NnvT5aMeFEXhWoQgqLUBU5nVksdHoAxM8v3Lel90LzcKWK12IFWOOmSBNoLScaikzOry9IAA6LgNRuL1XaJIpX8+w2c1V4omTQD24kzkXPXtDl2ni/TYBrG+Cp7O/ymbamHy6rvrBZKM6VvjjM/e5M7nshtIlbbVo0y270PGAZkghb142P2f/Fvn0CsvnJU4UE6B9ZrvPZqjSfnJ5Mc9+a1Erc3B/g3P23j19/8zCTHZAe+uft7U7HaKZCncrHasurpuMImWCi0Ntkk70STDRbPlzu285y+2TyEBxOl7f4TCzIJ+qC5JgZuUiZWb+ccd98ocT1cGQd42laFMumI1SsLS5/GrA6cAmncuYe4a9+1K3L3wvLQxnm+3RC8/8DC1WBtLlZft5izmgse8aY22xAF4AlXbdtZndrGx2UH93Y/l3e+0+x4to3AKZEWu1z4OKbzf1mwXl+kBIDTtcu4so+Ys3q5BH7fB34Brl3hh977j5izegoMSEf4iwsPYWDmrJYxSo0wIILjn1Xbe0Dwmk32hR2Hj4m7eMdGrJ7aWR3bmHt0DIiS/2u0ccW7D9sYEENnteVJcEsCEUcN7wR7JGXXwHRTcDa3sc5bGJAJrisA2IsZE4H52P35uzMc+Ruzd6Jl4eo8YXNOPo+9c9fCDZONYYlJJk4sY7G64aF3hMq6tujHVTGrRcCiTghic6KefF4giqLvCFyHzMgBIItLhg0lzGGkHGheScy1As3j2r4akQYIk6e+biY1eRYF4tLDfHYpVr+ZdSlWP+KVpmDtDLoPnYJDBoAsVjueAgPS8DnpLc9SYd1kJ9514Vj1xbhflc5qGy7FWS3YeTKx2rANKQhqaXiKCUOxcSIoeFENT3JKZjWVh+7ZyvBOMrNaoFAmvrcaTq2CWe0SnT5u6PavbVUhKXgwDbXFzfex9BKcn+9+Oc64MEVlVh9aOMs7zmrxa8rE2fel7bNioUMOFVMEX00V/oW3vW339xMIwNevVribLIDVCq++bjNn9QQu6Js3anxudRXppmQM2Kmc1WEIPP88+/WVK1u3OaUEBkQ2IRcLnwnF6rxyaFgoDDCrTR3bsgU0zLpXGOtRvtEoapNpbmCJYCaJQDeFk2wW1WzB33VWm9y3vs8C0DqbYquNhSWF0SkWpV3WvgiAc+hi9eLI3RGrb9+1cTM6M8eAPGaz8YULHkkCOv6CV89ZXdfMWT2FWA1sx5TlchLOfuBVvbm3Ueiw6yJyMoWz2sHBI+is/i//S+CP/rZfBAD8rrf/LJu/mWBAIge5REhiQiXx/W1Z8JySdXW2uwSFOYCKq+DdhzsGgQlwFbAsREGFuPS3Y21VYZN7mHn0ZyGYOex+7Yzf69jGnHjPss3WPgcagNEz64qxoOUqTksXYWAgJMk6BCc4bhMMK3NWGzyv8zmYs7rDrDYeC8W7b7PB//q/ss//a26+bNx5d+WgYGI177a5e89iyC1DsbpOs2bThoWBGjqrJRiQMivh2JW5WC0xIKWlZ4YBGWBW7/zsfcr3Wc7ZgFhN6fCH6zLHttJZDaYVEI4LYNhZTcGACGxo5z2zKXzMQoOx+7KM61KsfsTLxFmtbJMgisBN262MqSsW5hSxWuzsq5zVRLHat4t+ix+AqqjIu9uuCzmuoiy314BwUGkqOWAc8BD4kLKdNuua3Jbq+I6SXQ6wNaVua0+DmFExq6ktz67LdsYl91Zm6qwe4qETxWpph0ETiEq7ByzPZeEj7eNOEEwD38eBH/fE6k3mGAkUjbO6tXjIzhLm/KQ4q1UBi0WBhBpyAmwnjZ3jJimmcVa/+OLu7w8OzI4HRtW4Ey+Zs/q2O5mz+rHHLfzYa1+KDz79OvvCVGI1AHzf9wHf+73sPxMOtmj7ljirq6xgzwiVWa3IMKBy7hqmpcqxTUUCifbsHgbEImNAlJkTrdqkmu6/IGDCr0ysnsBZvZxXbEOsLVaHK2OxOnIzxOvd++t8ZdMwIIrNMFMUDAAsjxyc58FWrL7n4ObszFj0vP6Eh7ttZ7XAX5g43gTGqiVWx4WHyMvpG63t+r2/l22I/YE/YH4siFBrrydWRw7xncg3W6XO6o3HWvXJL7GLqfkc8K51NhZNnNUzrxeyabzZbFnwHHkInlHwMjgaqbY7uArXmLgVBRWS9lopz3GWh1hGBfndGIQWksKTO6uJAYsXhgEJJAGLppsA4t8ncVOGvjqHYfRcfUkI3AQu6NnC3mFWV7l5uCA78Ixxi89z/IN/APyZb/z/wXfK6cXqBw6uRwYYENvG0k+xyvzmem42MMeA+P0Q16YzyBADUhdyZzU1YDF0ciSxYtyjoEuGEHlgDGi6s3oAA5JaJAyI9JltVZqC6WYkDEhnfswDvWfRpbP6zaxLsfoRr+ahI7QzKDEgVA7TAH/JZPEURLYclm/yYucCsIz32PC1CZM75qxWhOBVxNZB31czq00xIIECA7KhO32aTYtBZ7XeC8j2HOaAHgpYJG5aAFA6q0lcQsGsnjhgsUGWSFv/DRZPsnT6KSb5vo+ll+J8tXte68xjjhwTZ3UWoQ2ZXp/k7JiUibPnMeGry6wWAU1U94zrInDyXvBVnNjThH9F0fYaXrkCPPOM2fEA3Hzcxu34AFiv8enXIrxwcG8SYXlxPYJt1fiGm7/KvjClWO26wDveAVy7ZnYcjgGRhb0kq4KNWVMxq8uSByHSW9TFcXaqSSYnOqtl7dloYUBMNnBVYnVd63NVgwCRkyHO+udT5+butMODegc1dPc+d3sZO6v7i8jzjUNmVkuD9Qzd9QAQHvhISm9XrI7OzZ3VT3q4Ey/x+TfYKrzBX5iI1WHHWT2FS7VdL7wA/MAP9MMWiRX4VQ+rsEksdh0o70QRNioRq89izyys7CJLYKwAdu8bnGNvwwLY3gcm7len6ovV3BzghQYOYLeWOIDNuaehXyEuWs7qosDDdIbjhXwuvk81zurOvHOdOCxgkfC5+YHEVTyBWB3MbDZudTcBpnBWy8wcBp+Xylld15YZs/rA2WFWNyF1Ezirr4Yr3Lnv4LXXajwb3m6+blJXjiqWkyIwIPcd3IjOjMaDK1HMBHD+mTUBzgbvGd/vIyDY+8ugM8h14VgVyrQ/P0xLF35AWNONYUB4iKfWOfO5cW9jnFcWl4wBTXFWCwxI3T82WawW3z8QsOgTAjeb4MZOl8Wm8CcjG14WrS7F6ke8yGJ1ZMuFL4AuAqt2sxpeM53PKXVWm7Q3CT6pxK1ssjBXspUbcYIwufE8uAMBiyaTG9WmhQkGRCp+tipJLXbPahxb6SQ0RMwMiUlmzOpq8s2FZhNAxqw2SVF3Od+rs1uclNxZTa0gYBiQdevfWpZY5z7mPt315i0C9oy1FqZ3bxVMTDJwVqswIGTjiHBWd8XqzGHCxBQt6t/1XcDb3w78oT9k5irmdfUxD/eTBbBe4/N3IzyzeDCNsLxc4rHoDF+/+Hn2+0dxZicwIJINzHhV0tpIVeOL2Lyk3gJDIjh1UxQimKazgK5rhgGxaBuCQ10xAFireuEj8jSQQ0GAyM2R5P3vz+OCvb8NnNWLYw+rPATWawDAZ14N8bzpxo0QFTddsdrAWS3rCOGblx51IwSAFQbMjSfE6vsuHotOzZ3VTwX493efw2/4W98NQPD7J3ZWc1ZxZPLuusAKJHkxcWLTRQ/H4c9Cv6PvLPaZs/pRF6sNXNUA4M89tp7piAimQqXnSZzVPHiZmhECAK7DQ2d3HMAuwsjsHR6FNRNrW85qUxa2Gzgo2xxoXuvEYc5qiljto4e0m2KT8fiKjZN2190U4Wee1+885BshEZWHjpYLvHXcupiAWb2wsS62zOokrqcJm3UcXIkS/ItXvxTv/4qycUIbO6uP611n9YnHuphMxOoZ52Dz+2ATW8YdPGGI3a4FTNAZxIXl3pyzKFDWxDFG0dHZPjYAvXvM8xBchLPasuC7FROAJRlXCaELG8AoBoQRCfSP2+CLOhtMl87qN78uxepHvJqHTpcv7audquRJg2o3iwu1HtVZrWCmGfG9RPuJxEXXtDxTmNUu1Mxqk4BFp0ZRWVIHMAA6s1qwy7vO6tgyCvwBoBarKcF9Kge0aZjUiFhNmi/tgwExcYGrnNXUxZPsuRVCraEjZeklON+0/q15jlUeYDEzc2wD2Fk83Xq9xmOzM9rE2WFs7iR3emzKpDC4BqJNvyNWGwdXtuv97we+//sZv2OCspdzVLWF9CSGbxWwrXoaYfngAP/8N/9FPGZN48a5kPI8hgGRDFvxumLolkmd1Qbu16HgxpqOAZG5h5qNO4eWCzAasEhpo/R9uHaFouyP+fG6Ml6Y2gdcPOMMo8/dDvHc4r7ZfRsEjI2/3n2HnccuFkRmtW+XUme1KQYEvs82MLsYEEPR8+qTIT51egNvrA9QlxVi4Sg2cbzN3F230xTvrgus5hlrB4AJ5x9lvmVZCEMwVnFn8DpNAhaw+CiK1VeubH9twKsGAHfm74q/AN+08I20NN+t+7hELiTZvsEGi+Df7jiAze/ZMGAInB6v2CRg0/eZgNp1VqcuC1gk3Fte6LDr2prP51nNBC8Dofb4ioWH6WzasUDReRgbHtcP+yiULAPJ8dmu+aHLnNV87Gbc32nmm1eXGf7J59+Lr//KDTtv2zY+7pUrwIN0thWrTz268UQcc57uOKs3sXnAYhhxHI7MWW3ArPbtsu+CNukaFx1c3U5RXnWW62d6eB58R66XACyw0Cdkp/HT7QvAvJLUJgUsjmFAmudMFwMSqp3V0czcLHRZ9LoUqx/xogYsDgmKeVIysZaKAZlSqMUws5qcxCtaviUuujyrjfic0oW5WEDSN2D7fDN+XMuqjTAgPQYTgI0I/KEscvYVq3VeQGPizNQOxYrt9lIxIJ5KrBbPBkVYV11XIXxRxWpXwqwWriQDJh98H0u/I1ZnGdsEiAxcxWIS25qN3bpV4/HZKW2Ca1kI/bLnmhALSGNm9UU6q6eu+Ry2VeNXP+PixSv32NemEJaffpohRUQ9omI1c1b3N1KSTUVzPorv787yDdFYQ/gik3ettD27KIzQIspuI1F5jrj0tMVqAKgr7G4wgYvVhqF9WC6ZWLtaIc8Bu67g2LXZfTubIXJybM77YjXdWa3AgBjcAwC2m35dDIjhxpXj2bgWrfHM4gHO7iS4fRqylm+TgMXQYSF44n3AhSQT1+NFlizUOk648494HaKQi5Ttcaausc495n41eRYuqtoBwa+9ZnQoK+CbKz1mtRkH2nMlGBC+7mi6/QjVoJG6YrUps7rjrK4zItKxXYp55zp1yTg3GW5qClzFlevOjqO2CUI0ua6yd7ipkQFAENq9cSBNzK9BdBwysboVYjtV2OyV4xo/9vqX4oNPvMJ/WGTc0Xd81WafGR+/754GZsxqCLF6u2nBQs3NBPsowm7XAlrjtpGzOu/rECZInCZ4Wf7+K9KSdcnpvBN8f5RZrdstvT10Lce8gn1uFxGwSM56CyREgjxHVdtwiJlRlzVNXYrVj3iluU166IYe5iytzI4pw4AYuMiaNk+Js5rcMjUA9m+c1RRmtQhhkAn2JtdAFsbBjwuAjgGJbKWz+sIwIJmt35Y2wEM3QcyMYkAMmNW5RKyuiooJw1M6q3lbKvllqXJWGzL5GmZ17Gx5ZHmuz0vrVhjCsSoUm5az+g2bidXEVUno1z3XROPKobbmKpiycTYRs/oiaj7HlWCNf/PJY7zr+A32tSmE5eee273nH1EMiG8XyLriHzgGxICd14gGogSqgfoYqMZDwaymjFvgGBCJWF1UNh3L6FnM9agSq7mgoMVntKztxlRnI8A49AgAlksAQH2+wqc/Dbz96gP2dZNnIYpwHGzw8MzZ4TOuE5exX6nM6qxz3fgGLnVzAQBzrlsV8ph9ZrcfuLgZnU3y3P7Y7/4b+MprX8Ctz6V45eECT88fmgWKHXo7jNZGSJqKWT1xNSJV68XQbGBSxWohpLSfBf4us3xvEkTU5OV5wFd9Ffv1299udixJt1WDaqAGLIIFIfbWHmKOYCD+NQJNywGdFAZzDV5hiB1nNfm9tXuy7P/tuVFdc7GathHih33RJ0ktY1zF8TXnQpzVPUyeaXgn5CasBpFocG85B6w7TiCsXn8Qso3GCeabVx7zYaHGl9S/wr5gursCIDgImGEqjvH93w+sEoddAxOxepnjQdLCgCTmzOowstgY295gSQ07g4SzWoLyAmAgVudIFc5qEhbGdRmzWjI3BjgGhKIZAfC9PhKoOVeKsY2fLwA1szoDSVz3Q7tv7jPp8L+syepSrH7Ei8qsHgLQZ0lNa+kYwoAYuIobB0NHpGsSdE0CFmUYEENmtVKsrhy4xDmj53ecGKIMMSDN5LbLrDYUq+vaUovVucN2SzUDHgAonNU2XHvidnpDZrVnl8gl91ZRgPG1KZ/XyPPleIYYEAmz2oj15zhYBhnO0nB7n4qfYbh4OvATnJ1uz+3WHcdQrK56rokmYJG6gHScvphU1+z+f1Sd1YsFbkTn+NFPPI0vP2y5Z0zL83bH6S//cvNjTl2+v91c6IS9rFZgLc+6963vM+dM3HkfCO4pdX472Gliw6UGLAaSTdGiwLoIMAsUYvPYqYoN3AFnNdBi8u99shKBClysNhD+AACLBeNL39/gk58E3nnlDvu6ybPgOLg2j1mYVGvVV9c1w+0QmdUyV5axszoIsPQTrM7ZMd54GODGBM5qAHj3c+d4bHaGN17JmVi9eGg0Fh4c2SxwV1zTR91ZHXGxWjBfAWxSh21gEgWaMLL6zmrx60cRASLqO78T+B2/A/iO7zA7ju8zE4BErDYRgD3hgO44qy3K89qq5azEeR7uOoArF0FoJlbP5tbOxs3DeyWOg800zurOtV0XAeYhbS7rzbxeO33TJWwwFhxdc/Gw46w2dqzLxPqiYBgQg+M2RiGZs9rk8xJIHS5W/8rrB3jn0a1pMCBPhvjA9c/DfvnT7AtTzA35MdYPM/z5Pw/EKf/8DdBAV5b5LgZkIrE67mJAEmIAoCgVs9oEA6IKjOdF4mz7PmNWKzAgWVrTmNUQGBC5szrJiFkOwiSSy+ecaWYxjUsbAyJxVk+BWros47oUqx/xSjP9sDoAg0yfZuCZCgPShD4RF08KkS5PKzrjjLvoZHqqCbO6Cc1QOICp3G7PuxhntRe5fdYfgE3K3Z8X4azOHf0X/ICTsDBpp3ccWFaNKlMwqylpzI1Y3T+nIqcjZoac1ZZV09tShXOk10Jr3pa6jAqc58H22DnnpZksoIMAh16Ms5OtGHHrnkfHgAAI/LovVpsuIEUAWlusrirEhY/ILR5Nt9tshpvRGX785WfxTdd/sfnaJPWN38j+/1VfBRwcTHPMKctxsAhyrDK/9w47PweWRK5w6BRI4n6AjglbWowfvcm4GA9dA2e1hNH6MJ3heC4fz0ePORawSJ3sS3BAAOt+NuJIAsByiUM/xt/9qSfw/d8PfPjpT7GvGy7Orx7muJcsdoRKq65ox+ahR2m3O0wgZkzWTmHIumJWQLIu4Vv5dPz62QyPz05x65Ucr5wu8fT8gdFC7/Cai9Ms2t4HE/F/L6qCuctEqtY9EOcO3RwAIJpZiDvO6jrh4r0B+/XCy/OA3/SbgJs3zY7jSzAgE7iVpc7qojAKNQeAo0XJ7tmWA7iqLdie2Qb2/MBh4Xr83nr4oMZxsDYTUmTz+SzDuvDJeqI/64SigjurDYVaJ/KZq3hHrHbNHgFZwKLoPDSYH4eRxFmdmTuru2L1J28d4p3Hb0wiVr/4ngj/6bO/ALz8MvuC6XMLAFEEy6rxqc96+LZvA/7I1/4Y+7pB6OqVg2IHB3OeeFh4yTTO6i4GxNhZLXEsU0IQRQlntUJYZpv5mvOjEWY104wMmNUqZzXF2AY0ZsQiUYjVRJOnHzl9Z3Wes3fPpbP6Ta1LsfoRLyZWE1x6wv0qdVbzlg7dYw6IabnBAlp1XKPgCMdhg29u9Vx0jbOaGCYl5XPWtZE44QaOVKxu3OVEZ3Uzi+u8LTexbcSslgWyAACqCmnBAu20zlnFaOV8TvLcToSqdTm1ZYmsJDKrxYtSggEpCjBe2MTOagD0CW6HTyp+BmNWm7nTlrMS59nWQVQlGZv4G2JADvwEp6fbL92675k5qwOJWM0XkBYViC7EpLZYXRSIi0fX9Sec1d/85C9jYa3ZPTWVY+A3/2bgu78b+K7vmuZ4F1CLqMQqD3rj4fnawoEXk5zVoZMj3ijcrx4dMePLNsSEUEkNWAzt/nsmZy6l47lipTJS+zqrKWK1ZdWoO6uyeFMbCX8AgMUCh36Mn/jkY/hTfwr49denEauvHRa4n853hMq6JIrVglmd2btzmKJAUdvwqPcWANg2Fnzs/pWf2+BLr9xlXzcMwgMARBETq1+vcetsYTRuA8Dyit9zqT5I5zgibq5cdPkzF2npbe+BskSce4h8erhcNLN6GJD4NKPP4d5q1Xa/imeBb7ibuJX9oM9WJgfQt+pwUeIkjfpBiIaCBxOr/a1Yfb+azlndEatNske8uc9En9b9miQw7zgT90GryyI1vAeUzOrSM8vbjeweViJN+Xre5PPyfQBcsM9z/MobR/jSo2nE6vd/0yH+wLt/fPuFxx4zPibCEId+jH//K0u8973Ad73wU+zrHMVFqSuH5Q6z+tbZnL1nTJjVc4lYnRoi/fg7vCcCG2JAQqdAmsrveZJuIhB5qoDFFPCdC3BW50QMiMifUTC21wltc7gJWGzdA8374NJZ/abWpVj9iFeaW7SAxSFmtUhKpYZJyVzFJgxFxXGNGGeWBd+tpGB/E2e15fNdeBVbmWp+VTCry6Kmi5+AupU6M2ibGnJWc7xEGELPWaraCOH3lmsTxT/HYUGbkslCDdCcLp4H15Yzq/PcDANiAajS/jUAQJ8wBQFsq0YVtwS6qZzVi3pHSIjPcvMFtO8z9uvp9ho+OPNwJViTXWRhiH7Aoul1bWNAOgvoR5WnCt/Hb3zbZ/CH3/uj7PcTBOg0FQTABz/4SDsQlrMSqyLojYfnKxtLnxCC53mI3KzvrG7cr3TEjO8UfdYh37wjd6UqmNUP0xmuLGhi9T4BiwD074sgYB0sq92NhdOVjQNDFxWWSxz4MX7p1lU88wyasCpjZ/VxxZzV/HhlycIbAei7li0LgVcxd14nb8AEOSZqOWdj9yd+LsWXHb1GO0dZzWZ4LDrFG7dqVFXN1uMGx7WjgDmbWgLVeRbiYPFojrHBwkNWOtt7Ks9xmkU4mNEwOwAQzmzEbW43gNMHJXsOvhjEasuCJd5TLQGYPIfj5Xl9cSKJCc7ETh0tS5xks50NFgDmYvWhyzZbeZfBw3sljv2N2XPr+7CtGmWyK1aLP6OUHXYc0GDGK+MgwDBk57pJ2ZxL3AO+wXUV3Zdlve1k5agho4DFmSNlVoemzmrLguVY7PpuNnj9ZIYnZifTjN3Xru2e2xRidRThy49fx9/+t8/hHW8r2b1r20bvWiZWb53Vt84XxmJ1OHN6awTj4EbBgu7mTkzArE4UYjUJA+J58vPklaU1eZPFDyx5wGJdI8ldmiGRs8B7JjRem9RhvH1dDEjksvlxa9zKk5JGIrisSetSrH7EK81sGgaEu197wU9gAw8JVaBCNQg+J3VhrhDWTVOOfa/u84fQEquJLwp2EEXIJFWsDmwprsOIgQyondUpD/whOqsByMVqKkNO5aw23AQQbVi9HViTyQJ3VuddDhmAojS4t/jEpuemNG1LDUN2vvFuiFBausat1AeLakesXj3MGfvXpC8zCHAjOsPtB60xr66Ypkp1VodgbrcOBoQchgkAto3AZdzrZpHDWYeRXw7/3TerLAvv+3UePnjjc+z3j2IQ4gXWotMJIOp8bTEMCOE9GzpF31nduF+JJ+q6jCHYHWMM3zOMyafAgCzpzOqhgMUyyWndFkGA0MmRnO++Z85WNg59ggu+XcslDv0Ev3z/Bp5+omT3QzvUkVjXrta438KArB7mWLgxe78RzlcqVue5WScbr+USTKz+pRpftvwC++IUzuo5c7l95mXuSosi+vwFAIKAvf/4HCaLS/aOfUQXj8HC28WAZBnuJQtcWyrSq/aoaG4zIaU1bj28V7IN3C8GsRpALcTqCQXgBuvXuq6bxMbcVKw+rHYxIBOJ1d4yRFnbW7FaOKtNNtlEh9imNWcx5aH7Puu+bDurJwgXhOviKIxxmvDuqLI0RrbAsuA7Fdtgagdilh6imYFrX/KuTXOLlkHVqVlQIS48rO5sENkpmxtPMZdzHOCd79z+/vHHzY955Qr+s7f9LH7y00/iHU8ydAkWCyOTxJUrYGI1fye8vlriCWOxuu+EZ8G4hs5qyTyuzCs4VkUXq7sdna0ioUv4MSVyEYAJmNUyxKno7g1q/XuBr5V782Ne68Rhoda6GJCZ29tg2mxgzEO/LPO6FKsf8Upzm/ZyE6iCtC+axDGR+ei6bFc7lTmrDQRFhfjZMM6oYrWi/cTEWT0oVhu0Z3si+Kp7rlnNXMXUyZhYfPeY1a5RwCI7OZWzmiCCDgQhGt1bfAd26jYszy7l//zMwAnPW7HSeFdYz7PabHEuHIpx0XcAG6bTHy1Lls7OJ43r04LtaBvB/li6+Z0TtlA6PwdbPALkCXnjrO60egIwWuj0xCTOOjRJkb/wev757a+Pjt6003gzajGrmbO6hwFxsPRozurQyfthNwIzRNVTRUeIZJOtMHBse6EEN1UUeJjNcLwgMqtlbu1WxauS9q7xfURujvhs97xOzx0mVhu2vh9GGaraws3ghH1tgi6Dq1ex46w+eSPBkR+Tjx34dS+kS4zdpqih5YGFVR7goz/n4SsPP8PeWVPwj4+O8MziAX7hM3M8u3hgxCYF0Ntw//wXLDy7vP9oBtiCi9XtgEW+ueCFBu+ZmdPbbH1wr8KV8ItHrMavkVi93vDwcYP76/AAOOkwq402xkWJedUOs3oCsdqZWKzubDABLVexoehzZZ4xoXKzQZEUjLVv6lj3c8YCb4nVaenSMm142UE/iD7NbHN3OYDHj2K8tj7CP/vRGt/0+K+wL05lPPiqr9r++sYN8+PduIGvufkyvuzK63j7jTP2NcN3wuKKz0wHnNt9lgZs/mYiVs+dXvdKnDnMpWwQsOg7ZU9YThNibhg/Zujm/SwLXiQ2fMOsVjirM5CZ1Z5vMR2ma0Rrd2HrljChdYPNea2Fs5ogVneDYTer6lKsfgTqUqx+xCvNbVKqqRDpdiYgvOLEoj18IrSw23ohmNWGzupumJTp5MbzIEVrmDCrh8VqE2e105s0A2w+Tj5XAPB9OHa12+IHYJ26bDAnitXdSVhT/AWkzZBTBYqVJUpDZ/VgGrOBs1rFrDZx7QcSgWoTW8ytTJ3gWhY8p94NvJkopOrKcc0WDlytW58WWHiGYjUPAbz9kC2UPv1p4O1H95o/o1QYAkkn6VugYEwmIYFf74rVIkX+UcWAALti9dd93Zt3Hm9CLRe13Fm94WK17uKcC6q9lsyiwKbwMY+I94F4f3cXD1Vl9K5VBSyeZRGWc9q5zmbApvDVYvWaONkPQ6mz+nTtmjurARwe1Hhq/hD2nTfYFwwRIABweMVhjkouJt1+JcNjs1PyuMXGF6/3eSWla4xwevG5HP/gs18JpBkem51NhwQ6OsLST/HJ7/xT+J+//m+bu7X54jyJWZv+Z19x8fzy/iO7eAyWPvvMWhgQAEaishX0AwYf3K9wJdh80YjVlt0Rq00xXlA4q2Pi+qhVR0fYdVZPFdIVRWzuLcTqh2BitSEGJHDynf3bOuXZIwbOagC7YvVEQu3xImcGifUar9128dT8ofEx50HOWODiWeWObXKoOSBdK07iLgfw4uMrvHR2A//kn/r4yNM/z4431Tjwvvcxkfqd75xm8zIMYR8s8Au/449jdo938BjwqgHAmvP7PY6ZAUeYcw2eLyZUtvSCuubOajMMSODkPbMUw2oQ7wPugk4yuSZAdVb7dsEyviSVZgbM6sCSmxmKAnHh03jzfA2udFanHlsza56vE/koK3v3fXDprH4k6lKsfpSrqpCWDm1Q41wjGYB+E1v6TCNgu4CO+26vxCRUTIh/2e7fn8RZLWNWl/bFiNWGGBCVsG7ErA4CRE6O+Hz3GpylPg4ojFZg1FmdVw7cgHK/SnZKi4Ixqw02QqTBEYbOateSO6sZtoX4eQkXeOcFPIXTx/d4m6OwgIq0c0NndXAQsIkIX5ivTkvmgjZRUpZL3IjOcfskAOoaL70EvHjABSWi8CFL+p5isRsEYGJ1axMgLvxHN2ARAN72Nvb5HB0BH/jAm302v6a1WEDurI5dI2d1K0+PFRerZxFxM0gschQYEKpO64QeE006WAkT7ud8DuZKU4jVm3MDZ7WTI17tvhPONi793dWqwxs+nlk8AD7xCf6FQ6PjAYC9mLHry2+IN17J8Vh0RhbCm/Gl66wuzPMGvu03nuHjD57Et73rl9kXpkCAAE23hnf+AId+Yn5cy8JBkOEsZ+LfZz9v4/nlvUd28bi84uEsC5t7IDnPWfaKyf0qyR55cB9fVBgQy7ZQVtbOuxaA0byo6Whst31PIFYfHlk4aQXAlXk5iQO4eej5PO7l1wM8Fp1O7qxOznO29poQA5Jm0wi1xwesEwibDT73mofnJti4WgQFVp0QV8uqzc5Vsk5indKGAYsA3vF0jF85eQw/9wkfH7j+ebZZMWX2yH/33wF/8A9OczwAuHEDjl0DL7/Mfm/abSM2ZzYbnJ+ULG/Eto2ugeV3srPKkoWlewX9uI7DNJPC2aICwbEaJmK1UyDNB8Rq3VBIwaxWHDMRx6SgzEKrj2AEgDxHVjk0sVoVQM6LmfFoc04AO+uDOIZ5oPdlGdelWP0ol0g69olMH5mwDBYaQJqMiUCxbuiTaVibGHw759rsxBNf7L5XM4GuhwExc7+yg0yLAXHHnNXUSZPvY+Zm2Kxa17aqcJ6FWPpEty53a/eCAIHmumg7EsRu8UbW9m6IAbkgZ7XsRZkXllHAYuDkvedrkxiEYW4PveusFg54U+OEECK4WL0+K80xIL6Pm4cJ7myYY/ull4AXZ6+zP6M6qyVidZmVdG4cryAAa9NvhX9N4Vi/0JrPgT/2x4A/8kce2Vb6iyrB6e2Os2cblxywGMrCbsqSidUzuljNnNWdr4v3jGk+RAcDAoA8GXcCl4U9qcTqdU2b7AcBFl6K89Pdd8LpxjPHgAA4eGKBp+cPgZ/9WfaFJ54wOh6AZnyq12w8fOO1krmWjZzVfWb1FGOMc3yA//1b/jK++/mf2Dl34+qihSYQwQ+jlDlVkwQvf46L1Y8ob//JZ128tjlqxOq7b5S4Hp5PL1Y/tL6oxOpFUOyM3U0XnombMnTYGqHLrPb0W8jbdXRsMQwIH2fTuDZayzQVRaxTcp3g1VeBT78+Z2LlBMzqNspqfVaya2CAAQGYQ1uU6XpO1NXDEnfjJROrX3WZWG24czcPCqzzvrPa6FwlaEN2DSZwVj+X4e+//H6894m7bBNk6rHQJGNAVjdvsv9/5jPs/4bOasxmiNwM8UmK1z+X4fHo1NwF3l3bFwXi0tB4wkOSuzpEmoLWMc/PM3RyJJn87yapxTZHde5d32fM6kKBFsls/WPyimYW4m53GEDXCoDtul5ixkRdY525tDWz5D176ax+NOpSrH6Ui4egBT5hUSLwBypnNcXpoRDTjJEC3P3aMbsZDZBAK4W2F7B4Mc7q3IRZLViinQHdOGDR99lLfd26D7IMWeXAjxzajrHrwrUqKQ+dLHyIVl+ZWH0RzGqT0ELBrJa82E0xIDJndRP4Y+IgcrlY3XJW12BcPaOazWABqM4ZO259XjEMiOHE8cYN4E58AJyd4VO/WuHF6FV2rxIXZUys3h0L0qQ2XjiEEceLtBw5celNQRS42Lp61XzB8BasxZJxensYkMRlAYu6963D2kSTwt1xzjTOaiq7XDCru5lsYjykitVexz0ElnbuWpVRq2v3mO1qmH8Esfo42ODhg91r2IjVhk6Xd38gxO984eeA01P2hSnE6ihim8Mn7P564w3gZmQgVquc1RPkDWC5xFOLE4QnvGvlosRqUxcdgINZydzKmw1eu+3g6cXDSbAtF1HB8WyHWX33To3r4erixOopWvXfAvXU8RqvrY+aa5CnFZ37ykvKrE4ccwzIFZttrvBFTRMWP4GzeuZm2JwV+Ft/C/j9X/NxNoU3eRZ8v2cWun+vxrFvgJjxfczdTCCFAQBJPg0G5EufjfHJk8eB9Zo7q+8ZjwWLqGQdVy2hEoCxs7oGLsRZ/eILFT565wV8+OmX2Bem6oq5qLp+nf3/dW46MX0nRBGuBBs8uFfh1udSPDE/Nb8G3Y38PGfOasMuSd/juROt+ZExBsQpkBYKZ3Vq63O2XZcxqxXHTDKOZKVgQGYuQ891F+F5ztbgxO5uT7auBxqjyDws9fUNmVgtOm0undVval2K1Y9y8ZAH0lxUhLVJxGqys1oIf91jtlNdKcWF9a4I3jCrjTAgMmf1BQQsGooIjVjdGX0bDIhBwOLMzbBZt66tOHeysu7BtUsUiUScEMcmtN+Eio0QUyeh7/RZXI0rh/ICEtiaAtvAwu3p0rEt4jnoCFRTLJ48Hz1mNQBzZ+18jkM/xuk99rmvzmvmyDF0ugRX5khLF//V9wf4yZ8E3n5416jVMYjsnrOa8QPNFg6zmYW49Hec1VNMcC/rYipaOIyv3BOrPYYB0X3ZWhbCoEbc3rAAWs5q4omKFHmJs9pkU7T5i60DnzyscRRsLk6sFs5q3eMHAa4Eazw82X3mzxIPB565s/r5D1zFb3vuF7ZfmEisfmF5Dz/1i0cAgNt3YOasFp0bMma1affGwcHu7ycQlQGwd2r73zuFs6WmeKMAAGnCSURBVHpRMvFvvcbd+w5zKj+iYjWiiC2kV+wZu3u7wvXI8HzFPKUtVp/aX1QBi09djfHq+ri5BlMIwLJ5d9PJZrKJfRSysDa+YZHG1SSOWkQR5m6K1XmNz30OeOfxBLz9KGJOzfXWfPLq6zbbEDJwVi+8BOer7didZjYT6AzH7fd+SYxfuP8UsNngs7dCPLe4b7zRNg9LrPNdsdoyxbZ0xc+6RlK47D4wDfJ9eobjYI3fMPt37AuPaJdJU089tft703fNfI4rwRoPHgCvfi7Hk/OHk2Qj7GQxCeOJ4Vw+8OteTkiaWUYBiwwDIh9LSJxt32e4TKVY7ZDHWsv3enkLAOhaAdBoUVIMSJ5jnQdMrNYt34drl8jj7Wc1BRbqsszrUqx+lEuI1QbO6jTp/9EmsWn8IbED3w1tLEvEhW+GAbH7qIYkpw+QAEuhlbmVL4xZXTn00ODARlHbveMWeW2GAeFidbyRiNUGrglnwFltAbR7yy5YiFK7OAaEPMfnzLDuvZVuSkTUF5BlwRVOZclGiGvkrO4LVMxZbRCwiBa/veWsBmD+Ap7N2KTxLjveeg1zZjUALJfIKgcf/Q8e/rPfGjO3tsFkNJw7fbE6NndWRzOLiZ+tTYCUEjB6Wb8mZYVcjO4yqxOfFrAIIArKPg9dOKsNxGrfKXsbV2I8JJs8JM6RhycWc9FdtFhNdFY/6IjVpxufOatNRbrHH9/9/UQYkD/5wX+IP/z3PoA8B9644xgxZZmzus/an8RZffPm7mfytreZHa9dbXf1FGL1QY2znDmrH5y5zFH8qAo0UYSn5id47R7LXLh7u2TOakP3q23VO0HZD06dL6qAxSevJTvO6iSuWeelybwocnrdl5vUMXfSiXuTW4vjxHxjHAAQhlh4KdZnJV59FXgquLv784jneujHODvbfum1Nxw8OT8xWiMsvRSrjd0YOh7EIQuDNBTsn37GxhdWx8Bmg8/cnuP5A3Mk0DyqWO4Cvw+qfIL5sefBQssYU5ZsPe9VxmK19cTj+Eff/D/jWc8Mj/drVi++uPtvfuEFs+NFEVt3PLTwmU/XeGF5bxKxGsCuWF34iKjdcbx8r+51R2UZ2HhAxFCGDu/mq/vnlqScL61zbMGsLhz5McVG04QZV6aGMWkWFf856yKghZv7Pq6FK9w72T73U2A4L8u8LsXqR7mKAmll4KxWYEDIzmqRGq1gVpMHdYWj1DQ92g8stqMpCS00ZVbXWUesLgrGVvZpj5QXudKAxSKvmfhJHSh5SJUIpgfYuZMEZVGuC9dWiNVU1zbHgPQY6/wZILvIhADc2TFerS1aAMP2sPLPqwA8g4BFqbM6NXdWL2YV4z22mNXGTD5g63C4V6GqgPWqZsKyqVh9cIDjYIPv+PAt/Mk/dJt9zWBCHs4dhutoXdw0hXFbajSzmKu2JVbXACz3i4sF/ZYpiVgLAHlpsbRzwss29CXOau7KIQuKjiNPZ69rlLUN26NvXta1tStWPwRzaBqI1bZVo8zkThYy88/3mbP6dPffukq9acaYMATe9z7262vX+k5jSi2XeHx2hndffwOf+hTwxn0PN02d1SpmteE/H74PvPOd29+/612GB2zV8fH21xOI1QcHaJzVZVGzsK5H1VntOHj64BSvnB8BWYa7d4Br4cpMUOKdZ233ayPaf5GI1U9dz3ac1XFs7qyeL22sO502m9Qxxq5hPmfOXC5Wv3YvwBOz00mY1XM3w3pV4403gMfsO83XTY55FMQ4Od8KVa++4eKpuYGz2raxDFKcZ34zdt1aLfH47NRYrLbmMxwHG7z6hQppZrEQV1MMyKzcwYNNMTdscIEJf2aF+cyboOvu8cfxoSde2v7+URero2hXBH3mGbPjzWa4Eq7x4NTBZz5r420HdycRq22r3oqoRTFJl2Tg12xDrI0BycGc1ZT7y7KURjyAOau1A31tG64DFJWzNTK1qkH4UMYv32d6Q2fOnawKZhgz6G5Wi9U+Way+Hq5w92R7Tpdi9aNRl2L1o1zi5UZx6fE24p4zC8Amc2nMat8fxoBQF+airaV9rnXNBl0TsVqGAalrxg0zCDdwrApl2nlJmGJAFGJ1ntVmPFHhrI63X9qc5mbOEc+Da1VScaIR8Sd0Vhu59h2Hsbg6L7XVCkzwoLr2vQFntUV37fsO3y1uTew2qWvclvrE1Yy5ki7AWX01XOP+feBP/2ngT//4+80DFgFgucTveO7n8W3v/2wT3mjkrF64zP3auhGS1HyxO5tbu1iJqa7rZV1MycTqooCFmj2zhGcsDOq+s5oHNJHCY4Bt5kRXrOb3l+XQMwwA7GJATi0zBrTr9lFTrYpj0BYlgll93rmGdcVMWlOwen//7wf+6B8Fvu/7jN1uABrB+z2HX8DHP84clTM3p4vVoSVlVqelyzInTOvFF7e/FlzRKeo979n+egK8yOGRhbMsYsGVNZ9/PsICzdPHK7zC3Z9371kMW2IoVkcdsfrhuYcjE67wW6yeupH1MCCRqVi9sHbxDwDWKTGcq12LBVyrQn7GJt4vvbHEi4d3JnFWz90U6zVQVTWclM+NTMRa28bRLMNpujUzvHrXNxOrASzDAucZD8Ssa9xaHbAuE1MUymyGD1z/PP7Y3/0yfMPTn2u+ZlLzqGabFnw+n8S1PkqhWyLjSaxrRUeMP4FYHUW73SuP8FjY1Fd/Nfv/V36l+bt2NmPM6jMXL7/i4YWDaZzVO2a8ifJnfL+fO5GmFnwDJI4V+HK0BjgGhDAuWgF/1rtd43WN1KTL3Zcfd31Wsk1ByjEFYzuVzDmLAnnlwAsJ44zv43p0jrun23HvEgPyaNSlWP0ol2gpp6zJxGJX8jDHmU0TK4WorHBWk/Up12Uviaz1AhPH9AiQfF6Ns7rDe4xLH5FPPG53t7x1vkXlwA1oEzE3kDOrGwyIibPa3XVWnz0scWAiTnCuk8xZnW0K1t5EDVjsYmvKkm2EGLj2G4diSwBexzYWXmLkrC4qCbalNOCh2zZ8hydHt8LaNqmDuWcmVj95I8frm8MLYVaLdryf+AnAQcWY1aZC0nKJP/SeH8MT/r3GnWQyIfcXPtu4at1gSWrOUIwWDku6bjGrAVxObB7VCgLmAo5b46wYc4OA9E6IIkgxIADozxd3Vu+8E4HtuGCAhQLQSzsnLxoAwHWZgLKRX7vGWU0Qq68Eazw4a51XVbFx3LKmEeksi/E0205gk+LC7HuWn8XP/1y9/byoGBAhVnfmMMBE3Rsf+hDwwQ8C3/M904j13eMul31eKaGuXbfw915+P37hlxwsXD6GP8ICzdM3Evzgz/x2/D/+pIV//UuHeM/V14wxIN2g7KriDvMvFrH6sQKvtjEgqWXurD5wpM5qY3EiinAlXOP+CZvLvXT7gInVpvMtx8E8KHB3M2fdhmLeYWgOODoocZJFjTHg1bsBw4AYoFCWYc66+bhY/UZ8gMfnZ/SweFHzOf7we/8Z/vHHnsE3P/nL7Gumzup5jZU4V7Rc+yafl8v41I0BZ0pnNbCLsXrUAxYB4Hf/buDbvx34zu80P5bj4MoixYNkhrUwHpm+DzwPoVNskZl5zjAghmJ1EKDvrM5AN8wBfR56q+LcpW20SAJBAexmZBA1E9m5rs/5WpGIFgmdHEl3ftz+OZTjCmf12Xb9eh6z+e1lwOKbW5di9aNcfGdvFhJeboJB1HVW1zV3VlMxIGqxOqA6qzksf+dcJ9iF9kO7x6Mzbu3h7Sd52neXX4izOgdcewJndbplx509LMl8VgAMA6JgVifrknGACfdWKLtfBTeMigGxLPhuyYTKVnuTKQbE9W2ps7oo+OdFnIQEXtXbhZ8CA/LkzQKvrY8bsbbIKjO8jCjOrL536uL2beDHftdfx9c99ulJnNUAgLOzrVhtMCGXsYqbgCaDBclsYbMgJb7IqXPObDddlF7WxZTvY+GmWJ9vx+864fcEcYNFFbAIwCjE1ndKpbOavOAXY37rOTB2jrgua01XidXU4wtn9Wo7Ru98VlOKq1OV6wKzGd5z/Ar+2l8HPvT859nXie7iILJZwKJsI2SKDbEgAL77u4EPfMD8WO2yLHbcP/NntmO5QX3rN6zwbS/8B/z5f/gcrkcr9sVHFQMC4EPvfog//zV/D3/nH4a4Md8w4c8YA1LsZI/UVd382RdD3bhe43Z8sBuwaMisXhy5OyIlAGxyz1ystm08c3iGL5wfA3HMxerbk3xWi1mFXz25iaeup2xOH4bGAvDhssZJOmvE6jcehnhsdmrmrJ6VW/RcniMpJkAXAcBshhvROX769/9v+PDNX2q+ZlLzWY117jfj7BThnRfqrAaAp5/e/voR3rhrKgyBD3/YfG3A68pBiS+srmDu8LbhCZzVodMyTBWFGd6UV+DXvQ3nNLcZdo46dgm0RhcDUtdICgehW+iPCao8Ln4dyPetyLiKd4+7OqvoJgnPYwaJWHL9xDUhitU3onPcOd/OLR6sA1w1weRd1iR1KVY/ylUUyEoX///23jxOsusu737OrbvW1vsy+6qRZrTLkmxJ3mQJy6uIwME2tvEbDMbBBpPYway2QgIkL2sSIASIX3jBsYHYscEYG294xbKFF0kjaSTNPtMzvXdX176d/HHuraW7ZyTdc1pd3f18P5/+VNXtrtu3q8+995znPOf5uX7M/NvVAugbDZTqDpJOjItZVDF2uVu7XkdTCiTi5mgmEkoEr3c4SnUvkFDO6hWCom6FX9e9tFjdTMTOrE4ELpqdlYhDtPOSEgkETg3Fqt0SOpbm68g65fidBsdRzurqys+wXJKxndVe4lLOar1OrmuH1Zg7xeqiZSYGpPP/JaVegUWoYhwrCv5U9WNAdmxrqhiQsOfcKi5oILN6yC/gSyf34MgR4MrUObXsXbdDGi1xnJszEgPSEiI7xeqqpT3YDTJ2V4HFQl4qtwA7Nr2J6yLtVJDPta9dpcWqWjYZc2Du+2vjrPYStZVidXR/1BCrbavRVagtdqZ0hG0j5VzGWR2J1c/2842KKOXb7yvNl9W+TESArBWZDLYnF7B9tI6fu+ULrW1xuJyzekNcYwxNKFiZFF69+2F84ZERjHhhJbgeFqvHd7t43f5v47+880m8/54H1EYDzurIpVkqAZ4VnsO9fC4YxEoFKm8/zLRTzmq9PoybcpSRIRooNZso1hy1kk1TAN49VMCZ/CBQKOD0XBp70nNGRMVUCji2OIadWXPnQX8/sFBNtj7beiOsvWJIrJbFksrwNnHOhtfSQ4njsKtFdY3R7G+mM0C+o8BiK2JGM7O6y9wVOavjGm+W833fB9x5p6q7cMMNZva5gRjsb+KrFw9gfzosMqorVnteuy6AlO04CU/vOuB6YkUcabUm4hdYBNou6OUCT8vcFaOIZ1gQdIVYrTvR5DhqVVC+29xWWGqq1c1x7l+OmlAsllf538StmwWEzuolTOfbGetzRbXCj87q9YVidS8TLfeMk3sZOrNWc6oW41a4XS1buuM4Y194hYDnhPEH0b6i+AcNsdrxLHWTWOGsduPv93IxIDJ+gcVVZzWlRKESLkHRydX1ZZeglpurI6NTlMR1kRDy8s7qGJnVqzqrw8kVzXHeCgG4UBJKrI4bA7JagQspUW8KOImYBRax+ix8oepot4Ht29GVWV0pNfWdIwDgujg8OInFioc3v6HejtnQFavHx9XjxYvA0pJ6rjPQ83010O0ssFjVH+wujwHJ5aAmguis7k08Dxmn3GpSAJCbralYpJiiT5AUK8TqZrWuBucak4yu1UClZnUXJtIVKsO6E521AYw5q0urX/OKJcQTq5NJ9b8qt49rcaamN9H6XJDNQgjgkU+cwFjzQmtbHLzAQmWVPHQAG0OsNkUqhX2ZWcwXPYw4C2pbL7sJ+/oAAHcdPI3rBs6qbTrHG66QK+TVeXvsGHDlYCjSGMgE3xCkUrCtBmqLavJ6ctFXKwQ1zgPhLut3Nxoo1FwkvdWLxT4b9oyWcDo/CJkvtFfcmRCrR5J4aG4n9ljnwg36ERD9AwKLVR8oFjE3B6SdUATTEGjSyWaraOHCZAX9bsmMWD04qPpXuVCs933tSbFUqju7vFQWysigc41dXjcqMt6YmlvKZoE3vAF4xzt6+1q4RmwfraPatPHeI59SG3TPg0QCgddAuW6rcUxULD1u3ZEQz5Mr7uHVmohfYBG4dAxIrabMeG6M69fTOavjTrKEUaSdq4KAMAYkTr8wPNaUU0WhYnf3j6HqZonwZ541QmAkXcJ0Od3qa88VfSVWb6X+Vg9CsbqXCS+WcQPo/UQN5cqym3iYw5QMYlx4ohiQVQTF6HfGxXOa3ctd63U1m6cbA7LclVSr6S3tuVQMSKOBmkZmdevC2jlTGrk83JqWyyPwJUqNdlTB0kJDDfjjOnJs+7LOaj+Oszp015dr3XnNrRuljrPahZoI6Wi4+ZKtZnXjOqtdgbq0VkyE1JsJ6ESJrnBWh20g6dS0OuR9QzYWq0HbWW0gAgMAIAQO7Sjgc6/+XbzqjkX1v0sk9G/s6bTqfJbLwGOPqW2jo/H353kQQqJZ6nBWVzTdDQC8tKMmFzrFarfEjk2vEjqrO8Xq2akGBr34hcr8QKgYkI5rgXbxL8tS8UWNlddDAFqxUFm3hKVC+37SEqs1CiyqJZmXEqut2GK1EB1xBwAmztTV8vReFqtD55+VW1ARRkLEjwG5nLN6K02IJZOwhMTVI9MYsRfUtl5uA9HKoMXFlltVS1BKpTDkFTA7r86xRx8FjvSdV9/bQmL1iJ/HzFQTUgJ/8I0b8ZYrvqF3r11ecDY08xgRq7dVcXppCB/7RAK3jx5XG02I1eMZPDi9F3eLz6sN0cS+Bv0DQsWAlEr43OeAu/afDH9ZfAEwk5atzOoLZw1ety2ruxisic80Y7WEdaDDta/prPbtcAwuZaswrucaclZvcXbs93D0X/57XJcJ26qBduB74Sq5YlHpL1JoO2pdV3Qb8QBUagKupWGUiVzQy2NAIt0kzml2qczqUDPx48a8hvEqK8TqvEZ9I8tCyq2pegON7mt1OV+Pp0GEjGQrmC5lWteC2WISg4wBWXcoVvcyOgPTaOlFZdm/OOqMxczB9hK1VaNFYh9niOdBzT52dBrNZFav5qzWiAGJnNXVlVEojaaFhKspVi871kLdQ9Ktr/6eZ0gyCJ3V4WebW5TIajqrbdFEo7byMywVY4rVQsB3myuX04duBC1ndZRd3iFWF0qW+czqcNmYbcfvjK5wVjcaKNZdpLy6llgdZTbLknI+X5xzMeznzdyAoyXuk5Pq0cSARIj2ICza75498ffneeh3S1hYbH+GJgYkrSzs6Nyis7q3CXOQF3Lt++LsdBNDfj5+ZnXkrF5WtFA3usezmysK82iL1YkE+twyFotOSwQvlQ04q53LOKvLMcVqz1PCRFO2/u6jjwpcPXCht6MPIhf1xIR6TKfjr7RJ2WoSv+PeJWsbKAbEFKFodk3/WQz7S0ZyeteU0FmNxcV2jJVOJyaZxEiwhJkF5SR77DHgcCp0bG+E4momCLOKp6eVWD/oF3Gwb1pbUASwUqyOY+ZZxu7tdZxcGsav/eEgfvmGv1Xt1URm9Y4+HMhO4YgXCuCdhfZi0j+UUDEghQI+8xngnt2hQUBbrPZaYvW25KK56J6xsfZzA/tM99so1L3WxFKpLBAk9HPLvYQSqNFsqhiQJsVqY3RmdgNGroO+D2U8KBZRL9WQ0KkXFeL5Qt3DO8XqqmZmteMo801lmbDcaChndcyV8wBWjRZpFViMg+siSNS6VvMBQH4J8Z3VAJJ+s0vXiGgVboz5fxvpq2K63BarcxVPjem2Un+rB+nh3h6RVY3sHdtGkKitFKujZSJx7u/hEuJKVay+NFlnYO5B3dSjGIHWkqn4N3Y3SFw6szqus/pSmdWNhlr2rVEwAUD3hbdeRyESKjUIkqHzLxzwLuWkWj6pm1m9SgxIPg8VMRKjzfpeKNQu+wzKDVvPWR1lhnUEYudLCb0YkNUyq6OMM02jT9cES6OBQk1/wgLpNPq9Iuan1X4eP5/B4YGLZm7A0cDh1Cn1aMrx1ukY6utrCwBx8DyVRTbf/nvLtYR+FMqyLOzcQlPv3CJri6smaWZy7Q7y7HQTQ14hfgxIIFQUTGfOvG60BtThlBuOWVetEMgGVbXKIrzOatdFiJzV5dWPKbZYLQSQTMJN1FFdUILf0ccTuHpgorfPr2jy7vz57tcxsAJPubs67om1SlMtId5Kg6dQiHjHFV/Ai8ef7Om8agDte9XCQlus1nH+OQ6GU2VMF1NAtYpHH2niSOaMagO9PHFjklQKI/4SpmYTOHYMuHE0nAzScT6G1yRZaYvVSzUfaV+zvwVgxw7g8+evwh1XTGE8mVP/fwMZ7vtu6MOPX/XV9q62b9feZ3LAQ6HuopEv4ZvfBG7JHlPf0BGrM8BSVWVWP/6EhYPZaXPX7U6x2oSzelD9/VEx76WSrcYHmqaDroLpjYZyvZrKrN7qrIVYHYiWs3pmVmDEX9K+z7qeUCu8l9UhStka7ctxVMRMYdl1Klw5H1esFujQnTr2WW448WqnhfsN7GprgVFEoQD1GcQUq1NBsyu6p7XfKF4k5n0hnYa6FoR9LimlutZupf5WD0KxuoepFOrw4uT/AuEFYnWxulh34/X1w2zpFctSI2e1xo3d9a2u5fRGRMrIUbtKZnXssU4UA7LcWa3rLl+lAFzk8kj5eksSW87q5VEFcT/c0FldrzZW5EXlC0DajicCe55c1VndlBYsV6OITpBAuUOsB4B8xdGLAfFWcVZHEyxO/P+X50F1bCJxInRWx1oJ0Uk6jRuHzuLBJ9Ug+vGJLK7qNyRWR86exx9v/S4jdIrVOq5qQInVQR7Tix3F2qoGxOqooxVNBC029VYtkLUlCJRYvdD+n8/OQlX7jhsDkrRWOKtLJQPO6miVxbL7l+7S1L6g1hUJZESsdi4tVpeqMcVqQDlK/TwmT6uJxqNPOjiyUZzVZ892v47DaoVhowinrTR4CgLAsnDr6CnsTC/0/vU1igGZnzdWx2FkoK4cX4UCTp1sYm96Vgk0hopY9jyhs3pq3sGJE8D+9JTarnn/TnYKKY0G5iopDGWWLx999th9KYwnF/GuFzyoNhjKFb7+pQN43+1faW8w4KwWKXVsX/xWGi+8QyJRyqtvaPTlMgO2igHJ5/HZrydx947H1sbIYOBakBpwVQxIOLF0YSFQTnBdV+0ysTpf95AKNPvyRLFzZ/v56KjWpHBEELRjQCanLYwF+mK1qjuxrA5RRfWZtMTqRB2V4rKxpk5spuvCTdRRK62MFpFSxB+Dh87qFTEgBagJIR2xuu6uFKvzUqs/Kzy3bRBoNiEQHjdXy64rFKt7GDVDFPNkdl0EidVjQJpSIOHFO5E9D93VswHUq03YQm+5jOcLJSwvd1brFFgM7JWZ1VEMSFxn9WViQADEv6B53XEC0T4LNU87P69VBC7skeeWgIxTid9xtCzYNlBvWCtuFEt5S8NZjRWij4mImXSqW6wHgEI5oTX76ngW6qYjZqCE9eWTNrmaj4xfu/wbn450Gi/a9iS+clwNbB6/2IfD/RfM3IAjZ8+x0I0zNKS/TwC4/vq20HP4sN6+wirPM0tea4Ll4lJKOZ50PoOO8/bECWBuXuhNBJG1JRKrO53Vc8CQFz8GJEhZajLMsLPa91deD5u1BiydFTwA+pK1bmd1JYHARIHFSzmrK2qVV6xrbTKJA9lpnHhC3V/PTTrYmZrv7fMrcv0tLKhHTbFaAl2rgkolqOJfW2nwZFnAlVe2X+/evX7H8kyI/uedReA0Y0uGhyRmyilU5wuwZBMJS26dCBAASKWUWL3g4sRxiX3eRGt7bFwXKbuKfDH839RqaEoByzFwbqXT+NZ9v45DeEK9NlUETwjgla9sv9ap5RERCr7//xd34a1vrKjYCs/Tun9lRnzkax5qc0s4NeHiQHba3CTTvn3t58sdtjGw+1JoSKstVudSRsTq1j28VALqdcxXkuhP67v2CbonUl72MiOTdi3jQbGIyZkExoKcGWf1MtNcvuIoU5dGgUUvUVvprA7rnMW6ftk23Eu4tQHEN0hEBRaXO6uLIn5mNVbGm7b2m5dKN9M4XgBAtYryUq1tGN0qk8I9yhayZmw8tJYz2DYCp45SLRRru6rHOrEvwK4n2tnSYSexXJLagycvsLCwwlmtl1UsHFsN9JYVWCzpFOyLnNU1KNEruoBFjjddZ3XHoDTKrNZ2Vve76qKeV26J4xdSeMuBWa2OY8IOCwxWuidT8kVLw1mNVZ2E6hfGb1uptEC+7nU7q6uOVgzIpTKrSw0H2zRiW9wggWpTdk3azFVSGExrOn1SKdwxdhz/9ZGXAc0mTkxnsPfmWTOiz3JnjymxemwM+PVfBy5cUGtqdbBtjKSKahl1XXU+zub6cN+OOQNidROyXMH73gfYp0fw8uQTve/826oEAYa8PGbyfuv6PTtv4Sa/ALj9sXbpp8LJwM7Mal23MtSpuTwWqVSUesIyQrG60OGsriSMFFg8W7mEWF1NxHdWp1I4kJ3GU09ehZsLQMqtqVtuLzurly/L1xGro+tzp7M6KmK8lZzVAHDDDe1iu7fdtq6H8rTYNjA8DMzMqNcGhMqRoSamSxk89VgNV+wKR/5bpbgiAFgWRrNlPH5mHCefrGP/tkl1TdGJAXEcFWFUVNGGtXIDtqmInZERtWLnrIqWMCZWA8Ddd6taHkNDZiatwgKmj53L4PlHQle15kRIZjyFpZqP7zxs4+YD8+q6bapftH078IEPKFFdt28IhP+bapdYvX14QT8GJGmhUreBQgGyVoeAGpcSQ7zznSp+8CUvMbK7dFYgN+sDhQImZzJKrNYssOglE93O6mYThZqLlKOx8s5x4CfqK3KglQ5hx7t+hTGv1dJKt7YQUqsYpKqf1i32FopCK7M6lZSrxoAUC1J9tgbE6vkLZQx6BY7negA6q3uYQl6qmac4J50QK7KKAWjPkq0mKLYGTxo39lZWVCTSRVVtdfK9LlG0UEsEFwKOLVfkFcu6ZhRKZ2Z1FK1Rr6NYd7SXjY1uS+Bisa8lVh+7mMWV/ZNaQqXtCDSaVnfbArBUCJ3VMdpXqw0sc1ZLQKttpbNhpe+obUlpLgZktYgZDWd1a8lYx3nQaFqwXc1LtWVhZKiJXDXA4sUS0GzCtppmBlBjY92zzqbEakD9f3btMlJMayRTVsuowzZ7dqkPu9Lz2suIvUQdlVIT09PAt08PIeuU2LnpVSwLw9kqZkqpVjuYnU9oFVi0U566FnRMNLac1dr3xGVidcXSE5YB9KUbK5zVRgosVlZ/f7Fqa8WAHMxO4fgJpVMe3tHhVO1VMplugdpEDEhH29qSMSAAcNNN6vPYtq3bZd2rdLo/Bwe1dzc8amG6nMFjjwFHdunHNGxERocamC6nMXmhoYQkXWe5ZSHtVVGouUCjgcmLUi39NyEAL3c8mxSrLQt4y1uAV73KzP76+tDnlvCvrv82RMGMWJ0eS2GxGuDYCQdXb5tXG01et7dvV1EQJhyP0f8mFKsncmkzMSBJW/XnCwVMTwMjBmIlSAfXXQfce6+xYrujI1BjhGIRk1MCY8mcdl9exZF2GJtqNeRrHtJBI37bdRzlrF4lBgRAvDYWRousEKt1ndWOo2JASt1/a75k6WVWp6CKoq4SA6LrrLaERKNUxdyFihKrTV67SSwoVvcwxXxTa+YpSIaFnzrdutGJHfOG2RKrOwbQ5YrQHjylM0IJipH4GcWA6PRtXBcCWKVgn55j23FWitXVilTLRTQG/BCiVTU6OtZCzdPOKx7c5mGukgSWVCX1Ib+olpJritV1mVixBCdfSsR2VvuBWOmsNhEDkrXUDGxH2yrUPFW4MmZn4VKZ1doxIElbLRnrOFYAZjq46TRetv1x/OzPCbx0x1Nqm4mbsON058eZFKsNMtJXxXQprT5bKTFXTqqOiKazOmlXUSo0MTMDPDndrzKre1lM2+IMDzQwU0m3YpFmF22tAosi8NV9plOsNuCs9nyxIsO/WIKK1NCJAVkuVlcNiNV2BYXK6tf8aj0Bx2poxYA8dcrB0aNoix697KwGgJGR9vPOa+OzxfeREE3Ui8v7Wxp9jY1KNgvcfz/w3vdujCW5+/e3n197rfbu/H4flYaNR49ZOLxtQW3cSjEgUO7yi8U+iHq4wsLA359y62rsUa3iwgUYESkBqH5Qp4jWy4LHyAjec+1n8SO7vtgqMqg7EWIN9CFhNfHY2TQODIbX7V6dxE8m4VgNVJdU33CqkMSov2TGVdtUYvXZ003sTs/17mdAMDomMFXKdMSALGlfY5QBqaMfV62iUHeRSuoZ8bxEHZXysrGmjgvaceBaq4jVOgI4ALgu/MTK+mmFUkI5oGP25VIpqBXjy8XqKF5EQ6xOO2UUFmqYm6xh0Cv29rV7i0CxuodpVUuNedIFKQulZVm9rQtPzH22ihZ2itXlcACt0cHL9gG5sHI0AKDRQLWZgONpNNFLFC1sSgHLi98JWc1ZXS5DLc/WEb6EUKbq6LONYkA0ndUik1YdsYUivvUt4NbxM+obumJ10+qeCAGwVErEdlZ7HlY4CWVNPwYknbW6Y0DqdeTrHtIa8SqOn1B//3JndSNmJeaQ1pKx8HOtFBtqEsSE0yedxn37vos/+vMkXr/3AbXNVMe5M1O6V8Xq/lrLWR21K+HYesJHWDykWJCYmwOkFMg4FKt7mf4BgflKsuWims3ZWgUW4ftq9UfHfaYlVus4q5PWyhgQA1nYfVm5TKy2tcXqpF1FsbrK+xsNABIiYcX7LJJJ7M3M4vSFUKwen1Xbe/386utrPz9yJP5+PA8ZpxItigIAlCvQXsm2YRkc3Dhu4k5n9fXX6+8vFE0eO+7hyGgYL7JRPgtDjIwKfO78VXjhwUm1wYCIkPIbyqFXqeDipMC4KbE6keietOplwSOdxiuveArp+gIwNdXapkU2i32ZGXz2iT042B+21169bjsORpIFTOWTQLWKZkOqTHjN/5mfCou7Fwo4c1ZgV2qeYnUPMzputcXqWdvI6g0n5XavvKtWka/5SKf0xGo/UUO5uFoMSMwC3I4Dd7WijSac1XYN5arVXjUOVTcq7ZRj97udwF5RPw2IdDON/mwQIONUsDRbxexkHQMUq3sCitU9TKEANfOk46yudzur66WaVjHE1ZzVpbLQzqzO9lvI1fyu+IOmFBC2geJny3KgAWh1Rh0bK1y1pbK+u9xOSJUDHR1vrYai7gwsAGQy2JOew+kzAn/918BdO8NCeDpitWupY13urC6Gzuo4BRZXiQGpVZpwrYZeZnU20R0DEi3DSsafBLBdCzW5MrO63LC1xGo35XQVWJydkRj288bE6uePnsTb75vGLQNPqX3GFeiW07ksu6fF6jRQLmN+oqQ6IboDB99H4NRRLEgMDTZhiaZyVnNA0rNYqUB16EOxulBKqEnhuG7dVe4z2tEa6Lgedjqry5Z+ZnW22TUxXKtbcCyNAsm2rZaPNroHIwDa13LXjTcplEzCTTRQqQg88ABwZCgUqXpV9Ii4917lpv2lX9KbDPM8ZJwylpbam8oG+hrkOWDXLuWqP3wYGB/X318qBcdq4KHjKhon2raV8Ps8fOKeP8DvvvbzaoMBsT6dVBmyKJVw4aIw56wGuqNAelnwEKItrJ86pR5121Ymg6v6J/HtqR3YH1xQ23q4XzSWKWGylEV9eh62aKh7lm4MSNppO6snEnRW9zijOxxMlTP4L5+6Al88ts2IWC0Cv7tIcuSs1tlt2OeqlLrHsLIWOqvjjBfDuI7lOdj1cl1LM4JlIXAbKNXtrvHyUtlWWkHcFY3uKjGvUM5qrai8dBppp4z8bAXfeySBqwcmeM72ABSrexhdZ7WftlUMSIfjq1WgKW5mdZSp2+kqjmJAdMTqPgtLtfYAulIKRUqdzsIqjjfUakqo0DhWxxVKrF4m2Osuz245tjscwIW6q9/HTadxIDuNj39rB86cAe4afVht1ymw6Fiodx5ryFLJVs7qGCLoam2rVIK2OJPqd5DvaFuo1VS2tE4UTGBfMrNaR0fJDiTUeRB2bGZmoPJ0DcWAWELif/z4g0o/SSbNLac+eFA9Dg/3rJA0OAjMVVRW8dkTNeVy0T1Wy0IyLXCxmMVofxW7M/PMrO51wv+NLIZFymRTr2if76uVK4X2tSBXCgu46sSABNaKybtSWSBp6wmVfVl0OatbAnPczn1Yx6HaSKgYq050XTnhiO59r3wI3/sesCO5QWJAtm0D3vUuJVjqEInV+fZ1ulwJzQEUq3sb2wZ++ZeBn/kZY7m6ezOz+JV/8R04uXCFQX+//n43EqkUXr7zMYiLF1qvDexSOauLRVyYssyK1Z3F/3pZrAZWitW6EwGWhSvHF7EjuQB/4aLa1qN9QwAY6ytjspTF5LEFFf9g4P/lpZ22s/qCQ7G6xxna5mK2nMKHHzyI//HaTyqjkG47iP7fXc5qT+/SFRZYXC5Wl/P1+BPZrqtWyOWX7bPYVP0NjUicwGuqVf4d4+XZQqC3onG1mmSICjdq9L2z2Zaz+sv/nMKLxp/ccpPCvQjF6h5GN3snSCfUBaLD8bW02ERGY5+tYgFdmdXQzlDMDtrIVYPWsZ46m8C+zIx2niwAozEowCViQCr67vKWYzv6bBsNbVEVQEusfv9nX4j/9OsSohp+HhoDftu1VAzGMrE6rzFb6qcSK5yEJiZCEkkPTSm6XPsSelW51yqzemDIUvnia+SsBtBe5mly8OT7wG/8BvALv2Bun4ZJBG6rKOiJJxvYk541MnAIMg7O5AcxnCzizQe/oTpgPTwo2/IEAdJOBYW5CnI5wBHhORz3fPA8DPt5zMy1u1PTSz5GfL1CXa0lxB332mJFPwu7rw9YrHWI1ZHArNEhd12g2uh2zgAAqlWV5x13QBJes9549UN46CFAFMM81V4Xfkzheci4oVgdTiqUq9bWzKze6qRS+PBdf4IfOPI4MD2tti0v4rfZ2b5dPV4IxWoTMSApqJV3xSIuRs5qU4Liy18OXHON6g/v3Wtmn2vF8LB6vBgKywYEmqt2F3Cwb0q5LoCeFmrHBquYLGXx2c8C1wyeN9K2skMOlmo+GktF/OMjQ7h+6FxPfwZbHbs/jXozgUpV4FU7HzaTix+NBTrE6oa04AQa9++wwOJyF7Qyd8UUlm0bgV2LFhy2KBca8Cy9/kbgN9Uq/07dqJ5Qx2pYrC6WLZVIoOWsrmBuqo75nIWx5BLP2R6Avd0eRs0QacSApEPxr0NQnJsXGPAK8WNAlhcLAFCuWNqCYrrfxlJHEbzjZxwcyF7QG5B5HgSK5mNAXIFa+RLOap39RoUbO+IqJADL0RQq02ncMHQWb77yQdxy3Y1qm+dpuX0Gs3XMzKRXOqvLjnJWxxGrowKLXRmt+nno8H21NKrDWQ1Ab8LicpnVGve1/mEbC9Vk21k9J1TxN5Ni9WS4lN70DTibNbs/03ieqvJcrOALX3Fw37YnjXwGyX4HZ6cGMDy4gP9w89+otm+oOjlZA5JJjAU5XJxo4pPfA9545CG1Pa6TzPcx4p/HzHwCoZSC6UISo2NLejEgSUstIe6KAUkgSOiJ1Zk+S8WAVKvqfiibqr1qTLC4bkc0Vse1v1Gqqmtv3AFJ5BxdWMDu3eqxa/tmx7aRdmtYqrgq/9u2jUzgkg3I4KAqjD052Rb/OjORtwKdRSsBI4JqOmth9pwHlEqYnLYwumsJSB3Q3i8AdXw/9VNqQrDX+wTLJz50CsOGXH9VFf9l5i/bG3p4En9ssI6Hz47gbz8yji/f+d+BpP7fPzhmY66Swke/vg0vOXBeGRkofPUu/f2oNWew3V1Aq1CEKbE6LOitxreuXgSj48Cz6suH3ygVmvHHy66LpJ1Hsdh9jpZLUvU3dJzVPlBqdDirpWyv6Iv7OYTvk5XQEBFSKFlIuRoFFjMZpJ1JfPXRIdy4e05t2yrmiB6mx++eW5tCydKKAXHTrnJBd4i18wtCZbXqxoB0OasNuF9TPpodec1PnfVwsG9aW6QEAFluX9Gb1brq8OuIypGrtuNOUa5aapbQRBZ2R4FF9Q29itRIJnHL2Bn88R1/2r4Ba3aYDu0q4cnc6MrM6ooT21ntpewVy95NONbheSr6Jfx/yaq+WG17iZXO6jAGROejbbnAI2f1rFDOat02ALQFnnPn1ONWW9rk+xgJljBzoYavPujhjvHjZpzV/b5yVsvp1u8hPUwyicMDF3D08QT+/M+BH73ya2q7hlg97OcxvdA+R6cKSYwEes5qN2mvnLwz4Kx2kk47wqkQOpVTKa3JS9eFKry8zFldytXU8cYdkAwMqEdVvXTridUAMkG9KyJNOasZA7Ll2LFDCZ4TE+qakEptvUH0jh3dfSETmdVZSxllikVMzyUwGiyZ7xv1ulANADfc0P06inbTwD60H9cOTrQ39HCfc2ykiY+evBEvv+IU+tyykXNrcNzDbDmFrx0bxr1XhrWCKFb3Lp6HoVQZh7KT6n6rOYkPoP3+SC+I+nM6YzrHgW/XUCl3O6vLxWb8voHjIGlXW5p61z41tY3Al8pZHYrVzWodAqEOE/fa6DiqVkqpuyBkoWypRALNGJDvnhnEoeFQrO7h69ZWYQPcQbcuhZKlVWBR+CtjMOYXBAY1xGo3ubICqwmhdnlkx/FzLg5kNcXqsLptrdJsLXVuzRKaEKs7JgFKBtzltoPuHGgDLnAASoRY7qrV7Igd2lvFEwtj3c5qKVGuJ+Al6rHabCsGpHMSoKKfBd6atCip/1dxqaFXLRhhpMTyApP1OkoNB0FSI59y2ZKxmammcmOYGJRGS2ijz3erdZr7+rAtWMRXv+li13BZtVMDwnIwGCixunI+3LDFPteNRhDgmoEJ/MO3BjA8LJGthfmvcTukoVg9k2tf86YLSYxoZs0L11GTbF0xIPqFGzudPvXFAhKiqS36uJ5Q/YJlYnUxV9cTqzMZde0vFID5eeUuTibNTN5tEDLJRlcdA4rVWxTH6S7UuNUiQADV5nfvbr820C/aNtbERKEfKJXC6MXq1hQnstm2c/2668wI7IcPt58fOtTTfaOxbRYeX9iGFw8dVRsMtK2hHT7mKilM51yMuWG9hR7+DAgw2l/Fob6OcbJuvYEggEBHjZTOotNxsW14Vr1r0TjQUZNMQ6wulrr/3kpZ31ntB0LVTwv/9sXpKvrckra7PGlXUcgtE6tLCTW+1yyweHRyCHsyoVjNc3bdoVjdwxTKCS1n9YqsJABziwkVAxLXWZ1MrBIDYqA6/bJjfeqsp8RqnQ6DEPDsZpcAWio0tQv2OX5ihbO6VLHUfnUyqx2BqVLGvFgNtCMajh9Xj4ODWrvbsa2Jc4WBbrE6vBEJ14l1g/eynso97ZwEKBtoW56nZmCL6vNcmGui340/YQN0TAR19hYaDdSaCTiuRucmjKpoltTnOjMDDHkGinwAwNhY9/9lq7my+vownszhb782iNuuNNcJGdiZxPdmd2LECkVPOqt7myDAtYPn8aGv7MJttzTUddbVWJbpuhgJ8pjOB+1J0bqtP4EbHU+ns7oa5vzpTN6l0xBCorGYR2mmoMRkTXHGccWqmdXFXB3JhIZYLUTbRR0V/tpCrmqgQ6wO77Un5gewMz1PsXor0inUbkWxGgDuvLP93ICovHePxKn8EFAsGsnv39C84x3A3XcDb36zmf11ttebbzazzzVibH8KAk280H9QbTDQBjJjSeRqPqZyAUYTYf+QwldPs2O0hiMD5gq4wvO6Chc2SlW1uls3BiSxSgxIUcaPAXEcBKuI1crgp5dZnU6HdQHC8fLsxZqKt9QplO26SNmV1uLAiEJk6NAQqzNOBScXB7EnWIP6TiQWFKt7mEJZ86RbRayezyUw4BbjZ1YnE2ppcqegWE3oZyh6HhKiiXpJieATMx62Jxe0b+x9QRWLHYUbWxdzzbziFTEgtYT2Bd1xgRf/7XsxcV4t7WlU9CNLWmzbph6Phq4BTbHa8l1YQqJe7HAWR59HzBuQCHxIoKttlStCX5zxPKSdcisBZXG+iX4v/jkAYNVzKxJqdAo3wveRdcrI5dTL7zyRxNWDE2Zulq4LDA21X2+1G3B/P7YlF/HZR8Zx7Q5zYvXbfiqFF28/rmKLDO2TrCFBgIN9UyhVE7jturCnq+MsFgLDmQpmyun29SDK49O5brmuynvuyPkr1pSbRGu/mQxG/DxmJhsozpaMiNUqBmQVZ3W+qdeHAdpRICdOqMetJlanml0DvS+d3Y8Xjz9JsXorsmdP+/mOHet3HOvJLbcA//JfKvfvvn3auxvbYWOymEUtV4IdFdvdqmJ1X5/6bPv6zOzPsoA3vEEJ1bffbmafa8TAvn785JEvqZhMwEj/WKSSAATmSx76q6Hwxf5hT/Off+xJvGz74+qFieuA7yPjtIskF3INFZWp6az2E7UVYnW5JONHdlzCWV024KweGLJULaaweuPsVANDfl5bsE91TAJEFMq2nsnTspDOCEhY2NM8qbZttbFyD8Lebg9TqNgqeyfuSeetEgOylMAhP76z2u0L1KC0I9houhDgKn9SO6oh685jaQnwS4CfqCkTqOaNfSBVwXwliV2Rs7oE7fyllli9LAYkSGg6q12BYt3D3KzEdgDFglQXXZNideRO0xSr4fvYl5nB6QkHrVI0kQMw7mzp8kIUAEomikn5PtJOBYW8xBBU7GmfW9YTUIIAQNN48U74Pga8AuYWExCLQK0KDJuKAQFUFEhUnGmr3YD7+jCeXMTEYhrXbZsCJmFk4OD5Ah/64b8DLoRuDA5GeptUCo7VxEv3n8Xzr7KAz0M7BmMkW8HMCVVwtmIFcK3wWqApVgNoi9X1Oop1F4Hb0Fuamk5je/IcJi4I9M+VkbQT2n9/wrNVLNLyyuxLDb0YEKAtVp8MBw5bTazOoOWsnp0FXKuGjFthgcWtyB13qA7M0FDPi39ryt13qy8DKEERmJ4Ghj1DRdVImzvv7HbD9yhiZBi/98Lfa28w0Y+zLMC2IWt1WJWSuf2SNcMdH0SrYp+JMZJlIe3VsFT1MF6pIJ9rKl3HgLO6XO32m5ZKiG/Gc10lVpe791kshoYxJ34fsW/IxkIlCRRUFM7sVF05q03EgKxwVtsqykljfJ/ps+BaNYzXz6m2sNXGyj0IndU9zHzRUy7ouCf0sqxeAJjLOVrOajvtq0FpOEMGAJNLKYwnc9pRDRmnglwOeOIJtIPtNS8SA6ka5ivJdgxIdDE3HANiIrf74M4KXjB6olVDqlCAdrZyi0isjtAVq10XezKzOH2xLUzX8hXYohm/vQaBymjtclYbyEP3faTsqnJWS4mFBaliQExkrJsWqz0PA14R80sJfP7zwF1XGi6G2FnhfavdgPv7MR7k0OeVsCtpOIusc0l2lA1OepNwdcGnf+CP0G+FSxgyGa1dDvfXMV3OAOUyZiYbKq/asvRyP51lmdVhJn7Sa1z+fU9HOo1tyUVcmEpg+kIdGaeifX0R3srIEoBitQnSaagCcJUKvvJliZeMP6G+QbF66+F5wA/8APCSl2yp3PY1JQgwlszh6MkkRrzwfkCxeusxPNz92lAb8Dtr2CQSXBHT63SuPjW0wiAT1FqrowpLTX1ntePAT9RQrnSbFlTMaS3evsO4klK5e5+5vIWsU9Jqt16fr0yOoW40NyNVLSadGBDHQSo0oXVSqoaJBBpxjOl+G7vS82plO8D7QQ/Aq2YPM1NMYtjPa8WAOFYDtUIV0aVrPu9gYEgjrzcSuDrcrxfzaYwFOQPO6jJySwKPHW3i8JCZJVP96Trmq8l2DEgJYWZ1fKHOCSJndVuwL9VsZG09AfT9/+osGo8WMT+v8qWnZhPq/2+ic7NcQNMVqz0PQ14BcwvtG0J+voa0U4l/AwoCSKjJleh2aSRixrKQ9uvIV12gWMTCglAxIDqDPd8HUFqRWQ1A71htGwN+GfNFHw/8UxMv23UaaMCcsHz33eo45+aAm24ys8+NQjqN7alFXNN/HqIQOqjWQqw+eNDMPsnaMDQECAExPwcsLqptms7i4cGmigGpVDB1roIRf0n/nF2eWR06q7XF6kxGidWzLj7xd+N4/YFPAukrzR5rSKlgIAYkEhGi6+sWE6szGWCpqpzVRx9u4rqhc6pPoFv4iRACJJPYmz6Fbx4fwmhUBG+rTeQTdY/q70fLLWSoDQwOClQqHf1NXrd7myNH1AoWxwFe8Qoju+wskpxfksac1ZVV86VjitWRs7rSPX5dKlrI6K5Ejs6lKAZkRmJQ11ntuioGZNlnIJtSicwaQnhm3xD2pEND0+goV0P0AHRW9zDlegK+XdeKAQkSNZTy7cHtfN7Ru0gsu+gAwMVCRt9ZbVnIpurIVX089r0qDvebWVI/kG1gvpIy66wOnG5ntZQo1cKCWjodEc9Dv1vEwqLax/HzvioyaUKsHhnpdvl1zh7HwfMw6BUwl2vf2E6fktidntOKARnyC5ifb28qVw0UWASQjnI/CwUsLAr0u3ozxatlVsuamYKYg6kK5qtJnDzexP5UR1VqE6RSypn1Yz+29WaLLQv7d9Xwkbv+GJgynB/YKaAZyNEka4htK7eulMCZM2qbpljd3ycxX0li4kwd//4/JjAamBGrHavRquOAeh2luovAl5d/3zPY7/ZsHo/PjeLBJzK4Z+dR/WtBdM1f7qwuSH1n9fJJtauuir+vDUhmwFYD3UIBjx9t4Kr+ixTTCDFFEGBvZhYPnBrFiL2g+skUJ7YmneMiQ/3jwdGwPwCwXW0EbBv4kR8B3vjG9qouTTLJplodVS6jkJfK1GXAWV2pLnNWR2a8OGNw10WQqK2IAckVbGSdst64doVY3VTOap1+TBQDUuz4DKQEZJhhreGsPvDC7fjlm/5OvaD5qCegWN2rNBqAhBI/4zo1fR+BXe0Sq+fyjiogEfemGUU1dDir8zVXXXw1l6VmswK5qo8Hv9XEdX2nW79PByVWt2NAphddjAQabnUATmB3i9WNBsoNB77b1BarB7wiFnLqtDx+ITAnVtu2mi2O0HWneR6G/AJmc+3P8YknBQ71TWo5q7cnFzAx076JzxQC1V4121Y6FVYjzuexmBPoc0vanQUAKvojdPzVKg24VkP7/zWQqWO+klLiv3tRbaQ4YQTR34ed6QXgYvi5anRouhgfbz83tU+ydoyMqMcoWkJTrBaB+p9/858TSLp1vO2qr+kPdqNcwlIoTjcaZpzVALaN1PHh47fglXseU7cs3WONrqXLKv4UCzL+stSITKYtWN94IzA2Fn9fG5DMsKfE6lwOTz4FXJGd4v2AEFMkk3jtnofwmRNXqLFBMkn361blllvUvfDmm7uLmWowtM1ri9VbzSBCAKgiyUtV5axeWBRmCizatZWZ1UWpzHg6zurqMmd1KYGMo+msTqVUbMmCMnedO29hPFjUOx9cFym7gkKns7rRULXNNeN2vCMH8NLtYdyaoesA0YNidY9SK9bgWA110YnbcfJ95awutKul1moCbqIRXwROJiGERCMfitXNZltU18nnBJDtEzhf7MfkJLDPm1AbdcXqfuV4ixywp2dSyv2r46xOOt0FFut1lOqOKnylQxCg3ytifjESq1PmxGpAVeV+0YuA175W+38VOatnc+2b4hMnbCVWa2Ssb08uYmKuLfadnB/AvsyMtlidygg8Mr8DzVweC/NNlVmtI1B1tvcoYqYYRcxoitXDCcxVkqiWGvCqYSeX4oQZovgbGQqAppwuV18NvPWtwAc+YGZ/ZG2JxOrT4aRoNqu3P9/HgFfEd486uOfWeVzRZ0BQdF3VwS+G9+9aTd1ndJ3VALaPNXC+MIC7+x9UGzTF+suJ1cm4Tp9O3vQmtSLkrW/V288GJDOWRK7mQy7mUClJtdqO9wNCzBAEODJ4Eb9w46dxZGCCguJW5s47gd/+beDHf9zYuGtwdxojuwNg927g1a82sk+ysUinpJpwLpXwDw+P4yXbn9CPAbHqKNe6x/HlCrRjQEpVuz0+ApArOsi6+s7qfreEhVklJj/4eAo3Dp/V68fYqpBisdNZHWkyuv3NVKodP3fkiN6+iBEoVvcosxdrGNLJqwYA34dvd8eAaC+RCALsSs3j3JS6GJbmSvDtmtqfphvhRdcv4v0P3otX3jzdvugYEKsXqm1n9em5NPakZzVjQFY6q0sNA2J1Oq0u6Dn1OT510bBYbdvAm98MvOY1+vtKpTDkFzC31OGsPuXiUL+Gs9pxsD2dw0Qu3SpWeGqxX4nVmp/BG140ga9cPIj/83dumFld0h+URO29Mw9dN18bwP79wIPTe1SuWRS3wwGUGQ4d6n5tSqwWArj9dhZX3ChEYnWErnsilcKu9By+9GAS+4YNuaiiIjqdzuqGi6TfvPz7ngHj2wSSdgW3jR5XG3SXu14qBqRoSKxOp4F77tmSy6iDkTTKdQdPHrewYzjsc1CsJsQMiQSwcyc+8LxP4vmjp7ZcJj5ZW66+1sK177gD+MVfBK67br0Ph6wDmaxa2VsvVPCPx7bhZduP6ceA2DWUa91jzVJZxF/JJgSSgUSx4Xb145ZKthFndb9XxMK8xEMPAVdvX4BtNfX6yL4fOqvbMmajUFZ51SZWt77vfcp81FmPiKwbFKt7lJnJBkZ0xeogaDurpUS1CiRkKKjGPZldF/v7ZnB8bgCo1zF5poLxIGdkEHnb82r4/Ts+jB+99RE1s+d52g7ggQF0O6vnMtiT0RSrlzurGw2U62EMiA7pNAa8IuZz6thmljy9AptrSTKpnNUFrzUL++QZDwez0/FvwkJge38R5wv9rYmAqWJaLaHTFIB37QJ+/oZP4wsPpLCQs/Sd1cBKZ3XJjLP6ppuAf5rcj339C0q0t+3ebAMbkcOH289HRjgw3ars2tV+7jj6kwyDg9idnsM3Hs1ib5+hIl2uC9+uoVIOxeqowGKg76z2+gP842t+C14izNk3EAslpVjprC5CP7N6q5PN4vt2PoZ3fvgOvOQ6FoAjxDhXdhSYpaBIDHLffWb8QWTjkslaWKr5+NLXHbxw7zkl1GpnVtdRWeasLpUtNQaNue9kSqBY7xarc2XXmLN6fk7iYx8DXntNGL+nI1YHwYrM6sJ8FSm7YkaszmZpPuohKFb3KNMXG0qo1Mw1Gk/n8aePvwCNcg1PHJO4IhNmtcYVl4XAgeEcTiwNA6USJs/XMZ5cNON46uvDffu+i32N43rH2EH/oNUlVk8sprE9uah14bWTbrezul5XzmpPX6zud4tYKDgoFSXcREOZd005q01i2xjM1jFXVq51KTtmdTVcdDsGS5go9gOlEppNAFKqz0BTrEY6jVtHTuIbR9M4M5NUOdiaYrVlCTSaYqWzWvP/ZY0M4e4dj2OvFxYZpTBhjs5s6bvuYjblVmV5kT7d68vwMHan51BvCGwPQkHRQA60Z3VkVkdxUybMxX19uGW0IwJF9x4T9VNWOKuFGWf1ViabxQ/s+zaemu7Du15zSm3jPYEQc3TeD268cf2OgxCy6ciM+Fiq+fjwZwbwxmseURt1tJ1EAl6ihnLdVlGsIaWKgJ+ox953kFwpVi+VQ2e1Th8uqcbcU/MOPv5x4L6rHmttj00QIOVUVhGr2d/cjFCs7lFmppsYCZa0HZX3v+SLeCo3gmMPVXD0oQauHphQA1ONwen+0TyO50aAYhHf+67EvsysmZmsyN11UVNQ72Bg3MN8NQkUCgCApoSa1dT4XAdHbUwU+7rE6nLDge9pOt5cF/2pGhbKPr78hRpu3xvmdusKKWtEss9BoeYBhQJmZ4GRrH5e1Pbhqvpsy2VcvCCxLVhU3zAgVvt2HRm3ihtHz6tKxJpikuPILod9qSxUJI6u8DM0hHdd/UW8dujr6jUjQMwhBPDud6vc9pe8ZL2PhqwXiURboLj+ev39hc7qXX052BV1rzHlrI4W8KBeR0NaSLgG7gedjpEox10Hz4NtNdAoLROrSxSrtclk8PzRU3j4h/4jgjprGBBinEOHgG3blFA9NLTeR0MI2URkxpKYqyTxzWN9uGPbCbVRR6wWAr4HlBtOKzITAMoVC0EivrPa8l00l62Qy5VcZN2Stljd7xbxZw/fhFe+QiKo5dR2nbGt5yHl1FCsJFqC/fSFutLNWOR+0/G0YrUQYpcQ4otCiEeFEEeFEO8Ot98vhDgvhPhu+PWqjvf8vBDiKSHEMSHEPR3bXxFue0oI8XNr8ydtDqanoO+sBmCnPBzITGN+stoWqzVF4APbSziRG0FjqYj/8eEM/tWVXzPmrAYAzM6qRwMDMn84jUrDBnI55HJAxg4LQ2pcePcf9jBXSWFyLhS8Gw0s1Xykk5rOaiGQGXSQq/n4zN818Ir9T6rtPZrTKdLhjSafxxNPAIfGQmFZ47MdH65jotAPlEo4eayq8qo9T98BG7qoP/jDn8PvvPCjapumCJxN1rvy0EtlYSSzGkNDuGX0NG7tO6ZeMzPLLEeOqHWZukVGycbmJ34CuPdeVXhWl6Eh7E7PYV9qujUxasJZ7dt1FQNSr7cHJSZW2nSK1bp51QDgunCtBqqFWtfmUoVitTaeB3ge0qJgtG9ECAnxPOD++4F3vGO9j4QQsslIj6XwxYkr8YIdZ2HVwwl9TW3HD4TSNjrE6lI1ET+zOjwmAbSd1VJiqeIibVf0+nCWhf5UDZ84fT3e+vqymVpMQiCZBAp1Vy1rBnDuHLAztUCxehPyTEbrdQDvkVIeAfACAO8UQkTlMX9HSnlD+PUpAAi/9wYAVwN4BYA/EEIkhBAJAL8P4JUAjgB4Y8d+yDJmpqXKrNYd5Pk+Bv0C5qdqeOQRiWsGz2uLn3u2VXFscQx/9+kEbr86h2G/YEZQXe5oMLHPTEY9Li3h0aMdMSg6F0nHwVuueAAffvxGNaPXaGCmnMZwuvz0730arEwKDWnhi19O4MWjj6uNutnKa0X4GcpCUYnVI+Hyd42bsJdxUW0mIEtlHP1uDVf2T5oZmIfHuj+4AK8ciuqan+vukRLO5gdazup80ULaqeiLSQMD3ULq/v16+yOErCSZBF796vY9Qod0GlcOz+GDL/r/gJmZ9v51EAK+L5R7pliErK2RWJ3N6u/P8+Am6qiWuosMF8sWM6tNELXRaNUZxWpCCCGk58ns7MPJpRHcMXysLdRqCqpeYKm+YeSClhKlagJ+Qk+sBtAWq+t1NKVQq/k0zT39fRLXDJzH4R25tqFDsx+TylhqdXcoVp+fAHak5mmO2IQ8beuTUl6QUn47fL4E4DEAOy7zlu8H8BEpZUVKeRLAUwBuDb+eklKekFJWAXwk/FmyCrdcsaCEZd1BSRBgwC1ifqaBU6eFiuzQFIG9rIebhs7gp39tDD/5mjOt36NNNgscONB+3ZkvG5dMBiN+Hk+dcfE3/6eBV+98SEWA6MSrCIFbdkzg0fltSqis19FoWrBdA07NdBq5qo87b84hKIfirwkxYS1IpZBxy8hPl5RYPTSntuvcKHwf25OLmDjbwAPfFHj+6EkzbSsSpmdm1ASD52mLPnvGKjiTH2zdKCfmA2xPLug7qxOJ7kKA+/bp7Y8QsrYIATEyjD2ZOWXvAIzE93iRWF0oYGFeot8tmYmF6rz/LcuZjoXnwbEaqBbrXZuL5YQq+MPBgx7RqjOK1YQQQsiGIbNDjeFvzzyihFrb1jZJWIGnIjuinLhGA+W6jcBtxO8jui4k0O4TRo8G+m83HSnj/ud9EpieNuOshhKri53O6gsJOqs3Kc9KXRNC7AVwI4AHwk3vEkI8JIT4oBAiWku6A8DZjredC7ddajtZhVdeP4ED2RkzYrVXxNxME7IhYQmpfyInk3jv9Z/FrYcWcXgsFChNXRxuuaX9/O679feXyeAnDn8Zv/XV5+Mz/wDcs+uokYHezqESzhX6gUoFzVoDQkgzjrdMBu++5gv4lTc/qS7oltW7A9NUCtuTC3jqSanE6r5JtV2nLQQBjgxcwKOPCXzvkQSuHzpnJrM5GuzPhxMABtzqu7fVlFgdzmyfm09hZ3peO2ceAHDbbe3ne/bo748QsrYMD6vHyOliIsYqaDurp6YFRoOcmesLAIyNqccrr9TfVxgDUistE6urCcaAmCD6X0WDvF7tExBCCCGkRbovgdHkEg5mp9SGwUH9aEvfV5EdoVCLahWlhmYB7tBZLSuhSB0J4QZWxu2/ysV9+74LnD+vokt0TYMAkpkECvW2s/rcRZvO6k3KMxarhRBpAB8F8DNSyhyA/w7gAIAbAFwA8FsmDkgI8XYhxINCiAenp6dN7HJjYmjmKRKrz01YSPn11jYtBgZwZOAC/urdX2tfKE3lKt92myp49aY3mcnS9Dy89orH0WgAP/zKBSTtmhHxc3S4iclSFigWMTcrMeQVzDje0mm8+9ovIJ0LiyumUvo3tbUilcJPHP4KfuWDO/Doo8AeJzxmHSd4Xx+ODFzAA99x4SYa8BJ1M20rlerej4E2sHt7HafzQ+0lSAsp7DDhrAaAG25QItKLXsRZYkI2Anv3dr82MCHmpxIoN2wgn8fUbAKjwZK5grvvfS/w9rcDz3++/r5cF65VR7XcXbehWLUpVpvg2mu7X1OsJoQQQnqeRAL46js+1B7Kmyhq7fvKBR0JytUqSnUHQVJDL/A8ZTooKLG6UaoiYTXN9N+i2ksnT6pHA32YVJ/dlVl9ftqls3qT8ozEaiGEAyVUf0hK+TEAkFJOSikbUsomgD+GivkAgPMAdnW8fWe47VLbu5BS/pGU8mYp5c0jIyPP9u/ZPJhy0AQBBr0Cjp10MdYXOr50T+QoW3pmpn2hNCVW+z7wkz8JvPjFZvYHwO5L4Y9e/Bd4z2vCgnUGLpJWJgUpBVAoYHJKYCzImXFWRwLHhQvq0USe6lqRSuGl25/Ajmwe738/YBfCLGidY+7rw5GBCfz2J/bj3tsNZb8CSvDvLFRowlm9RyhndZi/dW4hrZzVJtqB4wD/9t8Cb36z/r4IIWvPwYPt52NjRq7dgwMSs+U0UCgoZ7W/ZOb6AqhJxec9z0yh0dUyq6Vsi9XMrNbj8OHu/xPFakIIIWRDcMXhjn7b8vpccYg0lw6xutxw4Cc1+nOui5RTQSGn+nFLczVknLIZsTrS8556Sj0aMIy5GQ+1ZqIlVk8vOBg2UeuN9BxP26qFEALA/wTwmJTytzu2b+v4sfsAPBI+/xsAbxBCeEKIfQCuAPBNAN8CcIUQYp8QwoUqwvg3Zv6MTYhBsXrAK+Kx0wHG+wy5oKML7eyseWf1WhCJBpNhTIWJgV4yiaRdRWGmhIsTTYwlDS3PjuIqTp9Wjz0uVgPA773hq3jD6yWwtKS2a4rV1w+ew2/e+xW87wfDm5qpttU5+WXAtb9zn6OiYPJ5AMBkPqnEJFPOR0LIxqEzW/6aa4ysiNm1vaGKuBaLmJpLqPuMKbHaJK6rMqs7xepaDdWGDcfTL86z5QkCNbEAqLiZqJ9ACCGEkN7miivaz02I1ZHpsEOsrjZsOL7G+NN1kXXKWFpYA7E6ijKLdILOIt9xibSBUIeSTUNRt6TneCajnjsAvAXAw0KI74bbfgHAG4UQNwCQAE4B+AkAkFIeFUL8FYBHAdQBvFNK2QAAIcS7AHwGQALAB6WUR439JZuNqFqqoRiQExeTGMucb23TIsrmnJ1tC5O9fHGIYikisdpEBnIqhZ2peZw/JTB5UWI8yJkRwXeEMe65nHrcAGI1CoVWoUl4np6Lrr8fvl3Hjx75BlC+QW0z5SLrdFZ3FjCMiTOYQaVhIz9TRhqqbmPCkuYyZQkhGwfPU9eVxx5T8T0G2LVT4mxhAChcwNS0hRv9JSDoN7Jvo4TLR7tiQKLsbrqqzfC2twE/9EPqvssJUUIIIWRjcNVV7eeGYkAAdGVWAzaEp9Hfcl1k3RJyixIAMD/TUEW9TfThIt0owkQtpg6xem4O6PNC4b6X9SgSi6cVq6WUXwWwmkXoU5d5z68C+NVVtn/qcu8jHRh1VhfQlBbGU8oBqn0i9/WpwVIu1xZVe9lZHUU+XLyoHk2In2kV+XDu7AAmJ6FiQJL60RLYsUM58qS6WfS0WN1ZtNCEq7pznwsL5otJdbrRjhzR3186jX93/afwjr++C3/87wBfhEUpuESbkK3J29+uJu8MRZjt3JPAucIAkH8SUzMCo8klM5OtpgljQGqVtlhdnK8gYF61OYTQqwdBCCGEkOeeTrOUiT5cEEAAaJYqsBAVRbT1hGXPQ9YpI7eoVsJdvAhsSy6a6cO5LrB/P3DihHq9e7f+PjvE6ocfBq4bCwtYUqzedHBtZq9isMBikKjBs+sYc2bVNt0Bj2W1ZwbPnWv9np4lOlaTYnUyiZ2pBZw9JzA5LdTybBP7dd32chnASLbymtGZXR6J1bptK5tVg/J8vhWvYaxtRQXQkkkznYVMBm++4gE8NdOHRx9pYmdyVh17L58LhJC1I5k0JlQDQHrYR77m4fx54PhEoAos9uI9wbaVs7oKtcQEwMXzDbXiiGI1IYQQQrYqQgD/+l8DL3uZionTxffhJ2qo5NQKtuJiDSmnotffcl1k3TIWc8qfevEiMJ402Ie7/fb2cxNidShKy2IJDz0EXDsYpgf0Yh+ZaEGxuleJYkB0BdBkEkIAA0EZ440Jta1zhi8ukVBZr6vHXp7J2rmz+7WhGJAjAxN45HiAY6cDHMhOmxMpd3XUIe1lJ1U6rW5ipVJ7IkDXWW1Zah9Smp1cAJRY/Z73AB/4gJn9BQEgBF40+gTe+54mXr7z0dY2QgjRJpWCJSTe8IcvhSeqyuXSi85qIeC6EtWmHS5HVWK1MVcOIYQQQshG5YYbgNe/3kwND9+Hl6ijkq8BAGampSouqO2sLrUWzF+csjAeGOzD3XorMD6uxHoT4/ogUJ/BUlU5q7On1HaK1ZsOitW9iqkIhPFxAMCAk8d4JSzaZ0Ks7iwmlUj0dsGfTvEXMHORTKVw68gpfOOJQRy/mMT+zIw5UfWGG9Tj/v3A9deb2edaIEQ7h+rkSfVoQlyP2lIkVpt0Kh86BPT3m9mXZQGpFO7a8Ti+/o0EfnDfdxgBQggxRyqFsSAHS9bxiTf+JQK71rMdcccRqDYSrYI/FyakcuUws5oQQgghxAyhs7q8ZFCsDp3VuaXQWT2dMNuH8zzg/vuBn/opM/tLpZCyK/jmYxl85zvA1UEYMdKjfWQSnx4sK0/QaKjiREKYyZdOpXDn+OMYE1NqfyZO5KuvBv7+79Xzq67qbffU0JD6u6OquYac1f1eCXN5B4fGFpSZ1pRQefPNwHXXbYxB/vAwcP58O4fKRMb24CBw9my7QFcvC8CZDF687Qn8zk+fxMBSEUiZiwAghGxx0mnsSp3Gke0n27FIveisBuAGCeWszueB/n5cvCDprCaEEEIIMUkQKLG60ACg0jhHdMXqdBpZt4QLOVUz6+KsjW3bFs2unDe58ri/H++57mP406++CC+/p4HUfAGwNXO7SU9CZ3Uv0umq1j2xhQB27MDvv/DD8O26ytM0cbHYv7/93ESxurWk0wEMqCKGuoSCwa3bz+GOXWfUNpMO4I1ysY0+1/NhVpQJZ/UVV3S/7mWxOp1G0q7hJ+/4nnrdy8dKCNlYDAzgZ2/8LH50z+eBxUW1rVfF6mQCtWaiVb/gwqSFcYrVhBBCCCHm8H34dg3lvIpinZmBclbrCMvptCqwGGVWz7mqD9erekR/P16x6yg++OI/xa++L8wuSacZxbkJoVjdi5gqrhjRmdlsIgIEUNEf992nhMU77jCzz7Xk5S9XIvW/+TfAwID+/sL/zc/e9Hn8yJEH1batKFR2TgIAwLXX6u/z6qvbz5NJc7Eda0G0SmFyUj32qJBECNmAWBYO7G0g45RVfYgeLuDqplxUmwlEgYcXpyzlrO7VgQ4hhBBCyEbD9+FZdVQKhsXqjhiQxYKNrFPuXcNBKqWc1OWy+gAARoBsUhgD0oukUsAP/ZC5Qd6ePe3ny4sN6vCKV6ivjcDzn6++TBGKkof9k4AVXhy3olh97bXAX/6ler5790rxOg7btrWf33OPuhn1KsvF6q3YBggha8fQEDA7q56nUj3rGnFTDqpTdkusPnHOxc7rFoDklet7YIQQQgghm4XIWV1sAgBm5hO4ws/rmRnSafS5JeQKCUBKyKZU3c1eFauFUGa2mRng3Dm1jWL1pqSHVaAtTDoN3HWXuf3dfDNQKinx+5ZbzO13K+O66qtaBebn1batKFSOjKhiCR/9KPCDP2hmn0IAP/MzwPHjwPd9n5l9rhWDg+pxYkI9bsU2QAhZO4aG2s97eOWGk3JRbdp44MEEGimgWpEYDZZ4TSSEEEIIMUUQwE/U22L1QgLD/ZpiteMgm2pgseJh/kJZFfQGelesBtRKeYrVmx6K1VsB2wbuvHO9j2JzIQQwNqYKAUave/mCvpZcc436Msnhw+qr1+l0gQM9LSYRQjYgnWJ1D3fE3YyHUjOBX/urg/jH/wTc/9pT6hu8JhJCCCGEmMH34SVqqBQbgJSYXnAwMr6kXQwxO2gjVw3w8z8PvPO276iNvRzlFsWEUqze1DCzmpC4dAqVQdCzy7PJGrJcrKaLkBBikg3irHYzHgo1F6enA/yv/wX8yPOOqm/wmkgIIYQQYgbHge9KlKsWUK3i/FwS48mcdk2TzKCDM/lBfOd7Am88+K1wY8bAAa8RFKu3BBSrCYlLp1DJAfnWZGQEsDouo2wHhBCTjI+3n3cWn+0x3KyPL104hNu2n8GrXw0MiTn1jR4W2AkhhBBCNhp+0kKp4aK5kEOlJlRsh6az2u1P4nR+EHffsgiRW1Qb+/oMHO0aMTCgHuuq0CT7m5sTxoAQEpdOESHKLiZbi0RCzeSGRcU4q0sIMcq+fcBb36omR/ftW++juSRONsDnJ67Cl1/6hwCeBxSL6hucwCOEEEIIMYaXsvGjn/kRnPytPPZlwyLcms5qZDLIumW87Mgk8HhBmbF6eVy7f3/361271uc4yJpCZzUhcel0Vr/iFet3HGR9ufJK9Tg+Dhw8uL7HQgjZXAgB3H57TwvVAPC8Fwb4+Mv/O25NPQpICRQK6ht0uhBCCCGEGOP7bpjGb77gf+O3/qQP1/SfVxs1ndVIp3EwO4XbBx9Xr7PZ3o443bu3+zXH4JsSOqsJicv4OHDzzWqJTA8vzyZrzA/+oCoGeeut3ZEghBCyRdi938buq88CuSawsNB2VlOsJoQQQggxxtWHajgy9TX82rHX4ZrsGbXRgLP6q/f+BsTkAfW6lyNAACWk33038LnPqcdeFtZJbChWExIXIYAf//H1Pgqy3gwMAHfcsd5HQQgh68vIiIpEmpwESiW1TXfwRAghhBBC2mSzEAL45dc9ihcuPQHYtvrSYWRE6b3Hj6vXvS5WA8B99wEHDgDXXbfeR0LWCNoACSGEEEKIHiMj6vHMGRUFEgRcbUIIIYQQYpJMBgDw9hsfxLZkzowxoDPeFAD6+/X3udbYNnDTTfpCPelZOIoghBBCCCF6RGL16dPqkcUVCSGEEELMEorVmJxUj7p51QAwOgokEu3XG8FZTTY9FKsJIYQQQogekVh96pR6ZF41IYQQQohZIrF6ako9mnBWJxLA2Fj7NcVq0gNQrCaEEEIIIXqMjqrHmRn1SGc1IYQQQohZsln1WKmoRxPOaqDbZHDokJl9EqIBxWpCCCGEEKLH2Fh3NfZIvCaEEEIIIWYYHOx+baqY9e23q37cm97U7bImZJ1gGjkhhBBCCNEjmQQOHgSefFK9vvba9T0eQgghhJDNRhAA27cDExPq9d69ZvZ7++3AzTcDrmtmf4RoQmc1IYQQQgjR5+qr28+vumr9joMQQgghZLNy8GD7+eHD5vZLoZr0EBSrCSGEEEKIPnfcAQwNAXfeyQEPIYQQQshasH17+/mePet3HISsIYwBIYQQQggh+mSzwK/92nofBSGEEELI5uXWW4GvfQ248UbAov+UbE4oVhNCCCGEEEIIIYQQ0uukUsAv/dJ6HwUhawqnYQghhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsO0JKud7HcEmEENMATq/3cTyHDAOYWe+DIJsSti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7TJ5fe6SUIzo76GmxeqshhHhQSnnzeh8H2XywbZG1gm2LrBVsW4TwPCBrB9sWWSvYtshawbZFyNrRa+cXY0AIIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSre4s/Wu8DIJsWti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7eur8YmY1IYQQQgghhBBCCCGEkHWHzmpCCCGEEEIIIYQQQggh6w7F6ssghNglhPiiEOJRIcRRIcS7w+2DQojPCiGeDB8Hwu1XCSH+SQhREUK8d5X9JYQQ3xFCfPIyv/PTQoiF5T8jhHiXEOIpIYQUQgxf5v37hBAPhD/7l0IIN9z+YiHEt4UQdSHE6+J+JsQMm6xt7Q7/lu8IIR4SQrwq7udC9NmgbWvVnxNCvFQIsSiE+G749f44nwkxwwZtWx8SQhwTQjwihPigEMIJt78pvF49LIT4uhDi+rifC9la9Nh5sGr7XuX9l7p/s2/YQ2yytsW+YQ+xQdsW+4YbgA3attg3JBsCk+eXEOJU2La/K4R48DK/8xXh+fGUEOLnOrY/53okxerLUwfwHinlEQAvAPBOIcQRAD8H4PNSyisAfD58DQBzAH4awG9eYn/vBvDY0/zO3wDwllW2fw3A3QBOP837/zOA35FSHgQwD+Bt4fYzAP4fAP/rad5Pnhs2U9v6JQB/JaW8EcAbAPzB0+yHrC0bsW1d7ue+IqW8Ifz6lafZD1lbNmLb+hCAqwBcCyAA8GPh9pMAXiKlvBbAf0CPZbSRnqaXzoNLte/lsG+4MdhMbYt9w95iI7Yt9g03BhuxbbFvSDYKps+vO8Pr5s2rfVMIkQDw+wBeCeAIgDeGvw9YBz2SYvVlkFJekFJ+O3y+BHXh3AHg+wH8WfhjfwbgX4Q/MyWl/BaA2vJ9CSF2Ang1gD95mt/5eQBLq2z/jpTy1OXeK4QQAF4G4H+vcmynpJQPAWhebh/kuWEztS0AEkA2fN4HYOJy+yJry0ZrW8/m58j6skHb1qdkCIBvAtgZbv+6lHI+/LFvRNsJeTp67DxYtX0v+x3sG24QNlPbAvuGPcVGa1vhz7FvuAHYoG2LfUOyITB5fj1DbgXwlJTyhJSyCuAj4e9aFz2SYvUzRAixF8CNAB4AMCalvBB+6yKAsWewi98F8LNY2wHBEIAFKWU9fH0OqjGTHmYTtK37AbxZCHEOwKcA/NQaHgd5FmyQtvV03CaE+J4Q4u+FEFev43GQDjZa2wqXeL4FwKdX+fbbAPz9c3EcZHPRK+fB07Rv9g03IJugbd0P9g17kg3Stp4O9g17kI3Wttg3JBsJA+eXBPAPQoh/FkK8/RI/swPA2Y7Xz7bPaLTPSbH6GSCESAP4KICfkVLmOr8XzsjJp3n/awBMSSn/ee2OkmxENknbeiOAP5VS7gTwKgB/LoTgtWWd2SRt69sA9kgprwfw3wB8fB2PhYRs0Lb1BwC+LKX8yrJjuRNqQPK+5/BYyCagx86DVds32ZhskrbFvmEPsknaFvuGPcgGbVvsG5INge75FfJCKeVNUBEf7xRCvNj8kZqFnYanIZxx+yiAD0kpPxZunhRCbAu/vw3A1NPs5g4A9wohTkFZ6V8mhPgLIcTzRbs4xL0xj+8z4fv/BMAsgH4hhB1+eyeA83H2S9aeTdS23gbgrwBASvlPAHwAlwzdJ2vPBmtbl0RKmZNS5sPnnwLgXK6gA1l7NmLbEkJ8AMAIgH+77Gevg1pq+v1Sytk4v49sTXrpPFitfbNvuHHZRG2LfcMeY4O1rUvCvmHvsRHbFvuGZKNg6PyClPJ8+DgF4P8AuFWoAo7R+fUOqHv4ro63PW2fcS37nPbT/8jWRQghAPxPAI9JKX+741t/A+CtAP5T+PiJy+1HSvnzAH4+3OdLAbxXSvnm8Ns36ByjlPKeZcf8RQCvg7rIP+2xkfVhk7WtMwDuAvCnQojDUAOSaZ3fTeKzEdvWpRBCjAOYlFJKIcStUBOs7DiuExuxbQkhfgzAPQDuklI2O7bvBvAxAG+RUj6h8zvJ1qKXzoNLtW/2DTcmm6xtsW/YQ2zEtnWZ97Nv2ENsxLbFviHZKJg6v4QQKQCWlHIpfP5yAL8ipTyLjvMrFJmvEELsgxKZ3wDghy+37zXtc0op+XWJLwAvhLLUPwTgu+HXq6CyWD4P4EkAnwMwGP78OFQuSw7AQvg8u2yfLwXwycv8zq9AdeZK4fvvCbf/dPi6DlWk5E8u8f79UIUCngLw1wC8cPst4fsLUDf0o+v9+W7lr03Wto5AVYf9Xvh3vHy9P9+t/LVB29aqPwfgXQCOhm3rGwBuX+/Pdyt/bdC2VQdwvON43x9u/xOoCtXR9gfX+/Pl18b46rHzYNX2vcr72TfcAF+brG2xb9hDXxu0bbFvuAG+NmjbYt+QXxviy9T5BXWv/l74dRTAL17md74KwBPhOfKLHdufcz1ShG8khBBCCCGEEEIIIYQQQtYNZlYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYQQQgghhBBCCFl3KFYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYSQLY8QYkgI8d3w66IQ4nz4PC+E+IM1/L0vFULcvlb7J4QQQgghZCNhr/cBEEIIIYQQst5IKWcB3AAAQoj7AeSllL/5HPzqlwLIA/j6c/C7CCGEEEII6WnorCaEEEIIIeQShM7nT4bP7xdC/JkQ4itCiNNCiB8QQvy/QoiHhRCfFkI44c89TwjxJSHEPwshPiOE2BZu/2khxKNCiIeEEB8RQuwF8A4A/yZ0cb9ICPFaIcQDQojvCCE+J4QYe5a/+1TH9m8KIQ6uywdHCCGEEEJIDChWE0IIIYQQ8sw5AOBlAO4F8BcAviilvBZACcCrQ9H4vwF4nZTyeQA+COBXw/f+HIAbpZTXAXiHlPIUgD8E8DtSyhuklF8B8FUAL5BS3gjgIwB+9pn+7o6fWwy3/x6A3zX89xNCCCGEELJmMAaEEEIIIYSQZ87fSylrQoiHASQAfDrc/jCAvQCuBHANgM8KIRD+zIXwZx4C8CEhxMcBfPwS+98J4C9DN7YL4OSz+N0RH+54/J1n/RcSQgghhBCyTtBZTQghhBBCyDOnAgBSyiaAmpRShtubUEYQAeBo6JS+QUp5rZTy5eHPvBrA7wO4CcC3hBCrGUf+G4DfC53RPwHAfxa/O0Je4jkhhBBCCCE9DcVqQgghhBBCzHEMwIgQ4jYAEEI4QoirhRAWgF1Syi8CeB+APgBpAEsAMh3v7wNwPnz+1pjH8PqOx3+KuQ9CCCGEEEKecxgDQgghhBBCiCGklFUhxOsA/FchRB9Uf/t3ATwB4C/CbQLAf5VSLggh/hbA/xZCfD+AnwJwP4C/FkLMA/gCgH0xDmNACPEQlBP7jbp/EyGEEEIIIc8Vor16kBBCCCGEELKREUKcAnCzlHJmvY+FEEIIIYSQZwtjQAghhBBCCCGEEEIIIYSsO3RWE0IIIYQQQgghhBBCCFl36KwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLuUKwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLu/F9cCxj9aYoWTAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(25,6))\n", + "plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for training data: 1.7195710200875551 %\n" + ] + } + ], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAADSCAYAAAAL37fDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABSYklEQVR4nO3dd3hU1dbA4d9Kofei0qSJ9B6KKIiIgKCoIIoFbAjYr+Varvez92vFhogNRJCqgCC9inRCB+kSpPciqfv7Y53AgAmkn0my3ueZh5kzM2f2HJKTdfZee21xzmGMMcYYY/wV4ncDjDHGGGOMBWXGGGOMMUHBgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwRSHJSJSKiILBOR8d7jb0Vki4hEercG3nYRkX4islFEVohIo4B93CUiG7zbXRn+bYwxxhhjsqmwVLz2MWAtUCRg27+dcyPPet21QDXv1gz4HGgmIiWAF4EIwAFLRGSsc+5gWhtvjDHGGJNTpCgoE5HyQCfgdeCJ87z8BmCQ06q080WkmIiUAVoDU5xzB7x9TgE6AEOT21GpUqVcpUqVUtJEY4wxxhhfLVmyZJ9zrnRa35/SnrIPgaeBwmdtf11EXgCmAc8656KBcsD2gNdEeduS256sSpUqsXjx4hQ20RhjjDHGPyKyLT3vP29OmYhcB+xxzi0566nngBpAE6AE8Ex6GhLweb1FZLGILN67d29G7NIYY4wxJuilJNH/cqCziGwFhgFtROR759xOp6KBb4Cm3ut3ABUC3l/e25bc9jM45wY45yKccxGlS6e5B9AYY4wxJls5b1DmnHvOOVfeOVcJ6A5Md87d6eWJISIC3Ais8t4yFujpzcJsDhx2zu0EJgHtRKS4iBQH2nnbjDHGGGNyvdTMvjzbEBEpDQgQCfT1tk8AOgIbgRPAPQDOuQMi8iqwyHvdK4lJ/6kRGxtLVFQUJ0+eTEfTTb58+Shfvjzh4eF+N8UYY4wxgOgkyeAUERHhzk7037JlC4ULF6ZkyZJoJ51JLecc+/fv5+jRo1SuXNnv5piz7NsH4eFQtKjfLTHGGJMaIrLEOReR1vdnu4r+J0+etIAsnUSEkiVLWm9jEFq7Flq2hCfOV3jGGGNMjpPtgjLAArIMYMcw+MybB7ffDqNGwcaNsH693y0yxhiTlbJlUBYsfvrpJ0SEdevWnfN1H374ISdOnEjz53z77bc8/PDDaX6/8dnBg7B6NcTEJPuSsWPhX/+CceOgVi145RV44YWsa6Ixxhj/WVCWDkOHDuWKK65g6NBkFyUA0h+UmWwsPh7eew/69YMnn4QBA2DJEoiOPvWSL7+EDz+ESZOgfHndduWVcPgwREb60mpjjDE+sKAsjY4dO8bcuXP56quvGDZsGADx8fE89dRT1KlTh3r16vHxxx/Tr18//vrrL6666iquuuoqAAoVKnRqPyNHjuTuu+8GYNy4cTRr1oyGDRvStm1bdu/eneXfy2SwefNg717N3I+J0YBswAB48klc/y94pc8Ofp0Qz4QJULz4mW999VX473/9abYxxpisl56SGP7r0ydz9vvFF+d9yc8//0yHDh249NJLKVmyJEuWLGHhwoVs3bqVyMhIwsLCOHDgACVKlOD9999nxowZlCpV6pz7vOKKK5g/fz4iwsCBA3nnnXd47733MupbmawWFwcTJuj9u++GypVh2TJYsoT4jVt4qF8NQmUDw698i9BvakHjxlCvHuTLB0CTJpAnj8Z1LVr49zWMMcZkjewdlPlo6NChPPbYYwB0796doUOHsmXLFvr27UtYmB7WEiVKpGqfUVFR3HrrrezcuZOYmBgrV5HdzZ0LBw5A2bIacIlA27b8fXlbbu8WQ0Tz7fyn+ihkc4yOU0ZGQlgY1K4NrVpBnTq8+io8+ihMnapvN8YYk3Nl76AsBT1ameHAgQNMnz6dlStXIiLEx8cjIjRp0iRF7w+c+RhYluKRRx7hiSeeoHPnzsycOZOXXnopo5tuskpsLEycqPc7dz4VUR04AF26QM+eebj33qrA03Do0KkeNDZuhOXL9XbTTdRu356yZYWpU+Gaa3z7NsYYY7KA5ZSlwciRI+nRowfbtm1j69atbN++ncqVK1O/fn2++OIL4uLiAA3eAAoXLszRo0dPvf/CCy9k7dq1JCQkMGbMmFPbDx8+TLly5QD47rvvsvAbmQw3Z44GWxUqQIMGAGzfDh06wL//DffeG/DaYsXgqqvgqafg7bfhuus0iBszBoYO5aUXEnjpJQjiOs/GGGMygAVlaTB06FBuuummM7Z17dqVnTt3cvHFF1OvXj3q16/PDz/8AEDv3r3p0KHDqUT/t956i+uuu44WLVpQpkyZU/t46aWX6NatG40bNz5v/pkJYjExp3vJrr8eRFi1Su/26wedOp3jvUWL6gt799ahzFmzqDr5c+rVjufnn7Ok9cYYY3yS7ZZZWrt2LTVr1vSpRTmLHctMMmUKjBwJFSvCc8+xcZPQrRsMGwbVq6diPxs3wmefwfHj7ChehxsnP8j8RaGEhmZay40xxqRDrltmyZigFh2tBcfgVC7ZoEHw3HOpDMgALrkEnnkGSpak3MFVXJlnHsO+OJzhTTbG5C779uk8pIEDYcUKv1tjAmXvRH9jgs2MGXD0KFSpArVr4xyMH6+xVZpceCE8+yx88gnPnhzDNS9V5pY2+wivUTVDm22MyQEmToTffoOePYmveilbt8K6dXpbu1b/PXYMSpWCmjXh4ou1pvWUKX433CSyoMyYjHLyJEyerPe9XrIVy6FaNShYMB37LVIEnnySUgMG0HlVJF/3PUqfD45Aw4YZ0mxjTA6wcSNHR/xKn9l3sH5Aflzpk1SukY+aNaFGDV0lpHp1KFz4zLdNnKiTkCpU8KfZ5kwWlBmTUaZNg+PHNQqrUQOAH3+EW27JgH3nzQsPPcQTeUfQ6rkr6PnpO+S/o4vO2jTG5G4xMfDdd0z8szblS59k0FVvEJY/HB57DKqeu1f9zjthyBDtkDf+s5wyYzLCiROnxwC8XjLn9Cq0Y8cM+oyQEIrefwt33niMz1e30pkDI0darQxjcruff4Y9exi7pzndP7qMsMuaaH5rv36wZcs533rzzXYaCSYpDspEJFRElonIeO/xEBFZLyKrRORrEQn3trcWkcMiEundXgjYRwfvPRtFxOJyk3NMmwZ//609ZJdeCmg92Jo1IX/+DPwcER76uCbf7evI0bj8GggOHKjFao0xuc+mTTBtGnGEsTK2Bg2bhOuybk2aaErFhx/C1q3Jvr1IEZ1TtGxZVjXYnEtqesoeA9YGPB4C1ADqAvmBXgHPzXHONfBur4AGdcCnwLVALeA2EamVnsb7JTQ0lAYNGlCnTh26devGiRMn0ryvu+++m5EjRwLQq1cv1qxZk+xrZ86cybx581L9GZUqVWLfvn1pbqM5j+PHdR0k0F4yz48/wq23ZvzHFSgAfR4vyIcFn9d1Mhcvhk8/1bU2jTG5R2wsfPcdOMdvFbrTonUeXTwkJEQrVDdurIHZRx/Bn38mu5uePWHQoKxrtkleioIyESkPdAIGJm5zzk1wHmAhUP48u2kKbHTObXbOxQDDgBvS1mx/5c+fn8jISFatWkWePHno37//Gc/HpfGP48CBA6lVK/k4Na1BmclkU6boia927VP5G85pZYz27TPnI3v1gtFzSrO/1zN6qbt2LXzzjY1BGJObjB0Lu3dDmTKMO3A5118f8FxICNx3n04IOnECPvhAM/qT0K4dTJ9uHe7BIKU9ZR8CTwMJZz/hDVv2AH4N2HyZiCwXkYkiUtvbVg4I/ImI8rZlay1btmTjxo3MnDmTli1b0rlzZ2rVqkV8fDz//ve/adKkCfXq1eMLb51O5xwPP/ww1atXp23btuzZs+fUvlq3bk1isdxff/2VRo0aUb9+fa6++mq2bt1K//79+eCDD2jQoAFz5sxh7969dO3alSZNmtCkSRN+++03APbv30+7du2oXbs2vXr1IpgLBGd7R4/q2QwIPCMuWgR162pHVmbIkwcefxze+b6srlie2GP2448WmBmTG2zerBeEInD33UyfGUKbNme9JjRUr+Dq1z8dmO3Y8Y9dhYXB1Vefnjxu/HPeoExErgP2OOeWJPOSz4DZzrk53uOlQEXnXH3gY+Cn1DRIRHqLyGIRWbx3797UvDXLxcXFMXHiROrWrQvA0qVL+eijj/jjjz/46quvKFq0KIsWLWLRokV8+eWXbNmyhTFjxrB+/XrWrFnDoEGDkuz52rt3L/fffz+jRo1i+fLljBgxgkqVKtG3b18ef/xxIiMjadmyJY899hiPP/44ixYtYtSoUfTqpSPIL7/8MldccQWrV6/mpptu4s9zdFubdJo8WRNq69aFypVPbR4+PHOGLgPdcYemsu0MqwAPPqhn1hkzTi/xZIzJmQKGLWnXjvXRlahYMZmLwLAwXbatbl1NtfjgA/jrr3+8rEcPGDw485tuzi0lJTEuBzqLSEcgH1BERL53zt0pIi8CpYE+iS92zh0JuD9BRD4TkVLADiCwEkp5b9sZnHMDgAGgyyydr3EdOmh14oxSqhT8+uu5X/P333/TwFtkumXLltx3333MmzePpk2bUtn7wzx58mRWrFhxKl/s8OHDbNiwgdmzZ3PbbbcRGhpK2bJlafOPSxuYP38+rVq1OrWvEiVKJNmOqVOnnpGDduTIEY4dO8bs2bMZPXo0AJ06daJ48eKpOgYmhY4c0SAIzsglS0jQC9jXX8/cjw8N1ZUCXn8dPvmkug5VDBigM7GKFIErrsjcBhhj/DFuHOzaBRddBNdfz9gPzzgF/VNYGPTpA59/DqtXw/vva9XYgLWXGzbUOQOHD+sSvMYf5w3KnHPPAc+BzqwEnvICsl5Ae+Bq59ypYU0RuQjY7ZxzItIU7Y3bDxwCqolIZTQY6w7cnt4vcL4AKjMk5pSdrWBAhVDnHB9//DHtz0oqmjBhQoa1IyEhgfnz55Mvs8bIzLn9+qtesTZooKWxPQsWQKNGWloss3XpAu+9p+fZ2o0awe23a9Gh77+HQoW0bcaYnGPrVu2hF4G77oLwcMaPhxEjzvO+8HB44AGdFLR2rQZmTz2lq4agu0ssj3HffZn+LUwy0lOnrD9wIfD7WaUvbgZWichyoB/Q3ZsPEAc8DExCZ3EOd86tTsfnB7X27dvz+eefE+tlTv7xxx8cP36cVq1a8eOPPxIfH8/OnTuZkdjTEqB58+bMnj2bLV59mQMHDgBQuHBhjh49eup17dq14+OPPz71ODFQbNWqFT/88AMAEydO5ODBg5nyHXO1Q4dg1iy9f0Z2rQ5dZkjB2BQQ0YoYPXrA3r1Aq1baHufgyy9hw4asaYgxJvPFxsK33+rv9zXXQJUq7NunvfMXXJCC94eHa6pDjRra0//eexCQ13zHHXpNZ/yTqqDMOTfTOXeddz/MOVf17NIXzrlPnHO1nXP1nXPNnXPzAt4/wTl3qfe+TB7c8VevXr2oVasWjRo1ok6dOvTp04e4uDhuuukmqlWrRq1atejZsyeXXXbZP95bunRpBgwYQJcuXahfvz63eslJ119/PWPGjDmV6N+vXz8WL15MvXr1qFWr1qlZoC+++CKzZ8+mdu3ajB49mosDenFMBpk4UUtQNG4M5U9PPE5I0Dyvq6/OuqbUqgVvvqmBYHQ00KmTBmdxcXpVHBWVdY0xxmSeX36BnTu1d8sbr5wwIZUFqvPk0cDs0kt1rPL993USAHoqCws7Z1kzk8kkmGfmRUREuMTZiInWrl1LzZo1fWpRzmLHMo0OHID/+z+Ij4cXXoCyZU89NXeuXsgOHJj82zPLp5/qrM9vvgFxCdpTtnSpJog8/bQmTBpjsqetW+Gtt/T+009DlSoAdOsGL72kFXlSJTpaA7KtW6FlS11vCZ0/sH07/Pe/GdXw3EVEljjnItL6fltmyZjUSuwla9LkjIAMMnCtyzR46CFNI3v7bU7XKKpeXa+GP/pIy3cYY7KfuLjTsy3btj0VkEVHa4bCOcpbJi9vXq38HxoKc+acSnXo0gVGj7bKOn6xoMyY1Dh4EObN02SuTp3OeCo+XtPMkphQm2U+/FDbMHo0Og7x4INQoYLmjXz8sRa5NcZkL7/8omUsLrwQbjhdc33WLGjdWk9HaVKmDFx7rd4fPBji4ihcWIO8hQvT3WqTBhaUGZMaU6acziW76KIznpozBy67TGMhv4SF6Trlb74JS5aghYsefRRKl4Zt26B/f1uOyZjsZNs2nekdMNsy0dix5ymFkRLXXqvB3u7dp2oc9uxpNcv8ki2DsmDOg8su7BimwZEjMHu23k+8ugyQlbMuz6VoUR1Gve8+r3h3kSLw2GOnl2NKnL1ljAluicOWCQnaBe8t4wb6KzxnjqaDpUtYmE7fBg3Kdu7k6qv1VBcTk859m1TLdkFZvnz52L9/vwUV6eCcY//+/VbfLLWmTtUp6fXrnzHjEvTcOXcuXHmlT207S5Uq8MknmgR8/DjaU5a4HNOiRbowpzEmuE2dqldWpUvDjTee8dSKFTrMGNBxlnbVqmmx6fh4GDKE0BBH+/a2OIgffBxoSZvy5csTFRVFsC/BFOzy5ctH+bMCC3MOx4/DzJl6P4n557Nm6TnNz6HLs11xBfTtqyMew4dDSIUKcP/9mls2aZImo1hgbkxwOnHi9MXTHXdoKYsAY8f+o0Ri+nTtqpHehg0wdy49erTklVfOSGEzWSCI/oSkTHh4+Knlh4zJMtOn61SnWrWgUqV/PD18uBbTDzY9e8K6dVrB4/XX0XnzVavqeiqzZ0O7dn430RiTlKlTNTC79FIt9nqWiRM1/z/DFCigC/Z++SWMGkW9l+uxfXtRDh4EW6kv62S74UtjstzJkxqUQZK9ZLGx8PvvwbvU5GuvaWA2aBBnzhqdMkUbb4wJLseOaVAGOmx51vTKv/7STu4MD5YaN4Y6deDvv2H4cG65RS84TdaxoMyY85k5U69Yq1XT21lmzNCRwNDQLG9ZioSEaEDWv7/mvVGrFlSsqBMX5s71u3nGmLNNmqQ983XqnJHcn+iXXzJ46DKRiHb558kDixdze8O1tuxSFrOgzJhziY7WHiX4R12yRH4WjE2pggV1weKHH4bNW+T07NFJk6xEhjHB5PBhvdKDZOtdZHg+WaCSJU8lkpWZMogC+RLYtCmTPsv8Q7bLKTMmS82dq0MJlSolmdcRE6OTGb/8MuubllrlysHXX0P37jBrZgPyly2r4yALFsDll/vdPJPdOafrMq5cyfqZO4ncVJgLi0VzQdFoLigRR4mi8YTkDdfpguHh2hsTeL9KFf09S3Ml1Bxi4kRNK2jYUHu0z3LihP7aXnJJJrahTRs9L/z5Jz1qLGLw4Ga89FImfp45xYIyY5ITGwuTJ+v9Tp2S/GORuPh4SDbpc27USEsSvfqa8MaN18JXX+kfgcsuyz5fwgSP6GhNWFy5ElatgoMHWbG/HD1n3sOtVRaz8GRpdv9dhD1/F+ZAdEESCxmVyHucC/Mf5YL8R7kg/xEuyr+bJqXnUKt6PHJZc2jWLHeu1XrggBYfE0m2K2zqVF1pKVOFhOiJ4o03uPH4EK6Y1pAXX8yT6+PlrGBBmTHJ+f13OHRIa5LVrZvkS378Efr0ydpmpdeDD2o9tZW3RlC39FjYuxcWL4amTf1umgl2zsGuXbB6tQZiGzZobSvPmphL6LnwPkZ8+RfVIiL0wiYmRv+N3Q+xsSScjOHgAceefSHs3leQPfsK89fui3llcQPWTi9Fg+HbuabcWK6+/CRl29fV5PMCBXz80llowoTT6+qWK5fkS8aN0yUrM93FF8PVV1Nw6lTq513LvLl1ubylXbhlNgvKjElKfLwubQI64zKJS8ToaFi2DJo3z+K2pVNoKHz2GTz4UAgzX7+W0CGD9I9BkyY2dGSSFhWlPTgrV8L+/ae3i+iwY926/FGgAbf/qwxDJwnVapZIdlchQEnvVjNg+78SEkhYvZbIEbuZMrUEd317KQe/KMgVZefT9oporryjPIWb1gyuYoAZac8e+O23c/aSJSToqGL//lnUps6dYdkyepadxuC3SnB5ywpZ9MG5Vw796TYmnRYs0D8+F12kuR1JmDwZrrkme8Yx9eppGln/yOY8VHyc5gJFRib7XU0uFhUF77yjVyEAhQppvbu6dXUmb8GCbN4Mt3TRWb41a557d8kKCSGkbm0a1a1No/+c5JmlS/l7zlR+m5PA1N9q8NrIguQN30ab5ifo2KMkTTqXyZ6/fMn55ReNulq00LUok7BokaYgZNlM77x54fbbab3vE/41OoSTUfvIVz4XDitnoRT3RYpIqIgsE5Hx3uPKIrJARDaKyI8iksfbntd7vNF7vlLAPp7ztq8XkfYZ/m2MyQgJCafXF7n22mRzrYJlrcu0euEFGPhNKDsaeVflEybYmpjmTAcP6goQ0dG6vNhzz8H//gf33qs9qwUL8uefWgz+66812M8Q+fJBixbkf+ZR2g6+i7feFuY/OJhRV39KrcPzeOmR/Txx+QJip87SOoLZ3c6deiEYGgrXXZfsy8aNy4AFyFOrTh1CmkbQqcIKfnlhgZ0jMllqBogfA9YGPH4b+MA5dwlwELjP234fcNDb/oH3OkSkFtAdqA10AD4TkSCt7GRytSVLdCihVKlk86xOntSRnCZNsrhtGahAAXj7bXjkh8ugcGH4809Ys8bvZplgcfKkLqB66JDW5+vdW2dHBlyk7NihtU3799cenExRvDi0bw8vvECp1x6nW+8SjO/2HWUSdtCu50X89eBr8P33+vObXY0bp8FOy5ZakiIZkyf7tAjHLbfQo+5yBk0vp/mnJtOkKCgTkfJAJ2Cg91iANsBI7yXfATd692/wHuM9f7X3+huAYc65aOfcFmAjYJnFJrg4pz1GAB06JNtL9uuv+nciu4+etGsHBQuH8FPBO3TDL7/YlbDR3uIvv9ShywsugAce+Ecu1+7dWs6qXz+dLJnpRKBCBejWDXn7Lf79SUVevCGSjmP7MOvHXbqO2Jtval5W4lBrdrB9u14Ihoefrh+YhK1bNV4rVCjrmnZKkSLU6n0Fe/4uwr6vx2oPqskUKe0p+xB4GkjwHpcEDjnnEqtORgGJU0XKAdsBvOcPe68/tT2J95hgEh+vZ4B583RmXjLi4vTidN48nYU4dmzWNTHTLF+uRYCKF9cyEckYPlyXicsJ3n8fXhxTnyOhxXVNzA0b/G6S8ZNzMGyYlrgoVAgeeUSrDwfYt09z0d95x6flxcLCICKC1p/fyoSpeXlpc0/+t6YTbstWTWx75hn9Dn/95UPjUinxxHnllVCsWLIvGzcuEwvGpsTll3N36618uqgpDBhwxqxbk3HOm+gvItcBe5xzS0SkdWY3SER6A70BLr744sz+OAN6Vbl5M2zcqLfNmyEmht0nCrPp6AVElWnC9gsaE3WkCNu365BFdLSeF8uW1YoRFSro8pCxsZpfki0F9pK1b5/sLK+oKC3NlFNy4kuXhsefCOH5UX34uOxbegwuvdTvZhm/TJsGs2bpz/+DD2pPWYADBzTt6dVXtcao38o2uIDJkfDMvzvRNfJyvrlqEEX/WqdV8WfM0KHXVq10fDXYZm5u3gwrVmhCfYcO53zpuHFaVtA3ItzzeVOa1zzMA6tnccGYMXDzzT42KGdKyU/o5UBnEekI5AOKAB8BxUQkzOsNKw/s8F6/A6gARIlIGFAU2B+wPVHge05xzg0ABgBERETYOEpmOHr0dAC2YYN2nydoJ+j+kwUZsbk5w7a3QMLDqZV3ExV27qdCoZFENChFhX9FUDaiLPny/XO3ffroSbp27SSL3we/NWtg2zbNr0rm8v/wYQ06P/00+w9dBrrrLvj+u4tZcKg6zdau1Z7SSpX8bpbJasuWwUgvK+Wee/6x7uLhw5po/vzzet0SLMLD4f0PQxkxoiRt3nqcb97cRb290zR5fsMGvQ0frr/X58nbylKJvWRt2uh5JxlHjuixr+BzRYo8JQrx7PPHePXLTnycf5gGvPXr+9uoHEZcKvJHvJ6yp5xz14nICGCUc26YiPQHVjjnPhORh4C6zrm+ItId6OKcu0VEagM/oHlkZYFpQDXnXLJ9oBEREW6xJRWmn3N6RTZ/Pqxfr8kgAU7E52XcsasYsrEZe2OK0u22UG7tmU9rF+7fr+sj/vbb6TUS69TR2l1JLJS7YgXcd59eoPqS+5BWzumssk2bNOpKIps2JkZ7CPr2hS5dfGhjJvvjD+hx3QHmXvk84Q3rai+JyT22boV339Xu7htv/Ed+09Gj+vP/6KPB3Ru+bp0Wo3/0UejR7SQsXKg9f1FR+gIRLefRurWW9PDr6uqPP+C99yB/fnjjjXMWyB0xQkeTX345C9uXjIQEuKLuIQbX+x9VLzqhEXpuXH0hGSKyxDkXkeb3pyMoqwIMA0oAy4A7nXPRIpIPGAw0BA4A3Z1zm733Pw/cC8QB/3LOTTzX51lQlk6HDumV4m+/nRmIhYcTV7Eq005cxpClNVixtQjXdw7h9tvPUWPo0CFdmHv2bI1OAKpX1+CsevUzTmzff69d7cOGZaPepMQTZMGCeoI8qyvQOa2i3agRPPaYP03MCq/9XzTh0ybyTN2J8H//p2PTJufbtw/eeksjr8sv16gm4Jf3+HHtIevVC267zcd2ptCxY3D//Zqi9eGHkDePd2E6c6Ym1SfmQ5UurUObl1/+j7y5TOWcBsAbN+qB7dTpnC/v0UPPOxFp/lOfsaZPc3z5zEaGNn5X1+d8+ungGxr2SZYGZVnNgrI0iIvT7qp58/TSKvH/t0gRXLPmLAptzpAZZZgxM4Qrr4Tbb9eK9CkOno4e1eSx6dNP1weqUkWvquvWPbWjRx7RzY8/nvFfMVN88IFeYidzgvy//9M/TO+/70PbslBMDFxe8wDDmr5H1TaV9C+bydlOnNCM/Z079arskUfOqE66fr0GBf/6l54vsgvntKLHsGHwww8Ba3sfPQpz5+oF5oEDui0sTOvbtG6dNcP2q1frtNVkLgIDxcXpxWBkZHAtT3ttu3heK/c5jfOshKuugu7d/W5SULCgzKioKA3EFizQy0TQ3+D69aFFCw6UrUO3W0MoUwbuuEMXtA0PT8fnnTihV51Tp2q0Atqr0rIlREQQk6cQ7drBK6/ohWjQSkjQk/PQoXpifPPNfwwjDByoJTCGDw+uk2JmmffrEV7uHcWv1/ZDXnk52eriJgeIi9PgYP16nbXz9NM6nOb58UetZff119CggX/NTI958zSgrFQJevbUXLjwcPR3f9UqPY+tXn36DRUrnp4YkBlrbjqn55lt25JNlQg0ezYMGQJffJHxTUmPyEh4+pG/mVTnSSQhXi/ggqUrz0cWlOVmJ05ovsRvv51ZOLFcOV2qo1kzKFyY7ds1B+qll87bS5560dG6Jt7kyZqJChq51K3LX1Vb0vHpOkyYKJQtm8GfmxE2bNC/Otu9Si033KDDsQEmTtQ/ShMnnvG3Ksd74Oo/uNzN5c67QnUWgMl5nNPyEfPmQZEiWq2/hK5ZGR0NTz2lnWdffQVFi/rc1nRyToOIQYN0cunVV+uP9alAc88ePY/99tvpi8zQUO05bNJEL24z6gSwfLkuPlukiNZWy5PnnC9/6intiMrwc3cG6NEDetSNpN2mz/Wi9j//yfUXcRaU5VY7dmiyxJEj+rhAAa0+36IFXHzxqWHE1au1Z6x//0xeODs2VmduzZ+vsxi9n6tZB+ry4qpuTB51lDw1qwZHktn+/TB69OnK1MWL6xVrRMQZ7Vu6VC/+Jk8OnslaWeXQxn1c2ewk067/kFLvPZf7DkBuMGEC/PyzBgVPPXVqfG/bNj1n3Hyz5jEFw69sRoqN1Z7vQYP0u956q37fiy7ynly8+PSkqMS/j2FhOq08IkLXkjrHcGOy4uI0t/err/T83b27RlvnsG2bXicuXhycF4Vbt0L37o55d39JyLIlOlry7LPpHIbJ3iwoy422bYOPPtIrukqVdCyyQYN//CLMmwcPPaT5FGleJDgtjhzRHrz582H7dt5f0ZZtx0rwUefpGhk2a/aP2kdZIjpaz8ZTpujJNzxcxzLat//H1eq2bdpxNmpUkpNMc4WRD07nl2n5+ObFrdkrmcic35IlWgBURKv1e2UNJkzQzo7PPtPru5zuwAHtLP/hB+246tlTf+/z5UNzz5Yu1Yhow4bTAVp4uObPRkToTPS8ec/c6cmTsGuXdjMm3nbt0kLcifsoXhxee+2cyfEjRmhH2qef6jyEYPX449Ckfgy3b3pVexyvuEK70HIpC8pym82bNQfk77/1iq137ySvSsaO1d/50aN9nkD311+43+fT/fmq3FBuEbdfski3V6miJ7WKFbWBabnyTCnnNEgcPVpnkYIOSXTtqifHsxw8qGken36a7NKXuYL7ayc3ttjNY/Vn0ea7u85ZbdxkI3Fx8N//6g96t27Qti1xcfDiixqDDB6cOyscrF+v333cOL12vPde/f0XQVMzli6FRYu0bE6iPHn0PFykyOkALPEcczYRne1ZpozWFkmmOPrx45oDd+SI5pEF+6/dvn3aL7BgVBR5339Tf77uuSeTh2aClwVluckff+h0ouhoTUK9774kr7S++krLUowenWTM4YujhxNoc0U0X98yibp7p/9zbbrSpU8vDZD4b/Hi6R872bpVL4U3b9bHFSvqeEUy3V/R0Tpc8NhjOhEzt9v+xmBu+ehyfv96bXAmtZjU++03HbsrUwZefJFdu4U779Tc9uefP2PiZa6UkKB1Fr/+WgO17t214+dUqtTBg9rTuHgxbNnyzx2EhelY6EUX6TFOvF1wwXnLRixfrqf1Bx7QoDC7DB2//rrWpXys8VyNbPPk0S7XMmX8blqWs6Ast1izRscUYmN1+O/uu/8xFdA5nV29aJFOJgy2HIR16zR3Y9qEaIptjdQNUVG6Pl1iYdpABQqcGaiVKKF/MUJD9buffT9w28mTMH68DqGCXsnedJOuZ5nMmS4hAe68U3vfrW6qZ/VqulwXwyvt5lKn/8PZ56+ESVpCgnaJ7dkD997LrJPNePRRLdHXtq3fjQs+hw5pSY3Bg/W68d57tfrPqcGJ/ft1BkF8/OkgrGTJVE/Tdg4+/liHUb/9NvutiHL8uA53z57lKDrmWz3vlimjk0fOHt7N4Swoyw1WrNB+7Lg4TS64885//NLHx2uXd3S0xm7BWsdv1Ci9SB8zJuArxMdrAuz27Rqkbd+ut8TSHukRFgbXXKPryp1niPTZZ/Xk+Pbb6f/YHCMhgVE3fc/iP0vz5ugaULmy3y0y6bFoEQwciCtZineKvMrEX0MYMkQnbJtzW7kSvvlGqwC1b68BWkbk6u7dq/u65BKt35tdY5gBA/S0/ep/o7Xkx86dOoR599256mLOgrKcbulS+PJLvcJt3Vr70s/6AY+O1u71GjV0GY5g//l/+mnNk/jPf87xIuc0jyMxSIuK0iSLhAQN4hL/Tep+4q16dc0bO0eCjHM6EWrIEL3gHTIkd9QiS42TQ0bR7NGmLOs3l5A7skE5d5M053QV8R07mF7zIT6eVY/hw3P1RLk0iYmBX37R4c2DB7W0RocO2pmf2nPv1Kk68fWNN/5RjSfbiYvTQZzx46EMO/VLxcTo7IlgnqmQwdIblAVpf4oBtBDsN9/oybRdOy02dtZv/ZEjGnd06aJ5CNnBG2/oEEChQnqFHhZ2+hYamnhfCA0tRlhYMcIuqkNoOS1+XaKE1kxKbeCUkKCl3NasOX1bt07nS5QrBw0b6rCBBWT/lK9VU5qU3sbcn/fT6ta44O2GNee2YoVegRQrxvtT6vDGmxaQpUWePJoJcdNN2hk0eLCmO0RF6ZriderorW5dvSWVqB8bq6uELFumNRBzQupVWJjmJL7yCnz+uVel/JtvtOp27drBP2MhSFhPWbD67Tf9bXdOE6yvv/4fAdmmTTqS+eSTWlMoO9m7V39fY2O1gysuTm+B9wMfx8ZqrdwDBzTPwzk9HGFhOh+gRIkzb8WK6Sz0NWs0WTc2VnP8a9U6fatePXMKduc4zjHznu8YuqAKXwwreqp8gslGnNOxsa1bWdvsbv7142VMmuR3o3KeI0d0kYCVK/W2apX2ppUrdzpIK19eJ7/ecIOeu3PShaBzOmFk4ECofqmDzz/X2Qv162uvQbAP42QA6ynLiWbO1Ex9gBtv1G4lz549Wr/mxx81kf+dd3Rlo+ymdGkdxkyv2Fg96R04oLfE+wcPavpTp05QrVrmVtzI8URo1b0sj42rTPTsieS1oCz7WbdOZyIXKsQHvzXliSf8blDOVKSIJrwH1nhzTucyJQZqs2bpUrtNmvjXzswiojMxn38eRo4UrW+4fr0GZsuWadUAc04WlAWbKVNg5Ei9f8stcPXVHDkCP/2kcdrRo7p5+HCvAnUuFx6uM839qEWbm4Q0b0qHCguYOMFx430nrIsxu5kwAYA9ER2J/CCULwb63J5cRER7ysqV09yznK5VK/jf/3QCZvPmxTS35ocf9A9YjRp27jiPHNRxmgNMnXoqIDt5852MOXI13bpBmzaa6/7JJzB3Ljz6qAVkJosVK8Yd7fby/fqI08tTmexh0yatcZg/P5+tapVbRpGMj958UydyOYdGaVWr6tju6NF+Ny3oWVAWLI4exf30M1OjanDvjldo9lRLFizQZNBFi7Q7OLcu92OCQ70ul7DtWEkOzVjmd1NMani9ZH+3uJox48NtxSyT6erU0RzeiRPRK4AePTQBeM4cvUAwybKgLFhMn86YP2rz7uYu3PvshSxbpnm59erZVa0JEg0bcvMlyxk1vbjO1DDBb/t2zTbPk4fBu67hlluybx0sk728/DK89JJXF7xMmdO50YMHazKwSdJ5gzIRySciC0VkuYisFpGXve1zRCTSu/0lIj9521uLyOGA514I2FcHEVkvIhtF5NlM+1bZzcmTMGMGn69pxSefaEX5nDQjx+QQefNyW5doftjYVMu1mOA3cSIACVe04ovv8tG3r8/tMbnGxRdr/nOfPt4wZocOULaszlb75Re/mxe0UvKnPxpo45yrDzQAOohIc+dcS+dcA+dcA+B3IHCweE7ic865VwBEJBT4FLgWqAXcJiK1MvC7ZF+zZrF+ZxHCCuXnkqsr+t0aY5J1cae6OCBq8hrvTGuC1q5dWnw6LIwJ7lqaN9cVgIzJKk8+qXUln30WHb7s0UOHfiZN0sJu5h/OG5Q5lbjeTbh3O3U2FpEiQBvgp/Psqimw0Tm32TkXAwwDbkhLo3OU2FiYMoX+a1rR96FcvhKwCX7Vq3Nb3dUMXVj19CLvJjj9+qsGzi1a8OHAQjz+uN8NMrmNCLz7rl4fvPsuUKWKrkyTkKDDmAkJfjcx6KRokExEQkUkEtgDTHHOBY5d3AhMc84dCdh2mTfcOVFEanvbygHbA14T5W3L3X77jRMHTzJ9X1069a3gd2uMObeQEG6+LZwRmxudXuzdBJ/9+3WIOSSEpRd1pHBhXVvRmKwWEqLFZOfM0VVTuPFGrfi9dSvMmOFv44JQioIy51y8N0xZHmgqInUCnr4NGBrweClQ0Rvu/Jjz96CdQUR6i8hiEVm8N6cnE8fHw6RJ/LipCTffGE9YuGX0m+BXvG1jyhc8xMpfd3hZvCboTJqkvRBNm/Le18V58km/G2Rys/BwGDYMvvsOfp6Uj1NTgH/+WS8gzCmpSid3zh0CZgAdAESkFDos+UvAa44kDnc65yYA4d7rdgCBXUHlvW1nf8YA51yEcy6idOnSqfs22c3ChXDgAAM3XUWv/8sBi5+Z3KFcOe5svpEhK+tpiXITXA4f1mXagO11O7JtW65aD9oEqfz5YcwYrWE262A9iIiA6GgYMsTyUwOkZPZlaREp5t3PD1wDrPOevhkY75w7GfD6i0S0iIOINPU+Yz+wCKgmIpVFJA/QHRibgd8le0lIgIkTWbL3YspWK0iZstZLZrKPjj1KMnF7bRLm2RBm0JkyRXswGzak348X8uijVlbHBIdixTQwe/xxWFbjNq3uv3q1FuM0QMp6ysoAM0RkBRpYTXHOjfee686ZQ5eggdoqEVkO9AO6e5MF4oCHgUnAWmC4c251RnyJbCkyEnbv5vPN7XjguWJ+t8aYVMl3eWOaXrCNOVNOwvHjfjfHJDp+HGbPBuDIFR2ZMkVXuTEmWJQpo+s33/NIITY2v1M3/vgjHDt27jfmEimZfbnCOdfQOVfPOVcnscSF91xr59yvZ73+E+dcbedcfedcc+fcvIDnJjjnLnXOVXXOvZ6xXyUbcQ4mTuRQdH6WnajBVW1t1qXJZooW5Y62uxmyPsKucoPJtGk6JFS7Nl9NuZi77tJKBMYEk6pVNb/slrcbsbNsYw3IRozwu1lBwUqU+mHNGvjzTwZtb02PPgVsaMFkS63uqMD8PZWJ/s3WwgwKXhFqgLh2Hfn2W7jvPn+bZExy6teHjz4Sbvz5Hg7GF9HZ3GvW+N0s31lQ5oeJE3EOBm2/irvutV4ykz2FNGrAtZXWMWFWQdi92+/mmJkz4cQJqFaNUcsvoV07KFLE70YZk7yWLeG/L4dz08LnOBEXrkn/0dF+N8tXFpRltY0bYcMGZh2oS73LClK8uN8NMiaN8uThjptOMMSWXfJfTAxMnQqAu7Yj/frBo4/63CZjUuD66+HeJ4px69xHid1zAH76ye8m+cqCsqzmrUX3+a6beOBhS/Yw2Vu9my9l27GSHJoZadPa/fT773D0KFSsyNz9NalUCSpYLWqTTfS8O4SrbilNr9l34aZNh3Xrzv+mHMqCsqy0fTusWsWu2JJsj72IJk38bpAx6VS9OjfXWsuoJZW0F9j4Y543n6ptW957X6xYrMl2nni1OAnlyjN2W32dBfD33343yRcWlGWlX3Wi6ld/38Z9vS2XzOQAItx+h/CDDWH6Z9cuXbImXz42FGzA0aPQqJHfjTIm9d4dUpYXV3blxJ6jMHy4383xhQVlWWX3bliyhHgJY/jKWnTv7neDjMkYFa6rjwO2z9gIsbF+Nyf3SVyDtHFjPvg0jy08brKtC8uE0Ovh/Ly+/Hrt/Y2M9LtJWc6CsqwyaRI4x4QCN9P66lAKFvS7QcZkkDJluL3pJoauqgsrVvjdmtzFuVM9lPurt2DBAujY0ec2GZMODzxThOknmvPHoQvg++81VzIXsaAsKxw4oIm4IvRf2YK+ff1ukDEZ6+a7CzFyS6PTvTYma2zYoOeXEiX4fHJV+vSBEDurm2wsNBQ++KoIjy6/D3fkKAwenKsmEdmvb1aYMgUSEthSsTXRLi81a/rdIGMyVrE2jahQ6BArZx3IdVe2vvr9dwBiIy5j+AihRw+f22NMBmh+mVCh6UWMjGoOy5fnqos9C8oy29GjMGcOAF9EdaRPH5/bY0xmKFyYO9rsZMgfTWCxVfjPEjExsHQpAOMOt6J9e8if3+c2GZNB3nw/H69tuIWjMXlh2DDYv9/vJmUJC8oy27RpEBtLdM0GTJxbhBtv9LtBxmSOjvdcyMTttUmYl3uuan21fLkurVSpEgOGF+P++/1ukDEZp1QpeOipArwSda/+nH/3Xa4YxrSgLDP9/feptehG0YXOnSE83Oc2GZNJ8jWtR9My25kzPxyiovxuTs7nDV1uqdia2Fi49FKf22NMBut1v/D7sTqsjr4E1q+H6dP9blKms6AsM82erRF+9eoM+OlCevf2u0HGZKLwcO7oclJrlk2Z4ndrcrYjR3Tx5pAQBi5rbL1kJkcKCYGPPgnjkTV9tZNszBity5eDWVCWmRYuBGBlxesoWtSWPTE5X8uH6vH7nirEz18EBw/63Zyca+FCcI7YWvUZNykPN93kd4OMyRyNG0PNJoX5Qe7QOohffw3x8X43K9NYUJZZdu/WIZz8+ek/9RIeeMDvBhmT+UIvLMVltY8y968qmk9pMoc3dDkuuh3t20PevD63x5hM9Npr8M7vV3C4QBnYtu3UGtI50XmDMhHJJyILRWS5iKwWkZe97d+KyBYRifRuDbztIiL9RGSjiKwQkUYB+7pLRDZ4t7sy7VsFA29W1NFLGzNvfgjt2vncHmOySNf7SzByS2OddZxL16/LVFFReitQgAFTKtnQpcnxiheHJ54M4YX9j+mGX37R4CwHSklPWTTQxjlXH2gAdBCR5t5z/3bONfBukd62a4Fq3q038DmAiJQAXgSaAU2BF0WkeEZ9kaCzZAkAQ/66ittus4KOJve4qvuFzDpQh4S/ozWv0mQsr4L/louvJDYuxBL8Ta7Qowcs/7M4kVW7QkICfPNNjlzW7byhglPHvIfh3u1c81JvAAZ575sPFBORMkB7YIpz7oBz7iAwBeiQvuYHqb17Yft2XN58fDO5LPfc43eDjMk64eHQuFkYC/ZU1iHMuDi/m5RzJCScCsoGbrjSeslMrhESAv36waPj2pJwYRnYuRN++snvZmW4FPXfiEioiEQCe9DAaoH31OveEOUHIpKY1VAO2B7w9ihvW3Lbcx5v6HJFyauoWCmE0qV9bo8xWazrvcUYtbcVHD58asKLyQDr1sHhw8SWuJBxc4tZgr/JVerVg8YRIXxb+GGN0qZOhbVr/W5WhkpRUOaci3fONQDKA01FpA7wHFADaAKUAJ7JiAaJSG8RWSwii/fu3ZsRu8x63tDl0K2XcdttPrfFGB9c006YureeTmOfPDlXFH3MEt5yM+NDOtOunViCv8l1Xn4ZPvq+FAdad9ENAwfmqJneqcp0cs4dAmYAHZxzO70hymjgGzRPDGAHEFj8oby3LbntZ3/GAOdchHMuonR27GLavx+2bcPlycuvSy/g2mv9bpAxWS9vXqjVOD/LYmrrMMOqVX43Kfs7eRKWLQNgwPx6VvfQ5EpFisCzz8LzM9pC7dpw7BgMGJBj0iRSMvuytIgU8+7nB64B1nl5YoiIADcCiWfdsUBPbxZmc+Cwc24nMAloJyLFvQT/dt62nMUbuvy94NU0bCTky+dze4zxSdebQxgVc50+mJTzftWz3LJlEBPDlhKNiSGPJfibXKt7d9i4SVhUv5dOzdy8GUaP9rtZGSIlPWVlgBkisgJYhOaUjQeGiMhKYCVQCnjNe/0EYDOwEfgSeBDAOXcAeNXbxyLgFW9bzmJDl8YA0KEDTFxbCZc3H2zYAFu3+t2k7M0buhy4o4Ml+JtcTUST/vs+UYCdNz4AoaE6qcj7+5udpWT25QrnXEPnXD3nXB3n3Cve9jbOubretjsTZ2h6Q5oPOeeqes8vDtjX1865S7zbN5n3tXxy4ABs2UJcWD5mrS5FmzZ+N8gY/xQsCFWqhrC6yvW6wXrL0u7gQVi/nljJw7il5S3B3+R6NWvCBx/AdQ9VZEfrO3Tjd99p4fZszKpnZSQv32Nm+DW0bBVCWJjP7THGZ127wqjdl+uV7LJlsGeP303KnhYsAOcYL9fTrkOIJfgbA7RqpT1m17/Vgu1VroToaOjfX//Npiwoy0iJQ5dbmtnQpTFAp07wy7T80KyZzsCcOtXvJmU/zp0auhywsrkl+BsT4PLL4bPPhM5Du7M1b3X46y/44YdsO+PbgrKMcugQbNpEdEh+Fm8pSYsWfjfIGP8VKQIXXggbLvGmIc+bB0eP+tuo7ObPP2HnTrYkVCQmT2FL8DfmLM2bw4AvQ7hp+iNs/ruMXsTMnet3s9LEgrKM4g1d/koH2ncIsWWVjPF07Qqj5lwAdevqsigzZ/rdpOzF6yX7av8N9LpffG6MMcGpSRP4alA4Xeb/m42HS8OwYdlyfUwLHTJK4tDlxiY2dGlMgM6dYexYoH173TBjBsTE+NqmbCM+HhYtIjYhhLFrq9Gli98NMiZ4NWoE340oyM2/P8H6fSXhiy/gxAm/m5UqFpRlhCNHYONGjrsC/LGvOA0a+N0gY4JHiRJQuDBsDbsEKlWC48d1GNOc3+rVcPQo449cSbuO4Zbgb8x51K8Pg38qwq2zH2LtxnBduDwb5ZdZUJYRli4F5xgbdy2dbwhBbITBmDN07Qqjx8jp3rIpU3RxbXNuiQn+m6+mdx87sRiTEnUbhvHDqLzcNqM3q2buy1bleCwoywheFf+hGyJs6NKYJNx4I/z0E9CgAZQuDfv2ncrDNMk4cQKWL2frsVLEFChmCf7GpEKtFsUY9tVx7pxxLyu+WgR//OF3k1LEgrL0OnoU/viDA7GF2RNdlOrV/W6QMcHnggsgLAz+2hUCbdvqRluo/NyWLIG4OAbu6UyvvuF+t8aYbKdG50sZ8co6es64m2Wv/QKHD/vdpPOyoCy9IiPBOUb/fS1du4X63RpjgtZNN8GYMUCLFlCokC67tGGD380KXvPna4L/ljqW4G9MGlXrezWjek/m3gldWfzC2KBPm7CgLL28WZc/bmzMrbf63BZjgliXLt6awXnywFVX6cZslOuRpfbsgY0bGb+jEe2uy2sJ/sakVUgIVZ/txpiuQ4jbvhO2bPG7RedkQVl6HDsG69ez62QxYvIW5uKL/W6QMcGrXDld/WTvXqB1awgPh1WrtAK3OdP48QAMiLqW+x+w9dqMSZciRaj09C00f/dmqFrV79ackwVl6bF8OSQkMPxYR265zYYujTmfUwn/hQrp+iiguWXmtKgoWLiQrcdLE1PsQstTNSYjVK0KVar43YrzsqAsPbyhyxEbG9Ctm89tMSYb6NrVG8IETfgX0bIPllt22s8/g3MMOHY7vR6wBH9jchMLytLq+HFYu5Ytx0pT8IKCXHCB3w0yJvhVrqzLxB48iJbG6NBBZ2B+9VW2q7ydKTZuhBUrWHakKtN3VKdrV78bZIzJShaUpZU3dDns8LV0v8NyPoxJqeuvh3HjAh5UrqxR2uDBubtEhnMwejTHYvNy/+LefPd9KHny+N0oY0xWOm9QJiL5RGShiCwXkdUi8rK3fYiIrBeRVSLytYiEe9tbi8hhEYn0bi8E7KuD956NIvJs5n2tLOAVjB2zqS433uhvU4zJTrp2hVGjvAehodCrF+TLp79TuXn5pZUrYdMmHll4J488U8ByyYzJhVLSUxYNtHHO1QcaAB1EpDkwBKgB1AXyA70C3jPHOdfAu70CICKhwKfAtUAt4DYRqZVh3yQr/f03rFnDmkNlKXdJfooV87tBxmQf1avrhMujR70NpUrB7bfr/WHDYNcu39rmm4QEGDOGHzY2IfaiCvS8z7rIjMmNzhuUOXXMexju3ZxzboL3nAMWAuXPs6umwEbn3GbnXAwwDLghHW33z/LlEB/P0APtua2HJeIak1odO8IvvwRsaNZMbzExMHAgxMX51jZfLFrEpnUxvLv6Wj4fUdrWzzUml0pRTpmIhIpIJLAHmOKcWxDwXDjQA/g14C2XecOdE0WktretHLA94DVR3rbsZ+lSnIPxW2tz3XV+N8aY7OfmmwOGMBPdfrv2mm3f7pX+zyXi4ogZPZ6eM+5hwBv7KVzcclSNya1SFJQ55+Kdcw3Q3rCmIlIn4OnPgNnOuTne46VARW+482Pgp9Q0SER6i8hiEVm8d+/e1Lw1a5w8CatXs3hfJWo3ykuBAn43yJjsp04d2LTprAmX+fJpfllICEydCqtX+9a+LDVnDs//2pIu9TYRcXed87/eGJNjpWr2pXPuEDAD6AAgIi8CpYEnAl5zJHG40zk3AQgXkVLADqBCwO7Ke9vO/owBzrkI51xE6dKlU/dtssLKlRAXx7D919C9h+V9GJMWItC+fRKrLFWuDJ076/1vvw1IPMuhTp7k1082suZgGR5/+yINSI0xuVZKZl+WFpFi3v38wDXAOhHpBbQHbnPOJQS8/iIRzYgQkabeZ+wHFgHVRKSyiOQBugNjM/j7ZL4lS0hwwtSoGrRr53djjMm+zpiFGah9e7j0UjhyRAOzHFwmY9fIuTw7qwPf3DWTkAb1/G6OMcZnKbksKwPMEJEVaGA1xTk3HugPXAj8flbpi5uBVSKyHOgHdPfmA8QBDwOTgLXAcOdc9hqfiI6GVauYs/MSmrUMtxpCxqRD48ba8RwdfdYTISFw771QoICujTl9ui/ty2wJh49y9/PleLfZSC7o2QHL7jfGnDej1Dm3AmiYxPYk3+uc+wT4JJnnJgATUtnG4LFsGcTGMnRvW257Iq/frTEmWxPRlZZGjIA77zzryeLFoWdP6N9f12WqXh3Kn2+Cd/byvwe30LDEDtp2CINq1fxujjEmCFgCQ0olJMDEicQmhDBvXzVatfK7QcZkf88/D59+ChOSulRr2BBatdLyGF9+qeUycogFkw/zy4wCvBIxFqs+bYxJZEFZSi1ZArt2MeVwM9p0yk9oqN8NMib7K1FC65W99tpZdcsSdesGZcpoQdkRI7K8fZnh8GHoe38c3135NeHNI6BChfO/yRiTK1hQlhIJCTB+PABDj3TkttvtsBmTUUqU0F+v118/9Wt2Wp48WiYjLAxmz9YUgmzMOejT82+eu3Q0lYsdPD3T1BhjsKAsZbxessUx9fjzRGmaNvW7QcbkLImB2RtvJBGYlS8PXbro/UGDdPHybOrrr6Hw/i3cUmWxDs0GY9kfY4xvLCg7H6+XLCY+lAcX9GTAl2KTpIzJBIlDmW++CePGnfVkmzZacfbECejXD/bs8aWN6bF8OfT/6CQfVf9MewA7dfK7ScaYIGNB2fksXgy7dvH6uq50u6sg1av73SBjcq7ixbWn7K23YGxgFUMRuPtuuOgiXc38zTe1XEY2cPgwPP009O3rGNRhKAXCYnXaaZEifjfNGBNkLCg7F6+XbPn+8kw70oQnnrLDZUxmSwzM3n4bfv454InCheG556BBA+0x++QTnbYZpMVl4+NhwAAdpaxRA+Z+sYaah+dDwYJY5WljTFIsyjiXxYuJ3bmXvvPv4ovvC9qMS2OySPHiOpT5zjtnBWb58kHfvnDDDfr455+1ltnJk760MzkzZkCLFrBlC8ydC/feepzQn7zlCzp0gPz5/W2gMSYonbd4bK7l9ZK9E9me6zo6ateziMyYrFSsmAZm112njxPjMESgY0ctJfHVVxAZqcOZDz4IF17oU2vVpk3w739DaCgMG6ZLebJ1K3zxBRw4ACVLwlVX+dpGY0zwsqAsOYsXs3ptCON3NmL2nHJ+t8aYXKlYMR3KvO46HaU8o85q3brwn//A559rntkbb+jyTPXrZ3k7jxzRWmuzZ+uw65VXog2eMVPrq8XHa4R2//0QHp7l7TPGZA82fJmUhATixk6gz5w76f/afsLzWS+ZMX5J7DF77z0YM+asJy+4AJ59Fho10iHMzz7TqZtZlGcWH6+LDbRsqStB/fabF5CdPKlPDBumL2rTBp56SnvKjDEmGeKCNEkWICIiwi1evDjrP3jBAv73WBTHwovz8swrsWQyY/x3+DB07aqrLtWpox1l9erp/cKFHEyerFGbc/rEPffoouaZ0I7ISFi6FH78UUcjn3suYDJlVJQOV+7ZozlwPXvq6uvGmBxPRJY45yLS+n4bvjxbQgLrv5vPiM2dmTt8pwVkxgSJokVh6lStHbtqFaxcqbVkV66EY8eEiy9uT90yjakbNYF6Bzdz6V9vE/ZQHyhbNs2fuWePLiKwdKn+u2GDTgJt2FBvw4fDxRcHvGHePPjhB4iN1aK3vXv7nudmjMk+rKfsLPHzFnD1zcV4t8M0Ir7sY0GZMdmAc/DnnxqgrZx/nJVjt/DHzsI4CaFQ6XwUvLAQBUvmo1AhoWBBKFSIM/5NvB8fDytWaBC2bZuOjjZqpAFYo0ZwySUQklTSR0wMDB2qQRnA5ZfDbbdZ/pgxuUx6e8osKAuUkMBH1/7Krj3Cm58U0ROrMSb7iYmB778n/veFnIjLw/G4vBwvXp5j1RpyvEodjoWX4PhxOH4cjh3j1H3Qkc+GDbUHLEWrd+zercOVO3ZoEHbHHXDZZZn69YwxwcmGLzPQpjErGLy0NnPv/Rqav+B3c4wxaZUnD9xzD6EtW1J44UIKL1kCx9fAqjWwCqhYEZo0gdYRWhQtrRYv1jHU6GgdpuzTB8rZbG1jTNqct6dMRPIBs4G8aBA30jn3oohUBoYBJYElQA/nXIyI5AUGAY2B/cCtzrmt3r6eA+4D4oFHnXOTzvXZWdlTlhCXQLtLt/BqvZFc9nRLrfxojMkZ4uNh7VpYtEiTw6KjdbuIjkk2barjk4UKnX5PQgIcPar1Lg4f1n8Tb4cPa3Lbpk362ogI6NFDE/uNMblWVvSURQNtnHPHRCQcmCsiE4EngA+cc8NEpD8abH3u/XvQOXeJiHQH3gZuFZFaQHegNlAWmCoilzrn4tPa+Iz0xX+2Ub/QZi6rfQSaNfO7OcaYjBQaqtM069SBO+/U5LOFC/XfDRv0NnQoVKqkQ5+HD+u45vnSO0JD4ZZbtA5GisY6jTEmeecNypx2pR3zHoZ7Nwe0AW73tn8HvIQGZTd49wFGAp+IiHjbhznnooEtIrIRaAr8nhFfJD22bUngy8F5mdvxZ+h0uyX3G5OThYdrr1hibbPISA3Q1q6FzZtPv05Ep1oWKaK3okXP/LdIEShTRh8bY0wGSFFOmYiEokOUlwCfApuAQ865OO8lUUBiIkU5YDuAcy5ORA6jQ5zlgPkBuw18j2+cgz63H+HDJj9Q4KKi1ktmTG6SLx80b663o0e1xlihQhpwFS6czFRLY4zJHCkKyrwhxgYiUgwYA9TIrAaJSG+gN8DFZxQAyhxfD0ygWvw6WpXZAJ3usl4yY3KrwoWhZk2/W2GMycVSdRnonDsEzAAuA4qJSGJQVx7Y4d3fAVQA8J4viib8n9qexHsCP2OAcy7CORdRunTp1DQvTeqGrObNOj9AqVLWS2aMMcYY35w3KBOR0l4PGSKSH7gGWIsGZzd7L7sL+Nm7P9Z7jPf8dC8vbSzQXUTyejM3qwELM+h7pE1CAk23DqdQeDR06mS9ZMYYY4zxTUqGL8sA33l5ZSHAcOfceBFZAwwTkdeAZcBX3uu/AgZ7ifwH0BmXOOdWi8hwYA0QBzzk+8zLyEhdR6V0ac0pMcYYY4zxSe6u6J+QAEuWaKHJ+vUz73OMMcYYk+NZRf/0CAnRqt7GGGOMMT6z+d7GGGOMMUHAgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwSCuiSGiOwFtvndjnQqBezzuxFByo5N8uzYJM+OTfLs2CTNjkvy7NgkLy3HpqJzLs3LEQV1UJYTiMji9NQsycns2CTPjk3y7Ngkz45N0uy4JM+OTfL8ODY2fGmMMcYYEwQsKDPGGGOMCQIWlGW+AX43IIjZsUmeHZvk2bFJnh2bpNlxSZ4dm+Rl+bGxnDJjjDHGmCBgPWXGGGOMMUHAgrIAIvK1iOwRkVVnbf+fiKwTkRUiMkZEiiXz/le910SKyGQRKettFxHpJyIbvecbJfP+DiKy3nvdswHbRUReF5E/RGStiDyagV87RYLg2KTr8zNTEB+bBiIy39vvYhFpmkFfOUUy8bjUEJHfRSRaRJ46x+c3FpGV3vHrJyLibS8hIlNEZIP3b/EM/NopEqzHxnvuEa8Nq0XknQz6yikWBMfmdRHZLiLHztr+hIis8fY9TUQqZsDXTZUgPjYXi8gMEVnm7b9jBnzdVJHk/34+7G1zIlLqHO+vLCILvNf+KCJ5vO2tRGSpiMSJyM1p+Pwk95ss55zdvBvQCmgErDprezsgzLv/NvB2Mu8vEnD/UaC/d78jMBEQoDmwIIn3hgKbgCpAHmA5UMt77h5gEBDiPb4gNx2bjPj8XHpsJgPXBuxrZg45LhcATYDXgafO8fkLveMm3nFMPBbvAM9695/NYT8z6T02VwFTgbyJ+8uFx6Y5UAY4dtb2q4AC3v0HgB/t2JzaPgB4wLtfC9iaxcflXH8/GwKVgK1AqXPsYzjQ3bvfP+D7VALqoX+Db07D5ye53+Ru1lMWwDk3GziQxPbJzrk47+F8oHwy7z8S8LAgkJiwdwMwyKn5QDERKXPW25sCG51zm51zMcAw732gJ4BXnHMJ3ufsSf23Sx+fj026Pz8zBeux8fZTxLtfFPgrBV8nw2TWcXHO7XHOLQJik/ts7zgVcc7Nd3o2HATc6D19A/Cdd/+7gO1ZJoiPzQPAW8656MT9peZ7ZQQ/j433uvnOuZ1JbJ/hnDtxvs/PTMF6bPD5XMM5/n4655Y557ae681eT3EbYKS36dR5wTm31Tm3AkhI7eefa7/JCTvXkyZJ9wI/JvekiLwO9AQOo1dWAOWA7QEvi/K2Bf5wJ/WaZt79qsCtInITsBd41Dm3IR3fIbNk1rHJkM/3mR/H5l/AJBF5F01VaJG6JmeJtByXlCiHHq9EiccO4MKAPyy7gAtTsd+s5MexuRRo6e37JNprsig1jc4imXVsUuo+tIcxGPlxbF4CJovII2iw1zaD9ptS5/r7mRIlgUMBgW3g70R6Pj/V+7WeslQQkeeBOGBIcq9xzj3vnKvgvebhDProvMBJp5WFvwS+zqD9Zhgfj02KP98vPh6bB4DHvf0+DnyVQfvNEH7/zHj7d5zumQwaPh6bMKAEOkz1b2B4YL5ZMPD750ZE7gQigP9l5H4zgo/H5jbgW+dceTRVYrCIWHyRBnbQUkhE7gauA+7wTuSIyDdewuSEJN4yBOjq3d8BVAh4rry3LdC5XhMFjPbuj0HHt4NGFhybVH9+sPD52NzF6Z+bEWgXe1BI53FJiR2cOYQTeOx2Jw4De/9m+RDdufh8bKKA0d6Q+UJ0yCbZ5OislgXH5nyf3xZ4HuicOMQbLHw+NvehuVM4534H8pG1PzepPleKyCTv2AwE9qPpIYmjh6k91yb3+anerwVlKSAiHYCn0V/ExJwCnHP3OOcaOOc6eq+rFvC2G4B13v2xQE9RzYHDSYzLLwKqeTM18gDdvfcB/MTpbuYrgT8y7tulTxYdm1R/fjDw+9igeR1XevfbAEEx5J0Bx+W8vON0RESaez09PYGfvafHogEr3r8/J7ELXwTBsfkJ71wjIpeiSctBsVh1Vhyb83x+Q+AL7/ODLZD39dgAfwJXe59REw3K9mbQvlPiXH8/k+Sca+8dm15eEDsDSJxdmdrzQpKfn6b9uiyePRLMN2Aomq8Ti14x3udt34iOF0d6t/7JvH8UsApYAYwDyiVesACforMzVgIRyby/IxpwbQKeD9heDPjFe+/vQP1ceGzS9fm59NhcASxBZwItABrnkONykbe/I8Ah736RJN4f4b1/E/AJp4tllwSmoUHqVKBEDvqZSe+xyQN87z23FGiTC4/NO95zCd6/L3nbpwK7Az5/rB2bU8emFvAbeq6JBNr5cGyS+/v5qNfWOPRCdWAy76+CzkreiI4sJM5AbuK9/zja87U6lZ+f5H6Tu1lFf2OMMcaYIGDDl8YYY4wxQcCCMmOMMcaYIGBBmTHGGGNMELCgzBhjjDEmCFhQZowxxhgTBCwoM8YEBREp6RVzjBSRXSKyw7t/TEQ+y8TPbS0iwbgElTEml7G1L40xQcE5tx9oACAiLwHHnHPvZsFHtwaOAfOy4LOMMSZZ1lNmjAlqXk/WeO/+SyLynYjMEZFtItJFRN4RkZUi8quIhHuvaywis0RkibecSuKySo+KyBoRWSEiw0SkEtAXeNzrlWspIteLyAIRWSYiU0XkwlR+9taA7QtF5BJfDpwxJtuxoMwYk91URZeN6oxWn5/hnKsL/A108oKjj4GbnXONga+B1733Pgs0dM7VA/o657YC/YEPnC65MgeYCzR3zjUEhqHL16ToswNed9jb/gnwYQZ/f2NMDmXDl8aY7Gaicy5WRFYCocCv3vaVQCWgOlAHmKJLOxKKLk0DurzMEBH5CV3nMSnlgR+93rU8wJZUfHaioQH/fpDqb2iMyZWsp8wYk91EAzjnEoBYd3qtuAT0QlPQ9ekaeLe6zrl23ms6oeuJNgIWiUhSF6YfA594PV190MWVU/rZiVwy940xJlkWlBljcpr1QGkRuQxARMJFpLaIhAAVnHMzgGeAokAh4ChQOOD9RYEd3v270tiGWwP+/T2N+zDG5DI2fGmMyVGcczEicjPQT0SKoue5D4E/gO+9bQL0c84dEpFxwEgRuQF4BHgJGCEiB4HpQOU0NKO4iKxAe9ZuS+93MsbkDnK6990YY0x6ichWIMI5t8/vthhjshcbvjTGGGOMCQLWU2aMMcYYEwSsp8wYY4wxJghYUGaMMcYYEwQsKDPGGGOMCQIWlBljjDHGBAELyowxxhhjgoAFZcYYY4wxQeD/AfLJXGzTpAfQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,3))\n", + "plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for testing data: 1.2623790187854018 %\n" + ] + } + ], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "## Predicción del conjunto de datos completo\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor shape: (26300, 5)\n", + "X shape: (26300, 4) \n", + "Y shape: (26300, 1)\n" + ] + } + ], + "source": [ + "# Extracting load values as numpy array\n", + "data = energy.copy().values\n", + "\n", + "# Scaling\n", + "data = scaler.transform(data)\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0]\n", + "print(\"Tensor shape: \", data_timesteps.shape)\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]]\n", + "print(\"X shape: \", X.shape,\"\\nY shape: \", Y.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "Y_pred = model.predict(X).reshape(-1,1)\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = scaler.inverse_transform(Y_pred)\n", + "Y = scaler.inverse_transform(Y)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrgAAAHgCAYAAAD+LG2qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5jcxN3Hv7pzBVNsmumYEjoYQkvoEFog1FDCGwiEmkACISSU0EIvCYRuG0wHUwwGA8bYuIMx7r33frbvznfnO1/Z1bx/bNNqVUbS7Eq7+/08zz23K41mZlVmRr+qCSFACCGEEEIIIYQQQgghhBBCSLFQEXYHCCGEEEIIIYQQQgghhBBCCPECFVyEEEIIIYQQQgghhBBCCCGkqKCCixBCCCGEEEIIIYQQQgghhBQVVHARQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiop2YXfAie23317stddeYXeDEEIIIYQQQgghhBBCCCGEFJhJkyZtEELsYLUv0gquvfbaCxMnTgy7G4QQQgghhBBCCCGEEEIIIaTAaJq2zG4fQxQSQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiopI5+AihBBCCCGEEEIIIYQQQgiJKm1tbVi5ciWam5vD7kpR06lTJ+y2225o37699DFUcBFCCCGEEEIIIYQQQgghhPhg5cqV2GqrrbDXXntB07Swu1OUCCFQXV2NlStXokePHtLHMUQhIYQQQgghhBBCCCGEEEKID5qbm7HddttRuRUATdOw3XbbefaCo4KLEEIIIYQQQgghhBBCCCHEJ1RuBcfPOaSCixBCCCGEEEIIIYQQQgghpMj5/PPPoWka5s6d61juf//7H5qamny389Zbb+HWW2/1fbwqqOAihBBCCCGEEEIIIYQQQggpcvr164cTTjgB/fr1cywXVMEVFajgIoQQQgghhBBCCCGEEEIIKWI2bdqE77//Hn379sWHH34IAIjH47jzzjtxyCGH4LDDDsOLL76IF154AatXr8app56KU089FQDQpUuXdD39+/fHNddcAwD48ssvceyxx+KII47Ar371K1RVVRX8dznRLuwOEEIIIYQQQgghhBBCCCGEFD033ZSfenv3di3yxRdf4Oyzz8bPfvYzbLfddpg0aRLGjx+PpUuXYurUqWjXrh1qamrQrVs3PPvssxgxYgS23357xzpPOOEEjBs3Dpqm4fXXX8fTTz+N//73v6p+VWCo4CKEEEIIIYQQQgghhBBCCCli+vXrh9tuuw0AcMUVV6Bfv35YsmQJbr75ZrRrl1AFdevWzVOdK1euxOWXX441a9agtbUVPXr0UN7vIFDBRQghhBBCCCGEEEIIIYQQEhQJT6t8UFNTg+HDh2PGjBnQNA3xeByapuHoo4+WOl7TtPTn5ubm9Oe//OUvuOOOO3D++edj5MiReOihh1R3PRDMwUUIIYQQQgghhBBCCCGEEFKk9O/fH1dddRWWLVuGpUuXYsWKFejRowcOP/xw9O7dG7FYDEBCEQYAW221FRoaGtLH77TTTpgzZw50XceAAQPS2+vq6rDrrrsCAN5+++0C/iI5qOAihBBCCCGEEEIIIYQQQggpUvr164eLLrooa9sll1yCNWvWYI899sBhhx2Gww8/HB988AEA4MYbb8TZZ5+NU089FQDw5JNP4rzzzsMvf/lL7Lzzzuk6HnroIVx66aX4+c9/7pqvKww0IUTYfbDlqKOOEhMnTgy7G4QQQgghhBBCCCGEEEIIITnMmTMHBx54YNjdKAmszqWmaZOEEEdZlacHFyGEEEIIIYSUK1VVQH192L0ghBBCCCGEEM+0C7sDhBBCCCGEEEJCoKEBeOCBxOeQkmETQgghhBBCiF/owUUIIYQQQggh5ci6dWH3gBBCCCGEEEJ8QwUXIYQQQgghhJQjsVjYPSCEEEIIIYQQ31DBRQghhBBCCCHliK6H3QNCCCGEEEII8Q0VXIQQQgghhBBSjlDBRQghhBBCCCliqOAihBBCCCGEkHKithZYuRKIx8PuCSGEEEIIIUQBlZWV6NmzJw455BBceumlaGpq8l3XNddcg/79+wMArr/+esyePdu27MiRIzF27FjPbey1117YsGGD7z6moIKLEEIIIYQQQsqJu+8GHnkE2Lgx7J4QQgghhBBCFNC5c2dMnToVM2fORIcOHdCrV6+s/TGf+Xdff/11HHTQQbb7/Sq4VEEFFyGEEEIIIYSUI599FnYPCCGEEEIIIYo58cQTsXDhQowcORInnngizj//fBx00EGIx+P4xz/+gaOPPhqHHXYYevfuDQAQQuDWW2/F/vvvj1/96ldYt25duq5TTjkFEydOBAAMHjwYRx55JA4//HCcfvrpWLp0KXr16oXnnnsOPXv2xJgxY7B+/XpccsklOProo3H00Ufjhx9+AABUV1fjzDPPxMEHH4zrr78eQgglv7WdkloIIYQQQgghhESX2lpg8mTghBMy2zZvDq8/hBBCCCGEEOXEYjF88803OPvsswEAkydPxsyZM9GjRw/06dMH22yzDSZMmICWlhYcf/zxOPPMMzFlyhTMmzcPs2fPRlVVFQ466CD88Y9/zKp3/fr1uOGGGzB69Gj06NEDNTU16NatG26++WZ06dIFd955JwDgyiuvxN/+9jeccMIJWL58Oc466yzMmTMH//73v3HCCSfggQcewNdff42+ffsq+b1UcBFCCCGEEEJIqfPMM0B1NfDxx2H3hBBCCCGEkJJG09TX6ebwtHnzZvTs2RNAwoPruuuuw9ixY3HMMcegR48eAIAhQ4Zg+vTp6fxadXV1WLBgAUaPHo3f/e53qKysxC677ILTTjstp/5x48bhpJNOStfVrVs3y3589913WTm76uvrsWnTJowePRqfJSNInHvuuejataun328HFVyEEEIIIYQQUupUV4fdA0IIIYQQQsoCRdH3PJHKwWVmyy23TH8WQuDFF1/EWWedlVVm0KBByvqh6zrGjRuHTp06KavTCebgIoQQQgghhBBCCCGEEEIIKWHOOussvPrqq2hrawMAzJ8/H42NjTjppJPw0UcfIR6PY82aNRgxYkTOsccddxxGjx6NJUuWAABqamoAAFtttRUaGhrS5c4880y8+OKL6e8ppdtJJ52EDz74AADwzTffoLa2VslvooKLEEIIIYQQQgghhBBCCCGkhLn++utx0EEH4cgjj8QhhxyCm266CbFYDBdddBH2228/HHTQQbj66qvxi1/8IufYHXbYAX369MHFF1+Mww8/HJdffjkA4De/+Q0GDBiAnj17YsyYMXjhhRcwceJEHHbYYTjooIPQq1cvAMCDDz6I0aNH4+CDD8Znn32GPfbYQ8lv0kQY/nKSHHXUUWLixIlhd4MQQgghhBBCipubbnLe37t3YfpBCCGEEEJIiTFnzhwceOCBYXejJLA6l5qmTRJCHGVVnh5chBBCCCGEEFLuRNjwkRBCCCGEEEKsoIKLEEIIIYQQQgghhBBCCCGEFBVUcBFCCCGEEEJIuaPrYfeAEEIIIYQQQjxBBRchhBBCCCGElDsMUUgIIYQQQohvBNfTgfFzDqngIoQQQgghhBBCCCGEEEII8UGnTp1QXV1NJVcAhBCorq5Gp06dPB3XLk/9IYQQQgghhBBSLPBlnBBCCCGEEF/stttuWLlyJdavXx92V4qaTp06YbfddvN0DBVchBBCCCGEEEIIIYQQQgghPmjfvj169OgRdjfKEoYoJIQQQgghhJByhx5chBBCCCGEkCKDCi5CCCGEEEIIKXeo4CKEEELCYeVKYNmysHtBCCFFCUMUEkIIIYQQQgghhBBCSBg88kji/8svA+0oqiWEEC9IeXBpmrZU07QZmqZN1TRtYnJbN03ThmqatiD5v2tyu6Zp2guapi3UNG26pmlHGur5Q7L8Ak3T/pCfn0QIIYQQQgghxBP04CKEEELCJRYLuweEEFJ0eAlReKoQoqcQ4qjk97sBDBNC7AdgWPI7AJwDYL/k340AXgUSCjEADwI4FsAxAB5MKcUIIYQQQgghhBBCCCGkbKGxCSGEeCZIDq4LALyd/Pw2gAsN298RCcYB2FbTtJ0BnAVgqBCiRghRC2AogLMDtE8IIYQQQgghRAW6HnYPCCGEkPKGCi5CCPGMrIJLABiiadokTdNuTG7bSQixJvl5LYCdkp93BbDCcOzK5Da77YQQQgghhBBCCCGEEFJeGJVaVHARQohnZDMXniCEWKVp2o4AhmqaNte4UwghNE1TMgonFWg3AsAee+yhokpCCCGEEEIIIU5QqEYIIYSEC72pCSHEM1IeXEKIVcn/6wAMQCKHVlUy9CCS/9cli68CsLvh8N2S2+y2m9vqI4Q4Sghx1A477ODt1xBCCCGEEEIIIYQQQkgxQAMTQggJhKuCS9O0LTVN2yr1GcCZAGYCGAjgD8lifwDwRfLzQABXawmOA1CXDGX4LYAzNU3rqmla12Q93yr9NYQQQgghhBBCvEMBGyGEEFJ4jF5bnIsJIcQzMiEKdwIwQNO0VPkPhBCDNU2bAOBjTdOuA7AMwGXJ8oMA/BrAQgBNAK4FACFEjaZpjwCYkCz3sBCiRtkvIYQQQgghhBDiDwrVCCGEEEIIIUWGq4JLCLEYwOEW26sBnG6xXQC4xaauNwC84b2bhBBCCCGEEEIIIYQQUkIYDUxobEIIIZ6RysFFCCGEEEIIIaSEoVCNEEIIKTxUcBFCSCCo4CKEEEIIIYQQQgghhJBCE5ZSa8oU4OOPs3OAEUJIESKTg4sQQgghhBBCSClDq3FCCCGk8ITlwdWrV+L/nnsCxx5buHYJIUQx9OAihBBCCCGEkHKHCi5CCCGk8IQ9/1ZXh9s+IYQEhAouQgghhWXNGqCpKexeEEIIIcRI2AI2QgghpBxhDi5CCAkEFVyEEEISbN4MvPwyMHVq/tqoqgIeegi45578tUEIIYQQQgghhBQDVHARQkggqOAihBCSYMgQYPp04NVX89fG/PmJ/83N+WuDEEIIKWUWLwaefTbhEa0SCtUIIYSQwsP5lxBCAkEFFyGEkASbN+e/DV3PfxuEEEJIKfPUU8C8eZnk8KqggI0QQggpPGF7cHH+J4QUOVRwEUIISaBpYfeAEEIIIbKsXRt2Dwgh+aa5mQZihJQ6VDARQkggqOAihBCSwKjgamzMTxtcvBNCCCHRhHM0IdGiuRm47TbgwQfD7gkhpFDQg4sQQjxDBRchhJAERgXXHXcA69eH1xdCCCGEOLP//mH3gBCST1asSPxfty7cfhBC8kvYIQoJIaTIoYKLEEKINVOnqq+TC3ZCCCEkMR/GYsHrUAnnaEKiBcOHE1IecP4lhJBAUMFFCCEkQYVpSggqeCOEEEKINU8/DdxyC9DSEnZPMlDARki0oIKLEFIIOP8TQoocKrgIIYQkML9E86WaEEIIyQ+LFyf+v/VWIs+OH+jBRUhpw7U4IeUH52JCCPEMFVyEEEISFELBxQU7IYQQkmHyZOD998PuBSGEEEIIIYQUJVRwEUJI2EyeDMyZE3YvCmMlSgUXIYQQko3fNQA9uAgpbejBRUj5EcZczPmfEFLktAu7A4QQUtY0NwO9eyc+v/IKUFkZXl8YopAQQggpHqjgIqS04VqckPKgtTXzmXMxIYR4hh5chBASJm1t1p/DgC/RhBBCSOGhMIsQYgXX5oSUPvX1wP33h9sHrkMIIUUOFVyEEBImup75HI+H1w+AHlyEEEJIGERFsBSVfhBCCCHlwtSp2d/t5uIFC4DHHgNWrMh7lwghpNiggosQQsLEqOAyfg6DQii4KDwjhBBCsvE7N3JOJSQabNoEvPwyMHt22D0hhBQbsu/c//kPsHw58Oqr6vvA9QQhpMihgosQQsLEqNR6912gpSW8vhBCCCEk/0RVkBTVfhESdb74Apg+HXj++bB7Qggpdtzm4uZm9W2GbWhLCCEBoYKLEELCxBiWcNo04JtvwuuLGYYoJIQQQtRjFiT5FSwpUkhpfXpjSf12VHAR4pfNm8PuASGkVAhjLub8TwgpcqjgIoSQsGhpAfr2zd5WWxtOX4DCLGy5eCaEEFLuqLKU9jinPj7lHNww+veW+zY0d+EcTYhfKivD7gEhpFjxOvdyriaEkByo4CKEkLAYNQpYujR7W6l7TXFBTgghpNwxem8DBZv7X551Ml6feyK0Pr1z9lVonJ8J8U2pr98JIYXD7X2Z4QQJISQHKrgIISQsmppytxXyBbmqCnjhhVwlW4oKThGEEEKIclQpuBQajVDBRQghhBQBNBglhJAcKL0khJAoUUgFV//+wKxZwBNPFK5NLsgJIYSUO2br6wh4f1RqtAgnhBBCQieIB9fGjUAsprQ7hBBSDFDBRQghUaKQQq716533R0DgRgghhJQcZg+uCKDRg0sOGuoQQghRiXlecZtn7PZXVwN33QU8/LCafhFCSBFBBRchhISF1eK0kIITvwmxN2wAXnsNWLnS23Hz5gGffeavTUIIIaRUMM/1IYQo/NOYK/HdygOU1VcW6Drw2GPAO++E3RMSNWgURggpFHYeXAsWJP5XVRWuL4QQEhGo4CKEkChRDMKlvn2BiROBp5/2dtyzz+anP4QQQkgxE4KCq9eck/Ha3BN9H1+WLFsGrFgB/PBD2D0h5UifPkBLS9i9IISoxqsHl52Ci4p2QkgZQwUXIYREiSgpuCpspoiamsR/vmQTQggh3gljrndpUwgtWmuQKELhIQmTSZOA777L3rZyJdDQEE5/CCHRgnM4IaSMaRd2BwghpGyxWoQ6JY3NN7KLYjvFFyGEEEK8E4IHFwB8vPgojHp3v0RVoPLGE0JQ4UUKj1GZtW4d8Mgjic+9e4fTH0KIevzO7UHkCFSOEUKKHEopCSGEeIMCHUIIIcQ/qnJwKaBq8zahta2EhobCebAYr1PKm50QoHDPcDye+bxmTWHaJIQUFjdlE9/FCSEkByq4CCEkSoRpPWVu+/33gfnzw+kHrcgIIYSUCyF5cBU9QgB33pn4K/S5oICRhE1lZdg9IISoQNX8ZayHqQQIIWUGFVyEEELs+e9/c7flU4gkBPDMM8Czz+avDUIIIaQUUD0fF7PCjAouQoLT3JwIdzh9etg9IaR88TufGY/761+BtjbXQ2J6BVrjVJYTQoofKrgIISQsrBavxSBcMvZx2jS1dcfjwKJFCc+xYjgXhBBCSDHgMqcW5ZRr7HQsVti2qeAipcjQodBuvgmj/jUk7J4QQuywm3/ME/nata5V/d/w67D3h48p6BQhhIQLFVyEEFKuqJBmvfJK8DrsKLSwihBCCCkCnpx6Fir6vOr5OCedjIAGDBgQoFchoOuZz1wzkDJkSf122NjSWV2FjY0AgOk1u6mrkxDiDRUeXED2HGnDpA17YFVjV3/tEUJIhKCCixBCokQxmFDnO0RhColFOSGksCya04q+z9UDs2Yxvj8hfgk4j07esAcEKtTPx3PnAuvWqa0znxh/f6HXTxV8jSbhs/eHj+P/hl8XdjcIIUFIzl+//uZWPDHlbP/zmfndWaKeCq0IZA+EECIBV+aEEBIWYSuzzKbcYfcHyF6YR6E/hJAsnrxiKq6/Y2sse+y9/HpwElJORGm+KybFdaEVXFG6TiRaaBoW129f2FskuY6vbd1CTX31SeMVQkhhSQ4c36w4FP0WHe0+18iGKJRAA+c1QkhpQAUXIYSERdiCkrDbtyJMa2xCiDutCeH3Xv2ewIKfakLuDCElgsf5Li3a8nycRPmZMz3VGSqF9vo2tkcPLmJE17HPh4/h25UHh90T/9x/f9qDkytwQgqIYf6K6RXAf/+b8Ki2Q6GCS8mxhBASAbgyJ4SQKFEMi8tChSgshnNBSBnTHG8XdhcIKVqmVe+GNU1b+zo2rajyMk+6lE3vnTLFV59CgR5cJAp8/jkwdiwAoKGtY37byuM9WL2xEv8af0He6ieE2GB4ruMiKaLt0ydQPZbfLWCIQkJIqUAFFyGEhMyMml1Q39op8aUYhCdUcBFCCCGB6Pnp/bjsuxt9Hav5FEjZ2HwDAITQUh981R0KRq+tQntwFdN5Ivnlm2/SH+N68YpXhqw8CI9P/XXY3SCk/DDMX2kFlx8vYR8KLoYoJISUCsW7AiOEkGInueg8rP+DuOuni0PuTESg8IgQQkipk5zfWnx6QaYtrj16cEkpxo4/3lefQoEeXCRi6I5qZAUYQ5PZhSlTQGNbR1RV5a16QogRq7nFyWhDVYjCXr3yOYwUjro6oKEh7F4QQkKGCi5CCIkAzfH2YXfBmi0sElfTg4sQQggJjJ6y1Pabg8ujZMrJUlukat1yS091hoYQwIwZ2d8L0SYhDqQ9IRVy8ZCbce/4C50Lvf460NKirM17J1yE7t2VVUcIcUKVB7IXDy4hgClTit+DKx4H/vlP4M47w+4JISRkqOAihJAIUKElF7ZhCk+EwNyNO+W9mf9MOwOt8UrbPlh+JoQQQkqF5PxW6FlOSh9WLHPv1KnAm29mvhciRCEpb1pagCeeAIYNsy2i50HBNWDpEXh/4TG5O5IP9I9V+0C74Xpg+HDlbRNCCouUkrytDfj4Y6uD5RuKxQA4hy4uCpqbM5+LZf1CCMkLVHARQkhYGBZhHyw8Bl3feja09lMc+PHD2NjS2bFM0MXjP376LeZulDAL5SKVEEJICePX2yOvFtfFMvfOm5f9nR5cJN/88AOwdKm1YDlJvkIULt+0Hfb78GHne7CpKVAbvLsJCQk/c4uDol2K1lYA/nN6Roakog5AwpuLEFK2+Av8TgghRCnN8Q5ojncIV3iStARt1V2mBgV9lFpMU5BESOQoektPQiJE3vP1mJBSjBXL3GsWZBXag6tYzhNRh43wVAhgScP2eW9+Yb1LlAXek4QUPYGeYrObttOYUCrKoLa2zGd6chNS1tCDixBCwiIP3lGB2k9+jxstyvPUnwq75TtDFBJSNOQj1wgh5cS06t2x1ZvP+5/vqqqAgQPlygrhqE4ruinXLJwruh9ASoVvVhyCfT58DEB5zIvV1cDq1WH3gpASx2OOTctjnObFpDKo6HNwJT3RAHAdQEiZQwUXIYSQLOK6y9SgYPFYUezhEAiJADU1wLp1YfeCEBKETW2dPB+T5QX99ddK+pFWfxWLgMgYlggojOV2sZwbUjC++w6YvGGPsLsBAHh31B5BoxTmYuHlcdppwK67Km6HEJKNCgWXE8n5zE8zkYIeXISQJFRwEUJIuWLrwZX/qUHThLugyLxI3biRwiVCDJx4bCt22qkEXk4JKTds5t98U1Lhgc0KLubgIvnGYrI94wzg/okXhNAZ5PTn6peOwTffKG5jxYqcTTSsIUQxYcwtpTKfyUR/EYLKL0LKACq4CCEkLKIWojC1GRpWbOqK3w//o6fjvDUtIZE3tjN7NnDXXcBHHwVum5CSIB7H6uVt7uUUsvPOwNvzjytom4QQEytX5m6rrZU6tOhDERmhsIqEwMK6HRDXNQgBHH987n7nQKBy1NQYHKc8rrkL+Rqxfn3h2iKkZInFgAUL8lO304CQ8uBKrQuKVeFl7LfduuDFF4G//S07nCEhpOSggosQQkgWQgDfrToQ7y881lEJd+e4S7CxpbO/NqwEAG1twDvvWB8weHDi/4gRvtojpOQwv8StXZv3JteuBVr19nlvh5Cyw4tg6ZFHcrfdfTewaJHzcU1Nct6epSDkKkQbxXqeSCD2++hRvDHveOg6MHZsftrYbruEPDYSONznO+5YwH4QUqq8/z4wb56aurzMS2kFV5Ejo+CaNQtobgaWLi1Ilwgh4UAFFyGElCNjxyaS01sgoElZef93+pkYs3Y/X80LgdxF+OTJwIwZme/GRWplZebzZ5/5apOQksZOOUwIKTksBVKff+4s3PrnPx3ndqprCJGjavPWtvv6Lz4SL78U/GlatSpwFWqwGFMYFpkQhSQ15Vqf3gCcvUD7LTw6XS4wpWik4fabSvE3E0LSSCu4NE2r1DRtiqZpXyW/v6Vp2hJN06Ym/3omt2uapr2gadpCTdOma5p2pKGOP2iatiD59wflv4YQQoqdQi283n7bvgseqtFlQg1atmFxnDmov/FctGuX+fztt77aJKSksUgETwgpTSxzac2fD0yd6rvORyafiz9//7viFQAVImRhsZ4bEhwhgMZGAIm1r52SZ9CKQ3HrXzT/90qyjbSGy6keapoIKV0snu+5G7s7HyMEZtbskvXdqWyimRKa19zWAZzDiZnx44Hvvgu7F0QRXjy4bgMwx7TtH0KInsm/qclt5wDYL/l3I4BXAUDTtG4AHgRwLIBjADyoaVrXAH0nhJDiJuwcXDZtC6E5L3YNfYwLf47AAsgVyPNFnRBCSDkQcK63nS1HjfJ3HICvlx+GV2efUjwCoDDWDAxRWL689RYwaFD6q+vl37jRXztDhybqnzULeO457/fZlCn+2rXhvc+7KK2PEOKM0yPfvsL07mxR+ND+D2Jpw3bulZVKiEIjbgquOWZxNil7+vYFPvnE/5xNIoWUZFLTtN0AnAvgdYniFwB4RyQYB2BbTdN2BnAWgKFCiBohRC2AoQDO9tlv4sLLLwOnHtMI3HcfY80SQixZv7mLZZiD8wbfiocnnZf44vJi7duDS2jA3/+eSKxrx3PPZSxZmUyekJLhqquAjz4KuxeERAiPQmzbUINOcyokLbWLVXFTrP0mxcG4cemPTiHE0rg8i7YY17tz5wLLl9uXtVLyjh/vr10brvq7c6Kt004DPv5YaZOEEBsqNbn34ZZ4O/dCpfJu7cXwJJXTu6EB+PHHRP5vQgCgpSXsHhAFyJre/w/APwGYR8HHkmEIn9M0rWNy264AVhjKrExus9tO8kD//sDICVsC69cntF2EkOKggAKaplgHy+3z6rpjccMO9gcq8eDSEguJNWty9n29/BBMWLcnUFsLfPllTpuW3wkhRcN77wFvvBF2LwgJEc5hwZH14Fq6NDHg1NcHb5PXjaQYMcJ5v9+wwcacs4Dne64gd2hba/rjiBHAgAGFaJSQMsNijstRcNm8Hw9deSAGrziYIQrtePHFhFfuF1/ktTukiOD6riRwlUxqmnYegHVCiEmmXfcAOADA0QC6AbhLRYc0TbtR07SJmqZNXL9+vYoqiV8LMkJIftE0NLZZK5kKQYdKibEhT2EUszy/TPWdN/gvuHL4dYkvTU3JA0rEyowQVQiR/e4bwsJ87eat4XepxvcIQgx49eCyE0i5KH1sPb+KEfNvtTqHDQ3AE08AP/1EKTwJxIpNXdNRD4asPBD//VeNmordnv0CTpZCIirDd98BsU3NBegNIeVJ2kPUYj6vkFRG/WXs73DON391aSgVorCE1gWy4+WyZYn/M2bkry+kKHhx5qnFnX+WZCFjen88gPM1TVsK4EMAp2ma9p4QYk0yDGELgDeRyKsFAKsA7G44frfkNrvtWQgh+gghjhJCHLXDDg4eBMSZdesyn/mwEhJJ2mIaurz5YvbGAj6vlVoq55b3YxfW7eD7WMBgYdrcDNx9N9CvX1ZlMZG0YE1ZwJobosKLkNA5a9DtOPZYNXWtWcM0fITIknpU3l9wjKPBSM5xMs9Ysb43WPX7zjsznzdtUtLGmDX7oq61U/GeJ+KL5Zu6pT+PrdoXd42/xPkAmfvjgw+Ae+5xDo0UgftMCGDgwMT4ccYZwPrmrcPuEiFlSY6CK8j4YM7BFYGxxhfGfnuVD/j1tCUlwwszTy2u/LPEEVcFlxDiHiHEbkKIvQBcAWC4EOL3ybxa0DRNA3AhgJnJQwYCuFpLcByAOiHEGgDfAjhT07SumqZ1BXBmchvJA9pGg1WZz4f1sMPotUtIPpGK4Z/P9pNDQ5temb3BheUNXbHfR48GbDv526dOTST1HDkya39MT05PdgtVLkJIuRORZ8CvB5dZ0F6jyBiekHIg5cH1+xHXYXXjNpkdbgquUrLUTg4iM2p2weL67d3HRBUadCFw0pf/wKOTzw1eFyGjRiXCcU+fntmWvE9jemUij86SJZ6qlPHCssPOM1QIYN48f3XW1tJJghCvNMXaW273rOAqhxCFXnJwEWIiZfBN4+nSwF/ylATva5o2A8AMANsDSEk7BwFYDGAhgNcA/BkAhBA1AB4BMCH593ByG8kju7//hG/DhBkzgCFD1PaHEJLBcg0WwsIsreCSpDWeKe9XSZc+zphrwOjB5aZ04yKEkEjg24uT76CEeMdscQ3TPOyq4JJvo1g4rP+DOO5zi0j55nWCwt9VXGeIBEFF6jZX2toyn5MKrudnno5ubz8LTJhgf1wRuD3/+c8Jo1k7hABOP71w/SEk6izftB22fOMly30V5hxcZrzkrC4FD66mJuCrrzLfKR8gHkk/U8V4/5McPCm4hBAjhRDnJT+fJoQ4VAhxiBDi90KITcntQghxixBin+T+iYbj3xBC7Jv8e1PtTyFWrGzshljc/+J3wgTgoYfU9YcQUiCEcJ2oU0KxtHAsT/m2LNtOVVthPQ3F3SxQuQghpLA0Niqtbvly4MknlVZJSPHgRQhlJCm8MXpiCQAT1++ZyA9kV08pzpkG4X5zvH3ubzQqDQA1gq9SPI/EkW22AX79a+Bhr157Cu6VpljHwHWoIMhPaXZJ1xWLAcOH+6+fkJLFKgeX2bwiYIjCVY3bYnPc2lvMb50F5aOPgLlz/bfPOb3sqSx2D0aSRRAPLlIGTJgA/PvfYfeCkNIkb2sqXU9Ijvv0cW4/VdxjOBNNZIREfn+CpeeX4YTEBUMUEhIWq1cDL5mNR01hRM0MGpSINirLvHmJ1COEEA+kFFyGF3IhNCyo2zFrvx1FH4rISEUFbh97GYDkmsK8LjCHsOC6gfjkm2+AISsPDrsbAIC1Gzvl5VZuaAA2xzqor9gBXWcKHEK8kBOi0IyXwUEI7Pb+U5hWvXuwTqUYOhT45z+BDRvU1CeDOYQrPbiIR9IeXCF4RC9dyqWpaqjgItY0NeVsmjYN+OyzooiGQEhRkLcQhWvXJmbMyZNd2k95cHlr2m8Oj+emn479Pnw4q027N9uYW9jEWMxXH7LYsCERh9Vs5U2IQhQ7PtmjcIX82mvAX/7i7ZhzzwUefhhYvFhZNwgpH2Sf3+ScaQ5RmDZUUeHBVSxv25qG52cmYptJradUe3AVy3kikeXDhUdhyzdeyN7o8qK9819+iw8+UN+X3XcHrh99teW+fN3qt9wC7LSTe7lVq4ApU4BHHslPPwgpFpTm4FIdxrd//0RM1y++CFaPD/b78GH8bwZjnRLvpKfcENZ0PXoAX35Z8GZLGiq4iDXDhmV/13X07AlcckkovSGkJAlbNpLyotKFw1TgFubQg/fXyDU/w8L6nbKPMyqqDG3pTmETAeDvfwcWLJBu25IXXwQ+/RQYMCBYPYTYMHUq0KVLniov9AAiYd3y3HPAPvsUoC+ElCsWShohXEING47za6ASScwhjt3CPiocM2nrVyb88IP/YyXutx/X7e0ehrBj7v71M9YkPljMy35z49bV2e/L13Jj4sRMjjOnNnbbDTjySOCBB/LTD0KKBc8KLify9WAX8v0k2dbC+p0wbNUBvo8nJCwaGsLuQWlBBRexxuxVsWhROP0gpIQReuFyXlm2L6z/u/XHr4Ds6+WHpj+7hUVMN+t0Pj780Fc/0qxdm/i/cGGwegixYf36AjaWx7FD14HPf5QwsyaE+MNrDi4t2yAkPae6hPUtqSgMbj8mHwouCsPKixA8EcwsWr9V7sbRYwrfkYBoGrBpk/1+PlqEuJMOp2aHF8/lUlBwGWSWUvKJvfbKX18IIaFDBRexxmwVyXi2hBSGQiq4Uh5c0DwFAc5Obm+R98KGuMiEHUxbmNoIqBpjnaD16Z2p26qcijCFhOSRoMLk++7LWDd7RdfVTd3z5gEXPfpzy32NjcF/Z2MjLdhImeFnrt+8GXj9dQCmEIVGgxGXEIVSAqBikTQb3lUENPdwSwp/l1BcH4koQSY3D/fHwhcGJeLwWbS574eP+e+DIsTUaf6PNZwGp5DNfJwIMWEefxYtQoV5DlfpwVWMD6Fh3tc04f4bevTI/l6Mv5mUBqkUGQXLZVAeUMFFrHEL+0EICYzfMCKuGIU8Ds9uxklKA554AqLOpyRdcnz400Ej058vHPInXD3imuzFuxBoirWXr1tVZuqSMmknpcRjjwHff+/v2OOPB847T21/8sUppwC/+EXYvSAk4nz1FTBnDoBcQ5P0d1cFlwTFsuY3KrisvMLNCi+FObjiOl+hS52aGmDqul0K0tZ+Hz2KaXe+6/3AQj2rH32kpBqn7hbLsENIPpC6/59+OjdEYZCKS+GhM6wDnNY3G1s6Y1H99rk7SuEckOJk0KDEfybhUgpX5yVKtmWnjwqo4CIk7+TtsXJLgp7clhIIpRVttbVS1WsiIyQSAtJCo207bE5/3tC8FT5Z/HOgogIPTTwPVU1bAUJgyzdecqyjTa/IhGLiuEQijnkq9YPtbe5y/48bB4wa5b29p57yd5xfNC2RhyMNPcZJOeBn/jIkyTHZhmSEXql6N2wAHnkEmDIla7vmVTgWVVpbgeXL018L7VEVd8pdSkqCv/4VOOKt23wf/9ubunkq39zsELEgZERLq+djUjZoTj8naxwbWcCFByERQ9botTIZovCiITdjbdPWwXJP5suDq5Dv55Lj5Z+/vzLhDUvZATERWm7aVIoMenAphatzQggJCdmcV55x82wytZFSGEnn4PKZ4Na8gEi1++/Jv8EXy3o69lUI4I25v8TWbz6PO8f91lO7lrz1lv9jCZFEhZyq0Pqeu+8GRowwbSxkHs7vvitcW4REBZn5zFAmx4MrNS+nBozhw4GVK4FevdLbn59xGiZv2NN732pro6d4fuklYPHi9FdL4WA+BFkpDy4quEqe+AY5oy87Ph20haKehI/XiBPz5gHt2nls5OOPPR5ASOkg+w6eMmb5fOkR+LFqb/d5rtQ9uCRpaOtkvaOMzgGJFq2610mSyMDVeRmgJAxa1F5sCSkB8ramMj6vVs9ucltqbAjcDcnxwRxWQUADhgxJfBawPiHJbfXNHXDd6D+gOd4B49ftlbXPFz/+6P9YQmRZswZAQtHVr5+/Kvx6cCnlnXcK19bs2YVri5AixWhoImCI3JAaF8we2ULg+ZmnyVVuHFtmzUpovV97zW9X88O8eVlfLdcQybXJ8k1dccIX/1AzZibriDFEYcnTfvHcgrZnGWbTVz1KqgnEunWJ/6efDowZI3fMZ4t7YsaM/PWJkCijS8rrjO/SMStDCy9eWfmS74XkweXkyW3boygMmCQaFPBe+PproOM//XuIE3u4OieEkCihUADjxIcLj8LLs04BAOjJBbKsMlzLWkxq8h5cJgWXLkz1WHmeJetujVemN9WnrLC4KCURYuFCoKkpe5vW74P051mzfFQIQIyVVMZaPA9F+YgUZacJKQBZHlzGzYYcXCmBVceOOcf6MngbPTrxf/Jk78cWGhvB3vh1PfBD1b5Km4qJCo5VJU5lWOE8vbh+F+gedB07bCJHDB8OVFcb6nHo7hXDbsCf/+yjc4QUObrQsMQqP5QFRgVXXA84D5kVXMU4pxllEg5GArb7ivE3k7yw6zGFybkJAEuXFqypsoMKrjJAybhtrmTTJl/VHHooUFWloD+ElAB5W1MZXzRtGrntx8vxn+ln5rcfRtracl6PjS/MutCAWCz3uJS3maGPbXpS2eW34/mKOU7Kmv32A+65x36/59ssmXxWnzzVd5+8EIsB++9fkKac8XiiYjFgwoQ89YWQAnHL6Muwfr18+dwQhakvNnl8hPA31VnNyxHE0tgmlXdMZX4Frhciz4Rek/DEFdOica1WrXLcHb1sWw44uVdNm+arSothyh1DaFJCSoFPFv8c+3/8SO4OyxCFGaVUTFTm7M/ByUur2CM0DRyYcReFN6NbUj5cey0wZ457udVV7XItVUnRQQVXiRI4ibSL9djQJyf50nHNnAnMLWzEB0Iii6+cEUOGAE88ATQ325cxLlht6mtfkVGCpcIi+MkJJj3S3HprbohC88GSgrS0FVaqAq8LdCq4SJ6oq8v+niWE9nCbtbQA01bvACDb0/G997JlOyoFt5s3A/PnK6rMaLJtxvAyaonH57FfP+CYYzwdQkj4mO7zV2aenJv7zkxybV7dvGWWYEs3enDZPT9+5zm3nJ4RwdI6m3N7WfL008C9Hx2eyEEXNqkceAVESWoCc50C0ObPsy8Q96cI95WndNkyX20RElU2tnSWLlthWPfHgnpw5Wt+L9Tc+/XX0kUZorB8eestYMAAycLvv5/PrpACQAVXGTBq9X7BhVYmYfqZj52MF1/0VxXnEUIS+HoWPv004df8/ff2ZdwUXEJkKbi8xv3PqdLth2zeDCBXGC8MU5CABrRvb9uY8YVdGPf16wfcdhtQXy/T9QSlEJKBFJxhw9zLqMrl/MILQM+nfgcgOy7/VVcBDz8sX09otLTY73NxU5m/bltpA7rTTwfuustDvwiJMGKe3GJ9+3eexUuzTs0cB0PYIjsPLi+GIMbBqkgUXAAsjVfu/ukivDrnZOVtqMqXRPKI0zwkgRIDksbG4HVY4LSeGLn6Z/jsM8XteVSa+VJcgctxQtzIycHlZrTp5aEq0gewtmULAM5Gt+kxTMsY9U5Yt2fR/mbiDenLPM/BkCNPBHZMIVlQwVUG/PqrP+Pyy7O3tbQAXbt6qMTCs4LzASHBELq18kmKtjb7fRIeXB0qMs90ykNE+gVWMt51mqSAzOzBZUQXGtDZwoLNQliX7qcQwMiRQGsrMG6cez/s4GBGXGhqAn71K/dyZhmyUcgj4vIC5qROOHGc6RlLt1GI+1ZRG62thi8ukq/9n74O996b+Lxxo3O9w4cDa9YE6hopR4QAxo+P3s0zapTzfptn54WZp+HS725KfLF7ZuNx+Tm+COdEy+Tyuo6npp2NYasOVNiQsP5MokcUwm/5uUcktUNCAOfdlJszpM/ck3DJJR7bzJMizozb6Vi1Cnj88YJ0hZDoYzHfaOYcXF7q8LKvSKhr7YRubz8HwFsOrs+X9sQxn99bEueAuBOF5UAWxWQ8VmRQwVWm1Ne7C47yhV+rLkKIAacHyWOIwrTQSzKufY6QzG1xKJEHQwDWk33aWtqiOYnfacfqxm0wdOWB0Pr09nQcIV7IClE49kfp4yocVme2i/R8vKQ55dxw4PTLumXZxXTsCHz7bfKLxCKgoSHxv2tXJuIleWDRIqBvX+Chh8LuSRauj7DNs7NiU7fMl9QAoWnY0Lxl1nZfXkcVFfhu5QGRlwFJhXxW+CPyEQaOBEfTgGGrD0h8iYAAydKQzQ3JF2VdB74e2cV7/VasXeu4u1DP/7JlwL/+ld82Zs/2aORLSJ6xfeSND56u44Jv/4SLhvw5vSkmKqXfwaVQ9aAXcMHQGm/nq+3qli3dC5GSwe62+P57IC5CUIkMHlz4NssEKrjKhfo61yK/+x1QW5tQfp12d/4SWkT9JZmQQhHoWVCo4Ep7cEn2J0vZ5EHIY9XlIz/9V7JOTdq8JrBgSQicMPAfOHPQ7envhDjhpHAy4mgo2SCfuDLL8ws2Hlwy6AEFfDU1vg4b/kOnHIPw5cv9daFAhuWknKiqCrsHlvid23bqbAjRa/B63uGdZ/HdyqSw36/5qqbhjEF/w8L6Hf0dXyCEQF4VWuY6uWpQz+bNwIYNweupjZDgsmgUoZWV7mXygcwzqjiX2pQp4Rn5EmJFpWY9P2c9HkJg6MqDsvbHrDy4QswzHdMrMHXDbgVrD8j2aHMOUZhN2vuNMoCywM7Y5MQTgRk1hb1nAWSl1nhq6lm4+mreh6qggqtEyfGUMGe+t+DDD4GpUxOGrSOmb2eqsEgW6IQUEZZrKtmFlouC64kpZ2NR/fYOIQotPLgk8fvCbuXBNaV6j0ydkh5ci+p3THheBViU1rcawiFycUtckJ0CzbdS9otXMGWwXRuWpEKYxgIquCIX04EQBUTAs8PqQXZ9tG0GhpjR+tRU74bmpIdHPC6vlLHoW5sekgBcEgGJXCQq2xMa1w6KueYaYIcdwu5FBiV5McK8R7y07WLF4/Vn2K1hBgwwpRBeIWH5smqVt8YJKTLaVVivSXSj17XFejxulYMrRN6ZfxyO+Oz+0Prk5T1LLxbjAxKM5PyhjxsvVdyX17UPjDKx6TW74913uaZUBRVcZUJgC7KIKbgWLOAYQIofqZA6rpWI3Bx5uo57J1yEXrNtEqsLkR2iUCT+amStXrNycDmUmzABeO45YPp0ABI5uKwqc2qgqcmtp7ZkCS44mJQ9jzwCbLONezmVkUCccFRwpV5ynRpTpZjKh4JLYj0R9Dw2Nwc7npQ4xaq4tXl2Plh4bOaLIUQhYBDi6Lq/d4Gk4LsopskCenC9vzB/kS7KFb9evlEmX8+NgOZet5fGXeZlVb/j1luBq64yNCtjbGDuW8RkEoQEpdLm/dis4DKXiukShh1O6x3Fc2ZjrKNzAV0HhgwBqqsDtWOHbRjmn37K2detY1PqoLz0hUSECRMAAGL9eqnioXpdR8H4rgSggqtMcVobWu6L2GLyZz8Dvvgi7F4QEgwlIQr79AFuuSXbSzO5mG3TK20XtlkhCqHhrfm/xK7vP51TrrGtQ26/sz47WJy8/jowdy7wzjuJLjvYj+tCA0aOzN2R8uDSXKYrtxhypiReWX3h4rbsGTcuK1qALUEUXF7uMsvbORm7SZ8+y3vjMuT5OUhVv2Rl+7y209QEdO7sXo6UMVEY8608uPzkyJKoF0DCgyvAzy5Ka+c8Xue4iLZHG0EknnNfwjLJd27XnxdRRb7UZVmxIvNZtQwiJeiM6Pkh5UeFTYjCrFvUwkglFrF5yDWX0WuvAZ9+Ctx7r7I2jesmy6GlrQ14442cfbtvWZOqQFlfSATRUmk4LOYRC0WrrmIdTkKFCi6ShYoxvrY2eB0ybJJPZ0JI6TJ5cvZ/IP0g24YUMnlwPT7lHPxx1B8si65q3Db3cMPU4Ulo7+bBZYXLoKQLDc2xds4vwC0twP33A/37+2qDlCarVgE77ZT4LCs/sZKH6LrB4KK1xf5YD0lsK9auzt04f36inpbWxHeJ+3ZzvIP0b9M++lC2e75pagL2PmOf/FTe0AAgE52REFsiaiVpKQzfuBF46ilg0iS5gco0LqRf6r38ZmMdTsKBlhbg8cfTXtqhU0APLpI/ImZTGQiv4Y7mzgV2uOwURY2ru1cLbtU+c2b+6h44MPE/K1YiIeHRzk7BZZx3LZ5nSw8uM46Wd2rns3iqv3b1GmUVisiRH7h4sDU2J2QjqXnm+u+ukMnkQoqVpMWo8T5Ztiwpr07NBUa4xit6qOAiclg87FOmAO+9l1u0Wzdg8OAC9ImQIsfyxVfhxNqmV1rXN2hQloLr0yVH2taxyS3cgCTLN3VFtUMIRDfrcLvTcu/4C9H5jZftJSJNTcD//pew2Bw6NF1ZKQlQiD/mzwfWrfN2jNV9uGgRcOGFic+tk2dhzZrMPr+3mfbj2Nw206HC8nTz/vhj7jaF45Fmk2ZPGV99lW6HkGLE8nEbOBBYvDjhra1pifyTMpWkQhSmxgu/3gopBZfVaNa7d0JS8PLL/uoOQHOsHeZv3NG5UAFzcpEIYLawDHi9VUwlXhVDU6YAG+pyIydY1j1nrnMBm2e+uhr4xS88dStSHHD1MaipcS4zYYLEWkAyZBUh+abSRsEV100hCk1DmqUha5B5L+CY6cWQTwUxvQLN8UxUCEtj2eRvSuUjzTqnAPrO/gWmvD87f50k4ZJ6dzbMxXvtBVx6qXVxLhOLHyq4iG/698+Oo23Eac0Yi+WmDCKkHPFjEbm2aWs8P+M0i8psksKbt69bBwwebMrB5a0fxn7LJlrf84Mn8eTUc2z32y6KXYRyM2p2TXywC1HYr19COGiCIQpJpeG90FUQkoxfKBpyXYfbGyLufbb0SOyyi3UV3tJhZAr/bvgNOOUUmU76p60N2BzLb+jAvJN03aKCixQrlmsC44JZ5ua2y9Gn61jd1FWyI1YeXBblOqoxgPHDE1PPwf4fP5K90UvuEb8Irh0Kga9TmzJiKmJk56/X5p6A/7uw0bmQzUmcPTsRltkLbtfDtzGPQ2QHO+at2MJqWZ9m6lSmMSDFhV2EEzcPro2tWxQuObAE8QKHd/v98D9ir35PpL/bpU2ob+2E2bU7A7AWF+iDaJkfJVpb7YPueMZmUq2pgXt6i0LDNaUSInZViSpcp5fRoxP/582Tq9DlgauvT0QqkeGMM4rbcowQVVg+Vi7P2r8mXIDbf7zc+ThjiEJzfc3NALJzcDm1aDWW5GP+dYt5bCX4i+sGNZXdImW2tVVW1eZtDJVzQVGOtGsnX1a88SYAQO/7Zs6+9pJ6odQ9PHJkItF6r172Zc13+6hRsFykG7e0xf0v6f7wB2Cnd5/xfXwkSD7HVHCRUuOJKWcnQvH6ID13+nWfdPLg2n57f3UqoL61U+5GC8v1Si2PbqN9+uSv7jLH17IsgoO/198h+xPmbtwZ/Zf83HN/amsTUU+9kq/fIVWBRWVO/TniCOCxx5JfnJTcXPuTiNCuwl8OrriMkWkBPbjieoWSemSZtGGPrO+WBru6jpO+vBOteuJlLSU5yBKbFGOO0RLm229zPaySaai9k17DWmAhO3K7F+bOBfr2td7X2AisXeuxf0Q5VHCVK198nvj/8cdKqttmG+Dqq+XLT5wYvE2uS0mxYzmJutzYb8w7Qbp+SwVXcrVstBZzUi5Z6uA0Yw4uOQ8uN/zk4Gr3ei9MTi1u7d6mrRLyMGwRQbYHlysLFgAA9Lm5RiHarBm527RcT+bUXXbqqYmIXv/7n4f2U5U60OGR+20X3W7MmJGdW6+YiaCMk0QNTcOqxm3DTSZtMe/YzUT3TrgIU6t393Vzp+sMGKKwKBJvWyq4dPv9AdtoWUZJRqSI4ODv7vlU2PVnz57A+edbdcT53P17/Nn4ZsUhSvvSowcwcf2eruU2Nwe4rqNG+T+WEJXMnQu8+aalRbhdiELduC63GEzSCqUoMGqUu6Jo662VvnKbhy3LqoXAwrodco4x9rUo1jdlTF0dsMMO7uVkyBJ9e/TgisWAhx8Grr8+8f3ZZ4F33snsv+46YOedA3SO8iglRGhUJKGQeuFNBbOuqoLWvNlXVQsXZj4X4vmsrQVWr85/O4TkjSAPisSLvGVs7rSCK7OYjgeImb2pTU2IIjcFl92pSnti2ZwPEdfx+dLDcdXwa/H+gmOsy3hMAk6Kn/p6oHH6IgDAb89vcc97nA7TlX2fjRgBfPnINMtDzFZcL8w8HdtIOg5aCr3MnhQWFcyYWt7xf//7X+CKKxKf+Z5AnNjt/afw1rxohROwtD5OzYHQpOb9HJsWP/O7VYhCK8GVuT8tLcB//pNwU80zUroMIVDpIwSaW50pThp4JweaPKHEgytoDi4F907BPZ9cGl++3F9Vz089BcNXHyB/QDJahBNLlwJtuo1navJErFsHbHFirqea9HldtEiyICF55rnnErFBLRLV2ym6zTm4zMREhbvRZqG8GD/4IGM8a1fvIYeg4rXemFUTRAuQwXzenHJwpY+xcvKigivSWNkq++XyZBAku1vU6ZFo3z6R+SLF3/8O3Hln5rsxB7cvuJ5UAhVcZYLt85IKWfJmMuzS++8Db73loYLwuO02YNddw+4FIf5R8VjN27gT/jjyasvKWvXK3IVtspzRgysu7F1Z3EIU/n2cTZZOAK/OPgk9P70PG1s625ZJodtZfcmeJBupQLPoiIuG/BnvLTwOfecdb90EQxOUFTfeCOy2G3D6jfsAAD79sqO0sYT5Xrn4YuDm739vXdbi1k2m8rLdn8LqdtaOPsq9fz+Ndy3jCYVzfyGipLzxBvDVV8HqIOVDbesWobZfYbLadvLq1oU/BVf6u98HwikHF4AmY+6+sWMT3q5GCUCesBQIWvx48zlWyfj1PfKT56tc2VgrVeyHH4CqKosdHrVD8+YBDQ2Z7/feC9x3n6cqXInCPNTcnG2EWhA++sh2l5dz0miTZsy2jlq5eyhVySOP2OcTJyQveIgRag5RaM7VZWnAEmTQ8Xts8jg7T7Q0yTG6avPW/toxV2fuhlVUGSFMucNTZU3HkciiwvBDCC3rgVI1N7e0AIMGJT576acKAxpiDRVc5U7q6TZOtj6DnEZhEU9IMeEnB9cNB4zJ+v7pkiPx5vzjE2/8QOLlLjXTWpHy4AoQFkV2ITho+aGYVr07ur79P/c63XJwuXVXYgBKt2Eqq8c5eJUTr72WLdRy49NPgUcm/RpA7m3mtJjNd97nufMtlnCb/Xlg54sNG4BHHw1Wh+x5iuta1vUQcQqeiQ3JGyXIPKikGx7al7UwzjHeDiq4cfLgqqjAlm+8hNFr9kt8j4XsQWphua48ap0X63jiCa22Jv3Zadw/4YREHsvcCrxd7AMOAG6/PfF5jz2AJ54AHn/cUxWu3Dvu/PTy3C1XtXIha/IkPv44sN9+aqs2M379Xrjppsx3rUpN+E7Pz6/HMeid11vw3ntqPQQIsWLFpq7Y84PHLe9Ru2c/K0ShrluvWfL9siFDdTUAw5rGrs3kA61EuC8E5tV1z9ok48GV2Zyr9CLRYtSoxNisbB33xRfZ363yO3qch+vrgXPPTXz2GPEwF96ISqCCq0xJPbpvTTsCAwYAj4w5JczuEFKW+JnHOlRkL4zTdaRcUJ57Ltu01UYYU2mT0Danj1YbFYeBAfzl4JIhy2rLa9uEAHjoIeDxKecAyF34ui26nQTYxlt7/PiEIk3quOT/A4/uguqWLu6Vh8gXXwD335+nyk2/sd0fr8asWYbdAz7PU8OkVDBbQxeaHOtjh+7IhijUTYYcqkIUOs2Ta5qcQwVbsnAhfndpDD/95L17iabkrl3elZhUcDnSqxfwyis+Dhw92nG35bPiQwqW8qpesSK73uXLbcJ8e+T56afixRcTnzt1CsGTCon8JflmUf2O6NNHXX3PfbanJ0MkO4569AIMH26zU4i0gW+HDsHbIsSJmTW7YPmm7Tytz83zrqVHchQUXMmkxq5rqjwbF1kay0rM0YENgUheOOUUU86soJgnAwUKLqvqvv/edxVEAVRwlTnXfnkxLr4YeGDU6flvzGKCveWWhGCPkHJExZqzvi0Z/u/4ZPg9c9wWm3hFsotLK+FYPtbKcVGButZOuTuM+Ud8oGsZAYVd7iLKp0gai5vBuP71ogxdtw72Cihk34bXXQf89rfGNv09ZHaekJqWrUCz2p9v1q3zJ9wbNw7WOdLMSc5MiNFjHPcTUqGJhPdzGJOAEDnPuZ2XFAC0xNt5U3DZfJftWxqnNv0OHLNmAc88gw/7t8MnTy32V4cVFuudLGMeFYsXt3wnJIs//SnxrucVMeibwG1XHHaw72P33BN4e/4vA/cByL5FamrsywGFmYvTRMzj28gdfQ7Ad9/5ONB0Aict2wHffmtd9K73D0Nty5Y+GiHEO2nlj8V6wy2TSKKQ8GeU45RsyLyO9jufJX+T5paDK+3B5a8ZM2fuNivru2WrQlh6axnXW74MgUj+WDA//TEWU+AZheT1bpfJ+ej5Vp8/371MkhNPdPfYtoTrSSXwaSY5SMW194OFJuuVV4C337Y/pK4OWLIkeNOEFA0uz5pZAPb0tLMSHzpZKIes6hMC8zbuhNVN2/rujtDUTx1vz/8Ftn3refsO+FwNG8M72An/qeAqD2bOBB5/zGUumzPHcbcXD64zzwTO/9ZesuckQ3a624XQfIUCmzrV8yGBMf7G++8HjjxS7jjj+bjhBuDkk10qt9pNi0xiR8qKWBPAO+8AP/4YSjfM+Sos7+jkm31TrIPUPW2r4FLoDW2LpqGxrQPiuktZwzirL8yjgssupJPiNoh6VISYFULLuVxLlyLb07fA8iS39pQquNwa++ILNDYmzkkhWb4cOOggubJ250NsbrbcfvUtuUZFDQvXWhrXPD3wAEcjJEJU4qT8sX0/NYlqLRVcpvqEbirz8cfWwvlJkzJJa53o1w+46SbnuU42/UFyPeMlPLMtQqCdaQ2liwpLuYdbRghGcokYQ4amPwoRcF405pGV0JTZrnXNBuQWCSKN/cxSTstCBZcSqOAickg8cK6Dzxhv1tSaBmy/PbD33p4OI6RosJpEXSMNmL63r3ARdFtUeMDHD+PblXKWrX766Ie1m7ex6YCQa9OmQJaCy+ZQV2EcKQleegn4130u19piRZqV18lDDi4veK7nGxfrdovnoU+fRO6SYkAIAM3N2d89QrkzcSMtZFm1qvCNC+GekB0w5MCSew5EPJ41jgVW9CYFAk65LdIhCgF0efNFPDDxfOc6x40zV6EGC8GWZUgnlVAgkR9cBvAfxui44ALv1ZxyCnDIIf675QdPt0hTU976kUN1Nf76V6BHj8I1mcLFlsgV8fEnltvf/TjX2O/Vz7rnPQcZIW6kZ1AvIQqN45eFB5d0Ta++mrvNKo6aVd9Gjkz8f+89+/pTCq5U/2bPBqZMyS1nNC5SgNT5kMnRraQ3JB+IhYvUVZZjTWqxrrV7ITd4fwGwvK+8KLgoecofVHCVKEqSNxpYvKpj8EpMA8a++7ofYmmk7svnk5DoYbXm8mpFdMtBIxMfbM0cg40FUglb8y3gEcJ3EgFLDy5ziEJaboXOgAH5D82jIsTBru8/hYcfznwP0ufUbbj77sD06R4P9uGOtW4d0snuC4JdXCAZGhqAT6wFWISoIr1WNr+4FohKs3DGai4yhBEzW3NboYsK4N//Nnz34cFlZWHuUK45njx/tbUAgIX1OzrXb0iu41cBJ3uU8nmFHlwFwdaDa948AMDadRUYONC0zyqfhulytbU57w8b7dP+hWtM111DJkaWVN7hAjJmDNCtW8GbJSVC2qDGMkShjQeXOQeXhCpGekzzOndNm2a/Lx7HFd9djxdmnpbZ1qtXbrlUiEII5/okMXuCCaG5yiisQhTaedCR8NHH/ACtbmPii4XXlCvJe25R/Q4YujRj6WD3nDwy7lfWObRM64s9922fvb+tjR5cEYEKrjLFzjW477zj8ers3FhA+1z2c0/1jxoFfPihc5lFSYW852f56689HkBINPGj4DIvwnLe581S/DyEJSpo6C9dB955B2JtlXtZq8PNHlzJ87Fth8wiifKp8Jk9O/9tSCm4XCyymuMdspyRgwhP9Vhi9btyZe4+p/Adq5u2wRdz97fcZ5dnzpVNNtncA4wfQXKoNE+dgyUTq50LuZx8p65feGEw/RspcpL3TjrvwoIFPt9Gg2H2LrKcWysNeSQlwrZtaO6SCKWS/I3xoLklzOfKiPEhGzMGGJoIKxPT5dv0a2AiFU5diCyB4IjFe/pqyxEuIArLihWeihsvz7Bhmcd83pzEjuWz6vHWW9nHXHFFgP5ZYLwtXadUlR5cycbspsqaxo55G/ZUhCBzCk2VDzmgW50//pjW4RPimfS9bBmi0PoYc4SRnDWDhELHFq9zV/v29vt0HR8tPhqLG3ZwriN5EpZt2g4tL/YJ9iBb5DHVrdZQQtjIMgzHUcEVWQQA9O6d+PyWQ14bFz5beiTO/PSm7I0WE8yT40/H7bcnHBY1zT6E7/Iqk/PHoEFZX0N4pSBJqOAqU+wE1B8sPBa95lglu3AgudoThknqjTeA3/3Od/ek2iOkFPG6yEq/RKbCCOmA1qd3pkBAbyvLHFzmbXm2OBE/jMXXyw/1dWy2gkszJMI1lKF8qizwq4wyH6fqdhe19l6JTn2dsL4HLvzgMjWdSOHTQ9INv+fqw0XHYO8Xbs9b2198AXz0UaDqSQmQnm8XL07cFAVGamxJh+nVpOaq9ZuTOWVGjw7WuRTG/AU2feu53cqs8EWfLZVMtof8G8xUVmRO2qp6Bfl26MFVEJTNs4Z6fvWrTBqNAw5KrA0nztsa116bfUw+54aC5uByqXu7e27El18WoOE8kI9xwzVEfMoSy+BVS4gsTh5cduR4cMnk4DIVOX/wn20saj3OXb/4hf0+2bqS48yVw6/H0QPuCaYFELmjgF3UmayfP2YMMHdudhEGjIssQmhpj119gcJwhQ737KRJwFVXJT7L5qjsfOm5GDEi813UbvTdNRIMKrhKkIJrjFMKJ58eFp4pskU4IV5w9eAyfTdbL7XFXYZ1j1IDS2uoQiIElm3aDn8Z66Ixt/ldQjOFKNT1HKtuz/KpZcuATz8FWls9HkjsKIRXvpQHl8XN4DTlaHGXHHg+UZKAOWQaYx3DfUQY6oG4kHWHjB0bVjekEJBTcG3XKTuEi6/HQIhEKIb33zfkALMfCM1tHLfjYuf6t946bYij1HLaxYMrL1baVHA54veVzfZ+81hhFC6P0zOYkxJE5dxfAnOg0lf+tEebz/MyJykUN+QQJESW9H1nGQJYIkShdA6u7K1fLj/cukNWAsNNm3I2/fn73+Hnn93r6sElg9HodEbNbsoHaJm0CkIAeO65rIg49OCKFsZ58JXZJ+PMQbcBUKuIFKvXSE0w6dvHpWxzW7vs1Dp9+/roVPHP2VGACq4SpF07YMjKg7O2mQcEpY/PwoWJ/xT2EuKJQCEKNS37mUuHETIdb148evbgKkyIwp232Gi7L8jCM6evKQWXIcyD5/X1448DQ4YwxplKUmGH8mihIaPg0o48IifNo+OatslHPPAk+VjGph/vCCySd3v/Kdx6q5q6GhuBnXbydozbOBWBU0RCRggNrfFKnP7V38JoPDd/hNU9u/vuqeLQ4+43rXm+9B229IMPEl5gybHZ8ujk5Gnu9xHbL3eu25DzzNdjOG2a9bhs8Ruz5nq7tYQQCTNdc4Imu7JGpkxxP4ZIIaXc8ZhMM+oKLuO+q0Zci8em/Dr/HSoBfI0bVvGgjXW6eXD5aZOQJOnZxzIHlzX+PLgkcmfb9ANz5sCc3HDYqgMweYNLeF9TXV8uOwzNsdzcpuaQi0EHaPP50K1CNpra+O13N2FzrH3WuoUKrmhhvDZTq/fAT+v2TmzXCz8K+31XPK3P5Xj00QI1RrKggosEpq4xnOTcslxwATBypPfjhgzJ1dnNnAkce6ySbhHiKQ63JX/9a444bGNrZ+djPC4mpXJwRWFCtumDcdEqbMr5zlGyfr2/40gO2uRJiQ8TJ+atjYrNcsooYw7bt9+2j9738stAc9zBotEFJwWMXwtjHVrJRs9Zt05tfVEYtkhIGAxCNjR3wfDVB0TihrDsQSr8sKQH17Tq3bCmaWvnOl07kps0yCkJu2fhkC6hdLJDCOCVV+z3mTAKwGx/w6hRwBNPAH36eOsLkCMMJGqwfRzNmk03pcV3w9R0KAANDYmQR4DzMLOofkdMchMk54n11WpFQr69pAw8+ijwpz9Z73Maj2xxG0CjoA0lJUuFgweXHTk5uKxm9Ndf97d+sbvfTbnuLZVqLnWd/+0t+GjxUTnFchRcgUMUmhVc1rlCje9bQ1YejJWNXbOLhB2thkgRxnXyOy3MqNkN/fur7QuRgwquMqFNr8zyqPe1MLRh24tPkytoYwYfj3vMqesxXsHAgcANN3jPCXbWWcDHH2dvGzUKGD/eWz2E2OHLg8tojW1c3CWfi08Xm3JfBMzBZdUf2Sq8tORkWR3kNVlUVGa3kVyprG/OCABlrOIt4cuwepqb81a19uMPno+55hpgkSnkd+r+v/VWoK51C9/9cQxb5LPOV2efgi22ACq3lu9XlUt04WeeAe6dcKHPHoWHqzV2+PoMEhbJi69DS8+pYViGmnGyvJbNwfXb727GlcOuT3/XRUWwmz3pbWUpWEidx2S/F9TtmO4rvvnGvl3DdkuBlBPJY42eWU4YhXO25+/HHxP/p0+Xbt+9UhIIu3vH/A64Zo1jNfrn4Ssghw4FjkrKemtrgY0bkzuWLPFvYCWDh+d+x8N3zl8/fDJlSo6sXQl2MhAx6Bu54wLGTdR1YMaMQFWQIsQpB5fdPWlelpjnPSE0YNUqYMECwzaLiqzereLx7JzdNvhRcAFAdXNuzsscfZbi+TMu671m2tzQ1klpP0ieUPjiJgClIQqt4PIwHKjgKhPmbtzZMTdkmPTpA2y5ZX7bWLgQ+PBD78eZPbgoECP5JqibvKt3ldcQhYF6I09Mr3Qv5ITdAtZwPgQ0y9WG7ncq5ICgHp5TJehmK0kHundPxsK34dFHgc+XHqGiWwWFCi7ixquzT8YpX94BIBovok7WqfeMv0haCTe2au/sDUOGeOtIWxuOGXA3rh5xTTrvhuXzklK+QYMQwM8+eiT5HcDnn9srjLbbLlOFt56lJWSVMkI3U86SvIQh8hgyj8ghnYMr5pwHM2rD/HnnAT//efLL6tV4cZakkahPFiwANq2ozWsbkcHNQMpl0hdjf3Ter8h74PPPgcMOU1IVKSL85eAyzC8WObjSjB6dVc7M8zNOw5CBpudDctFTKWNMYlFXbUuuoV1O1wKGpTd7itp6cLmkW/jz9x6t4Eko+DJEs1FMyY7nQd4VPd/efDFVAlflpUaID8a8up1w1lnB61m2DDjgAA8H1OZv4S4Tjp8Qv/jx4EqTnLA3xTpmVRbTTcN6UAVXgXJwtdkpuKTdxdxDFCY26DllvQo259R2R49+j3Ehkg/yeE5l79r5812NwpVg9Rxdn3S8UJpovlzh80nsSN4bi+p3xML6RHK3giu4hNxMeuHDCeXy4oYdpKtu1dunLbOFAPDZZ5l8uTLU1GDC+h4YtuqAtBe07uLBZbl2SbuqmNh1V0MVHtcTLS14ceapmFGzi21/jBhDOilRcJnboIJLinwZWdY3FF9oqcWLkx8KMEf97GdA38+6uhcsBT74INjxBVozeIpaQ0oPD4uNrJB+FgquxlhHzN+4I1BdnSlmMVff/uPl+Me17mH1jeGNU1Rtzt2Wg8WzYxWm1DIvdgDMv1SHRQ4uieeaObiihd07sN2qOT2nJhk9Wt1wTg+u4oOr8lJj7FjXIiNGAO8tUJ9IqinW0dlIVHJgmDoVmDdPvt0HH+sgX9gjUQhZQ8oL9xCFGZpi7bGsYbus/XttVW06oAAhCq3qlBTepbBVcEFSAGbnwRWLG4rYeHB5WNgKAQxffQCWNmxPAXpA2tospoUInNNf/AL4dQHyvFvdd3375r/dYmbiREjnGHMbgUSbteX/0qWuTgGk2LEYZ6LwIprTrQ0b8MWPO2X2+1iT6kgqn1atkj/IoLRJ9cnOMjqxT0NMZObwxfU74IWZp0qGKPQoNKiqwl/HXoGBy3o6l1u0CHjllayQTkIA+OknoFevHAs2rU9vLK7f3r19Krh8YQyTL4PsUmCbs47Dhg1O9URYcBkw1F2UCeWXzZ4d6HBpr2/TdXvuuYTsghAn0sYWHvJvm+dHs4JrwNIjsP/HjwBHeI+y0BbLfUp3ee8ZTFi3Z9a2dT4VXMfvtMiioIkgCy8hLDy4rA1xrE6vMWf5o0eHH8qWZPAiQZo7F9hnn+xtJ58MLFmSMFjVzjrT/mCZEIWN/i0S4i32L5M0ZM0fXJWXGvPnO+8XAjfeCNwx7rLC9CfJTz8Bv3n9AtdyCxdKvIObBqOH/5uH+IZJDZv2/WiXgoSoRXqtJwSuHnEtBq04NPE1KfjaeYu6nHL+Gkge7vc11aOiIuaQhyCIx5he15D5LCwsu+DtlHzwAXDrD8lQBiUsnCgERiVCVm65CNDYaL9PmVWYlaVhksjcWhG5HimOPhp49lnJwnYncfXqxP/Jky139+gBvPSS976RIsJqHojAK1HOXPfGG9n7fTyO94y/GId88oA3RUyyoZZ4+/QmJ0WUDi3Le3zoqoNw29grpBRcnuf3Dg5Gbcb2nnsOAHJDFL7xRiK5z6RJmbLJsWK9Rc4QVyIzWJcWXu6LtNGDxbUIIym9NPm+dyI2f6vE8rq6nc/k+bDyLDHu99QmgDvuAJ56yrlpIHA0NhJlqqtd75/U7SniFjm4bEMUmhRcdkJx470vEbIfAOpbOlqWa4xZb1eB0hCFdoa0c+Zkf9+wAXGRbUT7yORf47Lvbkp/36KdKScJiSRWt7ad0aOu53p2GVnW0A039znSvkCqzU8/A+DT8LGm2r1MVmOlO2cXkvDf5oha3BZ3M2cWph8mPv8c+Gr23q7l9tsPuOWW/PfHle+/T/xfvsJyt6Yl3o8JCYKfEIVpa9RPPkl4EZnqyjk+4GQpgITbZ9Y2iTY8ths40baxvaoq4N57gR9+gNg1k1tIAJYhCuMe8hWlZOMAKNjKB1zcAYiWZVfUbvOWFrlyZm+XxkagoQEJsz6L/UaqPb6TkCIjCh5clnk4TDQ0ZO/3OSzM2bgLsPvu8gckhU7VLV3S873l2iR50oTQrOdwu5MaxINL8kKJ1jbcP+H8rNVKVlvmJLvw6S0etQEyYng5PVJFLSqMgvelLyoD5p51g+spT1gpHrL2O+yTuc/btQPq6tzLkSJi3DjgppsS75wuyd47VCQk5LVN8gqkXA8um3vUwuvaDTulmq/3cb9jTeAQhdnttsbboe6r0dlWihZGMV8tz06Cx6EyOkybBqxq3NZyn5frJATQ0eFRa4x1Qu+h7rJpUVOLpUuB9r88Wr7xJJ7f5XkjKoEKrlLDbYW1cmVh+qGYX/0qei8wASMhEGKJlxCFWZ9TCi435ZOfHFymRbtUFTYhAeywDH8En2FCv/02IaF+5x3reN8+c3Bt3myy4KFgSwktLZn7vs9Xu+Qt96GXhWYh1pjrNm8NrcL6HrK1MFbBpk3yZYWAs1gnupif/VNOAQ4+GHLx+CO23iD5J5LX3OR1Vf/jLP91eRnULE6GkyfM2/N/gR/W7pO7w846O8uDy2PfPFh8PzrlXDTGMsItXWgYtXo/vDjz1OyCQebynXf2f2xZ4G/+CHi7+qqnkJx2Gko6vGW+jXRWNm7rKeqqDNL3SoDxornZ96Ekgog33sTYtXsnPJhHjnQsm1rXt7TlPvd2t55bDi5D5Vnl7Duc2ZeTs1vicCONjS5NWawZzOVjrQEVXKbzsaKxG7Z96/ns9xwLQ4LaluzoT5H29C0zevYE/vT9/1nu83KdhFAjprn0uxt95xDlfRUOpbuyKlck3fOLjWHDDO+0Fr/xwAMZUogUH5aOTx4mQ6MyzDFPRtZB3haTljm4zH3s1cs5plsAdKHJDVvG39U5E1c76xzBJgeX5FS49dYJI700JSycKCRbbgk8OOl8AMBNzx+EGTPy0w71kUnK0D1J0xL5u1YYnLKdhhWGEipxouDBhVzhTI4HkWnQ+vmAf/lvzMsPNCqg7LzDDTsHrTgUvx78V8d6sjbrxvqt52WZvuUwdWrGq8xKuAbgXxMuxF/HXpG9w4snjbn9gw6SP7bciMcL8t4pJWRdsCDv/fDCiBHgoiQA/zf8ehx+uGljnmUgKvK58ZKXFgvqdsTxA+9C+9dfxfTqXaWO8bK+NM+7trePlisPcGvczoB0ty617h1raUGXLsB7z613L2vA3Lf2e8mdM7vKbM+H8SQXqeyTBEOVgqsp1hFr1wavhxQOSudIXqmpkS87Zozzfqf5ae5cYOhQ+bacGDkS0K6/Tk1lhHhENkSh1qc3plbvkdm+bDnQ2Jh1/JQNFiGJPC70hq46CHWtnWz3/2aPacDy5cCXXwZqxw6/1i9an94YV9UjqxtCwFrBFZfra078Zb6pKsH8smcROargLFyYUGhaUfTvSh4Cie9/w4moqyvO+9ztMjkJq4zDxJo1wLp1avpEIoLFQ+wlVG2+cJvvzFbH3ir36SWVHC88hxIEbBVXxs26jeGJVN9MvNJ/x0TIKFgr5nRdQ/uK5PHG85FUcEmtN4p+AiggmzZJe/IsXJgdGsvWe99jiMJ0LcOHS/WjoOQ5RKHWddu81m/FnrvHsWFDYdqqlZDDe8Ht0U6PDxb3YCyWiI5OyosWvV36c9Vmm5eGJKk1p1UIQLv1qPmetA1RaLgnf/u/45064dhHq75c87OxuYWGDQMALO/3g209a5ucz4cKbKNdZCV5lvjNivpD8kvJL79K/gcWBiq4Sg03jwIhoG1uKkxfAGy3XeK/jBz4pJOCtaVqTJjlEAGG4w5RiZ8cXLZ1zV8A3HVX1vGrm7qits40Jni8iZ+b8StcP+rq7CoMQqDtOyXDAJhyhQAOyXA9IIQPoVPy86zaXbKFW6IiWaEpRKFfq0x6cOUFpxCFa9YUTohgcUsXjPBF7Qnmr+oSdhdySD++eVQwGwWm++wDHHts3poiYWDlwSVp6KCKWQs6YEPzVlnbEhFB89QPL0okQ9nLe5+W2ORnnrT5LcauCKF5NGm3/x23/HBlTlbxZZsyuUp14aLg8nHqy/W9YPFiYK+9XAq1a2e7q1ev7Mu+337AuHWZfBieohk43NpXjfgj3nwT0TRIKsE15PKVlXjjDWD02v0K33jAa/zilBMwerTNTpcUD598AnTv7t6GppXvmFGKvDr7ZOmyqTHNyphGdryrlAhR+PUUa6+oGTW7ZQ2Wdvehea5vV2ExP2/cmN2sRWXXjromZ5vqe1/Kg0sCFd6ZJP94WRf84x/Af5/MU84DEmlKb2VFnBEC2BSi1K4IcFwf19fLlSPEJ+45uKz3d+z7CuItsZzju/28h6kC76vL/kt+bluFgJbwFLOQMKjII6Tr/hVQFZqAqDeNd1YeXH4XthwECs7++wNHHRVuHwohnMhn/gptX4tcOUVE+vy7XAi7F9ZYm8NxqVCrS5ekN23ejIJZpJPwKGiIwrY2HHLuntb78jXAeM3OneSzpUcmNvlRu0t4cAmHcpa4Ca6SCeWt+pul4DLiZS73mcOz1JgyBVi2LHHqvv3WppDDef3Tn4DVq+3rn13THeutol9Z1Dl3rr3+YfCKQ/Daa859CY0SVHABwF13AXeOuzTv7XgeKl0OuGvMefiXXRTYKVPw0KTfeGwwl+OOA26+OXA1JCKs2NRNumzq9rPy4HI7JvXFNgeX7MNgDFFoM6ebt6fX0sY2kmOX07vKEdstl+vTwoVy5cwIYd++h0gVJEJ4yRHtwpdfAl8Obq+sPlI8lObKqpyJ4gJeNXn6jam0JI7vG4MG5aVtUp748eByWsI2xTokwv2Y2bzZuVEXurQ3ZUU21PFj1d448rP7ch8cp4W4B+qaO8oJ1rJNwtP/RENmsWQnSIvLKLhoclk4HASYDQ3A+vXZuZRS3Hqrcy7GfCc9J4VF22Vnx/1240b70060PygVxsqUr6UcllZlhZUHVyEteOfOtdwskEfzfg+amMbNuQthlR5cxiFeFxWZDTNnAq+/DrS02Nfp9jtSObj2zfUgEQIZBZcxLnpSse1LiVemawPjz545U339x3/2d1x+uVzZCy4ATj/dfr8QiKYyKYp9KjIMdqfuRGAiX7wYaEoF0mkqXEQdkh+Mo7+sgapl/m07vZVpTrI1HE1VMH26Yx+s8muambRhD/z0U+a75e9KKbgc3vOv3T83tKFlmwHyI9q27zEHl990CCTB7NmKKnKJO1vyy62S/4GFgSsrUjJYjgmrVkkfv/32idBYEVj/kjImiJCtRW+XEBaZSSbDi8eBb8d5j4l98V5Tsr4bF4Lz6pIxOSxe1FU8SiNW7Ov9nCQHg9rWLbCycdvMZkOuj0O6ZsYGy3NmZsYMb30g/nExJGhpAfbYI3f7yy8Dzz+fpz4VmHzPQ+XqdUAIgPAVXDaC7RwjDJUvux7qWlW7BXbsnC05tjw/bgOVVw+uF18EJkxwzpckOXiJrbfJPVRoGcMbg8vP4pptAQCXfnejRMXZ55GCsfzhRf5vtOOyJIovd1RwBUIIYJvcx9z5ABWoupe++05NPSQ0jJEC2nS5nHpWc4atN5XJg8vVUO+zz5z3Syh+rhl5LY47zrma1DOQ7nWQNZXHcIJphMPs6zlEob8ukAQHHww0N7uXc2PA4M6O+9+fd5Q6ZVoU4Y2oBK6syo1ye3DmzfNUXNez3zei+D5EShvHBaHL89tr9smOllY/fl6Fs+88NEj3Et2wWlJWVOC11wyPnBD2yXA90L4iLrdItjg3d467FGcNuj27iK4DQmC3LhkrIV1mKnSVnhCv2N7ONt4N5US+vc3KIXqHiuXOxImJ/1wLlBgWN4eXsEGBsVNwCZMHl8o1uwettoZcQZqld7jPNo2bdaHllnPSbLj9jtQ5swlHXN/WKfHlrLMSMfbmzcM+zyRihq1p2ta5bmP9JFLoOjBr+VaW+4QAB/FyII/XeMZS63srEOWwECtxjLNBS9w+56Cx7KTVztEH7FsAtu1g8y4qMb/v1LkOF1yRUSDIGmekyxmfr7SCy34+tFTk6R7c16T6ZreD83Sh8XvKR47MRIe/+MbtHcv+edTluOcef+2Q8oEKrnJDxvojorgNnC0twV1khXBeHxfnmSNRxWqh53ifC+GYCPWbFQc736PvvC3dNycs+1hRgRtvBJ58MrNJxatmlw6t3gWPNicxvdg259AwntM2+YSktY0dvPWL5B2n50dFTjgAGDUq/7IyVX21w6/BZBSQfYlS4Vlx9NHyZdescT6vzz4LXHll4C6RPFFQDy4bjF7GiQ3heHBpeu6NbOXp7FqlTYHsn5j5zY1tHbBu81b2CZUA98ErFaLQouljd1uFDhVJoXJlJfD44xD/fda5PhcoRyswNpPvqlXAIX851fNxocKbpzgQAof99ZTM9yjeSyQUjOvM7ls4x8tMvb//X/+LsHixuR7nY9w74j6WVG3eBgO/yeQkcj3E7JJjPCCl4NIs9iWRXlPJGN/YvJvbRmDJ1zqKKOfUU4FnnpEvn3M5izQkCaeR/CEtNdQ0rVLTtCmapn2V/N5D07SfNE1bqGnaR5qmdUhu75j8vjC5fy9DHfckt8/TNO0s5b+GRBYVD7Hb/DR0aMJF1q3hRYvsIxcKwYgRJFzcFoROgu+YXmm92EtO/hX5VNFqubHFVeTg6tKuWUrBta7WkEjUTsFlOLfGz+lzPmlSIpHT6NE5x7a25tY3fNZOrv0iDhTporQU4PueR4T7vbrLLsCrr9rv79sX6NdPYZ+IfywegJdmnYoRI0Loi4G0l3EKlWOkFw8ui/vdcszwubjP+okGpd7/Db8OO737H6C9Q2Jwt8HLkIPTTIfKODqkcnAlF/uBFeEcTO2RPTeFyEVEaVLpo+AaazELQbpNkrmWFuAPVyiIy0WKFuO7ZKdKZwNJ41xj1tfYKbKy5ifFc43r3Dd/vv0+KQ8ui21WHlwua5NB/xyJe475Dli92lSZsG/d49qpFEMNT58OPPVU2L2wZ8aMzJDtJbxhzmPw2aeJ/9OmKelXqHA9qQQvovzbAMwxfH8KwHNCiH0B1AK4Lrn9OgC1ye3PJctB07SDAFwB4GAAZwN4RdM0uWC1hPjFNFBoGrDvvsAJJ1jPfUIAWL++MH0jZY/VgsotRKHTEsw2/vfGjQD8K5yMSrWffkok/7ZDjJ+Q/KAmROEN316CqdW7uffRuMy19eCyJn3O330XA5b0hP7eBzllRk72nruMOCM+/Eh5nRs3Ap9/rrzaglLQ9e3y5QVsrLCc/83NeFuN0yq0Frm3L7vlw6RJnpxDSb6xeMj+M/1M/POf4bUPJNcE+QpR6MWDS+iobu6Stc0qRKFfoZDRCcsYovCLZT0TGw85xFe9iU7ZK7gAoENl0oNL0zB34074ernHsM0UQKhn4EDLzap0UpG9ZJHtWJEicT5/+1ug79wT7AtszihbdT05b9tYxa5eDbzzUSevvSQRZ8IEoHdv78fJ5uACPEQikB0i/BjDBBl/kgYiTka3Vko7yzWDS9+feW9nPDn1HFhZINl6uHlcR5XiSPzcc8Ddd4fdC3uM+spAU+HcZG6MMWOweXMi8nRUKNaoacWOlIJL07TdAJwL4PXkdw3AaQD6J4u8DeDC5OcLkt+R3H96svwFAD4UQrQIIZYAWAjgGAW/gZQJKt8Dli5NRCexbGPQIKk6aAxI8kGQHFw6NOsiHyQUNpVBFE5JF6ZRo2z2//BD4r8hprwKD67Ztbvg3QVu2W6BdhXuvy0tPDSdpLSHmBC4eOifMLs2Nz56xYZ1ch0ucu65p4ApsMaOVV5ldTVw0UXKqy04+Z5e0o+A7QMdXZ56Cth7b/dy46r2xvvvB2jIh8DAbl1w1FHAggUB+kLUYuvlW+B+mNvP2RBeiMKYyF4kW4YodBupJEIUDlzWM+dZO+rGI6X66dimxfMrdJHxZNc0XDfqapz/7S3+24KNRTrxRr11aC+VXoOEAMCnnwLDVx9gX8Bwz/35z8BOOyH3nrOIWEFKh3vvBW6+Wa6s8RZ4bMqvncsaCuuN2bm0CupBlLTEcr1/rQRlKczPhGyIQqtGXdbaaVmChWe3qhxc0qEgiTI6dvR3nO2l1XXccw+w115+e6Qeu+f6hReASev3KHBvygdZD67/AfgngNQItB2AjUKIlCRzJYBdk593BbACAJL765Ll09stjiGq4MI/G8kJLlWsuhrYHGdeHVIYrAQj7h5c9vf0MTssxe+GX5+7o6YGcx/+GIsbdvDTzWTHdOM/W95Z8Iv0Z1WjUatL4l4gswDWdaBqo/WqKcugy7A9dc5bGhNTWsfK3MTPFVMmOVdo4txzgQsucOl0BHnySSjzenHDbuFntz3o9FYss6MQ+bf6EmvW5rX+fBKPA0uWyJUNJIAyeBXQCo8UAiGyPbiUKk+8KGwtykoLq2SqN9dlqmfSvGzvMU9tpjy4bEb8tLBMCPv8HRL1lzvG09CvH3DTTdbljFfhgguAMWOsCuV3dhYi/22QCKA4H8LEiUBtbW69Hw/bLki1aZau28JzPST/aI2bpMsaFSOLG7Z3LmscDU2x4+ymFWnFl5d56Ztv5A5JKrgs17/pEIUOXbLy+rZq02VtMq8umQ6gnUkW4JSXnCEKSxbb+zYeR3V1Qbvim9tuA/rMPSl3B9eXSnBd2Wuadh6AdUIIC+meejRNu1HTtImapk1cz1BxxEAhnvk99wRu/eF3Dn3ITID932nEf/6T/z6R8sJWwaXrCe2DA9+tOgBNMQvljq7jwAcvwxXDbgjQMfvE7QCg9emdXVZRiEIAaJFQcKU61vflZnS/9bfWRZIL2BWrKlDf2jm9PXXOU7+to0UcdStvNKchadAg4Kuv3LtNCkcxKSnyLovzE3+ljHhj3vHY4lJna1wrKEMtEmylSQXKCygZonDuum6F6Y8Elvk0fA6pObKn2lp/FTlUbqccTM3lIhZH3GK9VV8np0BLf6VgDJMmAX36uJcbOBD47DOLHXYDZ31doH6liKzMKLIdK1+0OsNY1NCQ3Jh9fz76diJsupfLJ9pyDed+ee/JnvtH8k/FimSMs2R4fyfO2T2Tn83V9sLwuTUuF84wq0qnBrwodIwxgp2w8eCaORPQLjgfgPN7lVtO8UxB576vauya+NC5c84+q9DJ5jpf/7SrXD9KjGKaXvz09frrgTrTEqHo38GK6aJFGBnTteMBnK9p2lIAHyIRmvB5ANtqmpaSOu4GIBWgeBWA3QEguX8bANXG7RbHpBFC9BFCHCWEOGqHHQJ4GxBrwnhwZs1SVpUQQGOLhLDbR71e+WzwlvjHP5R3hZQ5tgvCRYuweWkVYg4Wx3E/1sgS1LZkrAxFnXUomSyWLIFbvjBP7be6WzmmhFnrvxpnW2ZR/Y6AENijZzeMW5eJcWZeIMf13PNoqeBiSINAKJ2OWlqyvmpaIoFtMVKIaVo0yFuoFjNO51IAaGoybUy+HdW2bInNMe/e3EX/clUu2N0Yy1dYby8Q/5pwYdb3WSu3UVe5h4HFyovZ0ttJ0psqp664abtVaPDp0z3VKYNR6XXwX07FhPU9cspssy0fYmUEncxUmmNzcC57vh2dKyDPwZAsU9TUJD6YFgp+bmvxQb+cbWtqO+Onn7zXRfJLOq9USsHpwK5bbkx/9vLW+9KsU7O+20a0kH3PdPFcziKZSsD1Pq6wliksXZr57DSsqvLgsu2PkweXoaEbHt7duoxbv0gg3ngDeOUV+/1Z944Hp5bUterbF5gyxV/fSGnjKg0VQtwjhNhNCLEXgCsADBdC/B+AEQBSZvJ/APBF8vPA5Hck9w8XQojk9is0TeuoaVoPAPsBGK/sl5DoMmCAkmr22gvo0QPocuOVSuojJGysFn+2Cq54HNu+9RzeNYQAlD42IAOX9cwsnocNdz8guQhVkYMLAJa6hH3Ianpjjef6U4K7zm+8DABYvinXar6dlmvxlq/zTeQYOdKg1zKbcSFaiWajRrm8zLW2AvPmWe/7cNEx2HLL/Pfhlcc3Kq1PCHkDXGKD0wMQy1XuFBRD35R6nXrJwWXRrtV859uDyyVEIQBguMRaw4rUWsWiyufHH5f22pqzcmtf1WsXZsceZg4ub/zvf8A2WycFmlVVif8SyqdFixJ/fhRVDFFIAODsP+7iqXxaeJ4z4drfS6efnmNvlajrB+ucs+NNkrBYDFi40EMniXLS85+E4sX4Hr9th8225aZOTeSUTtHQ1slUjwQSE67UnOzi5exWuWUbQXJwNTZ664cMqWsnm6qEnti+sTvFf/4zcItFitOffrI4ZvJkf4YDpmM4zRNAPgeXFXcBuEPTtIVI5Njqm9zeF8B2ye13ALgbAIQQswB8DGA2gMEAbhFC8BU9BAr+7CuSpK1fnz+BpZhmbSlaTCGtSGlgu8iKxdCq5yZYNZJXhUvyObYNB2CkQ8LzQVWIQhlSw0ylm1LNZhE+eXLm+yNTzs0p061T7gKcgq1g2Obakhx3Tz0VeOcd+/0eQ7BHhkLk4CoXDdeYMcABDvnkZZF9abIqN27A6uAdMHDvvSiIYq4cEUD4Ci4DQsuPV7ZruxbDg6WCy209YDPOxHVrwdfle0/IfG9tda7bDgfh3YC5B2Ftk0KvOOLIF19VWq4Z6xuS9/Wbbyb+SwywBx2U+PNFg0TkAVL0qBZS262SZi7ewnaaGD48IcA1ernE48DRA+6xLG++9V97DdhvP89dJQr5aV2uZ68dxnnx1oNH2JY74gjgpjG/T3+XXYHL3tMff7s19LjI9Y62QssOy2/fuE0o5dVrMlUZfonZEHRja67HpGWVk5yz4HSqtF8L2P6E1AsgXSTzTuqamq+t2eFu0ybg+++B445L/Nc2ZzxjX5h1Gk44wVt7OW1qWvEruMrk3TzfeHpzEkKMFEKcl/y8WAhxjBBiXyHEpUKIluT25uT3fZP7FxuOf0wIsY8QYn8hxDdqfwoBEEnVdSweTp9qaoD9/mDv7ZJFr1757QwhFlgJYGyVVBJCN7uE6deNuspTvyxJW25JPM9CKA1RKEWyf5U+lGpxUYF6g/wjZhGiEFuUtkR52bLoTB9e7hynx4KWXfZwDe2NIArH9g3evUqdmDTJ2kKcyNPn2z0tt0+v3k2Je5wQwJo1LgUsOLH7gvw9nB7qlVVw+cWyrngcndsZ8l/a5kmTM2KxKyZlpOOBY/5+otL6osCgQe6PgcztdOHvOtuuSwFkctxITM6trYm/pmbvSl9RU+teKAw4EatFwfm0nOst6v36K2Hb3MknA4cdlvn+r38BU6v3kGpfIu0TyTM1LV2kyxrnsutHX4ULL5Q7zhwK3+7dWvaWvvyFE7Dy5S/kDPtS463PEMOWiRQtyv53+pkSnXHPR/b3w76z3uEYgzy5zy6Eg7m4VCnixrBhmdvLrOB65hngxORyKRYD8P776X0t8fYYa+3kmkNVFdAvGfFVCGBzLGP8zfd8AgTz4CLFSAiL6fb/vg+PP17wZrFkCbBwlXvuHoCuySQ6pBbLmzcDzz5r2CEh0bQT3LwxT9IsRgIpIVdynFEVolAK2TYtQiHoqMjK9xHTcxfbYptt7ZosCZYsyXwu1AJR9vSNGwfceKNNHRLvN8VGQXJwiUSqiXlr/IXpIiZqkwJUg9n21KkJxbHqcbBY7+socVOvIyy3x0SlkhM8YgSwi7doWACA7lvUYcKkzKvZVh2aA/cljZffZVHWMp+GmxezXQ4u8zpip50AXc+eE/y64NqZEyfp3tnem+dXu8723NyMZaU3hp57bmLeTbHffsAXX9iXLyRbnnqM52OE0CIp+XrmTffw207eCyQb9R5c9vWJWNxxSG02DN3zpstbpHB+D5+9t0rmA5K4GMa5rDnewXqctHjvbF8hZ0hjvgedetQwZip+XL6rVL2AvAdXOidZyvPLw3N22WXAr3/t3OaCuh0d60hFg/l+5rbS7abXD8UayqOIMC655s9PfP7Zz3Jv+xyDVIvUAjJMmQJcmcxWs24d8KfvM6lrIjjNkxCggouULCoGuYa2TtiwIXg9hFjhZCU9dizw978bdkhYlZstwpTiJYFtckFZyBCfmRCFLovZmTNzNulCQ8vgTGiJmIXFsaW3nUtTXGip4e23E2FbvGJ8vnbcEXhj3i/VdSqf+Fz0e0IIvPQScMBdF7iXJdjYuoWtkhUA8PXXAABt+rT0piOOAM45B6hQPA5SAJZnFJzgmlWbfdX1yeKjcMzpW6W/b9UuHAWXdIhCn6cqp66ePRMKLuP2gAouO+Xbjp0bbA+1Mm4hiZxAOSnRli8PpS9+iOqQ+c/ndnYt06myzbUMSVLARbemO7+TZXVl0ya5cuD8HgX26JL0upfJeSXzTpwygDJwyd6Ts75L1ePSn3snXIhT3r/BvZ6UosqrgUpaDmDYZOi3VW2ffAJ88w3gJExrc5l3Uy2ceOexjuWy8KjgkopOU0RoWuLdOfW5qcm5vGoWLChMO1deCUyv2T3xJaVdK2Y4ASiBCi5Scsyb5318sJvk/z7uUnTvbihHTy+SZ1KCn5z3NBlLsnzenxYLW8eyQoTiweWHuNDw78nnGb5bTI2SFu2lQCwGNNjIAJub1elfVLxQOF1243vN+vXAmqZtA7dXCETfNzIWk/lqA/bXuOxocxcg6qLCWclq8xI9Zw7QZ+5JPjtmDd9/8oyKE/zJJ4n/U6cG60pYc4xdwnhFN5/l46LYg8vu3Dn9hJFr9k98cIwvWfykTu38+cCECdZl6upcwqUNHqy6WznoQsOKFYnPQXQXWtAKQqRU15l+2dJK6e83X58FxrPtNFZowtmDK4sK+WsoFi5KfFD4m4g30u+uEnOQZVQTifjoZsMn24i8rj3IMLV6dw+l5T24zHyz/JD05/Tvd6lM9O6T+G8hb4vt6OzubmssKxPCQ/IhLfVxNp92kx5Pdf6Ix4t1ms8Q+kksDajgIiXHAQcA48erq09BOgZCpLFVcPldaKvCSw6ulAdXARVcqTWBpXJKgo0tmWS4Vp5wVovyUl2HPPMMsLVN1KWrrwa23bag3XFE1xMKuV0P385yX1FSAMt4oRetvE89EycGryN5MmW8VmVzNNhRquNOFNi2Q6OSEyw2Jz24JPM/5LByZbIihRc7qAeXVYhCN6GQbIhCAIjHs/I1TZpiM5e7/Y7UwG9TTmqN8Pnn7mWKkBdfTEQGqEwazJ9xBnCMTcS/c89NONYVBJvJaML6HthDLnWRIxwyS5xBgwConxtT45H220ty9rktn7JvafvSOR5cqSgTP/3k3kGSF1Ih8byGKMxsNL18WIxvxrlz40Zgft1OlvV7MQRcvin3PciSVHIknzm4vq/aN1NErkW0rd9oW6Xbujnr9KXWRg79A+C6Dih3mprCt+PJR5SfSL7X8h4sOFRwkZJk82Zvg1ypW26QaGI155329h+wcqU/Dy6/yh0pku27KdE6VrZlPLgKKVaQ7J8dxvOdDk9hxEJb4nZJ4nGgutpXd5Tz6KPAzTfb75ddfy1apKY/gLpxt6UFWL3WIm9aka4pCzIfCRHNF4EwMFqx+L1pNBvDBAuC5rIp1vs6Mji4pWzRrjU0pVIWScmDykvda/RB0mWtum0laHMNcWTB2rXAqIUWeUJ0PWv+PmrAvzzXneiUc4hCqXWShFdnFionRh+0tQE1FssWM3/9aya3669+5W5LsWxZ5nOOIL7A702B5ytOeCWB5WUMQVLrdjtl7XcomxuiMLmB1rWh4cmDy+rimo773+tb5hQxzk433aDjqWlnW9afNc4qXvx59eDSfnMeBg8GZtdmPK50SbmD3pBIyLSpuV3OPlcFl3H/wIGmLto8XEL+GqaLm36vn4hQfpg/Pyt9b14wjzM33eQvT6wVqXP0wAOZ4AWEhAkVXOVGGUlGZN5lzjkHmDbNvRwhhWTCBECrSWpGUpmKJRZpec3BlcRNqCEE0n0taIjCJH7yFZgXyGfsNie3jE8Prr339tydvPDii0Dv3onPCxda5jzOIWzrLhmEsB/ry2i688zYdftg1aqwexENBv3YlfdKGbHpmVdt97WviCsZOH5a18O5gE/L6SD8qV+wUJm+QhRalL/tNuDW/qdYNKDniLlSjnBudVo2bbNWkTKCmTVLqo00IUt17rsP2E7SeD/FsGFy5YIq5FVB/RSxJfnOoVLp+tBDwOqmbWz3a8L5nUzWg8vMg5POT3yooIguLNK5nKUip1hcJ5Ny8m8P5t5HxvfO+okFzh2UysHlwwP7nHNci1iypGF7NDUBB9x9Yc4+N1mBcf8RD18oF6XJaw4u5K5vDjgAOOoo4KqrpKrwzf77A8d6SC/mRkuLxcZ167K+5uP9/rnngBEj7PcXYg4v+nUCX0aVwNmzhBACaGzJtYwwFypk2LCoM3hwIjd8Y6xj2F0hZYjdPBabMQfa228lvqSslfxakqki2b6bcMi4SAwjRGH3LeqdC0qsfuJWluo+f0q9S3fCYL/9gDvvdC+3yy72VuEqFpEq1nGlqOASev5t43/zzS3o1SvPjRQJ5/7zYM/y7Bw8hCgMSuq+1jSm6fBD68p1zgUUxDbdodOmYBV4CQmcB6wMOixDFPq43SvX2UhWdD1HWNinj/f63fJB9J13gvdK3fDq8aUYo6cVkPAcv+MONXUHDakaGYpU8hXWGBBVLOdYhdc29d7y738DNS1dHEoK+fHPgwcXCZ+0QkXiAlsWkVhDGFf5Wtx+/siq36U/O3WWTLQke9PJ/P7U7xDCUWE2o2ZX+2nSpR3jMz+1apcs4wzbNhWFKJw8GXjvvUBVSNHWpkbptHw50KmTxY6UhWse8HOKBw4E+i85Um1Hfv5zoMUiR2PYFKswooihgquEGDgQ6HLtpY5lJizsmt8wZkXIww8D3d56VqosxyhSCMToMRnrwNWrE//DzsGVxE303qa3w73/7ZZY7BbyxVw2RKHVyk/TsrzfLD3hfIQojAo//3mO8VaO4s3ut5hfSArxm1vi7dKOi24UbZ4tF6Zs8JYsmgSjWJ5lILuvlh4uxJE2PTecaRYKboaOlbHEB7/a95BvyHk1O+RsMyqfGhqAFSuAqjorSYoB0+9YtgzQl6+0LWeev/1E6VKyDtoyN6SUIyFrms23y8iRCWvqUoKKAOJGIYdNDYD4ZrD9ftn71a7TvOFDIx1eX1GIQitk71Uv5m5e5z4Vz4tsmy1xewN8x35YhFNPl1eYg0sky771FjBlitQhSqmtVRMy0DYCt09r2+Zm93WYn/vof/8DXph5uq8+2bLrrtAmTFBbp0Luugs47TQAmwIawBFXqOkoIVZavDOaOeauU7HAJpFlKeFk1W/G0pWXkALgtCbIcdn3m+xWFWmLcveiT/TZPn/9sCH1EuB6DiqtczXdeOCY9HcrIwCr310sypXJkzOfHdLPeKZPH2DUKGDqVH/H2724/fqbv+Dgg+XrKTU5gICGZ6afFXY3yorAL/rpHFz5lbAtWpStdC61e78QFELBFdiTLw8ht7xwVv8bcrYZQxRecw2wxx7APv+42FO9e+0FfLT4aNv95rNmOce6XJ/UGiDQZfR6cMj5cgoh2M/XWNPUBLz1/b55bV9AK9rBsr6tc9hdiBQNETkf2uYm4MexsqXtdxkHOeODXKT3aymgefDgMnsdb9uh0bMHl3M5eaQN2GVDFEr8ju/XJsduiXNld0t3ahezP8ii3qxHxu44jyEKdVEBCIFrrwXuvlvqkFBYvBgYM0bt8PC3vwFvv229r3PnRL4uR71RnYvnYAEtDwoRRcMvgwYlQzguXGhfqJisLSMMFVwlBNdCGaZNyxbqFjuy3gykNNA0kZvkNmwPrpSCS1bgtnJlKMI5t3PwxGc/s9y+ZbuMpjtm9ZJgseiwXYbU1jr24ccfgfXrHYt4ZvZsIObwjpCia1d1bd50E3DKKcARR6irEwBiohKLF8uVdVoLFus6UTDuXMFRpazO94i3776J8SPdHtd9nmnV7S2JNQ1qFFxuik63NpIKkyiNYcauVFXJdWz+mq0kK095cGXPvZN/8j4Wpg23gzyN225rvb2hwXp7AS6UrtvLkcK4TyzblEnuaeLrr4Fr+7qHjQwy1hUiPy0Jl1WrgJHLC5f0Vvt8gPN+4/0qG6LQmFyIk3s4CIv3bwfM75wCWvZxNsYPxuHTMo+XD5QruFLpBhyKDFpxqFSTTm1NXbOT/Rym6znnWGa9Xr+pQr4wkj81SgsuC2bPTuRAOylYOtUsvvwy4U3Vq5e9o0TfvsAxx9jXIV5+xbkRGeGECiI4Zi5r6Iabbk58TttXO/Uz4vdgscAVXwkRwec6NP72N+CPfwy7F+ro3Llw8wOJBhXmJLdSFmF5HNLTCi5JCq1hllTA3fvuQTnb/jf9VLwy++T0dythiFW9tiEYXay5f/lL4PbbHYt45uCD7S2wgpDPtZaKqh37VywudiaYc6N4OPJI4IorgJ73nONemESC1gJ4cFXYjG4//ggsWSLRRiyGTz8FTvlKIlligUhZOAOAWL5C6phVNR68LYTIEWT1699B/vgkSjy4Tj7ZevsXX1hvL4BQ4uWX7fVu5uZDk5FE1BpvY2tnviSXOH/+M3Dmh8Ff/GXvEq3VOfxL9u0m6cG1dq1k6ySfpK+WhGdujvJFmBRcqTzaJozrfCfDzKz3AUnv5SjipD+68rPfYqydM6QQaF+RfR3i1RvT++zel1as65guI9c/Q060iJ7Ggw8G5s9XW+f55yf+jxsH7O4SGV/TgKoqix1uIcTKWGnTqrdHn9dMMqWo3mAlBBVcJQSflzwSgcH5/fcTExApHYSN/F0ILSMgSy2wQwyBs/82a9O5XqQtzTStoI9Nqi0/C/xxVXtjek1mZScbojDI78uHwrqpyf+xERjilCOGfhd2F3wRVliyckaYhltZpkwBPvoImLY8uGvkhg3e13Fc93mnICEKba7LL38JXHaZRBu6jvFjo2XVtLAuk5dLtNplizfh8VyqmIaUCPna2Xj52SW9K8AEKhOG/r77EgIoO0ezIFTPXZflYGJJHs9DuYYoJHIovbwSxlGa5pxn2OjF69Q3baFBYs0QhZEgbWAqMZ6Z1+s5Ci4bzY3xOMcUVB7eBzx7cLn9PF3H8uXAovrcnJw5uFS2Y6cGiGXLbfc/8YR9HzpUZK+FxPffu7fpMURhXFQUrVGkEencbj6n6urqXPlFlN5Z8x0mPggc0gsHFVzElU6VDJeEmhr7fQVyrbrmGuCWWwrSFAkZAS0TIiECCq55dd2xxV47AvCwKCq0xsQmSb0fckJOCOC1abn++bY/USZuex7W0eW4eBJLl9qf7hX2L1NRphSVjVFH14Hp04F2F/1G+hirmPR3j/eWkyhFfT0wd27m+9y5wEsv+aqKuNDqkOwcgBoPLs1lgHdp45y7D4c+anTgfqjkvYXHpT//WLWP1DFeT6WUAY2bFXvy1TaQ0MWuDZvtIp5/wViFw6lJdeuxx4Du3fMTweLdwTvi2GPV1yt1j+g6gqg/OaeWOJqmdv2bEqA7Nemyv6FBw5VXuhfWjNEuSkDAXvQIw8zhI0RhXFRkv6/X11set7JxW0Md9oN7jneuw80kreCSqCvFsccCI9fs76leK7p2bIJ4403b/XPm2OywSg+QPOfHnbU1vljW0/owXT7MJADEI+z9pgJVU+DZZ8P7OkAInHQS8Mar0fTwLjgyizkSCCq4iCtR0syHhsOAc+ElFZg2LWHVUOCmSZFjd211oaWtUNKCk4jcCLrseKDrBR070h5ceWgzFgNemfKL3DbdOmP3HWr0lZdfDjz0UPB6gLByeAS/VmLCJNsXyGKFc27hEcIm9IYDTjHpvXLSScCJJyY+//OfwG9/C/zlL+7HlaNSOyiOObgg1HhwOeyTyfUweOL2iLdGT9i5ZLHwdM9lCf+c3IpsDFTO3n0mHnnESw8VhSj0eLCTDO3bbxO584JSDDKR4aNcvCP9MnFiIGNCzqkljmoF16xZ7k1KiIz79cuUloIeXJEg9f6tHX0U9JjzPGyes2J6pZRS5Z7xF2PRIus6/OK1Htd5QwhPaRUdcyJDg15rk0QSQLzRRvlhIUtIff9pUnv7BnVvspOYXhnKRDpqZEQmb0lWrMjNQOH6C4TAmDHAmppO+epWmqIYNTm25x0quEoIPi/5x+ol6YuBFejZE7j55jy1WVxzH1GAcZGaVoRE4UbQdXmlhK4rsxjyghKliek5t1NG3fzBybjqqtztw8eYFt1tmXBOqXFaVsF1112JsENWfPxxfvJuGcnXvFJVBczZuLNc4XXrbHcJAeC119R0ipQ1Uvd6i3PeDekyJhYvznx+5hkp+RrxSXNBPLiEbV2bN8u1sX5zl8D9UM2atQEEaAMGuBY2n5XBKw7BAw+Y0phEMA+JU5vDhiEtyPTL6acD771nvz8Ky0MAOP23wUO1WrJxY6DD1zRti2Xrt1DTFxI9hDfFuyuSlUkrTmX7RgVXJDDm0Gz57GvHsjkRP4BsBddOO9keu+++AGIxR8NM4z02e0F7VDdvaVvWa4hCV4SAkJlcZEI5ChdFSOMm6+0WsgSp+S6VL1TSuzpmyL1dWwt89pnUYYE55dTsa3HZZcC0aXLHLlsmH46YuZ3Dh0N64aCCq4Tgg5NHJGbT1jxFcozKiytRj5MHV4oQIxPmMm6c/AtdSKE28iHcim+0X0FaCZ1yhDwWAm+xbr1U208/DTz1lFRRPPYYcMopcmX79QO6dTNsmD5d6ji/49EbbwBDhmS+X3QRcPKXd0odq82d7dynJUustxfpgn7d5q3C7kL5sXSpo4dEmm+/dS2yse+nrmXmzMmOfMx5vnA8MeUc5wJ5DlE4e7ZcG8aQgFFBxmvBSNbP9KH4TXHBBbapTHJIG27nw5bX5ro5rdOCLIV0PWG/MXw4sDwZcddK1yNWrPDfiE9cz6/ED5e+mxQ8k2c+elLgOkhECWEC9SZzsS9845ir0jZwH/2wq98GiCqEyMrjo//wo3Nxtxxc22zj3N6IEY7vKsY7++DzemBq9R62ZaVzZKeUP25juBDK0hIIaC6/Mzc1QCwGfPJpBT5f2tOxrCXJa5AOVehWHJnrNn48cMklUocp55NPgM8/lyu7117ATTdlbws8FPrwlHZ91y6gPCjKObhST/OgMdbv+Cd0X8CXQUVQwVVC5Gst1BJ3cAEuF4TA1KnAKkPMZDNO51/XgTp7z2y3pkmZYVwIxmP2luAFp7FRvhvxeEEVDPkMURh/uVfACnKlX2L1GunDHcM+GPatXQuMGiVfZ22t4fuw4dL98cN11wF/+lPme1OTmnrfXXAc7vjxUjWVRYT9Pno07C6UHx98ILeGkvAkqJ8wz7XMQQclnokUURjey4XL9pnoXCBfIQqN9RZprhVt5Ajfx26usLc8B+B63ueOtvfkNaIkRKFHnC5nkH6sWwfceGP2tq5dgRkzTG1syFOM9CB8951rESE0T9b4QYjpVBiULELIGahIICsg1eBB+O9CczI62xX/y4RCX1vTAQDQ2AjsuaeadogEQmQ8sAHE23V0LJ7rwVXhaX7/7b8PxcT19hc4n+/RbvdvY5OP0Jp2ReDNAPXpp4H27YHLrtkC36/dL6cuWfS4XOkg53m9nL2qNF7kucb3eCekDX5kLYmS3HcfsN07zzqW0bYsnPd0pGf51asBAOf+yVpJvU2HzXwZVAQVXCUEjX3yyxFHAM/OOMPXsb17A9tu61xG04ANG6TS95ASYXmttRWH8ZKndCORuA8qKjzl4AoDaQs2B8ynOr5idbAKLc5FGGGU/KDyvsuHN+LM2l3Re87J6ismZYcqAZns2KdCyRuJeaHI6NLOxZNIwdxVYSUkXbYs89kQtraY0KZM8lTeeH9ucf2VruW7tLe/Nt1G9M+t1IK0giuIqMOuDTsPLgflSZBntNImpZVZqBVJb+UpU9TVpWKgi1Q4BKIUXS+4DMSTp4APB4edf30Err4auOOOjPcmKQzGy6VXOIc0tnyXM1xQNw+iT3/ojs3xDl66FxzJ8bTLyT9HY6MaJZcQmuOcbJ7DZs50rku2P8MWymmHheEYL4wfD+y4o+fDlOF33LP9qV6SriGhD6MjhBxa3Nk7LpLruCKFCi5CCoBRruHE3nsn4u8aoQCrNHnnHeC3b/zacp8uKtILwUi9k1dWyk/A8XhBc3ClnpN8PC/xoIsOi7fXDc1d8OCDcoe7LWCLxRmgWPpJyhNlCi7JQcj4XHOeLxxOQhYNUOTBZVGHcQAsUgWXZ2TPZbJc50r787LLFnJhEELJwWW4tOvWAUuXZr7nQ8FVKkgrIYXwHB4zp4qWPMWRJ6Gz38NXYfBgNXXF9QosXO8SVg4ePQWqnL1P7caId98F+vRxr37evEARYMuOmhrnSGzGEMPpKCo2WBp9GhVcAZcTazdvnbd3p7yE8bVBF5rj3PyLnRbb7rOqSxZP59/HxTKGGldFPpT1OT+taq1kweIi6DqBlAZUcJUQ9OAqfhoagNGjs7cV+VxTFPzrX8DXznlkPTN0aDKZvA3jx9vvEyJz3edt2A6xWETug4oK6YWl20tBvlARotCsxIvpclKmzZuT+VXMWGgpx6/vgYcf9tO7bJYtKx4hWKEVXIV8eSPFj6c11LBh9vUIuRtdhYLLy3GqBIClTIWmK8rBZVFHe4OVa6QsV+TxOqKmTuVXX0mWd9hnTALvhJIQhR4PNnpwnXkm0KOHXFXTpwPPP2+/307pnhPpQebKRGIRmc3Gls5oHP6Te0FaxxAHFm7YFg32qXI9MXLN/tjvgd+5lvMkSHXJURB0OjjgAOCZZ4LVUU5st51DbmORPZr6MpgwXNCg7yF3jrsUffsGqsKStjZg7Oq91FSWzullP0fHRCVa4vbecMfumJ1L2WGJLXVOv5i8GwBgi0o5za8w506TJB9TUzyeCVvqFelpXiLcutL2iOtd69eLkORCBRchinASjgUZrzjW5Z/HHweefFJtnWeeCbzxhv1+x7xKhmnwuHf+jP/9z+WAQlFRIb1Yn7xsu8K6WyfPj4oQhWbiknU++ihw8MEWOwKugAtx6QtxdxWpTJeUAZ6fsYEDbXd9uqgnUO2eE6fQHlznnFM+jkNOOJ1qTYPSi5FVlXEALNLB0Kt1bOr3u6ZjMlr12BATcpYca+q2yGpbKTaVGvN8pMIHbtqU3Ocw/T/5JHD77Qq6JVNonntuQOVtunDEZ/fjuj7HSjQWvDUavBCVaJq6eyq+aGngOurrnffrOtC9e+BmSoYNG+z3ZeXgcjHWtHzPNQz6KhQg+fAS6tcP+MtoRfmLhYB2nPM4/quv/4a9P3zcdv/fx12aNcy3OjjcyswG933SE3PnAttvIRcLXEBzDqtbQBnMv/8NdO4sV7atDZg/372c9FgVEW+JLu19aviKGK5R1EEFVwkRkTGJKCYKeo1ywClcQT7qdLquuilWdXU1sL7eOdFtQdDkxVtusYZVk8+FgWyIQlsL0gJbHzt5DnrloYeAt99WU5fxNBR0XFuxooCNkWLkbz9ehn//W6KgxI37tx8vA9bahP9QzMEHA7fc4l4u1e18zHPFhpPhhQZ3RYsXsqy/jQNgkXqkeH3PSM3Lk3+S06w6XZuvlh2aKuRYxwNfHZPVtiqqqoALXj3bcp/V5dwqmWLV0Zgpue+TT4A5c3LDmcumApMyJpJdGDhJfpPMnAksqd9erj4FfPL9ztKe9HbwXYqoRINQZhim93ldUU32xOOJMazsSVr5bFFvv0Yzvum6TdVu84yKkLmVG6qUG944KZDC4mRDOmUtZt9BITSp87F2LSBaPVh1paxSJNC0hGxG5rK4KZ+D8N13wP77q69X14Gn78tjx13YZYuNvo6jLJwAVHCVFHyo84jEDFZfDwwfnr1t2jTpw4M0TRSwerWaeoRIePIAzsJEfZV9g+YF8TPPAN2vP09F9wIj65WlLV9WWGuUVIgEBc+Lud+L6ncIVqHDG1I+PCq22ML7MXbXtXdvKAmlCBR+jkrfC6tWFbZhUnT8ULWvu5eJEbeBxmNCL+FT4bFiBTBypHu5VPX04CpMDq5UDVmXtcgVXFfu+5PvU1O5bo1UOadr03vOSZJ1KMDih44bBwyc0cOicHaIwlzlk3szl10GHHQQcMIJ/rpn18TPfpbotxszZhi+SMTDOvRQ4L6JF1rumz9fSkfmicuePkrag88OWkeTqKI3e9c26Lq/aaTsZQqjRgEA2k+dYL3fdIJ8OVsb6hC6gpDH348GFsvnqHJDF5ra+0BRZWPGZD5rLfYePLrQHCxKsxFxuYfENTycxb7f/z4j72lszC0Sjyfm1m22SXjMqZIz+aGutbMX/R3q6oC7Hts6fx1yoVW3D2dZqsgqbok7VHCVEFRw5RGJAWf4cOD00zPfa2qAnj3z0/Rf/0pLLNUsX574v88+Uu/3trS2Avffn/jstDDuPXAX2326KRBQZKIZCRFKAncZUs9JPoQYp331d7nG7XB4C+3QITfa2fz5wLXXZr5rVvlcCoiquSW0dRsnRxJB0rdlWxtETGKQD+AVRg+uDE7jUIXmU2pow4TF22W+JOs9uOuqolRwCaF5znGZEu5pzcHdik/dZV6qI85tqsjBZVmv/T477+Tnnwcm2MhRreo0K6BFo4fwShYsWGAQGjrMg4cdZviSirHok/33TyjsCCllVK7L/bxXnXIKcNZZHtrQs/+XLY2Nnoq7vX9bzguGjcremRW6XAldRF6OXunwfMm+58c3NkiX9ZNSYfDgjAFJly650U4++igzt155JbDrrp6b8IzddT20/4M49VRjOeffG/b9sbTBn4e41zDakSPsE18iUMFFiATazt4DVxsFSao9uF58MTenQXMzMGuW/3bKFtMJXrwY+PZb/9WpCMNW1bQ1jvv8Hv+dyBe6Lr1Y1DR14TsKjfG6KQn3l7wp7O6HJdm5dfH558BbbwGHHpo4IBbTsOWWCvpRbARc6KXvVY/eNIQUlFhMblwdMsRys4z+Vt+YCDWi1zonuy8HHD24lCnzExUd/9AZGQfSpKRM95nMPGz6LToGfedKuhglSZ3rCs0tzlMiNKTTiP+bPadLtZkSKAYxdnn5812xcKF8eaMHl5HbbwfGj7c/zjzFme8/8eZb8p1QhYKHwKMMuSAUNCcsKXlU3k1xUZEbn9SFMWPSzkgA3JfLqf2RMZiMKkKgU7uMpYGvEIVGDy5Vd4ri0MlR9OAyUllhf+Jdva2S6K/JWysLAA2N1u+KGuQMn8yPsNU8mDW9qnZ1BoDRo213eVnTyFKq+pgt26nPAeZmFFGipzIUKPUpIWikHh3Gjwe+/lqu7OTJwOP2eTdtJw/z9X76aeCQQ+TaJAYM2oXUOf3mG//VGV8e9GX2uX+6drSXAMyv28l/B/KJrktbo4U1HKleIPzhDwoqcVFwmUmVmzkzcxab5Ay584JxrLELtzF3bqLf9fUK5yIhsO++wLsLjgtUjZ3wkZC8IfEQpIpMm67l3TNWvJ540dffVJRQr4hxGoZVWX8ahVrpNUGRhygEgNfmnujrOBXnNabLvbKquIK3vvAzPPecfHnj8ys7z59yioQxlaRESkp5IzEm6TqwsUUyu32wpggpajQIqefulFOA0Wv2cyyjC82Xh7aX5yw1LhXp1FNQjNfVSSF44YUCD0+2SB+g2INL9XutritWTORBy3HgtvZhjXVRIdVmXFRId21zrAO2vuLXlvuEpLjc/Dy6PmuvvSZVryfG2Cu4/IwXTvz0k9qc3ypQ5Vnr5EHol6L3LisiqOAiJA/87nfAH/+Y+e40Ufz3v8C//mW/XyywfsE1OyV4ia1bbmyzjUMeAouL49fCbcSIhHdduuqJk2zLtjkkzI5qGEBPi9jOnQtqMZsvK6KlS533X7HPeOkQhVG2dJK2MlxjHUT8wAOBoUOBdetkG5Q4GbqORYuATW2dJCvNZe1aoN1xR/k+nhAjQ2d2x7RpwLtzj3Yu6OFNsudxnRCXyS8TwBPxd71PAeBsdOHEl18mBHWlTj5mrPRQl5oHoCHeVh5SRpH88bttuVGmsOOa4ebvf58u51xN4UMUxn0ouEaNyk0+n+PBJdkXpya9nIeXXgK6PveA/AGElCmyU/yoUUB1SxfHMjr85V7xIrBOCds/+8xzMyVJi12OH5MnsZOS4osv3C+AihxcqimGfIS/2nWu7T4hIPW86EKT/q1OMplMo854VnDlw4NLgpNPBsav3ytwPccd5+yhHgaq7uzGWAdFNcnDHFzqoIKrhKDFXHTwkmTatS6DxiQWA6Yno7TwestTX++QB6FD7iQWj/kTPp12GnDvvZnvdoqqeBy4ej/7zN9e81wUDF2Xtj/R9HDiYKhQqnlZ/HfrKOFalQpN1WZ9TnKEWgrWN17rcCqf1T+HFbvRkuvMMy0KxA1xW1evsijgoVOS1DEiG1HImf85Cz17AlcPvcq5oAcPrqDY1fPgg8CwYYnPA5YeAcC/8cQ332SHQypmXOcIBeOOsQqzgksXGtpdfkngNooBkZwuju+eh9g4NqgIUei9zczrdJDbJ3ctoC5/yCV/38u1zAp/+m9Cyg4NQtkYE5f0Ts3pgw+PjP/7v0RKg3Lnyann2O7L8uDyEwHC8J6kxINLsbFoMYQodPJ2EZAL89ylfYt011RcJ8/v8l6M1iR/iMy9Mno00BTraL2ziIWLKm9DKaNDL5itmSygaksdVHCVEmvt3XlJ4dC03Jw6dqxenZtU2oxxspo+HTj88Ew72eU8dLIMGTMGeP11ix0WCq6OaFHSpt2CqV07YHXTNp6PCx0hsgQ5TuhxeWWYCna/7WI88EA+hFpyv+L554Fp0+yqSNQhPukv12IJPMtDhxq+pBZ2hjiLUr8xcA6uol6rkxJnzhzghhvyV//DDydCFxuJS47fZkopB6DrHKF4ALZScJUbsr9YxZlPne9CzqMy11Qm2qDsfOXFgyvFZ8Ps15yEkPDwa9QYjwMDBiQ+jx4N3H+/fVnjmHHddb6aK3piMaDv0D1cyxnXCHo82ESiJkShYgWX4hCFWmf/UTZykOiYAKRC7XSsdBGwZdWpXsGlNByorYAhm6C/4+d/+QXmzQtURXgIEd0wgGPHRtV0vSShgquU+GZw2D0gFnz6KTJJxk3suivwySfOx9stjvxGKxo7VnqeLCk++cRGmGixmLrhgO+VtOm0sF3VuK3tPr9CyLzjIXbjy9NPLHhS70ceUVNPVgJbmbcAIXD77Q65XZPnTYyyj41tqs6SF15wD5noVocftE3ulkdWfP01cPPNSJuLtsYrMWKEh3Y7Bg8RQAUXCYWqKtciixbZGF3Y4eNmNh/ywszTPNcBAO3b+zoskjh7q6rPwZUmOQ/EVFuGRpgLXvwV3nvPXch32T17K2szdQWrm4LlkvJiRNZnzomu5fbbzz2cT26IQuvzdsstwE03uZcjGVQ924Sopq7Vfaxavz53W1sbcPHFic/jxwOPPmp/vFHYvmCBxw6WCHPnAte/fIRzISGy5qtY3GZsdZgQup5wUKaYgrFZebhdaJEMnQggE/HE4bzpQpOSRzwx5Rwl5//q/X70dRGUXrepUwNXIfMKMXnhNhg7tjgNbSPdZwltp/AZqpbkElEpKvFDZLXWZc5vfwt89JH/4+0mZ7uX786dgZUr7es7/nib8GHlisVk0rmdvNWPE49MOde+WbfFWxSJx6XHmeUNXfPcGWuUvwjIvARI5uCyu66ygrTbbgNefdW9O16ZMQOYvXFn2/1a0vOqRcKx0dj3Pn2A3r2R/oEbW7fEaf7k64QUFdpJJ7oXUtWWw3Rh3vfq7JPy25kiwGnuzYdRRmpM3P+SQwAAMZ/hqIqVXr2AdhXOL/efDNsOI39ojw8XHeNa3/g5Lvlsktfw2OevlO9kQJ6dcUb6s9NywC0hu+xaYN68xPyaKafmvi1l2UqhDa5I6aPqeTnu83tcy+y4Y7A2xA9j05/dIseUKrLXy1jszbm/sC7koGDZ2JDJ76UrELWqFnzrOiDG/qisPqUkf6dT2E4hqeBq0dv5uuZmtmovF9NT1oNr9epkQJOITrjFahgaWaUtIO/OF9F7otgor7esEifsAamL5ARQzjz/lPdzZDfU2V3v5uaEZXi509bmPwyaKgWTLiowYwZw8MFW+5wUXBEdmj14cFU3d0F1S+HjWt0x7jK1FbrcQ1JLkeTCRnbZIp0Py2cdZg47DLhz3KUObSYq69QJmFa9u3S9lZrK+AyEEBmamzPjhGaSA/i1Zi2ldy7Xn6IiB5fhcyoc0PzliTA+rsnMS4wffgC2bOduHXHjnVtJ1XfsLUc77heq84t4RGr+Xr3aen9jg682J67f03efPLNhg2uRsN9HCck3iWBYxXOji48z4WLK9fk0joMX7zXZskz1BoGphvec03eZY11ZLGa93dymFr33eSEAsWx52N2wJrlg7b6FfeQQHXIKrpheIf2Mzq/bybmAxCSao+CqWmdZbtddk9FNXNh7b+nbDACwaRNQ3xo8XKTU+BDRl4LIjm0yHlw0wlFG9EZd4ht6cEWf2+/uJOUFYcRuwHMbxNeujfBAXwA6dADuu0+ioMUk/YRD8lmvHHYYMHt27tzmpOCK6pM8Ye5WWNko55k1pXoPDFzWM78dyhNCKHYTTym4ZBcvra22u9KhSRsbA3Yqwc72jlueMY83FevWWu8oEEJoZT0GkvLAfI8bE8h/800i52MK38Yb1dWJ/x6MHEqVn37yVl6sWJk1ncTKTMEFyClWFyyzSXruEV2Rgsvv3CHV9tix1ttNc7+scK6+LVg4Rk9s3Fi4thTCEIVENUrvqDwJjP/xD+C114AhKzNh88p1XWw8xZ8tPRK3355b5qa/dsDkDRmDAWNEl3ffNdQhqXlQk4NLLbqIsMQwucbsUGF/fmU9uLwYC8/faK/g8qPIvv9+YOh79qHK161zf+SXLDF4fUuMDyeeCJz+9R0eemmNVqSR8qJucMA1SOGggosoozVefi/tfvAsHLELUVi30fE4pzCF5cLjjwNY7mKlpGoWFwK/2Mnedc6ss5habZ/oNqpWHMf88xSMXLN/2N0oKG63h9S1cglRmFPnkKG2+9Ivpi6xjoQAli0D7v2Ls0X42rXu/fH7KlSxeZPtvkLd4+X6Ik9KhBUr0h+HTO9uWcT8fDqNWb49uMZPSHywE8x75J57gEmTlFTlGaexx/gC+vzzwK23Zu9fvRo47jj3vhvbEL16Z6Vkay1HBVcB3+sFFCd3LyA5z7LEMS3N7qWUnn/ZRKARY/mm7cLuAikhhIjuu5qR//wHuPFG4IphmSTUKtbF69cDDf4cTkNj4cLs788/n1umpSX75Jw56HZcey1w6KHA1VcbDIgk4zxG0YMr4VUe0Xs3HfHEvn9rN28tpeDae+v10nOfU84vWYzP1aOPAt+sONSxrMx63MuzOm+efNnAbUZRAyZEpJ093E5rVv53EojojbqkaGnVSygLeR6p8PjU2Y11Wv9PbMtVVdlGQCk/vvoq62uszXRCVU0mLostB6ecHFQstIh/PAuB3e6h5L0hnU8vZn8veQlR+OGHwBMvyYV9UoXxVFTSWomQYNTVpT8OnWnjbrm5Sbq6wNbE9fZhY7zw5JOJ3ExBeeopYMwYb8fI5uC6/Xbg5Zez96cUJ2ecAUeMbejQMHduZl9DIb1tIsLvht/gXkgRQuTH0VA6l0eAac+P4LlTZ+eDlBt5SGgPaVhCiDfGzZAP6T5zZrC2VDyfO+4InHde8HoKSd++7mWExQD+1lsW51zypV6JB5diZVSkZejp92V7vl5+mNQkf8wOS30ZdbU3eY/Jni6vz5Wn61Dgi+baXAStiCJ9X3NRVFCo4Coh6PpYHFR6NN61FYq3mUKZGC7/5ZcDF1zgtWelycgFu2Z9z/F8k5gRGxqAqVNdCrlYjngJTakqBxgJQPq+cL4/pEbdZF3SObgcFuTpNVIBV3Ke1mUGV4V0F8MKUQiGKCRFjsxLpGkscPTgcsr9qEt4mCt8oFRUdffdSU9tD7gOnQ4FUn328m7/zfJD8NBD8uVJMHShKZG9+A9R6H7/2N1jud6Yap43lcuFleslQ0ly8iUlTHO8PRpjasKqAkBTs7tILqVTef+9aMh7ytGQNq1XWbNGqryKuUh16LVEiMKIjs+yJ0xCwdWmV/rKfW057xoLrLPOreVlytM0uZ8axjSqbawtfKOKiKwsXGIRFlmvyiKECi5CCkyFx8HXrjTfHR0wTCSn/i9b06fpcduydjzwAHDEES6FXFYqaQWXMUGKXVWc5CKD24JDCA3fDXO5XimLNJu6zBbnUknqXe7bRPgU527lhZdeMvYihA4QUkIY5hU7AwovITmcvINHjkyE37MiH8KQoGsYu/GtXTvgiSccjnP7LRIKCre+G6u4Y9xlGD3auTyR45rfu4eFqtBEqKnixGb3NZ4d5ttKxXO3fDkwblzgatLs/vuT5QpG2pyakGCcO/hWnPzlncrq69DOXdqdzist8R7phNYS7Ph0PUX2qipSuUSdysgF5AAGDHAumAzlqmIMX7Gpq9LxdG1dZ9S1RtSTXDZntaSCSxZhEImb18k5fXn1Vcs6vCq4VK6rBw92PyVCAJgxw7UubcBn7g1GcH4XemTVtgkjeBf5L0MUqoMKrhIisg81yaJyU517IQN2k3xMr0BTk7FckF6VGA45AnLOk8WJ+799s83Y7d4lNmwwyB9158CCrVVJi5gvv3QolSDuITEqUY8QMNwXzg/W8sZuOOOcdlL12iku//pXoLshvY6UB1cBkRWg2/YtLA8uUXwv4IRkoTgMiNM6wcnLOB/ri6DP5scfW2+Px4Hx4+2PC/JTjH1WFK2ReODt991Dod9y8qy8RM9xegaeObZ/plw8WqF7XnoJOOEEubJ8jyBEjuZ4B6X1dWznLrAfMiSh5Hry+YDKibVy3kdueE25EDoSXlczZzv/qLQSYc89nSuaPRuAGoPVXnMkjQokOeKhC/DQpN8orVMZLiH900iEiIyJCl9eMa7zoI2i1MuadsIE4Iz+N7mWk63znHPcT0k8DmDiRIk2uRBQjqzVFRdhSii2qYmQoqdi6WLH/Tn5eGwm+Uu/uxG77+6vD5oGrF3r79iiwCn5q3mSsZhMzAJ9uwXGDjsYcnTouuOioOXtDxMfNmyw71u6S5TKFwsxXW4abWkB1m7exna/xG0BwFsOrjDIGq9sQhT+6lfA3I3dUQio4CJFjeEGtlU0e0grKRyW/U7HLajfMac/YWOOElNfn+me07tkkPk1Vf/GjcA22wAPPmjTBk3OQmOLDjHoLe6eXp4xe/8b6Nwu2Z7LxOv2+JjXkMUq69Dq6yI1VhASdTqM/961zLRpwGOPBW9L1ZNZbI+4zNy/fIWkguvQQ90aM/4jsshapzS5555NhCj0oeAyrZOb4+3xt39kDFmFHvyirl8PjF61j3tfhPmDf+JxSD20mkxzmzYF7o9qhPAW0aKgyIQo5HuDMqjgIqTAVA7+2nG/eQy0GxPjohI1Ne7lrKiqAna2yVefL267DTj//MK2acVxv+6avcHixJknGaf1QDoGuYsHV8uqpAZDwuTNuSYSJaQWJELgjjuAgz95SLJOezRR+NhLqu/GYcOAmPCYjJCQMsduHsrN26O+7c+XusXo9U5Q4Vgqn+ngwQmj1IaGzL5AIeqcFmG12bkJHn44kZ9z8+YA7RHlxEe5C4vdyBGUfOW8dk8h9fzJ5uAq1rXghvVh94CQoqKQeW9UeWgUnQeXBVdd5a289NoiOcYrSzlQLpqydEh/l3KxmGtVbXqlktO2oG5H/O8lg4LLpk5t5YrgjeURiVOWwbigtmLYsEB9KTvyEVaA2FICUxNJEVmtNcmiQvM2yOXzBXf48IQRRiHyFbzwglR0Pk80NgJ/+pPFjkp74fnEaaawEhYrlfcXHpv13UkQlz7cZfJq1du59i0Fc3CFi4CWvrCTpzmHH5S6VkJg1SoP7TvUWfHj2HSdLk0qex/y/TJcLi9khBQCm+dpyqKts5yW/T52UscpNNkOWlU7w9A8fLh7+ZUrgcMPBx6adJ5r2X7vG+Zzw9wu+n2YU/aII3KFZBz5wkMIQB/4VfCKZs3K/u4Q3spoZR0kxLB5P9eChJBCMGWK92O0NvcwcVEibjGevvce8PbbCY8aqTpWJK1a3QTWKQ8uVTKccnmfkghR2LVjo3OkniRecnA5IZHZAgCg/aQw2aW5LQXXPxaDpAeXAHr1ciyjt4WY6NSGSD8iuu4qpxdCi/iPKB6o4Cohis1VvFypcBngckMU5o/TTwe22grYbrs8NpJHZs2ymYMllEhpPEwmVh7ZsgquRfU7JD4kTd7aV9ib0jAHV/EgK4BSpmyqrXEvpJgZNbtJzS85ZVIPTEgLNgGN8yIpC6qqPBS2eR7tHtPLLjN8CcFk+/rrgR9+yN1uVHDlOF1ZhJDp0QOYPh1Y37y1a5v/figxn1doeraCa/ESy/LLl5vap2IiVJSsodZlP1RSs5gQyq79xx8D/5l+ppK6Ck0Yd3+HijyEpSSkQKjOe7NiBfAbmzRL5udz2TLgyCMTnxsbgZkznetePimhDdICempedpnHtUtAYjYKj2uuAV57Ta6O+FvvJj5IvtcoiGbnqb2iR2GuIr8hCnOaMtVh997/6ZIjcO21gZvLbV8Aq2q3UFKPDJoGiKp1jmXeGb1X4P4oR4jovvO7RHkiaqEUlZACU+GyiM2NjpP/IbGuLnfb3LnR9qitqlLUPyGw3zbOK+zUhDljhuXhCVw68++U1XhSQOikGKFwLFy8vEbILp69vJs4WoBL9k6lB5cXrJpsnu2cdzCfRHaxS4gEk2Z3Tj/HWmuL1DGqPbg++cTwReED9e67UnnC0bcv8M47uduNdiw5fV+4MKe8THiWVr0SG2oq0gOZEMgSuNjN2xMm2OfjIoVF6CI0z6fp04Sll4Asxvn9rruAl2adqqJbBaeutTO+X7JrQdvssVV1QdsjJMqMGgV8JenIatQpPPSQe3qphjUJ4zWniDS1tYl8YR99lMiPacUnnwDjDE4v990HvPhi8HcXXbeuY8v29muojz+Wqzu+KRmP2K2TqRCFuqK5KMoCGZWkPbjs0SD3gquLCiXvwWaZjN07+tiqffHWW1D68h2PA59+Cuz2zysD16XrQEubu+hfg3CVNGxsbB+4P6qJtA5Y4vmNcveLDSq4SgiGKCwOKt1CFJpc/vMhQJfhwAOBzz93LlNVJZXn0xMPPADsv79zmdWrge7dHeYLT9oE97JOMr2RI+XqueeIbxIfkgquOHMQlQSyIQq93JJOdabuxVMu6mpbJmp0PvGosLtASFFy1O8PwPz5yS8O1tLG8cVprLn5wFGZ8KuTgfvv99ghhR5cmzYBX3zhGPkNf/xj4n9rKzBiRPa+yok/pT+3tZki1rQ0++rT/Lru2OHkg7BiTWJ+FqjIkv45rccefhhS5Uj+UaHgmrR+T+myqet9+M/boTHWyb5gyprM4SF1856wo3tnC0u1kJhZuytO7PV/BW2Tb8CkmDmsv1oLCad1gNlbzOiB7JZ6B8gsA6bX7G7rgfX11wmF1RVXJIxZ7PuS+fzYY8Bf/wqMHu3eBye6dQPuvDN3+95bbbA9Zto0ubrTywEXgXXKi5whCr0hYqkcXC7nTVLhJ3v+nTyAZUMUpkkv2oOz7bY2qTh80ukG96RzMt6kUbwdBbTil4VH8cQWIVRwlRCq3dtJfnA1gG7OFsyEOdZZheQz0r17RgClimHD3NcGqYTugwYl/j/yiCldguKTpunZpt9z5mSu44QJyY0ui632FclVsUT4xCAWwEQR0uEnCnutUou3UT92cCxnFaKr0FDIS0hwZCK27LFH4n9bW84SIotuHRvTY9vLLwOPPprxoip0Di4gEaLokENytz/6KLDzzsCbbya+v/cecNpp2WXazZ6e/vzAA4kQhKpoasr8zqNPzCgswh9ViQwqQhQubtg+67sKz3rtw36O++fXdU97T0g9aoaHtrIiuIU/ZSuElAZeHH5OTTqKrl0LtEg4ihvtXB54wL19J7sYq3FOIr2SI3V1wMSJudvP2G1OsIphWI+5DJZzlm8JQOE7YmOjmnoizpwFidjTrvmzJG7w6TW74sQP5LRD3bewcTOEhQeX2zwZ9AY2scFeL5s33Nc7EVwsCBFdWfhOO7kWYQ4udVDBRUgIrFolLycKy4NLts6VK73VqcLLPnXuHnss8f+BB0y5uNw6vi47trCbxYeWjKGgVSdWGRbRjwBdd6xFTwlcJCzgmYMrXLwsMvITotAe2cWb+HqQfIMligBDFJLiJ3UPy9zKV18N7LWX/X4duWNbx47AvfdmQuwNHizRmQAsWpT9vcYireDo0QlhWwqr8IJOAn2VyvWJUzKCFlklB99Rw2Pxhq0xv85dmOCGa7QFA9KXO+nBtWD1lq5FpR61n35yL1Mm0KCGECSSb8HFg8tmxNp5ZyRCrCGRk8ouQssB52SsSazGqblz092wLeOEivnTqk3XeiUajqdCDrqUFUlhhzJjQxnNYwkgYnHMmAHc8oN9SD4NkBImrWrcVrpdJ7mL+Qq6Ki2LfAGowX0+FRGMmCkE8MHCY8LuhjVdu7rKb4r7rokW7dyLEEJUIoRzSJ6c8h7qVY2MMsqrwirVz7q6hADLLRyhFa6LZbdODRyYyFwvSUVrwiS+esZq4Lztrdt3aTO9IJJQcIWVP4IkeHbGGai8N4an/+teNh8hCp2EqNJ3xpAhED3OlW9UAbqencQ5Cos1KrhIsePlHnYLs2McW4z1PvFE5vM55zisJwI+UIsWAfvu615OZrxs50EBQcqHu774JYBfBq7HnC9XlQJl1izgkDvOcy0n9aitWAHguET5SMy44cF1MyFA85padNp9dxcFlzs33gjssgtwruE1YtYsYNIkU10WlR14oHsZmX1e+e4751dxobm8f7e1AXCOjpGu3zUHV7K8qnGpTHJwaULHqFESBSUWiV68rh3zohuemLo6YMb63aXrLUY+WHgMBq84OOxueEcILN+0Xdi9sKbIlZ7FBt0ESggu7UsD8xgoPUFnxehTg8x66scfvdX54ouJMIS33AIccIC/frkuiN0mEmPMJ2EjtjDUkRIcnHfvYZg3z0ZHpVDBRQ+u8Hnm2XZy1nwFvlayQizXF7k8cPHFQM9P70t/r27uUvA+EFJqZDy4gsfF14OGwJDMwTVvnvX2VHhhFXjxsFGFtMcuV+RFj/l5cxSASa7TNU0+b61XwW+533EqQkgSUuz8u3d3AGr0IZ1M6QTvvRf4wx+yt8mMU3fcYR9C2JenlQ1nnAGcdZb9fqFAyJx+53M7wUJxDq5yUXDpcTz5pES5iy50LaN7OPdO88fE9XulP999N3Di5393q0y63SgyYOkR6DvvBMcyKp4l1USwS54QFhE2iD8oRS0hyt16r1hwW+ysb94aY8bIl0+Xq1rnXsgjytZThor+9rfEAsEuv5fMYjmwB1cq6YgDd91lbC/zbNXWZrd/yj7J7LxC5Fj8ZnUptXiSysHFoblYkBKqePXgcnjmpYVeIbguxeNAXGTu7+GrfWqwFUGBFykF/vCHROJ1GVwVXB6FLRs3mjZoGl55Bfilg4PMpk32xit2/TMPVzLjpYqcQ4TYsWzT9jjGEO1GlSW+UvmF4cEJnHuiuto98W6E4RswIUBtfWIN7jTO/FC1r1SaILM9i1Wdr77qXk9TE7B0qf3+trZE3k2VWCvOXMZwXUf7Cot4yAbSObJdF1uJ9Qk9uLyh6RJJZyXxcu5lc5875bhNUw5KijL4iaqhRKJwUIpKSAi4zX0nnSRf1hMSip28YFqYBZW9Wx2ftU0IdKx0WL0bY1nbJKV8+hmD4MCwva0te9HfqTWTmLR7Z/skpWnBoowHl86hORJIPHyyC2jZd5PmZufkutIeXFx8AmCIQlL8/PQT8Oab7uWWLpXx4PI2t4wYnl2hdtKJuP9+Z89tq3xZXpFScIWQTFp2XOXwWxpMmJD4v3Spcz4PWUO0Sk2Xvodk5q7Rs7eXq0yCd/86AXMGL1VWHyGk8KTeSdzGmY8+cq/LPAZ9+aXPTjkQjydCF99/v9p6R45M9N+os3cdp4VA147OLrZCUsGV2q0qBVe5KLgqoLvOfdK5qD2FKKTcxQt3fnhU2F3IIdJyD8UhNYkzzMFFSIHxOv5+ufwwZW2vmFgFQD52sDLhsGlgF8LZmitFPG7t8CQTorBjRQwt8faWux8afBweutO9/XR7hqt28slAO8PIqUsudtOLJwkF17y67vKdI/lD1+FmB+LVI8KNLl2AePxXtvudvASN7Pv+Q6gOSZ8dKVasgJcxj5AosmkT8PjUXzuWsQsBZMQYolBmfm+3aSOArlnbamrcj7NDWkEkUc5bXkP5so71SAjIoGl8US0xEs/WJYHr6TX7JDT8J3A1aU5+8JT056BRPK7+4OyAvQkXhgUlBIjrcgqudLhgh/ecfBqIpTIFXHyxVWoG62Pq6hI5zL2kN9h118RxTvWm0d0NEGTf+VMKKRVrgRO7L8hOrVDCVAj339nY1lGqLi8zouy7fKSVKKT44Q2mBKqrSwhaqpcejzwC3DnuUtdyP/0EVG3e2rXcstXWCh9fbNggX9ZkeTRxIjBtmvMhsVi2IsmI6/jvUqDP+MOzvrsJBozPlhDICu1g9OBxqsVLDi4SEYTAVu2dk8ZIrUU8hCh0e4fZ2NoZM2e617Nu89bl8j7kiPbSi2F3gZDIIABPL1DtNO+DiFP1Kt/dnATaZqFSwYyfZeI+kaKgQ4X8tZS9r9+cfzz691dYIUmjLBQYIUVMymPIbQi58cbkB4fILvmUK/Xqlfgfj+fOz2LWbMtj/vxn4MADvel66g2BVVyV4LruWmZd81ZS7WY8uIKfRAGUjQeXttk9SeXmeAepurwYPcheJ07N4WMXRjTS18YmWlRWkWQ5EhxXSaumaZ00TRuvado0TdNmaZr27+T2tzRNW6Jp2tTkX8/kdk3TtBc0TVuoadp0TdOONNT1B03TFiT//mDTJCEljRdrnqFD5coddxzQf8nPrXcaFkWVFXID54ABif+Oi9uqKrnOAb4G7NQC1nxodTWwetp61/acWlzTILdATVHhkMw+vYASwvHaesnBRSKCEK4LZJmwBgdecwyGDJFozxg604ZHJp+HQw+VqIvQopsQE17DsMiuGYyk5uw//hE5wnzZpcD337uX8ZRfQZGyX3Tt5lwgqeDi2FP8pK7h+PEhND7bWsDrhKzQr1Sh1yQpVs7bY7qyuvSkB5e0PsRhUvaj4Pr2W7lyjiKE777L2fTAA8CkSYnP553nvV+AhEePy3s8AFw7Uk58qdLAUAitbBRcFUMGK1OselkjKjWQoJKCkFCRedNtAXCaEOJwAD0BnK1p2nHJff8QQvRM/k1NbjsHwH7JvxsBvAoAmqZ1A/AggGMBHAPgQU3TsuOekEAEDU9BCkdB575hw9If7TyizIz7MdnBRkUJp30szNLWT6ZDzzgD+MX5OzgeO2t+ezS0dZZuyDXes8M+6RxMqXJ0tSweJDyvZB7lucu3lGtPQsFF5Bmx+mdo1RmJmZAUxkTaUiEKAzw+b74JvP66fPnRozOfZRyhvCiRAgubUtK47i7hg8PKc0ryxrHHhtDorFkQHpPZrZOI4lDK8A2YFCsqhesrqxKRWqTlDA7v5xXw/u4uk34AcA51bNX3Rx4B5s1LfB482N+rtKsSXNddx5H0O4V0iEK5vjkhgLIJUdi+Iq5MTOItB5dCDy4quPKK3XUVyhLe5QEhXOX0NNJRh6uCSyRISbnbJ/+crtAFAN5JHjcOwLaapu0M4CwAQ4UQNUKIWgBDARR3wG9CfFBwy965c9MfZZ2Htli3BACgDRxoX8hLqD0fk/30pEGbeU23aJH7sYdcsr90O7MWdMC6zc4eXU6TknSIQoOnFykSVq509XhQavVF5adSPlx0DD5ZbOPZSki5kpyDZKaidpX+PbiA3DWHU5v/z95Zh8lRpH/8WzOz7prsJht3d3dPiId4QgTiOZwASZCgh7veoXf84LAD7rA73B0O9wQICZIQ192Z/v3RPT3dPS3VMrrv53nyZLu7uqpmprvkVbtW2XZCFbs2fn75ZbFKqw20pOCiaT71sbNWj8m6fudO7+tMY7YesPCuJIgkxctcvi+8nYc//vBGwcUE+xMn7zbmppuMr8VKTsKTQ9OqDK8xeW6mPQMFMwTUHw8uxrxbP9l5r7iisbQHPvvMTY+IWJLU626OzlGIQu/gklAzxvyMsY8A/AZRSfW2dOliKQzhNYyxcMa/RgB+Uty+VTpndJ4g6hfdu8d3/FJoiHitsXP3SyEAzcyoDVaxR44AS5bwdk6n2t27AESsZrUKLq8NpDtNaYkdRjG1pR/KbMHOG/LJbmgoIgnYtctyK0O/a3LjJIcQQaQrSgtBs3XI3o++BwD4X3nRVv333AOcfnrk2I6Cy64Dq2kOLkAlEArWuhQOSYsAq7Xb79u9E2oRiaUuxB9OOiQwLuMrbhijMJcEUU/w2nI/GPRIweXALzKZ00xbfiehkGUZv0UeHbmtoPi9vr+1AVd5S+qJBxcA/PSTdRkegiH+hzHI8Q5++SXwwQcclZGSIjEkcRSczvO74Js9lYnuRr2B680XBCEoCEI3AI0B9GGMdQJwNoB2AHoDKAVwphcdYowtZ4y9xxh77/ffLfLsECqsktcRyYGdeS+8QHIDO+Vk3Hef+DevB1d2QBTSHP/KIhw0yvdpsIrduhW4+271uWAd/4d+7TN15NKtW9XX4+rk8r0o5DPPwQXxR+XNwUWkDn6/pZDJ01GXPLg8x0fzIkFEcfQo8OOPxtevvl60hqnbbE/ScNll6vl/61bg8sv5+2QHszlVm7Mi+MST9ip3yI5fRSEUKSfqF3/7pi9atfKwQloLEES9wev9oS0vGDMF1zdfO2rbS+6+G8jjifLOoQAym5fbF2/j8uBqXfQbR2fEr/Wbb4A1/xzFVd6M+pSDS+jjXUxgOx5cR0MZnrVLxBajoU34zH7u0njx6fe52HbQPDMT7Ru8w5adhSAIuwG8CGCcIAjbpTCERwDcBTGvFgD8DKBGcVtj6ZzReW0btwuC0EsQhF4VFeZ5dgg19FqkITZj8Bvxdtjn8kk+IY9yHbXIKJ+qchWrCIM4dGh00U2XmCwcdu827UubNupjIyWd3UX1rl0chQ4csCwSEhjXwpoUXClIZqbl7+bl73r2+fU7SXwsoAUjQUQIbwyzsoD//tesoFhy2L9PNylkeJvMhx8CZ55pfN02Ci2YpQeXYl4OvfCSq2Y/3FJi2SYAoK4O334rKjyI+sOuI5x5NnlhjPIxEEQ9wcsQhYBof3riibyNmyi4/m2SpsDoHs6P0rZ8h+E15TLh7rthbGirZPt2yyJmy4/irENAKGS5p5vd8j2pMot8OiHBKxFOlEd6OvPOTxZ5Tm2QKLlLOA8eEWe8euESCXn/eYKlgosxVsEYK5b+zgEwGsCXUl4tMMYYgKkAPpVueQLAcUykH4A9giBsB/AsgDGMsRLGWAmAMdI5wiOcuJIT8WfiNSN0lUB6CB4taMILztDWKJ2yLsFQZFHw8MMGzlqKkzffJODDD8W/f9Zp4utvTYaaPXvkP0dxGDp5Ff6glCdcf4a4SDELQxcSfLIgzUz4JS+0aPJKHXw+SyGTlyEK/3wVKbgIgogdt30xFG+8ab3p50nWvHat+ri6WmXrol+vy+mPZWXi1Vet69LmrAi6HKf/2M85NtfWYtMm4KOdTVy1R6QWsVjV0UqRIOoH7/7WzNP6bBl8mhho/uuHrvLfFraoMlx7awBtC3/hKielv7SGQzhgtp8TBIYnnrE2agyHslt0eUfTcp7ro+qJgmvGlQM8q8vtus8pNRM6J6Td+oKRrE2oS+0wnoLgYQK6eg7Pm18F4EXG2McA3oWYg+vfAO5jjH0C4BMA5QAukso/BeB7AN8C+AuA1QAgCMIfAC6U6ngXwAXSOYKoV2zZUZCwMLG8wvgqQa2l0h1vFSvoNTe2x6ZNZu2aNKao/PnnrftmFi7QczJFoZZZbGZuDy7yJEk9QiHrHFz0uyY1tFYkCDVXXMMRq5jjxXnsMfUxhwG1J+/j11LUJFMPLm2IQpfLhrDQyzIBfZ1J3lIibfHaUnz3wUzyPiaIesLe2hxP67NlCGqiOLn4wwny3716mSXt3GujQZEPfq02vObIe5VDq2c2pn67twJTFhXjQF22aR3hvE73Pmfcf0A0EvIqXKPAKWcg1Px2qDDRXSAIIgEErAoIgvAxgO4650cYlBcArDG4dieAO232keCEQranI9Y/Ks+aJ7zY5RUuCbv3WBfSrKDNFtSmhkc2rZLY4UMAPA4HY4T0hZklKg2ByRl9zb5eLz19iDgRDMY1RCHhPSQkJAg1PFMujweXkzXnypX27zHCbOx9YVs7ILRXUdbd/Btuq90F88wLBoMkh6qHeL2+Kzlukqf1EQRB6MK5B//uO5MJ/4kngAULAJivC66/PhI60ZP8uHv3AoWSEoPLg8v42o7DBVxN8noFfbG9GF24SloT0nikEwQRTarv98ke1ztI4koQKU7AUk2tCFHIOfhzbdY1q1htbixlfo+QmcDHroIrnlOAtBquzNlnWCSksBQ3szoz8wIjkpRQCILFNEkKLoIgUgkeQxeBo9DWrfbb/uAD+/c4RqFpcjv/BoOceTsFAc8956opIgUhwQRBEClHKGS5Bz/lFOtq2MIFuPde6e/33zMs94Qipdf8Vu8YluMWVPOEfQGAw4ft1WsC757vwqd6uG5L3TApuAgCMJFRepXDJEFQiELvSO0ngSDSHK/HOVPFlaIxvQXcunXAAw/olweAQ4eAb7+NHI8Zo2zXpFMefcjrrwf27/ekKplwerCcgHHYITkUksXnkL97mrxSB44NRapbDPFQnHkg0V1wDL1tBKGGS07C+eLsM7b9iDmWY68qRKG77Q537mpB4FIOEukFGboQBJEscE9Bb75pGQbm2mv5qvrsM+mPt982LKNMz5AXMM7VMPlZ3UBQ0fz2W+Rvs4WNtJn3YmZ+5ZfWcphkM7xcBggCw1fbKdweQZgh+DjCrycxtHPwDlJwpRFx9WwhUoqws5XpgkuxUNTbrF9xhfjPiCefBFq31r9mKlCzswoUBFOh1ldf8VfFw8dfZISbNeTDnU0AQUCncY3x+A/dDMuRACQF4ZAE14ff1UzBm+w4iuVPEGnMk89Yu33zhCgEYmOvEdrrjaXKVTdm4eBBqU6XhghHa/mMQ1koSDYs9ZD6YOhCEESKwDsJ/fabZ5N4WM5wJGS8vlDq0rxIqyEok2uafY5QCIcOAYtfWuK6zf9s7YjZszn65uE64EBdpnV4ZIKo51TcckGiu+AKWkd6Bym40gjmRTxjIql44/0sT+rhClFYGxFiGwntnS5I3ebguvlm6Q+LFWOvXvx94oI3JIAg4LNvMs2rEni0jERSwZFMpT4ouAiCqF/c91I1mje3Lse7Jjh6lL/tw3c/YF0I1lPp6efn4403xL/denBt25nNN3XT/F4voXUAQRDJgvDFl1zlXvuiTOVV5QUrXl1geE3pCe3FmBkKKuZbs/26IODnn103ZwtBYJ4o8QD+vF8EQaQuggDaQ3gEjZgEUQ9g+8Vk63uP5pgUiqzEjBRhysVaOHyfFaEQ8OSzGeYFLHjwQfH/3X+EsOtIHl/DXiBIubWsrCo4JiQSgKQeZ97Q2LJMfbC4SWUvqPrw+xCE12z5NRdbtliX4xXgZGUBH33EV7Z280+etKmk7YMX2r9JwUl/64Vnn+UoSHky6iU0zxAEkSwc2X2Iq9zgDUNw54P5luVOPtm6rvC8bLZHDyu4gkFg874y60rDLtgGLPnbiMhBMIge5T/oFxSEuMuNvWyPIjQRRPojgHJweQUpuAiiHsAOi4vdSWZxrZUKLgNrIaVgqdmQGq62X3nFogCHQOjll8X/L/0zV5P81JqHXmO8wiqeUHYkAEk5Lr+vkWWZ+qC4TOXlVn34fQgiUYTXBMr8m0Yo02WYwatQ51Eq3HYbX5s87NzJUSgBgjQi8dA8QxBEstBielfusjzbXMt9vIK8wGHDa+GgGHfcAdz51SDryt57z/Tyc19FjBBvvDsfH+xoql/Q40l51y5PqyMIgkhpY+JkgxRcaQS9FoQR4WfjSNDEk0oBT4jC3Xv5kjkOH25RwMbCM2QdMc4eVqtU2YPLAi4PLhpu05H6INhKZet0snwkiNizeLF1GV7PKy9lURbyMVsowysZwQTy4KqPkGCCIIhk4dARvv05wDcv8+SfDHNOj6cMr9XVivPjH39wVmbRue17I95nV99RaFzQY8OTHwwcxVRNetdcSu/BCILgg6QV3kES1zSCBHmEEX/s8eOtt8zL3PdoJHyh1zm4TJFWnVx1ey082rbN9DITBGzfDvzjO4vkXnZCFJJ5d1pRLxRc9MgSBGECjwDsjjv46nr86/bmBfbtA8C3GfRyzcKRkhEIhWi8rIeQhz5BEKmIz8exf+XYejMG/O9/wFnvTDcsU2ceNCUaG5o10z5yTd7e4uU6oD7sM4nY0yiPXA+TmZBAIQq9ghRcBFEP+Otj5ejf37zMaRdErJ+MFlNvv23D8oqTYC2/0spz42iL7Lo7d/tx6aXAG7+2Mq+HY0I6GvJTeo40pD5Y1qXyZ0zlvhNEqsAjh/rHP/jqWvLMbPMCQQ5XKom4K7hoc1ovIQEkQRCpCM/I9b//8dVlFcb3629tih1tTOBWCq5UzsFFHsKEF9DyNLkheYV3kIIrjYiJdw2RUFoX/Rq3tn793S+npDKzRv37371t98AB/knX88nZbx7GYcoZbXDDDRz1cHTs+k9H4owzOPtFpAz1QbC143BBortAEEQSEp76fCyO1htCuG3rsbeuDti925tmX3ie4zOSFUtakZ9hnE9GCQkgCYJIRXzMOw8uHt55B9j6E+dm3oZgy3QbnhAPLu+8Mb7fV+FJPUT9Zl9tdqK7QJhA60jvIAUXQSQx8ba2CC9izfJF8eShsENdXQKtSrKyvKmHU6j14YfeNEckD14puPpVfu9JPQRBEPHGt3NH/BqzsWD48UegpMSbZp9+hmPL5HGuDyKxNMjZy1WOQhQSBJGKeGkczVNX377ATTdzFKyrs9U5Mx3WZ1/6sWcPd1WeIAAQ/vPf+DZKECbsq82xLkQkDAEgNzuPIAUXQSQp558P/Li/NK5thsdVM6G9HQXX1q3WZR5+rthTD67fvt7NVxngnVUX5wcQBP6yRGpgpgy2A+OwoiQIgkg2vvwSeP6TSk/qsmMpnpThPMiDK63gtaitD57cBEGkHzbSXJnCmMeRhL78kqvC/fvF/0Mh47LfbA7guuu86hgnAhB67Y04N0oQRKoigHJweUUg0R0gvINxpdwmUoVNmwAgI65tRjy4jBeKv/3GX19NjXWZzT9ncsuEeMb9Bm2L+SoD4q7gItKPQ8FMT+oJhsjehCCI1EIQgNde866+a6/lKBQK4fBh4L9b23vXsEe0XTUi0V0gPIR3ZUehZQiCSEW8lB15uRXetiMTS86yFiIUFIjtmjVde1SIexqP7/4owc7DefFtlCCIlIVEid5BErU0gjwACLfweHBddZW3bWYEQjY8uDx+xj1ScB0+wFePIACf/5jvSZtEekEhjmIDzYoEEUM8Dsl3zz08bYbw4IPAvd/0965hgtDh5wPFXOXqBPN8rgRBEMmIVx5cgLeprlpPaIX/vF3EXT504JDhtWBdYnYCH+7ksPIlCIIA0KbIhgcBYQopuAiCkAl7UsUz9E+XFgc8DVFoC48SiuV0aM5VThCAjn8iC28iGvLgIggi1RBq6zyNyvfxx9Zl9uxh2MuXGokgXHE0FN8oCnZokr8z0V0gCCLF8dKDy8sc3QcP2dsTmYaJDYXi7sEFeBfCnqjflGfvS3QXiDjw5Iw7gYqKRHcjLaAQhQRByCQifURl8dHEpa3w0tyMg1deiWtzRApBHlyxgb5VgogdQ3vtxw97SuLa5imX0AaQIDJ9HkqTPSbLX4sjweRVDhIEIbLozIae1MMO7kdtbWIilIjKK+O2hWBihAyUm5HwAgqBXE847jigRYtE9yItIAVXGkHDH+GWYBD4z3+As96ZHr9GOUMcffYZsGu3x095nBVcBGHEnqM5ie5CWkIhCgkidny0Jb7KLbtkBoI4Wkfh44j0I56RFuxCuSQIon7BDuxHgwbJGYI/FIx/Di4AOBIkMSvhHppOCcIeNPKmEWOeOjnRXSDSgK++inODO3dyeXB16gQAmZ42feOjVZ7WRxBO2bKvPNFdIAiCSCv8QhAAKbiI9IO8AwiCSCZy4myn17HkZ3y2q5FlOSEYQtu2ceiQhvXvTot/o0TaQXM9QdiDgsMSBJFQhPfeT5i1559uSMCKlyAIgiCImMMY2b4SRLxJ5txlBEF4D0P8PTe5vVhDIbTL3hLTvhBErEhmb22CSEZIwUUQhEyiFE2JaDfTVxv/RgmCIAiCiAsH67IS3QWCiAkk9CIIIlk4eNiHH36Ib5uf76rmKicEQxCeeTbGvSGI2EA5uAjCHqTgIghCBU+c6mee8a49AYwrRCFBEIRdgiFa5hAEQRDpBYU1JggiWbjy3kpMnpzoXugjhATKY0SkLPTsEoQ9SPJDEISMEOKbRseP97hdmr0JgogBG9+bmuguEARBEARBOCbAgtj8/h+J7gZBpBw1+bsS3QWCcAx5axOEPUjBRRBEhARomp7YPwLr1sW9WVowEGlPjv9oortAEARBEARBuIAxAc2akjUgQdil9JOXKcwbQRBEPSGQ6A4QBJE8CMEQ4q33vual7sBLcW0SAMU0JtIfEoUQBEEQBEGkD9W5u7DtYEnM2ynLOYCdh/Ji3g5BxJKgwFAb8ie6GwThiP212YnuAkGkFOTBRRBEhFCIKwdXOhAkBReR5pCXIkEQBEEQRHpQVwdMa/ZR1Pnzp/3P03buvkvA1yuu9rROgkgEPR/diAUvHp/obhAEQRBxgBRcBEHIiB5c9QOBhj8izaHcdgRBEARBEOmBX8cRxcdCOG/6JwCATF+tJ+0EMhgy/PVnT0gQBEEQROpDEl6CICKEaDNDEARBmNO/9e+J7gJBEB7hZ0HdvwmCSCKkEBtm3vk3DnwAX8w613VTRUVA5tIFrushCIIgCMKC+hJCKw6QgosgiAi//ELjK0GkCSGBpngiNrxx3n8S3QWCIDyiUd5u+W8/I0Mngkg2GARDAZggQHbZ9zH3wak3n34TjjkGyOrQEj9+ssdlbQRBEARBEPGBpF8EQcgIt9ya6C4QBOERdQIlVSZiR+O8P1CevS/R3SAIwgXC1degOpeE2ASR0kjKLx9zH5u6WckeWZdWU+O6OoIgCIIgiLhACi6CICKEQintwVWYcSjRXSAIgqgXfP3hQTw6mowiCCJdWNvxxUR3gSAIC7QqLOW+jUEAKy+La38IgiAIgiCSAVJwEQQh4z6wRWLZW5uT6C4QBEHUC3JaN0amvy7R3SCSnExfbaK7QHByw+AHE90FgiCM4LBA9MKDy26bBEEQBEEQyUAg0R0gCCJ56PDQ+ah9LNG9IAiCIAgiHTgaykh0Fwhexo0Dbk90JwiCsIOg0GmJObg8VnIRBEEQBBE7yJjEM0jBRRCEzK4jecCRRPeCIAiCSAVoOU4QBEEQsUUp+xIEnZnXJwbl8bFQ7BomCIIgCIJIYihEYbpQSyFgCIIgCIIgCIJwAAmzCSJ5MXg/GYtcy/bX0WtMEARBEES9hBRc6UJtLY5t/n6ie0EQBEEQRD2BQiERBEEQRPzQzrqCACAkem5l+2tpXiYIgiAIol5CCi6CIAiCIIgUZduCMxLdBYIgUhhZHE6uHwSRvJi9n8OGAQDyB3aNX5sEQRAEQRBJBCm40gVBIHstgiAIgqhnVOXujX+jUlZ7kn0RROoTFGg7SBBeUJBxKDENFxfj9dcEDN4whOZlgiAIgiDqJbSjIQiCIAiCIAiCqG8IAmpDfvFvH20LCcIph49fg/4Nvo9J3UeCGfLfgqDWYIUVWgMGMu+VW6QtIwiCIAgiRaCdTLogCFELXrc0yNmD1R1e8rROgiAIgiDSA8r1QRApDmOoC9F2kCDcEvP50EDZJAjqa677IdC8ThAEQRBE6kE7mnRBECDAWwVXr4ofcNOg+z2tkyAIgiAID+nePf5tklU3QaQN+2uzEt0Fgkg5dv71n+oTVVWeG5uGyfLXyn97vd8nCIIgCIJIB0jBRRhCy2eCIAiCSHJat45bU2Mbf4bgspVAhhguiTGy9CaIVOOa/g9iY/cn5ePSrIPICxwGQMJzguCltKA26lwsZsRs/1HcOug+7vKe2p/EyZjlzSl/xpSmH8WlLYIgCIJIKshw1DNIwZUuCILni2ofC3lcI0EQBEEQnhLHRbGPheBjQmK8xgiC8IRRjb7Ayg6voFnBDgDA8xOvwZZ56xPcK4JIbfw+AUJNE8/rvXHgA1jc9s2kFIDdN+KvnqQzaF30m7i2IAiCIIj6BoUG9gxScKURXodFSL5lNEEQ8WL7gjNwepf/JLobBEFYEUehFwOA886TvcZonUAQqQeDgEadS7F57gage3eUZB1EefYBIBCgvHoEwYtm7vUxAUJuvvfNaN5J3TfUoxxc387ZoP5cFuuLea3eRbviXxy3F8bPQjTyEARBEAThikCiO0B4RAw8uBhZaRNEvaUg4zCy/HWJ7gZBEEkEYwJQWZnobhAE4ZaTTgJ++AFo0waoqwO+/RZo25ZCFBIELz61nXCsbE1kzyazBpQKLhf9aFm4A0Ce6lzzgt+xeV+F80o5CPhCMctfRhAEQRBJTRJ6aKcq5MGVLui4NY5q9LmrKn0Q6GUjiHoK5dYhCEILAzyzFCcIwh39Kr/HrBbv2b6PMQDZ2UDbtuLBqFHAypW05icIOwSi7YRjEWVIXo/7/VIbFu+p205IOTalxvH+9Etwi0kOMC9CC/pZCKE4Krh+WXA6RlR/Gbf2CIIgCIKIPaTgSiO0C97/HnOdq/pIwE0Q9RsKB0wQRBQkBCeIpGB2y/dwbo9/276PFNME4QGdO6uPBSEm6+aavF3iHzoKNT1cv98LF6oOS7IOoix7v2FxL3J2+1kIoTh6jzbI3UdyDoIgCIJIM0jBlS4IgudhRUiERRD1F3r/CSK1yPTVxrwNreCMdF0EkTg8F6bTC00Q/DRrpj5mzPN38tDSNRjR6CtgwQJDBZcXHlQy55wDNGwYdVpvZHhv2sVAx45ixBeX+FkIQSF2YqkMn3HIdWH5ipi1SxB26d/gu0R3gSAIImUhBVca4fU+19MFM0EQulTl7k7KzRUrLEh0FwiC4EESSucE4qDg0qwLPt9VFfM2CYIwxolOijwXCMIDdF4+rVOXU4ozD+CcCe8jOyApZgYPlq8dCaoVXVGhg30eKqpNBpieExoAJ5zgibzAxwRkmSih2hT9gq9nn+O4/qMnrIGfBfUvcnrGEUQ8eGPK5YnuAkEQRMpCCi7CEAphQhCxJ2nfsxh4hRIEETuaF+yIeRvaEWH7wSIAQHXurpi3TRCEGs/naPLgIgjnMIZrrwV+3XiD66r6Vm7BBZPe1b3292/7qY6jQgS6cSPTjgFS3i9dhgwBcnM9UXAxBlw74EGc3e1p3euFmYfRuug3V21ox0s5tcO0aa7qJQiCIAgiOSAFV7ogCNFJZydMcFWlnoXnwaVrXdVJEERqwCAkq+qNIAgNvx93Kk7p/HzM22FMUAnAxtV8BgDYMm895rZ8J+btEwShxomRTG3IRGhNEIQp1bm7cOyxiFYGMQa/H8gKGHsi2WLIEPH/3r1Ni0V1w83q3Y6CS8KTiC9VVWhWsBOX9HlMvw0IQLt27tshCIIgiCTh+Lav4ZvZGxPdjbSCFFzpguC9MFpvwRqPEEgEUe/o2zfRPYiCCe6TRhMEEQd8PpRnH4Dfg0TvVmj9O8qyxMTzfiagzkb+jPbF25IyNCtBpBIMApCVZfu+w3UZMegNQdQPJjT5FA89ZHydeZWIq1Ur4MorgeOPV52e3uwDdXuxNEdjDJg40bSNKA8yJ6xaZXrZ7wsBRUW2qy3MOIR+ld9HX+jUSXX43DHX4MROsTcSIghLGjdOdA8IgogThZmH0arodyBEcjevIAUXYQgFKiGI2EMRgQiCcEVxcdya0gq5wiF/fEwgrxCCiDMBn7MNcXXeHo97QhD1B18c4hvI3tIFBVEbhRaF6nDEPo1ntef7ikmTVIcntHsVj46+JdK+y++juKAOaNDAtIzTNs7u/jTenHoZMHSo+oLmSxrZ6Es0yt3tqA2C8JQePRLdA4Ig4oS8r/bKMIawVnAxxrIZY+8wxv7HGPuMMbZJOt+cMfY2Y+xbxtg/GGOZ0vks6fhb6XozRV1nS+e/YoyNjdmnqo/EIF+OJxZZBEGkJOTBRRApQk4OsHGjblhhr9GGKKwLRZaRpOAiiPjiZyHb3hvC8hVolLdb/yJj0eHOCYJQYRiST5obY51bV1s/g0bB5WWIQh16lP+Iac0/ko/thCgslby+lex6+RPxj/HjDe9zGgYxP3BE/EPnc8k1kmCRSCYSYPn68Khb494mQRAKaB7yDB4PriMARgiC0BVANwDjGGP9AFwG4BpBEFoB2AUg7D9/PIBd0vlrpHJgjHUAMAdARwDjANzMGCNpiIdEbUpdTpC0xSWI+gtjOmMKQRDJB2NATU18mtIcl2fvR/8G3wGwp+DSLk+mNP3IXccIop5Rk/cHBkjvHkEQ8WFOy3cwr1Uk3+RnM8/HX4fcG9c+6KT+SgxSSCVe5dO/xt6If429ybjA1KnAuHG6l5yEYP7k2E1Y0eEVICMD6NYtSn4YCu9xcnMBwHNDYYJIFWa0+DDRXSCIeolsnJpBocO9wlLBJYiEzW0ypH8CgBEAHpbO3wNgqvT3FOkY0vWRjDEmnX9AEIQjgiBsBvAtgD5efAgC+jm43Cq48vOiT44Z46pOgiBSgwAL0maPIAgVWi+x7EAd3phyOQCbCi7FiuXi3o/h4dG3edNBgqgn/Dj/bHQr3+p5vfHwBCWIVOX+kXdgcNW38nGHku1oVrBTPAjvu+Nsia0N3+dq+89xc5avTvxD+py8yqfcwFFk+oPmhQIB3dNOPLg6lW5Dhi8EXHcdkBct0wiF84aWlwOLFtmunyDShjiGOicIQkOrVkCHDonuRdrAlYOLMeZnjH0E4DcA/wXwHYDdgiBIKxxsBdBI+rsRgJ8AQLq+B0CZ8rzOPYRbYrCY9nXpZF2IIAj3JGMirjht0DN9tehVsSUubREEETvchCgM+EL4bs4GD3tDEPWAtWvl5cOqDi9hfqu3XVdJntsEYcGaNZG/zzsvslyWXkYvls/asINKMsMKJol4pBRQdiU7UCv+kZMjtc//gZ1+N64+o19cm6i+TkFAUFAoJAcMiENmNYJIUvqQzwFBJIwzzpDnKcI9XAouQRCCgiB0A9AYotdVu1h1iDG2nDH2HmPsvd9//z1WzaQlXm5Kx9V8imUruB4PgiBcEOtY/U54Y8plcVO69WuwGS9OvDoubREE4Y7N+8oNr5kpuMY2/gwbuj8lHzMAGDYMgOgtCgAtCnd40UWCqB906AB07iwfrmj/KtoU/equzmQ0tiGIZMLnA7p0iRxXV0dFOzgajK2g6sxuz+L1yZfJx4wB8czBBUCcv5s2BeA8P5YMh9bLdRuM6YQoVMs5nMpRijIPojp3l9OeEYSaRMzDNPcTBJEm2NJgCIKwG8CLAPoDKGaMhf3IGwP4Wfr7ZwA1ACBdLwKwU3le5x5lG7cLgtBLEIReFRUVdrpXv9ELUeiC6/r/A/37e1ghQRDGJNnCsn+D73U3g7GAQUhKJR9BpAxxDIf03u/NDK91Ld2K3HBCdw3dy3/Enzq+IB8zFrFOD/hib31OEGlH+L2nxNQEITOh5hPsXnxS7BrQWa/LuZykayXZh3Bpn0e5q5zW7EMw8M+D+ceOw4CG30e6lIg19Ny58ufNM5j3tXCFPzUYz5zk4AIArFpleCmoUWjxhGXvXbEZWf5a1bmN3Z/C+9MvcdY/gkgGfGTUThCJwE9hwT3HcjRjjFUwxoqlv3MAjAbwBURF17FSsUUAHpf+fkI6hnT9BUEQBOn8HMZYFmOsOYDWACJZWgnvcSE0N7w1yQTxBJEW1GMBFY0oBJEGZGTglsH/h98Wnm5YxGj5kOGzyMlBEIQhYeG2LSF39+4GldGMTKQ2Gb4gijIPx7VNrWLE7xNwVrdnue9/dMytqMlXewAxwPh9nDABaNFCPmxVqI54E+scXNoSYxp/jo+P3cRVfbviXzCrxXu2u+XIg6thQ6BbN8PLWg8uHt6Z9meUZe1XnfOzEBnqEakNKbgIIiFkawwmCPfwjGZVAF5kjH0M4F0A/xUE4d8AzgRwKmPsW4g5tu6Qyt8BoEw6fyqAswBAEITPADwI4HMAzwBYIwgCSTW8QhC4LI94oYUaQcSXWS3eQ1HmwUR3I0KcBF2U0J4gXCJtTGOROyc/w0JQOGqU+P/IkfAxAZn+OvPyEso1RsAXBM47D2jf3mk3CYLgpXt34PjjDS/TnEykMrF8fv8z4VouD65w+F07OJ2/n51wLZ6feI13IQodwBjQuXSbdTkABZlH8I9Rf7HdhmMPLrlxBkEj9ory4HKcH4zGTCLFIeMWgkgIpODyHksFlyAIHwuC0F0QhC6CIHQSBOEC6fz3giD0EQShlSAIMwVBOCKdPywdt5Kuf6+o62JBEFoKgtBWEISnY/ex6iGC4Klwiza4BBFf/jHqLxha9XWiuxE3BjT4Vv7baLwp1VhJEgQRe5rk78S3tz2PPYtPwqCGkfc0238UT467QV14xgxgwwZgyhRg7FhTMxul0E25l87wBYHqamDePI8+AUHUP7jX7c2bAxkZhpdjoSgniHgRy6d3dOMvdM/Lb154YhswAPjTn1y1pQzja0ZR5iHkZ2hCBMY4KkSBleGLAVyKN4O+O1IiWXwPsmLSzvd1zDFRp/wsRPoBwjs8epiE5Svi3iZBxIqXJl6J+0b81ZO6CjMOyX9PbvoRdp+buFzwWZyGoQQ/5I+aRni5nLWa5rqW/WRt2U0QROqyerWpV2iGz92E/PqUKwAYjzWDG36DAQ2+N7hKEISMxxvTbH8tWlYdRKEmzNOWuesxocmn6sI+H9Ckifj/9OnwtWllu73ybHeKbFubeIJIM0guRRARfCykCt/nOYFA1KkopTBj4rxoA603kW2UHlwxDFG4ee56HNPkExcN6GChYFrf7Slc0vsx7uoCLIjgspWWYde0IQq5IuEwphOSkvKIEikOhSgkkhBlONhGebtRlHnIpDQfT467Ac8dc4187GNCQpVMAQrT7zk0mqULHltrGVpZSQvf7mU/Yd+Sk1ReGPGmOneXdSGCSHKU26SksZzeuBFo1cpUaX5ipxewfcEZtqu+uPdjYpgXCcb0t5SvTL4STfN32q6fIAh3GFlK81hQM5/+GMag9jAJrzG+nn0OJjX52H4nCYJQ4cnqgbRlRIpjmrvKC1q3jjqlu4q12QfdfFAcdXi+bzBoMzxnNyvY6e7r9ftt37Kg9dtoX/ILfxO+kLheUbal7bQgRJSKkgzFqSTFzwQgP9/h3QShIRHzMGPo3+C7+LfrMb8sMM4DTKQW70y9BDNbvC8f+wzkRXbJ9NWpcj8netXrp6hpnkMKrjRC14LMIVa3+qRY2GEvjHhzSufn8L9jL0xI2wThOR06JLoHcaNn+Q+qMC9mIUu8zCtIEAQfRu8kl4KL85UNF2td9Bv8PlrcEwRBEO4xC9VZknUAgxt+47zyXr2AJUuiTru2MW3dOsqDy/bqV+GBEfc82gbhGFe2fxkjGynW+wzA2WcD5eW2qrebNsEX/vwDByoriSoX5cHFoyxkLKqcj4XAMqI9+wgiZfD58OqkK/DYmJsT3RNXNMjdl+guEB7RtOAP1UzmZyFP5jbG1NOBgMTadrnOL0lEQQqudEEQPA5RaO7BlQwJVUn0TaQNbdqIXlPJAsdM7+n717697unEjzIEkQJ4vDJnTL9Ot/M+q662LHN2t6dx/4i/4LOZ57tqiyDqC+H1etyF2gSRhPhM3oM/dXwRr0y+0nnlxxwD5OVFnR5c9S1O6vQ8EHQYaqikBEE9D65kZf589XGnTsDYsVHFNvZ4Cu2KNJ5XNTXAwoW2mpN/U05Not8XAtasAYYPNy3nOixkuD3OfGkEEVemTuUvyxj8PoGE7URSoTQm8Er27NN5xkMJjKCUDDL1dCOFVlOEKYIQ7e3gyoPL/GUz20DEC9rME2lFTU2iexBBGjusrBmdvIPascVAlg4gsQsOgkgZvFZwQdCNx+9jIeCUU5xXrBBOMabThiDgkj6PYU6r99ChZLvzdgiiHvHLwULvKiMhLZHiMBNlg5M16/UDHrDMOV2SdRDXDnhQrYCx+S7pKrgcvo+xzMGFqipgyBC+qpzs03WUWIwBWCHm2nxv2sXoVbHFtAo/CwHNm1t+FtmDSw5RyPfFaXvoZyHbbnwfH7sJNXl/2LqHqF/4mcvcPHaeSWk9btdbMhXJDRyR/17c5g1c1ueRBPaGMIJBQEgxJvtZyJMlKkP03JTB6tAkf6f7d84meYHD6G0xnxH2IQVXOuNGwWVxPdHaZlJuEelIMoTkK8vaH1Mhl1ZpZraYTpqcZASRAng1fvgUAkLlXOvzMaBdO8f1Rs3b2lwcTuM8DR3q7D6CSAPalfwKgHRTBAF4H93jT51eRJbPIgF9OApBr17OGmEsyqCLd58rgAHnn++s3RgTbdBm8Jks5n4fCwE9egCMoWfFj5bfjU9PyakzQDry4NKpx0norM6l20iSQejDGOpOWIn13Z82LLKs3at4dfLlnrZZX2hWEMnvPaz6K8xv/U4Ce0MYwZgQ5cHlSYhCnToCfgE/zFvvum677Fx0GrqX/xT3dtMdUnClC4IQLQzWscDmxWoASYZFWT2ai4l0J0ke5rO6PY2vZp/L3R9WWmK7jbqwxeSiRWIdRgUrK5NC4UcQSY/J+/rpsefbrw4CkJ0ddd5N6BI/CyHTr0nqG9DkrHCq4EqS8ZMgEkHAJ76Xnhh+0bvEzd+G35noLhA6mHpwxerxXrVK9G4ePdpxY65CFFZVqQ5djQWG351get1o/lYWL8064KxLNsvzrlVO7/JfnNzpOfmYawmi8/nDYzBBeILPB7/PfAdclHkI7Yt/MSkBIGTjufT5LEN6pgP/m3EBVrZ/RT7W8+YhkgMG9bzoVfhMMQeXEH2SSBtIwZVGRA3PjGHz3PV4b9rFmNL0I1t1Gb7n0gV5wOnd21a9XkGCbyIdSfQSqzDjMMqy+TagTheEdSE/MGUKUFkJAPh+XzmtKwiCE4YQfllwOnf5jqUOQ/317Al07ao6xeW5bfAy+1kI2f5aRTGBy4OrOJNvPFrT4UW0LvqVqyxBJBMvTbwSp3X5j+P7Ex1Rob6yoPXbie4CoYNZCH0GAWjc2Hadco1Gi9WsLNG72YVhqZchuRMisNULLajoy4Gla9FxQXf5WlXubu6q5c/D+f0GWIhLYLm200u4ZsBD8rET2cLK9i9jbOPPuPYxNwy4HwtbvykeDB1KsgzCMVzCfrtGY3PmpP0TWZR5KGrNVB/CMqYqQa0Hlwe/FYMAZjCXxHtMJuVqbCAFV7qgN4n5fGhWsBM9K37EY2NvsVWd2Qs3oeYTTGv2kdxGomA50RbmBJHKJDrnlKy4lt7rWEz0tSE/MGGCPGZ9s6eBYVma9glCDWNAg9x90Sc9xMcEICMDWL06+rxD/L4QAn5FDi4IQH6+6T2hZStQlbuHq/4bBz2ALqVbHfePIBLF0OpvcHHvx/HFrHMd3R9ehnslpKF5l0hlzDy4AAAFBbbrjIfQy58VsC4UDzxcTzAI8rohd9xQ0bhNYtuCM9GnYjNXPT4r7zEFl/V5BK9P0QndZnavnIOLD+XzsKH7UyjOOsR139pOL0XCozHm2GmdSE/O6PIsHh9zE5diims9bseDq55AyqzUgZWWyHKpO4bcg9KsA2mngKXnMTaQgitd0AtR6CYHl8kL9+T4GzGhyafiQVmZ4zYIglATchOixANkBVduLgDrNbaTIaY2pPbaMNvgJlrhRxApgccKLqaoU1mzKwVXVC4OAAMHAn37ysnjtesJ7o9FLqBEipPlr0PT/D8c3Rt2hKS3AGiQw6cQJ9IX5fwVdc3hHBYPRcRH//Ph8Yl/kY/dCL5i2l8bIQoZUxjM6hi06HZTpx7ZW0Vq22yv1Ln0Z7Qo3GF4XRdpEK3T7E900Xx+xgCccw53U8FQpO/kwUUoGdTwW0xu9jHXCxwUfGBFheaFBAF5gcO2+pDyHiVDhti+hd7C5IT5ffJ4ubTdG55t9ZgmlxcDoiOKxAkGABs3JqTtdIYUXGlE1JSUkeE4ITzXGDJxIjBggKP63cIgkEyLSAuUm9hELyuDAgPWrOGycHX6/rULxwwPb1TBDBfUUUp7gqjnaN8Vn0cxyVVtGAjW3Ci4AiwYfdLvB5YuFZPHA2KYp8suA664AmjRQuqL4yYJIqVwKlgKvyMNc/fwCUzNhGeMpaywR1i+AoMbfpvobhAJxtKDK34d4S87ZgxatQLalvwWuZ3zVr3X2ZXixGMPLrO+8LbkD+e4ysgAYG78Jndf+zm0x8ovThJuXvnxaFii8bxieblA48bc43edEBGk0h6H0KWBcWSTMFzPmyBg1+JTcFKn5z3oVIpgEVmKIXrMTHmlXprCWHRuylj8VgIAtG/veb08sHZtgZqahLSdzpCCK10QDBaRp5ziyMvKMLavcoE4aVJCQxQSRNogvVf/2drR02qXtn3NlgA8GPIBXbpwl7e70BCWr0D38p9U58w2qmTdSBDmXNL7MXn80JVbz5hhu07DFJwuNhZhAdVNA/9PrMtICFlcDBQWyjn6uEgGYSZBuMTpY5yZIWBxmzdQlGnPUtsIEvUQqYzZa+ToFcvOjqxFPQ8HHEKjRpG8YE7mWD3Dk4R4cOkVLcjHgbpMk6qkjmo6LCxfgXE1n8rHsgf4mDFAWZnptyR/hwb9DLAgDh+/RjwYMUI0pmnVCgBQG7IfJtLWI+HzoS5EchPCgiZNgJUrDS+/NPFKrO/+tPWzl5eHDF+IFDgW0BYieanTKrg8+K2UuSFlxowBjjkm7mFj6d2MDTTL1gdOPx2oqrJ1S4ZPx9oa0DF7SNysQIMCQZhzx9C/oSiTLzY8EG0pE1MFE2PoXvYjRjf6wjjiSexaJ4iUZ1m7V3Fmt2fleTmk9746mKOVyielNxdvVf834q/RdUr/r+74surYE4IG6xWCSAXKy13d7vMBdw27h/+GJJHmVGTvxRV9H050N4g0g8EbD66K7L14ZdIVQJs2MfO0mVDzKbZujdTtpNu6Cq4YrN0rsvebFzAIUTi/1TtY0f5l3VvMeqkM5Scb3ZaVARdeyBe+PKBRVinWNFn+OvHc7NnAmWfaNtZ1/P36/ZF9FiMpBqFG9f537274fAxs+B0KeQxamjYFJk605dmdJMsD53B8AGUReguTFwZBNQ9g1CjP6lUfQ/Ti7d/fcZ0ndnoeJ7R71X5fUv19S1JIwZUu6OXgClNaCowfb6s6QwVXmzbi/1L4IIIgPCBJZrhXfmkd1/Y+mHEx/tz3n4bXKXwHQajRfSPCCi69vBROFFxuNnyMYW6rd6NOv/1bc+d1WtG1KwAaL4gUpVDMo+H4vbMbSSHeJqoGNM7bjdO7/jfR3SDSDLMQhXbesaLMQxhcJYa8jNUbE5VDx8G76bkHl8F3N7Dhd/hj0Smma4rL+jyC9sXbVFUNq/4atw7+PwMFmF58RfGc0uBOFVWGMdMcXIwJYm5PKZyhSUHz65z3hQ+5cqb5/eTBRbgmPI4ZyurkggyYNIlUOAoYhGhb/ZLihPSFMIcxRBS5kyYBxx7LPYczmEcvUg7jgt5Jm/y5zz/RpfRn2/clifgv7aBZNl0QBNsT2KhGn6NTif7LGPAZDAwFBcC11wJnnCEeJ9KDiwYFgrDEzob+3d+aqY7Ncu7EIw8eLcoJggNpt+aV3NoXgxwm81q9Ey2I57G05BkFysvFdQlBpColJc7v9fJdZQxBITHJtr2A1gyE2fxl51WRyzoNxW/R2PDqL7HqsmbqW5SJ7zlzXuqFIY+FggsASrIOGt8nCFjX7T/IDdRad0Q67wt/XuV3LLUfVBisaNMm6Hqrh28HxNyehteNQxhe1Osxw/ss6+PB71eF3KIw7IQunGNObkateQF5b8DxnCVIqJbps/gMcYC8uJITBgG3DLoPm+euB/LzxRyxLnJBy/Uynd/c5fMf8AVxNJS6a+d0gxRc9ZiHR9+ma2kNmFiFMAbk5CRF7i2akIh0INHPcfOC33Fx78cAAOf1/LfqWkz7ptj4GrVDHhkEocbM4tlM6GOrDbEhZzdrwwIBeHnSlZjU9GPVusFyk1Jrc9Obk2OvPEEkC4wBF1wAluvwGfZyPU6WY/xkZSW6B4QODPDknZCVL0Y5ri07Yn7PTQPvtxtcRRefzvrZJyQgbG9YmK44pfoKQqGovxe1eRPTm32g/r2kv3MUijK/xujWLESh4b5FDlGo1zmR3MBRw3oN27PzaFRVqTzTksSZlkgSGAQxTFpRkXk56ZkzM0J11Yc44vf6M1i8kLqX6UVMWgoyj6BZwU71/MGB9nfO8NUZlvUpwhoLDlUjfibgSNDCa5iIG4nXUhDeYBai0IAMX9BwkegzSPzqllM7/xePjr7F0zoJgnBOadZBrO/+NAD7C1tHsrDzzhP/5xhbzIQKtw3+Oz6feZ6DDkT4/bhTMbuFvpKfIJIRBgGYODFyomVLMSE1vFMIq/Ju2b25Q4eoU70qtohrCqWCy2qsmTDBbssyKw3yfRBE0pKZKeaXcYLHHlzxIhYipbgaxUybFr+2CG4YBKCwECvav6zyDtjY/UnRk5gT2TNq6NC4yT+9ysFVnnsQ70272IMeKQh3rrKS/xajt1wSVi5r/xoeGXObuI7R8Lfhd+KNKZcB0AjBGePLwWXZOechCvXGGbOwiTInnIA6svInDGBMABYvti4HThmdrHROXg8uPQ/UeMIY2fUkK6rfRdo/8v5U2rlnUpOPcWbXZ+Rrut7SLh4EHxNwQrvXcOdQG/lwiZhBCq40wu76O8MXRFHmIXs3aV9+m4NB59Kf0aP8R3ttcnaFIAj7KIXZ5Zok0mZeFo7cxEeNAqqrxb85rHG0m9jwQvjXhafjhHavqSw8nVCefSDKMpSovwjLV6BPxWbTMp1Lt8apNyYoJ7916+SFf3gTe2jpGjTI2RNdlrd6hTWbapPAU9ewYWLidlV9Enas6hs3Bq65xtHG/JbB/4dNPZ/AvFZv87dHEAmG18CkffE2/G/GBZETXnpwxTE6g+fW5y1bUsivNEGevxzAmACMG4dbxz2OTH/Ek+mCXk+IluCc+JgAnH8+0LFjTJ4rvTW0cgzQ88zSQ/c9Ki9HzwqHe22jef6cc4AhQ4C5c/Wv6+bYUhwo1/xKD5Urr5TzEAIA/KICqDz7ANoXbxdPaUMUmnlwGV3Srml0CnItlzSfM1xfMCPb+t6SElXfabwi3PLz/HW65xvl7ZLn8/d3NIlnl2zh+TrA4iXWjiVA4iPpEPqofhfJsMLpb1WSdVDO+a6de716Bitz9mFJ2zc8qYtwBym40gUHIRT8TMCqDi+LsU1N6k1G8jKOJLoLBOEd0oJserMP4t502BJx24IzsKz9a6prvBtsbpQLT4W1utF6VBvPuEPxdgjLV6AyZ19MQjMQhNlT9ftxp+L2wX+PW1/0MNu7hQUn2YE6V4ITwxwmPNIfnw/o1cuyGFfv/H7HS5Bzez6JxW3edHYzQSQxjAFdyn5Wn5BQvi/ti7fhpE7P26s8jgouBojhmFIVsrKLGZ/PPB8PjbrN0b0+JojCsE2bVMoExqBWpPDUU1wMIDaegVY18q5xdcstWWLbI7Qsaz9mtnjPuECjRsD8+WIubhOU35WhgUyTJsCiRcCZZ0bXN2IE0KyZ6pRWKG22vuEWgLrwwFSFYQwruOYuML3nlyffj7qXwrATSri9UxiASy8FAFTn6RsDzGz+vvz3m79Ge0ga4ZXStTJnL1c5z98Ai3lZLwULTeXJCWMANmwQ55327SPneO5V/L2h+1M4s9uz0XVLKEMUOkYnPD+ROEjBlS44kAL5mICAL2Ru0ebxqC/AmwSBuYGjZHFBpB2eW/ONGsVdY1Xu3qiNstXr7+odLC8HTj8duDg6jMqQqq8BAD3KfwKDsYcVjQFEPCnIOIJADDz+svy1OKvb0/w3GLyYX+5uKP/tNITPk+NuwP0j/qrIV6F4xxxqm7TvqZ8F0an0Z4PSasjCmagv2F5uh5VRCqWUMg/flf0ewdK2rzurMw4wJgB5ea7rqcrdjS9mnSuGDjMos6bDi67bIeJDaNkKlGYfRLbfvof+9GYfYFm7iKFWlALhoou469JVHNmZA516T5u1r4NuiK+yMmDVKltt3zXsHjw46i+e7vsZA5AteTa1bau+OGAA0KJF9E25ucDZZwOIzP/aLpl7cHF8b5dcAlRVRd/Ls6fQdIb5xONgZXR9ShqUiTlgSKlFGKF9/jJ1lDEAgDZtgNJSw3f13B7/xjUDHpKvdyrhW297xTPjr8M/OdOReCETBIDjWr+JncedYjl+BYy+UyI5adJE9By2MS+VZB1Ah5Jt8vEJ7V5D66Lf5GMGqOZyMphOP0jBlUaYLpo0i/KyrP0GBTUToXazG0czh0Z5u3BVv4d0r2X7jZMFEkQqoXylPJ9iXb6vnsS5V6IVDrRuLSq6FP1kCOHlSVcBjOHsbk+j9oTV8ga+jifGve0u0WaT4CPA+DZGOf6jaCiFWPpx3ll4cNRtWN3hJcPyQxp+g0v7PMZVd6avzvC9fmRzd/lv+d21KbDuW7kZjfN361/s3l3/PC+SRfm+JSfhxn825rqF6/2UkwOry3o+fhFELJDmRdsGG+FxQDEeBEM+TRGbdfp8OKPLsyjJOmDvvgTCIKBd8a+GuXEA4MZBD6gEHt40TONLLHDztV7e7xF0L/9JPlYqfJGfD2RlcdflZyHF3CLhYVQTq/fdcjyQ+mIYacHii2xd9CuKMg/Kx/J86fQH6Nw5ugsQgAsvFI3Z2rSxXWVQ731mDOf0eApzWvLnUwvfJ/YJhuui49q8hbuG3m1ej0HEnLIyoF1ra9mE8l4SqxJmnNL5Obw6+XLjApZWqFJ0mOYfetgrc35beBrG1nyObM4UAl4pF3IDR1GafdByz6PrwUVvYlKi97vw/FZ/LDrV1HmDQVC9Ol7k4HK8NqB1ZEwgBVe6IAi2hucdi04zvPbJTHVs/7enXmrsauzIQo2PSU0+xqldntO9lu2vpTGBIDxALx51GKsxxat3UHfB4vOBMcDvExBcJlqiHg2SCziROHxM4FpcHzz+T+hQIuaOqMnfhZktPkBHj4Srmb6g4YtXqwjp6VS5I1s36rWxcCFfJXr3hnNzDRyInPPPRKAtR8gUxtQCSr0iCBl+H/H2/upW9iPO7/mvuLZJuOeZ8ddhcZvExM3/cta5XPkodQkLcpQGIm4fecZweb9HcW6PJ11WxNGUF2FhCMIEN/oopeBVnkucvqs6WEUBthT8hhVcDgXEX88+F1ObfSQfuzYI6dQJOE0tW2AQxLCQrVs7qjJkYNS2pO0buLDXE7rXrD6FmdK/JOsgFrfVD208t+U72L/kTzrtifXl5ABfvKkfLk6J/D0LAv44km9Znqg/aMeEvIyj6FbmIu+vXi5di7JudfgVOcYG9HroKZxcYeXBpZeDizx4khL9OZLvtzIzjtTWy4wa4+QfI28Hgg6f4yRNBZTqkIIrjYiJJ4Lfjz6VWxxbiNnhwl6P474Rf7Usd1GvxzC75Xs0KBBph9b62jUc72fAFzSMqX9ej3/jvWnRIQQBMYdfLJC7rNP3IyG1giscGsQNNIrUb8Y0/gxtin6xLCcsXwHGbCyuo47tP6vNCnaIiaIV+JixQufsbs/IfxsJhqww3WxmcyRR14E1qQHmzBHHmeOOA2pqOG9kltO8ygpP863He4lwUqcXsKL9K/FtlHBNx5JtKE2Qx1Lb4l9lobnt5XQ45n/Ys7JFi+hcNXb3BXEMUQjAWwWXSYhCALhr6D04rwcpoNOB4dVf4qd5Z0adVz1NjKnnXZvPmnLfK88ldiYVB++S8gnmWWuc0+PfaGqWZsAC5fjg2oMLAFq18nRNbeY1b/T9WAnz8x3m8M701yEv4ygAYNeRSGhVu2Gr5e/ZQ2Upkb648i6S3uVEhGDjGUXennopOnlk/Me7N9O+r+S9lby4+W2Uz7yVJ5gc5tfh3Der5fvWhYi4QgqudMGpJGfgQPPr0gJdrt3lZtTHQoYDVuui39AsP7JQN/pEazu9iJKsgzQpEemD9F71rtwSg6rN35OALwSMHat7rSDziOyJEnUfZ7g2FQbjlO67nJurOpzR/H3MaqFYRJxxhv32CULDP8fcgr6Vmz2pa0LNJ/hj0SkA7AmWGROABg2izm+euwG9K7aozvmYsddDA4WntZXnkx4lWQeQE857ogznA+DK1d/brk+Fw7WDlWJQJYTUlI23BxdZgaYm/hjk1bMFp6BzfM0n6hOjRkkXxov5dv70J5WnKIN+KC1Twmt+xaN859B78PwxV9urhwPP306TEIUA0KdyS1xDNRGxI8MXROP83fjg3MfQVmGgolpLap8Hm/tkpphrT+r0gv08boEARjf6HCOqv9SvX2/dq8wLwhGi8IJe/0KG0fjFMecqW5DXDAHvIiW41V+XZh/Ez/PXAYMHu2+TMcxo/j5O7/Jf40Lr1hnWq+f5AZhHwdBDHpPJSJfQYFuuZbWnlvYVybo27eOhzEN+oy3eKz1lH/mRJwcndnoehRmHTMtw/VZt25oqdbXvmWe/vxNPZYpiEBNIwZUu2AxRKLNwobmSq6TEaY908WninirRxkQ1Ilwky1+H2wf/zbO+EUTCkB78c3o8hQ+m8yfB9oIAC5lamhotuHnDtang3dCVlwOLFqlOPTz6dlzd/yGgqAi44AKgVSt7bevRtKn7OoiUxs8EQ8GFHkZT1MOjbsX9I/+Kkiwxp4X2Sbd8Vxo14m/fIOwIcy7LAyDGLTeag0+bYyNJtTYJuwtjFCtFITNS+FVWJsQEhuXmJKBVwg2WguRYY5GDa3LTj/DutEvw1PgbIyf//GegStXMAAAApaxJREFUpRTmMxAAunUDcnMxq+X7CC5bqa2aH521AIOA8mx7YYd48EroZub1Has2idhjppwNzwvdm/6h+k21j4ATQ48wSgHZ5f0exY2DHpDzSHLBGP7zTjHOUnhWqy/rCFoV3Y2l4v2xMTcD0Hpw+YD27YGMDFd1K383V4aol14KnHIKqtctAGbOjLps+5dlDA+Pvh1ndP2PcZmWLYGRI3UvyYqszEz1eZ9aqWrWPuCdwTCRfuiPCQ7foUsuAfJET0OuNU4insfGjT1bfcljjYPNDxnMJwfXDXgQOYGj8rFuiEKe3yovL7rc1Knyn4eCGdh+sEjRjke//8knA4358kvLkKFDTCAFVxrhyFqZMTFwtJaw98TYseLGWVneBVqNeoeSbeYJNHUID1qMAcvav+aqP06ItwKCSG+iLUk8nOx4QxTGa2HLMZEzCMCZZwKVlfoFLrtMYZXmRZdok1mf8bMQrhnwID6beT4wfLh54fXrDS/V5O9CYeZhR30wewJ1n08DhfTUZh/hibE3AVCEKHTykvTrZ/+eGGE1YmT5dZK6l5QAp5ziOEyjU3yanEKdS7di+wLyNE12EhG+R4WFB1fT/D/Qq+IH9UmNh7OS8OfRfTeskKM2iM/x8navYFSjL+zXw4HbvAdh/Cwkhj+dM8fWPqhZwQ5MavI/5w2TgDo28AqICgqAyZOj18wLFsh/usrBpaz3oouAjRtN3ztdqqttrehtrf/txO/VMKWZ+Nwr35eQwEQBnZvnWhNW2NUrUloKtGsHdOkCZGVFN2XwXdnJN6SL4gNU50ZCRAd8IaBDB2DgQNw++G9yuFO7IQrXdnwJZ3R5Vvx8BKFA76k0fYUmTDC+plDG21njeBX5gPc99GoPzhiAqiqgb19n9xJJhxt5WJ1i/8cyAmKkg06dAABHghmq6CjyXM/xIHQq+RnC8hXRFwYMEI3NGjZ03GfCO0jBlS44WcV37Kh/b1YWcNJJkb81nhQqGEOP8h/Qo/wH4zIKtF4fZVkHMKjhd1JVOh4hOl4aiZ6Iupf/lNgOEOmHl0nibWLlwWWEn4U866utenQKfz9nPW4d9HdvOkOkPWd3exovTbwSgPgcF2UeFkNxanN2KJk6FWja1Fqowhiwdq39TaLBS1Ab8gMAXpx4FQB1Di6t1VmWvw6Tmn4MQG25PrTqK/Rv8B1/X5YsUXTLwdpC68HldJxgzDLxfX4gkk9D7unkyUBpadwN48QcbZHjDF8QDXP3Gt9AJAUJV3DF6EHNDRzVH4fM2tO8rLcNuQ+N83d72zG5Kfefe1qzD3Fej3+L1uo6YV7N6FSyDU+Muxl+J+GWAbK8jRUGHjRKGBPE37ykJNpjSBHOTjAQc8xq8Z5lG6pwwBUV/LkjNRgZWujObIpnKh5bgU6lEc9sq7mWF+XnTYRnBNd4zqHg+s+Ea/HomFvl0wFfUJSNZGZiWfvXMK35RwA0IQo5FjtDrpiEy9ftiISYJQgJ7vclPE4MHQqceGJ0PUx7nLxzlaceXOefr5sreG3HF/HtnA0etUTEC10PLs5p6tweT2JF+5d1r4UEhuxAnZzH0877oVt26lRg/nzuOjQVOruPMIUUXGmErb1Wu3ZizH49Tj4ZaNaMu6r3p1+CGwc+wFXWz0Kuwx/IyQBd1kMQyYinG0Kfz7S+pvk7MLXZR6bvkt7cu7zdKziuzVvc3eha9hP2Lj6Ra5AKCn7uCT/82QoyDzuzVifqJW2KfkWnUjFXjepRKy+3vNcwxG74/M03A50727dK1FT89PjrAQBHQmI+jGHVX0cVM/f8ivz90qSr0b5YP5desmOmKOxVsQWX931EbzdveW+iOHqCwbqLSBh+Fkrss6KMksALxxzZKG+3faG1Qb2xEJB5sda5ot/DWNruDflYW+Owqq9U1rbKT3egTgw1Vrdstet+EB7i8wHXXce3p9UYQaieU5N35B+j/mLdDYUxiRuMPode7iZbzblVsA4fjjO7PotaaU4Kh1d2BVO/1bGU3RnVbZgTi9eQT/pecwJHVeGr/ZoxMPz12/6MbduKwlCSYRAaHIVk4/AEjPvqxiKPX17gMB4fI0ab8MxjjBm/kH4WQqbP2JCFQhQmlm5lP+I7TgUk72/Vs+JHrOn4ku618JohbLxl5wnUNaBo3Vr1zD886laUZ+/jq5AMpWICKbjSBcFmMumePSOLKzsvlwchCpWDkyp2Om8Xwn+0aeOqL47p0SMx7RLpCzPYoHtQr9m48NbUy8Qwn336iBO0Tpx7PdZ3fxo1+busC4a7AQEFmUesC2rhsOR1SzIKwYnYkumvUwt+160DxowRrSGNsJgnGQSga9doIcqECfZjcgMYV/MZAOBIUL1RZBCsBTXdukVZjcc7XJ8KFwt4M0Xhhu5PYWGbt+VjuaQ0nnplkc6LONqar2kyYphXhXCGjwlxf1ZkxowBJk3iK6sMvWOxFheWrzCeoznW8amy5VaFltEJd2S2ngomckwkzNGxwo9Ceo6DKo8h7/DKs9MoD5heaDvlOGTZuo0QhUvavK6+Nm0aMGMGGBP78cuC0zG+5lOrFrnwLAeXGVdcYfjxDX835bqJM0Sh8rMENJ6etscPstQnAFze9xH8U8qBZwlXYnrrMj3Kf+Sux/Ubm5cHbNpk2q3irEOY3EyMNhGPNAEMAmryd+GrWedEX3OST5zwlCx/HVoU7og679Xvoq1HO3bbmet58tnNaPEhd31EbKDVfbogCOaThNlCWBBQk/eH8XXGjDcNOoK2woxDmNfqbZ3CBoOIZH2S7a/lEjLIA9X8+XI81VgwruZT/GPk7TGrnyBklAqueDYLAZg3T1R2n356dMiMRo3075PeY88WhUYr4VmzRGtHq9thLsgCxLjJBAEAVbl71HNNy5bAjBmWVoeASd4HJgCrI54AcqmmTcXcHU5o1AgV2fs17cMwRKES+UrHjkDHjqrPW5hxiLsL8rrChXDG8TjBOO802JjHW3nNmKD6mnwsFAkFTSQtDAlUcHXrZjnuyO+5wXxshtN3IB4KcQa4tl7lHpaqqqQ2FcJrt785CaxjCu+zq/Lg8lBQ6ZWCy+g50/M0Ohr081esk5dKj0Z5u3DnsHvVJ7t3V3kQNcjd59njHBeD9MJC1An635VXHlyaP+HXKCR1FVw2w703yd+Jhjl7bN1DpDbl2fvRrvgX3WtR49dll4FlZbpuc3TjL/TzBsWC4cMto2EoQ7p7tfbimc/bFP/m6D4ithiN2fohCm2EE9Q516rwV1VoXrGcuTsuQ6R/lusCadLgNoCgdWRMIAUXAQD4cf7ZaGyi5DJ8ncMJqRUFVnd8CX8d8jf94iyksXAWxHCJEDX4UQOCzkpZHgtyc0WhZAx4fMxNeGT0rZjV8v2Y1E8QRnhqScSYaX2MwdxrZf16sMqK6PvsdsNmeRV5eZG/+/TR1Mv3Xc1u8S4+mnGh7jWy26pf7Fp0MoZXf21oVW31TNn2sNQmZjKq06DMvcPvwvYFZwAAzuz6DM7u/nREwWXSprxp9PuBE0+U59ZjmnyMnMBR486sXas6dLT59HDBHhZyvjxJzJk2r9XbCC5bydV+3HNwaRrVhjRSbpKI5GBJm9eRE+AzrkooTZpwGXtocfQOrFiBoNYTykE18UArmNB+XLnfHToAZ5+tutaldGtM+0bEB8N3123EERjPy3YwUtTpCfW0HtumLFokRjI5/XTTYqZrGg6jHruovJ5i6LFs9LsbCiD9CoWYhQfXxb0fQ8/yH9Gj/Ec5lFpA83uF9Ix/fD5k+03WVxq+mnUuHhsb7c1D+YLqJ1H7i6IisDatrW6KXYdcYCp7kP/wTuJRF5YfOvg+yIMrsSjnCSsPYCdPu/KR+GbOuWiiiW5gFt7ytsF/x+/HReZYQwOKMCHxOveegkIUxgRScKULgiAPAw1y9uDeYXfKLxkA8wFfulYnJbM3ymehey2s4FINSMbounZKdWb7a1EbsrZei8dENLnZx8gN1OpfpMGI8BClRwYuuMDjyl0ufAMBoKQkulrpHeSt3vYbo6x49mzRC+KUU4Djj9fUK5azWnBoPStUdSS7YJPwlOIs0XvJ6Hd36vGgvUtbv+ViVxDwztRLok7nZxxBw9y9AIA/9/0nVnV4RaHgMnizMjIgQL3ZC7f/73E3Gfdh2TKgc2d1v12ItvMzDiu7YB+Fom5I1Tfy6SgBlkEDcffg0oQoDGhi/iepHKJec+ewexHwhVw9567gfSg2bJCF0YJgcp/GW1T3HbBaw/boER8PLg88ZGSFgM8Hq5DMytzCP847C9cOeNBd47QXSCyS8YgqRKHZ62Txe63q8BJWd3hJPvbOg0v/vN66VRnKuyrXwrOnQQPgtNPE8OJ6cOz7cdFFaiMyD1CufWI55xlZyLsOUcgY1nd/GjmBWvh9ghxKLUcjE9Bt3+/HrkWn4Iq+D5v2PUx2oC5KcQYALXXCdRHpASlT1AoFr9YawRBnPV26qA59JvIBIj4o50Ivl1VR75rBD200Z7wz9RIsafs68gKRedly3SpFJaMQ2ImFvv00Iryx61z6s5iXQjlKmI0YYQFYeGOoMwCYWYqLbWvL67ennUiU9Wb56yIWGCYwJkRZYlpxXo9/2SpPEAmhQQOwfHebzRcnXoVTO/+XqyzPQltvPeDVxp+L4mLgxBNlT08l4QWEn5mLJ2ntSmjxSpEVOW/+TpgtdsP39q78Qe3lY7TrkkMUas4ffzxQUwNMnRp1i9M3VtdK2YpAAB8fuwkPehDiV6so1FVMGoQFeuu35q7btwNjUH1PfhZSHTMIlqFbiMTQsWR7orvgDTU1qrlS+d5PafoRnj/maq5qHviul6tubJO8Ts0IvxmmIdItEEz2LSqCQVWxvMCRmHqXEO4xm7OUv7ZhiEKL+VNL74ofcEGvJ+Rjn5WlNidGq1O9dXST/D8QWrYC383ZgPN7/ttdwzxzdkkJ0Lu3u3Y0xGt3oPUyDeM6RKFOuanNPsSUph9p2tepLxBAdqAOfSq3cHtsJ733MOE5xvsIvXP23yhtvrhEYKYIkMc+n8+z5z/I48HVo0eUoayPcnAlHHnMrqxUKTx1QxS6+a0MZOFGT0zvyh+i8ib7mGAeen7SJGD4cP7nmrSrMYEUXOmCXlJUzYvcseRn/dwb4US9JtYPgqasTEYGkKmOD8xgbA2hKxiXCucGjqr6YGRhz0pLI5aYHANDt7IfcX4v/o3C+9Mv4i5LEJ6gFYK6YECD73BFv0ewf8mfYjZxhheuyve5JOsAhlR9HVX2lM7P4eLej8ekH1V5omeLNjY+QVhRXXIIz4y/zrP6tK+ads588Pue5hVIHteCclmmDKkzfbp1J/r0ET04SkpwQa/HcVGvx+RLKit365oi3XJiheb3o3PpNlTm7LN/r4YXJl4te7at7vASlrV/NbqQViAlhyiMvweXclOjXe/4mACMGRPXPhF8rO7wEn6Yd1ZiO+GV6apiMFK+A/kZRzCi0VdcVWw7UBw5OPtsy3WJNu9uleR1at5Nsc4f55+tu3bgQTvOat95WcimCcXmydKIPLhiCk9EDwAagZjJbxKeJwxyV2k9cH0moYPtYDQPGRmKMQa0KNyBLH+d67YBg/le+bk8fo5VxkMxfEeMZBZcHlxmoRl1FFz/HHMrOpaqjSB0BZiZmcDKlRhS9Q1Cy1fh6Amr0KX0J+O2YKAoo3VC2mLXc9mJTCBDEz0Aa9ZwNOTRutkqhDoUn8nDEIVmRoTymDB+PJCd7VGLhFfIv0+TJoaGC04IT3PyUzZunPj/qFGqucnKaDtUFcl/64Ngng83JweYM4ffg4vWkTGBFFzpgiBEvyOaRdqnMy9Ax9Jt0fdKCiozDy7TGOdXX809IWo3EIwJgCDg9cmXoWPJtuiksYKAq/uJYUTC1nR29xt2rEMYQuhRbr4YJQjP8VDB5WMCfExAXsZRbdU6zXK0pZcHT/pfaSlZnbsbL0+6Kqrs6V3+gwlNPg03aNlcTd4f3C952ALbb2GBxUyu09Ii8ZRn70PnOOdDYQX5GFvzubgYtXMf5xOj9RD7aX+pSZ0Rnhp3PZ4ad714UKHIf1dSInpmTZ1qHaKQMZzT4yls6PG0vA5QzoN2nnlH74fUZnh8cTymMYb2Jb+gd+UPAICbBt2P4dU6gnA5F6h6DTOx6cem1bco+J27KzxlGRNUgoWAxoOrb+VmstZLUhgDSjIPJrobuvgUwiAZnvBjUAt9ZI+UkLVByLdzNuKvQ+4Fhg1ThfbTcna3p/HFrHNx34g7LeuM6qYHsy/X3qN1a1mwIYdXVrZtZo1r3riz+wguDtZlWhdizL5ATCcagFiV+vdsnLeL3+vHBCNvcV2hWgyeKeXnKs/eh6rc3eoCHOOBHeL1WhgJEA09uJRjpt9Eear8zRcsMCxWnr1f/0L37vKfGb6QpaCTJ3INkdy8OPEqvDAxev9rhNHc55W6J0qW1qUL0LWrJ3XzwpWDKzfXsxCFdSZG+owJwAkniLlMNfx3a3vy4Eow8v5UEGIbHrt1a+C664CZM1WntblcteRm1uHZCdcC4I9gxB0yk4gJ9O2nEeFFtPyiFhYqLpq8kH36ADBXYpkOOBkZ2uKmoR30JpIBDb8HY/ohB07p8jxennQl/j78TsP7zfA8DwdjGNjgW7QrTpOQNkRSYVf++c3sjcjyR2LDqzZ3jNlLWq3XHyH6XWYQgNWrVRO9UbflMpWVovWUCc8dcw0+mbmJu2/hui1zcHHXSCSCFgU78PGxF8a30VWrxATtp52mOm1lEGEY9chE2QSoc0iZMb7JZxjf5DOgRQtgzpzIhaZNxfdH8Q5xKag5rCnNcBQ+xCsljkU98lUDa+yWheZKqe/mbjS8VpJ1QPW3WVllf4qzD0NYvgKA5FkqfYY3p/wZL0y8GgiF8PbUSzGt2YeW9RH1AI53RZ5DHSi4lF4w8lkOgXZx1iEc3+51y+Y6l/6MdsW/WtZniEtpuHZ9r1vb6acDBQWqU6qx0+V41SBnj6v7CX0sBV1yfkmb3slDhgCTJ5tViW/nbMC1/R/0ZC4zmkO9CoFoiMYQ5s99HsX3czZg89wN6s8V9DacWbxyX7Yo3IGuZdEGqYYCSMZEy/3hw809uJQ5yQYPBlav1i3WqXQbtnOEYjVVcDVooC8IJUOYlKI48yAKpZyzbtANyWb1KNgxSrfbuAvMEgcwJoh7mnnzPAlRuL7bU1jd8WXD6z4IhqFYj4b8unIOIn7Ic7ggeJoPV3dfHvbgq6yMlFPMGVW5u3VDfI5p/AUA/nmb+3PQWB8TSMGVRoQtGQUwcQGvsCLSllFRVQVccQVemXQl3pp6qe6GM6ixjLbCX1Gme54xtTBaW1udQUiKIVXfoGn+TukemwouG5Mnb0z+16ZcgYdGuc8vQhAAXHlwtSpSC3G1r+ieo7mG9/ocWi2x4iKga1f4fRpvTL02wucvvBAoKjKtNy9wBEWZh/knfEGAsHwF5dJIccLPyOI2b6BZAV9y7XuG3YWFrd901mBmppir5rTTxP8VON1saZ9/7bxTrbWa1tKjh/p48WJRKHvllcA554gJ5SOVW3UmquxNg+7H21MvBYqLbW0f3AirwnfGdP0+d25UmOQwTfJ3ycomO5ze5T/4Y9Gp8jHvOKkdu/0sJAvSyrP3i7HcQyH0qdyCnMBR2/1S8tGMOCuE6wEJ2WfaUXDxEvZIqqxEqUJRK49RHgu0naL85E7DIlVk7wPOMg4tqX0nddcpGRnoV/m9rrDclFAIvy08DRu6P23vPoILXt2nUpDElYPL5wP69Ys6nacYkxvm7EV2wJsQgUYKDt15xak3oRWFhTiz27MoyDwihj5UGqaahVtyAHdoJpeUZB3ERzOiUwqYCiBnzlQbDukxcqTo8bJ8uXist7447jgAQMPcvZZjuJlnCdav1xeEktAzpWCMf61sVoo3LKsVbvJk630Os3X0l7PO1T1v9lkYBODUU4HSUk8UGhf3eRz9G3wvVR5dn/b7EFRzBpFInhp3Pe4adrd4kJdn6fnEvSc9/3z5T93h9MQTxRzvALJ8kbn+uzkb8aCJfJcBXIsTbk80igQQE0jBlS5oX5BZs3TfaMPXqLAQXcp+Rt/KLQYKLv4BRxuGUItPm3hV0c+jSmtTk/jk+gf68EyejaUk11aeIHKb55xDLs1ETHCyr7HyHjHCae6q8GKRZxFtx0o1ZFORrhyrTA3adfICDq3iy0VCxJ7wWH/XsHtEgSUHx7V5CzV5u5w1eKGxcsDSg8swtIjRDQrDE8MiAtCrF7BhQ+Rk+NkuKAAaN7bXJgB06iQq7yRP7sqcfehTuQXo2TPqE0xv9oFheBXH1pWLFzu7zwYCIIZQk2B6ni4GzGrxHnc7TsbJIVVfY1aL94GMDPyx6JSIIYL0e7gVZHQti29ITyJx2BZWDR8OrFwJrFuHLoMKcWipmH9DFqh7GJLMzTpYucZ3UouwfAUqcvYDzZvbbzv8R5MmwOTJeHPqZbisz6O266nI2R+d74TwBMu9m07+aO71s6bg5zPPw/TZGfLz7EZArMUohKJuG4sXi8oVr2nZMvL3jBlqY7Nhw0SZwQUXeNLUln3lntTjFNehobKyxJxFPaW8qXrj5cCB3NVFhYtTkp0NIaCjQNN5kE/p/Bz+MZIMa5MRu/Og0Th1WCfiipM5VveeGAnS2xp4cBsZrAPqsS8e8v1oBVeEloW/kzwvgQyp+gZN8neJThnHHONa4dmqUHoeq6rMC1ZUAPPm4dwe/8bycG5nnw85gVpTo2kv1wZE7CAFVxoRfuV0B2o7ySO1sw1jlkKuqFtMJotc/xFF1YLqZr9q0mNA//7mfeXYzSg180b8NP9sAJqBq7paP/cAY6LA0WbuFoIwxGUOLqfLAR7PBL3+KF+7a/o/aHE/P7Ii3YGCy7QPOguSlyZdLVVB9luJJlMxRtux/tWW7VL6E16ZdIX5TS1ayFZbejiN/619T7RPHNeTqowPz5H7w3SsWLtWVJhp3yUd743WRb/p57aCCwVX//6RfDdevGJLlkT+lnKoaAXL5/Z4EjcOvJ+rOjthlJVeMOZ1RtYzL0+6Cse1eQvIyEBJlpTb6dJLZU88x8pZot6h+6yavVQ+nygsKCgAVq5E9ogB0i0OPLis8v25pU4c+72ah+3kAwYgjpHSfMCV80lJOPefvbsITnjnYkMPLi0mIT7b9yuC74Slcng6L593o8+hKyjLyxND4g0eDCxa5K5ho887Zoy6XCAgei0pvcRd8MWsc3FBr8c9qcsUg5xC8nzrFRaRJ3T3IUuXisYs552HXuU/mObw1LU30Bnfu5f9iGnN3Yc2jnlozHqIjwncihozAbne/OVk/ezI6MJjr0HevVw8Qppqv/OwEvz96RfhnB5PUojCBCL/NitXArm5lgYKZs9VRfZefDMn4lHIE8Z/U69/RQwQ9ULXbtggj/Ezmr+PRW0cRo4xgrx1YwIpuNIFQZAFUbqThfRycs2/OslXrQTPvBNUSdYBZPqDandnxarg2Obv45NjN0lNCcCgQeJC0SGvT74MT46/gbu87MHVty+wfj3AGGpPWKVblsYkwguUeVoA/udqUMNv8PiYm8wLxciDS7n5P7nz8wCA/bVZumV5rV0YQmhWsFM6iEHs4m7ddE/HK18AYUymYjNmGs5F4qlx1wOIXugWZBzB4KpvzW+2eGYME9YLYWUN3/MsaLwR9TauU5p+ZNwvt8ntGdP/rOXlUU+8/A7o7NA9SfjrxkRz+XIx0XvfvsD06cApp8iX8jRh/rqX/4Q1HV/SrWZD96dw5PjVuKrfQ+ha9hMm1HwKANi24Ax0LPnZtAtDq/SVf1q0BjsAItb45eVAaanoVTdrFv7c91HsWXwSV71EjJk3L3Ft84QotEiAbUp2tiwIfuNXyYvDQ5Np7fzerexHbiUzA4ChQ8UuedQfbT3ab0wVNnX4cPFA2vMcCmbAFpq8XoS3mBlXKOdhw3J25tCwIleqyscEy5yxvNjy4Ap3YsECYMAAdw0rP5Pb9YQN2hX/ivE1n8W+oSVLgH798Mz46zCpyf8AKLw6vaRxY2DZMmCjdR5Omb59gSuuAKqr8cDIv+DL2fph3AB+h1q/z30wt0+O3YRFTkN7E4YwCNx7SbNIQV7kzirL2o+BDb+LLsc577teHkj9yTUJw62N+uQpuiEK1d95+E3qUf4TGNOJLEV4xosG0UHCaOdBq1HuaNB+9AvDZ0z7sEtrQfl0u3ai4al04uHRt4uGi0TSQwqudEHQTK7aAZ5nxpo8WYxLrrQil+qyM+kyJuhOML8tPE0MgagsC40Hl09Ap9JtAKRBz+eTBUROBNEdSrajKnevqCjTYWjVV/j9uEiuDT8LiUK0RYvkGOVRrqqk2SI8RLvY5V3s5QWOYnKzj80L6XkgKvDCgyvMEZ3QCoC0sJSEWIYIAkLLV6Emf5dxA7qdi5QzG+LojU1uMv11QEkJAD6rv/FNPosqe/vgv5nGzebFSqFj9CxpH9kuZVuR449s8PTm0MfG3mLckI6hiYysbDMuEsXGjcDUqcDAgcZvvY5nh5sE0J4oj3v2FK3ZGQPGjhU3HNLnDxhZqep8MX4WQqY/iFO7PIePZlyEhW3eBgBxfWBy+yfHbsJNnAJ7ANHSqi5dgNNPV4efHDkSGb4QCjOdJSWvUuRzK83yWJhX3zjnHHl+SniYGkHA34ffEXU6ajnv8L36cneVaKE6YoStPpmhXR+Pq/lMVDJzCOcFQAwjc/XVUdfmtXobj442GR9dwrKzIrl4JOF/JWd4XJnSUmDhQo97lp4cXLrW9j2jG3+Oac1MPFbCIQoVc7bKAMVsDjVCacgydar9+3UwskiP63iTa5yLNxZwhft3S04OMHgwxtZ8jsbhvUOs6NUrKl8rL36fIObfNEAI6TwHOgpJM4UBIHovWNGi8HduIy2CHztrcR8zTuOhJ9y3K3Lasei0SD4qDooyD6Ig45BpHwCgUd4uZPv5c8d2LduKn+ev070WEiIGeJ6FfJs71/CS9hNp93mMAaFl9vP1EtYMM4gOEkY1VzBmuQe3o+a3LGmg4IrCJOoLkZyQgiuNCAuizBbNZpbaOOYY0SJKZza19uDSnhCiklLKVlXatg0sy2ThuwvLM3ngNNikZ/nrUJ6tTMINcWPuZGNEEA7wM2ceXJablI0bgepqDGxg7NHCtbDUeXfkMUa6dmzz9zG75ftiWE9tGxCsLeS1QuFYeHDF4n7CEzJ9QaB3bwDmcdu1KL29upZtRXXeHtd9cWojq513bxn0f/hj0SlyyCOlUPqMLs/i1cmXK+5VMHiwqBThWFB3K/uJv4M1NaJFutncpqPgcrP1dKMc4yFgJESz+V6bGRnkBI7C7xOPh1nk7fvlYJFuiGe0bu2ZgPHqfg9i6/yzAADbF5yBP3V80ZN66y0ZNr12Ysz81u9EndN6tWrXDLa4/nrRm5AXaUwwWm8EmHrMkMP8VVbytxEIRCntWhTswLTmH/HXIWGl/NPdH0lj4qjGX+Lw8WvsNWhgPEeoyQnU2r6nZeEOPDrmVstyNw/8P5zV7WkAmtBcjOHuYXdhdYeXom/Svj+aNSiP8Rcv4TXFG1MuQyNFaNq4Lj/HjgU6dxZzS8WBbmUc4aI9JNZrDVNc7leMPLiaK8IafjD9Ikxu+rGhfOe6AQ/g05nWOdR8ebmu838S0YgeXHyYff+OIia4DOk/q8X72LvkZNHbGwYK+VGjsHX+Wbiy3yO2uma0JxMEJsv2eN/ci3s/hpGNvtC/WFkZycer68Gl8RLSjhdCdJ5uIj7EI6cVtzGJUc7shQvtrWkhelISiYMUXOmCIkShLpmZUjFnI3jQLEmqBjstMABo2lRxInK3WVJIvfJ62B04lVYlhsQ6JwFRr3DqwWW6AV+6VBRoM4bXplyB+0b8NapIcNlKZPqdJUeX3yvpXXho9O24uv9DkaTMemXNUC68mzXTj4OsR6dO4v/t25sKtvwspL+490V/i+XZ+3DDAGuPjePbvhafPANpTpfSnzCn5bvyZscwRKAOSsttq6cs238UW+aebR2i0CJEotH7qRUABxbNR/bw/vL8lheI5J7sWrYVg/RCiABiaKI1ayz7KSxf4SxUAmPRIQrDXdeRtITs5sVTYCefmi0EAWd0eRZdyrZy32I2rmq9UJS/pTxCjBqFFydFe5oo+W5vRbQHvMcwFhlTG+bupU25V5x3XmLa5fgBtWsEV94RvMZbYQV769amxeTuz5mDhjl70Kv8B+6uhBRhXJX7l8v6PIKVHV7hq+TEE1WH2j2OkWJO9bUrDrL81jl7ieRiabs3sLrDywDU4Y7BGBa1eQuTm/5PPjZEmvs8zRspEV5T9G/wvTondOPG3jWih/Qh/CwE5OeLeTnDIXNjDGMQw0WPGhXbhqTFiyehlJ3i0iBWd+/StCm+mHW+nOO4+9x2ouePwXPpZwJXbi0GAeNrPjM1fCTsw5jALV978sdOuvNSw5w96FJqvaY9qdPz3mvHw4Z1iOG6XUEIEVnbP0b9BQ+M/IvlPas7vGTfy1pCu2biCYVPxAfV3owj+pjZe6a9PVx3VCSuMHr5FYcMid4tlpUBF1wghvvmnNO+nH0uXlMYshLxhd7wNCK8SBIUE4dM9+5Au3aRl9bm5PiXIffinmF3GbetGHBMk1sOGhQ9YA0eDMyfD1x4IbAu4s4sC8YzM4G2bQ0HtaVtX8PYxvrxvrWCeC3y2fHjsbL9y+ImiVPBRRBe0LroN0ceXE/91Fn8o0cP9WRcXi7GfwciSdB13h3+3FgmHlxadBYjtq1zzjqL/0tYvFgMM7RsmamCP9NIaKXT34rsfVjb6SXLpntXbMH8VtHW9oQ9/jPhOsxq+b5uuCErlMow+RmfMkW3rI8JaFrwh+Wz5T7LgcSgQaKySmpvQ4+n8Omx58t9SRjMRNXjcYhCwxCCHnB5v0eRa+QVoPMbm/3sdwy5Fxf3fkw+fvj7HvLfcp7CwkLLPh3b4n1gxQqgY0fLsvIY7RSpPwm1XE8Hwg9GdTVYzx7mZWONgYW11vvF9vjhZM16zjmi8qhPH/Oqw6NJTg62L1wnh/7k6pZB/1Z3fBmN8nZbVzB/vuW7ZvTJjRRcRGqgncXCx6b7T7PfOfzuhUMUemjAqHxfHxt7Mx6efK94cNJJnrVhhqGnc6yZM0f0HIsDdgyjkg3tHD5t1F6gc2dk9esOf9tW4sljjzWtg/d5ZQyY2+pdvDYlft519QGfjRxci9vo50DbvnAdWhX9rntNybUDHrTVNysEQNyrSIalumtKD/N2Dq36Cuf3/Jc8Hrcu+s0yOgIgKhEv6v24o9DF2vdjb22OuoCHn4+wh960nOGrE6OA6RhdVuUaR2oxGgcNjcKaNwcmTQJOPjlybv58fXkzY8Dq1cDMmQBEI1OzEPHl2QdQknXQ8DoRW0jBlS5oPbi0I0YgAJxySlTiey4YwwntXhetxQ1DFGrV5jrlmjcXJ9EGDdTnfT5gyBDR/bNFC1FABI1ySpFYXtvOHUP/JgqWdJAFAxyT1y2D/w+X9HmM+7thvtRdUBPJwSOjb8Xdw+5RnbO9sdY+28pjDxNLM0USVvkV4XhXuD6PchFjZ2zKzRUTxUth4IwIW/UKy1eoQyoJ0VZ3ZgKSHuU/4E8dXwAA/HrIWuBNWKMyZACngmv9egDqcIYNcqT8Ay6taa3yHBg9nlZPbW6gFh1LtwNQfGYL7whDXG7GtPny5Pk7Jyeq7MhGX6J98TZH7eRZfJeO4R0jFGsN3XFICmnSrXwrJjaJ5DNsV/yrmOsL9kJVlWfvBwoKgBkzrAsvWSIaHjll1Spg1ixScKU6ymdZ573+YPpFOK3Lf1Xn/HYVXE7Gi/x8UXkkRyzQhzEBuOIKR0oiv8Kq1ml0CS1WnzTcTS8VGF71neBHa8gZNkzRE2QZCZ5Xtn8Z/SqlXDXSGjRc1kud56KlftmSu3PpNgz9q5S3jcNowgv8PhchTd3QqFHc2k2IB9f8+er/rTBYm4ZyIvuX1R1ewqP/LRS/txNOQKib2ujCLIIAzzdNkWdiA2NA26JfMIDDM85qj8GFk729IOCCXo+jUJFvSzytfnLM9mC6nk8VFQCA3hWb8fKkKy3f+U09/4VFJvJEIxiAFoUGoYttRnMa1PBb9b6GFFxJhZlzQvuSX6JS4BgRvt3Qg4sxYOJEoH17J910FhI7qhJ69mIBKbjSBSFiPWKegyu2PD3+eqzt+KL+5JuVJQ4ma9bIyVr9JolXtYkHdQeScFgrM3fjcBgzM2wq/AjCC5oX7EB+xhHVOd7H65we/xb/MArgDniaS04pVJPHGEkpEbnA8MO8szCq0efyKS5rc96QhCaYLTSUHlyq3tj0OGtZ+DuuH/gPAECn0m20WfQAOVTHiBFAx454YuzN1uEq8vKAm27CrJbvYX6rtyEsX4HmhTvFawbPvPxbWbxgx7V+C/kZh+18BHX9RjRrJv/pYyHg5puBadMAOAg5ZvbOc3A4qM47JACioljKg6bkkj6P4fNZmxy107xgB1bp5T9xi9HmvmtXcSyRlFM4/XRuJaJyUz+8OmJNyustc2DpWrQs3CEeSLkMTGFMXBPZRB6y6uqAkSO5rYYJA5J8Pde9/KcoDy5TLxUTYhGWqjDjsGNBvXLcU75lXs6r2lBQ4fcnKhThtdd61ibhEZrwk4YMHiwbu3C/zj4fbhn8f3h50pV4a+qlEQVXDJZ0mYvmYuBxLeXjuI3Z0pfhZT4xJ+3Hg4R4cA0ZAtx4I5/HNmCs4Dpmkvy3duzjXeoxQNdAKapcck93KQuDgNLsg3idwzPOx6mMlLEalBjDjObvY1zNp5ZVndPjKWT51euJqPB9ZgouvWuDBwMAKrL3Y0jVN5Z9sGMgq7rPZh4lJdp1/KSmH0f2NfPmkZIh0axdK/7PGHpXbMaQht/Ix3YwKm2o4DKA9w01fWxW8CnhaFCODaTgSiPClrxcL6adF4rDUiT8ko+r+QzFWYfkhVyGMt54uM0GDYDjjgMAZPsNQgxZXJPhEeCvXWv9eZX1cFrGxFu43aLA2nWdSC1shf9TsH3BGTinx5PigXaGVT7r4RCFLjbU4f4o47vLTRx/fCTxppS4vkn+LtVigktAPHcuUF0NrFzpuJ9mC40MX1AuoPouGjaMKmvWX+VGoHvZj/Y7SUQhC1+ys4ETT0TXsq0YWvW1YflMnzQvBAIY0/gL/H3EnZoKLcZvi7ngzG7P4sWJxrmWjJ4zyyn11FPFZxzSIlwx59hWcOmEEuSGsSgPLgBiOCEPPT4BINMfxM2DrPPZ2cboy161Crj++oigp7BQDgUoC7qHD9etR2mZqszZZxXmOIwqXGJZmai8XLaM48M4pFZsL5VDMyUFybS5tOqLIKBFwe8YzyHI0qs32yikJ08VOuuSH+edJebZkfqmoqAAT467AWd3e1q3vn+NvRF3D7tbPvZK6K+1RtcK95sX7sBV/R6K/qo5hMOECwxCB+sSfpY6dgSmTtUtonoeFyxAXXa+ZXXqCsQHINMfRN/KLVEeXJ7CGFBaKh96YM9ls3khMeNcPNqUc7cmSJyVkWFdJpzP0CDnWqi0XP5b+5V17qw4GDnSJIKAwLV3ZEKCwlWmOUa5HnXLeiE70nh+Pzz6dhzf9nWuW7VjXLQRiM5DJkVJUUbN0PZFDkke3kf066fbvixLsJmawUhJISxfYduDS2bgQGDoUOvGidgRCKgGujenXIanx18vHjidQzSTrKu8tXpoI5Hp0aOH5bjw9exzPOoQoYUUXOmCVYjCcLHwxBZrjyUp9M/2BeuwvttTOh0RX3pHCi6dEGxmnmBgzNo6w0iwp3dfAjYKP847C8vavxr3don4w7P4bZi7Fxk6z/zBpWvVz7KVAnj0aO5+KReI8t+NGom5866/HjjvPPm6UljMpeCqrBTvdxGyS5k7qUn+TsxtGcmPpUw8Lr/SbdoAs2dH5QkqzTpg2EbYi21eq7dRnbcnqWSjqYqPCbY8AHIDR43H4PXrrcdnp2E19RSkVvcoycoSw/Qi+p2wnVNH4Q3mhPtH3iHGwLdDMj3shlIeFj3myTlVJAYNEsetzp1lpTygFpApfw95HWLXG3bcOKBXL3v32EHqe0JCM6UpCXnEmfW6Xcl3czfi3J5P2m7m0dG34PoB/7B9nxk1+bv0L4wfD3TpgglNPsWI6i91i/Rr8D2qcqWwsoyphGp2hIVarO7M8IVwapfnHNcfpip3t6LNJBobE8CZXZ/BY2NuTmgfdENnAWL4zDDK90vrZSsZnwgsRuOpou2SEmDr1tg0o9cmQ4IUXPHwipCiSHQs2R4553J95DkbNwIXXKBScipRiTQ0gthRoxTXZ80CmjbFkjbRigzen5cx8EW1IWxh5+0yXe/ref/r/bjKh0ZWzlugHA9M+hNWBrw77RJ8PvM8PDL6VnHQWrFCf5yVZA5yrr9wJIjjjhPDv2m7AajPn3aaVc8BAJk+g1zaAIeCy0LBQR5cSYPfJ8Dvk34PKcoJL6qIMIg863Y9uCwdLPr2BUaPjqz9HEYxaF30m6NIHoQ1tDNOI3g2WfIY7rGCK6rtoUOBk09GWfaBSLxhnXqa5v9hWKfW2lR3/pGETgtavY0nx92gutRc4/EkLF+BAk3sYZk2bSJ/K/tZpzOhykH847hhyM5GrZ7lDJF2WOV2m99Kk8SdMTncTk6gVq3gMntG58zhyxUjobSAiRLmZ2WJG02p7WOafIpGebv0y8YIZZjSmwf9Hzb2iCjWlQtjITztzZoF5OWpEnA/O+Fa/MMkPF74O7hvxJ3RIY4IRzAmAJdeqj5n8sx0LjXJB9W0qUk70h8uw/t58TRrN1u2rctatRLzUl52mf3GGcPslu9hdst37d+bLNjxNJMVXAIwcqSo3DrnHDFU8rBhojAekdAr81q9jQlNPgEEAbsXnyR6pE+dKluw/rHoFLw08UpvPofTTfXpp8sWhLQvd4lyPEj0l8nhweWUac0/QgelENhrlH2bOlV+R3lzFqbSY/yXIfdiy9z1ie5G0tC66DeMbKSvyIwXhvsjI8FTRgawYYPo9Tt2LDB7NoAYDgHhHB9SvppGjWLUjg4Js01RGJDEjMaNge7dcXa3p3H0hFWicuvkk2Pfrh0KCkwt/qVHAj4WQp+KLeZ1MYY7h90bddrHQly/s88HMapNjx6WZes7V/Z7CENMokko0e5Z5EgTOoghCg0GmnPPjT6nNyh17Rp1ytLYKayI0gj7tV7O1Xl7AAC9Kn5A+5JfML35h2IfevRQjbO3Dvo7XpkUyb8Z8IWAK68UIxgAonyuSZPojwMAkyJhOdGmDVBUZN53AP7iAuOLFoZChmFaw3uJRK/90hkrhbpO1CEAolGAzXGKQRANCiRjUrlam0ZToxp9gYdG3Wb8XGRmAscei9xiKU1HOJJRVH8syMiQ1x6Et5CCK10IhWQPrpgKlA2Eg/0qv8eZXZ+JnGBMtogLGXiNbV9wBi7o9UR0ZdKAkqONE+yLdmsOK7iyA3WY0EQdtuX7uRvV/TFi3TqgZUv9ax06qA7HNP5M/lvPkqVhzh7jdlzAhJC+aziR0ug9llbvb1RINkHAB9Mvxlezzomu1Oy5r67m2/lK76MqB5fFbSd3fh5vTrmMq6xXKD24GICdhyOJm5sX7pDDujGoxxGl92fzgp0ozT5o2IbW24tycLnHB4E7Zs9V/R6KhC4wwmqj0ratZTtOPAi47gmHvdM8N6YeyEa0axcJfeMS3ZAk0YWcN+BSqRiFnUElvJ4I1IpKbcYi/wIBOQRWaZb43t834k45l1ZRppSLTfJIQYMGKMk6iN6VW/TbuvhiJ5/GPoq8YqE4eI+MafwZdh53SszbqffMnGl+PYFCGMtXTjsWWdygnTtVHlyAvZB2yno074PhN6bXPxMDCSV+JiDT7yJMbBrRNH8H+lV+H7sGOJ/5diW/4txwXlptFUZjZJMmQLduwPTpsgFDKFZikQYNgEsuUUU6iCvx1HJdeilw9tmi10esYQxYuRKMid6Z6NQp5cKNDhkC7P3kBwSXrcL81u+YFzZ4H5jJtejCLOW+o0SwtuNLkVxAFmgF6GYGkDVGht0DB0aUQ2bMmiVHSQIgv9shq3V8vhjGVZvDUzs0jGz0Jf5YpL/eqxMicqg2xb+KIYrDkZRYiCv/bFBHdsY1PNlY/7Qv3qbKOWpZvySvJNzRsvC36JOqOKsWKBVcTscoxX1OowFk+oM4tsUHlg/OW+8G8K1JalvLd/Kssww9ewl3kIIrjRBkBResQxQ6zbUhhQPQUpB5BH/u+0/1SXnS9amOwzTM3Wu4SZzb8p0ohZXsCaYkKyti/uSUli2NB7HJk+WNdrOCHXh2wvXyYKSn4Nq+cJ0675iHkAdX/SD8KK7t+CKWt3vF+oZQCC0Kd6BN8W/qCrwirODymXhwhVGE8Yq3KE5pvcYg4Pt9ovXo3sUnYm7Ld+X497KiThtWAdYKq94VP3jZZQIGSl6DR7g48yDyMkxCFJq1A0FUVIwbZ/teJUbKIDchSjyPD24GU6wTJLhCbLnJz+W1YN7m7//M+OuwssPLpmU6lGwXQ7yG0fY5N1e0KDSiVy9XFusV2XuxrJ39MMTxCFGY7a81VfynNIrfOeEhCtu3B665xrhsMlsZt2snCt7WrROPLcYL1RjI1DOvLzMATJjgyMuAS1lvxEknqZTHhDVb5m1Ax9Ltjo19nOYW1v7KWYEgNvWyCLvL8YKXNM6LjpLgFWVlfDmbvMIgJFnMKS1NvjCBSU5BPudvZGAsZBq+TUkyhZpOMNqoP1rsrMsZE1Q51owUXMLyFajK3av/M/DO7+3b60ZqUQnTL7ww+r7p04G2baMUXHrh+0qyNOs9qQ11rlpBdS3gC3I9XzExytIY9n4+axM2dI9EcTEMURiO0nTCCRQqziWfzzwPtwz6v+gLTsccG3tOYfkK3fOxdgxo0sTYPwIguW0iIQVXuiAI8qRhprEe2/hz9Ch3IKQ96SQxlEO+cSJfI8bXfIqhVV+pT5pN5Izh/0begWYFO1WnZat3Qb0x1gqd/CyICTWf6FatFeTpLmCU3gQZGXKS+gALin+PHQsAqA3qvz6uNtgGMB8zjjFPpCx6G8/wuSVtX496B6IIBMQYxccco6gg+vkLevBMKr1ODNcrgwYBNTUAYvMemKFc3Ad8EY/HgswjYn+POQaYOjXKE9Sn8kwzHpd+XXg6VrRXKxzd5AohRPQ2HkYCGfm505s/li61bqxvX9cZ3h3n4FLgOgeXByj7y7WvdqPg8tqDiyfBbxhBwNiaz5EbsIipDsnLK0ytcXndJ8Ch8uHZCdcCEMPC3D7k75blozxU4vDopKtIzCyMUNzQTqYZGeJa00vi8pAwMQRoeLcvjRdGTTMmqEKJKZ9rLz+/ofJebxGTlwf07YsDS9diXM2n0dfDt5Lntid8fOwm3Dfijpi3Y+fXCsyYgr9PfABYuTJm/Ykn7Yu3ieEjSbGR1lTm7KPf2CZaI2otPiZw51dkAHDqqbLBNbfC0QskjxV5D9yhg37ItIIC4KSTVEadgEn4PiXSRK4U2MvyM+m50yrOlBzX+k38uc+jAAw8uHj6EAoBK/QVGXrPvvK3i/qM/fqJ/w8eLP5fWQksXGjdB8IQHxOsPZZ4GDRIzMeel2ddVg/Fs9Cq8Df8fbiDNUbY66x/f2d9kLBUcNGYHTMsJRaMsRrG2IuMsc8ZY58xxk6Szp/PGPuZMfaR9G+C4p6zGWPfMsa+YoyNVZwfJ537ljF2Vmw+Uj1F4BtYruj3CN6ffon9l6pDBzGUgxGTJ0efk9roU7kFL026mr9Ngx2xoRBQIXg7od2r2DJ3PZ4cf6NpEzcMuB+ARsF1+eViaAVtMnllfOE5c2QvtqOhiKB0Qs0n+Gb2RsQMQSBLgHRFM4mHF3pci84bbxStxpTvn8575sWzo/TgMnwX8/LE+MfgcM32mKDCkyHgC+rnCRszJmpRXpgZyctn1uOoGPdDhrjsMQHoPOdSTiRTtM/4vHmyIYIXmD0HXsiKk8GDS9U+T4jEZPLgmjgRGD1aHmtct63dNOfmRt7vcMLsGDGm8RcAIu/BVf0eQvtikzxzGoJx8OBKhAI2HmT6g94rXzm5tv8/8O60S3Sv/Xbc6Vjf7Snda47w4DOGXyPuZzNsVW5oEIBIXiLGVK+p1fM2utHneO4YfU837ifVZD+SG6i1Frg1aCAb8xDOjH18EKzv4507vJpj2rUDrr5aFLClOpInw5X9HnE3f6cSCRrPXePiOf95/jqMafw5356LBKpc9KrYYmvd42OCuP/t1QtAdJ6rTF9txGPMruBe+5trf8O8PGDlSj5lHGM6Hlz8n7NOsd6U75PCKvqZYPh8tSv+BWd2exaAizWrlAdMVk4p0aQT0RL1GRcvFsd5M/cbwhZZ/jr9MUjzTNw48H45nYuwfEX03LRwoWhgYjRWrTfOf6q9xe8TrMO+6rFypZir2aVcgRRciYNnlKkDcJogCB0A9AOwhjEWHkmuEQShm/TvKQCQrs0B0BHAOAA3M8b8jDE/gJsAjAfQAcBcRT2EWwTBnseE1y/VMceI+SfKyoxj57tsk2cD9Zchf0fj/N2W5dZ2egmARrBXVGQYC/WZ8dfhgZF/VZ3rVLoNf+r4AgAgL+MIWhWJoTZi4X7NIKhiHxNpxOWXqw7Dr4mZNVRUYUDOJYNp06KKuQpjJQiY0/IdlVU1j7VVvOdtlQcXC2FczWfRhRiLUnBd2uefeHHiVQAUi2CdsKdy7aWlwKZNwLx5aevZEE+inpOpU8EK9ZMJy89deEF89tliKKuBA63b0W3MPoYeXHamX837kxAPLkV/TZXpBdJv4WYj6LWCKysLOPZYPgEzT9vaUGiXXgoMGACcf76uZ6Du+Ofy2Qo/A6d2eU4Mw8lJPJSjhuFdUpgr+j6MD6dflLCwfx1LtqGXQcjbkqyD+iGOtMZXvHgg9D0iGXR9PmsT3w1SX/WstQGdHFzKHJoWr1Kzgp3cXimG+yKj3106byks3LRJDjeXzJEj44WfYw7rXvajKoS79udrV7wdV/V7yFkHTH4E+RngHaPTRejEm483HQgLIrt0SWw/nMI7RivSRIxu9DkeHHUbqvP2gDGbhow0aJny7rRLbZXP8UtrtrBBtGbNVJO/S/QYKywENm2y5wXM81t1785tVBqWLYTDunUp26ouoCfUlz7XuT2elI1L/Cwk5hAqKgIQnaNaiXKPo9tPi8/48bGbVO9IOPIBAFHhpTTyDXuPG7QPQPw8Tj2ECF2y/bX6ykvN3LOm40sozT5geN2Spk2BKVPw3DHXYExjHTmPFwQCovG4y3mzLg4GiIQ+lt+8IAjbBUH4QPp7H4AvADQyuWUKgAcEQTgiCMJmAN8C6CP9+1YQhO8FQTgK4AGpLOEFyhCFPOVjsdgtLxeT6E6QnPnMNuNBE+G9Qd9kIZyLvmvnUC4vGcYwtuZzdC3bqmq7MOsIrh/4D7GIoniscmLUUojCtIMxISpkWnjha6rgatsWWLBAfW78eOCGG8Qky0quu0713F/Y63F8OetcW+/R/SPVLt48t8oL/jihDVFoJPjVKrhyA7VoUSgqp+VNh5l31qWXAg0bAoxRqCIP0BWem212BgyQN1Ro1kw0qOANO8j5zJv9rsrnbEjV17JVppsQhdkmCak9Rycvh6kH1yWXAJdd5i5hfCKFKXbb9vvFRNmMAVVVsbV8V/RNfg9atLDl/ZqfccTrXkURfl7P6fFvZPmTIKyfB7Qr/kU2SgoTz/Hcaig6vt3ruH7AA+JBONyQU4GMBwquRrm7MajhNwCAJW1ej1ww8qL0+4GTTzb24NKctmOgZ/Y7aesJz+06BU3PW/ZH8QF4w1ilLYsXI8tfh63zzzQt9sGMi7Gu63/kYx9TPx1Tmv4Pp3Z5Tv3b+Hy4f8Rf0Ltis3kfSGAfjVOFeCqycKG4TmnePNE9cQbvfuy44+RcnwUZhzGzxQfypQzGsY5Md0VngsgOh7eW1ouGa+r27SNGYxCNp2e3eNeTPvCuG0c1+gKtCn8FICq5FrV5S11g8WLgoouA226LnJOem7LsA6JxCYAGOXtV71uAhYzld0oFl858afVYdi7dphrjw5EPAABDh6pzG0r7QeUcnq5RCJKJTB+fBxegma4dzt0jG30ZpUhmMPAiTND6QM/ooGPJz5EDGo9jhq2dO2OsGYDuAMIZWNcyxj5mjN3JGAtLPxoB+Elx21bpnNF5wgsEge/97dtXFA527BjzLiEnxzjMg1kydoMPYpp/xSgZ9bBh4v8DBgBAlBdUZc4+436YdkLdDx7ByHdzNthrS4NyoLx+wAN4ZPStruojkhNLD65LLhFjfYdjRytRWPfJZGerFpTVubvRtvhX2xOrXSFOg9x9eGuqPSs4N6hCFLIgKnP24Z5hd0WVm9DkUwyr+kpXcE05teKP3lNl9GgyJgCLFsV2UVhcbHpZ+Zz1rdiMMY0/j/SNE+W8M6L6S8xo/oFJ6dhjauiRmWn5nRhSVSX+n2ZhQDx7/BSKB9kDomFDW8L++a3fxvFtX+Mq62dBjGr0ua0uApHn44Je/4q74UKskN/XBG18fRpDCxmpP43yduNPnV4UQ+Gdd554rahIFD796U/2GmvSRPxfKQSySWn2Qbw6+UoAENcPgJhzy8yLsn17w3WMyrCBaVbQFi+Y2VirvPLa5Mtx3YB/GBS08uDip16vGpo3F/NUZGWhUd5u43I6yhYG9d5JVwjp82FOq/eQG7AYd0jBFU1enrgHnjDBsmjKk5HhfJ2SDNTUiP238kCrqhKj5SB6HCzLOYhdi06OTf8IU7LCnqnS3FWZzSdbGlvzOe4cdg8+PfZ8/sYM5seAz2BNoeHyfo/imznnGhfw+aKjmGhyegnLV6BpwR/67eugHOeNvLo9IxAwlgkSMSM3cFQla+pdsRl/GXKvZX40N+O21mPMMFKLmVNFDNFbt3w68wIw8L2rhHO4RxnGWD6ARwCcLAjCXgC3AGgJoBuA7QCu8qJDjLHljLH3GGPv/f67geUdEY0goCTrIAALQduSJcCf/yzmmIg1jKkT9SoHmKIiMfzPlVdG3xe2CNFYq7Yo+B2rOryk39by5dFxeSdNAmbNEv9u2RK48kocCUY2+F/MOhdX9nuY73NYFrHeXLUo3GHdlkkXVnd4GRu7PwkA6Fz6M1oU0PuRjig9uLyyDG5esDNSP9P+YdUhsZyTnFp9K7fYvscpWg8uxoDjwpZpkyaJ/zOG+0bciRcm6ucEZACwQV8RrafE5vkKx9d8giFVX1sXrKd4blnn9+OliVdirF7oAp4fTBIeGFGn2Jwp+/77If2wilp+WXC66A0MAIKA5ydeg2HV8X8+lHNWzKwbTz4ZmDEDmDs3NvXzYNd7xYbHVuO8P6wLmaHom4+FRM/RmTMRlMayt3UMBLSeqe2Kf8Vfh/6Nq7kGOXvx32Ous91N5fORdt4qCsF4PPNGGiqVtUqooiK1h2r//tFe2laUlwPnnit6OHjASZ2exztT9fOHack0UHBpv2k7zxVvyaLMQ8gwErpZKETsKJlthYdPN3gVSzpzb8AXVIfK1ZuHJMXYy9vbOukdAMWzVR+FSXPnGqcNIJKHjAwxOsTq1c7rYAzFWYcMLweXKfLaeKQQLudU5KQknAYhL028En5fJHx63Qkr0bzAQN4jrfmUY11uoBYdS7cbN2CVg0tiSNU3GNjgW/PO2h0DzzxTjBZjZqQW9u7K2h9dv87ndZyDS2ctz6DjNcZYVF5dsn+ILcLyFcgO1GFE9Vf465B7AYgeVie0e93Ag0s6V1wMrFplv0GpTjkEYLt2+uXChjUJegD6Vm7R9WwXwuqX+rgmiRNcowxjLAOicus+QRAeBQBBEH4VBCEoCEIIwF8ghiAEgJ8BKE36GkvnjM6rEAThdkEQegmC0KtCJw8KYYAg4Kf5Z1uXYyz+yWaPO050yT72WPX5qiqVq7ZMaSlwwQWii7SC7EAdbh50v34bjImxjZU0a6a2GpTayvSJruTtin+1letCbkeHeLg/96z4ERf2fgKAKOSKRa4vIvEoPbiCnO7eVoyr+Qy1J4iLCFlRwzvhS4ngbQk2Bw2y0z1PUAonVZbEJSXAxImqsozBQMElRKzd9Tj99OjyFjw1/kbU5O2yLFdf0fsOXUXUCgQwtPob56HUAgHTV8ynUQyF+1+evd+67rIyNMjdF3n2EpUQ/corVVaUMcvjVFwMjBkjenMnihjE2Q//5l/NPhfn9/yXeNLJBkoZ3sUXAubNA3JzZW/tPjoGAma/1QntXsX0ZsbegDkBZ++ESsGVbsJ8Rd7VnMz4WXkajjGMiaGGvaZRI8/ehexAHXpX/sC1Fsn06YfNisrBZeP1MffgsghLtGaN+D0YCZI5PLi07aed0tcJc+aYX8/OVh2+PfVStCzcoQ6VGx7bNCEKuVi9Wvxd16yJulSdu9teXQSRCHw+5wLPmhrLQVQ1HoZCcg4mp/Rv8B1+P+5064JJiDKntCGcv8XQ6m9U9/h9gvGcIP1GjfN24fXJ3hichGlWsBOvTbnC0zrRooV+tBhAlNNJfDtnA85QhJ+VkT5veJxvU/QLupX9FF2OByFadmG0lxevmYdFJLynMPMwjm8nhrCWv3HG8N8J1+CEdq/K5eTfY82aSKQPB8j7WGVoWuXzUF0tdUwjH44jpp7tRMywXO0xxhiAOwB8IQjC1YrzyidyGoBPpb+fADCHMZbFGGsOoDWAdwC8C6A1Y6w5YywTwBypLOEFNsPlxZWBA4ErrogMNDw0aGDsZWa0SdEu7nSUZ+NrPlHFrObCaJGj+s5ji/Y39bNQzHJ9EYlF6cHlpSt/OHyAvOjj3exPnAjMmGHPun3hQpu9c0/YKkxYvoIv9Kjiva6TBMpm+xm/LwS0bq06xysw1n53fp7NVT1BN1y2mxFVJ/66U3Yedwqaazxle5T/KHsvMAiylWfD3L3WFY4YAfTpEwkxligFV0GBKlxvWsen79dPXINYWQmGDaoaNDAv17u3/KcPAs7q9gy2zD3b2W85YgQwdy5OaPcqVrV/WX4ZlJ7mWsx+q+XtXsX67k8bXs9xqPT1sZCceDytnpR4RTPQQV7T6T03ylDDiRojeOAQAHYr/wnX9o8OE5jpV8yBNoW6ZqWV477uXqhLF+Cqq8Q8prqVW/dFO7fE0/MvaRkwIBJKUw9pfA1vm/SU9/LYpnLr4lyntmsn/q46Id56ru6LoyesAmbP5quLIFKJ6mrgrLP4ytrw4Bpe/SWKMw+46FhysqnnE9i9+GSusrbtlqTxyvC2/v0BiD/DgIbfu2zMAV55jEyapFortyzcoZ7TNYTH9q9mn4fmhTujrh8NcuQL1FFwATD8TEeDEc/3xvVYyeBWka3HnUPvsSyjnM9HNf4SNw/6P3w9+xyxT24fdWmNrPUGDGgjBqxcKe7ZTjnFZYPe4zPJWUe4hycz+0AACwF8whj7SDq3HsBcxlg3iOP4FgArAEAQhM8YYw8C+BxAHYA1giAEAYAxthbAswD8AO4UBEEnhhDhiGT3v/XyJTaqq3HjyN+zZwNNm0YVeWr8je7aM7IUgQDceCPw1VfA7fabsIvfF6JNdRpg9guKHlyRyTvbfxRl2Qe8eZd69hQts3gIBIAhQxASOBIYJyPKsdHgXd5xOF88ZSK+9esIlvMCRxx1qVfFD3hr6mVgt99mXbge4mpskxROWos9xgySz+oQfg6KMg9h8z61JzljEL0XIHlwVYj5JLksQnNzgeOPjxwncN4O1pcEzH6/6EVuxYknAk89BRxzjHm5448H+0hcuvqYgEx/UMxFEGxsfp8egQAwbBj+cs87gK+7fPpw0HhpbvZbGSY2l8h26MGlfGvSylulpCRhTWeHlY1WCqwUV3DlBmpxUucXcPKbauWC9jlWPVcWQlizeVqZ28vwXTF10Q0LKPmfc1qLS2RlGV8z+M5DqnlI51k3yBet68Vn9LuOGoWMoUNd5aAjiKSjRPI+PvZYcS1hZ29o4VUvLF+BYIjhH9/3wvwXTtAtk3TG1Jxk+IJ80XsYsx9OT/oNdA3sLrwwKpeVCqO5nlOhExfOOw/44ANg7Fj96xwhCvVomLsX/xp7IyY9u9a4UDjUKuea6LBkKHZw6VrH0QsIfZa0fQNLX15kWsan8cjO8IXQuug36ZrLsWPQIOCzzxB8XP28ReWBKy8HTtAfvxKNae5rwjWWI7cgCK8JgsAEQegiCEI36d9TgiAsFAShs3R+siAI2xX3XCwIQktBENoKgvC04vxTgiC0ka6ZJ7og7BFHb6KEY2TR16sXMHw4sG6daBlthlU4DZ62FYkRGZMs+Vu1clavTfxMoKExTVGGKFRu/u8dfhc2z13vun5BYGLOOpuL5HDYLG7ivAgvyDisf8FIiaDoXzg0jqnwWEf4kukPyiFPzaB31R5GAkOuJ6pLF6BFC/0Npl1PAYvi2nCFtjHb7MaYoEEusXpLZSWweHF0cm0tjMmCUtWY4CaJcZ8+4vpFom3xr6jJ+0PMX6bB6Ld6cNRt6Fq61bQZpx5cjAmR0G3p/KjE8cPJAhcrYY3f5rwbazSh5pzw+3GnRp2zoySS3wGdvCAZCgteRwJYSfBr1h8KUajA5pyq/a7ChiglWQcwoIHk0VBeHilQUQFccQXaFZvkqOGBlFtEmtFuXDMxr2JYCcyT1iMst5g82TKXo98npF9IYiWLF5tfD4VU+977RvwV67o+a36P5BmsO/MoxzU9ahOkhLETXam6WozqohxPzdZN0rXSLHNPQMaAiU0/MS5w4oliuHNAtWZiMDZcnNbsQzw6+hbXyq22Rb+4uj9d2dTzCYxq9LnhdVmBo/N85AZspofRkpUFnHhiRAEtPQMBFkwur6hp0wwvkQdXbKEYZ2mIWXz6tCYQEBVXZskww9iJxa4cgJTChlWr5M1+rAWE2jGQQhQmN7NavIef5kUnluRBGaJQKQwIsJCYMN3lhOh0fJjZ4n0MaviNdcFIQ47acUqU90KzZuL/HKGIwu+vmUAsyvVd4sgJJhZnhCNcWcQHAsCZZ3oSc131PBjkbPMxAW9MuczZ415WBpx6KnD++Y776BRliMKY5eBKc7Q5LbziqXE34MvZ5wI+Hy7u/RjGNI4EOzD6rWa2+CCS6FyHGwbcj/tG3OGoP4LAVAo4ALim/4OO6koWdF9XQZBzVcaanPAG32gtGo5A0LVrXPrDjVJYYUMh2K8yEo6pPJsz7JWUJ+atqZdGh8Q57zxdwZzSgpcxACNHcvcRgOjd3qePdTkFaa301RAOMSTDEeECgPwlqTwi8vJkAfofi07FyEZfAvPnA23aqO8tLCQvOYJQcPAgsOkCpjK0xfLl5vlsiooi3gz5+ZFQ2SaYKe9T3jDKauBu316l4BrV6EsMbPCtftlwRJSmTYFzz3VmYGdiJPX7caciwyCfpe12wkydKoZp3riRr7yT9rKz8eO8szC31bvu2igtjbSjCBNu1n52oA7Tmn/kqtkPpl+Evwz5m6s6Ug3eFArn9nxS9sgyRec982o2jw5RmGRKo3HjgKVLdS/5bESVIexDEvJ0IZnDmHhFeCAoK3Nflx0Fl1KppRyMGjSQExozvetaPExyKCq4aGBMVooyD6Fx/m7LcnoKlfCGQkxUqyjr0WbC6VNzx9C/4aWJV+HsbsY5XlSEFc1Nmjhs0R4ZWgXU2rWiwnvePP0bwu/qkiXyuyQrRXQWZHohCnlJayvIGBD1W0rYscjXjo927q2TFs2q4VznmQgLU/s3+D7qGjdt27pKsuuUehOiMAaEx2jV8+HGg0tDdqAOuYFaICcH67s/jTkt35OvRf1WGgtBI8OXAQ2/Q03+Lued6tIFOO88+bOf3Pl553UlAbrPvCBEhziJEbIFq1JAqeTkk8X1pV0FTayYO1f9P2BLs/Pm1MvQNH+H4fXwczWk6uuo+vtWbsGStm/IuSRCAjO0Oj+72zM4vu1rACQL2VmzuPso3uQDjj/e1pxdnzy4TAVaZvsfKdfdLZ8PEY+zs4GNG6O/uyFDdG+vT98xQViRk6Pj3FteDqxebXzTmjV8Xl6AHF3AbIgPpLNhVMeOwOLFKgVXgAX1x6GuXdXKwkaNoopwrbHrDBRYgoDy7AP6OQrd0LOnGKbZrZe4WX86dULN2A7wLV1s7jFox0qke3d1vkevvg+pD4MbfiMbcBVkHK5Xc88vC06PeFJLTGzyMT6cfqF83LroV/lvs3WS/L011oRv79fPEwNUAKjT5KlPyjGpoEB9XFMDgPbdsYYUXETqsGGDmOjcyq2cBzsKLmXCby2CteeHjFXYRBMYBJWVjY8JpOBKYtx4RCgn7GObf4A5Ld8BoJi4nZgLn3GG/GeLwt/t388iSrdL+jzGd8+yZcD48eYbLg9Z0uYNvDDxqsiJggIxZKlRrPnworhfPwQLigGow7ZpcbMY0S6Q6c01p0HuPnw/x104TjchCr/a3VD+e0bz98MViv9LYWjntXobM1u8L1rCAqLnWAqhDlGYhJuCJCaQ6UObcNiS1q3F/3v08K6BGTNEhZIkEFAm4I6aW8aNA/r1kw9jti5golIhXZT1WQ7DNdphUMNvMLnpR7rXijMPAevXR29+w+Tmis+AnbVqLBk2DLj+eqB//8g5m2PewTqTtbTEy5OusixTmGkQjhjAyEZfYlOvfwFwN8/aEcDQWpyDpk2BGTOwr1Zajw0fDpSWcn93T467Ec9OuDZ2/SOIdMArYb8krzAT7vt9IXFeSDH8ir30RzMuxLCqr6ILjRgB5OWpFFx+X0hf0tO1q6zAD6P93vzacGR6kYaMFFwSDXL2oiJ7r/VvzKvE9CoHaWWl6GHVvn30NcbEHLj9+pmvZTp3NrwU5VHEjA1cvKBv5Wac3Pl57F18IloVOZCXuOSyPo84jgBkRFHmQeRy5AxvkLsvak4uzDyEbuVi+PP3p1+Er2efK1/rUGIcOlgAxJQx2t9KEDC35buY2ORj7v4bERWi0JdkIQr16NIFZ3R5Fuf2eDL5+5rCJMnOiXBNfcjBVVMjunoaWbzaQbMYMSUQEENIXXihYREu7xq3A1lNjRxruzp3t/3kp0TcKM46yFVO75EozDyMEdVfAgB6VvyI+0eKYaUqcvaJBZwouFq1AkaMgLB8BQY1/M7+/U4oKhJDIHi1iLYgO1CH4dVfWxcMo0iI3qL4DwDR7u5eof3FSKFggSCgeeHOqNN2hlDbOeMUDKmSQnEWF2NI1TdomLMn4iW9ejXQrRvuG3En2hb/CixZIoZUWptaoSr7VG7B/434KwB33on1Ed+qFfhqzQ1iXoA//Qk47TRvBT1jxojW1pJlrfJZtlK08wqMV7R/Wd5Ef3LsJqzq8JJ8rTjTOIScV5aXiSZTz0tUMbeWZe3HK5OucNXGpX3+iSv6PhLdzPIVYl6IcBjCVCE8Z4aNtQy8bYxY0PodzG/1tu61gF5YHIPIFNkWysmwwVm8LGTrk4V3FDqTcstCAy+vMWMiHnrSfbzjVeui39C3cnPkhNYqnCCIKITlK0wF22VZ++W/N89dj87hPJ6SR7rZCJqqoa3leaFhQ3Qt24rZLd8zzPGnXHvl2cgbFL3n05xZuRKYMEGdl8tig/PO1Evx6cwLjAusWwcMHCjuu8249lrgyiu9y0uYkQFcfLG4HnbK7Nm6OWdXd3gJfxt+l+4t7Yu3oXPpz3xGQJwyv+PbviavUQoyxfcm3iGIG+XtRkXOfuuCNvj5yf/h/3RClC9s/WbUuahnVzpzcqfn0L5YnY9sbccXcdQgrHdI8ImKXO1zHQrhzG7P4l/jbuL/AAbcM+xu/GvsjXIbRtFfkgrGcHm/R3Fmt2dJwRVDSEKeLqgUXCSsMiTsit2li+gNNns2331VVbLLvgrZg4sDFwOZcnEkLF+B0uyDUa65APD8MVc7boPwjmw/Z6xsHTL8ITw/8RrVuZ/nr0Pfyi3iQSISPmif3WRPOjFpkvG1uXPFsEWKxX15jijQlRVcMf58pFCIPad2eQ4buj8lH9sZfhvl7ZZDMpzY6UVsX7gu8kzk5ak8ZlBWJio49KwXk5iALyTHxc/xu0z4W99o1kzc0HfsKAr927SJzUZFqlOt4NIRKilCvxgJjOWzUk6nAAuhKPMQAKBN0a8ozxY31LUnrELPih/l+woyDqGfImRJuqwvs/TmaMW4n5dxBIOrDPJt1HdmzwZuvtl2uPCr+z+Ev4+4UzyQ8teGyfTrCCZ0vNtenXw5TuvyX6723DyrdjwVyYMrwr4lJ+Kqfg8bXm+lUX45Vg6WlDq7jyDSGZ11iDw+6exrvp+7AfcOE8fkZgU7I7KGggKgSxfTcdDPQsm/F9TBz0LAOefI89fKDq/gi1nn65YNr71enXw5Ar4Q97ygLRelDCwsBKZMEdeRK1eKMiaLcPoNcvehMmzoqkfLlqK3lGZujSInx9hz3Ck+n7WiyWyNnJUle4ev7/YUXpSisRzX5k1xn6Jz73vTL8HrUy7n69/FF1uXYQx/Hfo32VspTPVwgzzeHvH65Mtw86D7AIhKZqf5yh4dfQseHHVb9IVJk5A3qr9uHvF7h98NAGiYs0f2ZNSGOQ+PCdcMeEg0zALkZ5UxiLnhAdEob9kysd5hd2JtxxcdfQ47dC//CRObfiIfJ10OLitSqa8pRmrF1CGMScFFRkK49lrxu/L7DRP/2cLnw1+H3IuhVV8DGGQ+WHmh4FLUoedtMqKRjqs9EXd6lv/g/Gad56Q6b0/kwOm77ibUkfZeD/PNeE7btsDEicbXDTwtupf9iAY5e8UDve/Ywfs7vdkHUnXqe5PFgysvcBgH6iw2Q4nA4Lu2I7Cc1PRjTGr6MS7+cIJlvXp0K98KCEWRE2ma5/KD6RehU+nPABYkuiuEFmkcUim49N6Bnj1FT/Nbb7X2sFKEmPNLG1Nl3qmAL5Lfc3j1l3hBNraYL7afJsp53RCFinDUmbwJ3U34cX8pGpgJpFIZN3k7srNVYZMBjeVtOG/WjBnAoUPARx/Jl+x4oLvJW2p2p/YdTI83wgMYQ37GEV1BWhh5LSTNxUEbykFlSUlPTxCEEp29i6xE1ln/FmYejgitoQhdzRiwZg2Eh+4xbCpVDfV8TBA9QHdZ5yTNzxC9eMLzDq9CXvvNmO5duncX/xmh3X+nqlCcQwF25PjVCPhC8jrT7JPmhp9bq++jcWM+Dy6DelqfMhFC9xfBRgy3rsMBpdkHZO/AZgVi5BKevW7fyu/x/d5y/H64UKwn6wD2HDVIyQDj/LwA0KdyMx4fe4tUTiuv0OmL9rc8+eSIkefvv2PhY49Frmm/1+bNgXclJZ7HsuukzMGl/fyp+v6mGOTBlS6QgouPzExVaDLXMIbj270e8zi9svWPYmDsXv4TxjT+LKbt1jeiYj07QFi+QmVRYobuIiZWk5+b0J6ppOByIngTBHww42LkZRyVj5UsbvOG7SrbF2/DI2NuAwoKrMNVJIj9S0/SDw0VJ3YtOln/QgzyzjAI9t8t5XNg9HeK0738p4gFHpFcSF6mx7d7Xbay9uv9Vj6fKCBZt87QwphBEDf5incg/JePCSphVbiOFzSexEB0UudURTdE4YwZsqd+WLDlhunNPiTvHj1WrYoKMScrFNesAQYNEv8uKBDL2iSs2NJVBnNi6rmgeQfTJS+dFR1KtrmuQ6uAP1ynCJNVau6VFV4vH1q6xixiPEHUX3TWpiHBWMEFqJUxdZqcNmZL3ZT24AK4ZEFX938I383ZIB/zftxoDy4X31Oy5OF0y5gx4v8jRxoWyfQHVftjrr2y1b6Od99n9D0z5r3HmwI/ExytVN6aehlOV3izZ/qDUfPr17PP4QoH3LboV/lvbR26BrnK72rdOnUEE+337feLRscDB4qeX8NjoChMpRxcSlKprylGmoyaBDp1ki1A3FgtEjbh0Mz3rtiMZ8Zf50opoKfgqszZh2cnXK8uqAi5OKP5+3hv2sWeJHKsDwjLV6Bb2VbrgrHGSkHj1JNk2DBgwAAxZ4xdtM+1RTLchOJkwWCxa7lr2D2265UX5hUV1uEqEkgiZ4virEP6F6R34PXJl+H4tq/Jp91Z5Lt8LtLUg4tIYrKygLVrUZZ9AAvbiHkBTIX2LVuaP+dXXin/6WOCymtG+bfZW3Y0lOGJIUii0Q1RWFICnCnmJVNatTtBWL4C2YE6HHWRCzCtUApEdOZbWeGYY2yBbBc3sgM7Hly7jtjI6ZuinNL5OXw2c1O0cFLnSzb72rVroeHVX+GuoXeLB5s2Gd+oUIhm+evSRuZLEF7z2czzcVa3p+VjKwVXO0VeHa0BS3g9ISxfga9nn4P3p1+Ef465GUBy7WPsIO/NcnPF/fC6dWI+LB3yM46gReEO+Zh3H3E4qM5v5Uouly6DXYsWwPXXRzy0tWiez009n0Cnkp+t67Wa6HmNXvXqCStuHChyBzb4Fr8tPM2yXIAFMa3ZR7hFClMI8D9np3X5L/YsPgmA+D4q59dWhb+iddFvCm9p9XMUzs23a9HJ+HPff0batmuw07Kl+ljve5w0SQyfOXSo5VrQDUnpwaWFlFpxIU1GTQKNGonCayK+cCw8upf9hLE1n7tSCnB7fEgDZ/OC3/Hw6NvRs+LHhOXM6Fr2U0LadUNx1kHvKnOaQN5KEWoVX9uIjAxg0SJVvhZutBNyMntweaHg4l10mbRl9s7S8kaBXu6qBWK4vAENv0eFyxBfV/Z7KHLgxoNLKXht0UL8X5kgmiBiQefOqkOn3p+/HipUbfQzfEExp8TyFQCAEzu9gOeOET22osIfa5J/J7Ngq03RL/hi1rmW5eRwtFqkMcKrz6j0UJnY5GMcWrrGk3pThlatxP+VihEdYwHD3wMALrpIzJvLydGgGH3fVQ4uk1la68H1168GOW6Hl9zAETTN32FdMEb4WEhcO06eDADIzzjMJbzTov1FsgN1WNz2TdF7SxEiNIqzzpIty0k+RBDGdCjZjlLFXtZUWL5gATqXbpPXAXWCtEYIe3ApirYu+g09yn/C1Gb/AyCNg6nswQWIY5pWQG8C76c9pFFwuYrakS4hCgFzrznNuuDcnk8iOyDJzczkZ1YKLLN5xaR9DBzoyIM8TIYviIqc/ZblAr4QCjMPY2WHV+RzvK+V3yegMPOwVE8QHUu2oTp3FzJ8dWha8IeqrNKD69TO/8Xvx4m5o4uzDkWezzZtop5x3dCGZt+5HYWsV4ajUpsp4cGl7F+y9zWFIQVXOiFYx6wlPKa6WlQcVFWJxzqDlV7+LLvIC7JevcT/O3aUQ+mI14P65RHtbhwPOpb8jI9mXBT3dt3yyOhbsX3BGdYFeeCwGtK16grH4u7RIyqMD5YuFZPTJgJlDOtkVnA1aGD/Hh4Fl97727GjYZXyex8KRW0wQ2DOFZUek9D5omlTYPny6POdOiEcg0hpTeakr6d1eU6618EG0+cTE0B37QqMGhU5X1wMXHWVucU5QcQAXc8jBeGh6/s56zGj+fvy+fYl21XlAhohfX7GEYxs9CUA4ECtRggRDi0D4ImxN+GJsTcDCxbg2zkbcErn5+x+hJiS5a9Du+JfTcsIy1cYe2hJG2W7Y83T46/XPX80FEl17GehiMCmvrBmDXDCCcCUKZE1q47xz1+G/A3fz1mvX0dFBbB6NTB3LleT4Zx1Wit6O5hZMWs9uD6ecQHO6/Evx23xMLz6K2yZt8G6YIzwQRC9HSRhIYMgCu9s7mvO7PosrhvwQPQay6qejAyE/JyCSoKor0jvlTK3XUgTdlDF4MGqQ60HV1AvJHFAnNPMjEBO6/If7FtyIk+P445umGdJ0K6bmzPMeeep5oWTOj1vaLByz7C7xcg9Em7C5aaVgssMIyVWu3aiEb+WQYPEvVlZmf59K1eKMroFnPmFa2oif48aJd4XVsjFUJEb8AWBU08V971z5wIXX4zsBkV4aeKV0WVZECOqv0TdCSujrlXl7kGb4t/w84Kz8OvCM/C45Gmp58GV6a8Tc5hpDUwLC6NCGermo+3UCWjTBhg7NvqanefT7fc6YIC4H5cMATNM8n8mDaTgigsB6yJEqkEhCuNIdjZw+eURCxEdpQZjgphUccgQx834fdJv2qePOGE3bAjs2QPcfjuE5Ssw87/L8fDmnpHyimcgyho7DiTLkN2j/Ad8sEMtTCnP3ocdh/XjKRdlHkaRZA2j5cyuz2BUoy8w+qlTPO+nihkzxIVDx47i5HfXXcAHH4jX+vaNbdtmXHaZs/CG8WLjRuCtt0RXeLvwhDDQW4gsXaoK+6UqHt7Q6Czg6kK+iLI6wSR0tujd2zj5r/SbOM5hM3Ys8OyzDjsmkZdnnAA6P99d3Ymma1fgf6IlruEGkUgqXp98Gfo12GxaJqxMb164E03zIxac2hwQhqFfxo/HnvuNw8RNahoOedwDLQt3xGVD2bP8B/Rv8D1u/Mw6dr/rECWSMEk374AJ42r086EqQxSq1uanxHgdkSzk5orjPACcfz5w5IjumF+QeQQFmSZ5zxgDioqs21u9GsFLHgEAFGYahMDlwDREoeZdal64E+f3+jc2fcC39nhx4lUY/m973k+J9pqUFeKyZ4c0LyvXThzCqo6l29GxdDsgjLfdh0TsZQgiFZEVU61bY0T1l9JYWGF+U00NHh19K3YdzQUgeqXqGgmcfDJwszTXGrzzfiYgL+A+j2Us0FU2SZ/jjiH3SnP5UvX1CROA6mp53Lu492NY2PotQ4OVmvxdqs/vyoOrb1/gww8jx+kqFM/LUx83bQqcfbbx51240Lw+o72bEZWVotFiYWH0GsWGImbr/DPR+L7LRMWVwhBdyQW9HsfC1m+j+f2XiGvztm3Ff2EyMzG0+puo++4dfhdmt3wPvnWniwbQmzcD114re2CGKdGJRhTSMxbt0AF49FHx7+7dgdmzUXheJGTpixOvQvfyH0UP+o+ltf+cOeL+9zSDNYwdA+iASzXEcceJ/+8Qvdv7Vm4BWAd3dcYa5ZrJSc54ggtaLaYhlNQ6zuTmRgZpPQ8uCMBZZwG5ubhp4P9hebtXospYofICq6kRvcbKy+WcW0GNhZbSQknXAivGJIuS9f3pl6iOt8w9G1Oa/s9RXW2KfkUHjRW8KRYLounNPlAJIGUyMkTvrawsUXG6dCkwfjywIXHWuwDEvrRpI/7dpEli+6JHTQ0wc6Yzz6hweNfwYph3MZuXp/bsUaDc0Ghrq7OZl6Uo08PQmUpikezVDhwbNUe5swBg+vSIZ62N9gCIC/fmzfW9y9KF448H1q4FzjtP/EckPQMafm8pKFFevbD34/hpnphTSikg37v4RCxo/bY6xObGjcC4ccAxx6Bd8S9oUfC7eWc4ktB7xeyW7+GGgQ9wlW1d9JvhtcENv8H+JRZGGrKCi++DFWUeRH6GvlEMIIaoXtbuVfXJqVNFq+T6ht9vbNAQxuyB4nnYunZFXYkoyC3PPmCjc9qmnIUf5mFY9de279EqqONBfsZhWXCmVbDJ+wqlUDLGwpqCzCNomLMnpm0QREoje3BJ72d+Pp475ho8OvpW6/VvRQV6V/6AMY2/kE8tbfs6Hgt7ggDAJZfIxl1m46CPhcAYogTvyYCuB5f0vWX7a1GmN29oQqmt7/40avJ3cbU3sMG3WNr2ddv9lOneHThXEXY5w7lnclKTmQn8+c+R44KC+CvzGja0XqMYcG3/f2D34pPQKG83AOC5nztER+GRKM06iGYFO/HkuBtQka0Thv+EE3SVYxm+oPjelZWJso727cVQimZI76vSQEQAxHxoBQpj75UrgcJCPDr6Vnw3R5Q3dS79WTT6XrVKNHC+5hpruUE4sk11tXGZ8ePF59qtLIkx+V/tCatwepf/uKsvhrQr3o4XJl6lPkkKrphBCq4042/D78TFvR9PdDcIBfL87PdjdceXMUqxeOTFakN9df+H8OyEawEAzx1zDf4x8i/ihVatcMvg+3D/iL/YbtMNRuHATuvyH/Qo/yGufVHStOAPVx4r3ML29u0BQYCwfAUaGGzIHxlzG18i+4wMUSCWDEqlZctES7bVqxPdE2+ZOFG0SlwqWe3pCdJyjL0a9JDf2T59ooRltSE/t2TYz4LYvdietf9nM8/HjQPv1732yqQr8M3sjfhm9sao0Bd3DLkHS9u+hprC3Zja7EPd++OG9P24EusxjcUa72apTRvRKMFsgZ7qZGWJYR2qq83j4hOJ55xzHN2WG6hF4/zdANRriILMI+KroFRw1dQA06YBGRl4bOzN+HzW+eJ5I69hrSeHQ3gEYO2L+QxLXp18Oe4edrfh9YAviLyMo+aVSBvOHLNQRRI3D7oPP8w7G78uPN2wTHHWIdw+5O8AksezPWXhtAxuUrgbfSu/d9WU2bzz1m/NHder9Axc1eElvDDxKvSpMPfK1N4XL5TGktqQprJ1+qxZkZPSu8MVDjgspA2HlA7najMhKxDE9oXrrOsmiPqKtKZXhsYNy4ANWb8e6NdPHQJW2u8UZB7BlGYKo1CFt3+d4EvKHFw3DrwfXUqNc4DrenBpcwFpP5e0VnLycR8ZfSuWtX/N/o1KlHsR3pxSqUhJSeTvZPJU4/jhM/11hhGAlJzY83VMafoRAGBCk0/1P2bjxsDZZ+Pg0rW4sFdEputjghj2Wfk9ma2LRo4U320AhRkaj/asLN17y7IPoEXhDnQp/QkFYeMtn08MS8ij/GvcWFSErzcIOQ2IMq2VK737jX0+BHyiUj2pnhuJwoxDmNbsIwwPGzfNmiXmM02SVBXpCCm40owFrd9Gp9Jtie4GoUDemDIGjBvnLhazFmlR1qxgp2x1NbLRl5FnoEsXtCzcgfFNPvWuTQ6M5pc/9/knupUZLzzjgW7CzDAdOojxfHVgjHNxW1kJnHSSfPjV7HNx97C77HUyWSksFHNpKBdX6YDfLyolwxsHvR96/nzu6kY3+hwnd3peXIiOGKF64+8f8RfcNEhf+aSHE2vx5gU7kG0goB1c9S1aFf2OVkW/R72oS9u9gTuG/g0/nnQ1/jnmVu72hOUr0DhPxxtRh6fHX4/pzT7gqFRScKnCKtj8LhS/o67VJkGkAo0bc3tbluqEJgGgPx7MmSN6Ep15pup0hi8k5voaPDgSAsSAWIu3Di5di4lNP+Eq2zBnr8poZGP3J/Ha5MvlY65tL2P45NhNuGf4XcDcuXhn6iWGwrJVHV5BUeZhMZcBT9XhbyuZc1gmGjPhRNga2iKsTUHmEbw19TJX3TBT3B6uc25BH1Dky21d+BuGV3+Nt6f9GRf3fgz/HHMzHh6lP+86Cb0pLF+BwQ2jwxzxUpolejL4WAh9KyUlHGPoU7FZzNd32mnq9XJuLtCli3ne35kzRWFteDw78URR0DNvnnWHyNqZIMwpLwdatsS4mk8xvkYzbxqNrU2bAkuWiPu7FSvEqBQdzMN8PTP+OlzW59FIVA8N8rp95kx8euz5OLfHv+1+Eses6fgSbht8H24edJ/udTMPrqjjjRtFwx/JS6ZF4Q7ufoS/bk/CODMmjp2zZqWvB1eYsBK1U6fE9sMmBRn6ITn/N+MC5AUiiq/rRv1LNjwzJTMTOYHaiJIJ0hqySxd1OW0kBqXhquJ5mdT0Y/ww7yypHonSUlH2ocnFBwD/O/YiZPodPrtlZfF9TrV56pKM3YtPxsW9H4ucGDkSOOaYhPWnPkA5uAgixqiWlNOmYcpTq/DetIvR658ehJzTCkqUVkjLlomh7h59NO6Ww0aCaD8LmYZ+iQcNcvYaXGgghuwysTrhygHg96u0YUWZh9GphJTOKc2qVUC3btzFbxl8H1oW7gDazI9aeM1p9Z74h6CTNFcH20od2NtQ6QryOBaLC1u/iU/+aISPdoqehbyhccfVfIZHN0uhIM2EmR55iIQRBYskICNSFE7T4a5lW7Fn8Umqc/uX/Enfc6mqyjwXVKtWlsoEu+FW7aJUWGX46lAbMu6PNoxaWfYBtCn6VT7m8oJhLGIgFAqhd+UPrkPSRaqW6iGrTWPM5p6qKtGb0crAxgOvgqNB4+fajbGE0hNKOf2t7/604T2PjbkZvSu2WNbdqeRnfLqrERrm7JE9nZyGrH909C2yUiu4bJXq2ltTw2GkNEpExoA1a1Dx3KXGFY8apQ7rXF7OL+jJzQUOOc+rRhBpj88HrFuHQStW4KnxNwJQ5CDi8Wzo0UP8Z8HYms/FP/r0wbZnPsYvtz+Bj3bWYOnLiwBI487GjUDjxuj40EP4U+4L2HUkFzd8NsKy7i6lP+HjP2qs+2pCvwab0aviB6x+Ldow0cyDq2GuJB8Iy1ZqasR/En0qt9gOu+hZnlKDcPhpx1lnAd98Yy9/VqzRevhp+G7OBjQr2Kl7rUvZz+oQw7wGToEAMGcOVgUfwqhGX6DTw+frr0XHjQMOHAB69hSf1ZNPBq6+OqoYY0ATbVhNxsTyqY5y3ZiEHlxJ2KW0J7lVnoQ9ktBVnIj2wAj4QuhZ8aM3lWt/86wsoGVL0fqqV6+EWTVoP3NYsMSYdwJrXtZ3ewrruz0lH1/Q6wlsX3BGdMH8fFMLUQbBnqBr6lT5z54VPyK4bCX/vURiEQSc0eVZVOdKi0Gz90hn3A0ovTZhnM/j1cmXo9JI4eoC7oT0Rp/LwnoTAK7t/yBGVH8lHx81ETxrORzkKCv1bUT1l2gtCaltLxIV8c/9TKBVJpG6VFgkiA8zdCgKMw/L+TkBWIflM8LsfZGEPrUxVnApOXrCGtPrWsVDpq9OlQ/Udh4jaWznVRK8OPEqtaV6ixbRhXr1AoYMsdeP+oTVGN24cXQy+hhwOBixPn5/+kW4YUDE63pc489s1cUQeS6VczNv2MFjmnyC6rxIqOs5Ld/RDUH8ycwL8M3sjXhnWkTBZOpNJfHtnGhjuxaFO1RtKtfGViHPeldskUOme8ry5eK4c4bO+p0gCHOceFT07m1+3edD1dgu6F7+E4Yr9gPNCnaK76o0UJRnH8D1A/9h2dxfh9yLlyZFC+e9xMhA4dDSNRjY8DvxwEgJoTfwGQyGYeNEbXhXwoLCQlFZk+ReOUpaFO7Qlw/16QNAM9fX1Ymfj4fhw5HpD6Jj6XZk+WvRUc9YOiNDjMbQujV3f20ZzqbCvpm8uwkNqTN6ENaQgispyfTVcZcd3ehznNjpef7Km+vkAjjjDDHshwInXiBuUE6Hfx9+B16ddEXC+nJxn8dxZrdn5eNMfzBipaWHwXvEmICa/F3YMvdsADDMrSXToQNwVSShpFdW4ER8uLzfo8gNcAiGdZ4X2WJPWqAbKXUHNfwO/5txId6eamzx7MT6z/V6dPJklYLWso1hw3CgNpLH6d/jbsCSNuqkysWZB2TLRy6vD2kzPrHpJ/h69rkWhQ2YPRsYMECszisrSoJIBMOGifkPzeLaA+JG97zzuEMamqI3F7ZuLYYfqa4Grr8eR03e5U4lP2NVh5fc9aF9e+6iWsvsTL967cWYICbAbtwYOP5444pKSsRwtVIeEl6jnGHVX6MmXwrVWlEhhnBT9o8Jomd9OufQcIsXYW082Asdqov8RhXZ++W1gLB8BUY1/pK7nhM7PY+6ZWLO0juH3oPHxtwiX+MNO6hUih3X+k3cNPB+TG76P92yrYp+R43CSttIOXvb4L/LireWOmG35DZnzAAuuEDXItwIxiCHTPeUZs1ErxCOfF0EQWgoKrJ/z9KlEQ+Prl3F/w3G6PCwe2DpWqzq8LL9tmBPXmJFWNYwpOprOczwXUPvxjFN9EMeZwcUbRt57GzYEJ2PuW1b/falPT/tPdIAQcBNA/8PFdlq2dGEmk8iHn0nnigq5yR6V2wW35nzz0dFzn5VXVi2DDjhBPGY01Pt8PFr0WqZB+t6ACUGocwBANOnq4+vucaTNmOKUiCR7Ao5Wv/HBVJwEUQMWdbuVSxs/RZX2U4lP2Nlh1dw3YAH+RvIzgZuvDFyHDatNBngCzIOYVGbN/jbcIDSaros+4AqzNAV/R7B65Pd5Ufgpl07AEBh5mF8P2c9/r+9O4+Tojr3P/59elYYBhj2QYYdQRBkU0GFACK4gAsKroDgLipuUVzBuPyMGpNoEhOTeNUbE5NobhKNiZrExOQmmrhdjRrXaJS4xIgLLiDM+f1xqnuqu6uXmemZnh4+79eL13RXVVdVD9PVp85zzvOotjavl5014b60ZfHf6JDad9V43An611Hn6uOVp+hX+3xVPSs/atow3DDu1s3X5EJpCe7UXvygf4tenhixl0izFyEIfg3o+oEGdE0Pln5wtA9St/TmKCqQfENqTvqGhuiAc3W171DPsf/tat7zTwYO1OBu76ouqNkxvd/Lqg2K7T666DJJLXgftbXSwoVJi57eUN/8fQSN9fLY1o7f8AUyKS/39Q+HDMm+XSzmg09m0rp16etb2/l/1lm+w7u8XKqq0uYsszGXjHhEX57+48h1M+uf1wWT7olcl+T00/Ouf5g+g2uruoRqj8XkfCfERRclRtZGuuIKf1MfXC9um/Nd/Wqfr6ZvN3p0WorHxIy2AQPS0jsWtP5qZzNjhg9cbJdf6t6sChHgCs3g6l75SV4zoaKUW6Ni5vTtmbfq6O3/pDnbNc1yyHemdfhr65bZN6tX9cdZA8thqQGuLmU+UHf8Dn/QESP/qoWDowNlCePH+/TdpNUESo+Z/y67+uqWDR6Ixfwgk699zadql3xa0fnzpcMPT9o0PhCka/lnsl6hNLLNCI5Xlm1NqlNYCHfu9U1dMvUuSdLRo/8cXTMzdbZQpu+QhgYfnIi78sqmmlEpupX7mkxl1phW5xSl5+Rxv08aPCKF+rp22MEPngp8ZfoP9aVpd/gn9fX6w8Kr9c8j1uiZxWt9bW4zPzvyssv8zOR8jBzpaze10iuHn6fV47MMpJ8/P7muV2pAtyMKz+DqaDP/wg24+npp2rTincs2pIP9FQCl74tflL4w9WeSpBtnfk/jer2R1+seXXS5Fg17vPkHzKPRGr6+Tui1XjfPuqX5x2mGcKd5mTUm3WT3rv5Iuw14WXfM/aZ6VGYZRVIIobROw7r/J6+aP5J0zbQ701YnRmYHm8bMqUv5Z5rf8ExidO/6I8/x08/DLrkk8zHnzcvxBlAULWggnb7jr/XnA3xtisQNWra/t9AxoraqrYzfHPnP0q79XlZDzbsRW3rnT7xHjxx0eWI0WVSH3IljH/QPhg71o8emTk3clD4WBKKaTsrUUPOuzppwnzYsPz1p1X6Dn1Rtxadava5O//7hb6UZM/TQgVfq6cXr/FsLBbgn93lNvao2amxd03UwsTZXwGnBguzrm4FRlNjm1Nf7ovGSNCeofdHazn+zpMBNthSFMbmMM7bPGP9rXbbzz7Ie6td3BoH/mTPTC2tHSKQgDNK/VMS2qqZis54/9CJ/PvnOoo7Fkt7j+F7/StQceeqQS/TPI9boi7vc6YONY8b47/igrZH2+wil02MWdxZHHeWzDxSic6IAAa5+XT5Uj8qPtXHFqepR+am2NmY5rywp8+JBrGPH/G/a111ranllCyxLSgQKU+vGTuv/cqKN8L05N+nne38j8uX8pQKdQEWFr10XmlnS4v2EL2CLFqUNgku6Zlx6adPjPFPKrptyl+YPelq1lZuaXecqm6rYFjXmqp+9667Jz7P9vsLfL1nqQZbFnNzxJ/hfW1S6YpSODG2KxKCleEAo2G71+N9qRv2Lic9M/64fqqHbBu1ww2nJqQT79s2/zZNvuybT3+7220vyg7QrOlvazPDvsCOnK1y3jsFC7YQAV2fC6PQO4ZxzpHN2ui+5FkMeWtX5MWuWn60wcWLk6kydTEO6vaNlo/6sO+Z+M23drbNuih61nEE4x7BJ0uzZmlX/nHbq/XraTbYkHTw8ezCvR+XH6l6Ru6B0mW2NrGVw1MiImXMZGghHjHy4aV3ENh+uOE2zBz6f8Rzi729gzfvpubsjGi8LB/+ftGJF+lRwdAz1fqbQQwf+P31n5q3Zt3VOnx6zStdO/7Gm9fdF2VNzrkfW4MqzURv/237owC9qfK/1Gbfboe7NpNp+GTuey8ul887zo8fMNLH3a9qxbr0m9fEpPHTUUf5nZaX+ueqLumbanepZlfw5vHvvr6ss5lQ2f676LJkjxWLqWfWJ+lT7NAxVKanBXj78At2zz/Xp55LPd9b++0uShtX+W6eM+13u7TMco4IZXNgWTZ7sR28vWeKfFziVddYAV5Y2TaJjYMkSPbvkYp067rdp2+w5M2KkdRaJdsCIEZKa0h2N6vF28vp8RXQUlMe2qqHbBp1zWfemGaYDBiTSOKWlXz3zzMTDvGsjouj+sPBqvXjYhYn6dVlncI0cmTElaLYgVrk1+s9nXH2OGcqhWYeje76ln+x1Q+ZtzzpLGj487/pxqRJtlmzfmXmk2rlo8t16tg2yFQLIQyFmxOZj6tTk+5wWzBZbO+XutHuNbMb3el1njr8/fcXAgdK55yYuXZVlW3NfB4cMka65Rjr5ZGmffRLZX1rs5JNb93p0LEG7OfVe3sz57/6DDvILcvXptCa4kW/bvb5eWr5cOvvs5OUnneRnZHdGpZSiEO2CAFdnMmhQsc8AgaqyLYkp8fnK1BlUm0eQR4cf7juxunZNX7d4cdLT+A335Tv/VC8cdpFumX1zZLCpZ9Un+dUgkvSNPW7ThuVnqDpIf+IkqbZWDyy8Vv26fKgt4dGvQeeTlKHjP/DYosv1pQzpjcK2HHeyXjj0Iv1+4TWJZYNq3tV/z/kv/yScTqCx0Td+U9w256amJxGjP7pVbMp+DuFOrUzFaQOXTv2ZHzVbW8sXcUe1887SEUdo136v6Jgx/5tz86qyLUn/leWxrdL06Ym/pVc39kp+wdln5x3gMpOvvaP00dhhvas2Jj0fGEp7OKDL+zpuzB/8k5Qg+B/3v9oXpW9o8NNPZ8zwK2Ixn4qsGeI1RVJnS/Wo/NSnBenvUz5m+9yn2W8/afp0vXz4herX5cNmnY+k5AAXsC3q3r3puyZTbYkoeVyjsgW48grolJVpTM+3VJPyHVvWgjRFZeakq65KdAR0SUlF1OxBRGPHps0iTcwS22uv5A7+4He1JXWmz6BB0okntuz4aJnUWfQt0Kv6Y/Wpbko9nbNuZIbOp8g6W0Ha6pg5n35z7lz/Xbtunf++yyT0eYyZ00HDnsi8bXW1dO65aR27O0YVqY8671ijrw3SPyJN87Jl/ryj7jdS7Nb/5Vb3FQNopnPP9RlCCpDSLC/HHitX3b6pzGYPfE5fmn5H9MrhwxMDBipjW/IL9NfW+ppJBx6Y/d48nzbUTjvlHrCAkjas9t/a+/jBvu5tfJbibrslp6OM/x2tWOH76fKczRipOW333XZLnikm+e/rqVPze32BB8K1ufJy3yZZvrzYZ5IuyyxPtB0CXJ1Jnz7+wnr55cU+E7Qgx2qmWVYfrDg9vy+bTA2yuXNlQwYnnlbGtkhLl+r8Sb9smqacIYd0rkZhPCVZddkWda/8VJ8cc6qkHJ0BZ56ZCMZmGxVbHtuqZaMe0h/3vyrrOUjS8O7vaFSPtxLPkzrWwl/osZh0/vm+Mz9V/PcXBBOiTyo6LczW8O9p+vSs55r4f84RCEMRmUmf+1yLX15ujdLRRyeeP70hZRTlqFFJnVXZPmfh68KWDAGu1488V3s3PN20YMgQ7T/k//TRylMkSTfMuE03zvyef0/LloV2bupS/pnvCD7xRKlnz+QdV1UlHj635CLVd30v43kGu9PfDlmXNoMt4Ygjsr4+o1amrRpXt97/fggoY1vXnELzedSsPHDoE76YdoSYuaR6nGGJj2IwonXT1uQR32mf1Ayf3XN2uld/PegKScH3fvD+/rD/VZo/6OmkbZtdA8ssrQ5gmTX6zqsM57fFRbd9DhvxFx016uHmHR8ts+OO/mcBIytJgcsc7fuu5Zu0cYVvC0d+FwaDTJzk67QuXtwUSDLTj+d+S0Nr35GkpvbvpZfm/v5assR/vy9blhhcEx4U8+GK03RtfNBYuF28fLmOGPmw9h/yRGJRdVnQJog65u67+7ShOWxYfnpyuwRA+xg+XDr44Iz3rAVnlr2bIkN2mUi9euXeRrm/z2Pm9N7Rq2UmfRpuX6xcmf+5RBkc9Kek3i+h84rP4AotevnwC3XS+RF/q926pS+bNi1nXeucWhMca654n2Aeg1g6jJkzfWCvo+nf39dZO++8Yp/JNoUAV2czfHhycUAUx5FH+pQ1xx4bXeg9cPyYB/X4Ip+rOuu9a3NGbkSI19k5eezvdNqOD/gvgRUrmjaIT68OKbPGnIW143V1UoNzvauTZ5NM6L1ehw7/q39SXp4YwZqtQVxujaos26rdB7wUuT5mjTp8xF/8KOu0dSk7Xr3afy5OPtmnTgiOH2nGjPSp3XEZGsaJTq0DD/T/UoXT0CRe1PpRxmgnedZuk6Sder+W1qk1uc+r6a8L5WQvL8v8QbDQMVJnB4zv9bo2LD9d29W85ze5+mo/42DVKpkpUUw5cSP4uc8lBa2SZPowBh1Z2/d8O2MQPixrzcHBgxOzGZqllQGuvy3+gr7QzBm1QKc0apR0yCE+hVkmxx7rZ5XkESA4evSf9cCC6CLyMXMZWxD9u3zgjzFypKTMA3wSFi+O7FBqqHlXU4Lra2IPjY3aY8BLKosl77PFM6hCQa4ya4xOPxSkZGqMSu3WpYt+sOd3tdcgcrW1i8MO80GeEwpXxyXRxtt556TBK1HKrFE1FZt18tjf6dARf/V1NiLa2JlmMh8y/DF1CbIhJNq//frl11m9++7+XyA8eKZbxaamtomZbytMmyYNHKjb5tykGQNelCQ9s3ithnd/J/excmhOujEApS3rd/gxx/hZzxEm9v5ncs2tTPcoKarLc6cw7lH5qSSpZ7ze98CB6fW2mqtnT+nKK5PrjKFzC+5Bp/T5Z44N1er71TSrV/v6WUuXFna/2Rx9tB+sfc457XfMzmzKFF/7HO2GABfQFiorpR128DfDWaapD+/+jkZ0/3fu/bXyCzM+Wejre/xAC4c86fcXHoUakUu/zBpzF2aVdMfcb2rJiEcSz9cfeY7u2OtbSdt0q9ik2+d+p2lB0JmeabSzlGHka8jeg57W9/f8buJ5uKsgLTXS2LF+ZmNEoVdTyrZmUt++emzRZbp615T0B1OmSF//uu9AGDYssThRgHzMmOgClytXptdoIMDVOaR8Np84+LK0jtRf7nN9er2MyZN9+swrrtB23d7XC4demLw+GIVu5hJpPVNThppccidS96AuTMosjcT5ZOsgyxTgOuIIn+pEBZgAVV0tTZqUCLjnvcPWXP+YtQU0MfMdTUHB6Ug77+wDSi347PTv8r7eXX6GJH/dKa+M6Z1lZ+q7M2/RPg1PSZI2rjhVu/R7JSl98ropdyUG+/jXpnwv9+0rXXaZduv/onqF0rGa+X9f2/0Hqo2nOcxwLcs0myynBQsS6V4ypl3s1k06+ujoLr7Ro32nWrwOGtpWdbVvoxVw9HFiln5FRc7PRUO3DZJ8e3tMz7ekyy6T5s9v2qCxUSfu8HvNG/RM805i4ULfQRuehS1p8fBHdO++X4l8ScY2/OzZfn+hgW7x7+Ud6t5s3nkB2OaVZ0srHPSJjOz+VtqM76T7pfjs2xweOehyXTjpnrzPbeGQJ/XJylV5b59TXV1eNQjRSQQDsW6c+T39fcnF7XvssWP9gLT2THXXu7cPcpFmEyWKABfQ3k47LfEwZk5JY5yrq32B01SHHtqqQ9ZWbdaP534rfcWee0oTJkTWpYqZS/QT7bXdM/r1fl/W84delLbdwcMfT8wUUc+eGljzvh81lUdaxePG/DEpLUpYamM5PqJVks6feI8unnK3fxJ0NoSPlnOkdujcKsuC40yalLTJpD6vaVDNhogTK/cdDGvWJNLYbWrMMbK2okIaOVKXTf2plm7/kF9Gw6F0ZPtbjkpHkKJflw81uNu7yQvNfJqgIBXAyB4pge66Ot251zf1/Tnf9aO3167V92bflPQZTOpni/gMN20XnH+2FAeZZomatSgVR9ro9CuuSASqPr/Tfbpi5//Jf2eFGhEXFXwG0CrhwFHMnOqqPg4eN0qDBql39UdaOeZPmt7/ZUlSTUUoUB9cW2srN2lin9eT9hPlj/tfrR/PvbHp2ME3/6pxv4t+TSjY3+wUhRHKsg28mT5dO/d9NXrQzMqV7VcPBa2Xkuo93xpcn59wr/64/9Xp68Nf1lu26IYZ39fAmvfTt4sSf22PHtLatUkztCRpdI+3NC/D7MBbZ/+X7pj7TY3v1fTZ0jXXJNXCbdN6GxEz1wB0PlVluQdtvnDYxWmzYBJXxoYG6ZRT8krfP6XvP5PbEfK1tz89JjqIZSZVlzOoFC00YIC0dq1i5lTf9X3VlH+aeduOXL+qS/vWyQOKhQAX0N7GjUsULo9ZY3KXyzXXpNe9WL487Ya2ucx82pM0S5ZIq1ZFjkiNmUukKLxvv69qz+3+rlE93s5+oHB6vqgv+fhxgjy51+9+u67Y+aeRuwrP4Nq44lQtGPJk4vnp43+jXfu94p9MmCBde626VzQ1OPJJRfTFXe6UFNQkO/jgyM6n/l0/yL6T4P00upjKso1eC1ww+Zca3G2DdMYZ0XXA0DFlC7CMHetna+aQV5HjFIuGPa5ZA5/3f2cDB6pX9cdJn8FEh21DQ8b8zj+a+y3NGficTw2YLRgX1MKJFPVZjgrEZ7J8eVKdv6l9X9V5k36V/41AoQJchU4dASBJ+Ls3Jpf0Gd/aGPH5i7gGrJtyV3TaQzOZJV9LI5Mghvd54YWJ0bdZg1O5BPvMFSTbu+FpNR5/UsuPg44hntJakhYuTEsPnCb4++hd/VEiwJtRHgMtMif3TBefMRZll36v6ODhj+vJQ4LZkfPnp99jxAeJFbpfbtw4ae+9C7xTAB3RwG4f6MlDLsm5XWot4cQAmW7d/LUozxSFOvdcqbxc39jjNt025zu6edYtPsgWv75mm6XeHlpZWgIdTDCItHvlp9q4cnXm7erq/N9xhtr2RTV+fHqJEqATaqfqkwCixFJvYysq0u8y27OwZEjMGrUly8wkU6N08cXS/ff7BmnPnsk1OyZOlO6+WxoyRPrPf6SNG5tmgkyYIF1yibR2bcY0heHRYDUVm5NmhCSCX6tX+2PGYqqpjckdf4Lsxm/lDnCZ6ZyJ92lTY7nqKj+WdpqTHOQLHs8e+LzeWpqhHleK6rLc+cATClj8HO0gW2CkosLX28tR7yOffPEDu27Qvz6OSEOQITBl5nxw69RT09NlVFdLn36qxfHAdsoMxYTDDpM++CD7LK3Ua9KyZfkXc12wIPO2+d4Ajh0r/eY3LSvqHP6/I8AFtKlwACh1QExSTc+gtl+8dlXYvEHPaFr/f6Qtj9sa6iDb6swHI94J1QwKX6+6d/epEM9RM0IGmbW4jhdKz047SdddJ1VVac8br9bPX90pZ3rC/l1SBkXNmdP0+KSTpPfekzYnzzzIKcv33jvLzswdUAtbtCh9WfCetuaRkjwvkydLjz3m69kC2DY0Nmp8r3/l3ixlsF9a7a5jjpG+/OWkRY8uukyL7jtRr24M1ZgfPlwaO1YnbXkw+fXxdv7ChU3pai8O0srlU8ewUEaMkN56y7dP0Pl07x69vLxcuv76jpkxJBbzA06BTo4AF1BEZn40yOOLLm3qoG7r6c2hgulh29VsULfyTXru/QGSpLLU9ImSD1oFqsu2+M6pcMHtDaGRpA0NvhBrba30+uvSnXdKhx/etH6AP07UyNjG407w99zr1kl//7t0++1JTeDK2BZpjz18x3dc6PeWqJMRUXNLUuKG/qLJ8Rzec6K3k08vJ0k6OyLQFYw0m97/JZ/O0GjIdkr5BEYuvVS6KD2FZ9z4Xv/SS4ddEL0y+Ntdf9QaHf/gUfr232f4ZVdcIW3alHF2lUnS5z8fPeJx1SrpS1/Kfd6pteGynF/iRnTgwPSOvj339EGotJMsQLfyuHH+fbYkrWc48EeAC2hT8dpZW4870QeD3ODEukQ9oHHjpCOP9I/r6nyb5K67JEn/PGJNdGpgKTRjuumaEpNLvz727Zv13FokOHaXPAYqoBMJvltn1L+oxw6+XFL2bAp9qoP6cFdckT6CO95+vidL7ZigU2zmgBea/s5Dac1T9a7+qOnJ6NFZzy2j4Htxc3hA2zHHtGxfkq8tumFDxxzBDqBt5FlXOjWQnvg2j7fV6+ulc87Rlb//iR7412jd+/o4Te7zmvp3+VCvbuwjd3xoMGFUf0m/fv5nbW16QL89A1yHHCL16tXqDDzoQEaPlp57Tho0SDr22MzbRQzcAtB+6O0BiihmjdK6dZr4uR6+A1dKb7AVooM4PFMiSI+Y6vUj12jpqIeSzi0trZpzunXWTerf5X2N6/Wv9HNLLepdV+cblEOH+iKZEXWCUtMVSKHd1tdHNmArYlulpUuTF4beY8ycH6UyfXraa5MPkOF5quHDE0Xmk8yfL02YoD8dcJV+NPfbHTv3MpqvVy//c/Dg7NtJ/qYqniYwQ8284d3fiVwe/rtJPIqnOAh/ZlauTHqZmcv8t7v99oUbQZ3PNWjJkvzzey9e7APg+d74mfk0Yy2ZzRqL+c/pvHmFuZYCSBL+VMVnOMXM+TpG4RSF8fZEaidTqE3S0G1D5o9psCK+fvseb2pG/Yu+o6G+viml3JQp/hpzQfKAgr7x4ENLOKfNx56kbhWb8tue9ESdU6Y2nnN6d/kZ2m/wU/55tg6u+GzqqNTGs2ZJgwbpWzNv03OHrvUzw6Pqa555ZvLzCy/0nW4tEcwQO3jYYzpm9B99bdBddmnZviT/nUtwC9i2zJ3rf2aqNRlcO9NmcJnz167Fi5OWnzvxXk3p82ri+c/mf0MvH3Z+8j7rUjJeTJ2aPJA2VXvOqqmp8YN34veRKH2nny5ddZUfzEoddaDDYgYXUERl5vyXZJYRmgXplM0z8BJOIVRmTqN7vtm08vzzpV/8Qku3f1j7D/0/f+52cfIOqqqkNWuaNVOiIpajdlVw7uEUhZGvCb1Hk/OdXJl+d7l+p/mef02NnymTIz1ds/aJjuPSS306odTAbSZDh0o33ND8/2uz/D6ju+4q/eUviVScY3q8Kdl2zTtWSwSfl9p4nbvWXpPmzm26GW4PUWmZABTcPz4MZk8NHepT8yxY4K+Jkk8H3BrBdTU+Q/u5Q9f65fX1frZ3nFny9eWzz/TqEWvUr/pDSXu1+PAVzanhledodpSYLIHLRKpAs+z1Luvr/ezqqHZF166+8yxXm3L0aH/fcN11/nmmmq4HH+yzJ8RfE6W2Vjr7bO14zTX6zuf+W9LU7McGgFQHHeTvuzMNCAyunakzuGLmfIA+4r4i3CcxIKom9oEHSh9+KD3+uH++fHl6uvawjpg2DqUjFpN69Cj2WQDIgQAXUESRKXOc028XfEmfbKnU25/USlaAm81co4kTI6uaGp5l1qgR3d/x6QB69vS1tILtelRm6egeNqxZpzax9+u6a/7XtPDeU7JuZ6HaF5H960mzYHJ0wOf6fbR0enm2/RLgKj3l5c1PaZHr/3mffdKXnX56Ws75XEGkD44+zdepy3Z92JojeJyv4IbxNwu+rE9GTpCGHBW9HbMWgG3LqlXSV29MPB3f63X/YOed/c+JE6Vrr5XOPFNnTPi1Fg55UlL/3PutqkofnR2Y2vdVLR315/zPccAADe62oXXpiZo7O5sAV+eUz3fc9dfnbgdkC4AV0rx5fkbF00/7Wd2ZhDMUMNMZQHPFYn5gSybB/Uh4BlfPyo80vd/LklLKCcTrAkaUMEhSUyOdeKL0xhs+nXum4NaKFT7QnzJLDADQ+dDjChRRLLW4qiQ5p9kDn9e+g/+mo0f/uTA3m/F0IxMmRK+PSB0QM9d0kx4fadoGKfhi5rRgyFPpK+I33MGIq3jwbfn2f4reUejcGp1l/72lpm5LHdVVXZ1cqyzf/4NsAYV3MqSnw7Zj3jzpgAPSl48Z42dISprc55+qjOWu81JbuUmVZTkCWP3z6EjOx/Tp0tixqj9uoYavXdrymZEAOpcJE2QjR0iS3jzqbD15yKXS8cdLc0J1LWtqpLVrVRFr1A51b0bvJ16TK+7aa6NHW0+dqrqqj3Xr7JvzP8faWl8PNJ+ahJnk2/aJ1yRtTQ0jdFyZ0vCG/z4KWX+jEN+pZWW+7Z+hlicAtLmIwa9vLztbXzrvnYzXudTZXgmheuCS/KzYbMG1adN8armWpnEFAJQMAlxAEeWaiSSpMDN/5s/3NbCOOy56fUTqgDJrlM4913e+x1/XFueWom/1B75GwamnBgt8yqMu5ZslSTfPuiX6hcG57NL3H9q34W/ZDzJmjHTJJU3PozrSMtQqy+qzLIGJsWObvz90LvX1OTusThr7oDYdm302Y9723NMH1Naubd1+Kiqk1aulmTOzb3fKKf7zetZZrTsegJITr7+lsWPT2wbhOkJR7YaZM307JS7TbKtMbZhc6urap4N/+nTpW9+i7kZnc+KJvmZW1ACVYqGQPYBS0bOndNVVSZliYnLRNbOC+6SFQ57Unts9K02e3LRu/nw/I6u5GIAHANsEUhQCxRB08ESmKExViEZZLJY9PUmmGVxDh0pnnNH642cydqz0zDOJpxdPvlvnTfylNGqRT1EU3+aww3T9p7fr4sm/yLyv4Pf08EFXBs8zFLqN69ev6XGuQF2+/wfZUiANHOjzjNPxte3Klrs79W8w37+5bDnlKyqkfffNbz+FMGqUdNllwZPX2++4AIoukUY407Xr4IOlu+4qbJCgvWr5kX512zZpkv+XSRtkN8hp1Chfl7OZacFzKsZ7AdD59eihJcMf0YefVemXr41vGhSTKmhDzBr4vGYNfF5SKMC1++7MRgUAZESACyiiHpWf5N6oPUYdde8uKTnAVZahPlhBnXaaHxkbGNXjbVWXp9SuMJNmz1av229Xr+osReqnT5cefDD/Y4cDCrlqc+QKgC1YIL30UnIdgyiZCoGjczv1VP/3kW0WX2oHaj6f++uu6/ijEjv6+QEoiMQnPdNnft48aa+9Mq9vbhCpV6/2q6kxcqT0yivJA2OAuLb6nss2gMVMWrmyfY8JAK1w8PDHdfDwx7NvlO0alG2gIABgm0eACyiGXXfVi4ddoGGzI0ZepgaR2qODuKZGWrNGjQc+n1gUObKq0AGu0Hv7aOUp6lL2WdryvC1Z4msO/fjH+b+mrk765JPMdRXq6qQNG3xqmmzC9bqAVDvu6P9l09Dg/732Wv77jc9yBIAiiX9dJ9oM2QaEZPtu37Il87oobZAiOaP99/fpV1NrfwBtqRjBJgJcANrDfvtFL09Nvzptmv8O3ryZ2VsAgKyowQUUQ58+GnHzxYodF1GIvFjpQYYNU2PTGGz1rtqYvk0bBt+6ln/WtLtcI7mXLk1fVlEhjR/fvHO7/HJfeD7TtmvWSMuW+ZHnQFuKxaQLLsi9HemDAHRApuDalGtGdCY77+x/jhlTmBMqpKoqadYsX0cESFXo7+UxY3y7dMSIwu43m3i6z/ZK+wlg27Xnnj5oFSUc4Lr0UmmnnXwN4yFD2ufcAAAlixlcQLFkmn2ReqPcjrUf4sVf3fEnRG/QrVv7nMjIkZnXLVok7bFH9LrwiO58RqHm2qZnT5/vG2gP4UBrXV30Nlu3ts+5FAopCoFtgpmTTjih5Z/5ESOkK6/MPwUR1xZ0FPPmSf/7v9I++xRmf6ef7r/rWxosbonFi6WDDmrfYwLYNmXLQBG+N+/bt+3PBQDQadCKBTqarl2Tnw8Y0G6H3upydBgtWSJt2iQ9+aR/XogUQd26SRuD2WLnn+/3ma1WVbab73AwkM4vlKLPf1569FE/ujHKkCHS3/8u1da273k1kxOfP2BbYI0+6B6TkyZPzrF1DpkC+2E77CA9+2zrjwUUyoAB0g03FC5tpllxAk0EtwAUm5l00kl+wC/38gCAZqAlC3Q0M2ZIL73kO3FGjWrXlDjbdX0v+wbdu0urVvlR2lJhbobPOEO6+24/MyufAu7ZGruZamkBpWLkyOwzGBcs8NeEDl4LhkyKwDYimFXabv1QJ57oA1zhlMRAsbVnTTgA6Mw6+D0OAKBjIsAFdDQVFdJxxxXl0GdNuF8njf29fzJ0aO4XFKLY66BBvsMqX9k6Ebp39/vq3r315wV0RJWV0pw5xT6LnLY6OvuAbcIRR0gXS3b08vY5XnW1NGlS+xwLAAAUFjOzAABtgAAXgISymFNt5SZfA+OMMzJveO21Ph1gRxyxSscXUHQEuIBtQ8XwBs2YIVXtNqXYpwIAADq6jth/AAAoeQS4AKTbYYfss7NqatrvXFIx6gvo8HLW8wPQKZhJDz5Y7LMAAAAlYcSIYp8BAKATIsAFoLSUlRX7DADksKWRzykAAAAASVdcIa1f7wfSAgBQYMwPBpCuI6YOiDeGd9yxuOcBIKfN8QAXMy4BAACAbVvv3tKECcU+CwBAJ8UMLgClYfVqafNmqaqq2GcCIIfNW2leAAAAAAAAoG11wGkaAIquI866MCO4BZSIzY0EuAAAAAAAANC2CHABaDJokP85cWJRTwNAafuMGlwAAAAAAABoYwyxBtDknHOkt96SGhqKfSYASthmAlwAAAAAAABoYwS4ADSpqpIGDy72WQAocdTgAgAAAAAAQFujBwoAABTUkhGPqEflJ8U+DQAAAAAAAHRi1OACAAAFddqOD+gX+3yt2KcBAAAAAACATixngMvMGszsATN7xsyeNrPVwfJeZna/mb0Q/KwLlpuZXWdmL5rZk2Y2ObSv5cH2L5jZ8rZ7WwAAAAAAAAAAAOis8pnBtUXSWc65sZKmSVplZmMlrZH0G+fcKEm/CZ5L0j6SRgX/jpd0g+QDYpLWStpV0i6S1saDYgAAoBNqbCz2GQAAAAAAAKCTyhngcs694Zx7LHj8oaRnJW0n6QBJtwSb3SLpwODxAZJudd5DknqaWb2k+ZLud86965zbIOl+SXsX8s0AAIAOZOvWYp8BAAAAAAAAOqlm1eAys6GSJkl6WFJ/59wbwao3JfUPHm8n6bXQy14PlmVannqM483sETN75N///ndzTg8AAHQkzOACAAAAAABAG8k7wGVm3STdKel059wH4XXOOSfJFeKEnHM3OuemOuem9u3btxC7BAAAxcAMLgAAAAAAALSRvAJcZlYhH9y6zTn3k2DxW0HqQQU/3w6Wr5fUEHr5oGBZpuUAAKAzIsAFAAAAAACANpIzwGVmJum7kp51zl0bWvVzScuDx8sl/Sy0fJl50yS9H6QyvFfSPDOrM7M6SfOCZQAAoDPZf3+ppkbaa69inwkAAAAAAAA6qfI8ttld0lJJT5nZE8Gy8yVdKelHZnaMpFclLQnW3SNpX0kvSvpY0gpJcs69a2aXSvprsN0XnHPvFuJNAACADmS//aR995XMin0mAAAAAAAA6KTMl8/qmKZOneoeeeSRYp8GAAAAAAAAAAAA2pmZPeqcmxq1Lq8aXAAAAAAAAAAAAEBHQYALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSQoALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSYs65Yp9DRmb2b0mvFvs8SkwfSe8U+yQAbLO4BgEoJq5BAIqN6xCAYuIaBKCYuAahrQxxzvWNWtGhA1xoPjN7xDk3tdjnAWDbxDUIQDFxDQJQbFyHABQT1yAAxcQ1CMVAikIAAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuDqfG4t9AgC2aVyDABQT1yAAxcZ1CEAxcQ0CUExcg9DuqMEFAAAAAAAAAACAksIMLgAAAAAAAAAAAJQUAlydhJntbWbPmdmLZram2OcDoPMws1fM7Ckze8LMHgmW9TKz+83sheBnXbDczOy64Fr0pJlNDu1nebD9C2a2vFjvB0DHZ2Y3mdnbZva30LKCXXfMbEpwXXsxeK217zsE0JFluAatM7P1QXvoCTPbN7TuvOB68pyZzQ8tj7xHM7NhZvZwsPyHZlbZfu8OQEdnZg1m9oCZPWNmT5vZ6mA5bSEAbS7LNYi2EDokAlydgJmVSfq6pH0kjZV0uJmNLe5ZAehkZjvnJjrnpgbP10j6jXNulKTfBM8lfx0aFfw7XtINkr8Zk7RW0q6SdpG0Nn5DBgARbpa0d8qyQl53bpB0XOh1qccCsG27WdHXhS8H7aGJzrl7JCm47zpM0rjgNd8ws7Ic92hfDPY1UtIGSce06bsBUGq2SDrLOTdW0jRJq4LrB20hAO0h0zVIoi2EDogAV+ewi6QXnXMvO+c2S7pd0gFFPicAndsBkm4JHt8i6cDQ8lud95CknmZWL2m+pPudc+865zZIul/cRAHIwDn3oKR3UxYX5LoTrOvunHvI+WK0t4b2BQCZrkGZHCDpdufcJufcPyS9KH9/FnmPFsySmCPpjuD14esZAMg594Zz7rHg8YeSnpW0nWgLAWgHWa5BmdAWQlER4OoctpP0Wuj568p+4QGA5nCS7jOzR83s+GBZf+fcG8HjNyX1Dx5nuh5xnQLQWoW67mwXPE5dDgC5nBKk/7opNAuiudeg3pLec85tSVkOAGnMbKikSZIeFm0hAO0s5Rok0RZCB0SACwCQyx7Oucny08pXmdnM8Mpg1J8rypkB2CZx3QFQBDdIGiFpoqQ3JH2pqGcDoNMzs26S7pR0unPug/A62kIA2lrENYi2EDokAlydw3pJDaHng4JlANBqzrn1wc+3Jf2P/DTzt4LUFgp+vh1snul6xHUKQGsV6rqzPnicuhwAMnLOveWc2+qca5T0bfn2kNT8a9B/5NOHlacsB4AEM6uQ71i+zTn3k2AxbSEA7SLqGkRbCB0VAa7O4a+SRpnZMDOrlC/s9/MinxOATsDMasysNv5Y0jxJf5O/xiwPNlsu6WfB459LWmbeNEnvB2k07pU0z8zqgmns84JlAJCvglx3gnUfmNm0IP/7stC+ACBSvFM5cJB8e0jy16DDzKzKzIZJGiXpL8pwjxbMunhA0iHB68PXMwBQ0D75rqRnnXPXhlbRFgLQ5jJdg2gLoaMqz70JOjrn3BYzO0W+8VIm6Sbn3NNFPi0AnUN/Sf/j2zcql/R959yvzOyvkn5kZsdIelXSkmD7eyTtK19U9GNJKyTJOfeumV0q38CRpC845/It3g5gG2NmP5A0S1IfM3td0lpJV6pw152TJd0sqYukXwb/AEBSxmvQLDObKJ8S7BVJJ0iSc+5pM/uRpGckbZG0yjm3NdhPpnu0cyXdbmaXSXpcvhMJAOJ2l7RU0lNm9kSw7HzRFgLQPjJdgw6nLYSOyHzQFAAAAAAAAAAAACgNpCgEAAAAAAAAAABASSHABQAAAAAAAAAAgJJCgAsAAAAAAAAAAAAlhQAXAAAAAAAAAAAASgoBLgAAAAAAAAAAAJQUAlwAAAAA0Axm1tvMngj+vWlm64PHG83sG2143Flmtltb7R8AAAAASkl5sU8AAAAAAEqJc+4/kiZKkpmtk7TROXdNOxx6lqSNkv7UDscCAAAAgA6NGVwAAAAAUADBDKu7g8frzOwWM/uDmb1qZovM7Coze8rMfmVmFcF2U8zs92b2qJnda2b1wfLTzOwZM3vSzG43s6GSTpR0RjBbbIaZLTSzh83scTP7tZn1b+axXwkt/4uZjSzKLw4AAAAAWoAAFwAAAAC0jRGS5kjaX9L3JD3gnBsv6RNJ+wWBpuslHeKcmyLpJkmXB69dI2mSc26CpBOdc69I+qakLzvnJjrn/iDpj5KmOecmSbpd0jn5Hju03fvB8q9J+kqB3z8AAAAAtBlSFAIAAABA2/ilc+4zM3tKUpmkXwXLn5I0VNJoSTtKut/MFGzzRrDNk5JuM7OfSvpphv0PkvTDYNZXpaR/NOPYcT8I/fxys98hAAAAABQJM7gAAAAAoG1skiTnXKOkz5xzLljeKD/Y0CQ9HczImuicG++cmxdss5+kr0uaLOmvZhY1OPF6SV8LZmCdIKm6GceOcxkeAwAAAECHRoALAAAAAIrjOUl9zWy6JJlZhZmNM7OYpAbn3AOSzpXUQ1I3SR9Kqg29voek9cHj5S08h0NDP//cwn0AAAAAQLsjRSEAAAAAFIFzbrOZHSLpOjPrIX9/9hVJz0v6XrDMJF3nnHvPzO6SdIeZHSDpVEnrJP3YzDZI+q2kYS04jToze1J+xtfhrX1PAAAAANBerClTBQAAAABgW2Fmr0ia6px7p9jnAgAAAADNRYpCAAAAAAAAAAAAlBRmcAEAAAAAAAAAAKCkMIMLAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpPx/Taa0BNrWmiUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(30,8))\n", + "plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(Y_pred, color = 'blue', linewidth=1)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE: 2.0572089029888656 %\n" + ] + } + ], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "f8f3967282314d3995245835bdaa8418", + "translation_date": "2025-09-04T01:53:46+00:00", + "source_file": "7-TimeSeries/3-SVR/solution/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/es/7-TimeSeries/3-SVR/working/notebook.ipynb b/translations/es/7-TimeSeries/3-SVR/working/notebook.ipynb new file mode 100644 index 000000000..1c73e3b89 --- /dev/null +++ b/translations/es/7-TimeSeries/3-SVR/working/notebook.ipynb @@ -0,0 +1,699 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "En este cuaderno, demostramos cómo:\n", + "\n", + "- preparar datos de series temporales 2D para entrenar un modelo de regresión SVM\n", + "- implementar SVR utilizando el kernel RBF\n", + "- evaluar el modelo utilizando gráficos y MAPE\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importando módulos\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [ + "## Preparando datos\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### Cargar datos\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2012-01-01 00:00:002698.0
2012-01-01 01:00:002558.0
2012-01-01 02:00:002444.0
2012-01-01 03:00:002402.0
2012-01-01 04:00:002403.0
\n", + "
" + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ahora, necesitas preparar los datos para el entrenamiento realizando el filtrado y la escalación de tus datos.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Escala los datos para que estén en el rango (0, 1).\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [ + "### Creando datos con pasos de tiempo\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "Para nuestro SVR, transformamos los datos de entrada para que tengan la forma `[batch, timesteps]`. Por lo tanto, reorganizamos los `train_data` y `test_data` existentes de manera que haya una nueva dimensión que se refiera a los timesteps. Para nuestro ejemplo, tomamos `timesteps = 5`. Así, las entradas al modelo son los datos de los primeros 4 timesteps, y la salida será los datos del 5 timestep.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [], + "source": [ + "x_train, y_train = None\n", + "x_test, y_test = None\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [], + "source": [ + "# Fit model on training data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "### Hacer predicción del modelo\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = None\n", + "y_test_pred = None" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = None\n", + "test_timestamps = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(25,6))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(10,3))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "## Predicción del conjunto de datos completo\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [], + "source": [ + "# Extracting load values as numpy array\n", + "data = None\n", + "\n", + "# Scaling\n", + "data = None\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=None\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = None, None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = None\n", + "Y = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(30,8))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "e86ce102239a14c44585623b9b924a74", + "translation_date": "2025-09-04T01:56:25+00:00", + "source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/es/7-TimeSeries/README.md b/translations/es/7-TimeSeries/README.md new file mode 100644 index 000000000..929f27cea --- /dev/null +++ b/translations/es/7-TimeSeries/README.md @@ -0,0 +1,37 @@ + +# Introducción a la predicción de series temporales + +¿Qué es la predicción de series temporales? Se trata de predecir eventos futuros analizando las tendencias del pasado. + +## Tema regional: uso mundial de electricidad ✨ + +En estas dos lecciones, se te presentará la predicción de series temporales, un área de aprendizaje automático algo menos conocida pero que es extremadamente valiosa para aplicaciones industriales y empresariales, entre otros campos. Aunque las redes neuronales pueden usarse para mejorar la utilidad de estos modelos, los estudiaremos en el contexto del aprendizaje automático clásico, ya que los modelos ayudan a predecir el rendimiento futuro basándose en el pasado. + +Nuestro enfoque regional es el uso eléctrico en el mundo, un conjunto de datos interesante para aprender sobre la predicción del consumo futuro de energía basado en patrones de carga pasados. Puedes ver cómo este tipo de predicción puede ser extremadamente útil en un entorno empresarial. + +![red eléctrica](../../../translated_images/electric-grid.0c21d5214db09ffae93c06a87ca2abbb9ba7475ef815129c5b423d7f9a7cf136.es.jpg) + +Foto de [Peddi Sai hrithik](https://unsplash.com/@shutter_log?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) de torres eléctricas en una carretera en Rajasthan en [Unsplash](https://unsplash.com/s/photos/electric-india?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) + +## Lecciones + +1. [Introducción a la predicción de series temporales](1-Introduction/README.md) +2. [Construcción de modelos ARIMA para series temporales](2-ARIMA/README.md) +3. [Construcción de un Support Vector Regressor para la predicción de series temporales](3-SVR/README.md) + +## Créditos + +"Introducción a la predicción de series temporales" fue escrito con ⚡️ por [Francesca Lazzeri](https://twitter.com/frlazzeri) y [Jen Looper](https://twitter.com/jenlooper). Los cuadernos aparecieron por primera vez en línea en el [repositorio de Azure "Deep Learning For Time Series"](https://github.com/Azure/DeepLearningForTimeSeriesForecasting) originalmente escrito por Francesca Lazzeri. La lección de SVR fue escrita por [Anirban Mukherjee](https://github.com/AnirbanMukherjeeXD). + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/8-Reinforcement/1-QLearning/README.md b/translations/es/8-Reinforcement/1-QLearning/README.md new file mode 100644 index 000000000..64e258add --- /dev/null +++ b/translations/es/8-Reinforcement/1-QLearning/README.md @@ -0,0 +1,256 @@ + +# Introducción al Aprendizaje por Refuerzo y Q-Learning + +![Resumen del refuerzo en el aprendizaje automático en un sketchnote](../../../../translated_images/ml-reinforcement.94024374d63348dbb3571c343ca7ddabef72adac0b8086d47164b769ba3a8a1d.es.png) +> Sketchnote por [Tomomi Imura](https://www.twitter.com/girlie_mac) + +El aprendizaje por refuerzo implica tres conceptos importantes: el agente, algunos estados y un conjunto de acciones por estado. Al ejecutar una acción en un estado específico, el agente recibe una recompensa. Imagina nuevamente el videojuego Super Mario. Tú eres Mario, estás en un nivel del juego, parado junto al borde de un acantilado. Sobre ti hay una moneda. Tú, siendo Mario, en un nivel del juego, en una posición específica... ese es tu estado. Moverte un paso hacia la derecha (una acción) te llevará al borde del acantilado, y eso te daría una puntuación numérica baja. Sin embargo, presionar el botón de salto te permitiría obtener un punto y seguir vivo. Ese es un resultado positivo y debería otorgarte una puntuación numérica positiva. + +Usando aprendizaje por refuerzo y un simulador (el juego), puedes aprender a jugar para maximizar la recompensa, que es mantenerse vivo y obtener la mayor cantidad de puntos posible. + +[![Introducción al Aprendizaje por Refuerzo](https://img.youtube.com/vi/lDq_en8RNOo/0.jpg)](https://www.youtube.com/watch?v=lDq_en8RNOo) + +> 🎥 Haz clic en la imagen de arriba para escuchar a Dmitry hablar sobre el Aprendizaje por Refuerzo + +## [Cuestionario previo a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/45/) + +## Prerrequisitos y Configuración + +En esta lección, experimentaremos con algo de código en Python. Deberías poder ejecutar el código del Jupyter Notebook de esta lección, ya sea en tu computadora o en la nube. + +Puedes abrir [el notebook de la lección](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/notebook.ipynb) y seguir esta lección para construir. + +> **Nota:** Si estás abriendo este código desde la nube, también necesitas obtener el archivo [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py), que se utiliza en el código del notebook. Agrégalo al mismo directorio que el notebook. + +## Introducción + +En esta lección, exploraremos el mundo de **[Pedro y el Lobo](https://es.wikipedia.org/wiki/Pedro_y_el_lobo)**, inspirado en un cuento musical de un compositor ruso, [Sergei Prokofiev](https://es.wikipedia.org/wiki/Sergu%C3%A9i_Prok%C3%B3fiev). Usaremos **Aprendizaje por Refuerzo** para permitir que Pedro explore su entorno, recoja manzanas deliciosas y evite encontrarse con el lobo. + +El **Aprendizaje por Refuerzo** (RL) es una técnica de aprendizaje que nos permite aprender un comportamiento óptimo de un **agente** en algún **entorno** mediante la ejecución de muchos experimentos. Un agente en este entorno debe tener algún **objetivo**, definido por una **función de recompensa**. + +## El entorno + +Para simplificar, consideremos el mundo de Pedro como un tablero cuadrado de tamaño `ancho` x `alto`, como este: + +![Entorno de Pedro](../../../../translated_images/environment.40ba3cb66256c93fa7e92f6f7214e1d1f588aafa97d266c11d108c5c5d101b6c.es.png) + +Cada celda en este tablero puede ser: + +* **suelo**, sobre el cual Pedro y otras criaturas pueden caminar. +* **agua**, sobre la cual obviamente no puedes caminar. +* un **árbol** o **hierba**, un lugar donde puedes descansar. +* una **manzana**, que representa algo que Pedro estaría encantado de encontrar para alimentarse. +* un **lobo**, que es peligroso y debe evitarse. + +Hay un módulo de Python separado, [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py), que contiene el código para trabajar con este entorno. Dado que este código no es importante para entender nuestros conceptos, importaremos el módulo y lo usaremos para crear el tablero de muestra (bloque de código 1): + +```python +from rlboard import * + +width, height = 8,8 +m = Board(width,height) +m.randomize(seed=13) +m.plot() +``` + +Este código debería imprimir una imagen del entorno similar a la anterior. + +## Acciones y política + +En nuestro ejemplo, el objetivo de Pedro sería encontrar una manzana, mientras evita al lobo y otros obstáculos. Para ello, esencialmente puede caminar por el tablero hasta encontrar una manzana. + +Por lo tanto, en cualquier posición, puede elegir entre una de las siguientes acciones: arriba, abajo, izquierda y derecha. + +Definiremos esas acciones como un diccionario y las mapearemos a pares de cambios de coordenadas correspondientes. Por ejemplo, moverse a la derecha (`R`) correspondería a un par `(1,0)`. (bloque de código 2): + +```python +actions = { "U" : (0,-1), "D" : (0,1), "L" : (-1,0), "R" : (1,0) } +action_idx = { a : i for i,a in enumerate(actions.keys()) } +``` + +En resumen, la estrategia y el objetivo de este escenario son los siguientes: + +- **La estrategia** de nuestro agente (Pedro) está definida por una llamada **política**. Una política es una función que devuelve la acción en cualquier estado dado. En nuestro caso, el estado del problema está representado por el tablero, incluida la posición actual del jugador. + +- **El objetivo** del aprendizaje por refuerzo es eventualmente aprender una buena política que nos permita resolver el problema de manera eficiente. Sin embargo, como línea base, consideremos la política más simple llamada **camino aleatorio**. + +## Camino aleatorio + +Primero resolvamos nuestro problema implementando una estrategia de camino aleatorio. Con el camino aleatorio, elegiremos aleatoriamente la siguiente acción de las acciones permitidas, hasta que lleguemos a la manzana (bloque de código 3). + +1. Implementa el camino aleatorio con el siguiente código: + + ```python + def random_policy(m): + return random.choice(list(actions)) + + def walk(m,policy,start_position=None): + n = 0 # number of steps + # set initial position + if start_position: + m.human = start_position + else: + m.random_start() + while True: + if m.at() == Board.Cell.apple: + return n # success! + if m.at() in [Board.Cell.wolf, Board.Cell.water]: + return -1 # eaten by wolf or drowned + while True: + a = actions[policy(m)] + new_pos = m.move_pos(m.human,a) + if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water: + m.move(a) # do the actual move + break + n+=1 + + walk(m,random_policy) + ``` + + La llamada a `walk` debería devolver la longitud del camino correspondiente, que puede variar de una ejecución a otra. + +1. Ejecuta el experimento de camino varias veces (digamos, 100), y muestra las estadísticas resultantes (bloque de código 4): + + ```python + def print_statistics(policy): + s,w,n = 0,0,0 + for _ in range(100): + z = walk(m,policy) + if z<0: + w+=1 + else: + s += z + n += 1 + print(f"Average path length = {s/n}, eaten by wolf: {w} times") + + print_statistics(random_policy) + ``` + + Nota que la longitud promedio de un camino es de alrededor de 30-40 pasos, lo cual es bastante, dado que la distancia promedio a la manzana más cercana es de alrededor de 5-6 pasos. + + También puedes ver cómo se mueve Pedro durante el camino aleatorio: + + ![Camino aleatorio de Pedro](../../../../8-Reinforcement/1-QLearning/images/random_walk.gif) + +## Función de recompensa + +Para hacer nuestra política más inteligente, necesitamos entender qué movimientos son "mejores" que otros. Para ello, necesitamos definir nuestro objetivo. + +El objetivo puede definirse en términos de una **función de recompensa**, que devolverá algún valor de puntuación para cada estado. Cuanto mayor sea el número, mejor será la función de recompensa. (bloque de código 5) + +```python +move_reward = -0.1 +goal_reward = 10 +end_reward = -10 + +def reward(m,pos=None): + pos = pos or m.human + if not m.is_valid(pos): + return end_reward + x = m.at(pos) + if x==Board.Cell.water or x == Board.Cell.wolf: + return end_reward + if x==Board.Cell.apple: + return goal_reward + return move_reward +``` + +Una cosa interesante sobre las funciones de recompensa es que en la mayoría de los casos, *solo se nos da una recompensa sustancial al final del juego*. Esto significa que nuestro algoritmo debería recordar los pasos "buenos" que conducen a una recompensa positiva al final y aumentar su importancia. De manera similar, todos los movimientos que conducen a malos resultados deberían desalentarse. + +## Q-Learning + +El algoritmo que discutiremos aquí se llama **Q-Learning**. En este algoritmo, la política está definida por una función (o una estructura de datos) llamada **Q-Table**. Registra la "bondad" de cada una de las acciones en un estado dado. + +Se llama Q-Table porque a menudo es conveniente representarla como una tabla o un arreglo multidimensional. Dado que nuestro tablero tiene dimensiones `ancho` x `alto`, podemos representar la Q-Table usando un arreglo numpy con forma `ancho` x `alto` x `len(actions)`: (bloque de código 6) + +```python +Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions) +``` + +Nota que inicializamos todos los valores de la Q-Table con un valor igual, en nuestro caso - 0.25. Esto corresponde a la política de "camino aleatorio", porque todos los movimientos en cada estado son igualmente buenos. Podemos pasar la Q-Table a la función `plot` para visualizar la tabla en el tablero: `m.plot(Q)`. + +![Entorno de Pedro](../../../../translated_images/env_init.04e8f26d2d60089e128f21d22e5fef57d580e559f0d5937b06c689e5e7cdd438.es.png) + +En el centro de cada celda hay una "flecha" que indica la dirección preferida de movimiento. Dado que todas las direcciones son iguales, se muestra un punto. + +Ahora necesitamos ejecutar la simulación, explorar nuestro entorno y aprender una mejor distribución de valores de la Q-Table, lo que nos permitirá encontrar el camino hacia la manzana mucho más rápido. + +## Esencia del Q-Learning: Ecuación de Bellman + +Una vez que comenzamos a movernos, cada acción tendrá una recompensa correspondiente, es decir, teóricamente podemos seleccionar la siguiente acción basada en la recompensa inmediata más alta. Sin embargo, en la mayoría de los estados, el movimiento no logrará nuestro objetivo de alcanzar la manzana, y por lo tanto no podemos decidir inmediatamente qué dirección es mejor. + +> Recuerda que no importa el resultado inmediato, sino el resultado final, que obtendremos al final de la simulación. + +Para tener en cuenta esta recompensa diferida, necesitamos usar los principios de **[programación dinámica](https://es.wikipedia.org/wiki/Programaci%C3%B3n_din%C3%A1mica)**, que nos permiten pensar en nuestro problema de manera recursiva. + +Supongamos que ahora estamos en el estado *s*, y queremos movernos al siguiente estado *s'*. Al hacerlo, recibiremos la recompensa inmediata *r(s,a)*, definida por la función de recompensa, más alguna recompensa futura. Si suponemos que nuestra Q-Table refleja correctamente la "atractividad" de cada acción, entonces en el estado *s'* elegiremos una acción *a* que corresponda al valor máximo de *Q(s',a')*. Así, la mejor recompensa futura posible que podríamos obtener en el estado *s* se definirá como `max` + +## Verificando la política + +Dado que la Q-Table enumera la "atractividad" de cada acción en cada estado, es bastante sencillo usarla para definir la navegación eficiente en nuestro mundo. En el caso más simple, podemos seleccionar la acción correspondiente al valor más alto de la Q-Table: (bloque de código 9) + +```python +def qpolicy_strict(m): + x,y = m.human + v = probs(Q[x,y]) + a = list(actions)[np.argmax(v)] + return a + +walk(m,qpolicy_strict) +``` + +> Si pruebas el código anterior varias veces, puede que notes que a veces se "queda colgado" y necesitas presionar el botón STOP en el notebook para interrumpirlo. Esto ocurre porque podría haber situaciones en las que dos estados "apuntan" el uno al otro en términos de valor óptimo de Q, en cuyo caso el agente termina moviéndose entre esos estados indefinidamente. + +## 🚀Desafío + +> **Tarea 1:** Modifica la función `walk` para limitar la longitud máxima del camino a un cierto número de pasos (por ejemplo, 100), y observa cómo el código anterior devuelve este valor de vez en cuando. + +> **Tarea 2:** Modifica la función `walk` para que no regrese a los lugares donde ya ha estado previamente. Esto evitará que `walk` entre en bucles, sin embargo, el agente aún puede terminar "atrapado" en una ubicación de la que no pueda escapar. + +## Navegación + +Una política de navegación mejor sería la que usamos durante el entrenamiento, que combina explotación y exploración. En esta política, seleccionaremos cada acción con cierta probabilidad, proporcional a los valores en la Q-Table. Esta estrategia aún puede resultar en que el agente regrese a una posición que ya ha explorado, pero, como puedes ver en el código a continuación, resulta en un camino promedio muy corto hacia la ubicación deseada (recuerda que `print_statistics` ejecuta la simulación 100 veces): (bloque de código 10) + +```python +def qpolicy(m): + x,y = m.human + v = probs(Q[x,y]) + a = random.choices(list(actions),weights=v)[0] + return a + +print_statistics(qpolicy) +``` + +Después de ejecutar este código, deberías obtener una longitud promedio de camino mucho más pequeña que antes, en el rango de 3-6. + +## Investigando el proceso de aprendizaje + +Como hemos mencionado, el proceso de aprendizaje es un equilibrio entre la exploración y la explotación del conocimiento adquirido sobre la estructura del espacio del problema. Hemos visto que los resultados del aprendizaje (la capacidad de ayudar a un agente a encontrar un camino corto hacia el objetivo) han mejorado, pero también es interesante observar cómo se comporta la longitud promedio del camino durante el proceso de aprendizaje: + +## Los aprendizajes pueden resumirse como: + +- **La longitud promedio del camino aumenta**. Lo que vemos aquí es que al principio, la longitud promedio del camino aumenta. Esto probablemente se debe al hecho de que cuando no sabemos nada sobre el entorno, es más probable que quedemos atrapados en estados desfavorables, como agua o lobos. A medida que aprendemos más y comenzamos a usar este conocimiento, podemos explorar el entorno por más tiempo, pero aún no sabemos muy bien dónde están las manzanas. + +- **La longitud del camino disminuye a medida que aprendemos más**. Una vez que aprendemos lo suficiente, se vuelve más fácil para el agente alcanzar el objetivo, y la longitud del camino comienza a disminuir. Sin embargo, aún estamos abiertos a la exploración, por lo que a menudo nos desviamos del mejor camino y exploramos nuevas opciones, haciendo que el camino sea más largo de lo óptimo. + +- **La longitud aumenta abruptamente**. Lo que también observamos en este gráfico es que en algún momento, la longitud aumentó abruptamente. Esto indica la naturaleza estocástica del proceso, y que en algún momento podemos "estropear" los coeficientes de la Q-Table sobrescribiéndolos con nuevos valores. Esto idealmente debería minimizarse disminuyendo la tasa de aprendizaje (por ejemplo, hacia el final del entrenamiento, solo ajustamos los valores de la Q-Table por un pequeño valor). + +En general, es importante recordar que el éxito y la calidad del proceso de aprendizaje dependen significativamente de parámetros como la tasa de aprendizaje, la disminución de la tasa de aprendizaje y el factor de descuento. A menudo se les llama **hiperparámetros**, para distinguirlos de los **parámetros**, que optimizamos durante el entrenamiento (por ejemplo, los coeficientes de la Q-Table). El proceso de encontrar los mejores valores de hiperparámetros se llama **optimización de hiperparámetros**, y merece un tema aparte. + +## [Cuestionario post-lectura](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/46/) + +## Asignación +[Un Mundo Más Realista](assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/8-Reinforcement/1-QLearning/assignment.md b/translations/es/8-Reinforcement/1-QLearning/assignment.md new file mode 100644 index 000000000..6d64468c9 --- /dev/null +++ b/translations/es/8-Reinforcement/1-QLearning/assignment.md @@ -0,0 +1,41 @@ + +# Un Mundo Más Realista + +En nuestra situación, Peter podía moverse casi sin cansarse ni tener hambre. En un mundo más realista, tiene que sentarse y descansar de vez en cuando, y también alimentarse. Hagamos nuestro mundo más realista implementando las siguientes reglas: + +1. Al moverse de un lugar a otro, Peter pierde **energía** y gana algo de **fatiga**. +2. Peter puede recuperar energía comiendo manzanas. +3. Peter puede deshacerse de la fatiga descansando bajo un árbol o en el césped (es decir, caminando hacia una ubicación en el tablero que tenga un árbol o césped - campo verde). +4. Peter necesita encontrar y matar al lobo. +5. Para matar al lobo, Peter necesita tener ciertos niveles de energía y fatiga; de lo contrario, pierde la batalla. + +## Instrucciones + +Utiliza el cuaderno original [notebook.ipynb](notebook.ipynb) como punto de partida para tu solución. + +Modifica la función de recompensa según las reglas del juego, ejecuta el algoritmo de aprendizaje por refuerzo para aprender la mejor estrategia para ganar el juego y compara los resultados del paseo aleatorio con tu algoritmo en términos de número de juegos ganados y perdidos. + +> **Nota**: En tu nuevo mundo, el estado es más complejo y, además de la posición del humano, también incluye los niveles de fatiga y energía. Puedes optar por representar el estado como una tupla (Tablero, energía, fatiga), o definir una clase para el estado (también puedes derivarla de `Board`), o incluso modificar la clase original `Board` dentro de [rlboard.py](../../../../8-Reinforcement/1-QLearning/rlboard.py). + +En tu solución, por favor mantén el código responsable de la estrategia de paseo aleatorio y compara los resultados de tu algoritmo con el paseo aleatorio al final. + +> **Nota**: Es posible que necesites ajustar los hiperparámetros para que funcione, especialmente el número de épocas. Dado que el éxito del juego (luchar contra el lobo) es un evento poco frecuente, puedes esperar un tiempo de entrenamiento mucho más largo. + +## Rúbrica + +| Criterios | Sobresaliente | Aceptable | Necesita Mejorar | +| --------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | +| | Se presenta un cuaderno con la definición de las nuevas reglas del mundo, el algoritmo de Q-Learning y algunas explicaciones textuales. Q-Learning mejora significativamente los resultados en comparación con el paseo aleatorio. | Se presenta un cuaderno, se implementa Q-Learning y mejora los resultados en comparación con el paseo aleatorio, pero no de manera significativa; o el cuaderno está mal documentado y el código no está bien estructurado. | Se hacen algunos intentos de redefinir las reglas del mundo, pero el algoritmo de Q-Learning no funciona, o la función de recompensa no está completamente definida. | + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/8-Reinforcement/1-QLearning/notebook.ipynb b/translations/es/8-Reinforcement/1-QLearning/notebook.ipynb new file mode 100644 index 000000000..5c0084745 --- /dev/null +++ b/translations/es/8-Reinforcement/1-QLearning/notebook.ipynb @@ -0,0 +1,411 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "17e5a668646eabf5aabd0e9bfcf17876", + "translation_date": "2025-09-04T02:53:53+00:00", + "source_file": "8-Reinforcement/1-QLearning/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Pedro y el Lobo: Introducción al Aprendizaje por Refuerzo\n", + "\n", + "En este tutorial, aprenderemos cómo aplicar el aprendizaje por refuerzo a un problema de búsqueda de caminos. El escenario está inspirado en el cuento musical [Pedro y el Lobo](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) del compositor ruso [Sergei Prokofiev](https://en.wikipedia.org/wiki/Sergei_Prokofiev). Es una historia sobre el joven pionero Pedro, quien valientemente sale de su casa hacia un claro en el bosque para perseguir a un lobo. Entrenaremos algoritmos de aprendizaje automático que ayudarán a Pedro a explorar el área circundante y construir un mapa de navegación óptimo.\n", + "\n", + "Primero, importemos un conjunto de bibliotecas útiles:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## Descripción general del Aprendizaje por Refuerzo\n", + "\n", + "**Aprendizaje por Refuerzo** (RL) es una técnica de aprendizaje que nos permite aprender el comportamiento óptimo de un **agente** en algún **entorno** mediante la realización de muchos experimentos. Un agente en este entorno debe tener algún **objetivo**, definido por una **función de recompensa**.\n", + "\n", + "## El Entorno\n", + "\n", + "Para simplificar, consideremos el mundo de Peter como un tablero cuadrado de tamaño `width` x `height`. Cada celda en este tablero puede ser:\n", + "* **suelo**, sobre el cual Peter y otras criaturas pueden caminar\n", + "* **agua**, sobre la cual obviamente no se puede caminar\n", + "* **un árbol** o **hierba** - un lugar donde puedes descansar\n", + "* **una manzana**, que representa algo que Peter estaría encantado de encontrar para alimentarse\n", + "* **un lobo**, que es peligroso y debe evitarse\n", + "\n", + "Para trabajar con el entorno, definiremos una clase llamada `Board`. Para no sobrecargar demasiado este cuaderno, hemos movido todo el código relacionado con el tablero a un módulo separado llamado `rlboard`, que ahora importaremos. Puedes mirar dentro de este módulo para obtener más detalles sobre los aspectos internos de la implementación.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "Ahora creemos un tablero aleatorio y veamos cómo se ve:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 1" + ] + }, + { + "source": [ + "## Acciones y Política\n", + "\n", + "En nuestro ejemplo, el objetivo de Peter sería encontrar una manzana, mientras evita al lobo y otros obstáculos. Define esas acciones como un diccionario y asígnales pares de cambios de coordenadas correspondientes.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 2" + ] + }, + { + "source": [ + "La estrategia de nuestro agente (Peter) está definida por una **política**. Consideremos la política más simple llamada **camino aleatorio**.\n", + "\n", + "## Camino aleatorio\n", + "\n", + "Primero resolvamos nuestro problema implementando una estrategia de camino aleatorio.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "# Let's run a random walk experiment several times and see the average number of steps taken: code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 4" + ] + }, + { + "source": [ + "## Función de Recompensa\n", + "\n", + "Para hacer que nuestra política sea más inteligente, necesitamos entender qué movimientos son \"mejores\" que otros.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 5" + ] + }, + { + "source": [ + "## Aprendizaje Q\n", + "\n", + "Construye una Q-Table, o un array multidimensional. Dado que nuestro tablero tiene dimensiones `width` x `height`, podemos representar la Q-Table con un array de numpy con la forma `width` x `height` x `len(actions)`:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 6" + ] + }, + { + "source": [ + "Pasa la Q-Table a la función `plot` para visualizar la tabla en el tablero:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "name 'm' is not defined", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mQ\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'm' is not defined" + ] + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Esencia del Q-Learning: Ecuación de Bellman y Algoritmo de Aprendizaje\n", + "\n", + "Escribe un pseudocódigo para nuestro algoritmo de aprendizaje:\n", + "\n", + "* Inicializar la tabla Q (Q-Table) con números iguales para todos los estados y acciones\n", + "* Establecer la tasa de aprendizaje $\\alpha\\leftarrow 1$\n", + "* Repetir la simulación muchas veces\n", + " 1. Comenzar en una posición aleatoria\n", + " 1. Repetir\n", + " 1. Seleccionar una acción $a$ en el estado $s$\n", + " 2. Ejecutar la acción moviéndose a un nuevo estado $s'$\n", + " 3. Si encontramos una condición de fin de juego, o la recompensa total es demasiado pequeña - salir de la simulación \n", + " 4. Calcular la recompensa $r$ en el nuevo estado\n", + " 5. Actualizar la función Q según la ecuación de Bellman: $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$\n", + " 7. Actualizar la recompensa total y disminuir $\\alpha$.\n", + "\n", + "## Explotar vs. Explorar\n", + "\n", + "La mejor estrategia es equilibrar entre exploración y explotación. A medida que aprendemos más sobre nuestro entorno, seremos más propensos a seguir la ruta óptima, sin embargo, eligiendo el camino no explorado de vez en cuando.\n", + "\n", + "## Implementación en Python\n", + "\n", + "Ahora estamos listos para implementar el algoritmo de aprendizaje. Antes de eso, también necesitamos una función que convierta números arbitrarios en la tabla Q en un vector de probabilidades para las acciones correspondientes:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 7" + ] + }, + { + "source": [ + "Agregamos una pequeña cantidad de `eps` al vector original para evitar la división por 0 en el caso inicial, cuando todos los componentes del vector son idénticos.\n", + "\n", + "El algoritmo de aprendizaje que ejecutaremos se llevará a cabo durante 5000 experimentos, también llamados **épocas**:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "# code block 8" + ] + }, + { + "source": [ + "Después de ejecutar este algoritmo, la Q-Table debería actualizarse con valores que definan la atractividad de diferentes acciones en cada paso. Visualiza la tabla aquí:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUxd7H8c9sS7KbShJCL1IEBAURFEUBxXoVVFBARS7YQETgiooFsaGAXgUsIGIDHzuCXiuKICDKpYoiHUJJAmkk2Wzfc+b5YzcRrgSQZHM2ZN6+8kr27ObMlyX8nMyZmSOklCiKoig1h8noAIqiKMrfowq3oihKDaMKt6IoSg2jCreiKEoNowq3oihKDaMKt6IoSg0TscIthLhCCLFVCLFDCDE+Uu0oiqLUNiIS87iFEGZgG3ApsB9YDQySUv5R5Y0piqLUMpHqcXcFdkgpd0kp/cAHQN8ItaUoilKrRKpwNwT2HfZ4f/iYoiiKUkmWCJ1XHOXYEWMyQog7gTsBrFZr5zPPPDNCUSrP5/PhdDpJS0szOkqFioqKsFqtOBwOo6NUKCcnh7p162I2m42OUqG9e/fSpEkTo2NUKBgMkpeXR/369Y2OUqHS0lKCwSDJyclGR6lQXl4eiYmJxMTEGB2lQps2bcLj8RytloKUsso/gG7At4c9fgh4qKLX161bV0az7du3y9mzZxsd45gWLFggV65caXSMY3rqqadkYWGh0TEqpOu6vOeee4yOcUwFBQVy0qRJRsc4phUrVsiFCxcaHeOYZs2aJbdv3250jGMK18Wj1sxIDZWsBloJIZoLIWzAQODzCLWlKIpSq0SkcEspg8A9wLfAZuAjKeWmSLSlKMqpZf369Xi9XqNjRLVIjXEjpfwK+CpS51cU5dSSlZXFq6++SkxMDPPnz6dVq1YMGTLE6FhRSa2cVBTFcFJKcnJy2LZtG8OHD6d79+589NFHZdfIlP+hCreiKIYLBAJMnjyZF198kX/961+cccYZDBgwgLfeesvoaFEpYkMliqIoJ8pmszF+/Hhuu+02OnTowMcff8z333/PV1+p0dajqXE97l27dvHRRx8ZHUNRlCrWtGlT+vfvj9lsZsqUKdx7771GR4paNarH3adPH2JjYzn33HPp0KEDS5YsiepFMYqinLj09HTuuOMO9u3bx6JFi+jVq5fRkaJWjelx79q1i9jYWGbNmkW/fv24/PLL+f33342OpShKFWvcuDHffPMN/fv3NzpKldu0aRO6rlf6PDWmcK9du5auXbtSUlLCW2+9Rb169Vi+fLm66qwop6D4+HjOPPNMVq1aZXSUKrNkyRLee+89NE2r9LlqzFDJDTfcQIcOHThw4AD169dn3Lhx5OTkIMTRl/IrilJzORwOLrjgAn744QfOPfdco+NU2s8//8zPP//MuHHjsFqtlT5fjelxQ+j/WFdffTUul4sDBw4wfPhwioqKjI6lKEoExMTEIKXE7/cbHeWkSSnZsmUL8+bNY/To0aSkpFTJeWtU4U5LS6Nnz55MmDCBjIwM3n77bSZMmMCOHTuMjqYoShW75JJLcDqd/PLLL0ZHOWmrVq1i2rRpvPLKK1W6c2eNKtxlyoZHkpOTGT16NPPmzSMzM9PYUIqiKIdZsmQJ33//PS+88EKVD+nWyMJ9uJYtWzJ06FAee+wx3G53xNurigsLkSSlrJKr1pFUEzLquq4ufEeB4cOH8/rrr1fLv+2qIqVkw4YN/PDDD4wcORK73V7lbdT4wg3QrFkzZs2axa233kpOTk7E2snKyqJfv35s3ryZgoKCiLVTGevXr+eOO+5gy5YtUfnDHgwGee+993jhhRfYsmVLVBZwp9PJxIkT+fLLL9m1a5fRcaJWdnZ2xMefmzZtihCC3bt3R7SdqrRlyxamT5/OhAkTqmxM+3+dEoUbwG6389JLL/HSSy+xffv2iLTx+eef89JLLzFmzBhmz54dkTYq6/PPP2f06NEMGDCAdevWGR3nL9xuN4WFhTRt2pSLL744Krfv3LFjB927d2fDhg1cd911RseJOkVFRcyZM4eXXnqJ2bNn88UXX0S0vbfffptbbrklom1UlWXLljFnzhzeeOMNbDZbxNqpMdMBT0T9+vUZOnQob7zxBmPHjiUjI6NKzz9ixAjGjBmDpml88sknbNmy5aTPFRcXx8yZM6t87Ou+++5j1KhR6LrOpEmTqFu37kmfq127djz44INVmA4SExPp3r0706ZNQ9M07rzzzkrdyuy6667j2muvrcKE0KlTJ95//322bdtGVlZWpbcWHT9+PG3btq2idMY7cOAA8+bN44033uC///0vzz33HFdffbXRsQy3fPlyVq5cyWOPPYbJFNk+8SlVuAFatWrF2LFjGTFiBPPmzavSK7kej4dRo0bx9ddfk5mZyV133XXS5/J6vXTu3LlKxlHbt29Pv379gND42vjx45kyZQqXX345nTt3Punz/v7773Tq1KnS+QAGDx5cnq9x48Y88MADbNy4kQcffJDY2NiTPu/HH3/ME088USUZp02bBoSGc3r06EGbNm1Yt24djz76aKXO+8QTT7BpU9XcR+STTz6p8LnS0lIuuuiiiI/Ne71ecnNzueGGG1iwYAFms5mXX36Ze+65JyLtCSGYPn06DzzwAFOnTo1IG5UhpWTz5s0sWLCAxx9/nMTExIi3ecoVboCMjAzmzZvHPffcw2OPPUbz5s2r5LzPPvss7du35+OPP+aOO+6gVatWJ30uKSVr1qypklwQGiIBGDlyJD169GDXrl20a9euUhlbtmxJ3759qySfEIJJkyZRVFTE1KlTSU1NJTk5mVatWlWqcD/00EOMHz++yjJ+8skn/PLLLyxfvpxNmzbRuXPnSr2HAHPnzq2SfMAx1y04HI4q/ZmqyJYtW7j//vuZM2cO27ZtY+bMmSxZsiRi7QkhqFevHgcPHoxYG5WxYcMGXnrpJebMmRPxnnaZU7JwQ+iH+LHHHuOdd95h8ODBtGjRotLnfPLJJ3nppZdYunRppYc4hBARWfU5a9Ys5s+fz48//ljpc0UiY0pKCqNHjyY/P59JkyZV+nxVmbGsp9q9e3ecTie33HILjRs3rvR5q+sfc6R+pv5Xeno6HTt2ZPbs2QQCAW6++eaIt1unTh2aNWvGhg0b6NixY0Tb+jt++OEHli5dyqxZs6rt7xlO4cIN0Lx5cwYPHsxzzz3HlClTSEpKqvQ5R40aVQXJIsfhcHDrrbcaHeOYasJ475VXXml0hKiVnp7OpEmT2LhxIy1atKjS4ciKpKWlcdppp7FmzRrOOussw7e6kFKyevVqVq5cydixYyN6IfJoTplZJRVp0aIFU6dOZciQIVE7hU9RaqIzzzyzWop2mQEDBrBmzZqoWCm9detW5syZw3333RexKX/HcsoXbgjNZHjzzTd5+umnIzZVUFGUyIqNjSUYDBq+CO7nn39mxowZvPbaa8TFxRmSoVYUbgiNkY0cOZJ58+axd+9eo+MoinISBg4cyNy5c6t94dbzzz+PpmksWbKEJUuW8Nxzzxk6XFNrCjeEZknccccdjB8/PipXFSqKcmy9e/fmm2++qbbtCL7++mvOPfdcTjvtNLp168a3337LiBEjqnWI6GhqVeGG0N013njjDYYOHcr+/fuNjqMoyt/UsmXLahnn9vl8ZGZmMnbsWFq2bEkwGERKWa2zRypifAIDxMXF8cILL7BixQqjoyiK8je9/fbb3H777RFvx+l0sm/fPjp06MDXX3/Nl19+icPhiIp9U2pl4QZo2LAhAwcONDqGoih/k81mY9CgQbz33nsRbSctLY0zzjiDf/7zn9xwww0MGzaMoqKiqJhHfkrP41YU5dRjsVjo2LEjn332GTfddFNE2+rbty8XXHAB9913Hy+//LIhU/+ORhVuRVFqnKSkJKxWK3l5eaSnp0esnfj4eOLj48v3iDF64U+ZWjtUoihKzXXGGWeQkJBQbbc1q67tBE6U6nErilIjDRgwwPBpeUapVOEWQmQCTkADglLKc4QQdYAPgWZAJnCjlPJQ5WIqiqIcqVmzZkZHMExVDJX0klJ2lFKeE348HlgspWwFLA4/VhRFUapIJMa4+wLvhL9+B6ja25MoiqLUcpUt3BJYJIRYK4S4M3wsQ0qZAxD+fPL3zlIURVH+orIXJy+QUmYLIeoC3wkhTvgmjOFCfyeEptxE8659+/fvp6ioKKoz5ufno+t6VGd0uVzs3r2b/Px8o6NUyO/3R/V7WFJSgsvliuqMBw4ciPp/L0VFRezbt6/a9jw5GcfaSKtShVtKmR3+nCuEWAB0BQ4KIepLKXOEEPWB3Aq+dzYwGyA1NVUuXbq0MlEiqqioiP379xPNGXfu3Indbo/qPcfz8/NZuXIlMTExRkepUGlpaVT/PXu9Xn7O+5nPln5mdJQK2XPsXOK5pNp38Ps7srKyWLt2bVTs7V2RY75/UsqT+gAcQMJhX68ErgCeA8aHj48Hph7vXHXr1pXRbPv27XL27NlGxzimBQsWyJUrVxod45ieeuopWVhYaHSMCum6Lu+55x6jYxxTQUGB7DypsySK/6u3op5cuHCh0W/VMc2aNUtu377d6BjHFK6LR62ZlRnjzgBWCCF+Bf4LfCml/AaYDFwqhNgOXBp+rPyPyy67LKp7JIqiRK+THiqRUu4CzjrK8QLgksqEqg3y8vKMjqAoSg2llrwriqLUMKpwK4qi1DCqcCuKotQwqnAriqLUMKpwK4qi1DC1snB7vV42btzIU089hdvtVtPyjqK0tJShQ4caHUNRaoTdu3fz8MMPV1t7tbJw9+jRg+eff5527drRvHlz9u7da3SkqKNpmnpfFOUE+f1+Dhw4UG3t1brCvXjxYi677DImT55MQkICL774Ip9++mlU71mgnNreeust9fNXw1X331+tK9wZGRlkZWXx8MMPU79+fbKysmjcuLHRsZRaaOHChVxzzTWYTCb69OlTfl9DRTmeWnfrsiZNmpCZmUkwGOSXX37hlVdeYfny5VF1Pznl1Fe2C+FNN91Er169cDgcbN++Hb/fj81mMzqeEuVqVY87OzubyZMnM3v2bObOnYumaWRmZqoet1LtMjMzKSoqwm63M3HiRLp3747b7Y7q3eqU6FFretzFxcW8+uqr9OvXj5YtWwIwfPhwg1MptVVsbCw//fQTzzzzDNu2bePuu++ma9eutGvXzuhoSg1QKwq3pmkMHz6cJ554gtatWxsdR6nlPB4PDz/8MJMnhzbOfPjhh3nggQdo0qSJwcmUmuKUL9x5eXk8+OCDTJs2jYyMDKPjKLVcdnY2Y8aM4e2338ZutwPw7rvvRvXNJaKBz+cjPz+fhg0bGh3lqKr7GtkpPcadk5PDq6++yr/+9S9VtBUgNG1r/vz51d5uSUkJs2fP5pVXXuHFF18sL9qAKtonYM+ePdW6wOXvUtMBq4jX62Xy5Mn06dOH9u3bGx1HiQIfffQRQ4YM4cCBAwwePLjablEmpWTChAnExcUxZMiQqO01KjXHKTlU4vF4GDx4MNOmTaNRo0ZGx6mRhBDExMTg8/mqrUdYWloa0Z7LqlWr6NmzJ9deey1+v5+tW7dy4YUXYjabI9amz+fj7rvvZty4cbRt2zZi7ZzKpJR4vV7i4uKMjlIhk8mE2WwmEAhgtVoj3t4pV7hzcnKYOnUq06ZNi+qeTceOHfn111/p1KmT0VGOKiEhgfvuu49nnnmGJ554olraHDFiBFlZWRE7/86dO1myZAlLlixh6tSpPPfcc2RlZUXsomBhYSHTp09n5MiRtGnTJiJtnOp27dpFZmYmw4cP57XXXiMnJ4f69esbHesvWrVqRbdu3fi///s//vnPf0a8vVOqcOfn5zN79mxuvfXWqO9pz5gxgz59+rBkyRKjoxyVEAIhRLWO3c2bNy+i53/ooYfIz8/nqaeeYuTIkVx55ZURK9ozZsygqKiInj17cvbZZ0ekjdrg9ddfZ//+/ZSUlPDiiy/Sp08fbr/9dqNj/UXZxcnq+vdyyoxxa5rGuHHj6N+/f9T2YhVjDR06lH79+nH//fdz5513csUVV1R5G1JKJk2aRIMGDbjqqqvo1atXlbdRW/z3v//Fbrczbdo0GjRowMyZM9m8eTP79u0zOprhToked1FREXfffTcvvviimj2iVKh169blv9ImJSVV+fn9fj9vvPEGbdq04dprr43o2Hlt0LFjRxYuXMjy5ctZtGgRH374Ia1ataJBgwZGRzNcjS/cWVlZzJo1i8cff1wVbeW4hBARKdqLFi0iMzOTmJgY+vXrV+Xnr41sNhvt27fn/fff5+DBgyxbtoy77rpL/Q+RGj5U4nQ6eemll7juuuvUikjFMB9//DEbN24kMTGRYcOGGR3nlHLTTTfxwQcfkJSUxIcffsjFF19sdKSoUGN73MFgkNtvv51nnnmGFi1aGB1HqaUWL17Mvn37uPvuu49YVKNUHSEEAwcONDpGVKmRhTs3N5dHH32U6dOnU69ePaPjKLVYz5496dmzp/r1XalWNa5wHzhwgNmzZ3PPPfeooq0YThVsxQg1rnBbrVb69OnDmWeeaXSUU9qoUaP47bffyMvLY+vWrbzxxhvEx8cbHUtRoo6u6/zzn/9ky5YtACxZsoS3334bkylylxBrXOFOTU0lNTXV6BinNJfLxdq1axk1ahSrVq1i27ZtFBYWqsKtKEfhdDrZsWMHN954I0II5s+fj9PpjMjspTI1rnArkffyyy8zbtw4mjdvTiAQ4JZbbuHJJ59kzpw5RkdTlKjz5JNPMmnSJPx+P0IIzj77bJ588kn+/e9/R6xNVbiVv3jwwQdp27Yt999/P82bN2fAgAGsWbPG6FiKEpWmTp1K8+bNmT59OlJKxowZw+7duyPa5nEHYYQQbwohcoUQvx92rI4Q4jshxPbw55TwcSGEmCGE2CGE2CiEUJs01FBvvvkmAD/++CNz5sxRwySKUgGTycS8efPIzMxk7969zJs3L6Lj23BiPe63gZeBuYcdGw8sllJOFkKMDz9+ELgSaBX+OBeYGf6s1DDdunWjS5cuBINBYmNjjY6j1DDVfUcYIwkh6NGjB926dQNCKz4j7bj/W5BSLgMK/+dwX+Cd8NfvANcednyuDPkFSBZCRN8ejMoJsVgsqmgrJ6W67wgTDWw2W7UUbTj5Je8ZUsocgPDnuuHjDYHDt+7aHz6mKIqiVJGqHog52u9HR/1frxDiTiHEGiHEGo/HU8UxottDDz3ERRddxNq1a+nUqRMrVqwwOpKiKDXIyRbug2VDIOHPueHj+4HGh72uEZB9tBNIKWdLKc+RUp4Tzbckqmq5ubk4nU7mzZvH2WefzciRI9mxYwfBYNDoaIqi1BAnOx3wc2AIMDn8+bPDjt8jhPiA0EXJ4rIhlWPRNI2FCxeeZJTIy8/PZ+fOnVWS8ZdffiElJYVNmzZhs9lIS0tj9uzZ2Gy2Sm1S9Pvvv7Nnzx4OHjxY6YyRcuDAAb755puovndgSUlJVP8sut1uHDkOTlt4mtFRKpSQmcDvrt+jepx7165dWCwWfv/99+O/2CCaplX43HELtxDifaAnkCaE2A9MJFSwPxJC3AbsBW4Iv/wr4CpgB+AGhp5IQL9fMGJE9O6lbbfrDBlir5L9vvv27Vv+ddm9HCdMmFDp8+7Zs4dZs5IoKore97FlyxiuvTYdh8NhdJQKWSyWqN7XvbS0lC4xXZicMdnoKBXacmgLTpMzqt9Hu93OM3WewZ3hNjpKhfzCX+Fzxy3cUspBFTx1yVFeK4GRJ5ys/PtMHDjQ7e9+W7VJStpB/foF5dN9otHBgwcpKsqI6vexUaPFdO7cGZvNhtPpJKVOMgcPZZPgSKIkkMuiQ3PZ5d6EKWAhRsQjdDM5zmzOS7mCy5oPxO/20Si9CSUlJTgcDg4dOoTdbicQCKBpGg6HAyklcXFx5Uv0y5Yelz32+XwkJSXh8/mQUhIbG4vJZCq/v+Z7771XJX/Puq6zaNEi9uzZw4ABA3A6nbzwwgs888wzlfqNo7CwkNWrV0f1z6Ku6+Tn50d1xo0bN1LQoYDilsVGR6lQvKnitRM1+kYKSs0jpU5BIJstrl9YVfgVM7Lv5MPsKXx28DU0P7S2nYtdT6e01EdD2+mcl3oFiTEp3L/kZiavu5/Nub/h1/0EAgFMJhO6rgOhRRCapqFpGj6fDyEEmqYhhCh/bdljv9+Ppmnouh6xawtut5vPPvuMXr160a9fPywWC02aNGHp0qURae/vWrZsWVQPZSjHppa8K9VKIlmfu4rp6yeR4cigSVJTioMBft39B5nZ+2jXsjHWgI1tu3aQ37qI5kltEewnRiYSJxJ5f8ObnF6nA5e3vIZYWxxCCMxmM7qulxeiQCCA1WpF0zQsFguaphETE4MQAovFUl6spZQEAoGIzL2Nj4/nuuuu47bbbmPv3r08/PDD+P1+xo4dW+Vt/R0//fQT//nPf0hISOCrr77isssuU3eVqYFUj1upViZh5py0i6kf6MymrYVs3JTH+o05lGTbiHHXw7XPTtY2P5vW57Fq/Xo27VrNsnVL8biCrNz5M7nOAmatfIVCXz5OpxMI/Wru8XiwWCyYTAK7PQ6v14PVasXn8xEbG4vL5SrvbTscjvIiHsm71nTt2pXJkyeTlpbGoEGDmDhxYsTaOhFSStauXUtCQgL33nsvGRkZrFy5UvW8ayBVuJVqpes6DpOdGdfMoHlqcxbv+I5PNsznxx0/sjFrI1+tXkrdpMbcdulweqXdQANPV9xuF96SAvILD7E9ZyfBgJm+M69Bs4V6zjabjZSUFHxeD+u/fpJ5Dzfhs8kdWPvFYyQmJuJ0OklNTUXXdeLi4sjPz0fTNPx+P4WF/7souOokJydzwQUXkJyczLnnnmv4fVG3bNlSfpu1Sy+9lGHDhuH3+1m3bp2huZS/TxVupVqZTCZiYmLwlnp4rd8srmrzDyxmM6eln8Z5Lc/jzGbt2ZO3h01Zv1PgLCSnIAdHQVNcW5PokNgWT3E+6F60YsHtM25HCIHX66WwsADnwU3s3LSCQyVeGrbvQ3KDjjhLSoiPjycvLw8hBC6Xi7S0NCwWCxaLheTkZKPfkmrTtm1bGjduzCOPPEJWVhaPP/44NpuNzp07Gx1N+ZvUGLdSraSU+P1+UlJSCAQCzOz3Ko/GTeDTtZ9SVFqEw+zALuLwCT+5BVsoPlRMgjWRvt36UuosJY46FOTlYkrJxn8wgKYFsVqtLFkwjdzMnziUs49OF4/lwj5jCQZDz3k8HlJSUtA0DbvdTnFxMWazGSklpaWlEd3wPtr07t2bhIQEPvjgA77//nveffddoyMpJ0H1uJVqZzKZMJlMSClJiavDk5c/yYBzBlEacLErbze/Z/3B6t2r2XtoH6c1akGTBk3YlbMLp9dJgkila5OLyF/jI6btAd5aOIeA38vqpfPx+iz0vetNulx6Z/n5y6b5ld0bsuxxmdq0ix1Au3btGDp0KIsXL6Zhw4acddZZRkdSToLqcSvVzmQyUVpaisPhwOVykRiTyOR/PMOTV07kuleu51DJIXbs20XdhDQKSwuItybgdXshIMnLKyDe6uDSzn3Yv38by+UCfhnxFima5Ipet9C0bTesVitut5uYmJjyi5OlpaXYbDb8fj92u718OqDVajX67TBE06ZNjY6gVIIq3Eq1klLi8/lITU2lsLCQ5ORkXC4XNqsNf6mfL0Z+QWZhJv9Z+x9cXhemoAmHzU5JUQlIgcftJcZsY0DvAZxz1jks27iI11c+Ro9/DOCs865G0zRKS0upU6cOJSUlJCUlUVRURFpaGk6nk7i4OAoKCrDb7UgpcblcUb3CL1JiY2M555xzWLlyJeeff77RcZS/SRVupVoJIYiJiaGwsJC4uDiKi4uxWq0Eg0Hi4+ORUtKybktGXToKKSU2i5kDK77nwH8/xR4TS2qvK0nudgnWmBgOHTpE4EAQT5Hggt79sNlsSClJTk4mPzOT1W+8TOH+vaS0aEvnIXeQXDe9fLxb1/XyWSa1kd1up3v37vzwww+qcNdAqnAr1aqsx52UlERxcTGJiYm43W4sFkv5XGz8Xkw+L1seG4X0e2l03c2c89Cz6MKE1Wxi9+wpFPy6lqCmsyO/iJi8XHy/r2bNT8vI3biOgKbRdsAwOl0/EL/Pi+b18f6dgyktKaXPY0+Q2LwFGY2bYDKZcLlcxMTEGP22KMrfogq3Uu3MZjOBQKB8FWPZhUSz2YzmLCZ79nO49u6g7b+exJqQSKDoEN5d20GAT0LD62+h6a0jCbqcNPxxMeds20zBT8toduHFdLjpdoJBP65Dh/A7i9Ek6Ej6PPI4QU1n+f/NZeOKFdw1521OO7tz+UXL2igjIwNN08jLyyM9Pd3oOMrfoAq3Uq2EEEfsI1K2daWUEoJB9sx8Fu1gNqfdPBx/3gGCeQcQSMomfwgJ/r278UqJDiSe3pbkjp3R/EE8RQWU7NmJJiWaBE1KdCnRdNClJKhLzr66DwFd5//G/YuBz06l1bm195aonTp1Yv78+fzxxx/06NHD6DjK36AKt1KtpJQEg0FSUlKOuDhpsVjYt+BdPDs20/yW4RDwInQQIvxxxDlCBRwkmtuFX8pQsQ4XaE2X6JLy4h3UJJrUCYZf0/6iXvi8fmaNuIuxH35M27PPNujdUJSTowq3Uq1MJhOxsbHk5OSQmppKfn4+DocDn9tF4fefc/rNI9HcxUgTIASmcA/dFK7cUspQ71wSquBlRVqX6LokKHU0XaJpEAwX7oCuE5QQ1HU0XaDpOm3Pv4Dc/fvx5OdH/M+s9gJRqpoq3Eq1Kutxx8XFEQgEyi8MFqz4HpsjHm9+FmaTwGQOrQ0TZjAfVrh1GepVS12ApqNLHSlB6uGetl5WoCUBPTQ8EtQlQUmogOuhYZRAUCe1UVNeHX0vr2/6AxHBse5oXuTTtWtX1qxZQ7du3SJ6h/Lvv/+eHTt20LBhQ6655pqItVNbqMIdhSZOnMiECRNCMyxOQWWFrOyzlBLnupXYm7VE87gQJoE0mULrek0CYRKYw5Vb6hIhJVIHqcnwtD7Cn0PFW9NDRQuL1LoAACAASURBVPrPwq0T0P8s3AEt1Atv0KoFW1avMuptiAp9+vShV69e3HnnnREt3LGxsSQkJLBr1y5uvvnmI54bOnQovXv3jljbp6JTszLUUF9++SXjxo1j2rRpdOnShWuuuYYnn3zS6FhVqmz/bKfTid1ux+VyYbfbMZtNSM2P5nFhMgl0kwlpIlTAzaHiDYS73ICuo5cVbglBLVSUg1qoxx0M97gDuiQQ1AhKiV+XBDRBQNPCRZzyGzEokdW9e3e6d++Ox+OhT58+Rzz32muvMW7cuCOOzZ8/n7S0tPLHJpOJhISEaslaE6jCHWF5eXn89ttvJ/TaVatW0bt3b2w2Gx9++CFz5szh4MGDp9TKPl3X8fl8JCcn43a7SUxMxO/34/f5kQUHiQnvYyLMApNJIMwCYTIR6n5LgoCm66HirMlwgQ59HZDh3rQWKtj+YKg4l5QUY7Y78GtlxTv8fHgRTm3XqVMn1q5dS8+ePSPeVlxcHM2bNz/i2LPPPsuzzz57xLGBAweSf9j1hzp16jBixIgjXtOkSRNatmx5Qu1mZmaSkJBAamrqSSaPLqpwR1hBQcEJ367qjz/+wOVysWzZMm6//Xbsdjt5eXmnVOE2mUzYbDYKCgpIT0/n0KFDJCQkEJuYRM6P32AzmSA5GcLFG1NoSknQ70PExKFTNvwBPpcTd34efk3HF9Tx6xKfpuMLSjSTBUtaBgEExdn7sddriF/XCWjg0zSCOuTlHMDv9Rr9lhju+eefp3Pnzqxfv96Q9o92DeDDDz884nFBQQHTp08/4ljZZmWHGzZsGI0aNSp/7PP5mDJlCrquI4QgKSmJMWPGVGF6Y6jCHWFt2rQ54eGOjz76iIkTJ/LCCy8waNAgzjzzTNq3bx/hhNVL13X8fj/p6aHl58nJyfj9fupffyt5Py2maOtvaA2b4Eiri24S6CZBUEBw306sjVsgAc/BbAIlxXh9PrylpXiDGn5N4glKfEENr6bjR6Dv24sfM3GNm1Cck4NwOAho4NV0igsL2bXpDzpefS1E8cVDJSQ1NfUv/452797N9u3bjzj2yCOPkJOTU/44GAxSUFDAJ598QklJCYMHD2b06NHVkjmSVOGOItdeey2XXnopd999N5988gnx8RXf5bkm03W9/D6RZdusxjRogm6xEXC5Yfd20DRs8fEEpIYZ8JcUIzb+NzRXW9MIaDp+Tcev/Tk8EpR6eO42BDQNb1EhvqBOQX4+noCGH0Fi42YcOnSI3KwDeP1Brh4xIqpnfVSXtLQ0CgoKatRQQvPmzf8y7HLeeeeVL+oCuOqqq9i5cyf9+/fn1VdfZdasWTzwwAMnPMQSrVThjiI2mw2bzcb7779vdJSIEUJgs9lwOp3ExMTg8XjKi7gWE4dfl8iAhrmkmKAWQMveF54OKBCAhixfZOPXdYKawK8fPnatl495B8MzTIJaAE2DQFDDU1pKYc5BdAkIE3HxDqPfEsOZTCZmzpzJ2LFjmTt3rtFxKiUxMfGIx4sWLeK8885j3rx5FBYWMmLECDZv3sxrr71mUMKqoW6koFSrsjvgJCcn4/F4SEhIQNd1LBYLzW6+HV94nNpVWIi71IlP0/FqOh5Nx63peIM6nmDosV8DX7jXfUTPW9dDKyZ1WT67JBiefVJSeCh0R3iTiS79rkfE1s7dAWuLmJgY7r77bhYsWMCqVasYP3680ZGqhOpxK9WqbFvX/Px84uPjKSoqwmazEQgEaHDBpazXQZc6ugygO90Q1EPXJ0WojyGlHl6EA8HwYht/+GKlXy+bLSLxa6HnA2UFXEpEbCxejy/0Gi1Ix549aXLaaQa/I0ok2Ww2Ro4cycGDB4mLi/tLj7ymUj1upVpJKQkEAqSlpeF2u0lKSiq/E43T5Sahy0WhXnZQo9RZijsQ6mG7A3r4axnqcQd1PEENT3hGiTeo4Qtq+DQNf1Di1zT8mn7YXG4dV6kbv89PQno6lw+/C3NsXETv8l6TxMTEkJiYeMQUvFNJRkbGKVO0QRVupZqVLcBxu91YrVa8Xm/5LoFxCQm0vuk2vEEZLtAa3vBsEW9QwxvUDivaoSEUb1CWD6/4NIkvPFzi1wR+HfyaPGK+d0BKMlq1oqTwEN2u6VNrb6Twvxo3bkzXrl1ZsGCB0VGUE6AKt1LtpJTl27qWLYCRUmKxWEhpeTqNLusTLtThXnUwNLb95/i2xBMIPe8Lv84XnmUSCBfv0HCJFiriusSvh1ZXtruoJ5qwcH6//lgsllp7z0mlZlOFW6lWZUXbbrcTCASIi4srv4mCx+PB5IgntX1H/JhCvW4tNDTiDmq4y4t4MHSxsvxxqDfu1UJzuH26xBsMLbbx6xq+cG9bFyZSGjbE6Syhw0UXoWkaLpfL6LckathsNoLBIMFg0OgoynGowq1Uq7JtXXNzc3E4HBQUFJTfESc5OZm4uDhaD7iVjPMuDA2N+DXcAQ13UA99BHTcfokvKPEGZXi4JNQL9wbBo0l8wdCUQG94+CSgaUiLlfYXX8rqxUt5dsFCYmJjsVqtNWrecqQNGDCAdevWsW3bNqOjKMehCrdSrcouTsbHx+Pz+XA4HOULcrxeL36/H5MQtO3TH80ai0cLj20HNDyBP3vX7sPHvLU/i7gvPGxy+DTBICYan9mJAIIL+/dDs/7ZsywtLTX6LYkaaiFSzXHcwi2EeFMIkSuE+P2wY48LIbKEEBvCH1cd9txDQogdQoitQojLIxVcqbnMZjOapmG1WgkEAuWrJy0WS/k9IJtcfDn2NmfgDUrcQVne4y6/MBk+Xjb+7QuExrt95Rct/xz3rtuyNfaUOmRu+oMOvXrhiI8v3+fiVN0692SV/V2omz9EtxPpcb8NXHGU4y9KKTuGP74CEEK0AwYCZ4S/51UhRO29G6vyF2X3nPT7/Ufce1JKecSmQbqu84+nnseUknpYwS4bMpG4whclvYE/i7lHA0+4aHs1Dd1iJbFRUyzxCRQXFnL96Hs5vWtXzGZzeQ51cfJIM2bM4K677jpi2bgSfY5buKWUy4ATnezaF/hASumTUu4GdgBdK5FPOcX871CJ3W5H13VMJhMej4dAIACELpQ1aNmKga++SUKTZngCevgjNETiK5vfXT7GrZfPRPEFQ2Pgfinw+gOUFB6iU+9L6T10KLFxcTidTjRNUxcnjyI2NhaPx2N0DOU4KjPGfY8QYmN4KCUlfKwhsO+w1+wPH/sLIcSdQog1Qog1gYD6QaktylZOFhUVERsbS0lJCRDaxc3hcBATE4OUEq/Xi9PppGXX87j6yWfpdP2N+KQon2XiN1tofmHP8imC3qBGbFpd4us1wKtpoeXwvgA2u53rRo3i0mHDEELg9XpJTk7GbDZjsVjU5vxH8eijj/5lu1QlupzsAN9M4ClCt2x9Cvg3MIwjb8Zd5qiDZVLK2cBsgISEDOnznWQSpcax2WzUrVsXs9lMenp6+UWxsmJhsViw2+3lxzpfegXtu3XnmvtD+0xICcIksCcnU3rYykeLLQaEOGKPbVtsLHWbNEEPTzmMi4tDCFG+8EZdkPur6667zugIynGcVOGWUh4s+1oI8TrwRfjhfqDxYS9tBGSfdDrllHT4WPbRenbm/7lxr8lkwpqSQnxKyl9em5JR74TaLDtjWXvVWbDVhT6lqp3U70NCiPqHPbwOKJtx8jkwUAgRI4RoDrQC/lu5iIpSs914443ld7NXlKogjtcbEEK8D/QE0oCDwMTw446EhkEygbuklDnh1z9CaNgkCIyRUn59vBBJSXVk69b/Otk/Q8RZrS7OOCOfpk2bGh2lQgcOHODXX2Pwev/aK40WKSnb6NateVTP5Pjtt9/o0KGD0TEqFAgEyMzMpFWrVkZHqVBhYSF+v5969U7styEjZGZm8kf6HwQcAaOjVGjbC9soLiw+6q+Gxy3c1SEhoa70+7caHaNCiYmZNGjwE1u23Gx0lAo1bfoNr76aTufOnY2OUqFp06YxdOhQkpKSjI5SoUceeYRJkyYZHaNCRUVFzJ07l3vvvdfoKBVas2YNBQUFXH559C7jmDdvHhdddFFUd8ZOP/10cnNzj1q4o2T1gcDvj96eYiBQgKbFRHVGTYvD4XCQcpRx4GhhtVpJSkqK2oxle6ZEaz4IZbRarVGd0W6343a7ozpjTEwM8fHxUZ3xWNdh1JwfRVGUGkYVbkVRlBpGFW5FUaKalJLdu3cbHSOqRMkYt6Ioyl+tXr2aX3/9tXy2z4UXXsjpp59udCzDqR63oihR69NPP2XXrl089thjrFq1iuXLlxsdKSqowq0oSlRasWIFDoeD8ePHM3ToUCZPnsxvv/2mhk1QhVtRlCh1wQUX4HK5ePvtt9m8eTP//ve/6dChA82aNTM62l+43W62bq2+tShqjFtRlKgkhKBXr14sXboUp9OJEIKOHTtG3cZgc+fOZc+ePQSDQWw2G8OHD4/4LfFUj1tRKqEm3C2mJmSsyGWXXcbTTz9N/fr1mTRpEuecc47RkY4gpWTOnDmcd9553HHHHSxdupS8vLyIt6sKt6KcBCkl2dnZfPjhh8yaNYusrKyoK47BYJD9+/fz6KOPsnz5cnJzc42OdMqZPn069957L02bNmXKlCm8+eabjB8/Hl3XI9quKtyKcpK6dOlCVlYWVquVTp064ff7jY50hOzsbLp160b37t1ZuHAhV1111fG/SflbxowZw4wZM/jss8/YtGkTt956K5MnT474jShU4VaUkzBr1iwef/xxLr74Ylq3bs20adOYMWOG0bHKSSmZPXs2s2fPxuVyMWbMGAYNGsT8+fONjnbKGTVqFEVFRbjdbq699loyMjIi3qYq3LXEU089Rc+ePfH5fDXmRrCBQIDvvvuO9957j0AgEFVDEb1792bRokU0atSIzz//nOnTp9O7d2+jYx3h4osv5scff+Scc87h3nvvZcWKFVG9e2RNdcMNNzB48GDatWvH6NGjq2XjKlW4a4nx48fz2Wef0aNHD5544gl+/fVXgsGg0bEqJKWkZcuWfPfdd2RlZdGgQYOoGopo2bIlubm5TJw4EQCfz8fTTz/N/v37DU4WIoSgbdu2LFq0iIULF6LrOpmZmcyaNYuioiKj4ymVpAp3LVG2peovv/xC9+7dee2113j11Vf55ptvjI52VF9++SW33nord911Fw6HgyFDhvDpp58aHaucEIIff/yR22+/nauvvpoNGzYwbdo0XnvtNXbs2GF0PADq16/PunXrqF+/Pq+88grr16/niiuuYObMmZSWlhodT6kEVbhrocsuu4xXXnmFRo0a8ccffzBo0CB27txpdKwjxMfH43Q6sdlspKSk4HQ6mTp1qtGx/uLss8+mZ8+eADRu3JjBgwczc+ZM8vPzjQ12mAEDBtC4cehWsD179uTCCy/koYceiqqhJ+XvUQtwaikhBNdffz0ul4vrr7+ecePGsWPHDq655hruu+8+EhIS/nLT3urUo0cP7rzzTnRdp27duvznP//hnXfeoWPHjkyYMIHevXuTmJgYdYsxWrduzfjx4xk4cCDNmjXj5ZdfJjY21uhYR+jevTupqal06tSJ2267jREjRmCxqFJQGdX9c6h63LWcw+GgWbNmfPzxx6xfv55zzz2X/v37s3DhQtatW2dYLiEEW7dupX///rRt25asrCx69+7N+vXr2bJlCzfffDOLFy9m165dhmWsSHp6Ot999x3Dhw9n6tSpFBYWGh3pL9q0acP69euJj49n3rx5UX29oyao7t9eVOFWgFChFEJw9dVX8/3337N//34+//xzJk6caNgwihCCiy66iH79+pXnE0LwyCOP8Mknn/DTTz8xd+5cHn/8cbxeryEZKyKE4JxzzuHCCy9kxowZUZlPCMHQoUMRQvDKK68YHalCQghuuOEGFixYYHSUCqWlpdGkSRPWr19fLe2pwq0c1ejRo7n33nu58MILmTx5MjfddFP50uloGBuNjY1l4sSJ3HrrrXTv3p3+/fvzzDPPRE2+Mr169eKaa65h5MiRUZetzJAhQ2jSpAlTpkyJyoxCiPLfAqNVWeHesGFDtbSnCrdSoTp16tC7d2+mTZvG448/TqdOnejUqRNLliwhKyvL6HgAnHbaaVxyySW89957nH766XTq1ImlS5eSnZ1tdLRyZ599Nvfffz+dOnVi9uzZUTWtEUKFsU+fPjRv3pxOnTqxYsWKqCveypFU4VaOy+Fw0Lp1azZs2MCGDRv47rvvePrpp3nvvffYu3fvEa9dvHgxgUCgWvMJIUhMTKRfv35s2LCBb7/9lqeeeuqo+YwghKBNmzZs2LABi8XC3LlzI76Xxd9lNpu58cYb2bBhA19++SXffvut0ZGUY1CFW/nbnn32WZ588kmKi4t59dVXGTduHJs2bWLEiBGsW7eOsWPH8s477xiWb/LkyTzxxBMUFxdX+/9Ejue2227D4XDw/PPPGx2lQk8//TR//PGHWh4fxVThVk5Keno6I0aMYMSIEVx//fX07dsXs9nMsGHDuPrqq1myZImhS+vr1q3LiBEjaNGihWEZKjJgwABOP/10unTpwnfffRd1wxIWi4Xhw4eza9cuunTpQk5OjtGRlP+hCrdSKU2bNuWMM87g/PPPp06dOlxzzTV07dqVzp0788UXXxgdLyqZTCb69OnDypUr+f7771m2bFnUFW+73c59993HypUrGTt2LNu3bzc6knIYVbiVSktKSuKmm25izZo1fPjhh7z88susXr2avn37Gh0tagkhsFqtTJkyhVWrVhkd56hMJhNWq5XXX3+dH3/80eg4ymHUcimlSnTs2JFhw4bx7LPPctFFF3HllVcaHanGeOCBB4yOcEwJCQncfvvtRsdQDqMKt1Il6tWrR//+/enZsyd16tSJ+EbyihJtYmNjq23puyrcSpVKS0szOoKiGGLQoEHV1tZxu0VCiMZCiCVCiM1CiE1CiNHh43WEEN8JIbaHP6eEjwshxAwhxA4hxEYhxNmR/kMoiqIYrWwbgepwIr/PBoH7pJRtgfOAkUKIdsB4YLGUshWwOPwY4EqgVfjjTmBmladWFEWpxY5buKWUOVLKdeGvncBmoCHQFyhbZfEOcG34677AXBnyC5AshKhf5ckVRak1bDYb9erVMzpG1PhbV5CEEM2ATsAqIENKmQOh4g7UDb+sIbDvsG/bHz72v+e6UwixRgixJhDw/P3kiqLUGs2aNWPKlClGx4gaJ1y4hRDxwHxgjJSy5FgvPcqxv6wukFLOllKeI6U8x2qNO9EYiqIotd4JFW4hhJVQ0f4/KWXZjf8Olg2BhD/nho/vBxof9u2NgOjZqk1RFKWGO5FZJQJ4A9gspXzhsKc+B4aEvx4CfHbY8VvDs0vOA4rLhlQURVGUyjuRedwXAIOB34QQZbuEPwxMBj4SQtwG7AVuCD/3FXAVsANwA0OrNLGiKEotd9zCLaVcwdHHrQEuOcrrJTDy70eJrk12ji76M0bbZkVHE+0Zoz0fqIxVpSZkPBoRDcGTklJkx463GB2jQmazn6SkUmy2OkZHqVAwWEJysgW73W50lArl5uaSmppq6N3jj2f//mwslgZGxzgGjYApG2tdq9FBKqS7deKD8SQmJhodpUKFhYXEx8djs9mMjlKhd999l0OHDh210xwVhTshIUOWlh40OkaFkpJ28NxzS7jjjjuMjlKhhQsXkpGRwbnnnovP58Nqtf55lxWTzgHfHg4FDyJ1iQUbIPAE3NjNibRIPAOhm7HZrGiahhCCYDCIEAKTyUQwGMRms5V/Ljt/MBjEbDYf8dqy1WPBYBCrNVRcylaTPf3004wcOZKUlBSD3qVjk1Jy44338sknLxkdpUIxMYW0f+wy1j681ugoFar3Uz1m5c+K6t0hX3vtNS655BJatmxpdJQKZWRkcPDgwaMWbrVXySlG0zQKCgqITbDx30NfUDe2KUGTl52lv5Lj34PTW4rTW0yDuBZ4/B7qWhuxPXYzuwt2cM+5j+D3BRBCUFpaihCCmJgYSktLSUtLo7S0lDp16lBcXEydOnUoKSnB4XBQVFSE1WrFZrNhs9mwWCyUlpZGbYFWlKqWm5vLkiVLGDBgQLW0pwr3KWZH0a/MP/QiolhwwLcHq4wlGJQ4SCEtpiHJpFDkduHRA9SJaQS6la93fkqcJYGnfniAge1vo4G9MQkJCUgpCQaDpKam4nK5iImJIT8/n/j4eEpKSoiLi8Pn85GcnIyUEk3TcLvdQGilW0FBAcnJyVgs6sdMObUVFhby7bffqsKtnJx0e1M+WLyeOrF1ODP9TE6r24Zd2Zm8s+J9WrZOIt0Rz/aNOZgbBrmg3UWYg7HEWZIpdOYTY0/gzf/O5B9tr+WMlLOwWKxYrVby8vKoW7cuLpeLOqmpFBYUkJSURHFxMQ6Hg5KSEqzW0GsdDgcmkwmXy0VKSora3lWpFaprc6ky6l9VNdF1nU8//fT4L6ykOOzM/seb6Jrgyz++ZvoPL7Poj0VkpNTDn5eM70A9WtU9j9iihmhFOitW/Mzu/E2s3bmeLdk7WL13HfM3zMer+7BYLAghiI+Px+/343PmsO2Xuexe+wF7f/8PVmtoTDw2Nra8V+33+/F6vZhMJrxeb5VdtV+4cKGh97BUlGOp7muFqnBXE13XeeaZZyLejslkonWdljx68SOYLIKdBTs55DlEfKwDt9+NO+Cicd3GtE3rSKKnJc0S2+HcJhF+HTM+9uZm8+1vi5n0xdNA6AdS13WQGll/fMvSD8aw9qtHWbvo3wj5559N1/XyH16TyYSUskp+mFevXs3gwYPZt28fw4YNM/Tu8Yrx5syZQ3a2WoitCnc1io2Nxev1RrQNq9VKwB+gW6NuzL9pPmnxqZjMZoq8xVhtFnyanz/2byLPmcfWvVtYvuZnmtrb0ydjML8u3kqXNo2xO818/PXHBIIBAJwlReTuWc2yL1+iyB1Dl/5vcOmw/yOghWaV+P3+8hksZRcpdV0nLi6uUr9C6rrOzp07adWqFTfffDODBg1izZo1BAKBKnmvlJojMzOTNm3aoGkad9xxBzfccMPxv+kUpgp3NTGbzcyaNYvRo0dHtJ3i4mLq1q2LkIK29drx070rSHYkk+M8wIGSg2QX57Dv0H5+3vYzy7csJy0lHU1qHMzNp8/ZA3BsbkVSjIW6SXHs3LcNKSU/LnieOZOHEZvciktueYX2Xa8miAO73Y7X66VOnTrY7fby2ShFRUXYbDby8/MrNbxRWFjIsmXLGDp0KP/4xz/o0qULTZo0Yfny5VX4jinRTkrJhg0bGDJkCD169GDu3LnY7XZ27txpdDTDqMJdTcrmN0d6LKzsYqEQAq/XS4a9Hm8OepO7e9yNXw+QWZDJlpwt+HU/rRq2Jq1OGrlFuRwqLSQrLxu3101CYTPiEgVPfDaGT/8zh22bN5Jcrx3X3Dad9l2vwuv1Yrfb8fv9WK1W3G43fr8fgLi4OOx2O5qmkZCQUKmLk2lpaVx88cXcddddXHrppUycOJHdu3dz8cUXV9XbpdQQv/32G2eccQbPP/882dnZtGzZkh07dhgdyzBqVokBpJQRuwrt9XqJi4sjEAiUL8I5Pb01rXuNpWvDLhx0HeSZT54hKz+bXQd3Uic2FRs2CvLz8bkDeEs9jLh2BKPOv4di+37efnEKKbka9z31OinpjXG73cTFxeH1eomJiSlflFM2zl1WwMsKekxMTKX+PBdeeCEJCQm8++67/Pzzz3z++edV8TYpNYgQggEDBtCrVy+EEGzatAmTycSECROMjmYYVbirUZs2bejYsSMfffRRxOZ76rqOxWLB7/cfcZFQSuh2Wjdi42K5ot0VWG1WSp2l2MyCrF3bSE9KxSfBXiedWFssKckplJQcYmvzDfQa9g+ateqIEAJN0zCZTJTm5xGwmAloOqkNGmIymcqLN1D+2sr+hpGRkcHll1/Oeeedx6ZNm3jrrbd47rnnquKtUmqQFi1a8Msvv/D4449z991306pVK6MjGUoV7mpkNpvLi2qkxMbGls+r9vl85e0CxMTE4Pf7SYhNIH/NSmIDHpy5B0nI3kNJ0SGSO3QiseN5lGbuYLfHw74Dufy2/CfOO7s7gay9ZG/fQmxcHCXxKexZvpi9v/9KfHp97Ke1Jj41jYZnnEFGq9PLl8EnJSVV2TzupKQkGjZsiMViYe/evTRp0qRKzqvUDGazmR9++IFu3brRuXNno+MYThXuU4zL5SI1NZXS0lJiY2PRdR2fz4cQAo/HQ6zHye7/m4UjJRV/nJ2k9Hoknt8DKQQC8OzfgywuJEYP4ti9jfN9buTiL8jOykSYLBwK+Imr25DWl1xBi0suR2o6W39axoHff2Xv+rU4PV6ufXgCKWlpFBcXk5qaWmXFu2nTpjRu3JiffvpJFW6lVlOFu5pdf/31TJw4kZ49e9K4cePjf8PflJiYGNqrJDYWt9uNyWTCarUipcRhNbNh1B0kndaKlIsuw2S2gNTwZ+0NbdwrJWazhaSWbdClxNG4BS2vH4im6fjcJVji4tGkTiAQxFNciC5B0yWN2p9FfSkpLijg8+kv8Mbdd3HP2++SnJxc5TsB3nDDDUyYMIEePXrQoEE07+KnKJGjZpVUs7S0NEpKSsqHMapaSUkJaWlpSCmx2+2hed2BAN5DBay6/VrsDRpS/8p+6M5i9OJCpLMY4S1FeErB60K6StAK8wgW5qG7nASLC9CchxB+P/6iQgKHDhF0lhB0uQi6XQTcLvylTnyloeGZvmPuo/RADi//81b27dxZ5asd09PTSU5OZuvWrTV2L2VFqSzV4z7FxMbG4nK5EEIQCASQUmI2m8n5z0fUadyCBpf3IZCfgzk8PdEkwnfJEAIhJbqUIAUCCbqOlKBJSVAHTdfRpUSXhB9LNF0SkBJN6gR1ga5Lzh94E9+99SablvxA89NPr/I/4+TJk+nYsSPr51Q7CwAAIABJREFU16+v8nMr0amoqIj9+/fTq1cvo6NEBdXjPsXY7XaKiooA8Hg8oVkePg/ObRtJbtOeYP4B8LrB60b4XJh8bsx+N2afG5Pfg/C5ET43eFxIrxvpdSHdbqTHheZxE3S7CLpcBFxOAq5S/O5Sgi4X/lIXfpcTn9uJCWjW4SxWffYZxXl5xr4hyikhNzeXbdu2cf755xsdJSqowm2AadOmMWLEiD9vdFCFiouLycjIQEpJfHw8FouFnKXfgs+PrgXQPC6kJ1SYhdeNyevC7HNj8bkweV0I3/+zd+ZxTlbX/3/f7DOZZFb2fVMRFEUQgUIFVERxq7VudbdqrbYI6qB+RbG1isoiboigIra/Qq1KXepSRS2KqIAiiGwCOjIDwyyZ7HmW+/sjyeOMggyQITNw369XXkme58l9TrZPTs4995yUWMeiyEgEMxzBjIYxokHMSFK8tegPYRItHCIeCREPB0mEQ8RCYaKhOtr27EmwuppQTU3GnyPAwoULufjii5tkbIWiuaNCJVmguLiYnTt3NsnY+fn5bN++HZ/PRzgcxm63k+t2EnTZMRMxTB2kzQY2kDYBNoHNbkMIkCYIU4IpkabENAxMKyRiYpigG8nQSMKU6IZEN000EzTTREvdT5ipsImuQRPFodu3b4/X62XTpk306NGjSc6hUDRXlHAfZESjUXw+H4C1ajEWi2HGY0nP2QZ2mx3TBqZdYNpsmDaBDYEpU4JtmhimxDSkJdq6KZMCbSRv60ZSsBOGmRJriWaAZsqUiJsYTVgMKi8vj/PPP5/nn3+eu+66q8nOo1A0R1SoJEvMmDGDCRMmZHxcu91OJBKxutdIKXHYnQQ3rCVevRMjHEaPhNDT8epICC0cIWFliYTQIxGMSAgtEkILh9DCye1aKEQilAyJJMIh4qEQ279eQ7S2hlgoSCwUJBoKJsMlwVCTV/Hr378/UkpWrFjRpOdRZBfTNLnnnnuYOHFitk3ZLekSFgcq00l53Fmif//+3H333RkfN503nS5oZZom7pJW4HRRt/ZLRI9eSLcbabMh7QIpJIlwEOHOBacTQ9fREjrxWITar9eQ0HViuiRuSmK6QcwwiRvg69UXw+XCmZtLLBxBFwLNkMSNZMhk27dbCVRWIpqwo3tRUREFBQVs3ryZfv36Nevu8Ycama7Fs2bNGnr37p3RMTNJz549GTx4MH//+98PyNyLEu6DjHRZ12AwiNfrRdd1OPp4igePZPt/XsCIhino2gMjNxfDJrALibH9e4TDDS4XiWCA+M4dJIxkHDtumOiGJKFLNMNA1yWaYfL9qk+J6+AoaUNc08GbBy4PCSmo3VnN1g0bOPHK31HUrl2TPt9x48Zx0kknMWrUKAoKCpr0XIrGc6jl2Nvtdqs2/YFAhUqyhNvtZuzYsSxatCij4+bm5hIIBKyyrrqebHYQjSfQTUk8Eia4fRuxUB11326mbss3hGtqCX3/LXWbNxLekRTttOesGZJEatJRNyW6KTFkesLSILDtewIVFVSsX09NeTk7tm6h/JtNmCZ0P+pocvLyMvr8dsW4ceOYOnVqk59HoWguKOHOEi6XiwEDBvDpp59mdNxEIoHX60VKicvlwm63J7vRdOiAbneS0E2iwSDhQC3hqkrCVZVEIlGiuklMN4kZBlHdIG6YxI3kpGMilTGimaBJMzkxmV6EIyUGyUnMeCxGNBjGFAJ3np9YPN4kKY8/5vTTT+eVV15p8vMoskMikcDlcmXbjGaFEu6DkPTf1Pp/V7v/9npsJW2JGAaRSIxwIEBUM4hqJlHNJKKbRDSDiG4S1SVxHeK6SVw3SeikskaS2SKaKTH0H7zwhGFiIgjXhYlGo+i6Sb/TT2X4xRcdsOfcq1evQ7qw/sHM6aefzltvvZVtM5oVSrgPMlwuF9FoFCEEuq5jmmayLrewYStohW4kJxkjoUhStA2TqG4Q1c2U1y2JGaZ1SXrdqeuUBx43zWTKn0wKumGCDhgkQyhHDB2OHRu5npyMVQb8OYQQPPjgg0yaNKnJz6U48BiGoSaef4QS7izSp08fnE5nRmtuxGIx/H4/kKxb4nA4knnZhkHXS39P3BDEdJNoLJEU7pRgRzUjGSrRDWJa6tqQxI2kkCf0lHjrJrouSZikFtyk4uCaTiwWw+5xY3M7OfWaa6mrq8t4kand0bp1awYMGMAbb7xxQM6nUGQTJdxZpKSkBLvdzvbt2zM2ps/ns1ZlhkIh4vE4drsdp9NJt0FDMXPziKXCIsl4tiSa8q6juklEk8lwiSGJ6kkxjxsmMTMp4gkD4iYkTIO4kVx0o5smCUMiHU4Gn3cBNTur6NK3L61atcLhODCJS7m5uXTp0oUNGzYkM2kUioOYPQq3EKKTEGKxEGKtEGKNEOJPqe13CyG+F0J8nrqcVu8xtwkhNgoh1gkhRjflE1A0JBQKkZ+fj5QSj8eD0+nEMAxM0ySiaYx8+BkrHztiJGPbUc0kkopzR1OTkz944CYxzSChGz+ESgyThJ5e3m4QN0E3TI4Y8guWL17MDU/OxuVyEQqFDsjkZJpf/epXfPXVV3z11VcH7JyKpuXrr7/msMMOU6GSH9EYj1sHJkgpewMnAH8QQhyZ2jddSnlM6vI6QGrfBUAf4FTgcSGEetV3w8iRI1myZAmRSCQj47lcLmKxmNXzMR3jFkLgcrlwt25D26EjU4Kc8rJ1g6iuW5kl6fBITP9h0U3ykgqbGKaVMhg3JJpp4PbnE40lGHTaabTt0gXDMHA6nU3WFHlXCCE4++yzeeGFFw5YiEbRtMybN4/f/va35OTkZNuUZsUehVtKWS6lXJG6HQTWAh1+5iFnAf+QUsallJuBjcDxmTD2YGTIkCF89tlnxGKxjIzn8XgIBoMIIUgkEpimaS0OyM3NxVFQRPvjhxDXZSqrJOlZR3WZvE5lmUR1k7hhpMSa1OUHsY6bkriRrF1iCgd9Rp5ENJFgyJln4/P7MQwDr9d7QIUbYPTo0bz55psqXKI4qNmrGLcQoitwLLAstekGIcQqIcTTQojC1LYOwHf1HlbGzwu9AtiyZUtGxqmrq6NVq1aYppkUaocDTdPQNI2amhq8ubn0ueAyOo44haiZ9LDDmkE4YRBJpQdGUqGScErAY5pBTNeJawbx9MSlnvS8DbuTw3/xS6p3VtH/pJPp0LcvtbW1OJ1Odu7cmRXP96233mL0aBWhOxgoKSlR3vYuaLRwCyHygH8B46SUdcATQA/gGKAcSC9d25WL9ZP1r0KIa4QQnwkhPtO06F4bfrDw+eefU1ZWxkknncTcuXP3Oz7r9/uprq7GZrMRiUTQNA2n04nT6aSgoIBIJILd6aTzyaehO3OsvO2okZyUjBip+7r8IePEShOURNMxblOCx0PrHj2RDjuRugAdjjgCf34+BQUFaJpGUVFRVmKTubm5nHzyyQf8vIrMM2HCBAYOHJhtM5odjRJuIYSTpGj/TUr5IoCUcruU0pBSmsBT/BAOKQPqd8HtCGz78ZhSytlSygFSygFO56H7i/rqq68yevRovF4vy5cv55133tmv8SKRCH6/35qcdDgc6LqOrutW53cpJcefcx7DbypNetn6DxcrJdAwf5icNGRKuA3iejLerUuBy18ILjflm7fw27vu5oSxpxONRgmHwzgcDoLB4AGdnEzjdDq54447Dvh5FYoDRWOySgQwF1grpZxWb3v96kHnAKtTt/8NXCCEcAshugG9gE8yZ/LBw/Lly0kkEkyaNIkOHTpw7733snXrVtauXbvPY+bk5FBXV4eU0qpVYrPZsNlseL1eYrEYUkrq6ur45ZXXcsr/3Y1udya96VQ+d1Q3SQh7KiUwleNtmCSkjZhuENclcQSRaIyKLd9yyV2T6TVoULISoduNx+NB1/WsxLgVikOBxiTZDgUuAb4UQnye2nY7cKEQ4hiSYZAtwLUAUso1QoiFwFckM1L+IKVUU/y7oH///vznP/9h7ty5vP3228yYMYMuXbpwxBFH7POYdrsdh8OBw+Gwlrynb9ff53A4cLndDL74cnoedwJvP/EodTuT/SElMPiii/nf355HSjBNiSMnl05HHcXapUsxJUgERe3acvHtt1PUqRMOp9MaN31Oh8OhhFuhaAL2KNxSyiXsOm79+s885l7g3v2w65BACMGQIUN46623mDlzJuFwmFGjRu2X2NlsNkpKSna7Pz8/HwCv1wskVxy2bt2aPsOH/+TYU664ep/tcDqd+/xYhaIlYZom06dP5+OPPwagurqam266qUnLPah63Flm5MiRjBgxgiVLljBs2LBsm6NQKPYSKSWzZ89mzJgxCCGYPXs248aNa9JzNhPhlrjd1dk2Yre4XHXEYjGqq5vOxj59+uzX+JFIhFAo1KQ27i+aplFbW9vMi+wbzfqz6HbXYtfsuKvd2TZlt7hCLiKRSLP+LMZiMerq6jJi4xVXXMGLL77I+++/jxCCq6++ml/96lc888wz+zXuz31PRHP4EhUVFcmbb74522bslnA4TGVlJV27ds22KbulvLwct9tNUVFRtk3ZLevWraN79+7NOozyxRdf0K9fv2ybsVs0TWPJkm+oqTk826bsFo+nmmOPjdOuibsf7Q+bN2+mdevWVsiwOfLQQw9RXV2967iplDLrl9atW8vmzIYNG+Ts2bOzbcbP8tJLL8mPPvoo22b8LH/+859ldXV1ts3YLaZpyhtuuCFj43399dfyzTfflFJKuXPnTjl//vz9HrOqqkoed9y9EmSzvbRtu0S+/PLL+/1c0zzyyCMyFotJKaX8xz/+ISsqKvZ7zFmzZskNGzbs9zhNSUoXd6mZqjqgQtEE1NXVcd9999G7d2+uv/56AGpra3n55ZezbFnL4oknnqCwsJDy8nImT57MgAED+NOf/tQsa9G88sorB6wTUzOJcSsUBxc+n4/zzz+fqVOnsnz5ct577z2WLVvGddddl23TWhRXX301Y8aMwe12s2LFCtauXcvtt99+QBp07C2VlZUHLP21+T17heIgQAhBly5diMVilJWV8dprrzFixIgDVp/8YMHpdDJmzBj+9a9/8fXXX1NQUEDr1q0P+fUB6lOkUDQRRx55JLNmzWLDhg1Mnz7dyqFX7B0TJkxg/fr13HvvvcyaNSvb5jQLlMetUCgULQwl3AqFQtHCaFHCrWnafie1KxQKRUunxQj39OnTOeussxBCcMopp/DRRx9l2ySFQqHICi1icjIcDrNx40buuece2rVrRyAQYPPmzQwaNEg1EVUoFIccLcLjXr58OZ07d6ZLly7cd999tGnThs8++4xgMJht0xRNSDQa5cMPP8y2GQpFs6NFCPfw4cPZuHEjN998MxdddBEXXnghJ554IgUFBdk2rUl46KGHDvlmt48//ji33XYbH3zwATfccAPffvtttk1SKJoNLUK4ASZNmsQNN9zAo48+ysqVK3nttdcoLy/PtlkZxTAMpkyZwuGHH94sV4YdKHRd5/XXX+e8887jd7/7HcFgkPLy8mZeVVChOHC0GHXo1KkTAwYM4LnnnuOYY47h8ccfZ9y4cWzatCnbpmWMl156idzcXE4//fRDWriff/55zj33XLp3786dd97JH/7wB2bMmIGmadk2TaFoFrQodRBCNGiNNWfOHObMmcPy5cuzbNn+EwwGWb9+Pf369TukRRvg8ssvZ+HChSxcuJBRo0YxaNAgOnXqdMi/LgpFmhb9TfD5fNx444289NJLrFu3Ltvm7DNSSkpLSxkxYgTDd9FC7FDk9ttvp7CwkA8//JCFCxcyYMAAbr/99mybpVA0C1pEOuDP0b59e26++Wauv/56pk+fTps2bbJt0l4RjUa58cYbufXWWznssMOybc4+YZomNTU1QPJHaOzYsUSjUSZNmsS55567T2MOGzaMIUOGcPrpp1NcXIyUkvbt2zNp0iTuuOMO3O7m2wFGoWhqWrxwAxQUFDB//nyuvvpqJkyYQN++fbNtUqOZOnUqv/71r+nVq1e2TdkrAoEAS5cuBZJtoNLFf4QQvPvuu+Tk5Oz3Oex2O8XFxda4Q4cOpaamhlmzZtG3b19Gjhx5yFeJUxyaHBTCDckv+YMPPshjjz1GIpGgf//+2TZpj2zevBld1+nVq1ezF6Da2loefPBB677NZsPj8QDg8Xj4z3/+0+TPQQjBGWecwUsvvcTSpUvZunUrV155ZZOeU6Fojhw0wg1QUlLCNddcw5QpU2jVqhUdO3ZstoIYDoe55557mDRpEt26dcu2ORbp1kgAK1euJN0LND8/n5tuusk6Li8vj+OOOy4rNp5zzjmcccYZzJ8/n2effZbLLrus2b7PKoVx/0l/Jpvreww/vM8HysaDSrgB2rVrx3333ccll1zCjBkz6NixY7ZN+gnbt2/n97//PfPnz2/SZqVSSsrKyujUqdNujwmFQlRUVFj33377bWbPng1A//79+fe//w0kP5B5eXlNZuve4nA4uOSSS3jsscd4+eWXOfPMM5tl+YN7772XW265Bb/fn21TWixSSq644greeeedbJuyWzZs2MDSpUt5/PHHD8j5DjrhBsjJyeH5559n4sSJXHbZZRx77LHZNsli/fr1zJ07lyeeeKJJRXv58uWsXr2aTz75hEGDBjFkyBB69uwJwOrVq1mxYgUAO3bsYNWqVdbjRowYwcqVK5vMrkzicDj405/+xJQpU5g3bx69evVi2LBh2TarAfF4HLfb3ay9xZZANBrNyLxJU2GaJoZh4HQ6D8j5DkrhhmTctbS0lNmzZ+N0OpvNhOV7771H3759mzz75Z///CcAkydP5uabb2bu3LlW1kq7du0sL7xfv35WOKSlcuutt/Lcc8/x4YcfYhgGJ554YrZNUiialINWuCEpUNdffz2lpaX89a9/pW3btlmzRUrJ2rVrWb9+Pf/3f//XpOdasmSJleN+2mmnUVZWxrZt2ygtLaVr164UFxe3uLTJn0MIwWWXXUYgEODee++lpKSEPn36KC9XcdDSohfgNIZWrVrx1FNPcdNNN7F+/fqs2fHll1/ywAMPMGXKlCYvjjV06FCCwSALFizgtdde46KLLuKJJ55gzJgxHHnkkQeVaNcnPz+f+++/n2nTprF06VK2bNmSbZMUiibhoBduSKYKzpo1i+eee+6ALo8Ph8O89NJLvPfeeyxYsICnnnrqgEygCSEYNmwY69ev5/HHHyeRSHD00UcfEh6ozWZj9uzZLFq0iGeeeSarP9YKRVNxUIdK6pOfn8/111/Po48+Sn5+vjVR11T85S9/YfXq1QwdOpRbbrmF559//oBNXACcfvrpnHbaabz//vuHXMzX4XAwZcoUNm3axMyZM5k0aZK1kEehOBjYo8cthPAIIT4RQnwhhFgjhJic2t5NCLFMCLFBCLFACOFKbXen7m9M7e/atE+h8bRv357bbruNO+64o0EKXKYJh8OsWrWKSZMm0apVK4LBIKFQ6IDn9AohDjnRrk+PHj2YPHnyQVu3XXHo0phQSRwYKaXsBxwDnCqEOAGYAkyXUvYCaoCrUsdfBdRIKXsC01PHNRt8Ph9/+9vfuPPOOxukwWWSN954g+HDh1NUVMSmTZt49913WbhwoSpLmgUKCgqaZX63QrE/7FG4ZZJQ6q4zdZHASOCF1PZ5wNmp22el7pPaP0o0s+Cqw+Hg3nvv5eWXX+bzzz/P+Pjnnnsub775JjNmzODss8/m8ssv58orr8TlcmX8XAqF4tCjUTFuIYQdWA70BB4DNgG1Usp0f60yoEPqdgfgOwAppS6ECADFwM4M2r3ftG7dmmuuucaq751pHnjgAb799ltmzpzJww8/TJ8+fZrkPAqF4tCjUaolpTSAY4QQBcBLQO9dHZa63pV3/ZPgrhDiGuAaSIYvskFT5nX37t2bI444ghNPPFGVIFUoFBllr9IBpZS1wHvACUCBECIt/B2BbanbZUAngNT+fKB6F2PNllIOkFIOaM5LWfcHIYQSbYVCkXEak1XSKuVpI4TIAU4C1gKLgV+nDrsMWJS6/e/UfVL735WqRJpCoVBkjMaEStoB81JxbhuwUEr5qhDiK+AfQoi/ACuBuanj5wLzhRAbSXraFzSB3QqFQnHIskfhllKuAn5SXk9K+Q1w/C62x4DzMmKdQqFQKH7CIbHkXaFQKJqK5557jieffJIvvviCe++9l6qqqiY/pxJuhUKh2EeklMyZM4cePXpQXFzMe++9R2VlZZOfVwm3QqFo9rRu3TrbJuyShx9+mD/+8Y+MHj2avn378vTTTzNx4kRM02zS8zaLIlOmafLhhx9m24zdUlFRQXl5ebO2ccuWLdTU1DT5B2Z/qK6u5tNPP23Szj/7SyQSyej7HAgE2LBhQ8ZWzYZCITyeatq2bb6fxcLCdWzZEszo6zhp0qSMjldeXs6qVavYvn37fo0zcOBAJk2axB133MG5555LaWkpF198MUuXLt1vG3/uu9wshFtKeUDiQvtKIBAgGo02axvD4TDPPGMjGGy+NnbunGDQoBpisVi2TdktNTU6l1ySydfwJF59FSAzYzocEdqd+ik5t76YkfGaAtdmP+Hwb5r19yUWi/F/tf9HzJGBz+Kf4OrQ1RACLoCP+Tgjb3dcxne7r1kIt91u58wzz9zvcaSUvPzyy7hcLkaPHs2XX37J0qVLue6667DZ9j0qtHHjRgzDyIiNTYVpmuzY0YaKisHZNmW3FBev4pRTTqGwsDDbpuwSKSXz57/N5s3N9312u6vxt32IzWduzrYpu6Xth23ps7PPfn9fTNPk8ccfZ+jQoRx11FG8+eabJBIJzj777P2uLV9eXs624dsI9Azs1zhNSZ599825D6oY99atW3n//fet5rjdu3enqqqKjz/+ONumKRSKvWTp0qXU1tbSvXt3hg4dyqBBg3j//ffZunVrtk3LOgeVcHft2pW+ffsyfvx4ysvLufvuu4nFYgwZMiTbpikUir1k6NChhMNh7r77brZt28b48ePp27cvXbt2zbZpWeegEm6AESNGMGbMGOx2OwMHDuT888/PtkkKhWIfueCCCxg4cCB2u50xY8YwYsSIbJvULDjohLtHjx5ceOGFFBYWcsEFF3D00Udn2ySFQrGP9OvXjwsuuIDCwkIuvPBCevTokW2TmgUHnXArFArFwY4SboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWHHC++uorPvjgg2yboVC0WJRw7ydSSkzT5IEHHmDLli2N7vmYftzuLuvXr+fEE09scHnuueea+Nk0PTU1NcycOZM333yTESNGNOs2ZgpFc6VZtC7LNBUVFbRr1+6AnGvTpk0MHz6cadOm8cc//pFwOMw777wDwDfffIOu67t8XCwW4/LLL0dKucv9vXr14tVks0KLTDWczSYFBQX85S9/oaKigtdff53169fj8XiybZaFYRjZNkGxC9q1a0dFRQVt27bNtinNgoNSuEtLS3n44Yf3q89kY5BSsnjxYiZPnkznzp0ZO3YsDz30EPPmzQNgyZIlJBKJXT42JyeH5cuX73fvvJaGEILvvvuOGTNmsG3bNh544AHsdnu2zbIIh7NtgeLH2Gw2ZsyYQWlpqfXdOtQ5KIX7QGKaJg6HA9M0LW8t7WXPnDmTnJycbJrX7Kirq2PJkiWMHTuWt956i9mzZ5Obm5tts4DkD/FvfvPHbJuhUOwRJdz7gRCCUaNGMWzYMB5++GHeeOMNOnbsyFVXXZVt05otubm5FBUVsXXrVhYvXtyswiQKRUtBCfd+0qNHD8rKynjwwQeZMWMGXbp0ybZJzRqHw8FFF12ElLLJQ1kKxcGKEu79RAiB3W5n4sSJ2TalxSCEOORi+wpFJtmjyyOE8AghPhFCfCGEWCOEmJza/qwQYrMQ4vPU5ZjUdiGEmCmE2CiEWCWE6N/UT0KhUCgOJRrjcceBkVLKkBDCCSwRQvwnte8WKeULPzp+DNArdRkEPJG6VigUCkUG2KPHLZOEUnedqcuuk4+TnAU8l3rcx0CBEOLAJFUrFArFIUCjZoeEEHYhxOfADuBtKeWy1K57U+GQ6UIId2pbB+C7eg8vS21TKBQKRQZolHBLKQ0p5TFAR+B4IURf4DbgCGAgUASUpg7f1azTTzx0IcQ1QojPhBCfRaPRfTJeoVAoDkX2Kh9LSlkLvAecKqUsT4VD4sAzwPGpw8qATvUe1hHYtouxZkspB0gpB6hFKgqFQtF4GpNV0koIUZC6nQOcBHydjluLZF7X2cDq1EP+DVyayi45AQhIKcubxHqFQqE4BGlMVkk7YJ4Qwk5S6BdKKV8VQrwrhGhFMjTyOXBd6vjXgdOAjUAEuCLzZisUCsWhyx6FW0q5Cjh2F9tH7uZ4Cfxh/01TKBQKxa5Qa44VCoWihaGEW6FQKFoYSrgVCoWihaGEW6FQKFoYSrgVCkWzx+fzMWiQKnmUplmUddV1nSeffDJj40UiEV588UUKCgoyMl4gEKCsrCyjNmaab775hs6dcykpWZVtU3aL37+F+fPn43a793xwltD1avr2bb7vs90eI39zPn2f7JttU3ZLbnkuS2NLqaioyOi4drs9Y9/B1atX0yPQg0T+rlsLNge+1b/d7b5mIdx2u51Ro0ZlbLxMjgVQVlaGzWbL+LiZxOFwcMIJRRx11FEZGU/XdRyO5MfDMIyM9IWcO3cLf/7zMDTNt99jNRUnn7yCl15qvu9zXV0d//rXDq4YtevlERKJxERKiUhVn5CpihM2Ybe2NSWrVq2itraW4cOHZ2S8+p+/TH0WA4EAU4+fSseOHfd7rKZisG3wbvc1C+EWQtCzZ89sm/GzbNiwoVnbuHr1atq0aZMRG7du3crtt9/OnDlzCIdjCDOLAAAgAElEQVTD/PWvf+XSSy9l4MCB+zWu1+slGOxKPF643zY2DRKbzZXR97m8vJy8vDx8vsz8WFVXV+P1eunWrRtVVVXJjTkadeFa8vML+GLHYj6MvEowVoOpC7y2IsLxMJF4mKu6T8bjzKFdXkcKvcUEAgGcTiehUIiSkhJ27tyJ3+8nEolQUlJCOBzGbrejaZolmOFw2NqXn59PZWUlJSUlAFZHo+3bt2O32zPyOm7bto3S0lJmzpxJXV0dCxYsYMCAAZxyyin71YwjPz+fjh070qlTJ0KhEDk5OYTDYZxOJw6Hg2g0is/ns/bF43GEEDidTiKRCH6/n2AwSE5ODpqm4Xa7SS5hAZfLRSgUIi8vj3A4TG5uLrquY5ombrebYDCIz+cjEong8XgwTdNylDwej/W8fq5DVLMQbkXzYvHixfzyl7/k008/5f333+ekk07i1Vdf3W/hPhR5/PHHGTlyJCNGjMjouFE9xJfR9wjpAcrq1lAVq8BT7UOYDlrbutEh5yi+2vkpDruPvr5jsOXZ+aJ6Ka9uXMDoLucxqstY2ng6IKXE4/EQj8ctEUmLk2malhilRSR9rBCCSCSCy+Wyrl0uV0afI8Cnn37K0UcfTXl5OVOmTOGyyy7jrbfe4uSTT85IF6VQKER+fj6hUIjCwkJ0XUfTNIqKiqipqaGwsNASYSkl8XickpISampqKCoqIhKJkJubSzQaRQiBaZrWmFVVVeTn5xMIBHA4HNhsNqqrqykoKKCqqgq/309dXR1CCNxuN9FoFLfb3ajnpYRb8RMuv/xyDj/8cNq1a0dlZSWzZ89m7dq12TZLUQ+bsDHzk8fQjDgd/R3pXtgdt93Ls+/Ox+9zcViXdlRtDVMVX0O/vrUUuVqjGSbtcnqwpmIV6A5audsw+rAzASzRSd+22WyYponNZkPX9QbnTreeS4u5zWZrslZ0Z511Fr/85S95++232bBhA//73/94/fXXM9avNCcnh1AohMPhoK6uDrvdjs1mIxAIcOONNzJgwACuvfZaIpGI9Zxra2vxeDzU1dXhcDiIxWJWWNFms1k/bvn5+SQSCbxeL6ZpMm/ePN555x2efPJJ8vPz0TTN2ielbLRogxJuxW5YvHgxH3zwAR9//DHjx48nPz8/2yYp6uG25/KXgY9z9oKz2OEy2OioJlfkUiS6kBtzE9mSx87vo3xdsQN37pd4qoqoKdqJ11GEw+YiUBcjlkhwQsfhOKQTr9dLOBxGCJH86++UJGJhnA47CA+mlNjtduLxOF6vF13XcTqdhMNhfD5fk/YQXbhwIV9//TWPPPII06ZNo127zPVlCYfDFBYWUldXR15eHoZhoGkafr+f119/nUWLFmEYBpdeeikFBQXE43H8fr/lcYdCIVwuF7FYDMDyuAsKCqitrSU/P5/vv/+ed955h9LSUuLxOM888wy1tbX4/X5CoWSPmrTY5+TkKI9bse+0b9+e1q1b4/f76dy5c7bNUfyIWCxG91ZdWfibhVz4z/NZvmU5Tt1BsasImQAzYXLfhffz8ZdL6ezvzJtr3qRDp0K2fFuJ25dHeWUVsYTOfW//lbvGTiYcDuP3+4nH4zhljOfvPA5Tj4GQ/OqWleQUtMU0TQoKCgiHwzgcDgKBALm5udTU1JCbm0tubm6TPNc2bdoQCATwer0Z/yw6nU50Xcdut2MYRnJSt14z62g0SmlpKXfeeSdvvfUWxx57rBWP1nUdm82GlNL615EOe0gpcblcrFq1ilNPPZVAIAAkkwjsdrsVVnI6ncAP/3KUx61QHMTk5uZSWVlJB297nvjVLG5ceCM7anbQs7gXdmnHTBj888MFeO1eorEILoeT7Z84OKLLALbt2ERd8Q5KtE78vzcXcErXUzlt0GlUVlbiccHyNx8mENJo3XkAvY45CeHMJR6PY7fbqa6utiYni4qKqKyspLi4uEk97qbE4XCgaRo2mw1N06zn8fTTT1teNEAikeCiiy7ikksu4ZxzzqFr165MmTIFKSWGYVgC7HQ6+d3vfsf27dv5+9//zj/+8Q9LtCGZFTN79mx+97vfYZomDofDmkfYm2wZJdwKRQskEomQl5cHwADPAP7fJX/nrKfO5usd6/A5fOSIHOIiTmV8JxWV5VTvrOb0gWMpcbXHxM7ReQN464v/UOR24LY5CQaDBHZs5JV/z2DH1s9o3aE/w34zlYLWXbEJgd1uxzRNiouLLY+7qqoKn8/X5B53UxKNRikqKqKurg6/34+u6yQSCf7+97+TSDTM8d62bRtTpkzhtddew+v18tlnn2EYRoNjbDYbr732GlJKVq5c+ZPzSSmZPXs2F1xwAQUFBYRCIYQQeDweEomE5fHviUN25WQ8Hmfnzp3ZNkOh2CfS3pmUEpuw0bOoF+9c9w492x5GXayOdRXr+WzrClZ9twpfnp+BfQYS1aJ8u30rwmGj7vsEJ/YYQ16ugzufv4HN2zby7cbVfP3lcoadeRvn3jCf4rbdEST/xqcFJZ0WKITA4XBgmiZ2u/0n3mJL8cDTPzxut5vq6moikQgAmqZZx0ybNq3BGo7Vq1ezbNmyn4g2JGPcK1asaCDabdq0Yd68edZ9h8NBq1at0DSN/Px8vF4vkPwXpUIlP8Prr7/O1q1b+e677zjyyCM5++yzLe9FoWgJ2Gw2YrEYIuUNa5pG2/y2vHHtq7z25Wu8+uXrLF3zERVV24kkwlSZduL2BGbCBB3WrvuKUwaOZnjJr2k9WHDjtAs5vNLOMQNGcdhxY8jNy7dEOp31IIQgkUjgdDoxDAOXy2VNUv5YcNJ//5s76TTAuro6ioqKLI87HfqApIi/9NJLFBYW7lKs98SoUaMa/BDous7OnTspKCggEAhYHrdKB9wDkydPZty4cQwfPpzLL7+cX/ziF0q4FS2KWCxmhSai0Sher5fa2lp8Ph8je47i3IG/5o0Vb1ARrCARS+Dz5BGNRIlHEyAF+gidzm06MfL4kRQVFuGvKOK7j77g5F/9gZLW7amqqsLr9aJpGg6HwxLpdH6yx+OhtrbWWrjj8/maJI+7qUmnAzqdyXBReoKwvkDn5OSwrw3Nr7zySh544AHeeusta5vdbsfv9zdIB4Tkwh3lce+GqVOnUlpaSq9evXj11VdZsGABEyZM4IUXXmgxf+8UitzcXOrq6oDkFz69Gi8dsw2Hw4w+djSB2lpyXS6itVV8O+9RYhvX4mnXgSNu+jMJpxM7sLOinIqV23B7W9Opc0/qqqsp9PlIaBobX3mR5f+cj3B6OOLM39DjxJEUFhdjGAYlJSWEQiGKi4utPOaWRjweJy8vj0gkQk5OjrWK0ePxWMckEgncbreVebI3nHXWWQANJjqllITDYbxer7Xd5XI18Mr3RMt8tfeDcePGMXjwYDRN4/XXX+fKK6/k0UcfzbZZCsVeEQ6HrdV80WiUvLw8K284fb195TJE2Wa2vLYQZ46XoydPB5sTYbdh7Kxg7Z0TMYQNM2Zirv2S1kf3Z8sLz/LdB4uJBOvI69SNw8++kDPumYqpa3z17ts8f8WFuPILGfnH8eS1bU+XXr0IBALk5OS0yH+t9eP3UkorxPPyyy/Ttm1bgsEgW7duZcWKFT9ZiNQYNm7cyHHHHcfGjRut851zzjnWnED91MO9cRwPOeH+3//+x8iRI5FS8tRTT9G7d28KCwuVt61oUbjd7gYx7kQigcfjQdM0PB4POz94k61T76TTBVfT59a/IgSE160l/TGXQtD3zmlIAbGKcgo/XkIikcAubAy44VZwOIlHIySiESJVOzClpMtxA+l83PEEqqv516Q78HfqzGUPzSDH72+xHrfT6SQej2Oz2ayl/EKIBh7yI488wiOPPLJP40+YMIFt27YxdepUIDk3MW7cONxuN6Zp4nK5rB+LvXkNW+arvY8sXbqUjz76iNLSUmw2G5s3b+aYY47JtlkKxV6TzuaAHyrmpReSVL73Bt89eT89LroWb9cexL/fgkBgQyIEqVqBguimrzGlxARaHz8YE0hEIkQrKzBN0KXElBIDMEyJYYIpk+f95SWX8v78+cy5/vdc+/QzDSbzWhLpglrplYzpycmpU6fuc1z7x6RFG5Lv25133smdd95pTYqml8knEolGZ5YcEsItpWT9+vXMnz+fBx54wPpLp0Rb0VJJZ3UIIayVfJFIBFG1ne0vP0/nsy/GXVSCGajChg0hUisCAQGYSDCTtzEliUgIQ0p0MynSppSYMnlbT1+bEgMTzQCXO4dfXPRbFj08nUevvIKb//7/svuC7CPp5esej4eamhqklDz22GM89NBDDUIjhYWF2O32BmmRNTU1uxwzPz8fp9OJaZpWDZj0sVJK5syZg91u56677rIyVQzD2Kt0wEMij/uTTz5h2rRpPPbYYy0yDqdQ/Jh0TDtdeS4QCFCQn0/Flyvxl7TFW1CMGaqFWAQRD2GLR7DHw9jikeQlFkbEwhANQywE0TBmJIyMhDAiIfRICD0cJBEOoYWCJEJBEuEg8WDyOhaqw9Q1Tr7qamrKygju2JHtl2SfCAaDFBQUkEgk8Pl8PPnkk9xzzz0NFt8ceeSRrFixgrKyMjZt2sSOHTv47LPPdlkts3fv3rz77ruUlZXx5ZdfUlZWxieffEK/fv2sYwzD4PHHH+eBBx5g27ZthMNhIOn9NzaN8qAX7nfffZe3336b6dOnqzi24qAhXZDI7XZjGEYyrS1QS+37b2DL8aAFayAWQUYjEEsKtS0ewREPY49HELEIxCPWMUYkjIxGMKNhzGgEMxJBj0TQIyG0SJhE+jocJhEOkQiHiIdDaLEETm8e7/2jZXrcOTk5RCIRHA4H27dvZ9KkSQ329+nTh1mzZlFUVGTFwuvq6mjVqhVTp06lV69e1rFut5ubb76ZXr16EY/H8fl8aJpGmzZtmDt3Lscff3yDsadOnUo4HLY6Qql0QJJ/ST7//HPef/99xo0b1yKW40oprZzONJMnT2bx4sUAXH311Vx22WXZME3RzEiHRiD5hU8kErhtgtg3X1E8aixmNIxhs2G3iaR7ZgO7zY7NBqYEYUowJdKUSNNEGhLTBMM0k/FtU6KZEk2aaEYyhKKbZnKbKdGN1G0Jbbt2QctQPPhAo2kaubm5xGIxrrvuOiu7JE15eTm33norhmFwxBFH8Oijj+LxeIhEIhx77LGccsopbNiwAYBTTjmFESNGkEgkrB+Eu+++m5UrV2KaJlu3bm1wbiEEf/jDH3jxxRdxuVx7lWp40Ar32rVreeSRR5g1a9YBWRhQUVFBYWFho/spmqbJhg0bGnxIli1bxsMPP9zguMmTJ1NaWgrQYieAFJmnfvqaldJmE0jTwIxF0G1gs9kxbQJpE2ATSLuAtDCZIM2ko2AayWvdBN0w0SVouokuk3HthGEmhdww0U2ThCnQDIlmmmiGSSwcyvbLsc+kGxg4HA7mzp3L+++/z0UXXWTtr66u5uOPP6ZHjx7cf//92O12IpEIbrebeDzeIBPE5/PRqlUrK8vH6/UyadIkxowZw4oVK35y7pkzZ3LhhRc2aGDRWA5K4f7ggw9YtGgRc+bMyVjB9d0RCAR44YUX2LRpE+3bt6dLly6cccYZPznulVdeYUe9OKBhGCxbtqzBMQMGDNjlG5wNEokEn3/+Of3798+2KYpdkEgkLIfEMAw8Hg+xQC1GOEJs+zZy/PkYNjs2u0DYQNgFCBsmNkwkupQYZlKQdSPtVUt0aZIwQEt71EZyMjIajRLXNHDnkDBlSrhBMw3ikQhNucBdSsnixYsz1sPyx2OnwxN2u50PPvjgJ8f07t2bBQsWkJeXh8Ph4O2332bHjh0UFBTQr18/LrvsMnRdZ9CgQSxbtowtW7aQk5PD2WefjcfjYdGiRYwdO5Yvvviiwbiffvop5513nuW87U2ZgINOuD/44AM++ugj7rrrriYXbUj213vmmWd4+umnWbFiBVOmTMFut/PPf/6zwXHHHntsg76DbrebOXPmNNu4ezQa5bXXXuOdd97JtiktmnPOOYf58+dzwgknkJOTk7FxPR4PO3bsQAiB1+tN9kH05WFKqPt6DfZeRyByPGCzpTztVCaJpiPcHgxpJoVX1wlv+45YOEzMMEkYkrguiZsGcR2cxW3A5ycWiRJPJBC6QSJ1nGZKErrB1tWr6Tnw+D0bvY9IKZk1a9Yuq+1lgnSnn1AoxKxZszjzzDNZt24d69ats84/depUHnzwQYQQVFVVMX78eIYMGcILL7zAOeecY5Vnvfbaa3nhhReYNm0akKxLcueddzYQ5Q4dOjBq1Cief/55SktLyc3NbXRVwDQHjXBLKVm7di2LFi1i0qRJ+P3+Jj+naZpMnDiRv/3tb8ybN48XX3yRjRs3smzZMiZOnNjg2M6dO2f0i6toGfTv359bbrnFintminSz3vRiEZ/PRzAU5MjSe1kzeRzGl2FKDu+LdLswbAJDgIhHMGtrsLdpj6kbBDeuwdAlsXicuKYRN0ziOkR1g7huEjNMtIptaNiR3nzs+QXISAzd7kAzIGGYbPxyFTZXLkf+YljGntuBJN3Y1+Px4PF4+OSTTygpKeG3v/2tdczXX3/NunXr+OCDDzj//PO56qqrKCoqstL9DMOwmicYhkFeXh5nnHEGTz/9NNOnT2fLli0N5q4KCgqYPn06N954I926dbO6Dh2SC3C++OILHn74YebOnXtAPG1Ixhnvu+8+rr/+eubMmcOIESO47bbbDpi3rzi0MQzD+pwlvUY7wleIppvYwmGqv/qc/J5HYDN07KaB0OJold9DeVkyV9sEzTRJmEkPOqEnvWiDVO62hEQ8QUwziAWCxL/7jphhojvdeNu2Z9uWrQSDEboefxh9myCMcSBIN/aNx+MUFRVRWFjId999RywWs/puQtIx3Lx5M/fffz9r1qzh3//+N8888wxSSnJycqz0wb59+3LzzTczceJEFixY8JPwh81mIxqNUl5eTu/eva1FPk6nk1gs1ug5skYLtxDCDnwGfC+lHCuE6Ab8AygCVgCXSCkTQgg38BxwHFAFnC+l3NLY8+wLixcv5t133+XJJ588oIIphKC4uJijjjqKp556ilgsxkUXXaREW9HkpJdqp8U7XV41BJgeD4l4DDSdcG0NhOsQoSA2m8CGQCIxpIkpk8Ktm6Ri1j/ErvV0/NtMxsNNU2LI5OpJQ9MI1dQSi0Sxuz1I2XLqb/+YvLw8qxt7bW0tLpeLTZs2MWTIEEaPHk1dXZ01gTlr1iyklLzyyisMHjyY0tJSq9u91+tFSsmECROYP39+A9G+4YYbLI88XRxs48aNtG/fHr/fj2EYe/2PbG887j8Ba4F0DGIKMF1K+Q8hxCzgKuCJ1HWNlLKnEOKC1HHn78V5Go2UkmXLlvHhhx8yfvz4rJSVLCkp4f7772fVqlV0795dLfBRHBDi8bhVwS4SiZCbm5sss9r7KAp/cQrb33wZEx1ZVYVDmNh0E2ETiJRwm7KeEEuZjG0bsoGA6/UmL3WZnLA0pETXJPGaAKYEu8fDGbfeYtVIaWmkQ06JRIL8/HyklAwbNoyRI0cSi8Wspeg2m41evXoxfvx4AGbMmMFNN91kpRMmEglrleS0adMs0b7rrrv4/e9/j8fjsVa5ejweYrGYVdURsLrFN1bDGuUaCiE6AqcDc1L3BTASeCF1yDzg7NTts1L3Se0fJZro53j9+vU8++yzjB8/nsLCwqY4RaM5+uijlWgrDhher5dQKNSglnR+fj5xYcffpSe6CXHNJBqJEo0miBgmUd0koievo7pJTE+KdVSTyYlJ0ySRSv/TpCRuSnRDoktBIuVxa6aJzZuXDCW4ctB0ncEnj24R6yR2RW5uboPXMB3yqKurIycnh7q6Oqu7fe/eva3H6bpu9ZKMxWI4nc4GTYDT9OrVi8LCQpxOJzabDb/fTzQaJT8/36rHnfa098bxbKzHPQO4FUinRRQDtVLK9GL+MqBD6nYH4DsAKaUuhAikjs9on7ClS5cyf/58nnjiiRb7N02h2FcikYiVpZS+HQgE8Pl82Lr2wtaqPbGKMjSZwI7AbiNVGTDpq0nZ0OtOL66xskUMA81IinfCTOdzS3QDYjW1mAKOHjUCT1ExlZWVFBQUNMiaaimk67yk86jTYU6Hw2E1AZZSYrfbG0weCiGsvOt0DZP6lzTpbvDpbZqmWXne6RBXOo7+48V3P8cePW4hxFhgh5Ryef3NuzhUNmJf/XGvEUJ8JoT4bG+rcC1evJjFixdb6TkKxaFGOu4ajUatCa/03/ouQ0/E06EzUcMklsoOSXrYJjFdJ6brRHWDqG78sN8S6dREpSGT+dxpMU/leWtmMoRS0rUb36xew9jrb8Dv97fI7jfwQypgWpzr53SnKzBKKbHZbHTr1q1BY4T//ve/AFaIJB3/rqqqApIty/r27WvtS2ed2Gw2DMNo8DjIfB73UOBMIcRpgIdkjHsGUCCEcKS87o7AttTxZUAnoEwI4QDygeofDyqlnA3MBmjTpk2jLV6zZg3//e9/ufnmm60mmwrFoUb6i5/+8qczINKCM+CWe3jlt2cQjYawC5GcmJRYZV1NwExXAUSi68lMkqQ4m+gGJMykmGummco+SQq42+endc/DadWzJ0Xt2lntvloi6SbBfr+fQCCAy+XC6XRanYSqq6vx+XxEIhEKCgoYNmwYixYtIhwOc8MNN9CpUydL2AHKysqsSoDHHXcc7dq1s+qkp2vK1NTUWJ3l063LEolEZtMBpZS3AbcBCCFOBG6WUl4shPgn8GuSmSWXAYtSD/l36v7S1P53ZQY7h/bu3Zu7775bLf9WtBiaonGuYRjWFz39lz4SieByuYhGoxR070Fu527sWPM5NmHDbpV0NZHYkCLlAaYmJ5P1tpMrJ5P1SITlaWumScxIhkwSpoHPX4DN5aJbv374CgqsmtIt0etOVweMxWIUFBRgmiaGYVBUVGS1ZYtGo/h8PqSUVn0YgMrKSiorK3c7dvpfUCAQwG63Y7PZqKmpwev1Ul1dbcXQ02GXdLPgxrA/eWulwHghxEaSMey5qe1zgeLU9vHAxN08fp+w2WxKtBUtiqbwRr1eL8FgkFAohMPhsPKRI5EIxcXFRCIRxjz2DHHNJK4bRDUjFR6RyeuESVRLhk/i6TCKIYkaENMFMd0kYZjEjeR2zTBJ6AaFHTrTa+gwPLleTrngAoLBICUlJS12ctLn81FTU4PL5aKmpsbKq043QN65cyd2u526ujoikQgDBw6kU6dOexy3bdu2jBgxwvpBcLvd2Gw2qx9oSUmJlcmSjhzszWu4V8ItpXxPSjk2dfsbKeXxUsqeUsrzpJTx1PZY6n7P1P5v9uYcCoViz0SjUXJzc8nJybGK8KdXAAYCATweD9Lhot8lVyeF2kgKd0T7IbadzC4xkvFvQ9YT8eSy9rhuErfi3RJ/2w50H3A827Zs4aQrriAQDJGTk0NtbW2DVl8tiUgkYnVc9/v9VkpjQUGBFR4xDAOv14vH42Ho0KHMmzePgoKC3Y7pcrmYM2cOJ554Im63m2AwiKZpSCmtbJWamppk3n0oZP1Y7M1rqFaKKBQtELfbjaZpVpZCNBq1VvDl5eUlGwMUFlEyeDi2Vu2I6pKIbhIxkimBP6QFyh9uGyYxzUh62XoyRTBuGCRMicufT+uevajasZ1IMET3Y47B5/MRj8fxer0t9l+wx+MhHA7jcDgIh8NWOmD6RzAYDGK324nFYlZPyt69e7Ny5UqeffZZ/H4/Pp8Pv9+P3+9n+vTprFu3jsGDB+Pz+ax2ZA6Hw6orky5RoOs6ubm5DepxN5aDZsm7QnEoUX8pdjojon7tjPSkZbfjBzPg0qt5d/qDaJGw9XiZWogjZXKS0iAd7072mtStBTgmnqIS8tq0IxKN4nZ7mPL2W5YN9SdFWyL124ulqd+erP6+dPlcm81G69atGTNmDN9++y26rlsrIwFrviFdX9s0TSt7pP57BMn5ifpZJ41FCbdC0QJJNwhOi0G6WbDNZkPTNOva5XIx7KrrMKTk1b9MRjYQqGSGiSFJ5nSnl7XLH+py61JgMySBmhq6tmvH1Q8+iC1VCS8ej1s5yUKIFtnpvb7oplc3QtITT5fLhYbecHpf/YUz9VP6NE3D6XRamSKaplmPTSQS1r70e1b/h6KxqFCJQtECSedsx2Ixq7h/elteXp61BD0YDGKz2Tj+okv59UMz6XjswGQ8O3XpMOB4PG3aEjPM1EXSa/iJxE2SS+BNiEWi9D/5JK647z5yU81CTNMkLy+PeDxOXl5ei8woASxhTS+GSYtnfdFNL1VPe+DpSn7psEo6N1sIYSVPpJs5m6aJw+Gw9judTnRdb7Av/YO3N/9aWt5PpELRQohGo1RWVhKLxSgrK0PTNEpKSjI2flFREZD8C5+Tk4MQwtpWWFiIEIL27dtb+0deejnDzjsfo54HaHc6MU0D0/jBE3e4XGj1muUCuDweXB6P5R36/X6ryFpLzeGG5A+g2+1u8BrCD+GS9L76pLux72pfmp+LW+9LTPvHKOFWKJqI//3vf0yYMIEdO3YwYcIEiouL+dvf/pax8etXoUwLyJ6u7Y2sp+PZzeK23Y3bUkkvYkrfrr/9x9sas+9AoUIlCkUTEIlEeOedd3j66afp27cvTz31FH369GHJkiXZNk1xECCaYlXX3lJYWCgvueSSbJuxW+LxuLWKqrkSCARwOBwZKwNgGAZbtmyhR48eGRkPkm3etm8vQcrmm4FQUPA9Xbp02POBe8AwDLZu3Ur37t3ZtGkTXbt2pa6uDtM09+tzZBgGVVVVtG7der9tbCrC4TCGYWS0C9X69es57LDDMjZeVVUVeXl5jV6pmA3mz59PTU3NLt36ZiHcQohKIEyGKwhmkBKUbfuCsm3fULbtGwebbV2klK12taNZCDeAEOIzKeWAbNuxK2bvclkAAAUsSURBVJRt+4aybd9Qtu0bh5JtKsatUCgULQwl3AqFQtHCaE7CPTvbBvwMyrZ9Q9m2byjb9o1DxrZmE+NWKBQKReNoTh63QqFQKBpB1oVbCHGqEGKdEGKjECKjTRf20Z4tQogvhRCfCyE+S20rEkK8LYTYkLo+IC3lhRBPCyF2CCFW19u2S1tEkpmp13GVEKJ/luy7Wwjxfer1+zzV8i6977aUfeuEEKOb0K5OQojFQoi1Qog1Qog/pbZn/bX7Gduy/rqlzuURQnwihPgiZd/k1PZuQohlqddugRDCldruTt3fmNrfNQu2PSuE2FzvtTsmtT0b3wm7EGKlEOLV1P2med1+3J34QF4AO7AJ6A64gC+AI7Ns0xag5EfbHgAmpm5PBKYcIFuGA/2B1XuyBTgN+A/JZs0nAMuyZN/dJNvb/fjYI1Pvrxvolnrf7U1kVzugf+q2D1ifOn/WX7ufsS3rr1vqfALIS912AstSr8lC4ILU9v/f3tmEalGFcfz3LLQiI1FCxLsoQ1AIsUgJFBGTyAqvwl0IQS4EwWohLQQR3Lms3IiC9qF9KWmhuDK6iisx/Eiv+NGFgsSLd6XpxtL+Lc4z3uH1fV8VmznzwvOD4T1zZmD+/N85z8x5zsyc7cBaL78PbPfySmBvBm1fAgNt9s/RJj4CvgUO+XolvuW+454HDCvNpvM3af7K/sya2tEP7PLyLmB5HQeVdIz7J1rupKUf2K3EcdJkzlMz6OtEP7BH0m1JvwPDpP+/Cl0jkk55+SZwAZhGA7zroq0TtfnmmiTplq+O80XAYmCf17d6V3i6D3jdrJqPeHTR1ola24SZ9QFvAzt93ajIt9yBexrwZ2n9Ct1P4joQcNjMTprZGq+bImkEUsMDcr5v3ElLk7z80Lumn5fSSln0eRf0ZdLdWaO8a9EGDfHNu/tngFHgJ9Jd/nVJd9pouKfPt98gzUFbizZJhXeb3btPzax4j71u77YA64HiU4uTqci33IG73RUm92Mu8yW9AiwFPjCzhZn1PCxN8XIb8CIwBxgBPvb62vWZ2QRgP7BO0l/ddm1TV7e2xvgm6a6kOUAf6e5+VhcNtepr1WZmLwEbgJnAXGASaSLzWrWZ2TvAqKST5eoux38sbbkD9xWgPGVyH3A1kxYAJF3131HgR9KJe63oYvnvaD6FHbU0wktJ17xx/QvsYKxbX6s+MxtHCozfSPrBqxvhXTttTfGtjKTrwFFSfniimRWfgS5ruKfPtz/Lw6fP/g9tb3r6SUoTln9BHu/mA8vM7A9Syncx6Q68Et9yB+5fgBk+8jqelKQ/mEuMmT1tZs8UZeANYMg1rfLdVgEH8iiELloOAu/5SPprwI0iLVAnLTnEFST/Cn0rfTT9BWAGcKIiDQZ8BlyQ9ElpU3bvOmlrgm+u4zkzm+jlp4AlpDz8EWDAd2v1rvB0ABiUj7jVpO1i6WJspBxy2bta/ldJGyT1SXqeFMcGJb1LVb5VPcr6oIU08nuZlEfbmFnLdNII/q/A+UIPKff0M/Cb/06qSc93pG7zP6Qr9OpOWkhdr63u4zng1Uz6vvLjn/WTc2pp/42u7xKwtEJdC0jdzrPAGV/eaoJ3XbRl982PNRs47TqGgE2ltnGCNDj6PfCE1z/p68O+fXoGbYPu3RDwNWNPntTeJvy4ixh7qqQS3+LNySAIgh4jd6okCIIgeEQicAdBEPQYEbiDIAh6jAjcQRAEPUYE7iAIgh4jAncQBEGPEYE7CIKgx4jAHQRB0GP8B3ecKdiRIWmrAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Verificando la Política\n", + "\n", + "Dado que la Q-Table enumera la \"atractividad\" de cada acción en cada estado, es bastante sencillo usarla para definir la navegación eficiente en nuestro mundo. En el caso más simple, podemos simplemente seleccionar la acción que corresponde al valor más alto en la Q-Table:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "# code block 9" + ] + }, + { + "source": [ + "Si pruebas el código anterior varias veces, es posible que notes que a veces simplemente se \"queda colgado\", y necesitas presionar el botón de DETENER en el cuaderno para interrumpirlo.\n", + "\n", + "> **Tarea 1:** Modifica la función `walk` para limitar la longitud máxima del camino a un cierto número de pasos (por ejemplo, 100), y observa cómo el código anterior devuelve este valor de vez en cuando.\n", + "\n", + "> **Tarea 2:** Modifica la función `walk` para que no regrese a los lugares donde ya ha estado previamente. Esto evitará que `walk` entre en bucles, sin embargo, el agente aún puede quedar \"atrapado\" en una ubicación de la que no pueda escapar.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 5.31, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "# code block 10" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 57 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5wU5Z3v8c8vEk1islETkuPtlcFdT3LMvjbRsF5iTnajibdkQ5KjOeRKjKsnWT3rms1mwVw8q/EWL6gJXlAwxBsqQSWCIgJeuDPc5TrDfQBhhoFhYBiYgef80U8PPT19qe7p7qrp+r5fL5jup6qrnuqq/tVTTz31POacQ0RE4uE9YWdAREQqR0FfRCRGFPRFRGJEQV9EJEYU9EVEYqRf2BnI5aMf/airqakJOxsiIn3KggULmpxz/TNNi3TQr6mpoba2NuxsiIj0KWa2Mds0Ve+IiMSIgr6ISIwo6IuIxIiCvohIjCjoi4jEiIK+iEiMKOiLiMSIgr5IlXr1nW007T0QdjYkYhT0RapQy/4OfvLkQn78x/lhZ0UiRkFfpAp1HjoMQMOu/SHnRKJGQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYCBX0zu8HMlpvZO2b2jJm9z8wGmNlcM6szs2fN7Gg/7zH+fb2fXpOynGE+fbWZXVyeTRIRkWzyBn0zOxn4V2Cgc+5vgaOAwcCdwHDn3OnALuAq/5GrgF3Oub8Bhvv5MLMz/Oc+DVwCPGhmR5V2c0REJJeg1Tv9gPebWT/gA8A24AJgnJ8+BviGfz3Iv8dPv9DMzKePdc4dcM6tB+qBs3u/CSIiElTeoO+c2wLcDWwiEexbgAXAbudcp5+tATjZvz4Z2Ow/2+nn/0hqeobPdDGza8ys1sxqGxsbi9kmERHJIkj1zvEkSukDgJOAY4FLM8zqkh/JMi1bevcE50Y65wY65wb2798/X/ZEpACz1+7k0bfWhZ0NCVG/APN8GVjvnGsEMLPxwOeB48ysny/NnwJs9fM3AKcCDb466MNAc0p6UupnRKQCvvPoHACu/uJpIedEwhKkTn8TcK6ZfcDXzV8IrACmA5f7eYYAL/nXE/x7/PRpzjnn0wf71j0DgNOBeaXZDBERCSJvSd85N9fMxgELgU5gETASmAiMNbPf+rRR/iOjgCfMrJ5ECX+wX85yM3uOxAmjE7jWOXeoxNsjIiI5BKnewTl3E3BTWvI6MrS+cc61A1dkWc6twK0F5lFEREpET+SKiMSIgr6ISIwo6IuIxEigOn0R6du27t7PrLU7w86GRICCvkgMDB45h03NbWFnQyKgqqt3duxp56xbprBme2vYWREJVWPrgbCzIAENHjmb+1+vK9vyqzroT1m5neZ9B3l85oawsyIiEsicdc0Mf31N2ZZf1UFfRES6U9AXEYkRBX0RkRhR0BcRiREFfZEq1GOgChFPQV+kimUauUjiTUFfpIqpxC/pFPRFqpBK+JJNTIL+kfLOV+59k/ELG0LMi4hIeKo66FuG8k7djr387LklIeRGRCR8VR30RUSkOwV9EZEYUdAXEYkRBX2RGHBqvCmegr6ISIwo6IuIxIiCvohIjMQq6Dunek2Jp0zPrEg8xSLoK9aLiCRUddA3FW5ERLqp6qAvIiLdVXXQV7WOiEh3VR30k1TNIyJRc+iw47/+spyGXW0VXW8sgr6ISNQs3ryLx2du4IZnF1d0vQr6IiIhSFY/H65wNbSCvkiVeLuukUfeXBt2NiTiAgV9MzvOzMaZ2SozW2lm55nZCWY2xczq/N/j/bxmZg+YWb2ZLTWzs1KWM8TPX2dmQ8q1USJx9INR87j9lVVhZ0MiLmhJ/37gVefcp4DPACuBocBU59zpwFT/HuBS4HT/7xrgIQAzOwG4CTgHOBu4KXmiqBS15hGRuMsb9M3sr4AvAqMAnHMHnXO7gUHAGD/bGOAb/vUg4E8uYQ5wnJmdCFwMTHHONTvndgFTgEtKujVZKNhL3OiQl2yClPRPAxqBx81skZk9ZmbHAh93zm0D8H8/5uc/Gdic8vkGn5YtvRszu8bMas2strGxseAN6r6sXn1cpM9L/gTUn74kBQn6/YCzgIecc2cC+zhSlZNJplDrcqR3T3BupHNuoHNuYP/+/QNkT0REggoS9BuABufcXP9+HImTwHZfbYP/uyNl/lNTPn8KsDVHuoiUicr3ki5v0HfOvQtsNrNP+qQLgRXABCDZAmcI8JJ/PQH4oW/Fcy7Q4qt/JgMXmdnx/gbuRT5NREpMNZuSTb+A8/1f4CkzOxpYB1xJ4oTxnJldBWwCrvDzTgIuA+qBNj8vzrlmM7sFmO/nu9k511ySrRARkUACBX3n3GJgYIZJF2aY1wHXZlnOaGB0IRkUEZHS0RO5IiIxEqugr5taIhJVlRrONRZBXw9nSdxpjNxo++sbJ/Gth2ZVZF1VHfR1mItIVKWWRQ8ddizatLsi663qoC8iIt0p6IuIhCCsmggFfRGRGFHQFxGJkaoO+mq0IyLSXVUH/SR1sSxx5Zzj91Pr2N9xKOysSETEIugnVerhB5Go2NXWwT1T1oSdDYmQWAV9kUrae6CTZQ0trNy2hzteWaVCh0RC0F42+zT91iQMV4+pZfa6nRzT7z0c6DzMtV/6az70vveGnS2Juaou6asqX8K0cNMuADoPJ0odpptLEgFVHfRFRKQ7BX2REL2xegf7D5a2ZY3uHUguCvoiIVn9bis/enw+v3rxnZIu97ZJK0u6PKkuCvoiIWlt7wBgw859JV3uk3M26cFEyUpBX0SkAhpbD1AzdCK1GxJDg4d1Yo5V0FfpRyopebwl2+yorj3e5q1PBPvRM9d3S690m65YBX2RMKilpkSJgr6ISIgqff0Xi6DvVLEjMaOLi+jTICploMtqEZHuqjroi4hIdwr6ImWmRjsSJQr6IiIxEqugf+iwilxSebq3JFESq6B/9+TVYWdBpAc9tCWVFKug/+ryd8POgkgXXQFIGKo66KsAJVFWruNTJ5PqsHPvgbIst6qDfpLpURWpgB2t7cxZt7Pgz5V6RC0VdqIt1/7pPHS463W5bkHGIujriVyphG+OmMXgkXPCzob0YXe+uqrs6wgc9M3sKDNbZGYv+/cDzGyumdWZ2bNmdrRPP8a/r/fTa1KWMcynrzazi0u9MT3zXO41iByxZff+nNNV9BA4EpcyHQ9zfU+cienlOWIKKelfD6QOyXMnMNw5dzqwC7jKp18F7HLO/Q0w3M+HmZ0BDAY+DVwCPGhmR/Uu+yIR5n+zql6UXCLZtbKZnQJ8FXjMvzfgAmCcn2UM8A3/epB/j59+oZ9/EDDWOXfAObceqAfOLsVGBKWSv4RCx50UI+Q6/fuAXwDJuwwfAXY75zr9+wbgZP/6ZGAzgJ/e4ufvSs/wmS5mdo2Z1ZpZbWNjYwGbIiIi+eQN+mb2NWCHc25BanKGWdMHCkqfluszRxKcG+mcG+icG9i/f/982SuIWjVI2DoOHWZWfVPY2ZAIyRqWynSFGKSkfz7wdTPbAIwlUa1zH3CcmfXz85wCbPWvG4BTAfz0DwPNqekZPiNSvVJ+1fdOWcN3H5vbNU5qqbR3HCrp8qT88sb0sKp3nHPDnHOnOOdqSNyIneac+x4wHbjczzYEeMm/nuDf46dPc4nnzCcAg33rngHA6cC8km1JACrpS5gMWLtjLwBNew+WdNnN+0q7PCmf1vbOrNMqcfunN+30/xP4mZnVk6izH+XTRwEf8ek/A4YCOOeWA88BK4BXgWudcyqexMg9r61mWUNL2NkI7K7Jq3hhUUPJlucobeHtF+OWUDN0YgmXKJXwdl336r0FG3dVdP398s9yhHPuDeAN/3odGVrfOOfagSuyfP5W4NZCM9lbyRK+Wu+E6/fT6vn9tHo23PHVsLMSyIjpawH45pmn9G5BeY67Yjtce642+wkp6BI7Dh3m1y++w79eeDonHff+ovIh5VGuiomqfiJX7aMlalKPyPRCyN4DnSzc1PtSXyGFm7frGhk7fzM3vrCs1+uVvqGqg75I1OQqvV371EK+9eAs9rR3VCw/SSoeRUPq8VGufaKgLxICs54NC5ZtSdzv6Og8nOET0tcVWr2s6h2RKpIa8EvRy6buV1WHqLfeEYmFGXVN7G7rO00inVN1TRRFpcm4gr5IHt8fNZerxtT2ejmpP/rmfQfZvKut18sslYjEo9hbktKkuVwnCQV9kQDWbG8t+rOZSt03vrCMG55dknH+Yn7rqQFif4Cncy9/aJbPm64JwhLWiVZBXySICvxCexN+t+bpyz9dbYUfCJLCles+jYK+VESxDyBFRVGl7wqW5fIN4CJ9j6p3eiH53fXxuBOqhZt20XGo+psSjphezx2v9ByyrvNwdW67hhINx4qte3hyzsZQ1l1QNwx9jqorS2Lltj1868FZXP0/B/DLr54RdnbK6q7JqwEYeumnuqW3dwQP+sPGL2XHngNd74OGVYXf+LjsgbdDW3d1B/20X5HaMhenaW8igK3cVvzNzGp36PCRg+2ZeZszzpPt+OvrVV9SHlEYI7fPUqyXchs2fmmg+XLF9zCO02ufWhTCWiVMsQj65eacU2kt5nL1eJkUtUPkzTWNgZp3SjjK1Zw2VkG/HD+6toOdDBg2iT9Mqy/9wiNGN/2KU4qf7oqte/iHu6bT0pa5M7b0Y3vKiu15l7moBD16SnCF972j6p1I2u1/hE/P2xRyTnqvdkMzO/ce6JGuB3h6pxQ/3Qem1rFxZxuz1gYbX/eXL76Td577Xq/reh21qxApHwX9Eho+ZQ33vLY67GwU7fKHZ3PFI7NLvtz7X69jwLBJJV9utSpFAFZ1o2QTq6Bf7tY790+t4/d9vJpnXeO+ki9zzOwNJV9mNUn2sqnWZZJKD2dJn1Xtpc69B7IPdF1q2b5J3W+Jvqj8DGIR9CPyXcdWNX//k5Zt429vmlySZeVszlnmATh0lRE96nunGClf2uHDrixn2moOaNLTo2+t4+a/rOh6/9aaxuAfDniwhBGAo1IKlSMmLXu3LMut7qCf4rQbJ2XslOqRN9fy0uItgZbxz2Pm89mbX8s4bVtLe6/yJ6WxoWkfNUMnsrRhd1mWf+uklYyeuR6APe0dge6BFBrDcwXgbNPS0xXE+75bXl6Rf6YixCboZ3P7K6u4fuziQPO+vnJHVxPNOEoGknELGlj17p6M83QeOsySzd0DbiUD0LRVOwAYvzDYiTyb1G4Vsvn2w7OZt6G5wCVnX25qCb9ue2ugtvYihYp90O+tOFSFplc3/Pz5JVxyX+YOo+5+bQ2DRsxk+daWjNP7iuZ9+YdHXPVusL6IijnnfWX4W1z9p56jdanuXXpLQT/mWto6WNu4t6jPDhk9r0fVWDLYN+3tO2PKVox1/ddNtbdukmhR0I+5r4+YwYX3vFlU4HlzTWPgqrFstu9pp2V/6arMol8S7l2AL9f5Qaed+FDQ76W+/mPZuDP44NzFBpxcJ5RzbpvKF+6cVtyCC9TecYimvQdoj3gnY+lt7mfUNfUYo7fQ4RFFkqq7P/0y29kHAkhQ5axhyLfo1vbgDzftbjvIuAUNXPWFAV1PsmZcZ4YN+tSvXwXg7075MBOu+0LgdZaMSzQGyC7z9nx/1NweaZ+/o/uJUjVE0fDtR2bzoWP6MepHf99jWlSuQhX0e+Fzv32dE449OuxsVEwUDtrP3jwl8ffU4xhYc0KP6UGyuLShuJvM/3DX9KI+F4GvLa++kMe+YN76QltzVV4sqnfKWQoK0sqjL0j9ivpC1cHBEMbrLaQqLFXwwy//nOpuQXqrqoO+Si+5ZRvoPL3qIKnok2c54lQBy2xsPcDztZmHMIyChZt2d6uzT+3KumboxIrkQaeS+FD1Toz95qUjfa7nutlazMkzSs0Q/88TtSzcVJ4ndEvlouFv8dEPJqoKc5Xms41tEJ1vW6Kuqkv6kluuJz63tezPWHUVpWCeS2oud7T2HBgmmvKfXh2OXwcYIEUSxs7bxKvvlKcPm0JF5aeTN+ib2almNt3MVprZcjO73qefYGZTzKzO/z3ep5uZPWBm9Wa21MzOSlnWED9/nZkNKd9mJUTkO+4T0r+r826fxlm3TOkx33MBq0neWH2kI7JK1u7katFTDa57ehFPzNkYdjb6jKHjl/GTJxeEnY1ICVLS7wT+3Tn3P4BzgWvN7AxgKDDVOXc6MNW/B7gUON3/uwZ4CBInCeAm4BzgbOCm5Imi3MKIA+ffMa3qSmQOR932zE/vvrx0K7tSrgz+OGtDhXIVfQc7E/dOdBNWoiBv0HfObXPOLfSvW4GVwMnAIGCMn20M8A3/ehDwJ5cwBzjOzE4ELgamOOeanXO7gCnAJSXdmgppyjCObLotu/cXVCL77csrutWxl0vDrjbWbG/11TRHzoa9ufTc1rKf655exE+fCl6iembeJs7M0mNpKaRuT5UX/gGYsGRrrz7fm2q78++Yxr1T1hT12T3tHRVvLfbKsm1sbk60xNqyez81QyeyMEaDxBdUp29mNcCZwFzg4865bZA4MQAf87OdDKTWATT4tGzp6eu4xsxqzay2sbGAvsorKFlyK6XHZqznT7PLf9n+hTunc9Hwt3hm3mYKrXgxLGMATX4fW3cH71562Phl7Cqwx9Ig33scAnwmBfXrX2Jbdu/ngal1+WfM4OLhb2VtLVYuP31qIZfdn+gwcEZd4nsbO29TSdfR0tbB6BnrI3kPLHDQN7MPAn8G/s05l7lfXT9rhjSXI717gnMjnXMDnXMD+/fvHzR7FRW93RjM9FVHngZNDxLlrHoo1YG/cluuwy65rpKsiu17QhwfIYQDLKx7IWGNQ9Fa5iEuh72wlJtfXkHtxuhdQQQK+mb2XhIB/ynn3HifvN1X2+D/JiNKA3BqysdPAbbmSC+7CJ5sQzFtVXoXAIX90B2uqOBQlhu5Zd6nC8rwY83W3DLdna+uLvm6o6alrYPdbdXxYGMmyaveYh/oK6cgrXcMGAWsdM7dmzJpApBsgTMEeCkl/Ye+Fc+5QIuv/pkMXGRmx/sbuBf5tLJJ/sTmbdjZq+V0HjrMw2+u7XofxUu2pBcWNXDFw7MK/lzOTUqJVZm2PUpfRzVU7/x5YUPF17k6y6A45fKZm1/r6lIjTOU6dhf7gYTumryqKy0qx2aQh7POB34ALDOzZD+6NwJ3AM+Z2VXAJuAKP20ScBlQD7QBVwI455rN7BZgvp/vZudcRTqq2Nxc/I2izkOHOfu2qX2mu4Ubnl2SdVpqFc6ry4O1XT4cYASpsI2esZ7jj30v3zzzlK601G3NVsLuOHSY68cu4voL/zuf/G8fKns+o2z7nr7yLEPpjJm1gZsmLC/rOqJUIErKG/SdczPIXg9wYYb5HXBtlmWNBkYXksGwvbmmMWPAzzZcYLVJ7+MmU/VOvhJM+oH/qxeX9TZb3dzsxxL95pmn8Nry4EMMrti6h0nL3qVh1/6K9Lp54FDuHlmDtAqrViOm1/P9cz7Bhz/w3oqt8+m5pb15m0lUSvep9ERuHpnGSnWOijzl19rewYqtxZ1cnHPM39DM7LW9q9pKDdj5Si2bmttYmFYXvqe9g/1p3U8/Oafnj62zRB2ozahv6vb+3ZZ2NjX3rFd1zvGbHKW8Fxf3bozdTK4e03P4w1LoC1djSTv3HmBHa8+bt3dNXs2vKtBkWRT08ypFq4ZtLfsZMb2+4HsBVz4+n8seyDwWbT7OwRUPz+Y7j84JPH82qdUj+b6NfQe7B/gfPz4/y5zdFTp6Vr7WRsnt+drvZ2Sc/lzt5h4DuKdaVIa+epYU2aVzPoWMR1Col5duZUPTvkDzBjn5fO63r3P2rVMzTmsrc4uaMESxekdBv0hBW2IA/PTJhdw1eTV1Owobi7Y3zb0OpRxt+w/2bqCXoAE2k8U5AmsQW3bv59aJK4ouzWarMvnPP5e2iilMo2asK9uyr3t6ERfd91bZlp8qzPhYyO+5EBGM+fEN+hOXbqvYupJB93CRp/1iWgulVkt9+5HZrGvcmzM4z12fvxrIrPCD+D0Br5Q6DmVe8vXPLOLRt9ezpKH7yeOFhVtwzmUthT5V5vraJ2ZvKOvyC/HAtPqyLr8cDyNWQiGNL54tU9fbhVSPVkpsg/61Ty+s+DorudNTb8Au29LCBfe8yZYcj7v/KEA1jHMw8q2epcpccf09AY+wc2/vfsm/o7Wd7Xva6chSwh+/aAuTl7/LzLVNGaeX269fKm+rj76ot4f37raD1AydyMtLjzy+s2Z7K/uKrPZpzNC76gV3v1Fs9qpGbIN+ujezPMZeiou+Qm4LzN/QsxVr0JPFz58/0lwzU510as+XhejNpW/Qkn6q1vYOzr51KufclrnuN6llf0dkSk/VYH3Auvtsevv8yjq//lEz1nct76Lhb3HVmGD3hQpZRy6z1jbxwqLKPytRKQr63pDR8zI+hZkpZjlXmqZYre0dfOvBmaxrPFLXf8XDs3uUyA8eOsyNLyzLe7k6bsGRA/W495em6Vtqff7qlNGdgiom6N82aVX+maTkdgZsMvrioi3UDJ3Yo6O0XCF/4859jJheWDVU8hwyZ11xj/PkuxeV7Xj+7qNzuz3v8vLSrTya4Qq3r6rqoF9oy5v/9dCswKWVl3I06UvvtyVZJ/r4zPXd0qet2sHCTbsZ/nr3zqrOT+uAasLirTw9dxO3T1oZKG8Ag0bMDDxvLtv3HGCXf1x+d5YO0nK2/Cni5Higo+eN50zNLqF7oPl/RT5ok8zijLpwqoqiImg5PfnEcCENE74/ai53Tc7dvUSxFwqz1jZ161eq1K57ehG3FvDb6y56l6JVG/Snr97BnHWFt1F/fkH+yzqHY21j9svE9GqJPe2JYPlcbXGXjMkbwNkasMysb6LtYHmau33p7jf4l6eKv/9RTEk/U23S9WMX93hQbOe+g7yR8mNP78O/vsDWUoti1L1uPqve3ZO1yjOb13OMxBakBVl6s90g4XJ90z6+++hcrvxjzyqgYk4iuQpzNUMnsnFn4ne/YGMzNUMnUuevFkZMr+ebD5amoFVuVTtG7pUB24enW76lBQaemn/GgvSMYm0HO3lweqI/n3yllGxx0znHym2tfO+xuXz9Myf1OpfFSg/G5XLFw7O7vf9dno7Jvnzvm+XMTlW75L78z4ekH5Y/fWohG+74Kks272bnvgNc8KmP9yoPQa66v5RyY3b+hmb+vuYEnHNFD5F5/djFOacvbWjhEx85lr8sSbT+e6uuidM//qG8VzEQnadzq7akXyrFPhGbz/Apa7rqFPfmaZ2Q7dj/3eTVXQ9vFfoMQCllC77rGvcW9NDVlBXbmVvE1VmpRO9CvLJyxdgOf2Lfvqedt/NUgw0aMZMf/zHx9PH6pn28sXpHUaXu9I+s3LYnY0OHpCsens3m5jYeeWsd59w2tceN6VJ0lJhcwtKGYM+fpK4yW/VopVVtSb9YyX00d91OTj3hA9yTYUSgH4ya16t17G47yMz63gW3WfVNPPTGkZ4/g/Q1Xy6vr8x8WX/BPYWVtK/+UyJQfOusI2Pr5HpqtpSmrNjeZ9ujV8L3HpvLoM+elHW4zKT2tPsxXyphE8lL/cAntwz6ND84rybjPHvaO7ruzWxOuQ/0wqIGBn2mx5hNef3kicyjwS30reMKOZFsbO5d66hSUdDP4n+PzN59Qbabipn8/PklPZ4KHTxyDqveLbwljMOxo7WdptaDLNtSnkf6o6C3TQcLtaShpeuEE2cz6xNNFedv6HlvY976Zuat717KzlRd8alfv1qSvHz/sbl8+qS/yjjtpgnL+d45n+A97+mZgQUbd3XlMzUc3/DsEv7p7wqvAg3SG+2yMnWvUS4K+mlKXe02Lu3G8KX3vx0o4Kc2H92YcpL5x7veoO3gIf7j4k+WLpMRU45+byS/sfM3RaaL5Rn1Td06z0ttrnzYwR2vrmJthirN3+R4aK5c1Xf/9IfM/TtBorEBJJrD5rtKqhQF/TRjZm8sawdWQathxqS0REmtxmnzrSCC3DgSKUSh3RuVq7+aTM66pfuAK5meDM9nXY4Wd5DorqRQnQG/tC/f+2bBY0KXS6xv5KaXwpPGLyp9t7oiUVfojc58fUlNydGEsxLS85evSW569VUmvxy/jJqhE7veBy18RSXgQ8yDfmq3BVGT2v9Il7g3L5Gyatpb2Ohw/zEu9++n2PskpareS29VVujPZ1tLz76q0gdUzzTeRtTFOuhHWR88liRmolL/H1ShLTbPu31a/pn6IAX9PkTVTiLFu/GFcMZQuPkvK0JZbzYK+iJStFINc1nNRqf1uRU2BX0RKdq/R/i+mGSmoC8iRXtpcYYGBxJpCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxoqAvIhIjCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxUvGgb2aXmNlqM6s3s6GVXr+ISJxVNOib2VHACOBS4AzgO2Z2RqnX07I/OkOTiYhESaVL+mcD9c65dc65g8BYYFCpV7KuMRqjzouIRE2lg/7JwOaU9w0+rYuZXWNmtWZW29jYWNRKPnvqccXnUEQkAp695tyyLLdfWZaanWVI6zZypXNuJDASYODAgUWNFGtmbLjjq8V8VESkqlW6pN8AnJry/hRAozCIiFRIpYP+fOB0MxtgZkcDg4EJFc6DiEhsVbR6xznXaWbXAZOBo4DRzrnllcyDiEicVbpOH+fcJGBSpdcrIiJ6IldEJFYU9EVEYkRBX0QkRhT0RURixJwr6vmnijCzRmBjLxbxUaCpRNnpC+K2vaBtjgttc2E+4Zzrn2lCpIN+b5lZrXNuYNj5qJS4bS9om+NC21w6qt4REYkRBX0RkRip9qA/MuwMVFjcthe0zXGhbS6Rqq7TFxGR7qq9pC8iIikU9EVEYqQqg341Db5uZqea2XQzW2lmy83sep9+gplNMbM6/y+8XRcAAAQhSURBVPd4n25m9oDf9qVmdlbKsob4+evMbEhY2xSEmR1lZovM7GX/foCZzfV5f9Z3zY2ZHePf1/vpNSnLGObTV5vZxeFsSTBmdpyZjTOzVX5fnxeDfXyDP6bfMbNnzOx91bafzWy0me0ws3dS0kq2X83sc2a2zH/mATPLNFBVd865qvpHosvmtcBpwNHAEuCMsPPVi+05ETjLv/4QsIbEoPK/A4b69KHAnf71ZcArJEYpOxeY69NPANb5v8f718eHvX05tvtnwNPAy/79c8Bg//ph4Kf+9b8AD/vXg4Fn/esz/L4/Bhjgj4mjwt6uHNs7Bvhn//po4Lhq3sckhkldD7w/Zf/+qNr2M/BF4CzgnZS0ku1XYB5wnv/MK8ClefMU9pdShi/5PGByyvthwLCw81XC7XsJ+AqwGjjRp50IrPavHwG+kzL/aj/9O8AjKend5ovSPxIjqk0FLgBe9gd0E9AvfR+TGJvhPP+6n5/P0vd76nxR+wf8lQ+AlpZezfs4OV72CX6/vQxcXI37GahJC/ol2a9+2qqU9G7zZftXjdU7eQdf76v8Je2ZwFzg4865bQD+78f8bNm2vy99L/cBvwAO+/cfAXY75zr9+9S8d22Xn97i5+9L23sa0Ag87qu0HjOzY6nifeyc2wLcDWwCtpHYbwuo7v2cVKr9erJ/nZ6eUzUG/byDr/dFZvZB4M/Avznn9uSaNUOay5EeKWb2NWCHc25BanKGWV2eaX1ie71+JKoAHnLOnQnsI3HZn02f32Zfjz2IRJXMScCxwKUZZq2m/ZxPodtY1LZXY9CvusHXzey9JAL+U8658T55u5md6KefCOzw6dm2v698L+cDXzezDcBYElU89wHHmVlypLfUvHdtl5/+YaCZvrO9kMhrg3Nurn8/jsRJoFr3McCXgfXOuUbnXAcwHvg81b2fk0q1Xxv86/T0nKox6FfV4Ov+bvwoYKVz7t6USROA5F38ISTq+pPpP/QtAc4FWvwl5GTgIjM73peyLvJpkeKcG+acO8U5V0Ni301zzn0PmA5c7mdL397k93C5n9/59MG+1ccA4HQSN70ixzn3LrDZzD7pky4EVlCl+9jbBJxrZh/wx3hym6t2P6coyX7101rN7Fz/Hf4wZVnZhX2To0w3Ti4j0cplLfDLsPPTy235AolLtqXAYv/vMhL1mVOBOv/3BD+/ASP8ti8DBqYs68dAvf93ZdjbFmDb/5EjrXdOI/FjrgeeB47x6e/z7+v99NNSPv9L/z2sJkCrhpC39bNArd/PL5JopVHV+xj4L2AV8A7wBIkWOFW1n4FnSNyz6CBRMr+qlPsVGOi/v7XAH0hrDJDpn7phEBGJkWqs3hERkSwU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEb+P5qkdQkuhnG4AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "## Ejercicio\n", + "## Un mundo más realista de Pedro y el lobo\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/8-Reinforcement/1-QLearning/solution/Julia/README.md b/translations/es/8-Reinforcement/1-QLearning/solution/Julia/README.md new file mode 100644 index 000000000..29e50d216 --- /dev/null +++ b/translations/es/8-Reinforcement/1-QLearning/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/8-Reinforcement/1-QLearning/solution/R/README.md b/translations/es/8-Reinforcement/1-QLearning/solution/R/README.md new file mode 100644 index 000000000..b4a569165 --- /dev/null +++ b/translations/es/8-Reinforcement/1-QLearning/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb b/translations/es/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb new file mode 100644 index 000000000..17a293a43 --- /dev/null +++ b/translations/es/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb @@ -0,0 +1,457 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "eadbd20d2a075efb602615ad90b1e97a", + "translation_date": "2025-09-04T03:03:09+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Pedro y el Lobo: Entorno Realista\n", + "\n", + "En nuestra situación, Pedro podía moverse casi sin cansarse ni sentir hambre. En un mundo más realista, tendría que sentarse y descansar de vez en cuando, además de alimentarse. Hagamos nuestro mundo más realista implementando las siguientes reglas:\n", + "\n", + "1. Al moverse de un lugar a otro, Pedro pierde **energía** y gana algo de **fatiga**.\n", + "2. Pedro puede recuperar energía comiendo manzanas.\n", + "3. Pedro puede deshacerse de la fatiga descansando bajo un árbol o en la hierba (es decir, entrando en una ubicación del tablero con un árbol o hierba - campo verde).\n", + "4. Pedro necesita encontrar y matar al lobo.\n", + "5. Para matar al lobo, Pedro necesita tener ciertos niveles de energía y fatiga; de lo contrario, perderá la batalla.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math\n", + "from rlboard import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "## Definiendo el estado\n", + "\n", + "En nuestras nuevas reglas del juego, necesitamos hacer un seguimiento de la energía y la fatiga en cada estado del tablero. Por lo tanto, crearemos un objeto `state` que llevará toda la información necesaria sobre el estado actual del problema, incluyendo el estado del tablero, los niveles actuales de energía y fatiga, y si podemos vencer al lobo mientras estamos en el estado terminal:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class state:\n", + " def __init__(self,board,energy=10,fatigue=0,init=True):\n", + " self.board = board\n", + " self.energy = energy\n", + " self.fatigue = fatigue\n", + " self.dead = False\n", + " if init:\n", + " self.board.random_start()\n", + " self.update()\n", + "\n", + " def at(self):\n", + " return self.board.at()\n", + "\n", + " def update(self):\n", + " if self.at() == Board.Cell.water:\n", + " self.dead = True\n", + " return\n", + " if self.at() == Board.Cell.tree:\n", + " self.fatigue = 0\n", + " if self.at() == Board.Cell.apple:\n", + " self.energy = 10\n", + "\n", + " def move(self,a):\n", + " self.board.move(a)\n", + " self.energy -= 1\n", + " self.fatigue += 1\n", + " self.update()\n", + "\n", + " def is_winning(self):\n", + " return self.energy > self.fatigue" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(state):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(board,policy):\n", + " n = 0 # number of steps\n", + " s = state(board)\n", + " while True:\n", + " if s.at() == Board.Cell.wolf:\n", + " if s.is_winning():\n", + " return n # success!\n", + " else:\n", + " return -n # failure!\n", + " if s.at() == Board.Cell.water:\n", + " return 0 # died\n", + " a = actions[policy(m)]\n", + " s.move(a)\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 5, won: 1 times, drown: 94 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " elif z==0:\n", + " n+=1\n", + " else:\n", + " s+=1\n", + " print(f\"Killed by wolf = {w}, won: {s} times, drown: {n} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## Función de Recompensa\n", + "\n", + "La función de recompensa es una parte crucial del sistema, ya que define cómo se evalúa el comportamiento del agente. A continuación, se detallan algunos aspectos importantes:\n", + "\n", + "### Objetivo\n", + "El objetivo principal de la función de recompensa es guiar al agente hacia el logro de la tarea deseada. Esto se logra asignando valores positivos o negativos según las acciones que el agente realice.\n", + "\n", + "### Consideraciones clave\n", + "- **Diseño cuidadoso**: Una función de recompensa mal diseñada puede llevar al agente a comportamientos no deseados.\n", + "- **Equilibrio**: Es importante equilibrar las recompensas para evitar que el agente se enfoque únicamente en maximizar una métrica específica, ignorando otras consideraciones importantes.\n", + "- **Escalabilidad**: Asegúrate de que la función de recompensa sea escalable y pueda adaptarse a diferentes escenarios.\n", + "\n", + "### Ejemplo\n", + "Aquí hay un ejemplo básico de una función de recompensa:\n", + "\n", + "```python\n", + "def reward_function(state, action):\n", + " if action == \"desired_action\":\n", + " return 10 # Recompensa positiva\n", + " else:\n", + " return -1 # Penalización\n", + "```\n", + "\n", + "En este ejemplo:\n", + "- Se otorga una recompensa positiva de 10 cuando el agente realiza la acción deseada.\n", + "- Se aplica una penalización de -1 para cualquier otra acción.\n", + "\n", + "### Buenas prácticas\n", + "- **Pruebas exhaustivas**: Prueba la función de recompensa en múltiples escenarios para asegurarte de que produce los resultados esperados.\n", + "- **Iteración**: Ajusta la función de recompensa según sea necesario para mejorar el rendimiento del agente.\n", + "- **Evitar recompensas excesivas**: Las recompensas excesivas pueden llevar a un comportamiento no natural o a la explotación de la función de recompensa.\n", + "\n", + "### Conclusión\n", + "Una función de recompensa bien diseñada es esencial para el éxito del agente. Dedica tiempo a planificar, probar y ajustar la función para garantizar que el agente se comporte de manera óptima.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def reward(s):\n", + " r = s.energy-s.fatigue\n", + " if s.at()==Board.Cell.wolf:\n", + " return 100 if s.is_winning() else -100\n", + " if s.at()==Board.Cell.water:\n", + " return -100\n", + " return r" + ] + }, + { + "source": [ + "## Algoritmo de Q-Learning\n", + "\n", + "El algoritmo de aprendizaje en sí permanece prácticamente sin cambios, simplemente usamos `state` en lugar de solo la posición del tablero.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " s = state(m)\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = s.board.human\n", + " v = probs(Q[x,y])\n", + " while True:\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " if s.board.is_valid(s.board.move_pos(s.board.human,dpos)):\n", + " break \n", + " s.move(dpos)\n", + " r = reward(s)\n", + " if abs(r)==100: # end of game\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUVd7H8c+Zmt5J6CC9qVQpKoqIoggIuouCoojCIkXQXUV3F0XEh10bYAFBUQFBwRXXroggIjYiKkWE0EsI6Zle7j3PH5mMsBBqkjsJ580rr2Tu3Mz9zoT8cubcc88RUkoURVGU6sNkdABFURTlzKjCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs2owq0oilLNVFrhFkL0FUL8LoTIEkJMrqzjKIqinG9EZYzjFkKYge1AH+AA8CNwq5Rya4UfTFEU5TxTWS3uS4AsKeUuKaUfeAsYWEnHUhRFOa9UVuGuB+w/6vaB0DZFURTlHFmMOrAQYhQwCsBqtXa66KKLjIpySj6fD4fDQVpamtFRylVUVITVaiU2NtboKOXKzs4mPT0ds9lsdJRy7du3j4YNGxodo1zBYJDc3Fzq1KljdJRyOZ1OgsEgSUlJRkcpV25uLgkJCdjtdqOjlGvLli14PB5xwjullBX+AXQHPjvq9sPAw+Xtn56eLiPZjh075Lx584yOcVIrVqyQ69evNzrGSU2bNk0WFBQYHaNcuq7LcePGGR3jpPLz8+X06dONjnFS69atk++9957RMU5q7ty5cseOHUbHOKlQXTxhzaysrpIfgeZCiAuEEDbgFuD9SjqWoijKeaVSukqklEEhxDjgM8AMLJBSbqmMYymKopxvKq2PW0r5MfBxZT2+oijK+UpdOakoilLNqMKtKIpSzajCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs3U2MK9cOHCsqs2FaXKeb1eli9fbnSM0/L222/j9/uNjlGut956K6LzGaHGFe6VK1cycOBAgsEggwYNYvHixYbkkFJy3333GXJsxVhPPfUUw4cPJzc3l4EDB7Jp0yajI53QTz/9xMCBAyksLGTo0KHMnDnT6EjHyMzMZODAgRQVFTF06FBmzZpldKSIUaMKdzAYJCsrixtuuIF+/foxatQotm3bhs/nq9IcL7zwAq1ateKWW26hZcuWzJkzp0qPX9mklBQUFBgdIyK53W42bdrEI488wk033cTFF1/Mnj170HXd6GjH0HWdPXv20LlzZwYNGsTkyZPZvHkzbrfb6GhAab7du3fTtWtXBg0axIMPPsjmzZvxeDxGR4sINapwHz58mF27dtG3b1/69u1Lly5dsNlsbN68ucoyFBQUUFRUxKJFi/D5fCxcuJCCggIKCwurLENlW716NdOnTzc6RkRavXo1HTt2JD09ndtvv52hQ4fy0Ucf4fV6jY52DJfLxRdffMGQIUO45ZZbqF+/Pq1bt2bdunVGRwNKZxhcvXo1f/rTnxgyZAiNGjWiVatWfP3110ZHiwiGTetaGerXr0/Lli0ZPXo0hw4dYvz48TRt2pROnTpVWQaPx4OmacTFxfH999+zb98+4uLi8Hg8JCcnV1mOyrJixQq2b9/Ov//9b6OjRKR+/foxZMgQfv/9d6644gruuusupk+fTkxMjNHRjhEfH8+AAQMYOXIke/fu5aGHHkJKyQMPPGB0NAASEhLo168fI0eOZM+ePTz44IMAEZPPaDWqcAP079+fNm3acOeddzJ+/HgaNGhQpcevV68eMTEx/OlPf2LZsmVcdNFFNG7cmMGDB5ORkRHRc1GXR0qJrut8+eWX7Ny5k3HjxlXJ8whPYWmqXm8Mp02bxv79+5k4cSLdunWjY8eORkc6oa5du/Kvf/2LcePGcfvtt9OoUSOjIx2je/fuzJgxg3HjxvHll1/y5ZdfGh0pYlSv34jTkJGRQY8ePYiNjaV79+6GTIo/ceJEfvjhB6ZOnYrD4WDTpk38+9//ZtCgQWRnZ1d5nnO1f/9+rrzySj7//HPuu+++KlmsYf/+/Xz33Xfce++9bNu2rVr1bbZo0YKrrrqKWbNm0aBBAyyWyGwfJScn06NHDxITE+natSvNmzc3OtIxyvKtW7eOtLS0iMhXUFCAw+EwOkbNa3FHAqvVitVqZdmyZeFtixYt4uDBgzz//PM0adKEP//5zyQkJBiY8vT89NNPvPnmm3z66adVurrOqFGjaNq0Kffccw8333wzr7/+Op07d66y458rIQRXXXUVq1ev5ocffqBXr15GR6q2oqKijI5AMBhk4cKFHDx4ELvdTt26dRk2bBhCnHiBmsqmCncVqlevHnfeeSfffvstjz76KM8++6xhP/jTsXXrVt5//30eeOCBKi3aH3zwAX369GHo0KE89NBD6LrOY489Rmpq6nH7Dho0iBtvvLHKsinnp2AwyIwZM3jzzTdxOp2MGjWKYcOGHbPP119/zSuvvHLC7+/cuTPjx4+vsDw1snA/+OCDzJ49OyKLYosWLWjRogVdu3Zl5MiRzJo1i+jo6Ih7O33kyBFmzJjBc889d8KCWZkuvfRSlixZwk033cTkyZN54oknuPnmm2nXrt1x+y5fvpypU6ee9PE+++wz0tPTKyvuSU2cOJHRo0fTuXNn4uPjDclwKgsXLuTWW2/lww8/NDrKCQkhmDVrFg8++KBhJ8VHjBjBf//7XzZs2MCzzz7LgQMHjjt30atXL/7xj3+c8Pvj4uIqNE9kVYsKkpOTQ+3atSOycJdp2bIl48ePp3///gwfPpzbb78dq9VqdCwAtm3bxrRp01i0aJEhJwZTUlKoX78+48aN4/rrr+fAgQO0adPmhH2cDz/8MJMnTz7p4xn5/yA1NZXCwsKIG8d9tHr16nHw4EGjY5RLCEHt2rXJyckxLMOrr75K9+7deffdd+nQoQM333wzmZmZx+1XVb8vNbJwVwdCCDp06MCaNWt4/fXX+de//kWbNm0YPHiwYZmOHDnC/Pnz8fv9PP/884aO5njqqacoKSnhww8/5Kuvvip3PyFERP+BBhg6dCiLFi1i3LhxRkdRzpLVamXAgAHhqTSGDx9u6P89VbgjwB133MGqVavCfcr9+/evkv8QUkrWr1/PkSNH6N+/P5MnT+ZPf/oTF198MSkpKZV+/FNJSEhg6NChRsc4ZyNGjKBjx46qcJ8jIQRSSkOKpdVqZdq0aezevZuYmBgyMjKqPMPRatxwwOpICMHVV1/N6NGjyczMpFOnTpX+1lVKSZs2bVi6dCnr1q2jXr16/N///R/XXXcddevWrdRjn2+EEKSmpqppAs5B06ZNueyyy3jzzTcNzXHBBRcYXrRBFe6IYrfbmTp1Kj/88APPP/98pR5r/fr19O7dm4cffpioqCh69uzJxo0bK/WY5yshBPPnz6/QUQXnG7PZjNVqjbipA4xSI7tKhg0bRq1atYyOcdYsFgszZsyo1GPk5eWRlpaGx+Ph5ptvZvXq1eTm5lbqMc9nqamp3H777UbHOCEhBH/729+MjnFKXbp0UVM1h9TIwn3NNdcYHSHiDRgwgAkTJuDxeMjIyODJJ5/kwIEDRseqsRITE+nbt6/RMU5ICFEtziW0adPG6AgRo0YWbuXUhBDs2LGDNWvWkJOTw8GDB7HZbEbHUhTlNKjCfR6z2Wzq3YmiVEPq5KSiKEo1owq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXNOo0qEEHsAB6ABQSllZyFECvA20BjYA/xZSllzVspVFEUxWEW0uHtJKdtLKcuWJ5kMrJJSNgdWhW4riqIoFaQyukoGAm+Evn4DUMuTKIqiVKBzLdwS+FwIkSmEGBXaliGlLFsR9zBg/FRaiqIoNci5Xjl5mZTyoBAiHVgphNh29J1SSimEOOGsMKFCPwpKl/XZsWPHOUapPAcOHKCoqCiiM+bl5aHrekRndLlc7N69m7y8PKOjlMvv90f0a1hSUoLL5YrojIcPH47435eioiL2798f0ZNWnWzVpHMq3FLKg6HPR4QQK4BLgBwhRB0pZbYQog5wpJzvnQfMA0hNTZVr1qw5lyiVqqioiAMHDhDJGXfu3ElMTAz5+flGRylXXl4e69evx263Gx2lXE6nM6J/zl6vl29zv+W/a/5rdJRyxWTH0NvTO6KXazt48CCZmZlkZWUZHaVcJ339pJRn9QHEAvFHfb0e6As8BUwObZ8M/PtUj5Weni4j2Y4dO+S8efOMjnFSK1askOvXrzc6xklNmzZNFhQUGB2jXLquy3Hjxhkd46Ty8/Nlp+mdJBH8r/a62vK9994z+qU6qblz58odO3YYHeOkQnXxhDXzXFrcGcCK0DJCFmCJlPJTIcSPwDIhxEhgL/DncziGoiiK8j/OunBLKXcBF59gez7Q+1xCKYqiKOVTV04qiqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDM1rnBLKZk5cyaHDh2K6AlkFEVRzlaNKtw7duzgggsuIC0tjbvuuosbb1RTgSuKUvPUmMItpeSHH37gr3/9K23atGHx4sXUqVOH3377zehoNcaBAwfYtWuX0TEU5bx3rvNxRwwpJYcPH6ZBgwbMmjWLBx98kJSUlIie5rS6kFIyZcoUpJSYTCZ8Ph9PPvkkZrPZ6Gh89tlnNGnShObNmxsdRVGqTI0p3CaTiX79+tGrVy80TeOXX34hOTmZJ5980uhoQGnx03U9IordmdJ1nXfffZcVK1ZgsVgYNGgQU6dONfS5OBwOrrnmGq677jqWLl1KcXExK1asMCyPolSlGtNVAtCiRQt27drFNddcw+LFi/n000+NjgSUrgiyadMmhgwZwpYtWygqKjI60hmZMGECc+fO5euvv2bDhg0sWrSI0aNHG5pp586dtG7dmrvvvptnnnmGYDDIgQMHDM2kKFWlRhVuk8lEdHQ0ZrMZu90eMSutPPXUUzz22GM888wzjBkzhg8++MDoSGfk+uuvp2/fvqxcuZJ69eoxaNAg5s+fb2imd955h5tuuomXX36ZjRs30r9/f0P/UGuaxiuvvMI333xjWIaaYNOmTRF/HuXzzz/H5XIZmqHGdJVEqszMTJKSkpgzZw6PPPIIl156KZs3byYnJ4eMjMhfR3nFihXs3buXuXPncvjwYb766isef/xxLBZj/+uUnYSuVasW69evZ+/evWzfvt2wPEIIoqOj+eqrr5g7dy6xsbHMmTOH0EIjyikEAgHuuece6tevj9frxe128+KLL0bU67dz504ee+wx2rdvz7Jly2jdujUPPPCAIVlqZOGOjo7G6/UipTT8B9+qVSuWLVtGVlYWkydP5r333uOpp55i9erVrFy5MvwuwehC+L+klHz11Vds3bqVSZMmERMTg8PhQNd1EhMTjY5HfHw8q1ev5sUXX6Rbt25ceumlhuYxmUwMGzaM4uJicnNzcblcdOzYEYCZM2fSsWNHLBYL0dHRuFwuNm/ezJdffsm4ceOIjY3FZKpRb37PmNPpZMeOHTz55JO4XC4GDBiAw+EI//7u37+fYcOGnfB7V61aRUpKSqXmk1Jy8OBB4uPjueOOO9i6dSvTp09n1KhR4X0+/vhjZsyYcdz3pqWlsXLlygrNE1nVooLMmTOHTp06sWHDBsMLd2xsLI0aNWLKlCmMHDmSjz/+mEWLFnHZZZcxYMAApJQMHTqUtm3b0r17d0OzHm3t2rV88MEHPP300+HXMD4+3uBUfzCbzRw4cIDU1FRuvfVWw3/OZRITE0lMTERKSWZmJlD67mDq1Km0a9eOwYMHc/fdd9OnTx969epF06ZN+fnnn6lbt67ByY01efJknn32Wb799ltefPFF9u/ff8x1GPXq1Qu/nv+rKn72gUCAV199lX/84x/Mnj2bL7/8km3btjFw4MDwPtdee225GStajSzcQoiIumry3nvv5S9/+Qsvv/wyq1evDm9ftWoVAG+88Qbr1q2LiML9008/8fHHHwMcU7QjUdnPOBIzCiHCuZ599lkAfvnlF0aMGEHv3r2pV68eycnJzJw5k6VLl3L//fdH5POoKrNnz6Zly5bMmzePe++9lz179rBq1aqIeU1sNhv33nsvd955J6+++ipRUVEkJiby0UcfGZKnRhbuSGQymRgzZswJ77vjjjuqOM3xpJTs2bOHpUuXcvXVV3P55ZdHzC9NeSI93/+6+OKLWbx4MTNmzKBTp040aNCA9evX06lTJ6OjGc5qtTJ//nw2bNhAfHw8r776qtGRjtOqVSumTJnC888/T+/evenbt69hWVThVoDSUREPPfQQr732GrGxsUbHOS09e/akR48eRsc4I23atCE7O5sFCxbQs2dPFi5cyF/+8pdq90eooplMJvr06cPll1+OyWTCZrMZHek4iYmJXHvttfTo0cPw8xKqcCsAWCwWli1bZnSMM2K1WrFarUbHOGMrV64kKyuL9evXs3PnTqPjRJSoqCijI5xSJJzrUYVbUQzQrFkzmjVrZnQMpZqqsWOQlixZct6//VQUpWaqsS3u1q1bGx1BURSlUtTYFreiKEpNpQq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXPKwi2EWCCEOCKE2HzUthQhxEohxI7Q5+TQdiGEmC2EyBJC/CqE6FiZ4RVFUc5Hp9Pifh3434vyJwOrpJTNgVWh2wDXAc1DH6OAORUTU1GU6kRdQ1G5Tlm4pZRrgYL/2TwQeCP09RvAjUdtXyhLfQckCSHqVFRYRVGqh0ianbMmOts+7gwpZXbo68NA2VIu9YD9R+13ILRNURRFqSDnfHJSlv5pPeM/r0KIUUKIDUKIDR6P51xjKIqinDfOtnDnlHWBhD4fCW0/CDQ4ar/6oW3HkVLOk1J2llJ2jo6OPssYiqIo55+znavkfeAOYEbo83+P2j5OCPEW0BUoPqpLpVyapvHee++dZZTKl5eXx86dOyM64+bNm9m7dy85OTlGRynX4cOH+fTTT4nkP9QlJSUR/XN2u93EZsfS5L0mRkcpV/yeeDa7Nkd0P/euXbuwWCxs3rz51DsbRNO0cu87ZeEWQiwFrgTShBAHgEcpLdjLhBAjgb3An0O7fwxcD2QBbmDE6QT0+wVjxkTuiucxMTp33BET0auy7927l8TExIjOaLfbqVWrVkQv1GCxWCL6NXQ6nXSxd2FGxvGL0kaKbYXbcJgcEf06xsTE8GTKk7gz3EZHKZdf+Mu975SFW0p5azl39T7BvhIYe9rJwt9n4vBh49dbLE9iYhZ16uRHxJqQ5cnJySEjI+OsM0op+f777xk8ePAx20ePHs3DDz9cISuSrFq1ik6dOmGz2XA4HCSnJJFTeIj42ERKAkf4vHAhu9xbMAUs2EUcQjeT7ThEt+S+XHPBLfjdPurXakhJSQmxsbEUFhYSExNDIBBA0zRiY2ORUhIdHU1BQQFxcXE4HA4SExPDt30+H4mJifh8PqSUREVFYTKZwuuULlmyJKJ/zgUFBfz4448RnVHXdfLy8iI646+//kr+hfkUNys2Okq54kxx5d5XY6d1VU5fMBhk/fr1XHPNNfh8vmPue+yxx7BarUycOJGYmJhzPpaUOvmBQ+xybcGEzvvZL9EstiN+3Y+NaFrYunLIt49iTxGtkjrQKPUiEqzJ/G31MOKtqYzt8A9q2epgC9gwmUzoug6ULn2laRpSSnw+H0IINE1DCEEgEAjfL4TA7/eH34YGg8GIXCZLUU5GFe7znKZprFixgokTJx5XtMs8+uijFBcX88QTT5zzUmESycYj3zNr43QyYjNomNiI4mCAX3ZvZc+h/bRp1gBrwMb2XVnktSjigsTWCA5glwlEiwSW/ryAlikXcm2z/kTZohFCYDab0XU93KcaCASwWq1omobFYkHTNOx2O0IILBYLwWCwNIuUBAIBVbiVakfNVXKeE0Lw3XffkZ1d/jnkYDDIO++8UyGLo5qEmc5pV1En0Iktvxfw65ZcNv6aTckhG3Z3bVz7Yzi43c+Wjbl8v3EjW3b9yNqf1uBxBVm/81uOOPKZu/5FCnx5OBwOoPStucfjwWKxYDIJYmKi8Xo9WK1WfD4fUVFRuFyucGs7NjY2XMQr4l2EolQ11eI+z2VnZ/P777+fcgRASUkJGzZsoGvXrud0PF3XiTXHMLv/bO5aMYJPNn+M7oNoGYVN2vgpS+NPl9zEyD5dKHYVYfPYOOD+BG9JPnkFhezQdhIMmBk4pz8rx68GwGazERUVhdfjZvOqGWT9uJhgUKN19zvodMPjOBwOUlNT8Xq9REdHk5eXh91uJxgM4na7SU1NPafnpChVTbW4z3Nms/m0ugpOd79TMZlM2O12vE4PL980l+tb9cNiNtOkVhO6NevGRY3bsTd3L1sObibfUUB2fjax+Y1w/Z7IhQmt8RTnge5FKxbcPftuhBB4vV4KCvJx5Gxh55Z1FJZ4qdduAEl12+MoKSEuLo7c3FyEELhcLtLS0rBYLFgsFpKSks75OSlKVVMt7vNcrVq1aNCgwSn3s9vttG3b9pyPJ6XE7/eTnJxMIBBgzk0v8Y/of/Ju5rsUOYuINccSI6LxCT9H8rdRXFhMvDWBgd0H4nQ4iSaF/NwjmJIP4c8JoGlBrFYrq1fM5MiebyjM3k+HqyZx+YBJBIOl93k8HpKTk9E0jZiYGIqLizGbzUgpcTqdJCYmnvPzUpSqpFrc5zmTycSIESNo1qzZSfd76qmnsFgq5u+8yWTCZDIhpSQ5OoXHr32cIZ1vxRlwsSt3N5sPbuXH3T+yr3A/Teo3pWHdhuzK3oXD6yBepHJJw57kbfBhb32Y1957hYDfy49r/oPXZ2Hg6AV06TMq/Phlw/zMZjNA+HYZNYudUh2pFvd5TghBu3btuOyyyzCZTGzfvv2Y+zMyMmjUqBG9e/eukJOTUFq4nU4nsbGxuFwuEuwJzOj3JI9f9yiDXhxMYUkhWft3kR6fRoEznzhrPF63FwKS3Nx84qyx9Ok0gAMHtvO1XMF3Y14jWZP07XUbjVp3x2q14na7sdvt4ZOTTqcTm82G3+8nJiYGTdPQdf2cR8mcqaysLOrUqRPRFyEpkU8VbgWz2cycOXO4++67ycrKCo+NBmjYsCHz588nJSWlQo5VNs46NTWVgoICkpKScLlc2Kw2/E4/H479kD0Fe/gg8wNcXhemoIlYWwwlRSUgBR63F7vZxpCrh9D54s6s/fVz5q+fwhX9hnBxtxvQNA2n00lKSgolJSUkJiZSVFREWloaDoeD6Oho8vPziYmJQUqJy+Wqkiv8ioqKmDt3bvgPSoMGDRg+fHilH1epmVThPs9JKZFSMnnyZJYuXXpM0Qb48ccfGTVqFCtXriQuLu6cuxaEENjtdgoKCoiOjqa4uBir1UowGCQuLg4pJc3SmzG+z3iklNgsZg6v+4LDP7xLjD2K1F7XkdS9N1a7ncLCQgKHg3iKBJdefRM2mw0pJUlJSeTt2cOPr75AwYF9JDdtTac77iEpvVa4v1vXdXRdr7J5UwoKCvjss894/fXX2bFjB//85z+5/fbbVVeNclZU4T5PlRXs/fv388gjj7B8+fLjinaZ77//ni5duvD666/TuXNnzGbzWRecshZ3YmIixcXFJCQk4Ha7sVgs4bHY+L2YfF62TRmP9HupP2gYnR/+P3Rhwmo2sXvev8j/JZOgppOVV4Q99wi+zT+y4Zu1HPn1JwKaRushd9Fh8C34fV40r4+lo27HWeJkwJSpJFzQlIwGDTGZTLhcLux2+7m8lKf1nCdNmsQbb7zBrFmzGDlyJA899BDPPPMMf/3rXyv12KcjPz+f5OTkCusKUyqfKtznISkluq7z7rvvsnz5ct59992TzkQG8Pvvv/OXv/yFUaNGMWTIEFJSUs66eJvNZgKBQPgqxrITiWazGc1RzKF5T+Hal0Xr+x/HGp9AoKgQ764dIMAnod7g22g0fCxBl4N6X62i8/bfyP9mLY0vv4oLh95NMOjHVViI31GMJkFHMuDvjxHUdL5+cyG/rlvH6Fdep0nHTuGTlpVJCMFzzz3HbbfdRvfu3Vm7di1vvPEG3377baUf+2RycnL45ptvWLlyJVdeeSVNmzalc+fOhmZSTo8q3OeZspb2vHnzuP/++8OTLZ2OX375hbFjx7J+/XoWLFiA1Wo94+IthDhmHpGyPxhSSggG2Tvn/9ByDtFk2F/w5x4mmHsYgaTsMEKCf99uvFKiAwktW5PUvhOaP4inKJ+SvTvRpESToEmJLiWaDrqUBHVJxxsGENB13vzr/dzyf/+m+TleUHS6UlNTadiwIZmZmaSmpjJhwoQqOe7JbNy4kVdeeYWXX36ZBQsW8NFHH7Fw4UKjYymnQRXu84ymabz66qs8/PDDeL3es3qMJUuWoGkar732GlFRUWf0vVJKgsEgycnJx5yctFgs7F+xGE/Wb1xw218g4EXoIETo45jHKC3gINHcLvxSlhbrUIHWdIkuCRfvoCbRpE4wtE+7nr3wef3MHTOaSW8vp3XHjmf1OpyJsvHiEyZMoF27doZfal9SUsLbb7/NvHnzmD59Ok888QRLlizh/fffZ8CAAYZmU05NFe7ziK7rvPXWW4wdO/aUXSMnI6XkP//5DykpKTz55JNndAGLyWQiKiqK7OxsUlNTycvLIzY2Fp/bRcEX79Ny2Fg0dzHSBAiBKdRCN4k/ji2lLF0sT0ooK9K6RNclQamj6RJNg2CocAd0naCEoK6j6QJN12nd41KOHDiAJy/vrF+H0yWlZMeOHcTFxXHJJZdU+vFOR3x8PDfffDPPPPMMmZmZrFmzhszMTMaMGWN0NOU0qMJ9HlmyZAnDhw8/pmuk7GKYshnzymMymcJ901A6A99LL72Epmk8/fTTxMWVP3fw0cpa3NHR0QQCgfCJwfx1X2CLjcObdxCzSWAyl54oE2YwH1W4dVnaqpa6AE1HlzpSgtRDLW29rEBLAnpp90hQlwQlpQVcL+1GCQR1Uus34qX7JjB/y1ZEJfZ1SymZOHEiP//8c6Ud40wJIWjcuDEej4eDBw/y8ccfc+WVV1bYRVZK5VKnkSPQo48+espCehHdQoQAACAASURBVKYWLFjAhAkTjuvP7tKlC/369TtlX3VGRgZjxx6/Rsb8+fO57777zmiZqrJjlX2WUuL4aT0xjZuheVzoHhfS7QKvCzxuhNeN2efB7PMgvKW3pdeF9LrRPW50txvd7UJ3u9DcTjS3m4DbddSHE7/rjw+vw4HX5aBu86ZovrPrLqoJ2rZty9y5c2nRogUzZ87kzjvvNDqScppU4Y4gH330Ea1bt6ZHjx506dKFKVOmnPNjlnWP3H///RQWFoa3R0VF0aRJE959911atGhxyseJi4tj2rRprF+/njZt2hzz+G+88QYjRow4rT82ZfNne71eLBYLfr8/tM2E1Pzhwq17XEiPC+lxQ6hYC2/p13g8cNR+utdF0BP6cLsJup0EQ0Xb73bhczrxuxz4XE68TjdepxOv04mnuLjcIZAV6bbbbuPtt9+u9ONUZw6Hgx9++IEnnniC4hP8XDRNo7i4+JiPOXPm0L59e3r3Pm4xrhpPvS+qZLm5uWzatOm09v3++++5+uqrsdlsvP3227zyyivhJcnOhpSSnJwcXnrpJYqL/1iiqW7duvzrX//ixhtvPKNLr+Pi4ujWrRvLly/n1ltvZdOmTUgp0TSNL774gk8//fSUrXdd1/H5fCQlJeF2u0lISMDv9+P3+ZH5OdhDXTfCLDCZBMIsECYTpW0MSRDQdJ2grhPUSrtBAqGvA1IS0EIfusQf1AnqUFJSjDkmFr8m8etH3R+6CKcy7dq1i+joaOrXr1+pxzkXHTp0IDMzkyuvvNKwDD179qRr16706dOHFi1a8Pzzz5OWlha+v6CggDlz5hzzPUOGDGHjxo1VHTUiqMJdyfLz81mzZs1p7bt161ZcLhdr167l7rvvJiYmhtzc3HO6JFvXdQKBQHhypfT0dKZMmcKgQYPOar4MIQStW7fmhRde4K9//Ss//PBD+D6/v/zFTcuYTCZsNhv5+fnUqlWLwsJC4uPjiUpIJPurT7GZTJCUBKHijal0SEnQ70PYo9Ep67cGn8uBOy8Xv6bjC+r4dYlP0/EFJZrJgiUtgwCC4kMHiKldD7+uE9DAp2kEdcjNPoz/LEfWnK7XXnuN2267LaLnJnn66afp1KmTYUXwo48+YtCgQdx1110sWLCAtLQ07rzzzmMuTkpNTWXVqlWG5ItEqnBXslatWvH444+f1r7Lli3j0Ucf5dlnn+XWW2/loosuol27dmd9bCEE6enpTJs2jb/97W9kZWXxn//8hw4dOpxTIRFC0L17d1577TXGjRvH999/z6OPPkrv3r1P2Veu6zp+v59atUovP09KSsLv91Nn8HByv1lF0e+b0Oo1JDYtHd0k0E2CoIDg/p1YGzRFAp6cQwRKivH6fKXdHkENvybxBCW+oIZX0/Ej0Pfvw4+Z6AYNKc7ORsTGEtDAq+kUFxSwa8tW2t9wI1TSZeeZmZlYLBYuvvjiSnn8mqJJkyYsX76cmJgYunXrxsqVK3n88ccZPHiwmhKgHKpwR5Abb7yRPn36cO+99/LOO++c9kiNk7FarfTq1YvVq1cTDAZJTU095peh7CrKUymb26PssmiLxUKbNm147733wl0fpzvTnq7r4XUiy94J2Os2RLfYCLjcsHsHaBq2uDgCUsMM+EuKEb/+UDpWW9MIaDp+Tcev/dE9EpR6aOw2BDQNb1EBvqBOfl4enoCGH0FCg8YUFhZy5OBhvP4gN4wZU2nFIT8/H5PJVGETdNVUrVu3Jjs7m3vuuYdevXqRnZ3NpZdeqor2SajCHUFsNhs2m42lS5dW6OOazeZyV3rRNI1GjRoRHx9PSUlJuY/RsWPHY4bvlUlISDijLEIIbDYbDocDu92Ox+MJF3HNHo1fl8iAhrmkmKAWQDu0PzQcUCAADRm+yMav6wQ1gV8/uu9aD/d5B/XSC26CWgBNg0BQw+N0UpCdgy4BYSI6rnK6MPx+P7///nuFLD5xPvjss8/YtWsXX3/9NVlZWUbHiXhqVMl5zmKxMHjwYBo2bFjuPkIIHnjggQqZjKlsBZykpCQ8Hg/x8fHouo7FYqHxsLvxhfqpXQUFuJ0OfJqOV9PxaDpuTccb1PEES2/7NfCFWt3HtLx1vfSKSb3s5GXpNl1CSUFh6YrwJhNdbhqMiKqc2QFdLhcffPABgwcPrpTHr4maNGnCHXfcYXSMakG1uJXTmu2voiZjKpvWNS8vj7i4OIqKirDZbAQCAepe2oeNOuhSR5cBdIcbgnrp+UlR2saQUg9dhAPB0MU2/tDJSr9eNlpE4tdK7w+UFXApEVFReD2+0n20IO2vvJKGTZpUyPP6XyNHjjxuFESkEkLw1ltvGR1DOQOqxa1UKSklgUCAtLQ03G43iYmJ4ZVoHC438V16lraygxpOhxN3oLSF7Q7ooa9laYs7qOMJanhCI0q8QQ1fUMOnafiDEr+m4dd0AqFiHgjquJxu/D4/8bVqce1fRmOOiqagoKDCn+OuXbuA0hZkdSCEoGXLlkbHUM6AKtxKlSq7AMftdmO1WvF6veFZAqPj42kxdCTeoAwVaA1vaLSIN6jhDWpHFe3SLhRvUIa7V3yaxBfqLvFrAr8Ofk0eM947ICUZzZtTUlBI9/4DKmUhhYcffpiZM2eqk2tKpVGFW6lyZRftCCHCI1qklFgsFpKbtaT+NQNChTrUqg6W9m3/0b8t8QRK7/eF9vOFRpkEQsW7tLtEKy3iusSvQ1DTadPzSjRhocdNN2OxWCplzclJkyYdc/GIolQ0VbiVKlVWtGNiYggEAkRHR4cXUfB4PJhi40ht1x4/ptJWt1baNeIOarjDRTxYerIyfLu0Ne7VSsdw+3SJN1h6sY1f1/CFWtu6MJFcrx4ORwkX9uyJpmm4XK4Kf47dunUzfNpWpWZTJyeVKlU2reuRI0dITU0lPz+fuLg4AoEASUlJaJpGiyHD2bluDXvXrkIgwnNyA0gpwhNaBeUfQwMDUhLUQicjQ5e0+8r6uDUdabHRrmcvfly1hhe//QZbVBRSyjMezqgokUC1uJUqVXZyMi4uDp/PR2xsbPiCHK/Xi9/vxyQErQfcjGaNwqOF+rYDGp7AH61r99F93prEG5Slre1Qt8nRwwSDmGhwUQcCCC6/+SY0q41gMEgwGMTpdBr9kijKGTtl4RZCLBBCHBFCbD5q22NCiINCiJ9DH9cfdd/DQogsIcTvQohrKyu4Un2ZzWY0TcNqtR4zj4rFYgkPO2x41bXEtGqLNyhxByXuoI776BOToe1l/d++QGl/ty980vKPfu/0Zi2ISU5hz5atXNirF7FxceF5yNX800p1dDot7teBvifY/pyUsn3o42MAIUQb4Bagbeh7XhJCVP5qrMo5OZO5tM9V2ZqTZdO5lp2klFKGiymUXhbfb9rTmJJTjyrYWqiAS1yhk5LewB/F3KOBJ1S0vZqGbrGSUL8Rlrh4igsKGHzfBFpeckl43LoQolJOTipKZTtl4ZZSrgVOd7DrQOAtKaVPSrkbyAIiY60mpVx2uz1cMKG0RXx0QZNSVtiwuf/tKomJiQnPgeLxeMIr7NhsNuo2a84tLy0gvmFjPAE99FHaReIrG99ddjWlpodHoviCEl9Q4pcCrz9ASUEhHa7uw9UjRhAVHY3D4UDTtEo7Oakole1c+rjHCSF+DXWlJIe21QP2H7XPgdC24wghRgkhNgghNgQCnnOIoZyrpKQkkpNLf4Rms5nRo0fz/PPPhy9xj42NpXbt2hVyrLIrJ4uKioiKigrPjxIMBomNjcVutyOlxOv14nA4aHZJN254/P/oMPjP+KQIjzLxmy1ccPmV4SGC3qBGVFo6cbXr4tW00svhfQFsMTEMGj+ePnfdhRACr9dLUlISZrMZi8VCfHx8hTwvRalKZ9vBNweYRumSrdOAZ4C7zuQBpJTzgHkA8fEZ0uc7yyTKORNC8Prrr+NyuRBCULduXeLi4rjiiivCJw7PZEHgU7HZbKSnp2M2m6lVq1b4QpWjZx4sG05nMpno1Kcv7bpfRv+/TQZCq7ybBDFJSTiPuvLRYrODEMfMsW2LiiK9YUP00JDD6OhohBDhdxDqIhmlOjqrwi2lzCn7WggxH/gwdPMg0OCoXeuHtikRTAhBo0aNjtveqlWrSjne0X3ZR3fRlPnfeVFMJhPW5GTikpOP2zc54/TeCZQ9YtnxVMFWqrOz6ioRQtQ56uYgoGzEyfvALUIIuxDiAqA58MP/fr+iKIpy9sSpRhQIIZYCVwJpQA7waOh2e0q7SvYAo6WU2aH9/05pt0kQmCil/ORUIRITU2SLFvef7XOodFari7Zt807YKo0Uhw8fxm63h/uqI9H27du54IILInokx6ZNm7jwwguNjlGuQCDAnj17aN68udFRylVQUIDf76+w8yKVYc+ePWyttZVAbMDoKOXa/ux2iguKT/jW8JSFuyrEx6dLv/93o2OUKyFhD3XrfsO2bcOMjlKuRo0+5aWXatGpUyejo5Rr5syZjBgxokL7yyva3//+d6ZPn250jHIVFRWxcOFCJkyYYHSUcm3YsIH8/HyuvTZyL+NYtGgRPXv2jOjGWMuWLTly5MgJC3eEXH0g8Psjt6UYCOSjafaIzqhp0cTGxkZ0i9tqtZKYmBixGcvmTInUfFCa0Wq1RnTGmJgY3G53RGe02+3ExcVFdMaTnYdRl7wriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnCfpzZv3hyeiU9RlOolQsZxK1Vl//79LFy4EJ/Ph81mo1WrVtx8881Gx1IU5QyoFvd5RErJ3r17+eWXXxg3bhwtW7Zk6dKlVbqQgqIo504V7vOI1+tl9uzZzJo1i8cff5zWrVtz/fXXs3jxYqOjnRWv1xuez1tRzieqq+Q8Eh0dzYQJE7j33nt56aWXuOiii7j88st59913jY52xj755BN27dpFbm4uF154If3798dmsxkdS1GqhGpxn2eaNGnClVdeyezZs3n44Yfp3Lkza9asMTrWGbv//vupU6cOffv25ZFHHsHtdhsdqVwvvPACHk9krvL00UcfkZWVZXQM5Qypwn2eqVu3Lvfddx933XUX48ePZ8yYMXz++ef8+uuv1aav+5///CczZ86kfv36/Prrr6xYsYJ7773X6FjlWrFiBX6/3+gYJ/Ttt99y8GDkr3Wyb98+HnvsMaNjlGvPnj1MnTq1yo6nCvd5qnnz5uFZ5h5//HGee+45tmzZYnSs0zJlyhQmT57Mxo0b2bhxI6NHj2bWrFlGx6qWateuzeHDh9E0zegoJ+X1etm9e7fRMcrl9XrZu3dvlR1PFW4Fi8XCK6+8wsKFC6tFt4nVauWGG27g448/JjMzk4suuojY2FijY1VL48aNY+7cuRHd1aQcTxVuBShd5/GRRx7hu+++Y926dUbHOaVp06Yxfvx4+vXrx4svvhheXFhRzgeqcCthSUlJjB07lmXLlrFt27Zq0+etKEar6sWnVeFWjhEfH8+sWbN46qmn+Omnn4yOoyjVQlU3clThVo4jhODFF1/kww8/ZPXq1UbHKVeTJk2QUrJr1y6jo5Tryy+/pGfPntjtdqOjlOuOO+5gwYIFRscol5SS5cuXM2jQIKOjlCstLY2GDRuycePGKjmeKtzKCUVFRTF+/HjWrl3Lhg0bIrLbpDoU7tWrV9OzZ0+ioqKMjlKu4cOH8/rrrxsdo1xSSt555x1uvPFGo6OUq6xw//zzz1VyPFW4lXKlpKTw0EMPMXfuXLZt22Z0HEVRQlThVk4qKiqK+fPnM2fOHL755huj4yiKgircymkQQjB9+nTWrl1bLcZ5K2cuNzeXN954w+gYx3nvvfcYO3YsBw4cYMyYMRHZeNB1nYkTJ7Jo0SIWLVrExIkT0XW9Uo+pCrdyWuLj4xkzZgyffPIJmzdvjsg+70hSUlJChw4dePXVVxkzZgzXX3+90ZHKdffdd5OXl8cDDzxAhw4d2Llzp9GRgNKC+P3333PJJZeQmppKgwYN2Lp1a6UXxTPl9/tZs2YNvXr1olevXqxZs6bSpzhQhVs5bUlJSTz55JM888wzbN682eg4ANSrV4+EhASjYxxny5Yt9OjRgxEjRjB79myio6Mj8iTqwYMH8fl8rF+/nuuuu47Bgwfz22+/RcQf5u+++47Y2FgGDRpEp06duPvuu9myZQv79u0zOtoxJk2axLx582jfvj3t27dn3rx5TJo0qVKPqQq3ckbMZjPz589nyZIlEdFtMmrUKC655BKjYxzniy++oHfv3lx66aU0btyYK664IiLf5v/yyy9cdNFF1K5dm759+9K9e3fWr18fEYW7R48euFwupkyZwnPPPcekSZNo164djRs3NjraMV544QWGDBlCdHQ0drudIUOG8MILL1TqMdV83MoZs1gsPPjgg8yZMwe73U737t2NjhRxxo0bR+vWrXn++ed58803Wbp0Kdu3bzc61nGuv/56/v3vf7Nr1y5uvfVWRowYwUcffYTJFBltumHDhrFt2zb+/ve/h1vekcZkMvHcc8+FhwI+99xzlf76qcKtnJXk5GQmTJjAQw89xAUXXEDt2rWNjhRREhMTyczMZNGiRXTr1i2ip51955132LNnD0uWLGHdunWkp6cbHSmsXbt2tG3blp49e0ZUrqMJIbjxxhvDE3VVxbw5qnArZy0uLq7S3xJWVyaTiXr16vHQQw8BVT+XxZlIS0sjNTWVTp06RWROIUTEFu2jVeVEZ6dszwshGgghVgshtgohtggh7gttTxFCrBRC7Ah9Tg5tF0KI2UKILCHEr0KIjpX9JBTjCCEi8pc9UlSX16e65FRKnU5HTBB4QErZBugGjBVCtAEmA6uklM2BVaHbANcBzUMfo4A5FZ5aURTlPHbKwi2lzJZS/hT62gH8BtQDBgJlI/bfAMomEhgILJSlvgOShBB1Kjy5oijKeeqMTn0KIRoDHYDvgQwpZXborsNARujresD+o77tQGjb/z7WKCHEBiHEhkAgMhdSVRRFiUSnXbiFEHHAf4CJUsqSo++TpYM+z2jgp5RynpSys5Sys9UafSbfqiiKcl47rcIthLBSWrTflFK+G9qcU9YFEvp8JLT9INDgqG+vH9qmKIqiVIDTGVUigFeB36SUzx511/vAHaGv7wD+e9T24aHRJd2A4qO6VBRFUZRzdDrjuC8Fbgc2CSHKZgl/BJgBLBNCjAT2An8O3fcxcD2QBbiBERWaWFEU5Tx3ysItpVwHlDfAs/cJ9pfA2DOPYvzcCKcW+RkjYY6JU4n0jJGeD1TGilIdMp6IiITgiYnJsn3724yOUS6z2U9iohObLcXoKOUKBktISrJU6dVbZ+rIkSOkpqZiNpuNjlKuAwcOYbHUNTrGSWgETIewpluNDlIu3a0TF4yLyFkbyxQUFBAXF4fNZjM6SrkWL15MYWHhCRvNEVG44+MzpNOZY3SMciUmZvHUU6u55557jI5Srvfee4+MjAy6du2Kz+fDarX+MW+xSeewby+FwRykLrFgAwSegJsYcwJNE9oidDM2mxVN0xBCEAwGEUJgMpkIBoPYbLbw57LHDwaDmM3mY/YtuwIvGAxitZYWl7Ir8p544gnGjh1LcnKyQa/SyUkp+fOfJ/DOO88bHaVcdnsB7aZcQ+YjmUZHKVftb2ozN28uAwcONDpKuV5++WV69+5Ns2bNjI5SroyMDHJyck5YuNVcJTWMpmnk5+cTFW/jh8IPSY9qRNDkZafzF7L9e3F4nTi8xdSNborH7yHdWp8dUb+xOz+LcV3/jt8XQAiB0+lECIHdbsfpdJKWlobT6SQlJYXi4mJSUlIoKSkhNjaWoqIirFYrNpsNm82GxWLB6XRGbIFWlOpOFe4aJqvoF/5T+ByiWHDYtxerjCIYlMSSTJq9HkkkU+R24dEDpNjrg27lk53vEm2JZ9qXD3JLu5HUjWlAfHw8UkqCwSCpqam4XC7sdjt5eXnExcVRUlJCdHQ0Pp+PpKQkpJRomhaeIc1ms5Gfn09SUhIWi/pvpigVSf1G1TC1Yhrx1qqNpESlcFGti2iS3opdh/bwxrqlNGuRSK3YOHb8mo25XpBL2/TEHIwi2pJEgSMPe0w8C36YQ7/WN9I2+WIsFitWq5Xc3FzS09NxuVykpKZSkJ9PYmIixcXFxMbGUlJSgtVaum9sbCwmkwmXy0VycnLEzOusKDWJKtw1TDQxzOu3gAc//xsfbf2EzzZ/gV23kZFcG3+uHZ8jjebpjThUtButSOfbn7+lfrsUsg4folmqnyJ3MV6fRtMrWpFkiUYIQVxcHH6/H58jm+3b3sdR4iAlvS5pTXqjaRpRUVHhfuyytfZMJhNer5fo6Gg165yiVDDVHKphTCYTLVKa8Y+r/o7JItiZv5NCTyFxUbG4/W7cARcN0hvQOq09CZ5mNE5og2O7RPh1zPjYd+QQn21axfQPnwBKT9jpug5S4+DWz1jz1kQyP/4HmZ8/gwid19Z1HV3Xw0OrTCYTUspqO9RKUSKdKtw1jNVqJeAP0L1+d/4z9D+kxaViMpsp8hZjtVnwaX62HthCriOX3/dt4+sN39Ioph0DMm7nl1W/06VVA2IcZpZ/spxAMACAo6SII3t/ZO1Hz1PkttPl5lfpc9ebBLTSUSV+vz88gqXsJKWu66q1rSiVRHWV1DDFxcXh/ujWtdvwzYR1DH7lZrLzs7FLGzZpJwo7ufm5SL9ORnJtNKmRcySPAR2HUPRbEYn2InyJ0ezcv51WF7TlqxVPsy3zQxpc0JrLrh5Fu0tuoKSkhLiYGLxeLykpKWiaRiAQwOl0IqUkJiaGvLw8UlNT1clJRalg6jeqhik7WWixWPB6vWTE1GbBrQv4YNMHzPlyDocKssEvibfE06ZeG2zCxpGiI8RYonGUOBAaxBc3xpFQxNT/TuRPTYeQ9duvJNVuQ/+RM0nNaITX6yUmJga/34/VasXtdofHb0dHl870qGka8fHx6uSkolQCVbhrmLITgoFAIHwRTstaLWjRaxKX1OtCjiuHJ995koN5h9iVs5OUqFRs2MjPy8PnDuB1ehhz4xjG9xhHccwBXn/uXyQf0Xhg2nySazXA7XYTHR2N1+vFbreHL8op6+cuOzlZVtDtdrvBr4ii1DyqcNcwuq5jsVjw+/3HnCSUEro36U5UdBR92/TFarPidDixmQUHd22nVmIqPgkxKbWIskWRnJRMSUkhv1/wM73u6kfj5u0RQqBpGiaTCWdeLgGLmYCmk1q3HiaTKVy8gfC+6gSlcq6OHDlCWlqaevd2FFW4a5ioqKjwuGqfzwcQnhvEbrfj9/uJj4onb8N6ogIeHEdyiD+0l5KiQpIu7EBC+24492Sx2+Nh/+EjbPr6G7p1vIzAwX0c2rGNqOhoSuKS2fv1KvZt/oW4WnWIadKCuNQ06rVtS0bzluHL4BMTE9Uvm3LWsrOzWbt2LWvXrqVHjx40a9aMrl27Gh0rIqjCXcO4XC5SU1NxOp1ERUWh6zo+nw8hBB6PhyiPg91vziU2ORV/dAyJtWqT0OMKpBAIwHNgL7K4ALseJHb3dnr43MhVH3Lo4B6EyUJhwE90ej1a9O5L097XIjWd379Zy+HNv7BvYyYOj5cbH/knyWlpFBcXk5qaqoq3clY2btzIm2++yZw5c1iwYAGff/65KtwhqnDXMAkJCaVzlURF4Xa7MZlMWK1WpJTEWs38PP4eEps0J7nnNZjMFpAa/oP7SifulRKz2UJis1boUhLboCnNBt+Cpun43CVYouPQpE4gEMRTXIAuQdMl9dtdTB0pKc7P5/1Zz/LqvaMZ9/pikpKSKm0mwEAggMViUcMNa6iioiKWL1/OnDlzmDp1KjNmzGDx4sW8//77DBgwwOh4hlNNoRqmpKSEtLS08JA8q9VKIBDAW5jP93ffSEzdetS57iZ0RzF6cQHSUYzwOhEeJ3hdSFcJWkEuwYJcdJeDYHE+mqMQ4ffjLyogUFhI0FFC0OUi6HYRcLvwOx34nKXdMwMnPoDzcDYv3Dmc/Tt3omlahT6/vLw8Nm7cyC233MLPP//M4cOHK/TxlciQmJjI4MGDefrpp/npp59YuXIlGzdupF+/fkZHiwiqcNcwUVFRuFwuhBAEAgE0TcNsNpP7wTJSGjSl3rWDCORlg9eN8Loxed0Irwfh82LyehAeF8JTeh8eJ9LtRHM7CHrcBN1Ogh4nuidUtJ1Ogk4nPpcTv8uJz+Ui4PHS45ah5OzeyZbVX1Z4i3jZsmU89NBDzJo1i6lTp/Lyyy9X6OMrkUEIQZMmTQgEAhw6dIjRo0dz1VVXRfRc7lVJFe4aJiYmhqKiIgA8Hk/pKA+fB8f2X0lq1Y5g3mHwuksLt8+FyefG7Hdj9rkx+T0Inxvhc4PHhfS6kV4X0u1GelxoHjdBt4ugy0XA5SDgcuJ3Owm6XPidLvwuBz63AxPQ+MKL+f6//6U4N7fCntvevXvZv38/r7zyCrNnz2bu3LlIKdm0aVOFHUOJHG3btuWFF15g0aJFNGjQgNtvv93oSBFDFe4IIKWkqKiIFStWsHTp0nN6rOLiYjIyMpBSEhcXh8ViIXvNZ+Dzo2sBNI8L6SktzKUtbhdmnxuLz4XJ60L4QsXa60G63eguN7rHheZxoLtLi3fA80c3ScDlxOd24nM58LuceJ0uPM4SajdrhqOgAGdhYQW9SlCnTh1q167NunXrGDFiRPhEVfPmzSvsGErk6dWrV7W8+tbr9VJYWMjgwYMpLCzE6/VW2GNXv1ejhtm5cydZWVm89NJLXHLJJTzyyCPn9HiJiYnk5OQQHx+Py+XCbDYTY7fisJnR/V70IEiTCUwgTQJMApPZhBAgdRC6BF0idYmuaeh66QlITdfRdAhqkoCU+HVJUJMEdZ2ADgFdJxC67dd1grpADwagAsdx22w2mjRpwgsvvICu66SnpyOEICoqqsKOUNx5nAAAIABJREFUoSgVZebMmSxfvpzly5dz1VVXMXz4cCZNmlQhj60Kt0F8Ph/Tp0/HZDJh/n/2zjxMiur63++t3qene1b2fTMoRECWQNxQIqIRlyRuuH0JKjHiL0YFJLgnGjdcokYkiiARxYhbNCFxjcEFRVAEkQAyyLDNMHvvtdzfH91dzigDA0zTPXjf5+mnq6uqqz59u/vUrXPPPcfh4Nlnn7Wnix8I0WiUQCAAYM9ajMViWPFYsuesgUNzYGlgOQSWpmFpAg2BJVMG27IwLYllSttoG5ZMGmgzuWyYSYOdMK2UsZboJuiWTBlxC1PXD/jzfJvx48czfvx45syZwx//+Efee++9Vj+HQrE/rFixghdffNF+/f7773PYYYfx/PPPs3DhQhYtWkR5eTldu3Y94HMpw51B0rMWH3vsMY4//nj69+8PwF133cW7777L1KlT6dmzJ7179261czocDrs6TXpg0ulw0bB+Lb5AAcLnw3BoCEey1y00AcKBACySRtewwLRMdFMmH5ZElxa6AQnTxJBJg50woWLzJvLad0TXHOgmyZ64BQkjmXQqU1x++eVUV1ezdOlSVqxYwVFHHZWxcymyixCCm266iTvvvJPrr78+23K46aabdtthGDRoEOPHj7df79y5k549e3L00UdTWVmJx+NptQLKynBnkIqKCgYPHsytt97Kr3/9a1avXk3Xrl2ZOXMmV155JYFAoNWjLtKj7kIIO5e2p7QduNzUr/0c0acf0uNBahrSIZBCkgg3IDx54HJhGgZ6wiAei1D75RoShkHMkMQtScwwiZkWcRMC/QZiut248vKIhSMYQqCbkriZdJls+3ozdZWViAxGARQXF1NYWMimTZsYNGiQijjIIVrzdy2EYMCAAbz00kutdswD4frrr99tp8Ttdje5a163bh0PP/wwo0aNYsqUKVx77bXKcLcF3njjDaZNm8bQoUNZtWoV/fv35//+7/8YOXJkxs6ZTuva0NCA3+/HMAw4cgQlo05k5z+fx4yGKezZBzMvD1MTOITE3LkV4fSA202ioY74rgoSZtKPHTctDFOSMCS6aWIYEt202LrqY+IGOEs7ENcN8OeD20tCCmp3VbN5/XpG//Iyijt1ythnBbj66qv5yU9+wpgxYygsLMzouRQt51DOUZOXl9ei/X71q18xefJkZs6cyZo1a1pVg4oqyRBSSjuDXiKRYObMmQQCATt7XqbIy8ujrq4OIQSxWAzDSBY7iMYTGJYkHgnTsHMbsVA99V9vor7sK8I1tYS2fk39pg2EK5JGO91z1k1JIjXoaFgSw5KYMj1gaVK3bSt1O3aw43//o2b7dio2l7H9q41YFvT+4ZH48vMz+nkhabxnzZqV8fMoFPuKEII77rij1Y+retwZQgjBaaedxg9/+EPuvvtuHn30UdasWcM999yT0fMmEgny8/OJRqO43W5M08Q0TXxdumA4XGDoiIYGpNuNrKrEIS2E0JIz3gFTJgcm9bSv2pIkUhEjugW6tFKRJSR94VJikhzEjMdiRENRLCHw5AeJxeNYlpXxXCU//elP7fEDxaGJpmlomoZhGG0yNLC1UT3uDNK+fXu2bdtGXV0d1113HcuWLTso503fpja+Xe194a/RSjsSMU0ikRjhujqiuklUt4jqFhHDIqKbRAyLqCGJGxA3LOKGRcIgFTWSjBbRLYlpfNMLT5gWFoJwfZhoNIphWAz66TiOu2DCQfm8Qgj69u17UM6lyA59+vTh+OOP56mnnsq2lJxAXboyiBACp9PJb37zm4N2TrfbTTQatXsn8E3xXq2wHcbXm5DSxAxF0EwLh5AIJKQHMwFLymTMtmXZPe94ymgnrORApW5Z6DJp0E0LDMAk6ULpf/RxONDI8/pUZkBFq5CusJTO9/59RxnuQ4x0Dch0WlfDMNB1Hcuy6HnxFXz824/RLAvDSqAhcGiSZELXJBYyOelGSgxJKn5bohvJiTUJ08IwIWGRmnCT8oNbJnHDwuH1oHlcjLt8MvX19Xi9XmW8Fa3C6NGjD+lBz31BGe5DjEAgwK5du/B6vYRCIYQQuFwuHA4HvX50NMvy8kk01KEJcGoCzRIIIdNZXTFlssdtkexxmxYYqZmSycHKpNFOWCZxE3QzuV/ClEinix+ffR7rVn5Kj4ED8fv9yh+paDV69OiRbQk5w167QkKIbkKIt4UQXwgh1gghfpNaf4sQYqsQ4tPU49RG75khhNgghFgnhDg5kx9A0ZRQKERBQQFSSrxeLy6XC9M0sSyLiK5z4oNP2vHYETPp247qFpGUnztqmkQNk6huEjOs5EM3SRhmctJNKkQwYaSnt5vELTBMi/4/PoZP3n6bKY/Nwe12EwqF1K2tQpEBWtIdMoBrpZQrhBAB4BMhxOupbfdLKe9tvLMQ4gjgPGAA0Bl4QwhxmJSydRMzK3aL2+0mFos1qfmYdlW43W487TvQ8egT+fq/b6Kl/IaCpJ9boiGRqZ530ndtWhaGlN9Mebe+CRFMWBZxM+nv9gQLiMYS/OjUU+nYowemaeJyuVShA4UiA+y1xy2l3C6lXJFabgDWAl328JYzgGellHEp5SZgAzCiNcQq9o7X66WhoQEhBIlEAsuycDgcyWRTeXk4C4vpPOLHxA2ZiipJ9qyjhkw+p6JMooZF3DSJmZKYSeqR7G3HzeQAZdJVYmEJJwNO/AnRRIIfn34mgWAQ0zTx+/3KcCsUGWCfRo2EED2BIUA6rm2KEGKVEGKuEKIota4LsKXR28rZs6FXtCL19fW0a9cOy7KShtrpRNd1dF2npqYGf14eA867hK4njCVqJV0hYd0knDCJpMIDIylXSThlwGO6ScwwiOsmcd1KulqM5ECl6XDxg2OOp3pXFUf95CS6DBxIbW0tLpeLXbt2tXoFHIVCsQ+GWwiRDywGrpZS1gOPAn2AwcB2YJ+mrgkhLhdCLBdCLNf16L68VbEHgsEg1dXVaJpGJBJB13VcLhcul4vCwkIikQgOl4vuJ52K4fLZcdtRUyZjuc3Ua0MSNSz7ETMkMVMSTfu4LQleL+379EU6HUTq6+jSvz/BggIKCwvRdZ3i4mKVP0ShyAAtGvIXQrhIGu2npZQvAEgpdzba/hfg1dTLrUC3Rm/vmlrXBCnlHGAOQCDQQcbj+yNf8W0ikQjBlKsiXeU9Hc+dSCTwer2YpsmIs84mWl3Fq7fcQFNvxjfx3KYlkwWBU1PcDZnMHKhbFlI4yA8WgdvD9k1lXH7PPQw49lii0agdv97Q0EAwGFTGW6FoZVoSVSKAJ4C1Usr7Gq1vnD3oLGB1avkV4DwhhEcI0QvoB3zUepIVe8Ln81FfX2/nSjEMw54u7Pf7icViSCmpr6/n+F9OZuwNt2A4XMnetGEl/d6GRUI4iDZaFzMtElIjZpjEDUkcQSQaY0fZ11x08630+9GPkpkIPR47flz5uBWKzNCSHvfRwEXA50KIT1PrfgecL4QYTDLFRRkwGUBKuUYI8RzwBcmIlCtVRMnBw+Fw4HQ6cTqd9mSF9HLjbU6nE7fHw6gL/o++Q0fy+qMPU78rWR9SAqMmXMB/n/4rUoJlSZy+PLr98Ies/eADLAkSQXGnjlzwu99R3K0bTpfLPm76nE6nUxluhSID7NVwSymXArv79/1jD++5Hbj9AHQp9hNN0ygtLW12e0FBAQB+vx9I5lNp3749A4477jv7jp146X7rcLlc+/1ehUKxZ9RcZIVCoWhj5Mh8ZInHU51tEc3idtcTi8Wors5djZFIhFAolNMadV2ntrY2x/NNmDn9W/R4anHoDjzVnmxLaRZ3yE0kEsnp32IsFqO+vj6nNe7pfyJy4U9UXFwsr7vuumzLaJZwOExlZSU9e/bMtpRm2b59Ox6Ph+Li4mxLaZZ169bRu3fvnHajfPbZZwwaNCjbMppF13WWLv2KmpofZFtKs3i91QwZEqdThqsfHQibNm2iffv2tsswF7n33nuprq7e/SBRuqBtNh/t27eXucz69evlnDlzsi1jj7z44ovy/fffz7aMPfL73/9eVldXZ1tGs1iWJadMmZJtGXukqqpKDh16u0ymBMvNR8eOS+VLL72U7abaI7Nnz5br16/Ptow9krKLu7WZysetUCgUbQxluBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrWhCKBQiHA5nW4ZCodgDOZKrRJFtLMti8eLFbNy4EafTSa9evfjZz36m0rIqFDmI6nErADBNk+nTpzNy5EgGDRrE1KlTsy1JoVA0gzLcCgAmT57M4sWL2bVrF7qu88wzzzBlypRsy1IoFLtBuUoUADzyyCOMGjWKSy65BI/Hw/Tp01mxYkW2Ze2Vbdu2kZ+fTzAYzLaU3bJt2zYCgQCBQCDbUhSHEKrHrQDA7XYzZswYqqurmTt3LkcffbRdhiyXeeyxx/joo9wtafroo4+yfPnybMtQHGIow60AkrUqZ82axcSJE/H5fEybNk0NTCraBLW1tdx1113ZlnFQUYb7IGIYBqFQKNsy9kjv3r156aWXuOyyy3K8Uo1CARMnTuT000+nT58+9OvX76C597JdyUkZ7oPEhx9+yKJFi7j11ltZsmQJkUgk25KapaSkhD59+vDxxx9nW4pC0SxfffUVPp+Pq6++mt69ezN16lQ+//xzTNPM2DnLyspYsmQJU6ZM4V//+hdfffVVxs61J9q04Q6FQixYsGCv+0kpuf3225k5cybvv//+QVD2Xa655hpqa2uZMGECM2bMYNu2bVnR0VLuueceZsyYkW0ZCsV3SCQS3HDDDVx66aXs2rWLL774go0bN9KtWze2bNmCZVkZO/cLL7zAggULmDVrFgsXLuS5557L2Ln2RO6PPjXDzJkz+eyzzzj99NMZPXo0Dz30EAMGDLC3X3zxxWzdutV+PW3aNPLy8ujevftB1/roo49y5ZVXMnLkSC699FK2b9/OZZddxhtvvGH7kYUQOedTFkIgpcw5XWnSt6q5qk9xYKTLdAGUl5dzySWXAOByuZgxYwYnnXQSv/vd74hGo4wePZoJEybwt7/9LWM1TdeuXUtlZSUPPPAAV1xxBf/73/947733+Ne//gXAuHHjdjv/IRP/7TZpuGtra/n666958MEH0XWd9957j5EjR9K3b180LXkTsXDhQrp27Wq/x+/329sONhMnTuTUU09l2LBh/PWvf2Xy5MnMnDmT4cOH2z/Md955h4KCgqzo2x3BYJBrr72WO+64g5kzZ2Zbzm75z3/+g6ZpHH/88dmW0izFxcVUV1djWVbWfn9tidraWnbt2gXAypUrueOOOwDo2rUrr7zyir1ffn4+Qghef/11Kisruffee1mzZg15eXkZ03bYYYdRUlLCSy+9xJw5c3j66aeprq7mmmuuAeAf//gHQ4cO/c773nrrLYqKilpVS5s03B988AGDBw8mPz+fqVOnsmLFCkaPHs0LL7yAx+PJtrzv4PV6Of7443nwwQfp1q0bxcXF9O7dO6fjpIUQeDwe4vF4tqU0i2EYADkdtvjb3/6WMWPG8JOf/CSnLsy5hmmaLFy4kM2bN/O///0PgEGDBrFy5co9vi8vL48ePXrw0EMPZVyjw+Fg4MCBLFy4EF3X+fjjjznnnHPsGP1zzz2Xc889N+M6oI0a7lNOOYXZs2ezYcMGrrnmGi655BJmzpyZk0Y7zc0330xNTQ2rV69uM77j/v378+677/LFF19wxBFHZFuO4hAnkUgwZswYbrjhhmxLaZZx48Yxbtw4Fi9ezPz587PmpmuThhvg4Ycfpry8nEceeYRnnnmGnj17ZlvSXikqKuLYY4/NtowW07lzZ9xuN2VlZRx++OE55UuOxWIkEgl0XScajeL1enNKn2LfcDgcTJo0KdsyWszPf/7zrJ6/zRrubt260bVrV0aMGIHD4ci2nEOW66+/nlNPPZVRo0a1up/uQDjyyCNxu93U19fz6KOPsnHjRgoLC7Mtqwm1tbV8+eWX1NXVsXz5cnr06EHfvn2zLUtxCNBmDTck/bDKaGcWTdMyGl61P7z66qtMmDCBY445hvfee4+OHTuyaNEiJk+enG1pTfjoo4+47bbbqKio4KmnnsIwDJ5++ulsy1IcAqhhbsVeueWWW3IqsqRjx45s27aNI488knPPPZetW7c2iSDKBUKhEC+99BJPPPEE/fr1484772To0KF26JhCcSDs1XALIbxCiI+EEJ8JIdYIIW5Nre8lhFgmhNgghFgkhHCn1ntSrzektvfM7EdQZJpRo0bx5ZdfZluGzbBhw1i5ciVTp07l73//O/PmzeOYY47Jtqwm5OXlMXbsWBYtWsTChQvZtm0bq1evblNjHIrcpSWukjhwopQyJIRwAUuFEP8ErgHul1I+K4SYDUwCHk0910gp+wohzgPuAg5OjIwiIwghePPNN7MtowkfffQRq1at4osvvmDz5s05NzCpaRo9evRg7ty5tG/fnjfeeINRo0ZlNM5Y8f1hr4ZbJmeIpDMjuVIPCZwITEitnw/cQtJwn5FaBngeeFgIIaTKWNSmyTXDKIRg0KBBDBo0KNtSmmXIkCG88sorLFq0iKeffjqnw1UVbYsW+biFEA4hxKdABfA6sBGolVIaqV3KgS6p5S7AFoDU9jqgpDVFKxRtiXPPPVcZbUWr0iLDLaU0pZSDga7ACKD/gZ5YCHG5EGK5EGJ5NBo90MMpFArF94Z9iiqRUtYCbwOjgEIhRNrV0hVIZ3TaCnQDSG0vAKp2c6w5UsphUsphPp9vP+UrFArF94+WRJW0E0IUppZ9wEnAWpIG/Bep3S4BXk4tv5J6TWr7W8q/rVAoFK1HS6JKOgHzhRAOkob+OSnlq0KIL4BnhRB/AFYCT6T2fwJYIITYAFQD52VAt0KhUHxvaUlUySpgyG7Wf0XS3/3t9THg7FZRp1AoFIrvoGZOKhQKRRtDGW6FQqFoYyjDrVAoFG2MnMgOaFkW7733XrZlNMuOHTvYvn17TmssKyujpqYm5zL5Naa6upqPP/4Yv9+fbSnNEolEcvp7DoVCeL3VdOyYuxqLitZRVtaQ0+24fft2Vq1axc6dO7MtpVn29F/OCcMtpaSq6juh3jlDXV0d0Wg0pzWGw2GefFKjoSF3NXbvnuBHP6ohFotlW0qz1NQYXHRR7rah0xmh07iP8U17IdtSmsW9KUg4fE5O/19isRg31N5AzJm7v8W4bL5sYE4YbofDwemnn55tGc2yYcMGTNPMaY2WZVFR0YEdO0ZlW0qzlJSsYuzYsTlVkKExUkoWLHidTZty93v2eKoJdryXTadvyraUZun4XkcG7BqQ0/+X7du3s+24bdT1rcu2lGbJd+Q3u035uBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrVAoFG0MZbgVCoWijXHIGO5Zs2aRSCSyLUOhUCgyTps33O+88w5HHXUUPXv2ZPTo0dxyyy3ZlqRQKBQZpU0bbl3X2bhxI//v//0/jjjiCObNm0dNTQ27du3KtjSFQqHIGG3acMdiMTZu3MjAgQP597//zWuvvUa7du346quvsi1tryQSCZ5//vlsy1AoFG2QNm24A4EAI0eOZOLEiZx00knMnDmTsrIyRoz4TinMnCMej/PII49kW4ZCkXPce++9VFdXZ1tGTtOmDTfA2LFjWbJkCX/4wx946aWXsi1HoVDsJ6tWraJPnz50796dn/3sZ1x00UXZlpSztHnD7fV66dKlC08//TSHH344hYWFlJeXZ1uWQqHYByzL4tNPP2XatGn07duX5557jvz8fDZu3JhtaTlJmzfcaYQQdOvWjf79+/Pmm29mW44iy5SXl/Pqq69mW4aihViWxdatW+nSpQtlZWU88MADlJaWUlFRkW1pOckhY7jT/PSnP2XFihWq1/09ZuLEiUybNo01a9Zw/PHHqyijNoDT6WTs2LFcccUVFBcX89RTT/Hoo48yY8YMPv3005yupZoNcqJ0WWvSqVMnvF4vmzZtokuXLgghsi1pt2zZsoUuXbpkW0ab4euvv25xrcrly5czb948OnXqRFlZGZs2baKkpCRnfwuKJIMHD2bt2rXceOONLF26lNLSUgCmTJlCRUUFDzzwAB06dKCgoCDLSrPPIWe4Ae666y6GDBnCJ598krN/1gsuuIBPPvkk2zLaDHPnzmXTppbVWdy+fTsPPvggJ598Mueccw7PPvssw4YNy7BCxYHicDjIz8/n/vvvb7J+3rx57Nixg+nTp9O/f3+6devGhAkT0LRDzmHQYg5Jww0wffp07rnnHqZPn55tKYpWYF9mxA4ZMoTevXvTvn17fvnLX7J06dKcvYArWkbHjh2ZP38+S5cuZe3atVx22WWMGzeOs88+O9vSssIhe8k67bTTeOONN1T+ku8hL7zwAiNGjOCdd97hn//8J+3bt8+2JEUrccwxxzBp0iSmTp1KWVkZ7777brYlZYVDtsft9/u54YYbuO222/jDH/6QbTk2O3bsYOPGjYTDYd5//326detGjx49si3rkKJXr1707NmTcePGfa9vpw9VNE2jf//+HHbYYd/bO6lD9ledDg90Op05NQX+lVde4Y9//CN1dXU88sgj/OUvf8m2pEMSIYQy2oc4mqYpw90cQgivEOIjIcRnQog1QohbU+vnCSE2CSE+TT0Gp9YLIcSfhBAbhBCrhBBHZfpDNEfv3r1xuVysW7cuWxKasHnzZjZs2MDs2bPp3Lkzf/rTn3C73axYsSLb0hQKRRuiJV2SOHCilHIQMBgYJ4QYmdo2VUo5OPX4NLXuFKBf6nE58Ghri94Xrr76ahYvXkxNTU02ZQDQpUsXevTowZIlS1iyZAnLli1D13UGDBiQbWkKhaINsVcft5RSAqHUS1fqIffwljOAp1Lv+1AIUSiE6CSl3H7AavcDv9/P448/no1Tfwen00nfvn3585//jKZpvPLKK5x99tl4PJ5sS1MoFG2IFjkBhRAOIcSnQAXwupRyWWrT7Sl3yP1CiLT16QJsafT28tQ6BXDyySfz8ssv43Q6efHFF7nggguyLUmhULQxWmS4pZSmlHIw0BUYIYQYCMwA+gPDgWJgnwKmhRCXCyGWCyGWR6PRfZTd9rn44ou/twMrCoXiwNinYXcpZS3wNjBOSrldJokDTwLpJNhbgW6N3tY1te7bx5ojpRwmpRzm8/n2T71CoVB8D2lJVEk7IURhatkHnAR8KYTolFongDOB1am3vAJcnIouGQnUZcu/rVAoFIciLZmA0wmYL4RwkDT0z0kpXxVCvCWEaAcI4FPgV6n9/wGcCmwAIsDE1petUCgU319aElWyChiym/UnNrO/BK48cGkKhUKh2B1qaplCoVC0MZThVigUijaGMtwKhULRxlCGW6FQKNoYynArFApFGyMn8nEbhsFjjz2WbRnNUldXR3l5eU5r/Oqrr+jePY/S0lXZltIswWAZCxYsyOncLIZRzcCBufs9OxwxCjYVMPCxgdmW0ix52/P4IPYBO3bsyLaUZlm9ejV96vqQKMjdQitfG183uy0nDLfD4WDMmDHZltEs5eXlaJqW0xqdTicjRxbzwx/+MNtSmuWJJ8r4/e+PRdcD2ZbSLCedtIIXX8zd77m+vp7FiyuYOGb30yMkEomFlBKBsNcBaMJhr8skq1atora2luOOOy7j59pf6urqmDViFl27ds22lGYZpY1qdltOGG4hBH379s22jD2yfv36nNa4evVqOnTokNMa/X4/DQ09iceLsi2lGSSa5m7VNty+fTv5+fkEAq1zsaqursbv99OrVy+qqqqSK3069eFaCgoK+azibd6LvEpDrAbLEPi1YsLxMJF4mEm9b8Xr8tEpvytF/hLq6upwuVyEQiFKS0vZtWsXwWCQSCRCaWkp4XAYh8OBruuYponD4SAcDtvbCgoKqKystKuxpwtX7Ny5E4fDkdO/xYKCArp27Uq3bt0IhUL4fD7C4TAulwun00k0GiUQCNjb4vE4QghcLheRSIRgMEhDQwM+nw9d1/F4PCSnsIDb7SYUCpGfn084HCYvLw/DMLAsC4/HQ0NDA4FAgEgkgtfrxbIsDMPA6XTi9XrtHEZ7KgSSE4ZboThU+fOf/8yJJ57ICSec0KrHjRohPo++Q8ioo7x+DVWxHXirAwjLSXutF118P+SLXR/jdAQYGBiMlu/gs+oPeHXDIk7ucTZjepxGB28XpJR4vV7i8bhtRNLGybIs2xiljUh6XyEEkUgEt9ttP7vd7lb9jAeDUChEQUEBoVCIoqIiDMNA13WKi4upqamhqKjINsJSSuLxOKWlpdTU1FBcXEwkEiEvL49oNIoQAsuy7GNWVVVRUFBAXV0dTqcTTdOorq6msLCQqqoqgsEg9fX1CCHweDxEo1E8Hk+Lks8pw61QtEE0ofGnjx5BN+N0DXald1FvPA4/895aQDDg5rAenajaHKYqvoZBA2spdrdHNy06+fqwZscqMJy083Tg5MNOB7CNTnpZ0zQsy0LTNAzDaHJuIUST0nBtuYSYz+cjFArhdDqpr6/H4XCgaRp1dXVcddVVDBs2jMmTJxOJROzPXFtbi9frpb6+HqfTSSwWw+lMmlJN0+yLW0FBAYlEAr/fj2VZzJ8/nzfffJPHHnuMgoICdF23t0kpW2y0QRluhaJN4nHk8Yfhf+bMRWdQ4TbZ4KwmT+RRLHqQF/MQKctn19YoX+6owJP3Od6qYmqKd+F3FuPU3NTVx4glEozsehxO6cLv9xMOhxFCJG/9XZJELIzL6QDhxZISh8NBPB7H7/djGAYul4twOEwgEGizhjscDlNUVER9fT35+fmYpomu6wSDQf7xj3/w8ssvY5omF198MYWFhcTjcYLBoN3jDoVCuN2O+SXYAAAgAElEQVRuYrEYgN3jLiwspLa2loKCArZu3cqbb77J9OnTicfjPPnkk9TW1hIMBgmFkjVq0sbe5/O1qC1VOKBC0QaJxWL0bteT5855jnq9lrc3vMO/1/6bL3as4eOvVvD6Z+9wyUmXcsbgczg2eD7VO6Czv4ianZXUh+r4onwdX5Sv54+v34Hm1QiHwwSDQUzTxCVj/PXGH7D4D0fw7K2HoYercLvdCCEoLCwkHA7bvdK8vDxqampsw5Vp1qxZYxu71sDlcmEYBg6HA9M0k4O6qTsKgGg0yvTp0+nRowfLli1DCGH7ow3DQNM0pJRomobD4cDhcNj+brfbzapVqxg+fDhXXHEF4XAYSAZjpN1KLpcLl8tl9+ZVj1uhOITJy8ujsrKSLv7OPPqz2Vz13FVU1FTQt6QfDunASpj87b1F+B1+orEIbqeLnR856d9jGNsqNlJfUkGp3o1n/rWIsT3HceqPTqWyshKvGz7514PUhXTadx9Gv8E/QbjyiMfjOBwOqqur7cHJ4uJiKisrKSkpyXiPu6qqigceeACn04lpmnTr1o3LLrvsgI/rdDrRdR1N09B13f4cc+fObXIxSiQSTJgwgYsuuoizzjqLnj17ctdddyGlTF7sXC4gaYgvu+wydu7cycKFC3n22Wepq6uzj2OaJnPmzOGyyy7DsiycTqc9juBwOFqu+4A/uUKhOOhEIhHy8/MBGOYdxjMXLeSMv5zJlxXrCDgD+ISPuIhTGd/FjsrtVO+q5qfDT6PU3RkLB0fmD+Pfn/2TYo8Tj+aioaGBuooN/P2VB6jYvJz2XY7i2HNmUdi+J5oQOBwOLMuipKSEcDiM0+mkqqqKQCBATU0NeXl55OXlZeSzSimpqqri448/Zu7cuaxfv54bbriBSy+99IAvGNFolOLiYurr6wkGgxiGQSKRYOHChSQSTWO8t23bxl133cVrr72G3+9n+fLlmKbZZB9N03jttdeQUrJy5crdfpY5c+Zw3nnnUVhYSCgUQgiB1+slkUjYPf69oVwlCkUbJN07k1KiCY2+xf1481dv0rfjYdTH6lm3438s37yCVVtWEcgPMnzAcKJ6lK93bkY4Neq3Jhjd5xTy85zc+NcpbNq2ga83rObLzz/h2NNn8PMpCyjp2BtBcjAybVDSYYFCCJxOJ5Zl2S6CxrRmD1xKyfTp05kzZw533HEHHTp04De/+Q0PPvjgAR87feHxeDxUV1cTiUQA0HXd3ue+++5rModj9erVLFu27DtGG5I+7hUrVjQx2h06dGD+/Pn2a6fTSbt27dB1nYKCAvx+P5C8i1KuEoXiEEbTNGKxGCLVG9Z1nY4FHVky+VVe+/w1Xv38H3yw5n12VO0kkghTZTmIOxJYCQsMWLvuC8YOP5njSn9B+1GCq+47nx9UOhg8bAyHDT2FvPwC20inox6EECQSCVwuF6Zp4na77UHKbxuc9O1/a33Wu+66iwsuuACHw8Hzzz/PkiVLWLp06QEfOx0GWF9fT3Fxsd3jTrs+IGnEX3zxRYqKinZrrPfGmDFjmlwIDMNg165dFBYWUldXZ/e4VTigQnGIE4vFbNdENBrF7/dTW1tLIBDgxL5j+PnwX7BkxRJ2NOwgEUsQ8OYTjUSJRxMgBcYJBt07dOPEESdSXFRMcEcxW97/jJN+diWl7TtTVVWF3+9H13WcTqdtpNPxyV6vl9raWnviTiAQyGgcd4cOHbjwwgtZsGABpmly3XXXtcpx0+GALlfSXZQeIGxsoH0+H/tb0PyXv/wld999N//+97/tdQ6Hg2Aw2CQcELAHgFvCIWe4DcOweyEKxaFKXl4e9fX1QPIPn56Nl/bZhsNhTh5yMnW1teS53URrq/h6/sPENqzF26kL/X/7exIuFw5g147t7Fi5DY+/Pd2696W+upqiQICErrPh7y/wyd8WIFxe+p9+Dn1Gn0hRSQmmaVJaWkooFKKkpMSOY84UBQUFdOzYkXPOOYfJkye3Wr6beDxOfn4+kUgEn89nz2L0er32PolEAo/HY0ee7AtnnHEGQJOBTikl4XAYv99vr3e73U165XvjkDHcUkqWL1/OBx98gKZpjBw5kqFDh7bZ+FKFYk+Ew2F7Nl80GiU/P9+OG04/71y5DFG+ibLXnsPl83PkrfeD5kI4NMxdO1h74/WYQsOKWVhrP6f9kUdR9vw8trz7NpGGevK79eIHZ57P+NtmYRk6X7z1On+deD7ugiJO/H/XkN+xMz369aOurg6fz2cPlmaK2tpa8vLyWjVJWWP/vZTSdvG89NJLdOzYkYaGBjZv3syKFSu+MxGpJWzYsIGhQ4eyYcMG+3xnnXWW3bFsHHq4L7bqkDHclmVx1llnMWvWLHt58+bNynArDkk8Hk8TH3cikcDr9aLrOl6vl13v/ovNs26k23mXMmDaHQgB4XVrSf8dpBAMvPE+pIDYju0UfbiURCKBQ2gMmzINnC7i0QiJaIRIVQWWlPQYOpzuQ0dQV13N4ptmEuzWnUvufQBfMJjxHnemcLlcxONxNE2zp/ILIZr0kB966CEeeuih/Tr+tddey7Zt25g1axaQ9NdfffXVeDweLMvC7XbbF4t9acNDJqrkxhtv5PHHH6ekpISOHTvy2GOPcdNNN2VbVpslEolw8803Z1uGohnS0RyNJ4BYloUQgsp3lrD+gVvoOWEywd6HEd9aRrx8MyIWRsTCEAtDNEx045dE1q/FaKil/YhRdD7meAq69yJauYPw1i3EqnZhhMMY0Qh6JEK8IUSsvg6Hw8HxF11M/ZYtPP7rK+wwtrZIOqwy7W9OG9JZs2btt1/726SNNiS/txtvvJG6umQ7hkIhotGonQelpe3YNi+Tu+Hqq6/m/PPPZ/z48TidThYvXsxzzz2XbVltFl3XW2XUXpEZ0lEdjWfyRSIRRNVOdr70V7qfeQGe4lKsuio0NIRIzQgEBGAhwUouY0kSkRCmlBgWmJbEkhJLJpeN9LMlMbHQTXB7fBwz4UJefvB+Hv7lRK5b+EzGP28ikcDn87XqcdPT171eLzU1NUgpeeSRR7j33nubuEaKiopwOBxNwiJramp2e8yCggJcLpd9IbUsy95XSsnjjz+Ow+Hg5ptvtiNVTNPcp3DAQ6bHXVpaSmFhIU8++SRXXXUVPp+PkpKSbMtSKDJC2qedzjxXV1dHYUEBOz5fSbC0I/7CEqxQLcQiiHgILR7BEQ+jxSPJR7r3HQ1DLATRMFYkjIyEMCMhjEgII9xAIhxCDzWQCDWQCDcQb0g+x0L1WIbOSZMupaa8nIaKiox+3o0bN7J06VIuuOCCVj1uQ0MDhYWFJBIJAoEAjz32GLfddluTyTdHHHEEK1asoLy8nI0bN1JRUcHy5csZPnz4d453+OGH89Zbb1FeXs7nn39OeXk5H330EYMGDbL3MU2TP//5z9x9991s27bNngofiURa3OM+ZAy3pmksXryYp556iqOOOooHH3xwj/lsc5WXX36ZrVu3ZluGIsdJJyTyeDyYppkMa6urpfY/S9B8XvSGGohFkNEIxJKGWotHcMbDOOIRRCwC8Yi9jxkJI6MRrGgYKxrBikQwIhGMSAg9EiaRfg6HSYRDJMIh4uEQeiyBy5/PO89mtsedprXHrHw+H5FIBKfTyc6dO7/jXh0wYACzZ8+muLjY9oXX19fTrl07Zs2aRb9+/ex9PR4P1113Hf369SMejxMIBNB1nQ4dOvDEE08wYsSIJseeNWsW4XDYHmz9XocDDho0iIEDc7esU3Ps3LmTn//855x55pk888wzeL1e5s2bl21Zihwl7RqB5B8+kUjg0QSxr76gZMxpWNEwpqbh0ESye6aBQ3OgaWBJEJYESyItibQspCmxLDAtC8sCw5LolkSXFrqZdKEYlpVcZ0kMM7UsoWPPHuit5A8+2Oi6Tl5eHrFYjF/96ld2dEma7du3M23aNEzTpH///jz88MN4vV4ikQhDhgxh7NixrF+/HoCxY8dywgkn2C6dSCTCLbfcwsqVK7Esi82bNzc5txCCK6+8khdeeAG3271PoYaHnOFuK1iWxfr16+0fyY4dO/D5fIwbN45LLrmESZMmsXPnTjp06JBlpYpcpHH4mh3SpgmkZWLFIhgaaJoDSxNITYAmkA4BacNkgbQklmVhmclnwwLDtDAk6IaFIZN+7YRpJQ25aWFYFglLoJsS3bLQTYtYuPWy9R1s0gUMnE4nTzzxBP/5z3+YMGGCvb26upoPP/yQPn36cOedd+JwOIhEIng8HuLxeJNIkEAgQLt27ewoH7/fz0033cQpp5zCihUrvnPuP/3pT5x//vlNCli0lEPScB933HG8/fbb9O3bN+vhgJs3b+aNN974znrTNFm2bJn9OhwOs2HDBu6//35uuOEGTj75ZN54441W9+kpDg0SiYQ9U9E0TbxeL7G6WsxwhNjObfiCBZiaA80hEBoIhwChYaFhITGkxLSSBtkw071qiSEtEibo6R61mRyMjEajxHUdPD4SlkwZbtAtk3gkQiZjSqSUvP322xmpYdk4qZPD4eDdd9/9zj6HH344ixYtIj8/H6fTyeuvv05FRQWFhYUMGjSISy65BMMw+NGPfsSyZcsoKyvD5/Nx5pln4vV6efnllznttNP47LPPmhz3448/5uyzz7Y7b/sSmXNIGu5JkyYxZMiQVskedqA0rhTSGI/Hw+OPP27r27JlC8cddxznn38+Tz75JK+99hqffPLJwZZr4/P5GD9+PC+++CJnnXVW1nS0dc466ywWLFjAyJEjWzUiwuv1UlFRgRACv9+frIMYyMeSUP/lGhz9+iN8XtC0VE87FUmiGwiPF1NaScNrGIS3bSEWDhMzLRKmJG5I4pZJ3ABXSQcIBIlFosQTCYRhkkjtp1uShGGyefVq+g4fsXfR+4mUktmzZ+82215rkK70EwqFmD17Nqeffjrr1q1j3bp19vlnzZrFPffcgxCCqqoqrrnmGn784x/z/PPPc9ZZZ9npWSdPnszzzz/PfffdByRnct94441NjHKXLl0YM2YMf/3rX5k+fTp5eXktzgqY5pA03LlE9+7dmThx9xW5G9OxY0eWLFnCvHnzGD16NJMmTToI6prH7XZz5JFH8s477yjDfQAcddRRTJ06tdVD2dLFetOTRQKBAA2hBo6Yfjtrbr0a8/MwpT8YiPS4MTWBKUDEI1i1NTg6dMYyTBo2rME0JLF4nLiuEzct4gZEDZO4YREzLfQd29BxIP0FOAoKkZEYhsOJbkLCtNjw+So0dx5HHHNsq322g0m6sK/X68Xr9fLRRx9RWlrKhRdeaO/z5Zdfsm7dOt59913OPfdcJk2aRHFxsR3uZ5qmXTzBNE3y8/MZP348c+fO5f7776esrMzORwJQWFjI/fffz1VXXUWvXr3sqkP7MgFHGe4cweVy8YMf/IDbb7+9yTRYhaI5TNO07+aSvUYHIlCEblho4TDVX3xKQd/+aKaBwzIRehy9citsL0/GalugWxYJK9mDThjJXrRJKnZbQiKeIKabxOoaiG/ZQsy0MFwe/B07s61sMw0NEXqOOIyBGXBjHAzShX3j8TjFxcUUFRWxZcsWYrGYPakJkr3uTZs2ceedd7JmzRpeeeUVnnzySaSU+Hw+O3xw4MCBXHfddVx//fUsWrToO+4PTdOIRqNs376dww8/3J7k43K5iMViLZ7O32LDLYRwAMuBrVLK04QQvYBngRLgE+AiKWVCCOEBngKGAlXAuVLKspaep7W44IILeOaZZ9qcj7gthjAqDj7pqdpp451OrxoCLK+XRDwGukG4tgbC9YhQA5om0BBIJKa0sGTScBsWKZ/1N75rI+3/tpL+cMuSmFJiWmDqOqGaWmKRKA6PFylbP0zvYJGfn29XY6+trcXtdrNx40Z+/OMfc/LJJ1NfX28PYM6ePRspJX//+98ZNWoU06dPt6vd+/1+pJRce+21LFiwoInRnjJlit0jTycH27BhA507d7bLxe3rHdm+9Lh/A6wFgqnXdwH3SymfFULMBiYBj6aea6SUfYUQ56X2O3cfztMqTJ48mfHjx7c5w50rTJo0iTVr1lBVVcUnn3xiD84ocoN4PG5nsItEIuTl5SXTrB7+Q4qOGcvOf72EhYGsqsIpLDTDQmgCkTLclmxkiKVM+rZN2cSAG40GLw2ZHLA0pcTQJfGaOiwJDq+X8dOm2jlSMsGMGTO4++67M3LstMspkUhQUFCAlJJjjz2WE088kVgsZlem0TSNfv36cc011wDwwAMP8Nvf/tYOJ0wkEvYsyfvuu8822jfffDNXXHEFXq/XnuXq9XqJxWJ2VkfArhbf0tS4LereCSG6Aj8FHk+9FsCJwPOpXeYDZ6aWz0i9JrV9jMjC5VgIoWZO7ic1NTVs3LiRadOmccYZZ+D1etmxY0e2ZSka4ff7CYVCTXJJFxQUEBcOgj36YlgQ1y2ikSjRaIKIaRE1LCJG8jlqWMSMpLGO6jI5MGlZJFLhf7qUxC2JYUoMKUikety6ZaH585OuBLcP3TAYddLJGStbBrBs2TJGjRqVkWPn5eU1acO0y6O+vh6fz0d9fb1d3f7www+332cYhl1LMhaL4XK5mhQBTtOvXz+KiopwuVxomkYwGCQajVJQUGDnR0n3tPcln3lLe9wPANOAQOp1CVArpUxP5i8HuqSWuwBbAKSUhhCiLrX/rharagXy8/NZvHjxwTzlIcP8+fO5/PLL6du3L4lEgjPPPJMHH3xwvzOkKVqfSCRCIBBoslxXV0cgEEDr2Q+tXWdiO8rRZQIHAodGKjNgsq8mZdNed3pyjR0tYproZtJ4J6x0PLfEMCFWU4sl4MgxJ+AtLqGyspLCwkJbT1sineclHUeddlWmixK7XC6klDgcjiaDh0IIO+46ncOk8SNNuhp8ep2u63acd9rFlfajNx7A3Bt77XELIU4DKqSUrRqbJoS4XAixXAixvLWycClah6uvvprbbruN//73vxQVFXHhhRdy2223ZVuWohFpv2s0GrUHvNK39T2OHo23S3eipkUsFR2S7GFbxAyDmGEQNUyihvnNdttIpwYqTZmM504b81Sct24lXSilPXvx1eo1nPbrKQSDwYxWv8kk6VDAtHFuHNOdzsCYzr7Yq1evJoUR0vMz0i6StP+7qqoKSJYsGzhwoL0tHXWiaRqmaTZ5H7R+HPfRwOlCiFMBL0kf94NAoRDCmep1dwXSCTa2At2AciGEEyggOUjZBCnlHGAOQIcOHdpmTshDmEWLFrF69Wo+/PBDnnvuuTbZmzqUSf/x03/+dARE2uAMm3obf79wPNFoCIcQyYFJmex1S8ACrHQWQCSGkYwkSRpnC8OEhJU05rplpaJPkgbcEwjSvu8PaNe3L8WdOtnlvjL1OTM5YJ8uEhwMBqmrq8PtduNyuexKQtXV1QQCASKRCIWFhRx77LG8/PLLhMNhpkyZQrdu3WzDDlBeXm5nAhw6dCidOnWy86Snc8rU1NTYleXTpcsSiUTrhgNKKWcAMwCEEKOB66SUFwgh/gb8gmRkySXAy6m3vJJ6/UFq+1uyrSbr/R6Tzvmyr1NxFd8lEz9/0zTtP3r6lj4SieB2u4lGoxT27kNe915UrPkUTWg47JSuFhINKVI9wNTgpGnJVArXdD4SYfe0dcsiZiZdJgnLJBAsRHO76TVoEIHCQurr69E0LSO97ltuuYUbbrjBroTe2qSzA8ZiMQoLC7EsC9M0KS4utsuyRaNRAoEAUko7PwxAZWUllZWVzR47fReUzr2taRo1NTX4/X6qq6ttH3ra7ZIuFtwSDuRSNh24RgixgaQP+4nU+ieAktT6a4DrD+AciizicDiU0W4FMtEb9fv9NDQ0EAqFcDqddjxyJBKhpKSESCTCKY88SVy3iBsmUd1MuUdk8jlhEdWT7pN42o1iSqImxAxBzLBImBZxM7leNy0ShklRl+70O/pYvHl+xp53Hg0NDZSWlmZscDLtg85Ujz4QCFBTU4Pb7aampsaOq04XQN61axcOh4P6+noikQjDhw+nW7duez1ux44dOeGEE+wLgsfjQdM0ux5oaWmpHcmSvijtSxvuk+GWUr4jpTwttfyVlHKElLKvlPJsKWU8tT6Wet03tf2rfTmHQqHYO9FolLy8PHw+n52EPz0DsK6uDq/Xi3S6GXTRpUlDbSYNd0T/xredjC4xk/5vUzYy4slp7XHDIm77uyXBjl3oPWwE28rK+MnEidQ1hPD5fNTW1jYp9dWWiEQidsX1YDBohzQWFhba7hHTNPH7/Xi9Xo4++mjmz59PYWFhs8d0u908/vjjjB49Go/HQ0NDA7quI6W0o1VqamqScfepCjjAPrWhmu2hULRBPB4Puq7bUQrRaNSewZefn58sDFBUTOmo49DadSJqSCKGRcRMhgR+ExYov1k2LWK6mexlG8kQwbhpkrAk7mAB7fv2o6piJ5GGEL0HDyYQCBCPx/H7/Rm7M5s6dep38li3Jl6vl3A4jNPpJBwO2+GA6YtgQ0MDDoeDWCxm16Q8/PDDWblyJfPmzSMYDBIIBAgGgwSDQe6//37WrVvHqFGjCAQCJBIJ8vLy7LuGdGX3QCCAYRhNih9nIhxQoVDkEI2nYqcjIhrnzkgPWvYaMYphF1/KW/ffgx4J2++XqYk4UiYHKU3S/m6S6VztCTgW3uJS8jt0IhKN4vF4uev1f9saGg+KZoLi4uKMHDdN4/JiaRqXJ2u8LZ0+V9M02rdvzymnnMLXX3+NYRj2zEjAHm9I59e2LMuOHmn8HUFyfKJx1ElLUYZboWiDmKZph6qlDadhGGiahq7r9rPb7ebYSb/ClJJX/3ArsomBSkaYmJJkTHd6Wrv8Ji+3IQWaKamrqaFnp05ces89aKlMePF43I5JFkK0yUrvjY1uenYjJHvi6XS50LQ3nN7WeOJM45A+XddxuVx2pIiu6/Z7E4mEvS39nTW+ULQU5SpRKNog6ZjtWCxmJ/dPr0tXLU/f6muaxogJF/OLe/9E1yHDk/7s1KPLsBF4O3QkZlqph6TfcaOJWySnwFsQi0Q56qSfMPGPfySvqAiPx4NlWeTn5xOPx8nPz2+zcdxpw5qeDJM2no2NbnqqeroHns7kl3arpEMW0ymcXS6XXczZsiycTqe93eVyYRhGk23pC96+3LW0vUukQtFGiEajVFZWEovFKC8vR9d1SktLW+34aTeCEAKfz4cQwl5XVFSEEILOnTvb20+8+P849uxzMRv1AB0uF5ZlYpnf9MSdbjd6o2K5AG6vF7fXa/cOg8GgnVairSaYguQF0OPxNGlD+MZdkt7WmHQ19t1tS7Mnv/X++LS/jTLcCkWG+O9//8u1115LRUUF1157LSUlJTz99NOtdvzGE1PSBmRvz44WJgrzNhM33dxx2yqNUyg3/ix7+ny58NmVq0ShyACRSIQ333yTuXPnMnDgQP7yl78wYMAAli5dmm1pikMAkQuTGouKiuRFF12UbRnNEo/H7VlUuUpdXR1OpzNjM8xag507d7JzZylSZiYCoTUoLNxKjx5d9r7jXjBNk82bN9O7d282btxIz549qa+vx7KsA/odmaZJVVUV7du3P2CNmSIcDmOaJsFgcO87Z4mqqiry8/NbPFMxGyxYsICamprddutzwnALISqBMAc5g+A+UIrStj8obfuH0rZ/HGraekgp2+1uQ04YbgAhxHIp5bBs69gdStv+obTtH0rb/vF90qZ83AqFQtHGUIZboVAo2hi5ZLjnZFvAHlDa9g+lbf9Q2vaP7422nPFxKxQKhaJl5FKPW6FQKBQtIOuGWwgxTgixTgixQQiR9aILQogyIcTnQohPhRDLU+uKhRCvCyHWp56LDpKWuUKICiHE6kbrdqtFJPlTqh1XCSGOypK+W4QQW1Pt92mq5F1624yUvnVCiJMzqKubEOJtIcQXQog1QojfpNZnve32oC3r7ZY6l1cI8ZEQ4rOUvltT63sJIZaldCwSQrhT6z2p1xtS23tmQds8IcSmRm03OLU+G/8JhxBipRDi1dTrzLTbt6sTH8wH4AA2Ar0BN/AZcESWNZUBpd9adzdwfWr5euCug6TlOOAoYPXetACnAv8EBDASWJYlfbeQLG/37X2PSH2/HqBX6nt3ZEhXJ+Co1HIA+F/q/Flvuz1oy3q7pc4ngPzUsgtYlmqT54DzUutnA1ekln8NzE4tnwcsyoK2ecAvdrN/Nv4T1wALgVdTrzPSbtnucY8ANshkNZ0EyfqVZ2RZ0+44A5ifWp4PnHkwTiqlfBeobqGWM4CnZJIPSRZz7pQFfc1xBvCslDIupdwEbCD5/WdC13Yp5YrUcgOwFuhCDrTdHrQ1x0Frt5QmKaUMpV66Ug8JnAg8n1r/7bZLt+nzwBghMpPEYw/amuOg/ieEEF2BnwKPp14LMtRu2TbcXYAtjV6Xs+cf8cFAAv8WQnwihLg8ta6DlHJ7ankH0CE70vaoJZfackrq1nRuI7dSVvSlbkGHkOyd5VTbfUsb5Ei7pW73PwUqgNdJ9vJrpZTGbjTY+lLb60jWoD0o2qSU6ba7PdV29wsh0vPYD3bbPQBMA9KpFkvIULtl23DnIsdIKY8CTgGuFEIc13ijTN7b5EQoTi5pacSjQB9gMLAdmJUtIUKIfGAxcLWUsr7xtmy33W605Uy7SSlNKeVgoCvJ3n3/bGn5Nt/WJoQYCMwgqXE4UEyykPlBRQhxGlAhpfzkYJwv24Z7K9C4ZHLX1LqsIaXcmnquAF4k+cPdmb7FSj1XZE9hs1pyoi2llDtTfy4L+Avf3NYfVH1CCBdJw/i0lPKF1OqcaLvdacuVdmuMlLIWeBsYRdLNkE4D3ViDrS+1vQCoOojaxqXcT1ImC5Y/SXba7mjgdCFEGUmX74nAg2So3bJtuD8G+qVGXt0knfSvZEuMEMIvhAikl4GxwOqUpktSu10CvJwdhR0Bo5UAAAF0SURBVLAHLa8AF6dG0kcCdY3cAgeNb/kQzyLZfml956VG03sB/YCPMqRBAE8Aa6WU9zXalPW2a05bLrRbSkc7IURhatkHnETSD/828IvUbt9uu3Sb/gJ4K3U3c7C0fdnoYixI+pAbt91B+V6llDOklF2llD1J2rG3pJQXkKl2+//t2z1uwkAQhuG3g5qOlgNQpUxBC9fIMZByi5wgkVJwBeAANBAgRX5ukibFDIIGJBf2stL7SC7ASPtphEfyjt3GZLXJQUx+v4l9tHnhLCNigv8BfJ7yEHtPK+AHWAKDjvK8E7fNf8T+2NO1LMTk/CXreAAeCuV7zfX3+eccXvx+nvm+gGmLuR6JbZA9sMtjdg+1u5GteN1yrTGwzRxH4Pni2tgQw9EF0Mvv+/n5N8+PCmRbZ+2OwBvnJ086vyZy3Qnnp0paqZtvTkpSZUpvlUiSGrJxS1JlbNySVBkbtyRVxsYtSZWxcUtSZWzcklQZG7ckVeYf2tkbinO+r1AAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Resultados\n", + "\n", + "¡Veamos si tuvimos éxito entrenando a Peter para luchar contra el lobo!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 1, won: 9 times, drown: 90 times\n" + ] + } + ], + "source": [ + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [ + "Ahora vemos muchos menos casos de ahogamiento, pero Peter todavía no siempre puede matar al lobo. Intenta experimentar y ver si puedes mejorar este resultado jugando con los hiperparámetros.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAcD0lEQVR4nO3df3BV553f8fdHPxHCQgJkIEACrIkd4raxrcZksrOTCVmM3UzwH04Gz86azXrDtHHa7HZnEryZ1tMknkna7XrDrONdN2aDM1kTrzetaYpLKHYm05nasRw7trFNkLExkrGRkQAbJPTjfvvHeSQuQjrge4UkxOc1c9E53/Occ5/nHul+OD+kq4jAzMxsLBWT3QEzM5vaHBRmZpbLQWFmZrkcFGZmlstBYWZmuaomuwPjbd68ebF06dLJ7oaZ2UXlmWeeeScimkdbNu2CYunSpbS2tk52N8zMLiqSDoy1zKeezMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4NihOO9/Tz6XMdkd8PMbMqYdr9wV66vP/I8j734FlcuuIyrFjRMdnfMzCadjyhGePNYLwA9fYOT3BMzs6nBQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0ExhpjsDpiZTRHnDApJWyQdlvTiKMv+XFJImpfmJWmzpDZJz0u6tqjtBkn70mNDUf06SS+kdTZLUqrPkbQrtd8lqWl8hnyO8U7Ek5iZXUTO54jih8DakUVJS4A1wBtF5RuBFemxEbgvtZ0D3AVcD3wcuKvojf8+4EtF6w091yZgd0SsAHaneTMzm2DnDIqI+CXQNcqie4CvceZZmnXAg5F5EmiUtBC4AdgVEV0R0Q3sAtamZQ0R8WREBPAgcHPRtram6a1FdTMzm0AlXaOQtA7oiIjfjFi0CDhYNN+eann19lHqAPMj4lCafguYn9OfjZJaJbV2dna+3+GYmVmO9x0UkmYCfwH8x/HvzujS0caY15cj4v6IaImIlubm5onqlpnZJaGUI4rfAZYBv5H0OrAY+LWkBUAHsKSo7eJUy6svHqUO8HY6NUX6eriEvpqZWZned1BExAsRcXlELI2IpWSni66NiLeA7cBt6e6nVcCxdPpoJ7BGUlO6iL0G2JmWHZe0Kt3tdBvwaHqq7cDQ3VEbiupmZjaBzuf22IeA/wdcKald0u05zXcA+4E24L8BXwaIiC7gW8DT6fHNVCO1+UFa51XgsVT/DvD7kvYBn0nzZmY2warO1SAibj3H8qVF0wHcMUa7LcCWUeqtwNWj1I8Aq8/VPzMzu7D8m9lmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBMYYY8xO6zcwuLQ6KEaTJ7oGZ2dRyPh+FukXSYUkvFtX+i6RXJD0v6b9LaixadqekNkl7Jd1QVF+bam2SNhXVl0l6KtV/Iqkm1WvTfFtavnS8Bm1mZufvfI4ofgisHVHbBVwdEf8c+C1wJ4CklcB64KNpne9LqpRUCdwL3AisBG5NbQG+C9wTEVcA3cDQZ3LfDnSn+j2pnZmZTbBzBkVE/BLoGlH7eUQMpNkngcVpeh2wLSJORcRrQBvw8fRoi4j9EdEHbAPWSRLwaeCRtP5W4OaibW1N048Aq1N7MzObQONxjeKPgcfS9CLgYNGy9lQbqz4XOFoUOkP1M7aVlh9L7c8iaaOkVkmtnZ2dZQ/IzMxOKysoJH0DGAB+PD7dKU1E3B8RLRHR0tzcPJldMTObdqpKXVHSHwGfBVZHDN9M2gEsKWq2ONUYo34EaJRUlY4aitsPbatdUhUwO7U3M7MJVNIRhaS1wNeAz0XEyaJF24H16Y6lZcAK4FfA08CKdIdTDdkF7+0pYJ4AbknrbwAeLdrWhjR9C/B4USCZmdkEOecRhaSHgE8B8yS1A3eR3eVUC+xK15efjIh/HRF7JD0MvER2SuqOiBhM2/kKsBOoBLZExJ70FF8Htkn6NvAs8ECqPwD8SFIb2cX09eMwXjMze5/OGRQRceso5QdGqQ21vxu4e5T6DmDHKPX9ZHdFjaz3Ap8/V//MzOzC8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMyZ+RZGYGDoqzaLI7YGY2xTgozMws1zmDQtIWSYclvVhUmyNpl6R96WtTqkvSZkltkp6XdG3ROhtS+32SNhTVr5P0Qlpns9Jnq471HGZmNrHO54jih8DaEbVNwO6IWAHsTvMANwIr0mMjcB9kb/pkn7V9PdnHnt5V9MZ/H/ClovXWnuM5zMxsAp0zKCLil0DXiPI6YGua3grcXFR/MDJPAo2SFgI3ALsioisiuoFdwNq0rCEinoyIAB4csa3RnsPMzCZQqdco5kfEoTT9FjA/TS8CDha1a0+1vHr7KPW85ziLpI2SWiW1dnZ2ljAcMzMbS9kXs9ORwAW9l/RczxER90dES0S0NDc3X8iumJldckoNirfTaSPS18Op3gEsKWq3ONXy6otHqec9h5mZTaBSg2I7MHTn0gbg0aL6benup1XAsXT6aCewRlJTuoi9BtiZlh2XtCrd7XTbiG2N9hxmZjaBqs7VQNJDwKeAeZLaye5e+g7wsKTbgQPAF1LzHcBNQBtwEvgiQER0SfoW8HRq982IGLpA/mWyO6vqgMfSg5znMDOzCXTOoIiIW8dYtHqUtgHcMcZ2tgBbRqm3AlePUj8y2nOYmdnE8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQjCEu6EcxmZldPBwUI2Qfi2FmZkMcFGZmlstBYWZmuRwUZmaWq6ygkPRnkvZIelHSQ5JmSFom6SlJbZJ+Iqkmta1N821p+dKi7dyZ6nsl3VBUX5tqbZI2ldNXMzMrTclBIWkR8O+Aloi4GqgE1gPfBe6JiCuAbuD2tMrtQHeq35PaIWllWu+jwFrg+5IqJVUC9wI3AiuBW1NbMzObQOWeeqoC6iRVATOBQ8CngUfS8q3AzWl6XZonLV+t7BajdcC2iDgVEa8BbcDH06MtIvZHRB+wLbU1M7MJVHJQREQH8JfAG2QBcQx4BjgaEQOpWTuwKE0vAg6mdQdS+7nF9RHrjFU/i6SNkloltXZ2dpY6JDMzG0U5p56ayP6Hvwz4AFBPdupowkXE/RHREhEtzc3Nk9EFM7Npq5xTT58BXouIzojoB34KfBJoTKeiABYDHWm6A1gCkJbPBo4U10esM1bdzMwmUDlB8QawStLMdK1hNfAS8ARwS2qzAXg0TW9P86Tlj0dEpPr6dFfUMmAF8CvgaWBFuouqhuyC9/Yy+mtmZiWoOneT0UXEU5IeAX4NDADPAvcD/wvYJunbqfZAWuUB4EeS2oAusjd+ImKPpIfJQmYAuCMiBgEkfQXYSXZH1ZaI2FNqf83MrDQlBwVARNwF3DWivJ/sjqWRbXuBz4+xnbuBu0ep7wB2lNNHMzMrj38z28zMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMYQk90BM7MpwkExgia7A2ZmU4yDwszMcjkozMwsl4PCzMxyOSjMzCxXWUEhqVHSI5JekfSypE9ImiNpl6R96WtTaitJmyW1SXpe0rVF29mQ2u+TtKGofp2kF9I6m9Nnc19QrQe6L/RTmJldVMo9ovge8L8j4irgXwAvA5uA3RGxAtid5gFuBFakx0bgPgBJc8g+TvV6so9QvWsoXFKbLxWtt7bM/pqZ2ftUclBImg38HvAAQET0RcRRYB2wNTXbCtycptcBD0bmSaBR0kLgBmBXRHRFRDewC1ibljVExJMREcCDRdsyM7MJUs4RxTKgE/h7Sc9K+oGkemB+RBxKbd4C5qfpRcDBovXbUy2v3j5K/SySNkpqldTa2dlZxpDMzGykcoKiCrgWuC8irgFOcPo0EwDpSOCC/5JzRNwfES0R0dLc3Hyhn87M7JJSTlC0A+0R8VSaf4QsON5Op41IXw+n5R3AkqL1F6daXn3xKHUzM5tAJQdFRLwFHJR0ZSqtBl4CtgNDdy5tAB5N09uB29LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVW62+m2om2ZmdkEqSpz/X8L/FhSDbAf+CJZ+Dws6XbgAPCF1HYHcBPQBpxMbYmILknfAp5O7b4ZEV1p+svAD4E64LH0MDOzCVRWUETEc0DLKItWj9I2gDvG2M4WYMso9Vbg6nL6aGZm5fFvZpuZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMIS74H0c3M7s4OCjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxylR0UkiolPSvpZ2l+maSnJLVJ+kn6mFQk1ab5trR8adE27kz1vZJuKKqvTbU2SZvK7auZmb1/43FE8VXg5aL57wL3RMQVQDdwe6rfDnSn+j2pHZJWAuuBjwJrge+n8KkE7gVuBFYCt6a2ZmY2gcoKCkmLgX8F/CDNC/g08EhqshW4OU2vS/Ok5atT+3XAtog4FRGvAW3Ax9OjLSL2R0QfsC21NTOzCVTuEcVfA18DCml+LnA0IgbSfDuwKE0vAg4CpOXHUvvh+oh1xqqfRdJGSa2SWjs7O8sckpmZFSs5KCR9FjgcEc+MY39KEhH3R0RLRLQ0NzdPdnfMzKaVqjLW/STwOUk3ATOABuB7QKOkqnTUsBjoSO07gCVAu6QqYDZwpKg+pHidsepmZjZBSj6iiIg7I2JxRCwluxj9eET8AfAEcEtqtgF4NE1vT/Ok5Y9HRKT6+nRX1DJgBfAr4GlgRbqLqiY9x/ZS+2tmZqUp54hiLF8Htkn6NvAs8ECqPwD8SFIb0EX2xk9E7JH0MPASMADcERGDAJK+AuwEKoEtEbHnAvTXzMxyjEtQRMQvgF+k6f1kdyyNbNMLfH6M9e8G7h6lvgPYMR59NDOz0vg3s83MLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkoxpD9dREzM3NQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlKjkoJC2R9ISklyTtkfTVVJ8jaZekfelrU6pL0mZJbZKel3Rt0bY2pPb7JG0oql8n6YW0zmZJKmewZmb2/pVzRDEA/HlErARWAXdIWglsAnZHxApgd5oHuBFYkR4bgfsgCxbgLuB6so9QvWsoXFKbLxWtt7aM/pqZWQlKDoqIOBQRv07T7wIvA4uAdcDW1GwrcHOaXgc8GJkngUZJC4EbgF0R0RUR3cAuYG1a1hART0b29zQeLNqWmZlNkHG5RiFpKXAN8BQwPyIOpUVvAfPT9CLgYNFq7amWV28fpT7a82+U1CqptbOzs6yxmJnZmcoOCkmzgH8C/jQijhcvS0cCF/yv60XE/RHREhEtzc3NF/rpzMwuKWUFhaRqspD4cUT8NJXfTqeNSF8Pp3oHsKRo9cWplldfPErdzMwmUDl3PQl4AHg5Iv6qaNF2YOjOpQ3Ao0X129LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVV6rtuKtmVmZhOkqox1Pwn8IfCCpOdS7S+A7wAPS7odOAB8IS3bAdwEtAEngS8CRESXpG8BT6d234yIrjT9ZeCHQB3wWHqYmdkEKjkoIuL/AmP9XsPqUdoHcMcY29oCbBml3gpcXWofzcysfP7NbDMzy+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgGMMF/wNVZmYXCQeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgfFGArhG2TNzMBBMab/+vPfTnYXzMymBAfFGJ450D3ZXTAzmxKmfFBIWitpr6Q2SZsmuz9mZpeaKR0UkiqBe4EbgZXArZJWTmQfBgtT+1rFwGCBvoHC+1pnsBDEJXQNJuLSGu9oLobxXwx9vFSV/JnZE+TjQFtE7AeQtA1YB7w03k+0efc+Hn2u44zaVf/hMXr7z34TvuLyWWfVRn6THzrWS0//IALmN8xgRnUlFcr+hlQEvPbOCQCWzatHQHt3D32DBRY11tFxtIfFTXVUV1Yg4GTfIDNrK6nU2R9Rvu/wewDMm1XL7Lqq4b9RNdQy0j9Kz10oBK8fOQnA7zTXD2+nkNoMtR3p1c4Tw9M1lRX0DRZYPi9bv79QoL27h4UNM6itrkSCrhN9HD3Zz4KGGdRWV9A3UODQsV4AFjTMQILKCtHe3TO83eWpP719g7yZ2i6fV4+Uhduxnn7m1NecHleaCLKbDw6kcS2dOxOACgnpdN+XN2evdSGgQiCJUwODHOw63Ye59TUcOdE3vJ3uk/3MrqumQtA3UKDrZN/w98TyefVUVJz5YrWl/TE0lo7uHhrqqmmYUdqPmkbbGTkKEezvPEF1pVjUWDe8rwEuq62iqb6GqgpxaqBA57un6BssUFNZweKmOoJsnxQiOPJeH8d6+gFY1FhHbXXF8Is+UAj6BgrU11ZSCHi3d4BZtZWcGijQ2z9IVWUFM2sqqa48+/+hEcGrnSe4bEYV82bV0j9YoLJCw/uuvqaSGdWVw/sAsp+RUh3v6efIiT5m1lTSN1BgoBDMrqumb6BAT//gcLs59TXMrqtGguM9A0DwzntZHySYXVdNY101kqgs2ucDg9l2evsLzK2vQYI3j/ayYPYM3u0d4J33TgHZz5okIrLv41MDBebNqh3e1pH3TvFu7wAfnDuT4z39w889ZOHsGcysqSTIfrbf6DrJ5ZdlP1uQ/Vyf7Btk863XsGr53JJfr7FM9aBYBBwsmm8Hrh/ZSNJGYCPABz/4wZKeaH5DLVctaOCNrpP0DwZz62uoqhS9/aeQsh+W9u4eFjXW8eH5sxCj/AAXlWZUV7LnzeME2ZvGrNoqqioqUHqDmlVbxQsdx1j5gQYEvPNe9kP7sSWNdBztYW59DUvmZG94zxzoZs7MGi5vqD3rKdu7e+jpH6SupoKrFjScmRA63a1I8xUSrx85ycqFDSxrrh/9rx/mBMW/XNpE32Dwm4NH+UjquyQOdvXwobn1zJ2VvZGf7Bvk8VcO87EljdRWVzBYCH72/CEAPrakkRnVFQwGw0Exb1YNH1nYMPxDMBQUH1l4ekyvdZ5gyZw6qtIb0FA3h95MD6RxrZg/iwjoHyxQIfFq5wmuuHwWVy64DAIqKkQhHSkOFuKMoLjuQ038/KW3uX7ZHN463svcWTU0zaxhUWMW3Md7+3nu4FE63z3F/IYZw8E1ZOiNeuXCBgI4drKfmsoKrlrYMMoLfQ4l/gd7f+cJls+bxfLm+uGgqKmqYFFTHR+efxmDEVRI/M/fvAlA32CBD8+/jKpKMfT/nc53T/Gr17uA7GfjA411w13qGyiw66W3uemfLUASz7cf5YrLZ6XgLXDkvVO8ffwU1y+bPWr/Xu08wbu9A3zqysuprhADheDNoz3MqKpkUVMdr3a+N9x2xeWzsu+BEh3v7ecXezupTM8DWRj29A8yt76GhY0zeLHjONcsaaS+torBQnC0p4/X3zkdsBFZP4719PPh+ZdRiDjj5//p17s41tPP714xDwQLZs/g7eOnuHLBLN5py4LiqgWnx/D28V5aD3RzxeWz+MDs7HVt7e1noBCsXNjAqfT6DrnuQ010dPec/h5K4VyIGH5tKiXqqitpnFld8muVR1P5cE/SLcDaiPiTNP+HwPUR8ZWx1mlpaYnW1taJ6qKZ2bQg6ZmIaBlt2ZS+RgF0AEuK5henmpmZTZCpHhRPAyskLZNUA6wHtk9yn8zMLilT+hpFRAxI+gqwE6gEtkTEnknulpnZJWVKBwVAROwAdkx2P8zMLlVT/dSTmZlNMgeFmZnlclCYmVkuB4WZmeWa0r9wVwpJncCBElefB7wzjt25GHjMlwaP+dJQzpg/FBHNoy2YdkFRDkmtY/1m4nTlMV8aPOZLw4Uas089mZlZLgeFmZnlclCc6f7J7sAk8JgvDR7zpeGCjNnXKMzMLJePKMzMLJeDwszMcjkoEklrJe2V1CZp02T3p1SSlkh6QtJLkvZI+mqqz5G0S9K+9LUp1SVpcxr385KuLdrWhtR+n6QNkzWm8yWpUtKzkn6W5pdJeiqN7SfpT9UjqTbNt6XlS4u2cWeq75V0w+SM5PxIapT0iKRXJL0s6RPTfT9L+rP0ff2ipIckzZhu+1nSFkmHJb1YVBu3/SrpOkkvpHU2S+fxebtDHzx/KT/I/oT5q8ByoAb4DbBysvtV4lgWAtem6cuA3wIrgf8MbEr1TcB30/RNwGNknyy6Cngq1ecA+9PXpjTdNNnjO8fY/z3wD8DP0vzDwPo0/bfAv0nTXwb+Nk2vB36SplemfV8LLEvfE5WTPa6c8W4F/iRN1wCN03k/k3008mtAXdH+/aPptp+B3wOuBV4sqo3bfgV+ldoqrXvjOfs02S/KVHgAnwB2Fs3fCdw52f0ap7E9Cvw+sBdYmGoLgb1p+u+AW4va703LbwX+rqh+Rrup9iD79MPdwKeBn6UfgneAqpH7mOzzTT6RpqtSO43c78XtptoDmJ3eNDWiPm33cwqKg+nNryrt5xum434Glo4IinHZr2nZK0X1M9qN9fCpp8zQN+CQ9lS7qKVD7WuAp4D5EXEoLXoLmJ+mxxr7xfaa/DXwNaCQ5ucCRyNiIM0X9394bGn5sdT+YhrzMqAT+Pt0uu0HkuqZxvs5IjqAvwTeAA6R7bdnmN77ech47ddFaXpkPZeDYpqSNAv4J+BPI+J48bLI/isxbe6LlvRZ4HBEPDPZfZlAVWSnJ+6LiGuAE2SnJIZNw/3cBKwjC8kPAPXA2knt1CSYjP3qoMh0AEuK5hen2kVJUjVZSPw4In6aym9LWpiWLwQOp/pYY7+YXpNPAp+T9Dqwjez00/eARklDn+JY3P/hsaXls4EjXFxjbgfaI+KpNP8IWXBM5/38GeC1iOiMiH7gp2T7fjrv5yHjtV870vTIei4HReZpYEW6e6KG7MLX9knuU0nSHQwPAC9HxF8VLdoODN35sIHs2sVQ/bZ098Qq4Fg6xN0JrJHUlP4ntybVppyIuDMiFkfEUrJ993hE/AHwBHBLajZyzEOvxS2pfaT6+nS3zDJgBdmFvyknIt4CDkq6MpVWAy8xjfcz2SmnVZJmpu/zoTFP2/1cZFz2a1p2XNKq9BreVrStsU32RZup8iC7e+C3ZHdAfGOy+1PGOH6X7LD0eeC59LiJ7NzsbmAf8H+AOam9gHvTuF8AWoq29cdAW3p8cbLHdp7j/xSn73paTvYG0Ab8I1Cb6jPSfFtavrxo/W+k12Iv53E3yCSP9WNAa9rX/4Ps7pZpvZ+B/wS8ArwI/IjszqVptZ+Bh8iuwfSTHTnePp77FWhJr9+rwN8w4oaI0R7+Ex5mZpbLp57MzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCzX/wfjiuCHCiJzlAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/8-Reinforcement/1-QLearning/solution/notebook.ipynb b/translations/es/8-Reinforcement/1-QLearning/solution/notebook.ipynb new file mode 100644 index 000000000..5a76c5b37 --- /dev/null +++ b/translations/es/8-Reinforcement/1-QLearning/solution/notebook.ipynb @@ -0,0 +1,577 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "488431336543f71f14d4aaf0399e3381", + "translation_date": "2025-09-04T02:59:17+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Pedro y el Lobo: Introducción al Aprendizaje por Refuerzo\n", + "\n", + "En este tutorial, aprenderemos cómo aplicar el aprendizaje por refuerzo a un problema de búsqueda de caminos. El escenario está inspirado en el cuento musical [Pedro y el Lobo](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) del compositor ruso [Sergei Prokofiev](https://en.wikipedia.org/wiki/Sergei_Prokofiev). Es la historia de un joven pionero, Pedro, que valientemente sale de su casa hacia el claro del bosque para perseguir al lobo. Entrenaremos algoritmos de aprendizaje automático que ayudarán a Pedro a explorar el área circundante y a construir un mapa de navegación óptimo.\n", + "\n", + "Primero, importemos un conjunto de bibliotecas útiles:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## Descripción general del Aprendizaje por Refuerzo\n", + "\n", + "**Aprendizaje por Refuerzo** (RL) es una técnica de aprendizaje que nos permite aprender el comportamiento óptimo de un **agente** en algún **entorno** mediante la realización de muchos experimentos. Un agente en este entorno debe tener algún **objetivo**, definido por una **función de recompensa**.\n", + "\n", + "## El Entorno\n", + "\n", + "Para simplificar, consideremos el mundo de Peter como un tablero cuadrado de tamaño `width` x `height`. Cada celda en este tablero puede ser:\n", + "* **suelo**, sobre el cual Peter y otras criaturas pueden caminar\n", + "* **agua**, sobre la cual obviamente no se puede caminar\n", + "* **un árbol** o **hierba** - un lugar donde puedes descansar un poco\n", + "* **una manzana**, que representa algo que Peter estaría encantado de encontrar para alimentarse\n", + "* **un lobo**, que es peligroso y debe evitarse\n", + "\n", + "Para trabajar con el entorno, definiremos una clase llamada `Board`. Para no sobrecargar demasiado este cuaderno, hemos movido todo el código relacionado con el tablero a un módulo separado llamado `rlboard`, que ahora importaremos. Puedes mirar dentro de este módulo para obtener más detalles sobre los aspectos internos de la implementación.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from rlboard import *" + ] + }, + { + "source": [ + "Ahora creemos un tablero aleatorio y veamos cómo se ve:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "source": [ + "## Acciones y Política\n", + "\n", + "En nuestro ejemplo, el objetivo de Peter sería encontrar una manzana, mientras evita al lobo y otros obstáculos. Para lograr esto, básicamente puede caminar hasta encontrar una manzana. Por lo tanto, en cualquier posición puede elegir entre una de las siguientes acciones: arriba, abajo, izquierda y derecha. Definiremos esas acciones como un diccionario y las asignaremos a pares de cambios de coordenadas correspondientes. Por ejemplo, moverse hacia la derecha (`R`) correspondería a un par `(1,0)`.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "La estrategia de nuestro agente (Peter) está definida por una **política**. Consideremos la política más simple llamada **camino aleatorio**.\n", + "\n", + "## Camino aleatorio\n", + "\n", + "Primero resolvamos nuestro problema implementando una estrategia de camino aleatorio.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "18" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(m):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(m,policy,start_position=None):\n", + " n = 0 # number of steps\n", + " # set initial position\n", + " if start_position:\n", + " m.human = start_position \n", + " else:\n", + " m.random_start()\n", + " while True:\n", + " if m.at() == Board.Cell.apple:\n", + " return n # success!\n", + " if m.at() in [Board.Cell.wolf, Board.Cell.water]:\n", + " return -1 # eaten by wolf or drowned\n", + " while True:\n", + " a = actions[policy(m)]\n", + " new_pos = m.move_pos(m.human,a)\n", + " if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water:\n", + " m.move(a) # do the actual move\n", + " break\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "source": [ + "Hagamos el experimento de caminata aleatoria varias veces y veamos el número promedio de pasos tomados:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 32.87096774193548, eaten by wolf: 7 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " else:\n", + " s += z\n", + " n += 1\n", + " print(f\"Average path length = {s/n}, eaten by wolf: {w} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## Función de Recompensa\n", + "\n", + "Para hacer que nuestra política sea más inteligente, necesitamos entender qué movimientos son \"mejores\" que otros.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "move_reward = -0.1\n", + "goal_reward = 10\n", + "end_reward = -10\n", + "\n", + "def reward(m,pos=None):\n", + " pos = pos or m.human\n", + " if not m.is_valid(pos):\n", + " return end_reward\n", + " x = m.at(pos)\n", + " if x==Board.Cell.water or x == Board.Cell.wolf:\n", + " return end_reward\n", + " if x==Board.Cell.apple:\n", + " return goal_reward\n", + " return move_reward" + ] + }, + { + "source": [ + "## Aprendizaje Q\n", + "\n", + "Construye una Q-Table, o un array multidimensional. Dado que nuestro tablero tiene dimensiones `width` x `height`, podemos representar la Q-Table con un array de numpy con la forma `width` x `height` x `len(actions)`:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "source": [ + "Pasa la Q-Table a la función de trazado para visualizar la tabla en el tablero:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhU5f3+8fczk8m+BwIYBGQRZIkoiKIsIm6tuwVEZSkiqC1SXHAB259VYhUVqrUVUURA3FGwFLQKrsAXxJZNBQIkICEEkpBl9plznt8fmaRESEBJODPh8/LKlcmZ5dwkmduT5yyP0lojhBAictisDiCEEOLnkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMI1W3EqpK5VS25RSO5RSDzXWeoQQ4lSjGuM4bqWUHdgOXAbsBb4BbtZaf9/gKxNCiFNMY21x9wF2aK13aa39wFvAdY20LiGEOKU0VnFnAT8e9vXe0DIhhBAnKMqqFSulxgPjARwOR6/s7GyrohyTz+ejsrKSZs2aWR2lTmVlZTgcDhISEqyOUqfCwkIyMzOx2+1WR6nTnj17aNOmjdUx6hQMBjl48CCtWrWyOkqdnE4nwWCQ1NRUq6PU6eDBgyQnJxMTE2N1lDp99913eDweddQ7tdYN/gH0BT4+7OuHgYfrenxmZqYOZ7m5uXr27NlWx6jXBx98oFevXm11jHo9/vjjurS01OoYdTJNU0+YMMHqGPUqKSnROTk5Vseo19dff60XL15sdYx6zZo1S+fm5lodo16hXjxqZzbWUMk3QCel1BlKqWhgOPBhI61LCCFOKY0yVKK1DiqlJgAfA3bgVa31d42xLiGEONU02hi31noZsKyxXl8IIU5VcuakEEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsI02eLOy8urvhZ4WDIMgz179lgdo14ul4uDBw9aHaNeBw8exOVyWR2jXnv27MEwDKtj1ElrTV5entUx6uX3+9m3b5/VMepVVlZGWVnZSVmXZTPgNJZt27bx1VdfsXnzZnr06EHPnj3p3bu31bFq+fzzz9m2bRvbtm2ja9euXHnllbRu3drqWLW8/fbbFBQUUFFRQevWrRk5cmRYzRbi8/lYsGABe/fuJSkpiaysLIYPH251rFoKCgpYvnw533//PZ07d+bMM89k0KBBVseqZf369WzYsIFNmzaRnZ1Nv3796NKli9Wxalm6dCn5+fkUFBTQoUMHhgwZElaz62itmTdvHoWFhQC0atWK0aNHo9TRJ69pCE1ui/urr75i7dq1/OlPf2LXrl188MEHVkc6wpw5c3C73TzwwAMsX76cLVu2WB3pCI899hjdunXjhhtu4K9//Stut9vqSLV4PB5mzpzJ9ddfT/fu3XnsscesjnSE7777jmXLljF58mS8Xi+vvPKK1ZGOsHjxYnbt2sWjjz7KunXr+Oqrr6yOdISnn36ajIwMxo4dy4IFC9i/f7/VkWoxTZNp06YxYMAA+vfvz7Rp0zBNs1HX2aSKOy8vj82bNxMTE8O1117LQw89RGxsLKtWrbI6Wo1FixbRt29fPvroIx555BH+/ve/s3DhQsrLy62OVmPKlCn85S9/4aGHHmL16tUsXryY22+/3epYtdx+++1MmTKFMWPGkJqayt///ncefvhhq2PVqKioYP78+XTv3p2rrrqKkSNH0q9fP9577z2ro9VYvXo10dHR7Nq1i9GjR/Pkk0+yZcsWdu3aZXW0Gs8//zx33XUXzz33HPPnz2fBggVMmTIlrIaexo8fzzPPPMOECRMoLS3lvffeY/z48Y26ziY1VNKuXTt69OjBzp07Wb58OfPnz8fr9XLhhRdaHa3GjTfeyOjRo7ntttu4/PLLeeCBB7jllltITk62OlqNadOm0bNnT+bNm0daWho33XQTy5aF15wYL7/8Mpdffjnvv/8+FRUV3H777WzcuNHqWDWSkpIYNWoUb7/9Np9++ikrV65k1apVLFiwwOpoNfr27cuyZcu48MIL+e1vf8tTTz1F9+7dOeOMM6yOVuPuu+9m0KBBPPnkk3Tu3Jnx48fz1FNPYbOFzzbnSy+9RHZ2Nu+//z5Q9R7ftGlTo66zSRW3UoqePXuSl5fHc889h9fr5eKLL27UsaafSynFNddcw8aNG9m2bRuZmZl06NAhrDLabDZGjRrFBx98gM1m49JLLyU+Pt7qWLXExsZy+eWXM2/ePEzTZNSoUWH1ZlZK0b59e1q2bMkLL7yA3+/n2muvDaufs1KKgQMH8vnnn/Pcc88B0LNnz7DLeOutt/Lpp5/yxRdfkJ2dTfPmzcMqo81mY9iwYbz55psADBs2rNF/F5tUcQP07t2b3r17s2rVKi688MKw+gFXGzp0KDfccAPffvst559/vtVxjur++++npKSE0tJSOnXqZHWcI8TFxZGTk0Nubi5paWk0a9bM6khH6NixIzk5Oaxbt45zzjkHh8NhdaQjXHbZZVx66aWsXr2aiy66yOo4RzVu3DhcLhc7d+4kOzvb6jhHsNlsPProo+zduxfgpBxo0OSKu1q4/hJWi4qKCtvSrpaRkUFGRobVMeoVjv9T+ak+ffpYHaFeSqmwf78kJCSEZWkf7mQeGRY+f1sKIYQ4LlLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWFO6JR3pVQ+UAkYQFBr3VsplQ68DbQD8oFhWutDJxZTCCFEtYbY4h6kte6pta6eZuYhYIXWuhOwIvS1EEKIBtIYQyXXAfNCt+cB1zfCOoQQ4pR1osWtgX8rpb5VSlVP+dBCa10Yur0faHGC6xBCCHGYE72saz+tdYFSKhP4RCm19fA7tdZaKXXUqdZDRT8eIDExkdzc3BOM0nj27t1LWVlZWGcsLi7GNM2wzuhyucjLy6O4uNjqKHXy+/1h/T2sqKjA5XKFdcb9+/eH/fulrKyMH3/8Ea2PWk9hob55K0+ouLXWBaHPB5RSHwB9gCKlVCutdaFSqhVwoI7nzgZmA2RkZOjPP//8RKI0qrKyMvbu3Us4Z9y5cyfx8fGUlJRYHaVOxcXFrF69Oqxmi/8pp9MZ1j9nr9fLmoNrWPL5Equj1Cm+MJ7BnsGNPmHuiSgoKODbb79lx44dVkepU73fP631L/oAEoCkw26vBq4EngYeCi1/CJh+rNfKzMzU4Sw3N1fPnj3b6hj1+uCDD/Tq1autjlGvxx9/XJeWllodo06maeoJEyZYHaNeJSUluldOL00Y/9fy65Z68eLFVn+r6jVr1iydm5trdYx6hXrxqJ15IlvcLYAPQlODRQFvaK0/Ukp9A7yjlBoL7AaGncA6hBBC/MQvLm6t9S7g7KMsLwEGn0goIYQQdZMzJ4UQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3IsWLQrraYn8fj9Lly61Oka9CgoKWL9+vdUx6vXtt99SUFBgdYx6LV26FL/fb3WMiFZeXh7WMxMBbNu2jW3btp2UdZ3onJNh5/PPP2fOnDn07duX0aNHc8011zB06FCrY9Uya9Ys1q5dS8+ePRk5ciSTJ08mOzvb6li13HvvvRiGQVpaGs8//zwvvvgiCQkJVseq4Xa7ufPOO2nfvj1lZWUopZg5c6bVsWrZvHkz06dPp3fv3txxxx306dOHu+66y+pYEScnJ4c9e/bQvn175syZw1NPPcVpp51mdawapmkyfvx4mjVrhtaakpISZs+ejc3WeNvFTWqL2zAMtm3bRteuXbnpppu4+uqr2bhxI8Fg0OpoNfx+P2vXrmXo0KGMGDGCrKws8vPzw+qvA4/Hw9dff81dd93FnXfeWTP5azipnux1zJgx3HvvvaxatQqPx2N1rBpaa3bv3k2zZs24+eabue222/i///s/2fL+mXw+H1988QXjxo1jzJgxKKUoKioKq/eL2+1m48aNjBs3jokTJ7J582bcbnejrrNJFXdBQQHbtm2jqKiIUaNGcemllxIdHc1//vMfq6PV+Pe//03Pnj2ZM2cOjz/+OHfeeSf//Oc/qaystDpajRkzZnDPPffwu9/9juXLlzN9+nSmTp1qdaxapk6dyogRIxgzZgwHDx7kj3/8I88++6zVsWo4nU4WL15McnIyw4cP56yzzqJXr158/PHHVkeLKPPnz+fmm29m6tSpvPrqq0yZMoUZM2aE1UTEU6dO5Z577mHcuHFs3ryZZ555ptHfL01qqKRNmzZ07dqV5cuXM2fOHB588EEyMzPp06eP1dFqXH311YwcOZJOnTpx5513cvvtt3P//feTnJxsdbQaU6dO5ayzzmLKlCm0bduWoUOHsm7dOqtj1TJz5kx69+7Nq6++yg8//MC0adPYunWr1bFqJCUlMWzYMKZPn86rr77KjBkz2L17NxMnTrQ6WkQZN24cAwcO5IYbbmDQoEGMGDGC119/HbvdbnW0GjNmzKB9+/a88MIL+P1+7rjjDnbt2tWo62xSxQ1w5ZVXcvrppzN58mRuvfVWOnToYHWkIzzwwAPk5+czbdo0Jk+eTK9evayOdISXXnqJ7du3s2LFCl544QUSExOtjlRLQkICf//731m5ciVZWVnMnj3b6khHOPfcc5k8eTI5OTlce+21DB8+3OpIEenpp58mLy+PefPmkZOTQ+vWra2OVIvNZmPOnDls2rQJgDlz5jTq+DY0weJu3bo1rVu35oILLiA5OZnQLPRhpUePHnTv3p2BAweG1Zb24QYMGEDfvn0JBoPExcVZHecIDoeDK664ggEDBhAVFYXD4bA60hGaNWvGFVdcQd++fUlKSgrL38VI0KdPH3r16sVVV10VdhsQAEopLr30Uvr37w9ATExMo6+zyRV3tZSUFKsj1EspFbalXc3hcIRlIR4uHP+n8lPh/nOOBHa7PSxL+3Ano7CrNamdk0IIcSqQ4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCHLO4lVKvKqUOKKW2HLYsXSn1iVIqN/Q5LbRcKaWeV0rtUEptUkqd25jhhRDiVHQ8W9yvAVf+ZNlDwAqtdSdgRehrgF8BnUIf44EXGyamECKSyOn9jeuYxa21/hIo/cni64B5odvzgOsPWz5fV/k/IFUp1aqhwgohIkM4XS+7KfqlY9wttNaFodv7gRah21nAj4c9bm9omRBCiAZywjsnddX/Wn/2/16VUuOVUuuVUuvDaeYSIYQId7+0uIuqh0BCnw+ElhcApx/2uNahZUfQWs/WWvfWWveOhCu8CSFEuPill3X9EBgNPBn6vOSw5ROUUm8B5wPlhw2p1MkwDBYvXvwLozS+4uJidu7cGdYZt2zZwu7duykqKrI6Sp3279/PRx99FNaXYq2oqAjrn7Pb7SahMIH2i9tbHaVOSflJbHFtCetx7l27dhEVFcWWLVuO/WCLGIZR533HLG6l1JvAxUAzpdRe4P9RVdjvKKXGAruBYaGHLwN+DewA3MCY4wno9yvuuqvFsR9okfh4k9Gj42nRInwz7t69m1mzUigrC9+MHTvGcP31zcNqtvifioqKCuufs9Pp5LyY83iyxZNWR6nT1kNbqbRVhvX3MT4+nifSn8DdonEn9T0RflX3xNLHLG6t9c113DX4KI/VwO+PO1nN82zs39/35z7tpElJ2UGrViX07Ru+GYuKiigraxHW38fWrVfQq1cv0tLSftHzg8Egs2bN4oknnqi1fPbs2fz6178+4emitNa88cYbYf1zLi0t5ZtvvgnrjKZpUlxcHNYZN23aREmPEso7llsdpU6JtronjmiyM+CIpsXv9/Pqq68yceLEI/4Ev/baa/nwww+58soriYqSX2nR9Mkp7yLsBQIBZsyYwaRJk446bqq1ZtSoUSxYsIBgMGhBQiFOLiluEfZsNhuLFy/G5/PV+ZhDhw6xcuXKRp9dW4hwIL/lIuxt2bKFgwcPHvNx+fn55OXlnYREQlhLiluEPYfDcVxj18f7OCEinRS3CHudOnUiKSnpmI9r0aIFWVlyhQXR9Elxi7Bnt9vJycnB4XDU+ZjmzZszadIk7Hb7SUwmhDWkuEXYs9ls9O/fn/PPP/+oW9Tt27fnwgsv5Nxzz5XLiYpTghS3iAhxcXHMnz+fDh061CpnpRTdu3dn3rx5Mr4tThlS3CLsaa0JBoOMGzeOL7/8stax3FprPvzwQ+6++2601mF9fQwhGooUtwhbWmsMw2DDhg1cdNFFrFixos7HvvHGG1x33XXk5uZimqYUuGjS5G9LEZa01rhcLt544w1ee+011q9fX+/jDcNg2bJlaK256aabuPnmm7Hb7TLmLZokKW4RdrTWmKbJww8/zAsvvHDczzNNk2XLlvHRRx9RUFDA5MmTsdlsUt6iyZGhEhF2/H4/d999N7NmzfrZz60eXnn88ceZPn26XLtENElS3CKsuFwuHn74YV566aUTKl23280TTzzBnDlzCAQCDZhQCOtJcYuwEQgE+POf/8zMmTMxTbNmeVRU1HFdPCoqKqrWCThOp5O77rqLWbNmyc5K0aRIcVvE4/GQk5NjdYywMmXKFJ599tkjlo8YMYIzzzzzmM/v378/gwcPPmJM+6GHHuK5555rsJw/1xNPPIHbHb4zrWitmTJlitUx6rV///5fNHTWVElxW+Dee+/l4osvJjs7m7POOosvvvjC6kiWCgaD3H///Tz//PO1trTj4+O5/vrrmTFjBunp6fW+hlKKNm3asHDhQpYtW0Zi4v9mD3G73TzyyCP8/e9/r/X6je2rr76iS5cudO/enUsuuYRJkyadtHUfr2effZbs7GwuvfRSunbtyltvvWV1pCPcdNNNjBkzhujoaDp37szOnTutjmQ5Ke6TrKCgAMMwmDx5MllZWUyZMoXt27efsuOwWmvWrFnDhx9+iN9fNceeUorOnTuzcuVK3nrrLVJTU4/79Zo1a8Zll13GG2+8Qdu2bWu2vl0uF6+99hq5ubknZdgkEAiwbds2br75ZhITE3nnnXcwTZOCgoJGX/fxKikpoby8nHvvvZfY2FhmzpxJQUEBLpfL6mg1du7cSXx8PBMnTuSCCy5g3LhxbNiw4ZQf+pLiPskKCwtJS0tj8+bNbNiwgbZt27J3795T+uiHQCBQa0u4R48e/PWvf6V3797ExMT87MP57HY7l112GTk5ObRp06ZmeTAYrHfm7IYUDAb58ccf0VrzxRdfEB0dTXp6OoWFhSdl/cejtLQUm81Gfn4+69ato2XLllRWVoZVce/atYt27dqxZs0atm7dSufOnfnhhx+kuK0OcKrp3bs3u3btYs2aNZx77rmMHTuWvn37EhcXZ3U0Syil6NOnD48++igZGRmcc845LFiwgEsuueSErvQXGxvLjTfeyDvvvEOLFi3o1KkTjz32GO3btz8px3XHxcVx0UUX8frrr3P99dczevRocnNz6d27d6Ov+3h16tSJYDDI8uXLufrqqxkxYgRZWVlkZmZaHa3GZZddxsqVK8nPzycxMZG77rqLIUOGnPIzHckJOBZ48cUXKSsrY8qUKaxbt67WeOypKDExkZtuuqlmst+fDo2YpnnMsenqk3a01jXFHBcXR58+ffjuu+9QSpGcnHxSL0Q1aNAgvvnmG+69917mzJnzi2e3b0xTp07lnnvuYfz48Xz55ZfEx8dbHekIS5cuJT8/nwULFrB582aSk5OtjmQ5KW4LJCQkkJCQwLx586yOEjYcDgfNmjU76n3BYJCzzz6bdevW1VngsbGxNVuQP71ud0ZGRoPnPR4Oh4O0tDTmzp1ryfqPR1xcHHFxcSxatMjqKHVKSkqiR48eTJ8+3eooYePU/ntDRITo6GgmTpxY79Zyeno6o0aNqneyBSGaCiluERGONcShlJLZb8QpQ4pbCCEijBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhDlmcSulXlVKHVBKbTls2aNKqQKl1IbQx68Pu+9hpdQOpdQ2pdQVjRVcCCFOVcezxf0acOVRls/UWvcMfSwDUEp1BYYD3ULP+YdSSg6uFSfsWBcVOtUvOiROLccsbq31l0Dpcb7edcBbWmuf1joP2AH0OYF8QgAccQ2NqKioWifl2Gw2YmJiTnYsISxxImPcE5RSm0JDKdVXz8kCfjzsMXtDy46glBqvlFqvlFofCHhOIIY4FWRmZtZcjMvhcPDUU09x//3315R3SkqKZdckEeJk+6UXmXoReBzQoc/PArf9nBfQWs8GZgMkJbXQPt8vTCJOCQ6HgzVr1hAMBlFK0bFjR/x+P6NGjUJrTWxs7Em5XKsQ4eAXFbfWuqj6tlLqZWBp6MsC4PTDHto6tEyIE2Kz2Y6Yd9LhcHDWWWdZlEgI6/yioRKlVKvDvrwBqD7i5ENguFIqRil1BtAJWHdiEYUQQhxOHWtvvFLqTeBioBlQBPy/0Nc9qRoqyQfu0FoXhh4/laphkyAwSWu9/FghUlLS9Zln3vtL/w2NzuFw0a1bMW3btrU6Sp3279/Pxo0xeL3hd7H+amlp2+nb94ywvvTq5s2b6dGjh9Ux6hQIBMjPz6dTp05WR6lTaWkpfr+fli1bWh2lTvn5+Xzf/HsCCeE71+v2GdspLy0/6vjfMYv7ZEhKytR+/zarY9QpOTmf005bxdatt1odpU5t237EP/7RnF69elkdpU5//etfGTNmDCkpKVZHqdPUqVPJycmxOkadysrKmD9/PhMnTrQ6Sp3Wr19PSUkJV1wRvqdxLFiwgAEDBoT1xljnzp05cODAUYs7TGbAUfj94bulGAiUYBgxYZ3RMOJISEgIy+mxqjkcDlJSUsI2o9Yau90etvmgKmP1zDrhKj4+HrfbHdYZY2JiSExMDOuM9e1sl1PehRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLjFUVVUVLBy5UpmzJhBWVkZpmlaHakWrTVlZWXMnDmTFStWUFFRYXWkIwQCAcrKyhgzZgwFBQW4XC6rIx3B6/Vy6NAhhgwZQllZGT6fz+pIR3A6nWzZsoUHH3yQsrIyDMOwOlItWmvKy8t58803efPNNykvL6exZxaT4hZH1bt3b5YtW0bz5s3p2LEj5eXlVkeqpby8nI4dO5KRkcFHH30UllO2ff755/Tu3Zu7776bMWPGcMcdd1gd6Qg5OTlcfvnlPPnkk/Tr14/58+dbHekIV111FU8++SSXXHIJ3bp1Izc31+pItZimSadOndi7dy979+6lU6dOjb6hI8UtjrBo0SJuueUWEhISaN26NTNnzmTu3LlWx6pl7ty5TJgwgZ07d3LnnXcyduxY3nvvPatj1fB4PKxatYoRI0bw4YcfMn/+fDp27Mj69eutjlZjx44d2O12rrrqKv71r3+xcOFCCgoKOHDggNXRanz66acMGjSIDh064Ha7efHFF1m0aFFY/QX42muv8bvf/Q6n08mll17Kn/70J1577bVGXacUtzhC586d2b59O/369aNNmzZs2bKF7Oxsq2PVkp2dzY8//kj//v1JTU3l+++/p0uXLlbHqhEVFUXr1q1RStG/f38CgQCHDh2iVatWVkerkZaWhmmatGnThvPOO4+ioiKSkpKIj4+3OlqNdu3asWfPHs4//3zOPPNMtm/fTufOneudj/Fky87OJjc3l/79+9OiRQs2btzY6O8XKW5xhO7du1NQUMD8+fN57733eP/99znvvPOsjlXLeeedx5dffsn69eu55557yMvLo3v37lbHquFwOOjcuTNvvvkmLpeLoUOHopQiKyvL6mg1MjIySElJYebMmXi9XiZNmkRWVhaJiYlWR6vRsWNHXC4Xf/vb31i7di0vv/wy55xzTlgVd69evdi4cSPLly/nmWeeYc2aNY0+dBcms7yLcPPFF1/w3Xff8cMPP4TdmCJAcnIyubm5vPfee1x99dVhVdrV+vfvz9atW8nJyWHlypVhtSVb7b777uPee+9lypQpfP/991bHOaq3336bwsJClixZwrZt26yOcwSbzcaWLVv4/PPPUUoxY8aMRl+nFLeoU7du3ejWrZvVMeo1ZMgQqyMc09SpU62OUC+lFH/5y1+sjlGvVq1aceedd1odo14XX3zxSVuXDJUIIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMMcsbqXU6Uqpz5RS3yulvlNK/SG0PF0p9YlSKjf0OS20XCmlnldK7VBKbVJKndvY/wghhDiVHM8WdxC4T2vdFbgA+L1SqivwELBCa90JWBH6GuBXQKfQx3jgxQZPLYQQp7BjFrfWulBr/Z/Q7UrgByALuA6YF3rYPOD60O3rgPm6yv8BqUqp8LlAgxBCRLifNcatlGoHnAOsBVporQtDd+0HWoRuZwE/Hva0vaFlP32t8Uqp9Uqp9YGA52fGFkKIU9dxF7dSKhFYBEzSWte6ar2uumr4z7pyuNZ6tta6t9a6t8MR93OeKoQQp7TjKm6llIOq0l6otX4/tLioeggk9Ln6Ir4FwOmHPb11aJkQQogGcDxHlShgDvCD1vrwy159CIwO3R4NLDls+ajQ0SUXAOWHDakIIYQ4QcdzdcCLgJHAZqXUhtCyKcCTwDtKqbHAbmBY6L5lwK+BHYAbGNOgiYUQ4hR3zOLWWn8N1HXV8sFHebwGfv/zozTu5JoNI/wzNvYkpQ0h3DOGez6QjA0lEjIejQqH4CkpabpnzxFWx6iT3e4nJcVJdHS61VHqFAxWkJoaFZYX66924MABMjIysNvtVkep0969+4iKOs3qGPUwCNj24ch0WB2kTqbbJDGYSHJystVR6lRaWkpiYiLR0dFWR6nT66+/zqFDh4660RDZX9YAACAASURBVBwWxZ2U1EI7nUVWx6hTSsoOnn76M8aNG2d1lDotXryYFi1acP755+Pz+XA4HP+bUNVmst+3m0PBIrSpiSIaUHgCbuLtyXRI7oYy7URHOzAMA6UUwWAQpRQ2m41gMEh0dHTN5+rXDwaD2O32Wo9VStU83+GoKpfqaaamTZvG73//e9LS0iz6LtVPa82wYRN5772/WR2lTjExpXT/0+V8O+Vbq6PUqeWqlswqnsV1111ndZQ6vfTSSwwePJiOHTtaHaVOLVq0oKio6KjFLTPgNDGGYVBSUkJsUjTrDi0lM7YtQZuXnc6NFPp3U+l1Uukt57S4Dnj8HjIdrcmN/YG8kh1MOH8qfl8ApRROpxOlFDExMTidTpo1a4bT6SQ9PZ3y8nLS09OpqKggISGBsrIyHA4H0dHRREdHExUVhdPpDNuCFiLSSXE3MTvKNrLo0ExUuWK/bzcOHUswqEkgjWYxWaSSRpnbhccMkB7TGkwHy3e+T1xUEo+vfIDh3cdyWvzpJCUlobUmGAySkZGBy+UiJiaG4uJiEhMTqaioIC4uDp/PR2pqKlprDMPA7XYDEB0dTUlJCampqURFya+ZEA1J3lFNTPP4try14r+kx6aT3Tyb9pld2LUvn3lfv0nHM1NonpBI7qZC7FlBLuo6AHswlrioVEori4mJT+LVdS9y1VnX0y3tbKKiHDgcDg4ePEhmZiYul4v0jAxKS0pISUmhvLychIQEKioqcDiqHpuQkIDNZsPlcpGWlobNJhegFKKhSXE3MXHEM/uqV3ng35P51/fL+XjLp8SY0bRIa4n/YAy+ymZ0ymzLvrI8jDKTNRvW0Lp7Ojv276Njhp8ydzlen0GHgV1IjYpDKUViYiJ+vx9fZSHbt35IZUUl6Zmn0az9YAzDIDY2tmYc2+/3A1UzX3u9XuLi4mruE0I0DNkcamJsNhtnpnfkkUumYotS7CzZySHPIRJjE3D73bgDLk7PPJ2zmvUk2dORdsldqdyuUX4TOz72HNjHx5tXkLN0GlC1w840TdAGBd9/zOdvTeLbZY/w7b+fRYX2a5umiWmaNYdW2Ww2tNYRe6iVEOFOiruJcTgcBPwB+rbuy6JbFtEsMQOb3U6ZtxxHdBQ+w8/3e7/jYOVBtu3Zylfr19A2vjvXthjJxhXbOK/L6cRX2nl3+bsEggEAKivKOLD7G778198oc8dw3pA5XHbbQgJG1VElfr+/5giW6p2UpmnK1rYQjUSGSpqY8vLymvHos1p2ZdXEr7nxlSEUlhQSo6OJ1jHEEsPBkoNov0mLtJYY2qDoQDHXnnsTZT+UkRJThi8ljp0/bqfLGd344oNn2PrtUk4/4yz6XTqe7n2upqKigsT4eLxeL+np6RiGQSAQwOl0orUmPj6e4uJiMjIyZOekEA1M3lFNTPXOwqioKLxeLy3iW/Lqza/yz83/5MWVL7KvtBD8mqSoJLpmdSVaRXOg7ADxUXFUVlSiDEgqb0dlchl/XjKJoR1uYscPm0ht2ZVrxv6VjBZt8Xq9xMfH4/f7cTgcuN3umuO34+KqrvRoGAZJSUmyc1KIRiDF3cRU7xAMBAI1J+F0bn4mZw66hz5Z51HkKuKJ956goHgfu4p2kh6bQTTRlBQX43MH8Do93HX9Xdx94QTK4/fy2synSDtgcN/jL5PW/HTcbjdxcXF4vV5iYmJqTsqpHueu3jlZXegxMTEWf0eEaHqkuJsY0zSJiorC7/fX2kmoNfRt35fYuFiu7HoljmgHzkon0XZFwa7tNE/JwKchPr05sdGxpKWmUVFxiG1nbGDQbVfRrlNPlFIYhoHNZsNZfJBAlJ2AYZJxWhY2m62mvIGax8oOSiEanhR3ExMbG1tzXLXP5wOouTZITEwMfr+fpNgkitevJjbgofJAEUn7dlNRdojUHueQ3PMCnPk7yPN4+HH/ATZ/tYoLzu1HoGAP+3K3EhsXR0ViGru/WsGeLRtJbN6K+PZnkpjRjKxu3WjRqXPNafApKSkyVCJEI5DibmJcLhcZGRk4nU5iY2MxTROfz4dSCo/HQ6ynkryFs0hIy8AfF09K85YkXzgQrRQK8OzdjS4vJcYMkpC3nQt9bvSKpewryEfZojgU8BOXmcWZg6+kw+Ar0IbJtlVfsn/LRvb891sqPV6un/JH0po1o7y8nIyMDClvIRqYFHcTk5ycXHWtkthY3G43NpsNh8OB1poEh50Nd48jpX0n0gZcjs0eBdrAX7Cn6sK9WmO3R5HSsQum1iSc3oGONw7HMEx87gqi4hIxtEkgEMRTXoqpwTA1rbufTSutKS8p4cPnZjDnd3cw4bXXSU1NDesrAQoRqWRTqImpqKigWbNmNYfkORwOAoEA3kMlrL39euJPy6LVr36DWVmOWV6KrixHeZ0ojxO8LrSrAqP0IMHSg5iuSoLlJRiVh1B+P/6yUgKHDhGsrCDochF0uwi4XfidlficVcMz1026D+f+Ql747Sh+3LkTwzCs/pYI0eTIFncTExsbi8vlQilFIBBAa43dbqfwn++QfnoHTrviWgLFhdhDh+/ZVGiWDKVQWmNqDVqh0GCaaA2G1gRNMEwTU2tMTehrjWFqAlpjaJOgqTBNzYXDb+GTua/y3WcrOaNzZ6u/JUI0OVLcTUx8fDyFhYWkpKTg8XiIjo7GFvBRuX0TLc7qSbB4PzabqipqG9hC5U1VVaNNE7QKlXboiBSj6tT3qqI2MU0ImCaGCUGtMUJfB7XG0Bob0K7H2axdsoT+vxlCesuW1n5ThGhipLgtorXG6XSSlJTUoK9bXl5OixYt8Hg8JCYmYpomBZ98CD4/phHA8LhQNhsoUPaq0rbbqnZMGpqqLWoTtAnaMDHNqq1wQxuYhgptfWuChknQhKBpEtAQMAwMDQGz6nbLjh3ZnZuL89ChRi1uj8dDVFRUzaQNomkyDAOv10tCQoLVUepUfRTXyTh3QYrbAps3byY/P58lS5YwdOhQevXqRbNmzRrktVNSUigqKiIpKQmXy4Xdbic+xkFltB3T78UMgrbZwAbapsCmsNltKFVV1srUYGq0qTENA7NmSCS0hW1UDY34TU3Q0FXFHdriDoS+9puhYZNgABrpOO5AIMDKlStZs2YNWVlZdO7cmQEDBjTKuoS11q1bR15eHmvXruWKK67goosuIjEx0epYNbTWrFixgk2bNgGQnZ3N4MGDG/U6PbJz0gLTp0/n66+/5pFHHuHpp59m/fr1DfbaHo+nZis+Jiam5tR30+fF9LgwPC5Mj7vqw+vG9HowPW60O/TZ4z7scR4MjxvD4yLocRPwuAl4qnZKBl1OAm4XPpcLv6sSn8uJz+XC63Ljc7nxOisxAoEG+3f9lMvl4ve//z2DBg0iNjaW8ePHN9q6hLUmT57Mvn37GD16NFOmTGHv3r1WR6rFNE3Gjh1Lx44d6dixI2PHjv3ftIGNRIr7JFu6dCm9e/dmx44dPPfcc7zyyissWrSIioqKBnl9u92O2+2umb1Ga02U3UFl7g/4SosxXC6CbidBj7uqgN1OAi43/pqjRJwE3W4Mt5OA20nA5STgqloecDrxOyvxu5z4XU58TidFW7/DU3YIr7MSr7MSj7MSr9OFp9JJoBGL+5577uHhhx/mscceo1u3bkyfPp2cnJxGW5+wxiuvvMJvf/tbPv74Yz766CNef/11cnJywupopfvuu4+//OUvPPfcc0RHR/P6669z3333Neo6ZajkJLv88su54447uP322znvvPOYMWMG11xzTYONdVcfN62UqrmWdkyz5uCIpuKHzagOndAxMWibDW1XaKXxuypRMfHgcGAEgwT8QXxeN2Vbv8MfDOINanymxhs08BomPgOSOnXHiI7GER+P1+UmqBQBQ+MzqoZM9u3ZTfnBg6hGOo572rRpjBw5krlz52Kz2bjrrrv47LPPGmVd4udrqGGCESNGcN1115GTk0ObNm144IEHuOeee8LqpK7HH3+cwYMH8+abbxIbG8tvfvMbPvnkk0ZdpxT3SRYdHc3555/P22+/TW5uLnv27GH48OEN9otefVnXyspKEhISCAaDkN2HjL6XULT8PQyPi9R2HTDi4zFsCrvSGEUFqKgYiI7GX1mOr/gAfqNqHNtnmAQNjT+oCRgGwaAmYJgUbPoGXxCimrXAFwhCQiJEx+LXirLiUnbn5nLxbeNIb9WqQf5dP5WWlkZWVhZz587l0KFD9O3bl/j4+EZZl/j5GuoaNbGxsfTv35+XX36Z9u3bEwwGadmyZVhd5z0hIYEePXowe/ZsALp169boO1GluC1w5513ctttt/Hxxx8zceLEBn3t+Ph4ysvLsdvteL1eoGor3OPzEzQ1PreLyqJ9xDfPxFNWil2b4HWD34dJ1Y5IU4cK24SAofGHdjoGzaojSgz9vx2Wrn0F+AyNxzCJyWiOy+enpOggpgnte2QT10g7keLj41mwYAHr16+nVatWZGVlNcp6hPUeeeQRysvL+c9//sODDz5odZwj2Gw25syZw9atW1FK0fkknLsgxW2R6OhorrnmmgZ/Xb/fT2JiYs0x3IZhYBgGcVlZBO0OCAZQlZXo6Gh0yUHs2kQpW9UZ74ChzaqTasyqk278psYfOmIkYEJAm6EjS0In4WiNQdUx3j6vF4/Tg6kUMYnJeH0+TNNs1D9re/fu3WivLcJHSkoKgwYNsjpGvbp06XLS1hU+A0WiwVT/mXr4n6vtR/wOW7OWuA0Dt9uLq7wcT8DAEzDxBEzcQRN3wMAdNPEENb4g+IImvqCJP1hV4AHDrPowNUbwf1vhfsPEROGqcOHxeAgGTc6+6koG3HqLVd8CIZo02eJuYqKjo/F4PNhstqrxbf43ea8ttTnBPXlobWA43dgME7vSVedMVu/MpOokHKP65JrQlrcvVNp+s2pHZSB04o3fDD0WMKgaQuly0QDs2IiPjQurnUhCNBXyrmpivF4vycnJQNWOnaioKEzTxDAM2o26C5+h8AZNPF5/1dZ2MPQRMPAGzaojRwKhz4bGZ2i8hok/aOILfQ4GNf7Q+HfQ1FXj4IEgXq8Xe2wMthgHV46/g4qKirA6bEuIpkK2uJuYpKQkiouLiY2Nxel0opTC4XBgt9s54/yLWBufiL+yHJuCKJvCZiqU0tVXdf3fae9UbXFXX4/EHyrogAF+E/ymgc+AgFH1OL+h0VEOLhw6nG3/3UDb7t1JSEiQiYKFaATH3OJWSp2ulPpMKfW9Uuo7pdQfQssfVUoVKKU2hD5+fdhzHlZK7VBKbVNKXdGY/wBRm9PpJCUlBa01sbGxOBwODMPANE3cgQCXPDe35nhst1E1tu0JmLhD49wew8ATNA7bAjfxBgz8QQN/9VCJYeIPVp/ebuAzIWiYdLmwH99+9hkTXppNdHQ0Tqez0c8gE+JUdDybQ0HgPq31f5RSScC3Sqnqo8tnaq2fOfzBSqmuwHCgG3Aa8KlS6kyttfzNfBJER0fj9XprzflYPc4cHR1NTGYLWl50CXu+WoEtdGlXRdU4t8aGRtdcytUIXco1GLqwVNU1SXTNIYJ+08RnVI13xySn4PH6Of/Xv6Zl27YYhoHD4Qir422FaCqOucWttS7UWv8ndLsS+AGo76DZ64C3tNY+rXUesAPo0xBhxbHFxsZSWVmJUgq/349pmtjt9qqLTcXHE5Wazml9LsQX1KGjSqq2rD1BXfU5dJSJJ2jiM6rGub0GoY+qrW2fUbWDsmqoxMRUUXS75FI8fj8XXns9ScnJGIZBQkKCFLcQjeBn7ZxUSrUDzgHWhhZNUEptUkq9qpRKCy3LAn487Gl7qb/oRQOqqKigefPmmKZZVdRRUQQCAQKBAIcOHSIhPp5uw0fTetDleMyqoRBXwMDlN3CHDg90h4ZKXKEC9wYMvMEgvoCBr3rHZdDEb5gYdged+w2ktLiEcy+9jKzu3SkrK8PhcFBcXCw7J4VoBMdd3EqpRGARMElrXQG8CHQAegKFwLM/Z8VKqfFKqfVKqfWBgOfnPFXUIzk5mdLSUmw2G263m0AggMPhwOFwkJqaitvtxu5w0OayXxN0xNUct+0xdNWx3Ebo66D+3xEnQRNvUOM1NJ7qMW5TQ2wsmR06oqPsuCvKyerSheSUFFJTUwkEAqSnp8uck0I0guPa5a+UclBV2gu11u8DaK2LDrv/ZWBp6MsC4PTDnt46tKwWrfVsYDZAUlILHboGuThBbreb5NBQRfUs79XHc/v9fmJjYzEMgz43DMVTWsLSRx+h9mjG/47nrjr9nZpT3IM6dBq8aaKVncTkNIiOoTAvn/FPP023/v3xeDwopYiKiqKyspLk5GQpbyEa2PEcVaKAOcAPWusZhy0//OpBNwBbQrc/BIYrpWKUUmcAnYB1DRdZ1CcuLo6Kigq01ni9XoLBIDabDZvNRkJCAl6vF601FRUVDLztDi5/5FGCdkfV1nToeG5P0MSv7HgOW+Y1TPzahjdo4AtqfCjcHi/78/cw8v/9mU7nn191JcKYGGJjYwkGgzLGLUQjOZ4t7ouAkcBmpdSG0LIpwM1KqZ5UXeIiH7gDQGv9nVLqHeB7qo5I+b0cUXLy2O12oqKiiIqKqjnlvfr24fdFRUURHRND31t/S8deF/DJiy9QUXwQqPqB9r3lVr5a+Dpag2lqouLiOb1HD35YswZTg0aR3qolt06ZQvrppxPlcNS8bvU6o6KipLiFaATHLG6t9deEJgL/iWX1PCcHkKvaW8Bms9U7DVpKSgpAzWUnMzMzyczMpNtRpv26fMztvziHzAEpROORU96FECLChMn5yJqYmFKrQ9QpOroCr9dLaWn4ZnS73TidzrDOGAgEKCsra7CL7DcOI6x/F2NiyrAH7MSUNv5M4r9UtDMat9sd1r+LXq+XioqKsM5Y3/tEhcObKD09Xd9///1Wx6iTy+Xi4MGDtGvXzuoodSosLCQmJob09HSro9Rp27ZttG/fPqyHUTZu3MjZZ59tdYw6BQIBvv56F4cONf7F+n+p2NhSzjnHR6tGmv2oIeTl5ZGZmdnoM9WciGeeeYbS0tKj7yTSWlv+kZmZqcNZbm6unj17ttUx6vXBBx/o1atXWx2jXo8//rguLS21OkadTNPUEyZMsDpGvUpKSnSvXjm66pJg4fnRsuXXevHixVZ/q+o1a9YsnZuba3WMeoV68aidKWPcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwTba4V69eHdZTZAWDQdatW2d1jHqVlJSQm5trdYx67dixg5KSEqtj1Oubb74hGAxaHSOiuVwuNm/ebHWMeu3du5eCgoKTsq4wmXOy4axfv54PPviA2NhY/vWvf3HxxRdz2WWXWR2rlnfffZeNGzcSHR3NkiVLGD16NGeeeabVsWp55plnqKiowGazEQgEeOSRR4iLi7M6Vg2Px8O0adNwOByYpklSUhKTJ0+2OlYtO3bsYO7cucTExLBkyRKys7MZNmyY1bEizssvv8zu3btxOBy89dZbTJo0iebNm1sdq4Zpmjz22GM1G4pKKf70pz9hszXednGT2uLWWrNhwwZM0+QPf/gDLVu25PPPPw+rLW+tNf/85z/p3r07d999N0VFRezatSvsMs6bN48bbriB3/72t3zyySe43W6rY9Xi9Xr597//zejRo7nxxhuZP39+2H0Pd+3axf79+5kwYQJnn302H374YVhljARaaxYuXMill17K+PHj2bhxI8XFxWH1fTRNk7fffpvhw4dz8803884772CaZqOus0kVd35+Pps2baKyspJf/epXjB49mtjYWFavXm11tBrvv/8+F1xwAXPnzmXy5MlMmzaNhQsXUlFRYXW0GlOnTiUnJ4fbbruN5cuX88YbbzB+/HirY9Uybtw4Jk2axI033ojP5+P5559nypQpVseqUVlZyfz588nKymLw4MEMHjyYiy66iEWLFlkdLaL87W9/48477+Shhx7ixRdf5B//+AdTp05t9GL8OcaPH8+TTz7JLbfcwvbt20/K+6VJDZWcccYZZGdns27dOv75z3/y1FNPAXDRRRdZnOx/fvOb3zBy5Eh+9atfMXz4cCZMmMDtt99OSkqK1dFqPPHEE3Tr1o0ZM2bQsmVLbrjhBr788kurY9Xyyiuv0K9fPxYuXEhRURGTJk3i+++/tzpWjeTkZEaNGsVLL73EsmXLeP3111m7di0LFy60OlpEmThxIgMHDmTSpEmcd955jBw5kpdeegm73W51tBovv/wynTt3Zt68eQAMGTKEbdu2Neo6m1RxA/Tr1w+tNX/+85/p3r07PXv2tDrSEcaOHcvWrVt5+umnueKKK+jWrZvVkY7wxz/+kS1btrBmzRomTpxIfHy81ZFqiYuL4w9/+AMffPABSUlJ/PGPf7Q60hG6du3KlVdeyTPPPEOnTp24/fbbrY4Uke6//37y8/N55ZVXGDFiBC1btrQ6Ui02m42pU6fyxRdfoJRi6tSpjTq+DU2wuLt06UKXLl3YtWsXZ5xxBkopqyMd4eKLL6Z///78+OOPtGvXzuo4RzV8+HBcLhcul4vMzEyr4xwhJiaGcePGceDAAeLj40lMTLQ60hFat27NuHHjyM/P5/TTTw+rrcRIcs011+Dz+SguLiYrK8vqOEdQSjFmzBjKysoASE1NbfR1Nrnirta+fXurI9TLbreHbWlXS0hIICEhweoY9QrH/6n8VLj/nCNBTExMWJb24U5GYVdrUjsnhRDiVCDFLYQQEeaYxa2UilVKrVNKbVRKfaeU+nNo+RlKqbVKqR1KqbeVUtGh5TGhr3eE7m/XuP8EIYQ4tRzPFrcPuERrfTbQE7hSKXUB8BQwU2vdETgEjA09fixwKLR8ZuhxQgghGsgxi1tXcYa+dIQ+NHAJ8F5o+Tzg+tDt60JfE7p/sArHQzuEECJCHdcYt1LKrpTaABwAPgF2AmVa6+or5+wFqnf5ZgE/AoTuLwcyGjK0EEKcyo6ruLXWhta6J9Aa6AN0OdEVK6XGK6XWK6XWezyeE305IYQ4Zfyso0q01mXAZ0BfIFUpVX0ceGug+nqGBcDpAKH7U4AjrruptZ6tte6tte4dTledE0KIcHc8R5U0V0qlhm7HAZcBP1BV4ENCDxsNLAnd/jD0NaH7V+pwupSXEEJEuOM5c7IVME8pZaeq6N/RWi9VSn0PvKWUmgb8F5gTevwcYIFSagdQCgxvhNxCCHHKOmZxa603AeccZfkuqsa7f7rcCwxtkHRCCCGOIGdOCiFEhJHiFkKICCPFLYQQESYsLutqmiarVq2yOkad9u/fT2FhYVhnzM/P59ChQ2E1pdNPlZaW8s0334T1pWLdbndY/5ydTiexsaW0bBm+GdPStpGfXxnW38fCwkI2bdpEUVGR1VHqVN97OSyKW2tNSckRh3qHjfLycjweT1hndLlczJ1ro7IyfDO2aePn/PMP4fV6rY5Sp0OHgowcGb7fw6goN62u/Ia4B963OkqdovOScbmGhfX7xev18kjZI3ijwvd30ad9dd4XFsVtt9u59tprrY5Rpx07dmAYRlhnNE2TAwdasH9/X6uj1CkjYxOXX345aWlpVkc5Kq01CxZ8Ql5e+P6cY2JKSW75DHnX5lkdpU4tV7WkW3G3sH6/FBYWsm/APso7llsdpU6J9rpndZIxbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3M8//zxaa6tj1Mnn8/Hyyy9bHSPiffrpp+zYscPqGKKRFRcX8+6771odI2w0ueJeunQpAwcOpEWLFgwaNCgsyzEnJ4drrrmG6OhoBg4cyNq1a62OFHGcTicDBw5k1apVPPHEEwwbNszqSKKR3H333dxxxx3s27ePgQMHsnv3bqsjWS4spi5rKH6/n/z8fG644QbOOeccHnvsMf7973/jcrnCZoLa8vJy9uzZw7333stZZ53FoUOHyMvLo3fv3tjtdqvjRYz8/HyaNWvGkCFDaNmyJbfeeiuFhYW0atXK6miiARUXF1NQUMCDDz5IVlYWBQUF5OXl0aZNG5RSVsezTJPa4q7+Ie/fv59nn32WTp064XA42Llzp9XRavz3v/+lffv2LF68mDfeeINBgwaxbt06PB6P1dEiyoIFC+jXrx/Tp09n//79DBs2jCVLllgdSzSwzz77jAEDBvDSSy+xfPlyrr/+ehYvXhzWw6AnQ5Pa4j7ttNPo0KED8+fP5/XXX2fcuHGcffbZZGdnWx2txsUXX8ycOXMAuOGGG7j11lvJyckhMbHuiUHFkR5++GG6devGP/7xD5YvX87s2bPZvn271bFEAxs6dCgDBw6kT58+dO3alTFjxrBkyRJstia1zfmzNaniBhgyZAj9+vVj0qRJTJ8+nebNm1sd6QhPPfUURUVFTJs2jYULF9K6dWurI0WcpKQkVqxYwaJFi+jcuTPLli2zOpJoJPPnzycvL493332XJUuWcMYZZ1gdyXJNrrhTU1NJTU3l3XffxWazheU42GmnnUarVq2YP3/+Kb/l8EvZ7Xa6dOnCww8/jFIqLH/OomG0bduWNm3aMGDAAHm/hDS54q4W7jv6pGwahryRTw3yfqntmL/1SqlYpdQ6pdRGpdR3Sqk/h5a/ppTKU0ptCH30DC1XSqnnlVI7lFKblFLnNvY/QgghTiXHs8XtAy7RWjuVUg7ga6XU8tB9k7XW7/3k8b8COoU+zgdeDH0WQgjRAI65xa2rOENfOkIf9R2Lcx0wP/S8/wNSlVJycK0QQjSQ4xogVErZEnWskwAAIABJREFUlVIbgAPAJ1rr6lP9ckLDITOVUjGhZVnAj4c9fW9omRBCiAZwXMWttTa01j2B1kAfpVR34GGgC3AekA48+HNWrJQar5Rar5RaLyefCCHE8ftZu+S11v+/vTOPs6OqEv/31tvXfr1kIwtJSIyBsCeRiCAkEMBBFmUUdYAfi6BjQAWGwDgBZUYENBBxcADZQhBBkQgCKkhAPsPIEgJkkURCSEhn6e708paq9+rVcn9/1EJ3yNKJSV4/qO/n8z5Vr+7tqtP3vXfq1LnnntMDPA+cLKXc5LpDdOA+YKrbbQMwstefjXCPbX2uu6SUk6WUkxOJxO5JHxAQEPAxpD9RJYOEEDl3PwGcCKz0/NbCidE5A1ju/skTwLludMlRQF5KuWmvSB8QEBDwMaQ/USXDgPlCiBCOov+1lPJJIcQiIcQgQABvAt9w+z8NfA5YDWjA+Xte7ICAgICPLztV3FLKpcDh2zg+fTv9JfCtf1y0gICAgIBtESw7CwgICKgzAsUdEBAQUGcEijsgICCgzggUd0BAQECdESjugICAgDpjQKR1NU2TO++8s9ZibJd8Pk9ra+uAlnHNmjWMGpWkpWVprUXZLtnsWhYsWEAsFtt55xphml1MmjRwP+dQqELDew1MunNSrUXZLslNSf5a+SubN2+utSjbZfny5RyQP4BqQ7XWomyX9833t9s2IBR3KBRixowZtRZju7S2tqIoyoCWMRwOc9RRTRx88MG1FmW73HPPWv7zP4/BMDK1FmW7nHjiEhYuHLifc6FQ4Le/bef8GdteHiGRSGyklAiEfwxAESH/2N5k6dKl9PT0cOyxx+71a+0u+XyeuVPnDujqU9OUadttGxCKWwjBuHHjai3GDnnnnXcGtIzLly9nyJAhA1rGVCpFsTgaXW+stSjbQaIo0QE9hl1dXaRSKcaMGUNnZ6dzMGFQUHtoaMjxVvvzvKQ9SbHSjW0KUkoTqq6i6SoXjv0B8UiCYekRNKaayefzRCIRSqUSLS0tbNmyhWw2i6ZptLS0oKoqoVAIwzCwLItQKISqqn5bQ0MDHR0dtLS0AB8UtWhrayMUCg3ocWxoaGDEiBGMHDmSUqlEIpFAVVUikQjhcJhyuUwmk/HbdF1HCEEkEkHTNLLZLMVikUQigWEYxGIxv4BxNBqlVCqRTqdRVZVkMolpmti2TSwWo1gskslk0DSNeDyObduYpkk4HCYej/sFI3ZUJGRAKO6AgIBdo2yWWFZ+gZKZp7Wwgs7KZuJdGYQdZrAyhuGJg/nbltcIhzJMyhyGkg7xVtdfeXL1I5y0/z8zY/9TGRIfjpSSeDyOruu+EvGUk23bvjLylIjXVwiBpmlEo1F/G41Gazkku0WpVKKhoYFSqURjYyOmaWIYBk1NTXR3d9PY2OgrYSkluq7T0tJCd3c3TU1NaJpGMpmkXC4jhMC2bf+cnZ2dNDQ0kM/nCYfDKIpCV1cXuVyOzs5OstkshUIBIQSxWIxyuUwsFutXpZ9AcQcE1CGKULjt1dsxLJ0R2RGMbRxLLJTi/kULyGaifGL/YXSuU+nUV3DopB6aooMxLJthiQNYsXkpmGEGxYZw0idOA/CVjrevKAq2baMoCqZp9rm2V0bMU+YDtbZrf0gkEpRKJcLhMIVCgVAohKIo5PN5Lr30UiZPnswll1yCpmn+/9zT00M8HqdQKBAOh6lUKoTDjipVFMW/uTU0NFCtVkmlUti2zfz583nuuee48847aWhowDAMv01K2W+lDYHiDgioS2KhJP815eec8cjptEctVoe7SIokTWJ/kpUY2to0WzaUWbm5nVhyGfHOJrqbtpAKNxFWouQLFSrVKkeNOJawjJBKpVBVFSGE8+gfkVQrKpFwCEQcW0pCoRC6rpNKpTBNk0gkgqqqZDKZulXcqqrS2NhIoVAgnU5jWRaGYZDNZnn66ad5/PHHsSyLc889l1wuh67rZLNZ3+IulUpEo1EqlQqAb3Hncjl6enpoaGhgw4YNPPfcc8yePRtd17nvvvvo6ekhm81SKjk1ajxln0gkAos7IOCjSqVSYeyg0fz6S7/mK7/5Mq+vfZ2IGaY52oSsgl21+dFXbuTlZX9lVHYUf1rxJ4aPbGTt+x3EMmk2dXRSqZr86NkbuO7UH6CqKtlsFl3XicgKD845EtusgJB84d/eIJEbim3b5HI5VFUlHA6Tz+dJJpN0d3eTTCZJJpO1HpZdJhKJYJomoVAIy7KcSd1ehYnL5TKzZ89mzpw5PPPMMxx++OG+P9o0TRRFQUrpP3V4bg8pJdFolKVLl3LyySeTz+cBJ4ggFAr5bqVIJAJ88JQTWNwBAR9hkskkHR0dDE/tx/984Q4u/fWltHe3M655PCEZwq5a/OalR0iFUpQrGtFwhLZXw3xy/8lsbH+XQnM7LcZIfvWnR5g5+mQ+96nP0dHRQTwKr//pp+RLBoNHTWb8YScgIkl0XScUCtHV1eVPTjY1NdHR0UFzc3PdWtzhcBjDMFAUBcMw/P/j3nvv9a1ogGq1yle/+lXOOecczjzzTEaPHs1NN92ElBLLsnwFHIlE+PrXv05bWxsPPfQQDz/8sK+0ASzL4q677uLrX/86tm0TDof9eYRQKNR/uffEPx8QELBv0TSNdDoNwOT4ZH51zkOc/oszWNm+ikw4Q0Ik0IVOh76FzR2b6NrSxT9NOZWW6H7YhDgkPZln3voDTbEwMSVCsVgk376a3z8xj/Z1ixk8/AiO+dJccoNHowhBKBTCtm2am5t9i7uzs5NMJlPXFne5XKapqYlCoUA2m8U0TarVKg899BDVat8Y740bN3LTTTfx1FNPkUqlWLx4MZZl9emjKApPPfUUUkreeOOND11PSsldd93F2WefTS6Xo1QqIYQgHo9TrVZ9i39nBCsnAwLqEM86k1KiCIVxTeN57hvPMW7oJyhUCqza/HcWr1vC0vVLyaSzTDloCmWjzPtt6xBhhcKGKscdcArpZJg5D87ivY2reX/1clYue51jTruGL85aQPPQsQicx3hPoXhhgUIIwuEwtm0TCoU+ZC3WiwXu3XhisRhdXV1omgaAYRh+n1tuuaXPGo7ly5fzyiuvfEhpg+PjXrJkSR+lPWTIEObPn++/D4fDDBo0CMMwaGhoIJVKAc5TVOAqCQj4CKMoCpVKBeFaw4ZhMLRhKH+85EmeWvYUTy57mr+u+D82d7ahVVU67RB6qIpdtcGEt1f9jZlTTuLYlrMYPE1w6S1fYUJHiMMmz+ATR55CMt3gK2kv6kEIQbVaJRKJYFkW0WjUn6TcWuF4j/8DHS8MsFAo0NTU5FvcnusDHCW+cOFCGhsbt6msd8aMGTP63AhM02TLli3kcjny+bxvcQfhgAEBH3EqlYrvmiiXy6RSKXp6eshkMkwfN4MvTjmLPy75I5uLm6lWqmTiacpaGb1cBSkwjzcZNWQk06dOp6mxiezmJtb/31uc+IVv0TJ4Pzo7O0mlUhiGQTgc9pW0F58cj8fp6enxF+5kMpm6jOP2wgEjEcdd5E0Q9lbQiUSC3S1ofsEFF3DzzTfzzDPP+MdCoRDZbLZPOCA4C3cCizsg4CNMMpmkUCgAzg/eW43n+WxVVeWkw08i39NDMhql3NPJ+/P/m8rqt4kPG84nv/ufVCMRQsCWzZvY/MZGYqnBjBw1jkJXF42ZDFXDYPXvH+P13yxAROJ88rQvccBx02lsbsayLFpaWiiVSjQ3N/txzPWGruuk02k0TSORSPirGOPxuN+nWq0Si8X8yJNd4fTTTwfoM9EppURVVVKplH88Go32scp3Rn2OdkDAxxxVVf3VfOVymXQ67ccNe9u2N15BtL7H2qd+TSSR4pAf3ApKBBFSsLZs5u05V2MJBbtiY7+9jMGHHMHaR+9n/YvPoxULpEeOYcIZX+Hz18/FNg3+tuhZHjz/K0QbGpl+2eWkh+7H/uPHk8/nSSQS/mRpPdHbfy+l9F08v/vd7xg6dCjFYpF169axZMmSDy1E6g+rV6/myCOPZPXq1f71zjzzTH9OoHfo4a7MCwSKOyCgDonFYn183NVqlXg8jmEYxONxtrz4J9bNncPIsy/ioKtuQAhQV72NpxukEEyacwtSQGXzJhpf/l+q1SohoTB51lUQjqCXNaplDa2zHVtK9j9yCqOOnEq+q4vfXvs9siNHcd5P5pHIZuvW4o5EIui6jqIo/lJ+IUQfC/lnP/sZP/vZz3br/FdccQUbN25k7ty5gDM38Z3vfIdYLIZt20SjUf9msStjGESVBATUIV40R+8FILZtI4Sg44U/8s687zP6q5eQHfsJ9A1r0VvXISoqoqJCRYWySvndlWjvvI1Z7GHw1Gns95nP0jBqDOWOzagb1lPp3IKpqphlDUPT0IslKoU8oVCIz55zLoX167n7X7/ph7HVI15Ypedv9hTp3Llzd9uvvTWe0gbnc5szZw75vDOOpVKJcrns50Hp7zjW520yIOBjjhfVIYTwV/JpmobobKPtdw8y6oyvEWtqwc53oqAghLsiEBCAjQTb2ceWVLUSlpSYNli2xJYSWzr7pre1JRY2hgXRWILPfPVfePynt/LfF5zPlQ/9qrYDspt4y9fj8Tjd3d1IKbn99tv5yU9+0sc10tjYSCgU6hMW2d3dvc1zNjQ0EIlE/Bupbdt+Xykld999N6FQiOuuu86PVLEsa5fCAQOLOyCgDvF82l7muXw+T66hgc3L3iDbMpRUrhm71AMVDaGXUHSNkK6i6Jrz8qzvsgqVEpRVbE1FaiUsrYSplTDVIlW1hFEqUi0VqapF9KKzrZQK2KbBiRdeRHdrK8X29loPyW5RLBbJ5XJUq1UymQx33nkn119/fZ/FNwceeCBLliyhtbWVd999l/b2dhYvXsyUKVM+dL6JEyeyaNEiWltbWbZsGa2trbz66qsceuihfh/Lsvj5z3/OzTffzMaNG1FVFXCs//5a3IHiDgioQ7yERLFYDMuynLC2fA89f/kjSiKOUeyGioYsa1BxFLWia4R1lZCuISoa6Jrfx9JUZFnDLqvYZQ1b0zA1DVMrYWgqVW+rqlTVElW1hK6WMCpVIqk0LzxcnxZ3IpFA0zTC4TBtbW1ce+21fdoPOugg7rjjDpqamnxfeKFQYNCgQcydO5fx48f7fWOxGFdeeSXjx49H13UymQyGYTBkyBDuuecepk6d2ufcc+fORVVVvyLUroQDfuQUt5c74IILLvCTlw80bNumWCxy2WWX+YltBhqWZfHaa69x9913D1gZBzred/Hb3/42hUJhj34XvSRHXqKjarVKRBFU1vyNaHMLdlnFKmuORV12/NqhSplQtYyiawi97Cjtiuq8XIvb0pytqakYmopR9pS25ihsTUVXVfRSiUqphF7RGDp6f4w95A/eFrZts27dOn74wx/u8e+iYRhEo1Fs2+Yb3/jGhxTnpk2buOqqqzjhhBOYNWuWn7/cNE0OP/xwZs6c6fedOXMmxx9/PNVqlXA4jK7rXHPNNZx88snMmjWLdevW9Tm3EIJvfetbfhjgroQafuQU9/z585kwYQKXXXYZhxxyCNdff32tRfoQF198MSeccAJf+tKXGDt2LH/+859rLdKHOOyww7jzzjvRdZ1hw4bR09NTa5HqjkWLFjF27FjOOussZs6cyUUXXbTHzu2Fr3l+VD+kzbawKxpmueQo47JjSVMuIysqlDVk2du6FrbmbM2yo7DNsoqheu4Sz8IuopeKVEsFV2mrVEolKoUCFbW0x/6vbeEpvgkTJjBy5Ej+/ve/77FzewUMQqEQ99xzD7/85S/7tHd1dfHyyy/T1dXFjTfeSCgUQtM0YrGYvzjJI5PJMGjQIJLJpD/Zee2111KpVHj55Zdpa2vrc+7bbruNxx57zI8Z771ac2d8pBR3T08PGzdu5MILL2Tp0qUsXLgQKSWtra21Fs1n5cqVtLS0cO6555LP57n99ttZunQpuq7XWjSfF154geOPP55p06Yxbdo0Zs+ezdNPP11rseoKXdd56623uOCCC3jnnXd47LHHGDx4MCtXrtwj569Wq0SjUd9VEo/HqZQrWKpGpW0jlqo6L011FHC5hKGqGCUNU9UwNdX1ZTvthqpiqk6/qlrC0JxttVTEKKlonZ2UOtpdhV10XyoVtYSuaeyt57HFixdz0EEHcdpppzF48GBuuOEGnn/++T329NI7qVMoFOLFF1/8UJ+JEyeycOFC0uk04XCYv/zlLzz44IM8++yzHHrooZx33nl87Wtf46ijjuKVV17hoYce8hNNxeNxHn/88T4+bo/XXnsN0zT9J4hdeZL4yEWV9K7OMRAf7z3rSFGUD6WSHCj0rn7S25oL2DV61w70FnfsqXGMx+O0t7cjhCCVSjl1EDNpbAmFlSsIjf8kIhEHRUGGBAg3ksQwEbE4lrQxbDBME3XjeiqqSsWyqVoS3ZTotoVuQqR5CGSyVLQyerWKMC2qbj/DllRNi3XLlzNuytSdC70b9P69eBEae/q76H3XS6USd9xxB6eddhqrVq1i1apVAH544I9//GOEEHR2dnL55Zfz6U9/mkcffZQzzzzTT896ySWX8Oijj3LLLbcATl6SOXPm9NFFw4cPZ8aMGTz44IPMnj2bZDK5y9+Nj5TFncvlGDZsGL/4xS846KCD+MIXvoCiKAOqkvOECRPo7OzkvvvuI51Oc+mll3LwwQf7ExQDgWOPPZYXX3yRl156iZdeeombb76ZU045pdZi1RWxWIxDDjmEe++9l7Fjx/LFL36Rjo4OJkyYsEfO7xXrbWhowDRNMpkMRb3KgbN/iNbVwZZlr6Pn875PuqKqaF1bKK1/D62Yp9zTQ/eSl8gveZnSujWom1rRNrWibtxAceN6iq2tFDa8z+YVb7D+5f9ly7ur0QoFSp2daMUi5WIJrVBk5Ssvo0SiHPiZY/bI/7U1Rx55JG+//TYLFy6kra2N//iP/+C4447bYSHdXSEajfo+6Xg8zquvvsq8efNobm72+6xcuZIHHniAT33qU9xwww189rOfpampyb+JeMm4vCXx6XSaz3/+89x7771MmTKFBx54gKVLl/rny+Vy3HrrrbzyyiuMGTPGT9K1KwtwPnIW93nnncc555zDxRdfzNKlS/fYB7wnueuuu9A0jX//939nzZo1A1LGN998kyVLlvDWW2+xadOmASnjQGf69OmsWbOGK664gmeffdZP37mnsCzL/1wcqzGEyDRimDaKqtL1tzdpGPdJFMskZFsIQ8fo2ACbWp1YbRsM26ZqOxZ01XSsaAs3dltCVa9SMSwq+SL6+vVULBszEiM1dD82rl1HsagxeuonmHTssXv0f+vNH/7wB1pbW1mwYAHr16/fo99Fr7Cvrus0NTXR2NjI+vXrqVQq/pMnOFb3e++9x4033siKFSt44oknuO+++5BSkkgk/PDBSZMmceWVV3L11VfzyCOPfOipX1EUyuUymzZtYuLEif4in0gkQqVS6bcB12/FLYQIAYuBDVLKU4UQY4CHgWbgdeAcKWVVCBEDHgCOBDqBL0sp1/b3Ov8o3hLge+65Z19dcpdRFIV0Os1tt91Wa1G2i6IoTJ48mcmTJ9dalLrF+y7Omzdvj5/bW6rtKW8vvWoJsONxqnoFDBO1pxvUAqJURFEECgKJxJI2tnQUt2mD4bo+nC2Yto3pLroxpcS2JZaUWDZYhkGpu4eKViYUiyPl3s2/rSgKo0aN4nvf+94eP3c6nfarsff09BCNRnn33Xf59Kc/zUknnUShUPAnMO+44w6klPz+97/35368avepVAopJVdccQULFizoo7RnzZrllzPzkoOtXr2a/fbbj2w2i2VZVKtVEolEv+XeFYv728DbQNZ9fxNwq5TyYSHEHcCFwP+4224p5TghxNluvy/vwnUCAgJ2gq7rfjSCpmkkk0knzerEg2n8zEza/vQ7bExkZydhYaOYNkIRCFdx27KXIpbS8W1bso8C95W3ZWNKMCzbWV1pSPTuPLaEUDzO56/6Nz9HSr3huZyq1SoNDQ1IKTnmmGOYPn06lUrFr0yjKArjx4/n8ssvB2DevHl897vfxTAMkskk1WrV98HfcsstvtK+7rrr+OY3v0k8HvdXucbjcSqVip/VEfCrxfc3NW6/njmEECOAfwLudt8LYDrwqNtlPnCGu3+6+x63fYYIZrYCAvYoqVSKUqnUJ5d0Q0MDugiR3X8cpg26YVPWypTLVTTLpmzaaKazLZs2FdNR1mVDOhOTtk3VllQtG0NKdFtiWhJTCqquxW3YNkoq7bgSogkM02TaiSfVZdkycNLj9h5Dz+VRKBRIJBIUCgW/uv3EiRP9vzNN068lWalUiEQifYoAe4wfP57GxkYikQiKopDNZimXyzQ0NPghg56lvSv5zPtrcc8DrgIy7vtmoEdK6S3mbwWGu/vDgfUAUkpTCJF3+2/pt1QBAQE7RNM0MplMn/18Pk8mk0EZPR5l0H5UNrdiyCohBCEFNzOgY6tJ2dfqNm3biRLxokUsC8NylHfVdZlULYlpQaW7B1vAITOOJ97UTEdHB7lczpennvDyvNi27StXcCxgrwiwlJJQKNRn8lAI4cddezlMer88vIVS3jHDMPxsjp6Ly/Oj70qI404tbiHEqUC7lPL1fp+1HwghLhZCLBZCLN5TWbgCAj4ueH7XcrnsT3h5j/X7H30c8eGjKFs2FdOmYnkWtk3FNKmYJmXTomxaH7T7StqdqLQkVYsPlLnlKG/DdlwoLaPHsGb5Ck7911lks9m6rH4DH4QCesq5d0y3l4HRC0ccM2ZMn8II3sI5z0Xi+b87OzsBp2TZpEmT/DZvJa2iKFiW1efvYM/HcR8NnCaE+BwQx/Fx/xTICSHCrtU9Atjg9t8AjARahRBhoAFnkrIPUsq7gLsAhgwZMvACrgMCBjDeD9/78XsREJ7Cmfxv1/P7f/k85XKJkBDOxKR0rG4J2IDtZQFEYppOJImjnG1MC6q2o8wN23ajTxwFHstkGTxuAoPGjaNp2DA/xroe8YoEZ7NZ8vk80WiUSCTiVxLq6uoik8mgaRq5XI5jjjmGxx9/HFVVmTVrFiNHjvQVO0Bra6ufCfDII49k2LBhfp50L6dMd3e3X1neK13mhST2l532lFJeA1wDIIQ4DrhSSvk1IcRvgLNwIkvOAx53/+QJ9/1f3fZFciCuhAkIqGMsy/J/6N4jvaZpRKNRyuUyubEHkBw1hvYVb6IIhZCf0tVGoiCFawG6k5OWLd0Uro7LxLCFb2kbtk3FclwmVdsik82hRKOMOfRQMrkchUIBRVHq0ur2sgNWKhVyuRy2bWNZFk1NTX5ZtnK5TCaTQUrpV4EH6OjooKOjY7vn9p6CvNzbiqLQ3d1NKpWiq6vL96F7bhevWHB/+EcCImcDlwshVuP4sL34u3uAZvf45cDV/8A1AgICtkEqlaJYLFIqlQiHw348sqZpNDc3o2kap9x+H7pho5sWZcNy3SPS2VZtyobjPtE9N4olKVtQMQUV06Zq2eiWc9ywbKqmRePwUYw/+hjiyRQzzz6bYrFIS0tL3U5OZjIZuru7iUajdHd3+3HVXgHkLVu2EAqFKBQKaJrGlClTGDly5E7PO3ToUI4//nj/hhCLxVAUxa8H2tLS4keyePH9uzKGu6S4pZQvSClPdffXSCmnSinHSSn/WUqpu8cr7vtxbvuaXblGQEDAzimXyySTSRKJhJ+Ev1Qq+RZePB5HhqMces5FjqK2HMWtGR/4tp3oEsvxf1uylxJ3lrXrpo3u+7sl2aHDGTt5KhvXruWE888nXyyRSCTo6enpU+qrntA0za+4ns1m/ZDGXC7nu0csyyKVShGPxzn66KOZP38+uVxuu+eMRqPcfffdHHfcccRiMYrFIoZhIKX0o1W6u7uduHu3Ag6wS2MYLIcLCKhDvOx0XpRCuVz2V/Cl02mnMEBjEy3TjkUZNIyyKdFMG81yQgI/CAuUH+xbNhXDcqxs0wkR1C2Lqi2JZhsYPG48ne1taMUSYw87jEwmg67rpFKpXcpsN5CIx+Ooqko4HEZVVT8c0LsJFotFQqEQlUrFr0k5ceJE3njjDe6//36y2SyZTIZsNks2m+XWW29l1apVTJs2jUwmQ7VaJZlMEg6H/bwylUqFTCaDaZokk8k++bj7y0duyXtAwMeB3kuxvYiI3rkzvEnLMVOnMfnci1h0648xNNX/e+kuxJHSmaS08PzdYEo3ftu2MW2beFML6SHD0MplYrE4Nz37jC9D70nReqR3eTGP3uXJerf1Tng1ePBgTjnlFN5//31M0/RXRgL+fIOXX9u2bT96pPdnBM78RO+ok/4SKO6AgDrES2zkKYNQKOQXVTAMw99Go1GOufAbWFLy5H/9ANlHQTkRJpbEien2lrVL/NWSphQoliTf3c3oYcO46Mc/RnEz4em67sck72qSpIFCb6XrrW4ExxL30uVCX2vYa+u9cKZ3SJ9hGEQiET9SxCuUAE46Xq/N+8x63yj6S+AqCQioQ7yY7Uql4if39455Vcu9R31FUZj61XM56ye3MeLwKY4/230NnzyV+JChVCzbfUnGH3scuo2zBN6GilbmiBNP4Pwf/YhkYyOxWAzbtkmn0+i6TjqdrsuIEsBXrN5iGE959la63lJ1zwL3Cih4bhUvNttLJx2JRPxizrZtEw6H/fZIJIJpmn3avBverjy11N8tMiAgAICmpibAeYRPJBIIIfxjjY2NCCHYb7/9/Pbp5/4/jvnnL2P1sgBDkQi2bWFbH1ji4WgUo1exXIBoPE40Hvetw2w2ixCC5ubmuo3hBucGGIvF+owhfOAu8dp641Vj31abx4781rvj096aQHEHBNQpvdObegpkZ9tQOt2vc8e3k4J2e+etV7xFTN5+7+NbH+tP274icJUEBAQE1BliICxqbGxslOecc06txdguuq77q6iTozRIAAAFj0lEQVQGKvl8nnA4vMeT9e9J2traaGtrQcqBG4GQy21g//2H77xjjbAsi87OTgYPHlxrUbaLqqpYlkU2m9155xrR2dlJOp0eUJWntmbBggV0d3dv06wfEIpbCNEBqAzcDIItBLLtDoFsu0cg2+7xUZNtfynloG01DAjFDSCEWCylHJDlVgLZdo9Att0jkG33+DjJFvi4AwICAuqMQHEHBAQE1BkDSXHfVWsBdkAg2+4RyLZ7BLLtHh8b2QaMjzsgICAgoH8MJIs7ICAgIKAf1FxxCyFOFkKsEkKsFkLUvOiCEGKtEGKZEOJNIcRi91iTEOJZIcQ77rZxH8lyrxCiXQixvNexbcoiHG5zx3GpEOKIGsn3fSHEBnf83nRL3nlt17jyrRJCnLQX5RophHheCPE3IcQKIcS33eM1H7sdyFbzcXOvFRdCvCqEeMuV7wfu8TFCiFdcOR4RQkTd4zH3/Wq3fXQNZLtfCPFer7E7zD1ei99ESAjxhhDiSff93hm3rasT78sXEALeBcYCUeAt4MAay7QWaNnq2M3A1e7+1cBN+0iWY4EjgOU7kwX4HPAHQABHAa/USL7v45S327rvge7nGwPGuJ97aC/JNQw4wt3PAH93r1/zsduBbDUfN/d6Aki7+xHgFXdMfg2c7R6/A/imu/+vwB3u/tnAIzWQ7X7grG30r8Vv4nLgIeBJ9/1eGbdaW9xTgdXSqaZTxalfeXqNZdoWpwPz3f35wBn74qJSyheBrn7KcjrwgHR4GaeY87AayLc9TgcellLqUsr3gNU4n//ekGuTlHKJu18E3gaGMwDGbgeybY99Nm6uTFJKWXLfRtyXBKYDj7rHtx47b0wfBWYIsXeSeOxAtu2xT38TQogRwD8Bd7vvBXtp3GqtuIcD63u9b2XHX+J9gQSeEUK8LoS42D02REq5yd3fDAypjWg7lGUgjeUs99H03l5upZrI5z6CHo5jnQ2osdtKNhgg4+Y+7r8JtAPP4lj5PVJKcxsy+PK57XmcGrT7RDYppTd2P3TH7lYhhLeOfV+P3TzgKsBLtdjMXhq3WivugchnpJRHAKcA3xJCHNu7UTrPNgMiFGcgydKL/wEOAA4DNgFzayWIECIN/Bb4jpSy0Lut1mO3DdkGzLhJKS0p5WHACBzr/pO1kmVrtpZNCDEJuAZHxilAE04h832KEOJUoF1K+fq+uF6tFfcGoHfJ5BHusZohpdzgbtuBhThf3DbvEcvdttdOwu3KMiDGUkrZ5v64bOAXfPBYv0/lE0JEcBTjL6WUj7mHB8TYbUu2gTJuvZFS9gDPA9Nw3AxeGujeMvjyue0NQOc+lO1k1/0kpVOw/D5qM3ZHA6cJIdbiuHynAz9lL41brRX3a8B4d+Y1iuOkf6JWwgghUkKIjLcPzASWuzKd53Y7D3i8NhLCDmR5AjjXnUk/Csj3cgvsM7byIZ6JM36efGe7s+ljgPHAq3tJBgHcA7wtpbylV1PNx257sg2EcXPlGCSEyLn7CeBEHD/888BZbretx84b07OARe7TzL6SbWWvm7HA8SH3Hrt98rlKKa+RUo6QUo7G0WOLpJRfY2+N296YWd2VF87M799x/Gjfq7EsY3Fm8N8CVnjy4PiengPeAf4MNO0jeX6F89hs4PjHLtyeLDgz57e747gMmFwj+Ra411/qfjmH9er/PVe+VcApe1Guz+C4QZYCb7qvzw2EsduBbDUfN/dahwBvuHIsB67t9dt4FWdy9DdAzD0ed9+vdtvH1kC2Re7YLQce5IPIk33+m3CvexwfRJXslXELVk4GBAQE1Bm1dpUEBAQEBOwigeIOCAgIqDMCxR0QEBBQZwSKOyAgIKDOCBR3QEBAQJ0RKO6AgICAOiNQ3AEBAQF1RqC4AwICAuqM/w9pIihoDh14YgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Esencia del Q-Learning: Ecuación de Bellman y Algoritmo de Aprendizaje\n", + "\n", + "Escribe un pseudocódigo para nuestro algoritmo de aprendizaje:\n", + "\n", + "* Inicializa la tabla Q (Q-Table) con valores iguales para todos los estados y acciones\n", + "* Establece la tasa de aprendizaje $\\alpha\\leftarrow 1$\n", + "* Repite la simulación muchas veces\n", + " 1. Comienza en una posición aleatoria\n", + " 1. Repite\n", + " 1. Selecciona una acción $a$ en el estado $s$\n", + " 2. Ejecuta la acción moviéndote a un nuevo estado $s'$\n", + " 3. Si encontramos una condición de fin de juego, o la recompensa total es demasiado baja, sal de la simulación \n", + " 4. Calcula la recompensa $r$ en el nuevo estado\n", + " 5. Actualiza la función Q de acuerdo con la ecuación de Bellman: $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$\n", + " 7. Actualiza la recompensa total y disminuye $\\alpha$.\n", + "\n", + "## Explotar vs. Explorar\n", + "\n", + "El mejor enfoque es equilibrar entre exploración y explotación. A medida que aprendemos más sobre nuestro entorno, es más probable que sigamos la ruta óptima, aunque de vez en cuando elijamos un camino no explorado.\n", + "\n", + "## Implementación en Python\n", + "\n", + "Ahora estamos listos para implementar el algoritmo de aprendizaje. Antes de eso, también necesitamos una función que convierta números arbitrarios en la tabla Q (Q-Table) en un vector de probabilidades para las acciones correspondientes:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "source": [ + "Agregamos una pequeña cantidad de `eps` al vector original para evitar la división por 0 en el caso inicial, cuando todos los componentes del vector son idénticos.\n", + "\n", + "El algoritmo de aprendizaje que ejecutaremos en 5000 experimentos, también llamados **épocas**:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " m.random_start()\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " m.move(dpos,check_correctness=False) # we allow player to move outside the board, which terminates episode\n", + " r = reward(m)\n", + " cum_reward += r\n", + " if r==end_reward or cum_reward < -1000:\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "source": [ + "Después de ejecutar este algoritmo, la Tabla-Q debería actualizarse con valores que definan la atractividad de diferentes acciones en cada paso. Visualiza la tabla aquí:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXwURd7H8U/NmUzug4Rb7kMRQW4RFRFFlwVdXFRUdlFRQTxQ8FgUFVRQ1xMeZBE8F0VXF1R0PUCUS+VQhKDcoCQkQO7MPdNdzx+ZzMJKAMlMepLUm1deyXSa7u8M5Jea6qpqIaVEURRFqTtMRgdQFEVRfh9VuBVFUeoYVbgVRVHqGFW4FUVR6hhVuBVFUeoYVbgVRVHqmKgVbiHEECHEdiHELiHE/dE6j6IoSkMjojGOWwhhBnYAg4FcYD1wjZTyp4ifTFEUpYGJVou7N7BLSrlHSukHFgHDo3QuRVGUBiVahbsZsP+Ix7mhbYqiKEoNWYw6sRDiZuBmAKvV2qNr165GRTkhn89HRUUFmZmZRkepVmlpKVarlYSEBKOjVCs/P5+srCzMZrPRUar166+/0rJlS6NjVCsYDHL48GGaNGlidJRqOZ1OgsEgqampRkep1uHDh0lOTsZutxsdpVpbt27F4/GIY35TShnxD6Af8NkRjx8AHqhu/6ysLBnLdu7cKefNm2d0jONavHixXLt2rdExjmv69OmyuLjY6BjV0nVdTpgwwegYx1VUVCQff/xxo2Mc1+rVq+WSJUuMjnFcc+fOlTt37jQ6xnGF6uIxa2a0ukrWA+2FEK2FEDbgauDDKJ1LURSlQYlKV4mUMiiEmAB8BpiBV6SUW6NxLkVRlIYman3cUspPgE+idXxFUZSGSs2cVJQo0HWd9evX8/rrr6PretW1HkWJCFW4FSUKunbtyrx58yguLqZJkyZUVFQYHekomqZx4MABo2Mop8iw4YCKUl99/fXXDB48mMmTJ1NYWIjP5+PTTz9l5MiRRkcDKvPt2rWLnJwcunfvzsUXX0zjxo2NjqX8DnWuxb1nzx7effddo2MoSrWCwSAWi4WcnBw++OADrFYrgUDA6Fhhs2fPxul0cvfdd/POO++wfft2oyMpv1OdanEPGzaMuLg4+vTpw5lnnsmKFStielKM0jANGjSICRMmsGTJElwuF4FAgN27dxsdC4BFixYxePBgrrjiCqZMmcK8efOYPHkyPXv2jOnJW0eSUuL1elm4cCGtWrWif//+xMfHGx2rVtWZFveePXuIi4tj7ty5jBgxgksuuYScnByjYynKMeXk5DBr1ixuueUW8vPzSUpKMjoSACNHjmTZsmUsX74cv9/P1KlTGTt2LA6Hw+hoJ83j8dC8eXN8Ph+fffYZnTt3NjpSraszhXvjxo307t2b8vJyXn31VRo3bsyqVavU1XolJpnNZkwmEyaTCYvFghDHnrlc20wmE0OHDuX777/HarWyfft2WrZsGTP5Tsbbb7/No48+Sq9evbj11lu58cYbWbx4sdGxalWd6Sr585//zJlnnklBQQFNmjRh0qRJ5Ofn16n/cErD0q1bN9asWcOWLVs488wzjY4TNnr0aPx+P0888QSnnXYabdu2NTrS79K8eXNeeuklCgoKmDBhAnl5eVx88cVGx6pVdabFDbBixQqGDh2Ky+WioKCAW2+9ldLSUqNjKcoxZWVloes6hYWFRkf5DZvNxvnnn4+UEr/fb3Sc32XAgAF8+umnBINBpk6dyjfffEOfPn2MjlWr6lThzszM5IILLuChhx4iOzub1157jYceeohdu3YZHU1R6pyBAwfi8/n45ptvjI7yu/Xq1YtevXpx0003sWnTJqPj1Lo6VbirVHWPpKamcuedd/Lmm2+yb98+Y0MpilIr5syZw6233sqIESPo3bt3g+wurZOF+0jt2rVjzJgxTJ06FbfbbXQc5RQsXbqUAQMGcPHFFxMIBNA0DU3T1IXnWmAymerUlPwZM2bQoUMHRo0aZXQUQ9X5wg3QqlUr5s6dy+jRo8nPz4/qufbu3RvT/8mDwSD79+8/8Y4xZMiQIXz22We89dZb9OvXj169etG7d282bNjAtm3b2LZtGx6Px+iY9dKDDz7IjBkzcDqdRkc5obKyMg4cOECXLl0aZCv7SHVmVMmJOBwOZs2axaxZsxgzZgzt27eP+DmWL1/OBx98QNeuXenVqxdnnXVWxM9RU2+99RabN2+mU6dODB06tE5MZbZYLFgsFhwOBxs2bAAqJ1lMnDgxXFDOPPPM8ASRgQMH1rmRELHKZrPF1KzO6pSVlTFnzhxGjhxJmzZtDMuxZcsWkpKSaNWq1Unt/9lnn7F//35atWrFRRddFLEc9aZwAzRp0oQxY8awYMECJk6cSHZ2dkSPbzKZeOSRR3jsscc4fPhwjQq3x+Nh3LhxEWm9t23blqpbv6WmpnLXXXdxyy230KlTpxoV7p9++oknn3yyxvmgslX9ewgheP7558OPly5dSlFREQD/+Mc/OHjwIABXXHEFl19+eUQyKrHr4MGDbNu2jQceeMCQ8wcCAW655RaaNm2K1+vF6/Uya9aso1r+q1atYv78+Uf9vbPOOouMjIyI366vXhVugPbt2zNx4kTGjRvHm2++GdFpvAMHDuTiiy9m9+7deDyeGq2ZEh8fz2uvvRaRt3xxcXFs3LgRqBwqdeGFF3LgwAFuuOGGGj3/Ll26MHXq1BrnA0hLS6vRtO+hQ4eGvy4oKAivtvevf/2LRx99FICLLroonNdsNh93NmBVK9NqtZ5yppNR9Uu0Z8+eMTN78n+98cYbXHPNNSxdutToKMek6zp33nknr732mmEZKioq2LFjB4899hgul4sBAwawbNmyo6baDxw4kAcffPCov9e0adOoLCVQ7wo3QHZ2Nm+++SYTJkxg6tSptG7dOiLH/emnn3j//feZM2cOmqZx//331+h4QoiI9dVVFe49e/bwxRdfcMcddzBu3Dj69+9fo+OaTLF3GaRx48bhdxIPPPBA+N9h+fLl/PGPfwQqf2BuvfVWoLI49+3bFyEEUkrWrl3Lhg0b0HWdXr160b9//6j1mWZkZFBSUoKu61E5fiQ0a9aMvLw8o2NUa/PmzWRnZ0f8HfTvcd999/H888+zevVq5syZg9PpZPTo0cycOfOo/Wrr56VeFm6AhIQEpk6dyuuvv871118fkT7RTZs28f777+P1ern44otjsqgtW7YMn89H69atadmyZUxmjKQjf/kNHjyYwYMHA5CXl8ecOXPC+3z55ZdAZd/57NmzmT17NmazmVGjRrF3796YvvN8Q7ZixQpWrFjBP/7xD0NzzJo1i06dOjF//nwmTJjAvffey5NPPmnYRdJ6W7gBWrduzfXXX8/TTz/Nk08+SUpKSo2ON2rUKFavXh3VFlpNTZw4kc2bN9OzZ0+joxiqWbNmPP744wD4/X6WL18OwL333ktFRQULFiwIv/2+9957eeaZZ4yMayghBFOmTOHvf/87kyZNMjpOmJSSzz//nEsvvRS73W5oFqvVyty5c1m3bh3Jycm8/PLLhuap14UbKi/cPfXUU4wePZoFCxaQkZFRo+Ode+65EUoWHTabrcEX7f9ls9m49NJLAejbty/9+/fnxRdfJCkpiT//+c988MEHBic0lhCCbt268eGHHxodJUzTND766COaNm1Kv379jI6D2WxmyJAhnH/++ZhMJsN/kdT7wg2QnJzMK6+8wvTp0xk/fnxUhgoqdUNKSgrdu3dn3rx5CCFo0aIFqampRsdS/kdJSQnz5s3jk09i637jsbLud4Mo3ADp6encdtttvPHGG9x00020bNnS6EiKAUwmEwsXLuSnn35CSskZZ5xhdKSYkJmZSceOHfnmm29iooU7e/ZsbrnlFqNjxKz6feXqf7Rr146xY8dy//33q+nxDdzpp59ea0XbbDajaVqtnOtUpaam0qJFi5i4OUkwGOTDDz9k2LBhRkeJWQ2qcAO0aNGCBQsWMGbMGHJzc42OozQAS5cu5ZJLLjE6Rp3x4IMP8tFHH8XsAIBY0OAKN1T2Uz377LOsXr3a6ChKA2CxWOrEtPKOHTty6NAhiouLDc0xc+ZMmjVrZmiGWNcgCzdUDhe7+uqrjY6hKDGjT58+7Nu3j4KCAqOjKCfQYC5OKopyYjNmzCA5OdnoGMoJqMKtKFEmhKgzt9bKzMw0OoJyEhpsV4mi1BYhhOFTtpX6RRVuRVGUOqZGXSVCiH1ABaABQSllTyFEOvAO0ArYB4yUUpbULKaiKIpSJRIt7oFSym5SyqoFMu4Hlksp2wPLQ48VRVGUCIlGV8lw4PXQ168D6vYkiqIoEVTTwi2Bz4UQG4UQN4e2ZUspq+7YWwAYt/q5oihKPVTT4YDnSinzhBBZwBdCiG1HflNKKYUQx7ypYqjQ3wyQmJjIzp07axglenJzcyktLY3pjIWFhei6HtMZXS4Xe/fupbCw0Ogo1fL7/TH9GpaXl+NyuWI6Y0FBQcz/vJSWlrJ///6I3PM1Wo5316QaFW4pZV7o8yEhxGKgN3BQCNFESpkvhGgCHKrm784D5gFkZGTIr776qiZRoqq0tJTc3FxiOePu3btxOBzhG+rGosLCQtauXWv4WsbH43Q6Y/rf2ev18s3hb/jgq9hdQ9yR72CQZ1BM364tLy+PjRs3smvXLqOjVOu4r5+U8pQ+gAQg6Yiv1wJDgKeB+0Pb7weeOtGxsrKyZCzbuXOnnDdvntExjmvx4sVy7dq1Rsc4runTp8vi4mKjY1RL13U5YcIEo2McV1FRkezxeA9JDP9pvLqxXLJkidEv1XHNnTtX7ty50+gYxxWqi8esmTXp484GVgshfgTWAR9LKT8FZgKDhRA7gYtCj5X/4XQ6ufLKK42OoShKBOzevZu777671s53yl0lUso9wFnH2F4EDKpJqIZAShnT3RqKopy8QCBAaWlprZ1PzZxUFEWpY1ThVhRFqWNU4VYURaljVOFWFEWpY+pV4c7Pz+e1114zOoaiKEpU1avCXVZWpu4jGSFOp5MxY8YYHaNeCwQCBINBo2ModZC6A45yTJqm8euvvxodo17SdZ1vv/2WVatWkZaWRrdu3ejVq5e6q3kdVtv/dvWqxZ2enk7Tpk3JyckxOoqiVMvv93PVVVdxxhlnEBcXx1VXXWV0JKWGZC2veVKvCndWVhYtW7Zk48aNRkdRlGrdd999LFy4kGAwSPv27XnhhReYNm2a0bGUOqReFW5FqQvuv/9+rr76atasWUPr1q156qmnuPPOO42OpdQhqnArSi1LS0sjEAhgs9l44oknaNOmDSkpKUbHUuoQdXFSUWrZ7Nmzef755+nYsSMpKSm0b9/e6EhKHVPvWtzDhg1j48aN7N+/3+goSh2gaVqtXVjSdZ0nn3ySDh06MGrUKHr27KmKtnJK6l3hzsrKoqysDK/Xa3QUJYaVlpaydetWRo4cSU5ODgUFBVE9n9/vZ8GCBbRq1YqhQ4eqoX/1jBoOqCi14IMPPmDcuHE8++yzTJ06leeeey6q56u6g9JVV12FyaR+7Oqb2h4OqPq4lQbj3Xff5aOPPgJgz5496LrO9OnTmTt3LvPmzWPTpk1ROa+UkhdeeIFx48ZF5fh10cyZM9m6dWv4sdVqZd68eVgskSlJK1aswGq1cu6550bkeLGmXhbu+Ph4vF4vUsqYfUvqdruJj483Oka1hBDY7XZ8Pl+t3yPS5/Ph9/tPat9XXnnlpNenGTVqFA8//DAA//73v3G5XFx33XXs3LkTt9tNhw4dTjVytXw+H+PHj2fSpEl07tw54sevq0aPHo3b7Q4/DgaD9O3bF03Tjrl/8+bNeeutt6o9nsViIT4+Hk3T6NatG0OGDMHv93P77bezcePGqL/LMZlMmM1mAoEAVqs1queCelq4X3rpJXr06MGGDRtitnBfeumlrF+/3ugY1UpKSuKee+7hiSee4NFHH43KOaSUrFq16jc3RV21ahUrVqw4qWOMHj36pCdcCSHC/x+6du3Kk08+SadOnZg/fz4jR47E4XD8vidwAsXFxbzwwgvcdtttdOrUKaLHruuaNm161GMpJevWrat2/7y8PIYPH17t9zt27MhVV12Fpmn4/X4uu+wyOnXqRHl5OT/++CPdu3ePWPZjad++Pf369WPhwoX89a9/jeq5oJ4WbiFErfc5/V6x/G4A/lvkovk6SilZsWIFgUDgqO3nn38+Dz30UNTOCzBkyBCGDBnCnDlz+OKLLzCZTBF9rh6Ph9mzZ3PBBRdw9tlnR+y49dWRv1SPpUWLFnz55ZfVfv/nn39m4cKF6LpOeXk5y5cvJy0tjZ49e7Jx48aoF+6q7LVVd+pl4VbqBpPJFO66MMr48eOjclyPx8Pq1auZOnVqVI6vHK1z58489thjBINBXn75ZTIzM/n888955plnyM/PNzpexKnL24oSYYWFhdx444289957RkdpcMxmM9u3byc9PZ2WLVuybdu2mH5ne6rqbYv7wgsv5KuvvuLCCy80OorSgOzcuZO5c+fy8ssvk5ycbHScBkcIQXp6OqNHjzY6SlTV2xb3I488olZcU2pVbm4ub7zxBrfeeiuZmZlGx1HqsXpbuBWlNkkpKSgooLy8XE1jV6Ku3naVKEpt+vnnn5k1axYLFiwwOorSAKgWt6JEwCeffMKCBQsiNvNPUY6n3v4vi4uLY+TIkSxatIirr77a6Dh1zu23386WLVs4fPgw27dvZ8GCBSQmJhodK2ZNmjTJ6AhKA1JvC/dFF11EXl4eFRUVTJkyhfXr15Oenm50rDrB5XKxceNGbr/9dr777jt27NhBcXGxKtyKEiPqZeHesmULrVu35tFHH+WLL74AYN26dQwZMsTgZHXD7NmzmTRpEq1btyYQCHDdddcxbdo05s+fb3Q0RVGop4V7z549tGvXjlatWnHRRRexf/9+fv75Z1W4T9J9991H586dmTx5Mq1bt+aqq65iw4YNRsdSFCXkhBcnhRCvCCEOCSFyjtiWLoT4QgixM/Q5LbRdCCFeFELsEkJsFkIYskjD8OHDWbhwIc8//zx5eXncfffdXH/99UZEqbNeeeUVAL7++mvmz5+vukkUJYacTIv7NWA28MYR2+4HlkspZwoh7g89vg+4FGgf+ugDvBT6XOvWrVvHpk2bWLduHbt37yYpKcmIGHVWv3796NWrF8FgkLi4OKPjKHVMfZxmHktOWLillCuFEK3+Z/Nw4ILQ168DX1FZuIcDb8jKJbK+FUKkCiGaSClrfZWXpKQkBgwYwIABA2r71PWGxWJRw9uUUxLrq3PWdaf6U5l9RDEuALJDXzcDjrxLb25oW/1bnusUrVq1in/+85/s37+fcePGcdlllx13nWFFUWKbruvceeedbNmyBYDvv/+eF154Iao3b6jxkUOt69/961UIcbMQYoMQYoPH46lpjDpB13W2bt1K27ZtyczMpF+/fqxfv77au34oihL7fD4fq1evZtCgQVx00UWsXr0an88X1XOeauE+KIRoAhD6fCi0PQ9occR+zUPbfkNKOU9K2VNK2TOWb+EVSfv27WPHjh389a9/pVevXlx++eXYbLaYvhOOoijHd8899zB37ly6detGt27dmDt3Lvfcc09Uz3mqXSUfAn8BZoY+f3DE9glCiEVUXpQsO5n+bU3TWLJkySlGib7CwkJ2794dkYw2m41Zs2YxYsQIFixYQF5eHgUFBTU+dk5ODr/88gsHDx6sccZoKSgo4NNPP43pe22Wl5fH9P9Ft9tNQn4CbZa0MTpKtZL2JZHjyonpfu49e/ZgsVjIyck58c4nMHjwYCZPnszdd98NwOTJk5k4cWKN/x8d7534CQu3EOJtKi9EZgohcoGHqSzY7wohbgR+AUaGdv8EuAzYBbiBMScT0O8XjBuXfeIdDeJw6PzlLw6ys2ue8cj+7OzsbM4555waHxPgl19+Ye7cFEpLY/d1bNfOzuWXNyIhIcHoKNWyWCwR+XeOFqfTSS97L2ZmzzQ6SrW2lWyjwlQR06+jw+HgifQncGe7T7zzyXgSxjEu/PV4an5nJb+o/obZJzOq5JpqvjXoGPtK4LaTThb+eyYKCvr93r9Wa1JSdtGkSRH9+sVuxoMHD1Jamh3Tr2Pz5svp0aMHNpuNiooK0tJTOVhygKSEFMoDh/i85A32uLdiCliwi0SEbia/4gB904Zwceur8bt9NG/UkvLychISEigpKcHhcBAIBNA0jYSEBKSUxMfHh6foV1RUkJKSEn7s8/lISUnB5/MhpSQuLg6TyRS+v+Zbb70VsX9nv99PIBCI6C+q4uJi1q9fX+OMuq7z6aefkpuby8iRIykvL+fFF19k+vTpNX5HpOs6hYWFMf3zsnnzZorOLKKsXZnRUaqVaKp+7oQa66XUKil1igIH2OPaigmdD/Pn0C7hbPy6HxvxdLD14YDvV8o8pXRK7c5pGV1JtqYxecW1JFkzuK37gzSyNcEWsGEymcJ3iDeZTGiahpQSn8+HEAJN0xBCEAgEwt8XQuD3+8NvQ4PBIDabLeLPc/ny5ezcuZODBw/So0cPLrnkEqxWa8TPc6pcLhcfffQRd999N1dccQVvv/02TZs2ZeXKlVxyySVGx1NOQC3rqtQqieSHQ98xbcMDvLThRczOZpSVBfh280+88ekS1uz4mtxf89j43Y+s3ruCX4p/IefgFuwymXiRzNubXuGzXR/i9FZgs9kQQmA2m4+6S3sgEMBqtaJpGhaLBU3TsNvtCCGwWCwEg8HKLFL+5g7zkTJ+/HhSU1O58MILueuuu3C7I/SWPEKSkpIYPnw4N954I3v27OGBBx5g06ZNdaJo+/1+5s6da3QMQ6nCrdQqkzDTM/NCmgR6sHV7MZu3HuaHzfmUH7BhdzfGtd9B3g4/W384zHc//MDWPetZ+f1XeFxB1u7+hkMVRcxd+38U+wqpqKgAKt+aezweLBYLJpPA4YjH6/VgtVrx+XzExcXhcrnCre2EhIRwEXc4HBF/jg8//DDPP/88bdq0YdeuXbz//vvcfvvtET9PTfXp04cZM2aQkZHBqFGjeOihh4yOdEIzZ85kyJAhJCUlce6557J69WqjIxlCdZUotUrXdRLMDl7844vcsHgM/8n5BN0H8TIOm7Tx/S6NP/cewY2De1HmKsXmsZHr/g/e8iIKi0vYqe0mGDAz/KU/8sXtK4DKkTpxcXF4PW5yls9k1/p/EgxqdO73F3oMnUZFRQUZGRl4vV7i4+MpLCzEbrcTDAZxu91kZGRE9Dn+7W9/o3///owfP54ff/yR119/nXfeeSei54iEtLQ0+vfvT0pKCn379o35ZSHKysrIzc3lxRdfJCEhgbKyMvbu3Uvfvn0b3Axf1eJWapXJZMJut+N1evjHiLlc1ukPWMxm2jRqQ992fenaqgu/HP6FrXk5FFUUk1+UT0LRabi2p3Bmcmc8ZYWge9HKBDe9eBNCCLxeL8XFRVQc3MruraspKffSrMswUpt2o6K8nMTERA4fPowQApfLRWZmZng6f2pqasSfo91uZ+DAgbz77rusXr2atm3bqju+R0BOTg5NmzYN38X93HPP5ccff4y5bqja0LB+TSmGk1Li9/tJS0sjEAjw0og5PBj/EP/e+G9KnaUkmBNwiHh8ws+hom2UlZSRZE1meL/hOCucxJNO0eFDmNIO4D8YQNOCWK1WVix+nkP71lCSv5/uF05kwLCJBIOV3/N4PKSlpaFpGg6Hg7KyMsxmM1JKnE4nKSkpEX+eTz/9NJ9//jnfffddneiCqAv69+/Pq6++yq233sqOHTu44YYbePjhhxvkL0VVuJVaZzKZwhcT0+LTmXbJNKzCzr/WvcvB4kMQABEAoQm6N+9OvDmePfl7iLfEk2TNoG3LTrz9+eu0ubiAV5fMZ/TQv7D+q/fJbtKc4be8QnarruHjVw3zM5vN4VElR04MUavY1S2PPfYY/fv3p23btrz66qs0a9bM6EiGUIVbqXUmkwmn00lCQgIul4tkezIz//AE0y59mCv+70+UlJewa/8espIyKXYWkWhNwuv2QkBy+HARidYEBvcYRm7uDlbJxXw77lXSNMmQgddxWud+WK1W3G43drs9fHHS6XRis9nw+/04HA40TUPX9agO0UtNTUXXdUpLS6PSJdMQNW7cmJSUFL7++uuYGl5Z21ThVmpV1TjrjIwMiouLSU1NxeVyYbPa8Dv9LL1tKfuK9/HRxo9weV2YgiYSbA7KS8tBCjxuL3azjasuuoqeZ/Vk5ebPeXntVM7/w1Wc1XcomqbhdDpJT0+nvLyclJQUSktLyczMpKKigvj4eIqKinA4HEgpcblcUZvh17t3bz766CN++OEHBg4cGJVzNFTRXHmvLlCFW6lVQgjsdjvFxcXEx8dTVlaG1WolGAySmJiIlJJ2We24ffDtSCmxWcwUrF5Gwbp/47DHkTHwUlL7DcJqt1NSUkKgIIinVND/ohHYbDaklKSmplK4bx/rF8ymOPdX0tp2psdfxpKa1Sjc363rOrqux/S6KcpvvfDCC0yePFkVbqMDKA1LVYs7JSWFsrIykpOTcbvdWCyW8Fhs/F5MPi/bpt6O9HtpfsW19HxgBrowYTWb2DvvSYp+3EhQ09lVWIr98CF8OevZsGYlhzZ/T0DT6HzVDXT/09X4fV40r4+3b74eZ7mTYVMfJbl1W7JbtMRkMuFyubDb7Ua/LMpJ2rJlC5MmTWrw1yZU4VZqndlsJhAIhGcxVl1INJvNaBVlHJj3NK5fd9H57mlYk5IJlJbg3bMTBPgkNPvTdZw2+jaCrgqafb2cnjt+pmjNSloNuJAzR91EMOjHVVKCv6IMTYKOZNiURwhqOqsWvsHm1au5Zf5rtDm7B2az2eiXQ1F+N1W4lVolhDhqHZGqNUOklBAM8stLM9AOHqDNtbfiP1xA8HABAklVA0tI8P+6F6+U6EByx86kduuB5g/iKS2i/JfdaFKiSdCkRJcSTQddSoK65OyhwwjoOgsn3c3VM56ifR9DbomqnIJ169Zx2mmnkZWVZXQUw6nCrdQqKSXBYJC0tLSjLk5aLBb2L/4nnl0/0/q6W5oHB38AACAASURBVCHgReggROjjqGNUFnCQaG4Xfikri3WoQGu6RJeEi3dQk2hSJxjap8t5A/F5/cwddwsT3/kXnc8+26BXQ/k9fv75Z5o0aUJ6errRUQynCrdSq0wmE3FxceTn55ORkUFhYSEJCQn43C6Kl31Ix2tvQ3OXIU2AEJhCLXRTqHJLKStb55LKCl5VpHWJrkuCUkfTJZoGwVDhDug6QQlBXUfTBZqu0/mc/hzKzcVTWGjky6Eop0QVbqVWVbW44+PjCQQC4QuDRauXYUtIxFuYh9kkMJkrRw0IM5iPKNy6rGxVS12ApqNLHSlB6qGWtl5VoCUBvbJ7JKhLgpLKAq5XdqMEgjoZzU9jzp138PLWnxCqrzumlZaWkpeXx/nnn290lJjQsMfUxKiHH344vPRofVQ1IqDqs5SSiu/X4mjVDs3jQve4kG4XeF3gcSO8bsw+D2afB+GtfCy9LqTXje5xo7vd6G4XutuF5naiud0E3K4jPpz4Xf/98FZU4HVV0LR9WzSf18iXQjlJhw4dYvv27fTv39/oKDFBFe4Y8vHHH9O5c2fOOeccevXqxdSpU42OFHFV62d7vV4sFgt+vz+0zYTU/OHCrXtcSI8L6XFDqFgLb+XXeDxwxH6610XQE/pwuwm6nQRDRdvvduFzOvG7KvC5nHidbrxOJ16nE09ZWfhGDIpSl6iukig7fPgwW7ZsOal9v/vuOy666CJsNhvvvPMO8+fP5+DBgzF9777fS9d1fD4fqampuN1ukpOT8fv9+H1+ZNFB7KF1TIRZYDIJhFkgTCYq2xiSIKDpOkFdJ6hVdoMEQl8HpCSghT50iT+oE9ShvLwMsyMBvybx60d8PzQJJ5ratGnD3r17GTBgQMwuPdq9e3c2btzIBRdcYHSUY5JSsnXrVk4//XSjo8SM2PyfVI8UFRXx1VdfndS+P/30Ey6Xi5UrV3LTTTfhcDg4fPhwvSrcJpMJm81GUVERjRo1oqSkhKSkJOKSU8j/+lNsJhOkpkKoeGOqHFIS9PsQ9nh0qvqtweeqwF14GL+m4wvq+HWJT9PxBSWayYIlM5sAgrIDuTgaN8Ov6wQ08GkaQR0O5xfg90a3q2TMmDEMGjSIESNGRGUVwkj4+9//To8ePfjhhx+MjnJMUkqmTZsWs/mMoAp3lHXq1Ilp06ad1L7vvvsuDz/8MM8++yzXXHMNXbt2pUuXLlFOWLt0Xcfv99OoUeX089TUVPx+P03+NJrDa5ZTun0LWrOWJGRmoZsEukkQFBDcvxtri7ZIwHPwAIHyMrw+X2W3R1DDr0k8QYkvqOHVdPwI9P2/4sdMfIuWlOXnIxISCGjg1XTKiovZs/Unug29HBr4LDyl7lGFO4ZcfvnlDB48mPHjx/Pee++RmFj9XZ7rMl3XMZvN6LoeXmbV3rQlusVGwOWGvTtB07AlJhKQGmbAX16G2Lyucqy2phHQdPyajl/7b/dIUOqhsdsQ0DS8pcX4gjpFhYV4Ahp+BMktWlFSUsKhvAK8/iBDx41r8NOnY92hQ4fq1bvOSFCFO4bYbDZsNhtvv/220VGiRgiBzWajoqICu92Ox+MJF3HNHo9fl8iAhrm8jKAWQDuwPzQcUCAADRmeZOPXdYKawK8f2Xeth/u8g3rlhJugFkDTIBDU8DidFOcfRJeAMBGfmGD0S6KcwNVXX83SpUuNjhFT1KgSpVZV3QEnNTUVj8dDUlISuq5jsVhode1N+EL91K7iYtzOCnyajlfT8Wg6bk3HG9TxBCsf+zXwhVrdR7W8db1yxqRedfGycpsuoby4BF3XkSYTvUb8CRGnVgdU6h7V4lZqVdWyroWFhSQmJlJaWorNZiMQCNC0/2B+0EGXOroMoFe4IahXXp8UlW0MKfXQJBwIhibb+EMXK/161WgRiV+r/H6gqoBLiYiLw+vxVe6jBel2wQW0bNPG4FdEOZ5gMKgWAjsG1eJWapWUkkAgQGZmJm63m5SUlPCdaCpcbpJ6nVfZyg5qOCucuAOVLWx3QA99LStb3EEdT1DDExpR4g1q+IIaPk3DH5T4NQ2/phMIFfNAUMfldOP3+Ulq1IhLbr0Fc1w8xcXFRr8kynE88sgjPPjggyQkqC6tI6nCrdSqqgk4brcbq9WK1+sNrxIYn5REh1E34g3KUIHW8IZGi3iDGt6gdkTRruxC8QZluHvFp0l8oe4Svybw6+DX5FHjvQNSkt2+PeXFJfT74zB1I4UYp2kaZrNZXUD+H6pwK7VOShle1rVqAoyUEovFQlq7jjS/eFioUIda1cHKvu3/9m9LPIHK7/tC+/lCo0wCoeJd2V2iVRZxXeLXIajpnH7eBWjCwjkjrsRisTTo+xYqdZcq3EqtqiraDoeDQCBAfHx8+CYKHo8HU0IiGV264cdU2erWKrtG3EENd7iIBysvVoYfV7bGvVrlGG6fLvEGKyfb+HUNX6i1rQsTac2aUVFRzpnnnYemabhcLqNfEqUaX375JUlJSfRRa6b/hircSq2qWtb10KFDJCQkUFRUFL4jTmpqKvHx8XS4ajTZfQdUdo34NdwBDXdQr/wI6Lj9El9Q4g3KUHdJZSvcGwSPJvEFK4cEekPdJwFNQ1qsdLlwMOuXf8WMxUuwx8VhtVrJyMiI+nPu2bMn69ati/p56puqbjR1a7nfUqNKlFpVdXEyMTERn89HQkJCeEKO1+tFSolJCDoPu5I936wh4HUf0br472qCOqGbJoQm3ISXbz1iCKA/tCZJEBOtunYngGDAlSPQrDaCwSBSSpxOJ0lJSVF9zjNmzODss89m06ZNUT2P0nCcsMUthHhFCHFICJFzxLZHhBB5QohNoY/LjvjeA0KIXUKI7UKIS6IVXKm7zGYzmqZhtVoJBALh2ZMWiyU89KvlhZfg6HQG3qDEHZThFnf4wmRoe1X/ty9Q2d/tC1+0/G+/d1a7DjjS0tm39SfOHDiQhMRETKHFrGJ14aeGrqysjMWLF3PttdcaHSUmnUxXyWvAkGNsf05K2S308QmAEOJ04GrgjNDfmSOEUIMwlbCqe05WLedadZFSShkuplA5Lf4P0/+OKS3jiIJd1WUicYUuSnoD/y3mHg08oaLt1TR0i5Xk5qdhSUyirLiYP915Bx179w6PUhBCqIuTMSoQCJCXl0fLli2NjhKTTli4pZQrgZMd7DocWCSl9Ekp9wK7gN41yKfUM//bVeJwONB1HZPJhMfjIRAIAJXT/5u2a8/Vc14hqWUrPAE99FF5IdJXNb473Meth0ei+IKVfeB+KfD6A5QXl9D9osFcNGYMcfHxVFRUoGmaujgZw+x2O4MGDTI6RsyqycXJCUKIzaGulLTQtmbA/iP2yQ1t+w0hxM1CiA1CiA2BgKcGMZS6pOpiU2lpKXFxcZSXlwOVM+QSEhKw2+1IKfF6vVRUVNCud1+GTptB9z+NxCdFeJSJ32yh9YALwkMEvUGNuMwsEhs3xatpldPhfQFsDgdX3H47g2+4ASEEXq+X1NRUzGYzFosl6v3byqlJSkrinnvuMTpGzDrVDr6XgOlU3rJ1OvAMcMPvOYCUch4wDyApKVv6fKeYRKlzbDYbWVlZmM1mGjVqFJ5cUdVNYrFYcDgc4W09Bg+hS79z+ePk+4HQXd5NAkdqKs4jZj5abHYQ4qg1tm1xcWS1bIkeGnIYHx+PECI88aY2JnYIIXj//fejfh6l4Tilwi2lPFj1tRDiZaBq6a48oMURuzYPbVOUsCP7sqs+H+l/16YwmUxY09JITEv7zb5p2Y1P6pxVR6w6X23OxBNC0LZt21o7n1L/nVJXiRCiyREPrwCqRpx8CFwthLALIVoD7QE1gFVRYpgQgtGjRxsdQ/kdhJTy+DsI8TZwAZAJHAQeDj3uRmVXyT7gFillfmj/KVR2mwSBu6SU/zlRiJSUdNmhw92n+hyizmp1ccYZhZx22mlGR6lWQUEBP/5ox+v9bas0VqSl7aBfv9YxPZJjy5YtnHnmmUbHqFYgEGDfvn20b9/e6CjVKi4uxu/307jxyb0bMsK+ffv4qdFPBBICRkep1o5nd1BWXHbMt4YnLNy1ISkpS/r9242OUa3k5H08/PCaGo8pPXTo0FGPrVYracd4+38qPv30Uxo1akSPHj0icrxoeP755xkzZkzM3nsRYMqUKTz++OMROZbf7ycQCJCQkBAewZKcnFyjY5aWlvLGG29wxx13RCRjNGzYsIGioiIuuSR2p3G8+eabnHfeeTHdGOvYsSOHDh06ZuGOkdkHAr8/dluKgUARdru9RkX266+/ZvDgweHhbgBnnHEG7733Hp06dapxxvj4eBISEiL2iyAQCLB+/XrOOeeciBwPKn9RpaSkRCxjpFWtmRKJfH6/n0WLFpGenk6LFi1o2bIlL7zwAnfccQetWrWqUcZI/sKPBofDgdvtjumMdrudxMTEiGV0Op3s3LmT7t27R+R4cPzrMGqtkigLBoN8+OGHXHvttUcVbYCtW7cyduxYtmzZQiy88zmS2+3moYceMjpGnaXrOsXFxWRkZPDQQw+FW96lpaVGR1OiIDc3l1mzZtXa+VThjiIpJV9++SW33noreXnHHlyzZs0a/vznP/+mG0Wp2+Li4ujduzdjx45l48aNjBgxgn379tGtWzejoyn1QIx0ldRPUkpKS0uPW5SllOzZs+c3rXGl7rvwwgvZunUrl112GYsWLYrprgOlblEt7ijy+XysWbMGTdOOu18gEGDZsmW1lEqpLWazGYfDEZ74o5YnVSJFFe4oslgstGvX7oSTPcxmM6effnotpVIUpa5ThTuKzGYzTZo0OeFdqi0WC82aHXNJF0VRlN9QhTuKhBAMHjyYUaNGHXe/5557juzs7FpKpShKXacKdxQJIUhKSuJPf/oTN9xww29mDDZp0oRx48Zx3nnnnbBVrig1oWkar732mtExjuk///kPBw8ePPGOSpgq3FEkpUQIwdChQytvtxW6o3kVt9vNmWeeSefOnQ1KqDQEc+bMYfjw4UgpufTSS1m1apXRkQA4ePAgl156KVu2bGHSpEkxPRs01qjhgFFWXl7Oo48+yptvvvmb0SVlZWVMmjSJjIwMhg4dGl7KVFEixe12s2PHDh544AFat26N0+lk79699OvXz9Dbtkkpyc3NpXnz5owePRpN07jxxhspLS0lNTXVsFx1hWpxR4mu6+zbt4/x48fz/PPPEwwGj7mf2+3mmmuu4bnnnqO4uDjmZlAqddsPP/xAdnY2HTt2ZPr06TRp0oQffvghJmZwzp8/n7Fjx/Lhhx/yn//8hxEjRrB48WKjY9UJqsUdYVVdIvPmzWPp0qV89tlnJyzGuq7z5JNPkpOTw9ixY7ngggvC90RUlJro378/b7/9NhMnTuT222+nT58+vPvuu2RmZhqaSwjBfffdxyWXXMKCBQsYP348NpuNDRs2GJqrrlCFO4KqivYrr7zC/fffH74t18moqKhg0aJFrF69mo8++oiuXbuqwn2EYDAYvsmv8vvce++95Ofn89xzz3HvvfcipQxffzFSkyZNWLhwIe+88w6PPfYYmqbxzDPPMHHixGPeYEP5L1W4I0jXdV599VXGjRt3wtmS1cnNzeWcc85h7dq1al0LKpcx3bdvHzNnzmTSpEk0btyY5s2bGx2rTmnZsiUtWrTg9ddfx2w288ADD9C4cWMGDBhgaPG22+307NmTbt26hQv1W2+9xWuvvUbv3r0544wzDP/lEqvUr7UIevPNN7n55ptPuWhX8Xg8XHPNNaxcuTJCyequZcuWMWHCBGbMmMFzzz3HE088YXSkOkkIgc1mw2w289RTT7Fs2TKWLl164r9YCywWS/h2dtdddx2apjFv3jw+/vhjo6PFLFW4I2TBggXcddddR/VnCyFwOBwnbDUIIUhISDhq27Zt27j55pv57rvvopK3LiguLmbt2rUsWLCAl19+mcTERFq0aMHatWuNjlbnTZkyhT179sTkxcCxY8fy9NNPs3v3bj744AOj48QkVbhrSNM03n77bSZPnkxZWdlR32vVqhWzZ88+YX+d1WplyZIlpKSkHDVJZ/v27Vx55ZXs2LGjQY42SU5O5qyzzmLZsmWMGzeOyy67jBdffJFdu3ZRVlbWIF+TSLHb7XTp0oWcnJxqRzwZyW63M3bsWDZv3szKlStj/t+6trt0VOGuASklK1eu5Prrr6ekpCS8vXHjxvTv359vv/2WzMzMk/pHPfvss/n111+55557jmp95+bm0q9fP/Lz86PyHGKZxWKhdevWLF68mBUrVjBnzhzuv/9+9u/fz7XXXsvy5cvZs2eP0THrrAsvvJDmzZvz5ptvxmTxdjgcPPjggyxZsiTmuw1r+xeLKtw1oOs6f//734/q027atCnTpk3jk08+oVGjRid9rKrp8ZMmTeK22247agnQiooK5s6dG/Otjmg477zzWLZsGX6/n48//pg777yTKVOm8N5777FmzRreeOMNHnnkEbxer9FRj+nLL7/kvPPOi8klXYUQjBkzBiEE//d//2d0nGMSQvDMM8+wZs2amOzWqZKZmUnLli354YcfauV8qnDXgBCCVq1ahdcZsVqtTJ8+nVGjRpGcnPy73z4JIcjIyOC+++5j/Pjx4e12u73WR1IkJCQwatSomFnf4qabbjpqpl9cXBwPP/wwo0eP5txzz+XKK6/kiSeeCA91ixUrVqzgvPPOIy4uzugo1frLX/5Cy5YtefLJJ2PqtasihOCuu+7il19+4ZNPPonJjFWFe9OmTbVyPlW4a0AIwfTp05k8eTJt27Zl/fr1jB49+jcXGn/vf7S0tDRmzJjByy+/TJs2bZg9e3a4ZVRbqropYr0rok2bNgwaNIi33nqLjh070r17d7766isOHDhgdLQ6QwjBsGHDaNSoEW+88YbRcY7J4XAwfvx41qxZw9q1a2OyeNcmVbhrQAhBWloajz/+ONu2baNr165HtQqllAQCgZOaOXnkrcuEENjtdm644Qa2b9/O6NGjDV1XItYJIUhOTmbEiBFs2rSJzz77LGbf+scqs9lM+/btyc/P/81F9lhhs9l4/PHH+fDDD/n888+NjmMoVbhrSAiByWTCYrEcs0Xctm1bevTocdxjXHHFFcfsAz3yuGoiwsmbOXMmjz/+uNEx6pwBAwbQt29fHn/88d+sZBlLHnvsMbZu3cq4cePYvHmz0XEMoQp3FAkhaN269QlvSzZo0KDfdK8oihEuuOACRo8ezU033RSTI02g8lrSLbfcwrhx43jxxRcpKCgwOlKtU4U7yk6mtaxa1EosOeOMM7jpppv429/+ZnSUaiUkJNC1a1fmzp3LXXfdxc6dO42OVKtU4VYU5ShCCJo2bUpcXBy7d+82Os5xWSwW5s2bx6uvvsrGjRuNjlNrVOFWFOU3WrVqxXXXXceLL74YE2t3H09ycjITJkxg8eLF7Nixw+g4tUINVVAU5Zg6dOjA1KlTSUpKMjrKCTVt2pTJkycTHx9vdJRaoQq3oijVysjIMDrCSUtJSTE6Qq05YVeJEKKFEGKFEOInIcRWIcSdoe3pQogvhBA7Q5/TQtuFEOJFIcQuIcRmIcTZ0X4SiqIoDcnJ9HEHgXuklKcDfYHbhBCnA/cDy6WU7YHloccAlwLtQx83Ay9FPLWiKEoDdsLCLaXMl1J+H/q6AvgZaAYMB14P7fY6cHno6+HAG7LSt0CqEKJJxJMriqI0UL9rVIkQohXQHfgOyJZSVq01WgBkh75uBuw/4q/lhrb977FuFkJsEEJsCAQ8vzN23XEyix7put7g115QFOXknXThFkIkAu8Dd0kpj7oLrqysOr+r8kgp50kpe0ope1qt9fdKcFxc3FGzIs1mM/Hx8UdNuMnIyFA3R1UU5aSdVLUQQlipLNoLpZT/Dm0+WNUFEvp8KLQ9D2hxxF9vHtrWIFksFrKzs0lOTiYxMZG//vWvbNq0ibPOOguHw0FGRgYZGRlq5qSi1FFSStxuN36/H7/fj9vtjvo76BMOBxSVFWUB8LOU8tkjvvUh8BdgZujzB0dsnyCEWAT0AcqO6FJpcIQQPPjgg0yZMiX82GQysWHDhvA+sdja3rhxIzk5Oezfv581a9bQp08ftUKhohyDruu0atWK1NRUhBA89NBD5Ofnh9fpj4aT+UnsD1wPbBFCVK0S/jcqC/a7QogbgV+AkaHvfQJcBuwC3MCYiCauY6pbhySa/6iRcO2119KtWzf279/Pddddx/fff09aWprRsRQl5ixatIh7772X9PR0hBAUFRWxaNEirr322qid84SFW0q5GqjuffygY+wvgdt+f5TYvzhXFy4gRiLjs88+y7Rp08jIyODrr7/m0ksv5W9/+xtz5syJQMLYfx0jme/aa68lMzMz4s851l9DaDgZTzvtNL799ltGjhyJEIKnnnqKvn37RvX5i1h4cVNS0mS3btcZHaNaZrOfJk2cpKenGx2lWuXl5VgsFhwOR0SOlZCQgKZpBAIBEhISKC4urvHzP3ToEBkZGTH9biM39wAWS1OjYxyHRsB0AGuW1egg1dLdOonBRJKTk42OUq3i4mISExOx2WwRO17Vz0ckflYA/vnPf1JSUnLMRnNMFO6kpGzpdB40Oka1UlJ28fTTKxg7dqzRUaq1ZMkSsrOz6dOnDz6fD6vV+t/F8E06Bb5fKAkeROoSCzZA4Am4cZiTaZt8BkI3Y7NZ0TQNIQTBYDDcHx8MBrHZbOHPVccPBoOYzeaj9q3qGgoGg1itlcWlqqvoscce47bbbovZLhcpJSNH3sF7780yOkq17PZiuky9mI1/i92V8BqvaczcwrkMHz7c6CjV+sc//sGgQYNo166d0VGqlZ2dzcGDB49ZuNXVpnpG0zSKioqIS7KxrmQpWXGnETR52e38kXz/L1R4nVR4y2ga3xaP30OWtTk7435mb9EuJvSZgt8XQAiB0+kM30LN6XSSmZmJ01n5rqOsrIz09PRwy7y0tBSr1YrNZsNms2GxWHA6nTFboBUlGtatW4cQgl69ekX9XKpwG8TlcjF58uSI9RtX2VX6I++XPIcoExT4fsEq4wgGJQmkkWlvRipplLpdePQA6fbmoFv5z+5/E29JYvqX93J1lxtp6mhBUlISUkqCwSAZGRm4XC7sdjuFhYUkJiZSXl5OfHw8Pp+P1NRUpJRomobb7QYq7w9YVFREamqqGo2iNAg5OTmqcNd3uq7z888/R/y4jRynsWj5D6THpdO1UVfaZHViz4F9vL76bdp1SKFRQiI7N+djbhak/+nnYQ7GEW9JpbiiELsjiVfWvcQfOl/OGWlnYbFYsVqtHD58mKysLFwuF+kZGRQXFZGSkkJZWRkJCQmUl5djtVbum5CQgMlkwuVykZaWFpNDHRWlrlOFu56Jx8G8P7zCvZ9P5uOf/sNnOcuw6zay0xrjP2zHV5FJ+6zTOFC6F61U55tN39C8Szq7Cg7QLsNPqbsMr0+j7fmdSLVUzvBMTEzE7/fjq8hnx7YPqSivID2rKZltBqFpGnFxceF+bL/fD1SOTfd6vb+ZJaooSs2p5lA9YzKZ6JDejgcvnILJIthdtJsSTwmJcQm4/W7cARctslrQObMbyZ52tEo+nYodEuHXMePj10MH+GzLch5f+hhQecFO13WQGnk/fcZXi+5i4ycPsvHzZxCh69q6rh+13orJZDqpNVoURTk1qnDXM1arlYA/QL/m/Xh/1PtkJmZgMpsp9ZZhtVnwaX5+yt3K4YrDbP91G6s2fMNpji4My76eH5dvp1enFjgqzPzrP/8iEAwAUFFeyqFf1rPy41mUuu30unIBg29YSECrHFXi9/vDI1iqLlLquh7x1ramaVRUVDBp0iR27twZ7k9XlIZGFe56pqysjKysLIQUdG58OmvuWE1qQir5FQUUlB/kQFk++0ty+WbHN6zatorMtEZoUuPgoUKGnX0VCT+3J8VuISslnt37dyCl5OvFf2f+zBuIS23PoOv+jy69hxIkAYfDgdfrJT09HYfDER6NUlpais1mo7CwEE3TIvbctm7dSufOncMTgmJ5uJmiRJMq3PVM1cVCIQRer5dsR2NeueYVxp8/Hr8eYF/RPrblb8Ov+2nfrAOZ6ZkcKj1EibOYvMMHcHvdJBW3Ij5Z8OgHd/Hvj+az4+fNpDY+nT/e+AJdel+G1+vF4XDg9/uxWq3hBXYA4uPjcTgcaJpGUlJSxC5OaprG0qVLeemllygvL2fWrFmcc845rFy5MiLHV5S6RF2crGeqLggGAoHwJJyOjTrQYeBEejfrxUHXQZ547wnyCg+w5+Bu0uMysGGjqLAQnzuA1+lh3OXjuP2cCZQ5cnntuSdJO6Rxz/SXSWvUArfbTXx8PF6vF7vdHp6UU9XPXVXAqwq63W6PyPMSQtC6dWv27dvH2rVrad++PQcOHKBZs98s9a4o9Z4q3PWMrutYLBb8fv9RFwmlhH5t+hEXH8eQ04dgtVlxVjixmQV5e3bQKCUDnwRHeiPibHGkpaZRXl7C9tabGHjDH2jVvhtCCDRNw2Qy4Sw8TMBiJqDpZDRthslkChdvILxvpC5QmkwmunXrxrBhwygsLOTTTz9lyJAhtG3bNiLHV5S6RBXueiYuLi48rtrn8wH/XYnQbrfj9/tJikuicMNa4gIeKg4dJOnAL5SXlpB6ZneSu/XFuW8Xez0e9hccYsuqNfQ9+1wCeb9yYOc24uLjKU9M45dVy/k150cSGzXB0aYDiRmZNDvjDLLbdwxPg09JSYnoOO7OnTuzc+dOXnjhBZ566ineeuutiB1bUeoSVbjrGZfLRUZGBk6nk7i4OHRdx+fzIYTA4/EQ56lg78K5JKRl4I93kNKoMcnnnI8UAgF4cn9BlhVj14Mk7N3BOT43cvlSDuTtQ5gslAT8xGc1o8OgIbQddAlS09m+ZiUFOT/y6w8bqfB4ufxvD5GWmUlZ2Fk8WgAAIABJREFUWVlU7u5z55138uqrr0b0mEr9smbNGqxWK7179zY6SlSowl3PJCcnV65VEheH2+3GZDJhtVqRUpJgNbPp9rGktGlP2nkXYzJbQGr4836tXLhXSsxmCyntOqFLSUKLtrT709Vomo7PXY4lPhFN6gQCQTxlxegSNF3SvMtZNJGSsqIiPnzhWRaMv4UJr/2T1NTUqK0EWNWqr1rISlGg8iL2gAED6NevH4FAgEmTJvHVV1/Vuxm89evZKJSXl4fXf3Y4HJXjugMBvCVFfHfT5TiaNqPJpSPQK8rQy4qRFWUIrxPhcYLXhXSVoxUfJlh8GN1VQbCsCK2iBOH34y8tJlBSQrCinKDLRdDtIuB24XdW4HNWds8Mv+senAX5zP7raPbv3h3R4YBH+vTTTxk2bFhUjq3UXTt37iQrK4trrrmGBx98kKysLHbt2mV0rIhThbueiYuL+3/2zjs+qir9/+9zpyaTmRRClw6KgFJl7QUUddfG7irY145tXQUEf2tdtwgK2MWGuigKVlx1LevqV3HXgqAUhSU0qSGkTDJzp9xyfn/MzDVR0AAJMwnn/XrNa+6ce+fcZ24yn3nuc55zHqLRKEIIDMPAsixcLhcV/5hHSZdedD5xNMb2LRDXEXEdLa4j4jFEIo4WjyFiUUQstY9YBKlHsPQ6zJiOqUcwYxHsWFq0IxHMSIRENEIyGiERjWLE4hw+9hzK165m+Qf/brbp7pkfJIWiPhdffDGHHXYYTz/9NOvWrePUU0/lrbfeyrZZTY4S7lZGfn4+NTU1AMRisVSWRyJG3f+WUNR3AOb2rRDXU8KdiKIldFxJHVdCR0vGEAkdkdAhFkXGdWQ8itR1ZCyKFdMx9ShmNIoRrcOIRkjqEcxolGQkSjJaR0KvQwO6HzSQz+bPJ1xRkd0Lotgn+OKLLxgzZgznnnsu99xzDwcffDCff/45kydP5ve//322zWtylHC3MsLhMO3bt0dKSUFBAW63my0fvgOJJLZlYMWiyFhKmFMedxRXQsediKLFo4hEWqzjMaSuY0d17FgUK1aHrafE24h9HyYxohESeoREtI5kNEI8EiUWqaVD797UVVURqa5uls8ZCoW46qqrmDFjRrP0r8htTNOkurqaK6+8koEDB/L4449z9913c+mll7Jo0SKEEASDQWeN7NaGGpxsZRQWFlJeXk4wGCQajeJyucj3eajzurCTcWwTpKaBBlIToAk0l4YQIG0QtgRbIm2JbVnYdmoA0rJtLBtMS2JISdKWmJbEtG0MGwzbxki/Tto2pi2wTQOaaaEpTdMIhULU1tY2S/+K3GT58uVs3LiRLVu28Pzzz3PHHXc4a9pnBLpLly5ceumlDdpaG0q4WxmxWIxgMAjgzFqMx+PYiXjKc9bApbmwNbBdAlvTsDWBhsCWacG2bSxbYlvSEW3TlimBtlLbppUS7KRlp8VaYlhg2DIt4jaWikErmojKykruvfde3G43mqax33778c477+z0+NYq2BmUcGeJ6667jmnTpjV5vy6Xy6lOkxmYdLs81K36lrxgISIvD9OlIVwpr1toAoQLAdikRNe0wbItDEumHrbEkDaGCUnLwpQpwU5asG39WvLbdcDQXBgWKU/chqRpNfvg4ZAhQ1iwYAGLFi1iyJAhzXouxd6l/rLAN9xwA5s2beKqq67igAMOoFOn3Cvm/N1337F06VJuvPHGvXI+JdxZYvHixQwaNKjJ+83kTQshnLW0faVtweOl9tuliF59kD4fUtOQLoEUkmS0DuHLB48HyzQxkiaJuE7NiuUkTZO4KUnYkrhpEbdsEhYE+wzA8nrx5OcTj+qYQmBYkoSVCpls/m494YoKRDNWdC8pKUFKSVVVVbOdQ7F77InHW15eztatW7nwwgsBeOCBBxg0aJBzJ5mL6LpOOBymY8eOe+V8SrhbGZllXevq6ggEApimCQcPp81hIyj/50tYsShF3Xth5edjaQKXkFjlmxBuH3i9JOvCJLZvI2ml4tgJy8a0JElTYlgWpikxLJtNS74gYYK7tD0Jw4RAAXj9JKWgZnsV61et4tiLL6NkL/0jK3KLXV2jxrIs5s6di23bfPXVV0SjURYvXtzqQx67ixLuVkZ+fj7hcBiXy0U8HgdSXngskcS0JQk9Sl35ZvLbtiNWU4VL2qn0wGQCm9RApC3Tgm2DYUmS6UFH05aYtsSS3w9YRjdvImFJYpaNr01bookkleUV2Db0POhg8goKmvXznnrqqcydO5fDDz+c/Pz8Zj2XonmYM2cOH330EYMGpRYyu+qqq+jZs2e2zcpplHC3MpLJJAUFBcRiMbxeL5ZlYVkWeZ07Y7o8YBqIujqk14usrMAlbYTQUjPeAUumBiaNTKzaliTTGSOGDYa005klpGLhUmKRGsRMxOPEIjFsIfAVhIgnEti23azTjYcNG8bkyZNJJpNKuFsQyWSSTZs2ceaZZ3LBBRdw7bXX0q9fP+VhNxIl3K2QzG1q/dvVnuddxYa3/4G+aR2WHsdyhxGGhUtKhABE6ngLmU4BpEG2SOo5lS1i2GCZ33vhScvGRhCvjRJLJDBNm6GjT+Loc8/J0hVQ5DoTJkxg48aNfPrpp2ia1urWEmlulHC3MrxeL7FYDE3TUvFtvi/eqxW1xfxuLVJaWBEdzbJxCYlAQmYwE7CldIQ743kn0qKdtFMDlYZtY8iUoFs2mIBFKoTS94ijcaGR78/bK1/I3/zmN8ybN4/LL7+82c+laBruv//+bJvQolE/c62MeDxOKBQCUuuWuN3uVF62ZdH9gitJWIK4aROLJ4kZNjEz/TAs4qadyhwx0s+WJGFJ4pZN0rRJpJ9NU5JMx79NO5UymDRM4vE4Lr8PzefhpMuvoLa2ttkWmarPuHHjnEkYCsW+gPK4WxnBYJDt27fj9/uJRCIIIfB4PLhcLnr84gg+yy8gWRdGE+DWBJotEEJmVnXFkimP2yblcVs2mOmZkqm8bkjakLQtEhYYVjqkYkmk28PhZ45l5eKv6DZgAIFAALdb/YspFE3Nz3rcQoguQogPhBDfCCGWCyGuS7ffLoTYJIT4Kv34Zb333CSEKBNCrBRCnNicH0DRkEgkQmFhIVJK/H4/Ho8Hy7KwbRvdMBhx31NOPrZu2eimTcyw0Y30tmURM616HrhN3LBImlZq0k06RTBpZqa3WyRsMC2bvocfyZcffMA1jz6G1+slEok4pcyam2HDhrFo0aK9ci6FIts0JlRiAuOllP2AQ4GrhRD90vtmSCkHpR9vAaT3jQX6AycBDwshmm8WhqIBXq+XeDzu1HzMZHUIIfB6vfjatafDESPSgpwKk+imRcw0iaWFOhMeiZvfT7pJPdJhEyvlYSes1LGGbeELFRKLJ/nFL39Jh27dsCwLj8ezV7IEhBDcfPPN3HPPPc1+LoUiF/hZ4ZZSbpFSLkpv1wHfAj9VWvt04AUpZUJKuRYoA1pn/aAcxO/3U1dXhxCCZDKJbdu4XK7UYlP5+biLSug0/HASpiRmfO9Zx0yZejZsJ/adsKy0WJN+fC/WCVumQyU2tnDTf8TxxJJJDj/tDIKhEJZlEQgE9mp6l8pMUGSLvZ3GuEv/6UKI7sBg4LN00zVCiCVCiFlCiOJ0W2dgQ723beSnhV7RhNTW1tK2bVts204JtduNYRgYhkF1dTWB/Hz6j72Q/Y4bRcxOedhRwyKatNANKxU2SYdKomkBjxsWcdMkYVgkMgOXZsrztlweDjjyGKq2VzLk+BPoPGAANTU1eDwetm/fvlcGJwG6du3Kk08+uVfOpVD8kF2dKbqnNFq4hRAFwMvAH6SUtcAjQC9gELAF2KUVk4QQlwshFgohFhpGbFfeqvgJQqEQVVVVaJqGrusYhoHH48Hj8VBUVISu67g8Hrqe8EtMT14qrm1KYpZEN1Nx75gp04/vs07ipiRuSWKZGLctwe+nXa/eSLcLvTZM5759CRUWUlRUhGEYlJSUNFvNyR+iaZqzGqJC0dpp1JC/EMJDSrSfk1K+AiClLK+3/3HgjfTLTUCXem/fL93WACnlY8BjAMFge5lI7I75ih+i6zqhdKgiU+U9k8+dTCbx+/1YlsXw0WcSq6rkjdtvpuFd3vf53Knp7zhT3E2ZngZv20jhoiBUDF4fW9au4/K776b/UUcRi8UQQuB2u6mrqyMUCu018VYo9hUak1UigCeBb6WU0+u11189aDSwLL39OjBWCOETQvQA+gCfN53JLRvDMIhEIliWRTQaJZlMNmn/eXl51NbWIqUkHo9jmqYzMy0QCBCPx5FSUltbyzEXX8Gom2/HdHlS3nQ6nztm2iSFi1i9trhlk5QacdMiYUoSCPRYnK3rvuP82+6gzy9+kVqJ0OfD7/djmuZej3ErFPsKjfG4jwDOB5YKIb5Kt/0/4GwhxCBSS1ysA64AkFIuF0LMA74hlZFytZRy7wQ6WwBPP/0006dPZ8OGDRx55JGcdtpp3HnnnU3Wv8vlwu1243a7nbhbZrv+Prfbjdfn47Bzf0fvoYfy3iMPUrs9VR9SAoedcy4fP/csUoJtS9x5+XQ56CC+/e9/sSVIBCUdO3Du//t/lHTpgtvjcfrNnNPtdivhVrR6lixZwrJlyygvL2fBggUMGTKk2dfN+VnhllIuAHb07dtp6WQp5V+Av+yBXa2SiooKtmzZwnPPPccll1zCSy+9xOzZs1mzZk2TrYamaRqlpaU73V9YWAhAIBAAoF27drRr147+Rx/9o2NHXXTpbtvh8Xh2+70KRUvi6quvpnfv3mzYsIErr7ySF198kb59+zbrOVX+1F7E7/eTl5dHTU0N999/P7quY9t2Ti8Qr1Aods5TTz3F7373OyZMmMCwYcN49tlnufvuu5t94lmOzEeW+Hy5W8XE660lHo83SaUVn8/HmDFjmD9/PqNGjeKCCy7A5XLtcd+6rhOJRHK6GoxhGNTU1Oz11Kldw8rp/0WfrwaX4cJXlbsZNN6IF13Xc/p/MR6PU1tbu8c2Hn/88YwbN44TTjiB2267jalTp3LOOedQU1Ozxzb+1PdE5MKXqKSkRE6YMCHbZuyUaDRKRUUF3bt3z7YpO2XLli34fD5KSkqybcpOWblyJT179szpMMrXX3/NwIEDs23GTjEMgwUL1lBdfUC2Tdkpfn8Vgwcn9loZr91h7dq1tGvXzgkZ5iL33HMPVVVVOx4kyhTlzOajXbt2MpdZtWqVfOyxx7Jtxk/y6quvyv/85z/ZNuMnufPOO2VVVVW2zdgptm3La665Jttm/CSVlZVy6NC/yNSSYLn56NBhgXzttdeyfal+kpkzZ8pVq1Zl24yfJK2LO9TMVhnjvuOOO9iwYcPPH6hQKBQtkFYp3GvWrHHqLSoUCkVro1UKt0KhUOxtVqxYwYoVK/bKuXIkq0ShUChaJrZtc+mll9K2bVsgNV/jiSeeaNbVKpVwKxQKxR4QiUT45ptveOWVVwD49a9/TSQScUoINgcqVKJQKBR7wK233srUqVN55513ePfdd5k6dSq33nprs55TedwKhUKxB0ybNo2ePXsyePBghBAsWrSINWvWNOs5lcetyDkyuarjxo1zthWKXEXTNGbNmkXv3r3p1asXs2bNavZqTEq4FTnH9OnT6du3L5deein7778/M2fOzLZJCsVOEUIwcuRI+vXrR//+/Rk5cmSzr4qphFuRU2zbto1oNMrcuXPZvn07zz77LFVVVTm97oVCsbdRwq3IKUzTREqJx+Nh/fr1zJ49u0EVH4VCoYRbkWN06tQJn8/Hb3/7Ww499FAef/xxCgoKfnKNcYViX0MJtyLnmDhxIl9//TVTp06lrq4O27Z5/fXXm32N4+Zg8+bN1NXVZdsMRStDCbci53C5XHi9Xp577jm8Xi/jx4+nrKyMOXPmZNu0XeaRRx5h4cKF2TZD0cpQwq1oEdxwww0kk0meeOKJbJuiUGQdJdyKFoGmaZx33nmYpsmLL76IZan604p9FyXcu8gnn3yS0xNCkskkX375ZbbNaBa8Xi9XXHEFq1ev5vXXX8/pv4PixxiGwdtvv+08DMPItkktFjXlfReYM2cOq1ev5q233mLUqFEcc8wx2TbpR8yYMYNEIsErr7zC5ZdfTrdu3bJtUpMihGDy5Mk8+OCDPPXUU1x88cXZNknRSCzLauBULFiwYIc/vmeffTYDBgzYm6a1OJRw7wIDBw7k1FNP5aGHHuKTTz7hqKOOyrZJDpkvwMiRI+nevTu///3v+e677+jSpctu97l48WKaqhboWWed1ST9ZBg3bhyzZ8/m6aef5sILL2z2mWqKPcfv9/PHP/4RSP2//uc//9lhfv7DDz/Mt99+26Ctc+fO/P3vf//RsUKInf7tpZREo1Fuvvlmpk+f/pPH7imZ79/e+j9slcLdvn17ysvL6d27d5NeyP79+zNq1ChWr15NLBbjxRdfbLK+95SCggKmTp1Kr169GDFiBJs3b+aLL76goKBgt/scMmQIr7/+epPY5/F4uOeee5qkLwC3283555/PQw89xGuvvcZpp52Gy+Vqsv6bipKSEqqqqrBtu9nXr2hJCCE44ogjdrhv+PDhPxL0DRs2MHTo0B8dO3ny5B22h0Ihbr75Zr766ivuueceevbsyRNPPMHxxx/fNB/gB6xatYr//ve/PPzww83S/w9plcI9depUBg8ezJdfftmkwv3hhx8yd+5c/vznP1NaWspNN93UZH3vKa+99hqQuv38xz/+wbhx45g8eTJHHnlkli1rPtxuN9dddx1TpkzhpZdeYsyYMdk26Udcf/31jBw5kuOPP57CwsJsm9MiyMvL+1Fbv379WLx48Y/aZ8yYwZtvvvmj9s6dO7N8+XLOPPNMYrEY9913H0uXLuWoo47C5/M1uc22bWNZFh6Pp8n73hGtUribC9M0uf322xkwYACHHHJIts3ZIVVVVdx3332cfvrp9O7dO9vm7BVuvPFGHn/8cR5//HEuu+yybJuj2Itcf/31O2xfsWIFH374IYZhYBgGbre7VWUiKeHeBY4//nh69OhBz549czameu6557J582a6du2abVP2GkIIfve73zF79mzmzJnD2LFjVVhiH6dv377069eP+fPnc8wxx3DOOefwxBNPNIu3nQ3Uf/cu0qtXr5wVbUiFD/Yl0c7g9Xq56KKL2LRpU85Mj6+pqeHTTz8lHA6zcOFCysrKsm3SPsVjjz3Ge++9x/PPP8/q1aubLb6dDZRwK1oNmqYxceJE1qxZw7PPPpttc/j888+ZMGEC27Zt4+9//zu33XZbtk3ap3C5XIRCIR588EHcbndOO1y7ihJuRavjuuuuw7KsrE6Pj0QivPbaazz55JP06dOHu+66i6FDh/LOO+9kzSZF6+FnhVsI4RdCfC6E+FoIsVwIcUe6vYcQ4jMhRJkQYq4Qwptu96Vfl6X3d2/ej6BQNMTlcnHeeedhGAYvvfRSVgal8vPzGTVqFHPnzmXOnDls3ryZZcuW5VTuv6Ll0hiPOwGMkFIOBAYBJwkhDgWmADOklL2BauCS9PGXANXp9hnp4xSKvYrH42HcuHGUlZUxf/78vT49XtM0unXrxsKFC3n11Vf529/+Rv/+/cnPz9+rdihaJz8r3DJFJP3Sk35IYATwUrr9GeCM9Pbp6dek948UrSm4pGgxZKbH19bWZuX8gwcP5vXXX6e4uJjnnnuO8ePHZ8UOReujUTFuIYRLCPEVsA14D1gN1EgpM9ObNgKd09udgQ0A6f1hoE1TGq1Q7Aq/+93vsjowNWbMmFaThqbIDRol3FJKS0o5CNgPGA703dMTCyEuF0IsFEIsjMVie9qdQqFQ7DPsUlaJlLIG+AA4DCgSQmQm8OwHbEpvbwK6AKT3FwKVO+jrMSnlMCnlsB1NcVUoFArFjmlMVklbIURRejsPOAH4lpSA/zZ92IXA/PT26+nXpPf/W6qFkxUKhaLJaMyU947AM0IIFymhnyelfEMI8Q3wghDiz8Bi4Mn08U8Cs4UQZUAVMLYZ7FYoFIqcoWfPnvztb3/ba+f7WeGWUi4BBu+gfQ2pePcP2+PAmU1inUKhULQAvF4v7du332vnUzMnFQqFooXR6oT77bff5uSTT2b16tX86le/4plnnvn5NykUCkULolUJt2EYrFmzhrPOOotu3bpx3XXXsWrVKuLxeLZNUygUiiYjJ9bjtm2bTz75ZI/72bRpE//5z3+48sorCQaDFBQUEIvFePLJJxk0aNBu97t161a2bNnSJDY2F+vWraO6ujonljPdGVVVVXzxxRcEAoFsm7JTdF3P6b9zJBLB76+iQ4fctbG4eCXr1tXl9HXcsmULS5Ysoby8PNum7JSf+i7nhHBLKams/FGq9y7j9/s566yzqKysZPLkyVRVVTmV2Pek/3A4TCwWaxIbm4toNMpTT2nU1eWujV27JvnFL6pz+g6outrk/PNz9xq63TodT/qCvBtfybYpO8W7NkQ0elZOf1/i8Tg319xM3J27/4sJmdjpvpwQbpfLxWmnnZZtM3ZKWVkZlmXltI22bbNtW3u2bj0s26bslDZtljBq1CiKi4uzbcoOkVIye/Z7rF2bu39nn6+KUId7WHva2mybslM6fNKB/tv75/T3ZcuWLWw+ejPh3uFsm7JTClw7L/TdqmLcCoVCsS+ghFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4s4SUkkQiwWOPPcZHH31EIrHzdQkUCoWiPkq4s0QkEqFTp05YlsXLL7/MgAEDsm2SQqFoIeTEIlP7Ii+++CK33347Q4YM4eSTTyYUCvHmm2/yq1/9KtumKRSKHCcnPe7Fixfz0ksvZduMZqVt27ZUVFTw3nvvsWLFCrZv306bNm2ybZZCoWgB5JxwDx8+nAceeIBVq1bRo0cPIpFItk1qFo477jgeffRRqqurefbZZ/n000859NBDs22WQqFoAeSUcC9atIiDDjqIKVOmMHDgQILBIB9//HG2zWoWAoEA8+bNY/78+Vx//fUsWrQo2yYpFK2eWCzG4sWLs23GHpNTMe7169fTo0cP6urq+Prrr4lEIpxzzjmMGzfOOaZLly5cddVVWbSyaUgmk/zrX/9i1qxZDB06NNvmtDo2btzIV199xSmnnJJtUxQ5wqxZsygrK8Pv97NmzRoYmW2Ldp+cEu7Ro0czYcIEwuEwBxxwAOFwmOeff578/HznmI0bN3Lsscc2eN8VV1zBmDFjGrQJIRBC7A2zd4tkMsmCBQu48847s21Kq+Oiiy4ikUgwcOBA7r77bl5++WVKS0uzbZZiD5BSIqXcoz7mzZvHDTfcwKBBg3jooYeayLLskFPCDbBkyRI+/fRTVq5cyfr16wkEAg0EeEclxB555JEfea333XcfHTp0cF673W569uzZvMbvAhs2bKBz587ZNqPF8N133zW6VuXChQt5+umn6dixI+vWrWPt2rW0adMmp3/IWyNSSsrKyvZYcCFVsPu6667boz5Wr17N5s2bOemkk+jVq9ce25RNck64A4EAI0eOZOTIHd/HuFwuCgoa1mKbOHEiEydObNB24403Nqjg7PP5OOKIIxocc8ABB2RtQPDcc8/lyy+/zMq5WyKzZs1i7drG1VncsmUL9913HyeeeCJnnXUWL7zwAsOGDWtmCxU/xLIspkyZgmEYe9xXhw4d9jg2fdJJJzF27FiOPfZY7r33XhUqyUWmTp3a4HU0GuWFF15o0Pb+++/z+OOPN2gbP348/fr1a3b7FLvG7bff3uhjBw8eTM+ePWnXrh0XX3wxCxYsUN52FnC73TzxxBPZNsPh+uuvZ82aNTz88MNNcheQTVqtcP+QQCDAJZdc0qCturq6gVcO8Ne//pVly5Zx0kkn8de//rVZbJk0aRL33nuvEpNm4pVXXuHbb7/lww8/5J///Cft2rXLtkmKHODEE0/EMAy2bdvGG2+8kW1z9oh9Rrh3RHFxMcXFxQ3ann76aaSUzSqqmzdvpnPnzkq4m4kePXrQvXt3TjrpJDQtpzJeFVnG4/G0irGlfVq4d0Rzf9G/+uorunfv/qMfDEXTkutZRQrFnvCzKiWE8AshPhdCfC2EWC6EuCPd/rQQYq0Q4qv0Y1C6XQgh7hdClAkhlgghhjT3h2hJfP755+y///5qertCodhtGuNxJ4ARUsqIEMIDLBBC/DO9b6KU8oeLipwM9Ek/fgE8kn5WAOeff362TVAoFC2cnxVumRp+zSwY4kk/fmpI9nTg7+n3fSqEKBJCdJRSbtlja1sBeXl52TZBoVC0cBoV0BVCuIQQXwHbgPeklJ+ld/0lHQ6ZIYTwpds6AxvqvX1juk2hUCgUTUCjhFtKaUkpBwH7AcOFEAOAm4C+wCFACTBpV04shLhcCLFQCLEwFovtotkKhUKx77JLKRRSyhrgA+AkKeUWmSIBPAUMTx+2CehS7237pdt+2NdjUsphUsphKnygUCgUjacxWSVthRBF6e084ARghRCiY7pNAGcAy9JveR24IJ1dcigQVvFthUKhaDoak1XSEXhGCOEiJfTzpJRvCCH+LYRoCwjgKyCz9upbwC+BMkAHLmp6sxUKhWLfpTFZJUuAwTtoH7GT4yVw9Z6bplAoFIodoeYDKxQKRQtDCbdCoVC0MJRwKxQKRQtDCbdCoVC0MJRwKxQKRQsjJ5Z1NU2TRx99NNtm7JRwOMzGjRtz2sY1a9bQtWs+paVLsm3KTgmF1jF79mx8Pt/PH5wlTLOKAQNy9+/scsUpXFvIgEcHZNuUnZK/JZ//xv/L1q1bs23KTlm2bBm9wr1IFiazbcpO+c78bqf7ckK4XS7XTmtM5gIbN25E07ScttHtdnPooSUcdNBB2TZlpzz55DruvPMoDCOYbVN2ygknLOKNcU+HAAAgAElEQVTVV3P371xbW8vLL2/jopE7nh4hkUjsVDEQhNMGoAmX09acLFmyhJqaGo4++ugm6c+yLFwu14+294RwOMy04dPYb7/99riv5uIw7bCd7ssJ4RZC0Lt372yb8ZOsWrUqp21ctmwZ7du3z2kbA4EAdXXdSSRytYiERNO8TXoNt2zZQkFBAcFg0/xYVVVVEQgE6NGjB5WVlanGPIPaaA2FhUV8ve0DPtHfoC5ejW0KAloJ0UQUPRHlkp534Pfk0bFgP4oDbQiHw3g8HiKRCKWlpWzfvp1QKISu65SWlhKNRnG5XBiG4QhmNBp19hUWFlJRUUFpaSnwfRGS8vJyXC5Xk1zHzZs3M2nSJO6//35qa2uZO3cuw4YNY9SoUXtUKKOwsJD99tuPLl26EIlEyMvLIxqN4vF4cLvdxGIxgsGgsy+RSCCEwOPxoOs6oVCIuro68vLyMAwDn8/n1LH0er1EIhEKCgqIRqPk5+djmia2bePz+airqyMYDKLrOn6/H9u2MU0Tt9uN3+93PtdPFXXJCeFWKForDz/8MCNGjOC4445r0n5jZoSlsQ+JmGE21i6nMr4Vf1UQYbtpp/Wgc95BfLP9C9yuIAOCg9AKXHxd9V/eKJvLid3OZGS3U2jv74yUEr/fTyKRcEQkI062bTtilBGRzLFCCHRdx+v1Os9er7dJPyPAF198wcEHH8yWLVuYMmUKF154Ie+++y4nnHBCk1Q4ikQiFBYWEolEKC4uxjRNDMOgpKSE6upqiouLHRGWUpJIJCgtLaW6upqSkhJ0XSc/P59YLIYQAtu2nT4rKyspLCwkHA7jdrvRNI2qqiqKioqorKwkFApRW1uLEAKfz0csFsPn8zXqcynhVihaIJrQuP/zhzCsBPuF9qNncU98rgBP/3s2oaCX/bt1pHJ9lMrEcgYOqKHE2w7DsumY14vlW5eA6aatrz0n7n8agCM6mW1N07BtG03TME2zwbkzZeEyYq5pWrOViTv99NM55phjeO+991i1ahUff/wxb731VpOVGMzLyyMSieB2u6mtrcXlcqFpGuFwmGuvvZZhw4ZxxRVXoOu685lramrw+/3U1tbidruJx+O43Skp1TTN+XErLCwkmUwSCASwbZtnnnmG999/n0cffZTCwkIMw3D2SSkbLdqghFuhaJH4XPn8+ZCHOWPu6WzzWpS5q8gX+ZSIbuTHfejrCti+KcaKrdvw5S/FX1lCdcl2Au4S3JqXcG2ceDLJofsdjVt6CAQCRKNRhBCpW3+PJBmP4nG7QPixpcTlcpFIJAgEApimicfjIRqNEgwGm7W+57x581ixYgUPPPAA06dPp2PHjk3WdzQapbi4mNraWgoKCrAsC8MwCIVCvPXWW8yfPx/LsrjgggsoKioikUgQCoUcjzsSieD1eonH4wCOx11UVERNTQ2FhYVs2rSJ999/n0mTJpFIJHjqqaeoqakhFAoRiaRq1GTEPi8vT3ncCkVrJR6P07Ntd+adNY+zXxzDl+u+xGO6aeMtQSbBTtr87ey7+HTpf+ka6so7y9+hc5di1n1XgS9YwJaKSuJJk7+991duO+UOotEooVCIRCKBR8Z59pah2GYchOTXExeTV9QB27YpKioiGo3idrsJh8Pk5+dTXV1Nfn4++fn5zfJZ27dvTzgcJhAI0LVr1ybt2+PxYJomLpcLy7JSg7r1Ck3HYjEmTZrELbfcwrvvvsvgwYOdeLRpmmiahpTSuevIhD2klHi9XpYsWcJJJ51EOBwGUkkELpfLCSt5PB7g+7sc5XErFK2Y/Px8Kioq6BzoxCO/nsm1865lW/U2erfpg0u6sJMWL34yl4ArQCyu43V7KP/cTd9uw9i8bTW1bbZRanTh+XfmMqr7SfzyF7+koqICvxe+fOc+whGDdl2H0WfQ8QhPPolEApfLRVVVlTM4WVJSQkVFBW3atGlWj7s5cbvdGIaBpmkYhuF8jlmzZjleNEAymeScc87h/PPPZ/To0XTv3p0pU6YgpcSyLEeAPR4Pl112GeXl5cyZM4cXXnjBEW1IZcU89thjXHbZZdi2jdvtdsYRdiVbRgm3QtEC0XWdgoICAIb5h/H8+XM4/fEzWLFtJUF3kDyRR0IkqEhsZ2vFFqq2V/GrQ06h1NsJGxcHFwzj3a//SYnPjU/zUFdXR3hbGf94/V62rV9Iu85DOOqsaRS1644mBC6XC9u2adOmjeNxV1ZWEgwGm93jbk5isRglJSXU1tYSCoUwTZNkMsmcOXNIJhvmeG/evJkpU6bw5ptvEggEWLhwIZZlNThG0zTefPNNpJQsXrz4R+eTUvLYY48xduxYioqKiEQiCCHw+/0kk0nH4/851MxJhaIFkvHOpJRoQqN3SR/eH/c+vTvsT228lpVb/8fC9YtYsmEJwYIQh/Q/hJgR47vy9Qi3Ru2mJMf2OpmCfDe3PHsNazeX8V3ZMlYs/ZKjTruJ31wzmzYdeiJI3cZnBCWTFiiEwO12Y9s2LpfrR95iS/HAMz88Pp+PqqoqdF0HwDAM55jp06c3mMOxbNkyPvvssx+JNqRi3IsWLWog2u3bt+eZZ55xXrvdbtq2bYthGBQWFhIIBIDUXZQKlSgUrRhN04jH44i0N2wYBh0KO/D2FW/w5tI3eWPpW/x3+X/YWlmOnoxSabtIuJLYSRtM+HblN4w65ESOLv0t7Q4TXDv9bA6ocDFo2Ej2H3oy+QWFjkhnsh6EECSTSTweD5Zl4fV6nUHKHwpO5vY/18mkAdbW1lJSUuJ43JnQB6RE/NVXX6W4uHiHYv1zjBw5ssEPgWmabN++naKiIsLhsONxq3RAhaKVE4/HndBELBYjEAhQU1NDMBhkRO+R/OaQ3/L2orfZWreVZDxJ0F9ATI+RiCVBCszjTLq278KI4SMoKS4htLWEDf/5mhN+fTWl7TpRWVlJIBDAMAzcbrcj0pn8ZL/fT01NjTNxJxgMNksed3OTSQf0eFLhoswAYX2BzsvLY3cLml988cVMnTqVd99912lzuVyEQqEG6YCQmrijPG6FohWTn59PbW0tkPrCZ2bjZWK20WiUEwefSLimhnyvl1hNJd898yDxsm/xd+xM3+vvJOnx4AK2b93C1sWb8QXa0aVrb2qrqigOBkkaBmX/eIUvX5yN8Pjpe9pZ9Dp2BMVt2mBZFqWlpUQiEdq0aePkMbc0EokEBQUF6LpOXl6eM4vR7/c7xySTSXw+n5N5siucfvrpAA0GOqWURKNRAoGA0+71eht45T9Hy7zaCsU+TjQadWbzxWIxCgoKnLzhzHP54s8QG9ey7s15ePICHHzHDNA8CJeGtX0r394yGUto2HEb+9ultDt4COteepoNH32AXldLQZceHHDG2Zz6p2nYpsE3/36PZy86G29hMSN+fwMFHTrRrU8fwuEweXl5zmBpS6J+/F5K6YR4XnvtNTp06EBdXR3r169n0aJFP5qI1BjKysoYOnQoZWVlzvlGjx7tjAnUTz3clXGBFi3cf//73zn//PNbzECIQtFU+Hy+BjHuZDKJ3+/HMAz8fj/bP3qH9dNuocvYS+l/418RAqIrvyXzVZFCMOCW6UgB8a1bKP50AclkEpfQGHbNjeD2kIjpJGM6euU2bCnpNvQQug4dTriqipdv/SOhLl258J57yQuFWqzH7fF4SCQSaJrmTOUXQjTwkB944AEeeOCB3ep//PjxbN68mWnTpgGpsYk//OEP+Hw+bNvG6/U6Pxa7cg1bZFbJ/PnzGT16NKZp8utf/5rXXnst2ya1OnRd57bbbsu2GYqdkMnmqD8BxLZthBBUfPg2q+69ne7nXEGo5/4kNq0jsXE9Ih5FxKMQj0IsSmz1CvRV32LW1dBu+GF0OvIYCrv2IFaxleimDcQrt2NGo5gxHUPXSdRFiNeGcblcHHP+BdRu2MATV13ppLG1RDJplZl4c0ZIp02btttx7R+SEW1I/d1uueUWwuHUdYxEIsRiMWcdlMZexxb3M2kYBv/73/8488wzOf744/H7/axcuRLDMBqMBCv2DMMwWLBgQbbNUOyETFaHEMKZyafrOqKynPLXnqXrGefiKynFDleioSFEekYgIAAbCXZqG1uS1CNYUmLaYNkSW0psmdo2M8+2xMLGsMDry+PIc85j/n0zePDii5gw5/nsXpDdJDN93e/3U11djZSShx56iHvuuadBaKS4uBiXy9UgLbK6unqHfRYWFuLxeJwfUtu2nWOllDzxxBO4XC5uu+02J1PFsqxdSgdscR73mjVrqKmpYcSIEdx8883O8oqZGJJCsS+QiWlnVp4Lh8MUFRaydeliQqUdCBS1wY7UQFxHJCJoCR1XIoqW0FOPjPcdi0I8ArEoth5F6hEsPYKpRzCjdSSjEYxIHclIHcloHYm61HM8UottGpxwyaVUb9xI3bZt2b4ku0VdXR1FRUUkk0mCwSCPPvoof/rTnxpMvunXrx+LFi1i48aNrF69mm3btrFw4UIOOeSQH/V34IEH8u9//5uNGzeydOlSNm7cyOeff87AgQOdYyzL4uGHH2bq1Kls3ryZaDQKpLz/xnrcLU64DzjgAEpKSrj66quZNGkSp556Kp988kmLnLWlUOwumQWJfD4flmWl0trCNdT839toeX6MumqI68iYDvGUUGsJHXciiiuhI+I6JHTnGEuPImM6diyKHdOxdR1T1zH1CIYeJZl5jkZJRiMkoxES0QhGPIknUMCHL7RMjzsvLw9d13G73ZSXl3Prrbc22N+/f39mzpxJSUmJEwuvra2lbdu2TJs2jT59+jjH+nw+JkyYQJ8+fUgkEgSDQQzDoH379jz55JMMHz68Qd/Tpk0jGo06FaFafTrg2LFjOfTQQ7npppuc2/k//vGPQGrAsqmWfMx1bNsmkUhwww03MGrUqGybo9iLZEIjkPrCJ5NJfJogvuYb2ow8BTsWxdI0XJpIuWcauDQXmga2BGFLsCXSlkjbRloS2wbLtrFtMG2JYUsMaWNYqRCKadupNltiWultCR26d8Noonjw3sYwDPLz84nH44wbN87JLsmwZcsWbrzxRizLom/fvjz44IP4/X50XWfw4MGMGjWKVatWATBq1CiOO+44ksmk84Nw++23s3jxYmzbZv369Q3OLYTg6quv5pVXXsHr9e5SqmGLFO7OnTvTuXNnhgwZQl5eHgBDhgxh7dq1TJw4kcsuu4yePXu2yAkBu8J1113HggULmDlzJhMnTmTKlCnZNkmxl6ifvuaktGkCaVvYcR1TA01zYWsCqQnQBNIlICNMNkhbYts2tpV6Nm0wLRtTgmHamDIV105adkrILRvTtknaAsOSGLaNYdnEo5FsX47dJlPAwO128+STT/J///d/nHPOOc7+qqoqPv30U3r16sVdd92Fy+VC13V8Ph+JRKJBJkgwGKRt27ZOlk8gEODWW2/l5JNPZtGiRT869/3338/ZZ5/doIBFY2mRwp0hI9qZ7X79+nH66adz9913M2TIELp3786vfvWrJj3n888/73g62Wbp0qWMHj2a8vJybrjhhmybo9iLJJNJxzGxLAu/3088XIMV1YmXbyYvVIiludBcAqGBcAkQGjYaNhJTSiw7JcimlfGqJaa0SVpgZDxqKzUYGYvFSBgG+PJI2jIt3GDYFgldpzlzSqSUfPDBB01Ww/KHfWfCEy6Xi48++uhHxxx44IHMnTuXgoIC3G437733Htu2baOoqIiBAwdy4YUXYpomv/jFL/jss89Yt24deXl5nHHGGfj9fubPn88pp5zC119/3aDfL774gjPPPNPx8HclM6dFC/eOOProozn66KN5+eWXWbVqFS+//DK/+c1vmqx/TdNyKhSTsSczbbapyMvL49RTT+XVV19l9OjRTdr3vsTo0aOZPXs2hx56aANHY0/x+/1s27YNIQSBQCBVBzFYgC2hdsVyXH36IvL8oGlpTzudSWKYCJ8fS9op4TVNops3EI9GiVs2SUuSMCUJ2yJhgqdNewiGiOsxEskkwrRIpo8zbEnStFi/bBm9Dxn+80bvJlJKZs6cucPV9pqCTKWfSCTCzJkzOe2001i5ciUrV650zj9t2jTuvvtuhBBUVlZyww03cPjhh/PSSy8xevRoZ3nWK664gpdeeonp06cDqXVJbrnllgai3LlzZ0aOHMmzzz7LpEmTyM/Pb/SqgBlanXBn+M1vfoOu6zzwwAMMGTKEN954g06dOu1xv2PGjGkC65qGxYsX8/LLL3P88cdz4403NmmoxOv1cvDBB/Phhx8q4d4DhgwZwsSJE524Z1ORKdabmSwSDAapi9TRb9JfWH7HH7CWRik9YADS58XSBJYAkdCxa6pxte+EbVrUlS3HMiXxRIKEYZCwbBImxEyLhGkTt2yMrZsxcCEDhbgKi5B6HNPlxrAgadmULV2C5s2n35FHNdln25tkCvv6/X78fj+ff/45paWlnHfeec4xK1asYOXKlXz00UeMGTOGSy65hJKSEifdz7Isp3iCZVkUFBRw6qmnMmvWLGbMmMG6desaOFZFRUXMmDGDa6+9lh49ejhVh3ZlAk6rFW5IrecwceJEJkyYwAUXXMCVV15Jjx496Ny5c7ZNaxLuvfdeEokE48eP5/rrr8+2OYq9jGVZzt1fymt0IYLFGKaNFo1S9c1XFPbui2aZuGwLYSQwKjbBlo2pXG0bDNsmaac86KSZ8qIt0rnbEpKJJHHDIh6uI7FhA3HLxvT4CHToxOZ166mr0+k+fH8GNEMYY2+QKeybSCQoKSmhuLiYDRs2EI/HG9zJSilZu3Ytd911F8uXL+f111/nqaeeQkpJXl6ekz44YMAAJkyYwOTJk5k7d+6Pwh+aphGLxdiyZQsHHnigM8nH4/EQj8edDJOfo9HCLYRwAQuBTVLKU4QQPYAXgDbAl8D5UsqkEMIH/B0YClQCY6SU6xp7nqYm84/9yCOP8Ne//pW8vDyuuOIKOnTokC2TmgxN08jLy+Phhx9Ws0f3MTJTtTPinVleNQLYfj/JRBwMk2hNNURrEZE6NE2gIZBILGljy5RwmzbpmPX3sWszE/+2U/Fw25ZYUmLZYBkGkeoa4noMl8+PlC1n/e0fUlBQ4FRjr6mpwev1snr1ag4//HBOPPFEamtrnQHMmTNnIqXkH//4B4cddhiTJk1yqt0HAgGklIwfP57Zs2c3EO1rrrnG8cgzi4OVlZXRqVMnQqEQlmXt8h3Zrnjc1wHfAqH06ynADCnlC0KImcAlwCPp52opZW8hxNj0cVmPL4RCIe666y6++eabJr1lba1ccsklLF++nMrKSr788ktncEaRGyQSCWcFO13Xyc/PTy2zeuBBFB85ivJ3XsPGRFZW4hY2mmkjNIFIC7ct6wmxlKnYtiUbCLhZb/DSlKkBS0tKTEOSqA5jS3D5/Zx640RnjZSWRibklEwmKSwsRErJUUcdxYgRI4jH405lGk3T6NOnj5MEcO+993L99dc76YTJZNKZJTl9+nRHtG+77TauvPJK/H6/M8vV7/cTj8edVR0Bp1p8YzPhGjXKJoTYD/gV8ET6tQBGAC+lD3kGOCO9fXr6Nen9I0UO/Rz369ePwsLCbJuR01RXV7N69WpuvPFGTj/9dPx+P1u3bs22WYp6BAIBIpFIg7WkCwsLSQgXoW69MW1IGDYxPUYslkS3bGKmjW6mnmOmTdxMiXXMkKmBSdsmmU7/M6QkYUtMS2JKQTLtcRu2jRYoSIUSvHkYpslhJ5zYYifA5efnN7iGmZBHbW0teXl51NbWOtXtDzzwQOd9pmk6tSTj8Tgej6dBEeAMffr0obi4GI/Hg6ZphEIhYrEYhYWFzvooGUdyV9KXG+tx3wvcCATTr9sANVLKzGT+jUAmcNwZ2AAgpTSFEOH08dsbbZUiqzzzzDNcfvnl9O7dm2QyyRlnnMF999232yukKZoeXdcJBoMNtsPhMMFgEK17H7S2nYhv3Yghk7gQuDTSKwOmfDUpG3rdmck1TraIZWFYKfFO2pl8bolpQby6BlvAwSOPw1/ShoqKCoqKihx7WhKZdV4yedSZ0Krb7XaKAEspcblcDQYPhRBO3nVmDZP6jwyZavCZNsMwnDzvTIgrE0fflcywn/W4hRCnANuklF82utdGIIS4XAixUAixsKlW4VI0DX/4wx/405/+xMcff0xxcTHnnXcef/rTn7JtlqIembhrLBZzBrwyt/XdjjgWf+euxCybeDo7JOVh28RNk7hpEjMtYqb1/X5HpNMDlZZM5XNnxDyd523YqRBKafcerFm2nFOuuoZQKNRiJ7tlUgEz4lw/pzuzAmNm9cUePXo0KIzwr3/9C8AJkWTi35WVlUCqZNmAAQOcfZmsE03TsCyrwfug6fO4jwBOE0L8EvCTinHfBxQJIdxpr3s/YFP6+E1AF2CjEMINFJIapGyAlPIx4DGA9u3bt8w1IVsxc+fOZdmyZXz66afMmzevRXpTrZnMFz/z5c9kQGQEZ9jEP/GP804lFovgEiI1MClTXrcEbMDOrAKIxDRTmSQpcbYxLUjaKTE3bDudfZIScF8wRLveB9C2d29KOnZ0yn21RDJFgkOhEOFwGK/Xi8fjcSoJVVVVEQwG0XWdoqIijjrqKObPn080GuWaa66hS5cujrADbNy40VkJcOjQoXTs2NFZJz2zpkx1dbVTWT5TuiyZTDZtOqCU8ibgJgAhxLHABCnluUKIF4HfksosuRCYn37L6+nX/03v/7dsqYv17sMMHDjQ8RbUcrl7RnP8+1uW5XzRM7f0uq7j9XqJxWIU9exFftcebFv+FZrQcDlLutpINKRIe4DpwUnLluklXDPrkQjH0zZsm7iVCpkkbYtgqAjN66XHwIEEi4qora1F07QW6XVnVgeMx+MUFRVh2zaWZVFSUuKUZYvFYgSDQaSUDWZNV1RUUFFRsdO+M3dBmbW3NU2jurqaQCBAVVWVE0PPhF0yxYIbw55MAZwE3CCEKCMVw34y3f4k0CbdfgMweQ/OocgiLpdLiXYT0BzeaCAQoK6ujkgkgtvtdvKRdV2nTZs26LrOyQ89RcKwSZgWMcNKh0dk6jlpEzNS4ZNEJoxiSWIWxE1B3LRJWjYJK9VuWDZJ06K4c1f6HHEU/vwAo8aOpa6ujtLS0hY7OBkMBqmursbr9VJdXe3kVWcKIG/fvh2Xy0VtbS26rnPIIYfQpUuXn+23Q4cOHHfccc4Pgs/nQ9M0px5oaWmpk8kSCAQAduka7pJwSyk/lFKekt5eI6UcLqXsLaU8U0qZSLfH0697p/ev2ZVzKBSKnycWi5Gfn09eXp6zCH9mBmA4HMbv9yPdXgaef2lKqK2UcOvG97HtVHaJlYp/W7KeiKemtSdMm4QT75aEOnSm57DhbF63juMvuohwXYS8vDxqamoalPpqSei67lRcD4VCTkpjUVGREx6xLItAIIDf7+eII47gmWeeoaioaKd9er1ennjiCY499lh8Ph91dXUYhoGU0slWqa6uTuXdpyvgALt0DXNn0Q2FQtFofD4fhmE4WQqxWMyZwVdQUJAqDFBcQulhR6O17UjMlOimjW6lUgK/TwuU329bNnHDSnnZZipFMGFZJG2JN1RIu959qNxWjl4XoeegQQSDQRKJBIFAoMXemfn9fqLRKG63m2g06qQDZn4E6+rqcLlcxONxpyblgQceyOLFi3n66acJhUIEg0FCoRChUIgZM2awcuVKDjvsMILBIMlkkvz8fNxut7OuTGaJAtM0yc/Pb7Aed2Np1VPeFYrWSv2p2JmMiPprZ2QGLXsMP4xhF1zKv2fcjaFHnffL9EQcKVODlBaZeDep5VydCTg2/pJSCtp3RI/F8Pn8THnvXceG+oOiLZH65cUy1C9PVn9fZvlcTdNo164dJ598Mt999x2maTozIwFnvCGzvrZt2072SP2/EaTGJ+pnnTQWJdwKRQvEsiwnVS0jnKZpomkahmE4z16vl6MuGYclJW/8+Q5kA4FKZZhYklROd2Zau/x+XW5TCjRLEq6upnvHjlx6991o6ZXwEomEk5MshGiRld7ri25mdiOkPPHMcrnQ0BvO7Ks/caZ+Sl+m/m0mU8QwDOe9yWTS2Zf5m9X/oWgsKlSiULRAMjnb8XjcWdw/05apWp651dc0jeHnXMBv77mf/QYfkopnpx+dhw3H374DcctOPyR9jj6WhE1qCrwNcT3GkBOO56K//Y384mJ8Ph+2bVNQUEAikaCgoKBFZpQAjrBmJsNkxLO+6Gamqmc88MxKfpmwSiY3WwiBpml4PB6nmLNt27jdbme/x+PBNM0G+zI/eLty19LyfiIVihZCLBajoqKCeDzOxo0bMQyD0tLSJuu/pKQESN3C5+XlIYRw2oqLixFC0KlTJ2f/iAt+x1FnjsGq5wG6PB5s28K2vvfE3V4vRr1iuQBevx+v3+94h6FQCCEEbdq0abE53JD6AfT5fA2uIXwfLsnsq0+mGvuO9mX4qbj17sS0f4gSboWimfj4448ZP34827ZtY/z48bRp04bnnnuuyfqvX9AjIyA/9+xq5EJh/nSK2g/ZWb8tlcwkpsx2/fYftjVm395ChUoUimZA13Xef/99Zs2axYABA3j88cfp37+/U9xaodgTRC5MaiwuLpbnn39+ts3YKYlEwplFlauEw2HcbreTzJ+LlJeXU15eipS5m4FQVLSJbt32vNCGZVmsX7+enj17snr1arp3705tbS22be/R/5FlWVRWVtKuXbs9trG5iEajWJZFKBT6+YMbyf/+9z/233//JuuvsrKSgoKCRs9UzAazZ8+murp6h259Tgi3EKICiJK7KwiWomzbHZRtu4eybfdobbZ1k1K23dGOnBBuACHEQinlsGzbsSOUbbuHsm33ULbtHvuSbSrGrVAoFC0MJdwKhULRwsgl4X4s2wb8BMq23UPZtnso23aPfca2nIlxKxQKheV94zkAAATgSURBVKJx5JLHrVAoFIpGkHXhFkKcJIRYKYQoE0JkveiCEGKdEGKpEOIrIcTCdFuJEOI9IcSq9HPxXrJllhBimxBiWb22HdoiUtyfvo5LhBBDsmTf7UKITenr91W65F1m301p+1YKIU5sRru6CCE+EEJ8I4RYLoS4Lt2e9Wv3E7Zl/bqlz+UXQnwuhPg6bd8d6fYeQojP0nbMFUJ40+2+9Ouy9P7uWbDtaSHE2nrXblC6PRvfCZcQYrEQ4o306+a5bj+sTrw3H4ALWA30BLzA10C/LNu0Dij9QdtUYHJ6ezIwZS/ZcjQwBFj2c7YAvwT+CQjgUOCzLNl3O6nydj88tl/67+sDeqT/7q5msqsjMCS9HQT+lz5/1q/dT9iW9euWPp8ACtLbHuCz9DWZB4xNt88ErkxvXwXMTG+PBeZmwbangd/u4PhsfCduAOYAb6RfN8t1y7bHPRwok6lqOklS9StPz7JNO+J04Jn09jPAGf+/vbMJsaoM4/jvWdgHJYkRMngXqQgtQlQUikRkRGk0kmAWQaCLoE0uWgkiuHNpH4toUSloodCY6NKPEVqFYY02MlaCQg2jA4qjbaSPf4v3OTOHy9xLszjnPQeeH1zu+bhwfvzvPc+97/Pee08dB5X0HXD/f7rsAo4p8T3pYs4DGfx6sQs4KemxpFvATdLzX4XXlKQfffkRMAEspwHZ9XHrRW25uZMk/emri/wmYBAY8e3d2RWZjgBbzar5E48+br2o9Zwwsw6wE/jC142KcstduJcDv5fW/6D/i7gOBJwzsytm9p5vWyZpypfvAMvyqPV1aVKWe31oeqTUVsri50PQdaRPZ43KrssNGpKbD/fHgGngPOlT/gNJf8/jMOvn+2dI16CtxU1Skd0hz+4jMyt+x153dh8D+4Dirxafp6LcchfuJrJJ0npgCHjfzDaXdyqNbRrxVZwmuZT4DFgFrAWmgMO5RMzsWeAU8IGkh+V9ubObx60xuUn6R9JaoEP6dP9SLpduut3M7GVgP8lxI7CUdCHzWjGzN4BpSVfqOF7uwj0JlC+Z3PFt2ZA06ffTwGnSC/duMcTy++l8hj1dGpGlpLt+cv0LfM7csL5WPzNbRCqMX0v61jc3Irv53JqSWxlJD4BLwKukNkPxN9Blh1k/3/8ccK9Gt9e9/SSlC5YfJU92rwFvmtltUst3EPiEinLLXbh/AFb7zOsTpCb92VwyZvaMmS0uloHtwLg77fGH7QHO5DGEPi5ngd0+k/4KMFNqC9RGVw/xLVJ+hd/bPpu+AlgNXK7IwYAvgQlJH5Z2Zc+ul1sTcnOPF8xsiS8/DWwj9eEvAcP+sO7sikyHgVEfzdTldqP0ZmykHnI5u1qeV0n7JXUkvUiqY6OS3qGq3KqYWV3IjTTz+yupj3Ygs8tK0gz+VeB64UPqPV0EfgMuAEtr8jlBGjb/ReqPvdvLhTRz/qnn+DOwIZPfcT/+NX9xDpQef8D9fgGGKvTaRGqDXAPG/LajCdn1ccuemx9rDfCTe4wDB0vnxmXS5Og3wJO+/Slfv+n7V2ZwG/XsxoGvmPvmSe3nhB93C3PfKqkkt/jlZBAEQcvI3SoJgiAIFkgU7iAIgpYRhTsIgqBlROEOgiBoGVG4gyAIWkYU7iAIgpYRhTsIgqBlROEOgiBoGf8BWrDWh9zMdxMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Verificando la Política\n", + "\n", + "Dado que la Q-Table enumera la \"atractividad\" de cada acción en cada estado, es bastante fácil usarla para definir la navegación eficiente en nuestro mundo. En el caso más simple, podemos simplemente seleccionar la acción que corresponde al valor más alto en la Q-Table:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "def qpolicy_strict(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = list(actions)[np.argmax(v)]\n", + " return a\n", + "\n", + "walk(m,qpolicy_strict)" + ] + }, + { + "source": [ + "Si pruebas el código anterior varias veces, puedes notar que a veces simplemente se \"queda colgado\", y necesitas presionar el botón de DETENER en el notebook para interrumpirlo.\n", + "\n", + "> **Tarea 1:** Modifica la función `walk` para limitar la longitud máxima del camino a un cierto número de pasos (por ejemplo, 100), y observa cómo el código anterior devuelve este valor de vez en cuando.\n", + "\n", + "> **Tarea 2:** Modifica la función `walk` para que no regrese a los lugares donde ya ha estado previamente. Esto evitará que `walk` entre en bucles, sin embargo, el agente aún puede terminar \"atrapado\" en una ubicación de la que no pueda escapar.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 3.45, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 15 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de3xcdZ3/8deHVlBxf1ykPxYBN3XF9Yd3rAKL666i3HdxFRV+/rCrII+foj9FH6th2ZW7UAEREAqFVoHl0gqVFgK9t/RCL6T3W9qm1zSkbdqkSZu0uX5/f8x3kkkykzmTzMyZzHk/H488cuZ7zsx8z5yZz/me7+2Ycw4REYmGY8LOgIiI5I+CvohIhCjoi4hEiIK+iEiEKOiLiETI8LAz0J9TTjnFlZSUhJ0NEZEhZfny5fudcyOSrSvooF9SUkJ5eXnY2RARGVLMbGeqdareERGJEAV9EZEIUdAXEYkQBX0RkQhR0BcRiRAFfRGRCFHQFxGJEAV9EQlswZZadh5oCjsbMggFPThLRArLteOXAbDj3stDzokMlEr6IiIRoqAvIhIhCvoiIhGioC8iEiEK+iIiEaKgLyISIYGCvpndZGbrzWydmb1gZu82s5FmttTMKs1sopkd67c9zj+u9OtLEl7nZp++ycwuzs0uiYhIKmmDvpmdDvw/YJRz7uPAMOBqYAzwoHPuw0A9cJ1/ynVAvU9/0G+HmZ3tn/cx4BLgMTMblt3dERGR/gSt3hkOvMfMhgPvBWqALwMv+fVPA1/zy1f6x/j1F5qZ+fQXnXMtzrntQCXw+cHvgoiIBJU26DvnqoH7gV3Egn0DsBw46Jxr95vtBk73y6cDVf657X779yemJ3lOFzO7wczKzay8trZ2IPskIiIpBKneOYlYKX0k8AHgeGLVMznhnBvnnBvlnBs1YkTS+/qKiMgABane+Qqw3TlX65xrAyYDFwAn+uoegDOAar9cDZwJ4NefABxITE/yHBERyYMgQX8XcJ6ZvdfXzV8IbADmAlf5bUYDU/zyVP8Yv36Oc8759Kt9756RwFnAsuzshoiIBJF2lk3n3FIzewlYAbQDK4FxQBnwopnd5dPG+6eMB541s0qgjliPHZxz681sErETRjtwo3OuI8v7IyIi/Qg0tbJz7lbg1l7J20jS+8Y5dxT4ZorXuRu4O8M8iohIlmhErohIhCjoi4hEiIK+iEiEKOiLiESIgr6ISIQo6IuIRIiCvohIhCjoi8iAHG3r4NDRtrCzIRlS0BeRAbnwgTf5xG0zws6GZEhBX0QGpPrgkbCzIAOgoC8iEiEK+iIiEaKgLyISIQr6IiIRoqAvEhGfu3sW4+ZvDTsbEjIFfZGIqD3Uwm9erwg7GxIyBX0RkQgp2qD/y5dW8/Ly3WFnQ0SkoBRt0J9Uvptf/Hl12NkQESkoRRv0RUSkLwV9EZEIUdAXkUHp7HTc8eoGquqaw86KBKCgLyKDsqGmkQmLtnPj8yvCzooEoKAvIoPiXOx/Z3xBCpqCvohIhCjoi4hEiIK+iEiEKOiLiESIgr6IdGlqaef6p9+mpkG3QixWCvoi0qVsbQ2zNu7jgRmbw86K5IiCvohIhCjoi4hEiIK+iGSFxmYNDQr6IjIoZmHnQDKhoC8iEiEK+iIRN2vDXta/0xB2NiRPFPRFIu76Z8q5/OGFg36d9e80crilPQs5klxS0BeRrHl9bU3YWZA0AgV9MzvRzF4yswoz22hm55vZyWY208y2+P8n+W3NzB42s0ozW2Nm5yS8zmi//RYzG52rnRKR/FGvnaElaEn/IWCac+6jwKeAjUApMNs5dxYw2z8GuBQ4y//dAIwFMLOTgVuBc4HPA7fGTxQiIpIfaYO+mZ0AfBEYD+Cca3XOHQSuBJ72mz0NfM0vXwk842KWACea2WnAxcBM51ydc64emAlcktW9ERGRfgUp6Y8EaoE/mtlKM3vKzI4HTnXOxSvw9gCn+uXTgaqE5+/2aanSezCzG8ys3MzKa2trM9sbERHpV5CgPxw4BxjrnPsM0ER3VQ4AzjkHZKVmzzk3zjk3yjk3asSIEdl4SRER8YIE/d3AbufcUv/4JWIngb2+2gb/f59fXw2cmfD8M3xaqnQREcmTtEHfObcHqDKzv/NJFwIbgKlAvAfOaGCKX54KfNf34jkPaPDVQNOBi8zsJN+Ae5FPE5EhTNMwDC3DA273E+A5MzsW2AZ8j9gJY5KZXQfsBL7lt30duAyoBJr9tjjn6szsTuBtv90dzrm6rOyFiIgEEijoO+dWAaOSrLowybYOuDHF60wAJmSSQREZvLqm1vy8kfrsFzyNyBWJgB88Ux52FqRAKOiLRMDu+uawsyAFQkFfRLJqxa56Gprbws6GpKCgLyJZ9fXH3uI745eEnQ1JQUFfJAKM/ParXFfdmNf3k+AU9EVEIkRBX0QkQhT0RSJAo2YlTkFfRCRCFPRFJJCfvbgy7TZOQ3ILnoK+SAQMtHZnwZZafvJCLNi/suqd7GVIQqOgLyIpXTt+Ga+uVrAvJgr6IhFgaskVT0FfRCRCFPRFJGuc2nELnoK+iAxK4xFNrjaUKOiLSMZmrN/TtVw6eW2IOZFMKeiLSMZueHZ51/Kuuu65+lW7U/gU9EWkj5b2TqrqdOOVYhT0xugiEiGvrn5H/fOLlEr6IpI1ib13Nu05FF5GJCUFfZEICGNs1hWPLMj/m0paCvoikhNtHWrWLUQK+iIiEaKgLxIBmnpH4hT0RUQiREFfRLJGN1EpfAr6IhFgA76NSozTTGpFQ0FfRCRCFPRFRCJEQV8kAtR7R+IU9EUka1T1X/gU9EVEIkRBX0QkQhT0RUQiREFfRNIKWlevKv3Cp6AvEgF567yjltyCp6AvIt1SxOw9jUfzmw/JmcBB38yGmdlKM3vNPx5pZkvNrNLMJprZsT79OP+40q8vSXiNm336JjO7ONs7IyK58ff3zgk7C5IlmZT0fwpsTHg8BnjQOfdhoB64zqdfB9T79Af9dpjZ2cDVwMeAS4DHzGzY4LIvIkFY0NFZGsRV9AIFfTM7A7gceMo/NuDLwEt+k6eBr/nlK/1j/PoL/fZXAi8651qcc9uBSuDz2dgJEREJJmhJ//fAL4FO//j9wEHnXLt/vBs43S+fDlQB+PUNfvuu9CTP6WJmN5hZuZmV19bWZrArIiKSTtqgb2ZXAPucc8vzkB+cc+Occ6Occ6NGjBgx6Nc72NyahVyJDG35qrWZWF6VfiMJVZCS/gXAv5jZDuBFYtU6DwEnmtlwv80ZQLVfrgbOBPDrTwAOJKYneU7OrKw6mOu3EBFvXXVj2FmQNNIGfefczc65M5xzJcQaYuc4574DzAWu8puNBqb45an+MX79HBe7A8NU4Grfu2ckcBawLGt7IiIiaQ1Pv0lKvwJeNLO7gJXAeJ8+HnjWzCqBOmInCpxz681sErABaAdudM51DOL9RSQo9coRL6Og75ybB8zzy9tI0vvGOXcU+GaK598N3J1pJkUk90pKy/i///i3YWdDckwjckWky9pqtYEVOwV9kQhQ7Y7EKeiLiESIgr6ISIQo6ItIl/2HNJix2Cnoi0iXTXsPhZ0FybGiD/pqwBLJYJZNKXpFH/R1Hx8RkW6DGZErIkPYC8t2cYwuACJHQV8kApLF9psnr817PiR8RV+9IyIi3RT0RYpce0cn2/c3hZ0NKRAK+iJF7rfTN9HeqS4NEqOgL1Lkxs3f1ietpuFICDmRQqCgLxIx9U2tnH/PnLCzISFR0BeJmMajbWFnQUJU9EFf3ZBFRLoVfdAXEZFuRR/01WdBRKRb0Qd9ERHppqAvEjGmlq5IU9AXiZjaw0fDzoKESEFfJGK+MXZx2FmQECnoi4hEiIK+iEiEKOiLiERI0Qd99VMQEelW9EFfRES6KeiLiESIgr6ISIQUfdDX3Dsi4SkpLWPmhr1hZ0MSFH3QF5Fw3Tx5TdhZkAQK+iJSMK54ZAGvrKwOOxtFTUFfRArGuupGfjZxVdjZKGoK+iIiEaKgLyI5piGShaTog76+biJhUx+6QlL0QV+kmIydt5XyHXVhZ0OGsLRB38zONLO5ZrbBzNab2U99+slmNtPMtvj/J/l0M7OHzazSzNaY2TkJrzXab7/FzEbnbrdEitOYaRVc9bjmw5eBC1LSbwd+4Zw7GzgPuNHMzgZKgdnOubOA2f4xwKXAWf7vBmAsxE4SwK3AucDngVvjJwoRKWaqZC0kaYO+c67GObfCLx8CNgKnA1cCT/vNnga+5pevBJ5xMUuAE83sNOBiYKZzrs45Vw/MBC7J6t6IiEi/MqrTN7MS4DPAUuBU51yNX7UHONUvnw5UJTxtt09Lld77PW4ws3IzK6+trc0ke0mpCUlEpFvgoG9m7wNeBn7mnGtMXOecc2QpvjrnxjnnRjnnRo0YMSIbLykiIl6goG9m7yIW8J9zzk32yXt9tQ3+/z6fXg2cmfD0M3xaqnQJ2a4DzextPBp2NmQA5lbso76pNexsyBASpPeOAeOBjc653yWsmgrEe+CMBqYkpH/X9+I5D2jw1UDTgYvM7CTfgHuRT5OQffG+uZz7m9lhZ2PIOHC4hY/c8gbLd9aHmo+GI218709vc/0z5aHmQ4aWICX9C4BrgS+b2Sr/dxlwL/BVM9sCfMU/Bngd2AZUAk8CPwJwztUBdwJv+787fJrIkLJsex2tHZ08OX9bqPlo7+gEYPv+plDzIUPL8HQbOOcWkrrP1YVJtnfAjSleawIwIZMMDpY6i4kUp4o9jXz0r/9H2NkYcjQiV2SAXIH0DYuVswqX5aDkNW1dDZf8fgGvrn4n+y9e5BT0RRK0dXRy8+Q1vHPwSMptchHEBsIKJSMh2Lz3sP9/KOScDD0K+iIJFlbu54VlVZROXpt227AL2IVewk9Ue6iF+6ZX0Nk5dPJcrBT0RZKIbhk6N0pfXsOjc7eyeNuBlNsM5CQ2hM57BUNBXySJoRBLhlL1Tkt7rKdRZ5ai9NDZ88KTtveOyFBV03CEdw8fxknHHxto+zte3cDra2vSb1hgIWconKDislUyP9rekZ0XiqCiL+kPpR+EZNf598zh3HuCDzqbsGg7e4bQyOTCOvWkVnuoJeuN34/O3ZrdFywADUfaKCktY/KK3Tl9n6IP+ku2pq5DlOLX6qsV0mkZQMmxd4Gis9PRoYbKotbW0Unj0bYBPW9pP+0ZAFV1zQA8tWD7gPIWVNEH/flb9oedBRkCWgKeHHbXN6dscPw/45fyt//x+oDev2xNDWOmVQzoub2t3FUf+hQR+ZLvsRI3PreCT942I+PnPTBjM98et4RVVQdzkKvMFH3QHyqXwEFtqz3MjPV7eHPz4KedHgp2hDTFQLLAXlXXzBfGzOXBWZuTPuetQVxV3vj8CsbOy06Vxb8+9hbfGPtWVl4r2/oL0YXQE2f5znpKSsvYdyh5Nd+MDXsBOHS0jYbm4CX+LX48wf5DLYPP5CAVfdAvNl9+4E1ueHY5oycsY9Oe4ANTnHM8MGMTW2sP5zB3PTU0t/GRW97gra0Du9qasqqaf7p/XsGc4Pb5H2x8YFCuTHq7ig3vNKbfMI343DyFqqbhCCWlZazYlf2rkpLSMq5/OvOJ6CYsilWtLNnWc1qwlvYO5id8Dz9zx0w+dUfmJf4COK8Vf9AvhA85Vw5lULdYe7iFR+ZUcu1TS3OYo57WVB+ktaOTR+dWDuj5a3c3ALA5g5NbEB2djvumV3DgcOpS1xr/3v3JVcn0ly+v4bKHFwTePlU+CqlRuq2jb5fNBb7q9fmluwb12gcOt9BwpO9vYdbGvUxZVU1JaVngm8nHawZ6X+nd/uoGvjthWdfj9iHcdlP0QV88/x1t7cjfl9X8T2iwwTFZvW1bRydH2wbWbW9h5X4enbuV//hL6lG38SCyac8hLnxgHg3NbRn3QIn3xphbEbvVREt7BzN99UBQN09ew6i7ZiZdly4/zsGsDN8vV+Il55fK+/ZMSfX9aO/opLqf6TDiPnvXLM65M/ln9PNJqwEC30z+mBQf6vo0V15XjX0ra9VzuVb0QX9jzeAvk4tCnho3nHNdpaT472egQb+/oHbxg/P56H9Ny+j1SkrLKCkt66r2SGy8TZXHh+dsYWttE/M27+Prj2VWTx6vfntsXuxKZ8wbm/jBM+Us2x58RvEXllWx/3Dym6QE+VyXpOkxkm+JJfJ0X8k7X9vABffO6feKLP4ZDLTX1KGjbT16bsW/cw/P3pLR65TvrO+3Ib6QxtEVfdCX/Lr0oQV85D/fALp/1Iu3HehRH5oN2wbRwJvs0vxIa/KrhncPHwZAS9vg6sedc131xfXNrextPNrVRS+I3fU9tx1K8+4kSnbV9vKK3Un3J96W03i0fcDvly7WfuK2GVw1tvsqIL791tqe369sxexddc2hF0QV9CWrKvYcoq3D0dreSVtCcE2sDy00zjn+9NaOPul/mLOF494V+4mk68e/Jclsj4mBrLVXo+q5v5nNP/x2Lm+sraEuwO0Oxy/czrZejfDJSo/J6raHghW76lO2v8U/x6q6ZtZV92xraU5xsu56bpK0zk7X4yS6NuE1X1mV+VTN//lK+sn54u58bQOXPhS8vSYXFPSLRF1TKyWlZUxZle62w/kpIZ5z50xGZynQ57JQe8G9c/jof03j8Tf71sfeP2NzmhJed8a++uD8wO+5NKFnyA+fW8H1T7/d9ThVT6U/LtrRI1ik+kxqE7oaPrlgG0OlvfHWqetZVdWzF0/vuYX+4bdzueKRhT3SEk/W2/c3sbhXt9lk1T6Pz9/KF8bMpXJf/72w9h9uCdRu9N9LBtcQvXjrAfb3U4WVbQr6Q1ji1zleCnxm8c5+n7P/cCt3l21Iuu7f/7w6W1njcMvAL8lTmblhL+ffMzvQKNsgU/g6B9UHj/Q7MOtQvGphAJWyiUHLEk4f8WqeuMTGyv5OlIn5vPyRhXz6jljjpXOO7fub+lwxPLN4Z5/3ClviySrx81lX3cg3xqZubA1SnfWl++dxzZNL+p0/6WhbB1NWxkrz6RqJR901i+//6W2f17RvD8SutJLnNfULXPPkEr71xOKuE8xARvxmQkF/CHs2SYAP8uN4MsUw7z8v7+5Z8Vbl/gH3jgni7F9P46kFmd1j9rap66lpOJpy4EyilVka+Tg1fmemJJ9rPCnV55TLevfe9cJfun8eX/ztXAp9OGLQj+QXk7oLII5YQ2lQyX4XcT/87+Vs8lVxQY5PpgPuPnX7DMYmuWpMJd7Yv622iReWVQGwuz59j6XBUNAP2Z/Lq3qMADx0NNbN7y8r00+6NDXhVnHpSiKWQTCo2NPI/35qKXe8lvyKIG5ddQMlpWVU7Mm8Yaq5tYO7yjb2SX9m8Y6uElj85NT7pxkscKTeKNux+N43evbaONjcmlFj3d7G7Fza5+LqKiwvr9jddcP3xiNtVGTweaaavrmj0zF3U3Y7FCQb7Pj62hpeXf0Ozjne3FzLj59fweyKnl1ndx5oYuy8rfwhYQxLR2f3ldwbgWZ7HRgF/ZBNKo+d3edv3k9JaRlPvBkr/T4+L7NScDLlO+oC1PH3ddAPL09X5zlt3R4AZq7PTl/w/Ydb+PWU9fzbhGVZv8roWbebedQ/mqT3jhlcPW5xn0bgrz26iEsfWjDo+e57108Xg4F8JKUvr+XY4cFDVaqj+9XfvZnyOQP9rL/9RN8qqXXVjfzkhZXc/uoGRk9YxmtravoUNK4dv4wx03oOEEzc5IfPrRhQfoJQ0A9ZvAQeH3Y/ZXUsSMd/HLVp5uroXXed+Oiqxxfz0xdXJX3ehnca09ZpLtte1+/8Isf4PAZtLDzgG8ZSXVbHA3PDkTb+/aU1XekT367qdyqGICXcB2Zs6loeSEl/x4G+XUSd6ztcP7ZtrGfI7xPm6Pn62EUZv+c1Ty7J+DmF1B88mR51+gGfU9fcyruGdYeq/u5fHHuT5Mm9u/kmbpbus06V11RjKAC27Es9knxXku66+Tp0kQ76902v6Cqthq3dX9ol/ijmVOzlc3fP6jfg9a6CWbkrWF32ZQ8v4IJ756Td7kfPL2f5zjqfN9czYPsI8+CszYG6HX72rllcO35pj32ctWFv12CpxPTVCXXy2/c3pWzg3LTnEB+/dTpXj1tMSWlZV5fFHz+/ssd2Cyu75/8ZyF2ckp3YZvuRtqkk1gevq85P3+yFBT6rbKdzTCqv4puPv9U1l1E6HZ2OYcd0h8S/T/O9zdbdufIhjJN0pO+cFb8Rw457Lwdi9emfuG0GY77xCb79uQ/mJQ/L/JwgvXvd1DW18vLyWKl/1a6D/ONHRiR9/p/e2sEFHz6Fk49/V1eac65P1UImX67EYLWo8gCLKhez497LueeNCsbN38bW31zGsGOMhN8h5TvquuZS6c/bO+p7/Civf6acn154FjsPNHGMf0Gz5PlNlhZvT4iXuG+auIpLPvbX1DT0bOwdnpDZ219dDxAov73fpxAlhrhbp64PLR9BLN1ex1I/IvntHcEaZ48x65rKIoigIb8+QEFlMIKcexZVdv/W+rZd9f0dZ0OkS/q9xQNFupsYHDjcQklpGTPWd18lHGzu7iff2t5Jc+vgGtX2HWqhLGBjzg+eKSfx4vCuso18NmEukoPNrSlHnCaTagj6hIWxzyVeDdN7npJnl/TfXTSu95e7qr6ZV1a9w+QVvmorgwvd3tVXcyr28cuX1/RIe2T2lh4/nvoMpsSNC3oFJdl3jGU2aCrovQR+Pil7XZSTybTnT++TRK4uWBT0gR8/v4LW9s7AH3KF72b1u5nddbbxngYTFm7n2+MWc/avpw8oLwM90A1Hukst4xdu50BCKebTd8zkn/+wMNnTAnt0bmWfkvZAyyB9Bsz0ehhkIrFMPDAz3SCr3Eo3anSwDg1imoKhIGg1UC7l4yb0fUr6OXqfyAb9xMag19bUUL6zrmtekKDHtyJhyt/EL0W2S4VB7g70/T/1P3f4wRSl29518akGhvxx0Y6u5U/ePp3New91VcfE8hjczyf1LJ33fm5Nw9GkQbrQGylTSTdDoxSG+6YnnzDtD3O2hHInslyN84hs0D/ST5dAw7i7bENXcFr/TgOXPbSAppZ2rnx0Ed9JMid91zzcad73wOEW7nljI3sakg8wStYItauuOdAI04HoPSVtqlvB7T/cQpuflvloWyfP9arKGTc/eBfT19f2bDwP2vAW78Y8kFvkZTK4R6Ip1c3W75+R/E5p2fbq6p5VWLkq6UeqIXfsvK3s2N/EmKs+2e/lfuPRtq6BQb/71qe5/OFY1cijcyt79CpJFHQa4V+9vJZZG/fyxJvbWPirL/VZ37sBEmDyimr+5uTj+fQHT+z/xfMssU5/MCWhZJ9ZssvpeLXQr6cUdmOlSDaoTj8LxkyrYKIfDJVM/ENOFngBHgtwk4T+SqGdnY5ZG7sHMn1hzNy0rxe3dPuBrE1glg2O7M3VHvS7He/WWii3TxTJpVzd9D0SQT9I3VjZmuQ9ZUpKy/p9XlNLO00t7fxrkhts3DRxFfdNr8A5R0enY9r6gY8JGMxNt3NhTsW+rAXfPQ19B9tsTzJf/kBvlCEyFOWqpB+p6p24+Ztr+wSV55buYuQpx2f8WjdNXMU1536wKyAlDsL5y8pYF8QPnPgebvnLuiHbEJlMNieFCtpfeyBdLUWkp0gE/abWDt53XPeuprqhR7IJwNLZuKcxbXfAW/6yDsjtvPAiUlxyNbI4EkH/47dO54pPnpaT166qy+00qCISTWrIHaTXUtTZZ8OOQdyvVUQkmVyV9CMT9HPptlf7n3deRCRTN01MPkPuYCnoi4gUoFkbg08ylwkFfRGRCMl70DezS8xsk5lVmllpvt9fRCTK8hr0zWwY8ChwKXA2cI2ZnZ3PPIiIRFm+S/qfByqdc9ucc63Ai8CV2X6T3fV9b0UmIiL5D/qnA4mT3+z2aV3M7AYzKzez8tragQ3zz/ZNtUVE8u0r/+vUnLxuwQ3Ocs6NA8YBjBo1akAdVT/8P/+q6xaIIiLSLd8l/WrgzITHZ/g0ERHJg3wH/beBs8xspJkdC1wNTM1zHkREIiuv1TvOuXYz+zEwHRgGTHDO6Y4YIiJ5kvc6fefc68Dr+X5fERHRiFwRkUhR0BcRiRAFfRGRCFHQFxGJEAty0/CwmFktsHMQL3EKsD9L2RkKora/oH2OCu1zZv7GOTci2YqCDvqDZWblzrlRYecjX6K2v6B9jgrtc/aoekdEJEIU9EVEIqTYg/64sDOQZ1HbX9A+R4X2OUuKuk5fRER6KvaSvoiIJFDQFxGJkKIM+sV083UzO9PM5prZBjNbb2Y/9eknm9lMM9vi/5/k083MHvb7vsbMzkl4rdF++y1mNjqsfQrCzIaZ2Uoze80/HmlmS/1+TfRTc2Nmx/nHlX59ScJr3OzTN5nZxeHsSTBmdqKZvWRmFWa20czOj8Axvsl/p9eZ2Qtm9u5iO85mNsHM9pnZuoS0rB1XM/usma31z3nYzCxtppxzRfVHbMrmrcCHgGOB1cDZYedrEPtzGnCOX/4rYDOxm8r/Fij16aXAGL98GfAGYMB5wFKffjKwzf8/yS+fFPb+9bPfPweeB17zjycBV/vlx4Ef+uUfAY/75auBiX75bH/sjwNG+u/EsLD3q5/9fRq43i8fC5xYzMeY2G1StwPvSTi+/1Zsxxn4InAOsC4hLWvHFVjmtzX/3EvT5insDyUHH/L5wPSExzcDN4edryzu3xTgq8Am4DSfdhqwyS8/AVyTsP0mv/4a4ImE9B7bFdIfsTuqzQa+DLzmv9D7geG9jzGxezOc75eH++2s93FP3K7Q/oATfAC0XunFfIzj98s+2R+314CLi/E4AyW9gn5WjqtfV5GQ3mO7VH/FWL2T9ubrQ5W/pP0MsBQ41TlX41ftAeJ3UU61/0Ppc/k98Eug0z9+P3DQOdfuHyfmvWu//PoGv/1Q2t+RQC3wR1+l9ZSZHU8RH2PnXDVwP7ALqCF23JZT3Mc5LlvH9XS/3Du9X8UY9IuSmb0PeBn4mXOuMXGdi53mi6LvrZldAexzzi0POy95NJxYFcBY59xngCZil/1diukYA/h67CuJnfA+ABwPXBJqpuR29Y8AAAHSSURBVEIQxnEtxqBfdDdfN7N3EQv4zznnJvvkvWZ2ml9/GrDPp6fa/6HyuVwA/IuZ7QBeJFbF8xBwopnF7/SWmPeu/fLrTwAOMHT2F2IltN3OuaX+8UvETgLFeowBvgJsd87VOufagMnEjn0xH+e4bB3Xar/cO71fxRj0i+rm6741fjyw0Tn3u4RVU4F4K/5oYnX98fTv+p4A5wEN/lJyOnCRmZ3kS1kX+bSC4py72Tl3hnOuhNixm+Oc+w4wF7jKb9Z7f+Ofw1V+e+fTr/a9PkYCZxFr9Co4zrk9QJWZ/Z1PuhDYQJEeY28XcJ6Zvdd/x+P7XLTHOUFWjqtf12hm5/nP8LsJr5Va2I0cOWo4uYxYL5etwC1h52eQ+/IFYpd/a4BV/u8yYvWZs4EtwCzgZL+9AY/6fV8LjEp4re8Dlf7ve2HvW4B9/ye6e+98iNiPuRL4M3CcT3+3f1zp138o4fm3+M9hEwF6NYS8r58Gyv1xfoVYL42iPsbA7UAFsA54llgPnKI6zsALxNos2ohd0V2XzeMKjPKf31bgD/TqDJDsT9MwiIhESDFW74iISAoK+iIiEaKgLyISIQr6IiIRoqAvIhIhCvoiIhGioC8iEiH/H6G+/rPuz7xgAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "Lo que observamos aquí es que, al principio, la longitud promedio del camino aumentó. Esto probablemente se deba al hecho de que, cuando no sabemos nada sobre el entorno, es más probable que quedemos atrapados en estados desfavorables, como agua o lobos. A medida que aprendemos más y comenzamos a usar este conocimiento, podemos explorar el entorno durante más tiempo, pero aún no sabemos bien dónde están las manzanas.\n", + "\n", + "Una vez que aprendemos lo suficiente, se vuelve más fácil para el agente alcanzar el objetivo, y la longitud del camino comienza a disminuir. Sin embargo, seguimos abiertos a la exploración, por lo que a menudo nos desviamos del mejor camino y exploramos nuevas opciones, lo que hace que el camino sea más largo de lo óptimo.\n", + "\n", + "Lo que también observamos en este gráfico es que, en algún momento, la longitud aumentó abruptamente. Esto indica la naturaleza estocástica del proceso y que, en algún punto, podemos \"estropear\" los coeficientes de la Q-Table al sobrescribirlos con nuevos valores. Idealmente, esto debería minimizarse disminuyendo la tasa de aprendizaje (es decir, hacia el final del entrenamiento solo ajustamos los valores de la Q-Table en pequeñas cantidades).\n", + "\n", + "En general, es importante recordar que el éxito y la calidad del proceso de aprendizaje dependen significativamente de los parámetros, como la tasa de aprendizaje, la disminución de la tasa de aprendizaje y el factor de descuento. Estos a menudo se denominan **hiperparámetros**, para distinguirlos de los **parámetros** que optimizamos durante el entrenamiento (por ejemplo, los coeficientes de la Q-Table). El proceso de encontrar los mejores valores de hiperparámetros se llama **optimización de hiperparámetros**, y merece un tema aparte.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "## Ejercicio\n", + "#### Un Mundo Más Realista de Pedro y el Lobo\n", + "\n", + "En nuestra situación, Pedro podía moverse casi sin cansarse ni tener hambre. En un mundo más realista, tiene que sentarse y descansar de vez en cuando, y también alimentarse. Hagamos nuestro mundo más realista implementando las siguientes reglas:\n", + "\n", + "1. Al moverse de un lugar a otro, Pedro pierde **energía** y gana algo de **fatiga**.\n", + "2. Pedro puede recuperar energía comiendo manzanas.\n", + "3. Pedro puede deshacerse de la fatiga descansando bajo el árbol o en la hierba (es decir, caminando hacia una ubicación en el tablero con un árbol o hierba - campo verde).\n", + "4. Pedro necesita encontrar y matar al lobo.\n", + "5. Para matar al lobo, Pedro necesita tener ciertos niveles de energía y fatiga, de lo contrario pierde la batalla.\n", + "\n", + "Modifica la función de recompensa anterior de acuerdo con las reglas del juego, ejecuta el algoritmo de aprendizaje por refuerzo para aprender la mejor estrategia para ganar el juego y compara los resultados del paseo aleatorio con tu algoritmo en términos de número de juegos ganados y perdidos.\n", + "\n", + "> **Nota**: Es posible que necesites ajustar los hiperparámetros para que funcione, especialmente el número de épocas. Dado que el éxito del juego (enfrentar al lobo) es un evento raro, puedes esperar un tiempo de entrenamiento mucho más largo.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/8-Reinforcement/2-Gym/README.md b/translations/es/8-Reinforcement/2-Gym/README.md new file mode 100644 index 000000000..8a814bdbd --- /dev/null +++ b/translations/es/8-Reinforcement/2-Gym/README.md @@ -0,0 +1,351 @@ + +# CartPole Patinaje + +El problema que resolvimos en la lección anterior puede parecer un problema de juguete, sin mucha aplicación en escenarios de la vida real. Sin embargo, este no es el caso, ya que muchos problemas del mundo real comparten esta misma estructura, como jugar al Ajedrez o al Go. Son similares porque también tenemos un tablero con reglas definidas y un **estado discreto**. + +## [Cuestionario previo a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/47/) + +## Introducción + +En esta lección aplicaremos los mismos principios de Q-Learning a un problema con un **estado continuo**, es decir, un estado definido por uno o más números reales. Abordaremos el siguiente problema: + +> **Problema**: Si Pedro quiere escapar del lobo, necesita aprender a moverse más rápido. Veremos cómo Pedro puede aprender a patinar, en particular, a mantener el equilibrio, utilizando Q-Learning. + +![¡La gran escapada!](../../../../translated_images/escape.18862db9930337e3fce23a9b6a76a06445f229dadea2268e12a6f0a1fde12115.es.png) + +> ¡Pedro y sus amigos se ponen creativos para escapar del lobo! Imagen de [Jen Looper](https://twitter.com/jenlooper) + +Usaremos una versión simplificada del equilibrio conocida como el problema del **CartPole**. En el mundo del CartPole, tenemos un deslizador horizontal que puede moverse a la izquierda o a la derecha, y el objetivo es equilibrar un poste vertical sobre el deslizador. + +## Prerrequisitos + +En esta lección utilizaremos una biblioteca llamada **OpenAI Gym** para simular diferentes **entornos**. Puedes ejecutar el código de esta lección localmente (por ejemplo, desde Visual Studio Code), en cuyo caso la simulación se abrirá en una nueva ventana. Si ejecutas el código en línea, es posible que necesites hacer algunos ajustes, como se describe [aquí](https://towardsdatascience.com/rendering-openai-gym-envs-on-binder-and-google-colab-536f99391cc7). + +## OpenAI Gym + +En la lección anterior, las reglas del juego y el estado estaban definidos por la clase `Board`, que creamos nosotros mismos. Aquí utilizaremos un **entorno de simulación** especial, que simulará la física detrás del poste en equilibrio. Uno de los entornos de simulación más populares para entrenar algoritmos de aprendizaje por refuerzo se llama [Gym](https://gym.openai.com/), mantenido por [OpenAI](https://openai.com/). Usando este Gym, podemos crear diferentes **entornos**, desde simulaciones de CartPole hasta juegos de Atari. + +> **Nota**: Puedes ver otros entornos disponibles en OpenAI Gym [aquí](https://gym.openai.com/envs/#classic_control). + +Primero, instalemos Gym e importemos las bibliotecas necesarias (bloque de código 1): + +```python +import sys +!{sys.executable} -m pip install gym + +import gym +import matplotlib.pyplot as plt +import numpy as np +import random +``` + +## Ejercicio - inicializar un entorno de CartPole + +Para trabajar con el problema de equilibrio de CartPole, necesitamos inicializar el entorno correspondiente. Cada entorno está asociado con: + +- Un **espacio de observación** que define la estructura de la información que recibimos del entorno. Para el problema de CartPole, recibimos la posición del poste, la velocidad y otros valores. + +- Un **espacio de acción** que define las acciones posibles. En nuestro caso, el espacio de acción es discreto y consta de dos acciones: **izquierda** y **derecha**. (bloque de código 2) + +1. Para inicializar, escribe el siguiente código: + + ```python + env = gym.make("CartPole-v1") + print(env.action_space) + print(env.observation_space) + print(env.action_space.sample()) + ``` + +Para ver cómo funciona el entorno, ejecutemos una simulación corta de 100 pasos. En cada paso, proporcionamos una de las acciones a realizar; en esta simulación simplemente seleccionamos una acción al azar del `action_space`. + +1. Ejecuta el siguiente código y observa el resultado. + + ✅ Recuerda que es preferible ejecutar este código en una instalación local de Python. (bloque de código 3) + + ```python + env.reset() + + for i in range(100): + env.render() + env.step(env.action_space.sample()) + env.close() + ``` + + Deberías ver algo similar a esta imagen: + + ![CartPole sin equilibrio](../../../../8-Reinforcement/2-Gym/images/cartpole-nobalance.gif) + +1. Durante la simulación, necesitamos obtener observaciones para decidir cómo actuar. De hecho, la función `step` devuelve las observaciones actuales, una función de recompensa y una bandera `done` que indica si tiene sentido continuar la simulación o no: (bloque de código 4) + + ```python + env.reset() + + done = False + while not done: + env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + print(f"{obs} -> {rew}") + env.close() + ``` + + Verás algo como esto en la salida del notebook: + + ```text + [ 0.03403272 -0.24301182 0.02669811 0.2895829 ] -> 1.0 + [ 0.02917248 -0.04828055 0.03248977 0.00543839] -> 1.0 + [ 0.02820687 0.14636075 0.03259854 -0.27681916] -> 1.0 + [ 0.03113408 0.34100283 0.02706215 -0.55904489] -> 1.0 + [ 0.03795414 0.53573468 0.01588125 -0.84308041] -> 1.0 + ... + [ 0.17299878 0.15868546 -0.20754175 -0.55975453] -> 1.0 + [ 0.17617249 0.35602306 -0.21873684 -0.90998894] -> 1.0 + ``` + + El vector de observación que se devuelve en cada paso de la simulación contiene los siguientes valores: + - Posición del carrito + - Velocidad del carrito + - Ángulo del poste + - Velocidad de rotación del poste + +1. Obtén el valor mínimo y máximo de esos números: (bloque de código 5) + + ```python + print(env.observation_space.low) + print(env.observation_space.high) + ``` + + También notarás que el valor de recompensa en cada paso de la simulación siempre es 1. Esto se debe a que nuestro objetivo es sobrevivir el mayor tiempo posible, es decir, mantener el poste en una posición razonablemente vertical durante el mayor tiempo posible. + + ✅ De hecho, la simulación de CartPole se considera resuelta si logramos obtener una recompensa promedio de 195 en 100 intentos consecutivos. + +## Discretización del estado + +En Q-Learning, necesitamos construir una Q-Table que defina qué hacer en cada estado. Para poder hacer esto, el estado debe ser **discreto**, más precisamente, debe contener un número finito de valores discretos. Por lo tanto, necesitamos de alguna manera **discretizar** nuestras observaciones, mapeándolas a un conjunto finito de estados. + +Hay algunas formas de hacer esto: + +- **Dividir en intervalos**. Si conocemos el intervalo de un valor determinado, podemos dividir este intervalo en un número de **intervalos**, y luego reemplazar el valor por el número del intervalo al que pertenece. Esto se puede hacer usando el método [`digitize`](https://numpy.org/doc/stable/reference/generated/numpy.digitize.html) de numpy. En este caso, conoceremos con precisión el tamaño del estado, ya que dependerá del número de intervalos que seleccionemos para la digitalización. + +✅ Podemos usar interpolación lineal para llevar los valores a un intervalo finito (por ejemplo, de -20 a 20), y luego convertir los números a enteros redondeándolos. Esto nos da un poco menos de control sobre el tamaño del estado, especialmente si no conocemos los rangos exactos de los valores de entrada. Por ejemplo, en nuestro caso, 2 de los 4 valores no tienen límites superiores/inferiores, lo que puede resultar en un número infinito de estados. + +En nuestro ejemplo, utilizaremos el segundo enfoque. Como notarás más adelante, a pesar de los límites indefinidos, esos valores rara vez toman valores fuera de ciertos intervalos finitos, por lo que esos estados con valores extremos serán muy raros. + +1. Aquí está la función que tomará la observación de nuestro modelo y producirá una tupla de 4 valores enteros: (bloque de código 6) + + ```python + def discretize(x): + return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int)) + ``` + +1. Exploremos también otro método de discretización usando intervalos: (bloque de código 7) + + ```python + def create_bins(i,num): + return np.arange(num+1)*(i[1]-i[0])/num+i[0] + + print("Sample bins for interval (-5,5) with 10 bins\n",create_bins((-5,5),10)) + + ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter + nbins = [20,20,10,10] # number of bins for each parameter + bins = [create_bins(ints[i],nbins[i]) for i in range(4)] + + def discretize_bins(x): + return tuple(np.digitize(x[i],bins[i]) for i in range(4)) + ``` + +1. Ahora ejecutemos una simulación corta y observemos esos valores discretos del entorno. Siéntete libre de probar tanto `discretize` como `discretize_bins` y observa si hay alguna diferencia. + + ✅ `discretize_bins` devuelve el número del intervalo, que comienza en 0. Por lo tanto, para valores de la variable de entrada cercanos a 0, devuelve el número del medio del intervalo (10). En `discretize`, no nos preocupamos por el rango de valores de salida, permitiendo que sean negativos, por lo que los valores del estado no están desplazados, y 0 corresponde a 0. (bloque de código 8) + + ```python + env.reset() + + done = False + while not done: + #env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + #print(discretize_bins(obs)) + print(discretize(obs)) + env.close() + ``` + + ✅ Descomenta la línea que comienza con `env.render` si deseas ver cómo se ejecuta el entorno. De lo contrario, puedes ejecutarlo en segundo plano, lo cual es más rápido. Usaremos esta ejecución "invisible" durante nuestro proceso de Q-Learning. + +## La estructura de la Q-Table + +En nuestra lección anterior, el estado era un simple par de números del 0 al 8, por lo que era conveniente representar la Q-Table con un tensor de numpy con una forma de 8x8x2. Si usamos la discretización por intervalos, el tamaño de nuestro vector de estado también es conocido, por lo que podemos usar el mismo enfoque y representar el estado con un array de forma 20x20x10x10x2 (aquí 2 es la dimensión del espacio de acción, y las primeras dimensiones corresponden al número de intervalos que seleccionamos para cada uno de los parámetros en el espacio de observación). + +Sin embargo, a veces las dimensiones precisas del espacio de observación no son conocidas. En el caso de la función `discretize`, nunca podemos estar seguros de que nuestro estado se mantenga dentro de ciertos límites, ya que algunos de los valores originales no están acotados. Por lo tanto, utilizaremos un enfoque ligeramente diferente y representaremos la Q-Table con un diccionario. + +1. Usa el par *(estado, acción)* como clave del diccionario, y el valor corresponderá al valor de la entrada en la Q-Table. (bloque de código 9) + + ```python + Q = {} + actions = (0,1) + + def qvalues(state): + return [Q.get((state,a),0) for a in actions] + ``` + + Aquí también definimos una función `qvalues()`, que devuelve una lista de valores de la Q-Table para un estado dado que corresponde a todas las acciones posibles. Si la entrada no está presente en la Q-Table, devolveremos 0 como valor predeterminado. + +## Comencemos con Q-Learning + +¡Ahora estamos listos para enseñar a Pedro a mantener el equilibrio! + +1. Primero, definamos algunos hiperparámetros: (bloque de código 10) + + ```python + # hyperparameters + alpha = 0.3 + gamma = 0.9 + epsilon = 0.90 + ``` + + Aquí, `alpha` es la **tasa de aprendizaje**, que define en qué medida debemos ajustar los valores actuales de la Q-Table en cada paso. En la lección anterior comenzamos con 1 y luego disminuimos `alpha` a valores más bajos durante el entrenamiento. En este ejemplo lo mantendremos constante por simplicidad, pero puedes experimentar ajustando los valores de `alpha` más adelante. + + `gamma` es el **factor de descuento**, que indica en qué medida debemos priorizar la recompensa futura sobre la recompensa actual. + + `epsilon` es el **factor de exploración/explotación**, que determina si debemos preferir la exploración o la explotación. En nuestro algoritmo, en un porcentaje `epsilon` de los casos seleccionaremos la siguiente acción según los valores de la Q-Table, y en el resto de los casos ejecutaremos una acción aleatoria. Esto nos permitirá explorar áreas del espacio de búsqueda que nunca hemos visto antes. + + ✅ En términos de equilibrio: elegir una acción aleatoria (exploración) actuaría como un empujón aleatorio en la dirección equivocada, y el poste tendría que aprender a recuperar el equilibrio de esos "errores". + +### Mejorar el algoritmo + +Podemos hacer dos mejoras a nuestro algoritmo de la lección anterior: + +- **Calcular la recompensa acumulativa promedio** a lo largo de un número de simulaciones. Imprimiremos el progreso cada 5000 iteraciones, y promediaremos nuestra recompensa acumulativa durante ese período de tiempo. Esto significa que si obtenemos más de 195 puntos, podemos considerar el problema resuelto, con una calidad incluso mayor a la requerida. + +- **Calcular el resultado acumulativo promedio máximo**, `Qmax`, y almacenaremos la Q-Table correspondiente a ese resultado. Cuando ejecutes el entrenamiento, notarás que a veces el resultado acumulativo promedio comienza a disminuir, y queremos conservar los valores de la Q-Table que corresponden al mejor modelo observado durante el entrenamiento. + +1. Recopila todas las recompensas acumulativas en cada simulación en el vector `rewards` para graficarlas más adelante. (bloque de código 11) + + ```python + def probs(v,eps=1e-4): + v = v-v.min()+eps + v = v/v.sum() + return v + + Qmax = 0 + cum_rewards = [] + rewards = [] + for epoch in range(100000): + obs = env.reset() + done = False + cum_reward=0 + # == do the simulation == + while not done: + s = discretize(obs) + if random.random() Qmax: + Qmax = np.average(cum_rewards) + Qbest = Q + cum_rewards=[] + ``` + +Lo que puedes notar de estos resultados: + +- **Cerca de nuestro objetivo**. Estamos muy cerca de alcanzar el objetivo de obtener 195 recompensas acumulativas en más de 100 ejecuciones consecutivas de la simulación, ¡o incluso podríamos haberlo logrado! Incluso si obtenemos números más bajos, no lo sabremos con certeza, ya que promediamos sobre 5000 ejecuciones, y solo se requieren 100 ejecuciones en el criterio formal. + +- **La recompensa comienza a disminuir**. A veces la recompensa comienza a disminuir, lo que significa que podemos "destruir" valores ya aprendidos en la Q-Table con otros que empeoran la situación. + +Esta observación es más clara si graficamos el progreso del entrenamiento. + +## Graficar el progreso del entrenamiento + +Durante el entrenamiento, hemos recopilado el valor de la recompensa acumulativa en cada una de las iteraciones en el vector `rewards`. Así es como se ve cuando lo graficamos contra el número de iteración: + +```python +plt.plot(rewards) +``` + +![progreso sin procesar](../../../../translated_images/train_progress_raw.2adfdf2daea09c596fc786fa347a23e9aceffe1b463e2257d20a9505794823ec.es.png) + +En este gráfico no es posible sacar conclusiones, ya que debido a la naturaleza del proceso de entrenamiento estocástico, la duración de las sesiones de entrenamiento varía mucho. Para darle más sentido a este gráfico, podemos calcular el **promedio móvil** a lo largo de una serie de experimentos, digamos 100. Esto se puede hacer convenientemente usando `np.convolve`: (bloque de código 12) + +```python +def running_average(x,window): + return np.convolve(x,np.ones(window)/window,mode='valid') + +plt.plot(running_average(rewards,100)) +``` + +![progreso del entrenamiento](../../../../translated_images/train_progress_runav.c71694a8fa9ab35935aff6f109e5ecdfdbdf1b0ae265da49479a81b5fae8f0aa.es.png) + +## Variar los hiperparámetros + +Para hacer que el aprendizaje sea más estable, tiene sentido ajustar algunos de nuestros hiperparámetros durante el entrenamiento. En particular: + +- **Para la tasa de aprendizaje**, `alpha`, podemos comenzar con valores cercanos a 1 y luego ir disminuyendo el parámetro. Con el tiempo, obtendremos buenos valores de probabilidad en la Q-Table, por lo que deberíamos ajustarlos ligeramente y no sobrescribirlos completamente con nuevos valores. + +- **Aumentar epsilon**. Podríamos querer aumentar lentamente el valor de `epsilon` para explorar menos y explotar más. Probablemente tenga sentido comenzar con un valor bajo de `epsilon` y aumentarlo hasta casi 1. +> **Tarea 1**: Prueba con diferentes valores de hiperparámetros y observa si puedes lograr una recompensa acumulativa mayor. ¿Estás obteniendo más de 195? +> **Tarea 2**: Para resolver formalmente el problema, necesitas alcanzar un promedio de 195 de recompensa en 100 ejecuciones consecutivas. Mide eso durante el entrenamiento y asegúrate de que has resuelto formalmente el problema. + +## Ver el resultado en acción + +Sería interesante ver cómo se comporta el modelo entrenado. Vamos a ejecutar la simulación y seguir la misma estrategia de selección de acciones que durante el entrenamiento, muestreando según la distribución de probabilidad en la Q-Table: (bloque de código 13) + +```python +obs = env.reset() +done = False +while not done: + s = discretize(obs) + env.render() + v = probs(np.array(qvalues(s))) + a = random.choices(actions,weights=v)[0] + obs,_,done,_ = env.step(a) +env.close() +``` + +Deberías ver algo como esto: + +![un carrito equilibrando un poste](../../../../8-Reinforcement/2-Gym/images/cartpole-balance.gif) + +--- + +## 🚀Desafío + +> **Tarea 3**: Aquí estuvimos utilizando la copia final de la Q-Table, que puede que no sea la mejor. Recuerda que hemos guardado la Q-Table con mejor rendimiento en la variable `Qbest`. ¡Prueba el mismo ejemplo con la Q-Table de mejor rendimiento copiando `Qbest` sobre `Q` y observa si notas alguna diferencia! + +> **Tarea 4**: Aquí no estábamos seleccionando la mejor acción en cada paso, sino que estábamos muestreando según la distribución de probabilidad correspondiente. ¿Tendría más sentido seleccionar siempre la mejor acción, aquella con el valor más alto en la Q-Table? Esto se puede hacer utilizando la función `np.argmax` para encontrar el número de acción correspondiente al valor más alto en la Q-Table. Implementa esta estrategia y observa si mejora el equilibrio. + +## [Cuestionario posterior a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/48/) + +## Asignación +[Entrena un Mountain Car](assignment.md) + +## Conclusión + +Ahora hemos aprendido cómo entrenar agentes para lograr buenos resultados simplemente proporcionándoles una función de recompensa que defina el estado deseado del juego, y dándoles la oportunidad de explorar inteligentemente el espacio de búsqueda. Hemos aplicado con éxito el algoritmo de Q-Learning en casos de entornos discretos y continuos, pero con acciones discretas. + +Es importante también estudiar situaciones donde el estado de las acciones sea continuo, y cuando el espacio de observación sea mucho más complejo, como la imagen de la pantalla de un juego de Atari. En esos problemas, a menudo necesitamos usar técnicas de aprendizaje automático más potentes, como redes neuronales, para lograr buenos resultados. Esos temas más avanzados serán el objeto de nuestro próximo curso avanzado de IA. + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/8-Reinforcement/2-Gym/assignment.md b/translations/es/8-Reinforcement/2-Gym/assignment.md new file mode 100644 index 000000000..7ab5037b7 --- /dev/null +++ b/translations/es/8-Reinforcement/2-Gym/assignment.md @@ -0,0 +1,57 @@ + +# Entrenar Mountain Car + +[OpenAI Gym](http://gym.openai.com) ha sido diseñado de tal manera que todos los entornos proporcionan la misma API, es decir, los mismos métodos `reset`, `step` y `render`, y las mismas abstracciones de **espacio de acción** y **espacio de observación**. Por lo tanto, debería ser posible adaptar los mismos algoritmos de aprendizaje por refuerzo a diferentes entornos con cambios mínimos en el código. + +## Un entorno de Mountain Car + +El [entorno Mountain Car](https://gym.openai.com/envs/MountainCar-v0/) contiene un coche atrapado en un valle: + +El objetivo es salir del valle y capturar la bandera, realizando en cada paso una de las siguientes acciones: + +| Valor | Significado | +|---|---| +| 0 | Acelerar hacia la izquierda | +| 1 | No acelerar | +| 2 | Acelerar hacia la derecha | + +El principal truco de este problema, sin embargo, es que el motor del coche no es lo suficientemente potente como para escalar la montaña en un solo intento. Por lo tanto, la única forma de tener éxito es conducir de un lado a otro para acumular impulso. + +El espacio de observación consta de solo dos valores: + +| Num | Observación | Min | Max | +|-----|--------------|------|------| +| 0 | Posición del coche | -1.2 | 0.6 | +| 1 | Velocidad del coche | -0.07 | 0.07 | + +El sistema de recompensas para el Mountain Car es bastante complicado: + + * Se otorga una recompensa de 0 si el agente alcanza la bandera (posición = 0.5) en la cima de la montaña. + * Se otorga una recompensa de -1 si la posición del agente es menor a 0.5. + +El episodio termina si la posición del coche es mayor a 0.5, o si la duración del episodio supera los 200 pasos. + +## Instrucciones + +Adapta nuestro algoritmo de aprendizaje por refuerzo para resolver el problema del Mountain Car. Comienza con el código existente en [notebook.ipynb](notebook.ipynb), sustituye el nuevo entorno, cambia las funciones de discretización de estados y trata de hacer que el algoritmo existente entrene con modificaciones mínimas de código. Optimiza el resultado ajustando los hiperparámetros. + +> **Nota**: Es probable que se necesite ajustar los hiperparámetros para que el algoritmo converja. + +## Rubrica + +| Criterio | Ejemplar | Adecuado | Necesita Mejoras | +| -------- | --------- | -------- | ---------------- | +| | El algoritmo de Q-Learning se adapta exitosamente desde el ejemplo de CartPole, con modificaciones mínimas de código, y es capaz de resolver el problema de capturar la bandera en menos de 200 pasos. | Se ha adoptado un nuevo algoritmo de Q-Learning desde Internet, pero está bien documentado; o se ha adoptado el algoritmo existente, pero no alcanza los resultados deseados. | El estudiante no pudo adoptar exitosamente ningún algoritmo, pero ha dado pasos sustanciales hacia la solución (implementó la discretización de estados, la estructura de datos de la Q-Table, etc.). | + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/8-Reinforcement/2-Gym/notebook.ipynb b/translations/es/8-Reinforcement/2-Gym/notebook.ipynb new file mode 100644 index 000000000..a46c2e210 --- /dev/null +++ b/translations/es/8-Reinforcement/2-Gym/notebook.ipynb @@ -0,0 +1,392 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.4 64-bit ('base': conda)" + }, + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "coopTranslator": { + "original_hash": "f22f8f3daed4b6d34648d1254763105b", + "translation_date": "2025-09-04T03:05:34+00:00", + "source_file": "8-Reinforcement/2-Gym/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## Patinaje en el CartPole\n", + "\n", + "> **Problema**: Si Peter quiere escapar del lobo, necesita moverse más rápido que él. Veremos cómo Peter puede aprender a patinar, en particular, a mantener el equilibrio, utilizando Q-Learning.\n", + "\n", + "Primero, instalemos el gym e importemos las bibliotecas necesarias:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 1" + ] + }, + { + "source": [ + "## Crear un entorno de cartpole\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 2" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "Para ver cómo funciona el entorno, ejecutemos una breve simulación de 100 pasos.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "Durante la simulación, necesitamos obtener observaciones para decidir cómo actuar. De hecho, la función `step` nos devuelve las observaciones actuales, la función de recompensa y la bandera `done` que indica si tiene sentido continuar la simulación o no:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 4" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "Podemos obtener el valor mínimo y máximo de esos números:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "#code block 5" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 6" + ] + }, + { + "source": [ + "Exploremos también otro método de discretización utilizando intervalos:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "#code block 7" + ] + }, + { + "source": [ + "Ahora ejecutemos una breve simulación y observemos esos valores discretos del entorno.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -2, -2)\n(0, 1, -2, -5)\n(0, 2, -3, -8)\n(0, 3, -5, -11)\n(0, 3, -7, -14)\n(0, 4, -10, -17)\n(0, 3, -14, -15)\n(0, 3, -17, -12)\n(0, 3, -20, -16)\n(0, 4, -23, -19)\n" + ] + } + ], + "source": [ + "#code block 8" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 9" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 10" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 22.0, alpha=0.3, epsilon=0.9\n", + "5000: 70.1384, alpha=0.3, epsilon=0.9\n", + "10000: 121.8586, alpha=0.3, epsilon=0.9\n", + "15000: 149.6368, alpha=0.3, epsilon=0.9\n", + "20000: 168.2782, alpha=0.3, epsilon=0.9\n", + "25000: 196.7356, alpha=0.3, epsilon=0.9\n", + "30000: 220.7614, alpha=0.3, epsilon=0.9\n", + "35000: 233.2138, alpha=0.3, epsilon=0.9\n", + "40000: 248.22, alpha=0.3, epsilon=0.9\n", + "45000: 264.636, alpha=0.3, epsilon=0.9\n", + "50000: 276.926, alpha=0.3, epsilon=0.9\n", + "55000: 277.9438, alpha=0.3, epsilon=0.9\n", + "60000: 248.881, alpha=0.3, epsilon=0.9\n", + "65000: 272.529, alpha=0.3, epsilon=0.9\n", + "70000: 281.7972, alpha=0.3, epsilon=0.9\n", + "75000: 284.2844, alpha=0.3, epsilon=0.9\n", + "80000: 269.667, alpha=0.3, epsilon=0.9\n", + "85000: 273.8652, alpha=0.3, epsilon=0.9\n", + "90000: 278.2466, alpha=0.3, epsilon=0.9\n", + "95000: 269.1736, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "#code block 11" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "De este gráfico, no es posible determinar nada, porque debido a la naturaleza del proceso de entrenamiento estocástico, la duración de las sesiones de entrenamiento varía enormemente. Para dar más sentido a este gráfico, podemos calcular el **promedio móvil** sobre una serie de experimentos, digamos 100. Esto se puede hacer convenientemente usando `np.convolve`:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "#code block 12" + ] + }, + { + "source": [ + "## Variando los hiperparámetros y viendo el resultado en acción\n", + "\n", + "Ahora sería interesante ver cómo se comporta realmente el modelo entrenado. Ejecutemos la simulación, y seguiremos la misma estrategia de selección de acciones que durante el entrenamiento: muestreo según la distribución de probabilidad en la Q-Table:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 13" + ] + }, + { + "source": [ + "## Guardar el resultado en un GIF animado\n", + "\n", + "Si quieres impresionar a tus amigos, puedes enviarles la imagen animada en formato GIF del palo equilibrado. Para hacerlo, podemos usar `env.render` para generar un fotograma de imagen y luego guardar esos fotogramas en un GIF animado utilizando la biblioteca PIL:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/8-Reinforcement/2-Gym/solution/Julia/README.md b/translations/es/8-Reinforcement/2-Gym/solution/Julia/README.md new file mode 100644 index 000000000..11228dcab --- /dev/null +++ b/translations/es/8-Reinforcement/2-Gym/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/8-Reinforcement/2-Gym/solution/R/README.md b/translations/es/8-Reinforcement/2-Gym/solution/R/README.md new file mode 100644 index 000000000..3c4820f7c --- /dev/null +++ b/translations/es/8-Reinforcement/2-Gym/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/8-Reinforcement/2-Gym/solution/notebook.ipynb b/translations/es/8-Reinforcement/2-Gym/solution/notebook.ipynb new file mode 100644 index 000000000..bc7277404 --- /dev/null +++ b/translations/es/8-Reinforcement/2-Gym/solution/notebook.ipynb @@ -0,0 +1,524 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "5c0e485e58d63c506f1791c4dbf990ce", + "translation_date": "2025-09-04T03:08:09+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/notebook.ipynb", + "language_code": "es" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## Patinaje en el CartPole\n", + "\n", + "> **Problema**: Si Peter quiere escapar del lobo, necesita moverse más rápido que él. Veremos cómo Peter puede aprender a patinar, en particular, a mantener el equilibrio, utilizando Q-Learning.\n", + "\n", + "Primero, instalemos el gym e importemos las bibliotecas necesarias:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: gym in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.18.3)\n", + "Requirement already satisfied: Pillow<=8.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (7.0.0)\n", + "Requirement already satisfied: scipy in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.10.4 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.19.2)\n", + "Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.6.0)\n", + "Requirement already satisfied: pyglet<=1.5.15,>=1.4.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.5.15)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n" + ] + } + ], + "source": [ + "import sys\n", + "!pip install gym \n", + "\n", + "import gym\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random" + ] + }, + { + "source": [ + "## Crear un entorno de cartpole\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env = gym.make(\"CartPole-v1\")\n", + "print(env.action_space)\n", + "print(env.observation_space)\n", + "print(env.action_space.sample())" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Discrete(2)\nBox(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)\n0\n" + ] + } + ] + }, + { + "source": [ + "Para ver cómo funciona el entorno, ejecutemos una breve simulación de 100 pasos.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "for i in range(100):\n", + " env.render()\n", + " env.step(env.action_space.sample())\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/gym/logger.py:30: UserWarning: \u001b[33mWARN: You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.\u001b[0m\n warnings.warn(colorize('%s: %s'%('WARN', msg % args), 'yellow'))\n" + ] + } + ] + }, + { + "source": [ + "Durante la simulación, necesitamos obtener observaciones para decidir cómo actuar. De hecho, la función `step` nos devuelve las observaciones actuales, la función de recompensa y la bandera `done` que indica si tiene sentido continuar la simulación o no:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " print(f\"{obs} -> {rew}\")\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[ 0.03044442 -0.19543914 -0.04496216 0.28125618] -> 1.0\n", + "[ 0.02653564 -0.38989186 -0.03933704 0.55942606] -> 1.0\n", + "[ 0.0187378 -0.19424049 -0.02814852 0.25461393] -> 1.0\n", + "[ 0.01485299 -0.38894946 -0.02305624 0.53828712] -> 1.0\n", + "[ 0.007074 -0.19351108 -0.0122905 0.23842953] -> 1.0\n", + "[ 0.00320378 0.00178427 -0.00752191 -0.05810469] -> 1.0\n", + "[ 0.00323946 0.19701326 -0.008684 -0.35315131] -> 1.0\n", + "[ 0.00717973 0.00201587 -0.01574703 -0.06321931] -> 1.0\n", + "[ 0.00722005 0.19736001 -0.01701141 -0.36082863] -> 1.0\n", + "[ 0.01116725 0.39271958 -0.02422798 -0.65882671] -> 1.0\n", + "[ 0.01902164 0.19794307 -0.03740452 -0.37387001] -> 1.0\n", + "[ 0.0229805 0.39357584 -0.04488192 -0.67810827] -> 1.0\n", + "[ 0.03085202 0.58929164 -0.05844408 -0.98457719] -> 1.0\n", + "[ 0.04263785 0.78514572 -0.07813563 -1.2950295 ] -> 1.0\n", + "[ 0.05834076 0.98116859 -0.10403622 -1.61111521] -> 1.0\n", + "[ 0.07796413 0.78741784 -0.13625852 -1.35259196] -> 1.0\n", + "[ 0.09371249 0.98396202 -0.16331036 -1.68461179] -> 1.0\n", + "[ 0.11339173 0.79106371 -0.1970026 -1.44691436] -> 1.0\n", + "[ 0.12921301 0.59883361 -0.22594088 -1.22169133] -> 1.0\n" + ] + } + ] + }, + { + "source": [ + "Podemos obtener el valor mínimo y máximo de esos números:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "print(env.observation_space.low)\n", + "print(env.observation_space.high)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def discretize(x):\n", + " return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int))" + ] + }, + { + "source": [ + "Exploremos también otro método de discretización utilizando intervalos:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "def create_bins(i,num):\n", + " return np.arange(num+1)*(i[1]-i[0])/num+i[0]\n", + "\n", + "print(\"Sample bins for interval (-5,5) with 10 bins\\n\",create_bins((-5,5),10))\n", + "\n", + "ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter\n", + "nbins = [20,20,10,10] # number of bins for each parameter\n", + "bins = [create_bins(ints[i],nbins[i]) for i in range(4)]\n", + "\n", + "def discretize_bins(x):\n", + " return tuple(np.digitize(x[i],bins[i]) for i in range(4))" + ] + }, + { + "source": [ + "Ahora ejecutemos una breve simulación y observemos esos valores discretos del entorno.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -1, -3)\n(0, 0, -2, 0)\n(0, 0, -2, -3)\n(0, 1, -3, -6)\n(0, 2, -4, -9)\n(0, 3, -6, -12)\n(0, 2, -8, -9)\n(0, 3, -10, -13)\n(0, 4, -13, -16)\n(0, 4, -16, -19)\n(0, 4, -20, -17)\n(0, 4, -24, -20)\n" + ] + } + ], + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " #env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " #print(discretize_bins(obs))\n", + " print(discretize(obs))\n", + "env.close()" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "Q = {}\n", + "actions = (0,1)\n", + "\n", + "def qvalues(state):\n", + " return [Q.get((state,a),0) for a in actions]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# hyperparameters\n", + "alpha = 0.3\n", + "gamma = 0.9\n", + "epsilon = 0.90" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 108.0, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v\n", + "\n", + "Qmax = 0\n", + "cum_rewards = []\n", + "rewards = []\n", + "for epoch in range(100000):\n", + " obs = env.reset()\n", + " done = False\n", + " cum_reward=0\n", + " # == do the simulation ==\n", + " while not done:\n", + " s = discretize(obs)\n", + " if random.random() Qmax:\n", + " Qmax = np.average(cum_rewards)\n", + " Qbest = Q\n", + " cum_rewards=[]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "De este gráfico, no es posible determinar nada, porque debido a la naturaleza del proceso de entrenamiento estocástico, la duración de las sesiones de entrenamiento varía enormemente. Para dar más sentido a este gráfico, podemos calcular el **promedio móvil** sobre una serie de experimentos, digamos 100. Esto se puede hacer convenientemente usando `np.convolve`:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "def running_average(x,window):\n", + " return np.convolve(x,np.ones(window)/window,mode='valid')\n", + "\n", + "plt.plot(running_average(rewards,100))" + ] + }, + { + "source": [ + "## Variando los hiperparámetros y viendo el resultado en acción\n", + "\n", + "Ahora sería interesante ver cómo se comporta el modelo entrenado. Ejecutemos la simulación, y seguiremos la misma estrategia de selección de acciones que durante el entrenamiento: muestreo según la distribución de probabilidad en la Q-Table:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "obs = env.reset()\n", + "done = False\n", + "while not done:\n", + " s = discretize(obs)\n", + " env.render()\n", + " v = probs(np.array(qvalues(s)))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + "env.close()" + ] + }, + { + "source": [ + "## Guardar el resultado en un GIF animado\n", + "\n", + "Si quieres impresionar a tus amigos, puedes enviarles la imagen animada del poste equilibrado en formato GIF. Para hacerlo, podemos usar `env.render` para generar un fotograma de imagen y luego guardar esos fotogramas en un GIF animado utilizando la biblioteca PIL:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/8-Reinforcement/README.md b/translations/es/8-Reinforcement/README.md new file mode 100644 index 000000000..40508cad1 --- /dev/null +++ b/translations/es/8-Reinforcement/README.md @@ -0,0 +1,67 @@ + +# Introducción al aprendizaje por refuerzo + +El aprendizaje por refuerzo, RL, se considera uno de los paradigmas básicos del aprendizaje automático, junto con el aprendizaje supervisado y el aprendizaje no supervisado. RL trata sobre decisiones: tomar las decisiones correctas o, al menos, aprender de ellas. + +Imagina que tienes un entorno simulado como el mercado de valores. ¿Qué sucede si impones una regulación específica? ¿Tiene un efecto positivo o negativo? Si ocurre algo negativo, necesitas tomar este _refuerzo negativo_, aprender de ello y cambiar de rumbo. Si el resultado es positivo, necesitas construir sobre ese _refuerzo positivo_. + +![Pedro y el lobo](../../../translated_images/peter.779730f9ba3a8a8d9290600dcf55f2e491c0640c785af7ac0d64f583c49b8864.es.png) + +> ¡Pedro y sus amigos necesitan escapar del lobo hambriento! Imagen por [Jen Looper](https://twitter.com/jenlooper) + +## Tema regional: Pedro y el Lobo (Rusia) + +[Pedro y el Lobo](https://es.wikipedia.org/wiki/Pedro_y_el_lobo) es un cuento musical escrito por el compositor ruso [Sergei Prokofiev](https://es.wikipedia.org/wiki/Sergu%C3%A9i_Prok%C3%B3fiev). Es una historia sobre el joven pionero Pedro, quien valientemente sale de su casa hacia el claro del bosque para perseguir al lobo. En esta sección, entrenaremos algoritmos de aprendizaje automático que ayudarán a Pedro: + +- **Explorar** el área circundante y construir un mapa de navegación óptimo. +- **Aprender** a usar un monopatín y mantener el equilibrio en él, para moverse más rápido. + +[![Pedro y el Lobo](https://img.youtube.com/vi/Fmi5zHg4QSM/0.jpg)](https://www.youtube.com/watch?v=Fmi5zHg4QSM) + +> 🎥 Haz clic en la imagen de arriba para escuchar Pedro y el Lobo de Prokofiev + +## Aprendizaje por refuerzo + +En secciones anteriores, has visto dos ejemplos de problemas de aprendizaje automático: + +- **Supervisado**, donde tenemos conjuntos de datos que sugieren soluciones de muestra para el problema que queremos resolver. [Clasificación](../4-Classification/README.md) y [regresión](../2-Regression/README.md) son tareas de aprendizaje supervisado. +- **No supervisado**, en el que no tenemos datos de entrenamiento etiquetados. El principal ejemplo de aprendizaje no supervisado es [Agrupamiento](../5-Clustering/README.md). + +En esta sección, te presentaremos un nuevo tipo de problema de aprendizaje que no requiere datos de entrenamiento etiquetados. Hay varios tipos de problemas de este tipo: + +- **[Aprendizaje semisupervisado](https://es.wikipedia.org/wiki/Aprendizaje_semisupervisado)**, donde tenemos una gran cantidad de datos no etiquetados que pueden usarse para preentrenar el modelo. +- **[Aprendizaje por refuerzo](https://es.wikipedia.org/wiki/Aprendizaje_por_refuerzo)**, en el que un agente aprende cómo comportarse realizando experimentos en algún entorno simulado. + +### Ejemplo - videojuego + +Supongamos que quieres enseñar a una computadora a jugar un juego, como ajedrez o [Super Mario](https://es.wikipedia.org/wiki/Super_Mario). Para que la computadora juegue, necesitamos que prediga qué movimiento realizar en cada estado del juego. Aunque esto pueda parecer un problema de clasificación, no lo es, porque no tenemos un conjunto de datos con estados y acciones correspondientes. Aunque podríamos tener algunos datos como partidas de ajedrez existentes o grabaciones de jugadores jugando Super Mario, es probable que esos datos no cubran suficientemente una gran cantidad de estados posibles. + +En lugar de buscar datos existentes del juego, el **Aprendizaje por Refuerzo** (RL) se basa en la idea de *hacer que la computadora juegue* muchas veces y observar el resultado. Por lo tanto, para aplicar el Aprendizaje por Refuerzo, necesitamos dos cosas: + +- **Un entorno** y **un simulador** que nos permitan jugar muchas veces. Este simulador definiría todas las reglas del juego, así como los posibles estados y acciones. + +- **Una función de recompensa**, que nos indique qué tan bien lo hicimos durante cada movimiento o partida. + +La principal diferencia entre otros tipos de aprendizaje automático y RL es que en RL típicamente no sabemos si ganamos o perdemos hasta que terminamos el juego. Por lo tanto, no podemos decir si un movimiento en particular es bueno o no: solo recibimos una recompensa al final del juego. Y nuestro objetivo es diseñar algoritmos que nos permitan entrenar un modelo bajo condiciones inciertas. Aprenderemos sobre un algoritmo de RL llamado **Q-learning**. + +## Lecciones + +1. [Introducción al aprendizaje por refuerzo y Q-Learning](1-QLearning/README.md) +2. [Uso de un entorno de simulación gym](2-Gym/README.md) + +## Créditos + +"Introducción al Aprendizaje por Refuerzo" fue escrito con ♥️ por [Dmitry Soshnikov](http://soshnikov.com) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/9-Real-World/1-Applications/README.md b/translations/es/9-Real-World/1-Applications/README.md new file mode 100644 index 000000000..162af0585 --- /dev/null +++ b/translations/es/9-Real-World/1-Applications/README.md @@ -0,0 +1,159 @@ + +# Posdata: Aprendizaje automático en el mundo real + +![Resumen del aprendizaje automático en el mundo real en un sketchnote](../../../../translated_images/ml-realworld.26ee2746716155771f8076598b6145e6533fe4a9e2e465ea745f46648cbf1b84.es.png) +> Sketchnote por [Tomomi Imura](https://www.twitter.com/girlie_mac) + +En este currículo, has aprendido muchas formas de preparar datos para el entrenamiento y crear modelos de aprendizaje automático. Construiste una serie de modelos clásicos de regresión, agrupamiento, clasificación, procesamiento de lenguaje natural y series temporales. ¡Felicidades! Ahora, podrías estar preguntándote para qué sirve todo esto... ¿cuáles son las aplicaciones reales de estos modelos? + +Aunque la industria ha mostrado mucho interés en la IA, que generalmente utiliza aprendizaje profundo, todavía hay aplicaciones valiosas para los modelos clásicos de aprendizaje automático. ¡Incluso podrías estar usando algunas de estas aplicaciones hoy en día! En esta lección, explorarás cómo ocho industrias y dominios temáticos diferentes utilizan estos tipos de modelos para hacer que sus aplicaciones sean más eficientes, confiables, inteligentes y valiosas para los usuarios. + +## [Cuestionario previo a la lección](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/49/) + +## 💰 Finanzas + +El sector financiero ofrece muchas oportunidades para el aprendizaje automático. Muchos problemas en esta área se prestan para ser modelados y resueltos utilizando ML. + +### Detección de fraude con tarjetas de crédito + +Aprendimos sobre [agrupamiento k-means](../../5-Clustering/2-K-Means/README.md) anteriormente en el curso, pero ¿cómo puede usarse para resolver problemas relacionados con el fraude con tarjetas de crédito? + +El agrupamiento k-means es útil en una técnica de detección de fraude con tarjetas de crédito llamada **detección de valores atípicos**. Los valores atípicos, o desviaciones en las observaciones de un conjunto de datos, pueden indicarnos si una tarjeta de crédito se está utilizando de manera normal o si algo inusual está ocurriendo. Como se muestra en el artículo vinculado a continuación, puedes clasificar los datos de tarjetas de crédito utilizando un algoritmo de agrupamiento k-means y asignar cada transacción a un grupo según qué tan atípica parezca ser. Luego, puedes evaluar los grupos más riesgosos para determinar si las transacciones son fraudulentas o legítimas. +[Referencia](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.680.1195&rep=rep1&type=pdf) + +### Gestión de patrimonios + +En la gestión de patrimonios, un individuo o empresa maneja inversiones en nombre de sus clientes. Su trabajo es mantener y hacer crecer la riqueza a largo plazo, por lo que es esencial elegir inversiones que tengan un buen desempeño. + +Una forma de evaluar cómo se desempeña una inversión en particular es mediante la regresión estadística. La [regresión lineal](../../2-Regression/1-Tools/README.md) es una herramienta valiosa para entender cómo un fondo se desempeña en relación con un punto de referencia. También podemos deducir si los resultados de la regresión son estadísticamente significativos o cuánto afectarían las inversiones de un cliente. Incluso podrías ampliar tu análisis utilizando regresión múltiple, donde se pueden tener en cuenta factores de riesgo adicionales. Para un ejemplo de cómo esto funcionaría para un fondo específico, consulta el artículo a continuación sobre la evaluación del desempeño de fondos utilizando regresión. +[Referencia](http://www.brightwoodventures.com/evaluating-fund-performance-using-regression/) + +## 🎓 Educación + +El sector educativo también es un área muy interesante donde se puede aplicar ML. Hay problemas interesantes que abordar, como detectar trampas en exámenes o ensayos, o gestionar sesgos, intencionados o no, en el proceso de corrección. + +### Predicción del comportamiento estudiantil + +[Coursera](https://coursera.com), un proveedor de cursos abiertos en línea, tiene un excelente blog técnico donde discuten muchas decisiones de ingeniería. En este estudio de caso, trazaron una línea de regresión para explorar cualquier correlación entre una baja calificación de NPS (Net Promoter Score) y la retención o abandono de cursos. +[Referencia](https://medium.com/coursera-engineering/controlled-regression-quantifying-the-impact-of-course-quality-on-learner-retention-31f956bd592a) + +### Mitigación de sesgos + +[Grammarly](https://grammarly.com), un asistente de escritura que verifica errores de ortografía y gramática, utiliza sofisticados [sistemas de procesamiento de lenguaje natural](../../6-NLP/README.md) en todos sus productos. Publicaron un interesante estudio de caso en su blog técnico sobre cómo abordaron el sesgo de género en el aprendizaje automático, lo cual aprendiste en nuestra [lección introductoria sobre equidad](../../1-Introduction/3-fairness/README.md). +[Referencia](https://www.grammarly.com/blog/engineering/mitigating-gender-bias-in-autocorrect/) + +## 👜 Retail + +El sector minorista definitivamente puede beneficiarse del uso de ML, desde crear una mejor experiencia para el cliente hasta gestionar inventarios de manera óptima. + +### Personalización del recorrido del cliente + +En Wayfair, una empresa que vende artículos para el hogar como muebles, ayudar a los clientes a encontrar los productos adecuados para sus gustos y necesidades es fundamental. En este artículo, los ingenieros de la empresa describen cómo utilizan ML y NLP para "mostrar los resultados correctos a los clientes". En particular, su motor de intención de consulta se ha construido para usar extracción de entidades, entrenamiento de clasificadores, extracción de activos y opiniones, y etiquetado de sentimientos en las reseñas de los clientes. Este es un caso clásico de cómo funciona el NLP en el comercio minorista en línea. +[Referencia](https://www.aboutwayfair.com/tech-innovation/how-we-use-machine-learning-and-natural-language-processing-to-empower-search) + +### Gestión de inventarios + +Empresas innovadoras y ágiles como [StitchFix](https://stitchfix.com), un servicio de cajas que envía ropa a los consumidores, dependen en gran medida de ML para recomendaciones y gestión de inventarios. Sus equipos de estilismo trabajan junto con sus equipos de comercialización, de hecho: "uno de nuestros científicos de datos experimentó con un algoritmo genético y lo aplicó a prendas para predecir qué sería una pieza de ropa exitosa que no existe hoy. Lo llevamos al equipo de comercialización y ahora pueden usarlo como una herramienta". +[Referencia](https://www.zdnet.com/article/how-stitch-fix-uses-machine-learning-to-master-the-science-of-styling/) + +## 🏥 Atención médica + +El sector de la atención médica puede aprovechar ML para optimizar tareas de investigación y también problemas logísticos como la readmisión de pacientes o detener la propagación de enfermedades. + +### Gestión de ensayos clínicos + +La toxicidad en los ensayos clínicos es una gran preocupación para los fabricantes de medicamentos. ¿Cuánta toxicidad es tolerable? En este estudio, analizar varios métodos de ensayos clínicos llevó al desarrollo de un nuevo enfoque para predecir las probabilidades de resultados de ensayos clínicos. Específicamente, pudieron usar random forest para producir un [clasificador](../../4-Classification/README.md) capaz de distinguir entre grupos de medicamentos. +[Referencia](https://www.sciencedirect.com/science/article/pii/S2451945616302914) + +### Gestión de readmisión hospitalaria + +La atención hospitalaria es costosa, especialmente cuando los pacientes tienen que ser readmitidos. Este artículo analiza una empresa que utiliza ML para predecir el potencial de readmisión utilizando [agrupamiento](../../5-Clustering/README.md) de algoritmos. Estos grupos ayudan a los analistas a "descubrir grupos de readmisiones que pueden compartir una causa común". +[Referencia](https://healthmanagement.org/c/healthmanagement/issuearticle/hospital-readmissions-and-machine-learning) + +### Gestión de enfermedades + +La reciente pandemia ha puesto de relieve las formas en que el aprendizaje automático puede ayudar a detener la propagación de enfermedades. En este artículo, reconocerás el uso de ARIMA, curvas logísticas, regresión lineal y SARIMA. "Este trabajo es un intento de calcular la tasa de propagación de este virus y, por lo tanto, predecir las muertes, recuperaciones y casos confirmados, para que pueda ayudarnos a prepararnos mejor y sobrevivir". +[Referencia](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979218/) + +## 🌲 Ecología y tecnología verde + +La naturaleza y la ecología consisten en muchos sistemas sensibles donde la interacción entre animales y la naturaleza entra en juego. Es importante poder medir estos sistemas con precisión y actuar adecuadamente si ocurre algo, como un incendio forestal o una disminución en la población animal. + +### Gestión forestal + +Aprendiste sobre [aprendizaje por refuerzo](../../8-Reinforcement/README.md) en lecciones anteriores. Puede ser muy útil al intentar predecir patrones en la naturaleza. En particular, puede usarse para rastrear problemas ecológicos como incendios forestales y la propagación de especies invasoras. En Canadá, un grupo de investigadores utilizó aprendizaje por refuerzo para construir modelos de dinámica de incendios forestales a partir de imágenes satelitales. Usando un innovador "proceso de propagación espacial (SSP)", imaginaron un incendio forestal como "el agente en cualquier celda del paisaje". "El conjunto de acciones que el fuego puede tomar desde una ubicación en cualquier momento incluye propagarse hacia el norte, sur, este u oeste o no propagarse". + +Este enfoque invierte la configuración habitual de RL, ya que la dinámica del correspondiente Proceso de Decisión de Markov (MDP) es una función conocida para la propagación inmediata del incendio forestal." Lee más sobre los algoritmos clásicos utilizados por este grupo en el enlace a continuación. +[Referencia](https://www.frontiersin.org/articles/10.3389/fict.2018.00006/full) + +### Detección de movimiento de animales + +Aunque el aprendizaje profundo ha creado una revolución en el seguimiento visual de movimientos de animales (puedes construir tu propio [rastreador de osos polares](https://docs.microsoft.com/learn/modules/build-ml-model-with-azure-stream-analytics/?WT.mc_id=academic-77952-leestott) aquí), el ML clásico todavía tiene un lugar en esta tarea. + +Los sensores para rastrear movimientos de animales de granja e IoT hacen uso de este tipo de procesamiento visual, pero las técnicas más básicas de ML son útiles para preprocesar datos. Por ejemplo, en este artículo, se monitorearon y analizaron posturas de ovejas utilizando varios algoritmos clasificadores. Podrías reconocer la curva ROC en la página 335. +[Referencia](https://druckhaus-hofmann.de/gallery/31-wj-feb-2020.pdf) + +### ⚡️ Gestión energética + +En nuestras lecciones sobre [pronóstico de series temporales](../../7-TimeSeries/README.md), invocamos el concepto de parquímetros inteligentes para generar ingresos para una ciudad basándonos en la comprensión de la oferta y la demanda. Este artículo analiza en detalle cómo el agrupamiento, la regresión y el pronóstico de series temporales se combinaron para ayudar a predecir el uso futuro de energía en Irlanda, basado en medidores inteligentes. +[Referencia](https://www-cdn.knime.com/sites/default/files/inline-images/knime_bigdata_energy_timeseries_whitepaper.pdf) + +## 💼 Seguros + +El sector de seguros es otro sector que utiliza ML para construir y optimizar modelos financieros y actuariales viables. + +### Gestión de volatilidad + +MetLife, un proveedor de seguros de vida, es transparente con la forma en que analizan y mitigan la volatilidad en sus modelos financieros. En este artículo notarás visualizaciones de clasificación binaria y ordinal. También descubrirás visualizaciones de pronósticos. +[Referencia](https://investments.metlife.com/content/dam/metlifecom/us/investments/insights/research-topics/macro-strategy/pdf/MetLifeInvestmentManagement_MachineLearnedRanking_070920.pdf) + +## 🎨 Artes, cultura y literatura + +En las artes, por ejemplo en el periodismo, hay muchos problemas interesantes. Detectar noticias falsas es un gran problema, ya que se ha demostrado que influye en la opinión de las personas e incluso puede desestabilizar democracias. Los museos también pueden beneficiarse del uso de ML en todo, desde encontrar vínculos entre artefactos hasta la planificación de recursos. + +### Detección de noticias falsas + +Detectar noticias falsas se ha convertido en un juego del gato y el ratón en los medios de comunicación actuales. En este artículo, los investigadores sugieren que un sistema que combine varias de las técnicas de ML que hemos estudiado puede ser probado y el mejor modelo desplegado: "Este sistema se basa en el procesamiento de lenguaje natural para extraer características de los datos y luego estas características se utilizan para el entrenamiento de clasificadores de aprendizaje automático como Naive Bayes, Support Vector Machine (SVM), Random Forest (RF), Stochastic Gradient Descent (SGD) y Logistic Regression (LR)." +[Referencia](https://www.irjet.net/archives/V7/i6/IRJET-V7I6688.pdf) + +Este artículo muestra cómo combinar diferentes dominios de ML puede producir resultados interesantes que pueden ayudar a detener la propagación de noticias falsas y evitar daños reales; en este caso, el impulso fue la propagación de rumores sobre tratamientos para el COVID que incitaron violencia colectiva. + +### ML en museos + +Los museos están en la cúspide de una revolución de IA en la que catalogar y digitalizar colecciones y encontrar vínculos entre artefactos se está volviendo más fácil a medida que avanza la tecnología. Proyectos como [In Codice Ratio](https://www.sciencedirect.com/science/article/abs/pii/S0306457321001035#:~:text=1.,studies%20over%20large%20historical%20sources.) están ayudando a desbloquear los misterios de colecciones inaccesibles como los Archivos Vaticanos. Pero el aspecto comercial de los museos también se beneficia de los modelos de ML. + +Por ejemplo, el Instituto de Arte de Chicago construyó modelos para predecir qué intereses tienen los visitantes y cuándo asistirán a exposiciones. El objetivo es crear experiencias de visita individualizadas y optimizadas cada vez que el usuario visite el museo. "Durante el año fiscal 2017, el modelo predijo la asistencia y las admisiones con un 1 por ciento de precisión, dice Andrew Simnick, vicepresidente senior en el Instituto de Arte." +[Referencia](https://www.chicagobusiness.com/article/20180518/ISSUE01/180519840/art-institute-of-chicago-uses-data-to-make-exhibit-choices) + +## 🏷 Marketing + +### Segmentación de clientes + +Las estrategias de marketing más efectivas apuntan a los clientes de diferentes maneras según varios grupos. En este artículo, se discuten los usos de los algoritmos de agrupamiento para apoyar el marketing diferenciado. El marketing diferenciado ayuda a las empresas a mejorar el reconocimiento de marca, llegar a más clientes y generar más ingresos. +[Referencia](https://ai.inqline.com/machine-learning-for-marketing-customer-segmentation/) + +## 🚀 Desafío +Identifica otro sector que se beneficie de algunas de las técnicas que aprendiste en este curso y descubre cómo utiliza ML. + +## [Cuestionario posterior a la clase](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/50/) + +## Revisión y estudio personal + +El equipo de ciencia de datos de Wayfair tiene varios videos interesantes sobre cómo utilizan ML en su empresa. Vale la pena [echarles un vistazo](https://www.youtube.com/channel/UCe2PjkQXqOuwkW1gw6Ameuw/videos). + +## Tarea + +[Una búsqueda del tesoro de ML](assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/9-Real-World/1-Applications/assignment.md b/translations/es/9-Real-World/1-Applications/assignment.md new file mode 100644 index 000000000..c7196f58e --- /dev/null +++ b/translations/es/9-Real-World/1-Applications/assignment.md @@ -0,0 +1,27 @@ + +# Una búsqueda del tesoro de ML + +## Instrucciones + +En esta lección, aprendiste sobre muchos casos de uso reales que se resolvieron utilizando ML clásico. Aunque el uso de aprendizaje profundo, nuevas técnicas y herramientas en IA, y el aprovechamiento de redes neuronales han ayudado a acelerar la producción de herramientas para ayudar en estos sectores, el ML clásico utilizando las técnicas de este currículo sigue teniendo un gran valor. + +En esta tarea, imagina que estás participando en un hackatón. Usa lo que aprendiste en el currículo para proponer una solución utilizando ML clásico para resolver un problema en uno de los sectores discutidos en esta lección. Crea una presentación donde discutas cómo implementarás tu idea. ¡Puntos extra si puedes recopilar datos de muestra y construir un modelo de ML para respaldar tu concepto! + +## Rúbrica + +| Criterios | Sobresaliente | Adecuado | Necesita Mejorar | +| --------- | ------------------------------------------------------------------ | ------------------------------------------------ | ---------------------- | +| | Se presenta una presentación en PowerPoint - bono por construir un modelo | Se presenta una presentación básica y poco innovadora | El trabajo está incompleto | + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/9-Real-World/2-Debugging-ML-Models/README.md b/translations/es/9-Real-World/2-Debugging-ML-Models/README.md new file mode 100644 index 000000000..153c7e11f --- /dev/null +++ b/translations/es/9-Real-World/2-Debugging-ML-Models/README.md @@ -0,0 +1,184 @@ + +# Posdata: Depuración de modelos de aprendizaje automático utilizando componentes del panel de IA Responsable + +## [Cuestionario previo a la clase](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/) + +## Introducción + +El aprendizaje automático impacta nuestra vida cotidiana. La IA está encontrando su lugar en algunos de los sistemas más importantes que nos afectan como individuos y como sociedad, desde la atención médica, las finanzas, la educación y el empleo. Por ejemplo, los sistemas y modelos están involucrados en tareas de toma de decisiones diarias, como diagnósticos médicos o detección de fraudes. En consecuencia, los avances en IA junto con su adopción acelerada están siendo recibidos con expectativas sociales en evolución y una creciente regulación en respuesta. Constantemente vemos áreas donde los sistemas de IA no cumplen con las expectativas; exponen nuevos desafíos; y los gobiernos están comenzando a regular las soluciones de IA. Por lo tanto, es importante que estos modelos sean analizados para proporcionar resultados justos, confiables, inclusivos, transparentes y responsables para todos. + +En este currículo, exploraremos herramientas prácticas que pueden ser utilizadas para evaluar si un modelo tiene problemas relacionados con IA Responsable. Las técnicas tradicionales de depuración de aprendizaje automático tienden a basarse en cálculos cuantitativos como la precisión agregada o la pérdida promedio de error. Imagina lo que puede suceder cuando los datos que estás utilizando para construir estos modelos carecen de ciertos grupos demográficos, como raza, género, visión política, religión, o representan desproporcionadamente dichos grupos demográficos. ¿Qué sucede cuando la salida del modelo se interpreta como favorable para algunos grupos demográficos? Esto puede introducir una representación excesiva o insuficiente de estos grupos sensibles, resultando en problemas de equidad, inclusión o confiabilidad del modelo. Otro factor es que los modelos de aprendizaje automático son considerados cajas negras, lo que dificulta entender y explicar qué impulsa las predicciones de un modelo. Todos estos son desafíos que enfrentan los científicos de datos y desarrolladores de IA cuando no tienen herramientas adecuadas para depurar y evaluar la equidad o confiabilidad de un modelo. + +En esta lección, aprenderás a depurar tus modelos utilizando: + +- **Análisis de errores**: identificar dónde en la distribución de tus datos el modelo tiene altas tasas de error. +- **Visión general del modelo**: realizar análisis comparativos entre diferentes cohortes de datos para descubrir disparidades en las métricas de rendimiento de tu modelo. +- **Análisis de datos**: investigar dónde podría haber una representación excesiva o insuficiente de tus datos que pueda sesgar tu modelo para favorecer un grupo demográfico sobre otro. +- **Importancia de las características**: entender qué características están impulsando las predicciones de tu modelo a nivel global o local. + +## Prerrequisito + +Como prerrequisito, revisa [Herramientas de IA Responsable para desarrolladores](https://www.microsoft.com/ai/ai-lab-responsible-ai-dashboard) + +> ![Gif sobre herramientas de IA Responsable](../../../../9-Real-World/2-Debugging-ML-Models/images/rai-overview.gif) + +## Análisis de errores + +Las métricas tradicionales de rendimiento de modelos utilizadas para medir la precisión son principalmente cálculos basados en predicciones correctas frente a incorrectas. Por ejemplo, determinar que un modelo es preciso el 89% del tiempo con una pérdida de error de 0.001 puede considerarse un buen rendimiento. Los errores a menudo no se distribuyen uniformemente en tu conjunto de datos subyacente. Puedes obtener una puntuación de precisión del modelo del 89%, pero descubrir que hay diferentes regiones de tus datos en las que el modelo falla el 42% del tiempo. Las consecuencias de estos patrones de falla con ciertos grupos de datos pueden llevar a problemas de equidad o confiabilidad. Es esencial entender las áreas donde el modelo está funcionando bien o no. Las regiones de datos donde hay un alto número de inexactitudes en tu modelo pueden resultar ser un grupo demográfico importante. + +![Analizar y depurar errores del modelo](../../../../translated_images/ea-error-distribution.117452e1177c1dd84fab2369967a68bcde787c76c6ea7fdb92fcf15d1fce8206.es.png) + +El componente de Análisis de Errores en el panel de IA Responsable ilustra cómo se distribuyen las fallas del modelo entre varios cohortes con una visualización en forma de árbol. Esto es útil para identificar características o áreas donde hay una alta tasa de error en tu conjunto de datos. Al ver de dónde provienen la mayoría de las inexactitudes del modelo, puedes comenzar a investigar la causa raíz. También puedes crear cohortes de datos para realizar análisis. Estos cohortes de datos ayudan en el proceso de depuración para determinar por qué el rendimiento del modelo es bueno en un cohorte, pero erróneo en otro. + +![Análisis de errores](../../../../translated_images/ea-error-cohort.6886209ea5d438c4daa8bfbf5ce3a7042586364dd3eccda4a4e3d05623ac702a.es.png) + +Los indicadores visuales en el mapa del árbol ayudan a localizar las áreas problemáticas más rápidamente. Por ejemplo, cuanto más oscuro sea el tono de rojo en un nodo del árbol, mayor será la tasa de error. + +El mapa de calor es otra funcionalidad de visualización que los usuarios pueden utilizar para investigar la tasa de error utilizando una o dos características para encontrar un contribuyente a los errores del modelo en todo el conjunto de datos o cohortes. + +![Mapa de calor de análisis de errores](../../../../translated_images/ea-heatmap.8d27185e28cee3830c85e1b2e9df9d2d5e5c8c940f41678efdb68753f2f7e56c.es.png) + +Utiliza el análisis de errores cuando necesites: + +* Obtener una comprensión profunda de cómo se distribuyen las fallas del modelo en un conjunto de datos y en varias dimensiones de entrada y características. +* Desglosar las métricas de rendimiento agregadas para descubrir automáticamente cohortes erróneos que informen tus pasos de mitigación específicos. + +## Visión general del modelo + +Evaluar el rendimiento de un modelo de aprendizaje automático requiere obtener una comprensión holística de su comportamiento. Esto se puede lograr revisando más de una métrica como tasa de error, precisión, recall, precisión o MAE (Error Absoluto Medio) para encontrar disparidades entre las métricas de rendimiento. Una métrica de rendimiento puede parecer excelente, pero las inexactitudes pueden exponerse en otra métrica. Además, comparar las métricas para encontrar disparidades en todo el conjunto de datos o cohortes ayuda a arrojar luz sobre dónde el modelo está funcionando bien o no. Esto es especialmente importante para observar el rendimiento del modelo entre características sensibles e insensibles (por ejemplo, raza, género o edad del paciente) para descubrir posibles problemas de equidad que pueda tener el modelo. Por ejemplo, descubrir que el modelo es más erróneo en un cohorte que tiene características sensibles puede revelar posibles problemas de equidad. + +El componente de Visión General del Modelo en el panel de IA Responsable ayuda no solo a analizar las métricas de rendimiento de la representación de datos en un cohorte, sino que también brinda a los usuarios la capacidad de comparar el comportamiento del modelo entre diferentes cohortes. + +![Cohortes de conjuntos de datos - visión general del modelo en el panel de IA Responsable](../../../../translated_images/model-overview-dataset-cohorts.dfa463fb527a35a0afc01b7b012fc87bf2cad756763f3652bbd810cac5d6cf33.es.png) + +La funcionalidad de análisis basada en características del componente permite a los usuarios reducir subgrupos de datos dentro de una característica particular para identificar anomalías a nivel granular. Por ejemplo, el panel tiene inteligencia incorporada para generar automáticamente cohortes para una característica seleccionada por el usuario (por ejemplo, *"time_in_hospital < 3"* o *"time_in_hospital >= 7"*). Esto permite a un usuario aislar una característica particular de un grupo de datos más grande para ver si es un factor clave en los resultados erróneos del modelo. + +![Cohortes de características - visión general del modelo en el panel de IA Responsable](../../../../translated_images/model-overview-feature-cohorts.c5104d575ffd0c80b7ad8ede7703fab6166bfc6f9125dd395dcc4ace2f522f70.es.png) + +El componente de Visión General del Modelo admite dos clases de métricas de disparidad: + +**Disparidad en el rendimiento del modelo**: Este conjunto de métricas calcula la disparidad (diferencia) en los valores de la métrica de rendimiento seleccionada entre subgrupos de datos. Aquí hay algunos ejemplos: + +* Disparidad en la tasa de precisión +* Disparidad en la tasa de error +* Disparidad en la precisión +* Disparidad en el recall +* Disparidad en el error absoluto medio (MAE) + +**Disparidad en la tasa de selección**: Esta métrica contiene la diferencia en la tasa de selección (predicción favorable) entre subgrupos. Un ejemplo de esto es la disparidad en las tasas de aprobación de préstamos. La tasa de selección significa la fracción de puntos de datos en cada clase clasificados como 1 (en clasificación binaria) o la distribución de valores de predicción (en regresión). + +## Análisis de datos + +> "Si torturas los datos lo suficiente, confesarán cualquier cosa" - Ronald Coase + +Esta afirmación suena extrema, pero es cierto que los datos pueden ser manipulados para respaldar cualquier conclusión. Tal manipulación a veces puede ocurrir de manera no intencional. Como humanos, todos tenemos sesgos, y a menudo es difícil saber conscientemente cuándo estás introduciendo sesgos en los datos. Garantizar la equidad en la IA y el aprendizaje automático sigue siendo un desafío complejo. + +Los datos son un gran punto ciego para las métricas tradicionales de rendimiento de modelos. Puedes tener puntuaciones de precisión altas, pero esto no siempre refleja el sesgo subyacente en los datos que podría estar en tu conjunto de datos. Por ejemplo, si un conjunto de datos de empleados tiene un 27% de mujeres en puestos ejecutivos en una empresa y un 73% de hombres en el mismo nivel, un modelo de IA de publicidad de empleo entrenado con estos datos puede dirigirse principalmente a una audiencia masculina para puestos de nivel superior. Tener este desequilibrio en los datos sesgó la predicción del modelo para favorecer un género. Esto revela un problema de equidad donde hay un sesgo de género en el modelo de IA. + +El componente de Análisis de Datos en el panel de IA Responsable ayuda a identificar áreas donde hay una representación excesiva o insuficiente en el conjunto de datos. Ayuda a los usuarios a diagnosticar la causa raíz de errores y problemas de equidad introducidos por desequilibrios de datos o falta de representación de un grupo de datos particular. Esto brinda a los usuarios la capacidad de visualizar conjuntos de datos basados en resultados predichos y reales, grupos de errores y características específicas. A veces, descubrir un grupo de datos subrepresentado también puede revelar que el modelo no está aprendiendo bien, de ahí las altas inexactitudes. Tener un modelo con sesgo de datos no solo es un problema de equidad, sino que muestra que el modelo no es inclusivo ni confiable. + +![Componente de análisis de datos en el panel de IA Responsable](../../../../translated_images/dataanalysis-cover.8d6d0683a70a5c1e274e5a94b27a71137e3d0a3b707761d7170eb340dd07f11d.es.png) + +Utiliza el análisis de datos cuando necesites: + +* Explorar las estadísticas de tu conjunto de datos seleccionando diferentes filtros para dividir tus datos en diferentes dimensiones (también conocidas como cohortes). +* Comprender la distribución de tu conjunto de datos entre diferentes cohortes y grupos de características. +* Determinar si tus hallazgos relacionados con equidad, análisis de errores y causalidad (derivados de otros componentes del panel) son resultado de la distribución de tu conjunto de datos. +* Decidir en qué áreas recolectar más datos para mitigar errores que provienen de problemas de representación, ruido en las etiquetas, ruido en las características, sesgo en las etiquetas y factores similares. + +## Interpretabilidad del modelo + +Los modelos de aprendizaje automático tienden a ser cajas negras. Entender qué características clave de los datos impulsan la predicción de un modelo puede ser un desafío. Es importante proporcionar transparencia sobre por qué un modelo hace una cierta predicción. Por ejemplo, si un sistema de IA predice que un paciente diabético está en riesgo de ser readmitido en un hospital en menos de 30 días, debería poder proporcionar datos de apoyo que llevaron a su predicción. Tener indicadores de datos de apoyo aporta transparencia para ayudar a los médicos o hospitales a tomar decisiones bien informadas. Además, poder explicar por qué un modelo hizo una predicción para un paciente individual permite responsabilidad con las regulaciones de salud. Cuando utilizas modelos de aprendizaje automático de maneras que afectan la vida de las personas, es crucial entender y explicar qué influye en el comportamiento de un modelo. La explicabilidad e interpretabilidad del modelo ayuda a responder preguntas en escenarios como: + +* Depuración del modelo: ¿Por qué mi modelo cometió este error? ¿Cómo puedo mejorar mi modelo? +* Colaboración humano-IA: ¿Cómo puedo entender y confiar en las decisiones del modelo? +* Cumplimiento regulatorio: ¿Cumple mi modelo con los requisitos legales? + +El componente de Importancia de las Características del panel de IA Responsable te ayuda a depurar y obtener una comprensión integral de cómo un modelo hace predicciones. También es una herramienta útil para profesionales de aprendizaje automático y tomadores de decisiones para explicar y mostrar evidencia de las características que influyen en el comportamiento de un modelo para el cumplimiento regulatorio. Los usuarios pueden explorar tanto explicaciones globales como locales para validar qué características impulsan la predicción de un modelo. Las explicaciones globales enumeran las principales características que afectaron la predicción general de un modelo. Las explicaciones locales muestran qué características llevaron a la predicción de un modelo para un caso individual. La capacidad de evaluar explicaciones locales también es útil para depurar o auditar un caso específico para comprender mejor y explicar por qué un modelo hizo una predicción precisa o inexacta. + +![Componente de importancia de características del panel de IA Responsable](../../../../translated_images/9-feature-importance.cd3193b4bba3fd4bccd415f566c2437fb3298c4824a3dabbcab15270d783606e.es.png) + +* Explicaciones globales: Por ejemplo, ¿qué características afectan el comportamiento general de un modelo de readmisión hospitalaria para pacientes diabéticos? +* Explicaciones locales: Por ejemplo, ¿por qué se predijo que un paciente diabético mayor de 60 años con hospitalizaciones previas sería readmitido o no readmitido dentro de los 30 días en un hospital? + +En el proceso de depuración al examinar el rendimiento de un modelo entre diferentes cohortes, la Importancia de las Características muestra qué nivel de impacto tiene una característica entre los cohortes. Ayuda a revelar anomalías al comparar el nivel de influencia que tiene la característica en impulsar las predicciones erróneas de un modelo. El componente de Importancia de las Características puede mostrar qué valores en una característica influyeron positiva o negativamente en el resultado del modelo. Por ejemplo, si un modelo hizo una predicción inexacta, el componente te da la capacidad de profundizar y señalar qué características o valores de características impulsaron la predicción. Este nivel de detalle no solo ayuda en la depuración, sino que proporciona transparencia y responsabilidad en situaciones de auditoría. Finalmente, el componente puede ayudarte a identificar problemas de equidad. Para ilustrar, si una característica sensible como etnicidad o género tiene una alta influencia en impulsar la predicción de un modelo, esto podría ser un indicio de sesgo racial o de género en el modelo. + +![Importancia de características](../../../../translated_images/9-features-influence.3ead3d3f68a84029f1e40d3eba82107445d3d3b6975d4682b23d8acc905da6d0.es.png) + +Utiliza la interpretabilidad cuando necesites: + +* Determinar cuán confiables son las predicciones de tu sistema de IA entendiendo qué características son más importantes para las predicciones. +* Abordar la depuración de tu modelo entendiéndolo primero e identificando si el modelo está utilizando características saludables o simplemente correlaciones falsas. +* Descubrir posibles fuentes de inequidad entendiendo si el modelo está basando sus predicciones en características sensibles o en características altamente correlacionadas con ellas. +* Generar confianza del usuario en las decisiones de tu modelo generando explicaciones locales para ilustrar sus resultados. +* Completar una auditoría regulatoria de un sistema de IA para validar modelos y monitorear el impacto de las decisiones del modelo en las personas. + +## Conclusión + +Todos los componentes del panel de IA Responsable son herramientas prácticas para ayudarte a construir modelos de aprendizaje automático que sean menos dañinos y más confiables para la sociedad. Mejoran la prevención de amenazas a los derechos humanos; la discriminación o exclusión de ciertos grupos de oportunidades de vida; y el riesgo de daño físico o psicológico. También ayudan a generar confianza en las decisiones de tu modelo al generar explicaciones locales para ilustrar sus resultados. Algunos de los posibles daños pueden clasificarse como: + +- **Asignación**, si un género o etnicidad, por ejemplo, es favorecido sobre otro. +- **Calidad del servicio**. Si entrenas los datos para un escenario específico pero la realidad es mucho más compleja, esto lleva a un servicio de bajo rendimiento. +- **Estereotipos**. Asociar un grupo dado con atributos preasignados. +- **Denigración**. Criticar injustamente y etiquetar algo o alguien. +- **Representación excesiva o insuficiente**. La idea es que un cierto grupo no se vea representado en una determinada profesión, y cualquier servicio o función que siga promoviendo eso está contribuyendo al daño. + +### Azure RAI dashboard + +[Azure RAI dashboard](https://learn.microsoft.com/en-us/azure/machine-learning/concept-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu) está construido sobre herramientas de código abierto desarrolladas por instituciones académicas y organizaciones líderes, incluyendo Microsoft. Estas herramientas son fundamentales para que los científicos de datos y desarrolladores de IA comprendan mejor el comportamiento de los modelos, descubran y mitiguen problemas indeseables en los modelos de IA. + +- Aprende cómo usar los diferentes componentes consultando la [documentación del RAI dashboard.](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu) + +- Consulta algunos [notebooks de ejemplo del RAI dashboard](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks) para depurar escenarios de IA más responsables en Azure Machine Learning. + +--- +## 🚀 Desafío + +Para evitar que se introduzcan sesgos estadísticos o de datos desde el principio, deberíamos: + +- contar con una diversidad de antecedentes y perspectivas entre las personas que trabajan en los sistemas +- invertir en conjuntos de datos que reflejen la diversidad de nuestra sociedad +- desarrollar mejores métodos para detectar y corregir sesgos cuando ocurran + +Piensa en escenarios de la vida real donde la injusticia sea evidente en la construcción y uso de modelos. ¿Qué más deberíamos considerar? + +## [Cuestionario posterior a la clase](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/6/) +## Revisión y Autoestudio + +En esta lección, has aprendido algunas herramientas prácticas para incorporar IA responsable en el aprendizaje automático. + +Mira este taller para profundizar en los temas: + +- Responsible AI Dashboard: Una solución integral para operacionalizar la IA responsable en la práctica por Besmira Nushi y Mehrnoosh Sameki + +[![Responsible AI Dashboard: Una solución integral para operacionalizar la IA responsable en la práctica](https://img.youtube.com/vi/f1oaDNl3djg/0.jpg)](https://www.youtube.com/watch?v=f1oaDNl3djg "Responsible AI Dashboard: Una solución integral para operacionalizar la IA responsable en la práctica") + + +> 🎥 Haz clic en la imagen de arriba para ver el video: Responsible AI Dashboard: Una solución integral para operacionalizar la IA responsable en la práctica por Besmira Nushi y Mehrnoosh Sameki + +Consulta los siguientes materiales para aprender más sobre IA responsable y cómo construir modelos más confiables: + +- Herramientas del RAI dashboard de Microsoft para depurar modelos de aprendizaje automático: [Recursos de herramientas de IA responsable](https://aka.ms/rai-dashboard) + +- Explora el kit de herramientas de IA responsable: [Github](https://github.com/microsoft/responsible-ai-toolbox) + +- Centro de recursos de IA responsable de Microsoft: [Recursos de IA Responsable – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- Grupo de investigación FATE de Microsoft: [FATE: Equidad, Responsabilidad, Transparencia y Ética en IA - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +## Tarea + +[Explora el RAI dashboard](assignment.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/9-Real-World/2-Debugging-ML-Models/assignment.md b/translations/es/9-Real-World/2-Debugging-ML-Models/assignment.md new file mode 100644 index 000000000..8e9cfbdea --- /dev/null +++ b/translations/es/9-Real-World/2-Debugging-ML-Models/assignment.md @@ -0,0 +1,25 @@ + +# Explora el panel de Responsible AI (RAI) + +## Instrucciones + +En esta lección aprendiste sobre el panel de RAI, un conjunto de componentes basados en herramientas "de código abierto" que ayudan a los científicos de datos a realizar análisis de errores, exploración de datos, evaluación de equidad, interpretabilidad de modelos, evaluaciones contrafácticas/what-if y análisis causal en sistemas de inteligencia artificial. Para esta tarea, explora algunos de los [notebooks](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks) de muestra del panel de RAI y reporta tus hallazgos en un documento o presentación. + +## Rúbrica + +| Criterios | Ejemplar | Adecuado | Necesita Mejorar | +| --------- | -------- | -------- | ---------------- | +| | Se presenta un documento o una presentación en PowerPoint que discute los componentes del panel de RAI, el notebook que se ejecutó y las conclusiones obtenidas al ejecutarlo | Se presenta un documento sin conclusiones | No se presenta ningún documento | + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/9-Real-World/README.md b/translations/es/9-Real-World/README.md new file mode 100644 index 000000000..8cce4c820 --- /dev/null +++ b/translations/es/9-Real-World/README.md @@ -0,0 +1,32 @@ + +# Posdata: Aplicaciones reales del aprendizaje automático clásico + +En esta sección del currículo, se te presentarán algunas aplicaciones reales del aprendizaje automático clásico. Hemos investigado en internet para encontrar artículos y documentos técnicos sobre aplicaciones que han utilizado estas estrategias, evitando redes neuronales, aprendizaje profundo e inteligencia artificial tanto como sea posible. Aprende cómo se utiliza el aprendizaje automático en sistemas empresariales, aplicaciones ecológicas, finanzas, arte y cultura, entre otros. + +![chess](../../../translated_images/chess.e704a268781bdad85d1876b6c2295742fa0d856e7dcf3659147052df9d3db205.es.jpg) + +> Foto por Alexis Fauvet en Unsplash + +## Lección + +1. [Aplicaciones reales del aprendizaje automático](1-Applications/README.md) +2. [Depuración de modelos en aprendizaje automático usando componentes del panel de Responsible AI](2-Debugging-ML-Models/README.md) + +## Créditos + +"Aplicaciones reales" fue escrito por un equipo de personas, incluyendo [Jen Looper](https://twitter.com/jenlooper) y [Ornella Altunyan](https://twitter.com/ornelladotcom). + +"Depuración de modelos en aprendizaje automático usando componentes del panel de Responsible AI" fue escrito por [Ruth Yakubu](https://twitter.com/ruthieyakubu) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/CODE_OF_CONDUCT.md b/translations/es/CODE_OF_CONDUCT.md new file mode 100644 index 000000000..88a45ecd7 --- /dev/null +++ b/translations/es/CODE_OF_CONDUCT.md @@ -0,0 +1,23 @@ + +# Código de Conducta de Código Abierto de Microsoft + +Este proyecto ha adoptado el [Código de Conducta de Código Abierto de Microsoft](https://opensource.microsoft.com/codeofconduct/). + +Recursos: + +- [Código de Conducta de Código Abierto de Microsoft](https://opensource.microsoft.com/codeofconduct/) +- [Preguntas frecuentes sobre el Código de Conducta de Microsoft](https://opensource.microsoft.com/codeofconduct/faq/) +- Contacta a [opencode@microsoft.com](mailto:opencode@microsoft.com) para preguntas o inquietudes + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/CONTRIBUTING.md b/translations/es/CONTRIBUTING.md new file mode 100644 index 000000000..8c6fe7d80 --- /dev/null +++ b/translations/es/CONTRIBUTING.md @@ -0,0 +1,25 @@ + +# Contribuir + +Este proyecto da la bienvenida a contribuciones y sugerencias. La mayoría de las contribuciones requieren que aceptes un Acuerdo de Licencia de Contribuidor (CLA) declarando que tienes el derecho de, y efectivamente otorgas, los derechos para usar tu contribución. Para más detalles, visita https://cla.microsoft.com. + +> Importante: al traducir texto en este repositorio, asegúrate de no usar traducción automática. Verificaremos las traducciones a través de la comunidad, así que por favor solo ofrécete para traducir a idiomas en los que seas competente. + +Cuando envíes una solicitud de extracción (pull request), un CLA-bot determinará automáticamente si necesitas proporcionar un CLA y decorará la PR adecuadamente (por ejemplo, etiqueta, comentario). Simplemente sigue las instrucciones proporcionadas por el bot. Solo necesitarás hacer esto una vez en todos los repositorios que utilicen nuestro CLA. + +Este proyecto ha adoptado el [Código de Conducta de Código Abierto de Microsoft](https://opensource.microsoft.com/codeofconduct/). +Para más información, consulta las [Preguntas Frecuentes sobre el Código de Conducta](https://opensource.microsoft.com/codeofconduct/faq/) +o contacta a [opencode@microsoft.com](mailto:opencode@microsoft.com) para cualquier pregunta o comentario adicional. + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/PyTorch_Fundamentals.ipynb b/translations/es/PyTorch_Fundamentals.ipynb new file mode 100644 index 000000000..94b43a283 --- /dev/null +++ b/translations/es/PyTorch_Fundamentals.ipynb @@ -0,0 +1,2830 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "authorship_tag": "ABX9TyOgv0AozH1FKQBD+RkgT2bV", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU", + "coopTranslator": { + "original_hash": "0ca21b6ee62904d616f2e36dc1cf0da7", + "translation_date": "2025-09-04T01:01:12+00:00", + "source_file": "PyTorch_Fundamentals.ipynb", + "language_code": "es" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EHh5JllMh1rG", + "outputId": "f55755ad-c369-414c-85ec-6e9d4f061a02", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.2.1+cu121'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import torch\n", + "torch.__version__" + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"I am excited to run this\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UPlb-duwXAfz", + "outputId": "cfd687e4-1238-49f4-ab6b-ee1305b740d2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "I am excited to run this\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "print(torch.__version__)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "byWVlJ9wXDSk", + "outputId": "fd74a5c4-4d4a-41b2-ef3c-562ea3e4811f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2.2.1+cu121\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "Osm80zoEYklS" + } + }, + { + "cell_type": "code", + "source": [ + "# scalar\n", + "scalar = torch.tensor(7)\n", + "scalar" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-o8wvJ-VXZmI", + "outputId": "558816f5-1205-4de1-fe1f-2f96e9bd79e6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(7)" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mCZ2tXC4Y_Sg", + "outputId": "2d86dbdc-56e1-45c6-d3dd-14515f2a457a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ssN00By0ZQgS", + "outputId": "490f40d1-5135-4969-a6d3-c8c902cdc473" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "7" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# vector\n", + "vector = torch.tensor([7, 7])\n", + "vector\n", + "#vector.ndim\n", + "#vector.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Bws__5wlZnmF", + "outputId": "944e38f9-5ba1-4ddc-a9c6-cfb6a19bb488" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([7, 7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "vector.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9pjCvnsZZzNG", + "outputId": "e030a4da-8f81-4858-fbce-86da2aaafe52" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([2])" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Matrix\n", + "MATRIX = torch.tensor([[7, 8],[9, 10]])\n", + "MATRIX" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "a747hI9SaBGW", + "outputId": "af835ddb-81ff-4981-badb-441567194d15" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[ 7, 8],\n", + " [ 9, 10]])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XdTfFa7vaRUj", + "outputId": "0fbbab9c-8263-4cad-a380-0d2a16ca499e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX[0]\n", + "MATRIX[1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TFeD3jSDafm7", + "outputId": "69b44ab3-5ba7-451a-c6b2-f019a03d0c96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Tensor\n", + "TENSOR = torch.tensor([[[1, 2, 3],[3,6,9], [2,4,5]]])\n", + "TENSOR" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ic3cE47tah42", + "outputId": "f250e295-91de-43ec-9d80-588a6fe0abde" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]]])" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Wvjf5fczbAM1", + "outputId": "9c72b5b8-bafe-4ae7-9883-b051e209eada" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([1, 3, 3])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mwtXZwiMbN3m", + "outputId": "331a5e36-b1b0-4a5f-a9b8-e7049cbaa8f9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "3" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vzdZu_IfbP3J", + "outputId": "e24e7e71-e365-412d-ff50-fc094b56d2f3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]])" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "A8OL9eWfcRrJ" + } + }, + { + "cell_type": "code", + "source": [ + "random_tensor = torch.rand(3,4)\n", + "random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hAqSDE1EcVS_", + "outputId": "946171c3-d054-400c-f893-79110356888c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.4414, 0.7681, 0.8385, 0.3166],\n", + " [0.0468, 0.5812, 0.0670, 0.9173],\n", + " [0.2959, 0.3276, 0.7411, 0.4643]])" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "g4fvPE5GcwzP", + "outputId": "8737f36b-6864-4059-eaed-6f9156c22306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XsAg99QmdAU6", + "outputId": "35467c11-257c-4f16-99aa-eca930bcbc36" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.size()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cii1pNdVdB68", + "outputId": "fc8d2de6-9215-43de-99f7-7b0d7f7d20fa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_image_tensor = torch.rand(size=(3, 224, 224)) #color channels, height, width\n", + "random_image_tensor.ndim, random_image_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aTKq2j0cdDjb", + "outputId": "6be42057-20b9-4faf-d79d-8b65c42cc27e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([3, 224, 224]))" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor_ofownsize = torch.rand(size=(5,10,10))\n", + "random_tensor_ofownsize.ndim, random_tensor_ofownsize.shape\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IyhDdj-Pd6nC", + "outputId": "43e5e334-6d4d-4b67-f87d-7d364c6d8c67" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([5, 10, 10]))" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "UOJW08uOert_" + } + }, + { + "cell_type": "code", + "source": [ + "zero = torch.zeros(size=(3, 4))\n", + "zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGvXtaXyefie", + "outputId": "d40d3e28-8667-4d2f-8b62-f0829c6162ad" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "zero*random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OyUkUPkDe0uH", + "outputId": "26c2e4be-36ba-4c6c-9a90-2704ec135828" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones = torch.ones(size=(3, 4))\n", + "ones\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "y_Ac62Aqe82G", + "outputId": "291de5d9-b9df-49de-c9d1-d098e3e9f4d8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1., 1., 1., 1.],\n", + " [1., 1., 1., 1.],\n", + " [1., 1., 1., 1.]])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TvGOA9odfIEO", + "outputId": "45949ef4-6649-4b6c-d6af-2d4bfb8de832" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones*zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "--pTyge-fI-8", + "outputId": "c4d9bb7e-829b-43db-e2db-b1a2d64e61f0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "qDcc7Z36fSJF" + } + }, + { + "cell_type": "code", + "source": [ + "one_to_ten = torch.arange(start = 1, end = 11, step = 1)\n", + "one_to_ten" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "w3CZB4zUfR1s", + "outputId": "197fcba1-da0a-4b4a-ed11-3974bd6c01aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 27 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ten_zeros = torch.zeros_like(one_to_ten)\n", + "ten_zeros" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WZh99BwVfRy8", + "outputId": "51ef8bfb-6fa0-4099-ff66-b97d65b2ddea" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Tipos de datos de tensores\n" + ], + "metadata": { + "id": "pGGhgsbUgqbW" + } + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor = torch.tensor([3.0, 6.0,9.0], dtype = None, device = None, requires_grad = False)\n", + "float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JORJl4XkfRsx", + "outputId": "71114171-0f49-481f-b6fc-6cb48e2fb895" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3., 6., 9.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6wOPPwGyfRLn", + "outputId": "f23776a1-b682-404a-9f67-d5bcb0402666" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor = float_32_tensor.type(torch.float16)\n", + "float_16_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tFsHCvmZfOYe", + "outputId": "d3aa305a-7591-47f5-97fd-61bff60b44bd" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float16" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TQiCGTPuwq0q", + "outputId": "98750fce-1ca3-4889-e269-8b753efdea96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor = torch.tensor([3, 6, 9], dtype = torch.int32)\n", + "int_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5hlrLvGUw5D_", + "outputId": "41d890a0-9aee-446c-d906-631ce2ab0995" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9], dtype=torch.int32)" + ] + }, + "metadata": {}, + "execution_count": 33 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ihApD9u3xTNW", + "outputId": "d295eed0-6996-4e0f-8502-ff4b55cd1373" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(0,100,10)" + ], + "metadata": { + "id": "utKhlb_KxWDQ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p78D74E9Rj7Y", + "outputId": "781a1614-a900-41f5-9e5d-358f0b2390aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])" + ] + }, + "metadata": {}, + "execution_count": 36 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.min()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4BcSs5NeRkcj", + "outputId": "3f24a8dc-58e9-4a5f-9834-e85856a34f9d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.max()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hinqvXVLRm4q", + "outputId": "5c7d8a53-3913-4ac1-bba3-5ba8ff68250a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 38 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mean(x.type(torch.float32))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "k7okc0_vRpnB", + "outputId": "91e5494f-dc57-417c-ea4d-25dbc547c893" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 39 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.type(torch.float32).mean()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "29QcDTjHRq10", + "outputId": "62937c6c-78e0-49f2-dde3-1543ee8f7907" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 40 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.sum()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wlpY_G_sbdKF", + "outputId": "475d8258-af65-4011-a258-b93d4d8142d4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(450)" + ] + }, + "metadata": {}, + "execution_count": 41 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmax()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GT6HJzwhbk4n", + "outputId": "2e455c20-c322-4bcf-d07c-1259d3ccefc6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmin()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "egL3oi2Mb19P", + "outputId": "f71fb32f-6338-44a3-b377-75bea0a3ab54" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 43 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p2U8DZKib3DP", + "outputId": "b9f613b9-74e9-45f4-ed01-05babb6a6793" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 44 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[9]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "24qBFlGYcABe", + "outputId": "5813cfcb-7f63-4bd7-ee46-f95ccbfda939" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 45 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(1, 10)\n", + "x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0GPOxEzkcBHO", + "outputId": "aefbd903-4f4c-4d2c-c90f-eccd682fe018" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([9])" + ] + }, + "metadata": {}, + "execution_count": 46 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped = x.reshape(1,9)\n", + "x_reshaped, x_reshaped.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "spmRgQjwddgp", + "outputId": "85a7c55c-2909-4ea2-fc68-386dddc65742" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]]), torch.Size([1, 9]))" + ] + }, + "metadata": {}, + "execution_count": 47 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped.view(1,9)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tH2ahWGydqqP", + "outputId": "65d92263-4fc4-434a-c06d-c5e08436f7fe" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 48 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked = torch.stack([x, x, x, x], dim = 1)\n", + "x_stacked" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jgCeJcaud_-1", + "outputId": "7f293a37-6ef1-43b6-aee5-9d6d91c94f9e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 49 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XhJHIK6cfPse", + "outputId": "06c47b89-3a9e-453e-bcc3-00cbcb0b8b49" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 50 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ej2c3Xxzf0tq", + "outputId": "94024061-eb37-446d-c4a8-e4d16cb6de81" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 52 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4DJYo1a0f5M0", + "outputId": "efca2b47-1b14-44de-9a9a-2c83629d153f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 53 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=-2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "J4iEjn2ah2HL", + "outputId": "22395593-7c16-4162-beae-dd2bbe7bda35" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 55 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "tensor = torch.tensor([1, 2, 3])\n", + "tensor = tensor - 10\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cFfiD7Nth7Z_", + "outputId": "1139e1f8-fc1a-46ca-d636-f2bc4fd2eef6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-9, -8, -7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mul(tensor, 10)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dyA7BM_GHhqE", + "outputId": "0e3b9671-d9e8-4a32-87bb-59bc05986142" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-90, -80, -70])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.sub(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "owtUsZ1KNegI", + "outputId": "189b7b23-0041-4e09-b991-cd209a48506a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-109, -108, -107])" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.add(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "K5STXlQONsyc", + "outputId": "00cbb79a-0a1d-4e21-86ec-5c91c37a2d01" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([91, 92, 93])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.divide(tensor, 2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xqMGnzIUNvp0", + "outputId": "c894cf3e-f148-45f8-cfc8-d78740735306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-4.5000, -4.0000, -3.5000])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(tensor, tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ruGzKpV8NyBc", + "outputId": "fddb63bf-006f-48b6-ae28-287fbcda8bc5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8GS3r9yTeGfD", + "outputId": "c80b12ac-30b5-4f3d-c38c-9e41ba511b0e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "QmuYHqXTemC0", + "outputId": "402fe3ba-70b5-4bb2-c83b-254db84ff810" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 622 µs, sys: 0 ns, total: 622 µs\n", + "Wall time: 516 µs\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "torch.matmul(tensor,tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dGr1fzdNepd8", + "outputId": "97bd6c91-bc25-4b38-cdf5-f22dcdef243e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 424 µs, sys: 998 µs, total: 1.42 ms\n", + "Wall time: 1.43 ms\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.rand(3,2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pGYDoK2gevfo", + "outputId": "2c8783d5-0453-47c5-c7ed-af10d25d6989" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5999, 0.0073],\n", + " [0.9321, 0.3026],\n", + " [0.3463, 0.3872]])" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(torch.rand(3,2), torch.rand(2,3))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KGBGQoB8e2DP", + "outputId": "4c2ef361-a2d0-41ee-c328-3992cbbc138d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.3528, 0.1893, 0.0714],\n", + " [1.2791, 0.7110, 0.2563],\n", + " [0.8812, 0.4553, 0.1803]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch" + ], + "metadata": { + "id": "ib8DMtkBe_LJ" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x = torch.rand(2,9)" + ], + "metadata": { + "id": "nJo8ZBdrQY1b" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wi6oRv4MQfgf", + "outputId": "55c99f55-31f6-4cf5-ba4e-19a47c3a0167" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5894, 0.4391, 0.2018, 0.5417, 0.3844, 0.3592, 0.9209, 0.9269, 0.0681],\n", + " [0.0746, 0.1740, 0.6821, 0.6890, 0.0999, 0.7444, 0.2391, 0.4625, 0.8302]])" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "y=torch.randn(2,3,5)\n", + "y" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zpx8myAUQgoc", + "outputId": "07756d70-56bd-437c-c74e-9aecc1a77311" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[ 1.5552, -0.4877, 0.5175, -1.7958, -0.6187],\n", + " [-0.3359, -1.9710, 0.0112, -1.7578, -1.5295],\n", + " [ 0.0932, 1.4079, 0.9108, 0.3328, -0.6978]],\n", + "\n", + " [[-0.9406, -1.0809, -0.2595, 0.1282, 1.6605],\n", + " [ 1.1624, 1.0902, 1.7092, -0.2842, -1.3780],\n", + " [-0.1534, -1.2795, -0.5495, 0.9902, 0.1822]]])" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original = torch.rand(size=(224,224,3))\n", + "x_original" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "s4U-X9bJQnWe", + "outputId": "657a7a76-962c-4b41-a76b-902d0482266c" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[0.4549, 0.6809, 0.2118],\n", + " [0.4824, 0.9008, 0.8741],\n", + " [0.1715, 0.1757, 0.1845],\n", + " ...,\n", + " [0.8741, 0.6594, 0.2610],\n", + " [0.0092, 0.1984, 0.1955],\n", + " [0.4236, 0.4182, 0.0251]],\n", + "\n", + " [[0.9174, 0.1661, 0.5852],\n", + " [0.1837, 0.2351, 0.3810],\n", + " [0.3726, 0.4808, 0.8732],\n", + " ...,\n", + " [0.6794, 0.0554, 0.9202],\n", + " [0.0864, 0.8750, 0.3558],\n", + " [0.8445, 0.9759, 0.4934]],\n", + "\n", + " [[0.1600, 0.2635, 0.7194],\n", + " [0.9488, 0.3405, 0.3647],\n", + " [0.6683, 0.5168, 0.9592],\n", + " ...,\n", + " [0.0521, 0.0140, 0.2445],\n", + " [0.3596, 0.3999, 0.2730],\n", + " [0.5926, 0.9877, 0.7784]],\n", + "\n", + " ...,\n", + "\n", + " [[0.4794, 0.5635, 0.3764],\n", + " [0.9124, 0.6094, 0.5059],\n", + " [0.4528, 0.4447, 0.5021],\n", + " ...,\n", + " [0.0089, 0.4816, 0.8727],\n", + " [0.2173, 0.6296, 0.2347],\n", + " [0.2028, 0.9931, 0.7201]],\n", + "\n", + " [[0.3116, 0.6459, 0.4703],\n", + " [0.0148, 0.2345, 0.7149],\n", + " [0.8393, 0.5804, 0.6691],\n", + " ...,\n", + " [0.2105, 0.9460, 0.2696],\n", + " [0.5918, 0.9295, 0.2616],\n", + " [0.2537, 0.7819, 0.4700]],\n", + "\n", + " [[0.6654, 0.1200, 0.5841],\n", + " [0.9147, 0.5522, 0.6529],\n", + " [0.1799, 0.5276, 0.5415],\n", + " ...,\n", + " [0.7536, 0.4346, 0.8793],\n", + " [0.3793, 0.1750, 0.7792],\n", + " [0.9266, 0.8325, 0.9974]]])" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted=x_original.permute(2, 0, 1)\n", + "print(x_original.shape)\n", + "print(x_permuted.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DD19_zvbQzHo", + "outputId": "1d64ce1b-eb48-47e3-90b6-7f1340e7f2b2" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "torch.Size([224, 224, 3])\n", + "torch.Size([3, 224, 224])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NnPmMk4ZRF7w", + "outputId": "2cd5da7f-4a23-4a76-8c4a-bb982113f2a4" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z0ylNoAARgTo", + "outputId": "ddca0298-cddf-4048-9b71-a791655e5bed" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]=0.989" + ], + "metadata": { + "id": "RXw0xXsDRi4L" + }, + "execution_count": 13, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1sFdV6wzRo3f", + "outputId": "1cf87d2c-6d88-453a-d136-0f625a2800f1" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xTX-hx2SR1wp", + "outputId": "0d4908c4-c3bc-44e3-8ec6-1487104cc209" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x=torch.arange(1,10).reshape(1,3,3)\n", + "x, x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mZomOe7gR4Q8", + "outputId": "0b3c922f-ec11-46de-b8a5-9f9533d866ad" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]]]),\n", + " torch.Size([1, 3, 3]))" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3y7v4SQvSBs1", + "outputId": "8c53307d-e628-404d-db66-56c6bdffab7c" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hf9uG4xLSNya", + "outputId": "3075bc42-9ffa-426b-8a86-95628ffcd824" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zA4G2Se4SRB3", + "outputId": "324312d2-ed0a-49eb-f81f-e904e53992fe" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(1)" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][2][2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Mwy3zmKKSdbk", + "outputId": "d35172c3-b099-40a6-ddf1-a453c2adfa44" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[:,1,1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fE3nCM1KS7XT", + "outputId": "01f5d755-9737-4235-9f73-dce89ff6ba16" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([5])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,0,:]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "luNDINKNTTxp", + "outputId": "091195ef-2f71-4602-e95f-529a69193150" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,:,2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KG8A4xbfThCL", + "outputId": "5866bc41-9241-4619-be7b-e9206b3f80ab" + }, + "execution_count": 26, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np" + ], + "metadata": { + "id": "CZ3PX0qlTwHJ" + }, + "execution_count": 27, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array = np.arange(1.0, 8.0)" + ], + "metadata": { + "id": "UOBeTumiT3Lf" + }, + "execution_count": 28, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RzcO32E9UCQl", + "outputId": "430def24-c42c-461f-e5e7-398544c695d3" + }, + "execution_count": 29, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1., 2., 3., 4., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.from_numpy(array)\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JJIL0q1DUC6O", + "outputId": "8a3b1d7c-4482-4d32-f34f-9212d9d3a177" + }, + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1., 2., 3., 4., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "array[3]=11.0" + ], + "metadata": { + "id": "j3Ce6q3DUIEK" + }, + "execution_count": 33, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dc_BCVdjUsCc", + "outputId": "65537325-8b11-4f36-fc73-e56f30d6a036" + }, + "execution_count": 34, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 1., 2., 3., 11., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VG1e_eITUta2", + "outputId": "a26c5198-23b6-4a6d-d73a-ba20cd9782b8" + }, + "execution_count": 35, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1., 2., 3., 11., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 35 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.ones(7)\n", + "tensor, tensor.dtype\n", + "numpy_tensor = tensor.numpy()\n", + "numpy_tensor, numpy_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Swt8JF8vUuev", + "outputId": "c9e5bf6a-6d2c-41d6-8327-366867ffdd2d" + }, + "execution_count": 37, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(array([1., 1., 1., 1., 1., 1., 1.], dtype=float32), dtype('float32'))" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "random_tensor_A = torch.rand(3,4)\n", + "random_tensor_B = torch.rand(3,4)\n", + "print(random_tensor_A)\n", + "print(random_tensor_B)\n", + "print(random_tensor_A == random_tensor_B)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGcagTteVFTD", + "outputId": "49405790-08e7-4210-b7f1-f00b904c7eb9" + }, + "execution_count": 38, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.9870, 0.6636, 0.6873, 0.8863],\n", + " [0.8386, 0.4169, 0.3587, 0.0265],\n", + " [0.2981, 0.6025, 0.5652, 0.5840]])\n", + "tensor([[0.9821, 0.3481, 0.0913, 0.4940],\n", + " [0.7495, 0.4387, 0.9582, 0.8659],\n", + " [0.5064, 0.6919, 0.0809, 0.9771]])\n", + "tensor([[False, False, False, False],\n", + " [False, False, False, False],\n", + " [False, False, False, False]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "RANDOM_SEED = 42\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_C = torch.rand(3,4)\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_D = torch.rand(3,4)\n", + "print(random_tensor_C)\n", + "print(random_tensor_D)\n", + "print(random_tensor_C == random_tensor_D)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HznyXyEaWjLM", + "outputId": "25956434-01b6-4059-9054-c9978884ddc1" + }, + "execution_count": 46, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[True, True, True, True],\n", + " [True, True, True, True],\n", + " [True, True, True, True]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!nvidia-smi" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vltPTh0YXJSt", + "outputId": "807af6dc-a9ca-4301-ec32-b688dbde8be8" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Thu May 23 02:57:59 2024 \n", + "+---------------------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |\n", + "|-----------------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|=========================================+======================+======================|\n", + "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", + "| N/A 60C P8 11W / 70W | 0MiB / 15360MiB | 0% Default |\n", + "| | | N/A |\n", + "+-----------------------------------------+----------------------+----------------------+\n", + " \n", + "+---------------------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=======================================================================================|\n", + "| No running processes found |\n", + "+---------------------------------------------------------------------------------------+\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "torch.cuda.is_available()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "L6mMyPDyYh1j", + "outputId": "279c5dd8-c2a8-4fbd-f321-2f5d7c6e90e6" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "device" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "oOdiYa7ZYytx", + "outputId": "d73b04fc-8963-4826-9722-08d118d5ab91" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'cuda'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.cuda.device_count()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vOdsazLqZFM5", + "outputId": "8189cd6a-9017-4663-a652-3e15c517d9c3" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.tensor([1,2,3], device = \"cpu\")\n", + "print(tensor, tensor.device)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cdik9Vw3ZMv0", + "outputId": "044a68fd-83a1-409d-8e3b-655142ca0270" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([1, 2, 3]) cpu\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu = tensor.to(device)\n", + "tensor_on_gpu" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zmp835rrZp-z", + "outputId": "37fa3413-18a3-47bf-ae51-5b36ff85a3ef" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3], device='cuda:0')" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu.numpy()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 159 + }, + "id": "jhriaa8uZ1yM", + "outputId": "bc5a3226-1a12-4fea-8769-a44f21cdc323" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "error", + "ename": "TypeError", + "evalue": "can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtensor_on_gpu\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first." + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_cpu = tensor_on_gpu.cpu().numpy()" + ], + "metadata": { + "id": "LHGXK3GgaOzL" + }, + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "j-El4LlCajfq" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/es/README.md b/translations/es/README.md new file mode 100644 index 000000000..927b78b57 --- /dev/null +++ b/translations/es/README.md @@ -0,0 +1,178 @@ + +[![GitHub license](https://img.shields.io/github/license/microsoft/ML-For-Beginners.svg)](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE) +[![GitHub contributors](https://img.shields.io/github/contributors/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/) +[![GitHub issues](https://img.shields.io/github/issues/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/issues/) +[![GitHub pull-requests](https://img.shields.io/github/issues-pr/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/pulls/) +[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) + +[![GitHub watchers](https://img.shields.io/github/watchers/microsoft/ML-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/ML-For-Beginners/watchers/) +[![GitHub forks](https://img.shields.io/github/forks/microsoft/ML-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/ML-For-Beginners/network/) +[![GitHub stars](https://img.shields.io/github/stars/microsoft/ML-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/ML-For-Beginners/stargazers/) + +### 🌐 Soporte multilingüe + +#### Soporte mediante GitHub Action (Automatizado y siempre actualizado) + +[French](../fr/README.md) | [Spanish](./README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](../hi/README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md) + +#### Únete a la comunidad + +[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr) + +# Aprendizaje Automático para Principiantes - Un Currículo + +> 🌍 Viaja por el mundo mientras exploramos el aprendizaje automático a través de las culturas del mundo 🌍 + +Los Cloud Advocates de Microsoft se complacen en ofrecer un currículo de 12 semanas y 26 lecciones sobre **aprendizaje automático**. En este currículo, aprenderás sobre lo que a veces se llama **aprendizaje automático clásico**, utilizando principalmente Scikit-learn como biblioteca y evitando el aprendizaje profundo, que se cubre en nuestro [currículo de AI para Principiantes](https://aka.ms/ai4beginners). Combina estas lecciones con nuestro currículo ['Ciencia de Datos para Principiantes'](https://aka.ms/ds4beginners), ¡también! + +Viaja con nosotros por el mundo mientras aplicamos estas técnicas clásicas a datos de muchas áreas del mundo. Cada lección incluye cuestionarios antes y después de la lección, instrucciones escritas para completar la lección, una solución, una tarea y más. Nuestra pedagogía basada en proyectos te permite aprender mientras construyes, una forma comprobada para que las nuevas habilidades se afiancen. + +**✍️ Un agradecimiento especial a nuestros autores** Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu y Amy Boyd + +**🎨 Gracias también a nuestros ilustradores** Tomomi Imura, Dasani Madipalli y Jen Looper + +**🙏 Agradecimiento especial 🙏 a nuestros Microsoft Student Ambassadors autores, revisores y colaboradores de contenido**, en particular Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila y Snigdha Agarwal + +**🤩 Gratitud extra a los Microsoft Student Ambassadors Eric Wanjau, Jasleen Sondhi y Vidushi Gupta por nuestras lecciones en R!** + +# Comenzando + +Sigue estos pasos: +1. **Haz un fork del repositorio**: Haz clic en el botón "Fork" en la esquina superior derecha de esta página. +2. **Clona el repositorio**: `git clone https://github.com/microsoft/ML-For-Beginners.git` + +> [encuentra todos los recursos adicionales para este curso en nuestra colección de Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +**[Estudiantes](https://aka.ms/student-page)**, para usar este currículo, haz un fork del repositorio completo en tu propia cuenta de GitHub y completa los ejercicios por tu cuenta o en grupo: + +- Comienza con un cuestionario previo a la lección. +- Lee la lección y completa las actividades, haciendo pausas y reflexionando en cada verificación de conocimiento. +- Intenta crear los proyectos comprendiendo las lecciones en lugar de ejecutar el código de solución; sin embargo, ese código está disponible en las carpetas `/solution` en cada lección orientada a proyectos. +- Realiza el cuestionario posterior a la lección. +- Completa el desafío. +- Completa la tarea. +- Después de completar un grupo de lecciones, visita el [Tablero de Discusión](https://github.com/microsoft/ML-For-Beginners/discussions) y "aprende en voz alta" completando la rúbrica PAT correspondiente. Un 'PAT' es una Herramienta de Evaluación de Progreso que es una rúbrica que completas para profundizar tu aprendizaje. También puedes reaccionar a otros PATs para que aprendamos juntos. + +> Para un estudio adicional, recomendamos seguir estos [módulos y rutas de aprendizaje de Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott). + +**Profesores**, hemos [incluido algunas sugerencias](for-teachers.md) sobre cómo usar este currículo. + +--- + +## Tutoriales en video + +Algunas de las lecciones están disponibles en formato de video corto. Puedes encontrar todos estos en las lecciones, o en la [lista de reproducción de ML para Principiantes en el canal de YouTube de Microsoft Developer](https://aka.ms/ml-beginners-videos) haciendo clic en la imagen a continuación. + +[![ML para principiantes banner](../../translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.es.png)](https://aka.ms/ml-beginners-videos) + +--- + +## Conoce al equipo + +[![Video promocional](../../images/ml.gif)](https://youtu.be/Tj1XWrDSYJU) + +**Gif por** [Mohit Jaisal](https://linkedin.com/in/mohitjaisal) + +> 🎥 Haz clic en la imagen de arriba para ver un video sobre el proyecto y las personas que lo crearon. + +--- + +## Pedagogía + +Hemos elegido dos principios pedagógicos al construir este currículo: asegurarnos de que sea **basado en proyectos** y que incluya **cuestionarios frecuentes**. Además, este currículo tiene un **tema común** para darle cohesión. + +Al asegurarnos de que el contenido se alinee con proyectos, el proceso se vuelve más atractivo para los estudiantes y se mejora la retención de conceptos. Además, un cuestionario de bajo riesgo antes de una clase establece la intención del estudiante hacia el aprendizaje de un tema, mientras que un segundo cuestionario después de la clase asegura una mayor retención. Este currículo fue diseñado para ser flexible y divertido y puede tomarse en su totalidad o en parte. Los proyectos comienzan pequeños y se vuelven cada vez más complejos al final del ciclo de 12 semanas. Este currículo también incluye un postscript sobre aplicaciones reales de ML, que puede usarse como crédito adicional o como base para discusión. + +> Encuentra nuestro [Código de Conducta](CODE_OF_CONDUCT.md), [Contribuciones](CONTRIBUTING.md) y [Directrices de Traducción](TRANSLATIONS.md). ¡Agradecemos tus comentarios constructivos! + +## Cada lección incluye + +- sketchnote opcional +- video complementario opcional +- tutorial en video (solo algunas lecciones) +- cuestionario de calentamiento previo a la lección +- lección escrita +- para lecciones basadas en proyectos, guías paso a paso sobre cómo construir el proyecto +- verificaciones de conocimiento +- un desafío +- lectura complementaria +- tarea +- cuestionario posterior a la lección + +> **Una nota sobre los lenguajes**: Estas lecciones están escritas principalmente en Python, pero muchas también están disponibles en R. Para completar una lección en R, ve a la carpeta `/solution` y busca lecciones en R. Incluyen una extensión .rmd que representa un archivo **R Markdown**, que puede definirse simplemente como una combinación de `fragmentos de código` (de R u otros lenguajes) y un `encabezado YAML` (que guía cómo formatear salidas como PDF) en un `documento Markdown`. Como tal, sirve como un marco ejemplar de autoría para la ciencia de datos, ya que te permite combinar tu código, su salida y tus pensamientos al permitirte escribirlos en Markdown. Además, los documentos R Markdown pueden renderizarse en formatos de salida como PDF, HTML o Word. + +> **Una nota sobre los cuestionarios**: Todos los cuestionarios están contenidos en la carpeta [Quiz App](../../quiz-app), para un total de 52 cuestionarios de tres preguntas cada uno. Están vinculados desde las lecciones, pero la aplicación de cuestionarios puede ejecutarse localmente; sigue las instrucciones en la carpeta `quiz-app` para alojarla localmente o implementarla en Azure. + +| Número de Lección | Tema | Agrupación de Lecciones | Objetivos de Aprendizaje | Lección Vinculada | Autor | +| :---------------: | :----------------------------------------------------------: | :--------------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------: | +| 01 | Introducción al aprendizaje automático | [Introducción](1-Introduction/README.md) | Aprende los conceptos básicos detrás del aprendizaje automático | [Lección](1-Introduction/1-intro-to-ML/README.md) | Muhammad | +| 02 | La historia del aprendizaje automático | [Introducción](1-Introduction/README.md) | Aprende la historia detrás de este campo | [Lección](1-Introduction/2-history-of-ML/README.md) | Jen y Amy | +| 03 | Justicia y aprendizaje automático | [Introducción](1-Introduction/README.md) | ¿Cuáles son los importantes temas filosóficos sobre justicia que los estudiantes deben considerar al construir y aplicar modelos de ML? | [Lección](1-Introduction/3-fairness/README.md) | Tomomi | +| 04 | Técnicas para el aprendizaje automático | [Introducción](1-Introduction/README.md) | ¿Qué técnicas utilizan los investigadores de ML para construir modelos de ML? | [Lección](1-Introduction/4-techniques-of-ML/README.md) | Chris y Jen | +| 05 | Introducción a la regresión | [Regression](2-Regression/README.md) | Comienza con Python y Scikit-learn para modelos de regresión | +
  • [Python](2-Regression/1-Tools/README.md)
  • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html)
|
  • Jen
  • Eric Wanjau
| +| 06 | Precios de calabazas en Norteamérica 🎃 | [Regression](2-Regression/README.md) | Visualiza y limpia datos en preparación para ML |
  • [Python](2-Regression/2-Data/README.md)
  • [R](../../2-Regression/2-Data/solution/R/lesson_2.html)
|
  • Jen
  • Eric Wanjau
| +| 07 | Precios de calabazas en Norteamérica 🎃 | [Regression](2-Regression/README.md) | Construye modelos de regresión lineal y polinómica |
  • [Python](2-Regression/3-Linear/README.md)
  • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html)
|
  • Jen y Dmitry
  • Eric Wanjau
| +| 08 | Precios de calabazas en Norteamérica 🎃 | [Regression](2-Regression/README.md) | Construye un modelo de regresión logística |
  • [Python](2-Regression/4-Logistic/README.md)
  • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html)
|
  • Jen
  • Eric Wanjau
| +| 09 | Una aplicación web 🔌 | [Web App](3-Web-App/README.md) | Construye una aplicación web para usar tu modelo entrenado | [Python](3-Web-App/1-Web-App/README.md) | Jen | +| 10 | Introducción a la clasificación | [Classification](4-Classification/README.md) | Limpia, prepara y visualiza tus datos; introducción a la clasificación |
  • [Python](4-Classification/1-Introduction/README.md)
  • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) |
    • Jen y Cassie
    • Eric Wanjau
    | +| 11 | Deliciosas cocinas asiáticas e indias 🍜 | [Classification](4-Classification/README.md) | Introducción a clasificadores |
    • [Python](4-Classification/2-Classifiers-1/README.md)
    • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) |
      • Jen y Cassie
      • Eric Wanjau
      | +| 12 | Deliciosas cocinas asiáticas e indias 🍜 | [Classification](4-Classification/README.md) | Más clasificadores |
      • [Python](4-Classification/3-Classifiers-2/README.md)
      • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) |
        • Jen y Cassie
        • Eric Wanjau
        | +| 13 | Deliciosas cocinas asiáticas e indias 🍜 | [Classification](4-Classification/README.md) | Construye una aplicación web de recomendación usando tu modelo | [Python](4-Classification/4-Applied/README.md) | Jen | +| 14 | Introducción al clustering | [Clustering](5-Clustering/README.md) | Limpia, prepara y visualiza tus datos; introducción al clustering |
        • [Python](5-Clustering/1-Visualize/README.md)
        • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) |
          • Jen
          • Eric Wanjau
          | +| 15 | Explorando gustos musicales en Nigeria 🎧 | [Clustering](5-Clustering/README.md) | Explora el método de clustering K-Means |
          • [Python](5-Clustering/2-K-Means/README.md)
          • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) |
            • Jen
            • Eric Wanjau
            | +| 16 | Introducción al procesamiento de lenguaje natural ☕️ | [Natural language processing](6-NLP/README.md) | Aprende los conceptos básicos de NLP construyendo un bot simple | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Stephen | +| 17 | Tareas comunes de NLP ☕️ | [Natural language processing](6-NLP/README.md) | Profundiza en NLP entendiendo tareas comunes al trabajar con estructuras de lenguaje | [Python](6-NLP/2-Tasks/README.md) | Stephen | +| 18 | Traducción y análisis de sentimientos ♥️ | [Natural language processing](6-NLP/README.md) | Traducción y análisis de sentimientos con Jane Austen | [Python](6-NLP/3-Translation-Sentiment/README.md) | Stephen | +| 19 | Hoteles románticos de Europa ♥️ | [Natural language processing](6-NLP/README.md) | Análisis de sentimientos con reseñas de hoteles 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen | +| 20 | Hoteles románticos de Europa ♥️ | [Natural language processing](6-NLP/README.md) | Análisis de sentimientos con reseñas de hoteles 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen | +| 21 | Introducción a la predicción de series temporales | [Time series](7-TimeSeries/README.md) | Introducción a la predicción de series temporales | [Python](7-TimeSeries/1-Introduction/README.md) | Francesca | +| 22 | ⚡️ Uso mundial de energía ⚡️ - predicción con ARIMA | [Time series](7-TimeSeries/README.md) | Predicción de series temporales con ARIMA | [Python](7-TimeSeries/2-ARIMA/README.md) | Francesca | +| 23 | ⚡️ Uso mundial de energía ⚡️ - predicción con SVR | [Time series](7-TimeSeries/README.md) | Predicción de series temporales con Support Vector Regressor | [Python](7-TimeSeries/3-SVR/README.md) | Anirban | +| 24 | Introducción al aprendizaje por refuerzo | [Reinforcement learning](8-Reinforcement/README.md) | Introducción al aprendizaje por refuerzo con Q-Learning | [Python](8-Reinforcement/1-QLearning/README.md) | Dmitry | +| 25 | ¡Ayuda a Peter a evitar al lobo! 🐺 | [Reinforcement learning](8-Reinforcement/README.md) | Gym de aprendizaje por refuerzo | [Python](8-Reinforcement/2-Gym/README.md) | Dmitry | +| Postscript | Escenarios y aplicaciones de ML en el mundo real | [ML in the Wild](9-Real-World/README.md) | Aplicaciones interesantes y reveladoras de ML clásico | [Lesson](9-Real-World/1-Applications/README.md) | Team | +| Postscript | Depuración de modelos en ML usando el panel RAI | [ML in the Wild](9-Real-World/README.md) | Depuración de modelos en Machine Learning usando componentes del panel de IA Responsable | [Lesson](9-Real-World/2-Debugging-ML-Models/README.md) | Ruth Yakubu | + +> [encuentra todos los recursos adicionales para este curso en nuestra colección de Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +## Acceso sin conexión + +Puedes ejecutar esta documentación sin conexión usando [Docsify](https://docsify.js.org/#/). Haz un fork de este repositorio, [instala Docsify](https://docsify.js.org/#/quickstart) en tu máquina local, y luego en la carpeta raíz de este repositorio, escribe `docsify serve`. El sitio web se servirá en el puerto 3000 de tu localhost: `localhost:3000`. + +## PDFs + +Encuentra un PDF del plan de estudios con enlaces [aquí](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf). + + +## 🎒 Otros Cursos + +¡Nuestro equipo produce otros cursos! Descubre: + +- [Generative AI for Beginners](https://aka.ms/genai-beginners) +- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet) +- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript) +- [Generative AI with Java](https://github.com/microsoft/Generative-AI-for-beginners-java) +- [AI for Beginners](https://aka.ms/ai-beginners) +- [Data Science for Beginners](https://aka.ms/datascience-beginners) +- [ML for Beginners](https://aka.ms/ml-beginners) +- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101) +- [Web Dev for Beginners](https://aka.ms/webdev-beginners) +- [IoT for Beginners](https://aka.ms/iot-beginners) +- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners) +- [Mastering GitHub Copilot for Paired Programming](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming) +- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers) +- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/SECURITY.md b/translations/es/SECURITY.md new file mode 100644 index 000000000..17725bc55 --- /dev/null +++ b/translations/es/SECURITY.md @@ -0,0 +1,51 @@ + +## Seguridad + +Microsoft se toma muy en serio la seguridad de nuestros productos y servicios de software, lo que incluye todos los repositorios de código fuente gestionados a través de nuestras organizaciones de GitHub, que incluyen [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) y [nuestras organizaciones de GitHub](https://opensource.microsoft.com/). + +Si crees que has encontrado una vulnerabilidad de seguridad en algún repositorio propiedad de Microsoft que cumpla con [la definición de vulnerabilidad de seguridad de Microsoft](https://docs.microsoft.com/previous-versions/tn-archive/cc751383(v=technet.10)?WT.mc_id=academic-77952-leestott), por favor repórtalo como se describe a continuación. + +## Reportar Problemas de Seguridad + +**Por favor, no reportes vulnerabilidades de seguridad a través de problemas públicos en GitHub.** + +En su lugar, repórtalas al Centro de Respuesta de Seguridad de Microsoft (MSRC) en [https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report). + +Si prefieres enviar el informe sin iniciar sesión, envía un correo electrónico a [secure@microsoft.com](mailto:secure@microsoft.com). Si es posible, encripta tu mensaje con nuestra clave PGP; descárgala desde la [página de Clave PGP del Centro de Respuesta de Seguridad de Microsoft](https://www.microsoft.com/en-us/msrc/pgp-key-msrc). + +Deberías recibir una respuesta dentro de las 24 horas. Si por alguna razón no la recibes, por favor haz un seguimiento por correo electrónico para asegurarte de que recibimos tu mensaje original. Puedes encontrar información adicional en [microsoft.com/msrc](https://www.microsoft.com/msrc). + +Por favor, incluye la información solicitada que se detalla a continuación (tanto como puedas proporcionar) para ayudarnos a comprender mejor la naturaleza y el alcance del posible problema: + + * Tipo de problema (por ejemplo, desbordamiento de búfer, inyección SQL, secuencias de comandos entre sitios, etc.) + * Rutas completas de los archivos fuente relacionados con la manifestación del problema + * La ubicación del código fuente afectado (etiqueta/ramo/compromiso o URL directa) + * Cualquier configuración especial requerida para reproducir el problema + * Instrucciones paso a paso para reproducir el problema + * Código de prueba de concepto o de explotación (si es posible) + * Impacto del problema, incluyendo cómo un atacante podría explotarlo + +Esta información nos ayudará a priorizar tu informe más rápidamente. + +Si estás reportando para un programa de recompensas por errores, los informes más completos pueden contribuir a una mayor recompensa. Por favor, visita nuestra página del [Programa de Recompensas por Errores de Microsoft](https://microsoft.com/msrc/bounty) para más detalles sobre nuestros programas activos. + +## Idiomas Preferidos + +Preferimos que todas las comunicaciones sean en inglés. + +## Política + +Microsoft sigue el principio de [Divulgación Coordinada de Vulnerabilidades](https://www.microsoft.com/en-us/msrc/cvd). + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/SUPPORT.md b/translations/es/SUPPORT.md new file mode 100644 index 000000000..f487f0c57 --- /dev/null +++ b/translations/es/SUPPORT.md @@ -0,0 +1,24 @@ + +# Soporte +## Cómo reportar problemas y obtener ayuda + +Este proyecto utiliza GitHub Issues para rastrear errores y solicitudes de características. Por favor, busca en los problemas existentes antes de reportar nuevos problemas para evitar duplicados. Para nuevos problemas, reporta tu error o solicitud de característica como un nuevo Issue. + +Para obtener ayuda y responder preguntas sobre el uso de este proyecto, crea un Issue. + +## Política de soporte de Microsoft + +El soporte para este repositorio se limita a los recursos enumerados anteriormente. + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/docs/_sidebar.md b/translations/es/docs/_sidebar.md new file mode 100644 index 000000000..8a7b8bb92 --- /dev/null +++ b/translations/es/docs/_sidebar.md @@ -0,0 +1,57 @@ + +- Introducción + - [Introducción al Aprendizaje Automático](../1-Introduction/1-intro-to-ML/README.md) + - [Historia del Aprendizaje Automático](../1-Introduction/2-history-of-ML/README.md) + - [Aprendizaje Automático y Equidad](../1-Introduction/3-fairness/README.md) + - [Técnicas de Aprendizaje Automático](../1-Introduction/4-techniques-of-ML/README.md) + +- Regresión + - [Herramientas del Oficio](../2-Regression/1-Tools/README.md) + - [Datos](../2-Regression/2-Data/README.md) + - [Regresión Lineal](../2-Regression/3-Linear/README.md) + - [Regresión Logística](../2-Regression/4-Logistic/README.md) + +- Crear una Aplicación Web + - [Aplicación Web](../3-Web-App/1-Web-App/README.md) + +- Clasificación + - [Introducción a la Clasificación](../4-Classification/1-Introduction/README.md) + - [Clasificadores 1](../4-Classification/2-Classifiers-1/README.md) + - [Clasificadores 2](../4-Classification/3-Classifiers-2/README.md) + - [Aprendizaje Automático Aplicado](../4-Classification/4-Applied/README.md) + +- Agrupamiento + - [Visualiza tus Datos](../5-Clustering/1-Visualize/README.md) + - [K-Means](../5-Clustering/2-K-Means/README.md) + +- PLN + - [Introducción al PLN](../6-NLP/1-Introduction-to-NLP/README.md) + - [Tareas de PLN](../6-NLP/2-Tasks/README.md) + - [Traducción y Sentimientos](../6-NLP/3-Translation-Sentiment/README.md) + - [Reseñas de Hoteles 1](../6-NLP/4-Hotel-Reviews-1/README.md) + - [Reseñas de Hoteles 2](../6-NLP/5-Hotel-Reviews-2/README.md) + +- Pronóstico de Series Temporales + - [Introducción al Pronóstico de Series Temporales](../7-TimeSeries/1-Introduction/README.md) + - [ARIMA](../7-TimeSeries/2-ARIMA/README.md) + - [SVR](../7-TimeSeries/3-SVR/README.md) + +- Aprendizaje por Refuerzo + - [Q-Learning](../8-Reinforcement/1-QLearning/README.md) + - [Gym](../8-Reinforcement/2-Gym/README.md) + +- Aprendizaje Automático en el Mundo Real + - [Aplicaciones](../9-Real-World/1-Applications/README.md) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/for-teachers.md b/translations/es/for-teachers.md new file mode 100644 index 000000000..a2e68a4ea --- /dev/null +++ b/translations/es/for-teachers.md @@ -0,0 +1,37 @@ + +## Para Educadores + +¿Te gustaría usar este plan de estudios en tu aula? ¡Siéntete libre de hacerlo! + +De hecho, puedes usarlo directamente en GitHub utilizando GitHub Classroom. + +Para hacerlo, haz un fork de este repositorio. Necesitarás crear un repositorio para cada lección, por lo que tendrás que extraer cada carpeta en un repositorio separado. De esta manera, [GitHub Classroom](https://classroom.github.com/classrooms) podrá gestionar cada lección por separado. + +Estas [instrucciones completas](https://github.blog/2020-03-18-set-up-your-digital-classroom-with-github-classroom/) te darán una idea de cómo configurar tu aula. + +## Usar el repositorio tal como está + +Si prefieres usar este repositorio tal como está, sin utilizar GitHub Classroom, también es posible. Necesitarás comunicarte con tus estudiantes para indicarles qué lección trabajar juntos. + +En un formato en línea (Zoom, Teams u otro), podrías formar salas de trabajo para los cuestionarios y guiar a los estudiantes para que estén listos para aprender. Luego, invítalos a realizar los cuestionarios y enviar sus respuestas como 'issues' en un momento determinado. Podrías hacer lo mismo con las tareas, si deseas que los estudiantes trabajen de manera colaborativa y abierta. + +Si prefieres un formato más privado, pide a tus estudiantes que hagan fork del plan de estudios, lección por lección, en sus propios repositorios privados de GitHub y te den acceso. Así podrán completar los cuestionarios y tareas de manera privada y enviártelos como issues en tu repositorio del aula. + +Hay muchas maneras de hacer que esto funcione en un aula en línea. ¡Por favor, cuéntanos qué funciona mejor para ti! + +## ¡Danos tu opinión! + +Queremos que este plan de estudios funcione para ti y tus estudiantes. Por favor, danos [tu opinión](https://forms.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR2humCsRZhxNuI79cm6n0hRUQzRVVU9VVlU5UlFLWTRLWlkyQUxORTg5WS4u). + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/quiz-app/README.md b/translations/es/quiz-app/README.md new file mode 100644 index 000000000..0e025d345 --- /dev/null +++ b/translations/es/quiz-app/README.md @@ -0,0 +1,127 @@ + +# Cuestionarios + +Estos cuestionarios son los cuestionarios previos y posteriores a las clases del currículo de ML en https://aka.ms/ml-beginners + +## Configuración del proyecto + +``` +npm install +``` + +### Compila y recarga automáticamente para desarrollo + +``` +npm run serve +``` + +### Compila y minimiza para producción + +``` +npm run build +``` + +### Revisa y corrige archivos + +``` +npm run lint +``` + +### Personaliza la configuración + +Consulta [Referencia de Configuración](https://cli.vuejs.org/config/). + +Créditos: Gracias a la versión original de esta aplicación de cuestionarios: https://github.com/arpan45/simple-quiz-vue + +## Desplegando en Azure + +Aquí tienes una guía paso a paso para ayudarte a comenzar: + +1. Haz un fork de un repositorio de GitHub +Asegúrate de que el código de tu aplicación web estática esté en tu repositorio de GitHub. Haz un fork de este repositorio. + +2. Crea una Aplicación Web Estática en Azure +- Crea una [cuenta de Azure](http://azure.microsoft.com) +- Ve al [portal de Azure](https://portal.azure.com) +- Haz clic en “Crear un recurso” y busca “Aplicación Web Estática”. +- Haz clic en “Crear”. + +3. Configura la Aplicación Web Estática +- Básicos: + - Suscripción: Selecciona tu suscripción de Azure. + - Grupo de Recursos: Crea un nuevo grupo de recursos o utiliza uno existente. + - Nombre: Proporciona un nombre para tu aplicación web estática. + - Región: Elige la región más cercana a tus usuarios. + +- #### Detalles de Despliegue: + - Fuente: Selecciona “GitHub”. + - Cuenta de GitHub: Autoriza a Azure para acceder a tu cuenta de GitHub. + - Organización: Selecciona tu organización de GitHub. + - Repositorio: Elige el repositorio que contiene tu aplicación web estática. + - Rama: Selecciona la rama desde la que deseas desplegar. + +- #### Detalles de Construcción: + - Presets de Construcción: Elige el framework con el que está construida tu aplicación (por ejemplo, React, Angular, Vue, etc.). + - Ubicación de la Aplicación: Especifica la carpeta que contiene el código de tu aplicación (por ejemplo, / si está en la raíz). + - Ubicación de la API: Si tienes una API, especifica su ubicación (opcional). + - Ubicación de Salida: Especifica la carpeta donde se genera la salida de la construcción (por ejemplo, build o dist). + +4. Revisa y Crea +Revisa tu configuración y haz clic en “Crear”. Azure configurará los recursos necesarios y creará un archivo de flujo de trabajo de GitHub Actions en tu repositorio. + +5. Flujo de Trabajo de GitHub Actions +Azure creará automáticamente un archivo de flujo de trabajo de GitHub Actions en tu repositorio (.github/workflows/azure-static-web-apps-.yml). Este flujo de trabajo manejará el proceso de construcción y despliegue. + +6. Monitorea el Despliegue +Ve a la pestaña “Actions” en tu repositorio de GitHub. +Deberías ver un flujo de trabajo en ejecución. Este flujo de trabajo construirá y desplegará tu aplicación web estática en Azure. +Una vez que el flujo de trabajo se complete, tu aplicación estará en vivo en la URL proporcionada por Azure. + +### Ejemplo de Archivo de Flujo de Trabajo + +Aquí tienes un ejemplo de cómo podría verse el archivo de flujo de trabajo de GitHub Actions: +name: Azure Static Web Apps CI/CD +``` +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened, closed] + branches: + - main + +jobs: + build_and_deploy_job: + runs-on: ubuntu-latest + name: Build and Deploy Job + steps: + - uses: actions/checkout@v2 + - name: Build And Deploy + id: builddeploy + uses: Azure/static-web-apps-deploy@v1 + with: + azure_static_web_apps_api_token: ${{ secrets.AZURE_STATIC_WEB_APPS_API_TOKEN }} + repo_token: ${{ secrets.GITHUB_TOKEN }} + action: "upload" + app_location: "/quiz-app" # App source code path + api_location: ""API source code path optional + output_location: "dist" #Built app content directory - optional +``` + +### Recursos Adicionales +- [Documentación de Aplicaciones Web Estáticas en Azure](https://learn.microsoft.com/azure/static-web-apps/getting-started) +- [Documentación de GitHub Actions](https://docs.github.com/actions/use-cases-and-examples/deploying/deploying-to-azure-static-web-app) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/sketchnotes/LICENSE.md b/translations/es/sketchnotes/LICENSE.md new file mode 100644 index 000000000..0e7919297 --- /dev/null +++ b/translations/es/sketchnotes/LICENSE.md @@ -0,0 +1,181 @@ + +Attribution-ShareAlike 4.0 Internacional + +======================================================================= + +Creative Commons Corporation ("Creative Commons") no es un bufete de abogados y no proporciona servicios legales ni asesoramiento legal. La distribución de licencias públicas de Creative Commons no crea una relación abogado-cliente ni ninguna otra relación. Creative Commons pone sus licencias y la información relacionada a disposición "tal cual". Creative Commons no ofrece garantías respecto a sus licencias, cualquier material licenciado bajo sus términos y condiciones, o cualquier información relacionada. Creative Commons rechaza toda responsabilidad por daños resultantes de su uso en la máxima medida posible. + +Uso de Licencias Públicas de Creative Commons + +Las licencias públicas de Creative Commons proporcionan un conjunto estándar de términos y condiciones que los creadores y otros titulares de derechos pueden usar para compartir obras originales sujetas a derechos de autor y ciertos otros derechos especificados en la licencia pública que se detalla a continuación. Las siguientes consideraciones son solo para fines informativos, no son exhaustivas y no forman parte de nuestras licencias. + + Consideraciones para los licenciantes: Nuestras licencias públicas están + destinadas a ser utilizadas por aquellos autorizados para dar al público + permiso para usar material de maneras que de otro modo estarían restringidas + por derechos de autor y ciertos otros derechos. Nuestras licencias son + irrevocables. Los licenciantes deben leer y comprender los términos y + condiciones de la licencia que elijan antes de aplicarla. Los licenciantes + también deben asegurarse de tener todos los derechos necesarios antes de + aplicar nuestras licencias para que el público pueda reutilizar el material + como se espera. Los licenciantes deben marcar claramente cualquier material + que no esté sujeto a la licencia. Esto incluye otros materiales licenciados + bajo CC, o materiales utilizados bajo una excepción o limitación de los + derechos de autor. Más consideraciones para los licenciantes: + wiki.creativecommons.org/Considerations_for_licensors + + Consideraciones para el público: Al usar una de nuestras licencias públicas, + un licenciante otorga al público permiso para usar el material licenciado + bajo los términos y condiciones especificados. Si el permiso del licenciante + no es necesario por alguna razón, por ejemplo, debido a una excepción o + limitación aplicable a los derechos de autor, entonces ese uso no está + regulado por la licencia. Nuestras licencias solo otorgan permisos bajo los + derechos de autor y ciertos otros derechos que un licenciante tiene autoridad + para otorgar. El uso del material licenciado aún puede estar restringido por + otras razones, incluyendo que otros tengan derechos de autor u otros derechos + sobre el material. Un licenciante puede hacer solicitudes especiales, como + pedir que todos los cambios sean marcados o descritos. Aunque no es requerido + por nuestras licencias, se recomienda respetar esas solicitudes cuando sean + razonables. Más consideraciones para el público: + wiki.creativecommons.org/Considerations_for_licensees + +======================================================================= + +Licencia Pública Creative Commons Attribution-ShareAlike 4.0 Internacional + +Al ejercer los Derechos Licenciados (definidos a continuación), Usted acepta y se compromete a cumplir con los términos y condiciones de esta Licencia Pública Creative Commons Attribution-ShareAlike 4.0 Internacional ("Licencia Pública"). En la medida en que esta Licencia Pública pueda interpretarse como un contrato, se le otorgan los Derechos Licenciados en consideración a su aceptación de estos términos y condiciones, y el Licenciante le otorga dichos derechos en consideración a los beneficios que el Licenciante recibe al poner el Material Licenciado a disposición bajo estos términos y condiciones. + +Sección 1 -- Definiciones. + + a. Material Adaptado significa material sujeto a Derechos de Autor y Derechos Similares que se deriva o se basa en el Material Licenciado y en el cual el Material Licenciado se traduce, altera, organiza, transforma o modifica de alguna manera que requiere permiso bajo los Derechos de Autor y Derechos Similares que posee el Licenciante. Para los fines de esta Licencia Pública, cuando el Material Licenciado es una obra musical, interpretación o grabación sonora, el Material Adaptado siempre se produce cuando el Material Licenciado se sincroniza en relación temporal con una imagen en movimiento. + + b. Licencia del Adaptador significa la licencia que Usted aplica a sus Derechos de Autor y Derechos Similares en sus contribuciones al Material Adaptado de acuerdo con los términos y condiciones de esta Licencia Pública. + + c. Licencia Compatible con BY-SA significa una licencia enumerada en creativecommons.org/compatiblelicenses, aprobada por Creative Commons como esencialmente equivalente a esta Licencia Pública. + + d. Derechos de Autor y Derechos Similares significa derechos de autor y/o derechos similares estrechamente relacionados con los derechos de autor, incluyendo, sin limitación, interpretación, transmisión, grabación sonora y Derechos de Base de Datos Sui Generis, sin importar cómo se etiqueten o categoricen los derechos. Para los fines de esta Licencia Pública, los derechos especificados en la Sección 2(b)(1)-(2) no son Derechos de Autor y Derechos Similares. + + e. Medidas Tecnológicas Efectivas significa aquellas medidas que, en ausencia de la autoridad adecuada, no pueden ser eludidas bajo leyes que cumplan con las obligaciones del Artículo 11 del Tratado de Derechos de Autor de la OMPI adoptado el 20 de diciembre de 1996, y/o acuerdos internacionales similares. + + f. Excepciones y Limitaciones significa uso justo, trato justo y/o cualquier otra excepción o limitación a los Derechos de Autor y Derechos Similares que se aplique a su uso del Material Licenciado. + + g. Elementos de la Licencia significa los atributos de la licencia enumerados en el nombre de una Licencia Pública de Creative Commons. Los Elementos de la Licencia de esta Licencia Pública son Atribución y CompartirIgual. + + h. Material Licenciado significa la obra artística o literaria, base de datos u otro material al que el Licenciante aplicó esta Licencia Pública. + + i. Derechos Licenciados significa los derechos otorgados a Usted sujetos a los términos y condiciones de esta Licencia Pública, que se limitan a todos los Derechos de Autor y Derechos Similares que se aplican a su uso del Material Licenciado y que el Licenciante tiene autoridad para licenciar. + + j. Licenciante significa la(s) persona(s) o entidad(es) que otorgan derechos bajo esta Licencia Pública. + + k. Compartir significa proporcionar material al público por cualquier medio o proceso que requiera permiso bajo los Derechos Licenciados, como reproducción, exhibición pública, interpretación pública, distribución, difusión, comunicación o importación, y poner material a disposición del público, incluyendo de maneras que los miembros del público puedan acceder al material desde un lugar y en un momento elegido individualmente por ellos. + + l. Derechos de Base de Datos Sui Generis significa derechos distintos de los derechos de autor que resultan de la Directiva 96/9/EC del Parlamento Europeo y del Consejo de 11 de marzo de 1996 sobre la protección jurídica de las bases de datos, según enmendada y/o sucedida, así como otros derechos esencialmente equivalentes en cualquier parte del mundo. + + m. Usted significa la persona o entidad que ejerce los Derechos Licenciados bajo esta Licencia Pública. Su tiene un significado correspondiente. + +Sección 2 -- Alcance. + + a. Concesión de licencia. + + 1. Sujeto a los términos y condiciones de esta Licencia Pública, el Licenciante le otorga una licencia mundial, libre de regalías, no sublicenciable, no exclusiva e irrevocable para ejercer los Derechos Licenciados en el Material Licenciado para: + + a. reproducir y Compartir el Material Licenciado, en su totalidad o en parte; y + + b. producir, reproducir y Compartir Material Adaptado. + + 2. Excepciones y Limitaciones. Para evitar dudas, cuando se apliquen Excepciones y Limitaciones a su uso, esta Licencia Pública no se aplica, y Usted no necesita cumplir con sus términos y condiciones. + + 3. Duración. La duración de esta Licencia Pública se especifica en la Sección 6(a). + + 4. Medios y formatos; modificaciones técnicas permitidas. El Licenciante le autoriza a ejercer los Derechos Licenciados en todos los medios y formatos, ya sean conocidos ahora o creados posteriormente, y a realizar modificaciones técnicas necesarias para hacerlo. El Licenciante renuncia y/o acuerda no hacer valer ningún derecho o autoridad para prohibirle realizar modificaciones técnicas necesarias para ejercer los Derechos Licenciados, incluyendo modificaciones técnicas necesarias para eludir Medidas Tecnológicas Efectivas. Para los fines de esta Licencia Pública, simplemente realizar modificaciones autorizadas por esta Sección 2(a)(4) nunca produce Material Adaptado. + + 5. Destinatarios posteriores. + + a. Oferta del Licenciante -- Material Licenciado. Cada destinatario del Material Licenciado recibe automáticamente una oferta del Licenciante para ejercer los Derechos Licenciados bajo los términos y condiciones de esta Licencia Pública. + + b. Oferta adicional del Licenciante -- Material Adaptado. Cada destinatario del Material Adaptado de Usted recibe automáticamente una oferta del Licenciante para ejercer los Derechos Licenciados en el Material Adaptado bajo las condiciones de la Licencia del Adaptador que Usted aplique. + + c. Sin restricciones posteriores. Usted no puede ofrecer ni imponer términos o condiciones adicionales o diferentes, ni aplicar Medidas Tecnológicas Efectivas al Material Licenciado si hacerlo restringe el ejercicio de los Derechos Licenciados por cualquier destinatario del Material Licenciado. + + 6. Sin respaldo. Nada en esta Licencia Pública constituye o puede interpretarse como permiso para afirmar o implicar que Usted está, o que su uso del Material Licenciado está, conectado con, patrocinado, respaldado o tiene estatus oficial otorgado por el Licenciante u otros designados para recibir atribución según lo dispuesto en la Sección 3(a)(1)(A)(i). + + b. Otros derechos. + + 1. Los derechos morales, como el derecho a la integridad, no están licenciados bajo esta Licencia Pública, ni tampoco los derechos de publicidad, privacidad y/o otros derechos similares de personalidad; sin embargo, en la medida de lo posible, el Licenciante renuncia y/o acuerda no hacer valer dichos derechos que posea el Licenciante en la medida limitada necesaria para permitirle ejercer los Derechos Licenciados, pero no de otro modo. + + 2. Los derechos de patente y marca registrada no están licenciados bajo esta Licencia Pública. + + 3. En la medida de lo posible, el Licenciante renuncia a cualquier derecho a cobrar regalías de Usted por el ejercicio de los Derechos Licenciados, ya sea directamente o a través de una sociedad de gestión colectiva bajo cualquier esquema de licencia voluntaria o estatutaria renunciable o obligatoria. En todos los demás casos, el Licenciante se reserva expresamente cualquier derecho a cobrar dichas regalías. +Derechos, entonces la base de datos en la que tienes Derechos de Base de Datos Sui Generis (pero no sus contenidos individuales) es Material Adaptado, + +incluyendo para los propósitos de la Sección 3(b); y +c. Debes cumplir con las condiciones de la Sección 3(a) si compartes todo o una parte sustancial de los contenidos de la base de datos. + +Para evitar dudas, esta Sección 4 complementa y no reemplaza tus obligaciones bajo esta Licencia Pública cuando los Derechos Licenciados incluyen otros Derechos de Autor y Derechos Similares. + +--- + +Sección 5 -- Renuncia de Garantías y Limitación de Responsabilidad. + +a. A MENOS QUE EL LICENCIANTE LO HAYA ASUMIDO SEPARADAMENTE, EN LA MEDIDA DE LO POSIBLE, EL LICENCIANTE OFRECE EL MATERIAL LICENCIADO TAL COMO ESTÁ Y SEGÚN DISPONIBILIDAD, Y NO HACE REPRESENTACIONES NI GARANTÍAS DE NINGÚN TIPO RESPECTO AL MATERIAL LICENCIADO, YA SEAN EXPRESAS, IMPLÍCITAS, LEGALES O DE OTRO TIPO. ESTO INCLUYE, SIN LIMITACIÓN, GARANTÍAS DE TITULARIDAD, COMERCIABILIDAD, IDONEIDAD PARA UN PROPÓSITO PARTICULAR, NO INFRACCIÓN, AUSENCIA DE DEFECTOS LATENTES U OTROS, EXACTITUD, O LA PRESENCIA O AUSENCIA DE ERRORES, YA SEAN CONOCIDOS O DESCUBRIBLES. DONDE LAS RENUNCIAS DE GARANTÍAS NO ESTÉN PERMITIDAS TOTAL O PARCIALMENTE, ESTA RENUNCIA PUEDE NO APLICARTE. + +b. EN LA MEDIDA DE LO POSIBLE, EN NINGÚN CASO EL LICENCIANTE SERÁ RESPONSABLE ANTE TI BAJO NINGUNA TEORÍA LEGAL (INCLUYENDO, SIN LIMITACIÓN, NEGLIGENCIA) O DE OTRO MODO POR PÉRDIDAS DIRECTAS, ESPECIALES, INDIRECTAS, INCIDENTALES, CONSECUENTES, PUNITIVAS, EJEMPLARES U OTRAS, COSTOS, GASTOS O DAÑOS QUE SURJAN DE ESTA LICENCIA PÚBLICA O DEL USO DEL MATERIAL LICENCIADO, INCLUSO SI EL LICENCIANTE HA SIDO ADVERTIDO DE LA POSIBILIDAD DE TALES PÉRDIDAS, COSTOS, GASTOS O DAÑOS. DONDE UNA LIMITACIÓN DE RESPONSABILIDAD NO ESTÉ PERMITIDA TOTAL O PARCIALMENTE, ESTA LIMITACIÓN PUEDE NO APLICARTE. + +c. La renuncia de garantías y la limitación de responsabilidad proporcionadas anteriormente deben interpretarse de manera que, en la medida de lo posible, se aproximen más a una renuncia absoluta y exención de toda responsabilidad. + +--- + +Sección 6 -- Duración y Terminación. + +a. Esta Licencia Pública se aplica durante el período de los Derechos de Autor y Derechos Similares licenciados aquí. Sin embargo, si no cumples con esta Licencia Pública, tus derechos bajo esta Licencia Pública se terminan automáticamente. + +b. Cuando tu derecho a usar el Material Licenciado haya terminado bajo la Sección 6(a), se reinstala: + +1. automáticamente a partir de la fecha en que se subsane la violación, siempre que se subsane dentro de los 30 días posteriores al descubrimiento de la violación; o +2. mediante reinstalación expresa por parte del Licenciante. + +Para evitar dudas, esta Sección 6(b) no afecta ningún derecho que el Licenciante pueda tener para buscar remedios por tus violaciones de esta Licencia Pública. + +c. Para evitar dudas, el Licenciante también puede ofrecer el Material Licenciado bajo términos o condiciones separados o dejar de distribuir el Material Licenciado en cualquier momento; sin embargo, hacerlo no terminará esta Licencia Pública. + +d. Las Secciones 1, 5, 6, 7 y 8 sobreviven a la terminación de esta Licencia Pública. + +--- + +Sección 7 -- Otros Términos y Condiciones. + +a. El Licenciante no estará obligado por términos o condiciones adicionales o diferentes comunicados por ti, a menos que se acuerde expresamente. + +b. Cualquier arreglo, entendimiento o acuerdo relacionado con el Material Licenciado que no se indique aquí es separado e independiente de los términos y condiciones de esta Licencia Pública. + +--- + +Sección 8 -- Interpretación. + +a. Para evitar dudas, esta Licencia Pública no reduce, limita, restringe ni impone condiciones sobre ningún uso del Material Licenciado que pueda realizarse legalmente sin permiso bajo esta Licencia Pública. + +b. En la medida de lo posible, si alguna disposición de esta Licencia Pública se considera inaplicable, se reformará automáticamente en la medida mínima necesaria para hacerla aplicable. Si la disposición no puede reformarse, se separará de esta Licencia Pública sin afectar la aplicabilidad de los términos y condiciones restantes. + +c. Ningún término o condición de esta Licencia Pública será renunciado y ningún incumplimiento será consentido a menos que el Licenciante lo acuerde expresamente. + +d. Nada en esta Licencia Pública constituye ni puede interpretarse como una limitación o renuncia de privilegios e inmunidades que se aplican al Licenciante o a ti, incluyendo los procesos legales de cualquier jurisdicción o autoridad. + +--- + +======================================================================= + +Creative Commons no es parte de sus licencias públicas. No obstante, Creative Commons puede optar por aplicar una de sus licencias públicas al material que publica y, en esos casos, será considerado el “Licenciante”. El texto de las licencias públicas de Creative Commons está dedicado al dominio público bajo la Dedicación al Dominio Público CC0. Excepto para el propósito limitado de indicar que el material se comparte bajo una licencia pública de Creative Commons o según lo permitido por las políticas de Creative Commons publicadas en creativecommons.org/policies, Creative Commons no autoriza el uso de la marca "Creative Commons" ni de ninguna otra marca o logotipo de Creative Commons sin su consentimiento previo por escrito, incluyendo, sin limitación, en relación con modificaciones no autorizadas de cualquiera de sus licencias públicas o cualquier otro arreglo, entendimiento o acuerdo relacionado con el uso del material licenciado. Para evitar dudas, este párrafo no forma parte de las licencias públicas. + +Creative Commons puede ser contactado en creativecommons.org. + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/es/sketchnotes/README.md b/translations/es/sketchnotes/README.md new file mode 100644 index 000000000..c948c2737 --- /dev/null +++ b/translations/es/sketchnotes/README.md @@ -0,0 +1,21 @@ + +Todas las notas visuales del currículo se pueden descargar aquí. + +🖨 Para imprimir en alta resolución, las versiones TIFF están disponibles en [este repositorio](https://github.com/girliemac/a-picture-is-worth-a-1000-words/tree/main/ml/tiff). + +🎨 Creado por: [Tomomi Imura](https://github.com/girliemac) (Twitter: [@girlie_mac](https://twitter.com/girlie_mac)) + +[![CC BY-SA 4.0](https://img.shields.io/badge/License-CC%20BY--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-sa/4.0/) + +--- + +**Descargo de responsabilidad**: +Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por garantizar la precisión, tenga en cuenta que las traducciones automatizadas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción. \ No newline at end of file diff --git a/translations/fa/1-Introduction/1-intro-to-ML/README.md b/translations/fa/1-Introduction/1-intro-to-ML/README.md new file mode 100644 index 000000000..dd1c6765e --- /dev/null +++ b/translations/fa/1-Introduction/1-intro-to-ML/README.md @@ -0,0 +1,159 @@ + +# مقدمه‌ای بر یادگیری ماشین + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/) + +--- + +[![یادگیری ماشین برای مبتدیان - مقدمه‌ای بر یادگیری ماشین برای مبتدیان](https://img.youtube.com/vi/6mSx_KJxcHI/0.jpg)](https://youtu.be/6mSx_KJxcHI "یادگیری ماشین برای مبتدیان - مقدمه‌ای بر یادگیری ماشین برای مبتدیان") + +> 🎥 روی تصویر بالا کلیک کنید تا ویدیوی کوتاهی درباره این درس مشاهده کنید. + +به این دوره آموزشی درباره یادگیری ماشین کلاسیک برای مبتدیان خوش آمدید! چه کاملاً تازه‌کار باشید و چه یک متخصص یادگیری ماشین که به دنبال مرور یک موضوع خاص است، خوشحالیم که به ما پیوسته‌اید! هدف ما ایجاد یک نقطه شروع دوستانه برای مطالعه یادگیری ماشین شماست و خوشحال می‌شویم بازخورد شما را ارزیابی، پاسخ داده و در این دوره بگنجانیم. [بازخورد خود را ارائه دهید](https://github.com/microsoft/ML-For-Beginners/discussions). + +[![مقدمه‌ای بر یادگیری ماشین](https://img.youtube.com/vi/h0e2HAPTGF4/0.jpg)](https://youtu.be/h0e2HAPTGF4 "مقدمه‌ای بر یادگیری ماشین") + +> 🎥 روی تصویر بالا کلیک کنید تا ویدیویی از جان گوتاگ از MIT درباره یادگیری ماشین مشاهده کنید. + +--- +## شروع به کار با یادگیری ماشین + +قبل از شروع این دوره، باید کامپیوتر خود را آماده کنید تا بتوانید نوت‌بوک‌ها را به صورت محلی اجرا کنید. + +- **کامپیوتر خود را با این ویدیوها تنظیم کنید**. از لینک‌های زیر استفاده کنید تا [نصب پایتون](https://youtu.be/CXZYvNRIAKM) روی سیستم خود را یاد بگیرید و [ویرایشگر متن](https://youtu.be/EU8eayHWoZg) را برای توسعه تنظیم کنید. +- **پایتون را یاد بگیرید**. توصیه می‌شود که درک پایه‌ای از [پایتون](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) داشته باشید، یک زبان برنامه‌نویسی مفید برای دانشمندان داده که در این دوره از آن استفاده می‌کنیم. +- **Node.js و جاوااسکریپت را یاد بگیرید**. ما همچنین چند بار در این دوره از جاوااسکریپت برای ساخت اپلیکیشن‌های وب استفاده می‌کنیم، بنابراین باید [node](https://nodejs.org) و [npm](https://www.npmjs.com/) نصب شده باشند و [Visual Studio Code](https://code.visualstudio.com/) برای توسعه پایتون و جاوااسکریپت در دسترس باشد. +- **یک حساب GitHub ایجاد کنید**. از آنجا که ما را در [GitHub](https://github.com) پیدا کرده‌اید، ممکن است قبلاً حساب داشته باشید، اما اگر ندارید، یکی ایجاد کنید و سپس این دوره را برای استفاده شخصی خود فورک کنید. (لطفاً به ما یک ستاره بدهید 😊) +- **Scikit-learn را بررسی کنید**. با [Scikit-learn](https://scikit-learn.org/stable/user_guide.html)، مجموعه‌ای از کتابخانه‌های یادگیری ماشین که در این درس‌ها به آنها اشاره می‌کنیم، آشنا شوید. + +--- +## یادگیری ماشین چیست؟ + +اصطلاح "یادگیری ماشین" یکی از محبوب‌ترین و پرکاربردترین اصطلاحات امروز است. احتمال زیادی وجود دارد که حداقل یک بار این اصطلاح را شنیده باشید، اگر با فناوری آشنایی داشته باشید، فارغ از اینکه در چه حوزه‌ای کار می‌کنید. اما مکانیزم یادگیری ماشین برای اکثر افراد یک راز است. برای یک مبتدی در یادگیری ماشین، این موضوع گاهی اوقات می‌تواند گیج‌کننده باشد. بنابراین، مهم است که بفهمیم یادگیری ماشین واقعاً چیست و آن را گام به گام، از طریق مثال‌های عملی یاد بگیریم. + +--- +## منحنی هیجان + +![منحنی هیجان یادگیری ماشین](../../../../translated_images/hype.07183d711a17aafe70915909a0e45aa286ede136ee9424d418026ab00fec344c.fa.png) + +> Google Trends نشان‌دهنده "منحنی هیجان" اخیر اصطلاح "یادگیری ماشین" است. + +--- +## جهانی اسرارآمیز + +ما در جهانی پر از اسرار جذاب زندگی می‌کنیم. دانشمندان بزرگی مانند استیون هاوکینگ، آلبرت انیشتین و بسیاری دیگر زندگی خود را وقف جستجوی اطلاعات معناداری کرده‌اند که اسرار دنیای اطراف ما را آشکار می‌کند. این همان وضعیت انسانی یادگیری است: یک کودک انسان چیزهای جدیدی یاد می‌گیرد و ساختار دنیای خود را سال به سال با رشد به بزرگسالی کشف می‌کند. + +--- +## مغز کودک + +مغز و حواس یک کودک حقایق اطراف خود را درک می‌کنند و به تدریج الگوهای پنهان زندگی را یاد می‌گیرند که به کودک کمک می‌کند قوانین منطقی برای شناسایی الگوهای یادگرفته شده بسازد. فرآیند یادگیری مغز انسان، انسان‌ها را به پیچیده‌ترین موجودات زنده این دنیا تبدیل کرده است. یادگیری مداوم با کشف الگوهای پنهان و سپس نوآوری بر اساس آن الگوها به ما امکان می‌دهد که در طول زندگی خود بهتر و بهتر شویم. این ظرفیت یادگیری و قابلیت تکامل به مفهومی به نام [انعطاف‌پذیری مغز](https://www.simplypsychology.org/brain-plasticity.html) مرتبط است. به طور سطحی، می‌توانیم برخی شباهت‌های انگیزشی بین فرآیند یادگیری مغز انسان و مفاهیم یادگیری ماشین ترسیم کنیم. + +--- +## مغز انسان + +[مغز انسان](https://www.livescience.com/29365-human-brain.html) چیزهایی را از دنیای واقعی درک می‌کند، اطلاعات درک‌شده را پردازش می‌کند، تصمیمات منطقی می‌گیرد و بر اساس شرایط اقدامات خاصی انجام می‌دهد. این همان چیزی است که ما آن را رفتار هوشمندانه می‌نامیم. وقتی فرآیند رفتار هوشمندانه را به صورت مصنوعی به یک ماشین برنامه‌ریزی کنیم، به آن هوش مصنوعی (AI) می‌گویند. + +--- +## برخی اصطلاحات + +اگرچه ممکن است این اصطلاحات گیج‌کننده باشند، یادگیری ماشین (ML) یک زیرمجموعه مهم از هوش مصنوعی است. **یادگیری ماشین به استفاده از الگوریتم‌های تخصصی برای کشف اطلاعات معنادار و یافتن الگوهای پنهان از داده‌های درک‌شده برای تأیید فرآیند تصمیم‌گیری منطقی می‌پردازد**. + +--- +## هوش مصنوعی، یادگیری ماشین، یادگیری عمیق + +![هوش مصنوعی، یادگیری ماشین، یادگیری عمیق، علم داده](../../../../translated_images/ai-ml-ds.537ea441b124ebf69c144a52c0eb13a7af63c4355c2f92f440979380a2fb08b8.fa.png) + +> نموداری که روابط بین هوش مصنوعی، یادگیری ماشین، یادگیری عمیق و علم داده را نشان می‌دهد. اینفوگرافیک توسط [Jen Looper](https://twitter.com/jenlooper) الهام گرفته از [این گرافیک](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining) + +--- +## مفاهیمی که پوشش داده می‌شوند + +در این دوره آموزشی، ما فقط مفاهیم اصلی یادگیری ماشین را که یک مبتدی باید بداند پوشش می‌دهیم. ما آنچه را که "یادگیری ماشین کلاسیک" می‌نامیم، عمدتاً با استفاده از Scikit-learn، یک کتابخانه عالی که بسیاری از دانش‌آموزان برای یادگیری اصول استفاده می‌کنند، بررسی می‌کنیم. برای درک مفاهیم گسترده‌تر هوش مصنوعی یا یادگیری عمیق، داشتن دانش بنیادی قوی از یادگیری ماشین ضروری است، و ما قصد داریم آن را در اینجا ارائه دهیم. + +--- +## در این دوره شما یاد خواهید گرفت: + +- مفاهیم اصلی یادگیری ماشین +- تاریخچه یادگیری ماشین +- یادگیری ماشین و عدالت +- تکنیک‌های یادگیری ماشین در رگرسیون +- تکنیک‌های یادگیری ماشین در طبقه‌بندی +- تکنیک‌های یادگیری ماشین در خوشه‌بندی +- تکنیک‌های پردازش زبان طبیعی در یادگیری ماشین +- تکنیک‌های پیش‌بینی سری‌های زمانی در یادگیری ماشین +- یادگیری تقویتی +- کاربردهای واقعی یادگیری ماشین + +--- +## مواردی که پوشش داده نمی‌شوند + +- یادگیری عمیق +- شبکه‌های عصبی +- هوش مصنوعی + +برای تجربه یادگیری بهتر، از پیچیدگی‌های شبکه‌های عصبی، یادگیری عمیق - ساخت مدل‌های چندلایه با استفاده از شبکه‌های عصبی - و هوش مصنوعی اجتناب خواهیم کرد، که در یک دوره آموزشی دیگر به آن‌ها خواهیم پرداخت. همچنین یک دوره آموزشی آینده درباره علم داده ارائه خواهیم داد تا بر این جنبه از این حوزه بزرگ‌تر تمرکز کنیم. + +--- +## چرا یادگیری ماشین مطالعه کنیم؟ + +یادگیری ماشین، از دیدگاه سیستمی، به عنوان ایجاد سیستم‌های خودکار تعریف می‌شود که می‌توانند الگوهای پنهان را از داده‌ها یاد بگیرند تا به تصمیم‌گیری هوشمندانه کمک کنند. + +این انگیزه به طور آزادانه از نحوه یادگیری مغز انسان برخی چیزها بر اساس داده‌هایی که از دنیای بیرونی درک می‌کند، الهام گرفته شده است. + +✅ برای یک لحظه فکر کنید که چرا یک کسب‌وکار ممکن است بخواهد از استراتژی‌های یادگیری ماشین استفاده کند به جای ایجاد یک موتور مبتنی بر قوانین سخت‌کد شده. + +--- +## کاربردهای یادگیری ماشین + +کاربردهای یادگیری ماشین اکنون تقریباً همه جا هستند و به اندازه داده‌هایی که در جوامع ما جریان دارند، فراگیر شده‌اند؛ داده‌هایی که توسط تلفن‌های هوشمند، دستگاه‌های متصل و سیستم‌های دیگر تولید می‌شوند. با توجه به پتانسیل عظیم الگوریتم‌های پیشرفته یادگیری ماشین، محققان قابلیت‌های آن‌ها را برای حل مشکلات چندبعدی و چندرشته‌ای واقعی با نتایج مثبت عالی بررسی کرده‌اند. + +--- +## مثال‌هایی از یادگیری ماشین کاربردی + +**شما می‌توانید یادگیری ماشین را به روش‌های مختلفی استفاده کنید**: + +- پیش‌بینی احتمال بیماری از تاریخچه پزشکی یا گزارش‌های بیمار. +- استفاده از داده‌های هواشناسی برای پیش‌بینی رویدادهای آب‌وهوایی. +- درک احساسات یک متن. +- شناسایی اخبار جعلی برای جلوگیری از انتشار تبلیغات. + +مالی، اقتصاد، علوم زمین، اکتشافات فضایی، مهندسی زیست‌پزشکی، علوم شناختی و حتی حوزه‌های علوم انسانی یادگیری ماشین را برای حل مشکلات سنگین پردازش داده در حوزه خود تطبیق داده‌اند. + +--- +## نتیجه‌گیری + +یادگیری ماشین فرآیند کشف الگوها را با یافتن بینش‌های معنادار از داده‌های واقعی یا تولیدشده خودکار می‌کند. این فناوری در کاربردهای تجاری، بهداشتی و مالی، و بسیاری دیگر ارزش خود را ثابت کرده است. + +در آینده نزدیک، درک اصول یادگیری ماشین برای افراد در هر حوزه‌ای به دلیل پذیرش گسترده آن ضروری خواهد بود. + +--- +# 🚀 چالش + +در یک کاغذ یا با استفاده از یک اپلیکیشن آنلاین مانند [Excalidraw](https://excalidraw.com/)، تفاوت‌های بین هوش مصنوعی، یادگیری ماشین، یادگیری عمیق و علم داده را ترسیم کنید. برخی ایده‌ها درباره مشکلاتی که هر یک از این تکنیک‌ها در حل آن‌ها خوب هستند اضافه کنید. + +# [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/) + +--- +# مرور و مطالعه شخصی + +برای یادگیری بیشتر درباره نحوه کار با الگوریتم‌های یادگیری ماشین در فضای ابری، این [مسیر یادگیری](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott) را دنبال کنید. + +یک [مسیر یادگیری](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) درباره اصول یادگیری ماشین بگذرانید. + +--- +# تکلیف + +[شروع به کار کنید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/1-Introduction/1-intro-to-ML/assignment.md b/translations/fa/1-Introduction/1-intro-to-ML/assignment.md new file mode 100644 index 000000000..b017e77fd --- /dev/null +++ b/translations/fa/1-Introduction/1-intro-to-ML/assignment.md @@ -0,0 +1,23 @@ + +# شروع به کار + +## دستورالعمل‌ها + +در این تکلیف بدون نمره، باید مهارت‌های خود در پایتون را تقویت کنید و محیط خود را آماده کنید تا بتوانید نوت‌بوک‌ها را اجرا کنید. + +این [مسیر یادگیری پایتون](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) را دنبال کنید و سپس سیستم‌های خود را با مشاهده این ویدیوهای مقدماتی تنظیم کنید: + +https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6 + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/1-Introduction/2-history-of-ML/README.md b/translations/fa/1-Introduction/2-history-of-ML/README.md new file mode 100644 index 000000000..a399fd1f3 --- /dev/null +++ b/translations/fa/1-Introduction/2-history-of-ML/README.md @@ -0,0 +1,164 @@ + +# تاریخچه یادگیری ماشین + +![خلاصه‌ای از تاریخچه یادگیری ماشین در یک اسکیچ‌نوت](../../../../translated_images/ml-history.a1bdfd4ce1f464d9a0502f38d355ffda384c95cd5278297a46c9a391b5053bc4.fa.png) +> اسکیچ‌نوت توسط [تومومی ایمورا](https://www.twitter.com/girlie_mac) + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/) + +--- + +[![یادگیری ماشین برای مبتدیان - تاریخچه یادگیری ماشین](https://img.youtube.com/vi/N6wxM4wZ7V0/0.jpg)](https://youtu.be/N6wxM4wZ7V0 "یادگیری ماشین برای مبتدیان - تاریخچه یادگیری ماشین") + +> 🎥 برای مشاهده ویدئوی کوتاهی که این درس را توضیح می‌دهد، روی تصویر بالا کلیک کنید. + +در این درس، به بررسی نقاط عطف مهم در تاریخچه یادگیری ماشین و هوش مصنوعی خواهیم پرداخت. + +تاریخچه هوش مصنوعی (AI) به عنوان یک حوزه علمی با تاریخچه یادگیری ماشین در هم تنیده است، زیرا الگوریتم‌ها و پیشرفت‌های محاسباتی که زیربنای یادگیری ماشین هستند، به توسعه هوش مصنوعی کمک کرده‌اند. به یاد داشته باشید که اگرچه این حوزه‌ها به عنوان زمینه‌های مجزا از دهه ۱۹۵۰ شکل گرفتند، اما [کشفیات الگوریتمی، آماری، ریاضیاتی، محاسباتی و فنی](https://wikipedia.org/wiki/Timeline_of_machine_learning) مهمی پیش از این دوره رخ داده و با آن همپوشانی داشته‌اند. در واقع، انسان‌ها برای [صدها سال](https://wikipedia.org/wiki/History_of_artificial_intelligence) به این سوالات فکر کرده‌اند: این مقاله به بررسی پایه‌های فکری تاریخی ایده «ماشین متفکر» می‌پردازد. + +--- +## کشفیات برجسته + +- ۱۷۶۳، ۱۸۱۲ [قضیه بیز](https://wikipedia.org/wiki/Bayes%27_theorem) و پیشینیان آن. این قضیه و کاربردهای آن زیربنای استنتاج را تشکیل می‌دهند و احتمال وقوع یک رویداد را بر اساس دانش قبلی توصیف می‌کنند. +- ۱۸۰۵ [نظریه کمترین مربعات](https://wikipedia.org/wiki/Least_squares) توسط ریاضیدان فرانسوی آدریان-ماری لژاندر. این نظریه که در واحد رگرسیون یاد خواهید گرفت، به برازش داده‌ها کمک می‌کند. +- ۱۹۱۳ [زنجیره‌های مارکوف](https://wikipedia.org/wiki/Markov_chain)، که به نام ریاضیدان روسی آندری مارکوف نام‌گذاری شده است، برای توصیف دنباله‌ای از رویدادهای ممکن بر اساس یک حالت قبلی استفاده می‌شود. +- ۱۹۵۷ [پرسیپترون](https://wikipedia.org/wiki/Perceptron) نوعی طبقه‌بند خطی است که توسط روانشناس آمریکایی فرانک روزنبلات اختراع شد و زیربنای پیشرفت‌های یادگیری عمیق است. + +--- + +- ۱۹۶۷ [نزدیک‌ترین همسایه](https://wikipedia.org/wiki/Nearest_neighbor) الگوریتمی است که در ابتدا برای مسیریابی طراحی شد. در زمینه یادگیری ماشین، برای شناسایی الگوها استفاده می‌شود. +- ۱۹۷۰ [پس‌انتشار خطا](https://wikipedia.org/wiki/Backpropagation) برای آموزش [شبکه‌های عصبی پیش‌خور](https://wikipedia.org/wiki/Feedforward_neural_network) استفاده می‌شود. +- ۱۹۸۲ [شبکه‌های عصبی بازگشتی](https://wikipedia.org/wiki/Recurrent_neural_network) شبکه‌های عصبی مصنوعی هستند که از شبکه‌های عصبی پیش‌خور مشتق شده‌اند و گراف‌های زمانی ایجاد می‌کنند. + +✅ کمی تحقیق کنید. چه تاریخ‌های دیگری به عنوان نقاط عطف در تاریخ یادگیری ماشین و هوش مصنوعی برجسته هستند؟ + +--- +## ۱۹۵۰: ماشین‌هایی که فکر می‌کنند + +آلن تورینگ، فردی واقعاً شگفت‌انگیز که [در سال ۲۰۱۹ توسط عموم مردم](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) به عنوان بزرگ‌ترین دانشمند قرن بیستم انتخاب شد، به عنوان کسی که به شکل‌گیری مفهوم «ماشینی که می‌تواند فکر کند» کمک کرد، شناخته می‌شود. او با مخالفان و نیاز خود به شواهد تجربی برای این مفهوم دست و پنجه نرم کرد و بخشی از این کار را با ایجاد [آزمون تورینگ](https://www.bbc.com/news/technology-18475646) انجام داد که در درس‌های پردازش زبان طبیعی (NLP) به آن خواهید پرداخت. + +--- +## ۱۹۵۶: پروژه تحقیقاتی تابستانی دارتموث + +"پروژه تحقیقاتی تابستانی دارتموث در زمینه هوش مصنوعی یک رویداد مهم برای هوش مصنوعی به عنوان یک حوزه علمی بود" و در اینجا بود که اصطلاح «هوش مصنوعی» ابداع شد ([منبع](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)). + +> هر جنبه‌ای از یادگیری یا هر ویژگی دیگر هوش را می‌توان به گونه‌ای دقیق توصیف کرد که بتوان ماشینی ساخت که آن را شبیه‌سازی کند. + +--- + +محقق اصلی، پروفسور ریاضیات جان مک‌کارتی، امیدوار بود "بر اساس این فرضیه پیش برود که هر جنبه‌ای از یادگیری یا هر ویژگی دیگر هوش را می‌توان به گونه‌ای دقیق توصیف کرد که ماشینی بتواند آن را شبیه‌سازی کند." شرکت‌کنندگان شامل یکی دیگر از بزرگان این حوزه، ماروین مینسکی، بودند. + +این کارگاه به آغاز و تشویق چندین بحث از جمله "ظهور روش‌های نمادین، سیستم‌های متمرکز بر حوزه‌های محدود (سیستم‌های خبره اولیه) و سیستم‌های استنتاجی در مقابل سیستم‌های استقرایی" اعتبار داده شده است ([منبع](https://wikipedia.org/wiki/Dartmouth_workshop)). + +--- +## ۱۹۵۶ - ۱۹۷۴: "سال‌های طلایی" + +از دهه ۱۹۵۰ تا اواسط دهه ۱۹۷۰، خوش‌بینی زیادی وجود داشت که هوش مصنوعی می‌تواند بسیاری از مشکلات را حل کند. در سال ۱۹۶۷، ماروین مینسکی با اطمینان اعلام کرد که "در عرض یک نسل ... مشکل ایجاد 'هوش مصنوعی' به طور اساسی حل خواهد شد." (مینسکی، ماروین (۱۹۶۷)، محاسبات: ماشین‌های محدود و نامحدود، انگلوود کلیفس، نیوجرسی: پرنتیس-هال) + +تحقیقات پردازش زبان طبیعی رونق گرفت، جستجو بهبود یافت و قدرتمندتر شد، و مفهوم «جهان‌های کوچک» ایجاد شد، جایی که وظایف ساده با استفاده از دستورالعمل‌های زبان ساده انجام می‌شد. + +--- + +تحقیقات توسط آژانس‌های دولتی به خوبی تأمین مالی شد، پیشرفت‌هایی در محاسبات و الگوریتم‌ها حاصل شد، و نمونه‌های اولیه ماشین‌های هوشمند ساخته شدند. برخی از این ماشین‌ها عبارتند از: + +* [ربات شیکی](https://wikipedia.org/wiki/Shakey_the_robot)، که می‌توانست به طور هوشمندانه حرکت کند و تصمیم بگیرد که چگونه وظایف را انجام دهد. + + ![شیکی، یک ربات هوشمند](../../../../translated_images/shakey.4dc17819c447c05bf4b52f76da0bdd28817d056fdb906252ec20124dd4cfa55e.fa.jpg) + > شیکی در سال ۱۹۷۲ + +--- + +* الیزا، یک «چت‌بات» اولیه، می‌توانست با مردم گفتگو کند و به عنوان یک «روان‌درمانگر» ابتدایی عمل کند. در درس‌های NLP بیشتر درباره الیزا خواهید آموخت. + + ![الیزا، یک ربات گفتگو](../../../../translated_images/eliza.84397454cda9559bb5ec296b5b8fff067571c0cccc5405f9c1ab1c3f105c075c.fa.png) + > نسخه‌ای از الیزا، یک چت‌بات + +--- + +* "جهان بلوک‌ها" نمونه‌ای از یک جهان کوچک بود که در آن بلوک‌ها می‌توانستند چیده و مرتب شوند و آزمایش‌هایی در آموزش ماشین‌ها برای تصمیم‌گیری انجام می‌شد. پیشرفت‌هایی که با کتابخانه‌هایی مانند [SHRDLU](https://wikipedia.org/wiki/SHRDLU) حاصل شد، به پیشبرد پردازش زبان کمک کرد. + + [![جهان بلوک‌ها با SHRDLU](https://img.youtube.com/vi/QAJz4YKUwqw/0.jpg)](https://www.youtube.com/watch?v=QAJz4YKUwqw "جهان بلوک‌ها با SHRDLU") + + > 🎥 برای مشاهده ویدئو کلیک کنید: جهان بلوک‌ها با SHRDLU + +--- +## ۱۹۷۴ - ۱۹۸۰: "زمستان هوش مصنوعی" + +تا اواسط دهه ۱۹۷۰، مشخص شد که پیچیدگی ساخت ماشین‌های «هوشمند» دست کم گرفته شده و وعده‌های آن، با توجه به قدرت محاسباتی موجود، بیش از حد بزرگ‌نمایی شده است. تأمین مالی کاهش یافت و اعتماد به این حوزه کاهش یافت. برخی از مسائلی که بر اعتماد تأثیر گذاشتند عبارت بودند از: +--- +- **محدودیت‌ها**. قدرت محاسباتی بسیار محدود بود. +- **انفجار ترکیبی**. تعداد پارامترهایی که باید آموزش داده می‌شد، به صورت نمایی افزایش یافت، بدون اینکه قدرت و قابلیت محاسباتی به موازات آن تکامل یابد. +- **کمبود داده**. کمبود داده فرآیند آزمایش، توسعه و بهبود الگوریتم‌ها را مختل کرد. +- **آیا سوالات درستی می‌پرسیم؟**. خود سوالاتی که مطرح می‌شدند، زیر سوال رفتند. محققان با انتقاداتی درباره رویکردهایشان مواجه شدند: + - آزمون‌های تورینگ با نظریاتی مانند «اتاق چینی» زیر سوال رفتند که مطرح می‌کرد، "برنامه‌نویسی یک کامپیوتر دیجیتال ممکن است باعث شود که به نظر برسد زبان را می‌فهمد، اما نمی‌تواند درک واقعی ایجاد کند." ([منبع](https://plato.stanford.edu/entries/chinese-room/)) + - اخلاق معرفی هوش مصنوعی‌هایی مانند «روان‌درمانگر» الیزا به جامعه به چالش کشیده شد. + +--- + +در همین زمان، مدارس مختلف فکری در زمینه هوش مصنوعی شکل گرفتند. یک دوگانگی بین [روش‌های "شلخته" و "مرتب"](https://wikipedia.org/wiki/Neats_and_scruffies) ایجاد شد. آزمایشگاه‌های _شلخته_ برنامه‌ها را تا رسیدن به نتایج دلخواه تنظیم می‌کردند. آزمایشگاه‌های _مرتب_ "بر منطق و حل مسئله رسمی تمرکز داشتند". الیزا و SHRDLU سیستم‌های _شلخته_ شناخته‌شده‌ای بودند. در دهه ۱۹۸۰، با افزایش تقاضا برای بازتولیدپذیری سیستم‌های یادگیری ماشین، رویکرد _مرتب_ به تدریج پیشتاز شد زیرا نتایج آن توضیح‌پذیرتر بودند. + +--- +## سیستم‌های خبره دهه ۱۹۸۰ + +با رشد این حوزه، مزایای آن برای کسب‌وکارها آشکارتر شد و در دهه ۱۹۸۰ سیستم‌های «خبره» گسترش یافتند. "سیستم‌های خبره از اولین اشکال موفق نرم‌افزار هوش مصنوعی (AI) بودند." ([منبع](https://wikipedia.org/wiki/Expert_system)). + +این نوع سیستم در واقع _ترکیبی_ بود، که بخشی از آن شامل یک موتور قوانین برای تعریف نیازهای کسب‌وکار و بخشی دیگر شامل یک موتور استنتاج بود که از سیستم قوانین برای استنتاج حقایق جدید استفاده می‌کرد. + +این دوره همچنین شاهد توجه بیشتر به شبکه‌های عصبی بود. + +--- +## ۱۹۸۷ - ۱۹۹۳: "سرمای هوش مصنوعی" + +گسترش سخت‌افزارهای تخصصی سیستم‌های خبره اثر نامطلوبی داشت و بیش از حد تخصصی شد. ظهور کامپیوترهای شخصی نیز با این سیستم‌های بزرگ، تخصصی و متمرکز رقابت کرد. دموکراتیزه شدن محاسبات آغاز شد و در نهایت راه را برای انفجار مدرن داده‌های بزرگ هموار کرد. + +--- +## ۱۹۹۳ - ۲۰۱۱ + +این دوره شاهد عصر جدیدی برای یادگیری ماشین و هوش مصنوعی بود که توانست برخی از مشکلات ناشی از کمبود داده و قدرت محاسباتی را حل کند. حجم داده‌ها به سرعت افزایش یافت و به طور گسترده‌تری در دسترس قرار گرفت، چه خوب و چه بد، به ویژه با ظهور گوشی‌های هوشمند در حدود سال ۲۰۰۷. قدرت محاسباتی به صورت نمایی گسترش یافت و الگوریتم‌ها نیز همراه با آن تکامل یافتند. این حوزه شروع به بلوغ کرد زیرا روزهای آزاد و بی‌قید گذشته به تدریج به یک رشته علمی واقعی تبدیل شد. + +--- +## اکنون + +امروزه یادگیری ماشین و هوش مصنوعی تقریباً در تمام جنبه‌های زندگی ما حضور دارند. این دوره نیازمند درک دقیق خطرات و اثرات بالقوه این الگوریتم‌ها بر زندگی انسان‌ها است. همان‌طور که برد اسمیت از مایکروسافت بیان کرده است: "فناوری اطلاعات مسائلی را مطرح می‌کند که به قلب حفاظت از حقوق اساسی بشر مانند حریم خصوصی و آزادی بیان می‌پردازد. این مسائل مسئولیت شرکت‌های فناوری که این محصولات را ایجاد می‌کنند، افزایش می‌دهد. به نظر ما، این مسائل همچنین نیازمند مقررات دولتی مدبرانه و توسعه هنجارهایی در مورد استفاده‌های قابل قبول است" ([منبع](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)). + +--- + +هنوز مشخص نیست که آینده چه چیزی در بر دارد، اما مهم است که این سیستم‌های کامپیوتری و نرم‌افزارها و الگوریتم‌هایی که اجرا می‌کنند را درک کنیم. امیدواریم این برنامه درسی به شما کمک کند تا درک بهتری پیدا کنید تا بتوانید خودتان تصمیم بگیرید. + +[![تاریخچه یادگیری عمیق](https://img.youtube.com/vi/mTtDfKgLm54/0.jpg)](https://www.youtube.com/watch?v=mTtDfKgLm54 "تاریخچه یادگیری عمیق") +> 🎥 برای مشاهده ویدئو کلیک کنید: یان لکون در این سخنرانی تاریخچه یادگیری عمیق را توضیح می‌دهد + +--- +## 🚀چالش + +یکی از این لحظات تاریخی را بررسی کنید و درباره افرادی که پشت آن بودند بیشتر بیاموزید. شخصیت‌های جذابی وجود دارند و هیچ کشف علمی‌ای در خلأ فرهنگی ایجاد نشده است. چه چیزی کشف می‌کنید؟ + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/) + +--- +## مرور و مطالعه شخصی + +موارد زیر را مشاهده و گوش دهید: + +[این پادکست که در آن امی بوید درباره تکامل هوش مصنوعی صحبت می‌کند](http://runasradio.com/Shows/Show/739) + +[![تاریخچه هوش مصنوعی توسط امی بوید](https://img.youtube.com/vi/EJt3_bFYKss/0.jpg)](https://www.youtube.com/watch?v=EJt3_bFYKss "تاریخچه هوش مصنوعی توسط امی بوید") + +--- + +## تکلیف + +[یک خط زمانی ایجاد کنید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/1-Introduction/2-history-of-ML/assignment.md b/translations/fa/1-Introduction/2-history-of-ML/assignment.md new file mode 100644 index 000000000..7fec73c4b --- /dev/null +++ b/translations/fa/1-Introduction/2-history-of-ML/assignment.md @@ -0,0 +1,25 @@ + +# ایجاد یک خط زمانی + +## دستورالعمل‌ها + +با استفاده از [این مخزن](https://github.com/Digital-Humanities-Toolkit/timeline-builder)، یک خط زمانی از جنبه‌ای از تاریخ الگوریتم‌ها، ریاضیات، آمار، هوش مصنوعی یا یادگیری ماشین، یا ترکیبی از این‌ها ایجاد کنید. می‌توانید بر روی یک شخص، یک ایده، یا یک بازه زمانی طولانی از تفکر تمرکز کنید. حتماً عناصر چندرسانه‌ای اضافه کنید. + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ------------ | ------------------------------------------------- | ------------------------------------ | --------------------------------------------------------------- | +| | یک خط زمانی منتشر شده به عنوان یک صفحه GitHub ارائه شده است | کد ناقص است و منتشر نشده است | خط زمانی ناقص است، به خوبی تحقیق نشده و منتشر نشده است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/1-Introduction/3-fairness/README.md b/translations/fa/1-Introduction/3-fairness/README.md new file mode 100644 index 000000000..07b043703 --- /dev/null +++ b/translations/fa/1-Introduction/3-fairness/README.md @@ -0,0 +1,163 @@ + +# ساخت راه‌حل‌های یادگیری ماشین با هوش مصنوعی مسئولانه + +![خلاصه‌ای از هوش مصنوعی مسئولانه در یادگیری ماشین در یک اسکیچ‌نوت](../../../../translated_images/ml-fairness.ef296ebec6afc98a44566d7b6c1ed18dc2bf1115c13ec679bb626028e852fa1d.fa.png) +> اسکیچ‌نوت توسط [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/) + +## مقدمه + +در این دوره آموزشی، شما شروع به کشف خواهید کرد که چگونه یادگیری ماشین می‌تواند و در حال حاضر زندگی روزمره ما را تحت تأثیر قرار می‌دهد. حتی اکنون، سیستم‌ها و مدل‌ها در وظایف تصمیم‌گیری روزانه مانند تشخیص‌های پزشکی، تأیید وام یا شناسایی تقلب دخیل هستند. بنابراین، مهم است که این مدل‌ها به خوبی کار کنند تا نتایجی قابل اعتماد ارائه دهند. همانند هر برنامه نرم‌افزاری، سیستم‌های هوش مصنوعی نیز ممکن است انتظارات را برآورده نکنند یا نتایج نامطلوبی داشته باشند. به همین دلیل ضروری است که بتوانیم رفتار یک مدل هوش مصنوعی را درک و توضیح دهیم. + +تصور کنید چه اتفاقی می‌افتد وقتی داده‌هایی که برای ساخت این مدل‌ها استفاده می‌کنید فاقد برخی از جمعیت‌شناسی‌ها مانند نژاد، جنسیت، دیدگاه سیاسی، مذهب یا نمایندگی نامتناسب این جمعیت‌شناسی‌ها باشد. اگر خروجی مدل به گونه‌ای تفسیر شود که به نفع یک گروه خاص باشد، چه پیامدی برای برنامه خواهد داشت؟ علاوه بر این، اگر مدل نتیجه‌ای نامطلوب داشته باشد و به افراد آسیب برساند، چه اتفاقی می‌افتد؟ چه کسی مسئول رفتار سیستم‌های هوش مصنوعی است؟ این‌ها برخی از سوالاتی هستند که در این دوره آموزشی بررسی خواهیم کرد. + +در این درس، شما: + +- اهمیت عدالت در یادگیری ماشین و آسیب‌های مرتبط با آن را درک خواهید کرد. +- با تمرین بررسی موارد استثنایی و سناریوهای غیرمعمول برای اطمینان از قابلیت اطمینان و ایمنی آشنا خواهید شد. +- نیاز به توانمندسازی همه افراد از طریق طراحی سیستم‌های فراگیر را درک خواهید کرد. +- اهمیت حفاظت از حریم خصوصی و امنیت داده‌ها و افراد را بررسی خواهید کرد. +- اهمیت رویکرد شفاف برای توضیح رفتار مدل‌های هوش مصنوعی را خواهید دید. +- به اهمیت مسئولیت‌پذیری برای ایجاد اعتماد در سیستم‌های هوش مصنوعی توجه خواهید کرد. + +## پیش‌نیاز + +به عنوان پیش‌نیاز، لطفاً مسیر یادگیری "اصول هوش مصنوعی مسئولانه" را بگذرانید و ویدیوی زیر را در این موضوع مشاهده کنید: + +برای یادگیری بیشتر درباره هوش مصنوعی مسئولانه، این [مسیر یادگیری](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott) را دنبال کنید. + +[![رویکرد مایکروسافت به هوش مصنوعی مسئولانه](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "رویکرد مایکروسافت به هوش مصنوعی مسئولانه") + +> 🎥 برای مشاهده ویدیو روی تصویر بالا کلیک کنید: رویکرد مایکروسافت به هوش مصنوعی مسئولانه + +## عدالت + +سیستم‌های هوش مصنوعی باید با همه افراد به طور عادلانه رفتار کنند و از تأثیرگذاری متفاوت بر گروه‌های مشابه اجتناب کنند. برای مثال، زمانی که سیستم‌های هوش مصنوعی راهنمایی‌هایی در مورد درمان پزشکی، درخواست‌های وام یا اشتغال ارائه می‌دهند، باید توصیه‌های مشابهی به همه افراد با شرایط مشابه ارائه دهند. هر یک از ما به عنوان انسان، تعصباتی داریم که بر تصمیمات و اقدامات ما تأثیر می‌گذارد. این تعصبات می‌توانند در داده‌هایی که برای آموزش سیستم‌های هوش مصنوعی استفاده می‌کنیم، مشهود باشند. چنین دستکاری‌هایی گاهی به صورت ناخواسته اتفاق می‌افتد. اغلب دشوار است که آگاهانه بدانیم چه زمانی در داده‌ها تعصب وارد می‌کنیم. + +**"بی‌عدالتی"** شامل تأثیرات منفی یا "آسیب‌ها" برای یک گروه از افراد است، مانند گروه‌هایی که بر اساس نژاد، جنسیت، سن یا وضعیت معلولیت تعریف می‌شوند. آسیب‌های اصلی مرتبط با عدالت را می‌توان به صورت زیر طبقه‌بندی کرد: + +- **تخصیص**، اگر یک جنسیت یا قومیت به عنوان مثال بر دیگری ترجیح داده شود. +- **کیفیت خدمات**. اگر داده‌ها را برای یک سناریوی خاص آموزش دهید اما واقعیت بسیار پیچیده‌تر باشد، این منجر به خدمات ضعیف می‌شود. برای مثال، یک دستگاه پخش صابون که نمی‌تواند پوست تیره را تشخیص دهد. [منبع](https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773) +- **تحقیر**. انتقاد ناعادلانه و برچسب زدن به چیزی یا کسی. برای مثال، یک فناوری برچسب‌گذاری تصویر به اشتباه تصاویر افراد با پوست تیره را به عنوان گوریل برچسب‌گذاری کرد. +- **نمایندگی بیش از حد یا کم**. ایده این است که یک گروه خاص در یک حرفه خاص دیده نمی‌شود و هر خدمات یا عملکردی که به ترویج این موضوع ادامه دهد، به آسیب کمک می‌کند. +- **کلیشه‌سازی**. ارتباط دادن یک گروه خاص با ویژگی‌های از پیش تعیین‌شده. برای مثال، یک سیستم ترجمه زبان بین انگلیسی و ترکی ممکن است به دلیل کلمات با ارتباطات کلیشه‌ای به جنسیت، نادرست عمل کند. + +![ترجمه به ترکی](../../../../translated_images/gender-bias-translate-en-tr.f185fd8822c2d4372912f2b690f6aaddd306ffbb49d795ad8d12a4bf141e7af0.fa.png) +> ترجمه به ترکی + +![ترجمه به انگلیسی](../../../../translated_images/gender-bias-translate-tr-en.4eee7e3cecb8c70e13a8abbc379209bc8032714169e585bdeac75af09b1752aa.fa.png) +> ترجمه به انگلیسی + +هنگام طراحی و آزمایش سیستم‌های هوش مصنوعی، باید اطمینان حاصل کنیم که هوش مصنوعی عادلانه است و به گونه‌ای برنامه‌ریزی نشده است که تصمیمات متعصبانه یا تبعیض‌آمیز بگیرد، تصمیماتی که انسان‌ها نیز از گرفتن آن‌ها منع شده‌اند. تضمین عدالت در هوش مصنوعی و یادگیری ماشین همچنان یک چالش پیچیده اجتماعی-فنی است. + +### قابلیت اطمینان و ایمنی + +برای ایجاد اعتماد، سیستم‌های هوش مصنوعی باید در شرایط عادی و غیرمنتظره قابل اعتماد، ایمن و سازگار باشند. مهم است بدانیم که سیستم‌های هوش مصنوعی در شرایط مختلف چگونه رفتار خواهند کرد، به ویژه زمانی که با موارد استثنایی مواجه می‌شوند. هنگام ساخت راه‌حل‌های هوش مصنوعی، باید تمرکز زیادی بر نحوه مدیریت طیف گسترده‌ای از شرایطی که این راه‌حل‌ها ممکن است با آن‌ها روبرو شوند، وجود داشته باشد. برای مثال، یک خودروی خودران باید ایمنی افراد را به عنوان اولویت اصلی در نظر بگیرد. در نتیجه، هوش مصنوعی که خودرو را هدایت می‌کند باید تمام سناریوهای ممکن را که خودرو ممکن است با آن‌ها مواجه شود، مانند شب، طوفان، کولاک، کودکان در حال دویدن در خیابان، حیوانات خانگی، ساخت‌وسازهای جاده‌ای و غیره در نظر بگیرد. میزان توانایی یک سیستم هوش مصنوعی در مدیریت طیف گسترده‌ای از شرایط به طور قابل اعتماد و ایمن، سطح پیش‌بینی‌پذیری دانشمند داده یا توسعه‌دهنده هوش مصنوعی را در طول طراحی یا آزمایش سیستم منعکس می‌کند. + +> [🎥 برای مشاهده ویدیو اینجا کلیک کنید: ](https://www.microsoft.com/videoplayer/embed/RE4vvIl) + +### فراگیری + +سیستم‌های هوش مصنوعی باید به گونه‌ای طراحی شوند که همه افراد را درگیر و توانمند کنند. هنگام طراحی و پیاده‌سازی سیستم‌های هوش مصنوعی، دانشمندان داده و توسعه‌دهندگان هوش مصنوعی باید موانع احتمالی را که ممکن است به طور ناخواسته افراد را مستثنی کند، شناسایی و برطرف کنند. برای مثال، یک میلیارد نفر در سراسر جهان با معلولیت زندگی می‌کنند. با پیشرفت هوش مصنوعی، آن‌ها می‌توانند به طیف گسترده‌ای از اطلاعات و فرصت‌ها در زندگی روزمره خود دسترسی آسان‌تری داشته باشند. با رفع این موانع، فرصت‌هایی برای نوآوری و توسعه محصولات هوش مصنوعی با تجربیات بهتر که به نفع همه است، ایجاد می‌شود. + +> [🎥 برای مشاهده ویدیو اینجا کلیک کنید: فراگیری در هوش مصنوعی](https://www.microsoft.com/videoplayer/embed/RE4vl9v) + +### امنیت و حریم خصوصی + +سیستم‌های هوش مصنوعی باید ایمن باشند و به حریم خصوصی افراد احترام بگذارند. افراد به سیستم‌هایی که حریم خصوصی، اطلاعات یا زندگی آن‌ها را به خطر می‌اندازند، کمتر اعتماد می‌کنند. هنگام آموزش مدل‌های یادگیری ماشین، ما برای دستیابی به بهترین نتایج به داده‌ها متکی هستیم. در این فرآیند، منبع داده و یکپارچگی آن باید در نظر گرفته شود. برای مثال، آیا داده‌ها توسط کاربر ارائه شده‌اند یا به صورت عمومی در دسترس بوده‌اند؟ علاوه بر این، هنگام کار با داده‌ها، توسعه سیستم‌های هوش مصنوعی که بتوانند اطلاعات محرمانه را محافظت کنند و در برابر حملات مقاوم باشند، بسیار مهم است. با گسترش هوش مصنوعی، حفاظت از حریم خصوصی و امنیت اطلاعات شخصی و تجاری مهم‌تر و پیچیده‌تر می‌شود. مسائل مربوط به حریم خصوصی و امنیت داده‌ها نیازمند توجه ویژه‌ای در هوش مصنوعی هستند زیرا دسترسی به داده‌ها برای سیستم‌های هوش مصنوعی ضروری است تا پیش‌بینی‌ها و تصمیمات دقیق و آگاهانه‌ای درباره افراد انجام دهند. + +> [🎥 برای مشاهده ویدیو اینجا کلیک کنید: امنیت در هوش مصنوعی](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- به عنوان یک صنعت، ما پیشرفت‌های قابل توجهی در زمینه حریم خصوصی و امنیت داشته‌ایم که به طور قابل توجهی توسط مقرراتی مانند GDPR (مقررات عمومی حفاظت از داده‌ها) تقویت شده است. +- با این حال، در سیستم‌های هوش مصنوعی باید به تنش بین نیاز به داده‌های شخصی بیشتر برای شخصی‌تر و مؤثرتر کردن سیستم‌ها و حریم خصوصی اذعان کنیم. +- همان‌طور که با ظهور کامپیوترهای متصل به اینترنت شاهد افزایش چشمگیر مسائل امنیتی بودیم، اکنون نیز شاهد افزایش قابل توجه مسائل امنیتی مرتبط با هوش مصنوعی هستیم. +- در عین حال، شاهد استفاده از هوش مصنوعی برای بهبود امنیت بوده‌ایم. به عنوان مثال، اکثر اسکنرهای ضدویروس مدرن امروز توسط هوش مصنوعی هدایت می‌شوند. +- ما باید اطمینان حاصل کنیم که فرآیندهای علم داده ما به طور هماهنگ با آخرین شیوه‌های حریم خصوصی و امنیت ترکیب شوند. + +### شفافیت + +سیستم‌های هوش مصنوعی باید قابل درک باشند. بخش مهمی از شفافیت، توضیح رفتار سیستم‌های هوش مصنوعی و اجزای آن‌ها است. بهبود درک سیستم‌های هوش مصنوعی مستلزم آن است که ذینفعان بفهمند این سیستم‌ها چگونه و چرا کار می‌کنند تا بتوانند مسائل احتمالی عملکرد، نگرانی‌های ایمنی و حریم خصوصی، تعصبات، شیوه‌های انحصاری یا نتایج ناخواسته را شناسایی کنند. ما همچنین معتقدیم که کسانی که از سیستم‌های هوش مصنوعی استفاده می‌کنند باید صادق و شفاف باشند که چه زمانی، چرا و چگونه تصمیم به استفاده از آن‌ها گرفته‌اند. همچنین محدودیت‌های سیستم‌هایی که استفاده می‌کنند را توضیح دهند. برای مثال، اگر یک بانک از یک سیستم هوش مصنوعی برای پشتیبانی از تصمیمات وام‌دهی مصرف‌کننده استفاده کند، مهم است که نتایج را بررسی کند و بفهمد کدام داده‌ها بر توصیه‌های سیستم تأثیر می‌گذارند. دولت‌ها شروع به تنظیم هوش مصنوعی در صنایع مختلف کرده‌اند، بنابراین دانشمندان داده و سازمان‌ها باید توضیح دهند که آیا یک سیستم هوش مصنوعی الزامات قانونی را برآورده می‌کند، به ویژه زمانی که نتیجه‌ای نامطلوب وجود دارد. + +> [🎥 برای مشاهده ویدیو اینجا کلیک کنید: شفافیت در هوش مصنوعی](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- به دلیل پیچیدگی سیستم‌های هوش مصنوعی، درک نحوه کار آن‌ها و تفسیر نتایج دشوار است. +- این عدم درک بر نحوه مدیریت، عملیاتی کردن و مستندسازی این سیستم‌ها تأثیر می‌گذارد. +- این عدم درک، مهم‌تر از همه، بر تصمیماتی که با استفاده از نتایج این سیستم‌ها گرفته می‌شود، تأثیر می‌گذارد. + +### مسئولیت‌پذیری + +افرادی که سیستم‌های هوش مصنوعی را طراحی و پیاده‌سازی می‌کنند باید مسئول نحوه عملکرد سیستم‌های خود باشند. نیاز به مسئولیت‌پذیری به ویژه در فناوری‌های حساس مانند تشخیص چهره بسیار مهم است. اخیراً، تقاضا برای فناوری تشخیص چهره، به ویژه از سوی سازمان‌های اجرای قانون که پتانسیل این فناوری را در مواردی مانند یافتن کودکان گمشده می‌بینند، افزایش یافته است. با این حال، این فناوری‌ها می‌توانند به طور بالقوه توسط یک دولت برای به خطر انداختن آزادی‌های اساسی شهروندان خود، مثلاً با امکان نظارت مداوم بر افراد خاص، استفاده شوند. بنابراین، دانشمندان داده و سازمان‌ها باید مسئول تأثیر سیستم هوش مصنوعی خود بر افراد یا جامعه باشند. + +[![هشدارهای یک محقق برجسته هوش مصنوعی درباره نظارت گسترده از طریق تشخیص چهره](../../../../translated_images/accountability.41d8c0f4b85b6231301d97f17a450a805b7a07aaeb56b34015d71c757cad142e.fa.png)](https://www.youtube.com/watch?v=Wldt8P5V6D0 "رویکرد مایکروسافت به هوش مصنوعی مسئولانه") + +> 🎥 برای مشاهده ویدیو روی تصویر بالا کلیک کنید: هشدارهای نظارت گسترده از طریق تشخیص چهره + +در نهایت، یکی از بزرگ‌ترین سوالات نسل ما، به عنوان اولین نسلی که هوش مصنوعی را به جامعه می‌آورد، این است که چگونه می‌توان اطمینان حاصل کرد که کامپیوترها همچنان به مردم پاسخگو خواهند بود و چگونه می‌توان اطمینان حاصل کرد که افرادی که کامپیوترها را طراحی می‌کنند به همه افراد دیگر پاسخگو خواهند بود. + +## ارزیابی تأثیر + +قبل از آموزش یک مدل یادگیری ماشین، مهم است که یک ارزیابی تأثیر انجام شود تا هدف سیستم هوش مصنوعی، استفاده مورد نظر، محل استقرار و افرادی که با سیستم تعامل خواهند داشت، مشخص شود. این ارزیابی‌ها برای بازبینان یا آزمایش‌کنندگان مفید است تا بدانند چه عواملی را هنگام شناسایی خطرات احتمالی و پیامدهای مورد انتظار در نظر بگیرند. + +موارد زیر حوزه‌های تمرکز هنگام انجام ارزیابی تأثیر هستند: + +- **تأثیر منفی بر افراد**. آگاهی از هرگونه محدودیت یا الزامات، استفاده‌های پشتیبانی‌نشده یا هرگونه محدودیت شناخته‌شده که عملکرد سیستم را مختل می‌کند، برای اطمینان از عدم استفاده از سیستم به گونه‌ای که به افراد آسیب برساند، حیاتی است. +- **نیازهای داده**. درک نحوه و محل استفاده سیستم از داده‌ها به بازبینان کمک می‌کند تا هرگونه نیاز داده‌ای که باید به آن توجه شود (مانند مقررات داده GDPR یا HIPPA) را بررسی کنند. علاوه بر این، بررسی کنید که آیا منبع یا مقدار داده برای آموزش کافی است. +- **خلاصه تأثیر**. فهرستی از آسیب‌های احتمالی که ممکن است از استفاده از سیستم ناشی شود، جمع‌آوری کنید. در طول چرخه عمر یادگیری ماشین، بررسی کنید که آیا مسائل شناسایی‌شده کاهش یافته یا برطرف شده‌اند. +- **اهداف قابل اجرا** برای هر یک از شش اصل اصلی. ارزیابی کنید که آیا اهداف هر یک از اصول برآورده شده‌اند و آیا شکاف‌هایی وجود دارد. + +## اشکال‌زدایی با هوش مصنوعی مسئولانه + +مشابه اشکال‌زدایی یک برنامه نرم‌افزاری، اشکال‌زدایی یک سیستم هوش مصنوعی فرآیندی ضروری برای شناسایی و رفع مشکلات در سیستم است. عوامل زیادی وجود دارند که می‌توانند بر عملکرد یک مدل تأثیر بگذارند و باعث شوند که به درستی یا به طور مسئولانه عمل نکند. اکثر معیارهای عملکرد مدل‌های سنتی، تجمیعات کمی از عملکرد مدل هستند که برای تحلیل چگونگی نقض اصول هوش مصنوعی مسئولانه کافی نیستند. علاوه بر این، یک مدل یادگیری ماشین یک جعبه سیاه است که درک آنچه باعث نتیجه آن می‌شود یا ارائه توضیح زمانی که اشتباه می‌کند را دشوار می‌کند. در ادامه این دوره، یاد خواهیم گرفت که چگونه از داشبورد هوش مصنوعی مسئولانه برای کمک به اشکال‌زدایی سیستم‌های هوش مصنوعی استفاده کنیم. این داشبورد ابزاری جامع برای دانشمندان داده و توسعه‌دهندگان هوش مصنوعی فراهم می‌کند تا: + +- **تحلیل خطا**. برای شناسایی توزیع خطای مدل که می‌تواند بر عدالت یا قابلیت اطمینان سیستم تأثیر بگذارد. +- **نمای کلی مدل**. برای کشف جایی که در عملکرد مدل در میان گروه‌های داده تفاوت وجود دارد. +- **تحلیل داده‌ها**. برای درک توزیع داده‌ها و شناسایی هرگونه تعصب احتمالی در داده‌ها که می‌تواند منجر به مسائل عدالت، فراگیری و قابلیت اطمینان شود. +- **قابلیت تفسیر مدل**. برای درک آنچه بر پیش‌بینی‌های مدل تأثیر می‌گذارد یا آن را تحت تأثیر قرار می‌دهد. این امر در توضیح رفتار مدل که برای شفافیت و مسئولیت‌پذیری مهم است، کمک می‌کند. + +## 🚀 چالش + +برای جلوگیری از ورود آسیب‌ها در وهله اول، باید: + +- تنوع پس‌زمینه‌ها و دیدگاه‌ها را در میان افرادی که روی سیستم‌ها کار می‌کنند، داشته باشیم. +- در مجموعه داده‌هایی که تنوع جامعه ما را منع +در این درس، شما با مفاهیم اولیه عدالت و ناعدالتی در یادگیری ماشین آشنا شدید. + +این کارگاه را مشاهده کنید تا عمیق‌تر به این موضوعات بپردازید: + +- در جستجوی هوش مصنوعی مسئولانه: تبدیل اصول به عمل توسط بسیمرا نوشی، مهرنوش سامکی و آمیت شارما + +[![Responsible AI Toolbox: چارچوب متن‌باز برای ساخت هوش مصنوعی مسئولانه](https://img.youtube.com/vi/tGgJCrA-MZU/0.jpg)](https://www.youtube.com/watch?v=tGgJCrA-MZU "RAI Toolbox: چارچوب متن‌باز برای ساخت هوش مصنوعی مسئولانه") + +> 🎥 برای مشاهده ویدیو روی تصویر بالا کلیک کنید: RAI Toolbox: چارچوب متن‌باز برای ساخت هوش مصنوعی مسئولانه توسط بسیمرا نوشی، مهرنوش سامکی و آمیت شارما + +همچنین بخوانید: + +- مرکز منابع هوش مصنوعی مسئولانه مایکروسافت: [Responsible AI Resources – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- گروه تحقیقاتی FATE مایکروسافت: [FATE: Fairness, Accountability, Transparency, and Ethics in AI - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +RAI Toolbox: + +- [مخزن GitHub ابزار هوش مصنوعی مسئولانه](https://github.com/microsoft/responsible-ai-toolbox) + +درباره ابزارهای Azure Machine Learning برای تضمین عدالت مطالعه کنید: + +- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott) + +## تکلیف + +[ابزار هوش مصنوعی مسئولانه را بررسی کنید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/1-Introduction/3-fairness/assignment.md b/translations/fa/1-Introduction/3-fairness/assignment.md new file mode 100644 index 000000000..1bce42bfe --- /dev/null +++ b/translations/fa/1-Introduction/3-fairness/assignment.md @@ -0,0 +1,25 @@ + +# بررسی ابزار هوش مصنوعی مسئولانه + +## دستورالعمل‌ها + +در این درس درباره ابزار هوش مصنوعی مسئولانه یاد گرفتید، یک پروژه "متن‌باز و مبتنی بر جامعه برای کمک به دانشمندان داده در تحلیل و بهبود سیستم‌های هوش مصنوعی." برای این تکلیف، یکی از [دفترچه‌های یادداشت](https://github.com/microsoft/responsible-ai-toolbox/blob/main/notebooks/responsibleaidashboard/getting-started.ipynb) ابزار RAI را بررسی کنید و یافته‌های خود را در قالب یک مقاله یا ارائه گزارش کنید. + +## معیارها + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ------ | ----- | ---------- | ------------- | +| | یک مقاله یا ارائه پاورپوینت ارائه شده که سیستم‌های Fairlearn، دفترچه یادداشت اجرا شده، و نتایج حاصل از اجرای آن را مورد بحث قرار می‌دهد | یک مقاله ارائه شده بدون نتیجه‌گیری | هیچ مقاله‌ای ارائه نشده است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/1-Introduction/4-techniques-of-ML/README.md b/translations/fa/1-Introduction/4-techniques-of-ML/README.md new file mode 100644 index 000000000..ada15265b --- /dev/null +++ b/translations/fa/1-Introduction/4-techniques-of-ML/README.md @@ -0,0 +1,132 @@ + +# تکنیک‌های یادگیری ماشین + +فرآیند ساخت، استفاده و نگهداری مدل‌های یادگیری ماشین و داده‌هایی که از آن‌ها استفاده می‌شود، بسیار متفاوت از بسیاری از جریان‌های کاری توسعه دیگر است. در این درس، این فرآیند را روشن می‌کنیم و تکنیک‌های اصلی که باید بدانید را توضیح می‌دهیم. شما: + +- فرآیندهای پایه‌ای یادگیری ماشین را در سطح بالا درک خواهید کرد. +- مفاهیم پایه‌ای مانند «مدل‌ها»، «پیش‌بینی‌ها» و «داده‌های آموزشی» را بررسی خواهید کرد. + +## [پرسش‌نامه قبل از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7/) + +[![یادگیری ماشین برای مبتدیان - تکنیک‌های یادگیری ماشین](https://img.youtube.com/vi/4NGM0U2ZSHU/0.jpg)](https://youtu.be/4NGM0U2ZSHU "یادگیری ماشین برای مبتدیان - تکنیک‌های یادگیری ماشین") + +> 🎥 برای مشاهده ویدئوی کوتاه مربوط به این درس، روی تصویر بالا کلیک کنید. + +## مقدمه + +در سطح بالا، هنر ایجاد فرآیندهای یادگیری ماشین (ML) شامل چندین مرحله است: + +1. **تصمیم‌گیری درباره سؤال**. بیشتر فرآیندهای یادگیری ماشین با پرسیدن یک سؤال شروع می‌شوند که نمی‌توان آن را با یک برنامه شرطی ساده یا موتور مبتنی بر قوانین پاسخ داد. این سؤالات اغلب حول پیش‌بینی‌هایی بر اساس مجموعه‌ای از داده‌ها می‌چرخند. +2. **جمع‌آوری و آماده‌سازی داده‌ها**. برای پاسخ دادن به سؤال خود، به داده نیاز دارید. کیفیت و گاهی اوقات کمیت داده‌های شما تعیین می‌کند که چقدر می‌توانید به سؤال اولیه خود پاسخ دهید. تجسم داده‌ها جنبه مهمی از این مرحله است. این مرحله همچنین شامل تقسیم داده‌ها به گروه‌های آموزشی و آزمایشی برای ساخت مدل است. +3. **انتخاب روش آموزشی**. بسته به سؤال شما و ماهیت داده‌هایتان، باید انتخاب کنید که چگونه می‌خواهید مدلی بسازید که بهترین بازتاب داده‌های شما باشد و پیش‌بینی‌های دقیقی بر اساس آن انجام دهد. این بخش از فرآیند یادگیری ماشین نیاز به تخصص خاص و اغلب مقدار قابل توجهی آزمایش دارد. +4. **آموزش مدل**. با استفاده از داده‌های آموزشی، از الگوریتم‌های مختلف برای آموزش مدل استفاده می‌کنید تا الگوهای موجود در داده‌ها را شناسایی کند. مدل ممکن است از وزن‌های داخلی استفاده کند که می‌توان آن‌ها را تنظیم کرد تا بخش‌های خاصی از داده‌ها را نسبت به دیگران ترجیح دهد و مدل بهتری بسازد. +5. **ارزیابی مدل**. از داده‌هایی که قبلاً دیده نشده‌اند (داده‌های آزمایشی) از مجموعه جمع‌آوری‌شده خود استفاده می‌کنید تا ببینید مدل چگونه عمل می‌کند. +6. **تنظیم پارامترها**. بر اساس عملکرد مدل خود، می‌توانید فرآیند را با استفاده از پارامترها یا متغیرهای مختلفی که رفتار الگوریتم‌های مورد استفاده برای آموزش مدل را کنترل می‌کنند، دوباره انجام دهید. +7. **پیش‌بینی**. از ورودی‌های جدید برای آزمایش دقت مدل خود استفاده کنید. + +## چه سؤالی باید پرسید؟ + +کامپیوترها به‌طور خاص در کشف الگوهای پنهان در داده‌ها مهارت دارند. این قابلیت برای محققانی که سؤالاتی درباره یک حوزه خاص دارند که نمی‌توان به راحتی با ایجاد یک موتور مبتنی بر قوانین شرطی پاسخ داد، بسیار مفید است. برای مثال، در یک وظیفه بیمه‌ای، یک دانشمند داده ممکن است بتواند قوانین دستی درباره مرگ و میر افراد سیگاری در مقابل غیرسیگاری‌ها ایجاد کند. + +با این حال، وقتی متغیرهای زیادی وارد معادله می‌شوند، یک مدل یادگیری ماشین ممکن است برای پیش‌بینی نرخ مرگ و میر آینده بر اساس تاریخچه سلامت گذشته کارآمدتر باشد. یک مثال شادتر ممکن است پیش‌بینی آب و هوا برای ماه آوریل در یک مکان خاص باشد که بر اساس داده‌هایی شامل عرض جغرافیایی، طول جغرافیایی، تغییرات آب و هوایی، نزدیکی به اقیانوس، الگوهای جریان جت و موارد دیگر انجام می‌شود. + +✅ این [اسلایدها](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf) درباره مدل‌های آب و هوا، دیدگاه تاریخی برای استفاده از یادگیری ماشین در تحلیل آب و هوا ارائه می‌دهند. + +## وظایف پیش از ساخت + +قبل از شروع به ساخت مدل خود، چندین وظیفه وجود دارد که باید انجام دهید. برای آزمایش سؤال خود و ایجاد یک فرضیه بر اساس پیش‌بینی‌های مدل، باید چندین عنصر را شناسایی و تنظیم کنید. + +### داده‌ها + +برای پاسخ دادن به سؤال خود با هر نوع قطعیتی، به مقدار مناسبی از داده‌های مناسب نیاز دارید. در این مرحله دو کار باید انجام دهید: + +- **جمع‌آوری داده‌ها**. با توجه به درس قبلی درباره انصاف در تحلیل داده‌ها، داده‌های خود را با دقت جمع‌آوری کنید. از منابع این داده‌ها، هرگونه تعصب ذاتی که ممکن است داشته باشند، آگاه باشید و منشأ آن‌ها را مستند کنید. +- **آماده‌سازی داده‌ها**. فرآیند آماده‌سازی داده‌ها شامل چندین مرحله است. ممکن است نیاز باشد داده‌ها را جمع‌آوری و نرمال‌سازی کنید اگر از منابع متنوعی آمده باشند. می‌توانید کیفیت و کمیت داده‌ها را از طریق روش‌های مختلفی مانند تبدیل رشته‌ها به اعداد (همان‌طور که در [خوشه‌بندی](../../5-Clustering/1-Visualize/README.md) انجام می‌دهیم) بهبود دهید. همچنین ممکن است داده‌های جدیدی بر اساس داده‌های اصلی تولید کنید (همان‌طور که در [طبقه‌بندی](../../4-Classification/1-Introduction/README.md) انجام می‌دهیم). می‌توانید داده‌ها را پاک‌سازی و ویرایش کنید (همان‌طور که قبل از درس [برنامه وب](../../3-Web-App/README.md) انجام خواهیم داد). در نهایت، ممکن است نیاز باشد داده‌ها را تصادفی‌سازی و مخلوط کنید، بسته به تکنیک‌های آموزشی خود. + +✅ پس از جمع‌آوری و پردازش داده‌های خود، لحظه‌ای وقت بگذارید تا ببینید آیا شکل آن‌ها به شما اجازه می‌دهد سؤال مورد نظر خود را پاسخ دهید یا خیر. ممکن است داده‌ها در وظیفه مورد نظر شما عملکرد خوبی نداشته باشند، همان‌طور که در درس‌های [خوشه‌بندی](../../5-Clustering/1-Visualize/README.md) کشف می‌کنیم! + +### ویژگی‌ها و هدف + +یک [ویژگی](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection) یک خاصیت قابل اندازه‌گیری از داده‌های شما است. در بسیاری از مجموعه داده‌ها، به‌صورت عنوان ستون مانند «تاریخ»، «اندازه» یا «رنگ» بیان می‌شود. متغیر ویژگی شما، که معمولاً در کد به‌صورت `X` نشان داده می‌شود، متغیر ورودی است که برای آموزش مدل استفاده خواهد شد. + +هدف چیزی است که شما سعی دارید پیش‌بینی کنید. هدف که معمولاً به‌صورت `y` در کد نشان داده می‌شود، پاسخ به سؤالی است که شما سعی دارید از داده‌های خود بپرسید: در ماه دسامبر، کدو تنبل‌های ارزان‌تر چه **رنگی** خواهند داشت؟ در سان‌فرانسیسکو، کدام محله‌ها بهترین **قیمت** املاک را خواهند داشت؟ گاهی هدف به‌عنوان ویژگی برچسب نیز شناخته می‌شود. + +### انتخاب متغیر ویژگی + +🎓 **انتخاب ویژگی و استخراج ویژگی** چگونه می‌دانید کدام متغیر را هنگام ساخت مدل انتخاب کنید؟ احتمالاً فرآیند انتخاب ویژگی یا استخراج ویژگی را طی خواهید کرد تا متغیرهای مناسب برای بهترین مدل را انتخاب کنید. با این حال، آن‌ها یکسان نیستند: «استخراج ویژگی ویژگی‌های جدیدی از توابع ویژگی‌های اصلی ایجاد می‌کند، در حالی که انتخاب ویژگی یک زیرمجموعه از ویژگی‌ها را بازمی‌گرداند.» ([منبع](https://wikipedia.org/wiki/Feature_selection)) + +### تجسم داده‌های خود + +یکی از جنبه‌های مهم ابزارهای دانشمند داده، قدرت تجسم داده‌ها با استفاده از چندین کتابخانه عالی مانند Seaborn یا MatPlotLib است. نمایش داده‌های خود به‌صورت بصری ممکن است به شما اجازه دهد تا همبستگی‌های پنهانی را کشف کنید که می‌توانید از آن‌ها استفاده کنید. تجسم‌های شما ممکن است به شما کمک کنند تا تعصب یا داده‌های نامتعادل را کشف کنید (همان‌طور که در [طبقه‌بندی](../../4-Classification/2-Classifiers-1/README.md) کشف می‌کنیم). + +### تقسیم مجموعه داده + +قبل از آموزش، باید مجموعه داده خود را به دو یا چند بخش با اندازه‌های نابرابر تقسیم کنید که همچنان داده‌ها را به‌خوبی نمایندگی کنند. + +- **آموزشی**. این بخش از مجموعه داده برای آموزش مدل شما استفاده می‌شود. این مجموعه بخش عمده‌ای از مجموعه داده اصلی را تشکیل می‌دهد. +- **آزمایشی**. مجموعه داده آزمایشی یک گروه مستقل از داده‌ها است، که اغلب از داده‌های اصلی جمع‌آوری شده است، که برای تأیید عملکرد مدل ساخته شده استفاده می‌کنید. +- **اعتباریابی**. مجموعه اعتباریابی یک گروه کوچک‌تر مستقل از نمونه‌ها است که برای تنظیم پارامترهای مدل یا معماری آن استفاده می‌کنید تا مدل را بهبود دهید. بسته به اندازه داده‌های شما و سؤالی که می‌پرسید، ممکن است نیازی به ساخت این مجموعه سوم نداشته باشید (همان‌طور که در [پیش‌بینی سری زمانی](../../7-TimeSeries/1-Introduction/README.md) اشاره می‌کنیم). + +## ساخت مدل + +با استفاده از داده‌های آموزشی، هدف شما ساخت یک مدل یا نمای آماری از داده‌های خود است که با استفاده از الگوریتم‌های مختلف آن را **آموزش** می‌دهید. آموزش مدل آن را در معرض داده‌ها قرار می‌دهد و به آن اجازه می‌دهد فرضیاتی درباره الگوهای مشاهده‌شده ایجاد کند، آن‌ها را تأیید کند و بپذیرد یا رد کند. + +### تصمیم‌گیری درباره روش آموزشی + +بسته به سؤال شما و ماهیت داده‌های شما، روشی برای آموزش آن انتخاب خواهید کرد. با مرور [مستندات Scikit-learn](https://scikit-learn.org/stable/user_guide.html) - که در این دوره استفاده می‌کنیم - می‌توانید روش‌های مختلفی برای آموزش مدل را بررسی کنید. بسته به تجربه شما، ممکن است مجبور شوید چندین روش مختلف را امتحان کنید تا بهترین مدل را بسازید. احتمالاً فرآیندی را طی خواهید کرد که در آن دانشمندان داده عملکرد مدل را با تغذیه داده‌های دیده‌نشده ارزیابی می‌کنند، دقت، تعصب و سایر مسائل کاهش‌دهنده کیفیت را بررسی می‌کنند و مناسب‌ترین روش آموزشی را برای وظیفه مورد نظر انتخاب می‌کنند. + +### آموزش مدل + +با داشتن داده‌های آموزشی، آماده هستید تا آن را «تناسب» دهید و یک مدل ایجاد کنید. متوجه خواهید شد که در بسیاری از کتابخانه‌های یادگیری ماشین کدی به نام 'model.fit' وجود دارد - در این زمان است که متغیر ویژگی خود را به‌صورت آرایه‌ای از مقادیر (معمولاً 'X') و یک متغیر هدف (معمولاً 'y') ارسال می‌کنید. + +### ارزیابی مدل + +پس از تکمیل فرآیند آموزش (ممکن است برای آموزش یک مدل بزرگ چندین تکرار یا «دوره» طول بکشد)، قادر خواهید بود کیفیت مدل را با استفاده از داده‌های آزمایشی برای سنجش عملکرد آن ارزیابی کنید. این داده‌ها زیرمجموعه‌ای از داده‌های اصلی هستند که مدل قبلاً آن‌ها را تحلیل نکرده است. می‌توانید جدولی از معیارهای مربوط به کیفیت مدل خود چاپ کنید. + +🎓 **تناسب مدل** + +در زمینه یادگیری ماشین، تناسب مدل به دقت عملکرد زیرین مدل اشاره دارد که تلاش می‌کند داده‌هایی را که با آن‌ها آشنا نیست تحلیل کند. + +🎓 **تناسب کم** و **تناسب بیش از حد** مشکلات رایجی هستند که کیفیت مدل را کاهش می‌دهند، زیرا مدل یا به اندازه کافی خوب تناسب ندارد یا بیش از حد تناسب دارد. این باعث می‌شود مدل پیش‌بینی‌هایی انجام دهد که یا بیش از حد با داده‌های آموزشی هماهنگ هستند یا خیلی کم هماهنگ هستند. یک مدل با تناسب بیش از حد داده‌های آموزشی را بیش از حد خوب پیش‌بینی می‌کند زیرا جزئیات و نویز داده‌ها را بیش از حد خوب یاد گرفته است. یک مدل با تناسب کم دقیق نیست زیرا نمی‌تواند داده‌های آموزشی خود یا داده‌هایی که هنوز «ندیده» است را به‌درستی تحلیل کند. + +![مدل با تناسب بیش از حد](../../../../translated_images/overfitting.1c132d92bfd93cb63240baf63ebdf82c30e30a0a44e1ad49861b82ff600c2b5c.fa.png) +> اینفوگرافیک توسط [Jen Looper](https://twitter.com/jenlooper) + +## تنظیم پارامترها + +پس از تکمیل آموزش اولیه، کیفیت مدل را مشاهده کنید و بهبود آن را با تنظیم «ابرپارامترهای» آن در نظر بگیرید. درباره این فرآیند بیشتر بخوانید [در مستندات](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott). + +## پیش‌بینی + +این لحظه‌ای است که می‌توانید از داده‌های کاملاً جدید برای آزمایش دقت مدل خود استفاده کنید. در یک تنظیم یادگیری ماشین «کاربردی»، جایی که شما دارایی‌های وب را برای استفاده از مدل در تولید می‌سازید، این فرآیند ممکن است شامل جمع‌آوری ورودی کاربر (برای مثال فشار دادن یک دکمه) برای تنظیم یک متغیر و ارسال آن به مدل برای استنتاج یا ارزیابی باشد. + +در این درس‌ها، شما کشف خواهید کرد که چگونه از این مراحل برای آماده‌سازی، ساخت، آزمایش، ارزیابی و پیش‌بینی استفاده کنید - تمام حرکات یک دانشمند داده و بیشتر، همان‌طور که در سفر خود برای تبدیل شدن به یک مهندس یادگیری ماشین «تمام‌عیار» پیشرفت می‌کنید. + +--- + +## 🚀چالش + +یک نمودار جریان رسم کنید که مراحل یک متخصص یادگیری ماشین را نشان دهد. در حال حاضر خود را در کدام مرحله می‌بینید؟ پیش‌بینی می‌کنید کجا با دشواری مواجه شوید؟ چه چیزی به نظر شما آسان می‌آید؟ + +## [پرسش‌نامه بعد از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8/) + +## مرور و مطالعه شخصی + +به‌صورت آنلاین به دنبال مصاحبه‌هایی با دانشمندان داده بگردید که درباره کار روزانه خود صحبت می‌کنند. اینجا [یکی](https://www.youtube.com/watch?v=Z3IjgbbCEfs) از آن‌ها است. + +## تکلیف + +[مصاحبه با یک دانشمند داده](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/1-Introduction/4-techniques-of-ML/assignment.md b/translations/fa/1-Introduction/4-techniques-of-ML/assignment.md new file mode 100644 index 000000000..d3c8d1dd6 --- /dev/null +++ b/translations/fa/1-Introduction/4-techniques-of-ML/assignment.md @@ -0,0 +1,25 @@ + +# مصاحبه با یک دانشمند داده + +## دستورالعمل‌ها + +در شرکت خود، یک گروه کاربری، یا در میان دوستان یا همکلاسی‌هایتان، با کسی که به صورت حرفه‌ای به عنوان دانشمند داده کار می‌کند صحبت کنید. یک مقاله کوتاه (۵۰۰ کلمه) درباره وظایف روزانه آن‌ها بنویسید. آیا آن‌ها متخصص هستند یا به صورت «فول استک» کار می‌کنند؟ + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ----------- | ------------------------------------------------------------------------------------ | -------------------------------------------------------------- | --------------------- | +| | مقاله‌ای با طول صحیح، همراه با منابع معتبر، به صورت فایل .doc ارائه شده است | مقاله به درستی منابع را ذکر نکرده یا کوتاه‌تر از طول مورد نیاز است | هیچ مقاله‌ای ارائه نشده است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/1-Introduction/README.md b/translations/fa/1-Introduction/README.md new file mode 100644 index 000000000..1b3898e14 --- /dev/null +++ b/translations/fa/1-Introduction/README.md @@ -0,0 +1,37 @@ + +# مقدمه‌ای بر یادگیری ماشین + +در این بخش از برنامه آموزشی، با مفاهیم پایه‌ای که زیربنای حوزه یادگیری ماشین هستند آشنا خواهید شد، یاد خواهید گرفت که یادگیری ماشین چیست، تاریخچه آن را بررسی خواهید کرد و با تکنیک‌هایی که محققان برای کار با آن استفاده می‌کنند آشنا خواهید شد. بیایید با هم این دنیای جدید یادگیری ماشین را کشف کنیم! + +![globe](../../../translated_images/globe.59f26379ceb40428672b4d9a568044618a2bf6292ecd53a5c481b90e3fa805eb.fa.jpg) +> عکس از Bill Oxford در Unsplash + +### درس‌ها + +1. [مقدمه‌ای بر یادگیری ماشین](1-intro-to-ML/README.md) +1. [تاریخچه یادگیری ماشین و هوش مصنوعی](2-history-of-ML/README.md) +1. [عدالت و یادگیری ماشین](3-fairness/README.md) +1. [تکنیک‌های یادگیری ماشین](4-techniques-of-ML/README.md) + +### اعتبارها + +"مقدمه‌ای بر یادگیری ماشین" با ♥️ توسط تیمی از افراد شامل [محمد ساکب خان اینان](https://twitter.com/Sakibinan)، [اورنلا آلتونیان](https://twitter.com/ornelladotcom) و [جن لوپر](https://twitter.com/jenlooper) نوشته شده است. + +"تاریخچه یادگیری ماشین" با ♥️ توسط [جن لوپر](https://twitter.com/jenlooper) و [امی بوید](https://twitter.com/AmyKateNicho) نوشته شده است. + +"عدالت و یادگیری ماشین" با ♥️ توسط [تومومی ایمورا](https://twitter.com/girliemac) نوشته شده است. + +"تکنیک‌های یادگیری ماشین" با ♥️ توسط [جن لوپر](https://twitter.com/jenlooper) و [کریس نورینگ](https://twitter.com/softchris) نوشته شده است. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/2-Regression/1-Tools/README.md b/translations/fa/2-Regression/1-Tools/README.md new file mode 100644 index 000000000..a64ee8a4d --- /dev/null +++ b/translations/fa/2-Regression/1-Tools/README.md @@ -0,0 +1,239 @@ + +# شروع کار با پایتون و Scikit-learn برای مدل‌های رگرسیون + +![خلاصه‌ای از رگرسیون‌ها در یک اسکچ‌نوت](../../../../translated_images/ml-regression.4e4f70e3b3ed446e3ace348dec973e133fa5d3680fbc8412b61879507369b98d.fa.png) + +> اسکچ‌نوت توسط [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/9/) + +> ### [این درس به زبان R نیز موجود است!](../../../../2-Regression/1-Tools/solution/R/lesson_1.html) + +## مقدمه + +در این چهار درس، یاد می‌گیرید که چگونه مدل‌های رگرسیون بسازید. به زودی در مورد کاربردهای آن صحبت خواهیم کرد. اما قبل از هر کاری، مطمئن شوید که ابزارهای مناسب برای شروع فرآیند را در اختیار دارید! + +در این درس، یاد می‌گیرید که چگونه: + +- کامپیوتر خود را برای انجام وظایف یادگیری ماشین محلی تنظیم کنید. +- با نوت‌بوک‌های Jupyter کار کنید. +- از Scikit-learn استفاده کنید، از جمله نصب آن. +- با یک تمرین عملی، رگرسیون خطی را بررسی کنید. + +## نصب‌ها و تنظیمات + +[![یادگیری ماشین برای مبتدیان - آماده‌سازی ابزارها برای ساخت مدل‌های یادگیری ماشین](https://img.youtube.com/vi/-DfeD2k2Kj0/0.jpg)](https://youtu.be/-DfeD2k2Kj0 "یادگیری ماشین برای مبتدیان - آماده‌سازی ابزارها برای ساخت مدل‌های یادگیری ماشین") + +> 🎥 روی تصویر بالا کلیک کنید تا ویدیوی کوتاهی درباره تنظیم کامپیوتر برای یادگیری ماشین مشاهده کنید. + +1. **پایتون را نصب کنید.** مطمئن شوید که [پایتون](https://www.python.org/downloads/) روی کامپیوتر شما نصب شده است. شما از پایتون برای بسیاری از وظایف داده‌کاوی و یادگیری ماشین استفاده خواهید کرد. اکثر سیستم‌های کامپیوتری از قبل نصب پایتون را دارند. همچنین [بسته‌های کدنویسی پایتون](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott) مفیدی وجود دارند که برای برخی کاربران فرآیند نصب را آسان‌تر می‌کنند. + + با این حال، برخی از کاربردهای پایتون به یک نسخه خاص از نرم‌افزار نیاز دارند، در حالی که برخی دیگر به نسخه دیگری نیاز دارند. به همین دلیل، کار در یک [محیط مجازی](https://docs.python.org/3/library/venv.html) مفید است. + +2. **نصب Visual Studio Code.** مطمئن شوید که Visual Studio Code روی کامپیوتر شما نصب شده است. این دستورالعمل‌ها را برای [نصب Visual Studio Code](https://code.visualstudio.com/) دنبال کنید. شما در این دوره از پایتون در Visual Studio Code استفاده خواهید کرد، بنابراین ممکن است بخواهید نحوه [پیکربندی Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) برای توسعه پایتون را مرور کنید. + + > با کار کردن روی این مجموعه از [ماژول‌های یادگیری](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott) با پایتون راحت‌تر شوید. + > + > [![تنظیم پایتون با Visual Studio Code](https://img.youtube.com/vi/yyQM70vi7V8/0.jpg)](https://youtu.be/yyQM70vi7V8 "تنظیم پایتون با Visual Studio Code") + > + > 🎥 روی تصویر بالا کلیک کنید تا ویدیویی درباره استفاده از پایتون در VS Code مشاهده کنید. + +3. **نصب Scikit-learn.** با دنبال کردن [این دستورالعمل‌ها](https://scikit-learn.org/stable/install.html) Scikit-learn را نصب کنید. از آنجا که باید از پایتون 3 استفاده کنید، توصیه می‌شود از یک محیط مجازی استفاده کنید. توجه داشته باشید که اگر این کتابخانه را روی یک مک M1 نصب می‌کنید، دستورالعمل‌های خاصی در صفحه لینک شده وجود دارد. + +4. **نصب Jupyter Notebook.** شما باید [بسته Jupyter](https://pypi.org/project/jupyter/) را نصب کنید. + +## محیط نویسندگی یادگیری ماشین شما + +شما از **نوت‌بوک‌ها** برای توسعه کد پایتون و ایجاد مدل‌های یادگیری ماشین استفاده خواهید کرد. این نوع فایل ابزاری رایج برای دانشمندان داده است و با پسوند `.ipynb` شناسایی می‌شود. + +نوت‌بوک‌ها محیطی تعاملی هستند که به توسعه‌دهنده اجازه می‌دهند هم کدنویسی کنند و هم یادداشت‌ها و مستندات مربوط به کد را اضافه کنند، که برای پروژه‌های تحقیقاتی یا آزمایشی بسیار مفید است. + +[![یادگیری ماشین برای مبتدیان - تنظیم Jupyter Notebooks برای شروع ساخت مدل‌های رگرسیون](https://img.youtube.com/vi/7E-jC8FLA2E/0.jpg)](https://youtu.be/7E-jC8FLA2E "یادگیری ماشین برای مبتدیان - تنظیم Jupyter Notebooks برای شروع ساخت مدل‌های رگرسیون") + +> 🎥 روی تصویر بالا کلیک کنید تا ویدیوی کوتاهی درباره این تمرین مشاهده کنید. + +### تمرین - کار با یک نوت‌بوک + +در این پوشه، فایل _notebook.ipynb_ را پیدا خواهید کرد. + +1. فایل _notebook.ipynb_ را در Visual Studio Code باز کنید. + + یک سرور Jupyter با پایتون 3+ راه‌اندازی خواهد شد. در نوت‌بوک بخش‌هایی وجود دارد که می‌توانید آن‌ها را `اجرا` کنید، یعنی قطعات کد. می‌توانید یک بلوک کد را با انتخاب آیکونی که شبیه دکمه پخش است اجرا کنید. + +2. آیکون `md` را انتخاب کنید و کمی متن مارک‌داون اضافه کنید، مانند متن زیر: **# به نوت‌بوک خود خوش آمدید**. + + سپس کمی کد پایتون اضافه کنید. + +3. در بلوک کد تایپ کنید: **print('hello notebook')**. +4. فلش را برای اجرای کد انتخاب کنید. + + باید عبارت چاپ شده را ببینید: + + ```output + hello notebook + ``` + +![VS Code با یک نوت‌بوک باز](../../../../translated_images/notebook.4a3ee31f396b88325607afda33cadcc6368de98040ff33942424260aa84d75f2.fa.jpg) + +می‌توانید کد خود را با یادداشت‌هایی ترکیب کنید تا نوت‌بوک را خودمستند کنید. + +✅ برای یک لحظه فکر کنید که محیط کاری یک توسعه‌دهنده وب چقدر با محیط یک دانشمند داده متفاوت است. + +## شروع به کار با Scikit-learn + +حالا که پایتون در محیط محلی شما تنظیم شده و با نوت‌بوک‌های Jupyter راحت هستید، بیایید با Scikit-learn نیز آشنا شویم. Scikit-learn (که به صورت `سای` مانند `ساینس` تلفظ می‌شود) یک [API گسترده](https://scikit-learn.org/stable/modules/classes.html#api-ref) ارائه می‌دهد که به شما در انجام وظایف یادگیری ماشین کمک می‌کند. + +طبق گفته [وب‌سایت آن‌ها](https://scikit-learn.org/stable/getting_started.html)، "Scikit-learn یک کتابخانه یادگیری ماشین متن‌باز است که از یادگیری نظارت‌شده و بدون نظارت پشتیبانی می‌کند. همچنین ابزارهای مختلفی برای برازش مدل، پیش‌پردازش داده‌ها، انتخاب مدل و ارزیابی، و بسیاری از امکانات دیگر ارائه می‌دهد." + +در این دوره، از Scikit-learn و ابزارهای دیگر برای ساخت مدل‌های یادگیری ماشین استفاده خواهید کرد تا وظایفی را که به آن‌ها "یادگیری ماشین سنتی" می‌گوییم انجام دهید. ما عمداً از شبکه‌های عصبی و یادگیری عمیق اجتناب کرده‌ایم، زیرا این موضوعات در دوره "هوش مصنوعی برای مبتدیان" ما بهتر پوشش داده می‌شوند. + +Scikit-learn ساخت مدل‌ها و ارزیابی آن‌ها را برای استفاده آسان می‌کند. این کتابخانه عمدتاً بر استفاده از داده‌های عددی تمرکز دارد و شامل چندین مجموعه داده آماده برای استفاده به عنوان ابزارهای یادگیری است. همچنین مدل‌های از پیش ساخته شده‌ای برای دانشجویان دارد تا آن‌ها را امتحان کنند. بیایید فرآیند بارگذاری داده‌های از پیش بسته‌بندی شده و استفاده از یک تخمین‌گر برای اولین مدل یادگیری ماشین با Scikit-learn را با داده‌های پایه بررسی کنیم. + +## تمرین - اولین نوت‌بوک Scikit-learn شما + +> این آموزش از [مثال رگرسیون خطی](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py) در وب‌سایت Scikit-learn الهام گرفته شده است. + +[![یادگیری ماشین برای مبتدیان - اولین پروژه رگرسیون خطی شما در پایتون](https://img.youtube.com/vi/2xkXL5EUpS0/0.jpg)](https://youtu.be/2xkXL5EUpS0 "یادگیری ماشین برای مبتدیان - اولین پروژه رگرسیون خطی شما در پایتون") + +> 🎥 روی تصویر بالا کلیک کنید تا ویدیوی کوتاهی درباره این تمرین مشاهده کنید. + +در فایل _notebook.ipynb_ مرتبط با این درس، تمام سلول‌ها را با فشار دادن آیکون "سطل زباله" پاک کنید. + +در این بخش، با یک مجموعه داده کوچک درباره دیابت که در Scikit-learn برای اهداف آموزشی ساخته شده است کار خواهید کرد. تصور کنید که می‌خواهید یک درمان برای بیماران دیابتی آزمایش کنید. مدل‌های یادگیری ماشین ممکن است به شما کمک کنند تعیین کنید کدام بیماران بر اساس ترکیب متغیرها بهتر به درمان پاسخ می‌دهند. حتی یک مدل رگرسیون بسیار ساده، زمانی که به صورت تصویری نمایش داده شود، ممکن است اطلاعاتی درباره متغیرهایی ارائه دهد که به شما در سازماندهی آزمایش‌های بالینی نظری کمک کند. + +✅ روش‌های مختلفی برای رگرسیون وجود دارد و انتخاب شما بستگی به سوالی دارد که می‌خواهید پاسخ دهید. اگر می‌خواهید قد احتمالی یک فرد با توجه به سن او را پیش‌بینی کنید، از رگرسیون خطی استفاده می‌کنید، زیرا به دنبال یک **مقدار عددی** هستید. اگر می‌خواهید بدانید که آیا یک نوع غذا باید به عنوان وگان در نظر گرفته شود یا نه، به دنبال **تخصیص دسته‌بندی** هستید، بنابراین از رگرسیون لجستیک استفاده می‌کنید. بعداً درباره رگرسیون لجستیک بیشتر یاد خواهید گرفت. کمی فکر کنید که چه سوالاتی می‌توانید از داده‌ها بپرسید و کدام یک از این روش‌ها مناسب‌تر است. + +بیایید این کار را شروع کنیم. + +### وارد کردن کتابخانه‌ها + +برای این کار، برخی کتابخانه‌ها را وارد می‌کنیم: + +- **matplotlib**. این یک [ابزار گرافیکی](https://matplotlib.org/) مفید است و از آن برای ایجاد نمودار خطی استفاده خواهیم کرد. +- **numpy**. [numpy](https://numpy.org/doc/stable/user/whatisnumpy.html) یک کتابخانه مفید برای کار با داده‌های عددی در پایتون است. +- **sklearn**. این همان کتابخانه [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) است. + +برخی کتابخانه‌ها را برای کمک به وظایف خود وارد کنید. + +1. واردات را با تایپ کد زیر اضافه کنید: + + ```python + import matplotlib.pyplot as plt + import numpy as np + from sklearn import datasets, linear_model, model_selection + ``` + + در کد بالا، `matplotlib` و `numpy` را وارد می‌کنید و `datasets`، `linear_model` و `model_selection` را از `sklearn` وارد می‌کنید. `model_selection` برای تقسیم داده‌ها به مجموعه‌های آموزشی و آزمایشی استفاده می‌شود. + +### مجموعه داده دیابت + +مجموعه داده [دیابت](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) شامل 442 نمونه داده درباره دیابت است که دارای 10 متغیر ویژگی است. برخی از این متغیرها عبارتند از: + +- سن: سن به سال +- شاخص توده بدنی (BMI) +- فشار خون متوسط (BP) +- سلول‌های T: نوعی از گلبول‌های سفید خون + +✅ این مجموعه داده شامل مفهوم "جنسیت" به عنوان یک متغیر ویژگی است که در تحقیقات مربوط به دیابت مهم است. بسیاری از مجموعه داده‌های پزشکی شامل این نوع طبقه‌بندی باینری هستند. کمی فکر کنید که چگونه چنین دسته‌بندی‌هایی ممکن است بخش‌هایی از جمعیت را از درمان‌ها مستثنی کنند. + +حالا داده‌های X و y را بارگذاری کنید. + +> 🎓 به یاد داشته باشید، این یادگیری نظارت‌شده است و ما به یک هدف نام‌گذاری شده 'y' نیاز داریم. + +در یک سلول کد جدید، مجموعه داده دیابت را با فراخوانی `load_diabetes()` بارگذاری کنید. ورودی `return_X_y=True` نشان می‌دهد که `X` یک ماتریس داده و `y` هدف رگرسیون خواهد بود. + +1. چند دستور چاپ اضافه کنید تا شکل ماتریس داده و اولین عنصر آن را نشان دهید: + + ```python + X, y = datasets.load_diabetes(return_X_y=True) + print(X.shape) + print(X[0]) + ``` + + چیزی که به عنوان پاسخ دریافت می‌کنید، یک تاپل است. کاری که انجام می‌دهید این است که دو مقدار اول تاپل را به ترتیب به `X` و `y` اختصاص می‌دهید. درباره [تاپل‌ها](https://wikipedia.org/wiki/Tuple) بیشتر بیاموزید. + + می‌توانید ببینید که این داده‌ها شامل 442 آیتم هستند که به صورت آرایه‌هایی با 10 عنصر شکل گرفته‌اند: + + ```text + (442, 10) + [ 0.03807591 0.05068012 0.06169621 0.02187235 -0.0442235 -0.03482076 + -0.04340085 -0.00259226 0.01990842 -0.01764613] + ``` + + ✅ کمی درباره رابطه بین داده‌ها و هدف رگرسیون فکر کنید. رگرسیون خطی روابط بین ویژگی X و متغیر هدف y را پیش‌بینی می‌کند. آیا می‌توانید [هدف](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) مجموعه داده دیابت را در مستندات پیدا کنید؟ این مجموعه داده چه چیزی را نشان می‌دهد، با توجه به هدف؟ + +2. در مرحله بعد، بخشی از این مجموعه داده را برای رسم انتخاب کنید. این کار را با انتخاب ستون سوم مجموعه داده انجام دهید. می‌توانید این کار را با استفاده از عملگر `:` برای انتخاب تمام سطرها و سپس انتخاب ستون سوم با استفاده از شاخص (2) انجام دهید. همچنین می‌توانید داده‌ها را به صورت آرایه 2 بعدی تغییر شکل دهید - همانطور که برای رسم لازم است - با استفاده از `reshape(n_rows, n_columns)`. اگر یکی از پارامترها -1 باشد، بعد مربوطه به طور خودکار محاسبه می‌شود. + + ```python + X = X[:, 2] + X = X.reshape((-1,1)) + ``` + + ✅ در هر زمان، داده‌ها را چاپ کنید تا شکل آن‌ها را بررسی کنید. + +3. حالا که داده‌ها آماده رسم هستند، می‌توانید ببینید آیا یک ماشین می‌تواند یک تقسیم منطقی بین اعداد در این مجموعه داده تعیین کند. برای این کار، باید هم داده‌ها (X) و هم هدف (y) را به مجموعه‌های آزمایشی و آموزشی تقسیم کنید. Scikit-learn یک روش ساده برای انجام این کار دارد؛ می‌توانید داده‌های آزمایشی خود را در یک نقطه مشخص تقسیم کنید. + + ```python + X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33) + ``` + +4. حالا آماده آموزش مدل خود هستید! مدل رگرسیون خطی را بارگذاری کنید و آن را با مجموعه‌های آموزشی X و y خود با استفاده از `model.fit()` آموزش دهید: + + ```python + model = linear_model.LinearRegression() + model.fit(X_train, y_train) + ``` + + ✅ `model.fit()` یک تابع است که در بسیاری از کتابخانه‌های یادگیری ماشین مانند TensorFlow مشاهده خواهید کرد. + +5. سپس، با استفاده از داده‌های آزمایشی، یک پیش‌بینی ایجاد کنید. این پیش‌بینی برای رسم خط بین گروه‌های داده استفاده خواهد شد. + + ```python + y_pred = model.predict(X_test) + ``` + +6. حالا وقت آن است که داده‌ها را در یک نمودار نشان دهید. Matplotlib ابزاری بسیار مفید برای این کار است. یک نمودار پراکندگی از تمام داده‌های آزمایشی X و y ایجاد کنید و از پیش‌بینی برای رسم خط در مناسب‌ترین مکان بین گروه‌های داده مدل استفاده کنید. + + ```python + plt.scatter(X_test, y_test, color='black') + plt.plot(X_test, y_pred, color='blue', linewidth=3) + plt.xlabel('Scaled BMIs') + plt.ylabel('Disease Progression') + plt.title('A Graph Plot Showing Diabetes Progression Against BMI') + plt.show() + ``` + + ![یک نمودار پراکندگی که نقاط داده مربوط به دیابت را نشان می‌دهد](../../../../translated_images/scatterplot.ad8b356bcbb33be68d54050e09b9b7bfc03e94fde7371f2609ae43f4c563b2d7.fa.png) +✅ کمی فکر کنید که اینجا چه اتفاقی می‌افتد. یک خط مستقیم از میان نقاط کوچک زیادی از داده عبور می‌کند، اما دقیقاً چه کاری انجام می‌دهد؟ آیا می‌توانید ببینید که چگونه باید بتوانید از این خط برای پیش‌بینی محل قرارگیری یک نقطه داده جدید و دیده‌نشده در رابطه با محور y نمودار استفاده کنید؟ سعی کنید کاربرد عملی این مدل را به زبان بیاورید. + +تبریک می‌گویم، شما اولین مدل رگرسیون خطی خود را ساختید، با آن یک پیش‌بینی انجام دادید و آن را در یک نمودار نمایش دادید! + +--- +## 🚀چالش + +یک متغیر متفاوت از این مجموعه داده را رسم کنید. نکته: این خط را ویرایش کنید: `X = X[:,2]`. با توجه به هدف این مجموعه داده، چه چیزی می‌توانید درباره پیشرفت بیماری دیابت کشف کنید؟ + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/10/) + +## مرور و مطالعه شخصی + +در این آموزش، شما با رگرسیون خطی ساده کار کردید، نه رگرسیون تک‌متغیره یا چندمتغیره. کمی درباره تفاوت‌های این روش‌ها بخوانید یا به [این ویدیو](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef) نگاهی بیندازید. + +بیشتر درباره مفهوم رگرسیون بخوانید و فکر کنید که چه نوع سوالاتی می‌توانند با این تکنیک پاسخ داده شوند. این [آموزش](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) را بگیرید تا درک خود را عمیق‌تر کنید. + +## تکلیف + +[یک مجموعه داده متفاوت](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/2-Regression/1-Tools/assignment.md b/translations/fa/2-Regression/1-Tools/assignment.md new file mode 100644 index 000000000..a5276a3c8 --- /dev/null +++ b/translations/fa/2-Regression/1-Tools/assignment.md @@ -0,0 +1,27 @@ + +# رگرسیون با Scikit-learn + +## دستورالعمل‌ها + +به مجموعه داده [Linnerud](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html#sklearn.datasets.load_linnerud) در Scikit-learn نگاهی بیندازید. این مجموعه داده دارای چندین [هدف](https://scikit-learn.org/stable/datasets/toy_dataset.html#linnerrud-dataset) است: «این مجموعه شامل سه متغیر مربوط به تمرین (داده‌ها) و سه متغیر فیزیولوژیکی (هدف‌ها) است که از بیست مرد میانسال در یک باشگاه تناسب اندام جمع‌آوری شده‌اند.» + +به زبان خودتان توضیح دهید که چگونه می‌توان یک مدل رگرسیون ایجاد کرد که رابطه بین اندازه دور کمر و تعداد دراز و نشست‌های انجام‌شده را نشان دهد. همین کار را برای سایر نقاط داده‌ای در این مجموعه انجام دهید. + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ------------------------------ | ----------------------------------- | ----------------------------- | -------------------------- | +| ارائه یک پاراگراف توصیفی | پاراگرافی خوب و کامل ارائه شده است | چند جمله ارائه شده است | هیچ توضیحی ارائه نشده است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/2-Regression/1-Tools/notebook.ipynb b/translations/fa/2-Regression/1-Tools/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/fa/2-Regression/1-Tools/solution/Julia/README.md b/translations/fa/2-Regression/1-Tools/solution/Julia/README.md new file mode 100644 index 000000000..26e62b886 --- /dev/null +++ b/translations/fa/2-Regression/1-Tools/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb b/translations/fa/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb new file mode 100644 index 000000000..5bd2151fa --- /dev/null +++ b/translations/fa/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb @@ -0,0 +1,449 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_1-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "c18d3bd0bd8ae3878597e89dcd1fa5c1", + "translation_date": "2025-09-04T01:35:21+00:00", + "source_file": "2-Regression/1-Tools/solution/R/lesson_1-R.ipynb", + "language_code": "fa" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# ساخت یک مدل رگرسیون: شروع به کار با R و Tidymodels برای مدل‌های رگرسیون\n" + ], + "metadata": { + "id": "YJUHCXqK57yz" + } + }, + { + "cell_type": "markdown", + "source": [ + "## مقدمه‌ای بر رگرسیون - درس ۱\n", + "\n", + "#### قرار دادن در چشم‌انداز\n", + "\n", + "✅ روش‌های مختلفی برای رگرسیون وجود دارد و انتخاب روش مناسب به نوع پاسخی که به دنبال آن هستید بستگی دارد. اگر بخواهید ارتفاع احتمالی یک فرد با سن مشخص را پیش‌بینی کنید، از `رگرسیون خطی` استفاده می‌کنید، زیرا به دنبال یک **مقدار عددی** هستید. اگر بخواهید بررسی کنید که آیا یک نوع غذا باید به عنوان وگان در نظر گرفته شود یا نه، به دنبال **تخصیص دسته‌بندی** هستید، بنابراین از `رگرسیون لجستیک` استفاده می‌کنید. در ادامه بیشتر درباره رگرسیون لجستیک خواهید آموخت. کمی به سوالاتی که می‌توانید از داده‌ها بپرسید فکر کنید و ببینید کدام یک از این روش‌ها مناسب‌تر است.\n", + "\n", + "در این بخش، شما با [یک مجموعه داده کوچک درباره دیابت](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) کار خواهید کرد. تصور کنید که می‌خواهید یک درمان برای بیماران دیابتی آزمایش کنید. مدل‌های یادگیری ماشین ممکن است به شما کمک کنند تا تعیین کنید کدام بیماران بهتر به درمان پاسخ می‌دهند، بر اساس ترکیب متغیرها. حتی یک مدل رگرسیون بسیار ساده، وقتی به صورت بصری نمایش داده شود، ممکن است اطلاعاتی درباره متغیرهایی ارائه دهد که به شما در سازماندهی آزمایش‌های بالینی نظری کمک کند.\n", + "\n", + "با این توضیحات، بیایید این کار را شروع کنیم!\n", + "\n", + "

            \n", + " \n", + "

            اثر هنری از @allison_horst
            \n", + "\n", + "\n" + ], + "metadata": { + "id": "LWNNzfqd6feZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. بارگذاری ابزارهای مورد نیاز\n", + "\n", + "برای این کار، به بسته‌های زیر نیاز داریم:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) یک [مجموعه‌ای از بسته‌های R](https://www.tidyverse.org/packages) است که طراحی شده تا علم داده را سریع‌تر، آسان‌تر و جذاب‌تر کند!\n", + "\n", + "- `tidymodels`: چارچوب [tidymodels](https://www.tidymodels.org/) یک [مجموعه‌ای از بسته‌ها](https://www.tidymodels.org/packages/) برای مدل‌سازی و یادگیری ماشین است.\n", + "\n", + "می‌توانید آنها را با دستور زیر نصب کنید:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\"))`\n", + "\n", + "اسکریپت زیر بررسی می‌کند که آیا بسته‌های مورد نیاز برای تکمیل این ماژول را دارید یا خیر و در صورتی که برخی از آنها موجود نباشند، آنها را برای شما نصب می‌کند.\n" + ], + "metadata": { + "id": "FIo2YhO26wI9" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse, tidymodels)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "id": "cIA9fz9v7Dss", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2df7073b-86b2-4b32-cb86-0da605a0dc11" + } + }, + { + "cell_type": "markdown", + "source": [ + "حالا، بیایید این بسته‌های فوق‌العاده را بارگذاری کنیم و در جلسه فعلی R خود در دسترس قرار دهیم. (این فقط برای توضیح است، `pacman::p_load()` قبلاً این کار را برای شما انجام داده است)\n" + ], + "metadata": { + "id": "gpO_P_6f9WUG" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# load the core Tidyverse packages\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# load the core Tidymodels packages\r\n", + "library(tidymodels)\r\n" + ], + "outputs": [], + "metadata": { + "id": "NLMycgG-9ezO" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. مجموعه داده دیابت\n", + "\n", + "در این تمرین، مهارت‌های رگرسیون خود را با پیش‌بینی روی یک مجموعه داده دیابت به نمایش می‌گذاریم. [مجموعه داده دیابت](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt) شامل `442 نمونه` داده مرتبط با دیابت است که دارای 10 متغیر ویژگی پیش‌بینی‌کننده شامل `سن`، `جنسیت`، `شاخص توده بدنی`، `فشار خون متوسط` و `شش اندازه‌گیری سرم خون` و همچنین یک متغیر خروجی `y` است: یک معیار کمی از پیشرفت بیماری یک سال پس از خط پایه.\n", + "\n", + "|تعداد مشاهدات|442|\n", + "|----------------------|:---|\n", + "|تعداد پیش‌بینی‌کننده‌ها|10 ستون اول عددی و پیش‌بینی‌کننده هستند|\n", + "|خروجی/هدف|ستون 11 یک معیار کمی از پیشرفت بیماری یک سال پس از خط پایه است|\n", + "|اطلاعات پیش‌بینی‌کننده|- سن به سال\n", + "||- جنسیت\n", + "||- bmi شاخص توده بدنی\n", + "||- bp فشار خون متوسط\n", + "||- s1 tc، کلسترول سرم کل\n", + "||- s2 ldl، لیپوپروتئین‌های با چگالی کم\n", + "||- s3 hdl، لیپوپروتئین‌های با چگالی بالا\n", + "||- s4 tch، کلسترول کل / HDL\n", + "||- s5 ltg، احتمالاً لگاریتم سطح تری‌گلیسرید سرم\n", + "||- s6 glu، سطح قند خون|\n", + "\n", + "> 🎓 به یاد داشته باشید، این یادگیری نظارت‌شده است و ما به یک هدف به نام 'y' نیاز داریم.\n", + "\n", + "قبل از اینکه بتوانید داده‌ها را با R دستکاری کنید، باید داده‌ها را به حافظه R وارد کنید یا یک اتصال به داده‌ها ایجاد کنید که R بتواند از آن برای دسترسی به داده‌ها به صورت از راه دور استفاده کند.\n", + "\n", + "> بسته [readr](https://readr.tidyverse.org/) که بخشی از Tidyverse است، یک روش سریع و کاربرپسند برای خواندن داده‌های مستطیلی به داخل R ارائه می‌دهد.\n", + "\n", + "حالا، بیایید مجموعه داده دیابت را از این آدرس منبع بارگذاری کنیم: \n", + "\n", + "همچنین، یک بررسی اولیه روی داده‌های خود با استفاده از `glimpse()` انجام می‌دهیم و 5 ردیف اول را با استفاده از `slice()` نمایش می‌دهیم.\n", + "\n", + "قبل از اینکه جلوتر برویم، بیایید چیزی را معرفی کنیم که اغلب در کد R با آن مواجه خواهید شد 🥁🥁: عملگر پایپ `%>%`\n", + "\n", + "عملگر پایپ (`%>%`) عملیات را به ترتیب منطقی انجام می‌دهد و یک شیء را به جلو به یک تابع یا عبارت فراخوانی منتقل می‌کند. می‌توانید عملگر پایپ را به‌عنوان گفتن \"و سپس\" در کد خود تصور کنید.\n" + ], + "metadata": { + "id": "KM6iXLH996Cl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import the data set\r\n", + "diabetes <- read_table2(file = \"https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt\")\r\n", + "\r\n", + "\r\n", + "# Get a glimpse and dimensions of the data\r\n", + "glimpse(diabetes)\r\n", + "\r\n", + "\r\n", + "# Select the first 5 rows of the data\r\n", + "diabetes %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "Z1geAMhM-bSP" + } + }, + { + "cell_type": "markdown", + "source": [ + "`glimpse()` به ما نشان می‌دهد که این داده شامل ۴۴۲ ردیف و ۱۱ ستون است و تمام ستون‌ها از نوع داده‌ای `double` هستند.\n", + "\n", + "
            \n", + "\n", + "> `glimpse()` و `slice()` توابعی در [`dplyr`](https://dplyr.tidyverse.org/) هستند. Dplyr که بخشی از Tidyverse است، یک دستور زبان برای دستکاری داده‌ها ارائه می‌دهد که مجموعه‌ای منسجم از افعال را فراهم می‌کند تا به شما در حل رایج‌ترین چالش‌های دستکاری داده کمک کند.\n", + "\n", + "
            \n", + "\n", + "حالا که داده‌ها را داریم، بیایید روی یک ویژگی (`bmi`) تمرکز کنیم تا این تمرین را انجام دهیم. برای این کار باید ستون‌های مورد نظر را انتخاب کنیم. پس، چطور این کار را انجام دهیم؟\n", + "\n", + "[`dplyr::select()`](https://dplyr.tidyverse.org/reference/select.html) به ما امکان می‌دهد ستون‌های یک فریم داده را *انتخاب* کنیم (و در صورت نیاز نام آن‌ها را تغییر دهیم).\n" + ], + "metadata": { + "id": "UwjVT1Hz-c3Z" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select predictor feature `bmi` and outcome `y`\r\n", + "diabetes_select <- diabetes %>% \r\n", + " select(c(bmi, y))\r\n", + "\r\n", + "# Print the first 5 rows\r\n", + "diabetes_select %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "RDY1oAKI-m80" + } + }, + { + "cell_type": "markdown", + "source": [ + "## ۳. داده‌های آموزش و آزمایش\n", + "\n", + "در یادگیری نظارت‌شده، معمولاً داده‌ها را به دو زیرمجموعه *تقسیم* می‌کنند؛ یک مجموعه (که معمولاً بزرگ‌تر است) برای آموزش مدل و یک مجموعه کوچک‌تر برای \"نگه‌داشتن\" و بررسی عملکرد مدل.\n", + "\n", + "حالا که داده‌ها آماده هستند، می‌توانیم ببینیم آیا یک ماشین می‌تواند به ما کمک کند تا یک تقسیم منطقی بین اعداد این مجموعه داده پیدا کنیم. می‌توانیم از بسته [rsample](https://tidymodels.github.io/rsample/) که بخشی از چارچوب Tidymodels است استفاده کنیم تا یک شیء ایجاد کنیم که اطلاعات مربوط به *چگونگی* تقسیم داده‌ها را در خود داشته باشد. سپس با استفاده از دو تابع دیگر از rsample، می‌توانیم مجموعه‌های آموزش و آزمایش ایجادشده را استخراج کنیم:\n" + ], + "metadata": { + "id": "SDk668xK-tc3" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\r\n", + "# Split 67% of the data for training and the rest for tesing\r\n", + "diabetes_split <- diabetes_select %>% \r\n", + " initial_split(prop = 0.67)\r\n", + "\r\n", + "# Extract the resulting train and test sets\r\n", + "diabetes_train <- training(diabetes_split)\r\n", + "diabetes_test <- testing(diabetes_split)\r\n", + "\r\n", + "# Print the first 3 rows of the training set\r\n", + "diabetes_train %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "EqtHx129-1h-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. آموزش یک مدل رگرسیون خطی با Tidymodels\n", + "\n", + "حالا آماده‌ایم مدل خود را آموزش دهیم!\n", + "\n", + "در Tidymodels، شما مدل‌ها را با استفاده از `parsnip()` و مشخص کردن سه مفهوم تعریف می‌کنید:\n", + "\n", + "- **نوع مدل** مدل‌ها را از یکدیگر متمایز می‌کند، مانند رگرسیون خطی، رگرسیون لجستیک، مدل‌های درخت تصمیم و غیره.\n", + "\n", + "- **حالت مدل** شامل گزینه‌های رایج مانند رگرسیون و طبقه‌بندی است؛ برخی از انواع مدل‌ها از هر دو حالت پشتیبانی می‌کنند، در حالی که برخی فقط یک حالت دارند.\n", + "\n", + "- **موتور مدل** ابزار محاسباتی است که برای برازش مدل استفاده خواهد شد. اغلب این‌ها بسته‌های R هستند، مانند **`\"lm\"`** یا **`\"ranger\"`**\n", + "\n", + "این اطلاعات مدل در یک مشخصات مدل ثبت می‌شود، پس بیایید یکی بسازیم!\n" + ], + "metadata": { + "id": "sBOS-XhB-6v7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- \r\n", + " # Type\r\n", + " linear_reg() %>% \r\n", + " # Engine\r\n", + " set_engine(\"lm\") %>% \r\n", + " # Mode\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Print the model specification\r\n", + "lm_spec" + ], + "outputs": [], + "metadata": { + "id": "20OwEw20--t3" + } + }, + { + "cell_type": "markdown", + "source": [ + "پس از اینکه یک مدل *مشخص* شد، می‌توان مدل را با استفاده از تابع [`fit()`](https://parsnip.tidymodels.org/reference/fit.html) تخمین زده یا آموزش داد. این کار معمولاً با استفاده از یک فرمول و مقداری داده انجام می‌شود.\n", + "\n", + "`y ~ .` به این معناست که ما `y` را به عنوان مقدار پیش‌بینی‌شده/هدف براساس تمام پیش‌بینی‌کننده‌ها/ویژگی‌ها یعنی `.` برازش می‌کنیم (در این مثال، ما فقط یک پیش‌بینی‌کننده داریم: `bmi`).\n" + ], + "metadata": { + "id": "_oDHs89k_CJj" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>%\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Train a linear regression model\r\n", + "lm_mod <- lm_spec %>% \r\n", + " fit(y ~ ., data = diabetes_train)\r\n", + "\r\n", + "# Print the model\r\n", + "lm_mod" + ], + "outputs": [], + "metadata": { + "id": "YlsHqd-q_GJQ" + } + }, + { + "cell_type": "markdown", + "source": [ + "از خروجی مدل می‌توان ضرایب یاد گرفته شده در طول آموزش را مشاهده کرد. این ضرایب نشان‌دهنده ضرایب خط برازش بهینه هستند که کمترین خطای کلی بین متغیر واقعی و پیش‌بینی‌شده را به ما می‌دهند.\n", + "
            \n", + "\n", + "## ۵. پیش‌بینی روی مجموعه تست\n", + "\n", + "حالا که یک مدل آموزش داده‌ایم، می‌توانیم از آن برای پیش‌بینی پیشرفت بیماری y در مجموعه داده تست استفاده کنیم با استفاده از [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html). این پیش‌بینی برای رسم خط بین گروه‌های داده استفاده خواهد شد.\n" + ], + "metadata": { + "id": "kGZ22RQj_Olu" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\r\n", + "predictions <- lm_mod %>% \r\n", + " predict(new_data = diabetes_test)\r\n", + "\r\n", + "# Print out some of the predictions\r\n", + "predictions %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "nXHbY7M2_aao" + } + }, + { + "cell_type": "markdown", + "source": [ + "هورا! 💃🕺 ما به‌تازگی یک مدل آموزش دادیم و از آن برای پیش‌بینی استفاده کردیم!\n", + "\n", + "هنگام انجام پیش‌بینی‌ها، روش معمول در tidymodels این است که همیشه یک tibble/داده‌فریم از نتایج با نام‌های استاندارد برای ستون‌ها تولید شود. این کار ترکیب داده‌های اصلی و پیش‌بینی‌ها را در قالبی قابل استفاده برای عملیات بعدی مانند رسم نمودار آسان می‌کند.\n", + "\n", + "`dplyr::bind_cols()` به‌طور کارآمد چندین داده‌فریم را به‌صورت ستونی ترکیب می‌کند.\n" + ], + "metadata": { + "id": "R_JstwUY_bIs" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Combine the predictions and the original test set\r\n", + "results <- diabetes_test %>% \r\n", + " bind_cols(predictions)\r\n", + "\r\n", + "\r\n", + "results %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "RybsMJR7_iI8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 6. نمایش نتایج مدل‌سازی\n", + "\n", + "حالا وقتشه که این رو به صورت تصویری ببینیم 📈. ابتدا یک نمودار پراکندگی از تمام مقادیر `y` و `bmi` در مجموعه تست ایجاد می‌کنیم، سپس با استفاده از پیش‌بینی‌ها یک خط در مناسب‌ترین مکان، بین گروه‌بندی‌های داده‌های مدل رسم می‌کنیم.\n", + "\n", + "زبان R چندین سیستم برای ساخت نمودار دارد، اما `ggplot2` یکی از زیباترین و انعطاف‌پذیرترین‌هاست. این سیستم به شما امکان می‌دهد نمودارها را با **ترکیب اجزای مستقل** بسازید.\n" + ], + "metadata": { + "id": "XJbYbMZW_n_s" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plot\r\n", + "theme_set(theme_light())\r\n", + "# Create a scatter plot\r\n", + "results %>% \r\n", + " ggplot(aes(x = bmi)) +\r\n", + " # Add a scatter plot\r\n", + " geom_point(aes(y = y), size = 1.6) +\r\n", + " # Add a line plot\r\n", + " geom_line(aes(y = .pred), color = \"blue\", size = 1.5)" + ], + "outputs": [], + "metadata": { + "id": "R9tYp3VW_sTn" + } + }, + { + "cell_type": "markdown", + "source": [ + "✅ کمی به این موضوع فکر کنید که اینجا چه اتفاقی در حال رخ دادن است. یک خط مستقیم از میان تعداد زیادی نقطه کوچک داده عبور می‌کند، اما دقیقاً چه کاری انجام می‌دهد؟ آیا می‌توانید ببینید که چگونه باید بتوانید از این خط برای پیش‌بینی محل قرارگیری یک نقطه داده جدید و نادیده گرفته‌شده نسبت به محور y نمودار استفاده کنید؟ سعی کنید کاربرد عملی این مدل را با کلمات توضیح دهید.\n", + "\n", + "تبریک می‌گویم، شما اولین مدل رگرسیون خطی خود را ساختید، با آن یک پیش‌بینی انجام دادید و آن را در یک نمودار نمایش دادید!\n" + ], + "metadata": { + "id": "zrPtHIxx_tNI" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/2-Regression/1-Tools/solution/notebook.ipynb b/translations/fa/2-Regression/1-Tools/solution/notebook.ipynb new file mode 100644 index 000000000..dc3e3059f --- /dev/null +++ b/translations/fa/2-Regression/1-Tools/solution/notebook.ipynb @@ -0,0 +1,677 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## رگرسیون خطی برای مجموعه داده دیابت - درس ۱\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "کتابخانه‌های مورد نیاز را وارد کنید\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from sklearn import datasets, linear_model, model_selection\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "داده‌های دیابت را بارگذاری کنید، به داده‌های `X` و ویژگی‌های `y` تقسیم کنید\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 10)\n", + "[ 0.03807591 0.05068012 0.06169621 0.02187239 -0.0442235 -0.03482076\n", + " -0.04340085 -0.00259226 0.01990749 -0.01764613]\n" + ] + } + ], + "source": [ + "X, y = datasets.load_diabetes(return_X_y=True)\n", + "print(X.shape)\n", + "print(X[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "فقط یک ویژگی را برای هدف‌گذاری این تمرین انتخاب کنید\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442,)\n" + ] + } + ], + "source": [ + "# Selecting the 3rd feature\n", + "X = X[:, 2]\n", + "print(X.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 1)\n", + "[[ 0.06169621]\n", + " [-0.05147406]\n", + " [ 0.04445121]\n", + " [-0.01159501]\n", + " [-0.03638469]\n", + " [-0.04069594]\n", + " [-0.04716281]\n", + " [-0.00189471]\n", + " [ 0.06169621]\n", + " [ 0.03906215]\n", + " [-0.08380842]\n", + " [ 0.01750591]\n", + " [-0.02884001]\n", + " [-0.00189471]\n", + " [-0.02560657]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [ 0.01211685]\n", + " [-0.0105172 ]\n", + " [-0.01806189]\n", + " [-0.05686312]\n", + " [-0.02237314]\n", + " [-0.00405033]\n", + " [ 0.06061839]\n", + " [ 0.03582872]\n", + " [-0.01267283]\n", + " [-0.07734155]\n", + " [ 0.05954058]\n", + " [-0.02129532]\n", + " [-0.00620595]\n", + " [ 0.04445121]\n", + " [-0.06548562]\n", + " [ 0.12528712]\n", + " [-0.05039625]\n", + " [-0.06332999]\n", + " [-0.03099563]\n", + " [ 0.02289497]\n", + " [ 0.01103904]\n", + " [ 0.07139652]\n", + " [ 0.01427248]\n", + " [-0.00836158]\n", + " [-0.06764124]\n", + " [-0.0105172 ]\n", + " [-0.02345095]\n", + " [ 0.06816308]\n", + " [-0.03530688]\n", + " [-0.01159501]\n", + " [-0.0730303 ]\n", + " [-0.04177375]\n", + " [ 0.01427248]\n", + " [-0.00728377]\n", + " [ 0.0164281 ]\n", + " [-0.00943939]\n", + " [-0.01590626]\n", + " [ 0.0250506 ]\n", + " [-0.04931844]\n", + " [ 0.04121778]\n", + " [-0.06332999]\n", + " [-0.06440781]\n", + " [-0.02560657]\n", + " [-0.00405033]\n", + " [ 0.00457217]\n", + " [-0.00728377]\n", + " [-0.0374625 ]\n", + " [-0.02560657]\n", + " [-0.02452876]\n", + " [-0.01806189]\n", + " [-0.01482845]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [-0.06979687]\n", + " [ 0.03367309]\n", + " [-0.00405033]\n", + " [-0.02021751]\n", + " [ 0.00241654]\n", + " [-0.03099563]\n", + " [ 0.02828403]\n", + " [-0.03638469]\n", + " [-0.05794093]\n", + " [-0.0374625 ]\n", + " [ 0.01211685]\n", + " [-0.02237314]\n", + " [-0.03530688]\n", + " [ 0.00996123]\n", + " [-0.03961813]\n", + " [ 0.07139652]\n", + " [-0.07518593]\n", + " [-0.00620595]\n", + " [-0.04069594]\n", + " [-0.04824063]\n", + " [-0.02560657]\n", + " [ 0.0519959 ]\n", + " [ 0.00457217]\n", + " [-0.06440781]\n", + " [-0.01698407]\n", + " [-0.05794093]\n", + " [ 0.00996123]\n", + " [ 0.08864151]\n", + " [-0.00512814]\n", + " [-0.06440781]\n", + " [ 0.01750591]\n", + " [-0.04500719]\n", + " [ 0.02828403]\n", + " [ 0.04121778]\n", + " [ 0.06492964]\n", + " [-0.03207344]\n", + " [-0.07626374]\n", + " [ 0.04984027]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03207344]\n", + " [ 0.00457217]\n", + " [ 0.02073935]\n", + " [ 0.01427248]\n", + " [ 0.11019775]\n", + " [ 0.00133873]\n", + " [ 0.05846277]\n", + " [-0.02129532]\n", + " [-0.0105172 ]\n", + " [-0.04716281]\n", + " [ 0.00457217]\n", + " [ 0.01750591]\n", + " [ 0.08109682]\n", + " [ 0.0347509 ]\n", + " [ 0.02397278]\n", + " [-0.00836158]\n", + " [-0.06117437]\n", + " [-0.00189471]\n", + " [-0.06225218]\n", + " [ 0.0164281 ]\n", + " [ 0.09618619]\n", + " [-0.06979687]\n", + " [-0.02129532]\n", + " [-0.05362969]\n", + " [ 0.0433734 ]\n", + " [ 0.05630715]\n", + " [-0.0816528 ]\n", + " [ 0.04984027]\n", + " [ 0.11127556]\n", + " [ 0.06169621]\n", + " [ 0.01427248]\n", + " [ 0.04768465]\n", + " [ 0.01211685]\n", + " [ 0.00564998]\n", + " [ 0.04660684]\n", + " [ 0.12852056]\n", + " [ 0.05954058]\n", + " [ 0.09295276]\n", + " [ 0.01535029]\n", + " [-0.00512814]\n", + " [ 0.0703187 ]\n", + " [-0.00405033]\n", + " [-0.00081689]\n", + " [-0.04392938]\n", + " [ 0.02073935]\n", + " [ 0.06061839]\n", + " [-0.0105172 ]\n", + " [-0.03315126]\n", + " [-0.06548562]\n", + " [ 0.0433734 ]\n", + " [-0.06225218]\n", + " [ 0.06385183]\n", + " [ 0.03043966]\n", + " [ 0.07247433]\n", + " [-0.0191397 ]\n", + " [-0.06656343]\n", + " [-0.06009656]\n", + " [ 0.06924089]\n", + " [ 0.05954058]\n", + " [-0.02668438]\n", + " [-0.02021751]\n", + " [-0.046085 ]\n", + " [ 0.07139652]\n", + " [-0.07949718]\n", + " [ 0.00996123]\n", + " [-0.03854032]\n", + " [ 0.01966154]\n", + " [ 0.02720622]\n", + " [-0.00836158]\n", + " [-0.01590626]\n", + " [ 0.00457217]\n", + " [-0.04285156]\n", + " [ 0.00564998]\n", + " [-0.03530688]\n", + " [ 0.02397278]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [-0.0547075 ]\n", + " [-0.00297252]\n", + " [-0.06656343]\n", + " [-0.01267283]\n", + " [-0.04177375]\n", + " [-0.03099563]\n", + " [-0.00512814]\n", + " [-0.05901875]\n", + " [ 0.0250506 ]\n", + " [-0.046085 ]\n", + " [ 0.00349435]\n", + " [ 0.05415152]\n", + " [-0.04500719]\n", + " [-0.05794093]\n", + " [-0.05578531]\n", + " [ 0.00133873]\n", + " [ 0.03043966]\n", + " [ 0.00672779]\n", + " [ 0.04660684]\n", + " [ 0.02612841]\n", + " [ 0.04552903]\n", + " [ 0.04013997]\n", + " [-0.01806189]\n", + " [ 0.01427248]\n", + " [ 0.03690653]\n", + " [ 0.00349435]\n", + " [-0.07087468]\n", + " [-0.03315126]\n", + " [ 0.09403057]\n", + " [ 0.03582872]\n", + " [ 0.03151747]\n", + " [-0.06548562]\n", + " [-0.04177375]\n", + " [-0.03961813]\n", + " [-0.03854032]\n", + " [-0.02560657]\n", + " [-0.02345095]\n", + " [-0.06656343]\n", + " [ 0.03259528]\n", + " [-0.046085 ]\n", + " [-0.02991782]\n", + " [-0.01267283]\n", + " [-0.01590626]\n", + " [ 0.07139652]\n", + " [-0.03099563]\n", + " [ 0.00026092]\n", + " [ 0.03690653]\n", + " [ 0.03906215]\n", + " [-0.01482845]\n", + " [ 0.00672779]\n", + " [-0.06871905]\n", + " [-0.00943939]\n", + " [ 0.01966154]\n", + " [ 0.07462995]\n", + " [-0.00836158]\n", + " [-0.02345095]\n", + " [-0.046085 ]\n", + " [ 0.05415152]\n", + " [-0.03530688]\n", + " [-0.03207344]\n", + " [-0.0816528 ]\n", + " [ 0.04768465]\n", + " [ 0.06061839]\n", + " [ 0.05630715]\n", + " [ 0.09834182]\n", + " [ 0.05954058]\n", + " [ 0.03367309]\n", + " [ 0.05630715]\n", + " [-0.06548562]\n", + " [ 0.16085492]\n", + " [-0.05578531]\n", + " [-0.02452876]\n", + " [-0.03638469]\n", + " [-0.00836158]\n", + " [-0.04177375]\n", + " [ 0.12744274]\n", + " [-0.07734155]\n", + " [ 0.02828403]\n", + " [-0.02560657]\n", + " [-0.06225218]\n", + " [-0.00081689]\n", + " [ 0.08864151]\n", + " [-0.03207344]\n", + " [ 0.03043966]\n", + " [ 0.00888341]\n", + " [ 0.00672779]\n", + " [-0.02021751]\n", + " [-0.02452876]\n", + " [-0.01159501]\n", + " [ 0.02612841]\n", + " [-0.05901875]\n", + " [-0.03638469]\n", + " [-0.02452876]\n", + " [ 0.01858372]\n", + " [-0.0902753 ]\n", + " [-0.00512814]\n", + " [-0.05255187]\n", + " [-0.02237314]\n", + " [-0.02021751]\n", + " [-0.0547075 ]\n", + " [-0.00620595]\n", + " [-0.01698407]\n", + " [ 0.05522933]\n", + " [ 0.07678558]\n", + " [ 0.01858372]\n", + " [-0.02237314]\n", + " [ 0.09295276]\n", + " [-0.03099563]\n", + " [ 0.03906215]\n", + " [-0.06117437]\n", + " [-0.00836158]\n", + " [-0.0374625 ]\n", + " [-0.01375064]\n", + " [ 0.07355214]\n", + " [-0.02452876]\n", + " [ 0.03367309]\n", + " [ 0.0347509 ]\n", + " [-0.03854032]\n", + " [-0.03961813]\n", + " [-0.00189471]\n", + " [-0.03099563]\n", + " [-0.046085 ]\n", + " [ 0.00133873]\n", + " [ 0.06492964]\n", + " [ 0.04013997]\n", + " [-0.02345095]\n", + " [ 0.05307371]\n", + " [ 0.04013997]\n", + " [-0.02021751]\n", + " [ 0.01427248]\n", + " [-0.03422907]\n", + " [ 0.00672779]\n", + " [ 0.00457217]\n", + " [ 0.03043966]\n", + " [ 0.0519959 ]\n", + " [ 0.06169621]\n", + " [-0.00728377]\n", + " [ 0.00564998]\n", + " [ 0.05415152]\n", + " [-0.00836158]\n", + " [ 0.114509 ]\n", + " [ 0.06708527]\n", + " [-0.05578531]\n", + " [ 0.03043966]\n", + " [-0.02560657]\n", + " [ 0.10480869]\n", + " [-0.00620595]\n", + " [-0.04716281]\n", + " [-0.04824063]\n", + " [ 0.08540807]\n", + " [-0.01267283]\n", + " [-0.03315126]\n", + " [-0.00728377]\n", + " [-0.01375064]\n", + " [ 0.05954058]\n", + " [ 0.02181716]\n", + " [ 0.01858372]\n", + " [-0.01159501]\n", + " [-0.00297252]\n", + " [ 0.01750591]\n", + " [-0.02991782]\n", + " [-0.02021751]\n", + " [-0.05794093]\n", + " [ 0.06061839]\n", + " [-0.04069594]\n", + " [-0.07195249]\n", + " [-0.05578531]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03315126]\n", + " [ 0.04984027]\n", + " [-0.08488624]\n", + " [ 0.00564998]\n", + " [ 0.02073935]\n", + " [-0.00728377]\n", + " [ 0.10480869]\n", + " [-0.02452876]\n", + " [-0.00620595]\n", + " [-0.03854032]\n", + " [ 0.13714305]\n", + " [ 0.17055523]\n", + " [ 0.00241654]\n", + " [ 0.03798434]\n", + " [-0.05794093]\n", + " [-0.00943939]\n", + " [-0.02345095]\n", + " [-0.0105172 ]\n", + " [-0.03422907]\n", + " [-0.00297252]\n", + " [ 0.06816308]\n", + " [ 0.00996123]\n", + " [ 0.00241654]\n", + " [-0.03854032]\n", + " [ 0.02612841]\n", + " [-0.08919748]\n", + " [ 0.06061839]\n", + " [-0.02884001]\n", + " [-0.02991782]\n", + " [-0.0191397 ]\n", + " [-0.04069594]\n", + " [ 0.01535029]\n", + " [-0.02452876]\n", + " [ 0.00133873]\n", + " [ 0.06924089]\n", + " [-0.06979687]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [ 0.01858372]\n", + " [ 0.00133873]\n", + " [-0.03099563]\n", + " [-0.00405033]\n", + " [ 0.01535029]\n", + " [ 0.02289497]\n", + " [ 0.04552903]\n", + " [-0.04500719]\n", + " [-0.03315126]\n", + " [ 0.097264 ]\n", + " [ 0.05415152]\n", + " [ 0.12313149]\n", + " [-0.08057499]\n", + " [ 0.09295276]\n", + " [-0.05039625]\n", + " [-0.01159501]\n", + " [-0.0277622 ]\n", + " [ 0.05846277]\n", + " [ 0.08540807]\n", + " [-0.00081689]\n", + " [ 0.00672779]\n", + " [ 0.00888341]\n", + " [ 0.08001901]\n", + " [ 0.07139652]\n", + " [-0.02452876]\n", + " [-0.0547075 ]\n", + " [-0.03638469]\n", + " [ 0.0164281 ]\n", + " [ 0.07786339]\n", + " [-0.03961813]\n", + " [ 0.01103904]\n", + " [-0.04069594]\n", + " [-0.03422907]\n", + " [ 0.00564998]\n", + " [ 0.08864151]\n", + " [-0.03315126]\n", + " [-0.05686312]\n", + " [-0.03099563]\n", + " [ 0.05522933]\n", + " [-0.06009656]\n", + " [ 0.00133873]\n", + " [-0.02345095]\n", + " [-0.07410811]\n", + " [ 0.01966154]\n", + " [-0.01590626]\n", + " [-0.01590626]\n", + " [ 0.03906215]\n", + " [-0.0730303 ]]\n" + ] + } + ], + "source": [ + "#Reshaping to get a 2D array\n", + "X = X.reshape(-1, 1)\n", + "print(X.shape)\n", + "print(X)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "داده‌های آموزشی و آزمایشی را برای هر دو `X` و `y` تقسیم کنید\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "مدل را انتخاب کرده و آن را با داده‌های آموزشی تطبیق دهید\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
            LinearRegression()
            In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
            On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
            " + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = linear_model.LinearRegression()\n", + "model.fit(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "از داده‌های آزمایشی برای پیش‌بینی یک خط استفاده کنید\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "نتایج را در یک نمودار نمایش دهید\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbmUlEQVR4nO3de3wU1f0//tcQIHIxiQmBALsQUdSigNYLxn6iSaECaj/5NKTawAfRWi2IbUBRS71gtIrKp5rUj5dqK7ZfXfwAWcVS8ALuYtCIQEERvAC/cAtJoCBJQAhkc35/rLtmk92dmd2Z2ZnZ1/Px2Edl92Tm7CTd894z7/M+khBCgIiIiMhEuiW6A0RERESdMUAhIiIi02GAQkRERKbDAIWIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHS6J7oDsWhvb8f+/ftx+umnQ5KkRHeHiIiIFBBCoKWlBYMGDUK3btHnSCwZoOzfvx9OpzPR3SAiIqIY7N27Fw6HI2obSwYop59+OgD/G0xLS0twb4iIiEiJ5uZmOJ3O4DgejSUDlMBtnbS0NAYoREREFqMkPYNJskRERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpqMqQHn++ecxatSo4OqZvLw8rFy5Mvh6QUEBJEkKeUyfPj3kGHv27MG1116L3r17o3///rj77rvR1tamzbshIiIiW1C1zNjhcODxxx/H8OHDIYTA3/72NxQVFWHTpk04//zzAQC33norHn744eDP9O7dO/jfPp8P1157LXJycvDRRx+hvr4eN954I3r06IHHHntMo7dEREREVicJIUQ8B8jMzMSCBQtwyy23oKCgABdeeCEqKirCtl25ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5m5ubkZ6ejqamJtZBISIisgg143fMOSg+nw+vv/46jh07hry8vODzr732Gvr164cLLrgAc+fOxbfffht8raamBiNHjgwGJwAwfvx4NDc3Y+vWrRHP1draiubm5pAHERERac/n88Hr9WLRokXwer3w+XwJ6YfqSrJbtmxBXl4eTpw4gb59++KNN97AiBEjAACTJ0/G0KFDMWjQIHz22We499578dVXX8HtdgMAGhoaQoITAMF/NzQ0RDzn/PnzUV5errarREREpILb7UZZWRn27dsXfM7hcKCyshLFxcWG9kX1LZ6TJ09iz549aGpqwtKlS/GXv/wFa9asCQYpHb3//vsYO3YsduzYgbPOOgu33XYbdu/ejXfeeSfY5ttvv0WfPn2wYsUKTJw4Mew5W1tb0draGvx3oJY/b/EQERFpw+12o6SkBJ3DgkBZ+qVLl8YdpOh6i6dnz544++yzcfHFF2P+/PkYPXo0Kisrw7YdM2YMAGDHjh0AgJycHDQ2Noa0Cfw7Jycn4jlTU1ODK4e4/w4REZG2fD4fysrKugQnAILPzZo1y9DbPXHXQWlvbw+Z3eho8+bNAICBAwcCAPLy8rBlyxYcOHAg2Oa9995DWlpa2BkYIiIi0l91dXXIbZ3OhBDYu3cvqqurDeuTqhyUuXPnYuLEiRgyZAhaWlrgcrng9XrxzjvvYOfOnXC5XLjmmmuQlZWFzz77DLNnz8aVV16JUaNGAQCuvvpqjBgxAlOnTsWTTz6JhoYG3H///Zg5cyZSU1N1eYNEREQUXX19vabttKAqQDlw4ABuvPFG1NfXIz09HaNGjcI777yDn/zkJ9i7dy9WrVqFiooKHDt2DE6nE5MmTcL9998f/PmUlBQsX74cM2bMQF5eHvr06YNp06aF1E0hIiIiYwXudGjVTgtx10FJBNZBISIi0o7P50Nubi7q6urC5qFIkgSHw4Ha2lqkpKTEfB5D6qAQERGRPaSkpAQXvARW7QQE/l1RURFXcKIWAxQiIiJCcXExli5disGDB4c873A4NFlirBZv8RAREVGQz+dDdXU16uvrMXDgQOTn52s2c6Jm/FZdSZaIiIjsKyUlBQUFBYnuBm/xEBERkfkwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREptM90R0gIjIzn8+H6upq1NfXY+DAgcjPz0dKSkqiu6W5ZHmfZB0MUIiIInC73SgrK8O+ffuCzzkcDlRWVqK4uDiBPdNWsrxPshbe4iEiCsPtdqOkpCRk0AaAuro6lJSUwO12J6hn2kqW90nWIwkhRKI7oVZzczPS09PR1NSEtLS0RHeHiGzG5/MhNze3y6AdIEkSHA4HamtrLX0bJFneJ5mHmvGbMyhERJ1UV1dHHLQBQAiBvXv3orq62sBeaS9Z3idZEwMUIqJO6uvrNW1nVsnyPsmaGKAQEXUycOBATduZVbK8T7ImBihERJ3k5+fD4XBAkqSwr0uSBKfTifz8fIN7pq1keZ+kzokTwMaNwPHjie0HAxQiok5SUlJQWVkJAF0G78C/KyoqLJ84mizvk5Q5dgzIzQV69QIuucT/37t2Ja4/DFCIiMIoLi7G0qVLMXjw4JDnHQ4Hli5dapv6IMnyPikyIYCbbgL69gV27/7++QMHgBdeSFi3uMyYiCiaZKmwmizvk0L95S/ArbdGfv2ZZ4A77tDufLotM37++ecxatQopKWlIS0tDXl5eVi5cmXw9RMnTmDmzJnIyspC3759MWnSJDQ2NoYcY8+ePbj22mvRu3dv9O/fH3fffTfa2trUdIOIyDApKSkoKChAaWkpCgoKbDtoJ8v7JL9PPgEkKXpw0rcvMGOGcX3qTFWA4nA48Pjjj2Pjxo3YsGEDfvzjH6OoqAhbt24FAMyePRv/+Mc/sGTJEqxZswb79+8PmR70+Xy49tprcfLkSXz00Uf429/+hldeeQUPPvigtu+KiIiIujh40B+YjBkTvd0f/wi0tACJjFPjvsWTmZmJBQsWoKSkBNnZ2XC5XCgpKQEAfPnll/jBD36AmpoaXH755Vi5ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5eYuHiIhIubY24OqrAY8neruiIsDtBrrplKFqSCVZn8+H119/HceOHUNeXh42btyIU6dOYdy4ccE25513HoYMGYKamhoAQE1NDUaOHBkMTgBg/PjxaG5uDs7CEBERkXbKy4EePaIHJ+npwOHDwJtv6hecqKV6N+MtW7YgLy8PJ06cQN++ffHGG29gxIgR2Lx5M3r27ImMjIyQ9gMGDEBDQwMAoKGhISQ4CbweeC2S1tZWtLa2Bv/d3NystttEZAJMxCQyzooVwLXXyrf79FNg1Cj9+6OW6gDl3HPPxebNm9HU1ISlS5di2rRpWLNmjR59C5o/fz7Ky8t1PQcR6cvtdqOsrCxk7xeHw4HKykouZf0OAzjSwv/3/wFnnSXfzuUCSkv170+sVE/k9OzZE2effTYuvvhizJ8/H6NHj0ZlZSVycnJw8uRJHDlyJKR9Y2MjcnJyAAA5OTldVvUE/h1oE87cuXPR1NQUfOzdu1dtt4kogdxuN0pKSrpsTFdXV4eSkhK43e4E9cw83G43cnNzUVhYiMmTJ6OwsBC5ubm8NqTYt98CZ58tH5z85jdAe7u5gxNAg0Jt7e3taG1txcUXX4wePXpg9erVwde++uor7NmzB3l5eQCAvLw8bNmyBQcOHAi2ee+995CWloYRI0ZEPEdqampwaXPgQUTW4PP5UFZWhnD5+IHnZs2aBZ/PZ3TXTIMBHMVDCOBXvwL69AF27ozcbuRIf/n6P/3Jv5LH7FSt4pk7dy4mTpyIIUOGoKWlBS6XC0888QTeeecd/OQnP8GMGTOwYsUKvPLKK0hLS8NvfvMbAMBHH30EwP9BdeGFF2LQoEF48skn0dDQgKlTp+JXv/oVHnvsMcWd5ioeSiROw6vj9XpRWFgo287j8aCgoED/DpmMz+dDbm5ul+AkQJIkOBwO1NbW8u+Muli4EPjlL+Xb7d4NDBmif3/kqBm/VeWgHDhwADfeeCPq6+uRnp6OUaNGBYMTAHj66afRrVs3TJo0Ca2trRg/fjyee+654M+npKRg+fLlmDFjBvLy8tCnTx9MmzYNDz/8cAxvk8h4zKNQr76+XtN2dlNdXR0xOAH8s0x79+5FdXV1UgZwFN7Gjf79cuSsWgWMHat/f/SgKkD561//GvX10047Dc8++yyeffbZiG2GDh2KFStWqDktkSkEpuE7TzoGpuG5b0l4AwcO1LSd3TCAIzX+/W9g4EB/XZNonngCuOceY/qkF5OsdiYyN+ZRxC4/Px8Oh6PLbrkBkiTB6XQiPz/f4J6ZAwM4UiJQaC07O3pwcu21/tetHpwADFCIFFEzDU+hUlJSUFlZCQBdgpTAvysqKpI2vyI/P7/LTsIdJXsAR8Cjj/oLrb33XuQ2ffoAhw4By5cntjy9lhigECnAafj4FBcXY+nSpV0GYofDkfS3xpYtW4YTJ06EfY0BXHJ75x3/apv774/ebtMm4OhRIDPTmH4ZRXWhNqJkxGn4+BUXF6OoqIgroDqIlNcUkJmZiRdffDGpA7hkVFsLDBsm3+7//T/gv/9b//4kStybBSYClxmT0QJLQevq6sIOJlwKSmrJLS8G/DNMu3bt4t9Ukvj2W+DCC4Ht26O3mzEDePZZa9Qy6cyQzQKJkgnzKEhrcnlNALBv3z7mNSUBIYDp0/15JNGCkx/8wB/EPPecNYMTtRigECnEPArSEvOaCAD+/nf/7sF//nP0drW1wLZtQK9exvTLDJiDQqSC2jwKVp2lSJjXlNw2bQJ++EP5du++C3xXCzXpMAeFSCesOkvRMK8pOR06BAweDLS2Rm/36KPA739vTJ+MxBwUogSz0+ZvPp8PXq8XixYtgtfrZTE6jTCvKbn4fMCECUC/ftGDk/Hj/YXW7BicqMUAhUhjdqo663a7kZubi8LCQkyePBmFhYXIzc21VIBlZsxrSg7z5wPdu/vrmkSSmuovY//22/YptBYv3uIh0phddu+NVKMj8O2eA6h2zJCrZIY+2M2qVcryRzZuVJaPYge67WZMRPLssDpDbhZIkiTMmjULRUVFHMQ0kJKSktBglflS2tq9G8jNlW+3cCFw001698a6eIuHSGNGrs7QKz+Eew8lDzvlSyXa8ePAiBHywcmttwLt7QxO5DBAIdKYUbv36pkfYodZIJJnp3ypRBICuP12oHdv4IsvIrcbPhw4dgx48cXkKLQWLwYoRBozYnWG3t96WaMjMjutauJMWfxcLn+hteefj95u507g66/9QQwpwwCFSAd6rs4w4luvUbNAVmO3VU1azJTZKWBT49NP/bMgU6ZEb7dypX+GRcnmfxSKAQqRToqLi7Fr1y54PB64XC54PB7U1tbGnXSo97fewGqOwAoe1ujws2OuRrwzZXYL2JQ4fBjo29e/qV80jzziD0wmTDCkW/YkLKipqUkAEE1NTYnuCpHhXC6XACD7cLlcqo9dVVUlHA5HyHFSUlJC/u10OkVVVZUO78y82traulyXjg9JkoTT6RRtbW2J7qoqgfclSZLq91VVVRX25yRJEpIk2e5vpK1NiGuvFcIfdkR+/OQnQpw6lejempea8ZszKEQWo1d+SKQZgsCU/axZszSbBbIau+ZqxJovlWzJtQsW+Aut/fOfkdukpAAHDvj3zunOAh6aYIBCZDF65IdEG3ACx6yqqkra4l12XtUUS76UXQO2zt5/359ncs890dutX+8vT5+dbUy/kgXjPCKLCXzrLSkpgSRJIUFFrPkhagYcM1e/1YvdVzWp3aVbq4DNrNVr9+wBhg6Vb/fXvwK//KX+/UlWnEEhsiCtVwnZeYZAC8mwqilQzba0tBQFBQVRAwUtAjYzJtieOAGMGiUfnNxyi7/QGoMTfTFAIbIoLVcJ2X2GIF7RcjUA/wzTH//4R1N8+zdCvAGb2VZECQH89rdAr17Ali2R2511FnD0KPCXv7DQmhG4WSARwefzITc3F3V1dWHzUCRJgsPhQG1tbdIMwuGE27MmINn2rgkEGQDC3maMNJMX+FuLdEvR6L+1118HSkvl2+3Y4Q9QKD5qxm/OoBCRIdVv7aC4uBhPP/102NesXA8lFrHeZjRLgu2WLf5ZELngZPly/wwLgxPjMUAhIgDfDziDBg0KeX7w4MEhA06yVg4F/O999uzZYV+z4/JaObHcZkx0vtORI0BGhj/XJJp58/yBybXX6tINUoCreIgoRKS8AiD8LY5kurXB1U5dBZJrlUpUvlN7O1BcDCxbFr1dYSFrmZgFZ1CICIB84uI999xjqsTGREj0t38ziHcGLRErop5+2l9ITS44aWz01z5hcGIODFCISLYyqBACTz31VNJUDo0k2Vc7abE02Mh8J6/Xn2dy553R261b57+d079/3KckDTFAISLZWxcAogYfdqkcKicZ6qFEouXSYD13+waAffv8gUlhYfR2L77oD0wuuyyu05FOGKAQkWa3JOx8awNI3tVOeuy9o8du362twA9/CDid0dtNm+bPSbn11phPRQbgnTYiE0lU6W+tbknY9dZGR4Fv/+GShSsqKmyZLKxXcrDaBNto7rzTn2sSzdChwOefA337qj++Wcvy2xkDFCKTCLdCJjMzE2VlZbjvvvt0/TAM3LqQu80TSaC4lh1vbYSjdu8aqzNzcvCSJcD118u3+/prYPjw2M6R7KvXEkZYUFNTkwAgmpqaEt0VIiGEEG1tbcLj8QiXyyU8Ho9oa2tT9fNVVVVCkiQBIOwjKytLVFVV6dT77/sQ6fzRHpIkCUmSdO8fyYv37zASj8ej6G/B4/Focj4lPv9cCH8GSfTHW2/Fd55I/9/k331s1IzfDFCI4lRVVSUcDkfIh5fD4VD8wdXW1tbl5yM99P4wLC8vVx2gOJ1OfkibQLx/h9EE/kYjBdGSJAmn06lZQBTNN98IccYZ8oHJ/ffHfy65/28a+b7tggEKkUG0+Hal9NtpIBjQ88NQyQeyw+EQq1at0vxbOsXOiG/5gXN0Po9RMwk+nxCTJskHJvn5Qpw8qc05zThzZHVqxm+u4iGKkVYrG9Tct9d7KW9glYokSRFXqVRWVmLs2LEoLS1FQUGBbfMurEKPFTbh6L00OJo//clfaK2qKnq7hgbggw+AHj20Oa+Zc2+SAQMUohhptemZ2pUven8YJnIgIvWM3HxPj6XB0VRX++uZlJVFb/fRR/75kwEDtD1/shfmSzSu4iGKkVbfrtSuoDHiwzDZVqlYmdHf8rVcGhxJXR3gcMi3e/55YPp0/foR+P9mXV1d2BmqZFu9ZjTOoBDFSKtvVx1vq0RjdJXSwEDEWznmZqdv+SdPApdeKh+cTJniL7SmZ3ACJG9hPrNggEIUIy3Lngduq2RlZUU8FsAPQ+rKLuX3Z80CUlOBDRsitxk8GGhuBl591X/rxwi85Zk4DFCIYqT1t6vi4mI0NjaivLwcmZmZIa/xw5Aisfq3/D/8wR9sfPcWIvryS/8eO6efbky/OjI694a+o2Z50GOPPSYuueQS0bdvX5GdnS2KiorEl19+GdLmqquu6rIE69e//nVIm927d4trrrlG9OrVS2RnZ4s5c+aIU6dOKe4HlxmTmYSrPxFvbRC9Cm6Rfenxd6inNWuUFVp7881E95S0pGb8loQIk/kTwYQJE/CLX/wCl156Kdra2vD73/8en3/+ObZt24Y+ffoAAAoKCnDOOefg4YcfDv5c7969kZaWBsC/JO7CCy9ETk4OFixYgPr6etx444249dZb8dhjjynqR3NzM9LT09HU1BQ8LlEicZ8OMgMr/B0ePAj07y/fbu5cQOGQQBaiZvxWFaB0dvDgQfTv3x9r1qzBlVdeCcAfoFx44YWoqKgI+zMrV67Eddddh/3792PAd2vCXnjhBdx77704ePAgevbsKXteBihERNbS3u6vT9LeHr3doEFAbS2gYCggC1IzfseVg9LU1AQAXe6Xv/baa+jXrx8uuOACzJ07F99++23wtZqaGowcOTIYnADA+PHj0dzcjK1bt4Y9T2trK5qbm0MeRERkDTfd5C+0JhecfP21f4kxgxMC4qiD0t7ejlmzZuFHP/oRLrjgguDzkydPxtChQzFo0CB89tlnuPfee/HVV1/B7XYDABoaGkKCEwDBfzc0NIQ91/z581FeXh5rV4mIKAFefx0oLVXW7oYb9O8PWUvMAcrMmTPx+eefY+3atSHP33bbbcH/HjlyJAYOHIixY8di586dOOuss2I619y5c3HnnXcG/93c3Ayn0xlbx4mISFdffw2ce658u5tuAhYu1L07ZFExBSh33HEHli9fjg8++AAOmYo6Y8aMAQDs2LEDZ511FnJycvDJJ5+EtGlsbAQA5OTkhD1GamoqUlNTY+kqEZGurJCYapQTJ4BeveTb9ejhb9uNhS4oClV/HkII3HHHHXjjjTfw/vvv48wzz5T9mc2bNwP4vophXl4etmzZggMHDgTbvPfee0hLS8OIESPUdIeIKKHcbjdyc3NRWFiIyZMno7CwEP3798fDDz8c9+Z8VnPZZcqCk4MH/RVjGZyQHFV/IjNnzsSrr74Kl8uF008/HQ0NDWhoaMDx48cBADt37sQjjzyCjRs3YteuXXjrrbdw44034sorr8SoUaMAAFdffTVGjBiBqVOn4tNPP8U777yD+++/HzNnzuQsCRFZhtvtRklJSZc9lA4fPox58+ZhwIABwdw7O3v8cX+htfXro7d75JE1EALo18+YfpENqCmwgk4F2AKPhQsXCiGE2LNnj7jyyitFZmamSE1NFWeffba4++67uxRk2bVrl5g4caLo1auX6Nevn7jrrrtYqI2ILKOtra1LUbRwD0mSTFsoLV5r1yortAb8XkiSJJxOJwsOkn6F2syCdVCIKJG8Xi8KCwsVtXU6naitrbVNXsqhQ0pnQf4F4OKQZzwej+47IZO5GVYHhYgoGdXX1ytuu3fvXlRXV+vYG2O0t/s381MWnPRC5+AEUHfdiBigEBGpFEj6V8rqA/Mtt/gLrZ08KdfyXAASgBNhX1V73Si5MUAhIlIpPz9ftsRCR1YdmBcv9ifAvvxy9HZ//3s7HA4nJGl72NclSYLT6UR+fr4OvSS7YoBCRKRSSkoKKisrZdtZdWDeudMfmMhVd50yxZ8GO3Vqt+D1kCQppE3g3xUVFbbJwyFjMEAhshmfzwev14tFixbB6/UmXT0OoxQXF6OqqgpZWVlhX7fiwNza6g9Mzj5bvq3PB7z66vf/Li4uxtKlSzF48OCQdg6HA0uXLkVxcbHGvSW74yoeIhtxu90oKysLqc3hcDhQWVnJAUInPp8Pjz76KCorK3H48OHg806nExUVFZa57ldcAdTUyLdrbAT694/8OivrUjRqxm8GKEQ2ESgc1vn/0oFv8vwWqy+rDswLFgD33CPfzuMBuEI4dlb9+9AaAxSiJOPz+ZCbm9ulqmmAJElwOBy2qscRDQcDeR9/DOTlybd76CFg3jzdu2NrnNn8HuugECWZ6urqiMEJ4N9Hyy71OOSE2x8nNzc3KcrOK3H4sD/PRC44ueACfwIsg5P4RNoSoa6uDiUlJfy7jIIBCpENKK2zYfV6HHJiGQySJalYCOD004EIOb0hjh0DtmzRv0925/P5UFZW1uW2K4Dgc7NmzbLt31y8GKAQmZDaQVNpnQ2r1uNQIpbBIFlmW6ZP9+8efPRo9HZbt/oDmd69jemX3XFmMz4MUIhMJpZBM1A4rHMNigCr1uNQQ+1gkAxT7263/3bOn/8cvd0rr/gDkxEjDOlW0uDMZnwYoBCZSKyDZsfCYclaKEvNYGD3qffaWn9gMmlS9HbXX+8PTKZNM6ZfyYYzm/FhgEJkEvEOmsleKEvNYGDXqfeTJ/2BybBh8m3b2oD/+z/9+5TMOLMZHwYoRCahxaBZXFyMXbt2wePxwOVywePxoLa21vbBCaBuMLDj1PtVV/l3G5ZTX++fNbHxZJppcGYzPgxQiExCq0EzJSUFBQUFKC0tRUFBQdJ8+KkZDOw09V5R4Z81+eCD6O1Wr/YHJjk5hnSLvpPsM5vxYIBCZBJ2GjQTRelgYIep9/Xr/YHJ7NnR2z3wgD8w+fGPjekXdZXMM5vxYCVZIpMIVIOtq6sLm4eSbNVg46GkkmwgIRlAyPU2+9YAR44AZ5wh3+7cc4Evv9S9O0SqsJIskQXxfrV2lNzmstrUuxD+ImtKgpOjRxmckPVxBoXIZMLt22G1nXGtxAr79vzmN8D//q98uy1b/CXqicyKmwUSWZwVBk0jJev1eOstoKhIvt3LLwM336x/f4jipWb87m5Qn4hIhcAtCkrOnWB37wZyc+XbFRcDVVW6d4coIRigEJFpBRJZO0/0BirrmjFXJB4nTyqrZQL4C60lwSQSJTEmyRKRKdm9HH1nP/mJsuCkro6F1ig5MEAhIlOyazn6zv73f/31TFatit7u3Xf9gcmgQcb0iyjReIuHiEzJKuXoY03g3bgRuOQS+ePPnQs89pgGHSWyGAYoFpSsKxoouVihsm4sCbxNTUBGhvyxhw0Dduzwz64QJSMuM7aYZFzRQMnJ7JV1IyXwRqpEG9gH58AB+WO3tAB9+2raXSJTYCVZmwp8IHa+Lx9Y0eB2uxPUM7Iyn88Hr9eLRYsWwev1mibp1MyVddUm8N55J9Ctm3xw8umn/kCGwQkRAxTLSLYVDWQMt9uN3NxcFBYWYvLkySgsLERubq5pgl2zlqNXmsD75JNbIUnA009HP96LL/oDk1GjNO4okYXxFo9FeL1eFBYWyrbzeDws8EWKqL1FkUhmy7tatGgRJk+eHKWFA8Be2eP89Kf+arFEyYKVZG3IKisaKPGUDOZyM3KSJGHWrFkoKioyRQK22SrrRk7M7Q7glKJjnDoFdOcnMFFEvMVjEVZY0UCJp/SWTbLUGNFLfn4+HA5Hp9yYf0JJcLJ3r/92DoMTougYoFhE+A/E70mSBKfTifz8fIN7RmahJok60TNyZk3MVapjAi8wHYAAcE3Un1m50h+YOBx6947IHhigWISZVzRQ4qlNok7kjJzZE3OVGjasGEK0A3g+ars5c/yByYQJxvSLyC6YJGsx4eqgOJ1OVFRUmCahUQmzJT3GwkzvQW0SdaJqjFgpMTeS5mYgPV2+3ZAhwK5dLLRG1JGq8VtYUFNTkwAgmpqaEt2VhGhraxMej0e4XC7h8XhEW1tborukSlVVlXA4HAL+eXEBQDgcDlFVVZXorilmtvfgcrlC+hLp4XK5Qt6DJElCkqSQNoHntH4vbW1tXa5Z5/M6nU7T/j23twsxeLAQ/vmQ6I8k/WgikqVm/GaAQoYKDIrhBic9BkU9mPE9eDweRQGKx+Pp8l46Bw1Op1OX9xBrH81gzhxlgcm//pXonhKZm5rxm7d4yDCB2wqRVo8kunS5EmZ9D/HcsjHqVpV87RA/l8uF0tJSzc8fi7ffBiZOlG/33HPAjBn694fI6ljqnkzJDktbzfoe4kmiDtQYKS0tRUFBgS7Bic/nQ2Njo6K2ZlgqX1fnzx2RC04mTPDPnTA4IdIeAxQyTKKXtmph2bJlitol4j2YtSx8YNXO7Nmzo7Yzw1L5tjZ/YKJkKfDJk/6lw0SkD5YKIsMYvbRV61sXbrcbFRUVitomahaguLgYRUVFplldFGnVTmdmWCpfVKSs7PyePYDTqX9/zMZMq9YoSahJbnnsscfEJZdcIvr27Suys7NFUVGR+PLLL0PaHD9+XNx+++0iMzNT9OnTRxQXF4uGhoaQNrt37xbXXHON6NWrl8jOzhZz5swRp06dUtwPJslaU2AVR7gEU2i4iqOtrU2Ul5eLzMxMzVbZyK1A0fo92IHSawYdE3OVeOklZQmwy5cnpHumYLZVa2Rduq3iGT9+vFi4cKH4/PPPxebNm8U111wjhgwZIo4ePRpsM336dOF0OsXq1avFhg0bxOWXXy6uuOKK4OttbW3iggsuEOPGjRObNm0SK1asEP369RNz587V5Q2Suei9tLWqqkpkZWVFDB5iPYfSFSgA+KH9HaXX7Omnn1Yd0Gmx1P7TT5UFJrNmqT60rZhx1RpZl2HLjA8cOCAAiDVr1gghhDhy5Ijo0aOHWLJkSbDNF198IQCImpoaIYQQK1asEN26dQuZVXn++edFWlqaaG1tVXReBijWptfS1qqqKt1mOJTWGZmV7KNZB7HUZlEi3m/zLS3KApOcHH/tk2Rm9do1ZD5qxu+4kmSbmpoAAJmZmQCAjRs34tSpUxg3blywzXnnnYchQ4agpqYGAFBTU4ORI0diwIABwTbjx49Hc3Mztm7dGvY8ra2taG5uDnmQdRUXF2PXrl3weDxwuVzweDyora2NK4kzUOpdjohxlY3SnJKioiJVx7UzPXKO1Ow31JkQwLBhwOmny5/nyBGgvp5VYM26ao2SQ8wBSnt7O2bNmoUf/ehHuOCCCwAADQ0N6NmzJzIyMkLaDhgwAA0NDcE2HYOTwOuB18KZP38+0tPTgw9nMmao2YzWS1vlPkg7U7vKhps1qqf1NVO731BHc+cC3boBtbXRz7Fhgz+QUVLKPhnYYeUdWVfMAcrMmTPx+eef4/XXX9eyP2HNnTsXTU1NwcfevXt1PydZi9oPSLWrbLhZo3paXzOl3+afeeaZYJDy7rv+WZDHH49+7Gee8QcmF1+sqCtJI5GbShLFFKDccccdWL58OTweDxwdCgbk5OTg5MmTOHLkSEj7xsZG5OTkBNt0LtgU+HegTWepqalIS0sLeRB1pOYDMtaZDrPWGTEzLa+Z0iB09uzZcDovgyQB48dHbzt2rD8wueMOxd1IKpw5pIRSk9zS3t4uZs6cKQYNGiS+/vrrLq8HkmSXLl0afO7LL78MmyTb2NgYbPPnP/9ZpKWliRMnTijqB5NkqTO5JczokNQXbzKu1TdrTAQtrpmyVUHdFCXAAkIozMlPekZvKkn2ptsqnhkzZoj09HTh9XpFfX198PHtt98G20yfPl0MGTJEvP/++2LDhg0iLy9P5OXlBV8PLDO++uqrxebNm8Xbb78tsrOzucyY4hbpgzTwyMrK4oephckHoUsVBSa7diX6nViPkZtKkr3pFqBE+taycOHCYJtAobYzzjhD9O7dW/zsZz8T9fX1IcfZtWuXmDhxoujVq5fo16+fuOuuu1iojTQR7oM0MzNTlJeX22KmI9lnb8IHoTcrCkyWLUt0760t2f/2SBvczZiSml1LcrvdbpSVlYUkijocDlRWViZV/sv31wEA5BPmf/KTr/Huu+fo3i8ikqdm/GaAQmQBkfa0CSQvJlOSbmsrMGaMwKefyhUpOQSgHzweDwoKCgzoGRHJUTN+czdjIpOLp/6H3cyaBZx2GhQEJxmQpGyuMCGyMAYoRCbHap7A//2fv57Jd2VVorgUgARJ8lebZm0aIutigEJkcslczXPLFn9g8otfRG+XlTUNgARgAwDWpiGyg+6J7gBRR3ZNcI1HMlbzPHIEyM0FvtvuK6J584CHHgJ8vpdRXX0z/26IbIRJsmQaXKUSns/nQ25uLurq6sLmoUiSBIfDgdraWssPyu3twKRJwJtvRm931VXAe+8BPXoY0i0i0giTZMly4tml1u6SZR+gigogJUU+OGlsBLxeBidEdscAhRKOq1TkmXkfIJ/PB6/Xi0WLFsHr9ar+Pa1Z488zmT07ert16/wl1/r3j6OzRGQZvMVDCef1elFYWCjbjvUszJejE89tuX37AKdT/hwvvgjcemu8PSUiM1AzfjNJlhIumVepqJWSkmKaIC1S8bjAbblIMzutrcAVVwD/+lf040+dCvztb/7ZFSJKPrzFQwmXjKtUrC7W23Jz5vgLrUULTpxOoKUF+PvfGZwQJTPOoFDC5efnw+FwyK5S6VwR1Cy3O8zSDyOpKR5XUFCApUuBn/9c/rhffQWcw21ziAicQSETiGWVitvtRm5uLgoLCzF58mQUFhYiNzfX8NU+ZumH0ZTeblu//hgkST44eestfwKslYKTeJODiUiGxjspG0LNds1kHVVVVcLhcAgAwYfT6RRVVVVd2kmSFNIOgJAkSUiS1KW9nv01Qz8SwePxdHnfoY80ARwU/rAj8uO++xL9TmIT7m/V4XDY+ndOpAU14zdX8ZCpyN0uCRQti3R7waiiZWbpR6JELh4nAXgdwPVRfz4/H1i92pq1TLizNFHs1IzfDFDIUsyyJNks/UikwEANBBJj7wDwjOzPNTQAAwbo2ze98oKSPTAlihcryZJtmWVJsln6kUiB4nH9+v0X/Hc5ogcnH33kv7Gjd3CiZ14Qd5YmMg4DFLIUsyxJNks/Emn/fmDSpGIcPBh94H/+eX9gkpenf5/03jKBgSmRcRigkKVcccUV6NevX8TXJUmC0+nssiRZa4Gl0Z1XHRndj0Q4eRK47DKgU9X9LqZM8W/+N326MStejNgygYEpkXEYoJBluN1unHXWWfj3v/8d9vV4N85TM4gmywZ+nd1zD5CaCqxfH7nN4MFAczPw6qv+QmtGLcU24vZLMgemRIbTaymRnrjM2K+trU14PB7hcrmEx+MRbW1tie6SbiIt6e34CCxJjuW6xLpsVOnSaKurqoq+XDjw+PLLzj9n3FJsl8sls/TZ/3C5XHGdJ/CeOr+vZFheThQvNeM3AxSLSqY6DG1tbV3ea+dHdna2aG1tjem6xDuI2jlQ/OILZYHJG290/Vm535skScLpdGp2veRrs/gfHo8n7nMlS2BKpDUGKDaXbAXClA485eXlqq+LFoOoHQOUpiYhBgyQD0x+97vIxzAyYBDi+99lpJk2rQMiO/7eifTGAMXGjP5WagZKp+4zMzNVX5d4B1G7zWS1twtxww3ygUlenhCtrdGPZdQtl454+4XI3NSM30yStZhkrMOgdEXE4cOHI74W6brEs2xU7yWtRnv2WaBbN+D//i96u/37/TVNevaM3i4RK14CtVkGd1pi5HA4WOGVyGIYoFhMMtZhULJyIisrS9GxOl+X/v37K/q5zu2MWNJqlA8/9K+2ueOO6O3WrvXPnyiNJxK14qW4uBi7du2Cx+OBy+WCx+NBbW0tgxMii2GAYjHJWIdByZLe3/72t4qOpdV1scNMVkODPzD5j/+I3u6ZZ/yByY9+pO74iVyKnZKSgoKCApSWlqKgoMB2y72JkgEDFItJ1joMclP39913X0zX5cCBA4rO37mdlWeyTp0CrrhCfibkhhsAn09+ZiUa3nIholh1T3QHSJ3At9KSkhJIkhRyi8HOBcIA/2BXVFQUcRO4WK5LrDNSVp3J+v3vgfnzo7cZMAD4+mtAq3045X5vZqHXBoNEFCM9s3X1ksyreAJiqcOQDMsi1V6XWJemGr2kNV5vvqmsnsm2bYnuaWLYbTUWkVlxmXGSUBNwJNMHsNpALNalqVZY0vrVV8oCk6VLE93TxEm2ukJEicQAhULwA1herJVBzVpRtLlZiMGD5QOTOXMS2s2ES8a6QkSJpGb8loQIs07S5Jqbm5Geno6mpiakaXWj3KZ8Ph9yc3MjrjiRJAkOhwO1tbVJf7891hwEM+UuCAFMnQq89lr0dpde6l82LFfLxO68Xi8KCwtl23k8HhQUFOjfISKbUzN+M0nWpLQa9NQsh032D+DA0lSjfk5rf/4zMH26fLu6OmDQIP37YwVWXo1FZHcMUEzI7XajrKwsJLBwOByorKxUvSyTH8D29/HHQF6efLsPPgBstvo8blZdjUWUDFgHxWS0Lp/OD2D7amz0F1qTC04qKvy3fhicdJWsdYWIrIABionoUT6dH8D2c+oUcOWVQE5O9HaTJvkLrZWVGdMvK0pktVsiio4BionoUT6dH8D28sAD/sTWaH8CWVnAkSPA0qX+zf8oOla7JTIn5qCYiNI8kLq6Oni9XsUJtIEP4HB5LRUVFfwAtoDly4Gf/lS+3eefA+efr39/7MYq1W6JkgmXGZuI0iWP2dnZOHjwYPDfShNozbQcVg92fH/btwPnnCPfbvFi4Oc/178/RETxUDN+M0AxkUDNkrq6urB5KJEEbtUk83S0liufzODoUeCCC4Ddu6O3u/NO4I9/DH3OjoGaFfC6E8lTNX7rVS1OT3auJBupfLrcI5krXtqpUm57uxDTpslXgL34YiFOnOj688m0pYGZ8LoTKaNrqfs1a9aI6667TgwcOFAAEG+88UbI69OmTesyUIwfPz6kzaFDh8TkyZPF6aefLtLT08Uvf/lL0dLSorgPdg5QhAj/YZedna0oUPF4PInuvqGUlCp3OBxi1apVsnvzJHozxZdeUrZvzt694X/eioFaoq+5Fqx43YkSRdcAZcWKFeK+++4Tbrc7YoAyYcIEUV9fH3wcPnw4pM2ECRPE6NGjxccffyyqq6vF2WefLUpLSxX3we4BihBdP7hfffVVRQGKy+VKdNcN5fF4VM00Rfpmm8hvwOvWKQtMvN7Ix7DinjJ2mHWw4nUnSiTDNguMFKAUFRVF/Jlt27YJAGL9+vXB51auXCkkSRJ1dXWKzpsMAUpnSgfiZJtBcblcqgOUzt9sE/UNuLFRWWDy1FPyx7La34ddZh2sdt2JEk3N+K1LlQSv14v+/fvj3HPPxYwZM3Do0KHgazU1NcjIyMAll1wSfG7cuHHo1q0b1q1bp0d3bIEF18KLpQKu6FD07uTJk5oXx5PT1gYUFAADBkRv97Of+QutzZ4tf0wrbWmgR0HCRLHSdSeyGs0DlAkTJuDvf/87Vq9ejSeeeAJr1qzBxIkTgx82DQ0N6N+/f8jPdO/eHZmZmWhoaAh7zNbWVjQ3N4c8kg0LroUnF7hFIr4revfcc89pXhwvmoceAnr0ANasidwmIwP45hvA7VZeaM1KWxroUZAwUax03YmsRvMA5Re/+AX+8z//EyNHjsR//dd/Yfny5Vi/fj28Xm/Mx5w/fz7S09ODD6fTqV2HLYQVL7uKFrgpsXPnTkXt4v0GvGKFf9+c8vLo7T77zB+cZGSoO76VZtjsNOtgpetOZDW6F8IeNmwY+vXrhx07dgAAcnJycODAgZA2bW1tOHz4MHIibC4yd+5cNDU1BR979+7Vu9umVVxcjF27dsHj8cDlcsHj8aC2tjYpg5OASIGbEmeddZaidrF+A9650x+YXHtt9HaLFvkzTkaOjOk0lpphs9Osg5WuO5HlxJPsgjBJsp3t3btXSJIkli1bJoT4Pkl2w4YNwTbvvPMOk2Qpbh1XPq1atSrq6goAwul0itbWVuFwOCLWnYl1FcbRo0KceaZ8AmxZmbbXINLKmPLyctMs5Q2sfNH6midSuOvudDotk+xLZBRdV/G0tLSITZs2iU2bNgkA4qmnnhKbNm0Su3fvFi0tLWLOnDmipqZG1NbWilWrVokf/vCHYvjw4eJEh6pSEyZMEBdddJFYt26dWLt2rRg+fDiXGZPm7r777qgByt133y2EiFwcL5YVJe3tQtx8s3xgMnq0EMeP6/O+OwZq5eXlYvDgwSHva/DgwQkPWLS85mZhh5ouRHrTNUCJtKxu2rRp4ttvvxVXX321yM7OFj169BBDhw4Vt956q2hoaAg5xqFDh0Rpaano27evSEtLEzfffDMLtZGm5OpTBL7hBgYRLb4Bv/yysmXDe/bo9a5DRVrK2/mRqNojesw6MEggMjc14zf34iFTindfE6UbL3o8HhQUFMR1zg0bgEsvle/T6tXAj38s304LgX2doq2WCUjkXk5a7l9jt/2YiOyIe/GQpWlRYVRpAbd4Ku8eOCBESor8jMmCBTGfImZqK+xaMe+jI7sUfiOyu4QXaiP78/l88Hq9WLRoEbxer2ZFtdxuN0pKSrp886+rq0NJSQncbrei4+i5UqStDRg3Dujf319ILZKf/tTfds4c1aeQJXf91S7RFRaqPdKZnQq/EVEHekdLeuAMSmLptYeKlvua6LVS5JFH5GdMTj9diE7bT2lKyfWPZY8ixDmjlCgsN09kHZxBId1oNcMRjpYVRrWuT/HOO/56Jg88EL3d5s1AczNwxhmKDqua0usfa4VdK9Qe6czowm96zR4SUSgGKKSY3lPpWg80WlTera31ByYTJkRv9+qr/vmT0aMVdS0maq6/2gq7Vq54amThN7fbjdzcXBQWFmLy5MkoLCxEbm5uXIE5EUWg72SOPniLRxtql2TqPZWu1/FjWXp67JgQw4fL386ZOdNf+8QIsVyfcLeDOj+snkhqVOE3JuISxU/XOihmwAAlfrHkkei9MsYMFUbb24W47Tb5wOT884X49lvduhFWrNe/c+E2O1Y81bvwm5b5UUTJjAEKRRXrN0EjkhETWWH0b39TVmht1y7duhCVVtffrsXM9Cw3z0RcIm0wQKGI4vkmaORUupHf8v/1L2WBybvv6nJ6xcwww2R2egVfRtTVIUoGasbv7qCkomalTKDCakAg8bKkpASSJIUka2q5c2txcTGKioo0qzDaWaB66ddfH8Idd/wMp05FzxWfPx/43e80OXVcjLr+VpaSktLl71YLRu/ArGWFXSLL0jta0gNnUGKnxTdBK+/cWlVVJQYPHiKAlbIzJhMnCmHGyQgrX3+rMnL2Sq86Q0RmwL14KKJY9qgJx4rf8NxuNyZN2gDgsajtevUC9u4FsrKM6VcsrHj9jaDndQnUoAEQdvZKi72MAufo/LGcyP2SiLTEvXgoomTNY1i5sk1Rnsn69fZ638nEiJkHPWevuFKIkgEryVJEWldYNbtdu/yF1iZOlHs/UwFIOHrUenvRdJSsVU71rHDcUXFxMXbt2gWPxwOXywWPx4Pa2lpNZjW0rKRMZAcMUJKQFhVWze74cWDECODMM+VaPgdAAvAqAO3KoSdCslY5NXqzwEAibmlpKQoKCjQL5o0u2U9kdgxQkpSe3wQTSQjg9tuB3r2BL76I1vJLAL0AzAx51op70QDGzSCYkV1mHoxeKURkdlxmnMT0WpKZKK++CkydqqTlmQB2hTwjSRIcDocl96KRm0GQJAmzZs1CUVGRbW7ddWSXmYfABo91dXVhf5dW/hsligVnUMjyNm/255nIBScPPLAWktQNkrQ75Hmr597YZQYhVnaZeUi2/DAiOQxQyLIOH/bfyrnooujtHn3Uf+vn4Yf/w5a5N4meQUh0Ym5g5iHSrs1W2qk5GfLDiJTiLR6yHJ8PKCoC/vnP6O2uvhpYsQLo+IVT7yq1iZDIGQS3242ysrKQGRyHw4HKykrDBlO7Vdi1498oUSxYqI0sZcEC4J57orfp0QPYvx/o18+YPiWaz+dDbm6ubO5CbW2tpoOc2YqKhQuWnE4nKioqOPNAZBJqxm8GKGQJq1cD48bJt9uwAbj4Yv37YzZGVDntKBAURcp90SsoUtIvzjwQmZea8Zs5KGRqe/b4E2DlgpOFC/15JskYnADG5y6YNTFXrxolRGQ85qCQKZ04AVx6KfD559HbFRbuwAMP7MOVV+YDSO7ByMjchUQn5hKR/TFAIVMRAigrA555Jnq77t1r0dZ2Pjye4/B4jE/MNCujatvYZWkvEZkXc1DINBYtAiZPVtLybAA7Q54x+26vdsuNSFRiLhFZG3NQyFI++8yfZyIXnPzjHz44HE50Dk4AffZc0Yod98hhUTEi0hsDFEqYI0eA9HRg9Ojo7crL/bd++vY1Z2JmNHbeI4dFxYhIT8xBIcO1twPFxcCyZdHbjR0LvP020P27v1KrJWaq2SMHgCVvAbGoGBHphQEKGeqpp4C77oreRpKAhgagf//Q562WmKl0Ke6jjz6Kl156KaHVWONht00nicgceIuHDOH1+gMPueDkk0/8MyydgxPAenuuKJ3JmTdvni1vARERxYMBCulq3z5/YFJYGL3dX/7izzO59NLIbayWmBnPTI6Zk34pvERvmkhkNwxQSBetrcAPfwg4ndHb3Xyzf8bklluUHddKiZlyMz5yzJj0S+HZcaUWUaIxQCHN3XkncNppwKZNkduceSZw9Cjw8sv+GRY1iouLsWvXLng8HrhcLng8HtTW1poqOAGUzfgoYZakXwrPziu1iBKJhdpIM4sXAzfcIN9u+3bg7LP1749ZhNtlNysrC4cOHVL08x6PJ5iEareCb1Zn1k0TicyKhdrIUFu3+mdB5IKTf/zDn2eSTMEJ0HXGZ9WqVejVq5fsz3VO+uVtBPMx66aJRHbAAIViduQIkJkJXHBB9HYPPugPTK67zpBumVLHXXZTUlKiDmoBQohg0i9vI5iT1WrzEFkJAxRSLVBo7YwzgG++idzuqquAkyf9lWDpe0oHq1mzZqG4uFi24FugLVeNGM9qtXmIrISF2jrg/X15FRXA7Nny7RoagAEDdO+OrvT6e1A6WHWsMKv0NgILphkrsFJLbtNEs9TmIbISzqB8h/f3o/vgA3+eiVxw8vHH/ts5geDEqrUh9Px7UFtwjrcRzMtqtXmILEVYUFNTkwAgmpqaNDleVVWVkCRJAAh5SJIkJEkSVVVVmpzHivbtE8IfckR/vPhi15+tqqoSDocj5Jo6HI6w17OtrU14PB7hcrmEx+MRbW1tBry78Iz4ewico/N5wp3D4/F06Uu4h8fjibtfFJtwf+tOpzOpPzuIwlEzfid9gNLW1tblg6XzgOF0OoMDppkGUj2dOCHExRfLByZTpwrR3t7159UM8moCGb2p/XuIh9JBLdCncNdT6z5R7JLls4EoHgxQVFDz7dRMA6me7rpLPjBxOoVoaQn/82oGebPNXhk9W6F0UFMz40JEZFZqxm/VOSgffPABfvrTn2LQoEGQJAlvvvlmyOtCCDz44IMYOHAgevXqhXHjxmH79u0hbQ4fPowpU6YgLS0NGRkZuOWWW3D06FG1XdGE0vv2y5Yts/0yz6VL/Xkmf/xj9HZffQXs2QP07Rv+daVJnV6v13SrU4zO9+i4/LigoCBiroKVSvybiVVzoIgohiTZY8eOYfTo0Xj22WfDvv7kk0/iT3/6E1544QWsW7cOffr0wfjx43HixIlgmylTpmDr1q147733sHz5cnzwwQe47bbbYn8XcVC6ouLVV1811UCqpS++8AcmP/959HbLlvnnT845J3o7pYO31+s1XZErMy8btUqJf7Ng4juRxcUzVQNAvPHGG8F/t7e3i5ycHLFgwYLgc0eOHBGpqali0aJFQgghtm3bJgCI9evXB9usXLlSSJIk6urqFJ1XjxyUaPf3s7OzbZmk2NQkRHa2/O2c++5Td1ylt0nuv/9+Re1cLpc+FyAMub8HfHdbr+OtGOYemI/Zbh0SkZ+ut3iiqa2tRUNDA8aNGxd8Lj09HWPGjEFNTQ0AoKamBhkZGbjkkkuCbcaNG4du3bph3bp1YY/b2tqK5ubmkIdWlCwTnDJliqJjGbXMMzBt/dprr6GiogKvvfaaqunr9nbg+uuB9HTg4MHI7X70I3+htT/8QV3/lC6jVVqzw8jZimh/DwHHjx/HsmXLAFj7W7pdb3+wsB2RTcQTCaHTDMqHH34oAIj9+/eHtPv5z38urr/+eiGEEI8++qg455xzuhwrOztbPPfcc2HPM2/evLDfZLVaZixE9BUVZlrmGa6f6PDNXu6b4TPPKFs2XF8ffz/lkjrNvDqlqqpKZGVlReyXJEni7rvvtuy3dDsnfJvp/69EFMqwVTxGBSgnTpwQTU1NwcfevXs1D1CEiDxVb5aBNNK0dee+hBtk1q5VFph89JG2/ZVbRmvW1SlKViKlpKREfd2sS3/tfvvD5XIpClCMvHVIRH4Ju8WTk5MDAGhsbAx5vrGxMfhaTk4ODhw4EPJ6W1sbDh8+HGzTWWpqKtLS0kIeeoi0osIM1SKjTVt31nH6ur7enwD7H/8R/Weef94fouTladFbv2hJnYHbC62trXjooYdMtzpFyUqkaLcIhEl3sU2G2x9mTnQmIhXiiYSA8Emy//M//xMSLYVLkt2wYUOwzTvvvJOwJFk1ElktUum0deDx7rteMWaM/IzJ5MnhC63pKdx1HDx4sCgvL9cl0TSWJFal38LlHoFv6WZJpE2G2x9mmfEkoq50vcXT0tIiNm3aJDZt2iQAiKeeekps2rRJ7N69WwghxOOPPy4yMjLEsmXLxGeffSaKiorEmWeeKY4fPx48xoQJE8RFF10k1q1bJ9auXSuGDx8uSktLdXmDWkvUQKNuwJwvG5gMHChEc7MhXQ9h9O2FWHMt1AaE0QZ6M+V7JMvtDyNuHZol6CSyEl0DlEgf3NOmTRNC+GdRHnjgATFgwACRmpoqxo4dK7766quQYxw6dEiUlpaKvn37irS0NHHzzTeLlkhlScNIZICSKMoGzP+SDUwAIb74IjHvwcgy8kLEFwwp+RauJAdlyZIlpsr3SIYZlAA9ZzzNFHQSWQlL3dtQ9MH9HEWBSYe7cbr0T+7bpJGDoxbBkNy38MAqnkivL1682NCATM11SZbbH3rMctg9yZhITwxQbKrrB2NfAdTJBia/+53+/VLybdLI2wtaBUNy38Ktsjy983sy48opKzB6FpDIbhig2FhVVZUYPNghgNdkA5MxY4Robf3+ZxP9bVLrATva+9EyGJK7bpFeN3O+RyITvq3MrEEnkVWoGb+7gyylsbEYdXXyS2/r6oBBg77/t9vtRllZWcjSWYfDgcrKypiX8sotWZUkCbNmzUJRURFSUlKCFWbr6urC/owkSXA4HMjPzw97rurqatTX12PgwIE4ePAg7rzzzojvR8ulpoHl52pfV9qHzptpGqG4uBhFRUUh1zQ/P1/XpfJ2YPRmkkRJTe9oSQ/JOIPy0UfKCq2tXdv1ZxcvXhxxOjqeKf1Yvk3GcnshWvXcSMcwQ66Fkn19Ag/OXFgDZ1CI4sNbPDZSX68sMHnmmfA/v2TJEt0qnsZ6C0PN7QUl1XMjvR8z5Foorf7LvAVrMEPgS2RlDFBs4ORJIX70I/nA5IYbhPD5wh+jqqpK8cAeyze+eL5NKsmHkUtIlDtnW1ubKC8vF5mZmYqCIb2Ul5fzW7eNmCHwJbIq5qBY3H33AY89Fr1Ndjawfbt/R+JwAvkhSsVyzzyenBK5vA5Avtx8NMuWLcPUqVNDfj4zMxNlZWW47777DM21GD58uKJ2zFuwhuLiYixdujRsTldFRUXCtmcgshsGKCby1ltAUZF8u61bgREjordRO7jHsi9JYI+ikpISSJIUEqRosUdRPAN2RUVFl+e++eYbPPTQQ7jgggsMHUS4N4z9MMmYSH+abhZIsfn6a/+GfnLBydKl/hs7csEJoG5wdzqdYWc5lAh8m9Rjs79YBmxJkiIOEoEAyujN8AIzTZ03mgyQJCmu3wElRqTNRYlIGwxQEujoUcDhAM49N3q7OXP8gcmkScqPrWZwj3cn5mi7FsdDbmDvLDCLY7Zdhs2wGzYRkdUwQEkAIYD//m/g9NP99UoiufRS4MQJYMEC9edQMrinpKRg8eLFmtzu0OPbZLSBPRyHw4FZs2YpOrbR+R56zjQREdmRJMJlN5pcc3Mz0tPT0dTUhLS0tER3R5UXXwR+/Wv5dvv2AZ3GMtXcbjdKSkoAIGwS65IlS4Kvm1mkInNPP/00+vXrF5IDUF1djcLCQtljejwe2SRdPXQuOMe8BSJKJmrGbybJGmTdOuDyy+XbffABoFUqQqTVBk6n03KrDToHWEIIdOvWrUuQEc/KIiMoWb1EREScQdFdYyOQkyPfrqICULEqWBUrf2sPzAJ1/jMN3PIJd3sk0sxRtJ8hIiL9qRm/GaDo5NQpYOxYQC4Xc9IkYPFioBuzgbrw+XzIzc2NuFw6MBtSW1vbJeAKd1vIijNHRER2wgAlwebNAx5+OHqbrCxg587IhdbsIp7ZG6/XG1c+iZVnjoiI7Ig5KAnyz38C110n3+7zz4Hzz9e/P0aIFgTEu4NyrDvHdu7T9ddfz8CEiMhiGKBoYMcOQEk188WLgZ//XP/+GCVaAAIgbO5IXV0dSkpKFOWBxFKBNd6giIiIzIG3eOJw7Jh/JmT37ujtZs8GnnrKmD51pOctjmjJq0IIZGVl4dChQ2F/NlruSOf+5+bmyq7ICRwnloRaIiIyjprxm6mZMRACuPlmoG/f6MHJRRf5C60lIjhxu93Izc1FYWEhJk+ejMLCQuTm5sLtdsd97MBGhOGChsBzkYKTQBsl1VzVVGCV65MQArfddhtWr15taJl7IiKKDQMUlf76V/+Km1deid5u717gX/8CUlMN6VaIwExC59Uvgdsr8QYp8ewy3JGSHBOlFViV9OnQoUMYN26cZoEa6cfn88Hr9WLRokXwer0MKomSEAMUhdav92/o96tfRW/n8fhnWBwOY/rVmZLZjXg3y9OqTLzSHBMle/2o6ZNWgRrpQ8/ZPyKyDibJyjh4EBgwwB90RPPHPwJ33mlMn6KRm0noeHsl1oqmsewy3FEs1VzlKrCq6ZMQApIkYdasWSgqKjJ0hQ+XPkcXKY9ITXK1Vvi7IkowYUFNTU0CgGhqatLtHKdOCfHjHwvhD00iP4qKhPD5dOuGai6XSwCQfbhcrpjP0dbWJhwOh5AkKeyxJUkSWVlZQpKkLm0Cz1VVVWn4ruX7FOnh8Xg07Uc0VVVVwuFwhJzf4XBofi2sKvA7jPS7kiRJOJ1O0dbWpntf+Lsi0oea8Zu3eMJ45BGgRw/g/fcjt0lPBw4fBt5801xVYGNZmquWkuTVF1980dDde9XufBxg1K7GeucF2YGa2T898XdFZBL6x0va02sGZe1a+RkTQIjPPtP0tJpSMruh1bfQcN8ynU5nyLfMtrY24fF4hMvlEh6PR7S2tob8W+tvw+H6FO1hxAyKmWYGzMyI2T85/F0R6UvN+M0A5Tv79wvRq1f0wGTRIs1Op6uqqqqwt1cCjyVLlmh2rs4BSOCDO9zzRk2bt7W1iVWrVonMzExTDDQej8c0wZKZmeE6maEPRHbGACUGr78eOTD5zW+EaG/X7FSKRBr4lYo2k5CZmSnKy8t1G5zDnTsrKytioKBHTkqgH0bmwURihpkBKzBy9i8S/q6I9MUAJQbbtgmRkhIamIwcKcTx45qdQjGtZhoWL14c9UM2KytL80E6EBQovcWi98Cj5DaU3vitXLlEB5X8XRHpiwFKjN59V4gbbxRi6lQhdu/W9NCKRRrg1X5Ay91L7/jQ6kNfzTmN/NCPdzZKi/MnembAShIZVPJ3RaQvNeM39+IxkcDeM5FWMijdwwYAvF4vCgsLFZ3X6XQqOqYcNecMx+VyobS0NK4+mFVgZQiAkBof3CcovETWIOHvikg/3IvHorRcZqlm+axWSzfjXbIbbwG4RJIrza60ZL9W57O6QGG+0tJSFBQUGFogTevfFRHFhpVkTUTpAF9XVwev1xv126XawV6LeiCxBhixVJY1E7fbjbKyspDg0uFwoLKyMmQwKy4uRlFRUVwzAz6fD48++igqKytx+PDhqOej2GnxuyKiOOl7t0kfRlSSTQSlCXr9+vWTTaBVmw+iRf5HLNVcjV5Ro7WqqipD8nsC50rEaigiIq0wB8WiAjkodXV1YTf7iyTSvfFI+5p0/lmleS1KRLt/L4RAVlYWDh06FHze6XSioqLCkt/8fT4fBgwYEPJ+OsvKykJjY2Pc19btdmPSpElR22j9uyQi0hpzUCxKSQn5cAKBQOddigP30rOyssL+XOCYFRUVmg1o0e7fV1VVobGxMequxFbi9XqjBicAcOjQIXi93rjOE9ihWo4wqBQ8EZERGKCYTKQBPlKQERBpcCouLkZjYyPKy8uRmZkZ8ppeSX/FxcXYtWtX2EAkkcmPWlMaeMQboMglT3dm1P5CRER6YpKsCXVO0Nu+fXtwZkVOuMEpJSUFDz74IO677z7Dkv4CgUi8uOW9+oDDyquhiIgCGKCYVGCAd7vdeOihhxTnpEQbnLQKGowSbnVMZmYmysrKcN999+keqMgFRwUFBfjDH/4ge5x4r7magMPpdFp2NRQRUUdMkjUxucJtHdklQTIQFCxbtgwVFRUR22VlZeHFF1/ULX9FydJho5JklSZPS5KU0DodnO0iIjmqxm99FhLpy0zLjPUso6502TG+W2Zq9SWm0TY4jPTQc5PBcNe483U2apmx3A7VeuyrpLZ/RuxUTUTWxr14DKL3h7LSnVUzMzMtPxDEsskgAM33RZGrHxNuL5aqqioxePBg3QfncH9veu9MrbRfWuwfRUT2l9AAZd68eV0+qM4999zg68ePHxe33367yMzMFH369BHFxcWioaFB1TnMEKAY8aGsdAZl1apVGryjxDHTJoOx7mZr1IaEid74MFx/1AZ0RJS81IzfuiwzPv/881FfXx98rF27Nvja7Nmz8Y9//ANLlizBmjVrsH//fsvVwQjUpRBh8gFEhJokscjPz4fD4YhYA0WSJDidTkslvoajdhltZ1ouq1V6rM7t7LR8Wg0t948iIupIl1U83bt3R05OTpfnm5qa8Ne//hUulws//vGPAQALFy7ED37wA3z88ce4/PLL9eiO5tR8KMcTPAQKt5WUlAQrsQboUWQtFlokRpppk0Glx0rEUl6le/4YKdaAjohIji4zKNu3b8egQYMwbNgwTJkyBXv27AEAbNy4EadOncK4ceOCbc877zwMGTIENTU1EY/X2tqK5ubmkEciGfmhbOadVd1uN3Jzc1FYWIjJkyejsLAQubm5cLvdqo4TzyaDWi+rVTprZfRS3sAWAp0D47q6OpSUlKi+5loxc0BHRBan9f2lFStWiMWLF4tPP/1UvP322yIvL08MGTJENDc3i9dee0307Nmzy89ceuml4p577ol4zHB5LUhgDkqseQrxMFvugZY5OGbbZDDSiplEJX2aOc9D7nfHHBQi6shUq3i++eYbkZaWJv7yl7/EHKCcOHFCNDU1BR979+5NaIBi1g9lIxM1tR4w5ZbR9u3bN+TfTqdT10Ah3IoZvc8ZSSICYjXMFtARkXklPEm2o4yMDJxzzjnYsWMHcnJycPLkSRw5ciSkTWNjY9iclYDU1FSkpaWFPBJJyaZ+RueGaHW7RQk9EiMj3cpyOp2oqqrCkSNHDN1kMNp+QkYze56HmW9DEpGF6R0ttbS0iDPOOENUVlaKI0eOiB49eoilS5cGX//yyy8FAFFTU6P4mGZYZiyEeb5lG12HQml9FpfLpfrYZruVZQZmn0EJ4O+OiOSoGb81L3U/Z84c/PSnP8XQoUOxf/9+zJs3D5s3b8a2bduQnZ2NGTNmYMWKFXjllVeQlpaG3/zmNwCAjz76SPE5zFTqPtHlveXK4Sspga/2PXi9XhQWFsr2zePxBFcxJfo6WZlcqXu7bHNARPaX0FL3N9xwgxg4cKDo2bOnGDx4sLjhhhvEjh07gq8HCrWdccYZonfv3uJnP/uZqK+vV3UOs8ygmEG8365jqYarNgeHZdDjxzwPIrIDUyXJ6oEByvfiud0Sz60hpQMmy6Brxyy3FImIYpXQWzxGMNMtnkSL5XYLoM2toXCFw5xOJyoqKlBcXKzJOSgUb5URkZWpGb8ZoFhcrPkJsQY24c4facDU6hxERGQPasZvXUrdk3FiLYev1dLVwB40sfys2nZERJQ8dK+DQvqLpQ6FESXKWQadiIhixVs8NqImP8GIpatcHktERB2pGb85g2IjgdstpaWlKCgoiDroG1EN14wVd4mIyBoYoCQxI0qUsww6ERHFgrd4yJClq1weS0REXGZMlCAMxIiIIuMyY6IECFe4zuFwoLKykreyiIhUYg4KkQbcbjdKSkq6VM2tq6tDSUkJ3G53gnpGRGRNDFCI4uTz+VBWVhZ2KXXguVmzZsHn8xndNSIiy2KAQhSn6urqiPsNAf4gZe/evaiurjawV0RE1sYAhShOLOlPRKQ9BihEcWJJfyIi7TFAIYpTfn4+HA5Hl2q5AZIkwel0Ij8/3+CeERFZFwMUojixpD8RkfYYoBBpgCX9iYi0xUqyRBpiJVkioshYSZYoQQI7ShMRUXx4i4eIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHQYoBAREZHpMEAhIiIi02GAQkRERKbDAIWIiIhMx5KVZAPV+ZubmxPcEyIiIlIqMG4r2WXHkgFKS0sLAMDpdCa4J0RERKRWS0sL0tPTo7ax5GaB7e3t2L9/P04//XS0tLTA6XRi79693DhQR83NzbzOBuB1Ng6vtTF4nY1hlesshEBLSwsGDRqEbt2iZ5lYcgalW7ducDgcAABJkgAAaWlppv6l2AWvszF4nY3Da20MXmdjWOE6y82cBDBJloiIiEyHAQoRERGZjuUDlNTUVMybNw+pqamJ7oqt8Tobg9fZOLzWxuB1NoYdr7Mlk2SJiIjI3iw/g0JERET2wwCFiIiITIcBChEREZkOAxQiIiIyHdMHKIcPH8aUKVOQlpaGjIwM3HLLLTh69GjUn3nxxRdRUFCAtLQ0SJKEI0eOaHJcu4vlmpw4cQIzZ85EVlYW+vbti0mTJqGxsTGkjSRJXR6vv/66nm/FVJ599lnk5ubitNNOw5gxY/DJJ59Ebb9kyRKcd955OO200zBy5EisWLEi5HUhBB588EEMHDgQvXr1wrhx47B9+3Y934IlaH2db7rppi5/txMmTNDzLViCmuu8detWTJo0Cbm5uZAkCRUVFXEfM1lofZ0feuihLn/P5513no7vQAPC5CZMmCBGjx4tPv74Y1FdXS3OPvtsUVpaGvVnnn76aTF//nwxf/58AUB88803mhzX7mK5JtOnTxdOp1OsXr1abNiwQVx++eXiiiuuCGkDQCxcuFDU19cHH8ePH9fzrZjG66+/Lnr27ClefvllsXXrVnHrrbeKjIwM0djYGLb9hx9+KFJSUsSTTz4ptm3bJu6//37Ro0cPsWXLlmCbxx9/XKSnp4s333xTfPrpp+I///M/xZlnnpk01zQcPa7ztGnTxIQJE0L+bg8fPmzUWzIltdf5k08+EXPmzBGLFi0SOTk54umnn477mMlAj+s8b948cf7554f8PR88eFDndxIfUwco27ZtEwDE+vXrg8+tXLlSSJIk6urqZH/e4/GEDVDiPa4dxXJNjhw5Inr06CGWLFkSfO6LL74QAERNTU3wOQDijTfe0K3vZnbZZZeJmTNnBv/t8/nEoEGDxPz588O2v/7668W1114b8tyYMWPEr3/9ayGEEO3t7SInJ0csWLAg+PqRI0dEamqqWLRokQ7vwBq0vs5C+AOUoqIiXfprVWqvc0dDhw4NO3DGc0y70uM6z5s3T4wePVrDXurP1Ld4ampqkJGRgUsuuST43Lhx49CtWzesW7fOdMe1sliuycaNG3Hq1CmMGzcu+Nx5552HIUOGoKamJqTtzJkz0a9fP1x22WV4+eWXFW21bXUnT57Exo0bQ65Pt27dMG7cuC7XJ6CmpiakPQCMHz8+2L62thYNDQ0hbdLT0zFmzJiIx7Q7Pa5zgNfrRf/+/XHuuedixowZOHTokPZvwCJiuc6JOKbV6XlNtm/fjkGDBmHYsGGYMmUK9uzZE293dWXqAKWhoQH9+/cPea579+7IzMxEQ0OD6Y5rZbFck4aGBvTs2RMZGRkhzw8YMCDkZx5++GEsXrwY7733HiZNmoTbb78dzzzzjObvwWz+/e9/w+fzYcCAASHPd74+HTU0NERtH/hfNce0Oz2uMwBMmDABf//737F69Wo88cQTWLNmDSZOnAifz6f9m7CAWK5zIo5pdXpdkzFjxuCVV17B22+/jeeffx61tbXIz89HS0tLvF3WTUJ2M/7d736HJ554ImqbL774wqDe2JsZrvUDDzwQ/O+LLroIx44dw4IFC/Db3/5W1/MSxeMXv/hF8L9HjhyJUaNG4ayzzoLX68XYsWMT2DMi9SZOnBj871GjRmHMmDEYOnQoFi9ejFtuuSWBPYssIQHKXXfdhZtuuilqm2HDhiEnJwcHDhwIeb6trQ2HDx9GTk5OzOfX67hmpOe1zsnJwcmTJ3HkyJGQWZTGxsao13HMmDF45JFH0Nraaqt9Izrr168fUlJSuqxqinZ9cnJyorYP/G9jYyMGDhwY0ubCCy/UsPfWocd1DmfYsGHo168fduzYkZQBSizXORHHtDqjrklGRgbOOecc7NixQ7Njai0ht3iys7Nx3nnnRX307NkTeXl5OHLkCDZu3Bj82ffffx/t7e0YM2ZMzOfX67hmpOe1vvjii9GjRw+sXr06+NxXX32FPXv2IC8vL2KfNm/ejDPOOMPWwQkA9OzZExdffHHI9Wlvb8fq1asjXp+8vLyQ9gDw3nvvBdufeeaZyMnJCWnT3NyMdevWRb3mdqbHdQ5n3759OHToUEhgmExiuc6JOKbVGXVNjh49ip07d5r77znRWbpyJkyYIC666CKxbt06sXbtWjF8+PCQpa/79u0T5557rli3bl3wufr6erFp0ybx0ksvCQDigw8+EJs2bRKHDh1SfNxkFMu1nj59uhgyZIh4//33xYYNG0ReXp7Iy8sLvv7WW2+Jl156SWzZskVs375dPPfcc6J3797iwQcfNPS9Jcrrr78uUlNTxSuvvCK2bdsmbrvtNpGRkSEaGhqEEEJMnTpV/O53vwu2//DDD0X37t3F//zP/4gvvvhCzJs3L+wy44yMDLFs2TLx2WefiaKiIi4z1vg6t7S0iDlz5oiamhpRW1srVq1aJX74wx+K4cOHixMnTiTkPZqB2uvc2toqNm3aJDZt2iQGDhwo5syZIzZt2iS2b9+u+JjJSI/rfNdddwmv1ytqa2vFhx9+KMaNGyf69esnDhw4YPj7U8r0AcqhQ4dEaWmp6Nu3r0hLSxM333yzaGlpCb5eW1srAAiPxxN8bt68eQJAl8fChQsVHzcZxXKtjx8/Lm6//XZxxhlniN69e4uf/exnor6+Pvj6ypUrxYUXXij69u0r+vTpI0aPHi1eeOEF4fP5jHxrCfXMM8+IIUOGiJ49e4rLLrtMfPzxx8HXrrrqKjFt2rSQ9osXLxbnnHOO6Nmzpzj//PPFP//5z5DX29vbxQMPPCAGDBggUlNTxdixY8VXX31lxFsxNS2v87fffiuuvvpqkZ2dLXr06CGGDh0qbr311qQeNAPUXOfAZ0bnx1VXXaX4mMlK6+t8ww03iIEDB4qePXuKwYMHixtuuEHs2LHDwHekniREEqz3JCIiIksx9TJjIiIiSk4MUIiIiMh0GKAQERGR6TBAISIiItNhgEJERESmwwCFiIiITIcBChEREZkOAxQiIiIyHQYoREREZDoMUIiIiMh0GKAQERGR6TBAISIiItP5/wEp1b8yUKjSwAAAAABJRU5ErkJggg==", + "text/plain": [ + "
            " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test, y_test, color='black')\n", + "plt.plot(X_test, y_pred, color='blue', linewidth=3)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "16ff1a974f6e4348e869e4a7d366b86a", + "translation_date": "2025-09-04T01:30:11+00:00", + "source_file": "2-Regression/1-Tools/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fa/2-Regression/2-Data/README.md b/translations/fa/2-Regression/2-Data/README.md new file mode 100644 index 000000000..7ca59cb46 --- /dev/null +++ b/translations/fa/2-Regression/2-Data/README.md @@ -0,0 +1,226 @@ + +# ساخت یک مدل رگرسیون با استفاده از Scikit-learn: آماده‌سازی و تجسم داده‌ها + +![اینفوگرافیک تجسم داده‌ها](../../../../translated_images/data-visualization.54e56dded7c1a804d00d027543f2881cb32da73aeadda2d4a4f10f3497526114.fa.png) + +اینفوگرافیک توسط [داسانی مادپالی](https://twitter.com/dasani_decoded) + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/11/) + +> ### [این درس به زبان R نیز موجود است!](../../../../2-Regression/2-Data/solution/R/lesson_2.html) + +## مقدمه + +حالا که ابزارهای لازم برای شروع ساخت مدل‌های یادگیری ماشین با Scikit-learn را در اختیار دارید، آماده‌اید تا سوالاتی از داده‌های خود بپرسید. هنگام کار با داده‌ها و اعمال راه‌حل‌های یادگیری ماشین، بسیار مهم است که بدانید چگونه سوالات درست بپرسید تا بتوانید پتانسیل‌های داده‌های خود را به درستی کشف کنید. + +در این درس، شما یاد خواهید گرفت: + +- چگونه داده‌های خود را برای ساخت مدل آماده کنید. +- چگونه از Matplotlib برای تجسم داده‌ها استفاده کنید. + +## پرسیدن سوالات درست از داده‌ها + +سوالی که می‌خواهید پاسخ آن را بیابید، تعیین می‌کند که از چه نوع الگوریتم‌های یادگیری ماشین استفاده خواهید کرد. کیفیت پاسخی که دریافت می‌کنید نیز به شدت به ماهیت داده‌های شما بستگی دارد. + +به [داده‌ها](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) که برای این درس ارائه شده است نگاهی بیندازید. می‌توانید این فایل .csv را در VS Code باز کنید. با یک نگاه سریع متوجه می‌شوید که داده‌ها شامل مقادیر خالی و ترکیبی از رشته‌ها و داده‌های عددی هستند. همچنین یک ستون عجیب به نام 'Package' وجود دارد که داده‌های آن ترکیبی از 'sacks'، 'bins' و مقادیر دیگر است. در واقع، داده‌ها کمی به هم ریخته هستند. + +[![یادگیری ماشین برای مبتدیان - چگونه یک مجموعه داده را تحلیل و پاکسازی کنیم](https://img.youtube.com/vi/5qGjczWTrDQ/0.jpg)](https://youtu.be/5qGjczWTrDQ "یادگیری ماشین برای مبتدیان - چگونه یک مجموعه داده را تحلیل و پاکسازی کنیم") + +> 🎥 روی تصویر بالا کلیک کنید تا ویدیوی کوتاهی درباره آماده‌سازی داده‌ها برای این درس مشاهده کنید. + +در واقع، بسیار نادر است که یک مجموعه داده کاملاً آماده برای استفاده و ساخت مدل یادگیری ماشین به شما داده شود. در این درس، یاد می‌گیرید که چگونه یک مجموعه داده خام را با استفاده از کتابخانه‌های استاندارد پایتون آماده کنید. همچنین تکنیک‌های مختلفی برای تجسم داده‌ها خواهید آموخت. + +## مطالعه موردی: 'بازار کدو تنبل' + +در این پوشه، یک فایل .csv در پوشه اصلی `data` به نام [US-pumpkins.csv](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) پیدا خواهید کرد که شامل 1757 خط داده درباره بازار کدو تنبل است که بر اساس شهرها گروه‌بندی شده‌اند. این داده‌ها خام هستند و از [گزارش‌های استاندارد بازارهای محصولات خاص](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice) که توسط وزارت کشاورزی ایالات متحده منتشر شده‌اند، استخراج شده‌اند. + +### آماده‌سازی داده‌ها + +این داده‌ها در حوزه عمومی قرار دارند. می‌توان آن‌ها را از وب‌سایت USDA به صورت فایل‌های جداگانه برای هر شهر دانلود کرد. برای جلوگیری از داشتن فایل‌های جداگانه زیاد، ما تمام داده‌های شهرها را در یک صفحه گسترده ترکیب کرده‌ایم، بنابراین تا حدی داده‌ها را _آماده_ کرده‌ایم. حالا بیایید نگاهی دقیق‌تر به داده‌ها بیندازیم. + +### داده‌های کدو تنبل - نتیجه‌گیری اولیه + +چه چیزی در مورد این داده‌ها متوجه می‌شوید؟ قبلاً دیدید که ترکیبی از رشته‌ها، اعداد، مقادیر خالی و مقادیر عجیب وجود دارد که باید آن‌ها را درک کنید. + +چه سوالی می‌توانید از این داده‌ها با استفاده از تکنیک رگرسیون بپرسید؟ مثلاً "پیش‌بینی قیمت یک کدو تنبل برای فروش در یک ماه خاص". با نگاه دوباره به داده‌ها، تغییراتی وجود دارد که باید برای ایجاد ساختار داده‌ای لازم برای این کار انجام دهید. + +## تمرین - تحلیل داده‌های کدو تنبل + +بیایید از [Pandas](https://pandas.pydata.org/) که ابزاری بسیار مفید برای شکل‌دهی داده‌ها است، برای تحلیل و آماده‌سازی این داده‌های کدو تنبل استفاده کنیم. + +### ابتدا، بررسی تاریخ‌های گمشده + +ابتدا باید اقداماتی برای بررسی تاریخ‌های گمشده انجام دهید: + +1. تاریخ‌ها را به فرمت ماه تبدیل کنید (این تاریخ‌ها به فرمت ایالات متحده هستند، یعنی `MM/DD/YYYY`). +2. ماه را به یک ستون جدید استخراج کنید. + +فایل _notebook.ipynb_ را در Visual Studio Code باز کنید و صفحه گسترده را به یک دیتافریم جدید Pandas وارد کنید. + +1. از تابع `head()` برای مشاهده پنج ردیف اول استفاده کنید. + + ```python + import pandas as pd + pumpkins = pd.read_csv('../data/US-pumpkins.csv') + pumpkins.head() + ``` + + ✅ از چه تابعی برای مشاهده پنج ردیف آخر استفاده می‌کنید؟ + +1. بررسی کنید که آیا داده‌های گمشده‌ای در دیتافریم فعلی وجود دارد: + + ```python + pumpkins.isnull().sum() + ``` + + داده‌های گمشده وجود دارد، اما شاید برای کار فعلی اهمیتی نداشته باشد. + +1. برای کار با دیتافریم خود راحت‌تر، فقط ستون‌هایی را که نیاز دارید با استفاده از تابع `loc` انتخاب کنید. این تابع از دیتافریم اصلی گروهی از ردیف‌ها (به عنوان پارامتر اول) و ستون‌ها (به عنوان پارامتر دوم) را استخراج می‌کند. عبارت `:` در مثال زیر به معنای "همه ردیف‌ها" است. + + ```python + columns_to_select = ['Package', 'Low Price', 'High Price', 'Date'] + pumpkins = pumpkins.loc[:, columns_to_select] + ``` + +### دوم، تعیین میانگین قیمت کدو تنبل + +فکر کنید چگونه می‌توانید میانگین قیمت یک کدو تنبل را در یک ماه خاص تعیین کنید. برای این کار به کدام ستون‌ها نیاز دارید؟ نکته: به سه ستون نیاز خواهید داشت. + +راه‌حل: میانگین ستون‌های `Low Price` و `High Price` را برای پر کردن ستون جدید Price محاسبه کنید و ستون Date را به گونه‌ای تبدیل کنید که فقط ماه را نشان دهد. خوشبختانه، طبق بررسی بالا، هیچ داده گمشده‌ای برای تاریخ‌ها یا قیمت‌ها وجود ندارد. + +1. برای محاسبه میانگین، کد زیر را اضافه کنید: + + ```python + price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2 + + month = pd.DatetimeIndex(pumpkins['Date']).month + + ``` + + ✅ هر داده‌ای که می‌خواهید بررسی کنید را با استفاده از `print(month)` چاپ کنید. + +2. حالا داده‌های تبدیل‌شده خود را به یک دیتافریم جدید Pandas کپی کنید: + + ```python + new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price}) + ``` + + چاپ دیتافریم شما یک مجموعه داده تمیز و مرتب را نشان می‌دهد که می‌توانید مدل رگرسیون جدید خود را بر اساس آن بسازید. + +### اما صبر کنید! چیزی عجیب اینجا وجود دارد + +اگر به ستون `Package` نگاه کنید، کدو تنبل‌ها در پیکربندی‌های مختلفی فروخته می‌شوند. برخی در اندازه‌های '1 1/9 bushel' فروخته می‌شوند، برخی در اندازه‌های '1/2 bushel'، برخی به ازای هر کدو تنبل، برخی به ازای هر پوند، و برخی در جعبه‌های بزرگ با عرض‌های مختلف. + +> به نظر می‌رسد وزن کردن کدو تنبل‌ها به طور مداوم بسیار دشوار است + +با بررسی داده‌های اصلی، جالب است که هر چیزی که `Unit of Sale` آن برابر با 'EACH' یا 'PER BIN' است، همچنین نوع `Package` آن به صورت هر اینچ، هر جعبه، یا 'each' است. به نظر می‌رسد وزن کردن کدو تنبل‌ها به طور مداوم بسیار دشوار است، بنابراین بیایید آن‌ها را با انتخاب فقط کدو تنبل‌هایی که در ستون `Package` آن‌ها عبارت 'bushel' وجود دارد، فیلتر کنیم. + +1. یک فیلتر در بالای فایل، زیر وارد کردن اولیه .csv اضافه کنید: + + ```python + pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)] + ``` + + اگر اکنون داده‌ها را چاپ کنید، می‌بینید که فقط حدود 415 ردیف داده شامل کدو تنبل‌هایی که به صورت بوشل فروخته می‌شوند، باقی مانده است. + +### اما صبر کنید! یک کار دیگر هم باید انجام دهید + +آیا متوجه شدید که مقدار بوشل در هر ردیف متفاوت است؟ باید قیمت‌ها را نرمال‌سازی کنید تا قیمت‌ها را به ازای هر بوشل نشان دهید، بنابراین کمی محاسبه انجام دهید تا آن را استاندارد کنید. + +1. این خطوط را بعد از بلوک ایجاد دیتافریم جدید `new_pumpkins` اضافه کنید: + + ```python + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9) + + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2) + ``` + +✅ طبق گفته [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308)، وزن یک بوشل به نوع محصول بستگی دارد، زیرا این یک اندازه‌گیری حجمی است. "یک بوشل گوجه‌فرنگی، برای مثال، باید 56 پوند وزن داشته باشد... برگ‌ها و سبزیجات فضای بیشتری با وزن کمتر اشغال می‌کنند، بنابراین یک بوشل اسفناج فقط 20 پوند است." این موضوع بسیار پیچیده است! بیایید به تبدیل بوشل به پوند نپردازیم و به جای آن قیمت را بر اساس بوشل محاسبه کنیم. تمام این مطالعه درباره بوشل‌های کدو تنبل، با این حال، نشان می‌دهد که چقدر مهم است که ماهیت داده‌های خود را درک کنید! + +حالا می‌توانید قیمت‌ها را بر اساس واحد بوشل تحلیل کنید. اگر داده‌ها را یک بار دیگر چاپ کنید، می‌بینید که چگونه استاندارد شده‌اند. + +✅ آیا متوجه شدید که کدو تنبل‌هایی که به صورت نیم‌بوشل فروخته می‌شوند بسیار گران هستند؟ می‌توانید بفهمید چرا؟ نکته: کدو تنبل‌های کوچک بسیار گران‌تر از کدو تنبل‌های بزرگ هستند، احتمالاً به این دلیل که تعداد بیشتری از آن‌ها در هر بوشل وجود دارد، با توجه به فضای خالی که یک کدو تنبل بزرگ اشغال می‌کند. + +## استراتژی‌های تجسم داده‌ها + +یکی از وظایف دانشمند داده این است که کیفیت و ماهیت داده‌هایی که با آن‌ها کار می‌کند را نشان دهد. برای این کار، آن‌ها اغلب تجسم‌های جالبی ایجاد می‌کنند، مانند نمودارها، گراف‌ها و چارت‌ها که جنبه‌های مختلف داده‌ها را نشان می‌دهند. به این ترتیب، آن‌ها می‌توانند روابط و شکاف‌هایی را که در غیر این صورت سخت است کشف کنند، به صورت بصری نشان دهند. + +[![یادگیری ماشین برای مبتدیان - چگونه داده‌ها را با Matplotlib تجسم کنیم](https://img.youtube.com/vi/SbUkxH6IJo0/0.jpg)](https://youtu.be/SbUkxH6IJo0 "یادگیری ماشین برای مبتدیان - چگونه داده‌ها را با Matplotlib تجسم کنیم") + +> 🎥 روی تصویر بالا کلیک کنید تا ویدیوی کوتاهی درباره تجسم داده‌ها برای این درس مشاهده کنید. + +تجسم‌ها همچنین می‌توانند به تعیین تکنیک یادگیری ماشین مناسب برای داده‌ها کمک کنند. برای مثال، یک نمودار پراکندگی که به نظر می‌رسد یک خط را دنبال می‌کند، نشان می‌دهد که داده‌ها برای یک تمرین رگرسیون خطی مناسب هستند. + +یکی از کتابخانه‌های تجسم داده‌ها که در نوت‌بوک‌های Jupyter به خوبی کار می‌کند، [Matplotlib](https://matplotlib.org/) است (که در درس قبلی نیز آن را دیدید). + +> تجربه بیشتری در تجسم داده‌ها در [این آموزش‌ها](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott) کسب کنید. + +## تمرین - آزمایش با Matplotlib + +سعی کنید برخی نمودارهای پایه‌ای برای نمایش دیتافریم جدیدی که ایجاد کرده‌اید، بسازید. یک نمودار خطی ساده چه چیزی را نشان می‌دهد؟ + +1. Matplotlib را در بالای فایل، زیر وارد کردن Pandas وارد کنید: + + ```python + import matplotlib.pyplot as plt + ``` + +1. کل نوت‌بوک را دوباره اجرا کنید تا تازه شود. +1. در انتهای نوت‌بوک، یک سلول برای رسم داده‌ها به صورت جعبه اضافه کنید: + + ```python + price = new_pumpkins.Price + month = new_pumpkins.Month + plt.scatter(price, month) + plt.show() + ``` + + ![یک نمودار پراکندگی که رابطه قیمت و ماه را نشان می‌دهد](../../../../translated_images/scatterplot.b6868f44cbd2051c6680ccdbb1510697d06a3ff6cd4abda656f5009c0ed4e3fc.fa.png) + + آیا این نمودار مفید است؟ آیا چیزی در مورد آن شما را شگفت‌زده می‌کند؟ + + این نمودار چندان مفید نیست زیرا فقط داده‌های شما را به صورت پراکندگی نقاط در یک ماه خاص نمایش می‌دهد. + +### آن را مفید کنید + +برای اینکه نمودارها داده‌های مفیدی نمایش دهند، معمولاً باید داده‌ها را به نوعی گروه‌بندی کنید. بیایید یک نمودار ایجاد کنیم که محور y ماه‌ها را نشان دهد و داده‌ها توزیع داده‌ها را نشان دهند. + +1. یک سلول برای ایجاد یک نمودار میله‌ای گروه‌بندی‌شده اضافه کنید: + + ```python + new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar') + plt.ylabel("Pumpkin Price") + ``` + + ![یک نمودار میله‌ای که رابطه قیمت و ماه را نشان می‌دهد](../../../../translated_images/barchart.a833ea9194346d769c77a3a870f7d8aee51574cd1138ca902e5500830a41cbce.fa.png) + + این یک تجسم داده مفیدتر است! به نظر می‌رسد که بالاترین قیمت کدو تنبل در ماه‌های سپتامبر و اکتبر رخ می‌دهد. آیا این با انتظارات شما مطابقت دارد؟ چرا یا چرا نه؟ + +--- + +## 🚀چالش + +انواع مختلف تجسم‌هایی که Matplotlib ارائه می‌دهد را بررسی کنید. کدام نوع‌ها برای مسائل رگرسیون مناسب‌تر هستند؟ + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/12/) + +## مرور و مطالعه شخصی + +به روش‌های مختلف تجسم داده‌ها نگاهی بیندازید. لیستی از کتابخانه‌های مختلف موجود تهیه کنید و مشخص کنید کدام یک برای انواع خاصی از وظایف مناسب‌تر هستند، مثلاً تجسم‌های دو بعدی در مقابل سه بعدی. چه چیزی کشف می‌کنید؟ + +## تکلیف + +[کاوش در تجسم داده‌ها](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/2-Regression/2-Data/assignment.md b/translations/fa/2-Regression/2-Data/assignment.md new file mode 100644 index 000000000..6ebb167bb --- /dev/null +++ b/translations/fa/2-Regression/2-Data/assignment.md @@ -0,0 +1,23 @@ + +# بررسی مصورسازی‌ها + +کتابخانه‌های مختلفی برای مصورسازی داده‌ها وجود دارند. با استفاده از داده‌های کدو تنبل در این درس، چند مصورسازی با استفاده از matplotlib و seaborn در یک نوت‌بوک نمونه ایجاد کنید. کدام کتابخانه‌ها کار با آن‌ها آسان‌تر است؟ + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ------ | ----- | ---------- | -------------- | +| | یک نوت‌بوک با دو بررسی/مصورسازی ارسال شده است | یک نوت‌بوک با یک بررسی/مصورسازی ارسال شده است | نوت‌بوکی ارسال نشده است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/2-Regression/2-Data/notebook.ipynb b/translations/fa/2-Regression/2-Data/notebook.ipynb new file mode 100644 index 000000000..21aef50a0 --- /dev/null +++ b/translations/fa/2-Regression/2-Data/notebook.ipynb @@ -0,0 +1,46 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "coopTranslator": { + "original_hash": "1b2ab303ac6c604a34c6ca7a49077fc7", + "translation_date": "2025-09-04T01:36:26+00:00", + "source_file": "2-Regression/2-Data/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/2-Regression/2-Data/solution/Julia/README.md b/translations/fa/2-Regression/2-Data/solution/Julia/README.md new file mode 100644 index 000000000..61d3475fc --- /dev/null +++ b/translations/fa/2-Regression/2-Data/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/2-Regression/2-Data/solution/R/lesson_2-R.ipynb b/translations/fa/2-Regression/2-Data/solution/R/lesson_2-R.ipynb new file mode 100644 index 000000000..b357eb6d0 --- /dev/null +++ b/translations/fa/2-Regression/2-Data/solution/R/lesson_2-R.ipynb @@ -0,0 +1,669 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_2-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "f3c335f9940cfd76528b3ef918b9b342", + "translation_date": "2025-09-04T01:44:39+00:00", + "source_file": "2-Regression/2-Data/solution/R/lesson_2-R.ipynb", + "language_code": "fa" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# ساخت یک مدل رگرسیون: آماده‌سازی و تجسم داده‌ها\n", + "\n", + "## **رگرسیون خطی برای کدو تنبل - درس دوم**\n", + "#### مقدمه\n", + "\n", + "حالا که ابزارهای لازم برای شروع ساخت مدل‌های یادگیری ماشین با استفاده از Tidymodels و Tidyverse را در اختیار دارید، آماده‌اید تا سوالاتی از داده‌های خود بپرسید. هنگام کار با داده‌ها و اعمال راه‌حل‌های یادگیری ماشین، بسیار مهم است که بدانید چگونه سوالات درست بپرسید تا بتوانید به درستی از پتانسیل‌های مجموعه داده خود استفاده کنید.\n", + "\n", + "در این درس، شما یاد خواهید گرفت:\n", + "\n", + "- چگونه داده‌های خود را برای ساخت مدل آماده کنید.\n", + "\n", + "- چگونه از `ggplot2` برای تجسم داده‌ها استفاده کنید.\n", + "\n", + "سوالی که نیاز به پاسخ آن دارید، تعیین می‌کند که از چه نوع الگوریتم‌های یادگیری ماشین استفاده خواهید کرد. همچنین کیفیت پاسخی که دریافت می‌کنید، به شدت به ماهیت داده‌های شما بستگی دارد.\n", + "\n", + "بیایید این موضوع را با انجام یک تمرین عملی بررسی کنیم.\n", + "\n", + "

            \n", + " \n", + "

            اثر هنری از @allison_horst
            \n" + ], + "metadata": { + "id": "Pg5aexcOPqAZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## ۱. وارد کردن داده‌های کدو تنبل و فراخوانی Tidyverse\n", + "\n", + "برای تجزیه و تحلیل این درس به بسته‌های زیر نیاز داریم:\n", + "\n", + "- `tidyverse`: [Tidyverse](https://www.tidyverse.org/) یک [مجموعه از بسته‌های R](https://www.tidyverse.org/packages) است که برای سریع‌تر، آسان‌تر و لذت‌بخش‌تر کردن علم داده طراحی شده است!\n", + "\n", + "می‌توانید آن‌ها را به این صورت نصب کنید:\n", + "\n", + "`install.packages(c(\"tidyverse\"))`\n", + "\n", + "اسکریپت زیر بررسی می‌کند که آیا بسته‌های مورد نیاز برای تکمیل این ماژول را دارید یا خیر و در صورتی که برخی از آن‌ها موجود نباشند، آن‌ها را برای شما نصب می‌کند.\n" + ], + "metadata": { + "id": "dc5WhyVdXAjR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse)" + ], + "outputs": [], + "metadata": { + "id": "GqPYUZgfXOBt" + } + }, + { + "cell_type": "markdown", + "source": [ + "حالا بیایید چند بسته را اجرا کنیم و [داده‌ها](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) ارائه‌شده برای این درس را بارگذاری کنیم!\n" + ], + "metadata": { + "id": "kvjDTPDSXRr2" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n =50)" + ], + "outputs": [], + "metadata": { + "id": "VMri-t2zXqgD" + } + }, + { + "cell_type": "markdown", + "source": [ + "یک نگاه سریع با استفاده از `glimpse()` بلافاصله نشان می‌دهد که داده‌ها شامل مقادیر خالی و ترکیبی از رشته‌ها (`chr`) و داده‌های عددی (`dbl`) هستند. ستون `Date` از نوع کاراکتر است و همچنین یک ستون عجیب به نام `Package` وجود دارد که داده‌های آن ترکیبی از مقادیر مانند `sacks`، `bins` و سایر مقادیر است. در واقع، داده‌ها کمی به‌هم‌ریخته هستند 😤.\n", + "\n", + "در حقیقت، خیلی رایج نیست که یک مجموعه داده کاملاً آماده برای استفاده و ساخت یک مدل یادگیری ماشین به شما هدیه داده شود. اما نگران نباشید، در این درس یاد می‌گیرید که چگونه یک مجموعه داده خام را با استفاده از کتابخانه‌های استاندارد R آماده کنید 🧑‍🔧. همچنین تکنیک‌های مختلفی برای تجسم داده‌ها را خواهید آموخت. 📈📊\n", + "
            \n", + "\n", + "> یک یادآوری: عملگر پایپ (`%>%`) عملیات را به صورت منطقی و پشت سر هم انجام می‌دهد و یک شیء را به جلو به یک تابع یا عبارت ارسال می‌کند. می‌توانید عملگر پایپ را به این صورت تصور کنید که در کد شما به معنای \"و سپس\" است.\n" + ], + "metadata": { + "id": "REWcIv9yX29v" + } + }, + { + "cell_type": "markdown", + "source": [ + "## ۲. بررسی داده‌های ناقص\n", + "\n", + "یکی از رایج‌ترین مشکلاتی که دانشمندان داده باید با آن مواجه شوند، داده‌های ناقص یا گم‌شده است. در زبان R، مقادیر گم‌شده یا ناشناخته با یک مقدار خاص به نام `NA` (مخفف Not Available) نمایش داده می‌شوند.\n", + "\n", + "اما چگونه می‌توانیم بفهمیم که یک فریم داده شامل مقادیر گم‌شده است؟\n", + "
            \n", + "- یکی از روش‌های ساده استفاده از تابع پایه R به نام `anyNA` است که اشیاء منطقی `TRUE` یا `FALSE` را برمی‌گرداند.\n" + ], + "metadata": { + "id": "Zxfb3AM5YbUe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " anyNA()" + ], + "outputs": [], + "metadata": { + "id": "G--DQutAYltj" + } + }, + { + "cell_type": "markdown", + "source": [ + "عالی است، به نظر می‌رسد برخی داده‌ها وجود ندارند! این می‌تواند نقطه‌ی خوبی برای شروع باشد.\n", + "\n", + "- یک روش دیگر استفاده از تابع `is.na()` است که نشان می‌دهد کدام عناصر ستون به صورت جداگانه با مقدار منطقی `TRUE` گم شده‌اند.\n" + ], + "metadata": { + "id": "mU-7-SB6YokF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "W-DxDOR4YxSW" + } + }, + { + "cell_type": "markdown", + "source": [ + "باشه، کار انجام شد اما با یک دیتافریم بزرگ مثل این، بررسی تک‌تک سطرها و ستون‌ها به‌صورت جداگانه غیربهینه و عملاً غیرممکن است 😴.\n", + "\n", + "- یک روش شهودی‌تر این است که مجموع مقادیر گمشده را برای هر ستون محاسبه کنیم:\n" + ], + "metadata": { + "id": "xUWxipKYY0o7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " colSums()" + ], + "outputs": [], + "metadata": { + "id": "ZRBWV6P9ZArL" + } + }, + { + "cell_type": "markdown", + "source": [ + "خیلی بهتر! داده‌هایی کم هستند، اما شاید برای انجام این کار مهم نباشند. بیایید ببینیم تحلیل بیشتر چه نتایجی به همراه دارد.\n", + "\n", + "> همراه با مجموعه‌های فوق‌العاده‌ای از پکیج‌ها و توابع، R مستندات بسیار خوبی دارد. برای مثال، از `help(colSums)` یا `?colSums` استفاده کنید تا اطلاعات بیشتری درباره این تابع به دست آورید.\n" + ], + "metadata": { + "id": "9gv-crB6ZD1Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## ۳. Dplyr: دستور زبانی برای دستکاری داده‌ها\n", + "\n", + "

            \n", + " \n", + "

            اثر هنری از @allison_horst
            \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "o4jLY5-VZO2C" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`dplyr`](https://dplyr.tidyverse.org/)، یکی از بسته‌های Tidyverse، یک دستور زبان برای دستکاری داده‌ها است که مجموعه‌ای یکپارچه از افعال را ارائه می‌دهد تا به شما در حل رایج‌ترین چالش‌های دستکاری داده‌ها کمک کند. در این بخش، برخی از افعال dplyr را بررسی خواهیم کرد! \n", + "
            \n" + ], + "metadata": { + "id": "i5o33MQBZWWw" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::select()\n", + "\n", + "تابع `select()` در بسته `dplyr` به شما کمک می‌کند ستون‌هایی را که می‌خواهید نگه دارید یا حذف کنید، انتخاب کنید.\n", + "\n", + "برای اینکه کار با دیتافریم شما آسان‌تر شود، می‌توانید با استفاده از `select()` چند ستون آن را حذف کرده و فقط ستون‌های مورد نیاز خود را نگه دارید.\n", + "\n", + "برای مثال، در این تمرین، تحلیل ما شامل ستون‌های `Package`، `Low Price`، `High Price` و `Date` خواهد بود. بیایید این ستون‌ها را انتخاب کنیم.\n" + ], + "metadata": { + "id": "x3VGMAGBZiUr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(Package, `Low Price`, `High Price`, Date)\n", + "\n", + "\n", + "# Print data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "F_FgxQnVZnM0" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::mutate()\n", + "\n", + "`mutate()` یک تابع در بسته `dplyr` است که به شما کمک می‌کند ستون‌های جدید ایجاد کنید یا ستون‌های موجود را تغییر دهید، در حالی که ستون‌های قبلی را حفظ می‌کنید.\n", + "\n", + "ساختار کلی `mutate` به این صورت است:\n", + "\n", + "`data %>% mutate(new_column_name = what_it_contains)`\n", + "\n", + "بیایید با استفاده از ستون `Date` چند عملیات انجام دهیم تا نحوه کار `mutate` را بررسی کنیم:\n", + "\n", + "1. تاریخ‌ها (که در حال حاضر از نوع کاراکتر هستند) را به فرمت ماه تبدیل کنیم (این تاریخ‌ها به سبک آمریکایی هستند، بنابراین فرمت آن‌ها `MM/DD/YYYY` است).\n", + "\n", + "2. ماه را از تاریخ‌ها استخراج کرده و در یک ستون جدید ذخیره کنیم.\n", + "\n", + "در زبان R، بسته [lubridate](https://lubridate.tidyverse.org/) کار با داده‌های تاریخ و زمان را آسان‌تر می‌کند. بنابراین، بیایید از `dplyr::mutate()`، `lubridate::mdy()`، `lubridate::month()` استفاده کنیم و ببینیم چگونه می‌توانیم اهداف بالا را محقق کنیم. همچنین می‌توانیم ستون `Date` را حذف کنیم، زیرا در عملیات بعدی دیگر به آن نیازی نخواهیم داشت.\n" + ], + "metadata": { + "id": "2KKo0Ed9Z1VB" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load lubridate\n", + "library(lubridate)\n", + "\n", + "pumpkins <- pumpkins %>% \n", + " # Convert the Date column to a date object\n", + " mutate(Date = mdy(Date)) %>% \n", + " # Extract month from Date\n", + " mutate(Month = month(Date)) %>% \n", + " # Drop Date column\n", + " select(-Date)\n", + "\n", + "# View the first few rows\n", + "pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "5joszIVSZ6xe" + } + }, + { + "cell_type": "markdown", + "source": [ + "هورا! 🤩\n", + "\n", + "حالا بیایید یک ستون جدید به نام `Price` ایجاد کنیم که نشان‌دهنده قیمت متوسط یک کدو تنبل است. سپس میانگین ستون‌های `Low Price` و `High Price` را محاسبه می‌کنیم تا ستون جدید Price را پر کنیم.\n" + ], + "metadata": { + "id": "nIgLjNMCZ-6Y" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new column Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(Price = (`Low Price` + `High Price`)/2)\n", + "\n", + "# View the first few rows of the data\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "Zo0BsqqtaJw2" + } + }, + { + "cell_type": "markdown", + "source": [ + "بله! 💪\n", + "\n", + "\"اما صبر کن!\" ممکن است بعد از مرور کل مجموعه داده با استفاده از `View(pumpkins)` بگویی، \"اینجا چیزی عجیب به نظر می‌رسد!\" 🤔\n", + "\n", + "اگر به ستون `Package` نگاه کنی، کدوها در پیکربندی‌های مختلفی فروخته می‌شوند. برخی در اندازه‌های `1 1/9 bushel` فروخته می‌شوند، برخی در اندازه‌های `1/2 bushel`، برخی به ازای هر کدو، برخی به ازای هر پوند، و برخی در جعبه‌های بزرگی با عرض‌های متغیر.\n", + "\n", + "بیایید این را بررسی کنیم:\n" + ], + "metadata": { + "id": "p77WZr-9aQAR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Verify the distinct observations in Package column\n", + "pumpkins %>% \n", + " distinct(Package)" + ], + "outputs": [], + "metadata": { + "id": "XISGfh0IaUy6" + } + }, + { + "cell_type": "markdown", + "source": [ + "شگفت‌انگیز!👏\n", + "\n", + "به نظر می‌رسد وزن کردن کدو تنبل‌ها به طور یکنواخت بسیار دشوار است، بنابراین بیایید آن‌ها را فیلتر کنیم و فقط کدو تنبل‌هایی را انتخاب کنیم که رشته *bushel* در ستون `Package` دارند و این را در یک داده‌فریم جدید به نام `new_pumpkins` قرار دهیم.\n" + ], + "metadata": { + "id": "7sMjiVujaZxY" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::filter() و stringr::str_detect()\n", + "\n", + "[`dplyr::filter()`](https://dplyr.tidyverse.org/reference/filter.html): زیرمجموعه‌ای از داده‌ها ایجاد می‌کند که فقط شامل **ردیف‌هایی** است که شرایط شما را برآورده می‌کنند. در این مثال، کدوهایی که رشته *bushel* در ستون `Package` آن‌ها وجود دارد.\n", + "\n", + "[stringr::str_detect()](https://stringr.tidyverse.org/reference/str_detect.html): حضور یا عدم حضور یک الگو در یک رشته را تشخیص می‌دهد.\n", + "\n", + "بسته [`stringr`](https://github.com/tidyverse/stringr) توابع ساده‌ای برای عملیات رایج روی رشته‌ها ارائه می‌دهد.\n" + ], + "metadata": { + "id": "L8Qfcs92ageF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Retain only pumpkins with \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(Package, \"bushel\"))\n", + "\n", + "# Get the dimensions of the new data\n", + "dim(new_pumpkins)\n", + "\n", + "# View a few rows of the new data\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "hy_SGYREampd" + } + }, + { + "cell_type": "markdown", + "source": [ + "می‌توانید ببینید که ما داده‌ها را به حدود ۴۱۵ ردیف محدود کرده‌ایم که شامل کدو تنبل به صورت بوشل است. 🤩 \n", + "
            \n" + ], + "metadata": { + "id": "VrDwF031avlR" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::case_when()\n", + "\n", + "**اما صبر کنید! هنوز یک کار دیگر باقی مانده است**\n", + "\n", + "متوجه شدید که مقدار بوشل در هر سطر متفاوت است؟ باید قیمت‌گذاری را نرمال‌سازی کنید تا قیمت را بر اساس هر بوشل نشان دهید، نه بر اساس ۱ ۱/۹ یا ۱/۲ بوشل. وقت آن است که کمی ریاضی انجام دهید تا آن را استاندارد کنید.\n", + "\n", + "ما از تابع [`case_when()`](https://dplyr.tidyverse.org/reference/case_when.html) استفاده خواهیم کرد تا ستون Price را بر اساس برخی شرایط *تغییر دهیم*. `case_when` به شما این امکان را می‌دهد که چندین عبارت `if_else()` را به صورت برداری بنویسید.\n" + ], + "metadata": { + "id": "mLpw2jH4a0tx" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(Price = case_when(\n", + " str_detect(Package, \"1 1/9\") ~ Price/(1 + 1/9),\n", + " str_detect(Package, \"1/2\") ~ Price/(1/2),\n", + " TRUE ~ Price))\n", + "\n", + "# View the first few rows of the data\n", + "new_pumpkins %>% \n", + " slice_head(n = 30)" + ], + "outputs": [], + "metadata": { + "id": "P68kLVQmbM6I" + } + }, + { + "cell_type": "markdown", + "source": [ + "اکنون می‌توانیم قیمت هر واحد را بر اساس اندازه بوشل تحلیل کنیم. با این حال، تمام این بررسی بوشل‌های کدو تنبل نشان می‌دهد که چقدر `مهم` است که `ماهیت داده‌های خود را درک کنید`!\n", + "\n", + "> ✅ طبق گفته [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308)، وزن یک بوشل به نوع محصول بستگی دارد، زیرا این یک اندازه‌گیری حجمی است. \"برای مثال، یک بوشل گوجه‌فرنگی باید ۵۶ پوند وزن داشته باشد... برگ‌ها و سبزیجات فضای بیشتری را با وزن کمتر اشغال می‌کنند، بنابراین یک بوشل اسفناج فقط ۲۰ پوند است.\" این موضوع کاملاً پیچیده است! بیایید خود را درگیر تبدیل بوشل به پوند نکنیم و به جای آن قیمت را بر اساس بوشل تعیین کنیم. تمام این بررسی بوشل‌های کدو تنبل نشان می‌دهد که چقدر مهم است که ماهیت داده‌های خود را درک کنید!\n", + ">\n", + "> ✅ آیا متوجه شدید که کدو تنبل‌هایی که به صورت نیم‌بوشل فروخته می‌شوند بسیار گران هستند؟ می‌توانید دلیل آن را پیدا کنید؟ نکته: کدو تنبل‌های کوچک بسیار گران‌تر از کدو تنبل‌های بزرگ هستند، احتمالاً به این دلیل که تعداد بیشتری از آن‌ها در هر بوشل وجود دارد، با توجه به فضای خالی‌ای که یک کدو تنبل بزرگ و توخالی اشغال می‌کند.\n" + ], + "metadata": { + "id": "pS2GNPagbSdb" + } + }, + { + "cell_type": "markdown", + "source": [ + "حالا در نهایت، برای ماجراجویی خالص 💁‍♀️، بیایید ستون ماه را به اولین موقعیت منتقل کنیم، یعنی `قبل از` ستون `Package`.\n", + "\n", + "برای تغییر موقعیت ستون‌ها از `dplyr::relocate()` استفاده می‌شود.\n" + ], + "metadata": { + "id": "qql1SowfbdnP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new data frame new_pumpkins\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(Month, .before = Package)\n", + "\n", + "new_pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "JJ1x6kw8bixF" + } + }, + { + "cell_type": "markdown", + "source": [ + "کارت عالی بود!👌 حالا یک مجموعه داده تمیز و مرتب در اختیار داری که می‌توانی مدل رگرسیون جدیدت را بر اساس آن بسازی!\n", + "
            \n" + ], + "metadata": { + "id": "y8TJ0Za_bn5Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## ۴. مصورسازی داده‌ها با ggplot2\n", + "\n", + "

            \n", + " \n", + "

            اینفوگرافیک از داسانی مدیپالی
            \n", + "\n", + "\n", + "\n", + "\n", + "یک ضرب‌المثل *حکیمانه* وجود دارد که می‌گوید:\n", + "\n", + "> \"یک نمودار ساده اطلاعات بیشتری به ذهن تحلیل‌گر داده می‌رساند تا هر ابزار دیگری.\" --- جان توکی\n", + "\n", + "یکی از وظایف دانشمند داده این است که کیفیت و ماهیت داده‌هایی که با آن‌ها کار می‌کند را نشان دهد. برای این کار، آن‌ها اغلب مصورسازی‌های جالبی ایجاد می‌کنند، مانند نمودارها، گراف‌ها و چارت‌ها که جنبه‌های مختلف داده را نمایش می‌دهند. به این ترتیب، آن‌ها می‌توانند روابط و شکاف‌هایی را که به‌طور معمول کشف آن‌ها دشوار است، به‌صورت بصری نشان دهند.\n", + "\n", + "مصورسازی‌ها همچنین می‌توانند به تعیین تکنیک یادگیری ماشینی مناسب برای داده‌ها کمک کنند. به‌عنوان مثال، یک نمودار پراکندگی که به نظر می‌رسد از یک خط پیروی می‌کند، نشان می‌دهد که داده‌ها گزینه خوبی برای یک تمرین رگرسیون خطی هستند.\n", + "\n", + "زبان R چندین سیستم برای ایجاد نمودارها ارائه می‌دهد، اما [`ggplot2`](https://ggplot2.tidyverse.org/index.html) یکی از زیباترین و متنوع‌ترین آن‌هاست. `ggplot2` به شما این امکان را می‌دهد که نمودارها را با **ترکیب اجزای مستقل** بسازید.\n", + "\n", + "بیایید با یک نمودار پراکندگی ساده برای ستون‌های Price و Month شروع کنیم.\n", + "\n", + "در این مورد، ابتدا از [`ggplot()`](https://ggplot2.tidyverse.org/reference/ggplot.html) استفاده می‌کنیم، یک مجموعه داده و نگاشت زیبایی‌شناسی (با [`aes()`](https://ggplot2.tidyverse.org/reference/aes.html)) ارائه می‌دهیم و سپس لایه‌هایی (مانند [`geom_point()`](https://ggplot2.tidyverse.org/reference/geom_point.html)) برای نمودارهای پراکندگی اضافه می‌کنیم.\n" + ], + "metadata": { + "id": "mYSH6-EtbvNa" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plots\n", + "theme_set(theme_light())\n", + "\n", + "# Create a scatter plot\n", + "p <- ggplot(data = new_pumpkins, aes(x = Price, y = Month))\n", + "p + geom_point()" + ], + "outputs": [], + "metadata": { + "id": "g2YjnGeOcLo4" + } + }, + { + "cell_type": "markdown", + "source": [ + "آیا این نمودار مفید است 🤷؟ آیا چیزی در مورد آن شما را شگفت‌زده می‌کند؟\n", + "\n", + "نه چندان مفید است، زیرا تنها کاری که انجام می‌دهد نمایش داده‌های شما به صورت پراکندگی نقاط در یک ماه مشخص است. \n" + ], + "metadata": { + "id": "Ml7SDCLQcPvE" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **چگونه آن را مفید کنیم؟**\n", + "\n", + "برای نمایش داده‌های مفید در نمودارها، معمولاً باید داده‌ها را به نوعی گروه‌بندی کنید. به عنوان مثال، در مورد ما، پیدا کردن میانگین قیمت کدو تنبل‌ها برای هر ماه می‌تواند بینش بیشتری درباره الگوهای موجود در داده‌های ما ارائه دهد. این ما را به یک مرور دیگر از **dplyr** می‌رساند:\n", + "\n", + "#### `dplyr::group_by() %>% summarize()`\n", + "\n", + "تجمیع گروه‌بندی شده در R به راحتی با استفاده از\n", + "\n", + "`dplyr::group_by() %>% summarize()`\n", + "\n", + "قابل محاسبه است.\n", + "\n", + "- `dplyr::group_by()` واحد تحلیل را از کل مجموعه داده به گروه‌های جداگانه مانند هر ماه تغییر می‌دهد.\n", + "\n", + "- `dplyr::summarize()` یک فریم داده جدید ایجاد می‌کند که شامل یک ستون برای هر متغیر گروه‌بندی و یک ستون برای هر آماری خلاصه‌ای است که مشخص کرده‌اید.\n", + "\n", + "به عنوان مثال، می‌توانیم از `dplyr::group_by() %>% summarize()` استفاده کنیم تا کدو تنبل‌ها را بر اساس ستون **ماه** گروه‌بندی کنیم و سپس **میانگین قیمت** را برای هر ماه پیدا کنیم.\n" + ], + "metadata": { + "id": "jMakvJZIcVkh" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price))" + ], + "outputs": [], + "metadata": { + "id": "6kVSUa2Bcilf" + } + }, + { + "cell_type": "markdown", + "source": [ + "مختصر و مفید!✨\n", + "\n", + "ویژگی‌های دسته‌بندی‌شده مانند ماه‌ها بهتر است با استفاده از نمودار میله‌ای نمایش داده شوند 📊. لایه‌هایی که مسئول ایجاد نمودارهای میله‌ای هستند عبارتند از `geom_bar()` و `geom_col()`. برای اطلاعات بیشتر به `?geom_bar` مراجعه کنید.\n", + "\n", + "بیایید یکی درست کنیم!\n" + ], + "metadata": { + "id": "Kds48GUBcj3W" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month then plot a bar chart\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price)) %>% \r\n", + " ggplot(aes(x = Month, y = mean_price)) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"Pumpkin Price\")" + ], + "outputs": [], + "metadata": { + "id": "VNbU1S3BcrxO" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 این یک مصورسازی داده بسیار مفیدتر است! به نظر می‌رسد که بالاترین قیمت کدو تنبل در ماه‌های سپتامبر و اکتبر اتفاق می‌افتد. آیا این مطابق با انتظارات شماست؟ چرا یا چرا نه؟\n", + "\n", + "تبریک می‌گویم که درس دوم را به پایان رساندید 👏! شما داده‌های خود را برای ساخت مدل آماده کردید و سپس با استفاده از مصورسازی‌ها، بینش‌های بیشتری کشف کردید!\n" + ], + "metadata": { + "id": "zDm0VOzzcuzR" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/2-Regression/2-Data/solution/notebook.ipynb b/translations/fa/2-Regression/2-Data/solution/notebook.ipynb new file mode 100644 index 000000000..58820872b --- /dev/null +++ b/translations/fa/2-Regression/2-Data/solution/notebook.ipynb @@ -0,0 +1,439 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## رگرسیون خطی برای کدو تنبل - درس ۲\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
            70BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            71BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            72BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            73BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1617.017.017.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            74BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/8/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            \n", + "

            5 rows × 26 columns

            \n", + "
            " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade \\\n", + "70 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "71 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "72 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "73 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "74 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "\n", + " Date Low Price High Price Mostly Low ... Unit of Sale Quality \\\n", + "70 9/24/16 15.0 15.0 15.0 ... NaN NaN \n", + "71 9/24/16 18.0 18.0 18.0 ... NaN NaN \n", + "72 10/1/16 18.0 18.0 18.0 ... NaN NaN \n", + "73 10/1/16 17.0 17.0 17.0 ... NaN NaN \n", + "74 10/8/16 15.0 15.0 15.0 ... NaN NaN \n", + "\n", + " Condition Appearance Storage Crop Repack Trans Mode Unnamed: 24 \\\n", + "70 NaN NaN NaN NaN N NaN NaN \n", + "71 NaN NaN NaN NaN N NaN NaN \n", + "72 NaN NaN NaN NaN N NaN NaN \n", + "73 NaN NaN NaN NaN N NaN NaN \n", + "74 NaN NaN NaN NaN N NaN NaN \n", + "\n", + " Unnamed: 25 \n", + "70 NaN \n", + "71 NaN \n", + "72 NaN \n", + "73 NaN \n", + "74 NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "City Name 0\n", + "Type 406\n", + "Package 0\n", + "Variety 0\n", + "Sub Variety 167\n", + "Grade 415\n", + "Date 0\n", + "Low Price 0\n", + "High Price 0\n", + "Mostly Low 24\n", + "Mostly High 24\n", + "Origin 0\n", + "Origin District 396\n", + "Item Size 114\n", + "Color 145\n", + "Environment 415\n", + "Unit of Sale 404\n", + "Quality 415\n", + "Condition 415\n", + "Appearance 415\n", + "Storage 415\n", + "Crop 415\n", + "Repack 0\n", + "Trans Mode 415\n", + "Unnamed: 24 415\n", + "Unnamed: 25 391\n", + "dtype: int64" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Month Package Low Price High Price Price\n", + "70 9 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "71 9 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "72 10 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "73 10 1 1/9 bushel cartons 17.00 17.0 15.30\n", + "74 10 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "... ... ... ... ... ...\n", + "1738 9 1/2 bushel cartons 15.00 15.0 30.00\n", + "1739 9 1/2 bushel cartons 13.75 15.0 28.75\n", + "1740 9 1/2 bushel cartons 10.75 15.0 25.75\n", + "1741 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "1742 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "\n", + "[415 rows x 5 columns]\n" + ] + } + ], + "source": [ + "\n", + "# A set of new columns for a new dataframe. Filter out nonmatching columns\n", + "columns_to_select = ['Package', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Get an average between low and high price for the base pumpkin price\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "# Convert the date to its month only\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "\n", + "# Create a new dataframe with this basic data\n", + "new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price})\n", + "\n", + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9)\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2)\n", + "\n", + "print(new_pumpkins)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcXklEQVR4nO3dfZRcdZ3n8fdnKg80GbAJdLKkSQyTycnoEodoLQlGOXE0JiauZNiZFRbOoqPkuIddnWE3M7BwxmEOOcTJLOJZ96wbkBFHJjrjYGTFMWRRhlkXohUTCYoRkAh0kPQY4gO2Etrv/lG3YqW6bj3d7qrum8/rnD5d9btP3/u7v/p09a3bfRURmJlZfv1arwswM7OJ5aA3M8s5B72ZWc456M3Mcs5Bb2aWc9N6XUA9Z511VixcuLDXZZiZTRl79uz554gYqDdtUgb9woULKZVKvS7DzGzKkPT9tGk+dWNmlnMOejOznHPQm5nlnIPezCznHPRmZjnX9KobSXcAbwcOR8R5SdtW4F8DLwFPAu+OiKN1ll0LfAQoALdHxJbxK717Lr/tIb765JHjz1cums1dV104Zr7VtzzA44dfPP588ZxZ7LpmVTdKTLVj7xBbdx7g0NER5vX3sWnNEjYsG+xpTWbWXa28o/8EsLambRdwXkS8BvgucF3tQpIKwP8A3ga8GrhM0qszVdsDtSEP8NUnj3D5bQ+d0FYb8gCPH36R1bc8MNElptqxd4jr7t7P0NERAhg6OsJ1d+9nx96hntVkZt3XNOgj4kHgSE3bfRHxcvL0YeCcOoteADwREd+LiJeATwMXZ6y362pDPq29NuSbtXfD1p0HGDk2ekLbyLFRtu480KOKzKwXxuMc/R8A/1CnfRB4pur5s0lbXZI2SipJKg0PD49DWXbo6Ehb7WaWT5mCXtL1wMvAXVkLiYhtEVGMiOLAQN2/4rU2zevva6vdzPKp46CX9C7KH9JeHvVvUzUEzK96fk7SNqWsXDS7pfbFc2bVnS+tvRs2rVlC3/TCCW190wtsWrOkRxWZWS90FPTJ1TR/DLwjIn6WMtvXgcWSzpU0A7gUuKezMnvnrqsuHBPq9a662XXNqjGh3uurbjYsG+TmS5Yy2N+HgMH+Pm6+ZKmvujE7yajZPWMlbQdWAWcBzwMfpHyVzUzgh8lsD0fE+yTNo3wZ5bpk2XXArZQvr7wjIja3UlSxWAz/UzMzs9ZJ2hMRxbrTJuPNwR30ZmbtaRT0/stYM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzTYNe0h2SDkt6tKrt9yV9S9IvJdX9R/fJfAcl7Ze0T5LvJGJm1gOtvKP/BLC2pu1R4BLgwRaWf1NEnJ925xMzM5tY05rNEBEPSlpY0/YYgKQJKsvMzMbLRJ+jD+A+SXskbWw0o6SNkkqSSsPDwxNclpnZyWOig/4NEfFa4G3A1ZIuSpsxIrZFRDEiigMDAxNclpnZyWNCgz4ihpLvh4HPARdM5PbMzGysCQt6SbMknVZ5DLyV8oe4ZmbWRa1cXrkdeAhYIulZSe+R9LuSngUuBO6VtDOZd56kLyaLzgX+r6RvAl8D7o2IL03MbpiZWZpWrrq5LGXS5+rMewhYlzz+HvDbmaozM7PM/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznmt54RNIdwNuBwxFxXtL2+8CfAa8CLoiIUsqya4GPAAXg9ojYMk51j7Fj7xBbdx7g0NER5vX3sWnNEjYsG2x7PatveYDHD794/PniObN4avhFXo5fzTNN8MTN68csu/Dae8e0Hdwydr5qN+zYz/bdzzAaQUHisuXzuWnD0pZqbWWf6+3PrmtWtbR+K8tyjJZv3sXzP3np+PO5p81g9/WrgebjpdF2x2u8t6vR/jSTpR+b6VV/TBWKiMYzSBcBPwU+WRX0rwJ+Cfwv4L/UC3pJBeC7wGrgWeDrwGUR8e1mRRWLxSiV6v7sqGvH3iGuu3s/I8dGj7f1TS9w8yVL2zrYtaHYSG3Y13vRVqSF/Q079vOph58e037FigVNXwCt7HPa/jjsW5flGNWGYsXc02bUba84uGV9w+0WXzl7XMZ7uxrtT7Owz9KPzYzX63+qk7QnIor1pjU9dRMRDwJHatoei4gDTRa9AHgiIr4XES8BnwYubrHmtmzdeeCEgwwwcmyUrTublXiiVkMeOOEdfqe2736mrfZqrexz2v60s58nuyzHKC3MG4V8K9sdr/Heronan6x61R9TyUSeox8Eqo/is0lbXZI2SipJKg0PD7e1oUNHR9pqnyxGU36bSmuvNlX3earJcowmartT8dhPZD9Oxf7otknzYWxEbIuIYkQUBwYG2lp2Xn9fW+2TRUFqq73aVN3nqSbLMZqo7U7FYz+R/TgV+6PbJjLoh4D5Vc/PSdrG3aY1S+ibXjihrW96gU1rlrS1nsVzZrU877RxeJ1ftnx+W+3VWtnntP1pZz9PdlmO0dzTZrTV3up2x2u8t2ui9ierXvXHVDKRQf91YLGkcyXNAC4F7pmIDW1YNsjNlyxlsL8PAYP9fR19ELPrmlVjQnDxnFljQr3eVTdpH7g2uurmpg1LuWLFguPvagpSyx9OtbLPafvjD2Jbl+UY7b5+9ZgQrHxw2Wy8NNrueI33djXan2ay9GMzveqPqaSVq262A6uAs4DngQ9S/nD2vwMDwFFgX0SskTSP8mWU65Jl1wG3Ur688o6I2NxKUe1edWNmdrJrdNVN06DvBQe9mVl7Ml1eaWZmU5uD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnNNg17SHZIOS3q0qm22pF2SHk++n5Gy7KikfcnXhNxdyszMGmvlHf0ngLU1bdcC90fEYuD+5Hk9IxFxfvL1js7LNDOzTjUN+oh4kPKtA6tdDNyZPL4T2DC+ZZmZ2Xjp9Bz93Ih4Lnn8A2BuynynSCpJeljShkYrlLQxmbc0PDzcYVlmZlYr84exUb7pbNqNZ1+Z3MPw3wG3SlrUYD3bIqIYEcWBgYGsZZmZWaLToH9e0tkAyffD9WaKiKHk+/eAB4BlHW7PzMw61GnQ3wNcmTy+Evh87QySzpA0M3l8FrAS+HaH2zMzsw61cnnlduAhYImkZyW9B9gCrJb0OPCW5DmSipJuTxZ9FVCS9E3gK8CWiHDQm5l12bRmM0TEZSmT3lxn3hLw3uTx/wOWZqrOzMwy81/GmpnlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Oca3rjEQBJdwBvBw5HxHlJ22zgM8BC4CDwbyPihTrLXgnckDy9KSLuzF72WKtveYDHD794/PniObPYdc0qAHbsHWLrzgMcOjrCvP4+Nq1ZwoZlg22tr9bBLevHrDvtDun1TBM8cfN6Lr/tIb765JHj7SsXzeauqy5saR3LN+/i+Z+8dPz53NNmsPv61Q33o7pf8mThtfeOaasco6zLvuaDX+LHvxg9/vz0mQUeuXEt0HxsNVp3s+22u+xgf19LY/yGHfvZvvsZRiMoSFy2fD43bWjtHkHnXnvvCeNcwFPj1M/dcrK8Jqoponk8SboI+Cnwyaqg/wvgSERskXQtcEZE/EnNcrOBElAEAtgDvK7eD4RqxWIxSqVSyzuRFsqL58zi6jct5rq79zNy7Fcv1L7pBW6+ZGnqC6FZyFfc+s7zx6x7PLQS9rUhX1Ed9o36JU8Du16AVDQLkmbL1oZ8xekzC/z5hqUNx1ajdTdycMv6jpetV0e1G3bs51MPPz1m/itWLGga9rUhX9FK2Gc5RuMpz68JSXsiolhvWkunbiLiQeBITfPFQOXd+Z3AhjqLrgF2RcSRJNx3AWtb2WY70kL58cMvsnXngTFBPHJslK07D7S9vlr11j0eqt/hp6kX8rXtjfrFWlMv5CvtnYytbkmrY/vuZ+rOn9ZeLe0tYTu/yfbayfqayHKOfm5EPJc8/gEwt848g0D1CHo2aRtD0kZJJUml4eHhDGWd6NDRkbbax2PddnKYyLE1HurVMZryG3xau+XDuHwYG+XzP5lGSkRsi4hiRBQHBgbGoywA5vX3tdU+Huu2k8NEjq3xUK+OglR33rR2y4csQf+8pLMBku+H68wzBMyven5O0jauFs+Zldq+ac0S+qYXTmjvm15g05olba+vVr11j4eVi2Y3nWfuaTOatjfqF2vN6TPrH9/TZxY6GlvdklbHZcvn15k7vb1a2o+CqfQj4mR9TWQJ+nuAK5PHVwKfrzPPTuCtks6QdAbw1qRtXO26ZtWYA1X5cGXDskFuvmQpg/19iPKVCY0+iE1bX62DW9aPWXc7pqm8jtpQb/Wqm93Xrx4T9rVX3TTqlzxJ+zCvlQ/5mi37yI1rx4R95aqbZmOr0bqbbbeTZVsZ4zdtWMoVKxYcfwdfkFr6IBbKH7jWjvNWr7rJcozG08nymqjV6lU324FVwFnA88AHgR3A3wILgO9TvrzyiKQi8L6IeG+y7B8A/zVZ1eaI+Ktm22v3qhszs5Ndo6tuWgr6bnPQm5m1J/PllWZmNnU56M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczy7lMQS/pA5IelfQtSX9YZ/oqST+StC/5+tMs2zMzs/ZN63RBSecBVwEXAC8BX5L0hYh4ombWf4qIt2eo0czMMsjyjv5VwO6I+FlEvAz8I3DJ+JRlZmbjJUvQPwq8UdKZkk4F1gHz68x3oaRvSvoHSf8ybWWSNkoqSSoNDw9nKMvMzKp1fOomIh6T9CHgPuBFYB8wWjPbN4BXRsRPJa0DdgCLU9a3DdgG5ZuDd1qXmZmdKNOHsRHx8Yh4XURcBLwAfLdm+o8j4qfJ4y8C0yWdlWWbZmbWnqxX3cxJvi+gfH7+b2qm/wtJSh5fkGzvh1m2aWZm7en41E3i7yWdCRwDro6Io5LeBxARHwN+D/gPkl4GRoBLI8KnZczMuihT0EfEG+u0fazq8UeBj2bZhpmZZeO/jDUzyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcy/T96SR8ArgIE3BYRt9ZMF/ARyjcO/xnwroj4RpZtdssNO/azffczjEYgoHK3lILErBm/xo9/8avb4y6eM4td16zi8tse4qtPHmlp/QKe2rIeYMxyKxfN5q6rLgTgt67/Ij8f/dW9Wk4piO9sXgfA8s27eP4nLx2fNve0Gey+fvUJtVcM9vexac0SNiwbbHv/CxKXLZ/PTRuWtrTs6lse4PHDLx5/XukfgB17h9i68wCHjo4wr6qmTrbX6BhVlm9lvQuvvXfMug9uWV+3HwsSK37jDA7+cIRDR0c4dUaBn700StRst+I1H/zSCWPl9JkFHrlxbcPtVjQaF82WbaTRmGom7fhN9LJZNBsDjepqdAza1Wg7E9036vSGT5LOAz4NXAC8BHwJeF9EPFE1zzrgP1EO+uXARyJiebN1F4vFKJVKHdU1Hm7YsZ9PPfx0W8ucUtAJL55WCHj9otl1fzisXDSbPQdfqLvOUwriFadOPyHkW6mjb3qBmy9Z2nQApe3/FSsWNA3f2pCvWDxnFle/aTHX3b2fkWO/Cr6+6QVeu+AVdfug0fZaOUaL58yqW0v1eusFZlaV9deGfMXpMwt12ysOblmf+qZhZcp4qV62kdqQr2gl7HfsHap7/FoZU1mWzaLZWG5U19+Vnk49Bu2GfaPtAOPSN5L2RESx3rQsp25eBeyOiJ9FxMvAP1K+b2y1i4FPRtnDQL+kszNssyu2736m7WXaDXkovwNNe9F+9ckjqev8+WjUDflmdYwcG2XrzgNN60rb/1b6pV6wVtq37jxwwmCu1JTWB422l6WWTo5vOyrrTwvzRiFf0WhcZNFoTDWTdvxaGVNZls2i2VhuVNd4HoNG2+lG32QJ+keBN0o6U9KplN+1z6+ZZxCo7ulnk7YxJG2UVJJUGh4ezlBWdqM5vq3toaMjTedJ2/+s/dLKtlvdXpZaJvr45nX8pB2/Vo5rlmWzaDaWu1VXo+10o4aOgz4iHgM+BNxH+bTNPqD5W5X09W2LiGJEFAcGBjpdzbgoSD3d/kSa19/XdJ60/c/aL61su9XtZalloo9vXsdP2vFr5bhmWTaLZmO5W3U12k43ash01U1EfDwiXhcRFwEvAN+tmWWIE9/ln5O0TWqXLa/9xaS5Uwrtv7hF+XxfPSsXzU5d5ykFMfe0GW3X0Te9wKY1S5rWlbb/rfTL4jmzUts3rVlC3/TCmJrS+qDR9rLU0snxbUdl/afPLNSdntZerdG4yKLRmGom7fi1MqayLJtFs7HcqK7xPAaNttONvskU9JLmJN8XUD4//zc1s9wD/HuVrQB+FBHPZdlmN9y0YSlXrFhw/Kd+9UugII15oS6eM4vvbF7X1gCoXHVz11UXjlmu8mHPdzavG/MCrHxotvv61WPCfu5pM/jO5nUn1F4x2N/X8oc7tftfkFr6IBZg1zWrxgRs5aqbDcsGufmSpQz296Gqmu666sK2t9fsGF2xYgG7rlnVdL1pH14e3LK+bj8WJFYumn18H2bNKBzfdu36H7lx7ZixUrnqptF2gYbjotmyjTQaU82kHb9WxlSWZbNoNpYb1dXoGLSr0Xa60TcdX3UDIOmfgDOBY8A1EXG/pPcBRMTHkssrPwqspXx55bsjounlNL2+6sbMbKppdNVNpuvoI+KNddo+VvU4gKuzbMPMzLLxX8aameWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5zLeivBP5L0LUmPStou6ZSa6e+SNCxpX/L13mzlmplZuzoOekmDwPuBYkScBxSAS+vM+pmIOD/5ur3T7ZmZWWeynrqZBvRJmgacChzKXpKZmY2njoM+IoaAvwSeBp4DfhQR99WZ9d9IekTSZyXNT1ufpI2SSpJKw8PDnZZlZmY1spy6OQO4GDgXmAfMknRFzWz/G1gYEa8BdgF3pq0vIrZFRDEiigMDA52WZWZmNbKcunkL8FREDEfEMeBu4PXVM0TEDyPiF8nT24HXZdiemZl1IEvQPw2skHSqJAFvBh6rnkHS2VVP31E73czMJt60TheMiN2SPgt8A3gZ2Atsk/TnQCki7gHeL+kdyfQjwLuyl2xmZu1QRPS6hjGKxWKUSqVel2FmNmVI2hMRxXrT/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznOr7DFICkPwLeCwSwH3h3RPy8avpM4JOU7xX7Q+CdEXEwyzbzaMfeIbbuPMChoyPM6+9j05olbFg22HSaWSc8pk4+HQe9pEHg/cCrI2JE0t8ClwKfqJrtPcALEfGbki4FPgS8M0O9ubNj7xDX3b2fkWOjAAwdHeG6u/cfn542zS9M60Sj8eYxlV9ZT91MA/okTQNOBQ7VTL8YuDN5/FngzcmNxC2xdeeB4y+6ipFjo2zdeaDhNLNOeEydnDoO+ogYAv4SeBp4DvhRRNxXM9sg8Ewy/8vAj4Az661P0kZJJUml4eHhTsuacg4dHUltbzTNrBMeUyenjoNe0hmU37GfC8wDZkm6otP1RcS2iChGRHFgYKDT1Uw58/r7UtsbTTPrhMfUySnLqZu3AE9FxHBEHAPuBl5fM88QMB8gOb3zCsofylpi05ol9E0vnNDWN73ApjVLGk4z64TH1Mkpy1U3TwMrJJ0KjABvBko189wDXAk8BPwe8OWIiAzbzJ3KB2CNroLwFRI2XloZb5Y/ypK7km6kfBXNy8BeypdaXg+UIuIeSacAfw0sA44Al0bE95qtt1gsRqlU+zPDzMzSSNoTEcW60ybjG2wHvZlZexoFvf8y1sws5xz0ZmY556A3M8s5B72ZWc5Nyg9jJQ0D328y21nAP3ehnHZMxppgctblmlo3GeuajDXB5KyrWzW9MiLq/rXppAz6VkgqpX3C3CuTsSaYnHW5ptZNxromY00wOeuaDDX51I2ZWc456M3Mcm4qB/22XhdQx2SsCSZnXa6pdZOxrslYE0zOunpe05Q9R29mZq2Zyu/ozcysBQ56M7OcmxJBL+kOSYclPVrVNlvSLkmPJ9/PmAQ1/ZmkIUn7kq91Xa5pvqSvSPq2pG9J+kDS3rO+alBTr/vqFElfk/TNpK4bk/ZzJe2W9ISkz0iaMQlq+oSkp6r66vxu1VRVW0HSXklfSJ73rJ+a1NXTvpJ0UNL+ZNulpK2nWQVTJOgp33B8bU3btcD9EbEYuD953uuaAD4cEecnX1/sck0vA/85Il4NrACulvRqettXaTVBb/vqF8DvRMRvA+cDayWtoHwD+w9HxG8CL1C+wX2vawLYVNVX+7pYU8UHgMeqnveyn6rV1gW976s3JduuXDvf66yaGkEfEQ9S/n/21apvPH4nsGES1NRTEfFcRHwjefwTyi+AQXrYVw1q6qko+2nydHryFcDvUL6RPXS/r9Jq6ilJ5wDrgduT56KH/ZRW1yTW06yCKRL0KeZGxHPJ4x8Ac3tZTJX/KOmR5NRO139Fq5C0kPINX3YzSfqqpibocV8lv/bvAw4Du4AngaPJjewBnqXLP5Rqa4qISl9tTvrqw5JmdrMm4Fbgj4FfJs/PpMf9lFJXRS/7KoD7JO2RtDFp6/nrbyoH/XHJ7Ql7/s4H+J/AIsq/dj8H/LdeFCHp14G/B/4wIn5cPa1XfVWnpp73VUSMRsT5wDnABcBvdbuGWrU1SToPuI5ybf8KmA38SbfqkfR24HBE7OnWNlvRoK6e9VXiDRHxWuBtlE9TXlQ9sVevv6kc9M9LOhsg+X64x/UQEc8nL9RfArdRDo+ukjSdcqDeFRF3J8097at6NU2GvqqIiKPAV4ALgX6Vb2QP5bAd6nFNa5PTXxERvwD+iu721UrgHZIOAp+mfMrmI/S+n8bUJelTPe4rImIo+X4Y+Fyy/Z5n1VQO+sqNx0m+f76HtQDHD2LF7wKPps07QdsX8HHgsYi4pWpSz/oqraZJ0FcDkvqTx33AasqfH3yF8o3soft9Va+m71SFhCif3+1aX0XEdRFxTkQsBC4FvhwRl9PDfmpQ1xW97CtJsySdVnkMvDXZfu+zKiIm/RewnfKv98conw98D+XzhPcDjwP/B5g9CWr6a2A/8Ajlg3t2l2t6A+VfCx8B9iVf63rZVw1q6nVfvYbyDe0fofxi/NOk/TeArwFPAH8HzJwENX056atHgU8Bv97NvqqqbxXwhV73U5O6etZXSZ98M/n6FnB90t7TrIoI/wsEM7O8m8qnbszMrAUOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/N8s9l//aWz4AAAAASUVORK5CYII=", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "price = new_pumpkins.Price\n", + "month = new_pumpkins.Month\n", + "plt.scatter(price, month)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Pumpkin Price')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAARAElEQVR4nO3de5AlZX3G8e8joKigiIwbVNYVQ6ErwcVaiRW0CgUNikEQKxFTijHJahlUSsvUqknE/LVE0KoYNVkDigloNCoQLt5AxUuCLrrhIhqUQgMiLBGE0goR+OWP0+sMszOzZ8ft0zO830/VqTndfc7phwae6XlPX1JVSJLa8aChA0iSJsvil6TGWPyS1BiLX5IaY/FLUmMsfklqzK5DBxjHPvvsU6tWrRo6hiQtK1dcccVtVTU1e/6yKP5Vq1axadOmoWNI0rKS5IdzzXeoR5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYZXECl3auVesvHDoCN2w4eugIUrMsfjXNX4JqkUM9ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqTG/Fn2S/JF9M8p0k1yR5Yzf/lCQ3JdncPV7YVwZJ0rZ27fGz7wHeXFXfSrIncEWSz3fL3lNVp/W4bknSPHor/qq6Gbi5e35XkmuBx/W1PknSePrc4/+VJKuAQ4DLgcOAk5K8EtjE6K+C2yeRQ9L8Vq2/cOgI3LDh6KEjNKH3L3eT7AF8Eji5qu4EPgA8CVjD6C+C0+d537okm5Js2rJlS98xJakZvRZ/kt0Ylf7ZVfUpgKq6parurar7gA8Ch8713qraWFVrq2rt1NRUnzElqSl9HtUT4Azg2qp694z5+8542XHA1X1lkCRtq88x/sOAVwBXJdnczXsbcEKSNUABNwCv6TGDJGmWPo/q+SqQORZd1Nc6F+IXV5I04pm7ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JakxvxZ9kvyRfTPKdJNckeWM3f+8kn09yXffzUX1lkCRtq889/nuAN1fVauCZwJ8lWQ2sBy6pqgOAS7ppSdKE9Fb8VXVzVX2re34XcC3wOODFwFndy84Cju0rgyRpWxMZ40+yCjgEuBxYUVU3d4t+AqyY5z3rkmxKsmnLli2TiClJTei9+JPsAXwSOLmq7py5rKoKqLneV1Ubq2ptVa2dmprqO6YkNWOs4k/y0CQH7uiHJ9mNUemfXVWf6mbfkmTfbvm+wK07+rmSpMXbbvEn+T1gM/CZbnpNkvPHeF+AM4Brq+rdMxadD5zYPT8ROG8HM0uSfg3j7PGfAhwK3AFQVZuBJ47xvsOAVwDPTbK5e7wQ2AA8L8l1wJHdtCRpQnYd4zW/rKqfjXbgf2XOcfn7vaDqq0DmWXzEGOuVJPVgnOK/JsnLgV2SHAC8Afh6v7EkSX0ZZ6jn9cBTgbuBc4CfASf3mEmS1KPt7vFX1S+At3cPSdIyN85RPZ9PsteM6Ucl+WyvqSRJvRlnqGefqrpj60RV3Q48prdEkqRejVP89yVZuXUiyRMY46geSdLSNM5RPW8Hvprky4wOz3w2sK7XVJKk3ozz5e5nkjyd0aWVYXTNndv6jSVJ6su8Qz1Jntz9fDqwEvhx91jZzZMkLUML7fG/idGQzulzLCvgub0kkiT1at7ir6p1SR4E/EVVfW2CmSRJPVrwqJ6qug/4uwllkSRNwDiHc16S5PjMukqbJGl5Gqf4XwN8Arg7yZ1J7kpy5/beJElamsY5nHPPSQSRJE3GQodzHpDkvCRXJzknyeMmGUyS1I+FhnrOBC4Ajge+Dbx3IokkSb1aaKhnz6r6YPf8XUm+NYlAkqR+LVT8uyc5hOnbJz505nRV+YtAkpahhYr/ZuDdM6Z/MmPaM3claZla6Mzd50wyiCRpMsY5jl+S9ABi8UtSYyx+SWrMOHfgojt56wkzX19Vl/UVSpLUn+0Wf5JTgT8AvgPc280uwOKXpGVonD3+Y4EDq+runrNIkiZgnOK/HtgN2KHiT3Im8CLg1qo6qJt3CvCnwJbuZW+rqot25HMlqW+r1l84dARu2HB0b589TvH/Atic5BJmlH9VvWE77/swo5u4fGTW/PdU1Wk7ElKStPOMU/znd48dUlWXJVm1w4kkSb0a53r8Z+3kdZ6U5JXAJuDNVXX7XC9Kso7Rzd5ZuXLlTo4gSe1a6Hr8H+9+XpXkytmPRa7vA8CTgDWMrgV0+nwvrKqNVbW2qtZOTU0tcnWSpNkW2uN/Y/fzRTtrZVV1y9bnST7I6Hr/kqQJmnePv6pu7p6urqofznwAL1jMypLsO2PyOODqxXyOJGnxxvly9y+T3F1VlwIk+XPgOcDfL/SmJB8FDgf2SXIj8A7g8CRrGJ0AdgOjG7lLkiZonOI/BrggyVuAo4AnAy/e3puq6oQ5Zp+xY/EkSTvbOEf13JbkGOALwBXAS6uqek8mSerFvMWf5C5GQzJbPRjYH3hpkqqqR/QdTpK08y10B649JxlEkjQZ416W+SXAsxj9BfCVqjq3z1CSpP5s90YsSd4PvBa4itHhl69N8r6+g0mS+jHOHv9zgads/UI3yVnANb2mkiT1ZpxbL34fmHmxnP26eZKkZWicPf49gWuTfKObfgawKcn5AFV1TF/hJEk73zjF/1e9p5AkTcw4J3B9GSDJI7j/zdZ/2mMuSVJPxrnZ+jrgr4H/Be4Dwuiwzv37jSZJ6sM4Qz1vAQ6qqtv6DiNJ6t84R/X8gNF9dyVJDwDj7PG/Ffh6ksvZsZutS5KWoHGK/x+ASxmduXtfv3EkSX0bp/h3q6o39Z5EkjQR44zxX5xkXZJ9k+y99dF7MklSL8bZ4996J623zpjn4ZyStEyNcwLXEycRRJI0GeOcwPXKueZX1Ud2fhxJUt/GGep5xoznuwNHAN8CLH5JWobGGep5/czpJHsBH+srkCSpX+Mc1TPbzwHH/SVpmRpnjP/fGB3FA6NfFKuBj/cZSpLUn3HG+E+b8fwe4IdVdWNPeSRJPZu3+JPszugm67/J6HINZ1TVPZMKJknqx0Jj/GcBaxmV/guA0yeSSJLUq4WGelZX1W8BJDkD+MYCr91GkjOBFwG3VtVB3by9gX8BVgE3AL9fVbfveGxJ0mIttMf/y61PFjnE82HgqFnz1gOXVNUBwCXdtCRpghYq/qclubN73AUcvPV5kju398FVdRkw+768L2Y0hET389jFhJYkLd68Qz1VtUsP61tRVTd3z38CrOhhHZKkBSzmBK6doqqK6fMDttFdCnpTkk1btmyZYDJJemCbdPHfkmRfgO7nrfO9sKo2VtXaqlo7NTU1sYCS9EA36eI/Hzixe34icN6E1y9Jzeut+JN8FPh34MAkNyb5Y2AD8Lwk1wFHdtOSpAka55INi1JVJ8yz6Ii+1ilJ2r7BvtyVJA3D4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYXYdYaZIbgLuAe4F7qmrtEDkkqUWDFH/nOVV124Drl6QmOdQjSY0ZqvgL+FySK5KsGyiDJDVpqKGeZ1XVTUkeA3w+yXer6rKZL+h+IawDWLly5RAZJekBaZA9/qq6qft5K/Bp4NA5XrOxqtZW1dqpqalJR5SkB6yJF3+ShyfZc+tz4PnA1ZPOIUmtGmKoZwXw6SRb139OVX1mgByS1KSJF39VXQ88bdLrlSSNeDinJDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGjNI8Sc5Ksn3knw/yfohMkhSqyZe/El2Ad4HvABYDZyQZPWkc0hSq4bY4z8U+H5VXV9V/wd8DHjxADkkqUmpqsmuMHkpcFRV/Uk3/Qrgt6vqpFmvWwes6yYPBL430aDb2ge4beAMS4XbYprbYprbYtpS2RZPqKqp2TN3HSLJOKpqI7Bx6BxbJdlUVWuHzrEUuC2muS2muS2mLfVtMcRQz03AfjOmH9/NkyRNwBDF/03ggCRPTPJg4GXA+QPkkKQmTXyop6ruSXIS8FlgF+DMqrpm0jkWYckMOy0BbotpbotpbotpS3pbTPzLXUnSsDxzV5IaY/FLUmMsfklqzJI9jn9IM442+nFVfSHJy4HfAa4FNlbVLwcNOGFJ9gdewugw3HuB/wLOqao7Bw0maVH8cncOSc5m9EvxYcAdwB7Ap4AjGG2zE4dLN1lJ3gC8CLgMeCHwbUbb5DjgdVX1pcHCSVoUi38OSa6sqoOT7Mro5LLHVtW9SQL8Z1UdPHDEiUlyFbCm++d/GHBRVR2eZCVwXlUdMnDEiUnySOCtwLHAY4ACbgXOAzZU1R2DhVtCklxcVS8YOsekJHkEo/8uHg9cXFXnzFj2/qp63WDh5uFQz9we1A33PJzRXv8jgZ8CDwF2GzLYQHZlNMTzEEZ//VBVP0rS2rb4OHApcHhV/QQgyW8AJ3bLnj9gtolK8vT5FgFrJhhlKfgQcB3wSeDVSY4HXl5VdwPPHDTZPCz+uZ0BfJfRCWZvBz6R5HpG/xI/NmSwAfwj8M0klwPPBk4FSDLF6JdhS1ZV1akzZ3S/AE5N8uqBMg3lm8CXGRX9bHtNNsrgnlRVx3fPz03yduDSJMcMGWohDvXMI8ljAarqx0n2Ao4EflRV3xg02ACSPBV4CnB1VX136DxDSfI54AvAWVV1SzdvBfAq4HlVdeSA8SYqydXAcVV13RzL/ruq9pvjbQ9ISa4FnlpV982Y9yrgLcAeVfWEobLNx+KXxpTkUcB6RvePeEw3+xZG15raUFW3D5Vt0rrLq19VVdtcLj3JsVV17uRTDSPJ3wCfq6ovzJp/FPDeqjpgmGTzs/ilnSDJH1XVh4bOsRS4LaYt1W1h8Us7QZIfVdXKoXMsBW6LaUt1W/jlrjSmJFfOtwhYMcksQ3NbTFuO28Lil8a3AvhdYPZYfoCvTz7OoNwW05bdtrD4pfFdwOgojc2zFyT50sTTDMttMW3ZbQvH+CWpMV6dU5IaY/FLUmMsfglIUkn+ecb0rkm2JLlgkZ+3V5LXzZg+fLGfJe1sFr808nPgoCQP7aafx+jKrIu1F7DkrsoogcUvzXQRcHT3/ATgo1sXJNk7yblJrkzyH0kO7uafkuTMJF9Kcn13/wKADcCTkmxO8q5u3h5J/jXJd5Oc3V3mW5o4i1+a9jHgZUl2Bw4GLp+x7J3At7t7MbwN+MiMZU9mdBz3ocA7ustVrwd+UFVrquot3esOAU4GVgP7A4f1+M8izcvilzpVdSWwitHe/kWzFj8L+KfudZcCj+5uwAFwYVXdXVW3Mboxy3xna36jqm7sruK4uVuXNHGewCXd3/nAacDhwKPHfM/dM57fy/z/X437OqlX7vFL93cm8M6qumrW/K8AfwijI3SA27Zzs/m7gD37CCj9utzjkGaoqhuBv51j0SnAmd0FuX7B6HaLC33O/yT5WnfDkouBC3d2VmmxvGSDJDXGoR5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSY/4fZDFW+b6+4WkAAAAASUVORK5CYII=", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar')\n", + "plt.ylabel(\"Pumpkin Price\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است حاوی خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "95726f0b8283628d5356a4f8eb8b4b76", + "translation_date": "2025-09-04T01:36:54+00:00", + "source_file": "2-Regression/2-Data/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fa/2-Regression/3-Linear/README.md b/translations/fa/2-Regression/3-Linear/README.md new file mode 100644 index 000000000..e6b062182 --- /dev/null +++ b/translations/fa/2-Regression/3-Linear/README.md @@ -0,0 +1,381 @@ + +# ساخت مدل رگرسیون با استفاده از Scikit-learn: چهار روش رگرسیون + +![اینفوگرافیک رگرسیون خطی و چندجمله‌ای](../../../../translated_images/linear-polynomial.5523c7cb6576ccab0fecbd0e3505986eb2d191d9378e785f82befcf3a578a6e7.fa.png) +> اینفوگرافیک توسط [Dasani Madipalli](https://twitter.com/dasani_decoded) +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/13/) + +> ### [این درس به زبان R نیز موجود است!](../../../../2-Regression/3-Linear/solution/R/lesson_3.html) +### مقدمه + +تا اینجا شما با مفهوم رگرسیون آشنا شده‌اید و داده‌های نمونه‌ای از مجموعه داده‌های قیمت کدو تنبل را که در طول این درس استفاده خواهیم کرد، بررسی کرده‌اید. همچنین این داده‌ها را با استفاده از Matplotlib بصری‌سازی کرده‌اید. + +اکنون آماده هستید تا به عمق بیشتری در رگرسیون برای یادگیری ماشین بپردازید. در حالی که بصری‌سازی به شما کمک می‌کند داده‌ها را درک کنید، قدرت واقعی یادگیری ماشین از _آموزش مدل‌ها_ ناشی می‌شود. مدل‌ها بر اساس داده‌های تاریخی آموزش داده می‌شوند تا وابستگی‌های داده‌ها را به صورت خودکار ثبت کنند و به شما امکان پیش‌بینی نتایج برای داده‌های جدیدی را می‌دهند که مدل قبلاً ندیده است. + +در این درس، شما با دو نوع رگرسیون بیشتر آشنا خواهید شد: _رگرسیون خطی ساده_ و _رگرسیون چندجمله‌ای_، همراه با برخی از ریاضیات پایه‌ای این تکنیک‌ها. این مدل‌ها به ما امکان پیش‌بینی قیمت کدو تنبل را بر اساس داده‌های ورودی مختلف می‌دهند. + +[![یادگیری ماشین برای مبتدیان - درک رگرسیون خطی](https://img.youtube.com/vi/CRxFT8oTDMg/0.jpg)](https://youtu.be/CRxFT8oTDMg "یادگیری ماشین برای مبتدیان - درک رگرسیون خطی") + +> 🎥 روی تصویر بالا کلیک کنید تا یک ویدئوی کوتاه درباره رگرسیون خطی مشاهده کنید. + +> در طول این دوره آموزشی، ما فرض می‌کنیم که دانش ریاضی شما حداقلی است و تلاش می‌کنیم آن را برای دانش‌آموزانی که از زمینه‌های دیگر می‌آیند قابل دسترس کنیم. بنابراین به یادداشت‌ها، 🧮 نکات، نمودارها و ابزارهای یادگیری دیگر برای کمک به درک توجه کنید. + +### پیش‌نیاز + +تا اینجا باید با ساختار داده‌های کدو تنبل که در حال بررسی آن هستیم آشنا شده باشید. این داده‌ها در فایل _notebook.ipynb_ این درس از پیش بارگذاری و پاک‌سازی شده‌اند. در این فایل، قیمت کدو تنبل به ازای هر بوشل در یک فریم داده جدید نمایش داده شده است. مطمئن شوید که می‌توانید این نوت‌بوک‌ها را در کرنل‌های Visual Studio Code اجرا کنید. + +### آماده‌سازی + +به یاد داشته باشید که شما این داده‌ها را بارگذاری می‌کنید تا از آن‌ها سوالاتی بپرسید. + +- بهترین زمان برای خرید کدو تنبل چه زمانی است؟ +- چه قیمتی را می‌توانم برای یک جعبه کدو تنبل کوچک انتظار داشته باشم؟ +- آیا باید آن‌ها را در سبدهای نیم‌بوشل بخرم یا در جعبه‌های 1 1/9 بوشل؟ +بیایید به بررسی این داده‌ها ادامه دهیم. + +در درس قبلی، شما یک فریم داده Pandas ایجاد کردید و آن را با بخشی از مجموعه داده اصلی پر کردید، قیمت‌ها را به صورت استاندارد به ازای هر بوشل تنظیم کردید. با این حال، با انجام این کار، فقط توانستید حدود 400 نقطه داده جمع‌آوری کنید و فقط برای ماه‌های پاییز. + +به داده‌هایی که در نوت‌بوک همراه این درس از پیش بارگذاری شده‌اند نگاهی بیندازید. داده‌ها از پیش بارگذاری شده‌اند و یک نمودار پراکندگی اولیه برای نمایش داده‌های ماه رسم شده است. شاید بتوانیم با پاک‌سازی بیشتر، جزئیات بیشتری درباره ماهیت داده‌ها به دست آوریم. + +## یک خط رگرسیون خطی + +همان‌طور که در درس 1 یاد گرفتید، هدف یک تمرین رگرسیون خطی این است که بتوانید یک خط رسم کنید تا: + +- **روابط متغیرها را نشان دهید**. رابطه بین متغیرها را نشان دهید. +- **پیش‌بینی کنید**. پیش‌بینی‌های دقیقی درباره محل قرارگیری یک نقطه داده جدید نسبت به آن خط انجام دهید. + +در رگرسیون **کمترین مربعات** معمول است که این نوع خط رسم شود. اصطلاح "کمترین مربعات" به این معناست که تمام نقاط داده اطراف خط رگرسیون مربع شده و سپس جمع می‌شوند. ایده‌آل این است که این مجموع نهایی تا حد ممکن کوچک باشد، زیرا ما می‌خواهیم تعداد خطاها کم باشد یا همان `کمترین مربعات`. + +ما این کار را انجام می‌دهیم زیرا می‌خواهیم مدلی از یک خط داشته باشیم که کمترین فاصله تجمعی از تمام نقاط داده ما را داشته باشد. همچنین قبل از جمع کردن، مقادیر را مربع می‌کنیم زیرا به بزرگی آن‌ها اهمیت می‌دهیم نه جهت آن‌ها. + +> **🧮 ریاضیات را به من نشان بده** +> +> این خط، که به آن _خط بهترین برازش_ گفته می‌شود، می‌تواند با [یک معادله](https://en.wikipedia.org/wiki/Simple_linear_regression) بیان شود: +> +> ``` +> Y = a + bX +> ``` +> +> `X` متغیر توضیحی است. `Y` متغیر وابسته است. شیب خط `b` است و `a` نقطه تقاطع با محور y است که به مقدار `Y` زمانی که `X = 0` اشاره دارد. +> +>![محاسبه شیب](../../../../translated_images/slope.f3c9d5910ddbfcf9096eb5564254ba22c9a32d7acd7694cab905d29ad8261db3.fa.png) +> +> ابتدا شیب `b` را محاسبه کنید. اینفوگرافیک توسط [Jen Looper](https://twitter.com/jenlooper) +> +> به عبارت دیگر، و با اشاره به سوال اصلی داده‌های کدو تنبل: "پیش‌بینی قیمت کدو تنبل به ازای هر بوشل بر اساس ماه"، `X` به قیمت اشاره دارد و `Y` به ماه فروش اشاره دارد. +> +>![تکمیل معادله](../../../../translated_images/calculation.a209813050a1ddb141cdc4bc56f3af31e67157ed499e16a2ecf9837542704c94.fa.png) +> +> مقدار `Y` را محاسبه کنید. اگر حدود 4 دلار پرداخت می‌کنید، باید ماه آوریل باشد! اینفوگرافیک توسط [Jen Looper](https://twitter.com/jenlooper) +> +> ریاضیات محاسبه خط باید شیب خط را نشان دهد، که همچنین به نقطه تقاطع وابسته است، یا جایی که `Y` زمانی که `X = 0` قرار دارد. +> +> می‌توانید روش محاسبه این مقادیر را در وب‌سایت [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html) مشاهده کنید. همچنین به [این ماشین حساب کمترین مربعات](https://www.mathsisfun.com/data/least-squares-calculator.html) مراجعه کنید تا ببینید چگونه مقادیر عددی بر خط تأثیر می‌گذارند. + +## همبستگی + +یک اصطلاح دیگر که باید درک کنید **ضریب همبستگی** بین متغیرهای X و Y داده شده است. با استفاده از نمودار پراکندگی، می‌توانید این ضریب را به سرعت بصری‌سازی کنید. نموداری با نقاط داده پراکنده در یک خط مرتب دارای همبستگی بالا است، اما نموداری با نقاط داده پراکنده در همه جا بین X و Y دارای همبستگی پایین است. + +یک مدل رگرسیون خطی خوب مدلی است که با استفاده از روش کمترین مربعات رگرسیون و یک خط رگرسیون، ضریب همبستگی بالایی (نزدیک‌تر به 1 نسبت به 0) داشته باشد. + +✅ نوت‌بوک همراه این درس را اجرا کنید و به نمودار پراکندگی ماه به قیمت نگاه کنید. آیا داده‌های مرتبط با ماه به قیمت برای فروش کدو تنبل به نظر شما همبستگی بالا یا پایینی دارند، بر اساس تفسیر بصری شما از نمودار پراکندگی؟ آیا این تغییر می‌کند اگر از اندازه‌گیری دقیق‌تر به جای `ماه` استفاده کنید، مانند *روز سال* (یعنی تعداد روزها از ابتدای سال)؟ + +در کد زیر، فرض می‌کنیم که داده‌ها را پاک‌سازی کرده‌ایم و یک فریم داده به نام `new_pumpkins` به دست آورده‌ایم، مشابه موارد زیر: + +ID | ماه | روز سال | نوع | شهر | بسته‌بندی | قیمت پایین | قیمت بالا | قیمت +---|-------|-----------|---------|------|---------|-----------|------------|------- +70 | 9 | 267 | نوع پای | بالتیمور | جعبه‌های 1 1/9 بوشل | 15.0 | 15.0 | 13.636364 +71 | 9 | 267 | نوع پای | بالتیمور | جعبه‌های 1 1/9 بوشل | 18.0 | 18.0 | 16.363636 +72 | 10 | 274 | نوع پای | بالتیمور | جعبه‌های 1 1/9 بوشل | 18.0 | 18.0 | 16.363636 +73 | 10 | 274 | نوع پای | بالتیمور | جعبه‌های 1 1/9 بوشل | 17.0 | 17.0 | 15.454545 +74 | 10 | 281 | نوع پای | بالتیمور | جعبه‌های 1 1/9 بوشل | 15.0 | 15.0 | 13.636364 + +> کد پاک‌سازی داده‌ها در [`notebook.ipynb`](notebook.ipynb) موجود است. ما همان مراحل پاک‌سازی درس قبلی را انجام داده‌ایم و ستون `روز سال` را با استفاده از عبارت زیر محاسبه کرده‌ایم: + +```python +day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days) +``` + +اکنون که درک بهتری از ریاضیات پشت رگرسیون خطی دارید، بیایید یک مدل رگرسیون بسازیم تا ببینیم آیا می‌توانیم پیش‌بینی کنیم کدام بسته‌بندی کدو تنبل بهترین قیمت‌ها را خواهد داشت. کسی که کدو تنبل برای یک مزرعه تعطیلاتی خریداری می‌کند ممکن است بخواهد این اطلاعات را داشته باشد تا خریدهای بسته‌های کدو تنبل برای مزرعه را بهینه کند. + +## جستجوی همبستگی + +[![یادگیری ماشین برای مبتدیان - جستجوی همبستگی: کلید رگرسیون خطی](https://img.youtube.com/vi/uoRq-lW2eQo/0.jpg)](https://youtu.be/uoRq-lW2eQo "یادگیری ماشین برای مبتدیان - جستجوی همبستگی: کلید رگرسیون خطی") + +> 🎥 روی تصویر بالا کلیک کنید تا یک ویدئوی کوتاه درباره همبستگی مشاهده کنید. + +از درس قبلی احتمالاً دیده‌اید که میانگین قیمت برای ماه‌های مختلف به این شکل است: + +میانگین قیمت بر اساس ماه + +این نشان می‌دهد که باید مقداری همبستگی وجود داشته باشد، و می‌توانیم تلاش کنیم مدل رگرسیون خطی را برای پیش‌بینی رابطه بین `ماه` و `قیمت` یا بین `روز سال` و `قیمت` آموزش دهیم. اینجا نمودار پراکندگی‌ای است که رابطه دوم را نشان می‌دهد: + +نمودار پراکندگی قیمت در مقابل روز سال + +بیایید ببینیم آیا همبستگی وجود دارد با استفاده از تابع `corr`: + +```python +print(new_pumpkins['Month'].corr(new_pumpkins['Price'])) +print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price'])) +``` + +به نظر می‌رسد که همبستگی بسیار کم است، -0.15 بر اساس `ماه` و -0.17 بر اساس `روز ماه`، اما ممکن است رابطه مهم دیگری وجود داشته باشد. به نظر می‌رسد که دسته‌های مختلف قیمت‌ها مربوط به انواع مختلف کدو تنبل هستند. برای تأیید این فرضیه، بیایید هر دسته کدو تنبل را با یک رنگ متفاوت رسم کنیم. با ارسال پارامتر `ax` به تابع رسم پراکندگی می‌توانیم تمام نقاط را روی یک نمودار رسم کنیم: + +```python +ax=None +colors = ['red','blue','green','yellow'] +for i,var in enumerate(new_pumpkins['Variety'].unique()): + df = new_pumpkins[new_pumpkins['Variety']==var] + ax = df.plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var) +``` + +نمودار پراکندگی قیمت در مقابل روز سال + +تحقیقات ما نشان می‌دهد که نوع کدو تنبل تأثیر بیشتری بر قیمت کلی نسبت به تاریخ فروش دارد. می‌توانیم این را با یک نمودار میله‌ای ببینیم: + +```python +new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar') +``` + +نمودار میله‌ای قیمت در مقابل نوع + +بیایید فعلاً فقط بر یک نوع کدو تنبل، نوع 'پای'، تمرکز کنیم و ببینیم تاریخ چه تأثیری بر قیمت دارد: + +```python +pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE'] +pie_pumpkins.plot.scatter('DayOfYear','Price') +``` +نمودار پراکندگی قیمت در مقابل روز سال + +اگر اکنون همبستگی بین `قیمت` و `روز سال` را با استفاده از تابع `corr` محاسبه کنیم، چیزی حدود `-0.27` به دست خواهیم آورد - که نشان می‌دهد آموزش یک مدل پیش‌بینی منطقی است. + +> قبل از آموزش مدل رگرسیون خطی، مهم است که مطمئن شویم داده‌های ما پاک هستند. رگرسیون خطی با مقادیر گمشده خوب کار نمی‌کند، بنابراین منطقی است که تمام سلول‌های خالی را حذف کنیم: + +```python +pie_pumpkins.dropna(inplace=True) +pie_pumpkins.info() +``` + +یک روش دیگر این است که این مقادیر خالی را با مقادیر میانگین از ستون مربوطه پر کنیم. + +## رگرسیون خطی ساده + +[![یادگیری ماشین برای مبتدیان - رگرسیون خطی و چندجمله‌ای با استفاده از Scikit-learn](https://img.youtube.com/vi/e4c_UP2fSjg/0.jpg)](https://youtu.be/e4c_UP2fSjg "یادگیری ماشین برای مبتدیان - رگرسیون خطی و چندجمله‌ای با استفاده از Scikit-learn") + +> 🎥 روی تصویر بالا کلیک کنید تا یک ویدئوی کوتاه درباره رگرسیون خطی و چندجمله‌ای مشاهده کنید. + +برای آموزش مدل رگرسیون خطی خود، از کتابخانه **Scikit-learn** استفاده خواهیم کرد. + +```python +from sklearn.linear_model import LinearRegression +from sklearn.metrics import mean_squared_error +from sklearn.model_selection import train_test_split +``` + +ابتدا باید مقادیر ورودی (ویژگی‌ها) و خروجی مورد انتظار (برچسب) را به آرایه‌های numpy جداگانه تقسیم کنیم: + +```python +X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1) +y = pie_pumpkins['Price'] +``` + +> توجه داشته باشید که ما باید `reshape` را روی داده‌های ورودی انجام دهیم تا بسته رگرسیون خطی آن را به درستی درک کند. رگرسیون خطی یک آرایه دو‌بعدی را به عنوان ورودی انتظار دارد، که هر سطر آرایه مربوط به یک بردار از ویژگی‌های ورودی است. در مورد ما، چون فقط یک ورودی داریم - به آرایه‌ای با شکل N×1 نیاز داریم، که N اندازه مجموعه داده است. + +سپس، باید داده‌ها را به مجموعه‌های آموزشی و آزمایشی تقسیم کنیم تا بتوانیم مدل خود را پس از آموزش اعتبارسنجی کنیم: + +```python +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) +``` + +در نهایت، آموزش مدل رگرسیون خطی واقعی فقط دو خط کد طول می‌کشد. ما شیء `LinearRegression` را تعریف می‌کنیم و آن را با استفاده از روش `fit` به داده‌های خود تطبیق می‌دهیم: + +```python +lin_reg = LinearRegression() +lin_reg.fit(X_train,y_train) +``` + +شیء `LinearRegression` پس از تطبیق شامل تمام ضرایب رگرسیون است، که می‌توان با استفاده از ویژگی `.coef_` به آن‌ها دسترسی داشت. در مورد ما، فقط یک ضریب وجود دارد، که باید حدود `-0.017` باشد. این به این معناست که قیمت‌ها به نظر می‌رسد کمی با گذشت زمان کاهش می‌یابند، اما نه خیلی زیاد، حدود 2 سنت در روز. همچنین می‌توانیم نقطه تقاطع رگرسیون با محور Y را با استفاده از `lin_reg.intercept_` دسترسی داشته باشیم - که در مورد ما حدود `21` خواهد بود، که نشان‌دهنده قیمت در ابتدای سال است. + +برای دیدن اینکه مدل ما چقدر دقیق است، می‌توانیم قیمت‌ها را در مجموعه داده آزمایشی پیش‌بینی کنیم و سپس اندازه‌گیری کنیم که پیش‌بینی‌های ما چقدر به مقادیر مورد انتظار نزدیک هستند. این کار را می‌توان با معیار خطای میانگین مربعات (MSE) انجام داد، که میانگین تمام تفاوت‌های مربعی بین مقدار مورد انتظار و مقدار پیش‌بینی‌شده است. + +```python +pred = lin_reg.predict(X_test) + +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') +``` +به نظر می‌رسد خطای ما در حدود ۲ نقطه است، که تقریباً برابر با ۱۷٪ می‌باشد. این خیلی خوب نیست. یکی دیگر از شاخص‌های کیفیت مدل **ضریب تعیین** است، که می‌توان آن را به این صورت محاسبه کرد: + +```python +score = lin_reg.score(X_train,y_train) +print('Model determination: ', score) +``` +اگر مقدار برابر با ۰ باشد، به این معناست که مدل داده‌های ورودی را در نظر نمی‌گیرد و به عنوان *بدترین پیش‌بینی‌کننده خطی* عمل می‌کند، که صرفاً میانگین نتایج است. مقدار ۱ نشان می‌دهد که می‌توانیم تمام خروجی‌های مورد انتظار را به طور کامل پیش‌بینی کنیم. در مورد ما، ضریب تعیین حدود ۰.۰۶ است، که بسیار پایین است. + +ما همچنین می‌توانیم داده‌های آزمایشی را همراه با خط رگرسیون رسم کنیم تا بهتر ببینیم که رگرسیون در مورد ما چگونه عمل می‌کند: + +```python +plt.scatter(X_test,y_test) +plt.plot(X_test,pred) +``` + +رگرسیون خطی + +## رگرسیون چندجمله‌ای + +نوع دیگری از رگرسیون خطی، رگرسیون چندجمله‌ای است. گاهی اوقات رابطه خطی بین متغیرها وجود دارد - مثلاً هرچه حجم کدو تنبل بزرگ‌تر باشد، قیمت بالاتر می‌رود - اما گاهی این روابط نمی‌توانند به صورت یک صفحه یا خط مستقیم رسم شوند. + +✅ [اینجا چند مثال دیگر](https://online.stat.psu.edu/stat501/lesson/9/9.8) از داده‌هایی که می‌توانند از رگرسیون چندجمله‌ای استفاده کنند آورده شده است. + +یک بار دیگر به رابطه بین تاریخ و قیمت نگاه کنید. آیا این نمودار پراکندگی به نظر می‌رسد که باید لزوماً با یک خط مستقیم تحلیل شود؟ آیا قیمت‌ها نمی‌توانند نوسان داشته باشند؟ در این حالت، می‌توانید رگرسیون چندجمله‌ای را امتحان کنید. + +✅ چندجمله‌ای‌ها عبارت‌های ریاضی هستند که ممکن است شامل یک یا چند متغیر و ضرایب باشند. + +رگرسیون چندجمله‌ای یک خط منحنی ایجاد می‌کند تا داده‌های غیرخطی را بهتر تطبیق دهد. در مورد ما، اگر یک متغیر `DayOfYear` به توان دو را به داده‌های ورودی اضافه کنیم، باید بتوانیم داده‌های خود را با یک منحنی سهمی تطبیق دهیم، که در یک نقطه خاص در طول سال حداقل خواهد بود. + +کتابخانه Scikit-learn شامل یک [API خط لوله](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html?highlight=pipeline#sklearn.pipeline.make_pipeline) مفید است که مراحل مختلف پردازش داده‌ها را با هم ترکیب می‌کند. **خط لوله** زنجیره‌ای از **تخمین‌گرها** است. در مورد ما، یک خط لوله ایجاد خواهیم کرد که ابتدا ویژگی‌های چندجمله‌ای را به مدل اضافه می‌کند و سپس رگرسیون را آموزش می‌دهد: + +```python +from sklearn.preprocessing import PolynomialFeatures +from sklearn.pipeline import make_pipeline + +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) + +pipeline.fit(X_train,y_train) +``` + +استفاده از `PolynomialFeatures(2)` به این معناست که تمام چندجمله‌ای‌های درجه دوم از داده‌های ورودی را شامل می‌شود. در مورد ما، این فقط به معنای `DayOfYear`2 خواهد بود، اما با دو متغیر ورودی X و Y، این شامل X2، XY و Y2 نیز خواهد بود. اگر بخواهیم، می‌توانیم از چندجمله‌ای‌های درجه بالاتر نیز استفاده کنیم. + +خط لوله‌ها را می‌توان به همان شیوه‌ای که شیء اصلی `LinearRegression` استفاده می‌شود، به کار برد، یعنی می‌توانیم خط لوله را `fit` کنیم و سپس از `predict` برای دریافت نتایج پیش‌بینی استفاده کنیم. اینجا نموداری است که داده‌های آزمایشی و منحنی تقریب را نشان می‌دهد: + +رگرسیون چندجمله‌ای + +با استفاده از رگرسیون چندجمله‌ای، می‌توانیم MSE کمی پایین‌تر و ضریب تعیین بالاتری داشته باشیم، اما نه به طور قابل توجهی. باید ویژگی‌های دیگر را نیز در نظر بگیریم! + +> می‌توانید ببینید که حداقل قیمت‌های کدو تنبل در حوالی هالووین مشاهده می‌شود. چگونه می‌توانید این را توضیح دهید؟ + +🎃 تبریک می‌گوییم، شما مدلی ایجاد کردید که می‌تواند قیمت کدو تنبل‌های پای را پیش‌بینی کند. احتمالاً می‌توانید همین روش را برای همه انواع کدو تنبل تکرار کنید، اما این کار خسته‌کننده خواهد بود. حالا بیایید یاد بگیریم که چگونه نوع کدو تنبل را در مدل خود در نظر بگیریم! + +## ویژگی‌های دسته‌بندی‌شده + +در دنیای ایده‌آل، می‌خواهیم بتوانیم قیمت‌ها را برای انواع مختلف کدو تنبل با استفاده از یک مدل پیش‌بینی کنیم. با این حال، ستون `Variety` کمی متفاوت از ستون‌هایی مانند `Month` است، زیرا شامل مقادیر غیرعددی است. چنین ستون‌هایی **دسته‌بندی‌شده** نامیده می‌شوند. + +[![یادگیری ماشین برای مبتدیان - پیش‌بینی ویژگی‌های دسته‌بندی‌شده با رگرسیون خطی](https://img.youtube.com/vi/DYGliioIAE0/0.jpg)](https://youtu.be/DYGliioIAE0 "یادگیری ماشین برای مبتدیان - پیش‌بینی ویژگی‌های دسته‌بندی‌شده با رگرسیون خطی") + +> 🎥 روی تصویر بالا کلیک کنید تا یک ویدئوی کوتاه درباره استفاده از ویژگی‌های دسته‌بندی‌شده ببینید. + +اینجا می‌توانید ببینید که چگونه قیمت متوسط به نوع کدو تنبل بستگی دارد: + +قیمت متوسط بر اساس نوع + +برای در نظر گرفتن نوع کدو تنبل، ابتدا باید آن را به شکل عددی تبدیل کنیم، یا **کدگذاری** کنیم. چند روش برای این کار وجود دارد: + +* **کدگذاری عددی ساده** یک جدول از انواع مختلف ایجاد می‌کند و سپس نام نوع را با یک شاخص در آن جدول جایگزین می‌کند. این روش برای رگرسیون خطی بهترین نیست، زیرا رگرسیون خطی مقدار عددی واقعی شاخص را می‌گیرد و آن را به نتیجه اضافه می‌کند، ضرب در یک ضریب خاص. در مورد ما، رابطه بین شماره شاخص و قیمت به وضوح غیرخطی است، حتی اگر مطمئن شویم که شاخص‌ها به ترتیب خاصی مرتب شده‌اند. +* **کدگذاری یک‌داغ** ستون `Variety` را با ۴ ستون مختلف جایگزین می‌کند، یکی برای هر نوع. هر ستون شامل `1` خواهد بود اگر ردیف مربوطه از نوع خاصی باشد، و در غیر این صورت `0`. این به این معناست که در رگرسیون خطی، چهار ضریب وجود خواهد داشت، یکی برای هر نوع کدو تنبل، که مسئول "قیمت پایه" (یا بهتر بگوییم "قیمت اضافی") برای آن نوع خاص است. + +کد زیر نشان می‌دهد که چگونه می‌توان یک نوع را به صورت یک‌داغ کدگذاری کرد: + +```python +pd.get_dummies(new_pumpkins['Variety']) +``` + + ID | FAIRYTALE | MINIATURE | MIXED HEIRLOOM VARIETIES | PIE TYPE +----|-----------|-----------|--------------------------|---------- +70 | 0 | 0 | 0 | 1 +71 | 0 | 0 | 0 | 1 +... | ... | ... | ... | ... +1738 | 0 | 1 | 0 | 0 +1739 | 0 | 1 | 0 | 0 +1740 | 0 | 1 | 0 | 0 +1741 | 0 | 1 | 0 | 0 +1742 | 0 | 1 | 0 | 0 + +برای آموزش رگرسیون خطی با استفاده از نوع کدگذاری‌شده به صورت یک‌داغ به عنوان ورودی، فقط باید داده‌های `X` و `y` را به درستی مقداردهی کنیم: + +```python +X = pd.get_dummies(new_pumpkins['Variety']) +y = new_pumpkins['Price'] +``` + +بقیه کد مشابه چیزی است که در بالا برای آموزش رگرسیون خطی استفاده کردیم. اگر آن را امتحان کنید، خواهید دید که میانگین مربعات خطا تقریباً همان است، اما ضریب تعیین بسیار بالاتر (~77٪) است. برای پیش‌بینی‌های دقیق‌تر، می‌توانیم ویژگی‌های دسته‌بندی‌شده بیشتری را در نظر بگیریم، همچنین ویژگی‌های عددی مانند `Month` یا `DayOfYear`. برای ایجاد یک آرایه بزرگ از ویژگی‌ها، می‌توانیم از `join` استفاده کنیم: + +```python +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] +``` + +اینجا همچنین `City` و نوع `Package` را در نظر می‌گیریم، که به ما MSE برابر با 2.84 (10٪) و ضریب تعیین 0.94 می‌دهد! + +## جمع‌بندی همه چیز + +برای ایجاد بهترین مدل، می‌توانیم داده‌های ترکیبی (دسته‌بندی‌شده کدگذاری‌شده به صورت یک‌داغ + عددی) از مثال بالا را همراه با رگرسیون چندجمله‌ای استفاده کنیم. اینجا کد کامل برای راحتی شما آورده شده است: + +```python +# set up training data +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] + +# make train-test split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + +# setup and train the pipeline +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) +pipeline.fit(X_train,y_train) + +# predict results for test data +pred = pipeline.predict(X_test) + +# calculate MSE and determination +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') + +score = pipeline.score(X_train,y_train) +print('Model determination: ', score) +``` + +این باید بهترین ضریب تعیین تقریباً 97٪ و MSE=2.23 (~8٪ خطای پیش‌بینی) را به ما بدهد. + +| مدل | MSE | ضریب تعیین | +|-------|-----|---------------| +| `DayOfYear` خطی | 2.77 (17.2٪) | 0.07 | +| `DayOfYear` چندجمله‌ای | 2.73 (17.0٪) | 0.08 | +| `Variety` خطی | 5.24 (19.7٪) | 0.77 | +| همه ویژگی‌ها خطی | 2.84 (10.5٪) | 0.94 | +| همه ویژگی‌ها چندجمله‌ای | 2.23 (8.25٪) | 0.97 | + +🏆 آفرین! شما چهار مدل رگرسیون را در یک درس ایجاد کردید و کیفیت مدل را به 97٪ بهبود دادید. در بخش نهایی درباره رگرسیون، یاد خواهید گرفت که چگونه از رگرسیون لجستیک برای تعیین دسته‌ها استفاده کنید. + +--- + +## 🚀چالش + +چندین متغیر مختلف را در این دفترچه آزمایش کنید تا ببینید چگونه همبستگی با دقت مدل مطابقت دارد. + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/) + +## مرور و مطالعه شخصی + +در این درس درباره رگرسیون خطی یاد گرفتیم. انواع مهم دیگری از رگرسیون نیز وجود دارند. درباره تکنیک‌های Stepwise، Ridge، Lasso و Elasticnet مطالعه کنید. یک دوره خوب برای یادگیری بیشتر [دوره یادگیری آماری استنفورد](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning) است. + +## تکلیف + +[یک مدل بسازید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/2-Regression/3-Linear/assignment.md b/translations/fa/2-Regression/3-Linear/assignment.md new file mode 100644 index 000000000..fc46e63cc --- /dev/null +++ b/translations/fa/2-Regression/3-Linear/assignment.md @@ -0,0 +1,25 @@ + +# ایجاد یک مدل رگرسیون + +## دستورالعمل‌ها + +در این درس یاد گرفتید که چگونه با استفاده از رگرسیون خطی و چندجمله‌ای یک مدل بسازید. با استفاده از این دانش، یک مجموعه داده پیدا کنید یا از مجموعه‌های داخلی Scikit-learn استفاده کنید تا یک مدل جدید بسازید. در دفترچه یادداشت خود توضیح دهید چرا تکنیکی که انتخاب کرده‌اید را استفاده کرده‌اید و دقت مدل خود را نشان دهید. اگر مدل دقیق نیست، توضیح دهید چرا. + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ----------| ------------------------------------------------------------ | -------------------------- | ------------------------------- | +| | یک دفترچه کامل با راه‌حل مستند ارائه می‌دهد | راه‌حل ناقص است | راه‌حل دارای نقص یا اشکال است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/2-Regression/3-Linear/notebook.ipynb b/translations/fa/2-Regression/3-Linear/notebook.ipynb new file mode 100644 index 000000000..c6b810151 --- /dev/null +++ b/translations/fa/2-Regression/3-Linear/notebook.ipynb @@ -0,0 +1,128 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## قیمت‌گذاری کدو تنبل\n", + "\n", + "کتابخانه‌های مورد نیاز و مجموعه داده را بارگذاری کنید. داده‌ها را به یک دیتافریم تبدیل کنید که شامل بخشی از داده‌ها باشد:\n", + "\n", + "- فقط کدو تنبل‌هایی را انتخاب کنید که به صورت بوشل قیمت‌گذاری شده‌اند \n", + "- تاریخ را به ماه تبدیل کنید \n", + "- قیمت را به صورت میانگین قیمت‌های بالا و پایین محاسبه کنید \n", + "- قیمت را به گونه‌ای تبدیل کنید که نشان‌دهنده قیمت‌گذاری بر اساس مقدار بوشل باشد \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "یک نمودار پراکندگی ساده به ما یادآوری می‌کند که فقط داده‌های ماه از آگوست تا دسامبر را داریم. احتمالاً به داده‌های بیشتری نیاز داریم تا بتوانیم به صورت خطی نتیجه‌گیری کنیم.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.scatter('Month','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "plt.scatter('DayOfYear','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "b032d371c75279373507f003439a577e", + "translation_date": "2025-09-04T01:02:08+00:00", + "source_file": "2-Regression/3-Linear/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fa/2-Regression/3-Linear/solution/Julia/README.md b/translations/fa/2-Regression/3-Linear/solution/Julia/README.md new file mode 100644 index 000000000..ef7b377d6 --- /dev/null +++ b/translations/fa/2-Regression/3-Linear/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb b/translations/fa/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb new file mode 100644 index 000000000..c7239edb8 --- /dev/null +++ b/translations/fa/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb @@ -0,0 +1,1080 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_3-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "5015d65d61ba75a223bfc56c273aa174", + "translation_date": "2025-09-04T01:15:44+00:00", + "source_file": "2-Regression/3-Linear/solution/R/lesson_3-R.ipynb", + "language_code": "fa" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "ساخت یک مدل رگرسیون: مدل‌های رگرسیون خطی و چندجمله‌ای\n" + ], + "metadata": { + "id": "EgQw8osnsUV-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## رگرسیون خطی و چندجمله‌ای برای قیمت‌گذاری کدو تنبل - درس ۳\n", + "\n", + "

            \n", + " \n", + "

            اینفوگرافیک از داسانی مدیپالی
            \n", + "\n", + "#### مقدمه\n", + "\n", + "تا اینجا شما با مفهوم رگرسیون آشنا شده‌اید و داده‌های نمونه‌ای را که از مجموعه داده قیمت‌گذاری کدو تنبل جمع‌آوری شده است بررسی کرده‌اید. همچنین این داده‌ها را با استفاده از `ggplot2` تجسم کرده‌اید. 💪\n", + "\n", + "اکنون آماده‌اید تا عمیق‌تر به موضوع رگرسیون در یادگیری ماشین بپردازید. در این درس، شما با دو نوع رگرسیون آشنا خواهید شد: *رگرسیون خطی ساده* و *رگرسیون چندجمله‌ای*، به همراه برخی از مفاهیم ریاضی مرتبط با این تکنیک‌ها.\n", + "\n", + "> در طول این دوره آموزشی، فرض بر این است که دانش ریاضی شما حداقلی است و تلاش می‌شود که مفاهیم به گونه‌ای ارائه شوند که برای دانشجویانی که از رشته‌های دیگر می‌آیند قابل درک باشد. بنابراین به یادداشت‌ها، 🧮 نکات، نمودارها و ابزارهای آموزشی دیگر برای کمک به درک بهتر توجه کنید.\n", + "\n", + "#### آماده‌سازی\n", + "\n", + "یادآوری می‌شود که شما این داده‌ها را بارگذاری می‌کنید تا بتوانید سوالاتی از آن بپرسید.\n", + "\n", + "- بهترین زمان برای خرید کدو تنبل چه زمانی است؟\n", + "\n", + "- چه قیمتی می‌توانم برای یک جعبه کدو تنبل مینیاتوری انتظار داشته باشم؟\n", + "\n", + "- آیا بهتر است آن‌ها را در سبدهای نیم‌بوشل بخرم یا در جعبه‌های ۱ و ۱/۹ بوشل؟ بیایید به کاوش در این داده‌ها ادامه دهیم.\n", + "\n", + "در درس قبلی، شما یک `tibble` (نسخه مدرن و بازنگری‌شده از فریم داده) ایجاد کردید و آن را با بخشی از مجموعه داده اصلی پر کردید و قیمت‌ها را بر اساس بوشل استانداردسازی کردید. با این کار، شما فقط توانستید حدود ۴۰۰ نقطه داده جمع‌آوری کنید و آن هم فقط برای ماه‌های پاییز. شاید بتوانیم با پاکسازی بیشتر داده‌ها، جزئیات بیشتری درباره ماهیت داده‌ها به دست آوریم؟ خواهیم دید... 🕵️‍♀️\n", + "\n", + "برای این کار، به بسته‌های زیر نیاز خواهیم داشت:\n", + "\n", + "- `tidyverse`: [تایدی‌ورس](https://www.tidyverse.org/) یک [مجموعه از بسته‌های R](https://www.tidyverse.org/packages) است که برای سریع‌تر، آسان‌تر و لذت‌بخش‌تر کردن علم داده طراحی شده است!\n", + "\n", + "- `tidymodels`: چارچوب [تایدی‌مدلز](https://www.tidymodels.org/) یک [مجموعه از بسته‌ها](https://www.tidymodels.org/packages/) برای مدل‌سازی و یادگیری ماشین است.\n", + "\n", + "- `janitor`: بسته [جانیتور](https://github.com/sfirke/janitor) ابزارهای ساده‌ای برای بررسی و پاکسازی داده‌های کثیف ارائه می‌دهد.\n", + "\n", + "- `corrplot`: بسته [کورپلات](https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html) یک ابزار بصری برای بررسی ماتریس همبستگی ارائه می‌دهد که از مرتب‌سازی خودکار متغیرها برای کمک به کشف الگوهای پنهان بین متغیرها پشتیبانی می‌کند.\n", + "\n", + "می‌توانید این بسته‌ها را به این صورت نصب کنید:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"corrplot\"))`\n", + "\n", + "اسکریپت زیر بررسی می‌کند که آیا بسته‌های مورد نیاز برای تکمیل این ماژول در سیستم شما نصب شده‌اند یا خیر و در صورت عدم وجود، آن‌ها را برای شما نصب می‌کند.\n" + ], + "metadata": { + "id": "WqQPS1OAsg3H" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, corrplot)" + ], + "outputs": [], + "metadata": { + "id": "tA4C2WN3skCf", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "c06cd805-5534-4edc-f72b-d0d1dab96ac0" + } + }, + { + "cell_type": "markdown", + "source": [ + "ما بعداً این بسته‌های فوق‌العاده را بارگذاری کرده و در جلسه فعلی R خود در دسترس قرار می‌دهیم. (این فقط برای نمایش است، `pacman::p_load()` قبلاً این کار را برای شما انجام داده است)\n", + "\n", + "## 1. یک خط رگرسیون خطی\n", + "\n", + "همان‌طور که در درس ۱ یاد گرفتید، هدف از یک تمرین رگرسیون خطی این است که بتوانیم یک *خط* *برازش* *بهینه* را رسم کنیم تا:\n", + "\n", + "- **روابط متغیرها را نشان دهیم**. رابطه بین متغیرها را نشان دهیم.\n", + "\n", + "- **پیش‌بینی کنیم**. پیش‌بینی‌های دقیقی درباره مکان قرارگیری یک نقطه داده جدید نسبت به آن خط انجام دهیم.\n", + "\n", + "برای رسم این نوع خط، از یک تکنیک آماری به نام **رگرسیون کمترین مربعات** استفاده می‌کنیم. اصطلاح `کمترین مربعات` به این معناست که تمام نقاط داده اطراف خط رگرسیون مربع شده و سپس جمع می‌شوند. ایده‌آل این است که این مجموع نهایی تا حد ممکن کوچک باشد، زیرا ما می‌خواهیم تعداد خطاها یا `کمترین مربعات` کم باشد. بنابراین، خط برازش بهینه خطی است که کمترین مقدار را برای مجموع مربعات خطاها به ما می‌دهد - به همین دلیل به آن *رگرسیون کمترین مربعات* می‌گویند.\n", + "\n", + "این کار را انجام می‌دهیم زیرا می‌خواهیم مدلی از یک خط داشته باشیم که کمترین فاصله تجمعی از تمام نقاط داده ما را داشته باشد. همچنین قبل از جمع کردن، مقادیر را مربع می‌کنیم زیرا به بزرگی آن‌ها اهمیت می‌دهیم نه جهت آن‌ها.\n", + "\n", + "> **🧮 ریاضیات را به من نشان بده**\n", + ">\n", + "> این خط، که به آن *خط برازش بهینه* می‌گویند، می‌تواند با [یک معادله](https://en.wikipedia.org/wiki/Simple_linear_regression) بیان شود:\n", + ">\n", + "> Y = a + bX\n", + ">\n", + "> `X` متغیر `توضیحی` یا `پیش‌بینی‌کننده` است. `Y` متغیر `وابسته` یا `نتیجه` است. شیب خط `b` است و `a` عرض از مبدأ است که به مقدار `Y` زمانی که `X = 0` اشاره دارد.\n", + ">\n", + "\n", + "> ![](../../../../../../2-Regression/3-Linear/solution/images/slope.png \"شیب = $y/x$\")\n", + " اینفوگرافیک از جن لوپر\n", + ">\n", + "> ابتدا، شیب `b` را محاسبه کنید.\n", + ">\n", + "> به عبارت دیگر، و با اشاره به سوال اصلی داده‌های کدو تنبل ما: \"پیش‌بینی قیمت یک بوشل کدو تنبل بر اساس ماه\"، `X` به قیمت و `Y` به ماه فروش اشاره می‌کند.\n", + ">\n", + "> ![](../../../../../../translated_images/calculation.989aa7822020d9d0ba9fc781f1ab5192f3421be86ebb88026528aef33c37b0d8.fa.png)\n", + " اینفوگرافیک از جن لوپر\n", + "> \n", + "> مقدار Y را محاسبه کنید. اگر حدود ۴ دلار پرداخت می‌کنید، احتمالاً ماه آوریل است!\n", + ">\n", + "> ریاضیات مربوط به محاسبه خط باید شیب خط را نشان دهد که همچنین به عرض از مبدأ وابسته است، یا جایی که `Y` زمانی که `X = 0` قرار دارد.\n", + ">\n", + "> می‌توانید روش محاسبه این مقادیر را در وب‌سایت [ریاضیات سرگرم‌کننده](https://www.mathsisfun.com/data/least-squares-regression.html) مشاهده کنید. همچنین به [این ماشین‌حساب کمترین مربعات](https://www.mathsisfun.com/data/least-squares-calculator.html) مراجعه کنید تا ببینید چگونه مقادیر اعداد بر خط تأثیر می‌گذارند.\n", + "\n", + "خیلی ترسناک نیست، نه؟ 🤓\n", + "\n", + "#### همبستگی\n", + "\n", + "یک اصطلاح دیگر که باید درک کنید **ضریب همبستگی** بین متغیرهای X و Y داده شده است. با استفاده از یک نمودار پراکندگی، می‌توانید به سرعت این ضریب را تجسم کنید. نموداری با نقاط داده که به صورت یک خط مرتب پراکنده شده‌اند، همبستگی بالایی دارد، اما نموداری با نقاط داده که به صورت پراکنده در همه جا بین X و Y قرار دارند، همبستگی پایینی دارد.\n", + "\n", + "یک مدل رگرسیون خطی خوب مدلی است که با استفاده از روش رگرسیون کمترین مربعات و یک خط رگرسیون، ضریب همبستگی بالایی (نزدیک به ۱ نسبت به ۰) داشته باشد.\n" + ], + "metadata": { + "id": "cdX5FRpvsoP5" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **۲. رقص با داده‌ها: ایجاد یک دیتافریم برای مدل‌سازی**\n", + "\n", + "

            \n", + " \n", + "

            اثر هنری از @allison_horst
            \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "WdUKXk7Bs8-V" + } + }, + { + "cell_type": "markdown", + "source": [ + "کتابخانه‌ها و مجموعه داده‌های مورد نیاز را بارگذاری کنید. داده‌ها را به یک DataFrame تبدیل کنید که شامل زیرمجموعه‌ای از داده‌ها باشد:\n", + "\n", + "- فقط کدوهایی را دریافت کنید که به صورت بوشل قیمت‌گذاری شده‌اند.\n", + "\n", + "- تاریخ را به ماه تبدیل کنید.\n", + "\n", + "- قیمت را به صورت میانگین قیمت‌های بالا و پایین محاسبه کنید.\n", + "\n", + "- قیمت را به گونه‌ای تبدیل کنید که منعکس‌کننده قیمت‌گذاری بر اساس مقدار بوشل باشد.\n", + "\n", + "> ما این مراحل را در [درس قبلی](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/2-Data/solution/lesson_2-R.ipynb) پوشش دادیم.\n" + ], + "metadata": { + "id": "fMCtu2G2s-p8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "library(lubridate)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "ryMVZEEPtERn" + } + }, + { + "cell_type": "markdown", + "source": [ + "در روح ماجراجویی خالص، بیایید بسته [`janitor`](../../../../../../2-Regression/3-Linear/solution/R/github.com/sfirke/janitor) را بررسی کنیم که توابع ساده‌ای برای بررسی و پاکسازی داده‌های نامرتب ارائه می‌دهد. به عنوان مثال، بیایید نگاهی به نام ستون‌های داده‌های خود بیندازیم:\n" + ], + "metadata": { + "id": "xcNxM70EtJjb" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "5XtpaIigtPfW" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤔 ما می‌توانیم بهتر عمل کنیم. بیایید این نام ستون‌ها را با تبدیل آن‌ها به قرارداد [snake_case](https://en.wikipedia.org/wiki/Snake_case) به `friendR` تبدیل کنیم، با استفاده از `janitor::clean_names`. برای اطلاعات بیشتر درباره این تابع: `?clean_names`\n" + ], + "metadata": { + "id": "IbIqrMINtSHe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Clean names to the snake_case convention\n", + "pumpkins <- pumpkins %>% \n", + " clean_names(case = \"snake\")\n", + "\n", + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "a2uYvclYtWvX" + } + }, + { + "cell_type": "markdown", + "source": [ + "خیلی مرتب‌کننده 🧹! حالا، یک رقص با داده‌ها با استفاده از `dplyr` مثل درس قبلی! 💃\n" + ], + "metadata": { + "id": "HfhnuzDDtaDd" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(variety, city_name, package, low_price, high_price, date)\n", + "\n", + "\n", + "\n", + "# Extract the month from the dates to a new column\n", + "pumpkins <- pumpkins %>%\n", + " mutate(date = mdy(date),\n", + " month = month(date)) %>% \n", + " select(-date)\n", + "\n", + "\n", + "\n", + "# Create a new column for average Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(price = (low_price + high_price)/2)\n", + "\n", + "\n", + "# Retain only pumpkins with the string \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(string = package, pattern = \"bushel\"))\n", + "\n", + "\n", + "# Normalize the pricing so that you show the pricing per bushel, not per 1 1/9 or 1/2 bushel\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(price = case_when(\n", + " str_detect(package, \"1 1/9\") ~ price/(1.1),\n", + " str_detect(package, \"1/2\") ~ price*2,\n", + " TRUE ~ price))\n", + "\n", + "# Relocate column positions\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(month, .before = variety)\n", + "\n", + "\n", + "# Display the first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "X0wU3gQvtd9f" + } + }, + { + "cell_type": "markdown", + "source": [ + "آفرین! 👌 حالا یک مجموعه داده تمیز و مرتب دارید که می‌توانید مدل رگرسیون جدید خود را بر اساس آن بسازید!\n", + "\n", + "حوصله یک نمودار پراکندگی دارید؟\n" + ], + "metadata": { + "id": "UpaIwaxqth82" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set theme\n", + "theme_set(theme_light())\n", + "\n", + "# Make a scatter plot of month and price\n", + "new_pumpkins %>% \n", + " ggplot(mapping = aes(x = month, y = price)) +\n", + " geom_point(size = 1.6)\n" + ], + "outputs": [], + "metadata": { + "id": "DXgU-j37tl5K" + } + }, + { + "cell_type": "markdown", + "source": [ + "یک نمودار پراکندگی به ما یادآوری می‌کند که فقط داده‌های ماه‌های مرداد تا آذر را داریم. احتمالاً به داده‌های بیشتری نیاز داریم تا بتوانیم به صورت خطی نتیجه‌گیری کنیم.\n", + "\n", + "بیایید دوباره به داده‌های مدل‌سازی خود نگاهی بیندازیم:\n" + ], + "metadata": { + "id": "Ve64wVbwtobI" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Display first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "HFQX2ng1tuSJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "اگر بخواهیم قیمت یک کدو تنبل را بر اساس ستون‌های `شهر` یا `بسته‌بندی` که از نوع کاراکتری هستند پیش‌بینی کنیم، چه باید کرد؟ یا حتی ساده‌تر، چگونه می‌توانیم همبستگی (که نیاز دارد هر دو ورودی آن عددی باشند) بین مثلاً `بسته‌بندی` و `قیمت` را پیدا کنیم؟ 🤷🤷\n", + "\n", + "مدل‌های یادگیری ماشین با ویژگی‌های عددی بهتر کار می‌کنند تا مقادیر متنی، بنابراین معمولاً باید ویژگی‌های دسته‌بندی را به نمایش‌های عددی تبدیل کنید.\n", + "\n", + "این بدان معناست که باید راهی پیدا کنیم تا پیش‌بینی‌کننده‌های خود را به شکلی تغییر دهیم که مدل بتواند به طور مؤثر از آنها استفاده کند، فرآیندی که به عنوان `مهندسی ویژگی` شناخته می‌شود.\n" + ], + "metadata": { + "id": "7hsHoxsStyjJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. آماده‌سازی داده‌ها برای مدل‌سازی با استفاده از دستورالعمل‌ها 👩‍🍳👨‍🍳\n", + "\n", + "فعالیت‌هایی که مقادیر پیش‌بینی‌کننده را بازفرمت می‌کنند تا استفاده از آن‌ها برای مدل مؤثرتر شود، به عنوان `مهندسی ویژگی` شناخته می‌شوند.\n", + "\n", + "مدل‌های مختلف نیازهای پیش‌پردازش متفاوتی دارند. به عنوان مثال، روش حداقل مربعات نیاز به `کدگذاری متغیرهای دسته‌ای` مانند ماه، نوع و نام شهر دارد. این فرآیند شامل `ترجمه` یک ستون با `مقادیر دسته‌ای` به یک یا چند `ستون عددی` است که جایگزین ستون اصلی می‌شوند.\n", + "\n", + "برای مثال، فرض کنید داده‌های شما شامل ویژگی دسته‌ای زیر است:\n", + "\n", + "| شهر |\n", + "|:-------:|\n", + "| دنور |\n", + "| نایروبی |\n", + "| توکیو |\n", + "\n", + "می‌توانید از *کدگذاری ترتیبی* استفاده کنید تا یک مقدار عددی منحصر به فرد را جایگزین هر دسته کنید، مانند این:\n", + "\n", + "| شهر |\n", + "|:----:|\n", + "| 0 |\n", + "| 1 |\n", + "| 2 |\n", + "\n", + "و این همان کاری است که با داده‌های خود انجام خواهیم داد!\n", + "\n", + "در این بخش، یک بسته شگفت‌انگیز دیگر از Tidymodels را بررسی خواهیم کرد: [recipes](https://tidymodels.github.io/recipes/) - که برای کمک به پیش‌پردازش داده‌ها **قبل از** آموزش مدل طراحی شده است. در اصل، یک دستورالعمل یک شیء است که تعریف می‌کند چه مراحلی باید بر روی یک مجموعه داده اعمال شود تا برای مدل‌سازی آماده شود.\n", + "\n", + "حالا، بیایید یک دستورالعمل ایجاد کنیم که داده‌های ما را برای مدل‌سازی آماده کند، با جایگزینی یک عدد منحصر به فرد برای تمام مشاهدات در ستون‌های پیش‌بینی‌کننده:\n" + ], + "metadata": { + "id": "AD5kQbcvt3Xl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\n", + "pumpkins_recipe <- recipe(price ~ ., data = new_pumpkins) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "# Print out the recipe\n", + "pumpkins_recipe" + ], + "outputs": [], + "metadata": { + "id": "BNaFKXfRt9TU" + } + }, + { + "cell_type": "markdown", + "source": [ + "عالیه! 👏 ما به‌تازگی اولین دستورالعمل خود را ایجاد کردیم که یک نتیجه (قیمت) و پیش‌بینی‌کننده‌های مربوطه را مشخص می‌کند و همچنین تمام ستون‌های پیش‌بینی‌کننده باید به مجموعه‌ای از اعداد صحیح تبدیل شوند 🙌! بیایید سریع آن را بررسی کنیم:\n", + "\n", + "- فراخوانی `recipe()` با یک فرمول به دستورالعمل می‌گوید که *نقش‌ها*ی متغیرها را با استفاده از داده‌های `new_pumpkins` به‌عنوان مرجع مشخص کند. به‌عنوان مثال، ستون `price` نقش `نتیجه` را دریافت کرده است، در حالی که بقیه ستون‌ها نقش `پیش‌بینی‌کننده` را دریافت کرده‌اند.\n", + "\n", + "- `step_integer(all_predictors(), zero_based = TRUE)` مشخص می‌کند که تمام پیش‌بینی‌کننده‌ها باید به مجموعه‌ای از اعداد صحیح تبدیل شوند که شماره‌گذاری از ۰ شروع می‌شود.\n", + "\n", + "ما مطمئنیم که ممکن است به این فکر کنید: \"این خیلی جالب است!! اما اگر بخواهم مطمئن شوم که دستورالعمل‌ها دقیقاً همان کاری را انجام می‌دهند که انتظارش را دارم، چه؟ 🤔\"\n", + "\n", + "این فکر فوق‌العاده‌ای است! ببینید، وقتی دستورالعمل شما تعریف شد، می‌توانید پارامترهای موردنیاز برای پیش‌پردازش داده‌ها را تخمین بزنید و سپس داده‌های پردازش‌شده را استخراج کنید. معمولاً نیازی به انجام این کار ندارید وقتی از Tidymodels استفاده می‌کنید (در یک دقیقه روش معمول را خواهیم دید -> `workflows`) اما این می‌تواند زمانی مفید باشد که بخواهید نوعی بررسی صحت انجام دهید تا مطمئن شوید دستورالعمل‌ها همان چیزی را که انتظار دارید انجام می‌دهند.\n", + "\n", + "برای این کار، به دو فعل دیگر نیاز دارید: `prep()` و `bake()` و همان‌طور که همیشه، دوستان کوچک R ما توسط [`Allison Horst`](https://github.com/allisonhorst/stats-illustrations) به شما کمک می‌کنند تا این موضوع را بهتر درک کنید!\n", + "\n", + "

            \n", + " \n", + "

            اثر هنری از @allison_horst
            \n" + ], + "metadata": { + "id": "KEiO0v7kuC9O" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`prep()`](https://recipes.tidymodels.org/reference/prep.html): پارامترهای مورد نیاز را از مجموعه داده‌های آموزشی تخمین می‌زند که بعداً می‌توان آن‌ها را به مجموعه داده‌های دیگر اعمال کرد. به عنوان مثال، برای یک ستون پیش‌بینی‌کننده مشخص، کدام مشاهده به عدد صحیح ۰ یا ۱ یا ۲ و غیره اختصاص داده می‌شود.\n", + "\n", + "[`bake()`](https://recipes.tidymodels.org/reference/bake.html): یک دستور آماده‌شده را می‌گیرد و عملیات را بر روی هر مجموعه داده‌ای اعمال می‌کند.\n", + "\n", + "با این توضیحات، بیایید دستورات خود را آماده کنیم و اجرا کنیم تا واقعاً تأیید کنیم که در پشت صحنه، ستون‌های پیش‌بینی‌کننده ابتدا کدگذاری می‌شوند قبل از اینکه مدل اجرا شود.\n" + ], + "metadata": { + "id": "Q1xtzebuuTCP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep the recipe\n", + "pumpkins_prep <- prep(pumpkins_recipe)\n", + "\n", + "# Bake the recipe to extract a preprocessed new_pumpkins data\n", + "baked_pumpkins <- bake(pumpkins_prep, new_data = NULL)\n", + "\n", + "# Print out the baked data set\n", + "baked_pumpkins %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "FGBbJbP_uUUn" + } + }, + { + "cell_type": "markdown", + "source": [ + "هورا! 🥳 داده‌های پردازش‌شده `baked_pumpkins` تمام پیش‌بینی‌کننده‌های خود را کدگذاری کرده‌اند، که تأیید می‌کند مراحل پیش‌پردازشی که به عنوان دستورالعمل ما تعریف شده‌اند، همان‌طور که انتظار می‌رفت کار می‌کنند. این ممکن است خواندن را برای شما دشوارتر کند، اما برای Tidymodels بسیار قابل فهم‌تر خواهد بود! کمی وقت بگذارید تا ببینید کدام مشاهده به یک عدد صحیح متناظر نگاشت شده است.\n", + "\n", + "همچنین شایان ذکر است که `baked_pumpkins` یک فریم داده است که می‌توانیم محاسباتی روی آن انجام دهیم.\n", + "\n", + "برای مثال، بیایید سعی کنیم یک همبستگی خوب بین دو نقطه از داده‌های شما پیدا کنیم تا شاید بتوانیم یک مدل پیش‌بینی خوب بسازیم. برای این کار از تابع `cor()` استفاده خواهیم کرد. دستور `?cor()` را تایپ کنید تا اطلاعات بیشتری درباره این تابع پیدا کنید.\n" + ], + "metadata": { + "id": "1dvP0LBUueAW" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the correlation between the city_name and the price\n", + "cor(baked_pumpkins$city_name, baked_pumpkins$price)\n", + "\n", + "# Find the correlation between the package and the price\n", + "cor(baked_pumpkins$package, baked_pumpkins$price)\n" + ], + "outputs": [], + "metadata": { + "id": "3bQzXCjFuiSV" + } + }, + { + "cell_type": "markdown", + "source": [ + "همان‌طور که مشخص است، ارتباط ضعیفی بین شهر و قیمت وجود دارد. با این حال، ارتباط بهتری بین بسته و قیمت آن مشاهده می‌شود. منطقی به نظر می‌رسد، درست است؟ معمولاً هرچه جعبه محصول بزرگ‌تر باشد، قیمت بالاتر است.\n", + "\n", + "حالا که در این مرحله هستیم، بیایید سعی کنیم ماتریس همبستگی تمام ستون‌ها را با استفاده از بسته `corrplot` به تصویر بکشیم.\n" + ], + "metadata": { + "id": "BToPWbgjuoZw" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the corrplot package\n", + "library(corrplot)\n", + "\n", + "# Obtain correlation matrix\n", + "corr_mat <- cor(baked_pumpkins %>% \n", + " # Drop columns that are not really informative\n", + " select(-c(low_price, high_price)))\n", + "\n", + "# Make a correlation plot between the variables\n", + "corrplot(corr_mat, method = \"shade\", shade.col = NA, tl.col = \"black\", tl.srt = 45, addCoef.col = \"black\", cl.pos = \"n\", order = \"original\")" + ], + "outputs": [], + "metadata": { + "id": "ZwAL3ksmutVR" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 خیلی بهتر.\n", + "\n", + "یک سوال خوب که اکنون می‌توان از این داده‌ها پرسید این است: '`چه قیمتی می‌توانم برای یک بسته کدو تنبل انتظار داشته باشم؟`' بیایید مستقیم به موضوع بپردازیم!\n", + "\n", + "> توجه: وقتی دستور **`bake()`** را برای دستور آماده‌شده **`pumpkins_prep`** با **`new_data = NULL`** اجرا می‌کنید، داده‌های پردازش‌شده (یعنی کدگذاری‌شده) آموزشی را استخراج می‌کنید. اگر مجموعه داده دیگری داشتید، مثلاً یک مجموعه آزمایشی، و می‌خواستید ببینید که یک دستور چگونه آن را پیش‌پردازش می‌کند، کافی بود دستور **`pumpkins_prep`** را با **`new_data = test_set`** اجرا کنید.\n", + "\n", + "## 4. ساخت یک مدل رگرسیون خطی\n", + "\n", + "

            \n", + " \n", + "

            اینفوگرافیک توسط داسانی مادیپالی
            \n" + ], + "metadata": { + "id": "YqXjLuWavNxW" + } + }, + { + "cell_type": "markdown", + "source": [ + "حالا که یک دستورالعمل ایجاد کرده‌ایم و تأیید کرده‌ایم که داده‌ها به‌درستی پیش‌پردازش خواهند شد، بیایید یک مدل رگرسیون بسازیم تا به این سؤال پاسخ دهیم: «چه قیمتی می‌توانم برای یک بسته کدو تنبل انتظار داشته باشم؟»\n", + "\n", + "#### آموزش یک مدل رگرسیون خطی با استفاده از مجموعه آموزشی\n", + "\n", + "همان‌طور که احتمالاً متوجه شده‌اید، ستون *price* متغیر `نتیجه` است، در حالی که ستون *package* متغیر `پیش‌بینی‌کننده` است.\n", + "\n", + "برای انجام این کار، ابتدا داده‌ها را به‌گونه‌ای تقسیم می‌کنیم که ۸۰٪ به مجموعه آموزشی و ۲۰٪ به مجموعه آزمایشی اختصاص یابد، سپس یک دستورالعمل تعریف می‌کنیم که ستون پیش‌بینی‌کننده را به مجموعه‌ای از اعداد صحیح کدگذاری کند، و سپس مشخصات مدل را ایجاد می‌کنیم. دستورالعمل را آماده و اجرا نمی‌کنیم، زیرا قبلاً می‌دانیم که داده‌ها را همان‌طور که انتظار می‌رود پیش‌پردازش خواهد کرد.\n" + ], + "metadata": { + "id": "Pq0bSzCevW-h" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\n", + "# Split the data into training and test sets\n", + "pumpkins_split <- new_pumpkins %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "\n", + "# Extract training and test data\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "\n", + "\n", + "# Create a recipe for preprocessing the data\n", + "lm_pumpkins_recipe <- recipe(price ~ package, data = pumpkins_train) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "\n", + "# Create a linear model specification\n", + "lm_spec <- linear_reg() %>% \n", + " set_engine(\"lm\") %>% \n", + " set_mode(\"regression\")" + ], + "outputs": [], + "metadata": { + "id": "CyoEh_wuvcLv" + } + }, + { + "cell_type": "markdown", + "source": [ + "حالا که یک دستورالعمل و مشخصات مدل داریم، باید راهی پیدا کنیم که این دو را در قالب یک شیء ترکیب کنیم. این شیء ابتدا داده‌ها را پیش‌پردازش می‌کند (پشت صحنه با prep+bake)، مدل را روی داده‌های پیش‌پردازش شده آموزش می‌دهد و همچنین امکان فعالیت‌های پس‌پردازش را فراهم می‌کند. چطور است برای آرامش خاطر شما! 🤩\n", + "\n", + "در Tidymodels، این شیء کاربردی [`workflow`](https://workflows.tidymodels.org/) نام دارد و به‌طور مناسب اجزای مدل‌سازی شما را نگه می‌دارد! چیزی که در *پایتون* به آن *pipelines* می‌گوییم.\n", + "\n", + "پس بیایید همه چیز را در یک workflow بسته‌بندی کنیم! 📦\n" + ], + "metadata": { + "id": "G3zF_3DqviFJ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Hold modelling components in a workflow\n", + "lm_wf <- workflow() %>% \n", + " add_recipe(lm_pumpkins_recipe) %>% \n", + " add_model(lm_spec)\n", + "\n", + "# Print out the workflow\n", + "lm_wf" + ], + "outputs": [], + "metadata": { + "id": "T3olroU3v-WX" + } + }, + { + "cell_type": "markdown", + "source": [ + "علاوه بر این، یک جریان کاری می‌تواند تقریباً به همان روشی که یک مدل آموزش داده می‌شود، تنظیم یا آموزش داده شود.\n" + ], + "metadata": { + "id": "zd1A5tgOwEPX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Train the model\n", + "lm_wf_fit <- lm_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the model coefficients learned \n", + "lm_wf_fit" + ], + "outputs": [], + "metadata": { + "id": "NhJagFumwFHf" + } + }, + { + "cell_type": "markdown", + "source": [ + "از خروجی مدل می‌توانیم ضرایب یادگرفته شده در طول آموزش را مشاهده کنیم. این ضرایب نشان‌دهنده ضرایب خط بهترین برازش هستند که کمترین خطای کلی را بین متغیر واقعی و پیش‌بینی‌شده به ما می‌دهند.\n", + "\n", + "#### ارزیابی عملکرد مدل با استفاده از مجموعه تست\n", + "\n", + "وقت آن است که ببینیم مدل چگونه عمل کرده است 📏! چگونه این کار را انجام دهیم؟\n", + "\n", + "حالا که مدل را آموزش داده‌ایم، می‌توانیم از آن برای پیش‌بینی مجموعه تست با استفاده از `parsnip::predict()` استفاده کنیم. سپس می‌توانیم این پیش‌بینی‌ها را با مقادیر واقعی برچسب‌ها مقایسه کنیم تا ارزیابی کنیم که مدل چقدر خوب (یا نه!) کار می‌کند.\n", + "\n", + "بیایید با انجام پیش‌بینی برای مجموعه تست شروع کنیم و سپس ستون‌ها را به مجموعه تست متصل کنیم.\n" + ], + "metadata": { + "id": "_4QkGtBTwItF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\n", + "predictions <- lm_wf_fit %>% \n", + " predict(new_data = pumpkins_test)\n", + "\n", + "\n", + "# Bind predictions to the test set\n", + "lm_results <- pumpkins_test %>% \n", + " select(c(package, price)) %>% \n", + " bind_cols(predictions)\n", + "\n", + "\n", + "# Print the first ten rows of the tibble\n", + "lm_results %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "UFZzTG0gwTs9" + } + }, + { + "cell_type": "markdown", + "source": [ + "بله، شما به‌تازگی یک مدل آموزش داده‌اید و از آن برای پیش‌بینی استفاده کرده‌اید! 🔮 آیا این مدل خوب است؟ بیایید عملکرد آن را ارزیابی کنیم!\n", + "\n", + "در Tidymodels، این کار را با استفاده از `yardstick::metrics()` انجام می‌دهیم! برای رگرسیون خطی، بیایید بر روی معیارهای زیر تمرکز کنیم:\n", + "\n", + "- `خطای جذر میانگین مربعات (RMSE)`: جذر [MSE](https://en.wikipedia.org/wiki/Mean_squared_error). این معیار یک مقدار مطلق در همان واحد برچسب (در اینجا، قیمت کدو تنبل) ارائه می‌دهد. هرچه مقدار کوچک‌تر باشد، مدل بهتر است (به‌طور ساده، این معیار نشان‌دهنده میانگین قیمتی است که پیش‌بینی‌ها به اشتباه انجام شده‌اند!)\n", + "\n", + "- `ضریب تعیین (معمولاً به‌عنوان R-squared یا R2 شناخته می‌شود)`: یک معیار نسبی که هرچه مقدار آن بیشتر باشد، مدل بهتر برازش شده است. به‌طور کلی، این معیار نشان می‌دهد که مدل تا چه حد توانسته است واریانس بین مقادیر پیش‌بینی‌شده و واقعی را توضیح دهد.\n" + ], + "metadata": { + "id": "0A5MjzM7wW9M" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Evaluate performance of linear regression\n", + "metrics(data = lm_results,\n", + " truth = price,\n", + " estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "reJ0UIhQwcEH" + } + }, + { + "cell_type": "markdown", + "source": [ + "عملکرد مدل کاهش یافت. بیایید ببینیم آیا می‌توانیم با تجسم یک نمودار پراکندگی از بسته و قیمت، سپس استفاده از پیش‌بینی‌های انجام‌شده برای اضافه کردن یک خط برازش بهتر، نشانه بهتری به دست آوریم.\n", + "\n", + "این به این معناست که باید مجموعه آزمایشی را آماده و پردازش کنیم تا ستون بسته را کدگذاری کرده و سپس آن را به پیش‌بینی‌های انجام‌شده توسط مدل خود متصل کنیم.\n" + ], + "metadata": { + "id": "fdgjzjkBwfWt" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Encode package column\n", + "package_encode <- lm_pumpkins_recipe %>% \n", + " prep() %>% \n", + " bake(new_data = pumpkins_test) %>% \n", + " select(package)\n", + "\n", + "\n", + "# Bind encoded package column to the results\n", + "lm_results <- lm_results %>% \n", + " bind_cols(package_encode %>% \n", + " rename(package_integer = package)) %>% \n", + " relocate(package_integer, .after = package)\n", + "\n", + "\n", + "# Print new results data frame\n", + "lm_results %>% \n", + " slice_head(n = 5)\n", + "\n", + "\n", + "# Make a scatter plot\n", + "lm_results %>% \n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\n", + " geom_point(size = 1.6) +\n", + " # Overlay a line of best fit\n", + " geom_line(aes(y = .pred), color = \"orange\", size = 1.2) +\n", + " xlab(\"package\")\n", + " \n" + ], + "outputs": [], + "metadata": { + "id": "R0nw719lwkHE" + } + }, + { + "cell_type": "markdown", + "source": [ + "عالی! همان‌طور که می‌بینید، مدل رگرسیون خطی واقعاً نمی‌تواند رابطه بین یک بسته و قیمت مربوط به آن را به‌خوبی تعمیم دهد.\n", + "\n", + "🎃 تبریک می‌گویم! شما به‌تازگی مدلی ایجاد کردید که می‌تواند به پیش‌بینی قیمت چند نوع کدو تنبل کمک کند. مزرعه کدو تنبل تعطیلات شما زیبا خواهد بود. اما احتمالاً می‌توانید مدلی بهتر بسازید!\n", + "\n", + "## ۵. ساخت یک مدل رگرسیون چندجمله‌ای\n", + "\n", + "

            \n", + " \n", + "

            اینفوگرافیک از داسانی مدیپالی
            \n" + ], + "metadata": { + "id": "HOCqJXLTwtWI" + } + }, + { + "cell_type": "markdown", + "source": [ + "گاهی داده‌های ما ممکن است رابطه‌ای خطی نداشته باشند، اما همچنان بخواهیم نتیجه‌ای را پیش‌بینی کنیم. رگرسیون چندجمله‌ای می‌تواند به ما کمک کند تا برای روابط پیچیده‌تر و غیرخطی پیش‌بینی‌هایی انجام دهیم.\n", + "\n", + "برای مثال، رابطه بین بسته‌بندی و قیمت در مجموعه داده‌های کدو تنبل را در نظر بگیرید. در حالی که گاهی بین متغیرها رابطه‌ای خطی وجود دارد - هرچه حجم کدو تنبل بزرگ‌تر باشد، قیمت بالاتر می‌رود - گاهی این روابط نمی‌توانند به صورت یک صفحه یا خط مستقیم ترسیم شوند.\n", + "\n", + "> ✅ [اینجا چند مثال دیگر](https://online.stat.psu.edu/stat501/lesson/9/9.8) از داده‌هایی که می‌توانند از رگرسیون چندجمله‌ای استفاده کنند آورده شده است.\n", + ">\n", + "> دوباره به رابطه بین نوع کدو تنبل و قیمت در نمودار قبلی نگاه کنید. آیا این نمودار پراکندگی به نظر می‌رسد که باید حتماً با یک خط مستقیم تحلیل شود؟ شاید نه. در این حالت، می‌توانید رگرسیون چندجمله‌ای را امتحان کنید.\n", + ">\n", + "> ✅ چندجمله‌ای‌ها عبارت‌های ریاضی هستند که ممکن است شامل یک یا چند متغیر و ضرایب باشند.\n", + "\n", + "#### آموزش یک مدل رگرسیون چندجمله‌ای با استفاده از مجموعه آموزشی\n", + "\n", + "رگرسیون چندجمله‌ای یک *خط منحنی* ایجاد می‌کند تا داده‌های غیرخطی را بهتر تطبیق دهد.\n", + "\n", + "بیایید ببینیم آیا یک مدل چندجمله‌ای در پیش‌بینی‌ها عملکرد بهتری خواهد داشت یا خیر. ما روندی نسبتاً مشابه با قبل را دنبال خواهیم کرد:\n", + "\n", + "- ایجاد یک دستورالعمل که مراحل پیش‌پردازش داده‌ها را مشخص می‌کند تا داده‌ها برای مدل‌سازی آماده شوند، مانند: کدگذاری پیش‌بینی‌کننده‌ها و محاسبه چندجمله‌ای‌های درجه *n*\n", + "\n", + "- ساخت یک مشخصات مدل\n", + "\n", + "- ترکیب دستورالعمل و مشخصات مدل در یک جریان کاری\n", + "\n", + "- ایجاد یک مدل با برازش جریان کاری\n", + "\n", + "- ارزیابی عملکرد مدل بر روی داده‌های آزمایشی\n", + "\n", + "بیایید شروع کنیم!\n" + ], + "metadata": { + "id": "VcEIpRV9wzYr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\r\n", + "poly_pumpkins_recipe <-\r\n", + " recipe(price ~ package, data = pumpkins_train) %>%\r\n", + " step_integer(all_predictors(), zero_based = TRUE) %>% \r\n", + " step_poly(all_predictors(), degree = 4)\r\n", + "\r\n", + "\r\n", + "# Create a model specification\r\n", + "poly_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>% \r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Bundle recipe and model spec into a workflow\r\n", + "poly_wf <- workflow() %>% \r\n", + " add_recipe(poly_pumpkins_recipe) %>% \r\n", + " add_model(poly_spec)\r\n", + "\r\n", + "\r\n", + "# Create a model\r\n", + "poly_wf_fit <- poly_wf %>% \r\n", + " fit(data = pumpkins_train)\r\n", + "\r\n", + "\r\n", + "# Print learned model coefficients\r\n", + "poly_wf_fit\r\n", + "\r\n", + " " + ], + "outputs": [], + "metadata": { + "id": "63n_YyRXw3CC" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### ارزیابی عملکرد مدل\n", + "\n", + "👏👏 شما یک مدل چندجمله‌ای ساخته‌اید، بیایید پیش‌بینی‌هایی روی مجموعه تست انجام دهیم!\n" + ], + "metadata": { + "id": "-LHZtztSxDP0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make price predictions on test data\r\n", + "poly_results <- poly_wf_fit %>% predict(new_data = pumpkins_test) %>% \r\n", + " bind_cols(pumpkins_test %>% select(c(package, price))) %>% \r\n", + " relocate(.pred, .after = last_col())\r\n", + "\r\n", + "\r\n", + "# Print the results\r\n", + "poly_results %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "YUFpQ_dKxJGx" + } + }, + { + "cell_type": "markdown", + "source": [ + "ووهو، بیایید ارزیابی کنیم که مدل چگونه بر روی test_set با استفاده از `yardstick::metrics()` عمل کرده است.\n" + ], + "metadata": { + "id": "qxdyj86bxNGZ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "metrics(data = poly_results, truth = price, estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "8AW5ltkBxXDm" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 عملکرد بسیار بهتر.\n", + "\n", + "`rmse` از حدود ۷ به حدود ۳ کاهش یافت، که نشان‌دهنده کاهش خطا بین قیمت واقعی و قیمت پیش‌بینی‌شده است. می‌توانید *به طور کلی* این را به این معنا تفسیر کنید که به طور میانگین، پیش‌بینی‌های نادرست حدود ۳ دلار اشتباه هستند. `rsq` از حدود ۰.۴ به ۰.۸ افزایش یافت.\n", + "\n", + "تمام این معیارها نشان می‌دهند که مدل چندجمله‌ای بسیار بهتر از مدل خطی عمل می‌کند. عالیه!\n", + "\n", + "بیایید ببینیم آیا می‌توانیم این را به صورت تصویری نشان دهیم!\n" + ], + "metadata": { + "id": "6gLHNZDwxYaS" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Bind encoded package column to the results\r\n", + "poly_results <- poly_results %>% \r\n", + " bind_cols(package_encode %>% \r\n", + " rename(package_integer = package)) %>% \r\n", + " relocate(package_integer, .after = package)\r\n", + "\r\n", + "\r\n", + "# Print new results data frame\r\n", + "poly_results %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_line(aes(y = .pred), color = \"midnightblue\", size = 1.2) +\r\n", + " xlab(\"package\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "A83U16frxdF1" + } + }, + { + "cell_type": "markdown", + "source": [ + "شما می‌توانید یک خط منحنی که بهتر با داده‌های شما مطابقت دارد ببینید! 🤩\n", + "\n", + "می‌توانید این را با استفاده از یک فرمول چندجمله‌ای به `geom_smooth` روان‌تر کنید، مانند این:\n" + ], + "metadata": { + "id": "4U-7aHOVxlGU" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_smooth(method = lm, formula = y ~ poly(x, degree = 4), color = \"midnightblue\", size = 1.2, se = FALSE) +\r\n", + " xlab(\"package\")" + ], + "outputs": [], + "metadata": { + "id": "5vzNT0Uexm-w" + } + }, + { + "cell_type": "markdown", + "source": [ + "مثل یک منحنی صاف! 🤩\n", + "\n", + "در اینجا نحوه انجام یک پیش‌بینی جدید آورده شده است:\n" + ], + "metadata": { + "id": "v9u-wwyLxq4G" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a hypothetical data frame\r\n", + "hypo_tibble <- tibble(package = \"bushel baskets\")\r\n", + "\r\n", + "# Make predictions using linear model\r\n", + "lm_pred <- lm_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Make predictions using polynomial model\r\n", + "poly_pred <- poly_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Return predictions in a list\r\n", + "list(\"linear model prediction\" = lm_pred, \r\n", + " \"polynomial model prediction\" = poly_pred)\r\n" + ], + "outputs": [], + "metadata": { + "id": "jRPSyfQGxuQv" + } + }, + { + "cell_type": "markdown", + "source": [ + "پیش‌بینی مدل `polynomial` منطقی به نظر می‌رسد، با توجه به نمودارهای پراکندگی `price` و `package`! و اگر این مدل نسبت به مدل قبلی بهتر باشد، با نگاه به همان داده‌ها، باید بودجه‌ای برای این کدوهای گران‌تر در نظر بگیرید!\n", + "\n", + "🏆 آفرین! شما دو مدل رگرسیون را در یک درس ایجاد کردید. در بخش نهایی درباره رگرسیون، یاد خواهید گرفت که چگونه از رگرسیون لجستیک برای تعیین دسته‌بندی‌ها استفاده کنید.\n", + "\n", + "## **🚀چالش**\n", + "\n", + "چندین متغیر مختلف را در این دفترچه آزمایش کنید تا ببینید چگونه همبستگی با دقت مدل ارتباط دارد.\n", + "\n", + "## [**آزمون پس از درس**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/)\n", + "\n", + "## **مرور و مطالعه شخصی**\n", + "\n", + "در این درس درباره رگرسیون خطی یاد گرفتیم. انواع مهم دیگری از رگرسیون نیز وجود دارند. درباره تکنیک‌های Stepwise، Ridge، Lasso و Elasticnet مطالعه کنید. یک دوره خوب برای یادگیری بیشتر، [دوره یادگیری آماری دانشگاه استنفورد](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning) است.\n", + "\n", + "اگر می‌خواهید بیشتر درباره استفاده از چارچوب فوق‌العاده Tidymodels یاد بگیرید، لطفاً منابع زیر را بررسی کنید:\n", + "\n", + "- وب‌سایت Tidymodels: [شروع کار با Tidymodels](https://www.tidymodels.org/start/)\n", + "\n", + "- Max Kuhn و Julia Silge، [*مدل‌سازی مرتب با R*](https://www.tmwr.org/)*.*\n", + "\n", + "###### **تشکر ویژه از:**\n", + "\n", + "[Allison Horst](https://twitter.com/allison_horst?lang=en) برای خلق تصاویر فوق‌العاده‌ای که R را جذاب‌تر و دلپذیرتر می‌کنند. تصاویر بیشتر را در [گالری](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) او پیدا کنید.\n" + ], + "metadata": { + "id": "8zOLOWqMxzk5" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/2-Regression/3-Linear/solution/notebook.ipynb b/translations/fa/2-Regression/3-Linear/solution/notebook.ipynb new file mode 100644 index 000000000..ca07cd4ab --- /dev/null +++ b/translations/fa/2-Regression/3-Linear/solution/notebook.ipynb @@ -0,0 +1,1115 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## رگرسیون خطی و چندجمله‌ای برای قیمت‌گذاری کدو تنبل - درس ۳\n", + "\n", + "کتابخانه‌های مورد نیاز و مجموعه داده را بارگذاری کنید. داده‌ها را به یک دیتافریم تبدیل کنید که شامل زیرمجموعه‌ای از داده‌ها باشد:\n", + "\n", + "- فقط کدو تنبل‌هایی را انتخاب کنید که به صورت بوشل قیمت‌گذاری شده‌اند \n", + "- تاریخ را به ماه تبدیل کنید \n", + "- قیمت را به صورت میانگین قیمت‌های بالا و پایین محاسبه کنید \n", + "- قیمت را به گونه‌ای تبدیل کنید که منعکس‌کننده قیمت‌گذاری بر اساس مقدار بوشل باشد \n" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
            0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
            1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
            2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            \n", + "

            5 rows × 26 columns

            \n", + "
            " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 167, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            MonthDayOfYearVarietyCityPackageLow PriceHigh PricePrice
            709267PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
            719267PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
            7210274PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
            7310274PIE TYPEBALTIMORE1 1/9 bushel cartons17.017.015.454545
            7410281PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
            \n", + "
            " + ], + "text/plain": [ + " Month DayOfYear Variety City Package Low Price \\\n", + "70 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "71 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "72 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "73 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 17.0 \n", + "74 10 281 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "\n", + " High Price Price \n", + "70 15.0 13.636364 \n", + "71 18.0 16.363636 \n", + "72 18.0 16.363636 \n", + "73 17.0 15.454545 \n", + "74 15.0 13.636364 " + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "new_columns = ['Package', 'Variety', 'City Name', 'Month', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "یک نمودار پراکندگی به ما یادآوری می‌کند که فقط داده‌های ماه از آگوست تا دسامبر را داریم. احتمالاً به داده‌های بیشتری نیاز داریم تا بتوانیم به صورت خطی نتیجه‌گیری کنیم.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkT0lEQVR4nO3dfXRV9Z3v8fc3EB7kYcAQA+Wh0IZSUWLqzWVARi+W+lQdodXOtHcQZ41dOGumc1tn5graXqc67Ywybe2009Urtb3F2mnrkhYVtEIj1NoRNTAQEFQyhRpoCBihgEJIyPf+cXZiHs5Jzsbss0/O/rzWOivnfM/Z53zdhm9+57d/D+buiIhIchTFnYCIiOSWCr+ISMKo8IuIJIwKv4hIwqjwi4gkzOC4E8jGuHHjfOrUqXGnISIyoGzZsuUNdy/tHh8QhX/q1KnU1NTEnYaIyIBiZr9NF1dXj4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EuHphPNbK8/StOJ5rhTEZEIDYjhnBK9x7YdYNnqWoqLimhpa2PFDRVcXzkx7rREJAJq8QtNJ5pZtrqWUy1tHG9u5VRLG7evrlXLX6RAqfAL+4+cpLio669CcVER+4+cjCkjEYmSCr8waexwWtrausRa2tqYNHZ4TBmJSJRU+IWSkUNZcUMFQwcb5xQPYuhgY8UNFZSMHBp3aiISARV+ASC1AaeBBT9FpGBFWvjNbJ+Z7TCzbWZWE8TONbMNZrYn+Dk2yhykb+0Xd5tb23j79BmaW3VxV6SQ5aLFf7m7V7p7VfB4OVDt7tOB6uCxxEgXd0WSJY6unoXAquD+KmBRDDlIJ7q4K5IsURd+B9ab2RYzWxrEyty9ASD4eV7EOUgf2i/uDisuYtTQwQwrLtLFXZECFvXM3Xnu/jszOw/YYGavZHtg8IdiKcCUKVOiyk8C11dOZF75OPYfOcmkscNV9EUKWKQtfnf/XfDzEPAzYDbQaGYTAIKfhzIcu9Ldq9y9qrS0x85hEoGSkUO5aPIYFX2RAhdZ4TezEWY2qv0+cCWwE3gcuDl42c3AY1HlICIiPUXZ1VMG/MzM2j/n393952b2EvCImd0CvA58IsIcRESkm8gKv7v/BrgoTbwJWBDV54qISO80c1dEJGFU+KVDzd4mvrb+VWr2NsWdiohESBuxCACLH9zMc3Wpgv+NZ+q4tLyEH3x6TsxZiUgU1OIXavY2dRT9dr+qa1LLX6RAqfALz+55I1RcRAY2FX7hsunjQsVFZGBT4ReqppVwaXlJl9il5SVUTSvJcISIDGQq/ALAjVWTGTKoiCGDjCGDivhE1eS4UxKRiKjwS8dGLKfPtHH6jHP6jDZiESlkKvyijVjOUvWugyx7dDvVuw7GnYpIKBrHL9qI5Sxcef8mXmt8C4Cf1OxnRtkInr5tfqw5iWRLLX7p2IhlyCBj6OBUP782YsmsetfBjqLf7tXGt9TylwFDhV8AqNn3JqfPOM2tqX7+mt++GXdKeWv9rsZQcZF8o8Iv1DUe56HNr3eJPfT869Q1Ho8po/x25cyyUHGRfKPCL2yrPxoqnnQLZo5nRtmILrEZZSNYMHN8TBmJhKOLu0Ll5DGh4gJP3zaf6l0HWb+rkStnlqnoy4ASeYvfzAaZ2X+a2drg8RfN7ICZbQtuH406B+ldedkolsztuqH9krlTKC8bFVNGA8OCmeO578aLVPSz1HSime31RzU/JA/kosX/WWA3MLpT7H53/0oOPluydM/CWSyZM5Vt9UepnDxGRV/61WPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaiRVpi9/MJgHXAg9G+TnSP8rLRnFj1WQVfelX7TPDT7W0cby5lVMtmhket6i7er4O3A60dYt/xsxqzex7ZjY23YFmttTMasys5vDhwxGnKSJR0czw/BNZ4Tez64BD7r6l21PfBt4PVAINwFfTHe/uK929yt2rSktLo0pTRCKmmeH5J8oW/zzgejPbB/wY+LCZPezuje5+xt3bgO8AsyPMQURi1j4zfFhxEaOGDmZYcZFmhscssou77n4HcAeAmc0H/t7dF5vZBHdvCF72MWBnVDmISH64vnIi88rHsf/ISSaNHa6iH7M4xvGvMLNKwIF9wK0x5CAiOVYycqgKfp7ISeF3903ApuD+Tbn4TBERSU9LNoiIJIwKv4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EsHLZsbztLvv8AHv/AkS7//QtypDAh1jcd5tKZeO7vlAW3EIoCWzQ1r6vJ1HffXv/IGU5evY9+918aYUX67a82OLtt7Lpk7hXsWzooxo2RTi1+0bG5ImVr4avmnpz2d848Kv2jZ3JCerWsKFU867emcf1T4RcvmhnRZeUmoeNJpT+f8o8IvWjY3pJV//oeh4kmnPZ3zj7l73Dn0qaqqymtqauJOo+A1nWjWsrkhLP3+Czxb18Rl5SUq+lmoazyuPZ1zzMy2uHtVj7gKv4hIYcpU+NXVIyKSMJEXfjMbZGb/aWZrg8fnmtkGM9sT/Ey72brkniZwhfPlJ3Yy959/wZef0CZy2ViztZ5Pr3qJNVvr404l8SLv6jGzvwWqgNHufp2ZrQDedPd7zWw5MNbdl/X2HurqiZ4mcIXzvuXr6DwOqgj4jSZwZTTnnzZw8NjpjscTRg/h+TuviDGjZIilq8fMJgHXAg92Ci8EVgX3VwGLosxB+qYJXOF8+YmdtHWLtQVx6WnN1vouRR+g4dhptfxjFHVXz9eB26HLv5Oy9s3Wg5/npTvQzJaaWY2Z1Rw+fDjiNJNNE7jCWbvzYKh40q3dkeF8ZYhL9CIr/GZ2HXDI3beczfHuvtLdq9y9qrS0tJ+zk840gSuc6y4cHyqedNfNynC+MsQlelG2+OcB15vZPuDHwIfN7GGg0cwmAAQ/D0WYg2RBE7jC+fwfX9jjH05REJeeFl08mQmjh3SJTRg9hEUXT44pI8nJOH4zmw/8fXBx91+Apk4Xd89199t7O14Xd3NDE7jC+fITO1m78yDXXTheRT8La7bWs3bHQa6bNV5FP0dincDVrfCXAI8AU4DXgU+4+5u9Ha/CLyISXqbCn5P1+N19E7ApuN8ELMjF54qISE+auSsikjAFXfg1EzWcBzbu4Zp/fZYHNu6JO5UBQVsJykBVsFsvaiZqOOd/4UlOtqau9+xuOM7Xq/ew+0sfjTmr/KWtBGUgK8gWv2aihvPAxj0dRb/dyVZXyz8DbSUoA11BFn7NRA1nTW1DqHjSaStBGegKsvBrJmo4iyomhIonnbYSlIGuIAu/ZqKGc+vl0xk+2LrEhg82br18ekwZ5TdtJSgDXUHvwKWZqOE8sHEPa2obWFQxQUU/C9pKUPKdtl4U6WdqWEi+i3Xmrkih0XBhGcgKso9fJEoaLiwDnQq/dFj0zV/yvuXrWPTNX8adSl7TcOGzo5n0+UNdPQLA1OXrOu5vO3CCqcvXsU97yKY1aexwjje3dokdb27VcOFeqGssv6jFLxlb+Gr5p/dnK/8jVDzp1DWWf1T4hdoDJ0LFk+6VQ2+HiiedusbyT5R77g4zsxfNbLuZvWxmdwfxL5rZATPbFty0EljMKiaODBVPug+ed06oeNJpJn3+ibLF3wx82N0vAiqBq81sTvDc/e5eGdyejDAHycKav/kfoeJJ9/O/vTxUPOnaZ9IPHVzUcdNM+nhFVvg9pb2voDi45f9ssYT6o/KSLo8v7fZY5N2o2fcmza1tHbea3/a626pELNI+fjMbZGbbgEPABnd/IXjqM2ZWa2bfM7OxUeYgfavZ28RzdU1dYr+qa6Jmb1OGI5Jt6fdfCBVPOi1jnX8iLfzufsbdK4FJwGwzuxD4NvB+Ut0/DcBX0x1rZkvNrMbMag4fPhxlmon37J43QsWT7tm69H8QM8WTTstY55+cjOpx96OkNlu/2t0bgz8IbcB3gNkZjlnp7lXuXlVaWpqLNBPrsunjQsWT7rIM3WCZ4kmnZazzT5SjekrNbExwfzjwEeAVM+u8yPvHgJ1R5SDZqZqWvmBliifdyj//w1DxpMu0cqlWNI1PlC3+CcBGM6sFXiLVx78WWGFmO4L45cBtEeYgWfj7n2wNFU+6//nAr0PFk06/X/knsiUb3L0W+FCa+E1RfaacnQ27D4WKJ92Lvz0aKp50+v3KP5q5K1xx/nmh4kk3+71jQsWTTr9f+UeFX/jKn14cKp50/37rvFDxpNPvV/5R4RcA/mDYoF4fi7wb40cP6fJ4QrfHklsq/MLD/7GX35860yX2+1NnePg/9saUUX6r+Id1oeJJt2ZrPQePne4Sazh2mjVb62PKSLIq/Gb2ATOrNrOdweMKM/tCtKlJrjxW2xAqnnTHMqwmnCmedGt3HAwVl+hl2+L/DnAH0AIdI3Y+GVVSklsLKyaEiifd6Axri2WKJ911s8aHikv0si3857j7i91irWlfKQPO4kumpe3jX3zJtJgyym+1d6ffmSxTPOkWXTy5R5/+hNFDWHTx5JgykmwL/xtm9n6C1TXN7EZS6+xIgVjYbRu8hR/Stni9+ddPVnZ5/I1uj6Wr5++8gq//SQUfOf88vv4nFTx/5xVxp5Ro5t73Sslm9j5gJXAJcATYCyx2932RZheoqqrympqaXHxUItU1Hucj9z/bI/6L2y7TtPo0mk40M+++ZzjV8s7mIsOKi/j1sg9rjXnJK2a2xd2rusezmrnr7r8BPmJmI4Aid9d6qgWkt9UTVfh7at9K8BTvFP72rQRV+GUgyHZUzz+Z2Rh3f8vdj5vZWDP7UtTJSW5o9cRwtJWgDHTZ9vFfEyytDIC7HwG0V26BGDtiCIOKrEtsUJExdoQm2aTTvpVgEWCk/hFpK8G+1TUe59Gaem3AkgeyXaRtkJkNdfdm6FhmWb/lBWL/kZMUGXSewlVkqOuiF/9nzY6Ojh4PHl9fqQvimdy1ZkeXXbiWzJ3CPQtnxZhRsmXb4n8YqDazW8zsL4ANwKro0pJcamk9Q8uZrhf5W844La1nMhyRbJrpHI62Xsw/WRV+d18BfBk4H7gA+McgJgXghb3pN77OFE86zXQOR1sv5p+s1+N396eApyLMRWRAWFgxgZf2HUkbl540eCD/9NriN7Pngp/HzexYp9txMzvWx7HDzOxFM9tuZi+b2d1B/Fwz22Bme4KfY/vvP0fOxlUXpJ86nymedJrpHE552SiWzJ3SJbZk7hQNFY5Rry1+d/+j4OfZ/B9qBj7s7ifMrBh4zsyeAj4OVLv7vWa2HFgOLDuL95d+oj1Rw0vXxy+Z3bNwFkvmTGVb/VEqJ4/R71bM+uzjN7Oi9lU5w/CUE8HD4uDmwELeuTC8ClgU9r2lf12+ojpUPOm05+7ZKS8bxY1Vk1X080Cfhd/d24DtZjalr9d2Z2aDzGwbcIjUZusvAGXu3hC8dwOQdv81M1tqZjVmVnP48OGwHy0h7H3zVKh40mnPXRnosh3OOQF4OViT//H2W18HufsZd68EJgGzzezCbBNz95XuXuXuVaWlpdkeJmdh2rnDQsWTTnvuykCX7aieu9/Nh7j7UTPbBFwNNJrZBHdvMLMJpL4NSIw23r6Aqct77h618fYFMWST//791nlpz5f23JWBoq9RPcPM7HPAJ4APAr9291+23/o4ttTMxgT3hwMfAV4BHgduDl52M/DYu/ovkH6x795rmRismT5x9BD23au15Xuz795ruWTaGAYXwSXTxuh8yYDSV4t/Faldt34FXAPMBD6b5XtPAFaZ2SBSf2Aecfe1ZvY88IiZ3QK8TuqPisTsrjU7OBDsi3rg2GnuemyHptT3QS18Gaj6Kvwz3X0WgJl9F+i+C1dGwfaMH0oTbwLUh5BHMk2pXzJnqkZgiBSgvi7utrTfcXdttVigNKVeJFn6avFf1GmGrgHDg8dGaqj+6Eizk5zQlPqz84Wfbueplxu55oIyvvTxi+JORyRrfc3cHdTb81IYystGMaNsBK82vtURm1E2Qt08veg8qufhF/fz8Iv7dYFXBoxsx/FLAatrPN6l6AO82viWls3N4As/3R4qLpJvVPhFffwhPfVyY6i4SL5R4RfGnlMcKp5011xQFioukm9U+IUjb7eEiiddpgu5usArA4UKv2hUz1nYd++1LJ49iZIRxSyePUkXdmVAyXoHLilc7RtlPPR8182wNaqnd1/6+EV86eNxZyESngq/ANooQyRJVPilQ3nZKBV8kQRQH7+ISMKo8EuHusbjPFpTr4lbIgVOXT0CpJZl7rxC55K5U7Qss0iBUotfMi7LrJa/SGGKrPCb2WQz22hmu83sZTP7bBD/opkdMLNtwe2jUeUg2dGSDSLJEmVXTyvwd+6+1cxGAVvMbEPw3P3u/pUIP1tC0AQukWSJrPC7ewPQENw/bma7gYlRfZ6cvbEjhqQ2WOgUsyAuIoUnJ338ZjaV1DaMLwShz5hZrZl9z8zGZjhmqZnVmFnN4cOHc5FmYu0/cpKRQ7u2AUYOHcz+IydjykhEohR54TezkcBq4HPufgz4NvB+oJLUN4KvpjvO3Ve6e5W7V5WWlkadZqJNGjuclra2LrGWtjYmjR0eU0YiEqVIC7+ZFZMq+j90958CuHuju59x9zbgO8DsKHOQvpWMHMqKGyoYbDDIYLDBihsqKBk5NO7URCQCUY7qMeC7wG53/1qn+IROL/sYsDOqHCR7/7ZxD60OZxxaHb61cU/cKYlIRKIc1TMPuAnYYWbbgtidwKfMrJLUtcR9wK0R5iBZqN51kNfSbL1YvesgC2aOjykrEYlKlKN6niM1OKS7J6P6TDk763el3zJw/a5GFX6RAqSZu8KVM9NvGZgpLiIDmwq/sGDmeGaUjegSm1E2Qq19kQKlRdoEgKdvm0/1roOs39XIlTPLVPRFCpgKv3RYMHO8Cr5IAqirR0QkYVT4RUQSRoVfOmgHLpFkUB+/ANqBSyRJ1OIX7cAlkjAq/KIduEQSRoVftAOXSMKo8AvlZaNYMndKl9iSuVMoLxsVU0YiEiVd3BUA7lk4iyVzprKt/iiVk8eo6IsUMBV+6VBeNkoFPwQtcRGOzld4TSea2X/kJJPGDu/XjZFU+EXOwpX3b+rYw+AnNfuZUTaCp2+bH2tO+UznK7zHth1g2epaiouKaGlrY8UNFVxfObFf3jvKHbgmm9lGM9ttZi+b2WeD+LlmtsHM9gQ/0262LpKvetu4RnrS+Qqv6UQzy1bXcqqljePNrZxqaeP21bU0nWjul/eP8uJuK/B37n4+MAf4azObCSwHqt19OlAdPJY8ULO3ia+tf5WavU1xp5LXetu4RnrS+Qpv/5GTFBd1Lc/FRUXsP3KyX94/ssLv7g3uvjW4fxzYDUwEFgKrgpetAhZFlYNkb/GDm7nxgc1845k6bnxgMzc9uDnulPKWNq4JR+crvEljh9PS1tYl1tLWxqSxw/vl/XMynNPMpgIfAl4Ayty9AVJ/HIDzcpGDZFazt4nn6rq28n9V16SWfwbauCYcna/wSkYOZcUNFQwrLmLU0MEMKy5ixQ0V/XaBN/KLu2Y2ElgNfM7dj5ml24Y37XFLgaUAU6ZM6ePV8m48u+eNjPGqaSU5zmZg0MY14eh8hXd95UTmlY+LZFSPuXu/vVmPNzcrBtYCT7v714LYq8B8d28wswnAJnef0dv7VFVVeU1NTWR5Jl3N3iZufKBn186jt85R4RcZwMxsi7tXdY9HOarHgO8Cu9uLfuBx4Obg/s3AY1HlINmpmlbCpeVdC/yl5SUq+n1Ys7WeT696iTVb6+NOZUBoOtHM9vqj/TYyRc5elF0984CbgB1mti2I3QncCzxiZrcArwOfiDAHydKeQ11X4qw7pJU5ezPnnzZw8NhpAH6x+xD3/fwVnr/zipizyl9RjkmX8KIc1fOcu5u7V7h7ZXB70t2b3H2Bu08Pfr4ZVQ6SnTVb6zuKWLuGY6fVks1A5yucqMekS3gFvUibvlpmZ+2O9BNpMsWTTucrnKjHpEt4BVv4H9t2gHn3PcPiB19g3n3P8Pi2A3GnlLeum5V+hEWmeNLpfIUT9Zh0Ca8gC7++WobT+PtToeJJt+jiyUwYPaRLbMLoISy6eHJMGeW3qMekS3gFuUhb+1fLU7zTymj/aqlftp7W1DZkjN96+fQcZzMwPH/nFazZWs/aHQe5btZ4Ff0+RDkmXcIryMKvr5bhLKqYwO6GnqN4FlVMiCGbgWPRxZNV8EMoGTlUBT9PFGRXT/tXy6GDjXOKBzF0sOmrZS9uvXw6wwd3nVE9fLCptS9SoAqy8AOk5iMbWPBTevXfpp7b5XFVt8fSk1YzDaeu8TiP1tRT16g5InEryK6e9ou7za3vdPfcvrqWeeXj1OpPo7dF2jR7N73FD27uOGffeKaOS8tL+MGn58ScVf66a80OHtr8esfjJXOncM/CWTFmlGwF2eLXuOFwelukTXrSaqbh1DUe71L0AR56/nW1/GNUkIVfF3fDuWz6uFDxpNMfynC21R8NFZfoFWTh17jhcDJ156ibJz39oQyncvKYUHGJXkH28YPGDYfx5Sd2Zox//o8vzHE2+e9Xrx3KGNcfy57Ky0axZO4UHnq+ax9/edmoGLNKtoIt/KBxw9lauzPD2jM7D6rwp/HIlv0Z47dddX6OsxkY7lk4iyVzprKt/iiVk8eo6MesILt6JJzrLsyw9kyGeNJNGnNOqLiklJeN4saqySr6eUCFX/jT2e8NFU+68d3W6ekrLil/8/BLXHDXU/zNwy/FncqAUb3rIMse3U71rv5d+bWgu3okO8/VHc4YV+usp5r634eKC0xdvq7j/hM7D/HE8nXsu/faGDPKf1fev4nXGt8C4Cc1+5lRNoKnb5vfL+8d5daL3zOzQ2a2s1Psi2Z2wMy2BbePRvX5kr2jb7eEiifdmdYzoeJJl6mFr5Z/ZtW7DnYU/XavNr7Vby3/KLt6vg9cnSZ+f+cduSL8fMnSW6dbQ8WTrunt9OclUzzpnnkt/fyGTHGB9bsaQ8XDinLrxWcBbas4AFw1M/1F3EzxpJv1npGh4kn34Q+kn9+QKS5w5cyyUPGw4ri4+xkzqw26gsZmepGZLTWzGjOrOXw4fR+09I+qaSVpV+fUmPT07l50Uah40n1z8X8PFRdYMHM8M8pGdInNKBvBgn5qjOW68H8beD9QCTQAX830Qndf6e5V7l5VWlqao/SSqXrXQU62epfYyVbv95EEhWLS2OEMK+76T2dYcZGWBOnFvnuvpXxc6vyUjxuuC7tZePq2+dxx1Qc4f8Io7rjqA/12YRdyXPjdvdHdz7h7G/AdYHYuP1/Si7o/sdCUjBzKqZaua0GdamnTZMFeTL9jHXVvpBZJrHvjJNPvWNfHEbL4wc3889OvsbvhOP/89Gvc9ODmfnvvnBZ+M+u8pdPHgPRrBUhOzXrP6FDxpPvCT7eHiifd/U/vpqXrF0paPBWX9KJeATbK4Zw/Ap4HZpjZfjO7BVhhZjvMrBa4HLgtqs+X7A0bkn46R6Z40j31cvpvQpniSfdYbfouw0xxiX4F2ChH9XzK3Se4e7G7T3L377r7Te4+y90r3P16d0+/y7fklFZPDOeaC9KPrMgUT7qFFekvSGaKS/QrwGrJBpGQLv9g+gKfKZ50mRau04J2mVVNK+HS8q6j6i4tL+m3kXb6Li+9bpShJRt66u1ieH8NtyskmUaHVe86qPPVix98eg41e5t4ds8bXDZ9XL8Or1aLX9TVE1LUk2sKjUaNnb2qaSX87ZUz+n1OjQq/dGyU0Zk2ysgs6sk1hUZ/KPOPuXvfr4pZVVWV19TUxJ1GwatrPK6NMkKo3nWQ9bsauXJmmYp+H666fxOvdlp0rD9XmpTMzGyLu1f1iKvwi0gu6A9l7mUq/Lq4K3KWmk40a0/nEBbMHK+CnydU+EXOwmPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaIlnRxV2RkJpONLNsdS2nWto43tzKqZY2bl9dS9OJ5rhTE8mKCr9ISPuPnKS4qOs/neKiIvYfORlTRiLhqPCLhDRp7HBa2rquztnS1qZlmWXAUOEXCalk5FBW3FBBcREMKoLiIlhxQ4Uu8Pah6UQz2+uPqkssD+jirshZ+LeNe2hfkv8M8K2Ne3Rxtxe6GJ5f1OIXCal610Fe6zQZCeDVxre0Y1kGuhief1T4RULS2jPh6GJ4/olyI5bvmdkhM9vZKXaumW0wsz3Bz4ybrYvkK609E44uhuefKFv83weu7hZbDlS7+3SgOngsMqBokbZw2i+GDysuYtTQwQwrLtLF8JhFulaPmU0F1rr7hcHjV4H57t4Q7L+7yd1n9PU+WqtH8pHWnglHS1zkXr6s1VPWvt1iUPzPy/RCM1sKLAWYMmVKppeJxEZrz4RTMnKoCn6eyNuLu+6+0t2r3L2qtLQ07nRERApGrgt/Y9DFQ/DzUI4/X0Qk8XJd+B8Hbg7u3ww8luPPFxFJvCiHc/4IeB6YYWb7zewW4F7gCjPbA1wRPBYRkRyK7OKuu38qw1MLovpMERHp24DYetHMDgO/PcvDxwFv9GM6/UV5haO8wlFe4eRrXvDucnuvu/cYHTMgCv+7YWY16caxxk15haO8wlFe4eRrXhBNbnk7nFNERKKhwi8ikjBJKPwr404gA+UVjvIKR3mFk695QQS5FXwfv4iIdJWEFr+IiHSiwi8ikjAFU/jN7DYze9nMdprZj8xsWLfnzcy+YWZ1ZlZrZhfnSV7zzez3ZrYtuN2Vo7w+G+T0spl9Ls3zcZ2vvvLKyfl6NxsJmdnVZvZqcO76dc+Jd5nXPjPbEZy3fl3nPENenwj+P7aZWcbhiDGcr2zzyvX5+hczeyX49/YzMxuT4dh3f77cfcDfgInAXmB48PgR4M+7veajwFOAAXOAF/Ikr/mk9izI5fm6ENgJnENq9vYvgOl5cL6yySsn5wu4DLgY2NkptgJYHtxfDtyX5rhBwH8B7wOGANuBmXHnFTy3DxiXw/N1PjAD2ARUZTgujvPVZ14xna8rgcHB/fui/P0qmBY/qUIx3MwGkyocv+v2/ELgIU/ZDIxpXyk05rzicD6w2d3fdvdW4JfAx7q9Jo7zlU1eOeHuzwJvdgsvBFYF91cBi9IcOhuoc/ffuPtp4MfBcXHnFal0ebn7bnd/tY9Dc36+sswrUhnyWh/83gNsBialObRfzldBFH53PwB8BXgdaAB+7+7ru71sIlDf6fH+IBZ3XgBzzWy7mT1lZhdEmVNgJ3CZmZWY2TmkWveTu70m5+cry7wg9+erXZeNhIB0GwnFcd6yyQvAgfVmtsVSGx3lgzjOV7biPF9/Qeobd3f9cr4KovAHfZoLgWnAe4ARZra4+8vSHBrpWNYs89pKaj2Ni4BvAmuizAlSLR5SXyU3AD8n9XWxtdvLcn6+sswr5+crpJyftxDmufvFwDXAX5vZZXEnhM5XD2b2eVK/9z9M93SaWOjzVRCFH/gIsNfdD7t7C/BT4JJur9lP19bjJKLvdukzL3c/5u4ngvtPAsVmNi7ivHD377r7xe5+GamvnHu6vSSO89VnXnGdr0A2GwnFcd6y2uDI3X8X/DwE/IxUt0HcYvk9y0Yc58vMbgauA/7Mg079bvrlfBVK4X8dmGNm55iZkVr6eXe31zwOLAlGq8wh1e3SEHdeZjY+eA4zm03q/0lTxHlhwX7HZjYF+Djwo24vieN89ZlXXOcrkM1GQi8B081smpkNAT4ZHBdrXmY2wsxGtd8ndSFxZ/fXxSCO89WnOM6XmV0NLAOud/e3M7ysf85XFFes47gBdwOvkPqf8wNgKPCXwF8GzxvwLVJXxHfQy9X8HOf1GeBlUt0am4FLcpTXr4BdwecuCGL5cL76yisn54vUH5wGoIVUK+sWoASoJvUtpBo4N3jte4AnOx37UeC14Nx9Ph/yIjUKZHtwezlHeX0suN8MNAJP58n56jOvmM5XHan++23B7f9Gdb60ZIOISMIUSlePiIhkSYVfRCRhVPhFRBJGhV9EJGFU+EVEEkaFXwQwMzezH3R6PNjMDpvZ2rN8vzFm9ledHs8/2/cS6W8q/CIpbwEXmtnw4PEVwIF38X5jgL/q60UicVDhF3nHU8C1wf1P0WnWsKXWvF8TrJW+2cwqgvgXg7XVN5nZb8zsfwWH3Au8P1jL/V+C2EgzezRYc/2H7TOQRXJNhV/kHT8GPmmpzXIqgBc6PXc38J/uXgHcCTzU6bkPAleRWsvlH8ysmNS6+P/l7pXu/r+D130I+Bwwk9TM0HkR/reIZKTCLxJw91pgKqnW/pPdnv4jUktu4O7PACVm9gfBc+vcvdnd3yC1QFpZho940d33u3sbqSn5U/v1P0AkS4PjTkAkzzxOag+F+aTWwGnX23K4zZ1iZ8j87yrb14lESi1+ka6+B9zj7ju6xZ8F/gxSI3SAN9z9WC/vcxwYFUWCIu+WWhwinbj7fuBf0zz1ReD/mVkt8DbvLIOc6X2azOzXwWbaTwHr+jtXkbOl1TlFRBJGXT0iIgmjwi8ikjAq/CIiCaPCLyKSMCr8IiIJo8IvIpIwKvwiIgnz/wEDeg/76NO6rgAAAABJRU5ErkJggg==", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('Month','Price')" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAshElEQVR4nO3dfZyU5Xno8d+1y7IgiwLLunJkV2xWSangRreKIVoVQ03qEdKon74YTKMlzan9pCatmLTHGtvaiE3M6UlOq4k59SVNJJiA9ZgIEqxRwThQXhQ0bAOyGFhwBd01sO7Ldf6YZ5aZ3ZndmWfuZ+aemev7+Sw7c+8z19zP7HDtM/erqCrGGGMqR1WxK2CMMaawLPEbY0yFscRvjDEVxhK/McZUGEv8xhhTYcYVuwLZmD59us6aNavY1TDGmJKyefPmN1W1YXh5SST+WbNmEYvFil0NY4wpKSLyerpya+oxxpgKY4nfGGMqjCV+Y4ypMJb4jTGmwljiN8aYCmOJ32TU1dPLto6jdPX0FrsqxhiHSmI4pym8NVvfYPlj26mpqqJvcJAVH5/H1a2nF7taxhgH7IrfjNDV08vyx7ZzvG+Q7t5+jvcNcutj2+3K35gyYYnfjLD/yDFqqlLfGjVVVew/cqxINTLGuGSJ34wwc+pE+gYHU8r6BgeZOXVikWpkjHHJEr8Zob6ulhUfn8eEmiom145jQk0VKz4+j/q62rziWmexMX6wzl2T1tWtp7OgZTr7jxxj5tSJeSd96yw2xh+RJn4R2Qt0AwNAv6q2icg04FFgFrAXuE5Vj0RZDxNOfV1t3gkfUjuLjxNvQrr1se0saJnuJL4xJjeFaOq5TFVbVbUtuH8bsF5VzwLWB/dNGbPOYmP8Uow2/sXAg8HtB4ElRaiDKSDrLDbGL1EnfgXWishmEVkWlDWq6gGA4PupEdfBFFlUncXGmHCi7txdoKq/FJFTgXUi8mq2Dwz+UCwDaG5ujqp+pkBcdxYbY8KL9IpfVX8ZfD8E/BC4AOgUkRkAwfdDGR57v6q2qWpbQ8OIncNMCaqvq+XcpimW9I0pssgSv4hMEpHJidvAIuBl4HHghuCwG4A1UdXBGGPMSFE29TQCPxSRxPP8m6r+WEReAlaKyI3APuDaCOtgjDFmmMgSv6r+Ajg3TXkXsDCq5zXGGDM6W7LBGGMqjCX+InK9do3v8YwxfrC1eorE9do1vsczxvjDrviLwPVGJ77HM8b4xRJ/Ebheu8b3eMYYv1jiLwLXa9f4Hs8Y4xdL/EXgeu0a3+MlWGexMX4QVS12HcbU1tamsVis2NVwrqun1+naNT7Hs85iYwpPRDYnLYk/xEb1FJGrjU58j2cbsRjjF2vqMZEr5c5i181T7Z3drIp10N7Z7SSeNZ+ZMOyK30SuVDuLXTdP3b56Bw9t2jd0f+lFzdy5eK439TOVw674Tc5yvWotxY1YXM9laO/sTkn6AA9t3Bf6yt/mWph82BW/yUnYq9ZS24gl0TyV6JOAE81TYeq+teNoxvKWxslFr5+pLHbFb7KW71VrKW3E4rp5qrVpSk7lYynV5jPjB0v8JmujXbWWG9fNUy2Nk1l6UeoWoksvag51tR9F/UxlsaYekzXXV62+c908defiuSydP4utHUdpbZoSOulHVT9TOSJP/CJSDcSAN1T1KhG5A/hj4HBwyBdV9cmo62Hyl7hqfWhjaht/vgnMZ67nRrQ0Tnb6ermun+tJgMZPhbji/yywCzg5qexeVf3HAjy3ccz1Vavxhw0PrRyRtvGLyEzgd4BvRfk8prBaGidzTVuTJf0yYsNDK0vUnbtfA24FBoeV3ywi20Xk2yIyNd0DRWSZiMREJHb48OF0hxhjHCnl2dUmd5ElfhG5CjikqpuH/eifgfcBrcAB4CvpHq+q96tqm6q2NTQ0RFVNYww2PLTSRHnFvwC4WkT2At8DLheRR1S1U1UHVHUQ+CZwQYR1MMZkwYaHVpbIOndV9QvAFwBE5FLgL1T1ehGZoaoHgsM+BrwcVR2MMdmz4aGVoxjj+FeISCugwF7g00WogzEmDdfDQ42fCpL4VfUZ4Jng9icK8ZzGGGPSsyUbjDGmwljiN8aYCmOJ3xhjKowlfmOMqTCW+I0xpsJY4jfGmApjid8UTFdPL9s6jka68Nf6nQdZvmob63cerIh4rl9T3+MZN0RVi12HMbW1tWksFit2NUweCrHk76J7n+Hnne8O3Z/dOImnbrm0bOO5fk19j2dyJyKbVbVteLld8ZvIFWLJ3/U7D6YkVYDXOt8NfWXtezzXr6nv8YxblvhN5Aqx5O/anZ05lZd6PNevqe/xjFuW+E3kCrHk76I5jTmVl3o816+p7/GMW5b4TeQKseTvwjmnMbtxUkrZ7MZJLJxzWlnGc/2a+h7PuGWdu6ZgCrGR9/qdB1m7s5NFcxpDJ9VSiuf6NfU9nslNps5dS/zGGFOmbFSPMcYYoACJX0SqReQ/ReSJ4P40EVknIruD72k3Wzf+cjkpZ/WWDm568CVWb+lwULPKmzAU29PFV9e+RmxPl5fx2ju7WRXroL2z20k840bkTT0i8jmgDThZVa8SkRXAW6r6ZRG5DZiqqstHi2FNPf5wOSln/l3rOPjOe0P3Z5w8no1f/LAXdSsF139rE8+1n0jQF7fU8/BN872Jd/vqHTy0ad/Q/aUXNXPn4rmh45ncFaWpR0RmAr8DfCupeDHwYHD7QWBJlHUw7riclLN6S0dK0gc48M57oa/8K23CUGxPV0qSBvhpe1foK3XX8do7u1OSPsBDG/fZlb8nom7q+RpwK5A8oLcxsdl68P3UdA8UkWUiEhOR2OHDhyOupsmGy0k5T+xIP2M1U3kh61YKnt39Zk7lhY63teNoTuWmsCJL/CJyFXBIVTeHebyq3q+qbara1tDQ4Lh2JgyXk3Kumpt+KGOm8kLWrRRcctb0nMoLHa+1aUpO5aaworziXwBcLSJ7ge8Bl4vII0CniMwACL4firAOxiGXk3KWnNfEjJPHp5TNOHk8S85rKnrdSkHbmfVc3FKfUnZxSz1tZ9ZneERh47U0TmbpRc0pZUsvaqalcXKoeMatgozjF5FLgb8IOnfvAbqSOnenqeqtoz3eOnf94nJSzuotHTyx4yBXzT0tdNKPqm6lILani2d3v8klZ00PnaSjjNfe2c3WjqO0Nk2xpF8ERZ3ANSzx1wMrgWZgH3Ctqr412uMt8RtjTO4yJf5xhXhyVX0GeCa43QUsLMTzGmOMGclm7hpjTIUp68Tv+yxO1/VzPUvS93iFYFsRmnJUkKaeYvB9Fqfr+rmeJel7vEKwrQhNuSrLK37fZ3G6rp/rWZK+xysE24rQlLOyTPy+z+J0XT/XsyR9j1cIthWhKWdlmfh9n8Xpun6uZ0n6Hq8QbCtCU87KMvH7PovTdf1cz5L0PV4h2FaEppyV9Q5cvs/idF0/17MkfY9XCLYVoSlltvWiqQiWWI05oagzd40pBBsuaUx2yrKN31QeGy5pTPYs8ReR61mc63ceZPmqbazfGW4zk2zjhX2edI9zteduVMMlfd/T1vXv3GYWVwZr4y8S180Si+59hp93vjt0f3bjJJ665VLn8cI+T7rHvX2sz9meu109vbT93dMkv5sFiP31FaHb+n3f09b179yayspPUfbcNem5bpZYv/NgSgIAeK3z3dBXgZni3fvUrlDPkymeyz13t+47wvBLGA3Kw/B9T1vXv3NrKqsslviLwHWzxNqdnTmVh423Znv6pDLW8+RSj7B77rp+DXzf09b1+drM4soS5Z67E0TkZyKyTUReEZEvBeV3iMgbIrI1+PpoVHXwletZnIvmNOZUHjbe4nnp98Md63lyqUfYPXddvwa+72nr+nxtZnFlifKKvxe4XFXPBVqBK0Uk0aB5r6q2Bl9PRlgHL7mexblwzmnMbpyUUja7cRIL54RLopni3fLbvx7qeTLFc7nnruvXwPc9bV2fb1Qzi21Zaz9FNo5f473GPcHdmuDL/57kArm69XQWtEx3NtnoqVsuZf3Og6zd2cmiOY2hE8BY8RomT+C1pLblUydPCB1v/l3r8qrjcK7fXJ3dx1PuHxp2P1cP3zTf6Z62rn/nrt+Ttqy1vyId1SMi1cBmoAX4hqouF5E7gE8C7wAx4POqOmoPXDmO6ilFsT1dXHPfphHlqz49P+cktnpLB3++cvuI8q9dNy/UVf/6nQe58aHNI8ofWHp+qIToOl6l6erpZcHdP+F434nmowk1VTy//PJQf1Bcx6sURRnVo6oDqtoKzAQuEJFzgH8G3ke8+ecA8JV0jxWRZSISE5HY4cOHo6ymyZLLDspMnbi+dO66jldpbFlrvxVkVI+qHiW+2fqVqtoZ/EEYBL4JXJDhMferapuqtjU0NBSimmPyfTKPa8PbU/PtoEyOl6kT15fOXdfxEh55YQ/X/ssLPPLCnrziRBXP1YQ6W9bab5G18YtIA9CnqkdFZCJwBXC3iMxQ1QPBYR8DXo6qDi4lT775p5+0O53M4yKea5naU0+ZUM3bxweGjjtlQnVWzTzp4qWLlU/n7oyTx3Ng2ISwfDq4XcYDOPeOHw+d70t7j3DP2tfYdseV3sSbf9e6obkVT+86xN0/fjX0hLr6ulrOmDYxpT/ojGnh+w3q62ppnjYxZe5CPvEqXZRX/DOADSKyHXgJWKeqTwArRGRHUH4ZcEuEdXDC98k8rmWazLN+58GURA3w9vGBMeudLt5frtrO8f7UK7jeAc1ra8Mjx/pTyo4c6/cm3iMv7En72oW9Uncdb/WWDqcT6mJ7ulKSPsQnmOXzfybdhDVf/s+UmsgSv6puV9UPqOo8VT1HVe8Myj+hqnOD8quTrv695ftkHtcytadmat8eq97p4lVXCdXibxuw63hrtqd/m2cqL3Q8130ulfZ/ptTYzN0s+D6Zx7VM7amZ2rfHqne6eAODyoD62wbsOt7ieTNyKi90PNd9LpX2f6bUWOLPgu+TeVzLNJln4ZzTQtU7Ea92nHBSTTW144R7rpnHPdecSzXxN2E1ONnasJr44myu4klwX/KMd/0Hz+SUCdUpZadMqOb6D57pRbwl5zU5nVBXaf9nSo1txJIl15NvXMdzLdNknt2HulOOax92P5P4bBGJZ1CNp9O7ntxJciv1Pzy5M68JOf9z9Y6heAPB/XziLV+1bWhSmAb3fZowNHF8auf4SeOrRzl6bK5n9FTa/5lSYlf8OWg7s57PLZrt7A3nOp5r9XW1nNs0ZSjph+0ATHTu9vYP8qv3BujtH+Tz39/mtDPRdWfnfRt2c6w/NRUe61fu27Dbi/q57ox1HS+h0v7PlIqsEr+InC0i60Xk5eD+PBH562irZnwTtgMwXUfpYIbLy7Cdia47O1dneFym8rH43hnrOp7xW7ZX/N8EvgD0QXzEDvB7UVXK+ClsB2C6jtIqSX9s2M5E152dSzI8LlP5WHzvjHUdz/gt28R/kqr+bFhZf9ojTdZKbeXCsB2A6TqLv3LtuU47E113dn76srOYOC71r9PEccKnLzvLi/q57ox1Hc/4LatF2kTkR8DNwPdV9TwRuQa4UVU/EnUFoTwXaSvllQtXb+ngiR0HuWruaTklhq6e3hGdxWFjZfLIC3tYs/0Ai+fNCJ1Uk923YTertx9gybwZoZN+VPVbs/UNPve9rSjxPvN7f68179+569+HKa5Mi7Rlm/h/Dbgf+CBwBNgDXK+qex3XM61yS/y2cqHJl/3OTTbyWp1TVX+hqlcADcD7VfVDhUr65cj3WaZh2AYZheXD79yUrqzG8YvIXcCKYJVNRGQq8XX0bWRPCL7PMs2VbZBReMX+nZvSlm3n7kcSSR8g2Dil4vbKdcX1NneF3jYvuTzTgm7ZXvn73sHta7zE73x8NdRWVzG+Or+ZxQntnd2sinXQ3pndxDxTmrKduVstIrWq2gsQLLNsDYl5cL3NXaG2zRte/qeXtlBTVcVxTlx9Vouw4dVDXPb+UwEy1sn3Dm7f48X2vsV7A0Dw2sdefyuveLev3sFDm/YN3V96UTN3Lp4bOp7xV7adu7cCVwP/l/jM7k8Bj6vqimirF1dunbu+y9Rx+MTNH+Kqrz+XUl47TgChd9gSy3W11RzvG0BEmDCuekSi872D2/d47Z3dXHHvsyPKn77lEloaJxc9nvFDvp27K4C/B34d+A3gbwuV9E3hZeo43NpxdET5+Opqbr6shQk1VUxKWiump3eA/kHoG9C0TUC+d3D7Hm9rx9Gcygsdz/gt60XaVPVHwI8irIvxRKaOw9amKWnL/+DCZv7gwmY2vHqIO/79FXp6U9ekSUgkuvq6Wu87uH2P19o0JafyQsczfhv1il9Engu+d4vIO0lf3SLyzhiPnSAiPxORbSLyioh8KSifJiLrRGR38H2qu9OpbK728D3RcVjF+GphfHW8s7ilcXKwvHLV0FeiQ/HIu+/R09tP30DmpsNj7/XzlbWvsXpLB0fefY+Pf2Am4wRqqoXx1eKkg7umCqqroKbKzbLM46vFaf1cxWtpnMzSi5pTypZe1By6WcZ1POO3Ua/4VfVDwfcwv/1e4HJV7RGRGuC5YAbw7wLrVfXLInIbcBuwPER8k8T1Hr4rYx28N5C4QlW+H+vg6tbTie19K6U9P/b6W8T2vpXSKZhJv8Z3TBqxa1LwxyLxHGF9fcNuEk3oA8A3NuzOK178NTjxhyzf+rmO53od5TsXz2Xp/Fls7ThKa9MUS/plbMw2fhGpSqzKmQuN6wnu1gRfCiwGHgzKHwSW5BrbpCrUnsCrt3SMSPAPbdyXVdLPRj51Xr/zYNo9WdfvDLe6pO/7LLd3dqf9XeQ7DLOlcTLXtDVZ0i9zYyZ+VR0EtolI81jHDici1SKyFThEfLP1F4HGxD67wfdTMzx2mYjERCR2+PDhXJ+6ohRqf9NCLNEbts6Z9gPOVB62Hr7sGWudsSYf2U7gmgG8EqzJ/3jia6wHqeqAqrYCM4ELROScbCumqverapuqtjU0NGT7sIpUqP1NC7FEb9g6Z9oPOFN52Hr4smesdcaafGSb+L8EXAXcCXwl6SsrwazfZ4ArgU4RmQEQfD+UfXVNOoXa33TJeU1pOwCHl4WVT50XzjmN2Y2TUspmN05i4Zxwf6x83zPWOmNNPkadwCUiE4A/AVqAHcADqprVOvwi0gD0qerRYKbvWuBu4LeArqTO3WmqeutosWwCV3Zc70eaKV57Z/eIDsDkMiDt7U3/9ebQksTvn3Eyz+5+k1PrxnOo5z1ndV6/8yBrd3ayaE5j6KSfrFCvaVjpfhfGJIRalllEHiW+69ZPgY8Ar6vqZ7N8wnnEO2+riX+yWKmqd4pIPbASaAb2Adeq6lujxbLEX/qSlys41tefcUavMcadTIl/rAlcc1R1bhDgAWD4LlwZBdszfiBNeRewMNs4pvQlL+R2Yk0fpW8g/uHx1se2s6Bluq0jb0yBjNXG35e4kW0TjzHDpVuuIJmtI29MYY2V+M9Nnq0LzMt25q4pX7ku3ZtuuYJkx/sH6OtPv8xD1HWzeKYSjTVzt3q0n5vKE2bp3sRyBbcOa+OH+CJufQPKNfdtynsZYNfLCldaPFM5sh3OaUzWs0WHb9SyreMoC1qm8/zyy3nkpgt58YtX8N2bLhyxrk8+M09dz2SttHimsmS9Oqcxo80WTQwlzHb0zoZX00/fSI7lum4Wz5g4u+I3WRtrtujwbRhHW4/f92WFKy2eqSyW+E3WxpotmsvoHd+XFa60eKayZLX1YrHZBC6/ZJotmm57wWTpthp0PfPU4hlzQqiZu76wxF86Ht/6xojROzZD15jiCDtz15icXN16OgtaprP/yLGhbQUTt21mrjF+sMRvnKuvq01J8pbwjfGLde4aY0yFsSt+UzBdPb3WBGSMByzxm4KwZZmN8Yc19ZjI5TKxyxgTvcgSv4g0icgGEdklIq+IyGeD8jtE5A0R2Rp8fTSqOpjCSV6fZzhbltkYv0TZ1NMPfF5Vt4jIZGCziKwLfnavqv5jhM9tCii5GSdd081YyzL3DQ4OtfsbY6IX2RW/qh5Q1S3B7W5gF2ANuWVmeDNOuqabxLLME2qqmFw7jnFVUFMtTK4dx4SaKlZ8fJ518BpTQAXp3BWRWcS3YXwRWADcLCJLgRjxTwVH0jxmGbAMoLm5efiPjScSzTgntlQ80XSTnMxtYpcx/oi8c1dE6oDHgD9X1XeAfwbeB7QCB4CvpHucqt6vqm2q2tbQ0BB1NU1I6ZpxMjXd1NfVcm7TlKEJXonbxpjCijTxi0gN8aT/HVX9AYCqdqrqgKoOAt8ELoiyDiZaw5txRmu6Sd4m0LYMNKZ4Imvqkfjeeg8Au1T1q0nlM1T1QHD3Y8DLUdXBFMbwZpx0SX/4NoHJbMtAYworyjb+BcAngB0isjUo+yLw+yLSCiiwF/h0hHUwBTJ8fZ5k6bYJTPbQxn0snT/LlhU2pkAiS/yq+hwgaX70ZFTPafyUaZvA4cdY4jemMGzmrolcNtsB2paBxhSOJX4TuXTbBCazLQONKSxbpM0UxJ2L57J0/qyhbQIB2zLQmCKxxG8KpqVxckqSt4RvTHFYU48xxlQYS/zGGFNhLPGbjEZbatmHeMaYcKyN36Q11lLLxY5njAnPrvjNCNkstVzMeMaY/FjiNyOk2zErn12yXMczxuTHEr8ZIZellosRzxiTH0v8ZoRcllouRjxjTH5EVYtdhzG1tbVpLBYrdjUqTldPr9NdslzHM8aMTkQ2q2rb8HIb1WMyGm2pZR/ipeP7HyuLZ/F8YInflA3fh6BaPIvni8ja+EWkSUQ2iMguEXlFRD4blE8TkXUisjv4PjWqOpjK4fsQVItn8XwSZeduP/B5Vf11YD7wpyIyB7gNWK+qZwHrg/sVyfeZsaU009b3IagWz+L5JModuA4AB4Lb3SKyCzgdWAxcGhz2IPAMsDyqevjK94+ZpfSxFfwfgmrxLJ5PCjKcU0RmAR8AXgQaE5utB99PLUQdfOL7x8xS+9gK/g9BtXgWzyeRD+cUkTrgP4C/V9UfiMhRVZ2S9PMjqjqinV9ElgHLAJqbm89//fXXI61nIW3rOMr133qR7t7+obLJteN45KYLOTfEFoS+xysk30dpWDyLV0hFGc4pIjXAY8B3VPUHQXGniMxQ1QMiMgM4lO6xqno/cD/Ex/FHWc9C8/1jZql9bE3m+xBUi2fxfBDlqB4BHgB2qepXk370OHBDcPsGYE1UdfBV4mNh7bgqThpfTe04Nx8z3ccTTqqppnacpMQL2+mb7nG+d0hbPFOOorziXwB8AtghIluDsi8CXwZWisiNwD7g2gjr4C1N/KsydM+/eAJCEDMubKdvuscpeN0hbfH87tA34dmSDUXQ1dPLgrt/wvG+E80pE2qqeH755aGu0gsV74mbP8RVX38u5+dJF692XBWg9PafeP+Vwmtg8UwpydTGX9aLtPn6Mdj3McSZ4m3tOBrqedLFq64SqqX0XgOLZ8pB2S7Z4PPH4JlTJ3K8fyCl7Hj/QF6dsT1JI3AAenr7ncdrbZoSqtM33fn2DQxSJanH+dQhbfFKp0Pf5K4sr/hLYVz78Ca2fJrcjrz73ohWfQ3KXcYDQo9VTne+t//33/B2HLXF83scuslPWV7xJz62HufEFUziY2uYN3IU8SbWjEsZJz+xZlzoeFs7jmYsb2mc7DTeNW1NLGiZntNY5Uzne85/O4Xnl1/ubNzz1a2n51w3ixddPOOvskz8vn8Mdh2vNcOkqkzl+cbLdazyaOfr+zhqi2fKUVk29Yw1Dj1sPF8/Vrc0TmbpRc0pZUsvag51tR9FPNfzDIwx+SnLK37IPA49LN8/Vp9/xjS+97N9CFUog7SdMc2reK7nGRSK71P6Ky2ecaMsx/FX2phk38d0l+rvw+eRYZUYz+SuosbxV9qYZN/HdJfi78P3kWGVFs+4VZaJP6oxyb5OCCt053Ou9R4tnuvXdPWWDm568CVWb+nIK47vf/wqLZ5xqyzb+BOdibcO+5iZT7OCzx+D6+tqaZ42kZ93vjtUdsa08G2q9XW1tJ0xlefau4bKfvOMqdTX1Yaqd31dLdedP5OHNu0bKruubSbPtb/p9DWdf9c6Dr4Tn7vw9K5D3P3jV9n4xQ+HijVz6kR+1Zc66exXfflNsvN5ZJjv8YxbZXnFD/HO0+eXX84jN13I88svzyuh+P4xOLanKyXpA7zW+S6xPV0ZHjG69s7ulKQP8NP2LmJ7ukLVu6unl5Wb96eUPfrSfm5dtc3Za7B6S8dQ0k848M57oa/8j7z7HgODqf1fA4MaelJcfV0t17XNTCm7rm2mNyPDfI9n3CrLK/4EV2OSfZ8Q9uzuNzOWt51Zn3O8TBO4nt39Zqh6pzvf6ioJRvicuKrO5zX44dZfZixfcl5TzvGeaz+csTzMsNaunl5WxlL/+K2M7eezC88O/R71faSZTQjzV9le8bvk+8fgS86anlP5WDJN4LrkrOkc60tdw+dY39hrAqU734FBHdGU0p3H+kIfyFDnTOVjmV43IafysUTV5l1fV8u5TVOcJVXf4xk3LPFnwfePwW1n1nNxS+qV/cUt9aGu9gGmThofvyJPUl0lTDlpPPH9dU4Yfj+ddM0cl53dkPbYPYd7cqxt3NzTT8mpfCwTa9L/18hUPpao2rxddWYnrN95kOWrtrF+50En8WJ7uvjq2tdCNztGHa+9s5tVsQ7aO7srIl5CWTf1uOT7x+CHb5pPbE8Xz+5+k0vOmh466UP86vSkmuqUtXVOqqlma8fRtO3eYzXPpGvmWLerM+2xYZuntu1/O2P5wjmnFT1efV0ttdXC8b4TZbXVktfv3WVnNsCie58Z6it6NLaf2Y2TeOqWS0PHu/5bm4b6iv7pJ+1c3FLPwzfN9ybe7at3pAw4WHpRM3cunlu28ZJFufXit0XkkIi8nFR2h4i8ISJbg6+PRvX8UfD9Y3DbmfV8btHsvJI+ZL46HVcFw/I+gwpvdh8fNV66Zo5xGd55vzb9pJzrO9rjfIm3eksHbx9Pbdp6+/hA6Ct1153Z63ceTDtAIOyVf2xPV8YBAj7Ea+/sTkmqAA9t3Bf6ytr3eMNF2dTzr8CVacrvVdXW4OvJCJ/fhJSpKeoXb/4q7fGZro4T0rbxk76JqH8wbfGYMj3Ol3hP7EifQDOVFzre2p3pP4FlKh/LaAMOfIg32gq05RhvuMgSv6o+C7wVVXwTratbT+eRT13AHy2YxSOfuoCrW08P3YmcvEhb4uvW356d9tioVhQtdryr5qZvHspUPpZLM7zmmcrHsmhOY07lY3E94KBQAxh8eb+4jjdcMTp3bxaR7UFT0NRMB4nIMhGJiUjs8OH0Q+tMdG5fvYNr7tvEP/2knWvu28Tta3bk1Ykc2/sWvf2DQ1/7j/zK6xVFXcdbcl4TM04en1I24+TxoYaaAsxtSv9fJ1P5WBbOOY3ZjZNSymY3TgrVnwHuBxy4juf7+8V1vOEiXaRNRGYBT6jqOcH9RuBN4ssz/i0wQ1U/NVacctts3Xftnd1cce+zI8qfvuUSWhons3pLB0/sOMhVc0/LKnGNFu/1rndZu7OTRXMaQyeZZOt3HvQ63n0bdrN6+wGWzJvBpy87K3ScqBa+e+SFPazZfoDF82Zw/QfPDB0nIdf3SqHj+f5+yXfARqZF2go6qkdVhxoMReSbwBOFfH6TndHaFx/auHeo0+npXYfY0nF0zJEGmeLdvuZlXvhFvDXw0dh+p6MgfI+360A3b7xzPHS80ZbVcFG/l/Ye4eeHe5ydb7bvlWLF8/H9krw8yv0//YXT1U0L2tQjIjOS7n4MeDnTsaZ4MrUjTj2pJtRIg0zxEkk/l1iZ+D6qIop46Ua5+FQ/ixc+XtSrm0Y5nPO7wEZgtojsF5EbgRUiskNEtgOXAbdE9fwmvEzti0d+1Zf2+LFGGqSL98H3pd/YxZdREBbP4hUzXtSrm0bW1KOqv5+m+IGons+4defiuSydP4utHUdpbZpCS+PkjFcv2Yw0OP+MaTz60n4S+29devapvPBfIwd9+TIKwuJZvGLGi3p1U1uywWTU0jiZa9qahkYSTJ00fsToewnKR5P42NrbP8jxYFTPV5/+Ode1pbZX5jNqIWzdLF5cS+PktKNm8hmVUmnxotinOqrVTW3JBpO1/UeOUVc7LmUph7racaFW56ypquIPL5zFsovfl/KpotB1s3hxXT29vPT6kZSyl14/QldPr8XLUrpPyfmIcnVTS/wma2E/fo72uPq6Widjk31fQdX3eL4vPe57vISWxsnOxtqDu6Xlh7OmHpO1sB8/C7Eph+8rqPoez/c/TL7HKzWRTuByxSZw+aWrpzfUx8+wjytE3SwePL71jRHbleYzbrzS4vko0wQuS/zGmCE+/2EqhXi+8WLmrjGlptwTw3Cu25QrLV6psMRvTAbJU+bLtSnAVCbr3DUmjainzBtTTJb4jUkj6inzxhSTJX5j0qj04X6mvFniNyaNqOYetHd2syrW4WzvVNfxunp62dZx1Jq0ypx17hqTgesp88nrtQNO1393Ec86syuHXfEbM4r6ulrObZri5Eq/ktd/N36xxG9MAVT6+u/GL1FuxPJtETkkIi8nlU0TkXUisjv4Hm5naGNKTKWv/278EuUV/78CVw4ruw1Yr6pnAeuD+8aUPdfrtZfa+u/GL5Gu1SMis4AnVPWc4P5rwKWqeiDYf/cZVZ09Vhxbq8eUi/bObmfrtUcRr9KWqCh3vqzV06iqBwCC5H9qpgNFZBmwDKC5uTnTYcaUFNfrtZfK+u/GL9527qrq/arapqptDQ0Nxa6OMcaUjUIn/s6giYfg+6ECP78xxlS8Qif+x4Ebgts3AGsK/PzGGFPxohzO+V1gIzBbRPaLyI3Al4EPi8hu4MPBfWOMMQUUWeeuqv5+hh8tjOo5jTHGjK0ktl4UkcPA6xE+xXTgzQjj+6Dcz7Hczw/sHMtFIc/xDFUdMTqmJBJ/1EQklm6sazkp93Ms9/MDO8dy4cM5ejuc0xhjTDQs8RtjTIWxxB93f7ErUADlfo7lfn5g51guin6O1sZvjDEVxq74jTGmwljiN8aYClP2iV9EmkRkg4jsEpFXROSzw37+FyKiIjI9qewLItIuIq+JyG8Xvta5Ge0cReTPgvN4RURWJJWXxTmKSKuIbBKRrSISE5ELkh5Tauc4QUR+JiLbgnP8UlCecQOjUjrHUc7vHhF5VUS2i8gPRWRK0mNK5vwg8zkm/dyPfKOqZf0FzADOC25PBn4OzAnuNwFPEZ8cNj0omwNsA2qBM4H/AqqLfR5hzhG4DHgaqA1+dmoZnuNa4CNB+UeJ7/FQqucoQF1wuwZ4EZgPrABuC8pvA+4uxXMc5fwWAeOC8rtL9fxGO8fgvjf5puyv+FX1gKpuCW53A7uA04Mf3wvcCiT3cC8Gvqeqvaq6B2gHLsBjo5zjZ4Avq2pv8LPEaqjldI4KnBwcdgrwy+B2KZ6jqmpPcLcm+FLi5/JgUP4gsCS4XVLnmOn8VHWtqvYH5ZuAmcHtkjo/GPV3CB7lm7JP/MmCHcE+ALwoIlcDb6jqtmGHnQ50JN3fz4k/FN5LPkfgbOBiEXlRRP5DRH4zOKyczvHPgXtEpAP4R+ALwWEleY4iUi0iW4kvWb5OVV9k2AZGQGIDo5I7xwznl+xTwI+C2yV3fpD+HH3LNxWT+EWkDniMeKLoB/4KuD3doWnKSmLMa/I5quo7xBfhm0r84/RfAitFRCivc/wMcIuqNgG3AA8kDk3zcO/PUVUHVLWV+FXvBSJyziiHl9w5jnZ+IvJXxP9vfidRlC5E5JXMU5pznIdn+aYiEr+I1BBPFt9R1R8A7yPenrZNRPYS/wVtEZHTiP/FbUp6+ExONB94K805QvxcfhB8/PwZMEh8gahyOscbgMTt73PiY3JJnmOCqh4FngGuJPMGRiV7jsPODxG5AbgK+EMNGr8p4fODlHNcjG/5ppgdIYX4Iv4X9SHga6Mcs5cTnS2/QWpnyy8ojQ6lEecI/AlwZ3D7bOIfKaXMznEXcGlweyGwuYR/jw3AlOD2ROCnxJPhPaR27q4oxXMc5fyuBHYCDcOOL6nzG+0chx1T9HxT6M3Wi2EB8AlgR9DuBvBFVX0y3cGq+oqIrCT+RuwH/lRVBwpS0/DSniPwbeDbIvIy8B5wg8bfbeV0jn8M/C8RGQccB5ZByf4eZwAPikg18U/jK1X1CRHZSLyZ7kZgH3AtlOQ5Zjq/duKJb128JZJNqvonJXh+kOEcMx1crHO0JRuMMabCVEQbvzHGmBMs8RtjTIWxxG+MMRXGEr8xxlQYS/zGGFNhLPGbsiUiA8Gqna8EqyV+TkRCv+dF5EPByouvBl/Lkn7WECyN8Z8SX0X0M0k/uzBYebIShk+bEmBvRFPOjml86jwicirwb8QXcvubXAMFsyz/DViiqluCZXWfEpE3VPX/EZ889qqq3iAijcBGEVkFdAFfB/6HnliILNfnFuJDrwfDPN6Y4WwcvylbItKjqnVJ938NeIn4shVnAA8Dk4If36yqL4jIw8AqVV0TPOY7wKPAbxJffPH2pHgLgTuAPwMeJz5T8w3gIuCPgse8BJxPfGLZl4FLiU9W+oaq3hesPbSG+JpKNcBfq+qaYCG6HwEbgnhLVPV1l6+PqVyW+E3ZGp74g7IjwPuBbmBQVY+LyFnAd1W1TUR+i/iib0tE5BRgK3AWsBJ4MPEHIYh1CrBHVaeJyCeBNlW9OfhZFbCR+EqabcDHie+H8HciUgs8T3wGbgdwkqq+E3yK2BQ83xnEp+9/UFU3RfICmYplTT2m0iRWQ6wBvi4ircAA8bWMUNX/EJFvBE1Dvws8pqr9QXNLuquktFdOqjooIvcR/2PQJSKLgHkick1wyCnEE/x+4C4RuYT4InqnA43BMa9b0jdRsMRvKkbQ1DNAfHXLvwE6gXOJD3I4nnTow8AfAr9HfH14gFeIX7k/nnTc+cTXWMlkMPiC+B+cP1PVp4bV6ZPEF/Y6X1X7gtUbJwQ/fjf7szMmezaqx1QEEWkA/gX4erBQ3SnAgaDD9BNAddLh/0p83wZU9ZWg7BvAJ4NPCIhIPfFtAleQnaeAzwRLSyMiZ4vIpKAeh4KkfxnxJh5jImVX/KacTQxW8qwhvvLhw8BXg5/9H+AxEbmWeAfq0NW1qnaKyC5gdVLZARG5HvimiEwmfgX/NVX99yzr8i1gFvF12AU4THwLxe8A/y4iMeL9Ca+GOVFjcmGdu8YMIyInATuIb+7+drHrY4xr1tRjTBIRuYL4Vff/tqRvypVd8RtjTIWxK35jjKkwlviNMabCWOI3xpgKY4nfGGMqjCV+Y4ypMP8fFF03YlhPduQAAAAASUVORK5CYII=", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "بیایید ببینیم آیا همبستگی وجود دارد:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.14878293554077535\n", + "-0.16673322492745407\n" + ] + } + ], + "source": [ + "print(new_pumpkins['Month'].corr(new_pumpkins['Price']))\n", + "print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "به نظر می‌رسد همبستگی بسیار کم است، اما یک رابطه مهم‌تر دیگری وجود دارد - زیرا نقاط قیمت در نمودار بالا به نظر می‌رسد چندین خوشه متمایز دارند. بیایید نموداری بسازیم که انواع مختلف کدو تنبل را نشان دهد:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA7VklEQVR4nO2deXxU5fX/34cQzACyR6WyBEEpyBIlYF3rAlQtAi61Rtx+xq9tNZbar1q7iHxb7FdxrVr7VZt+QYGIS12wdcMvtmqtLIoIRFHbhCKUhMhO2M/vj3uTzCQzSWbmzsydmfN+ve7rzj1z7+c+T2Zy5rnneZ7ziKpiGIZhZA/tUl0AwzAMI7mY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFlG+1QXoC306tVLCwoKUl0MwzCMtGLZsmWbVDW/qT0tHH9BQQFLly5NdTEMwzDSChGpCme3UI9hGEaWYY7fMAwjyzDHbxiGkWWkRYzfMBLJvn37WLduHbt37051UQwjJvLy8ujTpw+5ubltOt8cv5H1rFu3jkMPPZSCggJEJNXFMYyoUFVqa2tZt24dAwYMaNM1FuoxIlJTA0uWOPtMZvfu3fTs2dOcvpGWiAg9e/aM6onVHL8RlvJy6N8fxo1z9uXlqS5RYjGnb6Qz0X5/zfEbzaipgZISqKuDrVudfUlJ5rf8DSNbMMdvNKOyEjp0CLXl5jp2IzHk5ORQWFjIsGHD+M53vsOuXbsA6Ny5MwCVlZUEAgEKCwsbtieeeCJE4/zzz6ewsJBBgwbRtWvXhvPOPPNMfvKTnzScV1VVxVFHHcWWLVs4/fTTGTx4MCNHjuTkk0/m008/BWiw12tcdNFFSfpLGElBVX2/jRo1So3kUV2tGgioQuMWCDj2TGT16tWpLoJ26tSp4fWll16q9957b4j9n//8px577LFt0lq0aJF++9vfbjjetWuXDh48uKGekyZN0jlz5qiq6je/+U1dsmSJqqo++uijet555zWzG+lBuO8xsFTD+FRr8RvNyM+HsjIIBKBLF2dfVubY4yGjOosTWJlTTz2Vzz//3DO9QCDAfffdx3XXXccrr7zC9u3bmTJlSrPzTjvtNE/va/gXc/xGWIqLoaoKFi509sXF8ellVGdxAiuzf/9+XnnlFYYPH97svS+++CIk1PP222+3Wffcc8+lR48eXHHFFTzyyCNhz1mwYEHIfadMmdJwr5tvvjn6yhi+JaHj+EWkEtgOHAD2q2qRiPQA5gMFQCVwsapuTmQ5jNjIz4+/lQ+hncV1dY6tpATGjvVGP6kkqDJ1dXUUFhYCTou/pKSk2TkDBw5k+fLlMd/j+uuvp66ujsGDB4fYp0yZQiAQoKCggIceeqjBPnfuXIqKimK+n+FfkjGB6wxV3RR0fCvwpqreKSK3usc/CX+pkQnUdxbX+0lo7CxOO8efoMoEAoG4nHpbaNeuHe3aNX/INweffaQi1DMJmO2+ng1MTkEZjCRSUAB794ba9u1z7GlHRlXGyFYS7fgVeF1ElonIta7tcFXdAODuD0twGYwUk6jO4pSQwso0jfE/+OCDCb1fcIx/7NixCb2XkVzEGfGTIHGRr6nqehE5DHgDuAF4SVW7BZ2zWVW7h7n2WuBagH79+o2qqgq7noCRRtTUOBGRggJ/Of2KigqGDBkS3UV+rYyRtYT7HovIMlVtFsdLaIxfVde7+2oReR4YA2wUkd6qukFEegPVEa59DHgMoKioKHG/TkbS8Kqz2BdkVGWMbCNhoR4R6SQih9a/BsYDK4GXgCvd064EXkxUGQzDMIzmJLLFfzjwvJs8qD0wT1VfFZElwNMiUgKsBb6TwDIYhmEYTUiY41fVfwAjw9hrgbMSdV/DMAyjZWzmrmEYRpZhjj+FeJ3uxe96hmH4A3P8KcLrdC9+1zNaRkS4/PLLG473799Pfn4+EyZMAGDWrFmUlpYCMH36dDp27Eh1deOAuPr0zU1fA9x///3k5eWxdetWamtrG8bmH3HEERx55JENx2vWrGHYsGEh106fPp177rkHgKuuuooBAwZQWFjIyJEjefPNNxvOszTO6YU5/hTg9UInftczWqdTp06sXLmSOjcVxBtvvMGRRx4Z8fxevXpx7733tkm7vLyc0aNH8/zzz9OzZ0+WL1/O8uXL+f73v8+NN97YcNyh6SIMYbj77rtZvnw5DzzwAN///vdD3ps7d26D1rPPPtumshmpwRx/CvB6oRO/62UiiQiDnXPOOfzpT38CHGdd3EJK1Kuvvpr58+fz1Vdftaj5xRdfsGPHDmbMmEG5h49tJ554Il9++aVnekZyMcefArxO9+J3vUwjUWGwSy65hKeeeordu3ezYsUKTjjhhIjndu7cmauvvprf/OY3rZTV+QE59dRT+fTTT0PCQ/Hw6quvMnny5BCbpXFOH8zxpwCv0734Xa+eTOgsTmQYbMSIEVRWVlJeXs65557b6vk//OEPmT17Ntu2bYt4zlNPPcUll1xCu3btuOCCC3jmmWcinhtpwe5g+80338xRRx3FZZddxs9+9rOQ84JDPXfffXer5TdSRzLSMhthKC52Urh7le7F73rl5Y6D7NDBeZooK4t/cZdUkOgU0xMnTuSmm27irbfeora2tsVzu3XrxqWXXhpxYZUVK1bw2WefMW7cOAD27t3LUUcdxfXXXx/2/J49e7J5c+jSGF999RUDBgxoOL777ru54IILePDBB7nyyitZtmxZNNUzfIK1+FNIfj6MHu1dyhe/6mVSZ3Giw2BXX30106ZNC7sCVzh+/OMf8+ijj7J///5m75WXlzN9+nQqKyuprKxk/fr1fPnll0RKeNi5c2d69+7dMFrnq6++4tVXX+WUU04JOa9du3ZMnTqVgwcP8tprr0VZQ8MPmOM3Ek46dxbv2wc7dzp7iD8MVlcHmzaFPjEE06dPH6ZOndrm8nXt2osJE85nz549zd576qmnOP/880Ns559/Pk899VREvSeeeIIZM2ZQWFjImWeeye23387AgQObnSci/OIXv2DmzJkNNkvjnD4kNC2zVxQVFenSpUtTXQwjRmpqnE7QYGcXCDhr+fohwWWktMy1tU4ZRUDVqUPPns57sWRlXrsWgvtWDzsM+vWLvdwtlc/IPqJJy2wtfiNqKipg9mxn3xbScSGWffscp3rwIBw44OyrqkJb/tGEwerqQp0+OMeRWv7xls8wWsI6d42ouOEGePjhxuPSUghanzsiXncWJ5q9e52WdDAijj03N3q9nTsj2wOB1JfPyC6sxW+0mYqKUKcPznE0LX8vO58TSYcOTvgkGNXmfRVtpVOn6Oyt4XX5jOzCHL/RZhYvjs6ezuTmOjHzdu0gJ8fZ9+8fe2s6EHBi+sEcdlhsrf1ElM/ILizUY7SZMWOis6c7PXs6fRJ79zot6Xidar9+ztPOzp1OSz9Wp5+o8hnZQ8Jb/CKSIyIfisjL7vF0EflSRJa7W+tTFA1fMGSIE9MPprTUsWcqubmOk/bKqQYC0KtX/E6/Hq/L13T4qpGZJCPUMxVoGgW+X1UL3e3PSSiD4REPPQSrV8OsWc6+LR27Ruvk5OQ0jIEvLCyk0p3kEJxSuZ633norJF1zfn4+hYWFfP3rX+f+++9n9+7dfP3rX+fjjz9uuGbmzJmcddZZDfo9evRoSLFcP+Z+0aIP6dBBmDXrNT7+2BkuCs3TPIOTrjk4pXNhYSFbtmxJzB/H8JyEhnpEpA/wbeAO4MeJvJeRPIYMyexWfioIBAIsX768mT04pfJVV10V9trvfve7PPzww9TW1jJ48GAuuugiHnjgAa677jr++te/sn79eh599FGWLl1K9+7dASe3/oQJExry5u/bB7NmlVNYeAqvvFLOCSd8i6oqJ5QUiRtvvJGbbrop3qobKSDRLf4HgFuAg03spSKyQkT+ICLdw10oIteKyFIRWVqTjnP7jYymZmcNS75cQs3OxH03o02p3LNnTwYNGsSGDRs4++yz6d27N0888QQ33ngj06dPb3D64dizR3nzzWe5/fZZvP/+6+zZs7theKiReSTM8YvIBKBaVZtmcfodMBAoBDYAYVeTUNXHVLVIVYvy02H8n5E1lH9cTv8H+jPuyXH0f6A/5Svjz8tcV1fXEDKpT7MQbUrltWvXsnv3bkaMGAHAAw88wM9//nNqampCVvcKx9Kl7/K1rw2gT5+BjBp1Ou++++dWh4fef//9DWU+44wzoquwkVIS2eI/GZgoIpXAU8CZIjJHVTeq6gFVPQg8DmTomBAjE6nZWUPJSyXU7a9j656t1O2vo+TFkrhb/vWhnuXLl/P8888DbU+pPH/+fI499liOOuoopk6dSl5eHgBf+9rXOPPMM/nBD37Q6v2feaac4uJLaNcOzj77El5/vbzV4aHBq3ctWrQo+kobKSNhMX5V/SnwUwAROR24SVUvE5HeqrrBPe18YGWiymAYXlO5pZIOOR2o29+YayE3J5fKLZXkd/LuyTSalMr1Mf733nuPb3/725xzzjkcccQRgJNJs127ltt3Bw4c4LnnniM39yV+85s7OHhQ+eqrWjp02A4c6lmdDP+QiglcM0XkYxFZAZwB3JiCMhhGTBR0K2DvgdDA974D+yjoVuDpfaJNqQzOcoiXX355q6tyNWXhwoWMHDmSf/3rX1RWVrJ2bRUXXnghL7zwQpy1MPxKUhy/qr6lqhPc15er6nBVHaGqE4Na/4bhe/I75VM2qYxA+wBdDulCoH2Askllnrb2IbaUygA/+clP+N///V+2b9/e5nuVl5c3u9eFF17IvHnzANi1axd9+vRp2O677z4gNMYfPATV8D+WltnIeiKlZW6Jmp01VG6ppKBbgedO3zBiIZq0zJaywTBiIL9Tvjl8I22xJG2GYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvJI2aGliyxNknipdfhmuucfZesGWLs1ykV4knvdbzOo2y3/UMbzDHbySF8nJnhahx45x9G3KORc3w4XDeec5C7uedB27KmphZtQo+/xw2bXL2q1YlTk9EQvLp7N+/n/z8/JD0y6XuYgg//OEP+dWvfkVtLXz8Mdxyyx1MmXI9tbVO1s36dMuFhYWcdNJJDdfn5+dz3HHHcfTRR/Otb32Lv/3tbyHlq9f78Y+nc/PN9zSkZQYoKChg06ZNQPMU0nfeeScAp59+OvXDrgsKChg6dDhDh47gtNO+yeuvV7WY5nnr1q1cccUVDBw4kIEDB3LFFVeEpKJetWoVZ555JscccwxHH300v/rVr6gfij5r1ixEhDfffLPh/Oeffx4R4dlnnw25z6xZsyguLg6xbdq0ifz8fPbs2QPApEmTOPHEE0POCU5DPXTo0JCkeVdddVXDfU4//XQGDx7c8Le56KKLuOOOOxqOg/92Dz74INOnT+eee+5p0An32W3cuJEJEyYwcuRIhg4dyrnnxr+EiQ3nNBJOTQ2UlEBdnbOBczx2rHfr7778Mqxskvzj448du+s7o2LLlsay1lNX59i7dfNer1OnTqxcuZK6ujoCgQBvvPEGRx55ZFitGTNmUFhYyMiRU1AVXnjh98yZ8yFVVXDwINx9990N6ZaDqU/tALBo0SIuuOACFi1axJAhQ9i3j4brVZ2tPi1z03w9kVJIN+WhhxbRtWsvHn30dh5/fAa9ez8eMc1zSUkJw4YN44knngDg9ttv55prruGZZ56hrq6OiRMn8rvf/Y7x48eza9cuLrzwQh555JGGFBbDhw+nvLycs846C3AmwI0cObLZfS644AJuuukmdu3aRceOHQF49tlnmThxIocccghbtmzhgw8+oHPnzvzzn/9kwIABDdfWp6H+7LPPGDVqFBdddBG5YZIZzZ07l6Ki0KHzP//5zwHnRy/4bzd9+vSQ88J9dtOmTWPcuHFMnToVcNJ5xIu1+I2EU1nZPMtjbq5j94pI2QVizToQKRTTaK8Blrh7L/TgnHPO4U9/+hPQmJkzHF26dOG22+5g5sxSZs68nu9975ccemg3RBzH3RbOOOMMrr32Wh577DHASb8sEnpOPGmZVRv1hg8/kZqaLyPqff755yxbtozbbrutwTZt2jSWLl3KF198wbx58zj55JMZP348AB07duThhx9ueNIAOPXUU1m8eDH79u1jx44dfP755xQWFja7V5cuXTjttNNYsGBBg+2pp55q+Fs/99xznHfeeVxyySURZ0kfffTRdOzYkc2bN0f7Z4mJDRs20KdPn4bjEfE+ymKO30gCBQXN/+H37XPsXjF5cnT21ojUqnfs5UB/YJy7bz1u1bKeQ72z2b17NytWrOCEE06IqHfZZcVs27aZnTu3ce65TohI1Vl0/eabb24IF0yZMiWixvHHH88nn3wCOD/MwZP4y8vv55JLCjnpJEdn/fr1De8Fp5AuLCxk/vz5zbRFGvXee+9VvvnNyRHTPK9evbohDFJPfUhk1apVrFq1ilGjRoVcM3DgQHbs2MG2bdvc+wljx47ltdde48UXX2TixIkR611cXNzg1NevX8+aNWsa0krX/+AWFxdHXAPhgw8+4Oijj+awww4L+/6UKVMa/jY333xzxHKEI9xnd/3111NSUsIZZ5zBHXfcEfJZxIqFeoyEk5/vxN1LSpyW/r59zrGXyyxMmODE+INWG2T48NjCPOA45EAgNDwTCEC3bjVACVDnbrjHY4HIFYqs13g8YsQIKisrKS8vbzWOu3HjOrZu/TcHDgh79uwgEOhM//6O448U6mlKcLqW3Fyn76WqynHal156I7fddhM9ezrvFwT9Src11HPDDWfw739vpEePw7j++hkR0zyrKtL0cSPIHul9IMR+ySWX8OCDD7J161buvfdefv3rX4e9ZsKECVx33XVs27aNp59+mosuuoicnBw2btzI559/zimnnIKI0L59e1auXMmwYcMAJzfR448/zj/+8Q9effXViPUOF+ppK+E+u29961sN93zllVc47rjjWLlyJfGsU2ItfiMpFBc7TmXhQmcfIYoRFytWwIIFzg/MggXOcTwceywMGuQsjj5okHMMlUDTZmuua49FL5SJEydy0003RQzz1DN16lR++cvpFBdfzDPP/BfDh9PgpNvKhx9+GJLbpWdPGnR6945eryl//esiKiurGDnyWJ59dlpEvWOPPZYPP/yQg0FxqoMHD/LRRx8xZMgQjj32WJrm6vrHP/5B586dOfTQxrTRY8aMYeXKlWzatIljjjkmYrkCgQBnn302zz//fEiYZ/78+WzevJkBAwZQUFBAZWVlSLjnxhtv5NNPP2X+/PlcccUV7N69O5Y/S0z06NGDSy+9lCeffJLRo0fz17/+NS49c/xG0sjPh9GjvW3pN2XCBPj972Nv6TelWzcnJNXYMi8Amgaq97n2WPRCufrqq5k2bRrDhw+PqPHKK69QXV3NFVdcwfTpt/Hyy8/z2Wer23T/ev7yl7/w2GOP8R//8R8h9txcJxwTFHWJiy5dAjz88APMmfMEX331VdhzBg0axHHHHceMGTMabDNmzOD4449n0KBBTJkyhXfeeYeFCxcCTqjphz/8Ibfcckszrf/+7/+O2NIPpri4mPvuu4+NGzfyjW98A3DCPK+++mpDKuxly5aFjfNfcMEFFBUVMXv27Db9DeLl//7v/9i1axcA27dv54svvqBfv35xaZrjN4yoyAfKgADQxd2X0VKYJxr69OnTMHojHLt37+ZHP/oRjzzyCCJCp06dmDlzZsNQTwiNExcWFrLX7WCZP38+hYWFHHPMMfz617/mueeeizorKTSP8d96660tnt+7d2+Ki4v57W9/C4RP81xWVsaaNWsYNGgQAwcOZM2aNZSVlQFOC/3FF19kxowZDB48mOHDhzN69OiQOtdzzjnntGkZyPHjx7N+/Xq++93vIiLuOgRrG34EAAYMGECXLl14//33m10/bdo07rvvvpCnlHqCY/xjx45ttSzBhPvsli1bRlFRESNGjODEE0/kmmuuYfTo0VHpNiXhaZlFJAdYCnypqhNEpAcwH6eJVAlcrKotdo9bWmZ/UVPjjMgpKIi/9T53Ljz9NFx8MbTQD5nQssWSltkZzVOJ8zVOXZbOHTtg61bo2hXCDI9PuV5dnTOBq1Mnp0/DSBzRpGVORot/KlARdHwr8KaqHg286R4baYKXE7H69oXLLoOXXnL2cT69JmWSWCP5wGhS6fTXrIFPPoENG5z9mjX+0lu71pmkVlnp7NeujU/P8I6EOn4R6QN8G/h9kHkSUB8cmw1MTmQZDO8Inoi1dauzLymJLQXD3Lmwbl2o7V//cuypLls6sGMHuCMZG9i2zbH7Qa+uDqqrQ23V1c0nsRmpIdEt/geAW4DgQNjh9cstuvuwg2FF5FoRWSoiS2sy9b83zfByItbTT0dnb414y5YOK9EFE5TNoE32ZOvt3Bmd3YiPaL+/CXP8IjIBqFbVZbFcr6qPqWqRqhbFM17V8A4vJ2JdfHF09taIp2x5eXnU1tamlfPv2jU6e7L1OnWKzm7EjqpSW1tLXl5em69J5ASuk4GJInIukAd0EZE5wEYR6a2qG0SkN1DdoorhG7yciDVlCvz0p054p56+fWPv4I2nbH369GHdunWk25Pljh0QPJQ8Ly/075lqvT17IHjN90MP9TZNh9FIXl5eSFqH1kjKYusicjpwkzuq526gVlXvFJFbgR6q2nxAbhA2qsdfZNqonnTm3Xfh9ddh/Hg4+WT/6VVUwOLFMGYMxDBy1IiTSKN6UuH4ewJPA/2AtcB3VDX8zA4Xc/yGYRjRE8nxJyVXj6q+Bbzlvq4FzkrGfQ3DMIzm2MxdwzCMLCOjHX8ylvqLB6/LV1EBs2c7+2zQSwZef0Z+/04aWYKq+n4bNWqURsu8eaqBgGrXrs5+3ryoJRKK1+UrLa1fN8nZSkszWy8ZeP0Z+f07aWQewFIN41OT0rkbL9F27tbUOFP2m+Y+r6ryx0gPr8tXUQFDhza3r14d20gKv+slA68/I79/J43MJJW5epJOMpb6iwevy7d4cXT2dNdLBl5/Rn7/ThrZRUY6/mQs9RcPXpdvzJjo7Omulwy8/oz8/p00souMdPz1szgDAejSxdl7vdRfPHhdviFDoGlq8tLS2MMoftdLBl5/Rn7/ThrZRUbG+Ovx+yxOr8vn9SxJv+slA68/I79/J43MIqUzd+PFZu4abcUcq2E0klWdu0Z2ktyFWAwjfTHHb2QE2bYQi2HEgzn+FOL1LM6XX4ZrrnH2idSL9T7hrps7FyZNin3lrXoSNVzy3Xfh9tudvRd4ref1Z24zi7OEcLO6/LbFMnPX73g9i3PYsNCZscOHJ0Yv1vuEu65Pn1Bb376xl7e6WlUkVE/EscfKuHGheuPHx66VCD2vP3ObWZx5EGHmbsqdelu2THP81dXOP1bwP20gELuTWrAgVKt+W7DAW73bbovtPpH0wm1z5nhb5lj/Bu+8E17vnXf8oed1fb3+Thr+IJLjt1BPCvA6LPHCC9HZY9WbPz+2+0RTjljX3PX6b/D669HZk63ndX1tZnF2kcg1d/NEZLGIfCQiq0Tkv1z7dBH5UkSWu9u5iSqDX/F6FufkydHZY9X77ndju0805Yh1zV2v/wbjx0dnT7ae1/W1mcVZRrjHAC82QIDO7utc4H3gG8B0nNW4sjbUo9oYT+3SxZt46vDhoY/p8cZ7I+nFep9w1/XtG2qLJ8YfT9kiMX58qF68MXmv9byur9ffSVUnVLR4sXchI6/1Mh2SHepx77vDPcx1N//PFksSxcVOZsaFC519cXF8eitWwIIFzhDGBQuc40ToHXFE6Hm9e8eupx5/G7zWW78+9HjDhvj0XnsN3nkHpk1z9q+9Fp+e15+5199Jr+dV2DwNDwn3a+DVBuQAy4EdwF2ubTpQCawA/gB0b00nE1v86YiXHZRz5oTX8kvnrtd62YbXncXW+RwbpKJzV1UPqGoh0AcYIyLDgN8BA4FCYANwb7hrReRaEVkqIktrbFCxL/CygzJSJ65fOne91ss2LK21v0nKqB5V3YKz2PrZqrrR/UE4CDwOhE3Oq6qPqWqRqhbl+yTpit8n83hN08k88XZQButF6sT1S+eu13r1/O53cNppzt4LvNbzakKdpbX2OeEeA7zYgHygm/s6ALwNTAB6B51zI/BUa1p+CPX4fTKP10SazNO9e2i5e/SIXa9Hj9i0IuF1Z7HXerH+7ZKl5+WEOlXvO5+9nrCWDZDsCVzACOBDnFj+SmCaa38S+Ni1vxT8QxBpS7Xj9/tkHq+JFE+NFPdurdyR9PLymtv8EgP2Wu+RR8L/7R55xB96Xve5ZNv/jF+J5PgTOapnhaoep6ojVHWYqv7StV+uqsNd+0RVjXOsROLx+2Qer4kUT40U326t3OH02rWDnJzm9/BLDNhrvUgjUGIdmeK1ntd9Ltn2P5Nu2MzdNuD3yTxeEymeGim+3Vq5w+kdPAgHDjS/h19iwF7rRRoaGeuQSa/1vO5zybb/mbQj3GOA37ZUh3pU/T+Zx2siTeaJtdzz5jmhnU6dnP28ec7Wvr1qTo6zj3fCUL1eu3be6eXkOMnecnLi1/O6T8PvfSTZ9j/jR4gQ6rEVuKLg3XedR8vx4+Hkk/2n5zXhVrPq2xfWrWs8p29fWLu2da3ycmeiUbt2Tmu/rAxuuSU2rUj06AGbN4ce19bGrtepE+zaFXq8Y0fk85Ndvlg/i2TpQfb9z/iNSCtwpbw135bNDy1+I/YOwHAdpR06xKYVCa87O++6K7zeXXf5o3xed8Z6rWf4A+Lp3BWRY0TkTRFZ6R6PEJFfePvbZPidWDsAw3WUHjwYm1Yk/N556vfOWK/1DH/T1s7dx4GfAvvAGbEDXJKoQhn+JNYOwHAdpe0ifPNi7Uz0e+ep3ztjvdYzfE64x4CmG7DE3X8YZFvelmu92DI11JOOmQtj7QAM11nsdWei152dnTqF6nXq5K/y+X3CmpF6iHMc/yYRGQhOdk0RuQgnz44RI+mauXDtWpgzByZOdPZt7fwLl/kxVq1I1NbCI4/Aqac6+3g6TsHpyL3rLigsdPbxdOwmonx33QXt2zvzIdq3d47jwevPw/AvbRrVIyJHAY8BJwGbgX8Cl6lqZUJL5+KXUT1eUVPjOOe6ukZbIOA4xFjSEnmtZ/gf+8yNthBpVE+bWvyq+g9VHYuTf+frqnpKspx+JuL3Waax0DShm5FY/PCZG+lLW0f1/FpEuqnqTlXdLiLdRWRGoguXqfh9lmm02AIZySfVn7mR3rQ1xn+OOqmVAVDVzUDWrZXrFfn5zgSmQAC6dHH2ZWWxP6J7rVdPpFZ8zc4alny5hJqdNdTUOBOz6upg61ZnX1LS9pZ/sJYXZIte/Wd+SPca8gYu4ZDuNZ585hVra5j9xhIq1tqjWybTvo3n5YjIIaq6B0BEAsAhiStW5lNcDGPHNp8Z6xe9+pm2HTo4LcuyMuce5R+XU/JSCR1yOrD3wF5+NqyMDh2KQ2LNOTnw5z/DuW7TIFKZmmqVTSqjeFjs6/1lm97ftpWz57oSONABcvbyt21lFBO73g2PlvPwv0rgYAf4y15K+5bx0PfiXH/R8CVt7dy9BZgI/C/OyJ6rgZdUdWZii+eQaZ27fidSx+GyT2oY9WR/6vY3vhFoH0Dvq2L3V6Fe/dBDYfduEHGuDf7xAKfl2/+B5lpVP6oiv1P0v1rZplextoahj/WH3KAPaV+A1ddWMaRf6vUMfxBv5+5M4A5gCHAs8KtkOX0j+UTqOFz8aSUdckLfyM3J5ef3VBIIQOfOjfbt252Y89694UNAlVvCa1VuqYytzFmmt/jTSqdlHszBXMfuAz3D37Q5LbOqvqKqN6nqf6rqa4kslJFaInUcjhlcwN4DoW/sO7CP711cQFUVPPyw09KPRPCok4Ju4bUKuhXEVuYs0xszuADaNZ0Ovc+x+0DP8DctOn4RecfdbxeRbUHbdhHZ1sq1eSKyWEQ+EpFVIvJfrr2HiLwhIp+5++7eVSe78WoN34aOw0Mat7IyGNIvn7JJZeTlBAhIF/JyApRNKiO/Uz6bNsG2bc4PRCTq6mDaNGc9101r87myWxkdJMAh2oVD2jVqxVTmTk7ZOkiA3INd6CDe6B3SztvyeaU3pF8+pX3LYF8AdneBfQFK+5bFHJYJ0dsTv57hc8JN5/ViAwTo7L7OBd4HvgHMBG517bcCd7WmlakpG7wkWWsCl5aq0rFa+dpipWO1lpa6tjCZHdu0BWnFW+Zhw0L14l2Tddw4b8vntV64zyJeVldV66zXF+vqqgTm/TCSBrGuuYvzVLCytfNa0egIfACcAHyKu84u0Bv4tLXrzfG3TLLWN42UutfLLdYyR1oPeMECb/8GflkzdvXq8HqrV8emZ2QmkRx/qzF+VT0IfCQi/aJ9mhCRHBFZDlQDb6jq+8Dh6q6z6+4Pi3DttSKyVESW1th00BZJ1vqmyUjRG2uZI60HHMkeazn8smbs4sXR2Q0jmLZ27vYGVrk5+V+q31q7SFUPqGoh0AcYIyLD2lowVX1MVYtUtSjfko+0SLLWN01Git5YyxxpPeBI9ljL4Zc1Y8eMic5uGCGEewxougHfDLe15dogjduBm7BQT0JI1vqmTeP5ccf4PSzz8OGhevHG+P2+Zmy4z8IwgiGWNXdFJA/4PjAI+BgoU9X9bflBEZF8YJ+qbnFn+r4O3OX+aNSq6p0icivQQ1VvaUnLJnC1jWStb1pR4YQUxoyBIUOa2yD867fecmYEFxfDiBGO9hFHwL//7V2ZX37ZCe9MngwTJsSv5/c1Y8N9FoZRT6QJXK05/vk4q269DZwDVKnq1DbecAQwG8jBCSk9raq/FJGewNNAP2At8B1V/aolLXP86U9wCohduyLP6DUMwztidfwfq+pw93V7YLGqHp+4YobHHH96Ey4FRDCWR94wEkOsKRsapuO0NcRjGE0JlwIiGMsjbxjJpTXHPzJ4ti4woq0zd43MpaICZs929m0hXAqIYHbvbvn9aIi2bKZnZCXhenz9ttmoHv8Q60iS4MXWc3NVO3RwNi9HpXg9yiXb9IzMg1hG9fgFi/H7g4oKGDq0uX316tARJTU1jTn4IfzrNWvglFNa1/K6bKZnZBNxpWU2DGjbbNHgZRiPPBL69GlcknHhQhg92unE/fzz6O7hRdlMzzAczPEbbaa12aJNl2FsKR+/1zNPTS8+PSO7MMdvtJkhQ6C0NNRWWtoYWohm9E5rWl6XzfQMoxGL8RtRE2m2aCzj9b2eeWp6htFITBO4/II5/vShfoZubq7zAyACeXlO2Mdm6BpGconk+NunojBG5lJcDGPHhh/JYzNzDcMfmOM3PCc/P9TJm8M3DH9hnbuGYRhZhrX4jaQRaWKXPREYRnIxx28kBUvLbBj+wUI9RsKJZmKXYRiJJ2GOX0T6isgiEakQkVUiMtW1TxeRL0Vkubudm6gyGMmjpgaWLAnvwC0ts2H4i0S2+PcD/6mqQ4BvANeLSH1aqftVtdDd/pzAMhhJIDg/T//+znEwraVl3revMe5vGEbiSZjjV9UNqvqB+3o7UAEcmaj7GamhaRgnXOgmP9+J4wcC0KWL08Lv0MF5HQg471kHr2Ekj6TE+EWkADgOeN81lYrIChH5g4h0j3DNtSKyVESW1lgA2LeEC+OEC90UFzvpGhYuhC+/hHXrnNdVVdaxaxjJJuEpG0SkM/AX4A5V/aOIHA5sAhT4FdBbVa9uScNSNviXcPl5bA1dw/AHKcnHLyK5wHPAXFX9I4CqblTVA6p6EHgcsESyaUzTME5LoZvgZQJtyUDDSB0JG8cvIgKUARWqel+QvbeqbnAPzwdWJqoMRnJomp8nnNO/4QZ4+OHw15eWwkMPJbKEhmEEk7BQj4icArwNfAwcdM0/A4qBQpxQTyXwvaAfgrBYqCe9ibRMYDC2ZKBheE/Ss3Oq6juAhHnLhm9mGW1ZDnDxYnP8hpEsbOaukXDashygLRloGMnDHL+RcMItExiMLRloGMnFkrQZSeGhh+C66xqXCQRbMtAwUoU5fiNpDBkS6uTN4RtGarBQj2EYRpZhjt8wDCPLMMdvRKalXMt+0DMMIybM8RvhaS3Xcqr1DMOImYQnafMCm7mbZLzOvGaZ3AwjJaQkSZuRprQ113Kq9AzDiAtz/EZzwi2ZFc8yWV7rGYYRF+b4jeZEk2s5FXqGYcSFxfiNyNTUtJxrOdV6hmG0SNKzcxoZQH6+tw7aa71w+P3HyvRMzw+oqu+3UaNGqWG0yrx5qoGAateuzn7ePNMzvfTV8wBgqYbxqQlz1kBfYBFQAawCprr2HsAbwGfuvntrWub4jVaprnb+2aBxCwQcu+mZXrrpeUQkx5/Izt39wH+q6hDgG8D1IjIUuBV4U1WPBt50j7MTv8+MTaeZtn4fgmp6pucjEub4VXWDqn7gvt6O0/I/EpgEzHZPmw1MTlQZfI3fZ8am20xbvw9BNT3T8xPhHgO83oACYC3QBdjS5L3NrV2fcaEevz9m+vSxtVXqY6xdungbszU900uFngcQIdST8OGcItIZ+Atwh6r+UUS2qGq3oPc3q2r3MNddC1wL0K9fv1FVVVUJLWdSWbLEaUlv3dpo69IFFi6E0aMzTy+Z+H2UhumZXhKJNJwzoY5fRHKBl4HXVPU+1/YpcLqqbhCR3sBbqjq4JZ2MG8fv91w4llvHMDKCpOfqEREByoCKeqfv8hJwpfv6SuDFRJXBtwTPZO3UyduZsV7q5eU5enl5oXqxdvqGu87vHdKmZ2QgiRzVczJwOXCmiCx3t3OBO4FxIvIZMM49zk7qn7a8euryWk8kdA+xd/qGu87vHdKmF5+e4V/CBf79tlnnrk/0Vq+O7T6R9PLy0u9vYHpGGkEKxvGnHr8+BidqDHEvoAhnnwi9xYtjK3e4+rZrBzk50WtFcw/TS52e4Wsy1/H7+TG4oCC04xRg9+74xhBP2A5VOHOhq4AJO7zXGzMmtrHK4eq7dy8cOBC9Vkv38PO47GzTM/xNuMcAv21Rh3r8/hhcXa2amxuql5sbu17NatWdTf5sO3HsXuvFMlY5Un3/53/8PY7a9OLTM1IOEUI9mZmds/6xNbiVWf/YGstIl0TodewYOk4+EIhdr3qxMyc6mH2uvdcQb/WKr4SxY6Mbqxypvscf7wwR9Wrcc3Fx9GUzvcTpGb4lMx2/3x+DvdY7bAzkNrHluvZE6EWbXrml+vo99bPpGRlIZsb4WxuHHqueX1ek6jUEPiyFXcBWnP2HpbG19hOh5/U8A8Mw4iIzHX894cahx0pxsROWWLjQ2RcX+0tv7Ukw+BA4L8/Zrz3JX3rg/TyDZODXkWHZqmd4Q7jAv9+2lHfu+p106MxOx8/D7wt1ZJueETUkeyEWL7eoHf/ixc6XLdjRdOni2DMRr+vrd71k4Pcfv2zTM2IikuPPzFBPosYk+/UxONmdz9GWuyU9j/+mL8/dzDWTqnl57ub4hNyRXBUMZjZXUMFgf02QyjY9w1vC/Rr4bYspZUOixjj79TF42LDQ1tXw4fHpjRsXqjd+fHzlLi0N1Sst9fxvMKxPrcLBhm1439rYxaqrtbTdb0P0Sts97J8WcLbpGTFBVoV66qmudsIJ8X7Z/P5P8c47oVr12zvvxKa3enVkPZ/m6lkw5yvXQQdLHtQFc76KSc/5EzTXWx3jnDhVDf/jFw9+n8BlE8JSTiTHn5mhnnry852FQ+IdNuj3x+DXX4/O3hqLF0fW82munhfm7IjK3hqLF26Lyt4qNTXOENZgysriC3H5faSZ13qGZ2S24/cKv0/gGj8+OntrjIkw8Wv8eNi1K9RWV9e2XD1791JDL5ZQRA294OBB2Lkz9Lxt22L+G0w+aWNU9tYYc3j4Fd8i2VslUTFvrxo36aJneII5/rbg9wlcJ5/c3MmPH+/YY6FXL2jfZFJ3+/bQo0fzORFtmSORn095yRv0p4pxLKQ/VZSf+0T4c9esianIE477N8NZDmjDNpzlTDju3zHpDelYRSkPhuiV8iBDOsbo+BM14GDuXJg0ydl7wcsvwzXXOHsvePdduP12Z+9HvYoKmD3b2WeDXj3h4j9+23yTj9+rPoNE6b3zjuq0abHH9uuJNPxy1izVnJxQe05Oq8Myw4b42+/Rano170eYNi22Mk+bpgq6gLO1hEd1AWd7oreawTqLK3Q1g+PTU1Xt3j20rj16xK6lqtqnT6he377x6SVrgIBf9Lzuc/GhHsnu3AX+AFQDK4Ns04EvgeXudm5btHzj+LOFSJ2xc+Y0d9SgumBBi3Jhf0cCe3QxRc215syJrcyRymZ6bWPBgpg+24h4PeAgWQMYYu2996leJMefyFDPLODsMPb7VbXQ3f6cwPsbsRIpFBUpDLNkSYtyYaMcB9pRQGXzk/fvj6nIEa/zi97TT0dnT7beCy9EZ28NrwccJGsAQyR7uus1IWGOX1X/CnyVKH0jwRQXwxtvwI9+5OyLi2PuRG74Hck7SJfAXgJ5Bym749/ks6n5yZE6llsj0nV+0bv44ujsrXF2uDZVC/bWmDw5OntreD3gIFkDGPzyffFarynhHgO82oACmod6KoEVOKGg7i1cey2wFFjar1+/6B6TjPiJFF8cPz7U3tY4a2mpVtNLF1PkxPZLS30ZE02oXt++oXrxxOQXLw4fCognDcbw4aFa8cb4Y/2uJEvP79+XdIzxa3jHfziQg/OkcQfwh7boWIw/ybQWX5wzR3XixLbHk1vSW7BAtaQk9lhyU/yud9ddqoWFzj4eEjUz9pFHVE891dl7QbTflWTr+f37EueADV84/ra+13Qzx59kZs0K76hnzYqtFRJJ76yzfNdCSis9G+WS2XoepDTxheMHege9vhF4qi065viTTKQWeqSRH62NNIik58NREKZner7Q8+iJLpLjT1jnroiUA+8Bg0VknYiUADNF5GMRWQGc4Tp/w28MGQKlpaG20lKorQ1/fmsjDcLpnXVWbFqR8PuoCtMzvWhIcHbThK25q6rhEnOUhbEZfuShh+C665wv7pgxjvOONHuwLSMNTjoJfv97Z6avqjP65M03Y9OKpgymZ3rpqJeomd71hHsM8NtmoR6fUF2t2q5d6ONnu3axZ+csKQm1xRMTjbVspteI30fh+F3Ph9lXycrsnIa3VFbCoYeG2jp3ji07Z24ufO97sHo1zJrl7B96KPllMz2Hmhp4++1Q29tvx549NNv0wPn+evV9hoRmN01YqMfIQGJ9/Gzpuvx8J4yUqrKZnkP9j3NdXaOtPqYcS/LAbNOrZ8gQb77P9eTnJySzqbX4jbYTa1ZRr7ORJuMe2abn9x8mv+ulG+HiP37bLMbvM2LNKup1NtJk3COb9Py+Apff9XwIEWL84rznb4qKinTp0qWpLoZhZD41NU64oz4MZ3ppjYgsU9WipnaL8RtGS2S4Y2iG1zHlbNNLEyzGbxiRKC+H/v1h3DhnX16e6hIZhieY4zeMcNTUQEmJM+pj61ZnX1IS33A/w/AJ5vgNIxwJnjJvGKnEHL9hhCPbh/sZGY05fsMIR6LmHlRUwOzZkfMepVqvpsZZStNCWhmNOX7DiITXU+ZvuAGGDoWrrnL2N9zgLz3rzM4abBy/YSSDigrHOTdl9erYpvh7rVdT4zj74BQGgYDzg5eFwx0zhUjj+K3FbxjJIMvzvxv+IpELsfxBRKpFZGWQrYeIvCEin7n77om6v2H4imzP/274ikS2+GcBZzex3Qq8qapHA2+6x4aR+URa1SzWTI5e6yUjkZ7hGxIa4xeRAuBlVR3mHn8KnK6qG0SkN/CWqg5uTcdi/EbGUFERuqqZ3/SyLUVFhhMpxp9sx79FVbsFvb9ZVcOGe0TkWuBagH79+o2qqqpKWDkNwzAykbTr3FXVx1S1SFWL8q3lYRiG4RnJdvwb3RAP7r46yfc3DMPIepLt+F8CrnRfXwm8mOT7G4ZhZD2JHM5ZDrwHDBaRdSJSAtwJjBORz4Bx7rFhGIaRRBK2EIuqRprfflai7mkYhmG0TlqkbBCRGiCRw3p6AZsSqO8HMr2OmV4/sDpmCsmsY39VbTY6Ji0cf6IRkaXhhjxlEplex0yvH1gdMwU/1NG3wzkNwzCMxGCO3zAMI8swx+/wWKoLkAQyvY6ZXj+wOmYKKa+jxfgNwzCyDGvxG4ZhZBnm+A3DMLKMjHf8ItJXRBaJSIWIrBKRqU3ev0lEVER6Bdl+KiKfi8inIvKt5Jc6Olqqo4jc4NZjlYjMDLJnRB1FpFBE/i4iy0VkqYiMCbom3eqYJyKLReQjt47/5dojLmCUTnVsoX53i8gnIrJCRJ4XkW5B16RN/SByHYPe94e/UdWM3oDewPHu60OBNcBQ97gv8BrO5LBerm0o8BFwCDAA+ALISXU9YqkjcAawEDjEfe+wDKzj68A5rv1cnDUe0rWOAnR2X+cC7wPfAGYCt7r2W4G70rGOLdRvPNDetd+VrvVrqY7usW/8Tca3+FV1g6p+4L7eDlQAR7pv3w/cAgT3cE8CnlLVPar6T+BzIMb17JJDC3X8AXCnqu5x36vPhppJdVSgi3taV2C9+zod66iqusM9zHU3xanLbNc+G5jsvk6rOkaqn6q+rqr7XfvfgT7u67SqH7T4GYKP/E3GO/5g3IVhjgPeF5GJwJeq+lGT044E/hV0vI7GHwrfE1xH4BjgVBF5X0T+IiKj3dMyqY4/Au4WkX8B9wA/dU9LyzqKSI6ILMdJWf6Gqr4PHK6qG8D5AQQOc09PuzpGqF8wVwOvuK/Trn4Qvo5+8zdZ4/hFpDPwHI6j2A/8HJgW7tQwtrQY8xpcR1XdhpOErzvO4/TNwNMiImRWHX8A3KiqfYEbgbL6U8Nc7vs6quoBVS3EafWOEZFhLZyednVsqX4i8nOc/8259aZwEgkvZJyEqeMIfOZvssLxi0gujrOYq6p/BAbixNM+EpFKnA/oAxE5AucXt2/Q5X1oDB/4ljB1BKcuf3QfPxcDB3ESRGVSHa8E6l8/Q+NjclrWsR5V3QK8BZxN5AWM0raOTeqHiFwJTACmqBv8Jo3rByF1nITf/E0qO0KSseH8oj4BPNDCOZU0drYcS2hnyz9Ijw6lZnUEvg/80n19DM4jpWRYHSuA093XZwHL0vhzzAe6ua8DwNs4zvBuQjt3Z6ZjHVuo39nAaiC/yflpVb+W6tjknJT7m4Tl4/cRJwOXAx+7cTeAn6nqn8OdrKqrRORpnC/ifuB6VT2QlJLGTtg6An8A/iAiK4G9wJXqfNsyqY7/AfxGRNoDu4FrIW0/x97AbBHJwXkaf1pVXxaR93DCdCXAWuA7kJZ1jFS/z3Ec3xtOJJK/q+r307B+EKGOkU5OVR0tZYNhGEaWkRUxfsMwDKMRc/yGYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvZCwicsDN2rnKzZb4YxGJ+TsvIqe4mRc/cbdrg97Ld1NjfChOFtEfBL13gpt5MhuGTxtpgH0RjUymTp2p84jIYcA8nERut0cr5M6ynAdMVtUP3LS6r4nIl6r6J5zJY5+o6pUicjjwnog8C9QCDwPXaWMismjvLThDrw/Gcr1hNMXG8RsZi4jsUNXOQcdHAUtw0lb0B54EOrlvl6rq30TkSeBZVX3RvWYuMB8YjZN8cVqQ3lnAdOAG4CWcmZpfAicC/8+9ZgkwCmdi2Z3A6TiTlX6rqo+6uYdexMmplAv8QlVfdBPRvQIscvUmq2qVl38fI3sxx29kLE0dv2vbDHwd2A4cVNXdInI0UK6qRSLyTZykb5NFpCuwHDgaeBqYXf+D4Gp1Bf6pqj1E5CqgSFVL3ffaAe/hZNIsAi7EWQ9hhogcAryLMwP3X0BHVd3mPkX83b1ff5zp+yep6t8T8gcyshYL9RjZRn02xFzgYREpBA7g5DJCVf8iIr91Q0MXAM+p6n433BKulRS25aSqB0XkUZwfg1oRGQ+MEJGL3FO64jj4dcCvReQ0nCR6RwKHu+dUmdM3EoE5fiNrcEM9B3CyW94ObARG4gxy2B106pPAFOASnPzwAKtwWu4vBZ03CifHSiQOuhs4Pzg3qOprTcp0FU5ir1Gqus/N3pjnvr2z7bUzjLZjo3qMrEBE8oH/AR52E9V1BTa4HaaXAzlBp8/CWbcBVV3l2n4LXOU+ISAiPXGWCZxJ23gN+IGbWhoROUZEOrnlqHad/hk4IR7DSCjW4jcymYCbyTMXJ/Phk8B97nuPAM+JyHdwOlAbWtequlFEKoAXgmwbROQy4HERORSnBf+Aqi5oY1l+DxTg5GEXoAZnCcW5wAIRWYrTn/BJLBU1jGiwzl3DaIKIdAQ+xlncfWuqy2MYXmOhHsMIQkTG4rS6HzKnb2Qq1uI3DMPIMqzFbxiGkWWY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFnG/wfSVo6szTyIxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax=None\n", + "colors = ['red','blue','green','yellow']\n", + "for i,var in enumerate(new_pumpkins['Variety'].unique()):\n", + " ax = new_pumpkins[new_pumpkins['Variety']==var].plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAGKCAYAAAAVEBpAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcxklEQVR4nO3df5h3dV3n8ecrwEBEARm4bhW8UxEDfwDekqztpiiFmiGGCW5GZhduLRVpJaX5a7e9bP25musurAiRgqaopGEiF+TiKnrzQ4SQIEMSEG615BbzB/DeP8538sswv+c7c85n5vm4rrnm/PjOzIvx/r488znnfE6qCklSe36s7wCSpOWxwCWpURa4JDXKApekRlngktSoHdfyh+211161efPmtfyRktS8yy677BtVNTVz+5oW+ObNm9m6deta/khJal6Sr862fcEhlCQ7J/l8ki8muSbJ60bbX5vk5iRXjj6eNenQkqS5LeYI/PvAEVX1nSQ7AZckOX+0761V9abViydJmsuCBV7drZrfGa3uNPrw9k1J6tmirkJJskOSK4HbgQuq6tLRrpOSXJXk9CR7rFZISdJ9LarAq+ruqjoYeBhwWJLHAu8CHgkcDNwKvHm2r01yYpKtSbZu27ZtIqElSUu8Dryq/gW4GDiqqm4bFfs9wGnAYXN8zalVtaWqtkxN3ecqGEnSMi3mKpSpJLuPlncBngF8OcmmsZcdA1y9KgklSbNazFUom4Azk+xAV/gfqKqPJTkrycF0JzRvBF66aiklSfexmKtQrgIOmWX7i1YlkSRpUdb0TkwN3+ZTPt53hAXd+IZn9x1BGgQns5KkRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1KjmH6nWwiPAwMeASZo8j8AlqVEWuCQ1asECT7Jzks8n+WKSa5K8brR9zyQXJLl+9HmP1Y8rSZq2mCPw7wNHVNUTgIOBo5I8GTgFuLCq9gcuHK1LktbIggVene+MVncafRRwNHDmaPuZwHNXI6AkaXaLGgNPskOSK4HbgQuq6lJgn6q6FWD0ee85vvbEJFuTbN22bduEYkuSFlXgVXV3VR0MPAw4LMljF/sDqurUqtpSVVumpqaWGVOSNNOSrkKpqn8BLgaOAm5Lsglg9Pn2SYeTJM1tMVehTCXZfbS8C/AM4MvAecAJo5edAHx0lTJKkmaxmDsxNwFnJtmBrvA/UFUfS/JZ4ANJXgLcBDx/FXNKkmZYsMCr6irgkFm2fxN4+mqEkiQtzDsxJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhq1YIEn2TfJRUmuTXJNkt8ZbX9tkpuTXDn6eNbqx5UkTdtxEa+5C3h5VV2eZDfgsiQXjPa9taretHrxJElzWbDAq+pW4NbR8vYk1wIPXe1gkqT5LWkMPMlm4BDg0tGmk5JcleT0JHvM8TUnJtmaZOu2bdtWllaS9G8WXeBJHgB8CDi5qu4A3gU8EjiY7gj9zbN9XVWdWlVbqmrL1NTUyhNLkoBFFniSnejK+71VdS5AVd1WVXdX1T3AacBhqxdTkjTTYq5CCfBu4NqqesvY9k1jLzsGuHry8SRJc1nMVShPAV4EfCnJlaNtfwQcn+RgoIAbgZeuQj5J0hwWcxXKJUBm2fXXk48jSVos78SUpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJatSCBZ5k3yQXJbk2yTVJfme0fc8kFyS5fvR5j9WPK0matpgj8LuAl1fVTwJPBv5zkgOBU4ALq2p/4MLRuiRpjSxY4FV1a1VdPlreDlwLPBQ4Gjhz9LIzgeeuUkZJ0iyWNAaeZDNwCHApsE9V3QpdyQN7TzydJGlOiy7wJA8APgScXFV3LOHrTkyyNcnWbdu2LSejJGkWiyrwJDvRlfd7q+rc0ebbkmwa7d8E3D7b11bVqVW1paq2TE1NTSKzJInFXYUS4N3AtVX1lrFd5wEnjJZPAD46+XiSpLnsuIjXPAV4EfClJFeOtv0R8AbgA0leAtwEPH9VEkqSZrVggVfVJUDm2P30ycaRJC2Wd2JKUqMscElqlAUuSY2ywCWpURa4JDXKApekRi3mOnBJy7D5lI/3HWFRbnzDs/uOoGXyCFySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjXIyK0lNcHKw+/IIXJIaZYFLUqMWLPAkpye5PcnVY9tem+TmJFeOPp61ujElSTMt5gj8DOCoWba/taoOHn389WRjSZIWsmCBV9WngW+tQRZJ0hKsZAz8pCRXjYZY9pjrRUlOTLI1ydZt27at4MdJksYtt8DfBTwSOBi4FXjzXC+sqlOraktVbZmamlrmj5MkzbSsAq+q26rq7qq6BzgNOGyysSRJC1lWgSfZNLZ6DHD1XK+VJK2OBe/ETHI28FRgryRfA14DPDXJwUABNwIvXb2IkqTZLFjgVXX8LJvfvQpZJElL4J2YktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY1asMCTnJ7k9iRXj23bM8kFSa4ffd5jdWNKkmZazBH4GcBRM7adAlxYVfsDF47WJUlraMECr6pPA9+asflo4MzR8pnAcycbS5K0kOWOge9TVbcCjD7vPdcLk5yYZGuSrdu2bVvmj5MkzbTqJzGr6tSq2lJVW6amplb7x0nShrHcAr8tySaA0efbJxdJkrQYyy3w84ATRssnAB+dTBxJ0mIt5jLCs4HPAgck+VqSlwBvAI5Mcj1w5GhdkrSGdlzoBVV1/By7nj7hLJKkJfBOTElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGLfhU+vkkuRHYDtwN3FVVWyYRSpK0sBUV+MjTquobE/g+kqQlcAhFkhq10gIv4JNJLkty4iQCSZIWZ6VDKE+pqluS7A1ckOTLVfXp8ReMiv1EgP3222+FP06SNG1FR+BVdcvo8+3Ah4HDZnnNqVW1paq2TE1NreTHSZLGLLvAk+yaZLfpZeBngasnFUySNL+VDKHsA3w4yfT3eV9VfWIiqSRJC1p2gVfVV4AnTDCLJGkJvIxQkhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1akUFnuSoJNcluSHJKZMKJUla2LILPMkOwDuBZwIHAscnOXBSwSRJ81vJEfhhwA1V9ZWq+gFwDnD0ZGJJkhaSqlreFybHAkdV1a+P1l8E/FRVnTTjdScCJ45WDwCuW37cNbMX8I2+Q6wj/j4nx9/lZLXy+3x4VU3N3LjjCr5hZtl2n/83qKpTgVNX8HPWXJKtVbWl7xzrhb/PyfF3OVmt/z5XMoTyNWDfsfWHAbesLI4kabFWUuBfAPZP8hNJ7gccB5w3mViSpIUsewilqu5KchLwN8AOwOlVdc3EkvWrqSGfBvj7nBx/l5PV9O9z2ScxJUn98k5MSWqUBS5JjbLAJalRG77Akzxwnn37rWUWaS5JHpzkmCRP7DtLi5J8YGz5T2fs++TaJ5qMDV/gwMXTC0kunLHvI2uapHHr9U3ShyQfS/LY0fIm4Grg14CzkpzcZ7ZG7T+2fOSMffe5w7EVFvi97yjdc559Wti6fJP05Ceq6urR8ouBC6rqOcBP0RW5lma+y+2avRRvJbfSrxc1x/Js65rfunyT9OSHY8tPB04DqKrtSe7pJ1LT7p/kELqD1l1Gyxl97NJrshWwwGHvJC+j+x9yepnRukeNS7Mu3yQ9+ackv0U3ZcWhwCcAkuwC7NRnsEZ9HXjLLMvT603a8DfyJHnNfPur6nVrlaV1SS6ab39VPW2tsrQuyd7A64FNwDur6pOj7U8DnlhVb+ozn4Zhwxf4fJKcXFVv6zuHNC7JjlV1V985WpJkf+CNwKOALwG/V1U395tq5TyJOb+XLfwSLSTJkUku6DtHS5JcMrZ81ozdn1/jOOvB6cDHgV8ELgfe0W+cybDA5+dVKEuQ5Igkf5/kO0n+IsmBSbYCbwDe1Xe+xuw6tnzQjH3+u1y63arqtKq6rqreCGzuO9AkeBJzfo4vLc2b6Z6+9Fm6Z6V+DvjjqvofvaZqk1f0TNbOYyfV4d4n2amqy3tLtgIbvsCTbGf2N0SA+69xnNZVVV08Wv5Ikm2W97LtnuQYur+Sd0/yvNH2AA/qL1azZrvyZHq9gCPWPNEEeBJTE5PkK8DvjW160/h6VZ275qEaleQ98+2vqhevVZb1IMkDq+qOvnNMmgU+iyS7As8FXlhVz+45TjMWKJ2qKu8gVC+S/APwyqo6p+8sk2SBj4weC/cs4IXAUcCHgHOr6q96DaYNaeyGsllV1Vvm2697S/Jw4G3AA4DfqKob+k00GY6BJ0cCxwM/B1wEnAUc5p+oSzdL6RTwDeCSqvrHHiK1bLe+A6wnVfVV4JgkRwGfSfIF4J6x/b/QW7gV2PAFTvdMz/8L/PR0ySTxxNvyzFY6m4FXJnntevvzdZV9s6r+rO8Q60mSA4A/oHu/v5OxAm/Vhh9CGV1KdBxwLPAV4Bzg1VX18F6DrSNJ9gQ+VVWH9p2lFUku9/c1OUneAPwC8PKqOr/vPJOy4W/kqaorquoVVfVI4LXAIcD9kpyf5MR+060PVfUtvPlE/doCHLqeyhss8Hs9aKCqPlNVJwEPpTvhcXhfudaTJEcA/9x3jsY8Pskds3xsT7LuLodbA3tW1ff6DjFpjoHPMmVsVd1DNzb+N2sfp11JvsR9b4raE7gF+JW1T9S0L1XVIX2H0LBZ4PCgsbvc7sObT5bkecAPxtaL7mTcnT3lkaY9Isl5c+30KpR2PQj4eWYfoy3AAl+893vibWL+su8A68w2url61hULHG7yDsGJ8UTl5Bw8vZDkT6vqFWPrn6yqn+0lVbu2V9Xf9h1i0ixwZ3abpKn57iD07sEledTY8pHAK8bWfdTf0t3Yd4DVYIHDt9brRDc92IHuVmWPxFeXBx1LVFVznudqmQUOnwQuS/Kaqnpf32Ead2tVvb7vEOuED4jWgjb8nZgASR5KNzfwXnRPjhmfI8GTmIuU5IrZLn1Lsi9w3OhJKFqEJBczz5G2D4gWeAQOQFXdnOTjwJ8Az+FHBe5VKEvz9OmFJHsBz6ebKOxh+Htckqp6at8Z1pMkv1xVfzFafkpVfWZs30mtzjuz4Y/AkxxEd9R9C/C7VXVrz5GalWQ34Bi6KXkfDXwYeEFVPazXYA2a794E8C/DpRqfW2bmPDMtzzvjETh8EDi5qu5z12WSXb0JZUlup3ti+qvoppCt0WPBtHTPmWeffxkuXeZYnm29GRZ4d73tXkm2AFdV1Q+S7A2cDPwq8JD+ojXnj+hmdnwX8L4k7+85T7Ocj37iao7l2dabseEnswL+E3Al8A7gc0lOAK6lO9P/xB5zNaeq3lpVP0U3bWeAjwAPSfKKJI/uNVyDkuwwOpcwvX6/JCcmubbPXI16TJKrRvP1TC9Prx/Qd7jlcgw8+Tu6hzl8K8l+wA3Af6iqz/UcbV1I8ji6MfFfGk3Zq0VIchzwv4E7gevppjo+C/gC8F+q6vL+0rVn9Ei1OY2e2NMcC/y+JzSurqrH9plJSnI18NyquiHJocBn6S7F/HDP0TQgFnhyO91TeKYdN75eVb+95qEalWQ7s48nhu6p9A9c40jNmuXA4stV9Zg+M7Vs7N/m9AnL6X+nTf/b9CQm/P6M9ct6SbEOVJUP4p2cvWfMK/OA8XXnlVma9fpvc8MfgUtDlOQ18+wupyxYmiQ7012w8CjgKuD0qrqr31Qrt+ELPMlfMf8ty01O9N6HWf5MZbS+I3C/qvIvvglI8qSq+kLfOVoyuqT1h3RPpH8m8NWq+p1+U62cbyh4U98B1ouZf6aO7sz8TeCldHdlapmSHEh3fuZ44Nt0D+nV4h1YVY8DSPJuuhvOmrfhC3yuSd6nJ2AC1t0k8Kstye50N0L9CvA+4ElV9c0+M7VodOnb8aOPu4CHA1uq6sY+czXqh9MLVXVX0uzNl/ey4Qt83IwJmB6KR41LMvr9vRx4AXA6cEhVfbvfVG1K8v/oHvd3DnBsVV2f5B8t72V7QpLpOf9DN0XvHXgVStvmmIDpEU7AtCxfpXv24HuA7wIvGT/S8cqJJdlGN4vjPnRP4Lmehm/57ltV7dB3htWw4QscJ2CapDfyo5JZl5dtrZWqOjrJg4BfBF6X5FHA7kkOq6p1MX6rlfMqlOR36ca6d6Ubr30/cEFVPaLXYNrQkuxUVT8cW9+bbmjqeGDfqtq3t3AajA1f4NOSPILuzXEcsD/wGuDDVfX3vQZrSJK3z7ffu1oXb3SH8EeBs4GLauyNmuThrc7docna8AWeZL+qumnGtsfRlfkLnIBp8UYzOc6pqs5cqyytS/Jg4Fh+dEDxQeDsqrq012AaFAv83k/q+FBV/WLfmaRxSR5Cd3XUccDewDlV9cp+U2kILPCxB/HO9VBeLU6S8+bb712ty5fkAcDzgJcBm6pqn54jaQC8CmX+J3VoaQ4H/olu3PZSGn5U1RCM5u94Dt1w3lOATwB/CHyyz1waDo/Ak7vpJs0P3VN4vju9i4Yv8O9Dkh2AI+kK5/HAx+nGba/pNViDkrwPeAbwabqbeT5WVd/rN5WGZsMXuFZHkh+nK/I3Aq+vqnf0HKkpoxPC51bV9r6zaLgscE3UqLifTVfem4Hz6KbuvLnPXNJ6ZIFrYpKcCTwWOJ/uSomre44krWsWuCYmyT105xPg3ieEPZ8grQILXBqgJM+bb39VnbtWWTRcFrg0QKO/Zq4cfcCMpxxV1a+tdSYNjwUuDdBoRswX0D3D8aN0l2Pe0G8qDY0FLg1Ykl2Bo+nK/MHAK+d6ipQ2nh/rO4CkeX2P7hmYd9BNebxzv3E0JB6BSwOU5Gl019IfBnyK7rLMrf2m0tBY4NIAjU5iXgVcQndJ5r3eqM6tLnAyK2moXtx3AA2fR+DSwI2mkq2qunPBF2tD8SSmNFBJfiPJTcBXgZuSfDXJb/adS8NhgUsDlORVdHOBP7WqHlxVDwaeBjxztE9yCEUaoiTXAU+YOQd4kl2AL1bVo/tJpiHxCFwaqNke4FBV/wrc00McDZAFLg3T15I8febGJEcAt/aQRwPkEIo0QEkOopsD5RLgMrrrwJ9E92zMo31MncAClwZr9FDjFwIH0c1GeA3wXp+NqWneyCMNVFV9L8lFwO10R+DXWt4a5xG4NEBJHgj8H+CJdHOC/xjwBLrhlJdU1R39pdNQWODSACU5A7gReH1V3TPaFuCPgUdV1a/0l05DYYFLA5Tk+qraf6n7tLF4GaE0TFn4JdroLHBpmD6T5NWjYZN/k+SPgc/1lEkD4xCKNECjk5jvBg6lO4lZwCHAFXQnMb/dXzoNhQUuDViSRwIHMroOvKr+IcnJVfW2fpNpCCxwqTFJbqqq/frOof45Bi61xxOcAixwqUX+2SzAW+mlQUqyndmLOsAuaxxHA+UYuCQ1yiEUqSFJdk/yyr5zaBgscGmAkuyb5NQkH0vy60nun+TNwPXA3n3n0zA4Bi4N058Dfwt8CDiK7u7La4DHVdXX+wym4XAMXBqgJF+sqieMrd8G7FdV3+8xlgbGI3BpoJLswY+u+f46cP8kuwJU1bd6C6bB8AhcGqAkN9I9fX62m3aqqh6xtok0RBa4JDXKIRRpgJIcOt/+qrp8rbJouDwClwZo9DDjuVRVHbFmYTRYFrgkNcobeaQBSvIHY8vPn7Hvv619Ig2RBS4N03Fjy384Y99RaxlEw2WBS8OUOZZnW9cGZYFLw1RzLM+2rg3Kk5jSACW5G7iTH83//d3pXcDOVbVTX9k0HBa4JDXKG3mkAUqy53z7nQtF4BG4NEhJ/pFurDvAJuAWfnTy0rlQBFjg0uAluaKqDuk7h4bHq1Ck4fMoS7OywCWpUZ7ElAYoycvGVveesU5VvWWNI2mALHBpmHYbWz5txroEeBJTkprlGLgkNcoCl6RGWeCS1ChPYkoDleQA4ETgMaNN1wKnVdV1/aXSkHgELg1QksOBi4HtwKl0V6LcCVyU5Mk9RtOAeBWKNEBJzgf+tKounrH9Z4BTquqZvQTToFjg0gAl+fuqevQc+66rqgPWOpOGxyEUaZi2z7PvzjVLoUHzJKY0TPsmefss2wM8dK3DaJgscGmYfn+efVvXLIUGzTFwqTFJdqyqu/rOof45Bi4NUJJLxpbPmrH782scRwNlgUvDtOvY8kEz9gUJC1waqvnGNh33FOBJTGmodk9yDN1B1u5JnjfaHuBB/cXSkHgSUxqgJGcwz5F2Vb147dJoqCxwSWqUY+DSACV5R5L7PEYtyWOSfKqPTBoeC1wapq8DVyZ5IUCS+yf578B5wDt7TabBcAhFGqgkPwH8Gd0DjR8CfAD4r1X13V6DaTA8ApeGa/roake69+q1lrfGWeDSACV5FfAp4M+r6t8B/x44OsnfJjmw33QaCq8Dl4ZpCjikqrYDVNXNwLFJngl8CPjJPsNpGBwDlxqT5Mer6vt951D/PAKXBmiOucDH/faaBNGgWeDSMF3WdwANn0MoktQoj8ClAUpy3nz7q+oX1iqLhssCl4bpcOCfgLOBS3EOcM3CIRRpgJLsABwJHA88Hvg4cHZVXdNrMA2KN/JIA1RVd1fVJ6rqBODJwA3AxUl+q+doGhCHUKSBSvLjwLPpjsI3A28Hzu0zk4bFIRRpgJKcCTwWOB84p6qu7jmSBsgClwYoyT3AnaPV8TdpgKqqB659Kg2NBS5JjfIkpiQ1ygKXpEZZ4JLUKAtczUtycZKfm7Ht5CT/c5Ff//okz1jgNb+a5CErySlNmgWu9eBs4LgZ244bbZ9Xkh2q6tVVtdCT3n+V7rmU0mBY4FoPPgj8/OjGF5JspivbFybZmuSaJK+bfnGSG5O8OsklwPOTnJHk2NG+J44eW3ZZkr9Jsmm0bwvw3iRXJnl2kg+Pfb8jk3iDjdacBa7mVdU3gc8DR402HQe8H3hlVW2hm0vkZ5I8fuzLvldVP11V50xvSLIT8A7g2Kp6InA68CdV9UFgK/Afq+pg4K+Bn0wyNfrSFwPvWbX/QGkOFrjWi/FhlOnhk19KcjlwBXAQMP4w4PfP8j0OoLv78YIkVwKvAh4280XV3TxxFvDLSXanmznw/In8V0hL4FwoWi8+ArwlyaHALsA/A78HPKmq/jnJGcDOY6+/8z7fobvL8ZqqOnwRP+89wF8B3wP+sqruWkF2aVk8Ate6UFXfAS6mG/Y4G3ggXUl/O8k+wDMX8W2uA6aSHA7dkEqSg0b7tgO7jf28W4Bb6I7Sz5jMf4W0NB6Baz05m262vuOq6stJrgCuAb4CfGahL66qH4xOWL49yYPo3h9vG32PM4D/leRfgcOr6l+B9wJTVfV3q/EfIy3EuVCkZUryZ8AVVfXuvrNoY7LApWVIchndEM2RVfX9vvNoY7LAJalRnsSUpEZZ4JLUKAtckhplgUtSoyxwSWrU/wdO32Yxjk19aAAAAABJRU5ErkJggg==", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.2669192282197318\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 174, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcL0lEQVR4nO3df5RcZZ3n8fenSduJJJDQCTEnPwxOhFkWYpSWhYkogsPiHA5wNuiZOSK4OpOVHT3i6iaic3D1zHpMMqszLu4ZGWUJLMMsQxAcZjiQBZTBJUCTyQ9+KdlBSCKE0CRDtyZth/7uH3U7qW6qOl3Vdavurft5ndMnVU9Vfe/zVFe+dfu5z/1eRQRmZlYcHa3ugJmZNZcTv5lZwTjxm5kVjBO/mVnBOPGbmRXMlFZ3YCJmz54dixcvbnU3zMxy5Yknnng1IuaMbc9F4l+8eDG9vb2t7oaZWa5IeqFSu6d6zMwKxonfzKxgnPjNzArGid/MrGCc+M3MCia1xC9poaQHJT0j6SlJn0va10l6VtI2ST+UNDOtPtjk9A0MsnXnfvoGBjMZz8zqk+ZyzkPAFyJis6QZwBOSNgIbgWsi4pCkNcA1wOoU+2F1uGvLblZv2EZnRwdDw8OsXbGUi5fNz0w8M6tfanv8EfFSRGxObvcDzwDzI+K+iDiUPG0TsCCtPlh9+gYGWb1hGweHhukfPMTBoWFWbdhW9556o+OZ2eQ0ZY5f0mLg3cCjYx76JHBPldeslNQrqXfv3r0p99DK7dp3gM6O0R+Nzo4Odu07kIl4ZjY5qSd+SdOBDcDVEfF6WftXKE0H3VLpdRFxfUT0RETPnDlvOuPYUrRg1jSGhodHtQ0ND7Ng1rRMxDOzyUk18UvqpJT0b4mIO8rarwQuAj4WvgRY5nRP72LtiqVM7exgRtcUpnZ2sHbFUrqnd2UinplNjtLKu5IErAdei4iry9ovBL4FfCAiJjSH09PTE67V03x9A4Ps2neABbOmNSRJNzqemY1P0hMR0TO2Pc1VPcuBjwPbJW1J2r4MfAfoAjaWvhvYFBGfTrEfVqfu6V0NTdCNjmdm9Ukt8UfEw4AqPPQPaW3TzMyOzmfumpkVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/tZW+gUG27txP38Cg4zle7uOlJbWLrZs1211bdrN6wzY6OzoYGh5m7YqlXLxsvuM5Xi7jpcl7/NYW+gYGWb1hGweHhukfPMTBoWFWbdhW956X4zleK+OlzYnf2sKufQfo7Bj9ce7s6GDXvgOO53i5i5c2J35rCwtmTWNoeHhU29DwMAtmTXM8x8tdvLQ58Vtb6J7exdoVS5na2cGMrilM7exg7YqldE/vcjzHy128tCkiWt2Ho+rp6Yne3t5Wd8NyoG9gkF37DrBg1rSG/KdzPMdrZbzJkvRERPS8qd2J38ysPVVL/KlN9UhaKOlBSc9IekrS55L2EyRtlPRc8u+stPqQdVlfQ5yXNclmVps01/EfAr4QEZslzQCekLQR+ARwf0R8U9KXgC8Bq1PsRyZlfQ1xntYkm1ltUtvjj4iXImJzcrsfeAaYD1wCrE+eth64NK0+ZFXW1xDnbU2ymdWmKat6JC0G3g08CsyNiJeg9OUAnFjlNSsl9Urq3bt3bzO62TRZX0OctzXJZlab1BO/pOnABuDqiHh9oq+LiOsjoicieubMmZNeB1sg62uI87Ym2cxqk2ril9RJKenfEhF3JM17JM1LHp8HvJJmH7Io62uI87Ym2cxqk9pyTkmiNIf/WkRcXda+DugrO7h7QkSsGi9Wuy7nzPoa4qytSTaz2lRbzpnmqp7lwMeB7ZK2JG1fBr4J3CbpU8CLwEdS7EOmdU/vamhCzXo8M8uG1BJ/RDwMqMrD56e1XTMzG59r9ZiZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBN/C2X9ilnV4tW7nUqvy+t74HiWZ2nW6rFxZP2KWdXi1budSq8LyOV74HiWd77Yegv0DQyyfM0DHBw6UvN+amcHP119Xl1F0ZoV7+7PvI+Lrnu45u1Uitc1pQMIBg8d+fzl4T1wPMuTpl9s3arL+hWzqsXbsnN/XdupFO+YDnGM8vceOJ61A0/1tEDWr5hVLd6yhTPr2k6leG8MBzD6r808vAeOZ+3Ae/wtkPUrZlWLt2TujLq2UyneusuWsu6yd+XuPXA8awee42+hrF8xq1q8erdT6XV5fQ8cz/Kg2hy/E7+ZWZvywV0zMwOc+M3MCseJ38ysYJz4zcwKxonfzKxgnPjNzAqmrRN/1isXOp6ZtULblmzIeuVCx3PlR7NWacs9/r6BQVZv2MbBoWH6Bw9xcGiYVRu21b2n6XjZimdmk5Na4pd0g6RXJD1Z1rZM0iZJWyT1SjozjW1nvXKh47nyo1krpbnHfyNw4Zi2tcDXImIZcG1yv+GyXrnQ8Vz50ayVUkv8EfEQ8NrYZuC45PbxwC/T2HbWKxc6nis/mrVSqkXaJC0G7o6I05L7/wq4FxClL53fiYgXjhan3iJtWa9c6HhmlqaWVOeskPi/A/wkIjZI+iiwMiI+VOW1K4GVAIsWLTrjhReO+v1gZmZlslKd80rgjuT23wJVD+5GxPUR0RMRPXPmzGlK58zMiqDZif+XwAeS2+cBzzV5+2ZmhZfaCVySbgXOBWZL2gV8Ffgj4C8kTQEOkkzlmJlZ86SW+CPiD6o8dEZa2zQzs6NryzN3zcysOid+M7OCceI3MysYJ34zs4Jp68RftPrvWa+fX7Tfh1lWuR5/m8h6/fyi/T7Msqwt9/iLVv896/Xzi/b7MMu6tkz8Rav/nvX6+UX7fZhlXVsm/qLVf896/fyi/T7Msq4tE3/R6r9nvX5+nn8fWT/AXbR41hiplmVulKzU48+6rNfPz9vvI+sHuIsWz2rXknr8jVJv4jerV9/AIMvXPMDBoSNTVFM7O/jp6vPq+tJyvMnFs/pkpR6/WS5k/QB30eJZY00o8Us6WdL9kp5M7i+V9Cfpds2sdbJ+gLto8ayxJrrH/1fANcAQQERsA34/rU6ZtVrWD3AXLZ411oTm+CU9HhHvlfRPEfHupG1LRCxLu4PgOX5rnawf4C5aPKtNtTn+iZZseFXSbwGRBLsMeKmB/TPLpO7pXQ1NWI5nWTDRxP/HwPXAb0vaDTwPXJ5ar8zMLDUTSvwR8c/AhyQdC3RERH+63TIzs7RMdFXPNyTNjIhfRUS/pFmS/jTtzpmZWeNNdFXPhyNi/8idiNgH/F4qPTIzs1RNNPEfI+nwERpJ04DCHbHJeh2T3uf7+NZ9P6P3+b6GxNuxp5/be3eyY8/omb16+13pdVl/T83a0UQP7v4v4H5J/5PSyp5PAutT61UGZb2OyeXf38TDO0oJ/zsP7OCcJd3c/Idn1R3v2ju3c9OmFw/fv+LsRXz9ktPr7nel1wVk+j01a1cTrtUj6cPA+YCA+yLi3jQ7Vq7V6/izXsek9/k+Lvvepje13/4fzqLnpO6a4+3Y08+Hvv1QxXiX3/BYzf2uNN6uKR1AMHjoyOcvS++pWTuYdK2eiLgnIr4YEV9oZtLPgqzXMXnouVdraj+aLTv3V41XT78rjfeYDnGMsvuemrWzcRO/pIeTf/slvV720y/p9eZ0sfWyXsfk/e+cXVP70SxbOLNqvHr6XWm8bwwHb0R239MRPgZh7WjcxB8R70v+nRERx5X9zIiI45rTxdbLeh2TnpO6OWfJ6Cmdc5Z01zXNA7Bk7gyuOHvRqLYrzl5Ez0nddfW70njXXbaUdZe9q6Hv6UfPWDCq7aM9CyY1zXPXlt0sX/MAl3//UZaveYAfbdldd6w04pnV66hz/JI6gG0RcVpNgaUbgIuAV8pfK+mzwGeAQ8DfR8Sqo8Vq9Rz/iKzXMel9vo+HnnuV979zdt1Jv9yOPf1s2bmfZQtnsmTujMPt9fa70usa9R5k/TiMj0FYK9RdqycihiVtlbQoIl482vPL3AhcB9xU1okPApcASyNiUNKJNcRruazXMek5qf69/EqWzJ0xKuGPqLfflV7XqPdgZI7/IEcS68gcfz3xsx7PbDImupxzHvCUpMeAX400RsTF1V4QEQ9JWjym+SrgmxExmDznldq6a81UbW+8kX+pNOqvlKwfh3F9esuSiSb+rzVoeycD50j6r8BB4IsR8XilJ0paCawEWLRoUaWnWIqqrYlv5Fr5Rp570D29i0UnTOPnew7vl/D2E+r/Ykoj3toVS1k15r3z3r61wriJX9JU4NPAEmA78IOIODTJ7c0CzgLeC9wm6R1R4UBDRFxPqSIoPT092b8wcBvpGxhk9YZtHBwaPjw1sWrDNk6dd1zF9uVLZtecwHqf7zuc9Ef8444+ep/vq2vPv/f5vlFJGuBne36VmXgAFy+bz/Ils12f3lruaOv41wM9lJL+h4H/Nsnt7QLuiJLHgGGgvjWHlppqa+K37NzfsLXyjT73IOvxRnRP7+JdC2c66VtLHS3xnxoRl0fE94DLgHMmub07gfOgdB1f4C3A5P4nWcNVm49etnBmw+apG33uQdbjmWXJ0RL/0MiNWqd4JN0KPAKcImmXpE8BNwDvSC7a/jfAlZWmeay1qp1nsGTujIadf9Docw+yHs8sS8Zdxy/pDY6s4hEwDfh1cjuadRJXVtbxF02eVvXkJZ5ZM1Vbxz/hIm2t5MRvZla7SRdpMxvRyLr/1Wr+t2u8Ozfv5A/XP86dm3dmMt79T7/M6tu3cv/TLzckXqOvEdGsa060a7wR3uO3mpSvvQcmtfa+Ws3/emU93lnf2MjLr//m8P15x72FR778u5mJd8G3fzxqCespc4/l3s+fW3e8Rn5W0oiX9c9LI+J5j98mbby197Xasad/1Ica4KZHXqx7zybr8e7cvHNUkgZ46fXf1L2n3uh49z/9csXzFurd82/kZyWNeFn/vDQ63lhO/DZhjVzbXq3mf7X2vMe7e3vlBFqtvdnx7nt6T03tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9q7XmPd9Hpb6upvdnxLjh1bk3tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9K1UDbId6l71nIvOPeMqpt3nFv4dL3LMxEvPNPfRunzD12VNspc4/l/FPr+yLJ+nkVWf+8NDreWD64azVr5Nr2ajX/2zXenZt3cvf2l7no9LfVnaTTjHf/0y9z39N7uODUuXUn/XJZP68i65+XycbzOn4zs4Lxqh6zNuRr+Fo9JlqP38wyppHXRrBi8R6/WQ6VXzOhf/AQB4eGWbVhm/f8bUKc+M1yqNo1E+q5NoIVjxO/WQ75Gr42GU78ZjlU7ZoJvrKXTYQP7prllK/ha/Vy4jfLse7pXU74VjNP9VhVeaktbma18R6/VZTF2uJm1hje47c3yVttcTOrjRO/vUneaoubWW2c+O1N8lZb3Mxq48Rvb5K32uJmVhuXZbaqslZb3MxqU60ss1f1WFVL5s5oaIJudDwzq4+neqxmjVyPn/VzBRzP8VoZL63rLXiP32rSyPX4WT9XwPEcr5Xx0rzeQmp7/JJukPSKpCcrPPZFSSFpdlrbt8Zr5Hr8rJ8r4HiO18p4aV9vIc2pnhuBC8c2SloI/C7w4tjHLNsauR4/6+cKOJ7jtTJe2tdbSC3xR8RDwGsVHvo2sArI/nIiG6WR6/Gzfq6A4zleK+Olfb2Fph7clXQxsDsitk7guSsl9Urq3bt3bxN6Z0fTyPX4WT9XwPEcr5Xx0r7eQqrr+CUtBu6OiNMkvRV4ELggIv5F0i+Anoh49WhxvI4/Wxq5Hj/r5wo4nuO1Ml7fwOCkrrdQbR1/MxP/6cD9wK+ThxcAvwTOjIiXx4vjxG9mVrtqib9pUz0RsT0iToyIxRGxGNgFvOdoSd+yp961xWmtSU5zG0WLZ8WQ2jp+SbcC5wKzJe0CvhoRP0hre9Yc9a4tTnNNclrbKFo8Kw7X6rEJ6xsYZPmaBzg4dGS1wdTODn66+rxx5x/rfV0z+uZ41s5aPtVj+Vfv2uK01ySnsY2ixbNiceK3Cat3bXHaa5LT2EbR4o3I+jGIrMfLCyd+m7B61xanvSY5jW0ULR6UjhksX/MAl3//UZaveYAfbdldd6wixssTz/FbzepdWzzZNcmt2EZR4mX9GETW42WV6/Fbw3RP76rrP0e9r2vlNooSb+SYwUGOJMKRYwb1xC9avLzxVI+ZZf4YRNbj5Y0Tv5ll/hhE1uPljef4zeywrB6DyEu8rPEcv5kdVVaPQeQlXl54qsfMrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgUkv8km6Q9IqkJ8va1kl6VtI2ST+UNDOt7ZuZWWVp7vHfCFw4pm0jcFpELAV+DlyT4vbNzKyC1BJ/RDwEvDam7b6IOJTc3QQsSGv7ZmZWWSvn+D8J3FPtQUkrJfVK6t27d28Tu2Vm1t5akvglfQU4BNxS7TkRcX1E9EREz5w5c5rXObMyfQODbN25n76BwVZ3xaxhpjR7g5KuBC4Czo+IaPb2zSbqri27Wb1hG50dHQwND7N2xVIuXja/1d0ym7Sm7vFLuhBYDVwcEb9u5rbNatE3MMjqDds4ODRM/+AhDg4Ns2rDNu/5W1tIcznnrcAjwCmSdkn6FHAdMAPYKGmLpL9Ma/tmk7Fr3wE6O0b/9+js6GDXvgMt6pFZ46Q21RMRf1Ch+Qdpbc+skRbMmsbQ8PCotqHhYRbMmtaiHpk1js/cNauge3oXa1csZWpnBzO6pjC1s4O1K5bSPb2r1V0zm7SmH9w1y4uLl81n+ZLZ7Np3gAWzpjnpW9tw4jcbR/f0Lid8azue6jEzKxgnfjOzgnHiNzMrGCd+M7OCceI3MysYJ34zs4Jx4jczKxgnfjOzgnHiN2uiHXv6ub13Jzv29Gcynq8/UAw+c9esSa69czs3bXrx8P0rzl7E1y85PTPxfP2B4vAev1kT7NjTPypJA9z0yIt176k3Op6vP1AsTvxmTbBl5/6a2psdz9cfKBYnfrMmWLZwZk3tzY7n6w8UixO/WRMsmTuDK85eNKrtirMXsWTujEzE8/UHikV5uN55T09P9Pb2trobZpO2Y08/W3buZ9nCmXUn6TTj9Q0M+voDbUTSExHRM7bdq3rMmmjJ3BkNSdBpxfP1B4rBUz1mZgXjxG9mVjBO/GZmBePEb2ZWME78ZmYFk4vlnJL2Ai+kuInZwKspxs+Cdh9ju48PPMZ20cwxvj0i5oxtzEXiT5uk3kprXdtJu4+x3ccHHmO7yMIYPdVjZlYwTvxmZgXjxF9yfas70ATtPsZ2Hx94jO2i5WP0HL+ZWcF4j9/MrGCc+M3MCqbtE7+khZIelPSMpKckfW7M41+UFJJml7VdI2mHpJ9J+rfN73VtxhujpM8m43hK0tqy9rYYo6RlkjZJ2iKpV9KZZa/J2xinSnpM0tZkjF9L2k+QtFHSc8m/s8pek5sxjjO+dZKelbRN0g8lzSx7TW7GB9XHWPZ4NvJNRLT1DzAPeE9yewbwc+DU5P5C4F5KJ4fNTtpOBbYCXcBJwP8Djmn1OOoZI/BB4P8AXcljJ7bhGO8DPpy0/x7w4xyPUcD05HYn8ChwFrAW+FLS/iVgTR7HOM74LgCmJO1r8jq+8caY3M9Mvmn7Pf6IeCkiNie3+4FngPnJw98GVgHlR7gvAf4mIgYj4nlgB3AmGTbOGK8CvhkRg8ljryQvaacxBnBc8rTjgV8mt/M4xoiIgeRuZ/ITlMayPmlfD1ya3M7VGKuNLyLui4hDSfsmYEFyO1fjg3F/h5ChfNP2ib+cpMXAu4FHJV0M7I6IrWOeNh/YWXZ/F0e+KDKvfIzAycA5kh6V9BNJ702e1k5jvBpYJ2kn8GfANcnTcjlGScdI2gK8AmyMiEeBuRHxEpS+AIETk6fnboxVxlfuk8A9ye3cjQ8qjzFr+aYwiV/SdGADpURxCPgKcG2lp1Zoy8Wa1/IxRsTrlK6wNovSn9P/GbhNkmivMV4FfD4iFgKfB34w8tQKL8/8GCPijYhYRmmv90xJp43z9NyNcbzxSfoKpf+bt4w0VQqReicnqcIYl5KxfFOIxC+pk1KyuCUi7gB+i9J82lZJv6D0C9os6W2UvnEXlr18AUemDzKrwhihNJY7kj8/HwOGKRWIaqcxXgmM3P5bjvyZnMsxjoiI/cCPgQuBPZLmAST/jkzZ5XaMY8aHpCuBi4CPRTL5TY7HB6PGeAlZyzetPBDSjB9K36g3AX8+znN+wZGDLf+a0Qdb/pl8HFB60xiBTwNfT26fTOlPSrXZGJ8Bzk1unw88kePf4xxgZnJ7GvCPlJLhOkYf3F2bxzGOM74LgaeBOWOen6vxjTfGMc9peb4pwsXWlwMfB7Yn824AX46If6j05Ih4StJtlD6Ih4A/jog3mtLT+lUcI3ADcIOkJ4HfAFdG6dPWTmP8I+AvJE0BDgIrIbe/x3nAeknHUPpr/LaIuFvSI5Sm6T4FvAh8BHI5xmrj20Ep8W0szUSyKSI+ncPxQZUxVntyq8bokg1mZgVTiDl+MzM7wonfzKxgnPjNzArGid/MrGCc+M3MCsaJ39qWpDeSqp1PJdUS/5Okuj/zkt6XVF58NvlZWfbYnKQ0xj+pVEX0qrLH/k1SebIIy6ctB/xBtHZ2IEqnziPpROCvKRVy+2qtgZKzLP8auDQiNidlde+VtDsi/p7SyWPPRsSVkuYCj0i6HegDrgP+YxwpRFbrtkVp6fVwPa83G8vr+K1tSRqIiOll998BPE6pbMXbgZuBY5OHPxMR/1fSzcDtEXFX8ppbgP8NvJdS8cVry+KdD/wX4LPAjyidqbkbOBv498lrHgfOoHRi2TeBcymdrPTdiPheUnvoLko1lTqBP4mIu5JCdPcADybxLo2IFxr5/lhxOfFb2xqb+JO2fcBvA/3AcEQclPRO4NaI6JH0AUpF3y6VdDywBXgncBuwfuQLIYl1PPB8RJwg6RNAT0R8JnmsA3iEUiXNHmAFpesh/KmkLuCnlM7A3Qm8NSJeT/6K2JRs7+2UTt//nYjYlMobZIXlqR4rmpFqiJ3AdZKWAW9QqmVERPxE0neTqaF/B2yIiEPJdEulvaSKe04RMSzpe5S+DPokXQAslXRZ8pTjKSX4XcA3JL2fUhG9+cDc5DkvOOlbGpz4rTCSqZ43KFW3/CqwB3gXpUUOB8ueejPwMeD3KdWHB3iK0p77j8qedwalGivVDCc/UPrC+WxE3DumT5+gVNjrjIgYSqo3Tk0e/tXER2c2cV7VY4UgaQ7wl8B1SaG644GXkgOmHweOKXv6jZSu20BEPJW0fRf4RPIXApK6KV0mcC0Tcy9wVVJaGkknSzo26ccrSdL/IKUpHrNUeY/f2tm0pJJnJ6XKhzcD30oe+x/ABkkfoXQA9fDedUTskfQMcGdZ20uSLgf+StIMSnvwfx4RfzfBvnwfWEypDruAvZQuoXgL8HeSeikdT3i2noGa1cIHd83GkPRWYDuli7v/S6v7Y9ZonuoxKyPpQ5T2uv+7k761K+/xm5kVjPf4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCub/A2eoKqxqO9IQAAAAAElFTkSuQmCC", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']\n", + "print(pie_pumpkins['DayOfYear'].corr(pie_pumpkins['Price']))\n", + "pie_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### رگرسیون خطی\n", + "\n", + "ما از Scikit Learn برای آموزش مدل رگرسیون خطی استفاده خواهیم کرد:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n", + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.77 (17.2%)\n" + ] + } + ], + "source": [ + "X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1)\n", + "y = pie_pumpkins['Price']\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "lin_reg = LinearRegression()\n", + "lin_reg.fit(X_train,y_train)\n", + "\n", + "pred = lin_reg.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXXElEQVR4nO3df3BV5Z3H8feXEDGKEF0QTYCmdTEtv4R6tW5/rL+qYVerjF21bmeHrW5ZXWvXtmJFO63tdEdrnFY722mHGRl1a9mqpGzX1kZrtdqtQC+gBtBYLYgkKFGM+CMCCd/9495gSHJzf+Se3HuefF4zjDfPPfecJ1/hc899znOfY+6OiIiEYUypOyAiIsWjUBcRCYhCXUQkIAp1EZGAKNRFRAIydiQPNmnSJK+rqxvJQ4qIxN66detec/fJuWw7oqFeV1dHMpkcyUOKiMSemb2U67YafhERCYhCXUQkIAp1EZGAKNRFRAKiUBcRCUjW2S9mNg24GzgG2A8sc/fbzawR+AywF3gR+IK7d0bYVxkBqza00djcSntnFzXVVSxpqGfh/NpSd0tEcpTLmXo38DV3/whwCnClmc0EHgZmu/tc4HlgaXTdlJGwakMbS5taaOvswoG2zi6WNrWwakNbqbsmIjnKGuruvsPd16cfvwU8C9S6+0Pu3p3ebDUwNbpuykhobG6la1/PQW1d+3pobG4tUY9EJF95jambWR0wH1jT76lLgQczvGaxmSXNLNnR0VFQJ2VktHd25dUuIuUn51A3s/HASuBqd9/dp/0GUkM09wz2Ondf5u4Jd09MnpzTt1ylRGqqq/JqF5Hyk1Oom1klqUC/x92b+rQvAs4FPu+6hVLsLWmop6qy4qC2qsoKljTUl6hHIpKvXGa/GHAH8Ky7f79P+wLg68Cp7v5udF2UkdI7y0WzX0Tiy7KdYJvZJ4EngBZSUxoBrgd+CIwDXk+3rXb3y4faVyKRcC3oJSKSHzNb5+6JXLbNeqbu7n8AbJCnfp1vx0REJFr6RqmISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gEJOs9SkWitmpDG43NrbR3dlFTXcWShnoWzq8t+33LQKp36SnUpaRWbWhjaVMLXft6AGjr7GJpUwvAsMMgyn3LQKp3edDwi5RUY3PrgRDo1bWvh8bm1rLetwykepcHhbqUVHtnV17t5bJvGUj1Lg8KdSmpmuqqvNrLZd8ykOpdHhTqUlJLGuqpqqw4qK2qsoIlDfVlvW8ZSPUuD7pQKiXVewEtihkTUe5bBlK9y4O5+4gdLJFIeDKZHLHjiYiEwMzWuXsil22znqmb2TTgbuAYYD+wzN1vN7OjgJ8DdcBW4CJ3f6PQTpeC5tSKSGhyGVPvBr7m7h8BTgGuNLOZwHXAI+4+A3gk/XNs9M6pbevswnl/Tu2qDW2l7pqISMGyhrq773D39enHbwHPArXA+cBd6c3uAhZG1MdIaE6tiIQor9kvZlYHzAfWAFPcfQekgh84OsNrFptZ0sySHR0dw+xu8WhOrYiEKOdQN7PxwErganffnevr3H2ZuyfcPTF58uRC+hgJzakVkRDlFOpmVkkq0O9x96Z086tmdmz6+WOBndF0MRqaUysiIcoa6mZmwB3As+7+/T5P/RJYlH68CPif4ncvOgvn13LTBXOora7CgNrqKm66YI5mv4hIrGWdp25mnwSeAFpITWkEuJ7UuPq9wHRgG3Chu+8aal+apy4ikr+izlN39z8AluHpM/PpmIiIREtrv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBET3KBUpkO6cJeVIoS5SgN47Z/XeaKX3zlmAgl1KSsMvIgXQnbOkXCnURQqgO2dJuVKoixRAd86ScqVQFymA7pwl5UoXSkUK0HsxVLNfpNwo1EUKtHB+rUJcyo6GX0REAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJSNlPaYzrSnhx7beIxFtZh3pcV8KLa79FJP7KevglrivhxbXfIhJ/WUPdzJab2U4z29inbZ6ZrTazp8wsaWYnR9G5uK6EF9d+i0j85XKmfiewoF/bLcC33X0e8M30z0UX15Xw4tpvEYm/rKHu7o8Du/o3AxPSjycC7UXuFxDflfDi2m8Rib9CL5ReDTSb2a2k3hg+XrQe9RHXlfDi2m8RiT9z9+wbmdUBD7j77PTPPwR+7+4rzewiYLG7fzrDaxcDiwGmT59+4ksvvVSsvouIjApmts7dE7lsW+jsl0VAU/rxfUDGC6XuvszdE+6emDx5coGHExGRXBQa6u3AqenHZwB/Lk53RERkOLKOqZvZCuA0YJKZbQe+BXwRuN3MxgLvkR5eERGR0soa6u5+SYanTixyX0REZJjK+hulIiKSH4W6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhACr1H6Yhq3vQK//pf6w5qO/yQCmbVTGRmzQRm1UxgVs1EZkwZT2WF3qdEZPSKRahPPbJqQNs7e3tYu3UXa7fuyvr6D006nJk1E9JvABOZVTOBSePHRdFVEZGSyunG08WSSCQ8mUwWZV9vvLOXzTt2s6n9TTa172ZT+25e2Pl2Ufbd6/JTj+NLZ/w148fF4r1PRAKVz42nYxvqueru2c+LHe+wecebbGrbnX4DeJPd73UX7Rizaydw42dmkag7qmj7FBHppVAv0Notu/jOA5vY2LY7smM0zJrCrReewBGHVkZ2DBEJi0I9Ym/v6ebHj73Ajx59MdLj3PmFkzit/uhIjyEi5U+hXkb+9+l2rlqxIdJjfOaEGm6+YA6Ha+xfJEgK9Ryt2tBGY3Mr7Z1d1FRXsaShnoXza0vSl9ff3sPVP3+KJ/78WqTH+d5n53DxSdMjPYaIFJdCPQerNrSxtKmFrn09B9qqKiu46YI5JQv2XK1ct52v3fd0pMeoPqySJ649XWP/ImVAoZ6DT9z8O9o6uwa011ZX8X/XnVGCHhXfltfe4fRbH4v8OLd/bh7nzyvvN0KROFOo5+CD1/2KwX5zA7bcfM5Id6fkbvzlJu7849ZIj3HMhEP53TWnctghGvsXyUc+oT5q/3XVVFcNeqZeUz3w26ujwY3nzeLG82Zl3e75V9/i7B88XtAxXtn9HjO/2ZzTtj+8ZD7nnVBT0HFERrNRe6Ye5zH1OHB3rr3/Ge5btz3S4xx1+CH88bozOLSyItLjiJRSUYdfzGw5cC6w091n92m/CvgS0A38yt2vzXawcgp1KK/ZL6NVpmsbUfj+RSdwwUenjsixRIqp2KH+t8DbwN29oW5mpwM3AOe4+x4zO9rdd2Y7WLmFupRePtc29u93/vnOP/H48x2R96v1uwsYN1Zn/1Ieijqm7u6Pm1ldv+YrgJvdfU96m6yBLtGL4yePfK5tjBlj3H3pyTntN7l1F//wkycL7lf9N36T03Y/+sePcs7cYws+jkixFXqh9HjgU2b2H8B7wDXu/qfBNjSzxcBigOnT9aWXqPS/RtDW2cXSphaAsg720z88mZ+u3jZo+3Ak6o7itovnZb1u0t2zn0/d8ig73nyvoONc+bP1XPmz7NtVVVbwzI1na71/iVyhoT4WOBI4BTgJuNfMPuSDjOW4+zJgGaSGXwrtqAytsbn1oPAC6NrXQ2Nza1mH+qPPDT6Ukqk9H7nUZGzFGJ5cemZO+/vt5lf5l7sLGz7s2tfDjBsezGnbOxYlOPMjUwo6jkihob4daEqH+Foz2w9MAqIf7JRBtWe42JipvVxE2e9i7/vTM6ewNYfvMOzt3s+J332Ytwpc3vmyu3J745g/vZr7L/84FWOsoONImAoN9VXAGcBjZnY8cAgQ7aIlMqS4zruPst+lqskhY8fQcmNDTts+8Ew7X/pZYQu+bdjWyXHX/zqnbVde8Tec+AGt9z8aZA11M1sBnAZMMrPtwLeA5cByM9sI7AUWDTb0IiNnSUP9oOPHSxrqS9ir7KLsdxxqcu7cGs6dm/1LVnu6e1hw2xNsee2dgo7z2R/ndtH4ytOP45qz6zHT2X9cjdovH4UojrNfINp+x7Umw/GbjTu4/KfrIz1G9WGVrPq3T1A36fBIjyMpWvtFRLLa093D9U0bWbk+mm/9jh1jXJiYxkWJqcybVq2z/2HQ2i+jVFzPSuPa7yiN5KeX2y6el3Xfa/7yOhcvW53Xcbr3OyvWbmPF2oFTVvubP72aixLTOHfusVrueZh0ph6IuK5lE9d+RynKmkRd7/f29XDzg8/x3Cu7Wf2XXcPeX3/jxo7hosQ0LkpMY3bthFFz9q/hl1EoruvDx7XfUYqyJuVU7+1vvEvT+jbuTb7M9jeKP/U28YEjuTAxlXPm1jA+5rd61PDLKKR56uGI09z94Zh65GF8+cwZfPnMGUNut69nP4+1dnBf8mUe2vxqzvtPvvQGyZfe4OsrW4bc7vBDKrgwMY3PnTyNDx8zIef9lyuFeiA0Tz0cIc7dH47KijGcNXMKZ83M/i3bba+/y/3rt3N/8mXac1z64Z29Pdz5x60ZbxIzftxYZtZMYFbNBGYeO4FZNROZMWV82S75oFAPRBzmZA8mrv2O0mifuz8c0//qML561vF89azjh9xub/d+fvfcTu5Lvswjzw29HuHbe7pZu2UXa7dkv0bwoUmHp98AJqbeBGomMGn8uLx+h+HSmHpA4jqLJK79jpLm7pePznf3snnHbja372ZT+242tb/J86++nfd+Hrjqk8yunVhQH3ShVERkhHX37GfLa+8cCP7NO1JvAp3v7gPgD18/nalHHlbQvnWhVERkhI2tGMOMKUcwY8oRJf3kU54j/SIiUhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIB0Tx1OYi+bSgSbwp1OaD/WtttnV0sbUqtcKdgF4kHDb/IAY3NrQct9ATQta+HxubWEvVIRPKlUJcDymmtbREpjEJdDsi0pnY5r7UtIgdTqMsBSxrqqaqsOKgtpLW2RUYDXSiVA3ovhmr2i0h8KdTlIAvn1yrERWJMoS4lp7nxA8X1zkf6fznQSNdEoS4lpbnxA0VZk7juO65KUZOsF0rNbLmZ7TSzjYM8d42ZuZlNiqR3EjzNjR8oyprEdd9xVYqa5DL75U5gQf9GM5sGnAVsK3KfZBTR3PiBoqxJXPcdV6WoSdZQd/fHgV2DPPUD4Fpg5O5cLcHR3PiBoqxJXPcdV6WoSUHz1M3sPKDN3Z/OYdvFZpY0s2RHR0chh5OAaW78QFHWJK77jqtS1CTvC6VmdhhwA3B2Ltu7+zJgGUAikdBZvRxEc+MHirImcd13XJWiJuaePWfNrA54wN1nm9kc4BHg3fTTU4F24GR3f2Wo/SQSCU8mk8PrsYjIKGNm69w9kcu2eZ+pu3sLcHSfg20FEu7+Wr77Eoma5k3LaJPLlMYVwJNAvZltN7PLou+WyPD1zhFu6+zCeX+O8KoNbaXumkhksp6pu/slWZ6vK1pvRIpoqDnCOluXUGmVRgmW5k3LaKRlAiRYNdVVtA0S4KN53nTU4noNI679HozO1CVYmjc9suJ6DSOu/c5EoS7BWji/lpsumENtdRUG1FZXcdMFc2J7Blbu4rr2S1z7nYmGXyRoWh9+5MT1GkZc+52JztRFpCjiuvZLXPudiUJdRIoirtcw4trvTDT8IiJFEde1X+La70xyWvulWLT2i4hI/vJZ+0XDLyIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAcka6ma23Mx2mtnGPm2NZvacmT1jZr8ws+pIeykiIjnJ5Uz9TmBBv7aHgdnuPhd4Hlha5H6JiEgBsoa6uz8O7OrX9pC7d6d/XA1MjaBvIiKSp2KMqV8KPJjpSTNbbGZJM0t2dHQU4XAiIpLJsELdzG4AuoF7Mm3j7svcPeHuicmTJw/ncCIiksXYQl9oZouAc4Ez3d2L1yURESlUQaFuZguArwOnuvu7xe2SiIgUKpcpjSuAJ4F6M9tuZpcB/wkcATxsZk+Z2U8i7qeIiOQg65m6u18ySPMdEfRFRESGSd8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAUvPSuiETnG6taWLHmZXrcqTDjko9N47sL5xRl36s2tNHY3Ep7Zxc11VUsaahn4fzaouxbSk+hLlJmvrGqhZ+u3nbg5x73Az8PN9hXbWhjaVMLXft6AGjr7GJpUwuAgj0QGn4RKTMr1rycV3s+GptbDwR6r659PTQ2tw5731IeFOoiZaYnw43EMrXno72zK692iR+FukiZqTDLqz0fNdVVebVL/CjURcrMJR+blld7PpY01FNVWXFQW1VlBUsa6oe9bykPulAqUmZ6L4ZGMful92KoZr+Ey7wI43S5SiQSnkwmR+x4IiIhMLN17p7IZVsNv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBGREZ7+YWQfwEjAJeG3EDly+VAfVAFSDXqpD5hp8wN0n57KDEQ31Awc1S+Y6PSdkqoNqAKpBL9WhODXQ8IuISEAU6iIiASlVqC8r0XHLjeqgGoBq0Et1KEINSjKmLiIi0dDwi4hIQBTqIiIBKXqom9k0M3vUzJ41s01m9u/9nr/GzNzMJvVpW2pmL5hZq5k1FLtPpTBUHczsqvTvusnMbunTHlQdMtXAzOaZ2Woze8rMkmZ2cp/XBFUDADM71MzWmtnT6Tp8O91+lJk9bGZ/Tv/3yD6vCaoOQ9Sg0cyeM7NnzOwXZlbd5zVB1QAy16HP88PPR3cv6h/gWOCj6cdHAM8DM9M/TwOaSX8BKd02E3gaGAd8EHgRqCh2v0b6T6Y6AKcDvwXGpZ87OtQ6DFGDh4C/S7f/PfBYqDVI/14GjE8/rgTWAKcAtwDXpduvA74Xah2GqMHZwNh0+/dCrsFQdUj/XJR8LPqZurvvcPf16cdvAc8CvSvw/wC4Fuh7dfZ84L/dfY+7bwFeAE4m5oaowxXAze6+J/3czvRLgqvDEDVwYEJ6s4lAe/pxcDUA8JS30z9Wpv84qd/3rnT7XcDC9OPg6pCpBu7+kLt3p9tXA1PTj4OrAQz5dwGKlI+RjqmbWR0wH1hjZucBbe7+dL/NaoG+t0nfzvtvAkHoWwfgeOBTZrbGzH5vZielNwu6Dv1qcDXQaGYvA7cCS9ObBVsDM6sws6eAncDD7r4GmOLuOyD1Bggcnd48yDpkqEFflwIPph8HWQMYvA7FzMfIQt3MxgMrSf0D7gZuAL452KaDtAUzz7JvHdx9N6lbCB5J6qPnEuBeMzMCrsMgNbgC+Iq7TwO+AtzRu+kgLw+iBu7e4+7zSJ2Jnmxms4fYPMg6DFUDM7uBVE7c09s02C4i7+QIGKQOcyliPkYS6mZWSeof8T3u3gQcR2o86Gkz20rql1lvZseQeufpe0fdqbz/cTzWBqkDpH7fpvTHsLXAflKL+ARZhww1WAT0Pr6P9z9OBlmDvty9E3gMWAC8ambHAqT/2zsUF3Qd+tUAM1sEnAt83tMDyQReAzioDudTzHyM6ELA3cBtQ2yzlfcvBMzi4AsBfyGcCyID6gBcDnwn/fh4Uh+tLMQ6DFGDZ4HT0o/PBNYF/ndhMlCdflwFPEEqxBo5+ELpLaHWYYgaLAA2A5P7bR9cDYaqQ79thpWPY4fI+0J9AvgnoCU9bgRwvbv/erCN3X2Tmd1L6n9sN3Clu/dE0K+RNmgdgOXAcjPbCOwFFnnq/16IdchUgy8Ct5vZWOA9YDEE/XfhWOAuM6sg9en4Xnd/wMyeJDX8dhmwDbgQgq1Dphq8QCqwHk6NQrLa3S8PtAaQoQ6ZNi6kDlomQEQkIPpGqYhIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiATk/wHell9jjLoNCQAAAABJRU5ErkJggg==", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test,y_test)\n", + "plt.plot(X_test,pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "شیب خط را می‌توان از ضرایب رگرسیون خطی تعیین کرد:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([-0.01751876]), 21.133734359909326)" + ] + }, + "execution_count": 178, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lin_reg.coef_, lin_reg.intercept_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "می‌توانیم از مدل آموزش‌دیده برای پیش‌بینی قیمت استفاده کنیم:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 179, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([16.64893156])" + ] + }, + "execution_count": 179, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Pumpkin price on programmer's day\n", + "\n", + "lin_reg.predict([[256]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### رگرسیون چندجمله‌ای\n", + "\n", + "گاهی اوقات رابطه بین ویژگی‌ها و نتایج ذاتاً غیرخطی است. برای مثال، قیمت کدو تنبل ممکن است در زمستان (ماه‌های ۱ و ۲) بالا باشد، سپس در تابستان (ماه‌های ۵ تا ۷) کاهش یابد و دوباره افزایش پیدا کند. رگرسیون خطی نمی‌تواند این رابطه را به‌درستی پیدا کند.\n", + "\n", + "در این حالت، می‌توانیم اضافه کردن ویژگی‌های اضافی را در نظر بگیریم. یک روش ساده استفاده از چندجمله‌ای‌ها بر اساس ویژگی‌های ورودی است که منجر به **رگرسیون چندجمله‌ای** می‌شود. در Scikit Learn، می‌توانیم به‌صورت خودکار ویژگی‌های چندجمله‌ای را با استفاده از پایپ‌لاین‌ها پیش‌محاسبه کنیم:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.73 (17.0%)\n", + "Model determination: 0.07639977655280217\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 180, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbw0lEQVR4nO3de3Cc1Znn8e+jm93ClmRb8kWyjYBgDb6ATQQhFwIhFzu7meBQNVOVyu5Sm9RQSWWnJlMTZ3BIZWq2dpcMnprZzM5WTbEDFVLDsJOZOM4USTAEkkBYMJExjOwYY8AXkGRLsi35otb92T+6JbfurXa3ut+j36eqS2+ffvvto0f2T6/Oe/q0uTsiIhKGonx3QEREskehLiISEIW6iEhAFOoiIgFRqIuIBKRkLl+surra6+vr5/IlRUQib//+/Z3uXpPOvnMa6vX19TQ1Nc3lS4qIRJ6ZnUh3Xw2/iIgERKEuIhIQhbqISEAU6iIiAVGoi4gEZMbZL2a2Bvg+sBIYBh529++a2S7gd4F+4G3gP7t7Vw77KnNgz4EWdu09QmtXnNqqGDu2NrB9S12+uyUiaUrnTH0Q+BN3vwG4Dfiqma0HngE2uvuNwJvAztx1U+bCngMt7NzdTEtXHAdauuLs3N3MngMt+e6aiKRpxlB39zZ3fzW5fQE4DNS5+9PuPpjc7WVgde66KXNh194jxAeGxrTFB4bYtfdInnokIrM1qzF1M6sHtgD7xj30ReBnUzznPjNrMrOmjo6OjDopc6O1Kz6rdhEpPGmHupktAn4IfM3dz6e0P0BiiObxyZ7n7g+7e6O7N9bUpPUuV8mT2qrYrNpFpPCkFepmVkoi0B93990p7fcCnwG+4PoIpcjbsbWBWGnxmLZYaTE7tjbkqUciMlvpzH4x4BHgsLv/VUr7NuBPgTvcvSd3XZS5MjLLRbNfRKLLZjrBNrOPAC8AzSSmNAJ8E/gbYAFwJtn2srt/ebpjNTY2uhb0EhGZHTPb7+6N6ew745m6u/8asEke+ulsOyYiIrmld5SKiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQGb8jFKRXNtzoIVde4/Q2hWntirGjq0NbN9SV/DHlolU7/xTqEte7TnQws7dzcQHhgBo6Yqzc3czwBWHQS6PLROp3oVBwy+SV7v2HhkNgRHxgSF27T1S0MeWiVTvwqBQl7xq7YrPqr1Qji0Tqd6FQaEueVVbFZtVe6EcWyZSvQuDQl3yasfWBmKlxWPaYqXF7NjaUNDHlolU78KgC6WSVyMX0HIxYyKXx5aJVO/CYO4+Zy/W2NjoTU1Nc/Z6IiIhMLP97t6Yzr4znqmb2Rrg+8BKYBh42N2/a2ZLgX8C6oHjwO+7+7lMO50PmlMrIqFJZ0x9EPgTd78BuA34qpmtB+4HnnX364Fnk/cjY2RObUtXHOfynNo9B1ry3TURkYzNGOru3uburya3LwCHgTrgbuCx5G6PAdtz1Mec0JxaEQnRrGa/mFk9sAXYB6xw9zZIBD+wfIrn3GdmTWbW1NHRcYXdzR7NqRWREKUd6ma2CPgh8DV3P5/u89z9YXdvdPfGmpqaTPqYE5pTKyIhSivUzayURKA/7u67k82nzWxV8vFVQHtuupgbmlMrIiGaMdTNzIBHgMPu/lcpD/0rcG9y+17gx9nvXu5s31LHg/dsoq4qhgF1VTEevGeTZr+ISKTNOE/dzD4CvAA0k5jSCPBNEuPqPwDWAieB33P3s9MdS/PURURmL6vz1N3914BN8fDHZ9MxERHJLa39IiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEH1GqUiG9MlZUogU6iIZGPnkrJEPWhn55CxAwS55peEXkQzok7OkUCnURTKgT86SQqVQF8mAPjlLCpVCXSQD+uQsKVS6UCqSgZGLoZr9IoVGoS6Soe1b6hTiUnA0/CIiEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQAp+SmNUV8KLar9FJNoKOtSjuhJeVPstItFX0MMvUV0JL6r9FpHomzHUzexRM2s3s4MpbZvN7GUze83Mmszs1lx0Lqor4UW13yISfemcqX8P2Dau7SHgz919M/Dt5P2si+pKeFHtt4hE34yh7u7PA2fHNwMVye1KoDXL/QKiuxJeVPstItGX6YXSrwF7zewvSfxi+FDWepQiqivhRbXfIhJ95u4z72RWDzzp7huT9/8G+JW7/9DMfh+4z90/McVz7wPuA1i7du37T5w4ka2+i4jMC2a2390b09k309kv9wK7k9v/DEx5odTdH3b3RndvrKmpyejFuuMD9A8OZ/RcEZH5JNNQbwXuSG7fBRzNTncm97+ePcqt/+PnfGtPM/tPnCWdvy5EROajGcfUzewJ4E6g2szeA/4M+APgu2ZWAvSSHF7JlbtuWE77hT7+Zf97/MPLJ1m7tDzxAQWba7m2ZlEuX1pEJFLSGlPPlsbGRm9qasr4+Rf7Btl78BR7Xmvhxbc6GXa4aU0Vn9tcy+/eVMuyRQuy2FsRkcIwmzH1SIV6qtPne/nX11r50YEWftt2nuIi4451NWzfUscnb1hBrKx45oOIiETAvAj1VEdOXWDPay38+EALrd29XFVWzLaNq/jcljo+eN0yioss668pIjJX5l2ojxgedvYdO8ueAy38tLmNC32DrKhYwN2b69i+uY4bVi3GTAEvItEyb0M9Ve/AEM+90c6PDrTwyyPtDAw5DSsWs31LHXdvrtVb9kUkMhTq45y71M+TzW3sOdDC/hPnMIPbrlnG57bUsW3TSioWls55n0RE0qVQn8aJM5f4cfIC67HOS5SVFHFXw3I+vWklH/ud5Qp4ESk4CvU0uDuvv9c9Ov7efqGP0mLjw++rZtuGlXxi/QqqNUVSRAqAQn2WhoedA+92sffQKZ46eIqTZ3soMrilfinbNq5k64aVGoMXkbxRqF8Bd+dw2wWeOnSKvQdPceT0BQBuWl3JpzasZNvGlVynd7GKyBxSqGfROx0X2XvoNE8dOsXr73YBcP3yRaNn8BtqKzRNUkRySqGeI23dcZ4+dJqnDp5i37EzDDusXhJjW/IM/ua1SyjSG51EJMsU6nPgzMU+nj3czlOHTvHro530Dw1Ts3gBn1q/gm0bV3LbtcsoLS7oz/UWkYhQqM+xC70D/OJIB3sPnuIXR9rp6R+iYmEJn7hhBZ9Yv4IPX1dNZbmmSopIZhTqedQ7MMQLRzt56uApfn74NN3xAYossZrk7dfX8NHrq9m8pooSncWLSJoU6gVicGiY197t4vmjnbxwtIPX3+1i2GHxghI+9L5lyZCvYe2y8nx3VUQKmEK9QHX3DPDi24mAf/7NTlq64gBcvaycj15fw+3XV/PB65axWO9qFZEUCvUIcHeOdV7ihaOdPP9mBy+9c4ae/iGKi4yb11YlQn5dDZvqKrV0sMg8p1CPoP7BYV49eY4XjnbwwtFOmlu6cYfKWCkfeV81t19fze3raqjTO1tF5h2FegDOXOzjxbfP8MKbiZA/db4XgOtqrkqMxa+r5rZrl1FeNuPHzIpIxCnUA+PuvNV+kV8lA37fsTP0DgxTWmw0Xr2U29dV89Hra1i/qkJvfhIJkEI9cL0DQ+w/cY7nkxdcD7edB2DpVWWjQzUfuGYZa5bGtISBSAAU6mnac6CFXXuP0NoVp7Yqxo6tDWzfUpfvbs1a+4VeXnyrkxfe7OT5o510XuwDYPniBdxSv5TG+iXcUr+U31m5WPPjRSJIoZ6GPQda2Lm7mfjA0GhbrLSYB+/ZFMlgHzE87LzZfoGm4+doOn6W3xw/Nzp18qqyYm6+egmNVyeCfvOaKq5aoDF5kUKnUE/Dh7/z3GjYpaqrivHi/XfloUe509oVp+nE5ZB/49R53KG4yNhQW0Hj1Uu5pX4J769fwvLFC/PdXREZZzahPm9P01onCfTp2qOstirGZ6tifPamWgDO9w5w4GRXMuTP8o+vnODRF48BUL+snMb6pdy0poqNtRXcsKqChaXF+ey+iMzCvA312qrYpGfq8+ETjioWlnLHuhruWFcDJObIH2rtpun4OX5z/CzPvdHOv+x/D4Aig/ctX8TG2krW11awsS7xNZuf5RrKtQ2RQjBvh19CHVPPBnentbuXgy3dHGrp5lDreQ62dnP6fN/oPlcvK2djbSUb6irYUFvJxtoKlmXwma76OYjMLKvDL2b2KPAZoN3dN6a0/yHwX4BB4Cfu/o0M+5sXI4GhM8SJzIy6qhh1VTG2blg52t5xoY9DrcmQb+mmuaWbnzS3jT6+qnIhG2qTIV9XyYbaClZVLpx2WuWuvUfGBDpAfGCIXXuP6GchkoF0hl++B/wt8P2RBjP7GHA3cKO795nZ8tx0L7e2b6lTcMxCzeIF3NmwnDsbLv+4u3sGONTWzW+TQX+w9TzPvdHOcPIPwKVXlaUEfeLr1UvLR98kNZ+ubYjMhRlD3d2fN7P6cc1fAb7j7n3Jfdpz0DeZpXyMTVeWl/Kh66r50HXVo209/YMcbruQOKtvSQzdPPLrdxgYSiT9ogUlrK+tYENtBVXlpZzrGZhw3Gxd29B4vcw3mV4oXQfcbmb/HegFvu7uv5lsRzO7D7gPYO3atRm+nMxk/Nh0S1ecnbubAeY8xMrLSnj/1Ut4/9VLRtv6Boc4evoih1q7OZgM+ideOUnvwPCkx7imupyDLd3UV1/Fogzn0hdSTUTmSloXSpNn6k+OjKmb2UHgOeCPgFuAfwKu9RkOVkgXSkMTxXn3Q8POBx98lvYLfdPut3zxAq6pvmrM7dqaq1iztJwFJVNPt4xiTSQcQ8NOW3eck2d7ePdsDx9rWM7yiszeBzIX89TfA3YnQ/wVMxsGqoGODI8nVyiKY9PFRUbHNIH+d//hZt7pvMSxjksc67zEM789zZlL/aOPFxmsXlI+JuhHtmsrY5GsiUTL+d4BTp5JhPbJlNu7Z3to6YqPDjkC/J//1Mgn1+f+zX2Zhvoe4C7gl2a2DigDOrPVKZm9qM67n6rfdVUxtm1cNaG9u2eAY2cucazzIsc6LvFO5yWOn7lE0/GzXOq/PIumrKSI4iJjcHjiH48rKxbi7lrsTGY0MDRMW1fv5bA+dzm0T57toWvc9aCq8lLWLi1nQ10ln960irVLy0dvqyrn5t3a6UxpfAK4E6g2s/eAPwMeBR5NDsP0A/fONPQiubVja8Ok8713bG3IY69mNtt+V5aXsrm8is1rqsa0uzsdF/oSZ/bJ2/97q5NDrecZ/w+z7Xwv67+9l5WVC1lZsZBVlQtZUZn4urJiYaK9ciHVVy3QUsaBcncu9Q/R1dNPV88AXT0DnO3p571zY8+6W7t6GUo5MSgtNlYvKWfN0nJuXF05GthrkrdsvikvU/P2zUchiupMj1z2e8+BFh566g1au3upXlTGv9+0ijVLyznV3Uvb+V5OdSdup8/3TjirLykyVqSE/MgvgJUp4b988ULKSrTyZT71Dgxxrqefc5cG6IpfDulzPf10xwc4d6mfrvjAaICf6xmgO94/ZmgkVfWiskRILykfE9prl5WzsmJhXj5eUgt6iczS8LDTeamP0919tHXHOZUS+G3J0G/tjk+YrWMGVbFSqsrLqIiVUhUrpTJ5qyq/vH25rWz0Ma2pM1b/4HAieKcJ4smCu29w8hlUAAtLi6iKlVFVnqj5kvKR7TKqYon7lcn2JeWl1FbFCnLlUi3oNU/pTD1zRUXG8sWJM+9Nqysn3cfdOR8fpO18fEzgd17sozs+kDgr7Onn+JlLo/enO2cqKylKBHzKL4GK5HZbdy8vvX2G7vgAS8pL2b6ljtuvr6asuJiykqLErTjxdUHylto+3br5uaq3uzM07Ay5c7F3cFwQpwb05cA+d+ly3Xr6h6Y8dmmxjQnixPBHMpxHwjo27v48/cWpM/VARHUNlaj2Ox3Dw86FvkG6ewZGQ74r3j+6PdLelfJ4d3yAzot90559pqPIGA34BaXFia8lRcQHhjh1vnfMLxszWF0VY/HCUoZHgjkZzkPDzvDoNqOPj7QNpmynEyVFxmjwTnamXJn8Ov7suryseF5f2NaZ+jwU1TVUotrvdBQV2eiwy2xMNb++ZtEC/vcXbqZ/cJj+oSH6BobpHxqmb3A40TaYuJ+63TcwNGafnx8+PSF83aH9Qh8NKxdTZEZxUcrNjKLUr0WMaSsuTn4tsjHPXbSgZNJhjsULSnTxOccU6oGI6pzsqPY7l6b63jsv9nHrNUuv6NjX3P+TSdv7B4f5+3tvuaJjS2HQZftATDUfPQrz1GfTPh/ksiaqd/gU6oHYsbWB2LiLQlGZpx7FfudSLmuieodPwy+BiOr68FHtdy7lsiaqd/g0+0VEpMDNZvaLhl9ERAKiUBcRCYhCXUQkIAp1EZGAKNRFRAKiUBcRCYhCXUQkIAp1EZGA6B2lMkYhrG0uIplTqMuo8Wubt3TF2bm7GUDBLhIRGn6RUdOtbS4i0aBQl1Fa21wk+hTqMkprbYtEn0JdRmmtbZHo04VSGaW1tkWiT6EuY2zfUqcQF4kwhbrknebGT5TLmkT12FE11zVRqEteaW78RLmsSVSPHVX5qMmMF0rN7FEzazezg5M89nUzczOrzknvJHiaGz9RLmsS1WNHVT5qks7sl+8B28Y3mtka4JPAySz3SeYRzY2fKJc1ieqxoyofNZkx1N39eeDsJA/9NfANYO4+uVqCo7nxE+WyJlE9dlTloyYZzVM3s88CLe7+ehr73mdmTWbW1NHRkcnLScA0N36iXNYkqseOqnzUZNYXSs2sHHgA+FQ6+7v7w8DDAI2NjTqrlzE0N36iXNYkqseOqnzUxNxnzlkzqweedPeNZrYJeBboST68GmgFbnX3U9Mdp7Gx0Zuamq6sxyIi84yZ7Xf3xnT2nfWZurs3A8tTXuw40OjunbM9lkiuad60zDfpTGl8AngJaDCz98zsS7nvlsiVG5kj3NIVx7k8R3jPgZZ8d00kZ2Y8U3f3z8/weH3WeiOSRdPNEdbZuoRKqzRKsDRvWuYjLRMgwaqtitEySYDP53nTuRbVaxhR7fdkdKYuwdK86bkV1WsYUe33VBTqEqztW+p48J5N1FXFMKCuKsaD92yK7BlYoYvq2i9R7fdUNPwiQdP68HMnqtcwotrvqehMXUSyIqprv0S131NRqItIVkT1GkZU+z0VDb+ISFZEde2XqPZ7Kmmt/ZItWvtFRGT2ZrP2i4ZfREQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQCMmOom9mjZtZuZgdT2naZ2Rtm9m9m9iMzq8ppL0VEJC3pnKl/D9g2ru0ZYKO73wi8CezMcr9ERCQDM4a6uz8PnB3X9rS7DybvvgyszkHfRERklrIxpv5F4GdTPWhm95lZk5k1dXR0ZOHlRERkKlcU6mb2ADAIPD7VPu7+sLs3untjTU3NlbyciIjMoCTTJ5rZvcBngI+7u2evSyIikqmMQt3MtgF/Ctzh7j3Z7ZKIiGQqnSmNTwAvAQ1m9p6ZfQn4W2Ax8IyZvWZmf5fjfoqISBpmPFN3989P0vxIDvoiIiJXSO8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYBkvPSuiOTOt/Y088S+dxlyp9iMz39gDf9t+6asHHvPgRZ27T1Ca1ec2qoYO7Y2sH1LXVaOLfmnUBcpMN/a08w/vHxy9P6Q++j9Kw32PQda2Lm7mfjAEAAtXXF27m4GULAHQsMvIgXmiX3vzqp9NnbtPTIa6CPiA0Ps2nvkio8thUGhLlJghqb4ILGp2mejtSs+q3aJHoW6SIEpNptV+2zUVsVm1S7Ro1AXKTCf/8CaWbXPxo6tDcRKi8e0xUqL2bG14YqPLYVBF0pFCszIxdBczH4ZuRiq2S/hMs/COF26Ghsbvampac5eT0QkBGa2390b09lXwy8iIgFRqIuIBEShLiISEIW6iEhAFOoiIgGZ09kvZtYBnACqgc45e+HCpTqoBqAajFAdpq7B1e5ek84B5jTUR1/UrCnd6TkhUx1UA1ANRqgO2amBhl9ERAKiUBcRCUi+Qv3hPL1uoVEdVANQDUaoDlmoQV7G1EVEJDc0/CIiEhCFuohIQLIe6ma2xsx+YWaHzeyQmf3RuMe/bmZuZtUpbTvN7C0zO2JmW7Pdp3yYrg5m9ofJ7/WQmT2U0h5UHaaqgZltNrOXzew1M2sys1tTnhNUDQDMbKGZvWJmryfr8OfJ9qVm9oyZHU1+XZLynKDqME0NdpnZG2b2b2b2IzOrSnlOUDWAqeuQ8viV56O7Z/UGrAJuTm4vBt4E1ifvrwH2knwDUrJtPfA6sAC4BngbKM52v+b6NlUdgI8BPwcWJB9bHmodpqnB08Cnk+3/DvhlqDVIfl8GLEpulwL7gNuAh4D7k+33A38Rah2mqcGngJJk+1+EXIPp6pC8n5V8zPqZuru3ufurye0LwGFgZAX+vwa+AaRenb0b+L/u3ufux4C3gFuJuGnq8BXgO+7el3ysPfmU4OowTQ0cqEjuVgm0JreDqwGAJ1xM3i1N3pzE9/tYsv0xYHtyO7g6TFUDd3/a3QeT7S8Dq5PbwdUApv23AFnKx5yOqZtZPbAF2GdmnwVa3P31cbvVAakfk/4el38JBCG1DsA64HYz22dmvzKzW5K7BV2HcTX4GrDLzN4F/hLYmdwt2BqYWbGZvQa0A8+4+z5ghbu3QeIXILA8uXuQdZiiBqm+CPwsuR1kDWDyOmQzH3MW6ma2CPghif/Ag8ADwLcn23WStmDmWabWwd3Pk/gIwSUk/vTcAfzAzIyA6zBJDb4C/LG7rwH+GHhkZNdJnh5EDdx9yN03kzgTvdXMNk6ze5B1mK4GZvYAiZx4fKRpskPkvJNzYJI63EgW8zEnoW5mpST+Ez/u7ruB60iMB71uZsdJfDOvmtlKEr95Uj9RdzWX/xyPtEnqAInvd3fyz7BXgGESi/gEWYcpanAvMLL9z1z+czLIGqRy9y7gl8A24LSZrQJIfh0Zigu6DuNqgJndC3wG+IInB5IJvAYwpg53k818zNGFgO8D/3OafY5z+ULABsZeCHiHcC6ITKgD8GXgvya315H408pCrMM0NTgM3Jnc/jiwP/B/CzVAVXI7BrxAIsR2MfZC6UOh1mGaGmwDfgvUjNs/uBpMV4dx+1xRPpZMk/eZ+jDwH4Hm5LgRwDfd/aeT7ezuh8zsByR+sIPAV919KAf9mmuT1gF4FHjUzA4C/cC9nvjphViHqWrwB8B3zawE6AXug6D/LawCHjOzYhJ/Hf/A3Z80s5dIDL99CTgJ/B4EW4epavAWicB6JjEKycvu/uVAawBT1GGqnTOpg5YJEBEJiN5RKiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgH5/+EaqS+WjFbpAAAAAElFTkSuQmCC", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)\n", + "\n", + "plt.scatter(X_test,y_test)\n", + "plt.plot(sorted(X_test),pipeline.predict(sorted(X_test)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### انواع کدگذاری\n", + "\n", + "در دنیای ایده‌آل، می‌خواهیم بتوانیم قیمت‌های انواع مختلف کدو تنبل را با استفاده از یک مدل پیش‌بینی کنیم. برای در نظر گرفتن نوع کدو، ابتدا باید آن را به شکل عددی تبدیل کنیم، یا به عبارت دیگر **کدگذاری** کنیم. چند روش برای انجام این کار وجود دارد:\n", + "\n", + "* کدگذاری عددی ساده که یک جدول از انواع مختلف ایجاد می‌کند و سپس نام نوع را با یک شاخص در آن جدول جایگزین می‌کند. این روش برای رگرسیون خطی بهترین انتخاب نیست، زیرا رگرسیون خطی مقدار عددی شاخص را در نظر می‌گیرد و احتمالاً مقدار عددی با قیمت به صورت عددی همبستگی ندارد.\n", + "* کدگذاری یک‌داغ (One-hot encoding)، که ستون `Variety` را با ۴ ستون مختلف جایگزین می‌کند، یکی برای هر نوع، که اگر ردیف مربوط به نوع خاصی باشد مقدار ۱ و در غیر این صورت مقدار ۰ خواهد داشت.\n", + "\n", + "کد زیر نشان می‌دهد که چگونه می‌توان یک نوع را به صورت یک‌داغ کدگذاری کرد:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            FAIRYTALEMINIATUREMIXED HEIRLOOM VARIETIESPIE TYPE
            700001
            710001
            720001
            730001
            740001
            ...............
            17380100
            17390100
            17400100
            17410100
            17420100
            \n", + "

            415 rows × 4 columns

            \n", + "
            " + ], + "text/plain": [ + " FAIRYTALE MINIATURE MIXED HEIRLOOM VARIETIES PIE TYPE\n", + "70 0 0 0 1\n", + "71 0 0 0 1\n", + "72 0 0 0 1\n", + "73 0 0 0 1\n", + "74 0 0 0 1\n", + "... ... ... ... ...\n", + "1738 0 1 0 0\n", + "1739 0 1 0 0\n", + "1740 0 1 0 0\n", + "1741 0 1 0 0\n", + "1742 0 1 0 0\n", + "\n", + "[415 rows x 4 columns]" + ] + }, + "execution_count": 181, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.get_dummies(new_pumpkins['Variety'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### رگرسیون خطی بر روی انواع مختلف\n", + "\n", + "اکنون از همان کدی که در بالا استفاده کردیم بهره می‌بریم، اما به جای `DayOfYear` از نوع‌های کدگذاری‌شده به صورت یک‌-داغ به عنوان ورودی استفاده خواهیم کرد:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "metadata": {}, + "outputs": [], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety'])\n", + "y = new_pumpkins['Price']" + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 5.24 (19.7%)\n", + "Model determination: 0.774085281105197\n" + ] + } + ], + "source": [ + "def run_linear_regression(X,y):\n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + " lin_reg = LinearRegression()\n", + " lin_reg.fit(X_train,y_train)\n", + "\n", + " pred = lin_reg.predict(X_test)\n", + "\n", + " mse = np.sqrt(mean_squared_error(y_test,pred))\n", + " print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + " score = lin_reg.score(X_train,y_train)\n", + " print('Model determination: ', score)\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "ما می‌توانیم به همین روش از ویژگی‌های دیگر نیز استفاده کنیم و آن‌ها را با ویژگی‌های عددی مانند `Month` یا `DayOfYear` ترکیب کنیم:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.84 (10.5%)\n", + "Model determination: 0.9401096672643048\n" + ] + } + ], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety']) \\\n", + " .join(new_pumpkins['Month']) \\\n", + " .join(pd.get_dummies(new_pumpkins['City'])) \\\n", + " .join(pd.get_dummies(new_pumpkins['Package']))\n", + "y = new_pumpkins['Price']\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### رگرسیون چندجمله‌ای\n", + "\n", + "رگرسیون چندجمله‌ای می‌تواند برای ویژگی‌های دسته‌بندی‌شده که به صورت یک-داغ کدگذاری شده‌اند نیز استفاده شود. کدی که برای آموزش رگرسیون چندجمله‌ای استفاده می‌شود اساساً مشابه چیزی است که در بالا مشاهده کردیم.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.23 (8.25%)\n", + "Model determination: 0.9652870784724543\n" + ] + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d77bd89ae7e79780c68c58bab91f13f8", + "translation_date": "2025-09-04T01:04:40+00:00", + "source_file": "2-Regression/3-Linear/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fa/2-Regression/4-Logistic/README.md b/translations/fa/2-Regression/4-Logistic/README.md new file mode 100644 index 000000000..9777d489c --- /dev/null +++ b/translations/fa/2-Regression/4-Logistic/README.md @@ -0,0 +1,410 @@ + +# رگرسیون لجستیک برای پیش‌بینی دسته‌ها + +![اینفوگرافیک رگرسیون لجستیک در مقابل رگرسیون خطی](../../../../translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.fa.png) + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/) + +> ### [این درس به زبان R نیز موجود است!](../../../../2-Regression/4-Logistic/solution/R/lesson_4.html) + +## مقدمه + +در این درس پایانی درباره رگرسیون، یکی از تکنیک‌های پایه‌ای و کلاسیک یادگیری ماشین، به رگرسیون لجستیک خواهیم پرداخت. از این تکنیک برای کشف الگوها جهت پیش‌بینی دسته‌های دودویی استفاده می‌شود. آیا این آب‌نبات شکلاتی است یا نه؟ آیا این بیماری واگیردار است یا نه؟ آیا این مشتری این محصول را انتخاب خواهد کرد یا نه؟ + +در این درس یاد خواهید گرفت: + +- یک کتابخانه جدید برای مصورسازی داده‌ها +- تکنیک‌های رگرسیون لجستیک + +✅ درک خود را از کار با این نوع رگرسیون در این [ماژول آموزشی](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott) عمیق‌تر کنید. + +## پیش‌نیاز + +با کار کردن روی داده‌های کدو تنبل، اکنون به اندازه کافی با آن آشنا هستیم تا متوجه شویم که یک دسته دودویی وجود دارد که می‌توانیم با آن کار کنیم: `Color`. + +بیایید یک مدل رگرسیون لجستیک بسازیم تا پیش‌بینی کنیم که با توجه به برخی متغیرها، _رنگ یک کدو تنبل چه خواهد بود_ (نارنجی 🎃 یا سفید 👻). + +> چرا در یک درس درباره رگرسیون، درباره دسته‌بندی دودویی صحبت می‌کنیم؟ فقط به دلیل راحتی زبانی، زیرا رگرسیون لجستیک [در واقع یک روش دسته‌بندی](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression) است، هرچند مبتنی بر خطی. درباره روش‌های دیگر دسته‌بندی داده‌ها در گروه درس بعدی بیاموزید. + +## تعریف سوال + +برای اهداف ما، این را به صورت دودویی بیان می‌کنیم: 'سفید' یا 'غیر سفید'. همچنین یک دسته 'راه‌راه' در مجموعه داده ما وجود دارد، اما تعداد نمونه‌های آن کم است، بنابراین از آن استفاده نمی‌کنیم. این دسته به هر حال پس از حذف مقادیر خالی از مجموعه داده ناپدید می‌شود. + +> 🎃 نکته جالب: گاهی اوقات کدوهای سفید را کدوهای 'شبح' می‌نامیم. آن‌ها خیلی راحت برای حکاکی نیستند، بنابراین به اندازه کدوهای نارنجی محبوب نیستند، اما ظاهر جالبی دارند! بنابراین می‌توانیم سوال خود را به این صورت نیز بازفرموله کنیم: 'شبح' یا 'غیر شبح'. 👻 + +## درباره رگرسیون لجستیک + +رگرسیون لجستیک در چندین جنبه مهم با رگرسیون خطی که قبلاً درباره آن آموختید، متفاوت است. + +[![یادگیری ماشین برای مبتدیان - درک رگرسیون لجستیک برای دسته‌بندی داده‌ها](https://img.youtube.com/vi/KpeCT6nEpBY/0.jpg)](https://youtu.be/KpeCT6nEpBY "یادگیری ماشین برای مبتدیان - درک رگرسیون لجستیک برای دسته‌بندی داده‌ها") + +> 🎥 روی تصویر بالا کلیک کنید تا یک ویدئوی کوتاه درباره رگرسیون لجستیک مشاهده کنید. + +### دسته‌بندی دودویی + +رگرسیون لجستیک ویژگی‌های مشابه رگرسیون خطی را ارائه نمی‌دهد. اولی پیش‌بینی درباره یک دسته دودویی ("سفید یا غیر سفید") ارائه می‌دهد، در حالی که دومی قادر به پیش‌بینی مقادیر پیوسته است، برای مثال با توجه به منشأ کدو تنبل و زمان برداشت، _چقدر قیمت آن افزایش خواهد یافت_. + +![مدل دسته‌بندی کدو تنبل](../../../../translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.fa.png) +> اینفوگرافیک توسط [Dasani Madipalli](https://twitter.com/dasani_decoded) + +### دسته‌بندی‌های دیگر + +انواع دیگری از رگرسیون لجستیک وجود دارد، از جمله چندجمله‌ای و ترتیبی: + +- **چندجمله‌ای**، که شامل داشتن بیش از یک دسته است - "نارنجی، سفید و راه‌راه". +- **ترتیبی**، که شامل دسته‌های مرتب شده است، مفید اگر بخواهیم نتایج خود را به صورت منطقی مرتب کنیم، مانند کدوهای ما که بر اساس تعداد محدودی از اندازه‌ها مرتب شده‌اند (کوچک، متوسط، بزرگ، خیلی بزرگ). + +![رگرسیون چندجمله‌ای در مقابل ترتیبی](../../../../translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.fa.png) + +### متغیرها لازم نیست همبستگی داشته باشند + +به یاد دارید که رگرسیون خطی با متغیرهای همبسته بهتر کار می‌کرد؟ رگرسیون لجستیک برعکس است - متغیرها لازم نیست هم‌راستا باشند. این برای این داده‌ها که همبستگی‌های نسبتاً ضعیفی دارند، مناسب است. + +### شما به داده‌های تمیز زیادی نیاز دارید + +رگرسیون لجستیک نتایج دقیق‌تری ارائه می‌دهد اگر از داده‌های بیشتری استفاده کنید؛ مجموعه داده کوچک ما برای این کار بهینه نیست، بنابراین این نکته را در نظر داشته باشید. + +[![یادگیری ماشین برای مبتدیان - تحلیل و آماده‌سازی داده‌ها برای رگرسیون لجستیک](https://img.youtube.com/vi/B2X4H9vcXTs/0.jpg)](https://youtu.be/B2X4H9vcXTs "یادگیری ماشین برای مبتدیان - تحلیل و آماده‌سازی داده‌ها برای رگرسیون لجستیک") + +✅ به انواع داده‌هایی فکر کنید که برای رگرسیون لجستیک مناسب هستند. + +## تمرین - مرتب‌سازی داده‌ها + +ابتدا داده‌ها را کمی تمیز کنید، مقادیر خالی را حذف کنید و فقط برخی از ستون‌ها را انتخاب کنید: + +1. کد زیر را اضافه کنید: + + ```python + + columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color'] + pumpkins = full_pumpkins.loc[:, columns_to_select] + + pumpkins.dropna(inplace=True) + ``` + + همیشه می‌توانید نگاهی به دیتافریم جدید خود بیندازید: + + ```python + pumpkins.info + ``` + +### مصورسازی - نمودار دسته‌بندی + +تا اینجا شما [دفترچه شروع](./notebook.ipynb) را با داده‌های کدو تنبل بارگذاری کرده‌اید و آن را تمیز کرده‌اید تا مجموعه داده‌ای شامل چند متغیر، از جمله `Color` حفظ شود. بیایید دیتافریم را در دفترچه با استفاده از یک کتابخانه متفاوت مصورسازی کنیم: [Seaborn](https://seaborn.pydata.org/index.html)، که بر اساس Matplotlib ساخته شده است که قبلاً استفاده کردیم. + +Seaborn روش‌های جالبی برای مصورسازی داده‌های شما ارائه می‌دهد. برای مثال، می‌توانید توزیع داده‌ها را برای هر `Variety` و `Color` در یک نمودار دسته‌بندی مقایسه کنید. + +1. چنین نموداری را با استفاده از تابع `catplot`، داده‌های کدو تنبل `pumpkins`، و مشخص کردن یک نگاشت رنگی برای هر دسته کدو تنبل (نارنجی یا سفید) ایجاد کنید: + + ```python + import seaborn as sns + + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + + sns.catplot( + data=pumpkins, y="Variety", hue="Color", kind="count", + palette=palette, + ) + ``` + + ![شبکه‌ای از داده‌های مصورسازی شده](../../../../translated_images/pumpkins_catplot_1.c55c409b71fea2ecc01921e64b91970542101f90bcccfa4aa3a205db8936f48b.fa.png) + + با مشاهده داده‌ها، می‌توانید ببینید که داده‌های رنگ چگونه به نوع کدو تنبل مرتبط هستند. + + ✅ با توجه به این نمودار دسته‌بندی، چه اکتشافات جالبی می‌توانید تصور کنید؟ + +### پیش‌پردازش داده‌ها: کدگذاری ویژگی‌ها و برچسب‌ها + +مجموعه داده کدو تنبل ما شامل مقادیر رشته‌ای برای تمام ستون‌های آن است. کار با داده‌های دسته‌بندی برای انسان‌ها شهودی است اما برای ماشین‌ها نه. الگوریتم‌های یادگیری ماشین با اعداد بهتر کار می‌کنند. به همین دلیل کدگذاری یک مرحله بسیار مهم در مرحله پیش‌پردازش داده‌ها است، زیرا به ما امکان می‌دهد داده‌های دسته‌بندی را به داده‌های عددی تبدیل کنیم، بدون از دست دادن اطلاعات. کدگذاری خوب منجر به ساخت یک مدل خوب می‌شود. + +برای کدگذاری ویژگی‌ها دو نوع اصلی کدگذار وجود دارد: + +1. کدگذار ترتیبی: برای متغیرهای ترتیبی مناسب است، که متغیرهای دسته‌بندی هستند که داده‌های آن‌ها از یک ترتیب منطقی پیروی می‌کنند، مانند ستون `Item Size` در مجموعه داده ما. این کدگذار یک نگاشت ایجاد می‌کند که هر دسته با یک عدد نشان داده می‌شود، که ترتیب دسته در ستون است. + + ```python + from sklearn.preprocessing import OrdinalEncoder + + item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']] + ordinal_features = ['Item Size'] + ordinal_encoder = OrdinalEncoder(categories=item_size_categories) + ``` + +2. کدگذار دسته‌بندی: برای متغیرهای اسمی مناسب است، که متغیرهای دسته‌بندی هستند که داده‌های آن‌ها از یک ترتیب منطقی پیروی نمی‌کنند، مانند تمام ویژگی‌های متفاوت از `Item Size` در مجموعه داده ما. این یک کدگذاری یک‌به‌چند است، به این معنی که هر دسته با یک ستون دودویی نشان داده می‌شود: متغیر کدگذاری شده برابر با 1 است اگر کدو تنبل متعلق به آن نوع باشد و در غیر این صورت برابر با 0 است. + + ```python + from sklearn.preprocessing import OneHotEncoder + + categorical_features = ['City Name', 'Package', 'Variety', 'Origin'] + categorical_encoder = OneHotEncoder(sparse_output=False) + ``` + +سپس، `ColumnTransformer` برای ترکیب چندین کدگذار در یک مرحله و اعمال آن‌ها به ستون‌های مناسب استفاده می‌شود. + +```python + from sklearn.compose import ColumnTransformer + + ct = ColumnTransformer(transformers=[ + ('ord', ordinal_encoder, ordinal_features), + ('cat', categorical_encoder, categorical_features) + ]) + + ct.set_output(transform='pandas') + encoded_features = ct.fit_transform(pumpkins) +``` + +از طرف دیگر، برای کدگذاری برچسب، از کلاس `LabelEncoder` در scikit-learn استفاده می‌کنیم، که یک کلاس کمکی برای کمک به نرمال‌سازی برچسب‌ها است به طوری که فقط شامل مقادیر بین 0 و n_classes-1 (اینجا، 0 و 1) باشد. + +```python + from sklearn.preprocessing import LabelEncoder + + label_encoder = LabelEncoder() + encoded_label = label_encoder.fit_transform(pumpkins['Color']) +``` + +پس از کدگذاری ویژگی‌ها و برچسب، می‌توانیم آن‌ها را در یک دیتافریم جدید `encoded_pumpkins` ادغام کنیم. + +```python + encoded_pumpkins = encoded_features.assign(Color=encoded_label) +``` + +✅ مزایای استفاده از کدگذار ترتیبی برای ستون `Item Size` چیست؟ + +### تحلیل روابط بین متغیرها + +اکنون که داده‌های خود را پیش‌پردازش کرده‌ایم، می‌توانیم روابط بین ویژگی‌ها و برچسب را تحلیل کنیم تا ایده‌ای از اینکه مدل چقدر قادر به پیش‌بینی برچسب با توجه به ویژگی‌ها خواهد بود، به دست آوریم. بهترین راه برای انجام این نوع تحلیل، رسم داده‌ها است. دوباره از تابع `catplot` در Seaborn استفاده خواهیم کرد تا روابط بین `Item Size`، `Variety` و `Color` را در یک نمودار دسته‌بندی مصورسازی کنیم. برای بهتر رسم داده‌ها از ستون کدگذاری شده `Item Size` و ستون غیرکدگذاری شده `Variety` استفاده خواهیم کرد. + +```python + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size'] + + g = sns.catplot( + data=pumpkins, + x="Item Size", y="Color", row='Variety', + kind="box", orient="h", + sharex=False, margin_titles=True, + height=1.8, aspect=4, palette=palette, + ) + g.set(xlabel="Item Size", ylabel="").set(xlim=(0,6)) + g.set_titles(row_template="{row_name}") +``` + +![نمودار دسته‌بندی داده‌های مصورسازی شده](../../../../translated_images/pumpkins_catplot_2.87a354447880b3889278155957f8f60dd63db4598de5a6d0fda91c334d31f9f1.fa.png) + +### استفاده از نمودار Swarm + +از آنجا که `Color` یک دسته دودویی است (سفید یا غیر سفید)، نیاز به 'یک [رویکرد تخصصی](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar) برای مصورسازی' دارد. روش‌های دیگری برای مصورسازی رابطه این دسته با سایر متغیرها وجود دارد. + +می‌توانید متغیرها را کنار هم با نمودارهای Seaborn مصورسازی کنید. + +1. یک نمودار 'Swarm' را امتحان کنید تا توزیع مقادیر را نشان دهید: + + ```python + palette = { + 0: 'orange', + 1: 'wheat' + } + sns.swarmplot(x="Color", y="ord__Item Size", data=encoded_pumpkins, palette=palette) + ``` + + ![یک Swarm از داده‌های مصورسازی شده](../../../../translated_images/swarm_2.efeacfca536c2b577dc7b5f8891f28926663fbf62d893ab5e1278ae734ca104e.fa.png) + +**توجه**: کد بالا ممکن است یک هشدار ایجاد کند، زیرا Seaborn نمی‌تواند چنین مقدار زیادی از نقاط داده را در یک نمودار Swarm نمایش دهد. یک راه‌حل ممکن کاهش اندازه نشانگر با استفاده از پارامتر 'size' است. با این حال، توجه داشته باشید که این بر خوانایی نمودار تأثیر می‌گذارد. + +> **🧮 ریاضیات را به من نشان بده** +> +> رگرسیون لجستیک بر مفهوم 'حداکثر احتمال' با استفاده از [توابع سیگموئید](https://wikipedia.org/wiki/Sigmoid_function) متکی است. یک 'تابع سیگموئید' در نمودار شبیه یک شکل 'S' است. این مقدار را می‌گیرد و آن را به جایی بین 0 و 1 نگاشت می‌کند. منحنی آن همچنین به عنوان 'منحنی لجستیک' شناخته می‌شود. فرمول آن به این صورت است: +> +> ![تابع لجستیک](../../../../translated_images/sigmoid.8b7ba9d095c789cf72780675d0d1d44980c3736617329abfc392dfc859799704.fa.png) +> +> که نقطه میانی سیگموئید در نقطه 0 محور x قرار دارد، L حداکثر مقدار منحنی است، و k شیب منحنی است. اگر نتیجه تابع بیشتر از 0.5 باشد، برچسب مورد نظر به کلاس '1' از انتخاب دودویی داده می‌شود. در غیر این صورت، به عنوان '0' طبقه‌بندی می‌شود. + +## ساخت مدل خود + +ساخت یک مدل برای یافتن این دسته‌بندی دودویی در Scikit-learn به طرز شگفت‌آوری ساده است. + +[![یادگیری ماشین برای مبتدیان - رگرسیون لجستیک برای دسته‌بندی داده‌ها](https://img.youtube.com/vi/MmZS2otPrQ8/0.jpg)](https://youtu.be/MmZS2otPrQ8 "یادگیری ماشین برای مبتدیان - رگرسیون لجستیک برای دسته‌بندی داده‌ها") + +> 🎥 روی تصویر بالا کلیک کنید تا یک ویدئوی کوتاه درباره ساخت مدل رگرسیون خطی مشاهده کنید. + +1. متغیرهایی را که می‌خواهید در مدل دسته‌بندی خود استفاده کنید انتخاب کنید و مجموعه‌های آموزشی و آزمایشی را با فراخوانی `train_test_split()` تقسیم کنید: + + ```python + from sklearn.model_selection import train_test_split + + X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])] + y = encoded_pumpkins['Color'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + + ``` + +2. اکنون می‌توانید مدل خود را با فراخوانی `fit()` با داده‌های آموزشی خود آموزش دهید و نتیجه آن را چاپ کنید: + + ```python + from sklearn.metrics import f1_score, classification_report + from sklearn.linear_model import LogisticRegression + + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('F1-score: ', f1_score(y_test, predictions)) + ``` + + به امتیاز مدل خود نگاه کنید. با توجه به اینکه فقط حدود 1000 ردیف داده دارید، بد نیست: + + ```output + precision recall f1-score support + + 0 0.94 0.98 0.96 166 + 1 0.85 0.67 0.75 33 + + accuracy 0.92 199 + macro avg 0.89 0.82 0.85 199 + weighted avg 0.92 0.92 0.92 199 + + Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 + 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 + 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 + 0 0 0 1 0 0 0 0 0 0 0 0 1 1] + F1-score: 0.7457627118644068 + ``` + +## درک بهتر از طریق ماتریس سردرگمی + +در حالی که می‌توانید گزارش امتیاز [اصطلاحات](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report) را با چاپ موارد بالا دریافت کنید، ممکن است بتوانید مدل خود را با استفاده از یک [ماتریس سردرگمی](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix) بهتر درک کنید. + +> 🎓 یک '[ماتریس سردرگمی](https://wikipedia.org/wiki/Confusion_matrix)' (یا 'ماتریس خطا') جدولی است که مثبت‌ها و منفی‌های واقعی و کاذب مدل شما را بیان می‌کند و بنابراین دقت پیش‌بینی‌ها را ارزیابی می‌کند. + +1. برای استفاده از ماتریس سردرگمی، `confusion_matrix()` را فراخوانی کنید: + + ```python + from sklearn.metrics import confusion_matrix + confusion_matrix(y_test, predictions) + ``` + + به ماتریس سردرگمی مدل خود نگاه کنید: + + ```output + array([[162, 4], + [ 11, 22]]) + ``` + +در Scikit-learn، ردیف‌ها (محور 0) برچسب‌های واقعی هستند و ستون‌ها (محور 1) برچسب‌های پیش‌بینی شده هستند. + +| | 0 | 1 | +| :---: | :---: | :---: | +| 0 | TN | FP | +| 1 | FN | TP | + +چه اتفاقی می‌افتد؟ فرض کنید مدل ما از آن خواسته شده است که کدوها را بین دو دسته دودویی، دسته 'سفید' و دسته 'غیر سفید' طبقه‌بندی کند. + +- اگر مدل شما یک کدو را به عنوان غیر سفید پیش‌بینی کند و در واقع متعلق به دسته 'غیر سفید' باشد، آن را یک منفی واقعی می‌نامیم، که با عدد بالا سمت چپ نشان داده می‌شود. +- اگر مدل شما یک کدو را به عنوان سفید پیش‌بینی کند و در واقع متعلق به دسته 'غیر سفید' باشد، آن را یک منفی کاذب می‌نامیم، که با عدد پایین سمت چپ نشان داده می‌شود. +- اگر مدل شما یک کدو را به عنوان غیر سفید پیش‌بینی کند و در واقع متعلق به دسته 'سفید' باشد، آن را یک مثبت کاذب می‌نامیم، که با عدد بالا سمت راست نشان داده می‌شود. +- اگر مدل شما یک کدو را به عنوان سفید پیش‌بینی کند و در واقع متعلق به دسته 'سفید' باشد، آن را یک مثبت واقعی می‌نامیم، که با عدد پایین سمت راست نشان داده می‌شود. + +همانطور که ممکن است حدس زده باشید، ترجیح داده می‌شود تعداد مثبت‌های واقعی و منفی‌های واقعی بیشتر و تعداد مثبت‌های کاذب و منفی‌های کاذب کمتر باشد، که نشان می‌دهد مدل بهتر عمل می‌کند. +ارتباط ماتریس سردرگمی با دقت و بازیابی چگونه است؟ به یاد داشته باشید که گزارش طبقه‌بندی چاپ‌شده در بالا دقت (0.85) و بازیابی (0.67) را نشان داد. + +دقت = tp / (tp + fp) = 22 / (22 + 4) = 0.8461538461538461 + +بازیابی = tp / (tp + fn) = 22 / (22 + 11) = 0.6666666666666666 + +✅ سؤال: بر اساس ماتریس سردرگمی، عملکرد مدل چگونه بود؟ پاسخ: بد نبود؛ تعداد قابل توجهی منفی‌های درست وجود دارد، اما چند منفی کاذب نیز مشاهده می‌شود. + +بیایید اصطلاحاتی که قبلاً دیدیم را با کمک ماتریس سردرگمی و نگاشت TP/TN و FP/FN دوباره مرور کنیم: + +🎓 دقت: TP/(TP + FP) کسری از نمونه‌های مرتبط در میان نمونه‌های بازیابی‌شده (مثلاً کدام برچسب‌ها به‌خوبی برچسب‌گذاری شده‌اند) + +🎓 بازیابی: TP/(TP + FN) کسری از نمونه‌های مرتبط که بازیابی شده‌اند، چه به‌خوبی برچسب‌گذاری شده باشند یا نه + +🎓 امتیاز f1: (2 * دقت * بازیابی)/(دقت + بازیابی) میانگین وزنی دقت و بازیابی، که بهترین مقدار آن 1 و بدترین مقدار آن 0 است + +🎓 پشتیبانی: تعداد وقوع هر برچسب بازیابی‌شده + +🎓 دقت کلی: (TP + TN)/(TP + TN + FP + FN) درصد برچسب‌هایی که برای یک نمونه به‌درستی پیش‌بینی شده‌اند. + +🎓 میانگین ماکرو: محاسبه میانگین بدون وزن معیارها برای هر برچسب، بدون در نظر گرفتن عدم تعادل برچسب‌ها. + +🎓 میانگین وزنی: محاسبه میانگین معیارها برای هر برچسب، با در نظر گرفتن عدم تعادل برچسب‌ها و وزن‌دهی آن‌ها بر اساس پشتیبانی (تعداد نمونه‌های درست برای هر برچسب). + +✅ آیا می‌توانید فکر کنید که کدام معیار را باید دنبال کنید اگر بخواهید تعداد منفی‌های کاذب مدل را کاهش دهید؟ + +## نمایش منحنی ROC این مدل + +[![ML for beginners - Analyzing Logistic Regression Performance with ROC Curves](https://img.youtube.com/vi/GApO575jTA0/0.jpg)](https://youtu.be/GApO575jTA0 "ML for beginners - Analyzing Logistic Regression Performance with ROC Curves") + +> 🎥 برای مشاهده یک ویدئوی کوتاه درباره منحنی‌های ROC، روی تصویر بالا کلیک کنید. + +بیایید یک تصویرسازی دیگر انجام دهیم تا منحنی معروف 'ROC' را ببینیم: + +```python +from sklearn.metrics import roc_curve, roc_auc_score +import matplotlib +import matplotlib.pyplot as plt +%matplotlib inline + +y_scores = model.predict_proba(X_test) +fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1]) + +fig = plt.figure(figsize=(6, 6)) +plt.plot([0, 1], [0, 1], 'k--') +plt.plot(fpr, tpr) +plt.xlabel('False Positive Rate') +plt.ylabel('True Positive Rate') +plt.title('ROC Curve') +plt.show() +``` + +با استفاده از Matplotlib، منحنی [Receiving Operating Characteristic](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc) یا ROC مدل را رسم کنید. منحنی‌های ROC معمولاً برای مشاهده خروجی یک طبقه‌بند از نظر مثبت‌های درست در مقابل مثبت‌های کاذب استفاده می‌شوند. "منحنی‌های ROC معمولاً نرخ مثبت درست را روی محور Y و نرخ مثبت کاذب را روی محور X نشان می‌دهند." بنابراین، شیب منحنی و فاصله بین خط میانی و منحنی اهمیت دارد: شما منحنی‌ای می‌خواهید که سریعاً به سمت بالا و بالای خط حرکت کند. در مورد ما، ابتدا مثبت‌های کاذب وجود دارند و سپس خط به‌درستی به سمت بالا و بالای خط حرکت می‌کند: + +![ROC](../../../../translated_images/ROC_2.777f20cdfc4988ca683ade6850ac832cb70c96c12f1b910d294f270ef36e1a1c.fa.png) + +در نهایت، از API [`roc_auc_score`](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score) Scikit-learn استفاده کنید تا 'مساحت زیر منحنی' (AUC) واقعی را محاسبه کنید: + +```python +auc = roc_auc_score(y_test,y_scores[:,1]) +print(auc) +``` +نتیجه `0.9749908725812341` است. با توجه به اینکه AUC از 0 تا 1 متغیر است، شما یک امتیاز بزرگ می‌خواهید، زیرا مدلی که 100% پیش‌بینی‌هایش درست باشد، AUC برابر با 1 خواهد داشت؛ در این مورد، مدل _خیلی خوب_ است. + +در درس‌های آینده درباره طبقه‌بندی‌ها، یاد خواهید گرفت که چگونه برای بهبود امتیازات مدل خود تکرار کنید. اما فعلاً، تبریک می‌گوییم! شما این درس‌های رگرسیون را به پایان رساندید! + +--- +## 🚀چالش + +چیزهای زیادی برای بررسی در مورد رگرسیون لجستیک وجود دارد! اما بهترین راه برای یادگیری، آزمایش کردن است. یک مجموعه داده پیدا کنید که برای این نوع تحلیل مناسب باشد و با آن یک مدل بسازید. چه چیزی یاد می‌گیرید؟ نکته: برای مجموعه داده‌های جالب [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) را امتحان کنید. + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/16/) + +## مرور و مطالعه شخصی + +چند صفحه اول [این مقاله از دانشگاه استنفورد](https://web.stanford.edu/~jurafsky/slp3/5.pdf) را درباره برخی کاربردهای عملی رگرسیون لجستیک بخوانید. درباره وظایفی فکر کنید که برای یکی از انواع وظایف رگرسیون که تا اینجا مطالعه کرده‌ایم مناسب‌تر هستند. چه چیزی بهتر عمل می‌کند؟ + +## تکلیف + +[تکرار این رگرسیون](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/2-Regression/4-Logistic/assignment.md b/translations/fa/2-Regression/4-Logistic/assignment.md new file mode 100644 index 000000000..b854cc3fb --- /dev/null +++ b/translations/fa/2-Regression/4-Logistic/assignment.md @@ -0,0 +1,25 @@ + +# تلاش مجدد برای برخی رگرسیون‌ها + +## دستورالعمل‌ها + +در درس، شما از یک زیرمجموعه داده‌های کدو تنبل استفاده کردید. اکنون به داده‌های اصلی بازگردید و سعی کنید از تمام آن‌ها، که پاک‌سازی و استاندارد شده‌اند، برای ساخت یک مدل رگرسیون لجستیک استفاده کنید. + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ----------- | ------------------------------------------------------------------------- | --------------------------------------------------------- | ------------------------------------------------------- | +| | یک نوت‌بوک ارائه شده است که مدل به خوبی توضیح داده شده و عملکرد خوبی دارد | یک نوت‌بوک ارائه شده است که مدل حداقل عملکرد را دارد | یک نوت‌بوک ارائه شده است که مدل عملکرد ضعیفی دارد یا هیچ مدلی ندارد | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/2-Regression/4-Logistic/notebook.ipynb b/translations/fa/2-Regression/4-Logistic/notebook.ipynb new file mode 100644 index 000000000..fe24a38ff --- /dev/null +++ b/translations/fa/2-Regression/4-Logistic/notebook.ipynb @@ -0,0 +1,269 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## انواع کدو و رنگ\n", + "\n", + "کتابخانه‌های مورد نیاز و مجموعه داده را بارگذاری کنید. داده‌ها را به یک دیتافریم تبدیل کنید که شامل بخشی از داده‌ها باشد:\n", + "\n", + "بیایید رابطه بین رنگ و نوع کدو را بررسی کنیم.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
            0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
            1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
            2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            \n", + "

            5 rows × 26 columns

            \n", + "
            " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "dee08c2b49057b0de8b6752c4dbca368", + "translation_date": "2025-09-04T01:18:32+00:00", + "source_file": "2-Regression/4-Logistic/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fa/2-Regression/4-Logistic/solution/Julia/README.md b/translations/fa/2-Regression/4-Logistic/solution/Julia/README.md new file mode 100644 index 000000000..b349eac52 --- /dev/null +++ b/translations/fa/2-Regression/4-Logistic/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb b/translations/fa/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb new file mode 100644 index 000000000..669d30e29 --- /dev/null +++ b/translations/fa/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb @@ -0,0 +1,685 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## ساخت یک مدل رگرسیون لجستیک - درس ۴\n", + "\n", + "![اینفوگرافیک رگرسیون لجستیک در مقابل رگرسیون خطی](../../../../../../translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.fa.png)\n", + "\n", + "#### **[آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/)**\n", + "\n", + "#### مقدمه\n", + "\n", + "در این درس پایانی درباره رگرسیون، یکی از تکنیک‌های پایه‌ای و *کلاسیک* یادگیری ماشین، به بررسی رگرسیون لجستیک خواهیم پرداخت. از این تکنیک برای کشف الگوها به منظور پیش‌بینی دسته‌بندی‌های دودویی استفاده می‌شود. آیا این آب‌نبات شکلاتی است یا نه؟ آیا این بیماری مسری است یا نه؟ آیا این مشتری این محصول را انتخاب می‌کند یا نه؟\n", + "\n", + "در این درس، شما یاد خواهید گرفت:\n", + "\n", + "- تکنیک‌های مربوط به رگرسیون لجستیک\n", + "\n", + "✅ درک خود را از کار با این نوع رگرسیون در این [ماژول آموزشی](https://learn.microsoft.com/training/modules/introduction-classification-models/?WT.mc_id=academic-77952-leestott) عمیق‌تر کنید.\n", + "\n", + "## پیش‌نیاز\n", + "\n", + "با کار کردن روی داده‌های کدو تنبل، اکنون به اندازه کافی با آن آشنا هستیم تا متوجه شویم که یک دسته‌بندی دودویی وجود دارد که می‌توانیم با آن کار کنیم: `Color`.\n", + "\n", + "بیایید یک مدل رگرسیون لجستیک بسازیم تا پیش‌بینی کنیم که با توجه به برخی متغیرها، *رنگ یک کدو تنبل احتمالاً چه خواهد بود* (نارنجی 🎃 یا سفید 👻).\n", + "\n", + "> چرا در یک درس مربوط به رگرسیون درباره دسته‌بندی دودویی صحبت می‌کنیم؟ فقط به دلیل راحتی زبانی، زیرا رگرسیون لجستیک [در واقع یک روش دسته‌بندی](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression) است، هرچند که مبتنی بر خطی بودن است. درباره روش‌های دیگر دسته‌بندی داده‌ها در گروه درس بعدی یاد بگیرید.\n", + "\n", + "برای این درس، به بسته‌های زیر نیاز خواهیم داشت:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) یک [مجموعه از بسته‌های R](https://www.tidyverse.org/packages) است که طراحی شده تا علم داده را سریع‌تر، آسان‌تر و لذت‌بخش‌تر کند!\n", + "\n", + "- `tidymodels`: چارچوب [tidymodels](https://www.tidymodels.org/) یک [مجموعه از بسته‌ها](https://www.tidymodels.org/packages/) برای مدل‌سازی و یادگیری ماشین است.\n", + "\n", + "- `janitor`: بسته [janitor](https://github.com/sfirke/janitor) ابزارهای ساده‌ای برای بررسی و پاک‌سازی داده‌های کثیف ارائه می‌دهد.\n", + "\n", + "- `ggbeeswarm`: بسته [ggbeeswarm](https://github.com/eclarke/ggbeeswarm) روش‌هایی برای ایجاد نمودارهای سبک \"beeswarm\" با استفاده از ggplot2 ارائه می‌دهد.\n", + "\n", + "می‌توانید این بسته‌ها را به این صورت نصب کنید:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"ggbeeswarm\"))`\n", + "\n", + "به طور جایگزین، اسکریپت زیر بررسی می‌کند که آیا بسته‌های مورد نیاز برای تکمیل این ماژول را دارید یا خیر و در صورت نبود، آن‌ها را برای شما نصب می‌کند.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, ggbeeswarm)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **تعریف سوال**\n", + "\n", + "برای اهداف ما، این سوال را به صورت دودویی بیان می‌کنیم: «سفید» یا «غیر سفید». همچنین یک دسته «راه‌راه» در مجموعه داده ما وجود دارد، اما تعداد نمونه‌های آن کم است، بنابراین از آن استفاده نمی‌کنیم. این دسته به هر حال پس از حذف مقادیر خالی از مجموعه داده ناپدید می‌شود.\n", + "\n", + "> 🎃 یک نکته جالب: گاهی اوقات کدوهای سفید را «کدوهای روح» می‌نامیم. حکاکی روی آن‌ها خیلی آسان نیست، به همین دلیل به اندازه کدوهای نارنجی محبوب نیستند، اما ظاهر جالبی دارند! بنابراین می‌توانیم سوال خود را به این صورت بازنویسی کنیم: «روح» یا «غیر روح». 👻\n", + "\n", + "## **درباره رگرسیون لجستیک**\n", + "\n", + "رگرسیون لجستیک در چندین جنبه مهم با رگرسیون خطی که قبلاً درباره آن یاد گرفتید، تفاوت دارد.\n", + "\n", + "#### **دسته‌بندی دودویی**\n", + "\n", + "رگرسیون لجستیک ویژگی‌های مشابه رگرسیون خطی را ارائه نمی‌دهد. رگرسیون لجستیک پیش‌بینی درباره یک `دسته‌بندی دودویی` (\"نارنجی یا غیر نارنجی\") ارائه می‌دهد، در حالی که رگرسیون خطی قادر به پیش‌بینی `مقادیر پیوسته` است، مثلاً با توجه به منشأ کدو و زمان برداشت، *چقدر قیمت آن افزایش خواهد یافت*.\n", + "\n", + "![اینفوگرافیک توسط Dasani Madipalli](../../../../../../translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.fa.png)\n", + "\n", + "### دسته‌بندی‌های دیگر\n", + "\n", + "انواع دیگری از رگرسیون لجستیک وجود دارد، از جمله چندگانه و ترتیبی:\n", + "\n", + "- **چندگانه**، که شامل داشتن بیش از یک دسته است - \"نارنجی، سفید، و راه‌راه\".\n", + "\n", + "- **ترتیبی**، که شامل دسته‌های مرتب شده است، مفید اگر بخواهیم نتایج خود را به صورت منطقی مرتب کنیم، مانند کدوهایی که بر اساس تعداد محدودی از اندازه‌ها مرتب شده‌اند (کوچک، متوسط، بزرگ، خیلی بزرگ، و غیره).\n", + "\n", + "![رگرسیون چندگانه در مقابل ترتیبی](../../../../../../translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.fa.png)\n", + "\n", + "#### **متغیرها لازم نیست همبستگی داشته باشند**\n", + "\n", + "به یاد دارید که رگرسیون خطی با متغیرهای همبسته بهتر عمل می‌کرد؟ رگرسیون لجستیک برعکس است - متغیرها لازم نیست هم‌راستا باشند. این ویژگی برای این داده‌ها که همبستگی‌های نسبتاً ضعیفی دارند، مناسب است.\n", + "\n", + "#### **نیاز به داده‌های تمیز و زیاد**\n", + "\n", + "رگرسیون لجستیک اگر از داده‌های بیشتری استفاده کنید، نتایج دقیق‌تری ارائه می‌دهد؛ مجموعه داده کوچک ما برای این کار بهینه نیست، بنابراین این نکته را در نظر داشته باشید.\n", + "\n", + "✅ به انواع داده‌هایی فکر کنید که برای رگرسیون لجستیک مناسب هستند.\n", + "\n", + "## تمرین - مرتب‌سازی داده‌ها\n", + "\n", + "ابتدا داده‌ها را کمی تمیز کنید، مقادیر خالی را حذف کنید و فقط برخی از ستون‌ها را انتخاب کنید:\n", + "\n", + "1. کد زیر را اضافه کنید:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Load the core tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the data and clean column names\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\") %>% \n", + " clean_names()\n", + "\n", + "# Select desired columns\n", + "pumpkins_select <- pumpkins %>% \n", + " select(c(city_name, package, variety, origin, item_size, color)) \n", + "\n", + "# Drop rows containing missing values and encode color as factor (category)\n", + "pumpkins_select <- pumpkins_select %>% \n", + " drop_na() %>% \n", + " mutate(color = factor(color))\n", + "\n", + "# View the first few rows\n", + "pumpkins_select %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "شما همیشه می‌توانید با استفاده از تابع [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) که در زیر نشان داده شده است، نگاهی سریع به دیتافریم جدید خود بیندازید:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "pumpkins_select %>% \n", + " glimpse()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "بیایید تأیید کنیم که ما واقعاً قصد داریم یک مسئله طبقه‌بندی دودویی را حل کنیم:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Subset distinct observations in outcome column\n", + "pumpkins_select %>% \n", + " distinct(color)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### تجسم‌سازی - نمودار دسته‌بندی‌شده\n", + "تا اینجا داده‌های کدو تنبل را دوباره بارگذاری کرده‌اید و آن‌ها را پاک‌سازی کرده‌اید تا مجموعه داده‌ای شامل چند متغیر، از جمله رنگ، حفظ شود. حالا بیایید دیتافریم را در نوت‌بوک با استفاده از کتابخانه ggplot تجسم کنیم.\n", + "\n", + "کتابخانه ggplot روش‌های جالبی برای تجسم داده‌ها ارائه می‌دهد. به عنوان مثال، می‌توانید توزیع داده‌ها را برای هر گونه و رنگ در یک نمودار دسته‌بندی‌شده مقایسه کنید.\n", + "\n", + "1. چنین نموداری را با استفاده از تابع geombar ایجاد کنید، از داده‌های کدو تنبل ما استفاده کنید و یک نگاشت رنگی برای هر دسته کدو تنبل (نارنجی یا سفید) مشخص کنید:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "# Specify colors for each value of the hue variable\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# Create the bar plot\n", + "ggplot(pumpkins_select, aes(y = variety, fill = color)) +\n", + " geom_bar(position = \"dodge\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(y = \"Variety\", fill = \"Color\") +\n", + " theme_minimal()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "با مشاهده داده‌ها، می‌توانید ببینید که داده‌های مربوط به رنگ چگونه با نوع (Variety) ارتباط دارند.\n", + "\n", + "✅ با توجه به این نمودار دسته‌بندی، چه بررسی‌های جالبی می‌توانید تصور کنید؟\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### پیش‌پردازش داده‌ها: کدگذاری ویژگی‌ها\n", + "\n", + "مجموعه داده‌های کدو تنبل ما شامل مقادیر رشته‌ای برای تمام ستون‌های خود است. کار با داده‌های دسته‌بندی‌شده برای انسان‌ها شهودی است، اما برای ماشین‌ها این‌گونه نیست. الگوریتم‌های یادگیری ماشین با اعداد بهتر کار می‌کنند. به همین دلیل، کدگذاری یک مرحله بسیار مهم در فاز پیش‌پردازش داده‌ها است، زیرا به ما امکان می‌دهد داده‌های دسته‌بندی‌شده را به داده‌های عددی تبدیل کنیم، بدون اینکه اطلاعاتی از دست برود. کدگذاری خوب منجر به ساخت یک مدل خوب می‌شود.\n", + "\n", + "برای کدگذاری ویژگی‌ها، دو نوع اصلی کدگذار وجود دارد:\n", + "\n", + "1. کدگذار ترتیبی: این نوع کدگذاری برای متغیرهای ترتیبی مناسب است، که متغیرهای دسته‌بندی‌شده‌ای هستند که داده‌هایشان از یک ترتیب منطقی پیروی می‌کنند، مانند ستون `item_size` در مجموعه داده ما. این کدگذار یک نگاشت ایجاد می‌کند که هر دسته با یک عدد نشان داده می‌شود، که ترتیب دسته در ستون را نشان می‌دهد.\n", + "\n", + "2. کدگذار دسته‌ای: این نوع کدگذاری برای متغیرهای اسمی مناسب است، که متغیرهای دسته‌بندی‌شده‌ای هستند که داده‌هایشان از یک ترتیب منطقی پیروی نمی‌کنند، مانند تمام ویژگی‌هایی که متفاوت از `item_size` در مجموعه داده ما هستند. این نوع کدگذاری به صورت یک کدگذاری یک‌به‌چند است، به این معنا که هر دسته با یک ستون دودویی نشان داده می‌شود: متغیر کدگذاری‌شده برابر با 1 است اگر کدو تنبل متعلق به آن نوع باشد و در غیر این صورت برابر با 0 است.\n", + "\n", + "Tidymodels یک بسته دیگر بسیار کاربردی ارائه می‌دهد: [recipes](https://recipes.tidymodels.org/) - یک بسته برای پیش‌پردازش داده‌ها. ما یک `recipe` تعریف می‌کنیم که مشخص می‌کند تمام ستون‌های پیش‌بینی‌کننده باید به مجموعه‌ای از اعداد صحیح کدگذاری شوند، آن را `prep` می‌کنیم تا مقادیر و آمار مورد نیاز برای هر عملیات تخمین زده شود و در نهایت آن را `bake` می‌کنیم تا محاسبات را به داده‌های جدید اعمال کنیم.\n", + "\n", + "> به طور معمول، recipes معمولاً به عنوان یک پیش‌پردازنده برای مدل‌سازی استفاده می‌شود، جایی که مشخص می‌کند چه مراحلی باید بر روی یک مجموعه داده اعمال شود تا برای مدل‌سازی آماده شود. در این حالت، **به شدت توصیه می‌شود** که به جای تخمین دستی یک recipe با استفاده از prep و bake، از یک `workflow()` استفاده کنید. به زودی همه این‌ها را خواهیم دید.\n", + ">\n", + "> اما در حال حاضر، ما از recipes + prep + bake استفاده می‌کنیم تا مشخص کنیم چه مراحلی باید بر روی یک مجموعه داده اعمال شود تا برای تحلیل داده‌ها آماده شود و سپس داده‌های پیش‌پردازش‌شده را با مراحل اعمال‌شده استخراج کنیم.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Preprocess and extract data to allow some data analysis\n", + "baked_pumpkins <- recipe(color ~ ., data = pumpkins_select) %>%\n", + " # Define ordering for item_size column\n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " # Convert factors to numbers using the order defined above (Ordinal encoding)\n", + " step_integer(item_size, zero_based = F) %>%\n", + " # Encode all other predictors using one hot encoding\n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE) %>%\n", + " prep(data = pumpkin_select) %>%\n", + " bake(new_data = NULL)\n", + "\n", + "# Display the first few rows of preprocessed data\n", + "baked_pumpkins %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "✅ مزایای استفاده از رمزگذار ترتیبی برای ستون اندازه آیتم چیست؟\n", + "\n", + "### تحلیل روابط بین متغیرها\n", + "\n", + "اکنون که داده‌های خود را پیش‌پردازش کرده‌ایم، می‌توانیم روابط بین ویژگی‌ها و برچسب را تحلیل کنیم تا ایده‌ای از اینکه مدل چقدر قادر خواهد بود برچسب را با توجه به ویژگی‌ها پیش‌بینی کند، به دست آوریم. بهترین روش برای انجام این نوع تحلیل، رسم داده‌ها است. \n", + "ما دوباره از تابع ggplot geom_boxplot_ استفاده خواهیم کرد تا روابط بین اندازه آیتم، تنوع و رنگ را در یک نمودار دسته‌بندی شده به تصویر بکشیم. برای رسم بهتر داده‌ها، از ستون رمزگذاری‌شده اندازه آیتم و ستون رمزگذاری‌نشده تنوع استفاده خواهیم کرد.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Define the color palette\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins_select_plot<-pumpkins_select\n", + "pumpkins_select_plot$item_size <- baked_pumpkins$item_size\n", + "\n", + "# Create the grouped box plot\n", + "ggplot(pumpkins_select_plot, aes(x = `item_size`, y = color, fill = color)) +\n", + " geom_boxplot() +\n", + " facet_grid(variety ~ ., scales = \"free_x\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(x = \"Item Size\", y = \"\") +\n", + " theme_minimal() +\n", + " theme(strip.text = element_text(size = 12)) +\n", + " theme(axis.text.x = element_text(size = 10)) +\n", + " theme(axis.title.x = element_text(size = 12)) +\n", + " theme(axis.title.y = element_blank()) +\n", + " theme(legend.position = \"bottom\") +\n", + " guides(fill = guide_legend(title = \"Color\")) +\n", + " theme(panel.spacing = unit(0.5, \"lines\"))+\n", + " theme(strip.text.y = element_text(size = 4, hjust = 0)) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### استفاده از نمودار ازدحام\n", + "\n", + "از آنجا که رنگ یک دسته‌بندی دودویی است (سفید یا غیرسفید)، برای نمایش نیاز به '[رویکرد تخصصی](https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf)' دارد.\n", + "\n", + "از یک `نمودار ازدحام` استفاده کنید تا توزیع رنگ را نسبت به اندازه آیتم نشان دهید.\n", + "\n", + "ما از [بسته ggbeeswarm](https://github.com/eclarke/ggbeeswarm) استفاده خواهیم کرد که روش‌هایی برای ایجاد نمودارهای سبک ازدحام با استفاده از ggplot2 ارائه می‌دهد. نمودارهای ازدحام روشی برای نمایش نقاطی هستند که معمولاً روی هم قرار می‌گیرند، به‌طوری‌که در کنار یکدیگر قرار بگیرند.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create beeswarm plots of color and item_size\n", + "baked_pumpkins %>% \n", + " mutate(color = factor(color)) %>% \n", + " ggplot(mapping = aes(x = color, y = item_size, color = color)) +\n", + " geom_quasirandom() +\n", + " scale_color_brewer(palette = \"Dark2\", direction = -1) +\n", + " theme(legend.position = \"none\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "حالا که ایده‌ای از رابطه بین دسته‌های دودویی رنگ و گروه بزرگ‌تر اندازه‌ها داریم، بیایید رگرسیون لجستیک را بررسی کنیم تا رنگ احتمالی یک کدو تنبل مشخص را تعیین کنیم.\n", + "\n", + "## مدل خود را بسازید\n", + "\n", + "متغیرهایی را که می‌خواهید در مدل طبقه‌بندی خود استفاده کنید انتخاب کنید و داده‌ها را به مجموعه‌های آموزشی و آزمایشی تقسیم کنید. [rsample](https://rsample.tidymodels.org/)، یک بسته در Tidymodels، زیرساختی برای تقسیم و نمونه‌گیری مجدد داده‌ها به صورت کارآمد فراهم می‌کند:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Split data into 80% for training and 20% for testing\n", + "set.seed(2056)\n", + "pumpkins_split <- pumpkins_select %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "# Extract the data in each split\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "# Print out the first 5 rows of the training set\n", + "pumpkins_train %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "🙌 حالا آماده‌ایم که یک مدل را با تطبیق ویژگی‌های آموزشی به برچسب آموزشی (رنگ) آموزش دهیم.\n", + "\n", + "ابتدا یک دستورالعمل (recipe) ایجاد می‌کنیم که مراحل پیش‌پردازش داده‌ها را مشخص می‌کند تا داده‌ها برای مدل‌سازی آماده شوند؛ به عنوان مثال: کدگذاری متغیرهای دسته‌بندی‌شده به مجموعه‌ای از اعداد صحیح. درست مانند `baked_pumpkins`، یک `pumpkins_recipe` ایجاد می‌کنیم اما آن را `prep` و `bake` نمی‌کنیم، زیرا این مراحل در یک جریان کاری (workflow) گنجانده می‌شوند که چند مرحله بعد آن را خواهید دید.\n", + "\n", + "روش‌های متعددی برای مشخص کردن یک مدل رگرسیون لجستیک در Tidymodels وجود دارد. به `?logistic_reg()` مراجعه کنید. فعلاً، یک مدل رگرسیون لجستیک را از طریق موتور پیش‌فرض `stats::glm()` مشخص می‌کنیم.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create a recipe that specifies preprocessing steps for modelling\n", + "pumpkins_recipe <- recipe(color ~ ., data = pumpkins_train) %>% \n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " step_integer(item_size, zero_based = F) %>% \n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE)\n", + "\n", + "# Create a logistic model specification\n", + "log_reg <- logistic_reg() %>% \n", + " set_engine(\"glm\") %>% \n", + " set_mode(\"classification\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "حالا که یک دستورالعمل و مشخصات مدل داریم، باید راهی پیدا کنیم تا آن‌ها را در قالب یک شیء ترکیب کنیم که ابتدا داده‌ها را پیش‌پردازش کند (پشت صحنه با prep+bake)، مدل را روی داده‌های پیش‌پردازش شده اجرا کند و همچنین امکان فعالیت‌های پس‌پردازش احتمالی را فراهم کند.\n", + "\n", + "در Tidymodels، این شیء کاربردی [`workflow`](https://workflows.tidymodels.org/) نامیده می‌شود و به راحتی اجزای مدل‌سازی شما را نگه می‌دارد.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Bundle modelling components in a workflow\n", + "log_reg_wf <- workflow() %>% \n", + " add_recipe(pumpkins_recipe) %>% \n", + " add_model(log_reg)\n", + "\n", + "# Print out the workflow\n", + "log_reg_wf\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "پس از اینکه یک جریان کاری *مشخص* شد، می‌توان یک مدل را با استفاده از تابع [`fit()`](https://tidymodels.github.io/parsnip/reference/fit.html) `آموزش` داد. جریان کاری ابتدا یک دستورالعمل را تخمین زده و داده‌ها را پیش‌پردازش می‌کند، بنابراین نیازی نیست که این کار را به صورت دستی با استفاده از prep و bake انجام دهیم.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Train the model\n", + "wf_fit <- log_reg_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the trained workflow\n", + "wf_fit\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "مدل مقادیر ضرایب یاد گرفته شده در طول آموزش را نشان می‌دهد.\n", + "\n", + "حالا که مدل را با استفاده از داده‌های آموزشی آموزش داده‌ایم، می‌توانیم با استفاده از [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html) پیش‌بینی‌هایی روی داده‌های آزمایشی انجام دهیم. بیایید با استفاده از مدل، برچسب‌ها را برای مجموعه آزمایشی و احتمال‌ها برای هر برچسب پیش‌بینی کنیم. وقتی احتمال بیشتر از 0.5 باشد، کلاس پیش‌بینی شده `WHITE` است و در غیر این صورت `ORANGE`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make predictions for color and corresponding probabilities\n", + "results <- pumpkins_test %>% select(color) %>% \n", + " bind_cols(wf_fit %>% \n", + " predict(new_data = pumpkins_test)) %>%\n", + " bind_cols(wf_fit %>%\n", + " predict(new_data = pumpkins_test, type = \"prob\"))\n", + "\n", + "# Compare predictions\n", + "results %>% \n", + " slice_head(n = 10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "خیلی عالی! این توضیحات بیشتری درباره نحوه عملکرد رگرسیون لجستیک ارائه می‌دهد.\n", + "\n", + "### درک بهتر با استفاده از ماتریس سردرگمی\n", + "\n", + "مقایسه هر پیش‌بینی با مقدار واقعی متناظر آن (که به عنوان \"حقیقت زمین\" شناخته می‌شود) روش چندان موثری برای تعیین میزان دقت مدل در پیش‌بینی نیست. خوشبختانه، Tidymodels چند ابزار دیگر نیز در اختیار دارد: [`yardstick`](https://yardstick.tidymodels.org/) - یک بسته که برای اندازه‌گیری اثربخشی مدل‌ها با استفاده از معیارهای عملکرد استفاده می‌شود.\n", + "\n", + "یکی از معیارهای عملکرد مرتبط با مسائل طبقه‌بندی، [`ماتریس سردرگمی`](https://wikipedia.org/wiki/Confusion_matrix) است. ماتریس سردرگمی نشان می‌دهد که یک مدل طبقه‌بندی چقدر خوب عمل می‌کند. این ماتریس تعداد نمونه‌هایی را که در هر کلاس به درستی توسط مدل طبقه‌بندی شده‌اند، ثبت می‌کند. در مورد ما، این ماتریس نشان می‌دهد که چند کدو تنبل نارنجی به درستی به عنوان نارنجی طبقه‌بندی شده‌اند و چند کدو تنبل سفید به درستی به عنوان سفید طبقه‌بندی شده‌اند؛ همچنین ماتریس سردرگمی نشان می‌دهد که چند نمونه به دسته‌بندی‌های **اشتباه** اختصاص داده شده‌اند.\n", + "\n", + "تابع [**`conf_mat()`**](https://tidymodels.github.io/yardstick/reference/conf_mat.html) از بسته yardstick این جدول متقاطع از کلاس‌های مشاهده‌شده و پیش‌بینی‌شده را محاسبه می‌کند.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Confusion matrix for prediction results\n", + "conf_mat(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "بیایید ماتریس سردرگمی را تفسیر کنیم. مدل ما باید کدوها را بین دو دسته‌ی دودویی، دسته‌ی `سفید` و دسته‌ی `غیر سفید` طبقه‌بندی کند.\n", + "\n", + "- اگر مدل شما یک کدو را سفید پیش‌بینی کند و در واقع به دسته‌ی 'سفید' تعلق داشته باشد، به آن `مثبت واقعی` می‌گوییم که با عدد بالا سمت چپ نشان داده می‌شود.\n", + "\n", + "- اگر مدل شما یک کدو را غیر سفید پیش‌بینی کند و در واقع به دسته‌ی 'سفید' تعلق داشته باشد، به آن `منفی کاذب` می‌گوییم که با عدد پایین سمت چپ نشان داده می‌شود.\n", + "\n", + "- اگر مدل شما یک کدو را سفید پیش‌بینی کند و در واقع به دسته‌ی 'غیر سفید' تعلق داشته باشد، به آن `مثبت کاذب` می‌گوییم که با عدد بالا سمت راست نشان داده می‌شود.\n", + "\n", + "- اگر مدل شما یک کدو را غیر سفید پیش‌بینی کند و در واقع به دسته‌ی 'غیر سفید' تعلق داشته باشد، به آن `منفی واقعی` می‌گوییم که با عدد پایین سمت راست نشان داده می‌شود.\n", + "\n", + "| حقیقت |\n", + "|:-----:|\n", + "\n", + "| | | |\n", + "|---------------|--------|-------|\n", + "| **پیش‌بینی‌شده** | سفید | نارنجی |\n", + "| سفید | TP | FP |\n", + "| نارنجی | FN | TN |\n", + "\n", + "همان‌طور که احتمالاً حدس زده‌اید، ترجیح داده می‌شود تعداد مثبت‌های واقعی و منفی‌های واقعی بیشتر باشد و تعداد مثبت‌های کاذب و منفی‌های کاذب کمتر باشد، که نشان‌دهنده‌ی عملکرد بهتر مدل است.\n", + "\n", + "ماتریس سردرگمی مفید است زیرا منجر به معیارهای دیگری می‌شود که می‌توانند به ما در ارزیابی بهتر عملکرد یک مدل طبقه‌بندی کمک کنند. بیایید برخی از آن‌ها را مرور کنیم:\n", + "\n", + "🎓 دقت: `TP/(TP + FP)` که به عنوان نسبت مثبت‌های پیش‌بینی‌شده که واقعاً مثبت هستند تعریف می‌شود. همچنین به آن [ارزش پیش‌بینی مثبت](https://en.wikipedia.org/wiki/Positive_predictive_value \"Positive predictive value\") گفته می‌شود.\n", + "\n", + "🎓 بازیابی: `TP/(TP + FN)` که به عنوان نسبت نتایج مثبت از تعداد نمونه‌هایی که واقعاً مثبت هستند تعریف می‌شود. همچنین به آن `حساسیت` گفته می‌شود.\n", + "\n", + "🎓 ویژگی: `TN/(TN + FP)` که به عنوان نسبت نتایج منفی از تعداد نمونه‌هایی که واقعاً منفی هستند تعریف می‌شود.\n", + "\n", + "🎓 دقت کلی: `TP + TN/(TP + TN + FP + FN)` درصد برچسب‌هایی که برای یک نمونه به درستی پیش‌بینی شده‌اند.\n", + "\n", + "🎓 معیار F: میانگین وزنی دقت و بازیابی، که بهترین مقدار آن ۱ و بدترین مقدار آن ۰ است.\n", + "\n", + "بیایید این معیارها را محاسبه کنیم!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Combine metric functions and calculate them all at once\n", + "eval_metrics <- metric_set(ppv, recall, spec, f_meas, accuracy)\n", + "eval_metrics(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## نمایش منحنی ROC این مدل\n", + "\n", + "بیایید یک تجسم دیگر انجام دهیم تا به اصطلاح [`منحنی ROC`](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) را ببینیم:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make a roc_curve\n", + "results %>% \n", + " roc_curve(color, .pred_ORANGE) %>% \n", + " autoplot()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "منحنی‌های ROC اغلب برای بررسی خروجی یک دسته‌بند از نظر مثبت‌های واقعی در مقابل مثبت‌های کاذب استفاده می‌شوند. در منحنی‌های ROC معمولاً `True Positive Rate`/حساسیت در محور عمودی (Y) و `False Positive Rate`/1-ویژگی در محور افقی (X) نمایش داده می‌شوند. بنابراین، شیب منحنی و فاصله بین خط میانی و منحنی اهمیت دارد: شما به دنبال منحنی‌ای هستید که به سرعت به سمت بالا حرکت کند و از خط عبور کند. در مورد ما، ابتدا مثبت‌های کاذب وجود دارند و سپس خط به درستی به سمت بالا و جلو حرکت می‌کند.\n", + "\n", + "در نهایت، بیایید از `yardstick::roc_auc()` استفاده کنیم تا مساحت زیر منحنی (AUC) را محاسبه کنیم. یکی از روش‌های تفسیر AUC این است که آن را به‌عنوان احتمال اینکه مدل یک نمونه مثبت تصادفی را بالاتر از یک نمونه منفی تصادفی رتبه‌بندی کند، در نظر بگیریم.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Calculate area under curve\n", + "results %>% \n", + " roc_auc(color, .pred_ORANGE)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "نتیجه حدود `0.975` است. با توجه به اینکه AUC بین 0 تا 1 قرار دارد، شما به دنبال امتیاز بالایی هستید، زیرا مدلی که پیش‌بینی‌هایش 100% درست باشد، AUC برابر با 1 خواهد داشت؛ در این مورد، مدل *نسبتاً خوب* عمل کرده است.\n", + "\n", + "در درس‌های آینده درباره طبقه‌بندی‌ها، یاد خواهید گرفت که چگونه امتیازات مدل خود را بهبود دهید (مانند برخورد با داده‌های نامتوازن در این مورد).\n", + "\n", + "## 🚀چالش\n", + "\n", + "چیزهای زیادی درباره رگرسیون لجستیک وجود دارد که باید کشف شوند! اما بهترین راه برای یادگیری، آزمایش کردن است. یک مجموعه داده پیدا کنید که برای این نوع تحلیل مناسب باشد و با آن یک مدل بسازید. چه چیزی یاد می‌گیرید؟ نکته: برای مجموعه داده‌های جالب [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) را امتحان کنید.\n", + "\n", + "## مرور و مطالعه شخصی\n", + "\n", + "چند صفحه اول [این مقاله از دانشگاه استنفورد](https://web.stanford.edu/~jurafsky/slp3/5.pdf) را درباره کاربردهای عملی رگرسیون لجستیک بخوانید. درباره وظایفی فکر کنید که برای یکی از انواع رگرسیون‌هایی که تا اینجا مطالعه کرده‌ایم مناسب‌تر هستند. کدام بهتر عمل می‌کند؟\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "langauge": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "feaf125f481a89c468fa115bf2aed580", + "translation_date": "2025-09-04T01:27:27+00:00", + "source_file": "2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/fa/2-Regression/4-Logistic/solution/notebook.ipynb b/translations/fa/2-Regression/4-Logistic/solution/notebook.ipynb new file mode 100644 index 000000000..52157739e --- /dev/null +++ b/translations/fa/2-Regression/4-Logistic/solution/notebook.ipynb @@ -0,0 +1,1259 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## رگرسیون لجستیک - درس ۴\n", + "\n", + "کتابخانه‌ها و مجموعه داده‌های مورد نیاز را بارگذاری کنید. داده‌ها را به یک دیتافریم تبدیل کنید که شامل زیرمجموعه‌ای از داده‌ها باشد:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
            0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
            1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
            2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
            \n", + "

            5 rows × 26 columns

            \n", + "
            " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \\\n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \\\n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            City NamePackageVarietyOriginItem SizeColor
            2BALTIMORE24 inch binsHOWDEN TYPEDELAWAREmedORANGE
            3BALTIMORE24 inch binsHOWDEN TYPEVIRGINIAmedORANGE
            4BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
            5BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
            6BALTIMORE36 inch binsHOWDEN TYPEMARYLANDmedORANGE
            \n", + "
            " + ], + "text/plain": [ + " City Name Package Variety Origin Item Size Color\n", + "2 BALTIMORE 24 inch bins HOWDEN TYPE DELAWARE med ORANGE\n", + "3 BALTIMORE 24 inch bins HOWDEN TYPE VIRGINIA med ORANGE\n", + "4 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "5 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "6 BALTIMORE 36 inch bins HOWDEN TYPE MARYLAND med ORANGE" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Select the columns we want to use\n", + "columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color']\n", + "pumpkins = full_pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Drop rows with missing values\n", + "pumpkins.dropna(inplace=True)\n", + "\n", + "pumpkins.head()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# بیایید نگاهی به داده‌های خود بیندازیم!\n", + "\n", + "با استفاده از Seaborn آن را بصری‌سازی کنیم\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHpCAYAAACVw6ZvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3klEQVR4nO3deVRU5f8H8PeFkQFZZXNQ2RQBwy3NNRVGMTCz3JW0JJcyjdwXLJcwBSszTcU0wKxccl9KyoVxS0VTEhXXRM1A+7qwmOz394eH+/M6A7IKV9+vc+7Jee6zfO7IkXfP3JkRRFEUQURERKRgRlVdABEREVF5MdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdDQc0sURaSnp4MfxUREpHwMNPTcysjIgLW1NTIyMqq6FCIiKicGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8VVUXQFTVrq5qAkszZnsipXIbdqWqS6BqgP+KExERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdCUU3BwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp8PPz8/g/MWHo0bN4ZGo8HcuXP1xvbv3x9t27ZFfn4+Zs2aJY1RqVRwc3PDuHHjkJmZKavP0PH4c0dERM8+BpqnRBRFDBw4EGFhYRgzZgySkpKg0+ng7OwMPz8/bNmyBQDg7e0NjUYDnU4njc3IyMCJEyfg4OAg+2V9+PBhZGdno3PnzlJbYGAgUlJSkJycjJ07d0Kr1WLMmDF47bXXkJeXJ6spLCwMKSkpsiMkJETWJyMjA1988UWJr3PTpk3SXPHx8QCA3bt3S2379+/H8uXL8cknnyAxMVEat379euzYsQPfffcdjI2NAQA+Pj7StcybNw/Lly/HhAkTZOs9Onfh0bJlyxLXS0REzwZVVRfwvPjpp5+wYcMGbNu2DT169JDaly9fjtu3b2P48OHo2rUrzM3NodVqodPpMHXqVADAwYMH4enpiU6dOkGn08HPzw/Aw10gV1dXuLu7S/Op1WpoNBoAQN26ddGiRQu0bdsWXbp0wcqVKzF8+HCpr6WlpdS3KCEhIfjyyy8xevRoODo6PvE6bW1tpT8X7ibZ2dnJ1nn99dfx5ptvYsiQITh69Cju3buH0aNHIyIiAl5eXlI/lUoljRswYAD27NmDbdu24ZtvvpH6PD43ERE9n7hD85SsXr0anp6esjBTaMKECbh9+zZ27doFANBqtTh48KC0oxIXFwc/Pz/4+voiLi5OGhcXFwetVvvEtTt37oxmzZph06ZNpa47KCgIHh4eCAsLK/XY4ixcuBC3b9/G7NmzMWrUKDRu3Fhvd+hxZmZmyMnJKfOa2dnZSE9Plx1ERPRs4A5NBdixYwcsLCxkbfn5+bLHFy5cQKNGjQyOL2y/cOECgIeB5v79+zh27BjatWsHnU6HSZMmoUOHDhgyZAiysrIgiiLi4+NlOy7F8fb2xqlTp2RtU6ZMwccffyxr27lzJzp27Cg9LryvpkePHhg3bhwaNGhQovWexMrKCjExMXjllVdgbm6OU6dOQRCEIvv/8ccfWL16tezlNQBo3749jIzkubzwPpvHhYeH45NPPtFrd307EVZWVmW4CiIiqi4YaCqAVqtFZGSkrO3o0aMYPHiwrE0UxRLN5+HhgXr16kGn08HHxwcnT56Er68vHB0d4eLigsOHD0MURWRnZ5doh6Zw7ccDw6RJkxAcHCxrq1u3rt7YgIAAdOjQAdOnT8fq1atLtF5JdO7cGW3btkXz5s3h6uqqdz4xMREWFhbIz89HTk4OunfvjsWLF8v6rFu3rsig+LjQ0FCMHz9eepyeng5nZ+fyXQQREVULDDQVwNzcHB4eHrK2v//+W/bY09MTSUlJBscXtnt6ekptfn5+iIuLQ9OmTdGwYUPp/pXCl51EUYSHh0eJfyEnJSXJ7rUBAHt7e726ixIREYF27dph0qRJJepfUiqVCiqV4R9DLy8vbNu2DSqVCnXq1IGJiYleH2dn5xJfg1qthlqtLle9RERUPfEemqdk4MCBuHjxIrZv3653bv78+bCzs0PXrl2lNq1Wi99//x27du2SbgIGIN0YrNPpSrw7s3fvXiQmJqJPnz5lrr9169bo3bu3dKPy02BiYgIPDw+4ubkZDDNERESFuEPzlAwcOBDr16/HkCFD8Pnnn6NLly5IT0/HkiVLsG3bNqxfvx7m5uZS/8L7aKKjo7FixQqp3dfXV7pvZtSoUXrrZGdnIzU1Ffn5+bh58yZiY2MRHh6O1157DW+//basb0ZGBlJTU2VtNWvWLPJ+kjlz5sDHx6fIHZWqcPv2bb1rsLGxgampaRVVREREVYE7NE+JIAj46aefMG3aNCxYsABeXl7o2LEjrl69Cp1Op/fhfO7u7nB1dUVGRgZ8fX2ldhcXF9SpUwc5OTmynZtCsbGxcHJygpubGwIDAxEXF4dFixZh69at0ue7FJoxYwacnJxkx+TJk4u8Bk9PTwwdOlT24X5Vzd/fX+8aCj/Th4iInh+CWNI7VYmeMenp6bC2tkZaWhrf5UREpHDcoSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVTVXUBRFXt6qomsDRjtq8obsOuVHUJRPQc4r/iREREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0z5ng4GAIggBBEGBiYgIPDw+EhYUhLy8PAKDT6SAIAu7duyd7bOhITU3Vm3/WrFlF9i88/P39ERAQoDd26dKlsLGxwd9//623bu3atdGnTx/89ddfUn83NzeD80dERFTOk0dERNWWqqoLoKcvMDAQMTExyM7Oxi+//ILRo0ejRo0aCA0NLXLM+fPnYWVlJWtzdHTU6zdx4kSMHDlSetyqVSu8++67GDFihNSWm5uLJk2a4JtvvsF7770HALhy5QomT56MyMhI1KtXD5cuXZLWtbS0xMWLF/Huu++iR48eOHXqFIyNjQEAYWFhsrkBwNLSspTPCBERKR0DzXNIrVZDo9EAAN5//31s3rwZ27ZtKzbQODo6wsbG5olzW1hYwMLCQnpsbGwMS0tLab1CCxcuxAcffIBXXnkFbm5uGDZsGF555RW89dZbBtd1cnLCjBkzMGjQIFy6dAleXl4AYHDuomRnZyM7O1t6nJ6eXqJxRERU/THQEMzMzHD79u2nuuaQIUOwefNmDB06FL1798bp06dx5syZYseYmZkBAHJycsq0Znh4OD755BO9dssOi2BlaQ7bBv5lmpeIiKoe76F5jomiiN27d+PXX39F586di+1br149affFwsICPj4+5V5/+fLlOH36NMaOHYvly5fDwcGhyL4pKSn44osvULduXWl3BgCmTJkiq8vCwgIHDhwwOEdoaCjS0tKk4/r16+W+BiIiqh64Q/Mc2rFjBywsLJCbm4uCggK8+eabmDVrVrFjDhw4ILs3pUaNGuWuw9HREe+99x62bNmCnj17GuxTr149iKKI//77D82aNcPGjRthYmIinZ80aRKCg4NlY+rWrWtwLrVaDbVaXe66iYio+mGgeQ5ptVpERkbCxMQEderUgUr15B8Dd3f3Et1DU1oqlarY9Q8cOAArKys4OjoavNnX3t4eHh4eFV4XEREpCwPNc8jc3FwxIaCyghQRET1bGGioRG7duoWsrCxZm52dXYW89FQeGRkZep+HU7NmTb23mBMR0bONNwVTiXh5ecHJyUl2/PHHH1VdFmbMmKFX1+TJk6u6LCIiesoEURTFqi6CqCqkp6fD2toaV05u4du2iYgUjjs0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/LZteu7Z1tfy27mJiBSOOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmYlz/Zuw65UYjVERFQW3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCml4OBgCIIgHXZ2dggMDMSpU6dk/QRBwJYtW2RtcXFxeO211+Dg4ABTU1M0aNAAAwYMwP79+4td083NDYIgYO3atXrnfHx8IAgCVq5cqXcuPDwcxsbG+Pzzzw3Om5qaipCQENSvXx9qtRrOzs7o0aMH9uzZI1v7q6++kh6LooiJEyfCysoKOp2uyFqLOt58803UrFkTq1evlo0rKChA+/bt0bdvXwDy59nExAQeHh4ICwtDXl4eAECn0xW5RmpqarHPJxERPXsYaMogMDAQKSkpSElJwZ49e6BSqfDaa68VO2bp0qXo0qUL7OzssG7dOpw/fx6bN29G+/btMW7cuCeu6ezsjJiYGFnbkSNHkJqaCnNzc4NjoqOjMXnyZERHR+udS05ORsuWLbF37158/vnnSExMRGxsLLRaLUaPHm1wvvz8fAwbNgyrVq1CXFwc/Pz89PocO3ZMem42btwIADh//rzUFhkZiYiICISEhCAlJUUaN3/+fPz1119YtmyZ1Fb4PF+8eBETJkzArFmz9MLZo3MXHo6OjoafRCIiemapqroAJVKr1dBoNAAAjUaDqVOnomPHjvj333/h4OCg1//atWsYO3Ysxo4diy+//FJ2rmnTpvjwww+fuOagQYOwYMECXL9+Hc7OzgAeBpZBgwZh1apVev337duHBw8eICwsDKtWrcLvv/+O9u3bS+dHjRoFQRAQHx8vC0Q+Pj4YOnSo3nzZ2dkICgrC8ePHceDAAXh5eRms89Hrt7W1BQA4OjrCxsZGag8JCcGWLVswYsQI7NixA+fOncOMGTOwbt062NvbS/0efZ7ff/99bN68Gdu2bUNoaKjU5/G5iYjo+cQdmnLKzMzEDz/8AA8PD9jZ2Rnss3HjRuTm5mLy5MkGzwuC8MR1ateujYCAAHz33XcAgP/++w/r1q0zGD4AICoqCkFBQahRowaCgoIQFRUlnbtz5w5iY2MxevRog7s7jweEzMxMdO/eHWfPnsWhQ4eKDDMlJQgCYmJicODAAaxYsQLBwcEYOHAgXn/99WLHmZmZIScnp8zrZmdnIz09XXYQEdGzgTs0ZbBjxw5YWFgAAO7fvw8nJyfs2LEDRkaG8+GFCxdgZWUl7TYAD0POkCFDpMeHDx9GkyZNil136NChmDBhAj766CNs2LABDRo0QPPmzfX6paenY8OGDTh8+DAAYPDgwejYsSMWLlwICwsLXLp0CaIowtvbu0TXO3v2bFhaWiIpKcngDlRZuLq64quvvsLw4cNRr149/Pbbb0X2FUURe/bswa+//oqQkBDZuXr16unNe+bMGYPzhIeH45NPPtFrt+ywCFaW+sHOtoF/SS6FiIiqAe7QlIFWq0VCQgISEhIQHx+PgIAAdOvWDVevXi1yzOO7MAEBAUhISMDPP/+M+/fvIz8//4nrdu/eHZmZmdi/fz+io6OL3J1Zs2YNGjRogGbNmgEAmjdvDldXV6xbtw7Aw4BQGq+88gru37+PuXPnlmrck7zzzjtwcnJCSEgIrKys9M4XBkdTU1N069YNAwYMwKxZs2R9Dhw4IP1dJCQk4JdffilyvdDQUKSlpUnH9evXK/R6iIio6nCHpgzMzc3h4eEhPf72229hbW2NFStW4NNPP9Xr37BhQ6SlpSE1NVXapbGwsICHhwdUqpL/FahUKrz11luYOXMmjh49is2bNxvsFxUVhTNnzsjmLigoQHR0NIYNG4aGDRtCEAScO3euROt26dIFISEheOONN1BQUICFCxeWuOYnUalURT4HWq0WkZGRMDExQZ06dQz2c3d3L/E9NGq1Gmq1ujzlEhFRNcUdmgogCAKMjIzw4MEDg+f79u2LGjVqYN68eeVea+jQodi3bx/eeOMN1KpVS+98YmIijh8/Dp1OJ9u50Ol0OHz4MM6dOwdbW1sEBARgyZIluH//vt4c9+7d02t75ZVXsH37dqxYsaJENzFXhMLg6OLiUqrgR0REzx/+liiD7Oxs6bNO7t69i8WLFyMzMxM9evQw2N/FxQXz58/HmDFjcOfOHQQHB8Pd3R137tzBDz/8AAAwNjYu0dqNGjXC//73P9SsWdPg+aioKLRu3RqdOnXSO9eqVStERUXh888/x5IlS/Dyyy+jdevWCAsLQ9OmTZGXl4ddu3YhMjISSUlJeuP9/f2xY8cO9OjRAwUFBVi8eHGJaq5Mt27dQlZWlqzNzs4ONWrUqKKKiIioKnCHpgxiY2Ph5OQEJycntGnTBseOHcP69esNfi5LoZCQEPz222/4999/0bdvXzRs2BCvvvoqrly5gtjY2CfeEPwoOzs7mJmZ6bXn5OTghx9+QJ8+fQyO69OnD1atWoXc3FzUr18fJ06cgFarxYQJE9C4cWN07doVe/bsQWRkZJFrd+7cGT///DNWrlyJ0aNHl/p+nIrm5eUl/V0UHn/88UeV1kRERE+fIFb1bySiKpKeng5ra2tcObmF73IiIlI47tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeLx27bpuWdbXwsrK6uqLoOIiMqBOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmaVl+3dhl2ptLmJiOgh7tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0ChMcHAwBEHAyJEj9c6NHj0agiAgODhY6tuzZ0+9sREREbJxW7ZsgSAI0mOdTgdBEHDv3j29Nby9vaFWq5GamirrW9yh0+kwa9YsNG/eXG++5ORkCIKAhIQEg/M5ODjg1VdfRWJiosHn4fEjMDCwBM8iERE9axhoFMjZ2Rlr167FgwcPpLasrCysXr0aLi4uxY41NTXFvHnzcPfu3VKve/DgQTx48AB9+/bFd999BwBo3749UlJSpKN///4IDAyUtbVv377Ua50/fx4pKSn49ddfkZ2dje7duyMnJ0fW5/F1UlJSsGbNmlKvRUREysdAo0AtWrSAs7MzNm3aJLVt2rQJLi4uePHFF4sd6+/vD41Gg/Dw8FKvGxUVhTfffBNvvfUWoqOjAQAmJibQaDTSYWZmBrVaLWszMTEp9VqOjo7QaDRo0aIFxo4di+vXr+PcuXOyPo+vo9FoUKtWrVKvRUREysdAo1BDhw5FTEyM9Dg6OhrvvPPOE8cZGxtj7ty5+Prrr/H333+XeL2MjAysX78egwcPRteuXZGWloYDBw6UqfbSSEtLw9q1awGgTMHoUdnZ2UhPT5cdRET0bFBVdQFUNoMHD0ZoaCiuXr0KADh06BDWrl0LnU73xLG9evVC8+bNMXPmTERFRZVovbVr16Jhw4bw8fEBAAwcOBBRUVHo2LFjma+hOPXq1QMA3L9/HwDw+uuvw9vbW9Znx44dsLCwkLVNmzYN06ZNMzhneHg4PvnkE712yw6LYGVpXhFlG3Tn8u4n9rFt4F9p6xMRPQ8YaBTKwcEB3bt3x8qVKyGKIrp37w57e/sSj583bx46d+6MiRMnlqh/dHQ0Bg8eLD0ePHgwfH198fXXX8PS0rLU9T/JgQMHULNmTRw5cgRz587FsmXL9PpotVpERkbK2mxtbYucMzQ0FOPHj5cep6enw9nZueKKJiKiKsNAo2BDhw7FBx98AABYsmRJqcZ26tQJAQEBCA0Nld4VVZSzZ8/iyJEjiI+Px5QpU6T2/Px8rF27FiNGjHjielZWVkhLS9NrL3wnlbW1tazd3d0dNjY28PLywq1btzBgwADs379f1sfc3BweHh5PXLuQWq2GWq0ucX8iIlIO3kOjYIGBgcjJyUFubi4CAgJKPT4iIgLbt2/H4cOHi+0XFRWFTp064c8//0RCQoJ0jB8/vsQvWXl5eeHvv//GzZs3Ze0nTpyAqalpse/OGj16NE6fPo3NmzeXaC0iInr+cIdGwYyNjZGUlCT9ubSaNGmCQYMGYdGiRUX2yc3Nxffff4+wsDA0btxYdm748OH48ssvcebMGenemqIEBATAy8sLQUFB+PTTT6HRaHDixAl8/PHHGDNmTLH116xZEyNGjMDMmTPRs2dP6TNzsrOzpc/DKaRSqUr10hsRET0buEOjcFZWVrCysirz+LCwMBQUFBR5ftu2bbh9+zZ69eqld65Ro0Zo1KhRiXZpVCoVfvvtN7i4uCAoKAiNGzfGzJkzMWbMGMyePfuJ4z/44AMkJSVh/fr1UltsbCycnJxkR4cOHZ44FxERPXsEURTFqi6CqCqkp6fD2toaV05uqdR3OZUE3+VERFQ+3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFU1V1AURVzba+tlzfWE5ERFWPOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4pQ40cXFxlVEHERERUZmVOtAEBgaiQYMG+PTTT3H9+vXKqImIiIioVEodaG7cuIEPPvgAGzZsQP369REQEICffvoJOTk5lVEfUaW7uqoJkqPcq7oMIiIqh1IHGnt7e4wbNw4JCQk4evQoPD09MWrUKNSpUwcffvgh/vzzz8qok4iIiKhI5bopuEWLFggNDcUHH3yAzMxMREdHo2XLlujYsSPOnDlTUTUSERERFatMgSY3NxcbNmzAq6++CldXV/z6669YvHgxbt68iUuXLsHV1RX9+vWr6FqJiIiIDCr1l1OGhIRgzZo1EEURb731Fj777DM0btxYOm9ubo4vvvgCderUqdBCiYiIiIpS6kBz9uxZfP311+jduzfUarXBPvb29nx7NxERET01pX7JaebMmejXr59emMnLy8P+/fsBACqVCr6+vhVTIREREdETlDrQaLVa3LlzR689LS0NWq22QooiIiIiKo1SBxpRFCEIgl777du3YW5uXiFFEREREZVGie+h6d27NwBAEAQEBwfLXnLKz8/HqVOn0L59+4qvkIiIiOgJShxorK2tATzcobG0tISZmZl0zsTEBG3btsWIESMqvkIiIiKiJyhxoImJiQEAuLm5YeLEiXx5iYiIiKqNMr3LSa1WY/fu3fjmm2+QkZEBAPjnn3+QmZlZ4QUSERERPUmpP4fm6tWrCAwMxLVr15CdnY2uXbvC0tIS8+bNQ3Z2NpYtW1YZdRIREREVqdQ7NGPGjMFLL72Eu3fvyu6j6dWrF/bs2VOhxREREVHpzZo1C82bN6/qMp6qUgeaAwcO4OOPP4aJiYms3c3NDTdu3KiwwoiIiJ5XqampCAkJQf369aFWq+Hs7IwePXpw46AYpQ40BQUFyM/P12v/+++/YWlpWSFFPY+e9MPr5uaGr776Surv5uYGQRBw5MgR2Txjx46Fn5+f9HjWrFkQBAGCIEClUsHe3h6dOnXCV199hezsbNlYPz8/qe+jx8iRI6U+j7ZbWVmhVatW2Lp1q2yelStXGpzH1NRU6hMcHIyePXsW+Xw8fr1FWbNmDYyNjTF69Ogn9iUiUoLk5GS0bNkSe/fuxeeff47ExETExsZCq9U+1X/rcnNzn9paFaHUgeaVV16R/aIRBAGZmZmYOXMmXn311Yqs7blR1h9eU1NTTJky5Ynz+/j4ICUlBdeuXUNcXBz69euH8PBwtG/fXrqpu9CIESOQkpIiOz777DNZn5iYGKSkpOD48eN4+eWX0bdvXyQmJsr6WFlZ6c1z9erVUjwrJRMVFYXJkydjzZo1yMrKqvD5iYietlGjRkEQBMTHx6NPnz7w9PSEj48Pxo8fL/1P7LVr1/DGG2/AwsICVlZW6N+/P27evFnknAUFBQgLC0O9evWgVqvRvHlzxMbGSueTk5MhCALWrVsHX19fmJqa4scff6z0a61IpQ408+fPx6FDh/DCCy8gKysLb775pvRy07x58yqjxmdeSX54DXn33Xdx5MgR/PLLL8XOr1KpoNFoUKdOHTRp0gQhISHYt28fTp8+rfd3VrNmTWg0GtlhZWUl62NjYwONRgNPT0/Mnj0beXl5el9GKgiC3jy1a9cu5TNTvCtXruD333/H1KlT4enpiU2bNhXbPzs7G+np6bKDiKg6uXPnDmJjYzF69GiDH49iY2ODgoICvPHGG7hz5w727duHXbt24a+//sKAAQOKnHfhwoWYP38+vvjiC5w6dQoBAQF4/fXXcfHiRVm/qVOnYsyYMUhKSkJAQECFX19lKnWgqVevHv78809MmzYN48aNw4svvoiIiAicPHkSjo6OlVHjM60kP7xFcXd3x8iRIxEaGoqCgoJSrevt7Y1u3bo9MQQUJy8vD1FRUQCgd0/V0xATE4Pu3bvD2toagwcPlmopSnh4OKytraXD2dkZAGDZYRGs/FY8jZKJiIp16dIliKIIb2/vIvvs2bMHiYmJWL16NVq2bIk2bdpg1apV2LdvH44dO2ZwzBdffIEpU6Zg4MCB8PLywrx589C8eXO9l/bHjh2L3r17w93dHU5OThV5aZWu1IEGePh//IMHD8Znn32GpUuXYvjw4bJ3PFHJleSHtzgff/wxrly5UqatQW9vbyQnJ8vali5dCgsLC9nx+NxBQUGwsLCAWq3GuHHj4Obmhv79+8v6pKWl6c3TrVu3UtdYlIKCAqxcuRKDBw8GAAwcOBAHDx7ElStXihwTGhqKtLQ06bh+/XqF1UNEVBFEUXxin6SkJDg7O0v/UwYAL7zwAmxsbJCUlKTXPz09Hf/88w9efvllWfvLL7+s1/+ll14qY+VVr0SfQ7Nt2zZ069YNNWrUwLZt24rt+/rrr1dIYc+LkvzwFsfBwQETJ07EjBkzit1uLGrtx79odNCgQfjoo49kbY+/VLRgwQL4+/vjr7/+wrhx47Bo0SLY2trK+lhaWuLEiROytooMvbt27cL9+/el+7bs7e3RtWtXREdHY/bs2QbHqNVq2XeQERFVNw0bNoQgCDh37lyVrK/kbwEoUaDp2bMnUlNT4ejoWOw7UwRBMPgOKCpaRfzwjh8/HkuXLsXSpUtLNS4pKQnu7u6yNmtra3h4eBQ7TqPRwMPDAx4eHoiJicGrr76Ks2fPyl5yNDIyeuI85REVFYU7d+7IQlJBQQFOnTqFTz75BEZGZdp8JCKqUra2tggICMCSJUvw4Ycf6gWMe/fuoVGjRrh+/TquX78u7dKcPXsW9+7dwwsvvKA3p5WVFerUqYNDhw7B19dXaj906BBat25duRf0FJXoX/2CggLpl1VBQUGRB8NM6T36w3v//n298/fu3XviHBYWFpg+fTrmzJmj966lopw7dw6xsbHo06dPaUuWad26NVq2bIk5c+aUa57SuH37NrZu3Yq1a9ciISFBOk6ePIm7d+/it99+e2q1EBFVtCVLliA/Px+tW7fGxo0bcfHiRSQlJWHRokVo164d/P390aRJEwwaNAgnTpxAfHw83n77bfj6+hb5ktGkSZMwb948rFu3DufPn8fUqVORkJCAMWPGPOWrqzyl+uqD3NxcBAYGYtmyZWjYsGFl1fTcWbJkCV5++WW0bt0aYWFhaNq0KfLy8rBr1y5ERkYafE30ce+++y4WLFiA1atXo02bNrJzeXl5SE1NRUFBAW7fvg2dTodPP/0UzZs3x6RJk2R9//vvP6Smpsra1Go1atWqVeTaY8eORa9evTB58mTUrVsXwMOXsx6fBwAcHR2l3ZO0tDQkJCTIztvZ2Un/x3Hjxg29866urvj+++9hZ2eH/v37671k9uqrryIqKgqBgYFF1ktEVJ3Vr18fJ06cwJw5czBhwgSkpKTAwcEBLVu2RGRkJARBwNatWxESEoJOnTrByMgIgYGB+Prrr4uc88MPP0RaWhomTJiAW7du4YUXXsC2bduerd/lYinZ29uLFy5cKO0weoJ//vlHHD16tOjq6iqamJiIdevWFV9//XUxLi5OFEVRdHV1FRcsWCD1f/yxKIri6tWrRQCir6+v1DZz5kwRgAhANDY2Fm1tbcUOHTqICxYsELOysmTjfX19pb6PHgEBAVIfAOLmzZtl4woKCkRvb2/x/fffF0VRFGNiYgzOA0BMSUkRRVEUhwwZYvD8sGHDpOszdP77778XmzRpIo4aNcrg87hu3TrRxMRE/Pfff5/4nKelpYkAxCsnt4i3L+16Yn8iIqq+BFEs3V2p48aNg1qtRkRERPmSFFEVS09Ph7W1Na6c3AIrS3PYNvCv6pKIiKiMSv1t23l5eYiOjsbu3bvRsmVLvRuWvvzyyworjoiIiKgkSh1oTp8+jRYtWgAALly4IDv3+P0MRERERE9DqQPN4x9xT0RERFTV+GEdREREpHil3qEBgOPHj+Onn37CtWvXkJOTIztXnu8GIiIiIiqLUu/QrF27Fu3bt0dSUhI2b96M3NxcnDlzBnv37oW1tXVl1EhERERUrFIHmrlz52LBggXYvn07TExMsHDhQpw7dw79+/eHi4tLZdRIREREVKxSB5rLly+je/fuAAATExPcv38fgiBg3LhxWL58eYUXSERERPQkpb6HplatWtL3BdWtWxenT59GkyZNcO/ePfz3338VXiAREdHTlBzl/uROFcRt2JWnttazrsQ7NKdPnwYAdOrUCbt27QIA9OvXD2PGjMGIESMQFBSELl26VE6VREREJLl+/TqGDh2KOnXqwMTEBK6urhgzZgxu374t9fHz84MgCBAEAaampvD09ER4eDgMfUHA4cOHYWxsLL0C86jk5GQIggBHR0e9L0Bu3rw5Zs2aJWu7dOkShg4dChcXF6jVatStWxddunTBjz/+iLy8PKlfYW2PH2vXri3Tc1LiQNO0aVO0adMGTZo0Qb9+/QAAH330EcaPH4+bN2+iT58+iIqKKlMRREREVDJ//fUXXnrpJVy8eBFr1qzBpUuXsGzZMuzZswft2rXDnTt3pL4jRoxASkoKzp8/j9DQUMyYMQPLli3TmzMqKgohISHYv38//vnnH4PrZmRk4Isvvii2tvj4eLRo0QJJSUlYsmQJTp8+DZ1Oh+HDhyMyMhJnzpyR9Y+JiUFKSors6NmzZ+mfFAAl/i6nAwcOICYmBhs2bEBBQQH69OmD4cOHo2PHjmVamKiqFX6XU1paGqysrKq6HCKqJqr7S07dunXD6dOnceHCBZiZmUntqampaNCgAd5++21ERkbCz88PzZs3x1dffSX1admyJVxdXWUfsZKZmQknJyccP34cM2fORNOmTTFt2jTpfHJyMtzd3TFp0iRERkbi8uXLcHR0BPBwh6Znz56YNWsWRFGEj48Patasifj4eBgZ6e+ZiKIofauAIAjYvHlzmQPM40q8Q9OxY0dER0cjJSUFX3/9NZKTk+Hr6wtPT0/MmzcPqampFVIQERERGXbnzh38+uuvGDVqlCzMAIBGo8GgQYOwbt06vZeVRFHEgQMHcO7cOZiYmMjO/fTTT/D29oaXlxcGDx6M6Ohogy9LBQUFwcPDA2FhYQZrS0hIQFJSEiZOnGgwzACV+xVJpX6Xk7m5Od555x3s27cPFy5cQL9+/bBkyRK4uLjg9ddfr4waiYiICMDFixchiiIaNWpk8HyjRo1w9+5d/PvvvwCApUuXwsLCAmq1Gp06dUJBQQE+/PBD2ZioqCgMHjwYABAYGIi0tDTs27dPb25BEBAREYHly5fj8uXLeucLv9/Ry8tLart16xYsLCykY+nSpbIxQUFBsvMWFha4du1aKZ6R/1eurz7w8PDAtGnT8PHHH8PS0hI///xzeaYjIiKiEijh3SIYNGgQEhIScOjQIXTr1g0fffQR2rdvL50/f/484uPjERQUBABQqVQYMGBAkffEBgQEoEOHDpg+fXqJ1rezs0NCQgISEhJgY2Oj9+0CCxYskM4XHnXq1CnR3I8r01cfAMD+/fsRHR2NjRs3wsjICP3798ewYcPKOh0RERE9gYeHBwRBQFJSEnr16qV3PikpCbVq1YKDgwMAwNraGh4eHgAevrTk4eGBtm3bwt/fH8DD3Zm8vDxZiBBFEWq1GosXLzb4DQARERFo164dJk2aJGtv2LAhgIch6cUXXwQAGBsbS+urVPqRQ6PRSOfLq1Q7NP/88w/mzp0LT09P+Pn54dKlS1i0aBH++ecfrFixAm3btq2QooiIiEifnZ0dunbtiqVLl+LBgweyc6mpqfjxxx8xYMAAg/eqWFhYYMyYMZg4cSJEUUReXh5WrVqF+fPny3ZI/vzzT9SpUwdr1qwxWEPr1q3Ru3dvTJ06Vdb+4osvwtvbG1988QUKCgoq7qJLqMQ7NN26dcPu3bthb2+Pt99+G0OHDpW9TkZERESVb/HixWjfvj0CAgLw6aefwt3dHWfOnMGkSZNQt25dzJkzp8ix7733HmbPno2NGzdCpVLh7t27GDZsmN5OTOFHsYwcOdLgPHPmzIGPj49s10UQBMTExKBr1654+eWXERoaikaNGiE3Nxf79+/Hv//+C2NjY9k89+7d03tTkaWlJczNzUv7tABiCfXo0UPcsmWLmJeXV9IhRNVaWlqaCEBMS0ur6lKIiEolOTlZHDJkiFi7dm2xRo0aorOzsxgSEiL+73//k/r4+vqKY8aM0Rv73nvviT4+PuJrr70mvvrqqwbnP3r0qAhA/PPPP8UrV66IAMSTJ0/K+rz77rsiAHHmzJmy9vPnz4tDhgwR69WrJ6pUKtHa2lrs1KmT+M0334i5ublSPwAGj/Dw8DI9JyX+HBqiZw0/h4aI6NlRrnc5EREREVUHZX6XE9Gz4uqqJrA008/2/NI4IiLl4A4NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/h4aIiOgRdy7vfmpr2Tbwf2prPeu4Q0NERKQQy5Ytg6WlJfLy8qS2zMxM1KhRA35+frK+Op0OgiDg8uXLcHNzw1dffaU336xZs9C8eXODj93c3CAIQpFHcHAwABR5fu3atRV89cXjDg0REZFCaLVaZGZm4vjx42jbti0A4MCBA9BoNDh69CiysrJgamoKAIiLi4OLiwsaNGhQprWOHTuG/Px8AMDvv/+OPn364Pz589J335mZmUl9Y2JiEBgYKBtvY2NTpnXLioGGiIhIIby8vODk5ASdTicFGp1OhzfeeAN79+7FkSNHpJ0anU4HrVZb5rUcHBykP9va2gIAHB0dDQYVGxsbaDSaMq9VEfiSExERkYJotVrExcVJj+Pi4uDn5wdfX1+p/cGDBzh69Gi5Ao3SMNAQEREpiFarxaFDh5CXl4eMjAycPHkSvr6+6NSpE3Q6HQDg8OHDyM7OlgWaKVOmwMLCQnbMnTu3QmoKCgrSm/vatWsVMndJ8SUnIiIiBfHz88P9+/dx7Ngx3L17F56ennBwcICvry/eeecdZGVlQafToX79+nBxcZHGTZo0SbqRt9CiRYuwf//+cte0YMEC+PvL37FVp06dcs9bGtyheQYEBwcbvMP80qVLAIDw8HAYGxvj888/1xu7cuVK2euhK1eulMYbGRnByckJAwYMwLVr1yCKIvz9/REQEKA3z9KlS2FjYwN/f/9i74p3c3OTxpSmrpJe8+M3pRERPWs8PDxQr149xMXFIS4uDr6+vgAeBghnZ2f8/vvviIuLQ+fOnWXj7O3t4eHhITsK740pL41Goze3SvV090wYaJ4RgYGBSElJkR3u7u4AgOjoaEyePBnR0dElmsvKygopKSm4ceMGNm7ciPPnz6Nfv34QBAExMTE4evQovvnmG6n/lStXMHnyZHz99dfYuHGjrAbg4d3vhY+PHTsmjSttXSW55jVr1pRpLiIiJdFqtdDpdNDpdLK3a3fq1Ak7d+5EfHz8c3X/DMBA88xQq9XQaDSyw9jYGPv27cODBw8QFhaG9PR0/P7770+cSxAEaDQaODk5oX379hg2bBji4+ORnp4OZ2dnLFy4EBMnTsSVK1cgiiKGDRuGV155BW+99Rasra1lNQD/f/e7RqOR7povS10lueZatWqVeh4iIqXRarU4ePAgEhISpB0aAPD19cU333yDnJycpxpo7t27h9TUVNlx//79p7Y+wHtonnlRUVEICgpCjRo1EBQUhKioKLRv377E42/duoXNmzfD2NgYxsbGAIAhQ4Zg8+bNGDp0KHr37o3Tp0/jzJkzT7WussjOzkZ2drb0OD09vVLXIyJlUsKn92q1Wjx48ADe3t6oXbu21O7r64uMjAzp7d1PyzvvvKPXFh4ejqlTpz61GiCS4g0ZMkQ0NjYWzc3NpaNv375iWlqaaGZmJiYkJIiiKIonT54ULSwsxIyMDGlsTEyMaG1tLXsMQDQ3Nxdr1qwpAhABiB9++KFszZs3b4r29vaikZGRuHnz5iJrA6B3vix1leSazc3NxTlz5hQ5ZubMmdL1PHpcOblFvH1pV5HjiIio+uMOzTNCq9UiMjJSemxubo41a9agQYMGaNasGQCgefPmcHV1xbp16zBs2LAi57K0tMSJEyeQm5uLnTt34scff8ScOXNkfRwdHfHee+9hy5Yt6NmzZ6lqLWtdj3v8mgEUe4NbaGgoxo8fLz0ufAmNiIiUj4HmGWFubg4PDw9ZW1RUFM6cOSO707ygoADR0dHFBgcjIyNprkaNGuHy5ct4//338f3338v6qVSqMt3FXta6HmfomoujVquhVqtLVSsRESkDA80zKjExEcePH4dOp5PtWty5cwd+fn44d+4cvL29SzTX1KlT0aBBA4wbNw4tWrSoNnUREREVYqB5RkVFRaF169bo1KmT3rlWrVohKirK4Oe/GOLs7IxevXphxowZ2LFjx1OrKz8/HwkJCbI+arUajRo1AvDwJt/U1FTZeZVKBXt7+3LVSEREysO3bT+DcnJy8MMPP6BPnz4Gz/fp0werVq1Cbm5uieccN24cfv75Z8THxz+1ujIzM/Hiiy/Kjh49ekj9Y2Nj4eTkJDs6dOhQ5vqIiEi5BFEUxaougqgqpKenw9raGldOboGVpbki3qpJRESGcYeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUT1XVBRBVNdv6WlhZWVV1GUREVA7coSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgoefe1VVNkBzlXtVlEBFROTDQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQKFRwcDAEQZAOOzs7BAYG4tSpU7J+giBgy5YteuOTk5MhCAISEhL0zvn5+WHs2LHSYzc3N9lahUdERESR8xZ3zJ49G+bm5rh06ZJs7D///INatWph8eLFeuuam5ujRYsWWL9+vdR/1qxZBuf39vYuxTNJRETPAgYaBQsMDERKSgpSUlKwZ88eqFQqvPbaa5WyVlhYmLRW4RESEqLXz9nZWdZnwoQJ8PHxkbVNnDgRAQEBCA4ORkFBgTR2xIgRaNmyJUaPHq237smTJ9GqVSsMGDAAv//+u3T+8blTUlJw8ODBSnkOiIio+lJVdQFUdmq1GhqNBgCg0WgwdepUdOzYEf/++y8cHBwqdC1LS0tpreIYGxvL+llYWEClUumN/eabb+Dj44Mvv/wSEydOxMqVK3Ho0CEkJiZCEAS9dTUaDZYsWYIffvgB27dvR/v27QHA4NxFyc7ORnZ2tvQ4PT29ROOIiKj6Y6B5RmRmZuKHH36Ah4cH7OzsqrqcJ3JwcMDy5csRFBSEZs2aYdy4cVi4cCGcnZ2LHKNSqVCjRg3k5OSUac3w8HB88skneu2ubyfCysqqTHMSEVH1wJecFGzHjh2wsLCAhYUFLC0tsW3bNqxbtw5GRhX/1zplyhRprcLjwIED5ZqzZ8+e6N+/PwIDA+Hr64shQ4YU2TcnJwfh4eFIS0tD586dpfbExES9ukaOHGlwjtDQUKSlpUnH9evXy1U/ERFVH9yhUTCtVovIyEgAwN27d7F06VJ069YN8fHxcHV1rdC1Jk2ahODgYFlb3bp1yz3v9OnTsWrVKnz88ccGz0+ZMgUff/wxsrKyYGFhgYiICHTv3l067+XlhW3btsnGFLXbolaroVary10zERFVPww0CmZubg4PDw/p8bfffgtra2usWLECn376abFjC3/pp6Wl6Z27d+8erK2tZW329vaytSqKSqWS/fdxhUHKwsICtWvXlt1fAwAmJiaVUhcRESkLX3J6hgiCACMjIzx48OCJfW1tbWFvb48//vhD1p6eno5Lly7B09OzssoslcIgpdFo9MIMERFRIe7QKFh2djZSU1MBPHzJafHixcjMzESPHj1k/a5cuaL3eTMNGzbE+PHjMXfuXNSuXRtt27bF7du3MXv2bDg4OKB3796y/hkZGdJahWrWrFnlN9Pm5eXp1SUIAmrXrl1FFRERUVVgoFGw2NhYODk5AXj49mZvb2+sX78efn5+sn7jx4/XG3vgwAFMnjwZFhYWmDdvHi5fvgxbW1u8/PLLiIuLg5mZmaz/jBkzMGPGDFnbe++9h2XLllXsRZXSmTNnpOegkFqtRlZWVhVVREREVUEQRVGs6iKIqkJ6ejqsra2RlpZW5TtNRERUPryHhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+Bhp57V1c1QXKUe1WXQURE5cBAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BTCsHBwejZs6esbcOGDTA1NcX8+fOlPoIgICIiQtZvy5YtEARBerxy5UrY2NgYXEcQBGzZskXWtnHjRvj5+cHa2hoWFhZo2rQpwsLCcOfOnSLnS0pKgrOzM/r164ecnJxi13y09sePwMDAIsfMmjULzZs312tPTk6GIAhISEiQPTZ0HDlyRDb2wYMHsLW1hb29PbKzs/XmdnNzk8aamZnBzc0N/fv3x969e4usk4iInm0MNOXw7bffYtCgQYiMjMSECROkdlNTU8ybNw93796tkHU++ugjDBgwAK1atcLOnTtx+vRpzJ8/H3/++Se+//57g2OOHTuGjh07IjAwEOvWrYOJiUmJ1goMDERKSorsWLNmTYVcBwDs3r1bb/6WLVvK+mzcuBE+Pj7w9vbWC3aFwsLCkJKSgvPnz2PVqlWwsbGBv78/5syZU2G1EhGRcqiqugCl+uyzzzBz5kysXbsWvXr1kp3z9/fHpUuXEB4ejs8++6xc68THx2Pu3Ln46quvMGbMGKndzc0NXbt2xb179/TG7N27F2+88QZGjRqFefPmlWo9tVoNjUZTrpqLY2dn98T5o6KiMHjwYIiiiKioKAwYMECvj6WlpTSPi4sLOnXqBCcnJ8yYMQN9+/aFl5dXpdRPRETVE3doymDKlCmYPXs2duzYoRdmAMDY2Bhz587F119/jb///rtca/3444+wsLDAqFGjDJ5//CWkzZs3o3v37vj4449LHWaqg8uXL+Pw4cPo378/+vfvjwMHDuDq1aslGjtmzBiIooitW7caPJ+dnY309HTZQUREzwYGmlLauXMnPvvsM2zduhVdunQpsl+vXr3QvHlzzJw5s1zrXbx4EfXr10eNGjWe2DczMxP9+vXDpEmTMGXKlDKtt2PHDlhYWMiOuXPnFjsmMTFRb4yPj4/Bvu3bt9fr+6jo6Gh069YNtWrVgq2tLQICAhATE1Oi2m1tbeHo6Ijk5GSD58PDw2FtbS0dzs7OAADXtxPhNuxKidYgIqLqiS85lVLTpk3xv//9DzNnzkTr1q31fiE/at68eejcuTMmTpxY5vVEUSxxXzMzM3To0AErVqxAUFAQGjVqVOr1tFotIiMjZW22trbFjvHy8sK2bdtkbTdu3ICfn59e33Xr1hVZV35+Pr777jssXLhQahs8eDAmTpyIGTNmwMjoyflbFEXZzdePCg0Nxfjx46XH6enpUqghIiJlY6Appbp162LDhg3QarUIDAzEzp07YWlpabBvp06dEBAQgNDQUAQHB8vOWVlZ4f79+ygoKJD9oi68J8ba2hoA4OnpiYMHDyI3N/eJuzTGxsbYsmULevfuDa1Wi7i4uFKHGnNzc3h4eJRqjImJid4Ylcrwj5azs3OR8//666+4ceOG3j0z+fn52LNnD7p27VpsHbdv38a///4Ld3d3g+fVajXUanWxcxARkTLxJacycHV1xb59+5CamorAwEBkZGQU2TciIgLbt2/H4cOHZe1eXl7Iy8uT3tZc6MSJEwAeBhkAePPNN5GZmYmlS5canP/xm4LVajU2bdqEVq1aQavV4uzZs6W8uqoTFRWFgQMHIiEhQXYMHDgQUVFRTxy/cOFCGBkZ6b21noiInn3coSkjZ2dn6HQ6aLVaBAQEIDY2FlZWVnr9mjRpgkGDBmHRokWydh8fH7zyyisYOnQo5s+fj/r16+P8+fMYO3YsBgwYgLp16wIA2rRpg8mTJ2PChAm4ceMGevXqhTp16uDSpUtYtmwZOnToIHv3E/Aw1GzcuBH9+vWDVqvF3r17pXta8vPz9UKUWq2WdnKys7ORmpoqO69SqWBvb1+u56vQ7du39ea3sbFBRkYGtm/fjm3btqFx48ay82+//TZ69eqFO3fuSC9/ZWRkIDU1Fbm5ubhy5Qp++OEHfPvttwgPDy/1DhMRESkfA0051KtXTxZqfv31V4P9wsLCsG7dOr32devWYebMmXjvvffwzz//oF69eujVqxemT58u6zdv3jy0bNkSS5YswbJly1BQUIAGDRqgb9++GDJkiME1TUxMsGHDBvTv318KNcDDG4dffPFFWd8GDRrg0qVLAIDY2Fg4OTnJznt5eeHcuXMle1KewN/fX69tzZo1uHHjBszNzQ3eaN2lSxeYmZnhhx9+wIcffggAmDFjBmbMmAETExNoNBq0bdsWe/bsgVarrZA6iYhIWQSxNHedEj1D0tPTYW1tjbS0NIO7a0REpBy8h4aIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUr0oDTXBwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp+P8tZfkufy0cePXrOhw83NDQDg5+dn8PzIkSMNXkdxcwqCAK1Wixo1auDgwYOycffv30f9+vUxceJEvXVNTU3xwgsvYOnSpVL/lStXGpzf1NTUYF1ERPTsUsQOjSiKGDhwIMLCwjBmzBgkJSVBp9PB2dkZfn5+2LJlCwDA29sbGo0GOp1OGpuRkYETJ07AwcFBFhQOHz6M7OxsdO7cWWoLDAxESkoKkpOTsXPnTmi1WowZMwavvfYa8vLyZDWFhYUhJSVFdoSEhMj6ZGRk4IsvvijxdZa3/tJauHChrH4AiImJkR4fO3ZM6jtixAi96/3ss88Mzvton6+++gpWVlaytu3btyMkJATBwcG4f/++NG7y5MkwMzPDp59+qrfu2bNn0b9/f4wePRpr1qyRzj8+d0pKCq5evVrm54SIiJRJEYHmp59+woYNG7Bq1SoMHz4c7u7uaNasGZYvX47XX38dw4cPl34xarVaWSA4ePAgPD090aNHD1m7TqeDq6sr3N3dpTa1Wg2NRoO6deuiRYsWmDZtGrZu3YqdO3di5cqVsposLS2h0Whkh7m5uaxPSEgIvvzyS9y6davE11qe+kvL2tpaVj8A2NjYSI8dHBykvjVr1tS7XisrK4PzPtrH2toagiDI2iwsLDB37lyYmJhgypQpAIC4uDh8++23WLVqlWyHpXDd+vXrY9asWWjYsCG2bdsmnX98bo1Gg9q1axusKzs7G+np6bKDiIieDYoINKtXr5Z+qT9uwoQJuH37Nnbt2gXgYSA4ePCgtKMSFxcHPz8/+Pr6Ii4uThoXFxcHrVb7xLU7d+6MZs2aYdOmTaWuOygoCB4eHggLCyvxmIquv7oyNTXFqlWrsHz5cmzduhVDhw7FtGnT0LJly2LHmZmZIScnp0xrhoeHw9raWjqcnZ0BAHf+isOdy7sr9CAioqerygPNjh07YGFhITu6desm63PhwgU0atTI4PjC9gsXLgB4GAju378vvVyi0+ng6+uLTp064ejRo8jKysKDBw8QHx9f4kDg7e2N5ORkWduUKVP06j5w4ICsT+F9NcuXL8fly5dLtFZ56i/Jc1lWS5cu1Zv7xx9/LNecL730EkJDQ9G7d2/Y2dnho48+KrJvfn4+fvjhB5w6dUr2MltaWlqJrzk0NBRpaWnScf369XLVT0RE1YeqqgvQarWIjIyUtR09ehSDBw+WtYmiWKL5PDw8UK9ePeh0Ovj4+ODkyZPw9fWFo6MjXFxccPjwYYiiiOzs7BIHGlEUIQiCrG3SpEkIDg6WtdWtW1dvbEBAADp06IDp06dj9erVlVp/SZ/Lshg0aJBe4CjqpZ3SmD59OsLCwjB16lSoVPo/jkuXLsW3336LnJwcGBsbY9y4cXj//fel85aWljhx4oRsjJmZmcG11Go11Gp1uWsmIqLqp8oDjbm5OTw8PGRtf//9t+yxp6cnkpKSDI4vbPf09JTa/Pz8EBcXh6ZNm6Jhw4ZwdHQEAOllG1EU4eHhIb3k8CRJSUl696rY29vr1V2UiIgItGvXDpMmTSpR/7LWX5Lnsqysra1LfL2lURhiDIUZ4P+DlJmZGZycnGBkJN9UNDIyqpS6iIhIWar8JaeSGDhwIC5evIjt27frnZs/fz7s7OzQtWtXqU2r1eL333/Hrl274OfnJ7V36tQJOp0OOp2uxLsze/fuRWJiIvr06VPm+lu3bo3evXtj6tSpJepfkfUrXWGQqlu3rl6YISIiKlTlOzQlMXDgQKxfvx5DhgzB559/ji5duiA9PR1LlizBtm3bsH79etk7jArvQ4mOjsaKFSukdl9fXwwfPhwAMGrUKL11srOzkZqaivz8fNy8eROxsbEIDw/Ha6+9hrffflvWNyMjA6mpqbK2mjVrFvnOnzlz5sDHx6fInYhHlbX+yvTff//pXa9arUatWrWeah2PE0VRry4AcHR0ZAAiInqOKOJffEEQ8NNPP2HatGlYsGABvLy80LFjR1y9ehU6nU7vA+Xc3d3h6uqKjIwM+Pr6Su0uLi6oU6cOcnJyZDsfhWJjY+Hk5AQ3NzcEBgYiLi4OixYtwtatW2FsbCzrO2PGDDg5OcmOyZMnF3kNnp6eGDp0qOzD8YpS1vor04oVK/SuNygo6KnWYEh6erpeXU5OTqV6qzwRESmfIJb0bluiZ0x6ejqsra1x5eQWWFmaP3lAKdg28K/Q+YiIqHiK2KEhIiIiKg4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESmeIr5tm6gy2dbXFvkt6UREpAzcoSEiIiLFY6AhIiIixWOgISIiIsXjPTT03BJFEQCQnp5exZUQ0dNmaWkJQRCqugyqQAw09Ny6ffs2AMDZ2bmKKyGipy0tLY1vBnjGMNDQc8vW1hYAcO3aNVhbW1dxNSWXnp4OZ2dnXL9+XTH/ICuxZkCZdSuxZuDp121paVnpa9DTxUBDzy0jo4e3kFlbWyvqH/5CVlZWiqtbiTUDyqxbiTUDyq2bqh5vCiYiIiLFY6AhIiIixWOgoeeWWq3GzJkzoVarq7qUUlFi3UqsGVBm3UqsGVBu3VR9CGLhe1eJiIiIFIo7NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDT03FqyZAnc3NxgamqKNm3aID4+vspq2b9/P3r06IE6depAEARs2bJFdl4URcyYMQNOTk4wMzODv78/Ll68KOtz584dDBo0CFZWVrCxscGwYcOQmZlZaTWHh4ejVatWsLS0hKOjI3r27Inz58/L+mRlZWH06NGws7ODhYUF+vTpg5s3b8r6XLt2Dd27d0fNmjXh6OiISZMmIS8vr9LqjoyMRNOmTaUPcGvXrh127txZrWt+XEREBARBwNixY6t13bNmzYIgCLLD29u7WtdMCiYSPYfWrl0rmpiYiNHR0eKZM2fEESNGiDY2NuLNmzerpJ5ffvlF/Oijj8RNmzaJAMTNmzfLzkdERIjW1tbili1bxD///FN8/fXXRXd3d/HBgwdSn8DAQLFZs2bikSNHxAMHDogeHh5iUFBQpdUcEBAgxsTEiKdPnxYTEhLEV199VXRxcREzMzOlPiNHjhSdnZ3FPXv2iMePHxfbtm0rtm/fXjqfl5cnNm7cWPT39xdPnjwp/vLLL6K9vb0YGhpaaXVv27ZN/Pnnn8ULFy6I58+fF6dNmybWqFFDPH36dLWt+VHx8fGim5ub2LRpU3HMmDFSe3Wse+bMmaKPj4+YkpIiHf/++2+1rpmUi4GGnkutW7cWR48eLT3Oz88X69SpI4aHh1dhVQ89HmgKCgpEjUYjfv7551LbvXv3RLVaLa5Zs0YURVE8e/asCEA8duyY1Gfnzp2iIAjijRs3nkrdt27dEgGI+/btk2qsUaOGuH79eqlPUlKSCEA8fPiwKIoPg5yRkZGYmpoq9YmMjBStrKzE7Ozsp1K3KIpirVq1xG+//bba15yRkSE2bNhQ3LVrl+jr6ysFmupa98yZM8VmzZoZPFddaybl4ktO9NzJycnBH3/8AX9/f6nNyMgI/v7+OHz4cBVWZtiVK1eQmpoqq9fa2hpt2rSR6j18+DBsbGzw0ksvSX38/f1hZGSEo0ePPpU609LSAPz/l37+8ccfyM3NldXt7e0NFxcXWd1NmjRB7dq1pT4BAQFIT0/HmTNnKr3m/Px8rF27Fvfv30e7du2qfc2jR49G9+7dZfUB1fu5vnjxIurUqYP69etj0KBBuHbtWrWvmZSJX05Jz53//e9/yM/Pl/0jCQC1a9fGuXPnqqiqoqWmpgKAwXoLz6WmpsLR0VF2XqVSwdbWVupTmQoKCjB27Fi8/PLLaNy4sVSTiYkJbGxsiq3b0HUVnqssiYmJaNeuHbKysmBhYYHNmzfjhRdeQEJCQrWtee3atThx4gSOHTumd666Ptdt2rTBypUr4eXlhZSUFHzyySfo2LEjTp8+XW1rJuVioCGichs9ejROnz6NgwcPVnUpJeLl5YWEhASkpaVhw4YNGDJkCPbt21fVZRXp+vXrGDNmDHbt2gVTU9OqLqfEunXrJv25adOmaNOmDVxdXfHTTz/BzMysCiujZxFfcqLnjr29PYyNjfXeTXHz5k1oNJoqqqpohTUVV69Go8GtW7dk5/Py8nDnzp1Kv6YPPvgAO3bsQFxcHOrVqyerOycnB/fu3Su2bkPXVXiuspiYmMDDwwMtW7ZEeHg4mjVrhoULF1bbmv/44w/cunULLVq0gEqlgkqlwr59+7Bo0SKoVCrUrl27Wtb9OBsbG3h6euLSpUvV9rkm5WKgoeeOiYkJWrZsiT179khtBQUF2LNnD9q1a1eFlRnm7u4OjUYjqzc9PR1Hjx6V6m3Xrh3u3buHP/74Q+qzd+9eFBQUoE2bNpVSlyiK+OCDD7B582bs3bsX7u7usvMtW7ZEjRo1ZHWfP38e165dk9WdmJgoC2O7du2ClZUVXnjhhUqp25CCggJkZ2dX25q7dOmCxMREJCQkSMdLL72EQYMGSX+ujnU/LjMzE5cvX4aTk1O1fa5Jwar6rmSiqrB27VpRrVaLK1euFM+ePSu+++67oo2NjezdFE9TRkaGePLkSfHkyZMiAPHLL78UT548KV69elUUxYdv27axsRG3bt0qnjp1SnzjjTcMvm37xRdfFI8ePSoePHhQbNiwYaW+bfv9998Xra2tRZ1OJ3tb7n///Sf1GTlypOji4iLu3btXPH78uNiuXTuxXbt20vnCt+W+8sorYkJCghgbGys6ODhU6ttyp06dKu7bt0+8cuWKeOrUKXHq1KmiIAjib7/9Vm1rNuTRdzlV17onTJgg6nQ68cqVK+KhQ4dEf39/0d7eXrx161a1rZmUi4GGnltff/216OLiIpqYmIitW7cWjxw5UmW1xMXFiQD0jiFDhoii+PCt29OnTxdr164tqtVqsUuXLuL58+dlc9y+fVsMCgoSLSwsRCsrK/Gdd94RMzIyKq1mQ/UCEGNiYqQ+Dx48EEeNGiXWqlVLrFmzptirVy8xJSVFNk9ycrLYrVs30czMTLS3txcnTJgg5ubmVlrdQ4cOFV1dXUUTExPRwcFB7NKlixRmqmvNhjweaKpj3QMGDBCdnJxEExMTsW7duuKAAQPES5cuVeuaSbkEURTFqtkbIiIiIqoYvIeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiKgUkpOTIQgCEhISqroUInoEAw0REREpHgMNESlKQUEBPvvsM3h4eECtVsPFxQVz5swBACQmJqJz584wMzODnZ0d3n33XWRmZkpj/fz8MHbsWNl8PXv2RHBwsPTYzc0Nc+fOxdChQ2FpaQkXFxcsX75cOu/u7g4AePHFFyEIAvz8/CrtWomo5BhoiEhRQkNDERERgenTp+Ps2bNYvXo1ateujfv37yMgIAC1atXCsWPHsH79euzevRsffPBBqdeYP38+XnrpJZw8eRKjRo3C+++/j/PnzwMA4uPjAQC7d+9GSkoKNm3aVKHXR0Rlo6rqAoiISiojIwMLFy7E4sWLMWTIEABAgwYN0KFDB6xYsQJZWVlYtWoVzM3NAQCLFy9Gjx49MG/ePNSuXbvE67z66qsYNWoUAGDKlClYsGAB4uLi4OXlBQcHBwCAnZ0dNBpNBV8hEZUVd2iISDGSkpKQnZ2NLl26GDzXrFkzKcwAwMsvv4yCggJpd6WkmjZtKv1ZEARoNBrcunWr7IUTUaVjoCEixTAzMyvXeCMjI4iiKGvLzc3V61ejRg3ZY0EQUFBQUK61iahyMdAQkWI0bNgQZmZm2LNnj965Ro0a4c8//8T9+/eltkOHDsHIyAheXl4AAAcHB6SkpEjn8/Pzcfr06VLVYGJiIo0louqDgYaIFMPU1BRTpkzB5MmTsWrVKly+fBlHjhxBVFQUBg0aBFNTUwwZMgSnT59GXFwcQkJC8NZbb0n3z3Tu3Bk///wzfv75Z5w7dw7vv/8+7t27V6oaHB0dYWZmhtjYWNy8eRNpaWmVcKVEVFoMNESkKNOnT8eECRMwY8YMNGrUCAMGDMCtW7dQs2ZN/Prrr7hz5w5atWqFvn37okuXLli8eLE0dujQoRgyZAjefvtt+Pr6on79+tBqtaVaX6VSYdGiRfjmm29Qp04dvPHGGxV9iURUBoL4+AvKRERERArDHRoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUrz/A+sUfVTiRBWAAAAAAElFTkSuQmCC", + "text/plain": [ + "
            " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "# Specify colors for each values of the hue variable\n", + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# Plot a bar plot to visualize how many pumpkins of each variety are orange or white\n", + "sns.catplot(\n", + " data=pumpkins, y=\"Variety\", hue=\"Color\", kind=\"count\",\n", + " palette=palette, \n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# پیش‌پردازش داده‌ها\n", + "\n", + "بیایید ویژگی‌ها و برچسب‌ها را کدگذاری کنیم تا داده‌ها را بهتر ترسیم کرده و مدل را آموزش دهیم.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['med', 'lge', 'sml', 'xlge', 'med-lge', 'jbo', 'exjbo'],\n", + " dtype=object)" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the different values of the 'Item Size' column\n", + "pumpkins['Item Size'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OrdinalEncoder\n", + "# Encode the 'Item Size' column using ordinal encoding\n", + "item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']]\n", + "ordinal_features = ['Item Size']\n", + "ordinal_encoder = OrdinalEncoder(categories=item_size_categories)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OneHotEncoder\n", + "# Encode all the other features using one-hot encoding\n", + "categorical_features = ['City Name', 'Package', 'Variety', 'Origin']\n", + "categorical_encoder = OneHotEncoder(sparse_output=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_MICHIGANcat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIA
            21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
            31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.01.0
            43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
            53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
            61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
            \n", + "

            5 rows × 48 columns

            \n", + "
            " + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_MICHIGAN cat__Origin_NEW JERSEY \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NEW YORK cat__Origin_NORTH CAROLINA cat__Origin_OHIO \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_PENNSYLVANIA cat__Origin_TENNESSEE cat__Origin_TEXAS \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VERMONT cat__Origin_VIRGINIA \n", + "2 0.0 0.0 \n", + "3 0.0 1.0 \n", + "4 0.0 0.0 \n", + "5 0.0 0.0 \n", + "6 0.0 0.0 \n", + "\n", + "[5 rows x 48 columns]" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.compose import ColumnTransformer\n", + "ct = ColumnTransformer(transformers=[\n", + " ('ord', ordinal_encoder, ordinal_features),\n", + " ('cat', categorical_encoder, categorical_features)\n", + " ])\n", + "# Get the encoded features as a pandas DataFrame\n", + "ct.set_output(transform='pandas')\n", + "encoded_features = ct.fit_transform(pumpkins)\n", + "encoded_features.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIAColor
            21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
            31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.01.00
            43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
            53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
            61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
            \n", + "

            5 rows × 49 columns

            \n", + "
            " + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_NEW JERSEY cat__Origin_NEW YORK \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NORTH CAROLINA cat__Origin_OHIO cat__Origin_PENNSYLVANIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_TENNESSEE cat__Origin_TEXAS cat__Origin_VERMONT \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VIRGINIA Color \n", + "2 0.0 0 \n", + "3 1.0 0 \n", + "4 0.0 0 \n", + "5 0.0 0 \n", + "6 0.0 0 \n", + "\n", + "[5 rows x 49 columns]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "# Encode the 'Color' column using label encoding\n", + "label_encoder = LabelEncoder()\n", + "encoded_label = label_encoder.fit_transform(pumpkins['Color'])\n", + "encoded_pumpkins = encoded_features.assign(Color=encoded_label)\n", + "encoded_pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['ORANGE', 'WHITE']" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the mapping between the encoded values and the original values\n", + "list(label_encoder.inverse_transform([0, 1]))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# تحلیل روابط بین ویژگی‌ها و برچسب\n" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAYpCAYAAABBoEQQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxVdf7H8ff1IuAI4oqAIqiIuORS5lqCpqnTkE2NOo6ZYlk5uOVYaf1m1MbCpkUrNbMhW8a0Tdtm1FwAzTRFpVxJDVMTRBNZHEGB8/vDh3e8gXpZT6f7ej4e5zH3nu853/vhjMGbL9/zPTbDMAwBAAAAFlLD7AIAAACAsiLEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcD7MLAAAAwK9fTEyMS8ctWbLEpeMIsQAAAKhy2dnZTu/PnTunDRs2KDo6ulz92QzDMCqjMAAAAMBVaWlp6tChg3Jzc8t1PnNiAQAAUO0qOo5KiAUAAIDlEGIBAABgOdzYBQAAgCqXlJTk9P7HH39UUVGREhMTZbPZHPsjIyNd6o8buwAAAFDl7Ha7DMNwCqw/ZxiGiouLXeqPkVgAAABUuaysrErtj5FYAAAAWA43dgEAAKDaLF++XHfddZfatm2rtm3b6q677tJ7771X5n4YiQUAAECVKy4u1pAhQ/Txxx+rVatWatOmjWw2m/bv36/U1FTdc889eu+991SjhmtjrMyJBQAAQJWbN2+ekpKS9Omnn+qOO+5wavvPf/6jkSNH6qWXXtIjjzziUn+MxAIAAKDKdejQQZMnT9aYMWNKbV+yZInmzp2rb7/91qX+CLEAAACocrVq1dKBAwcUEhJSavsPP/ygiIgInT9/3qX+uLELAAAAVc7b21vZ2dlXbc/JyVGtWrVc7o8QCwAAgCrXo0cPLViw4Krt8+fPV/fu3V3ujxu7AAAAUOX+9re/KTIyUqdPn9Zf/vIXtW3bVpK0f/9+vfDCC/r000+VmJjocn/MiQUAAEC1+Oyzz3T//ffr9OnTTvsbNmyof/7zn7rzzjtd7osQCwAAgGpz/vx5rV27Vt99950kKTw8XP379y/TfFiJEAsAAIBfiNTUVLVu3dqlY5kTCwAAAFMcPnxYCQkJji0jI0PFxcUunUuIBQAAQLU4cuSII7AmJibq+PHj8vHx0S233KLJkycrKirK5b6YTgAAAIAq17x5c/3www+qXbu2evXqpT59+igqKko333yzatQo+6qvhFgAAABUOQ8PD/n4+CgmJkb9+/fXrbfeKl9f33L3R4gFAABAlcvMzFRSUpKSkpKUmJio7777Tp07d1ZUVJT69OmjW265RT4+Pi73R4gtJ8MwlJubK19fX9lsNrPLAQAAsJSffvpJiYmJjlCbmpqqzp07a+vWrS6dz41d5ZSbmys/Pz9lZ2erTp06ZpfjVgzDUEFBgdllAKa48t+/l5cXv0SbhGsPVFyDBg3Uq1cvFRcXq7i4WNnZ2frmm29cPp8QC8spKCjQkCFDzC4DgBv74IMP5O3tbXYZgOUcO3ZMSUlJ2rhxozZu3KgffvhB3bp1U9++ffXOO++oe/fuLvdFiAUAAECVa9GihU6cOKFu3bopKipKr732mnr06CFPT89y9UeIhaU9M2i/PO2uLYoM/BoUFNr05Oq2kqSnB+6Tlwe3NVSXC0U19MSqNmaXAVjW0aNHVbNmTRmGIcMwHNMIyosQC0vztBfzQxxuy8vD4N9/teIXZqAifvzxRyUmJiohIUHvvfeenn76aXl6eqpr167q06ePIiMj1bNnT3l5ebnUHyG2gljcAQAA/Npdvqm0InPBGzdurGHDhmnYsGGSLoXay0/vevvtt/X3v/9dnp6eOn/+vEv9EWIriLvkAQDAr93lm6o/++yzSuuzSZMmuvfee3XvvfdKujTdYP369S6fX/ZnfOnSnWVjxoxRUFCQPD09FRISokmTJumnn35yHBMVFSWbzSabzSZvb2+Fh4crLi6u1JHLLVu2yG6364477ijRduTIEdlsNvn7+ys3N9eprVOnTpo5c6bTvkOHDmnMmDFq1qyZvLy81KRJE912221aunSpCgsLHcddru3n2/Lly8tzSQAAAFABzZo1U0xMjMvHl3kk9vvvv1ePHj0UHh6uZcuWqXnz5tq7d68effRRrVq1Slu3blX9+vUlSWPHjtVTTz2lgoICbdiwQQ8++KDq1q2rcePGOfUZHx+vCRMmKD4+XidOnFBQUFCJz83NzdXzzz+vWbNmXbW2bdu2qV+/fmrXrp0WLFigiIgISVJycrIWLFig9u3bq2PHjo7jlyxZooEDBzr1Ubdu3bJeEgAAAFyHKwHVMAy9+eabLvVX5hAbGxsrT09PffHFF6pVq5akS8m5c+fOatmypZ588km9+uqrkqTf/OY3CggIcBQ+f/58rV271inE5uXl6b333lNycrIyMjL05ptv6oknnijxuRMmTNCLL76o2NhY+fv7l/pFjx49WuHh4dq8ebNq1PjfIHOrVq00fPjwEqPAdevWddRXXvn5+crPz69QHyibK683U5IBVJcrv9/wfR/upjL+zb/99tsaOHDgVW/cKigo0KpVq6omxJ45c0Zr1qzR008/7QiwlwUEBGjEiBF67733tHDhQqc2wzD05Zdf6sCBA2rVqpVT2/vvv6+IiAi1bt1a9957ryZPnqzp06eXeBLK8OHDtXbtWj311FOaP39+idpSUlK0f/9+LVu2zCnAXqkiT1cpKChwmv+ak5MjSXrwwQdVs2bNcveLirlQZJN3TZIsgKp3oeh/P0NGjhxpYiWAdb3xxhtq3LhxqW2nTp0q0+BimebEHjx4UIZhqE2b0tfJa9OmjbKysnTq1ClJ0sKFC+Xj4yMvLy/17t1bxcXFmjhxotM58fHxjgm9AwcOVHZ2tpKSkkr0bbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAAA/4+HhoaKioqu2FxYWym63u95feYpwdVmpESNG6Mknn1RWVpZmzJihnj17qmfPno721NRUbdu2TStXrrxUjIeHhg0bpvj4eEVFRZXob8CAAbrlllv017/+Ve++++51P79BgwZKSUmRdOlGswsXLji1z507V/369XPaV9p8XEmaPn26pkyZ4nifk5Oj4OBgLV68uNTpDag6+fn5jlEQTzujsACqx5Xfb9555x0eOwu3cuXP3vKqV6+eTp48edWsdfLkScd9Va4oU4gNCwuTzWbT/v379fvf/75E+/79+1WvXj01atRIkuTn56ewsDBJl6YNhIWFqXv37o7gGB8fr8LCQqcvxjAMeXl5af78+fLz8yvxGXPmzFGPHj306KOPOu2/PE0hNTVVnTt3liTZ7XbH53t4lPxSAwICHO3X4+XlVeocDm9vb76RmagCM0QAoEyu/H7D936g7Dp27KhVq1Y5ctrPrV69Wh06dHC5vzJNJ2jQoIH69++vhQsXlliINiMjQ0uXLtWwYcNKnXvq4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/++Qo9wgwAAACVb8SIEZozZ442bNhQoi0hIUHPPPOMhg8f7nJ/ZZ5OMH/+fPXs2VMDBgzQ7NmznZbYatKkiZ5++umrnvvQQw/p73//uz766CN5eHgoKytL999/f4kR13vuuUfx8fF6+OGHS+3n6aefVrt27ZxGV202m5YsWaL+/furV69emj59utq0aaOLFy9q48aNOnXqVIl5FmfPnlVGRobTPl9fX9WuXbuslwUAAADXcN9992nFihXq16+fbrjhBrVp00Y2m00HDhzQN998o9/+9rcaPXq0y/2V+WEHrVq1UnJyslq0aKGhQ4eqZcuWevDBB9WnTx9t2bLlmnMZ6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMKbHcQ/fu3bVjxw61bt1asbGxatu2rXr27Klly5Zp7ty5JdanjYmJUWBgoNP2yiuvlPWSAAAAwAUrV67Um2++qZCQEO3du1e7d+9WkyZN9M9//lOffvppmVaSshmu3qUFJzk5OfLz89PZs2dLDeKoOvn5+RoyZIgk6fnf7ZWXB/+E4T4KCm2a+nk7Sfz7r25XXvsPPviAObFwK4ZhqKCg4Bf1775cqxPgfyqy9iwq7kJRDUnMgYb7KCi0lfoaVe/S9xvAPdlstl9UgJUIsbC4J1aVvmYx4A6eXN3W7BIAwGXNmze/7jGGYejIkSMu9UeIBQAAQJU7evSonnrqKfn6+kqSTp8+reeee07PPvusJCkvL0//93//53J/zIktp8tzYrOzs1WnTh2zy3Erl+flAO7oyn//Xl5eTGkyCdceKDu73a4TJ044Hjv7/fffq2PHjsrNzZV06UmrAQEBLi+VykgsLOeXOC8HqE61atUyuwQAMB2z1AEAAGA5hFgAAACY4ufTcsoyTYcQCwAAgCr30EMP6Te/+Y3jfZMmTbRq1SrHe19fX8XFxbncHzd2lRM3dgEAAJiHG7sAAABQ5X744QeXjgsJCXHpOEIsAAAAqlyLFi1kGIZsNpuunAjw8/euLrFV5XNiFy1aJF9fXxUWFjr25eXlqWbNmoqKinI6NjExUTabTYcPH1ZoaKjmzZtXor+ZM2eqU6dOpb4PDQ2VzWa76jZ69GhJumr78uXLK/mrBwAAgCTt2rVLKSkpjv+9vO3cuVOPPfaYatWqJX9/f5f7q/KR2D59+igvL0/Jycnq3r27JGnTpk0KCAjQ119/rfz8fMeanwkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjrmrF65tuKSJUs0cOBAp/Pr1q1brs8FAADAtXXo0KHEvi+++ELTp0/XoUOH9Nhjj2nq1Kku91flIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFA+27dv17Rp0/Tll1/qwQcf1Jo1a9SwYcMy9VEtS2z16dNHCQkJjvcJCQmKiopSZGSkY//58+f19ddfVyjEAgAA4Jfr4MGDGjZsmHr27KnAwEAdOHBAr7zySpkDrFSNIXbz5s0qLCxUbm6udu3apcjISPXu3VuJiYmSpC1btqigoMApxD7++OPy8fFx2p555plKqWn48OEl+j569OhVjy8oKFBOTo7TBgAAANc8/PDDateunbKzs7V9+3b961//UvPmzcvdX7WsThAVFaVz585p+/btysrKUnh4uBo1aqTIyEjFxMQoPz9fiYmJatGihZo1a+Y479FHH3XcjHXZyy+/rI0bN1a4prlz56pfv35O+4KCgq56fFxcnGbNmlXhzwUAAHBHr7/+ury9vZWZmamYmJirHrdr1y6X+quWEBsWFqamTZsqISFBWVlZioyMlHQpNAYHB+urr75SQkKC+vbt63Rew4YNFRYW5rTv8lzXigoICCjR97VMnz5dU6ZMcbzPyclRcHBwpdQCAADwazdjxoxK7a/a1ont06ePEhMTlZWVpUcffdSxv3fv3lq1apW2bdumcePGVVc5Zebl5SUvLy+zywAAALCkv/3tb5XaX7WG2NjYWF28eNExEitJkZGRGj9+vC5cuFCtN3WdPXtWGRkZTvt8fX1Vu3btaqsBAAAA5VMtN3ZJl0Ls+fPnFRYWpsaNGzv2R0ZGKjc317EUV3WJiYlRYGCg0/bKK69U2+cDAACg/GzGlc/5gstycnLk5+en7Oxsx8MUAAAAUD2qbSQWAAAAqCyEWAAAAJju7NmzZbo/ihALAAAA0124cEFJSUkuH0+IBQAAgOVU2xJbvzaX74fj8bMAAMCd+Pr6ymazlfm8H3744Zrtp06dKlN/rE5QTt9//71atmxpdhkAAADVKjMzU40aNSrzeXa7XYZhyGazqbT4eXl/cXGxS/0xEltOlx9/e/ToUfn5+Zlcjfu5/NjfY8eOscSZCbj+5uL6m4drby6uv7kuX39PT89ynb9r165rtp85c0Z9+/Z1uT9CbDnVqHFpOrGfnx//IZmoTp06XH8Tcf3NxfU3D9feXFx/c5VnKoEkdejQ4ZrtmZmZZeqPG7sAAADwi1CWgEyIBQAAgOk8PT3Vtm1bl48nxJaTl5eXZsyYIS8vL7NLcUtcf3Nx/c3F9TcP195cXH9zVfX137Rpk06fPu3y8axOAAAAANPk5uZq0qRJevfddzVjxgxNnz7dpfO4sQsAAACmSEhI0JgxY1S/fn3t2LFD7dq1c/lcQiwAAACqXN++fZ3Why0sLNTWrVv1xBNP6G9/+5vsdnuZ+iPEAgAAoMp16tTJ6X1hYaH27Nmj/fv368yZM2V+gAJzYgEAAGCK48ePKyYmRt9++63mz5+vIUOGuHwuqxOU04IFCxQaGipvb29169ZN27ZtM7skt7Bx40ZFR0crKChINptNH3/8sdkluY24uDjdfPPN8vX1lb+/v+666y6lpqaaXZbbePXVV9WhQwfHIu89evTQqlWrzC7Lbc2ZM0c2m02TJ082uxS3MHPmTNlsNqctIiLC7LLcyo8//qh7771XDRo0UK1atXTDDTcoOTm5wv02bdpUa9eu1d/+9jfFxMRo6NChLp9LiC2H9957T1OmTNGMGTO0c+dOdezYUQMGDCjzkyZQdufOnVPHjh21YMECs0txO0lJSYqNjdXWrVu1du1aXbx4UbfffrvOnTtndmluoWnTppozZ4527Nih5ORk9e3bV4MHD9bevXvNLs3tbN++Xa+99tp1nz6EytWuXTulp6c7ti+//NLsktxGVlaWevXqpZo1a2rVqlXat2+fXnjhBdWrV6/SPiM2NlYpKSk6fvy4y+cwnaAcunXrpptvvlnz58+XJBUXFys4OFgTJkzQtGnTTK7OfdhsNq1cuVJ33XWX2aW4pVOnTsnf319JSUnq3bu32eW4pfr16+u5557T/fffb3YpbiMvL0833nijFi5cqNmzZ6tTp06aN2+e2WX96s2cOVMff/yxUlJSzC7FLU2bNk2bN2/Wpk2bqvyzDMNw+ald3NhVRhcuXNCOHTuc1jCrUaOG+vXrpy1btphYGVC9srOzJV0KUqheRUVF+uCDD3Tu3Dn16NHD7HLcSmxsrO644w7169dPs2fPNrsct3Lw4EEFBQXJ29tbPXr0UFxcnJo1a2Z2WW7h008/1YABAzRkyBAlJSWpSZMm+vOf/6yxY8eWqZ9Zs2Zd9xjDMDRz5kyX+iPEltHp06dVVFSkxo0bO+1v3LixDhw4YFJVQPUqLi7W5MmT1atXL7Vv397sctzG7t271aNHD+Xn58vHx0crV64s0yMaUTHLly/Xzp07tX37drNLcTvdunXTm2++qdatWys9PV2zZs3Srbfeqj179sjX19fs8n71vv/+e7366quaMmWKnnjiCW3fvl0TJ06Up6enRo0a5XI/n3zyieP1hQsXdODAAadpOZdXKyDEAqgysbGx2rNnD3PSqlnr1q2VkpKi7Oxsffjhhxo1apSSkpIIstXg2LFjmjRpktauXStvb2+zy3E7gwYNcrzu0KGDunXrppCQEL3//vtMp6kGxcXF6tKli5555hlJUufOnbVnzx4tWrSoTCF2586djtdpaWnq2LGj075Tp04pICDA5f64sauMGjZsKLvdrpMnTzrtP3nyZJkuPGBV48eP1+eff66EhAQ1bdrU7HLciqenp8LCwnTTTTcpLi5OHTt21EsvvWR2WW5hx44dyszM1I033igPDw95eHgoKSlJL7/8sjw8PFRUVGR2iW6lbt26Cg8P16FDh8wuxS0EBgaW+GW5TZs2Onr0aLn7tNvtKiwsdNp38eJF1ajhejQlxJaRp6enbrrpJq1fv96xr7i4WOvXr2duGn7VDMPQ+PHjtXLlSm3YsEHNmzc3uyS3V1xcrIKCArPLcAu33Xabdu/erZSUFMfWpUsXjRgxQikpKWV+0hAqJi8vT4cPH1ZgYKDZpbiFXr16lVhS8bvvvlNISEi5+wwKCtLFixe1Y8cOx77NmzeXaXCE6QTlMGXKFI0aNUpdunRR165dNW/ePJ07d04xMTFml/arl5eX5/Sbd1pamlJSUlS/fn0m+Fex2NhYvfvuu/rkk0/k6+urjIwMSZKfn59q1aplcnW/ftOnT9egQYPUrFkz5ebm6t1331ViYqLWrFljdmluwdfXt8T879q1a6tBgwbMC68GU6dOVXR0tEJCQnTixAnNmDFDdrtdw4cPN7s0t/DII4+oZ8+eeuaZZzR06FBt27ZNixcv1uLFi8vdp4eHh373u99p0KBBGj58uPLz87V06VI9+OCDrndioFxeeeUVo1mzZoanp6fRtWtXY+vWrWaX5BYSEhIMSSW2UaNGmV3ar15p112SsWTJErNLcwtjxowxQkJCDE9PT6NRo0bGbbfdZnzxxRdml+XWIiMjjUmTJpldhlsYNmyYERgYaHh6ehpNmjQxhg0bZhw6dMjsstzKZ599ZrRv397w8vIyIiIijMWLF1e4z8zMTGPYsGFGw4YNjaCgIOPhhx828vLyXD6fdWIBAABgOUwnAAAAQJX74YcfXDrO1bm2jMQCAACgytntdscTuUqLn5f3FxcXu9QfI7EAAACoFuvWrVPDhg0lScePH9fQoUP11VdfSZLOnDmjvn37utwXIRYAAADVol27do6nnvr4+Mhmszme2pWZmVmmvlgnFgAAAJZDiAUAAECVq+zbsAixAAAAqHI2m+26+0o75moIsQDgBo4cOSKbzaaUlBSzSwHgppYtW6a6des63rdo0UI5OTmO9w0aNNCWLVtc7o8QCwDlMHr0aN11112O91FRUZo8ebJp9aSlpelPf/qTgoKC5O3traZNm2rw4ME6cOCAJCk4OFjp6ek8IhWAaYYOHSovL6+rttvtdnXt2tXl/lidAAAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZd+OAQEBJhbKABUIkZiAaCCRo8eraSkJL300kuy2Wyy2Ww6cuSIJGnPnj0aNGiQfHx81LhxY40cOVKnT592nBsVFaUJEyZo8uTJqlevnho3bqzXX39d586dU0xMjHx9fRUWFqZVq1Zd9fP37t2rw4cPa+HCherevbtCQkLUq1cvzZ49W927d5dUcjrB6NGjHbVeuSUmJkqSCgoKNHXqVDVp0kS1a9dWt27dHG0A8EtAiAWACnrppZfUo0cPjR07Vunp6UpPT1dwcLDOnj2rvn37qnPnzkpOTtbq1at18uRJDR061On8t956Sw0bNtS2bds0YcIEjRs3TkOGDFHPnj21c+dO3X777Ro5cqT++9//lvr5jRo1Uo0aNfThhx+qqKjI5Zov15qenq5JkybJ399fERERkqTx48dry5YtWr58ub799lsNGTJEAwcO1MGDByt2sQCgkvDYWQAoh9GjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxl59WI12au9qgQQPdcMMNjn2Xn25zrafZxMbGKiMjQ0uXLlWPHj30wQcfqF27dlq7du01a9y1a5dGjhyp+fPnq1evXpKk3bt3q6ioSOHh4U61JyUlOdUNAGbixi4AqCJ5eXmKjo7Ws88+W6ItMDDQ8bpmzZpObTabzWnf5XUTi4uLr/l5vr6+io6OVnR0tGbPnq0BAwZo9uzZ6t+/f6nHZ2Rk6M4779QDDzyg+++/36luu92uHTt2yG63O53j4+NzzRoAoLoQYgGgEnh6epaYj3rjjTfqo48+UmhoqDw8qvfbrc1mU0REhL766qtS2/Pz8zV48GBFREToxRdfdGrr3LmzioqKlJmZqVtvvbU6ygWAMmM6AQBUgtDQUH399dc6cuSITp8+reLiYsXGxurMmTMaPny4tm/frsOHD2vNmjWKiYlx+QYsV6SkpGjw4MH68MMPtW/fPh06dEjx8fF64403NHjw4FLPeeihh3Ts2DG9/PLLOnXqlDIyMpSRkaELFy4oPDxcI0aM0H333acVK1YoLS1N27ZtU1xcnP79739XWt0AUBGMxAJAJZg6dapGjRqltm3b6vz580pLS1NoaKg2b96sxx9/XLfffrsKCgoUEhKigQMHqkaNyhtDaNq0qUJDQzVr1izHUlqX3z/yyCOlnpOUlKT09HS1bdvWaX9CQoKioqK0ZMkSzZ49W3/5y1/0448/qmHDhurevbt+97vfVVrdAFARrE4AAAAAy2E6AQAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBwPswsAAADAr19MTIxLxy1ZssSl42yGYRgVKQgAAAC4nrvvvtvx+ty5c9qwYYOio6Md+woKCrRq1SoVFxe71B8hFgAAANUqLS1NHTp0UG5urmPfqVOnFBAQoKKiIpf6YE4sAAAAqlXNmjV18eJFp335+fny8HB9pishtpwMw1BOTo4YyAYAACiboKAgGYahdevWOfb95z//UbNmzVzugxu7yik3N1d+fn46efKk6tSpY3Y5bsUwDBUUFEiSvLy8ZLPZTK7IfXH9AQDlUaNGDY0YMULR0dEaMGCAzp8/r3Xr1mnmzJku98Gc2HLKycmRn5+fBgwYoJo1a5pdDmCKDz74QN7e3maXAQCwoPPnz2vWrFlav369PD09deedd+rRRx9VjRquTRRgJBYAAADVrlatWpozZ065zyfEVtCM/t+pvo/ZVbiXgkKbnlzdVpL09MB98vLgjwnV6UJRDT2xqo3ZZQAALCYpKcml4yIjI106jhBbQTVrFMvLgzmBZvHyMAix1c619fuAXxvm4wMV07dvXxmGcc3/dgzDcHmdWEJsBV0o4psYALiDgoICDRkyRBLzwYHyyMrKqtT+CLEAAACocpW9mlO51ok9duyYxowZo6CgIHl6eiokJESTJk3STz/95DgmKipKNptNNptN3t7eCg8PV1xcXKnrqm7ZskV2u1133HFHibYjR47IZrPJ39/f6akOktSpU6cSSzEcOnRIY8aMUbNmzeTl5aUmTZrotttu09KlS1VYWOg47nJtP9+WL19enksCAACAa0hKSnJpc1WZR2K///579ejRQ+Hh4Vq2bJmaN2+uvXv36tFHH9WqVau0detW1a9fX5I0duxYPfXUUyooKNCGDRv04IMPqm7duho3bpxTn/Hx8ZowYYLi4+N14sQJBQUFlfjc3NxcPf/885o1a9ZVa9u2bZv69eundu3aacGCBYqIiJAkJScna8GCBWrfvr06duzoOH7JkiUaOHCgUx9169Yt6yUBAADAdZQ2J7a091U2JzY2Nlaenp764osvVKtWLUlSs2bN1LlzZ7Vs2VJPPvmkXn31VUnSb37zGwUEBEiSYmJiNH/+fK1du9YpxObl5em9995TcnKyMjIy9Oabb+qJJ54o8bkTJkzQiy++qNjYWPn7+5doNwxDo0ePVnh4uDZv3uy0xlirVq00fPjwEqPAdevWddQHwDVX/meUn59vXiFANbvy3ztLrAPlk5qaqsaNG0u69Nf2W265RceOHZPNZtOpU6cUHh7ucl9lCrFnzpzRmjVr9PTTTzsC7GUBAQEaMWKE3nvvPS1cuNCpzTAMffnllzpw4IBatWrl1Pb+++8rIiJCrVu31r333qvJkydr+vTpJe5cGz58uNauXaunnnpK8+fPL1FbSkqK9u/fr2XLll11kdyK3ElaUFDguCtVuvSwA8AdXXkz48iRI02sBDBPQUFBiZ+DAK6vTp06jrmxPj4+MgxDfn5+ki79oliWXxDLNCf24MGDMgxDbdqUvkZkmzZtlJWVpVOnTkmSFi5cKB8fH3l5eal3794qLi7WxIkTnc6Jj4/XvffeK0kaOHCgsrOzS50PYbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAABVrFyrE7iakkeMGKEnn3xSWVlZmjFjhnr27KmePXs62lNTU7Vt2zatXLnyUjEeHho2bJji4+MVFRVVor8BAwbolltu0V//+le9++671/38Bg0aKCUlRdKlG80uXLjg1D537lz169fPaV9p83Elafr06ZoyZYrjfU5ODkEWbsnT/r///t955x2WGYLbyM/Pd/z1wcvLy+RqAOup7Gk4ZQqxYWFhstls2r9/v37/+9+XaN+/f7/q1aunRo0aSZL8/PwUFhYm6dK0gbCwMHXv3t0RHOPj41VYWOgUHA3DkJeXl+bPn+8YXr7SnDlz1KNHDz366KNO+y9PU0hNTVXnzp0lSXa73fH5Hh4lv9SAgABH+/V4eXnxTQuQdOWsHG9vb0Is3BIPOgDK7uf/3dSsWVOhoaHXPOZayjSdoEGDBurfv78WLlyo8+fPO7VlZGRo6dKlGjZsWKkF+Pj4aNKkSZo6daoMw1BhYaHefvttvfDCC0pJSXFs33zzjYKCgrRs2bJSa+jatavuvvtuTZs2zWl/586dFRERoeeff97lu9oAAABQPbZs2aIGDRo43gcHB2v37t2O9/7+/kpPT3e5vzJPJ5g/f7569uypAQMGaPbs2U5LbDVp0kRPP/30Vc996KGH9Pe//10fffSRPDw8lJWVpfvvv7/EiOs999yj+Ph4Pfzww6X28/TTT6tdu3ZOo6s2m01LlixR//791atXL02fPl1t2rTRxYsXtXHjRp06dUp2u92pn7NnzyojI8Npn6+vr2rXrl3WywIAAIBr6Nq163WPKW0Fqqsp88MOWrVqpeTkZLVo0UJDhw5Vy5Yt9eCDD6pPnz7asmWLY43Y0tSvX1/33XefZs6cqfj4ePXr16/UKQP33HOPkpOT9e2335baT3h4uMaMGVNieZ/u3btrx44dat26tWJjY9W2bVv17NlTy5Yt09y5c0usTxsTE6PAwECn7ZVXXinT9bhyfiAA4NfLy8tLH3zwgT744AOmlwG/ADaDxe7KJScnR35+fkqeG6IGvsyNqk4FhTZN/bydJOn53+2Vlwf/hKvTldef58cDAMxSrtUJ8D8XimqooPD6x6HyFBTaSn2N6nGhqFxPqwYAoFIRYito1tpw1axZ0+wy3NaTq9uaXQIAAKgE//3vf/Xcc89pxowZLh3PkAoAAABMl5eXp1mzZrl8PCOxFfT22287Hp+G6mEYhuMRwF5eXqzXaCJubgEAVKay/EwnxFYQi72bg2eWm+fKXyIAAKhMZVlvgBALoEwKCgo0ZMgQSaxOAABwXYsWLa4ZUouKisrUHyEWQJlcuT5zfn4+IRYA4JLJkydfsz0vL0//93//53J/hFgAAABUuYkTJ16zPTMzs0whltUJAAAAYDmEWABlUlxcXOprAAAqqiyrExBiAZRJbm5uqa8BAKiICxcuqG/fvi4fX+UhdtGiRfL19VVh4f+ezZqXl6eaNWsqKirK6djExETZbDYdPnxYoaGhmjdvXon+Zs6cqU6dOpX6PjQ0VDab7arb6NGjJemq7cuXL6/krx4AAADX8/bbb6tDhw6y2+0un1PlN3b16dNHeXl5Sk5OVvfu3SVJmzZtUkBAgL7++munu5sTEhLUrFkztWzZslyftX37dsfyDF999ZXuuecepaamOh5GcOXaokuWLNHAgQOdzq9bt265PhcAAABld+rUKT300ENat26dXnjhBY0dO9blc6s8xLZu3VqBgYFKTEx0hNjExEQNHjxYGzZs0NatWx0jsomJierTp0+5P6tRo0aO1/Xr15ck+fv7lxpO69atq4CAgHJ/FgAAAFz380fKFhYW6rXXXlP79u21e/duhYSElKm/alliq0+fPkpISNC0adMkXRpxfeyxx1RUVKSEhARFRUXp/Pnz+vrrrzVmzJjqKKnMCgoKnJ5SlJOTY2I1AAAA1vLJJ584vS8sLFRWVpbuvvvuMgdYqRpD7OTJk1VYWKjz589r165dioyM1MWLF7Vo0SJJ0pYtW1RQUOA0Evv444+XWC/swoULatu2bYVrGj58eIl5F/v27VOzZs1KPT4uLq7EbxAAAABwzc6dO0vs++yzzzR27FitWLFC8fHxat68ucv9VcvqBFFRUTp37py2b9+uTZs2KTw8XI0aNVJkZKRjXmxiYqJatGjhFCIfffRRpaSkOG0PP/xwpdQ0d+7cEn0HBQVd9fjp06crOzvbsR07dqxS6gAAAHBX0dHR2rt3rxo0aKAOHTpo4cKFLp9bLSOxYWFhatq0qRISEpSVlaXIyEhJUlBQkIKDg/XVV18pISGhxLIKDRs2VFhYmNO+y3NdKyogIKBE39fi5eUlLy+vSvlsAAAAXNKgQQN98MEHevfddxUbG6s///nPLp1XbevE9unTR4mJiUpMTHRaWqt3795atWqVtm3bVqGbugAAAGBdf/rTn7R3716Xj6+WkVjpUoiNjY3VxYsXHSOxkhQZGanx48frwoUL1Rpiz549q4yMDKd9vr6+ql27drXVAAAA4C6SkpJcOu5a0zuvVK0h9vz584qIiFDjxo0d+yMjI5Wbm+tYiqu6xMTElNgXFxfnWEEBAAAAladv374yDMPxaNkrX19mGIbLjzS3GYZhVHqVbiAnJ0d+fn7Kzs52PEwBcAdnzpzRqFGjJElvvfVWpc1TBwD8ul25POmRI0d0yy236Pjx4459p06dUnh4uOPBVddTbSOxAH4datSoUeprAACu5cpBP19fXxUXFzvtO3/+vMoytspPIAAAAFQrf39/nT9/Xunp6Y59Bw8elL+/v8t9MBILoEy8vb1LfQ0AgKtq166tTp066Q9/+IOmTp2q/Px8PfXUU7rllltc7oM5seXEnFi4K8MwHI9g9vLyKjEpHwAAV2zfvl333HOPfvzxR0lS27Zt9emnn7r81C5CbDllZ2erbt26OnbsGCEWAAC4DV9f30obwCgsLFRqaqo8PT0VFhZWpn4JseX0/fffq2XLlmaXAQAAUK0yMzPVqFEjs8tgTmx5XV5W6OjRo/Lz8zO5GveTk5Oj4OBgRsJNwvU3F9ffPFx7c3H9zXX5+nt6epbrfFemCRiGoSNHjrjUHyG2nC4vLeTn58d/SCaqU6cO199EXH9zcf3Nw7U3F9ffXOWdSnD06FE99dRT8vX1lSSdPn1azz33nJ599llJUl5env7v//7P5f4IsQAAAKgWDzzwgOPJrd9//73mzp2riRMnSro0TaEsIZZ1YgEAAGA5hNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrl/a9Wd1AgAAAFQ5u92uEydOOE0n6NSpk3JyciRdmk4QGBiooqIil/pjJBYAAABV7qGHHtJvfvMbx/smTZpo1apVjve+vr6Ki4tzuT9GYgEAAGA5jMQCAADAcgix5bRgwQKFhobK29tb3bp107Zt28wuyS1s3LhR0dHRCgoKks1m08cff2x2SW4jLi5ON998s3x9feXv76+77rpLqampZpflNl599VV16NDBsT5mjx49nP4Mh+o1Z84c2Ww2TZ482exS3MLMmTNls9mctoiICLPLcis//vij7r33XjVo0EC1atXSDTfcoOTkZFNrIsSWw3vvvacpU6ZoxowZ2rlzpzp27KgBAwYoMzPT7NJ+9c6dO6eOHTtqwYIFZpfidpKSkhQbG6utW7dq7dq1unjxom6//XadO3fO7NLcQtOmTTVnzhzt2LFDycnJ6tu3rwYPHqy9e/eaXZrb2b59u1577TV16NDB7FLcSrt27ZSenu7YvvzyS7NLchtZWVnq1auXatasqVWrVmnfvn164YUXVK9ePVPrYk5sOXTr1k0333yz5s+fL0kqLi5WcHCwJkyYoGnTpplcnfuw2WxauXKl7rrrLrNLcUunTp2Sv7+/kpKS1Lt3b7PLcUv169fXc889p/vvv9/sUtxGXl6ebrzxRi1cuFCzZ89Wp06dNG/ePLPL+tWbOXOmPv74Y6WkpJhdiluaNm2aNm/erE2bNpldihNGYsvowoUL2rFjh/r16+fYV6NGDfXr109btmwxsTKgemVnZ0u6FKRQvYqKirR8+XKdO3dOPXr0MLsctxIbG6s77rjD6WcAqsfBgwcVFBSkFi1aaMSIETp69KjZJbmNTz/9VF26dNGQIUPk7++vzp076/XXXze7LEJsWZ0+fVpFRUWONc4ua9y4sTIyMkyqCqhexcXFmjx5snr16qX27dubXY7b2L17t3x8fOTl5aWHH35YK1euVNu2bc0uy20sX75cO3fuLNMSQKgc3bp105tvvqnVq1fr1VdfVVpamm699Vbl5uaaXZpb+P777/Xqq6+qVatWWrNmjcaNG6eJEyfqrbfeMrUuD1M/HYAlxcbGas+ePcxJq2atW7dWSkqKsrOz9eGHH2rUqFFKSkoiyFaDY8eOadKkSVq7dq28vb3NLsftDBo0yPG6Q4cO6tatm0JCQvT+++8znaYaFBcXq0uXLnrmmWckSZ07d9aePXu0aNEijRo1yrS6GIkto4YNG8put+vkyZNO+0+ePKmAgACTqgKqz/jx4/X5558rISFBTZs2Nbsct+Lp6amwsDDddNNNiouLU8eOHfXSSy+ZXZZb2LFjhzIzM3XjjTfKw8NDHh4eSkpK0ssvvywPDw+XnzCEylG3bl2Fh4fr0KFDZpfiFgIDA0v8stymTRvTp3QQYsvI09NTN910k9avX+/YV1xcrPXr1zM3Db9qhmFo/PjxWrlypTZs2KDmzZubXZLbKy4uVkFBgdlluIXbbrtNu3fvVkpKimPr0qWLRowYoZSUFNntdrNLdCt5eXk6fPiwAgMDzS7FLfTq1avEkorfffedQkJCTKroEqYTlMOUKVM0atQodenSRV27dtW8efN07tw5xcTEmF3ar15eXp7Tb95paWlKSUlR/fr11axZMxMr+/WLjY3Vu+++q08++US+vr6OOeB+fn6qVauWydX9+k2fPl2DBg1Ss2bNlJubq3fffVeJiYlas2aN2aW5BV9f3xLzv2vXrq0GDRowL7waTJ06VdHR0QoJCdGJEyc0Y8YM2e12DR8+3OzS3MIjjzyinj176plnntHQoUO1bds2LV68WIsXLza3MAPl8sorrxjNmjUzPD09ja5duxpbt241uyS3kJCQYEgqsY0aNcrs0n71SrvukowlS5aYXZpbGDNmjBESEmJ4enoajRo1Mm677Tbjiy++MLsstxYZGWlMmjTJ7DLcwrBhw4zAwEDD09PTaNKkiTFs2DDj0KFDZpflVj777DOjffv2hpeXlxEREWEsXrzY7JIM1okFAACA5TAnFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgDcwJEjR2Sz2ZSSkmJ2KQBQKQixAFAOo0eP1l133eV4HxUVpcmTJ5tWT1pamv70pz8pKChI3t7eatq0qQYPHqwDBw5IkoKDg5Wenq727dubViMAVCYPswsAAFTMxYsX1b9/f7Vu3VorVqxQYGCgjh8/rlWrVuns2bOSJLvdroCAAHMLBYBKxEgsAFTQ6NGjlZSUpJdeekk2m002m01HjhyRJO3Zs0eDBg2Sj4+PGjdurJEjR+r06dOOc6OiojRhwgRNnjxZ9erVU+PGjfX666/r3LlziomJka+vr8LCwrRq1aqrfv7evXt1+PBhLVy4UN27d1dISIh69eql2bNnq3v37pJKTicYPXq0o9Yrt8TERElSQUGBpk6dqiZNmqh27drq1q2bow0AfgkIsQBQQS+99JJ69OihsWPHKj09Xenp6QoODtbZs2fVt29fde7cWcnJyVq9erVOnjypoUOHOp3/1ltvqWHDhtq2bZsmTJigcePGaciQIerZs6d27typ22+/XSNHjtR///vfUj+/UaNGqlGjhj788EMVFRW5XPPlWtPT0zVp0iT5+/srIiJCkjR+/Hht2bJFy5cv17fffqshQ4Zo4MCBOnjwYMUuFgBUEpthGIbZRQCA1YwePVpnz57Vxx9/LOnSiGqnTp00b948xzGzZ8/Wpk2btGbNGse+48ePKzg4WKmpqQoPD1dUVJSKioq0adMmSVJRUZH8/Px099136+2335YkZWRkKDAwUFu2bHGMrP7cggUL9Nhjj8lut6tLly7q06ePRowYoRYtWki6NBLbvHlz7dq1S506dXI6d8WKFRoxYoTWrVunXr166ejRo2rRooWOHj2qoKAgx3H9+vVT165d9cwzz1T08gFAhTESCwBV5JtvvlFCQoJ8fHwc2+WRzsOHDzuO69Chg+O13W5XgwYNdMMNNzj2NW7cWJKUmZl51c+KjY1VRkaGli5dqh49euiDDz5Qu3bttHbt2mvWuGvXLo0cOVLz589Xr169JEm7d+9WUVGRwsPDnWpPSkpyqhsAzMSNXQBQRfLy8hQdHa1nn322RFtgYKDjdc2aNZ3abDab0z6bzSZJKi4uvubn+fr6Kjo6WtHR0Zo9e7YGDBig2bNnq3///qUen5GRoTvvvFMPPPCA7r//fqe67Xa7duzYIbvd7nSOj4/PNWsAgOpCiAWASuDp6VliPuqNN96ojz76SKGhofLwqN5vtzabTREREfrqq69Kbc/Pz9fgwYMVERGhF1980amtc+fOKioqUmZmpm699dbqKBcAyozpBABQCUJDQ/X111/ryJEjOn36tIqLixUbG6szZ85o+PDh2r59uw4fPqw1a9YoJibG5RuwXJGSkqLBgwfrww8/1L59+3To0CHFx8frjTfe0ODBg0s956GHHtKxY8f08ssv69SpU8rIyFBGRoYuXLig8PBwjRgxQvfdd59WrFihtLQ0bdu2TXFxcfr3v/9daXUDQEUwEgsAlWDq1KkaNWqU2rZtq/PnzystLU2hoaHavHmzHn/8cd1+++0qKChQSEiIBg4cqBo1Km8MoWnTpgoNDdWsWbMcS2ldfv/II4+Uek5SUpLS09PVtm1bp/0JCQmKiorSkiVLNHv2bP3lL3/Rjz/+qIYNG6p79+763e9+V2l1A0BFsDoBAAAALIfpBAAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAy/EwuwAAAAD8+sXExLh03JIlS1w6zmYYhlGRggAAAIDrsdvtGjhwoLy8vCRJ586d04YNGxQdHS1JKigo0KpVq1RcXOxSf4RYAAAAVDm73a4TJ06ocePGkqS0tDR16NBBubm5kqRTp06pcePGLodY5sQCAACg2v18HLWs46qEWAAAAFQ5X19fZWVlOd5nZWXp3LlzysvLkyRlZGSofv36LvdHiAUAAECVi4iI0CuvvKLi4mIVFxdr4cKFCgoK0tSpU7V582Y9+eSTuvnmm13ujzmxAAAAqHIff/yx/vCHP6h27doqLi5W7dq1tXr1av3xj3/UwYMHFRwcrM8++0w33HCDS/0RYgEAAFAtNm7cqM8++0y1atXS2LFjFRwcLEn66aef1KBBgzL1RYgFAACA5TAnFgAAAJbDE7sAAABQ5ex2u0vLaLm6TiwhFgAAAFVu5cqVldofc2IBAABgOYzEAgAAoNocO3ZMH374oQ4ePChJatWqlf7whz84VipwFSOxAAAAqBbz58/XX/7yFxUWFsrPz0+GYSgnJ0ceHh6aO3eu/vznP7vcF6sTAAAAoMpt2LBBkydP1vjx45Wenq4zZ84oKytL6enpmjhxoiZMmKCEhASX+2MkFgAAAFXud7/7nRo2bKg333yz1PYxY8bo1KlT+uyzz1zqj5FYAAAAVLmvv/5ao0ePvmr7fffdp6+//trl/gixAAAAqHI5OTlq3ry54/1///tfrVixwvG+ZcuWys3Ndbk/QiwAAACqXIMGDXTmzBnH+4yMDI0aNcrxPjs7W02bNnW5P5bYAgAAQJXr0aOH3nnnHdWrV082m03Hjx93at+wYYO6dOnicn/c2AUAAIAqt27dOg0YMMDx6Fmbzabf/OY3jikEN998s1588UXdeuutLvVHiAUAAEC12Lt3r4qKihzv7Xa72rVrV66+CLEAAACwHG7sAgAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOILSfDMJSTkyPuiwMAAKh+POygnHJzc+Xn56fs7GzVqVPH7HIAAAB+0Vq0aHHdwT/DMHTkyBGX+iPEAoCFGIahgoICs8twS1de+zp16qhGDf6YCZTF5MmTr9p28uRJLV26VEePHnW5P0IsAFhIQUGBhgwZYnYZbu+dd95R3bp1zS4DsJSJEyc6vS8qKtK///1vLVmyRGvWrFFkZKT+8Y9/uNwfIRYAAADV5sCBA3rjjTf0r3/9S7Vr11ZMTIzmz5+vJk2alKkfQiwAWNQzg/bL015sdhluI6/ArplrI8wuA7C0rKwstWvXTr1799by5cvVu3fvcvdFiAUAC7nypoiaNYrl5cEKKdWloJBfGMx05ZxkLy8v2Ww2kytCefzmN7/RH//4R3388ceaMWOGYmJiNGTIENWqVavMfTErHQAs5Mqbui4U8UMc7uPyfPAhQ4Zwc6OFeXl5aenSpUpPT9fQoUP18ssvKzAwUA899JC+/vrrMvVVrhB77NgxjRkzRkFBQfL09FRISIgmTZqkn376yXFMVFSUbDabbDabvL29FR4erri4uFKXVtiyZYvsdrvuuOOOEm1HjhyRzWaTv7+/cnNzndo6deqkmTNnOu07dOiQxowZo2bNmsnLy0tNmjTRbbfdpqVLl6qwsNBx3OXafr4tX768TNdi7ty5ZToelePZZ59VdHS0nn32WbNLAQAAZVSnTh2NGzdOycnJ2rhxo2rVqqU77rhD7dq1c7mPMofY77//Xl26dNHBgwe1bNkyHTp0SIsWLdL69evVo0cPnTlzxnHs2LFjlZ6ertTUVE2fPl1/+9vftGjRohJ9xsfHa8KECdq4caNOnDhR6ufm5ubq+eefv2Zt27Zt04033qj9+/drwYIF2rNnjxITE/XAAw/o1Vdf1d69e52OX7JkidLT0522u+66q0zXY8uWLcrMzCzTOaiYzMxMffnll5KkL7/8kusPAIAF1K9fX/Xq1SuxRUZG6u2339aFCxe0f/9+l/sr85zY2NhYeXp66osvvnDMX2jWrJk6d+6sli1b6sknn9Srr74q6dK8h4CAAEly3Hm2du1ajRs3ztFfXl6e3nvvPSUnJysjI0NvvvmmnnjiiRKfO2HCBL344ouKjY2Vv79/iXbDMDR69GiFh4dr8+bNTuv3tWrVSsOHDy8xCly3bl1HfRXx+OOPa8mSJRXuB655/PHHS7zn+gMA8Mv20ksvVeqTTssUYs+cOaM1a9bo6aefLjEBNyAgQCNGjNB7772nhQsXOrUZhqEvv/xSBw4cUKtWrZza3n//fUVERKh169a69957NXnyZE2fPr3EhO3hw4dr7dq1euqppzR//vwStaWkpGj//v1atmzZVRegrqpJ4KdPn9b69et12223VUn/+J/169fr9OnTTvu4/gCqxRU/e/Pz85Wfn29eLW7oyuvNI9+t6Y9//KNq1qxZaf2VKcQePHhQhmGoTZs2pba3adNGWVlZOnXqlCRp4cKF+uc//6kLFy7o4sWL8vb2LrHQbXx8vO69915J0sCBA5Wdna2kpCRFRUU5HWez2TRnzhxFR0frkUceUcuWLZ3av/vuO0lS69atHfsyMzPVokULx/t//OMf+vOf/+x4P3z4cNntdqd+9u3bp2bNmpX42goKCpwmkufk5Di1v/LKK4qKiirRHypPUVGRXnnllVLbuP4AqtqVN9KNHTvWxEpQUFBQrrvZYa4mTZroT3/6k+6//37dcMMNFe6vXDd2ufob0IgRI5SSkqLNmzdr0KBBevLJJ9WzZ09He2pqqrZt26bhw4dLkjw8PDRs2DDFx8eX2t+AAQN0yy236K9//atLn9+gQQOlpKQoJSVFdevW1YULF5za586d62i/vAUFBZXaV1xcnPz8/BxbcHCwU3tRUZFWr17tUl0on9WrV6uoqKjUNq4/AAC/bNOmTdO2bdvUuXNndevWTa+99lqJm/bLokwjsWFhYbLZbNq/f79+//vfl2jfv3+/6tWrp0aNGkmS/Pz8FBYWJunStIGwsDB1795d/fr1k3RpFLawsNApOBqGIS8vL82fP19+fn4lPmPOnDnq0aOHHn30Uaf9l6cppKamqnPnzpIku93u+HwPj5JfakBAgKP9eqZPn64pU6Y43ufk5DgFWbvdroEDB7rUF8pn4MCBev3110sNslx/AFXN0/6/AZzXX3+dx85Ws/z8fI0cOVLSpWWaYD1TpkzRlClTtHnzZkVGRio/P19TpkzRH/7wB40ZM0aRkZFl6q9MIbZBgwbq37+/Fi5cqEceecRpKD8jI0NLly7VfffdV+rcUx8fH02aNElTp07Vrl27VFRUpLffflsvvPCCbr/9dqdj77rrLi1btkwPP/xwiX66du2qu+++W9OmTXPa37lzZ0VEROj555/X0KFDrzovtry8vLyu+R/NxIkT+VN2FbPb7ZowYYLmzZtXoo3rD6DKXfGjzdvbW97e3ubV4uZ40IG11atXTzabTd9884327Nmjd955RyNHjpS3t7diYmI0ffp0l/opc9KbP3++CgoKNGDAAG3cuFHHjh3T6tWr1b9/fzVp0kRPP/30Vc996KGH9N133+mjjz7S559/rqysLN1///1q376903bPPfdcdUqBJD399NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJkHP27FllZGQ4befOnSvrJVHDhg3Vt2/fMp+HsrvtttvUsGFDp31cfwAArKl9+/Z69tlnlZaWpiFDhrg8ZVQqR4ht1aqVkpOT1aJFCw0dOlQtW7bUgw8+qD59+mjLli2qX7/+Vc+tX7++7rvvPs2cOVPx8fHq169fqVMG7rnnHiUnJ+vbb78ttZ/w8HCNGTOmxJ2h3bt3144dO9S6dWvFxsaqbdu26tmzp5YtW6a5c+c6Le0lXVr2KzAw0Gm72o1D18KC+9Xr59eb6w8AgDV98803evTRRxUSEqKPP/64TD/Ty7xOrCSFhITozTffvOYxiYmJpe4v7WEHP9e1a1enm8dKu5Hstdde02uvvVZif3h4+HVru1qf5dGjR49S161F1fH399ctt9yiL7/8UrfccgvXH27lymlNV87RBH7tvLy89MEHHzhew7p++uknGYahG264QUePHtWQIUP04Ycfqnv37mXqp1whFv/zyCOPmF2CW3r88cdLPPQAcAdXzgVkWiDcyeXH2MO6nnvuOX300UdKTk5Wjx49NGbMGA0bNky/+c1vytUfIRYALOpCUQ1JxWaX4TYuFlXuDcOAu3nxxRc1cuRIvf322woPD69wf4RYALCoJ1aV/uAZAPglOn78uOMm+6ysLB08eFA2m01hYWGqV69emfvj10oAAABUObvdrrS0NP32t79Vw4YN1b17d3Xr1k0NGzbUb3/7W/3www9l6s9m8ADicsnJyZGfn5+ys7NVp04ds8sB4CYMw3B6BDaqz5XXvk6dOpW+Hjnwa3fy5EndeOONstvtio2NVUREhKRLD6qaP3++ioqKtHPnTjVu3Nil/gix5USIBWAGQizcFb9EWN/EiROVkJCgbdu2OT0wS7r0RLabb75ZUVFRLi93SogtJ0IsADPk5+dryJAhZpcBmOqdd97hsb8W1KJFCz3//PO6++67S23/+OOP9Ze//EWHDx92qT9+jQEAAECVS09PV4cOHa7a3r59e/34448u98fqBABgUa/8fay8PGuaXQZQLXLy/qupf3/T7DJQAY0aNVJhYeFV2y9evOjyfFiJEAsLunJelJeXl9Pi74A78fKsKS8vQizcg2fB/yILMyGt6aabbtIXX3zhuKHr51avXq2OHTu63B/TCWA5BQUFGjJkiIYMGcINLgDgJi5c/N8IHt/7remRRx7Ra6+9puzs7BJtOTk5ev311zV58mSX+2MkFgAAAFWud+/e2rt3b6ltderU0b59+8rUX5WPxC5atEi+vr5OcyDy8vJUs2ZNRUVFOR2bmJgom82mw4cPKzQ0VPPmzSvR38yZM9WpU6dS34eGhspms111Gz16tCRdtX358uWV/NUDAACgKlT5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr68vb0lSQkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjqWwLpyTbIlS5Zo4MCBTuezXAcAAEDVaNGihUvzmdPS0lzqr8pDbOvWrRUYGKjExERHiE1MTNTgwYO1YcMGbd261TEim5iYqD59+pT7sxo1auR4Xb9+fUmSv79/qeG0bt26CggIKPdnwTxX/geQn59vYiVA9bvy3zw3twCwkp/Pd12/fr3WrFmjv/71r/L19S1zf9UyJ7ZPnz5KSEjQtGnTJF0acX3sscdUVFSkhIQERUVF6fz58/r66681ZsyY6iipzAoKCpwmkufk5JhYjXu78v+HkSNHmlgJYK4LFwvl7e1pdhkA4JKJEyc6Xq9bt07Tp09XnTp1lJiYqH//+9/y9Czb97NqWZ2gT58+2rx5swoLC5Wbm6tdu3YpMjJSvXv3VmJioiRpy5YtKigocBqJffzxx+Xj4+O0PfPMM5VS0/Dhw0v0ffTo0aseHxcXJz8/P8cWHBxcKXUAAAC4k/Xr1+vOO+/UQw89pP379+vHH3/UH//4RxUXF5epn2oZiY2KitK5c+e0fft2ZWVlKTw8XI0aNVJkZKRiYmKUn5+vxMREtWjRQs2aNXOc9+ijjzpuxrrs5Zdf1saNGytc09y5c9WvXz+nfUFBQVc9fvr06ZoyZYrjfU5ODkHWJF5eXo7X77zzjmNONeAO8vPzHX+B8KzJAjMArCUhIUF33nmnHnzwQb344ouSLo3K9uzZUw888IDeeOMNl/uqlu+AYWFhatq0qRISEpSVlaXIyEhJl0JjcHCwvvrqKyUkJKhv375O5zVs2FBhYWFO+y7Pda2ogICAEn1fi5eXl1N4gnmufLiBt7c3IRZuiwd9ALCSpKQkRUdH64EHHnBagSooKEjr1q3TLbfcoqlTp+r55593qb9qe9hBnz59lJiYqMTERKeltXr37q1Vq1Zp27ZtFbqpCwAAAL9c0dHRiomJ0UsvvVSiLSwsTKtXr9Y///lPl/urtr9F9enTR7Gxsbp48aJjJFaSIiMjNX78eF24cKFaQ+zZs2eVkZHhtM/X11e1a9euthoAAADcxahRo/TKK69ctb1Tp0769NNPXe6vWkPs+fPnFRERocaNGzv2R0ZGKjc317EUV3WJiYkpsS8uLs6xggJ+uby8vPTBBx84XgMAfv2unAPO935rulaAvax3794u92czWGiwXHJycuTn56fs7GzHwxQAoKrl5+dryJAhkqTFz/5ZXl41Ta4IqB45uf/VhL++LunSTb08oAjc2goAFlVw4aLZJQDVhn/v+DlCLABY1OVRKQBwR9W2OgEAAABwNT/99JOaN2/u8vHMiS2n7Oxs1a1bV8eOHWNOLIBqYxiG06OXAXdx5b/9OnXqqEYNxuHM4uvrWyXrVGdmZiogIMDlJ3cxnaCcfvrpJ0niqV0AAMCtZGZmqlGjRmaXQYgtr8tPDjt69Kj8/PxMrsb9XH7sLyPh5uD6m4vrbx6uvbm4/ua6fP09PT3LdX5SUtI128+cOVOm/gix5XT5zxh+fn78h2SiOnXqcP1NxPU3F9ffPFx7c3H9zVXeqQR9+/aVYRiVNhWBEAsAAIAql5WVdc32U6dOqVWrVi73R4gFAABAlbve6Hl+fn6Z+uPWvnLy8vLSjBkzePSdSbj+5uL6m4vrbx6uvbm4/uaqjutflqkGLLEFAAAA0+Xm5urhhx/W0qVLXTqekVgAAACY7q233tLHH3/s8vHMiQUAAIBpjh49qjFjxiglJUXx8fEun8dILAAAAEzx1ltvqWPHjqpVq5b27t2rP/7xjy6fy0gsAAAAqlyLFi105a1YhYWFSk9P16JFi/TAAw+UuT9GYstpwYIFCg0Nlbe3t7p166Zt27aZXZJb2Lhxo6KjoxUUFCSbzVamuTOomLi4ON18883y9fWVv7+/7rrrLqWmpppdltt49dVX1aFDB8ci7z169NCqVavMLsttzZkzRzabTZMnTza7FLcwc+ZM2Ww2py0iIsLsstzKjz/+qHvvvVcNGjRQrVq1dMMNNyg5OblMfUyePFmPPPKI0xYcHKz4+HgdOHCgzDUxElsO7733nqZMmaJFixapW7dumjdvngYMGKDU1FT5+/ubXd6v2rlz59SxY0eNGTNGd999t9nluJWkpCTFxsbq5ptvVmFhoZ544gndfvvt2rdvn2rXrm12eb96TZs21Zw5c9SqVSsZhqG33npLgwcP1q5du9SuXTuzy3Mr27dv12uvvaYOHTqYXYpbadeundatW+d47+FBhKkuWVlZ6tWrl/r06aNVq1apUaNGOnjwoOrVq1emfiZOnFhi34MPPqjJkyfrxhtv1KxZszR16lSXl9liia1y6Natm26++WbNnz9fklRcXKzg4GBNmDBB06ZNM7k692Gz2bRy5UrdddddZpfilk6dOiV/f38lJSWpd+/eZpfjlurXr6/nnntO999/v9mluI28vDzdeOONWrhwoWbPnq1OnTpp3rx5Zpf1qzdz5kx9/PHHSklJMbsUtzRt2jRt3rxZmzZtqrLP+Pe//62xY8cqNDRUX331lUvnMJ2gjC5cuKAdO3aoX79+jn01atRQv379tGXLFhMrA6pXdna2pEtBCtWrqKhIy5cv17lz59SjRw+zy3ErsbGxuuOOO5x+BqB6HDx4UEFBQWrRooVGjBiho0ePml2S2/j000/VpUsXDRkyRP7+/urcubNef/31Sv2MO+64Q3v37lXTpk1dPocQW0anT59WUVGRGjdu7LS/cePGysjIMKkqoHoVFxdr8uTJ6tWrl9q3b292OW5j9+7d8vHxkZeXlx5++GGtXLlSbdu2Nbsst7F8+XLt3LlTcXFxZpfidrp166Y333xTq1ev1quvvqq0tDTdeuutys3NNbs0t/D999/r1VdfVatWrbRmzRqNGzdOEydO1FtvvVWpn1OvXj29//77Lh/PhBIAZRYbG6s9e/boyy+/NLsUt9K6dWulpKQoOztbH374oUaNGqWkpCSCbDU4duyYJk2apLVr18rb29vsctzOoEGDHK87dOigbt26KSQkRO+//z7TaapBcXGxunTpomeeeUaS1LlzZ+3Zs0eLFi3SqFGjXO4nJibmuscYhqE333zTpf4YiS2jhg0bym636+TJk077T548qYCAAJOqAqrP+PHj9fnnnyshIaFMf/ZBxXl6eiosLEw33XST4uLi1LFjR7300ktml+UWduzYoczMTN14443y8PCQh4eHkpKS9PLLL8vDw0NFRUVml+hW6tatq/DwcB06dMjsUtxCYGBgiV+W27RpU+YpHdnZ2Y7txIkT+te//uW0LzMzU2+//bbL/TESW0aenp666aabtH79escNRcXFxVq/fr3Gjx9vbnFAFTIMQxMmTNDKlSuVmJio5s2bm12S2ysuLlZBQYHZZbiF2267Tbt373baFxMTo4iICD3++OOy2+0mVeae8vLydPjwYY0cOdLsUtxCr169Siyp+N133ykkJKRM/axYscLxOi0tTR06dHDad+rUqTINCBJiy2HKlCkaNWqUunTpoq5du2revHk6d+6cS8PkqJi8vDyn37zT0tKUkpKi+vXrq1mzZiZW9usXGxurd999V5988ol8fX0dc8D9/PxUq1Ytk6v79Zs+fboGDRqkZs2aKTc3V++++64SExO1Zs0as0tzC76+viXmf9euXVsNGjRgXng1mDp1qqKjoxUSEqITJ05oxowZstvtGj58uNmluYVHHnlEPXv21DPPPKOhQ4dq27ZtWrx4sRYvXlzuPmvWrKmLFy867cvPzy/b0mkGyuWVV14xmjVrZnh6ehpdu3Y1tm7danZJbiEhIcGQVGIbNWqU2aX96pV23SUZS5YsMbs0tzBmzBgjJCTE8PT0NBo1amTcdtttxhdffGF2WW4tMjLSmDRpktlluIVhw4YZgYGBhqenp9GkSRNj2LBhxqFDh8wuy6189tlnRvv27Q0vLy8jIiLCWLx4cYX6KyoqMjw9PY21a9c69i1atMgICwtzuQ/WiQUAAEC1GzNmjJYtW6YBAwbo/PnzWrdunWbOnKm//vWvLp1PiAUAAEC1O3/+vGbNmqX169fL09NTd955px599FHVqOHaugOEWAAAAFgON3YBAACgyiUlJbl0XGRkpEvHMRILAACAKme322UYhmw2m2Nfae+Li4td6o+HHQAAAKBapKamKisrS1lZWdq1a5d8fHx05swZZWVl6bvvvnMKtNfDdAIAAABUizp16qhOnTqSJB8fHxmGIT8/P0mX1oktywQBRmIBAABgOYRYAAAAVLnKvg2LEAsAbuDIkSOy2WxKSUkxuxQAburn811r1qyp0NDQax5zLYRYACiH0aNH66677nK8j4qK0uTJk02rJy0tTX/6058UFBQkb29vNW3aVIMHD9aBAwckScHBwUpPT1f79u1NqxGAe9uyZYsaNGjgeB8cHKzdu3c73vv7+ys9Pd3l/rixCwAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZeWtgkICDC3UABurWvXrtc9xt/f3+X+GIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKwhO7AKAcRo8erbNnz+rjjz+WdGlEtVOnTpo3b57jmNmzZ2vTpk1as2aNY9/x48cVHBys1NRUhYeHKyoqSkVFRdq0aZMkqaioSH5+frr77rv19ttvS5IyMjIUGBioLVu2OEZWf27BggV67LHHZLfb1aVLF/Xp00cjRoxQixYtJF0aiW3evLl27dqlTp06OZ27YsUKjRgxQuvWrVOvXr109OhRtWjRQkePHlVQUJDjuH79+qlr16565plnKnr5AKDCGIkFgCryzTffKCEhQT4+Po7t8kjn4cOHHcd16NDB8dput6tBgwa64YYbHPsaN24sScrMzLzqZ8XGxiojI0NLly5Vjx499MEHH6hdu3Zau3btNWvctWuXRo4cqfnz56tXr16SpN27d6uoqEjh4eFOtSclJTnVDQBm4sYuAKgieXl5io6O1rPPPluiLTAw0PG6Zs2aTm02m81p3+UlZ673PHFfX19FR0crOjpas2fP1oABAzR79mz179+/1OMzMjJ055136oEHHtD999/vVLfdbteOHTtkt9udzvHx8blmDQBQXQixAFAJPD09S8xHvfHGG/XRRx8pNDRUHh7V++3WZrMpIiJCX331Vant+fn5Gjx4sCIiIvTiiy86tXXu3FlFRUXKzMzUrbfeWh3lAkCZMZ0AACpBaGiovv76ax05ckSnT59WcXGxYmNjdebMGQ0fPlzbt2/X4cOHtWbNGsXExLh8A5YrUlJSNHjwYH344Yfat2+fDh06pPj4eL3xxhsaPHhwqec89NBDOnbsmF5++WWdOnVKGRkZysjI0IULFxQeHq4RI0bovvvu04oVK5SWlqZt27YpLi5O//73vyutbgCoCEZiAaASTJ06VaNGjVLbtm11/vx5paWlKTQ0VJs3b9bjjz+u22+/XQUFBQoJCdHAgQNVo0bljSE0bdpUoaGhmjVrlmMprcvvH3nkkVLPSUpKUnp6utq2beu0PyEhQVFRUVqyZIlmz56tv/zlL/rxxx/VsGFDde/eXb/73e8qrW4AqAhWJwAAAIDlMJ0AAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOV4mF0AAAAA3EdMTMx1jzEMQ2+++eY1j7EZhmFUUk0AAADANd19991XbTMMQ7t27dLRo0dVXFx8zX4YiQUAAEC1WbFiRYl9p0+f1tKlS/XGG28oJydHDz/88HX7YSQWAAAA1a64uFirV6/WkiVL9Pnnn+uWW27RmDFjdPfdd8vLy+u65xNiAQAAUK3y8vIUEREhT09PjR49WjExMQoODi5TH6xOAAAAgGpnt9tls9lkGMZ157+WhhALAACAauXj46MjR45o4cKF2rt3r9q2bav+/ftr2bJlKigocKkPphMAAADAVGfOnNG//vUvLVmyRD/88IOGDx+uBQsWXPMcQiwAAACqze9///urttlsNu3atUs//PADS2wBAADgl6N+/fq61hhqnz59XOqHkVgAAABYDiOxAAAAqDauPHZWkpYsWXLNdkIsAAAAqk12dnal9MN0gnIyDEO5ubny9fWVzWYzuxwAAAC3wjqx5ZSbmys/Pz/l5OSYXQoAAIDbYTpBBbm6IC8AAABcmxNrGIbefPPNax5DiK2g/Px8s0sAAACwjGvNiS0qKtK6det0/vx5QiwAAAB+OVasWFHq/k8++URPPPGEvL29NWPGjOv2w5xYAAAAmGbTpk3q2bOnhg8frt/97nf6/vvv9dhjj133PEJsBV3vkWgAAAAoac+ePYqOjtZtt92mdu3a6dChQ3r22Wfl5+fn0vmE2ArKy8szuwQAbmbcuHGKjo7WuHHjzC4FAMrshx9+0KhRo9SpUyd5eHho9+7dev311xUUFFSmfsoVYo8dO6YxY8YoKChInp6eCgkJ0aRJk/TTTz85jomKipLNZpPNZpO3t7fCw8MVFxdX6rNyt2zZIrvdrjvuuKNE25EjR2Sz2eTv76/c3Fyntk6dOmnmzJlO+w4dOqQxY8aoWbNm8vLyUpMmTXTbbbdp6dKlKiwsdBx3ubafb8uXLy/PJQGAanH48GEdP35cknT8+HEdPnzY5IoAoGxat26tDz74QFOnTtXo0aN14MABffLJJyW26ynzjV3ff/+9evToofDwcC1btkzNmzfX3r179eijj2rVqlXaunWr6tevL0kaO3asnnrqKRUUFGjDhg168MEHVbdu3RKjB/Hx8ZowYYLi4+N14sSJUpN4bm6unn/+ec2aNeuqtW3btk39+vVTu3bttGDBAkVEREiSkpOTtWDBArVv314dO3Z0HL9kyRINHDjQqY+6deuW9ZIAQLWZOnVqifcrV640qRoAKLvCwkIZhqHnnnvuqscYhnHdKZtlHomNjY2Vp6envvjiC0VGRqpZs2YaNGiQ1q1bpx9//FFPPvmk49jf/OY3CggIUEhIiGJiYtShQwetXbvWqb+8vDy99957GjdunO64446rLqcwYcIEvfjii8rMzCy13TAMjR49WuHh4dq8ebOio6PVqlUrtWrVSsOHD9eXX36pDh06OJ1Tt25dBQQEOG3e3t5lvSQAUC2WLFni9Bcl6dIPg+s9XxwAfkkKCwtVVFR0zc2Ve47KFGLPnDmjNWvW6M9//rNq1arl1BYQEKARI0bovffeKzFlwDAMbdq0SQcOHJCnp6dT2/vvv6+IiAi1bt1a9957r954441SpxwMHz5cYWFheuqpp0qtLSUlRfv379fUqVNVo0bpX1ZFHg9bUFCgnJwcpw0AqsvFixevuizNihUrdPHixWquCADMVabpBAcPHpRhGGrTpk2p7W3atFFWVpZOnTolSVq4cKH++c9/6sKFC7p48aK8vb01ceJEp3Pi4+N17733SpIGDhyo7OxsJSUlKSoqyuk4m82mOXPmKDo6Wo888ohatmzp1P7dd99JujTP4rLMzEy1aNHC8f4f//iH/vznPzveDx8+XHa73amfffv2qVmzZiW+tri4uGtOZQCAqvT6669ft/3K728A8EuVlJTk0nGRkZHXbC/Xww5KGyktzYgRI/Tkk08qKytLM2bMUM+ePdWzZ09He2pqqrZt2+aYz+Xh4aFhw4YpPj6+RIiVpAEDBuiWW27RX//6V7377rvX/fwGDRooJSVF0qUbzS5cuODUPnfuXPXr189p39XujJs+fbqmTJnieJ+Tk6Pg4ODr1gAAlWHs2LFatWrVNdsBwAr69u0rwzCu+RdyV+bElinEhoWFyWazaf/+/fr9739fon3//v2qV6+eGjVqJEny8/NTWFiYpEvTBsLCwtS9e3dHcIyPj1dhYaFTcDQMQ15eXpo/f36p64TNmTNHPXr00KOPPuq0v1WrVpIuBePOnTtLkux2u+PzPTxKfqkBAQGO9uvx8vKSl5eXS8cCQGWrWbOm7r777lKnFNxzzz2qWbOmCVUBQNllZWVVSj9lmhPboEED9e/fXwsXLtT58+ed2jIyMrR06VINGzas1GTt4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/+eR5AAOBXKSYmpsQv5B4eHho9erQ5BQFAOaxbt061atVSnTp1rrldT5lXJ5g/f74KCgo0YMAAbdy4UceOHdPq1avVv39/NWnSRE8//fRVz33ooYf03Xff6aOPPtLnn3+urKws3X///Wrfvr3Tds899yg+Pv6q/Tz99NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJ+a9nz55VRkaG03bu3LmyXhIAqDbPP//8Nd8DwC/dsGHD1LRpU02dOlX79+8vdz9lDrGtWrVScnKyWrRooaFDh6ply5Z68MEH1adPH23ZssWxRmxp6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMUX5+vtP+7t27a8eOHWrdurViY2PVtm1b9ezZU8uWLdPcuXNLrE8bExOjwMBAp+2VV14p6yUBgGrTsmVLNW3aVJLUtGnTEje5AsAv3YkTJzR79mzt2LFD7dq1U8+ePfX666+X+SmoNsPVu7TgJCcnR35+fkpLS1NoaKjZ5QAAAFjK/v371aFDB/3jH//Qv/71L3333XcaMmSI7r//fvXq1eu655frsbP4n6utSQsAAICruzyO+sgjj2jHjh3avn27AgMDde+99zqeunotJDAAAACYLjw8XL1799Ytt9yiH3744brHE2IriMfUAgAAlF9ycrKmTJmiJk2aaNKkSbrhhhtcCrHletgB/oe1YwEAAMrmwIEDeuONN1RcXKyoqCgNHTpUH374oUtzYS8jxFbQtZ42AQAAAGft27fXvn371L17dy1evFh//OMfVbt2bUd7YWGhNm/eXDWPncX/sLgDAACA6wYOHKgPPvhAbdq0KbX9zJkz6tOnT+U+dhYlFRQUmF0CAACAZbjykBZX/tLNjV0V9PMHLgAAAKBiXPlLNyOxAAAAqDYxMTHXbD9//rxL/RBiK+h68zUAAADwP9nZ2ddsd3WqJiG2gsr6nF8AAAB3tmLFimu2nzp1So0bN75uP1U+J3bRokXy9fVVYWGhY19eXp5q1qypqKgop2MTExNls9l0+PBhhYaGat68eSX6mzlzpjp16lTq+9DQUNlstqtuo0ePlqSrti9fvrySv3oAAACUhasrP1X5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr7jqVcJCQlq1qyZWrZsWa7P2r59u4qKiiRJX331le655x6lpqaqTp06kqRatWo5jl2yZIkGDhzodH7dunXL9bkAAACoPK6sTlDlIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFD56tevr4SEhOseVy1zYvv06aOEhARNmzZN0qUR18cee0xFRUVKSEhQVFSUzp8/r6+//lpjxoypjpIAAABgkqKiIq1Zs0apqanKyckp9ZjevXtfs49qC7GTJ09WYWGhzp8/r127dikyMlIXL17UokWLJElbtmxRQUGB00js448/rv/7v/9z6uvChQtq27ZthWsaPny47Ha70759+/apWbNmpR5fUFDgdLfc1S44AAAAri4jI0O33367UlNT1bRpU/n5+ZU4xjAMzZgx45r9VEuIjYqK0rlz57R9+3ZlZWUpPDxcjRo1UmRkpGJiYpSfn6/ExES1aNHCKUQ++uijjpuxLnv55Ze1cePGCtc0d+5c9evXz2lfUFDQVY+Pi4vTrFmzKvy5AAAA7uyJJ56Qv7+/1q9f7zQVtKyqJcSGhYWpadOmSkhIUFZWliIjIyVdCo3BwcH66quvlJCQoL59+zqd17BhQ4WFhTntuzzXtaICAgJK9H0t06dP15QpUxzvc3JyFBwcXCm1AAAAuIuEhAS9++67FQqwUjWuE9unTx8lJiYqKytLjz76qGN/7969tWrVKm3btk3jxo2rrnLKzMvLS15eXmaXAQAAYGmnTp2qlJvrqzXExsbG6uLFi46RWEmKjIzU+PHjdeHChQqtTFBWZ8+eVUZGhtM+X19f1a5du9pqAAAAcDfNmzfXjh071Lx58wr1U60h9vz584qIiHB6CkNkZKRyc3MdS3FVl9Ke2xsXF+dYQQEAAACVb9SoUZo0aZJycnJ00003XXWd/pCQkGv2YzNcfSwCnOTk5MjPz09paWkKDQ01uxwAAABLKCoq0t/+9jfNmzdP+fn5JZ7QZbPZZBiGiouLr9kPIbacLofYH3744arLcgEAAKB0hmHo6NGjys7OLrW9Q4cO1zy/2qYTAAAAAJfZbLbrThm4FkIsAAAAqk1SUpJLx125EEBpCLEV5O3tbXYJAAAAltG3b18ZhiGbzebYV9r7682JJcSW0+WpxAUFBTyCFgAAuA1fX1+nwFlWWVlZTu+PHDmiW265RceOHZPNZtOpU6cUHh5+3X4IseX0008/SRI3dQEAALeSmZlZoadt1alTx+l9rVq1ZBiG/Pz8JKnUFQtKQ4gtp8uPvz169KjjoqP6XH7s77Fjx0r8x4Cqx/U3F9ffPFx7c3H9zXX5+nt6elZqv1u3btW5c+eUnZ0tPz8/nThxQg0bNrzueYTYcqpRo4Ykyc/Pj/+QTFSnTh2uv4m4/ubi+puHa28urr+5KjKV4Ernz5/XggULFB8fL0n685//rOHDh2vevHm6+eabr3t+jUqpAgAAAHDB8ePHNW3aNDVt2lSfffaZEhMTddddd2n58uUaPHiwDh06pGefffa6/TASCwAAgGrTsmVLRURE6I033tDgwYMlSStWrNB3332nCxcuKCIiQh4e14+ohNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrsq6/kuXLtUf/vCHEvtdWZHgSjx2FgAAAJbDSCwAAACqTUxMjEvHLVmy5JrtjMQCAACg2tjtdg0cONAxLeHcuXPasGGDoqOjJV16kNSqVauu+8QuQiwAAACqjd1u14kTJ9S4cWNJUlpamjp06KDc3FxJ0qlTpxQQEKCioqJr9sMSWwAAADDNz8dTDcNw6YldhNhyWrBggUJDQ+Xt7a1u3bpp27ZtZpfkFjZu3Kjo6GgFBQXJZrPp448/NrsktxEXF6ebb75Zvr6+8vf311133aXU1FSzy3Ibr776qjp06OBY5L1Hjx5atWqV2WW5rTlz5shms2ny5Mlml+IWZs6cKZvN5rRFRESYXZZb+fHHH3XvvfeqQYMGqlWrlm644QYlJyebWhMhthzee+89TZkyRTNmzNDOnTvVsWNHDRgwQJmZmWaX9qt37tw5dezYUQsWLDC7FLeTlJSk2NhYbd26VWvXrtXFixd1++2369y5c2aX5haaNm2qOXPmaMeOHUpOTlbfvn01ePBg7d271+zS3M727dv12muvqUOHDmaX4lbatWun9PR0x/bll1+aXZLbyMrKUq9evVSzZk2tWrVK+/bt0wsvvKB69epV2mf8/ClgLj0VzECZde3a1YiNjXW8LyoqMoKCgoy4uDgTq3I/koyVK1eaXYbbyszMNCQZSUlJZpfiturVq2f885//NLsMt5Kbm2u0atXKWLt2rREZGWlMmjTJ7JLcwowZM4yOHTuaXYbbevzxx41bbrml0vpr06aNcfr0acf7rKwspwx19uxZY9CgQdfth5HYMrpw4YJ27Nihfv36OfbVqFFD/fr105YtW0ysDKhe2dnZkqT69eubXIn7KSoq0vLly3Xu3Dn16NHD7HLcSmxsrO644w6nnwGoHgcPHlRQUJBatGihESNG6OjRo2aX5DY+/fRTdenSRUOGDJG/v786d+6s119/vdz97du3Tw0aNHC8r1u3rqZNm+Z47+fnp//85z/X7YcQW0anT59WUVGR4466yxo3bqyMjAyTqgKqV3FxsSZPnqxevXqpffv2ZpfjNnbv3i0fHx95eXnp4Ycf1sqVK9W2bVuzy3Iby5cv186dOxUXF2d2KW6nW7duevPNN7V69Wq9+uqrSktL06233uq4mx1V6/vvv9err76qVq1aac2aNRo3bpwmTpyot956y9S6eNgBgDKLjY3Vnj17mJNWzVq3bq2UlBRlZ2frww8/1KhRo5SUlESQrQbHjh3TpEmTtHbtWnl7e5tdjtsZNGiQ43WHDh3UrVs3hYSE6P3339f9999vYmXuobi4WF26dNEzzzwjSercubP27NmjRYsWadSoUabVxUhsGTVs2FB2u10nT5502n/y5EkFBASYVBVQfcaPH6/PP/9cCQkJatq0qdnluBVPT0+FhYXppptuUlxcnDp27KiXXnrJ7LLcwo4dO5SZmakbb7xRHh4e8vDwUFJSkl5++WV5eHhcdz1LVK66desqPDxchw4dMrsUtxAYGFjil+U2bdqYPqWDEFtGnp6euummm7R+/XrHvuLiYq1fv565afhVMwxD48eP18qVK7VhwwY1b97c7JLcXnFxsQoKCswuwy3cdttt2r17t1JSUhxbly5dNGLECKWkpMhut5tdolvJy8vT4cOHFRgYaHYpbqFXr14lllT87rvvFBISYlJFlzCdoBymTJmiUaNGqUuXLuratavmzZunc+fOufwsYJRfXl6e02/eaWlpSklJUf369dWsWTMTK/v1i42N1bvvvqtPPvlEvr6+jjngfn5+qlWrlsnV/fpNnz5dgwYNUrNmzZSbm6t3331XiYmJWrNmjdmluQVfX98S879r166tBg0aMC+8GkydOlXR0dEKCQnRiRMnNGPGDNntdg0fPtzs0tzCI488op49e+qZZ57R0KFDtW3bNi1evFiLFy82t7BKWy/BzbzyyitGs2bNDE9PT6Nr167G1q1bzS7JLSQkJBiSSmyjRo0yu7RfvdKuuyRjyZIlZpfmFsaMGWOEhIQYnp6eRqNGjYzbbrvN+OKLL8wuy62xxFb1GTZsmBEYGGh4enoaTZo0MYYNG2YcOnTI7LLcymeffWa0b9/e8PLyMiIiIozFixebXZJhMwwXnusFAAAA/IIwJxYAAACWQ4gFAACA5RBiAQAAYDmEWAAAAFgOIRYAAACWQ4gFAACA5RBiAQAAYDmEWABwA0eOHJHNZlNKSorZpQBApSDEAkA5jB49WnfddZfjfVRUlCZPnmxaPWlpafrTn/6koKAgeXt7q2nTpho8eLAOHDggSQoODlZ6ejqPSAXwq+FhdgEAgIq5ePGi+vfvr9atW2vFihUKDAzU8ePHtWrVKp09e1aSZLfbFRAQYG6hAFCJGIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKYjMMwzC7CACwmtGjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxHTp0cLy22+1q0KCBbrjhBse+xo0bS5IyMzOv+lmxsbHKyMjQ0qVL1aNHD33wwQdq166d1q5de80ad+3apZEjR2r+/Pnq1auXJGn37t0qKipSeHi4U+1JSUlOdQOAmbixCwCqSF5enqKjo/Xss8+WaAsMDHS8rlmzplObzWZz2mez2SRJxcXF1/w8X19fRUdHKzo6WrNnz9aAAQM0e/Zs9e/fv9TjMzIydOedd+qBBx7Q/fff71S33W7Xjh07ZLfbnc7x8fG5Zg0AUF0IsQBQCTw9PUvMR73xxhv10UcfKTQ0VB4e1fvt1mazKSIiQl999VWp7fn5+Ro8eLAiIiL04osvOrV17txZRUVFyszM1K233lod5QJAmTGdAAAqQWhoqL7++msdOXJEp0+fVnFxsWJjY3XmzBkNHz5c27dv1+HDh7VmzRrFxMS4fAOWK1JSUjR48GB9+OGH2rdvnw4dOqT4+Hi98cYbGjx4cKnnPPTQQzp27JhefvllnTp1ShkZGcrIyNCFCxcUHh6uESNG6L777tOKFSuUlpambdu2KS4uTv/+978rrW4AqAhGYgGgEkydOlWjRo1S27Ztdf78eaWlpSk0NFSbN2/W448/rttvv10FBQUKCQnRwIEDVaNG5Y0hNG3aVKGhoZo1a5ZjKa3L7x955JFSz0lKSlJ6erratm3rtD8hIUFRUVFasmSJZs+erb/85S/68ccf1bBhQ3Xv3l2/+93vKq1uAKgIVicAAACA5TCdAAAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWI6H2QUAAADA/WRlZengwYOy2WwKCwtTvXr1ynQ+I7EAAACoNmlpafrtb3+rhg0bqnv37urWrZsaNmyo3/72t/rhhx9c7sdmGIZRhXUCAAAAkqSTJ0/qxhtvlN1uV2xsrCIiIiRJqampmj9/voqKirRz5041btz4un0RYgEAAFAtJk6cqISEBG3btk21atVyasvPz9fNN9+sqKgovfLKK9fti+kEAAAAqBaff/65Zs2aVSLASpK3t7f+/ve/6z//+Y9LfRFiAQAAUC3S09PVoUOHq7a3b99eP/74o0t9EWIBAABQLRo1aqTCwsKrtl+8eNGl+bASIRYAAADV5KabbtIXX3xx1fbVq1erY8eOLvVFiAUAAEC1mDJlil577TVlZ2eXaMvJydHrr7+uyZMnu9QXqxMAAADAcnhiFwAAAKpFixYt5Mr4aVpa2nWPIcQCAACgWrg6VcAVTCcAAACA5XBjFwAAACyH6QQAAACoFq7MiTUMQ0eOHLluX4RYAAAAVItrzYlNS0vT4sWLdf78eZf6Yk4sAAAATHP69Gk9/fTTWrRokbp3765nn31WXbt2ve55jMQCAACg2p07d04vvviinn/+eTVv3lwrV67UwIEDXT6fEAsAAIBqU1hYqMWLF2v27NmqVauWFi5cqBEjRpS5H0IsAAAAqsXy5cv117/+VdnZ2XryyScVGxsrD4/yxVHmxJaTYRjKzc2Vr6+vbDab2eUAAAD84tntdnl5eelPf/qTfH19r3rc3Llzr9sXI7HllJubKz8/P2VnZ6tOnTpmlwMAqGKGYaigoECS5OXlxQAGUA5RUVEyDEPff//9VY9xdXyVkdhyysnJIcQCgBvJz8/XkCFDJEkffPCBvL29Ta4IcG88sQsAABfk5+eX+hqAOZhOAAAAgGoxa9Ysl46bMWPGdY8hxAIA4ILi4uJSXwNw3VNPPaV27dpddUWCwsJC7dmzhxALAEBlyc3NdXpdv359E6sBrGvt2rVq3LhxqW2nTp1SQECAS/2Ua07ssWPHNGbMGAUFBcnT01MhISGaNGmSfvrpJ8cxUVFRstlsstls8vb2Vnh4uOLi4kq942zLli2y2+264447SrQdOXJENptN/v7+Tt9AJKlTp06aOXOm075Dhw5pzJgxatasmby8vNSkSRPddtttWrp0qQoLCx3HXa7t59vy5cvLc0kAAABwHXa7/Zp/ySgqKlKNGq7F0zKH2O+//15dunTRwYMHtWzZMh06dEiLFi3S+vXr1aNHD505c8Zx7NixY5Wenq7U1FRNnz5df/vb37Ro0aISfcbHx2vChAnauHGjTpw4Uern5ubm/j979x5WVZX/cfxzPAiaECpeAC8gIuAlFTMVKQHT1CnTLHMYNEQrc9DUxkprJq1UbKaL5TUbMptKLc2aZgbNFNBMRUzM+y1MTRCvXBxFgf37w8fz6wTqAYEzp/N+Pc9+Ovu2zpf9mH5crr2WXn/99RvWlpaWpk6dOmnv3r2aO3eudu3apZSUFD3++OOaP3++du/ebXX9okWLlJWVZbUNHDiwvI8EAAAANvD09LTq9Py1M2fOqG7duja1Ve7hBPHx8XJ1ddXXX3+t2rVrS5KaN2+u0NBQtWzZUi+++KLmz58vSbrtttssXcJxcXGaM2eO1qxZo9GjR1vaKygo0LJly5Senq7s7Gx98MEHeuGFF0p979ixY/Xmm28qPj5ejRo1KnXeMAwNHz5cQUFB2rhxo1WKb9WqlaKjo0v1AtetW9fmLmsAAADcmjZt2ig5OVnt2rUr83xKSoratGljU1vl6ok9e/asVq9erT/+8Y+WAHuNt7e3YmJitGzZslJh0TAMbdiwQfv27ZOrq6vVuU8//VQhISEKDg7W0KFD9f7775c55CA6OlqBgYF65ZVXyqwtIyNDe/fu1cSJE6/bDc3E1AAAAPbzyCOPaPr06dq3b1+pc/v379err76qQYMG2dRWuULswYMHZRiGWrduXeb51q1b69y5czp16pQkad68eXJ3d5ebm5t69OihkpISPf3001b3JCYmaujQoZKkvn37Kjc3V6mpqaXaNplMmjlzphYuXKjDhw+XOn/gwAFJUnBwsOVYTk6O3N3dLdu8efOs7omOjrY67+7urqNHj5b5sxUWFiovL89qAwAAgO2eeuoptWjRQh06dNCAAQM0adIkTZ48WQ899JA6dOigpk2bWv2L/Y1U6MUuWxf5iomJUUZGhjZu3Kh+/frpxRdfVPfu3S3n9+/fr7S0NEVHR0uSXFxcNGTIECUmJpbZXp8+fXT33XfrL3/5i03f7+XlpYyMDGVkZKhu3bq6fPmy1fm33nrLcv7a5uvrW2ZbCQkJ8vT0tGzNmjWzqQYAAABcVbNmTa1du1YvvviiMjMzNXfuXM2ePVsHDx7Uc889p9TU1FL/an895RoTGxgYKJPJpL179+qhhx4qdX7v3r2qV6+eGjZsKOnq4N3AwEBJV4cNBAYGqlu3burVq5ekq72wRUVFVsHRMAy5ublpzpw58vT0LPUdM2fOVFhYmJ599lmr461atZJ0NRiHhoZKuvoG3LXvL2s+Mm9vb8v5m5k8ebKeeeYZy35eXh5BFgAAoJxuu+02vfTSS3rppZduqZ1y9cR6eXmpd+/emjdvni5evGh1Ljs7Wx9//LGGDBlS5thTd3d3jRs3ThMnTpRhGCoqKtKHH36oN954w6ondMeOHfL19dWSJUvKrKFLly4aNGiQJk2aZHU8NDRUISEhev3116tkEmo3NzfdfvvtVhsAAADso9yzE8yZM0fdu3dXnz59NG3aNLVo0UK7d+/Ws88+qyZNmmj69OnXvXfUqFF69dVXtWLFCrm4uOjcuXMaOXJkqR7Xhx9+WImJiXrqqafKbGf69OmlVnswmUxatGiRevfurfDwcE2ePFmtW7fWlStXtH79ep06dUpms9mqnfPnzys7O9vqmIeHh+rUqVPexwIAAICbiIqKuuk1hmEoJSXlpteVe0xsq1atlJ6eroCAAD366KNq2bKlnnzySUVFRWnTpk03XMGkfv36euyxxzR16lQlJiaqV69eZQ4ZePjhh5Wenq4ffvihzHaCgoI0YsQIXbp0yep4t27dtG3bNgUHBys+Pl5t2rRR9+7dtWTJEr311lulBgrHxcXJx8fHaps9e3Z5HwkAAABssH79egUHBys0NFShoaEKCAjQd999Z9kPDg7W+vXrbWrLZNj6lhas5OXlydPTU7m5uQwtAAAncPbsWcXGxkqSFi9ezLKzQAWYzWadOHHCsuzsjz/+qA4dOlhWZc3JyZG3t7dNQ0MrNDsBAADO5pdzkNu6LCaAqsP/hQAAAHA4hFgAAADYza9ntbJ1hVVCLAAANqhVq1aZnwHYrk+fPnJzc7PsN27cWO+++65l/7bbbtOoUaNsaosXuyqIF7sAwLkYhqHCwkJJV+cOt7W3CEDVoCcWAAAADqfcix0AAOCMCgsLNXjwYEnSZ599xpACoALMZrNsGQRgyxRbhFgAAGzwywV2Ll26RIgFKmDlypVW+ydPntT48eO1ZMkSSVJubq5lPuabIcQCAACgWjz44INW+z/++KNq1KhhOZ6Tk2NzW4yJBQAAgF38+OOPunjxooqLiyVdfXHew8PDpnsJsQAA2OCXY/RsGa8H4Ma2bt2qCRMmqKSkRLNnz1ZBQYHmzp2r4OBgm+4nxAIAYINra7v/+jOA8lm1apX69u2r3/3ud3rnnXcUEBCgZ555Rrfffrvmzp2rP//5zza1U+UhdsGCBfLw8FBRUZHlWEFBgWrWrKnIyEira1NSUmQymXT48GH5+/tr1qxZpdqbOnWqOnbsWOa+v7+/TCbTdbfhw4dL0nXPL126tJJ/egAAAFzTtm1bPfTQQ2rdurX27t2rqKgopaena8GCBXrnnXe0ffv2UuNmr6fKX+yKiopSQUGB0tPT1a1bN0nShg0b5O3trS1btli94ZmcnKzmzZurZcuWFfqurVu3WsZUfPfdd3r44Ye1f/9+y2IEtWvXtly7aNEi9e3b1+r+unXrVuh7AQAAcHNRUVH65ptv5OPjYzlWt25dPfnkk+Vuq8pDbHBwsHx8fJSSkmIJsSkpKRowYIDWrVunzZs3W3pkU1JSFBUVVeHvatiwoeVz/fr1JUmNGjUqM5zWrVtX3t7eFf4uAAAAlM+cOXMqra1qmWIrKipKycnJmjRpkqSrPa7PPfeciouLlZycrMjISF28eFFbtmzRiBEjqqOkcissLLQsNyhdfXsOAAAAtlu8eLFN19kyV2y1hdjx48erqKhIFy9e1Pbt2xUREaErV65owYIFkqRNmzapsLDQqif2+eefLzW49/Lly2rTps0t1xQdHS2z2Wx1bM+ePWrevHmZ1yckJOjll1++5e8FAABwViNGjNDtt98uk8kk6epMH3l5eZZ/NTcMw+YFD6olxEZGRurChQvaunWrzp07p6CgIDVs2FARERGKi4vTpUuXlJKSooCAAKsQ+eyzz1pexrrmnXfe0fr162+5prfeeku9evWyOubr63vd6ydPnqxnnnnGsp+Xl6dmzZrdch0AAADOZN++fWrcuLEkKTMzUx06dNDZs2clSadOnbJ5uGe1hNjAwEA1bdpUycnJOnfunCIiIiRdDY3NmjXTd999p+TkZPXs2dPqvgYNGigwMNDq2LWxrrfK29u7VNs34ubmJjc3t0r5bgAAAFzteTUM47r7N1Jt88RGRUUpJSVFKSkpVlNr9ejRQ0lJSUpLS7ull7oAAADgPKqlJ1a6GmLj4+N15coVS0+sJEVERGjMmDG6fPlytYbY8+fPKzs72+qYh4eH6tSpU201AAAAOBNbe1ltUa09sRcvXlRgYKBlHIR0NcTm5+dbpuKqLnFxcfLx8bHaZs+eXW3fDwAA4GyuvdB1Te3atdWjRw+r89fWD7hpW0ZlRmInkpeXJ09PT+Xm5loWUwAA/HadPXvW8sb04sWLK+0dDcCZ5OTkqFGjRpXSVrX1xAIA4Mhq1KhR5mcAtqusACtV45hYAAAAOLe4uDibrlu0aNFNryHEAgBgg1+O07N1zB4Aax9++KEiIiIsixvcCsbEVlBubq7q1q2rY8eOMSYWAJyAYRiW5cfd3NxKvaACOAsPD48K//o3m836/vvv1aFDh1uug57YCjpz5owksWoXAABwKjk5OWrYsKG9yyDEVtS1t1KPHj0qT09PO1fjfK4t+0tPuH3w/O2L528/PHv74vnb17Xn7+rqau9SJBFiK+zam6menp78j2RHt99+O8/fjnj+9sXztx+evX3x/O3rf2UoDXOEAAAAoFqMHDlSXl5eldIWPbEAAACoFgsXLqy0tgixFeTm5qYpU6bIzc3N3qU4JZ6/ffH87Yvnbz88e/vi+dtXZTz/Fi1a2HRdZmbmTa9hii0AAABUC7PZrIkTJ6pJkyY3vO7pp5++aVuEWAAAAFSLypwnlhe7AAAA4HAIsQAAAHA4hFgAAAA4HEJsBc2dO1f+/v6qVauWunbtqrS0NHuX5BTWr1+v/v37y9fXVyaTSV988YW9S3IaCQkJuuuuu+Th4aFGjRpp4MCB2r9/v73Lchrz589X+/btLZO8h4WFKSkpyd5lOa2ZM2fKZDJp/Pjx9i7FKUydOlUmk8lqCwkJsXdZTuXnn3/W0KFD5eXlpdq1a+uOO+5Qenp6udv5xz/+IT8/v0qpiRBbAcuWLdMzzzyjKVOmWAYn9+nTRzk5OfYu7TfvwoUL6tChg+bOnWvvUpxOamqq4uPjtXnzZq1Zs0ZXrlzRfffdpwsXLti7NKfQtGlTzZw5U9u2bVN6erp69uypAQMGaPfu3fYuzels3bpV7777rtq3b2/vUpxK27ZtlZWVZdm+/fZbe5fkNM6dO6fw8HDVrFlTSUlJ2rNnj9544w3Vq1ev3G399a9/1QcffKCzZ8/eemEGyq1Lly5GfHy8Zb+4uNjw9fU1EhIS7FiV85FkrFy50t5lOK2cnBxDkpGammrvUpxWvXr1jL///e/2LsOp5OfnG61atTLWrFljREREGOPGjbN3SU5hypQpRocOHexdhtN6/vnnjbvvvrtS2ho7dqzRpEkTw83NzRg8eLCxatUqo6SkpEJt0RNbTpcvX9a2bdvUq1cvy7EaNWqoV69e2rRpkx0rA6pXbm6uJKl+/fp2rsT5FBcXa+nSpbpw4YLCwsLsXY5TiY+P1/3332/1ZwCqx8GDB+Xr66uAgADFxMTo6NGj9i7Jafzzn/9U586dNXjwYDVq1EihoaF67733KtTWO++8o+PHj+ujjz7SihUrNHToUPn7+2vKlCk2LXDwS4TYcjp9+rSKi4vVuHFjq+ONGzdWdna2naoCqldJSYnGjx+v8PBwtWvXzt7lOI2dO3fK3d1dbm5ueuqpp7Ry5Uq1adPG3mU5jaVLl+r7779XQkKCvUtxOl27dtUHH3ygVatWaf78+crMzNQ999yj/Px8e5fmFH788UfNnz9frVq10urVqzV69Gg9/fTTWrx4cYXbbNOmjWrUqKHs7GzNnTtX+/bt0x133KHevXtryZIlNrXBsrMAyi0+Pl67du1iTFo1Cw4OVkZGhnJzc7V8+XLFxsYqNTWVIFsNjh07pnHjxmnNmjWqVauWvctxOv369bN8bt++vbp27So/Pz99+umnGjlypB0rcw4lJSXq3LmzZsyYIUkKDQ3Vrl27tGDBAsXGxt5S22azWQ888IAeeOAB5efna+bMmRo2bJiio6Nvei8htpwaNGggs9mskydPWh0/efKkvL297VQVUH3GjBmjf/3rX1q/fr2aNm1q73KciqurqwIDAyVJd955p7Zu3aq3335b7777rp0r++3btm2bcnJy1KlTJ8ux4uJirV+/XnPmzFFhYaHMZrMdK3QudevWVVBQkA4dOmTvUpyCj49Pqb8st27dWitWrKiU9s+cOaOlS5fqo48+0sGDBzV69Gib7mM4QTm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIIMBWs4KCAh0+fFg+Pj72LsUphIeHl5pS8cCBA7c0VVZxcbEMw1D//v3VtGlTrVy5UuPGjdOJEyc0e/Zsm9qgJ7YCnnnmGcXGxqpz587q0qWLZs2apQsXLiguLs7epf3mFRQUWP3NOzMzUxkZGapfv76aN29ux8p+++Lj4/XJJ5/oyy+/lIeHh2UMuKenp2rXrm3n6n77Jk+erH79+ql58+bKz8/XJ598opSUFK1evdrepTkFDw+PUuO/69SpIy8vL8aFV4OJEyeqf//+8vPz04kTJzRlyhSZzWab/skZt27ChAnq3r27ZsyYoUcffVRpaWlauHChFi5cWO62PvvsM61YsUJJSUlq2rSpOnXqpDlz5lQsEFfKfAlOaPbs2Ubz5s0NV1dXo0uXLsbmzZvtXZJTSE5ONiSV2mJjY+1d2m9eWc9dkrFo0SJ7l+YURowYYfj5+Rmurq5Gw4YNjXvvvdf4+uuv7V2WU2OKreozZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXFihdmrVqmUMHjzYWL169S3XZDIMwyh/9AUAAADK5+zZs5U2NSMhFgAAAA6HF7sAAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCgBM4cuSITCaTMjIy7F0KAFQKQiwAVMDw4cM1cOBAy35kZKTGjx9vt3oyMzP1hz/8Qb6+vqpVq5aaNm2qAQMGaN++fZKkZs2aKSsrS+3atbNbjQBQmVzsXQAA4NZcuXJFvXv3VnBwsD7//HP5+Pjo+PHjSkpK0vnz5yVJZrNZ3t7e9i0UACoRPbEAcIuGDx+u1NRUvf322zKZTDKZTDpy5IgkadeuXerXr5/c3d3VuHFjDRs2TKdPn7bcGxkZqbFjx2r8+PGqV6+eGjdurPfee08XLlxQXFycPDw8FBgYqKSkpOt+/+7du3X48GHNmzdP3bp1k5+fn8LDwzVt2jR169ZNUunhBMOHD7fU+sstJSVFklRYWKiJEyeqSZMmqlOnjrp27Wo5BwD/CwixAHCL3n77bYWFhemJJ55QVlaWsrKy1KxZM50/f149e/ZUaGio0tPTtWrVKp08eVKPPvqo1f2LFy9WgwYNlJaWprFjx2r06NEaPHiwunfvru+//1733Xefhg0bpv/+979lfn/Dhg1Vo0YNLV++XMXFxTbXfK3WrKwsjRs3To0aNVJISIgkacyYMdq0aZOWLl2qH374QYMHD1bfvn118ODBW3tYAFBJTIZhGPYuAgAczfDhw3X+/Hl98cUXkq72qHbs2FGzZs2yXDNt2jRt2LBBq1evthw7fvy4mjVrpv379ysoKEiRkZEqLi7Whg0bJEnFxcXy9PTUoEGD9OGHH0qSsrOz5ePjo02bNll6Vn9t7ty5eu6552Q2m9W5c2dFRUUpJiZGAQEBkq72xLZo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYflWOPGjSVJOTk51/2u+Ph4ZWdn6+OPP1ZYWJg+++wztW3bVmvWrLlhjdu3b9ewYcM0Z84chYeHS5J27typ4uJiBQUFWdWemppqVTcA2BMvdgFAFSkoKFD//v312muvlTrn4+Nj+VyzZk2rcyaTyeqYyWSSJJWUlNzw+zw8PNS/f3/1799f06ZNU58+fTRt2jT17t27zOuzs7P14IMP6vHHH9fIkSOt6jabzdq2bZvMZrPVPe7u7jesAQCqCyEWACqBq6trqfGonTp10ooVK+Tv7y8Xl+r97dZkMikkJETfffddmecvXbqkAQMGKCQkRG+++abVudDQUBUXFysnJ0f33HNPdZQLAOXGcAIAqAT+/v7asmWLjhw5otOnT6ukpETx8fE6e/asoqOjtXXrVh0+fFirV69WXFyczS9g2SIjI0MDBgzQ8uXLtWfPHh06dEiJiYl6//33NWDAgDLvGTVqlI4dO6Z33nlHp06dUnZ2trKzs3X58mUFBQUpJiZGjz32mD7//HNlZmYqLS1NCQkJ+ve//11pdQPAraAnFgAqwcSJExUbG6s2bdro4sWLyszMlL+/vzZu3Kjnn39e9913nwoLC+Xn56e+ffuqRo3K60No2rSp/P399fLLL1um0rq2P2HChDLvSU1NVVZWltq0aWN1PDk5WZGRkVq0aJGmTZumP/3pT/r555/VoEEDdevWTQ888ECl1Q0At4LZCQAAAOBwGE4AAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADsfF3gUAAADAecTFxdl03aJFi2543mQYhlEZBQEAAAA3M2jQIKv9CxcuaN26derfv78kqbCwUElJSSopKblhO4RYAAAA2E1mZqbat2+v/Px8SdKpU6fk7e2t4uLiG97HmFgAAADYza/7Uw3DKHWsLIRYAAAAVJsrV65USjuEWAAAAFSbJk2aaPz48dq5c6ckqU6dOvrd735ndY3JZLppO4RYAAAAVJtJkyYpLS1NoaGh6tq1q7744gv9/e9/t5xv2LChDh48eNN2eLELAAAA1W7jxo2KiIhQ27ZtdejQIT3yyCMaMWKEIiIibLqfnlgAAABUu3r16slkMmnHjh3asmWLvL29NWzYMAUFBSkhIeGm99MTCwAAgGq3Z88edejQwepFr+LiYr300kt67bXXVFRUdMP7WbELAAAAdrVjxw599NFHWrJkiTw9PfXaa6/d9B5CbAUZhqH8/Hx5eHjY9AYdAAAA/t+ZM2dkGIbuuOMOHT16VIMHD9by5cvVrVs3m+4nxFZQfn6+PD09dfLkSd1+++32LgeoNoZhqLCwUJLk5ubGX+LglPi1D1Tc3/72N61YsULp6ekKCwvTiBEjNGTIEN12223laocxsRWUl5cnT09P9enTRzVr1rR3OQCAavTZZ5+pVq1a9i4DcEg+Pj567LHHNHLkSAUFBVW4HXpiAQAAUG2OHz8us9l8y+0QYm/RlN4HVN/d3lUA1aewyKQXV7WRJE3vu0duLvxjDpzD5eIaeiGptb3LABzeRx99ZNN1sbGxNzxPiL1FruYSubkwLgrOyc3FIMTCiZTYuwDgN2HChAk3vcYwDEJsVWNEMQA4h1/+fs/rJEDFnT17tlLaYcWuW3S5mF5YAHAGv/z9/toMHQDsp0Ih9tixYxoxYoR8fX3l6uoqPz8/jRs3TmfOnLFcExkZKZPJJJPJpFq1almWECvrb6+bNm2S2WzW/fffX+rckSNHZDKZ1KhRI+Xn51ud69ixo6ZOnWp17NChQxoxYoSaN28uNzc3NWnSRPfee68+/vhjq5UfrtX2623p0qUVeSQAAACwweLFi23abqbcwwl+/PFHhYWFKSgoSEuWLFGLFi20e/duPfvss0pKStLmzZtVv359SdITTzyhV155RYWFhVq3bp2efPJJ1a1bV6NHj7ZqMzExUWPHjlViYqJOnDghX1/fUt+bn5+v119/XS+//PJ1a0tLS1OvXr3Utm1bzZ07VyEhIZKk9PR0zZ07V+3atVOHDh0s1y9atEh9+/a1aqNu3brlfSQAAACw0a/HxJaUlCgvL8+SwQzDUG5ubuWPiY2Pj5erq6u+/vpr1a5dW5LUvHlzhYaGqmXLlnrxxRc1f/58SdJtt90mb29vSVJcXJzmzJmjNWvWWIXYgoICLVu2TOnp6crOztYHH3ygF154odT3jh07Vm+++abi4+PVqFGjUucNw9Dw4cMVFBSkjRs3qkaN/+9kbtWqlaKjo0v1AtetW9dSHwAAAKrer8fEZmZmqkOHDpbjp06dsimflWs4wdmzZ7V69Wr98Y9/tATYa7y9vRUTE6Nly5aVCouGYWjDhg3at2+fXF1drc59+umnCgkJUXBwsIYOHar333+/zCEH0dHRCgwM1CuvvFJmbRkZGdq7d68mTpxoFWB/6VZWVyksLFReXp7VBgAAgFtz+fJllZT8/+wfv/x8I+UKsQcPHpRhGGrduux58lq3bq1z587p1KlTkqR58+bJ3d1dbm5u6tGjh0pKSvT0009b3ZOYmKihQ4dKkvr27avc3FylpqaWattkMmnmzJlauHChDh8+XOr8gQMHJEnBwcGWYzk5OXJ3d7ds8+bNs7onOjra6ry7u7uOHj1a5s+WkJAgT09Py9asWbPrPSYAAADYKCkpSf/973+Vk5Mj6WrPbOPGjW96X4Ve7LJ1apGYmBhlZGRo48aN6tevn1588UV1797dcn7//v1KS0tTdHS0JMnFxUVDhgxRYmJime316dNHd999t/7yl7/Y9P1eXl7KyMhQRkaG6tatq8uXL1udf+uttyznr21ljceVpMmTJys3N9eyHTt2zKYaAAAAUNrx48c1ZswYffzxxzKZTPr973+vOXPmaPTo0erRo8dN7y9XiA0MDJTJZNLevXvLPL93717Vq1dPDRs2lCR5enoqMDBQd911lz799FPNmTNH33zzjeX6xMREFRUVydfXVy4uLnJxcdH8+fO1YsUK5ebmlvkdM2fO1LJly7R9+3ar461atZJ0NRhfYzabFRgYqMDAQLm4lB7+6+3tbTl/o+skyc3NTbfffrvVBgAAgPLZsmWLfv/736tly5bKy8tTamqqxo0bp2+//Vbjxo1TrVq19Prrr9+0nXKFWC8vL/Xu3Vvz5s3TxYsXrc5lZ2fr448/1pAhQ8oce+ru7q5x48Zp4sSJMgxDRUVF+vDDD/XGG29Y9YTu2LFDvr6+WrJkSZk1dOnSRYMGDdKkSZOsjoeGhiokJESvv/66zWMpAAAAUL26d++uCxcuaMuWLfrwww9122236c0337T8a/emTZvUtGnTm7ZT7tkJ5syZo+7du6tPnz6aNm2a1RRbTZo00fTp069776hRo/Tqq69qxYoVcnFx0blz5zRy5Eh5enpaXffwww8rMTFRTz31VJntTJ8+XW3btrXqNTWZTFq0aJF69+6t8PBwTZ48Wa1bt9aVK1e0fv16nTp1Smaz2aqd8+fPKzs72+qYh4eH6tSpU97HAgAAABts2bJFnTt3LnX82qQBx48fV1xcnNasWXPDdso9JrZVq1ZKT09XQECAHn30UbVs2VJPPvmkoqKitGnTJsscsWWpX7++HnvsMU2dOlWJiYnq1atXqQArXQ2x6enp+uGHH8psJygoSCNGjNClS5esjnfr1k3btm1TcHCw4uPj1aZNG3Xv3l1LlizRW2+9VWp+2ri4OPn4+Fhts2fPLu8jAQAAgI3KCrDXfPjhh2rfvn2pjseymAwWgK6QvLw8eXp6auubfmpwO0vPwnkUFpk08V9tJUmvP7Bbbi78FgLncOmKSc/+++qv/U8//bTUVJMAKu7UqVMaNWqUvvnmG73xxht64oknbnpPuYcTwNqVkhoqLLr5dcBvRWGRqczPwG/dlZL//8fLW5l3HHB2v159taioSO+++67atWunnTt3ys/Pz6Z2CLG36OU1QapZs6a9ywDs4sVVbexdAgDAwXz55ZdW+0VFRTp37pwGDRpkc4CVCLEAAACoRt9//32pY1999ZWeeOIJff7550pMTFSLFi1u2g5jYivo2pjYkydPMmcsnIphGCosLJR0df5k/lkVzohf+0DlO3v2rEaNGqVVq1bptdde0x//+McbXk+IraBrITY3N5cQCwAAUEk++eQTxcfH69y5cze8rkLLzgIA4GwMw9ClS5d06dIlm5dfB1B+/fv3v+E0XNcQYgEAsEFhYaEGDx6swYMHW4bUAKh8Fy9e1Nq1a296HSEWAAAb/HKBnV8vtgOg+hFiAQAA4HCYYgsAABuUlJSU+RlA+ZjN5koZV06IBQDABvn5+Vaf69evb8dqAMe1cuXKG57Pzc1VbGzsTdup8uEECxYskIeHh4qK/n9t1oKCAtWsWVORkZFW16akpMhkMunw4cPy9/fXrFmzSrU3depUdezYscx9f39/mUym627Dhw+XpOueX7p0aSX/9AAAAPilBx988IZbnz59bGqnyntio6KiVFBQoPT0dHXr1k2StGHDBnl7e2vLli26dOmSatWqJUlKTk5W8+bN1bJlywp919atW1VcXCxJ+u677/Twww9r//79lnlca9eubbl20aJF6tu3r9X9devWrdD3AgAAwDZXrlxRzZo1b7mdKu+JDQ4Olo+Pj1JSUizHUlJSNGDAALVo0UKbN2+2Oh4VFVXh72rYsKG8vb3l7e1t+WeeRo0aWY55enparq1bt67l+LXtWpgGAABA1WjSpInGjx+vnTt3lnnebDbL39//pu1Uy+wEUVFRSk5OtuwnJycrMjJSERERluMXL17Uli1bbinEAgAA4H/bpEmTlJaWptDQUHXt2lXvvvuu1ZhzLy8v/fjjjzdtp9pC7MaNG1VUVKT8/Hxt375dERER6tGjh6WHdtOmTSosLLQKsc8//7zc3d2tthkzZlRKTdHR0aXaPnr06HWvLywsVF5entUGAACA8nnmmWf03XffKTU1Vdu2bdO8efPk7e2t2NhYpaam2txOtYTYyMhIXbhwQVu3btWGDRsUFBSkhg0bKiIiwjIuNiUlRQEBAWrevLnlvmeffVYZGRlW21NPPVUpNb311lul2vb19b3u9QkJCfL09LRszZo1q5Q6AAAAnFG9evVkMpm0Y8cObdmyRd7e3ho2bJiCgoKUkJBw0/urJcQGBgaqadOmSk5OVnJysiIiIiRJvr6+atasmb777jslJyerZ8+eVvc1aNBAgYGBVltlTWni7e1dqm0Xl+u/5zZ58mTl5uZatmPHjlVKHQAAAM6uXbt2eu2115SZmanBgwfrL3/5y03vqbZ5YqOiopSSkqJz587p2WeftRzv0aOHkpKSlJaWptGjR1dXOeXm5uYmNzc3e5cBAADwm7Njxw599NFHWrJkiTw9PfXaa6/d9J5qDbHx8fG6cuWKpSdWkiIiIjRmzBhdvny5Wl/qOn/+vLKzs62OeXh4qE6dOtVWAwAAgLM6c+aMDMPQHXfcoaNHj2rw4MFavny5ZUrWm6nWEHvx4kWFhISocePGluMRERHKz8+3TMVVXeLi4kodS0hI0KRJk6qtBgAAAGfzt7/9TStWrFB6errCwsI0YsQIDRkyRLfddlu52jEZlbF4rRPKy8uTp6encnNzLYspAAB+u86ePWtZCnPx4sUsOwtUkI+Pjx577DGNHDlSQUFBFW6n2npiAQBwZDVq1CjzM4DyOX78uMxm8y23Q4gFAABAtfnoo49suu7av3xcDyEWAAAA1WbEiBGqU6fODac2NQyDEAsAQGWoVatWmZ8BlN+GDRvUoUOHW2qDEFtB196HY/lZAHAOhmEoMTFR0tWlyC9fvmznigD78PDwkMlksncZhNiKOnPmjCSx/CwAAHAqOTk5atiwob3LIMRW1LWpVY4ePSpPT087V+N88vLy1KxZMx07dowpzuyA529fPH/74dnbF8/fvq49f1dXV3uXIokQW2HXplfx9PTkfyQ7uv3223n+dsTzty+ev/3w7O2L529ftzqUoGXLlnJzc7vlOgixAAAAqDYHDhyolHYIsQAAAKg2cXFxNl23aNGiG55nyZEKcnNz05QpUyqlOxzlx/O3L56/ffH87Ydnb188f/uqrOf/4YcfKicnR7m5ucrNzdWJEyf00UcfWfZzcnK0ePHim7ZjMq7NFQUAAABUMbPZrBMnTqhx48aSpMzMTLVv3175+fmSpFOnTsnb21vFxcU3bIeeWAAAANjNr/tTDcModawshFgAAAA4HEIsAAAA7OrX03bZMo0XIRYAAADVJjg4WC4u/z9BVv369fXCCy9Y9t3c3NSnT5+btkOIraC5c+fK399ftWrVUteuXZWWlmbvkpzC+vXr1b9/f/n6+spkMumLL76wd0lOIyEhQXfddZc8PDzUqFEjDRw4UPv377d3WU5j/vz5at++vWWS97CwMCUlJdm7LKc1c+ZMmUwmjR8/3t6lOIWpU6fKZDJZbSEhIfYuy6n8/PPPGjp0qLy8vFS7dm3dcccdSk9Pr1Bbe/bskZeXl2W/bt26mjRpkmXf09NT//nPf27aDiG2ApYtW6ZnnnlGU6ZM0ffff68OHTqoT58+ysnJsXdpv3kXLlxQhw4dNHfuXHuX4nRSU1MVHx+vzZs3a82aNbpy5Yruu+8+Xbhwwd6lOYWmTZtq5syZ2rZtm9LT09WzZ08NGDBAu3fvtndpTmfr1q1699131b59e3uX4lTatm2rrKwsy/btt9/auySnce7cOYWHh6tmzZpKSkrSnj179MYbb6hevXp2rYsptiqga9euuuuuuzRnzhxJUklJiZo1a6axY8da/U0CVctkMmnlypUaOHCgvUtxSqdOnVKjRo2UmpqqHj162Lscp1S/fn397W9/08iRI+1ditMoKChQp06dNG/ePE2bNk0dO3bUrFmz7F3Wb97UqVP1xRdfKCMjw96lOKVJkyZp48aN2rBhg71LsUJPbDldvnxZ27ZtU69evSzHatSooV69emnTpk12rAyoXrm5uZKuBilUr+LiYi1dulQXLlxQWFiYvctxKvHx8br//vut/gxA9Th48KB8fX0VEBCgmJgYHT161N4lOY1//vOf6ty5swYPHqxGjRopNDRU7733nr3LIsSW1+nTp1VcXGyZoPeaxo0bKzs7205VAdWrpKRE48ePV3h4uNq1a2fvcpzGzp075e7uLjc3Nz311FNauXKl2rRpY++ynMbSpUv1/fffKyEhwd6lOJ2uXbvqgw8+0KpVqzR//nxlZmbqnnvusUyOj6r1448/av78+WrVqpVWr16t0aNH6+mnn7ZpVa2q5HLzSwDAWnx8vHbt2sWYtGoWHBysjIwM5ebmavny5YqNjVVqaipBthocO3ZM48aN05o1a1SrVi17l+N0+vXrZ/ncvn17de3aVX5+fvr0008ZTlMNSkpK1LlzZ82YMUOSFBoaql27dmnBggWKjY21W130xJZTgwYNZDabdfLkSavjJ0+elLe3t52qAqrPmDFj9K9//UvJyclq2rSpvctxKq6urgoMDNSdd96phIQEdejQQW+//ba9y3IK27ZtU05Ojjp16iQXFxe5uLgoNTVV77zzjlxcXG66PCYqV926dRUUFKRDhw7ZuxSn4OPjU+ovy61bt7b7kA5CbDm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIkNlstneJTqWgoECHDx+Wj4+PvUtxCuHh4aWmVDxw4ID8/PzsVNFVDCeogGeeeUaxsbHq3LmzunTpolmzZunChQuKi4uzd2m/eQUFBVZ/887MzFRGRobq16+v5s2b27Gy3774+Hh98skn+vLLL+Xh4WEZA+7p6anatWvbubrfvsmTJ6tfv35q3ry58vPz9cknnyglJUWrV6+2d2lOwcPDo9T47zp16sjLy4tx4dVg4sSJ6t+/v/z8/HTixAlNmTJFZrNZ0dHR9i7NKUyYMEHdu3fXjBkz9OijjyotLU0LFy7UwoUL7VuYgQqZPXu20bx5c8PV1dXo0qWLsXnzZnuX5BSSk5MNSaW22NhYe5f2m1fWc5dkLFq0yN6lOYURI0YYfn5+hqurq9GwYUPj3nvvNb7++mt7l+XUIiIijHHjxtm7DKcwZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXGjvkgzmiQUAAIDDYUwsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAHACR44ckclkUkZGhr1LAYBKQYgFgAoYPny4Bg4caNmPjIzU+PHj7VZPZmam/vCHP8jX11e1atVS06ZNNWDAAO3bt0+S1KxZM2VlZbFEKoDfDBd7FwAAuDVXrlxR7969FRwcrM8//1w+Pj46fvy4kpKSdP78eUmS2WyWt7e3fQsFgEpETywA3KLhw4crNTVVb7/9tkwmk0wmk44cOSJJ2rVrl/r16yd3d3c1btxYw4YN0+nTpy33RkZGauzYsRo/frzq1aunxo0b67333tOFCxcUFxcnDw8PBQYGKikp6brfv3v3bh0+fFjz5s1Tt27d5Ofnp/DwcE2bNk3dunWTVHo4wfDhwy21/nJLSUmRJBUWFmrixIlq0qSJ6tSpo65du1rOAcD/AkIsANyit99+W2FhYXriiSeUlZWlrKwsNWvWTOfPn1fPnj0VGhqq9PR0rVq1SidPntSjjz5qdf/ixYvVoEEDpaWlaezYsRo9erQGDx6s7t276/vvv9d9992nYcOG6b///W+Z39+wYUPVqFFDy5cvV3Fxsc01X6s1KytL48aNU6NGjRQSEiJJGjNmjDZt2qSlS5fqhx9+0ODBg9W3b18dPHjw1h4WAFQSk2EYhr2LAABHM3z4cJ0/f15ffPGFpKs9qh07dtSsWbMs10ybNk0bNmzQ6tWrLceOHz+uZs2aaf/+/QoKClJkZKSKi4u1YcMGSVJxcbE8PT01aNAgffjhh5Kk7Oxs+fj4aNOmTZae1V+bO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKs9sS1atND27dvVsWNHq3s///xzxcTE6JtvvlF4eLiOHj2qgIAAHT16VL6+vpbrevXqpS5dumjGjBm3+vgA4JbREwsAVWTHjh1KTk6Wu7u7ZbvW03n48GHLde3bt7d8NpvN8vLy0h133GE51rhxY0lSTk7Odb8rPj5e2dnZ+vjjjxUWFqbPPvtMbdu21Zo1a25Y4/bt2zVs2DDNmTNH4eHhkqSdO3equLhYQUFBVrWnpqZa1Q0A9sSLXQBQRQoKCtS/f3+99tprpc75+PhYPtesWdPqnMlksjpmMpkkSSUlJTf8Pg8PD/Xv31/9+/fXtGnT1KdPH02bNk29e/cu8/rs7Gw9+OCDevzxxzVy5Eirus1ms7Zt2yaz2Wx1j7u7+w1rAIDqQogFgErg6upaajxqp06dtGLFCvn7+8vFpXp/uzWZTAoJCdF3331X5vlLly5pwIABCgkJ0Ztvvml1LjQ0VMXFxcrJydE999xTHeUCQLkxnAAAKoG/v7+2bNmiI0eO6PTp0yopKVF8fLzOnj2r6Ohobd26VYcPH9bq1asVFxdn8wtYtsjIyNCAAQO0fPly7dmzR4cOHVJiYqLef/99DRgwoMx7Ro0apWPHjumdd97RqVOnlJ2drezsbF2+fFlBQUGKiYnRY489ps8//1yZmZlKS0tTQkKC/v3vf1da3QBwK+iJBYBKMHHiRMXGxqpNmza6ePGiMjMz5e/vr40bN+r555/Xfffdp8LCQvn5+alv376qUaPy+hCaNm0qf39/vfzyy5aptK7tT5gwocx7UlNTlZWVpTZt2lgdT05OVmRkpBYtWqRp06bpT3/6k37++Wc1aNBA3bp10wMPPFBpdQPArWB2AgAAADgchhMAAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAw3GxdwEAAAD47YuLi7PpukWLFtl0nckwDONWCgIAAABuxmw2q2/fvnJzc5MkXbhwQevWrVP//v0lSYWFhUpKSlJJSYlN7RFiAQAAUOXMZrNOnDihxo0bS5IyMzPVvn175efnS5JOnTqlxo0b2xxiGRMLAACAavfrftTy9qsSYgEAAFDlPDw8dO7cOcv+uXPndOHCBRUUFEiSsrOzVb9+fZvbI8QCAACgyoWEhGj27NkqKSlRSUmJ5s2bJ19fX02cOFEbN27Uiy++qLvuusvm9hgTCwAAgCr3xRdf6JFHHlGdOnVUUlKiOnXqaNWqVfr973+vgwcPqlmzZvrqq690xx132NQeIRYAAADVYv369frqq69Uu3ZtPfHEE2rWrJkk6cyZM/Ly8ipXW4RYAAAAOBzGxAIAAMDhsGIXAAAAqpzZbLZpGi1b54klxAIAAKBavPXWW2rRokWltMWY2AoyDEP5+fny8PCQyWSydzkAAAD/08xms77//nt16NChUtpjTGwF5efny9PT07JUGgDgt80wDF26dEmXLl0q98pCACofIRYAABsUFhZq8ODBGjx4sAoLC+1dDuD0CLEAANjg0qVLZX4GYB+82AUAAIAqt2HDBrVq1UqSdO7cOeXl5ZV5nZ+fn03tEWIBAABQ5cLCwvTaa6/pzTff1OnTp0udN5lMMgyDKbYAAKhMv/yD1dY/ZAH8v3nz5unNN9/UCy+8oDvvvFOenp631B4hFgAAG/xyNpr8/HzVr1/fjtUAjue9997TrFmz9Ic//KFS2qvQi13Hjh3TiBEj5OvrK1dXV/n5+WncuHE6c+aM5ZrIyEiZTCaZTCbVqlVLQUFBSkhIKHNakk2bNslsNuv+++8vde7IkSMymUxq1KhRqemsOnbsqKlTp1odO3TokEaMGKHmzZvLzc1NTZo00b333quPP/5YRUVFluuu1fbrbenSpRV5JAAAALiBw4cPq1u3bpXWXrlD7I8//qjOnTvr4MGDWrJkiQ4dOqQFCxZo7dq1CgsL09mzZy3XPvHEE8rKytL+/fs1efJkvfTSS1qwYEGpNhMTEzV27FitX79eJ06cKPN78/Pz9frrr9+wtrS0NHXq1El79+7V3LlztWvXLqWkpOjxxx/X/PnztXv3bqvrFy1apKysLKtt4MCB5X0kAAAAuIn69euXORa2osodYuPj4+Xq6qqvv/5aERERat68ufr166dvvvlGP//8s1588UXLtbfddpu8vb3l5+enuLg4tW/fXmvWrLFqr6CgQMuWLdPo0aN1//3364MPPijze8eOHas333xTOTk5ZZ43DEPDhw9XUFCQNm7cqP79+6tVq1Zq1aqVoqOj9e2336p9+/ZW99StW1fe3t5WW61atcr7SAAAAHAT4eHhevXVV687K0F5lSvEnj17VqtXr9Yf//hH1a5d2+qct7e3YmJitGzZslJDBgzD0IYNG7Rv3z65urpanfv0008VEhKi4OBgDR06VO+//36ZQw6io6MVGBioV155pczaMjIytHfvXk2cOFE1apT9Y93K8rCFhYXKy8uz2gAAAGCbmTNnau/evWrSpIlCQ0MVFRVV5marcoXYgwcPyjAMtW7duszzrVu31rlz53Tq1ClJV99Cc3d3l5ubm3r06KGSkhI9/fTTVvckJiZq6NChkqS+ffsqNzdXqamppdo2mUyaOXOmFi5cqMOHD5c6f+DAAUlScHCw5VhOTo7c3d0t27x586zuiY6Otjrv7u6uo0ePlvmzJSQkyNPT07I1a9bseo8JAAAAv9K8eXPt3r1bCxcu1MCBAxUaGlrmZqsKzU5g65rRMTExevHFF3Xu3DlNmTJF3bt3V/fu3S3n9+/fr7S0NK1cufJqMS4uGjJkiBITExUZGVmqvT59+ujuu+/WX/7yF33yySc3/X4vLy9lZGRIuvqi2eXLl63Ov/XWW+rVq5fVMV9f3zLbmjx5sp555hnLfl5eHkEWAACgHNzc3BQdHV0pbZUrxAYGBspkMmnv3r166KGHSp3fu3ev6tWrp4YNG0qSPD09FRgYKOnqsIHAwEB169bNEhwTExNVVFRkFRwNw5Cbm5vmzJlT5vxhM2fOVFhYmJ599lmr49dWgNi/f78lxZvNZsv3u7iU/lG9vb0t52/Gzc1Nbm5uNl0LAACAqlWu4QReXl7q3bu35s2bp4sXL1qdy87O1scff6whQ4aUOfbU3d1d48aN08SJE2UYhoqKivThhx/qjTfeUEZGhmXbsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/11JqEGAAD4H9OiRYubbv7+/ja3V+7hBHPmzFH37t3Vp08fTZs2TS1atNDu3bv17LPPqkmTJpo+ffp17x01apReffVVrVixQi4uLjp37pxGjhxZqsf14YcfVmJiop566qky25k+fbratm1r1btqMpm0aNEi9e7dW+Hh4Zo8ebJat26tK1euaP369Tp16pTMZrNVO+fPn1d2drbVMQ8PD9WpU6e8jwUAAAA3cPToUb3yyivy8PCQJJ0+fVp/+9vf9Nprr0m6OmPVn//8Z9sbNCrgyJEjRmxsrNG4cWOjZs2aRrNmzYyxY8cap0+ftlwTERFhjBs3rtS9o0aNMtq2bWs88MADxu9+97sy29+yZYshydixY4eRmZlpSDK2b99udc2TTz5pSDKmTJlidXz//v1GbGys0bRpU8PFxcXw9PQ0evToYbz77rvGlStXLNdJKnNLSEiw6Rnk5uYakozc3FybrgcAOLYjR44YDzzwgPHAAw8YR44csXc5gMOpUaOGkZ2dbdk/fPiw4e7ubtk/efKkYTKZbG7PZBg2vqUFK3l5efL09FRubq5uv/12e5cDAKhiZ8+eVWxsrCRp8eLFLDsLlJPZbNaJEyfUuHFjSVcX0OrQoYNlRdacnBx5e3vbPCy0QsvOAgDgbH45B/n15iMHUH34vxAAAAB28evJAMqzMBUhFgAAG/xyWXKWKAfKb9SoUbrtttss+02aNFFSUpJl38PDQwkJCTa3x5jYCmJMLAA4F8MwVFhYKOnq3OG3spQ5gFtXoRW7AABwNiaTiR5Y4H8IwwkAAADgcAixAAAAcDiEWAAAANidYRj66aefbL6eEAsAAAC7O3XqlFq0aGHz9YRYAAAA/E9gnlgAAAA4nPLM/FrlU2wtWLBAzz77rM6dOycXl6tfV1BQoHr16ik8PFwpKSmWa1NSUhQVFaVDhw7p3nvv1fjx4zV+/Hir9qZOnaovvvhCGRkZpfb9/f1vOJYiNjZWH3zwwXVT/pIlS/T73//+ln5eAAAAlPbyyy/f8HxBQUG52qvyEBsVFaWCggKlp6erW7dukqQNGzbI29tbW7Zs0aVLlyzz7iUnJ6t58+Zq2bJlhb5r69atKi4uliR99913evjhh7V//37LYgS1a9e2XLto0SL17dvX6v66detW6HsBAABwY19++eUNzxcVFZWrvSoPscHBwfLx8VFKSoolxKakpGjAgAFat26dNm/erMjISMvxqKioCn9Xw4YNLZ/r168vSWrUqFGZ4bRu3bry9vau8HcBAADAdt9///0Nz586dUqNGze2ub1qGRMbFRWl5ORky35ycrIiIyMVERFhOX7x4kVt2bLllkJsVSosLFReXp7VBgAAgMpRnvGwUjWG2I0bN6qoqEj5+fnavn27IiIi1KNHD8uY2E2bNqmwsNAqxD7//PNyd3e32mbMmFEpNUVHR5dq++jRo9e9PiEhQZ6enpatWbNmlVIHAAAArirP7ARVPpxAkiIjI3XhwgVt3bpV586dU1BQkBo2bKiIiAjFxcXp0qVLSklJUUBAgJo3b26579lnn9Xw4cOt2nrnnXe0fv36W67prbfeUq9evayO+fr6Xvf6yZMn65lnnrHs5+XlEWQBAAAqiaen501f/vqlagmxgYGBatq0qZKTk3Xu3DlFRERIuhoamzVrpu+++07Jycnq2bOn1X0NGjRQYGCg1bFrY11vlbe3d6m2b8TNzU1ubm6V8t0AAAD4f6dPn9ZTTz2lVatW6c9//rNN91TbPLFRUVFKSUlRSkqK5UUuSerRo4eSkpKUlpb2PzseFgAAAFXjyy+/VLt27XTy5En98MMPNt9XLT2x0tUQGx8frytXrlh6YiUpIiJCY8aM0eXLl6s1xJ4/f17Z2dlWxzw8PFSnTp1qqwEAAMBZ/Hou/6KiIr366qv67LPP9Oqrr1oN27RFtYbYixcvKiQkxGr6hIiICOXn51um4qoucXFxpY4lJCRo0qRJ1VYDAACAswgICJBhGDKZTJb/mkwmrVq1qtR7SrYwGeWdzwCSrr7Y5enpqdzcXMtiCgAAACjbr4cKFBUVafr06UpOTtabb75Z6mX+myHEVhAhFgAA4NZ99NFHevrppxUWFqb33nvvhrNF/VK1vdgFAAAA/NrQoUO1a9cuFRUVqV27djbfV21jYgEAAICy+Pr6avXq1Zo3b57N9zCcoIIYTgAAAGA/9MRW0LXsn5eXZ+dKAAAAqo+Hh0e5loe95trsBDdiGIaOHDliU3uE2Ao6c+aMJLH0LAAAcCo5OTlq2LBhue8bP3685fPp06f1t7/9Ta+99prlWEFBgc2rdUkMJ6iw8+fPq169ejp69Kg8PT3tXY7TycvLU7NmzXTs2DGGc9gBz9++eP72w7O3L56/fV17/ufPn7/l7PPjjz+qQ4cOys/PtxzLycmRt7e3SkpKbGqDntgKqlHj6sQOnp6e/I9kR7fffjvP3454/vbF87cfnr198fztqyJDCX7N3d1dly5d0uXLl+Xq6irpaki+7bbbbG6DKbYAAABQrRo1aiQPDw+98cYbkqTi4mK9/vrrCg4OtrkNemIBAABQ7V544QU9//zz+utf/6orV67o4sWLWrZsmc33E2IryM3NTVOmTJGbm5u9S3FKPH/74vnbF8/ffnj29sXzt6/Kfv4TJ05Uu3bttHbtWrm6uqp///7q1q2bzffzYhcAAAAcDj2xAAAAqHIvv/yyTddNmTLFpuvoiQUAAECVM5vNatu2rVxcrvahXr58Wfv27VP79u0lSUVFRdq1a5fNU2wRYgEAAFDlzGazTpw4ocaNG0uSMjMz1b59e8tcsadOnZK3t7eKi4ttao8ptgAAAFDtft2PahjGTZel/SVCbAXNnTtX/v7+qlWrlrp27aq0tDR7l+QU1q9fr/79+8vX11cmk0lffPGFvUtyGgkJCbrrrrvk4eGhRo0aaeDAgdq/f7+9y3Ia8+fPV/v27S2TvIeFhSkpKcneZTmtmTNnymQyWS2jiaozdepUmUwmqy0kJMTeZTmVn3/+WUOHDpWXl5dq166tO+64Q+np6XatiRBbAcuWLdMzzzyjKVOm6Pvvv1eHDh3Up08f5eTk2Lu037wLFy6oQ4cOmjt3rr1LcTqpqamKj4/X5s2btWbNGl25ckX33XefLly4YO/SnELTpk01c+ZMbdu2Tenp6erZs6cGDBig3bt327s0p7N161a9++67lnF8qB5t27ZVVlaWZfv222/tXZLTOHfunMLDw1WzZk0lJSVpz549euONN1SvXr1ytVNWL+strf5loNy6dOlixMfHW/aLi4sNX19fIyEhwY5VOR9JxsqVK+1dhtPKyckxJBmpqan2LsVp1atXz/j73/9u7zKcSn5+vtGqVStjzZo1RkREhDFu3Dh7l+QUpkyZYnTo0MHeZTit559/3rj77rtvuZ3atWsbJ0+etOyfOnXKGD16tGX/zJkzRuvWrW1uj57Ycrp8+bK2bdumXr16WY7VqFFDvXr10qZNm+xYGVC9cnNzJUn169e3cyXOp7i4WEuXLtWFCxcUFhZm73KcSnx8vO6//36rPwNQPQ4ePChfX18FBAQoJiZGR48etXdJTuOf//ynOnfurMGDB6tRo0YKDQ3Ve++9V+52/vvf/6pRo0aW/QYNGmjevHmW/fr162vPnj02t0eILafTp0+ruLjY8mbdNY0bN1Z2dradqgKqV0lJicaPH6/w8HC1a9fO3uU4jZ07d8rd3V1ubm566qmntHLlSrVp08beZTmNpUuX6vvvv1dCQoK9S3E6Xbt21QcffKBVq1Zp/vz5yszM1D333GN5qx1V68cff9T8+fPVqlUrrV69WqNHj9bTTz+txYsX27UuFjsAUG7x8fHatWsXY9KqWXBwsDIyMpSbm6vly5crNjZWqampBNlqcOzYMY0bN05r1qxRrVq17F2O0+nXr5/lc/v27dW1a1f5+fnp008/1ciRI+1YmXMoKSlR586dNWPGDElSaGiodu3apQULFig2NtZuddETW04NGjSQ2WzWyZMnrY6fPHlS3t7edqoKqD5jxozRv/71LyUnJ6tp06b2LsepuLq6KjAwUHfeeacSEhLUoUMHvf322/Yuyyls27ZNOTk56tSpk1xcXOTi4qLU1FS98847cnFxsXleS1SOunXrKigoSIcOHbJ3KU7Bx8en1F+WW7dubfchHYTYcnJ1ddWdd96ptWvXWo6VlJRo7dq1jE3Db5phGBozZoxWrlypdevWqUWLFvYuyemVlJSosLDQ3mU4hXvvvVc7d+5URkaGZevcubNiYmKUkZEhs9ls7xKdSkFBgQ4fPiwfHx97l+IUwsPDS02peODAAfn5+dmpoqsYTlABzzzzjGJjY9W5c2d16dJFs2bN0oULFxQXF2fv0n7zCgoKrP7mnZmZqYyMDNWvX1/Nmze3Y2W/ffHx8frkk0/05ZdfysPDwzIG3NPTU7Vr17Zzdb99kydPVr9+/dS8eXPl5+frk08+UUpKilavXm3v0pyCh4dHqfHfderUkZeXF+PCq8HEiRPVv39/+fn56cSJE5oyZYrMZrOio6PtXZpTmDBhgrp3764ZM2bo0UcfVVpamhYuXKiFCxfat7Bbni/BSc2ePdto3ry54erqanTp0sXYvHmzvUtyCsnJyYakUltsbKy9S/vNK+u5SzIWLVpk79KcwogRIww/Pz/D1dXVaNiwoXHvvfcaX3/9tb3LcmpMsVV9hgwZYvj4+Biurq5GkyZNjCFDhhiHDh2yd1lO5auvvjLatWtnuLm5GSEhIcbChQvtXZJhMoxyrO8FAAAA/A9gTCwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAcAJHjhyRyWRSRkaGvUsBgEpBiAWAChg+fLgGDhxo2Y+MjNT48ePtVk9mZqb+8Ic/yNfXV7Vq1VLTpk01YMAA7du3T5LUrFkzZWVlsUQqgN8MF3sXAAC4NVeuXFHv3r0VHByszz//XD4+Pjp+/LiSkpJ0/vx5SZLZbJa3t7d9CwWASkRPLADcouHDhys1NVVvv/22TCaTTCaTjhw5IknatWuX+vXrJ3d3dzVu3FjDhg3T6dOnLfdGRkZq7NixGj9+vOrVq6fGjRvrvffe04ULFxQXFycPDw8FBgYqKSnput+/e/duHT58WPPmzVO3bt3k5+en8PBwTZs2Td26dZNUejjB8OHDLbX+cktJSZEkFRYWauLEiWrSpInq1Kmjrl27Ws4BwP8CQiwA3KK3335bYWFheuKJJ5SVlaWsrCw1a9ZM58+fV8+ePRUaGqr09HStWrVKJ0+e1KOPPmp1/+LFi9WgQQOlpaVp7NixGj16tAYPHqzu3bvr+++/13333adhw4bpv//9b5nf37BhQ9WoUUPLly9XcXGxzTVfqzUrK0vjxo1To0aNFBISIkkaM2aMNm3apKVLl+qHH37Q4MGD1bdvXx08ePDWHhYAVBKTYRiGvYsAAEczfPhwnT9/Xl988YWkqz2qHTt21KxZsyzXTJs2TRs2bNDq1astx44fP65mzZpp//79CgoKUmRkpIqLi7VhwwZJUnFxsTw9PTVo0CB9+OGHkqTs7Gz5+Pho06ZNlp7VX5s7d66ee+45mc1mde7cWVFRUYqJiVFAQICkqz2xLVq00Pbt29WxY0erez///HPFxMTom2++UXh4uI4ePaqAgAAdPXpUvr6+lut69eqlLl26aMaMGbf6+ADgltETCwBVZMeOHUpOTpa7u7tlu9bTefjwYct17du3t3w2m83y8vLSHXfcYTnWuHFjSVJOTs51vys+Pl7Z2dn6+OOPFRYWps8++0xt27bVmjVrbljj9u3bNWzYMM2ZM0fh4eGSpJ07d6q4uFhBQUFWtaemplrVDQD2xItdAFBFCgoK1L9/f7322mulzvn4+Fg+16xZ0+qcyWSyOmYymSRJJSUlN/w+Dw8P9e/fX/3799e0adPUp08fTZs2Tb179y7z+uzsbD344IN6/PHHNXLkSKu6zWaztm3bJrPZbHWPu7v7DWsAgOpCiAWASuDq6lpqPGqnTp20YsUK+fv7y8Wlen+7NZlMCgkJ0XfffVfm+UuXLmnAgAEKCQnRm2++aXUuNDRUxcXFysnJ0T333FMd5QJAuTGcAAAqgb+/v7Zs2aIjR47o9OnTKikpUXx8vM6ePavo6Ght3bpVhw8f1urVqxUXF2fzC1i2yMjI0IABA7R8+XLt2bNHhw4dUmJiot5//30NGDCgzHtGjRqlY8eO6Z133tGpU6eUnZ2t7OxsXb58WUFBQYqJidFjjz2mzz//XJmZmUpLS1NCQoL+/e9/V1rdAHAr6IkFgEowceJExcbGqk2bNrp48aIyMzPl7++vjRs36vnnn9d9992nwsJC+fn5qW/fvqpRo/L6EJo2bSp/f3+9/PLLlqm0ru1PmDChzHtSU1OVlZWlNm3aWB1PTk5WZGSkFi1apGnTpulPf/qTfv75ZzVo0EDdunXTAw88UGl1A8CtYHYCAAAAOByGEwAAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACH42LvAgAAAPDbFxcXZ9N1ixYtsuk6QiwAAACqXG5urtX+zz//rB07duh3v/tdhdojxAIAAKDKff7555bPx44dU2RkpK5cuaKgoCDNnDmz3O0xJhYAAADV5vjx44qMjFSTJk20du1azZ8/X3/961/L3Q49sQAAAKgWJ06cUFRUlHx9fZWUlKQ6deroyy+/1P3336/69evr8ccft7ktQiwAAACqXFZWliIjI9W4cWOtWrVKderUkSRFRkZqyZIlGjJkiOrWratHHnnEpvZMhmEYVVkwAAAAEBISIi8vL61evVru7u6lzn/44YcaNWqULl68aFN79MQCAACgynl5eWnVqlVlBlhJeuyxx3TmzBmb26MnFgAAAFWuoKDgugG2IgixAAAAqHK2LHZgGIY++OADm9ojxAIAAKDKDRo06LrniouL9c033+jixYsqKSmxqT3GxAIAAKDK/XKxg1/68ssv9cILL6hWrVqaMmWKze2x2AEAAACq3YYNG9S9e3dFR0frgQce0I8//qjnnnvO5vsJsQAAAKg2u3btUv/+/XXvvfeqbdu2OnTokF577TV5enqWqx1CLAAAAKrcTz/9pNjYWHXs2FEuLi7auXOn3nvvPfn6+laoPV7sAgAAQJWrVauWatSooaefflphYWHXvW7AgAE2tUeIBQAAQJVzcXHRzWKnYRg2z05AiAUAAIDDYUwsAAAAHA7zxAIAAKDa7NmzR/v371deXl6Z52NjY21qh+EEAAAAqHJ5eXl69NFHtWbNGrm4uKhOnTqlrjEMQ+fOnbOpPXpiAQAAUOWmTJminJwcbdu2TR07drzl9uiJBQAAQJULCgrSggUL1LNnz0ppjxe7AAAAUOVOnDihgICASmuPEAsAAIAq17RpU+3bt6/S2mNMLAAAAKrcoEGDNGHCBLm6uurOO++Up6fnLbXHmFgAAABUuf/+97964okntHTp0huu3MWKXQAAAPifk5WVpQMHDig3N7fM8w8++KBN7RBiK8gwDOXn58vDw0Mmk8ne5QAAADgVxsRWUH5+vjw9PZWbm6vbb7/d3uUAAAA4hLS0NH3yySc6cOCATCaTAgMDFRMToy5dupSrHWYnAADABoZh6NKlS7p06dINx/MBuL5JkyYpLCxMixYtUlZWlk6cOKEPPvhA3bp104svvliutgixAADYoLCwUIMHD9bgwYNVWFho73IAh7N8+XK9+eabmjVrls6ePavt27dr+/btOnv2rN555x399a9/1YoVK2xujxALAIANLl26VOZnALaZO3euJkyYoLFjx8psNluOm81mjRkzRn/60580Z84cm9sjxAIAAKDKbd++XQ899NB1zw8cOFDbt2+3uT1CLAAANvjl3JW2zmMJ4P+VlJTI19f3uud9fX1VXFxsc3uEWAAAbJCfn1/mZwC2admypQ4ePHjd8wcPHlTLli1tbq9CIfbYsWMaMWKEfH195erqKj8/P40bN05nzpyxXBMZGSmTySSTyaRatWopKChICQkJZb7RuWnTJpnNZt1///2lzh05ckQmk0mNGjUq9ZtGx44dNXXqVKtjhw4d0ogRI9S8eXO5ubmpSZMmuvfee/Xxxx+rqKjIct212n69LV26tCKPBAAAADfwyCOP6N13373u+QULFujhhx+2ub1yh9gff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W11+b3uGX28CBA8v7SAAAAHATY8eO1T333FPmSl15eXnq0aOHxowZY3N75V7sID4+Xq6urvr6669Vu3ZtSVLz5s0VGhqqli1b6sUXX9T8+fMlSbfddpu8vb0lSXFxcZozZ47WrFmj0aNHW9orKCjQsmXLlJ6eruzsbH3wwQd64YUXSn3v2LFj9eabbyo+Pl6NGjUqdd4wDA0fPlxBQUHauHGjatT4/3zeqlUrRUdHl+oFrlu3rqU+AAAAVJ3bb79dY8eOLfe56ylXiD179qxWr16t6dOnWwLsNd7e3oqJidGyZcs0b948q3OGYejbb7/Vvn371KpVK6tzn376qUJCQhQcHKyhQ4dq/Pjxmjx5cqmlXKOjo7VmzRq98sorZU6/kJGRob1792rJkiVWAfaXWB4WAADAPhYvXmzTdbGxsTZdV64Qe/DgQRmGodatW5d5vnXr1jp37pxOnTolSZo3b57+/ve/6/Lly7py5Ypq1aqlp59+2uqexMREDR06VJLUt29f5ebmKjU1VZGRkVbXmUwmzZw5U/3799eECRNKDfw9cOCAJCk4ONhyLCcnRwEBAZb9v/71r/rjH/9o2Y+Ojraap0yS9uzZo+bNm5f62QoLC60mt87LyyvzGQAAAKC0CRMmWO0XFRXp4sWL8vDwsBwzDMPmEFuhF7tsXW4vJiZGGRkZ2rhxo/r166cXX3xR3bt3t5zfv3+/0tLSFB0dLUlycXHRkCFDlJiYWGZ7ffr00d13362//OUvNn2/l5eXMjIylJGRobp16+ry5ctW59966y3L+Wvb9aZ+SEhIkKenp2Vr1qyZTTUAAADg6r/oX9tOnjype+65R5L0/vvvW46fO3fO5vbKFWIDAwNlMpm0d+/eMs/v3btX9erVU8OGDSVJnp6eCgwM1F133aVPP/1Uc+bM0TfffGO5PjExUUVFRfL19ZWLi4tcXFw0f/58rVixosxBv5I0c+ZMLVu2rNRkuNeGKezfv99yzGw2KzAwUIGBgXJxKd3p7O3tbTl/o+skafLkycrNzbVsx44du8GTAgAAQFkuX76shx56SBkZGXrxxRf1hz/8QevWrSt3O+UKsV5eXurdu7fmzZunixcvWp3Lzs7Wxx9/rCFDhpQ59tTd3V3jxo3TxIkTZRiGioqK9OGHH+qNN96w6gndsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/31KpmE2s3NTbfffrvVBgAAANsVFRXpkUce0bZt27R27VpNnTpVr7zyigYOHKitW7eWq61yz04wZ84cde/eXX369NG0adPUokUL7d69W88++6yaNGmi6dOnX/feUaNG6dVXX9WKFSvk4uKic+fOaeTIkfL09LS67uGHH1ZiYqKeeuqpMtuZPn262rZta9VrajKZtGjRIvXu3Vvh4eGaPHmyWrdurStXrmj9+vU6depUqfGv58+fV3Z2ttUxDw8P1alTp7yPBQAAADdQXFysRx55RFu3blVycrJCQkIkSRMnTtTZs2f1u9/9TuvXr7/uu1e/Vu4xsa1atVJ6eroCAgL06KOPqmXLlnryyScVFRWlTZs2qX79+te9t379+nrsscc0depUJSYmqlevXqUCrHQ1xKanp+uHH34os52goCCNGDFCly5dsjrerVs3bdu2TcHBwYqPj1ebNm3UvXt3LVmyRG+99ZbV1F7S1Wm/fHx8rLbZs2eX95EAAADgJgYPHqzNmzdr3bp1lgB7zYwZM/Twww+rT58+NrdnMmx9SwtW8vLy5OnpqdzcXIYWAIATOHv2rOWt6cWLF9+w0wZAad7e3lq3bp3atGlz3WuGDBmiZcuW2dRehWYnAADA2fxyDvLrzUcO4PpuFmAl6eOPP7a5vXKPiQUAAADKa+vWrTd9eevaCqy2IMQCAACgyo0YMUJ16tS57nSmEiEWAIBKV6tWrTI/A7Ddhg0b1KFDh0ppixALAIAN3Nzc9Nlnn1k+A7AvQiwAADYwmUz0wAL/Q3i9EgAAAA6HEAsAAIAq17Jly0odisNwAgAAAFS5AwcOVGp7hFgAAABUubi4OJuuW7RokU3XsexsBbHsLAAAgO3MZrP69u1rGVJw4cIFrVu3Tv3795ckFRYWKikpSSUlJTa1R4itIEIsAACA7cxms06cOKHGjRtLkjIzM9W+fXvl5+dLkk6dOiVvb28VFxfb1F6Vv9i1YMECeXh4qKioyHKsoKBANWvWVGRkpNW1KSkpMplMOnz4sPz9/TVr1qxS7U2dOlUdO3Ysc9/f318mk+m627UVIK53funSpZX80wMAAKAsv+5HNQyj1LEbqfIxsVFRUSooKFB6erq6desm6epqDd7e3tqyZYsuXbpkmXcvOTlZzZs3V8uWLSv0XVu3brWk9++++04PP/yw9u/fb+kprV27tuXaRYsWqW/fvlb3161bt0LfCwAAgOpV5SE2ODhYPj4+SklJsYTYlJQUDRgwQOvWrdPmzZstPbIpKSmKioqq8Hc1bNjQ8rl+/fqSpEaNGpUZTuvWrStvb+8KfxcAAABujclkuuH+jVTLPLFRUVFKTk627CcnJysyMlIRERGW4xcvXtSWLVtuKcRWpcLCQuXl5VltAAAAsE1wcLBcXP6//7R+/fp64YUXLPtubm7q06ePze1VW4jduHGjioqKlJ+fr+3btysiIkI9evRQSkqKJGnTpk0qLCy0CrHPP/+83N3drbYZM2ZUSk3R0dGl2j569Oh1r09ISJCnp6dla9asWaXUAQAA4Az27NkjLy8vy37dunU1adIky76np6f+85//2NxetcwTGxkZqQsXLmjr1q06d+6cgoKC1LBhQ0VERCguLk6XLl1SSkqKAgIC1Lx5c8t9zz77rOVlrGveeecdrV+//pZreuutt9SrVy+rY76+vte9fvLkyXrmmWcs+3l5eQRZAAAAO6mWEBsYGKimTZsqOTlZ586dU0REhKSrobFZs2b67rvvlJycrJ49e1rd16BBAwUGBloduzbW9VZ5e3uXavtG3NzcKnWpNAAAAFRctQwnkK4OKUhJSVFKSorV1Fo9evRQUlKS0tLS/mfHwwIAAOB/S7UtOxsVFaX4+HhduXLF0hMrSRERERozZowuX75crSH2/Pnzys7Otjrm4eGhOnXqVFsNAAAAqJhq7Ym9ePGiAgMDLSs1SFdDbH5+vmUqruoSFxcnHx8fq2327NnV9v0AAACoOJadrSCWnQUAALDdyy+/bNN1U6ZMsek6QmwFEWIBAABs16lTJ6v9y5cva9++fWrfvr3lmGEY2r59u03tEWIriBALAABQcZmZmWrfvr3y8/MrdH+1jYkFAAAArrnVftRqm53gt+bag2f5WQAA4Ew8PDxkMpnsXQYhtqLOnDkjSazaBQAAnEpOTo4aNmxo7zIIsRV1beWwo0ePytPT087VOJ9ry/4eO3aMMcl2wPO3L56//fDs7Yvnb1/Xnr+rq2uF7v/pp5+s9o8fPy7DMHTkyBGrnl0/Pz+b2iPEVlCNGleHE3t6evI/kh3dfvvtPH874vnbF8/ffnj29sXzt6+KDiUICAiwGgd7rZ2AgADLvmEYKikpsak9QiwAAACqnK1TZ9mKEAsAAIAq98v5YCsDIbaC3NzcNGXKFLm5udm7FKfE87cvnr998fzth2dvXzx/+7rV5//rMbHXY+uYWBY7AAAAQJUzm80yDMMy9vXXGBMLAACA/0nffPONGjRoIOnq7ASPPvqovvvuO0nS2bNn1bNnT5vbIsQCAACgWrRt21aNGzeWJLm7u8tkMlnGyubk5JSrLZadBQAAgMMhxAIAAKDKVfZrWITYCpo7d678/f1Vq1Ytde3aVWlpafYuySmsX79e/fv3l6+vr0wmk7744gt7l+Q0EhISdNddd8nDw0ONGjXSwIEDtX//fnuX5TTmz5+v9u3bWyZ5DwsLU1JSkr3LclozZ86UyWTS+PHj7V2KU5g6dapMJpPVFhISYu+ynMrPP/+soUOHysvLS7Vr19Ydd9yh9PT0crVR1iIJvz5WnoUUCLEVsGzZMj3zzDOaMmWKvv/+e3Xo0EF9+vQp91gOlN+FCxfUoUMHzZ07196lOJ3U1FTFx8dr8+bNWrNmja5cuaL77rtPFy5csHdpTqFp06aaOXOmtm3bpvT0dPXs2VMDBgzQ7t277V2a09m6davefffdSp/zEjfWtm1bZWVlWbZvv/3W3iU5jXPnzik8PFw1a9ZUUlKS9uzZozfeeEP16tUrVztLlixR3bp1LfsBAQHKy8uz7Ht5eWnTpk02t8cUWxXQtWtX3XXXXZozZ44kqaSkRM2aNdPYsWM1adIkO1fnPEwmk1auXKmBAwfauxSndOrUKTVq1Eipqanq0aOHvctxSvXr19ff/vY3jRw50t6lOI2CggJ16tRJ8+bN07Rp09SxY0fNmjXL3mX95k2dOlVffPGFMjIy7F2KU5o0aZI2btyoDRs23FI7b775poYNG6aGDRtWSl30xJbT5cuXtW3bNvXq1ctyrEaNGurVq1e5/vYAOLrc3FxJV4MUqldxcbGWLl2qCxcuKCwszN7lOJX4+Hjdf//9Vn8GoHocPHhQvr6+CggIUExMjI4ePWrvkpzGP//5T3Xu3FmDBw9Wo0aNFBoaqvfee6/c7UyfPl1NmzbVI488oqSkJJvng70eQmw5nT59WsXFxZbpIa5p3LixsrOz7VQVUL1KSko0fvx4hYeHq127dvYux2ns3LlT7u7ucnNz01NPPaWVK1eqTZs29i7LaSxdulTff/+9EhIS7F2K0+natas++OADrVq1SvPnz1dmZqbuuece5efn27s0p/Djjz9q/vz5atWqlVavXq3Ro0fr6aef1uLFi8vVTk5Ojv71r3/Jzc1N999/v/z8/PTnP/9Zhw8frlBdzBMLoNzi4+O1a9cuxqRVs+DgYGVkZCg3N1fLly9XbGysUlNTCbLV4NixYxo3bpzWrFmjWrVq2bscp9OvXz/L5/bt26tr167y8/PTp59+ynCaalBSUqLOnTtrxowZkqTQ0FDt2rVLCxYsUGxsrM3tmM1m9e7dW02aNNFnn32md955Rx999JHuuOMOdevWTSNHjtTDDz9s8/9j9MSWU4MGDWQ2m3Xy5Emr4ydPnpS3t7edqgKqz5gxY/Svf/1LycnJatq0qb3LcSqurq4KDAzUnXfeqYSEBHXo0EFvv/22vctyCtu2bVNOTo46deokFxcXubi4KDU1Ve+8845cXFxUXFxs7xKdSt26dRUUFKRDhw7ZuxSn4OPjU+ovy61bt76lIR2GYeihhx7SihUrlJ2drejoaC1cuFC+vr42t0GILSdXV1fdeeedWrt2reVYSUmJ1q5dy9g0/KYZhqExY8Zo5cqVWrdunVq0aGHvkpxeSUmJCgsL7V2GU7j33nu1c+dOZWRkWLbOnTsrJiZGGRkZMpvN9i7RqRQUFOjw4cPy8fGxdylOITw8vNSUigcOHJCfn1+ltF9cXCzDMGQYhlxcbB8kwHCCCnjmmWcUGxurzp07q0uXLpo1a5YuXLiguLg4e5f2m1dQUGD1N+/MzExlZGSofv36at68uR0r++2Lj4/XJ598oi+//FIeHh6WMeCenp6qXbu2nav77Zs8ebL69eun5s2bKz8/X5988olSUlK0evVqe5fmFDw8PEqN/65Tp468vLwYF14NJk6cqP79+8vPz08nTpzQlClTZDabFR0dbe/SnMKECRPUvXt3zZgxQ48++qjS0tK0cOFCLVy48JbaXb58uT755BOtWrVK99xzj8aOHVu+GYcMVMjs2bON5s2bG66urkaXLl2MzZs327skp5CcnGxIKrXFxsbau7TfvLKeuyRj0aJF9i7NKYwYMcLw8/MzXF1djYYNGxr33nuv8fXXX9u7LKcWERFhjBs3zt5lOIUhQ4YYPj4+hqurq9GkSRNjyJAhxqFDh+xdllP56quvjHbt2hlubm5GSEiIsXDhwnK3cfnyZSMpKcn4wx/+YNSoUcPw9/c3Xn75ZePo0aMVqol5YgEAAFDlvLy89N///lcPPfSQRo4cqXvvvfeW2iPEAgAAoMrNmTNHQ4cOtVq161YQYgEAAOBweLELAAAAVc6WWW0Mw9CRI0dsao+eWAAAAFQ5s9msV155RR4eHmWeLygo0J///Gebl6MlxAIAAKDKmc1mnThxQo0bNy7zfE5Ojry9vW0OsSx2AAAAgCrn6uqqK1euXPf85cuXy7WsMyEWAAAAVc7b21uZmZnXPX/kyJHr9tKWhRALAACAKtetWzf94x//uO75f/zjH+rSpYvN7RFiAcAJHDlyRCaTSRkZGfYuBYCTGj16tN5//3299NJLOnv2rOX4uXPnNHXqVP3973/XU089ZXN7hFgAqIDhw4dbrfEdGRmp8ePH262ezMxM/eEPf5Cvr69q1aqlpk2basCAAdq3b58kqVmzZsrKylK7du3sViMA59ajRw/NnDlTM2fOVMOGDeXt7S0fHx81aNBA06dP17Rp0xQVFWVze8wTCwAO7sqVK+rdu7eCg4P1+eefy8fHR8ePH1dSUpLOnz8v6epbwd7e3vYtFIDTmzhxogYNGqQvvvhCmZmZMgxD/v7+GjBggFq1alW+xgwAQLnFxsYaAwYMsHyWZLVlZmYahmEYO3fuNPr27WvUqVPHaNSokTF06FDj1KlTlnYiIiKMMWPGGOPGjTPq1q1rNGrUyFi4cKFRUFBgDB8+3HB3dzdatmxp/Oc//7luLdu3bzckGUeOHLnuNZmZmYYkY/v27detWZKRnJxsGIZhXLp0yfjTn/5k+Pr6GrfddpvRpUsXyzkA+F/AcAIAuEVvv/22wsLC9MQTTygrK0tZWVlq1qyZzp8/r549eyo0NFTp6elatWqVTp48qUcffdTq/sWLF6tBgwZKS0vT2LFjNXr0aA0ePFjdu3fX999/r/vuu0/Dhg3Tf//73zK/v2HDhqpRo4aWL1+u4uJim2u+VmtWVpbGjRunRo0aKSQkRJI0ZswYbdq0SUuXLtUPP/ygwYMHq2/fvjp48OCtPSwAqCQsdgAAFTB8+HCdP39eX3zxhaSrY2I7duyoWbNmWa6ZNm2aNmzYoNWrV1uOHT9+XM2aNdP+/fsVFBSkyMhIFRcXa8OGDZKk4uJieXp6atCgQfrwww8lSdnZ2fLx8dGmTZvUrVu3MuuZO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKsvdrVo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYfl2LV5E3Nycq77XfHx8crOztbHH3+ssLAwffbZZ2rbtq3WrFlzwxq3b9+uYcOGac6cOQoPD5ck7dy5U8XFxQoKCrKqPTU11apuALAnXuwCgCpSUFCg/v3767XXXit1zsfHx/K5Zs2aVudMJpPVMZPJJEk3XYrRw8ND/fv3V//+/TVt2jT16dNH06ZNU+/evcu8Pjs7Ww8++KAef/xxjRw50qpus9msbdu2yWw2W93j7u5+wxoAoLoQYgGgEri6upYaj9qpUyetWLFC/v7+cnGp3t9uTSaTQkJC9N1335V5/tKlSxowYIBCQkL05ptvWp0LDQ1VcXGxcnJydM8991RHuQBQbgwnAIBK4O/vry1btujIkSM6ffq0SkpKFB8fr7Nnzyo6Olpbt27V4cOHtXr1asXFxdn8ApYtMjIyNGDAAC1fvlx79uzRoUOHlJiYqPfff18DBgwo855Ro0bp2LFjeuedd3Tq1CllZ2crOztbly9fVlBQkGJiYvTYY4/p888/V2ZmptLS0pSQkKB///vflVY3ANwKemIBoBJMnDhRsbGxatOmjS5evKjMzEz5+/tr48aNev7553XfffepsLBQfn5+6tu3r2rUqLw+hKZNm8rf318vv/yyZWWua/sTJkwo857U1FRlZWWpTZs2VseTk5MVGRmpRYsWadq0afrTn/6kn3/+WQ0aNFC3bt30wAMPVFrdAHArmJ0AAAAADofhBAAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcFzsXQAAAAB+++Li4my6btGiRTZdR4gFAABAlcvNzbXav3DhgtatW6f+/ftXqD2TYRhGZRQGAAAA2CozM1Pt27dXfn5+he5nTCwAAACq3a32oxJiAQAA4HAIsQAAAHA4vNgFAACAKpeammq1//PPP6u4uFgpKSkymUyW4xERETa1x4tdAAAAqHJms1mGYVgF1l8zDEMlJSU2tUdPLAAAAKrcuXPnKrU9emIBAADgcHixCwAAANVm6dKlGjhwoNq0aaM2bdpo4MCBWrZsWbnboScWAAAAVa6kpESDBw/WF198oVatWql169YymUzau3ev9u/fr4cffljLli1TjRq29bEyJhYAAABVbtasWUpNTdU///lP3X///Vbn/vOf/2jYsGF6++23NWHCBJvaoycWAAAAVa59+/YaP368RowYUeb5RYsW6a233tIPP/xgU3uEWAAAAFS52rVra9++ffLz8yvz/E8//aSQkBBdvHjRpvZ4sQsAAABVrlatWsrNzb3u+by8PNWuXdvm9gixAAAAqHJhYWGaO3fudc/PmTNH3bp1s7k9XuwCAABAlXvppZcUERGh06dP609/+pPatGkjSdq7d6/eeOMN/fOf/1RKSorN7TEmFgAAANXiq6++0siRI3X69Gmr4w0aNNDf//53Pfjggza3RYgFAABAtbl48aLWrFmjAwcOSJKCgoLUu3fvco2HlQixAAAA+B+xf/9+BQcH23QtY2IBAABgF4cPH1ZycrJly87OVklJiU33EmIBAABQLY4cOWIJrCkpKTp+/Ljc3d119913a/z48YqMjLS5LYYTAAAAoMq1aNFCP/30k+rUqaPw8HBFRUUpMjJSd911l2rUKP+sr4RYAAAAVDkXFxe5u7srLi5OvXv31j333CMPD48Kt0eIBQAAQJXLyclRamqqUlNTlZKSogMHDig0NFSRkZGKiorS3XffLXd3d5vbI8QCAACg2p05c0YpKSmWULt//36FhoZq8+bNNt3Pi10AAACodl5eXgoPD1dJSYlKSkqUm5urHTt22Hw/PbEAAACoFseOHVNqaqrWr1+v9evX66efflLXrl3Vs2dPRUZGqlu3bnJ1dbWpLUIsAAAAqlxAQIBOnDihrl27KjIyUj179lRYWJjNofXXyj+fAQAAAFBOR48elclkkmEYMgzDMoygouiJBQAAQJU7efKkUlJSLIsdHDp0SK6ururSpYuioqIUERGh7t27y83Nzab2CLEAAACodj///LPVkrM//fSTXF1ddfHiRZvuJ8QCAADA7o4ePaq1a9cqLi7OpusJsQAAAHA4zBMLAACAKmdLD6thGPrggw9sao+eWAAAAFQ5s9msvn37XvfFrcLCQiUlJdk8YwEhFgAAAFXObDbrxIkTaty4cZnnT506JW9vbxUXF9vUHvPEAgAAoMq5uLjcMKAWFRXJbDbb3B4hFgAAAFWuXr16Onny5HXPnzx5UvXr17e5PUIsAAAAqlyHDh2UlJR03fOrVq1S+/btbW6PEAsAAIAqFxMTo5kzZ2rdunWlziUnJ2vGjBmKjo62uT1e7AIAAEC1GDhwoP75z3/qjjvuUOvWrWUymbRv3z7t2LFDv/vd7/TVV1/JZDLZ1BYhFgAAANXCMAz94x//0PLly5WZmSnDMOTv769BgwZp+PDhqlHD9kEChFgAAAA4HMbEAgAAwOGw7CwAAACqXIsWLW56jWEYOnLkiE3tMZwAAAAAVc5sNuuVV16Rh4eHJOn06dP629/+ptdee02SVFBQoD//+c8sOwsAAID/Hb9edvbHH39Uhw4dlJ+fL0nKycmRt7e3zSGWMbEAAABwOIRYAAAAOBxCbAUZhqG8vDwxGgMAAKBifr2wga0LHUiE2ArLz8+Xp6enZRwHAAAArm/UqFG67bbbLPtNmjRRUlKSZd/Dw0MJCQk2t8eLXRWUl5cnT09P5ebm6vbbb7d3OQAAAE6FeWIBAABQ5X766SebrvPz87PpOkIsAAAAqlxAQIAMw5DJZLJ6p+jX+7ZOsUWIBQAAQJXbvn17mccNw9CSJUs0e/Zsy0IItiDEAgAAoMq1b9++1LGvv/5akydP1qFDh/Tcc89p4sSJNrdHiAUAAEC12rp1qyZNmqRvv/1WTz75pFavXq0GDRqUq40KTbF17NgxjRgxQr6+vnJ1dZWfn5/GjRunM2fOWK6JjIyUyWSSyWRSrVq1FBQUpISEhDLnVd20aZPMZrPuv//+UueOHDkik8mkRo0alZrOqmPHjpo6darVsUOHDmnEiBFq3ry53Nzc1KRJE9177736+OOPVVRUZLnuWm2/3pYuXVqRRwIAAICbOHjwoIYMGaLu3bvLx8dH+/bt0+zZs8sdYKUKhNgff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W1y9atEhZWVlW28CBA8v7SAAAAHATTz31lNq2bavc3Fxt3bpVH330kVq0aFHh9so9T2y/fv20a9cuHThwQLVr17Ycz87OVsuWLfXYY49p/vz5ioyMVMeOHTVr1izLNXfeeaf8/Pz0+eefW44VFBTIx8dH6enpmjJlitq3b68XXnjBcv7IkSNq0aKFnn32Wc2fP1+HDx9Wo0aNJF3tiR04cKCmTp0qwzDUtm1b3XbbbUpLS1ONGqXz+bU34qSrPbErV66scGhlnlgAAADbmc1m1apVS8HBwTdc8fR6L4D9WrnGxJ49e1arV6/W9OnTrQKsJHl7eysmJkbLli3TvHnzrM4ZhqFvv/1W+/btU6tWrazOffrppwoJCVFwcLCGDh2q8ePHa/LkyaWWHYuOjtaaNWv0yiuvaM6cOaVqy8jI0N69e7VkyZIyA6xUvqXMfq2wsFCFhYWW/by8vAq3BQAA4GymTJlSqe2VK8QePHhQhmGodevWZZ5v3bq1zp07p1OnTkmS5s2bp7///e+6fPmyrly5olq1aunpp5+2uicxMVFDhw6VJPXt21e5ublKTU1VZGSk1XUmk0kzZ85U//79NWHCBLVs2dLq/IEDByRJwcHBlmM5OTkKCAiw7P/1r3/VH//4R8t+dHS0zGazVTt79uxR8+bNS/1sCQkJevnll8v8uQEAAHBjL730UqW2V6EXu2wdgRATE6OMjAxt3LhR/fr104svvqju3btbzu/fv19paWmKjo6WJLm4uGjIkCFKTEwss70+ffro7rvv1l/+8hebvt/Ly0sZGRnKyMhQ3bp1dfnyZavzb731luX8tc3X17fMtiZPnqzc3FzLduzYMZtqAAAAQOUrV09sYGCgTCaT9u7dq4ceeqjU+b1796pevXpq2LChJMnT01OBgYGSrg4bCAwMVLdu3dSrVy9JV3thi4qKrIKjYRhyc3PTnDlz5OnpWeo7Zs6cqbCwMD377LNWx68NU9i/f79CQ0MlXR17ce37XVxK/6je3t6W8zfj5uYmNzc3m64FAABA1SpXT6yXl5d69+6tefPm6eLFi1bnsrOz9fHHH2vIkCFljj11d3fXuHHjNHHiRBmGoaKiIn344Yd64403rHpCd+zYIV9fXy1ZsqTMGrp06aJBgwZp0qRJVsdDQ0MVEhKi119/3eblygAAAOCYyr3YwZw5c9S9e3f16dNH06ZNU4sWLbR79249++yzatKkiaZPn37de0eNGqVXX31VK1askIuLi86dO6eRI0eW6nF9+OGHlZiYqKeeeqrMdqZPn662bdta9a6aTCYtWrRIvXv3Vnh4uCZPnqzWrVvrypUrWr9+vU6dOlVq/Ov58+eVnZ1tdczDw0N16tQp72MBAABANSr3mNhWrVopPT1dAQEBevTRR9WyZUs9+eSTioqK0qZNm1S/fv3r3lu/fn099thjmjp1qhITE9WrV68yhww8/PDDSk9P1w8//FBmO0FBQRoxYoQuXbpkdbxbt27atm2bgoODFR8frzZt2qh79+5asmSJ3nrrLY0ePdrq+ri4OPn4+Fhts2fPLu8jAQAAQCXYv3+/zdeWe55YXMU8sQAAALfm8OHDSk5OtmzZ2dk2Dwst93ACAAAAoCKOHDliCawpKSk6fvy43N3ddffdd2v8+PGlpli9EUIsAAAAqlyLFi30008/qU6dOgoPD1d8fLwiIyN11113XXehqhshxAIAAKDKHTt2TLfffrvi4uLUu3dv3XPPPfLw8KhwexVa7AAAAAAojxMnTui9997TlStX9Nxzz8nLy0tdu3bV888/r1WrVqmgoKBc7fFiVwXxYhcAAEDFnTlzRikpKUpNTVVKSoplwarNmzfbdD/DCeBwDMNQYWGhvcsA7OKXv/7d3NzKXFwG+K3j1/5vg5eXl8LDw1VSUqKSkhLl5uZqx44dNt9PiIXDKSws1ODBg+1dBgDATj777DPVqlXL3mWgAo4dO6bU1FStX79e69ev108//aSuXbuqZ8+e+sc//qFu3brZ3BYhFgAAAFUuICBAJ06cUNeuXRUZGal3331XYWFhcnV1rVB7hFg4tNmvPiE315r2LgOoNoWXr2jsX96TxK9/OJdf/tqHYzp69Khq1qwpwzBkGIZlGEFFEWJvEe/F2Zeba025ufGHOJwTv/7hTH755y1/9jqmn3/+WSkpKUpOTtayZcs0ffp0ubq6qkuXLoqKilJERIS6d+8uNzc3m9ojxN4iXjACAKDqXb5SZPlcWFio2rVr27EaVETjxo01ZMgQ/V97dx7U1PX2AfwbAgEUBBcIIEtcitQqoKKojLKIWyvitKOORQxorbVxQes6OhV/MmBra9W64liq4zhWrVq7oLWa4C6KUrepVcBxA8EphkUIGPL+4ZDXFNSwJLeY72cmM7kn9548nkmbJ4fnnjN+/HgAz5Pa2t27duzYgRUrVkAikaCiosKo/ky+TuzmzZvh6OiIZ8/+/8NXVlYGGxubOluLqVQqiEQi5OTkQCaTYc2aNXX6S0xMRGBgYL3HMpkMIpHopY+4uDgAeOnru3fvbuZ/PRERERHVp2PHjpg4cSK2bduG3Nxc5OXlYePGjUZfb/KZ2PDwcJSVleHixYv6O85OnjwJNzc3nD9/HpWVlfo7DJVKJby9vdGlS5dGvdeFCxeg1WoBAGfOnMEHH3yAmzdv6tdxffFXW1paGkaMGGFwvbOzc6Pel4iIiIiaxtvbG/Hx8Uafb/Iktlu3bnB3d4dKpdInsSqVCtHR0Th+/DjOnTunn5FVqVQIDw9v9Hu5uLjon7dr1w4A4OrqWm9y6uzsDDc3t0a/B2svWgAAEfNJREFUFxEREREZz9gENS0tzajzzFITGx4eDqVSiUWLFgF4PuO6YMECaLVaKJVKhIWFoaKiAufPn8fkyZPNEVKzqaysRGVlpdBhWJQXx5vF/URERC2DWq02OC4vL8fx48cRFRXVqP7MlsQmJCTg2bNnqKiowOXLlxEaGorq6mps3rwZAHD27FloNBqDmdiFCxdi6dKlBn1VVVWhe/fuTY5pwoQJEIvFBm03btyAt7d3vedrNBqDm7hKSkoAAB9//DFsbHh3sFCqqp/Bzq5x68sRERGR+ezfv9/gOC8vD/7+/nXajWWWJDYsLAzl5eW4cOECiouL4evrCxcXF4SGhiI+Ph6VlZVQqVTo3LmzQRI5f/58/c1YtdatW4cTJ040OaZvvvkGkZGRBm0eHh4vPT8lJQXLly9v8vsSERERUdP/mmqWJLZr167w9PSEUqlEcXExQkNDATxPGr28vHDmzBkolUpEREQYXNehQwd07drVoK221rWp3Nzc6vT9KosXL8bcuXP1xyUlJfDy8kJqaipcXV2bJSYyTmVlJWJjYwEAEhuuEkdERGSJzJYBhIeHQ6VSobi4GPPnz9e3Dx48GOnp6cjMzMT06dPNFU6D2dra1rv4rp2dHfdvFpBIJBI6BCIiIhKAWZNYhUKB6upq/UwsAISGhmLGjBmoqqpq0soEDfXkyRMUFBQYtDk6OqJ169Zmi4GIiIjIUmRkZBgcP3jwAFqtVr9PQK0X88RXMWsSW1FRAT8/P0ilUn17aGgoSktL9UtxmUt9yzykpKToV1AgIiIiouYTEREBnU5X56+oQ4YM0T/X6XSoqakxqj+zJbEymazeAl4fH5962+/cuVNvP4mJiUhMTHzpca2wsLCXFgw357JMxu7vS0RERI334j0Q/O5tmYqLi5u1P94V00SsySQiIjK9F79v+d3bMtXuoNpcmMRSi6apqhY6BCKzevEzz88/WRJ+3lu+f9fEvoyxNbEiHbc8apSSkhI4OTlBrVY3+y8LerXKykqMHTtW6DCIiEgge/fu5cpALZBYLK63JvZF/8maWCIiIiKyXM1dE8uZ2EZSq9VwdnbGvXv3OBNrZjqdzmALYCJL8uLn39bWlrWBZJH42ReWo6OjSca/tLQUs2bNQlpamlHnM4ltpNzcXHTp0kXoMIiIiIjMqrCwEC4uLibp183NjeUEpla7/e3du3fh5OQkcDSWp3bbX86EC4PjLyyOv3A49sLi+AurdvwlEonJ3qMhM7xMYhvJysoKAODk5MT/kATUpk0bjr+AOP7C4vgLh2MvLI6/sExZytGQAgEmsURERERkcrWrEzQXJrFEREREZHIHDhx45etqtRpyudzo/pjENpKtrS2WLVvGre8EwvEXFsdfWBx/4XDshcXxF1ZTx3/06NGvfL2wsLBB/XF1AiIiIiISXENXJ7AycTxERERERK8lFoshk8mMPp8zsURERETU4rAmloiIiIhMLjw8/LXn6HQ6qFQqo/rjTCwRERERmZxYLMbUqVPRqlUrAM9XI9i5cycUCgUA4OnTp0hNTWVNrKlt2LABMpkMdnZ2CA4ORmZmptAhWYQTJ04gKioKHh4eEIlEOHjwoNAhWYyUlBT07dsXjo6OcHV1xZgxY3Dz5k2hw7IYmzZtgr+/v36R9wEDBiA9PV3osCzWypUrIRKJkJCQIHQoFiExMREikcjg4efnJ3RYFuXBgweYOHEi2rdvD3t7e/Ts2RMXL15scD/Lly/H6tWrsXr1aixZsgQSiUR//L///a9BfTGJbYQffvgBc+fOxbJly3Dp0iUEBARg+PDhDV4aghquvLwcAQEB2LBhg9ChWJyMjAwoFAqcO3cOR48eRXV1NYYNG4by8nKhQ7MInp6eWLlyJbKysnDx4kVEREQgOjoa169fFzo0i3PhwgVs2bIF/v7+QodiUd555x3k5+frH6dOnRI6JItRXFyMkJAQ2NjYID09HTdu3MDXX3+Ntm3bChoXywkaITg4GH379sX69esBADU1NfDy8sLMmTOxaNEigaOzHCKRCAcOHMCYMWOEDsUiFRUVwdXVFRkZGRg8eLDQ4Vikdu3aYdWqVZgyZYrQoViMsrIy9O7dGxs3bkRSUhICAwOxZs0aocN64yUmJuLgwYPIzs4WOhSLtGjRIpw+fRonT55sUj9isRgPHz6EVCoFAOTm5iIgIAClpaUAuMSWyVVVVSErKwuRkZH6NisrK0RGRuLs2bMCRkZkXmq1GsDzRIrMS6vVYvfu3SgvL8eAAQOEDseiKBQKvPfeewbfAWQet27dgoeHBzp37oyYmBjcvXtX6JAsxqFDhxAUFISxY8fC1dUVvXr1wtatW5ulb5FI9MrjV2ES20CPHz+GVqvV/4qoJZVKUVBQIFBUROZVU1ODhIQEhISEoEePHkKHYzGuXr0KBwcH2Nra4pNPPsGBAwfQvXt3ocOyGLt378alS5eQkpIidCgWJzg4GN9//z0OHz6MTZs2IS8vD4MGDdLP4JFp5ebmYtOmTXjrrbdw5MgRTJ8+HbNmzcL27dsb1M/w4cMNdvuSSqXYsmWL/rhVq1aYNm2a0f1xiS0iajCFQoFr166xJs3MunXrhuzsbKjVauzbtw9yuRwZGRlMZM3g3r17mD17No4ePQo7Ozuhw7E4I0eO1D/39/dHcHAwfHx8sGfPHpbTmEFNTQ2CgoKQnJwMAOjVqxeuXbuGzZs3Qy6XG93Pb7/9ZnDcunVrTJgwQX/s4OCAjRs3Gt0fZ2IbqEOHDhCLxXj06JFB+6NHj+Dm5iZQVETmM2PGDPzyyy9QKpXw9PQUOhyLIpFI0LVrV/Tp0wcpKSkICAjA2rVrhQ7LImRlZaGwsBC9e/eGtbU1rK2tkZGRgXXr1sHa2hparVboEC2Ks7MzfH19cfv2baFDsQju7u51fiy//fbbgpd0MIltIIlEgj59+uDYsWP6tpqaGhw7doy1afRG0+l0mDFjBg4cOIDjx4+jU6dOQodk8WpqaqDRaIQOwyIMGTIEV69eRXZ2tv4RFBSEmJgYZGdnQywWCx2iRSkrK0NOTg7c3d2FDsUihISE1FlS8e+//4aPj49AET3HcoJGmDt3LuRyOYKCgtCvXz+sWbMG5eXliI+PFzq0N15ZWZnBL++8vDxkZ2ejXbt28Pb2FjCyN59CocCuXbvw008/wdHRUV8D7uTkBHt7e4Gje/MtXrwYI0eOhLe3N0pLS7Fr1y6oVCocOXJE6NAsgqOjY53679atW6N9+/asCzeDefPmISoqCj4+Pnj48CGWLVsGsVhs8KdoMp05c+Zg4MCBSE5Oxrhx45CZmYnU1FSkpqYKG5iOGuXbb7/VeXt76yQSia5fv366c+fOCR2SRVAqlToAdR5yuVzo0N549Y07AF1aWprQoVmEyZMn63x8fHQSiUTn4uKiGzJkiO73338XOiyLFhoaqps9e7bQYViE8ePH69zd3XUSiUTXsWNH3fjx43W3b98WOiyL8vPPP+t69Oihs7W11fn5+elSU1OFDknHdWKJiIiISHBcJ5aIiIiIWiSuE0tERERELU5DCgR4YxcRERERmdzrNkeo3QnSWKyJJSIiIiKTe9025TqdDmq12uiaWCaxRERERCS4oqIiSKVS3thFRERERC1HQ+dVmcQSERER0X8CVycgIiIDd+7cgUgkQnZ2ttChEBHVy8HBAaGhoUafzySWiKgR4uLiMGbMGP1xWFgYEhISBIsnLy8PH374ITw8PGBnZwdPT09ER0fjr7/+AgB4eXkhPz+fW6QS0X+SRqPB559/jlOnThl9DZfYIiJq4aqrqzF06FB069YN+/fvh7u7O+7fv4/09HQ8efIEACAWi+Hm5iZsoERE9cjKyoJcLodGo4FKpTL6Os7EEhE1UVxcHDIyMrB27VqIRCKIRCLcuXMHAHDt2jWMHDkSDg4OkEqliI2NxePHj/XXhoWFYebMmUhISEDbtm0hlUqxdetWlJeXIz4+Ho6OjujatSvS09Nf+v7Xr19HTk4ONm7ciP79+8PHxwchISFISkpC//79AdQtJ4iLi9PH+uKj9gtEo9Fg3rx56NixI1q3bo3g4OAGfbkQEb2OVqvF8uXLERISgoiICFy5cgUDBw40+nomsURETbR27VoMGDAAU6dORX5+PvLz8+Hl5YUnT54gIiICvXr1wsWLF3H48GE8evQI48aNM7h++/bt6NChAzIzMzFz5kxMnz4dY8eOxcCBA3Hp0iUMGzYMsbGxePr0ab3v7+LiAisrK+zbtw9ardbomGtjzc/Px+zZs+Hq6go/Pz8AwIwZM3D27Fns3r0bV65cwdixYzFixAjcunWraYNFRBZLLBbDyspK/7CxscGKFSuwZ88erFu3Dvb29g3qj+vEEhE1QlxcHJ48eYKDBw8CeD6jGhgYiDVr1ujPSUpKwsmTJ3HkyBF92/379+Hl5YWbN2/C19cXYWFh0Gq1OHnyJIDnMxNOTk54//33sWPHDgBAQUEB3N3dcfbsWf3M6r9t2LABCxYsgFgsRlBQEMLDwxETE4POnTsDeD4T26lTJ1y+fBmBgYEG1+7fvx8xMTH4448/EBISgrt376Jz5864e/cuPDw89OdFRkaiX79+SE5OburwEZEFOnTokMGxVqvFypUrUVRUhG3btiE8PLxB/bEmlojIRP78808olUo4ODjUeS0nJwe+vr4AAH9/f327WCxG+/bt0bNnT32bVCoFABQWFr70vRQKBSZNmgSVSoVz585h7969SE5OxqFDhzB06NCXXnf58mXExsZi/fr1CAkJAQBcvXoVWq1WH18tjUaD9u3bG/EvJyKqa/To0XXaoqOjkZycjHfffReTJ0/GqlWr0KpVK6P6YxJLRGQiZWVliIqKwhdffFHnNXd3d/1zGxsbg9dEIpFBW+26ia/bxcbR0RFRUVGIiopCUlIShg8fjqSkpJcmsQUFBRg9ejQ++ugjTJkyxSBusViMrKwsiMVig2vqS8iJiBrLysoKS5cuxahRoxAbG4sePXogNzfXqGuZxBIRNQOJRFKnHrV379748ccfIZPJYG1t3v/dikQi+Pn54cyZM/W+XllZiejoaPj5+WH16tUGr/Xq1QtarRaFhYUYNGiQOcIlIgsXGBiIS5cuYcmSJUZfwxu7iIiagUwmw/nz53Hnzh08fvwYNTU1UCgU+OeffzBhwgRcuHABOTk5OHLkCOLj442+AcsY2dnZiI6Oxr59+3Djxg3cvn0b27Ztw3fffYfo6Oh6r5k2bRru3buHdevWoaioCAUFBSgoKEBVVRV8fX0RExODSZMmYf/+/cjLy0NmZiZSUlLw66+/NlvcREQvsrGxwZdffmn0+ZyJJSJqBvPmzYNcLkf37t1RUVGBvLw8yGQynD59GgsXLsSwYcOg0Wjg4+ODESNGwMqq+eYQPD09IZPJsHz5cv1SWrXHc+bMqfeajIwM5Ofno3v37gbtSqUSYWFhSEtLQ1JSEj777DM8ePAAHTp0QP/+/TFq1Khmi5uILEtERARet56ATqczejk/rk5ARERERCY3d+5c/XO1Wo2dO3dCoVDo254+fYrU1NTX1v/XYhJLRERERGaVm5uLgIAAlJaW6tuKiooglUqNTmJZE0tEREREZmVvb4+qqiqDhLW8vBy2trZG98EkloiIiIjMyt3dHdbW1ti1a5e+bfv27foNWozBG7uIiIiIyOw+/fRTyOVyfPXVV6ioqMCtW7ewYcMGo69nTSwRERERCWLz5s04duwYJBIJRo8ejfHjxxt9LZNYIiIiImpxWE5ARERERCa3fft2o86Ty+VGnceZWCIiIiIyObFYjDZt2kAkEgEAampqUFJSAmdnZwDPNzpQq9VcJ5aIiIiI/jvEYjEePnwIqVQKAMjLy0NAQABKSkoAPF8n1s3NzehtubnEFhERERGZnU6nM9iG9t/Hr8MkloiIiIhaHCaxRERERGRyzV3ByiSWiIiIiEyu9oauWvb29hg8eLDB63Z2dsb3xxu7iIiIiMjUCgsL4eLiUieZbSwmsURERETU4rCcgIiIiIhaHCaxRERERNTiMIklIiIiohaHSSwRERERtThMYomIiIioxWESS0REREQtDpNYIiIiImpxmMQSERERUYvzf6ZZxmSdoxyiAAAAAElFTkSuQmCC", + "text/plain": [ + "
            " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size']\n", + "\n", + "g = sns.catplot(\n", + " data=pumpkins,\n", + " x=\"Item Size\", y=\"Color\", row='Variety',\n", + " kind=\"box\", orient=\"h\",\n", + " sharex=False, margin_titles=True,\n", + " height=1.8, aspect=4, palette=palette,\n", + ")\n", + "# Defining axis labels \n", + "g.set(xlabel=\"Item Size\", ylabel=\"\").set(xlim=(0,6))\n", + "g.set_titles(row_template=\"{row_name}\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9+0lEQVR4nO3deXQc1Z33/3dV9aatZcnaF1tesTEYL3gLdmzAxDAOkEDCPgES8jwTiJMZMkxgzu8MhFmAMUlIgkOWYSDJQIAwLE54MAEvbLHBbGFzAjZeZFuLV+1qqZffH1dSd6m7Zcu2UBs+r3N0wP3tunVv1e263666V7JisVgMERERkQxkD3cFRERERNJRoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLM9wV+BoRKNRdu/eTV5eHpZlDXd1RERE5DDEYjFaWlqoqKjAtge+Z3JcJyq7d++murp6uKshIiIiR6C2tpaqqqoB33NcJyp5eXmAaWgwGBzm2oiIiMjhaG5uprq6um8cH8hxnaj0Pu4JBoNKVERERI4zhzNtQ5NpRUREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0J/165dfPe73+Xpp5+mvb2d8ePHc99993HqqacOd9U+2SIhqP1fOPg25E2E0ZeAJzseb3wR6laBNwg1l0N2wh+Nat0G238L4Tao/DwUzY3HultNrHULFMyA6i+C7TWxWBR2r4I9L0KgDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHoKMOihdAxdlg9eTZ0W6ofRwOvAG542D0peDNjW+7dwPs+gN4ckwstyYea99pyu1uhvKzoWRBPBZuh+0PQ8tfYcRUqL4QHH9PW2JQ/xw0rAF/sWlLoGSwZ0FERA7BisViseHa+YEDB5g+fTqnn3463/jGNyguLubDDz9k3LhxjBs37pDbNzc3k5+fT1NTk/7Wz2B07oXVi6DpvfhrOTWweB1kj4JXroGP/jses31w2sNQ/QXY9hCs/1uIhePxCdfBrLuhZTM8twg6dsVjBdPhzNXg5MAL55vkp5c3HxY9DcXzYNOd8OYN7npO+0848QaTaKw9G7qb4rHyJfDZlRBph9VnmiSlV1YlnLkWghPgtWXwwd3xmOWBeb+Gmkth55Pw0kUQ7YrHx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kUpD7mIiMQNZvwe1kTlxhtv5OWXX+bFF188ou2VqByhjd+ED1ckvz7qyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4dzM8f647qep16gqTSGxanhyrWGr2u3pRcsyTB+dtgacmmzs1/S18CrbeDzt+lxybcB2MnAUbrkqO5Y6Fcz+M3+kREZGUBjN+D+sVdeXKlZx66ql8+ctfpqSkhOnTp/PLX/4y7ftDoRDNzc2uHzkCiXcCXK8/CbueTB0L7YMP70mdpIB5jFT3dPr97UxTbtN7sOW/k5MUMK9tvjd1knKocuuehh3/mzoWbjFtSZWk9JW7Mk3s8fT7bP0IDr6TOiYiIkdkWBOVjz76iHvuuYcJEybwzDPP8I1vfINvfetb/OpXv0r5/ttuu438/Py+n+rq6o+5xp8QvfMs+rP95iftdtkDxAJgedPH0u0TwMlKH/McYp/pyrW84AkMsO0hyrV9g4/BwMdPREQGbVgTlWg0yowZM/iP//gPpk+fzv/5P/+Hr3/96/zsZz9L+f6bbrqJpqamvp/a2tqPucafEDWXp3n9MvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7rJgHoz/abWPGC5Nihyh11EdRcYerWX6DMtCWnJvW2NQOUW3N5+ljBDMiflDomIiJHZFgTlfLyck488UTXa5MnT2bHjh0p3+/3+wkGg64fOQJT/hkqPu9+rXgBTLvDrOCZdkd8pQ6YgX3+I+YOxYJHwV8Uj9k+mHkXFJwCM38II+e4y62+ECZdD6MvhonLcCUOeRNg3v0QKIbPPGAmpPby5JjXAsXmPXkTEwq1TKJRc4kpu/pL7n2OnGPqUjAVZv7IfQfEXwTzf2faMv937sTL8sC023uOwe3JCVLFUnPsqs6Fyf/knouSU2PqKyIix9SwTqa97LLLqK2tdU2m/Yd/+AdeeeUV/vSnPx1ye02mPUr73+hZnnyCWXmTqKPOLL/1BqH8HHASBvtIJ+x+2ixPLv9c8rLcxpegdbO5w1Aw1R1r2QJ7XoKscihb7B7su5tNuQAV55h994pFTX066qB4PuT1WxV24O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrHL3tnvWx5cnF85wx1q3QePzpv1lZ4E97Kv9RUSOC8fNqp+NGzfymc98hu9973tcdNFFvPrqq3z961/nF7/4BZdfnub2egIlKiIiIsef42bVz6xZs3j88cf57W9/y0knncS//uu/ctdddx1WkiIiIiKffMN6R+Vo6Y6KiIjI8ee4uaMiIiIiMhAlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3Du/JZbbuF73/ue67UTTjiBv/zlL8NUo34e9ANd8X9f3AHbH4Gm9yB/Coy+CJxAPN6wFuqeBX8h1FwOWeXxWMsW2P4QRDqh+gtQODMe626GbQ9C2zYYORsqzwO759TEorDrKdj7MmRVwZjLwVcQ3/bAn6H2MbAcGH0xBE+IxzobYev/QGgPlJ4OZWeBZZlYJAS1/wsH34a8iTD6EvBkx7dtfBHqVoE3aNqSXRWPtW6D7b+FcBtUfh6K5ia0pdXEWrdAwQyo/iLY3nhbdq+CPS9CoAzGXAH+kfFtD74HtY+a/6/+EoyYEo+F9sG2B6CjDooXQMXZYPXk2dFuqH0cDrwBueNg9KXgzY1vu3cD7PoDeHJMLLcmHmvfacrtbobys6FkQTwWboftD0PLX2HEVKi+EBx/T1tiUP8cNKwBf7FpS6Akvm3zX822sQhUXwAFp8RjXQdg6wPQsROKPmOOYV9bwrBrJex7FXJqoOYycw567X8dap8w9Rh9KeSNi8c66kxbQvuh/CxzzntFOo9d3930X7D9Z/H4uO/AnDv5pIt07CXSsRfL8eLJqcTyxI9ftLuNSNtuYrEonuxSbP+Ivlgs2k24dTexcDu2fwROdilWz/mOxWJEOhqJdu7H8gRMuY4vXm6omXB7HRYWTk4Fti/er2OREOHWXcQiIZxAEXZWEVbP5zsWixBpqyfa1YztzcHJqcSynXhbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7bUEe1uwfbm4eSUu8738c6KxWKx4dr5LbfcwqOPPspzzz3X95rH46GoqGiAreKam5vJz8+nqamJYDB46A0G40Hr0O/JmwBnroOsMvjTFWaA7uVkwYLHzIC65T549etm0Oo1+Z9g+h1mcF5zJnQ2xGMj58IZfwTLA+v+BhrXxWP+kXD6H6FwBrxzK7xzc0KFLDj1JzDxOmhYB8+fC+HWeLjqfJj/KHQdhNWLzKDVK6cGFq+D7FHwyjXw0X/HY7YPTnvYDFLbHoL1fwuxcDw+4TqYdTe0bIbnFkHHrnisYDqcuRqcHHjhfJP89PLmw6KnoXgebLoT3rzBfXyn/SeceINJNNaeDd1N8Vj5EvjsSoi0w+ozTZLSK6sSzlwLwQnw2jL44O6EQ+SBeb+Gmkth55Pw0kUQTUhGx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kXwwU/htW8CCR+tk2+Bk2+G/W/C2rNM4tWrZKE5DrEIrDkL9m2IxwIlcMYak7S9dSO8f0dCW2yY/UsY91XY/Qy8+EWIdMTjoy+Bzzxg+tZzC6Hlw3jsaPpuKp6RcNHegd9znIrFYnTteZNI2+74i5aNv+RUnOwSwi21dO19m8Tz7ckfh69wMtGuFjrrN5gvBj1s/wj8ZXMBi1DDq0Q7E/qC7SVQNhfbn0/3gQ/oPviBqy7ekSfhDdYQ6dhLqGGj67w42aX4SmZCNExn3Xpi3S3x6nqy8JfNw/Jk0bX3bSKttQml2vhKZuDJKSPcuouuPW+525I3Gl/RyUS72wjVrScW6YyX6wsSKJsLtodQw0aiHXsSivXgL52DEyigu2kL3fs3udtSMBnviHFEOg8QanjFJOm9m2YV4y+dBdEInfUbiHXFP/uWE8BfPhfbm0vXvncJN29LKNXCVzwNT24l4bZ6uhrfAKLxY5Rbja9oKrFwB6H69cTC8c+L5c0jUD4XbC9dja8TaU+4JlsO/tJZOFlFdDdvo3vfu+62jJiIt2Ai0VCTOd/R7nhbAoX4S+cAMUL1G4iGDiYcIx+B8nnYvjy69m8i3LTFVa6vaCqevFFE2hsJNb5mvuz1tiWnAl/xdIiEzPkOt8Wr68nBXz4POyGZzjSDGb+HPVF54okneOutt45o+yFLVH4/HVoOs05jr4KKpWbg6i+rAs5+E1aONt9G+1uy0QzOiYlIr5NvMYNf/8EboHAWzLsfnpqSHLO9cN5WeO6z0PpRcnzu/bBvI3y4Ijk26ssw5ip4fmlyzD8Slm6CleMg3JIcP3MdbFoOu59Kjk2+wSRCr12XHMufAgt/D78f7/oQAmYgPnezSbgSk6pep64wicSm5cmxiqVmv6sXJcc8eXDeFnhqsjth6LXwKdh6P+z4XXJswnUwchZsuCo5ljsWFr8AK8e4LlR9lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpnLZsF1KhlS4bXfPgOdmOX78FQvo3Lkmue8C/or5dO/f5E5EenhHTATbSRq8AWxfPr7iaXTuej5FbSwCVWf0DLLtSVFf0SnmW3nL9qSYk1OOJ7fKJDhJO/USqFpEZ+1a95eQ3raUzaO7aQvRjsakmCd/LJYnO2nwBjP4+0tnmWOUQqDqDEING11JVS/vyJOIhdsJNyVfx+ysErz54wjVr08u1PIQqDqdzl3rUn4O/aWzCLfu7Lu742pL3mhs/wi69v45RbHZ+Mvm9bQlua8HKhfStectoglJVV9bCidDNJKUeALYgZF4CycT2v1SirbY5hjtfpFYQrLby1cyg0h7I5HWnUkxJ7cKf/G05DIzxGDG72F99APw4YcfUlFRQSAQYN68edx2222MGjUq5XtDoRChUPxkNTc3D02lDjdJAXMbPtWgBGbg+PCe9Bf67b9NnaSA+bbuyUkd278Rtv4mdSzaDZt/kTpJ6S13X4oLFZg7DImPlRKF9pm2pEpSwDxGqns6/T5zxqSONb0HW+5NeaEnFoXN96ZOUnrLbUu+IAOmLjljU8fCLaYtqZKU3nJ3rkwTezx1QgDmmG/+Rfr+sPXXqZMUMI+uEu+GJGpcZx69pBLphM33pK9T7ePpz8vR9N1PkUhbQ8rXY5GQSQhS9V0g0ro7ZZICEG6v73vM0F+0q4lwioGnZ6+EW7anTFIAIu31REPJAyWYdiQ+ZnDvtNvcmUiRpACE2+pSJil95SY8bnHVtruFcMuO1PsEwi07UiYpptx6Ymk+E9GORsKe1PskFibcsi1t3w63N7jvliTus70+ZUJgim0n3LqDVEkKQLh1Z8okBXrakuauZLRzH+HWXSljxKLmGKWpU6StnkjiXazEWJo2Ho+GdTLtnDlzuP/++1m1ahX33HMPW7duZcGCBbS0pO64t912G/n5+X0/1dXVH3ONU3D8YPvTx9MlGwBOtplbkoo9ULmW2TbtPgeI2f74PItB7ZOB9+kEwEpzEXQC6fd5qHIHastA5VpeGOi256HaYvsGH4ND1DcHSPNIcaByLcc8jkm7z4H62EBtOcT59g5Q7qeJlf4yaVkDfNezbNKdb8uyByw37XXhkPt00pd7iH0esi0DlGsdYVsYYB6FmWNxpG0Z6PjZA5Q7wPEDLAZoy0DtHPAYWQPWd+ByD3G+PyGGtSXnnHMOX/7yl5k6dSpLlizh//2//8fBgwd55JFHUr7/pptuoqmpqe+ntrY25fuO2ui/O/z31lxuflIJTjLzRXyFyTHLhjFfMfNGBltu+edg3NVmvkV/nlwY/3dmIutgy625zPykklMDE79pJsEmsUyZoy5Kve3oy9Lvs3gBjP+6e2JnL9tvYsULkmOHKnfURVBzBSkHikCZaUtOTeptawYod6DjVzDDHHtPbnLM8phzVr5k8OVWnQ9jr0x94fEVwIRrITh58OUequ9OSNN3P2U8uZUpX7e8uXiCNfHJ4v23y6vCyS5NGXNyKtOWa2cV48mrJmXftRw8+aOxfPmpy82txElTrie3AicnTVs8WTjBmrSJvze3CienPGXMk1uZtlzbX4g3OCp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntTJ/UDHfqDjZ/ny8eSPTpM4WHjyqrGzilNuO9AxcrJLe853CrYXb7AGy5vimtJTridNuelePx5lVMo1YsQIJk6cyObNm1PG/X4/wWDQ9TMkTrvn8N5Xthim3gplZ5g5JYkdOLsKTnsIPFkw/xH3IxXbD7N+biZ7nrrCTDhNVHO5GXzGXg3jrsF1wcqfYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt3hvvgGykwbPAFY8Cj4EyY72z6YeZdZ1TLzhzByjrvc6gth0vVmRdLEZe625E0wc20Cxaa+iXcGPDnmtUCxeU/exIRCLZNo1Fxiyq7+knufI+eYuhRMhZk/ct9R8BeZeRuegPlvYuJleWDa7T3H4PbkBKliqTl2VeeaydCJF9+cGlNfX76ZeJy4UsfJgrn3mXM2+xfmHCa2Zdw15lxPuLYnuUpQMM30kbzxps8k3gHxFfS0Jduc98SVWZYDJ91s+ubUW01fTXSkfTfdHaHyNEnqJ4CTVWTmlCS03XIC+ItnYNkO/pKZ7s+LZeMrmortzcU38iQsn/s65eRU4gnW4ORW4+S6ByjLm2e29WThKz7F3ccsD/6SGVi2F3/xdKx+d+88+WPxZJfizR+PnVXiitn+QryFk3ECBXgLJrnaguPHVzITu68tiXfgbLyFU7D9QXyFU1yrmQCc7DKz39wKk7QltsWTg6/4FCzHbyZ9JvYxy8FXPL0ndgpWv7t3nmCNGYTzx+JkuxMk2z/C1MUXxFs4BdcwZvvw97TFVzKzX+Jl4S2YZI5B4aSkBMnMexmPJ7sUT/44V8zyZJljbnvxl8xwf0m0bHzFp5hzVjQVy5vn2rb3PHuCNUnJiuUL4ht5ErY3B1/RVPf5tr34S2b29LEZWK4vcxaeERNM3yyYiB1wL0CxA+b1T4phnUzbX2trK6NGjeKWW27hW9/61iHfP6SrfgBeuBJ2/tr8f9YY+OJHsPdVaH4fgidC0Wz3+9t3Qv0as8SzfIn74hVuh91Pm2f+FWe7l+XGYtD4vJkYWjjLvSwXzFLXvRvMAFJ6RnyJMZilrrtXmeXM5ee4l+VGw1D/rFmmXLLQvSwXYP8bPcuTTzArbxJ11Jnlt96gKTdhmSGRTtOWcJu5uxNwXxRpfAlaN5s7DAVT3bGWLbDnJbP8tWyx+4PZ3WzKBag4xz3Yx6KmPh11UDzfvSwX4MDb8eXJJf0SjM5GqPujSX4qznHfvYl0mZVI3U2mPln9vjXuWR9fnlzY7y5V6zZz3gIlZul3wpJJulvN3JBo2JzvxME+FjPLmttroWiee0k5QNP78eXJJQvd5zu0z5xvJ2DakjhYRbuh7hmzPLnsDHfiAse27yauivuETqLtLxruINqxD8vxYmcVu27lx6IRIh2NEIvgZJW4luWapa77iIU7sP0jXMtywSx1jYYOYHmysAMj+5ayglnqGunYA5Zlyk3oY7FYlGjHXmKREHZgpGtZLkA01ES0qxnLm+taYgxmqWukYy/YHpzskgHaUuxalgsQ6dxPrLsN25+P3S8Ji3a3maXWTsC1XNqU202k3cyncLKLXfNlzNLmvcQindiBQteyXHOMmomGmrC82a4lxuYYhXqOkdNzjJyEcqNE2hshGsbJKnItKTdtOUCsZ3my7XffpYp2txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHiIQOEOtqxfLl4vjTzDXMIMfNqp9//Md/5Nxzz2X06NHs3r2bm2++mbfeeov333+f4uLUt9ASDXmiIiIiIsfccbPqZ+fOnVx66aXs27eP4uJi5s+fz4YNGw4rSREREZFPvmFNVB56KM2SSxEREREybDKtiIiISCIlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3BXINHtt9/OTTfdxLe//W3uuuuu4a4OPGi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qolwL54nHK4bDcyeLFYjEhHI9HO/VieAJ6cSizH1xePhpoJt9dhYeHkVGD74v06FgkRbt1FLBLCCRRhZxVh9Xy+Y7EIkbZ6ol3N2N4cnJxKLNvp2zbSuY9I+x4s24OTW4ntyYrvs7udSNtuYtEwTnYpTiB+vYlFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW+VuS1cLkbY6AJyccmxfXkJbunra0okTKMTOKkloS7SnLU3Ynmyc3EosOz50RToPEGlvMG3JqcD2xq9j0XAHkdZdPW0pxgnErzexaIRI226i3a3YvmBPW5x4Wzr3EunY29OWSqzezz4Q7Wo1x4gYnuxybH/8MxqLdBFu20Us3IntL8DJLnW3pb2BaOgglicbT24FVu/1EYiGDhJub8DCxsmtwPbmpOw3nzZWLBaLDXclADZu3MhFF11EMBjk9NNPP6xEpbm5mfz8fJqamggGg4d8/6D0T1JSyZsAZ66DrDL40xVmgO7lZMGCx8yAuuU+ePXrZtDqNfmfYPodZnBecyZ0NsRjI+fCGX8EywPr/gYa18Vj/pFw+h+hcAa8cyu8c3NChSw49Scw8TpoWAfPnwvh1ni46nyY/yh0HYTVi8yg1SunBhavg+xR8Mo18NF/x2O2D0572AxS2x6C9X8LsXA8PuE6mHU3tGyG5xZBx654rGA6nLkanBx44XyT/PTy5sOip6F4Hmy6E968wX18p/0nnHiDSTTWng3dTfFY+RL47EqItMPqM02S0iurEs5cC8EJ8Noy+ODuhEPkgXm/hppLYeeT8NJFEO2Kx8deDXPuhfYdpi1t2+Kx/CmmXF8BvPRl2PlEPObJgYV/gNJF8MFP4bVvAgkfrZNvgZNvhv1vwtqzTOLVq2ShOQ6xCKw5C/ZtiMcCJXDGGpO0vXUjvH9HQltsmP1LGPdV2P0MvPhFiHTE46Mvgc88YPrWcwuh5cN47Gj6bjqXZcSl5LgRi0YINbxKtDOhL9heAmVzsf35dB/4gO6DH7i28Y48CW+whkjHXkING13nxckuxVcyE6JhOuvWE+tu6YtZniz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPWyT2XU/eaHxFJxPtbiNUt55YpDNeri9IoGwu2B5CDRuJduxJKNaDv3QOTqCA7qYtdO/f5G5LwWS8I8YR6TxAqOEVk6T3bppVjL90FkQjdNZvINYV/+xbTgB/+Vxsby5d+94l3LwtoVQLX/E0PLmVhNvq6Wp8A4jGj1FuNb6iqcTCHYTq1xMLxz8vljePQPlcsL10Nb5OpD3hmmw5+Etn4WQV0d28je5977rbMmIi3oKJRENNdNZvMF+eetsSKMRfOgeIEarfQDR0MOEY+QiUz8P25dG1fxPhpi2ucn1FU/HkjeKTaDDjd0YkKq2trcyYMYOf/vSn/Nu//RvTpk0b3kTlcJKUXmOvgoqlZuDqL6sCzn4TVo4230b7W7LRDM6JiUivk28xg1//wRugcBbMux+empIcs71w3lZ47rPQ+lFyfO79sG8jfLgiOTbqyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4d7NJuBKTql6nrjCJxKblybGKpWa/qxclxzx5cN4WeGqyO2HotfAp2Ho/7PhdcmzCdTByFmy4KjmWOxYWvwArx7guVH2Wvgfrr4L9G5Nj05ebO1Tv3JIcK1lk4s/MSo45AThvO6yaDh0p7mrM/505Jx/dnxw7mr6bihKVQUk1eAPYvnx8xdPo3PV8iq0sAlVn9Ayy7UlRX9Ep5lt5y/akmJNTjie3yiQ4STv1EqhaRGftWveXkB7+snl0N20h2tGYFPPkj8XyZCcN3mAGf3/pLDp3rknRFkxbGja6kqpe3pEnEQu3E25Kvo7ZWSV488cRql+fXKjlIVB1Op271qX8HPpLZxFu3dl3d8fVlrzR2P4RdO39c4pis/GXzetpS3JfD1QupGvPW0QTkqq+thROhmgkKfEEsAMj8RZOJrT7pRRtscmqXuy6M/VJMZjxOyMe/Vx33XUsXbqUxYsX82//9m9p3xcKhQiFQn3/bm5u/jiqN7DaJ1IPSmAGjg/vSX+h3/7b1EkKmG/rnjS3/fZvhK2/SR2LdsPmX6ROUnrL3ZfiQgXmDkPiY6VEoX2mLamSFDCPkeqeTr/PnDGpY03vwZZ7k5MUMK9tvjd1ktJbblvyBRkwdckZmzoWbjFtSZWk9Ja7c2Wa2OOpEwIwx3zzL9L3h62/SZ2kgHl0lXg3JFHjOvPoJZVIp2lLujrVPp7+vBxN35WjFmmrT/l6tKuJcOvONFvFCLfuSJmkAETa64mGkgdKs78G12MG9067zZ2JFEkKQLitLmWS0lduwuMWV227Wwi37Ei9TyDcsiNlkmLKrSeW5jMR7Wgk7Em9T2Jhwi3b0vbtcHuD+25J4j7b64lFQiljsXB7T1tSJ+Th1p0pkxToaUuau5LRzn1EWtN8fmNRIh178ORWpo5/Sgx7ovLQQw/xxhtvsHFjmgt4gttuu43vfe97H0OtBsHxg+1PH0+XbAA42WZuSaoObA9UrmW2HajcdGx/fJ7FoPZ5iHKdAFheiKX4kDuB9Ps8VLnpLkaHKtfygieQOnaofToB87grmqYt9gDfbg55XixSXuicQPrHK5YD9gBtGbCPDVDfo+m7cvSsAdYyWE760AAxLCd9uZY94D4ta4DhoHfbVF8oLLtvnkraOqVjD9BO2yEWOdK2DHT8bMw6klRtGeD49dQpfXCgmI1FLE2KYx2iL2jNy7AegdraWr797W/zwAMPEAgMcCHucdNNN9HU1NT3U1tbe8htjszIQ7+lV83l5ieV4CQzX8RXmByzbBjzFTNvZLDlln8Oxl1t5lv058mFCX9nJrIOttyay8xPKjk1MPGbZhJsEsuUOeqi1NuOviz9PosXwPivuyd29rL9Jla8IDl2qHJHXQQ1V5i69RcoM23JqUm9bc0A5Q50/ApmmGPvyU2OWR5zzsqXDL7cqvNh3FWpL1i+Aph4LQQnD77cI+27ckyk+5ZsZxXjyasmZd+1HDzB0Vi+/JTbOrmVOGnK9eRW4OSkjlmeLJxgTdrE35tbhZNTnjLmya1MW67tL8QbHJW671o23rxR2P7UfczJqUh7jJyccrx5VSljOH6c4BishAnC7m0r05c7wPGzfPl4gqPTJCQWnrxq7KzilNsOdIyc7NKe852C7cXJKkkd+xQZ1kTl9ddfp7GxkRkzZuDxePB4PDz//PP8+Mc/xuPxEIm4v2H6/X6CwaDrZ0hctvfw3le2GKbeCmVnmDkliR04uwpOewg8WTD/EfcjFdsPs35uJnueusJMOE1UczlMuNZM7Bx3Da4LVv4UM4Eyu8rMN3ESPozeoNmnL99Mokx83GLZZs5G1bkw5Z+h4vPufRYvgGl3mBU80+6Ir9QBM7DPf8TcoVjwKPiLEtrig5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVSY+SP3HQV/kZm34QmY/yYmXpYHpt3ecwxuT06QKpaaY1d1rpkMnXjxzakx9fXlm4nHiSt1nCyYe585Z7N/Yc5hYlvGXWPO9YRre5KrBAXTTB/JG2/6TOIdEF9BT1uyzXlPXJllOXDSzaZvTr3V9NVER9p300o9KEh6Tm41Tq57gLK8efiKpmJ7svAVn+LuY5YHf8kMLNuLv3g6Vr+7jZ78sXiyS/Hmj8fuN7jZ/kK8hZNxAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPcbcguM/vNrcATrHG3xZODr/gULMePr3i6u49ZDr7i6T2xU7D6rW7xBGvw5FbiyR+Lk+1OkGz/CFMXXxBv4RRcw5jtw9/TFl/JzH6Jl4W3YJI5BoWTkhIkM+9lPJ7sUjz541wxy5NljrntxV8yw/0l0bLxFZ9izlnRVCxvnmvb3vPsCdYkJSuWL4hv5EnY3hx8RVPd59v24i+ZOfBdnE+JYZ1M29LSwvbt7jkGV199NZMmTeK73/0uJ5100oDbD+mqH4AHg0DC89PLYrD3VWh+H4InQtFs9/vbd0L9GrPEs3yJe7APt8Pup80z/4qz3ctyYzFofN5MDC2c5V6WC2ap694NZgApPSO+xBjMUtfdq8xy5vJz3Mtyo2Gof9YsUy5Z6F6WC7D/jZ7lySeYlTeJOurM8ltv0JSbOJkr0mnaEm4zd3cC/TL+xpegdbO5w1Aw1R1r2QJ7XjLLX8sWuz+Y3c2mXICKc9yDfSxq6tNRB8Xz3ctyAQ68HV+eXNIvwehshLo/muSn4hz33ZtIl1mJ1N1k6pPV71vjnvXx5cmF/e5StW4z5y1QYpZ+JyyZpLvVzA2Jhs35ThzsYzGzrLm9FormuZeUAzS9H1+eXLLQfb5D+8z5dgKmLYmDVbQb6p4xy5PLznAnLnBs+27ihHNNoj0q0a5WoqEDWJ4s7MDIvqWsYJa6Rjr2gGXhZJW4luXGYlGiHXuJRULYgZGuZbkA0VAT0a5mLG+ua4kxQCzcSaRjL9genOwS16ObWDRCpKMRYhGcrGLXslyASOd+Yt1t2P58bJ/7uhvtbjNLrZ2Aa7m0KbebSLtZFeRkF7vmy5ilzXuJRTqxA4VJy3KjXc1EQ01Y3mzXEmNzjEI9x8jpOUZOQrlRIu2NEA3jZBVh9XscHOk8QKxnebLtd9+lina3E+3ch+X4e9qSeIzCPcco1nOM4tdHs7R5H7FwB7a/wLWk3LSlpWd5crrz3ZiyLZ80x92qn0SLFi0a/lU/IiIiMmQGM35rlo6IiIhkrGFf9dPfunXrhrsKIiIikiGO6I7KwYMH+a//+i9uuukm9u/fD8Abb7zBrl27DrGliIiIyOEb9B2Vt99+m8WLF5Ofn8+2bdv4+te/TmFhIY899hg7duzg17/+9VDUU0RERD6FBn1H5frrr+eqq67iww8/dP3uk7/5m7/hhRdeOKaVExERkU+3QScqGzdu5P/+3/+b9HplZSX19al/JbSIiIjIkRh0ouL3+1P+jZ0PPviA4uLUv5VPRERE5EgMOlE577zzuPXWW+nuNn/wybIsduzYwXe/+10uvPDCY15BERER+fQadKLy/e9/n9bWVkpKSujo6GDhwoWMHz+evLw8/v3f/30o6igiIiKfUoNe9ZOfn8+zzz7LSy+9xNtvv01rayszZsxg8eLFh95YREREZBAGnajs2LGD0tJS5s+fz/z58/tej8Vi1NbWMmrUqGNaQREREfn0GvSjn5qaGmbMmMGWLVtcrzc2NjJmzJg0W4mIiIgM3hH9ZtrJkycze/ZsVq9e7Xo9w/6+oYiIiBznBp2oWJbFT3/6U/6//+//Y+nSpfz4xz92xURERESOlUHPUem9a/IP//APTJo0iUsvvZR33nmHf/mXfznmlRMREZFPt6P668nnnHMOf/rTnzjvvPN49dVXj1WdRERERIAjSFQWLlyIz+fr+/eJJ57IK6+8wgUXXKA5KiIiIocpEon0/fLUTyKfz4dtH9FUWBcrdhxnF83NzeTn59PU1EQwGBzu6oiIiBxSLBajvr6egwcPDndVhpRt24wZM8Z1c6PXYMbvw7qj0tzc3FdQqr/zk0gJg4iISHq9SUpJSQnZ2dmfyIUo0WiU3bt3U1dXx6hRo46qjYeVqBQUFFBXV0dJSQkjRoxIucNYLIZlWUQikSOujIiIyCdZJBLpS1JGjhw53NUZUsXFxezevZtwOIzX6z3icg4rUVmzZg2FhYUArF279oh3JiIi8mnWOyclOzt7mGsy9Hof+UQikaFPVBYuXJjy/0VERGTwPomPe/o7Vm087Om4e/fuZfv27a7X3nvvPa6++mouuugiHnzwwWNSIREREZFeh52oLFu2zPVbaBsbG1mwYAEbN24kFApx1VVX8Zvf/GZIKikiIiKfToedqGzYsIHzzjuv79+//vWvKSws5K233uLJJ5/kP/7jP1ixYsWQVFJERESOzi233MK0adOGuxqDdtiJSn19PTU1NX3/XrNmDRdccAEej5nmct555/Hhhx8e8wqKiIiIGYeXLVvG2LFj8fv9VFdXc+655yb9geBPmsNOVILBoOuX07z66qvMmTOn79+WZREKhY5p5URERAS2bdvGzJkzWbNmDcuXL+edd95h1apVnH766Vx33XUfWz2G4zfpHnaiMnfuXH784x8TjUZ59NFHaWlp4YwzzuiLf/DBB1RXVw9JJUVERD7Nrr32WizL4tVXX+XCCy9k4sSJTJkyheuvv54NGzYAsGPHDs4//3xyc3MJBoNcdNFFNDQ0pC0zGo1y6623UlVVhd/vZ9q0aaxataovvm3bNizL4uGHH2bhwoUEAgEeeOCBIW9rf4edqPzrv/4rK1euJCsri4svvph/+qd/oqCgoC/+0EMPaemyiIjIMbZ//35WrVrFddddR05OTlJ8xIgRRKNRzj//fPbv38/zzz/Ps88+y0cffcTFF1+cttwf/ehHfP/73+fOO+/k7bffZsmSJSmncdx44418+9vfZtOmTSxZsuSYt+9QDvuPEk6dOpVNmzbx8ssvU1ZW5nrsA3DJJZdw4oknHvMKioiIfJpt3ryZWCzGpEmT0r5n9erVvPPOO2zdurXv6cavf/1rpkyZwsaNG5k1a1bSNnfeeSff/e53ueSSSwC44447WLt2LXfddZdrcczf//3fc8EFFxzjVh2+Qf315KKiIs4///yUsaVLlx6TComIiEjc4fzt4E2bNlFdXe2agnHiiScyYsQINm3alJSoNDc3s3v3bk477TTX66eddhp//vOfXa+deuqpR1H7o3f0f39ZREREhsyECROwLIu//OUvw7L/VI+bPk5KVERERDJYYWEhS5YsYcWKFbS1tSXFDx48yOTJk6mtraW2trbv9ffff5+DBw+mnJYRDAapqKjg5Zdfdr3+8ssvZ9w0jkE9+hEREZGP34oVKzjttNOYPXs2t956K1OnTiUcDvPss89yzz338P7773PyySdz+eWXc9dddxEOh7n22mtZuHBh2kc3N9xwAzfffDPjxo1j2rRp3Hfffbz11lvDsrJnIEpUREREMtzYsWN54403+Pd//3e+853vUFdXR3FxMTNnzuSee+7BsiyefPJJli1bxmc/+1ls2+bss8/mJz/5Sdoyv/Wtb9HU1MR3vvMdGhsbOfHEE1m5ciUTJkz4GFt2aFbscGbppNDY2EhjYyPRaNT1+tSpU49JxQ5Hc3Mz+fn5NDU1EQwGP7b9ioiIHInOzk62bt3KmDFjCAQCw12dITVQWwczfg/6jsrrr7/OlVdeyaZNm/pmIluWRSwWw7IsIpHIYIsUERERSWnQicpXv/pVJk6cyL333ktpaSmWZQ1FvUREREQGn6h89NFH/O///i/jx48fivqIiIiI9Bn08uQzzzwz6ZfBiIiIiAyFQd9R+a//+i+uvPJK3n33XU466SS8Xq8rft555x2zyomIiMin26ATlfXr1/Pyyy/z9NNPJ8U0mVZERESOpUE/+lm2bBlXXHEFdXV1RKNR14+SFBERETmWBp2o7Nu3j3/4h3+gtLR0KOojIiIi0mfQicoFF1zA2rVrh6IuIiIiIi6DnqMyceJEbrrpJl566SVOPvnkpMm03/rWt45Z5UREROTT7YhW/eTm5vL888/z/PPPu2KWZSlRERER+ThEI7DnReiog6xyKF4AtjPku12xYgXLly+nvr6eU045hZ/85CfMnj17yPY36ERl69atx2zn99xzD/fccw/btm0DYMqUKfzLv/wL55xzzjHbx1F5sN9v3b24A7Y/Ak3vQf4UGH0ROAl/v6BhLdQ9C/5CqLncdJxeLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQW9v0k4EoLa/4WDb0PeRBh9CXiy49s2vgh1q8AbNG3JrorHWrfB9t9CuA0qPw9FcxPa0mpirVugYAZUfxFsb7wtu1eZD1agDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHzAeyeAFUnA1Wz5PLaDfUPg4H3oDccTD6UvDmxrfduwF2/QE8OSaWWxOPte805XY3Q/nZULIgHgu3w/aHoeWvMGIqVF8Ijr+nLTGofw4a1oC/2LQlUBLftvmvZttYBKovgIJT4rGuA7D1AejYCUWfMcewry1h2LUS9r0KOTVQc5k5B732vw61T5h6jL4U8sbFYx11pi2h/VB+ljnnvSKdx67vrur/l1i9cFkXcvyIdO4j0r4Hy/bg5FZie7L6YtHudiJtu4lFwzjZpTiB+PUmFg0Tad1FNNyO7cvHySnD6um7sViMaEcjkc79WI4fT24VluOLl9vVQqStDgAnpxzblxcvN9JFuHUXsUgnTqAQO6uk77eex2JRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3mDaklOB7Y1fx6LhDiKtu3raUowTiF9vYtEIkbbdRLtbsX3BnrY48bZ07iXSsbenLZVYvZ/9TFH7GLz+bXMN65VdBTN/ZK45Q+Thhx/m+uuv52c/+xlz5szhrrvuYsmSJfz1r3+lpKTk0AUcgSP+o4RdXV1s3bqVcePG4fEc2R9h/v3vf4/jOEyYMIFYLMavfvUrli9fzptvvsmUKVMOuf2Q/lHC/klKKnkT4Mx1kFUGf7rCDNC9nCxY8JgZULfcB69+3QxavSb/E0y/wwzOa86EzoZ4bORcOOOPYHlg3d9A47p4zD8STv8jFM6Ad26Fd25OqJAFp/4EJl4HDevg+XMh3BoPV50P8x+FroOwepEZtHrl1MDidZA9Cl65Bj7673jM9sFpD5tBattDsP5vIRaOxydcB7PuhpbN8Nwi6NgVjxVMhzNXg5MDL5xvkp9e3nxY9DQUz4NNd8KbN7iP77T/hBNvMInG2rOhuykeK18Cn10JkXZYfaZJUnplVcKZayE4AV5bBh/cnXCIPDDv11BzKex8El66CKIJg+zYq2HOvdC+w7SlbVs8lj/FlOsrgJe+DDufiMc8ObDwD1C6CD74Kbz2TSDho3XyLXDyzbD/TVh7lkm8epUsNMchFoE1Z8G+DfFYoATOWGOStrduhPfvSGiLDbN/CeO+CrufgRe/CJGOeHz0JfCZB0zfem4htHwYjx1N303nsiO6lMjHKBaL0bX3bSKttQmv2vhKZuDJKSPcuouuPW+R2Hc9eaPxFZ1MtLuNUN16YpHOvpjlCxIomwu2h1DDRqIdexKK9eAvnYMTKKC7aQvd+ze56uItmIx3xDginQcINbxikvTeTbOK8ZfOgmiEzvoNxLrin33LCeAvn4vtzaVr37uEm7cllGrhK56GJ7eScFs9XY1vAPE/nOvkVuMrmkos3EGofj2xcPzzYnnzCJTPBdtLV+PrRNoTrsmWg790Fk5W0WEe6fSOyR8lrH0MXvwSrmsMAD3j1oJHhyxZmTNnDrNmzeLuu811NRqNUl1dzbJly7jxxhtd7z1Wf5Rw0IlKe3s7y5Yt41e/+hUAH3zwAWPHjmXZsmVUVlYmVXSwCgsLWb58OV/72tcO+d4hS1QOJ0npNfYqqFhqBq7+sirg7Ddh5WjzbbS/JRvN4JyYiPQ6+RYz+PUfvAEKZ8G8++GpFMmc7YXztsJzn4XWj5Ljc++HfRvhwxXJsVFfhjFXwfNLk2P+kbB0E6wcB+GW5PiZ62DTctj9VHJs8g0mEXrtuuRY/hRY+Hv4/XhzxyWRZcO5m03ClZhU9Tp1hUkkNi1PjlUsNftdvSg55smD87bAU5PdCUOvhU/B1vthx++SYxOug5GzYMNVybHcsbD4BVg5xtzl6W/pe7D+Kti/MTk2fbm5Q/XOLcmxkkUm/sys5JgTgPO2w6rp0LE7OT7/d+acfHR/cuxo+m4qSlQyXqS9gVBDiv5newlULaKzdq37S0gPf9k8upu2EO1oTIp58sdiebLp3vduUszy5uEvnUXnzjUp6xOoOoNQw0Zi3cnXFO/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoOp3OXetSfg79pbMIt+7su7vjakveaGz/CLr2Jv/2dcuTTaDq9KP++3ZHnahEI7Cyxn0nxcUyd1bO23rMHwN1dXWRnZ3No48+yhe+8IW+16+88koOHjzIk08+6Xr/sP315Jtuuok///nPrFu3jrPPPrvv9cWLF3PLLbcccaISiUT43e9+R1tbG/PmzUv5nlAoRCgU6vt3c3PzEe3rmKp9IvWgBGbg+PCe9Bf67Q+lTlLAfFv35KSO7d8IW3+TOhbths2/SJ2k9Ja7L8WFCswdhsTHSolC+0xbUiUpYB4j1SX/EsC+feaMSR1reg+23JucpIB5bfO9qZOU3nLbtqeO1T1tHgOlEm4xbUmVpPSWu3NlmtjjqRMCMMd88y/S94etv06dpIB5dJV4NyRR4zrTV1KJdJq2pKtT7ePpz8vR9F05LrnuEiSKdps7EymSFIBwe13KJAUg0taAlfC4JVGsu4Vwy4609Qm37EiZpJhy64ml+UxEOxoJe1Lvk1iYcMu2tH073N6Q9jhE2uuJRUIpY7FwO7GuFiz/Mb57P1h7XhwgSQGIQXuteV/pomO667179xKJRJJ+PUlpaSl/+ctfjum+Eg06UXniiSd4+OGHmTt3riuznDJlClu2bBl0Bd555x3mzZtHZ2cnubm5PP7445x44okp33vbbbfxve99b9D7GFKOH+wBnl160yQbYG6xW07q2+r2QOVa4KT5kMLAMdsfn2cxqH0eolwnAJYXYik+5E4g/T4PVW66i9GhyrW8R75PJ2Aed0XTtMX2Jb/ea8D65mBuzaa48+AE0j9esRzTV9Luc6A+NkB9D9V3BypXjk9W+t9IYVnphwML22yb6guFZffNU0m98QDf6geIWbZDLJKmXMs+RFsGKNeyMb+ZI1VbnAHLHTD2celIvhN0VO87Dgz6qO/ZsyflhJm2trYjuiV2wgkn8NZbb/HKK6/wjW98gyuvvJL3338/5Xtvuukmmpqa+n5qa2tTvu9jVXO5+UklOMk8KvAVJscsG8Z8xcwbGWy55Z+DcVeb+Rb9eXJhwt+ZiayDLbfmMvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7r7omdvWy/iRUvSI4dqtxRF0HNFfQ9s00UKDNtyalJvW3NAOUOdPwKZsD4vzPnoD/LY85Z+ZLBl1t1Poy9MvVF0lcAE6+F4OTBl3uovjsxTd+V45aTU5nydcuThROsSZvce3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV4clOX6+SU482rShnD8eMEx2B5Uif3Tk5l+nJzK3HSxCxfPrYvxWf745aV+jwc8fsGoaioCMdxaGhw35FqaGigrCzV2HBsDDpROfXUU3nqqfg8hN7k5L/+67/SPrIZiM/nY/z48cycOZPbbruNU045hR/96Ecp3+v3+wkGg66fIXG4z9rLFsPUW6HsDDOnJDGLz66C0x4CTxbMf8T9SMX2w6yfm8mep64wE04T1VwOE641EzvHXYNrsM2fYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt0RX6kDZmCf/wh4AmaSlj9hQpntg5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVQzAz7xjoK/yMzb8ATMfxMTL8sD027vOQa3JydIFUvNsas610yGTrz45tSY+vryzcTjxJU6ThbMvc+cs9m/MOcwsS3jrjHnesK1PclVgoJppo/kjTd9JvEOiK+gpy3Z5rwnrsyyHDjpZtM3p95q+mqiI+27clxzAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPc5WWX4ckfiye3Ak+wxhWzPDn4ik/Bcvz4iqe7+5jl4Cue3hM7BavfnWdPsAZPbiWe/LE42e4B1/aPMHXxBfEWTsE1jNk+/D1t8ZXM7Jd4WXgLJpljUDgpKUEy817G48kuxZPvfmxsebLwF/e7Tg+X4gU9n/V0NwYsyK5O/wXvKPh8PmbOnMnq1av7XotGo6xevfqIxv/DNejJtC+99BLnnHMOV1xxBffffz//9//+X95//33+9Kc/8fzzzzNz5sxDFzKAM844g1GjRnH//fcf8r1DuuoHkifVXhaDva9C8/sQPBGK+q0bb98J9WvMEs/yJe7BPtwOu582z/wrznYvy43FoPF5MzG0cJZ7WS6Ypa57N5jOWXpGfIkxmKWuu1eZ5czl57iX5UbDUP+sWaZcstC9LBdg/xs9y5NPMCtvEnXUmeW33qApN2GZIZFO05Zwm7m7E+h3h63xJWjdbO4wFEx1x1q2wJ6XTLZfttg92Hc3m3IBKs5xD/axqKlPRx0Uz3cvywU48HZ8eXJJvw9oZyPU/dEkPxXnuO/eRLrMSqTuJlOf/t9C9qyPL08u7HeXqnWbOW+BErP0O2HJJN2tZm5INGzOd+JgH4uZZc3ttVA0z72kHKDp/fjy5JKF7vMd2mfOtxMwbUl81BTthrpnzPLksjPciQsc276b+NnQJNrjTizcSaRjL9genOwS16ObWDRCpKMRYhGcrOKkZbmRzv3Eutuw/fnYPvd1N9rdRrRzP5YTwM4qct1lj0W7ibSbVUFOdjFWQh8zS5v3Eot0YgcKsfslLtGuZqKhJixvtmuJMUAsEiLSsQcsByerBCthAmksFiXS3gjRME5WEZbHfec20nmAWM/yZNuf368t7UQ792E5/p62HJvHPsd21Q+4HyUP/aqfhx9+mCuvvJKf//znzJ49m7vuuotHHnmEv/zlL0lzV4Zt1Q/Ali1buP322/nzn/9Ma2srM2bM4Lvf/S4nn3zyoMq56aabOOeccxg1ahQtLS08+OCD3HHHHTzzzDOcddZZh9x+yBMVERGRY+iYJCqQ5veoVJs73EP4e1QA7r777r5f+DZt2jR+/OMfM2fOnKT3DWuicqx87WtfY/Xq1dTV1ZGfn8/UqVP57ne/e1hJCihRERGR48sxS1Rg2H4z7eEatuXJjuNQV1eXNKF23759lJSUEIkcxi+G6nHvvfcOdvciIiICJik5xkuQM9GgH7qluwETCoXw+QZYtikiIiIySId9R+XHP/4xYFb59P5hwl6RSIQXXniBSZMmHfsaioiIyKfWYScqP/zhDwFzR+VnP/sZjhN/Dubz+aipqeFnP/vZsa+hiIiIfGoddqLS+1eTTz/9dB577DEKCvS7FURERGRoDXoy7dq1a4eiHiIiIiJJDjtRuf766w/rfT/4wQ+OuDIiIiIiiQ47UXnzzTcP+Z6j/fPXIiIiIokOO1HRIx8RERH5uA3Z36wOBoN89NFHQ1W8iIiIfAoMWaIyjL+ZX0RE5BMvFosR6dhLuHUXkY69Qz7uvvDCC5x77rlUVFRgWRZPPPHEkO6v16BX/YiIiMjwCrfV0b3vPWKRzr7XLCeAd+QUPDnlA2x55Nra2jjllFP46le/ygUXDO0fPkykREVEROQ4Em6ro6vx9aTXY5FO83rJzCFJVs455xzOOeecY17uoQzZox8RERE5tmKxGN373hvwPd373vtETb9QoiIiInKciHbucz3uSSUW6STaue9jqtHQU6IiIiJynIhFQsf0fceDIUtUOjo66OjoGKriRUREPnUsx39M33c8GLJEJSsri6ysrKEqXkRE5FPHDozEcgIDvsdyAtiBkR9TjYaeVv2IiIgcJyzLwjtySspVP728I6cMyZ+0aW1tZfPmzX3/3rp1K2+99RaFhYWMGjXqmO+vlxIVERGR44gnpxxKZn7sv0fltdde4/TTT+/7d+8fK77yyiu5//77h2SfoERFRETkuOPJKcfJLutZBRTCcvzmsdAQ/nHgRYsWDcuy5yFLVPSXlEVERIaOZVk4WUXDXY0hp7/1IyIiIhlryBKVp59+msrKyqEqXkRERD4FDuvRT++EmcPxgx/8AID58+cfWY1EREREehxWovLmm2+6/v3GG28QDoc54YQTAPjggw9wHIeZM2ce+xqKiIh8wkSj0eGuwpA7VlNADitRWbt2bd///+AHPyAvL49f/epXFBQUAHDgwAGuvvpqFixYcEwqJSIi8knk8/mwbZvdu3dTXFyMz+f7RC4+icVi7Nmzx/zeF6/3qMqyYoNMeSorK/njH//IlClTXK+/++67fO5zn2P37t1HVaHBaG5uJj8/n6amJoLB4Me2XxERkSPV1dVFXV0d7e3tw12VIWVZFlVVVeTm5ibFBjN+D3p5cnNzM3v27El6fc+ePbS0tAy2OBERkU8Vn8/HqFGjCIfDRCKR4a7OkPF6vTiOc9TlDDpR+eIXv8jVV1/N97//fWbPng3AK6+8wg033MAFF1xw1BUSERH5pOt9JHK0j0U+DQadqPzsZz/jH//xH7nsssvo7u42hXg8fO1rX2P58uXHvIIiIiLy6TWoOSqRSISXX36Zk08+GZ/Px5YtWwAYN24cOTk5Q1bJdDRHRURE5PgzZHNUHMfhc5/7HJs2bWLMmDFMnTr1qCoqIiIiMpBB/2bak046iY8++mgo6iIiIiLiMuhE5d/+7d/4x3/8R/7whz9QV1dHc3Oz60dERETkWBn071Gx7Xhuk/hLamKxGJZlfaxLrTRHRURE5PgzpL9HJfG31IqIiIgMpUEnKgsXLhyKeoiIiIgkGXSiAnDw4EHuvfdeNm3aBMCUKVP46le/Sn5+/jGtnIiIiHy6DXoy7Wuvvca4ceP44Q9/yP79+9m/fz8/+MEPGDduHG+88cZQ1FFEREQ+pQY9mXbBggWMHz+eX/7yl3g85oZMOBzmmmuu4aOPPuKFF14Ykoqmosm0IiIix5/BjN+DTlSysrJ48803mTRpkuv1999/n1NPPfVj/WuQSlRERESOP4MZvwf96CcYDLJjx46k12tra8nLyxtscSIiIiJpDTpRufjii/na177Gww8/TG1tLbW1tTz00ENcc801XHrppUNRRxEREfmUGvSqnzvvvBPLsvjKV75COBwGwOv18o1vfIPbb7/9mFdQREREPr0GPUelV3t7u+uvJ2dnZx/Tih0OzVERERE5/gzpb6btlZ2dzcknn3ykmwNw22238dhjj/GXv/yFrKwsPvOZz3DHHXdwwgknHFW5x8yDlvvfF3fA9keg6T3InwKjLwInEI83rIW6Z8FfCDWXQ1Z5PNayBbY/BJFOqP4CFM6Mx7qbYduD0LYNRs6GyvPA7jk1sSjsegr2vgxZVTDmcvAVxLc98GeofQwsB0ZfDMGEY9fZCFv/B0J7oPR0KDsLev/sQSQEtf8LB9+GvIkw+hLwJCSbjS9C3SrwBk1bsqvisdZtsP23EG6Dys9D0dyEtrSaWOsWKJgB1V8E2xtvy+5VsOdFCJTBmCvAPzK+7cH3oPZR8//VX4IRU+Kx0D7Y9gB01EHxAqg4G6yeJ5fRbqh9HA68AbnjYPSl4M2Nb7t3A+z6A3hyTCy3Jh5r32nK7W6G8rOhZEE8Fm6H7Q9Dy19hxFSovhAcf09bYlD/HDSsAX+xaUugJL5t81/NtrEIVF8ABafEY10HYOsD0LETij5jjmFfW8KwayXsexVyaqDmMnMOeu1/HWqfMPUYfSnkjYvHOupMW0L7ofwsc857RTqPXd9941ZoXBmPV1wKix5EMkcsFiHSVk+0qxnbm4OTU4llO33xSOc+Iu17sGwPTm4ltierLxbtbifStptYNIyTXYoTiF9vYtEwkdZdRMPt2L58nJwyrJ6+G4vFiHY0Euncj+X48eRWYTm+eLldLUTa6gBwcsqxffE5jbFIF+HWXcQinTiBQuyskr4/0RKLRXva0oTtycbJrcSy40NXpPMAkfYG05acCmxv/DoWDXcQad3V05ZinED8ehOLRoi07Sba3YrtC/a0xYm3pXMvkY69PW2pxOr97MvH7ojvqBwLZ599NpdccgmzZs0iHA7zz//8z7z77ru8//775OTkHHL7Ib2j0j9JSSVvApy5DrLK4E9XmAG6l5MFCx4zA+qW++DVr5tBq9fkf4Lpd5jBec2Z0NkQj42cC2f8ESwPrPsbaFwXj/lHwul/hMIZ8M6t8M7NCRWy4NSfwMTroGEdPH8uhFvj4arzYf6j0HUQVi8yg1avnBpYvA6yR8Er18BH/x2P2T447WEzSG17CNb/LcTC8fiE62DW3dCyGZ5bBB274rGC6XDmanBy4IXzTfLTy5sPi56G4nmw6U548wb38Z32n3DiDSbRWHs2dDfFY+VL4LMrIdIOq880SUqvrEo4cy0EJ8Bry+CDuxMOkQfm/RpqLoWdT8JLF0G0Kx4fezXMuRfad5i2tG2Lx/KnmHJ9BfDSl2HnE/GYJwcW/gFKF8EHP4XXvgkkfLROvgVOvhn2vwlrzzKJV6+SheY4xCKw5izYtyEeC5TAGWtM0vbWjfD+HQltsWH2L2HcV2H3M/DiFyHSEY+PvgQ+84DpW88thJYP47Gj6bsp+eGyzkO8Rz4OsUgXnXXriXW39L1mebLwl83D8mTRtfdtIq21CVvY+Epm4MkpI9y6i649b5HYdz15o/EVnUy0u41Q3Xpikfh5tnxBAmVzwfYQathItGNPQrEe/KVzcAIFdDdtoXv/Jlc9vQWT8Y4YR6TzAKGGV0yS3rtpVjH+0lkQjdBZv4FYV/yzbzkB/OVzsb25dO17l3DztoRSLXzF0/DkVhJuq6er8Q0g2hd1cqvxFU0lFu4gVL+eWDj+ebG8eQTK54LtpavxdSLtCddky8FfOgsnq+hQh18O05AuTx5Ke/bsoaSkhOeff57Pfvazh3z/kCUqv6uA7rrDe+/Yq6BiqRm4+suqgLPfhJWjzbfR/pZsNINzYiLS6+RbzODXf/AGKJwF8+6Hp6Ykx2wvnLcVnvsstH6UHJ97P+zbCB+uSI6N+jKMuQqeX5oc84+EpZtg5TgItyTHz1wHm5bD7qeSY5NvMInQa9clx/KnwMLfw+/HmzsuiSwbzt1sEq7EpKrXqStMIrFpeXKsYqnZ7+pFyTFPHpy3BZ6a7E4Yei18CrbeDzt+lxybcB2MnAUbrkqO5Y6FxS/AyjHmLk9/S9+D9VfB/o3JsenLzR2qd25JjpUsMvFnZiXHnACctx1WTYeO3cnx+b8z5+Sj+5NjR9N3U7ksYy4ln2pde98h3LI96XUnpxxPbhWhhhT9z/YSqFxE58617i8hPfxl8+hu2kK0ozEp5skfi+XJpnvfu0kxy5uHv3QWnTvXpKxroOoMQg0bXUlVL+/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoPp3OnetSfg79pbMIt+7su7vjakveaGz/CLr2/jlFsdkEqk53/TFeOXIfy6OfodDUZLLmwsLClPFQKEQoFOr7d3Nz89BU5HCTFDC34VMNSmAGjg/vSX+h3/5Q6iQFzLd1T5q7Svs3wtbfpI5Fu2HzL1InKb3l7ktxoQJzhyHxsVKi0D7TllRJCpjHSHVPp99nzpjUsab3YMt/JycpYF7bcm/qJKW33LbkCzJg6pIzNnUs3GLakipJ6S1358o0scdTJwRgjvnmX6TvD1t/kzpJAfPoKvFuSKLGdaavpBLpNG1JV6fax9Ofl6Ppu5KxXHcCEl9va8DqfQzbX7TbJDcpkhSAcHtdyiSlr1xv6jmKse4Wwi3Jv86ir9yWHSmTFFNuPbE0n4loRyPhNPskFibcvD1t3w63N6Q/Ru31xCKhlLFYuJ1YVwuWX/MhP26DXp48VKLRKH//93/PaaedxkknnZTyPbfddhv5+fl9P9XV1R9zLVNw/GAP8OwyXbIB5ha75aSO2QOVa4EzwORlzwAx2x+fZzGofTLwPp0AWGkugk4g/T7BHIcj3We6ci0veAKpY4dTru0bfOyQ5WYDab6NDVSu5YA9QFsG7GMDteUo+q5kLivNZd2y08egb65JyhgDbGvZA26b9hp3iJiZUzPAPgcYvqyByrXsAcp1BjxGA8ZkyGTMUb/uuut49913eeihNN8cgZtuuommpqa+n9ra2rTvPSrFKR59pFNzuflJJTjJzBfxpbhDZNkw5itm3shgyy3/HIy72sy36M+TC+P/zkxkHWy5NZeZn1RyamDiN80k2CSWKXPURam3HX1Z+n0WL4DxX3dP7Oxl+02seEFy7FDljroIaq4gZWIQKDNtyalJvW3NAOUOdPwKZsCEvzPnoD/LY85Z+ZLBl1t1Poy7KvVF0lcAE6+F4OTBl3ukfVcympNbmfJ1T24FTk7qmOXJwgmOSZv4e3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV40rTFySnHk1eVMobjxwnWYHlSfwFycirTl5tbmfb4Wb58bF+Kz7YMuYxIVL75zW/yhz/8gbVr11JVlabzAX6/n2Aw6PoZEmf94fDeV7YYpt4KZWeYOSWJWXx2FZz2EHiyYP4j7kcqth9m/dxM9jx1hZlwmqjmcphwrZnYOe4aXINt/hQzgTK7ysw3Sbwb4Q2affryzSTKxMctlm3mbFSdC1P+GSo+795n8QKYdodZwTPtjvhKHTAD+/xHzB2KBY+CP2FCme2DmXeZVS0zfwgj57jLrb4QJl1vViRNXOZuS94EM9cmUGzqm/gN3pNjXgsUm/fkTUwo1DKJRs0lpuzqL7n3OXKOqUvBVJj5I/cdBX+RmbfhCZj/JiZelgem3d5zDG5PTpAqlppjV3WumQydePHNqTH19eWbiceJK3WcLJh7nzlns39hzmFiW8ZdY871hGt7kqsEBdNMH8kbb/pM4h0QX0FPW7LNeU9cmWU5cNLNpm9OvdX01URH2nfTKZh/6PfIx8KbPx47q8T1mu0vxFs4GSdQgLdgEq7PoePHVzIT23bwl8zsdwfOxls4BdsfxFc4Bds/wlWuk12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wULK/77p0nWIMntxJP/licbHeCZPtHmLr4gngLp+Aaxmwf/p62+Epm9ku8LLwFk8wxKJyUlCCZeS/j8WSX4skf54pZniz8xf2u0/KxGdbJtLFYjGXLlvH444+zbt06JkyYMKjth/z3qKw6A/avNf9vBeHSJtj7KjS/D8EToWi2+/3tO6F+jVniWb7EPdiH22H30+aZf8XZ7mW5sRg0Pm8mhhbOci/LBbPUde8GM4CUnhFfYgxmqevuVWY5c/k57mW50TDUP2uWKZcsdC/LBdj/Rs/y5BPMyptEHXVm+a03aMpNWGZIpNO0Jdxm7u4E3BdFGl+C1s3mDkPBVHesZQvsecksfy1b7B7su5tNuQAV57gH+1jU1KejDornu5flAhx4O748uaRfgtHZCHV/NMlPxTnuuzeRLrMSqbvJ1Cer37fGPevjy5ML+92lat1mzlugxCz9TlgySXermRsSDZvznTjYx2JmWXN7LRTNcy8pB2h6P748uWSh+3yH9pnz7QRMWxIf80W7oe4Zszy57Ax34gLHtu8mrorTJNqMFA01Ee1qxvLmupYYA8TCnUQ69oLtwckucT26iUUjRDoaIRbBySpOWpYb6dxPrLsN25+P7XNfd6PdbUQ792M5AeysItfE01i0m0i7WRXkZBe75suYpc17iUU6sQOF2P0Sl2hXM9FQE5Y327XEGCAWCRHp2AOWg5NV4lqGHYtFibQ3QjSMk1WE1e9xcKTzALGe5cm2P79fW9qJdu7Dcvw9bcmI7/WfGMfNqp9rr72WBx98kCeffNL1u1Py8/PJyhpg3kIP/cI3ERGR489xk6ikW+Z13333cdVVVx1yeyUqIiIix5/jZnlyBv0KFxEREclAeugmIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhnLM5w7f+GFF1i+fDmvv/46dXV1PP7443zhC18Yziq5PWi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qqlQEM8TjVctgP55ItFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW4Xl+Pq2jXa1EGmrA8DJKcf25cXLjXQRbt1FLNKJEyjEzirB6rlWxWJRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3oBle3ByKrC98etYNNxBpHUXsWgYJ7sYJ5BwvZHjhhWLxWLDtfOnn36al19+mZkzZ3LBBRcMOlFpbm4mPz+fpqYmgsHgoTcYjP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6EC//IuXDGH8HywLq/gcZ18Zh/JJz+RyicAe/cCu/cnFAhC079CUy8DhrWwfPnQrg1Hq46H+Y/Cl0HYfUiM2j1yqmBxesgexS8cg189N/xmO2D0x42g9S2h2D930IsHI9PuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDdimRj0G0u41Q3Xpikc6+1yxfkEDZXLA9hBo2Eu3YE9/A9uAvnYMTKKC7aQvd+ze5yvMWTMY7YhyRzgOEGl4xSXrvplnF+EtnQTRCZ/0GYl3xz77lBPCXz8X25tK1713CzdsSSrXwFU/Dk1tJuK2ersY3gGhf1Mmtxlc0tS8JkuEzmPF7WBOVRJZlZU6icjhJSq+xV0HFUjNw9ZdVAWe/CStHm2+j/S3ZaAbnxESk18m3mMGv/+ANUDgL5t0PT01JjtleOG8rPPdZaP0oOT73fti3ET5ckRwb9WUYcxU8vzQ55h8JSzfBynEQbkmOn7kONi2H3U8lxybfYBKh165LjuVPgYW/h9+PN3dcElk2nLvZJFyJSVWvU1eYRGLT8uRYxVKz39WLkmOePDhvCzw12Z0w9Fr4FGy9H3b8Ljk24ToYOQs2XJUcyx0Li1+AlWPMXZ7+lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpqJE5ROts/5Voh2NSa978sdiebLp3vduUszy5uEvnUXnzjUpywxUnUGoYSOx7uRrinfkScTC7YSbkq9jdlYJ3vxxhOrXJxdqeQhUnU7nrnUpP4f+0lk42aUp6yMfn8GM38P66GewQqEQoVCo79/Nzc3DWJsetU+kHpTADBwf3pP+Qr/9odRJCphv656c1LH9G2Hrb1LHot2w+Repk5TecvelGCjB3GFIfKyUKLTPtCVVkgLmMVLd0+n3mTMmdazpPdhyb3KSAua1zfemTlJ6y23bnjpW97R5DJRKuMW0JVWS0lvuzpVpYo+nTgjAHPPNv0jfH7b+JnWSAubRVeLdkESN60xfSSXSCZvvSV+n2sfTn5ej6bvyqRKLRVMmKQCRtgashMctru26Wwi3pH8sGG7ZkTJJMeXWE0vzmYh2NBJOs09iYcIt29L27XB7gxKV48xxNZn2tttuIz8/v++nurp6uKtk5grY/vRxb5pkA8wtdstJHbMHKtcCJ82HFAaO2f74PItB7fMQ5ToBsLzpY+n2eahyPYfYZ7pyLe+R79MJmMddg40dstxsIM3duoHKtRywA6ljkD6hPVS5h+q7A5Urnz5WmuHCsvvmqaSOp7nGAdjpY5btkHaIsmysAYYva4B9DlhXyUjH1Rm76aabaGpq6vupra0doj0NItuuudz8pBKcZB4V+AqTY5YNY75i5o0Mttzyz8G4q818i/48uTDh78xE1sGWW3OZ+UklpwYmftNMgk1imTJHXZR629GXpd9n8QIY/3X3xM5ett/Eihckxw5V7qiLoOYKUiYGgTLTlpya1NvWDFDuQMevYIY59p7c5JjlMeesfMngy606H8ZdlXqg8BXAhGshOHnw5R6q705M03flU8eybJyc8pQxT24lTk5lypjtL8QbHJW671o23rxR2P7UfczJqcCTm7pcJ6ccT15VyhiOHyc4BsuTlWbb1GVK5jquEhW/308wGHT9DInL6g/vfWWLYeqtUHaGmVOSmMVnV8FpD4EnC+Y/4n6kYvth1s/NZM9TV5gJp4lqLjeDz9irYdw1uAbb/ClmAmV2lZlv4iR8GL1Bs09fvplEmfi4xbLNnI2qc2HKP0PF5937LF4A0+4wK3im3RFfqQNmYJ//CHgCsOBR8BcltMUHM+8yq1pm/hBGznGXW30hTLrerEiauMzdlrwJZq5NoNjUN/EbvCfHvBYoNu/Jm5hQqGUSjZpLTNnVX3Lvc+QcU5eCqTDzR+47Cv4iM2/DEzD/TUy8LA9Mu73nGNyenCBVLDXHrupcMxk68eKbU2Pq68s3E48TV+o4WTD3PnPOZv/CnMPEtoy7xpzrCdf2JFcJCqaZPpI33vSZxDsgvoKetmSb8564Msty4KSbTd+ceqvpq4mOtO+mlXfot8hxzVc4Bds/wvWak12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wUrH53nj3BGjy5lXjyx+JkuxMk2z/C1MUXxFs4BdcwZvvwl8zEth18JTP73VW18BZMwgkcTn+WTKLJtAN5sBA4EP/3ZTHY+yo0vw/BE6Fotvv97Tuhfo1Z4lm+xD3Yh9th99PmmX/F2e5lubEYND5vJoYWznIvywWz1HXvBjOAlJ4RX2IMZqnr7lVmOXP5Oe5ludEw1D9rlimXLHQvywXY/0bP8uQTzMqbRB11ZvmtN2jKTVhmSKTTtCXcZu7uJC7LBWh8CVo3mzsMBVPdsZYtsOcls/y1bLF7sO9uNuUCVJzjHuxjUVOfjjoonu9elgtw4O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrH7fGvesjy9PLux3l6p1mzlvgRKz9DthySTdrWZuSDRsznfiYB+LmWXN7bVQNM+9pByg6f348uSShe7zHdpnzrcTMG1JfDQW7Ya6Z8zy5LIz3IkLHNu+mzjhXJNoP1UinfuJdbdh+/Oxfe7rbrS7jWjnfiwngJ1V5FpdE4t2E2k3q4Kc7GKshD5mljbvJRbpxA4UYvdLXKJdzURDTVje7KQlxrFIiEjHHrAcnKySnkdGveVGibQ3QjSMk1WE5RngEap8rI6bVT+tra1s3rwZgOnTp/ODH/yA008/ncLCQkaNGnXI7Yc8UREREZFj7rhZ9fPaa69x+unxX0p1/fXXA3DllVdy//33D1OtREREJFMMa6KyaNEiMuTJk4iIiGSg42oyrYiIiHy6KFERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkY3mGuwIAK1asYPny5dTX13PKKafwk5/8hNmzZw93teBBy/3viztg+yPQ9B7kT4HRF4ETiMcb1kLds+AvhJrLIas8HmvZAtsfgkgnVH8BCmfGY93NsO1BaNsGI2dD5Xlg95yaWBR2PQV7X4asKhhzOfgK4tse+DPUPgaWA6MvhuAJ8VhnI2z9HwjtgdLToewssHraFAlB7f/CwbchbyKMvgQ82fFtG1+EulXgDZq2ZFfFY63bYPtvIdwGlZ+HorkJbWk1sdYtUDADqr8Itjfelt2rYM+LECiDMVeAf2R824PvQe2j5v+rvwQjpsRjoX2w7QHoqIPiBVBxNlg9eXa0G2ofhwNvQO44GH0peHPj2+7dALv+AJ4cE8uticfad5pyu5uh/GwoWRCPhdth+8PQ8lcYMRWqLwTH39OWGNQ/Bw1rwF9s2hIoiW/b/FezbSwC1RdAwSnxWNcB2PoAdOyEos+YY9jXljDsWgn7XoWcGqi5zJyDXvtfh9onTD1GXwp54+KxjjrTltB+KD/LnPNekc5j13dXnYqbA5eFOd60b/2D699Zo88h0lZHtLsF25uHk1OOZTt98UjHXiIde7EcL56cSixP/PhFu9uItO0mFoviyS7F9o/oi8Wi3YRbdxMLt2P7R+Bkl2L1nO9YLEako5Fo534sT8CU6/ji5YaaCbfXYWHh5FRg++L9OhYJEW7dRSwSwgkUYWcVYfV8vmOxCJG2eqJdzdjeHJycSndbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7Ycm77bWf8XiO7ti+MpJbt6FsPJisViseGswMMPP8xXvvIVfvaznzFnzhzuuusufve73/HXv/6VkpKSAbdtbm4mPz+fpqYmgsHggO8dtP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6GeGzkXDjjj2B5YN3fQOO6eMw/Ek7/IxTOgHduhXduTqiQBaf+BCZeBw3r4PlzIdwaD1edD/Mfha6DsHqRGbR65dTA4nWQPQpeuQY++u94zPbBaQ+bQWrbQ7D+byGWMDBNuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDeikZlP5JSiqWJwd/+Twsx0/XnjeJtO1OCNr4S07FyS4h3FJL1963STzfnvxx+AonE+1qobN+g/li0MP2j8BfNhewCDW8SrQzoS/YXgJlc7H9+XQf+IDugx+46uQdeRLeYA2Rjr2EGja6zouTXYqvZCZEw3TWrSfW3ZLQliz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPW+625I3GV3Qy0e42QnXriUU64+X6ggTK5oLtIdSwkWjHnoRiPfhL5+AECuhu2kL3/k3uthRMxjtiHJHOA4QaXjFJeu+mWcX4S2dBNEJn/QZiXfHPvuUE8JfPxfbm0rXvXcLN2xLPGr7iaXhyKwm31dPV+AYQjR+j3Gp8RVOJhTsI1a8nFo5/XixvHoHyuWB76Wp8nUh7wjXZcvCXzsLJKqK7eRvd+951t2XERLwFE4mGmsz5jnbH2xIoxF86B4gRqt9ANHQw4Rj5CJTPw/bl0bV/E+GmLa5yfUVT8eSNItLeSKjxNfNlr7ctORX4iqdDJGTOd7gtXt2j6LvpZI/5/CHfMxiDGb+HPVGZM2cOs2bN4u67zWASjUaprq5m2bJl3HjjjQNuO2SJyuEkKb3GXgUVS83A1V9WBZz9Jqwcbb6N9rdkoxmcExORXiffYga//oM3QOEsmHc/PDUlOWZ74byt8NxnofWj5Pjc+2HfRvhwRXJs1JdhzFXw/NLkmH8kLN0EK8dBuCU5fuY62LQcdj+VHJt8g0mEXrsuOZY/BRb+Hn4/3vUhBMxAfO5mk3AlJlW9Tl1hEolNy5NjFUvNflcvSo558uC8LfDUZHfC0GvhU7D1ftjxu+TYhOtg5CzYcFVyLHcsLH4BVo5xXaj6LH0P1l8F+zcmx6YvN3eo3rklOVayyMSfSfGtxgnAedth1XTo2J0cn/87c04+uj85djR9N5XjJFFp3/pHoOuQ7wNwcqtwskt6Bjw3y/Hjr1hA5841yX0X8FfMp3v/Jnci0sM7YiLYTtLgDWD78vEVT6Nz1/MpamQRqDqjZ5BtT4r6ik4x38pbtie3JaccT26VSXCSduolULmIzp1r3V9CettSNo/upi1EOxqTYp78sVie7KTBG8zg7y+dZY5RCoGqMwg1bHQlVb28I08iFm4n3JR8HbOzSvDmjyNUvz65UMtDoOp0OnetS/k59JfOIty6s+/ujqsteaOx/SPo2vvnFMVm4y+b19OW5L4eqFxI1563iCYkVX1tKZwM0UhS4glgB0biLZxMaPdLKdpim2O0+0ViCcluL1/JDCLtjURadybFjqbvpjKcicqwPvrp6uri9ddf56abbup7zbZtFi9ezPr1yR0wFAoRCsVPVnNz88dSzwHVPpF6UAIzcHx4T/oL/fbfpk5SwHxb9+Skju3fCFt/kzoW7YbNv0idpPSWuy/FhQrMHYbEx0qJQvtMW1IlKWAeI9U9nX6fOWNSx5regy3/nfrDEovClntTJym95bYlX5ABU5ecsalj4RbTllRJSm+5O1emiT2eOiEAc8w3/yJ9f9j6m9RJCphHV4l3QxI1rjOPXlKJdJq2pKtT7ePpz8vR9N3j2uElKYD5Vp3mu1wsEjIJQZoLfbh1V8okBSDcXt/3mKG/aFcT4RQDT89eCbfuSJmkmPrWEw0lD5QAkbYG12MG9067e9qS+hFeuL0uZZLSV27C4xZXbbtbCLfsSL1PINyyI2WSYsqtJ5bmMxHtaCTsSb1PYmHCLdvS9u1we4P7bkniPtvrUyYEpth2wq07SHf3Idy6M2WSAj1tSXNXMtq5j3DrrpQxYlFzjNLUKdJWTyTxLlZi7Cj6bqYZ1sm0e/fuJRKJUFpa6nq9tLSU+vr6pPffdttt5Ofn9/1UV1d/XFVNz/GD7U8fT5dsADjZZm5JKvZA5Vpm27T7HCBm++PzLAa1TwbepxMAK81F0Amk3yeYRw1Hus905VpeSHgOO+hybd/gYzDwsXeygTR36wYq13LAHqAtA/axgdpyiPPtHaDcTwvLjs8fShlP/13PJCKpz7d1yHLTXBf6yh1gu3TlHmKf1kAxBtjWsgfcFnuA+g4QM3MsjrQtAx0/e4ByBzh+gMUhjn3a2EDHyDpEfYfqfGfEFNXDclyt+rnppptoamrq+6mtrT30RkOt5nLzk0pwkpkv4itMjlk2jPmKmTcy2HLLPwfjrk59kfTkwvi/MxNZB1tuzWXmJ5WcGpj4TTMJNollyhx1UeptR1+Wfp/FC2D8190TO3vZfhMrXpAcO1S5oy6CmitIOVAEykxbcmpSb1szQLkDHb+CGebYe3KTY5bHnLPyJYMvt+p8GHdV6ouOrwAmXgvByYMv91B9d0Kavnu8s4sO/Z4enpxKPLmVKWOWNxdvsCY+Wbz/tnlVONmlKWPOAOXaWcV48qpJ2XctB09wNJYvP3W5uZU4acr15Fbg5KRpiycLJzgmbeLvya3CySlPE6tMW67tL8SbNyp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntRfgAY69gMdP8uXjyd/dJqExMKTV42dVZxy24GOkZNd2nO+U7C9eII1WN4U15Secj1pyj1U3/UM0HczzbAmKkVFRTiOQ0OD+zZcQ0MDZWXJA6Lf7ycYDLp+hsThPmsvWwxTb4WyM8ycksQOnF0Fpz0EniyY/4j7kYrth1k/N5M9T11hJpwmqrkcJlxrJnaOuwbXBSt/iplAmV1l5psk3o3wBs0+fflmEmXi4xbLNnM2qs6FKf8MFf2eNxYvgGl3mBU80+5wd+BAmWmDJwALHgV/woXe9sHMu8yqlpk/hJFz3OVWXwiTrjcrkiYuc7clb4KZaxMoNvVNvDPgyTGvBYrNe/ImJhRqmUSj5hJTdvWX3PscOcfUpWAqzPyR+46Cv8jM2/AEzH8TEy/LA9Nu7zkGtycnSBVLzbGrOtdMhk68+ObUmPr68s3E48SVOk4WzL3PnLPZvzDnMLEt464x53rCtT3JVYKCaaaP5I03fSbxDoivoKct2ea8J67Mshw46WbTN6feavpqoiPtu58A2aPnHvpNgB0owlswESeryMwpSei7lhPAXzwDy3bwl8x0f14sG1/RVGxvLr6RJ2H53NcpJ6cST7AGJ7caJ9c9QFnePLOtJwtf8SnuPmZ58JfMwLK9+IunY/W7e+fJH4snuxRv/njsLPdCBNtfiLdwMk6gAG/BJFdbcPz4SmZi97Ul8Q6cjbdwCrY/iK9wims1E4CTXWb2m1thBr7Etnhy8BWfguX4zaTPxD5mOfiKp/fETsHqd/fOE6wxg3D+WJxsd4Jk+0eYuviCeAun4BrGbB/+nrb4Smb2S7wsvAWTzDEonJSUIJl5L+PxZJfiyR/nilmeLHPMbS/+khnuL4mWja/4FHPOiqZiefNc2/aeZ0+wJilZsXxBfCNPwvbm4Cua6j7fthd/ycyePjYDy/VlzsIzYoLpmwUTsQPu5PuI+25aqRPjj0tGTKadPXs2P/nJTwAzmXbUqFF885vfHL7JtL36T6q9LAZ7X4Xm9yF4IhT1W0LdvhPq15glnuVL3B0g3A67nzbP/CvOdi/LjcWg8XkzMbRwlntZLpilrns3mAGk9Iz4EmMwS113rzLLmcvPcS/LjYah/lmzTLlkoXtZLsD+N3qWJ59gVt4k6qgzy2+9QVNuwjJDIp2mLeE2c3cn4L4o0vgStG42dxgKprpjLVtgz0tm+WvZYvcHs7vZlAtQcY57sI9FTX066qB4vntZLsCBt+PLk0v6JRidjVD3R5P8VJzjvnsT6TIrkbqbTH2y+n1r3LM+vjy5sN9dqtZt5rwFSszS74Qlk3S3mrkh0bA534mDfSxmljW310LRPPeScoCm9+PLk0sWus93aJ85307AtCVxsIp2Q90zZnly2RnuxAWObd9N/GwcJ5No+2vf9ieI7e/5l032mL8hEjpArKsVy5eL43cnaNFwB9GOfViOFzur2HUrPxaNEOlohFgEJ6vEtSzXLHXdRyzcge0f4VqWC2apazR0AMuThR0Y2beUFcxS10jHHrAsU25CH4vFokQ79hKLhLADI13LcgGioSaiXc1Y3lzXEmMwS10jHXvB9uBklwzQlmLXslyASOd+Yt1t2P587H5JWLS7zSy1dgKu5dKm3G4i7WY+hZNd7JovY5Y27yUW6cQOFLqW5Zpj1Ew01ITlzXYtMTbHKNRzjJyeY+QklBsl0t4I0TBOVpFrWa5pywFiPcuTbb97MI52txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHjmnfTVwVd6wn0fY6rlb9PPzww1x55ZX8/Oc/Z/bs2dx111088sgj/OUvf0mau9LfkCcqIiIicswdN6t+AC6++GL27NnDv/zLv1BfX8+0adNYtWrVIZMUERER+eQb9jsqR0N3VERERI4/gxm/j6tVPyIiIvLpokRFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0L/aPT+Ut3m5uZhromIiIgcrt5x+3B+Of5xnai0tLQAUF1dfYh3ioiISKZpaWkhPz9/wPcc13/rJxqNsnv3bvLy8lx/Kls+mZqbm6murqa2tlZ/20nkE0af70+XWCxGS0sLFRUV2PbAs1CO6zsqtm1TVVU13NWQj1kwGNSFTOQTSp/vT49D3Unppcm0IiIikrGUqIiIiEjGUqIixw2/38/NN9+M3+8f7qqIyDGmz7ekc1xPphUREZFPNt1RERERkYylREVEREQylhIVERERyVhKVERERCRjKVGR48aKFSuoqakhEAgwZ84cXn311eGukogcpRdeeIFzzz2XiooKLMviiSeeGO4qSYZRoiLHhYcffpjrr7+em2++mTfeeINTTjmFJUuW0NjYONxVE5Gj0NbWximnnMKKFSuGuyqSobQ8WY4Lc+bMYdasWdx9992A+TtP1dXVLFu2jBtvvHGYaycix4JlWTz++ON84QtfGO6qSAbRHRXJeF1dXbz++ussXry47zXbtlm8eDHr168fxpqJiMhQU6IiGW/v3r1EIhFKS0tdr5eWllJfXz9MtRIRkY+DEhURERHJWEpUJOMVFRXhOA4NDQ2u1xsaGigrKxumWomIyMdBiYpkPJ/Px8yZM1m9enXfa9FolNWrVzNv3rxhrJmIiAw1z3BXQORwXH/99Vx55ZWceuqpzJ49m7vuuou2tjauvvrq4a6aiByF1tZWNm/e3PfvrVu38tZbb1FYWMioUaOGsWaSKbQ8WY4bd999N8uXL6e+vp5p06bx4x//mDlz5gx3tUTkKKxbt47TTz896fUrr7yS+++//+OvkGQcJSoiIiKSsTRHRURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEMtott9zCtGnThrsaIjJMlKiIyJCqr69n2bJljB07Fr/fT3V1Neeee67rj0yKiKSjP0ooIkNm27ZtnHbaaYwYMYLly5dz8skn093dzTPPPMN1113HX/7yl4+lHt3d3Xi93o9lXyJybOmOiogMmWuvvRbLsnj11Ve58MILmThxIlOmTOH6669nw4YNAOzYsYPzzz+f3NxcgsEgF110EQ0NDWnLjEaj3HrrrVRVVeH3+5k2bRqrVq3qi2/btg3Lsnj44YdZuHAhgUCABx54YMjbKiJDQ4mKiAyJ/fv3s2rVKq677jpycnKS4iNGjCAajXL++eezf/9+nn/+eZ599lk++ugjLr744rTl/uhHP+L73/8+d955J2+//TZLlizhvPPO48MPP3S978Ybb+Tb3/42mzZtYsmSJce8fSLy8dCjHxEZEps3byYWizFp0qS071m9ejXvvPMOW7dupbq6GoBf//rXTJkyhY0bNzJr1qykbe68806++93vcskllwBwxx13sHbtWu666y5WrFjR976///u/54ILLjjGrRKRj5vuqIjIkIjFYod8z6ZNm6iuru5LUgBOPPFERowYwaZNm5Le39zczO7duznttNNcr5922mlJ7z/11FOPsOYikkmUqIjIkJgwYQKWZX1sE2b7S/W4SUSOP0pURGRIFBYWsmTJElasWEFbW1tS/ODBg0yePJna2lpqa2v7Xn///fc5ePAgJ554YtI2wWCQiooKXn75ZdfrL7/8csr3i8jxT3NURGTIrFixgtNOO43Zs2dz6623MnXqVMLhMM8++yz33HMP77//PieffDKXX345d911F+FwmGuvvZaFCxemfXRzww03cPPNNzNu3DimTZvGfffdx1tvvaWVPSKfUEpURGTIjB07ljfeeIN///d/5zvf+Q51dXUUFxczc+ZM7rnnHizL4sknn2TZsmV89rOfxbZtzj77bH7yk5+kLfNb3/oWTU1NfOc736GxsZETTzyRlStXMmHChI+xZSLycbFihzPjTURERGQYaI6KiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMb6/wHCnL2DXQSZ/gAAAABJRU5ErkJggg==", + "text/plain": [ + "
            " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Suppressing warning message claiming that a portion of points cannot be placed into the plot due to the high number of data points\n", + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')\n", + "\n", + "palette = {\n", + " 0: 'orange',\n", + " 1: 'wheat'\n", + "}\n", + "sns.swarmplot(x=\"Color\", y=\"ord__Item Size\", hue=\"Color\", data=encoded_pumpkins, palette=palette)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**توجه کنید**: نادیده گرفتن هشدارها به هیچ وجه یک روش خوب نیست و باید تا حد امکان از آن اجتناب شود. هشدارها معمولاً پیام‌های مفیدی دارند که به ما کمک می‌کنند کد خود را بهبود دهیم و مشکلات را حل کنیم. \n", + "دلیلی که ما این هشدار خاص را نادیده می‌گیریم، تضمین خوانایی نمودار است. رسم تمام نقاط داده با اندازه نشانگر کوچک‌تر، در حالی که سازگاری با رنگ پالت حفظ شود، یک تصویرسازی نامشخص ایجاد می‌کند.\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "مدل خود را بسازید\n" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "# X is the encoded features\n", + "X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])]\n", + "# y is the encoded label\n", + "y = encoded_pumpkins['Color']\n", + "\n", + "# Split the data into training and test sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.94 0.98 0.96 166\n", + " 1 0.85 0.67 0.75 33\n", + "\n", + " accuracy 0.92 199\n", + " macro avg 0.89 0.82 0.85 199\n", + "weighted avg 0.92 0.92 0.92 199\n", + "\n", + "Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0\n", + " 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0\n", + " 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1\n", + " 0 0 0 1 0 0 0 0 0 0 0 0 1 1]\n", + "F1-score: 0.7457627118644068\n" + ] + } + ], + "source": [ + "from sklearn.metrics import f1_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "# Train a logistic regression model on the pumpkin dataset\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "# Evaluate the model and print the results\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('F1-score: ', f1_score(y_test, predictions))" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[162, 4],\n", + " [ 11, 22]])" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import confusion_matrix\n", + "confusion_matrix(y_test, predictions)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAIjCAYAAABBOWJ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgUElEQVR4nO3dd1gUV8MF8LOUZelqsItBjTV2jcYKKgoWFDWKJUKIvUc0tqjYoibWxKDGFqwRNGqMjQiC3WhE7CX2BiixgHR27/eHL/tJBGVxl9lyfs/DE3aY2T07ETjcuTMjE0IIEBEREWmRmdQBiIiIyPiwYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBCZgODgYMhkMvWHhYUFypYtiy+++AIPHz7MdRshBDZs2ICWLVuiSJEisLGxQa1atTBz5kwkJyfn+Vo7duxA+/bt4eTkBLlcjjJlyqBnz544ePBgvrKmpaVh8eLFaNy4MRwdHaFQKFClShWMGDEC169fL9D7J6LCJ+O9SIiMX3BwMPz9/TFz5kxUqFABaWlpOHnyJIKDg+Hi4oKLFy9CoVCo11cqlejTpw9CQ0PRokULdOvWDTY2Njhy5Ag2b96MGjVqIDw8HCVLllRvI4TAl19+ieDgYNSrVw+fffYZSpUqhdjYWOzYsQNnzpzBsWPH0LRp0zxzJiQkwNPTE2fOnEGnTp3g7u4OOzs7XLt2DVu2bEFcXBwyMjJ0uq+ISEsEERm9X375RQAQp0+fzrF8woQJAoAICQnJsXzOnDkCgBg3btwbz7Vr1y5hZmYmPD09cyyfP3++ACC++uoroVKp3thu/fr14q+//nprzo4dOwozMzOxbdu2N76WlpYmxo4d+9bt8yszM1Okp6dr5bmIKHcsGEQmIK+CsXv3bgFAzJkzR70sJSVFFC1aVFSpUkVkZmbm+nz+/v4CgDhx4oR6m2LFiolq1aqJrKysAmU8efKkACAGDhyYr/VdXV2Fq6vrG8v9/PzEhx9+qH58+/ZtAUDMnz9fLF68WFSsWFGYmZmJkydPCnNzczF9+vQ3nuPq1asCgFi6dKl62bNnz8To0aNFuXLlhFwuF5UqVRLz5s0TSqVS4/dKZAo4B4PIhN25cwcAULRoUfWyo0eP4tmzZ+jTpw8sLCxy3c7X1xcAsHv3bvU2T58+RZ8+fWBubl6gLLt27QIA9OvXr0Dbv8svv/yCpUuXYtCgQVi4cCFKly4NV1dXhIaGvrFuSEgIzM3N0aNHDwBASkoKXF1dsXHjRvj6+uLHH39Es2bNMGnSJAQEBOgkL5Ghy/2nBxEZpRcvXiAhIQFpaWn466+/MGPGDFhZWaFTp07qdS5fvgwAqFOnTp7Pk/21K1eu5PhvrVq1CpxNG8/xNg8ePMCNGzdQvHhx9TIfHx8MHjwYFy9eRM2aNdXLQ0JC4Orqqp5jsmjRIty8eRNnz55F5cqVAQCDBw9GmTJlMH/+fIwdOxbOzs46yU1kqDiCQWRC3N3dUbx4cTg7O+Ozzz6Dra0tdu3ahXLlyqnXSUpKAgDY29vn+TzZX0tMTMzx37dt8y7aeI636d69e45yAQDdunWDhYUFQkJC1MsuXryIy5cvw8fHR71s69ataNGiBYoWLYqEhAT1h7u7O5RKJQ4fPqyTzESGjCMYRCYkKCgIVapUwYsXL7B27VocPnwYVlZWOdbJ/gWfXTRy898S4uDg8M5t3uX15yhSpEiBnycvFSpUeGOZk5MT2rRpg9DQUMyaNQvAq9ELCwsLdOvWTb3eP//8g/Pnz79RULI9fvxY63mJDB0LBpEJadSoERo2bAgA8Pb2RvPmzdGnTx9cu3YNdnZ2AIDq1asDAM6fPw9vb+9cn+f8+fMAgBo1agAAqlWrBgC4cOFCntu8y+vP0aJFi3euL5PJIHI5y16pVOa6vrW1da7Le/XqBX9/f8TExKBu3boIDQ1FmzZt4OTkpF5HpVKhbdu2GD9+fK7PUaVKlXfmJTI1PERCZKLMzc0xd+5cPHr0CD/99JN6efPmzVGkSBFs3rw5z1/W69evBwD13I3mzZujaNGi+PXXX/Pc5l28vLwAABs3bszX+kWLFsXz58/fWH737l2NXtfb2xtyuRwhISGIiYnB9evX0atXrxzrVKpUCS9fvoS7u3uuH+XLl9foNYlMAQsGkQlzc3NDo0aNsGTJEqSlpQEAbGxsMG7cOFy7dg3ffPPNG9vs2bMHwcHB8PDwwKeffqreZsKECbhy5QomTJiQ68jCxo0bcerUqTyzNGnSBJ6enli9ejV27tz5xtczMjIwbtw49eNKlSrh6tWrePLkiXrZuXPncOzYsXy/fwAoUqQIPDw8EBoaii1btkAul78xCtOzZ0+cOHECYWFhb2z//PlzZGVlafSaRKaAV/IkMgHZV/I8ffq0+hBJtm3btqFHjx5Yvnw5hgwZAuDVYQYfHx/89ttvaNmyJbp37w5ra2scPXoUGzduRPXq1REREZHjSp4qlQpffPEFNmzYgPr166uv5BkXF4edO3fi1KlTOH78OJo0aZJnzidPnqBdu3Y4d+4cvLy80KZNG9ja2uKff/7Bli1bEBsbi/T0dACvzjqpWbMm6tSpg/79++Px48dYsWIFSpYsicTERPUpuHfu3EGFChUwf/78HAXldZs2bcLnn38Oe3t7uLm5qU+ZzZaSkoIWLVrg/Pnz+OKLL9CgQQMkJyfjwoUL2LZtG+7cuZPjkAoRgVfyJDIFeV1oSwghlEqlqFSpkqhUqVKOi2QplUrxyy+/iGbNmgkHBwehUCjExx9/LGbMmCFevnyZ52tt27ZNtGvXThQrVkxYWFiI0qVLCx8fHxEVFZWvrCkpKWLBggXik08+EXZ2dkIul4vKlSuLkSNHihs3buRYd+PGjaJixYpCLpeLunXrirCwsLdeaCsviYmJwtraWgAQGzduzHWdpKQkMWnSJPHRRx8JuVwunJycRNOmTcWCBQtERkZGvt4bkSnhCAYRERFpHedgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1pncvUhUKhUePXoEe3t7yGQyqeMQEREZDCEEkpKSUKZMGZiZvX2MwuQKxqNHj+Ds7Cx1DCIiIoN1//59lCtX7q3rmFzByL699P3799W3hyYiIqJ3S0xMhLOzs/p36duYXMHIPizi4ODAgkFERFQA+ZliwEmeREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1khaMw4cPw8vLC2XKlIFMJsPOnTvfuU1UVBTq168PKysrfPTRRwgODtZ5TiIiItKMpAUjOTkZderUQVBQUL7Wv337Njp27IhWrVohJiYGX331FQYMGICwsDAdJyUiIiJNWEj54u3bt0f79u3zvf6KFStQoUIFLFy4EABQvXp1HD16FIsXL4aHh4euYhoVIQSi7z3Dk6R0qaMQEVEhaFLJCY7WloX+upIWDE2dOHEC7u7uOZZ5eHjgq6++ynOb9PR0pKf//y/TxMREXcUzCCdvPUXvVSeljkFERIVk76gWLBjvEhcXh5IlS+ZYVrJkSSQmJiI1NRXW1tZvbDN37lzMmDGjsCLqvQsPnwMAnOys4PKBjbRhiIhI52zk5pK8rkEVjIKYNGkSAgIC1I8TExPh7OwsYSJp3XuaAgDo9YkzxnlUlTgNERFp05kzZ/DTTz9h5cqVsLQs/FGL1xlUwShVqhTi4+NzLIuPj4eDg0OuoxcAYGVlBSsrq8KIZxDuPU0FAJQvxtELIiJjcvr0abRr1w7Pnz9H+fLlJR+9N6jrYDRp0gQRERE5lh04cABNmjSRKJHhuf+/EQxnFgwiIqNx6tQptG3bFs+fP0ezZs0wbtw4qSNJWzBevnyJmJgYxMTEAHh1GmpMTAzu3bsH4NXhDV9fX/X6Q4YMwa1btzB+/HhcvXoVy5YtQ2hoKMaMGSNFfIOjVAk8ePaqYJTn/AsiIqPw119/oW3btnjx4gWaN2+Offv2wd7eXupY0haMv//+G/Xq1UO9evUAAAEBAahXrx6mTZsGAIiNjVWXDQCoUKEC9uzZgwMHDqBOnTpYuHAhVq9ezVNU8yn2RSoylQKW5jKUclBIHYeIiN7TyZMn0a5dOyQmJqJFixZ6Uy4AQCaEEFKHKEyJiYlwdHTEixcv4ODgIHWcQnX8ZgL6rPoLFZxsETnOTeo4RET0HlJTU1GpUiXExsbC1dUVu3fvhp2dnU5fU5PfoQY1B4PeD+dfEBEZD2tra2zevBkdO3bEnj17dF4uNGVQZ5HQ+8k+RfVDFgwiIoOVmZmpPgXVzc0Nbm5u0gbKA0cwTAhPUSUiMmxHjx5FtWrVcPHiRamjvBMLhgm5x0MkREQG68iRI/D09MStW7fw7bffSh3nnVgwTEj2HAyOYBARGZbDhw+jffv2SE5Ohru7O9auXSt1pHdiwTARSWmZeJqcAQBwLpb7VU+JiEj/HDp0SF0u2rZti127duV59Wp9woJhIrIPjxSzlcNeIe316YmIKH8iIyPRoUMHpKSkwMPDA7///rtBlAuABcNk8BRVIiLDIoTA3LlzkZKSAk9PT+zcudNgygXAgmEyeIoqEZFhkclk2LZtGyZMmIAdO3ZAoTCsKzCzYJiIe5zgSURkEO7evav+3MHBAfPmzTO4cgGwYJgMXgODiEj/HThwANWqVcO8efOkjvLeWDBMBOdgEBHptz///BNeXl5IS0vD8ePHoVQqpY70XlgwTABv005EpN/CwsLQuXNnpKeno0uXLti2bRvMzc2ljvVeWDBMAG/TTkSkv/bt24cuXbogPT0d3t7eCA0NhVwulzrWe2PBMAHZEzzLFbWBuZlM4jRERJRt79698Pb2Rnp6Orp27YqQkBCjKBcAC4ZJ4CXCiYj0040bN5CRkYHu3bsbVbkAeLt2k8BTVImI9NOoUaNQoUIFeHp6qm/Bbiw4gmECeIoqEZH+OHjwIJ49e6Z+7OXlZXTlAmDBMAn3/k0GwFNUiYik9vvvv8PT0xPt2rVDYmKi1HF0igXDBPAQCRGR9Hbs2IHPPvsMmZmZqFy5MmxsjPtnMguGkUtMy8SzlEwAvAYGEZFUtm/fjp49eyIrKwt9+vTB+vXrYWFh3NMgWTCMXPYZJB/YymFnZdz/mImI9NFvv/0GHx8fZGVloW/fviZRLgAWDKPHS4QTEUln586d6nLRr18/rFu3zuCv0Jlfxl+hTBznXxARSad69eooUaIE2rZti7Vr15pMuQBYMIweCwYRkXSqVq2KU6dOoXTp0iZVLgAeIjF6d/9lwSAiKky//vor/vzzT/XjcuXKmVy5ADiCYfQ4B4OIqPBs2rQJvr6+kMvlOHXqFGrVqiV1JMlwBMOIvbpN+/+u4slTVImIdGrjxo3w9fWFSqXC559/jo8//ljqSJJiwTBisS9SkaUSkJub8TbtREQ6tGHDBnW5GDhwIH7++WeYmZn2r1geIjEiT5LSkZKRpX4cc/85AKBcUWvepp2ISEfWrVsHf39/CCEwaNAgLF++3OTLBcCCYTR2n3+EEZvP5vo1zr8gItKNqKgodbkYMmQIgoKCWC7+hwXDSFx+9OqmOZbmMlhZ/P9sZbmFGbrVLytVLCIio9a8eXP4+PigaNGiCAoKgkzG0eJsLBhG5vNPP0Sgl2lPLCIiKiwWFhbYsGEDzM3NWS7+g+M4REREGli9ejUGDBgAlUoF4FXJYLl4E0cwiIiI8mnlypUYPHgwAMDd3R29evWSOJH+4ggGERFRPvz888/qcjF69Gj4+PhInEi/sWAQERG9w/LlyzFkyBAAwJgxY7B48WIeFnkHFgwiIqK3CAoKwrBhwwAAY8eOxcKFC1ku8oEFg4iIKA93795FQEAAAGDcuHGYP38+y0U+cZInERFRHj788EOEhobi1KlTmD17NsuFBlgwiIiI/iMpKQn29vYAgC5duqBLly4SJzI8PERCRET0msWLF6NmzZq4ffu21FEMGgsGERHR/yxatAgBAQG4d+8efvvtN6njGDQWDCIiIgALFy7E2LFjAQBTp05Vf04Fw4JBREQmb/78+Rg3bhwAYNq0aZgxYwYndL4nFgwiIjJp33//PcaPHw8AmD59OsuFlvAsEiIiMllpaWnYtGkTAGDGjBmYNm2axImMBwsGERGZLIVCgfDwcGzfvl19nxHSDh4iISIik3P27Fn158WLF2e50AEWDCIiMimzZs1C/fr1sXLlSqmjGDUWDCIiMhmvz7N4+vSpxGmMG+dgEBGRScg+QwQA5s2bhwkTJkicyLixYBARkVETQmD69OmYOXMmgFenpX799dcSpzJ+LBhERGS0hBCYNm0aZs+eDQBYsGABr9BZSFgwiIjIJCxatAhjxoyROobJYMEgIiKjJZPJMHPmTLRv3x5NmzaVOo5J4VkkRERkVIQQWLVqFVJSUgC8KhksF4WPBYOIiIyGEAITJkzAoEGD0LlzZyiVSqkjmSweIiEiIqMghMD48eOxYMECAEDXrl1hbm4ucSrTxYJBREQGTwiBcePGYdGiRQCAoKAgDBs2TOJUpo0Fg4iIDJoQAgEBAViyZAkAYPny5RgyZIi0oYgFg4iIDNvUqVPV5WLFihW8cZme4CRPIiIyaN26dUOxYsXw888/s1zoEY5gEBGRQatfvz7++ecfFCtWTOoo9BqOYBARkUHJPlvk5MmT6mUsF/qHBYOIiAyGSqXC8OHDMX/+fLRv3563XNdjPERCREQGQaVSYdiwYfj5558hk8mwZMkSjlzoMRYMIiLSeyqVCkOHDsXKlSshk8kQHBwMX19fqWPRW7BgGAkhdQAiIh1RqVQYPHgwVq9eDTMzM6xbtw6ff/651LHoHVgwjMSp26+OQ5Z2VEichIhIu4KCgtTlYv369ejbt6/UkSgfWDCMwLW4JJy5+wwWZjJ41ysrdRwiIq0aOHAgwsLC0KdPH/Tp00fqOJRPLBhG4NdT9wAA7tVLooQ9RzCIyPCpVCrIZDLIZDIoFAr88ccfkMlkUsciDfA0VQOXmqHEb9EPAAC9G5eXOA0R0ftTKpXw9/fH119/DSFezTBjuTA8kheMoKAguLi4QKFQoHHjxjh16tRb11+yZAmqVq0Ka2trODs7Y8yYMUhLSyuktPpnz4VYJKVloVxRa7T4yEnqOERE7yW7XKxfvx5LlizB+fPnpY5EBSRpwQgJCUFAQAACAwMRHR2NOnXqwMPDA48fP851/c2bN2PixIkIDAzElStXsGbNGoSEhGDy5MmFnFx/ZB8e6d2oPMzM2PCJyHAplUr4+flhw4YNMDc3x5YtW1CnTh2pY1EBSVowFi1ahIEDB8Lf3x81atTAihUrYGNjg7Vr1+a6/vHjx9GsWTP06dMHLi4uaNeuHXr37v3OUQ9j9frkzh4Ny0kdh4iowLKysuDr64tNmzbBwsICISEh+Oyzz6SORe9BsoKRkZGBM2fOwN3d/f/DmJnB3d0dJ06cyHWbpk2b4syZM+pCcevWLezduxcdOnTI83XS09ORmJiY48NYcHInERmD7HKxefNmWFhYIDQ0FN27d5c6Fr0nyc4iSUhIgFKpRMmSJXMsL1myJK5evZrrNn369EFCQgKaN28OIQSysrIwZMiQtx4imTt3LmbMmKHV7Prg9cmdfTi5k4gM2LFjx7BlyxZYWFhg69at8Pb2ljoSaYHkkzw1ERUVhTlz5mDZsmWIjo7G9u3bsWfPHsyaNSvPbSZNmoQXL16oP+7fv1+IiXUne3KnczFrNOfkTiIyYK6urggODsa2bdtYLoyIZCMYTk5OMDc3R3x8fI7l8fHxKFWqVK7bTJ06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZmb/YlKysrWFlZaf8NSCz78EivTzi5k4gMT2ZmJp4/f47ixYsDAO8rYoQkG8GQy+Vo0KABIiIi1MtUKhUiIiLQpEmTXLdJSUl5o0SYm5sDgPpcaVPAyZ1EZMgyMzPRu3dvtGzZEnFxcVLHIR2R9EqeAQEB8PPzQ8OGDdGoUSMsWbIEycnJ8Pf3B/Cq0ZYtWxZz584FAHh5eWHRokWoV68eGjdujBs3bmDq1Knw8vJSFw1TsO3Mq8M8bWtwcicRGZbMzEz06tUL27dvh1wux8WLF/MctSbDJmnB8PHxwZMnTzBt2jTExcWhbt262L9/v3ri571793KMWEyZMgUymQxTpkzBw4cPUbx4cXh5eeHbb7+V6i1I4u+7zwAAHh/zm5KIDEdGRgZ69eqFHTt2QC6XY8eOHTnOJCTjIhOmdGwBQGJiIhwdHfHixQs4ODhIHUdjWUoVak4PQ1qmChFjXVGpuJ3UkYiI3ikjIwM9e/bE77//DisrK+zcuROenp5SxyINafI7lDc7MzA3nrxEWqYKdlYWqPCBrdRxiIjeKSMjAz169MCuXbtgZWWF33//HR4eHlLHIh0zqNNUCbjw4AUA4OMyDjx7hIgMwtOnT3Hp0iUoFArs2rWL5cJEcATDwFx8+Kpg1CrrKHESIqL8KVWqFCIjI3Hjxg20atVK6jhUSDiCYWDOZxeMciwYRKS/0tPTERUVpX7s7OzMcmFiWDAMSJZShSuxr+6lUpMjGESkp9LS0tCtWze4u7tj69atUschibBgGBBO8CQifZeWloauXbti7969kMvl+OCDD6SORBLhHAwDwgmeRKTPUlNT4e3tjT///BM2NjbYs2cP3NzcpI5FEmHBMCAXOMGTiPRUamoqunTpggMHDsDGxgZ79+6Fq6ur1LFIQiwYBuQCJ3gSkR5KT09H586dER4eDltbW+zduxctW7aUOhZJjHMwDAQneBKRvpLL5ahcuTJsbW2xb98+lgsCwIJhMDjBk4j0lUwmw08//YTo6Gi0aNFC6jikJ1gwDAQneBKRPklOTsbMmTORmZkJADAzM0OVKlUkTkX6hHMwDAQneBKRvkhOTkbHjh1x6NAh3Lp1C8HBwVJHIj3EEQwDwQmeRKQPXr58iQ4dOuDQoUNwcHDAkCFDpI5EeoojGAbg9QmeHMEgIqlkl4sjR47AwcEBf/75Jxo3bix1LNJTHMEwAK9P8HThBE8ikkBSUhLat2+PI0eOwNHREQcOHGC5oLfiCIYBOM8JnkQkISEEevTogaNHj6JIkSI4cOAAGjZsKHUs0nMcwTAAvEU7EUlJJpNh0qRJKFu2LMLDw1kuKF84gmEAOMGTiKTm6uqKGzduQKFQSB2FDARHMPQcJ3gSkRRevHgBLy8vXLx4Ub2M5YI0wREMPccJnkRU2J4/fw4PDw+cOnUKN27cwMWLF2Fubi51LDIwLBh6jhM8iagwPX/+HO3atcPp06fxwQcfYMuWLSwXVCA8RKLnOMGTiArLs2fP0LZtW5w+fRpOTk44ePAg6tSpI3UsMlAcwdBjSpVAxJXHAIB65YtKnIaIjNnTp0/Rtm1bREdHq8tFrVq1pI5FBowjGHrs8D9P8PB5KhytLdGmegmp4xCREZs8eTKio6NRvHhxREZGslzQe2PB0GO//nUPANCtflkoLHkMlIh0Z/78+fD29sbBgwdRs2ZNqeOQEeAhEj0Vn5iGiKuvDo/0aVRe4jREZIxSU1NhbW0NALC3t8eOHTskTkTGhCMYeir09H0oVQKfuBRF5ZL2UschIiOTkJCATz/9FHPnzpU6ChkpFgw9pFQJbDl9HwDQpzFHL4hIu548eYLWrVvj/Pnz+OGHH/D06VOpI5ERYsHQQ69P7mxfs7TUcYjIiDx+/BitW7fGhQsXUKpUKURFRaFYsWJSxyIjxDkYeoiTO4lIF7LLxaVLl1C6dGlERkaiatWqUsciI8URDD3DyZ1EpAvx8fFo1aoVLl26hDJlyiAqKorlgnSKIxh6hpM7iUgXwsLCcPnyZXW5qFy5stSRyMixYOgRTu4kIl3x9fVFWloaWrVqxXJBhYIFQ49wcicRaVNcXBysrKxQtOirWw0MGjRI4kRkSjgHQ49s/t/kzu71y3FyJxG9l9jYWLi5uaFdu3Z4/vy51HHIBLFg6Im4F2k4mD25s7GzxGmIyJA9evQIbm5uuHbtGuLj4/Hs2TOpI5EJYsHQE6F/v5rc2cilGD4qwcmdRFQwDx8+hJubG65fv44PP/wQhw4dQoUKFaSORSaIczD0gFIlEPK/yZ29OXpBRAX04MEDtGrVCjdu3MCHH36IqKgouLi4SB2LTBRHMPTA4euc3ElE7+f+/ftwc3PDjRs34OLiwnJBkmPB0AObT3FyJxG9n9TUVKSkpKBChQosF6QXeIhEYpzcSUTaUKVKFURGRsLa2hrly/M6OiQ9jmBIjJM7iaig7t69i4iICPXjqlWrslyQ3mDBkNDrkzt55U4i0sSdO3fg5uaGjh074uDBg1LHIXoDC4aEXp/c6VmzlNRxiMhAZJeLO3fuwNnZmTctI73EgiEhTu4kIk3dvn0brq6uuHv3LipXroyoqCiULVtW6lhEb2DBkAgndxKRpm7dugU3Nzfcu3cPVapUYbkgvcazSAqRSiVw/Oa/eJmeicirTzi5k4jyLfvy3/fv30fVqlURGRmJ0qV53RzSXywYhWjTX3cx9fdLOZZxcicR5UeJEiXQrFkzxMTE4ODBgywXpPdYMAqJEALrTtwFAFQpaQcHhSVcnGzRoRZ/SBDRu1lYWGDDhg14/vw5nJycpI5D9E4sGIXk77vPcOPxS1hbmuO3oU1hr7CUOhIR6bnr169j1apV+O6772BmZgYLCwuWCzIYLBiFZPNfr84Y6VynDMsFEb3TtWvX0KpVK8TGxsLOzg6BgYFSRyLSCM8iKQTPUzKw50IsAKA351wQ0TtcvXpVXS5q1qyJoUOHSh2JSGMcwSgEv0U/REaWCjVKO6BOOUep4xCRHssuF3FxcahVqxYiIiJQvHhxqWMRaYwjGDomhMCv/7ugVu/G5SGTySRORET66sqVK3Bzc0NcXBxq166NgwcPslyQwWLB0LHTd/5/cqd33TJSxyEiPZWWlgYPDw/Ex8ejbt26OHjwICd0kkFjwdCx7NELTu4kordRKBQICgpC48aNER4ejg8++EDqSETvhQVDh54lc3InEb2dEEL9uZeXF44fP85yQUbhvQpGWlqatnIYpe1nObmTiPJ2/vx5NGzYELdu3VIvMzPj331kHDT+l6xSqTBr1iyULVsWdnZ26m+MqVOnYs2aNVoPaKiEENj816srd3JyJxH917lz59C6dWtER0dj3LhxUsch0jqNC8bs2bMRHByM77//HnK5XL28Zs2aWL16tVbDGbLTd57h5pNkTu4kojfExMSgTZs2+Pfff9GwYUP+cUZGSeOCsX79eqxcuRJ9+/aFubm5enmdOnVw9epVrYYzZNmjF5zcSUSvO3v2rLpcfPLJJzhw4ACKFi0qdSwirdO4YDx8+BAfffTRG8tVKhUyMzO1EsrQPUvOwN6LcQB4t1Qi+n/R0dFo06YNnj59ikaNGuHAgQMoUqSI1LGIdELjglGjRg0cOXLkjeXbtm1DvXr1tBLK0L0+ubM2J3cSEV7Nyxo7diyePXuGxo0b488//4SjI38+kPHS+FLh06ZNg5+fHx4+fAiVSoXt27fj2rVrWL9+PXbv3q2LjAaFkzuJKDcymQxbt27FhAkTsHjxYjg4OEgdiUinNB7B6NKlC/744w+Eh4fD1tYW06ZNw5UrV/DHH3+gbdu2ushoUDi5k4he9++//6o/d3Jywpo1a1guyCQU6GZnLVq0wIEDB7SdxShwcicRZTt9+jQ8PDwwb948DBo0SOo4RIVK4xGMihUr5mjk2Z4/f46KFStqJZSh4uROIsp26tQpuLu749mzZ9i0aROUSqXUkYgKlcYF486dO7l+o6Snp+Phw4daCWWofot+wMmdRIS//voLbdu2RWJiIlq0aIE9e/bkOK2fyBTk+xDJrl271J+HhYXlmP2sVCoREREBFxcXrYYzJK/flr0PJ3cSmawTJ07Aw8MDSUlJaNmyJfbs2QM7OzupYxEVunwXDG9vbwCvZkL7+fnl+JqlpSVcXFywcOFCrYYzJKduP1VP7uzCyZ1EJun48ePw9PREUlIS3NzcsHv3btja2kodi0gS+S4YKpUKAFChQgWcPn0aTk5OOgtliHhbdiKKjIxEUlISWrVqhT/++IPlgkyaxmeR3L59Wxc5DBondxIRAEyePBllypSBj48PbGxspI5DJKkC3Rc4OTkZe/fuxYoVK/Djjz/m+NBUUFAQXFxcoFAo0LhxY5w6deqt6z9//hzDhw9H6dKlYWVlhSpVqmDv3r0FeRtawyt3Epmu6OhoJCcnA3h1CNnf35/lgggFGME4e/YsOnTogJSUFCQnJ6NYsWJISEiAjY0NSpQogVGjRuX7uUJCQhAQEIAVK1agcePGWLJkCTw8PHDt2jWUKFHijfUzMjLQtm1blChRAtu2bUPZsmVx9+5dya/lf+nRCwCAZ81SnNxJZEIOHz6MDh06oFGjRti9ezeLBdFrNB7BGDNmDLy8vPDs2TNYW1vj5MmTuHv3Lho0aIAFCxZo9FyLFi3CwIED4e/vjxo1amDFihWwsbHB2rVrc11/7dq1ePr0KXbu3IlmzZrBxcUFrq6uqFOnjqZvQyesLAo0IEREBujQoUNo3749kpOTYWlpyT8uiP5D49+IMTExGDt2LMzMzGBubo709HQ4Ozvj+++/x+TJk/P9PBkZGThz5gzc3d3/P4yZGdzd3XHixIlct9m1axeaNGmC4cOHo2TJkqhZsybmzJnz1gvYpKenIzExMccHEdH7iIqKUo/kenh4YOfOnbC2tpY6FpFe0bhgWFpawszs1WYlSpTAvXuvzp5wdHTE/fv38/08CQkJUCqVKFmyZI7lJUuWRFxcXK7b3Lp1C9u2bYNSqcTevXsxdepULFy4ELNnz87zdebOnQtHR0f1h7Ozc74zEhH918GDB9XlwtPTk+WCKA8az8GoV68eTp8+jcqVK8PV1RXTpk1DQkICNmzYgJo1a+oio5pKpUKJEiWwcuVKmJubo0GDBnj48CHmz5+PwMDAXLeZNGkSAgIC1I8TExNZMoioQA4ePIhOnTohNTUV7du3x/bt26FQKKSORaSXNC4Yc+bMQVJSEgDg22+/ha+vL4YOHYrKlStjzZo1+X4eJycnmJubIz4+Psfy+Ph4lCpVKtdtSpcuDUtLyxyX3K1evTri4uKQkZEBuVz+xjZWVlawsrLKdy4iorwUKVIECoUCrVu3xm+//cafLURvoXHBaNiwofrzEiVKYP/+/QV6YblcjgYNGiAiIkJ9lVCVSoWIiAiMGDEi122aNWuGzZs3Q6VSqQ/TXL9+HaVLl861XBARaVP9+vVx/PhxVKhQgeWC6B20dtpDdHQ0OnXqpNE2AQEBWLVqFdatW4crV65g6NChSE5Ohr+/PwDA19cXkyZNUq8/dOhQPH36FKNHj8b169exZ88ezJkzB8OHD9fW2yAiyuHPP//E8ePH1Y+rVavGckGUDxqNYISFheHAgQOQy+UYMGAAKlasiKtXr2LixIn4448/4OHhodGL+/j44MmTJ5g2bRri4uJQt25d7N+/Xz3x8969e+qRCgBwdnZGWFgYxowZg9q1a6Ns2bIYPXo0JkyYoNHrEhHlx/79++Ht7Q25XI4TJ07g448/ljoSkcHId8FYs2YNBg4ciGLFiuHZs2dYvXo1Fi1ahJEjR8LHxwcXL15E9erVNQ4wYsSIPA+JREVFvbGsSZMmOHnypMavQ0SkiX379qFr165IT09H+/btUblyZakjERmUfB8i+eGHH/Ddd98hISEBoaGhSEhIwLJly3DhwgWsWLGiQOWCiEgf7d27F97e3khPT0fXrl0RGhrKeV5EGsp3wbh58yZ69OgBAOjWrRssLCwwf/58lCtXTmfhiIgK2+7du9G1a1dkZGSge/fuCAkJgaUl75BMpKl8F4zU1FT1dfZlMhmsrKxQunRpnQUjIipsx48fR7du3ZCRkYHPPvsMv/76K8sFUQFpNMlz9erVsLOzAwBkZWUhODgYTk5OOdbR5GZnRET6pH79+nB3d4ednR02bdrEckH0HvJdMMqXL49Vq1apH5cqVQobNmzIsY5MJmPBICKDpVAosH37dlhYWMDCQuPLBBHRa/L9HXTnzh0dxiAiksaOHTtw8uRJzJs3DzKZjJf+JtISVnQiMlnbt2+Hj48PsrKyULduXfTu3VvqSERGQ2tX8iQiMiTbtm1Dz549kZWVhb59+6rPkiMi7WDBICKTs3XrVvTq1QtKpRL9+vXDunXrOOeCSMtYMIjIpISEhKB3795QKpXw9fXFL7/8kuMOzUSkHSwYRGQy7t+/j379+kGpVMLPzw9r165luSDSkQIVjJs3b2LKlCno3bs3Hj9+DODVdfsvXbqk1XBERNrk7OyM1atXo3///lizZg3LBZEOaVwwDh06hFq1auGvv/7C9u3b8fLlSwDAuXPnEBgYqPWARETvKzMzU/25r68vVq9ezXJBpGMaF4yJEydi9uzZ6tu2Z2vdujXvckpEemfjxo2oV68e4uLipI5CZFI0LhgXLlxA165d31heokQJJCQkaCUUEZE2bNiwAX5+frh06RJWrlwpdRwik6JxwShSpAhiY2PfWH727FmULVtWK6GIiN7XunXr4OfnB5VKhcGDB2PKlClSRyIyKRoXjF69emHChAmIi4uDTCaDSqXCsWPHMG7cOPj6+uoiIxGRRoKDg+Hv7w8hBIYMGYJly5bBzIwnzREVJo2/4+bMmYNq1arB2dkZL1++RI0aNdCyZUs0bdqUfyEQkeR++eUXfPnllxBCYNiwYSwXRBLR+NJ1crkcq1atwtSpU3Hx4kW8fPkS9erVQ+XKlXWRj4go39LS0jB37lwIITB8+HAsXboUMplM6lhEJknjgnH06FE0b94c5cuXR/ny5XWRiYioQBQKBSIiIrBu3Tp88803LBdEEtJ43LB169aoUKECJk+ejMuXL+siExGRRm7fvq3+3NnZGVOmTGG5IJKYxgXj0aNHGDt2LA4dOoSaNWuibt26mD9/Ph48eKCLfEREb/Xzzz+jSpUqCA0NlToKEb1G44Lh5OSEESNG4NixY7h58yZ69OiBdevWwcXFBa1bt9ZFRiKiXC1fvhxDhgxBVlYWTp8+LXUcInrNe02trlChAiZOnIh58+ahVq1aOHTokLZyERG91bJlyzBs2DAAwNixY/H9999LnIiIXlfggnHs2DEMGzYMpUuXRp8+fVCzZk3s2bNHm9mIiHL1008/Yfjw4QCAr7/+GvPnz+ecCyI9o/FZJJMmTcKWLVvw6NEjtG3bFj/88AO6dOkCGxsbXeQjIsph6dKlGDVqFABg/PjxmDdvHssFkR7SuGAcPnwYX3/9NXr27AknJyddZCIiytO1a9cAvLrx4pw5c1guiPSUxgXj2LFjushBRJQvS5cuRbt27eDl5cVyQaTH8lUwdu3ahfbt28PS0hK7du1667qdO3fWSjAiomy///472rdvD7lcDplMxp8zRAYgXwXD29sbcXFxKFGiBLy9vfNcTyaTQalUaisbEREWLlyIcePGwdvbG9u2bYO5ubnUkYgoH/JVMFQqVa6fExHp0vz58zF+/HgAQO3atXnTMiIDovF36/r165Genv7G8oyMDKxfv14roYiIvvvuO3W5CAwMxIwZMzjngsiAaFww/P398eLFizeWJyUlwd/fXyuhiMi0zZs3DxMnTgQATJ8+HdOnT5c2EBFpTOOzSIQQuf4V8eDBAzg6OmolFBGZrvnz52PSpEkAgJkzZ2Lq1KkSJyKigsh3wahXrx5kMhlkMhnatGkDC4v/31SpVOL27dvw9PTUSUgiMh2NGjWCjY0NJk2ahClTpkgdh4gKKN8FI/vskZiYGHh4eMDOzk79NblcDhcXF3Tv3l3rAYnItLi6uuLKlSsoX7681FGI6D3ku2AEBgYCAFxcXODj4wOFQqGzUERkWhYsWABPT0/UrFkTAFguiIyAxpM8/fz8WC6ISGumT5+Or7/+Gq1bt8a///4rdRwi0pJ8jWAUK1YM169fh5OTE4oWLfrWU8WePn2qtXBEZLyEEJg+fTpmzpwJ4NWNyz744AOJUxGRtuSrYCxevBj29vbqz3kuOhG9DyEEpk2bhtmzZwN4dYhk7NixEqciIm3KV8Hw8/NTf/7FF1/oKgsRmQAhBKZOnYpvv/0WALBo0SKMGTNG4lREpG0az8GIjo7GhQsX1I9///13eHt7Y/LkycjIyNBqOCIyPqtXr1aXi8WLF7NcEBkpjQvG4MGDcf36dQDArVu34OPjAxsbG2zdulV9WV8iorz06tULzZo1w5IlS/DVV19JHYeIdETjK3lev34ddevWBQBs3boVrq6u2Lx5M44dO4ZevXphyZIlWo5IRIbu9SsA29vbIyoqKsfF+ojI+Gg8giGEUN9RNTw8HB06dAAAODs7IyEhQbvpiMjgCSHw9ddfY+7cueplLBdExk/j7/KGDRti9uzZcHd3x6FDh7B8+XIAwO3bt1GyZEmtByQiwyWEwLhx47Bo0SIAgKenJ+rVqydxKiIqDBqPYCxZsgTR0dEYMWIEvvnmG3z00UcAgG3btqFp06ZaD0hEhkkIgYCAAHW5WL58OcsFkQnReASjdu3aOc4iyTZ//nyYm5trJRQRGTYhBMaMGYMffvgBAPDzzz9j0KBBEqciosJU4AOhZ86cwZUrVwAANWrUQP369bUWiogMlxACo0ePxtKlSwEAK1euxMCBAyVORUSFTeOC8fjxY/j4+ODQoUMoUqQIAOD58+do1aoVtmzZguLFi2s7IxEZkEOHDmHp0qWQyWRYtWoV+vfvL3UkIpKAxnMwRo4ciZcvX+LSpUt4+vQpnj59iosXLyIxMRGjRo3SRUYiMiBubm5YsmQJVq9ezXJBZMI0HsHYv38/wsPDUb16dfWyGjVqICgoCO3atdNqOCIyDCqVCsnJyep7Fo0ePVriREQkNY1HMFQqFSwtLd9Ybmlpqb4+BhGZDpVKhWHDhqFVq1Z4/vy51HGISE9oXDBat26N0aNH49GjR+plDx8+xJgxY9CmTRuthiMi/aZSqTBkyBD8/PPPiI6OxuHDh6WORER6QuOC8dNPPyExMREuLi6oVKkSKlWqhAoVKiAxMVE9a5yIjJ9KpcLgwYOxatUqmJmZYf369ejcubPUsYhIT2g8B8PZ2RnR0dGIiIhQn6ZavXp1uLu7az0cEeknlUqFgQMHYu3atepy0bdvX6ljEZEe0ahghISEYNeuXcjIyECbNm0wcuRIXeUiIj2lUqkwYMAA/PLLLzAzM8OGDRvQp08fqWMRkZ7Jd8FYvnw5hg8fjsqVK8Pa2hrbt2/HzZs3MX/+fF3mIyI9Exsbi/3798PMzAybNm1Cr169pI5ERHoo33MwfvrpJwQGBuLatWuIiYnBunXrsGzZMl1mIyI9VLZsWURGRmLr1q0sF0SUp3wXjFu3bsHPz0/9uE+fPsjKykJsbKxOghGR/lAqlYiJiVE/rlq1Krp16yZdICLSe/kuGOnp6bC1tf3/Dc3MIJfLkZqaqpNgRKQflEolvvjiC3z66acICwuTOg4RGQiNJnlOnToVNjY26scZGRn49ttv4ejoqF6WfWtmIjJ8WVlZ8PPzw+bNm2FhYYGXL19KHYmIDES+C0bLli1x7dq1HMuaNm2KW7duqR/LZDLtJSMiSWVlZcHX1xe//vorLCwsEBISwsMiRJRv+S4YUVFROoxBRPokKysLn3/+OUJCQmBhYYHQ0FB07dpV6lhEZEA0vtAWERm3rKws9O3bF6GhobC0tMTWrVvRpUsXqWMRkYFhwSCiN5ibm8PS0hLbtm3j5b+JqEA0vhcJERk3CwsLrF+/HseOHWO5IKICY8EgImRmZmLZsmVQKpUAXpWMTz75ROJURGTIWDCITFxGRgZ8fHwwfPhwDB8+XOo4RGQkClQwjhw5gs8//xxNmjTBw4cPAQAbNmzA0aNHtRqOiHQru1zs2LEDVlZWnMxJRFqjccH47bff4OHhAWtra5w9exbp6ekAgBcvXmDOnDlaD0hEupGRkYEePXpg586dsLKyws6dO9G+fXupYxGRkdC4YMyePRsrVqzAqlWrYGlpqV7erFkzREdHazUcEelGeno6PvvsM+zatQsKhQK7du2Cp6en1LGIyIhofJrqtWvX0LJlyzeWOzo64vnz59rIREQ61rdvX/zxxx/qctG2bVupIxGRkdF4BKNUqVK4cePGG8uPHj2KihUrFihEUFAQXFxcoFAo0LhxY5w6dSpf223ZsgUymQze3t4Fel0iU+Xn5wdHR0f88ccfLBdEpBMaF4yBAwdi9OjR+OuvvyCTyfDo0SNs2rQJ48aNw9ChQzUOEBISgoCAAAQGBiI6Ohp16tSBh4cHHj9+/Nbt7ty5g3HjxqFFixYavyaRqfPy8sKdO3fg7u4udRQiMlIaF4yJEyeiT58+aNOmDV6+fImWLVtiwIABGDx4MEaOHKlxgEWLFmHgwIHw9/dHjRo1sGLFCtjY2GDt2rV5bqNUKtG3b1/MmDGjwKMmRKYkLS0N/fv3z3FzwiJFikgXiIiMnsYFQyaT4ZtvvsHTp09x8eJFnDx5Ek+ePMGsWbM0fvGMjAycOXMmx19RZmZmcHd3x4kTJ/LcbubMmShRogT69+//ztdIT09HYmJijg8iU5KamoouXbpg7dq16NSpk/piWkREulTge5HI5XLUqFHjvV48ISEBSqUSJUuWzLG8ZMmSuHr1aq7bHD16FGvWrEFMTEy+XmPu3LmYMWPGe+UkMlTZ5eLAgQOwtbXFihUrYG5uLnUsIjIBGheMVq1aQSaT5fn1gwcPvlegt0lKSkK/fv2watUqODk55WubSZMmISAgQP04MTERzs7OuopIpDdSUlLQpUsXhIeHw9bWFvv27eOcJSIqNBoXjLp16+Z4nJmZiZiYGFy8eBF+fn4aPZeTkxPMzc0RHx+fY3l8fDxKlSr1xvo3b97EnTt34OXlpV6mUqkAvLp3wrVr11CpUqUc21hZWcHKykqjXESGLiUlBZ07d0ZERATs7Oywb98+NG/eXOpYRGRCNC4YixcvznX59OnT8fLlS42eSy6Xo0GDBoiIiFCfaqpSqRAREYERI0a8sX61atVw4cKFHMumTJmCpKQk/PDDDxyZIPqf8ePHq8vF/v370axZM6kjEZGJKfAcjP/6/PPP0ahRIyxYsECj7QICAuDn54eGDRuiUaNGWLJkCZKTk+Hv7w8A8PX1RdmyZTF37lwoFArUrFkzx/bZM+H/u5zIlE2fPh3nzp3Dd999h6ZNm0odh4hMkNYKxokTJ6BQKDTezsfHB0+ePMG0adMQFxeHunXrYv/+/eqJn/fu3YOZGW/6SvQuSqVSPYHTyckJhw8ffut8KSIiXdK4YHTr1i3HYyEEYmNj8ffff2Pq1KkFCjFixIhcD4kAQFRU1Fu3DQ4OLtBrEhmTly9folOnTujduzcGDx4MACwXRCQpjQuGo6NjjsdmZmaoWrUqZs6ciXbt2mktGBHlT1JSEjp06ICjR4/i3Llz6N69e77PsiIi0hWNCoZSqYS/vz9q1aqFokWL6ioTEeVTUlIS2rdvj2PHjsHR0RFhYWEsF0SkFzSa3GBubo527drxrqlEeiAxMRGenp7qcnHgwAE0atRI6lhERAAKcKnwmjVr5rifAREVvuxycfz4cRQpUgTh4eH45JNPpI5FRKSmccGYPXs2xo0bh927dyM2Npb3+SCSQGhoKE6cOIGiRYsiPDwcDRs2lDoSEVEO+Z6DMXPmTIwdOxYdOnQAAHTu3DnHLHUhBGQyGW+kRFQI+vfvjydPnsDDwwP169eXOg4R0RvyXTBmzJiBIUOGIDIyUpd5iCgPL168gIWFBWxtbSGTyTBp0iSpIxER5SnfBUMIAQBwdXXVWRgiyt3z58/Rrl072NnZYffu3bCxsZE6EhHRW2k0B4MX7iEqfM+ePUPbtm1x+vRpnD9/Hvfu3ZM6EhHRO2l0HYwqVaq8s2Q8ffr0vQIR0f97+vQp2rZti+joaDg5OSEiIgLVqlWTOhYR0TtpVDBmzJjxxpU8iUg3nj59Cnd3d5w9exZOTk44ePAgatWqJXUsIqJ80ahg9OrVCyVKlNBVFiL6n3///Rfu7u6IiYlB8eLFcfDgQd4xmIgMSr7nYHD+BVHhefToEe7evYsSJUogMjKS5YKIDI7GZ5EQke7VqlUL4eHhUCgUqFGjhtRxiIg0lu+CoVKpdJmDyOQlJCTg9u3b6kt+8wJaRGTINL5UOBFp35MnT9C6dWu0adMGJ0+elDoOEdF7Y8Egktjjx4/RunVrXLhwAXZ2dihatKjUkYiI3ptGZ5EQkXZll4tLly6hTJkyiIyMRJUqVaSORUT03jiCQSSR+Ph4tGrVCpcuXULZsmURFRXFckFERoMjGEQSePLkCVq1aoUrV66oy8VHH30kdSwiIq1hwSCSgL29PVxcXJCUlITIyEiWCyIyOiwYRBJQKBTYvn07Hj9+jPLly0sdh4hI6zgHg6iQPHr0CN999536onUKhYLlgoiMFkcwiArBw4cP0apVK/zzzz9QqVSYNGmS1JGIiHSKIxhEOvbgwQO4ubnhn3/+wYcffojevXtLHYmISOdYMIh06P79+3Bzc8ONGzfg4uKCQ4cOwcXFRepYREQ6x4JBpCPZ5eLmzZuoUKECoqKi8OGHH0odi4ioULBgEOlAeno62rRpg1u3bqFixYosF0RkclgwiHTAysoK06ZNQ5UqVRAVFcWzRYjI5LBgEOnI559/jvPnz8PZ2VnqKEREhY4Fg0hLbt++DU9PT8TGxqqXWVlZSZiIiEg6LBhEWnDr1i24ubkhLCwMQ4YMkToOEZHkWDCI3tPNmzfh5uaGe/fuoUqVKli+fLnUkYiIJMcreRK9h+xy8eDBA1StWhWRkZEoXbq01LGIiCTHEQyiArpx4wZcXV3x4MEDVKtWDVFRUSwXRET/w4JBVEADBgzAw4cPUb16dURGRqJUqVJSRyIi0hssGEQFtGHDBnh5ebFcEBHlgnMwiDSQmpoKa2trAICzszN27dolcSIiIv3EEQyifLp27RqqVq2K0NBQqaMQEek9FgyifLh69Src3Nxw//59zJs3D1lZWVJHIiLSaywYRO9w5coVuLm5IS4uDrVr18aff/4JCwseXSQiehsWDKK3uHz5Mtzc3BAfH486deogIiICTk5OUsciItJ7LBhEebh06RJatWqFx48fo27duiwXREQaYMEgysPmzZvx+PFj1KtXDxEREfjggw+kjkREZDB4IJkoD7Nnz0aRIkXQv39/FCtWTOo4REQGhSMYRK+5ceMGMjIyAAAymQxff/01ywURUQGwYBD9z7lz5/Dpp5+iZ8+e6pJBREQFw4JBBCAmJgatW7fGv//+i0ePHiE1NVXqSEREBo0Fg0ze2bNn0aZNGzx9+hSNGzfGgQMH4OjoKHUsIiKDxoJBJi06OlpdLj799FOEhYWxXBARaQELBpmsM2fOoE2bNnj27BmaNGnCckFEpEUsGGSykpOTkZGRgaZNm2L//v1wcHCQOhIRkdHgdTDIZLVs2RKRkZGoXr067O3tpY5DRGRUWDDIpJw6dQoKhQK1a9cGADRq1EjiRERExomHSMhknDx5Em3btkWbNm1w9epVqeMQERk1FgwyCSdOnEC7du2QmJiIGjVqoFy5clJHIiIyaiwYZPSOHz8ODw8PJCUlwdXVFXv37oWdnZ3UsYiIjBoLBhm1Y8eOqcuFm5sb9uzZA1tbW6ljEREZPRYMMlpnzpyBp6cnXr58idatW7NcEBEVIp5FQkarSpUqqFOnDhQKBXbt2gUbGxupIxERmQwWDDJa9vb22LdvH8zNzVkuiIgKGQ+RkFE5dOgQ5s+fr35sb2/PckFEJAGOYJDRiIyMRKdOnZCSkoLy5cvDx8dH6khERCaLIxhkFA4ePIiOHTsiJSUFnp6e6NKli9SRiIhMGgsGGbyIiAh06tQJqamp6NChA3bs2AGFQiF1LCIik8ZDJGTQwsPD4eXlhbS0NHTo0AHbt2+HlZWV1LGIiEweRzDIYD18+BCdO3dGWloaOnbsyHJBRKRHOIJBBqts2bKYN28ewsPDsXXrVpYLIiI9whEMMjhCCPXno0aNws6dO1kuiIj0DAsGGZR9+/ahRYsWePbsmXqZmRn/GRMR6Rv+ZCaDsXfvXnh7e+PYsWM5LqZFRET6hwWDDMLu3bvRtWtXZGRkoHv37pgxY4bUkYiI6C1YMEjv/fHHH+jWrRsyMjLw2Wef4ddff4WlpaXUsYiI6C30omAEBQXBxcUFCoUCjRs3xqlTp/Jcd9WqVWjRogWKFi2KokWLwt3d/a3rk2HbtWsXunfvjszMTPTo0QObN29muSAiMgCSF4yQkBAEBAQgMDAQ0dHRqFOnDjw8PPD48eNc14+KikLv3r0RGRmJEydOwNnZGe3atcPDhw8LOTnpWnp6OkaPHo3MzEz4+PiwXBARGRDJC8aiRYswcOBA+Pv7o0aNGlixYgVsbGywdu3aXNfftGkThg0bhrp166JatWpYvXo1VCoVIiIiCjk56ZqVlRXCwsIwcuRIbNy4ERYWvGwLEZGhkLRgZGRk4MyZM3B3d1cvMzMzg7u7O06cOJGv50hJSUFmZiaKFSuW69fT09ORmJiY44P0W0JCgvrzKlWq4Mcff2S5ICIyMJIWjISEBCiVSpQsWTLH8pIlSyIuLi5fzzFhwgSUKVMmR0l53dy5c+Ho6Kj+cHZ2fu/cpDvbtm1DhQoVEBYWJnUUIiJ6D5IfInkf8+bNw5YtW95698xJkybhxYsX6o/79+8XckrKr61bt6JXr154+fIltm3bJnUcIiJ6D5KOOzs5OcHc3Bzx8fE5lsfHx6NUqVJv3XbBggXq+1DUrl07z/WsrKx4GWkDEBoaij59+kCpVMLX1xcrVqyQOhIREb0HSUcw5HI5GjRokGOCZvaEzSZNmuS53ffff49Zs2Zh//79aNiwYWFEJR3asmWLulz4+flh7dq1MDc3lzoWERG9B8lnzgUEBMDPzw8NGzZEo0aNsGTJEiQnJ8Pf3x8A4Ovri7Jly2Lu3LkAgO+++w7Tpk3D5s2b4eLiop6rYWdnBzs7O8neBxXMr7/+is8//xwqlQr+/v5YtWoVywURkRGQvGD4+PjgyZMnmDZtGuLi4lC3bl3s379fPfHz3r17OW5mtXz5cvUVHV8XGBiI6dOnF2Z00oJ9+/ZBpVLhyy+/xKpVq3jjMiIiIyF5wQCAESNGYMSIEbl+LSoqKsfjO3fu6D4QFZq1a9fC1dUV/v7+LBdEREaEP9Gp0B09ehRKpRIAYGFhgf79+7NcEBEZGf5Up0K1bt06tGzZEv3791eXDCIiMj4sGFRogoOD4e/vDyEErK2tIZPJpI5EREQ6woJBhWLt2rX48ssvIYTA0KFDERQUxMMiRERGjD/hSefWrFmDAQMGQAiBYcOGsVwQEZkA/pQnnXq9XIwYMQI//fQTD40QEZkAvThNlYxXiRIlYGlpiaFDh2LJkiUsF0REJoIFg3TKy8sLZ86cQc2aNVkuiIhMCA+RkNatW7cON2/eVD+uVasWywURkYlhwSCtWrZsGb744gu0atUKCQkJUschIiKJsGCQ1gQFBWH48OEAXt1j5oMPPpA4ERERSYUFg7Ri6dKl6vvJjB8/Ht9//z0PixARmTAWDHpvP/74I0aNGgUAmDBhAubNm8dyQURk4lgw6L1s3LgRo0ePBgBMmjQJc+fOZbkgIiKepkrvx9PTE7Vr14aXlxdmzZrFckFERABYMOg9OTk54fjx47CxsWG5ICIiNR4iIY3Nnz8fK1asUD+2tbVluSAiohw4gkEa+e677zBx4kQAwCeffIIGDRpInIiIiPQRRzAo3+bNm6cuFzNmzGC5ICKiPLFgUL7MmTMHkyZNAgDMmjUL06ZNkzgRERHpMx4ioXf69ttvMWXKFPXnkydPljgRERHpOxYMeqvDhw+ry8XroxhERERvw4JBb9WyZUtMmzYNNjY2mDBhgtRxiIjIQLBg0BuEEMjMzIRcLgfwakInERGRJjjJk3IQQiAwMBAeHh5ISUmROg4RERkoFgxSE0Jg2rRpmDVrFqKiorB7926pIxERkYHiIRIC8KpcTJkyBXPmzAEALFq0CD179pQ4FRERGSoWDIIQApMnT8a8efMAAIsXL8ZXX30lbSgiIjJoLBgmTgiBSZMm4bvvvgMA/PDDDxg1apTEqYiIyNCxYJi4R48eYeXKlQCApUuXYsSIERInIiIiY8CCYeLKli2LiIgI/P333xg4cKDUcYiIyEiwYJggIQTu3LmDChUqAADq1auHevXqSZyKiIiMCU9TNTFCCIwdOxZ16tTBiRMnpI5DRERGigXDhAghMGbMGCxevBhJSUm4dOmS1JGIiMhI8RCJiRBCYPTo0Vi6dCkAYOXKlRgwYIDEqYiIyFixYJgAIQRGjhyJoKAgAMCqVatYLoiISKdYMIycEAIjRozAsmXLIJPJsHr1anz55ZdSxyIiIiPHgmHkMjMzcefOHchkMqxZswb+/v5SRyIiIhPAgmHk5HI5fvvtNxw6dAgeHh5SxyEiIhPBs0iMkEqlwtatWyGEAAAoFAqWCyIiKlQsGEZGpVJhyJAh6NmzJ8aPHy91HCIiMlE8RGJEVCoVBg0ahDVr1sDMzAx169aVOhIREZkoFgwjoVKpMHDgQKxduxZmZmbYsGED+vTpI3UsIiIyUSwYRkCpVGLAgAEIDg6GmZkZNm3ahF69ekkdi4iITBjnYBiBQYMGITg4GObm5ti8eTPLBRERSY4Fwwi0atUKcrkcmzdvho+Pj9RxiIiIeIjEGHz++edwdXWFs7Oz1FGIiIgAcATDIGVlZWHixImIjY1VL2O5ICIifcKCYWCysrLg6+uL7777Dh4eHsjKypI6EhER0Rt4iMSAZGVloV+/ftiyZQssLCwwc+ZMWFjwfyEREekf/nYyEFlZWejbty9CQ0NhaWmJrVu3okuXLlLHIiIiyhULhgHIzMxE3759sXXrVlhaWuK3336Dl5eX1LGIiIjyxDkYBmDChAnYunUr5HI5tm/fznJBRER6jwXDAAQEBODjjz/G9u3b0alTJ6njEBERvRMPkegpIQRkMhkAoFy5coiJieGETiIiMhgcwdBDGRkZ6NGjB0JCQtTLWC6IiMiQsGDomfT0dHz22Wf47bff0L9/fzx58kTqSERERBrjn8V6JLtc7N69GwqFAtu3b0fx4sWljkVERKQxFgw9kZ6eju7du2PPnj1QKBTYtWsX2rZtK3UsIiKiAmHB0ANpaWno3r079u7dC4VCgT/++APu7u5SxyIiIiowzsHQA+vWrcPevXthbW2N3bt3s1wQEZHB4wiGHhg0aBCuX7+Ojh07onXr1lLHISIiem8sGBJJTU2Fubk55HI5ZDIZFi5cKHUkIiIireEhEgmkpqaiS5cu6NmzJzIyMqSOQ0REpHUcwShkKSkp6NKlC8LDw2Fra4urV6+idu3aUsciIiLSKhaMQpSSkgIvLy8cPHgQtra22LdvH8sFEREZJR4iKSTJycno1KkTDh48CDs7O+zfvx8tWrSQOhYREZFOcASjEGSXi6ioKNjb22P//v1o2rSp1LGIiIh0hgWjEFy9ehWnT5+Gvb09wsLC0KRJE6kjERER6RQLRiFo0KAB9uzZA7lcznJBREQmgQVDR16+fIkHDx6gWrVqAABXV1eJExERERUeTvLUgaSkJLRv3x4tWrTAhQsXpI5DRERU6FgwtCwxMRGenp44evQoMjMzkZaWJnUkIiKiQqcXBSMoKAguLi5QKBRo3LgxTp069db1t27dimrVqkGhUKBWrVrYu3dvISV9u7T0dHh6euL48eMoUqQIwsPD8cknn0gdi4iIqNBJXjBCQkIQEBCAwMBAREdHo06dOvDw8MDjx49zXf/48ePo3bs3+vfvj7Nnz8Lb2xve3t64ePFiISd/0+pVq3DixAkULVoU4eHhaNiwodSRiIiIJCETQggpAzRu3BiffPIJfvrpJwCASqWCs7MzRo4ciYkTJ76xvo+PD5KTk7F79271sk8//RR169bFihUr3vl6iYmJcHR0xIsXL+Dg4KCV9zBy42n8cfExnkWuhfk/kQgPD0f9+vW18txERET6QpPfoZKOYGRkZODMmTNwd3dXLzMzM4O7uztOnDiR6zYnTpzIsT4AeHh45Ll+eno6EhMTc3xom0z26r/WNjaIiIhguSAiIpMnacFISEiAUqlEyZIlcywvWbIk4uLict0mLi5Oo/Xnzp0LR0dH9Yezs7N2wr+mcqkiqFfOAVPHjkS9evW0/vxERESGxuivgzFp0iQEBASoHycmJmq9ZIxsUxkj21TW6nMSEREZMkkLhpOTE8zNzREfH59jeXx8PEqVKpXrNqVKldJofSsrK1hZWWknMBEREeWLpIdI5HI5GjRogIiICPUylUqFiIiIPC+p3aRJkxzrA8CBAwd4CW4iIiI9IvkhkoCAAPj5+aFhw4Zo1KgRlixZguTkZPj7+wMAfH19UbZsWcydOxcAMHr0aLi6umLhwoXo2LEjtmzZgr///hsrV66U8m0QERHRayQvGD4+Pnjy5AmmTZuGuLg41K1bF/v371dP5Lx37x7MzP5/oKVp06bYvHkzpkyZgsmTJ6Ny5crYuXMnatasKdVbICIiov+Q/DoYhU0X18EgIiIyBQZzHQwiIiIyTiwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdZLfrr2wZd88NjExUeIkREREhiX7d2d+bsRucgUjKSkJAODs7CxxEiIiIsOUlJQER0fHt64jE/mpIUZEpVLh0aNHsLe3h0wm08pzJiYmwtnZGffv34eDg4NWntPUcZ9qH/epdnF/ah/3qXbpYn8KIZCUlIQyZcrAzOztsyxMbgTDzMwM5cqV08lzOzg48JtCy7hPtY/7VLu4P7WP+1S7tL0/3zVykY2TPImIiEjrWDCIiIhI61gwtMDKygqBgYGwsrKSOorR4D7VPu5T7eL+1D7uU+2Sen+a3CRPIiIi0j2OYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWDkU1BQEFxcXKBQKNC4cWOcOnXqretv3boV1apVg0KhQK1atbB3795CSmo4NNmnq1atQosWLVC0aFEULVoU7u7u7/x/YGo0/TeabcuWLZDJZPD29tZtQAOk6T59/vw5hg8fjtKlS8PKygpVqlTh9/5rNN2fS5YsQdWqVWFtbQ1nZ2eMGTMGaWlphZRW/x0+fBheXl4oU6YMZDIZdu7c+c5toqKiUL9+fVhZWeGjjz5CcHCw7gIKeqctW7YIuVwu1q5dKy5duiQGDhwoihQpIuLj43Nd/9ixY8Lc3Fx8//334vLly2LKlCnC0tJSXLhwoZCT6y9N92mfPn1EUFCQOHv2rLhy5Yr44osvhKOjo3jw4EEhJ9dPmu7PbLdv3xZly5YVLVq0EF26dCmcsAZC032anp4uGjZsKDp06CCOHj0qbt++LaKiokRMTEwhJ9dPmu7PTZs2CSsrK7Fp0yZx+/ZtERYWJkqXLi3GjBlTyMn11969e8U333wjtm/fLgCIHTt2vHX9W7duCRsbGxEQECAuX74sli5dKszNzcX+/ft1ko8FIx8aNWokhg8frn6sVCpFmTJlxNy5c3Ndv2fPnqJjx445ljVu3FgMHjxYpzkNiab79L+ysrKEvb29WLduna4iGpSC7M+srCzRtGlTsXr1auHn58eC8R+a7tPly5eLihUrioyMjMKKaFA03Z/Dhw8XrVu3zrEsICBANGvWTKc5DVV+Csb48ePFxx9/nGOZj4+P8PDw0EkmHiJ5h4yMDJw5cwbu7u7qZWZmZnB3d8eJEydy3ebEiRM51gcADw+PPNc3NQXZp/+VkpKCzMxMFCtWTFcxDUZB9+fMmTNRokQJ9O/fvzBiGpSC7NNdu3ahSZMmGD58OEqWLImaNWtizpw5UCqVhRVbbxVkfzZt2hRnzpxRH0a5desW9u7diw4dOhRKZmNU2L+bTO5mZ5pKSEiAUqlEyZIlcywvWbIkrl69mus2cXFxua4fFxens5yGpCD79L8mTJiAMmXKvPHNYooKsj+PHj2KNWvWICYmphASGp6C7NNbt27h4MGD6Nu3L/bu3YsbN25g2LBhyMzMRGBgYGHE1lsF2Z99+vRBQkICmjdvDiEEsrKyMGTIEEyePLkwIhulvH43JSYmIjU1FdbW1lp9PY5gkMGZN28etmzZgh07dkChUEgdx+AkJSWhX79+WLVqFZycnKSOYzRUKhVKlCiBlStXokGDBvDx8cE333yDFStWSB3NIEVFRWHOnDlYtmwZoqOjsX37duzZswezZs2SOhrlE0cw3sHJyQnm5uaIj4/PsTw+Ph6lSpXKdZtSpUpptL6pKcg+zbZgwQLMmzcP4eHhqF27ti5jGgxN9+fNmzdx584deHl5qZepVCoAgIWFBa5du4ZKlSrpNrSeK8i/0dKlS8PS0hLm5ubqZdWrV0dcXBwyMjIgl8t1mlmfFWR/Tp06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZm/PtYU3n9bnJwcND66AXAEYx3ksvlaNCgASIiItTLVCoVIiIi0KRJk1y3adKkSY71AeDAgQN5rm9qCrJPAeD777/HrFmzsH//fjRs2LAwohoETfdntWrVcOHCBcTExKg/OnfujFatWiEmJgbOzs6FGV8vFeTfaLNmzXDjxg11WQOA69evo3Tp0iZdLoCC7c+UlJQ3SkR2eRO8hVaBFPrvJp1MHTUyW7ZsEVZWViI4OFhcvnxZDBo0SBQpUkTExcUJIYTo16+fmDhxonr9Y8eOCQsLC7FgwQJx5coVERgYyNNU/0PTfTpv3jwhl8vFtm3bRGxsrPojKSlJqregVzTdn//Fs0jepOk+vXfvnrC3txcjRowQ165dE7t37xYlSpQQs2fPluot6BVN92dgYKCwt7cXv/76q7h165b4888/RaVKlUTPnj2legt6JykpSZw9e1acPXtWABCLFi0SZ8+eFXfv3hVCCDFx4kTRr18/9frZp6l+/fXX4sqVKyIoKIinqeqDpUuXivLlywu5XC4aNWokTp48qf6aq6ur8PPzy7F+aGioqFKlipDL5eLjjz8We/bsKeTE+k+Tffrhhx8KAG98BAYGFn5wPaXpv9HXsWDkTtN9evz4cdG4cWNhZWUlKlasKL799luRlZVVyKn1lyb7MzMzU0yfPl1UqlRJKBQK4ezsLIYNGyaePXtW+MH1VGRkZK4/F7P3o5+fn3B1dX1jm7p16wq5XC4qVqwofvnlF53l4+3aiYiISOs4B4OIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg8jIBAcHo0iRIlLHKDCZTIadO3e+dZ0vvvgC3t7ehZKHiAqGBYNID33xxReQyWRvfNy4cUPqaAgODlbnMTMzQ7ly5eDv74/Hjx9r5fljY2PRvn17AMCdO3cgk8kQExOTY50ffvgBwcHBWnm9vEyfPl39Ps3NzeHs7IxBgwbh6dOnGj0PyxCZKt6unUhPeXp64pdffsmxrHjx4hKlycnBwQHXrl2DSqXCuXPn4O/vj0ePHiEsLOy9nzuv23e/ztHR8b1fJz8+/vhjhIeHQ6lU4sqVK/jyyy/x4sULhISEFMrrExkyjmAQ6SkrKyuUKlUqx4e5uTkWLVqEWrVqwdbWFs7Ozhg2bBhevnyZ5/OcO3cOrVq1gr29PRwcHNCgQQP8/fff6q8fPXoULVq0gLW1NZydnTFq1CgkJye/NZtMJkOpUqVQpkwZtG/fHqNGjUJ4eDhSU1OhUqkwc+ZMlCtXDlZWVqhbty7279+v3jYjIwMjRoxA6dKloVAo8OGHH2Lu3Lk5njv7EEmFChUAAPXq1YNMJoObmxuAnKMCK1euRJkyZXLcJh0AunTpgi+//FL9+Pfff0f9+vWhUChQsWJFzJgxA1lZWW99nxYWFihVqhTKli0Ld3d39OjRAwcOHFB/XalUon///qhQoQKsra1RtWpV/PDDD+qvT58+HevWrcPvv/+uHg2JiooCANy/fx89e/ZEkSJFUKxYMXTp0gV37tx5ax4iQ8KCQWRgzMzM8OOPP+LSpUtYt24dDh48iPHjx+e5ft++fVGuXDmcPn0aZ86cwcSJE2FpaQkAuHnzJjw9PdG9e3ecP38eISEhOHr0KEaMGKFRJmtra6hUKmRlZeGHH37AwoULsWDBApw/fx4eHh7o3Lkz/vnnHwDAjz/+iF27diE0NBTXrl3Dpk2b4OLikuvznjp1CgAQHh6O2NhYbN++/Y11evTogX///ReRkZHqZU+fPsX+/fvRt29fAMCRI0fg6+uL0aNH4/Lly/j5558RHByMb7/9Nt/v8c6dOwgLC4NcLlcvU6lUKFeuHLZu3YrLly9j2rRpmDx5MkJDQwEA48aNQ8+ePeHp6YnY2FjExsaiadOmyMzMhIeHB+zt7XHkyBEcO3YMdnZ28PT0REZGRr4zEek1nd2nlYgKzM/PT5ibmwtbW1v1x2effZbrulu3bhUffPCB+vEvv/wiHB0d1Y/t7e1FcHBwrtv2799fDBo0KMeyI0eOCDMzM5GamprrNv99/uvXr4sqVaqIhg0bCiGEKFOmjPj2229zbPPJJ5+IYcOGCSGEGDlypGjdurVQqVS5Pj8AsWPHDiGEELdv3xYAxNmzZ3Os89/by3fp0kV8+eWX6sc///yzKFOmjFAqlUIIIdq0aSPmzJmT4zk2bNggSpcunWsGIYQIDAwUZmZmwtbWVigUCvWtsBctWpTnNkIIMXz4cNG9e/c8s2a/dtWqVXPsg/T0dGFtbS3CwsLe+vxEhoJzMIj0VKtWrbB8+XL1Y1tbWwCv/pqfO3curl69isTERGRlZSEtLQ0pKSmwsbF543kCAgIwYMAAbNiwQT3MX6lSJQCvDp+cP38emzZtUq8vhIBKpcLt27dRvXr1XLO9ePECdnZ2UKlUSEtLQ/PmzbF69WokJibi0aNHaNasWY71mzVrhnPnzgF4dXijbdu2qFq1Kjw9PdGpUye0a9fuvfZV3759MXDgQCxbtgxWVlbYtGkTevXqBTMzM/X7PHbsWI4RC6VS+db9BgBVq1bFrl27kJaWho0bNyImJgYjR47MsU5QUBDWrl2Le/fuITU1FRkZGahbt+5b8547dw43btyAvb19juVpaWm4efNmAfYAkf5hwSDSU7a2tvjoo49yLLtz5w46deqEoUOH4ttvv0WxYsVw9OhR9O/fHxkZGbn+opw+fTr69OmDPXv2YN++fQgMDMSWLVvQtWtXvHz5EoMHD8aoUaPe2K58+fJ5ZrO3t0d0dDTMzMxQunRpWFtbAwASExPf+b7q16+P27dvY9++fQgPD0fPnj3h7u6Obdu2vXPbvHh5eUEIgT179uCTTz7BkSNHsHjxYvXXX758iRkzZqBbt25vbKtQKPJ8Xrlcrv5/MG/ePHTs2BEzZszArFmzAABbtmzBuHHjsHDhQjRp0gT29vaYP38+/vrrr7fmffnyJRo0aJCj2GXTl4m8RO+LBYPIgJw5cwYqlQoLFy5U/3Wefbz/bapUqYIqVapgzJgx6N27N3755Rd07doV9evXx+XLl98oMu9iZmaW6zYODg4oU6YMjh07BldXV/XyY8eOoVGjRjnW8/HxgY+PDz777DN4enri6dOnKFasWI7ny57voFQq35pHoVCgW7du2LRpE27cuIGqVauifv366q/Xr18f165d0/h9/teUKVPQunVrDB06VP0+mzZtimHDhqnX+e8IhFwufyN//fr1ERISghIlSsDBweG9MhHpK07yJDIgH330ETIzM7F06VLcunULGzZswIoVK/JcPzU1FSNGjEBUVBTu3r2LY8eO4fTp0+pDHxMmTMDx48cxYsQIxMTE4J9//sHvv/+u8STP13399df47rvvEBISgmvXrmHixImIiYnB6NGjAQCLFi3Cr7/+iqtXr+L69evYunUrSpUqlevFwUqUKAFra2vs378f8fHxePHiRZ6v27dvX+zZswdr165VT+7MNm3aNKxfvx4zZszApUuXcOXKFWzZsgVTpkzR6L01adIEtWvXxpw5cwAAlStXxt9//42wsDBcv34dU6dOxenTp3Ns4+LigvPnz+PatWtISEhAZmYm+vbtCycnJ3Tp0gVHjhzB7du3ERUVhVGjRuHBgwcaZSLSW1JPAiGiN+U2MTDbokWLROnSpYW1tbXw8PAQ69evFwDEs2fPhBA5J2Gmp6eLXr16CWdnZyGXy0WZMmXEiBEjckzgPHXqlGjbtq2ws7MTtra2onbt2m9M0nzdfyd5/pdSqRTTp08XZcuWFZaWlqJOnTpi37596q+vXLlS1K1bV9ja2goHBwfRpk0bER0drf46XpvkKYQQq1atEs7OzsLMzEy4urrmuX+USqUoXbq0ACBu3rz5Rq79+/eLpk2bCmtra+Hg4CAaNWokVq5cmef7CAwMFHXq1Hlj+a+//iqsrKzEvXv3RFpamvjiiy+Eo6OjKFKkiBg6dKiYOHFiju0eP36s3r8ARGRkpBBCiNjYWOHr6yucnJyElZWVqFixohg4cKB48eJFnpmIDIlMCCGkrThERERkbHiIhIiIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi07v8A1k+hWenkwRsAAAAASUVORK5CYII=", + "text/plain": [ + "
            " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import roc_curve, roc_auc_score\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "y_scores = model.predict_proba(X_test)\n", + "# calculate ROC curve\n", + "fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])\n", + "\n", + "# plot ROC curve\n", + "fig = plt.figure(figsize=(6, 6))\n", + "# Plot the diagonal 50% line\n", + "plt.plot([0, 1], [0, 1], 'k--')\n", + "# Plot the FPR and TPR achieved by our model\n", + "plt.plot(fpr, tpr)\n", + "plt.xlabel('False Positive Rate')\n", + "plt.ylabel('True Positive Rate')\n", + "plt.title('ROC Curve')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.9749908725812341\n" + ] + } + ], + "source": [ + "# Calculate AUC score\n", + "auc = roc_auc_score(y_test,y_scores[:,1])\n", + "print(auc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان بومی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "vscode": { + "interpreter": { + "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" + } + }, + "coopTranslator": { + "original_hash": "ef50cc584e0b79412610cc7da15e1f86", + "translation_date": "2025-09-04T01:19:52+00:00", + "source_file": "2-Regression/4-Logistic/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fa/2-Regression/README.md b/translations/fa/2-Regression/README.md new file mode 100644 index 000000000..70ddb31c3 --- /dev/null +++ b/translations/fa/2-Regression/README.md @@ -0,0 +1,54 @@ + +# مدل‌های رگرسیون برای یادگیری ماشین +## موضوع منطقه‌ای: مدل‌های رگرسیون برای قیمت کدو تنبل در آمریکای شمالی 🎃 + +در آمریکای شمالی، کدو تنبل‌ها اغلب برای هالووین به شکل چهره‌های ترسناک تراشیده می‌شوند. بیایید درباره این سبزیجات جذاب بیشتر بدانیم! + +![jack-o-lanterns](../../../translated_images/jack-o-lanterns.181c661a9212457d7756f37219f660f1358af27554d856e5a991f16b4e15337c.fa.jpg) +> عکس از Beth Teutschmann در Unsplash + +## آنچه خواهید آموخت + +[![Introduction to Regression](https://img.youtube.com/vi/5QnJtDad4iQ/0.jpg)](https://youtu.be/5QnJtDad4iQ "Regression Introduction video - Click to Watch!") +> 🎥 برای مشاهده ویدئوی معرفی سریع این درس، روی تصویر بالا کلیک کنید + +درس‌های این بخش انواع رگرسیون را در زمینه یادگیری ماشین پوشش می‌دهند. مدل‌های رگرسیون می‌توانند _رابطه_ بین متغیرها را تعیین کنند. این نوع مدل می‌تواند مقادیر مانند طول، دما یا سن را پیش‌بینی کند و در نتیجه روابط بین متغیرها را با تحلیل نقاط داده کشف کند. + +در این مجموعه درس‌ها، تفاوت‌های بین رگرسیون خطی و لجستیک را کشف خواهید کرد و خواهید آموخت که چه زمانی باید یکی را بر دیگری ترجیح دهید. + +[![ML for beginners - Introduction to Regression models for Machine Learning](https://img.youtube.com/vi/XA3OaoW86R8/0.jpg)](https://youtu.be/XA3OaoW86R8 "ML for beginners - Introduction to Regression models for Machine Learning") + +> 🎥 برای مشاهده ویدئوی کوتاه معرفی مدل‌های رگرسیون، روی تصویر بالا کلیک کنید. + +در این گروه از درس‌ها، شما آماده انجام وظایف یادگیری ماشین خواهید شد، از جمله تنظیم Visual Studio Code برای مدیریت نوت‌بوک‌ها، محیط رایج برای دانشمندان داده. شما با Scikit-learn، یک کتابخانه برای یادگیری ماشین، آشنا خواهید شد و اولین مدل‌های خود را خواهید ساخت، با تمرکز بر مدل‌های رگرسیون در این فصل. + +> ابزارهای کم‌کد مفیدی وجود دارند که می‌توانند به شما در یادگیری کار با مدل‌های رگرسیون کمک کنند. [Azure ML را برای این کار امتحان کنید](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +### درس‌ها + +1. [ابزارهای کار](1-Tools/README.md) +2. [مدیریت داده‌ها](2-Data/README.md) +3. [رگرسیون خطی و چندجمله‌ای](3-Linear/README.md) +4. [رگرسیون لجستیک](4-Logistic/README.md) + +--- +### اعتبارها + +"یادگیری ماشین با رگرسیون" با ♥️ توسط [Jen Looper](https://twitter.com/jenlooper) نوشته شده است. + +♥️ مشارکت‌کنندگان آزمون شامل: [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan) و [Ornella Altunyan](https://twitter.com/ornelladotcom) + +مجموعه داده کدو تنبل توسط [این پروژه در Kaggle](https://www.kaggle.com/usda/a-year-of-pumpkin-prices) پیشنهاد شده است و داده‌های آن از [گزارش‌های استاندارد بازارهای ترمینال محصولات خاص](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice) که توسط وزارت کشاورزی ایالات متحده توزیع شده‌اند، گرفته شده است. ما برخی نقاط مربوط به رنگ بر اساس نوع را اضافه کرده‌ایم تا توزیع را نرمال کنیم. این داده‌ها در حوزه عمومی قرار دارند. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/3-Web-App/1-Web-App/README.md b/translations/fa/3-Web-App/1-Web-App/README.md new file mode 100644 index 000000000..59a417e4d --- /dev/null +++ b/translations/fa/3-Web-App/1-Web-App/README.md @@ -0,0 +1,359 @@ + +# ساخت یک اپلیکیشن وب برای استفاده از مدل یادگیری ماشین + +در این درس، شما یک مدل یادگیری ماشین را بر روی مجموعه داده‌ای که از این دنیا نیست آموزش خواهید داد: _مشاهدات بشقاب‌پرنده در طول قرن گذشته_، که از پایگاه داده NUFORC جمع‌آوری شده است. + +شما یاد خواهید گرفت: + +- چگونه یک مدل آموزش‌دیده را "pickle" کنید +- چگونه از آن مدل در یک اپلیکیشن Flask استفاده کنید + +ما همچنان از نوت‌بوک‌ها برای پاکسازی داده‌ها و آموزش مدل استفاده خواهیم کرد، اما می‌توانید این فرآیند را یک قدم جلوتر ببرید و مدل را در دنیای واقعی، به عبارتی در یک اپلیکیشن وب، به کار ببرید. + +برای انجام این کار، باید یک اپلیکیشن وب با استفاده از Flask بسازید. + +## [پیش‌ آزمون](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/17/) + +## ساخت اپلیکیشن + +راه‌های مختلفی برای ساخت اپلیکیشن‌های وب وجود دارد که بتوانند مدل‌های یادگیری ماشین را مصرف کنند. معماری وب شما ممکن است بر نحوه آموزش مدل تأثیر بگذارد. تصور کنید که در یک کسب‌وکار کار می‌کنید که گروه داده‌کاوی آن یک مدل آموزش داده‌اند و می‌خواهند شما از آن در اپلیکیشن استفاده کنید. + +### ملاحظات + +سؤالات زیادی وجود دارد که باید بپرسید: + +- **آیا اپلیکیشن وب است یا موبایل؟** اگر در حال ساخت یک اپلیکیشن موبایل هستید یا نیاز دارید مدل را در زمینه IoT استفاده کنید، می‌توانید از [TensorFlow Lite](https://www.tensorflow.org/lite/) استفاده کنید و مدل را در اپلیکیشن‌های اندروید یا iOS به کار ببرید. +- **مدل کجا قرار خواهد گرفت؟** در فضای ابری یا به صورت محلی؟ +- **پشتیبانی آفلاین.** آیا اپلیکیشن باید به صورت آفلاین کار کند؟ +- **چه تکنولوژی برای آموزش مدل استفاده شده است؟** تکنولوژی انتخاب‌شده ممکن است بر ابزارهایی که باید استفاده کنید تأثیر بگذارد. + - **استفاده از TensorFlow.** اگر مدل را با استفاده از TensorFlow آموزش داده‌اید، این اکوسیستم امکان تبدیل مدل TensorFlow برای استفاده در اپلیکیشن وب را با استفاده از [TensorFlow.js](https://www.tensorflow.org/js/) فراهم می‌کند. + - **استفاده از PyTorch.** اگر مدل را با استفاده از کتابخانه‌ای مانند [PyTorch](https://pytorch.org/) ساخته‌اید، می‌توانید آن را به فرمت [ONNX](https://onnx.ai/) (Open Neural Network Exchange) صادر کنید تا در اپلیکیشن‌های وب جاوااسکریپت که از [Onnx Runtime](https://www.onnxruntime.ai/) استفاده می‌کنند، به کار ببرید. این گزینه در درس آینده برای مدلی که با Scikit-learn آموزش داده شده است بررسی خواهد شد. + - **استفاده از Lobe.ai یا Azure Custom Vision.** اگر از یک سیستم SaaS یادگیری ماشین مانند [Lobe.ai](https://lobe.ai/) یا [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) برای آموزش مدل استفاده می‌کنید، این نوع نرم‌افزار راه‌هایی برای صادر کردن مدل برای بسیاری از پلتفرم‌ها فراهم می‌کند، از جمله ساخت یک API سفارشی که توسط اپلیکیشن آنلاین شما در فضای ابری قابل پرس‌وجو باشد. + +شما همچنین این فرصت را دارید که یک اپلیکیشن وب کامل با Flask بسازید که بتواند مدل را در خود مرورگر وب آموزش دهد. این کار همچنین می‌تواند با استفاده از TensorFlow.js در زمینه جاوااسکریپت انجام شود. + +برای اهداف ما، از آنجا که با نوت‌بوک‌های مبتنی بر پایتون کار کرده‌ایم، بیایید مراحل لازم برای صادر کردن یک مدل آموزش‌دیده از چنین نوت‌بوکی به فرمتی که توسط یک اپلیکیشن وب ساخته‌شده با پایتون قابل خواندن باشد را بررسی کنیم. + +## ابزار + +برای این کار، به دو ابزار نیاز دارید: Flask و Pickle، که هر دو بر روی پایتون اجرا می‌شوند. + +✅ [Flask](https://palletsprojects.com/p/flask/) چیست؟ توسط سازندگانش به عنوان یک "میکرو-فریم‌ورک" تعریف شده است، Flask ویژگی‌های پایه‌ای فریم‌ورک‌های وب را با استفاده از پایتون و یک موتور قالب‌سازی برای ساخت صفحات وب فراهم می‌کند. به [این ماژول آموزشی](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) نگاهی بیندازید تا با Flask کار کنید. + +✅ [Pickle](https://docs.python.org/3/library/pickle.html) چیست؟ Pickle 🥒 یک ماژول پایتون است که ساختار یک شیء پایتون را سریال‌سازی و دی‌سریال‌سازی می‌کند. وقتی یک مدل را "pickle" می‌کنید، ساختار آن را برای استفاده در وب سریال‌سازی یا تخت می‌کنید. مراقب باشید: pickle ذاتاً امن نیست، بنابراین اگر از شما خواسته شد یک فایل "un-pickle" کنید، احتیاط کنید. فایل‌های pickled پسوند `.pkl` دارند. + +## تمرین - پاکسازی داده‌ها + +در این درس شما از داده‌های ۸۰,۰۰۰ مشاهده بشقاب‌پرنده که توسط [NUFORC](https://nuforc.org) (مرکز ملی گزارش‌دهی بشقاب‌پرنده) جمع‌آوری شده است استفاده خواهید کرد. این داده‌ها شامل توضیحات جالبی از مشاهدات بشقاب‌پرنده هستند، برای مثال: + +- **توضیح طولانی مثال.** "یک مرد از یک پرتو نور که در شب بر روی یک میدان چمن می‌تابد بیرون می‌آید و به سمت پارکینگ Texas Instruments می‌دود". +- **توضیح کوتاه مثال.** "چراغ‌ها ما را دنبال کردند". + +صفحه‌گسترده [ufos.csv](../../../../3-Web-App/1-Web-App/data/ufos.csv) شامل ستون‌هایی درباره `شهر`، `ایالت` و `کشور` محل مشاهده، `شکل` شیء و `عرض جغرافیایی` و `طول جغرافیایی` آن است. + +در [نوت‌بوک](notebook.ipynb) خالی که در این درس گنجانده شده است: + +1. `pandas`، `matplotlib` و `numpy` را همانطور که در درس‌های قبلی انجام دادید وارد کنید و صفحه‌گسترده ufos را وارد کنید. می‌توانید به یک نمونه داده نگاه کنید: + + ```python + import pandas as pd + import numpy as np + + ufos = pd.read_csv('./data/ufos.csv') + ufos.head() + ``` + +1. داده‌های ufos را به یک دیتافریم کوچک با عناوین تازه تبدیل کنید. مقادیر منحصربه‌فرد در فیلد `کشور` را بررسی کنید. + + ```python + ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']}) + + ufos.Country.unique() + ``` + +1. اکنون می‌توانید مقدار داده‌هایی که باید با آن‌ها کار کنید را با حذف مقادیر null و فقط وارد کردن مشاهدات بین ۱-۶۰ ثانیه کاهش دهید: + + ```python + ufos.dropna(inplace=True) + + ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)] + + ufos.info() + ``` + +1. کتابخانه `LabelEncoder` از Scikit-learn را وارد کنید تا مقادیر متنی کشورها را به عدد تبدیل کنید: + + ✅ LabelEncoder داده‌ها را به صورت الفبایی کدگذاری می‌کند + + ```python + from sklearn.preprocessing import LabelEncoder + + ufos['Country'] = LabelEncoder().fit_transform(ufos['Country']) + + ufos.head() + ``` + + داده‌های شما باید به این شکل باشد: + + ```output + Seconds Country Latitude Longitude + 2 20.0 3 53.200000 -2.916667 + 3 20.0 4 28.978333 -96.645833 + 14 30.0 4 35.823889 -80.253611 + 23 60.0 4 45.582778 -122.352222 + 24 3.0 3 51.783333 -0.783333 + ``` + +## تمرین - ساخت مدل + +اکنون می‌توانید آماده شوید تا مدل را با تقسیم داده‌ها به گروه‌های آموزشی و آزمایشی آموزش دهید. + +1. سه ویژگی‌ای که می‌خواهید بر اساس آن‌ها آموزش دهید را به عنوان بردار X انتخاب کنید، و بردار y همان `کشور` خواهد بود. شما می‌خواهید بتوانید `ثانیه‌ها`، `عرض جغرافیایی` و `طول جغرافیایی` را وارد کنید و یک شناسه کشور دریافت کنید. + + ```python + from sklearn.model_selection import train_test_split + + Selected_features = ['Seconds','Latitude','Longitude'] + + X = ufos[Selected_features] + y = ufos['Country'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + ``` + +1. مدل خود را با استفاده از رگرسیون لجستیک آموزش دهید: + + ```python + from sklearn.metrics import accuracy_score, classification_report + from sklearn.linear_model import LogisticRegression + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('Accuracy: ', accuracy_score(y_test, predictions)) + ``` + +دقت بد نیست **(حدود ۹۵٪)**، که تعجب‌آور نیست، زیرا `کشور` و `عرض/طول جغرافیایی` با هم مرتبط هستند. + +مدلی که ایجاد کردید خیلی انقلابی نیست، زیرا باید بتوانید یک `کشور` را از `عرض جغرافیایی` و `طول جغرافیایی` استنباط کنید، اما این یک تمرین خوب است که سعی کنید از داده‌های خامی که پاکسازی کرده‌اید، مدل را آموزش دهید، صادر کنید و سپس از این مدل در یک اپلیکیشن وب استفاده کنید. + +## تمرین - "pickle" کردن مدل + +اکنون زمان آن رسیده است که مدل خود را _pickle_ کنید! می‌توانید این کار را در چند خط کد انجام دهید. پس از اینکه مدل _pickled_ شد، آن را بارگذاری کنید و آن را با یک آرایه داده نمونه که شامل مقادیر ثانیه‌ها، عرض جغرافیایی و طول جغرافیایی است آزمایش کنید. + +```python +import pickle +model_filename = 'ufo-model.pkl' +pickle.dump(model, open(model_filename,'wb')) + +model = pickle.load(open('ufo-model.pkl','rb')) +print(model.predict([[50,44,-12]])) +``` + +مدل **'3'** را برمی‌گرداند، که کد کشور برای بریتانیا است. شگفت‌انگیز! 👽 + +## تمرین - ساخت اپلیکیشن Flask + +اکنون می‌توانید یک اپلیکیشن Flask بسازید تا مدل خود را فراخوانی کنید و نتایج مشابهی را به شکلی زیباتر نمایش دهید. + +1. ابتدا یک پوشه به نام **web-app** در کنار فایل _notebook.ipynb_ که فایل _ufo-model.pkl_ شما در آن قرار دارد ایجاد کنید. + +1. در آن پوشه سه پوشه دیگر ایجاد کنید: **static**، با یک پوشه **css** داخل آن، و **templates**. اکنون باید فایل‌ها و دایرکتوری‌های زیر را داشته باشید: + + ```output + web-app/ + static/ + css/ + templates/ + notebook.ipynb + ufo-model.pkl + ``` + + ✅ به پوشه solution برای مشاهده اپلیکیشن کامل مراجعه کنید + +1. اولین فایلی که باید در پوشه _web-app_ ایجاد کنید فایل **requirements.txt** است. مانند _package.json_ در یک اپلیکیشن جاوااسکریپت، این فایل وابستگی‌های مورد نیاز اپلیکیشن را لیست می‌کند. در **requirements.txt** خطوط زیر را اضافه کنید: + + ```text + scikit-learn + pandas + numpy + flask + ``` + +1. اکنون این فایل را با رفتن به _web-app_ اجرا کنید: + + ```bash + cd web-app + ``` + +1. در ترمینال خود `pip install` را تایپ کنید تا کتابخانه‌های لیست‌شده در _requirements.txt_ نصب شوند: + + ```bash + pip install -r requirements.txt + ``` + +1. اکنون آماده‌اید تا سه فایل دیگر برای تکمیل اپلیکیشن ایجاد کنید: + + 1. فایل **app.py** را در ریشه ایجاد کنید. + 2. فایل **index.html** را در دایرکتوری _templates_ ایجاد کنید. + 3. فایل **styles.css** را در دایرکتوری _static/css_ ایجاد کنید. + +1. فایل _styles.css_ را با چند سبک بسازید: + + ```css + body { + width: 100%; + height: 100%; + font-family: 'Helvetica'; + background: black; + color: #fff; + text-align: center; + letter-spacing: 1.4px; + font-size: 30px; + } + + input { + min-width: 150px; + } + + .grid { + width: 300px; + border: 1px solid #2d2d2d; + display: grid; + justify-content: center; + margin: 20px auto; + } + + .box { + color: #fff; + background: #2d2d2d; + padding: 12px; + display: inline-block; + } + ``` + +1. سپس فایل _index.html_ را بسازید: + + ```html + + + + + 🛸 UFO Appearance Prediction! 👽 + + + + +
            + +
            + +

            According to the number of seconds, latitude and longitude, which country is likely to have reported seeing a UFO?

            + +
            + + + + +
            + +

            {{ prediction_text }}

            + +
            + +
            + + + + ``` + + به قالب‌بندی در این فایل نگاه کنید. به سینتکس 'mustache' اطراف متغیرهایی که توسط اپلیکیشن ارائه خواهند شد، مانند متن پیش‌بینی: `{{}}` توجه کنید. همچنین یک فرم وجود دارد که یک پیش‌بینی را به مسیر `/predict` ارسال می‌کند. + + در نهایت، آماده‌اید تا فایل پایتون که مصرف مدل و نمایش پیش‌بینی‌ها را هدایت می‌کند بسازید: + +1. در `app.py` اضافه کنید: + + ```python + import numpy as np + from flask import Flask, request, render_template + import pickle + + app = Flask(__name__) + + model = pickle.load(open("./ufo-model.pkl", "rb")) + + + @app.route("/") + def home(): + return render_template("index.html") + + + @app.route("/predict", methods=["POST"]) + def predict(): + + int_features = [int(x) for x in request.form.values()] + final_features = [np.array(int_features)] + prediction = model.predict(final_features) + + output = prediction[0] + + countries = ["Australia", "Canada", "Germany", "UK", "US"] + + return render_template( + "index.html", prediction_text="Likely country: {}".format(countries[output]) + ) + + + if __name__ == "__main__": + app.run(debug=True) + ``` + + > 💡 نکته: وقتی [`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode) را هنگام اجرای اپلیکیشن وب با Flask اضافه می‌کنید، هر تغییری که در اپلیکیشن خود ایجاد کنید بلافاصله بدون نیاز به راه‌اندازی مجدد سرور منعکس می‌شود. مراقب باشید! این حالت را در اپلیکیشن تولیدی فعال نکنید. + +اگر `python app.py` یا `python3 app.py` را اجرا کنید - سرور وب شما به صورت محلی راه‌اندازی می‌شود و می‌توانید یک فرم کوتاه را پر کنید تا پاسخ سوال خود درباره محل مشاهده بشقاب‌پرنده‌ها را دریافت کنید! + +قبل از انجام این کار، به بخش‌های `app.py` نگاه کنید: + +1. ابتدا وابستگی‌ها بارگذاری می‌شوند و اپلیکیشن شروع می‌شود. +1. سپس مدل وارد می‌شود. +1. سپس index.html در مسیر اصلی رندر می‌شود. + +در مسیر `/predict`، چندین اتفاق رخ می‌دهد وقتی فرم ارسال می‌شود: + +1. متغیرهای فرم جمع‌آوری شده و به یک آرایه numpy تبدیل می‌شوند. سپس به مدل ارسال می‌شوند و یک پیش‌بینی برگردانده می‌شود. +2. کشورهایی که می‌خواهیم نمایش داده شوند به متن خوانا از کد کشور پیش‌بینی‌شده تبدیل می‌شوند و آن مقدار به index.html ارسال می‌شود تا در قالب رندر شود. + +استفاده از مدل به این روش، با Flask و یک مدل pickled، نسبتاً ساده است. سخت‌ترین بخش این است که بفهمید داده‌هایی که باید به مدل ارسال شوند تا یک پیش‌بینی دریافت کنید چه شکلی هستند. این کاملاً به نحوه آموزش مدل بستگی دارد. این مدل سه نقطه داده برای ورودی نیاز دارد تا یک پیش‌بینی ارائه دهد. + +در یک محیط حرفه‌ای، می‌توانید ببینید که ارتباط خوب بین افرادی که مدل را آموزش می‌دهند و کسانی که آن را در اپلیکیشن وب یا موبایل مصرف می‌کنند چقدر ضروری است. در مورد ما، فقط یک نفر هستید، شما! + +--- + +## 🚀 چالش + +به جای کار در یک نوت‌بوک و وارد کردن مدل به اپلیکیشن Flask، می‌توانید مدل را مستقیماً در اپلیکیشن Flask آموزش دهید! سعی کنید کد پایتون خود را در نوت‌بوک تبدیل کنید، شاید پس از پاکسازی داده‌ها، تا مدل را از داخل اپلیکیشن در مسیری به نام `train` آموزش دهید. مزایا و معایب دنبال کردن این روش چیست؟ + +## [پس‌ آزمون](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/18/) + +## مرور و مطالعه شخصی + +راه‌های زیادی برای ساخت اپلیکیشن وب برای مصرف مدل‌های یادگیری ماشین وجود دارد. لیستی از راه‌هایی که می‌توانید با استفاده از جاوااسکریپت یا پایتون اپلیکیشن وب بسازید تا از یادگیری ماشین بهره ببرید تهیه کنید. معماری را در نظر بگیرید: آیا مدل باید در اپلیکیشن باقی بماند یا در فضای ابری قرار گیرد؟ اگر گزینه دوم، چگونه به آن دسترسی پیدا می‌کنید؟ یک مدل معماری برای یک راه‌حل وب یادگیری ماشین طراحی کنید. + +## تکلیف + +[یک مدل متفاوت را امتحان کنید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/3-Web-App/1-Web-App/assignment.md b/translations/fa/3-Web-App/1-Web-App/assignment.md new file mode 100644 index 000000000..a5c95ec11 --- /dev/null +++ b/translations/fa/3-Web-App/1-Web-App/assignment.md @@ -0,0 +1,25 @@ + +# امتحان یک مدل دیگر + +## دستورالعمل‌ها + +حالا که یک برنامه وب با استفاده از یک مدل رگرسیون آموزش‌دیده ساخته‌اید، از یکی از مدل‌های درس‌های قبلی رگرسیون استفاده کنید تا این برنامه وب را دوباره بسازید. می‌توانید سبک برنامه را حفظ کنید یا آن را به شکلی متفاوت طراحی کنید تا داده‌های کدو تنبل را منعکس کند. دقت کنید که ورودی‌ها را تغییر دهید تا با روش آموزش مدل شما هماهنگ باشد. + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| -------------------------- | --------------------------------------------------------- | --------------------------------------------------------- | --------------------------------------- | +| | برنامه وب همان‌طور که انتظار می‌رود اجرا شده و در فضای ابری مستقر شده است | برنامه وب دارای نقص است یا نتایج غیرمنتظره‌ای نشان می‌دهد | برنامه وب به درستی کار نمی‌کند | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/3-Web-App/1-Web-App/notebook.ipynb b/translations/fa/3-Web-App/1-Web-App/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/fa/3-Web-App/1-Web-App/solution/notebook.ipynb b/translations/fa/3-Web-App/1-Web-App/solution/notebook.ipynb new file mode 100644 index 000000000..e91aea98a --- /dev/null +++ b/translations/fa/3-Web-App/1-Web-App/solution/notebook.ipynb @@ -0,0 +1,269 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5fa2e8f4584c78250ca9729b46562ceb", + "translation_date": "2025-09-04T02:22:18+00:00", + "source_file": "3-Web-App/1-Web-App/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## ساخت یک برنامه وب با استفاده از مدل رگرسیون برای بررسی مشاهده بشقاب پرنده\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " datetime city state country shape \\\n", + "0 10/10/1949 20:30 san marcos tx us cylinder \n", + "1 10/10/1949 21:00 lackland afb tx NaN light \n", + "2 10/10/1955 17:00 chester (uk/england) NaN gb circle \n", + "3 10/10/1956 21:00 edna tx us circle \n", + "4 10/10/1960 20:00 kaneohe hi us light \n", + "\n", + " duration (seconds) duration (hours/min) \\\n", + "0 2700.0 45 minutes \n", + "1 7200.0 1-2 hrs \n", + "2 20.0 20 seconds \n", + "3 20.0 1/2 hour \n", + "4 900.0 15 minutes \n", + "\n", + " comments date posted latitude \\\n", + "0 This event took place in early fall around 194... 4/27/2004 29.883056 \n", + "1 1949 Lackland AFB, TX. Lights racing acros... 12/16/2005 29.384210 \n", + "2 Green/Orange circular disc over Chester, En... 1/21/2008 53.200000 \n", + "3 My older brother and twin sister were leaving ... 1/17/2004 28.978333 \n", + "4 AS a Marine 1st Lt. flying an FJ4B fighter/att... 1/22/2004 21.418056 \n", + "\n", + " longitude \n", + "0 -97.941111 \n", + "1 -98.581082 \n", + "2 -2.916667 \n", + "3 -96.645833 \n", + "4 -157.803611 " + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            datetimecitystatecountryshapeduration (seconds)duration (hours/min)commentsdate postedlatitudelongitude
            010/10/1949 20:30san marcostxuscylinder2700.045 minutesThis event took place in early fall around 194...4/27/200429.883056-97.941111
            110/10/1949 21:00lackland afbtxNaNlight7200.01-2 hrs1949 Lackland AFB&#44 TX. Lights racing acros...12/16/200529.384210-98.581082
            210/10/1955 17:00chester (uk/england)NaNgbcircle20.020 secondsGreen/Orange circular disc over Chester&#44 En...1/21/200853.200000-2.916667
            310/10/1956 21:00ednatxuscircle20.01/2 hourMy older brother and twin sister were leaving ...1/17/200428.978333-96.645833
            410/10/1960 20:00kaneohehiuslight900.015 minutesAS a Marine 1st Lt. flying an FJ4B fighter/att...1/22/200421.418056-157.803611
            \n
            " + }, + "metadata": {}, + "execution_count": 23 + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "ufos = pd.read_csv('../data/ufos.csv')\n", + "ufos.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array(['us', nan, 'gb', 'ca', 'au', 'de'], dtype=object)" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ], + "source": [ + "\n", + "ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']})\n", + "\n", + "ufos.Country.unique()\n", + "\n", + "# 0 au, 1 ca, 2 de, 3 gb, 4 us" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nInt64Index: 25863 entries, 2 to 80330\nData columns (total 4 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 Seconds 25863 non-null float64\n 1 Country 25863 non-null object \n 2 Latitude 25863 non-null float64\n 3 Longitude 25863 non-null float64\ndtypes: float64(3), object(1)\nmemory usage: 1010.3+ KB\n" + ] + } + ], + "source": [ + "ufos.dropna(inplace=True)\n", + "\n", + "ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)]\n", + "\n", + "ufos.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Seconds Country Latitude Longitude\n", + "2 20.0 3 53.200000 -2.916667\n", + "3 20.0 4 28.978333 -96.645833\n", + "14 30.0 4 35.823889 -80.253611\n", + "23 60.0 4 45.582778 -122.352222\n", + "24 3.0 3 51.783333 -0.783333" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            SecondsCountryLatitudeLongitude
            220.0353.200000-2.916667
            320.0428.978333-96.645833
            1430.0435.823889-80.253611
            2360.0445.582778-122.352222
            243.0351.783333-0.783333
            \n
            " + }, + "metadata": {}, + "execution_count": 26 + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "\n", + "ufos['Country'] = LabelEncoder().fit_transform(ufos['Country'])\n", + "\n", + "ufos.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "Selected_features = ['Seconds','Latitude','Longitude']\n", + "\n", + "X = ufos[Selected_features]\n", + "y = ufos['Country']\n", + "\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", + " FutureWarning)\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", + " \"this warning.\", FutureWarning)\n", + " precision recall f1-score support\n", + "\n", + " 0 1.00 1.00 1.00 41\n", + " 1 1.00 0.02 0.05 250\n", + " 2 0.00 0.00 0.00 8\n", + " 3 0.94 1.00 0.97 131\n", + " 4 0.95 1.00 0.97 4743\n", + "\n", + " accuracy 0.95 5173\n", + " macro avg 0.78 0.60 0.60 5173\n", + "weighted avg 0.95 0.95 0.93 5173\n", + "\n", + "Predicted labels: [4 4 4 ... 3 4 4]\n", + "Accuracy: 0.9512855209742895\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import accuracy_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('Accuracy: ', accuracy_score(y_test, predictions))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[3]\n" + ] + } + ], + "source": [ + "import pickle\n", + "model_filename = 'ufo-model.pkl'\n", + "pickle.dump(model, open(model_filename,'wb'))\n", + "\n", + "model = pickle.load(open('ufo-model.pkl','rb'))\n", + "print(model.predict([[50,44,-12]]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/3-Web-App/README.md b/translations/fa/3-Web-App/README.md new file mode 100644 index 000000000..8a0b2a9ff --- /dev/null +++ b/translations/fa/3-Web-App/README.md @@ -0,0 +1,35 @@ + +# ساخت یک اپلیکیشن وب برای استفاده از مدل یادگیری ماشین + +در این بخش از دوره آموزشی، با یک موضوع کاربردی در یادگیری ماشین آشنا خواهید شد: چگونگی ذخیره مدل Scikit-learn به‌صورت یک فایل که بتوان از آن برای پیش‌بینی‌ها در یک اپلیکیشن وب استفاده کرد. پس از ذخیره مدل، یاد می‌گیرید که چگونه از آن در یک اپلیکیشن وب ساخته‌شده با Flask استفاده کنید. ابتدا مدلی را با استفاده از داده‌هایی که درباره مشاهده بشقاب‌پرنده‌ها هستند ایجاد می‌کنید! سپس، یک اپلیکیشن وب می‌سازید که به شما امکان می‌دهد با وارد کردن تعداد ثانیه‌ها به همراه مقادیر عرض و طول جغرافیایی، پیش‌بینی کنید که کدام کشور مشاهده بشقاب‌پرنده را گزارش داده است. + +![پارک بشقاب‌پرنده](../../../translated_images/ufo.9e787f5161da9d4d1dafc537e1da09be8210f2ee996cb638aa5cee1d92867a04.fa.jpg) + +عکس از مایکل هرن در Unsplash + +## درس‌ها + +1. [ساخت یک اپلیکیشن وب](1-Web-App/README.md) + +## منابع + +"ساخت یک اپلیکیشن وب" با ♥️ توسط [جن لوپر](https://twitter.com/jenlooper) نوشته شده است. + +♥️ آزمون‌ها توسط روهان راج نوشته شده‌اند. + +داده‌ها از [Kaggle](https://www.kaggle.com/NUFORC/ufo-sightings) گرفته شده‌اند. + +معماری اپلیکیشن وب تا حدی با الهام از [این مقاله](https://towardsdatascience.com/how-to-easily-deploy-machine-learning-models-using-flask-b95af8fe34d4) و [این مخزن](https://github.com/abhinavsagar/machine-learning-deployment) توسط آبیناو ساگار پیشنهاد شده است. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/4-Classification/1-Introduction/README.md b/translations/fa/4-Classification/1-Introduction/README.md new file mode 100644 index 000000000..662391c09 --- /dev/null +++ b/translations/fa/4-Classification/1-Introduction/README.md @@ -0,0 +1,313 @@ + +# مقدمه‌ای بر طبقه‌بندی + +در این چهار درس، شما به یکی از موضوعات اساسی یادگیری ماشین کلاسیک - _طبقه‌بندی_ - خواهید پرداخت. ما با استفاده از الگوریتم‌های مختلف طبقه‌بندی و یک مجموعه داده درباره غذاهای فوق‌العاده آسیا و هند پیش خواهیم رفت. امیدوارم گرسنه باشید! + +![فقط یک ذره!](../../../../translated_images/pinch.1b035ec9ba7e0d408313b551b60c721c9c290b2dd2094115bc87e6ddacd114c9.fa.png) + +> در این درس‌ها غذاهای آسیایی را جشن بگیرید! تصویر توسط [Jen Looper](https://twitter.com/jenlooper) + +طبقه‌بندی نوعی از [یادگیری نظارت‌شده](https://wikipedia.org/wiki/Supervised_learning) است که شباهت زیادی به تکنیک‌های رگرسیون دارد. اگر یادگیری ماشین به پیش‌بینی مقادیر یا نام‌ها با استفاده از مجموعه داده‌ها مربوط باشد، طبقه‌بندی معمولاً به دو گروه تقسیم می‌شود: _طبقه‌بندی دودویی_ و _طبقه‌بندی چندکلاسه_. + +[![مقدمه‌ای بر طبقه‌بندی](https://img.youtube.com/vi/eg8DJYwdMyg/0.jpg)](https://youtu.be/eg8DJYwdMyg "مقدمه‌ای بر طبقه‌بندی") + +> 🎥 روی تصویر بالا کلیک کنید تا ویدئویی از جان گوتاگ از MIT درباره طبقه‌بندی ببینید. + +به یاد داشته باشید: + +- **رگرسیون خطی** به شما کمک کرد تا روابط بین متغیرها را پیش‌بینی کنید و پیش‌بینی‌های دقیقی درباره اینکه یک نقطه داده جدید در کجای خط قرار می‌گیرد انجام دهید. به عنوان مثال، شما می‌توانستید پیش‌بینی کنید _قیمت یک کدو تنبل در سپتامبر در مقابل دسامبر چقدر خواهد بود_. +- **رگرسیون لجستیک** به شما کمک کرد تا "دسته‌های دودویی" را کشف کنید: در این نقطه قیمت، _آیا این کدو تنبل نارنجی است یا غیر نارنجی_؟ + +طبقه‌بندی از الگوریتم‌های مختلفی برای تعیین برچسب یا کلاس یک نقطه داده استفاده می‌کند. بیایید با این داده‌های مربوط به غذاها کار کنیم تا ببینیم آیا می‌توانیم با مشاهده گروهی از مواد اولیه، منشأ غذایی آن را تعیین کنیم. + +## [پیش‌آزمون درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/) + +> ### [این درس به زبان R نیز موجود است!](../../../../4-Classification/1-Introduction/solution/R/lesson_10.html) + +### مقدمه + +طبقه‌بندی یکی از فعالیت‌های اساسی محققان یادگیری ماشین و دانشمندان داده است. از طبقه‌بندی ساده یک مقدار دودویی ("آیا این ایمیل اسپم است یا نه؟") تا طبقه‌بندی و تقسیم‌بندی پیچیده تصاویر با استفاده از بینایی کامپیوتری، همیشه مفید است که بتوان داده‌ها را به کلاس‌ها تقسیم کرد و از آن‌ها سوال پرسید. + +برای بیان این فرآیند به صورت علمی‌تر، روش طبقه‌بندی شما یک مدل پیش‌بینی ایجاد می‌کند که به شما امکان می‌دهد رابطه بین متغیرهای ورودی و متغیرهای خروجی را ترسیم کنید. + +![طبقه‌بندی دودویی در مقابل چندکلاسه](../../../../translated_images/binary-multiclass.b56d0c86c81105a697dddd82242c1d11e4d78b7afefea07a44627a0f1111c1a9.fa.png) + +> مشکلات دودویی در مقابل چندکلاسه برای الگوریتم‌های طبقه‌بندی. اینفوگرافیک توسط [Jen Looper](https://twitter.com/jenlooper) + +قبل از شروع فرآیند پاک‌سازی داده‌ها، تجسم آن‌ها و آماده‌سازی آن‌ها برای وظایف یادگیری ماشین، بیایید کمی درباره روش‌های مختلفی که یادگیری ماشین می‌تواند برای طبقه‌بندی داده‌ها استفاده شود، یاد بگیریم. + +طبقه‌بندی که از [آمار](https://wikipedia.org/wiki/Statistical_classification) مشتق شده است، با استفاده از ویژگی‌هایی مانند `smoker`، `weight` و `age` احتمال ابتلا به بیماری X را تعیین می‌کند. به عنوان یک تکنیک یادگیری نظارت‌شده مشابه تمرین‌های رگرسیون که قبلاً انجام داده‌اید، داده‌های شما برچسب‌گذاری شده‌اند و الگوریتم‌های یادگیری ماشین از این برچسب‌ها برای طبقه‌بندی و پیش‌بینی کلاس‌ها (یا 'ویژگی‌ها') یک مجموعه داده و اختصاص آن‌ها به یک گروه یا نتیجه استفاده می‌کنند. + +✅ لحظه‌ای وقت بگذارید و یک مجموعه داده درباره غذاها را تصور کنید. یک مدل چندکلاسه چه سوالاتی می‌تواند پاسخ دهد؟ یک مدل دودویی چه سوالاتی می‌تواند پاسخ دهد؟ اگر بخواهید تعیین کنید که آیا یک غذای خاص احتمالاً از شنبلیله استفاده می‌کند یا نه، چه؟ اگر بخواهید ببینید که آیا با داشتن یک کیسه خرید پر از بادیان ستاره‌ای، کنگر فرنگی، گل‌کلم و ترب کوهی می‌توانید یک غذای معمولی هندی درست کنید، چه؟ + +[![سبدهای مرموز دیوانه‌وار](https://img.youtube.com/vi/GuTeDbaNoEU/0.jpg)](https://youtu.be/GuTeDbaNoEU "سبدهای مرموز دیوانه‌وار") + +> 🎥 روی تصویر بالا کلیک کنید تا ویدئویی ببینید. کل فرضیه برنامه 'Chopped' این است که سرآشپزها باید با انتخاب تصادفی مواد اولیه یک غذا درست کنند. مطمئناً یک مدل یادگیری ماشین می‌توانست کمک کند! + +## سلام به 'طبقه‌بند' + +سوالی که می‌خواهیم از این مجموعه داده غذایی بپرسیم در واقع یک سوال **چندکلاسه** است، زیرا چندین غذای ملی بالقوه برای کار داریم. با توجه به یک دسته مواد اولیه، این داده‌ها به کدام یک از این کلاس‌ها تعلق خواهند داشت؟ + +Scikit-learn چندین الگوریتم مختلف برای طبقه‌بندی داده‌ها ارائه می‌دهد، بسته به نوع مشکلی که می‌خواهید حل کنید. در دو درس بعدی، درباره چندین الگوریتم از این دست خواهید آموخت. + +## تمرین - پاک‌سازی و متعادل‌سازی داده‌ها + +اولین وظیفه‌ای که باید انجام دهید، قبل از شروع این پروژه، پاک‌سازی و **متعادل‌سازی** داده‌ها برای دستیابی به نتایج بهتر است. با فایل خالی _notebook.ipynb_ در ریشه این پوشه شروع کنید. + +اولین چیزی که باید نصب کنید [imblearn](https://imbalanced-learn.org/stable/) است. این یک بسته Scikit-learn است که به شما امکان می‌دهد داده‌ها را بهتر متعادل کنید (در ادامه بیشتر درباره این وظیفه خواهید آموخت). + +1. برای نصب `imblearn`، دستور `pip install` را اجرا کنید، به این صورت: + + ```python + pip install imblearn + ``` + +1. بسته‌هایی را که برای وارد کردن داده‌ها و تجسم آن‌ها نیاز دارید، همچنین `SMOTE` از `imblearn` را وارد کنید. + + ```python + import pandas as pd + import matplotlib.pyplot as plt + import matplotlib as mpl + import numpy as np + from imblearn.over_sampling import SMOTE + ``` + + اکنون آماده هستید تا داده‌ها را وارد کنید. + +1. وظیفه بعدی وارد کردن داده‌ها است: + + ```python + df = pd.read_csv('../data/cuisines.csv') + ``` + + استفاده از `read_csv()` محتوای فایل csv _cusines.csv_ را می‌خواند و آن را در متغیر `df` قرار می‌دهد. + +1. شکل داده‌ها را بررسی کنید: + + ```python + df.head() + ``` + + پنج ردیف اول به این صورت هستند: + + ```output + | | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | + | --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | + | 0 | 65 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 1 | 66 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 2 | 67 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 3 | 68 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 4 | 69 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + ``` + +1. اطلاعاتی درباره این داده‌ها با فراخوانی `info()` دریافت کنید: + + ```python + df.info() + ``` + + خروجی شما شبیه به این است: + + ```output + + RangeIndex: 2448 entries, 0 to 2447 + Columns: 385 entries, Unnamed: 0 to zucchini + dtypes: int64(384), object(1) + memory usage: 7.2+ MB + ``` + +## تمرین - یادگیری درباره غذاها + +اکنون کار شروع به جالب‌تر شدن می‌کند. بیایید توزیع داده‌ها را بر اساس غذا کشف کنیم. + +1. داده‌ها را به صورت نمودار میله‌ای با فراخوانی `barh()` رسم کنید: + + ```python + df.cuisine.value_counts().plot.barh() + ``` + + ![توزیع داده‌های غذایی](../../../../translated_images/cuisine-dist.d0cc2d551abe5c25f83d73a5f560927e4a061e9a4560bac1e97d35682ef3ca6d.fa.png) + + تعداد غذاها محدود است، اما توزیع داده‌ها نابرابر است. شما می‌توانید این مشکل را حل کنید! قبل از انجام این کار، کمی بیشتر کاوش کنید. + +1. ببینید چقدر داده برای هر غذا موجود است و آن را چاپ کنید: + + ```python + thai_df = df[(df.cuisine == "thai")] + japanese_df = df[(df.cuisine == "japanese")] + chinese_df = df[(df.cuisine == "chinese")] + indian_df = df[(df.cuisine == "indian")] + korean_df = df[(df.cuisine == "korean")] + + print(f'thai df: {thai_df.shape}') + print(f'japanese df: {japanese_df.shape}') + print(f'chinese df: {chinese_df.shape}') + print(f'indian df: {indian_df.shape}') + print(f'korean df: {korean_df.shape}') + ``` + + خروجی به این صورت است: + + ```output + thai df: (289, 385) + japanese df: (320, 385) + chinese df: (442, 385) + indian df: (598, 385) + korean df: (799, 385) + ``` + +## کشف مواد اولیه + +اکنون می‌توانید عمیق‌تر به داده‌ها بپردازید و یاد بگیرید که مواد اولیه معمولی هر غذا چیست. شما باید داده‌های تکراری که باعث ایجاد سردرگمی بین غذاها می‌شود را پاک کنید، پس بیایید درباره این مشکل یاد بگیریم. + +1. یک تابع `create_ingredient()` در پایتون ایجاد کنید تا یک دیتافریم مواد اولیه بسازد. این تابع با حذف یک ستون غیرمفید شروع می‌شود و مواد اولیه را بر اساس تعداد مرتب می‌کند: + + ```python + def create_ingredient_df(df): + ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value') + ingredient_df = ingredient_df[(ingredient_df.T != 0).any()] + ingredient_df = ingredient_df.sort_values(by='value', ascending=False, + inplace=False) + return ingredient_df + ``` + + اکنون می‌توانید از این تابع برای دریافت ایده‌ای از ده ماده اولیه محبوب‌ترین غذاها استفاده کنید. + +1. `create_ingredient()` را فراخوانی کنید و آن را با فراخوانی `barh()` رسم کنید: + + ```python + thai_ingredient_df = create_ingredient_df(thai_df) + thai_ingredient_df.head(10).plot.barh() + ``` + + ![تایلندی](../../../../translated_images/thai.0269dbab2e78bd38a132067759fe980008bdb80b6d778e5313448dbe12bed846.fa.png) + +1. همین کار را برای داده‌های ژاپنی انجام دهید: + + ```python + japanese_ingredient_df = create_ingredient_df(japanese_df) + japanese_ingredient_df.head(10).plot.barh() + ``` + + ![ژاپنی](../../../../translated_images/japanese.30260486f2a05c463c8faa62ebe7b38f0961ed293bd9a6db8eef5d3f0cf17155.fa.png) + +1. اکنون برای مواد اولیه چینی: + + ```python + chinese_ingredient_df = create_ingredient_df(chinese_df) + chinese_ingredient_df.head(10).plot.barh() + ``` + + ![چینی](../../../../translated_images/chinese.e62cafa5309f111afd1b54490336daf4e927ce32bed837069a0b7ce481dfae8d.fa.png) + +1. مواد اولیه هندی را رسم کنید: + + ```python + indian_ingredient_df = create_ingredient_df(indian_df) + indian_ingredient_df.head(10).plot.barh() + ``` + + ![هندی](../../../../translated_images/indian.2c4292002af1a1f97a4a24fec6b1459ee8ff616c3822ae56bb62b9903e192af6.fa.png) + +1. در نهایت، مواد اولیه کره‌ای را رسم کنید: + + ```python + korean_ingredient_df = create_ingredient_df(korean_df) + korean_ingredient_df.head(10).plot.barh() + ``` + + ![کره‌ای](../../../../translated_images/korean.4a4f0274f3d9805a65e61f05597eeaad8620b03be23a2c0a705c023f65fad2c0.fa.png) + +1. اکنون، مواد اولیه مشترک که باعث ایجاد سردرگمی بین غذاهای مختلف می‌شوند را با فراخوانی `drop()` حذف کنید: + + همه عاشق برنج، سیر و زنجبیل هستند! + + ```python + feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1) + labels_df = df.cuisine #.unique() + feature_df.head() + ``` + +## متعادل‌سازی مجموعه داده + +اکنون که داده‌ها را پاک کرده‌اید، از [SMOTE](https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html) - "تکنیک نمونه‌برداری بیش از حد اقلیت مصنوعی" - برای متعادل‌سازی آن استفاده کنید. + +1. `fit_resample()` را فراخوانی کنید، این استراتژی نمونه‌های جدیدی با استفاده از درون‌یابی ایجاد می‌کند. + + ```python + oversample = SMOTE() + transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df) + ``` + + با متعادل‌سازی داده‌ها، نتایج بهتری هنگام طبقه‌بندی آن‌ها خواهید داشت. به یک طبقه‌بندی دودویی فکر کنید. اگر بیشتر داده‌های شما متعلق به یک کلاس باشد، یک مدل یادگیری ماشین آن کلاس را بیشتر پیش‌بینی می‌کند، فقط به این دلیل که داده‌های بیشتری برای آن وجود دارد. متعادل‌سازی داده‌ها هرگونه عدم تعادل را حذف می‌کند. + +1. اکنون می‌توانید تعداد برچسب‌ها برای هر ماده اولیه را بررسی کنید: + + ```python + print(f'new label count: {transformed_label_df.value_counts()}') + print(f'old label count: {df.cuisine.value_counts()}') + ``` + + خروجی شما به این صورت است: + + ```output + new label count: korean 799 + chinese 799 + indian 799 + japanese 799 + thai 799 + Name: cuisine, dtype: int64 + old label count: korean 799 + indian 598 + chinese 442 + japanese 320 + thai 289 + Name: cuisine, dtype: int64 + ``` + + داده‌ها تمیز، متعادل و بسیار خوشمزه هستند! + +1. آخرین مرحله ذخیره داده‌های متعادل‌شده، شامل برچسب‌ها و ویژگی‌ها، در یک دیتافریم جدید است که می‌تواند به یک فایل صادر شود: + + ```python + transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer') + ``` + +1. می‌توانید یک بار دیگر داده‌ها را با استفاده از `transformed_df.head()` و `transformed_df.info()` بررسی کنید. یک نسخه از این داده‌ها را برای استفاده در درس‌های آینده ذخیره کنید: + + ```python + transformed_df.head() + transformed_df.info() + transformed_df.to_csv("../data/cleaned_cuisines.csv") + ``` + + این فایل CSV تازه اکنون در پوشه داده‌های ریشه موجود است. + +--- + +## 🚀چالش + +این برنامه درسی شامل چندین مجموعه داده جالب است. پوشه‌های `data` را بررسی کنید و ببینید آیا مجموعه داده‌هایی وجود دارند که برای طبقه‌بندی دودویی یا چندکلاسه مناسب باشند؟ چه سوالاتی می‌توانید از این مجموعه داده‌ها بپرسید؟ + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/) + +## مرور و مطالعه شخصی + +API مربوط به SMOTE را بررسی کنید. این ابزار برای چه مواردی بهترین استفاده را دارد؟ چه مشکلاتی را حل می‌کند؟ + +## تکلیف + +[روش‌های طبقه‌بندی را بررسی کنید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/4-Classification/1-Introduction/assignment.md b/translations/fa/4-Classification/1-Introduction/assignment.md new file mode 100644 index 000000000..9df8681af --- /dev/null +++ b/translations/fa/4-Classification/1-Introduction/assignment.md @@ -0,0 +1,25 @@ + +# بررسی روش‌های دسته‌بندی + +## دستورالعمل‌ها + +در [مستندات Scikit-learn](https://scikit-learn.org/stable/supervised_learning.html) می‌توانید لیست بزرگی از روش‌های دسته‌بندی داده‌ها را پیدا کنید. یک جستجوی کوچک در این مستندات انجام دهید: هدف شما این است که روش‌های دسته‌بندی را پیدا کنید و یک مجموعه داده از این دوره آموزشی، یک سوالی که می‌توانید از آن بپرسید، و یک تکنیک دسته‌بندی را با هم تطبیق دهید. یک جدول یا فایل .doc ایجاد کنید و توضیح دهید که چگونه مجموعه داده با الگوریتم دسته‌بندی کار می‌کند. + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| --------- | ----------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| | یک سند ارائه شده که شامل بررسی ۵ الگوریتم همراه با یک تکنیک دسته‌بندی است. بررسی به خوبی توضیح داده شده و جزئیات کافی دارد. | یک سند ارائه شده که شامل بررسی ۳ الگوریتم همراه با یک تکنیک دسته‌بندی است. بررسی به خوبی توضیح داده شده و جزئیات کافی دارد. | یک سند ارائه شده که شامل بررسی کمتر از سه الگوریتم همراه با یک تکنیک دسته‌بندی است و بررسی نه به خوبی توضیح داده شده و نه جزئیات کافی دارد. | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/4-Classification/1-Introduction/notebook.ipynb b/translations/fa/4-Classification/1-Introduction/notebook.ipynb new file mode 100644 index 000000000..eff8425ea --- /dev/null +++ b/translations/fa/4-Classification/1-Introduction/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d544ef384b7ba73757d830a72372a7f2", + "translation_date": "2025-09-04T02:40:06+00:00", + "source_file": "4-Classification/1-Introduction/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/4-Classification/1-Introduction/solution/Julia/README.md b/translations/fa/4-Classification/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..bdf89e1ee --- /dev/null +++ b/translations/fa/4-Classification/1-Introduction/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb b/translations/fa/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb new file mode 100644 index 000000000..ce9eae2a0 --- /dev/null +++ b/translations/fa/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb @@ -0,0 +1,724 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_10-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "2621e24705e8100893c9bf84e0fc8aef", + "translation_date": "2025-09-04T02:50:11+00:00", + "source_file": "4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb", + "language_code": "fa" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# ساخت یک مدل طبقه‌بندی: غذاهای خوشمزه آسیایی و هندی\n" + ], + "metadata": { + "id": "ItETB4tSFprR" + } + }, + { + "cell_type": "markdown", + "source": [ + "## مقدمه‌ای بر طبقه‌بندی: پاکسازی، آماده‌سازی و بصری‌سازی داده‌ها\n", + "\n", + "در این چهار درس، شما به یکی از اصول اساسی یادگیری ماشین کلاسیک یعنی *طبقه‌بندی* می‌پردازید. ما با استفاده از الگوریتم‌های مختلف طبقه‌بندی و یک مجموعه داده درباره غذاهای شگفت‌انگیز آسیایی و هندی کار خواهیم کرد. امیدوارم گرسنه باشید!\n", + "\n", + "

            \n", + " \n", + "

            در این درس‌ها غذاهای آسیایی را جشن بگیرید! تصویر از جن لوپر
            \n", + "\n", + "طبقه‌بندی نوعی از [یادگیری نظارت‌شده](https://wikipedia.org/wiki/Supervised_learning) است که شباهت زیادی به تکنیک‌های رگرسیون دارد. در طبقه‌بندی، شما مدلی را آموزش می‌دهید تا پیش‌بینی کند که یک آیتم به کدام `دسته‌بندی` تعلق دارد. اگر یادگیری ماشین به پیش‌بینی مقادیر یا نام‌ها با استفاده از مجموعه داده‌ها مربوط باشد، طبقه‌بندی معمولاً به دو گروه تقسیم می‌شود: *طبقه‌بندی دودویی* و *طبقه‌بندی چندکلاسه*.\n", + "\n", + "به یاد داشته باشید:\n", + "\n", + "- **رگرسیون خطی** به شما کمک کرد تا روابط بین متغیرها را پیش‌بینی کنید و پیش‌بینی‌های دقیقی درباره مکان یک نقطه داده جدید نسبت به آن خط انجام دهید. به عنوان مثال، می‌توانستید مقادیر عددی مانند *قیمت یک کدو تنبل در سپتامبر در مقابل دسامبر* را پیش‌بینی کنید.\n", + "\n", + "- **رگرسیون لجستیک** به شما کمک کرد تا \"دسته‌بندی‌های دودویی\" را کشف کنید: در این نقطه قیمتی، *آیا این کدو تنبل نارنجی است یا غیرنارنجی*؟\n", + "\n", + "طبقه‌بندی از الگوریتم‌های مختلفی برای تعیین برچسب یا کلاس یک نقطه داده استفاده می‌کند. بیایید با این داده‌های مربوط به غذاها کار کنیم تا ببینیم آیا با مشاهده گروهی از مواد اولیه می‌توانیم منشأ غذایی آن را تعیین کنیم یا خیر.\n", + "\n", + "### [**پیش‌از-درس: آزمون کوتاه**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/)\n", + "\n", + "### **مقدمه**\n", + "\n", + "طبقه‌بندی یکی از فعالیت‌های اساسی محققان یادگیری ماشین و دانشمندان داده است. از طبقه‌بندی ساده یک مقدار دودویی (\"آیا این ایمیل اسپم است یا خیر؟\") تا طبقه‌بندی و تقسیم‌بندی پیچیده تصاویر با استفاده از بینایی کامپیوتر، همیشه مفید است که بتوان داده‌ها را به کلاس‌ها تقسیم کرد و از آن‌ها سوالاتی پرسید.\n", + "\n", + "برای بیان این فرآیند به صورت علمی‌تر، روش طبقه‌بندی شما مدلی پیش‌بینی‌کننده ایجاد می‌کند که به شما امکان می‌دهد رابطه بین متغیرهای ورودی و متغیرهای خروجی را ترسیم کنید.\n", + "\n", + "

            \n", + " \n", + "

            مسائل دودویی در مقابل چندکلاسه برای الگوریتم‌های طبقه‌بندی. اینفوگرافیک از جن لوپر
            \n", + "\n", + "پیش از شروع فرآیند پاکسازی داده‌ها، بصری‌سازی آن‌ها و آماده‌سازی برای وظایف یادگیری ماشین، بیایید کمی درباره روش‌های مختلفی که یادگیری ماشین می‌تواند برای طبقه‌بندی داده‌ها استفاده شود، یاد بگیریم.\n", + "\n", + "طبقه‌بندی که از [آمار](https://wikipedia.org/wiki/Statistical_classification) مشتق شده است، در یادگیری ماشین کلاسیک از ویژگی‌هایی مانند `سیگاری بودن`، `وزن` و `سن` برای تعیین *احتمال ابتلا به بیماری X* استفاده می‌کند. به عنوان یک تکنیک یادگیری نظارت‌شده مشابه تمرینات رگرسیون که قبلاً انجام دادید، داده‌های شما برچسب‌گذاری شده‌اند و الگوریتم‌های یادگیری ماشین از این برچسب‌ها برای طبقه‌بندی و پیش‌بینی کلاس‌ها (یا 'ویژگی‌ها') در یک مجموعه داده و اختصاص آن‌ها به یک گروه یا نتیجه استفاده می‌کنند.\n", + "\n", + "✅ لحظه‌ای وقت بگذارید و یک مجموعه داده درباره غذاها را تصور کنید. یک مدل چندکلاسه چه سوالاتی می‌تواند پاسخ دهد؟ یک مدل دودویی چه سوالاتی می‌تواند پاسخ دهد؟ اگر بخواهید تعیین کنید که آیا یک غذای خاص احتمالاً از شنبلیله استفاده می‌کند یا خیر، چه؟ اگر بخواهید ببینید که با داشتن یک کیسه مواد غذایی شامل انیسون ستاره‌ای، کنگر فرنگی، گل‌کلم و ترب کوهی، می‌توانید یک غذای هندی معمولی درست کنید یا خیر، چه؟\n", + "\n", + "### **سلام به 'طبقه‌بند'**\n", + "\n", + "سوالی که می‌خواهیم از این مجموعه داده غذایی بپرسیم در واقع یک سوال **چندکلاسه** است، زیرا ما چندین غذای ملی مختلف برای کار داریم. با داشتن یک دسته مواد اولیه، این داده‌ها به کدام یک از این کلاس‌ها تعلق خواهند داشت؟\n", + "\n", + "Tidymodels چندین الگوریتم مختلف برای طبقه‌بندی داده‌ها ارائه می‌دهد، بسته به نوع مسئله‌ای که می‌خواهید حل کنید. در دو درس بعدی، درباره چند مورد از این الگوریتم‌ها یاد خواهید گرفت.\n", + "\n", + "#### **پیش‌نیاز**\n", + "\n", + "برای این درس، به بسته‌های زیر برای پاکسازی، آماده‌سازی و بصری‌سازی داده‌ها نیاز خواهیم داشت:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) یک [مجموعه از بسته‌های R](https://www.tidyverse.org/packages) است که طراحی شده تا علم داده را سریع‌تر، آسان‌تر و لذت‌بخش‌تر کند!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) یک چارچوب [مجموعه‌ای از بسته‌ها](https://www.tidymodels.org/packages/) برای مدل‌سازی و یادگیری ماشین است.\n", + "\n", + "- `DataExplorer`: بسته [DataExplorer](https://cran.r-project.org/web/packages/DataExplorer/vignettes/dataexplorer-intro.html) برای ساده‌سازی و خودکارسازی فرآیند EDA و تولید گزارش طراحی شده است.\n", + "\n", + "- `themis`: بسته [themis](https://themis.tidymodels.org/) مراحل اضافی برای مقابله با داده‌های نامتعادل ارائه می‌دهد.\n", + "\n", + "می‌توانید آن‌ها را به این صورت نصب کنید:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "به طور جایگزین، اسکریپت زیر بررسی می‌کند که آیا بسته‌های مورد نیاز برای تکمیل این ماژول را دارید و در صورت نبود، آن‌ها را برای شما نصب می‌کند.\n" + ], + "metadata": { + "id": "ri5bQxZ-Fz_0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, DataExplorer, themis, here)" + ], + "outputs": [], + "metadata": { + "id": "KIPxa4elGAPI" + } + }, + { + "cell_type": "markdown", + "source": [ + "ما بعداً این بسته‌های عالی را بارگذاری کرده و در جلسه فعلی R خود در دسترس قرار خواهیم داد. (این فقط برای توضیح است، `pacman::p_load()` قبلاً این کار را برای شما انجام داده است)\n" + ], + "metadata": { + "id": "YkKAxOJvGD4C" + } + }, + { + "cell_type": "markdown", + "source": [ + "## تمرین - پاکسازی و متعادل‌سازی داده‌ها\n", + "\n", + "اولین وظیفه‌ای که قبل از شروع این پروژه باید انجام دهید، پاکسازی و **متعادل‌سازی** داده‌ها برای دستیابی به نتایج بهتر است.\n", + "\n", + "بیایید با داده‌ها آشنا شویم! 🕵️\n" + ], + "metadata": { + "id": "PFkQDlk0GN5O" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# View the first 5 rows\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": { + "id": "Qccw7okxGT0S" + } + }, + { + "cell_type": "markdown", + "source": [ + "جالب است! به نظر می‌رسد ستون اول نوعی ستون `id` باشد. بیایید اطلاعات بیشتری درباره داده‌ها به دست آوریم.\n" + ], + "metadata": { + "id": "XrWnlgSrGVmR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Basic information about the data\r\n", + "df %>%\r\n", + " introduce()\r\n", + "\r\n", + "# Visualize basic information above\r\n", + "df %>% \r\n", + " plot_intro(ggtheme = theme_light())" + ], + "outputs": [], + "metadata": { + "id": "4UcGmxRxGieA" + } + }, + { + "cell_type": "markdown", + "source": [ + "از خروجی می‌توانیم بلافاصله ببینیم که ما `2448` ردیف و `385` ستون و `0` مقدار گمشده داریم. همچنین یک ستون گسسته به نام *cuisine* داریم.\n", + "\n", + "## تمرین - آشنایی با انواع غذاها\n", + "\n", + "حالا کار شروع به جذاب‌تر شدن می‌کند. بیایید توزیع داده‌ها را بر اساس نوع غذا کشف کنیم.\n" + ], + "metadata": { + "id": "AaPubl__GmH5" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Count observations per cuisine\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(n)\r\n", + "\r\n", + "# Plot the distribution\r\n", + "theme_set(theme_light())\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " ggplot(mapping = aes(x = n, y = reorder(cuisine, -n))) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"cuisine\")" + ], + "outputs": [], + "metadata": { + "id": "FRsBVy5eGrrv" + } + }, + { + "cell_type": "markdown", + "source": [ + "تعداد محدودی از سبک‌های آشپزی وجود دارد، اما توزیع داده‌ها یکنواخت نیست. شما می‌توانید این مشکل را حل کنید! قبل از انجام این کار، کمی بیشتر بررسی کنید.\n", + "\n", + "حالا بیایید هر سبک آشپزی را به یک tibble جداگانه اختصاص دهیم و ببینیم چه مقدار داده (ردیف‌ها، ستون‌ها) برای هر سبک آشپزی موجود است.\n", + "\n", + "> یک [tibble](https://tibble.tidyverse.org/) یک فریم داده مدرن است.\n", + "\n", + "

            \n", + " \n", + "

            اثر هنری از @allison_horst
            \n" + ], + "metadata": { + "id": "vVvyDb1kG2in" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create individual tibble for the cuisines\r\n", + "thai_df <- df %>% \r\n", + " filter(cuisine == \"thai\")\r\n", + "japanese_df <- df %>% \r\n", + " filter(cuisine == \"japanese\")\r\n", + "chinese_df <- df %>% \r\n", + " filter(cuisine == \"chinese\")\r\n", + "indian_df <- df %>% \r\n", + " filter(cuisine == \"indian\")\r\n", + "korean_df <- df %>% \r\n", + " filter(cuisine == \"korean\")\r\n", + "\r\n", + "\r\n", + "# Find out how much data is available per cuisine\r\n", + "cat(\" thai df:\", dim(thai_df), \"\\n\",\r\n", + " \"japanese df:\", dim(japanese_df), \"\\n\",\r\n", + " \"chinese_df:\", dim(chinese_df), \"\\n\",\r\n", + " \"indian_df:\", dim(indian_df), \"\\n\",\r\n", + " \"korean_df:\", dim(korean_df))" + ], + "outputs": [], + "metadata": { + "id": "0TvXUxD3G8Bk" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **تمرین - کشف مواد اولیه برتر بر اساس نوع آشپزی با استفاده از dplyr**\n", + "\n", + "حالا می‌توانید عمیق‌تر به داده‌ها نگاه کنید و بفهمید که مواد اولیه معمولی برای هر نوع آشپزی چیست. باید داده‌های تکراری که باعث ایجاد سردرگمی بین انواع آشپزی می‌شوند را پاک کنید، پس بیایید درباره این مشکل یاد بگیریم.\n", + "\n", + "یک تابع به نام `create_ingredient()` در R ایجاد کنید که یک دیتافریم مواد اولیه را برگرداند. این تابع با حذف یک ستون غیرمفید شروع می‌کند و مواد اولیه را بر اساس تعدادشان مرتب می‌کند.\n", + "\n", + "ساختار پایه‌ای یک تابع در R به این صورت است:\n", + "\n", + "`myFunction <- function(arglist){`\n", + "\n", + "**`...`**\n", + "\n", + "**`return`**`(value)`\n", + "\n", + "`}`\n", + "\n", + "یک معرفی مرتب و ساده از توابع R را می‌توانید [اینجا](https://skirmer.github.io/presentations/functions_with_r.html#1) پیدا کنید.\n", + "\n", + "بیایید مستقیم وارد کار شویم! ما از [افعال dplyr](https://dplyr.tidyverse.org/) که در درس‌های قبلی یاد گرفته‌ایم استفاده خواهیم کرد. به عنوان یادآوری:\n", + "\n", + "- `dplyr::select()`: به شما کمک می‌کند که انتخاب کنید کدام **ستون‌ها** را نگه دارید یا حذف کنید.\n", + "\n", + "- `dplyr::pivot_longer()`: به شما کمک می‌کند داده‌ها را \"طولانی‌تر\" کنید، تعداد ردیف‌ها را افزایش داده و تعداد ستون‌ها را کاهش دهید.\n", + "\n", + "- `dplyr::group_by()` و `dplyr::summarise()`: به شما کمک می‌کند که آمار خلاصه‌ای برای گروه‌های مختلف پیدا کنید و آن‌ها را در یک جدول مرتب قرار دهید.\n", + "\n", + "- `dplyr::filter()`: یک زیرمجموعه از داده‌ها ایجاد می‌کند که فقط شامل ردیف‌هایی است که شرایط شما را برآورده می‌کنند.\n", + "\n", + "- `dplyr::mutate()`: به شما کمک می‌کند ستون‌ها را ایجاد یا اصلاح کنید.\n", + "\n", + "این [آموزش یادگیری پر از هنر](https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome) توسط Allison Horst را بررسی کنید که برخی از توابع مفید برای پردازش داده‌ها در dplyr *(بخشی از Tidyverse)* را معرفی می‌کند.\n" + ], + "metadata": { + "id": "K3RF5bSCHC76" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Creates a functions that returns the top ingredients by class\r\n", + "\r\n", + "create_ingredient <- function(df){\r\n", + " \r\n", + " # Drop the id column which is the first colum\r\n", + " ingredient_df = df %>% select(-1) %>% \r\n", + " # Transpose data to a long format\r\n", + " pivot_longer(!cuisine, names_to = \"ingredients\", values_to = \"count\") %>% \r\n", + " # Find the top most ingredients for a particular cuisine\r\n", + " group_by(ingredients) %>% \r\n", + " summarise(n_instances = sum(count)) %>% \r\n", + " filter(n_instances != 0) %>% \r\n", + " # Arrange by descending order\r\n", + " arrange(desc(n_instances)) %>% \r\n", + " mutate(ingredients = factor(ingredients) %>% fct_inorder())\r\n", + " \r\n", + " \r\n", + " return(ingredient_df)\r\n", + "} # End of function" + ], + "outputs": [], + "metadata": { + "id": "uB_0JR82HTPa" + } + }, + { + "cell_type": "markdown", + "source": [ + "حالا می‌توانیم از این تابع استفاده کنیم تا ایده‌ای از ده ماده اولیه محبوب بر اساس نوع آشپزی به دست آوریم. بیایید آن را با `thai_df` امتحان کنیم.\n" + ], + "metadata": { + "id": "h9794WF8HWmc" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Call create_ingredient and display popular ingredients\r\n", + "thai_ingredient_df <- create_ingredient(df = thai_df)\r\n", + "\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "agQ-1HrcHaEA" + } + }, + { + "cell_type": "markdown", + "source": [ + "در بخش قبلی، از `geom_col()` استفاده کردیم، بیایید ببینیم چگونه می‌توانید از `geom_bar` نیز برای ایجاد نمودارهای میله‌ای استفاده کنید. از `?geom_bar` برای مطالعه بیشتر استفاده کنید.\n" + ], + "metadata": { + "id": "kHu9ffGjHdcX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a bar chart for popular thai cuisines\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10) %>% \r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"steelblue\") +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "fb3Bx_3DHj6e" + } + }, + { + "cell_type": "markdown", + "source": [ + "بیایید همین کار را برای داده‌های ژاپنی انجام دهیم\n" + ], + "metadata": { + "id": "RHP_xgdkHnvM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Japanese cuisines and make bar chart\r\n", + "create_ingredient(df = japanese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"darkorange\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "019v8F0XHrRU" + } + }, + { + "cell_type": "markdown", + "source": [ + "در مورد غذاهای چینی چطور؟\n" + ], + "metadata": { + "id": "iIGM7vO8Hu3v" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Chinese cuisines and make bar chart\r\n", + "create_ingredient(df = chinese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"cyan4\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lHd9_gd2HyzU" + } + }, + { + "cell_type": "markdown", + "source": [ + "بیایید نگاهی به غذاهای هندی بیندازیم 🌶️.\n" + ], + "metadata": { + "id": "ir8qyQbNH1c7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Indian cuisines and make bar chart\r\n", + "create_ingredient(df = indian_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#041E42FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "ApukQtKjH5FO" + } + }, + { + "cell_type": "markdown", + "source": [ + "در نهایت، مواد کره‌ای را رسم کنید.\n" + ], + "metadata": { + "id": "qv30cwY1H-FM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Korean cuisines and make bar chart\r\n", + "create_ingredient(df = korean_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#852419FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lumgk9cHIBie" + } + }, + { + "cell_type": "markdown", + "source": [ + "از داده‌های تصویری، اکنون می‌توانیم رایج‌ترین مواد اولیه‌ای که باعث ایجاد سردرگمی بین غذاهای مختلف می‌شوند را با استفاده از `dplyr::select()` حذف کنیم.\n", + "\n", + "همه عاشق برنج، سیر و زنجبیل هستند!\n" + ], + "metadata": { + "id": "iO4veMXuIEta" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "iHJPiG6rIUcK" + } + }, + { + "cell_type": "markdown", + "source": [ + "## پیش‌پردازش داده‌ها با استفاده از دستورالعمل‌ها 👩‍🍳👨‍🍳 - مقابله با داده‌های نامتوازن ⚖️\n", + "\n", + "

            \n", + " \n", + "

            اثر هنری از @allison_horst
            \n", + "\n", + "از آنجا که این درس درباره آشپزی است، باید `دستورالعمل‌ها` را در زمینه مناسب قرار دهیم.\n", + "\n", + "Tidymodels یک بسته جذاب دیگر ارائه می‌دهد: `recipes` - بسته‌ای برای پیش‌پردازش داده‌ها.\n" + ], + "metadata": { + "id": "kkFd-JxdIaL6" + } + }, + { + "cell_type": "markdown", + "source": [ + "بیایید دوباره نگاهی به توزیع غذاهای خود بیندازیم.\n" + ], + "metadata": { + "id": "6l2ubtTPJAhY" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "old_label_count <- df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "old_label_count" + ], + "outputs": [], + "metadata": { + "id": "1e-E9cb7JDVi" + } + }, + { + "cell_type": "markdown", + "source": [ + "همان‌طور که می‌بینید، توزیع تعداد غذاها به‌طور قابل‌توجهی نابرابر است. تعداد غذاهای کره‌ای تقریباً سه برابر غذاهای تایلندی است. داده‌های نامتوازن اغلب تأثیرات منفی بر عملکرد مدل دارند. به یک مسئله طبقه‌بندی دودویی فکر کنید. اگر بیشتر داده‌های شما متعلق به یک کلاس باشند، یک مدل یادگیری ماشین به احتمال زیاد همان کلاس را بیشتر پیش‌بینی می‌کند، فقط به این دلیل که داده‌های بیشتری برای آن وجود دارد. متوازن‌سازی داده‌ها هرگونه انحراف در داده‌ها را برطرف می‌کند و به حذف این عدم توازن کمک می‌کند. بسیاری از مدل‌ها زمانی بهترین عملکرد را دارند که تعداد مشاهدات برابر باشد و در نتیجه با داده‌های نامتوازن دچار مشکل می‌شوند.\n", + "\n", + "دو روش اصلی برای مقابله با مجموعه داده‌های نامتوازن وجود دارد:\n", + "\n", + "- افزودن مشاهدات به کلاس اقلیت: `Over-sampling` مانند استفاده از الگوریتم SMOTE\n", + "\n", + "- حذف مشاهدات از کلاس اکثریت: `Under-sampling`\n", + "\n", + "حالا بیایید نشان دهیم که چگونه می‌توان با استفاده از یک `recipe` با مجموعه داده‌های نامتوازن کار کرد. یک recipe را می‌توان به‌عنوان یک نقشه راه در نظر گرفت که توضیح می‌دهد چه مراحلی باید روی یک مجموعه داده اعمال شوند تا برای تحلیل داده آماده شود.\n" + ], + "metadata": { + "id": "soAw6826JKx9" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = df_select) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "cuisines_recipe" + ], + "outputs": [], + "metadata": { + "id": "HS41brUIJVJy" + } + }, + { + "cell_type": "markdown", + "source": [ + "بیایید مراحل پیش‌پردازش را بررسی کنیم.\n", + "\n", + "- فراخوانی `recipe()` با یک فرمول به دستورالعمل می‌گوید که *نقش‌ها*ی متغیرها را با استفاده از داده‌های `df_select` به عنوان مرجع تعیین کند. برای مثال، ستون `cuisine` نقش `outcome` دریافت کرده است، در حالی که بقیه ستون‌ها نقش `predictor` دریافت کرده‌اند.\n", + "\n", + "- [`step_smote(cuisine)`](https://themis.tidymodels.org/reference/step_smote.html) یک *مشخصه* از یک مرحله دستورالعمل ایجاد می‌کند که نمونه‌های جدیدی از کلاس اقلیت را به صورت مصنوعی با استفاده از نزدیک‌ترین همسایگان این موارد تولید می‌کند.\n", + "\n", + "حالا، اگر بخواهیم داده‌های پیش‌پردازش‌شده را ببینیم، باید دستورالعمل خود را [**`prep()`**](https://recipes.tidymodels.org/reference/prep.html) و [**`bake()`**](https://recipes.tidymodels.org/reference/bake.html) کنیم.\n", + "\n", + "`prep()`: پارامترهای مورد نیاز را از یک مجموعه آموزشی تخمین می‌زند که بعداً می‌توان آن‌ها را به مجموعه داده‌های دیگر اعمال کرد.\n", + "\n", + "`bake()`: یک دستورالعمل آماده‌شده را می‌گیرد و عملیات را روی هر مجموعه داده‌ای اعمال می‌کند.\n" + ], + "metadata": { + "id": "Yb-7t7XcJaC8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep and bake the recipe\r\n", + "preprocessed_df <- cuisines_recipe %>% \r\n", + " prep() %>% \r\n", + " bake(new_data = NULL) %>% \r\n", + " relocate(cuisine)\r\n", + "\r\n", + "# Display data\r\n", + "preprocessed_df %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Quick summary stats\r\n", + "preprocessed_df %>% \r\n", + " introduce()" + ], + "outputs": [], + "metadata": { + "id": "9QhSgdpxJl44" + } + }, + { + "cell_type": "markdown", + "source": [ + "بیایید اکنون توزیع غذاهای خود را بررسی کنیم و آن‌ها را با داده‌های نامتعادل مقایسه کنیم.\n" + ], + "metadata": { + "id": "dmidELh_LdV7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "new_label_count <- preprocessed_df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "list(new_label_count = new_label_count,\r\n", + " old_label_count = old_label_count)" + ], + "outputs": [], + "metadata": { + "id": "aSh23klBLwDz" + } + }, + { + "cell_type": "markdown", + "source": [ + "وای! داده‌ها تمیز، متعادل و بسیار خوشمزه هستند 😋!\n", + "\n", + "> معمولاً یک دستورالعمل به عنوان پیش‌پردازنده برای مدل‌سازی استفاده می‌شود، جایی که مشخص می‌کند چه مراحلی باید روی یک مجموعه داده اعمال شود تا برای مدل‌سازی آماده شود. در این حالت، معمولاً از یک `workflow()` استفاده می‌شود (همان‌طور که در درس‌های قبلی دیده‌ایم) به جای اینکه دستورالعمل را به صورت دستی تخمین بزنیم.\n", + ">\n", + "> بنابراین، معمولاً نیازی به استفاده از **`prep()`** و **`bake()`** در دستورالعمل‌ها هنگام استفاده از tidymodels ندارید، اما این توابع ابزارهای مفیدی هستند برای تأیید اینکه دستورالعمل‌ها همان‌طور که انتظار دارید عمل می‌کنند، مانند مورد ما.\n", + ">\n", + "> وقتی یک دستورالعمل آماده‌شده را با **`new_data = NULL`** بپزید، داده‌هایی که هنگام تعریف دستورالعمل ارائه کرده‌اید را دریافت می‌کنید، اما این داده‌ها مراحل پیش‌پردازش را پشت سر گذاشته‌اند.\n", + "\n", + "حالا بیایید یک نسخه از این داده‌ها را برای استفاده در درس‌های آینده ذخیره کنیم:\n" + ], + "metadata": { + "id": "HEu80HZ8L7ae" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Save preprocessed data\r\n", + "write_csv(preprocessed_df, \"../../../data/cleaned_cuisines_R.csv\")" + ], + "outputs": [], + "metadata": { + "id": "cBmCbIgrMOI6" + } + }, + { + "cell_type": "markdown", + "source": [ + "این فایل CSV جدید اکنون در پوشه اصلی داده‌ها قرار دارد.\n", + "\n", + "**🚀چالش**\n", + "\n", + "این برنامه درسی شامل چندین مجموعه داده جالب است. پوشه‌های `data` را بررسی کنید و ببینید آیا مجموعه داده‌هایی وجود دارند که برای طبقه‌بندی دودویی یا چندکلاسه مناسب باشند؟ چه سوالاتی می‌توانید از این مجموعه داده بپرسید؟\n", + "\n", + "## [**آزمون پس از درس**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/)\n", + "\n", + "## **مرور و مطالعه شخصی**\n", + "\n", + "- به [بسته themis](https://github.com/tidymodels/themis) نگاهی بیندازید. چه تکنیک‌های دیگری می‌توانیم برای مقابله با داده‌های نامتوازن استفاده کنیم؟\n", + "\n", + "- وب‌سایت مرجع [مدل‌های مرتب](https://www.tidymodels.org/start/).\n", + "\n", + "- H. Wickham و G. Grolemund، [*R برای علم داده: تجسم، مدل‌سازی، تبدیل، مرتب‌سازی و وارد کردن داده‌ها*](https://r4ds.had.co.nz/).\n", + "\n", + "#### تشکر ویژه از:\n", + "\n", + "[`آلیسون هورست`](https://twitter.com/allison_horst/) برای خلق تصاویر شگفت‌انگیزی که R را جذاب‌تر و دوستانه‌تر می‌کنند. تصاویر بیشتر را در [گالری او](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) پیدا کنید.\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) و [Jen Looper](https://www.twitter.com/jenlooper) برای ایجاد نسخه اصلی پایتون این ماژول ♥️\n", + "\n", + "

            \n", + " \n", + "

            اثر هنری از @allison_horst
            \n" + ], + "metadata": { + "id": "WQs5621pMGwf" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/4-Classification/1-Introduction/solution/notebook.ipynb b/translations/fa/4-Classification/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..678a21b4c --- /dev/null +++ b/translations/fa/4-Classification/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,705 @@ +{ + "cells": [ + { + "source": [ + "# غذاهای خوشمزه آسیایی و هندی\n", + "\n", + "## مقدمه\n", + "\n", + "غذاهای آسیایی و هندی به دلیل طعم‌های متنوع و استفاده از ادویه‌های خاص، در سراسر جهان محبوب هستند. این غذاها نه تنها خوشمزه هستند، بلکه اغلب سالم و مغذی نیز می‌باشند.\n", + "\n", + "## غذاهای محبوب آسیایی\n", + "\n", + "### سوشی\n", + "سوشی یکی از معروف‌ترین غذاهای ژاپنی است که از برنج، ماهی خام و سبزیجات تهیه می‌شود. این غذا به دلیل طعم تازه و سبک بودن، طرفداران زیادی دارد.\n", + "\n", + "### نودل\n", + "نودل در بسیاری از کشورهای آسیایی مانند چین، ژاپن و کره محبوب است. این غذا می‌تواند با گوشت، سبزیجات و انواع سس‌ها ترکیب شود.\n", + "\n", + "### دامپلینگ\n", + "دامپلینگ‌ها خمیرهای کوچکی هستند که با مواد مختلفی مانند گوشت، سبزیجات یا ترکیبی از هر دو پر می‌شوند. این غذا معمولاً بخارپز یا سرخ‌شده سرو می‌شود.\n", + "\n", + "## غذاهای محبوب هندی\n", + "\n", + "### کاری\n", + "کاری یکی از غذاهای اصلی هندی است که با ترکیبی از ادویه‌ها و مواد مختلف مانند مرغ، گوشت یا سبزیجات تهیه می‌شود. این غذا معمولاً با برنج یا نان سرو می‌شود.\n", + "\n", + "### بریانی\n", + "بریانی یک غذای برنجی است که با ادویه‌های معطر، گوشت یا سبزیجات و گاهی تخم‌مرغ تهیه می‌شود. این غذا به دلیل طعم غنی و عطر خاص خود شناخته شده است.\n", + "\n", + "### نان\n", + "نان‌های هندی مانند نان، چاپاتی و پورای یکی از اجزای اصلی وعده‌های غذایی هندی هستند. این نان‌ها معمولاً با کاری یا دیگر غذاهای هندی سرو می‌شوند.\n", + "\n", + "## نکات پایانی\n", + "\n", + "غذاهای آسیایی و هندی به دلیل تنوع و طعم‌های بی‌نظیر خود، تجربه‌ای لذت‌بخش برای هر کسی که به غذا علاقه دارد، فراهم می‌کنند. اگر تا به حال این غذاها را امتحان نکرده‌اید، حتماً آن‌ها را در برنامه غذایی خود قرار دهید!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "ایمبلرن را نصب کنید که SMOTE را فعال می‌کند. این یک بسته Scikit-learn است که به مدیریت داده‌های نامتوازن هنگام انجام طبقه‌بندی کمک می‌کند. (https://imbalanced-learn.org/stable/)\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: imblearn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.0)\n", + "Requirement already satisfied: imbalanced-learn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imblearn) (0.8.0)\n", + "Requirement already satisfied: numpy>=1.13.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.19.2)\n", + "Requirement already satisfied: scipy>=0.19.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.4.1)\n", + "Requirement already satisfied: scikit-learn>=0.24 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.24.2)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.16.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.24->imbalanced-learn->imblearn) (2.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install imblearn" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "import numpy as np\n", + "from imblearn.over_sampling import SMOTE" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../../data/cuisines.csv')" + ] + }, + { + "source": [ + "این مجموعه داده شامل ۳۸۵ ستون است که انواع مواد تشکیل‌دهنده در غذاهای مختلف از مجموعه‌ای از غذاها را نشان می‌دهد.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 65 indian 0 0 0 0 0 \n", + "1 66 indian 1 0 0 0 0 \n", + "2 67 indian 0 0 0 0 0 \n", + "3 68 indian 0 0 0 0 0 \n", + "4 69 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 385 columns]" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            065indian00000000...0000000000
            166indian10000000...0000000000
            267indian00000000...0000000000
            368indian00000000...0000000000
            469indian00000000...0000000010
            \n

            5 rows × 385 columns

            \n
            " + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 2448 entries, 0 to 2447\nColumns: 385 entries, Unnamed: 0 to zucchini\ndtypes: int64(384), object(1)\nmemory usage: 7.2+ MB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "korean 799\n", + "indian 598\n", + "chinese 442\n", + "japanese 320\n", + "thai 289\n", + "Name: cuisine, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "df.cuisine.value_counts()" + ] + }, + { + "source": [ + "نمایش غذاها در یک نمودار میله‌ای\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD4CAYAAAAtrdtxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAASY0lEQVR4nO3df7TldV3v8eerGZkRRoeAiXtE5UgNIkUCjlwQIzAiC7NscdcSbcmsfkxl5SXX0juuyzK9d3UvlXnpplajma0kMtCUhluImNcr8msGBmb4pZaTQCFQOYom0fi+f+zPkd14hpnzOWefvYfzfKy113z35/vde7/22fvMa3++3733SVUhSVKPbxt3AEnSgcsSkSR1s0QkSd0sEUlSN0tEktRt+bgDLKYjjjiipqenxx1Dkg4oW7dufbiq1sy2bkmVyPT0NFu2bBl3DEk6oCT5u72tc3eWJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqduS+sT69vt3Mb3xqnHH0ALZefG5444gLXnORCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktRtIkokyaFJXtuWz0yyeY6X/29Jzh5NOknS3kxEiQCHAq/tvXBVvbmqPraAeSRJ+2FSSuRi4DuTbAN+E1iV5Iokdye5NEkAkrw5yc1JdiTZNDT+viTnjTG/JC1Jk1IiG4G/qaoTgTcAJwEXAscDxwCnt+3eUVUvrKrvAZ4KvGxfV5xkQ5ItSbbs/tqu0aSXpCVqUkpkTzdV1X1V9Q1gGzDdxs9KcmOS7cBLgO/e1xVV1aaqWldV65YdvHp0iSVpCZrUL2B8dGh5N7A8yUrgXcC6qro3yVuAleMIJ0kamJSZyFeAp+1jm5nCeDjJKsBjIJI0ZhMxE6mqf0xyXZIdwL8AX5xlmy8leTewA3gAuHmRY0qS9jARJQJQVa/ay/gvDS1fBFw0yzbrR5dMkrQ3k7I7S5J0ALJEJEndLBFJUjdLRJLUzRKRJHWbmHdnLYYTjlrNlovPHXcMSXrScCYiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6rZ83AEW0/b7dzG98apxx9CY7Lz43HFHkJ50nIlIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG77VSJJPj3qIJKkA89+lUhVvWjUQSRJB579nYk8kmRVkmuT3JJke5Ifa+umk9yd5NIkdyW5IsnBbd2bk9ycZEeSTUnSxj+R5NeT3JTkM0m+r40vS/Kb7TK3J/m5Nj6V5JNJtrXrmtn+nCTXt0yXJ1k1ih+SJGl2czkm8nXgFVV1MnAW8FszpQA8F3hXVT0P+DLw2jb+jqp6YVV9D/BU4GVD17e8qk4BLgR+tY39NLCrql4IvBD42STPAV4FXF1VJwLPB7YlOQK4CDi7ZdoCvH4ud16SND9z+dqTAP8jyRnAN4CjgCPbunur6rq2/H7gdcDbgLOSvBE4GDgMuAP4i7bdh9q/W4HptnwO8L1JzmvnVwNrgZuB9yZ5CvDhqtqW5PuB44HrWpcdBFz/LaGTDcAGgGVPXzOHuytJ2pe5lMirgTXAC6rqsSQ7gZVtXe2xbSVZCbwLWFdV9yZ5y9D2AI+2f3cP5Qjwy1V19Z433srrXOB9Sd4O/DNwTVWd/0Shq2oTsAlgxdTaPXNKkuZhLruzVgMPtgI5Czh6aN2zk5zWll8FfIrHC+PhdqziPPbtauAX2oyDJMcmOSTJ0cAXq+rdwHuAk4EbgNOTfFfb9pAkx87h/kiS5ml/ZyIFXAr8RZLtDI4/3D20/h7gF5O8F7gT+N2q+lqSdwM7gAcY7JLal/cw2LV1Szve8hDw48CZwBuSPAY8Arymqh5Ksh64LMmKdvmLgM/s532SJM1Tqp54D0+Sw4FbqurovayfBja3g+cTbcXU2pq64JJxx9CY+FXwUp8kW6tq3WzrnnB3VpJnMDhY/bZRBJMkHdiecHdWVf098ITHGapqJzDxsxBJ0sLzu7MkSd0sEUlSN0tEktRtLh82POCdcNRqtvgOHUlaMM5EJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd2WjzvAYtp+/y6mN1417hhSt50XnzvuCNK/40xEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3Ra0RJK8L8l5s4w/I8kVC3lbkqTxW5QPG1bV3wPfUi6SpAPbvGYiSV6T5PYktyX54zZ8RpJPJ/nbmVlJkukkO9ry+iQfSvJXST6b5DeGru+cJNcnuSXJ5UlWtfGLk9zZbuttbWxNkg8mubmdTp/PfZEkzV33TCTJdwMXAS+qqoeTHAa8HZgCXgwcB1wJzLYb60TgJOBR4J4kvwP8S7u+s6vqq0n+C/D6JO8EXgEcV1WV5NB2Hb8N/K+q+lSSZwNXA8+bJecGYAPAsqev6b27kqRZzGd31kuAy6vqYYCq+qckAB+uqm8AdyY5ci+XvbaqdgEkuRM4GjgUOB64rl3PQcD1wC7g68AfJNkMbG7XcTZwfNsW4OlJVlXVI8M3VFWbgE0AK6bW1jzuryRpD6M4JvLo0HL2Y5vdLUeAa6rq/D03TnIK8AMMjqv8EoMC+zbg1Kr6+kKEliTN3XyOiXwc+E9JDgdou7Pm4wbg9CTf1a7vkCTHtuMiq6vq/wC/Ajy/bf9R4JdnLpzkxHneviRpjrpnIlV1R5JfA/5vkt3ArfMJUlUPJVkPXJZkRRu+CPgK8JEkKxnMVl7f1r0OeGeS2xncj08CPz+fDJKkuUnV0jlMsGJqbU1dcMm4Y0jd/HsiGockW6tq3Wzr/MS6JKmbJSJJ6maJSJK6WSKSpG6WiCSp26J8AeOkOOGo1Wzx3S2StGCciUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6LR93gMW0/f5dTG+8atwxJM3RzovPHXcE7YUzEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUbWQlkuTTc9z+zCSb2/LLk2wcTTJJ0kIZ2edEqupF87jslcCVCxhHkjQCo5yJPNL+PTPJJ5JckeTuJJcmSVv30jZ2C/ATQ5ddn+QdbflHk9yY5NYkH0tyZBt/S5L3tuv+2ySvG9V9kSTNbrGOiZwEXAgcDxwDnJ5kJfBu4EeBFwD/YS+X/RRwalWdBPwp8MahdccBPwScAvxqkqeMJr4kaTaL9bUnN1XVfQBJtgHTwCPA56vqs238/cCGWS77TOADSaaAg4DPD627qqoeBR5N8iBwJHDf8IWTbJi53mVPX7OQ90mSlrzFmok8OrS8m7mV1+8A76iqE4CfA1bO5XqralNVrauqdcsOXj2Hm5Uk7cs43+J7NzCd5Dvb+fP3st1q4P62fMHIU0mS9tvYSqSqvs5gN9NV7cD6g3vZ9C3A5Um2Ag8vUjxJ0n5IVY07w6JZMbW2pi64ZNwxJM2RXwU/Xkm2VtW62db5iXVJUjdLRJLUzRKRJHWzRCRJ3SwRSVK3xfrE+kQ44ajVbPFdHpK0YJyJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrotH3eAxbT9/l1Mb7xq3DEkaVHtvPjckV23MxFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1W9ASSTKdZMdCXqckaXJNxEwkyZL60KMkPVmMrESSHJPk1iTfl+QPk2xv589q69cnuTLJx4Fr29gbktyc5PYkbx26rg8n2ZrkjiQbhsYfSfJrSW5LckOSI0d1fyRJ32okJZLkucAHgfXAKUBV1QnA+cAfJVnZNj0ZOK+qvj/JOcDatv2JwAuSnNG2+6mqegGwDnhdksPb+CHADVX1fOCTwM/OkmVDki1Jtuz+2q5R3F1JWrJGUSJrgI8Ar66q24AXA+8HqKq7gb8Djm3bXlNV/9SWz2mnW4FbgOMYlAoMiuM24AbgWUPj/wpsbstbgek9w1TVpqpaV1Xrlh28eqHuoySJ0XwB4y7gCwzK4859bPvVoeUA/7Oqfn94gyRnAmcDp1XV15J8ApiZyTxWVdWWd7PEvlBSksZtFDORfwVeAbwmyauA/we8GiDJscCzgXtmudzVwE8lWdW2PSrJdwCrgX9uBXIccOoIMkuSOozklXtVfTXJy4BrgP8OnJBkO/BvwPqqejTJnpf5aJLnAde3dY8APwn8FfDzSe5iUD43jCKzJGnu8vjeoCe/FVNra+qCS8YdQ5IW1Xz/nkiSrVW1brZ1E/E5EUnSgckSkSR1s0QkSd0sEUlSN0tEktRtSX0474SjVrNlnu9SkCQ9zpmIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqtqT+KFWSrzD7n+adFEcAD487xBMw3/yYb37MNz/zyXd0Va2ZbcWS+u4s4J69/XWuSZBki/n6mW9+zDc/SzWfu7MkSd0sEUlSt6VWIpvGHWAfzDc/5psf883Pksy3pA6sS5IW1lKbiUiSFpAlIknqtmRKJMlLk9yT5HNJNo4pw3uTPJhkx9DYYUmuSfLZ9u+3t/Ek+d8t7+1JTl6EfM9K8tdJ7kxyR5L/PEkZk6xMclOS21q+t7bx5yS5seX4QJKD2viKdv5zbf30KPO121yW5NYkmycw284k25NsS7KljU3EY9tu89AkVyS5O8ldSU6blHxJntt+bjOnLye5cFLytdv8lfZ7sSPJZe33ZfTPv6p60p+AZcDfAMcABwG3AcePIccZwMnAjqGx3wA2tuWNwK+35R8B/hIIcCpw4yLkmwJObstPAz4DHD8pGdvtrGrLTwFubLf7Z8Ar2/jvAb/Qll8L/F5bfiXwgUX4Gb4e+BNgczs/Sdl2AkfsMTYRj227zT8CfqYtHwQcOkn5hnIuAx4Ajp6UfMBRwOeBpw4979YvxvNvUX7o4z4BpwFXD51/E/CmMWWZ5t+XyD3AVFueYvCBSIDfB86fbbtFzPoR4AcnMSNwMHAL8B8ZfAp3+Z6PNXA1cFpbXt62ywgzPRO4FngJsLn9BzIR2drt7ORbS2QiHltgdftPMJOYb49M5wDXTVI+BiVyL3BYez5tBn5oMZ5/S2V31swPeMZ9bWwSHFlV/9CWHwCObMtjzdymtycxeLU/MRnb7qJtwIPANQxmmF+qqn+bJcM387X1u4DDRxjvEuCNwDfa+cMnKBtAAR9NsjXJhjY2KY/tc4CHgD9suwPfk+SQCco37JXAZW15IvJV1f3A24AvAP/A4Pm0lUV4/i2VEjkg1OBlwdjfc51kFfBB4MKq+vLwunFnrKrdVXUig1f9pwDHjSvLsCQvAx6sqq3jzvIEXlxVJwM/DPxikjOGV475sV3OYFfv71bVScBXGewe+qZxP/cA2jGFlwOX77lunPnasZgfY1DGzwAOAV66GLe9VErkfuBZQ+ef2cYmwReTTAG0fx9s42PJnOQpDArk0qr60CRmBKiqLwF/zWCKfmiSme+BG87wzXxt/WrgH0cU6XTg5Ul2An/KYJfWb09INuCbr1apqgeBP2dQwpPy2N4H3FdVN7bzVzAolUnJN+OHgVuq6ovt/KTkOxv4fFU9VFWPAR9i8Jwc+fNvqZTIzcDa9k6FgxhMR68cc6YZVwIXtOULGByHmBl/TXuXx6nArqFp80gkCfAHwF1V9fZJy5hkTZJD2/JTGRyvuYtBmZy3l3wzuc8DPt5eLS64qnpTVT2zqqYZPL8+XlWvnoRsAEkOSfK0mWUG+/V3MCGPbVU9ANyb5Llt6AeAOycl35DzeXxX1kyOScj3BeDUJAe33+OZn9/on3+LcSBqEk4M3i3xGQb70P/rmDJcxmB/5WMMXnn9NIP9kNcCnwU+BhzWtg3wzpZ3O7BuEfK9mMF0/HZgWzv9yKRkBL4XuLXl2wG8uY0fA9wEfI7BboYVbXxlO/+5tv6YRXqcz+Txd2dNRLaW47Z2umPmd2BSHtt2mycCW9rj+2Hg2ycs3yEMXq2vHhqbpHxvBe5uvxt/DKxYjOefX3siSeq2VHZnSZJGwBKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd3+PxNFbW14TY8fAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df.cuisine.value_counts().plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "thai df: (289, 385)\njapanese df: (320, 385)\nchinese df: (442, 385)\nindian df: (598, 385)\nkorean df: (799, 385)\n" + ] + } + ], + "source": [ + "\n", + "thai_df = df[(df.cuisine == \"thai\")]\n", + "japanese_df = df[(df.cuisine == \"japanese\")]\n", + "chinese_df = df[(df.cuisine == \"chinese\")]\n", + "indian_df = df[(df.cuisine == \"indian\")]\n", + "korean_df = df[(df.cuisine == \"korean\")]\n", + "\n", + "print(f'thai df: {thai_df.shape}')\n", + "print(f'japanese df: {japanese_df.shape}')\n", + "print(f'chinese df: {chinese_df.shape}')\n", + "print(f'indian df: {indian_df.shape}')\n", + "print(f'korean df: {korean_df.shape}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## مواد اصلی بر اساس دسته‌بندی کدامند؟\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def create_ingredient_df(df):\n", + " # transpose df, drop cuisine and unnamed rows, sum the row to get total for ingredient and add value header to new df\n", + " ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value')\n", + " # drop ingredients that have a 0 sum\n", + " ingredient_df = ingredient_df[(ingredient_df.T != 0).any()]\n", + " # sort df\n", + " ingredient_df = ingredient_df.sort_values(by='value', ascending=False, inplace=False)\n", + " return ingredient_df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAeAklEQVR4nO3de7RVdb338fcHRFAhTPBCeNnogzckQJcdb11ES01QSxGLUtNHjl1EM2twhmbUo+PY5dhN07DHII+nuKSPFKe0FPEasTcCG1TUEk8QCmjuJIRg+33+WL+ti82+AWvvORfr8xpjjT3Xb/7mnN85x2J/+M0595qKCMzMzPKiW9YFmJmZlXIwmZlZrjiYzMwsVxxMZmaWKw4mMzPLlV2yLmBn0L9//6ipqcm6DDOzitG/f3/uv//++yPi9ObzHExlUFNTQ21tbdZlmJlVFEn9W2r3qTwzM8sVB5OZmeWKg8nMzHLF15jMzLrApk2bWLFiBRs2bMi6lC7Xq1cv9t9/f3r06NGh/g6mMqhf2UDNxNlZl2G2Q5bfdGbWJezUVqxYQZ8+faipqUFS1uV0mYjg1VdfZcWKFQwaNKhDy/hUnplZF9iwYQP9+vWrqlACkES/fv22aaRYEcEkaYqk81pof4+kme0su7y1WxLNzLpStYVSk23d74o+lRcRfwW2CiwzM6tcuQwmSRcC1wABLAYagQ9IuhrYD/hKRMyUVAP8OiKOktQd+CZwOvAWcEdE/LBknbsB9wD3RMQdkj4FTAB2BeYBn4uIRknrgO8Do4A3gbMj4pWu2G8zqx7lvi5d7muEvXv3Zt26dWVdZ0fl7lSepCHAdcDIiBgGXJlmDQBOohgYN7Ww6HigBhgeEe8F7i6Z1xv4FfDzFEpHAGOBEyNiOMXgG5f67gH8IW37EeCyVuocL6lWUm3j+obt3l8zM9tS7oIJGAnMiIi1ABHxWmr/fxHxVkQ8DezbwnKnAj+OiM3NlgO4D/hpRPwsvT8FOAaYL2lhen9wmvdP4Ndpuo5i2G0lIiZHRCEiCt1377sdu2lm1nUmTpzIrbfe+vb7SZMmccMNN3DKKadw9NFHM3ToUO67776tlnv44YcZNWrU2++/8IUvMGXKFADq6ur44Ac/yDHHHMNpp53GqlWrylJrHoOpNRtLprf1CuLjwOl65wqcgKkRMTy9DouISWnepnjnefON5PR0p5nZthg7dizTp09/+/306dO56KKLuPfee1mwYAFz5szhS1/6Eu/8+mvbpk2buOKKK5g5cyZ1dXVccsklXHvttWWpNY+/dB8C7pV0c0S8KmmvDi73O+BfJc2JiM2S9ioZNV2fXrcCnwMeBO6T9N2IWJ220SciXir3zpiZ5cGIESNYvXo1f/3rX1mzZg3vfve72W+//fjiF7/II488Qrdu3Vi5ciWvvPIK++23X7vrW7ZsGUuWLOHDH/4wAI2NjQwYMKAsteYumCJiqaQbgbmSGoGnOrjoT4BDgcWSNgF3ALeUzL8SuFPStyLiK5KuAx6Q1A3YBHwecDCZ2U5rzJgxzJw5k5dffpmxY8dy9913s2bNGurq6ujRowc1NTVb/b3RLrvswltvvfX2+6b5EcGQIUN48skny15n7oIJICKmAlPbmN87/VwOHJWmNwNXp1dp35qSt58paZ8GTGtt3Wl6JtDm30mZmVWKsWPHctlll7F27Vrmzp3L9OnT2WeffejRowdz5szhpZe2/r/5QQcdxNNPP83GjRt58803efDBBznppJM47LDDWLNmDU8++STHH388mzZt4rnnnmPIkCE7XGcug6nSDB3Yl1p/nYuZbYMsvgJqyJAhvPHGGwwcOJABAwYwbtw4Ro8ezdChQykUChx++OFbLXPAAQdw/vnnc9RRRzFo0CBGjBgBwK677srMmTOZMGECDQ0NbN68mauuuqoswaSOXuiy1hUKhfCDAs2sLc888wxHHHFE1mVkpqX9l1QXEYXmfSvprjwzM6sCDiYzM8sVB5OZWRep1ksn27rfDiYzsy7Qq1cvXn311aoLp6bnMfXq1avDy/iuPDOzLrD//vuzYsUK1qxZk3UpXa7pCbYd5WAyM+sCPXr06PATXKudT+WZmVmuOJjMzCxXHExmZpYrvsZUBvUrG8r+NEqzvMriq3SsunjEZGZmuVJ1wSTpvyXtmXUdZmbWsqo6lZeeYDsqIt5qt7OZmWVipx8xSaqRtEzSz4AlQKOk/mnehZIWS1ok6a7UtrekX0qan14nZlm/mVm1qZYR02Dgooj4g6TlAJKGANcBJ0TE2pJHuH8f+G5EPCbpQOB+YKvvqpc0HhgP0P1de3fBLpiZVYdqCaaXIuIPzdpGAjMiYi1ARLyW2k8Fjiye9QPgXZJ6R8S60oUjYjIwGaDngMHV9eVXZmadqFqC6R/b0LcbcFxEbGi3p5mZld1Of42pDQ8BYyT1Ayg5lfcAcEVTJ0nDM6jNzKxqVW0wRcRS4EZgrqRFwM1p1gSgkG6KeBq4PKsazcyqkart2SCdoVAoRG1tbdZlmJlVFEl1EVFo3l61IyYzM8snB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Uq1fLt4p6pf2UDNxNlZl2GWmeU3nZl1CbYT8YjJzMxyxcFkZma5UjHBJOksSRPLtK5Jkq4px7rMzKy8KuIak6RdImIWMCvD7W/OYttmZtWmy0dMki5MD+FbJOkuSTWSHkptD0o6MPWbIul2SfOAb0m6WNItad5oSfMkPSXp95L2Te2TJN0p6WFJf5Y0oWS710p6TtJjwGEl7YdI+q2kOkmPSjq8pe134SEyM6tqXTpikjQEuA44ISLWpseZTwWmRsRUSZcAPwDOSYvsn/o2Srq4ZFWPAcdFREj638BXgC+leYcDJwN9gGWSbgPeC1wADKe4zwuAutR/MnB5RDwv6V+AHwEjm2+/hX0ZD4wH6P6uvXfksJiZWYmuPpU3EpgREWsBIuI1SccDH0/z72LL0cmMlkKBYmBMkzQA2BV4sWTe7IjYCGyUtBrYF3g/cG9ErAeQNCv97A2cAMyQ1LR8zw5sn4iYTDHU6DlgsB8DbGZWJnm/xvSPVtp/CNwcEbMkfQiYVDJvY8l0I23vYzfg9YgYvo3bNzOzTtLV15geAsZI6geQTuU9QfE0G8A44NEOrKcvsDJNX9SB/o8A50jaTVIfYDRARPwdeFHSmFSPJA3r6M6YmVn5demIKSKWSroRmCupEXgKuAL4qaQvA2uAz3RgVZMonn77G8WwG9TOdhdImgYsAlYD80tmjwNuk3Qd0AP4RepnZmYZUIQvj+yoQqEQtbW1WZdhZlZRJNVFRKF5e8X8ga2ZmVUHB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Urev128ItSvbKBm4uysyzDL3PKbzsy6BNsJeMRkZma54mAyM7NcyTSYJJ0j6cgO9Jsi6bwW2j8k6ddlrKcg6Qdp+mJJt5Rr3WZm1jFZj5jOAdoNpq4SEbURMSHrOszMqlmbwSTpJkmfL3k/SdI1kr4sab6kxZK+XjL/q5KWSXpM0s8lXZPaD5H0W0l1kh6VdLikE4CzgG9LWpj6XJbWu0jSLyXtXlLOqZJqJT0naVQLte4h6U5Jf5T0lKSz29ivXpJ+Kqk+9T05tXd4BCZpfKqntnF9Q0cWMTOzDmhvxDQNOL/k/fkUnzI7GHgfMBw4RtIHJB0LnAsMA84ASh/+NBm4IiKOAa4BfhQRTwCzgC9HxPCI+BNwT0QcGxHDgGeAS0vWUZO2eSZwu6RezWq9FngoIt4HnEwx8PZoZb8+D0REDAU+AUxtYX1tiojJEVGIiEL33ftuy6JmZtaGNm8Xj4inJO0j6T3A3sDfgKHARyg+Fh2gN8Wg6gPcFxEbgA2SfgUgqTdwAsVHoTetumcrmzxK0g3Anmm995fMmx4RbwHPS/ozcHizZT8CnNU0SgN6AQdSDLjmTgJ+mPbxWUkvAYe2dSzMzKxrdOTvmGYA5wH7URxBHQT8e0T8uLSTpKtaWb4b8HpEDO/AtqYA50TEIkkXAx8qmdf8GfDN3ws4NyKWdWA7ZmaWUx25+WEacAHFcJpBcRRzSRoJIWmgpH2Ax4HR6fpNb2AUQET8HXhR0pjUX5KGpXW/QXGk1aQPsEpSD2BcszrGSOom6RDgYKB5AN0PXKE0LJM0oo19erRp/ZIOpTiycqCZmeVAu8EUEUspBsbKiFgVEQ8A/wU8KakemAn0iYj5FK8ZLQZ+A9QDTXcFjAMulbQIWAo03ZjwC+DL6QaEQ4CvAvMohtyzzUr5H+CPad2Xp1OGpf4P0ANYLGlpet+aHwHdUv3TgIsjYmN7x8LMzDqfIpqfEduBlUm9I2JdupvuEWB8RCwo2wZyqlAoRG1tbdZlmJlVFEl1EVFo3l7u78qbnP5gthcwtRpCyczMyquswRQRnyzn+naUpNOAbzZrfjEiPpZFPWZm1r6d+tvFI+J+trzl3MzMci7rryQyMzPbgoPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrO/XfMXWV+pUN1EycnXUZZhVh+U1nZl2C5ZxHTGZmlisOplZIGi7po1nXYWZWbRxMrRsOOJjMzLpY7oJJ0oWSFktaJOkuSTWSHkptD0o6MPXbV9K9qd8iSSek9qslLUmvq1JbjaRnJN0haamkByTtluY9LKmQpvtLWi5pV+AbwFhJCyWNzeZomJlVn1wFk6QhwHXAyIgYBlwJ/JDiIzTeC9wN/CB1/wEwN/U7Glgq6RjgM8C/AMcBl5U8yXYwcGtEDAFeB85trY6I+CdwPTAtIoZHxLQWah0vqVZSbeP6hq1XYmZm2yVXwQSMBGZExFqAiHgNOJ7iE3MB7gJOKul7W+rXGBENad69EfGPiFgH3AO8P/V/MSIWpuk6oGZHCo2IyRFRiIhC99377siqzMysRN6CqTOVPjq9kXduld/MO8ehV5dWZGZmW8lbMD0EjJHUD0DSXsATwAVp/jjg0TT9IPDZ1K+7pL5p3jmSdpe0B/Cxkv6tWQ4ck6bPK2l/A+izQ3tjZmbbLFfBFBFLgRuBuZIWATcDVwCfkbQY+DTF606knydLqqd4au7I9Cj3KcAfgXnATyLiqXY2+x3gs5KeAvqXtM8BjvTND2ZmXUsRkXUNFa/ngMEx4KLvZV2GWUXwNz9YE0l1EVFo3u6vJCqDoQP7Uut/bGZmZZGrU3lmZmYOJjMzyxUHk5mZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFX8lURnUr2ygZuLsrMswq2j+Dj1r4hGTmZnlSsUHk6RvSDo16zrMzKw8Kv5UXkRc39nbkNQ9Iho7eztmZlZhIyZJX5W0TNJjkn4u6RpJUySdl+Yvl/R1SQsk1Us6PLXvLel3kpZK+omklyT1T/M+JemP6YGAP5bUPbWvk/Qf6YGFx2e202ZmVaZigknSscC5wDDgDGCrh0slayPiaOA24JrU9jXgoYgYAswEDkzrPAIYC5wYEcOBRoqPbwfYA5gXEcMi4rEW6hkvqVZSbeP6hrLso5mZVdapvBOB+yJiA7BB0q9a6XdP+lkHfDxNnwR8DCAifivpb6n9FOAYYL4kgN2A1WleI/DL1oqJiMnAZCg+wXZ7dsjMzLZWScHUURvTz0ba3z8BUyPi31qYt8HXlczMul7FnMoDHgdGS+olqTcwahuXPR9A0keAd6f2B4HzJO2T5u0l6aAy1mxmZtuoYkZMETFf0ixgMfAKUA909OLO14GfS/o08CTwMvBGRKyVdB3wgKRuwCbg88BLZd8BMzPrEEVUzuURSb0jYp2k3YFHgPERsaADy/UEGiNis6TjgdvSzQ5lUSgUora2tlyrMzOrCpLqImKrG9kqZsSUTJZ0JNCL4rWhdkMpORCYnkZF/wQu66wCzcxsx1RUMEXEJ7dzueeBEWUux8zMOkEl3fxgZmZVwMFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeVKRf2BbV7Vr2ygZuLsrMswqzrLbzoz6xKsE3jEZGZmueJgMjOzXKmIYJJ0uaQL0/QUSedt53qGS/poeaszM7NyqohrTBFxe5lWNRwoAP/dfIakXSJic5m2Y2Zm2ymXwZRGR9cAQfHBgH8C1kXEd5r1ux4YDewGPAH8a0SEpIeBecDJwJ7Apen9N4DdJJ0E/DtwBHAIcDDwP5I+A9xGMbw2A1dHxJzO3VszMyuVu1N5koYA1wEjI2IYcGUb3W+JiGMj4iiK4VT6uPVdIuJ9wFXA1yLin8D1wLSIGB4R01K/I4FTI+ITFJ9eGxExFPgEMFVSr1bqHC+pVlJt4/qOPkjXzMzak7tgAkYCMyJiLUBEvNZG35MlzZNUn5YbUjLvnvSzDqhpYx2zIuLNNH0S8J9pu89SfMT6oS0tFBGTI6IQEYXuu/dtZ5fMzKyjcnkqryPSSOZHQCEi/iJpEsUn2zbZmH420vZ+/qNzKjQzs+2RxxHTQ8AYSf0AJO3VSr+mEForqTfQkTv13gD6tDH/UWBc2u6hFB/JvqwjRZuZWXnkLpgiYilwIzBX0iLg5lb6vQ7cASwB7gfmd2D1c4AjJS2UNLaF+T8CuqVTg9OAiyNiYwv9zMyskygisq6h4hUKhaitrc26DDOziiKpLiIKzdtzN2IyM7Pq5mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeWKg8nMzHLFwWRmZrniYDIzs1yp2G8Xz5P6lQ3UTJyddRlm1omW33Rm1iVUDY+YzMwsVxxMZmaWKw4mMzPLlVwEk6QLJS2WtEjSXZJGp0emPyXp95L2ldRN0vOS9k7LdJP0gqS90+uXkuan14mpzyRJd0p6WNKfJU1I7TWSnpF0h6Slkh6QtFuad4ik30qqk/SopMOzOzJmZtUn82CSNAS4DhgZEcOAK4HHgOMiYgTwC+ArEfEW8J+kJ8wCpwKLImIN8H3guxFxLHAu8JOSTRwOnAa8D/iapB6pfTBwa0QMAV5PywFMBq6IiGOAayg+PLClusdLqpVU27i+YYePg5mZFeXhrryRwIyIWAsQEa9JGgpMkzQA2BV4MfW9E7gP+B5wCfDT1H4qxSfTNq3zXelx6wCz01NoN0paDeyb2l+MiIVpug6oScucAMwoWVfPloqOiMkUQ4yeAwb7aYtmZmWSh2BqyQ+BmyNilqQPAZMAIuIvkl6RNJLiCKhp9NSN4ghrQ+lKUriUPhq9kXf2uXn7bmk9r0fE8LLujZmZdVjmp/KAh4AxkvoBSNoL6AusTPMvatb/JxRP6c2IiMbU9gBwRVMHSdsVLBHxd+BFSWPSeiRp2Pasy8zMtk/mwRQRS4EbgbmSFgE3UxwhzZBUB6xttsgsoDfvnMYDmAAU0g0UTwOX70BJ44BLUy1LgbN3YF1mZraNFFFZl0ckFSje6PD+rGtp0nPA4Bhw0feyLsPMOpG/+aH8JNVFRKF5e16vMbVI0kTgs7xzbSkXhg7sS60/tGZmZZH5qbxtERE3RcRBEfFY1rWYmVnnqKhgMjOznZ+DyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFQeTmZnlSkV9JVFe1a9soGbi7KzLMLOdWDV9V59HTGZmlitVEUySJkh6RtLf0hfBttbvYkm3dGVtZma2pWo5lfc54NSIWJF1IWZm1radfsQk6XbgYOA3kr7YNCKSNEbSEkmLJD1Sssh7JP1W0vOSvpVJ0WZmVWynD6aIuBz4K3Ay8LeSWdcDp0XEMOCskvbhwFhgKDBW0gEtrVfSeEm1kmob1zd0TvFmZlVopw+mNjwOTJF0GdC9pP3BiGiIiA3A08BBLS0cEZMjohARhe679+2Ccs3MqkPVBlMaSV0HHADUSeqXZm0s6dZI9VyHMzPLhar9pSvpkIiYB8yTdAbFgDIzs4xV7YgJ+LakeklLgCeARVkXZGZmVTJiioiaNDklvYiIj7fQ9e35qc+oTi3MzMy2UhXB1NmGDuxLbRV9XYiZWWeq5lN5ZmaWQw4mMzPLFQeTmZnlioPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYr/uaHMqhf2UDNxNlZl2Fm1qWWd9I33njEZGZmueJgMjOzXKnaYJJ0saRb0vTlki7MuiYzM6vSa0ySttjviLg9q1rMzGxLFR1Mkr4KfApYA/wFqAMagPHArsALwKcjYr2kKcAGYATwOLC4ZD2TgHUR8R1J/wu4Hdib4qPVx0TEn7pqn8zMql3FnsqTdCxwLjAMOAMopFn3RMSxETEMeAa4tGSx/YETIuLqNlZ9N3BrWv4EYFUr2x8vqVZSbeP6hh3cGzMza1LJI6YTgfsiYgOwQdKvUvtRkm4A9gR6A/eXLDMjIhpbW6GkPsDAiLgXIK27RRExGZgM0HPA4NihPTEzs7dV7IipDVOAL0TEUODrQK+Sef/IpCIzM+uwSg6mx4HRknpJ6g2MSu19gFWSegDjtmWFEfEGsELSOQCSekravZxFm5lZ2yo2mCJiPjCL4k0MvwHqKd748FVgHsXgenY7Vv1pYIKkxcATwH5lKdjMzDpEEZV7eURS74hYl0Y1jwDjI2JBV9dRKBSitra2qzdrZlbRJNVFRKF5eyXf/AAwWdKRFK8jTc0ilMzMrLwqOpgi4pNZ12BmZuVVsdeYzMxs5+RgMjOzXHEwmZlZrlT0XXl5IekNYFnWdWyH/sDarIvYDq67a7nurlUtda8FiIjTm8+o6JsfcmRZS7c85p2kWtfddVx313LdXaucdftUnpmZ5YqDyczMcsXBVB6Tsy5gO7nuruW6u5br7lplq9s3P5iZWa54xGRmZrniYDIzs1xxMO0ASadLWibpBUkTs66nNZIOkDRH0tOSlkq6MrVPkrRS0sL0+mjWtTYnabmk+lRfbWrbS9LvJD2ffr476zpLSTqs5JgulPR3SVfl9XhLulPSaklLStpaPMYq+kH6zC+WdHTO6v62pGdTbfdK2jO110h6s+TY356zulv9bEj6t3S8l0k6LZuqW617WknNyyUtTO07drwjwq/teAHdgT8BBwO7AouAI7Ouq5VaBwBHp+k+wHPAkcAk4Jqs62un9uVA/2Zt3wImpumJwDezrrOdz8nLwEF5Pd7AB4CjgSXtHWPgoxSffybgOGBezur+CLBLmv5mSd01pf1yeLxb/Gykf6eLgJ7AoPQ7p3te6m42/z+A68txvD1i2n7vA16IiD9HxD+BXwBnZ1xTiyJiVaRHgkTxKb3PAAOzrWqHnA1MTdNTgXMyrKU9pwB/ioiXsi6kNRHxCPBas+bWjvHZwM+i6A/AnpIGdE2lW2qp7oh4ICI2p7d/APbv8sLa0crxbs3ZwC8iYmNEvAi8QPF3T5drq25JAs4Hfl6ObTmYtt9A4C8l71dQAb/sJdUAIyg+5RfgC+m0x515OyWWBPCApDpJ41PbvhGxKk2/DOybTWkdcgFb/mPN+/Fu0toxrqTP/SUUR3dNBkl6StJcSe/Pqqg2tPTZqJTj/X7glYh4vqRtu4+3g6mKSOoN/BK4KiL+DtwGHAIMB1ZRHIrnzUkRcTRwBvB5SR8onRnF8wa5/JsHSbsCZwEzUlMlHO+t5PkYt0bStcBm4O7UtAo4MCJGAFcD/yXpXVnV14KK/GyU+ARb/gdsh463g2n7rQQOKHm/f2rLJUk9KIbS3RFxD0BEvBIRjRHxFnAHGZ0iaEtErEw/VwP3UqzxlabTR+nn6uwqbNMZwIKIeAUq43iXaO0Y5/5zL+liYBQwLoUq6VTYq2m6juK1mkMzK7KZNj4blXC8dwE+DkxratvR4+1g2n7zgcGSBqX/GV8AzMq4phal87//F3gmIm4uaS+9NvAxYEnzZbMkaQ9JfZqmKV7YXkLxOF+Uul0E3JdNhe3a4n+ReT/ezbR2jGcBF6a7844DGkpO+WVO0unAV4CzImJ9Sfvekrqn6YOBwcCfs6lya218NmYBF0jqKWkQxbr/2NX1teNU4NmIWNHUsMPHO4u7O3aWF8U7lJ6j+L+Ba7Oup406T6J4KmYxsDC9PgrcBdSn9lnAgKxrbVb3wRTvSFoELG06xkA/4EHgeeD3wF5Z19pC7XsArwJ9S9pyebwphucqYBPFaxiXtnaMKd6Nd2v6zNcDhZzV/QLFazJNn/PbU99z02doIbAAGJ2zulv9bADXpuO9DDgjT3Wn9inA5c367tDx9lcSmZlZrvhUnpmZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWK/8fnSxrKwF+wYgAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "thai_ingredient_df = create_ingredient_df(thai_df)\r\n", + "thai_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 11 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAdqUlEQVR4nO3de5xXdb3v8dcbREhBvICJeBkvKAocbmN57eb9btsLFpmkD3nUMT1mdg4dtWNnu/fW3NXOtHQ6JewyE1DTorwcNDVF5TfcBi9gKZ5AVLAaRcQQP+eP9Z36McwMg/5m1vrN7/18PObBWt91+X3WmoE337XWrK8iAjMzs6LolXcBZmZm5RxMZmZWKA4mMzMrFAeTmZkVioPJzMwKZau8C+gJBg0aFHV1dXmXYWZWNQYNGsR99913X0Qc13qZg6kC6urqKJVKeZdhZlZVJA1qq92X8szMrFAcTGZmVigOJjMzKxTfYzIz6wbr169n+fLlrFu3Lu9Sul2/fv3Ybbfd6NOnT6fWdzBVQNOKZuqmzMq7DHufll1zYt4lWA1Yvnw5AwYMoK6uDkl5l9NtIoLXX3+d5cuXs9dee3VqG1/KMzPrBuvWrWOnnXaqqVACkMROO+20RT3FmgomSb+RtH3edZhZbaq1UGqxpcddU5fyIuKEvGswM7OO9ahgkvQ14J2IuF7Sd4HREfEpSZ8CzgcOA+qB/sBvgd8DhwIrgFMj4m1J+wA3AoOBtcAFEfFcDodjZj1Ype9LV/peaf/+/VmzZk1F99lZPe1S3qPAEWm6HugvqU9qe6TVusOAGyNiBPBX4PTU3gBcFBHjgcuAH7T1QZImSypJKm1Y21zhwzAzq109LZgagfGStgPeAeaQBdQRZKFV7sWIWFC2XZ2k/mQ9qBmSFgA3A0Pa+qCIaIiI+oio773NwC44FDOzypkyZQo33njj3+evuuoqrr76ao488kjGjRvHqFGjuPvuuzfZ7ne/+x0nnXTS3+e//OUvM3XqVAAaGxv5+Mc/zvjx4zn22GNZuXJlRWrtUcEUEeuBF4FJwONkYfRJYF/g2Varv1M2vYHssmYv4K8RMabs64AuL9zMrItNmDCB6dOn/31++vTpnHvuudx1113MmzePhx56iK9+9atERKf2t379ei666CJmzpxJY2Mj5513HpdffnlFau1R95iSR8kuwZ0HNAHfARojIjb3ZEhEvCHpRUlnRsQMZRv8l4hY2OVVm5l1obFjx/Laa6/x8ssvs2rVKnbYYQd22WUXvvKVr/DII4/Qq1cvVqxYwauvvsouu+yy2f0tWbKExYsXc/TRRwOwYcMGhgxp8wLTFuupwXQ5MCci3pK0jk0v43VkIvBDSVcAfYBfAA4mM6t6Z555JjNnzuSVV15hwoQJ3HrrraxatYrGxkb69OlDXV3dJr9vtNVWW/Hee+/9fb5leUQwYsQI5syZU/E6e1wwRcRsskBpmd+vbLouTa4GRpa1/3vZ9IvAJuODmJlVuwkTJnDBBRewevVqHn74YaZPn87OO+9Mnz59eOihh3jppZc22WbPPffkmWee4Z133uHtt99m9uzZHH744ey///6sWrWKOXPmcMghh7B+/XqWLl3KiBEjPnCdPS6Y8jBq6EBKfq2NmW2BPF6FNWLECN58802GDh3KkCFDmDhxIieffDKjRo2ivr6e4cOHb7LN7rvvzllnncXIkSPZa6+9GDt2LABbb701M2fO5OKLL6a5uZl3332XSy65pCLBpM7e6LL21dfXhwcKNLOOPPvssxxwQO0+S9XW8UtqjIj61uv2qKfyzMys+jmYzMysUBxMZmbdpFZvnWzpcTuYzMy6Qb9+/Xj99ddrLpxaxmPq169fp7fxU3lmZt1gt912Y/ny5axatSrvUrpdywi2neVgMjPrBn369On0CK61zpfyzMysUBxMZmZWKA4mMzMrFN9jqoCmFc0VH43SiiuPV8mY1RL3mMzMrFBqNpgkTZJ0Q5r+oqTP512TmZnV6KU8SRsdd0TclFctZma2saoOJklXAp8DVgF/AhqBZmAysDXwB+CciFgraSqwDhgLPAYsKtvPVcCaiPh3SfsCNwGDyYZcPzMi/thdx2RmVuuq9lKepIOA04HRwPFAy6vT74yIgyJiNPAscH7ZZrsBh0bEpR3s+lbgxrT9ocDKdj5/sqSSpNKGtc0f8GjMzKxFNfeYDgPujoh1wDpJv0rtIyVdDWwP9AfuK9tmRkRsaG+HkgYAQyPiLoC07zZFRAPQANB3yLDaevmVmVkXqtoeUwemAl+OiFHAN4HyNwe+lUtFZmbWadUcTI8BJ0vqJ6k/cFJqHwCslNQHmLglO4yIN4Hlkk4DkNRX0jaVLNrMzDpWtcEUEXOBe8geYvgt0ET24MOVwJNkwfXc+9j1OcDFkhYBjwO7VKRgMzPrFFXz2CCS+kfEmtSreQSYHBHzuruO+vr6KJVK3f2xZmZVTVJjRNS3bq/mhx8AGiQdSHYfaVoeoWRmZpVV1cEUEZ/NuwYzM6usqr3HZGZmPZODyczMCsXBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrlKr+BduiaFrRTN2UWXmXYVVo2TUn5l2CWeG4x2RmZoXiYDIzs0Kp+mCS9L8lHZV3HWZmVhlVf48pIr7R1Z8hqXdHQ7KbmVnlVFWPSdKVkpZI+r2k2yRdJmmqpDPS8mWSvilpnqQmScNT+2BJD0h6WtL/kfSSpEFp2eckPSVpgaSbJfVO7WskfVvSQuCQ3A7azKzGVE0wSToIOB0YDRwPbDK4VLI6IsYBPwQuS23/C3gwIkYAM4E90j4PACYAh0XEGGAD/xiOfVvgyYgYHRG/b6OeyZJKkkob1jZX5BjNzKy6LuUdBtwdEeuAdZJ+1c56d6Y/G4F/StOHA58GiIh7Jf0ltR8JjAfmSgL4EPBaWrYBuKO9YiKiAWgA6DtkWPUOA2xmVjDVFEyd9U76cwObPz6RjXz79TaWrfN9JTOz7lc1l/KAx4CTJfWT1B84aQu3PQtA0jHADql9NnCGpJ3Tsh0l7VnBms3MbAtVTY8pIuZKugdYBLwKNAGdvbnzTeA2SecAc4BXgDcjYrWkK4D7JfUC1gMXAi9V/ADMzKxTFFE9t0ck9Y+INZK2AR4BJkfEvE5s1xfYEBHvSjoE+GF62KEi6uvro1QqVWp3ZmY1QVJjRGzyIFvV9JiSBkkHAv3I7g1tNpSSPYDpqVf0N+CCrirQzMw+mKoKpoj47Pvc7nlgbIXLMTOzLlBNDz+YmVkNcDCZmVmhOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoVSVb9gW1RNK5qpmzIr7zKsB1l2zYl5l2CWG/eYzMysUHpcMEmqk7Q4TX9C0q/T9CmSpuRbnZmZbU7NXMqLiHuAe/Kuw8zMOla4HpOkbSXNkrRQ0mJJEyQdJOnx1PaUpAGpZ/SopHnp69DN7HeSpBvSdJ2kByUtkjRb0h6pfaqk69NnvSDpjO44ZjMz+4ci9piOA16OiBMBJA0E5gMT0mCB2wFvA68BR0fEOknDgNuATcb1aMf3yYbNmCbpPOB64LS0bAhwODCcrIc1s60dSJoMTAbovd3gLT9KMzNrU+F6TGQj0x4t6VpJR5CNpbQyIuYCRMQbEfEu0Af4kaQmYAZw4BZ8xiHAz9P0T8mCqMUvI+K9iHgG+HB7O4iIhoioj4j63tsM3IKPNjOzjhSuxxQRSyWNA04ArgYebGfVr5ANsT6aLGDXVaiEd8qmVaF9mplZJxWuxyRpV2BtRPwMuA74KDBE0kFp+QBJWwEDyXpS7wHnAL234GMeB85O0xOBRytVv5mZfTCF6zEBo4DrJL0HrAe+RNZz+b6kD5HdXzoK+AFwh6TPA/cCb23BZ1wE3CLpa8Aq4AsVrN/MzD4ARUTeNVS9vkOGxZBz/yPvMqwH8ZsfrBZIaoyITR5aK2KPqeqMGjqQkv8hMTOriMLdYzIzs9rmYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxQHk5mZFYqDyczMCsXBZGZmheJgMjOzQvEriSqgaUUzdVNm5V2G9XB+f57VCveYzMysUBxMZmZWKA4mMzMrlB4fTJI+J+kpSQsk3Sypt6TzJS1N7T+SdENadx9JT0hqknS1pDV5129mVmt6dDBJOgCYABwWEWOADWRDqV8JHAwcBgwv2+R7wPciYhSwfDP7niypJKm0YW1zl9RvZlaLenQwAUcC44G5khak+UuBhyPizxGxHphRtv4hZfM/72jHEdEQEfURUd97m4FdULqZWW3q6cEkYFpEjElf+wNX5VyTmZl1oKcH02zgDEk7A0jaEZgPfFzSDpK2Ak4vW/+Jsvmzu7VSMzMDengwRcQzwBXA/ZIWAQ8AQ4B/BZ4CHgOWAS03iS4BLk3r7lvWbmZm3aTHv/khIm4Hbi9vk7Q4IhpSj+ku4Jdp0Qrg4IgISWcD+3dvtWZm1uODqR1XSToK6Afczz+CaTxwgyQBfwXO68zORg0dSMmvizEzq4iaDKaIuKyd9keB0d1cjpmZlenR95jMzKz6OJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaHU5JsfKq1pRTN1U2blXYbViGV+/ZX1cO4xmZlZodRsMEn6naT6vOswM7ON1WwwmZlZMfWoYJK0raRZkhZKWixpgqRvSJqb5hvSkBbl2/SSNFXS1Wn+GElzJM2TNENS/3yOxsysNvWoYAKOA16OiNERMRK4F7ghIg5K8x8CTipbfyvgVuD5iLhC0iCyEW+PiohxQAm4tK0PkjRZUklSacNaD3RrZlYpPS2YmoCjJV0r6YiIaAY+KelJSU3Ap4ARZevfDCyOiH9J8wcDBwKPSVoAnAvs2dYHRURDRNRHRH3vbQZ22QGZmdWaHvW4eEQslTQOOAG4WtJs4EKgPiL+JOkqslFrWzxOFlzfjoh1gIAHIuIz3V27mZllelSPSdKuwNqI+BlwHTAuLVqd7hWd0WqTHwO/AaZL2gp4AjhM0r5pf9tK2q97qjczM+hhPSZgFHCdpPeA9cCXgNOAxcArwNzWG0TEdyQNBH4KTAQmAbdJ6ptWuQJY2vWlm5kZgCIi7xqqXn19fZRKpbzLMDOrKpIaI2KT3yftUZfyzMys+jmYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKxcFkZmaF4mAyM7NCcTCZmVmhOJjMzKxQetq78nLRtKKZuimz8i7DrBCWXXNi3iVYlXOPyczMCsXBZGZmhZJrMEk6TdKBnVhvqqTWYykh6ROSfl3BeuolXZ+mJ0m6oVL7NjOzzsm7x3Qa2VDmhRARpYi4OO86zMxqWYfBJOkaSReWzV8l6TJJX5M0V9IiSd8sW36lpCWSfi/pNkmXpfZ9JN0rqVHSo5KGSzoUOIVsYL8FaZ0L0n4XSrpD0jZl5RwlqSRpqaST2qh1W0k/kfSUpPmSTu3guPpJukVSU1r3k6m9oj0wMzPbcpvrMd0OnFU2fxawChgGfAQYA4yX9DFJBwGnA6OB44HywZ8agIsiYjxwGfCDiHgcuAf4WkSMiYg/AndGxEERMRp4Fji/bB916TNPBG6S1K9VrZcDD0bER4BPkgXetu0c14VARMQo4DPAtDb21yFJk1NQljasbd6STc3MrAMdPi4eEfMl7SxpV2Aw8Bey4cuPAean1fqTBdUA4O6IWAesk/QrAEn9gUOBGZJadt2Xto2UdDWwfdrvfWXLpkfEe8Dzkl4Ahrfa9hjglJZeGtAP2IMs4Fo7HPh+OsbnJL0E7NfRuWgtIhrIApe+Q4Z5GGAzswrpzO8xzQDOAHYh60HtCfxbRNxcvpKkS9rZvhfw14gY04nPmgqcFhELJU0CPlG2rPU//q3nBZweEUs68TlmZlZQnXn44XbgbLJwmkHWizkv9YSQNFTSzsBjwMnp/k1/4CSAiHgDeFHSmWl9SRqd9v0mWU+rxQBgpaQ+wMRWdZwpqZekfYC9gdYBdB9wkVK3TNLYDo7p0Zb9S9qPrGflQDMzK4DNBlNEPE0WGCsiYmVE3A/8HJgjqQmYCQyIiLlk94wWAb8FmoCWmy8TgfMlLQSeBloeTPgF8LX0AMI+wJXAk2Qh91yrUv4f8FTa9xfTJcNy/wz0ARZJejrNt+cHQK9U/+3ApIh4Z3PnwszMup4iKnd7RFL/iFiTnqZ7BJgcEfMq9gEFVV9fH6VSKe8yzMyqiqTGiKhv3V7pd+U1pF+Y7QdMq4VQMjOzyqpoMEXEZyu5vw9K0rHAta2aX4yIT+dRj5mZbV6Pfrt4RNzHxo+cm5lZweX9SiIzM7ONOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXSo3+Pqbs0rWimbsqsvMswqyrLrjkx7xKsoNxjMjOzQqmKYJK0q6SZeddhZmZdryqCKSJejogz8vhsSb7caWbWjQoXTJKukXRh2fxVki6TtDjNT5J0p6R7JT0v6Vtl6x4jaY6keZJmlA1meIKk5yQ1Srpe0q9T+0fS+vMlPS5p/7LPuEfSg8Dsbj0BZmY1rnDBRDZw31ll82eRDR5YbgwwARgFTJC0u6RBwBXAURExDigBl0rqB9wMHB8R44HBZft5DjgiIsYC3wD+tWzZOOCMiPh4W0VKmiypJKm0YW1zW6uYmdn7ULjLVBExX9LOknYlC5G/AH9qtdrsiGgGkPQMsCewPXAg8FgaXX1rYA4wHHghIl5M294GTE7TA4FpkoYBQTYCbosHIuLPHdTZADQA9B0yrHKjLZqZ1bjCBVMyAzgD2IWsB9Va+TDoG8iOQ2Rh8pnyFSWN6eBz/hl4KCI+LakO+F3Zsre2uGozM/vAingpD7IwOpssnGZ0cpsngMMk7QsgaVtJ+wFLgL1T8EB2CbDFQGBFmp70wUo2M7NKKGQwRcTTwABgRUSs7OQ2q8jC5TZJi0iX8SLibeC/AvdKagTeBFpuCn0L+DdJ8ylu79HMrKYoouffHpHUPyLWKLv5dCPwfER8t1L77ztkWAw59z8qtTuzmuA3P5ikxoiob91eK72ECySdS/ZAxHyyp/QqZtTQgZT8l8zMrCJqIphS76hiPSQzM+s6hbzHZGZmtcvBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKpSbe/NDVmlY0UzdlVt5lmFkX8Dv9up97TGZmVig1F0ySfiNp+7zrMDOzttXUpbw07MVJEfFe3rWYmVnbenyPSVKdpCWS/hNYDGyQNCgt+7ykRZIWSvppahss6Q5Jc9PXYXnWb2ZWa2qlxzQMODcinpC0DEDSCOAK4NCIWC1px7Tu94DvRsTvJe0B3Acc0HqHkiYDkwF6bze4Gw7BzKw21EowvRQRT7Rq+xQwIyJWA0TEn1P7UcCB2VU/ALZrGQG3fOOIaAAaIBvBtssqNzOrMbUSTG9twbq9gIMjYl1XFWNmZu3r8feYOvAgcKaknQDKLuXdD1zUspKkMTnUZmZWs2o2mCLiaeBfgIclLQS+kxZdDNSnhyKeAb6YV41mZrWox1/Ki4hlwMiy+bqy6WnAtFbrrwYmdFN5ZmbWSo8Ppu4wauhASn5tiZlZRdTspTwzMysmB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxS/+aECmlY0UzdlVt5lmJl1q2Vd9MYb95jMzKxQHExmZlYoDiYzMysUB5OZmRVKlwaTpG0lzZK0UNJiSRMkHSlpvqQmST+R1FfSpyT9smy7oyXd1c4+e0uamvbXJOkrqf0CSXPTZ90haZvUPlXSGWXbrymb/h9pHwslXZPa9pF0r6RGSY9KGt5V58fMzDbV1T2m44CXI2J0RIwE7gWmAhMiYhTZU4FfAh4ChksanLb7AvCTdvY5BhgaESPTPm5J7XdGxEERMRp4Fji/o8IkHQ+cCnw0bfOttKgBuCgixgOXAT9oZ/vJkkqSShvWNnd8FszMrNO6OpiagKMlXSvpCKAOeDEilqbl04CPRUQAPwU+J2l74BDgt+3s8wVgb0nfl3Qc8EZqH5l6OE3ARGDEZmo7CrglItYCRMSfJfUHDgVmSFoA3AwMaWvjiGiIiPqIqO+9zcDNnQczM+ukLv09pohYKmkccAJwNfBgB6vfAvwKWAfMiIh329nnXySNBo4FvgicBZxH1hM7LSIWSpoEfCJt8i4pgCX1ArbuoIZewF8jYkxnjs/MzCqvq+8x7QqsjYifAdeR9YTqJO2bVjkHeBggIl4GXgau4B+X59ra5yCgV0TckdYdlxYNAFZK6kPWY2qxDBifpk8B+qTpB4AvlN2L2jEi3gBelHRmalMKQTMz6yZd/eaHUcB1kt4D1pPdTxpIdqlsK2AucFPZ+rcCgyPi2Q72ORS4JfV+AL6e/rwSeBJYlf4ckNp/BNwtaSHZPa63ACLiXkljgJKkvwG/Af4nWaj9UNIVZCH2C2Dh+zx+MzPbQspu7xSDpBuA+RHx47xr2RL19fVRKpXyLsPMrKpIaoyI+tbthXlXnqRGst7MV/OuxczM8lOYYEqPZ29E0pNA31bN50REU/dUZWZm3a0wwdSWiPho3jWYmVn38iuJzMysUBxMZmZWKIV6Kq9aSXoTWJJ3HZ00CFiddxFbwPV2LdfbdaqpVuj+elcDRMRxrRcU+h5TFVnS1iOPRSSpVC21guvtaq6361RTrVCsen0pz8zMCsXBZGZmheJgqoyGvAvYAtVUK7jeruZ6u0411QoFqtcPP5iZWaG4x2RmZoXiYDIzs0JxMH0Ako6TtETSHyRNybue1iTtLukhSc9IelrSf0vtV0laIWlB+joh71pbSFomqSnVVUptO0p6QNLz6c8d8q4TQNL+ZedwgaQ3JF1SpPMr6SeSXpO0uKytzfOZxh+7Pv08L0qDfOZd63WSnkv13JVGuEZSnaS3y87xTe3vuVvrbfd7L+nr6dwukXRsQeq9vazWZWnk7vzPb0T46318Ab2BPwJ7k42KuxA4MO+6WtU4BBiXpgcAS4EDgauAy/Kur52alwGDWrV9C5iSpqcA1+ZdZzs/D68Aexbp/AIfIxtMc/HmzifZSNO/BQQcDDxZgFqPAbZK09eW1VpXvl6Bzm2b3/v0924h2Uup90r/dvTOu95Wy78NfKMI59c9pvfvI8AfIuKFiPgb2YCCp+Zc00YiYmVEzEvTbwLPkg20WG1OBaal6WnAaTnW0p4jgT9GxEt5F1IuIh4B/tyqub3zeSrwn5F5Athe0pDuqbTtWiPi/oh4N80+AezWXfVsTjvntj2nAr+IiHci4kXgD2T/hnSbjuqVJOAs4LburKk9Dqb3byjwp7L55RT4H31JdcBYstF9Ab6cLo/8pCiXxpIA7pfUKGlyavtwRKxM068AH86ntA6dzcZ/qYt6fqH981n0n+nzyHp0LfaSNF/Sw5KOyKuoNrT1vS/6uT0CeDUini9ry+38OphqgKT+wB3AJRHxBvBDYB9gDLCSrAtfFIdHxDjgeOBCSR8rXxjZdYZC/Y6DpK2BU4AZqanI53cjRTyfbZF0OfAucGtqWgnsERFjgUuBn0vaLq/6ylTN976Vz7Dxf6xyPb8OpvdvBbB72fxuqa1QJPUhC6VbI+JOgIh4NSI2RMR7wI/o5ksKHYmIFenP14C7yGp7teWSUvrztfwqbNPxwLyIeBWKfX6T9s5nIX+mJU0CTgImpiAlXRJ7PU03kt2z2S+3IpMOvveFPLcAkrYC/gm4vaUt7/PrYHr/5gLDJO2V/sd8NnBPzjVtJF03/jHwbER8p6y9/L7Bp4HFrbfNg6RtJQ1omSa78b2Y7Lyem1Y7F7g7nwrbtdH/Not6fsu0dz7vAT6fns47GGguu+SXC0nHAf8dOCUi1pa1D5bUO03vDQwDXsinyn/o4Ht/D3C2pL6S9iKr96nurq8dRwHPRcTylobcz29eT130hC+yp5iWkv1v4vK862mjvsPJLtMsAhakrxOAnwJNqf0eYEjetaZ69yZ7cmkh8HTLOQV2AmYDzwP/F9gx71rLat4WeB0YWNZWmPNLFpgrgfVk9zXOb+98kj2Nd2P6eW4C6gtQ6x/I7s20/PzelNY9Pf2MLADmAScX5Ny2+70HLk/ndglwfBHqTe1TgS+2WjfX8+tXEpmZWaH4Up6ZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVij/H6ovFeU7ywQTAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "japanese_ingredient_df = create_ingredient_df(japanese_df)\r\n", + "japanese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfeElEQVR4nO3deZwV1Z338c8XbCEKYlSMiEurISECsl1NULO5xD2aCYgT4hLzkkcn4pgEnyGPJoMTM+OSbTRGJRmFUUcF1GjCqHGUuBL1NggNKmgiPmGJ4tZiEILwmz/qtN603U033O5bl/6+X69+dd1Tp079Thfxl3Oqbh1FBGZmZnnRrdIBmJmZlXJiMjOzXHFiMjOzXHFiMjOzXHFiMjOzXNmm0gFsDXbZZZeora2tdBhmZlWlrq7u1Yjo27TciakMamtrKRaLlQ7DzKyqSHqpuXJP5ZmZWa44MZmZWa44MZmZWa74HpOZWSdYv349y5YtY+3atZUOpdP17NmTPfbYg5qamjbVd2Iqg/rlDdROmlXpMKyDLb30uEqHYFVs2bJl9O7dm9raWiRVOpxOExG89tprLFu2jH322adNx3gqz8ysE6xdu5add965SyUlAEnsvPPO7RopOjGZmXWSrpaUGrW3305MZmaWK7m4xyTpNGAiEMACYDpwEbAt8BowDlgFLAYOjohVkroBS4BRqZlrgb3S9vkR8Zikyals3/T7pxFxpaRa4B7gUeBgYDlwYkS8I2k/4GqgL7AGOCsinuu43ptZV1Tu+9Llvgfaq1cv3n777bK22VYVHzFJGkSWhA6LiKHAP5IljE9FxHDgVuD/RsRG4CayJAVwBDA/IlYB/w78JCIOBL4M/LLkFAOBo4CDgH+W1PhYyADg6ogYBLyZjgOYAkyIiJFkyfLnLcQ9XlJRUnHDmoYt/juYmVmm4okJOAyYERGvAkTE68AewH2S6oELgEGp7vXAaWn7TOCGtH0E8DNJTwN3AztI6pX2zYqIdan9V4CPpPIXI+LptF0H1KZjDgZmpLauA/o1F3RETImIQkQUum/XZwv/BGZmHWvSpElcffXV732ePHkyl1xyCYcffjgjRoxgyJAh3HXXXR847ne/+x3HH3/8e5/PPfdcpk6dCkBdXR2f/exnGTlyJEcddRQrV64sS6x5SEzNuQr4WUQMAf4P0BMgIv4EvCzpMLIR0D2pfjeyEdaw9NM/IhrHoOtK2t3A+9OXzZV3A94saWdYRHyiIzpoZtaZxo4dy/Tp09/7PH36dE4//XTuvPNO5s6dy+zZs/n2t79NRLSpvfXr1zNhwgRmzpxJXV0dZ555JhdeeGFZYs3DPaYHgTsl/TgiXpO0E9CH7L4PwOlN6v+SbErvxojYkMp+C0wArgCQNKxkNNRmEfGWpBcljYmIGcoeJTkgIuZvRr/MzHJj+PDhvPLKK6xYsYJVq1bx4Q9/mN12241vfvObPPzww3Tr1o3ly5fz8ssvs9tuu22yvcWLF7Nw4UKOPPJIADZs2EC/fs1OMLVbxRNTRCyS9APgIUkbgHnAZLLptDfIElfpt7LuJpvCu6Gk7DzgakkLyPr0MHD2ZoY0DrhG0kVADdk9LicmM6t6Y8aMYebMmfz5z39m7Nix3HzzzaxatYq6ujpqamqora39wPeNttlmGzZu3Pje58b9EcGgQYOYM2dO2eOseGICiIhpwLQmxR+c7MwMJXvo4b0n5dL9o7HNtDu5yefBJR8Hl5T/sGT7ReDotsZuZlYtxo4dy1lnncWrr77KQw89xPTp09l1112pqalh9uzZvPTSB1eh2HvvvXnmmWdYt24d77zzDg888ACHHnooH//4x1m1ahVz5sxh1KhRrF+/niVLljBo0KBmztw+uUhMbSVpEnAO7z+ZlwtD+veh6NfVmFk7VOIVV4MGDWL16tX079+ffv36MW7cOE444QSGDBlCoVBg4MCBHzhmzz335OSTT2bw4MHss88+DB8+HIBtt92WmTNnct5559HQ0MC7777L+eefX5bEpLbe6LKWFQqF8EKBZtaaZ599lk98ous+S9Vc/yXVRUShad28PpVnZmZdlBOTmZnlihOTmVkn6aq3TtrbbycmM7NO0LNnT1577bUul5wa12Pq2bNnm4+pqqfyzMyq1R577MGyZctYtWpVpUPpdI0r2LaVE5OZWSeoqalp8wquXZ2n8szMLFecmMzMLFecmMzMLFd8j6kM6pc3lH01SsuvSrxKxqwr8YjJzMxypcslJkn/LWnHSsdhZmbN61JTeWnhv+MjYuMmK5uZWUVs9SMmSbWSFkv6T2AhsEHSLmnfaZIWSJov6cZU1lfS7ZKeSj+HVDJ+M7OupquMmAYAp0fE7yUtBZA0CLgIODgiXk1LugP8O/CTiHhU0l7AfcAH3lUvaTwwHqD7Dn07oQtmZl1DV0lML0XE75uUHQbMSKvfEhGvp/IjgP2zWT8AdpDUKyLeLj04IqYAUwB69BvQtV5+ZWbWgbpKYvpLO+p2Az4VEWs3WdPMzMpuq7/H1IoHgTGSdgYomcr7LTChsZKkYRWIzcysy+qyiSkiFgE/AB6SNB/4cdp1HlBID0U8A5xdqRjNzLoidbW1QTpCoVCIYrFY6TDMzKqKpLqIKDQt77IjJjMzyycnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzy5Wu8nbxDlW/vIHaSbMqHYblxNJLj6t0CGZVzSMmMzPLFScmMzPLlapITJJ2lzSz0nGYmVnHq4rEFBErImJ0Jc4tyffhzMw6Ue4Sk6RLJX2j5PNkSRMlLUyfz5B0h6R7JT0v6fKSul+QNEfSXEkzJPVK5cdKek5SnaQrJf0mlR+U6s+T9Likj5ec425JDwIPdOofwMysi8tdYgJuA04u+Xwy8ESTOsOAscAQYKykPSXtAlwEHBERI4Ai8C1JPYHrgGMiYiTQt6Sd54BPR8Rw4HvAv5bsGwGMjojPNhekpPGSipKKG9Y0bG5fzcysidxNU0XEPEm7StqdLIm8AfypSbUHIqIBIC1/vjewI7A/8JgkgG2BOcBA4I8R8WI69hZgfNruA0yTNAAIoKbkHPdHxOutxDkFmALQo98ALwNsZlYmuUtMyQxgNLAb2QiqqXUl2xvI+iGyZPL3pRUlDWvlPN8HZkfElyTVAr8r2feXdkdtZmZbLI9TeZAlo1PIktOMNh7ze+AQSR8FkLS9pI8Bi4F9U+KBbAqwUR9gedo+Y8tCNjOzcshlYoqIRUBvYHlErGzjMavIksstkhaQpvEi4h3gH4B7JdUBq4HGm0KXA/8maR75HT2amXUpitj6b49I6hURbyu7+XQ18HxE/KRc7RcKhSgWi+VqzsysS5BUFxGFpuW5HDF1gLMkPQ0sIpu+u67C8ZiZWQu6xPRVGh2VbYRkZmYdp6uMmMzMrEo4MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa50iS/YdrT65Q3UTppV6TDM2mTppcdVOgSzVnnEZGZmuVL1iUnS+ZK2K1Nbn2tcdt3MzCqj6hMTcD7QrsQkqXsHxWJmZluoqhJTWvxvlqT5khZK+mdgd2C2pNmpzjWSipIWSbq45Nilki6TNBcYI+mjkv4ntTVX0n6pai9JMyU9J+nmtFSGmZl1kmp7+OFoYEVEHAcgqQ/wNeDzEfFqqnNhRLyeRkUPSDogIhakfa9FxIh07BPApRFxp6SeZEl6T2A4MAhYATwGHAI82jQQSeOB8QDdd+jbMb01M+uCqmrEBNQDR6aRz6cjoqGZOienUdE8sgSzf8m+2wAk9Qb6R8SdABGxNiLWpDpPRsSyiNgIPA3UNhdIREyJiEJEFLpv16csnTMzsyobMUXEEkkjgGOBSyQ9ULpf0j7ARODAiHhD0lSgZ0mVv7ThNOtKtjdQZX8jM7NqV1UjJkm7A2si4ibgCmAEsBronarsQJZ8GiR9BDimuXYiYjWwTNJJqd0e5Xqyz8zMtky1jQaGAFdI2gisB84BRgH3SloREZ+XNA94DvgT2T2ilpwKXCfpX1JbYzo2dDMzawtFRKVjqHo9+g2Ifqf/tNJhmLWJ3/xgeSGpLiIKTcurbcSUS0P696Ho/7GbmZVFVd1jMjOzrZ8Tk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YpfSVQG9csbqJ00q9JhmLWL35lneeURk5mZ5YoTk5mZ5UpFE5OkkyTt34Z6UyWNbqb8c5J+U8Z4CpKuTNtnSPpZudo2M7O2qfSI6SRgk4mps0REMSLOq3QcZmZdWauJSdKlkr5R8nmypImSLpD0lKQFki4u2f9dSYslPSrpFkkTU/l+ku6VVCfpEUkDJR0MfJFsRdqnU52zUrvzJd3eZLnzIyQVJS2RdHwzsW4v6XpJT0qaJ+nEVvrVU9INkupT3c+n8jaPwCSNT/EUN6xpaMshZmbWBpsaMd0GnFzy+WRgFTAAOAgYBoyU9BlJBwJfBoYCxwClqxJOASZExEhgIvDziHgcuBu4ICKGRcQfgDsi4sCIGAo8C3y9pI3adM7jgGsl9WwS64XAgxFxEPB5soS3fQv9+gYQETEE+HtgWjPttSoipkREISIK3bfr055DzcysFa0+Lh4R8yTtKml3oC/wBjAE+AIwL1XrRZaoegN3RcRaYK2kXwNI6gUcDMyQ1Nh0jxZOOVjSJcCOqd37SvZNj4iNwPOS/ggMbHLsF4AvNo7SgJ7AXmQJrqlDgatSH5+T9BLwsdb+FmZm1jna8j2mGcBoYDeyEdTewL9FxHWllSSd38Lx3YA3I2JYG841FTgpIuZLOgP4XMm+aFK36WcBX46IxW04j5mZ5VRbHn64DTiFLDnNIBvFnJlGQkjqL2lX4DHghHT/phdwPEBEvAW8KGlMqi9JQ1Pbq8lGWo16Aysl1QDjmsQxRlI3SfsB+wJNE9B9wASlYZmk4a306ZHG9iV9jGxk5YRmZpYDm0xMEbGILGEsj4iVEfFb4L+AOZLqgZlA74h4iuye0QLgHqAeaHwqYBzwdUnzgUVA44MJtwIXpAcQ9gO+CzxBluSeaxLK/weeTG2fnaYMS30fqAEWSFqUPrfk50C3FP9twBkRsW5TfwszM+t4img6I7YFjUm9IuLt9DTdw8D4iJhbthPkVKFQiGKxWOkwzMyqiqS6iCg0LS/3u/KmpC/M9gSmdYWkZGZm5VXWxBQRXylne1tK0lHAZU2KX4yIL1UiHjMz27St+u3iEXEff/vIuZmZ5VylX0lkZmb2N5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV7bq7zF1lvrlDdROmlXpMMw6xNJLj6t0CNbFeMRkZma54sRkZma54sTUhKSzJZ2WtqdKGl3pmMzMuhLfY2oiIq6tdAxmZl1ZWUdMkraXNEvSfEkLJY2VNFLSQ5LqJN0nqV+qe56kZyQtkHRrKjtI0py0cODjkj6eys+Q9CtJ90taKulcSd9K9X4vaadUbz9J96ZzPSJpYCux1kp6MJ3/AUl7pfLJkia2oa/jJRUlFTesadhUdTMza6NyT+UdDayIiKERMRi4F7gKGB0RI4HrgR+kupOA4RFxAHB2KnsO+HREDAe+B/xrSduDgb8DDkxtrEn15gCnpTpTgAnpXBPJVqptyVVka0YdANwMXNmejkbElIgoRESh+3Z92nOomZm1otxTefXAjyRdBvwGeIMsodwvCaA7sDLVXQDcLOlXwK9SWR9gmqQBQJAtld5odkSsBlZLagB+XXLOAyT1Ag4GZqRzAfRoJdZRZIkO4Ebg8vZ318zMyq3cCwUukTQCOBa4BHgQWBQRo5qpfhzwGeAE4EJJQ4DvkyWgL0mqBX5XUn9dyfbGks8byfrRDXgzIoaVrUNmZtbpyn2PaXeyKbabgCuATwJ9JY1K+2skDZLUDdgzImYD/0Q2UuqVfi9PzZ3RnnNHxFvAi5LGpHNJ0tBWDnkcOCVtjwMeac/5zMysY5R7Km8IcIWkjcB64BzgXeBKSX3S+X4KLAFuSmUCroyINyVdTjaVdxGwOa9SGAdck46vAW4F5rdQdwJwg6QLgFXA1zbjfAAM6d+Hor8db2ZWFoqISsdQ9QqFQhSLxUqHYWZWVSTVRUShabm/YGtmZrmy1X/BVtKFwJgmxTMi4gfN1Tczs8ra6hNTSkBOQmZmVcJTeWZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitb/ePinaF+eQO1kzbnDUpmtqWW+nVgWx2PmMzMLFecmMzMLFe2usSUlkxfmLY/J+k3afuLkiZVNjozM9uULnOPKSLuBu6udBxmZta63I2YJG0vaZak+ZIWShor6UBJj6eyJyX1TiOjRyTNTT8Hb6LdMyT9LG3XSnpQ0gJJD0jaK5VPlXRlOtcfJY3ujD6bmdn78jhiOhpYERHHAaTFBOcBYyPiKUk7AO8ArwBHRsRaSQOAW4APrOvRgquAaRExTdKZwJXASWlfP+BQYCDZCGtmcw1IGg+MB+i+Q9/299LMzJqVuxETUA8cKekySZ8G9gJWRsRTkC2hHhHvkq1Q+wtJ9cAMYP92nGMU8F9p+0ayRNToVxGxMSKeAT7SUgMRMSUiChFR6L5dn3ac2szMWpO7EVNELJE0AjgWuAR4sIWq3wReBoaSJdi1ZQphXcm2ytSmmZm1Ue5GTJJ2B9ZExE3AFcAngX6SDkz7e0vaBuhDNpLaCJwKdG/HaR4HTknb44BHyhW/mZltmdyNmIAhwBWSNgLrgXPIRi5XSfoQ2f2lI4CfA7dLOg24F/hLO84xAbhB0gXAKuBrZYzfzMy2gCKi0jFUvUKhEMVisdJhmJlVFUl1EfGBh9ZyN5VnZmZdmxOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlSh7flVd16pc3UDtpVqXDMLMyWnrpcZUOocvyiMnMzHKlyyamJkutn53eUm5mZhXWJafy0npO74mIaysVi5mZ/a2qTkySvgt8lWxNpT8BdUADMB7YFngBODUi1kiaSrbK7XDgMWBBSTuTgbcj4oeSPgpcC/QFNgBjIuIPndUnM7Ourmqn8tKKtl8mW1r9GKBxTY87IuLAiBgKPAt8veSwPYCDI+JbrTR9M3B1Ov5gYGUL5x8vqSipuGFNwxb2xszMGlXziOkQ4K6IWAuslfTrVD5Y0iXAjkAv4L6SY2ZExIaWGpTUG+gfEXcCpLabFRFTgCkAPfoN8GqLZmZlUrUjplZMBc6NiCHAxUDPkn3tWX7dzMwqoJoT02PACZJ6SuoFHJ/KewMrJdUA49rTYESsBpZJOglAUg9J25UzaDMza13VJqaIeAq4m+whhnuAerIHH74LPEGWuJ7bjKZPBc6TtAB4HNitLAGbmVmbKKJ6b49I6hURb6dRzcPA+IiY29lx9Og3IPqd/tPOPq2ZdSC/+aHjSaqLiELT8mp++AFgiqT9ye4jTatEUgIY0r8PRf8jNjMri6pOTBHxlUrHYGZm5VW195jMzGzr5MRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma5UtVvfsiL+uUN1E6aVekwzKwD+J15nc8jJjMzy5WqT0yS/kXSEZWOw8zMyqPqp/Ii4nsdfQ5J3Vtbkt3MzMqnqkZMkr4rabGkRyXdImmipKmSRqf9SyVdLGmupHpJA1N5X0n3S1ok6ZeSXpK0S9r3VUlPSnpa0nWSuqfytyX9SNJ8YFTFOm1m1sVUTWKSdCDwZWAocAzwgcWlklcjYgRwDTAxlf0z8GBEDAJmAnulNj8BjAUOiYhhwAbeX459e+CJiBgaEY82E894SUVJxQ1rGsrSRzMzq66pvEOAuyJiLbBW0q9bqHdH+l0H/F3aPhT4EkBE3CvpjVR+ODASeEoSwIeAV9K+DcDtLQUTEVOAKZCtYLs5HTIzsw+qpsTUVuvS7w1sun8iW/n2O83sW+v7SmZmna9qpvKAx4ATJPWU1As4vp3Hngwg6QvAh1P5A8BoSbumfTtJ2ruMMZuZWTtVzYgpIp6SdDewAHgZqAfaenPnYuAWSacCc4A/A6sj4lVJFwG/ldQNWA98A3ip7B0wM7M2qZrElPwwIiZL2g54GKiLiF807oyI2pLtIvC59LEBOCoi3pU0CjgwItalercBtzU9UUT06rBemJlZi6otMU2RtD/Qk+ze0Nw2HrcXMD2Niv4KnFXOoIb070PRry0xMyuLqkpMEfGVzTzueWB4mcMxM7MOUE0PP5iZWRfgxGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrlSVV+wzav65Q3UTppV6TDMzDrV0g56441HTGZmlitOTGZmlitOTGZmlitOTGZmlisdmpgkbS9plqT5khZKGivpcEnzJNVLul5SD0mHSfpVyXFHSrqzhTa7S5qa2quX9M1Ufpakp9K5bk9rNpHqji45/u2S7X9KbcyXdGkq20/SvZLqJD0iaWBH/X3MzOyDOnrEdDSwIiKGRsRg4F5gKjA2IoaQPRV4DjAbGCipbzrua8D1LbQ5DOgfEYNTGzek8jsi4sCIGAo8C3y9tcAkHQOcCHwyHXN52jUFmBARI4GJwM9bOH68pKKk4oY1bV1I18zMNqWjE1M9cKSkyyR9GqgFXoyIJWn/NOAzERHAjcBXJe0IjALuaaHNPwL7SrpK0tHAW6l8cBrh1APjgEGbiO0I4IaIWAMQEa9L6gUcDMyQ9DRwHdCvuYMjYkpEFCKi0H27Ppv6O5iZWRt16PeYImKJpBHAscAlwIOtVL8B+DWwFpgREe+20OYbkoYCRwFnAycDZ5KNxE6KiPmSzuD9ZdXfJSXgtILttq3E0A14MyKGtaV/ZmZWfh19j2l3YE1E3ARcQTYSqpX00VTlVOAhgIhYAawALuL96bnm2twF6BYRt6e6I9Ku3sBKSTVkI6ZGS4GRafuLQE3avh/4Wsm9qJ0i4i3gRUljUplSEjQzs07S0W9+GAJcIWkjsJ7sflIfsqmybYCngGtL6t8M9I2IZ1tpsz9wQxr9AHwn/f4u8ASwKv3uncp/AdwlaT7ZPa6/AETEvZKGAUVJfwX+G/h/ZEntGkkXkSWxW4H5m9l/MzNrJ2W3d/JB0s+AeRHxH5WOpT0KhUIUi8VKh2FmVlUk1UVEoWl5bt6VJ6mObDTz7UrHYmZmlZObxJQez/4bkp4AejQpPjUi6jsnKjMz62y5SUzNiYhPVjoGMzPrXH4lkZmZ5YoTk5mZ5UqunsqrVpJWA4srHUcZ7QK8Wukgysx9yr+trT+w9fWp3P3ZOyL6Ni3M9T2mKrK4uUceq5Wk4tbUH3CfqsHW1h/Y+vrUWf3xVJ6ZmeWKE5OZmeWKE1N5TKl0AGW2tfUH3KdqsLX1B7a+PnVKf/zwg5mZ5YpHTGZmlitOTGZmlitOTFtA0tGSFkt6QdKkSsezuSQtlVQv6WlJxVS2k6T7JT2ffn+40nG2RtL1kl6RtLCkrNk+pHW2rkzXbUFazDJXWujPZEnL03V6WtKxJfu+k/qzWNJRlYm6ZZL2lDRb0jOSFkn6x1RezdeopT5V83XqKelJSfNTny5O5ftIeiLFfpukbVN5j/T5hbS/tiyBRIR/NuMH6A78AdiXbFXc+cD+lY5rM/uyFNilSdnlwKS0PQm4rNJxbqIPnyFbNHLhpvpAtqLyPYCATwFPVDr+NvZnMjCxmbr7p39/PYB90r/L7pXuQ5MY+wEj0nZvYEmKu5qvUUt9qubrJKBX2q4hW9vuU8B04JRUfi1wTtr+B+DatH0KcFs54vCIafMdBLwQEX+MiL+SLSh4YoVjKqcTgWlpexpwUgVj2aSIeBh4vUlxS304EfjPyPwe2FFSv86JtG1a6E9LTgRujYh1EfEi8ALZv8/ciIiVETE3ba8GniVb9LOar1FLfWpJNVyniIi308ea9BPAYcDMVN70OjVev5nA4ZK0pXE4MW2+/sCfSj4vo/V/lHkWwG8l1Ukan8o+EhEr0/afgY9UJrQt0lIfqvnanZumtq4vmV6tqv6k6Z7hZP9vfKu4Rk36BFV8nSR1l/Q08ApwP9nI7s2IeDdVKY37vT6l/Q3AzlsagxOTARwaESOAY4BvSPpM6c7IxulV/b2CraEPwDXAfsAwYCXwo8qG036SegG3A+dHxFul+6r1GjXTp6q+ThGxISKGAXuQjegGdnYMTkybbzmwZ8nnPVJZ1YmI5en3K8CdZP8YX26cOkm/X6lchJutpT5U5bWLiJfTfzQ2Ar/g/WmgquiPpBqy/4DfHBF3pOKqvkbN9anar1OjiHgTmA2MIptKbXy3amnc7/Up7e8DvLal53Zi2nxPAQPS0yrbkt34u7vCMbWbpO0l9W7cBr4ALCTry+mp2unAXZWJcIu01Ie7gdPSk1+fAhpKppNyq8k9li+RXSfI+nNKekJqH2AA8GRnx9eadN/hP4BnI+LHJbuq9hq11Kcqv059Je2Ytj8EHEl272w2MDpVa3qdGq/faODBNPLdMpV+CqSaf8ieHFpCNgd7YaXj2cw+7Ev2pNB8YFFjP8jmiR8Angf+B9ip0rFuoh+3kE2brCebA/96S30ge/Lo6nTd6oFCpeNvY39uTPEuSP9B6FdS/8LUn8XAMZWOv5n+HEo2TbcAeDr9HFvl16ilPlXzdToAmJdiXwh8L5XvS5ZEXwBmAD1Sec/0+YW0f99yxOFXEpmZWa54Ks/MzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLlfwHH5sUVMquziAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "chinese_ingredient_df = create_ingredient_df(chinese_df)\r\n", + "chinese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfTElEQVR4nO3de5RXdb3/8ecLHEEdQkU0fngZNBRFBGH0eMtMTSs17QjiL0tMj/ws01ylHUrr4MnWsU4Xu1iGHsPMo1zSBcVKLe+aF2ZAbhJqggWSgOUkGoTj+/fH/ox8HecK35m9v8zrsdZ3zd6f/dmf/d6f9WXefPbesz+KCMzMzIqiV94BmJmZlXJiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtku7wC2BbvttlvU1NTkHYaZWUWpr69fFxEDm5c7MZVBTU0NdXV1eYdhZlZRJL3YUrkv5ZmZWaE4MZmZWaE4MZmZWaH4HpOZWTfYtGkTK1euZMOGDXmH0u369u3LnnvuSVVVVYfqOzGVwaJVDdRMmpN3GLaNWnHtKXmHYGWwcuVK+vXrR01NDZLyDqfbRASvvPIKK1euZMiQIR3ax5fyzMy6wYYNGxgwYECPSkoAkhgwYECnRopdnpgkXSppqaTbuvpY5SBphaTd8o7DzLY9PS0pNenseXfHpbzPAidGxMpuONbbJG0XEW925zHNzGzrdWliknQDsC/wG0l3APsBBwNVwOSImCXpPOBjwI5p+10R8aW0//qIqE7LY4FTI+I8SfsBtwE7AbOAyyKiWtJxwNeBvwHDgP0lfRK4FNgeeBL4bEQ0SjoJuBroA/wR+HRErC+JfQfgTuDOiLixyzrJzHqkct+XLve9yOrqatavX99+xS7QpZfyIuIi4CXgg2RJ5P6IODyt/7eknVLVUcB4YAQwXtJe7TT9feD7ETECaD4SGw18PiL2l3RgavfoiBgFNALnpEt1V5GN5EYDdcAXStqoBn4F3N5aUpI0UVKdpLrGNxra7wwzM+uQ7nz44SRgkqSngQeBvsDeadt9EdEQERuAZ4B92mnrSGBGWv7fZtueiojlafkEYAwwNx33BLIR3BHAQcBjqXxCs2POAn4WET9vLYCImBIRtRFR23vH/u2Ea2aWr0mTJnH99de/vT558mSuueYaTjjhBEaPHs2IESOYNWvWu/Z78MEHOfXUU99e/9znPsfUqVMBqK+v5wMf+ABjxozh5JNPZvXq1WWJtTsTk4AzI2JU+uwdEUvTto0l9RrZfImxdN73vh08zuvNjnlLyTEPiIjJqfy3JeUHRcQFJfs9BnxYPfVOpZltc8aPH8/06dPfXp8+fToTJkzgrrvuYt68eTzwwAN88YtfJCLaaGWzTZs2cckllzBz5kzq6+s5//zzufLKK8sSa3cmpnuAS5p+2Us6tAP7vCzpQEm9gI+XlD8BnJmWz25j//uAsZJ2T8fcVdI+af+jJb0vle8kaf+S/b5Gdp/q+uYNmplVokMPPZQ1a9bw0ksvsWDBAnbZZRfe+9738pWvfIVDDjmEE088kVWrVvHyyy93qL1ly5axePFiPvShDzFq1CiuueYaVq4szzNu3fkHtl8HrgMWpkSzHDi17V2YBPwaWEt2H6g6lV8G/ELSlcDdQIs3eSLiGUlXAfemY24CLo6IJ9JDF7dL6pOqXwU8W7L754GbJX2r6WEMM7NKNm7cOGbOnMlf/vIXxo8fz2233cbatWupr6+nqqqKmpqad/290Xbbbcdbb7319nrT9ohg+PDhPP7442WPs8sTU0TUlKz+vxa2TwWmlqyfWrI8E5jZQrOrgCMiIiSdDRyQ6j9Idv+qtP1pwLQWjns/cFg78X66hWObmVWk8ePHc+GFF7Ju3Toeeughpk+fzu67705VVRUPPPAAL7747lko9tlnH5555hk2btzIP/7xD+677z6OOeYYDjjgANauXcvjjz/OkUceyaZNm3j22WcZPnz4VsdZqa8kGgP8KF0WfBU4P89gRgzuT51fG2NmnZDHq6aGDx/Oa6+9xuDBgxk0aBDnnHMOp512GiNGjKC2tpZhw4a9a5+99tqLs846i4MPPpghQ4Zw6KHZXZjtt9+emTNncumll9LQ0MCbb77JZZddVpbEpI7e6LLW1dbWhicKNLO2LF26lAMPPDDvMHLT0vlLqo+I2uZ1/a48MzMrFCcmMzMrFCcmM7Nu0lNvnXT2vJ2YzMy6Qd++fXnllVd6XHJqmo+pb9+OviOhcp/KMzOrKHvuuScrV65k7dq1eYfS7ZpmsO0oJyYzs25QVVXV4RlcezpfyjMzs0JxYjIzs0JxYjIzs0LxPaYyWLSqoeyzUZptiTxec2NWbh4xmZlZoTgxmZlZoTgxtUMZ95OZWTcp9C9cSTWS/iDpNklLJc2UtKOkMZIeklQv6R5Jg1L9ByV9X9LTkhZLOjyVT5Z0q6THJT0n6cKSY1whaa6khZKuLjnuMkk/BxYDe+Vx/mZmPVElPPxwAHBBRDwm6WbgYrJp1k+PiLWSxgPfYPOcTDtGxChJxwI3Awen8kOAI4CdgPmS5qRtQ4HDAQGz035/SuUTIuKJloKSNBGYCND7PQPLfc5mZj1WJSSmP0fEY2n5F8BXyBLKb7N5AukNrC6pfztARDws6T2Sdk7lsyLiH8A/JD1AloyOAU4C5qc61WQJ6U/Ai60lpdT+FGAKQJ9BQ3vWy6/MzLpQJSSm5r/0XwOWRMSRHawfbZQL+K+I+GnpBkk1wOudjtTMzLZaoe8xJXtLakpCnwCeAAY2lUmqklQ6l+/4VH4M0BARDan8dEl9JQ0AjgPmAvcA50uqTvsMlrR7l5+RmZm1qhJGTMuAi9P9pWeAH5IllB9I6k92DtcBS1L9DZLmA1Vsvu8EsBB4ANgN+HpEvAS8JOlA4PF0WXA98EmgscvPyszMWqQizw2SLqn9OiIObqdqU/0Hgcsjoq5Z+WRgfUR8u8whAlBbWxt1dXXtVzQzs7dJqo+I2ubllXApz8zMepBCX8qLiBVsfty7I/WPa6V8cnkiMjOzruYRk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFUqh/8C2Uixa1UDNpDl5h2HWI6y49pS8Q7Au5hGTmZkVihOTmZkVSq6JSdIZkg7qQL2pksa2UH6cpF+XMZ5aST9Iy+dJ+lG52jYzs47Je8R0BtBuYuouEVEXEZfmHYeZWU/WZmKSdK2ki0vWJ0u6XNIVkuZKWijp6pLtX5W0TNKjkm6XdHkq30/S3ZLqJT0iaZiko4CPAf8t6elU58LU7gJJv5S0Y0k4J0qqk/SspFNbiHUnSTdLekrSfEmnt3FefSX9TNKiVPeDqbysIzAzM+u89kZM04CzStbPAtYCQ4HDgVHAGEnHSjoMOBMYCXwEKJ38aQpwSUSMAS4HfhwRvwdmA1dExKiI+CNwZ0QcFhEjgaXABSVt1KRjngLcIKlvs1ivBO6PiMOBD5IlvJ1aOa+LgYiIEcD/BW5pob02SZqYEmVd4xsN7e9gZmYd0ubj4hExX9Lukv4PMBD4GzACOAmYn6pVkyWqfsCsiNhANr35rwAkVQNHATPS9OUAfVo55MGSrgF2Tu3eU7JtekS8BTwn6QVgWLN9TwI+1jRKA/oCe5MluOaOIZuinYj4g6QXgf3b6ovmImIKWcKlz6ChxZ0G2MyswnTk75hmAGOB95KNoPYB/isiflpaSdJlrezfC3g1IkZ14FhTgTMiYoGk84DjSrY1/+XffF3AmRGxrAPHMTOzgurIww/TgLPJktMMslHM+WkkhKTBknYHHgNOS/dvqoFTASLi78BySeNSfUkamdp+jWyk1aQfsFpSFXBOszjGSeolaT9gX6B5AroHuERpWCbp0DbO6ZGm9iXtTzayckIzMyuAdhNTRCwhSxirImJ1RNwL/C/wuKRFwEygX0TMJbtntBD4DbAIaLr5cg5wgaQFwBKg6cGEO4Ar0gMI+wFfBZ4kS3J/aBbKn4CnUtsXpUuGpb4OVAELJS1J6635MdArxT8NOC8iNrbXF2Zm1vUUUb7bI5KqI2J9epruYWBiRMwr2wEKqra2Nurq6vIOw8ysokiqj4ja5uXlflfelPQHs32BW3pCUjIzs/Iqa2KKiE+Us72tJelk4JvNipdHxMfziMfMzNq3Tb9dPCLu4Z2PnJuZWcHl/UoiMzOzd3BiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtmm/46puyxa1UDNpDl5h2HWY6y49pS8Q7Au5BGTmZkVSsUnJkn/KenEvOMwM7PyqPhLeRHxta4+hqTeEdHY1ccxM7MKGzFJ+qqkZZIelXS7pMslTZU0Nm1fIelqSfMkLZI0LJUPlPRbSUsk3STpRUm7pW2flPSUpKcl/VRS71S+XtJ30hxSR+Z20mZmPUzFJCZJhwFnAiOBjwDvmsMjWRcRo4GfAJensv8A7o+I4WQTG+6d2jwQGA8cnaZ+b2TzzLk7AU9GxMiIeLSFeCZKqpNU1/hGQ/PNZma2hSrpUt7RwKw0c+0GSb9qpd6d6Wc98K9p+Rjg4wARcbekv6XyE4AxwNw0I/sOwJq0rRH4ZWvBRMQUYApAn0FDyzfboplZD1dJiamjmqZIb6T98xPZhIZfbmHbBt9XMjPrfhVzKQ94DDhNUl9J1cCpndz3LABJJwG7pPL7gLGSdk/bdpW0TxljNjOzTqqYEVNEzJU0G1gIvAwsAjp6c+dq4HZJnwIeB/4CvBYR6yRdBdwrqRewCbgYeLHsJ2BmZh1SMYkp+XZETJa0I/AwUB8RNzZtjIiakuU64Li02gCcHBFvSjoSOCwiNqZ604BpzQ8UEdVddhZmZtaqSktMUyQdBPQluzc0r4P77Q1MT6OifwIXljOoEYP7U+dXpJiZlUVFJaaI+MQW7vcccGiZwzEzsy5QSQ8/mJlZD+DEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmhVJRb34oqkWrGqiZNCfvMMxsK63wq8UKwSMmMzMrlB6bmCSdJ+lHafkiSefmHZOZmfXQS3mS3nHeEXFDXrGYmdk7VXRikvRV4JPAWuDPQD3Z3EsTge2B54FPRcQbkqYCG8jeMv4Y2YSDTe1MBtZHxLclvQ+4ARhINj37uIj4Y3edk5lZT1exl/IkHQacCYwEPgLUpk13RsRhETESWApcULLbnsBREfGFNpq+Dbg+7X8UsLqV40+UVCeprvGNjk6ka2Zm7ankEdPRwKyI2ABskPSrVH6wpGuAnYFq4J6SfWZERGNrDUrqBwyOiLsAUtstiogpwBSAPoOGxladiZmZva1iR0xtmAp8LiJGAFeTzXbb5PVcIjIzsw6r5MT0GHCapL6SqoFTU3k/YLWkKuCczjQYEa8BKyWdASCpj6Qdyxm0mZm1rWITU0TMBWaTPcTwG2AR2YMPXwWeJEtcf9iCpj8FXCppIfB74L1lCdjMzDpEEZV7e0RSdUSsT6Oah4GJETGvu+PoM2hoDJpwXXcf1szKzG9+6F6S6iOitnl5JT/8ADBF0kFk95FuySMpAYwY3J86f6HNzMqiohNTRHwi7xjMzKy8KvYek5mZbZucmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFAq+s0PRbFoVQM1k+bkHYaZdTG/S697eMRkZmaF4sRkZmaF4sRkZmaFUojEJOlcSQslLZB0q6TTJD0pab6k30naQ1IvSc9JGpj26SXpeUkD0+eXkuamz9GpzmRJN0t6UNILki5N5TWSlkq6UdISSfdK2iFt20/S3ZLqJT0iaVh+PWNm1vPknpgkDQeuAo6PiJHA54FHgSMi4lDgDuBLEfEW8As2T5d+IrAgItYC3we+FxGHAWcCN5UcYhhwMnA48B9pynWAocD1ETEceDXtBzAFuCQixgCXAz9uJe6Jkuok1TW+0bDV/WBmZpkiPJV3PDAjItYBRMRfJY0ApkkaBGwPLE91bwZmAdcB5wM/S+UnAgdJamrzPZKq0/KciNgIbJS0BtgjlS+PiKfTcj1Qk/Y5CphR0lafloKOiClkSYw+g4ZW7jTAZmYFU4TE1JIfAt+NiNmSjgMmA0TEnyW9LOl4shFQ0+ipF9kIa0NpIym5bCwpamTzOTcv3yG182pEjCrr2ZiZWYflfikPuB8YJ2kAgKRdgf7AqrR9QrP6N5Fd0psREY2p7F7gkqYKkrYosUTE34HlksaldiRp5Ja0ZWZmWyb3xBQRS4BvAA9JWgB8l2yENENSPbCu2S6zgWo2X8YDuBSoTQ9QPANctBUhnQNckGJZApy+FW2ZmVknKaKybo9IqiV70OH9ecfSpLa2Nurq6vIOw8ysokiqj4ja5uVFvcfUIkmTgM+w+d6SmZltY3K/lNcZEXFtROwTEY/mHYuZmXWNikpMZma27XNiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQqmoNz8U1aJVDdRMmpN3GGbWDVZce0reIWzzPGIyM7NCcWIyM7NCqZjEJOlj6SWu5WhrsqTLy9GWmZmVV0XcY5K0XUTMJpuLKa/jv5nHsc3MeppuHzFJOjdN6LdA0q2SaiTdn8ruk7R3qjdV0g2SngS+Jek8ST9K206T9KSk+ZJ+J2mPVD5Z0s2SHpT0gqRLS457paRnJT0KHFBSvp+kuyXVS3pE0rCWjt+NXWRm1qN164hJ0nDgKuCoiFiXplG/BbglIm6RdD7wA+CMtMueqW6jpPNKmnoUOCIiQtK/AV8Cvpi2DQM+CPQDlkn6CXAIcDYwiuyc5wH1qf4U4KKIeE7SvwA/Bo5vfvwWzmUiMBGg93sGbk23mJlZie6+lHc8MCMi1gFExF8lHQn8a9p+K+8cncxoKSmQJYxpkgYB2wPLS7bNiYiNwEZJa4A9gPcDd0XEGwCSZqef1cBRZNO4N+3fpwPHJyKmkCU1+gwaWlnTAJuZFVjR7zG93kr5D4HvRsRsSccBk0u2bSxZbqTtc+wFvBoRozp5fDMz6yLdfY/pfmCcpAEA6VLe78kus0E2ZfojHWinP7AqLU/oQP2HgTMk7SCpH3AaQET8HVguaVyKR5JGdvRkzMys/Lp1xBQRSyR9A3hIUiMwH7gE+JmkK4C1wKc70NRksstvfyNLdkPaOe48SdOABcAaYG7J5nOAn0i6CqgC7kj1zMwsB4rw7ZGtVVtbG3V1dXmHYWZWUSTVR0Rt8/KK+QNbMzPrGZyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUIr+dvGKsGhVAzWT5uQdhpkVzIprT8k7hIrkEZOZmRVKj0pMkv5T0ol5x2FmZq3rUZfyIuJrecdgZmZtq/gRk6QvSFqcPpdJqpG0VNKNkpZIulfSDqnuVElj0/IJkuZLWiTpZkl9UvkKSVdLmpe2Dcvz/MzMepqKTkySxpBNLPgvwBHAhcAuwFDg+ogYDrwKnNlsv77AVGB8RIwgGzl+pqTKuogYDfwEuLyVY0+UVCeprvGNhrKel5lZT1bRiQk4BrgrIl6PiPXAncD7geUR8XSqUw/UNNvvgFTn2bR+C3BsyfY729gXgIiYEhG1EVHbe8f+W30iZmaWqfTE1JqNJcuNdP5eWtP+W7KvmZlthUpPTI8AZ0jaUdJOwMdTWXuWATWS3pfWPwU81EUxmplZJ1T0aCAi5kmaCjyVim4C/taB/TZI+jQwQ9J2wFzghi4L1MzMOkwRkXcMFa/PoKExaMJ1eYdhZgXjNz+0TVJ9RNQ2L6/oEVNRjBjcnzp/Ac3MyqLS7zGZmdk2xonJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxa8kKoNFqxqomTQn7zDMrAL4/Xnt84jJzMwKJdfEJGlnSZ/NM4YUx02SDso7DjMzy3/EtDPQqcQkqXc5A5DUOyL+LSKeKWe7Zma2ZfJOTNcC+0l6WtJcSb9u2iDpR5LOS8srJH1T0jxgnKQHJX1PUp2kpZIOk3SnpOckXVPSxiclPZXa/2lTUpO0XtJ3JC0Ajkzt1aZtH5Y0T9ICSfd1Z2eYmVn+iWkS8MeIGAVc0U7dVyJidETckdb/mSaYugGYBVwMHAycJ2mApAOB8cDRqf1G4Jy0707AkxExMiIebTqApIHAjcCZETESGNdaMJImpsRY1/hGQ2fP28zMWlFJT+VNa7Y+O/1cBCyJiNUAkl4A9gKOAcYAcyUB7ACsSfs0Ar9s4RhHAA9HxHKAiPhra8FExBRgCmQz2G7B+ZiZWQuKlJje5J0juL7Ntr/ebH1j+vlWyXLT+naAgFsi4sstHGtDRDRuRaxmZtZF8r6U9xrQLy2/CBwkqY+knYETtrLt+4CxknYHkLSrpH3a2ecJ4FhJQ5r22coYzMysk3IdMUXEK5Iek7QY+A0wHVgMLAfmb2Xbz0i6CrhXUi9gE9l9qBfb2GetpInAnWmfNcCHtiYOMzPrHEX49sjW6jNoaAyacF3eYZhZBfCbHzaTVJ8eYnuHIt1jqlgjBvenzl82M7OyyPsek5mZ2Ts4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4zQ9lsGhVAzWT5uQdhplZt+qq1yt5xGRmZoXixGRmZoXS4xOTpIsknZt3HGZmlunx95gi4oa8YzAzs80qbsQk6VxJCyUtkHSrpKmSxpZsX59+HifpIUmzJL0g6VpJ50h6StIiSfulepMlXZ6WH5T0zVTnWUnvz+cszcx6ropKTJKGA1cBx0fESODz7ewyErgIOBD4FLB/RBwO3ARc0so+26U6lwH/0UYsEyXVSaprfKOhk2diZmatqajEBBwPzIiIdQAR8dd26s+NiNURsRH4I3BvKl8E1LSyz53pZ30bdYiIKRFRGxG1vXfs38HwzcysPZWWmFryJuk8JPUCti/ZtrFk+a2S9bdo/f5aU53GNuqYmVkXqbTEdD8wTtIAAEm7AiuAMWn7x4CqfEIzM7NyqKgRQUQskfQN4CFJjcB84N+BWZIWAHcDr+cZo5mZbR1FRN4xVLza2tqoq6vLOwwzs4oiqT4iapuXV9qlPDMz28Y5MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4qbwykPQasCzvODphN2Bd3kF0guPtWpUWL1RezI63ZftExMDmhRX1d0wFtqylRx6LSlKd4+06jrfrVVrMjrdzfCnPzMwKxYnJzMwKxYmpPKbkHUAnOd6u5Xi7XqXF7Hg7wQ8/mJlZoXjEZGZmheLEZGZmheLEtBUkfVjSMknPS5qUdzwtkbRC0iJJT0uqS2W7SvqtpOfSz11yjvFmSWskLS4pazFGZX6Q+nyhpNEFiXeypFWpn5+W9NGSbV9O8S6TdHIO8e4l6QFJz0haIunzqbyQfdxGvIXsY0l9JT0laUGK9+pUPkTSkymuaZK2T+V90vrzaXtNQeKdKml5Sf+OSuXd/32ICH+24AP0JpuufV+yWXMXAAflHVcLca4AdmtW9i1gUlqeBHwz5xiPBUYDi9uLEfgo8BtAwBHAkwWJdzJweQt1D0rfjT7AkPSd6d3N8Q4CRqflfsCzKa5C9nEb8Rayj1M/VaflKuDJ1G/TgbNT+Q3AZ9LyZ4Eb0vLZwLRu7t/W4p0KjG2hfrd/Hzxi2nKHA89HxAsR8U/gDuD0nGPqqNOBW9LyLcAZOcZCRDwM/LVZcWsxng78PDJPADtLGtQ9kWZaibc1pwN3RMTGiFgOPE/23ek2EbE6Iual5deApcBgCtrHbcTbmlz7OPXT+rRalT4BHA/MTOXN+7ep32cCJ0hSN4XbVryt6fbvgxPTlhsM/LlkfSVt/+PJSwD3SqqXNDGV7RERq9PyX4A98gmtTa3FWOR+/1y61HFzyeXRQsWbLhsdSva/5ML3cbN4oaB9LKm3pKeBNcBvyUZtr0bEmy3E9Ha8aXsDMCDPeCOiqX+/kfr3e5L6NI836fL+dWLa9h0TEaOBjwAXSzq2dGNkY/VC/81AJcQI/ATYDxgFrAa+k2847yapGvglcFlE/L10WxH7uIV4C9vHEdEYEaOAPclGa8NyDqlNzeOVdDDwZbK4DwN2Bf49r/icmLbcKmCvkvU9U1mhRMSq9HMNcBfZP5qXm4bi6eea/CJsVWsxFrLfI+Ll9I/9LeBGNl9KKkS8kqrIfsnfFhF3puLC9nFL8Ra9jwEi4lXgAeBIskteTe8jLY3p7XjT9v7AK90cKvCOeD+cLqFGRGwEfkaO/evEtOXmAkPTkzfbk93EnJ1zTO8gaSdJ/ZqWgZOAxWRxTkjVJgCz8omwTa3FOBs4Nz0pdATQUHI5KjfNrrl/nKyfIYv37PQk1hBgKPBUN8cm4H+ApRHx3ZJNhezj1uItah9LGihp57S8A/AhsvtiDwBjU7Xm/dvU72OB+9OINc94/1DynxSR3Q8r7d/u/T509dMV2/KH7GmVZ8muJ1+ZdzwtxLcv2dNKC4AlTTGSXc++D3gO+B2wa85x3k52aWYT2fXrC1qLkezJoOtTny8CagsS760pnoVk/5AHldS/MsW7DPhIDvEeQ3aZbiHwdPp8tKh93Ea8hexj4BBgfoprMfC1VL4vWYJ8HpgB9EnlfdP682n7vgWJ9/7Uv4uBX7D5yb1u/z74lURmZlYovpRnZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF8v8BEBScEicaSW4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "indian_ingredient_df = create_ingredient_df(indian_df)\r\n", + "indian_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAAD4CAYAAABYIGfSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5xXVb3/8dcbHCEFp1SyCbQho0hAQAYTNPV4KfOSdhTpRF7SXxz9HbFOWnHSftFJfz/NfuZdo1JILQXKS3KCTPBOyowIwyWsRI8gKd5GkSCEz/ljr5Ev48www56ZLzPf9/PxmMfs79prr/XZCx58WGvv796KCMzMzGz7dCt2AGZmZp2ZE6mZmVkOTqRmZmY5OJGamZnl4ERqZmaWw07FDsA61p577hmVlZXFDsPMrFOpqal5JSL6NLbPibTEVFZWUl1dXewwzMw6FUnPN7XPS7tmZmY5OJGamZnl4ERqZmaWg6+RmpnZe2zcuJGVK1eyfv36YofSoXr27Em/fv0oKytr8TFOpCWmdlUdlRNnFjsM68Keu+y4YodgbWDlypX07t2byspKJBU7nA4REbz66qusXLmS/v37t/g4L+2amdl7rF+/nj322KNkkiiAJPbYY49Wz8KdSDuYpJMk7deCelMkndJI+eGS7muf6MzMtiilJFpve87ZibTjnQRsM5GamVnn4GukDUi6DHghIq5PnycBawEBpwI9gLsi4ntp/3eBLwNrgBeAmoj4kaR9geuBPsA64KvA7sDngcMkXQycDBwBjAd2Bv4CnBYR61I4R0maCOwGfCMitpqJStoVuBYYDJQBkyLinjYfFDMreW19b0VbX0vv1asXa9eubdM2W8oz0ve6kyxh1juVLEkOAA4EhgEjJB0qaSRZMhwKfA6oKjhuMjAhIkYAFwI3RMTjwL3ANyNiWET8FfhNRIyMiKHAMuDsgjYqU5/HATdJ6tkg1ouAORFxIPBPwBUpuW5F0nhJ1ZKqN62r244hMTOzpjiRNhARC4APSvqwpKHA68AQ4DPAAuApYCBZYj0YuCci1kfEW8BvAST1AkYD0yU9DfwEqGiiy8GSHpFUC4wDBhXsmxYRmyPiz8Czqd9CnwEmpj4eBHoC+zRyTpMjoioiqrrvUt7KETEz63gTJ07k+uuvf/fzpEmTuOSSSzjyyCM54IADGDJkCPfc894FuAcffJDjjz/+3c/nnXceU6ZMAaCmpobDDjuMESNG8NnPfpbVq1e3SaxOpI2bDpwCjCWboQr4f2kWOSwiPhYRP2/m+G7AGwX1h0XEJ5uoOwU4LyKGAN8nS4b1okHdhp8FnFzQxz4Rsaxlp2hmtuMaO3Ys06ZNe/fztGnTOOOMM7jrrrt46qmnmDt3LhdccAERDf9ZbNzGjRuZMGECM2bMoKamhrPOOouLLrqoTWJ1Im3cncAXyZLpdGA2cFaaaSKpr6QPAo8BJ0jqmfYdDxARbwIrJI1J9ZVmtwBvAb0L+uoNrJZURjYjLTRGUrd0vfWjwPIG+2cDE5RuM5M0vA3O3cys6IYPH87LL7/Miy++yMKFC/nABz7Ahz70Ib7zne+w//77c9RRR7Fq1SpeeumlFrW3fPlyFi9ezNFHH82wYcO45JJLWLlyZZvE6puNGhERSyT1BlZFxGqyRPdJYF7KWWuBL0fEfEn3AouAl4BaoP4i5DjgxnRTURlwB7Aw/f6ppPPJEvV3gSfIrsM+wdZJ9r+BJ8luNjonItY3uDX7B8BVwCJJ3YAVpGRuZtbZjRkzhhkzZvC3v/2NsWPHcvvtt7NmzRpqamooKyujsrLyPd/53Gmnndi8efO7n+v3RwSDBg1i3rx5bR6nE2kT0lJr4eergasbqfqjiJgkaRfgYaAm1V8BHNNIu4+x9ddfbkw/Deud2URcD5JdDyUi/g786zZPxsysExo7dixf/epXeeWVV3jooYeYNm0aH/zgBykrK2Pu3Lk8//x732z2kY98hKVLl7Jhwwb+/ve/88ADD3DIIYfwiU98gjVr1jBv3jxGjRrFxo0beeaZZxg0aFAjPbeOE2l+k9MDFnoCUyPiqWIH1Jwhfcup9iPczKyVivHox0GDBvHWW2/Rt29fKioqGDduHCeccAJDhgyhqqqKgQMb3n8Je++9N6eeeiqDBw+mf//+DB+eXfHaeeedmTFjBueffz51dXW88847fP3rX2+TRKqWXqi1rqGqqir8Ym8z25Zly5bxyU82dY9k19bYuUuqiYiqxur7ZiMzM7McnEjNzMxycCI1M7NGleKlv+05ZydSMzN7j549e/Lqq6+WVDKtfx9pz54Nn8baPN+1a2Zm79GvXz9WrlzJmjVrih1Kh+rZsyf9+vVr1TFOpGZm9h5lZWX079+/2GF0Cl7aNTMzy8GJ1MzMLAcnUjMzsxx8jbTE1K6qa/M33Zu1VDEeM2fW3jwjNTMzy8GJ1MzMLIeiJFJJJ6U3prT2uLXtEU9XIWmKpFOKHYeZWSlpVSJVpi2S70ls/U5OMzOzTmmbSVFSpaTlkn4BLAZOk1QrabGkywvq3SipWtISSd8vKL9M0lJJiyT9SNJo4PPAFZKelrRv+pklqUbSI5IGpmP7S5qX+rtkG3FWSHo4tblY0qdT+WdSG09Jmi6pV2NxpbITJD0haYGkP0jaK5VPkjQ1xfa8pH+W9MMU1yxJZaneCEkPpfOYLamimXjPL+j/jlS2q6SbJT2ZYjgxlXeXdIWk+an+v6ZySbou/fn8AfhgE32NT3821ZvW1TX7521mZq3T0rt2BwBnAP8N/BEYAbwO/F7SSRFxN3BRRLwmqTvwgKT9gVXAF4CBERGS3h8Rb0i6F7gvImYASHoAOCci/izpU8ANwBHA1cCNEfELSf+2jRi/BMyOiEtTDLtI2hO4GDgqIt6W9G3gG5KubxhXauNR4KBU9r+AbwEXpH37Av9ENpOeB5wcEd+SdBdwnKSZwLXAiRGxRtJY4FLgrCbinQj0j4gNBf1fBMyJiLNS2ZMpQY4D6iJipKQewGOSfg8MBz6RYtoLWArc3LCjiJgMTAboUTGgdB6caWbWAVqaSJ+PiD+mGdKDEbEGQNLtwKHA3cCpksanNivI/nFfCqwHfi7pPuC+hg2nGeJoYLqk+uIe6ffBwMlp+1bgcpo2H7g5zQ7vjoinJR2W4ngstb0zWRKsayKufsCdaSa5M7CioP3fRcRGSbVAd2BWKq8FKskS2mDg/tRXd2B1M/EuAm6XdDfZ+AF8Bvi8pAvT557APql8f225/llO9p+bQ4FfRcQm4EVJc5rpz8zM2kFLE+nbze2U1B+4EBgZEa9LmgL0jIh3JB0IHAmcApxHNtMs1A14IyKGNdF8i2ZQEfGwpEOB44Apkq4kmzXfHxH/0kjMjcV1LXBlRNwr6XBgUsEhG1I/myVtjC2vRNhMNo4ClkTEqJbEm+I8FDgBuEjSkNTGyRGxvEGsAiZExOwG5ce2sC8zM2snrb1x6EngMEl7puXTfwEeAnYjS7Z16bri5+Dd2WZ5RPwX8O/A0NTOW0BvgIh4E1ghaUw6RpLq6z0GfDFtj2suMEkfAV6KiJ8CPwMOIFuGPljSx1KdXSV9vJm4ysmWoyFbym6N5UAfSaNSX2WSBjURazdg74iYC3w79dsLmA1MSIkTScPTIbOBcwuuxX5c0q7Aw8DYdA21gmzp2czMOlCrnmwUEaslTQTmks2eZkbEPQCSFgB/Al4gS4CQJct7JPVM9b+Ryu8AfirpfLIZ4TjgRkkXA2Vp/0Lga8Av07XNe7YR3uHANyVtBNYCp6drlWcCv0rXFiG7ZvpWE3FNIltifh2YA7T41QcR8Y+09HqNpHKysb0KWNJI9e7AbamegGvSteMfpGMWpWS7Ajie7D8GlcBTKcmuIbvz+S6ymfRSsuvX87YV55C+5VT76TJmZm1GpfTSVoOqqqqorq4udhhmZp2KpJqIqGpsn59sZGZmlkOne2h9uinn1gbFGyLiU8WIZ1vSV20OblB8dUTcUox4zMysbXW6RBoRtUBTd/jucCJiW99/NTOzTsxLu2ZmZjk4kZqZmeXgRGpmZpaDE6mZmVkOTqRmZmY5OJGamZnl0Om+/mL51K6qo3LizGKHYbaV5/zYSuvEPCM1MzPLwYnUzMwsByfSIpC0ttgxmJlZ23AiNTMzy8GJtJXSy8FnSlooabGksZKOlLRAUq2kmyX1kHSEpLsLjjta0l0Fn38saYmkByT1SWX7SpolqUbSI5IGpvITJD2R+vhDenk6kial/h6U9Gx6v6uZmXUgJ9LWOwZ4MSKGRsRgYBYwBRgbEUPI7oQ+l+zl5wPrkyTwFeDmtL0rUB0Rg4CHgO+l8snAhIgYAVwI3JDKHwUOiojhZC89/1ZBPAOBzwIHAt+TVNYwYEnjJVVLqt60ri73AJiZ2RZOpK1XCxwt6XJJnwYqgRUR8UzaPxU4NLI3pt8KfFnS+4FRwO9Snc3AnWn7NuAQSb2A0cB0SU8DPwEqUp1+wGxJtcA3gUEF8cyMiA0R8QrwMrBXw4AjYnJEVEVEVfddyttgCMzMrJ6/R9pKEfGMpAOAY4FLgDnNVL8F+C2wHpgeEe801SzZf2reiIjGXhF3LXBlRNwr6XBgUsG+DQXbm/CfqZlZh/KMtJUkfRhYFxG3AVeQzTQrJX0sVTmNbLmWiHgReBG4mCyp1usGnJK2vwQ8GhFvAiskjUn9SNLQVKccWJW2z2iXEzMzs+3i2UvrDQGukLQZ2Eh2PbScbEl2J2A+cFNB/duBPhGxrKDsbeBASReTLceOTeXjgBtTeRnZ9dCFZDPQ6ZJeJ5sB92+nczMzs1ZSdinP2ouk64AFEfHzYscCUFVVFdXV1cUOw8ysU5FUExFVje3zjLQdSaohm31eUOxYzMysfTiRtqP0NRYzM+vCfLORmZlZDk6kZmZmOTiRmpmZ5eBEamZmloMTqZmZWQ5OpGZmZjk4kZqZmeXgRGpmZpaDH8hQYmpX1VE5cWaxwzBrV89ddlyxQ7AS4hmpmZlZDk6kOzhJ/5VeDG5mZjsgL+3uwCQJOD4iNhc7FjMza5xnpDsYSZWSlkv6BbAY2CRpz7TvdEmLJC2UdGsq6yPp15Lmp5+Dixm/mVmp8Yx0xzQAOCMi/ijpOQBJg4CLgdER8Yqk3VPdq4EfR8SjkvYBZgOfLGxM0nhgPED33fp00CmYmZUGJ9Id0/MR8ccGZUcA0yPiFYCIeC2VHwXsl60CA7CbpF4Rsba+ICImA5MBelQM8JvczczakBPpjuntVtTtBhwUEevbKxgzM2uar5F2HnOAMZL2AChY2v09MKG+kqRhRYjNzKxkOZF2EhGxBLgUeEjSQuDKtOt8oCrdhLQUOKdYMZqZlSIv7e5gIuI5YHDB58qC7anA1Ab1XwHGdlB4ZmbWgBNpiRnSt5xqPz7NzKzNeGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7Mc/IjAElO7qo7KiTOLHYZZUT3nx2RaG/KM1MzMLAcnUjMzsxy6XCKVVClpcSPlD0qq2o72zpR0XdtEZ2ZmXU2XS6QGknzt28ysg3TVRLqTpNslLZM0Q9IuhTsl3SipWtISSd8vKB8p6XFJCyU9Kal3g+OOkzRP0p6NdSppiqSbUtvPSDo+lXeXdIWk+ZIWSfrXVH64pIclzZS0PB3bLe1bK+nHKcYHJPVJ5ftKmiWpRtIjkgY26PsJ4IcN4hqfYqretK4u9+CamdkWXTWRfgK4ISI+CbwJ/O8G+y+KiCpgf+AwSftL2hm4E/haRAwFjgL+Xn+ApC8AE4FjI+KVZvquBA4EjgNuktQTOBuoi4iRwEjgq5L6p/oHAhOA/YB9gX9O5bsC1RExCHgI+F4qnwxMiIgRwIXADQV99wNGR8Q3CgOKiMkRURURVd13KW8mdDMza62uugT4QkQ8lrZvA85vsP9USePJzr+CLIkFsDoi5gNExJsAkgCOAKqAz9SXN2NaRGwG/izpWWAg8Blgf0mnpDrlwADgH8CTEfFs6utXwCHADGAzWWKvP4ffSOoFjAamp7gAehT0PT0iNm0jPjMza0NdNZFGU5/TTPBCYGREvC5pCtBzG+39Ffgo8HGgejv6FtkscnbhDkmHNxdrI+XdgDciYlgTdd7eRmxmZtbGuurS7j6SRqXtLwGPFuzbjSzh1EnaC/hcKl8OVEgaCSCpd8FNO88DJwO/kDRoG32PkdRN0r5kyXc5MBs4V1JZavvjknZN9Q+U1D9dGx1bEGs3oH4G+yXg0TQbXiFpTGpHkoa2dFDMzKztddVEuhz4N0nLgA8AN9bviIiFwALgT8AvgcdS+T/IEtm1khYC91MwU42IPwHjyJZV922m7/8GngR+B5wTEeuBnwFLgafSV3N+wpbVgPnAdcAyYAVwVyp/myzJLiZbWv7PVD4OODvFuAQ4sVUjY2ZmbUoRTa0kWmulZeL7ImJGC+sfDlwYEcc3sm9tRPRq2wihqqoqqqu3tTptZmaFJNWkm1Tfo6vOSM3MzDpEV73ZqF1JuggY06B4ekSc2Zp2IuJB4MEm9rX5bNTMzNqeE+l2iIhLgUuLHYeZmRWfl3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWbNeO6y44odgrWCZ6RmZmY5OJGamZnl4ETayUk6R9LpaXuKpFO2dYyZmbUdXyPt5CLipmLHYGZWykp6RippV0kzJS2UtFjSWEkjJD0kqUbSbEkVqe75kpZKWiTpjlR2oKR5khZIelzSJ1L5mZLulnS/pOcknSfpG6neHyXtnurtK2lW6usRSQObibVS0pzU/wOS9knlkyRduI3zHC+pWlL1pnV1bTV8ZmZGiSdS4BjgxYgYGhGDgVnAtcApETECuJktb3mZCAyPiP2Bc1LZn4BPR8Rw4P8A/7eg7cHAPwMjUxvrUr15wOmpzmRgQurrQuCGZmK9Fpia+r8duKalJxkRkyOiKiKquu9S3tLDzMysBUp9abcW+P+SLgfuA14nS4D3SwLoDqxOdRcBt0u6G7g7lZUDUyUNAAIoK2h7bkS8BbwlqQ74bUGf+0vqBYwGpqe+AHo0E+sossQMcCvww9afrpmZtbWSTqQR8YykA4BjgUuAOcCSiBjVSPXjgEOBE4CLJA0BfkCWML8gqZKtX9K9oWB7c8HnzWTj3g14IyKGtdkJmZlZhyvppV1JHyZbcr0NuAL4FNBH0qi0v0zSIEndgL0jYi7wbbKZaK/0e1Vq7szW9B0RbwIrJI1JfUnS0GYOeRz4YtoeBzzSmv7MzKx9lPSMFBgCXCFpM7AROBd4B7hGUjnZ+FwFPAPclsoEXBMRb0j6IdnS7sXA9jwuaBxwYzq+DLgDWNhE3QnALZK+CawBvrId/TGkbznVfmqKmVmbUUQUOwbrQFVVVVFdXV3sMMzMOhVJNRFR1di+kl7aNTMzy6vUl3Z3OJIuAsY0KJ4eEZc2Vt/MzIrLiXQHkxKmk6aZWSfhpV0zM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvDXX0pM7ao6Kiduz9MMzayUPOdHibaYZ6RmZmY5OJGamZnl4ERqZmaWgxOpmZlZDk6kBSTtKmmmpIWSFksaK+lISQsk1Uq6WVIPSUdIurvguKMl3dVEm90lTUnt1Ur691T+VUnzU1+/lrRLKp8i6ZSC49cWbH87tbFQ0mWpbF9JsyTVSHpE0sD2Gh8zM3svJ9KtHQO8GBFDI2IwMAuYAoyNiCFkdzmfC8wFBkrqk477CnBzE20OA/pGxODUxi2p/DcRMTIihgLLgLObC0zS54ATgU+lY36Ydk0GJkTECOBC4IZGjh0vqVpS9aZ1ddseBTMzazEn0q3VAkdLulzSp4FKYEVEPJP2TwUOjext6LcCX5b0fmAU8Lsm2nwW+KikayUdA7yZygenGWQtMA4YtI3YjgJuiYh1ABHxmqRewGhguqSngZ8AFQ0PjIjJEVEVEVXddylvyTiYmVkL+XukBSLiGUkHAMcClwBzmql+C/BbYD3Z+0LfaaLN1yUNBT4LnAOcCpxFNtM9KSIWSjoTODwd8g7pPziSugE7NxNDN+CNiBjWkvMzM7O25xlpAUkfBtZFxG3AFWQzzUpJH0tVTgMeAoiIF4EXgYvZslzbWJt7At0i4tep7gFpV29gtaQyshlpveeAEWn780BZ2r4f+ErBtdTdI+JNYIWkMalMKWmbmVkH8Yx0a0OAKyRtBjaSXQ8tJ1s63QmYD9xUUP92oE9ELGumzb7ALWl2CfAf6fd3gSeANel371T+U+AeSQvJrtG+DRARsyQNA6ol/QP4L+A7ZEn4RkkXkyXdO4CF23n+ZmbWSsou99n2kHQdsCAifl7sWFqqqqoqqqurix2GmVmnIqkmIqoa2+cZ6XaSVEM2W7yg2LGYmVnxOJFup/R1k61IegLo0aD4tIio7ZiozMysozmRtqGI+FSxYzAzs47lu3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWZdzHOXHVfsEIrGM1IzM7McnEjNzMxycCI1MzPLwYm0lSSdLmmRpIWSbpV0gqQnJC2Q9AdJe0nqJunPkvqkY7pJ+oukPunn15Lmp5+DU51Jkm6W9KCkZyWdn8orJS2T9FNJSyT9XtL70r59Jc2SVCPpEUkDizcyZmalyYm0FSQNAi4GjoiIocDXgEeBgyJiONlLtb8VEZuB28heug1wFLAwItYAVwM/joiRwMnAzwq6GAh8FjgQ+J6kslQ+ALg+IgYBb6TjACYDE9KbaC4Ebmgi7vGSqiVVb1pXl3sczMxsC9+12zpHANMj4hWAiHhN0hDgTkkVwM7AilT3ZuAe4CrgLOCWVH4UsJ+k+jZ3k9Qrbc+MiA3ABkkvA3ul8hUR8XTargEq0zGjgekFbTV8hRspzslkSZceFQP8JnczszbkRJrftcCVEXGvpMOBSQAR8YKklyQdQTbDrJ+ddiObwa4vbCQlww0FRZvY8ufTsPx9qZ03ImJYm56NmZm1ipd2W2cOMEbSHgCSdgfKgVVp/xkN6v+MbIl3ekRsSmW/BybUV5C0XYkwIt4EVkgak9qRpKHb05aZmW0/J9JWiIglwKXAQ5IWAleSzUCnS6oBXmlwyL1AL7Ys6wKcD1SlG5aWAufkCGkccHaKZQlwYo62zMxsOyjCl8zai6QqshuLPl3sWOr1qBgQFWdcVewwzKyL6epPNpJUExFVje3zNdJ2ImkicC5bro3uEIb0Lae6i/+FNzPrSF7abScRcVlEfCQiHi12LGZm1n6cSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvAjAktM7ao6KifOLHYYZlYCuvrzd+t5RmpmZpaDE2mRSaqUtDhtHy7pvrT9+fTgezMz24F5aXcHFRH3kr3P1MzMdmCekeYkaVdJMyUtlLRY0lhJIyU9nsqelNQ7zTwfkfRU+hm9jXbPlHRd2q6UNCe9DPwBSfuk8imSrkl9PSvplI44ZzMz28Iz0vyOAV6MiOMAJJUDC4CxETFf0m7A34GXgaMjYr2kAcCvgEZfEtuIa4GpETFV0lnANcBJaV8FcAgwkGwGO6PhwZLGA+MBuu/WZ/vO0szMGuUZaX61wNGSLpf0aWAfYHVEzAeIiDcj4h2gDPippFpgOrBfK/oYBfwybd9Kljjr3R0RmyNiKbBXYwdHxOSIqIqIqu67lLfq5MzMrHmekeYUEc9IOgA4FrgEmNNE1X8HXgKGkv0HZn0bhbChYFtt1KaZmbWQZ6Q5SfowsC4ibgOuAD4FVEgamfb3lrQTUE42U90MnAZ0b0U3jwNfTNvjgEfaKn4zM8vHM9L8hgBXSNoMbATOJZsZXivpfWTXR48CbgB+Lel0YBbwdiv6mADcIumbwBrgK20Yv5mZ5aCIKHYM1oF6VAyIijOuKnYYZlYCutKTjSTVRESjN4h6RlpihvQtp7oL/eU2Mys2XyM1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBTzYqMbWr6qicOLPYYZiZdaj2fFyhZ6RmZmY5OJGamZnl4ETaSUg6U9J1afuc9Do2MzMrMl8j7QTSi8HfFRE3FSsWMzPbmhNpB5L0XeDLZC/nfgGoAeqA8cDOwF+A0yJinaQpwHpgOPAYsKignUnA2oj4kaSPATcBfYBNwJiI+GtHnZOZWanz0m4HkTQSOBkYCnwOqH9B7G8iYmREDAWWAWcXHNYPGB0R32im6duB69Pxo4HVjfQ9XlK1pOpN6+ra4GzMzKyeZ6Qd52DgnohYD6yX9NtUPljSJcD7gV7A7IJjpkfEpqYalNQb6BsRdwGktt8jIiYDkwF6VAyI3GdiZmbv8oy0+KYA50XEEOD7QM+CfW8XJSIzM2sxJ9KO8xhwgqSeknoBx6fy3sBqSWXAuNY0GBFvASslnQQgqYekXdoyaDMza54TaQeJiPnAvWQ3Df0OqCW70ei7wBNkifZP29H0acD5khYBjwMfapOAzcysRRThS2YdRVKviFibZo0PA+Mj4qmOjKGqqiqqq6s7skszs05PUk1EVDW2zzcbdazJkvYjuw46taOTqJmZtT0n0g4UEV8qdgxmZta2fI3UzMwsBydSMzOzHJxIzczMcvBduyVG0lvA8mLHsQPZE3il2EHsQDweW3gstlbq4/GRiOjT2A7fbFR6ljd1C3cpklTt8djC47GFx2JrHo+meWnXzMwsBydSMzOzHJxIS8/kYgewg/F4bM3jsYXHYmsejyb4ZiMzM7McPCM1MzPLwYnUzMwsByfSEiLpGEnLJf1F0sRix9MRJN0s6WVJiwvKdpd0v6Q/p98fSOWSdE0an0WSDihe5G1P0t6S5kpaKmmJpK+l8pIbj/Re4CclLUxj8f1U3l/SE+mc75S0cyrvkT7/Je2vLLtjiJIAAALmSURBVGb87UVSd0kLJN2XPpf0eLSUE2mJkNQduB74HLAf8C/pTTRd3RTgmAZlE4EHImIA8ED6DNnYDEg/44EbOyjGjvIOcEFE7AccBPxb+jtQiuOxATgiIoYCw4BjJB0EXA78OCI+BrwOnJ3qnw28nsp/nOp1RV8DlhV8LvXxaBEn0tJxIPCXiHg2Iv4B3AGcWOSY2l1EPAy81qD4RGBq2p4KnFRQ/ovI/BF4v6SKjom0/UXE6vpX90XEW2T/YPalBMcjndPa9LEs/QRwBDAjlTcci/oxmgEcKUkdFG6HkNQPOA74WfosSng8WsOJtHT0BV4o+LwylZWivSJiddr+G7BX2i6ZMUpLccOBJyjR8UjLmE8DLwP3A38F3oiId1KVwvN9dyzS/jpgj46NuN1dBXwL2Jw+70Fpj0eLOZFaSYvs+18l9R0wSb2AXwNfj4g3C/eV0nhExKaIGAb0I1uxGVjkkIpG0vHAyxFRU+xYOiMn0tKxCti74HO/VFaKXqpfoky/X07lXX6MJJWRJdHbI+I3qbhkxwMgIt4A5gKjyJav659BXni+745F2l8OvNrBobang4HPS3qO7LLPEcDVlO54tIoTaemYDwxId+HtDHwRuLfIMRXLvcAZafsM4J6C8tPT3aoHAXUFS56dXrqG9XNgWURcWbCr5MZDUh9J70/b7wOOJrtmPBc4JVVrOBb1Y3QKMCe60NNsIuI/IqJfRFSS/dswJyLGUaLj0Vp+slEJkXQs2XWQ7sDNEXFpkUNqd5J+BRxO9gqol4DvAXcD04B9gOeBUyPitZRoriO7y3cd8JWIqC5G3O1B0iHAI0AtW66DfYfsOmlJjYek/clululONqGYFhH/KemjZDOy3YEFwJcjYoOknsCtZNeVXwO+GBHPFif69iXpcODCiDje49EyTqRmZmY5eGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHL4Hx9S2FkSapv/AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "korean_ingredient_df = create_ingredient_df(korean_df)\r\n", + "korean_ingredient_df.head(10).plot.barh()" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            00000000000...0000000000
            11000000000...0000000000
            20000000000...0000000000
            30000000000...0000000000
            40000000000...0000000010
            \n

            5 rows × 380 columns

            \n
            " + }, + "metadata": {}, + "execution_count": 15 + } + ], + "source": [ + "feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1)\n", + "labels_df = df.cuisine #.unique()\n", + "feature_df.head()\n" + ] + }, + { + "source": [ + "تعادل داده‌ها با استفاده از نمونه‌برداری بیش از حد SMOTE به بالاترین کلاس. اطلاعات بیشتر را اینجا بخوانید: https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "oversample = SMOTE()\n", + "transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "new label count: korean 799\nchinese 799\njapanese 799\nindian 799\nthai 799\nName: cuisine, dtype: int64\nold label count: korean 799\nindian 598\nchinese 442\njapanese 320\nthai 289\nName: cuisine, dtype: int64\n" + ] + } + ], + "source": [ + "print(f'new label count: {transformed_label_df.value_counts()}')\r\n", + "print(f'old label count: {df.cuisine.value_counts()}')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            00000000000...0000000000
            11000000000...0000000000
            20000000000...0000000000
            30000000000...0000000000
            40000000000...0000000010
            \n

            5 rows × 380 columns

            \n
            " + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "transformed_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy \\\n", + "0 indian 0 0 0 0 0 0 \n", + "1 indian 1 0 0 0 0 0 \n", + "2 indian 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 thai 0 0 0 0 0 0 \n", + "3991 thai 0 0 0 0 0 0 \n", + "3992 thai 0 0 0 0 0 0 \n", + "3993 thai 0 0 0 0 0 0 \n", + "3994 thai 0 0 0 0 0 0 \n", + "\n", + " apricot armagnac artemisia ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 ... 0 0 0 \n", + "3991 0 0 0 ... 0 0 0 \n", + "3992 0 0 0 ... 0 0 0 \n", + "3993 0 0 0 ... 0 0 0 \n", + "3994 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 0 0 0 0 \n", + "3991 0 0 0 0 0 0 0 \n", + "3992 0 0 0 0 0 0 0 \n", + "3993 0 0 0 0 0 0 0 \n", + "3994 0 0 0 0 0 0 0 \n", + "\n", + "[3995 rows x 381 columns]" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisia...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            0indian000000000...0000000000
            1indian100000000...0000000000
            2indian000000000...0000000000
            3indian000000000...0000000000
            4indian000000000...0000000010
            ..................................................................
            3990thai000000000...0000000000
            3991thai000000000...0000000000
            3992thai000000000...0000000000
            3993thai000000000...0000000000
            3994thai000000000...0000000000
            \n

            3995 rows × 381 columns

            \n
            " + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "# export transformed data to new df for classification\n", + "transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer')\n", + "transformed_df" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 3995 entries, 0 to 3994\nColumns: 381 entries, cuisine to zucchini\ndtypes: int64(380), object(1)\nmemory usage: 11.6+ MB\n" + ] + } + ], + "source": [ + "transformed_df.info()" + ] + }, + { + "source": [ + "فایل را برای استفاده‌های آینده ذخیره کنید\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "transformed_df.to_csv(\"../../data/cleaned_cuisines.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "1da12ed6d238756959b8de9cac2a35a2", + "translation_date": "2025-09-04T02:42:06+00:00", + "source_file": "4-Classification/1-Introduction/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/fa/4-Classification/2-Classifiers-1/README.md b/translations/fa/4-Classification/2-Classifiers-1/README.md new file mode 100644 index 000000000..6e7851b5e --- /dev/null +++ b/translations/fa/4-Classification/2-Classifiers-1/README.md @@ -0,0 +1,254 @@ + +# دسته‌بندی‌کننده‌های آشپزی 1 + +در این درس، شما از مجموعه داده‌ای که در درس قبلی ذخیره کرده‌اید استفاده خواهید کرد؛ مجموعه‌ای پر از داده‌های متوازن و پاک درباره آشپزی. + +شما از این مجموعه داده با انواع دسته‌بندی‌کننده‌ها برای _پیش‌بینی یک آشپزی ملی بر اساس گروهی از مواد اولیه_ استفاده خواهید کرد. در این فرآیند، بیشتر با روش‌هایی که الگوریتم‌ها برای وظایف دسته‌بندی به کار گرفته می‌شوند آشنا خواهید شد. + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/) +# آماده‌سازی + +فرض کنید درس [درس 1](../1-Introduction/README.md) را کامل کرده‌اید، مطمئن شوید که فایل _cleaned_cuisines.csv_ در پوشه اصلی `/data` برای این چهار درس وجود دارد. + +## تمرین - پیش‌بینی یک آشپزی ملی + +1. در پوشه _notebook.ipynb_ این درس، فایل را همراه با کتابخانه Pandas وارد کنید: + + ```python + import pandas as pd + cuisines_df = pd.read_csv("../data/cleaned_cuisines.csv") + cuisines_df.head() + ``` + + داده‌ها به این شکل هستند: + +| | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | +| 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + + +1. حالا چند کتابخانه دیگر وارد کنید: + + ```python + from sklearn.linear_model import LogisticRegression + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + from sklearn.svm import SVC + import numpy as np + ``` + +1. مختصات X و y را به دو دیتافریم برای آموزش تقسیم کنید. `cuisine` می‌تواند دیتافریم برچسب‌ها باشد: + + ```python + cuisines_label_df = cuisines_df['cuisine'] + cuisines_label_df.head() + ``` + + به این شکل خواهد بود: + + ```output + 0 indian + 1 indian + 2 indian + 3 indian + 4 indian + Name: cuisine, dtype: object + ``` + +1. ستون `Unnamed: 0` و ستون `cuisine` را با استفاده از `drop()` حذف کنید. بقیه داده‌ها را به عنوان ویژگی‌های قابل آموزش ذخیره کنید: + + ```python + cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) + cuisines_feature_df.head() + ``` + + ویژگی‌های شما به این شکل خواهند بود: + +| | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| ---: | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: | +| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | + +حالا آماده آموزش مدل خود هستید! + +## انتخاب دسته‌بندی‌کننده + +حالا که داده‌های شما پاک و آماده آموزش هستند، باید تصمیم بگیرید که از کدام الگوریتم برای این کار استفاده کنید. + +Scikit-learn دسته‌بندی را تحت یادگیری نظارت‌شده گروه‌بندی می‌کند و در این دسته‌بندی روش‌های زیادی برای دسته‌بندی وجود دارد. [تنوع](https://scikit-learn.org/stable/supervised_learning.html) در ابتدا ممکن است گیج‌کننده به نظر برسد. روش‌های زیر همگی شامل تکنیک‌های دسته‌بندی هستند: + +- مدل‌های خطی +- ماشین‌های بردار پشتیبان +- نزول گرادیان تصادفی +- نزدیک‌ترین همسایه‌ها +- فرآیندهای گوسی +- درخت‌های تصمیم‌گیری +- روش‌های ترکیبی (دسته‌بندی‌کننده رأی‌گیری) +- الگوریتم‌های چندکلاسه و چندخروجی (دسته‌بندی چندکلاسه و چندبرچسبی، دسته‌بندی چندکلاسه-چندخروجی) + +> شما همچنین می‌توانید از [شبکه‌های عصبی برای دسته‌بندی داده‌ها](https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification) استفاده کنید، اما این موضوع خارج از محدوده این درس است. + +### کدام دسته‌بندی‌کننده را انتخاب کنیم؟ + +پس، کدام دسته‌بندی‌کننده را باید انتخاب کنید؟ اغلب، اجرای چندین دسته‌بندی‌کننده و جستجوی نتیجه خوب راهی برای آزمایش است. Scikit-learn یک [مقایسه کنار هم](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html) روی یک مجموعه داده ایجاد شده ارائه می‌دهد که KNeighbors، SVC به دو روش، GaussianProcessClassifier، DecisionTreeClassifier، RandomForestClassifier، MLPClassifier، AdaBoostClassifier، GaussianNB و QuadraticDiscrinationAnalysis را مقایسه می‌کند و نتایج را به صورت تصویری نشان می‌دهد: + +![مقایسه دسته‌بندی‌کننده‌ها](../../../../translated_images/comparison.edfab56193a85e7fdecbeaa1b1f8c99e94adbf7178bed0de902090cf93d6734f.fa.png) +> نمودارها از مستندات Scikit-learn تولید شده‌اند + +> AutoML این مشکل را به خوبی حل می‌کند و این مقایسه‌ها را در فضای ابری اجرا می‌کند و به شما اجازه می‌دهد بهترین الگوریتم را برای داده‌های خود انتخاب کنید. آن را [اینجا امتحان کنید](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott) + +### یک رویکرد بهتر + +یک روش بهتر از حدس زدن بی‌هدف، دنبال کردن ایده‌های موجود در این [برگه تقلب یادگیری ماشین](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott) قابل دانلود است. در اینجا، متوجه می‌شویم که برای مشکل چندکلاسه ما، چند گزینه داریم: + +![برگه تقلب برای مشکلات چندکلاسه](../../../../translated_images/cheatsheet.07a475ea444d22234cb8907a3826df5bdd1953efec94bd18e4496f36ff60624a.fa.png) +> بخشی از برگه تقلب الگوریتم‌های مایکروسافت، گزینه‌های دسته‌بندی چندکلاسه را نشان می‌دهد + +✅ این برگه تقلب را دانلود کنید، چاپ کنید و روی دیوار خود آویزان کنید! + +### استدلال + +بیایید ببینیم آیا می‌توانیم با توجه به محدودیت‌هایی که داریم، راه‌حل‌های مختلف را بررسی کنیم: + +- **شبکه‌های عصبی سنگین هستند**. با توجه به مجموعه داده پاک اما حداقلی ما و این واقعیت که آموزش را به صورت محلی از طریق نوت‌بوک‌ها اجرا می‌کنیم، شبکه‌های عصبی برای این وظیفه سنگین هستند. +- **دسته‌بندی‌کننده دوکلاسه مناسب نیست**. ما از دسته‌بندی‌کننده دوکلاسه استفاده نمی‌کنیم، بنابراین این گزینه حذف می‌شود. +- **درخت تصمیم یا رگرسیون لجستیک ممکن است کار کند**. یک درخت تصمیم ممکن است کار کند، یا رگرسیون لجستیک برای داده‌های چندکلاسه. +- **درخت‌های تصمیم تقویت‌شده چندکلاسه مشکل دیگری را حل می‌کنند**. درخت تصمیم تقویت‌شده چندکلاسه بیشتر برای وظایف غیرپارامتری مناسب است، مانند وظایفی که برای ایجاد رتبه‌بندی طراحی شده‌اند، بنابراین برای ما مفید نیست. + +### استفاده از Scikit-learn + +ما از Scikit-learn برای تحلیل داده‌های خود استفاده خواهیم کرد. با این حال، روش‌های زیادی برای استفاده از رگرسیون لجستیک در Scikit-learn وجود دارد. به [پارامترهایی که باید تنظیم شوند](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression) نگاهی بیندازید. + +به طور کلی دو پارامتر مهم وجود دارد - `multi_class` و `solver` - که باید مشخص شوند، زمانی که از Scikit-learn می‌خواهیم رگرسیون لجستیک انجام دهد. مقدار `multi_class` رفتار خاصی را اعمال می‌کند. مقدار solver مشخص می‌کند که از کدام الگوریتم استفاده شود. همه solverها نمی‌توانند با همه مقادیر `multi_class` جفت شوند. + +طبق مستندات، در حالت چندکلاسه، الگوریتم آموزش: + +- **از طرح one-vs-rest (OvR) استفاده می‌کند**، اگر گزینه `multi_class` روی `ovr` تنظیم شده باشد. +- **از ضرر آنتروپی متقاطع استفاده می‌کند**، اگر گزینه `multi_class` روی `multinomial` تنظیم شده باشد. (در حال حاضر گزینه `multinomial` فقط توسط solverهای ‘lbfgs’, ‘sag’, ‘saga’ و ‘newton-cg’ پشتیبانی می‌شود.) + +> 🎓 'طرح' در اینجا می‌تواند 'ovr' (one-vs-rest) یا 'multinomial' باشد. از آنجا که رگرسیون لجستیک واقعاً برای پشتیبانی از دسته‌بندی دودویی طراحی شده است، این طرح‌ها به آن کمک می‌کنند تا بهتر وظایف دسته‌بندی چندکلاسه را مدیریت کند. [منبع](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/) + +> 🎓 'solver' به عنوان "الگوریتمی که در مسئله بهینه‌سازی استفاده می‌شود" تعریف شده است. [منبع](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression). + +Scikit-learn این جدول را ارائه می‌دهد تا توضیح دهد که چگونه solverها چالش‌های مختلفی که توسط ساختارهای مختلف داده ارائه می‌شوند را مدیریت می‌کنند: + +![solverها](../../../../translated_images/solvers.5fc648618529e627dfac29b917b3ccabda4b45ee8ed41b0acb1ce1441e8d1ef1.fa.png) + +## تمرین - تقسیم داده‌ها + +ما می‌توانیم برای اولین آزمایش آموزشی خود روی رگرسیون لجستیک تمرکز کنیم، زیرا شما اخیراً درباره آن در درس قبلی یاد گرفته‌اید. +داده‌های خود را به گروه‌های آموزشی و آزمایشی تقسیم کنید با فراخوانی `train_test_split()`: + +```python +X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) +``` + +## تمرین - اعمال رگرسیون لجستیک + +از آنجا که شما از حالت چندکلاسه استفاده می‌کنید، باید انتخاب کنید که از چه _طرحی_ استفاده کنید و چه _solverی_ تنظیم کنید. از LogisticRegression با تنظیم چندکلاسه و solver **liblinear** برای آموزش استفاده کنید. + +1. یک رگرسیون لجستیک با تنظیم multi_class روی `ovr` و solver روی `liblinear` ایجاد کنید: + + ```python + lr = LogisticRegression(multi_class='ovr',solver='liblinear') + model = lr.fit(X_train, np.ravel(y_train)) + + accuracy = model.score(X_test, y_test) + print ("Accuracy is {}".format(accuracy)) + ``` + + ✅ یک solver دیگر مانند `lbfgs` را امتحان کنید که اغلب به صورت پیش‌فرض تنظیم می‌شود. +> توجه داشته باشید که از تابع [`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html) در Pandas برای مسطح کردن داده‌های خود در صورت نیاز استفاده کنید. +دقت این مدل بیش از **۸۰٪** است! + +۱. می‌توانید عملکرد این مدل را با آزمایش یک ردیف داده (#۵۰) مشاهده کنید: + + ```python + print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}') + print(f'cuisine: {y_test.iloc[50]}') + ``` + + نتیجه چاپ می‌شود: + + ```output + ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object') + cuisine: indian + ``` + + ✅ یک شماره ردیف دیگر را امتحان کنید و نتایج را بررسی کنید. + +۱. با بررسی دقیق‌تر، می‌توانید دقت این پیش‌بینی را بررسی کنید: + + ```python + test= X_test.iloc[50].values.reshape(-1, 1).T + proba = model.predict_proba(test) + classes = model.classes_ + resultdf = pd.DataFrame(data=proba, columns=classes) + + topPrediction = resultdf.T.sort_values(by=[0], ascending = [False]) + topPrediction.head() + ``` + + نتیجه چاپ می‌شود - غذای هندی بهترین حدس مدل است، با احتمال خوب: + + | | 0 | + | -------: | -------: | + | indian | 0.715851 | + | chinese | 0.229475 | + | japanese | 0.029763 | + | korean | 0.017277 | + | thai | 0.007634 | + + ✅ آیا می‌توانید توضیح دهید چرا مدل تقریباً مطمئن است که این یک غذای هندی است؟ + +۱. با چاپ یک گزارش طبقه‌بندی، جزئیات بیشتری به دست آورید، همان‌طور که در درس‌های رگرسیون انجام دادید: + + ```python + y_pred = model.predict(X_test) + print(classification_report(y_test,y_pred)) + ``` + + | | precision | recall | f1-score | support | + | ------------ | --------- | ------ | -------- | ------- | + | chinese | 0.73 | 0.71 | 0.72 | 229 | + | indian | 0.91 | 0.93 | 0.92 | 254 | + | japanese | 0.70 | 0.75 | 0.72 | 220 | + | korean | 0.86 | 0.76 | 0.81 | 242 | + | thai | 0.79 | 0.85 | 0.82 | 254 | + | accuracy | 0.80 | 1199 | | | + | macro avg | 0.80 | 0.80 | 0.80 | 1199 | + | weighted avg | 0.80 | 0.80 | 0.80 | 1199 | + +## 🚀چالش + +در این درس، از داده‌های پاک‌سازی‌شده خود برای ساخت یک مدل یادگیری ماشین استفاده کردید که می‌تواند یک غذای ملی را بر اساس مجموعه‌ای از مواد اولیه پیش‌بینی کند. زمانی را صرف کنید تا گزینه‌های مختلفی که Scikit-learn برای طبقه‌بندی داده‌ها ارائه می‌دهد بررسی کنید. عمیق‌تر به مفهوم 'solver' بپردازید تا بفهمید در پشت صحنه چه می‌گذرد. + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/22/) + +## مرور و مطالعه شخصی + +کمی بیشتر در مورد ریاضیات پشت رگرسیون لجستیک در [این درس](https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf) مطالعه کنید. + +## تکلیف + +[مطالعه در مورد solvers](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/4-Classification/2-Classifiers-1/assignment.md b/translations/fa/4-Classification/2-Classifiers-1/assignment.md new file mode 100644 index 000000000..3b2f0a580 --- /dev/null +++ b/translations/fa/4-Classification/2-Classifiers-1/assignment.md @@ -0,0 +1,24 @@ + +# مطالعه حل‌کننده‌ها +## دستورالعمل‌ها + +در این درس درباره حل‌کننده‌های مختلفی که الگوریتم‌ها را با فرآیند یادگیری ماشین ترکیب می‌کنند تا یک مدل دقیق ایجاد شود، یاد گرفتید. حل‌کننده‌های ذکر شده در درس را مرور کنید و دو مورد را انتخاب کنید. با کلمات خودتان این دو حل‌کننده را مقایسه و بررسی کنید. چه نوع مشکلی را حل می‌کنند؟ چگونه با ساختارهای داده مختلف کار می‌کنند؟ چرا ممکن است یکی را به دیگری ترجیح دهید؟ + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ----------- | --------------------------------------------------------------------------------------------- | --------------------------------------------- | ----------------------------- | +| | یک فایل .doc ارائه شده است که شامل دو پاراگراف است، هر کدام درباره یک حل‌کننده، با مقایسه‌ای دقیق. | یک فایل .doc ارائه شده است که فقط یک پاراگراف دارد | تکلیف ناقص است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/4-Classification/2-Classifiers-1/notebook.ipynb b/translations/fa/4-Classification/2-Classifiers-1/notebook.ipynb new file mode 100644 index 000000000..d595f6b86 --- /dev/null +++ b/translations/fa/4-Classification/2-Classifiers-1/notebook.ipynb @@ -0,0 +1,41 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "68829b06b4dcd512d3327849191f4d7f", + "translation_date": "2025-09-04T02:23:02+00:00", + "source_file": "4-Classification/2-Classifiers-1/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "مدل‌های طبقه‌بندی بسازید\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان بومی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه انسانی حرفه‌ای توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/4-Classification/2-Classifiers-1/solution/Julia/README.md b/translations/fa/4-Classification/2-Classifiers-1/solution/Julia/README.md new file mode 100644 index 000000000..d88020295 --- /dev/null +++ b/translations/fa/4-Classification/2-Classifiers-1/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان بومی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb b/translations/fa/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb new file mode 100644 index 000000000..5f7aad8c5 --- /dev/null +++ b/translations/fa/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb @@ -0,0 +1,1298 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_11-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "6ea6a5171b1b99b7b5a55f7469c048d2", + "translation_date": "2025-09-04T02:29:58+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb", + "language_code": "fa" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# ساخت یک مدل طبقه‌بندی: غذاهای خوشمزه آسیایی و هندی\n" + ], + "metadata": { + "id": "zs2woWv_HoE8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## طبقه‌بندی‌کننده‌های آشپزی 1\n", + "\n", + "در این درس، انواع مختلفی از طبقه‌بندی‌کننده‌ها را بررسی می‌کنیم تا *یک آشپزی ملی خاص را بر اساس گروهی از مواد اولیه پیش‌بینی کنیم.* در همین حال، درباره برخی از روش‌هایی که الگوریتم‌ها می‌توانند برای وظایف طبقه‌بندی استفاده شوند، بیشتر یاد خواهیم گرفت.\n", + "\n", + "### [**آزمون پیش از درس**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/)\n", + "\n", + "### **آمادگی**\n", + "\n", + "این درس بر اساس [درس قبلی ما](https://github.com/microsoft/ML-For-Beginners/blob/main/4-Classification/1-Introduction/solution/lesson_10-R.ipynb) ساخته شده است که در آن:\n", + "\n", + "- یک معرفی ملایم به طبقه‌بندی‌ها با استفاده از یک مجموعه داده درباره تمام آشپزی‌های فوق‌العاده آسیا و هند 😋 داشتیم.\n", + "\n", + "- برخی از [افعال dplyr](https://dplyr.tidyverse.org/) را برای آماده‌سازی و پاک‌سازی داده‌ها بررسی کردیم.\n", + "\n", + "- با استفاده از ggplot2 تصاویر زیبایی ساختیم.\n", + "\n", + "- نشان دادیم که چگونه با داده‌های نامتعادل برخورد کنیم و آن‌ها را با استفاده از [recipes](https://recipes.tidymodels.org/articles/Simple_Example.html) پیش‌پردازش کنیم.\n", + "\n", + "- نشان دادیم که چگونه دستورالعمل خود را `prep` و `bake` کنیم تا تأیید کنیم که همان‌طور که باید کار می‌کند.\n", + "\n", + "#### **پیش‌نیاز**\n", + "\n", + "برای این درس، به بسته‌های زیر برای پاک‌سازی، آماده‌سازی و تصویرسازی داده‌ها نیاز داریم:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) یک [مجموعه از بسته‌های R](https://www.tidyverse.org/packages) است که طراحی شده تا علم داده را سریع‌تر، آسان‌تر و سرگرم‌کننده‌تر کند!\n", + "\n", + "- `tidymodels`: چارچوب [tidymodels](https://www.tidymodels.org/) یک [مجموعه از بسته‌ها](https://www.tidymodels.org/packages/) برای مدل‌سازی و یادگیری ماشین است.\n", + "\n", + "- `themis`: بسته [themis](https://themis.tidymodels.org/) مراحل اضافی دستورالعمل‌ها برای برخورد با داده‌های نامتعادل را فراهم می‌کند.\n", + "\n", + "- `nnet`: بسته [nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf) توابعی برای تخمین شبکه‌های عصبی پیش‌خور با یک لایه مخفی و مدل‌های رگرسیون لجستیک چندگانه فراهم می‌کند.\n", + "\n", + "می‌توانید آن‌ها را به این صورت نصب کنید:\n" + ], + "metadata": { + "id": "iDFOb3ebHwQC" + } + }, + { + "cell_type": "markdown", + "source": [ + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "به طور جایگزین، کد زیر بررسی می‌کند که آیا بسته‌های مورد نیاز برای تکمیل این ماژول را دارید یا خیر و در صورت نبودن، آن‌ها را برای شما نصب می‌کند.\n" + ], + "metadata": { + "id": "4V85BGCjII7F" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, themis, here)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "an5NPyyKIKNR", + "outputId": "834d5e74-f4b8-49f9-8ab5-4c52ff2d7bc8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## ۱. تقسیم داده‌ها به مجموعه‌های آموزشی و آزمایشی\n", + "\n", + "بیایید با انتخاب چند مرحله از درس قبلی شروع کنیم.\n", + "\n", + "### حذف رایج‌ترین مواد اولیه‌ای که باعث ایجاد سردرگمی بین غذاهای مختلف می‌شوند، با استفاده از `dplyr::select()`.\n", + "\n", + "همه عاشق برنج، سیر و زنجبیل هستند!\n" + ], + "metadata": { + "id": "0ax9GQLBINVv" + } + }, + { + "cell_type": "code", + "execution_count": 3, + "source": [ + "# Load the original cuisines data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger)) %>%\r\n", + " # Encode cuisine column as categorical\r\n", + " mutate(cuisine = factor(cuisine))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Display distribution of cuisines\r\n", + "df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "New names:\n", + "* `` -> ...1\n", + "\n", + "\u001b[1m\u001b[1mRows: \u001b[1m\u001b[22m\u001b[34m\u001b[34m2448\u001b[34m\u001b[39m \u001b[1m\u001b[1mColumns: \u001b[1m\u001b[22m\u001b[34m\u001b[34m385\u001b[34m\u001b[39m\n", + "\n", + "\u001b[36m──\u001b[39m \u001b[1m\u001b[1mColumn specification\u001b[1m\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", + "\u001b[1mDelimiter:\u001b[22m \",\"\n", + "\u001b[31mchr\u001b[39m (1): cuisine\n", + "\u001b[32mdbl\u001b[39m (384): ...1, almond, angelica, anise, anise_seed, apple, apple_brandy, a...\n", + "\n", + "\n", + "\u001b[36mℹ\u001b[39m Use \u001b[30m\u001b[47m\u001b[30m\u001b[47m`spec()`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to retrieve the full column specification for this data.\n", + "\u001b[36mℹ\u001b[39m Specify the column types or set \u001b[30m\u001b[47m\u001b[30m\u001b[47m`show_col_types = FALSE`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to quiet this message.\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 indian 0 0 0 0 0 0 0 0 \n", + "2 indian 1 0 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 0 0 \n", + "5 indian 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 0 0 \n", + "2 0 ⋯ 0 0 0 0 0 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 1 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
            A tibble: 5 × 381
            cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            <fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
            indian0000000000000000000
            indian1000000000000000000
            indian0000000000000000000
            indian0000000000000000000
            indian0000000000000000010
            \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 799\n", + "2 indian 598\n", + "3 chinese 442\n", + "4 japanese 320\n", + "5 thai 289" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 799 |\n", + "| indian | 598 |\n", + "| chinese | 442 |\n", + "| japanese | 320 |\n", + "| thai | 289 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 799\\\\\n", + "\t indian & 598\\\\\n", + "\t chinese & 442\\\\\n", + "\t japanese & 320\\\\\n", + "\t thai & 289\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
            A tibble: 5 × 2
            cuisinen
            <fct><int>
            korean 799
            indian 598
            chinese 442
            japanese320
            thai 289
            \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 735 + }, + "id": "jhCrrH22IWVR", + "outputId": "d444a85c-1d8b-485f-bc4f-8be2e8f8217c" + } + }, + { + "cell_type": "markdown", + "source": [ + "عالی! حالا وقت آن رسیده که داده‌ها را تقسیم کنیم به‌طوری که ۷۰٪ داده‌ها برای آموزش و ۳۰٪ برای آزمایش استفاده شوند. همچنین از تکنیک `طبقه‌بندی` استفاده خواهیم کرد تا `تناسب هر نوع غذا` در مجموعه داده‌های آموزش و اعتبارسنجی حفظ شود.\n", + "\n", + "[rsample](https://rsample.tidymodels.org/)، یک بسته در Tidymodels، زیرساختی برای تقسیم و نمونه‌گیری مجدد داده‌ها به‌صورت کارآمد فراهم می‌کند:\n" + ], + "metadata": { + "id": "AYTjVyajIdny" + } + }, + { + "cell_type": "code", + "execution_count": 4, + "source": [ + "# Load the core Tidymodels packages into R session\r\n", + "library(tidymodels)\r\n", + "\r\n", + "# Create split specification\r\n", + "set.seed(2056)\r\n", + "cuisines_split <- initial_split(data = df_select,\r\n", + " strata = cuisine,\r\n", + " prop = 0.7)\r\n", + "\r\n", + "# Extract the data in each split\r\n", + "cuisines_train <- training(cuisines_split)\r\n", + "cuisines_test <- testing(cuisines_split)\r\n", + "\r\n", + "# Print the number of cases in each split\r\n", + "cat(\"Training cases: \", nrow(cuisines_train), \"\\n\",\r\n", + " \"Test cases: \", nrow(cuisines_test), sep = \"\")\r\n", + "\r\n", + "# Display the first few rows of the training set\r\n", + "cuisines_train %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Display distribution of cuisines in the training set\r\n", + "cuisines_train %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training cases: 1712\n", + "Test cases: 736" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 chinese 0 0 0 0 0 0 0 0 \n", + "2 chinese 0 0 0 0 0 0 0 0 \n", + "3 chinese 0 0 0 0 0 0 0 0 \n", + "4 chinese 0 0 0 0 0 0 0 0 \n", + "5 chinese 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 1 0 \n", + "2 0 ⋯ 0 0 0 0 1 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 0 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
            A tibble: 5 × 381
            cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            <fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
            chinese0000000000000100000
            chinese0000000000000100000
            chinese0000000000000000000
            chinese0000000000000000000
            chinese0000000000000000000
            \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 559\n", + "2 indian 418\n", + "3 chinese 309\n", + "4 japanese 224\n", + "5 thai 202" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 559 |\n", + "| indian | 418 |\n", + "| chinese | 309 |\n", + "| japanese | 224 |\n", + "| thai | 202 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 559\\\\\n", + "\t indian & 418\\\\\n", + "\t chinese & 309\\\\\n", + "\t japanese & 224\\\\\n", + "\t thai & 202\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
            A tibble: 5 × 2
            cuisinen
            <fct><int>
            korean 559
            indian 418
            chinese 309
            japanese224
            thai 202
            \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 535 + }, + "id": "w5FWIkEiIjdN", + "outputId": "2e195fd9-1a8f-4b91-9573-cce5582242df" + } + }, + { + "cell_type": "markdown", + "source": [ + "## ۲. مقابله با داده‌های نامتوازن\n", + "\n", + "همان‌طور که ممکن است در مجموعه داده اصلی و همچنین مجموعه آموزشی ما متوجه شده باشید، توزیع تعداد غذاها کاملاً نابرابر است. تعداد غذاهای کره‌ای تقریباً *سه برابر* غذاهای تایلندی است. داده‌های نامتوازن اغلب تأثیرات منفی بر عملکرد مدل دارند. بسیاری از مدل‌ها زمانی بهترین عملکرد را دارند که تعداد مشاهدات برابر باشد و به همین دلیل با داده‌های نامتوازن دچار مشکل می‌شوند.\n", + "\n", + "دو روش اصلی برای مقابله با مجموعه داده‌های نامتوازن وجود دارد:\n", + "\n", + "- افزودن مشاهدات به کلاس اقلیت: `Over-sampling`، به عنوان مثال استفاده از الگوریتم SMOTE که به صورت مصنوعی نمونه‌های جدیدی از کلاس اقلیت را با استفاده از نزدیک‌ترین همسایگان این موارد تولید می‌کند.\n", + "\n", + "- حذف مشاهدات از کلاس اکثریت: `Under-sampling`\n", + "\n", + "در درس قبلی، نشان دادیم که چگونه می‌توان با استفاده از یک `recipe` با مجموعه داده‌های نامتوازن مقابله کرد. یک recipe را می‌توان به عنوان یک نقشه راه در نظر گرفت که توضیح می‌دهد چه مراحلی باید روی یک مجموعه داده اعمال شود تا برای تحلیل داده آماده شود. در مورد ما، هدف این است که توزیع تعداد غذاها در مجموعه آموزشی ما برابر باشد. بیایید مستقیماً وارد موضوع شویم.\n" + ], + "metadata": { + "id": "daBi9qJNIwqW" + } + }, + { + "cell_type": "code", + "execution_count": 5, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing training data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "# Print recipe\r\n", + "cuisines_recipe" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Data Recipe\n", + "\n", + "Inputs:\n", + "\n", + " role #variables\n", + " outcome 1\n", + " predictor 380\n", + "\n", + "Operations:\n", + "\n", + "SMOTE based on cuisine" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 200 + }, + "id": "Az6LFBGxI1X0", + "outputId": "29d71d85-64b0-4e62-871e-bcd5398573b6" + } + }, + { + "cell_type": "markdown", + "source": [ + "شما می‌توانید با استفاده از آماده‌سازی (prep) و پختن (bake) تأیید کنید که این دستورالعمل همان‌طور که انتظار دارید کار می‌کند - تمام برچسب‌های آشپزی دارای `559` مشاهده هستند.\n", + "\n", + "از آنجایی که ما قصد داریم از این دستورالعمل به عنوان یک پیش‌پردازشگر برای مدل‌سازی استفاده کنیم، یک `workflow()` تمام مراحل آماده‌سازی و پخت را برای ما انجام می‌دهد، بنابراین نیازی نیست که دستورالعمل را به صورت دستی تخمین بزنیم.\n", + "\n", + "حالا آماده‌ایم که یک مدل آموزش دهیم 👩‍💻👨‍💻!\n", + "\n", + "## 3. انتخاب طبقه‌بند خود\n", + "\n", + "

            \n", + " \n", + "

            اثر هنری از @allison_horst
            \n" + ], + "metadata": { + "id": "NBL3PqIWJBBB" + } + }, + { + "cell_type": "markdown", + "source": [ + "حالا باید تصمیم بگیریم که از کدام الگوریتم برای این کار استفاده کنیم 🤔.\n", + "\n", + "در Tidymodels، [`بسته parsnip`](https://parsnip.tidymodels.org/index.html) یک رابط کاربری یکپارچه برای کار با مدل‌ها در موتورهای مختلف (بسته‌ها) ارائه می‌دهد. لطفاً مستندات parsnip را بررسی کنید تا [انواع مدل‌ها و موتورهای آن‌ها](https://www.tidymodels.org/find/parsnip/#models) و همچنین [آرگومان‌های مدل](https://www.tidymodels.org/find/parsnip/#model-args) مربوطه را کشف کنید. تنوع موجود در ابتدا ممکن است کمی گیج‌کننده به نظر برسد. به عنوان مثال، روش‌های زیر همگی شامل تکنیک‌های طبقه‌بندی هستند:\n", + "\n", + "- مدل‌های طبقه‌بندی مبتنی بر قواعد C5.0\n", + "\n", + "- مدل‌های تفکیک‌پذیر انعطاف‌پذیر\n", + "\n", + "- مدل‌های تفکیک‌پذیر خطی\n", + "\n", + "- مدل‌های تفکیک‌پذیر منظم‌شده\n", + "\n", + "- مدل‌های رگرسیون لجستیک\n", + "\n", + "- مدل‌های رگرسیون چندجمله‌ای\n", + "\n", + "- مدل‌های بیز ساده\n", + "\n", + "- ماشین‌های بردار پشتیبان\n", + "\n", + "- نزدیک‌ترین همسایه‌ها\n", + "\n", + "- درخت‌های تصمیم‌گیری\n", + "\n", + "- روش‌های ترکیبی\n", + "\n", + "- شبکه‌های عصبی\n", + "\n", + "این فهرست ادامه دارد!\n", + "\n", + "### **کدام طبقه‌بند را انتخاب کنیم؟**\n", + "\n", + "پس، کدام طبقه‌بند را باید انتخاب کنید؟ اغلب، امتحان کردن چندین مدل و جستجوی یک نتیجه خوب راهی برای آزمایش است.\n", + "\n", + "> AutoML این مشکل را به‌خوبی حل می‌کند، زیرا این مقایسه‌ها را در فضای ابری اجرا می‌کند و به شما اجازه می‌دهد بهترین الگوریتم را برای داده‌های خود انتخاب کنید. آن را [اینجا امتحان کنید](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)\n", + "\n", + "همچنین انتخاب طبقه‌بند به مسئله ما بستگی دارد. به عنوان مثال، زمانی که نتیجه می‌تواند به `بیش از دو کلاس` دسته‌بندی شود، مانند مورد ما، باید از یک `الگوریتم طبقه‌بندی چندکلاسه` به جای `طبقه‌بندی دودویی` استفاده کنید.\n", + "\n", + "### **یک رویکرد بهتر**\n", + "\n", + "اما یک روش بهتر از حدس زدن تصادفی این است که از ایده‌های موجود در این [برگه تقلب یادگیری ماشین](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott) قابل دانلود پیروی کنید. در اینجا، متوجه می‌شویم که برای مسئله چندکلاسه ما، چندین گزینه داریم:\n", + "\n", + "

            \n", + " \n", + "

            بخشی از برگه تقلب الگوریتم مایکروسافت که گزینه‌های طبقه‌بندی چندکلاسه را نشان می‌دهد
            \n" + ], + "metadata": { + "id": "a6DLAZ3vJZ14" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **استدلال**\n", + "\n", + "بیایید ببینیم چگونه می‌توانیم با توجه به محدودیت‌هایی که داریم، به روش‌های مختلفی فکر کنیم:\n", + "\n", + "- **شبکه‌های عصبی عمیق بسیار سنگین هستند.** با توجه به مجموعه داده‌های تمیز اما حداقلی ما و این واقعیت که آموزش به صورت محلی از طریق نوت‌بوک‌ها انجام می‌شود، شبکه‌های عصبی عمیق برای این کار بیش از حد سنگین هستند.\n", + "\n", + "- **از طبقه‌بند دوکلاسه استفاده نمی‌کنیم.** ما از یک طبقه‌بند دوکلاسه استفاده نمی‌کنیم، بنابراین روش one-vs-all کنار گذاشته می‌شود.\n", + "\n", + "- **درخت تصمیم یا رگرسیون لجستیک می‌توانند مناسب باشند.** یک درخت تصمیم ممکن است کار کند، یا رگرسیون چندجمله‌ای/رگرسیون لجستیک چندکلاسه برای داده‌های چندکلاسه.\n", + "\n", + "- **درخت‌های تصمیم تقویت‌شده چندکلاسه مسئله متفاوتی را حل می‌کنند.** درخت تصمیم تقویت‌شده چندکلاسه بیشتر برای وظایف غیرپارامتری مناسب است، مثلاً وظایفی که برای ایجاد رتبه‌بندی طراحی شده‌اند، بنابراین برای ما مفید نیست.\n", + "\n", + "همچنین، معمولاً قبل از شروع به استفاده از مدل‌های پیچیده‌تر یادگیری ماشین مانند روش‌های ترکیبی، بهتر است ساده‌ترین مدل ممکن را بسازیم تا ایده‌ای از آنچه در حال وقوع است به دست آوریم. بنابراین برای این درس، ما با یک مدل `رگرسیون چندجمله‌ای` شروع خواهیم کرد.\n", + "\n", + "> رگرسیون لجستیک یک تکنیک است که زمانی استفاده می‌شود که متغیر خروجی دسته‌ای (یا اسمی) باشد. در رگرسیون لجستیک دودویی تعداد متغیرهای خروجی دو است، در حالی که در رگرسیون لجستیک چندجمله‌ای تعداد متغیرهای خروجی بیش از دو است. برای مطالعه بیشتر به [روش‌های پیشرفته رگرسیون](https://bookdown.org/chua/ber642_advanced_regression/multinomial-logistic-regression.html) مراجعه کنید.\n", + "\n", + "## 4. آموزش و ارزیابی یک مدل رگرسیون لجستیک چندجمله‌ای\n", + "\n", + "در Tidymodels، تابع `parsnip::multinom_reg()` مدلی را تعریف می‌کند که از پیش‌بینی‌کننده‌های خطی برای پیش‌بینی داده‌های چندکلاسه با استفاده از توزیع چندجمله‌ای استفاده می‌کند. برای روش‌ها/موتورهای مختلفی که می‌توانید برای برازش این مدل استفاده کنید، به `?multinom_reg()` مراجعه کنید.\n", + "\n", + "برای این مثال، ما یک مدل رگرسیون چندجمله‌ای را از طریق موتور پیش‌فرض [nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf) برازش خواهیم داد.\n", + "\n", + "> من مقدار `penalty` را به صورت تصادفی انتخاب کردم. روش‌های بهتری برای انتخاب این مقدار وجود دارد، مثلاً با استفاده از `بازنمونه‌گیری` و `تنظیم` مدل که بعداً درباره آن صحبت خواهیم کرد.\n", + ">\n", + "> اگر می‌خواهید درباره تنظیم ابرپارامترهای مدل بیشتر بدانید، به [Tidymodels: شروع به کار](https://www.tidymodels.org/start/tuning/) مراجعه کنید.\n" + ], + "metadata": { + "id": "gWMsVcbBJemu" + } + }, + { + "cell_type": "code", + "execution_count": 6, + "source": [ + "# Create a multinomial regression model specification\r\n", + "mr_spec <- multinom_reg(penalty = 1) %>% \r\n", + " set_engine(\"nnet\", MaxNWts = 2086) %>% \r\n", + " set_mode(\"classification\")\r\n", + "\r\n", + "# Print model specification\r\n", + "mr_spec" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 166 + }, + "id": "Wq_fcyQiJvfG", + "outputId": "c30449c7-3864-4be7-f810-72a003743e2d" + } + }, + { + "cell_type": "markdown", + "source": [ + "آفرین 🥳! حالا که یک دستورالعمل و مشخصات مدل داریم، باید راهی پیدا کنیم که این دو را در قالب یک شیء ترکیب کنیم. این شیء ابتدا داده‌ها را پیش‌پردازش می‌کند، سپس مدل را روی داده‌های پیش‌پردازش‌شده برازش می‌دهد و همچنین امکان فعالیت‌های پس‌پردازشی را فراهم می‌کند. در Tidymodels، این شیء کاربردی [`workflow`](https://workflows.tidymodels.org/) نام دارد و به‌راحتی اجزای مدل‌سازی شما را در خود نگه می‌دارد! این همان چیزی است که در *پایتون* به آن *pipelines* می‌گوییم.\n", + "\n", + "حالا بیایید همه چیز را در یک workflow جمع کنیم! 📦\n" + ], + "metadata": { + "id": "NlSbzDfgJ0zh" + } + }, + { + "cell_type": "code", + "execution_count": 7, + "source": [ + "# Bundle recipe and model specification\r\n", + "mr_wf <- workflow() %>% \r\n", + " add_recipe(cuisines_recipe) %>% \r\n", + " add_model(mr_spec)\r\n", + "\r\n", + "# Print out workflow\r\n", + "mr_wf" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow ════════════════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 333 + }, + "id": "Sc1TfPA4Ke3_", + "outputId": "82c70013-e431-4e7e-cef6-9fcf8aad4a6c" + } + }, + { + "cell_type": "markdown", + "source": [ + "جریان‌های کاری 👌👌! یک **`workflow()`** می‌تواند تقریباً به همان روشی که یک مدل آموزش داده می‌شود، تنظیم شود. پس، وقت آموزش یک مدل است!\n" + ], + "metadata": { + "id": "TNQ8i85aKf9L" + } + }, + { + "cell_type": "code", + "execution_count": 8, + "source": [ + "# Train a multinomial regression model\n", + "mr_fit <- fit(object = mr_wf, data = cuisines_train)\n", + "\n", + "mr_fit" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow [trained] ══════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Call:\n", + "nnet::multinom(formula = ..y ~ ., data = data, decay = ~1, MaxNWts = ~2086, \n", + " trace = FALSE)\n", + "\n", + "Coefficients:\n", + " (Intercept) almond angelica anise anise_seed apple\n", + "indian 0.19723325 0.2409661 0 -5.004955e-05 -0.1657635 -0.05769734\n", + "japanese 0.13961959 -0.6262400 0 -1.169155e-04 -0.4893596 -0.08585717\n", + "korean 0.22377347 -0.1833485 0 -5.560395e-05 -0.2489401 -0.15657804\n", + "thai -0.04336577 -0.6106258 0 4.903828e-04 -0.5782866 0.63451105\n", + " apple_brandy apricot armagnac artemisia artichoke asparagus\n", + "indian 0 0.37042636 0 -0.09122797 0 -0.27181970\n", + "japanese 0 0.28895643 0 -0.12651100 0 0.14054037\n", + "korean 0 -0.07981259 0 0.55756709 0 -0.66979948\n", + "thai 0 -0.33160904 0 -0.10725182 0 -0.02602152\n", + " avocado bacon baked_potato balm banana barley\n", + "indian -0.46624197 0.16008055 0 0 -0.2838796 0.2230625\n", + "japanese 0.90341344 0.02932727 0 0 -0.4142787 2.0953906\n", + "korean -0.06925382 -0.35804134 0 0 -0.2686963 -0.7233404\n", + "thai -0.21473955 -0.75594439 0 0 0.6784880 -0.4363320\n", + " bartlett_pear basil bay bean beech\n", + "indian 0 -0.7128756 0.1011587 -0.8777275 -0.0004380795\n", + "japanese 0 0.1288697 0.9425626 -0.2380748 0.3373437611\n", + "korean 0 -0.2445193 -0.4744318 -0.8957870 -0.0048784496\n", + "thai 0 1.5365848 0.1333256 0.2196970 -0.0113078024\n", + " beef beef_broth beef_liver beer beet\n", + "indian -0.7985278 0.2430186 -0.035598065 -0.002173738 0.01005813\n", + "japanese 0.2241875 -0.3653020 -0.139551027 0.128905553 0.04923911\n", + "korean 0.5366515 -0.6153237 0.213455197 -0.010828645 0.27325423\n", + "thai 0.1570012 -0.9364154 -0.008032213 -0.035063746 -0.28279823\n", + " bell_pepper bergamot berry bitter_orange black_bean\n", + "indian 0.49074330 0 0.58947607 0.191256164 -0.1945233\n", + "japanese 0.09074167 0 -0.25917977 -0.118915977 -0.3442400\n", + "korean -0.57876763 0 -0.07874180 -0.007729435 -0.5220672\n", + "thai 0.92554006 0 -0.07210196 -0.002983296 -0.4614426\n", + " black_currant black_mustard_seed_oil black_pepper black_raspberry\n", + "indian 0 0.38935801 -0.4453495 0\n", + "japanese 0 -0.05452887 -0.5440869 0\n", + "korean 0 -0.03929970 0.8025454 0\n", + "thai 0 -0.21498372 -0.9854806 0\n", + " black_sesame_seed black_tea blackberry blackberry_brandy\n", + "indian -0.2759246 0.3079977 0.191256164 0\n", + "japanese -0.6101687 -0.1671913 -0.118915977 0\n", + "korean 1.5197674 -0.3036261 -0.007729435 0\n", + "thai -0.1755656 -0.1487033 -0.002983296 0\n", + " blue_cheese blueberry bone_oil bourbon_whiskey brandy\n", + "indian 0 0.216164294 -0.2276744 0 0.22427587\n", + "japanese 0 -0.119186087 0.3913019 0 -0.15595599\n", + "korean 0 -0.007821986 0.2854487 0 -0.02562342\n", + "thai 0 -0.004947048 -0.0253658 0 -0.05715244\n", + "\n", + "...\n", + "and 308 more lines." + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "GMbdfVmTKkJI", + "outputId": "adf9ebdf-d69d-4a64-e9fd-e06e5322292e" + } + }, + { + "cell_type": "markdown", + "source": [ + "خروجی ضرایبی را نشان می‌دهد که مدل در طول آموزش یاد گرفته است.\n", + "\n", + "### ارزیابی مدل آموزش‌دیده\n", + "\n", + "حالا وقت آن است که ببینیم مدل چگونه عمل کرده است 📏 با ارزیابی آن روی یک مجموعه تست! بیایید با پیش‌بینی روی مجموعه تست شروع کنیم.\n" + ], + "metadata": { + "id": "tt2BfOxrKmcJ" + } + }, + { + "cell_type": "code", + "execution_count": 9, + "source": [ + "# Make predictions on the test set\n", + "results <- cuisines_test %>% select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test))\n", + "\n", + "# Print out results\n", + "results %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class\n", + "1 indian thai \n", + "2 indian indian \n", + "3 indian indian \n", + "4 indian indian \n", + "5 indian indian " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | .pred_class <fct> |\n", + "|---|---|\n", + "| indian | thai |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & .pred\\_class\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t indian & thai \\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
            A tibble: 5 × 2
            cuisine.pred_class
            <fct><fct>
            indianthai
            indianindian
            indianindian
            indianindian
            indianindian
            \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "CqtckvtsKqax", + "outputId": "e57fe557-6a68-4217-fe82-173328c5436d" + } + }, + { + "cell_type": "markdown", + "source": [ + "کار عالی! در Tidymodels، ارزیابی عملکرد مدل می‌تواند با استفاده از [yardstick](https://yardstick.tidymodels.org/) انجام شود - بسته‌ای که برای اندازه‌گیری اثربخشی مدل‌ها با استفاده از معیارهای عملکرد استفاده می‌شود. همان‌طور که در درس رگرسیون لجستیک انجام دادیم، بیایید با محاسبه ماتریس سردرگمی شروع کنیم.\n" + ], + "metadata": { + "id": "8w5N6XsBKss7" + } + }, + { + "cell_type": "code", + "execution_count": 10, + "source": [ + "# Confusion matrix for categorical data\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class)\n" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " Truth\n", + "Prediction chinese indian japanese korean thai\n", + " chinese 83 1 8 15 10\n", + " indian 4 163 1 2 6\n", + " japanese 21 5 73 25 1\n", + " korean 15 0 11 191 0\n", + " thai 10 11 3 7 70" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 133 + }, + "id": "YvODvsLkK0iG", + "outputId": "bb69da84-1266-47ad-b174-d43b88ca2988" + } + }, + { + "cell_type": "markdown", + "source": [ + "هنگام کار با کلاس‌های متعدد، به طور کلی تجسم این به صورت یک نقشه حرارتی، مانند این، شهودی‌تر است:\n" + ], + "metadata": { + "id": "c0HfPL16Lr6U" + } + }, + { + "cell_type": "code", + "execution_count": 11, + "source": [ + "update_geom_defaults(geom = \"tile\", new = list(color = \"black\", alpha = 0.7))\n", + "# Visualize confusion matrix\n", + "results %>% \n", + " conf_mat(cuisine, .pred_class) %>% \n", + " autoplot(type = \"heatmap\")" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deWBU9b3//0+ibApWrbYuvYorXaxoaatWvVqpqG2HsCmLBAqoVXBDjCKbKMqOQUDFFVxKqyhVFLUqWKJsxg3Lz2IFGilLiEqptMX0hpzvnJkMCbx5/W5vz5k5Z+D5/OOc85nEz3w8Mw9mMjmo84gocC7qBRDtCQGJKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQijHkLb+NUZVRb2Ahn26OeoVNCxWpyZWi/mbeGbnGNJl42PUmbNiVM+7nohRlz4ao/o/HqOuFc/sHEMasShGdfwsRt3+1qYYNXJ9jLq9MkZNE89sIMUkIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSbI+EVLQktatJvB8FpNGtv9LoqMteTx7d/f2vND6h5M3oIS07xT0XxjyhQJpx+sGNj79pbfCJgkJ6o7V72t/f4FKdFSmkRa3dnNTBgnYHNPneY7GCVPvB1ggg3ezaTZraq+C8RYvGF7a64cbW7rLIIU1sdmR8IE1ynX4957qC9pFDGtvsiDSkywsn+D0eJaRxycWkIC1pcdzYSecUzIwTpP+0YJBOONJ/CTqncP6iI49YsGjRwqMOjhrSS03GTY0PpJNaVia3P92nImJIc5vcWZqG1LVFoInCgPRCkzF3pyF1bLa8snLdd1pGC+nTOy8uvvdLr+iVEZ2KF/hv7WoTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZgHS8cf624sKF5RdO84/+plbEDGk8oWfxQjSt7/pb7vu80ngmYJBWvTa+jpIPz0ickhLFlSmIa1vVuSPR7lXI4V0w9jN6wdM94qu+fCfj3XZ5v+MVDRwi/dKl23eoPFfVD/es3pj+/e3b7xudmaYDUjD3C+fmz+6aee64Zsnfz3QdOF82BAjSFPckOV/nrFfv+AzBf6woQ7SWa3Wr18dLaRkaUiL3FB/MMdNjhLS6sTG5KbcK3ra8zYmKlKQ5nrepsQnqxKbkz8zdStblVjtedu9zDD5zyxpn+wPIUJadFsz5wp7pz5i+P1vH2i372gg7dT9+yfPz/WVwScKC1Lrlh0PdAddvyYOkJ5zd/mDN9ywKCG92b42tS9anHwvl/g4BSl9WJZINbv2ng4ls9Z7mWHye9/4cbL3QoR0T/MzRt91SWHqI4bJzh0+KdBsex6kZw/4yYzfXL7PzfGB1LKw20P3F7mL4gDpSTfVHyxzN0YJaVH77WlIS+ohpQ+XJjJv4zbNG9mhrH64uwJBeuPwE/0Xo66FTya3L44f2ragF5AatPGo7/ovRlcULo0NpLff87dd3ZwYQHrOTfIHZW54lJDWJCo876MXdgNpbWJl8usbvZotyd30wZlhFiA97VJwJrjMLL9wDwGpvrfddf7uCXdPbCCle8IFmi8kSEvcLf7gqfQLU1SQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpgVSD383Wg3+PkbHkyTugVI9ZW7/v7uEXdXbCCtXOlv73fjYgBpQ4uf+4MhrixSSFvu6NJz2rbdQdo8ruslJSu82ll9Ova6+++ZYRYgvdH8mDeSuw7usRcLT/WPLnGTgVTfxq+02pjc9Xa/jwukdwsv9AfnFbwRA0iVlzZ5p7Jy7bHfDjTXHnGt3UB32qgJFxe2XbSo2H332pLzC77zRsSQ5pWW9nADSkvfiQOkTXe6Hz/wxOWFRcFnCgbp2QkTurorJ0xYvL6Paztu1OmuX6DpgkGaO2lSN9d/0qRlle8dfPTQO37QaA6QFo06qWmjlleWLVr0Zkmrps2O7fFqoNlCgNQ7fS2ZezAWkDY9+P39Gp8wZH3wiYJB6ll3Vu5dv3ZM6xZNT5kYaLaAkHrVLWZ6ZeWiC1s0Pe2ZQLPtIZDCjau/ZVz9rQKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEiqmEDqOSJGnXJfjOpw+z0xqtOUGNU76rPRsMvEMzvHkEa+GqMuHBajznv8tRg1IOoFNGzgKzFqiHhm5xjSvZ/GqF/MjFHd3on6zWXD7ox6AQ27oypG3Sue2UCKSUCSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyhQTpraYHhzDLL/7zp/3YY9zg1MFDHQ7Z92sXz0ge3fTt5o2O6j0jWkjLTnHPhTFPGJDmt23e/OTSquAThQFpXcl/NW45bFPwiUKEVJN4f6fxpkTFrjdlGVLVmS5aSL0bH1wH6QeFF155puswc+b1BUf37HWi6xQppInNjowNpJcbtbx90jnuluAzhQEpsc9V0y9xJcEnChFS7Qdbd4W0601ZhjSp8bmRQhrWqPiyNKQS1y25/f43Z8z82qEPzJz58GEHRAnppSbjpsYG0o8O+ONnn1V9Z7+NgWcKAdJsd1ty+/Mzg78kZfGtXRLSv/29oUD6wwEll0YKadyomXWQftT0ofRND/e4zt+d7R6IEFL5ws/iA2nydH/bx/0p8EwhQOrSfF3wSVKF+9auNrFwRP++8z1v9aAuVy9Mv7WrGN6964gN3o4vZQ/SRSeujxZSsjpIh540c2aDH4tmnPDV/3TCkD5siA+kdOceGnyOECAdfW5VVWXwaapC/xmpaOAW75Uu22r7lW6rGpKGdGXptn+MKfEyX8oepIcK5n0aE0gzCs7t8/WC/S9KvQw9dNfw0/e5BkgNe9jdHnyS4JA2FfaadEzBQf0/iR+kuf5buk/+mNjoeUvSkLZ+6XmLO9RmvpT8xgVtkr0dNqQ/HdL307hAut8deuxVN15Y0Ma/qcS5Q274jyfcIyH9utlFsfjUrsId9b0Hnrqq8Gfxg7TY8zYnPi5rv93zPklDWj6kuLhboibzpeQ3lvdM9mHYkLoeviY2kB50zacndz9xtya3U6+/7LSCBJDqG7dPpw0hTBMc0l/cQWuSu8vcK7GDtCSlZX77Ws9bk4K0odPsam+pD2lJBtJuCg7pqYKHKyoquh1csS4GkGY2+6a/HeT61N3cPkUKSKmudIM+DWOeEH5GanGmv/2NuyvwTNmBtDxR6XllKUhlRTWe92j2IfVzdZ0fB0itDvO317orphQP948Gur5AqmtgQWkIs3wWCqQzjve3j7l7As+UHUjVPUq3rrs5BWllYsW/Fg5OVGUb0tsv+LU74IU34wCplytJbs8oHD+14Jv+p3ftUmMgJXvahfWJRQiQxrunk9su+7wVeKbsQPI+ur7z1e8k/uzfNKN7jylbB3bblGVI6aL9GWlonz5nu4v69Jkw86GWTdr3+6E7f+bMn7nju/c+veC4//QaoTAgzSst7eEGlJYGnyq4gcrjDipN9V7gqUKAtK71foPuLnKXB59pz7rWLmJIP657d3nVzJn3tv3KPocVJ/XM6H1046bfuGj6fzpnGJB6163rwcAzBYf0UeYt+GOBpwrjEqGP+3yt0XFj43WtXZC4+lvF1d8yrv62AUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAcl28S9jVKt2Mer4blGfjob9KOoFNOxnV8Soi8QzO8eQ7loVo7r/JUYNf/KNGDXkTzFq1PoYNU08s3MMafLaGNUz6rcJDbvtmWUxanhFjIrV+8z7xDMbSDEJSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIs/yBt6n1EoUsFpFwHJFn+Qbp437a9+6UCUq4Dkiz/IH312WwBAtL/FpBk+QdpvyogRRWQZPkH6ezXgRRVQJLlH6S3f7gYSBEFJFn+QTrzv9x+R6cCUq4Dkiz/IJ3dNhOQch2QZPkHKfsBSQUkWT5C+uyFBx56+Qsg5T4gyfIP0vZBjfzLGvYfD6ScByRZ/kEa7zo+/OIL91/gHgVSrgOSLP8gfeuG9P6K7wEp1wFJln+QmsxP7+c1A1KuA5Is/yDt/3x6/2xzIOU6IMnyD9JZP672d9vanQukXAckWf5Bmldw1JWjbr/8iMJXgZTrgCTLP0jeb7/pf/z93XnZcgQkGZBkeQjJ89a/VV6ZNUZA0gFJlpeQshyQVECS5RmkVqO9VjsCUq4DkizPIJ1W6p22IyDlOiDJ8gxSTgKSCkiy/IPU5sP0/ulvASnXAUmWf5BceWr3P7c1BlKuA5Is3yC5+rhoNecBSZZvkN6/2xWl/uuQl434C5ByHZBk+QbJ8y74U7YAAel/C0iy/IPkbZyS3FTdtglIOQ9IsvyDtPIw/1OGCnfYaiDlOiDJ8g9Sh+Pf8ncfHt8JSLkOSLL8g3ToI+n9/S2AlOuAJMs/SM2eSO9/tV9MIc07t3nzk8ZW+Ie/P9k9GT2kkvSvC86OGtJrmV9cjF+2bNoPvtL4xMFLo4T0/Dn773/SmDUVFdenV3Vm9JCWneKeC2OefwvSjy6o8Xdf/ODMzC01ifdjBOnZfY8eNuYsd2PycHSzI+IA6ZeFd/n9OmpIbw5JdX7Br5ZNKmx1402nuCsihPTbfY8eOvosN6iiom/hWL+ZkUOa2OzIHEJ6ueDYASNH9Dm08OXMLbUfbI0RpNNbvLt2bcW391uz9rdNRk2KA6TuBwSfI10Yb+1eP7TDsmXfOLJs2bJFRx8cIaTTWrxdUbHmW/utqri4RaCJQoP0UpNxU3MIyXuljf9CfHJc/4bs+Lv9bbFbvrbsd2tjAelnRwafI10YkC458NVliwdO9A9/7sqigzRusr/t6d6ruPDweEAqX/hZTiF53mcf/H8N/4vF/lu7iuHdu47Y4FUnXh7cr+9SLzOuTSwc0b/vfM/bPL5Xl8GrPO+1qzoX31u9Y5gFSOnOPiS1iwWks1tVVa0NPk1VKJCeLCzJHC5tfVigqcL4sOHsQyoqzjyxomJlDCAlyzGkXfIhXVm67R9jSpKH1/3Ve7XDlszYKxq4xXulyzZv0Pgvqh/vWb2x/fvbN143OzNM/sP/XJfsy7Ah3eeGxQfSKcd0PsgdNOgvsYB0/qFvpPZvzH34gn3HRg3pHje0ouLklkUHuoOu/WhvgrTbvyHrQ9qatLC4Q21N4jnP2971lczYK5rreZsSn6xKbE7+LNWtbFVidfLrXmaY/IcXtEn2dsiQZjZrVxEfSMcU9pj5UEf30+AzBYf0ZOGg9MFU5w4vDTZXcEiPNDt/TUVFy8JL7r8n4S7YmyDt9m/I+pCWDyku7paoqUksS95w1azM2CtanHxbl/i4LJFqdu09HUpmrfcyw+T3rrg52c4XSQSGNGqfotVr4wPp/RX+trubG3im4JC6Nn49ffC7icPPL/hFtJBu36f9x8ndknJ/cLF7ai+CtNuSkDZ0ml3tLfUh+f9fzCt+nRl7RUtSkJYmquu+edO8kR3K6oe7Kyikfu7aT9bGCFK637hRgecIDGnp13/UYNTXzYgSUl93zZ/rR4+6EUB6v6yoxvMe9SE97XnVnV/LjDOQ1iZWJr9xo1ezJbmbPjgzzAqkqwvG7jiOBaTVq/3tQ25i4JkCQ3rE3eLvXip5xN/d5YZGCGlAwZj0wYoV/vYeN3ovgrR/g3b8DdkkpJWJFf9aODhRVZMYUFE9q+PfMuMMJG9oSVXNi10+f7XPx7Wbh0zJDLMB6VduZP0gDpA+KLzI37UtWBI9pKvdr/zd7wq/tyS56+qmRgfp8cwr0LLCdv7u3ILX9yJIXZO1anRG5w6nFLS5ugEkb0b3HlO2Duy2IfHiTZ37lXuZ8aYMpM3jul5SssKrndWnY6+7/54ZZgHSmmMPHDvOb8naOePGXeJ+OW7cm9FCqurnzp8w+gx3efCZAkP6uft9at/bnXz9ze0KTloSGaRVxxw4JnVBw6KK3u680SN/6PoEmS4MSPNKS3u4AaWl7+QAUrLZJ23wdyu/ObchpB2H74g5/g8FgvR+5oKyB9deWnc0LWJIG8efckDTU0uDTxQc0tmF6f3Swa2aNjuu5+uBJgsE6d3M4/RAxeo7Tm7RtPW4QI7CgNQ788zJDaSTnkrv72tdd8P2jxI7PnWLHlLYcfW3jKu/Vf8WpMavpfezm9TdsLDDqFog5SQgyfIP0hGXpna1XQ8PTgZI/7eAJMs/SLe67147atSAb7nBQMp1QJLlH6TacYf7P5EdMrwGSLkOSLL8g5Sk9Mmypau3Z4sRkHRAkuUjpG1vzfnU+x8g5T4gyfIQ0sQWzi3xhvwia5SApAKSLP8gPeDaT09CenTf8UDKdUCS5R+kk6/0tiUhebecCKRcByRZ/kFq+moa0u8aASnXAUmWf5C+9nwa0lMHACnXAUmWf5B+cs4/fUifn9QOSLkOSLL8g/T6Psdf5/r2PqDRm0DKdUCS5R8k77VT/Ssbfvj7bDkCkgxIsjyE5Hmb3ntvc9YYAUkHJFn+QToje/+JVSD9LwFJln+QvjEJSFEFJFn+QXruW7/9F5CiCUiy/IN09ndd4yOO9gNSrgOSLP8gnXle27qAlOuAJMs/SNkPSCogyfIO0rZlb24BUkQBSZZvkCa3cK5R/y/FNwIpuwFJlmeQnnEtbxh2lrtafCOQshuQZHkG6eyW/v8utm+jvwEpioAkyzNIzYf727dc1i5YBdL/X0CS5Rkkd7+/3eBeFt8JpKwGJFm+QXrQ3250LwEpioAkAxKQ/v2AJMs3SLcsSTbPlfo7IOU6IMnyDVLDgJTrgCTLM0i3NgxIuQ5IsjyDlJOApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZOvQM0Yd/4sYdWq7TjHqB5fGqJ/2iVEXimd2jiFNWR+jij+PUaOWboxRiWkxanTUj03DYvKKBCQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiRbUEhvtHZP+/sbXKqzIodUduEBTdr8KoSJAkNa1No9s+tRFJBGHOWuSx1cf3zjxifcsPNtkUEK7XEKBVJN4p1oIY1tdkQa0uWFE/wejxrS2y2OmzD53IIngs8UFNK45Kl5ZpejKCB1a3xQGs2V7shLLj1s35sa3hYZpPAepz0C0twmd5amIXVtEWii0CB1bvbh559vOumY4DMFhPR8k9GT03zqj6KANKjRJT3TaA498K5p0ya0aNXwtsgghfc47RGQFr22vg7ST4+IBaSqZh393Wj3euCpAkJaPH9jHZ/6oygg3XrLtDSaMe4sf9y2YHz9bZFBCvFxCg1SzbCRNX8d36tzyYfe9sTv+k32No/v1WXwKs+rGN6964gNXm1i4Yj+fednBVKyOkhntVq/fnX0kJa54f5urpsaeKrgHzbU84kQUrI0mjvcef6gixtYf1tkkEJ8nEKDVFrypTfo1i1fPtz1b17RwFX/9AaN/6L68Z7V3pWl2/4xpsRL3rjFe6XLtuS3f74s2d+yAql1y44HuoOuXxMxpBfc3f5uiRsReKo9DdLU/Y7yB23cZTGAFOLjFBakJ/p/4a1OrPW86osXeEVPet6qxGbPq+1W5m390vMWd6j1iuZ63qbEJ8lvX9Am2dtZgdSysNtD9xe5iyKG9Iy7z9+9424KPNWeBmlawv33yNsuaOH6xgBSiI9TSJDGJv7geW+2r00O+v/GKyrzvLJEqtne8iHFxd0SNV7RYs/bnPcB240AABDoSURBVPg4+R2rpyRblxVIb7/nb7u6OdFCmucm+7vF7tbAU+1xkO4+r8C5b13qrowBpBAfp5Ag9RsxsKYO0lVPeEVLPG9pojr1tQ2dZlcnBzWpG9OQdlNYkNI94UZGC+ltN8zfzUn/gReoPQ7StGljS+5M/ow0LAaQQnycQoJUvrXPI94a/43bts7zU2bWJlYmv7LRKyuq8bxHcwVp5Up/e78bFy2kT1sk/N1wtzjwVHsgJL/v7jclBpBCfJxC+7BhRYd3vZKRX2y7r+c/Uma8oSVVNS92+XxlYsW/Fg5OVOUE0ruFF/qD8wreiBbS58VNln/++YZjvxN8pj0O0umHTp42bXDhORZX7iGF+DiF93ukx4u3VN3R89Lbkj/8pCBtHtf1kpIVnjeje48pWwd225RFSM9OmNDVXTlhwuL1fVzbcaNOd/0CTRcCpD98teXwMT9sNDf4TAEhzZ04sZu7auLEpQ2OooB0Q48ep7u2PXqMnHZFwQnFHZp/dWzD2yKDFN7jtEdca9czfYWdu3f92jGtWzQ9ZWKg2UK51m7ZRS2anvFcCBMFhFRcd2rua3AUBaSz6u69z7Rpfb7RqPlpd+58W1SQwnuc9ghIIcfV3zKu/lYByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSRUTSB2LY9SJfWJUm469Y1TLs2NUIurHpmEXimd2jiFNq4xRvaP+c79ht77zWYwatSlGXV8eo24Xz2wgxSQgyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSLagkBa1dnNSBwvaHdDke49FCym5mGd2PYoW0pz/PrjJSZM+DT5RcEh/cnXNjBbSgsw6JpSXzzq7eeOT7oo1pKIlOw1rEu9nBdK4ZkekIS1pcdzYSecUzIwSkr+YZ3Y5ihbSrMKTx0443Q2OA6R1d6UqKng9WkiLh6Y6v2BW+Zz9j7p56GkFE+MKafnHBlLtB1uzAemFJmPuTkPq2Gx5ZeW677SMENLzTUZPTvOpP4oYUsuj13322cbjD40DpHSrDy8OPkkIb+0WHtqxvPyCpi+Vly894RtxhXTbiwaSLBikJQsq05DWNyvyx6Pcq9FBWjx/Yx2f+qNoIVXe8YS/6+HWxQbSZQd/FHySECB1PXB++bKm5/uHg9wT8YQ0pH2n672iV0Z0Kl7geRXDu3cdsSFrb+0q6yAtckP9wRw3OTpIyer5xAJSuk9P+0bwSUKC9Gbh2BBmCQ5pduHN5eVPuwH+8XQ3Ip6QvH7+K9I1H/7zsS7bvCtLt/1jTEkdpPXPJKvKBqTn3F3+4A03DEg7tWH5y50bzQw+T0iQOhz+lxBmCQ6p3aGLyssfcMP846fc1XGG9LTnbUxUeFu/9LzFHWrTkBa0SfZ2NiA96ab6g2XuRiDt1DPOHfWbEOYJB9KbhXeGMU1gSLMLb0xup7nb/MGz7vI4Q1rseZsTH3vLhxQXd0vUZP8VaZI/KHPDgbRTH/1qaseCgcHnCQfS5Y1XhzFNYEjdGi9Mbh90Q/3BU+6aOENakoK0odPsam9pBtJuCgnSEneLP3gq/cIEpJ0a5F4NPEcokCqP+EkY0wSG9NbXz/R3c1x/f3dP+oUp3pDKimo879HsQ9rQ4uf+YIgrA1J9fxz3O3/3azc5HpBecpPCmCYwpBnpl6Jl+5/n7wa4p2IKqf/Df89AWplY8a+FgxNV2YZUeWmTdyor1x777UBz7WmQPio8syq5+6V7Jh6Qhrvgv4z1CwrpGjcrte/Q+Pny8kX/dUKgybIIaW7nPhlI3ozuPaZsHdhtQ3YgzZ00qZvrP2nSssr3Dj566B0/aDQnQkhzJ07s5q6aOHFpg6NoIX12nfvhqImdCr5fFQ9I3d2aMKYJDCnhFqb28w48csCgk/edHldI/5eCQepVd9nU9MrKRRe2aHraM4FmCwipuG4x9zU4ihjSp5NObrb/t66uCD5TKJAuKAxjluCQ/ruw7uDpc/Zvcup9wSbbIyCFHFd/y7j6WwUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkVUwgzXg8Rg2MegENGzY16hU07NqoF9CwWD1O08QzO8eQiPbMgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQghIRCGUl5CmTY56BQ2ad+emqJdQ34d3Lo16CfV9eeesqJfQoBl3ZnX6vISUaBf1Chp0R5uPo15Cfa+2eTzqJdS3tc3VUS+hQb2/n9XpgRQ0IKmAFPeApAKSDEg2IKmAJAMSUfwDElEIAYkohPIDUtGS1K4m8X7ECzFL2JSoyPmqYnAaTDWJd6Jegq7u6ZMpK+cvryDVfrA14oWYJSQh5XxVMTgNpthCWv6xgZSV85dXkGJYElLUS4hFsYV024u5efrEHNKnd15cfO+XXtErIzoVL/Bfk2sTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZruGS1g9qMvVC9Nv7SqGd+86YoO340vZXkPmDqsTLw/u13epZxaQ69PjQ6oZNrLmr+N7dS750Nue+F2/yTvuNadnZ+eGtO90febpk1nH3vjW7oaxm9cPmO4VXfPhPx/rss0/A0UDt3ivdNnmDRr/RfXjPas3tn9/+8brZmeGWV9QgyXU9ivdVjUkDenK0m3/GFPi7Vhd1tdQd4c1iev+6r3aYYtZQK5Pjw+ptORLb9CtW758uOvfkutY9c8d95rTs7NL/fxXpPTTp/6k7XWQVic2JjflXtHTnrcx/ZQtmuu/n/pkVWJz8s1ut7JVidWet93LDLO+ogZL+KO/uCXpVW390vMWd6jNfCn7a6i7w5rEc8l//a6v7LqAnJ+eJKQn+n+RfMDWel71xQu8oie9+nvN6dnZpRSk9NOn/qTtdZDebF+b2hctTr5ZSXycehanD8sSqWbX3tOhZNZ6LzPM+ooaLqH9ds/7JA1p+ZDi4m6JmsyXsr+GujusSSxL3nDVrF0XkPPTU5MYm/hD5gHr/xuvKIl2x73m9OzsUgpS3f3uOGl7HaRF/nPVS/+0mIGUPlyayLxP2TRvZIey+mGWa7CE+f6TZk0K0oZOs6u9pf5TZUluIGXusCaRfI54V/x61wXk/PTUJPqNGFhTB+mqJ1LryNxrbs/OLvV7ccfTp/6k7XWQ1vifiX30wm4grU2sTH59o1ezJbmbPjgzzHoNlrA8Uen/qetDKiuq8bxHcwgpc4c1ieS7lurOr+26gJyfnppE+dY+jyQfsOQbt22d56fWkbnX3J6dXWoAqf6k7XWQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpj1BTVYQnWP0q3rbk5BWplY8a+FgxNVOYOUucOaxICK6lkd/2YWkOvT43/YsKLDu17JyC+23dfzH+lPnOvuNbdnZ5f6P/z3zP3Wn7S9D9KWO7r0nLZtd5A2j+t6SckKr3ZWn4697v57Zpj1Gi7ho+s7X/1O4s/+TTO695iydWC3TbmClLnDDYkXb+rcr9wzC8j16Un9Hunx4i1Vd/S89LZ1db+6ydxrTs/OLs3t3GfHA7bjpO19kGg3NfgTNba/B93rAlLetf0j/zPtdECKS0DKuxZ2GFWbOQZSXAISUQgBiSiEgEQUQkAiCiEgEYUQkPK3X7pMp+32622Pzu169uqAlL+9PnXq1Gtd5+TWXNb9nv+4AimHASm/e92V7u7mKUDKcUDK7+ognXn28984w2vd2j8u+qp3QfLtXhuv7XFrLmze/JLsX8lLQMr36iCdd/I373mhHtKfilz5h17blq1HP3tjwS+iXeFeEpDyuzpIbd2c5HYHJK+f23Hjj74W4fL2noCU32UgNf6XZyE19a/J61UY4fL2noCU32UgHeFvd4V0tD/sx0OcizjL+V0G0tH+FkjRxVnO73aCdOpJ/vY0IEUQZzm/2wnSeYckfyja1CwJ6TL3P0DKaZzl/G4nSJPdmMp3f/ydJKQR7rangZTLOMv53U6Qqm84sknr5we08Ly/nNqoFZByGWeZKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYXQ/wMhANIDIZLX1QAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 436 + }, + "id": "HsAtwukyLsvt", + "outputId": "3032a224-a2c8-4270-b4f2-7bb620317400" + } + }, + { + "cell_type": "markdown", + "source": [ + "مربع‌های تیره‌تر در نمودار ماتریس سردرگمی نشان‌دهنده تعداد بالای موارد هستند و امیدواریم یک خط مورب از مربع‌های تیره‌تر را ببینید که نشان‌دهنده مواردی است که در آن‌ها برچسب پیش‌بینی‌شده و واقعی یکسان هستند.\n", + "\n", + "حالا بیایید آمار خلاصه‌ای برای ماتریس سردرگمی محاسبه کنیم.\n" + ], + "metadata": { + "id": "oOJC87dkLwPr" + } + }, + { + "cell_type": "code", + "execution_count": 12, + "source": [ + "# Summary stats for confusion matrix\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class) %>% \n", + "summary()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " .metric .estimator .estimate\n", + "1 accuracy multiclass 0.7880435\n", + "2 kap multiclass 0.7276583\n", + "3 sens macro 0.7780927\n", + "4 spec macro 0.9477598\n", + "5 ppv macro 0.7585583\n", + "6 npv macro 0.9460080\n", + "7 mcc multiclass 0.7292724\n", + "8 j_index macro 0.7258524\n", + "9 bal_accuracy macro 0.8629262\n", + "10 detection_prevalence macro 0.2000000\n", + "11 precision macro 0.7585583\n", + "12 recall macro 0.7780927\n", + "13 f_meas macro 0.7641862" + ], + "text/markdown": [ + "\n", + "A tibble: 13 × 3\n", + "\n", + "| .metric <chr> | .estimator <chr> | .estimate <dbl> |\n", + "|---|---|---|\n", + "| accuracy | multiclass | 0.7880435 |\n", + "| kap | multiclass | 0.7276583 |\n", + "| sens | macro | 0.7780927 |\n", + "| spec | macro | 0.9477598 |\n", + "| ppv | macro | 0.7585583 |\n", + "| npv | macro | 0.9460080 |\n", + "| mcc | multiclass | 0.7292724 |\n", + "| j_index | macro | 0.7258524 |\n", + "| bal_accuracy | macro | 0.8629262 |\n", + "| detection_prevalence | macro | 0.2000000 |\n", + "| precision | macro | 0.7585583 |\n", + "| recall | macro | 0.7780927 |\n", + "| f_meas | macro | 0.7641862 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 13 × 3\n", + "\\begin{tabular}{lll}\n", + " .metric & .estimator & .estimate\\\\\n", + " & & \\\\\n", + "\\hline\n", + "\t accuracy & multiclass & 0.7880435\\\\\n", + "\t kap & multiclass & 0.7276583\\\\\n", + "\t sens & macro & 0.7780927\\\\\n", + "\t spec & macro & 0.9477598\\\\\n", + "\t ppv & macro & 0.7585583\\\\\n", + "\t npv & macro & 0.9460080\\\\\n", + "\t mcc & multiclass & 0.7292724\\\\\n", + "\t j\\_index & macro & 0.7258524\\\\\n", + "\t bal\\_accuracy & macro & 0.8629262\\\\\n", + "\t detection\\_prevalence & macro & 0.2000000\\\\\n", + "\t precision & macro & 0.7585583\\\\\n", + "\t recall & macro & 0.7780927\\\\\n", + "\t f\\_meas & macro & 0.7641862\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
            A tibble: 13 × 3
            .metric.estimator.estimate
            <chr><chr><dbl>
            accuracy multiclass0.7880435
            kap multiclass0.7276583
            sens macro 0.7780927
            spec macro 0.9477598
            ppv macro 0.7585583
            npv macro 0.9460080
            mcc multiclass0.7292724
            j_index macro 0.7258524
            bal_accuracy macro 0.8629262
            detection_prevalencemacro 0.2000000
            precision macro 0.7585583
            recall macro 0.7780927
            f_meas macro 0.7641862
            \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 494 + }, + "id": "OYqetUyzL5Wz", + "outputId": "6a84d65e-113d-4281-dfc1-16e8b70f37e6" + } + }, + { + "cell_type": "markdown", + "source": [ + "اگر معیارهایی مانند دقت، حساسیت، و ppv را در نظر بگیریم، برای شروع وضعیت بدی نداریم 🥳!\n", + "\n", + "## 4. بررسی عمیق‌تر\n", + "\n", + "بیایید یک سؤال ظریف بپرسیم: چه معیارهایی برای انتخاب نوع خاصی از غذا به عنوان نتیجه پیش‌بینی‌شده استفاده می‌شود؟\n", + "\n", + "خب، الگوریتم‌های یادگیری ماشین آماری، مانند رگرسیون لجستیک، بر اساس `احتمال` عمل می‌کنند؛ بنابراین چیزی که واقعاً توسط یک طبقه‌بند پیش‌بینی می‌شود، یک توزیع احتمالی بر روی مجموعه‌ای از نتایج ممکن است. کلاسی که بالاترین احتمال را دارد، به عنوان محتمل‌ترین نتیجه برای مشاهدات داده‌شده انتخاب می‌شود.\n", + "\n", + "بیایید این را در عمل ببینیم، هم با پیش‌بینی‌های سخت کلاسی و هم با احتمالات.\n" + ], + "metadata": { + "id": "43t7vz8vMJtW" + } + }, + { + "cell_type": "code", + "execution_count": 13, + "source": [ + "# Make hard class prediction and probabilities\n", + "results_prob <- cuisines_test %>%\n", + " select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test)) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test, type = \"prob\"))\n", + "\n", + "# Print out results\n", + "results_prob %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class .pred_chinese .pred_indian .pred_japanese .pred_korean\n", + "1 indian thai 1.551259e-03 0.4587877 5.988039e-04 2.428503e-04\n", + "2 indian indian 2.637133e-05 0.9999488 6.648651e-07 2.259993e-05\n", + "3 indian indian 1.049433e-03 0.9909982 1.060937e-03 1.644947e-05\n", + "4 indian indian 6.237482e-02 0.4763035 9.136702e-02 3.660913e-01\n", + "5 indian indian 1.431745e-02 0.9418551 2.945239e-02 8.721782e-03\n", + " .pred_thai \n", + "1 5.388194e-01\n", + "2 1.577948e-06\n", + "3 6.874989e-03\n", + "4 3.863391e-03\n", + "5 5.653283e-03" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 7\n", + "\n", + "| cuisine <fct> | .pred_class <fct> | .pred_chinese <dbl> | .pred_indian <dbl> | .pred_japanese <dbl> | .pred_korean <dbl> | .pred_thai <dbl> |\n", + "|---|---|---|---|---|---|---|\n", + "| indian | thai | 1.551259e-03 | 0.4587877 | 5.988039e-04 | 2.428503e-04 | 5.388194e-01 |\n", + "| indian | indian | 2.637133e-05 | 0.9999488 | 6.648651e-07 | 2.259993e-05 | 1.577948e-06 |\n", + "| indian | indian | 1.049433e-03 | 0.9909982 | 1.060937e-03 | 1.644947e-05 | 6.874989e-03 |\n", + "| indian | indian | 6.237482e-02 | 0.4763035 | 9.136702e-02 | 3.660913e-01 | 3.863391e-03 |\n", + "| indian | indian | 1.431745e-02 | 0.9418551 | 2.945239e-02 | 8.721782e-03 | 5.653283e-03 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 7\n", + "\\begin{tabular}{lllllll}\n", + " cuisine & .pred\\_class & .pred\\_chinese & .pred\\_indian & .pred\\_japanese & .pred\\_korean & .pred\\_thai\\\\\n", + " & & & & & & \\\\\n", + "\\hline\n", + "\t indian & thai & 1.551259e-03 & 0.4587877 & 5.988039e-04 & 2.428503e-04 & 5.388194e-01\\\\\n", + "\t indian & indian & 2.637133e-05 & 0.9999488 & 6.648651e-07 & 2.259993e-05 & 1.577948e-06\\\\\n", + "\t indian & indian & 1.049433e-03 & 0.9909982 & 1.060937e-03 & 1.644947e-05 & 6.874989e-03\\\\\n", + "\t indian & indian & 6.237482e-02 & 0.4763035 & 9.136702e-02 & 3.660913e-01 & 3.863391e-03\\\\\n", + "\t indian & indian & 1.431745e-02 & 0.9418551 & 2.945239e-02 & 8.721782e-03 & 5.653283e-03\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
            A tibble: 5 × 7
            cuisine.pred_class.pred_chinese.pred_indian.pred_japanese.pred_korean.pred_thai
            <fct><fct><dbl><dbl><dbl><dbl><dbl>
            indianthai 1.551259e-030.45878775.988039e-042.428503e-045.388194e-01
            indianindian2.637133e-050.99994886.648651e-072.259993e-051.577948e-06
            indianindian1.049433e-030.99099821.060937e-031.644947e-056.874989e-03
            indianindian6.237482e-020.47630359.136702e-023.660913e-013.863391e-03
            indianindian1.431745e-020.94185512.945239e-028.721782e-035.653283e-03
            \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "xdKNs-ZPMTJL", + "outputId": "68f6ac5a-725a-4eff-9ea6-481fef00e008" + } + }, + { + "cell_type": "markdown", + "source": [ + "✅ آیا می‌توانید توضیح دهید چرا مدل تقریباً مطمئن است که اولین مشاهده مربوط به غذاهای تایلندی است؟\n", + "\n", + "## **🚀چالش**\n", + "\n", + "در این درس، شما از داده‌های تمیز شده خود برای ساخت یک مدل یادگیری ماشین استفاده کردید که می‌تواند یک غذای ملی را بر اساس مجموعه‌ای از مواد اولیه پیش‌بینی کند. کمی زمان بگذارید و [گزینه‌های متنوعی](https://www.tidymodels.org/find/parsnip/#models) که Tidymodels برای طبقه‌بندی داده‌ها ارائه می‌دهد و [راه‌های دیگر](https://parsnip.tidymodels.org/articles/articles/Examples.html#multinom_reg-models) برای اجرای رگرسیون چندجمله‌ای را بررسی کنید.\n", + "\n", + "#### تشکر ویژه از:\n", + "\n", + "[`آلیسون هورست`](https://twitter.com/allison_horst/) برای خلق تصاویر شگفت‌انگیزی که R را جذاب‌تر و دلپذیرتر می‌کنند. تصاویر بیشتر را در [گالری او](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) پیدا کنید.\n", + "\n", + "[کسی بریویو](https://www.twitter.com/cassieview) و [جن لوپر](https://www.twitter.com/jenlooper) برای ایجاد نسخه اصلی پایتون این ماژول ♥️\n", + "\n", + "
            \n", + "می‌خواستم چند شوخی هم اضافه کنم، ولی راستش اصلاً از شوخی‌های غذایی سر در نمی‌آورم 😅.\n", + "\n", + "
            \n", + "\n", + "یادگیری خوشایند،\n", + "\n", + "[اریک](https://twitter.com/ericntay)، سفیر طلایی دانشجویی Microsoft Learn.\n" + ], + "metadata": { + "id": "2tWVHMeLMYdM" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/4-Classification/2-Classifiers-1/solution/notebook.ipynb b/translations/fa/4-Classification/2-Classifiers-1/solution/notebook.ipynb new file mode 100644 index 000000000..9ee4ece7b --- /dev/null +++ b/translations/fa/4-Classification/2-Classifiers-1/solution/notebook.ipynb @@ -0,0 +1,281 @@ +{ + "cells": [ + { + "source": [ + "مدل‌های طبقه‌بندی بسازید\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            00indian00000000...0000000000
            11indian10000000...0000000000
            22indian00000000...0000000000
            33indian00000000...0000000000
            44indian00000000...0000000010
            \n

            5 rows × 382 columns

            \n
            " + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "from sklearn.svm import SVC\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            00000000000...0000000000
            11000000000...0000000000
            20000000000...0000000000
            30000000000...0000000000
            40000000000...0000000010
            \n

            5 rows × 380 columns

            \n
            " + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy is 0.8181818181818182\n" + ] + } + ], + "source": [ + "lr = LogisticRegression(multi_class='ovr',solver='liblinear')\n", + "model = lr.fit(X_train, np.ravel(y_train))\n", + "\n", + "accuracy = model.score(X_test, y_test)\n", + "print (\"Accuracy is {}\".format(accuracy))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "ingredients: Index(['artemisia', 'black_pepper', 'mushroom', 'shiitake', 'soy_sauce',\n 'vegetable_oil'],\n dtype='object')\ncuisine: korean\n" + ] + } + ], + "source": [ + "# test an item\n", + "print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')\n", + "print(f'cuisine: {y_test.iloc[50]}')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0\n", + "korean 0.392231\n", + "chinese 0.372872\n", + "japanese 0.218825\n", + "thai 0.013427\n", + "indian 0.002645" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            0
            korean0.392231
            chinese0.372872
            japanese0.218825
            thai0.013427
            indian0.002645
            \n
            " + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "#rehsape to 2d array and transpose\n", + "test= X_test.iloc[50].values.reshape(-1, 1).T\n", + "# predict with score\n", + "proba = model.predict_proba(test)\n", + "classes = model.classes_\n", + "# create df with classes and scores\n", + "resultdf = pd.DataFrame(data=proba, columns=classes)\n", + "\n", + "# create df to show results\n", + "topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])\n", + "topPrediction.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.75 0.73 0.74 223\n indian 0.93 0.88 0.90 255\n japanese 0.78 0.78 0.78 253\n korean 0.87 0.86 0.86 236\n thai 0.76 0.84 0.80 232\n\n accuracy 0.82 1199\n macro avg 0.82 0.82 0.82 1199\nweighted avg 0.82 0.82 0.82 1199\n\n" + ] + } + ], + "source": [ + "y_pred = model.predict(X_test)\r\n", + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان بومی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "9408506dd864f2b6e334c62f80c0cfcc", + "translation_date": "2025-09-04T02:23:32+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/fa/4-Classification/3-Classifiers-2/README.md b/translations/fa/4-Classification/3-Classifiers-2/README.md new file mode 100644 index 000000000..6eebfc0ff --- /dev/null +++ b/translations/fa/4-Classification/3-Classifiers-2/README.md @@ -0,0 +1,249 @@ + +# دسته‌بندی غذاها ۲ + +در این درس دوم از دسته‌بندی، شما روش‌های بیشتری برای دسته‌بندی داده‌های عددی بررسی خواهید کرد. همچنین درباره پیامدهای انتخاب یک دسته‌بند نسبت به دیگری یاد خواهید گرفت. + +## [پیش‌آزمون](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/) + +### پیش‌نیاز + +فرض می‌کنیم که درس‌های قبلی را تکمیل کرده‌اید و یک مجموعه داده تمیز در پوشه `data` به نام _cleaned_cuisines.csv_ در ریشه این پوشه ۴ درسی دارید. + +### آماده‌سازی + +ما فایل _notebook.ipynb_ شما را با مجموعه داده تمیز بارگذاری کرده‌ایم و آن را به دو دیتافریم X و y تقسیم کرده‌ایم، آماده برای فرآیند ساخت مدل. + +## نقشه دسته‌بندی + +قبلاً درباره گزینه‌های مختلفی که هنگام دسته‌بندی داده‌ها دارید با استفاده از برگه تقلب مایکروسافت یاد گرفتید. Scikit-learn یک برگه تقلب مشابه اما دقیق‌تر ارائه می‌دهد که می‌تواند به محدود کردن انتخاب دسته‌بندها (اصطلاح دیگری برای دسته‌بندها) کمک کند: + +![نقشه یادگیری ماشین از Scikit-learn](../../../../translated_images/map.e963a6a51349425ab107b38f6c7307eb4c0d0c7ccdd2e81a5e1919292bab9ac7.fa.png) +> نکته: [این نقشه را آنلاین ببینید](https://scikit-learn.org/stable/tutorial/machine_learning_map/) و مسیرها را کلیک کنید تا مستندات را بخوانید. + +### برنامه + +این نقشه زمانی بسیار مفید است که درک واضحی از داده‌های خود داشته باشید، زیرا می‌توانید در مسیرهای آن قدم بزنید تا به تصمیم برسید: + +- ما بیش از ۵۰ نمونه داریم +- می‌خواهیم یک دسته را پیش‌بینی کنیم +- داده‌های برچسب‌دار داریم +- کمتر از ۱۰۰ هزار نمونه داریم +- ✨ می‌توانیم یک Linear SVC انتخاب کنیم +- اگر این کار نکرد، چون داده‌های عددی داریم + - می‌توانیم ✨ KNeighbors Classifier را امتحان کنیم + - اگر این کار نکرد، ✨ SVC و ✨ Ensemble Classifiers را امتحان کنید + +این مسیر بسیار مفید است. + +## تمرین - تقسیم داده‌ها + +با دنبال کردن این مسیر، باید با وارد کردن برخی کتابخانه‌ها شروع کنیم. + +1. کتابخانه‌های مورد نیاز را وارد کنید: + + ```python + from sklearn.neighbors import KNeighborsClassifier + from sklearn.linear_model import LogisticRegression + from sklearn.svm import SVC + from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + import numpy as np + ``` + +1. داده‌های آموزشی و آزمایشی خود را تقسیم کنید: + + ```python + X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) + ``` + +## دسته‌بند Linear SVC + +خوشه‌بندی پشتیبان-برداری (SVC) یکی از اعضای خانواده تکنیک‌های یادگیری ماشین پشتیبان-برداری است (در مورد این‌ها بیشتر در زیر بیاموزید). در این روش، می‌توانید یک 'kernel' انتخاب کنید تا تصمیم بگیرید چگونه برچسب‌ها را خوشه‌بندی کنید. پارامتر 'C' به 'تنظیم‌سازی' اشاره دارد که تأثیر پارامترها را تنظیم می‌کند. کرنل می‌تواند یکی از [چندین](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC) باشد؛ در اینجا آن را به 'linear' تنظیم می‌کنیم تا از Linear SVC استفاده کنیم. مقدار پیش‌فرض احتمال 'false' است؛ در اینجا آن را به 'true' تنظیم می‌کنیم تا تخمین‌های احتمالی جمع‌آوری کنیم. حالت تصادفی را به '0' تنظیم می‌کنیم تا داده‌ها را برای دریافت احتمالات مخلوط کنیم. + +### تمرین - اعمال یک Linear SVC + +با ایجاد یک آرایه از دسته‌بندها شروع کنید. شما به تدریج به این آرایه اضافه خواهید کرد. + +1. با یک Linear SVC شروع کنید: + + ```python + C = 10 + # Create different classifiers. + classifiers = { + 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0) + } + ``` + +2. مدل خود را با استفاده از Linear SVC آموزش دهید و یک گزارش چاپ کنید: + + ```python + n_classifiers = len(classifiers) + + for index, (name, classifier) in enumerate(classifiers.items()): + classifier.fit(X_train, np.ravel(y_train)) + + y_pred = classifier.predict(X_test) + accuracy = accuracy_score(y_test, y_pred) + print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100)) + print(classification_report(y_test,y_pred)) + ``` + + نتیجه بسیار خوب است: + + ```output + Accuracy (train) for Linear SVC: 78.6% + precision recall f1-score support + + chinese 0.71 0.67 0.69 242 + indian 0.88 0.86 0.87 234 + japanese 0.79 0.74 0.76 254 + korean 0.85 0.81 0.83 242 + thai 0.71 0.86 0.78 227 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +## دسته‌بند K-Neighbors + +K-Neighbors بخشی از خانواده روش‌های یادگیری ماشین "همسایه‌ها" است که می‌توانند برای یادگیری نظارت‌شده و نظارت‌نشده استفاده شوند. در این روش، تعداد نقاط از پیش تعریف‌شده ایجاد می‌شود و داده‌ها در اطراف این نقاط جمع‌آوری می‌شوند تا برچسب‌های عمومی برای داده‌ها پیش‌بینی شوند. + +### تمرین - اعمال دسته‌بند K-Neighbors + +دسته‌بند قبلی خوب بود و با داده‌ها خوب کار کرد، اما شاید بتوانیم دقت بهتری داشته باشیم. دسته‌بند K-Neighbors را امتحان کنید. + +1. یک خط به آرایه دسته‌بند خود اضافه کنید (بعد از آیتم Linear SVC یک کاما اضافه کنید): + + ```python + 'KNN classifier': KNeighborsClassifier(C), + ``` + + نتیجه کمی بدتر است: + + ```output + Accuracy (train) for KNN classifier: 73.8% + precision recall f1-score support + + chinese 0.64 0.67 0.66 242 + indian 0.86 0.78 0.82 234 + japanese 0.66 0.83 0.74 254 + korean 0.94 0.58 0.72 242 + thai 0.71 0.82 0.76 227 + + accuracy 0.74 1199 + macro avg 0.76 0.74 0.74 1199 + weighted avg 0.76 0.74 0.74 1199 + ``` + + ✅ درباره [K-Neighbors](https://scikit-learn.org/stable/modules/neighbors.html#neighbors) بیاموزید + +## دسته‌بند Support Vector + +دسته‌بندهای پشتیبان-برداری بخشی از خانواده [ماشین‌های پشتیبان-برداری](https://wikipedia.org/wiki/Support-vector_machine) هستند که برای وظایف دسته‌بندی و رگرسیون استفاده می‌شوند. SVM‌ها "نمونه‌های آموزشی را به نقاطی در فضا نگاشت می‌کنند" تا فاصله بین دو دسته را به حداکثر برسانند. داده‌های بعدی به این فضا نگاشت می‌شوند تا دسته آن‌ها پیش‌بینی شود. + +### تمرین - اعمال دسته‌بند Support Vector + +بیایید با دسته‌بند Support Vector دقت کمی بهتر داشته باشیم. + +1. بعد از آیتم K-Neighbors یک کاما اضافه کنید و سپس این خط را اضافه کنید: + + ```python + 'SVC': SVC(), + ``` + + نتیجه بسیار خوب است! + + ```output + Accuracy (train) for SVC: 83.2% + precision recall f1-score support + + chinese 0.79 0.74 0.76 242 + indian 0.88 0.90 0.89 234 + japanese 0.87 0.81 0.84 254 + korean 0.91 0.82 0.86 242 + thai 0.74 0.90 0.81 227 + + accuracy 0.83 1199 + macro avg 0.84 0.83 0.83 1199 + weighted avg 0.84 0.83 0.83 1199 + ``` + + ✅ درباره [پشتیبان-برداری‌ها](https://scikit-learn.org/stable/modules/svm.html#svm) بیاموزید + +## دسته‌بندهای Ensemble + +بیایید مسیر را تا انتها دنبال کنیم، حتی اگر آزمایش قبلی بسیار خوب بود. بیایید برخی از دسته‌بندهای Ensemble، به‌ویژه Random Forest و AdaBoost را امتحان کنیم: + +```python + 'RFST': RandomForestClassifier(n_estimators=100), + 'ADA': AdaBoostClassifier(n_estimators=100) +``` + +نتیجه بسیار خوب است، به‌ویژه برای Random Forest: + +```output +Accuracy (train) for RFST: 84.5% + precision recall f1-score support + + chinese 0.80 0.77 0.78 242 + indian 0.89 0.92 0.90 234 + japanese 0.86 0.84 0.85 254 + korean 0.88 0.83 0.85 242 + thai 0.80 0.87 0.83 227 + + accuracy 0.84 1199 + macro avg 0.85 0.85 0.84 1199 +weighted avg 0.85 0.84 0.84 1199 + +Accuracy (train) for ADA: 72.4% + precision recall f1-score support + + chinese 0.64 0.49 0.56 242 + indian 0.91 0.83 0.87 234 + japanese 0.68 0.69 0.69 254 + korean 0.73 0.79 0.76 242 + thai 0.67 0.83 0.74 227 + + accuracy 0.72 1199 + macro avg 0.73 0.73 0.72 1199 +weighted avg 0.73 0.72 0.72 1199 +``` + +✅ درباره [دسته‌بندهای Ensemble](https://scikit-learn.org/stable/modules/ensemble.html) بیاموزید + +این روش یادگیری ماشین "پیش‌بینی‌های چندین تخمین‌گر پایه را ترکیب می‌کند" تا کیفیت مدل را بهبود بخشد. در مثال ما، از درخت‌های تصادفی و AdaBoost استفاده کردیم. + +- [Random Forest](https://scikit-learn.org/stable/modules/ensemble.html#forest)، یک روش میانگین‌گیری، یک 'جنگل' از 'درخت‌های تصمیم‌گیری' ایجاد می‌کند که با تصادفی‌سازی تزریق شده‌اند تا از بیش‌برازش جلوگیری شود. پارامتر n_estimators به تعداد درخت‌ها تنظیم شده است. + +- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) یک دسته‌بند را به مجموعه داده تطبیق می‌دهد و سپس نسخه‌هایی از آن دسته‌بند را به همان مجموعه داده تطبیق می‌دهد. این روش بر وزن آیتم‌های اشتباه دسته‌بندی‌شده تمرکز می‌کند و تناسب دسته‌بند بعدی را تنظیم می‌کند تا اصلاح شود. + +--- + +## 🚀چالش + +هر یک از این تکنیک‌ها تعداد زیادی پارامتر دارند که می‌توانید تنظیم کنید. درباره پارامترهای پیش‌فرض هر کدام تحقیق کنید و فکر کنید که تنظیم این پارامترها چه معنایی برای کیفیت مدل خواهد داشت. + +## [پس‌آزمون](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/) + +## مرور و مطالعه شخصی + +در این درس‌ها اصطلاحات زیادی وجود دارد، بنابراین چند دقیقه وقت بگذارید تا [این فهرست](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott) از اصطلاحات مفید را مرور کنید! + +## تکلیف + +[بازی با پارامترها](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/4-Classification/3-Classifiers-2/assignment.md b/translations/fa/4-Classification/3-Classifiers-2/assignment.md new file mode 100644 index 000000000..edf7dd093 --- /dev/null +++ b/translations/fa/4-Classification/3-Classifiers-2/assignment.md @@ -0,0 +1,25 @@ + +# بازی با پارامترها + +## دستورالعمل‌ها + +هنگام کار با این دسته‌بندی‌کننده‌ها، بسیاری از پارامترها به صورت پیش‌فرض تنظیم شده‌اند. قابلیت Intellisense در VS Code می‌تواند به شما کمک کند تا به جزئیات این پارامترها دسترسی پیدا کنید. یکی از تکنیک‌های دسته‌بندی یادگیری ماشین در این درس را انتخاب کنید و مدل‌ها را با تغییر مقادیر مختلف پارامترها دوباره آموزش دهید. یک نوت‌بوک ایجاد کنید که توضیح دهد چرا برخی تغییرات کیفیت مدل را بهبود می‌بخشند و برخی دیگر آن را کاهش می‌دهند. پاسخ خود را با جزئیات ارائه دهید. + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| --------- | --------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------- | ----------------------------- | +| | یک نوت‌بوک ارائه شده است که شامل یک دسته‌بندی‌کننده کامل با تنظیم پارامترها و توضیحات تغییرات در جعبه‌های متن است | یک نوت‌بوک به صورت ناقص ارائه شده یا توضیحات ضعیف دارد | نوت‌بوک دارای اشکال یا نقص است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان بومی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/4-Classification/3-Classifiers-2/notebook.ipynb b/translations/fa/4-Classification/3-Classifiers-2/notebook.ipynb new file mode 100644 index 000000000..00f5ef25e --- /dev/null +++ b/translations/fa/4-Classification/3-Classifiers-2/notebook.ipynb @@ -0,0 +1,165 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "مدل طبقه‌بندی بسازید\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            00indian00000000...0000000000
            11indian10000000...0000000000
            22indian00000000...0000000000
            33indian00000000...0000000000
            44indian00000000...0000000010
            \n

            5 rows × 382 columns

            \n
            " + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            00000000000...0000000000
            11000000000...0000000000
            20000000000...0000000000
            30000000000...0000000000
            40000000000...0000000010
            \n

            5 rows × 380 columns

            \n
            " + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "15a83277036572e0773229b5f21c1e12", + "translation_date": "2025-09-04T02:32:18+00:00", + "source_file": "4-Classification/3-Classifiers-2/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/fa/4-Classification/3-Classifiers-2/solution/Julia/README.md b/translations/fa/4-Classification/3-Classifiers-2/solution/Julia/README.md new file mode 100644 index 000000000..f36d42085 --- /dev/null +++ b/translations/fa/4-Classification/3-Classifiers-2/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb b/translations/fa/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb new file mode 100644 index 000000000..b370949ef --- /dev/null +++ b/translations/fa/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb @@ -0,0 +1,650 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "lesson_12-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "fab50046ca413a38939d579f8432274f", + "translation_date": "2025-09-04T02:38:47+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb", + "language_code": "fa" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "jsFutf_ygqSx" + }, + "source": [ + "# ساخت یک مدل طبقه‌بندی: غذاهای خوشمزه آسیایی و هندی\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HD54bEefgtNO" + }, + "source": [ + "## طبقه‌بندی‌کننده‌های آشپزی ۲\n", + "\n", + "در این درس دوم از طبقه‌بندی، ما به بررسی `روش‌های بیشتری` برای طبقه‌بندی داده‌های دسته‌بندی‌شده خواهیم پرداخت. همچنین درباره پیامدهای انتخاب یک طبقه‌بندی‌کننده نسبت به دیگری یاد خواهیم گرفت.\n", + "\n", + "### [**آزمون پیش از درس**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/)\n", + "\n", + "### **پیش‌نیاز**\n", + "\n", + "فرض ما این است که شما درس‌های قبلی را گذرانده‌اید، زیرا برخی از مفاهیمی که قبلاً یاد گرفته‌ایم را ادامه خواهیم داد.\n", + "\n", + "برای این درس، به بسته‌های زیر نیاز داریم:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) یک [مجموعه از بسته‌های R](https://www.tidyverse.org/packages) است که برای سریع‌تر، آسان‌تر و لذت‌بخش‌تر کردن علم داده طراحی شده است!\n", + "\n", + "- `tidymodels`: چارچوب [tidymodels](https://www.tidymodels.org/) یک [مجموعه از بسته‌ها](https://www.tidymodels.org/packages/) برای مدل‌سازی و یادگیری ماشین است.\n", + "\n", + "- `themis`: بسته [themis](https://themis.tidymodels.org/) مراحل اضافی برای مقابله با داده‌های نامتعادل را فراهم می‌کند.\n", + "\n", + "می‌توانید این بسته‌ها را با دستور زیر نصب کنید:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"kernlab\", \"themis\", \"ranger\", \"xgboost\", \"kknn\"))`\n", + "\n", + "همچنین، اسکریپت زیر بررسی می‌کند که آیا بسته‌های مورد نیاز برای تکمیل این ماژول را دارید یا خیر و در صورت نبود، آن‌ها را برای شما نصب می‌کند.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vZ57IuUxgyQt" + }, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, themis, kernlab, ranger, xgboost, kknn)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z22M-pj4g07x" + }, + "source": [ + "## **1. یک نقشه طبقه‌بندی**\n", + "\n", + "در [درس قبلی](https://github.com/microsoft/ML-For-Beginners/tree/main/4-Classification/2-Classifiers-1)، سعی کردیم به این پرسش پاسخ دهیم: چگونه بین مدل‌های مختلف انتخاب کنیم؟ تا حد زیادی این انتخاب به ویژگی‌های داده و نوع مسئله‌ای که می‌خواهیم حل کنیم بستگی دارد (برای مثال طبقه‌بندی یا رگرسیون؟)\n", + "\n", + "قبلاً درباره گزینه‌های مختلفی که هنگام طبقه‌بندی داده‌ها در اختیار دارید، با استفاده از برگه تقلب مایکروسافت یاد گرفتیم. چارچوب یادگیری ماشین پایتون، Scikit-learn، یک برگه تقلب مشابه اما با جزئیات بیشتر ارائه می‌دهد که می‌تواند به شما در محدود کردن انتخاب تخمین‌گرها (اصطلاح دیگری برای طبقه‌بندها) کمک کند:\n", + "\n", + "

            \n", + " \n", + "

            \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u1i3xRIVg7vG" + }, + "source": [ + "> نکته: [این نقشه را به صورت آنلاین مشاهده کنید](https://scikit-learn.org/stable/tutorial/machine_learning_map/) و با کلیک روی مسیرها مستندات را بخوانید.\n", + ">\n", + "> سایت [مرجع Tidymodels](https://www.tidymodels.org/find/parsnip/#models) نیز مستندات بسیار خوبی درباره انواع مختلف مدل‌ها ارائه می‌دهد.\n", + "\n", + "### **برنامه** 🗺️\n", + "\n", + "این نقشه زمانی که درک واضحی از داده‌های خود داشته باشید بسیار مفید است، زیرا می‌توانید با دنبال کردن مسیرهای آن به یک تصمیم برسید:\n", + "\n", + "- ما بیش از ۵۰ نمونه داریم\n", + "\n", + "- می‌خواهیم یک دسته‌بندی را پیش‌بینی کنیم\n", + "\n", + "- داده‌های برچسب‌دار داریم\n", + "\n", + "- کمتر از ۱۰۰ هزار نمونه داریم\n", + "\n", + "- ✨ می‌توانیم یک Linear SVC انتخاب کنیم\n", + "\n", + "- اگر این کار نکرد، چون داده‌های ما عددی هستند\n", + "\n", + " - می‌توانیم یک ✨ KNeighbors Classifier امتحان کنیم\n", + "\n", + " - اگر این هم جواب نداد، ✨ SVC و ✨ Ensemble Classifiers را امتحان کنید\n", + "\n", + "این یک مسیر بسیار مفید برای دنبال کردن است. حالا، بیایید با استفاده از چارچوب مدل‌سازی [tidymodels](https://www.tidymodels.org/) شروع کنیم: مجموعه‌ای منسجم و انعطاف‌پذیر از بسته‌های R که برای تشویق به شیوه‌های آماری خوب توسعه داده شده‌اند 😊.\n", + "\n", + "## ۲. تقسیم داده‌ها و مدیریت مجموعه داده‌های نامتوازن\n", + "\n", + "از درس‌های قبلی یاد گرفتیم که مجموعه‌ای از مواد اولیه مشترک در میان غذاهای مختلف وجود داشت. همچنین، توزیع تعداد غذاها بسیار نابرابر بود.\n", + "\n", + "ما این موارد را به این صورت مدیریت می‌کنیم:\n", + "\n", + "- حذف مواد اولیه‌ای که بیشترین اشتباه را بین غذاهای مختلف ایجاد می‌کنند، با استفاده از `dplyr::select()`.\n", + "\n", + "- استفاده از یک `recipe` که داده‌ها را پیش‌پردازش می‌کند تا با اعمال یک الگوریتم `over-sampling` برای مدل‌سازی آماده شوند.\n", + "\n", + "ما قبلاً این موارد را در درس قبلی بررسی کردیم، بنابراین این کار باید آسان باشد 🥳!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "6tj_rN00hClA" + }, + "source": [ + "# Load the core Tidyverse and Tidymodels packages\n", + "library(tidyverse)\n", + "library(tidymodels)\n", + "\n", + "# Load the original cuisines data\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\n", + "\n", + "# Drop id column, rice, garlic and ginger from our original data set\n", + "df_select <- df %>% \n", + " select(-c(1, rice, garlic, ginger)) %>%\n", + " # Encode cuisine column as categorical\n", + " mutate(cuisine = factor(cuisine))\n", + "\n", + "\n", + "# Create data split specification\n", + "set.seed(2056)\n", + "cuisines_split <- initial_split(data = df_select,\n", + " strata = cuisine,\n", + " prop = 0.7)\n", + "\n", + "# Extract the data in each split\n", + "cuisines_train <- training(cuisines_split)\n", + "cuisines_test <- testing(cuisines_split)\n", + "\n", + "# Display distribution of cuisines in the training set\n", + "cuisines_train %>% \n", + " count(cuisine) %>% \n", + " arrange(desc(n))" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zFin5yw3hHb1" + }, + "source": [ + "### مقابله با داده‌های نامتوازن\n", + "\n", + "داده‌های نامتوازن اغلب تأثیرات منفی بر عملکرد مدل دارند. بسیاری از مدل‌ها زمانی بهترین عملکرد را دارند که تعداد مشاهدات برابر باشد و به همین دلیل با داده‌های نامتوازن دچار مشکل می‌شوند.\n", + "\n", + "دو روش اصلی برای مقابله با مجموعه داده‌های نامتوازن وجود دارد:\n", + "\n", + "- اضافه کردن مشاهدات به کلاس اقلیت: `Over-sampling`، به عنوان مثال استفاده از الگوریتم SMOTE که به صورت مصنوعی نمونه‌های جدیدی از کلاس اقلیت را با استفاده از نزدیک‌ترین همسایگان این موارد تولید می‌کند.\n", + "\n", + "- حذف مشاهدات از کلاس اکثریت: `Under-sampling`\n", + "\n", + "در درس قبلی، نشان دادیم که چگونه می‌توان با استفاده از یک `recipe` با مجموعه داده‌های نامتوازن برخورد کرد. یک recipe را می‌توان به عنوان یک نقشه راه در نظر گرفت که توضیح می‌دهد چه مراحلی باید روی یک مجموعه داده اعمال شود تا برای تحلیل داده آماده شود. در مورد ما، می‌خواهیم توزیع برابری در تعداد غذاهای مختلف برای `training set` خود داشته باشیم. بیایید مستقیماً وارد موضوع شویم.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cRzTnHolhLWd" + }, + "source": [ + "# Load themis package for dealing with imbalanced data\n", + "library(themis)\n", + "\n", + "# Create a recipe for preprocessing training data\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>%\n", + " step_smote(cuisine) \n", + "\n", + "# Print recipe\n", + "cuisines_recipe" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KxOQ2ORhhO81" + }, + "source": [ + "حالا آماده‌ایم تا مدل‌ها را آموزش دهیم! 👩‍💻👨‍💻\n", + "\n", + "## ۳. فراتر از مدل‌های رگرسیون چندجمله‌ای\n", + "\n", + "در درس قبلی، به مدل‌های رگرسیون چندجمله‌ای پرداختیم. بیایید مدل‌های انعطاف‌پذیرتری برای طبقه‌بندی بررسی کنیم.\n", + "\n", + "### ماشین‌های بردار پشتیبان\n", + "\n", + "در زمینه طبقه‌بندی، `ماشین‌های بردار پشتیبان` یک تکنیک یادگیری ماشین است که تلاش می‌کند یک *ابرصفحه* پیدا کند که به بهترین شکل ممکن کلاس‌ها را از هم جدا کند. بیایید یک مثال ساده را بررسی کنیم:\n", + "\n", + "

            \n", + " \n", + "

            https://commons.wikimedia.org/w/index.php?curid=22877598
            \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C4Wsd0vZhXYu" + }, + "source": [ + "H1~ کلاس‌ها را جدا نمی‌کند. H2~ کلاس‌ها را جدا می‌کند، اما فقط با یک فاصله کوچک. H3~ کلاس‌ها را با بیشترین فاصله جدا می‌کند.\n", + "\n", + "#### طبقه‌بند خطی بردار پشتیبان\n", + "\n", + "خوشه‌بندی بردار پشتیبان (SVC) یکی از اعضای خانواده تکنیک‌های یادگیری ماشین بردار پشتیبان است. در SVC، ابرصفحه‌ای انتخاب می‌شود که بتواند `بیشتر` مشاهدات آموزشی را به درستی جدا کند، اما ممکن است `چند مشاهده` را اشتباه طبقه‌بندی کند. با اجازه دادن به برخی نقاط برای قرار گرفتن در سمت اشتباه، SVM نسبت به داده‌های پرت مقاوم‌تر می‌شود و در نتیجه تعمیم بهتری به داده‌های جدید دارد. پارامتری که این تخطی را تنظیم می‌کند، به نام `cost` شناخته می‌شود که مقدار پیش‌فرض آن 1 است (به `help(\"svm_poly\")` مراجعه کنید).\n", + "\n", + "بیایید یک SVC خطی ایجاد کنیم با تنظیم `degree = 1` در یک مدل SVM چندجمله‌ای.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vJpp6nuChlBz" + }, + "source": [ + "# Make a linear SVC specification\n", + "svc_linear_spec <- svm_poly(degree = 1) %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svc_linear_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svc_linear_spec)\n", + "\n", + "# Print out workflow\n", + "svc_linear_wf" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rDs8cWNkhoqu" + }, + "source": [ + "حالا که مراحل پیش‌پردازش و مشخصات مدل را در قالب یک *جریان کاری* ثبت کرده‌ایم، می‌توانیم به آموزش مدل SVC خطی بپردازیم و در همین حین نتایج را ارزیابی کنیم. برای معیارهای عملکرد، بیایید یک مجموعه معیار ایجاد کنیم که موارد زیر را ارزیابی کند: `دقت`، `حساسیت`، `ارزش پیش‌بینی مثبت` و `F Measure`.\n", + "\n", + "> تابع `augment()` ستون(هایی) برای پیش‌بینی‌ها به داده‌های داده‌شده اضافه می‌کند.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "81wiqcwuhrnq" + }, + "source": [ + "# Train a linear SVC model\n", + "svc_linear_fit <- svc_linear_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svc_linear_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0UFQvHf-huo3" + }, + "source": [ + "#### ماشین بردار پشتیبان\n", + "\n", + "ماشین بردار پشتیبان (SVM) نسخه‌ای توسعه‌یافته از طبقه‌بند بردار پشتیبان است که برای ایجاد مرز غیرخطی بین کلاس‌ها طراحی شده است. به طور کلی، SVMها از *ترفند کرنل* برای گسترش فضای ویژگی استفاده می‌کنند تا بتوانند روابط غیرخطی بین کلاس‌ها را تطبیق دهند. یکی از توابع کرنل محبوب و بسیار انعطاف‌پذیری که توسط SVMها استفاده می‌شود، *تابع پایه شعاعی* است. بیایید ببینیم این روش چگونه روی داده‌های ما عمل می‌کند.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-KX4S8mzhzmp" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Make an RBF SVM specification\n", + "svm_rbf_spec <- svm_rbf() %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svm_rbf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svm_rbf_spec)\n", + "\n", + "\n", + "# Train an RBF model\n", + "svm_rbf_fit <- svm_rbf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svm_rbf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QBFSa7WSh4HQ" + }, + "source": [ + "خیلی بهتر 🤩!\n", + "\n", + "> ✅ لطفاً ببینید:\n", + ">\n", + "> - [*ماشین‌های بردار پشتیبان*](https://bradleyboehmke.github.io/HOML/svm.html)، یادگیری ماشین عملی با R\n", + ">\n", + "> - [*ماشین‌های بردار پشتیبان*](https://www.statlearning.com/)، مقدمه‌ای بر یادگیری آماری با کاربردهایی در R\n", + ">\n", + "> برای مطالعه بیشتر.\n", + "\n", + "### طبقه‌بندهای نزدیک‌ترین همسایه\n", + "\n", + "الگوریتم *K*-نزدیک‌ترین همسایه (KNN) الگوریتمی است که در آن هر مشاهده بر اساس *شباهت* آن به سایر مشاهدات پیش‌بینی می‌شود.\n", + "\n", + "بیایید یکی از این الگوریتم‌ها را روی داده‌های خود اعمال کنیم.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "k4BxxBcdh9Ka" + }, + "source": [ + "# Make a KNN specification\n", + "knn_spec <- nearest_neighbor() %>% \n", + " set_engine(\"kknn\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "knn_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(knn_spec)\n", + "\n", + "# Train a boosted tree model\n", + "knn_wf_fit <- knn_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "knn_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HaegQseriAcj" + }, + "source": [ + "به نظر می‌رسد که این مدل عملکرد خوبی ندارد. احتمالاً تغییر پارامترهای مدل (به کمک `help(\"nearest_neighbor\")`) می‌تواند عملکرد مدل را بهبود بخشد. حتماً آن را امتحان کنید.\n", + "\n", + "> ✅ لطفاً ببینید:\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> برای یادگیری بیشتر درباره طبقه‌بندهای *K*-نزدیک‌ترین همسایه‌ها.\n", + "\n", + "### طبقه‌بندهای ترکیبی\n", + "\n", + "الگوریتم‌های ترکیبی با ترکیب چندین مدل پایه برای ایجاد یک مدل بهینه عمل می‌کنند، به یکی از روش‌های زیر:\n", + "\n", + "`bagging`: اعمال یک *تابع میانگین‌گیری* بر مجموعه‌ای از مدل‌های پایه\n", + "\n", + "`boosting`: ساخت یک دنباله از مدل‌ها که بر اساس یکدیگر ساخته می‌شوند تا عملکرد پیش‌بینی بهبود یابد.\n", + "\n", + "بیایید با امتحان کردن یک مدل جنگل تصادفی شروع کنیم، که مجموعه بزرگی از درخت‌های تصمیم‌گیری می‌سازد و سپس یک تابع میانگین‌گیری را اعمال می‌کند تا یک مدل کلی بهتر ایجاد شود.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "49DPoVs6iK1M" + }, + "source": [ + "# Make a random forest specification\n", + "rf_spec <- rand_forest() %>% \n", + " set_engine(\"ranger\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "rf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(rf_spec)\n", + "\n", + "# Train a random forest model\n", + "rf_wf_fit <- rf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "rf_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RGVYwC_aiUWc" + }, + "source": [ + "کار عالی 👏!\n", + "\n", + "بیایید همچنین با مدل Boosted Tree آزمایش کنیم.\n", + "\n", + "Boosted Tree یک روش ترکیبی را تعریف می‌کند که مجموعه‌ای از درخت‌های تصمیم‌گیری متوالی ایجاد می‌کند، به‌طوری‌که هر درخت به نتایج درخت‌های قبلی وابسته است و تلاش می‌کند به‌صورت تدریجی خطا را کاهش دهد. این روش بر وزن مواردی که به‌اشتباه طبقه‌بندی شده‌اند تمرکز می‌کند و برازش مدل بعدی را تنظیم می‌کند تا این اشتباهات را اصلاح کند.\n", + "\n", + "روش‌های مختلفی برای برازش این مدل وجود دارد (به `help(\"boost_tree\")` مراجعه کنید). در این مثال، ما درخت‌های Boosted را از طریق موتور `xgboost` برازش خواهیم داد.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Py1YWo-micWs" + }, + "source": [ + "# Make a boosted tree specification\n", + "boost_spec <- boost_tree(trees = 200) %>% \n", + " set_engine(\"xgboost\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "boost_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(boost_spec)\n", + "\n", + "# Train a boosted tree model\n", + "boost_wf_fit <- boost_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "boost_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zNQnbuejigZM" + }, + "source": [ + "> ✅ لطفاً ببینید:\n", + ">\n", + "> - [یادگیری ماشین برای دانشمندان اجتماعی](https://cimentadaj.github.io/ml_socsci/tree-based-methods.html#random-forests)\n", + ">\n", + "> - [یادگیری ماشین عملی با R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [مقدمه‌ای بر یادگیری آماری با کاربردهایی در R](https://www.statlearning.com/)\n", + ">\n", + "> - - مدل AdaBoost را بررسی می‌کند که جایگزین خوبی برای xgboost است.\n", + ">\n", + "> برای یادگیری بیشتر درباره طبقه‌بندهای Ensemble.\n", + "\n", + "## ۴. اضافی - مقایسه چندین مدل\n", + "\n", + "ما در این آزمایشگاه تعداد زیادی مدل را برازش کرده‌ایم 🙌. ایجاد تعداد زیادی جریان کاری از مجموعه‌های مختلف پیش‌پردازنده‌ها و/یا مشخصات مدل و سپس محاسبه معیارهای عملکرد به‌صورت تک‌تک می‌تواند خسته‌کننده یا دشوار باشد.\n", + "\n", + "بیایید ببینیم آیا می‌توانیم این مشکل را با ایجاد یک تابع که لیستی از جریان‌های کاری را روی مجموعه آموزشی برازش می‌کند و سپس معیارهای عملکرد را بر اساس مجموعه آزمایشی بازمی‌گرداند، حل کنیم. ما از `map()` و `map_dfr()` از بسته [purrr](https://purrr.tidyverse.org/) استفاده خواهیم کرد تا توابع را روی هر عنصر در لیست اعمال کنیم.\n", + "\n", + "> توابع [`map()`](https://purrr.tidyverse.org/reference/map.html) به شما این امکان را می‌دهند که بسیاری از حلقه‌های for را با کدی جایگزین کنید که هم مختصرتر و هم خواناتر است. بهترین مکان برای یادگیری درباره توابع [`map()`](https://purrr.tidyverse.org/reference/map.html) فصل [تکرار](http://r4ds.had.co.nz/iteration.html) در کتاب R برای علم داده است.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Qzb7LyZnimd2" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "# Define a function that returns performance metrics\n", + "compare_models <- function(workflow_list, train_set, test_set){\n", + " \n", + " suppressWarnings(\n", + " # Fit each model to the train_set\n", + " map(workflow_list, fit, data = train_set) %>% \n", + " # Make predictions on the test set\n", + " map_dfr(augment, new_data = test_set, .id = \"model\") %>%\n", + " # Select desired columns\n", + " select(model, cuisine, .pred_class) %>% \n", + " # Evaluate model performance\n", + " group_by(model) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class) %>% \n", + " ungroup()\n", + " )\n", + " \n", + "} # End of function" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Fwa712sNisDA" + }, + "source": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "3i4VJOi2iu-a" + }, + "source": [ + "# Make a list of workflows\n", + "workflow_list <- list(\n", + " \"svc\" = svc_linear_wf,\n", + " \"svm\" = svm_rbf_wf,\n", + " \"knn\" = knn_wf,\n", + " \"random_forest\" = rf_wf,\n", + " \"xgboost\" = boost_wf)\n", + "\n", + "# Call the function\n", + "set.seed(2056)\n", + "perf_metrics <- compare_models(workflow_list = workflow_list, train_set = cuisines_train, test_set = cuisines_test)\n", + "\n", + "# Print out performance metrics\n", + "perf_metrics %>% \n", + " group_by(.metric) %>% \n", + " arrange(desc(.estimate)) %>% \n", + " slice_head(n=7)\n", + "\n", + "# Compare accuracy\n", + "perf_metrics %>% \n", + " filter(.metric == \"accuracy\") %>% \n", + " arrange(desc(.estimate))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KuWK_lEli4nW" + }, + "source": [ + "بسته [**workflowset**](https://workflowsets.tidymodels.org/) به کاربران این امکان را می‌دهد که تعداد زیادی مدل ایجاد کرده و به‌راحتی آن‌ها را برازش کنند، اما بیشتر برای کار با تکنیک‌های بازنمونه‌گیری مانند `cross-validation` طراحی شده است، رویکردی که هنوز به آن نپرداخته‌ایم.\n", + "\n", + "## **🚀چالش**\n", + "\n", + "هر یک از این تکنیک‌ها تعداد زیادی پارامتر دارند که می‌توانید آن‌ها را تنظیم کنید، برای مثال `cost` در SVMها، `neighbors` در KNN، و `mtry` (پیش‌بینی‌کننده‌های انتخابی تصادفی) در جنگل تصادفی.\n", + "\n", + "پارامترهای پیش‌فرض هر کدام را بررسی کنید و به این فکر کنید که تنظیم این پارامترها چه تأثیری بر کیفیت مدل خواهد داشت.\n", + "\n", + "برای اطلاعات بیشتر درباره یک مدل خاص و پارامترهای آن، از دستور زیر استفاده کنید: `help(\"model\")` مثلاً `help(\"rand_forest\")`\n", + "\n", + "> در عمل، ما معمولاً *بهترین مقادیر* را با آموزش تعداد زیادی مدل روی یک `مجموعه داده شبیه‌سازی‌شده` و اندازه‌گیری عملکرد این مدل‌ها *تخمین می‌زنیم*. این فرآیند **تنظیم** نامیده می‌شود.\n", + "\n", + "### [**آزمون پس از درس**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/)\n", + "\n", + "### **مرور و مطالعه شخصی**\n", + "\n", + "در این درس‌ها اصطلاحات زیادی وجود دارد، بنابراین چند دقیقه وقت بگذارید و [این فهرست](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott) از اصطلاحات مفید را مرور کنید!\n", + "\n", + "#### سپاس ویژه از:\n", + "\n", + "[`آلیسون هورست`](https://twitter.com/allison_horst/) برای خلق تصاویر شگفت‌انگیزی که R را جذاب‌تر و دوستانه‌تر کرده است. تصاویر بیشتر را در [گالری او](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) پیدا کنید.\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) و [Jen Looper](https://www.twitter.com/jenlooper) برای ایجاد نسخه اصلی پایتون این ماژول ♥️\n", + "\n", + "با آرزوی یادگیری شاد،\n", + "\n", + "[اریک](https://twitter.com/ericntay)، سفیر طلایی دانشجویی Microsoft Learn.\n", + "\n", + "

            \n", + " \n", + "

            اثر هنری از @allison_horst
            \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/4-Classification/3-Classifiers-2/solution/notebook.ipynb b/translations/fa/4-Classification/3-Classifiers-2/solution/notebook.ipynb new file mode 100644 index 000000000..c5a7833ab --- /dev/null +++ b/translations/fa/4-Classification/3-Classifiers-2/solution/notebook.ipynb @@ -0,0 +1,304 @@ +{ + "cells": [ + { + "source": [ + "# ساخت مدل‌های طبقه‌بندی بیشتر\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            00indian00000000...0000000000
            11indian10000000...0000000000
            22indian00000000...0000000000
            33indian00000000...0000000000
            44indian00000000...0000000010
            \n

            5 rows × 382 columns

            \n
            " + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 2 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            00000000000...0000000000
            11000000000...0000000000
            20000000000...0000000000
            30000000000...0000000000
            40000000000...0000000010
            \n

            5 rows × 380 columns

            \n
            " + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# طبقه‌بندهای مختلف را امتحان کنید\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.svm import SVC\n", + "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "C = 10\n", + "# Create different classifiers.\n", + "classifiers = {\n", + " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n", + " 'KNN classifier': KNeighborsClassifier(C),\n", + " 'SVC': SVC(),\n", + " 'RFST': RandomForestClassifier(n_estimators=100),\n", + " 'ADA': AdaBoostClassifier(n_estimators=100)\n", + " \n", + "}\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy (train) for Linear SVC: 76.4% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.64 0.66 0.65 242\n", + " indian 0.91 0.86 0.89 236\n", + " japanese 0.72 0.73 0.73 245\n", + " korean 0.83 0.75 0.79 234\n", + " thai 0.75 0.82 0.78 242\n", + "\n", + " accuracy 0.76 1199\n", + " macro avg 0.77 0.76 0.77 1199\n", + "weighted avg 0.77 0.76 0.77 1199\n", + "\n", + "Accuracy (train) for KNN classifier: 70.7% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.65 0.63 0.64 242\n", + " indian 0.84 0.81 0.82 236\n", + " japanese 0.60 0.81 0.69 245\n", + " korean 0.89 0.53 0.67 234\n", + " thai 0.69 0.75 0.72 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.73 0.71 0.71 1199\n", + "weighted avg 0.73 0.71 0.71 1199\n", + "\n", + "Accuracy (train) for SVC: 80.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.71 0.69 0.70 242\n", + " indian 0.92 0.92 0.92 236\n", + " japanese 0.77 0.78 0.77 245\n", + " korean 0.87 0.77 0.82 234\n", + " thai 0.75 0.86 0.80 242\n", + "\n", + " accuracy 0.80 1199\n", + " macro avg 0.80 0.80 0.80 1199\n", + "weighted avg 0.80 0.80 0.80 1199\n", + "\n", + "Accuracy (train) for RFST: 82.8% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.80 0.75 0.77 242\n", + " indian 0.90 0.91 0.90 236\n", + " japanese 0.82 0.78 0.80 245\n", + " korean 0.85 0.82 0.83 234\n", + " thai 0.78 0.89 0.83 242\n", + "\n", + " accuracy 0.83 1199\n", + " macro avg 0.83 0.83 0.83 1199\n", + "weighted avg 0.83 0.83 0.83 1199\n", + "\n", + "Accuracy (train) for ADA: 71.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.60 0.57 0.58 242\n", + " indian 0.87 0.84 0.86 236\n", + " japanese 0.71 0.60 0.65 245\n", + " korean 0.68 0.78 0.72 234\n", + " thai 0.70 0.78 0.74 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.71 0.71 0.71 1199\n", + "weighted avg 0.71 0.71 0.71 1199\n", + "\n" + ] + } + ], + "source": [ + "n_classifiers = len(classifiers)\n", + "\n", + "for index, (name, classifier) in enumerate(classifiers.items()):\n", + " classifier.fit(X_train, np.ravel(y_train))\n", + "\n", + " y_pred = classifier.predict(X_test)\n", + " accuracy = accuracy_score(y_test, y_pred)\n", + " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n", + " print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "7ea2b714669c823a596d986ba2d5739f", + "translation_date": "2025-09-04T02:32:52+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/fa/4-Classification/4-Applied/README.md b/translations/fa/4-Classification/4-Applied/README.md new file mode 100644 index 000000000..d916a336d --- /dev/null +++ b/translations/fa/4-Classification/4-Applied/README.md @@ -0,0 +1,327 @@ + +# ساخت یک اپلیکیشن وب توصیه‌گر غذا + +در این درس، شما یک مدل دسته‌بندی با استفاده از تکنیک‌هایی که در درس‌های قبلی یاد گرفته‌اید و با استفاده از دیتاست خوشمزه غذاها که در این سری استفاده شده است، خواهید ساخت. علاوه بر این، یک اپلیکیشن وب کوچک برای استفاده از مدل ذخیره‌شده خواهید ساخت که از محیط اجرایی وب Onnx بهره می‌برد. + +یکی از کاربردهای عملی بسیار مفید یادگیری ماشین، ساخت سیستم‌های توصیه‌گر است، و امروز می‌توانید اولین قدم در این مسیر را بردارید! + +🎥 برای مشاهده ویدیو روی تصویر بالا کلیک کنید: جن لوپر یک اپلیکیشن وب با استفاده از داده‌های دسته‌بندی‌شده غذاها می‌سازد. + +## [پیش‌از‌درس: آزمون کوتاه](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/25/) + +در این درس یاد خواهید گرفت: + +- چگونه یک مدل بسازید و آن را به فرمت Onnx ذخیره کنید +- چگونه از Netron برای بررسی مدل استفاده کنید +- چگونه از مدل خود در یک اپلیکیشن وب برای استنتاج استفاده کنید + +## ساخت مدل + +ساخت سیستم‌های کاربردی یادگیری ماشین بخش مهمی از استفاده از این فناوری‌ها در سیستم‌های کسب‌وکار شماست. شما می‌توانید مدل‌ها را در اپلیکیشن‌های وب خود استفاده کنید (و در صورت نیاز حتی به صورت آفلاین از آنها بهره ببرید) با استفاده از Onnx. + +در یک [درس قبلی](../../3-Web-App/1-Web-App/README.md)، شما یک مدل رگرسیون درباره مشاهده‌های UFO ساختید، آن را "pickle" کردید و در یک اپلیکیشن Flask استفاده کردید. در حالی که این معماری بسیار مفید است، یک اپلیکیشن کامل پایتون است و ممکن است نیازهای شما شامل استفاده از یک اپلیکیشن جاوااسکریپت باشد. + +در این درس، می‌توانید یک سیستم پایه جاوااسکریپت برای استنتاج بسازید. اما ابتدا باید یک مدل آموزش دهید و آن را برای استفاده با Onnx تبدیل کنید. + +## تمرین - آموزش مدل دسته‌بندی + +ابتدا یک مدل دسته‌بندی با استفاده از دیتاست تمیز شده غذاها که قبلاً استفاده کردیم، آموزش دهید. + +1. ابتدا کتابخانه‌های مفید را وارد کنید: + + ```python + !pip install skl2onnx + import pandas as pd + ``` + + شما به '[skl2onnx](https://onnx.ai/sklearn-onnx/)' نیاز دارید تا به تبدیل مدل Scikit-learn خود به فرمت Onnx کمک کند. + +1. سپس، با داده‌های خود همان‌طور که در درس‌های قبلی انجام دادید، کار کنید و یک فایل CSV را با استفاده از `read_csv()` بخوانید: + + ```python + data = pd.read_csv('../data/cleaned_cuisines.csv') + data.head() + ``` + +1. دو ستون اول غیرضروری را حذف کنید و داده‌های باقی‌مانده را به عنوان 'X' ذخیره کنید: + + ```python + X = data.iloc[:,2:] + X.head() + ``` + +1. برچسب‌ها را به عنوان 'y' ذخیره کنید: + + ```python + y = data[['cuisine']] + y.head() + + ``` + +### شروع روند آموزش + +ما از کتابخانه 'SVC' استفاده خواهیم کرد که دقت خوبی دارد. + +1. کتابخانه‌های مناسب را از Scikit-learn وارد کنید: + + ```python + from sklearn.model_selection import train_test_split + from sklearn.svm import SVC + from sklearn.model_selection import cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report + ``` + +1. مجموعه‌های آموزشی و تست را جدا کنید: + + ```python + X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3) + ``` + +1. یک مدل دسته‌بندی SVC همان‌طور که در درس قبلی انجام دادید، بسازید: + + ```python + model = SVC(kernel='linear', C=10, probability=True,random_state=0) + model.fit(X_train,y_train.values.ravel()) + ``` + +1. اکنون مدل خود را آزمایش کنید و `predict()` را فراخوانی کنید: + + ```python + y_pred = model.predict(X_test) + ``` + +1. یک گزارش دسته‌بندی چاپ کنید تا کیفیت مدل را بررسی کنید: + + ```python + print(classification_report(y_test,y_pred)) + ``` + + همان‌طور که قبلاً دیدیم، دقت خوب است: + + ```output + precision recall f1-score support + + chinese 0.72 0.69 0.70 257 + indian 0.91 0.87 0.89 243 + japanese 0.79 0.77 0.78 239 + korean 0.83 0.79 0.81 236 + thai 0.72 0.84 0.78 224 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +### تبدیل مدل به Onnx + +اطمینان حاصل کنید که تبدیل با تعداد مناسب Tensor انجام شود. این دیتاست دارای 380 ماده غذایی است، بنابراین باید این عدد را در `FloatTensorType` مشخص کنید: + +1. تبدیل را با تعداد Tensor برابر با 380 انجام دهید. + + ```python + from skl2onnx import convert_sklearn + from skl2onnx.common.data_types import FloatTensorType + + initial_type = [('float_input', FloatTensorType([None, 380]))] + options = {id(model): {'nocl': True, 'zipmap': False}} + ``` + +1. فایل onx را ایجاد کنید و به عنوان **model.onnx** ذخیره کنید: + + ```python + onx = convert_sklearn(model, initial_types=initial_type, options=options) + with open("./model.onnx", "wb") as f: + f.write(onx.SerializeToString()) + ``` + + > توجه داشته باشید که می‌توانید [گزینه‌ها](https://onnx.ai/sklearn-onnx/parameterized.html) را در اسکریپت تبدیل خود وارد کنید. در این مورد، 'nocl' به True و 'zipmap' به False تنظیم شده است. از آنجا که این یک مدل دسته‌بندی است، شما گزینه حذف ZipMap را دارید که لیستی از دیکشنری‌ها تولید می‌کند (ضروری نیست). `nocl` به اطلاعات کلاس اشاره دارد که در مدل گنجانده شده است. اندازه مدل خود را با تنظیم `nocl` به 'True' کاهش دهید. + +اجرای کل نوت‌بوک اکنون یک مدل Onnx ایجاد می‌کند و آن را در این پوشه ذخیره می‌کند. + +## مشاهده مدل + +مدل‌های Onnx در Visual Studio Code چندان قابل مشاهده نیستند، اما یک نرم‌افزار رایگان بسیار خوب وجود دارد که بسیاری از محققان برای مشاهده مدل استفاده می‌کنند تا اطمینان حاصل کنند که به درستی ساخته شده است. [Netron](https://github.com/lutzroeder/Netron) را دانلود کنید و فایل model.onnx خود را باز کنید. می‌توانید مدل ساده خود را مشاهده کنید که شامل 380 ورودی و دسته‌بندی‌کننده است: + +![تصویر Netron](../../../../translated_images/netron.a05f39410211915e0f95e2c0e8b88f41e7d13d725faf660188f3802ba5c9e831.fa.png) + +Netron ابزاری مفید برای مشاهده مدل‌های شماست. + +اکنون آماده هستید تا از این مدل جالب در یک اپلیکیشن وب استفاده کنید. بیایید اپلیکیشنی بسازیم که زمانی که به یخچال خود نگاه می‌کنید و سعی می‌کنید بفهمید کدام ترکیب از مواد باقی‌مانده شما می‌تواند برای پخت یک غذای خاص استفاده شود، به کار بیاید. + +## ساخت اپلیکیشن وب توصیه‌گر + +شما می‌توانید مدل خود را مستقیماً در یک اپلیکیشن وب استفاده کنید. این معماری همچنین به شما امکان می‌دهد آن را به صورت محلی و حتی آفلاین اجرا کنید. ابتدا یک فایل `index.html` در همان پوشه‌ای که فایل `model.onnx` خود را ذخیره کرده‌اید، ایجاد کنید. + +1. در این فایل _index.html_، مارک‌آپ زیر را اضافه کنید: + + ```html + + +
            + Cuisine Matcher +
            + + ... + + + ``` + +1. اکنون، درون تگ‌های `body`، کمی مارک‌آپ اضافه کنید تا لیستی از چک‌باکس‌ها که برخی مواد غذایی را نشان می‌دهند، نمایش داده شود: + + ```html +

            Check your refrigerator. What can you create?

            +
            +
            + + +
            + +
            + + +
            + +
            + + +
            + +
            + + +
            + +
            + + +
            + +
            + + +
            + +
            + + +
            +
            +
            + +
            + ``` + + توجه کنید که به هر چک‌باکس یک مقدار داده شده است. این مقدار نشان‌دهنده شاخصی است که ماده غذایی در دیتاست دارد. برای مثال، سیب در این لیست الفبایی، ستون پنجم را اشغال می‌کند، بنابراین مقدار آن '4' است زیرا شمارش از 0 شروع می‌شود. می‌توانید به [صفحه‌گسترده مواد غذایی](../../../../4-Classification/data/ingredient_indexes.csv) مراجعه کنید تا شاخص یک ماده غذایی خاص را پیدا کنید. + + ادامه کار در فایل index.html، یک بلوک اسکریپت اضافه کنید که مدل را پس از بسته شدن نهایی `` فراخوانی کند. + +1. ابتدا، [Onnx Runtime](https://www.onnxruntime.ai/) را وارد کنید: + + ```html + + ``` + + > Onnx Runtime برای اجرای مدل‌های Onnx در طیف گسترده‌ای از پلتفرم‌های سخت‌افزاری، شامل بهینه‌سازی‌ها و یک API برای استفاده، استفاده می‌شود. + +1. پس از قرار دادن Runtime، می‌توانید آن را فراخوانی کنید: + + ```html + + ``` + +در این کد، چندین اتفاق رخ می‌دهد: + +1. شما یک آرایه از 380 مقدار ممکن (1 یا 0) ایجاد کردید که بسته به اینکه یک چک‌باکس انتخاب شده باشد یا نه، تنظیم شده و به مدل برای استنتاج ارسال می‌شود. +2. شما یک آرایه از چک‌باکس‌ها و روشی برای تعیین اینکه آیا آنها انتخاب شده‌اند یا نه، در یک تابع `init` ایجاد کردید که هنگام شروع اپلیکیشن فراخوانی می‌شود. وقتی یک چک‌باکس انتخاب می‌شود، آرایه `ingredients` تغییر می‌کند تا ماده غذایی انتخاب‌شده را منعکس کند. +3. شما یک تابع `testCheckboxes` ایجاد کردید که بررسی می‌کند آیا هیچ چک‌باکسی انتخاب شده است یا نه. +4. شما از تابع `startInference` استفاده می‌کنید که وقتی دکمه فشار داده می‌شود، اگر هیچ چک‌باکسی انتخاب شده باشد، استنتاج را شروع می‌کند. +5. روند استنتاج شامل موارد زیر است: + 1. تنظیم یک بارگذاری غیرهمزمان مدل + 2. ایجاد یک ساختار Tensor برای ارسال به مدل + 3. ایجاد 'feeds' که ورودی `float_input` را که هنگام آموزش مدل خود ایجاد کردید، منعکس می‌کند (می‌توانید از Netron برای تأیید نام آن استفاده کنید) + 4. ارسال این 'feeds' به مدل و انتظار برای پاسخ + +## آزمایش اپلیکیشن + +یک جلسه ترمینال در Visual Studio Code در پوشه‌ای که فایل index.html شما قرار دارد، باز کنید. اطمینان حاصل کنید که [http-server](https://www.npmjs.com/package/http-server) به صورت جهانی نصب شده است و در خط فرمان `http-server` تایپ کنید. یک localhost باید باز شود و می‌توانید اپلیکیشن وب خود را مشاهده کنید. بررسی کنید که چه غذایی بر اساس مواد مختلف توصیه می‌شود: + +![اپلیکیشن وب مواد غذایی](../../../../translated_images/web-app.4c76450cabe20036f8ec6d5e05ccc0c1c064f0d8f2fe3304d3bcc0198f7dc139.fa.png) + +تبریک می‌گوییم، شما یک اپلیکیشن وب توصیه‌گر با چند فیلد ایجاد کردید. کمی وقت بگذارید تا این سیستم را توسعه دهید! + +## 🚀چالش + +اپلیکیشن وب شما بسیار ساده است، بنابراین آن را با استفاده از مواد غذایی و شاخص‌های آنها از داده‌های [ingredient_indexes](../../../../4-Classification/data/ingredient_indexes.csv) توسعه دهید. چه ترکیب‌های طعمی برای ایجاد یک غذای ملی خاص کار می‌کنند؟ + +## [پس‌از‌درس: آزمون کوتاه](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/26/) + +## مرور و مطالعه شخصی + +در حالی که این درس فقط به کاربرد ایجاد یک سیستم توصیه‌گر برای مواد غذایی اشاره کرد، این حوزه از کاربردهای یادگیری ماشین بسیار غنی از مثال‌هاست. درباره نحوه ساخت این سیستم‌ها بیشتر بخوانید: + +- https://www.sciencedirect.com/topics/computer-science/recommendation-engine +- https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-recommendation-engines/ +- https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/ + +## تکلیف + +[ساخت یک توصیه‌گر جدید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/4-Classification/4-Applied/assignment.md b/translations/fa/4-Classification/4-Applied/assignment.md new file mode 100644 index 000000000..998d270ff --- /dev/null +++ b/translations/fa/4-Classification/4-Applied/assignment.md @@ -0,0 +1,25 @@ + +# ساخت یک سیستم توصیه‌گر + +## دستورالعمل‌ها + +با توجه به تمرین‌های این درس، اکنون می‌دانید چگونه یک اپلیکیشن وب مبتنی بر جاوااسکریپت با استفاده از Onnx Runtime و یک مدل تبدیل‌شده Onnx بسازید. با استفاده از داده‌های این درس‌ها یا منابع دیگر (لطفاً اعتبار بدهید)، یک سیستم توصیه‌گر جدید ایجاد کنید. ممکن است یک توصیه‌گر حیوان خانگی بر اساس ویژگی‌های شخصیتی مختلف بسازید، یا یک توصیه‌گر ژانر موسیقی بر اساس حالت روحی فرد طراحی کنید. خلاق باشید! + +## معیارها + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| --------- | ------------------------------------------------------------------------ | ----------------------------------- | --------------------------------- | +| | یک اپلیکیشن وب و دفترچه ارائه شده، هر دو به خوبی مستند شده و قابل اجرا هستند | یکی از این دو وجود ندارد یا دارای نقص است | هر دو یا وجود ندارند یا دارای نقص هستند | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان بومی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/4-Classification/4-Applied/notebook.ipynb b/translations/fa/4-Classification/4-Applied/notebook.ipynb new file mode 100644 index 000000000..8f141122f --- /dev/null +++ b/translations/fa/4-Classification/4-Applied/notebook.ipynb @@ -0,0 +1,41 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2f3e0d9e9ac5c301558fb8bf733ac0cb", + "translation_date": "2025-09-04T02:31:31+00:00", + "source_file": "4-Classification/4-Applied/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# ساخت یک توصیه‌گر غذا\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/4-Classification/4-Applied/solution/notebook.ipynb b/translations/fa/4-Classification/4-Applied/solution/notebook.ipynb new file mode 100644 index 000000000..526dfc744 --- /dev/null +++ b/translations/fa/4-Classification/4-Applied/solution/notebook.ipynb @@ -0,0 +1,292 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "49325d6dd12a3628fc64fa7ccb1a80ff", + "translation_date": "2025-09-04T02:31:53+00:00", + "source_file": "4-Classification/4-Applied/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# ساخت یک توصیه‌گر غذا\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: skl2onnx in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (1.8.0)\n", + "Requirement already satisfied: protobuf in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (3.8.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.19.2)\n", + "Requirement already satisfied: onnx>=1.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.9.0)\n", + "Requirement already satisfied: six in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from skl2onnx) (1.12.0)\n", + "Requirement already satisfied: onnxconverter-common<1.9,>=1.6.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.8.1)\n", + "Requirement already satisfied: scikit-learn>=0.19 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (0.24.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.4.1)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from protobuf->skl2onnx) (45.1.0)\n", + "Requirement already satisfied: typing-extensions>=3.6.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from onnx>=1.2.1->skl2onnx) (3.10.0.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (2.1.0)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (0.16.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install skl2onnx" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd \n" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            00indian00000000...0000000000
            11indian10000000...0000000000
            22indian00000000...0000000000
            33indian00000000...0000000000
            44indian00000000...0000000010
            \n

            5 rows × 382 columns

            \n
            " + }, + "metadata": {}, + "execution_count": 60 + } + ], + "source": [ + "data = pd.read_csv('../../data/cleaned_cuisines.csv')\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
            00000000000...0000000000
            11000000000...0000000000
            20000000000...0000000000
            30000000000...0000000000
            40000000000...0000000010
            \n

            5 rows × 380 columns

            \n
            " + }, + "metadata": {}, + "execution_count": 61 + } + ], + "source": [ + "X = data.iloc[:,2:]\n", + "X.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine\n", + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            cuisine
            0indian
            1indian
            2indian
            3indian
            4indian
            \n
            " + }, + "metadata": {}, + "execution_count": 62 + } + ], + "source": [ + "y = data[['cuisine']]\n", + "y.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.svm import SVC\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SVC(C=10, kernel='linear', probability=True, random_state=0)" + ] + }, + "metadata": {}, + "execution_count": 65 + } + ], + "source": [ + "model = SVC(kernel='linear', C=10, probability=True,random_state=0)\n", + "model.fit(X_train,y_train.values.ravel())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.72 0.70 0.71 236\n indian 0.91 0.88 0.89 243\n japanese 0.80 0.75 0.77 240\n korean 0.80 0.81 0.81 230\n thai 0.76 0.85 0.80 250\n\n accuracy 0.80 1199\n macro avg 0.80 0.80 0.80 1199\nweighted avg 0.80 0.80 0.80 1199\n\n" + ] + } + ], + "source": [ + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from skl2onnx import convert_sklearn\n", + "from skl2onnx.common.data_types import FloatTensorType\n", + "\n", + "initial_type = [('float_input', FloatTensorType([None, 380]))]\n", + "options = {id(model): {'nocl': True, 'zipmap': False}}\n", + "onx = convert_sklearn(model, initial_types=initial_type, options=options)\n", + "with open(\"./model.onnx\", \"wb\") as f:\n", + " f.write(onx.SerializeToString())\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/4-Classification/README.md b/translations/fa/4-Classification/README.md new file mode 100644 index 000000000..b1444d16f --- /dev/null +++ b/translations/fa/4-Classification/README.md @@ -0,0 +1,41 @@ + +# شروع به کار با طبقه‌بندی + +## موضوع منطقه‌ای: غذاهای خوشمزه آسیایی و هندی 🍜 + +در آسیا و هند، سنت‌های غذایی بسیار متنوع و فوق‌العاده خوشمزه هستند! بیایید داده‌هایی درباره غذاهای منطقه‌ای بررسی کنیم تا مواد تشکیل‌دهنده آن‌ها را بهتر درک کنیم. + +![فروشنده غذای تایلندی](../../../translated_images/thai-food.c47a7a7f9f05c21892a1f9dc7bf30669e6d18dfda420c5c7ebb4153f6a304edd.fa.jpg) +> عکس از Lisheng Chang در Unsplash + +## آنچه خواهید آموخت + +در این بخش، بر اساس مطالعات قبلی خود درباره رگرسیون، یاد خواهید گرفت که چگونه از سایر طبقه‌بندها برای درک بهتر داده‌ها استفاده کنید. + +> ابزارهای کم‌کد مفیدی وجود دارند که می‌توانند به شما در یادگیری کار با مدل‌های طبقه‌بندی کمک کنند. [Azure ML را برای این کار امتحان کنید](https://docs.microsoft.com/learn/modules/create-classification-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +## درس‌ها + +1. [مقدمه‌ای بر طبقه‌بندی](1-Introduction/README.md) +2. [طبقه‌بندهای بیشتر](2-Classifiers-1/README.md) +3. [طبقه‌بندهای دیگر](3-Classifiers-2/README.md) +4. [یادگیری ماشین کاربردی: ساخت یک اپلیکیشن وب](4-Applied/README.md) + +## اعتبارها + +"شروع به کار با طبقه‌بندی" با ♥️ توسط [Cassie Breviu](https://www.twitter.com/cassiebreviu) و [Jen Looper](https://www.twitter.com/jenlooper) نوشته شده است. + +مجموعه داده‌های غذاهای خوشمزه از [Kaggle](https://www.kaggle.com/hoandan/asian-and-indian-cuisines) گرفته شده است. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان بومی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/5-Clustering/1-Visualize/README.md b/translations/fa/5-Clustering/1-Visualize/README.md new file mode 100644 index 000000000..fda472212 --- /dev/null +++ b/translations/fa/5-Clustering/1-Visualize/README.md @@ -0,0 +1,347 @@ + +# مقدمه‌ای بر خوشه‌بندی + +خوشه‌بندی نوعی [یادگیری بدون نظارت](https://wikipedia.org/wiki/Unsupervised_learning) است که فرض می‌کند مجموعه داده‌ها بدون برچسب هستند یا ورودی‌های آن‌ها با خروجی‌های از پیش تعریف‌شده مطابقت ندارند. این روش از الگوریتم‌های مختلفی برای مرتب‌سازی داده‌های بدون برچسب استفاده می‌کند و بر اساس الگوهایی که در داده‌ها تشخیص می‌دهد، گروه‌بندی‌هایی ارائه می‌دهد. + +[![No One Like You by PSquare](https://img.youtube.com/vi/ty2advRiWJM/0.jpg)](https://youtu.be/ty2advRiWJM "No One Like You by PSquare") + +> 🎥 روی تصویر بالا کلیک کنید تا ویدیو را ببینید. در حالی که در حال مطالعه یادگیری ماشین با خوشه‌بندی هستید، از آهنگ‌های رقص نیجریه‌ای لذت ببرید - این آهنگ از PSquare در سال ۲۰۱۴ بسیار مورد توجه قرار گرفته است. + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/) + +### مقدمه + +[خوشه‌بندی](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124) برای کشف داده‌ها بسیار مفید است. بیایید ببینیم آیا می‌تواند به کشف روندها و الگوها در نحوه مصرف موسیقی توسط مخاطبان نیجریه‌ای کمک کند. + +✅ یک دقیقه وقت بگذارید و به کاربردهای خوشه‌بندی فکر کنید. در زندگی واقعی، خوشه‌بندی زمانی اتفاق می‌افتد که شما یک دسته لباس دارید و باید لباس‌های اعضای خانواده‌تان را مرتب کنید 🧦👕👖🩲. در علم داده، خوشه‌بندی زمانی اتفاق می‌افتد که سعی دارید ترجیحات کاربر را تحلیل کنید یا ویژگی‌های هر مجموعه داده بدون برچسب را تعیین کنید. خوشه‌بندی، به نوعی، به ایجاد نظم در آشفتگی کمک می‌کند، مانند مرتب کردن کشوی جوراب‌ها. + +[![Introduction to ML](https://img.youtube.com/vi/esmzYhuFnds/0.jpg)](https://youtu.be/esmzYhuFnds "Introduction to Clustering") + +> 🎥 روی تصویر بالا کلیک کنید تا ویدیو را ببینید: جان گوتاگ از MIT خوشه‌بندی را معرفی می‌کند. + +در محیط حرفه‌ای، خوشه‌بندی می‌تواند برای تعیین مواردی مانند تقسیم‌بندی بازار، مشخص کردن گروه‌های سنی که چه اقلامی را خریداری می‌کنند، استفاده شود. کاربرد دیگر می‌تواند تشخیص ناهنجاری باشد، شاید برای کشف تقلب از یک مجموعه داده تراکنش‌های کارت اعتباری. یا ممکن است از خوشه‌بندی برای تعیین تومورها در مجموعه‌ای از اسکن‌های پزشکی استفاده کنید. + +✅ یک دقیقه فکر کنید که چگونه ممکن است در محیط‌های بانکی، تجارت الکترونیک یا کسب‌وکار با خوشه‌بندی مواجه شده باشید. + +> 🎓 جالب است بدانید که تحلیل خوشه‌ای در دهه ۱۹۳۰ در زمینه‌های انسان‌شناسی و روان‌شناسی آغاز شد. آیا می‌توانید تصور کنید که چگونه ممکن است استفاده شده باشد؟ + +به طور جایگزین، می‌توانید از آن برای گروه‌بندی نتایج جستجو - مانند لینک‌های خرید، تصاویر یا نظرات - استفاده کنید. خوشه‌بندی زمانی مفید است که یک مجموعه داده بزرگ دارید که می‌خواهید آن را کاهش دهید و تحلیل دقیق‌تری روی آن انجام دهید، بنابراین این تکنیک می‌تواند برای یادگیری درباره داده‌ها قبل از ساخت مدل‌های دیگر استفاده شود. + +✅ هنگامی که داده‌های شما در خوشه‌ها سازماندهی شد، به آن‌ها یک شناسه خوشه اختصاص می‌دهید، و این تکنیک می‌تواند زمانی مفید باشد که بخواهید حریم خصوصی مجموعه داده را حفظ کنید؛ به جای استفاده از داده‌های قابل شناسایی، می‌توانید به یک نقطه داده با شناسه خوشه آن اشاره کنید. آیا می‌توانید دلایل دیگری را تصور کنید که چرا ممکن است ترجیح دهید از شناسه خوشه به جای عناصر دیگر خوشه برای شناسایی استفاده کنید؟ + +درک خود را از تکنیک‌های خوشه‌بندی در این [ماژول آموزشی](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott) عمیق‌تر کنید. + +## شروع کار با خوشه‌بندی + +[Scikit-learn مجموعه بزرگی](https://scikit-learn.org/stable/modules/clustering.html) از روش‌ها را برای انجام خوشه‌بندی ارائه می‌دهد. نوعی که انتخاب می‌کنید به مورد استفاده شما بستگی دارد. طبق مستندات، هر روش مزایای مختلفی دارد. در اینجا یک جدول ساده از روش‌های پشتیبانی‌شده توسط Scikit-learn و موارد استفاده مناسب آن‌ها آورده شده است: + +| نام روش | مورد استفاده | +| :-------------------------- | :------------------------------------------------------------------- | +| K-Means | استفاده عمومی، استنتاجی | +| Affinity propagation | خوشه‌های زیاد و نامساوی، استنتاجی | +| Mean-shift | خوشه‌های زیاد و نامساوی، استنتاجی | +| Spectral clustering | خوشه‌های کم و مساوی، انتقالی | +| Ward hierarchical clustering| خوشه‌های زیاد و محدود، انتقالی | +| Agglomerative clustering | خوشه‌های زیاد و محدود، فاصله‌های غیر اقلیدسی، انتقالی | +| DBSCAN | هندسه غیر مسطح، خوشه‌های نامساوی، انتقالی | +| OPTICS | هندسه غیر مسطح، خوشه‌های نامساوی با چگالی متغیر، انتقالی | +| Gaussian mixtures | هندسه مسطح، استنتاجی | +| BIRCH | مجموعه داده بزرگ با نقاط پرت، استنتاجی | + +> 🎓 نحوه ایجاد خوشه‌ها ارتباط زیادی با نحوه جمع‌آوری نقاط داده در گروه‌ها دارد. بیایید برخی از واژگان را بررسی کنیم: +> +> 🎓 ['انتقالی' در مقابل 'استنتاجی'](https://wikipedia.org/wiki/Transduction_(machine_learning)) +> +> استنتاج انتقالی از موارد آموزشی مشاهده‌شده که به موارد آزمایشی خاص نگاشت می‌شوند، مشتق می‌شود. استنتاج استنتاجی از موارد آموزشی که به قوانین عمومی نگاشت می‌شوند و سپس به موارد آزمایشی اعمال می‌شوند، مشتق می‌شود. +> +> مثال: تصور کنید یک مجموعه داده دارید که فقط بخشی از آن برچسب‌گذاری شده است. برخی چیزها 'صفحه' هستند، برخی 'سی‌دی' و برخی خالی هستند. وظیفه شما این است که برای موارد خالی برچسب ارائه دهید. اگر رویکرد استنتاجی را انتخاب کنید، مدلی را برای جستجوی 'صفحه' و 'سی‌دی' آموزش می‌دهید و این برچسب‌ها را به داده‌های بدون برچسب اعمال می‌کنید. این رویکرد در طبقه‌بندی چیزهایی که در واقع 'کاست' هستند، مشکل خواهد داشت. یک رویکرد انتقالی، از سوی دیگر، این داده‌های ناشناخته را مؤثرتر مدیریت می‌کند زیرا تلاش می‌کند موارد مشابه را گروه‌بندی کند و سپس یک برچسب به گروه اعمال کند. در این مورد، خوشه‌ها ممکن است 'چیزهای موسیقی گرد' و 'چیزهای موسیقی مربعی' را منعکس کنند. +> +> 🎓 ['هندسه غیر مسطح' در مقابل 'مسطح'](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering) +> +> مشتق‌شده از اصطلاحات ریاضی، هندسه غیر مسطح در مقابل مسطح به اندازه‌گیری فاصله بین نقاط با روش‌های هندسی 'مسطح' ([اقلیدسی](https://wikipedia.org/wiki/Euclidean_geometry)) یا 'غیر مسطح' (غیر اقلیدسی) اشاره دارد. +> +>'مسطح' در این زمینه به هندسه اقلیدسی (بخش‌هایی از آن به عنوان هندسه 'صفحه' آموزش داده می‌شود) اشاره دارد، و غیر مسطح به هندسه غیر اقلیدسی اشاره دارد. هندسه چه ارتباطی با یادگیری ماشین دارد؟ خوب، به عنوان دو زمینه که ریشه در ریاضیات دارند، باید یک روش مشترک برای اندازه‌گیری فاصله بین نقاط در خوشه‌ها وجود داشته باشد، و این می‌تواند به صورت 'مسطح' یا 'غیر مسطح' انجام شود، بسته به ماهیت داده‌ها. [فاصله‌های اقلیدسی](https://wikipedia.org/wiki/Euclidean_distance) به عنوان طول یک خط مستقیم بین دو نقطه اندازه‌گیری می‌شوند. [فاصله‌های غیر اقلیدسی](https://wikipedia.org/wiki/Non-Euclidean_geometry) در طول یک منحنی اندازه‌گیری می‌شوند. اگر داده‌های شما، به صورت بصری، به نظر می‌رسد که روی یک صفحه وجود ندارد، ممکن است نیاز به استفاده از یک الگوریتم تخصصی برای مدیریت آن داشته باشید. +> +![Flat vs Nonflat Geometry Infographic](../../../../translated_images/flat-nonflat.d1c8c6e2a96110c1d57fa0b72913f6aab3c245478524d25baf7f4a18efcde224.fa.png) +> اینفوگرافیک توسط [Dasani Madipalli](https://twitter.com/dasani_decoded) +> +> 🎓 ['فاصله‌ها'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf) +> +> خوشه‌ها با ماتریس فاصله خود تعریف می‌شوند، به عنوان مثال فاصله بین نقاط. این فاصله می‌تواند به چند روش اندازه‌گیری شود. خوشه‌های اقلیدسی با میانگین مقادیر نقاط تعریف می‌شوند و دارای یک 'مرکز' یا نقطه مرکزی هستند. فاصله‌ها بنابراین با فاصله تا آن مرکز اندازه‌گیری می‌شوند. فاصله‌های غیر اقلیدسی به 'کلسترویدها' اشاره دارند، نقطه‌ای که نزدیک‌ترین به سایر نقاط است. کلسترویدها به نوبه خود می‌توانند به روش‌های مختلف تعریف شوند. +> +> 🎓 ['محدود'](https://wikipedia.org/wiki/Constrained_clustering) +> +> [خوشه‌بندی محدود](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf) 'یادگیری نیمه‌نظارت‌شده' را به این روش بدون نظارت معرفی می‌کند. روابط بین نقاط به عنوان 'نمی‌توانند لینک شوند' یا 'باید لینک شوند' علامت‌گذاری می‌شوند، بنابراین برخی قوانین به مجموعه داده تحمیل می‌شوند. +> +>مثال: اگر یک الگوریتم به صورت آزاد روی یک دسته داده‌های بدون برچسب یا نیمه‌برچسب‌گذاری شده اجرا شود، خوشه‌هایی که تولید می‌کند ممکن است کیفیت پایینی داشته باشند. در مثال بالا، خوشه‌ها ممکن است 'چیزهای موسیقی گرد' و 'چیزهای موسیقی مربعی' و 'چیزهای مثلثی' و 'کوکی‌ها' را گروه‌بندی کنند. اگر برخی محدودیت‌ها یا قوانین برای دنبال کردن داده شود ("آیتم باید پلاستیکی باشد"، "آیتم باید بتواند موسیقی تولید کند") این می‌تواند به الگوریتم کمک کند تا انتخاب‌های بهتری انجام دهد. +> +> 🎓 'چگالی' +> +> داده‌هایی که 'پر سر و صدا' هستند به عنوان 'متراکم' در نظر گرفته می‌شوند. فاصله بین نقاط در هر یک از خوشه‌های آن ممکن است، در بررسی، بیشتر یا کمتر متراکم یا 'شلوغ' باشد و بنابراین این داده‌ها نیاز به تحلیل با روش خوشه‌بندی مناسب دارند. [این مقاله](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html) تفاوت بین استفاده از خوشه‌بندی K-Means در مقابل الگوریتم‌های HDBSCAN برای کشف یک مجموعه داده پر سر و صدا با چگالی خوشه‌های نامساوی را نشان می‌دهد. + +## الگوریتم‌های خوشه‌بندی + +بیش از ۱۰۰ الگوریتم خوشه‌بندی وجود دارد و استفاده از آن‌ها به ماهیت داده‌های موجود بستگی دارد. بیایید برخی از مهم‌ترین آن‌ها را بررسی کنیم: + +- **خوشه‌بندی سلسله‌مراتبی**. اگر یک شیء بر اساس نزدیکی به یک شیء نزدیک‌تر، به جای یک شیء دورتر، طبقه‌بندی شود، خوشه‌ها بر اساس فاصله اعضای آن‌ها به و از سایر اشیاء تشکیل می‌شوند. خوشه‌بندی تجمعی Scikit-learn سلسله‌مراتبی است. + + ![Hierarchical clustering Infographic](../../../../translated_images/hierarchical.bf59403aa43c8c47493bfdf1cc25230f26e45f4e38a3d62e8769cd324129ac15.fa.png) + > اینفوگرافیک توسط [Dasani Madipalli](https://twitter.com/dasani_decoded) + +- **خوشه‌بندی مرکزی**. این الگوریتم محبوب نیاز به انتخاب 'k' یا تعداد خوشه‌هایی که باید تشکیل شوند دارد، پس از آن الگوریتم نقطه مرکزی یک خوشه را تعیین می‌کند و داده‌ها را در اطراف آن نقطه جمع‌آوری می‌کند. [خوشه‌بندی K-means](https://wikipedia.org/wiki/K-means_clustering) نسخه محبوبی از خوشه‌بندی مرکزی است. مرکز بر اساس میانگین نزدیک‌ترین نقاط تعیین می‌شود، بنابراین نام آن به همین دلیل است. فاصله مربع از خوشه به حداقل می‌رسد. + + ![Centroid clustering Infographic](../../../../translated_images/centroid.097fde836cf6c9187d0b2033e9f94441829f9d86f4f0b1604dd4b3d1931aee34.fa.png) + > اینفوگرافیک توسط [Dasani Madipalli](https://twitter.com/dasani_decoded) + +- **خوشه‌بندی مبتنی بر توزیع**. بر اساس مدل‌سازی آماری، خوشه‌بندی مبتنی بر توزیع بر تعیین احتمال تعلق یک نقطه داده به یک خوشه تمرکز دارد و آن را به طور مناسب اختصاص می‌دهد. روش‌های مخلوط گوسی به این نوع تعلق دارند. + +- **خوشه‌بندی مبتنی بر چگالی**. نقاط داده بر اساس چگالی آن‌ها یا گروه‌بندی آن‌ها در اطراف یکدیگر به خوشه‌ها اختصاص داده می‌شوند. نقاط داده دور از گروه به عنوان نقاط پرت یا نویز در نظر گرفته می‌شوند. DBSCAN، Mean-shift و OPTICS به این نوع خوشه‌بندی تعلق دارند. + +- **خوشه‌بندی مبتنی بر شبکه**. برای مجموعه داده‌های چندبعدی، یک شبکه ایجاد می‌شود و داده‌ها بین سلول‌های شبکه تقسیم می‌شوند، بنابراین خوشه‌ها ایجاد می‌شوند. + +## تمرین - داده‌های خود را خوشه‌بندی کنید + +خوشه‌بندی به عنوان یک تکنیک با تجسم مناسب بسیار کمک می‌شود، بنابراین بیایید با تجسم داده‌های موسیقی خود شروع کنیم. این تمرین به ما کمک می‌کند تصمیم بگیریم کدام یک از روش‌های خوشه‌بندی را باید برای ماهیت این داده‌ها به طور مؤثر استفاده کنیم. + +1. فایل [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/notebook.ipynb) را در این پوشه باز کنید. + +1. بسته `Seaborn` را برای تجسم خوب داده‌ها وارد کنید. + + ```python + !pip install seaborn + ``` + +1. داده‌های آهنگ را از [_nigerian-songs.csv_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/data/nigerian-songs.csv) اضافه کنید. یک dataframe با برخی داده‌ها درباره آهنگ‌ها بارگذاری کنید. آماده شوید تا این داده‌ها را با وارد کردن کتابخانه‌ها و نمایش داده‌ها بررسی کنید: + + ```python + import matplotlib.pyplot as plt + import pandas as pd + + df = pd.read_csv("../data/nigerian-songs.csv") + df.head() + ``` + + خطوط اول داده را بررسی کنید: + + | | نام | آلبوم | هنرمند | ژانر اصلی هنرمند | تاریخ انتشار | طول | محبوبیت | قابلیت رقص | آکوستیک بودن | انرژی | ابزار بودن | زنده بودن | بلندی صدا | گفتاری بودن | تمپو | امضای زمانی | + | --- | ------------------------ | ---------------------------- | ------------------- | ---------------- | ------------ | ------ | ---------- | ------------ | ------------ | ------ | ---------------- | -------- | -------- | ----------- | ------- | -------------- | + | 0 | Sparky | Mandy & The Jungle | Cruel Santino | alternative r&b | 2019 | 144000 | 48 | 0.666 | 0.851 | 0.42 | 0.534 | 0.11 | -6.699 | 0.0829 | 133.015 | 5 | + | 1 | shuga rush | EVERYTHING YOU HEARD IS TRUE | Odunsi (The Engine) | afropop | 2020 | 89488 | 30 | 0.71 | 0.0822 | 0.683 | 0.000169 | 0.101 | -5.64 | 0.36 | 129.993 | 3 | +| 2 | LITT! | LITT! | AYLØ | indie r&b | 2018 | 207758 | 40 | 0.836 | 0.272 | 0.564 | 0.000537 | 0.11 | -7.127 | 0.0424 | 130.005 | 4 | +| 3 | Confident / Feeling Cool | Enjoy Your Life | Lady Donli | nigerian pop | 2019 | 175135 | 14 | 0.894 | 0.798 | 0.611 | 0.000187 | 0.0964 | -4.961 | 0.113 | 111.087 | 4 | +| 4 | wanted you | rare. | Odunsi (The Engine) | afropop | 2018 | 152049 | 25 | 0.702 | 0.116 | 0.833 | 0.91 | 0.348 | -6.044 | 0.0447 | 105.115 | 4 | + +1. اطلاعاتی درباره دیتافریم دریافت کنید، با فراخوانی `info()`: + + ```python + df.info() + ``` + + خروجی به این شکل خواهد بود: + + ```output + + RangeIndex: 530 entries, 0 to 529 + Data columns (total 16 columns): + # Column Non-Null Count Dtype + --- ------ -------------- ----- + 0 name 530 non-null object + 1 album 530 non-null object + 2 artist 530 non-null object + 3 artist_top_genre 530 non-null object + 4 release_date 530 non-null int64 + 5 length 530 non-null int64 + 6 popularity 530 non-null int64 + 7 danceability 530 non-null float64 + 8 acousticness 530 non-null float64 + 9 energy 530 non-null float64 + 10 instrumentalness 530 non-null float64 + 11 liveness 530 non-null float64 + 12 loudness 530 non-null float64 + 13 speechiness 530 non-null float64 + 14 tempo 530 non-null float64 + 15 time_signature 530 non-null int64 + dtypes: float64(8), int64(4), object(4) + memory usage: 66.4+ KB + ``` + +1. بررسی مجدد برای مقادیر خالی، با فراخوانی `isnull()` و اطمینان از اینکه مجموع برابر با 0 است: + + ```python + df.isnull().sum() + ``` + + همه چیز خوب به نظر می‌رسد: + + ```output + name 0 + album 0 + artist 0 + artist_top_genre 0 + release_date 0 + length 0 + popularity 0 + danceability 0 + acousticness 0 + energy 0 + instrumentalness 0 + liveness 0 + loudness 0 + speechiness 0 + tempo 0 + time_signature 0 + dtype: int64 + ``` + +1. داده‌ها را توصیف کنید: + + ```python + df.describe() + ``` + + | | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature | + | ----- | ------------ | ----------- | ---------- | ------------ | ------------ | -------- | ---------------- | -------- | --------- | ----------- | ---------- | -------------- | + | count | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | + | mean | 2015.390566 | 222298.1698 | 17.507547 | 0.741619 | 0.265412 | 0.760623 | 0.016305 | 0.147308 | -4.953011 | 0.130748 | 116.487864 | 3.986792 | + | std | 3.131688 | 39696.82226 | 18.992212 | 0.117522 | 0.208342 | 0.148533 | 0.090321 | 0.123588 | 2.464186 | 0.092939 | 23.518601 | 0.333701 | + | min | 1998 | 89488 | 0 | 0.255 | 0.000665 | 0.111 | 0 | 0.0283 | -19.362 | 0.0278 | 61.695 | 3 | + | 25% | 2014 | 199305 | 0 | 0.681 | 0.089525 | 0.669 | 0 | 0.07565 | -6.29875 | 0.0591 | 102.96125 | 4 | + | 50% | 2016 | 218509 | 13 | 0.761 | 0.2205 | 0.7845 | 0.000004 | 0.1035 | -4.5585 | 0.09795 | 112.7145 | 4 | + | 75% | 2017 | 242098.5 | 31 | 0.8295 | 0.403 | 0.87575 | 0.000234 | 0.164 | -3.331 | 0.177 | 125.03925 | 4 | + | max | 2020 | 511738 | 73 | 0.966 | 0.954 | 0.995 | 0.91 | 0.811 | 0.582 | 0.514 | 206.007 | 5 | + +> 🤔 اگر ما با خوشه‌بندی کار می‌کنیم، روشی بدون نظارت که نیازی به داده‌های برچسب‌گذاری شده ندارد، چرا این داده‌ها را با برچسب‌ها نشان می‌دهیم؟ در مرحله بررسی داده‌ها، این برچسب‌ها مفید هستند، اما برای عملکرد الگوریتم‌های خوشه‌بندی ضروری نیستند. شما می‌توانید به راحتی سرستون‌ها را حذف کنید و به داده‌ها با شماره ستون‌ها اشاره کنید. + +به مقادیر کلی داده‌ها نگاه کنید. توجه داشته باشید که محبوبیت می‌تواند '0' باشد، که نشان‌دهنده آهنگ‌هایی است که رتبه‌بندی ندارند. بیایید به زودی این موارد را حذف کنیم. + +1. از یک نمودار میله‌ای برای یافتن محبوب‌ترین ژانرها استفاده کنید: + + ```python + import seaborn as sns + + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top[:5].index,y=top[:5].values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + ![most popular](../../../../translated_images/popular.9c48d84b3386705f98bf44e26e9655bee9eb7c849d73be65195e37895bfedb5d.fa.png) + +✅ اگر می‌خواهید مقادیر بیشتری ببینید، مقدار `[:5]` را به عدد بزرگتری تغییر دهید یا آن را حذف کنید تا همه مقادیر را ببینید. + +توجه کنید، زمانی که ژانر برتر به عنوان 'Missing' توصیف می‌شود، به این معناست که اسپاتیفای آن را دسته‌بندی نکرده است، بنابراین بیایید آن را حذف کنیم. + +1. داده‌های گم‌شده را با فیلتر کردن حذف کنید + + ```python + df = df[df['artist_top_genre'] != 'Missing'] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + اکنون ژانرها را دوباره بررسی کنید: + + ![most popular](../../../../translated_images/all-genres.1d56ef06cefbfcd61183023834ed3cb891a5ee638a3ba5c924b3151bf80208d7.fa.png) + +1. سه ژانر برتر به طور قابل توجهی بر این مجموعه داده تسلط دارند. بیایید بر روی `afro dancehall`، `afropop` و `nigerian pop` تمرکز کنیم، همچنین مجموعه داده را فیلتر کنیم تا هر چیزی با مقدار محبوبیت 0 را حذف کنیم (به این معنا که در مجموعه داده با محبوبیت دسته‌بندی نشده و می‌توان آن را برای اهداف ما به عنوان نویز در نظر گرفت): + + ```python + df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')] + df = df[(df['popularity'] > 0)] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + +1. یک آزمایش سریع انجام دهید تا ببینید آیا داده‌ها به طور خاصی قوی همبستگی دارند: + + ```python + corrmat = df.corr(numeric_only=True) + f, ax = plt.subplots(figsize=(12, 9)) + sns.heatmap(corrmat, vmax=.8, square=True) + ``` + + ![correlations](../../../../translated_images/correlation.a9356bb798f5eea51f47185968e1ebac5c078c92fce9931e28ccf0d7fab71c2b.fa.png) + + تنها همبستگی قوی بین `energy` و `loudness` است، که خیلی تعجب‌آور نیست، زیرا موسیقی بلند معمولاً بسیار پرانرژی است. در غیر این صورت، همبستگی‌ها نسبتاً ضعیف هستند. جالب خواهد بود که ببینیم یک الگوریتم خوشه‌بندی چه چیزی می‌تواند از این داده‌ها استخراج کند. + + > 🎓 توجه داشته باشید که همبستگی به معنای علت و معلول نیست! ما اثبات همبستگی داریم اما اثبات علت و معلول نداریم. یک [وب‌سایت جالب](https://tylervigen.com/spurious-correlations) برخی تصاویر را نشان می‌دهد که این نکته را برجسته می‌کند. + +آیا در این مجموعه داده همگرایی‌ای در مورد محبوبیت و قابلیت رقص آهنگ‌ها وجود دارد؟ یک FacetGrid نشان می‌دهد که دایره‌های متحدالمرکز وجود دارند که صرف نظر از ژانر، هم‌راستا هستند. آیا ممکن است سلیقه‌های نیجریه‌ای در سطح خاصی از قابلیت رقص برای این ژانر همگرا شوند؟ + +✅ نقاط داده مختلف (انرژی، بلندی صدا، گفتار) و ژانرهای موسیقی بیشتر یا متفاوت را امتحان کنید. چه چیزی می‌توانید کشف کنید؟ به جدول `df.describe()` نگاه کنید تا پراکندگی کلی نقاط داده را ببینید. + +### تمرین - توزیع داده‌ها + +آیا این سه ژانر به طور قابل توجهی در درک قابلیت رقص بر اساس محبوبیت متفاوت هستند؟ + +1. توزیع داده‌های سه ژانر برتر ما را برای محبوبیت و قابلیت رقص در امتداد محور x و y بررسی کنید. + + ```python + sns.set_theme(style="ticks") + + g = sns.jointplot( + data=df, + x="popularity", y="danceability", hue="artist_top_genre", + kind="kde", + ) + ``` + + شما می‌توانید دایره‌های متحدالمرکز را در اطراف یک نقطه همگرایی کلی کشف کنید که توزیع نقاط را نشان می‌دهد. + + > 🎓 توجه داشته باشید که این مثال از یک نمودار KDE (Kernel Density Estimate) استفاده می‌کند که داده‌ها را با استفاده از یک منحنی چگالی احتمال پیوسته نشان می‌دهد. این به ما امکان می‌دهد داده‌ها را هنگام کار با توزیع‌های متعدد تفسیر کنیم. + + به طور کلی، سه ژانر در مورد محبوبیت و قابلیت رقص به طور کلی هم‌راستا هستند. تعیین خوشه‌ها در این داده‌های به طور کلی هم‌راستا چالش‌برانگیز خواهد بود: + + ![distribution](../../../../translated_images/distribution.9be11df42356ca958dc8e06e87865e09d77cab78f94fe4fea8a1e6796c64dc4b.fa.png) + +1. یک نمودار پراکندگی ایجاد کنید: + + ```python + sns.FacetGrid(df, hue="artist_top_genre", height=5) \ + .map(plt.scatter, "popularity", "danceability") \ + .add_legend() + ``` + + نمودار پراکندگی با همان محورها الگوی مشابهی از همگرایی را نشان می‌دهد + + ![Facetgrid](../../../../translated_images/facetgrid.9b2e65ce707eba1f983b7cdfed5d952e60f385947afa3011df6e3cc7d200eb5b.fa.png) + +به طور کلی، برای خوشه‌بندی، می‌توانید از نمودارهای پراکندگی برای نشان دادن خوشه‌های داده استفاده کنید، بنابراین تسلط بر این نوع تجسم بسیار مفید است. در درس بعدی، ما این داده‌های فیلتر شده را می‌گیریم و از خوشه‌بندی k-means برای کشف گروه‌هایی در این داده‌ها استفاده می‌کنیم که به نظر می‌رسد به روش‌های جالبی هم‌پوشانی دارند. + +--- + +## 🚀چالش + +در آماده‌سازی برای درس بعدی، نموداری درباره الگوریتم‌های مختلف خوشه‌بندی که ممکن است کشف کنید و در محیط تولید استفاده کنید، ایجاد کنید. خوشه‌بندی چه نوع مشکلاتی را سعی در حل دارد؟ + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/) + +## مرور و مطالعه شخصی + +قبل از اعمال الگوریتم‌های خوشه‌بندی، همانطور که یاد گرفتیم، ایده خوبی است که ماهیت مجموعه داده خود را درک کنید. درباره این موضوع بیشتر بخوانید [اینجا](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html) + +[این مقاله مفید](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/) شما را با روش‌های مختلفی که الگوریتم‌های خوشه‌بندی مختلف با اشکال داده‌های مختلف رفتار می‌کنند، آشنا می‌کند. + +## تکلیف + +[تحقیق درباره تجسم‌های دیگر برای خوشه‌بندی](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/5-Clustering/1-Visualize/assignment.md b/translations/fa/5-Clustering/1-Visualize/assignment.md new file mode 100644 index 000000000..f2caf3f9a --- /dev/null +++ b/translations/fa/5-Clustering/1-Visualize/assignment.md @@ -0,0 +1,25 @@ + +# تحقیق در مورد سایر روش‌های بصری‌سازی برای خوشه‌بندی + +## دستورالعمل‌ها + +در این درس، شما با برخی تکنیک‌های بصری‌سازی کار کرده‌اید تا بتوانید داده‌های خود را برای خوشه‌بندی آماده کنید. نمودارهای پراکندگی به‌ویژه برای یافتن گروه‌های اشیاء بسیار مفید هستند. روش‌ها و کتابخانه‌های مختلف برای ایجاد نمودارهای پراکندگی را بررسی کنید و کار خود را در یک دفترچه یادداشت مستند کنید. می‌توانید از داده‌های این درس، درس‌های دیگر، یا داده‌هایی که خودتان پیدا می‌کنید استفاده کنید (لطفاً منبع آن را در دفترچه یادداشت خود ذکر کنید). برخی داده‌ها را با استفاده از نمودارهای پراکندگی ترسیم کنید و توضیح دهید که چه چیزی کشف می‌کنید. + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| --------- | ------------------------------------------------------------ | ---------------------------------------------------------------------------------- | ---------------------------------- | +| | یک دفترچه یادداشت با پنج نمودار پراکندگی مستند ارائه شده است | یک دفترچه یادداشت با کمتر از پنج نمودار پراکندگی و مستندسازی کمتر ارائه شده است | یک دفترچه یادداشت ناقص ارائه شده است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/5-Clustering/1-Visualize/notebook.ipynb b/translations/fa/5-Clustering/1-Visualize/notebook.ipynb new file mode 100644 index 000000000..534c9069b --- /dev/null +++ b/translations/fa/5-Clustering/1-Visualize/notebook.ipynb @@ -0,0 +1,52 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python383jvsc74a57bd0e134e05457d34029b6460cd73bbf1ed73f339b5b6d98c95be70b69eba114fe95", + "display_name": "Python 3.8.3 64-bit (conda)" + }, + "coopTranslator": { + "original_hash": "40e0707e96b3e1899a912776006264f9", + "translation_date": "2025-09-04T01:58:01+00:00", + "source_file": "5-Clustering/1-Visualize/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# موسیقی نیجریه‌ای استخراج‌شده از اسپاتیفای - یک تحلیل\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/5-Clustering/1-Visualize/solution/Julia/README.md b/translations/fa/5-Clustering/1-Visualize/solution/Julia/README.md new file mode 100644 index 000000000..15f2404dd --- /dev/null +++ b/translations/fa/5-Clustering/1-Visualize/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb b/translations/fa/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb new file mode 100644 index 000000000..af6169aeb --- /dev/null +++ b/translations/fa/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb @@ -0,0 +1,494 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## **تحلیل موسیقی نیجریه‌ای استخراج‌شده از اسپاتیفای**\n", + "\n", + "خوشه‌بندی نوعی از [یادگیری بدون نظارت](https://wikipedia.org/wiki/Unsupervised_learning) است که فرض می‌کند یک مجموعه داده برچسب‌گذاری نشده است یا ورودی‌های آن با خروجی‌های از پیش تعریف‌شده مطابقت ندارند. این روش از الگوریتم‌های مختلفی استفاده می‌کند تا داده‌های بدون برچسب را مرتب کرده و بر اساس الگوهایی که در داده‌ها تشخیص می‌دهد، گروه‌بندی‌هایی ارائه دهد.\n", + "\n", + "[**آزمون پیش از درس**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/)\n", + "\n", + "### **مقدمه**\n", + "\n", + "[خوشه‌بندی](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124) برای کاوش داده‌ها بسیار مفید است. بیایید ببینیم آیا می‌تواند به کشف روندها و الگوها در نحوه مصرف موسیقی توسط مخاطبان نیجریه‌ای کمک کند یا خیر.\n", + "\n", + "> ✅ یک دقیقه وقت بگذارید و به کاربردهای خوشه‌بندی فکر کنید. در زندگی روزمره، خوشه‌بندی زمانی اتفاق می‌افتد که شما یک توده لباس دارید و باید لباس‌های اعضای خانواده‌تان را جدا کنید 🧦👕👖🩲. در علم داده، خوشه‌بندی زمانی اتفاق می‌افتد که بخواهید ترجیحات یک کاربر را تحلیل کنید یا ویژگی‌های یک مجموعه داده بدون برچسب را تعیین کنید. خوشه‌بندی به نوعی به ایجاد نظم در میان آشفتگی کمک می‌کند، مثل مرتب کردن کشوی جوراب‌ها.\n", + "\n", + "در محیط حرفه‌ای، خوشه‌بندی می‌تواند برای تعیین مواردی مانند تقسیم‌بندی بازار، مشخص کردن اینکه چه گروه‌های سنی چه کالاهایی را خریداری می‌کنند، استفاده شود. کاربرد دیگر می‌تواند تشخیص ناهنجاری‌ها باشد، مثلاً برای شناسایی تقلب در یک مجموعه داده از تراکنش‌های کارت اعتباری. یا ممکن است از خوشه‌بندی برای شناسایی تومورها در مجموعه‌ای از اسکن‌های پزشکی استفاده کنید.\n", + "\n", + "✅ یک دقیقه فکر کنید که چگونه ممکن است در دنیای واقعی، در بانکداری، تجارت الکترونیک یا محیط کسب‌وکار با خوشه‌بندی مواجه شده باشید.\n", + "\n", + "> 🎓 جالب است بدانید که تحلیل خوشه‌ای در دهه ۱۹۳۰ در حوزه‌های انسان‌شناسی و روان‌شناسی آغاز شد. آیا می‌توانید تصور کنید که چگونه از آن استفاده می‌شده است؟\n", + "\n", + "همچنین می‌توانید از آن برای گروه‌بندی نتایج جستجو استفاده کنید - مثلاً بر اساس لینک‌های خرید، تصاویر یا نظرات. خوشه‌بندی زمانی مفید است که یک مجموعه داده بزرگ دارید که می‌خواهید آن را کاهش دهید و تحلیل دقیق‌تری روی آن انجام دهید، بنابراین این تکنیک می‌تواند برای یادگیری درباره داده‌ها قبل از ساخت مدل‌های دیگر استفاده شود.\n", + "\n", + "✅ وقتی داده‌های شما در خوشه‌ها سازماندهی شد، به آن‌ها یک شناسه خوشه اختصاص می‌دهید. این تکنیک می‌تواند زمانی مفید باشد که بخواهید حریم خصوصی یک مجموعه داده را حفظ کنید؛ به جای استفاده از داده‌های شناسایی‌کننده، می‌توانید به یک نقطه داده با شناسه خوشه آن اشاره کنید. آیا می‌توانید دلایل دیگری برای استفاده از شناسه خوشه به جای عناصر دیگر خوشه برای شناسایی آن تصور کنید؟\n", + "\n", + "### شروع کار با خوشه‌بندی\n", + "\n", + "> 🎓 نحوه ایجاد خوشه‌ها ارتباط زیادی با چگونگی گروه‌بندی نقاط داده دارد. بیایید برخی از واژگان را بررسی کنیم:\n", + ">\n", + "> 🎓 ['انتقالی' در مقابل 'استقرایی'](https://wikipedia.org/wiki/Transduction_(machine_learning))\n", + ">\n", + "> استنتاج انتقالی از موارد آموزشی مشاهده‌شده که به موارد آزمایشی خاص نگاشت می‌شوند، استخراج می‌شود. استنتاج استقرایی از موارد آموزشی که به قوانین کلی نگاشت می‌شوند و سپس به موارد آزمایشی اعمال می‌شوند، استخراج می‌شود.\n", + ">\n", + "> یک مثال: تصور کنید یک مجموعه داده دارید که فقط بخشی از آن برچسب‌گذاری شده است. برخی موارد 'صفحه گرامافون' هستند، برخی 'سی‌دی' و برخی خالی هستند. وظیفه شما این است که برای موارد خالی برچسب تعیین کنید. اگر رویکرد استقرایی را انتخاب کنید، مدلی برای شناسایی 'صفحه گرامافون' و 'سی‌دی' آموزش می‌دهید و این برچسب‌ها را به داده‌های بدون برچسب اعمال می‌کنید. این رویکرد در طبقه‌بندی مواردی که در واقع 'کاست' هستند، مشکل خواهد داشت. اما یک رویکرد انتقالی این داده‌های ناشناخته را مؤثرتر مدیریت می‌کند، زیرا تلاش می‌کند موارد مشابه را گروه‌بندی کرده و سپس به یک گروه برچسب اختصاص دهد. در این حالت، خوشه‌ها ممکن است 'اشیای موسیقی گرد' و 'اشیای موسیقی مربعی' را منعکس کنند.\n", + ">\n", + "> 🎓 ['هندسه تخت' در مقابل 'غیرتخت'](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering)\n", + ">\n", + "> اصطلاحات هندسی تخت و غیرتخت به اندازه‌گیری فاصله بین نقاط با استفاده از روش‌های هندسی 'تخت' ([اقلیدسی](https://wikipedia.org/wiki/Euclidean_geometry)) یا 'غیرتخت' (غیر اقلیدسی) اشاره دارد.\n", + ">\n", + "> 'تخت' در این زمینه به هندسه اقلیدسی (که بخشی از آن به عنوان هندسه 'مسطح' آموزش داده می‌شود) اشاره دارد و غیرتخت به هندسه غیر اقلیدسی اشاره دارد. هندسه چه ارتباطی با یادگیری ماشین دارد؟ خب، به عنوان دو حوزه‌ای که ریشه در ریاضیات دارند، باید یک روش مشترک برای اندازه‌گیری فاصله بین نقاط در خوشه‌ها وجود داشته باشد، و این می‌تواند به صورت 'تخت' یا 'غیرتخت' انجام شود، بسته به ماهیت داده‌ها. [فاصله‌های اقلیدسی](https://wikipedia.org/wiki/Euclidean_distance) به عنوان طول یک خط مستقیم بین دو نقطه اندازه‌گیری می‌شوند. [فاصله‌های غیر اقلیدسی](https://wikipedia.org/wiki/Non-Euclidean_geometry) در طول یک منحنی اندازه‌گیری می‌شوند. اگر داده‌های شما، وقتی تجسم می‌شوند، به نظر می‌رسد که روی یک صفحه قرار ندارند، ممکن است نیاز به استفاده از الگوریتم خاصی برای مدیریت آن داشته باشید.\n", + "\n", + "

            \n", + " \n", + "

            اینفوگرافیک از داسانی مادیپالی
            \n", + "\n", + "> 🎓 ['فاصله‌ها'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf)\n", + ">\n", + "> خوشه‌ها با ماتریس فاصله خود تعریف می‌شوند، مثلاً فاصله بین نقاط. این فاصله می‌تواند به چند روش اندازه‌گیری شود. خوشه‌های اقلیدسی با میانگین مقادیر نقاط تعریف می‌شوند و یک 'مرکز' یا نقطه مرکزی دارند. فاصله‌ها بر این اساس با فاصله تا آن مرکز اندازه‌گیری می‌شوند. فاصله‌های غیر اقلیدسی به 'کلسترویدها' اشاره دارند، یعنی نقطه‌ای که به سایر نقاط نزدیک‌تر است. کلسترویدها نیز می‌توانند به روش‌های مختلف تعریف شوند.\n", + ">\n", + "> 🎓 ['محدودشده'](https://wikipedia.org/wiki/Constrained_clustering)\n", + ">\n", + "> [خوشه‌بندی محدودشده](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf) یادگیری 'نیمه‌نظارت‌شده' را به این روش بدون نظارت معرفی می‌کند. روابط بین نقاط به عنوان 'نمی‌توانند لینک شوند' یا 'باید لینک شوند' علامت‌گذاری می‌شوند، بنابراین برخی قوانین بر مجموعه داده اعمال می‌شوند.\n", + ">\n", + "> یک مثال: اگر یک الگوریتم روی مجموعه‌ای از داده‌های بدون برچسب یا نیمه‌برچسب‌گذاری‌شده آزاد شود، خوشه‌هایی که تولید می‌کند ممکن است کیفیت پایینی داشته باشند. در مثال بالا، خوشه‌ها ممکن است 'اشیای موسیقی گرد'، 'اشیای موسیقی مربعی'، 'اشیای مثلثی' و 'کوکی‌ها' را گروه‌بندی کنند. اگر برخی محدودیت‌ها یا قوانینی به الگوریتم داده شود (\"آیتم باید از پلاستیک ساخته شده باشد\"، \"آیتم باید بتواند موسیقی تولید کند\") این می‌تواند به الگوریتم کمک کند تا انتخاب‌های بهتری انجام دهد.\n", + ">\n", + "> 🎓 'چگالی'\n", + ">\n", + "> داده‌هایی که 'پر سر و صدا' هستند، به عنوان 'چگال' در نظر گرفته می‌شوند. فاصله بین نقاط در هر یک از خوشه‌های آن ممکن است، پس از بررسی، بیشتر یا کمتر چگال باشد، یا 'شلوغ' باشد و بنابراین این داده‌ها نیاز به تحلیل با روش خوشه‌بندی مناسب دارند. [این مقاله](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html) تفاوت بین استفاده از خوشه‌بندی K-Means و الگوریتم‌های HDBSCAN برای کاوش یک مجموعه داده پر سر و صدا با چگالی خوشه‌ای نابرابر را نشان می‌دهد.\n", + "\n", + "درک خود را از تکنیک‌های خوشه‌بندی با این [ماژول آموزشی](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott) عمیق‌تر کنید.\n", + "\n", + "### **الگوریتم‌های خوشه‌بندی**\n", + "\n", + "بیش از ۱۰۰ الگوریتم خوشه‌بندی وجود دارد و استفاده از آن‌ها به ماهیت داده‌های موجود بستگی دارد. بیایید برخی از مهم‌ترین آن‌ها را بررسی کنیم:\n", + "\n", + "- **خوشه‌بندی سلسله‌مراتبی**. اگر یک شیء بر اساس نزدیکی به یک شیء نزدیک‌تر طبقه‌بندی شود، نه به یک شیء دورتر، خوشه‌ها بر اساس فاصله اعضای آن‌ها از سایر اشیاء تشکیل می‌شوند. خوشه‌بندی سلسله‌مراتبی با ترکیب مکرر دو خوشه مشخص می‌شود.\n", + "\n", + "

            \n", + " \n", + "

            اینفوگرافیک از داسانی مادیپالی
            \n", + "\n", + "- **خوشه‌بندی مرکزگرا**. این الگوریتم محبوب نیاز به انتخاب 'k' یا تعداد خوشه‌هایی دارد که باید تشکیل شوند، و سپس الگوریتم نقطه مرکزی یک خوشه را تعیین کرده و داده‌ها را در اطراف آن نقطه جمع‌آوری می‌کند. [خوشه‌بندی K-means](https://wikipedia.org/wiki/K-means_clustering) نسخه محبوبی از خوشه‌بندی مرکزگرا است که یک مجموعه داده را به K گروه از پیش تعریف‌شده تقسیم می‌کند. مرکز بر اساس میانگین نزدیک‌ترین نقاط تعیین می‌شود، از این رو نام آن گرفته شده است. فاصله مربعی از خوشه به حداقل می‌رسد.\n", + "\n", + "

            \n", + " \n", + "

            اینفوگرافیک از داسانی مادیپالی
            \n", + "\n", + "- **خوشه‌بندی مبتنی بر توزیع**. بر اساس مدل‌سازی آماری، خوشه‌بندی مبتنی بر توزیع بر تعیین احتمال تعلق یک نقطه داده به یک خوشه تمرکز دارد و بر این اساس آن را اختصاص می‌دهد. روش‌های ترکیب گوسی به این نوع تعلق دارند.\n", + "\n", + "- **خوشه‌بندی مبتنی بر چگالی**. نقاط داده بر اساس چگالی آن‌ها یا گروه‌بندی آن‌ها در اطراف یکدیگر به خوشه‌ها اختصاص داده می‌شوند. نقاط داده دور از گروه به عنوان نویز یا نقاط پرت در نظر گرفته می‌شوند. DBSCAN، Mean-shift و OPTICS به این نوع خوشه‌بندی تعلق دارند.\n", + "\n", + "- **خوشه‌بندی مبتنی بر شبکه**. برای مجموعه داده‌های چندبعدی، یک شبکه ایجاد می‌شود و داده‌ها در میان سلول‌های شبکه تقسیم می‌شوند و بدین ترتیب خوشه‌ها ایجاد می‌شوند.\n", + "\n", + "بهترین راه برای یادگیری خوشه‌بندی این است که خودتان آن را امتحان کنید، بنابراین این همان کاری است که در این تمرین انجام خواهید داد.\n", + "\n", + "برای این ماژول به چند بسته نیاز داریم. می‌توانید آن‌ها را با دستور زیر نصب کنید: \n", + "`install.packages(c('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork'))`\n", + "\n", + "یا از اسکریپت زیر استفاده کنید تا بررسی کند آیا بسته‌های مورد نیاز برای تکمیل این ماژول را دارید و در صورت کمبود، آن‌ها را برای شما نصب کند.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork')\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## تمرین - خوشه‌بندی داده‌های خود\n", + "\n", + "خوشه‌بندی به عنوان یک تکنیک با تصویربرداری مناسب بسیار بهتر عمل می‌کند، بنابراین بیایید با تصویربرداری داده‌های موسیقی خود شروع کنیم. این تمرین به ما کمک می‌کند تصمیم بگیریم کدام روش خوشه‌بندی برای ماهیت این داده‌ها مؤثرتر است.\n", + "\n", + "بیایید با وارد کردن داده‌ها شروع کنیم.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core tidyverse and make it available in your current R session\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# Import the data into a tibble\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\")\r\n", + "\r\n", + "# View the first 5 rows of the data set\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "گاهی اوقات ممکن است بخواهیم اطلاعات بیشتری درباره داده‌های خود داشته باشیم. می‌توانیم با استفاده از تابع [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) نگاهی به `داده‌ها` و `ساختار آن‌ها` بیندازیم:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Glimpse into the data set\r\n", + "df %>% \r\n", + " glimpse()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "کار عالی! 💪\n", + "\n", + "می‌توانیم مشاهده کنیم که `glimpse()` تعداد کل سطرها (مشاهدات) و ستون‌ها (متغیرها) را به شما نشان می‌دهد، سپس چند ورودی اول هر متغیر را در یک سطر بعد از نام متغیر نمایش می‌دهد. علاوه بر این، *نوع داده* متغیر بلافاصله بعد از نام هر متغیر داخل `< >` ارائه می‌شود.\n", + "\n", + "`DataExplorer::introduce()` می‌تواند این اطلاعات را به‌صورت مرتب خلاصه کند:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe basic information for our data\r\n", + "df %>% \r\n", + " introduce()\r\n", + "\r\n", + "# A visual display of the same\r\n", + "df %>% \r\n", + " plot_intro()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "عالی! ما تازه متوجه شدیم که داده‌های ما هیچ مقدار گمشده‌ای ندارد.\n", + "\n", + "حالا که در این مرحله هستیم، می‌توانیم آمارهای رایج گرایش مرکزی (مثل [میانگین](https://en.wikipedia.org/wiki/Arithmetic_mean) و [میانه](https://en.wikipedia.org/wiki/Median)) و معیارهای پراکندگی (مثل [انحراف معیار](https://en.wikipedia.org/wiki/Standard_deviation)) را با استفاده از `summarytools::descr()` بررسی کنیم.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe common statistics\r\n", + "df %>% \r\n", + " descr(stats = \"common\")\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "بیایید به مقادیر کلی داده‌ها نگاهی بیندازیم. توجه داشته باشید که محبوبیت می‌تواند `0` باشد، که نشان‌دهنده آهنگ‌هایی است که هیچ رتبه‌بندی ندارند. ما به زودی این موارد را حذف خواهیم کرد.\n", + "\n", + "> 🤔 اگر ما با خوشه‌بندی کار می‌کنیم، روشی بدون نظارت که نیازی به داده‌های برچسب‌دار ندارد، چرا این داده‌ها را با برچسب‌ها نشان می‌دهیم؟ در مرحله کاوش داده‌ها، این برچسب‌ها مفید هستند، اما برای عملکرد الگوریتم‌های خوشه‌بندی ضروری نیستند.\n", + "\n", + "### ۱. بررسی ژانرهای محبوب\n", + "\n", + "بیایید جلو برویم و با شمارش تعداد دفعاتی که هر ژانر ظاهر می‌شود، محبوب‌ترین ژانرها 🎶 را پیدا کنیم.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Popular genres\r\n", + "top_genres <- df %>% \r\n", + " count(artist_top_genre, sort = TRUE) %>% \r\n", + "# Encode to categorical and reorder the according to count\r\n", + " mutate(artist_top_genre = factor(artist_top_genre) %>% fct_inorder())\r\n", + "\r\n", + "# Print the top genres\r\n", + "top_genres\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "این خوب پیش رفت! می‌گویند یک تصویر به اندازه هزار ردیف از یک دیتافریم ارزش دارد (البته هیچ‌کس واقعاً این را نمی‌گوید 😅). اما منظور را که متوجه شدید، درست است؟\n", + "\n", + "یکی از روش‌های نمایش داده‌های دسته‌بندی‌شده (متغیرهای کاراکتری یا فاکتوری) استفاده از نمودارهای میله‌ای است. بیایید یک نمودار میله‌ای از ۱۰ ژانر برتر بسازیم:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Change the default gray theme\r\n", + "theme_set(theme_light())\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "حالا خیلی راحت‌تر می‌توان تشخیص داد که ژانرهای `ناقص` داریم 🧐!\n", + "\n", + "> یک تجسم خوب چیزهایی را به شما نشان می‌دهد که انتظارش را نداشتید، یا سوالات جدیدی درباره داده‌ها ایجاد می‌کند - هادلی ویکهام و گرت گرولموند، [R For Data Science](https://r4ds.had.co.nz/introduction.html)\n", + "\n", + "توجه کنید، وقتی ژانر برتر به عنوان `ناقص` توصیف می‌شود، به این معنی است که اسپاتیفای آن را طبقه‌بندی نکرده است، پس بیایید از شر آن خلاص شویم.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " filter(artist_top_genre != \"Missing\") %>% \r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "از بررسی اولیه داده‌ها متوجه می‌شویم که سه ژانر برتر در این مجموعه داده غالب هستند. بیایید بر روی `afro dancehall`، `afropop` و `nigerian pop` تمرکز کنیم و همچنین مجموعه داده را فیلتر کنیم تا هر چیزی که مقدار محبوبیت آن 0 است حذف شود (به این معنا که در مجموعه داده با محبوبیت طبقه‌بندی نشده و می‌تواند برای اهداف ما به‌عنوان نویز در نظر گرفته شود):\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "nigerian_songs <- df %>% \r\n", + " # Concentrate on top 3 genres\r\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \r\n", + " # Remove unclassified observations\r\n", + " filter(popularity != 0)\r\n", + "\r\n", + "\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "nigerian_songs %>%\r\n", + " count(artist_top_genre) %>%\r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "بیایید بررسی کنیم که آیا رابطه خطی آشکاری بین متغیرهای عددی در مجموعه داده ما وجود دارد یا خیر. این رابطه به صورت ریاضی با [آمار همبستگی](https://en.wikipedia.org/wiki/Correlation) اندازه‌گیری می‌شود.\n", + "\n", + "آمار همبستگی مقداری بین -1 و 1 است که قدرت یک رابطه را نشان می‌دهد. مقادیر بالاتر از 0 نشان‌دهنده همبستگی *مثبت* هستند (مقادیر بالای یک متغیر معمولاً با مقادیر بالای متغیر دیگر همراه هستند)، در حالی که مقادیر کمتر از 0 نشان‌دهنده همبستگی *منفی* هستند (مقادیر بالای یک متغیر معمولاً با مقادیر پایین متغیر دیگر همراه هستند).\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Narrow down to numeric variables and fid correlation\r\n", + "corr_mat <- nigerian_songs %>% \r\n", + " select(where(is.numeric)) %>% \r\n", + " cor()\r\n", + "\r\n", + "# Visualize correlation matrix\r\n", + "corrplot(corr_mat, order = 'AOE', col = c('white', 'black'), bg = 'gold2') \r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "داده‌ها به‌جز بین `energy` و `loudness` ارتباط قوی‌ای ندارند، که منطقی است، زیرا موسیقی بلند معمولاً پرانرژی است. `Popularity` با `release date` همبستگی دارد، که این هم منطقی است، چون آهنگ‌های جدیدتر احتمالاً محبوب‌تر هستند. به نظر می‌رسد طول و انرژی نیز همبستگی دارند.\n", + "\n", + "جالب خواهد بود که ببینیم یک الگوریتم خوشه‌بندی چه برداشتی از این داده‌ها خواهد داشت!\n", + "\n", + "> 🎓 توجه داشته باشید که همبستگی به معنای علیت نیست! ما شواهدی از همبستگی داریم اما هیچ مدرکی برای علیت نداریم. یک [وب‌سایت جالب](https://tylervigen.com/spurious-correlations) تصاویری دارد که این نکته را برجسته می‌کند.\n", + "\n", + "### ۲. بررسی توزیع داده‌ها\n", + "\n", + "بیایید سؤالات دقیق‌تری بپرسیم. آیا ژانرها از نظر قابلیت رقصیدن، بر اساس محبوبیتشان، تفاوت قابل‌توجهی دارند؟ بیایید توزیع داده‌های سه ژانر برتر خود را برای محبوبیت و قابلیت رقصیدن در امتداد یک محور x و y مشخص با استفاده از [نمودارهای چگالی](https://www.khanacademy.org/math/ap-statistics/density-curves-normal-distribution-ap/density-curves/v/density-curves) بررسی کنیم.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Perform 2D kernel density estimation\r\n", + "density_estimate_2d <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre)) +\r\n", + " geom_density_2d(bins = 5, size = 1) +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " xlim(-20, 80) +\r\n", + " ylim(0, 1.2)\r\n", + "\r\n", + "# Density plot based on the popularity\r\n", + "density_estimate_pop <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " theme(legend.position = \"none\")\r\n", + "\r\n", + "# Density plot based on the danceability\r\n", + "density_estimate_dance <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = danceability, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\")\r\n", + "\r\n", + "\r\n", + "# Patch everything together\r\n", + "library(patchwork)\r\n", + "density_estimate_2d / (density_estimate_pop + density_estimate_dance)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "ما می‌بینیم که دایره‌های هم‌مرکز بدون توجه به ژانر با هم هماهنگ هستند. آیا ممکن است که سلیقه‌های نیجریه‌ای‌ها در سطح خاصی از قابلیت رقص برای این ژانر به هم نزدیک شوند؟\n", + "\n", + "به طور کلی، این سه ژانر از نظر محبوبیت و قابلیت رقص با هم هماهنگ هستند. تعیین خوشه‌ها در این داده‌های کم‌وبیش هماهنگ چالش‌برانگیز خواهد بود. بیایید ببینیم آیا یک نمودار پراکندگی می‌تواند این موضوع را تأیید کند.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# A scatter plot of popularity and danceability\r\n", + "scatter_plot <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre, shape = artist_top_genre)) +\r\n", + " geom_point(size = 2, alpha = 0.8) +\r\n", + " paletteer::scale_color_paletteer_d(\"futurevisions::mars\")\r\n", + "\r\n", + "# Add a touch of interactivity\r\n", + "ggplotly(scatter_plot)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "یک نمودار پراکندگی از همان محور‌ها الگوی مشابهی از همگرایی را نشان می‌دهد.\n", + "\n", + "به طور کلی، برای خوشه‌بندی، می‌توانید از نمودارهای پراکندگی برای نمایش خوشه‌های داده استفاده کنید، بنابراین تسلط بر این نوع بصری‌سازی بسیار مفید است. در درس بعدی، این داده‌های فیلتر شده را گرفته و از خوشه‌بندی k-means استفاده می‌کنیم تا گروه‌هایی را در این داده‌ها کشف کنیم که به شکل جالبی با هم همپوشانی دارند.\n", + "\n", + "## **🚀 چالش**\n", + "\n", + "برای آماده‌سازی درس بعدی، یک نمودار درباره الگوریتم‌های مختلف خوشه‌بندی که ممکن است در محیط تولید کشف و استفاده کنید، تهیه کنید. خوشه‌بندی چه نوع مشکلاتی را سعی دارد حل کند؟\n", + "\n", + "## [**آزمون پس از درس**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/)\n", + "\n", + "## **مرور و مطالعه شخصی**\n", + "\n", + "قبل از اینکه الگوریتم‌های خوشه‌بندی را اعمال کنید، همانطور که یاد گرفتیم، بهتر است ماهیت مجموعه داده خود را درک کنید. درباره این موضوع بیشتر بخوانید [اینجا](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html)\n", + "\n", + "درک خود را از تکنیک‌های خوشه‌بندی عمیق‌تر کنید:\n", + "\n", + "- [آموزش و ارزیابی مدل‌های خوشه‌بندی با استفاده از Tidymodels و دوستان](https://rpubs.com/eR_ic/clustering)\n", + "\n", + "- بردلی بومک و براندون گرینول، [*یادگیری ماشین عملی با R*](https://bradleyboehmke.github.io/HOML/)*.*\n", + "\n", + "## **تکلیف**\n", + "\n", + "[تحقیق درباره سایر بصری‌سازی‌ها برای خوشه‌بندی](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/assignment.md)\n", + "\n", + "## سپاس از:\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) برای ایجاد نسخه اصلی پایتون این ماژول ♥️\n", + "\n", + "[`Dasani Madipalli`](https://twitter.com/dasani_decoded) برای خلق تصاویر فوق‌العاده‌ای که مفاهیم یادگیری ماشین را قابل فهم‌تر و آسان‌تر کرده‌اند.\n", + "\n", + "با آرزوی یادگیری خوشایند،\n", + "\n", + "[Eric](https://twitter.com/ericntay)، سفیر دانش‌آموز طلایی Microsoft Learn.\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "99c36449cad3708a435f6798cfa39972", + "translation_date": "2025-09-04T02:07:42+00:00", + "source_file": "5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/fa/5-Clustering/1-Visualize/solution/notebook.ipynb b/translations/fa/5-Clustering/1-Visualize/solution/notebook.ipynb new file mode 100644 index 000000000..70b8a0d51 --- /dev/null +++ b/translations/fa/5-Clustering/1-Visualize/solution/notebook.ipynb @@ -0,0 +1,829 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# موسیقی نیجریه‌ای استخراج‌شده از اسپاتیفای - یک تحلیل\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Defaulting to user installation because normal site-packages is not writeable\n", + "Requirement already satisfied: seaborn in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (0.11.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (3.5.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.21.4)\n", + "Requirement already satisfied: pandas>=0.23 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.3.4)\n", + "Requirement already satisfied: scipy>=1.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.7.2)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (4.28.1)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.4.7)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (1.3.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (8.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (0.11.0)\n", + "Requirement already satisfied: packaging>=20.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (21.2)\n", + "Requirement already satisfied: setuptools-scm>=4 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (6.3.2)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.3 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from pandas>=0.23->seaborn) (2021.3)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from python-dateutil>=2.7->matplotlib>=2.2->seaborn) (1.16.0)\n", + "Requirement already satisfied: tomli>=1.0.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (1.2.2)\n", + "Requirement already satisfied: setuptools in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (59.1.1)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
            0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
            1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
            2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
            3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
            4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
            \n", + "
            " + ], + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "دریافت اطلاعات درباره دیتافریم\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 530 entries, 0 to 529\n", + "Data columns (total 16 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 530 non-null object \n", + " 1 album 530 non-null object \n", + " 2 artist 530 non-null object \n", + " 3 artist_top_genre 530 non-null object \n", + " 4 release_date 530 non-null int64 \n", + " 5 length 530 non-null int64 \n", + " 6 popularity 530 non-null int64 \n", + " 7 danceability 530 non-null float64\n", + " 8 acousticness 530 non-null float64\n", + " 9 energy 530 non-null float64\n", + " 10 instrumentalness 530 non-null float64\n", + " 11 liveness 530 non-null float64\n", + " 12 loudness 530 non-null float64\n", + " 13 speechiness 530 non-null float64\n", + " 14 tempo 530 non-null float64\n", + " 15 time_signature 530 non-null int64 \n", + "dtypes: float64(8), int64(4), object(4)\n", + "memory usage: 66.4+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "name 0\n", + "album 0\n", + "artist 0\n", + "artist_top_genre 0\n", + "release_date 0\n", + "length 0\n", + "popularity 0\n", + "danceability 0\n", + "acousticness 0\n", + "energy 0\n", + "instrumentalness 0\n", + "liveness 0\n", + "loudness 0\n", + "speechiness 0\n", + "tempo 0\n", + "time_signature 0\n", + "dtype: int64" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "به مقادیر کلی داده‌ها نگاه کنید. توجه داشته باشید که محبوبیت می‌تواند «۰» باشد - و بسیاری از سطرها دارای این مقدار هستند\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            release_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
            count530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000
            mean2015.390566222298.16981117.5075470.7416190.2654120.7606230.0163050.147308-4.9530110.130748116.4878643.986792
            std3.13168839696.82225918.9922120.1175220.2083420.1485330.0903210.1235882.4641860.09293923.5186010.333701
            min1998.00000089488.0000000.0000000.2550000.0006650.1110000.0000000.028300-19.3620000.02780061.6950003.000000
            25%2014.000000199305.0000000.0000000.6810000.0895250.6690000.0000000.075650-6.2987500.059100102.9612504.000000
            50%2016.000000218509.00000013.0000000.7610000.2205000.7845000.0000040.103500-4.5585000.097950112.7145004.000000
            75%2017.000000242098.50000031.0000000.8295000.4030000.8757500.0002340.164000-3.3310000.177000125.0392504.000000
            max2020.000000511738.00000073.0000000.9660000.9540000.9950000.9100000.8110000.5820000.514000206.0070005.000000
            \n", + "
            " + ], + "text/plain": [ + " release_date length popularity danceability acousticness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 2015.390566 222298.169811 17.507547 0.741619 0.265412 \n", + "std 3.131688 39696.822259 18.992212 0.117522 0.208342 \n", + "min 1998.000000 89488.000000 0.000000 0.255000 0.000665 \n", + "25% 2014.000000 199305.000000 0.000000 0.681000 0.089525 \n", + "50% 2016.000000 218509.000000 13.000000 0.761000 0.220500 \n", + "75% 2017.000000 242098.500000 31.000000 0.829500 0.403000 \n", + "max 2020.000000 511738.000000 73.000000 0.966000 0.954000 \n", + "\n", + " energy instrumentalness liveness loudness speechiness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 0.760623 0.016305 0.147308 -4.953011 0.130748 \n", + "std 0.148533 0.090321 0.123588 2.464186 0.092939 \n", + "min 0.111000 0.000000 0.028300 -19.362000 0.027800 \n", + "25% 0.669000 0.000000 0.075650 -6.298750 0.059100 \n", + "50% 0.784500 0.000004 0.103500 -4.558500 0.097950 \n", + "75% 0.875750 0.000234 0.164000 -3.331000 0.177000 \n", + "max 0.995000 0.910000 0.811000 0.582000 0.514000 \n", + "\n", + " tempo time_signature \n", + "count 530.000000 530.000000 \n", + "mean 116.487864 3.986792 \n", + "std 23.518601 0.333701 \n", + "min 61.695000 3.000000 \n", + "25% 102.961250 4.000000 \n", + "50% 112.714500 4.000000 \n", + "75% 125.039250 4.000000 \n", + "max 206.007000 5.000000 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "بیایید ژانرها را بررسی کنیم. تعداد زیادی به عنوان «ناقص» فهرست شده‌اند که به این معنی است که در مجموعه داده با یک ژانر دسته‌بندی نشده‌اند\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsIElEQVR4nO3debyt9dz/8ddbpzI20EETGRKZwpHMGVJyU6ZUJN25C0Uh81CmW4RkCLmLTCXTLXT/lFA3bkPSQETRdKSOBkMpOn1+f3yvzXKcOtN3t9Y++/V8PPbjrH2ta639qWvvtd7rO6aqkCRJ0oq72bgLkCRJWlkYrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJ0ybhzyNf1yf8ZeT7Z4+7PknqLS4QKummkHAe8PwqvjHuWpZHwpwqrht3HZImmy1Wkm5yCasnvDfht8PXexNWH+7bMuGihNcm/D7hvBtr3Uq4S8LJCX9K+EbCBxM+NXL/FgnfS7gy4fSELUfu+3bCWxK+Ozz++IR1hvs2SqiE3RMuAL45HP/3hJ8nXJHw9YQ7D8eTcHDCpQl/TDgz4T7T839Q0qQyWEkah9cBWwCbAfcHNgdeP3L/HYF1gPWBXYHDEja5gef6DPBD4HbAAcAuU3ckrA98DXgrcFtgP+ALCXNHHr8zsBtwe2C14ZxRjwbuBWydsB3wWuBpwFzgf4GjhvOeADwKuAewJrADcNkS/j9IWskYrCSNw7OBN1dxaRULgDcxEogGb6ji2ipOooWjHRZ9koQ7AQ8G3ljFX6v4DnDsyCnPAY6r4rgqrq/iBOAUYNuRcz5WxS+r+AtwDC3sjTqgiquG+18AvL2Knw/dgv8JbDa0Wv0NuA1wTyDDORcv+/8aSTOZwUrSOKwHnD/y/fnDsSlXVHHVjdw/+jyXV3H1yLELR27fGXjm0A14ZcKVwCOAdUfO+d3I7auBWy/yMxZ9vkNGnutyIMD6VXwT+ADwQeDShMMS1lhMzZJWYgYrSePwW1pImXKn4diUtRNudSP3T7kYuG3CLUeObThy+0Lgk1WsNfJ1qyoOXIZaR2f4XAjsucjz3aKK7wFU8b4qHgRsSusSfMUy/BxJKwGDlaRxOAp4fcLcYbD4G+EfA84Hb0pYLeGRwL8Bn1v0Sao4n9a1d8Bw7kOBJ4+c8ingyQlbJ6yScPNhcPwGy1n3h4HXJNwbIGHNhGcOtx+c8JCEVYGrgGuA65fz50iaoeaMuwBJs9JbgTWAM4bvPzccm/I74ApaK9XVwAuq+MUNPNezgY/TBor/EPgssApAFRcOA87fSQtzC4dzXrg8RVfxpYRbA0cP46r+AJww1L8GcDBwV1qo+jpw0PL8HEkzl+tYSZoow3IIn6pavlalhM8Cv6hi/66FSdJSsCtQ0ow2dMHdLeFmCdsA2wH/PeayJM1SdgVKmunuCHyRto7VRcALq/jJeEuSNFvZFShJktSJXYGSJEmdGKwkSZI6mYgxVuuss05ttNFG4y5DkiRpiX784x//vqrmLu6+iQhWG220Eaeccsq4y5AkSVqiJOff0H12BUqSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpkz7gKW1YNe8YlxlzAr/Pig5467BEmSZhxbrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHWyxGCV5OZJfpjk9CQ/S/Km4fhdkvwgyTlJPptkteH46sP35wz3bzTN/w2SJEkTYWlarK4FHltV9wc2A7ZJsgXwDuDgqro7cAWw+3D+7sAVw/GDh/MkSZJWeksMVtX8efh21eGrgMcCnx+OHwlsP9zebvie4f7HJUmvgiVJkibVUo2xSrJKktOAS4ETgHOBK6vquuGUi4D1h9vrAxcCDPf/Abhdx5olSZIm0lIFq6paWFWbARsAmwP3XNEfnGSPJKckOWXBggUr+nSSJEljt0yzAqvqSuBbwEOBtZLMGe7aAJg/3J4PbAgw3L8mcNlinuuwqppXVfPmzp27fNVLkiRNkKWZFTg3yVrD7VsAWwE/pwWsZwyn7Qp8ebh97PA9w/3frKrqWLMkSdJEmrPkU1gXODLJKrQgdkxVfTXJWcDRSd4K/AQ4fDj/cOCTSc4BLgd2nIa6JUmSJs4Sg1VVnQE8YDHHf00bb7Xo8WuAZ3apTpIkaQZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKmTJQarJBsm+VaSs5L8LMk+w/EDksxPctrwte3IY16T5JwkZyfZejr/AyRJkibFnKU45zrg5VV1apLbAD9OcsJw38FV9a7Rk5NsCuwI3BtYD/hGkntU1cKehUuSJE2aJbZYVdXFVXXqcPtPwM+B9W/kIdsBR1fVtVX1G+AcYPMexUqSJE2yZRpjlWQj4AHAD4ZDeyc5I8kRSdYejq0PXDjysItYTBBLskeSU5KcsmDBgmWvXJIkacIsdbBKcmvgC8C+VfVH4EPA3YDNgIuBdy/LD66qw6pqXlXNmzt37rI8VJIkaSItVbBKsiotVH26qr4IUFWXVNXCqroe+Cj/6O6bD2w48vANhmOSJEkrtaWZFRjgcODnVfWekePrjpz2VOCnw+1jgR2TrJ7kLsDGwA/7lSxJkjSZlmZW4MOBXYAzk5w2HHstsFOSzYACzgP2BKiqnyU5BjiLNqNwL2cESpKk2WCJwaqqvgNkMXcddyOPeRvwthWoS5IkacZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktTJEoNVkg2TfCvJWUl+lmSf4fhtk5yQ5FfDv2sPx5PkfUnOSXJGkgdO93+EJEnSJFiaFqvrgJdX1abAFsBeSTYFXg2cWFUbAycO3wM8Edh4+NoD+FD3qiVJkibQEoNVVV1cVacOt/8E/BxYH9gOOHI47Uhg++H2dsAnqvk+sFaSdXsXLkmSNGmWaYxVko2ABwA/AO5QVRcPd/0OuMNwe33gwpGHXTQcW/S59khySpJTFixYsKx1S5IkTZylDlZJbg18Adi3qv44el9VFVDL8oOr6rCqmldV8+bOnbssD5UkSZpISxWskqxKC1WfrqovDocvmeriG/69dDg+H9hw5OEbDMckSZJWakszKzDA4cDPq+o9I3cdC+w63N4V+PLI8ecOswO3AP4w0mUoSZK00pqzFOc8HNgFODPJacOx1wIHAsck2R04H9hhuO84YFvgHOBqYLeeBUuSJE2qJQarqvoOkBu4+3GLOb+AvVawLkmSpBnHldclSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInSwxWSY5IcmmSn44cOyDJ/CSnDV/bjtz3miTnJDk7ydbTVbgkSdKkWZoWq48D2yzm+MFVtdnwdRxAkk2BHYF7D485NMkqvYqVJEmaZEsMVlV1MnD5Uj7fdsDRVXVtVf0GOAfYfAXqkyRJmjFWZIzV3knOGLoK1x6OrQ9cOHLORcOxf5FkjySnJDllwYIFK1CGJEnSZFjeYPUh4G7AZsDFwLuX9Qmq6rCqmldV8+bOnbucZUiSJE2O5QpWVXVJVS2squuBj/KP7r75wIYjp24wHJMkSVrpLVewSrLuyLdPBaZmDB4L7Jhk9SR3ATYGfrhiJUqSJM0Mc5Z0QpKjgC2BdZJcBOwPbJlkM6CA84A9AarqZ0mOAc4CrgP2qqqF01K5JEnShFlisKqqnRZz+PAbOf9twNtWpChJkqSZyJXXJUmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJ0sMVkmOSHJpkp+OHLttkhOS/Gr4d+3heJK8L8k5Sc5I8sDpLF6SJGmSLE2L1ceBbRY59mrgxKraGDhx+B7gicDGw9cewIf6lClJkjT5lhisqupk4PJFDm8HHDncPhLYfuT4J6r5PrBWknU71SpJkjTRlneM1R2q6uLh9u+AOwy31wcuHDnvouGYJEnSSm+FB69XVQG1rI9LskeSU5KcsmDBghUtQ5IkaeyWN1hdMtXFN/x76XB8PrDhyHkbDMf+RVUdVlXzqmre3Llzl7MMSZKkybG8wepYYNfh9q7Al0eOP3eYHbgF8IeRLkNJkqSV2pwlnZDkKGBLYJ0kFwH7AwcCxyTZHTgf2GE4/ThgW+Ac4Gpgt2moWZIkaSItMVhV1U43cNfjFnNuAXutaFGSJEkzkSuvS5IkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE6WuNyC1NMFb77vuEtY6d3pjWeOuwRJmrVssZIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpmzIg9Och7wJ2AhcF1VzUtyW+CzwEbAecAOVXXFipUpSZI0+VYoWA0eU1W/H/n+1cCJVXVgklcP37+qw8+RNGYPf//Dx13CSu+7L/7uuEuQtAKmoytwO+DI4faRwPbT8DMkSZImzooGqwKOT/LjJHsMx+5QVRcPt38H3GEFf4YkSdKMsKJdgY+oqvlJbg+ckOQXo3dWVSWpxT1wCGJ7ANzpTndawTIkSZLGb4VarKpq/vDvpcCXgM2BS5KsCzD8e+kNPPawqppXVfPmzp27ImVIkiRNhOUOVkluleQ2U7eBJwA/BY4Fdh1O2xX48ooWKUmSNBOsSFfgHYAvJZl6ns9U1f9L8iPgmCS7A+cDO6x4mZIkSZNvuYNVVf0auP9ijl8GPG5FipIkSZqJXHldkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUyZxxFyBJmn4nPerR4y5hpffok08adwmaALZYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6mTPuAiRJ0o37wMu/Mu4SVnp7v/vJXZ7HFitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqZNqCVZJtkpyd5Jwkr56unyNJkjQppiVYJVkF+CDwRGBTYKckm07Hz5IkSZoU09VitTlwTlX9uqr+ChwNbDdNP0uSJGkipKr6P2nyDGCbqnr+8P0uwEOqau+Rc/YA9hi+3QQ4u3shk2Md4PfjLkLLzes3c3ntZjav38y1sl+7O1fV3MXdMbaV16vqMOCwcf38m1KSU6pq3rjr0PLx+s1cXruZzes3c83mazddXYHzgQ1Hvt9gOCZJkrTSmq5g9SNg4yR3SbIasCNw7DT9LEmSpIkwLV2BVXVdkr2BrwOrAEdU1c+m42fNELOiy3Ml5vWbubx2M5vXb+aatdduWgavS5IkzUauvC5JktSJwUqSJKkTg9UMlOSuSVYfdx2SJOmfGaxmmCRrA/sBrzNcSdINS5Jx16DZx2A1gyTZqKquAL4ArAnsZ7iaPL6YzyxJHpTELbdWMklSVZXk4Ul2T/K4YfkfzQCjr6PD/sMzhsFqhkiyFvCuJK+rqhOBLwLrYbgam6k//CT3HV681wcYXswNVxNs5NrNo22t9YYk2463KvU0/B0+BvgkcHfgvcBLktx9rIVpiaZC8XD7ecATZlIoNljNHFcB7wPunWS/qjoJOAbD1ViMfBp+PO06vAV4S5KXj74oaDIN1+6JwFHA6bRFjV+U5OnjrUy9JNkEeAGwb1W9BtgV2BjYaqyFaYlGQtVewD7A2VX11/FWtfQMVhNu6pN1Vf0N+D7wQWCLRcLV7YE3Gq5uOsMb8wOBVwDbV9Vjgc/RtnKyW2lmmAe8vqoOBfanhay9kmwz3rK0IjIAHgXcDdg6ya2q6lTaNd5jGKuqCZbk9sAutJ1bzkvy9CQvGFqZJ5rBaoIt0hy6JkBVfRd4D/DQkXD1VWA14NZjK3aWGZqlHw08Blh/OPwd4I/Ag8dVl27YYrpnbwk8D6CqLgV+APwV+I8km9+01WlFjVzfdYA5VfVR4G1AaG/OAL8D/jQc0wRJMjfJFsPtbYA7AicABwMfB3YANgMeO6YSl9q0bGmjPkZC1UuAxwGXJTm+qo4eXkP2SfLGqnpzku9U1V/GWe/KbqT7b1Xgb7TWw7WBVyW5oqp+kuQ0YOcktwT+Ypfg5Biu3YNpQfjrwH8C705ySFXtA9yK1uW+ALgr8MOxFatlNlzfbYE3A/OTXAXsTruuuybZmfae986qunyMpWrxVgVen6RoDQU7AF8BzgVOrqpfD1vlzUtys6q6foy13iiD1YRL8gLg6cCzgYNobwS3q6oPJpkD7J7ktr5QTL/hhfvJwFNp3a8H0bpiLwOOTXIErQXroKq6enyVatRIIN4S+DBwKfAU4LO0cYsHJDkJWJfWjfsU4N7jqVbLK8m9gLcCewOnAZ8BPlZVOya5BtgaOLOqvjqc71jICVJVv03yf7ThFR+oqj/QPtz8EP4+iP35wM6THKrArsCJluTmwLW0N/JnALcAngO8PMkLq+pkYE9D1U0jyYOAdwD/Rev22wW4P23W0adorYofqaqvzLTpwSujoWVxKhBvRlv/7UlV9SjgPOAJwDpV9Qza39UjaIF5N+DT46hZK+Ra4Czg1Kq6uqq2B9YdBkD/N62r9/5JdjRUTYbFdM9/lfa3+Pgk+42c93DgzsBzquqsm7DE5WKL1QRZtHmzqq4BPpZkQ2AbYPeqmp/kdNoMpqOq6soxlTsb3Qv4YVV9D/hekmcArwK+BbwbuJjWgnh6Vf10jHXOekluBxyd5ClDF/lDgS2B+9G6Ft4N7As8J8lqVXV8krsAzwSeUVW/GE/lWlojLZGr0BoJLqe1Os6jffABOJqWra9LciStC/9bhqrxW2QM8bNoYx5/VVVfTXI5cMjQnXsu7UPQW2fK+53BakIk2aCqLhpuvxi4C/Bb4DD+MeDyLkmeBFwC7DFTfslmqpEX7qnAexawbZJ5VXVKVX0+bWHJjavqpCSfA64H/jDWwkVVXZbk+cBGSf5aVR9KchvawPTLh+t1MK3b4aLhMb9J8qqqumqctWvpDH+b2wHPpQ1GP4g27vH9SQ4HrqF1C+4znP834MgxlatFjISqvWmtVB8AvpFkt6o6Ksmew7E5wPNm0vtdDO7jNTSFrkEbE/B24AzauI//on26Xoe2/sqewAOBBwHPrqozxlHvbJO2TtVDgStpM1ReQGuZmg+cTZu+/bSp65FklapaOJ5qBf98DZK8DngjcK+Rwa9bAe+rqhOnQvOkD4bVv0pyT9rr5Ntpr5MH0Lrn/0YbT7UB8PmqOn5cNerGJbk/beHW7WnhandgLdoEgw8Pk4BuPtOGuxisJkSShwGH01pFPlhV30yyHq2raQ1gr6q6Osmaw6A+TbOhX/8IWrfRc2n9/+cDc4GH0WYbfbSqjnXMxmQYaWXcArh0CFOvAl4KPLyqzk3yclq42hm40kA18yS5D+3v8uyqeslwbGvatPxHVtU5YyxPN2Bxr5NJ1qGNb9y3qrZMshvtvfAZVfXFcdS5ohy8PkZTA/eGX7bv0RL7vYFtoc2SAA4EFgIfHD5VG6puAknuAbyI1rJxGO0T1e2A+1XV+6pqR1rztKFqggyhampF9aktht5BW/vt5CT3qKp3M0z6MFTNWL+kDZG4V5KNk6xeVV+n7aM6d7ylaXEWGVP16CTbJlm7qn4PrE7rAYC2FuBngZ+MqdQVZovVmCzyS/Z42to582nrIv0Pbcr+R4b770h7z7hkXPXONsOb80toM41eOoy/WQM4CXhWVf1yrAVqsYYB6F+hhd5TktwXWLWqTh1arl4JbFCu+TZjTXX1DrM+Dwf+AnyDtozGUcB2VfWjcdaoG5bkpbQlhM4AtqB1/60B/DttketNgCdX1W/GVuQKMliN2fBLtj1tZtmjaYui3ZU2yPLDVfXesRU3i4x0Id0VuJo2w2gT2ti2C2ifhEPb/PpJVXXh2IrVP1nkQ8qtaAtEXk5ruXgALRx/oqo+leTudhPNXCN/p3OGmX6r0QasP5j2oedrwwxPW5EnUJL7AW+qqqcm2Qf4t6raKm1NxvsA96XNvD77Rp9owtkVOEZJNgW2rqpHA2sCV9DGfPyANqZnlyRrjbHEWWOkC+mrtG6jH9Fm9x1Fm779OdoL+KsMVZNj5I122yT701ovLqBNuz+etv3F12gTPwBm7Kfg2WhkuMTGQ8s9AEOomlNtY94XAafQpuufaqiaHFPXb8TFwOlJPkob8vLE4fh2wFlV9cmZHqrAYHWTWswv2V+BC5K8FrgHbUXZvyXZrqp+CDxsJk0xncmGF+23Av9RVTvTgtSxwK9os46+B3yb1rK4uGupMRhC1VNoe8KdWlXXV9UhVbV3VR1HC1TPA/7fcL4zNmeIkdC8Ne1v8b9pm2TfHf4pXP2NFq5uD7wGlxGaCEOX7VRL8m2HQeqXAxsBdwd2Ha7hc2kzd283tmI7syvwJrJId8V2tDFV3we+RFt4ctPhl+z5tOUVtq+qy8ZW8CwwMtX+wbSVuA8E9q9/rCf2fmBhVe2btn7YU2kDKj9SVdeNq+7ZLsm6wAOq6rhhnM0RwDtprVEPoW1JczBwW2B/4Iiq+vK46tXySzKPNjP6NcAdaBN8zgX+e6pLd2TM1Wq0lfR/O7aCBfy9N+YOVfWtJC+j/U3eHngTrUHhubT3wKLNsN6xqn42rnp7M1jdxIZ1dPagrX10TpLH0nZevz0taO1IW7bflbunSZJbTA1eTvII4FDaIoL7AseNTBp4FrBZVb1m+P4JwOlOIhivtI12zwN+W1VXJvkEbbunWwA/o6319uuq2iPJetX2ILN7aIZJW9D1QGCbqrrbcOyRwE60iT6fm5pEEtchmyhJ3kRbR+y7tOu1A631+OXAx2jbC92b9r538kweqL44Bqub0NCEfTiw09SnquET91q0T2JXAP+3MvQxT6ph/Zv3Av9GG4fzYdoigh8dWq4Ooy0EeiXwLOC1VfW18VSrUUnuDMwdZvutCRwCfBn4Ou1anVZVP0myCW2R3R2r6orxVaxltWgAHrmW5wAvHlqYt6RtSv+fK9sb8kw30n17M+B1tMkjfx2WpyFtfbkv0Qat/3iMpU4rx1hNo8WMw/k9bfDeaklWG34J/0ZbaPK9VfVxQ9X0GULsvrQ1UtYCHklbM+VZSdYfpmjvDPyaNgPwpVX1NcdTjVeaNWifcj+d5PHV1nP7X1pAfmJVfWwIVU8HPg8caqiaWUbelLdKsnuS5w+vhy+mtUa+Z2iZ+jbwSkPVZBkNxUPr4duAE4G1kzw2yS2r6vu0D0NrjLHUaWeL1TRZZEzVOsBVwHXAMcDxVfWh4b6dacssvKzco2xaDcHq9cDdaDul7wmsQhvTdh1wSFVdPL4KdWOSvJ02Q/M64AND6N2F9vfz7WE5hXcOt4+z+2/mGBnv+CTaZJFX0LqMPlNV+w2t/W8FLq+qF9n1N1kWeb/bmfbB9dqqOjzJvsBmtO7b3wBvALZcmYOxsyemwSK/ZC+j9TGfTpvVsjfwuaHb6Tpgc2AXQ9X0mmodTPIdWqD6dlWdNdz3JVrLx6uT/KdjqCZHklWHVl1oszLXoi2g+/wkVNUnk1wPPCnJVVX1yuFxhqoZIG1B15tV22poHdrr4w60WdLnAc9MW51797TlNFaHv7eIaEKMvN+9ENgN+BSwXZKnV9W2aRsq70UbZrHVyhyqwK7AaTHyS/Zg2oC9F9PW0tmX9on7CbSWq/+jDWI/czyVzg4jXQx3pS0a+TTgZkneOrxofxc4jhZ01xpjqRqRtsnu4UkeMxw6nrbe2xa0BXRflGSbqvo0bZzVuVOPNVTNGA8Dbpe2Jc3vaRN7VqPNHnsE8BhgtyQfqKqzy83nJ8owlmrq9hxa6/FLq237tTWwMMn7hwlBnwTeVbNg1wpbrKbJMNvsi7Tupe8nuQXwJ1oT93pTXYGafkOoegptRe5zaGOoPkKbofKSJO+rqv9Ncma5btgkuT3D/plJPgxcT5t2vxNtvNXNaa2MN6uqI8dXppZXVX06ya2BHyV5TlWdkbb5/I+HrsE70hbs/fp4K9Wi0havXg84a2hEuBj4G21ZjCmvoDUoUFUH3cQljo0tVp0sOsC5qr5DS+g7JFlnmN5/Mm0m01ZJ1nZQ9E1jmInyBmBr2oyUF9FaDd9F+4T18rSFBq8cW5H6F1V1MvAo4J7Ab2lbPR1Nu34b0AapH0ZbD0czyNRrX9rin/ehvVZ+dJi1ex6wZpJDaVtJfbmqTvD1cuJsAvxbkiNpYx4voi3E+5Ekmw/nPBS4e5Jbzqbr5+D1DhYZU/U44DbACVV1VZKDaV0X21XVpcMA6lWr6uoxljyrJNmAtrTC2rQBsDvTllm4HPg4sKDctHViDW++7wXuR5u+vQ3w3ao6cQjELtY6Aw1vvofQuo6+P4xH3Zm2dyq0631VVZ00phJ1I4b3so/RFv98bVV9YDi+J//YZuhBwLNrJVr8c2kYrDrKP3bt/hWtOfQdVXVSkoNog6MfVVV+uh6TJG8DLq2qQ9K2UXgJ8PSqOn/MpWkJhtli7wK2qKo/LDKoXTNMkg1pq+NfXlV7jBx/GfAfwDPLRZInzqKzMZM8ENiK9qH1TODoaqvgP5C2vNB1NQtXwneM1QoY+v+vqKprk2xFm+3wiCSvpg3K3G1ozHpFkmtp61UZrMbnTGDP4ZPW04B9DFUzw7C0wkLgl0nu6RpVM951wBm0mWPbVNXUXo7vSbIKTiKZSFOhKsmuwKrABVX1jiQvoPXM/CnJ2rRemw/O1kkktlgth6GveC5tjMd/0aaWrg3cmjaTZVda8+jHaJtNvrKqvjWeajUlbZHJp9KuzRHliuozztByddWwSKRmiJGZuQ+lvXZeQJtE8jza1ibHVNWJYyxRS2mYCPRu4NO0rr5vVtXBafvcPgR4HPDk2db9N8oWq+WTYbzUW4CX0RZC+yxwWZJ/B/6nqq5J8l3aJpM2aU+AqvojcGSST1fb8Nq1jmaYqTDstZtZhlD1BNqYqvcwbGsCHAssBJ6Xtpny8WMsU0uQtiDv5sBTqurnSR4EvGn4c3xvkk8Ca8z2IS8Gq+Uw0sd8S9pWC0ekLdf/MeB7wKFJ7kGbEfHM2f5LNoEWgmsdzWReu5ljWOtoLdrCvE8FbgucBZxaVZck+Rxt4U93PZgwIy2NUx9k7kSbYPBt4OfAacD+wMFJVquqd+JwF7sCl1eSZwGvAp5Im8XyXOBQ2j50D6cN6PtUVf1iXDVK0qRI8iraAq+Ppc0UOzfJ82jL0JznauqTZZHZ7hvTxlNdO/TK7EdrNPjZsDDofYDLqurCMZY8MWyxWn63A06utv3JR5JcRltT55ZV9VHAKcKSZrUkm9GWmnkTbfLOLsBjhlB1f9qH03Oq6tdjLFOLMRKqprYZujTJfFoL1RzgqCS7VNXptJYrDQxWy+8CYLNhjaT5VfX5YQr/k5McXVV/GnN9knSTG+k+eiTwTGDrJJdW1RvTtinaP8l1tI15XzUspqwJlLaDyJ60HpiNaLPdP0TrDlwP+FCSLavqr2MrcgIZrJbf/wLPpm0a+pMkt6QNVN/HUCVptpkKVEOoehRt1tjewHzgMWn7Ae4wvFmvTVut+8dORJgci7kWC4HTqup3SS6h7YDwAOAhVXVA2h6OhqpFGKxuxA39wQ+rPf8hyV60NP8IYGNgv6o67yYuU5LGKm1/v3sl+XZVLaQNcv5AVX05yYm01ql3DC+ph4w+1lA1GRYZU/Vi4I7AQbSemd2GyVkXJLmetp3N94HLxlbwBDNY3YBFfsm2AwJcX1XHDlP151TV5UneUW2z0FtV1VXjrVqSxuLBtB0nbjV08/0BOCDJMVX1myTfo61b9egkC6rqM+MsVv9q5P3uP2gb1J9aVVcm2Q/YL8kmwC+B+wMHjD5G/8xNmG/AyC/ZC4C30BL6B5K8crj/umEa8dQvlnv/SZqVqurLwO9oM6O3B46n7cd5yDCu6n60/Tp/Baw/pjK1BMOMvxfQZrkvTHJ74ERgX9qMzk2AXarqN2MrcgawxWoRi7RU3Zw2G2LXqvpJkmOAryf5c1UdOjo92OQuabYZfb0cWvBPAp4A/JW2CGiAT9K2sNkdeCCw1bCt1HW+bo7XIu9369AaCJ5SVfOTvAK4ZmhE+HNVvXCsxc4gBqsbMLRUnU1r+rxF2uaTvxmmnu443uokafyGgeqPBu5L29rko0n+TNs26vqqOijJocPpmwNvBJ5abqA9douEqr2Bu9IC8BeHU64Cbj0MhdknybZVdel4qp1ZDFaDJJtU1dnDC8XTaNOEd6INznspbXbLJcCGwC2H7RcWjq9iSRqPkSUVHkLr/jsLmJfku0O4Wgg8Z1g88gu0ldcfRlvT6udjK1x/NxKqXkTrmdkJOBVYL8mBwDXA+2nLKjzXULX0XHkdSLI1bW2OB9LGAbwbOLeqXjzcfwRtevBVtD7m3arK/f8kzVpJNgfeTNtk/owkO9LC05lDuNoJOGtYQJJhyxOn5k+QtI3p3wO8gdaYsC1tS5pbA2fSWh53rqqzxlbkDDTrW6yGT1Sb036xNqVNC/4WsF2SJ1fVV6rq34dPZqvQFgM9f2wFS9JkWAt4PG3xyDOAzwPXM4yhqqpD4Z/WtzJUTZiq+uOwbNA9aV20j0kS4FLgN8ATbKladrM+WA0D884FXk9bDO0xtCbQv9BWUV9YVcdV1Q/GWackTZKqOn4YNvH2JL+tqqOSfJ72AfT0kfPsFplg1fb/uxqYk+S+tBXWvwkcbKhaPrM+WA3OoM2G+COwZlX9PskXaZ++dklybVWdONYKJWnCVNWxw7pVbxm6+o4Ejhp3XVpmFwBfpXULrkfbYNkNlZfTrBxjtchsiNWAhVW1cFgI7bHA/lX1o2EfwCcCX62qi8dYsiRNrCRPAQ6kdQ3+bnQpGs0MwxIYd6TN5pw/7npmslkXrBYzxXRTWkvVAVV1TZLXAg8BDqyq/3P2nyQtWZK5VbVg3HVI4zbrgtWUYYrps2i7dJ8KfAN4Y1Wdm+StwN2B51XVNWMsU5IkzSCzMljdwBTTS2lLLbywqs5JcruqcoNJSZK01GZlsAJIsjptiul7R6aYLgA+QusWdGVgSZK0TGbtrMDFTDG9M22zyY8YqiRJ0vKYtS1W8PdWq31pM1mmppi6wqwkSVouszpYgVNMJUlSP7M+WEmSJPVys3EXIEmStLIwWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRO/j/0nFv+UbvkvAAAAABJRU5ErkJggg==", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top[:5].index,y=top[:5].values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "متأسفم، اما شما متن اصلی فایل Markdown را ارائه نکردید تا بتوانم آن را ترجمه کنم. لطفاً متن فایل Markdown را ارسال کنید تا بتوانم آن را به فارسی ترجمه کنم.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAHuCAYAAADELJsvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZdklEQVR4nO3debytc9n48c/lHENmcsxzREqGjBkbRMgYGRJShqg0e2gQ9aSJRkoTqUilqJSkNOjXQElFnlQkKZ4iPWnC9fvj+q72sjucs89ea6/7nPN5v177tde613B/73vdw/WdIzORJElStyww6gRIkiTpPxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSRqaCP6v7++BCP7W9/zgUadPkrosHMxW0lSI4GbgeZl8ddRpmRMRTM/kvlGnQ9L8w5I0SVMugoUjeEcEv2t/74hg4fbajhH8NoITI/jfCG5+uFK3CNaK4JsR/CWCr0bw3gg+1vf6VhF8J4K7I/hxBDv2vXZlBKdGcFX7/FciWK69tmYEGcEREfwG+Fpb/twIbojgrggui2CNtjwiOCOCOyK4J4KfRPC44exBSfMDgzRJo3ASsBWwMbARsAXw6r7XVwSWA1YBDgXOjmC9h/iuTwDfBx4JnAwc0nshglWALwJvAJYFXg58JoIZfZ8/CDgcWB5YqL2n3w7AY4CdI9gTOBHYB5gBfAs4v73vacD2wKOBpYD9gT/OYj9I0kMySJM0CgcDp2RyRyZ3Aq+nL7hqXpPJPzL5BhVo7T/+SyJYHdgceG0m/8zk28AlfW95NnBpJpdm8kAmlwNXA7v2vecjmfxPJn8DLqQCx34nZ/LX9vrRwJsyuaFVff43sHErTfsXsASwPhDtPbdPfNdIUjFIkzQKKwO39D2/pS3ruSuTvz7M6/3f86dM7u1bdmvf4zWA/VpV590R3A1sC6zU957f9z2+F1h83DrGf987+77rT0AAq2TyNeA9wHuBOyI4O4IlZ5JmSZotBmmSRuF3VMDTs3pb1rNMBIs9zOs9twPLRrBo37LV+h7fCpyXydJ9f4tlctoE0trfu+pW4Khx3/eITL4DkMm7MnkCsAFV7fmKCaxHkh7EIE3SKJwPvDqCGa2h/mthrLF/8/oIFopgO2B34FPjvySTW6jqy5Pbe7cGntH3lo8Bz4hg5wimRbBI65iw6hym+33Af0XwWIAIlopgv/Z48wi2jGBB4K/A34EH5nA9ksT0USdA0nzpDcCSwHXt+afasp7fA3dRpWf3Akdn8vOH+K6DgXOoRvrfBz4JTAPI5NbW2P8tVGB4f3vPMXOS6Ew+G8HiwAWtHdqfgctb+pcEzgDWpgK0y4C3zsl6JAkcJ01Sx7QhMj6WOWelXRF8Evh5Jq8baMIkaYpZ3SlprtaqGR8VwQIR7ALsCXxuxMmSpEmzulPS3G5F4CJqnLTfAsdk8qPRJkmSJs/qTkmSpA6yulOSJKmDOlHdudxyy+Waa6456mRIkiTN0jXXXPO/mTlj1u+cnE4EaWuuuSZXX331qJMhSZI0SxFxy6zfNXlWd0qSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB00fdQLGu/Osjw19HTOOefbQ1yFJkjQZlqRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkddAsg7SIWCQivh8RP46In0XE69vytSLiexFxU0R8MiIWassXbs9vaq+vOeRtkCRJmufMTknaP4AnZ+ZGwMbALhGxFfBm4IzMXAe4Cziivf8I4K62/Iz2PkmSJE3ALIO0LP/Xni7Y/hJ4MvDptvxcYK/2eM/2nPb6UyIiBpVgSZKk+cFstUmLiGkRcS1wB3A58Evg7sy8r73lt8Aq7fEqwK0A7fU/A4+cyXceGRFXR8TVd95556Q2QpIkaV4zW0FaZt6fmRsDqwJbAOtPdsWZeXZmbpaZm82YMWOyXydJkjRPmVDvzsy8G/g6sDWwdERMby+tCtzWHt8GrAbQXl8K+OMgEitJkjS/mJ3enTMiYun2+BHATsANVLD2zPa2Q4GL2+NL2nPa61/LzBxgmiVJkuZ502f9FlYCzo2IaVRQd2FmfiEirgcuiIg3AD8CPtTe/yHgvIi4CfgTcMAQ0i1JkjRPm2WQlpnXAZvMZPmvqPZp45f/HdhvIKmTJEmaTznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB80ySIuI1SLi6xFxfUT8LCJe3JafHBG3RcS17W/Xvs/8V0TcFBE3RsTOw9wASZKkedH02XjPfcDLMvOHEbEEcE1EXN5eOyMz39b/5ojYADgAeCywMvDViHh0Zt4/yIRLkiTNy2ZZkpaZt2fmD9vjvwA3AKs8zEf2BC7IzH9k5q+Bm4AtBpFYSZKk+cWE2qRFxJrAJsD32qLjIuK6iPhwRCzTlq0C3Nr3sd8yk6AuIo6MiKsj4uo777xz4imXJEmah812kBYRiwOfAY7PzHuAs4BHARsDtwNvn8iKM/PszNwsMzebMWPGRD4qSZI0z5utIC0iFqQCtI9n5kUAmfmHzLw/Mx8APsBYleZtwGp9H1+1LZMkSdJsmp3enQF8CLghM0/vW75S39v2Bn7aHl8CHBARC0fEWsC6wPcHl2RJkqR53+z07twGOAT4SURc25adCBwYERsDCdwMHAWQmT+LiAuB66meocfas1OSJGliZhmkZea3gZjJS5c+zGfeCLxxEumSJEmarznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10CyDtIhYLSK+HhHXR8TPIuLFbfmyEXF5RPyi/V+mLY+IeFdE3BQR10XEpsPeCEmSpHnN7JSk3Qe8LDM3ALYCjo2IDYATgCsyc13givYc4OnAuu3vSOCsgadakiRpHjfLIC0zb8/MH7bHfwFuAFYB9gTObW87F9irPd4T+GiW7wJLR8RKg064JEnSvGxCbdIiYk1gE+B7wAqZeXt76ffACu3xKsCtfR/7bVs2/ruOjIirI+LqO++8c6LpliRJmqfNdpAWEYsDnwGOz8x7+l/LzARyIivOzLMzc7PM3GzGjBkT+agkSdI8b7aCtIhYkArQPp6ZF7XFf+hVY7b/d7TltwGr9X181bZMkiRJs2l2encG8CHghsw8ve+lS4BD2+NDgYv7lj+n9fLcCvhzX7WoJEmSZsP02XjPNsAhwE8i4tq27ETgNODCiDgCuAXYv712KbArcBNwL3D4IBMsSZI0P5hlkJaZ3wbiIV5+ykzen8Cxk0yXJEnSfM0ZByRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpg2YZpEXEhyPijoj4ad+ykyPitoi4tv3t2vfaf0XETRFxY0TsPKyES5IkzctmpyTtHGCXmSw/IzM3bn+XAkTEBsABwGPbZ86MiGmDSqwkSdL8YpZBWmZ+E/jTbH7fnsAFmfmPzPw1cBOwxSTSJ0mSNF+aTJu04yLiulYdukxbtgpwa997ftuW/YeIODIiro6Iq++8885JJEOSJGneM6dB2lnAo4CNgduBt0/0CzLz7MzcLDM3mzFjxhwmQ5Ikad40R0FaZv4hM+/PzAeADzBWpXkbsFrfW1dtyyRJkjQBcxSkRcRKfU/3Bno9Py8BDoiIhSNiLWBd4PuTS6IkSdL8Z/qs3hAR5wM7AstFxG+B1wE7RsTGQAI3A0cBZObPIuJC4HrgPuDYzLx/KCmXJEmah80ySMvMA2ey+EMP8/43Am+cTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdNMsgLSI+HBF3RMRP+5YtGxGXR8Qv2v9l2vKIiHdFxE0RcV1EbDrMxEuSJM2rZqck7Rxgl3HLTgCuyMx1gSvac4CnA+u2vyOBswaTTEmSpPnLLIO0zPwm8Kdxi/cEzm2PzwX26lv+0SzfBZaOiJUGlFZJkqT5xpy2SVshM29vj38PrNAerwLc2ve+37Zl/yEijoyIqyPi6jvvvHMOkyFJkjRvmnTHgcxMIOfgc2dn5maZudmMGTMmmwxJkqR5ypwGaX/oVWO2/3e05bcBq/W9b9W2TJIkSRMwp0HaJcCh7fGhwMV9y5/TenluBfy5r1pUkiRJs2n6rN4QEecDOwLLRcRvgdcBpwEXRsQRwC3A/u3tlwK7AjcB9wKHDyHNkiRJ87xZBmmZeeBDvPSUmbw3gWMnmyhJkqT5nTMOSJIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10Cx7d85Pfn/m64a+jhVf8Pqhr0OSJM39LEmTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA6aPpkPR8TNwF+A+4H7MnOziFgW+CSwJnAzsH9m3jW5ZEqSJM1fBlGS9qTM3DgzN2vPTwCuyMx1gSvac0mSJE3AMKo79wTObY/PBfYawjokSZLmaZMN0hL4SkRcExFHtmUrZObt7fHvgRVm9sGIODIiro6Iq++8885JJkOSJGneMqk2acC2mXlbRCwPXB4RP+9/MTMzInJmH8zMs4GzATbbbLOZvkeSJGl+NamStMy8rf2/A/gssAXwh4hYCaD9v2OyiZQkSZrfzHGQFhGLRcQSvcfA04CfApcAh7a3HQpcPNlESpIkzW8mU925AvDZiOh9zycy88sR8QPgwog4ArgF2H/yyZQkSZq/zHGQlpm/AjaayfI/Ak+ZTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQdNHnQCV687aY+jrePwxlwx9HZIkaTAsSZMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6qDpo06ARu+yD+069HXsfMSlQ1+HJEnzEoM0jdR55+w89HUccthlQ1+HJEmDZnWnJElSBxmkSZIkdZDVnZpvvf384Ve1vuxAq1olSXPGIE0agcM/u8vQ1/GRvb880+W7fu41Q1/3pXudOvR1SNK8bmjVnRGxS0TcGBE3RcQJw1qPJEnSvGgoQVpETAPeCzwd2AA4MCI2GMa6JEmS5kXDqu7cArgpM38FEBEXAHsC1w9pfZLmArtddObQ1/HFfV4w0+W7f/rjQ1/3F5558EyX7/HpLwx93Zc8c/eZLt/nM98d+rov2nermS5/0WdvHfq637X3ajNdfv5n7hz6ug/cd8ZMl1/10eGve5vnzHzdN7/j90Nf95rHrzjT5X8447qhr3uFlzx+psvvePdXh77u5V/41KGvY7zIzMF/acQzgV0y83nt+SHAlpl5XN97jgSObE/XA26cxCqXA/53Ep+fDNftul2363bdrtt1z1/rXiMzZx4pD9DIOg5k5tnA2YP4roi4OjM3G8R3uW7X7bpdt+t23a7bdXfBsDoO3Ab0l0Gv2pZJkiRpNgwrSPsBsG5ErBURCwEHAJcMaV2SJEnznKFUd2bmfRFxHHAZMA34cGb+bBjragZSbeq6Xbfrdt2u23W7btfdFUPpOCBJkqTJce5OSZKkDjJIkyRJ6iCDtJmIiLUjYuFRp0OSJM2/DNLGiYhlgJcDJ83rgVpExKjT0AUz2w+T3TcRMeXnlr9nt4ziGJhbeex2X//x3EZt0GyIiKUiYpX2eJ2IWHRCn7fjwJiIWDMzb46IpwB7AHcAb8vMfwxwHZEd2Om9dETENsD6wM3AtzLzn1O17vZ4WmbeP+x1PkxaFsjMB9rjVYH7M/P2SX7nv7cpItYD7s3Moc2P0ztu2+ODqd/z+8CPM/M3w1rvIIw7FnrH5L9/kzn5nlGLiMcBv83Mu+dkWya57t4+3A5YjLrGf2mq1j9Z7fh9NHAtcG1m/rotf9DvO4rfu2/fLgzcN8rr1ihFxHOAv2TmZ0ew7ik9nyYrIqYD2wOPBdYB1gSelZl/n93vMKfXRMTSwNsi4qTMvAK4CFgZePmclKj1coYRsWFEbNOLpNtJPvJcY0vHk4DzqIPnHcCLImKdYa533E35MOBpo8qVRcQTqBOIiHgp8Hnggog4u+89E/qtImJ94IT2+Bhq/34hIl7dbpwDFREzgFdGxEsj4lDgpcC9wPOA50fEJoNe5yC14/AZbZ+fGxGPz8wHZrXfI2LbiNi1BUQjP6/6zvfHAKcA74qIpdq2TNl1tu2H3YEzqevXmyLiJVO1/slo58sxwI+p69GT2/L+a8a67ca34BSnrReg7QZcALw3Io4d9jrb/8dGxNYRsdyISui3jIjP9y16AnBPfxqHuO6DIuKoiHghwFSfT5OVmfcBvwD2AZ4FnDORAA0M0vr9FXgX8NiIeHlmfgO4kDkI1PpO6Ke27zgVODUiXtaVHH8r4TkaOD4z/ws4FFgX2GmY6+272B4LvBi4cSpK7x7CtsApLWf4RGBX6mR6dC9Qm4Pfam1gzYh4O7BX+97DgH9SAenyg0n6v/0FuII6Tg8FnpeZbwJeQ41RuDV0tzopIh4LvB74CnAT8JmI2LJXovYQn9kS+Ci1X49rwf5IA7W27r2AjwC/A2ZQgdoyU3ljaaXBLwf2BP5GHXdHRMRrpmL9cyLKMsDjgN2BxYH/Ac5p+22h9r7jgfdR1+lDh3AuzSxtK0bE6u333ZE6Vl9DZYQOjYhFhrXuts49gXOBw4EP0zKVUykzv0dd0y5uixYDHtFL47DW24L244GFgadHxDfbOmeZiRu1/vS1WpSPAp+m4ovt+t4368xGZs7Xf7Qq3/Z4IWCbtjNf3pbtALwTeCOw8AS+d1NqMN/12vOnU7nDvUa9ve3v+cDVwHuBxdprOwI/ApYZchqWB74LrEdlFPalAsbNRrA/jgb+X/vNF+87Dq4D9puD75sO7AKc1fZlr0nBBsC3gKcOYRsWpqrnvwt8CJjWlu8MfA1YdJTH3MOkexPgc8CpfcuOpKreV3qIzywNHAVs354fBLwfOHTE27IQ8BngiX2/9+nAB4Gl2rIYchpWpCaMXgfYgiqRWrIdG/8HnDzq37wvrf+xL4BXA98GLutbdhwVmBwEXNnOry+1xycByw8xjesAVwGPbc/3oDJdu7Vrxhpt+doDXOfjgEPa41Xbti4GHAz8EFh22MdR/2/Uu5a059+mgo3XAvu3ffHYdqytPMhjov3OFwDb9C37HDUw/siP3wlsx07tWrAqsBTwJuA0qknKrlRc8LC/53xdkjauGH0pgMy8irq4bt1XovYF6iK8+Gx+70JUcPckYJW2+NtUEfHmA92I2dQX2S8HTM/MD1CBZ1DTdgH8niqZGWguJSJmRMRW7fEu1M3kcuAM4BzqhN+YVr0xTFE9d/+dA8/M9wEfoE6iJ0TEElkle18B/jWb37lhb/9mFW9/FfgUNV/tqyNikcy8nrpprjuAbdglIl7fHk/LajP5ZerieT9wYnvrQu35tMmuc0juoC7Gm0TEqm1bzga+Tt2MHqSVKnwceAmwYVv8ZeqG/ZSIOGJKUj1z04BlGPt9f0FNj7chcHJELNa71gxaK4laHvgksHpm3kRlhC7JzHuA+6jqzyuHsf6JGnfdfUlEvKZVYf4a+AdVAhkRcQAVkN8OJPBs4AXUvn4nlQl5UUSsNOj0tYf7Ar8C7oiInan5qM8FXgXslpm3RMTTWhqWGMB6l6Wa2fTaQN8BXE+VJh0LPDMz/wRsFxFLTnZ9s0hLZLk/InaPave6LbAScDKVET2Kqtp/HXWdmcz6plOBCxGxOXWP+BewQt/bTqBKMDut79h+EfAGqnbmfcAawFuo7TqVysD9cpbXhVFHnV34A14EXEwVJx/Qlj2Ruui9tj1/xOxEz1RbiaBukKdQpWmbtNf2oUpsFmWKckPj0rgrVXp2MfAJqsj62VTAdAXwDWD3Iax3ZSrQ/XzbH0tRua/DaLlQKsd8DrDAELd/b6pk6YlUoNr/2qFUcPVm6oL4S1op6Cy+8+nAz4Anz+S17akA8ItUW5ufAetOchueRpXy7dm/DcDefen5ZnvPl4HHT/Vx9jBp750jGwNbtovWI6gSqNOoIH1rKrjdcNxnN6EC582pavKfA5u315Ztx/HjRrAt69JK/ahc82XArn2//wep0ocnTEGaXgV8FliCuoleQd1QbwO27k93F/7a7/gtYP32fEkqg3Fu+61/QAVlm/S9fj5jJcVfAN4GLDfgdPVK1BcEfgPcDazVln2Kuk5Op66n1wNPH9B6l2vb84J27q5G1b5c1zt+qIz/z3r7bAp+oxdRNQLr9S27FPhc3/MlBrCezYFXtt/+e23ZwcCdwBbt+eHUNbqTNQPjtucpVGZzOlXo85123PSO5fWpDNWsv2vUGzPqP6q66xtUScr57YJ2bHtt+3bQLDub3/UMKtD7AlWS9rh2IbqVasvwTeAZI9rOx1DF5U+kgsTPARe0155JBRMv6nv/QC/mVNXE3cAbZvLaYVRvrg2GuP0rUwHq5uOW7wq8uj0+isrNv6l3UZ7Fd67SLphP6d9n7SL70fZ4h/a7n88kA7T2fScCr5jJ8h+03zGoAO7NwKqjONZmkf7d2kW/dyM+ngrULgSuoarfe0FOb3+u0I7PK/u+5/i273vVi9OncBt66doZuIGqZn4RVWq2N1Vd+17gt1Szhw8Aew4pLWsDS7bHi7b1rtue7wc8F3jaqH/3/v3WHi8EfKxdl9YCjmCss8AMqhrt1VQv5XX7PvND4K1U6fu3gVUGmT4qEPwkVZKzOFWSdgPVdrf3vgupYO3y3rE6yfXO6NvGD1JtCY9vz59CNWH4YDv3b2AIGemHSNfj2j5errf/+177OXBhezzpjDUVEH+Mqm06rm/5UVQNxIeoe8RjR30cz+rYbs/Xp4Ls51LB2lJtG35Ga6oxu39DmWB9btEaff6DurA+h7GSpQ9FxAOZeVZEfD9nozdGVE/BN1O96rYHDqF+nPOoE/4pwFmZ+fkYzbAT/6ByfT9s27NXRHyjNeB/P9XWZ+tWxfDJbEfanJpJB4kvUCfbqyPi7sx8W3vfNlSJyrOzqgSHZWHqInzTuP3/QHuNzHx/RNxJ7aObZ+M776EC/L9GxHLAn6hqmfOAx7Qi/O9SDY2vz8w75zTxffvzLmDTiHgVddFajLqRfIS62G9O3Ty+mpl/ndP1DUNELE41an9hZn47ItaiSk9/T7VFO4dqO3UFPKhR8l1UKeyxEfGyzHx7Zr6jNbr9WFQP1numajsyMyNiM+pcfwYVRB5M5ZrPB55KBU/voEpHtgT+e5BpiIhp1HH7QeD6iPgzFdTcR+3jozLzU33vH3mHpd76I2KjzPxxRNxLNbl4BBUMrEyVSn2tnU9PBXbOzLsiYnpm/jMi9qVKJjagMtO3DTCJ0zPznqjesEtSbc7WjoiVgc9FxJKZeUpm7h811tX0rOrkOdaqVg+jeoAvRF0v/gqsERFPyswrIuL3VEnyMsCRmfmtYfyeM/nOu6iMBhGxcLahqFqTkPUjYg2ohvyTXV9m/isiTgd+AqwaNRTLBe2a/APgf6lhT343xxs4JOOq7x8D3J2ZP2/P16ba3P45In5D3SNumdAKRh2BTuUfDxHxUxHvl2m5MqrK4CfA0hP47mdT3Wt7z59JlW6sTF2oX0RVtU1JlQxjuf1pVC5laermt23fe44Bjm6PF6Sq/FYY1Lrb42dRxdTbtudPbPvlGKrq7m0T2c+TTMvJVEBwAxUQXNx+63uoXNzJzEYJYt++DaptwUVUCdwXqRLK71HF9BcA75md75zANizU9t33qRKFi6kq9Cup3O236EgJ2vjtpkomvgCsM+74eEt7vGpL/4ntuH0SFbwdAyxCNRd4N/Divs+vOUXbsjZwSnu8GNXG5Jd9r29Ptft6bS9NVCna54GNBr1PGeuM8AiqBO8CKkB8PnVj3XZQ6xzwflyJaoz/XCrIfFL73VelArUvU9W1q1LVamvx4Mbry7f/A63yoqrMfw48pj0/hKrqfEZ7vklL9xsHuM7lGOtYtmK7lmzanv8XVfKyA7DgFPwu/deYRdu5uhBV2r1H32sHU22JB5YmWq90WokvVbv1bqqjxqFUU5jOVNM/zHYcR2Xa3w1c3pa9E7iEak93/Zxcm0e+YVO4A1fte/xCKjf2cirHtCBVfL1tuym8D5gxi+/rXSwXaP83pdp5bdb3nvOAHdrjldqPuNoUbvOeVHufi6i2PvtQVU3HtZPiZwyht2Hf+o+jcobPBv4OHNi3r75DBRpDq+Icl5Zem5w9aUOttAvgZlSQ81pmo43AuItZ7zuf2o6ZRalSlc2Bs9tF5lED3IaXAC9oj99KNV7uvXYEVZIy2z2Qp/A47D/3Tmm/e69H8f5t/y/anq9MZZqeRA3JcRRVDfoWapDT3ak2Xi9r7x9aG8Zx2zAd2Kq3LVTPv8uo6sXeNWBHqmqz185yKQbYXqrvmrMbFZSPD1iPoNqlPUC72Xftj7rW7kD1Wjy2b/kLqJvYv6tn2++8B2MB6cHt3H3Y9sGTSNupVHOXR7fnB1CZ9d3b802pJhOPYvIZrwWpzMi72jVoaapU9C19638FdQ/ZidYrfwp+nxdRGYsrqYKGbdr5987291MGWNDQft9fUBnkzzNWzfv8di79io5WcY7bjp2pQpAlqNLhy/teezlVkj5H7YNHvnFTsPOiXSx/TQVgW1E3iSOpUo4LqBzdi6jSlZ/M7s6kbs6voYK+9anqjVdRQcnm1E3m8X3vnzaMbXyItK1P5Ux3o3Ijv6aC0C2pgORshthWBdiIsbr4Y6m2JL9irORuUWazrd8A0rI/Yx0WNqVubou0155GlaYtPcHvPJgqEVySCswuogW8bX1fZYDDA1Bt575EK+mkep6dTpVSPrul5dFTdXzNIq1rAM9tj3cBbqQyMIdTpVBvbMteSZVe7NLeu0D7m0YFvUe15QtTN6v3tOf7MLWdBPo7aPwI+HR7vC7VBvUdjAVqy7T/A7uhjlv/U6mG5Bu1/fgHalaU/vevOOpjYCbbsB9jJYwLUiXql1FV31ABy7btWP4fqnRwK6qk+CNUgHAjQ7hh0xfoUxmdOxgLlA5qv/le7fmkG8n3ras3RuCbqeGIlqSCtrcx1kbtxGEe6zw407lPu46sw1gm6ZlUxukAqn31OgNc9yHUtbhXevkEqqT9+PZ8YWZRWDLC43l8LcFWbV8dT5U+LtSWbzPpdY16Y6dwpz6Rqub6DK0nXjv43tkuAr2c/FKz+X3btIvGkVQwdAJwIBXsXUDlCvaY2Q86Bdv6uHYBfFffsp2pruwDO8nGrXNm4x4tRw3oemV7fjiVy99nCvfF3lTw3QsEprcLwReoG/8PmWAOhwp0v9M7Aalc8KsYG3rjhkHeTKipRD5G6/XUlq1PlT58hhqWYsNBrW8A6d2Cajx/MlVls027IJ9OzYgQVA76mYxrRNt3Hr6SygAt0Z4vTlWFLsEUlZ6NS9djqEB5OnXT/nBbvg5VzXhmez7QtFEZi48wVjr3rHZ+P713DFIl4m/q+0z0/x/RMRDj/r+XKoVZoz1fuB0fd1IlJgdRwe6CVGnadVQQs2K7hhzLAEulZ5Lexfsejw/UDm3n9IxB/L48ODBajwq239rO6aWo6sT3MORM17h0LEe1mz6tb9lGVKe3gV5b+o6Jk4A/Avu259OoQO2bwCtHdezO5jb0MmW9bdmQasP3g773HEZ1MllyUusa9cYOeUeOv1A8gcq5v63vPStRxcwfmd0TkKp2+ThjvUCXaydZ/4Xykf3rnuLtXojqPXc5ldtfuC1/D62Kbhj7uT3egbqZ9UoUngW8vz3el7qhzbLn5ADTdnS7ObyMVk1Cldb0BhKcUFqoAGNXxjqF9KrtZrSL7JMZcJuw9nvuQrV3exVjQxD0jutFpvoYm400b0UN+HlJ37K9qEDtBGYyYDLweKo932rt85+jcvRLU4HJ9xjwcAsT2J79gXf2/R7XA2e3549mCEOdtO99BjXW0vm06njqRv5Z4Ent+QepxshdKUntvx6s2ff4BCpTtGZ7/jzg7dQMDbfz4EDpue29TxpSGpdjbAiX3lRP/QNan0BVffZKeWY6uPKc7huqjdvjqVLnXhXZW6mgbWkqqJ2qYTaOou4Vh1All4v2vfbeQR/bPPie9Nx2LvUGDJ5ODdEzZc2CJpj2Tfsev7idl2+mqqyf1I7lA6kS0B8ygFLQkW/0EHdm/4XiqVSuYLl2gNxEq0ppr6/IBBrMUzf3L7WbSG/8nCWpHPZIL5SM3cAXpNp0vJ+qatihHUCbD3HdL6FKFc9sB+gmbb3nUiU+P2UKA7S+dB1KFUE/hQEENFSQtyNVCvsahjhuT99FfUGqPda7qTYOU1Z1Pom0b0dVx/V3qX9m229rj3vvLlRJyk+pDjbLUaWg51MByfdpY8FN8TZs1C6+C7UbWC9jthAVGJ07pPWuQjVR2IkqSX05lStfo73+ESro3ZkKMCY9vMsQtuFYqm3TJ6lx8Bah2ll9l5qR41dUoHJh+31PGPf5I6jG+osywBLKdi79VzveDmrpeQpVJX85LUCgBmm9a1DrZ6z05cntWvxBqmp3H6oDyClUdef6U3V+t+vYlYy1+/tk+9udCt6uZzbH85rN9R1HlZR9ul0HlqZqo65jgB1shri//h9VS7VF+79vO85/0n7XHaiMx9sYUJA98o2egp36EqrHxclU6ccMqrrq5/SNfTOL7+jdKNemArqFqOLN91DVMo+iqj2uY4Q5gL50Tm//F6KqEq5tJ8TT+t834HU/Hvhse/xixnq39HJGhzAbg8MOYNsfNLVI3+OjqcD66bN7AZzZfmIsCJ5GtWd7OzWu2iCCv5n+Ln3rXIgqxfsIfWPadfmPamd0Da3DQ1u2wrj3rEvdtLajgqLXUVV5M6gb5GNoHUyGcew+TNqXpIL729tNa5t2ju/YXl+QCY55NIF1b0kF5Nu1C/56VMP2C4FHUm2EPtZuDvuO+neeSfp3bGlbrT1+TTtugwo896cC85XaflyRanj9hvb5HdrvvviQ0rch1R7sQ8Bb+5a/h7r59kotJ13FSl9nHqqE+DTGpjXbmhpeYicqMH8TU1eCtgR1/7odOKhv+SktHZ9hgB272rXgJ+233opq+nB+OyZObuf8QoNa34D3Vf995fJ2vTqwb9nuVO/+gWfYR77xQ96xGwBfbo/PoBp3L9ieb9FuHkvP5nc9ncpVfIIa72v1dtG+kCo1uowBjTw90QOHusmtyEwClHYB/CAVrC3HgG5y47+HuqGe3NZzWd/69x32iTduu1ejAqherrU/UDu+HQOzPJHGfefy9AUWfd89rZ2cb2KS1XDj1rcnVUqyx0zWuRBVetK5xuEPc2w8kWq/+R+BJXWT3gh4X287qfZKF1E57kfN7DunYBt6zRW2pHLPX6HGUvwaVQKzTN97h5HpCap6957edYUaluJUqpq9N8DojFHsn4f6zfv+P50aF7J3DVqbaiLSG3H9lVSp+7VUELozVb17DZWZ+gGt1HBI6ZxOBbuntd92+773fJAqXVqESZagUZ2KXsTYgMOfpNq7bdeXlkMY6xQzlKD0YdK3IhUsfYDWbrfvtYH2FKcC0vN6vwN1Dz0P2KotG0lThgkcM/3X6CuAH/c9X5JqjzzwuWRHvgOGsTP7nq9D9WI8kYpyez369mz/Z+sgbAfyNYw1FH91u7gsT1XpvYcqPl9kZukY8oHTP+r5cTx4DKr+ErWLqVKfSY9vw4PHLVqWCv6mUQ30v04LIKib2o8ZUHuO2UjXC6gA8b+pm1kvsOnvvbX0BL/zJe3YuYIHTwTePw7dYgPchqOp0ppXUeM0vbLvtc5Vcfbth02ogHWmVSNULnrbccseT/XifBXV/ueIvteOb8fsd5iikoW+dS9P3ahfS5UCb0vdaHdox/hfh3lMM1Zy+h4qUD2BsaBsFart0meoIKIT40f1nWu9tkZrtevS/r3jhMrg7kt1CPgWFZCvQvWOf3PfteRlDKGDU9+xuj4VmG1Cte97Y7tm9I8hOZCOP1R13npUJ7Vej82Pt9+v10b2QKr6b9qwfk8e3M5s8XGvrd5+g7Pom81gUGlp3/3Gti9+Ahze99q5wKGDXN8wjpn2eFuq9mTZ9vwbVKbtUVSV9Y3DuC6MfCcMaWfuSeXeF2gX+v9hLGB5XrtAPHIW39e76GxOlRJ9iAeP9/Ru4B3t8W7URf1YpnZ6ms2o6H0dqlTvLKrtSn+g1l9VtvIA1rkBYw2WX0rlOK+nOgjsTbUfOptqC/eTQV3sZiNd+7STZoWWhg+Oe312qzj7A7r92sV8ASqYuOyh3jug43aRdtL3ShvWasfuCya7niHt8945shPVfuoTVGbmUGaRo6QaxH+DylycSzWOv4XKUD2Tat/5OCpQuoI2J+4Qt6V3A9+eKt3bmirhuJpqPH0KY5mwKQsaqerez1NBRO/msCodaYNGBVy9HrnHUCWgz6MC3V2oHs8ntmPih1Sv3idTJWVLtc+tQmXunj0Fv+/uVOnN96nBcjejgsNTqNqWgVVf05chppqbvJuxQO3iloYT2zk/tB7vVM/op1FVjAdRvQ7Hz128OlW6+Q4GWGVHjXd2M3BRe74zVV14GtVp4FpG0E55Drbjle1a9SWqrffz2/KvMjZh+lCa84x844ewM4+jSiLWac+fTAUNn6NypNfyMD0u6BsokYqcr6MaDl/MgzsbPIsH9+Z8GgMYrX8C27lEu3n0j3q+HdVo/yT6OjAw2Ea3vXYcz20n2zJUo9tLqaBmdaqq49CpPPnaunenhvnoH6dmowl8xwbjfuPdqdKTV1EldL2q8o0HmO7ezePodpy9j5bB6DuuPjxV+3E207xk3+P1qFKB3hyae1MZlt6YcTNr17cCVdXVm1j7uHbMnky1UXk7fTctpqgahGrv9ytam7O2bMt2bP8L+ERb9qDetUNIx787/7T/K1MZj7czRWMLzmY6F6VK+86lSoMub+ffRdRNbSOqtOoj1M3/KKrqeEbf814J4cmMDdQ8yDHm+tuDrd1+301buo6hSskf347JgbQHo28stXZOH0AFrO+ngsHe0B7nUTUNvZ6NAy8ppzKvZ1LB8dVUwNTreb/AuPeuykx6XU9i3c+lMm3b06oCqWrmx1IFCm+mQ0MHjUt7f+Z5RSo4691TntL2aa938GcY0tBWmfNYkEaVKH2DvhIjKgc+g6q2OoyHiXapnPtXqRKNtagbcy9i3pzK3b+Fyv38mL4R36f6wGnP1+OhRz0faIDEWDCxANUI+CLaBO1t+VZUA9QnTPE+2Zu6uW5Jjbl0Vd9rx1DtXWa3Wvtx7WL9GCr3uRdVuvOpvvccSTXYnlRus/84bBfSK9pF7I3tgtYbtPYIqvdeJ6o62345o124plHV/DcCL+97z4vbeTTTUmUqsO8fZ67XbvJzVLA95eN8UaVnP2JsWp4N+9L3SKrqflidBHrbuyTjmiMwFrCtQgWLnRhmoy99j6GCm+8xNv7k5u2adCJjPSUPbtfMXin8gVS17ZfaMfRrBlw6yFh7sN6wGo8CvtT3+spUoHQZbaiNAaxzUaqK+plUW+Hr27XydCqD+xGqY0yvI8xFVEnpwGtg2vXkGirzvjfwSyoTtOMUHBfLUcFpb6rFzzPWLm+NUR+3E9iO3ahCh5/3XRsWpXrhvnoq0rAAc7E2OW2//6UChYUiYqE28em/qFHO35GZ52TmjQ/xXQtS7WA+SdWdb0c12n1WRKySmT+giop/RbWveElmfnEmaRiK3iSuEbFTRBwREc9r2/JCqvv26RGxQGZeSbVj+vWg1w3/nkz3jVRQsUxEPDkiFs3M71KljUsOar0PlZa+xwtQAfgTqKqU9wM3R8S2EXEEVdR+TraJgR/mOx8fEa/LzJ9SE3y/AnhpZn6ONuxBRGwdES+j9vebMvPeSWzDzsCXImLpNiHv86gJ2O/IzJOAvwDvi4iPUSVsb8ixCeFH7T7q91+EqrI8jSqpXj0i9mjvuYrahoVn9gWZeRdtUOmIeFw7Rz/F2DAji7T35RC3Y7z7qVLzbSPi/VQu/8yIOCgz/wh8PDO/OYzzvZ3Xz6BmL/hCRDw7Ih7dXrs/IqZlTSS+V2b+z6DXPxmZeQNVknY7cFJELNaulR+i2n49KyKWp6qK1qNuemTm+dRx82ngH9RE6r8YcPL+QQVgS0TEJpn5S2CRiHh9S8PvqCDmd8CREbFUu6bMsXZdOIO6hryL6gG4T1vPA1Q708dQ9xLaa/dSmZ5B+yd1nT6gre8Z1DX62RGxN9SE4BExY5ArjYjjqAB9UyrjDNWOc/GIOAT4TDsmOiciVo6IRdrj7akMxJepY/XQiNig/cY3Ufe/6UOPAUYdqU4iwh0/WvIjqIv8Z4Fj+l47iLp5P2zj7vbZ11OlJN+iqr42pEpiTmOKGr8/RNp6pWS7UTeSnakLy9va8nWo0paBj3o+bj8fRDXOP6I9P55qSP1GKtC4hSluX0BVZ19FlYQsTZWefZ66ccxyIEGqZHBL6mbx6rZsO9rwKu35Ce04+AiTzHFTxf2voUoWntj25yuo6r9n9L1vy/b6GqM67h7umKBKCr5JXfgXbPvom+38+S59PVMf4jt6PRW/xNg0UVtQkxFvNBXb0P6vRZVSTWvH9xnAru21o6lqmaHOm0hV/9xA3dQOo9qfnci42U+GmYYBbMOjqHZXH2RsgOeNGLvJvZAqXfsbcNIUpGd8e7DefL2bUG0nz2vH7vVUKem5DLYt1k7UGGuvaM+nU6WHb2IS8zjOQTreTmU8j2/Pl6NqAz5Mta26nMHOL/uCdh1YhRoj8WNUDcU5VMbs/zFF8zXPQdp3owpplqXatf8YOLK9tjFjtQZvpUp+p2aolFHvmDncmf2Bw0upRqgfpHLhq1BVKR+mot9rmUW9d98Feyfg9zy4Gm+bdmK9kylsc9bWvRZjQxAsR93Q1qfaF3yHCoo+1F5fb5gnPhX8fJ+qPrgMuLQtP4oKHN/OEKtiqNzn49vj7YHT+147kQqger2l/j0ExwSOowOoXOeL2vMnUjfoVzDWY20gVRJUMHA91bFiOaoK8bh2vO46lcfYHKT93z0KqZ56l7bjcYG2r84Bnjeb37Uk1VbnVVSGaMt2LE3JecbYsDrnU1Wda/W9tnX7fXaagnTsTBtjsD3flqou7lR7HWYSJPLgjjbrUUHuJ6kqob2oG/YyjE2dtx6VwTx5SGl8uPZgJ1HNMlZo5/YZVND2xJbOh+1MNgdp2YuasuvA9nwaNTfp0Dp9jP+NqEzsoVTJ5nOowoylqHZV72ewk6UvSd2HV6LuE1+mguHPUm3xrqWDARqVCXsE1T7xudQsEOtRhTWf63vftLY/n8FUtrce9Q6a5M7dnIrUt6Lq3L9KRcCLtxPzcMaNbD6zH6j9X5u6eT6RquJ6A2MNLLejgpChDcb6EGk7mCpd6AUJq1GNXH9E3RTXporQ3zOEdfdffKdTJXXb9C37PPDu9vgVDHlIAqrUbjmqncX2VK7sc1SQuAcVqM3RyNhUj9hLqZv11xkrUduaCjpOYIClKVTO8mpa9+22bGUqF3o+8JSpPM5mkdYVaL2a28Xp0nYh3q4t248q/XpmO05eRd0AJ7QN1A31u0zRqOP857A6J1E31FXbefZ5+ko2h5SGNdv/lagbRP+4eO8HnjXq378vPf0ZmpXoC2h48JA8G9BqHqjgYB+qdPArjPUC3YuqLnrkoM6p9r0P1x7sFCoj92r6AhOqDe/QRrun2steQxtmYgp/o31718b2fOd2bTmICQ5DNME0LEyVoH69lyaqyvN0hjCG2IDTvlO7Bvyh73j6Lq2GamTpGvWOmcQO3ZYaFPCk9vwR1PRPl9FX3Tmb37UHFeV/muoY0Out+DrGArWlR7Sdi7eLSK8UaUva8BJUQPk2Bpzbp6oNew1bN283rvN4cI+79WkDkA55+/sHo30c1aum14BzT6oX2U3A34H/noPvX4GqLl2KsarPTwEv7tvfkyrZGXfxXIixxuC94LDXS2hVqh3dyKrWZ5L2M6mqoG2pksZntjT+ggc3Av8K1eN4Nap0e0IXZOqmvsaQt2VWw+q8k7H5OXuB6UCrGBnLFG5MteM6oz1/IVWN8moqc3ATU9wJZ1Zpbo9fRmUwLuHB0331B2q9Xqk7UI3VvzXu88czvJkE9qY6MXyJFnhRmd3XUc1ZLmj/l2qv7cSQS0Wo+8v1VEZsYE1RHmZ9x7d98FYqQ3U+Vcq1K9UmbT+GOybbulQp1IZUxu6TdHQuznHp3o0KKK9gbBikJalS4KFM/zZb6Rr1jpnADpxZUfvbqXrjXjfu3rQ5F1FF7LM8CKlSuB9QN+uDqfr7N1PFml+jStSmbOyz/m2lcj9bUSVV32Os9+GnqJvn7YyVaAwyR7olFfycC3yvLTu4HcBbtOeHUyWXiw7xZF+GsWBxR6rdyzuom+kT+t63PZVTm2VR+vi0UoHRzxgbDmIxKtf9P7RAbVDHLVWleSZtHsO27MR24dy6Pe9EL86+NC9Ma9DOgwfzPbDto53a8xX7XuvaNszRsDpDTM9ubd1vBP5EBRBLUKX/57fz7mHb9I1oP/YyMI+mmoH8jOpANdPfncpgnk5lJHekqtuuYYBVbA+Rzk60BxuXphlTtJ7pVO1Sr1ftiu16dmJ7vj8DGC9zFmlYmCpRv7wdI52r4mzpHH8vWICqqTmIyjz3hhFaqm3LSGZ5GfmOmujOpEq59mKsceoZVGPE5dvzBZlAA1DqJr05NR7V96lG+F+lqjx3ZYgTks8iXVu07epNmfFSKge7avvbFdhhSOtesJ3o9/Dg3PJRVFD8IarkcagD1VLtRU6jqil+0ZYtSuUQ30GVOPRKpWYZSI87jjZgrBr5lVTV6dp92/kG+kpZBrAtL6CGh+k1qP04Y1Wdb6By+JOe/3PA+79/IOT3U21M1mAsE3EocCsdGrtrJtvQmWF1qKqfxaic+n5t2YpUadOb+963xPjjddR/VID2Q+Bdfcs2pdrtnfgwn1upnU9fpBqqT0k7O0bQHmxEv0v/NW3pdox9h74p2Kiqzw9McboWpErVVxn1PpqN/XYkVbr6YqrTwALten0xY52IRnYujnxnTXDHvoQqevwIFenu0Ja/leodNce5FSpX++L2+DlUQLTGiLZzNarq9exxy1/atnPgOVH+c2DDTanc0GlUKdq0vuWrM+TcWF863kqVbvb32F2ipesDwJYT3T6qROtnVBXdvlSnhJdRHTHe1v4PbHBCZt6gttezqjfo8kAbLQ8w7f2B2nlUSeDqfa9PyXEwh2nvjb/2fCoYeg5VEvRVxsZvegzVi/Mkxsb5GuoFmcpg7NL3fDtquIRXDnO9E0zjzGoueqPjb9h3XGxBlfIv+3D7rf0Wk56SboLbMGXtwUb9G1FBxQnt8Q7t/nhIe34w1Xh/sWEf23PbH1U1/DWq0+E3qMzyyu21lzLWCWbo1dQPmcZR76RZ7MAVGSvt2ImxHoUnUF1hz6ENMEmVRqw5iXUdQDUafzl9A22OaLtXoqbDuYb/nPT2FYybA3HA6z6UGk7jae350dR0Jnu0144b5ok+/rupzhHPo3o+HsDYxNcrUqOUT6i9GJXD/gSV63w+NSzAYVQR/Q5UVdQw5g2cWYPa/6UyB1N685rob8GD54D9SDvv1hh1+mYj/SMfVqdvHz6Kagc3rZ1TX2FswOJNWxpv7p13Xfjd2+M923nXK2V+NVXqvBFjgdpAJ+Ie8LZMaXuwEW3jUVSg3KviXJyqcfpFO65uZIqm55ub/qjCkHe3a/MrqHaMb6Mycr35p5cedTp7F5BOaYPDzaBKkz5IHWjLUAfftlSwsAd1w1iHyoF+fZLrXJJqdLoHNQ3PFyfzfRNcd2+g2q2p7f4NNWjuYdTYPhdm5hVTkI49qHZ+H6cGiP1aZp4REc+jqjueQvV4+9mQ1v/vQXMj4tlUidnNmfmliNiPumFcSO2TacBbMvOfs/jOp1EjXX86IlalSrDuzczd2+uHUMfUj4DzM/PPw9i2tq51qfZdL6CqDQ+h2s38ZljrnIi+43BdajDaP/T9HtMz876IWJg67/47a/DfTuof/JkqAbwyMw9or21D5ZwXpbbjD0NOyy5UE4ErqIFLj6XGytuKOtd3okp99gW+nTUg9chFxEuo3pnfpc65j2bmBRFxAtVe9kWZ+ZNRpnF2RMSMzLxz1u+c+0TEI6h2jGdRtT/7UQH0t6nOHSsBf8nM20eWyI5qA9gvS8UQp1Ht0LeiCgR+CDwnOzCI+PRRJ+AhRGbeERGnUkWO/8jMTwJ/jIjnUlN7/D0irgISmPTNIjPvAc6NiI+3m9G/A4ZhazeTp1EN4k+niqZ3p06y+4HD2qjjXxlWGlqwsgXVYPmGiHgC8Pq2G94REedRwc7QLnZ9AcFLqIDsU8CrImJLqsTpASpQ3JoaZPBhA7Tmt8DfImL1zPxNRLwVODUiXpyZ78zM81rgseEwtmmc31AN8E+ncvb7dTBA25mqjvsz8LGI+HJm3tTOiemZ+Y+IOHiqzo050bcta1OZnn2A4yPiDcDbM/OqNrL8XlSJ6tCCtIjYkGo0fyD1+7+I6hhwONUAf3WqTdxqVMeFC4aVlologex2mbldRJxI3eyfGhFk5mkR8U/g7pEmcjbNqwEaQGb+LSIupYKMWxkbf3E74JPZsRkquiRrppM/RMQGwHWZ+a+IWIu6/767CwEa0Pnqzj2BK6kpJQ5vy3amGtqeRTVeH/R8b1NaZ081UlyWGvdrfWpYjZ8wVhWyPBWoDrTBLWPVML3/JwF/BPZtz6dRpWnfZArbylANvT9KVQe+kqqmOouqtuoNVrvkBL9zaSrAO6Y934mqsulvXDuh75zE9nW2QS2wGRUYr0P13juLqv4f2uTBQ9yWkQ6r086fJakqpyupWoAFqGDn7dQ4bL2q+3WpUpAp73XYl97+Ks7F29/q1JArV1Dtmd5JlTAcNOrf178H/XaLUJ1glm3Pe013BjaDwtz8N6t7OmM9/D8K3EbHeqOOPAEPs+Oe1S4IK1B17ldRDSCnU22H3sAUTcswRdv7Kqp7+HcZ6/V3GNUma6BtKcZdkNdlrN3fc6mc2GPb8+nUeE5DG+Nm/AlEVXGuQlX/XEm1gzq6nUSnzum+YGwC9ue1509tF7KjR/3bd+Gv7ff3Ar/sW7Yd1VHgJDo2sfcstmVkw+rwn5mfx1GZrhf2vWdlqld6b7y/abTAcdR/VE+3kxnrPf8KxoayeAEVuHd6UNL59Y/KBBzRjrehDnMyt/yNu9dt0869pfuW9dpVLk8VSnRuPLeuVndCjUb9zaz2Iu+PiD9SdcWLZuYHqJ4Yc7WI2BjYMzNfT+VUD6EGCP1lRGxEBW43ZeavBrne7B29NRHu/sAdEXEbVcowHTg/Ig7JzB9TpRFDMa4N2s5UQ/rfZuZtbXLb72fmP1vVypepmRUemJN1Zeb3ImJX4CsR8UBmfjgi7qdKOuZL/fs/M/8SEe8C1omI91JBxbciYhoV6PxrlGmdoN9SAcVGVLf6jYH3UUNwvA24MzPvG/RK+6pZdwT2joibqKBwD+DL7bh7b2b+LiJela26Pqta5a5Bp2cC6V4gMx+IiF7HoD0z86/t5e9T58w61Nhyu2fmHaNKqx7WIlSNwf5ZE9/P18bdX46keif/BPhuRFyUmTdk5v2tKdEd1OD4ndPJjgMAEbE7dXE7BbitXfwuaS8fnJl/GV3q5lzfhXw7qpHnzsA7MvOsiLgQ+AdwH3VjeV1mXvLQ3zapdGxL5Yp3Atakqlk3pwbyex01btyOOXvtviablsOpXmM3UifRp6kT5gaqGnhHatDUnw9gXZtRN55DM/O8yX7f3Gpcw/rVqWvBByPi0VTv6XuAl7ab9zKZObIgYk5FxBuBOzLznRHxHKo92L6ZecsQ1/kU6rw6k8qdb0iVmt1KNR14Y2a+Z1jrn4jWUennmXlXa0T9XuDzmfn59vz+9vtvSpVCXJa2ceq0qWxLPbdonc6eRBV6PJ665y4AfGwQ95Rh63JJ2reoHPxxwI8iYlGqk8CL58YArXfytBvj9lQPyuOoOvAnRcTCmbl/C56WoUqNrhnUSTeT77kfuDYzfx8Rf6AmPd6EGnfs5Ih4z7ACtHE5nGdRN4DHUu11nkX97qdTweMWVLA6kNLEzLy6dYq4dxDfNzfqKznZjRqF/RXARyJi/cx8eUT8N1Ul+B6qRGpoPV6H7CfAUS3g2Ie6dgwtQGs2oAKxcyNiKSrzc3hmHhIRe1HT13XF5sAtEfG3rI5YdwKPjoiFeud+K+H+aWa+e6Qp1WwxQHuwiFiMai6zYosbrooIqNk9joqIs7qe8VhglCuPtrdmsnx61lAIx1I3iG2pm/dJmXnz1KVwMCJiZeDJreoIquTiPZl5MZV7fRewX+tx+O3M/HxmXgODOenGBUUvbCUMNwAbR8ThLXb8DVVUvl772B8nu97ZSEuvCmUfarT9X1OjPP+BGidutcz8whCqe3+UmTcO8jvnBhGxVkQ8qgVoy1GZhP2pcYJupo7BD2XmTVRp6vsA5rSKuQMupcZ025oKnK4a9Ar6zumeRal2XbRr2LXAUhGxVmZ+LzOvfKjr3lTprT8z30W1+bwmIh5JtQHdCtgmIpZtJRCvoa4LUueNP7datf1zgL9GxFlt2VVUZ5g/MsJmBrNrZNWd427We1K9+R7oVe/F2LhMvVz/Yn3tJOYqbft+QbWVuY/qaXYGVYX366jhAM6l2qV9OjM/MaR0PJ9qBP7DzNyn5ZJfTg2a+z9UddDeLVgaqlb9dAhV5ft+quH6Xllt0DakqmE/nkMew2p+EhEHU8fhj7OG0liNKrU9l2o0uyY1sfeZmXncyBI6YH3XkoFVBUXEEr0S/dZ0YR3g59T+fTk1n/DzIuKx1Bhpzxl1jr2virv3/zCq6v+5VLXs3lSGaWeqTfDi1LRw140qzdLsGhdTPJe6tv25NeNYhToPf5mZx7b3PCIz/za6FM+ekZWk9e3Mo6lee+sB74mIV7bX72vBS++iOtdWT7USs99T7VT2okYbfx/wzohYn6onX4m6wK8yjDS0g/ZoKldxf0QsT+UmjqcmkF2PmkZkKgK0/akqzRdk5t3UjAK3AZ9uVS0/oUoaDdAGKDM/TvXe/UFEPD4zb6Wq365ppWUrUtXMF48wmcNwPwyuKqg1vfhiROzbzt+zqXaTR1NjzF0EPBAR36C69b951AFaszr8e1zG/ajg7O7MfDk16fwlwCWZeQhwDLCPAZrmIgH/7hB3BDULw1kR8ZrMvI063jeNiNOhxpgbWUonYMrbpI2LdhehqlsOzcwfRTWcvywi/i8zz+yvZpkb69r7tzUz/9Qu2k+j5un7LHVQnUeVrh1BTQ+zU2tDc99ktnncfl6OCnL3yOo5+Qrg7y0Q/r/MPGYSmzmhtDSLUyVlG1MTp/8lIo5nbHaJ/Zm7ehN2Wl/Jyc5U84HzgA9ExBFUNedSEXEmVZKyf1avznmmAfKgtyMz742IM6gOFn8FjsjM70QNhHk4NZXbkVEzXPwrM/8w6v3Z2h++JSI2p4b1eQHwxayepgtQPd9OBb4VETvl8NvuSQMREU+iaof+3M7BpwPPoDrBfRt4VkQsm5kviYh9qLEq5xoj6zjQStBupKrZHtGqNX/douADRpWuQWo3xh2oqoSvZeYHIuL/qF6rD2TmW9vNEaqB/Gup6sZJBSjjArTjqIvyfVQOH+rGsnirhn1xROyaQ+pWP5M2aHfm2PAXp0TEHZn5jcz8awsaloK5MyjvqnYcbkGNf/WSdtzdT7XX2gt4CVWa+8nM/FbvM6NJ7dwhMz8bEX+heh8/mZrv91Yq975fe89v+94/ygBtIaqJxaupDjobUYPn7hYRX8vMH1Alf68B/ka1q5PmFpsCv4zqAPPrqKFknkBlOLePmrHm/0XEL7MjPasnYsqCtIhYLzNvbDeMfagL2YFU472XUI2Y/0CNxr5o1Ngl3ZiWYYL6Si62pKo4rwc2i4irWqB2P/DsiJhOXeSXpnqB7ZkDGN+mLyh6AVUqdSA1MPDKEXEa8HdqYtmVqbYyQxsfpi8tL6c6CdwTET8EPkCVJJ4RNWbU5Zl5L3NxtXZXtbZnrwR+kpnfBcjM06Pa2F5OTU916QiTOFfKzK+2dl1vbTeA81smbIPWnODOLgS7We08f0O1R02qZ9uCVKnfc6PGb7umZQ5fP8KkShOWmW+Pmm/4TxGxRmb+b1SHntvaW1ai5hueK69xU9ImrVWzfCkilo6Ix1BtkK7PzDsy8yRqMuf3RcTHqHYdb5hbAzR4UMnF64EDM3M/ajDWDSPi+Zl5ITX9zo2ZeX9m/hF46yACtJ6oCeM3pXrF7ktNIJ5UlcZvgEdR1TTXD2qdD5OWnakqoN2oDgKPpRp0nkO1zXtdRDwiYrS93uZh91Ftjp4QNdk3UIEaNeH70iNK11wvMz9LZTLfGxEXU9WIp7Zr28gDtD5XU80MfkeV4v+eyiD+GnhJRGwyysRJExERK0V1MCMinpGZv6CuZd+N6qn8I2rO5oup2UbelAMeJWCqDL13Zyst+i/gV9QFYWOqF+OeVIPaz7f3bUlNj3LbvNAeImrC9EuBV7VIfzrVc2on4EeZeWZ739DaqkRNHL4+NVjuk1oQdAfVJum0IVZxLthfZdv2xQZUkPh0qsTwHxGxQWZeHxFLZQ1XoAHoK8ndmppg/DfU+XcYFSBfmJlXjDCJ85xWO3AK8PzM/H8daIPW38xgAaqDyDSqynsl4DWZeVPLNO8CnN8CN6nzImJNqgPeD6jOdvtm5h9bW9HdqQKKB6gaql9l5i9HldbJGnp1Z1bj9F9S7SHup6q8/k61fXhGRNyfmZdm5veGnZaplJlfaRfuN0XE71pVyKepC+WP+943tAt5C4TuBaa3XMea1DQ1ZwwxQFsSODAiPk7Nj7k0VYrzTNrvnzWkyvHA1hFxqAHaYLUA7WnUhNinU51Udqd6790PHNaaE3xlhMmcp2TmRRFxZWb+qT3vSoB2JFVqflvWuGgvjYh3A6+NiDdm5g0RcdNk28FKU6F3bGfmzRFxLjWO36tagBZZnQMWoDKm62Tm5aNN8eRNVZu066i2RvcAS7U644uoSPeQiPjHvJizz8xLIuI+4NSooSXOBc6f4mT8BvgCdbNemWp/dOswVtRK0O6JiAeokpvfUyWnC1ETx98HvCAi/kGV6jw7M/8+jLTMr9oFamngKKq35rJUm8gfZvUy/BQ1eO3tI0vkPKoXoI3auDapBwEvBK6MiLWBUzLzhRFxDvCyiDjWAE1zg3GZj0dTVfgHAOdGxF2Z+VGAzHxxRPyOuvYNZVD2qTSU6s5xO3Mhag64+1vj8SdT0/z8IKqL+tOBL2TmPHvTiIg9gNOokqXf5xSP4B41pMeKVFuU22b1/jlcxwbUEBp7tXVdQA2j8eSWy1mTGs18a6rDwPsz82fDSIsgIl5F9ZR9MjXX7S9bI/dvAjdP9TGoqdOaNaxAzWRyLNV56JlU298/Ay/MzLsjYoV0LEJ1XK+tcl9M8TJqwOXDs4aUego1csEhVMHT9pl5/IiSO3ADD9LGBWjHUW2R7gFOzpof7kRgS6pN1P+LubgX50RExIzMvHPU6RimljtfhepN+meqx+5B1CC5P48aQPW6aLNIjDCp86SI2Jhq7/f6iDiF6r33pNb2aCMqcH5+Zn57lOnU1Iiat3BDqtH0kyJidWpWhNcDb5sfrrua+8WD55I9kJoZZ+dWa7N6Zv4mavy/s6lY44U5Dw3CPPDqznFF7ftRN+kfAqtFxGsz878j4g3U+Fw/ml+qu+blAK0XaGfmYRHxQSpXs29mnhE1OvtnonruPjkiDsjqzaoB6OsksB11vu0cNfbca6NGw39dq3LfmGq7YYA2n8gae/ABYIGoyd4fB3we+IQBmrqulaA9GnhHROzWMvYJfAnYKyLWAPaIiJ9TPayfRg0effeo0jwMw6ruXJJqA/Ua6saxK9WrcCXgmJazf6Q367nbuFLT/rkMz6LNBZiZd0bEUcD21CTXQx/yY34wbt9vD3ycKrlcnxrI8TuZ+Y6I2Jaaw+53mXnNqHsdarBm9nv2105EzTbySmBzqgp0n8z8+dSnVJozETGDOn5/TLWnfTGV4Xg78L/UFIMfycxrR5XGYRraEBwx8+Ef7qQm0z7Zxqpzt5lUa69H9dp9bWb+LSLeQwVq+7cG6/8ustbkRMTKwGOAK1tbz2cDq2TmmyNicarU7M3UUBvvHGFSNUQRsUivJiIingAskDV7wL8nlW+Pl6Z6dt+V88DwRpr39bdDa4U+L6bGIHxca+P8iHaf2ZMaVmbvzLx5ZAkeoqENZpuZ/6B6dPaGf9iNmtD7/QZoc7+ZVGufRk3e/qGIWDszj6Pmhfxo63Hobz44m1O9Mxdr1cl/Bp4fEWtl5v9RUxT9CtghIg4aYTo1JO2aenhELN7OwQuA0yLiUvj30EcLtsd3Z+a1BmiaW2QTNX3klzLzVGp8zx9FxEotQHsWFaAdMq8GaDD8IThmNvzDb4a8Tk2RGJvV4AAqUPsRNczG+yPiqMw8NCJWtJPAYGXmxRGxLDXl2KXUyPHvA94ZEa8EFqGaFlxDdeTQvGcVqrf4otQ5uHnrsfmNiLg0M3fNzH/NLx2zNO+JiKcz1q6dzHxla2P57Yh4IvBV4NvDGrGgK4YapGUNpno68AmGOPyDRqP1rjmWqtbee1y19vMi4nXpKOYD01/FnJl/iohvUI1l/0kNWBtUbvM+4Ajq5r1TK1G5z7Zoc7+IWDQz783ML0fEItTwGstTQfndmblDRHw9ap7gbQzQNLcY14RmYWAtasaAJwC3AGTmCa1Jx1eATeaHAoCpmHHgX8BQBk/V6OV/zmqwBlWt/T6rtQerFf/vQLX1+1pmfiBqQu89qEzQWyPizPb2LYDXUsGzv8M8oN2cto2Iu4GNgD9QYxMeDWwTEfdm5i0ts3RpRKyWQxq4WhqkcQHaUsDfMvPMqHFWnx8Rd2fm1wAy87iIWH5+CNBg6mYc0LzNau0h6htmY0uqivN6YLNWWvKBiLgfeHbU/LCfoWYceCI1ZtoNI0u4Bu0+ai7WU4BHAjtm5q3tRnYwMC0iLs/MX2XmrqNMqDS7omYPWAK4JiJeSg1Uu0hEHN16qP+dGrJrwcy8rH1snh3SajyDNE2a1drD1QK0LahBSA/MGhD4AOCJEfH8FqhNA25s1Vt/jIi32pt23pI1GPi3qZ5u3wbWjYjbW9XnfdQQLP+IiN9Qs7xYva1Oa00xXgT8K2rWml2B51Nt0b4RETtk5vsi4hHAcyPiW626f745tg3SNBBWaw/d0lRD8Z2ouXA/Tc19u1PLYZ4JD5qA2ABtHhM1vdx61NRqz6HmZl2aGjz6WmqsvKt6Q29IXRY188y/IuJU4BXA7sDVmflr4C2tk8AVEfG0rIHRl87Me0ea6BEY2hAckgYnM78C7EPlJg9sN+JPA18Drux733yTw5zX9caK6nt8D1XScEhmfgj4BTXMyieoXr5fzczfjSSx0gS0zGSvTdk04NVU54C1ImIzgMx8G3AW8Lk2zubdI0nsiA1tMFtJgxcRuwKnAu/KzHNHnR4NX0Qsnpn/16qGtqRmcvl0q+beCXgy8PHM/OlIEypNUEQcQ3V82ocaTuZ1wN+o47s3MPOymfmn0aVytAzSpLlMq/Y6jar+/P380stpftNKz54InAPslJk3t0Bte+CNwLmZedYIkyjNsXYdOxXYozfQctQUUCdS0z99MDN/2N/zc35kdac0l8nMS4AdMvN3Bmjzlv4qzta28CrgQuDTEbFGa/t5FfBr4BkRscyIkipN1srAJzPzlohYqA28fCfVQeou4LdgEw47DkhzoXYx0zxk3FhRe1Pzbd5Itde5G7goIp5PDVL8AHBoZt41mtRKk3YLsFdEfCYzbwSIiMOAWzLzpJGmrEOs7pSkDomI44EDgW8AywKPAJ5LDVq7KfAY4HmZed2o0ihNVptW8BVUYdFV1FhpLwUOysxfjDJtXWKQJkkd0QYkPgf4rzZQ7YrAscBfM/O0NutAZuZfR5lOaRAiYiVgT6rzwJ+BN5n5eDCDNEkakXFVnEtTN6qrgAsy811t+b7Azpl55MgSKg1RmzUDx3f8T3YckKQRGBegvQA4uj3/L2CXiDikvXURYEZELNbfsUCaV2TmPw3QZs6SNEkaoYg4impz9sxWxbk4NR7a+4DvAZsD+2Tmz0aYTEkjYO9OSRqRNifh04HXAvdGxNHARtTcnJsCKwF/yczbR5dKSaNiSZokjVBEHAkcQ819ez3wG+DxwHHOwynN3yxJk6TR+ijwI+CXmfmniDiAmkh9IcAgTZqPWZImSR0QEQsAhwPHAwc6F6ckS9IkqRsWoWYS2D8zbxh1YiSNniVpktQR8/tk0pIezCBNkiSpgxzMVpIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOuj/A/TuAEmJ9MDRAAAAAElFTkSuQmCC", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[df['artist_top_genre'] != 'Missing']\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "سه ژانر برتر بخش عمده‌ای از مجموعه داده را تشکیل می‌دهند، پس بیایید روی آن‌ها تمرکز کنیم\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlmklEQVR4nO3de9yt9Zz/8de7tqLofEsqEokGs7El50PoMNgxv9JBysSWKeeQzISGwaQQid2InFKK0dCMkpQzu6SSoiiVXXuriE46fH5/XNc9Ldve7cP9vVvrvvfr+Xjcj73W97rWWp96rPte7/U9XakqJEmSNHGrDLsASZKk6cJgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmaNAl/Hvi5M+Hmgft7DLs+SWotbhAq6Z6QcBnwiiq+OexaVkTCjCpuH3YdkkabPVaS7nEJqyd8KOF3/c+HElbvjz0z4cqEgxJ+n3DZ3fVuJTwk4ayEPyV8M+HIhM8NHN8m4fsJf0j4WcIzB459O+HfEr7XP/7UhA36Y5slVMI+Cb8FvtW3/1PCLxKuT/hGwoP79iR8MGFBwg0J5yc8anL+D0oaVQYrScPwdmAbYCbw98DWwL8MHH8AsAGwMbAXMDdhyyU81xeAHwPrA+8E9hw/kLAx8HXg3cB6wAHASQljA4/fHXg5cH9gtf6cQc8AHglslzAbOAh4MTAGfAc4rj/vecDTgYcDawO7ANcu5f+DpGnGYCVpGPYADqliQRULgXcxEIh6/1rFrVWcSReOdln0SRIeBDwBOLiKv1TxXeDkgVNeCpxSxSlV3FnFacA8YMeBcz5VxS+ruBk4gS7sDXpnFTf2x/cF3lvFL/phwX8HZva9VrcB9wMeAaQ/Z/7y/6+RNJUZrCQNwwOBywfuX963jbu+ihvv5vjg81xXxU0DbVcM3H4wsHM/DPiHhD8ATwU2Gjjn6oHbNwH3XeQ1Fn2+Dw8813VAgI2r+BbwUeBIYEHC3IS1FlOzpGnMYCVpGH5HF1LGPahvG7duwpp3c3zcfGC9hDUG2jYduH0F8Nkq1hn4WbOK9y1HrYMrfK4AXrXI892niu8DVHFEFY8HtqIbEnzzcryOpGnAYCVpGI4D/iVhrJ8sfjDcNeG8966E1RKeBjwf+NKiT1LF5XRDe+/sz30S8IKBUz4HvCBhu4RVE+7dT47fZAXr/jjwtoS/A0hYO2Hn/vYTEp6YcC/gRuAW4M4VfB1JU9SMYRcgaaX0bmAt4Lz+/pf6tnFXA9fT9VLdBOxbxUVLeK49gE/TTRT/MXA8sCpAFVf0E87/gy7M3dGf8+oVKbqKryTcF/hiP6/qj8Bpff1rAR8ENqcLVd8ADl2R15E0dbmPlaSR0m+H8LmqFetVSjgeuKiKdzQtTJKWgUOBkqa0fgjuoQmrJGwPzAb+a8hlSVpJORQoaap7APBlun2srgReXcVPh1uSpJWVQ4GSJEmNOBQoSZLUiMFKkiSpkZGYY7XBBhvUZpttNuwyJEmSlurss8/+fVWNLe7YSASrzTbbjHnz5g27DEmSpKVKcvmSjjkUKEmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqZMawC2jt8W/+zLBL0DRz9qEvG3YJkqQpwh4rSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1MhSg1WSTZOckeTCJD9P8rq+fb0kpyX5Vf/vun17khyR5JIk5yV53GT/R0iSJI2CZemxuh14U1VtBWwD7JdkK+BA4PSq2gI4vb8PsAOwRf8zBziqedWSJEkjaKnBqqrmV9U5/e0/Ab8ANgZmA8f2px0L7NTfng18pjo/BNZJslHrwiVJkkbNcs2xSrIZ8FjgR8CGVTW/P3Q1sGF/e2PgioGHXdm3Lfpcc5LMSzJv4cKFy1u3JEnSyFnmYJXkvsBJwOur6obBY1VVQC3PC1fV3KqaVVWzxsbGluehkiRJI2mZglWSe9GFqs9X1Zf75mvGh/j6fxf07VcBmw48fJO+TZIkaVpbllWBAT4J/KKqDh84dDKwV397L+CrA+0v61cHbgP8cWDIUJIkadqasQznPAXYEzg/ybl920HA+4ATkuwDXA7s0h87BdgRuAS4CXh5y4IlSZJG1VKDVVV9F8gSDm+7mPML2G+CdUmSJE057rwuSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiNLDVZJjkmyIMkFA23HJzm3/7ksybl9+2ZJbh449vFJrF2SJGmkzFiGcz4NfBT4zHhDVb1k/HaSw4A/Dpx/aVXNbFSfJEnSlLHUYFVVZyXZbHHHkgTYBXh247okSZKmnInOsXoacE1V/Wqg7SFJfprkzCRPW9IDk8xJMi/JvIULF06wDEmSpOGbaLDaDThu4P584EFV9VjgjcAXkqy1uAdW1dyqmlVVs8bGxiZYhiRJ0vCtcLBKMgN4MXD8eFtV3VpV1/a3zwYuBR4+0SIlSZKmgon0WD0HuKiqrhxvSDKWZNX+9ubAFsCvJ1aiJEnS1LAs2y0cB/wA2DLJlUn26Q/tyl8PAwI8HTiv337hRGDfqrquYb2SJEkja1lWBe62hPa9F9N2EnDSxMuSJEmaetx5XZIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGlhqskhyTZEGSCwba3pnkqiTn9j87Dhx7W5JLklycZLvJKlySJGnULEuP1aeB7RfT/sGqmtn/nAKQZCtgV+Dv+sd8LMmqrYqVJEkaZUsNVlV1FnDdMj7fbOCLVXVrVf0GuATYegL1SZIkTRkTmWO1f5Lz+qHCdfu2jYErBs65sm/7G0nmJJmXZN7ChQsnUIYkSdJoWNFgdRTwUGAmMB84bHmfoKrmVtWsqpo1Nja2gmVIkiSNjhUKVlV1TVXdUVV3Akdz13DfVcCmA6du0rdJkiRNeysUrJJsNHD3RcD4isGTgV2TrJ7kIcAWwI8nVqIkSdLUMGNpJyQ5DngmsEGSK4F3AM9MMhMo4DLgVQBV9fMkJwAXArcD+1XVHZNSuSRJ0ohZarCqqt0W0/zJuzn/PcB7JlKUJEnSVOTO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1stRgleSYJAuSXDDQdmiSi5Kcl+QrSdbp2zdLcnOSc/ufj09i7ZIkSSNlWXqsPg1sv0jbacCjquoxwC+Btw0cu7SqZvY/+7YpU5IkafQtNVhV1VnAdYu0nVpVt/d3fwhsMgm1SZIkTSkt5lj9E/A/A/cfkuSnSc5M8rQlPSjJnCTzksxbuHBhgzIkSZKGa0LBKsnbgduBz/dN84EHVdVjgTcCX0iy1uIeW1Vzq2pWVc0aGxubSBmSJEkjYYWDVZK9gecDe1RVAVTVrVV1bX/7bOBS4OEN6pQkSRp5KxSskmwPvAV4YVXdNNA+lmTV/vbmwBbAr1sUKkmSNOpmLO2EJMcBzwQ2SHIl8A66VYCrA6clAfhhvwLw6cAhSW4D7gT2rarrFvvEkiRJ08xSg1VV7baY5k8u4dyTgJMmWpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDWyTMEqyTFJFiS5YKBtvSSnJflV/++6fXuSHJHkkiTnJXncZBUvSZI0Spa1x+rTwPaLtB0InF5VWwCn9/cBdgC26H/mAEdNvExJkqTRt0zBqqrOAq5bpHk2cGx/+1hgp4H2z1Tnh8A6STZqUKskSdJIm8gcqw2ran5/+2pgw/72xsAVA+dd2bf9lSRzksxLMm/hwoUTKEOSJGk0NJm8XlUF1HI+Zm5VzaqqWWNjYy3KkCRJGqqJBKtrxof4+n8X9O1XAZsOnLdJ3yZJkjStTSRYnQzs1d/eC/jqQPvL+tWB2wB/HBgylCRJmrZmLMtJSY4DnglskORK4B3A+4ATkuwDXA7s0p9+CrAjcAlwE/DyxjVLkiSNpGUKVlW12xIObbuYcwvYbyJFSZIkTUXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzNW9IFJtgSOH2jaHDgYWAd4JbCwbz+oqk5Z0deRJEmaKlY4WFXVxcBMgCSrAlcBXwFeDnywqj7QokBJkqSpotVQ4LbApVV1eaPnkyRJmnJaBatdgeMG7u+f5LwkxyRZd3EPSDInybwk8xYuXLi4UyRJkqaUCQerJKsBLwS+1DcdBTyUbphwPnDY4h5XVXOralZVzRobG5toGZIkSUPXosdqB+CcqroGoKquqao7qupO4Ghg6wavIUmSNPJaBKvdGBgGTLLRwLEXARc0eA1JkqSRt8KrAgGSrAk8F3jVQPN/JJkJFHDZIsckSZKmrQkFq6q6EVh/kbY9J1SRJEnSFOXO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNTJj2AVIWn6/PeTRwy5B08yDDj5/2CVI04I9VpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzMm+gRJLgP+BNwB3F5Vs5KsBxwPbAZcBuxSVddP9LUkSZJGWaseq2dV1cyqmtXfPxA4vaq2AE7v70uSJE1rkzUUOBs4tr99LLDTJL2OJEnSyGgRrAo4NcnZSeb0bRtW1fz+9tXAhos+KMmcJPOSzFu4cGGDMiRJkoZrwnOsgKdW1VVJ7g+cluSiwYNVVUlq0QdV1VxgLsCsWbP+5rgkSdJUM+Eeq6q6qv93AfAVYGvgmiQbAfT/Lpjo60iSJI26CQWrJGsmud/4beB5wAXAycBe/Wl7AV+dyOtIkiRNBRMdCtwQ+EqS8ef6QlX9b5KfACck2Qe4HNhlgq8jSZI08iYUrKrq18DfL6b9WmDbiTy3JEnSVOPO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1ssLBKsmmSc5IcmGSnyd5Xd/+ziRXJTm3/9mxXbmSJEmja8YEHns78KaqOifJ/YCzk5zWH/tgVX1g4uVJkiRNHSscrKpqPjC/v/2nJL8ANm5VmCRJ0lTTZI5Vks2AxwI/6pv2T3JekmOSrLuEx8xJMi/JvIULF7YoQ5IkaagmHKyS3Bc4CXh9Vd0AHAU8FJhJ16N12OIeV1Vzq2pWVc0aGxubaBmSJElDN6FgleRedKHq81X1ZYCquqaq7qiqO4Gjga0nXqYkSdLom8iqwACfBH5RVYcPtG80cNqLgAtWvDxJkqSpYyKrAp8C7Amcn+Tcvu0gYLckM4ECLgNeNYHXkCRJmjImsirwu0AWc+iUFS9HkiRp6nLndUmSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpkItstSJI0aZ7ykacMuwRNM997zfcm/TXssZIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGJi1YJdk+ycVJLkly4GS9jiRJ0qiYlGCVZFXgSGAHYCtgtyRbTcZrSZIkjYrJ6rHaGrikqn5dVX8BvgjMnqTXkiRJGgmpqvZPmvw/YPuqekV/f0/giVW1/8A5c4A5/d0tgYubF6K7swHw+2EXIU0y3+daGfg+v+c9uKrGFndgxj1dybiqmgvMHdbrr+ySzKuqWcOuQ5pMvs+1MvB9PlomayjwKmDTgfub9G2SJEnT1mQFq58AWyR5SJLVgF2BkyfptSRJkkbCpAwFVtXtSfYHvgGsChxTVT+fjNfSCnMYVisD3+daGfg+HyGTMnldkiRpZeTO65IkSY0YrCRJkhoxWKmJJJsnWX3YdUiSNEwGK01YknWBA4C3G64kaepJkmHXMF0YrDQhSTarquuBk4C1gQMMV5rK/IDRyiZJqqqSPCXJPkm27bdK0gowWGmFJVkH+ECSt1fV6cCXgQdiuNIUMB6gkjy6/0DZGKD/gDFcaaXRv+efBXwWeBjwIeC1SR421MKmKLdb0ApLci/gScC+wDlV9YEkzwB2AX4HfKCqbh1mjdLiDHxDfw7wEWA+cBnwc+Dw8g+jViJJtgQOAT5fVScneRzwKuDcqjpquNVNPfZYabmNf5uvqtuAHwJHAtskOaCqzgROAO4PHGzPlUZRH6oeB7wZ2Kmqng18ie5SXLOHWpx0D0kPeDrwUGC7JGtW1TnAccCcfg6tloPBSstl/Jt+f3ttgKr6HnA48KSBcPU1YDXgvkMrVlqCfv7IM4BnARv3zd8FbgCeMKy6pHvCwFD3BsCMqjoaeA8QukvQAVwN/Klv03KYlEvaaPoaCFWvBbYFrk1yalV9sf9dfV2Sg6vqkCTfraqbh1mvNG5g+O9ewG10Pa3rAm9Ncn1V/TTJucDuSdYAbnZIUNNR/3uwI93w31VJbgT2AdYE9kqyO10++I+qum6IpU5JBisttyT7Av8I7AEcChyWZP2qOjLJDGCfJOv5C6lR0n+YvAB4Ed1Q9aF0w9bXAicnOYauB+vQqrppeJVKkyvJI4F3A/sD5wJfAD5VVbsmuQXYDji/qr7Wnx+/ZCw7g5WWS5J7A7fSfTi9DLgP8FLgk0nurKqjkvy4qm4ZZp3SopI8Hng/8Aq6OSV7AmfQrYR6AF0P7FFV9d9JVq2qO4ZWrDS5bgUupFt0dAuwU5Izk+wHfAJYh25qx67A8Yaq5eMcK92tJH/1HqmqW6rqU3RdxtsD+1XVGcDPgH9Oso6hSiPqkcCPq+r7VfU+4H+B1wP3Bg6j673aJ8mjDFWaTga2Flm1Hwq/DtgImDVw2heBO6rqduBY4CzgDEPV8jNYaYmSbFJVd/a3X5Pk8CQHJFmLuyY2PiTJHOAa4NlV9YfhVSzdZeDDZPzv3IXAaklmAVTVicBFwBZV9Xu6VYFfBv44hHKlSdMPg8+m+/JwPN2XjCOBjyTZP8kr6IYFL+nPv62qjq2qa4ZW9BTmPlb6G/0H0lp0Y+/vBc4DjgD+E3gM3UqSvej2OXkc8Hhgj6o6bxj1SkvS71P1JOAPwGl0e67NB64CLqZbUv7i8feuQ4CajpI8gu7v93vp/n6/k24o/Da6+VSbACdW1anDqnE6MVhpiZI8Gfgk3Tf9I6vqW0keCLyVLnjtV1U3JVm7qvyWr5GS5CnAMXTDfC+j2wLkcmAMeDLdcPbR/YaITs7VtJTkUXS/AxdX1Wv7tu2ATwNPq6pLhljetORQoP7KwPBJqur7dBPT/w7YEaCqfge8D7gDODLJKoYqjZokDwf+GTiiquYCOwHrA4+pqiOqaldgb0OVVgK/pJu68cgkWyRZvaq+QXd917HhljY92WOl/7PI5p/PARbSDZmsC/wP3TL0T/THH0A3dO8YvEZOkh2A19KtfnpDVf2mnxt4JvCSqvrlUAuU7gHjQ9v9hPVPAjcD3wQW0A2Dz66qnwyzxunIYKW/keQNdN/wz6DbnXoXYHO6lSIfr6oPDa04aTEGNv/cHLiJbtXTlnTzAH9L9+08dJPT/6GqrhhasdI9YOB3YkZV3d5fbeBIuisLnAl8vapOtce2PYcC9VeSbAVsV1XPANYGrgf+UFU/opunsmeSdYZYovQ3+g+QHejmUR0O/IRudd9xdEvKv0T3ofJWQ5Wmo4FpHFv0IwoA9KFqRlX9hW54fB6wBnCOoWpyGKxWcgPXjBr3F+C3SQ4CHg7sXlW3JZldVT8GnuyWCho1/QfJu4FXVtXudEHqZOBXdCuhvg98m64XdnHve2nKGuid2o7uff9fwH5JHgZ/Fa5uowtX9wfehpuETwqD1UpskTlVs/tVgL8GNgT2pht/v6Xf4+SA/rI1tw6vYuku4/tTJXkC3WKKc+lW/VFV7wa+AxxUVT+lmyP4ULoNQGf4LV3TSR+qZtFdVeAFwJvoFh3ttEi4WrXvudoZOKwPWmrMYLUSGwhV+wP/BizoNwT9MN23+xOTHEi3cdyrq+raYdUqjUtyH4CqujPJU+km5T6Kbn+efxg49bt0k3Wpqq/TbY54Yr+ztDRtJLkf8HLgcVV1SVV9j+76f5sDL+lXydJPZF+lqv7Sr/DWJLAbcCXXf5vZGdh+4BftO8D5dFstXE+3iuriIZUo/Z9+T54PJXk+3SU5/hX4SFWdkeTPwNwkD6XbEPQlwEHjj3XzQ00ngyMOVfWnJEcAD0tyJPCaqvpOklWBPeg2AqU/987hVLzycFXgSmbRyYr9RPSPAwcCvwNu67uVNwMud8hEo6JfMn4U8CPgv4Hn0Q17rAvsVVVXJXkk3UrW9YEf9JvaOkFX08rAnKrnAg+i+yz/z75n6kDgBuCNfa/uulV1/VALXsk4FLgSWWRO1Qb9kMqNwOrADn33cCXZnW5i4xpDLFdanKvogtOX6FY3HUI3t+o1STaqql9U1cer6j1V9S24a8hbmg76obxK8g90O6pfCRyS5AP9/mz/DjwA+Gj/EDdwvofZY7WSWCRUvRHYDfgZ3eqRn9J9UF0E3A5sDexZVecPp1rpry3yDf2zwLf73dPHL13zfLovAv/uprWajpI8BFilqi5NsgHd78Eb6FZvHwhsDHyzqvZJsiWwenn91qGwx2olMRCqnkB34eTXAF8HXk+3z8/z6Cb3/oDuorSGKo2ERTb/HANeDKyS5N39MMf3gFPovhSsM8RSpcn0ZGD9/pI0vwfmAKsB7wKeCjwLeHmSj1bVxYaq4XHy+kqkX0H1ZeDDVfXDfijwT8CbgQdW1VFDLVBajD5UvZBu2O8Sui1BPkG3pPy1SY7oJ+qe7x5rmq6q6vNJ7gv8JMlLq+q8JA8Ezu7nUj2AbnPcbwy3UtljNY0tugliVX2Xrvt4lyQbVNXNwFl02ys8N8m6bpyoUZNkG7rVf9sBX6Hb4PB5wAfo5lu9qd+b6g9DK1KaJAM7qm9Ht63IZ4Gj+xWylwFrJ/kY3WWbvlpVp/l3fLicYzVNLTKnalvgfsBpVXVjkg8C29BtALqgX211r6q6aYglS4uVZBO6rRXWpdtdfXe6lazXAZ8GFpYXktU0lmRrui/Ab+hHG95I93uwU3/KY4Abq+rMIZWoAQaraS7dBZX/ke7SHhsC76+qM5McSjfh9+lVtXCYNUrLIsl76Dax/XCSlwGvBf6xqi4fcmnSpEmyKfBB4LqqmjPQ/kbglcDOVXXBsOrT33KO1TTTj7NfX1W39iuonltVT+13UH8y3eTGqqo3J7kVWBMwWGkqOB94Vd/D+mLgdYYqrQRuB84DZifZvqr+F6CqDu83AF1nmMXpb9ljNU30Y+pjwInAfwKfoxs6uS/dipG9gBcCnwIeBrylqs4YTrXS8kuyFvAiuvfxMf1laqRpZWAV7JPo/qb/lm7Bxt501/87oapOH2KJWgonr08fqaoFdNf8242ue/ja/hv9w4H/qapbgO/RDQvadawppapuqKpj6S6x9HUn6Go66kPV84Bj6KZvnA08BTiZrudq7/64RpRDgdPEwPWf1gDuAxyTZI2q+hTwfeBj/eUOnkQXuhz+01R1B7ijuqafJKvQDe29iq53dj3gQuCcqromyZforpQxf2hFaqkcCpxGkrwEeCuwA91qkZcBHwOOp/vG81zgc1V10bBqlCTdvSRvBdYGng3s0e+2vjfd9jiXeSHl0WaP1fSyPnBWf0mPTyS5FpgLrFFVRwMuxZWkEZRkJt0WOO+iW1S0J/CsPlT9Pd2X5kuq6tdDLFPLwGA1vfwWmNnv+3NVVZ3YL0t/QZIvVtWfhlyfJKk3MFH9acDOwHZJFlTVwUkeAbwjye3ATOCt/SbPGnEOBU4jSdam2zjxcroLK69BNyT4uqq6bHiVSZLGLbKB89OBzwP7A48AHg98v6o+1F+GbF3gd1V19uDjNLoMVlPMkn6x+kt63J5kPbqJjw8EtgAOcPM4SRoN/fX9Hgl8u6ruSPJSYOOqen9/LcCZwPvptlX48BBL1QoyWE0hi3zLmQ0EuLOqTu7bxsPVKv1FOdesqhuHWbMk6S793+5fAVfSbf65Ld3O6s+tqt/0KwOPpZtndWJVfWFoxWqFuI/VFDIQqval269qS+CjSd7SH7+9/6UcT8te+0+SRkhVfRW4mm7F9k7AqXRTOD7cz6t6DN21MX8FbDykMjUBTl6fAhbpqbo3sAuwV1X9NMkJwDeS/LmqPja4DNexeEkaDYN/x6vquiRnAs8D/gJ8hW4E4rN0vVj7AI8Dnttfwul2/55PHQarKaTvqboY+CVwn37I7zdJ9gd2HW51kqQl6Vf/PQN4NPCtqjo6yZ/pLtF0Z1UdmuRj/elbAwcDL6qq24ZUslaQQ4EjLMmW8H+/kC+mW477c+Ba4A1015EC2BRYo78gpyRpRIxfeinJE+mG/54BvCXJK6vqOOBrwEuT7ALcAtwbeDLdnlY/H1LZmgAnr4+oJNsBR9F1B28EHAZcWlWv6Y8fQ7cM90a6uVYvd/WfJI2eJFsDhwBvqarzkuxKF57O73uudgMurKqf9eevVlV/GWLJmgCHAkdQkhl0XcH/CmxFt/z2DGB2khdU1X9X1T/134BWpdsM9PKhFSxJujvrAM+hu6zYecCJwJ30c6iq6mNw1zwsQ9XUZrAaQf3qvkuBf6G74Oyz6LqIb6bbRf2Oqjqlqn40zDolSUtXVaf20znem+R3VXVckhPpvhj/bOA8h5CmAYPV6DqPbruEG4C1q+r3Sb5M9y1nzyS3VtXpQ61QkrRMqurk/vI0/9YP9R0LHDfsutSec6xGxCJbKqwG3NHvynsA3RXO31FVP+mvA7gD8LWqmj/EkiVJyynJC4H30Q0NXj24RY6mB4PVCFgkVO1PN6/qBuCdVXVLkoOAJwLvq6ofJFm1qu4YYsmSpBWUZKyqFg67Dk0Og9UISfLPwEuA3YFzgG8CB1fVpUneDTwM2LuqbhlimZIkaQkMViMiyVrA4XQrAXcGdgQW0G218OqquiTJ+lV17RDLlCRJd8NgNUKSrA48AvhQVT2r31huIfAJumFBd+CVJGmEuSpwhFTVrUluAmYkeTTwYOB04BOGKkmSRp89ViOm77V6Pd2KkQcCO1fVhUMtSpIkLROD1Qjqr2b+ALoLc1417HokSdKyMVhJkiQ1ssqwC5AkSZouDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpkf8PwQ8MlHUQ3OMAAAAASUVORK5CYII=", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "داده‌ها به جز بین انرژی و بلندی صدا، که منطقی است، ارتباط قوی ندارند. محبوبیت با تاریخ انتشار ارتباط دارد، که این نیز منطقی است، زیرا احتمالاً آهنگ‌های جدیدتر محبوب‌تر هستند. طول و انرژی به نظر می‌رسد که ارتباط دارند - شاید آهنگ‌های کوتاه‌تر پرانرژی‌تر باشند؟\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAJZCAYAAABoaLenAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZx0lEQVR4nO3dd5glZZn///eHIUnWBROCIKKAIAMiomJGZA1gQFFxlTVgWuMuij8UEXXFtGv265gwoCIYQEXAVRFFEIY0BFFYxFVRMIEgkmbu3x9VDWd6eronNVXV/X5d17m6znPqVN3ndLrPXU9IVSFJkiT13WpdByBJkiQtCxNXSZIkDYKJqyRJkgbBxFWSJEmDYOIqSZKkQTBxlSRJ0iCYuEqSJGm5JdkryS+SXJbk4Ake3zzJD5Ocm2RBkieu9Dmdx1WSJEnLI8kc4JfA44HfAmcBz6mqi0f2mQecW1UfT7IdcEJVbbEy57XiKkmSpOW1K3BZVV1eVTcDXwH2GbdPARu02xsCV67sSVdf2QNIkiRp1tkU+M3I/d8CDxm3z2HAyUleBawL7LGyJzVx7aFb/nR57/tv3Omej+g6hCmdd6+dug5hUlf9fd2uQ5jSGlnUdQhT+vfVruo6hCm9aM7mXYcwqSvn9P5PDldxc9chTOletWbXIUzprgvTdQhT+t3q/f55PPyKo3rxJk53rrDmJlu9FDhwpGleVc1bzsM8Bziyqt6f5KHAF5JsX1Ur/M/FxFWSJEmLaZPUyRLV3wGbjdy/V9s26kXAXu3xTk+yNrAxcPWKxmUfV0mSpKFZtHB6b1M7C9g6yZZJ1gSeDRw/bp//Ax4HkGRbYG3gjyvzsk1cJUmStFyq6lbg34CTgJ8DX62qi5IcnmTvdrd/B16S5Hzgy8ABtZLTWdlVQJIkaWhWvJvoqguh6gTghHFth45sXww8fFWe08RVkiRpaBZ1n7h2wa4CkiRJGgQrrpIkSQOzEjNKDZoVV0mSJA2CFVdJkqShsY+rJEmS1F9WXCVJkobGPq6SJElSf1lxlSRJGpplW5Z1xrHiKkmSpEGw4ipJkjQ09nHtryTXdx3DmKliSbJRklfcUfFIkiTNFr1JXNPoTTwrYSPAxFWSJE2fRYum99ZTnSaKSbZI8osknwcuBN6S5KwkC5K8bSnPOWiifZJ8M8nZSS5KcmDbNifJkUkuTHJBkte17VslObHd/8dJtpkkxi2TnN4+/x0j7esl+X6Sc9rH9mkfOgLYKsl5Sd47WcySJEladn3o47o18AJgA2BfYFcgwPFJHllVp47tmGTPdv+J9nlhVf0lyZ2As5J8DdgC2LSqtm+fv1F7qHnAy6rq0iQPAT4GPHYp8X0Q+HhVfT7JK0fabwSeVlV/S7IxcEaS44GDge2rau4yxCxJkrTcyj6unfl1VZ0B7NnezgXOAbahSfhGTbbPq5OcD5wBbNa2Xw7cJ8mHk+wF/C3JesDDgGOSnAd8ArjHJPE9HPhyu/2FkfYA/5lkAfA/wKbA3SZ4/rK8LpIcmGR+kvmf+vyXxz8sSZI06/Wh4vr39muAd1XVJybZd8J9kjwa2AN4aFXdkOQUYO2q+muSHYEnAC8DngW8FrhmrCK6jGqCtv2BTYAHVdUtSa4A1l7WmJc4QdU8mkowt/zp8onOJ0mS1OhxP9Tp1IeK65iTgBe2FVGSbJrkrsu4z4bAX9ukdRtgt/bxjYHVquprwJuBnavqb8Cvkjyz3Sdtcrs0pwHPbrf3H2nfELi6TVofA9y7bb8OWH85X5ckSZKm0IeKKwBVdXKSbYHTkwBcDzwPuHoZ9jkReFmSnwO/oOkuAM3l+8+OzFbwpvbr/sDHk7wZWAP4CnD+UkJ7DfClJG8EjhtpPwr4VpILgPnAJW2Mf05yWpILge9W1UFTvS5JkqTlMkv7uKbKq9J9M4SuAne65yO6DmFK591rp65DmNRVf1+36xCmtEb6/4fx31e7qusQpvSiOZt3HcKkrpzT+z85XMXNXYcwpXvVml2HMKW7LkzXIUzpd6v3++fx8CuO6sWbeNMvfzKtb9Ra99u9F69zvN5UXCVJkrSMFi3sOoJOmLi2khwCPHNc8zFV9c4u4pEkSVqqWdpVwMS11SaoJqmSJEk9ZeIqSZI0NE6HJUmSJPWXFVdJkqShmaV9XK24SpIkaRCsuEqSJA2NfVwlSZKk/rLiKkmSNDBVs3MBAiuukiRJGgQrrpIkSUPjrAKSJElSf1lxlSRJGhpnFZAkSZL6y4prD93pno/oOoQp/ePKH3cdwpQO2eWQrkOY1KVrXd91CFN6OBt2HcKUPr/Wel2HMKUP3HJT1yFMaoeFa3UdwpSecEt1HcIy6Pf3GeD0NdfuOoQpbXlLug5hGOzjKkmSJPWXFVdJkqShWeQ8rpIkSVJvWXGVJEkaGvu4SpIkSf1lxVWSJGloZuk8riaukiRJQ2NXAUmSJKm/rLhKkiQNzSztKmDFVZIkSYNgxVWSJGlorLhKkiRJ/WXFVZIkaWCqXPJVkiRJ6i0rrpIkSUNjH9fZJ8n103DMuUmeOHL/sCT/sarPI0mSNNtYcV315gK7ACd0HIckSZqpXDlrdktyUJKzkixI8ra2bYskP0/yySQXJTk5yZ3axx7c7ntekvcmuTDJmsDhwH5t+37t4bdLckqSy5O8uqOXKEmSNGgmrkCSPYGtgV1pKqYPSvLI9uGtgY9W1QOAa4BntO2fBV5aVXOBhQBVdTNwKHB0Vc2tqqPbfbcBntAe/61J1pju1yRJkmawRYum99ZTJq6NPdvbucA5NInm1u1jv6qq89rts4EtkmwErF9Vp7ftX5ri+N+pqpuq6k/A1cDdVmHskiRJs4J9XBsB3lVVn1isMdkCuGmkaSFwpxU4/vhjLPG+JzkQOBAgczZktdXWXYHTSJKkWcE+rrPaScALk6wHkGTTJHdd2s5VdQ1wXZKHtE3PHnn4OmD95Q2gquZV1S5VtYtJqyRJ0pKsuAJVdXKSbYHTkwBcDzyPtu/qUrwI+GSSRcCPgGvb9h8CByc5D3jXtAUtSZJmrx73Q51Oszpxrar1RrY/CHxwgt22H9nnfSPtF1XVAwGSHAzMb/f5C/DgSc65/dIekyRJ0tLN6sR1JT0pyZto3sNfAwd0G44kSZo1ZmkfVxPXFdROdXX0lDtKkiRplTBxlSRJGhr7uEqSJGkQZmni6nRYkiRJGgQrrpIkSUMzSwdnWXGVJEnSIFhxlSRJGhr7uEqSJEn9ZeIqSZI0NLVoem/LIMleSX6R5LJ2FdGJ9nlWkouTXJTkSyv7su0qIEmSpOWSZA7wUeDxwG+Bs5IcX1UXj+yzNfAm4OFV9dckd13Z85q4SpIkDU33fVx3BS6rqssBknwF2Ae4eGSflwAfraq/AlTV1St7UrsKSJIkaTFJDkwyf+R24LhdNgV+M3L/t23bqPsB90tyWpIzkuy1snFZcZUkSRqaaZ7HtarmAfNW8jCrA1sDjwbuBZyaZIequmZFD2jFVZIkScvrd8BmI/fv1baN+i1wfFXdUlW/An5Jk8iuMBNXSZKkoVm0aHpvUzsL2DrJlknWBJ4NHD9un2/SVFtJsjFN14HLV+Zl21Wgh867105dhzClQ3Y5pOsQpvTO+e/sOoRJfXOHt3QdwpT+PIC/EK+9sboOYUpPzFpdhzCphek6gqkdvfacrkOY0gb0P8bNbu06gqltWzd0HYKWQVXdmuTfgJOAOcBnquqiJIcD86vq+PaxPZNcDCwEDqqqP6/MeQfwb0mSJEmL6X5WAarqBOCEcW2HjmwX8Pr2tkrYVUCSJEmDYMVVkiRpaKr/3aSmgxVXSZIkDYIVV0mSpKHpQR/XLlhxlSRJ0iBYcZUkSRoaK66SJElSf1lxlSRJGpqanRVXE1dJkqShsauAJEmS1F9WXCVJkobGBQgkSZKk/rLiKkmSNDT2cZUkSZL6y8R1nCRbJLlwBZ7305HnP3fVRyZJktRatGh6bz1l4rqSkqwOUFUPa5u2AExcJUmSVrHBJa5tRfOSJEcl+XmSY5Osk+RxSc5NckGSzyRZq93/iiTvadvPTHLftv3IJPuOHPf6pZzrx0nOaW8Pa9sf3bYfD1w87vlHAI9Icl6S1yU5NcnckWP+JMmO0/X+SJKkWaAWTe+tpwaXuLbuD3ysqrYF/ga8HjgS2K+qdqAZdPbykf2vbds/AnxgOc5zNfD4qtoZ2A/40MhjOwOvqar7jXvOwcCPq2puVf038GngAIAk9wPWrqrzlyMGSZIkMdzE9TdVdVq7/UXgccCvquqXbdvngEeO7P/lka8PXY7zrAF8MskFwDHAdiOPnVlVv1qGYxwDPDnJGsALaRJsSZKkFVaLalpvfTXUxHX8O3rNcuw/tn0r7etPshqw5gTPex1wFbAjsMu4ff6+TIFW3QB8D9gHeBZw1ET7JTkwyfwk84/52/8ty6ElSZJmlaEmrpsnGaucPheYD2wx1n8V+BfgRyP77zfy9fR2+wrgQe323jTV1fE2BH5fVYvaY85ZhtiuA9Yf1/Ypmm4GZ1XVXyd6UlXNq6pdqmqXZ26w+TKcRpIkzVrOKjAovwBemeTnwJ2B/wb+FTimvay/CPh/I/vfOckC4DU0VVSATwKPSnI+TfeBiSqoHwNe0O6zzVL2GW8BsDDJ+UleB1BVZ9P0xf3s8r1MSZIkjRnqylm3VtXzxrV9H9hpKfu/t6reONpQVVcBu400vbFtvwLYvt2+FHjgBPucApwy7njrtV9vAR47+liSe9J8SDh50lclSZK0LHo88n86DbXiOhhJng/8DDik7XIgSZKkFTC4iutoRXQZ999i2oJZtvN/Hvh8lzFIkqQZpscj/6eTFVdJkiQNwuAqrpIkSbNej0f+TycrrpIkSRoEK66SJElDM0srriaukiRJQ1MOzpIkSZJ6y4qrJEnS0MzSrgJWXCVJkjQIVlwlSZKGxgUIJEmSpP6y4ipJkjQ0ZR9XSZIkqbesuEqSJA2NfVwlSZKk/rLi2kNX/X3drkOY0qVrXd91CFP65g5v6TqEST31grd3HcKU3v+gQ7sOYUo7585dhzClW3reFe2S1W7sOoQpbV5rdR3ClM6qa7sOYUq/Wb3/7+Oat6zTdQiT2q3rAFrlPK6SJElSf1lxlSRJGhr7uEqSJEn9ZcVVkiRpaJzHVZIkSeovK66SJElDYx9XSZIkqb+suEqSJA2N87hKkiRJ/WXFVZIkaWhmaR9XE1dJkqShcTosSZIkqb+suEqSJA3NLO0qYMVVkiRJg2DFVZIkaWDK6bD6I8lhSf6jb+dPcs8kx7bbj07y7XZ77yQHt9tPTbLdHRuxJEnSzGfFdTlU1ZXAvhO0Hw8c3959KvBt4OI7LjJJkjSr2Me1W0kOSfLLJD8B7t+2vSTJWUnOT/K1JOu07Ucm+VCSnya5PMm+I8d5Y5IL2ucc0bZtleTEJGcn+XGSbdr2pyT5WZJzk/xPkruNhLRjktOTXJrkJe3+WyS5cILYD0jykSQPA/YG3pvkvPa854zst/XofUmSJC27XlRckzwIeDYwlyamc4Czga9X1Sfbfd4BvAj4cPu0ewC7A9vQVDuPTfLPwD7AQ6rqhiR3afedB7ysqi5N8hDgY8BjgZ8Au1VVJXkx8Abg39vnPBDYDVgXODfJd6Z6HVX10yTHA9+uqrEuBdcmmVtV5wH/Cnx2Rd4jSZKk28zSimsvElfgEcA3quoGgDb5A9i+TVg3AtYDThp5zjerahFw8UildA/gs2PHqaq/JFkPeBhwTJKx567Vfr0XcHSSewBrAr8aOf5xVfUP4B9JfgjsCpy3Aq/tU8C/Jnk9sF97nCUkORA4EOC16z+IJ99pqxU4lSRJ0szVm64CS3Ek8G9VtQPwNmDtkcduGtkOS7cacE1VzR25bds+9mHgI+3xXzru+OM/yqzoR5uvAf8MPBk4u6r+PNFOVTWvqnapql1MWiVJ0qRq0fTeeqovieupwFOT3CnJ+sBT2vb1gd8nWQPYfxmO8z2a6uZYX9i7VNXfgF8leWbbliQ7tvtvCPyu3X7BuGPtk2TtJP8EPBo4axlfy3Vt3ABU1Y00leKPYzcBSZKkFdaLxLWqzgGOBs4HvsvtSeJbgJ8BpwGXLMNxTqTp7zo/yXnA2JRW+wMvSnI+cBFNP1iAw2i6EJwN/Gnc4RYAPwTOAN7eziiwLL4CHNQO+BornR4FLAJOXsZjSJIkLd2imt5bT/WljytV9U7gnRM89PEJ9j1g3P31RraPAI4Y9/ivgL0mOM5xwHETtB+2lBivALZvt08BTmm3j6Tp1kBVnQaMn8d1d5q+twsnOq4kSZKm1pvEdaZK8g1gK5pZDCRJklZa9bgqOp1MXKdZVT2t6xgkSZJmAhNXSZKkoZmlFddeDM6SJEmSpmLiKkmSNDSLFk3vbRkk2SvJL5JcluTgSfZ7RpJKssvKvmwTV0mSJC2XJHOAj9IssrQd8Jwk42dVop2f/zU005uuNBNXSZKkoel+Htddgcuq6vKquplmHvt9Jtjv7cC7gRtXxcs2cZUkSRqa7hPXTYHfjNz/bdt2myQ7A5tV1XdW1cs2cZUkSdJikhyYZP7I7cDlfP5qwH8B/74q43I6LEmSpIGpmt7psKpqHjBvkl1+B2w2cv9ebduY9WlWGz0lCcDdgeOT7F1V81c0LiuukiRJWl5nAVsn2TLJmsCzgePHHqyqa6tq46raoqq2AM4AVippBSuukiRJw9PxAgRVdWuSfwNOAuYAn6mqi5IcDsyvquMnP8KKMXGVJEnScquqE4ATxrUdupR9H70qzmniKkmSNDQu+SpJkiT1lxVXSZKkgalZWnE1ce2hNbJsawR36eFs2HUIU/pzz3+63/+gCbsB9cq/n3141yFM6SE7PL/rEKb0+LU2m3qnDj38lrW7DmFKp62xShbdmVbPvaX/fxdPXfOWrkOY0mVr9P9/oLrT83/tkiRJWsIsrbjax1WSJEmDYMVVkiRpaGZpjworrpIkSRoEK66SJEkDM1tnFbDiKkmSpEGw4ipJkjQ0VlwlSZKk/rLiKkmSNDTOKiBJkiT1lxVXSZKkgXFWAUmSJKnHrLhKkiQNzSzt42riKkmSNDB2FZAkSZJ6bFYlrklem2SdkfsnJNmow5AkSZKW36JpvvXUrEpcgdcCtyWuVfXEqrqms2gkSZK0zDpNXJN8M8nZSS5KcmDbtleSc5Kcn+T7bdtd2n0XJDkjyQPb9sOS/MfI8S5MskWSdZN8pz3GhUn2S/Jq4J7AD5P8sN3/iiQbt9vPb49/fpIvtG1HJvlQkp8muTzJviPnOijJWe1z3ta2LXHetv2IJBe3+77vjnhvJUnSzFWLpvfWV10PznphVf0lyZ2As5IcB3wSeGRV/SrJXdr93gacW1VPTfJY4PPA3EmOuxdwZVU9CSDJhlV1bZLXA4+pqj+N7pzkAcCbgYdV1Z9GzgtwD2B3YBvgeODYJHsCWwO7AgGOT/JIYJPx503yT8DTgG2qquyaIEmStGK67irw6iTnA2cAmwEHAqdW1a8Aquov7X67A19o234A/FOSDSY57gXA45O8O8kjquraKeJ4LHDMWEI7cl6Ab1bVoqq6GLhb27ZnezsXOIcmqd16Kee9FrgR+HSSpwM3TBRAkgOTzE8y//gbLp8iXEmSNKvZx/WOleTRwB7AQ6tqR5ok8LzlPMytLP4a1gaoql8CO9Mkku9IcuhKhHrTyHZGvr6rqua2t/tW1acnOm9V3UpTmT0WeDJw4kQnqap5VbVLVe2y9zr3WYlwJUmSZqYuK64bAn+tqhuSbAPsRpN4PjLJltD0bW33/TGwf9v2aOBPVfU34AqaRJEkOwNjz7sncENVfRF479g+wHXA+hPE8gPgme1lfcZ1FZjIScALk6zX7r9pkrtOdN52nw2r6gTgdcCOy/b2SJIkTcw+rne8E4GXJfk58Aua7gJ/pOku8PUkqwFXA48HDgM+k2QBzaX2F7TH+Brw/CQXAT8Dftm27wC8N8ki4Bbg5W37PODEJFdW1WPGAqmqi5K8E/hRkoU01d8DlhZ4VZ2cZFvg9CQA1wPPA+47wXnXB45LsjZNpfb1K/BeSZIkzXqdJa5VdRPwz0t5+Lvj9v0L8NQJjvEPmr6m411BUxUdv/+HgQ+P3N9iZPtzwOfG7X/AuPvrjWx/EPjguFP870TnpekqIEmStGr0uCo6nboenCVJkiQtk66nw5IkSdJy6nM/1OlkxVWSJEmDYMVVkiRpYKy4SpIkST1mxVWSJGlgrLhKkiRJPWbFVZIkaWgqU+8zA1lxlSRJ0iBYcZUkSRqY2drH1cRVkiRpYGqRXQUkSZKk3rLiKkmSNDCztauAFVdJkiQNghVXSZKkgSmnw5IkSZL6y4prD/37ald1HcKUPr/Wel2HMKXX3lhdhzCpnXPnrkOY0kN2eH7XIUzpZxd8vusQpvT1Hd7SdQiTunKNriOY2ke/8/KuQ5jSB5/42a5DmNITb5zTdQhTWrDW7KwkLi/7uEqSJEk9ZsVVkiRpYJzHVZIkSeoxK66SJEkDU/0exjFtrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQwziogSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqdlZcTVwlSZIGphZ1HUE37CqwCiTxA4AkSdI0m5WJa5LnJTkzyXlJPpFkTpLrk7wzyflJzkhyt3bfTZJ8LclZ7e3hbfthSb6Q5DTgC+1+30tyUZJPJfl1ko2THJ7ktSPnfmeS13TzyiVJ0kywqDKtt76adYlrkm2B/YCHV9VcYCGwP7AucEZV7QicCrykfcoHgf+uqgcDzwA+NXK47YA9quo5wFuBH1TVA4Bjgc3bfT4DPL8992rAs4EvTtsLlCRJmqFm4yXuxwEPAs5KAnAn4GrgZuDb7T5nA49vt/cAtmv3BdggyXrt9vFV9Y92e3fgaQBVdWKSv7bbVyT5c5KdgLsB51bVn6frxUmSpJnPwVmzR4DPVdWbFmtM/qPqtnUoFnL7e7MasFtV3Thuf4C/L+M5PwUcANydpgK7ZFDJgcCBAPfe8L5sss49lvHQkiRJs8Os6yoAfB/YN8ldAZLcJcm9J9n/ZOBVY3eSzF3KfqcBz2r32RO488hj3wD2Ah4MnDTRk6tqXlXtUlW7mLRKkqTJ1KJM662vZl3iWlUXA28GTk6yAPgeMFmm+GpglyQLklwMvGwp+70N2DPJhcAzgT8A17XnvBn4IfDVqlq4al6JJEnS7DIbuwpQVUcDR49rXm/k8WNpBlhRVX+iGcw1/hiHjWu6FnhCVd2a5KHAg6vqJrhtUNZuNAmtJEnSSrmtc+MsMysT12myOfDVNkm9mXZWgiTb0Qz6+kZVXdphfJIkSYNm4rqKtEnpThO0Xwzc546PSJIkzVR96IeaZC+aaUPnAJ+qqiPGPf564MXArcAfgRdW1a9X5pyzro+rJEmSVk6SOcBHgX+mmdf+Oe1V5lHnArtU1QNpumC+Z2XPa8VVkiRpYHqwutWuwGVVdTlAkq8A+wAXj+1QVT8c2f8M4Hkre1IrrpIkSVpemwK/Gbn/27ZtaV4EfHdlT2rFVZIkaWCme+Ws0YWRWvOqat4KHut5wC7Ao1Y2LhNXSZIkLaZNUidLVH8HbDZy/15t22KS7AEcAjxqbJrQlWHiKkmSNDA9mMf1LGDrJFvSJKzPBp47ukOSnYBPAHtV1dWr4qT2cZUkSdJyqapbgX+jWcr+5zSrg16U5PAke7e7vZdmgadjkpyX5PiVPa8VV0mSpIHpwawCVNUJwAnj2g4d2d5jVZ/TiqskSZIGwYqrJEnSwEz3rAJ9ZeIqSZI0MD0YnNUJuwpIkiRpEKy4SpIkDUwfBmd1wYqrJEmSBsGKaw+9aM7mXYcwpQ/cstKLX0y7J2atrkOY1C2Luo5gao9fa7Opd+rY13d4S9chTOnpF7y96xAm9dUHHjr1Th37ryd+tusQpvSP9L/T4W/WmNN1CFPaYAB/G/tgtg7OsuIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwPS/R/X0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGZrYuMGbFVZIkSYNgxVWSJGlgCvu4SpIkSb1lxVWSJGlgFs3SpbOsuEqSJGkQpkxck/x0RQ6c5KlJtluR506HJBslecUy7nv9dMcjSZK0ohaRab311ZSJa1U9bAWP/VRgwsQ1SRddFDYClilxlSRJUv8sS8X1+vbro5OckuTYJJckOSpJ2seOSHJxkgVJ3pfkYcDewHuTnJdkq/a5H0gyH3hNkiOT7LuU8/woyXFJLm+PvX+SM5NckGSrdr9NknwtyVnt7eFt+2FJPtOe7/Ikr25PcQSwVRvPe5Osl+T7Sc5pj7vPBK99stf8oDbOs5OclOQebfurR96Lr7Rtj2rPe16Sc5Osv4LfL0mSJIpM662vlrfyuRPwAOBK4DTg4Ul+DjwN2KaqKslGVXVNkuOBb1fVsQBtvrdmVe3S3j9ykvPsCGwL/AW4HPhUVe2a5DXAq4DXAh8E/ruqfpJkc+Ck9jkA2wCPAdYHfpHk48DBwPZVNbc9/+rA06rqb0k2Bs5IcnxVje/uPNFr/hnwYWCfqvpjkv2AdwIvbM+zZVXdlGSj9hj/Abyyqk5Lsh5w49RvtSRJ0sRm6wIEy5u4nllVvwVIch6wBXAGTSL26STfBr49yfOPXsbznFVVv2/P87/AyW37BTQJKcAewHZtQgywQZsUAnynqm4CbkpyNXC3Cc4R4D+TPJLm+79pu98fxu030Wu+Btge+F57/jnA79v9FwBHJfkm8M227TTgv5IcBXx97HiSJEladss7q8BNI9sLgdWr6lZgV+BY4MnAiZM8/+8j27eOnT/JasCaSznPopH7i7g92V4N2K2q5ra3Tavq+gmev5CJE/T9gU2AB7VV2KuAtSfYb6JjBbho5Nw7VNWe7T5PAj4K7AyclWT1qjoCeDFwJ+C0JNuMP0mSA5PMTzL/x9dfOkEYkiRJjdnaVWClp8Nqq5wbVtUJwOtoLvMDXEdzqX5prgAe1G7vDayxnKc+mabbwFgcc6fYf3w8GwJXV9UtSR4D3Hs5zv0LYJMkD23PvUaSB7QJ+GZV9UPgje051kuyVVVdUFXvBs6i6cqwmKqaV1W7VNUuj1hv6+UIRZIkaXZYFaP71weOS7I2TSXy9W37V4BPtoOj9p3geZ9sn3c+TZX27xPsM5lXAx9NsoDmdZwKvGxpO1fVn5OcluRC4LvAu4FvJbkAmA9csqwnrqqb24FlH0qyYXv+DwC/BL7YtgX4UNvf9+1tcrwIuKg9vyRJ0gqZrX1cs+RYJHXt/232vN5/U86dc9PUO3Vsu0VrdR3CpG7pOoBl8MfVFnYdwpR2vqn/66g8/YK3dx3CpL76wEO7DmFK/7e81+Q68I/0/k83d1/Y30vAY/r+V+dVv/liL97EE+/27Gn9gdvrqq/04nWO55KvkiRJAzNbK679L1VIkiRJWHGVJEkanD6P/J9OVlwlSZI0CFZcJUmSBmbR7Cy4WnGVJEnSMFhxlSRJGphF9nGVJEmS+suKqyRJ0sD0f7mL6WHFVZIkSYNgxVWSJGlgXDlLkiRJ6jErrpIkSQOzKM4qIEmSJPWWFVdJkqSBma2zCpi4SpIkDcxsHZxl4tpDV87p/+eoHRau1XUIU1rY8+4/l6x2Y9chTOnht6zddQhTunKNriOY2lcfeGjXIUzqWQsO7zqEKR2yyyFdhzClHW+e03UIU7pijf7/f7l73/94q1MmrpIkSQOzaJbm9w7OkiRJ0iBYcZUkSRqYRczOkqsVV0mSJA2CFVdJkqSB6f8wu+lhxVWSJEmDYMVVkiRpYJxVQJIkSeoxK66SJEkDM1tXzrLiKkmSpEGw4ipJkjQwziogSZIk9ZgVV0mSpIFxVgFJkiSpx6y4SpIkDYyzCswwSa5vv94zybFdxyNJkqSVM+MrrlV1JbBv13FIkiStKlZcZ6gkWyS5sN0+I8kDRh47JckuSdZN8pkkZyY5N8k+7eMHJPl6khOTXJrkPSPP3TPJ6UnOSXJMkvXa9iOSXJxkQZL3tW3PTHJhkvOTnHrHvgOSJEkzw4yvuI5zNPAs4K1J7gHco6rmJ/lP4AdV9cIkGwFnJvmf9jlzgZ2Am4BfJPkw8A/gzcAeVfX3JG8EXp/ko8DTgG2qqtpjARwKPKGqfjfSJkmStELKWQVmha9ye7eBZwFjfV/3BA5Och5wCrA2sHn72Per6tqquhG4GLg3sBuwHXBa+5wXtO3XAjcCn07ydOCG9hinAUcmeQkwZ6LAkhyYZH6S+edcd9mqebWSJGlGWjTNt76aVYlrVf0O+HOSBwL70VRgAQI8o6rmtrfNq+rn7WM3jRxiIU2VOsD3RvbfrqpeVFW3ArvSJMRPBk5sz/symgrtZsDZSf5pgtjmVdUuVbXLzuvfd5W/dkmSpKGbVYlr62jgDcCGVbWgbTsJeFWSACTZaYpjnAE8PMl92/3XTXK/tp/rhlV1AvA6YMf28a2q6mdVdSjwR5oEVpIkaYX0oeKaZK8kv0hyWZKDJ3h8rSRHt4//LMkWK/hybzMbE9djgWfTdBsY83ZgDWBBkova+0tVVX8EDgC+nGQBcDqwDbA+8O227SfA69unvDfJBe0gsZ8C56+6lyNJknTHSjIH+CjwzzTdJ5+TZLtxu70I+GtV3Rf4b+DdK3veGTs4q6rWa79eAWw/0n4V4153Vf0DeOkExzgSOHLk/pNHtn8APHiCU+86wXGevpzhS5IkLVV1HUCT71xWVZcDJPkKsA/NeKAx+wCHtdvHAh9Jkqpa4fBnY8VVkiRJkxgdNN7eDhy3y6bAb0bu/7Ztm3CfdhzQtcAS43yWx4ytuEqSJM1Ui6Z5OqyqmgfMm96zLD8rrpIkSVpev2Pxweb3atsm3CfJ6sCGwJ9X5qQmrpIkSQPTg1kFzgK2TrJlkjVpBr4fP26f42nmuodmHv0frEz/VrCrgCRJkpZTVd2a5N9ophSdA3ymqi5Kcjgwv6qOBz4NfCHJZcBfaJLblWLiKkmSNDB9WN2qnbf+hHFth45s3wg8c1We064CkiRJGgQrrpIkSQPTg3lcO2HFVZIkSYNgxVWSJGlgpnse176y4ipJkqRBsOIqSZI0MH2YVaALVlwlSZI0CFZcJUmSBsZZBSRJkqQes+IqSZI0MItmac3VxLWHruLmrkOY0hNu6f8vzNFrz+k6hEltXmt1HcKUTlvjxq5DmNJHv/PyrkOY0n898bNdhzCpQ3Y5pOsQpvTO+e/sOoQpHfGgt3QdwpTm3tT/IT2Xrdnvv9190f/v5PSwq4AkSZIGwYqrJEnSwPT/uuf0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwCxK1xF0w4qrJEmSBsGKqyRJ0sDM1gUIrLhKkiRpEKy4SpIkDczsrLdacZUkSdJAWHGVJEkaGOdxlSRJknrMiqskSdLAOKuAJEmS1GMzJnFNcv0qOs6jk3x7VRxLkiRpOtQ03/pqxiSukiRJmtlmXOKaxnuTXJjkgiT7te2LVVKTfCTJAe32XkkuSXIO8PSRfQ5L8pkkpyS5PMmrRx57XpIzk5yX5BNJ5rS3I0fO/bp231cnuTjJgiRfuaPeC0mSNDMtmuZbX83EwVlPB+YCOwIbA2clOXVpOydZG/gk8FjgMuDocbtsAzwGWB/4RZKPA/cF9gMeXlW3JPkYsD9wEbBpVW3fHnuj9hgHA1tW1U0jbZIkSVoOM67iCuwOfLmqFlbVVcCPgAdPsv82wK+q6tKqKuCL4x7/TlXdVFV/Aq4G7gY8DngQTVJ8Xnv/PsDlwH2SfDjJXsDf2mMsAI5K8jzg1omCSHJgkvlJ5v/8ustX4GVLkqTZYhE1rbe+momJ69LcyuKvd+1lfN5NI9sLaarUAT5XVXPb2/2r6rCq+itNpfcU4GXAp9rnPQn4KLAzTbK7RKW7quZV1S5Vtcu2699neV6XJEnSrDATE9cfA/u1/U03AR4JnAn8GtguyVrt5frHtftfAmyRZKv2/nOW4RzfB/ZNcleAJHdJcu8kGwOrVdXXgDcDOydZDdisqn4IvBHYEFhvlbxSSZI0K83WWQVmYh/XbwAPBc6nee/fUFV/AEjyVeBC4FfAuQBVdWOSA4HvJLmBJvFdf7ITVNXFSd4MnNwmprcArwT+AXy2bQN4EzAH+GKSDWkqtR+qqmtW4euVJEmzTJ8HUE2nGZO4VtV67dcCDmpv4/d5A/CGCdpPpOnrOr79sHH3tx/ZPpolB3JB0x1gvN0nj16SJElTmTGJqyRJ0mxRvb6gP31mYh9XSZIkzUBWXCVJkgZmtvZxteIqSZKkQbDiKkmSNDB9XiRgOllxlSRJ0iBYcZUkSRqY2VlvteIqSZKkgbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGpuzjKkmSJPWXFVdJkqSBsY+rJEmS1GNWXHvoXrVm1yEsg5u6DmBKGzCn6xAmdVZd23UIU3ruLRt2HcKUPvjEz3YdwpT+kX73Rdvx5n7/rgAc8aC3dB3ClA4+++1dhzClo3Y8tOsQprTebC0lLif7uEqSJEk9ZsVVkiRpYGZrYdrEVZIkaWAWlV0FJEmSpN6y4ipJkjQws7PeasVVkiRJA2HFVZIkaWAWzdKaqxVXSZIkDYIVV0mSpIFxAQJJkiSpx6y4SpIkDcxsXYDAiqskSZIGwYqrJEnSwDirgCRJktRjVlwlSZIGxlkFZpkkVyTZeIL2vZMc3EVMkiRJWrpZm7guTVUdX1VHdB2HJEnS0iya5tvKSHKXJN9Lcmn79c4T7DM3yelJLkqyIMl+y3LsXiSuSdZN8p0k5ye5MMl+bUX0PUkuSHJmkvu2+26S5GtJzmpvDx85xmfafc9Nsk/bPifJ+9rjLkjyqpFTvyrJOe05tmn3PyDJR9rtI5N8KMlPk1yeZN+RmA9qz78gyduW9jra9iOSXNzu+7475E2VJEnqxsHA96tqa+D77f3xbgCeX1UPAPYCPpBko6kO3Jc+rnsBV1bVkwCSbAi8G7i2qnZI8nzgA8CTgQ8C/11VP0myOXASsC1wCPCDqnph+8LPTPI/wPOBLYC5VXVrkruMnPdPVbVzklcA/wG8eILY7gHsDmwDHA8cm2RPYGtgVyDA8UkeCWwy/nUk+SfgacA2VVXL8k2RJEmaTFWv+7juAzy63f4ccArwxtEdquqXI9tXJrmaJo+6ZrID96LiClwAPD7Ju5M8oqqubdu/PPL1oe32HsBHkpxHk0hukGQ9YE/g4Lb9FGBtYPN2/09U1a0AVfWXkfN+vf16Nk1yO5FvVtWiqroYuFvbtmd7Oxc4hyap3Xopr+Na4Ebg00meTvMJYwlJDkwyP8n8+ddftvR3SpIkqd/uVlW/b7f/wO3504SS7AqsCfzvVAfuRcW1qn6ZZGfgicA7knx/7KHR3dqvqwG7VdWNo8dIEuAZVfWLce2Tnfqm9utClv5e3DSynZGv76qqT4zfefzrqKrD22/I44B9gX8DHjv+eVU1D5gH8PZ779/rj1GSJKlb0z2Pa5IDgQNHmua1ucrY4/8D3H2Cpx4yeqe92rzUYJPcA/gC8IKqmrJ7bS8qrknuCdxQVV8E3gvs3D6038jX09vtk4FXjTx3brt5Ek2f1bTtO7Xt3wNemmT1tn20q8CKOgl4YVvpJcmmSe460eto99mwqk4AXgfsuArOL0mSNG2qal5V7TJymzfu8T2qavsJbscBV7UJ6VhievVE50iyAfAd4JCqOmNZ4upFxRXYAXhvkkXALcDLgWOBOydZQFP1fE6776uBj7btqwOnAi8D3k7TD3ZBktWAX9H0if0UcL+2/Rbgk8BHVibYqjo5ybbA6W2efD3wPOC+E7yO9YHjkqxNU6l9/cqcW5IkaWVH/k+z44EXAEe0X48bv0OSNYFvAJ+vqmOX9cC9SFyr6iSaKuZt2oTwvVU1vjPvn7i9Ejva/g/gpRO030qTLL5+XPsWI9vzaTsRV9WRwJHt9gHjnrPeyPYHaQaKjfrf8a+jtesEbZIkSSuk5wsQHAF8NcmLgF8DzwJIsgvwsqp6cdv2SOCfkhzQPu+AqjpvsgP3InGVJEnSzFBVf6YZ2zO+fT7tDE5tt8ovLu+xe5u4jlZEJUmSdLvpHpzVV70YnCVJkiRNpbcVV0mSJE2s5wsQTBsrrpIkSRoEK66SJEkD0/PpsKaNFVdJkiQNghVXSZKkgen5PK7TxoqrJEmSBsGKqyRJ0sA4j6skSZLUY1ZcJUmSBsZ5XCVJkqQes+IqSZI0MPZxlSRJknrMimsP3XVhug5hSqevuXbXIUxps1u7jmByv1l9ra5DmNKpa97SdQhTeuKNc7oOYUq/WaPfMV6xRv8rN3Nv6v86QUfteGjXIUxp//MP7zqEKX19h7d0HcIgOI+rJEmS1GNWXCVJkgZmkbMKSJIkSf1lxVWSJGlgZme91cRVkiRpcJwOS5IkSeoxK66SJEkDY8VVkiRJ6jErrpIkSQNTToclSZIk9ZcVV0mSpIGxj6skSZLUY1ZcJUmSBqasuEqSJEn9ZcVVkiRpYJxVYJZJslGSV3QdhyRJkpbNrE1cgY0AE1dJkjQ4i6hpvfXVbE5cjwC2SnJekvcmOSjJWUkWJHkbQJItklyS5Mgkv0xyVJI9kpyW5NIku7b7HZbkC0lOb9tf0ranPfaFSS5Isl+Hr1eSJGnQZnMf14OB7atqbpI9gX2BXYEAxyd5JPB/wH2BZwIvBM4CngvsDuwN/H/AU9vjPRDYDVgXODfJd4CHAnOBHYGNgbOSnFpVv78jXqAkSZqZ7OM6u+3Z3s4FzgG2AbZuH/tVVV1QVYuAi4DvV/PTcgGwxcgxjquqf1TVn4Af0iTBuwNfrqqFVXUV8CPgwXfEC5IkSZppZnPFdVSAd1XVJxZrTLYAbhppWjRyfxGLv3/jP/os10ehJAcCBwLsv9GuPGLdrad4hiRJmq363A91Os3miut1wPrt9knAC5OsB5Bk0yR3Xc7j7ZNk7ST/BDyaplvBj4H9ksxJsgnwSODMiZ5cVfOqapeq2sWkVZIkaUmztuJaVX9uB1ldCHwX+BJwehKA64HnAQuX45ALaLoIbAy8vaquTPINmn6u59NUYN9QVX9YhS9DkiTNQrN15axZm7gCVNVzxzV9cILdth/Z/4CR7StGHwMWVNXzxx2/gIPamyRJklbCrE5cJUmShmjRLJ1VwMR1Faiqw7qOQZIkaaYzcZUkSRoY+7hKkiRpEGZrV4HZPB2WJEmSBsSKqyRJ0sDM1q4CVlwlSZI0CFZcJUmSBsY+rpIkSVKPWXGVJEkaGPu4SpIkST1mxVWSJGlg7OMqSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqUdchdMLEtYd+t3r/y/9b3pKuQ5jStnVD1yFMas1b1uk6hCldtkb//zAuWKv/P4sb9PxtvPvC/r+Hl605p+sQprRez7/PAF/f4S1dhzClp1/w9q5DUI+ZuEqSJA3MIvu4SpIkSf1lxVWSJGlgynlcJUmSpP6y4ipJkjQw9nGVJEmSesyKqyRJ0sDM1j6uJq6SJEkDs2iWJq52FZAkSdIgWHGVJEkamHJwliRJktRfVlwlSZIGZrYOzrLiKkmSpEEwcZUkSRqYRdS03lZGkrsk+V6SS9uvd55k3w2S/DbJR5bl2CaukiRJWpUOBr5fVVsD32/vL83bgVOX9cAmrpIkSQNTVdN6W0n7AJ9rtz8HPHWinZI8CLgbcPKyHniVJ65JNkryinb7nkmOXdXnmOL8uyT50DQc96lJtlvVx5UkSZph7lZVv2+3/0CTnC4myWrA+4H/WJ4DT8esAhsBrwA+VlVXAvtOwzmWqqrmA/On4dBPBb4NXLysT0iyelXdOg2xSJKkWWy6V85KciBw4EjTvKqaN/L4/wB3n+Cph4zeqapKMlGwrwBOqKrfJlnmuKYjcT0C2CrJecClwLZVtX2SA2iSv3WBrYH3AWsC/wLcBDyxqv6SZCvgo8AmwA3AS6rqkolOlOSZwFuBhcC1VfXIJI8G/qOqnpxkE+BLwD2B04HHAw8C1gO+C/wEeBjwO2CfqvpHkpfQfKPWBC5r45sL7A08KsmbgWcAn27PMz/JxsD8qtqifZ1Pb88xJ8kTgQ8D2wNrAIdV1XEr/O5KkiRNszZJnTfJ43ss7bEkVyW5R1X9Psk9gKsn2O2hwCPaq/TrAWsmub6qJusPOy19XA8G/req5gIHjXtse5qk7sHAO4EbqmonmqTy+e0+84BXVdWDaMrHH5vkXIcCT6iqHWkSy/HeCvygqh4AHAtsPvLY1sBH28euoUlGAb5eVQ9uj/lz4EVV9VPgeOCgqppbVf87xXuwM7BvVT2K5pPHD6pqV+AxwHuTrDvF8yVJkpaq531cjwde0G6/AFiiYFdV+1fV5lW1BU2+9/mpkla44wdn/bCqrquqPwLXAt9q2y8AtkiyHk0F9Ji2YvsJ4B6THO804Mi2Sjpngsd3B74CUFUnAn8deexXVXVeu302sEW7vX2SHye5ANgfeMByvcLG96rqL+32nsDB7es5BVibxRNooCnJJ5mfZP451122AqeUJEnqhSOAxye5FNijvT82DulTK3PgO3rlrJtGtheN3F/UxrIacE1brZ1SVb0syUOAJwFnt6PTViSWhcCd2u0jgadW1fntZf9HL+X5t3J74r/2uMf+PrId4BlV9YvJghktyR+6xf6zczkMSZK0TFZ2rtXpVFV/Bh43Qft84MUTtB9Jk39NaToqrtcB66/IE6vqb8Cv2r6rpLHj0vZPslVV/ayqDgX+CGw2bpfTgGe1++4JLHUC3BHrA79PsgZNxXXM+Nd1BU1/WZh8ANpJwKvS9jxOstMyxCBJkqRxVnni2mbZpyW5EHjvChxif+BFSc4HLqKZC2xp3pvkgvZcPwXOH/f424A928efSTMlw3VTnP8twM9okt7RQWFfAQ5Kcm47gOx9wMuTnAtsPMnx3k4zKGtBkova+5IkSSus531cp036HNzKSrIWsLCqbk3yUODjy9oNoUtD6Cqw5S3LPnVFV7atG7oOYVI/zzpdhzCly9ZY1HUIU1qn+v+zuMGifse4Tu//4sDfBrBcznr9/3Vhg4X9/2Y//YJ+13fW2Pg+vfiF3mDd+0zrN/Nvf7+8F69zvDu6j+sdbXPgq+0ktzcDL+k4HkmSpJU23fO49tUgEtckh9Bc6h91TFW9c7LnVdWlgH1KJUmSZoBBJK5tgjppkipJkjRbVI9nFZhOg0hcJUmSdLvZ2lVgAN3dJUmSJCuukiRJgzOTZ4WajBVXSZIkDYIVV0mSpIGZrYOzrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQws7PeasVVkiRJA5HZ2kdiNklyYFXN6zqOyRjjqmGMK6/v8YExrip9j7Hv8YEx6o5nxXV2OLDrAJaBMa4axrjy+h4fGOOq0vcY+x4fGKPuYCaukiRJGgQTV0mSJA2CievsMIS+Pca4ahjjyut7fGCMq0rfY+x7fGCMuoM5OEuSJEmDYMVVkiRJg2DiKkmSpEEwcZUkSdIgmLjOcEl2T/Kv7fYmSbbsOqZRSeYkuWeSzcduXcc0KskOXceg6ZfkVUnu3HUck0mybpLV2u37Jdk7yRpdx7U0Se6c5IFdxzGZJKsl2aDrOIYmyd2SPLm93bXreJYmyZ2S3L/rOLRqmbjOYEneCrwReFPbtAbwxe4iWlySVwFXAd8DvtPevt1pUEv6WJIzk7wiyYZdBzNekrOTvLLPSVeS9yTZIMkaSb6f5I9Jntd1XOPcDTgryVeT7JUkXQc0gVOBtZNsCpwM/AtwZKcRjZPklPZ7fRfgHOCTSf6r67hGJflSG+O6wIXAxUkO6jquMX3/fUnyLOBM4JnAs4CfJdm326iWlOQpwHnAie39uUmO7zQorRImrjPb04C9gb8DVNWVwPqdRrS41wD3r6oHVNUO7a1XFZqqegSwP7AZcHb7T+/xHYc1aj/gnjRJ11eSPKGHSdeeVfU34MnAFcB9gd4kCgBV9WZga+DTwAHApUn+M8lWnQa2uFTVDcDTgY9V1TOBB3Qc03gbtt/rpwOfr6qHAHt0HNN427UxPhX4LrAlzYeAvuj778shwIOr6gVV9XxgV+AtHcc0kcNoYrsGoKrOo/lea+BMXGe2m6uZ76ygudTYcTzj/Qa4tusgplJVlwJvpqlePwr4UJJLkjy928igqi6rqkOA+wFfAj4D/DrJ29qqVx+s3n59EnBMVfXye97+rvyhvd0K3Bk4Nsl7Og3sdknyUJoPUt9p2+Z0GM9EVk9yD5pKXN+unoxZo+1i8VTg+Kq6hfZvZE/0/fdltaq6euT+n+lnLnHLBO9dn77PWkGrT72LBuyrST4BbJTkJcALgU91HBNJXt9uXg6ckuQ7wE1jj1dVby4ttn30/pXmn8j3gKdU1TlJ7gmcDny9y/hgsRifCHwNOArYHfgBMLe7yG7z7SSXAP8AXp5kE+DGjmNaTJLXAM8H/kTzO3JQVd3S9im9FHhDl/G1XkvT7ecbVXVRkvsAP+w2pCUcDpwE/KSqzmpjvLTjmMb7BE0l83zg1CT3Bv7WaUSL6/vvy4lJTgK+3N7fDzihw3iW5qIkzwXmJNkaeDXw045j0irgAgQzXHtZe08gwElV9b2OQxrre7s0VVWH32HBTCHJj2gSmWOr6h/jHvuXqvpCN5HdFsPZNJfCPg18rapuGnns61XVeVUYoK3+XltVC5OsA2xQVX/oOq4xSd4GfKaqfj3BY9tW1c87CGup2oR6vfaSslZSktWr6tau4xgzgN+Xp9N8OAb4cVV9o8t4JtK+b4fQ/P+D5gPVO6qqTx8CtAJMXGewJO+uqjdO1daVJM+sqmOmautSktdW1QfGtb2mqj7YUUiLSXKfqrp8XNuWVfWrrmIaL8kzgROr6rokbwZ2pvkHck7Hod1mKd0qrmsvI/dCki8BLwMWAmcBGwAfrKr3dhrYiLZbxTtoqoUnAg8EXldVfRoU+hrgs8B1NB9KdwIOrqqTOw2sNZDfl7sDDwEWAWf1KamGZrYa4H+q6jFdx6JVr4/9UrTqTDSI6J/v8CiW7k3L2Nal50/QdsAdHcQkjl3Gti69pf0nvDvNQJ1PAx/vOKbxzgH+CPyS5tL2H4ErkpyT5EGdRna7vg8qgv4PLAJ4YRvjnjT9mP8FOKLbkBbT69+XJC+mmVXgacC+wBlJXthtVIurqoXAoj7OBKOVZx/XGSjJy4FXAPdJsmDkofWB07qJ6nZJ/pmmP+amST408tAGNINiOpfkOcBzgS3HTaGyPvCXbqK6XZJtaEaUbzhukNgGwNrdRLVUC9uvTwLmVdV3kryjy4Am8D2a7iAnASTZE3gGTWXuYzTVpa6NDir6SNsHt2+XzJYYWNS/SS4YC+iJwBfa/sJ9CrLvvy8HATtV1Z8BkvwTTd/Rz3Qa1ZKuBy5I8j3amXUAqurV3YWkVcHEdWb6Ek1F5l3AwSPt11VV50kXcCUwn2aqrrNH2q8DXtdJREv6KfB7YGPg/SPt1wELJnzGHev+NFWtjYCnjLRfB7yki4Am8bt2kODjgXcnWYv+Xe3Zrapue9+q6uQk76uql7bx9kHfBxVB/wcWQTOt3ck0Fes3JVmf5pJ3X/T99+XPNH9nxlzXtvXN1+nB4FmtevZxnQXSrGxyWxWuqv6vw3Buk2SNPvUhHKIkD62q07uOYzLtIIm9gAuq6tJ2uqQd+tKnEKBNZL4PfKVt2o8mcdiLpg/fzl3FNpm+DSqCJQYWrQus36c+kO3AtrnA5VV1TVsx3LSq+vCBtPe/L0k+D+wAHEczvdQ+NB/mF0C/ZoXRzGTFdQZrVw75L5oJ6q8G7g38nP5MWn7OBJc6r6Wpxr5j7FJUF5L8pKp2T3Idi8/9F5qZDzpdJjLJG6rqPcBz224Ni+nT5bCquiHJ1TSjkC+l6Q7StymSngu8Ffgmzff7tLZtDs2cpJ1LcjfgP4F7VtU/J9kOeChNH8heaJOuVwCbAwfS/O25P/2a07WA7WiuWBwOrEuPutcM4Pflf9vbmOPar31a3IYkv2KCeVur6j4dhKNVyIrrDJbkfOCxNKMrd0ryGOB5VfWijkMDbhuBvJCmawPAs4F1aCaA372qnrK05852SZ5SVd9K8oKJHq+qz93RMS1NO/3ZLjSrpN2vnQP3mKp6eMehAbeNQP58Ve3fdSyTSfJdmj63h1TVjklWB86tqh06Du02SY6m6f7z/Kravk1kf1pVc7uN7HZJPk7TNeCxVbVtmuWST66qB3ccGtD/35ehaCvpY9amWaL2LlV1aEchaRWx4jqz3VJVf06yWpLVquqHST7QdVAj9hh3CfaCJOdU1c7pwdrcbUJzUVVt03Us41XVt9qvvUlQJ/E0mimHzoFm6eG2X2EvtJe0751kzaq6uet4JrFxVX01yZsAqurWJAunetIdbKuq2m/sKkBbPezTwCeAh7R/Y84FqKq/Jlmz66BG9Pr3JckuNPOj3puRHKL6t1z3+Ct2H0gz77WJ68CZuM5s1yRZDzgVOKq9/PT3KZ5zR5qTZNeqOhMgyYO5fQnLzvvttQnNL5Js3pd+wWOSfItJli+sqr3vwHCmcnNV1Vi3kPRv6WFoVnE7rZ1BYnQEcp/66/29rSKNvY+70b8lk29Ociduj3ErRlbF64lb2g+lYzFuQr8GZ/X99+UompkFLqBf79tikowWRVajqWKb88wAfhNntn1oRvS+jmZ98w1p+nT1xYuBz7TJdWhGSL+4/UP9rk4ju92daZYOPJPFE5quE8P3dXz+5THR0sOf7Dim8cb67a1Gz/rqjXg9cDywVZLTgE1o5tHsk7fSLDywWZKjgIfTr3mPAT4EfAO4a5J30ryHb+42pMX0/fflj1V1/NS7dW50NphbgV/Rk/7qWjn2cVXnxiaJrqq+VY9I8qiJ2qvqR3d0LEOWHi49PJEk61TVDV3HsTRtv9b707yPv+jjrBxtVXg3mhjPqKo/dRzSEtp5kB9HE+P3e7ikb29/X5I8DngOzSwct1XTq6pXU09lAKsKasWYuM5AE4yEX0zXI+LHtPMTPgPYgsX7SvWpKtxLSb5aVc9KcgETz3rQq/5mfZdkbHT+elW1eZIdgZdW1Ss6Dm0xSR7Gkr8vn+8soAkk2ZQl+z+e2l1ES2q7CtyNxWPsVXegvkryRWAb4CJu7ypQVdWr1bPGxkuMazu7qvqyEp5WkF0FZqCqWh8gydtpJtH/Ak1Csz9wjw5DG+84mj56Z9O/fnDAbf0IPwxsC6xJ0wf37z1I/l/Tfn1yp1EsgzQre70buCvNz2EvphQb5wPAE2guxVNV5yd5ZKcRjZPkC8BWwHncvrpSAb1JXJO8m2YO3MWSGpp+9r2Q5FU0XRquonkfQxNjLz7sDeD35cFVdf+ug1iaDGtVQa0AE9eZbe+q2nHk/sfbKbL6MqryXlW1V9dBTOEjNNN0HUPTuf/5wP06jQioqt+3X3+d5O7ArjT/fM/q02TvrfcAT+nb5djxquo34wbA923E/i7AdtXvy2RPpZnGqZcfRFuvoYmxj6s9Qf9/X36aZLuqurjrQJZiSKsKagWYuM5sf0+yP81qQEXTL6lPswr8NMkOVXVB14FMpqouSzKnqhYCn22n0XlT13EBJHkxzQeRH9BUZj6c5PCq6tO64Vf1+J/wmN+0l+EryRo0yU3fYr4QuDvNVZS+uhxYg55eQWn9hv7NxjCq778vuwHntRP830TPuidV1XHAcRnAqoJaMSauM9tzgQ+2t9HVgPpid+CAvv4BbN3QzvF4Xrtgwu/p17rhBwE7jVWP2oExPwX6lLjObyem/yb9HczxMprfk02B3wEnA6/sNKIlbQxc3M5wMfo+dj3DxagbaH5Xxg/c6c1KbjTJ9SlJvsPiMfZl6rO+/770/SrZmHOTvJKm28Dokue96our5WfiOoNV1RU0U2JNKMmbqqrLaaf+ucNzL6t/oenX+m8004ptRjOgrC/+THMJbMx1bVufbECT0Ow50lZAX/4R04587/XKWcBhXQewDI5vb332f+1tzfbWN73+fWm7J+0ObF1Vn23nwV2v67gm8AXgEpq+64fT/H73uZKtZeSsArPYRKMuO4hhiT+ATlcytSSvbzfnAjvQDHQrmg8qC6rqgG4iG6b2Z+8lLDli3+rMcmoXINi8qn7RdSxa9YayJG2Sc6tZ6nxBVT2w7QL046rarevYtHKsuM5unS7FOPoHkGYN9jWAL9JMWt6pCaaZWkwPujOMTZI/NnH+mOM6iGVSST4HvKaqrmnv3xl4f8+SwuOAHwP/Q88GZU0yvV3fRpuT5Ck0i2OsCWyZZC5weB+6M/R9tbkkb6iq9yT5MBPE2aPuFr1eknbE2BzH1yTZHvgDzUwNGjgT19mt63J7n/8A9nqaqap6W9cxLIcHjiWtcNva8Dt1GM9E1qmqN3YdxETGprcbiMNoZrg4BaCqzktyny4DGjG22tzTaQa5fbG9/xyaqbG6NnYZe36nUUyt70vSjpnXfkh+C033lfXoz4w6WgkmrrNbpxVXevwHsKp+3XUMy6K9xP0GlhyA8NjOglrSaknuXFV/BUhyF/r3t+fbSZ5YVSd0HchUktyVxb/XfZo4/5aqunbctGK9WM9+bLW7JO+vql1GHvpWks6Txar6Vvv1c13HMoW+L0kLQFV9qt38EdCXD09aBfr2z0N3rGM6Pn/v/wCOu0y7Jk13hj4sQDDmKOBomgrxy4AXAH/sNKIlvR84PckxNB+W9gXe2W1IS3gN8KYkN9NcYuzjZfi9ad7LewJX06xO9XOaDy19cVGS5wJzkmwNvJpmlos+WXd0OdAkWwK9+dCc5H7Af7Bkf+u+fBjdBDgW+BtNN69DgT06jWgCrsw4czk4awZr/wB+HLhbVW2f5IE0ixK8o+PQbtPnNbnHS1NG2gfYraoO7joeuH0Jw7EBCG3bWVX14K5jG5VkO2DsH+8P+jZ5eZLVaEYdb1lVhyfZHLhHVf2s49Bu0y4e8ljgf9pBJ48BnldVL+o4tNskWQc4hNtHxJ8EvKOqbuwuqsUl2QuYRzMtVmg+ALy0qk7qNLBW+33+fzQrCt7W37qqzu4sqBFLWUr1tr8/fZHkRG5fmXH0fXx/Z0FplTBxncGS/Ihmns9PVNVObduFVbV9t5EN29ho1a7jAEhyRlXtluQk4EPAlcCxVbVVx6GRZIOq+lvbNWAJVfWXOzqmpUnycZpL2o+tqm3bvnEn9+kDQJL5VbVLm9jsVFWLkpw/bnW8TiXZuarO6TqOqbTVuG3au5f0aaWvsQ+jXccxXpKXA6+guew+OiB0feC0qnpeJ4Ethf/rZi67Csxs61TVmeP6m93aVTBjBjZKenSt69VoZkHoTfUIeEeSDYF/Bz5MMwfk67oN6TZfounCcDaLf7/H1obvU7+zh1TVzu2qaGMDyPo2x+c1SdYDTgWOSnI1/VoJD+D9aZYgPhY4uqou7Dqg8ZI8f1zTjkmoqs93ElBr5APet5K8AvgGiy9A0PUHvS8B3wXeBYxecbquB7FNZBArM2r5WXGdwZJ8l2bi/GPaf8r7Ai+qqiFM/N8LST47cvdW4Argk1V1dTcRaTok+RnwMOCs9ndlE5qKay8q63Db4MV/0HyA2h/YEPhi35KGNnF9FrAfzQepo3vWPenDI3fXBh4HnFNV+3YUEgBpVhAsJh40W1XVpw96vZfkYuC+QJ9XZtQKMHGdwdppaObR/EP+K80v8PPaFbU0AwykH/P3q+pxU7V1Kcn+NInWzsDnaAaQvbmquh7AeJsk7x4/ZddEbX2RZAeaGS/2q6q+Va9vk2Qj4CtVNZSlTLUMktx7ovahzBijpevTmutaxarq8qrag2YU6DZVtbtJ6/JJcp8k30ryxyRXJzmuR/NSQjMLw5toJ9uuqgXAszuNqJVk7fby58ZJ7pzkLu1tC2DTjsNbTFUdRZNkvQv4PfDUPiWtrcdP0NarqydJtk1yWJoFPD5MM6PAvToOayp/B7bsOogxSV7ZJtNj9+/cdh3Q8rlugtuVnUakVcI+rjNYktfQrEh1HfDJJDsDB1fVyd1GNihfAj5Ks1gCNEnhl4GHdBbR4nrZj7n1UuC1NNM3nc3tl0D/Bnyko5iWqqouoVnbvFdGB8UkWTDy0PrAad1EtVSfoZme7QlV1cskIYuvoDUH2Bb4ancRLeElVfXRsTttf+uXAB/rMKYhOgfYjOZqY4CNgD8kuYrmPe7FLA1afiauM9sLq+qDSZ4A/BPwL8AXABPXZbdOVX1h5P4XkxzUWTRL+lOSrWj/Ebf9mH/fbUiNqvog8MEkr6qqD0/5BC3NYAbFVNVDu45hGbxvZPtW4NdV9duugpnAnCSpth9fkjk0c0hr+XyPZoaVkwCS7Ekzr+tnaT4E9KX4oOVkV4GZbazC9UTg81V1ERN3/NfSfTfJwUm2SHLvJG8AThi77N11cMArgU8A2yT5HU2F8+WdRrSkP6RdyjfJm5N8va3+axlU1bVVdUVVPQf4LU23kALWa+eb7VySr7ZfL0iyYOR2wbgqcefaFbQuoalY3xm4uduIlnAicHSSxyV5HM0VnhM7jmmIdhudm7e90vjQqjoDWKu7sLSyHJw1g7Uj4jel6b+1I81lsVP6OEdgX7UjfZemNyN92xHnq1XVdV3HMt7Y5ORJdgfeAbwXOLSqrHgshyT/BhwGXMXty6j2YpR0kntU1e+HMCAmybNofgZPofkg/wjgoKo6tsu4xqRZDOOlNLMdQFM5/FRVLVz6szRekpOB7wNfaZv2o+knvhft7CFdxaaVY+I6g7V/AOcCl1fVNUn+Cdi0HcCjGSDJfwLvqapr2vt3Bv69qt7caWAjxhZsSPIu4IKq+lJ6tIjDUCS5jGa+2T93HcuQtQs4PH5sSrt26rP/6dlCDncCNq+qX3Qdy1Al2Rh4K7B723Qa8Daa1bQ2r6rLuopNK8fEdYZrE5mtaeYrBKCqTu0uomFJsgbNpfdHtk2n0KxEdktnQY2YKAHMBEsydinJt4Hf0VQ7dqaZi/TMPiUKQ5DkhzQJV18G391mYIuKXFBVO4zcXw04f7StS0n2pqkIr1lVWyaZCxxeVXt3G5nUDw7OmsGSvBh4Dc10NOcBuwGnc/ua8Zrax4E1uH1E77+0bS/uLKLFzUmy1tiSlW2lpm/9t55Fc3nufW3l/x40SxFr+VwOnJLkOyy+otJ/dRfSbTGs33UMy+HENEskf7m9vx9wQofxjPdWYFeaD8lU1XlJejNdV98l+UBVvXbc7BG38QPA8Jm4zmyvAR4MnFFVj0myDfCfHcc0NA8eVxn8QXupsS+OAr6f21f4+leaCfT7ZGNgPsDIYKLeTTs1AP/X3tbEUeYrrKoOSvIM4OFt07yq+kaXMY1zS1VdO26KOy+NLruxWWDeN+leGiwT15ntxqq6MQltVe6SJPfvOqiBWZhkq6r6X7htNbLeDJKoqne3o7bHBnK8fXQkbU98h9uXslybZrDgL4AHdBnU0FTV2wCSrFNVN3Qdz5BV1deAr3Udx1JclOS5NFdTtgZeTbOQg5bB2Pys7ewRwG1d5jZzfMfMYOI6s/22XYHlm8D3kvwV6M3o3oE4CPhhksvb+1vQVDV7o6q+SzPPZy+N7zvYToXlSkDLKclDgU8D6wGbJ9kReGlV+V4ugwH1w30VcAhNd5AvASfRzMah5ZDkFGBvmjznbODqJKdV1es7DUwrzcFZs0SSRwEbAidWVd/mLeytJGsD/05T0bwGOAv476q6scu4xiR5OvBu4K40/4D79k94QuMHyGhqSX4G7AscPzYgL8mFVbV9t5FpOlhZXzkjs5m8mKba+taxqfm6jk0rx4rrDNfOnbl1VX22nfZlU2CyuUm1uM/TLFH69vb+c2n6UD2zs4gW9x7gKVX1864DWZokoxWO1WhmFujlcqB9V1W/Gdf3sTfdVrRqJHkY8CmsrK+s1duBoM+iqWBrhjBxncGSvBXYBbg/zTJ3awBf5PZBCZra9lW13cj9Hya5uLNolnRVn5PW1uiI81tp+rz2tX9hn/2mTWqqnabtNUDfv/dafv8NPAE4HqCqzk/yyMmfogkcTtPN4idVdVY7PuHSjmPSKmDiOrM9DdgJOAegqq4cW3pTy+ycJLu1ywSS5CG0I+R7Yn6So2n6MY9OkfT1ziIaZ2RQ0Xrt/eu7jWiwXgZ8kOaqye+Ak2mW/NUMY2V95VXVMcAxI/cvB54xdj/Jm6rqXV3EppVj4jqz3VxVlaTgtmVBtXweBPw0yf+19zcHfpHkAvqx3OYGwA3AniNtBfQmcU2yPU33iru09/8EvKCqLuw0sIGpqj8B+3cdh6adlfU7xjMBE9cBMnGd2b6a5BPARkleArwQ+GTHMQ3NXl0HMJmq6tUMB0sxD3h9Vf0QIMmj27aHdRjT4LST0L+KZmaL2/52O6H6jDNaWb+S5nK3lfVVL1Pvoj5yVoEZLsnjaapxAU6qqu91HJJWoXbWgxfRzIk6uqzvCzsLapwk549f3nWiNk2uXfji08AFwKKx9tH5KiUtm74tja1lZ8V1hmsTVZPVmesLNKtQPYFmMML+9O+y4uVJ3sLtK9o8j2b5Ui2fG6vqQ10HoenVDiL6IM0S3UWzTPfr2j6aWnWsuA6UFdcZaEATbWsljcxVuKCqHtj2iftxVe3WdWxj2lVr3gbsTvNz+WPgbVX1104DG5h2NaWtaQZljQ7EO6ezoLTKJTkD+Cjw5bbp2cCrquoh3UU18yT5/6rKJdAHyMRVGrAkZ1bVrklOpVmN6g/AmVV1n45D0yqW5F3AvwD/y+1dBaqqHttdVFrVJpok3641yy/J/YCPA3erqu2TPBDYu6pchWzgVus6AE2vJLsn+dd2e+N2gIdmjnltRfPNNPM+XkyzklZvJPleu/Tw2P07Jzmpw5CG6pnAfarqUVX1mPZm0jrzfDfJwUm2SHLvJG8ATkhylyR36Tq4Afkk8CbgFoCqWkBTvdbA2cd1BptgAYI1cQGCGWHcalRjMwt8tP3at2nPNq6qa8buVNVfk9y1w3iG6kJgI+DqjuPQ9HpW+/Wl3N7lKzRJVwFeTVk261TVmePmw721q2C06pi4zmwuQDBzjX0f7w88mHaVHeApwJmdRLR0i5JsXlX/B5BkCybug63JbQRckuQsFu/j6nRYM8sbgROr6m/toMadgbfbl3m5/SnJVrR/a5LsC/y+25C0Kpi4zmwuQDBDjaxGdSqwc1Vd194/jGZJ1T45BPhJkh/RVI4eARzYbUiD9NauA9Ad4s1V9dUkuwOPBd5H01fTwVnL55U080Vvk+R3wK9oZjTRwJm4zlBpro982wUIZry7ATeP3L+5beuNqjoxyS40yeq5NMvT/qPToAbI+VpnjbHlXZ8EfLKqvpPEAUXLqZ0+bI+2YLPa2Id7DZ+J6wzVVlqfCbwe+BvNJeVDXYBgxvk8cGaSb7T3nwoc2Vk0E0jyYpplK+8FnEczP+XpNNUkLaNx09ytCawB/N3p7Wac37UFh8cD706yFg6kXm7tgNDn0640N9bXtape3V1UWhWcDmsGS/I54CNVdVbXsWj6JNmZ5vI7wKlVdW6X8YyX5AKafrhnVNXcJNsA/1lVT+84tMFqr6jsA+xWVQd3HY9WnSTr0Cw1fUFVXZrkHsAOVXVyx6ENSpKfAmew5Epzn+ssKK0SJq4zWJJLgPsCvwb+PtY+fo5AaTolOauqHpzkPOAhVXVTkouq6gFdxzZ0YwtQdB2H1Dcu6Tpz2VVgZntC1wFIwG/by3bfBL6X5K80H6a0HJKMVqhXo5nq7saOwpH67gvt2I5vs/gsHH/pLiStClZcJd1hkjwK2JBmup+bp9pft0vy2ZG7twJX0AzecV5XaZwkrwTeCVzD7X3Dy1UFh8/EVZJ6Lskc4NVV9d9dxyINQZLLgV2r6k9dx6JVy5GKktRzVbUQeE7XcUgDchlwQ9dBaNWzj6skDcNpST4CHM3igy1dUUla0t+B85L8kMX7uDod1sDZVUCSBqD9BzxeVZXz4UrjJHnBRO1OhzV8Jq6SNABJ7tOuBjRpmyTNZCaukjQAE81LmeTsqnpQVzFJfZPkq1X1rHbhk/EJTlXVjl3EpVXHPq6S1GPtSmMPADYcN5frBsDa3UQl9dZr2q8/Bw4aaQ/wnjs+HK1qJq6S1G/3B54MbAQ8ZaT9OuAlXQQk9VVV/b7dvG9VLbbQSfshUANnVwFJGoAkD62q07uOQ+qzJC8HXgHcB/jfkYfWB06rqud1EphWGRNXSRqAJO8B3gH8AzgReCDwuqr6YqeBST2SZEPgzsC7gINHHrrO5V5nBhNXSRqAJOdV1dwkT6PpOvB64FQHm0iaTVw5S5KGYY3265OAY6rq2i6DkaQuODhLkobhW0kuoekq8PIkmwA3dhyTJN2h7CogSQOR5C7AtVW1MMk6wAZV9Yeu45KkO4oVV0kajm2ALZKM/u3+fFfBSNIdzcRVkgYgyReArYDzgIVtc2HiKmkWsauAJA1Akp8D25V/tCXNYs4qIEnDcCFw966DkKQu2VVAkoZhY+DiJGcCN401VtXe3YUkSXcsE1dJGobDug5AkrpmH1dJkiQNghVXSeqxJD+pqt2TXEczi8BtDwFVVRt0FJok3eGsuEqSJGkQnFVAkiRJg2DiKkmSpEEwcZUkSdIgmLhKkiRpEExcJUmSNAj/Px/6v9Jq3TQTAAAAAElFTkSuQmCC", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "corrmat = df.corr()\n", + "f, ax = plt.subplots(figsize=(12, 9))\n", + "sns.heatmap(corrmat, vmax=.8, square=True);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "آیا سبک‌ها از نظر درک قابلیت رقصیدن، بر اساس محبوبیتشان به طور قابل توجهی متفاوت هستند؟ توزیع داده‌های سه سبک برتر ما را برای محبوبیت و قابلیت رقصیدن در امتداد محور x و y بررسی کنید.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGkCAYAAAB+TFE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dWH39m+q9Xuqvde3eTeG7bBdAwm9A6BBEJJvtASSggJCYQk1IQSCBBIqKaYjgvuvTfZktV71/Y+8/2x0tpCkrst28z7PPvM7MydmbNl7m/uveeeI0iSJCEjIyMjIzPAKAbaABkZGRkZGZAFSUZGRkbmJEEWJBkZGRmZkwJZkGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMC1UAbICNzuIiSiD8YwBf04Q368AX9+AKhZfd7b8CHL9j98qNRqjFpIzHrIkmOTMCkjUQQhIH+KDIyMvshC5LMgODyuWlyttLhttLpsdLhtuL0uXAHvLgDHjx+D+6AF4/fgyfg3U9sQgJztBg1EeREZzAsoZCihEFkWFJkgZKRGWAEOVKDzPGm1dXO7pa9lLZVUmtroNbWQIfb2qucVqVFr9KiV+nQqbXoVDr0Ki06lRaNSoNWqUGjVKNVadB0rytD6z22qfbbp9KgUajxBX3YvA7a3Vbq7Y3UWBvY3bqXOlsjAKmmJM7ImsD0zAmYdaYT/RXJyMggC5LMccDld7O1cReb6newq6WUFmcbEBKc1MhEUsyJpJqSSDTGEa23YNGbsehMaJTqE25ru6uTjfXbWVq5hpK2ctRKNWflTGVO4Wyi9OYTbo+MzI8ZWZBkjgl2r4PVNZtYX7eVHc17CIpBIjURDI7PZ1BcLoWxuWRaUlEoTl4/mlpbA/OLF7Csai1KhZI5hbO5uHA2GpVmoE2TkflRIAuSzBHjC/rZVL+dZZVr2dywg6AkkmSMZ0xKEWNThpMfk31SC1B/NDpaeG/7fFZVbyAhIpZbRl/FiKTBA22WjMxpjyxIMoeFJEkUt+xledU6VtdsxOV3E6UzMyVjLFMzxp9WzgE7mnbz+sb3qbM3MjtnGteNuBSt3FqSkTluyIIkc0jYvA6WVqxhYflyGuzNaFVaxqeOYFrGeIbGF5ySLaFDwR/08972+Xy+ZyHJkQn8cuJPyYxKHWizZGROS2RBkukXSZLY3bqXBWUrWFOziYAYoCA2h7NypjIudQQ6lXagTTxh7GjazQtr38Tpc/GzMdcyNXPcQJskI3PaIQuSTC9EUWRt3WY+Lf6Wio4aDGo90zLGc2bOFNItKQNt3oDR6bHxzKrXKG4p5by8GVw74lJUCuVAmyUjc9ogC5JMmIAYZFnlGj7b/R0N9maSjPFcWHgWUzLG/qhaQwciIAZ5Z+vHfFWymEFxufxq0q1Y5HlLMjLHBFmQZJAkic0NO3h7y8fU2RvJikrjkkHnMC5lxGk7NnS0rKhax8vr3yFSY+S+KT8jOzpjoE2SkTnlkQXpR06rs51XN/yXLY27SIqM57rhcxmdXHTaeModTyo6anh6xctYvXZuH3stUzLkcSUZmaNBFqQfKZIk8X3FKt7a/BEiElcOvZCzc6ejUsrhDQ8Hq8fG31f9i+KWvVxUeBZXD7tYblXKyBwhsiD9CPEEvLy07m1W12xkSHw+t4+9jnhj7ECbdcoSCAZ4c/OHfFe2jBGJg7l74s0YNREDbZaMzCmHLEg/MhrtzTy98hVqbQ1cNWwOFxWehUKQn+iPBQvLlvP6pveJM0Rz/5TbSTUnDbRJMjKnFLIg/YjY21bJn5a9CMAvJ95CUeKgAbbo9GN3y17+tvJVfEE/d064kbEpwwfaJBmZUwZZkH4k7GjazV9WvIxJa+ThM+4h0Rg30CadtrS62vnrilco76jmnLwzuHb43AGJZC4jc6ohC9KPgE31O/jbyldIjIznoel3Ea23DLRJpz2+oJ//bfuUr0oWk25O4c7xN5AZlTbQZsnInNTIgnSas6u5hCeWvUiqKZFHpt+DUSsPtp9INjfs4J/r3sbudXBR4Vn8ZPB5cjoLGZl+kAXpNKasvYrHv3+WaIOF38/8NSatcaBN+lHi8Dp5e+vHfF+xiviIGK4ZfgkTUkfJc71kZH6ALEinKY2OFh5a+Bd0Ki1/mHkv0QbLQJv0o2dH0x7e3Pwh1dY68mOyuXLYhQyJL5CFSUamC1mQTkOcPhcPL3waq9fOE2feT1Jk/ECbJNOFKIosqVzD+9vn0+GxkhudycWDzmZ08jCUcqBWmR85siCdZgTEIE8u+wc7W0p4ZPrdDI7PH2iTZPrAF/SzpGI183d/R7OzjWi9hZnZk5iZNZnYiOiBNk9GZkCQBek049+b3ueb0iXcPvY6ZmRPGmhzZA5CUAyysX47i8pXsKVhFwgwInEw0zLHMzZ5uOwAIfOjQhak04hllWt5ce2bnJ8/ixtG/mSgzZE5TFqcbSwqX8nSyjW0uTrQq3VMSB3F9MzxFMblyhE1ZE57ZEE6TajsqOXhRX8hNzqTR864Rx6POIURJZHilr0srVzDmppNeAJe4gzRTM0cx7SM8SSbEgfaRBmZ44IsSKcBDp+T33z3JD7Rz1OzfysnjDuN8AZ8rK/bwrLKtWxtKkaSJPKiM5maOZ7J6WOIlF35ZU4jZEE6xRElkaeWv8S2pmJ+P+P/yI/NHmiTZI4THW4rK6rWs6xyDVXWOtQKFVMzxnF+wSzSzMkDbZ6MzFEjC9Ipzkc7v+SDHV9w86grOCfvjIE2R+YEUdlRy4KyZSytXIMv6Gd44mAuLDiTYQmF8rwmmVMWWZBOYbY07OTPy/7BlIyx3Dn+Rrki+hFi9zpYULacb0qX0OmxURibw2VDL2CoPOFW5hREFqRTlGZnGw989ydi9VH88cz70cruwT9q/EE/i8tX8UnxN7S7OxkUl8tlQy5gaELBQJsmI3PIyIJ0CuIL+nl00V9pdLTw5FkPkihHYpDpwhf0s7h8JZ8Uf0OH28qQ+HyuGHoRhXE5A22ajMxBkQXpFOTl9e+wuHwl90/5OWPkBHAyfeAL+llYtpxPir/F6rExMmkIVwy9iOzo9IE2TUamX2RBOsVYXL6Kl9e/zSWDzuGqojkDbY7MSY4n4OWb0iV8tvs7nD4X41NHcsXQC+X06jInJbIgnUKUt1fxyKK/UhiXy0PT7kKhkGfuyxwaLp+bL0oW8sWeRXiDPqZmjOOyIeeTIGcOljmJkAXpFKHd1clvFj6JUlDy5OzfyLmNZI4Im9fBZ8Xf8s3epYhikJnZk7l08HlyehKZkwJZkE4BPAEvv1v8Nxrszfxx1n2kW1IG2iSZU5x2dycf7/qaReUrUQgKzs6ZxsWDzsakixxo02R+xMiCdJIjiiJ/X/0v1tdt5YEptzMqedhAmyRzGtHsaOWjnV+xtGoNWqWGM7OncF7BTGINcgoMmROPLEgnMZIk8eqG/7GofAU3jryM8/JnDrRJMqcpdbZG5u38ilU1GxGAieljuLDgTLKi0gbaNJkfEbIgnaRIksQ7Wz/m8z0LmTv4HK4cdnw86oJBkU6Hlzarh3abhw6bB5vLh9sTwOUN4PYG8PqCiKLUZReIXX8ZhSCgUSvQqJVdLwUaVWhd27Vdq1ai1SjD65qu99of7NOolSgVB48sIIoSgaCIPyASCIrh9e6XLxDE7xfx+oP4A0F8fhGfP4gvIPZ+7w92lQsd173PH+h5vD8QRBQP7ftUKEClVIReqtBSHV4Xwvu6P7tOq0Kn6VrXdK+r0He912qV6DUqIvRqjHo1Wo3yuEZgaHW281XJYhaWr8AT8DIsoYBz8mYwKmmoHEFe5rgjC9JJiCRJfLDjC+bt+oqzc6dz86grjroS8ngDVDbYqGiwUd/ioLbZQX2Lg8Z2V1hs9ketUqDXqtBrVWg1ShSCgCCA0L0ERJEeFXf3eiB4ZH8phUIgpEn7rkHX9QACAZFgH7YeLoIAalVINNUq5T5RVSm6titRh8U1tO1QxBJCYr2/WAYCUg/h3CegQTy+rpc3cMifS6UUwuJk1GuIMITWTREaok06oiK1RJl0REXqiDJpMUVoD9n2/XH6XCwsW8HXpd/T7u4kRh/FrJzJzMyeTLTectjnk5E5FGRBOskQJZE3N33IN3uXMDNrEreNveawE7OJokRVo40dZW2UVHdQVtdJXbOD7jpPo1aSEhdBcpyR5NgI4qIMxJh0oQqtqxJTq47cpTwoSqFWiD+I1xdqhXi71n1d6/vv6173B8Ww/RBqjUmEBBpCItnd2lB3tz66liqlIiwePxQUjSr0XqtWolYpUSmFky7Omz8g4vUF8PiC4VapZ7/3Trcfh9uPw+XD4fbve+/243T5sTq9uDyBXudVKASiIrXERxlIiDGQEG0gMTqChBgDybERRJt0B/wuujPaLihbxtbGYhSCgjEpRczMmszwxEFyq0nmmCIL0kmEL+jn5XVvs6J6PRcWnMm1w+ceUsUZFCUq6q3sKGtjR1kruyrasLv8AMSYdeSkWMhJNZOTYiYr2UysRY/iCJ6aZU5uPL4AnXYvHTYvHfZQ92uH3Uur1U1Tu4umdhdtnW72b4xF6NWkJ0SS1vVKT4wkPSGSGHNvoWq0N7OwfAXfl6/C7nNi1pmYkj6WaZnjybSknnQiL3PqIQvSSUKzs42/r3yV8o5qri66mDmFs/u9wYNBkbI6KzvKWtle1kZxRRvOrqfjpJgIhubEhF7ZscRHG07kx5A5yfEHRFo6XTS1uahvcVDVZKemyU51ox2b0xcuF6FTkZNqITvFTE6qhdxUM8mxRhQKgUAwwObGnSytXMPG+u0ExSBp5mSmZ45ncvpYYgxRA/gJZU5lZEE6CVhft5WX1r2NKIncOf6GXvHp/AGRvTWd7ChvZUdZG8WVbbi9QQBS4oxdAhTLsJwYYsz6gfgIB0QK+Am6bIg+N5Lfi+j3IPm6lx5EvxcpGABJBFFE+sESQFAoQaEILZXK0FJQIigUoFCiUGsR1FoUGl1o2fU+tK5DUGtCx8j0i9XhpbpLnCobbJTVdlLZYMMfCP0Geq2SrOSQQOWkmMlNtWA2w7r6zSyrXEdJWzkAeTFZjE8dyfjUEXIkCJnDQhakAaTd1cm/N7/PutotZFhS+fWkW0mMjMfl8bO7qoNdFW3sKm9nT3UHPn9IgNITIxmaHRKgodkxRJl0A2K7JEmIHicBa0voZWshYG0l6LKFxMdlI+gOrUs+z1FcqbuVeAycGdRaFFoDCl0ECm0ECp0h/F7Zva17v26/dW2onKDW/ui6pQJBkZomO2W1VspqOymrs1Jeb8XrC/0fNSoFWclmslPNxMYo6FRUU+raRpW1GoBMSyrjUkcwPHEwOVEZcrgrmQMiC9IAYPPY+aJkEd+ULiEgipybcS7p6qGUVHWys6KNijorogQKAbJTzAzOimFIduhlNmpPiI2SJCG6bPg7m7vEpuvV9d5vbUXyunocI6g0KCPMKPQmlIZIlAYTCoMJpcGEUh+JQqtHUOtCrReNLtRy0YRaMChVCIIi1ArqWiIowgIQai0FkcTuZTDUihKDSMEAUsC3r7Xl94aXkt+D6PeFlj43oseF6HEieruXToIeJ6LHBWJvp4AeKJQotPougdonVGFh2/8VFrKe5QXNgZ0ITgWCokRds53yOitldVb21nZSXmcNO1WolAIp8Qb0Ji92ZR2tVCAYbBh1OoYlFDI8YRDDEgcRZ4g+5b8LmWOLLEgnCEmS2NNcwVc717G2pByf3UBkMAWvw4DLHbqRNWolhRlRDM6KYXBWNAUZURh06uNjjxgkaG8nYGsjYG3Bb23eJzrWZgLWVqSAr8cxgtaA2hyHyhyHyhzftYwLb1MYTKdsBSNJElLAFxIs736C1f3yunq++trmdYe6HQ+EoAh1K2r0IbHqWu57b0Ch0XWJlx6FVhfa1lVW2P8Y9ckjbqIo0dju7NGSKqvtDDvXAOgjgohaG0FNJ4LegckE+alxDE7KJD8mi+zoDHSqE/PAJXNyIgvSMUSSJJxuP21WD21WD9XNneysqaOisZO2Dh8Bt5buLiiVUiAzOeT51t0nn51iRqU8ui4NSZKQfO5Q15nTSsDRTtDWRsDW2vUKrQcdnb0qT4XBhMoUh9oSFxab/YVHqYs4KttOd0LfvacPofqhgLlD42k+d3hd9LoQfZ7wtoMKGwBCl0CFBEyhCa0L3evdIvYD8eu9zYCg0YZapsf4+2jpdFNWa6Wy3kpNs4OaJju1zfaec9VUXgStG4XWQ0SERKxFR3KMiYz4WLLj48mMjSc2wiJ39/0IkAWJru4pKfSUFwyK4TkzP1x6fAEcbj82p5dOhwery4PN6cXqCLna2hwBAj/s9VEEUOjcWCwK8pJjGZOVQ0F6LGkJkaiUitAcGzGIFPQjBQKhZdDf1Q3lD73CFZerRwUmda13j9sEnVZElw0p6O/1GQWVBpUpBqUpFpUpBlVk19IUGxYchWZgxqNkehJurXldXb+9p8dvL4X/A/uWkq/7/+HpKhMSONHrOkRxIyRS+7XKBK0ehUoTcghR7XspfvBeUGtQqLTh9X371AgKJYJSCQpV17qKIAKtNj+1rW5qW11UNlmpbu6gpcONwyEhin20+pR+VJoAWp2EwaAkQq/AoFMTodNg1GswGbSY9AZMBi1GvQa9Roteo+5aatCp1aE5a11z2eRpDycnp6QgBQIBGhsbD1jG6vDywgdbcHr8BEWJYFBCEiWCkoQohl5BUULsen+4CIjoFD50gh+d4MOocBOpcGNUeDEpvZiVXqJUoaU6/OQpgtQ10VOSIBgAMcgRDdgLyq6nYy1KnRFBF4nSYAyN1eiMoTEcfSQKgxlVZBSCNuKk6d6ROXFIkgRBf2hczedG9HlDLTG/p2tczbOvZeb3dnk/uhG9XiS/e99DUdCHFPAjBvwQ8IMUPIZWCiAoQBnynHQKejoDeqyiDoeowhnU4BA1OEUNrqAGp6TBJWrwSWpEjrDVJIihCCDCfvde13r39q6gISgEAZPOiFJQ7BetZN+91L3avWV4fhxzz8g9qAmJiYmoVKojs/805ZQUpNraWmbNmjXQZsjIyMgcMYsWLSI1NXWgzTipOCUF6VBaSEdKY2Mj11xzDf/9739JTEw8Ltc4Xsi2Dwyy7QPDqWw7yC2kvjglvw2VSnXcnywSExNP2acX2faBQbZ9YDiVbZfpiey2IiMjIyNzUiALkoyMjIzMSYEsSDIyMjIyJwWyIP0Ak8nEnXfeiclkGmhTDhvZ9oFBtn1gOJVtl+mbU9LLTkZGRkbm9ENuIcnIyMjInBTIgiQjIyMjc1JwSgpSIBCgtraWQK/AcTIyMjKnDz+2uu6UFKTGxkZmzZp13KI1yMjIyJwM/NjquuMuSA6HgwsuuIDa2tpe+xYuXMicOXO46KKLuOOOO7BarcfbHBkZGRmZk5TjKkhbt27lqquuorKystc+h8PBY489xquvvsr8+fMpKCjghRdeOJ7myMjIyMicxBzXWHYffPABv/vd77j//vt77fP7/Tz22GMkJCQAUFBQwOeff96rnM1mw2az9dj2Y2m+ysjI/HiQ67rjLEhPPPFEv/uioqI488wzAfB4PLz66qtcd911vcq99dZbvPjii8fNRhkZGZmTAbmuOwmifdvtdu644w4KCwu55JJLeu2/4YYbem3vDjsvI/Njw+/3U1tbi8fjGWhTZA4BnU5HamoqarX6oGXlum6ABam5uZlbbrmFCRMm8Nvf/rbPMiaTSQ4NIiPTRW1tLZGRkWRmZsoZgE9yJEmira2N2tpasrKyDlperusG0O07GAzy85//nHPPPZeHHnpIvrlkZA4Bj8dDTEyMfL+cAgiCQExMjNyaPQxOeAvp1ltv5e6776axsZFdu3YRDAb59ttvARg6dOgBx51kZGSQxegUQv6tDo8TIkiLFy8Or//rX/8CYNiwYezevftEXF5GRkZG5hTglIzUICMjc+zYtm0bjz76KADbt2/n7rvvPuTyx6KcjEw3siDJyPzI2bt3L01NTUCo5+L5558/5PLHopyMTDcD7vYtIyNzfBBFkT/96U9s3boVp9OJJEn88Y9/5MMPP6Szs5OamhqGDx/OqlWrsNvt/OY3v+Hiiy/mD3/4A1988QUbNmzgySefRBRFAH72s59RVFTE888/Hy7/5z//uc9rNzQ09Cr3/vvv8/bbb6NQKIiNjeWRRx4hKyuLBx98EEEQKCsro729ncmTJ/Pwww8f0FU6GAzyl7/8hcWLFxMZGUlRURFlZWW8/fbb2O12nnjiCUpKSvD7/UycOJH7778flUrFsGHDuO2221i5ciXNzc1cf/313HjjjXz88cd89NFHuN1ujEYjb7/9Nh9++CHvvvsuoihisVh45JFHyMnJOS6/lUwX0ilITU2NlJ+fL9XU1Ay0KTIyJ5Rdu3YdctlNmzZJd911lxQMBiVJkqRXXnlF+tnPfiY98MAD0g033BAuN2/ePOm2226TJEmS1qxZI51//vmSJEnS9ddfL33xxReSJElScXGx9Nhjj/UqfyD2L7dq1SrpzDPPlNra2sL7zj33XEkURemBBx6QLr74YsnhcEher1e65pprpLfffvuA53733Xela665RvJ4PJLX65Vuvvlm6dprr5UkSZIefPBB6T//+Y8kSZIUCASke++9V3r11VclSZKk/Pz88Lm3b98uDR06VPJ4PNK8efOksWPHSna7XZIkSVq7dq109dVXSy6XS5IkSVq+fLl07rnnHvQz98Xh/GY/5MdW18ktJBmZ05SRI0diNpt57733qKmpYe3atURERGCxWBg9evRBjz/33HN5/PHHWbx4MZMmTeL//u//jtiW5cuXc9555xEdHQ3A3LlzeeKJJ8JBly+55BIiIiIAmDNnDosWLeLaa6/t93xLly5lzpw5aLVaAK644grefvttAJYsWcL27dv56KOPAHq5Xc+aNQuAIUOG4PP5cLlcQCh8mdFoDJ+jqqqKK6+8Mnyc1Wqls7MTi8VyxN+DzIGRBUlG5jRlyZIlPPHEE9x0003MmjWL7Oxs5s+fD4DBYDjo8VdeeSUzZsxg5cqVLF++nBdffDF8/OEiSVKf27rz/CiVyh7bFYoDD2+rVD2rrv3Li6LIc889F+5es9lsPdyvu0Wse1u3bft/J6IoMmfOHO67777w++bmZsxm80E+qczRIDs1yMicpqxcuZIZM2Zw9dVXM2zYMBYuXEgwGOxVTqlU9pkA7sorr6S4uJi5c+fyhz/8AZvNhtVq7bf8gc47ZcoUvvrqK9rb2wGYN28eFouFjIwMAL7++mt8Ph9er5dPPvmEGTNmHPDc06dPZ/78+fh8PgKBAJ988kl435QpU3jzzTeRJAmfz8ftt9/OO++8c1B792fy5Ml8+eWXNDc3A/Duu+9yww03HNY5ZA4fWZBkZE5TrrzyStavX8+FF17IFVdcQVpaGrW1tWEnhW5GjhxJeXk5v/jFL3psv/fee3n++ee5+OKLuf7667nzzjtJTU3tt/wP2b/c5MmTufHGG7nhhhs4//zz+fTTT3nllVfCLRudTsfVV1/NhRdeyJgxY7j00ksPeO65c+dSVFTExRdfzJVXXolarUav1wPw0EMP4XK5uPDCC7nwwgvJz8/npz/96WF9d1OnTuXWW2/l5ptv5sILL+SLL77gxRdflCe6HmcEqa+29ElObW0ts2bNYtGiRaSmpg60OTIyJ4zi4mIGDRo00GYcUx588EHy8vK45ZZbDvmYFStW0NbWxpw5cwD44x//iFarDXexnUwczW/2Y6vr5DEkGRmZI6K8vJxf/epXfe7Lysri2WefParzX3311Tidzj73/fOf/+T111/n9ddfJxgMUlhYyGOPPXZU15MZeGRBkpGROSKys7P57LPPjvo8Tz75ZJ/b//e//x3wuDfeeOOory1zciGPIcnIyMjInBTIgiQjIyMjc1IgC5KMjIyMzEmBLEgyMjIyMicFsiDJyMjIyJwUyIIkIyNzTHn++eeZNWuW7AUnc9jIbt8yMjLHlM8++4zXXnuNrKysgTZF5hRDFiQZmVOUxRuqWbCu+ric+6xx6cwck37AMoFAgMcee4zS0lJaW1vJysoiOTmZpqYmfvGLX/C3v/2Nm266iSFDhtDa2spHH33E66+/zvz581EqlUyePJn77ruPhoYGbr/9dtLS0qiqqiI5OZmnn34ai8XC999/z7PPPosoiqSlpfH4448TGxvLzJkzmTlzJhs2bADgT3/6E4MHDz4u34XMiUPuspORkTkiNm/ejFqt5v3332fBggV4vV4mT55MfHw8r776KoMGDaKjo4PbbruNzz77jFWrVrF48WI+/vhjPvnkE6qqqnjvvfcAKCkp4YYbbuDLL78kJyeHF198kba2Nh599FH+8Y9/8PnnnzNq1Cgef/zx8PUtFguffvopd999Nw888MBAfQ0yxxC5hSQjc4oyc8zBWzHHk7Fjx2KxWPjvf/9LeXk5lZWV4dxC+zN8+HAA1qxZw/nnn49OpwPg0ksv5dNPP2X69OlkZmYyfvx4AC6++GLuvfdeJk+eTFFRUTiG2xVXXMGrr74aPu/ll18OwMyZM3nwwQdpb28P51uSOTWRW0gyMjJHxKJFi7j33nvR6XTMnTuXsWPH9pn3qFuAfhhlHAinp9g/v5EkSSiVyl7l98+f9MNjRFHskVNJ5tREFiQZGZkjYvXq1Zx77rlceumlxMbGsn79+j7zLXUzYcIEvvzySzweD4FAgHnz5jFhwgQAKioqKC4uBkK5kqZNm8bw4cPZunVrOKvs+++/H25FAXz55ZcALFiwgJycHDl53mmA3GUnIyNzRFx22WXce++9fPPNN2g0GkaMGBEWj76YMWMGxcXFXHrppQQCAaZOncq1115LY2MjZrOZ559/nurqagoKCvjjH/+IwWDg8ccf584778Tv95OcnMwTTzwRPt+mTZv46KOP0Ov1/QZolTm1kAVJRkbmiCgoKODzzz/vtX3/lBR79uzpse+OO+7gjjvu6HWMXq/npZde6rW925uuL37961//KHIE/ZiQu+xkZGRkZE4K5BaSjIzMgJKamsrixYsP65jDLS9zaiC3kGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMCWZBkZGSOKU1NTdx6663H5FzPPfccixYtOibnkjn5kb3sZGRkjikJCQn861//Oibnuueee47JeWRODWRBkpGROSLWrl3LK6+8gk6no6ysjIKCAv7617/S3NzM9ddfz+LFi2lsbOTee+/FarWSn5/P+vXrWbZsGU6nk8cff5zS0lKCwSC33norF1xwQTgSeGdnJzNmzKC5uZlx48Yxd+5cnnnmGVavXo3VaiUqKooXXniBuLg4pkyZwtlnn83GjRtRKpU8++yzpKWl9bC1v3QVFRUVPProo3R2dmIwGHjooYcoKiriwQcfRBAESkpKcDgc3H777Vx88cUD8C3/uJAFSUbmFMW+bQn2rcdnPk7k8JlEFp1x0HKbN2/m66+/Jj4+nssvv5wVK1aQn58f3v/EE09w7rnncs0117BgwQK++OILAF566SWGDBnCU089hcPh4MorrwxHBW9qauKrr75CpVLx4IMPAlBVVUV5eTnvvfceCoWC+++/n88//5ybb76ZlpYWJk6cyCOPPMKTTz7Jf//73/Bx+9OdrmLx4sU88MADfP7559x3333cdtttzJ49my1btnDPPffw7bffhu147733aGtrY+7cuUyePJm4uLij/WqPiL6C1p6OyGNIMjIyR0xeXh6JiYkoFApycnKwWq099q9cuZI5c+YAcNZZZ2EymQBYtWoV7733HnPmzOGaa67B5XJRWloKwODBg3tE8gbIyMjggQce4MMPP+TJJ59ky5YtPVJdTJ06NWzPD23oZv90FU1NTTQ2NlJdXc3s2bMBGDFiBGazmfLycgDmzp2LWq0mMTGRUaNGsXHjxqP6ro6OH4cgyS0kGZlTlMiiMw6pFXM80Wq14XVBEHo9ySuVyj6f7kVR5Omnn2bIkCEAtLa2Yjab+fzzz8PpKvZnx44d/PrXv+bGG2/k7LPPRqFQ9Dhvtx192dDND9NVBIPBXmUlSQpHLN8/nYUoir1E8oQS8A/ctU8gcgtJRkbmuDFp0qRwANalS5dis9mAUCqKd999F4Dm5mYuuugiGhoa+j3P+vXrGTduHFdddRW5ubmsXLnygKku+uKH6SpSUlJIS0vju+++A2DLli20traSl5cHwNdff40kSdTV1bFt2zZGjx59eB/+GCIGfxyCJLeQZGRkjhu//e1veeCBB/jggw8oLCwMd9ndeeedPPbYY1xwwQUEg0Huu+8+0tPTw04HP+S8887jzjvv5MILL0StVlNQUHDAVBd90Ve6iqeffprHHnuMF154AbVazQsvvIBGowHA4/Fw6aWX4vP5ePzxx4mKijqKb+LocDl6Z+I9LZFOQWpqaqT8/HyppqZmoE2RkTmh7Nq1a6BNOCzeeustqbS0VJIkSdqxY4d0ySWXDIgdM2bMOKz64oEHHpDmzZt3TK59NL9Zd123esnSY2LLyc5xbyF1e9C8/PLLvXKXFBcX8/DDD+NwOBgzZgy///3vB7afVua0R5IkvAEvLr8HT8CDN+jHH/QTlLrHEwRUCiUqhRKNSoNepSNCrUer0iIIwkCbf8qRkZHB//3f/6FQKNBqtfzhD38YaJNOSaxW50CbcEI4rrX/1q1befjhh6msrOxz/3333ccf//hHRowYwW9/+1s++OADrr766uNpksxpjCRJWD02Gh2tNDtbaXW10+7qpNXdQYe7k06PDbvXSUAMHPa51QoVJl0k0XoLcYZo4o2xxEfEkhwZT4opEbPOdBw+0anP9OnTmT59+kCbcdjpKk62DLStVvtAm3BCOK6C9MEHH/C73/2O+++/v9e+uro6PB4PI0aMAEIuls8//3wvQbLZbOGB0G4aGxuPm80yJz+iKNLkbKXGWk+drZE6eyN11kbq7U24A54eZY2aCGIMUUTrzWRYUjFpI4nURBCh0aNTadEoNWiUahSCAoUgIAFBUSQg+vEGfbj9Xlx+Fzavg063jXZ3J+Ud1ayt3UxQEsPXMetMZEelkR2VQU50OnkxWSdUpCRJQpQkRDG0HnrtcxYWAEEIeaEpFAKKrqXMycOB6rqmDlmQjponnnii333Nzc09JpnFxcXR1NTUq9xbb73Fiy++eFzskzn56fTYqLHWU2Otp9paT1VnLTXWenz7eR1F6c2kmpKYnjmBpMh4kiLjiYuIIdYQjValOS52iaJIq7uDelsTtbYGqjprKe+oZkvjrrArcVJkPIPi8hgcl8fg+DxiDdFHdC2vP0hjm5Omdhcqb4DWTjeBoEgwKBEQQ0tRlA57pooggEohoFIqUKkUqLteGpUSjVopC9YJ5kB1XWOnp8/tpxsDNmAj9TFXoK8++htuuIFLLrmkx7bGxkauueaa42abzIlFlETa3Z002JuptzVRbw9V8tWddVi9+54MIzURZFhSOStnGmnmZNLNySSbEjCo9SfcZoVCQXxEDPERMYxIGhze7g34qOiopqStnF0te1lTs4nF5SsBSDTGMTShkCHxeQyJy8eiN4ePkySJDruX6kYb1U126pod1LU4qGt20GrdVxnde2kqnQ4vKoWAUhkSD6VGQKEUUO7X+uluDe1PqBXVNddG7HoFRQJBCY8viMPl79GiUqsV6DQq9BolOq0KjVqJzPHjQHVdu0Ps56jTiwETpISEBFpbW8PvW1paiI+P71XOZDKFXUVlTi0CwQBOvwunz4Xd58TudWD12On02OhwW2l1d9DiaKXJ2dqjxaNVaUmNTGRk8lDSzSlkWFJIMydj1kae9I4FWpWGwrhcCuNyuahwNqIkUt1Zz87mPWxv3sPK6vUsLFsOgEUdQ0QwgYDVQmu9DodVTUgKIEKnIiXeyNDcWFLijCTFRJAQYyDoaCQnxXxcvgdJkvAHRHz+IF5/EK8viNPtx+b0AaBWKYjQqYjQq9FrVSf9b3GqcaC6rsP943gYGDBBSklJQavVsnHjRkaPHs2nn37KtGnTBsocmX5w+z20uTpod3di9dixee04fC6cfhcuvxtPwIs34MXj9+IJeHEHPKGl34P/AM4DkZoIovUWEoxxDE8cTGJXV1tyZALRestpU9lZHT7amtS46tJQ1pvR1+fT6axHEdlGm6mdzsgSiAxAAUQpDKQaU8mPyyQ/PpF0SzKJxnhUin2VUXFx03H7bgRBQKMOddcZu7ZJkoQvIOL2BHB5/FidPjodPpQKgUiDmsgIDTqN7Bl7vHEGdDTZOkkwWQbalOPKCf8n3Xrrrdx9990MGzaMv/71rzz88MM4nU4GDx7M9ddff6LNkemi022lvKOGamsdtbYGGuzNNDpasHsdvcoKCOjVIXdonUqLTqVFq9Ji0kWiU2nRq3To1DoMah0GtZ4ItYFIbQSRWiMmrRGLzoRaqT7un0mSJFx+Nx0eKzaPHbvPidPnxhPw4Au7e4uAhEJQoFKo0Cg16FVaIjSGkK16MzH6qIOORYmiRGO7k/I6K+V1VirqbZTXWWm37etui4/Sk5VsZtqIcWQlm8hKNhNr0VFra6CkrYyS1grKOqr4unwBX5WFOs+UgoJEY3yXV18MI9T5OLzOLtd0FUqF8riKtyAIaNVKtGollkgtoijh8vixu/aJk06jxGzUEmlQh215/vnn+eyzz7j22mu56aabjsqGF154AYC77rrrqD/PgaitrQ1HKT9UZs6cyX/+8x/WrVvHunXrjqN3nsCCbdu4dsrp/dB+QgRp/x94/zwphYWFfPTRRyfCBJn9kCSJBnsTO5r3UNyyl5LWclpc7eH90XoLSZHxjE8ZQbwxllhDNNF6MxadCZM2EoNGj0LoHXVKCvrxNlXha64i0N5AwF6D6HYgBkJdPoJShag1YI0wozLForYkoo5NQR2dhKA4si4JURJpcbZRZ2uk3t5Mo6OZFmcbLc52WlzteAPeAx4vIIBw8GjKJq2RRGOoFZcYkYA2GIXfbqSpOUhFfUiA3N5Qi1CpEEiNN1KUF0tOioWcFDNZKWaM+r5FODMqlcyoVGbnhtyjfQEftbZGam0N1NoaqLc10eRspaS1jLz0VJqc+7q6BUClUIUFSqVQoVaqUCvUqJUhwTqWKBQCRoMGo0FDMCh2CZOXpnYXbVaBqEgdpggNn332Ga+99hpZWVnH9Po/Zlbu2SsLkszpQSAYYEfzHjbUbWNL406anW1AyEOtICaHc/NnkB2VQYYlhQiN4ZDPG3TZcBavxlmyHk/1TqQu8UGhQmW0oNBHIqhDk0pFr4tARyMBpxXJuy8UiqDSoEnMRpeSjy5tELr0wSj1xl7XcvicVHbUUNlZR3VnHTW2emqtDXiDvnAZg1pPQkQsyZEJFCUOIkYfRZTejKmrdWbQGDCodGhUGlQKZVhYQwP9wZCrd8CDw+ui02OnqrWZypYmaq0t1De3Utq0BUm1n8eTT48hMo68kWkMSchnTGYumUnmo3IA0Kg0ZEenkx2d3mvfzl27SDUlERCDLK9cy/LqdSEXb6Twcn8EBBSCIuTu3eXaLnDwFtWMrElMz5pwwDKSJPLXp/5ASUkJra1tJKem8+Cjf+b1l5+lsbGRX/ziF/ztb3/jpptuYsiQIbS2tvLRRx/x+uuvM3/+fJRKJZMnT+a+++7rEcgU4LXXXuODDz4gKioKk8lEUVERAO+88w6fffYZbrcbQRB49tlnycnJYebMmVx00UWsWLECt9vNU089xdChQykuLubRRx/F4/FgNpv561//SmJiIq+++ipff/01wWCQKVOmcN999wGhcEG/+tWvKC0txWQy8Y9//IOoqKh+r3uiMCq9NDRCVWctGZbUgx9wiiIL0mmMKInsbC5hedU61tdtxelzoVVpGRZfwEWFsylKHERCROxBu3yCotTlZizS3ZAINFfg2vgF7j1rQQygjk4icsSZ6NIHoU3IQmWJP2CrJ+hxEmhvwNdag7epEm9dKdYNX2FdOx9JUOBJzqI5KZ0mk4maoIvKzlpaukQUQvN+0s1JzMqeTJo5mRRTEsmmBCI1EYfdheUPiDS2OalttlPT5KCm2U5NU2jd5w8CWgQhlcToAoqSIkmO1hIR5SKg6aDRXc/e9kpKXSspbVjJgjYDQ+LyGZpQQFFCIUmRCce0S00hCGhVGrSAXq1Dreh9C4thgRJD65JEUNoXiFSBAoVCgVJQ9NnSPVQ2b96MWq3mgw8+QBRFrr/+esp3b+L/7nuIDevW8Ps/PUN2Tg4dHR3cdtttjB8/nqVLl7J48WI+/vhjVCoVd911F++9914Pr9nt27czb948PvnkEwRB4IorrqCoqAiHw8HChQt5++230el0PPfcc/zvf//jkUceAUL5jj766CPefvttXnnlFV544QXuvfde7r33XmbMmMH//vc/3nrrLSZOnMiOHTv46KOPEASB++67j/nz5zN69Gja29u56aabKCoq4u677+arr75izpw5B7zuiSBbZ2W3LZt5O7/h/yb/9IRd90QjC9JpSKurncXlK1lSsYZWVzt6tY4xyUVMTBtNUeIgxKBAU5uL6ioXGzsqaLN56LR76XR4sTt9ONx+XJ4AHl8Ary9IUNz31B2jsHORYSMjNNV4JDVrvbms9+fR5opF16xCu8mFXrsHg66MCJ2aCL2aSIOGSIMao0GDKWLfy2xMRR2dgjU1m+qcAio7qqlqKaPG3oRdtEPnToQOidggpOksTE8eQ172WLJjMg866VSURGweO+1uK50eG802Ky02G+1OJ1anC7vLg8Ptx+H243QHkYIKpKAKAipMWiNJ5mhmZSWSlxRHRpKJ9IRIdNr+b5dWZzu7WkrZ0byHnU17WFe3BYBYQ3RYnIYmFGI5hpNlp2dNOGgrphtREvEGQq2/bgcUCQmloCBCY8CoiUB3mOGRxo4di8Vi4b///S/l5eVUVVUR9HtJjTeiVAgEgiI1TaExyGFdLZw1a9Zw/vnnh1NMXHrppXz66ac9BGndunVMnz6diIgIAM455xxEUcRoNPK3v/2NL7/8ksrKSpYvX86gQYPCx+2fE+m7776jvb2dlpYWZsyYARCedP/UU0+xbds25s6dC4RaRcnJyYwePZr4+Phwayw3N5eOjo6DXvdEkK1ppdhbyKqSPZyXX0Zh3IlrnZ1IZEE6TZAkieKWvXxVupgNdduQJImhCYWclXY2OncKNY0uPtti5x/Ni3vMa4HQuIDFqMVi1GKK0BBj1mPQqdBrVWg1StQqJWqlRGL9chJrFiIpFDQkn0ljwmR0aBjf5Srs8QXx+AK4vQFcngBN7S7sbh8unwsPDgSNG4XOhaB1I+icoZfGQ3cdKIhKNKKZCDLJVsYRrzST57WR5CjDXLMH5e5SxJWLqIwZhDN+GPaofDokL62eFjp8LXT627EHOnGLdrw4QTjA3A1JAK0AWglVVM9uLg9QAVR4YUN9BAm2WFLqE0kzJ5MVlUZ2VDpGbUSPY2IjopkWMZ5pmeMBaHK0sLWxmG1Nxayv28qSitUApJqSGBSXS0FsDvmx2YfUQj0WKAQFerUOvVoH+tDEXlfAHXbJt3kdqJWqrkgWRpSKg7ecFi1axPPPP8/111/P3Llz6ejoQJKkcDSIlDgjWkNo3KzVFiBRFUQUe/8mgUBPb0xBEHqUU6lU+Hw+GhoauO6667j22muZNm0asbGxFBcXh8vtnxMJQK3uOWbn9Xppbm4mGAxyww03hJ0tbDYbSqWSjo6OHrE0u3MrHey6J4IsQqk5dO40Xtv4Ln8+64ET4hh0opEF6RRHlEQ21G3jk+JvKGuvQqfUk6Ecga8xlS2bAqwLdAAd6DRK0hIiGZYbS3KckeTYCBKiDcRFGbAYtQeclR+wt9P8yd/x1BQTUTiRmLNuIivCTKfXRqfbRqfHhtVjw+q1d63bET023B4rQbcVAl72T7mmVeowq6OIUMSjk8yo/WYErwm/S4fLHcTh9tPo8VPhDbDUG4kojUCpGEx6ZCWxhgZUUiVtnVU0uVT49rNb8msQfBGoRTNGIRWjMhKT1kS0wUy8yUJSlJnkKDMpcWZMhn2J5URJxB8M4Pa7cfhd2DwOOj1WWl3tNDlaaXS0sKN5D8uq1oaPSTTGkR+bzaDYXIbE55NgjOshLAnGOGbnxjE7dxqiKFLRWcP2pt0Ut5Syono9C7rmIkVqIsiMSiPdnEKaOYkUUyJJkUfW9Xg4KBQKjJoIjJoIREnE6QuFR2pzddDhtoa9IQ/kFLF69WrOPfdcLr30Upqamli/fj0TJ07c7xoCCTEh4Q4ERGqa7YwYNYY3Xv8XV1xxBSqVinnz5jFhQs9W3sSJE7nnnnu466670Gg0LFiwgOnTp7N9+3YyMjK48cYb8fl8vPzyy0RH9x/9IjIyksTERFauXMnkyZP57LPPWLduHeeddx7PP/88l19+OVqtll/84hdccskljBs3rs/zHO51jwcmyUp6QiR48qm2fsb/tn3GDSN/ckJtOBHIgnSKIkoiq6s38v62L2l0NaEKGPHXDcHdnIxdoSY3NYJzJ0WTl2YhN81CUkzEYYWCCYpBGh0tVFZtYe+aebQJIs4Rw7EpPbQvfrJPd3AIjWtYtCYsehOZljRGJg0lWm8hPiKGuK7IBsaDVLa+gI/KzlrK2qsoa6+ivKOaensTjZJIIxChtpCssTDeFyC+vZmEznbi/EHM8VkYcoZhyB2FOikbp9+D1WvH7nXi9Lvw+DtoCDZTUx+K7B1y9VaiVWkxqPVEaiOw6Ewkxcb3WRF3O1Xsba+itK2CrQ27WFYZEql9XXODKEochEm7zylDoVCQE51BTnQGFw86G1EUqbbWU9JWTnlHNZUdNXxXtgz/fpOD9SodsYaoUBw+QxTReksosGswEm/AF3bIOBaipRAURGqNRGqNeANeOj1dDxleOxatCbPO1GeL6bLLLuPee+/lm2++QaPRMGLEiH5zFKUlGGloc5E7eCzjJxZz6aWXEggEmDp1Ktdee22PsoMGDeKGG27gJz/5CSaTieTkZAAmT57Mu+++y3nnnYdGo6GoqCic9rw/uvMd/eUvfyEqKoq//OUvxMfHs3v3bi6//HKCwSBTp07lkksuoa6urs9zHMl1jwfTiuJ4Z0E5s0fP4MuSRRTEZjMhbdQJt+N4IkgH83c9CamtrWXWrFksWrSoV0qL0x1RFPlqxzo+2f0FdqkN0R1BoD6HTEMho/ITGJEfR0FGNNrD8PIKikGqOmspaatgb3slVR211NmbekTFjlDpiDfGEW0IVYxRejMWXcgV3KIzYdZFYtZGojnM2HEun5vKzhoqOmqo6FrW2RoRuwKXmnUmcqLSyezqKsuOTidGHxXu1mmwN1NZt4Pq6q3UtdfQ4nPQqVJgUykIHmFlLQgC0ToLCcZYkk2JpJuTybCkkGVJQ6fe19aTJIl6exM7mvawozn0cvpcCAhkRqWGxakgNgfNQbpXRFGk2dlKvb2JenvIdb3V1R6KWO4OzaOSkLgz5xpSstNCdnanylCqUCtUqJVqNEo1GqWmx2TaI8EX9NPh7sThc6EUlEQbLEfdahNFiaZ2Fw63H4tRQ6xFf9pMgD4QxcXFRzzm1F3XvTk3n/TbXuTnL27hytl5FCu/pKKzht+d8UvyY7OPscUDh9xCOkWwOrzMW72JRXXf4Nc3I3kMpElTmV0wifGXJhIVqTv4SbqQJIk6WyObGnawvWk3e1rL8HTN1+mOWj3EEI9x2wqS9FEMveQBzNHJR2W/w+ekwd5MXdf8mhprA9XWOtpcHeEyFp2JrKh0xqYUdUXNzghHbfAEvFR21LKudgsVHTVUd4Ym8O4fDcISYSIhLokCEYwOB4b2ZiJcdiKCIgatEVNiNsakPAzJ+Wjj0pAUCgLBAJ6u/Eh2376I3i2uNprsLayu2RgO9SMgkGZOJj8mi0FxeQyJzyfFlEiKKZGz86YjiiLlHdVsbdzFtqbdfLFnIZ/t/g61QkVe1zGFcTnkRWdh0PSMv6dQKEiMjCcxMp6+nnkDYpBOj5X68joSjLEExCBBMYhfDBAQAzh8rrCIA6GWn1KDTq1Dr9KhUaoPq/LXKNUkGOMwB7y0uTpocbZh9zqIi4g5qLj2h0IhkBhjoNXqptPuQ5IgLurHIUrHglh9kKE5MSzbVM9ffvkzHl78V55c/k8eOeMesqLSBtq8Y4IsSCc5e2s7mbdsJ+valqGIq0ap1TA+6kxunnQeUcZDDyoqSRKlbRWsqtnI+rqtYRfqFFMi0zLHUxibS2FsDjGGKHxNFdS//QgqcxzJVz2O0nBwzzBPV8XV6mqnxdlGs7ON5q44dU2OVhy+fQnGVAoVKaZEBsXmkmZOJjMqlSxLWjjYaCAYoNpax8b6bextq6KsvZJae2N48qpZG0lmVCrnJJxBmjmZ1C6X7x8GWZUkiUBHA+7KHXhqivFU7yKweyMuwK3SoEnMQpuUQ1RSDolJuaiTMnu5qkuSRIfbSkVnDWVdXXWrajaysHwFEIroPSyhkOGJgxkSn09uTCa5MZlcOuQ83H4PxS2lbG/aw66WEj4u/hppV1ckcGM8GVGpZJhDcfqSIxOIj4jpt4WpUiiJNUTTomzCqInos0xQDOIL+vAG/XgDPrwBL06/O3y8Qa0nQmNAr9IdsgjoVFqSIxOw+5y0uzqotTZ0tY5NRyQkgiAQaw6JUIfNiyDwo2kpHS2i18WM0Wm88MEWGpsDPDz9Lh77/hkeX/Isj0y/m+zojIE28aiRu+xOQiRJYntZKx8sLGFH+1Y0GXsQVH4mp0zi5rGX9PLwOhBNjha+r1jN8sq1tLjaUSlUFCUOYnTSMEYmD+mVEiHg6KDu3/eDoCDlxj+jigzt9/g9NDpaaXK20ORo3a9LKSRCTp+rx3mUgoLYrjGjBGMcica4rmR2ScRHxITHaERRpN7eFB4vKmuvpLKzNtzyMWmN5ERnkhOd3tVll0GU7siDiwZsrXjqSvDW7sFTvxdfY3l4Mq+g1qFJyESbmI02KQdtUjbqmJReIiWKIpWdtexsLmFH8x52tZTiDXhRCgryYrIoShxMUUIhOdEZPcaiXH43e9sqKW2roLyjmqrO2vAE5W4sOhMxhihi9FHhrtHwS2fGUW+lsLAQhUKxX86j0C0s0DvKdyAYwBXw4PK7cfndSJKESqEMhXHSGFEpD/2ZNCAGw7+1TqUlPiLmiD29JEkKt5RizTqiTIfewj+VkCSJ3bt3H5Muu6IbH4b0UVz/2DfMHp/Bz+YW0exo5fffP4Pd5+T/Jt3WI/L8qYgsSCcZu6va+c+XxeyoqcGQuwvR2EJOVCY/H3fNIc/QFkWRDfXb+HbvErY37UEQBIoSBjElfSxjU4f3m65BEoPU/Pd3VLdW4ppxOXWiJ5QEz95Ih9vao6xBrSfOEE1MRDSx+tDge6whmtiIKOIMMUTrLSh+MBDuCXiptYZyB1V21nZFXagNR1rQqrRkR6WTE51BbnQmudEZxEXEHNenZ0kM4m+tw9tYjrexDG9DOb6mCiR/qAtTUGtDApWShy6lAG1qASpjVI9zBIIB9rSVh7rqGoup6KhBQkKv0jEoLpfB8XkUxuaSFZXWqwL3+D3U2ZuotzXR7GylxdlOg72FVkcHNp8dr9jTRf/y1HMoTM5HZ4wAlCAqQFKAqETqWlcoQKlQoFKGch2pVUq0agUajQJf0Ivd58TldyMQSmBo0ZsPuRtOkiQcPhetrnYkJGIN0Uc8tiRJoTElu8tPcmwEEf2EVjpVkSSJtrY27Hb7EYdQ2l+Qhl71f0QWzeCp/6xn295W3vrd2aiUCtpdnfx5+T+osdbz09FXcmbO1GP8SU4ccpfdSUJLh5s3vtjJ8i21RKY2EzlyJwoFXDP8CmbnTjukGfWegJfF5Sv5qmQxzc42YgxRXD70QmZkTSTGENXnMaFupb3sailhR9laqlVWAsmRsOdrtCotaaYkihIGhWK4GeNJNMYSb4ztt9tIkiTsXgel7RXU25qoszdSa2ukztpAs7Mt/DSvV+nIsKQwM3syWVFp5ERnkBKZ2EvEDgdPwEurqz3sumzzOnD6XLj9HnxBH4GuaAUKQYFGoUan1mLURGDSGomKiyUuoyD01K9Q4m+r7xKoMrz1e7Gu/wrrmvkAqKOT0WUMQZ9VhD5zGCp9JEPi8xkSn8/VRRdj8zrY0bSbHU2h1tOmhh0AKBVKMswpZEalkRaZjE6KwufQ0dEGdS0KalsMNLSKuL2R+z6UIojBGMBkEdFFBNlQY0VHExatDoRQNIb9wwUJKFCgROgSK1Gkx8RmpSIU0VutEgjgoy5QiyRJ6FRaItSGQ/7+g6KI3eegNliNVqXBqIk4oqgP3XmgGmolok3aQ5r/dCqh0+mO2UOz2BVua8aYNFZsrWfT7mbGDUkk2mDh8Zm/5tnVr/Hqhv+xt62Sm0dfecRjfQOJLEgDTFCU+Hx5Ge98sxsJH7mTq6jzlzAoNpdfjLuBeGPsQc/hCXj5tnQp8/cswO51UBCbw7XD5zI2ZXif7sv19ibW125lU8N2SlrLCUoiKkFJitvDFH0cKYXnEqNORC+Y8AdCidzwA53Q5lBgUznwCy24JSsO0UqHt51mZyuNjmaaHK24usYtIDRelBQZT050BtOzJpBmTibDnEK8MfaIw9aEPPNqqbbWUd2VxrzB3kSnx9arbPeEUI1SjUro6iaUJHyiH08/KTLiDNGkmpPJtKSSM3g0uVMvJVkdgbepAk/1LjzVu3DsWol98wIQFOhSCzDkjyNi0ATU5nhMWiOT0scwKX0MAFWtLazcu4Pi5nIa2uqpaF2PpNwXf08SFSiJQJ8QSXKamRiDhURzDKmWGNJj4kg0R2PWmfr0nJMkCavHRrW1nsrOGva2VbGntYwOT6hFm25OYWzyCNK1hbQ0CWwva2VraT1ubxCzUcPUMbFIcWUsq1iJUqHkJ4PP4/yCWYfkpSeKIvP3LOD97e9i1pm4c/wNDE0oPLQfcT8a25zc8/clZCaZ+NMdU1DKmWr7RPSEBGlUQTymCA2LN9YwbkgiEJpu8cCUO/hg5+d8vOsbKjpquGfizSSbEgfS5MNG7rIbQOpbHPz93U3sqepg6BA1ttjVtHnauXzoBVxcePZBn1YDYpCFZcuZt+trrB4bwxMHc+ngcymMy+1VttnZxoqqdaysWk+NLTTr26KKI8KfjNgZxcVt3xMlOviz9SJcUtekUUFE0DlR6B0IekdoqXMi6FwIin0eXZIooAgY0EkmIlUW4gyxpEclUpiYzrD0NIx6bS97DhV/0E9FRw2lXS7p5e3VNDiaw/sj1HpSTUkkmRJINMYRHxFDjCGKKJ0Zky7yoAP43oAPm9dOm6uTVlcbjY5W6m2NVFnrqLc1dqWnCIlUYVxoEuzQ+ALiDFF46/fiKtuEq2QDvuZKAJRJ+XTEj2aXkEtpg4fyuk7abfsijsda9GQmR5IYr8Rg8aDUu/EKNto87bQ622lzd4ZdvPdHQMCsiyTGEEVcREzXmFwCqaYk0szJPdJjdHtRbm7Yyfq6LexuLQNgWEIB5+bNZFj8YLaWtLJwfTVrdzSgUCiYPiEKZ/RWtjbtIMOcwu3jrjvkQfLy9iqeW/NvGuzNnJ8/i6uGXXTY7v+LN1TzzLubue3iYVw49fRxYz5awl12lw8jf/oFxJx5IwCvfLyNb9dW8Z/HzukVRX5j/XZeXPsm/qCfa4fPPeQelpMBWZAGiO831vDPj7aiUiqYdZaapS1fYFDr+eWkWxgUl3fQ4zfV7+CtLR/SYG9mSHw+Vw67iILYnvGtAsEA6+q28vWepexpD03kU7qjcTfHI3YkIPn0REVqmWkqZ6p7EWszzqc5Lgar1ESrr5FWT3M4KKeAQIw+hhhdLFGaaIxKC1rJjDIQgd+lpdPuo7XTTVO7i5YOF/v1EoXzAOWkmMlJs5CfFoUlsm+Rsnkd7GktC71ayijrqA7Ph4rWW8iNziQ7Op1MSyoZltTjmszPF/RT2SWGe1rLKW4pDadUj4+IYXBsATHKNALWaNoqGzA0bGawVEKi0opHUlGsHERL8mQSM7PJSTWTlWTCaDh4Rd3t4h2KgmGlw22jw9NJu6uT1i4X7GZXG0Gx67cRBFJNSRTE5jA0Pp9hCYVE7jcxt9XZztLKNSwsW0Gbu4NUUxI/GXIeE9JG0drh4YNFJSxYV41Rr+asszSsbl+AzWvn0iHnc8mgsw8phYUn4OWdrR/z3d5lJEcmcMe46w9rfowkSfzu1dXsqe7glQfP7Pf/8WOju677z7XjyB45kbgL7gCgpLqDXz+3jDsvG8HZE3o/OLS7O3l53dtsadxFUcIgbh93Xb/d9icTsiCdYAJBkdc/28EXKysYnB3NsImdzC/9ioKYbH49+baw63N/tLk6+Pem91lft5WkyHiuH/ETRiUN7VEpO3xOPtq6kMUVy/BILkSvnmBLChGeLIamplGQEUVumgWLRWRP207WrnqXMp0KhxD6KxjUenKiM8iKSg+7JaeYEg7Zo8ofEGlqd4YiZzfZqWywUVFvpa7FEY4WHh9toCDDQkqKgMrUSXuwgZLWcursjUCoqy87Kp382GwKYrPJi84i2mA5/C/8GNE9AL+qZA+baoupdlbgVjchqAJIEqh8FuJUaQyKzWOiyUBCw3rce1ZDMEjE4ElETbkMTdyxmysSFIM0OVuptTZ0ddVVsqetHLffg4BAYVwOE9NGMyl9TDhqRFAMsrpmI5/s+oYaWwPZUencOPJyCuNyqGqw8cIHW9hT3cGZE5OQkrezqmYDhbE53D3x5l7emP2xrbGYl9a/Tburk3PyzuDKYReF4ucdAjVNdu786/ecNzGTn80tOuLv5nSiu65755ZppOcUkHDpvUDo/3j7U4uwROp48hdT+jxWkiQWlC3n7S3zUCqUXDnsIs7KmXrMc2QdS2RBOoG4PH6e+s8GNu1p5qKpWUgp21lYvoIpGeO4fey1B6zwJUliUflK3t4yj6AU5CdDzueC/Fk93HbbnFZeWfEpW9s3ICkCBK2xJElDmJ47krGDk8hIjKTJ0cKqmo2sq91CeUc1AKZAkKFJQxiWMZqCuBySIxOOSxO/3WFnZWkxW+tLqbJWYZWaQNU1lhJQEyHFk2XKZHT6IKYVDiFSN3CuwMGgSEW9jV0VbRRXtlNc2U5bV1BavVZJXloUBRkWTHEunKpGSjpKKWkrJygGEQSBTEsqeaYUUtrbiN6zmRi3B3PRGURNvxpV5PF5UhVFkbKOKjY37GBtzWZqbA2oFCompo3i/PxZ4fxKoiiyono97277jDZ3BzOzJ3Pt8EvQK/W8/XUx877fy5hBCUybAW9seQ+VQsWd429kVPLQQ7LD5Xfz7rbP+G7vMqL0Zm4Y+RMmpI46pJbsix9uYdH6Gl5/+CyiT1NX8MOhu6773+3nkBwfTdLVvwvve3/BHt75ZjevP3QW8dH95zBrtDfz6ob/saN5D2nmZG4aeTlDEwpOhPmHjSxIJwib08fv/rWa8jort186lGJxMatrNnLxoLO5aticA96sVo+Nl9a/w6b67QyNL+BnY68hwRi3b7/TyXPfz2OHbT2SIoDGmcaMtDOYM3YkcVF63H4PK6rW833FKva2VwKQF5PFmITBJH7/EZkJeSRd8dAx/bwev4fKzjoqOqop66iivL2aOltjeGwkOTKB/Jhskgyp4Iiivk6guKKd6iZ7qMWhFMhNtTAoK4aCjCgKM6KIMR/aRGBvwIfVa+/ysHPjFwOIktgVakcV8ijTGDBrI9GrQ2NMHXYPJVUd7KnuYE9VByXVHXh8oS6xuCg9gzKiGZwVzaCsGDKSTH0OvHsCXkpayylu2cvu1r3sbasMu7SrUZDg8REfEElPHUpG4WQSjPHERURj0kYel27Hqs5aFpWvZGnFGtwBDyMSB3PlsDlhYfIEvHy080u+2LMIi87EHeOupyhxEF+vquCf87YxqSiJ6y5O57k1r1PVWcvcwedw+ZALD9kTr6S1nNc2vktlZy1D4vO5YcRlZEYd+H6tb3Xw8ycXccWZBVxzzuE7SJxudNd1795zCQk6iZSbnwrva2xzcuufFnLTBUOYO6P3uPH+SJLEurot/GfzR7S42pmQNorrh19KbMSJDRJ7MGRBOgE43H4eemklNU127r9+NCs7v2Bt7WauHX4JFxXOPuCxxS2lPLvqdRw+J9cMv4Rz8s4It14CgSAvL/mWZY0LQO3B6EvnimEXMnv4EARBoN7exFcli1lWuRZPwEuaOZnpmROYlD6aWEM01nVf0LbgDZJv/DO6lPwj+mzdKcSrrfVUd9ZRZa2jqqOWRkdLWHzMOlMouGhUOnkxWeRGZ/Y7udfh8rGrop2d5aGWSWlNJ4FgyLEgxqwjJ8VCVrKJtEQjmkgXLtppcjVRb2+iydFKq7MtHJ3gUFBIKiSfnoBLj+iOQPBEkmRMYmhKJoMzYxmcFUNc1KFHxNifoBikztYYCqDaWUt1awU1bdVYhWCPcmqFiii9uWsirCW8HmOwEKMPOTFE6c1H5ZX4XdkyPt+9ALvPyRmZE7lm+MXhnFJl7VW8uPZN6myNXFR4FlcOm8MXyyt4ff5Orjt3EBefkcnrm97n+4pVDEso5J4JN2PSRR7kqiFEUWRh+Qre3z4fh8/FjKyJXD7sQqL1ln6Peexfq6lssPH6w7N/9B533XXd+/dfTYyvlbTbX+ix/5fPLEGpEPjbPdMP6Xy+gI/5exbwSfG3CMDFg87mooKzDtsJ5XghC9JxxusP8ugrqyip7uChm8ay1vYdSyvXcP2In3BBwawDHvtN6RLe2vwh8RGx/GrSrT2eLteVlvP8qv/g0zWh8Udz3fCfcPawkUDoyXjezq9ZW7sZpULJlPSxzM6dRk50RvhJXBKD1PzzTlSmGJKv/+MhfRarx0ZVZx011nqqrfXUWOupsTXgDezzIkuIiCXDkkpmVCqZllBA1Cj9kUdW8AeClNVZ2VJRw7b6Emqd1bgUrQgG2z5PP0lAGTCilUwYFJHoBCMaQY9S1CIGlXi94HIHsDq8uHxeUAYRlH4UGh9GcxCd0Y+kduAQO8NOHBqlumsMK4fC2BwK43L6nXt1OEiSRNv2JZQueYs2gviHTsYRHUeH20q7uzO83D8tO4REK9EYR4o5iQxzCjnRGeTFZB1WunmXz83Hxd/wZcki9CodN468jKkZ4xAEAV/Ax5tbPmJh2XIKYnP45cRbeH1eGau21fPMr6aTlWxmcflKXt/4HiZtJL+a9NPDclpw+Jx8vPNrvt67BJWg5IKCM7mo8Kw+x5eWba7l6Xc28uc7JjM05+DTHk5nuuu6Dx+5BXPrbjJ++e8e+z9cVMJ/vio+aLfdD2lxtvH21o9ZU7OJOEM014/8CeNSRgx4CCdZkI4jkiTxt/9uYunmWu6/bgxVwjrm7/6Oy4acz2VDL+j3OFEUeXPLh3xTuoRRycO4e/xN4WCcgaDI0199yib7YgQEzkg+k59NvQClUkmzo5X/bf+MVdUb0Kt1nJN7Bufmz+gzS6mrdCONH/yJ+Ln3Yhw0sdf+dlcne9srKWuvCkfj3n+eT6TWGHZ4SDMnk9710h3iAPbB6PTYwlG0dzWX0OhoAUJCkWVJJ06bhEGMQXKbcNu02BwBbE4fTo8ff0AkKEooBQGtRoleqyLSoCHarCPOoicpNoKUOCOp8UY0+0VFD4pBGuzNVHTUUNZeSWl7JeUd1aFxIQTSLSkMictjcHw+g+PzjkqgAvYOWj5/HnfFNoxFZxB77s9QdD2lSpKE2++h3d1Jq6udZmcbTY4W6u1N1FobaHK2AoSjio9MGsK4lJFkRaUdUoVSa2vglXXvsKetnAlpo/jZmGvCwraiaj2vbPgvepWWn4+6mb/9q5ysZBN//PlkACo6avj7yldpdbVz7fC5nJc/87AqsUZHC//b9ilrajZh0hq5dPB5nJUztcdYqMvj5+pHvubi6TnceMGQQz736Uh3XTfvj3cSUbaSrAff67G/odXJbX9eyK1zhnLRtMPPIruzuYQ3Nn1AtbWOYQkF3DjyctLMRxdI+WiQBek4Mn9ZGf/6bAfXnltIfHYbL61/m9k507hl9JX93sQBMciLa95gVc1Gzs+fxXXD54b77Fttdh747J/YNZWYxCQenv0zMmMS8AV8fFL8LfN3f4cgCJyfP4sLC888YIXZ+OGTeOtKSb/rFVAoQ0nomvaws7mE3a1ltLtDUbgVKIg3xJNmSiE7Oo3c2HQyo1IOmkL8cPEEvOxu2cu2xmK2Ne2m2hrKTWNQ6xkcl8eguDwGxeWSGZV21KkVDgdfwMfe9ip2tZSyq7mEPW3l+IN+BAQyLCkh2+LzKIjNOez05JIk0rHsAzpXfIg2JZ+EnzyAymg56HEuv5vy9iqKW/ayvWk3JW0ViJJIcmQCM7MnMTN78kHFct+k1vnEGqL5v8m3hSNGV3fW8fTKV2hzdTDGOIvvFwo8fddUCjND4w1On4t/rPsPG+q2MjZlOLePu+6wxXlvWyX/3fYJO5tLSDTGcXXRxYxPHRm+L+5/YTmSJPH03dMO67ynG9113cd/uQ/9jq/JeuA9BFVP56efP7mQpFgjv/vpoaWz/yFBMciCsuW8v+Nz3H4P5+RO57KhFxxW6/tYIQvScaKqwcYvn1nKqIJ4rro4gUcX/41Bcbn8dtqd/bpdBsQgz61+vc/xpd31tfx+0QsE1DbGRE3jvtlXoBAU7G4p46X1/6HB3syU9LFcO3zuQd2jg04r5c/fSvOIKawzWNjesgtHsCtWnV9LwBaF6LAgOixIrkiQ9tmrUgrERRlIiTOSlWyiID2KIdkxhzS/Zn+6UzVsayruSoFRTkAMoFaoKIjNoShxEEPjC8iOSj+qcELHGn/Qz972SnY2l7CzuYSStopwYr0EYxx50ZnkRGeQHZ1Ohjm1V5qJvnDuXkPzZ8+hjIwm6apHUEcd3ux6u9fButotLK1cw+7WMrRKDWflTuPiwtkHHespaS3nmVWvYfc5uGPc9eHoEg6vk2dW/4vtTXugOZvxMTP49dVjwsdJksSXJYv479ZPiNZbuGfiLYedl0eSJLY07uSdLR9TY2tgcFweN468nMyoVP716Xa+WVPFh386/7ASS55udNd1nz77CNpNn5Dxy3+jjOg5NeSf87by/YYa3v3jeaiUR36v2LwO3t8+n4VlKzBqI7h62BxmZE06ofefLEjHgaAocd/zy2jucPH0PZP406q/EpCC/GX2b3tMWNwfURJ5ce1brKhaxw0jfsL5+40vbaou4anl/0RC5OpBV3PxqAmIoshHu75k3q6viTVE87Mx11CUePCIwhUdNXy69B22OytxqBRIogLRGoPel0x6RBaZ0UnEWgyYIjTotSqUSgFRlPD4gjhcPtptHpraXdQ2O6husiOKEoIA+elRTByaxPRRqcRaelfCoiRSY63vipBdwq7mknCIoQxLKkUJhRQlDmJQbO5RD7D6gn46PTZsHjvugAdf0B/2stMo1ejVulBQUZ3pkOfI9EcgGKC8o5rdrXspaQ1Fk2h3d4b3xxqiSTMnkRSZQHJXPMD4iBhiDdE9uqk8dSU0vv8EglJD0rWPoYlJOSJ7Kjtq+WLPQpZXr0On0nLZkPM5N2/GAeeedHps/H3lq+xuLePyoRdy6eBzEQSBgBjkjU3vh9Ktdybw+vUPEKnv+duWtlXw3OrXaXV1cMXQC5kzaPZhO18ExSCLy1fx3o75OHxOzs6dTqx7BP/6eDevP3wW8VEn/kn9ZKG7rpv/0p9Rr/4vqT9/AU1Mzy61lVvrefI/6/nr3VMpyDh6r7mKjhre2PQ+u1vLyI5K56ZRl/eadH+8kAXpOPDtmipe/HALv75mNMWB71lSuZrHZ/76gD/qf7d+wme7v+PKYRcxd/C54e2b63bz5LJ/IPnV3D3uZ0wpLMDudfDs6tfZ3rSb6ZkTuHnUFQesWEVRZE3tJt7f8i0N7loUIuQ4g4i6s5hRMJrR+UmH7FK9P15/kJLqDraVtrJhdxN7azoRhFCsrQumZhAZ42ZPWzm7W/ZS3Lo3nKIiISKWoQmFDE0IheE50u6/7lTn3V5sddYGGh0t4WgKh4JBrSc+IoakyATSzElkWEK5mWIMUUc8wNvptlLeUUNVZ23Y8aPB3oRvvxTlAgIWvYlYQzRxhmhiI2KIFgWUaz4nNigw5KrH0cUceV9+ra2Bt7fMY3PDTrKj0rlrwk2kHCCumT/o55X1/2VZ1VpmZk/m1tFXoVQokSSJV5Z/xqL6b0mOSOH3Z97Va/K2y+fm1Q3/ZVXNRobGF3DnhBsP6EXXHw6vk/d2zGfB3uVEqI207cjnz9ddwuCsmMM+1+lCd133xevPolz6Gsk3PYUuuaeLd1O7i58+sYA7Li3i3ElHFlX8h0iSxMrqDbyz9WPa3Z1MyxjPNcMvIeogE/ePFlmQjjE+f5Db/ryQWIue6y6P44mlzzOncDbXDL+k32NWVK3n+TX/5sycqdw6+qpwRbintZzfLXyGgEfLXaN/zvRhuTQ5WvjT0hdpcbXz09FXMTN7Ur/nFSWRlVUbeHfb57S6WxE9BizOLO6xLSN+9AUknHX9MfnMoiTS5GhlQ9UeVpTupNJajajtRFDsS0ZXGJfLoK5YcHERR1bBePweilv3sqNpD8Ute6noqA7HmovURJBqTibJGNflJm3BpDViUOvRqjQoBAWiJOIP+nH5PTh8Tjrc1i6ngdau9A/7opGbtEZyozPJj82mMDaH3OjMo2q5iZJIh9tKk6OVJkcLLa5Q7LruNOWtro4eKeOVUmiuVmZMKHNuYWwOmZa0w+o+kSSJNbWbeG3je/gCPm4dczXTMscfsPz7O+bz8a5vGJcygnsm3oxaqcbl8XPNX99Al7edaIOJ30y7k1RzUq9jv69YzRub3kejVPOL8TcwKnnY4X9RdLW6Vr5Js7uZ4dGjuW/G9SeNW/KJpruu+/LtV1AseIHEqx7FkD28RxlJkrj6ka+ZPDyZOy8bcUyv7/F7+HT3t8zfvRCVQsllQy7g3PwZx20cV472fYxZtL6aNquHu68czr83vUSiMe6AHnV1tkZeWf8OhbE53DzqirAY1dub+OP3LxLwargo5WqmD8ul1tbA498/S0AM8ugZv6Qwrv8WV0lrOa9vei+Um8cVibptDDdMmcnEyHpaP/0ec+G4I/p8oiTS6GihoqOa8vZqyjuqqeioCXe/aZRq8tPSUXvzKNkN1uYIskfkcf3MoYed70aSJKo6a9ncsJMtjbvCkRBUChV5MZlcWHhWV96kzKNyLe/GE/BS3VnX5WUXyg67f+qInKgMBsXlMiguj4LY7MMa9FUIilDiPUMUg+N7xyoUJZFOt41mZys1NTso3TCf5mArOwJulletA0K5i0YkDmZS+mhGJA09aKUgCAIT00ZTEJvD86v/zYtr36TaWs/VRXP67FYTBIErh83BpI3kzc0f8pcVL3Hv5J9j0GlI0eZidKbQplvGw4ue5v4pt/f4HIIgMDN7EgWx2Ty7+nWeXP5PLsifxdXDLznsyisvJotfjb6Hez/8F1vZyMOLmrh/yu0n3STOE4lCE+oBEX+QCBNC331GkomapkPvGThUdGodVw6bwxlZk3hz0we8vXUeSyvX8NPRVx2w/jlSZEE6hkiSxBcrK8hNNdNEMQ32Zh6ceke/eUmCYpAX176JRqnml5N+Gr5xXT43Ty79J15fkBTHbK6ZNZJGRwuPf/8sAI/P/HWvJ9RuvAEf/9v2KV+Xfo+WCHxlRYyIH8Gvfj4Ks1FLy5ffoNAa0KYcPICrJEm0uToo6Yq0XdZeRWVHDe5AKISOWqEi3ZLCpPQx5EZnkB2VQZo5KTxe4Z4V4P0Fe/hkyV62lbXymxvGkptqOeA1nT4X25t2s6lhB1sadoZdzTMtqZyfP4uihEIKYnN6RLc+VuhUWvJjs3sMztu9DkraKkLdji17+aJkEZ/t/g4BgTRzMoWxORTE5pAXk0mCMe6IRVEhKIg2WIg2WCiMy2VyZBqNHz6JIX8sqgvuZ3drGVsbi9lUv50V1esx60zMzpnKufkzDurhFq238PAZ9/DGpveZv/s7Oj1Wbh97Xb/jSuflz0Sv0vHy+nd4cvk/eHDqL8hMMrOzIsBfrrifPy17kT8ufZ67J9zEhLRRPY5NMSXyxJn38/aWeXxRsojStgp+NfnWw+7CUylUBGoKuWTMeBY1f8ZvFjzJb6bdGY4y8WNDodEhApK370nfCdEGtpW2HLfrJxrjeGDqHayv28obmz/g0cV/ZWbWJK4efkk4VuKxQBakY0hZrZXqRjs/u3QQH+96jSHx+YxM6j/+15cliyhrr+KXE38avmElSeLlDe/Q5GzBWzqWO2+ZhNPv5ImlLxAUg/z+AGJUZ2vkbytfpdbWQLZ2BDtXxnLBxDx+evGw8Ix3d9UOdOlDeqXl7qbZ0cq2pt3saN7DnpYy2rrcv9UKFZmWVKZmjiM7KoPsqHRSzUkHfPrVa1XceMEQJgxN4qm3N/DAiyt44PoxjBu8bywjKAYpa69iW1MxWxt2UdJegSRJRKj1FCUOZmTSEIYnDj7ufdf9Eak1Mjp5GKO7up+8AR+lbRXsbt3L7pYyllWt5buyZUCoBZMTHcp4m2lJI8OSSkJE7BF5KRnyRhM963raF75JVFIuUybPZUrGOAJikK2Nu1hQtpwPd37JFyWL+Mng8zkv/8COCyqFkp+OvooovYUPdnyOKEncOf6Gfh0QZmRPQqVQ8eK6N3lq+T/JTTiLpZvdRKrM/GHmvTy14iWeWfUat465qleGUo1SzS2jr2RQXB4vrX+bB7/7M/dN+Tl5MYc+vuELhCYoF1gKmFl0P39a+iK/X/IMD0+/+7DOc7rQLUiiz9Pn/oRoA202D/6AiFp1fLziBEFgXOoIihIK+WjX13y5ZyEb67dz29hrGJsy/OAnOARkQTqGrNhah1IhEDTXYK2x8+uht/X7xNzpsfHRzq8YlTyMifs9Za6oWs+amk0omwYxKnUQOSlmnlj2PO2uDn4341f9itG2xmL+tvJV1EoVV+Vcz7/fbWbmmDRuu2RY2IaAvYNARyOm0WeHjwt1i9WxqmYD6+u2UmcLRduO0pkZFJ9HYWwOeTFZZJhTeniFHQ6FmdH8/ZfTePz1tfzpzTXceFkqisgOdjWXUNyyF3cgFKE6OyqdSwadw4jEIeTFZJ6UUYm1Kg1DEwrCwSmDYpBaW0NXvqYqytqr+LT4O8SusS21Uk1aV86iVFMSKaZEUk2JxB+CUJnHXYC3vpSOpe+iTx+ELm0QKoUyLJBVnbX8b9tnvL11HquqN3DPxJtJjIzv93yCIPCTIeehEATe2z4fo8bAzaOu6Lf81MxxSEi8uPZNnEYJyKShzUlWspmHp9/N31f9i1c3/A9f0M95+TN7HT8pfTSppkT+suIlHvv+GX458ZZDrrhc7tB4WoReTaoplj/MupfHvn+GPy19gT+eef8BHTRORwR1d5dd3y0ks1GLJIHT7T/uqTt0ah3XDr+EaRnj+Mfat3h6xctMyxzPzSOvOKRpDgdCFqRjyMbdzQzOjub7qoXkRmf2mSivm492fok/6OeGET8JC4bD6+TNLR+SpE+hvCqd83+axae7v2V70x5+Pva6fud5rKnZxHOrXyfFlMT9k2/n4Rc3kxIXwR0/Gd5DEL11ewDQpRbi8XtYUrmGRWUrqLLWoRAUDInP48zsKQxPGkxKZOIxCSNi8zrY21ZJSVs5pmFlaBPK+V95qLJJioxnSsbYUAUfX9CvS/yR4Al4aXa00ubuwOoJBVr1Bf1ISCgFZTjtdpTeTKwhihhD9BEN1CoVSjK6cjN1txR8QT811vpwmKUaaz3bGotZWrkmfJxaoSLVnESWJY3s6HRyozPJsKT2EGFBEIg77+d4G8po/vRZUm/9Owrdvu65DEsqv5n2C9bUbOKVDf/lwQVP9hrb6YtLBp2Dw+vki5JFpEQmcnZe/3HQpmWOx+V38+9N76POdFHXPI6sZDNalYb7Jv+MZ9e8zpubP0QhKDgn74xex6dbUvjTmQ/w5PJ/8reVr3Ln+BuZkjH2oN9rpyMUjsoUEeqajTFE8cgZ9/DbBU/y9IqXefKsB49ZVJBTAUGpAoUqnMb8h+g0of+NxxcATkwuqXRLCk+ceT/zdn3NJ8XfUNpawa8n30a65cimLIAsSMcMp9tPVaONM2caWGFv4s7xN/Zbtt3dyeLyVczInkzSfk+0H+36CofPSZ50Dk06D7GJAf628EsmpY1mRlbv8D4Amxt28Nzq18mJzuS30+5kU3E7Da1OfnvjOLTqnhWst6EMr1LJ5+17+Grtyzj9brKi0vjp6CuZkDb6qPuCXX43lR01lLWHInyXtVWGw9woBAUZ5hTOyJrImrVeJHs0j//yHMzGo795XD43e9sr9wt1VEuLs+2wzqFUKEmNTCSrSxwKYrNJMycfUUBTjVIdCib7g4yrTp+LOlsjtbZGam0NVHfWsb5uK4srVgGhMayihEGMSx3BmJQiDGo9Cq2B+Dn3UP/WQ7QtfJO4C37R63oT0kaRHZ3Bn5e9yBNLn+eh6XcxOL7/YLmCIHDt8LnU25t4c8uH5ERnkBuT2W/5c/LOoMXRyed8y5KaZUwZcRUAKqWKX078KX9f9S/+vel9jJqIPsXGpIvk0TPu4cnl/+SFtW+gU2kYc5CWUoc91DW1fwqK+IgYfjXpVh7//lne2foJPx1z1QHPcbqh0OqQ+umy02lDVbnbG+hz//FCpVRxxbALKUos5JlVr/HQwr9w+7jrmZQ++sjOd4zt+9FSXm9FksCqKkev0jEhdWS/ZReWLScoBrmo8KzwtnZ3Jwv2LuOMzIls+x6GZMfy9taP0Km0Pbzv9qfGWs/fV71GujmF306/E4Naz7LNdUSbdIwf0rNLQ5IkVjTt5LOMGOy7vmJMchEXDzr7sGfXd+P2e0KpJbrEp6Kjmgb7vtTisYZosqPTmZUzhfyYLLKjM9CpQuJzdpqVXz+3jH98tJXf3DD2sFpioiTSaG+mtCsh3Z7WMmqtDWF37SRjPHnRmczMmkRiZByxhmgsOhMRGgMapQYFAkFJxB3w4PA66fBYaXG202Bvoqqzlo3121lSsRoIjQkNTxzEqKRhDE8afNSCHaEx9HKakCSJFlc7e9sq2NFcwqb67ayr24JWqeHMnKnMKTwLS0o+lolz6Fz1Ccah09Bn9nanjo+I4fGZv+bRxX/jLyte5snZvyFxvxQlP0ShUHDnhBu579sneGHtGzw9+6EDulZfM+Iivtq4nW3ScopbxoSzGqsUSn458RaeWPoCL637D4nGuD7FTafW8eDUO/j9kmd5bvW/eeLM+w/4JN3a6UGjVvbyzBwSn885eWfwTekSZudOO6qn8VMNhcbQb5edXhOqyj3eYJ/7jzeD4vJ4avZv+fvKV3lu9es4fA5m5x5aBPL9kQXpGFHf4gQkKhyljE4p6vfmFkWRReUrGZE0uEeF8VXJ9wSkIBcVzOabD9eSPzjI6qbd3Djysj7Dv/gCPv6+8l/oVFoemHoHBnWo73ZXRRtjBiX0CLdi9zp4ad3bbBA6yFTo+M2sew74RPxDJEmi3t7E7pa97GkrZ29bZY/cRjGGKLKj0pmWMZ7s6HSyo9IPONk1O8XMdecW8sYXu1i5rZ4pw/uuVDwBL/W2RmqsDVRZQ7mV9ncx16t05MdmMTFtNPkxWeREZxySK7aK0FiQRWfqcz5Nk7OVPS1lbG/ezdaGXays3oBCUDA8cRBT0scxNqXomHUXCYJAfEQM8RExTEofgyiJlLZVsKBsOV+Xfs/i8pX8dPRVTJ5yGY7i1bR+/Sqpt/0doQ/PzUitkd9Mu5MHvn2CF9e8yeOzfn3AFp5RE8Ed467nD0ue49Pd33L50Av7LasQFOSI0ykLfs7za97g7+c8Gp6MrVGquXfybTz43Z95ZtW/ePqch8P/x/3RqXU8MOV27vvuTzy35t88ddZv+h2XbOl0EWfR9/mwctmQ81lSsZpPir/hnom39Gvz6YZCq0Psx8tO26PLbmCI0pt55Ix7+Pvq10Jz34J+Lig487DOIQvSMaLd6kaIsOLwOxl1AM+6nS0ldLit3DTy8vC2QDDA9+UrGZsyHK1kQhQlKoObiNKbe3kwdfPBzi+oszfy8PS7w7HrPL4AVoePlLh9T/K1tgaeWvZP2twdnN9i54LhM4k5BDFy+JxsadjJpoadbG/ajbXL/TpSE0FeTBaT0keHYrYdRHz6Y860HJZuruPV+ZuITvBi83fS7Gyl0dFKk6OZenszba6OcHm1QkW6eZ+LeW50JqmmpGMeZ0sQBBKNcSQa45ieNQFREilvr2Zd3RZWVK3nhbVvoFfrmJU9hXPyziD+CCf59odCUFDQ5Up+6eDzeHn927yw9g06hs/lzNm30Pj+E1jXf4Vlwpw+j4+PiOGGkZfxz3X/YVX1xoOO1wxLKGRS2mjm717A7NzpBwwQm5MUw65Nw2gvXMOHO77g+pE/Ce+L1Bq5Z+ItPLL4r7y3bT43j+7bWcKiN/OzMdfwlxUv8XXpEi4s7LvCau5wE99PHiqjNoIzsiayoGw5Lr+7T/E7HRE0+v5bSF1ddgMpSAAalYZ7J/+M59f8m/9smUdcRAzjD9Bb9ENkQTpGONx+dNGdABQl9J/pcn3dVtRKdQ938K1Nxdh9TmZmTcLtDSDoHDR4q7hq2Jw+5zDV25v4cs8iZmZN6hG/LhgMtVi63T6rO+v4/ZJnUSDw0PCr0H/4d7QHCEfjD/pZX7eNpZVr2Na4i6AkEqk1UpRQyJD4AgbH5ZIUmXBYXWxBMUirq51GRwtNjpZQpAJnK82OVjrSW/EEPTy29Ktw+UhNBInGOIbE5ZMUGR/ySjMnkWSMHxCvO4WgIDcmk9yYTK4cdhF7Wsv4bu8yvipZzNel33N+/ix+Mvjc4zLAnhQZz6Nn/JLn17zBO1s/Jn/mvZhzRtK5ch6Rw2ei1PcdOHVa5ng+2/0dX5YsOiQHgiuGXcTq2k18XfI9VxX1LXQAeekW/EvMTIgfzdd7l3Bu/oweUTfyY7M5K2cq35Ut47z8Gf16/I1JKaIoYRDzd3/HuXln9NlKam53kTOsb49SgPGpI/i69Ht2NpccM5fjkx2FSoMY8PW5T6ftmvs3QF12+6NSKLlz/I20Odt5cc2bpM5OOmSvSFmQjhG+gIjC2ElSZOIBIyzvbNrD4LjcHhM719duQa/WUZQwiKZ2D8qYhlCuo34cGebt/AqVQsWVP6g89FoVKqVAp91Lq6udPy59HrVCxWMzfkVkfSVNgMqS0Ot8br+Hb/cu5auSxXR6bMQYoji/YBbjU0eSE51xSAP7/qCfOlsj1dZ6am0N1NoaabA10ehsISjuu0nUSjXxhhjijbEUxOawu9TD3jIf910xjRHpGUftNno8UQiKrjQYeVwz/BI+2P4F83d/x9bGXTx6xj3H1EuwG6VCyR3jrmdXSylf7FnIXTOupe61e+lc/SkxM6/r184ZWRN5Z+sntLk6iDFEHfAaSZHxjEwaypLK1Vwx7MJ+f++C9FCkhDRGsVnaxNelS7h+xKU9ylw6+DwWl6/im71LuXHkZf1e89z8GTy1/J9sayruFWLI4w3ltjpQUNWc6EwEBKo6a380goRSjeTp28suPIY0wC2kbjRKNfdO+Tn/9/XveX3jezxyxj2H9CArC9IxQgBEnZWsqP6765w+F7W2xnCIfwiNWWxtKqYoYRAqpQqjXo0yqok4TUqfk0E73FZWVW/g7LwzenWvKBQC6QkmSmvbeWblF3gDPp44834SI+Ox2jcBoDLte6KVJIklFav537ZPsXrtDE8cxB3511OUMOiAXWGiKFJtraekrZy97ZWUt1dTZ2sIx5VTCgoSI+NJNiUwJqWIpK4o14nGOCx6U48Kz1rg5fanFvHxV82Mv7PgwF/ySUSsIZo7xoe8iZ5e8TJvb/2YO8YdXmxASZJweUKZbO0uH15/EFGUUCoUGHQqTBFaok1atCoNg+PyKO+oRpuQiXHIFGwbvsEy/qJeqQi6KYwNTTmo6Kg5qCABTE4bw6b67VR01PTyDuwmLkpPfLSB8kofI3OHsrJ6PdcNn9ujoonSmxmZNIQ1NZt6TGn4IcMSClEr1exo2tNLkFo6Q91S/XXZQWgMMFIbQbvbetDPdrogqNRI+wXo3Z/wGNJJ0ELqJkpv5qqiOby28T021m9nTErRQY+RBekYoVKLEHQfsGla0VGDhNTDoaDN3UGbq4M5XbmPRIUbhcGBWew7MOXyqrUEJZHZuX0nLivKi+WrvQtQtlfyq0k/DQ/aBx0dIChQGkIiZvM6+MfaN9ncsJOC2Bzun3r7AWfAt7ra2VS/nS2NxT1SR0RqjeREpTM6eRjplmQyzKkkRsYf8pwes1HLbZcU8bf/buSdr4u54fzBh3TcycKIpCHkx2ZT1lbZbxlJkmjpdFNWa6WiPhTNo67FQVO786BdLAqFQFJMBL6MWrRaJTVNduInX4pj5wqsG74ienrfrs/mrla6w+c8pM8xKD4kYHvbKvsVJIDhubGs2t7ALVOHsaF+Gw32JpJ/8J8fnjiY9XVbaXG2EW/sOwW5RqkmOTKBentTr32tXYIUd5C0EwpBgSiePBXw8UZQqqAfQdJ1tZBc3r73DxSzsqcwb9fXLChbLgvSiUTQecADUbr+n0ZrbQ0APVIEV3bUAJAdFYrRVdpeCYC7ve/B5bU1m8mJyiA5snfXG8CooWa+cZSRpstjYtq+uQBBtw2F3oigUNJgb+aPS5+n023l5lFXMDt3Wp/dNE6fi+VV61hetY7StgoA4iJimJA2isFxoSgOcRExRz2B9oxRqewoa+WjxaUkxhg4e0LmUZ3vRLKudgu7Wko5P29fpAKXx09JdQfFlR3sqWqntKYTmzPU9y8IkBgTSqE+LDeWWLMeS6QWU4QGrUaJQhAIBEVcngCdDi8tHS52teyhXNFER3ked6xcTFJMBLeaC2H911gmzUWh7j2XqzvVx6Hme4rRR6FSqGhxtR+w3Ij8OBasq0bpDbXMam2NvQSp+6GsydnaryBBKPWHJ+Dttb3NGhKkGPOBU6o4fC6Mx6Gb9GRFUKqRgn13ySkUAnqt6oTPQzoYSoWS6ZkT+Gz3dzh8zoPGXTyugvT555/z0ksv4ff7ufHGG7nmmmt67N+5cyePPvoofr+fpKQknn76aUymY5sa+0Sh1YWe1BTB/m+iFmcbaqWaKN2+bpb6rrk73Tdxd+rumkp6xaVy+Jzsba/i0iHn9XuNnfb1CAqRll0ZeM4JhCfMiR4nSl0EzY5WHvv+7+G4eH25f3e4rXy2+zsWla/EG/CSYU7hqmFzGJ864rCdGkRRxOl34faHEuV1p1hQCAq0Kg0GtZ4IjYGfXVJEa6ebFz/cSpvVwxVnFYTj752MBMUgnxR/y4c7vyA9Mo143whe/HALuyvbqW6yI0kh8UlLiGTc4ERy0yzkpJrJTDKFn2YPhZLWcr5ftpwUfSL/d8PNbC/tYPW2Bv5Xmc5dkcW8+/JbjDj/UoZk9/T229NaDoSiORwKgiCgVqh6pMDoi+F5cQgCVNSEhMTudfQqo1WGxkd9/TzNd+PyuYjpI4J3m7X3pNgf0uhoJiAGSD5AqKTTDUGpQgr0/50adCrcnpNLkACGxhfwafG3lLdXHzSJ6HETpKamJp555hk+/vhjNBoNV155JePHjyc3d184nSeeeIK7776b6dOn8+STT/L666/zq1/96niZdFyJMIY83Jy9788wnR4bFp2pR4Xe5upAr9KF58802luIVJto9gjsKm9jeP6+uUpl7VVISAzqJySRP+hncfkqBkcPYeN6Fe8t2MONFwwBQPJ58Ku1PLviJXxBP7+f8X+9JhUGxSCf71nIvJ1fERADTE4fy3n5M8g+QBcOhFKv11obqOysoc7WSIO9mRZnG+3uTmxeR3i+Un8IgoBFayI2M5r0SBUfbqtgZfk2fn7ONIZlnTwxyyRJorXTw5q9u5lf+SlWsRmhI4Xd6/PZLe4kQqeiICOayUXJFGREU5ARddgpN7oJBAPM37OAD3d8QWxEDL+ddidxERbS4iycNymL1s4RNPx7C+mdG3nwHwmMyIvjpguHkJ1iRpREFpavIMOccsDJsfvjC/hwBzwHfYI1G7XkplrYXtYEsfTp+ej0h1pnhgO0zgLBAA2OZob24ZHabvNg1KvRqPvv9t3RXAJwwjKZngyExpD6FxyDToXrJBSkzK6Holpbw8AJ0qpVq5gwYQIWiwWAs88+m2+++YY777wzXEYURZzOUB+32+3GbO49QGuz2bDZbD22NTY2Hi+zjxhTZOjmaW7t2y0TwOl3Y1T37Be3ee09vPI6PJ3EG6OxapQs31rXQ5CqO+sByLKk9Xn+7U27cficXDR+OtEdfj5ZspdxQxIZnBWDFPTzpT5IjbWe3067q5cYtbk6+Puqf1HaVsHYlOFcN3xuv267kiRR0VHD5oYd7GjeQ2lbRfhpWKVQkWCMJT4ilpzoDMw6E5HaCAxqPRqlGqVCiYBAUAriDfhw+d3YvA463Faana0EDE2o0620sIfH1yxBvzKGooQhXDJiKjlxJ25Wvs3po67ZQU2znaoGG5UNNsob2/FG70SZUAUBDVG2iQyLHUb+iGgKM6NIi4/sMSH5SAiIQVZVb+DDnV/S5GhhQtoobht9NUZtT6GItRhQTz2fiO/+zS9mRvGfNZ386pklXDAlm/i8Jmqs9fzyMCaNVnbWApDWT/De/RlVEM9H68rQxNKnw0StNdQ1nWTsv/VS0vWf6SunTofdS9QBWkcAK6s3kGSM77fr+lTkYHXdgbrsAAw6NU73yTWGBIQftp195HL6IcdNkJqbm4mL21eZxsfHs23bth5lHnzwQW666Sb+9Kc/odfr+eCDD3qd56233uLFF188XmYeMzTqrrk/jf03kfxBX695RW6/B4Nq383n8LqIMliYOCyJFVvq+OlFQ8Pdbk3OFiI0hl6VUzebG3aiVWkZllBA4RzYUdbGU/9Zz99/OZ0G0csKlZezc6czIqmn40CdrZE/LHkOl9/NLyfe0sMLcH9aXe0sKlvJ8qq1NDvbEBDItKQyK3sKeTFZZEWlkWiMO+r5Qjavg12NZXyzbRO720tY176UdYuXovHFkBcxgklpY8hIMBMXpcccoT0sEZAkCY8viM3pw+rw0m7z0NbppqXTTXOHm4Y2J42tThz73dhajZL4NAeqwRsJ4mBM/DhuGXspMcZj171s9dj4vmI135Yupc3dQYYlld9Ou5MRSUP6PcY4ZBptC99irK6SKb+5kv98XcyXW9ej8WygIKqgxxjiwVhXtxWFoGBw3MHzZA3Pj2Pezk5g39Pv/uxo3kN8REyvVOf7s6ZmE2qFiqKE3k/MnXYvUQeIWF3ZUUtxSynXFF1yTAIAnywcrK4TlKp+vewg1MVZ23zsk/QdLYIgdD2Eigcte9wEqa/M6Pv/eTweDw899BBvvfUWRUVFvPHGGzzwwAO8+uqrPY654YYbuOSSnum/Gxsbe41HDTTdn620phNJkvq8UURJ6uVOHRCDPSYGeoJetEoNsydksmRjLd9vquXciZkAdLptROv6v8n3tJaRH5OFWqlGrYSHbhrHfS8s4/evrSElyYUaemWvbXd18sclzxOURP4w694+xxxanG18sOMLVlStQ5QkihILuXTweYxKHnpEURoOhklrZELGcCZkDEcUJdaVVvJN8SpKA9vY6V/E9uJVBBbmEGxNQaFQYIrQEKFTo9cqUauUKBQCCkFAlCQCARFfIIjHF8TtCeBw+wkEe98YKqVAXJSBhGgDU0ekkBxnJDkuguRYAwtrv+Wr0qWkmBK5feztRxz/74cExSBbG4v5vmIVG+q2EpREhsTnc8voKxmVPPSg87+UhkgM2SNw7lpJ9MzrGDsBVgQ3I3oi2f59Gt+aqjin679zIDwBL9+Xr2RU8rBDmktVkB6FKqqFSCG2V3mX3822pt3Myprc7/Fuv4elVWsYnzqyT6eLdpuHQZn9Z4edt+sr9CodZ+ZMOaitpxKHVNf1Ua92E2fRs6Wkud/6Z6Bw+z1ISBgPMazXcSEhIYENGzaE3zc3NxMfv68JX1JSglarpago5Ap4xRVX8Nxzz/U6j8lkOiUcHZRdQmNzeahuspOR2NtmhSDg/0FlKAj0+JOJkoRSUDA4K5rcVDOfLNnL7PEZKBUCTr+r31htoihSa2vkvPwZ4W0ZSSYevH4cf3hrOc0pXiYGND0ChIqSyPNr/o3T7+Lxmb/uJUaiJPL57oV8sPMLBODs3OmcVzDrmIfLORAKhcCEgiwmFGQhSVezoW477237ghrtDmIKWhmingmeSJxuPx5fEH8gSFCUQuIvCBh0KixqLVqNEoNOTYROhdGgwRyhwWzUEmXSEmPWYzH2bml5Az7+uvJltjYWc07eGVw7fG6/2X8Ph0Z7M4srVrG0Yg0dHiuRWiPn5s1gZs5kUk0H7zLbn4jCCVjLNvLWqjf4qnY9OVEZ3DX2Nl7x7uEfH22lucPFdecOOmAF9Vnxd9h9Ti7umnpwMFrcLQjGTlT2Eb32rahahz/oZ2rmuH6P/3bvUtx+D+cXzOq1T5Ik2m2efrvsdrfsZW3tZi4bcv5hpZA/FTikuu4Av2OsRY/bG8Tp9mM0HPuMykdKd1ddhHoABWnSpEm88MILtLe3o9fr+e677/jDH/4Q3p+RkUFjYyPl5eVkZ2ezaNEihg3re+7NqYBW2dXFoAyyeU9zn4KkVmqwe3vOC1EqVAT2m0uhFBSIkoggCFw2K58/v7WepZtqmDkmHX8w0G/q7nZ3JwExQOIP+u1HFcZz4XkRfFMPGc0ebE5fOMfM9+Wr2NVSyu1jryMzque4lMfv4ZnVr7O5YQfjUkZw46jLiDX0/9R6IhAEgbGpRYxJGcbyqnW8vWUeqzwfcMOInzA7d9oxfSoUJZFnV7/Gtsbd/HzstczM7v+J/1DPt6l+B1+Xfs/2pt0IgsDIpKHcnDWR0UnDjij5oSRJlJgjeT0tmtba9ZyZM5UbR16GRqnm0ZvH89LH2/hwUSkA15/X9/yu/2fvvMOjKtM+fJ9pmZmUmfTeeyAJCaH3KoioKApi1/WzrH11i72srrruuq517b03RJDeWyChJJCekN57Mpk+5/tjkkBIIaEISO7r8pLMnHPmzWTmPO/7vM/z+xU1lvBTzhomB40Z9MpvRe56JEhpLPbAZhO7A7nNZmNl7kbCXO0WHn3RYdLzc846knxH9Nnv1NZhxmyx9VnybbFZeS/9K9zVriw8Rin/wkHE3oLfN56djcR1zfpzKiDVdlrQePRRUXk8Z3SF9MADD3DDDTdgNptZvHgxCQkJ3Hbbbdx7773Ex8fzj3/8g/vvvx9RFHF3d+f5558/U8M543QJPHp7yNlzuIbLp/WuhFPLVZSZK3s8ppQ5oLcc9ThRSOUYrfbCiPEjfQkP0PD56px+FbG7aO4UP+1L3cHkUIdSlOCr0/PXN7bx1B8m4KZ14LusVUS5h/WSKDJaTDy/9XXyGo7wh9FLmRN+em/2p4ogCEwNGcconzje2PMJ7+/7ipKWCv6QvPS0ia2uyd9CemUmtyQvOaVgZLPZ2FGaxg9Zv1LRVo27ypUlIxcyI3RityjuUBFFkey6fL49vJLDtXl4yBTcYVQzM2VZ9zFSqYQ/LrZL6ny7IR8vV3Wv9F2zoZWXd7yD1sGFm5OvZjBUt9ex5cguopwS2d8ho6HF0H0j3FmWRlV7LQ9OvK3fz8uP2atpN+lY0o+yeF2TfTbtoe2t0vBT9hpKWyp4ePId3VYmFxKiKA4Uj7rfs/pmPaF+/af2f2sqWu3Nz/7OJ66YPaN9SAsXLmThwp4fvHfffbf739OmTWPatKF7ZpyLOHcWGkSEqNm5tZ7mNmMvK2EXhSPtx62QnOTqHtUnKrmKDrM9QEkkAjcvGMFj/9vJ8q2FyCTSfvtEuoKaStZ7ZnmkuYwQuSMeylYamw089N+tLF6koaGjiZuTru5183h/31fk1Bdy/4Q/nLTR1m+Bi9KZv0y5ky8zlrM8Zy06Uwf3jL/5pJxfj8VsNfND1q/Ee0dz0Ul4unSRW1/Ie+lfUdJcTrDGn3vH38L4wOSTHp/VZmVPxQF+yd1AfsMRNEoXbk66mtHl5bSnrsBm1CNxOHojFwSBO69MpK5Jzzs/ZRIT4kaI71Gljr9v/i9txnaenvngoHX4PjnwPTKpnFlBM9nPYbtNhKsKi9XC15krCNb4MzZgVJ/n1uoaWJW3sdOmpO9WgupG+3fB261neqe4qZzvD69kYlDKhaNd1wfCQCsk7dEV0rlERVs1SplDn5Pl4zm92v0XMF2b+wF+CmwibD9Y0ecxeosB4zGKvS5KZ9pNHd1pO2cHxx7NholRnowb4cM36/OQIEdv7tsx0mqz7031dbOraa/HR+GCYOrgxbsmIJdL+WT7JhQSh146YhnV2Ww+sotFsfPO6WDUhUSQcG3iIq5LvIJdZem8uecTbIOo5hmI3PoiWoxtzIuccVIrQ6vNyucHf+SJDf+i3aTj3vG38OJFjzA5eMxJBaNmQys/ZP3K3b88zis736PV0MatyUt5Y8GzzI+agVPwSLBZMVbm9zpXKhF4cFkyjko5r39zAFEUqdU18OTGf1HVXsvDk+84YZ9ZF3srDpJWcZAr4+bj72pXYOhSoFhTsIUaXT3LEi/vtxjj84M/IgjCgIrilXX2z76fx9FKUrPVzOupH+Hk4MStyX3bWlwQdHVb94PWWYlUInRLL50rVLbW4O/sM6jv0nBAOk04KdTIJDJEuYFQPxc2ppX1OsZNpQWg4Rh5FjeVBhGRZoNdJFKrdKHJ0FMw8rbL47GJUFFlpK0fbbKuogrLcdpeFquFDrO+uwTX38nKv++bioO2BX2DC9+sy+9REfnd4ZV4qt1YPIAaxLnIpTFzWBp/KdtL9vB15opTulZFq733o799kIEwWky8sO1NluesZVbYJP497wkmB485KSv0goZi/rv7Q+5c8QhfZf6Mn4s3f558B69e/DQXRU7rNoF08LfblRsq8vq8jsbJgesvjiW3tInv9uzkb+teoFnfwqNT7z5ho2IXbcZ23k37gmCNP5dEz0bRqSBiNttoM7bz3eGVJHjH9rBVOZacugJ2laVzWczcAcVeS6vb8NAoUSuPFo98e3glpS0V3DnmujOiqH7+MHCDuVQi4K5VnZMrJD+XwfWLDWvZnSYkggR3lZb6jkZmjI7ngxWHKatpI9D7aNNrl3dMXUdjt/5X15ezXteEh9oNd5UrOlMHBouxO0/u7aZm6ZwovsjIQilvxSbaet3guo49Xhusq2FVpbKv4Cyt9Tj5u2GVtxOkDePLtblU1LZz39IkmoyN5NQXcm3CIuSnoZrst2ZR7DzqdI38mL2aUNdAxgcmn9R1zDb7ezbUijqrzcrLO/5HRk02t6dcy6yTKEsWRZF9VYf4KXsNufWFqGRK5oRPYV7EtF6acV1IlY7IXH0w1RT3e93JSd58lJ7Pt0dWE6Dx5aFJ/9fv9foa09t7P6PNpOORqXfbU8ed3ltSqcDXmSvQW4zceIxh3/Hnf37wR1yVmhMWIxSUNxPmr+3+uaixlJ9z1jE9dEKv1fwFh8iAKySwp+3qms6dgGQwG2joaBq0H9LwCuk04uXkTl17PdOTA5BIBDbsLe3xvHen0GRNe93Rcxztj3VVonQHLV1Dj3MXTY/ATaXFKlqpbm7ieJw7JV9ajcc1xnV+fgWVfWZpbqxCZ+rAJtqYkxzJjQvi2Hqggife2UV6eTbAoFR5z0UEQeDW5CVEuoXw1t5PqT3uPRwsLg72SUSXS+5g+T5rFQers7ht9LKTCkYZ1dn8dd0/eHHbmzR2NHFT0lW8fek/uCV5yQmDh8IrGFNtSZ/PHag6zF/WPY/FvRBbfRBPT3940MEIYFXeRvZWHOTahMu7qzHbOlN1HTSyrmgbcyOm9hANPpb9VYfJbShi8YgFAxYjtOpMlNe2Ex1sn6TZRBvvpn2Bi4NTL9+lC5OBq+wAPDSqcypl16XVOVhFjeGAdBrxcvSkWlePq4uSsXHebNhbhtlydD/DVaVBLpVT1XZsQHJHQKC63f6H69Ieqz4maAHIpBIun2APFB+vT+N4XDvTgY365h6PKzvL0Y0yGUhkmBoqutN6CqmcxTMjefi60eSWNPLN9n3IJLLzWo5FJpVx38Q/gAhv7fmkzwbtExHQebMubu69D9gf1W21/Ji9hinBY4fcsNmob+al7W/z9y3/RWfq4K6xN/Dqgme4OGrmoNW6Fe7+mJtrekjLlDSX84+tr/P81teRCAKXB1yL8UgcdY39y1sdz+HaPD49+ANj/BNZEHW0b6iqQQeIbK5Zg6NczdUjLun3Gj9mr8ZT7caMsIkDvlZGgf0zPzLcPinbXrKXwqYSrk+88oQaexcCNrMRQT5wObenq4qGFj0229A/92eCyjZ7+nvYMfYs4OvsSZuxHZ2pg4vGh7D7UDWph6u6S7YlggQfR48eKyS5VI6noxuVnaWRvp36cZWtNXBcpXdKWBif5kBqQQFZR1KICz3aoOogU6BxcKa2vb7HORKJBBcHJ5qN7cjd/TDXleEks6eiDJ3FFVOTAnBSKXh+wyFkZhk6gwWnkxQFPRfwcnTnusQreDf9C7YWpzItdPyQzg/U+KOQKjhQmUO4UywmsxWzxYbFasMmit0TValEQCaVIJdJ+LFgDQIC1yYsOuH1jyWt4iBvpH6M2WZhWcLlLIiaeVLpUpnWG2xWLG2N1EisfHd4FbtK01HLlVyfeCXzIqeRX9rKl2ynua235UNfVLXV8q8d7+Dr7MUfx93YY1O6oLwZtVcjeY0F3JK8pF85q6LGEnLrC7kp6aoTFnSkZ9fiqJITHeSK1Wblm0MrCHUNZFJw31JWFxqi2YjkBBMUd40Si1WkrcOExunsl8ZXtNYgCMKgRX6HA9JpxLdzZVHVVktSdDAeWhXrUkt79BD5OHt1B58u/F18Ke/cSHdUqNEqXbq9k47Fy9EduUSG3NXAG98d5NUHpyOTHl3k+rn4dG/IH4u3owfV7bU4eIegLz6Et1yNXCrvsZpKjvEipdyX9JoqXvx4L0/dNh6p9PxdQM8Kn8SmIzv5IvMnJgQmIyCjoUVPXZOe+hY9jS0GmtqMNLcZadHZHVvbOszo9Gb0BjOySBc2tu/j128HsYku2FAm7cHa7MUtT25F46TAzUWJl5saf08ngnxciArU4uvh2H1TF0WRn7LX8GXmcsJdg7l3wi3dk5GTQabxoFoh5ce0z9jTUIBCpuCy2LlcGjOne3Vh7Zw1D8bWo8XQyvNbX0cQBP4y5a7uPruusR/Ir0ERmoe7szezw6f0e50NRTtQSOVMD5nQ7zEAVquNPVnVjI7xQiqVkFq+n1pdAw+NWnxSBSG/R2wmA4Ji4IDUZdnR0GI4RwJSNd6OHoOeZA0HpNNIV6qrsq2GCPcQZo0J5Jv1edQ2deDV6X7p6+zNvqpDWG3WbhHSABcfMmtysNlsSCQSAjV+3YrJxyKVSAlw8cWmspGzqY2ftxZxxYyjDbhBGj+2FO/uVfQQqPFjb8VBFH7TaD+0FWtbI35OXpS39GzSjQvwZ1/DHg4UVfD5mpx+u/vPZdo6TBRX2tW5HZvjKbCt4Na3PqClxLeXDJiDQoqrswMaRwdcnZUEejvjpJSjUsootxk4oNvMLVeE4q52Qy6TIJVKkAgCgmCvwO3SyitoKeCXSgszw8fhEhpAc5uRhhYDJVVtpB6q7g4EWmcHkqI8mZYcQIF5D99nrWJy0BjuGHv9KUkSFTWW8m3RRtKD3HFoOsJlsXO5JGpWDxV5gJoGe4WmxwDW4GD33Xpuy2s06Zt5Yvr9vWa3RRUt1AsFKCQtXJOwpN+Vj81mY3f5flL8E1ErBn7N9NxaWnUmpo6yT962FKfiqtSQ4nd+7meeCUSzAcmJAlKnwkVjq4Ew/7PfHFvcXEaQZvAq/cMB6TTi7ejRYz9o9pggvl6Xx4a9ZVwzNxoAf2dvrDYrtbqG7hmxv4svFpuFWl09Ps5eBGn8WVe4tTtAHUuwawD7KjMZHTuZr9blMjMlsLsBN8w1iDUFW6hsq+mhiRbuFsLGIztpcbcHTENFLuFuwaSW7+/xGl2utaNHy/l+Yz4T4n2JDOy/RPdsI4oiFXXtZBTUc7iogdySJmoajzYZq1Uy5DGuSD3LWRI5HW83NZ5aFe5aJW4uPUuLj6e0WcOBNZtx8+tgaujAN8UjB1ORVkn4w+xpvTbtzRYb5bVt5JU2kVnQwN6sGraW7EYRdohIx3juGnsjMunJNcqWNJfzdeYK0iozUMuUzGrUsXDsUvwS+i7ZP1TUgJNKjo97//sx7UYdz219jfLWav48+Y4+5YR+3VWE3L+QEE0gY/1H9XutI81ltBnbSRlEddyvO4vROjswOtYbk9XMweosZoVOOm3KG78HbCZDn+7Ax3LsCuls027SUd1e10sJZiCGA9JpRCaV4a52pbpzH8fH3ZGECA82pZWxdE4UgiB0b+5VtFZ3B6SuTfTy1qrOgOSHyWqmRlffK40T5hrE5iO7uHJuAPtfq+PrdbncfoX9hhndefPIrSvsEZDivOyWArliB5FyJYaSw8THjWLjkZ3kNRzp9qSJ9ghHJVPi6tuES7Yv7y0/xAt/nHxOyQaJokhuSRNb9peTeri6u8TVzUVJbIgb8yaEEOanIdjXGTcXJSty5Xx28EcWTPdDOwRl8gAXXxykCo40lzGNgfegcuoKCHML7rOCTC6TEOqnIdRPw0XjQ8irO8KTm1YhN/iQsceXx0t38bcbx3brCw6GRn0zX2YsZ2txKiq5kiUjFzI3IIW61+/EsZ/NbKPZyu5D1YyJ8+43Zdesb+G5ra9T0VrNgxNv69P6oqnVwOaiVCQhepYkLBzws5FbXwhAnGfUgL9PWU0badk1XDM3GplUQnZdIWarmQSf3uZ9FzKiyYCgHvgz3GXb0dI+uH3CM0lho73qsy/Nwv4YDkinGW8njx6FBTNGB/Dq1wfIL2smKsi1R0DqKq8O6DRFK2upIsU/sds8r6S5vFdA6vrjdkjqmTM2iNW7S7hyZiQeWhW+zt5olC4crs3rUXbs5+yNl6M76VWHiQ+KRX8kg6RZ1yGXyNhRurc7IMmlciYGpbCtJJVFs8bw0U+FZBTUkxg5uA3JM4nRbGVdagkrthVRWa9DIZOQFO3FVbOiSIz0wNfdsc+bY1cpcnVb3ZACkkQiwcvRvVf5/fGYLCYKmkpYEDXzhNc0WUy8ufdjtEoXXrz0QfbENPHm9wd55M3tvHzf1BNam9tsNn7N38RXh1ZgtVlZGDOby2MvwknhiM2gow4QbX2rVKxPLUGnN3PRuL5vDmUtlbyw9Q1aje38ZcqdJPr0na79Yk0OeBfh6+hDcj9NsF2UtlTi7OB0Qs2+7zbmo5BLuXhiKAAlndWNg1WQuFCwmY1ITpD6lMukyKQCeuPZd449UJWFXCIbkqvv8Hr4NOPp6N7dUwR2gVSpRGBnhn2/pqtooaLtaPGBWq7CXe1KWWchQ6CLL4IgUNrSu+w4RBuATCIjr76Iq2dFYRNFlm+1z0QFQSDeO4aMmuwe8jmCIDAuIMn+eHAc5sZK5O0tjAtIYmtxKh2mo30LC6NnYbFZaVBmoHFS8Mv2otP7Bg0RURTZsLeU255bx/9+zMTZUcF9S5L49Ol5PHbLOOZPCMHPw6nfmbrebJ8pnswejVLmgMk6cIl0Vl0BVpuVEV4DrwLArjhQ2VbDnWOvx0XpzOyxQTx681hKqtv4bkNv2Z9jqW6v44mN/+LjA98R5xnBK/Of4LrEK7oLFrrK2/t6H3R6M1+tzyMu1I0RYb2tQ3aX7ePR9S9htll4auaD/Qaj/LIm1mWnIVG1c8WIi064cq7T1Z+wuqq4qpVN6WVcPDGkO/Vcq2tAIZXjOoD314WIaDIgnCBlB6BykJ31gGSz2dhTvp8RXlFDEsIdDkinGS9HD5oNrd0KCU5qBfERHuw+dLRIwc/Zu1elXaCLb3eRgUKmwM/Ju88+GLlUTphrEHn1RXi5qZmU4Me6PaUYTPYPYLLvCFqN7RQ0FPc4b2rIOKw2K+lK+02kIz+NS6Jno7cYWJW/8ejYXHy4KGIaG4q2kzhKQlp2DW0dg+9bOZ3o9Gae/SCV/3y1Hy83Nf+4axIv3zuV2WODBtz/6UIURTYf2YmTwpGgfpo2B6LVpDuhh0taxUEUUvkJ01LFTeWsyF3PjNCJPeR6Rsd4M26ED+v2lPbbM7W7bB9/WfM85a1V3DPuZv465Y94H3ejFztL+IU+7Ek+/OUwre1G/nDZyJ4mmWYD7+z9nH/vfJdAjR8vzPlbv+kVo9nKK1/uR+lfjouDM5P6cRU+lmZ964BBRRRF3v0pEyeVnKtnH33/Wg1taBycz6lU8bmAbRBFDXBuBKQD1VnUdTSesPfseIYD0mnGs9MzqKHjqJrCmDhvKup0VHdWOfk6e1PVWfjQRYDGj4q2GmydKZdgrT8lTb318ABiPMMpbCrFZDExf0IIOr2Z3Zn2gJfkOxKpRMru8v09zgnWBhDlHsa6in1IPAPR5ewmzC2Isf6jWJ6zjvpj9PWuib8UX2cvsmzrsMraST3Uu5T8TNNhMPPImzvYl1PLbZeP5KW7pzAy3GPQ59tEG58e+J4D1VlcGTd/yH5DTfoWatrr+nTQ7cJoMbGjLI0Uv4R+farAPlt8J+1znBRqrk+8otfzsSFuNLYaet1EbKKNrzNX8O+d7xLg4sPLFz3GlJCxfbsRG+yipBJlz4KF7QcrWLO7hEXTI3oUqByszuJPa/7OhqIdXBozl6dnPNhvak0URf73QwblTTXYnGqZHT55UO9n+wCGkgCb0svIKKjn+vmxOB/j39NhMaD+nZnvnSqiKCKajINaIUkkdrfks4VNtPH94ZW4qbSMGaDopS+GA9Jpxr3zS32sgOqozj2YjAJ7Ks/byYM2Y3sP5e4AF1/MVnN3ui/ENZC6jkba+xBTjfWMxGKzkN9YzIgwdzw0SrYfPJoSTPSOZVdpei/V60tj5lCjqycrOAxDWTaW1nq7JIso8vaez7qPV8qV/HnKnUgkoIpLY2t2zml6dwbPf77aT0l1K4/dMo5Lp4T3cnMdiIKGYh5f/09+ydvAvIjpzD/GRXewrM7fDMC4fqwUADYUbbc3QUcObFHxS94GChqLuSnp6j4bSHUGMxIBFPKj1XYWq4XXd3/E91mrmBE6kadn/mlAgzNLu30CJHXUdj9WVNHCq1/tJzrYlWvn2Vdlte31/GvHOzy35TVkgpSnZj7AdYmLBgwwK3ccYd2eUkaMbUciCMwZoO/oWI7VYzye+mY97/x0iNgQNy4aH9LjOZPFhIP03DGYOyewmADxhHtIYO83G0yv2Zlie8le8huLWRp/6ZDV7YcD0mmmS9G7SX9UBy3Q2xknlZzcEvtNw7PzxnLshrl/pxpuRZs9lRfcWdhQ2kfaLsYjHEEQOFybZ7f4HunL/rw6TGa7JNDUkHE06Js4VJPb47wU/wTCXINYYajEJED7oW14OXlwY9JiMmqy+ebQL93H+jl78/j0+5DJIUe+gu3FveWKzhQ5xY3syqxi2UUxpMQOTsbIYDawtTiVJzf+i0fWv0htRyN3j7uJm5OvHnJj5ZGmMn7JXc/EoJR+Nd9aDW18f3gVI7yiiPHobcbYhb00+2dS/BP7THOJokhadg2Rga7dTc4Gi5EXt7/J9tK9LI2/lDvGXHfCFYml2b7ilmk6pacadDz93m6c1Ar+duMYDNYOPjnwPff/+jT7qw5x9ciF/HPeY8R6Rg543V2Zlbz7UyYpI9ypFrMZGzBqQLXuY3+v/gKS1Sby7y/2YbXauP+apF6TDZPVhPwkHHR/z3SnZAchJWW1ikjOUrqzur2O9/d9RaRbCFNDxg35/OGAdJrp8kVqMR4NSIIgEBGgpaiiGQBPtX1juf6YtN6xKg9Ad6qopI+A5KhQE6YN4lCNfeWSFO2FyWztDnhj/BNxVjiytmBrj/MkgoQbkxbTYGhhY3AQbQc3Ioois8ImMzN0Ij9k/cqqvKP7SSGugdwQeRs2vSP/TX2ff25/u5fG3plgZ2YVMqmEhVMGttSu1TWwvnAbL2x7k1uX/5nXUz+iUd/CdYlX8OrFTzE1ZNyQ9yFKmyt4fuvrODs4cXPSVX0eYxNtvLX3UzosBm5JXtLva3SY9byy8z0cFWpuT1nW53F7s2s4UtnKnHH2HjCdqYPnNv+XjJoc7hhzPVfEzR/U72CqK0OQOyDTeFDb1MFjb+/EZLby15uS2Fy+ibtXPs7KvA1MDhrDqxc/zeIRF5+w0GNfTi0vfZpOVJArCWN16Mx6LjlGz24gjFYToij2qcX3+epsMgvruX1RAn4evZUwjFYTiuEVUg9spk7TTsWJU3YWq62HgstvRYdZz793vIMEgfsm/uGkFDYGNQ1ZtGgRy5Yt45JLLkGlOvGS8UJGLVchFSS0HmOyBxDk68zqXSXYbGJ3rv7YfSZnhSOOclV3U62rUoOTwpHS49QUuoj3iWFFzjo6zHriQu0rrqziBuIj7DIds8InszxnLdXtdT0qnWI9I5kTPoX1hdsI1zfhUXoYVfBI/pCyjHZzBx/t/5YmfQvXxF+GRCJh2ohI3vlmAuGjG8moPsD9q55iQmAyF0VMI7pzpXa6aWjR46FVonI4+vG02KyUt1SR33CE7PoCcuoKuve9PB3dmR02mXEBo4jxjDipL4JNtLH5yC4+3P8tarmSx6bf2z25OBZRFPki4yfSKzO5KemqfhWurTYr/9n5nr06bvr9fV6rpd3IW99nEOjtxMyUIJoNrTy35TXKW6t4YMIfhmSfYawqQOEVQlVDB4+/vZN2g4F5lwi8lP6SvTnVP5GlIxd2txSciLTsGp7/aA9B3s48eEM8j216jnjvmD4bZfui1WBXndc49FSL2La/gm835HPR+GBmjw3q81y92dA9QRvGTvcK6QRFDVabSHuHaUh9bacDg8XIP7a+QVlLJX+ecidejr2rOQfDoALS448/ztdff82rr77K3Llzueaaa4iMHHipf6EiCAKOCjXtx9iSA/h7OmEyW2lqM+DqrEFA6KElJwgC3k6e3cKrgiAQpPHrs/QbYJRPHD9lr+FQTS5jA0bh7+lIfunR682PnMHK3A38mLWaO8de3+Pc60ddSXZdPl/YRHz2LicxeCQyiZQHJvyBD/Z9zfKcteQ1HOGusdfj7eTJ6Bhfsg858O+HL2N1wSbWF25nR2kaHmo3UvwTSPCOIco9rJdUzckgiiJqZyuN1gp+ydlIZVsVR5rLKG2uwNxp365RuhDrEcGlMXMY4RVFQGeZ/Mlgs9k4UH2Ybw+tpLCphJFe0fxx3I19pqVsoo3PD/7Iitz1zI2YyvzIvvembDYbb+z5hAPVWfxfyrXdjcnHYjRb+cfHe2lpN/LITZNpMjTy9y3/pVHfzF8m38Uo38HLNtlMeoyVhYixc3jy9a1YXEpwHlHMryWtxHvHsDT+UiLdQwd9va37y3nly30E+7rw9G0T+Pzw1+jM+iFZQHTthR6775V9pJFXvtpHbIgbty/qX72h1diOywVtxNcbm9mIACcUV23vMGET+U117FqN7by8/W3yGoq4f8Kt/Zo0DoZBBaTk5GSSk5NpbW1lxYoV3HnnnXh5eXH99dczf/78k37x3ytquYoOc09Pki4tu7omPe4aFS5K517OsD5OnhQ2HfVQCtL6s/nIrj4N+aI8wlHLVaRXZjI2YBRh/lpyS44WUriqNMwJn8KvBZtZEDWzx8xYKXPgr1P+yCOrnuG/xhIeL8skJDAeqUTKH0ZfQ5R7GB/s+5oHf7VbIExMTmRXZhXZ+R1cn3QlV41YwO7y/aSW72dj0Y7uAgB3lSsBGh+8HT1xU2vRODjjqFCjkCq6Nzdtog2T1YzBYkRn6qDN1E6zvpUGfTP1ugZqdQ0YrSakUfDJwVQcFWpCtYFcFDmdMNcgItyC8XbyPKWVmdVmpaiplL0VB9lRspe6jkY81G7cNfYGpoaM63OF1W7S8WbqJ6RVZnBRxDRuTr66zzFYrBZe3/MxO0vTuCb+sj6tKDoMZp7/aA9ZRxp46NrRSBxbeXTDm1hsFp6Yfv+gVyHd1yvcj2iz8O/cZszhuYiKdnycw3gg4dZB9Ud1IXb2tH2w4jBxoe48dss4dpTvZHPxLq6Imz9gxeHxFDeXA/Z2BoDS6lae/WA3nloVj948Frms783uDpOeDrMej0HsU11IiF0B6QQrpC4vpC5NuzNNZWs1/+j077pv/K1MCBx9Stcb9M5ha2sry5cv57vvvsPZ2Zn58+ezfPlyNm3axEsvvXRKg/i9oZIpMZh7akl1SXo0ttofd1W60HycAZyXkwe7y/d3C68Ga/wxWIzU6hp6NRjKJFKSfEeQVpmBzWYj1M+FbQcq0OnNOHZaR1w54mK2lKTywb6veWLG/T1utF5OHjw26Q6e2fwqT+38H/dPtc/KBUFgWuh44r1j+CLjJ37OWYdcuglNrD+fbTMyIf4KlHIl00MnMD10AiarmYKGYgoaiylpLqeitZqCxhJ0x60Q+0NAwNnBETeVFm8nT+K9Y/B28mT99kZKim389dZZRAf3X102EFablWZDK3W6Bqrb6yhvraKosZSCxmIMFiMSQUKCdwzXJi5irP+oPgsHRFEkrTKD99K/pNXQxs1JVzMvcnqfwajdqONfO9/hcG0e1yYs4rLYub2OqarX8fxHeyitaeP+pcnIPWp4cuPHaByceXLG/T0knwaDzSayeevPbPJzo05diI+jF9cnXUeKX8KQgrbFauPtHzJYs7uESQl+PLAsmW2lO/lg/9ck+8UP6HfUF5k1uXg7eaJVaaiq1/H4/3Yhk0p4+v8mDDh7L2u1p6jPZ0+uM4HY2eB9oqKGslr7VkGA55lfYe4sTeN/aZ8jl8h4csYDQ55I9cWgAtKf/vQntm7dyvTp03nqqadISkoC4JprrmHixKE1Pl0IOMgUGI/r8O/qQm/pdNrUKF16OZL6OHlhE23UdzTi7eTZ7c5Z3FTWZ8f7uIAkdpSmcag2lxBf+4yyuKq1uxvf2cGJ6xOv4O29n7EqbyOXRM/ucX6IfxwPu8TyVvNhnt/6GvMiprM04VLUchVuai13j7+Jy+MuYmXuRrbYUml2LubWH/cwPjiBkV7RRLmH4u3kSZxXZK+0lMliotXYjs7cgdFiwipaERAQBAG5RI5S7oCTXI2jQt2ten4s430MPPzaNp58Zxd/vXEMo6K8MFnNtBrbaDPqaDO202psp91k/3ebUUebyf7/FmMbLYZWWoxtPZpNZRIZQRo/poWMJ9YzgnjvGJwHSA0VNpbwRcZPZNbkEKjx4y+T7+xXzqagoZhXdr5Lk6GVu8fd1KvCyK44Uca7yzORSgQeu3UMucZd/LxzHdHuYTw0+fY+95kGorShhhdWvUe9tgWlzYGbR13F3MjJfb6fA9HcZuTFT/dyqLCBxTMjWTw7lI8PfMX6ou0k+Y7ggQl/GJLIaauhjYyabOZHTKemsYNH396B2WLjH3dNGlDYFSC/4QgwLBt0PDazESknLmoor2lDIoCf55kzNDRYjHy8/zs2FG0nyj2M+ybc0u10faoMKiBFRkby6KOP4ubWc6Yqk8n48ssvT8tAfk8opAr0lp4rJKfOxr/2jq6A5NzL86gr6FS11eHt5Emgxg+pIKGoqbTPDe5k35Go5Sq2FO9mWexSAAormnvIw8wInci+ykN8fvBHQrSBjPSO7nGNiMlLuet/97IxOoY1BVvYUZbGZTFzmR02GbVCRYCLL7ePuZbrE6/g8S9/oqQjn93CfjYf2QXYV4MBLj74Onvj6eiOm0qLRumMk8IRtVyFUqawBx1BigDYELHZbJhtFpoMLVS116I3G+kw69GZOtCZO7oDTOD4ZnIranhu1wZk+y1YMff7njvKVTg5OOGicMRD7Uq4axBalQY3lRYvR3e8nDzwdvQ44c3aarOyv+oQq/I2cag2FyeFIzclXcXciGl99lRYrBZ+zF7N91m/4qbS8szMPxHhHtLjmNLqVv73YyYZBfWMCHPnhstD+CL7M/IaipgbPpUbkxYPyZTPYDbw3u7lbC3fikRmY3qTnmuveg6N++Bl/rvIKWnkhY/30tZh5v5rEhHcKnlwzdM061u5LGYuS+MvHXKAW12wGavNyki3JP725nb0Bgt/v2Miwb4nDrgHqrLwd/bpbp8Yxs7Rsu+Bi8ryy5sJ8HbuNyV6quyrPMT76V9S39HE5bEXcfXIhUPuNRqIQQWktLQ07rjjjh6PXX311XzzzTeEhw9eOO9CQS6V0WrsefNUyCTIpAI6vf1xrVJDi8E+g+9KrXQJqVa11TDKNw6FVE6Q1p/CxuI+X0chUzApKIXNxbu5cdRiXJ0dyC9r7nGMIAjcNfYGHtvwT17a/haPTbu3x9Ja7uqDe8Is5h3cyOxlf+GbI9v57OAPfHd4JRODUpgclEKMZyRqhYqnrrqSP726ldYKI/dcF4ZZ0ciRpjLKW6s4XJdHY2nzSVmG937/5LgonHBxcCI6wJO6OiuV1WaUUjVjo4MYGxWEm9oFJwdHnBWOOCkch3zTPBaL1UJOfSF7Kw6ysyydFkMrrioN1yYsYk7ElB7mdMeSVZvHe+lfUd5axeTgsdyavKSHMkFVvY6v1+eyKa0MlVLO7YviUfpW8sLulxEEgfsm3MKkoDGDHqfVZmVj4S4+2f8jRrEDrc6d2xtyCR17+ZCDkSiK/LytiI9+OYyrG1w818Z3le/QUNhEhFsIf5r4fyeVgqnTNbAiZz0JnvG8+lE+ZovI3++YSHiA9oTnthraOFyb22slPwzYTPaU3UB7SFabSG5xI1OSBr/XN1ia9S18uP9bdpWlE+Diy9MzHyTGs//+u5NlwIB07733cuTIEcrKyli4cGH34xaLZdinZADkEnl3RVgXgiCgcpDT0SkPo1W6YLFZaDfputNGWqULarmqh+trpFso20r29OmNBHBRxDTWFW5jbeE24kI9OVTY0CPIAagVKh6bdi9Pbvo3z25+lXvG38zYYxQIXKdcRXvmZjT7NvPYogcpbCxhdf5mdpSmsbFoB2q5ihFeUcR6RnDj1T6893UJr31SyAPXjObW0ZO6r2OxWe2pMkMb7SYdBosRg8WI2WrGeoxqhEwiRS6RI5fKUMocUMmVqOUqHDtTeH3J8GQdaeCjX7LYsLqR9B21zJ+gZs5YLRrl0NoQRFGkQd9EaXMlR5pKya0vJLu+EKPFiFwiI8lvJNNCxpPkO7LfmV9FazVfZi5nT/kBPNVu/GXKXYzu9Pyx2UQyC+tZueMIuw9VIZdKWDglnGnjtXyV/T2ZaTmM8IrirrE3DDrNIYoi+6oO8WH699R21GBr1zBGOYcl7auQanzRTl48pPegpd3Iy99sI7P+MK6jmtBJa1lTIjLCK4o/pFxDsu/IkyoasdisvJ76MaIIWTu8kYrwjz9OIthncKnIjUd2YhVtTAkeO+TX/r1zdA+p/3Lu0upWdAYLsSEnt+faFzbRxsaiHXx+8EdMVjNLRi7kspi5Q5biGiwDXvXPf/4zFRUVPP744zz++OPdj0ul0uGy7wGQS2WYrb3TS04qOR16e0A6KjHU3B2QBEEgwMW3RyovxjOctYVbKW4u6zOvHqT1J9kvnpV5G7gs4jZ2ZFRSWtPW6ybgptby7KyHeGnbW7y843/MjZjKsoTLUctVyJzd0Iy/jObt32JImU94YCx/HHcjt45eSkZ1NvuqDnG4Jpe9FQftFwsHqVXFy7t34ZflybioULyd3bpTdY4KFT5OnihlDsilcuQSGVKJtNdNThRFRFHEIlqx2uz/6c162oztWGwWLDZr9/+lzlZuXOJNXqmCnZkVfJ26nW/2bCfQx4m4EFfCAjQ4OUqx2uxVfCarCb3ZQIdZT5tRR5OhhcaOpu4qvi4CXHyZFjKOBO9YErxjUA6waVzeWsVPWWvYVroHhVTBkpELuSR6NgqpnMLyZnZkVLJlXzm1TXqc1XIWz4xkznh/tlVu5amta5FJZPxh9FJmh08ZdK9UVm0enx9cTn5jEaJBjUPDGO6ZMhG/fW9hMenxuuaxE5q2gb1p8XBtHpty9pNeeQjRUYfCEVxdfLk48GKmBI/F5xQs1G2ijXfTviC7Lh9KRuEsOPPsHyfiN8jNdYPFyMrcDcR7xwy6V+pCQrQYEWQKhAEyAXuz7CoviZGD13wciPKWKt5J+5yc+kJGeEVxW8qyM15sMmBACggIICAggDVr1gwr7w4BB6kCYx8ByVEtp11vvxm6q+xFCI36JkJcjy6xg7T+7CpN617ljPSy7/lk1OT0u9G7dOSl/GXt81RJ9yERHNmyr7xP+3Gt0oWnZj7IlxnLWZW3kdSy/SyKm8essMloJy6iLWMT9avfxf/WfyJIpChlDowNGNW9mmrWt1DUVEpxczllLVUcLi+j2lDMz7m5MIiPhyAICJ0Hiognn95Tg0PnVlgNUNMImxr7PrQr/adROuPt7EWCTxy+zl4EuPgSog04obW2TbRxqCaXVfmb2FeZiUIqZ0HkTCZ4T6G8ysTb3x1mf14tDS0GJAKMivLi+vmxjIv3YW/lPp7Z/iIN+iYmBaVww6jFuKoGZ6mQU1fIt4d+IbM2B8xKTOVxzAqfxHVTHWlb+R8sumZ8lj6Gg3dIn+dbbVbyG4rJqMkiozqHgsZibKIN0SpBYfHiougZzI0dc0pB6NjXejf9SzYd2Ym1MgJvInn2ngm4awa/el2evZYWYxtLRi488cEXIKLJeMKm2D1Z1UQGaof0vveFyWrmx6zV/JSzBpVMyV1jb2BayPjfJAYMGJCuueYavvzyS5KTk3sMputmuW/fvjM+wPMRpcyhV9k3gIujorvKritdU3ucAVyYaxDrC7dR3V6Hr7MXWpWGMNcg9lYc5PLYi/p8vRDXAOZGTGVtwVaiR8xlXWopS+dE9xDr7EIhlXNj0mImB4/hkwPf89H+b/nu8CqmBo8leeIlqFd/RMuelWjHX9rrXK1KQ7IqnuRjLKmPVLbw7vIMMksq0Whg/Cg34iI0CFILRqsJk9XUudKx2m+Ix/j2SAQBiSBBKkiRSqTIuv+TIZPIkEokR/8tSJFKJJ3H2/8vdJ5f26gnt7iZ3JImCsta0RsAmwS1QkmAj5ZAb2f8XZzwclbjrlWidXLAxVGBSt7/x7+ypY5NhbvZXpZKg6EBB4maUEkK1IXw6wEj3+p3A/ZVb2KkJymx3qTEeqNxUrC/6hBPbPqEkuZywlyDuG/CLYPKt4uiyKHaXH7I+tWuU2h1wFwRTbA8njuujMarYitNXy1H6qjB97qnUfr37DFqNrSyv/IQ+6oOkVmTQ4dZb3cpdvTHoTmK5kpn5o4cxa2LE05oBjhYWg1t/Hf3h2TUZGOpDCNUksJTd0/ood59IkqbK/gpZw2Tg8acltLh3yM2i2nAptj6Zj15pU0su+jUXHYP1+bxTtrnVLXVMjV4HDeMuvK0NLwPlgE/la+++ioAv/zyy0CHDXMcaoUaY+eN+Nh9CFdnB0qq7KXeWqULSplDt3ZdFzGd7orZdfndRQ7jA5P5IuMnatrrevngdHFtwuUcrM6iXraDZmMKq3Ye4fJp/d8Ew92CeXrmg+TUFbAqfxNrC7exymbBOcKHiMPLGaUWiA5IIFDjN2AFWKifhufumExGQT3fb8xnzfo6NmwyMDHBl9ljIkiI9EB6hnW1wt1gQuevarXaOFLVSkFZM0UVLZRUt7Izo6pPTyeJAA4KGXKZxC7ZL2vH4liNzaUSwcku62RtdcVal4C+0QejQkGQj5xJie5EBGiJDnYlyMcFqURAFEUya3L4JvUX8hqK8Hb04L4JtzAhcPQJ03M20UZaRQbLs9eQ31iM1KbCVBaDxhjBH6d4EWvJpv3nj2k26HAaORX3OTcjVbsgiiIVbdXsLT9IWsVB8juLX9xUWsYHJjPCM4acTIFfNlfg5uzAk9ckkRx96iuiLtIqMng37QtaDO2YikaS4JbEIzeNRekw+GBnMBt4ddf73dWMw/SNzWwYcIW0fm8pogjTk0+uoEFn6uDTgz+wsWgH3o4ePDbt3h6+Xb8VA35yDhw4MODJ/v7Dud6+cO508WwztvdI0XhoVTS1GjBbbMhlEgJcfHtJA/m7+OCq1HCgOouZYfaCgcnBY/gyczkbi3ZyTcJlfb6mUq7koUm38/iGl9EmHOCLDTImxvvh5Tawr0yMZwQxnhHoTB2kV2ayr3QfGeUH2J+9CrJXIREkeDt54OvkhZejBx6ObriptLiqNGgcnHF2sFe5JUZ6khjpSUlVK6t3F7MpvZyt+yvQOjkwMcGXiQl+jAhzP+Oij1KphIgALRHHVXW1d5iobdLT0KKnuc1IW4eZxo4WaozlNFjKaRDLMdIMgLPgRrBqIrGakQTEeuOhVeGpVaF1duhzH2xfZSbfZ/1KfsMR3FWu3DZ6GTPCJp6wHNZkNbO1eDcrctdT1VaLzOqEvDyMOL2SOYFmfExrsOyooFWQ4Bg9Fu3EK1H4hFLUVEpqwUb2lB+gslMdPtwtmCUjFzLaL55gbQCHihp446sDVNTpmDM2iFsuHYmTauiuuX1R3VbLpwd/YG/FQZwl7nRkjmNSVAwPLhuNXDb4v6/NZuP11I8pb6vm0an3/KYz8fMN0WxEoup7r9BmE1mXWsKoSM8T9nn1xd6Kg7yX9iUtxjYujZnLVSMWDOjvdSYZMCB9+umn/T4nCAJz5/buRB8GtCp7QUFzZ/lwF77ujthEuzVAoLczoa6BbC/d20MaSBAEkv3i2VG6F5PVjEIqt2vG+SWwrnAbi2Iv6nfjPUjrz8OT7+CFrW9CxE6e/ULOv25f0Gfq7ngcFWqmhoxjasg4Wg9sIHfN27SkzKbBy4/y1iqq22rJrivo1V/VxbGVcioXJfGzHejogMZmMxsqD7K2RIJCqiDQU0u4rzuR/h64OTmilDngIHOwV9vJlJ0/K06pjPt4DBYjjaZ66sRaysUqSiwVFOlKutOlCqmcWM8IRvnMZrRf/KD2VSw2K7vL0lmes46S5nI81W7cNnoZ00PH91hRilYzNkMHVoMOm7EDm0FHS3s9G6sPsbG5kDbRjIdBYF6DhfEdJSiFIpCBUKdAHhSLJnku6piJHDE1s6ZsH6lp71PX0YhEkDDCK5L5kTMY45/YLdjb0m7kv18fYP3eUrzd1Dx7+wRGRZ2eVVFNex3Ls9ey6chOZFI5kbLxZOxyYe7YUO5anDgkDx5RFHl/31fsqTjATUlXnZXZ+PmEaDYh0Wj7fO5gfh21TXpuWjBiSNdsMbTywb5v2FWWTrA2gL9M6b/x+7fipAPSMP3joT7qdxTaqbYAdFe+lVS3EujtTLRHOOsKt1HaXNGtygAwITCZDUXbSavIYGKQXRtqUew89la8yC95G1g8YkG/rz3SO5onZtzH85vfpFq2loe/aOTFa65FqRj87Ng5cSaBBem479nIlJuexyHevtEsiiJ6s4FGfTPNhhZajG20GtppM+nQmTroMNt1yPRmA+0mHXoM2JwMODrYy79FREqB0lrYVDvwGORSOapjgpRS3hmspAoUUjlyqRyZRNodyLuq9UxWMwazAZ25g1ZjO82G1l4yRt6OHoS6BjE3YirRHuGEuQYNujG1w6xnY9FOVuVtpL6jEV+llpu9kkgRVYhZ+6nfswmrrgWrvg2bob27XBegXi5lm1ZFurMKi0QgWmdkTKMZb7MaR3dfPEZOROkZiIN3CHKvIIpaKllXmsauLS/T0NGETCIjwTuGxSMWMMY/sYfZn9VqY01qCZ+uykZvtHDljAiWzo0+5b0iURTJqS/g1/zNpJbvRypImR0+BUNZKKu3VXPJpFBuuzx+SAaKNpuN9/d9xbrCbVwWM5eLo2ae0hgvBESzsV/ZoLWpJTir5YyP79u7qy8OVB3mjdSP0Zn1LI2/lEtj5p7WBteTZcBP63PPPcejjz7aqym2i7fffvuMDOp856jiQs+7brCvMzKphNySJiYn+nerJhyozuoRkEZ6ReOhdmNd4dbugBThHsL4gGR+yl7DlOCx/e4lAUR5hPHvBY/x9Jq3qTKmctu3+dw+4SomhSYOqlJGEAQ8F9xJ+XsPUfPjvwm45SUkSkcEQUCtUNkVHDRD01wTRRGzzUKHyUBeeR0ZRdVkldRRXNOIFQsSmRUvdzleHg64aWU4O0uwCRYMZgMGixGj1UiHqYNGSxMmqxmzzYLFZum2ahYEAZkgRSGVo5QrcZSr8HfxYaRXNO5qVzwd3fBx8sLf2XvA0u7+qGyqYNXB5WytzcIgWgk1WLm4sY2Yjlok5NEmkSJzckXq5IrMxR2FTyhSlTMSpSNFNgPLGwrIMdYgiAKyBk/UjaH4xMQTOyesh7V4aXMF20v3smPfR9TpGpBKpIzyieOa+MsY7RffpyX4gbxa3lt+iJLqNhIiPLh9UTxBg+z96Y9mQyvbS/awqWgnZa1VOMpVLIyezcVRM1m1uYqftuWxcEoYt102tJ4lo8XEG6kfs7t8H5fFzGVZwuWnNM4LBZvF2GdTbEu7kd2Hqrh4Uuig1BksVgufZ/zEyrwNBGr8eHz6fedUmf2AAWnChAkAXHRR39Vdw/SNo0KNm0pLyXH7Q3KZlJgQVzLy7dL8biqtvYKu/ECPCjqJRML8yBl8evB78uqLuiuPbkxazMGaLF5P/ZgnZzww4IzGTaXlP5f9hXe3rGFd6Rr+u/d/fJnpxYLYaUwMSkF7At00qcoZ78sfoPLTx6ld8Treix9GOAmfoS4EQUAhlaNQyRkb6czYSPvvZDBZyC1uIrOwnszCeg7tbsZitTfR+rq7ER3iSlyQK5GhWkL9NINKP54urGYje/b9zNriXWSJHQhAQruJGTJXIr2jUYwMRu4RgNzVB6mTtkePSE2jjuUZqWwv20q7pAbRIkesi2CkJplZk6MYE+fdvXpp0rewvWQvW4p3U9pSgUSQEO8dw1WdK6G+ghBAYXkzn6zKZl9uLV5uav56wxgmJpy8FYfO1GFXQC9NI7MmB5toI9IthDvGXMfEoBSUMgdWbi/i6/V5zB0XPORgVK9r5F873qGoqZQbRl05rMgwBPor+96UXobFKjJ37IlTbS2GVv69812y6wqYFzGd6xIXoThLe0X9MWBAmjnTvpRetGgRTU1NHDhwAJlMRmJiIi4upzYD+70T7hZMQadQ5LGMjvHm45VZ1DZ14OWq7q6gq2qr7a6qA5gTPpmfc9by2cEfeHrmnxAEAXe1K/+XsoxXd33AR/u+4dbRSwe8IQiCwP9Nn8eM8jH8Y/mP1Kjy+Wj/t3y8/zsi3EOI944hxiOCcLegPkVGlYExuM++kYZ1H9K8/Xtcp5z+KiilQkZilCeJUfYVn8lsJb+smZziRnJKGjmYV8fmdLuVgVQiEOjtTJi/hlA/DSG+zgT5uODaR7HBqdDUVMnqnZ+xpbmQRpkEJ6vIfLUfc6Jm4BuRguS43iWj2UpReSv5pU1klzaQUXuIDk02EnUbWFWEMIGLR0xlbIw/aqU9NWi1WUmrOMj6oh3srzqEKIpEuoVwS/ISJgQmDyi0WlzVyldrc9mRUYmTSs6tl47g4omhJxWsW43tpFVkkFq+n4yabKw2K56O7lwaM4epweN6rIT35dTyzk+ZjBvhw11XDk1NfF/lId7Y8zEWm4WHJ99Oin/ikMd6IWMv++5Z1CCKImtTS4gOdj2hTmBpcwX/2PYGbcZ27h1/C5ODBy9Z9VsyqATz5s2b+ctf/kJkZCQ2m43S0lJeeeUVxow5N3+pc4FYzwj2VhykoaOph9nbpAQ/Pl6ZxZZ95Vw1K4ppIeP5OvNn1hRs6VH2qpQrWRJ/Ke+kfc7mI7uYEWZXVZ8UNIYjTWX8nLMOR4WapfGXnvDGEBngzv9uv4UfNxfw3c50TE6VVNhaKGhYg8ivwFEvIx8nL7ydPPBQ26vptHHjcajMp2nrVyg8A3GMGX8G3q2jKORSRoS5dwvEiqJIfbOBgvIm8suaKaxoYX9uLRvTyrrPcVTJCfB0wtfTET93R7zd1Xi6qvHQqHDTKHEYxI3aJtrIrDzM6vTvONBRg1UQCJepuDpsElOSLkMQZDS2Gsgu76C6oY6qeh3lte2UVLdSWa/DZrMhdavGIbAQ0bcdrdSNeeFXc1nCFOTHyKy0GtpYX7SdtQVbadQ3o1W6cFnMXKaHjMfPZeA9gLzSJr7dkMfuQ9WoHGQsmRPF5dMihlw9V9tez96Kg+ypOEhOfQGiKOKpdmN+5AwmBCYT4RbS6zNV16Tn5c/TCPJx4U/Xjh50Kb/RYuKLjJ/4NX8TQRp/Hpx027C1xMlg7r1CyiluoqymnXuuHjXgqXn1Rfxj6+s4yBx4ZuZDhLn17dR7LjCogPTqq6/y2WefdcsFHT58mMcff5wffvjhjA7ufKZLYSGzJofpoRO6H/f1cGREmDtrU0u4YkYkrioNE4NS2FC0gyvi5vdwypwZNpFtJXv4aP+3xHhGdK+gliVcjs6k58fs1bSZdNySvOSEG5JymYSrZ0dx0fhglm8tZNXOYjqMejz8jASF2VA6d9BibCCvIRV9H0296nBvHPd+gPuRDbhpvNEqXdCqNLgqNbirtbir3XBXu6IYgmr1YBAEAU9XFZ6uKibEH7ULb24zUlLdSml1G2W1bVTWtXO4qIEt+8o5XgBCrZShcXTASS3HUSVH5SBDqZCikEsxCW3UkE+N5RAdgh6V1Ua8XgXWcbSYAviuxMT7KzbQ1mHqcV2JAN7ujgR6OxEea6TIlkq9sRZ/F18Wj1jK+ICkHtqDNe11rMhZz6biXZitZhK8Y7kleQnJfvED/u0sVhu7D1Xx89YisosbcVTJWTInisumhg+6+VQURY40lZFWeZC95Qe7U8mBLr5cETufsQGjCNEG9DuxEUWR177Zj9li4283julhLT8QOXUFvLX3U6raapkXOZ3rEq847Z+PCwex1wpp3Z4SVA5Spozqfw8op66Q57a+hlbpwuPT7ztpa/HfikF9sgRB6KFdN2LEiNOi6vx7Jkjrj5tKy96Kgz0CEsDCyWG88MledmZUMmWUP4vi5rG9dC8/Zq3mxqSjQpkSQcI9427iL2uf5+Xtb/PMrIdwVKiRCBJuS7kGZwdHfspeQ1lLJfeMuwkvpxNrWGmcHLjh4jiunhXFjoxKNqaVcWBbPTbRGXdNMImRHkSFOOHpBTKlkRZjG036Fhrb6qjJ201rXSmF5g5azHbx1ONxU2nxcfLEz8WHABcfgjR+BGkDTrsltdbZAa2zvffpWMwWK3XNemobO6hvNtDUZqCpzUhLu5H2DjM6vZm61jY6HEoxOZVic6wHEcL1JuJaRIraJlAiC0XpIMNJJSHAy5mRYQ5onR1w1yjxdFXj7abGy1VNaWsZnxz4jj11Bfg4eXJv0i1MDBzdIxDV6Rr49vBKthTvRipImRoyjkuiZp2wKKSmsYN1e0pYl1pKY6sBbzc1t102ktljg7rTfgNhsVrIqssnrTKje6UuCALR7mHcMOpKUvwT+/TY6ovdh6rYn1fH/10ePyhtug6zni8yfmJdwTY8HN14fPp9xHufmoLAMD3N+QxGC9sPVjA50b/fCUJ5SxUvbn8TN5WGp2Y8OGjZqrPJgAGpubkZgJEjR/L++++zdOlSJBIJP/zwA+PHn9nUzfmORJAwPiCJtYXbaDO299ijGR/vS6C3E5+vzmFCvC8BLr7MCJ3I6vxNzAid0KPqxcPRjQcm/oHntr7Oi9ve5JGpd6OUK5EIEpYlXE6Qxp9307/gT2v+zlUjLubiyJmDUuJVOsiYNSaIWWOCaG4zsjermvScWtKyatmUZt+zcVTJCffXEOoXRKjvCKaOGoNi3UtI2xrxu/7vWNRONOlbaOhooqGjibqORmra66hqq2VXWXqPcmtPtRsR7qFEuYcS7RFOiGvgGSkzlcuk+Hk44efR88ZpsBg5UHWYHaWZ7KvMxGyz4OPkSYrBkxEF2QREjMNz2V1IHAZuJAb75vB7+z5n05GdaByc+cPoa5gZNqnH76M3G/gxezW/5G5AAOZHzuDSmDkD+vy0683szKhkc3o5mYX1CAIkR3vxx8WJjI71PmGfT4dZz8HqLPZWZLCvMpMOsx65VE6idyxLRi4k2XfkkJtPRVHkq3V5+Hs6cfHEkBMeu7t8Hx/t+5ZmQyvzIqdzTfylJ1XVOExvjlX63plZhd5oZdaYvtNv7UYd/9j6OnKJjEen3nNeBCMAQRxgqRMTE4MgCH2uhgRBIDs7+4wOrj/Ky8uZNWsWGzZsICDg9Ht/nC5Kmyt4aM3fuS7xCi6NmdPjuT2Hq3n2g1RuWTiCRdMjaDW288CvT+OhduW5WX/uFVR2laXz6q4PCHcN4i9T/9hjxVGna+D9fV+zrzITT0d3roybz5TgsUMyfevCZhMpq20jp7iJgvJmCsqbKa1uw2S2AhAkredul3XopM6kBt6Am5cXvu5qvN3sezddBQaiKNJiaKW0pZLi5nIKGospaCimvsOuguogcyDWI5wRXtGM8Ioi1DXwtDbDgn2/5kB1FnsrDrK/6hAmqxmN0oUJgclMDkjGecsP6PP24Dp1CdrJV51wL04URTYf2cUnB77DYDGyIHoWV8TN7+WXtK/yEO+mfUGDvompweNYmnBpd2/a8TS3GdmTVc2uzCoO5NVisYr4eTgyMyWQGSmBeLkOHCCb9C2kV2ayt+IgmTU5WGwWnBWOjPZLYExAIgnesafUdV9S1crdL2/ijkXxLJjcv85cTXsd76d/xYHqLEK1gdyWsqyXUeEwQ6frXvfRFVHEX/dnnEZMAeCxt3dQ09jBO3+b3ad6yD+3v83+6sM8O/Oh8+rvMOBUOicn55QuvmLFCt566y3MZjM33XQT1157bY/ni4qKePLJJ2lpacHT05N///vfaDTnRyQfDEFaf2I8wllbsIUFUTN73HDHxHkzJs6bz1bnMHaED/6eTtyeci0v7/gfnx38gZuSr+5xrQmBo5EKUl7d/QGPrHuBhybd3t275Onozl+n3MWBqiy+ylzO23s/48uM5UwPncC0kPFD6hmSSASCfVwI9nHhIuylpFabSE2DjtKaNipq29lX6sGYis9JLv6EVw/MRicenQErZBI8XdX4ejji46bG290RH/eRJISOw2e0mg5bOzl1hWTV5XG4No/PM34E7M6zMZ4RxHpGEOkeSphrEKohzqxbDW0UNJaQU19AZnUORU2liIi4KjVMD53A+IBk4jwjEQSoXf4qurw9uM+9Bc2Y/huNu2jsaOatvZ9ysDqLGI9w/m/MtQS49HxfzVYznxz4njUFWwhw8eXvEx/uJRZqtdrIL29mf04t6Tm15JU1IYrg5aZm4ZRwJif6ERmoHTA41ukaSC0/QGr5fvLqixAR8XJ0Z17ENMYEJBLlHnbagvuhIruaxZi4vgsuLFYLv+Rt4NvDK5EKEm5KuoqLIqad9snFMCDI7HtITW0GMgrqWTonus/PyeYju0irzODGUYvPq2AEg9xDMplMbNmyBZ1OB4DVaqW0tJQHHnig33Nqamp45ZVX+OGHH1AoFCxdupRx48YREWFXwRRFkTvvvJNHH32UqVOn8vLLL/POO+/w8MMPn4Zf69xhYcwc/rn9bbaV7OmxlyQIAn9cnMjd/9zEy5+l8eLdUxgbMIr5kTNYlb+JQI0fs8In97jW2IBRPDXjAf614x0eXf8S1yRcxsVRM7vVCkb5xpHoE0tmTQ6r8zezInc9y3PWEujiy2j/BEb5xBHlHjZkcy2pRMDP0+mY/YNIOo6EIP/mBV6K3AVzH6LWIKemQUd1Ywc1jR3UNHSQfaQBnaGnUaGrswO+Ho74ekQzwWM02gjokFVTZSglr6GQ/VWH7O8PAl5OHvi7+OCldkercsFJoUYukSMCJqsJnamDJn0LNbp6yluqaNDbBVGlgoQItxCuGrmAJN+RhLoG9hA4bdz0GbrD23Gbce2ggtH+qkO8vvsjTFYztyQvYW7E1F6CqW3Gdv65/W1y6gtZEDWLZQmXIZfKMVusFFa0kFXUSGZhPVlHGugwWBAEiAzUsuyiGMbG+RDq5zJgEDJYjOwqTWdL8W6y6vIBCNL4c9XISxjrn0igxu+M2AM0tRoQBPB07W1pUNRYwlt7PqWkpYKxAaO4JWlJt4TRMKcfobOoIS2rBlGECfG9J5rtJh2fZfxItEf4eamAMag70wMPPEBZWRl1dXXExcVx8OBBxo4d2NVx586djB8/Hq1WC9iba1evXs3dd98N2Cv11Go1U6dOBeCOO+6gtbW113VaW1t7PV5dXd3ruHOV0X7xhLsG882hX5gYlNKjyshdo+L+pUn8/cM9vPV9BvcuGcX1o66ksq2Gd9O/xMnBkXEBST2uF+keyotz/8b/9n7OJwe+Z0dpGrcmL+2eCQmCQIJPLAk+sTTrW9hVto89FQf4OWcdP2WvQS6VE+kWQpRHGGGuQYS5BuHp6D7km5k6NBGfq/9G9bcvIFv9IqOWPYEstndKp73DRFWDjur6DqobdVTV66is17E/t5YNe8uOOdIZd814wrxkOLrrENStGKVNVLXUkV2b36+GnqNCjbejB7GeEYS4BhDhFkK4W0i/aar2nF007/wR56Q5aCYsGvB3FEWRH7NX81XmzwRr/Hmgn5LldpOOZza/SkVrNctiluFiDubDFTnklTZRWN7S3ejr7+nIlFH+jIryJCHCExfHE6fSDGYDq/I3sTJ3A20mHb5OXiyNv5SJgaNPi5fRiVArZYiifX+rq6rParPyU/Yavj28Eo2DMw9PvoMxw31Fp8yJ7nVdVXaph6vxdFUR0kfv0c8562g36rh12pLz0sNuUAEpOzubtWvX8tRTT3HzzTcjiiJPP/30gOfU1tbi6Xm0isfLy4uMjIzun0tLS/Hw8OAvf/kLWVlZREVF9XCl7eLjjz/m9ddfH+zvc84hESRcm3g5z2x+lRU567hyxMU9nh830pelc6L5al0uvh6OXD07ij9NvI2/b3mN/+x8j/sm3Mr4wOQe52iULjw8+Q52lO7l4wPf88j6F5kYOJrFIxf0SCNpVRrmR81gftQMdKYOsuryOVybR05dASty1nXbijvKVQRpA+wVcRp/grR+BGsDUMoGdiJVhSbge83jVH/9PBUfP4rvNY+h8Oy5yeqkVhCpVvSQx+lCb7RQWddOZb2Oyrp2Kjr/O3xAis7gDDgDQUgkAl5uDnh6yvB0dcDLVY2PqzMB7q74urvgrJYP6stnbq6l7pc3cfCLxGPurQOeY7PZeCf9CzYW7WBy0BjuGHMdCpkCURRp6zBT0xlcy2vb2Nj4Ha1CNZb8ZN7f3Qg04qCQEhGg5ZLJocSEuBEX4oary9BSkEWNJbyy631q2utI8h3J5bFzifGI+E1vNNHB9r2vtOwaZowOpNXQxqu73yezJpeJQSn8YfRSnBRDV5gepjcnutcJcgVGs5X9eXXMGRvU63OgM3WwpmAL4wOTe0iRnU8MKiB5eXkhk8kICQkhLy+P+fPno9frBzynv0KILiwWC3v27OGzzz4jPj6e//znP7zwwgu88MILPc658cYbWbSo50y2urq6137UucxI7xjGBybzQ9avTAhM7tUAec3caKobdXz6azZOajkXTwzlkal3849tb/DKzve4Kekq5kfN6HGOIAhMDh5Lsl88P+esZWXuRnaV7SPFP4EFUTOJ9Yzs8X47KtSM8U/snsmarGZKmysobi6jqKmM0uYKthandq9EBAT8XLwJdw0mwj2EGI9wgrT+vVJVysBYfK9/luovn6Xyk8fwXvxnVMEjB/W+qBxkhAdoCT/OKkIURVp1JirrdFTUtVPVoOsOXEVHWtAZepoaKuRS3DVK3DVKXJ2VaJwUuDg64NLZd6RWyVHJJKi2/BuJzYZl8v9R0WhAEIzYbCI2m4jZasNktmIwWekwmFlV9iMFusOEy1KwFCfybEYaDS0G6ps70But3a8t8ypFHlKJn2ECo5JGE+LrQpi/Bn8v5yGpXx9PZVsNT2/+D2q5iqdmPECcV9SJTzoDxIS4EeDlxLcb8ggPk/LPHW/RaGjhjjHXM7OzWXuY08OJ7nWC3IG80iZMZmufvlbbS/aiNxu47LgCqvOJQQUktVrNihUriImJ4ZtvviEsLKy7JLw/vL29SUtL6/65trYWL6+jb6KnpyfBwcHEx9vdRy+55BLuvffeXtdxcXH5XcgU3ZJ0NZnV2byR+jHPzHqox6avRCJw35IkOvQW3vo+A0EQmD8hhMem3curu97nw/3fUNZSyc3JV/eqnFPLVSyNv4yLo2axKm8Dawu2sbfiYHcp+ZTgMWj7KPlUSOVEuIf02PQURZH6jkZKmsspairjSFMpGTXZbC1JBcDZwYkE7xhG+9ldY7uqyxy8Q/C7+R9Uf/UcVV88i+fFt+OcePL5a0EQ0Dg5oHFyIDa0Z3WaKIq0683UNHRQ29RBXbOe+mY9DS0GGlsNFJY309Ju7LV3Nc0hmysc8/msfRJ7384c8PVlgbnIfY9gLo8kt9aLGucGXJ0dCPByYlSUJ16uqs6qQiUv7H0BP+dInpxx/WlduXxy4HukgpRnZv6p2134bCCVCNx66Uie+WwDj6xdidJBytMzHjzvNsvPB050r5PIHcgpse+TRgf3zjhsK9lDoMbvrFtInAqDCkhPPPEE33zzDQ8//DDfffcd1113HQ8++OCA50ycOJHXXnuNxsZGVCoVa9eu5dlnn+1+PikpicbGRnJycoiJiWHjxo2MGDE0P4/zCa1Kw20py/jPrvf55tAvvYz2ZFIJf70xhec/2sub3x1Eb7BwxYwIHpp0O18d+pmfstdQ1FTK/RNu7XPvwMXBiaXxl7Eodj47S9NYX7iNTw9+z2cZP5DgHcP4gGTGBozqU7OuC0EQ8HR0x9PRvVtrrCtIZdXmk1mTw8HqLHaUpiGXyhnjl8CMsInEe8cg13jhd+Pz1P7wMnW/vIGptgS3WTf0EBw9HQiCgLNagbNaQUSgtt/jLFYbbR0mOgwWdLWVSFd8hclzJLNTljDDBlZRBFG0q4RLJUilAgq5lIK2LL4rPMKUwInccukS1Mr+04E5dYU0G1q5Ofnq0xqMrDYrB6oOc3HkjLMajLqICXfCNeEgHWYr872Hy7nPFoLMgZziRnw9HNE49Uyn17TXkddQdN6rpw8qIIWEhPDnP/+Z1tZW/vOf/wzqwt7e3jzwwAPccMMNmM1mFi9eTEJCArfddhv33nsv8fHxvPHGGzz22GPo9Xp8fHx46aWXTuV3OeeZGJRCRnU2P2avJtI9lBT/hB7Py2VSHrlpLK98uY8PfzlMc7uRmxbEsSzhciLdQ3kz9WMeXvs8N41azMywSX3eBB1kCmaETWRG2EQqWqvZWpzKztI0/pf2Oe+mf8kIryjG+CcyNmDUgE2aXXQFqWmh7kwLHY9NtJHfcITtJXvZUZrGzrJ0/Jy9uThqJtNDJ+Cz9DEa1n1Ey55fMNYcwevyB5E5nfh1TjcyqQRXZyVaJ5Hq9V9jkEqIuOoeZC79q1k0G1p57dcVRLqHcuf4ZSds3O1yaw1zPb3aYHqzAZto66GBeDb5eP93mIR2ws3z+PqXCnydvJiZcu7qof1eEeQK8suaeqmTAByszgLoVQR1vjGogFRUVMQ999xDa2sr3333HTfddBOvv/464eHhA563cOFCFi5c2OOxd999t/vfiYmJfPfddycx7POXW5KXUNxczmu7P+S5OX/u1csil0n407WjcXFU8OPmAuqb9dy/NIkx/on8c95jvJH6Mf9L+5w9FQe4bfQyPBz7brgEux36NQmXsTT+Uo40lbG7fB+p5fv5YN/XfLjvGyLdQxkXkMSEoOR+GzePRyJIiPYIJ9ojnBtGXUlq+X5W5m7kvfQv+f7wKi6Lncvs2Tfg4BtO/a//o+L9h/C6/P5B7yudbnTZO9EXHcB97i0DBiOAbzJXYLAYuWvsDYNSkZB27qdZbdYTHDk0lHIlAgI688D7tL8F5S1VbCnezWUxc1kcdzHPvr+b/3y1H4lEwvTkc7cp/feIzizQ2GrsNvo8lqza/G7ZrvOZQUn2/v3vf+eRRx7B3d0db29vrrvuOp544okzPbbfJQqZgocm345CpuCFrW/QYuhd6i6VCNy+KJ6bFsSx7UAFj729k5Z2Ix5quy7YLclLyKrN50+rn2VN/hZsndVy/SEIAmFuQSxLuJxXL36af89/gqtGXoLJauLTg9/zxxWP8dTGf7OxaEef+nT9IZfKmRw8lufn/IUnpt+Pn4s3H+3/lvtWPkmqowzvG55DolBR9dlTNG7+AtFqOfFFTyNWfRsNa9/HwTccl9HzBjy2Sd/CpiM7mRU2Cf8TqG53Edwp8ZTXh83IqSCTSHFVaajTNZz44DPM9tI9SAQJC6Nn4yCX8tgt4xgZ5sErX6SzM6PybA/vwkGmoKre3gfal55gdl1BZ9P3+VfqfSyDCkjNzc1MmjSp++drr72W9vb2Mzao3zseajf+MvlOmg2tvLjtLYwWU69jBEHgypmR/PWGMRSWN/Pwf7dRUdeORJAwL3I6/5r3OBHuIby/7yue3vQKla2D780KcPFl8YiLeemiR/nvgme4auQlNBtaeXvvZ9z+81/5YN/X1LbXD/p6giAw0juaJ2c8wBPT78NNreWdtM/5276PKbnoGtTx02ne8T0VH/0NU23poK97qjSs+whrRxseC+464V7WluLdWEUbl0TNGvT1g7UBeDt6sK5w22kXG/ZUu3XLLJ1NipsrCHDx7dbAUypkPH7rOCKDXPnnZ+lkHTn7QfNCQJApqOwMSP6ePcvsWwytNBlaCD+Pixm6GLQFqNFo7I6+dXV12GwDz8qHGZgI9xDuHX8LhY0lvLrr/X7TPpMS/XjurknoDGYe/u9Wso/Yb1JeTh48Nu1e7hxzPaUtlTy89nlW5Kw/4WrpeHycPFk84mJemf8kz8x8iNF+Cawr3Ma9q57kjdSPhxSYwF7i/vdZD/PnyXcgl8r5795PeVnRTNmsqzC11lP+wcM0bf8O0Woe0nWHii5nN+2Zm9FOvAIH75ATHp9emUm4a/CQmk0FQeDSmLnkNxwhtXz/yQ+2D1yUzrQZdaf1mieDVJBgsfVc2aocZDxx63i8XFU8/9EeGlrOfmrx944gtSuhAPi49wxIpS32lWqgxq/XeecbgwpIy5Yt49Zbb6WhoYF//etfLFmyhGuuueZMj+13z9iAUdycfDVplRl8uO+bfmfZMcFuvHzvVJzUCh57ewd7s+yrIUEQmBE2kX/Pe4JEnzg+Pfg9z25+lSZ9y5DHIggCMZ7h3Dv+Zt5Y8HfmR85gZ1k69//6NJ8d/AFDHx5JA10rxT+Rl+Y+wr3jb8FsM/NGyRbeiA4mKyKW+i1fUv7un9AXD1x+fbKYm2uoW/UWCp/wQbnc2mw2ihpLiPWMGPJrzQybSLA2gA/3fUO76fQFEJlE1isQnA1iPSOobKshr76ox+Mujgoeu2UcBpOV1789OGxHc4YRZDKa242olbJezsAVndmRoWhWnqsMKiAtXryY++67j4ULF2KxWHj22WdZtmzZmR7bBcG8yOlcGjOXtYVb+TV/U7/H+Xo48s97phDk48xzH+5hx8Gj+XtXlYaHJ93OHWOuo6ChmL+u/QcFDcUnPSY3tZYbkxbz2sXPMDloDD/nrOOBX58hrSLjxCcfg0QiYXLwGF6Z9yT3jLsZBAmfWGt4OTaE9Qoz+V8+Tc33/8TcePr2ImxGPTXfvgiiiPeiBxAGodvXZGjBbLPgexJOplKJlDvHXE+rsY330r86mSH3icFiOCWV7tPFrLDJuKm0/HPH/yhqLOnxXKC3M9fPjyUtu4a07JqzNMILA0EipbXdhMaxt3pKi6ENAQGtw/nfrzmogNTe3s6+fft4+OGHue6669i8eTMdHR0nPnGYQbEs4TLG+CfyyYHvOVST2+9xGicHnrtzElFBrrz0WRq7D1V1PycIAjPDJvHc7D8jl8p4evN/yKw5NbV2N7WWu8bdwLOzHkKtUPHS9rd4ffdHQ14JSCQSpoSM5Z/zHuOvU+4iwC2QXx3hH2FevNuSy/pPHqZm5dtYWupOabw2k57qr5/DVFeG1+UPIHcb3IyxyyHXUdFbQHQwhLkFsXjEAnaWprGzNP2krnE89bpG3FVnv+xbJVfy+PT7kAlSHln/Eu+lf9kjjbtgUihebmp+2FxwFkf5+0eQymnRGXFx6j1JaTG04uzg2MMY8nxlUL/B3/72t25lBhcXuypxX7pzw5wcEkHC3eNuwsfJk9d2f0ibsf+CEbVSzlO3jSciQMNLn6Z17yl1EaT15++zHsbL0Z2Xtr9NcVP5KY8v2iOcF+f8jSvjLmZ76V4eXv1cd9/DUJAIEpL94nl8+v38e94TXBQ5nSKtCx/6uvBI837e+Pphdv/4AvqK/CFf29xUTeXHj2Eoz8Xr8vtRhw++H6Pri2w5hfLty2MvItw1mA/3fX3KqTuDxUhFWw1B2nNjT8DfxYd/znuU2WGT2VC4nXtWPcFL294irSIDQRCZPSaIQ4UNtLQPvkJzmKEhSGW09LdCMrahcRia8eK5yqD6kIqLi3nttdcAcHZ25pFHHuHSSy89owO70FDJldw/4Vb+tu4FPj3wA3eNu6HfY9VKOU/cOp6HX9vG8x/t4ZUHpuGhPTq716o0PDrtHv627gX+s+s9Xrro0R4q4yeDTCpjSfxCUvwTeD31I57b8hpzwqdwXeIVQ/YtAnu++6bkq7k2cRHplZlsK9xOak0OO0wluGz+JyNtDozxTyRx5FwcPQP7LWe16lpoSVtFy+6fEWQKfJY8MqRgBODcKQ460ERgIAxGC01tRub4XcLbh9/glQ3fEOcwGZ3BjN5gwWCyYrJYsVhtiCIIgr1xV6mQ4aSSo3FywNNVRaC3M/6eTuTUFWATbcR4RJ7UeM4ETgpH/pByDVfEzWdNwRY2HtlJWmUGrkoNI7SjQC5wpLKFUVFnXoH8QkSQymltMRLZhzpJq6ENjfL8T9fBIAOSxWKhvb0dJyd7/btOpxvexDwDhLgGsiB6Fity1nNJ9KweVubHo3Fy4PFbxvGnV7fw8ufpPHfnpB5inm4qLXeOuYHnt77GuoKtLIgefDnzQIS7BfPinL/x1aEVrMzdwP6qw9w6eimj/eJP6npyqZzxgcmMD0ymw6xnb/FeduVuJq29ip116cg3pBFphpFKDxJcg/Fy8gRRxKprxlh9BEN5DtisOMZOwH32zchchi6146RwxEHmQO1xfT8ms5XGVoNdJ6/FQEPrUc28xlYDTa0GGluN6I1Hiw/kYX5kWNPZc8AZiahA7SBDqZAil0uRSSVIBLCJdmkjg9FCu96M2XK0MlIuk6CNzUWqkqM0eSJ2yhudK7iptVyTcBlXjbyE/VWH2FC4nR1VW1Emwk9FzQQGXH3OKEz8rpBIadWZ+rQsaTG2ndf6dccyqIB0+eWXc9VVVzFv3jwEQWDdunVcccUVZ3psFySXx1zEmvwtrMrbyB1jrx/w2EBvZ25flMB/vtrPyu1FXDq1p3LGKN84oj3CWV+4/bQFJLA3994w6krGBYzinb2f8+K2N0nxS+CGUVeekkePWq5iWuRUpkVOxWQxcfBIKnsLdpLRWk6W2MA3jQ14VFuI7DARZRKJVnvjOm4hzgkzUHgMXjXAbLHS2GqkscVAY5s92ChsTuzOK6A4bVd3EGrr6N0fppBLcXNxwM1FSaifhtExSrTO9p+1zg60ieG8mfEGd93qybyoqYOyRe8wWKht6qC0uo2csjo2dqzDUu/Jw//dSYivC/MmhDBrTCBKxdCMFc8kMom0Wz1+Y0YOr2/+kVxpJvetOszS+Et7GEcOc+oYkWOxir007MBe1KC9kFJ2t99+OxEREezatQuZTMZDDz3EtGnTzvTYLkicHBwZF5hEavl+bktZdkIr6JkpgWw7UMFnq7OZPMoft+M8dyYEJvPR/m9p6Gg67TPXaI9wXpz7CCvzNvJ91ioe+PVpZodPYVHcvEHp5A2EQqZgTOQUxkROQRRFqtpq2F91mIyqLPbVF7DLakIqdBBFLaNqD5EkFQnWBmA0Walt6qC2SU9dpxp4V4Bp6lzZtHX07oFSREmRKVtQd5jwdlMTG+qGm4sSdxcl7hqV3d5Cq8JRKRswyIiiF1/nu5LTkM984cTfEUEQcFTJCVVpCPXTYHQpREw388ilV1Fb5sDaPaW8/UMGX63N5erZUcybEIJcdm7d6EtLrVjLRvD8spv5NvtHPjnwPVl1Bdw/4dZTThUPY0cn2gOR5riiBpPFhN5i6G5cPt8Z9JRrypQppKSkdKfqmpubu91ghzm9JHjHsrU4laq22hP2FgiCwP8tiuePL23k89U53HP1qB7PdzXLVbfXnZFUikwq47LYuUwLGce3h1eyvnAbG4t2MCtsMpfGzBlQa2+wCIKAn4sPfi4+LIiehdlqZl9ZLjuLD5LdkEt23XK+zFwOZgcsTZ5Ym7yxtbqBKEUiEXB1dsBdo8TXw5G4MHfcXZS4uijtAafTQ+nDzDqKm8t45cZTm2gJgkCoWxDlLUMvZbfarKzI3UC4WzDJAdEIgQLzJ4ZyuKiBz1fn8M5PmazccYT/WxTfpx/O2aCtw8Sa3SWMifUm1MOHhyffwaq8jXx84Dv+s+t9Hpr0f8MrpdNAh80eiFyOK2po7dz3vKCKGj7++GP+9a9/YTbbZ5Zdee3s7OwzOrgLlS6BxLqOhkE1u/l5ODF/YigrtxexaHo4AV5HP5xyiX2Gaj7DOnJd9hqXxszhh6zVrCvcytrCrUwMHM2C6FmnJGsiiiJV9ToO5NdxuKiB3JImaho7ACdgNBqtiMa3BZtzDS1e5Vi8ylFIFIz0imNKSAqj/UagHKDwQhRFKttqTnlV14WLgxMFJ6Fvt61kDzXtdVw/6fYeq7ARYe48d+dE0rJreHf5IZ58ZxeTE/34w2UjcdecXKn66UAURV7/9gB6o4Vr58UA9oDclR7++MB3bCrayazwyWdtjL8X2q327/HxK6QWY5v98QupqOHTTz/lyy+//F37FZ1LdKU5hhJErp4VxbrUEr5ck8vD16d0P95uss+gnBTq0zvIfvB28uTOsddz1YgFrMzbyMaiHWwv3Uu0RzjzI2cwNmDUoJS0bTaRnJJGdmRUsudwNdUN9r43NxclsSFuXDwxhHB/LSF+Lj3y6marmUO1ueytyGBP+X72VR9ALpWT6BNHil88CT6xPZTNbaKNX/M2UdJczi3JS07Le2Cz2U6Yaj0ek9XMN4d+Idw1uNvV91gEQWBMnA+jojz5YVMBX6/PIz2nhmvmxnDJ5LDfPI1ns4m8+1MmOzOquPmSOEL9eppAXhw1kx2laazIXT8ckE4DXQFJ69RzYtUlzqy5kFJ2np6ew8HoN6Sj03ZgKOXUWmcHFk4J47uN+SyeFdl9gyjvlBX5rWXpPRzduDFpMVeNXMCmop2szt/Mf3a9h6tKw9zwqcwOn9znrK6uSc/a1BI2ppVS26RHLpOQGOnJ5dMiSIryxNfDccA9HLlUTpLvSJJ8R/KH5KVk1xeQWr6fvRUHSas4CICrUoOPsycyiZTKtloaOppI9IllVtikfq87FOo7GnFT9nbpHYhf8zZR39HInWMHdp6Vy6QsmRPN1KQA3vkpkw9WHGb1rmJuWBDHhJG+SE7BNn2wtLQb+e/XB9iTVc3l08JZNL235JIgCEwOHsNH+7+lSd+Cax+uxcMMHp3FfqvWOh+3QjJ0rpAupJTdpEmT+OKLL5g1axYODkdno8N7SGeGms5O+MF6FHVxxfQIft1ZzAc/H+aZ2ycgCAL5DUfwdvTAycHxxBc4A6jlKhZEz2J+5Az2Vx9mdf4mvj60gu+zfmVSUAoXR80k1DWQrCMN/LSlkNRDVYhAYqQn186LZfxIH9TKk9sYl0gkjPCKYoRXFDcnXU1ZSyWHanM50lRGna4Bg8VEtHsYKQkJTAoac1rKq202G0eayxgfkDzoc5r1LfyQ9SvJfvHEe8cM6hxfD0eeuHUc6Tm1fLDiEC98vJcwPw1XzIhgUqIfMunpXzGZLTbW7y3ls1+z6TBYuH1RPAsmhfb7vjl19nfpLQZcGQ5Ip0KbRYqTSo5c1nPl3dy9QrqAUnbvvPMOJpOJZ555pvux4T2kM8eR5jIcpAq8HQc2lDseJ7WCay6K5t2fDrEjo5KJCb7k1BUw2i/hxCefYSQSCaP94hntF09FazW/5m9iS3EqW4p342DyorU4ALXJj0XTI5g/MRRvt9ObYhQEgSCt/4C9XaeDgsZidKYORngNvqn184yfMNnM3Dhq8ZBeSxAEUmK9SYr2Yuv+cr5el8vLn6fz/s+HmDUmiKlJ/oT4upxyoG1o0bMpvZxVO49Q16QnNsSNP16V2KdR3LEUNBYjk8iGPLEapjdtZila594l3436ZhzlqnNC9/B0MKiAlJExNFHNYU6N7LoCIt1DT0qbasHEUDallfHW9xk4uXXQZtIx0jv6DIzy5PFz9ibeYTqZZe6UmrMQfEtxiNqHt3MlIbFuuGt7f/HOF7aX7kUmkZHkOziH3Oy6fLYU7+by2IvwPckeLqlEYMboQKYlBZCWU8PqXcX8sLmA7zbl4uZrxC/QjMrZhEJpw1Elx1Xlgr+zDzGeEb1eUxRFmtuMFFa0kFPSyMG8OnJKmgAYGe7OXVcmMjrG64RBrrGjmS3Fuxnrnzhc+n0aaDcLuDr3TuE36Jtx+x01Ig8qIJlMJrZs2YJOZ9foslqtlJaW8sADD5zRwV2ItBhaKWkuZ2n8yUkzSaUSHlw2mgf/s4U3Vm8EF86ZgGSziew+VMXX6/MoqmjBx13NXbMWMSXZj7TK/SzPWcebez7h20O/cFnsXGaETkR+Ht3MOkx6thTvZlzAKBwHUURisVl5L/0rPNRuXBE3/5RfXyIRSIn1QuHaiCoqgwNVh9GLJgpFEJukiBY5AiDITSCxq0MorC64mMNQd4TS0SalvlmP3mjX9JMIEB6g5bp5MUwZ5d+nU2lftJt0vLT9LWyiyJKT/BwP05N2o0BoHyukpo7m01Ydei4wqID0wAMPUFZWRl1dHXFxcRw8eJCxY8ee6bFdkHQpdCd4x570NQK9nXlw2Whe3rEXpdUZpXB29o+6sFhtbDtQwXcb8ymtbsPXw5H7lyYxPTkAaedex+TgsUwKGsP+qsP8kPUr76V/xY9Za1gUN4+ZoRORDcJG4myzKn8TerOBhdGzB3X8L7nrKWup5M+T70ApO7VVoc1mY3vpXn7MWk1FWzVOCkemho4lyXcE4a4htLcKFFe1UVbbZm8cbq+lyVaBzqGMeuUBcDiIRhPAqPAERniOIMxfS7i/Zsj7d7n1hbye+jENHU08NOn2k171DdOTNpPQZ8quQd90xtPQvyWD+pZnZ2ezdu1annrqKW6++WZEUeTpp58+02O7IDlYnY2zwpEw16BTus6EeF+0eSaaa5346xvb+fP1KT36k34LWnUm1qWW8MuOI9Q36wnyceZP145myij/Hrp7XQiCQLLfSJJ8R5BZk8O3h37hvfQv+TlnLVePXMjkoDHnrMR+Y0czP+esZYx/4qB0xarbavn28ErGBowipY8y76GQXZfP++lfU9pSQbA2gHvG3cz4wKQeq0t3Rwj27buwoKa9jg1FO9hYtIMDxpWUNe9kkiYFpS6JcEXwCd9zq83Kodpcfs3fzL7KTDwd3Xl8+r3Eep474rDnOwYLvVRYOkx6mg2tv3kF7ZlkUAHJy8sLmUxGSEgIeXl5zJ8/H71+2Lb4dCOKIpk1OYzwjj7lG68oinRYW5kUM5K0jXru+/cWls6J4rKp4b0cJ08nVpvIocJ6NuwtZcfBSkwWG/HhHtx1ZQKjY7wHVZYsCAIJPrHEe8dwoPowX2X8zOupH/FzzjqWJVxGku/Ic0pwVBRF3k3/Aqto44ZRV57weJto439pnyOTSE+p98lgMfLZwR9YW7AVD7Ub90+4lfGByUNWRvB28mRZwuVcNWIBeysOsqU4lZW5G/g5Zx1quYpwtyACXPzwdHTDUa5GEAT0ZgMN+mbKWirIqS9EbzbgrHBkyciFXBw186QU4IcZGHdNz/e0vNXuh/Z7sC7vYlABSa1Ws2LFCmJiYvjmm28ICwvr9kca5vRR015Ho76ZkV6nvucjImIVbQR4arjxoRm89X0Gn6zKZuWOI1wyOYzZY4L6TAGcDGaLlcNFDaQermZXZhUNLQbUShmzxgRx8aRQQnxPriRVEASSfEeS6BPH7rJ9fJn5My9se5MRXlFcn3jFOaNwvKZgC+mVmdwwajHeg5itri/czuHaPG5Pufak8//lrVX8a8c7VLbWsCBqFkvjLz3lSiu5VM7EoBQmBqXQbtRxoDqLrLp8ihpL2HhkJ0ZLT78jmUSGn7M3k4LGkOgTS7LvyPNqz+984/iAVNopTxX4O7Au72JQAemJJ57g22+/5eGHH+b777/n+uuvHy5oOAPkdcrNxHiEn+DIEyMRJDg7OFHf0Yi7RsVjt4wjo6COr9fl8fHKLD79NZuECA+SoryIC3MjzE8zqJWTKIrUNesprmqloKyZ7OJGsosbMZqsKGQSkqK9uHVhAGNH+uBwmlZiEkHCxKAUxvqPYn3Rdr49vJK/rnuByUFjWJpwGV6OQ7ecOF1k1uTw8f5vSfYdycVRM054fE17HZ8d/IEE71hmnmQj7v6qQ7yy8z0cpAoen34vIwfZuzQUnBwcmRw8hsnBYwD7311n7qDDbABRxEGmwFnhdM6mUH+PHC8TVdJcjoPMAc+z+Pk/3QwYkK6/vmfX+A033IAoikRHR/Prr79yzTXXnPEBXkiUNJcjl8jwd/E5LdeL84xkX2UmJosJhUxBQoQnCRGelFS3sjm9nNTDVXz4y2HAXlHl4arGQ6NE4+SAykGGRBCwiSJGk5W2DhNNbQZqm/QYTfYqLEGAYB8X5owJIinGi4RwD5QOZ674QCaVMS9yOlNDxrE8ey0r8zawu3w/8yKmsShuHs4Og6sCO13k1BXw0va38XP25t7xt5wwVWaz2Xg99WMEQeCOsdedVNpxU9FO3k77jBBNAH+Zchduau1Jjn5oCIKAk8Kxu9l1mN8e9+P2kHLqC4lyD/ldidcOePe47rrrAFi3bh3t7e1ceeWVSKVSli9fjovL76Mz+FyiRlePl6PHkHXQ+mN+5HRSy/fzZebP3DDqyu4bYLCPCzcuiOPGBXE0tOjJK22iqKKVqnodDa16ymvbMZos2GwigkRAqZDipFIQ4OVMcrQ3fp6OBPu4EOrnctIqCqeCWq7imoTLmBsxla8PrWBl/kY2FO1gYcxsLo6aiVp+5gVH95Qf4LXdH+Km1vLY9PtQK078mt9lrSK3vpB7xt18Us2iq/M388G+r0n0ieVPE/9vQMHYYX5fKOVCj8leh0lPaXMFi0dcfBZHdfoZMCBddNFFALz//vt89dVX3cvz6dOns2TJ6RGiHOYobcZ2tKrTF+jjvKK4KGIaK/M20GHWc/2oK3rNcN01KibEq5gQf/5tjLqrXblr7A0sjJ7NV5k/882hX1iVt4kFUTOZFzl9UL1AQ8VsNfP1oRX8nLOOCLcQ/jzlTrSDkG3JqM7m+8OrmBoyjikhQ2+ZWFewjQ/2fU2KfyIPTLh1eK/mAkPr2PNWndtQiIhIjGdvHcHzmUHlV5qamjAajahU9lmgTqejpaXljA7sQsRitQxqpj0Ubk6+GkeFmh+yfmVXWTpTg8cxyncEYa5BaFUufS73bTYbbaZ2WgxtNBlaaNK30GxopVnfQrOxjTZjO+0mHQazEaPVhMVmVyWXSqQopArUciUuDk64KrV4OLrh6+RFgMYXfxefM9K1H6jx4+HJd1DYWMK3h1fy9aEV/JSzlpmhE5kbMfW0pEBFUWR/1WE+OfAdlW01zA6fwk2jFqMYRCFBra6BV3e9j7+LD38YPfQ0987SdN5L/5Jkv3genPCH86Ina5jTi1bd829+sCoLuURGpHvoWRrRmWFQn+xLLrmEq6++mjlz5iCKIqtXr+bqq68+02O74FDIFBjMxhMfOAQkgoSl8ZcyITCZ5Tnr2FK8m7WFWwF7lZSzgyMOUvtN1Wy1oLcY0JsNiIi9rqWSKdEonXFxcEar1KByVuIgVXTbSVhFGyaLCZ1ZT6uxjbKWKpr0Ld3XkgoSgjT+RHmEEecVyQivaFxO475PuFswf51yF8VNZfySu4G1hVv5NX8T0R7hTAkeQ4p/4pCr2vRmA6nl+/k1fxNHmsrwdfLikan3MMo3blDn60wdvLD1DWyijYdPogE2qzaP11M/ItojbDgYXcBonY7+3UVRJK0yg3jvmFNuqD7XGNSn+7777mPEiBHs3r0bgL/+9a/DFuZnAHeVK5m1OWfk2sHaAO4dfzMmi4nCphJKmiuo72ik3ajDaDUB9rJfpcwBJ4UaFwdnNEpntEoXXJUatEqXk9qzMFnN1LTXUdZSRXFzGYWNxWwu3s2agi0ICIS7BZPin8BY/1GDMiMcDCGugdw9/iauG3UFm4/sYmtxKu+lf8V76V8RqPEjxiOcUNcg/Jy9cVNpUMtVSCVSzDYLrYY2anX1lLZUkl2Xz+HafCw2C37O3twx5jqmBo8bdFAwWky8tP0tqtpreXTq3UNWLShvreKf29/G28mDP0+5c1CrsWF+n2jVRzMLZS2V1OoauDz2orM4ojPDoKdbs2fPZvbswUmiDHNyhLgGsrUklYaOpjNiNw72VVisZ+Rv1kWvkMoJ1PgRqPFjYtBowK7hVtRYQkZNNvsqD/FV5s98lfkzgS6+TA4ey5SQsadFIVqrdOHy2Iu4LGYuFa3VpFVmcKgml+2le1lXuO2E5we4+DIvYhpjA5KI9ggbUlWcwWLkn9vfIqeukHsn3Dzk0uxWYzsvbn0TmUTG36bePVzddoHjfExA2tvp63UuqPifbobX/+cQo3zi+ARILd/PxVEzz/ZwzhgyiZQojzCiPMJYPGIBjfpm9pQfYEdpGl9mLuerzJ9J8IlldvhkRvslDMphdiAEQSBA40uAxpfLYy/CJtqo1zVS1V5Lk74FvdmAVbQil8hxdnDCQ+1KgIvvSe/ntRnbeXHbW+Q3HuGusTcwKWjMkM43W828vP1tGvXNPDnjgbPaZzXMuYGz6uitOq0yg0i3kN+l6eFwQDqHCND4Eu4azJqCLcyLmH7BNB26qbTMi5zOvMjp1LTXsaV4N5uKdvGvHe/gqtIwJ3wKs8OnDKqabTBIBAleTh54OQ3Nb2owlDZX8M/OYPLAhD8wPnDwRn1g3x/4X9rn5NQXcv+EW4nyCDvtYxzm/EOttqdrG/XNFDaWnLQbwLnOhXHHO4+4LHYuVW21g0op/R7xdvLk6pELeeOSv/PnyXcSpPHnm0O/cNeKR3kj9WOKm8rO9hD7RBRF1hdu55H1L2KwmnhyxgNDDkYA3x1eydbiVK4eeQkTg1LOwEiHOR9xUtlTdukVmQCMOUVB3nOV4RXSOca4gCTivWP47OAPxHlF/q6EE4eCRCIhxT+BFP8EKttq+DVvE5uLd7OleDcjvKKYHzmDFL+Ec2IVWdlWwwfpX5NRk028dwz3jLsJ7UmkU9YX2mWRpodM4Mq431fD4zCnhrPKvkJKqzyIt6MHAS6/H/26Yzn73+ZheiAIAn8ceyMquZJ/bH2DWl3D2R7SWcfP2ZtbRy/l7YXPc13iFdS01/Pyjv9xz6on+Cl7DS2G1rMyrmZ9Cx/u+4Y/rX6W/IYj3Jq8lEen3XNSwWh32T7eTf+CJN8R/N+Ya88pNfNhzj5OjgoMZgOZNbmk+Cf+bj8fwyukcxA3tZa/Tb2bZza9wuMb/smfJ99J+DmibH02cVSouTRmDguiZrK34iBrCrbwRcZPfH1oBSl+CUwLGcconxFnvFfnSFMZawq2sK04FatoY0boRJbELzzpPa69FQd5ddf7RLqF8sDE2065iGOY3x9KBzkZNTlYbBZG+8Wf7eGcMYYD0jlKqGsgT8/8Ey9se5PHNvyTJSMXcknUrOHGSOyKEOMDkxkfmEx5axUbC3ewtSSV1PL9OMpVjPZLYLR/PPFeMTg5nHq5tCiKlLZUkF6Zya7SdEpaKpBL5UwLGc+lMXPwOQVX1J2laby2+0PCXIN4ZOrdv7tGx2FOD4JExr7KdFRy5e9OLuhYhu9u5zBBWn9enPs33kn7gi8yfmLTkZ0sjlvAxKDRp02A9XwnwMWXG5IWsyxxERnVWewsS2df5SG2lqQiIBCk8SPCPZRQ1wACXHzxcvJAq9T0uwoxWIzUdzRS3VZHaUsFRY2l5NYX0mJsAyDKPYxbkpcwOXjMKfcG/Zq3iY/2f0uMZzh/mXLXbyIKO8x5iiBhf9VhEr3jftcr6OGAdI7j7ODEnyb9H/sqD/H5wR94LfVDvsj8iRmhE5gQOJoAF98zmk82Wc006ptp7GimxdhKi6ENnakDvcWAyWrGZrMBdmsIlUyJs4MjWqULHmo3/Jy9T8sKZTDIJFKS/eJJ9ovHarNS2FhCRk0OOXUF7C5LZ0PR9h7HO8pVKOVKZBIZomjDbLPQYdJ3q1Z04ePkSYJPLCO8oknyHXFaej8sNisf7/+WNQVbSPFP5P7xtwyrMAwzIBW6WpoMLST7jTzbQzmjnNGAtGLFCt566y3MZjM33XQT1157bZ/Hbd68mWeeeYaNGzeeyeGc1yT7jWSUbxz7KjNZU7CF7w//yneHV+Hp6M4Irygi3UIJ1vrj6+yFk8JxUEHKJtpoN+po1LfQqG+ivqOROl0jdboG6nQN1OoaulcGxyOXyFDIFN3irGarGaPF1EsDT6t0IcwtmGj3MEZ4RRHuFnzGV3fSYxpvwZ5ya9A3UdlaQ62uniZ9C21GHQaLEYvNgiAIyCUy1HIVLkpn3FRafJw8T6k5tj/qOxp5ddcH5NYXckn0bK5LWHROVAoOc26TVV8IwCjfEWd5JGeWMxaQampqeOWVV/jhhx9QKBQsXbqUcePGERHRM/9ZX1/Piy++eKaG8btCIkhI8U8kxT+RJn0LeysOcKA6m/SKDDYf2dV9nIPMAa3SBSe5GgeZAqlEioCAxWbBZDWjNxtoN+loM+mwibYeryGVSPFQu+Hl6MZo/wQ81G54qF1xU2nRKl1wcXDCSeHY516WTbShM3XQpG+hVtdAVVstJS3lFDaUsK/S3j+hkitJ8h3JuIBRJPmO/E32TARB6Pw9Tl2O6GQRRZFtJXv4cN/XWEUb90+4dbjPaJhBk99QTJDG/7Q1h5+rnLGAtHPnTsaPH49WqwXs3kqrV6/m7rvv7nHcY489xt13382//vWvPq/T2tpKa2vPst7q6uozMubzCVeVhrkR05gbMQ1RFKnV1VPWUkl1ez0NHU00G1rQmTowHbNykUmkOCrUeKjd7AKqSic0Di64qjS4qexWEVoHl5OesXfZpjs7OBGk9e/xXKuxnazaPPZXHSa9MoOdpWk4yBwY5z+K6aHjifOK+l05Xx5LdVstH+7/hv1Vh4lyD+Pu8Tfh4+R5toc1zDnGQPe6Iy1lzAmbcTaG9ZtyxgJSbW0tnp5Hv3ReXl5kZGT0OOaTTz4hLi6OxMT+u44//vhjXn/99TM1zN8FgiDg7eSJ9zl8k3NxcOqujLPZbGTV5bO9dC+7ytLZWpKKl6M7s8ImMyN0wkn18ZyLtBnb+TF7DavzNyOTSLkp6aoLShJqmKEx0L3OaDER4/H7ra7r4owFJFHs7adz7L5GXl4ea9eu5aOPPhpwxXPjjTeyaNGiHo9VV1f3ux81zLmPRCJhpHc0I72juSXpavZUHGB94Xa+zFzON4dWMDYgibkRU4nzjDwvGwBbDK2sytvE6vzNGCxGpoWM55qEy36XYpjDnD5OdK+L8Qg/G8P6TTljAcnb25u0tLTun2tra/HyOtqvsXr1aurq6rjyyisxm83U1taybNkyvvjiix7XcXFxwcXl9503vZBRyBRMDh7L5OCxVLZWs65wO5uLd7GrLB0/Z29mhk1iasi4cz53LooihY0lrCvcxvaSPVhsVsYFJrE47uJe6cthhumLge51KrnqjFnSnEucsYA0ceJEXnvtNRobG1GpVKxdu5Znn322+/l7772Xe++9F4Dy8nJuuOGGXsFomAsLPxcfbkxazDXxl7KrbB/ri7bz2cEf+DLjJ0b5jmBK8FiS/eLPqebRmvY6dpXtY1vJHspaKnGQOTA9dAILombidxqs04cZBuzfjfMxWzBUzugK6YEHHuCGG27AbDazePFiEhISuO2227j33nuJj//9yl8Mc2ooZAqmhY5nWuh4ylur2HxkN9tKUkmvzEQhlZPoE8dovwRG+cYN2ZL8VDFZTOQ2FJFZk8O+ykOUtlQA9obZ20YvY1JQymkvFR9mGP9TUAM5nxDEvjZ7znHKy8uZNWsWGzZsICAg4GwPZ5jfAJvNRk59ATvL0kmryKBR3wyAv4sPsR4RRLiHEuYaRICLz2mTVzJbzVS21VDSXEFRUymFDcUUNpVisVmQChKiPcJJ8U9kbMCoYRO9Yc4IXfe6J95/jmsnLz7bwznjDCs1DHNeIJFIiPOKIs4riluTl1LaUsHB6mwO1+ayqyyd9Z1KDFJBgreTJz5Onnio3dCqNLg4OOKoUOMgdUAhlSMRBETo0ZelM3XQamynydBCQ0cjte0N1HY0dBfnyKVywrSBXBw1g7hOC3iVXHkW35FhLiR+60zA2WI4IA1z3iEIAsHa/2/vTmOjKhs2jl8DbdlKKYUuPKC8AbENYYuC7CU8ULpRdkNZLAqCgCyWSNjEQMSASFKIJGyi4UNRSkGwBAHZZGmDghrW+kLCIn0ZSi1SaEs7Mz3vBx4m1hateRznHvr/JU2Yc8+cueZOOdec6cw9rdQ6uJWGRMWowqqQ/X6+rv76s278+n/Ku29X/oMC/e8vV/WgvLjG+61jq6Mm9RurWYOmatvsf9Sn9Ut6pkkLPdvk0QoYrB8Ib2lav3a8Q5NCgs+rY6ujfwVF6F9BEer9bOUxp8up++XFKnaUqMxZLofLoYr/nPX41amrgLoBauBfT438G6phQIOn9sO58G215SMDFBKean51/dS0QZNa8x8aT6fashI8TwcBwHC14S3fEoUEADAEhQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMIJHCykrK0sJCQmKiYlRenp6lfGDBw9q6NChGjJkiKZPn6579+55Mg4AwGAeK6Tbt28rLS1NW7du1e7du7VtEpZtFQAADjxJREFU2zZduXLFPf7gwQMtWbJEGzdu1JdffqnIyEh99NFHnooDADCcn6d2nJ2drR49eig4OFiSFBsbq3379mnGjBmSJIfDoSVLlig8PFySFBkZqaysrCr7KSoqUlFRUaVtdrvdU7EBwCs41nmwkPLz8xUaGuq+HBYWprNnz7ovN23aVAMHDpQkPXz4UBs3btQrr7xSZT9btmzR2rVrPRUTAIzAsc6DhWRZVpVtNputyrb79+9r+vTpioqK0vDhw6uMT5gwocp2u92ucePG/X1hAcDLONZ5sJDCw8N1+vRp9+X8/HyFhYVVuk5+fr4mTZqkHj16aOHChdXuJygoSEFBQZ6KCQBG4FjnwTc19OrVSzk5OSosLFRpaakOHDig6Oho97jL5dLUqVMVHx+vRYsWVXv2BACoPTx6hpSamqqUlBQ5HA6NGjVKnTp10uTJkzVr1izZ7XZdvHhRLpdL+/fvlyR16NBB77//vqciAQAM5rFCkqSkpCQlJSVV2rZp0yZJUseOHZWbm+vJuwcA+BBWagAAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGMGjhZSVlaWEhATFxMQoPT29yvilS5c0cuRIxcbGatGiRXI6nZ6MAwAwmMcK6fbt20pLS9PWrVu1e/dubdu2TVeuXKl0nblz52rx4sXav3+/LMtSRkaGp+IAAAznsULKzs5Wjx49FBwcrIYNGyo2Nlb79u1zj+fl5enhw4fq0qWLJGnEiBGVxh8rKirSzZs3K/3Y7XZPxQYAr+BYJ/l5asf5+fkKDQ11Xw4LC9PZs2efOB4aGqrbt29X2c+WLVu0du1aT8UEACNwrPNgIVmWVWWbzWar8fhjEyZM0PDhwytts9vtGjdu3N+QEgDMwLHOg4UUHh6u06dPuy/n5+crLCys0nhBQYH78p07dyqNPxYUFKSgoCBPxQQAI3Cs8+DfkHr16qWcnBwVFhaqtLRUBw4cUHR0tHu8ZcuWqlevns6cOSNJ2rVrV6VxAEDt4rFCCg8PV2pqqlJSUjRs2DANHjxYnTp10uTJk3Xu3DlJ0qpVq7R8+XLFx8ertLRUKSkpnooDADCcx16yk6SkpCQlJSVV2rZp0yb3v6OiopSZmenJCAAAH8FKDQAAI1BIAAAjUEgAACN49G9InuJyuSSp1n2KGcDTIyIiQn5+PnkI9hifnI07d+5IUq36wBiAp8uhQ4fUqlUrb8cwis2qbskEwz18+FDnz59XaGio6tat+7fu+/Eno9PT0xUREfG37tvTyO4dZPcOX84u1ewMyel0ym6315qzKZ98hPXr11fXrl09eh8RERE+++yF7N5Bdu/w5ex/xs/P76l9bNXhTQ0AACNQSAAAI1BIAAAjUEi/ExQUpBkzZvjkqrtk9w6ye4cvZ0f1fPJddgCApw9nSAAAI1BIAAAjUEj/cebMGY0cOVJDhw7VhAkTlJeXJ0kqKirSlClTFB8fr3HjxrlXiTBNVlaWEhISFBMTo/T0dG/H+VNr165VYmKiEhMTtXLlSklSdna2kpKSNGjQIKWlpXk54Z/74IMPNH/+fEnSpUuXNHLkSMXGxmrRokVyOp1eTle9w4cPa8SIEYqLi9OyZcsk+c6879692/0788EHH0jynXlHDVmwLMuy+vfvb126dMmyLMvavn27NXXqVMuyLGvp0qXWhg0bLMuyrC+++MKaPXu2tyI+kd1ut/r372/dvXvXKi4utpKSkqzLly97O9YTnTx50ho9erRVVlZmlZeXWykpKVZWVpbVr18/68aNG5bD4bAmTpxoHT161NtRnyg7O9vq3r27NW/ePMuyLCsxMdH64YcfLMuyrAULFljp6eleTFe9GzduWH369LFu3bpllZeXW2PGjLGOHj3qE/NeUlJidevWzfrll18sh8NhjRo1yjp58qRPzDtqjjMkSeXl5Zo9e7aioqIkSZGRkbp165Yk6ejRo+4vGRw8eLCOHTsmh8PhtazVyc7OVo8ePRQcHKyGDRsqNjZW+/bt83asJwoNDdX8+fMVEBAgf39/tW3bVteuXVPr1q31zDPPyM/PT0lJScY+hl9//VVpaWmaOnWqJCkvL08PHz5Uly5dJEkjRowwMvvXX3+thIQERUREyN/fX2lpaWrQoIFPzLvL5VJFRYVKS0vldDrldDrl5+fnE/OOmqOQJAUEBGjo0KGSpIqKCq1du1YDBw6UJOXn5ys0NFTSo2U8AgMDVVhY6LWs1fltRkkKCwvT7du3vZjoj7Vr1859ELl27Zr27t0rm83mM4/h3XffVWpqqvvtxr+f/9DQUCOzX79+XS6XS5MmTdKQIUO0detWn/ndCQwM1OzZsxUfH6/o6Gi1bNlS/v7+PjHvqLlaV0hfffWVoqOjK/28+uqrkh6dKb399ttyOp164403nriPOnXMmjarmnfu22w2LyT5ay5fvqyJEydq3rx5evbZZ6uMm/gYtm/frhYtWqhnz57ubb4y/y6XSzk5Ofrwww+VkZGhc+fO6ebNm1WuZ2L23Nxc7dixQ0eOHNGJEydUp04dnTx5ssr1TMyOmvPJxVX/G/Hx8YqPj6+yvbi4WNOmTVNwcLDWrVsnf39/SY+eMRYUFCgiIkJOp1MPHjxQcHDwP5z6j4WHh+v06dPuy/n5+QoLC/Nioj935swZzZo1SwsXLlRiYqK+/fZbFRQUuMdNfQx79+7VnTt3NHToUN27d08lJSWy2WyVst+5c8fI7M2bN1fPnj0VEhIiSRowYID27dtXacV8U+f9xIkT6tmzp5o1aybp0ctzmzdv9ol5R82Z9VTfi+bOnavWrVtrzZo1CggIcG/v16+fdu3aJenRwahr167usjJFr169lJOTo8LCQpWWlurAgQOKjo72dqwnunXrlt58802tWrVKiYmJkqTOnTvr6tWr7peV9uzZY+Rj+PTTT7Vnzx7t3r1bs2bN0r///W8tX75c9erV05kzZyRJu3btMjJ7//79deLECRUVFcnlcun48eOKi4vziXmPiopSdna2SkpKZFmWDh8+rJdeeskn5h01V+vOkKpz8eJFHTp0SM8995yGDRsm6dGZ0aZNmzR79mzNnz9fiYmJaty4sVatWuXdsNUIDw9XamqqUlJS5HA4NGrUKHXq1MnbsZ5o8+bNKisr04oVK9zbkpOTtWLFCs2cOVNlZWXq16+f4uLivJjyr1m1apXeeecdFRcXq3379kpJSfF2pCo6d+6s119/XWPHjpXD4VDv3r01ZswYtWnTxvh579Onjy5evKgRI0bI399fHTt21JQpUxQTE2P8vKPmWDoIAGAEXrIDABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAp5g/vz52rx581+6zaFDh9yraB89elRr1qzxRDTgqcTnkIC/0YABAzRgwABJ0rlz53Tv3j0vJwJ8B4UEn3Pq1CmtXLlS4eHh+vnnn1W/fn2tWLFCYWFhWrp0qXJzc2Wz2dS3b1/NmTNHfn5+at++vSZMmKBTp06ppKREc+bM0aBBg7Rz507t379fGzZskKQqlx/LzMzUtm3b5HA4dO/ePU2ePFljx47Vzp07lZmZqdLSUgUGBmr48OHav3+/pk+frs8//1wul0uNGzfW2bNnFRcXp9GjR0uS1q1bp7t372rhwoX/+PwBpqKQ4JMuXryoBQsWqGvXrvrss880d+5ctWvXTsHBwcrKypLD4dC0adP0ySefaMqUKXK5XGrSpIl27typ3NxcjR8/Xl27dq3RfRUXF2v79u3auHGjmjZtqh9//FGvvfaaxo4dK0m6cuWKDh8+rMDAQO3cuVPSo1URkpOTdffuXaWmpurgwYNav369Ro8erYqKCm3fvl0ff/yxx+YH8EX8DQk+KSoqyl0oI0eO1KVLl7Rnzx6NHz9eNptNAQEBSk5O1rFjx9y3GT9+vPu2zz//vL777rsa3VejRo20fv16ffPNN1q9erXWr1+vkpIS93hkZKQCAwP/cB/9+/dXQUGBcnNzdfz4cbVq1Upt2rT5qw8beKpRSPBJv12hWnr0FRC/XwWroqKi0lda//Y2FRUVqlu3rmw2W6XbVffli3a7XcOGDVNeXp5efPFFvfXWW5XGGzZsWKO8ycnJyszM1I4dO5ScnPyntwFqGwoJPik3N1e5ubmSpG3btumFF15QfHy80tPTZVmWysvLlZGRoV69erlv83jV9gsXLujq1avq1q2bQkJCdPnyZZWVlcnpdOrIkSNV7uv8+fMKCQnR9OnT1bdvX/d1XC7XH2asW7dupUJ8+eWXdfDgQV24cEExMTH/7RQATx3+hgSf1Lx5c61evVp5eXkKCQnRypUr1ahRIy1btkxJSUlyOBzq27ev+2vGJen7779XRkaGKioqlJaWpiZNmqh3797q1q2b4uPjFRoaqu7du+unn36qdF+9e/dWZmam4uLi1KBBA3Xq1EkhISG6fv36H2bs2bOnZs6cKX9/fy1evFjNmjVThw4d1LZtW+O+wgQwAat9w+ecOnVK7733nvbs2VPj20RGRionJ8f95XTeUFhYqFGjRik9PV0tWrTwWg7AVLxkB/wDMjIylJCQoJSUFMoIeALOkAAARuAMCQBgBAoJAGAECgkAYAQKCQBgBAoJAGAECgkAYIT/B5VRJ992K6JTAAAAAElFTkSuQmCC", + "text/plain": [ + "
            " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set_theme(style=\"ticks\")\n", + "\n", + "# Show the joint distribution using kernel density estimation\n", + "g = sns.jointplot(\n", + " data=df,\n", + " x=\"popularity\", y=\"danceability\", hue=\"artist_top_genre\",\n", + " kind=\"kde\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "به طور کلی، سه سبک از نظر محبوبیت و قابلیت رقص هماهنگ هستند. نمودار پراکندگی با همان محور‌ها الگوی مشابهی از همگرایی را نشان می‌دهد. یک نمودار پراکندگی امتحان کنید تا توزیع داده‌ها بر اساس سبک را بررسی کنید.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFcCAYAAACwQwV1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABcRklEQVR4nO3deVxU5f4H8M9hZlgVAQGXNHPLLMXSVNxDVEQk1xKXcCkry+v90c2iTK/XpcXqmkm5lNfMSFFEDc1dSVNzqyS8erVMxRIQQUcRmO38/qAZZzlz5szMObN+369Xr3vnzPbMDJ7veZ7n+3wfhmVZFoQQQogfCnB3AwghhBB3oSBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4La8MghqNBlevXoVGo3F3UwghhHgxrwyCJSUlSExMRElJibubQgghxIt5ZRAkhBBCxEBBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL8ld3cDCCGepeBUMb7ccRblldWIjgxBenJ7PNGlububRYgkKAgSQgwKThUja+Np1Kq1AIDrldXI2ngaACgQEp9Ew6GEEIMvd5w1BEC9WrUWX+4466YWESItCoKEEIPyymq7jhPi7SgIEkIMoiND7DpOiLejIEgIMUhPbo8ghczkWJBChvTk9m5qESHSosQY4lcOXT6OdYVbceNuBRqGRmFs3DD0adHN3c3yGPrkF8oOJf6CgiDxG4cuH8eKE9lQaVUAgPK7FVhxIhsAKBAaeaJLcwp6xG9QECQeSYoe27rCrYYAqKfSqrCucCsFQUL8FAVBidCwm+Ok6rHduFth13FiH1pkT7wRJcZIQH8SL79bARb3TuKHLh93d9O8Al+PzRkNQ6PsOk6E0y+yv15ZDRb3FtkXnCp2d9MI4UVBUAJSncT9hVQ9trFxwxAoCzQ5FigLxNi4YU69LqFF9sR70XCoBDxl2O120UFUHsiGRnkD8vCGiEwYj/od+rq0DY5oGBqFco7vytkem34olYapxUeL7Im3oiAoAalO4va4XXQQ5duXg9XUAgA0ynKUb18OAB4fCMfGDTOZEwTE67H1adHN7UHPF+fOoiNDcJ0j4NEie+LpaDhUAp4w7FZ5INsQAPVYTS0qD2Q7/dqHLh/HS/mzMCZnGl7KnyX6XGefFt3wQtfxiA6NAgMgOjQKL3Qd7/bgJQZfnTujRfbEW1FPUAKeMOymUd6w67hQUq6184eMWr65M2/uDdIie+KtKAhKxN3DbvLwhtAoyzmPO0OqtXb+spDdl+fOaJE98UY0HOqjIhPGg5EHmRxj5EGITBjv1OtKlfTjCRm1Ug/zAlSgmhBPQ0HQR9Xv0BfRKS9CHh4NgIE8PBrRKS86nRQj1Vo7d2fUumptJ82dEeJZaDjUh9Xv0Ff0TFCpMjfdnVHrqpJqNHdGiGeRNAjm5+dj2bJlUKvVmDRpEsaPNx2K++677/DBBx8AAB588EHMmzcPYWFhUjaJOEmqpB8pl0UI4cqeqBRzZ7aSivwh6YgQR0gWBEtLS7F48WLk5eUhMDAQaWlp6N69O9q0aQMAUCqVyMzMxNq1a9GmTRt89tlnWLx4Md566y2pmkREIkXSj7szat3dE3WGraQif0k6IsQRks0JHjlyBPHx8YiIiEBoaCiSkpKwc+dOw/2XLl1C06ZNDUExISEBe/futXgdpVKJq1evmvxXUlIiVbOJG/Vp0Q2fpi5Ezphl+DR1oUtP0J6wttNRtpKKPCHpiBBPJVlPsKysDDExMYbbsbGxKCwsNNx+4IEHUFJSgnPnzuGhhx7Cjh07UF5umdK/Zs0aZGVlSdVMr+Ct5c+8ibt7os6wNZTr7qQjQjyZZEGQZVmLYwzDGP5/eHg43nvvPcyePRs6nQ5PP/00FAqFxXMmTpyIESNGmBwrKSmxmF/0Vd5c/sxeUsxbmZcoi++lxc93vud8D3ev7XSUraFcbx7qJURqkgXBRo0a4eTJk4bbZWVliI2NNdzWarVo3LgxNm7cCAA4c+YMmje3TBYIDw9HeHi4VM2UjFgndL7yZ74UBKWYt9KXKNNXaKlgfsOea2fAyLSivYcnsJVU5O6kI0I8mWRBsGfPnli6dCkqKioQEhKC3bt3Y/78+Yb7GYbBlClTsHHjRsTGxuI///kPhgwZIlVzJGGtEDLXCX3ZsbVYufkX3CqOtistXqryZ7aIVeSZ72LA+D6GCYCO1Zk8V+gSBWttNS9RJm9+3hAA7X0PT2ZrKNebh3oJkZqkPcGMjAykp6dDrVZj9OjRiIuLw9SpUzFjxgx07NgR8+bNw3PPPQeVSoUePXrg2Weflao5JsTopZn3MvSFkAFgw5+WiQgaVgNVVBHY4idMHmsrsDhT/szRz8n32ewJhHy9OwAm97FmAVDP1rwVX1vNS5ExgTUOvYc3sDWU661DvYRITdJ1gqmpqUhNTTU59tlnnxn+/xNPPIEnnnhCyiZYEGvYja8QclVb7pOq8UlYaNHkyITxJnOCgLDyZ858TmeKPAvt3en/vy225q342mq+vQ+rCgYTZBkIaW6MEP/ldxVjxKoMwlcIuZmVRARWFSzoNYzp5/3szQ515nM6WuTZPPA62rvTEzJvxdfWV8Z1NuklaoofhKLlGZMhUXvmxnxlwbkv7mdIiKP8LghyBSe+49bwbSLKlYjAagOgKX7Q4rFC8JU/s3ZiduZzOrpBKlfg5aLveXG1JYAJAMvqBAcZvraalyiLYlsjvskDVrND+Xj7gnP930n53QqwqhCombZg0dThoW5CfIXfBUFGHQJWYXnSZNT2VfFPT25v0ssA7hVC7tOi7mSiD05h8nAoL7WCtqKxxWOdwXdiDuAYitQfd+az8RHSwzPueXFlLNq7ea6ttnKXKEsW/Pp6rqotKhbji6N6gWG4q66Blq37jpjAaihaFgEAtBVNeYe6qddIfJ3fBcHay22haFkERnYvQLDaAKgut7XrdWwVQjZPRJDiZMJ3YuYKgACsHjfmaJFna+vR+Hp3zg4vuqogtTctODe/OLqtqrJ4DCPTQd78PLQVTQFwDyuLlSBFiCfzuyAYxbZGxe9/pcsH1oBVBUNT/CCi2NZ2v5Y9hZClKJrMd2KOthKQogUmgTjSXmvr0az17sTKWHTFZq7etOBc6LC0caIW11C3MwlSrkI9VeIsvwuCdcNnKtSebmo4FqSQIf0pcfdzc0USBd+J2R0LpH15PZoz36ery94J7Z3qE7WsDXU7miDlKtRTJWLwuyDoiuEzVyVR8J2YxQxIvpIV6QxHv093lL2zdnFkQieDpvhBxPD8/TuaIOUq3tBTJZ7P74Ig4PjwmdBg4KokCiGVQpx9P3sCursyKF0VpPm+T2vDcu4oe8d1cSQPkCFYFowqddW972gs/3fkaIKUq3h6T5V4B78Mgo6w5wTvyiQKqSuB2BPQ7Q3+YgQvT1i6wDcsd78byt6JNQrgqqQjR3l6T5V4BwqCAtlzgrc6HKUOwZP/2OpxJxPAekCyJ6Db81ixgpcnLF3gG5ab24C/7J0zFwJ8z/WmpCNHeXpPlXgHCoIC2XOCf7Reb+y5vd2kMol+GQYLz5vA5wtI9mRF2vNYsYKXrd/FFUOlfMNykcOtl71z5kLAE3rA7ubpPVXiHSgICmTPCf6HwzKomUcslmHo12QBnjWBzxeQ7MmKtOexYg0Z8/0u9gYKRwMm37AcX9m7dfmzHL4Q8IQesCfw5J4q8Q5+EQTF6A3Yc4Ivr6wGi6YmQY+Lvgfh7p3j+QKSPfNL9jzW3nV31n5Dvt/FnkDhTM/K1rCctbJ3zlwIeNPifUI8mc8HQbH29rPnBG+tZ8D1OE/YOd5WQLJnfknoY+25qBASoLh+l6wfVnO+N1egcKZnJXaFHSEL8L1p8T4hnszngyDXyc3Rvf2EnuC5egbm9D2FygMLLFLofwwGdhV+jVtn1rlkXZ6rFtab9+aeeCAeP14rcnrJibXfJUoRihvqu5zHzTnbsxKzwo6Q793Wc2ltJyHC+HwQtHYSc2RvP6G4egZdH4rFiXNlFj2Fiztv4Kd6QdjVsB5uygMQomWhCmCgDWAAuCbhwRWVXrh6cwWXfhBUMNveAGUIAPqamQxjuE+hYzGo/I7Fc9zRs3Lme+d7rjcmzVDQJu7i80GwXmAYZwFhaBQmN8VeYMvVM5jG8bjTMQ2RV5+B+q+gVy1nLB4jRcID10nn09SFor2+OWeGG+0JUCYBQB/8WBYAEKHRIenGHXS6Y1lXs3OTDtj920HO41JyZimDted6W9KMNwZt4jt8Pgj+df6zPA7TO9y1wHZ3dD2oOYbszAkZlhN6Ne2Ok44zw432DBtyFo9mGESotci8XLdAXR4ebfG8H68Vcb63teOu8vnJddh78XvoWB0CmAAMaNUbzz0+lvc53pY0421Bm/gWnw+Cd9QcvUAAjFxj+P/uXGBbISAAAraH5ewJbO446Tgz3GjPsKG1E/1NeQDebdEQSTdrMeiJ8YKfZ3zc1UN2n59cZ9I71bE6w+3nHh9rtT3eljTjbUGb+BafD4LWNtGFKhgM4PYFtkKKHQtJlrAnsLnjpOPscKPQYUOr3yfD4KZChs2x9RFbPxh9BD5PHzjc0Xvee/F7q8fbxbS22h537CDiDG8L2sS32N5m3MvVXm4LVmc6z8bqGKiLH8Q3Hw7Df94a5NbFtmPjhiFQFmhyTMbIUD8wrC5Ih0aJnjxi7eQi5UnHVcONXN+nMRWrxbrCrYKeZxw4+C4ypMK3MbKti54Xuo5HdGiUXX9D7mLruydESj7fE6wfFogamE8Msqgfxn2idPWQl1iZmUKupvWfjetxUp90HM7wdCJr0loPm+s9+7Tohv9d/81k/u2JB+INrydm71noZwtgAjgDYQATYLM9UhdWF5Mv70NJPJ/PB0FF8/Oo1ZgeYwLqjptzV5aarROWkN2zhawbM79fL9oFJx2HMzxh/++g/z5fyp9l13sWXPrBEHR0rA4Fl35Au5jWgubZpEhKGtCqN+cQ8oBWvfHjtSKfGkL0pqBNfIvPD4dWaZSCj7tjyMsW/TY91yurTYpvF5wqNnmcrSEwzqzJvx73aepC0U5Ahy4fx0v5szAmZxpeyp+FQ5ePA7BvyEus30HM9+R7LX1gK79bARb3Apv+sxecKsaUBbvx5D+2IuvQesGf7bnHx2JQ674IYIz+mWpl2PXrQZQr74CB6TA/DSESYj+f7wlau4JnmACMyZnm8LZBgGuGTu3ZPZvvatoVyTD2ljcbHtkOLb5ZhYvKRSY1U8VqqxhZpcbDi9Ze6yWeQtja8iYm1YN08mpYrgS1/v7PPT4Wzz0+FisP7MCea3U7kzAAIFdBp2MQLAuGiq2hIUQH0AJ9AvhBEOQaJgTuJR2U363AsuNfAnDtkJ1QYu2e7YoMPHvKm+lrpmo4aqaK2VZns0qN39Paa/EFUPOLGFYVDCaoxuKxtj7bvj/2gFGYXgwxASxUKgY5E5bxPldMvhI4aIE+0fP54VDzYULzISQA0Oi0+OLHDW4ZsrPF2iJ+IYv7jYcma9S1kAfITO4Xe/jMnh5c5YFsi5qprKYWlQey7c4WtDYEaw9nMhT5sm3NL1Y0xQ/CPNdFxshsvo9Ozn3RY+24OTG+I1vDvt7EE6c+iHv4fBAE6gLhp6kLkTNmmUWlGL3bqiq7UstdtdYuPbk9ghSmwUvI4n7zE9YddRVYFnYvvbCHPUsvNMobnI/VKG/Y9TuIdWIW8p6OzHdyX6yYXogxXOOjZgI03Bc91o4bO3T5OJYd/9LkO1p2/Eu7vyNfChy0QJ/o+fxwqL34hs+MszRDHgsBOBbhizG8aD7kNCipN344HGjXNj1cJywtq0WQPAirRnzgdBu5cA09yxk5bv/WCk/+Y6tJ2+XhDaFRllu8hjy8IQDhw5hiVr/he09Ht3PSJhebzAnKm58HE2B6IabRaW22N/G+gYY5QT1WK8OA+wba/Fxf/LgBGp3pUKp+9MOe78hagCi/W2Exv+7paIE+0aMgKJA+S1N/Mqu93BaKlmdMTkpiDC9ynWwP1u7EC8+MR58WgwS/jjuudPu06Ibq4nPIvXIENwOABlog/M8YnC+pq9VpvG1Vl4TxJvsoAgAjD0JkgmVJMz6u+pyObudkvqNIQKDlfCBfe40viILlwahVy8DKVAjQhGDAfQPxfEKyzbZzFpDnOW4NX3Uj41444Pnzat5WVYdIR9IgmJ+fj2XLlkGtVmPSpEkYP970BHfmzBnMmTMHarUaTZo0wfvvv4/w8HApm4T6VnaVqB8Yxvs88wQH/a7xQS0uAIpq0a6CxerZuONK93bRQbQ9vBOZRoFNxVZgfWB9nFK1AmCU2fpWXUCvPJANjfKGSXaoPVz1OZ0JtsY7iryUf9zh5KtatgaBQYF4oetktwQZa0lmxryl8DUt0Cd6kgXB0tJSLF68GHl5eQgMDERaWhq6d++ONm3aGB6zcOFCzJgxA/369cO7776LVatWISMjQ6omAQAmdX4ay45/aTI8JA+QYVLnp3mfx5WNqa1oiuqKpvjmQ/ckl/Bxx5UuV7JLIKPF0JCfDEEQuPdd1u/Q1+6gZ85Vm8uKFWzHxg3j/PuzN/nKns9QTxHGWUi+noL/ws+ceeCwskGLpFV0xEQL9AkgYWLMkSNHEB8fj4iICISGhiIpKQk7d+40eYxOp0NVVd0/zurqagQHB0vVHIM+LbphWrd0kwSIad3Sbf5jcCZL0x5i1fV0Vf1I42SRBZEsfqoXZPGYyADTE7CY3xnf5xQzm1HM+pbm23tZ2+5LrAuiyV2ehowxTa6SMTJM7sJ/4cfFOMksWqS/VV/KOiXeR7KeYFlZGWJiYgy3Y2NjUVhYaPKYzMxMTJ48GW+//TZCQkKwYcMGi9dRKpVQKk2ru5SUlDjVNkeuANOT25vMCQLSbMEkZg9O6itd8+G6mwoZ8mLDASjx2J17PcJK3b0ehxTfmSs2lxVr+Gxd4VZoWdMkFS3LnRgjVu9TqqE/sf5WaT9B4k6SBUGW4/KWMcoFr6mpwaxZs7BmzRrExcVh9erVeP3117Fy5UqT56xZswZZWVlSNVMw8wQHqbZg8qa5Cq6TlzqAwa6G9QxBUBegwHdsd7u3rRJjeEzspBkxLirsaZOnXxCJ9bdKyxWIO0kWBBs1aoSTJ08abpeVlSE2NtZw+/z58wgKCkJcXBwAYMyYMViyZInF60ycOBEjRowwOVZSUmKRZOMKxgkOUpKqByf2vAvfBrYAY0h2+UeHvviHne0Uo5qHJ6bB29MmqS6IxPw7EONv1RN/J+I/JAuCPXv2xNKlS1FRUYGQkBDs3r0b8+fPN9zfokULlJSU4OLFi2jVqhX27duHjh07WrxOeHi45Bmjnk6Mk5YUZaKsnbyiwxqi1azlDr0mIN7wmCemwdvbJrEviDyxXJgn/k7Ef0jaE8zIyEB6ejrUajVGjx6NuLg4TJ06FTNmzEDHjh3xzjvv4P/+7//AsiwaNmyIt99+W6rmCMYXcFyVwWa8KL9B83Jom/4MDVu3H5T5SUtom6SYd5Hq5OWOAtqu4u42eeL8m7u/E+LfGJZr8s7DXb16FYmJidi3bx+aNWsm2uty7bkXKAvEC13rhl6t3SfmP9aCU8XI2vst0OQcmL8WVnOV1dLvASi0TWNypnGmtDMAcsY4XoBZigsDa/sA6rd9Io4T++9AyF6XhHgyqhhjxFZtRFdcQa86tBtM80IwMssdxY3duFth11W9VPMuUsxf0vCYdMT8OzCvomRcEYgCIfEWFASNODIMJ3YGW3VUEQJsBECg7qRlq73GvbQwRRjkATKTRdruDizmvcjOTTrgx2tFuHG3AvUCwxAYoECVuspmD1OqYerbRQedrmjjaexZrG+Ltb0uP/z6R3y54yz1ColXoCBoxNZVsisy2KzVljSmD17rCrdabdOhy8ex4tiXUP21Ju2OugoyMKgfGIY7KtuBRWpcCRq7fztouP+2qgqBskBMj+cvESZVood+v0OWY79Dbw+EQhfr28K3pyX1Com38IsgKLSnYOsq2RVDdMGyENTouE4uDBiwFu231qavT+UYAqCeFiwCWdapOUBzjvbCuIZyzQkZbrY30UNoe/n2O/TmIGjPYn1boiNDcJ0nEBrqxFIQJB7M54PgocvHsezYWpPsymXH1gLg7ilYu0qWMoPN+MRs7aK8niIU/xlpugUSX5uWHv0PZ0bNDSs7BzgSzJzphQkdRrb1OHuGsO1pL99+h1KSOtFEzIXpXFWUzPH1FgnxBD4fBFef3GQIgHoaVoPVJzdZnPhsXSVLkQTClZHKpYqjADJgPTElQqPDTbPNePXHbbVBaDBzJt2eb1se88c58jpcz7OnvVz7Hf5ULwi7YsJxS6K981yRaCJmYoxxFSVrPUKxa+sSIjafD4J31ErzjbwNx803AhXzKtlWz0p/v5BAANh/kkq+yyC3Pgt1wL0Pr9CxSL7LWLSPYQKgY02Do5Bg5sz3JWRbHiHDzfZkktrT3kiz/Q5/qheEvNhww/cpxSJzrkQTTf1iLDu7H8t+FWe7LrEzb/VVlMwDOCBNnVhCxObzQVCnCkZAEEeyCWO5EWg9K3sN1rOy16C17EFbPSuhvT89GSNDraYWY3KmIUwRBoaBzeSWAT3HQ1ewCrsignBTHoAIjQ5JN2sx4IlnLd6fZbmzUW0FM2d6FVxDucbZoUJP+LaGqY2HF0MeCwEUlj0Wrvbq5/30v++umHCTCwpA/CUy5kOHsqg/oWhZBPavbGExAq9Uw/quqq1LiNh8PgiGVHRATeyPvOvu9CczlZW5Da7jfNmD637fxTvsJiQpJIAJAMvqEKYIQ422xhCcjfeF4zsp1u/QF4MAdD2QDY2y/K8g/Szqd+iLdfmzBAVgW8HM2V6FWMPL1l7HvHdSe7ktFC3PgJEJWybyc/1grHsgGjfuBoi6d5415okm8ubnLf5uxQi8UtWmdVVtXULE5PNB8Nk+g5C1VwPWRgWWG3cr6pJgOO6r1Vn2JPmyB2/Ecm/TqD9h2jpxGld9eSl/FueGqHp8J0Vrm9YKOXELCWauLHflSMKI+fCitqIpACCoxQVAwT+8KLS3LuYSGfNEE8bKchlX7q7w+cl12Hvxe+hYHQKYAAxo1RvPPT7WZe9PiNR8PgjWnSiH4MsdLf8aEvsOrJUhsbLKu5xDpzqV5Wa/fNmDDR9oxztMyJcUEm12YhZywrP3pGjt/fW9T3uCmSt253Y0YYQrM1Fb0RTVFU3xzYf8AV5Ib13sJTLmQ4oBmhCrf6uu8PnJdSZrN3WsznCbAiHxFT4fBAHTYZpDl5tYHcJbufkXi6FTVhuAkIoOFq/JlT2oP25rmNCemp9CsijtPSkKeX/9jvGeUNDYWmUSW2vQrK1jE5KxyHdhwQCSfSdC/1ZdYe/F760epyBIfIVfBEFjfEN42j5NTIZOWVUwcO0hPDtgkMXrmGcPAgAjD0Jkwnjcb2OY0J5hxLFxw5D1wxdgrcxKOXJStPX+QhJ7XFnx39paM1tr0LjWsQnNWLS6TZQLi3i7e3cF84xhruNUQJt4O78LgoD1ITzzoVO+f9Tm2YPmtSVtDRMKHUY8e/EGdDqAMZpmZNm6eU3zoVN78L2/rULirt6PztEenTMZi55SxJvvd5K6tmkAx9IZ/XGACmgT3+CXQZCPeYZb3bDgcs4rcWuJJ2La98ceMArTXiDDAIw6xKkeCV9vjm89nTv2o3OmR+doxqK7e2G2uKK26YBWvU3mBI2PA44PUxPiSSgI8vCEXbh18mquhFXo5I6Xo7JVSs7aUKB+XSUXsTMWjXs5rcIb4rVeg7H8dJjdPTpnhm5dlfTjSE/VFbVN9fN+1rJDHR2mJsSTUBDk4Qm7cFvLEAzQOF6OylYpOSHVXMw5krFoLUBx9XJi/rsRS4a/iPodLOdn+V7f3RcxfJwZTnRVbdPnHh9rNQnGmcQjQjwFBUEeriyjZk3ifQOx59p2kwXerFaGAfcNtLsNenyl5ADToUAhZd0cmSvjC1AtROrluOsiRmjvzpkyaXzZya7izDA1IZ6CgqAZ85qaXCXFWAAv5c8SHMic6ZE8n5AMHKibG9TJ69aODbhvYN1xB1krJWe8HlI/FDgmZ5rVainOLBXgC1CvitTLsfciRoysV3t6d86USePLTnYVKpVGfAEFQSNCa2oC9gUyZ3skzyck43lwBz1HTtxcpeSsrYeUaqkAX4ASq5djT21TsYZO7UkWcaZMmq3sZFehUmnE23HX9/JT1qqEBDDcX5PxsgE+jvRIXsqfhTE50/BS/iwcunzc6uNWnMhG+V/7EOpP3NYer/dsn0Fgi+Ogqw0Gy6Luf4vj8Gwfy/m2sXHDECgLNDkmxlIBa3OIDUOjEJkwHow8yOS4I70ce9pua1mIUPYki6Qnt0eQ0XZX9pZJq9+hL+7/2wq0mpWL+/+2wqs3+yXEXagnaMTayYZldWAAzmFBIfODUvVIHO1hClkPaTyv1aB5HOo1P48qjRINQ6PQuF4MPjm2Bkt/WO1wPcnOTTpwpt93btJBtF6OPcscxJr/tSdZxNPKpBHijygIGrEVrBzdNsiehdf2BDZnTtx8w1jm81o3i6MRVNII05/qhF/Z70WpJ/njtSLe42KtwRS6zEHIhYqQoWd7k0U8qUwaIf7IL4dDrQ038g2fOTMs2KdFN7zQdTyiQ6PAoG4+jatOKGBfYOMbUnQG37wWXz1Je4iZeSsGW7+v0KHnJ7o0x/SnOiEmMgQMgJjIELzWS41WRxbg4sLRuLL0BdwusuwBA/b9nRBCxOF3PUEhw418V/tSL7wOU4Rxbp0UprDc2Nfe0l7GPRm+zXn55rWCBdSTFMKZDXmlYOu3t6eHbty7q1vz+AU0Aiu7uGKBPiHkHr8LgrZOZuYnIVfspmAcnDgX8IF7D0QhhbD199ULDMNddQ20bF0Pj29zXr55rbs26kkKJWVtTkeXOvAFIEd7rq6o7GIve6rUUIFs4uv8LgjaczJzRcURy81buVfl3VFxb6xr7cRt/rq3rTxfz/hCgG9e61f2Bm89SaHsrc3JF9hMk3jKoW36s0lJODF+M0d7rq6q7CKUPesYqUA28Qd+FwTtOZm5ouKIkM1brbVPjNc1pr8Q4FsE/QT460nawzyAF5wqxpS1uw3BTPFXRmqYIgw12hpodHUnY+PApi1vYnKiro4qQoBZSTjj38zRXqKjPVdPqOxizJ51jFQgm/gDvwuC9pzMXJG8IeS1HBkmdKSNxoGWL3uUr56ko4x7HbKoP1ETW4RaTd2wK9ccqT6w1ZzuZ3Ki5ltr50zP3tFdJTyhsosxe9Yxilkg29V7UBIilN8FQXtOZq5I3rD2HgF/lWzjm+dzpO3WuHs+zrjXwVU5hcuNuxWoNjshs6pgMBwl4RqGRjnds3ckacVTKrvo2bOOUawC2Z5eyJz4N0mDYH5+PpYtWwa1Wo1JkyZh/Ph7V79nz55FZmam4XZFRQUaNGiAbdu2SdkkAJYnM2vJL67YWNXae3Clxtuz43u9wDDIGJkhEQYA5AEyBMuCUaWuQmBAIFQ6NViwCGAC8MQD8Q6dkMSajzPuXVjrzZlrGBqFGrMTtab4QShaFpkEUf1vlvXDas7XkXpZhiv2nRTKnnWMYhXI9oTdWAixRrIgWFpaisWLFyMvLw+BgYFIS0tD9+7d0aZNGwBA+/btsXVrXUmq6upqPPXUU5g7d65UzbHK2SUTzhLyHvrgxtWzs7bj+21VFeQBMtSTh6FKbboMQv+Z2b+ScHSsDgWXfkC7mNZ2fTbzxAlb83F8jHsd1npzxvSBTdu0CbL2fgs0OQcmsAasKhhsRTPUb3LTUOFG/7mtfYcME4AxOdP8YpjOnqLXYhXI9rQ1oYQYkywIHjlyBPHx8YiIiAAAJCUlYefOnZg+fbrFY1esWIGuXbvi8ccfl6o5Vtm7ZEIKfO9hmT1qydqO7xqdFsHBQfjPyA9Mjot1ZW6eOGFv7Utjxr0OTfGDULT6BUzAvUxZBgzqBYZarGs8hOMIbFlk6H0yQTWQx/6JyY8/Y9I7zvphNWfvGLi3xtH8Akis5QGfn1wnSiKRWOwpei1GgWxPWxNKiDHJgmBZWRliYmIMt2NjY1FYWGjxOKVSiQ0bNiA/P5/zdZRKJZRKpcmxkpIS0drp6VepQrI8G4ZG2fU5xPrM5gkSfPNxthj3OqyvlrS0rnAr5wbBQnrHDMeaR/3FgHnWqaPLAz4/uU6UMnPezBXTCoQ4SrIgyLKW690YjhXf+fn5GDBgABo25E4ZX7NmDbKyskRvn56nX6XaCkzyABlq1LVW9/yrF2hZacbez2wt2cU8cYJvPk4Ifa/jpfxZKL9r+olYsIa1jsY9Nr6Abqt3PCZnmtXnirU8gK/MnL8EQVdMKxDiKMmCYKNGjXDy5EnD7bKyMsTGxlo8bu/evXjhhResvs7EiRMxYsQIk2MlJSUmSTbO8PSrVL4sz/p/VYHhWkKgx3EtYtdn5pszNU+c0FY0hVwegPptLlrMx9lDSI9U32PjC+i2erx8z70q0vIAa+Xk7C0z5+2oHBzxVJIFwZ49e2Lp0qWoqKhASEgIdu/ejfnz55s8hmVZnDlzBo899pjV1wkPD0d4eLhUzfT4q9Thke2w5s4RqAPu9aIVOhYTm/fElsr/2awEU8URIO35zHzzh/pNdU3mzQYMkWwOydyNuxWYHj/ZakC3lgij7/HyXQysPn2Td3mA0PnCAJHKzAH+s9bOXz4n8QyS9gQzMjKQnp4OtVqN0aNHIy4uDlOnTsWMGTPQsWNHVFRUQKFQICgoyPYLSsiTr1If+ukwRupuY1fDergpD0CERoekG3fwUPlh3Ii1fSK1NsQp9DPb6k1JsbM4V3Di0jA0ymZA5+vx8j1Xm1xsdXkAZzmxvd/iy0uWPeABrXqLUmbOX9ba+cvnJJ6DYbkm7zzc1atXkZiYiH379qFZs2bubo6BFFewFxeOBnc9UQYfxLXj7TFZW29oj7r5OY5lBeoQVP/UT7KiyuY7XhiXTQP4P5vQ3TJssdbbm7Jgt0kvURb1J+dcqL59YmSHWvsdokOjDD1yX+Avn5N4Dr+rGCMVqa5g+WpP8vWYokUKwlzvwWplUF1uCxbSFVXmKmhgfIHRuUkHw9IHrjWQ+vbeUVchUBaI6fGT7f4urPVyzecFuSrcGC85EaPMnKdnMYvFXz4n8RwUBJ1gfGLmS7d3JhDx1Z683w2L+aEOgepyW2grmhoe44qiysZBke+CwxXVScyzYp1ZHymUp2cxi8VfPifxHH65s7wYDl0+jmXH1hp2GreW7WdP/U4u9Tv0RXTKi5CHRwNgIA+PRnTKiy4tw9WnRTd8mroQOWOWofqnfiYBUM+RosqO4gt0ruhJpCe3R5BCZrjNqoI5HyfmiXtsHP/O977CXz4n8RzUE3TQ6pObLBZpc3EkC9CctdqT7kgiEKuosi182Zd8gc4VPQnzcmIhFR1MaqYC4p+4PT2L2Rah8+Xe/jmJ9xEUBEeMGIFx48Zh6NChCAkR92TnDmKUw7qjVgoqayLlejB3FCZOT26PJTk/QaO9l6wjlzF2F1XmY2szV75A56p1n+bzha5I6/fkLGY+9l6seevnJN5JUBCcPXs2cnJysGTJEgwaNAhjx45F27ZtpW6bJMTaLVunCkaAjSLPQF2CilTclURgnk/saH6xtcBhq1pL5yYdOJcddG7SwW09CTpxW0e7SBBPJigIdu7cGZ07d4ZSqUR+fj6mTZuG2NhYPPPMM0hOTpa6jU4zPtlCHQJN/baAk4kdIRUdUBP7o0lWIMsCxpXh5AEySecyrPWIGqi1uLL0BUn2rftyx1lodaZRT6tj7f7++HoHtjZz/fFaEef9+uPeHJDEKtrtSSjjk3gywXOCSqUSW7duRW5uLurXr4/k5GRs3boVBw4cwKJFi6Rso1MsdmFQVEPRsu5kaZzgYW9ix7N9BiFrrwasfgsfjRyMTGMyRCrFCkzjk2RY2wZApNmJhGXxUFUtNMo7KN++HABEDYTlldWQRf1Ztyzgr62LNMUPopwjWYYPX+8gOrIf77yjr55UxRql8DSU8Uk8maCsjX/84x9ITExEYWEh5s6di82bN+OZZ55BVlYWCgoKJG6ic7hOtoxMB3nz8ybH7E3seKJLc0wfMAThV5JRe2IwZFDAPAdGy2oNuxmIQX+SvF5ZDRaAOvSa5YMYBufC6irwsJpaVB7IFu39AaBB83IoWhYhIKgGDAMEBNVA0bIIDZpbrmXkwxfIzLMvAdPNXK2dPPXHC04VY8qC3XjyH1sxZcFuFJwqtqtt7sI3DOzNKOOTeDJBPcG2bdti1qxZiIoyPfnI5XKsW7dOkoaJxdrJ1nhtlyO7ZQOmyRFP5+zkfIyzSySMCd2/76b8XjTWKG+I9v4AoGh+HrUa02QfRqaDwuyiwha+3oGtzVz5kl+8uTdlaxjYW1HGJ/FkgoLgyZMn8eKLL5oce/rpp7Fhwwa0bt1akoaJxdrJNkATAgYQbd6FUYeAVVierBi1eNm0QvfvizAKUvJw7i2qHFWlUdp13BpbWZx8NUn5TqpT1u4WZQskW/jm7hyd13PV8hN38OZ5WuLbeIPgjBkz8Pvvv6O4uBipqamG4xqNBgEB3rHO3lom4cCHuuK5CeINx9RebmtRP5LVBkB1WbwsWiH79yl0LJJu3AFwr7KMmMSa33G2d2DtpOqK3hRfbxOAwz1R862pAMdHKQghwvAGwddeew1//PEHZs+ejdmzZxuOy2Qyr1kiYSuTUCxRbGtU/A6LhJEoVryesq39+6IUoRhUfged7qggD4+WJDtUzHV49vQOhK7Dc0VvytbcnaM9UVvDwIQQ8fEGwWbNmqFZs2bYtWsX567w3sDanJyYc3WAPkCpUHv6XpZkkEKG9KfEu4rnPEmKsH+fPdwxv2PPYmtX9KYc6W0K7YlKsTUVIcQ63iA4duxYrFu3Dp07dzYJgizLgmEY/Pjjj5I30FlibmrKx1VX8Z5wknT1/I49i61d8TvY6m16+rwebVpLyD28QXDJkiUAgG3btrmkMVKwVrZMinJmnhCgfJG96wKl/h1s9TY9eV6PNq0lxBRvEPz55595n3zfffeJ2RZJRFtJ5JCynBkRl6ctthbS2/TUeT0qYUaIKd4guHbtWqv3MQyDQYMGid4gsbmqoDKRjif+hny9TU8eEfDVajuEOMrhIOgthCRy0ByJZ6PF1uLxtF41Ie7GGwQXLlyIWbNmWSyU11u+fLkkjRIbXyIHzZF4B1u/IQVIYTyxV02IO/EGwR49egAAkpKSXNIYd6A5Eu9GFzH2oV41IaZ4g2D//v0B1G2qW1lZiZ9//hlyuRydOnVCeHi4SxooNZojEZere2V0EWM/KmFGyD2CFssVFBRg8ODBWLVqFZYtW4YhQ4bgxIkTUrfNJWztSECE0/fKyu9WgMW9Xtmhy8c5Hy/Gbg90EUN8SWFhIebMmQMA+OWXXzBjxgzBjxfjcf5IUBBcsmQJvvrqK3z11Vf4+uuvsWLFCrzzzjtSt80laJsX8fD1ysyZbwulr7FpbyCkixjiS3799VeUlpYCADp27IiPP/5Y8OPFeJw/ErSLBMMwJrVCH3nkEbBS7BjrBlLNkfhjsoY9vTK++pv2LC+gRA/iDXQ6Hd5++22cPn0aVVVVYFkWCxYswMaNG3Hz5k0UFxejU6dOOHLkCG7fvo033ngDw4cPx/z587Ft2zacPHkS7777LnS6uiIfL7zwAuLi4vDxxx8bHm+tY3Lt2jWLx+Xk5GDt2rUICAhAdHQ0Zs+ejZYtWyIzMxMMw+C3335DRUUFevXqhbfeegsKhcLqZ9NqtVi0aBH279+P+vXrIy4uDr/99hvWrl2L27dvY+HChTh//jzUajV69OiB1157DXK5HB07dsTzzz+Pw4cPo6ysDOnp6Zg0aRLy8vKQm5uL6upq1KtXD2vXrsXGjRuxbt066HQ6REREYPbs2aLtYMQbBG/evAkA6NChA1atWoW0tDQEBAQgLy8P8fHxojTAE4g9R+ILyRqOBHF70u/F2u2BEj2INzh9+jTKysqQk5ODgIAArFy5Ep999hkiIiJQU1OD7du3AwDy8vKwa9cuvPPOOzh27Jjh+UuXLsXkyZORkpKCc+fOIScnB0lJSZgxY4bh8dY0adLE5HFHjx7F559/jpycHERFRSEvLw8vv/yyoQ3nzp3DV199BYVCgSlTpiAnJwcTJkyw+vobN27EmTNnsG3bNjAMg2nTphnue/vtt/HII4/g3XffhVarRWZmJlavXo2pU6dCpVIhMjIS69evR1FREcaOHYuxY8cCqOu57t+/H/Xq1cPx48exZcsWZGdnIyQkBN9//z3+9re/4dtvv3XqN9HjDYLx8fFgGMbQ63v//fcN9zEMg9dff12URvgab0/WsCeIGwfLeoFhkDEyaNl7PTxrvTIxd3ugRA/i6R577DE0aNAA69evR3FxMY4dO4awsDBERESgS5cuNp+fnJyMefPmYf/+/ejZsydeeeUVh9ty6NAhDBkyxLBJ+siRI7Fw4UJcvXoVQF0iZFhYGABg2LBh2LdvH28Q/O677zBs2DAEBQUBAMaMGWNYY15QUIBffvkFubm5AICaGtP9TxMTEwHUjS6qVCrcvXsXANCuXTvUq1fP8BqXL19GWlqa4Xm3bt3CzZs3ERER4fD3oMcbBM+dO+f0G/gjb0/WEBrEzYPlbVUV5AEy1JOHoUpdxdsro73ziD8pKCjAwoULMXnyZCQmJqJVq1b45ptvAAChoaE2n5+WloaEhAQcPnwYhw4dQlZWluH59uKaymJZFhqNBkDdVnnGx23tHSuXm4YR48frdDosWbLEMHSpVCpNNmPQB079MX3bjL8TnU6HYcOGYebMmYbbZWVlaNCggY1PKoygxBiVSoU9e/Zgy5Yt2LJlCzZt2oTFixeL0gBXECML0R7enqwhNIhzBUuNTotgRRByxizDp6kLrfbQnujSHNOf6oSYyBAwAGIiQzD9qU4eW26MEGccPnwYCQkJGDduHDp27Ii9e/dCq9VaPE4mkxmCkbG0tDScPXsWI0eOxPz586FUKnHr1i2rj+d73d69e+Pbb79FRUXdv+dNmzYhIiICLVq0AADs2LEDKpUKtbW12Lx5MxISEnhfu1+/fvjmm2+gUqmg0WiwefNmw329e/fGF198AZZloVKpMG3aNHz11Vc222usV69e2L59O8rKygAA69atw8SJE+16DT6CEmMyMjJQXFyM69ev4+GHH8bp06fRrZt3DD/x7QIu1QnX25M1hM7tOdvj9eQam4SIKS0tDa+++ipSU1Mhk8nw+OOPY/fu3WjWrJnJ4x577DF89NFHePnll5Genm44/uqrr+Ltt9/GRx99hICAAEyfPh3NmjWDTqczPP6TTz6x+v7Gr/vJJ59g0qRJmDhxInQ6HaKiorBixQpDDy44OBjjxo2DUqlEUlISRo0axfvZRo4cid9//x3Dhw9HaGgomjVrhpCQummNWbNmYeHChUhNTYVarUbPnj3x3HPP2fXd9enTB1OnTsWUKVPAMAzq1auHrKws0fa4ZVgBaZ79+/fH7t27MXfuXEyePBksy+Jf//qX22qLXr16FYmJidi3b5/FH5G5KQt2c849xUSG4D9vSVcA3JuzQ82HOYG6IP5C1/Emn+Gl/FlWd+j4NHWhS9pKCBFPZmYm2rZti2effVbwc77//nvcuHEDw4bVXeQvWLAAQUFBhuFLTyeoJxgbGwu5XI4HHngA58+fR3JyMqqrbWfx5efnY9myZVCr1Zg0aRLGjx9vcv/Fixfxz3/+E7du3UJMTAz+/e9/izbOqydWFqK9vDlZQ2jGpbf3eAnxFRcvXkRGRgbnfS1btsRHH33k1OuPGzcOVVVVnPd9+umnWLVqFVatWgWtVouHHnoIc+fOder9XElQEAwNDUV+fj4eeughbNiwAa1atTIsn7CmtLQUixcvRl5eHgIDA5GWlobu3bujTZs2AOomQKdNm4ZZs2ahb9+++OCDD7By5UrRrx7EzEL0Np+fXIe9F7+HjtUhgAnAgFa98dzjYwU9V0gQp+UJhHiGVq1aYetWy6IU9nr33Xc5j3/99de8z1u9erXT7+0ugoLgnDlzsGHDBsycORO5ubmYMGGCzRTdI0eOID4+3pDCmpSUhJ07d2L69OkAgDNnziA0NBR9+/YFALz44otQKpUWr6NUKi2Ol5SUCGk2gL+yEPd+CzQ5ByawBqwqGLj2ENIHDBH8Gt7o85PrsPu3g4bbOlZnuC00EArhzT1eQggRFAQfeOABvPbaa1AqlYK71WVlZYiJiTHcjo2NRWFhoeH2lStXEB0djddffx3//e9/8eCDD2L27NkWr7NmzRpkZWUJek8usuhrCGxZBA1blxnFBNVA3rIIsujHAPhuUsbei99bPS5mECSEEG8maInExYsXkZKSgpSUFJSWliI5ORm//fYb73O48m2Ms3k0Gg2OHz+OCRMmID8/H82bN+fsik+cOBH79u0z+S87O1tIswHUDdXpA6DhvVkNZz1LX6JjdXYdJ4QQfyQoCC5YsABvvvkmGjZsiEaNGmHChAk2K5I3atQI5eXlhttlZWWIjY013I6JiUGLFi3QsWNHAMDQoUNNeop64eHhaNasmcl/jRs3FvThAO9fuO6oAIb7p7V2nBBC/JGgM+LNmzfRq1cvw+3x48fjzp07vM/p2bMnjh49ioqKClRXV2P37t2G+T+gbt1KRUWFoSrN/v378cgjjzjyGXh5+8J1Rw1o1duu44QQ4o8Edwtqa2sNw5nXr183VDO3plGjRsjIyEB6ejqGDx+OoUOHIi4uDlOnTsUvv/yC4OBgfPLJJ3jrrbeQkpKCY8eOITMz07lPw8Fft0p67vGxGNS6r6HnF8AEYFDrvg7NB94uOogrS1/AxYWjcWXpC7hddND2kwghbvfxxx8jMTHRq7M3pSZosXxubi62bNmCK1euYNiwYdi+fTuee+45jBs3zhVttGDPYnnAuxeuu9vtooMo374crKbWcIyRByE65UXU79DX4vH0XbsHfe/eoeBUMb7ccRblldWIjgxBenJ7SasmJSYm4vPPP0fLli0lew9vJygIAsCJEydQUFAAnU6H3r17mwyPupq9QZA47srSF6BRllscl4dH4/6/rTA5JrTSDBEXfe/ewbyEI1BXNF6MmrkajQZz587FhQsXUF5ejpYtW6Jp06bIy8vD/fffjw8//BCTJ0/GI488gvLycuTm5mLVqlX45ptvIJPJ0KtXL8ycORPXrl3DtGnT0Lx5c1y+fBlNmzbF+++/j4iICBw4cAAfffQRdDodmjdvjnnz5iE6Ohr9+/dH//79cfLkSQB12yc9/PDDTn0eVxI0HHrnzh38+OOPmDlzJiZMmICCggLDlhfEt2mUNwQft2dneWe5uii6J3Pl904cx7eRtLN++uknKBQK5OTkYM+ePaitrUWvXr0QGxuLlStXon379qisrMTzzz+PrVu34siRI9i/fz/y8vKwefNmXL58GevXrwcAnD9/HhMnTsT27dvRunVrZGVl4caNG5gzZw4++eQT5Ofno3Pnzpg3b57h/SMiIrBlyxbMmDHD67bYExQE33jjDUOFmPDwcDAMw7mmj/geeXhDwcddlYmrv6K+XlkNFveKovtrIPTXDGhvI2UJx65du2LcuHHIzs7GwoULcenSJc6OSqdOnQAAP/zwA1JSUhAcHAy5XI5Ro0bh6NGjAOrWhXfv3h0AMHz4cPzwww8oLCxEXFycYeRtzJgx+OGHHwyv+/TTTwOoqzNdWlpq2KHCGwgKgpcuXTJE9/r16+PNN9/EhQsXJG0Y8QyRCePByINMjjHyIEQmjLd4rKsycaW8ovZG/poB7W2slWoUo4Tjvn378OqrryI4OBgjR45E165dOddqBwcHAwBnYqN+qyXj/QFZloVMJrN4vPH+g+bP0el0JnsSejpBQVCj0ZgsiaiqquL8gonvqd+hL6JTXoQ8PBoAA3l4tNWkmLFxwyBjTP/4ZYxM9ExcdxVF91TuzICmzGHh0pPbI0hh+u9DrI2kjx49iuTkZIwaNQrR0dE4ceIE536FevHx8di+fTtqamqg0WiwadMmxMfHAwB+//13nD1bd0G5adMm9O3bF506dcLp06cNu8/n5OQYeosAsH37dgDAnj170Lp1a9E3QpCSoLJpw4cPx1NPPYXBgweDYRjs2bMHI0eOlLptxEPU79CXM+hxYRgArNltkflzUXQu7ipkbp45rFGWo3z7cgAQ/PfiT/TJL1Jkhz711FN49dVXsXPnTgQGBuLRRx81BCwuCQkJOHv2LEaNGgWNRoM+ffpgwoQJKCkpQYMGDfDxxx/jypUraNeuHRYsWIDQ0FDMmzcP06dPh1qtRtOmTbFw4b3t0n788Ufk5uYiJCTEahFuTyU4O3Tfvn04evQo5HI5evTogX79+kndNqsoO9QzuWp/QSmz7Ihw9mQOE+9w9epVpKenY//+/YKf079/f3z55Zdeey4W1BME6nb3ffzxxw3DoDdv3jTsEEGk5S1rwFyVoGHritpbvi9vZ0/mMCGeSlAQXLNmDT788EOo1WoAdZOiDMMYxo2JdMzXgJXfrcCKE3UFxD3txN4wNIqzJyhFgsYTXZpz9vq86fvydvLwhlZ6gtwZxcTzNWvWzK5eIAC7H+9pBCXGrF27FuvWrcPZs2dx9uxZnDt3jgKgi3jTGjBPKFHnTd+Xt7Mnc5gQTyWoJxgTEyNJcWtimzetAfOEnea96fvydvU79MXZ329AfnoLGuAObqEeNA8PR0tKiiFeRFAQ7NWrF77++mskJiYiKOjelR/NCUrPlUOMYnD3TvPe9n15s4JTxcg6rECt+l6meNBhGaY3LaYEJeI1BA2Hrly5EvPmzUO/fv0QHx+P+Ph49OjRQ+q2EXjGEKM3oe/LdahoAfEFgnqCXJvdEtfwhCFGb2Lv90WZpI6jogWer7S0FG+99RY+++wzp19ryZIl6NChAxITE0VomecQtE5QpVLhu+++Q1VVFQBAq9XiypUryMjIkLyBXGidIBED7b7gnCkLdnMWLYiJDMF/3hrkhhYRYj9BPcGMjAwUFxfj+vXrePjhh3H69Gl060YnCeLd+DJJKQjalp7cnrNogRhlwHzV7aKDqDyQDY3yBuThDRGZMF6U6jrHjh3DihUrEBwcjN9++w3t2rXDBx98gLKyMsPi95KSErz66qu4desWHnzwQZw4cQIHDx5EVVUV5s2bhwsXLkCr1WLq1KkYOnSoYYeJmzdvIiEhAWVlZejWrRtGjhyJxYsX4+jRo7h16xYiIyOxdOlSxMTEoHfv3khKSsKpU6cgk8nw0UcfoXlz0/lha1sv/f7775gzZw5u3ryJ0NBQzJo1C3FxccjMzATDMDh//jzu3LmDadOmYfjw4U5/Z3qC5gTPnj2LvLw8JCYm4s0338T69etx+/Zt0RpBiDtQJqlznujSHNOf6oSYyBAwqOsBUtUe6/Rl5urWVrKGMnNi1Vv96aefMGfOHOzYsQN//vknvv/+e5P7Fy5ciOTkZOTn52Pw4MEoLS0FACxbtgyPPPII8vLykJ2djeXLl6O4uG5HltLSUmzevBmvvPKK4XUuX76MixcvYv369di1axfuv/9+5OfnAwCuX7+OHj16YMuWLejatSuys7M528q19dLMmTPxzDPPID8/H2+88Qb+/ve/Q6VSGdqxfv16rFmzBosWLcL169dF+c4AgT3B2NhYyOVyPPDAAzh//jySk5NRXU3j/v7KV+bR3JVJ6ivfH2C9aAGxVHkg21BnVY/V1KLyQLYovcG2bduicePGAIDWrVvj1q1bJvcfPnwY77zzDgBg4MCBCA8PBwAcOXIENTU12LRpEwDg7t27hl2CHn74YZMdIgCgRYsWeP3117Fx40b8/vvv+Pnnn3H//fcb7u/Tp4+hPfrenjnjrZcyMzNRUlKCK1euYNCgumH0Rx99FA0aNMDFixcBACNHjoRCoUDjxo3RuXNnnDp1CoMHD3bwmzIlKAiGhoYiPz8fDz30EDZs2IBWrVoZ9hck/sWXKrKMjRvGOScoZSapL31/xD5Sl5kzXr7GMIzFTj8ymYxz9x+dTof333/fsBa8vLwcDRo0QH5+vmHrJWNFRUX4xz/+gUmTJiEpKQkBAQEmr6tvB1cb9My3XtJqtRaPZVnWsBOG8dZMOp3OIjA7Q9Bw6Jw5c3Du3Dn07t0bMpkMzzzzDJ599lnRGkG8hy9VZOnTohte6Doe0aFRYFBX6FvqpBhf+v6IfezZoFoKPXv2NAxbfvfdd1AqlQDqtlVat24dAKCsrAxPPvkkrl27ZvV1Tpw4gW7dumHs2LFo06YNDh8+zLttExfzrZfuu+8+NG/eHLt37wYA/PzzzygvL0fbtm0BADt27ADLsvjjjz9QWFiILl262PfhefCG02eeeQaM0V446enpYFkW7dq1w44dOzB27FjRGuINXDWMVXCqWJLtVsTga/Norl7c72vfHxEuMmG8ydZTgGvLzL355pt4/fXXsWHDBjz00EOG4dDp06dj7ty5GDp0KLRaLWbOnIn777/f6lDmkCFDMH36dKSmpkKhUKBdu3a82zZx4dp66f3338fcuXOxdOlSKBQKLF26FIGBdWt+a2pqMGrUKKhUKsybNw+RkZFOfBOmeJdI7Nq1C0BdtL5z5w5GjRoFmUyGrVu3Ijw8HPPnzxetIfZwxxIJV6XTe/o2Qa7aLslX0ffn36TKDhXiyy+/RM+ePdGmTRucOXMGs2fPRl5enkve25i9Wy9lZmYaslKlwNsTTEpKAgCsWrUK69evR0BA3ejpE088gTFjxkjSIE/lqnR6viocnhAE3TGP5kvo+/Nv9mxQLbYWLVrglVdeQUBAAIKCgtzWifE0gmYXKysrUVtbi5CQup27q6qqLDKPfJ2rhrE8vQoHVbBxji9/f548jE+Afv36uXUzdD17t16Seqd6QUFw6NChePrppzFw4ECwLIudO3caUlz9havS6aMjQzircERHhoj6Ps5wd5Fsb+eL35/5MP71ympkbTwNABQIiUcTlB3697//HX//+9+hVCpx+/ZtZGZm4rnnnpO6bR7FVYWZ05PbI0ghMznmL1U4Dl0+jpfyZ2FMzjS8lD8Lhy4fd3eTiEBUTJt4K8GLLQYMGIABAwZI2RaP5qphLP1Vs78NK9H6Oe8m5jC+LxUTIJ5PvBWHfsBVw1j+WIWD6nh6N7GG8eliiLiaoOFQQqTmTOIRDaO6n1jD+FRMgLgaBUHiEawlGNlKPNL3HMrvVoDFvZ4DBULXEquYNhUTEN/HH3+MxMRErF692unXWrp0KZYuXSpCq/hdvXoV/fv3t+s5/fv3x9WrV5GXl4fMzEzBz5N0ODQ/Px/Lli2DWq3GpEmTMH68aWWErKwsbNq0yVC54Omnn7Z4DPEPjq6fo2FUzyHGML67ipq7ijvmO7du3YrPP/8cLVu2lPR9vJVkQbC0tBSLFy9GXl4eAgMDkZaWhu7du6NNmzaGxxQVFeHf//43HnvsMamaQbyEo4lH1HPwLb5cTEDK+U6NRoO5c+fiwoULKC8vR8uWLZGVlYW3334bpaWlePnll/Hhhx9i8uTJeOSRR1BeXo7c3FysWrUK33zzDWQyGXr16oWZM2eaFKsGgM8//xwbNmxAZGQkwsPDERcXBwD46quvsHXrVlRXV4NhGHz00Udo3bo1+vfvjyeffBLff/89qqur8d5776FDhw44e/Ys5syZg5qaGjRo0AAffPABGjdujJUrV2LHjh3QarXo3bs3Zs6cCaCuVFpGRgYuXLiA8PBwfPLJJ4iMjLT6vo6SbDj0yJEjiI+PR0REBEJDQ5GUlISdO3eaPKaoqAifffYZUlNTMW/ePNTW1lq8jlKpxNWrV03+KykpkarZxI36tOiGT1MXImfMMnyaulDQicHRYVTimdxR1NxVpJzv/Omnn6BQKJCTk4M9e/agtrYW3333HebNm4fY2FisXLkS7du3R2VlJZ5//nls3boVR44cwf79+w2b516+fBnr1683ed1ffvkFmzZtwubNm7F69WrDuffOnTvYu3cv1q5di23btmHAgAH4+uuvDc+LiIhAbm4u0tLSsGLFCgDAq6++ipdeegn5+fkYMmQI1qxZg4MHD6KoqAi5ubnYsmULSktL8c033wAAKioqMHnyZGzbtg3R0dH49ttvbb6vIyTrCZaVlSEmJsZwOzY2FoWFhYbbVVVVaN++PV5//XXcd999yMzMxKeffoqMjAyT11mzZg2ysrKkaibxcr7cc/BXvlhMAJB21KJr166IiIhAdnY2Ll68iEuXLuHu3bucj+3UqRMA4IcffkBKSophu6RRo0Zhy5YtJlNSx48fR79+/RAWFgYAGDx4MHQ6HerVq4cPP/wQ27dvx6VLl3Do0CG0b38vCcp4T8Hdu3ejoqIC169fR0JCAgBg3LhxAID33nsPhYWFhrqgNTU1aNq0Kbp06YLY2FhDr7NNmzaorKy0+b6OkCwIctXlNt6RIiwsDJ999pnh9pQpU/Dmm29aBMGJEydixIgRJsdKSkrcMndIZaE8jy+XISO+Rcr5zn379uHjjz9Geno6Ro4cicrKSqt7+emDnk6ns7hPo9GY3GYYxuRxcrkcKpUK165dwzPPPIMJEyagb9++iI6Oxtmz9wojGO8pCAAKhcLkdWtra1FWVgatVouJEydi8uTJAOpG/mQyGSorK032DNTvTWjrfR0h2XBoo0aNUF5ebrhdVlaG2NhYw+0///wTubm5htssy3JulBgeHo5mzZqZ/KffPdmV9GWhrldWg8W9slAFp4pd3hZiypFhVEJcTcqqU0ePHkVycjJGjRqF6OhonDhxwuYef/Hx8di+fTtqamqg0WiwadMmxMfHmzymR48eKCgowO3bt1FbW4s9e/YAqBsmbdGiBSZNmoROnTrh4MGDvO9Xv359NG7cGIcPHwZQl6yzZMkSxMfHY+vWraiqqoJGo8HLL79s2L2Ii73vK4RkPcGePXti6dKlqKioQEhICHbv3m1StTw4OBjvv/8+unfvjmbNmiE7OxsDBw6UqjlO85TdHaiaBiHeScpRi6eeegqvvvoqdu7cicDAQDz66KM29/hLSEjA2bNnMWrUKGg0GvTp0wcTJkwweUz79u0xceJEjB49GuHh4WjatCkAoFevXli3bh2GDBmCwMBAxMXF4cKFC7zvp98vcNGiRYiMjMSiRYsQGxuLc+fO4emnn4ZWq0WfPn0wYsQI/PHHH5yv4cj72sK7n6Cz8vPzsWLFCqjVaowePRpTp07F1KlTMWPGDHTs2BG7du3C0qVLoVar0blzZ/zrX/8ybKLIxx37CT75j63g+qIYAN986Jr5J1ftaUgIIf5C0nWCqampSE1NNTlmPA+YlJRk2LPQ03nC7g6+vibOnRuOAtTLJsQfUe1QG/QnxjttKxCsCoH6SltoK+qGBFy9u4Mvr4m7XXQQ5duXg9XULZPRKMtRvn05ALgkEFLNSkL8E5VN42FckgsAmMBqBLY6A1nUnw6XhXKGL6+JqzyQbQiAeqymFpUHsl3y/lSzkhD/RD1BHlwnRgRo0TTuKj5Nneby9vjymjiN8oZdx42JMYzpy71sQoh1FAR5eNqJ0ZVr4lw9PyYPbwiNspzzOB+xhjF9vWYlIYQbBUEennhidEU1DXfMj0UmjDeZEwQARh6EyAT+oghiJQv5ci+bEGIdzQnykHJxqydzx/xY/Q59EZ3yIuTh0QAYyMOjEZ3yos2kGLF6675cs5IQYh31BHn4a0kudw0D1+/Q1+5MUDF7675as5IQYh0FQRv88cToicPA1tAwJiHEGTQcSix40zAwDWMSQpxBPUFiwduGgf2xt04IEYdfBEEqh2U/CiyEEH/g80GQymERQgixxufnBKkcFiGEEGt8Pgh6WtUXQgghnsPng6AvF50mhBDiHJ8Pgt6U7k8IIcS1fD4xxtvS/QkhhLiOzwdBgNL9CSGEcPOLIEiINbSGlBD/RkGQ+C1aQ0oI8fnEGEKsoTWkhBAKgsRv0RpSQggNhxK3cfd8nDdtGUUIkQb1BIlb6Ofjyu9WgMW9+bhDl4+7rA20hpQQQkGQuIUnzMfRXoSEEBoOJW7hKfNxtIaUEP9GPUHiFlTTlRDiCSgIEreg+ThCiCeg4VDiFlTTlRDiCSgIEreh+ThCiLtJOhyan5+PIUOGYODAgcjOzrb6uIKCAvTv31/KphBCCCEWJOsJlpaWYvHixcjLy0NgYCDS0tLQvXt3tGnTxuRx5eXleO+996RqBiGEEGKVZD3BI0eOID4+HhEREQgNDUVSUhJ27txp8bi33noL06dPl6oZhBBCiFWS9QTLysoQExNjuB0bG4vCwkKTx3z55Zd4+OGH0alTJ6uvo1QqoVQqTY6VlJSI21hCCCF+SbIgyLKsxTGGYQz///z589i9eze++OIL3qC2Zs0aZGVlSdJGQggh/k2yINioUSOcPHnScLusrAyxsbGG2zt37sT169cxatQoqNVqlJWVYdy4cfj6669NXmfixIkYMWKEybGSkhKMHz9eqqYTQgjxEwzL1WUTQWlpKcaOHYvc3FyEhIQgLS0N8+fPR1xcnMVjr169ivT0dOzfv1/Qa1+9ehWJiYnYt28fmjVrJnbTCSGE+AnJEmMaNWqEjIwMpKenY/jw4Rg6dCji4uIwdepU/PLLL1K9LSGEECKYZD1BKVFPkBBCiBiodighhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiAhhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C1Jg2B+fj6GDBmCgQMHIjs72+L+PXv2IDU1FSkpKcjMzIRKpZKyOYQQQogJyYJgaWkpFi9ejK+//hpbt25FTk4Ofv31V8P9d+/exbx587B69Wps374dtbW12Lx5s1TNIYQQQixIFgSPHDmC+Ph4REREIDQ0FElJSdi5c6fh/tDQUOzfvx/R0dG4e/cubty4gfDwcKmaQwghhFiQS/XCZWVliImJMdyOjY1FYWGhyWMUCgW+++47vPbaa4iNjUXv3r0tXkepVEKpVJocKykpkabRhBBC/IpkQZBlWYtjDMNYHOvXrx+OHTuGf//735g7dy4+/PBDk/vXrFmDrKwsqZpJCCHEj0kWBBs1aoSTJ08abpeVlSE2NtZw++bNmygqKjL0/lJTU5GRkWHxOhMnTsSIESNMjpWUlGD8+PEStZwQQoi/kGxOsGfPnjh69CgqKipQXV2N3bt3o2/fvob7WZbFzJkz8eeffwIAduzYgc6dO1u8Tnh4OJo1a2byX+PGjaVqNiGEED8iaU8wIyMD6enpUKvVGD16NOLi4jB16lTMmDEDHTt2xPz58/HCCy+AYRi0adMG//rXv6RqDiGEEGKBYbkm7zzc1atXkZiYiH379qFZs2bubg4hhBAvRRVjCCGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8lmS1Qwkxd7voICoPZEOjvAF5eENEJoxH/Q59bT+REEIkQkGQuMTtooMo374crKYWAKBRlqN8+3IAoEBICHEbGg4lLlF5INsQAPVYTS0qD2S7qUWEEEJBkLiIRnnDruOEEOIKFASJS8jDG9p1nBBCXIGCIHGJyITxYORBJscYeRAiE8a7qUWEEEKJMcRF9MkvlB1KCPEkFASJy9Tv0JeCHiHEo9BwKCGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/JZXrhPUarUAgJKSEje3hBDirxo3bgy53CtPocSIV/6C169fBwCMH08ltwgh7rFv3z40a9bM3c0gTmJYlmXd3Qh71dTUoKioCDExMZDJZFYfV1JSgvHjxyM7OxuNGzd2YQupPY7ytDZRe2zztDa5qj3UE/QNXvkLBgcH4/HHHxf8+MaNG3vUFRu1xzZPaxO1xzZPa5OntYd4JkqMIYQQ4rcoCBJCCPFbFAQJIYT4LZ8OguHh4Zg+fTrCw8Pd3RQA1B4hPK1N1B7bPK1NntYe4tm8MjuUEEIIEYNP9wQJIYQQPhQECSGE+C2fDYL5+fkYMmQIBg4ciOzsbLe1486dOxg6dCiuXr0KADhy5AhSU1MxaNAgLF682KVtycrKQkpKClJSUrBo0SK3twcAlixZgiFDhiAlJQWrV6/2iDYBwHvvvYfMzEwAwNmzZzFq1CgkJSVh1qxZ0Gg0Lm1Leno6UlJSMGzYMAwbNgynT59269/3/v37MXLkSAwePBgLFiwA4L7fbOPGjYbvZdiwYejSpQvmzZvnEX9DxEuwPqikpIRNSEhgKysr2aqqKjY1NZW9cOGCy9vx888/s0OHDmUfeeQRtri4mK2urmb79evHXrlyhVWr1eyUKVPYgoICl7Tl8OHD7JgxY9ja2lpWpVKx6enpbH5+vtvaw7Ise+zYMTYtLY1Vq9VsdXU1m5CQwJ49e9atbWJZlj1y5AjbvXt39vXXX2dZlmVTUlLYn376iWVZln3jjTfY7Oxsl7VFp9OxvXr1YtVqteGYO/++r1y5wvbu3Zu9du0aq1Kp2LFjx7IFBQVu/81YlmXPnz/PDhw4kP3zzz89oj3EO/hkT/DIkSOIj49HREQEQkNDkZSUhJ07d7q8HRs2bMA///lPxMbGAgAKCwvRokULNG/eHHK5HKmpqS5rV0xMDDIzMxEYGAiFQoHWrVvj0qVLbmsPAHTr1g1ffvkl5HI5bty4Aa1WC6VS6dY23bx5E4sXL8aLL74IAPjjjz9QU1ODRx99FAAwcuRIl7bn4sWLYBgGU6dOxZNPPomvvvrKrX/fe/bswZAhQ9C4cWMoFAosXrwYISEhbv3N9ObOnYuMjAwUFxd7RHuId/DJIFhWVoaYmBjD7djYWJSWlrq8HQsXLjQp7+bOdrVt29ZwIr906RK+/fZbMAzj9u9JoVDg448/RkpKCnr06OH2327OnDnIyMgwpNebtycmJsal7VEqlejRowc++eQTfPHFF1i/fj3+/PNPt31Hly9fhlarxbPPPosnn3wSX3/9tdt/M6DuwrempgbJycke0R7iPXwyCLIcqz4YhnFDS0x5QrsuXLiAKVOm4PXXX8f999/v9vYAwIwZM3D06FFcu3YNly5dclubNm7ciCZNmqBHjx6GY+7+zR577DEsWrQIoaGhiIqKwujRo/Hxxx+7rU1arRZHjx7F+++/jw0bNuCXX34xzHe7oz1669evx+TJkwG4/zcj3sUrC2jb0qhRI5w8edJwu6yszDAk6U6NGjVCeXm54bar23Xq1CnMmDEDb775JlJSUnD8+HG3tue3336DSqVC+/btERISgkGDBmHnzp0mO4O4sk3ffvstrl+/jmHDhuHWrVu4e/cuGIYx+Y6uX7/u0u/o5MmTUKvVhsDMsizuu+8+t/1u0dHR6NGjB6KiogAAiYmJbv3NAEClUuHEiRN49913Abj/3xnxLj7ZE+zZsyeOHj2KiooKVFdXY/fu3ejbt6+7m4VOnTrh999/Nwwpbdu2zWXtunbtGl5++WV88MEHSElJcXt7AODq1at46623oFKpoFKpsG/fPqSlpbmtTatXr8a2bduwdetWzJgxA/3798c777yDoKAgnDp1CgCwZcsWl35Ht2/fxqJFi1BbW4s7d+5g8+bNeP/99932952QkIDvv/8eSqUSWq0Whw4dwuDBg936d/S///0PDzzwAEJDQwG4/++aeBef7QlmZGQgPT0darUao0ePRlxcnLubhaCgILz77rv429/+htraWvTr1w+DBw92yXuvWrUKtbW1hqtlAEhLS3NbewCgX79+OH36NIYPHw6ZTIZBgwYhJSUFUVFRbmsTlw8++ABvvfUWqqqq8PDDDyM9Pd1l752QkGD4jnQ6HcaNG4cuXbq47e+7U6dOeO655zBu3Dio1Wr06tULY8eORatWrdz2mxUXF5vsG+jOf2fE+1DZNEIIIX7LJ4dDCSGEECEoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiDxW5mZmVi1apVdz9m3b59h54SCggIsWbJEiqYRQlzEJ9cJEiKVxMREJCYmAgB++eUX3Lp1y80tIoQ4g4Ig8TjHjh3DokWL0KhRIxQXFyM4OBjvvvsuYmNj8a9//Qvnzp0DwzDo06cPXnnlFcjlcjz88MOYOHEijh07hrt37+KVV17BoEGDkJeXh127dmHFihUAYHFbLzc3Fzk5OVCr1bh16xamTp2KcePGIS8vD7m5uaiurka9evUwYsQI7Nq1Cy+99BLWr18PrVaL+vXro7CwEIMHD8aYMWMAAMuWLUNlZSXefPNNl39/hBDhKAgSj/Tf//4Xb7zxBh5//HGsW7cOM2fORNu2bREREYH8/Hyo1WpMmzYN//nPf/D8889Dq9WiQYMGyMvLw7lz5zBhwgSTHTz4VFVVYePGjVi5ciUiIyPx888/Y/LkyRg3bhwA4Ndff8X+/ftRr1495OXlAairnJKWlobKykpkZGRg7969WL58OcaMGQOdToeNGzfi888/l+z7IYSIg+YEiUd66KGHDEFs1KhROHv2LLZt24YJEyaAYRgEBgYiLS0NBw8eNDxnwoQJhuc++OCDOHHihKD3CgsLw/Lly/Hdd9/ho48+wvLly3H37l3D/e3atUO9evV4XyMhIQHl5eU4d+4cDh06hGbNmqFVq1b2fmxCiItRECQeyXhXAqBu9wTzCn86nQ4ajYbzOTqdDjKZDAzDmDxPrVZbvFdJSQmGDx+OP/74A126dMH//d//mdyvL8xsq71paWnIzc3Fpk2bkJaWZvM5hBD3oyBIPNK5c+dw7tw5AEBOTg46d+6M5ORkZGdng2VZqFQqbNiwAT179jQ8Z8uWLQCAM2fO4Pfff0fXrl0RFRWFCxcuoLa2FhqNBgcOHLB4r6KiIkRFReGll15Cnz59DI/RarW8bZTJZCZB+KmnnsLevXtx5swZDBw40NmvgBDiAjQnSDxSdHQ0PvroI/zxxx+IiorCokWLEBYWhgULFiA1NRVqtRp9+vTBiy++aHjOjz/+iA0bNkCn02Hx4sVo0KABevXqha5duyI5ORkxMTHo3r07/ve//5m8V69evZCbm4vBgwcjJCQEcXFxiIqKwuXLl3nb2KNHD/ztb3+DQqHA7Nmz0bBhQ3To0AGtW7eGQqGQ5HshhIiLdpEgHufYsWOYP38+tm3bJvg57dq1w9GjRw2bvbpDRUUFRo8ejezsbDRp0sRt7SCECEfDoYSIYMOGDRgyZAjS09MpABLiRagnSAghxG9RT5AQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/Nb/AzTNtGFHfP2fAAAAAElFTkSuQmCC", + "text/plain": [ + "
            " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.FacetGrid(df, hue=\"artist_top_genre\", size=5) \\\n", + " .map(plt.scatter, \"popularity\", \"danceability\") \\\n", + " .add_legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.9" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "c61deff2839902ac8cb4ed411eb10fee", + "translation_date": "2025-09-04T02:00:01+00:00", + "source_file": "5-Clustering/1-Visualize/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fa/5-Clustering/2-K-Means/README.md b/translations/fa/5-Clustering/2-K-Means/README.md new file mode 100644 index 000000000..e619c111d --- /dev/null +++ b/translations/fa/5-Clustering/2-K-Means/README.md @@ -0,0 +1,261 @@ + +# خوشه‌بندی K-Means + +## [پیش‌آزمون درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/) + +در این درس، یاد می‌گیرید چگونه با استفاده از Scikit-learn و مجموعه داده موسیقی نیجریه‌ای که قبلاً وارد کرده‌اید، خوشه‌ها ایجاد کنید. ما اصول اولیه K-Means برای خوشه‌بندی را پوشش خواهیم داد. به یاد داشته باشید، همانطور که در درس قبلی یاد گرفتید، روش‌های مختلفی برای کار با خوشه‌ها وجود دارد و روشی که استفاده می‌کنید به داده‌های شما بستگی دارد. ما K-Means را امتحان می‌کنیم زیرا این رایج‌ترین تکنیک خوشه‌بندی است. بیایید شروع کنیم! + +اصطلاحاتی که با آن‌ها آشنا خواهید شد: + +- امتیاز سیلوئت +- روش آرنج +- اینرسی +- واریانس + +## مقدمه + +[خوشه‌بندی K-Means](https://wikipedia.org/wiki/K-means_clustering) روشی است که از حوزه پردازش سیگنال مشتق شده است. این روش برای تقسیم و دسته‌بندی گروه‌های داده به 'k' خوشه با استفاده از یک سری مشاهدات استفاده می‌شود. هر مشاهده تلاش می‌کند یک نقطه داده را به نزدیک‌ترین 'میانگین' یا نقطه مرکزی یک خوشه گروه‌بندی کند. + +خوشه‌ها را می‌توان به صورت [نمودارهای ورونوی](https://wikipedia.org/wiki/Voronoi_diagram) که شامل یک نقطه (یا 'بذر') و منطقه مربوط به آن است، تجسم کرد. + +![نمودار ورونوی](../../../../translated_images/voronoi.1dc1613fb0439b9564615eca8df47a4bcd1ce06217e7e72325d2406ef2180795.fa.png) + +> اینفوگرافیک توسط [Jen Looper](https://twitter.com/jenlooper) + +فرآیند خوشه‌بندی K-Means [در سه مرحله اجرا می‌شود](https://scikit-learn.org/stable/modules/clustering.html#k-means): + +1. الگوریتم تعداد k نقطه مرکزی را با نمونه‌گیری از مجموعه داده انتخاب می‌کند. سپس وارد حلقه می‌شود: + 1. هر نمونه را به نزدیک‌ترین مرکز اختصاص می‌دهد. + 2. مراکز جدیدی ایجاد می‌کند با گرفتن میانگین مقادیر تمام نمونه‌هایی که به مراکز قبلی اختصاص داده شده‌اند. + 3. سپس تفاوت بین مراکز جدید و قدیمی را محاسبه کرده و تا زمانی که مراکز تثبیت شوند، تکرار می‌کند. + +یکی از معایب استفاده از K-Means این است که باید مقدار 'k'، یعنی تعداد مراکز را تعیین کنید. خوشبختانه روش 'آرنج' به تخمین یک مقدار اولیه مناسب برای 'k' کمک می‌کند. به زودی آن را امتحان خواهید کرد. + +## پیش‌نیاز + +در فایل [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/notebook.ipynb) این درس کار خواهید کرد که شامل وارد کردن داده‌ها و پاکسازی اولیه‌ای است که در درس قبلی انجام دادید. + +## تمرین - آماده‌سازی + +ابتدا دوباره به داده‌های آهنگ‌ها نگاه کنید. + +1. یک نمودار جعبه‌ای ایجاد کنید، با فراخوانی `boxplot()` برای هر ستون: + + ```python + plt.figure(figsize=(20,20), dpi=200) + + plt.subplot(4,3,1) + sns.boxplot(x = 'popularity', data = df) + + plt.subplot(4,3,2) + sns.boxplot(x = 'acousticness', data = df) + + plt.subplot(4,3,3) + sns.boxplot(x = 'energy', data = df) + + plt.subplot(4,3,4) + sns.boxplot(x = 'instrumentalness', data = df) + + plt.subplot(4,3,5) + sns.boxplot(x = 'liveness', data = df) + + plt.subplot(4,3,6) + sns.boxplot(x = 'loudness', data = df) + + plt.subplot(4,3,7) + sns.boxplot(x = 'speechiness', data = df) + + plt.subplot(4,3,8) + sns.boxplot(x = 'tempo', data = df) + + plt.subplot(4,3,9) + sns.boxplot(x = 'time_signature', data = df) + + plt.subplot(4,3,10) + sns.boxplot(x = 'danceability', data = df) + + plt.subplot(4,3,11) + sns.boxplot(x = 'length', data = df) + + plt.subplot(4,3,12) + sns.boxplot(x = 'release_date', data = df) + ``` + + این داده‌ها کمی پر سر و صدا هستند: با مشاهده هر ستون به صورت نمودار جعبه‌ای، می‌توانید نقاط پرت را ببینید. + + ![نقاط پرت](../../../../translated_images/boxplots.8228c29dabd0f29227dd38624231a175f411f1d8d4d7c012cb770e00e4fdf8b6.fa.png) + + می‌توانید مجموعه داده را مرور کرده و این نقاط پرت را حذف کنید، اما این کار داده‌ها را بسیار محدود می‌کند. + +1. فعلاً ستون‌هایی را انتخاب کنید که برای تمرین خوشه‌بندی مناسب هستند. ستون‌هایی با محدوده‌های مشابه انتخاب کنید و ستون `artist_top_genre` را به داده‌های عددی تبدیل کنید: + + ```python + from sklearn.preprocessing import LabelEncoder + le = LabelEncoder() + + X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')] + + y = df['artist_top_genre'] + + X['artist_top_genre'] = le.fit_transform(X['artist_top_genre']) + + y = le.transform(y) + ``` + +1. اکنون باید تعداد خوشه‌هایی که هدف قرار می‌دهید را انتخاب کنید. می‌دانید که 3 ژانر آهنگ از مجموعه داده استخراج کرده‌ایم، پس بیایید 3 را امتحان کنیم: + + ```python + from sklearn.cluster import KMeans + + nclusters = 3 + seed = 0 + + km = KMeans(n_clusters=nclusters, random_state=seed) + km.fit(X) + + # Predict the cluster for each data point + + y_cluster_kmeans = km.predict(X) + y_cluster_kmeans + ``` + + یک آرایه چاپ شده با خوشه‌های پیش‌بینی شده (0، 1، یا 2) برای هر سطر از دیتافریم مشاهده می‌کنید. + +1. از این آرایه برای محاسبه 'امتیاز سیلوئت' استفاده کنید: + + ```python + from sklearn import metrics + score = metrics.silhouette_score(X, y_cluster_kmeans) + score + ``` + +## امتیاز سیلوئت + +به دنبال امتیاز سیلوئت نزدیک به 1 باشید. این امتیاز از -1 تا 1 متغیر است و اگر امتیاز 1 باشد، خوشه متراکم و به خوبی از سایر خوشه‌ها جدا شده است. مقدار نزدیک به 0 نشان‌دهنده خوشه‌های همپوشانی با نمونه‌هایی است که بسیار نزدیک به مرز تصمیم‌گیری خوشه‌های همسایه هستند. [(منبع)](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam) + +امتیاز ما **0.53** است، بنابراین در وسط قرار دارد. این نشان می‌دهد که داده‌های ما به‌طور خاص برای این نوع خوشه‌بندی مناسب نیست، اما بیایید ادامه دهیم. + +### تمرین - ساخت مدل + +1. `KMeans` را وارد کنید و فرآیند خوشه‌بندی را شروع کنید. + + ```python + from sklearn.cluster import KMeans + wcss = [] + + for i in range(1, 11): + kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) + kmeans.fit(X) + wcss.append(kmeans.inertia_) + + ``` + + چند بخش وجود دارد که نیاز به توضیح دارند. + + > 🎓 range: این تعداد تکرارهای فرآیند خوشه‌بندی است. + + > 🎓 random_state: "تعیین‌کننده تولید اعداد تصادفی برای مقداردهی اولیه مراکز." [منبع](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans) + + > 🎓 WCSS: "مجموع مربعات درون خوشه‌ها" فاصله متوسط مربعی تمام نقاط درون یک خوشه تا مرکز خوشه را اندازه‌گیری می‌کند. [منبع](https://medium.com/@ODSC/unsupervised-learning-evaluating-clusters-bd47eed175ce) + + > 🎓 Inertia: الگوریتم‌های K-Means تلاش می‌کنند مراکز را به گونه‌ای انتخاب کنند که 'اینرسی'، "معیاری از انسجام داخلی خوشه‌ها"، به حداقل برسد. مقدار در هر تکرار به متغیر wcss اضافه می‌شود. [منبع](https://scikit-learn.org/stable/modules/clustering.html) + + > 🎓 k-means++: در [Scikit-learn](https://scikit-learn.org/stable/modules/clustering.html#k-means) می‌توانید از بهینه‌سازی 'k-means++' استفاده کنید که "مراکز را به گونه‌ای مقداردهی اولیه می‌کند که (به‌طور کلی) از یکدیگر دور باشند، که احتمالاً نتایج بهتری نسبت به مقداردهی اولیه تصادفی دارد." + +### روش آرنج + +قبلاً حدس زدید که چون 3 ژانر آهنگ هدف قرار داده‌اید، باید 3 خوشه انتخاب کنید. اما آیا این درست است؟ + +1. از روش 'آرنج' برای اطمینان استفاده کنید. + + ```python + plt.figure(figsize=(10,5)) + sns.lineplot(x=range(1, 11), y=wcss, marker='o', color='red') + plt.title('Elbow') + plt.xlabel('Number of clusters') + plt.ylabel('WCSS') + plt.show() + ``` + + از متغیر `wcss` که در مرحله قبل ساختید استفاده کنید تا نموداری ایجاد کنید که نشان دهد 'خمیدگی' در آرنج کجاست، که تعداد بهینه خوشه‌ها را نشان می‌دهد. شاید واقعاً **3** باشد! + + ![روش آرنج](../../../../translated_images/elbow.72676169eed744ff03677e71334a16c6b8f751e9e716e3d7f40dd7cdef674cca.fa.png) + +## تمرین - نمایش خوشه‌ها + +1. فرآیند را دوباره امتحان کنید، این بار سه خوشه تنظیم کنید و خوشه‌ها را به صورت نمودار پراکندگی نمایش دهید: + + ```python + from sklearn.cluster import KMeans + kmeans = KMeans(n_clusters = 3) + kmeans.fit(X) + labels = kmeans.predict(X) + plt.scatter(df['popularity'],df['danceability'],c = labels) + plt.xlabel('popularity') + plt.ylabel('danceability') + plt.show() + ``` + +1. دقت مدل را بررسی کنید: + + ```python + labels = kmeans.labels_ + + correct_labels = sum(y == labels) + + print("Result: %d out of %d samples were correctly labeled." % (correct_labels, y.size)) + + print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size))) + ``` + + دقت این مدل خیلی خوب نیست و شکل خوشه‌ها به شما نشان می‌دهد چرا. + + ![خوشه‌ها](../../../../translated_images/clusters.b635354640d8e4fd4a49ef545495518e7be76172c97c13bd748f5b79f171f69a.fa.png) + + این داده‌ها بیش از حد نامتعادل هستند، ارتباط کمی دارند و بین مقادیر ستون‌ها تنوع زیادی وجود دارد که باعث می‌شود خوشه‌بندی به خوبی انجام نشود. در واقع، خوشه‌هایی که تشکیل می‌شوند احتمالاً به شدت تحت تأثیر یا توسط سه دسته ژانر که در بالا تعریف کردیم، منحرف شده‌اند. این یک فرآیند یادگیری بود! + + در مستندات Scikit-learn، می‌توانید ببینید که مدلی مانند این، با خوشه‌هایی که به خوبی مشخص نشده‌اند، مشکل 'واریانس' دارد: + + ![مدل‌های مشکل‌دار](../../../../translated_images/problems.f7fb539ccd80608e1f35c319cf5e3ad1809faa3c08537aead8018c6b5ba2e33a.fa.png) + > اینفوگرافیک از Scikit-learn + +## واریانس + +واریانس به عنوان "میانگین اختلافات مربعی از میانگین" تعریف می‌شود [(منبع)](https://www.mathsisfun.com/data/standard-deviation.html). در زمینه این مسئله خوشه‌بندی، به داده‌هایی اشاره دارد که اعداد مجموعه داده ما تمایل دارند کمی بیش از حد از میانگین فاصله بگیرند. + +✅ این لحظه خوبی است برای فکر کردن به تمام راه‌هایی که می‌توانید این مشکل را اصلاح کنید. داده‌ها را کمی بیشتر تغییر دهید؟ از ستون‌های مختلف استفاده کنید؟ از الگوریتم دیگری استفاده کنید؟ نکته: سعی کنید داده‌های خود را [مقیاس‌بندی کنید](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/) تا آن‌ها را نرمال کنید و ستون‌های دیگر را آزمایش کنید. + +> این '[ماشین حساب واریانس](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)' را امتحان کنید تا مفهوم را کمی بهتر درک کنید. + +--- + +## 🚀چالش + +زمانی را با این نوت‌بوک صرف کنید و پارامترها را تغییر دهید. آیا می‌توانید با پاکسازی بیشتر داده‌ها (مثلاً حذف نقاط پرت) دقت مدل را بهبود دهید؟ می‌توانید از وزن‌ها برای دادن وزن بیشتر به نمونه‌های داده خاص استفاده کنید. چه کار دیگری می‌توانید انجام دهید تا خوشه‌های بهتری ایجاد کنید؟ + +نکته: سعی کنید داده‌های خود را مقیاس‌بندی کنید. در نوت‌بوک کدی کامنت‌گذاری شده وجود دارد که مقیاس‌بندی استاندارد را اضافه می‌کند تا ستون‌های داده از نظر محدوده بیشتر شبیه به یکدیگر شوند. خواهید دید که در حالی که امتیاز سیلوئت کاهش می‌یابد، 'خمیدگی' در نمودار آرنج صاف‌تر می‌شود. این به این دلیل است که باقی گذاشتن داده‌ها بدون مقیاس‌بندی اجازه می‌دهد داده‌هایی با واریانس کمتر وزن بیشتری داشته باشند. در مورد این مشکل کمی بیشتر بخوانید [اینجا](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226). + +## [پس‌آزمون درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/) + +## مرور و مطالعه شخصی + +به یک شبیه‌ساز K-Means [مانند این](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/) نگاهی بیندازید. می‌توانید از این ابزار برای تجسم نقاط داده نمونه و تعیین مراکز آن‌ها استفاده کنید. می‌توانید تصادفی بودن داده‌ها، تعداد خوشه‌ها و تعداد مراکز را ویرایش کنید. آیا این به شما کمک می‌کند ایده‌ای از نحوه گروه‌بندی داده‌ها پیدا کنید؟ + +همچنین به [این جزوه درباره K-Means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) از دانشگاه استنفورد نگاهی بیندازید. + +## تکلیف + +[روش‌های خوشه‌بندی مختلف را امتحان کنید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/5-Clustering/2-K-Means/assignment.md b/translations/fa/5-Clustering/2-K-Means/assignment.md new file mode 100644 index 000000000..c7b381ea3 --- /dev/null +++ b/translations/fa/5-Clustering/2-K-Means/assignment.md @@ -0,0 +1,25 @@ + +# امتحان روش‌های مختلف خوشه‌بندی + +## دستورالعمل‌ها + +در این درس درباره خوشه‌بندی K-Means یاد گرفتید. گاهی اوقات K-Means برای داده‌های شما مناسب نیست. یک نوت‌بوک ایجاد کنید که از داده‌های این درس‌ها یا از منبع دیگری (منبع خود را ذکر کنید) استفاده کند و یک روش خوشه‌بندی متفاوت که از K-Means استفاده نمی‌کند را نشان دهد. چه چیزی یاد گرفتید؟ + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ----------- | ------------------------------------------------------------- | ------------------------------------------------------------------- | ---------------------------- | +| | یک نوت‌بوک ارائه شده است که مدل خوشه‌بندی به خوبی مستند شده است | یک نوت‌بوک ارائه شده است بدون مستندسازی مناسب و/یا ناقص | کار ناقص ارائه شده است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/5-Clustering/2-K-Means/notebook.ipynb b/translations/fa/5-Clustering/2-K-Means/notebook.ipynb new file mode 100644 index 000000000..47bcf3339 --- /dev/null +++ b/translations/fa/5-Clustering/2-K-Means/notebook.ipynb @@ -0,0 +1,233 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "3e5c8ab363e8d88f566d4365efc7e0bd", + "translation_date": "2025-09-04T02:09:40+00:00", + "source_file": "5-Clustering/2-K-Means/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# موسیقی نیجریه‌ای استخراج‌شده از اسپاتیفای - یک تحلیل\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "از جایی که در درس قبلی تمام کردیم شروع کنید، با داده‌هایی که وارد و فیلتر شده‌اند.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
            0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
            1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
            2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
            3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
            4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
            \n
            " + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "ما فقط روی ۳ ژانر تمرکز خواهیم کرد. شاید بتوانیم ۳ خوشه بسازیم!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
            1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
            3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
            4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
            5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
            6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
            \n
            " + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/5-Clustering/2-K-Means/solution/Julia/README.md b/translations/fa/5-Clustering/2-K-Means/solution/Julia/README.md new file mode 100644 index 000000000..055d50cec --- /dev/null +++ b/translations/fa/5-Clustering/2-K-Means/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb b/translations/fa/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb new file mode 100644 index 000000000..928140654 --- /dev/null +++ b/translations/fa/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb @@ -0,0 +1,638 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "colab": { + "name": "lesson_14.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "coopTranslator": { + "original_hash": "ad65fb4aad0a156b42216e4929f490fc", + "translation_date": "2025-09-04T02:20:29+00:00", + "source_file": "5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb", + "language_code": "fa" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "GULATlQXLXyR" + }, + "source": [ + "## بررسی خوشه‌بندی K-Means با استفاده از R و اصول داده‌های Tidy\n", + "\n", + "### [**آزمون پیش از درس**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/)\n", + "\n", + "در این درس، یاد می‌گیرید که چگونه با استفاده از بسته Tidymodels و دیگر بسته‌های موجود در اکوسیستم R (که به آن‌ها دوستان 🧑‍🤝‍🧑 می‌گوییم) و مجموعه داده‌های موسیقی نیجریه‌ای که قبلاً وارد کرده‌اید، خوشه‌ها ایجاد کنید. ما اصول اولیه K-Means برای خوشه‌بندی را پوشش خواهیم داد. به یاد داشته باشید که همان‌طور که در درس قبلی یاد گرفتید، روش‌های مختلفی برای کار با خوشه‌ها وجود دارد و روشی که استفاده می‌کنید به داده‌های شما بستگی دارد. ما K-Means را امتحان می‌کنیم زیرا رایج‌ترین تکنیک خوشه‌بندی است. بیایید شروع کنیم!\n", + "\n", + "اصطلاحاتی که با آن‌ها آشنا خواهید شد:\n", + "\n", + "- امتیازدهی Silhouette\n", + "\n", + "- روش Elbow\n", + "\n", + "- اینرسی\n", + "\n", + "- واریانس\n", + "\n", + "### **مقدمه**\n", + "\n", + "[خوشه‌بندی K-Means](https://wikipedia.org/wiki/K-means_clustering) روشی است که از حوزه پردازش سیگنال مشتق شده است. این روش برای تقسیم و گروه‌بندی داده‌ها به `k خوشه` بر اساس شباهت ویژگی‌های آن‌ها استفاده می‌شود.\n", + "\n", + "خوشه‌ها را می‌توان به صورت [نمودارهای ورونوی](https://wikipedia.org/wiki/Voronoi_diagram) تجسم کرد که شامل یک نقطه (یا 'بذر') و منطقه مربوط به آن است.\n", + "\n", + "

            \n", + " \n", + "

            اینفوگرافیک از Jen Looper
            \n", + "\n", + "مراحل خوشه‌بندی K-Means به شرح زیر است:\n", + "\n", + "1. دانشمند داده ابتدا تعداد خوشه‌های مورد نظر برای ایجاد را مشخص می‌کند.\n", + "\n", + "2. سپس الگوریتم به صورت تصادفی K مشاهده از مجموعه داده را به عنوان مراکز اولیه خوشه‌ها (یعنی centroidها) انتخاب می‌کند.\n", + "\n", + "3. در مرحله بعد، هر یک از مشاهدات باقی‌مانده به نزدیک‌ترین centroid اختصاص داده می‌شود.\n", + "\n", + "4. سپس میانگین جدید هر خوشه محاسبه شده و centroid به میانگین منتقل می‌شود.\n", + "\n", + "5. اکنون که مراکز دوباره محاسبه شده‌اند، هر مشاهده دوباره بررسی می‌شود تا مشخص شود آیا ممکن است به خوشه دیگری نزدیک‌تر باشد. تمام اشیاء دوباره با استفاده از میانگین‌های به‌روزرسانی‌شده خوشه‌ها تخصیص داده می‌شوند. مراحل تخصیص خوشه و به‌روزرسانی centroid به صورت تکراری انجام می‌شود تا زمانی که تخصیص خوشه‌ها تغییر نکند (یعنی زمانی که همگرایی حاصل شود). معمولاً الگوریتم زمانی متوقف می‌شود که هر تکرار جدید منجر به حرکت ناچیز centroidها شود و خوشه‌ها ثابت شوند.\n", + "\n", + "
            \n", + "\n", + "> توجه داشته باشید که به دلیل تصادفی بودن انتخاب اولیه k مشاهده به عنوان centroidهای شروع، ممکن است هر بار که این روش را اعمال می‌کنیم نتایج کمی متفاوت باشد. به همین دلیل، اکثر الگوریتم‌ها از چندین *شروع تصادفی* استفاده می‌کنند و تکراری را که کمترین WCSS را دارد انتخاب می‌کنند. بنابراین، اکیداً توصیه می‌شود که همیشه K-Means را با چندین مقدار *nstart* اجرا کنید تا از یک *بهینه محلی نامطلوب* جلوگیری شود.\n", + "\n", + "
            \n", + "\n", + "این انیمیشن کوتاه با استفاده از [آثار هنری](https://github.com/allisonhorst/stats-illustrations) از Allison Horst فرآیند خوشه‌بندی را توضیح می‌دهد:\n", + "\n", + "

            \n", + " \n", + "

            اثر هنری از @allison_horst
            \n", + "\n", + "یک سؤال اساسی که در خوشه‌بندی مطرح می‌شود این است: چگونه می‌دانید که داده‌های خود را به چند خوشه تقسیم کنید؟ یکی از معایب استفاده از K-Means این است که باید `k`، یعنی تعداد `centroidها` را تعیین کنید. خوشبختانه، `روش Elbow` به تخمین یک مقدار اولیه مناسب برای `k` کمک می‌کند. به زودی آن را امتحان خواهید کرد.\n", + "\n", + "### \n", + "\n", + "**پیش‌نیاز**\n", + "\n", + "ما از جایی که در [درس قبلی](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb) متوقف شدیم، ادامه می‌دهیم، جایی که مجموعه داده را تحلیل کردیم، تعداد زیادی تجسم ایجاد کردیم و مجموعه داده را به مشاهدات مورد علاقه فیلتر کردیم. حتماً آن را بررسی کنید!\n", + "\n", + "برای این ماژول به چند بسته نیاز داریم. می‌توانید آن‌ها را با دستور زیر نصب کنید: \n", + "`install.packages(c('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork'))`\n", + "\n", + "یا از اسکریپت زیر استفاده کنید که بررسی می‌کند آیا بسته‌های مورد نیاز برای تکمیل این ماژول را دارید و در صورت کمبود، آن‌ها را برای شما نصب می‌کند.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ah_tBi58LXyi" + }, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork')\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7e--UCUTLXym" + }, + "source": [ + "بیایید سریع شروع کنیم!\n", + "\n", + "## ۱. رقصی با داده‌ها: محدود کردن به ۳ سبک موسیقی محبوب\n", + "\n", + "این یک مرور کلی از کاری است که در درس قبلی انجام دادیم. بیایید کمی داده‌ها را بررسی و تحلیل کنیم!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Ycamx7GGLXyn" + }, + "source": [ + "# Load the core tidyverse and make it available in your current R session\n", + "library(tidyverse)\n", + "\n", + "# Import the data into a tibble\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\", show_col_types = FALSE)\n", + "\n", + "# Narrow down to top 3 popular genres\n", + "nigerian_songs <- df %>% \n", + " # Concentrate on top 3 genres\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \n", + " # Remove unclassified observations\n", + " filter(popularity != 0)\n", + "\n", + "\n", + "\n", + "# Visualize popular genres using bar plots\n", + "theme_set(theme_light())\n", + "nigerian_songs %>%\n", + " count(artist_top_genre) %>%\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\n", + " fill = artist_top_genre)) +\n", + " geom_col(alpha = 0.8) +\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\n", + " ggtitle(\"Top genres\") +\n", + " theme(plot.title = element_text(hjust = 0.5))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b5h5zmkPLXyp" + }, + "source": [ + "🤩 این خیلی خوب پیش رفت!\n", + "\n", + "## ۲. بررسی بیشتر داده‌ها\n", + "\n", + "این داده‌ها چقدر تمیز هستند؟ بیایید با استفاده از نمودارهای جعبه‌ای به دنبال نقاط پرت بگردیم. ما بر روی ستون‌های عددی با نقاط پرت کمتر تمرکز خواهیم کرد (اگرچه می‌توانید نقاط پرت را حذف کنید). نمودارهای جعبه‌ای می‌توانند محدوده داده‌ها را نشان دهند و به انتخاب ستون‌های مناسب کمک کنند. توجه داشته باشید که نمودارهای جعبه‌ای واریانس را نشان نمی‌دهند، که یک عنصر مهم برای داده‌های خوشه‌بندی‌شدنی خوب است. لطفاً برای مطالعه بیشتر به [این بحث](https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot) مراجعه کنید.\n", + "\n", + "[نمودارهای جعبه‌ای](https://en.wikipedia.org/wiki/Box_plot) برای نمایش گرافیکی توزیع داده‌های `عددی` استفاده می‌شوند، بنابراین بیایید با *انتخاب* تمام ستون‌های عددی در کنار ژانرهای محبوب موسیقی شروع کنیم.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HhNreJKLLXyq" + }, + "source": [ + "# Select top genre column and all other numeric columns\n", + "df_numeric <- nigerian_songs %>% \n", + " select(artist_top_genre, where(is.numeric)) \n", + "\n", + "# Display the data\n", + "df_numeric %>% \n", + " slice_head(n = 5)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uYXrwJRaLXyq" + }, + "source": [ + "ببینید چطور ابزار انتخاب `where` این کار را ساده می‌کند 💁؟ سایر توابع مشابه را [اینجا](https://tidyselect.r-lib.org/) بررسی کنید.\n", + "\n", + "از آنجایی که قصد داریم برای هر ویژگی عددی یک نمودار جعبه‌ای بسازیم و می‌خواهیم از استفاده از حلقه‌ها اجتناب کنیم، بهتر است داده‌های خود را به یک قالب *طولانی‌تر* تغییر دهیم که به ما امکان استفاده از `facets` را بدهد - زیرنمودارهایی که هر کدام یک زیرمجموعه از داده‌ها را نمایش می‌دهند.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "gd5bR3f8LXys" + }, + "source": [ + "# Pivot data from wide to long\n", + "df_numeric_long <- df_numeric %>% \n", + " pivot_longer(!artist_top_genre, names_to = \"feature_names\", values_to = \"values\") \n", + "\n", + "# Print out data\n", + "df_numeric_long %>% \n", + " slice_head(n = 15)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-7tE1swnLXyv" + }, + "source": [ + "حالا وقتشه که با `ggplot`ها بیشتر کار کنیم! پس از کدوم `geom` استفاده خواهیم کرد؟\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "r88bIsyuLXyy" + }, + "source": [ + "# Make a box plot\n", + "df_numeric_long %>% \n", + " ggplot(mapping = aes(x = feature_names, y = values, fill = feature_names)) +\n", + " geom_boxplot() +\n", + " facet_wrap(~ feature_names, ncol = 4, scales = \"free\") +\n", + " theme(legend.position = \"none\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EYVyKIUELXyz" + }, + "source": [ + "حالا می‌بینیم که این داده‌ها کمی پر سر و صدا هستند: با مشاهده هر ستون به صورت یک نمودار جعبه‌ای، می‌توانید نقاط پرت را ببینید. می‌توانید این نقاط پرت را از مجموعه داده حذف کنید، اما این کار داده‌ها را خیلی محدود می‌کند.\n", + "\n", + "فعلاً بیایید انتخاب کنیم که کدام ستون‌ها را برای تمرین خوشه‌بندی خود استفاده کنیم. بیایید ستون‌های عددی با بازه‌های مشابه را انتخاب کنیم. می‌توانستیم `artist_top_genre` را به صورت عددی کدگذاری کنیم، اما فعلاً آن را کنار می‌گذاریم.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-wkpINyZLXy0" + }, + "source": [ + "# Select variables with similar ranges\n", + "df_numeric_select <- df_numeric %>% \n", + " select(popularity, danceability, acousticness, loudness, energy) \n", + "\n", + "# Normalize data\n", + "# df_numeric_select <- scale(df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D7dLzgpqLXy1" + }, + "source": [ + "## ۳. محاسبه خوشه‌بندی k-means در R\n", + "\n", + "می‌توانیم خوشه‌بندی k-means را در R با استفاده از تابع داخلی `kmeans` محاسبه کنیم. برای اطلاعات بیشتر می‌توانید از `help(\"kmeans()\")` استفاده کنید. تابع `kmeans()` یک داده‌فریم با ستون‌های عددی را به عنوان آرگومان اصلی خود می‌پذیرد.\n", + "\n", + "اولین گام در استفاده از خوشه‌بندی k-means مشخص کردن تعداد خوشه‌ها (k) است که در نهایت ایجاد خواهند شد. می‌دانیم که در مجموعه داده ما سه ژانر موسیقی وجود دارد، پس بیایید عدد ۳ را امتحان کنیم:\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "uC4EQ5w7LXy5" + }, + "source": [ + "set.seed(2056)\n", + "# Kmeans clustering for 3 clusters\n", + "kclust <- kmeans(\n", + " df_numeric_select,\n", + " # Specify the number of clusters\n", + " centers = 3,\n", + " # How many random initial configurations\n", + " nstart = 25\n", + ")\n", + "\n", + "# Display clustering object\n", + "kclust\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hzfhscWrLXy-" + }, + "source": [ + "شیء kmeans شامل اطلاعات مختلفی است که در `help(\"kmeans()\")` به خوبی توضیح داده شده است. فعلاً، بیایید روی چند مورد تمرکز کنیم. مشاهده می‌کنیم که داده‌ها به ۳ خوشه با اندازه‌های ۶۵، ۱۱۰ و ۱۱۱ گروه‌بندی شده‌اند. خروجی همچنین شامل مراکز خوشه‌ها (میانگین‌ها) برای ۳ گروه در میان ۵ متغیر است.\n", + "\n", + "بردار خوشه‌بندی، تخصیص خوشه برای هر مشاهده است. بیایید از تابع `augment` استفاده کنیم تا تخصیص خوشه را به مجموعه داده اصلی اضافه کنیم.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "0XwwpFGQLXy_" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "augment(kclust, df_numeric_select) %>% \n", + " relocate(.cluster) %>% \n", + " slice_head(n = 10)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NXIVXXACLXzA" + }, + "source": [ + "ما به‌تازگی مجموعه داده خود را به سه گروه تقسیم کردیم. حالا، خوشه‌بندی ما چقدر خوب است 🤷؟ بیایید نگاهی به امتیاز `Silhouette` بیندازیم.\n", + "\n", + "### **امتیاز Silhouette**\n", + "\n", + "[تحلیل Silhouette](https://en.wikipedia.org/wiki/Silhouette_(clustering)) می‌تواند برای بررسی فاصله جدایی بین خوشه‌های حاصل استفاده شود. این امتیاز از -1 تا 1 متغیر است، و اگر امتیاز نزدیک به 1 باشد، خوشه متراکم و به‌خوبی از سایر خوشه‌ها جدا شده است. مقدار نزدیک به 0 نشان‌دهنده خوشه‌های هم‌پوشان با نمونه‌هایی است که بسیار نزدیک به مرز تصمیم‌گیری خوشه‌های همسایه هستند. [منبع](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam).\n", + "\n", + "روش میانگین Silhouette میانگین امتیاز Silhouette مشاهدات را برای مقادیر مختلف *k* محاسبه می‌کند. امتیاز میانگین Silhouette بالا نشان‌دهنده خوشه‌بندی خوب است.\n", + "\n", + "تابع `silhouette` در بسته خوشه‌بندی برای محاسبه میانگین عرض Silhouette استفاده می‌شود.\n", + "\n", + "> Silhouette را می‌توان با هر [فاصله](https://en.wikipedia.org/wiki/Distance \"Distance\") متریک محاسبه کرد، مانند [فاصله اقلیدسی](https://en.wikipedia.org/wiki/Euclidean_distance \"Euclidean distance\") یا [فاصله منهتن](https://en.wikipedia.org/wiki/Manhattan_distance \"Manhattan distance\") که در [درس قبلی](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb) درباره آن صحبت کردیم.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Jn0McL28LXzB" + }, + "source": [ + "# Load cluster package\n", + "library(cluster)\n", + "\n", + "# Compute average silhouette score\n", + "ss <- silhouette(kclust$cluster,\n", + " # Compute euclidean distance\n", + " dist = dist(df_numeric_select))\n", + "mean(ss[, 3])\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QyQRn97nLXzC" + }, + "source": [ + "امتیاز ما **.549** است، یعنی دقیقاً در حد وسط. این نشان می‌دهد که داده‌های ما برای این نوع خوشه‌بندی خیلی مناسب نیستند. بیایید ببینیم آیا می‌توانیم این حدس را به صورت بصری تأیید کنیم. [بسته factoextra](https://rpkgs.datanovia.com/factoextra/index.html) توابعی مانند (`fviz_cluster()`) را برای بصری‌سازی خوشه‌بندی ارائه می‌دهد.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "7a6Km1_FLXzD" + }, + "source": [ + "library(factoextra)\n", + "\n", + "# Visualize clustering results\n", + "fviz_cluster(kclust, df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IBwCWt-0LXzD" + }, + "source": [ + "همپوشانی در خوشه‌ها نشان می‌دهد که داده‌های ما برای این نوع خوشه‌بندی چندان مناسب نیست، اما بیایید ادامه دهیم.\n", + "\n", + "## ۴. تعیین تعداد بهینه خوشه‌ها\n", + "\n", + "یک سؤال اساسی که اغلب در خوشه‌بندی K-Means مطرح می‌شود این است که - بدون داشتن برچسب‌های کلاس مشخص، چگونه می‌توان فهمید که داده‌ها را باید به چند خوشه تقسیم کرد؟\n", + "\n", + "یکی از روش‌هایی که می‌توانیم امتحان کنیم این است که از یک نمونه داده استفاده کرده و `یک سری مدل خوشه‌بندی` با تعداد خوشه‌های افزایشی (مثلاً از ۱ تا ۱۰) ایجاد کنیم و معیارهای خوشه‌بندی مانند **امتیاز Silhouette** را ارزیابی کنیم.\n", + "\n", + "بیایید تعداد بهینه خوشه‌ها را با اجرای الگوریتم خوشه‌بندی برای مقادیر مختلف *k* و ارزیابی **مجموع مربعات درون خوشه‌ای** (WCSS) تعیین کنیم. مجموع مربعات درون خوشه‌ای (WCSS) میزان فشردگی خوشه‌بندی را اندازه‌گیری می‌کند و ما می‌خواهیم این مقدار تا حد ممکن کوچک باشد، زیرا مقادیر کمتر نشان می‌دهند که نقاط داده به هم نزدیک‌تر هستند.\n", + "\n", + "بیایید تأثیر انتخاب‌های مختلف `k`، از ۱ تا ۱۰، را بر این خوشه‌بندی بررسی کنیم.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "hSeIiylDLXzE" + }, + "source": [ + "# Create a series of clustering models\n", + "kclusts <- tibble(k = 1:10) %>% \n", + " # Perform kmeans clustering for 1,2,3 ... ,10 clusters\n", + " mutate(model = map(k, ~ kmeans(df_numeric_select, centers = .x, nstart = 25)),\n", + " # Farm out clustering metrics eg WCSS\n", + " glanced = map(model, ~ glance(.x))) %>% \n", + " unnest(cols = glanced)\n", + " \n", + "\n", + "# View clustering rsulsts\n", + "kclusts\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m7rS2U1eLXzE" + }, + "source": [ + "اکنون که مجموع کل مربعات درون خوشه‌ها (tot.withinss) را برای هر الگوریتم خوشه‌بندی با مرکز *k* داریم، از [روش آرنج](https://en.wikipedia.org/wiki/Elbow_method_(clustering)) برای یافتن تعداد بهینه خوشه‌ها استفاده می‌کنیم. این روش شامل رسم WCSS به عنوان تابعی از تعداد خوشه‌ها و انتخاب [نقطه آرنج منحنی](https://en.wikipedia.org/wiki/Elbow_of_the_curve \"Elbow of the curve\") به عنوان تعداد خوشه‌های مورد استفاده است.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "o_DjHGItLXzF" + }, + "source": [ + "set.seed(2056)\n", + "# Use elbow method to determine optimum number of clusters\n", + "kclusts %>% \n", + " ggplot(mapping = aes(x = k, y = tot.withinss)) +\n", + " geom_line(size = 1.2, alpha = 0.8, color = \"#FF7F0EFF\") +\n", + " geom_point(size = 2, color = \"#FF7F0EFF\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pLYyt5XSLXzG" + }, + "source": [ + "نمودار کاهش قابل توجهی در WCSS (بنابراین *فشردگی* بیشتر) را نشان می‌دهد وقتی تعداد خوشه‌ها از یک به دو افزایش می‌یابد، و کاهش قابل توجه دیگری از دو به سه خوشه مشاهده می‌شود. پس از آن، کاهش کمتر محسوس است و در نمودار یک `خمیدگی` 💪 در حدود سه خوشه ایجاد می‌شود. این نشان‌دهنده خوبی است که دو تا سه خوشه به طور منطقی از نقاط داده جدا شده‌اند.\n", + "\n", + "اکنون می‌توانیم مدل خوشه‌بندی را که در آن `k = 3` است استخراج کنیم:\n", + "\n", + "> `pull()`: برای استخراج یک ستون استفاده می‌شود\n", + ">\n", + "> `pluck()`: برای ایندکس کردن ساختارهای داده‌ای مانند لیست‌ها استفاده می‌شود\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JP_JPKBILXzG" + }, + "source": [ + "# Extract k = 3 clustering\n", + "final_kmeans <- kclusts %>% \n", + " filter(k == 3) %>% \n", + " pull(model) %>% \n", + " pluck(1)\n", + "\n", + "\n", + "final_kmeans\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l_PDTu8tLXzI" + }, + "source": [ + "عالی! بیایید خوشه‌های به‌دست‌آمده را تجسم کنیم. علاقه‌مند به کمی تعامل با استفاده از `plotly` هستید؟\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "dNcleFe-LXzJ" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "results <- augment(final_kmeans, df_numeric_select) %>% \n", + " bind_cols(df_numeric %>% select(artist_top_genre)) \n", + "\n", + "# Plot cluster assignments\n", + "clust_plt <- results %>% \n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = .cluster, shape = artist_top_genre)) +\n", + " geom_point(size = 2, alpha = 0.8) +\n", + " paletteer::scale_color_paletteer_d(\"ggthemes::Tableau_10\")\n", + "\n", + "ggplotly(clust_plt)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6JUM_51VLXzK" + }, + "source": [ + "شاید انتظار داشتیم که هر خوشه (نمایش داده شده با رنگ‌های مختلف) ژانرهای متمایزی (نمایش داده شده با اشکال مختلف) داشته باشد.\n", + "\n", + "بیایید نگاهی به دقت مدل بیندازیم.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HdIMUGq7LXzL" + }, + "source": [ + "# Assign genres to predefined integers\n", + "label_count <- results %>% \n", + " group_by(artist_top_genre) %>% \n", + " mutate(id = cur_group_id()) %>% \n", + " ungroup() %>% \n", + " summarise(correct_labels = sum(.cluster == id))\n", + "\n", + "\n", + "# Print results \n", + "cat(\"Result:\", label_count$correct_labels, \"out of\", nrow(results), \"samples were correctly labeled.\")\n", + "\n", + "cat(\"\\nAccuracy score:\", label_count$correct_labels/nrow(results))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C50wvaAOLXzM" + }, + "source": [ + "دقت این مدل بد نیست، اما عالی هم نیست. ممکن است داده‌ها برای خوشه‌بندی K-Means مناسب نباشند. این داده‌ها بسیار نامتوازن هستند، همبستگی کمی دارند و تنوع زیادی بین مقادیر ستون‌ها وجود دارد که باعث می‌شود خوشه‌بندی به خوبی انجام نشود. در واقع، خوشه‌هایی که تشکیل می‌شوند احتمالاً به شدت تحت تأثیر یا منحرف شده توسط سه دسته ژانری هستند که قبلاً تعریف کردیم.\n", + "\n", + "با این حال، این یک فرآیند یادگیری جالب بود!\n", + "\n", + "در مستندات Scikit-learn، می‌توانید ببینید که مدلی مانند این، با خوشه‌هایی که به خوبی مشخص نشده‌اند، یک مشکل «واریانس» دارد:\n", + "\n", + "

            \n", + " \n", + "

            اینفوگرافیک از Scikit-learn
            \n", + "\n", + "\n", + "\n", + "## **واریانس**\n", + "\n", + "واریانس به عنوان \"میانگین مربع تفاوت‌ها از میانگین\" تعریف می‌شود [منبع](https://www.mathsisfun.com/data/standard-deviation.html). در زمینه این مسئله خوشه‌بندی، به داده‌هایی اشاره دارد که اعداد مجموعه داده ما تمایل دارند کمی بیش از حد از میانگین فاصله بگیرند.\n", + "\n", + "✅ این یک لحظه عالی است برای فکر کردن به تمام راه‌هایی که می‌توانید این مشکل را اصلاح کنید. کمی داده‌ها را تغییر دهید؟ از ستون‌های مختلف استفاده کنید؟ از الگوریتم دیگری استفاده کنید؟ نکته: [مقیاس‌بندی داده‌ها](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/) را امتحان کنید تا آن‌ها را نرمال کنید و ستون‌های دیگر را آزمایش کنید.\n", + "\n", + "> از این '[ماشین حساب واریانس](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)' استفاده کنید تا مفهوم را بهتر درک کنید.\n", + "\n", + "------------------------------------------------------------------------\n", + "\n", + "## **🚀چالش**\n", + "\n", + "زمانی را با این دفترچه صرف کنید و پارامترها را تغییر دهید. آیا می‌توانید با پاکسازی بیشتر داده‌ها (مثلاً حذف نقاط پرت) دقت مدل را بهبود دهید؟ می‌توانید از وزن‌ها برای دادن وزن بیشتر به نمونه‌های خاص داده استفاده کنید. چه کار دیگری می‌توانید انجام دهید تا خوشه‌های بهتری ایجاد کنید؟\n", + "\n", + "نکته: مقیاس‌بندی داده‌ها را امتحان کنید. کدی که در دفترچه کامنت شده است، مقیاس‌بندی استاندارد را اضافه می‌کند تا ستون‌های داده از نظر محدوده به یکدیگر نزدیک‌تر شوند. خواهید دید که در حالی که امتیاز سیلوئت کاهش می‌یابد، «خمیدگی» در نمودار آرنج صاف‌تر می‌شود. این به این دلیل است که باقی گذاشتن داده‌ها بدون مقیاس‌بندی به داده‌هایی با واریانس کمتر اجازه می‌دهد وزن بیشتری داشته باشند. کمی بیشتر در مورد این مشکل [اینجا](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226) بخوانید.\n", + "\n", + "## [**آزمون پس از درس**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/)\n", + "\n", + "## **مرور و مطالعه شخصی**\n", + "\n", + "- به یک شبیه‌ساز K-Means [مانند این](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/) نگاهی بیندازید. می‌توانید از این ابزار برای تجسم نقاط داده نمونه و تعیین مراکز آن‌ها استفاده کنید. می‌توانید تصادفی بودن داده‌ها، تعداد خوشه‌ها و تعداد مراکز را ویرایش کنید. آیا این به شما کمک می‌کند ایده‌ای از نحوه گروه‌بندی داده‌ها بگیرید؟\n", + "\n", + "- همچنین، به [این جزوه درباره K-Means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) از دانشگاه استنفورد نگاهی بیندازید.\n", + "\n", + "آیا می‌خواهید مهارت‌های خوشه‌بندی تازه کسب‌شده خود را روی مجموعه داده‌هایی که برای خوشه‌بندی K-Means مناسب هستند امتحان کنید؟ لطفاً ببینید:\n", + "\n", + "- [آموزش و ارزیابی مدل‌های خوشه‌بندی](https://rpubs.com/eR_ic/clustering) با استفاده از Tidymodels و دوستان\n", + "\n", + "- [تحلیل خوشه‌بندی K-Means](https://uc-r.github.io/kmeans_clustering)، راهنمای برنامه‌نویسی R برای تحلیل کسب‌وکار UC\n", + "\n", + "- [خوشه‌بندی K-Means با اصول داده‌های مرتب](https://www.tidymodels.org/learn/statistics/k-means/)\n", + "\n", + "## **تکلیف**\n", + "\n", + "[روش‌های مختلف خوشه‌بندی را امتحان کنید](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/assignment.md)\n", + "\n", + "## سپاسگزاریم از:\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) برای ایجاد نسخه اصلی پایتون این ماژول ♥️\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) برای خلق تصاویر شگفت‌انگیزی که R را جذاب‌تر و دوستانه‌تر می‌کنند. تصاویر بیشتر را در [گالری او](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) پیدا کنید.\n", + "\n", + "یادگیری خوشایند،\n", + "\n", + "[Eric](https://twitter.com/ericntay)، سفیر دانشجوی طلایی Microsoft Learn.\n", + "\n", + "

            \n", + " \n", + "

            اثر هنری از @allison_horst
            \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/5-Clustering/2-K-Means/solution/notebook.ipynb b/translations/fa/5-Clustering/2-K-Means/solution/notebook.ipynb new file mode 100644 index 000000000..e13f10ccb --- /dev/null +++ b/translations/fa/5-Clustering/2-K-Means/solution/notebook.ipynb @@ -0,0 +1,554 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "e867e87e3129c8875423a82945f4ad5e", + "translation_date": "2025-09-04T02:11:38+00:00", + "source_file": "5-Clustering/2-K-Means/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# موسیقی نیجریه‌ای استخراج‌شده از اسپاتیفای - یک تحلیل\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "از جایی که در درس قبلی تمام کردیم شروع کنید، با داده‌هایی که وارد و فیلتر شده‌اند.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
            0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
            1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
            2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
            3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
            4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
            \n
            " + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "ما فقط روی ۳ ژانر تمرکز خواهیم کرد. شاید بتوانیم ۳ خوشه بسازیم!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
            1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
            3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
            4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
            5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
            6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
            \n
            " + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "df.head()" + ] + }, + { + "source": [ + "این داده‌ها چقدر تمیز هستند؟ با استفاده از نمودارهای جعبه‌ای، داده‌های پرت را بررسی کنید. ما بر ستون‌هایی تمرکز خواهیم کرد که داده‌های پرت کمتری دارند (اگرچه می‌توانید داده‌های پرت را حذف کنید). نمودارهای جعبه‌ای می‌توانند محدوده داده‌ها را نشان دهند و به انتخاب ستون‌های مناسب کمک کنند. توجه داشته باشید که نمودارهای جعبه‌ای واریانس را نشان نمی‌دهند، که یک عنصر مهم برای داده‌های خوشه‌بندی‌شدنی خوب است (https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot)\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADFQAAAxLCAYAAAAjUVg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdsU5bZxiA4R/XFalaEEsHS1xCOpbroL3Qluug3Zp7YGAzqdRIwe7QMBAlEBrsY/w+z2QfWfgbLMv/d/SKg/V6PQAAAAAAAAAAAAAAAEpmUw8AAAAAAAAAAAAAAACwbYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyJlv+w0PDg4Oxxg/fXh6Pca43fYMAAAA7Lxvxhg/fnj813q9fjflMPBc7EUAAAD4QnYj7B17EQAAAL7QVvciWw8qxn+H4z8meF8AAABepp/HGH9OPQQ8E3sRAAAAnspuhH1hLwIAAMBTbXwvMtvkHwcAAAAAAAAAAAAAANhFU/yHiuu7B5eXl2OxWEwwAgAAALvs6upqnJ2d3T29fui18MLYiwAAAPAouxH2lL0IAAAAj9r2XmSKoOL27sFisRinp6cTjAAAAMALcvv4S+DFsBcBAADgqexG2Bf2IgAAADzVxvcis02/AQAAAAAAAAAAAAAAwK4RVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5MynHgAKVqvVWC6XU49BwGq1Gjc3N/euHR0djdlMP8fmHB8f+4wBAMAn2AfwMed2do0zPQAAAAB8PfcDdoc9/PbYL7NPBBWwBcvlcpyfn089BsBGXFxcjJOTk6nHAACAnWMfAOw6Z3oAAAAA+HruB1Bkv8w+kQYBAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx4Aqv5+/etYzw+nHoN98/6f8cOb3+9devv6lzHmryYaiH1z8P7d+P7Nb1OPAQAAL5Z9QJxzOxNypgcAAACA7XE/YCL28Bthv8y+E1TARNbzw7H+9rupx2DPHHzq4vyVzxoAAMCOsA9oc24HAAAAAGhwP2Aa9vDA/zGbegAAAAAAAAAAAAAAAIBtE1QAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx5g16xWq7FcLu9dOz4+HrOZ9gQAAHj5nHmAh/iOAAAAdo1zCgCwLX53AAD7zG+dzxNUfGS5XI7z8/N71y4uLsbJyclEEwEAADwfZx7gIb4jAACAXeOcAgBsi98dAMA+81vn8yQlAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAwL/s3bFOXGcax+FvWMJqdtcYuYi3MJeQckpzEUlBJJB8AUikyAXkCtIQcQGRQApFvO7T2SVlcgVhG9NZFLMmxLNFtljHY3xsw5x3zv95JDdnBnhlffqY8838bAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAACiXF5e9j0CUJg9gq4qr5XKswEAQCWCCgAAAAAAAABiTKfT9vXXX7fpdNr3KEBB9gi6qrxWKs8GAADVCCoAAAAAAAAAiHF0dNR+/vnndnx83PcoQEH2CLqqvFYqzwYAANUIKgAAAAAAAACIcHZ21k5OTlprrZ2cnLSzs7OeJwIqsUfQVeW1Unk2AACoSFABAAAAAAAAwODNZrN2cHDQrq6uWmut/fbbb+3g4KDNZrOeJwMqsEfQVeW1Unk2AACoSlABAAAAAAAAwOA9ffq0nZ6evnbt9PS0PXv2rKeJgErsEXRVea1Ung0AAKoSVAAAAAAAAAAwaNPptB0eHs597PDwsE2n0wVPBFRij6Crymul8mwAAFCZoAIAAAAAAACAQTs6Omrn5+dzH3v+/Hk7Pj5e8ERAJfYIuqq8VirPBgAAlQkqAAAAAAAAABisX3/9tZ2cnFz7nB9++KGdnZ0taCKgEnsEXVVeK5VnAwCA6gQVAAAAAAAAAAzSbDZr3333Xbu6urr2eVdXV+3g4KDNZrMFTQZUYI+gq8prpfJsAACwDFb7HqCaV69evXHtxYsXPUzCkMxdQ25QgWU0Z+/yexJguczbt+fdBwGZnIvcLOcBQCnu6QFYUh97lvH06dN2enra6bmnp6ft2bNnbWtrq/P3B5abPYKuKq+VyrMtG+ejwIfyfgCD53x5EHxe5O1uPKgYjUYP3vGUf970z7xJFxcXb1x79OhRD5MweL+/bK39re8pAN7P7y/fuOT3JMDyu7i4aPfu3et7DBgE5yK8k/MAoC/u6QEYkK5nGdPptB0eHr7X9z48PGyTyaSNx+MPHQ9iLdu5iD2CriqvlcqzLSPno8CN8n4AQ+J8ebB8XuQPK7fwPc/e8adbEg0AAACwfJyLAAAAFHF0dNTOz8/f62ueP3/ejo+Pb2kiGLylOhexR9BV5bVSeTYAAFgWtxFUAAAAAAAAAEBvLi8v2+PHjz/oa3/88cd2eXl5wxMBldgj6KryWqk8GwAALJPbCCo23/Fncgs/EwAAAKAC5yIAAAAFrK2ttc8///yDvvaLL75oa2trNzwRRFiacxF7BF1VXiuVZwMAgGWyetPfcDab/fu6x0ej0U3/yBt1586dN659//337e7duz1Mw1C8ePGiPXr06PWLf/lrP8MAfIw5e5ffkwDLZd5r03n3QcCHcS7C/3MeAJTinh6AJfUxZxm7u7vtp59+aufn551/3v3799vOzs57zQj8YdnORewRdFV5rVSebRk5HwU+lPcDGDzny4Pg8yJvd+NBxbJbWXnzP+24e/du29jY6GEaBq3YYRFAJ3P2Lr8nAZbfvPsgIJNzkQVwHgD0xT09AAPS9SxjPB63vb299s0333T+3nt7e208Hn/oaMASsUfQVeW1Unm2ZeR8FLhR3g9gSJwvD5bPi/zB3wIAAAAAAAAAg7S1tdUmk0mn504mk/bw4cNbngioxB5BV5XXSuXZAABgGQgqAAAAAAAAABik0WjU9vf32+rq6rXPW11dbfv7+23kX5GFKPYIuqq8VirPBgAAy0BQAQAAAAAAAMBgbW5utu3t7Wuf8+WXX7bNzc0FTQRUYo+gq8prpfJsAABQnaACAAAAAAAAgEHb3d1tn3766dzH7t+/33Z2dhY8EVCJPYKuKq+VyrMBAEBlggoAAAAAAAAABm08Hre9vb25j+3t7bXxeLzgiYBK7BF0VXmtVJ4NAAAqE1QAAAAAAAAAMHhbW1ttMpm8dm0ymbSHDx/2NBFQiT2CriqvlcqzAQBAVYIKAAAAAAAAAAZvNBq1/f39trq62lpr7ZNPPmlfffVVG41GPU8GVGCPoKvKa6XybAAAUJWgAgAAAAAAAIAIm5ubbXt7u7XW2vb2dnvw4EHPEwGV2CPoqvJaqTwbAABUJKgAAAAAAAAAIMbu7m777LPP2s7OTt+jAAXZI+iq8lqpPBsAAFSz2vcAAAAAAAAAALAo4/G4ffvtt21tba3vUYCC7BF0VXmtVJ4NAACq8T9UAAAAAAAAABDFB0yB69gj6KryWqk8GwAAVCKoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAKrtqYAAACAASURBVAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDirfQ9Qzfr6envy5Mkb1wAAAIbAPQ9wHXsEAABQjfsUAGBRvO4AAIbMa523E1T8ycrKStvY2Oh7DAAAgFvhnge4jj0CAACoxn0KALAoXncAAEPmtc7brfQ9AAAAAAAAAAAAAAAAwKIJKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiLPa9wCQanT1su8RGKKr/8y9Nlr8JAyUvQsAAD6O19Th3LfTI/sPAAAAACyO87ieOIe/FdYzQyeogJ78/ZfHfY9AiH/88q++RwAAAOB/nAfwZ+7bAQAAAACGx/sBdTiHB95lpe8BAAAAAAAAAAAAAAAAFk1QAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcVb7HgASrK+vtydPnvQ9BgFevXrVLi4uXrt2586dtrKin+P2rK+v9z0CAACU5DyAP3PfTjXu6QEAAADg43k/oA7n8IvjfJkhEVTAAqysrLSNjY2+xyDEvXv3+h4BAACA5jyA+dy3AwAAAAAMi/cDanEOD7wvyRUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAwH/Zu+8w6YoyYeP3Qw4CgqCIqAQjgooCKyDyIqYFQWFFQFExYVhZw+oiqyzgmpVVVIwgQQwogih8JhAMyC6goIgiBkBQkIwE4SU83x9V7RyaDjPzdvf0TN+/6zpXn9OnzjnVXWd6uqrrqZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNnGXm4JpLt1auvPLKObi8JEmSJGnctdUXl+6WTpqHbBeRJEmSJPVl24gWKNtFJEmSJEl9jbpdJDJz2Ne49wUjNgPOGelFJUmSJEnz2eaZee5cZ0IaBNtFJEmSJEmzYNuIFgTbRSRJkiRJszD0dpGlhnlySZIkSZIkSZIkSZIkSZIkSZKkcTQXM1QsD2xSN68B7h7RpddmaqSDzYGrRnRdDZ5luXBYlguHZblwWJYLh2W5cFiWC4vlOX1LA2vV9Qsy8465zIw0KHPYLjITflZpEnnfa1J572sSed9rUnnvzz+2jWjBmSftIhos//9oUniva5J4v2tSeK9rkozj/T7SdpFlhnnyTuoLGvl0pBHR3LwqM68YdR40GJblwmFZLhyW5cJhWS4cluXCYVkuLJbnjF021xmQBm2u2kVmws8qTSLve00q731NIu97TSrv/XnLthEtKPOhXUSD5f8fTQrvdU0S73dNCu91TZIxvt9H1i6y1KguJEmSJEmSJEmSJEmSJEmSJEmSNC4MqJAkSZIkSZIkSZIkSZIkSZIkSRPHgApJkiRJkiRJkiRJkiRJkiRJkjRxDKiQJEmSJEmSJEmSJEmSJEmSJEkTx4AKSZIkSZIkSZIkSZIkSZIkSZI0cQyokCRJkiRJkiRJkiRJkiRJkiRJE8eACkmSJEmSJEmSJEmSJEmSJEmSNHEiM+c6D5IkSZIkSZIkSZIkSZIkSZIkSSPlDBWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJs5EBFRExMMj4pCIuCgibo2I6yPinIh4W0SsNNf5m2QR8cCIeG5EvCsivh0R10ZE1uWoWZzvnyPixIi4IiLuqI8nRsQ/DyH7aoiIzSLivyLie433/5aIuDgijoyIp87wfJblHIiIVSNij/qZ+cOI+H1E3BQRiyPi6og4IyL+IyIeMM3zbRURx0bEZRFxe0RcFRHfjYg9h/1a1FtEfKDxeZsRsWgax/h3OYfayqvXcsY0zmVZjpGIeFhEHBwR50bENfXz8vKI+HH9jrRxn+MtzzlQ/ydO9++y72et5Shp0EbVFuLnl8bNMO/9iFgpInaNiE/Vc94QEXdGxHURcVZEHBQRaw/qtUjTNarP/LZrrhQRf2x81710GNeRehnlvR8Rz4iIo6K0l94apc304og4PiJeFxH3G+T1pG5Gcd9HxHpR2o9/FhE31u8710fET6P8DvTAQVxHkjS/WN/WpLCOrUlivVqTwrq0FroYcD/saV5zzyh9ha+K0s/psij9RLccxvVGITJzrvMwVBGxE3AssGqXJBcDO2bm70eXK7VERK8b8OjM3Hua51kK+Czwyh7JDgdek5n3TD+Hmo6I+BGwzTSSHgO8OjMX9ziXZTmHIuIZwPenkfRaYK/M/G6Pcx0EHED34L1TgBdk5u0zzaeWTEQ8ETgHWKbx9HaZeUaX9P5djoE+/zObfpiZi7qcw7IcMxGxL/A+YOUeyQ7NzDd1ONbynENRgpe2ncEh9wAPy8w/t53HcpQ0cKNoC/HzS+NomPd+RDweOBPo98Pe34B9MvO4mV5Dmo25av+OiA8D/9546rLMXG+Q15B6GdW9HxGrA0cCz+uTdNPMPH9JriX1M6Lv+S8BPgOs2CPZ9cAemTmd3xIkSQuA9W1NCuvYmiTWqzUprEtrEgyqH/Y0r7UicDywQ5ck9wDvysyDB3XNUVnQM1RExKbAcZQPw1uAdwBbAdsDn6vJHgWcEhGrzEkm1fQn4HuzPPY9THXiOA/YE9iiPp5Xn38V8O4lyaC6Wqc+/gU4FHgB5f3fEngL0Oo4+FLgqD7nsizn3uWU4Jc3ArtSynFrYHfga8DdwJrANyPiCZ1OEBGvAQ6k/J/5A6VMtwCeD5xek+0IfH5or0IdNTq+LQNcPc3D/LscL58CNumxvLzHsZblGImIdwIfowRTXAy8DVgEbAo8o27/lFLZ6MTynFsvp/ff4iaU/50tp7UHU1SWo6SBGmFbiJ9fGisjuPdXZapzx5nA/sAzgScBz6b8WHJPTffFcJYWjcBctX/X674JuB24eVDnlaZrVPd+RKxGGXym1enjRODFwFOAzSltp4cCV8z2GtJ0jeK+j4itKb/hrEj5XnMkpU1/C8rvPt+qSdcAToqIDWZzHUnS/GJ9W5PCOrYmifVqTQrr0ppQS9IPezo+z1QwxelM3e+vpPQTXQo4KCL2GWIehiMzF+wC/AhI4E5gyw7731b3J3DQXOd3EhfgYOC5wIPq9nqNMjlqmud4VC3jpIy4vmLb/pXq86174RFz/boX2gKcDLwQWLrL/jWB3zbK9mmW5Xgu3cqwLc3zG2V5Qof9awA31v2XAWu2XwP4ZuMci+b6dU/SQmmMSeA3wHv7lYN/l+OzLOl3FstyvBZKBb1VpkcDy/ZIu5zlOT8X4AONct7LcnRxcRnFwgjaQvz8chnHZdj3PuVHluOAjXqkeR7lB5MEfk+dHdjFZVjLKD7zO5xzaeDces4DgEvr+qVz/X64TM4yqnufMuhMUjo27dwjXQDLzPX74rKwlxF9zz+5cY7Xd0lzSCPNJ+b6fXFxcXFxGf5ifdtlUhbr2C6TtFivdpmUxbq0y6QsDKAf9jSv8/TGeb9JW19TSj/hy+r+G4DV5/q9mcmyYGeoiIgtgG3q5hGZeVaHZIdQOpQCvDEilh1J5vQPmXlgZp6cmX9dgtO8iTLSOsC+mfn3tmvcBuxbN5cB3rwE11IHmfnczPxqZt7dZf+13Ht6whd0OZVlOce6lWFbmm9QAmRg6nO26VXAanV9v1r+7dd4PWWmCyhfTjUCEfEw4L/r5muBxdM4zL/LhcOyHBN1pphP1c1fAK/MzDu7pc/MTn+rlueYq+X84rp5C3BCh2SWo6SBGmFbiJ9fGiujuPcz86eZuXtm/rpHmpOY+p+/IWXmMWko5rD9+43AkyltQx8YwPmkGRnVvR8RTwVeUjffmZnf7JY2i7tmeg1pukb4mb9VfbwuMz/ZJc27GutbzuIakqR5xPq2JoV1bE0S69WaFNalNUkG1A97Ot5aH++iBBDdq69p7Se6X928P6Uf6byxYAMqKCOotxzZKUFm3kOJhIRSeNsNO1MarIgIpqYFuygz/7dTuvp8qwP48+pxGq3TG+sbtu+0LOed1lSTK3TY1/r8/RudO4+SmVcAp9bN7Qc5JaZ6OowyZe7RmfnDfon9u1w4LMux8yzgkXX9AzNtHLI8543tgYfU9eNr5+J/sBwlDcnQ20L8/NKYGqd2wJ7tH9IAjfy+j4iHM/Xj32u7BH9Lwzaqe/8N9fEm4BOzOF4apFHd98vVx0u6JcjMm4DWIErLdUsnSVowrG9rUljH1iSxXq1JYV1aGqDav3P7unlq7f/ZyQmUfqMAuww9YwO0kAMqnlofbwV+1iNds0Pp1sPLjoZkfWCdut6vc3Br/0MoU9potJZvrHeaBcGynCci4tHAE+vmRW37lgO2qJtn9an0t8pxeWCzgWZS9xERL6RM7XU9U9Gi/fh3uXBYluNlt/qYlOkfAYiINSLikRGxRp/jLc/54aWN9WM67LccJQ3DKNpC/PzSOBqndsB+7R/SoMzFff9JYGXgC5l5xhKeS5qtod/7tY2zFUD6/cy8vT6/dEQ8NCLWi4hOA81IwzKqz/xWQPT63RJExKrAmm3pJUkLl/VtTQrr2Jok1qs1KaxLS4O1OVMBQV1/I679RVsD8m0+oFm9RmIhB1Q8tj7+vs+ov83OwI/tmkrjaqPG+kVdU913v2U9ets21n/TYb9lOcYiYqXayfctlH+Iy9RdH21L+ihg6bpuOY6JiLg/cGjd3K9OrzUd/l2Op90i4tcRcVtE3BwRv4uIoyOiV6S8ZTlenlIfL83MmyPiRRFxAXAdcDFwXUT8NiLeGhHLdzje8hxzEXE/piLtLwPO6JDMcpQ0DKNoC/HzS+NonNoB+7V/SIMy0vs+IvYAdgBuAP59tueRBmAU9/4TmJqZ94KIWDUiPkoZSfBPlBEHb4qI70fEohmeW5qNUX3mf7o+PiAiXtslzQEd0kuSFi7r25oU1rE1SaxXa1JYl5YGaza/ES8DPHI42Rm8BRlQUSMYWxFd3aYVASAzb6BEoQE8dJj50lCs21jvWdbA5Y11y3qEImIp4O2Np77aIZllOWYiYu+IyIhIyufkxcAhwINqkvcDX2o7zHIcTx8E1gbOBI6YwXGW53jaiFKJWxG4H/AIykj4P4iIEyNitQ7HWJZjov5PfEzdvDYiDgW+CGzclvRRwIco5Xr/tn2W5/j7F8qoQgDHZmZ2SGM5ShqoEbaF+PmlsTJO7YAR8QRgx7p5QWbawUNDMer7PiJWZ2pQjbdn5jWzOY+0pEZ47zd/HFwKOBd4I9Csny8HPINSb99vhueXpm3En/mfZ2qWzcMi4nMRsVNEbBYRu0bEiUzNfvyezDx1FteQJM0T1rc1Kaxja5JYr9aksC4tDcWC/414QQZUAKs01m+ZRvrWB+L9hpAXDddMyvrWxrplPVpvBrao6ydkZqdptCzL+eN8YIvM3L9DB1HLccxExDbAq4C7gNd26dTbjeU5Xm4DvgK8GtgG2BR4FvAeyswGAM8HTuowXZplOT5WY+o7+CbAvwFXAnsBawArUUZZak1/txWlAt5keY6/lzbWj+mSxnKUNGijagvx80vjZizaAevMYoczNWvjOwZ5fqnNqO/7D1EG2DgL+NwszyENwqju/TUa6/tRRlH7DqWNewXggcDrgJuAAN4fEc+b4TWk6RrZZ35m3p2ZLwN2A35BaVf+JnAO8HVK2+PpwDMz850zPb8kad6xvq1JYR1bk8R6tSaFdWlp8Bb8b8QLNaBihcb64mmkv6M+rjiEvGi4ZlLWdzTWLesRiYhtKTMZAFxN+ULciWU5fr5B6ey7CaVSsydwIvBE4MsR8dwOx1iOYyQilgM+S6mAfiQzfzXDU1ie4+UhmblnZh6emT/JzPMz8/u1wvU44Lyablvu+1lrWY6PlRvrK1ACZbbLzC9m5g2Z+ffM/BHwdEplG2CXiPintuNaLM8xExHrAovq5v9m5sVdklqOkgZtVG0hfn5p3IxLO+AngM3q+tGZ+a0Bn19qGtl9HxFPA17B7AZqkAZtVPd+e939+8BzM/OczLwjM6/JzE8DzwXuqeneFxExw+tI0zHS7zoR8VjKQBGbdEmyJfDKiHjIbM4vSZpXrG9rUljH1iSxXq1JYV1aGrwF/xvxQg2ouL2xvtw00i9fH/8+hLxouGZS1ss31i3rEYiIx1E64C9DKavdMvPqLsktyzGTmTdm5q/qck5mfiUzd6V8AdyAMgr+3m2HWY7j5T+BxwB/Ag6exfGW5xjJzBt77Psr8ALgzvrUvm1JLMvxcXvb9uGZ+dv2RJn5d+49ytLuXc5heY6fvZiqZx3dI53lKGnQRtUW4ueXxs2ctwNGxP6UUaegjDr1r4M6t9TFSO77OhJsa6CGQzPzguXcewAAIABJREFUlzM5XhqCufi+A7BfZt7dnigzfwKcUDcfS/cfzaUlMbLvOnW247OAnYA/Ay8B1q7XfSjlO85twB7A2fU3IEnSwmV9W5PCOrYmifVqTQrr0tLgLfjfiBdqQMXNjfXpTBfSioqczvQ+Gi8zKetm9KtlPWQRsT7wPWB14G5gjzridjeW5TyRmV8Avkb5H/KJiGhO1Wc5jomIeAywf93cNzNv7ZW+C8tzHsnMP1JGdgB4RESs09htWY6Pm9u2v9cj7WmUEWoANu9yDstz/LykPt4BHNcjneUoadBG1Rbi55fGzZy2A0bEa4D31s2LgB1mWf+SZmJU9/07gEcDlwMHzvBYaRjm4vvONZl5XteU8N3G+uZdU0mzN5L7vnbw+zKwGnAV8JTMPDYz/5qZd2bmFZn5SeBplB/Q16H3QBKSpPnP+rYmhXVsTRLr1ZoU1qWlwVvwvxEvM9cZGIbMvD0irgMeAKzbK21ErM5U4V0+7Lxp4K5orPcsa0rEX4tlPUS1E++plC8BCbwiM0/qc5hlOb+cBLyQ8vn5HOBL9XnLcXy8mRIN+kdgpYjYo0OajRvrT4+Itev6t2qDpOU5//wa2KGuPwT4S123LMdEZt4REdcAa9Wnur7H9TvttZTRC9Zq7LI8x1REbAZsVDdPzswbeiS3HCUN1AjbQvz80liZy3bAiNgT+GTdvAx4ZmZeu6TnlfoZ4X2/X308FdgpIjqlaZ175Ubbw9WZ+YMZXkvqa4T3fjP9FV1T3TftWl1TSbM0wvv+OZT2RICPZ+ZVXfJzYUQcSxkt/MkR8YTM/MUMryVJmgesb2tSWMfWJLFerUlhXVoaivbfiM/tkXZe/ka8IAMqql8D21BGaF4mM+/qku4xjfXfDD9bGrBfN9Yf0zXVffdb1kMSEWtSRkjfoD61b2YeM41DLcv55ZrG+sMb6xdTZiRZGstxrrWmztqAEg3dzwGN9fWBW/Hvcj7KLs9bluPlQmBRXV+6T9rW/uZ3WctzfL20sd5vZAnLUdIwjKItxM8vjaORtwNGxM7AMZTZG68Ets/Mfj8OSoM0ivu+NW33y+vSy5pMtT/8ELCzh4ZlFPf+hY316dbb4d51d2mQRnHfP7ax/vM+aX9G6QTSuqadQCRp4bK+rUlhHVuTxHq1JoV1aWmwZvMb8V3A74aTncFbaq4zMEQ/qY8rA0/ukW7bxvqZw8uOhuQSpkbf3rZXQsrUSQB/Bi4dVoYmWUSsRpmKrTUy89sz87BpHm5Zzi8Paaz/Y1qmzFwMnF03t4yI5eiuVc530DtiUXPHv8v5Z6PG+l8a65blePlRY32DbokiYlVKgymU8mixPMdQRCwLtEYLugb4dp9DLEdJwzCKthA/vzSORtoOGBHbA1+lDFZzHWWkzD/M9nzSLNn+rUk19Hs/My8D/lQ314suQ8dWGzbW/9w1lbRkRvGZ3+xY0m9AvmW7HCdJWnisb2tSWMfWJLFerUlhXVoarHOAxXW962/Etb/oU1rHZOadw87YoCzkgIpvNNY7RvZGxFJMjSJ7I3D6sDOlwcrMBE6qm4+JiKd0Slefb0U9nVSP0wBFxErAKcCT6lPvycwPTPd4y3Le2a2xfkHbvtbn76rArp0Ojoh1gWfUzdMy8+bBZk+ZuXdmRq8FOLhxyHaNfZfWc/h3OY9ExPrAM+vmHzLzH40NluXY+XpjfZce6XYBWo1LP249aXmOrX9mahraL/UY4QKwHCUNzdDbQvz80pgaWTtgRGxF+RtYHrgJeHZmXtj7KGkoRvGZ37NdobYtXFaTX9Z4ftEMX4s0E6P6zG/V3VcFtu+Rrtn++ZOuqaQlM4r7/pLG+jZ90jZ/NL+kaypJ0kJgfVuTwjq2Jon1ak0K69LSANX+nafVzWfU/p+d7Er57Ac4cegZG6AFG1CRmWcz1fHslRGxZYdk/87UtDuHzqdIGN3LR4G76/rHI2LF5s66/fG6eVdNrwGqUWUnAlvXpw7NzHfO4lSW5RyLiL0jYoU+ad4M7FA3L6HRybc6nNLIBfD+iHhA2/FLA59katq+Dy1RpjVs/l2OgYjYKSK6RrNHxIMoDRKtWWE+2SGZZTkmMvOXTM1esGcdceleImJt4N11czFwZFsSy3P8vLSxfsw0j7EcJQ3UINpCImJRRGRdjupyKT+/NFZGde9HxBMpg0msDNwK7JiZPxvEa5BmaoSf+dJYGfH3ndvr+v/UWSTvJSL2AhbVzVMy8/LpvxJp+kZ0358G3FbXXxcRm3TKS0T8M1MDhPwZOH/6r0SSNN9Y39aksI6tSWK9WpPCurQ0M7XfaOt+P6hLsg/Xx2WAw2o/0OY51gRag7DfSOlHOm/0m2ZmvnsjZRqeFYHvRcR7KVFkKwJ7APvUdBcDh8xJDidcRDwVeETjqTUb64+IiL2b6TPzqPZzZObFEfEh4O3AZsCZEfEB4A+UacH2AzatyT+Umb8b2AtQy5eBZ9X1HwBHRMTGPdIvzsyL25+0LMfCQcAhEfF1SuT3H4BbgFWATYAXMxU4sxjYJzPvbp4gM6+PiP2ATwMPB/4vIt5DmcliHeBNwHY1+Zcz84xhviAtGf8ux8bHgWXr3+ZZwKXA3yn/NxcBr2Hqf+hPgMPaT2BZjp03AVsC9wdOjoiPAv+PUq5bAPsDrWjuA5ozjoDlOW4iYnXguXXzV5n58+kcZzlKGpKht4X4+aUxNdR7PyI2BL5L+f4G8E7gpj7tH1dn5tUzvZY0A7Z/a1KN4vvOnyLiv4APUtpFz67fd37J1My8r6vJ/wa8eXYvRZq2od73mXljRLwfeBfl94CfRsTHge8DNwAPAp4HvJqpAfvenpn3zPoVSZLmC+vbmhTWsTVJrFdrUliX1kQYRD/s6cjMH0TEVyh/PzsD36/9nf5C+ax/B/Cwmny/zLxhNteZK5GZc52HoYqInYBjmZpCpN3FlOj2348uV2qpkXsvm276OsVdp/MsBXwOeEWPw4+gdP72H9KARcRMP0guy8z1upzLspxDEXEpJQiinyuAV2Tm93uc62DgAKDj3y2l4/C/ZObtXfZryGo06YF1c7tuwS3+Xc69Gfxtfh14VWbe2OU8luUYqRWa4ymV6E4SeE9mHtDleMtzTETEa4FP1c3/yMxpz75kOUoahiVpC4mIRUxNaXx0Zu7d5Rp+fmnsDPPer43N7bOG9XNwZh40w2OkGRnFZ36f619Kqa92be+ThmFU935EvI8SLNqtjfNq4PmZedb0ci7N3rDv+4gI4H8oHU663fMAdwL/mZkf7pFGkrSAWN/WpLCOrUlivVqTwrq0JsEg+mG3fS/v+n07Ilak9HXaocvp7wH+ez5+X1+qf5L5LTO/BTwe+Ajlw+82ylQi51JHTDSYYv7LzHsy85XAjsBJlIinxfXxJGCHzHyVnTjGn2U5555Nmc7sBEpU+F+Bu4CbKaPNfh14OfDoXsEUAJl5IPBU4EvA5ZRyvJoShfuizNzRYIr5wb/LsfAySvDLdyjfZ66n/G3eSJn95TPAVpn5gm7BFGBZjpvM/AnwOOBg4BeUkTduBy6hVFKe3C2Yoh5veY6Pl9THu4EvzuRAy1HSMIyiLcTPL40j2wE1ibzvNalGde9n5v6UGXu/QJkx9A7gJuAcymAyj7LTh0Zl2Pd9Fm8GNqfMQP0rym8Dd1Pu+59ROolsbAcQSZos1js0KbzXNUmsV2tSWJeWBisz/56ZOwIvpvQDvZryG/HllH6iT52PwRQwATNUSJIkSZIkSZIkSZIkSZIkSZIktVvwM1RIkiRJkiRJkiRJkiRJkiRJkiS1M6BCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJGjMRcVREZERcOtd5AYiIvWt+MiLWm+v8SJIkSZKkyRARixptEovmOj+SJEmSJEmSJGnhMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEnSEhm3GTUkSZIkSdL4ioj1GrNO7D3X+ZEkSZIkSZIkSZNtmbnOgCRJGm+ZeRRw1BxnQ5IkSZIkTZjMPAOIuc6HJEmSJEmSJElauJyhQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSNKci4qCIyIjIun3/iDg4Ii6MiFsi4vqIOD0i9pzGudaLiI/UY2+OiNsi4ncR8ZmI2KTPsVmXg+r2MyLimxFxZUTcHhF/jIhPRMRDpvtaeqRb1Ljeon6vq8PxK0fE7hFxeEScHxE3RcSdEXFNRPwwIt4aEfeb4et9ekR8LSIur+e6tJF270b69dpfL/Cy+tTDG+n+sdS0Ozee22Mar/GQmvauiFhnpu+RJEmSJEnDFBEbR8Q7I+K7EXFFRNxR2zF+FxFHR8RTpnmerWv9/rcR8beIWFzPd3JE/GtE3L/HsTtFxPGN618XEWdFxNt7tQsMsv0iIp4cEUdExMURcWttQ7k8In4WEYfV9oBopE/gksYpjuzQlnDQTPLQSLtDRBxb23BaebkkIr5e2zZWakt/r/aOiFgqIvaJiJ9GxA31HL+MiHe0H9vl+ktHxMtq2f2lUSY/iYi3RMSKfY6f0XvZOG6FiPi3iDgjStvQnVHa034bEd+u116vX/4lSZIkSVqIImK72lbzxyh9SP4WERdExIe69UVobzupde+3RcTPo/RFuTkizo6IN0TEMtPIwwo17WkRcVVt/7k6Ik6NiFf2OkdEXFrzclTdfnJEHFXbPO7o1L4TEStFxAG1XePWRvvEK6Lo2N4SEY9vPP/2abyufRvpt+iXXpKkcdb3H7okSaMSEesD3wc2bDy9MrAIWBQRzwdenJl3dTj2pcBngeXbdj2iLq+MiAMy833TyMeBwEFtT68P/CuwV0TslJk/ntaLGo5TgG07PL8m8LS6vD4idsjMi/qdLCLeA/znYLN4H6cAVwIPBvYGvtIjP8sAe9XN72TmX4acN0mSJEmSpq3+0Hx6h13LMdUO8dKIeH9m7t/lHCsCRwCdBpB4SF12BNairY0iIlYAvgTs0nbcGsBT6rJvROyYmedP71XNXES8Gfgw9x24ad26PAl4PbAKcMsQ8/EA4Dhg+w6716vLrnX7qC6nWQn4XodzbFKXnSPi6Zl5a5c8PAz4JvCEtl1rAFvX5XW1TC7ucPys3suIeDBwKrBR23Gr1+VRwHOAdYC3dsq7JEmSJEkLUW0/ORLoNODjxnV5XUTsmZnf6nGeBwHfAZ7YtmvzujwrIp6fmfd0Of4JwEnAw9t2rUVph9geeE3th/LXPq/ptcDH6dHnMyLWBX4APLLx9EpMtU/sAnys07GZ+cuIOKe+rpcB7++VH+Dl9fHCzDy7T1pJksaaARWSpHFyHCVw4dPA8cBNwOOB/Sg/AL8Q+Avw5uZBEbEj5QfxoPyofAjlx+S7gK2A/SnBBu+NiBsz81M98rAjsBnwW+CDwC+B1YDdgFfX9ZMjYuPMvHyJX/HsLANcQPmh/lzKexKUCvgulPdpfeAbEfHEzLy9x7l2pXQMuAD4CPArYEXu2xjQyScp5fRu4Hk1H8/ulDAz764jJuwPPDMi1s3MK7qcd0fggXX989PIhyRJkiRJo7QMcCtl8IAfABcBf6PUZR8H/Buljv72iLg4M49sHhwRS1F+SH9mfep3lDr2ucBtlMEItqLU7zs5mqlgil9Q2kF+Q+m8vwdlIIN1gNMi4vGZ+ecle7n3FRGPZyoA4BLgE8D5wPWUTv+PBrajtBc0bVLz9t26/U7Ke9F09QzysRIluKU1M+nPKANu/Aq4A3goZeCJ3fuc6nOUQJSjga8CVwEPA/4D2BLYoub1PgEyNaDjJ/Vad9Rz/RC4FLgf8CzgjZRAm29HxJMy86bG8bN9L6F0omgFUxwLnEBpn7mbch9t1uU4SZIkSZIWrDrD4/GUvgcA36LU9/8I3EOp5/87pe5/fERsnZnndjndCZS698fqea6n1NUPAB4L7ETpS/KZDvl4BKWNYDVK29FhwNnA5cADgJ2B11ACGE6KiG0y884u+dicMjDl5ZR2hHMpbVTbNK63LKW9qhVMcQqlneIKyoAN+wDPpQRzdHN4vdZjImLLzDyrU6IaKLJp3bRfhyRp3ovMnrN6S5I0VBFxEHBg46kXZeaX29KsAvyYMsrfPcATMvNXdd+ylB+o16EEU2zTPvpiRDwcOIvyQ/JtwMMz89q2NM1/iD8Hts3MW9rSvAQ4pm5+LTNf2Lb/H68lM6PHa17E1EiW22XmGW37j6JE+1+Wmet1OP6Rmfm7Hud/BqVjwlLAqzLziA5pmq/3NGDHzLyjy/n2pozcALB+Zl46k/w20m1I6SQSwDsy871d0p1EaTi4BnhIjwYDSZIkSZJGLiLWBO7KzBu77F8OOJkSMHEZsGFm3t3Y/2/AoXXzRGDPTnXyGnjx4GZARB1U4uS6eRqwQ2Yubjvu1ZSgAoCvZububfsPYgnbLyLiXZSOA7fW19dxBMWIWA24uTlKY0SsRwkcAHh5Zh41mzzU/f/D1MAbhwH7ZocfPWqZrN7MZ1t7B8BLMvPYtuOWp3RQ2Bi4Dli7febUiPgi8CJKWW+XmZfQJiI2pbRtrQy8NzPf0dg3q/eyjrT5N2BZ4JDM7DoDRUSskZnXd9svSZIkSdJC0mgbuRPYOTO/0yHN6pS6+uOAMzPzqY19BzHVj+VO4Fkd2iTWAH4NPAj4ZWa2z1pJRJxJGTTjvHqOazukeQ4l8GEpYJ/M/Fzb/kuZmt3iAuBpPdqk3gh8tG5+NDPf3CHNx4E3NJ5qb/NZBbiS0obxuczcp8u1DqUMKnInpV/HNZ3SSZI0X7RPHy1J0lw6uT2YAiAzb6ZEykP53/Xaxu5dKMEUAO9uD6aox18GvK1ursTUtIPd7NMeTFHP8wXg263rRsTafc4zFL2CKer+UymzVwA8v8/p7qEEXXQMphikzPwDcEbd3LtTmjpd5g5181iDKSRJkiRJ4yYzr+32w3Xdv5ipdoiH05gFsgZJtPZdAby0W508M+/pMLvEv9bHOynBCIvb9lN/eD+1bu4aEQ/u85Jmo9UmcnG3AICal5uawRSDFBH3p4ziCGVmijd2Cqao+VjcK5/ACe3BFPW4OygzRkAZOXKj5v4aHNIKWHlDp2CKep7zKAEfcN82kdm+l2tQgikAftTtuHqswRSSJEmSpIlQZ6fYr25+rFMwBUBm3sBUG83WEfHITumAj7cHU9Tjr2dqoIZN6kAIzXxsQwmmAHhZp2CKep7vUGbTgC79KBr+tVebFFN9aa4A3t4lzX9QZrfsqPbP+Wrd3D0iVmxPUweueHHdPNlgCknSQmBAhSRpnBzZbUdmng1cWDef0djVWk96TyP4NeCmDse3uyAzf9Zjf+saywCLeqQbmYhYKyIeGREbtxbK7A5QZvXo5cz2GSeG7PD6+MiIeGqH/XtR3ltwWkhJkiRJ0jwQEctHxMMiYqNGvbw580Ozbv5EYN26/rlOAzr0uM4ywLZ183uZeXmP5K3RDIfVfnFlfdwoIrYYwvmn4+mUgTOgdJC4u1fiPr7YY1+znWiDtn07AktTZkT9Nr21gh7WiYiHNZ6f7Xt5HdAKqHlJvT8kSZIkSZp0GwEb1vXjeyXk3gMUbNklzXTaDAJYv23fzvXxt5l5wTTzsXmP+v3lmfnjbieIiIcAj6mbX+sxgMffKf1nemn161gV+JcO+3eiDDwB9uuQJC0QBlRIksbJOX32n10fH1Uj3gE2ro+X9Ip6ryM2ntd2zJLkAWCTPmmHJiK2jojjIuI64GrgYsr0jq3l1TXpmn1O9cvh5bKjE4Ab6nqnmUJaz52Tmb8aTZYkSZIkSZqZiFg5IvaPiF8AtwKXUQaCaNXLz2skb9bNN22sd/0RvIsNmAog+L8+aZv7e7WDzNaXKbNkLA+cGRHfiojX1oCS6HPsoCzJe9nuoh77mrM7rNK2b7P6uBJwV0RktwU4uXFcc9bTWb2XtWPEcXXzBcDvI+KDEbFDnb1DkiRJkqRJtFlj/aw+dfXmQBdr09mSthk8ulceaj5as2MuS5mRspN+fTua7T+9BhEFOLfXzsz8KfDrutmrX8eV9B9gQpKkecGACknSOLm6z/6/1scAVq/rrcpkv2MBrmo7Zkny0O88QxMRBwE/AV44jTzcZ/rFNjf02T9QmXk7cGzdfGFErNzaV0dhfFzddBQDSZIkSdJYioj1KEET7wUeT5mhoJdm3bwZXHFle8I+mm0A/dovrmqsD7z9IjMvAvaktCssAzwX+BTlfbk6Ir4QEdsM+rptluS9bHdbj333NNbby/qBs7xeKzBmSd/LNwDfqusPB94GnAJcFxHnRMTbImK1WeZRkiRJkqT5aInr6k2ZOWdtBm369e1YvbHedTDSae4HOKI+blfbwgCIiAcDz6mbxyzhjKGSJI0Np4CWJI2TnKNjh3GeoYiI7YED6+YfgQ9Tgiv+BNyamXfVdO8CDpjGKeeicns4sC9wP8oIikfX51ujGPydMjqjJEmSJEnj6AvA+pQ2hCOBrwC/ofwYvTgzMyKWYqrOPYwZG+a8/SIzvx4RpwK7A88GtgHWogQ67AXsFRFHA6/IzHu6n2lea3WWuBbYbgbHXdLcmO17mZl/A3aug1S8EFgEPLHma7O6vDUinp+ZZ8385UmSJEmSNO80Axt2Ai6d5nHTGcRzNvn4BaVuP11/7vL8qPt2HAO8D1gOeBlwcH3+pUy9NgfKlCQtGAZUSJLGyYOAy/vsh9JpoBV9f33bvl5aUzRe3yNNv/M097ef5x8/aEfEUj06C6zc5fnpeHV9vAF4SmZ2GzlgTmbPmI7M/GVEnANsTgmiODoiVgD2qElOyMyb5iyDkiRJkiR1ERGPAZ5aN9+bme/skrRbvfzaxvqDgYtmcPlmO0S/9ou1G+tDa7+o9ffP1oWIeCzwPMpACutQfnA/Dzi037lmof29vKRbwiG6rj6uAvxmSUZlXJL3MjPPBs6ux61CCazYG9iVMiLm1yNiw8z8+2zzJ0mSJEnSPHFdY/3GzPzVHOfjfiPKQ3MGi7X6pO23n8y8NiJOAnYDXhYR78rMpLQ3AJyZmRfPKqeSJI2hpeY6A5IkNWw+zf2/y8zFdb1V8Vw/IrpW+iJiWWDTtmOWJA+dznNzY311untUn2v08rj6eHqPYAooIxCOymxGxTy8Pj4tIjag/MB///qcoxhIkiRJksbV4xrrx/VI161e/vPG+tNmeO0/ArfV9X/qk3aLxvrI2i8y8zeZ+X7gKcCt9ekXtieb6Xm7WJL3clDOq4/LM+C2mGm+l52Ouzkzv5WZ/wJ8rD79YKYCgSRJkiRJWsjOa6xvPWe5mMrHBhGxds+Ug3FhY/3JfdJOtw2j1a9jfWBRRGwFPKY+Z78OSdKCYkCFJGmcvKzbjojYHNi4bp7a2NVaD8psB928AFitw/HtNomITXvsf0V9vBs4o21fcyTEXhXQPXrs66c1u1TXUSJr/vt1rBik2+vj8jM45suUzgBBGcGgVXaXAKcPLGeSJEmSJA1Wc9bnXjM4vLbL879ganbOV0XE/aZ74cy8C/hh3XxmRKzbI/mr6uNdzEH7RWZeDrRGKVyzbfftjfWZtCW0O52pQIN9I2LpJTjXbH2LqQCRNw3jAn3ey35Oa6zP9FhJkiRJkuajnwNX1PV9ImKFOcrHN+tjAG8c9sUy8wqm2g92i4iObS71/dhtmqc9Fbisrr+cqX4dtwBfnWVWJUkaSwZUSJLGyc4RcZ+R9mrngs/UzXsa6wDfAP5S198REZt0OP6hwIfr5m3AkX3y8dmIuE+niIh4EbBD67qZeWVbkp9SOioAvDkiosM53sa9R4mcqd/Vx6dGxCM6nH8t4AtLcP7ZaL0PD4yIVaZzQGbezFQF+zXA0+v6UXWaSEmSJEmSxtHvGut7d0oQEa8DntdpX2beA3yobq4LHBMRy3U5z1IRsU7b04fVx+WAI+qMnO3HvQJ4Vt08YRjtFxHx/Ii4f4/9D2VqxMJL2nZfB7RmHt2w2zn6ycwbmWojejLw0U6vpeZn2Yh44Gyv1SMPvwW+Vjf3iIi39EofEetHxJ5tz83qvYyIDSJi2z5ZfFZjvb0cJEmSJElacGrby3vr5gaUtpeuAzpExKoR8YYh5ON7wNl1822d+sK05WOTiNhpCS/baidZF3h/lzQfAtrbmzqq72VrJop/AXav61/LzFtmm0lJksbRMv2TSJI0MucCX6o/Bh8P/A14PLAf8Oia5rDM/GXrgMxcHBH7UEYEXBU4MyI+RBmB725gK+DtQOtH87dm5rV98rAZcG5EfAC4gDKzxQsoHf8Bbgbe2n5gZl4dEV8D9gSeDXwzIg4D/go8DHgJpZL505qv2TgG2IkyCuYPI+L9wM/qvq2AtwBrA2cBW87yGjP10/q4FPDpiPg48I/3ODN/3+W4wykjGLTK5h7gqCHlUZIkSZKkQTgP+BVlFs3XRMTqlIENrqT8WL0XpQ3hTGDrLuc4jFK3fyawC3BBRHyS0iZxG6Ve/xRK+8KXgINaB2bmKbXtYTdKZ/n/jYj/AS4CVqfMKtGaXfN6SjvBvQwiEvFtAAAgAElEQVSo/eJNwBcj4hTgB8BvgJtqHjYD9gVWrGk/3Xb9uyLinPr+vCIizgPOB+5s5Tszr+9y3XYHUN7HTYA3AFtGxGco7TmLKWWyTX2t72Q47Q6vo7zmDYBDIuJ5lPabC4E7gAcATwCeQxlQ4kTKzJ0ts30vHwacHhG/ruc8F/hz3fdQSieHVmeN84H/G8zLlSRJkiRp7H2aqXaX3YAn1faCsyl17lUpgxcsAnamzKb5iSHk40X1mmsAx0XEXsBxlAE77qb0ldiU0k70FOAQSt+X2foEpQ/GxsCb6iCdn6PM2LEusA+wY81TayCNfgNefh44EFip7TlJkhYUAyokSePkhZRAiNfXpd3X6dwR4JSIeDkl2n4V4F11abobOCAzP9UnD6fU5UA6z2TxN2DnzLy0y/FvpvzY/UjguXVp+golkODUPvnoKDOPj4gjKZXgdYCPtSW5u+ZhdUYXUPED4H8pFfwX1aWp4+iQmfnT+qP/RvWp0zLzT0PLpSRJkiRJSygzMyJeQqkLr05py2gfYfACyo/1f6GDzLwnIp4PHE0JvngU8NEZZOOllLb9XYAnAcd2SPMXYMfM/HOHfTCY9ouVKK9zty777wEOzMxvdNj3PkoHgQdQgkaaDqYRRNJLZt4WEU+ntBk9jTJTxWenc+ygZOb1EbE1ZSbObWo+ntbjkL91eG5J3suNmGpb6eQiYFdnBJUkSZIkTYrafrM7cCjwWsoMmR/sccjVQ8rHHyJiS0q7xcaUwIles1B0ajOYyfUWR8SOlHarDenc5vM94CPAt+v27X3OeUVEfBf45/rUxZn5kyXJpyRJ42ipuc6AJEktmXkJ5Yfv91JG47uNMjrAj4C9MvMFmXlXl2OPpowgcGg99lbg78AfKBH3m2bm+6aZj4MoowaeQhmdcTFwKfBJ4HGZ+cMex/4V+CfgA5RRBe6gjAjZeg17UoIeZi0zX0EZLfLHlNky7gAuo4yIuVVmHrok559Ffu6hjIr5buAXwC30H8Wgpdnpw1EMJEmSJEljLzPPB55IGe3wMsrMCtdTRvd7K7BFZl7Z5xy3ZeZulBkLvgBcQmnHWAxcTgk2eA1lZML2Y2/PzF0pIyieQAmeWAzcQJmFYH/g0TWf3a6/pO0Xe1JGNfwSZfaDq4C7KG0CFwKforTFvLvL9U8BtgdOqvm/s1O66cjMazNzW2BXyoynV9TXczvwR+BrwIu596wQA5WZV2Xm0yidFL5Yr3sb5XVdQ5nt4xBg29qu0zTb9/LHlJE03wecDvye0k50J6U963uUTiNPrG1ukiRJkiRNjMy8MzNfT5k18uOUATBuorR33ESpgx9BGezisUPMx8WUdqQXUQIr/sRUG9CVwBmUvhZPzsz2gUNnc70/UV7zgZRZVv8O3EgZJPP1lMCIFRqH3DSN036hsd5pYFJJkua9cFAiSdJcioiDKBU5MrPjTAYjykfrH+LBNaBCIxARX6Q0HNwAPDgz75jjLEmSJEmSJEmSJEmSJC1IEfFO4L8pAzqskpk9Z6mIiPcA/0kJRnlov4FEJEmaj5yhQpIkzYmIuD+wS938osEUkiRJkiRJkiRJkiRJwxERAexeN8+fRjDF0sBL6+a3DaaQJC1UBlRIkqS58m/AinX903OZEUmSJEmSJEmSJEmSpPksItaLiGV6JHkXsHFdP3oap3wxsG5dt1+HJGnB6vXPU5IkaWBqpX09YHlgO8qUkADfzMwL5ypfkiRJkiRJkiRJkiRJC8DewMsj4kvAmcBfgGWBxwIvAxbVdL8GPtfpBBHxiHrMZsBH6tO/AP7fsDItSdJcM6BCkiSNyrrA79qeuwl4yxzkRZIkSZIkSZIkSZIkaaF5GPD2HvsvAnbMzDu67G/v13En8LrMzEFkTpKkcWRAhSRJmgtXA2cB78jMP8x1ZiRJkiRJkiRJkiRJkua5IygDWz4LeASwFrAScD1llokTgc9n5uJpnOsG4OfAf2XmWcPJriRJ4yEMHJQkSZIkSZIkSZIkSZIkSZIkSZNmqbnOgCRJkiRJkiRJkiRJkiRJkiRJ0qgZUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZL+P3t3kNPWFQZQ+OK6IlUbxKQDpGQH6bCsg3Yj7KxlHbSzZg8ZZBIMlRopmA6aSIWQAk3ws32+b2SuLN4/ssV/dQQAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmq37gzs7O7hjjh/c/vh5jXK56BgAAANbeV2OM79+//uPq6urtlMPAl2IvAgAAwD3ZjbB17EUAAAC4p5XuRVYeVIx//jj+bYLnAgAAsJl+HGP8PvUQ8IXYiwAAAPBQdiNsC3sRAAAAHurR9yKzx/zlAAAAAAAAAAAAAAAA62iK/1Dx+sOL09PTcXBwMMEIAAAArLNXr16Nw8PDDz++/q/3woaxFwEAAOBOdiNsKXsRAAAA7rTqvcgUQcXlhxcHBwfj2bNnE4wAAADABrm8+y2wMexFAAAAeCi7EbaFvQgAAAAP9eh7kdljPwAAAAAAAAAAAAAAAGDdCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmUw+wbpbL5VgsFtfO9vb2xmymPQEAAADYNrftgqa2XC7H+fn5tbOnT5/aT30G+z0AAAAAAFjPe5FVK93DuB+B+xFU3LBYLMbR0dG1s5OTk7G/vz/RRAAAAAA8ltt2QWwf+z0AAAAAAHAvUuN+BO5HdgQAAAAAAAAAAAAAAOQIKm44Ozu71xkAAAAAAAAAAAAAALC5BBUAAAAAAAAAAAAAAEDOfOoBAAAAAGCd/Pni53E1351ugHd/je9e/nrt6OLFT2PMn0w00GbZefd2fPvyl6nHAAAAAACAjTD5vciqbek9jPsR+P8EFQAAAADwL1fz3XH19TeTPX/ntsP5k0lnAgAAAAAAttPU9yKr5h4GuGk29QAAAAAAAAAAAAAAAACrJqgAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMiZTz3Aulkulx+dvXnzZjx//nzMZvoTAAAAYHstl8uxWCyune3t7dmJAHwmn68AAAAA28W+B4BN47vr0wQVN1xcXHx0dnx8PE5OTsb+/v4EEwEAAACsxmKxGEdHR9fO7EQAPp/PVwAAAIDtYt8DwKbx3fVpkhIAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAPibvfuJjeuq/wZ87Lj5ya/SNEZq+6LWYovUIL1ITXYNKxYsQIioiaNEqhDQFJImFFg6RaLuFikhEW1ZISVK0qqoArGhK9JVky4imggQC6SGqmoiZJpatX6uY78bbDnj8Z07M/fM3Lnf55EQ9vjc8+/eOb33jD8xAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQEVJH330UfrHP/6RlpaW0sLCwvrrCwsLaWlpKS0tLa2/tvZ962vtbCy3VZnW8v0oe3y/7Qyr7rrJMdatrqvWtiLNM0TlfQ5EYb3Lx9wCADRT0X1eu591W77b9te+n5+f37L8Vsd02mevuu/dau1n0++xo4wzl17nzXx3VsUc1WWec/UjR70bPzMdRXU550A9WSMgJu/9wSrz+3WDOied2nFtAECzCVSU9MMf/jD94Ac/SN/97nfTgQMH0vz8fJqfn08HDhxIzz//fHrhhRfS4uJiWlxcTC+88EI6efLkfa/99Kc/TYuLi/fVuVb2hRdeSPPz823LtJbvVKZI2eP7bWdYdddNjrFurHOrr3O1DdSL9zkQhfUuH3MLANBMRfd57X7Wbflu21/7/p///Gfav39/+uijjzaVX9snbz1m4775IPrerdZ+ltnnH2Xtzgvl9XpNenbrrIo5qss85+pHjnrXPifdKixXd3U550A9WSMgJu/9wWrdD+j2ub/qvhS149oAgOYTqOjShx9+mD777LN06tSpNDs7mz777LP097//Pd28eTNduHAhnT9/Pt28eTP99a9/ve+1999/P124cOG+utbK3rx5M83OzrYt01q+U5kiZY/vt51h1V03Oca6sc6tvs7VNlAv3udAFNa7fMwtAEAzFd3ntftZt+W7bX/t+x/96EdpZWUlnThxYlP5tX3y1mM27psPou/dau1nmX3+UdbuvFBer9ekZ7fOqpijusxzrn7kqHftc9JTp05VVucg1eWcA/VkjYCYvPcHq3U/oNvn/qr7UtSOawMAmk+gokc3btxIN2/evO+1ixcvposXL2567dKlSymllC5fvpxu3bqVUkrp1q1b66+nlNbr2lhmo1u3bqXLly8XlilS9vh+26miD02QY6wb67x06dL69bPx68uXL6erV6+GmWeIKtJ6CsRmvcvH3AIANFPRfV67n3Vbvtv2N+5Vrv0rjnfu3El//OMf18tv3Ce/dOnSfT3bnlAAACAASURBVMes7Zu37oHm6Hu3Nrax1s9O+/yjrN14mzjOXHq9Jj27dVbFHNVlnnP1I0e9V69eXV8Lbty4ka5evdp3nYNUl3MO1JM1AmLy3h+s1v2Adr9fN6hz0qkd1wYAxCBQUaF79+6llZWVTa/du3cvpZTS559/ns6cOZNWVlbS6dOn11/faK3M6urq+murq6vpzJkzaXl5ecsyRcoe3287VfShCXKMtbXO5eXl9etn49eff/55mpubCzHPEFWk9RSIzXqXj7kFAGimovu8dj87ffp0On36dOnyne4Z2x2zca9yo1/+8pdpeXl50z758vJy22Na90Cr7nu3Wtto1bR77K3G27Rx5tLrNenZrbMq5qgu85yrHznqXVlZSXNzc/e9Njc3t+kz0rqqyzkH6skaATF57w/W6urqpv2A1t+vK3rur7ovRefetQEAcQhUDNi1a9fSq6++mt57773CMu+8887691euXEnXrl0rLFOk7PH9tlNFH5ogx1jb1bmVu3fvVto2UC+R1lMgNutdPuYWAKCZiu7z2v3svffe27RPXVS+0z1ju2Na9yrX3Lt3Lx0/frztPvlWx+Tse7fK7Nc26R67aLxNGmcuvV6Tnt06q2KO6jLPufqRo95XX31101p99+7d9Nprr/Vc5yDV5ZwD9WSNgJi89wfrypUrhb83l1Lxc3/VfSk6964NAIhDoKLF22+/nb2NN954o2OZc+fOpcXFxbS4uJjOnTtXWKZI2eP7baeKPjRBjrEW1VlW0+YZooq0ngKxWe/yMbcAAM1UdJ939uzZdPbs2dJ1FZXf6p6xlz3Mv/3tb12VL6OXvnerm7E24R67zHibMM5cen0G8+zWWRVzVJd5ztWPHPXOz89v+Tnn66+/nubn57uuc5Dqcs6BerJGQEze+4O1uLjY1R5FqyrPSadzPz8/79oAgEAEKlr8/ve/z95GmT95+/HHH6cLFy6k8+fPp9u3bxeWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd592+fTvduXOndF1F5be6Z6xiD7MKvfS9W92MtQn32GXG24Rx5tLrM5hnt86qmKO6zHOufuSod3Z2dsvPOVdWVtKpU6e6rnOQ6nLOgXqyRkBM3vuDdf78+a72KFpVeU46nfvZ2VnXBgAEIlCxwf79+4fdhftcvHgxXbp0qbDMpUuX0q1bt9r+7IMPPkiXL1/uePy7775bqtxW7RQp24de6q6bHGMtU2dZTZlniCrSegrEZr3Lx9wCADRTlXuIZbTeMw66/X70e7/by1hH+R67m/GO8jhz6fUZzLNbZ1XMUV3mOVc/ctT77rvvpps3bxaWuXHjRrp69WrpOgepLuccqCdrBMTkvT9YH3zwQcffgyujinNS5tx3uve9dOlS+vDDD/vqBwBQHwIV//Xpp5+mf//738Puxn3u3buX7t27V1hmeXk5nTlzJq2urt73+urqavrVr36VlpeXOx7/8ssvlyrXrp0i3fSh27rrJsdYy9ZZVhPmGaKKtJ4CsVnv8jG3AADNVPUeYhkb7xmH0X4/+rnf7XWso3qP3e14R3WcufT6DObZrbMq5qgu85yrHznqXVlZSS+//HKp9ufm5rb8KxbDUpdzDtSTNQJi8t4frNXV1XTmzJmOvwdXRr/npKq9jOXl5fSb3/ymrzoAgPqYGHYH6uKb3/zmsLvQs2vXrqV33nkn7du3b/21K1eupGvXrpU6/u7duz23U6SbPnRbd93kGGs3dZY16vMMUUVaT4HYrHf5mFugrHa/+PTJJ58MoSeD03Z8PiAdbW3OX9OvY+qv3TVYxS+b5thDLGPtnnF1dXUo7fej1/vdfuZ6FO+xexnvKI4zl16fwTy7dVbFHNVlnnP1I0e9r776aunPE+/evZtee+219Nxzz5UqPwh1OedAPVkjICbv/cG6cuVKeu+99yqrr59zUuVeyvXr1ze9Zh+SUeBzkQbz+Qgd5PqsogkqD1SMjY093qHI/626zX5V8efEhu3cuXNpz549aXJyMi0uLqZz585lb6dIL30oW3fd5BhrHc4hUA+R1lMgNutdPuYWBmsU90U2+vTTTze99swzzwyhJ0N2739TSv9n2L2gV/f+d9NLIa9jau/TTz9NX/jCF3o+PuceYhlnz54d2X+hs9v73SrmepTusfsZ7yiNM5den8G+8pWveHbroIrn27o8I+fqR4565+fn0xtvvNFVna+//no6ePBgmpqa6uq4HOpyziGKUdsXsUZATN77g7W4uJjOnj1beb29nJNB7KXYh2Rk+VykGXw+Qg/6/ayiKcYz1Hmrw/9q989VvfLKK8PuQt8+/vjjdOHChZRSSufPn0+3b9/O3k6RXvpQtu66yTHWOpxDoB4iradAbNa7fMwtDNzI7YsAMJpy7iGWcfv27XTnzp2htd+Pbu93q5jrUbrH7me8ozTOXHp9BpudnfXs1kEVz7d1eUbO1Y8c9c7Oznb9LxWurKykU6dOdXVMLnU55xDISO2LWCMgJu/9wTp//nyW/YNezsmw91IAgPrKEagYKX/+85+H3YXKvPnmm2lhYSH97ne/y97O0tLSlj9fWlrquQ+d6q6bHGPtp85+2wbqJdJ6CsRmvcvH3AIANNMg9hCbruz9bpVzPQr32FWMdxTGmUs/83fz5s2ejosy31U839blGTlXP3LUu7Cw0PO1eePGjbSwsNDTsVWpyzkH6skaATF57w/W0tJSevPNN7PV3805sZcCABTJEaiY7vC/PRna7NnXvva1YXehMvv37087duxI3/nOd7K3s3379i1/vn379p770Knuuskx1n7q7LdtoF4iradAbNa7fMwtDMVI7YsAMJoGsYfYdGXvd6uc61G4x65ivKMwzlz6mb8nnniip+OizHcVz7d1eUbO1Y8c9e7YsaPna3P37t1px44dPR1blbqccwhmZPZFrBEQk/f+YG3fvj3t378/W/3dnBN7KQBAkYmqK1xdXf1X0c/HxsaqbrJvzz33XHrllVeG3Y2+PProo+nw4cMppZSOHDmS3n777Sx/omxjO0V66UPZuusmx1jrcA6Beoi0ngKxWe/yMbcwWKO4L7LRgw8+uOm13/72t+mhhx4aQm8G45NPPknPPPPM/S9u+5/hdIZqtDl/Tb+Oqb92a027NbcbOfcQy3jkkUfS6upqunPnzlDa70e397tVzPUo3WP3M95RGmcuvT6Dzc3NpaNHj3p2K1DF821dnpFz9SNHvXNzc2n//v1pZWWldJ3j4+PppZdeKl0+p7qcc4hi1PZFrBEQk/f+YB05ciT96U9/qnz/oJdzMoi9FPuQjAKfizSYz0foIMdnFU1ReaBiFM3MzIx8oOLYsWNpcnIypZTS5ORkOnbsWPr5z3+etZ0ivfShbN11k2OsdTiHQD1EWk+B2Kx3+ZhboBvj45v/mOlDDz2Udu3aNYTeDFHNfsGDLrU5fyGvY2qv3ZrbjZx7iGUcP348ra6uDq39fnR7v1vFXI/SPXY/4x2lcebS6zPY1NSUZ7cOqni+rcszcq5+5Kh3amoqPf300+ny5cul6zxw4ECampoqXT6nupxzoJ6sERCT9/5gTU5OpuPHj1e+f9DLORnEXop9SEaWz0Wawecj9KDfzyqawiz81x/+8Idhd6Fne/bsSU899dR9r+3bty/t2VPur2Xu3Lmz53aKdNOHbuuumxxj7abOskZ9niGqSOspEJv1Lh9zCwDQTDn2EMtYu2ccVvv96PV+t5+xjuI9di/jHcVx5tLrM5hnt86qmKO6zHOufuSo9+jRo6U/T9y5c2d69tlnS5UdlLqcc6CerBEQk/f+YO3bty89+eSTldXXzzmpci/jq1/9aiX1AADDJ1DxXw8++GB6+OGHh92N+2zbti1t27atsMzExEQ6ceLEpj+NOTY2lk6cOJEmJor/CMnExESanZ0tVa5dO0W66UO3dddNjrGWrbOsJswzRBVpPQVis97lY24BAJqp6j3EMjbeMw6j/X70c7/b61hH9R672/GO6jhz6fUZzLNbZ1XMUV3mOVc/ctQ7Pj6eZmdnS7U/Oztbu3/ZsC7nHKgnawTE5L0/WGNjY+nkyZMdfw+ujH7PSVV7GRMTE+n73/9+X3UAAPVRr92sIXvjjTeG3YX7HDp0KM3MzBSWmZmZSdPT021/Nj09nQ4ePNjx+L1795Yqt1U7Rcr2oZe66ybHWMvUWVZT5hmiirSeArFZ7/IxtwAAzVTlHmIZrfeMg26/H/3e7/Yy1lG+x+5mvKM8zlx6fQbz7NZZFXNUl3nO1Y8c9e7duzc98cQThWV2796d9u7dW7rOQarLOQfqyRoBMXnvD9b09HTH34Mro4pzUubcd7r3nZmZSY899lhf/QAA6kOgosW3vvWt7G2U+VdZHn300XT48OF05MiR9MgjjxSWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd5z3yyCNd/XXmovJb3TNWsYdZhV763q1uxtqEe+wy423COHPp9RnMs1tnVcxRXeY5Vz9y1Ds3N7fl55zj4+PppZde6rrOQarLOQfqyRoBMXnvD9aRI0e62qNoVeU56XTu5+bmXBsAEIhARYuvf/3r2dt4+umnO5Y5duxYmpycTJOTk+nYsWOFZYqUPb7fdqroQxPkGGtRnWU1bZ4hqkjrKRCb9S4fcwsA0ExF93nHjx9Px48fL11XUfmt7hl72cP88pe/3FX5Mnrpe7e6GWsT7rHLjLcJ48yl12cwz26dVTFHdZnnXP3IUe/U1NSWn3MeOHAgTU1NdV3nINXlnAP1ZI2AmLz3B2tycrKrPYpWVZ6TTud+amrKtQEAgQhUDNiePXvS0aNH05NPPllY5qmnnlr/ft++fWnPnj2FZYqUPb7fdqroQxPkGGu7Oreyc+fOStsG6iXSegrEZr3Lx9wCADRT0X3eVj9r3afuVL7onrHdMa17lWu2bduWzp4923affKtjNnryyScr7Xu3yuzXNukeu2i8TRpnLr1ek57dOqtijuoyz7n6kaPeo0ePblqrd+7cmZ599tme6xykupxzoJ6sERCT9/5g7du3r/D35lIqfu6vui9F5961AQBxCFRUaNu2bZv+zO22bdvStm3bUkopPfDAA+nkyZNpfHw8nTx5cv31jdbKjI2Nrb82NjaWTpw4kSYmJrYsU6Ts8f22U0UfmiDHWFvrnJiYWL9+Nn79wAMPpFOnToWYZ4gq0noKxGa9y8fcAgA0U9F93lY/O3nyZFfli+4Z2x2zca9yo5/97GdpYmJi0z75xMRE22Na90B//OMfV9r3brW20app99hbjbdp48yl12vSs1tnVcxRXeY5Vz9y1Ds+Pp5mZ2fve+3FF1/c9BlpXdXlnAP1ZI2AmLz3B2tsbGzTfkDr79cVPfdX3Zeic+/aAIA4RmNnq4Z2796dnnjiifteO3ToUDp06NCm12ZmZlJKKR08eDA9/vjjKaWUpqen119PKa3XtbHMRtPT0+ngwYOFZYqUPb7fdqroQxPkGOvGOmdmZtavn41fHzx4MO3ZsyfMPENUkdZTIDbrXT7mFgCgmYru89r9rNvy3ba/ca9ycnIypZTSww8/nL7xjW+sl9+4Tz4zM3PfMWv75q17oDn63q2Nbaz1s9M+/yhrN94mjjOXXq9Jz26dVTFHdZnnXP3IUe/evXvX14Ldu3d3/BeG66Yu5xyoJ2sExOS9P1it+wHtfr9uUOekUzuuDQCIof0/n8SWHnvssTQ/P59eeumllFJKhw8fTtPT02liYiIdPnw4pZTS9evX08rKShofH19/7S9/+cv612uOHDmSrl+/nlJKaW5uLr344oubyrSWb1dPWWWP77edYdVdNznG2lrnVl9HmmeIyvsciMJ6l4+5BQBopqL7vHY/67Z8t+2vff+Tn/wkfe9730tnzpzZVH5tn7z1mF/84hf37Zvn7nu3WvvZ2t+m2eq8UE6v16Rnt86qmKO6zHOufuSod25uLh0+fHj9M9NRU5dzDtSTNQJi8t4frHb7Ad0891fdl6J2XBsA0Hxjq6urg21wbOzxlNKtlFK6detW7VKb77//fnr++ec3vf7rX/86TUxMpC996UtpaWkp7dixI6WU0sLCQtq+fXtKKa3//9LS0vpxG19b+3qjtbLbt2/fskxr+U5lqji+33aGVXfd5Bjrxjq3+jpX20C9eJ8DUVjv8qnz3P7rX/9K09PTa99Or66u/muY/YGq1H1f5D//+U/69re/fd9rb731Vtq1a9eQepRfuzEv/L9DafWBySH1KKWxzxfTjusX73tt2H0aJe3mr+nXMfU36PW16D6v3c+6Ld9t+2vfz8/Pp6mpqbblU0ptjynaA83R92619rPO99hViDLOXHqdN/PdWRVzVJd5ztWPHPUuLCysf2Y6iupyzrdib4Qmqvu+yEZ1XyOAPLz3B6t1P6Db5/6q+1LUTrufR9xPpxnq+LnIoDX1cxifj9DJKP23a9D7Iv5CRUlf/OIX1y+YjTdH7TYJ291cbXXDtfH1Mjd//d4glj0+541opAePHGPd6pppbSvSPENU3udAFNa7fMwtAEAzFd3ndbN/3elnZY9Z+75dmKJTnzrtoVfd92619rPp99hRxplLr/NmvjurYo7qMs+5+pGj3lEOU6RUn3MO1JM1AmLy3h+sMr/rNKhz0qkd1wYANNv4sDsAAAAAAAAAAAAAAAAwaAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOBPD7kDd7NixY9Nrp0+fTjt37hxCbwAAAAAGZ+fOnemtt97a9BoA/bG+AgAAADSL/R4ARo3/dm1NoKLF+PjmP9qxa9eutq8DAAAANMn4+HjatWvXsLsB0DjWVwAAAIBmsd8DwKjx366tSQkAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAWz1K/gAAIABJREFUAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFTw/9m783iJ7vl+/K93FhJLEEEsrRDVSqmqWBJClKpd7UuVaC21Vf3Kl1aRllpKS2upJYi9VAVBpaioWCKofYkgUYkgSBCSiHx+f5wzvZObmbvMnTtz753n8/E4jzln5nPO58ycz+fMOZ/zeZ8DAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALZ7d5rwAAAAAAbCV1/rnzXYHzzxn5Xs1+TbaluW8/AAAAAADYRhauXX2HXodZuO0IUySgAgAAAACGXPILb5v3KlzEpb5w1LxXAQAAAAAA2IG24nWRWXMdBhbbLvNeAQAAAAAAAAAAAAAAgFkTULHMZS5zmTW9BwAAAAAAAAAAAAAAbF8CKgAAAAAAAAAAAAAAgIWz27xXYKvZa6+98va3v/0i7wEAAACw84xqC5q3Cy64ID/5yU8u9N6lL33p7LKLe6NMSvseAAAAAABszesis7ZI12FcH4G1EVCxzC677JLLXvay814NAAAAAGZgq7YF7b333vNeBQAAAAAAYIfZqtdFZs11GGDYzgunAgAAAAAAAAAAAAAAWIWACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4ew2hzx3HYx85zvfmUP2AAAAbHXLzhd3HZcOtiHtIgAAAKxK2wg7lHYRAAAAVjXrdpFqrW12HhfOsOrAJCfMNFMAAAC2sxu11j4575WAadAuAgAAwAS0jbAjaBcBAABgApveLrLLZi4cAAAAAAAAAAAAAABgK5rHEyounuR6/eT3k/xypiuwNvtm6a4IN0py+hzXBaZFuWanUrbZiZRrdiLlmvXaNckV+vHPt9bOnefKwLSMaBe5QuwfWeL/kgFlgQFlgWHKAwPKAsOUh51L2wg7zgb6i9jXbS+21/ZhW20vttf2YnttH7bV9mJ7bS+21/axFbfVTNtFdtvMhY/Sf6Et/TjSqhqePL219u15rQtMi3LNTqVssxMp1+xEyjUTOmXeKwDTtrxdpKqGOw7YPy44/5cMKAsMKAsMUx4YUBYYpjzseNpG2FEm7S9iX7e92F7bh221vdhe24vttX3YVtuL7bW92F7bxxbeVjNrF9llVhkBAAAAAAAAAAAAAABsFQIqAAAAAAAAAAAAAACAhSOgAgAAAAAAAAAAAAAAWDgCKgAAAAAAAAAAAAAAgIUjoAIAAAAAAAAAAAAAAFg4AioAAAAAAAAAAAAAAICFI6ACAAAAAAAAAAAAAABYONVam/c6AAAAAAAAAAAAAAAAzJQnVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcHZ0QEVVXb2q/qGqvlJVZ1fVD6vqhKp6QlVdYor53L6qjqqqb1fVuf3rUVV1+2nlAQObWa6r6hJVdfeq+pd+mT+qql9U1Q+q6mNVdXhV7Tut7wIDs9pfL8vzElX1japq/XDyZuTD4pplua6q21TVkVV1Up/XWVV1YlW9taoeUVWXmmZ+LLZZlO2q2q+qnlNVn6qqM/vjkR9W1Uer6qlVdcVp5AMwTdogGNjk8/ZdquqAqjqsql7SL/fcofOaQ6f0NZgS7TgMbHJZuE5VPbqqXlNVn+7/G87p8/lGVb25qu5aVTWt78PGaAtjYJP3DYcNbe/VhsOm9JWY0Cz3C6UtEZiT6tp9H1NV/15VX6uqn/XHrd+uqrdX1X2rard1LO+6VfWyqvp6Vf28qr5fVR+uqj9dz3LWmNf9quo/q+r0fp1PqarXV9VB08xnK6mqS1XVLarq8VX1lqr65nqPJavq5HUcjwyG/SZc3yM3O4+tbErba791/IZHTmm9d+vr7If7Ovzzvk6/rKp+cxp5bDVT2la79Mt4ZlUd2++bzquqH1fVF6prN/ytKa2vurXB7bVsef675qi69tL1/i8dPmFeh252Hjtdv39b0284xTwP7uvJKX29Ob2qjqmq+00rj52qpnysv0I+6tYqyjXriVVrU9ufbClVdeckr0+y15gkJya5Y2vtpA3ksUuSlyf5kxWSHZHk4a21CybNBwY2s1z3J1MfSbJaQ/mPkzystfbm9eYBo8xifz0m3+cl+Yuht05pre03zTxYXLMq11V1uSSvTnLXVZLeoLX2mY3kBcnMjrH/KMnLkuy5QrIfJrlva+19k+YDME3aIBjY7LJQVQ9KcuQKSW7VWjt2kmUzfdpxGJjBvuH1Sf5wDUk/lOQerbUfTJIP06EtjIEZ7BsOS9dutBYPbq0dOUk+bJy2RGARVNXTkzw5yWpBvickuWdr7VurLO+hSV6U5GJjknwi3b7zjPWu67J89kzy1iR3GJPkgiR/21r7m43ksxVV1QeTHDrm4zUdS/adja++jmzPSrJva+2cdcwzyOvIJA9aY/JrtNZOXm8eW9mUttd+Sb65xixf01o7bI1px+W3T5L3JLnRmCTnJnl0a+2IjeSz1UxpW30rya+skuyCJM9L8qS2gc6B6tbGt9fQsvx3zVnfufpp65zt/q21N02Q16FJPrjG5H/TWjt8vXnsdFV1bJJbriVta23DN5Lpy8dTMv4m9e9Od5y67uOUnW7ax/qr5HVo1K2xXLPemKlGNm4VVXWDJG9O1wnrp0mela4S7ZnkvkkemuTaSd5dVQe21n4yYVZ/l6VC8T9J/j7J15Psn+T/JblBkock+X6Sv5owD0gyk3K9V5Yuwn8kybuSfDLJD5JcIcnd+zz2SvKGqvpxa+0/NvSlWHgz3F+PyvfPk5yT5BdJLj2N5UIyu3JdVZdJ8r4kN+zfOipdw8jXk/wyXSPaLZPcY+IvA0NmUbar6mbpOonukq4x7zVJ3pHktCS/mq7B9s5J9k7yjqq6bmvtGxv7ZgAbow2CgRmVheHG6F8k+XyS3ZNcbwOrzibQjsPAjPYN5yc5Pl1Z+HyS09P9H1wuyW8keXiS66Y7Rzy6qm6+3S5k7BTawhiYQ1n4/XTn1uN8e4PLZ0LaEoEFcuV057Rnp9sHfSDJ19Idn1wnyZ+l61R9oyTvr6rfaa39dNSCquoOSV6arh35u+naTI5P12780HTnQzdOclRVHdpa++UG1vtVWeqQ+sEk/5TuP/V66dpf9k9yeFV9p7X28g3ksxUNt0H8MN0558FZPbB/2G0zvuPwwG2SPL8ff8sUOimelu7YZyWnbjCPrWga22vYX6e7PjPOjyZcbpKkqnZNty8YBFO8Lckr0q37Tfr8r5jkZVV16g5r05jGtrpK/3pSkn9P1x5wWrpjyFsleVy6NoH/l+5YbxrtxerWBuqW/64t4yXpzoNWsmuS/07XrvrjJG+fQr5/nK4j+Tjfm0IeO9knkzx4MzOoqodnKdjm60mema6d9SpJHptu33rHdPXr/pu5LtvU1I7110ndGuKa9RS01nbckO5PraW7MHDQiM+f0H/ekhw+YR7X7pff0lXKPZd9fon+/cF6XGvev4thew+bXa7THfC/OckBK6S5a7rOjS3diVnN+3cxbO9hFvvrEcvcNd3BdksXWXxyP37yvH8Pw84YZlWuk7y2X8Y5Se6yQrpKstu8fxfD9h9mdIz9rqFlPHJMmn8YSvOief8uBoPBoA3CMOOycOMkj0ly0yR79O8dPrTcQ+f9OxhmUx6042yfYUb7hhXP+fq2kH8fymfsOaRh+5eHMdtfW9gWG2a0bzhsaBn7zfs7G+ZXFvrlaEs0GAxzHZI8J13nmkuP+XzX/hxnsM976ph0u6frrNPSPc1g/xFpXjy0nMM2sM6/O7ScdybZddnn+yQ5pf/8R0kuN+/fecrb7GFJ7pehdqbNOJZctt1vvoHlHLnIx7nT2F5J9ptG3VljXn88lNeLR3x+rb6Ot3QdMnfM8cmUttVH0wU3jGzrSdeh8XtDx5nX3MD6qlsb317+u7bRkOT2Q7/hERtYzqFDyzl03t9rOw5Jju1/v2M3OZ+9k5zZ53VKkn2Wfb5rX59sz/G/4VSO9deYl7o1/rdxzXqDw7jH02xbVXXjJIf0k69srX1sRLJ/SPLlfvyxVbX7BFn9eZae8PGY1trPhz9srf0s3QXu9OkeN0EekGQ25bq19tHW2n1aa19aIc070t0ZIOlOwG6wnjxg2Az318s9Nt1duL6a7oAOpmZW5bqqbp7kj/rJv26tvXNc2tY5f715wLAZ7rMP7l9/0Fp7yZg0fzs0ftAEeQBMjTYIBmZVFlprn2itvbC19vHmsdJblnYcBma4b1jxnK91dzV87tBbh4xLy+bRFsbAHMsCW4y2RGCRtNae2Fr7+zbmLqj9Mesjk5zXv3XPMYu6W5Jr9uPPaq19fUSaJ2Tp7vlPmHCVk+Tx/ev56W4AdKG7hbfWzkjyxH7ysunuwrpjtNZe3lp7U2vtpM3Ko3+C0l36yW+01o7brLx2ullsrykb1K8fZkQ97b/Hs/rJa6Wr+zvCNLZVa+3g1toxre+5OOLzr2fpetpuSf5g0rwW3ZTqlv+u7eWBQ+OvndtaMEsPSXKZfvyJfT35P0PHqYP6tJE6uiNN8VifCblmPR07LqAiFz4IfPWoBK17nPngD++y6R7Js2ZVVenu8JYkX2mtfXxMPh9Pd5EiSe7azweT2PRyvQ4fHBrff5PyYDHMvFxX1dWz1HDwp62181ZKDxOYVbl+dP96VpIXTTA/rNesyvbg0d/fHJegtXZWkkEjxmqPCgfYbNogGNhK5+3M31YqD9px5msrlYXhi1l7bFIerExbGANbad/AfGlLBBjSWvtBks/1k+POX4b3nUeOWc7Pkrylnzygqq693nWpqksnuXU/+f7W2rfHJH1bkh/34zumw/cM3TtL5yc6rS6Ivk5ep598S19nRzlyaFz9Wj9tQluH/65toqr2ytL1mG8m+fAcV4fZGdTRH2fpBkUX0ten9/eTt+7rG+uwxmN9Juea9RTsxICKm/evZyf51ArpPjQ0frN15nGNJFcZsZyV8rlqusfjwSRmUa7X6uJD478cmwpWN49y/ZIkl0zyutbasRtcFoyy6eW6qi6WpQPU9w3uTFxVu1bVr1TVflWlcwzTNqt99uCk6hrjEvQNWfssSw8wL9ogGNhK5+3M31YqD9px5msrlYX7Do1/ZZPyYGXawhjYSvsG5ktbIsBFDc5hxp2/DPadX22tnb7Ccjb6P3qjLN3QZ2x7TB+wOuhIdCNPlVq3wV3AW5LXzXNFmKmbD42vVL9OT3JiP+l4eP20CW0d/ru2j3sl2bMff924p8Cwc/TnzDfuJz+2ys1IBvXq4kkO3NQV27lWO9Zncq5ZT8FODKgYRDGftMojaYcvGl1nbKrRDhiznGnnAwOzKNdrdcuh8S+PTQWrm2m5rqr7JrlDusck/sWky4FVzKJcXz9Ld+v5fFXtVVUvSHfH/m+lu1PCWVX1vqo6dJ3LhnFmtc9+af96+ar60zFpnjIiPcC8aINgYCudtzN/W6k8aMeZr7mWharap6oOqqpXJnly//YZSd4wrTxYF21hDMxj3/Dqqjqtqs6rqjOq6uNV9YyquuoGl8vGaEsEGFJVV8zSfu4i5y9Vdakkv9JPbnYbySTtMbsl+bUJ8lpIVXWNLHXiOq619o0pLfryVfWhqvpBVZ1bVd+pqmOq6tFVdYkp5bEIHlNVJ1XVOVV1VlV9sapeWlW/M4VlT1K/fqWqLjmFvBfJtNuE1K0J+O/adh44ND7NJyf9XVWd0tedH1XV/1TV8yd5EsmC+o2qOr6qzuz/l75dVe+oqgdOISDo2kl27cddg9tEqx3rT0jdWuKa9RTsqICK/g4qg7vVjntsVZKktfajdNE4ydKBy1pdbWh8xXyS/O/Q+HrzgVmW67Wsy/WT3LGf/HxrzYV4JjLrcl1Vl0vygn7ySa2170+yHFjJDMv18AHqLkk+meSx6R7HNnCxJLdJ8l9V9cR1Lh8uZMb77FdlqXHqxVX1iqq6c1UdWFV3r6qjkjy+//zvWmvvH70YgM2nDYKBrXTezvxtpfKgHWe+5lUWqurYqmpV1ZJ8P8lHk/xxkkrXefZurbUzN5IH66ctjIE5/k8cmuTKSXZPcvkkN0kXaHVSVT18g8tmAtoSAUZ6QrqOnUnylhGfz7KNRHvM5ntguvOUZLqdVi+V5BZJ9k73H7dvktsmeWGSE6vq4CnmtZP9TpL9091Jeq90xxQPT/KpPrDi4ivNvIpJ6lctm48V9AEOf95PnpvkHVNYrLo1Gf9d20RV7ZfkkH7yI621r09x8Qcn+dV0deeySX47XR39clUdXlW10szkSumeInGZdP9LV01ylySvSfKZqtpIZ231ZnZWO9afhLoV16ynabfVk2wrlx4a/+ka0p+d7nHXl9rEfM4eGl9vPpDMrlyvqD8hPiJLUZlPXiE5rGbW5fq56Q6wP5bkFRMuA1Yzq3K999D4E9PdYe69SZ6a5HPpGjXvkeTZ6U4on11VX2mtTaOhjMU0s312a+2XSR5UVUcn+askD+mHYR9M8kzBFMAWoA2CgS1x3s6WsSXKg3acLWFLlIUh/5zk6a21MzZp+axMWxgDsy4L30jytnRlYXAh85rp2o7uma5d6aVV1VprL58wDyajLRFgSFXdJEudf7+d5F9GJJtlG4n2mM33R/3rzzOdTnUtyceTHJ3k00m+m+5/73pJ/iRdR8yrJvnPqjqktfY/U8hzJzozyVFJjk3ytSTnpAvMvW263/FS6QIrLp3kDyfMQ/3afM9J18E0SV7cWjttA8tStzbGf9f28UdZCvR7zZSW+Z105+THpTs/Pz9d3bxTusDC3ZM8LV1n8L+aUp47yQVJPpDkPUk+m+QH6cr576T7L7pOuoC/D1bVjVtr35ogD/VmBtZ4rL8e6taFuWY9JTstoGKPofHz1pD+3P51z03M59yh8fXmA8nsyvVqXpTkwH78Na21o6e8fBbLzMp1Vd0i3Z0Yz0/yp621tt5lwBrNqlwPP852jyTvS3KnviN60t2B9KVV9YUkH0p357lnVdU7lX8mNNNjkf4OEg9M1xA7ykFJ/qSqvtxaO3WSPACmRBsEA1vlvJ2tYauUB+048zevsvDgdOeNle6uXAcmeUSSRye5ZlU9pLX23Q3mwfppC2NglvuGo9L9BywvAyckeXNV3Sndxefdkzy/bzs6fYJ8mIy2RIBeVV0pyVvT9V9pSR7UWvvZiKSzbCPRHrOJ+jvZ799PvqO19uMpLPZxY57G97GqekWSZ6TrUHfJJEdU1YH+6y7itCRXHVH//ifJe6rqxUnen67D4v2r6s2ttXdOkI/6tYmq6g/TtQEkyZeT/PUGF6lubYz/ru3jAf3rOZlOoN8JSa7eWvvFsvc/neTtVfXyJP+ZLrD9Sf0+9bNTyHcnufuY/c+Hq+ol6W4i8qB0NxV5QZK7T5CHerPJ1nGsv1bq1kW5Zj0lu8x7BabsnKHxi60h/eARdD/fxHyGH3O33nwgmV25Hquq/jJLd4c+IcmjprVsFtZMynV/R86Xp+tE8E+ttc+tZ35Yp3kchyTJE4cugP6f1tpx6S6KJ11k/rjO6bCamR2LVNUh6e6aeeckp6a7E8i+fb6/ku4Y5GdJ7pvkE1X1m+vNA2CKtEEwMPfzdraUuZcH7ThbxlzKQmvtm621L7TWPt9a+3Br7flJfivdndzulOSEqrraykthE2gLY2Bm+4bW2lkrdWRqrb0ryd/2k5dId3dZZkdbIrAlVVWbwnDYOvK7dJJ3Jxkcoz6ptfZfY5LPso1kW7THzHp7TdEDh8anchfwMR0uB5+11tqT093lOunubH3wNPJdj62+vVpr563UwbG19rUsdThOksdMmNWWr19bfVutsN6HJnllP/nDJPdorW20nUHd2hj/XROYw/HITZNcu598R2vtrI1+h9ba2SM6fA9//oksBT/V0Pi2spnbapX9zy/StYF/tX/rblV11Qm+wo6pN2sxh7q1nmP9NVmUurVOrllPyU4LqPjJ0PhaHhMyuCvLWh5zMmk+w3d+WW8+kMyuXI9UVQ9P8sx+8itJ7tBaO3uFWWAtZlWun5zk19M9zv5p65wX1msexyHfX+WxqccMjd9onfnAwEzKdnUdf96U7k4Bpye5aWvt9a2177bWftFa+3Zr7SVJbpHuRO0qmd7jVgEmoQ2Cgbmet7PlaMdhYMvsG1pr56R7csXP0gUq//2082BV2sIY2DL7ht7L090dMEluuUl5MJq2RGDhVdUeSd6R5Ib9W89rra10rDrLNhLtMZukvxZw737yO+menjQrLxsad+wzgdbah5N8qZ+8eVVN0u9M/doEVXVgknem68D403RtQl+eUfbq1nj+u7aH4UC/184w339NMnhKk7qzTq2187MURJZM9huqN5tkgmP9aVq0uuWa9ZTsNu8VmKbW2jlV9YMkl89SVNNIVXW5LG20/11nVt8eGl/tbl6/MjS+3nxgluV61PLul+Ql/eQpSX6vtXbGRpcLMyzXT+xf35/kzlU1Ks1g2Zesqvv249/baEQsi2eG5Xo4/bfHprpo2iusMx9IMtOyfbskg7tGvLC1dvqY9fliVb0+3R0nblhV11+ARzQCW5A2CAbmed7O1qMdh4Gttm9orZ1RVR9J8ntJ7lpVu690Jy+mS1sYA1tw3/C9fn32ydI5OTOgLRHYwq4zhWV8Z7UEVbVbkrckuVX/1hGttSesMtupQ+Ob3UayvD3mk5uY10bMZHtN2Z2TXK4ff+OoJydtoi8Njc/j2Gc7bq9RvpTkgCR7pDuW+f46519ev1ZquxjUr5bVj2WmaVttq+qe6P7eJJdOcm6SP2itHT+r/KNurcR/12Rmtk2r6mJJ7tNPfjcXDjTfVK2186vqxCQHZvuek8+7/m10/7No1+C28rH+1OyQurVmrllPz44KqOh9KckhSa5VVbv1kWij/MbQ+Hojcod3xL8xNtXG84GBWZR7s5/AAAAgAElEQVTrC6mqu6SLut0l3R/hrVtrszxBZeebRbkePF7qwf2wkn3S3Rk9ST6UxEVkJjGLcv3FofFdV0k7/Pm4dYG1mEXZHj55//QqaT+VLqBikKeACmBetEEwMPPzdrY07TgMbLV9w6CTyyXStYNshY44i0RbGANbbd/QVk/CJtGWCGw5rbWvbHYe/R3tX5euY32SvDnJw1ebr7X2k6r633Sdcza7jWSS9pjzk3xtgrwmNovttQmG7wI+66dQz/W4Z5tur1E2+jsur1+fWSHtoH797yyfwLmdtlVV7Z/uSS+XT7cfuk9r7QMzXg11awz/XZOZ8Ta9U5K9+/E3zDjQL9nm5+RboP5t9Pc7Mckv050P7/hrcFv5WH8TbOu6NQHXrKdgkkevbXXH9a+XzNLjYkYZfpTLR9aZxzeTnDZiOaPcon89NcnJ68wHBmZRrv9PVd06XZTgbkl+kO6Ohl+fdHkwxkzLNczIppfr1topSb7VT+5XY2432dt/aPzUsalgdbPYZw+f0K0W+L37mPkAZk0bBAPObximHYeBrbZvGL4b17Z5zPYOstXKA/OzZcpCVV0hXXBNsnTMyexoSwQW1cuSDJ6UdXSSB7TWLljjvIN9569X1b4rpNvo/+gJSc4bsawL6e9qfdPBPJ4Ct7L+2ON2/eRnWmufn/EqHDA07thncoPf8dx07RDrddzQ+Er1a98k1+4nnRuNUFVXS/eEwisnuSDJg1pr75jDqqhbK/PftbUNB/q9dpYZ93fxH+zn1J3JbGj/01o7L8kn+smD+voxzqBenZuVnwCz6DZyrD8VC1q3XLOegp0YUPH2ofGRd2Dqo6AGf4ZnJvngejJorbUkgwPQ36iqm45K178/iLR5Rz8fTGLTy/XQcg5OV74vnuSsJL/fWvviynPBRGaxv67VhiSn9MlPGXr/0HV+FxiY1f763/vXvZLceoV0dx8aP25sKljdLMr2N4fGD1kl7fDJ2TfHpgLYfNogGJjZeTvbgnYcBrbMvqHvZHFQP3lKa+0nm5EPK9IWxsCW2TckeViSQQf7D21SHoynLRFYOFX1j1l6+vAHktxrhbunjjK87zxsTB6XSHLvfvJLrbUT17ue/fHy4A7vt+mPp0e5e7r9a5Ictd58FtD9snTDpFk/nSK58N2RHftMoKpuluQ3+8njJukg2dfJwZ2K793X2VEOGxpXv5apqiumC6bYr3/rT1trb5zT6qhbK/PftUVV1eWT3KGf/Gxr7bMzXoX7JLlMP67urFPfaf6Ph9767wkXNaije+XC58XDeV0tyW36yQ9oWx1tCsf607KIdcs16ynYcQEVrbVPJPlwP/knVXXQiGR/keQ6/fg/LY+0rKpDq6r1w5FjsnpBusf9JMkLq2rPZcvYM8kL+8nz+/QwkVmV66r67STvThepdnaSO7bWPjWN7wDLzXB/DTMz4+OQc/rxf6yqvZYnqKoHJDm0n3x3a+1/1/5N4MJmVLY/kORn/fgjqup6o9alqm6f5G795KlZ+VHQAJtKGwQDzm8Yph2HgVmUhaq6dlX97krrUVWXSfLGJIM7rM30bnt0/FcwMKN9w35VdYOV1qOq7pTkqf3kz5O8eh1fgynQlggsmqo6PMnj+smPJrlra+3cdS7mqCTf6Mf/sqr2H5HmuUkuNzQ+al0OG9p/Hj4mr+f1r7sleXFV7bpsGfskeU4/eWaSI9b2FRbaoAPX+enOUdakqg4f2l6Hjfj8plV15RXmr6p6RpY6Qn42nnhwEVX1B1Xjn2ZVVdfKhbfbS8akW3F79Qb1a+8kfz9iGfsn+ct+8qQseKfv5arqskmOSfLr/VuPa629YoLlqFuz4b9r6xoO9Ftze1l/zj3YFseO+PxyVXXoKsu4cZIX9ZMtyb+sNf9FUFW36vd14z7fPV35HZwvHz3qPHa1bdU7It3NipLk2dUF2gwvY9d0/3mD+jSyji66aRzrq1uTc816Onab9wpsksemO0DbM8l/VtUz00XT7JnucTIP69OdmOQfJsmgtXZiVT03yZOSHJjkI1X1nCRfT/dI3CcmGTRWP7e19rUJvwsMbGq57g/Yj0kyOBj56yRnVdV1V5jte6217603Lxiy6ftrmINZHId8q6qemq6B8XpJPtEfh3wuS1Hzj+iT/zhLJy2wEZtatltrZ1bVs5P8bZJLJ/loVb0wyfuS/CjJlZLcNclDsxQY/qRZPx4SYARtEAzM5PxmxMXN3x4av11V7Tc0fVJrzd2F50M7DgObvW+4SpIPVNVn092F6lNJTk93sWLfJDdL8if9eJJ8IcmzJ/omTIO2MAY2uyzsl+SDVfWxJEen69g0+A+4ZpJ79sOgw9zjW2unTpAPG6ctEVgIVfWYJE/rJ09N8v+SXGOFvttJ8tXlnXxaa7/ol3V0un3YR/rOvJ9I1xH1oUnu0Sc/LsnrJl3n1tp/VdW/ptsf3yXJ+6rqBUlOS7c/fXKSX+2TP7G19qNJ89qK+s7zN1/29qUGryPaJ97bWjt9heUdkOSGQ2mneX56uyRPqqr3prum8KV0HYUvnuS30t29+iZ92p8leeh2ulPuWkxpex2V5KSqelu6OvXtJOcmuXKS3093bjlY5ltaa2/bwCq/Jt12uVmSR1XVvkleke560I2TPCVdHb8gyZ/N6e7Wm2Kj26qqLp7uBhuDNsE3JHn/Km1CZ7fWJnniu7o1hbrlv2tLGw70e8MUl3uZdOfkn8tSe9130nVC/tUkd0ryR1m6+cnz3CjnIh6U5J1V9c4kxyb5arrz1UulO554WJID+rTfS3duPZHW2g+r6olJXprk6kmOr6q/S/L5dG2vf57kVn3yN7XWjp00r51qWsf6a6Burcw1641qre3IIcmd00WOtTHDV5Nca8y8hw6lO3KFPHZJ8soV8mjpIth2mffvYdgZw2aW63SPlVupLI8aDp/3b2LY/sMs9ter5H9yP//J8/4tDDtnmFW5TvKsdA2J4/L5bpKD5v17GHbOsNllO11HjuevUq5bkvPSdfaY+29iMBgMrWmDMMy8LKznvH3scgzbuzxEO862Gja5LBy6jjLwriRXmPfvsejDLP4rVsn/5GgL2xLDFtk3nJ3kYfP+LRZ9mNV+IdoSDQbDHId0HeHWew6z3wrLe2i6jt7j5j0+yT4rzH/YUNrDV0i3Z7qOy+Py+eVK82/nIes/7zx0leU9eyjtvda5LocPzXvYKp+vNJyS5Gbz/m236vZax7wvSXLxSbfXULp90nUoH5fPOUkeMu/fdqttq3TB0+vdnx47ybZSt6a7L4z/ri01JPmNod/k3eucd7geHrvK5ysN56frhF7z/j222pDkyDX+hp9LcsCk22pZ2r/JyufM706yx7x/m604ZErH+urWVLaFa9YbGHbqEyrSWju6qn4rXdTNHZNcLV3Hq5OS/FuSF7XWfrbBPC5I93iUf08XvXOjdAf8ZyQ5IcnLWmv/sZE8YNgsyjXMmnLNTjSrct1a+8s+Iv8RSQ5Jd4eYc9JFE78zyQtba2etsAhYl80u2607+3pcVb0+yUPS3fHl6kkukeSnfT4fSnecfeJGvgvANGmDYMD5DcOUBwY2uSx8JN2dQm+T7o5QV0v3dLdLpLtr2zeTfDzd3dM+spHvwXTYNzCwyWXhU0kekOSgdPuGK6c7dtwt3V1/v5jkA0mOaJ5eNHfaEgHWr7X2iv5JTH+W5Nbp7h58dpIvp7vD9BFtCne0b639PMkdq+r+6TqyXj/dkwK/m+TD6fbRH9toPjtdVe2S5A/7yTPT/e9M06vTBwamu2v+FZNcPl1nujOSfDrdneHf2Fo7Z8p57yR3Sfcb3iTdtZl9klwy3bnlN9KV+Ve11r4wjcxaa2dU1cHpOpnfP8l1+vxOS3es+k+ttS9OIy8mpm5Nkf+uLeePhsZfO+Vln5bkXunqzo2TXDXdPnWPdB2dv5quA/oRrbWTp5z3TvGcJJ9J9xsekOQKSfZOF5T03SSfTPLWJEe11n45jQxba0+rqmOSPCrdOfOV0h23fDbJq1trb5pGPmyIurUK16w3pvqIEQAAAAAAAAAAAAAAgIWxy7xXAAAAAAAAAAAAAAAAYNYEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFwDZVVYdVVeuH/ea9PrBcVZ3cl88j570uAAAAsJOs1C5UVUf27588l5UDAAAAmJKd1DemqvYb+i6HzXt9AIAlAioAAAAAAAAAAAAAAICFI6ACgKmrqsMHUfXzXheWVNWx/XY5dt7rAgAAAAAAAAAAADBvAioAtqnW2pGtteqHk+e9PgAAAADMX2vtsL69aL95rwsAAAAAAMBWJ6ACAAAAAAAAAAAAAABYOAIqAAAAAAAAAAAAAACAhSOgAmCbqqrDqqr1w37LPju2f//YfvqqVfWPVXVSVf28qn5QVcdU1e1XyWPXPp9jqur0qjqvqs6qqq9V1Qeq6q+q6oDl65TkaUPvtRHDfkOfL1/XX6uqF/V5/Gw4/Urfedl67zeU7rARnx/Zf3ZyP71vVT2vqk7s8zy1qt5SVb85Yrn/3Kf7eVV9t6reUFX7r/Q7Ds1/q6p6TVV9o8/nx1X1+ap6blVdZYX5Dh98n356j6p6QlV9uqp+0g+fqKpHV9Vu475vklv2b91yxDY5edk8l6yq+1TVEVX1mX67/6Kqvl9VH6qqx1fVpdbyvcd8p0OH8j60f+/efbn6fv/7frWq/r6q9l7jMv+gqv6tqr5VVedU1ZlV9cmqelpVXW6Vea9dVS+sqi/0v+d5VXVa/91f1f8WFx8x37rqCAAAAGy25e0eQ+8/dehc/NfWsJxj+rTfqapdx6SZ6Fx8RNvMZavqb6vqi1V1dr+c/66qP1zjd75MVf1lVX2kb1c4r1/vo6vqnlVVq8x/t6p6e1V9u6rO7dsGvlFVH66qp1fVjcfMd5WqenbfRjNoO/lu397zpr7NYK+1fAcAAABgMlV1hap6RlX9T9+mcE5VnVxVr6uqm68y76Ct5PBV0l2ob8uYNLtW1SOr6vjq+oOc1bcZPH5Uf4MR82svAYA5uUinSwB2lqq6WZK3J9ln6O09ktw2yW2r6gmtteeNmO9SSd6T5JBlH+2eZK8k10ryu0l+J8k9p7Sud03yhiSXnMby1pjn9ZO8N8m+Q2/vmeReSe5QVbdrrR1XVb+b5G1JLjOUbo8k909y+6o6pLX2xTF57JHk1UnuO+Lj6/bDI6rqfq21o1dZ3yv16/vbyz66UT/ctqr+oLV2wUrLWYN3ZykAY9g+SW7RD4+sqju01r6ywbx2qarXJXnAsvevneQJSe7W/76nj5q576Dx1nTlcdjFk9ywHx5ZVXdtrX18xPz3SvL6JBdb9tGV++H6SR6c5HpJvjA038zrCAAAAGzAG5P8TT9+/6Hxi+jbH27dT/5ra+2Xyz7f0Ln4smX9erq2jv2WfXRIkkOq6qDW2qNXmP/WSd6c5PLLPto3yZ364T1VdZ/W2k+XzbtrkjelawcadrEkl0pyjSQ3T3L7JAcum/eQJO9K1wYw7Ir9cN10bUFn9OkAAACAKauq2yb5t1z0/Pzq/fCAqnpxkj+bQj+KldZjXP+BG/TD/ZI8ZB3L014CADMkoAJgZ7tyumCKC5I8KclxSc5Ld2Lz1CSXTfKsqvqPEcEAh2fpRO9d6QIdvpXknHQnOTdId4LVhuZ5e5JPJnlkkkf0711vxHqdOuK9X03Xqf1nSZ6e5MNJfpkuSOCnI9JPwyWSHJXupO+vknyoz/N2/fQlk7yuqn4v3Xc7K93vdny6/9B7JPnzJJdL8sokN12eQR/R/9Ykd+zfOjrJW5J8I912uXGSv0j3/d9aVTdrrX1yhXV+W5IDkvxzv6wfJvn1JE9Jcp0kd07y0CQvG5rnyUmely6o48B02+jBy5Z73rLp3ZJ8Psk7+/SnJal0DQ53S3LvdCfJb6+q326tnbPCOq/m6UkOTvcbvzbJKUmulORR6X63ayV5froGhgvp7+Lw/nRBC79M1znkPUm+mS6w4RZJ/r90ZfY9VXWD1topQ/NfKd3vcrEk30vyoiQfT3fyvmef9y2T/MGI9T48668jAAAAMBettZOq6vgkN8kqARVJ7pNk8FSKNwx/sNFz8WUuka594/JJntEv96fpzqmfluRqSR5VVUe31o5ZPnN/I5H/6PP9bpIXJvlsunaMq/Tf4wFJ7pDkNenacoY9IkudA45LckSSryc5u1+n30rXTjR8g43Bb/Cv6ToH/CTJvyT5YLq2hYulazM5OF0bCgAAALAJquq307UrXCzJL9Jd739nuvP6G6TrJ3ONdH0Pzk7yxE1cnddnqf/AJ9L1cfhaur4Ph6Vrf3jZyDkvSnsJAMyYgAqAne3a6Tqn36y1NhzEcEJVnZDkv9P9FzwsyWOXzXvv/vWtrbXlUedJFwn/rKrae/BGa+3MJGdW1feG3vvCiHlHuUa6k7eDWmvfGnr/+DXOP4krpAsSuHFr7evDeVbVGelOtvdL8tEkp6f7Hb8/lO4jVXV+uqco3KTvIPA/y/J4SLqggF8kuUtr7b3LPv94/3SGDyf5zSQvSBfwMs6Nkty2tXbs0Hufrqpjknwp3cn4IzN0It5v+1Or6uz+rbPXsF0e3Fr72oj3j0/ylqp6ZZJj0gVz/GG6gJJJHZzkr1trfzf8ZlW9N105u22Se1bVny37/ZMuwOV3kpyZ5DattU8t+/y4qnpDko+lCzB6Zr++A3fM0hNRbj3id/loktdW1ag7O6y7jgAAAMCcvSFdQMW1q+rAFW7qcP/+9cQRaTZ6Lj7sCukuqB+07GYfn6qqY9Pd7GGPdG0dF+ogUFW7p+ussHu6c/B7tNZ+NpTk00neVVX/neTlSe5eVb/XWnvfUJrBuf3xSW7VWjt/2fq9P8k/jji3v1m6DghJcv/W2vI7Kn48yZuq6nHpOkEAAAAA0/fydO0Kv0xyp9bafw59dkJV/Vu6gIADkjy+ql474majG1ZVd0xy137yPUnuuqyN4T1V9dSsfHOLYdpLAGDGdpn3CgCw6R6zLJgiSdJaOy5LwQrLHzmYdI/5S7qO/mO11n64sdW7kCctC6aYhacsC6YYeFW6Jw0k3cnqqM78SRdRP3Ch37F/OsXgDgf/PCKYIknSWvtRuqCMJLlZVf3aCuv7wmXBFINl/DDdkxaS5HpVdZnladZjTDDF8OfvT3dnh2T00xvW41PpOlcsz6Ml+cd+crckBw1/3j8y81H95FNGdOAYLOeUdE/BSJJ7VdUlhz4elPMfrRRk0lr7eWvt58venkcdAQAAgI14c7pOBsmYIIeq2j9d0EVy0adTTONcfLmnjOrM0Fo7Kd3TLJPRN5+4b7obYZyT5IHLOgcML+cV6e4MmXR3hBw2OLf/6IjOAcPLWH5uv+/Q+H+vMN/5rbUfj/scAAAAmExV3TjdDSmT5BXLgimS/F9fjIf1k7ukC0DYDIPlnpvkoWPaGJ6RZK03JE20lwDATAmoANjZzkzy7hU+H1z0vuaIz77Tv96nqmYRGX5ekn+bQT7DWpK3jPyg6zw/CCr4UZZF9Q+l+2a6RxUmF/0dD0iyfz/+1lXWZfhk8qCxqZZ1ZFhmsD0r3RM/pqaqrlBVv1ZV1x0MSQYBJtff4OLf2AdPjDLcMWP573vLLD1Ccq2/7+5Jbjj0/qCcX66q7pr1mXUdAQAAgA1prX0vyeCOg/epqlHXCO4/NP7GZZ9N41z8Qqs0Io9hg3aBvavqsss+u0v/+qExN8EYtS7L21wG5/Z3rqp9VlnGqPmS5MHrmA8AAACYjtsMjb9yXKLW2keSfHnEPFNRVbsmObSf/M/W2mlj1uOCJK9Z42K1lwDAjAmoANjZvtaflI0ziBa/9IjPBidyByf5ZlW9qKruVlVXmOoaLvlaa+2c1ZNN1RmrPD3gzP71pBU6/A+nW/47Hjg0/rGqauOGJD8dSrtvxvvKCp8Nf5dR23RdqupmVfXmqvpBku8lOTHdoyMHw0P7pOs5gR5l0u80/Pt+Z5Xfd/hOD8O/7zuztP2Oqqr/qqrHVdUN+4aPlcy6jgAAAMA0DG7WcOUkvzvi80FAxfH9XQ+HTeNcfNgZrbUfrLCua2kX+P2V1qNfl8ePWY/Buf21kpxUVa+qqvtV1dVWWKckOS7JN/rxF1TVJ6rqL/u2lIutMi8AAACwcdftX89L8plV0h7fv/7aJpy3759kcAPGE1ZJ+4lVPh/QXgIAMyagAmBnG/noviGDYItR/wdPT/KqdJHvV0zyqCRvS/K9qvpCVf1NVV1pamvaPQVi1tb6+6w13fIO+Fdc9xp1xj7tYNzjGJetx6h1WZeqOjz/P3v3H2x5Xddx/PVZl18J62YqrNoPBc0SSlFBERVFsdA1QENNR9Py56gpTU6NYzWWTuOgVFKCWZZFKZktkZo/Mk2jxJ+TRDlqgGRIGMGCprHspz++3+teLvf3nnvP3X0/HjN37vn1PefDuXuH+/2c7/PzHXZ2z0xy5yUefsjevFYWeX/nBEETf3/HSYgnJflqhjN7PDrJG5N8Ksn1rbV3t9aeuMDzrPfvCAAAAEzCjuzZF3/G7Dtaa8cmud94db6zZE56rmO5cy7JZOYFbjOH0Xv/gySvS7Irw5k3npNhBcirW2tfaq29obV2uzO79t5vSbI9e1a4fMj4PB9PckNr7W9aaz+1jMUaAAAAgNWZOY7h+t77riUe+7Xxe0vy3Ws0jmRYqHIx1y7zOc2XAMA62zztAQCwMY07Oj/TWntDkqdnWLHwwUkOTHL/8eus1toze+8XTeAlb53Ac2w0s3cCtye5cpnbLbWTvaZaaycn+ZXx6r8nOTvDDu5XknxjZjKitfaaJK+eyiAHs9/fY5Pcsszt/mP2ld77x1prRyV5cpJTkzwyyT2TbElyepLTW2vvT3LG7KBlCr8jAAAAsNd67ze31i7KsC97RmvtRbPOGjpzdopbk7xzns0nsi8+ITNjeV+SV672SXrvr2qtvSVDXHJykodmCECOTHJWkpe21l7Wez9vznaXt9aOyTDnsz3DfMJRGQ5CePz4dVZr7dTe+1TnegAAAGA/1qc9gFk2wljMlwDAKggqAFhU7/3yDAfNv7q1dnCSEzN8uP6sJIcm+bPW2pG992vWYTizK/vFzrJ0x7UeyDLNPgXjDb33y6Y2kpV53vj9f5I8tPd+3QKPW+rMFWtt9vt7Xe991QdnjAeOXDB+pbV2ryRPSPLSJPfNsFP/2iSvmGfbjfQ7AgAAAMtxQYagYkuSJyZ5V2ttU5Knjfd/cIEPtSe2Lz4B/53k7kkO3Ns5l977VRlWTHxda+2ADCsonpnkBUkOTvK7rbVP9N4/O2e7WzOc8WNHkrTWtiX5sQxnsXzQ+HV+hgUbAAAAgMm5fvz+Pa21zUucpeKI8XvPcBzEbD3DmSsWOwYlWfg4lNnPd/gSz7HU/ZNgvgQAVmGpPwQA4Dt679/qvX+o9/7cJL8w3nxIhg/eb/PQNRrCTbMuL3Yaxvuu0euv1OydxodPbRR7LPfncv/x+98tElMkw9kYpmnN3t/e+xW993MzTAjMHBxy5jK2W+7vCAAAAEzT+5N8fbw8c1aKRyW5x3j5ggW220hzHTNjeXBr7cBJPWnv/Zbe+yW995dnz3vTkjxlGdte03t/W5KHJfnMePMTW2uHTGp8AAAAQJJkJhY4MMkDlnjsceP3L/be/2/OfTPHoSx4DEprrWU4y8J8vpzkf8fLD1liHEvdPwnmSwBgFQQVAKzW3866fJc5931r5kJr7aAJvuYVsy4vdjD/0yf4mnvjM9lzMP7zx7MXTNPMz2Wpn8nMGawWPNNHa+2BSY6fxKD2woeSfHO8/LJxEmOieu87k3xyvDr33/lSFvsdAQAAgKkZV228cLx6amtta/Z8GP7NjCsIzmPN98VX4K/G73dK8pw1eo1V7dv33m9J8tHx6uYkWyc5KAAAACAfmnX5uQs9qLX2sCQ/PM82M2aOQ1nsGJQfzwL79uMcy0fGq6eMZ2OYbxybkjx7kdeYFPMlALAKggoAbqe1dufW2vYlPhQ/ZdblK+bcd82sy0dObmS5LHtO2/iS+WKN1tqZSX5ygq+5ar333RlOf5gk907y9sUCk9baltbaS9ZwSDM/l3sv8bP94vj9xNba7VZZaK3dNckfT3pwK9V7vyHJuePVE5KcM05CzKu1dnhr7Wfn3Pb4hSY0xvvvlD2rVVwx6/a9/R0BAACAaZs5C8VBGWKKJ4/XL+q93zzfBpPYF5+gP0py9Xj57NbaIxd7cGvtxNbao+bc9szW2uaFtskC+/attUfMN2cy6/4DM5zxI0luTrLYGUABAACAFeq9X5rkU+PV57XWTp77mPHz/vPHq7uTvHmep5o5wP/41trtzsbZWjsiyZuWGM7M8x6U5PzW2h3mecwvJTlmieeZBPMlALAKi/2PD4C6tmSo1q9srb07ySeSXJVkV5JtSbYnmfkw/KtJ/nrO9pfMunxOa+21GQ7m7+NtV46V/or03ne11s7PsKN5dJIPt9Zen+QrSQ7PEFL89Pj6J6z0+dfIeUkel+T0DOM7dvxvuDTJjRne6/slOSnJkzKcReLceZ9p712SYQWCuyV5Y2vtT8YxJMktvferxstvz/AzvmOSj7bWfiPJp8f7TkhyVpIjkvxjhlMyTtMvZ9jhPp31x/UAACAASURBVD7JzyU5qbX2e0k+l+QbGU7Lef8kj82wasTnk7x11vZPT3Jxa+2DST6QPdHOYRn+jb0kyT3Gx543a7u9/R0BAACAqeq9X9JauyLJvZK8NntWBbxg4a2S7P2++KTG/+1xYY2PJDk0wzzROzKcXeOKDAtKbUvyoAzzMsckeWn2HCiRDAtGnD3u21+S5MsZ5mYOzzCf86LxcTfntu/LyUle3Vr7WJL3JPnnDAcBHJLkvklemOTY8bG/v5p5MAAAAGBJz8vwWf2BSd7bWntTkoszzE88MMkvZlj8MknO7r1fNs9zvCXJizMcR3lxa+01ST4+PufDMxwfcUCGhSnvM98geu8Xt9YuznCcwPYk/9BaO2fc5m4ZjmN5aoYAZLEzYew18yUAsDqCCgAW8wMZdg4Xck2Sn5i7amHv/UuttQuTnJmhTD9lznb3SnLlKsf060keneShGQ7u3zHn/o9kOAh+vh3hddd77621pyb5rQw7h0cmef0im/zXGg7nHRlilHsnefn4NeOqDD/v9N7f1Vp7W4b44u5JfnvO89ya5BUZDpCYalAxTgY8LskfJjkjyY9m8SBl5zy3HZDk1PFrIefl9u9DssrfEQAAANgg/jTJq7Inpvh6kvcvtsGE9sUnovf+T621k5JcmOR7kzxj/FrJWA7PcCDAi+a5LxkWo3ha7/3qObdvyhCWPOr2m3zHRRnmYgAAAIAJ671/rrW2PcmfZ1gU8efHr7l+Jwvsn/fe/6W19sokb8xwDMQ5cx5yfZLTkvxaFggqRs9I8r4MEcbxGY7PmO2zSV6QPYtZrhnzJQCwcoIKAOZzVZLjMhxgfkKS78+ws3RokhuSXJ6h6n9L732hD8WfmaGuf0qSH8yw4v+mvR1Y7/2brbXHZDig/2lJjkpyS5IvZDh14XkZdgg3jN77LUle3Fp7c4YVEk5K8n0Z3s+bM6wC8OkMO9drdiaD3vvNrbUTMuyYnpLh5/pdCzz2ua21Dyd5fpIHZFh94WtJ/j7Jub33S1trv7pWY12J3vtNSZ7cWjsxybOTPCJDCHJIhh3/L2c4I8h7MpyFYrZXJPlgksck+ZEMKzHcNUM0cnWGs3C8tff+8TnbTeJ3BAAAAKbtggxBxYwLl7M64F7ui0/UeJDAfTKs9rg9wwqUd0myO8MqiP+aYZXFv+i9f2HO5kcneUKSEzMsgnF4hrjkpiT/liEueXPv/do5252dYZXFx46vd/cMK04mw/zJpUne3nt/z8T+QwEAAIDb6b1/oLV2VIYFJU/NsMDkQUmuTfKxJOfN83n/3Oc4p7V2eYbjB47LcBzFfyZ5b5LX996/0lpbahw3jRHDC5M8K8kPJekZ5kjemeQ3kxyxyv/MFTNfAgAr03rv0x4DAAAAAAAAAAAAAADAutrrlcIBAAAAAAAAAAAAAAD2NYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5Wxe7xdsrR2U5Jjx6nVJbl3vMQAAALDh3SHJXcfLn++9f3uag4FJMS8CAADAMpkbYb9jXgQAAIBlWtd5kXUPKjLsHH9yCq8LAADAvukhST417UHAhJgXAQAAYKXMjbC/MC8CAADASq35vMimtXxyAAAAAAAAAAAAAACAjWgaZ6i4bubCpZdemm3btk1hCAAAAGxk11xzTY477riZq9ct9ljYx5gXAQAAYEnmRthPmRcBAABgSes9LzKNoOLWmQvbtm3LPe95zykMAQAAgH3IrUs/BPYZ5kUAAABYKXMj7C/MiwAAALBSaz4vsmmtXwAAAAAAAAAAAAAAAGCjEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmbpz0A9t7u3buzc+fOaQ9jw9i9e3duuumm29x22GGHZdMm/RCL27Jli38nAAAAwLLsS3Ny5sumy5wTAAAAAPOZb47RXBIArD9BxX5g586dOe2006Y9DNjn7dixI1u3bp32MAAAAIB9gDk5lsucEwAAAADzmW+O0VwSAKw/KSMAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAABgHd14443Lug0AWFuCCgAAAAAAAAAAAAAAoJzN0x4Aa+MbR5+RvvmgaQ9jOnZ9K4de9pe3uenmo09PNh88pQGxEbVd384dL3v3tIcBAAAA7Ec27Jyc+bJ1Y84JAAAAAABg3yKo2E/1zQelH3DItIcxFW2+GzcfXPb9AAAAAGB9bNQ5OfNlAAAAAAAAML9N0x4AAAAAAAAAAAAAAADAehNUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOZunPYCNZvfu3dm5c+dtbtuyZUs2bdKeAAAbh79ZAIBp8XcIADDD3wUAAACwert27VrWbQDA2hJUzLFz586cdtppt7ltx44d2bp165RGBABwe/5mAQCmxd8hAMAMfxcAAADA6l177bXz3nbkkUdOYTQAUJclggAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAA+H/27i7EqvPcA/g7H1WmWuNI1VOI0ptCYSyci4wpLfE2lEapSvxASS4KsaA4aAuFMqZQp4XeTJmJXhgopEFRE9R0YihpoRRDW/y4OFAHAr3TQIi22hjt4HScORfn7OBst9u9ZvaatfZ+fj8I4trr43nfvffqs177nwEAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAaHN3794tuoRZJicnS33+vOsrWruPr1q08WZlfoB63CMAgKJV+pFG+pKH95mcnAzVy1SPNa+xZzlv1hoivV8VRYw5y3eq2dednJxMt2/fznxcnsq2bgqUy5kzZ4ouAQAAIDcXL14suoRSEagAAGhjt2/fTtu2bcv8j5V5mZiYSD/84Q/TxMREKc+fd31Fa/fxVYs23qzMD1CPewQAULRKP3L79u0n9iUP9y4TExPpwIED6cCBAyF6meq+La8+Lst5s9YQsfcsYsxZvlPNvu6BAwfS3r1709atW9PHH3/c8HF51lm2dVOgXEZGRtJrr72WRkZGii4FAACg6cbGxtKPf/zjNDY2VnQppSFQAQDQxgYHB9O///3vdOjQoaJLSSmldPz48fS3v/0tnThxopTnz7u+orX7+KpFG29W5geoxz0CAChapR8ZHBx8Yl/ycO9y/PjxND4+nsbHx0P0MtV9W159XJbzZq0hYu9ZxJizfKeafd3x8fH097//PU1PT6f9+/c3fFyedZZt3RQol3Pnzs36EwAAoJ0MDw/P+hOBCgCAtnXp0qU0Pj6eUkrp6tWr6dKlS4XWc/369XT69OmUUkqnT59O169fL9X5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L6nTp1KJ0+e/Py1U6dOtXUvU923Xbp0KZc+Lkt/mLWXjNh7FjHmLN+pZl/31KlTs7bdvHkzvffee088Ls85Ktu6KVAuzz//fN2/AwAAtLKXXnqp7t+jEqgAAGhD09PTaWhoaNa2oaGhND09XUg9MzMzaXR0NE1NTaWUUvrPf/6TRkdH08zMTCnOn3d9RWv38VWLNt6szA9Qj3sEAFC06n6kolZfUr3v1NTUrLWPqampNDIy0pa9TK2+bWhoqOl9XJb+MGsvGbH3LGLMWb5Tzb7uyMhIevDgwSOvDQ8P19xeq95m11m2dVOgXG7dupXu378/a9v9+/fTrVu3CqoIAACgee7du5euXbs2a9u1a9fSvXv3CqqoPAQqAADa0LFjx9KdO3dmbbtz5056/fXXC6nnwoUL6fLly7O2Xb58OX3wwQelOH/e9RWt3cdXLdp4szI/QD3uEQBA0Wr1IxXVfUm9fSuuXLnSlr1MrbFXrwU1o4/L0h9m7SUj9p5FjDnLd6rZ171y5UrN1x48eJBeffXVxx6X5xyVbd0UKJctW7Zk2g4AANBKXnjhhZrbN27cuMCVlI9ABQBAm7l9+3Z6++23a7721ltvpdu3by9oPRMTE+no0aM1Xzt69GiamJgo9Px511e0dh9ftWjjzcr8APW4RwAARavXj1RU+pJG9q04cuRIW/UyWcY+nz4uS3+YtZeM2HsWMeYs36lmX/fIkSN19/nzn/+cPv7440eOy3OOyrZuCpTLyMjIvF4HAAAos7Gxscf+BtDp6ek0Nja2wBWVi0AFAECbGRwcfOyvqJ+enk6HDh1a0HqOHz+ebty4UfO1Tz75JJ04caLQ8+ddX9HafXzVoo03K/MD1OMeAQAUrV4/UlHpSxrZ4JWy9AAAIABJREFUt+LGjRtt1ctkGft8+rgs/WHWXjJi71nEmLN8p5p93Zs3bz5xv/379z9yXJ5zVLZ1U6Bczp07N6/XAQAAymx4eHher7c7gQoAgDZy8eLFND4+Xnefq1evpkuXLi1IPdeuXUunT5+uu8+pU6fS9evXCzl/3vUVrd3HVy3aeLMyP0A97hEAQNEa6UcqTp48mU6dOpXp/CdPnmyLXibLPFXMpY/L0h9m7SUj9p5FjDnLZ6WZ17527VrD38+bN2+m99577/Pj8pyjsq2bAuXy/PPPN3U/AACAMtm9e3dD+7300ks5V1JeAhUAAG1ieno6/fznP29o36Ghocf+NLZmmZmZSa+99lqampqqu9/U1FQaHR197K+Vy+v8eddXtHYfX7Vo483K/AD1uEcAAEVrtB+pePDgQXrw4EGmazx48CCNjIy0dC+TdZ4qsvZxWfrDkZGRNDo62nAvOT09Ha73LKLfzvpZada1Z2Zm0ujoaKbv5/DwcJqamsp1jsq2bgqUy61bt9L9+/cb2vf+/fvp1q1bOVcEAADQPPfu3UsfffRRQ/teu3Yt3bt3L+eKyqm76ALKptYC2aefflpAJY2rWV8bLDBDrmp8R8r+XQd4WK171htvvJHu3LnT0PF37txJr7/+evrBD37Q7NI+d+HChXT58uWG9r18+XL64IMP0oYNGxbs/HnXV7R2H1+1aOPNyvwA9WS9R/z1r399ZLvnKSKyJkdN1pwIptbney7/R+Qs/ch8XLlypaWfd+YzT1me9bJc58qVK5lqOHbsWLjn0yKeyefyWWnGtS9cuJDpM5HS/4Wd9u3blz788MOG9p9LnceOHSvVuilQLlu2bMm8/5/+9Kd8igEAAGiyF154IdP+GzduTH/84x9zqqa8mh6o6OjoePoJu/xXs6/ZTJ999tkj215++eUCKpmnB/dTSl8sugoorweP/pSRlvyuAzzk/PnzmfZ/66230vbt21Nvb2/Ta5mYmEhHjx7NdMzRo0dTf39/6unpyf38eddXtHYfX7Vo483K/MDCarV1kbncI379618/ss3zFPw/a3JYc4L02WefpRUrVjS8/1z6kfk4cuRISz7vNGOeGnnWy/v9ePvttzPt3+rPp0U8k8/nPZzPtScmJtKRI0fmdN1GwxQVWeq8fft25s9dnuum0O5abV1kZGRkzscNDAw0uRoAAIDmGhsbm9Nv+hwbG0ubNm3Kqapy6szhnNef8F/+P2IIACCgrD8Bcnp6Oh06dCiXWo4fP55u3LiR6ZhPPvkknThxYkHOn3d9RWv38VWLNt6szA8suJZaF5nLPeKf//xnTtUAABHNpR+Zjxs3brTk804z5qmRZ72834+s61et/nxaxDP5fN7D+Vz7+PHj6ebNm3M6NqssdQ4ODpZq3RQCaKl1kXPnzi3ocQAAAAtpeHh4QY9rZXkEKgAAaBFXr15Nd+/ebeo5Jycn09mzZ+d07JkzZ9Lk5GSu5797926u9RUt7/kvm2jjzcr8APXM5x4BANAMRfUjrfa808x5qjf2svaHrfZ+VRTxTN6M93Au1y7is9NInXfv3k3j4+NzOn8e66ZAuZw5c6bQ4wEAAPJ08eLFQo9vNXkEKtY84b/+HK4JAMAcrFu3Li1durSp51y0aFHasmXLnI7dunVrWrRoUa7nX7p0aa71FS3v+S+baOPNyvxAIVpmXWQ+9wgAgGYoqh9pteedZs5TvbGXtT9stferoohn8ma8h3O5dhGfnUbqXLp0aerr65vT+fNYN4UgWmZdZOvWrYUeDwAAkKdnn3220ONbTXezTzgzM/NRvdc7Ojqafcmm+tKXvvTItt/85jfpqaeeKqCaxnz66afp5Zdfnr2xa3ExxUCrqPEdKft3HeBhtf73v7OzM9Ovr+/s7EyHDx9udmkppZR2796d/vCHP6QbN240fMzq1avTrl27FuT8eddXtHYfX7Vo483K/MDCarV1kbncI7785S+nf/zjH7O2eZ4iImty1GTNiWBq3Qtr/TtLPXPpR+Zj1apVLfm804x5auRZL+/3I+v6Vas/nxbxTD6f93A+1969e3f6/e9/n27evDmn47PIUufQ0FDaunVradZNod212rrI5s2b07lz5+Z0HAAAQNkdPHgwDQ8Pz+m4aJoeqGh1nZ2P/tKOp556Ki1fvryAauahZAsRUDo1viMt+V0HeMjGjRvTb3/724b337ZtW+rt7c2llp6enrR3797005/+tOFj9u7dm3p6ehbk/HnXV7R2H1+1aOPNyvwA9czlHvH9738//fKXv5y1zfMU/D9rclhzgpr/zlLPXPqR+di3b19LPu80Y54aedbL+/148cUX0+nTpxvev9WfT4t4Jp/Pezifa/f09KR9+/bN6bpf//rX04cfftjw/lnq7O3tzfy5y3PdFCiXgYGBOQUqBgYGcqgGAACguTZt2pR+9atfpZmZmYaP6ezsTJs2bcqxqnLKtqoNAEBpvfzyy2nZsmUN7bts2bL0yiuv5FrPhg0bUn9/Y7+9u7+/Pz333HMLev686ytau4+vWrTxZmV+gHqy3iO++c1v5lwRABBNln5kPlr9eWc+85Rl7Fn7w2eeeabhfffs2RPu+bSIZ/K5fFaace0NGzY0/Hmo6OrqSkeOHMl1jvbs2VOqdVOgXM6ePZvr/gAAAEU6f/58pv3ffffdnCopN4EKAIA20dnZmQYHBxvad3BwMPNPjMyqo6Mj7d+/P3V31/+laN3d3Wn//v2Zf9X3fM+fd31Fa/fxVYs23qzMD1CPewQAULRG+5GKrq6u1NXVlekaXV1dLd/LZJ2niqx9XNb+cGBgoOF9Ozs7w/WeRfTbWT8rzbp2R0dHGhgYyPT9PHjw4OfXz2uOyrZuCpTLihUr0uLFixvad/HixWnFihU5VwQAANA8S5YsSWvXrm1o37Vr16YlS5bkXFE5WQ0CAGgj69evT319fXX3WbduXVq/fv2C1LNmzZq0ffv2uvvs2LEjrVmzppDz511f0dp9fNWijTcr8wPU4x4BABStkX6kYufOnWnHjh2Zzr9z58626GWyzFPFXPq4LP1h1l4yYu9ZxJizfFaaee01a9Y0/P1cuXJl+u53v/v5cXnOUdnWTYFyef/995u6HwAAQJm8+eabTd2vHQlUAAC0maGhocf+FLXOzs50+PDhBa1n9+7dadWqVTVfW716ddq1a1eh58+7vqK1+/iqRRtvVuYHqMc9AgAoWr1+pKLSlzSyb8WqVavaqpfJMvb59HFZ+sOsvWTE3rOIMWf5TjX7uitXrnzifqOjo48cl+cclW3dFCiXzZs3z+t1AACAMjt48OC8Xm93AhUAAG2mt7c3vfjiizVf27ZtW+rt7V3Qenp6etLevXtrvrZ3797U09NT6Pnzrq9o7T6+atHGm5X5AepxjwAAilavH6mo9CWN7Fuxb9++tuplsox9Pn1clv4way8ZsfcsYsxZvlPNvu6+ffvq7vPtb387feUrX3nkuDznqGzrpkC5DAwMzOt1AACAMtu0aVPq6Oio+VpnZ2fatGnTAldULgIVAABtaM+ePWnZsmWzti1btiy98sorhdSzYcOG1N/fP2tbf39/eu6550px/rzrK1q7j69atPFmZX6AetwjAICi1epHKqr7knr7Pu6YdlFr7NVrQc0Ye5b+MGsvGbH3LGLMWb5Tzb7uM888U/O1rq6u9LOf/eyxx+U5R2VbNwXK5ezZs5m2AwAAtJLz58/X3P7uu+8ucCXlI1ABANCGOjs70+Dg4Kxtr7766mN/pX3eOjo60v79+1N3d3dKKaUvfOELaWBg4LHJ54U+f971Fa3dx1ct2nizMj9APe4RAEDRqvuRilp9SfW+3d3ds9Y+uru727aXqdW3HTp0qOl9XJb+MGsvGbH3LGLMWb5Tzb7uwMBA6urqeuS1H/3oRzW316q32XWWbd0UKJcVK1akxYsXz9rW09OTVqxYUVBFAAAAzbNkyZK0du3aWdu++tWvpiVLlhRUUXlYGQIAaFPr169PfX19KaWU1q1b99ifCLdQ1qxZk7Zv355SSmn79u3p6aefLtX5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L47duxIO3fu/Py1HTt2tHUvU9239ff359LHZekPs/aSEXvPIsac5TvV7Ovu2LFj1raVK1em73znO088Ls85Ktu6KVAu77///qy//+53vyuoEgAAgOZ78803Z/39jTfeKKaQkhGoAABoY0NDQ+mLX/xiOnz4cNGlpJRS2r17d/rGN76Rdu3aVcrz511f0dp9fNWijTcr8wPU4x4BABSt0o8MDQ09sS95uHfZvXt36uvrS319fSF6meq+La8+Lst5s9YQsfcsYsxZvlPNvm5fX1/62te+ljo7O9Po6GjDx+VZZ9nWTYFy2bx586w/AQAA2snBgwdn/UlKHTMzMwt7wY6Op1NK11NK6fr166X7STP/+te/0ve+971Z29555520fPnygip6slo13/3vnWnmCz0FVVSsjv9MpKX/c3LWtsjzQW21Pidl/64DPCxLz3L37t20dOnShSrtiSYnJ9OiRYtKe/686ytau4+vWrTxZlXm+fnoo4/SmjVrKn9dMzMz81GR9UCzlH1d5GGPu0e04toJ5KGV1uSsly0ca05Ek3dfUOlHGnl2eXifycnJlFIq7fNOs1XPT17PelnOm7WGMj+f5qWIMWf5TjX7uimldO/evdTb25vpuDzrLNu6aTVrI7SjVloXOXPmTNq6dWvRZQDQ5v7yl7+kn/zkJ7O2/eIXv0jf+ta3CqoIgCguXryYnn322aLLeKyFXhfpzvPkAAAUr2z/KJj3P9bO9/zt/o/37T6+atHGm5X5AepxjwAAilbpRxrpSx7eJ1ofUz3evMaf5bxZa4j2nqVUzJizfKfKcN286yzbuilQLsIUAABAOytzmKIInUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHC6iy6gbJYtW5beeeedR7YBAJSJngUAKIo+BACo0BcAAADA3K1evbqhbQBAvgQqqnR2dqbly5cXXQYAQF16FgCgKPoQAKBCXwAAAABz19396P99s9Y2ACBfnUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAA/pe9Ow+X5yrrBP59fwkBEkgCBIkgEhYVUFSGRcMiQTaFAMoIMi4QhUEYZRTFCYhL1FEQhhFkGRAYAwoIKiEBRQhLkE0JOGyyLwECgSQsISwh25k/qi63c+nbd+v11ufzPPXc6ttVp6r7rVNVfareUwAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAINz8KJXgNmoS7+56FVYnEsvGvu/mv+asMQGXUcAAACAmVja9gbtZXOztNsAAAAAAAAAY0mo2KcOe9/LFr0KS+Vq7ztl0asAAAAAwD63Sm1y2ssAAAAAAAAgObDoFQAAAAAAAAAAAAAAAJg3CRUAAAAAAAAAAAAAc3TEEUds638AwGxJqAAAAAAAAAAAAAAAAAbn4EWvAHt3+OGH5+Uvf/miV2NpXH755bnwwguv8L+rX/3qOXBA/hCTHX744YteBQAAAGBFrFKbnPayxdLmBAAAAMA449oYtSUBwPxJqNgHDhw4kCOPPHLRq7FUrnnNay56FQAAAADYx1atTU57GQAAAAAsl1VrYwSA/UoXZAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAACdn8Y+AAAgAElEQVQAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBOXgByzxobeScc85ZwOIBAABYdht+Lx602XSwgrSLAAAAsCVtI+xT2kUAAADY0rzbRaq1NutlXHGBVbdOcuZcFwoAAMAqu01r7R2LXgmYBu0iAAAA7IK2EfYF7SIAAADswszbRQ7MsnAAAAAAAAAAAAAAAIBltIgnVFw5yS36l+cluWyuK8DQHZ31Hi9uk+RzC1wX2IrtlVVhW2WV2F5ZFbbV7pGN1+7H39ta++YiVwamRbvIyrAfHgZx3v/EeP8T4/1PjIdBnPc/Md4dbSPsOyvSLmKftdzEZ7mJz/ISm+UmPstLbJab+Cw38VleqxKbubaLHDzLwsfpP5DHkbIQVTX68nOttbMXtS6wFdsrq8K2yiqxvbIqbKvf8slFrwBMm3aR1WA/PAzivP+J8f4nxvufGA+DOO9/Yrwn2kbYV1ahXcQ+a7mJz3ITn+UlNstNfJaX2Cw38Vlu4rO8Viw2c2sXOTCvBQEAAAAAAAAAAAAAACwLCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHCqtbbodQAAAAAAAAAAAAAAAJgrT6gAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqWElVdYOqenJVfbCqvlZVX6yqM6vqt6vq0D2WfaCqbl5VJ1TVM/tyv1lVrR+Om9LHYCBmvL0eWlX3q6r/05f5paq6pKq+UFVvq6qTquroaX0W9rcZb6s3q6pfq6rnV9W/V9XZVXVRv5yPV9VLquq+VVXT+jzsX7PcVics89B+W107HzhrFsth/5nxvvWEkW1yq+GEKX0kgJVVVYdU1UOr6tVVdU7/W/+rVfWhqvqrqrrdNsv5yao6pT+n/Wb/95Sq+slZf4ahqqrvqKrjq+qPqupVVXX+yDHu5F2Ut+cYVtXBVfXwqnpTVZ1XVd+oqo9V1bOr6vt3uk5DN40YT7uNpC/vf/RlfbE/l/tgf253g11/2AGbdl3eUPaufrOJ83TNIsZVddeqOrmqPtrH54Kq+nBV/X1VPaKqrrbF/GI8RdOMcVUdU1V/VlXvrKov9/vsL1bVW6vq96vqO7ZZjhhPUVXduv/+XzNyrvTVvt79VVXdYYflOe8CpqKqDq+qB/b79zf25wYXVNXFVXVuVZ3RHw+uNcVl2odt07ziU1P63devz7ba1veyvstijvGZ6jWLIZznzSM21Z13bzcuE39TD63uTFLdb5nRz3zclMr9L9Wdi3+uuvspPllVf1NVx+6gjH1fd7YyzfhU1RFV9fPV/R56d19HL6nuuP6GqvqtqjpyG+WctZf6t19MOTYn7WC/tuVyquqo6to73lNVX+mH9/T/m9o55jKbVnyq6rhdHHvO2KSsQdWdvX5fu1ie486o1prBsFJDknsnuSBJ22T4UJKb7KH8B08ouyU5btHfgWF1hllur0l+MMmFW2yvrV/+zy76uzAs9zCHfevfbGNbbUnOSHKtRX8fhuUdZr2tTlju/9qwnLMW/V0Yln+Yw771hG3uW1uSExb9fRgMBsMihyQ3SPK+bewv/yJJbVLGgSTP3WL+5yQ5sOjPu9+GLb7zk3dQzlRimOSoJG+fUMZFSR666O9tlYa9xjhTbiNJcpMkH96inOMX/b2t2jCturxJ2Tv+zSbOyx3jJNdI8vJt1OsfFuPVi3GSX0zy9S3K+0KSu21RjhhPN77/so0615I8P8khW5TlvMtgMEx1SHLXbe6jzktyjz0uyz5sCeOTKf7uS3c9cjvr2xb93a5KfPrlnLDd7zVbXLPIQM7z5lR3jtlBXNaGV29S1qDqzoTv9IeTXLLhMx+3xzKvmuQfJ3ynlyX5g22UM4i6M6/4JPnJdMfrrbb5c5LceYuyztpm/Tlr0d/hKsSmL++kHezXJi4nyY/0cdxs/s8mue2iv8NViU+S43YQm7Xh2ZuUNai6s4Pv64w9LsdxZ8xwcGCFVNUtk7wkXYX+apLHJ3lD//qBSf5rku9N8o9VdevW2oW7WczI+CVJ3pvkSklusYdVZ4DmsL0enmStB7a3JHllkneku9B07ST365dxeJIXVtVXWmuv2tOHYl+a07710iT/lm5bfW+Sz6Vr+LlGkpsm+ZUkP5DkTkleUVV3aK1dvpfPxf4zp211s+X+RrrGkkuSXH0a5bK/LWB7vUe6hpzNnL3H8gFWVlVdKV2j4FrPj+9J8r/TJbZdPckdkvxWksOSPDLd/vQJY4r6kyQP6cf/X5InJvlYkhsn+R9JbpnkoenOc39nBh+FzqeSfDDJ3Xcx755jWFUHJTklyW36f70s3Y00X0x30eV3k3xHkmdX1Wf8Dt+V3cR4am0kVXX1dPuM7+n/9Zwkf5vkG0nunOSxfTkvqarbt9betYP1ZN1e6vIV7OY3mzjPxa5jXFVHJDk9ya36f52S5O/T7bMvS3L9dG1I/3lCGWI8e7uKcVXdPsnJ6W5WvTzdzfmnpjsH++50nV7dO8k1k5xaVT/QWvv4mHLEePqu2//9bJK/S/KmdHE+KMmx6c6Zr5fkQemum/3chLKcdwGz8Ol0bazv7MfPSXc8+a4kP5PuvP+oJKdV1W1ba+/e5XLsw3Zn1vGZxbXxdyT5pR2ux6qaV/1Zs+trFgM8z5t1bD6T7d3v9Nisn989f4tph1R3rqCqDiT5yyQHJzk33b58Gv5vknv2429I8tR0degW6Y41N05yUlWd01r7y03WbWh159vMID7XSnLldL9dT0/yz0neneTL6erozyf52SRHJ3nlNr/XU9OdB2zm4j2u81KaYd1Zs9V+7hObvVFV10/yinTnE5emu370yv7t45P8ZpLvTHcv061aa/vuuvsM4nNmtnfseXq6Nr5k62PP0OrO/0nyzAnvf22P5TvujLPojA6DYSdD1nvHuSTJsWPe/+2sZzedtMtl3DbdDRQ/muQq/f9OGin3uEV/D4bVGGa9vSa5XbobNW8+YZr7pjuxb0k+mk16WjUMe5jTvvXgLd4/KMk/jCznPov+XgzLN8xjWx1T5kHpGgVbkt/Levb7WYv+PgzLPcxp33rCSBnHLPozGwwGw7IO6S48ru0v35rkoDHT3CpdY2tL8qWN56/pkuDWeuY5M8lVN7x/aP//tX3/1J+YNeQhyR+mu3Bxnf71MSMxPXmbZUwlhkl+eWTZzxjz/k2y/oSqj2z1W8gwnRhnim0kSf5oZNm/vcmy1ralMxb93a3SMI26PKbMXf1mE+fljnGSF/TzXJQJbUTpOkcau58V4+WNcbqbEtbm+W+bTPPkkWmeLsZzi+8rkzwgY86X+/ePSpeUvPa9/9gm0znvMhgMUx822zdtmOanRvYbL9vlcuzDljQ+me7vvjOGdI4wx/pzwkgZx+xhfQdznjev2GxnPdIlXrQkX9m47xuZblB1Z5Pv4Df67+ADSf50JDbH7aHMHx8p57SN20W68/BPZr3t+hqblDOYujOv+KRLlnhWku+eMM0jR5bz+gnTnZU9tIGt+jCjunPSWjl7XLcXjKzP/ce8/4CR9/dl/GYRn20s88isPwHmIxOmG1TdGfnuT5rhMhx3NhkOBFZEVd02yR37l89rrb1tzGRPTrdjT5Jf73uh3JHW2ttba09rrf1ra+2iXa4uAzeP7bW19tbW2s+21t4/YZpT0/V4knSZg7fcyTLY/+a4b710i/cvS/KkkX/dcbNpGaZ5batj/Hq6Gyw/lOTPplAeA7DA7RWA8W43Mv74/tzzClpr78x6j0NHJrnZhkl+I/nWk14f2Vr7xob5v57uwkn66R6115VmXWvtD1prr2ytfX4PxUwrho/u/34xXYLkxnX9aLonUyXdDTI/vYd1Hoy9xnhabST9Odl/719+IN0527ctK8nz+pd3qqrbbJyG8aZUlzfa8W82cZ6dacS4qu6Q5Bf7l7/bWjttwvLauDYnMZ6dKdXjtXOzL7TWNutp749Gxo/d+KYYz0Zr7fjW2kvHnS/375+f7ikVa35mk6KcdwFTt9m+acM0L093Xpjs/jqTfdguzCM+ro3v3hzrz54N7TxviWJz16w/rezvN+776FTVdyf54/7lwzO93tDXjhmXpks6v8J20Z+Hn9i/PDLdU5I2rtug6s44s4hPa+0lrbWHt9Y+NWGap6Xr7CPpvtej9rrc/WaGdWfPqurodE8aSZJXt9b+buM0rbWXJnl1//IX+3n2jQXG52fTPQEmSf56Tsuk47izCQkVrJKfGhn/q3ETtNYuT5c1mHSV+c6zXinYxDJtr28YGb/xjJbB6lqmbfXCkfGrzGgZrK65b6tVdYOsX8B/eGttaX7Ys/SWad8KQHLIyPjHJ0z3sXHzVFWl6+EwST7YWvvXcTP3/1+7uHnffj6WwLRiWFXfm/Vkm5f2N9KMc/LI+ErfFLMPbdVGcuckR/Tjz+/P2cY5eWRcjBdkD7/ZxHm5/Vr/94IkT99lGWK83NbOsz6x2QSttQuSnL9h+lFivDgTj6XOu4AlsHatacfXmezD5mLX8dkB18Z3bx7x2YrzvPFmHZsHjYw/f0bL2A+ekeRq6bbNN06jwKq6epK79C9f21o7e5NJX5bu6SHJ+G1e3ZlBfHbgjP7vgSQ3nPOyV8EiY7OV+2T9Huqx1/V7J/d/D/Tz7CeLis/asadl/b4JZsxxZzIJFaySO/R/v5bknROmG92x3352qwMTLdP2euWR8S17OGBwlmlbfeDI+AdntAxW1yK21WcmOSzJX7fWzthjWQzLMu1bAVi/ySFJbjRhurWL7C3JR0b+f8Os99C2VWPy2vvXS3LMNteP2ZtWDO8wZrpv01r7XJIP9y8d45fLVm0k24pxul7n1m6KEuPF2e1vNnFeUlV1SNZvYjx97QnSVXVQVV2/qo6pqu3cQCTGy23t3GzTm0yq6vAka716fmjMJGK8OFsdS513AQtTVd+X5If7l7u5zmQfNkNTiM92uTa+C3OMz1ac520w69j0N1audRR2VpJ/mfYy9oOqekCS49M9eejRW0y+E7fJehL5pGPGxUnWEv1u0/cMPmrQdWeG8dkux55NLEFstrLdurMvr+svKj5VdeOsP8H0Ta21s+a1bBx3JpFQwSpZ68Xho+Me4z1i9AfEzTadCmZrmbbXO42Mf2BGy2B1LXRbraqjqurYqnpeksf1/z4/yQuntQz2jbluq1X1wCT3TPKlJL+123IYrEXsW/+qqj5bVRdX1flV9a9V9T+r6np7LBdgP3hx1ntRObGqDto4QVXdMsm9+pcvaq19ZeTtm4+Mb3XRUpvEcppWDHdTzvWr6rAtpmV+tmoj2VaM+3O8j/Yv1fUF2ONvNnFeXj+U9R5X31tVh1fVU9K1FX0q3RMNLqiq06vquAnliPFye1b/91pV9fBNpvm9MdOPEuPFmcqxdMz7zruAXamqQ6vqe6rqN9PdyHNw/9ZTdlGcfdiUTTk+27WTa+M3rap/q6ovV9VFVXV2VZ1aVQ8ac9PYvjPj+Oz2moXzvMy97vxMkkP78b9urbVtzDOoulNVRyZ5av/yxNba+ZOm36HdHDMOTvI9uylnP9adGcdnu9aOPZdk/fvdzI9V1buq6sKq+npVfaKqXlJVP7Xfnno9z9hU1Wuq6tz+uHNuVZ1RVY+pqmtsMeta3bmgT3Ydq7V2TtavM6k7e7ebJyMNpu707l9V7+8/64VV9ZGqen5V3XmP5TruTCChgpXQ9zq11hvRZo+ZSZK01r6UrjfgJLn+LNcLxlmm7bWqfijrNwW9t7UmoYJvWdS22v9waVXVkpyX5K1JfjlJpbtA/tOttS/vZRnsL/PeVvsf1WsNko9prZ23m3IYpgWeBxyX5DuTXCnJtZL8SLpEtY9W1a/ssWyAldY3Av9iuh5Qbp/kzP7i3o9W1V2r6g/SXZg8JMm/59tvzP2ukfGJ+/Yknx4Z1yaxPKYVw92UUxvmY0G22UayFquvbeN36VqMr11VV544JVM1hd9s4ry8Ri/EHUjXg9mvJzly5P+HJLlrktdX1YmblCPGy+3/JnlBP/6MqnpOVd27qm5dVferqlOy3ivin7TWXjumDDFegKo6kOQxI/966ZjJnHcBM1dVJ4xcZ/pauqc8PDnJdfpJnpDkRbso2j5sCmYYn+0se6fXxq+T5LZJjkjXu/j1ktwn3Y1976qqpb/pa6fmGJ/jsrtrFoM9z1tg3Rm9qfUFm051RUOrO09McnSStyR53pTLnvaxZ3B1J7ONz5aq6l5JfrB/+eoNnTWNc8N0HUpcLclV0z3p6gFJTknypn3WWd48Y3O3JNdOd9y5drokl8cn+XhV3XfCfGt1Z6v6l6zXnf1y7WchdadPfviF/uU3kvzdNmcdUt1JunbSm6X7rFdLcpN0x+zXV9UpVXXELst13Jng4K0ngaVw9ZHxr25j+q+le9z71WazOjDRUmyv/QHouUnWel993ITJGaal2FZH/EWSP15QjwEst3lvq09K1xD4tiTP2WUZDNe8t9ePJ3lZuu117YfojZL853S9Cl0lybOqqrXW/nKXywBYea2106rqVumSJR6Sb+/x5vPpekJ+Tmvt6xve28m+/Wsj49oklse0YmhbWFE7aCNZi/F2z+PWXC3JN3e3duzCXn+zifPyuubI+Inpfs/8c5LfT/KeJIen+63zhHQ37jyhqj7YWjt1QzlivMRaa5cleXBVvSLJ7yR5aD+MekOSP90kmSIR40V5VLob55LkZa21d46ZxnkXsEjvSvKw1tqZu5zfPmy29hqfiXZ4bfzyJK9L8k9J3p3kC+ni9p+S/Eq6m9dunuQNVXXb1tqnZrHOS2Za8dnrNQvned9uZnWnqr476z3rv7W1tlXP+oOrO1V1x3S/Vy5N8vBtPsFjJ6Z97BlU3ZlDfLZa/jWTPKN/eVm69ovNXJzktCSvSfK+JBek60Di2CSPSHez8u2TnF5Vx7bWLpjVes/DHGPz3iQvT/L2JJ9Nl1DxfUl+Psnd033H/1BV926tvWrM/LupOyt/zrbgunOHdOcGSXJKa+3CLaYfVN1J1zncaemOtx9Mt22uJQk9PF2i6k8lObWq7tZau2SH5TvuTCChglVxlZHxi7cx/Vqlu+oM1gW2sizb69OT3Loff35r7RVTLp/Vt6ht9ZfS3Txc6U5yb53uJPfXktyoqh7aWvv8HpfB/jK3bbWqfizdE1MW0ujCvjDPfesp6Y7xG7fTM5O8pKqOT3fh4kpJ/ryqTpv0qFKA/ayqDknXc8t9052HbnSddD3ifCJdQ+WonezbRxsBtUksj2nF0LawurbbRrIW452cxyViPDdT+s0mzsvrsJHxqyQ5Pcnx/Q34Sfek02dV1fvSPV3qQJLH97912oZ5EzFeWn2PtQ9KcotNJjk2yUOq6gOttc+MeV+M56yq7pQumSlJzk3XnjuO8y5gHl6e7klWSVfvb5yud9qfTvLiqvqN1tord1Gufdh0zCo+W9nJtfH7bdKT7puq6pnpErcfnK696ClJ7jfVNV2sWcZnGtcshnyet4i68wtZbyvdztMpBlV3+jblv0z3Hf15a+19M1jMtI89g6k7c4rPpOUflOSFSW7Q/+t/ttb+34RZbrtJ/Tmjqp6e5O/TJQDcLMkfJPnNaa7vPM0xNk9prZ005v//luQF/RORnpUu2fK5VXXj1tpFG6bdTd1Z2XqTLL7upHui/JrtHHsGU3d619vk855eVU9L8qokt0yXYPGIdJ0X74TjzgQHFr0CsE2jB7NDtjH92qNhvjGDdYGtLHx7rarHZr1XrzOT/Oq0ymZfWci22lr7RGvtfa2197bW3tRa+/N0j0D8pyTHJzmzqvbFY42Zmrlsq33vRWs/HJ/aWnvPTuaH3tz2ra21CybdQNY3rP9R//LQdD2yAwxOVR2W5LVJHpuu5+snpmtYvXK63q3vnuTN6S66v7yqNja27mTfPvqoWm0Sy2NaMbQtrKAdtpGsxXgn53GJGM/FFH+zifPy2nhR+8SRZIpvaa29Od2NWEl3TN94U74YL7G+F8S3Jbl3ks+ku5B+dLp4XT/dfvrrSR6Y5O1V9f1jihHjOepjcEq6jvouSnL/1tq5m0zuvAuYudbal/vrTO9rrZ3ZWvvb1tr90iXr3Shdb60n7KJo+7ApmGF8NrXTa+Ob3KS29t4lfVkf6v/101V1vWms5zKYZXymdM1isOd5i6g7Wb+p9ZtJXrKddZzw3n6sO7+T5KZJPpXkD2e0jGkfe4ZUd+YRn0memeQn+vFXJvnjSRNvUX8uTJdA9cX+Xw/rb3pfVXOJzaTvtH//2Ume17+8brqnJW20m7qzyvUmWWDdqaqrJLl///Kz6a7dTTSwurPV5/18uid+rT2V4pG7WITjzgQSKlgVo4/22c5jk9Z6strOI2Vg2ha6vfYZtn/av/xgknu21r42YRaGa2n2rX0W+C+lu1h6/XQ3ucGaeW2rj0v3+MdPp8tch91Ymn1r7y+TrF3AuNOkCQH2sZOS3LEff0hr7cTW2gdbaxe31r7SWjs9yZ2TvCHdTbpPqqofGpl/J/v20Z61tUksj2nF0LawYnbRRrIW452cxyViPC/T+s0mzstrdD973hY9O756ZPw2m5QjxkumT4x6cbqk1s8l+dHW2t+01j7fWruktXZ2a+2ZSX4s3YXZ6yZ5/piixHhOquqGSV6T5BpJLkvywNbav0yYxXkXsDCttb9O8nfp7oN5elVdc4dF2IfN0BTiM9Ysro231i7N+g2YyQDa1mcVnzG2umbhPG+DGdad26a7oTZJTtvqxuTt2E91p6pumq6DniR55AzvuZn2sWcQdWeO8dls+Y9P8rD+5ZuSPGBchxA70Vq7IMnf9i8Py/pTl1bKomMzxrNHxqd13FnJepMsRXzuk+TIfvyFe603yf6pO9vVWvt4uqf6JslNquq6OyzCcWeCgxe9ArAdrbWLquoLSa6VZGKv5VV1jaxXwk/Pet1go0Vur1X1X9JlQSfJJ5PcrbV2/l7LZX9atn1ra+38qnpLkrsluW9VXanvyYKBm+O2emL/97VJ7l1V46ZZK/uwqnpgP35ua+31O1wW+9QS7lvP7dfnqCSr3hMQwI5Vd0D/5f7lh1tr427IS2vt0qr6vXRPqjiQ5IQkj+rfPntk0q2epHb9kXFtEstjWjHcWM6k39tr5bQN8zEnu2wjOTvJj6Q73z9yi5sJ1mJ8XmvtmxOmY3qm9ZtNnJfX6H53q33n6LTX3vCeGC+vn8j6b9OntdY+N26i1tp/VNXfpOvh9lZV9UOttXePTCLGc9BflH9tusSWluSXW2unbjGb8y5g0U5N10vtYemOOy/awbz2YbO3l/h8mxlfG3//yPhQ2tanGp9xtnHNwnneeLOIzYNGxl8whfLW7Je686h0vW5/PMmhI20Mo35gZPzHq+rofvwVO7hJeeMx4x0Tpt3q2DOkujOv+HybqjoxyWP6l/+e5PjW2rR6XN8P9WdhsdnEVt/p2Umuk63P/ZL1urPK134WHR/Hnul4f5J79uPXS/e0j+1y3JlAQgWr5P3pepS8SVUd3Gc2j3PTkfEPzH61YKy5b69VdZ90JxsHkpyT5C6ttSE0vLE3y7ZvPa//e2i6hrRzZrgsVss8ttW1R9H9Uj9MclS6HhWT5I1JJFQwatn2rZs+YhtgAK6TZK3Xtkm9XCfJO0fGR/fR79/k/+Nok1hO04rhxnLetY1yPr0EvXANzh7aSN6f9Ue/3zTJv25S/sFJbty/VNfnZ1q/2cR5ef3HyPhBW0w7+v7G31xivLxuNjL+71tM+850CRVJF8fRhAoxnrGqOipdj4c36v/1yNbadm52cN4FLNp5I+M32OG89mGzt5f4XMEcro0PsV19avHZwqTv1nneeFONTVVdKcm3OiFI8s97LXPEfqk7V+7/3ijr7QuT/N7I+A2TbHefvptjz6VJPjKmnCHVnXnF5wqq6r8leUL/8gNJ7tFa+6RtGjwAACAASURBVMpuytrEfqg/C4nNBFt9p+9PcqskR1TV0Zt1/FBV35nk8P6lurMLVfUdSe7Rv/z31tr7dlvWGPuh7uzEXj6v484EBxa9ArADb+7/HpbuQLaZ0cczvWV2qwMTzXV7raq7JHlpukS5L6TrfeNjuy2PQVm2fetopvBSP+aLuVu2bRUmWZrttaqune5msmRnPRMA7BejN1hu1bHIlTaZ7xNZ34du9Zj6H+v/fibJWVutHHMzrRi+eWR803L6Hpu+t3/pnHTO9thGsq0Yp3ts+NqTEMR49YjzkmqtfTLJp/qXx9QmjyHp3Xhk/DMb3hPj5TWNc7NEjGeqqo5I8uokN+//9ZjW2jO2ObvzLmDR9nKdyT5s9qZyHXBO18ZvPjI+lLb1mV+n3cY1C+d54007NvdK96T1JHnRhI7BdmOIdWcvzkxycT8+6ZhxSJIfXZuntXbJhknUnRmrql9M8vT+5ceT3HWKT0Vao/5M31bf6XbrjvtQ9u7nst4WNM2nUyTDqzt7+byOOxNIqGCVvHxkfGwPZFV1IOuPBvpykjfMeqVgE3PbXqvqduke8XjlJBeky4D+j8lzwbcszb61qr4rybH9y0+21i6cxXJYWTPfVltrtdWQ7pHRSbeNrv3/uB1+Fva/pdm3JnlYkrWbkN44o2UALLMvJlnrIerYvieUzYw2+H1ibaS11tL95kqSm1bVj2aM/v9rvbWc2s/HEphWDFtrH856DzoPqKpDN1nkCSPjp+xqpdmVKbSRnNHPlyQPnnAz9wkj42I8J1P8zXZGxHmZ/UP/9/Akd5kw3f1Gxt+84b0zIsbL6hMj43fcYtqx52a9MyLGM9Gf3/xjkv/U/+tPWmt/tt35nXcBS+D+I+Pv3cmM9mFzsev4rJnHtfG+/eiXR/71L9Msf4ntOT7bsNU1izPiPG+cacfmQSPjz59CeUn2V91prZ2wjTaIPxyZ5c4j7521g+VcmOR1/cu79vdMjHO/rPeOP26bPyMDqjvzis+aqrpfkr9Kt/86O91TkaZ603af2L725JivJ3nHNMufl3nHZht+ZWR83HHntCSX9+OTnoh7Qv/38n6elbTg+Kwdey5J8qI9lvUt+6XubFdV3TDJ3fqXH2utbexoZiLHnckkVLAyWmtvT/Km/uVDqurYMZP9VtYfGf3UjZlRVXVcVbV+OHl2a8vQzWt7raofTndx47B0j9W6V2vtndP4DAzDPLbVqvreqvrxSevRn+C+KMkh/b+mnY3MinMewCqZ0771mKq65aT1qKrjk/x+//Ib6Rr6AAaltXZ5ut9MSXLdJI8bN11VXSPJ6I1ir9wwyVOSXNaPP62qrrph/qsmeVr/8tJ+epbLtGL4v/q/10zyxI1vVtWNkzy2f/nRrEAD8X4xjTaS1trFSf6if3mzJI8es5xjkzykf/nG1tqZu15pFkKcl95TklzUj//vqjp84wRV9QtJjutf/mNr7dOj74vxUntduovbSfKIqrrFuImq6ieT/HT/8jNJ3jX6vhjPRt/74ClJbt//66mttd/dRVHOu4Cpq6oTquoqW0zzqCT37F9+IutttGvvb+cagX3YLswrPtP43VdVd66qIye8f6Ukz816+/0rNp5vrpp5xGda1yyGdp43x33b6PTXTPeEiiR5b2vtXZOmH5lvcHVnGvoYr8XnpE0mWztmHJzkGVV10IYyjsp62/WX033PVzC0ujMt24lPVd09yYuTHJTk3HRPpjhrh8v5iY3nFBvev1q6Jy+tPTnmea21b+5kGfvNVrGpqltU1U22KONhSR7av/xcxpxvtdY+l+SF/ct7VNXPjCnn/knu0b/8636eQdvmvm10+u9Psnae8M+ttfO2uZxB1Z2qundN6Biuqq6TrjOatXvrnjlmGsedPdjqcbqwbH493aNfrprkNVX1p+l6871qukyzh/XTfTjJk3e7kKo6YcO/fnhk/Ceq6piR1x9trW3sAQuSGW+vfUPbq5Os/Wj93SQXVNUPTJjt3NbauTtdFvverPet103yuqp6d7pe29+Z7sfKpUmOTneB7iH9eJK8L8kTdvVJ2O/mch4AUzLr7fWYJG+oqrcleUWSd6drxEuSGyX5mX5Y6wng0TvtnQBgH/mjJPdNcmiSk6rqVul6Xvt4kquke2TtbyT57n7617XWXjNaQGvtw1X1pCSPSfd42rdU1Z8l+ViSGyc5MeuNwU9qrX1kth9pWKrqDklGL44cNTJ+k43tOK21kzeWMcUYPj9dT3u3T/KrVXV0kuck+VKS2yb5vXS99lye5L+31i7d/icdrr3GeMptJE9K8rNJvjfJE/sLc3+b7maPOyf5nXTt6t9It+9gm6ZRl6dInGdgSvvrT1XV76e78fAWSd7e76/fk27/er8kj+gn/0qSR22yOmI8A3uNcWvty1X1hHTnZ1dP8taqelqS09MdS6+T7rztv2a9U7jH9EmyG4nx9L04yd378dcned4Wx9KL+17Yr8B5FzAjJyV5clX9Q7qnU30syVfTHU9ukeTns54QdnGSh7XWLhtTzkT2Ybt2UmYcnyn+7ntwktOq6rR0Pet+KN155dWS3Cpd2/3N1+ZP19a/6k7K7OvPMZneNYshneedlDns2zZ4YNZvxNzJ0ymGWHfmorX2+qr623SxuU+S06vqKUk+m247eFzW265PbK19aZOihlR35qK6p1Kdkq7OXJKuDeJKWxx7zm6tfXnD/x6T5IVV9bJcsa4fkeR2SR6e9Rh/KN2+gcluleS5VfWGJK9K9/SeL6Tbxm+abv+59vv2snT7z69tUtbjkvxEkmsneXFV3TrrnW4dn66jxCQ5L935Bzv34JHxnRx7hlZ3npZuH/MPSd6W5Kx0++yj0nUu8ytZb4t7c5Jn7GYhjjsTtNYMhpUaktw73eNi2ibDh5LcZJN5jxuZ7uQJy9is7HHDpuUYDLPcXtM9Emkn22pLctKivxPDcg4z3laP28E2+sok117092FY3mEe5wFbLP+sfv6zFv1dGJZ/WJJ969fSNRAt/PswGAyGRQ5J7pqusXur/ebrklxjkzIOJHneFvM/N8mBRX/e/TYkOXknv30nlDOVGKZrsH77hDIuSvLQRX9vqzTsNcaZchtJupuFPzxh3guSHL/o723VhmnV5S2WcVa2+ZtNnJc7xkken+4Gw83m/3ySY8V49WKc7ia6P98ivi3dDWOPFuO5xnenx9KzJpTlvMtgMEx1GDnP22r4dJK7bVLGcSPTnTxhWfZhSxifTOl3X7Z/PvOeJDdf9He7QvE5bpvL2NY1iwzkPG8esRkz/b/2016a5OgdrOvg6s42vpOTRj73cZtMM7rvOmlCWVdN9wSezb7XyybNP1LOIOrOvOKzoYztDieMKeeMbc57RpLrLfq7W5HYnLDN7/T8JPfdxjr9SJJzJpRzTpIfWfR3tyrx2TDtgXRPH21JvpjkkB2sy6DqTrZ/XvD3SY7cS2ziuDN28IQKVk5r7RVV9YPpspnvleS70jWsfzTJ3yV5emvt6xOKgLmxvbIqZrytviXd4+/umq43n+9K19vcoel6rfhEuoabF7fW3rKXz8H+Z7/KKpnx9vrOJL+Q5Nh0+9bvTHeB7uB0vZz9R7qbgp/bPJ0KIK2111bVTdM9Ge0nk3x/uh4NL0339LQzk7woyWmtbwEcU8blSR7S9wzzsCS3SbfvPb+f/9mttVfN+rOwe9OKYWvt/Kq6Xbres38u3eOMD0vXe8/rkjy1tfYfs/kUzENr7aNVdcskv5rk/ukuChyS7gaGf0oX408ucBWZAnFebq21x/Y9nz4iyR3T/ea5KN0FutOSPK21dsEWZYjxEurPtR5VVX+T5KFJ7pDkBunaCr+a7jfzG9Mdl7/t6QcbyhLjJeW8C5iBe6RrY719uv39dZJcK11vp+cmeVe6TrteutdrBPZhuzK3+EzBn/Xrc2y63vSvneSaSb6ZLmn3HeluUjul7f1JAMtiHvGZ6jWLAZ3nzbXuVNX3pLtpOElOb619bgezD7HuzE1r7RtJ7lVVP5fuZtgfStd+/fkkb0p3TfFt2yhnKHVn1Tw6yV3S1Z/vS7d/PDLJ19OdF/xbuicGvmaz6xN8m39Kd73n2HRPD1vbf1a6m/bfneSf0yWafWWrwlpr/1ZVt0h3Xf+n0j15KenuZzo1yVNaa1+Y8mcYirsk+f/s3XmYJVV9N/DvD0FFBHFDUFRcYoxCVBQTNwSj0biCor4aE8HEXZNINJvhFZNoXhNMosHgLmiMcQUVNW4Rlxijxg2XuERARFQUcVA2gfP+caqdy+XeXmZ6pme6Pp/nuU/f6qo6dW518wz16/M954bD+ze21i5Zwblj+2/nsUnumf55b57+eXdLr5edmeTjSU5Yzr8HS/Hvzmy1Pn6PAAAAAAAAAAAAAAAAlm+Hte4AAAAAAAAAAAAAAADA1iZQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVADAGquqfaqqDa/DN6Odwyfa2WfVOggAAAAAAAAAjE5VHb0wDmGt+7I9qqqDJsZxHLTW/QEAZhOoAAAAAAAAAAAAAAAARkegAgAAAAAA1jGrWgIAAACT1ArYEqzIAcD2SqACANaJ1trxrbUaXqevdX8AAAAAAAAAgO1Xa+3ohXEIa92X7VFr7ZSJcRynrHV/AIDZBCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACgFVRVTesqv9XVZ+pqh9X1c+q6ntVdWpVvaGqDq+q3abOacPr6GH73lX1jqo6u6ouqqpvVtWxVXWjZfZh/6p6aVV9tap+UlU/Hd4fV1W32opt7FtV/zh89h8N9+K7VfWBqvqjqtprGW3cp6reOZx3cVWdNvRh70XOOXzinu4zY/8pw75Thu0bVdXfVdU3qurCqvphVb23qn5jmZ9zz6p6XlV9uqrOHfp5ZlW9qaruvcS5Vxn6+97hM14y/N58vao+WFV/VlW3mXPurYb7+8WqOn849ztV9bmqenVVPbKqrraczwAAAADrWVUdVFUtyWsmvn3aRP1g4XXQjHMPqao3V9W3hjrNeUMN4DlVde1Frnn80Obpw/aeVXVMVX2tqi6oqrOG2sFtp87bp6pePBx34VBXen1V3WKRax298BmG7d2r6rlV9aWhrnNuVX2oqh61zPu1T1X9/XD++UN/v15VL6uq/ZbTBgAAAGzLVlormH72ntHe6cP+44ft/Yfn+TOH5/tvDOMSrjd13l2n6g7/W1UvqKpdl/EZrlJVj62qk4exAhcP4x0+VlVHVtXOm3p/lrjuvaqPfzlt+GwXVNUZVfWJofZxrxnnHLRY/WXiuJtUHxNy2nA/vlNVJ1XVwcP+pX4O0+NvDhj6+u3h/pxVVa+rql9a4jPevKr+sPp4ldOHz3nh8DnfWFX3m3PePkPfPjTx7Q/N+L06fOKcK9SQFunTUmNhpn8H7zi0fdrw2efds80eHwTA+lGtzfz3AgCWrarukeTkJLstceiDWmsnT5y38I/Qc5O0JEfPOe/Hw7kfnXP9HZIck+QPktScNi5N8tTW2su3YBtXSfK3S7SRJCe01g6fOG+fJKcNm0ck+cUkfzLn3HOS3LO19pUZ1z88G4seN2utnT61/5Qk90zy4STPTnJSkisULSY8q7V2zLwPUFW/meRlSXaZd0ySVyV5Umvt0qlzr5nk3Unusci5SfLW1tphU+c+PMk/J7nqEufu11r74hLHAAAAwLo2/KH+Q0sdl+Tg1topwznXTvKWJFcaBDDh+0ke0lr7xIxrHp/ksUnOSPKQJP+WZM8Zbfw0yf1aax8bBhy8Lcm1Zhz3oyT3aK19aca1jk7ynGHz5knen2ReAONNSX5zuk4x0dZvJ3l5knmTNFyW5KjW2l/P2Q8AAADbvJXWCiafvVtrVxoHMQyGv2mSE5J8MMkrM/vv+V9LH+vw3ap6ZpK/yexxFZ8ZjvvJnP7fJMk7ktxukb5/I8kDWmtfW+SYFamqv08fC7KYH7bWpoMjB2Xj/f55/WXqmHsleXuSa85osyX58/R7utjPYXL8zfeTvCjJjjPauyDJb7TWPjKjjZsl+eaMc6b9c5IjJmssU+NeFnNEa+344ZzjM9SQWmv7zDthGWNhTs/G38FPJPnHTH32yXu2GuODAFh/Zv2jCQDLVn0lgH9ND1Ocn+S49IfB76c/0N0syV2THLpIMw9IcqckX01/aP5C+h/QH57k8cP7k6tq39bamTPO/8ckTxnefyTJ8ekPeRekP0T/QZLbJnlZVX23tfaOLdTGy5M8bnh/dpJjk3w8PRBy/SR3TnLYjPMmPT79fn04PbDwtSS7J/nt4XX9JK9Ocpcl2lnMXulhisvTgxsfS3JJkrsn+b/D9f66qt4zZ7DCI5K8Lv3B8pvD5/xyethjnyS/k+T+w9cNSY6cauLobAxTnJzk9Um+leSiJHskuUOSB6YXBiave4P0h+Srpv9+HZv+MPyDJDsnuWV6YOSQFd4PAAAAWK8+lWS/9GDDXw3fu2+S70wdd1ry8zrPB5Lsnx4g+Jf0SRFOS7JTkgPTn/P3SPLuqrpDa+2MOde+RpIT05/j/yy91nFZkvsN27skeV1V3Se9TvHj9LrEf6X/7eJh6fWYa6dP2vCrS3zWN6bXoV6aHgj5cZJfTvLHSW6V5BHD537G9IlV9YD0WlAl+UmSFw734dL0Os2fpk9K8fyqOq+1dtwSfQEAAIBt1YpqBStwuySPSg8zHJPk1CS7po+heEz6s/kxVfW29IkqFwa+fzX9mfv30scZ7J8eILjSJJRVdd308Q03TnJxklek1xtOTw8j/HqS308fO/Ceqtq/tfbjFX6OK6mqB2ZjmOIL6eNivpJee9g9fSzJvdPHhKy07ZunB0R2Sa9DHJdeJ9mQZN8kz0ryvPR6yXLcd+jHqemhilPTx1Mcmn5vrpFej/mF1tolU+deJX3syHvTJ634cpJzk1wn/ef31OGzPiZ9rMhzJs49K/336oD0MS1J/9l/auoa317m59gUBwx9OzP9d/DT6TWm6ck+V2N8EADrjBUqANgsQ1L+g8PmFVagmDpuxyTXaK1tmPje5D9CM2cZqKrfSvLaYfPNrbVHTO2/T5L3DZu/21p71YxrXz3Ju9JnVjwjyS2nkvKr0caD02cMSJL/THL/1tp5c+7FjSeDITOS+q9I8sQ29Y90Vb0iye8Om/u31j47tf/wLG+Figyf4W6ttbOmjrl7+gNjJXlxa+33p/ZfL70Acq30h+AnzprZsaqelz444vIkt2mtfXVi37fSCxxvaa09fPrcieOu01o7d2L7cekDKJJFVqCoYfnO1tqF89oGAACAMVmqZjBx3MLz/HlJ7t1a++8Zx9w0vfaxV5J/aa395tT+49NnF0z6JAi/2lr736ljnpo+UULSJ2g4L71Occ7UcX+TPnAgmV0LOTpX/OP9o1trb5g6ZtckH03/g/jlSW43WVOoqp3SB17cMD1McY/W2ucW+cwXJLlpa+0HAQAAgO3UCmoFR2d5K1QkfcLJ+7TWLpg65s3pk09elh5C+FCSR7bWLps45irpYYlfTfLDJHtOj0WoqtcneXT6eIeDW2tXCn1U1R3S6wC7JHl+a+3Zc27BslXVa5P81nDdfRdZPeMKYxyG7x2URVaoqKoTs3HSyENbaydN7b/GcP7PwxpLrFCR9MkxDp0OTFTVs7MxRPPQ1tqJU/t3SbJba+3sOZ+v0seJHJ6+8uiNpgMry1mRY+LY47O6K1QkPUBy4CLjdTZ7fBAA69MOa90BALZ7e068v9KSgAtaa5dOhilmeMKsh87W2uuSvGfYPLSq9pw6ZGFWgrfOetAZ2rgoydOGzZsmOXgLtnFBksPmPZwNbc1aZWPB2UmePh2mGBwz8X46Qb9ST58OUwx9+1g2zmww6xpPTg9TnJXkKYs8ND5nOGaH9JU1Ji38DD+6WAenCw0T5/1oXphiOO9CYQoAAABYmaq6ZvpMg0ly1KwwRZIMK1L85bD58OGP7fMcNR2mGLw6faXKpK/G+XvTYYrB5EoQS9VCTp4OUwz9PT/JE4bNHZI8aeqQQ9PDFEnyV9NhiqGNM7Ix2HGNJEcs0RcAAAAYm5Y+QP2CGfv+afh6lSRXTx8fctnkAcP2y4fN6ya5zeT+YaLKRw6bT5sVphja+WySlwybh6/oE8y3MFbhM/PCFMO1p8c4LKqqbpjkQcPmW6bDFEObF2RjXWM5LkpyxIzVJ5LkxekrUCQz6iyttZ/OC1MM+1uSP0wPxuySvirHtuapi43XyeqMDwJgHRKoAGBzTT5Mbeofk0+d90f6wcJygDsmOWjhm1W128T2Wxa7QGvtK+mzIibJXVa5jeumz5KQJG9srU0vhbkSb2mtXTzn+l9NnykxSW6+Gdc4Lz1NP8/Cz2LWNR48fD15Xj+THqBJn7kxmbhXg4XfmUcOsyks18J5166qh6zgPAAAAGBp90yfRCFZokaSjZNq7JTkjnOOaUneNHNHnwjh68Pmj5K8d85xpyU5f9hcqhbymnk7WmufTPKlYXP6j/0L2y0ba1CzvDl9Fs1ZbQAAAMDYfWEYUzHL5yfev3+R4MHkcdN1gAekBzIuyMZJOedZqFvcsKpussSxy7EwVuHAqrrFKrS34OD0z5Qkr5t3UGvt87nivVnM+1tr35/TzvnZWI9ZcsxJVe1UVXtX1S9V1b5VtW/6pBQ/HA653TL7tLWc2VqbO7HnaowPAmD9EqgAYHN9LMk3h/f/UFWfrKo/raq7VdVVl9nGp5bY/8mJ9/tNvL9DNv5b9oaqaou9klxvOHbPVW7j9kkWllRcdNWFZfifJfb/aPi662Zc4+uttcsX2b9QvLjCNYYlNm8/bD5xGffqsOHY6VVFThi+3jXJaVV1bFUdWlXXX6Lf70gPgyTJiVX171X1jKq649A3AAAAYNPdaeL92Us880+uHDn93L/gB0vMzLjwjP+NOSt1Th+3VC1kufWlW03VrPYdvp42Z5WMJMkws+Nnp84BAAAAuq8tsm9yxYDlHjddB1ioW1wjyaVL1C1OnjhvXt1iJV47fL1uki9W1b9W1RFVdcvNbHeyvrDYJKRJ8ulltrnUmJOZ40EWDCGKp1bVJ9In/DwzyZeTnDrx2mM4/Hqz2lhDX1hi/2qMDwJgnRKoAGCztNZ+lr4E4cJMAwckeX560OK8qvq3qnr0EgPeZ6bjJ3xv4v11Jt7vMX3gMk2uirAabUw+JM5d/nCZZi1/OWkhCLE5AYLlXmP6/xOuk75KyEpNr0Lxl+kzPrb0+//UJG9L8v2q+mJVPbeqbjDdSGvth+krZJyVHmA5OMnfpRcOzq2qt1XVAzehfwAAAMDq1EgmLbf+sFq1kOXWlyrJtSe+v1BrWur8JPnu1DkAAABAN/f5fmrCx8XqAJPHTdcBVrtusWyttQ8meVqSC5NcPckj08c8fL2qvl1VL62qTVmtYbI+MXeSh2XuX7DJdZaquk6S/0xybJJfSbLUJKo7L7NPW8uPlti/Zr9DAGz7NmVQJABcQWvty1W1X3qw4kFJDkxyy/SHp/sOryOr6v5zlhZcbBbCxUw+4D0xyceXed7kQ9RqtDEWk/fqlUletMzzLpncGEI4v1NVL0zyqCT3Sp9N4qpJbju8jqyqx7TW3j517keHWR4eluT+6b9reyfZLcmhSQ6tqvcmeWhrbalCAQAAALDR5HP//kl+tszzvr0F+rIpNrW+tFrnAwAAAFvOQt3iB+mTLy7Xaatx8dbaS6rqzUkeneQ+Se6W5FpJbpQ+1uQJVfX81tqfr8b11siLktxxeH9SemjkC+mTUFy0sMJoVX0ryY3TJ63Ylly2xH7jgwCYS6ACgFXRWrss/YHqpCSpqr2S3C999YE7Dq+XpQ96n3al1QgW2X/uxPsfTry/oLX2xRV2e7Xa+MHE+7024fztxeS9r028Vz/XWvtykqOSHFVVV09y9/Tiw28nuWb6Eou3aK2dPXXeRUleP7xSVTdL8oAkT09yq/QAz/OSPGNz+gcAAAAjM1kjOae1tq0EJZbrBknOXGJ/0oMTk38IP3dq/2L2nDoHAAAA2DoW6ha7JvnKMEZlqxomEP2HJP9QVTskuX36GJinJdk9ybOr6lPTE0cuYrI+cf0kZy1y7PU3ocvLVlW7pa+8kSSvb609ZpHDr73IvpVYWC1jhyWO22WVrrca44MAWKeW+scIADZJa+3s1tprktwlyWeGbz+wqmYt+XfAEs1N7p98oPlcNs4eeLdN6ujqtPHZiTYO3MQ2tnmttUuSfGnY3NR7Na/ti1prH2itPS7Js4Zv75zkgcs497TW2rHpvycLgz0esZr9AwAAgO3cclZf+OzE+1V97t9Klltf+vpQ41iwUGu6WVXNHZxQVTslucPUOQAAALC92t5WalyoW1wtyZ3WsiNJ0lq7vLX2mdbaUUl+bWLXSsYqfGni/R3nHtVt6c/8C0l2Gt6/cd5BVXXr9Aky51nJ79X5w9fdlzjuVitoczGrMT4IgHVKoAKALaq19rMkHx42d8zsB6H9quoOM76/4HHD18uSnDLR9jlJPjFsPnqxP3ov0r/VaOPcbFwK8BFVdcOVtrEdecfw9dZVdd8tdI0PTry/3nJPaq1tSPKplZ4HAAAAI3DRxPurzTnmA0kuGN7/XlXVlu3SqnvsvB1VdUCSfYfN9bePyQAAIABJREFUD0ztXtiuJEcs0v5hSa41pw0AAADY3iynVrAteWc2Dob/g7XsyLTW2meycbWJlYxVOCUbV2n4rXkHVdXtktxukzq3fDtOvF9sRYgnLdHOSn6vThu+7lpVvzjrgKq6apKHLdHOsqzG+CAA1i+BCgA2S1Xdo6puucj+qya557D5kyTnzDn05VV1pYeyqnp0kvsPmye11s6eOuSvhq+7JXlLVc1NrlfV1arqqVV19S3QxguGr9dI8uaqulbmqKq95+3bDrwo/eeYJK+pqtsudnBVPaCqfnli+zpV9aAlBmX8+sT7hQfoVNV9q2qvRa51rSR3nj4PAAAAyGQ95RazDmitnZfk2GHzrkn+vqrm/g2hqm5QVb+7el3cbA+uqivNAllV10zysmHz8on3C05K8p3h/bOrar8Zbdw4yTHD5gVJXrMqPQYAAIC1s2StYFvSWvtqkjcPm/+nqo5c7PiqullVPWo1rl1Vj6yqnRfZf6ck1x42lz1WobX27STvGjYPq6pDZrS9c5KXr6C7m+ob2RhYeeysMR1V9aAkT1uinZX8Xn144v0fzjnm75LcaIl2VmI1xgcBsA7tuPQhALCoX0tyVFV9NP1B7wvpoYmd05fde1KS/YdjX9Vau3RGG59OX57w01X1giSnps/4d1iSJw7HnJ/kmdMnttbeXVUvSvL7SQ5M8pWqemmSjyX5YXpy/pZJ7pHkoekPsSdsgTbeWVWvSvI76YMOvlxVxyb5jyQb0mchuFOSRyb5fJLDZ97NbVxr7XtV9dgkb0myV/rP7Pgk70ny7fQlIPdODzYcluTmSR6U/nuR9IfSdyQ5vareluS/kpyR5NKhvQclWRiMcVaSkycu/6gk76yq9yd5X5IvJjk3ya7ps0w+LRsfpF+6mp8bAAAAtnOfTZ8h8OpJ/rKqfpb+PL4wC+JZrbULk/zf9IkxfiW9TnJQVb0iyeeS/DS9JnLbJPdO8hvpNZxXbsXPsZhPJ/mXqrpnet1iQ5JfTvLHSRZmOXxJa+0Lkye11i6pqiekz3S5W5L/qKq/TV9B87L0Os+fJNljOOWZrbUfbOkPAwAAAFvYcmsF25Inp4+7uHmSF1bVQ5K8NsmXklyc5LrpKzncL8m9kpyY5A2rcN0XJHlpVb09yUeSfC29TnLdJHdP8vThuMuy8jrJkenjbhYm7zxu6PeG9HEQf5TkNkk+leSAzfsY87XWflhV707ygPT7976hL2ek10Qelj7O5ZtJdk8yc3WH1tq3qurb6eNGnjm8/2r6vUmS77XWzh+O/WxV/WeSuyR5/DBh6wlJfpzkF5I8If3n+PH0+sxqfM7NHh8EwPokUAHAatgh/Y/t91zkmLcn+dM5+941vJ6T2TP8bUjy4Nba6XPOf0b6wPqjkuyZ5OhF+vHTbHxQW+02npjkwiRPTXLDJM+fc/7nF2l7m9dae9tQmDg+yXXSQzPzlnW8PP1+TdsnvTAwz9lJHtJa+8nU93dKX7Hk/lc+5edemuTFi+wHAACAUWmtnV9VL07/I/z+6RMVTDo4ySmttYur6j7pz/wPTR+EcGzm27AFurupHpEegnjK8Jr21sypRbTW3lVVR6SvXrFrkr8YXpMuS3JUa+24VesxAAAArJHl1gq2dr8W01o7t6ruluRN6QPeDxxe86xm3WL3JI8dXrNcnORJrbVPr6TR1to3hpUpTkwfzP/0bAxoLHhu+ricA9JDMFvKk9ODBTdJn0zj3lP7v5XkkCTvXqKd5yf5pyQ3Sx8rNOmI9LrTgselr1SxR2bf32PSAzOrEqgYrMb4IADWmbnLdQPAMh2TnkQ/Lskn0h+gLhpep6c/yD6wtXbIYrMXtNaOTk+5vyvJ95JcMpz/T0lu21r78CLnttbaX6SviPE36TMSnpv+UHN+ki8neX36g9des/qxSm1c1lp7evqMCC/PxlkJfpbku+kFiCMzY6WN7U1r7Z3pD7/PTPLv6T+zn6UHSk5LX1niyCT7tNY+NHHqGemrVxydfj++muS89BUqfpA+m8Ozkty6tfbfU5d9RpLHJHl1+s/nrPTfkwvT7/UJSe7RWntya+3yAAAAAJP+JMnjk3w0G2seV9JaO7+19rD0gQmvTH92Pz/92f3c9BkRX5I+2cF9tny3l6e1dlqSO6b/0f4rSS5In9HwI0ke01o7bM7KqQvnn5Dk1kleNJz/0/Saw/8meUWSO7TW/nqLfggAAADYupZVK9iWtNa+21o7MMkD08dwfDO9BvCzJOekr2bwwiT3bK09bpUue3D6igZvTV+t85z0OsmG9JU+jklym9ba8ZvSeGvt/emrUbwsfUzFJeljMN6V5H7DeJrdhsN/vKkfYhn9ODM9XPO36WMwLh6u9/n0UMftW2tfXkY7x6WPI3pfku+n36t5x/7PcM2F1TAuSb+//5bkAa21Z23GR5p3zc0eHwTA+lOttbXuAwAjVVUL/wg9d3gABAAAAIBlqaqj01c8TWut1rY3AAAAAFtGVX0gya8l+Vhr7R5r3R8AWG+sUAEAAAAAAAAAAACwjamqGyY5cNj8xFr2BQDWK4EKAAAAAAAAAAAAgK2sqm65yL6dkxyfZKfhW6/dGn0CgLHZca07AAAAAAAAAAAAADBCr6yqXZK8Kcl/Jzk3ya5J7pTkKUkWAhevaq2dujZdBID1TaACAAAAAAAAAAAAWHeqao8ke2zCqZe01r622v2Z407Da54Tkzx9K/UFAEZHoAIAAAAAAAAAAABYj56S5DmbcN4ZSfZZ3a7MdGSSQ5PcK8neSa6fpJJ8P8knkpzQWnv3VugHAIxWtdbWug8AAAAAAAAAAAAAq6qqjs4mBipaa/usbm8AgG2RQAUAAAAAAAAAAAAAADA6O6x1BwAAAAAAAAAAAAAAALY2gQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGZ8etfcGqulqS/YbNc5JctrX7AAAAwDbvKkmuP7w/tbV28Vp2BlaLuggAAADLpDbCuqMuAgAAwDJt1brIVg9UpD8cf2oNrgsAAMD26YAkn17rTsAqURcBAABgpdRGWC/URQAAAFipLV4X2WFLNg4AAAAAAAAAAAAAALAtWosVKs5ZePPJT34ye+211xp0AQAAgG3Z2WefnTvf+c4Lm+csdixsZ9RFAAAAWJLaCOuUuggAAABL2tp1kbUIVFy28GavvfbK3nvvvQZdAAAAYDty2dKHwHZDXQQAAICVUhthvVAXAQAAYKW2eF1khy19AQAAAAAAAAAAAAAAgG2NQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKOz41p3AABgW3L55Zdnw4YNa92Ndevyyy/P+eeff4Xv7brrrtlhBznfzbXbbru5jwAArEvr/TnNc9Km8xwEAAAAAPOt99rqWlLX3brUgtnSBCoAACZs2LAhhxxyyFp3A1bspJNOyu67777W3QAAgFXnOY15PAcBAAAAwHxqq6wXasFsaeI6AAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjM6Oa90BAIBt3U/3fWjajldb626sD5delGt+8cQrfOsn+x6a7Hj1NerQ9qkuvTi7fPFta90NAABYM+vqOc1z0rJ4DgIAAACAzbeuaqtrSV13i1ELZi0IVAAALKHteLW0nXZe626sCzXrmzte3f0FAABWZD09p3lOAgAAAAC2lvVUW11L6rqwvuyw1h0AAAAAAAAAAAAAAADY2gQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdP4/e3fwG2XV7wH8tLdyU4OFcQE3Rv4CYGFi2cHfYCRQE0hYCSZNcOF20AV16YY3XYArE0gsROPeHaykGxPhH5DrAjYNhdiIvNO78L2R4kynffqcPuf09/kkbKYzh29Mf8/MOY9fRqECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIZ6rrAAAlGwwGaXV1dcNjMzMzaXJSHw0AqJPPNwC0zXsLAHg/BAAAumdfAgBsxmeF0RQqADaxurqaPvjggw2P/fDDD+ngwYMdJQIA2BmfbwBom/cWAPB+CAAAdM++BADYjM8Ko6mUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUbOLFixddR4DiNJ2L3PPU9vrmHwAAiC7HvqjUvVapuQAAgPFKvXcF1M01Iq/nz593HWHLaspao5pmraasAABsj0LFCGtra+mzzz5La2trXUeBYjSdi9zz1Pb65h8AAIgux76o1L1WqbkAAIDmzGtMAAAgAElEQVTxSr13BdTNNSKvlZWVdPbs2bSystJ1lLFqylqjmmatpqwAAGyfQsUIN2/eTL/88ku6detW11GgGE3nIvc8tb2++QcAAKLLsS8qda9Vai4AAGC8Uu9dAXVzjcir3++n33//PV25cqXrKGPVlLVGNc1aTVkBANg+hYohHj16lJaWllJKKS0tLaVHjx51nAi613Qucs9T2+u/vt5vv/2244wAAAA1ybGPK/WspdRcAADAeKXeuwLq5hqR1/3799PDhw9TSik9ePAg3b9/v+NEo9WUtUY1zVpNWQEAaEah4jXr6+vp2rVr6eXLlymllP7888907dq1tL6+3nEy6E7Tucg9T22vP2y9r7/+upWsAAAANcixjyv1rKXUXAAAwHil3rsC6uYakddgMEgLCwsbHltYWEiDwaCjRKPVlLVGNc1aTVkBAGhOoeI1d+/eTcvLyxseW15eTvfu3esoEXSv6Vzknqe21x+23s8//9w4HwAAQG1y7ONKPWspNRcAADBeqfeugLq5RuR1/fr1tLq6uuGx1dXVdOPGjY4SjVZT1hrVNGs1ZQUAoDmFilesra2lxcXFoT9bXFxMa2tru5wIutd0LnLPU9vrb7YeAABABDn2caWetZSaCwAAGK/Ue1dA3Vwj8lpZWUl37twZ+rPbt2+nlZWVXU40Wk1Za1TTrNWUFQCAnVGoeMXNmzfTkydPhv7s8ePH6datW7ucCLrXdC5yz1Pb62+2HgAAQAQ59nGlnrWUmgsAABiv1HtXQN1cI/Lq9/tpMBgM/dlgMEhXrlzZ5USj1ZS1RjXNWk1ZAQDYGYWK//j111/T0tLSps/59ttv06NHj3YpEXSv6Vzknqe219/KegAAAHtZjn1cqWctpeYCAADGK/XeFVA314i8fvrpp/Tw4cNNn/PgwYN0//79XUo0Wk1Za1TTrNWUFQCAnVOoSCmtr6+nf/3rX+nly5ebPu/ly5fp2rVraX19fZeSQXeazkXueWp7/a2uBwAAsFfl2MeVetZSai4AAGC8Uu9dAXVzjchrMBikL7/8ckvPXVhYGPnNELuhpqw1qmnWasoKAEA7proOUIK7d++m5eXlLT13eXk53bt3L506dSpzKuhW07nIPU9tr7+d9f7f06dPt/V8oC5DZ9whGKUZ8jvp/YmtGva74sYPxJZjH1fqWUupuWo37H3EZxPaZJ9GSsk+iOLZa0F+pd67AurmGpHX9evX0+rq6paeu7q6mm7cuJE++eSTzKmGqylrjWqatZqyvs45HfA6Z6tUyVlwNs4wR2u9UDExMfHumKf8T9t/506sra2lxcXFbb1mcXExzc7Opunp6UypoFtN5+L48eNZ56nteW2yXkopXbhwYduvASr37z9SSm92nQL+9u8//vGQ9yd24tmzZ+ntt9/uOgbsCc5Fyj1rKTXXXvDs2bN/POazCdnZp8VjH0SF7LWgPaXeuwI2ci7Cq1ZWVtKdO3e29Zrbt2+nubm51Ov1MqUarqasNapp1mrKOoxzOmBLnK1SOmfBu8oZ5l8mM6z5aMyf7f1T8JndvHkzPXnyZFuvefz4cbp161amRNC9pnPR7/ezzlPb89pkPQAAgDHCn4uUetZSai4AAGC8Uu9dAf8Q/lyEv/X7/W3/a7eDwSBduXIlU6LRaspao5pmraasAAC0J0ehohovXrxI33//faPXfvfdd+nFixctJ4Lu7WQuHj582Oh1W5mntud1J+sBAADsBTnORUo9ayk1FwAAMF6p966AujkryOv58+eNr8EPHjxIz58/bznRaDVlrVFNs1ZTVgAA2pWjUHFkzJ/ZDH9nI/v27Usffvhho9eePn067du3r+VE0L2dzMXRo0cbvW4r89T2vO5kPQAAgE2EPhcp9ayl1FwAAMB4pd67AoYKfS7C3/bv39/4Gnzs2LG0f//+lhONVlPWGtU0azVlBQCgXVNtL7i+vv6/m/18YmKi7b9yR86fP59+/PHHbX1d2+HDh9O5c+cypoJuNZ2LhYWFdOnSpWzz1Pa8NlkvpZRu3LiRDh06tK3XAPV4+vRpunDhwsYH/+u/uwkDowz5nfzmm2/SgQMHOghDbYZd5956662O0sDe41yk3LOWUnPtBcPeR3w2oU32aaSU7IMonr0W5FXqvStgI+civGphYSGdPn06DQaDLb9mcnIyXb16NWOq4WrKWqOaZq2mrMM4pwNe52yVKjkLzsYZ5mitFypqMz09nebn59MXX3yx5dfMz8+n6enpjKmgW03notfrZZ2ntue1yXoppXTo0KF08ODBbb0GqFxhB/ww7HfywIED3p9obHIyx5cXAjXIcS5S6llLqbn2gmHvIz6bkJ19Wjz2QVTIXgvaU+q9K6Buzgry6vV66cyZM2lpaWnLrzl79mzq9XoZUw1XU9Ya1TRrNWUdxjkdsCXOVimds+Bd5QzzL/4rpJROnTqVZme39s2Ss7Oz6eTJk5kTQfeazkXueWp7/e2sBwAAsBfl2MeVetZSai4AAGC8Uu9dAXVzjcjr0qVLaWZmZkvPnZmZSRcvXsycaLSastaoplmrKSsAAO1QqEh/fa3k5cuX09TU5l/YMTU1lS5fvlzc11BCDk3nIvc8tb3+VtcDAADYq3Ls40o9ayk1FwAAMF6p966AurlG5DU5OZn6/f6Wntvv9zv913FrylqjmmatpqwAALTDp/v/OHLkSJqbm9v0OR999FE6cuTILiWC7jWdi9zz1Pb6W1kPAABgL8uxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHN33OsWPH0okTJ3Yp0Wg1Za1RTbNWU1YAAHZOoeIV58+fT4cOHRr6s8OHD6dz587tciLoXtO5yD1Pba+/2XoAAAAR5NjHlXrWUmouAABgvFLvXQF1c43Ia2FhYeQ3OkxOTqarV6/ucqLRaspao5pmraasAADsjELFK6anp9P8/PzQn83Pz6fp6eldTgTdazoXueep7fU3Ww8AACCCHPu4Us9aSs0FAACMV+q9K6BurhF59Xq9dObMmaE/O3v2bOr1erucaLSastaoplmrKSsAADujUPGaU6dOpdnZ2Q2Pzc7OppMnT3aUCLrXdC5yz1Pb6w9b77333mucDwAAoDY59nGlnrWUmgsAABiv1HtXQN1cI/K6dOlSmpmZ2fDYzMxMunjxYkeJRqspa41qmrWasgIA0JxCxWsmJibS5cuX09TUVEoppTfeeCN9+umnaWJiouNk0J2mc5F7ntpef9h6H3/8cStZAQAAapBjH1fqWUupuQAAgPFKvXcF1M01Iq/JycnU7/c3PPb555+nycny/telmrLWqKZZqykrAADN+aQ/xJEjR9Lc3FxKKaW5ubn07rvvdpwIutd0LnLPU9vrv77eO++8s+OMAAAANcmxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHU0opHTt2LL3//vsdJxqtpqw1qmnWasoKAEAzChUjnD9/Ph0/fjydO3eu6yhQjKZzkXue2l7f/AMAANHl2BeVutcqNRcAADBeqfeugLq5RuS1sLCQ3nzzzXT16tWuo4xVU9Ya1TRrNWUFAGD7proOUKrp6en01VdfpX379nUdBYrRdC5yz1Pb67+63h9//NHKmgAAADXJsY8r9ayl1FwAAMB4pd67AurmGpFXr9dLt2/fTvv37+86ylg1Za1RTbNWU1YAALbPN1Rswodg+Kemc5F7ntpe3/wDAADR5dgXlbrXKjUXAAAwXqn3roC6uUbkVVNBoaasNapp1mrKCgDA9ihUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAADA/7F379HWnHV9wL+/NxcgJCFyUVpAwkVcICqsJkgQ4VVRqwsERClasa9KEVpslaqwrNrUeqOWBVphRbyQIF6gSCJFQaAYigISoBZSCBclUeSSIBJCQhJCpn/MnJz9npy9z97n7LNvz+ez1qx37/fMfp6Z+T3zPDOz5zcbAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgOScuewEAVtnpp5+eiy666Fb/BwCwrhzfADBvxhYAMB4CAADL57wEAJjEscJ4EioAJjhy5EjOOOOMZS8GAMDcOL4BYN6MLQBgPAQAAJbPeQkAMIljhfGOLHsBAAAAAAAAAAAAAAAAFk1CBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADTnxGUvAADAqqubblj2ImyOm67f9f9q8Uuy1rRJAABat1HHxM6TprJRMQcAAACAJXGdbU5c1z002ijLIKECAGAPt7/0lctehI126qUXLnsRAACANbPp52nOkwAAAACAw7Dp11aXyXVdWF9Hlr0AAAAAAAAAAAAAAAAAiyahAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDknLnsBAABWyemnn56LLrpo2YuxsW6++eZcc801x/3faaedliNH5Pke1Omnn77sRQAAgEOx6edpzpP2z3kQAAAAAIy36ddWl8l13cVyLZjDJqECAGDEkSNHcsYZZyx7MTbaHe94x2UvAgAAsEZaOE9zngQAAAAAzFsL11aXyXVd2BxSoQAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaM6JS6jzhK0XH/vYx5ZQPQAAAKtux/niCePmgzXkuggAAAB7cm2EDeW6CAAAAHta9HWR6rrusOs4vsKqs5JcstBKAQAAWGdnd133jmUvBMyD6yIAAADsg2sjbATXRQAAANiHQ78ucuQwCwcAAAAAAAAAAAAAAFhFy/iFitsk+crh7VVJvrDQBWjbXbP9tIezk3x8icvCfInt5hLbzSW2m0tsN5fYbi6xXU0nJLnL8Po9XdfdsMyFgXlxXWQsfTHjaBuMo20wjrbBONoG42gbjLPstuHaCBvHdZG1suw+kNmJ2foRs/UjZutHzNaPmK0fMVs/6xKzhV4XOfEwC9/NsEJ+jnQJqmr07ce7rvvIspaF+RLbzSW2m0tsN5fYbi6x3Vxiu9KuWHM3WBcAACAASURBVPYCwLy5LrI7fTHjaBuMo20wjrbBONoG42gbjLMibcO1ETaK6yLrY0X6QGYgZutHzNaPmK0fMVs/YrZ+xGz9rFnMFnZd5MiiKgIAAAAAAAAAAAAAAFgVEioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmlNd1y17GQAAAAAAAAAAAAAAABbKL1QAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQsWaqap7VtVzq+qyqrq2qj5VVZdU1Y9X1SkHLPv+VfWMqrqgqt5VVR+pquuHev6mql5WVY+tqprX+nC8w4zvhDpPGeLbDdPlh1FP6w553z02Er+9pmNzWiUGi9xvq+pRVXV+VX1oqOvqqvpAVb2iqp5eVafOs77WHVZsq+rMGfZZffMhWMR+O8T5OVX1zqr6dFV9fqjnLVX1M1X1xfOoh+MtKLb3qqrnVdWlVXXNUM8Hq+qFVfUV86gDYD+q6our6tFV9bNV9Zqq+uTIscT5+yjvW6vqwuHawA3DvxdW1bfOUMaJVfW0qnpzVV1VVZ+rqr+uql+fpc+sqjsP6/XuqvrMML17+L87zVDOA4e6/3pYlquGZXtaVZ04QzkH3jaLNI+2UXM+76z+WsRPDOP0p4bx9LJhHL/nDOs2l7G/qh5WVS+tqiuqvxb28ar606r67mnLGMr57qp63fD564fyXlpV58xSzqJU1VnDsenrRtrzZ6s/z3xxVT18xvL0G+PLWbd+48BtQ78xdTlr029U1elV9aRh+72p+utTV1fVjVV1ZVVdPMRoqn1slbbhpravRZlH26iqozP0GedOsUzGkzVQ/bWz0dgeneIzjjfGl7NR7QM2UW3gOVhVPaD6Y51XV9Xl1R+7XFdVH66qP6iqb5tlnSbUs5Tvwzc0ZpdPuR0vn2Xd9qhzYWPUpsWs+nsDZv1e+dgs6zhSV/P7WVXdpqoeWlU/XFW/U1Xvr6qbt9Z7H+u2yHtJFnosuIlxm/c6Tajn3Bn2taPzqHOodxNjNu12vHiWddujzoVdy9u0mFV/fWjWMe3oLOs4Upf9rOpLquopVfV7VfXeYTlurKqPVdVrq+qpVXW7GZZlY8e043RdZ1qTKcljklydpBszvT/JfQ9Q/ksnlD06XZzkTsveHps2HXZ8J9T733bUc/myt8WmTQvYd49Nue92SY4te3ts0rSo/TbJFyW5aIr4PmjZ22RTpsOMbZIzZ9hnt6Y/XfY22ZRpEfttkicnuW6PmP5Dkm9a9vbYpGlBsX1qkhsm1HFDkmcse1uYTKY2pz3GnfNnKOdIkt/co7zfSHJkj3LunOTtE8q4PslTplier0nysQnlfDTJQ6Yo51/v0Yf/ZZI7L2LbrGPbyBzPO5PcN8kHJnz+6iSPnmKZ5jL2Jzk3yRcmlPPqJLfdo4zbJfnjCWV8Icl/WnZb2LHM/3vKeF6Q5ORF7BvRbyy9XcyzbUS/sYn9xqOmjOdVSb5lXbbhJravdWwbSY5OWUaX5Nw9lsd4sgZTkgcl+fyOdTh62NtA+1h+7E2mVqds4DnYsKzTrNNrk5xxwO13bMq6uszp+/BNjNlQxuVTrtflc9iGCx2jNjFmSc6foe1vTefYz/YXsyQvnvT5GddtUfeSLPxYcBPjNs91mqKuc2fY146K2cRlmXY7XjyHbbjQa3mbGLP09xxPG7OtbXo3+9nsMUt/reGmKZblA0m+aop129gx7VbLcFgFm+YcqOTB2b4x75okP5nknCTfkORFOxrnafus4/wkb0vy3PQHyv88yT9LfzH8GUneM1LPWw6zYbY2LSK+E+q9KcnnknxmqOPyZW+PTZoWtO8eGynnm5M8cMJ0oItVpsXGdqjnDkneMVLeK5N8T/ovbM5K8vgkz0/yd5FQsRaxTXLSHvvp1vS7I3V9z7K3yyZMC+qTvzbbNz58IclvJ3lskrOTPCHJq0bquS7JvZe9XTZhWlBsnzRSzqeT/PQQ77PSn5B+cPjbzUmeuOxtYjKZ2ptG+qguyRVJ/nTk/fkzlPOLI59719D/nT38+66Rv/3ChDJOSPLmkXn/MP01hock+eEknxgZK791Qjn3SHLlMO/nkzwnydcN03OyfQPWJ5LcfUI53zYyPn98WIaHDMv0hyPL+eYkJxzmtlnXtpE5nXcmOW0Yj7fKetEwXp8zjN/XDP9/bSac32ROY3+SHxqZ90NJfmCI6WOTvHHkb7+3x/b5/ZF535jt478fGMrd+ttTl90eRpZ5a7n+Pv055ROGZX5okh9N8pEZ1l+/cYjbZl3bRvQbm9hvPCrJ36b/0u/fpb8m9dAkD0vyxCQvz/YXdTck+epV34ab2r7WsW3k+ISK78/kPuOLJyyL8WQF2sQUbeZItm8s/MTI8h89zG2gfaxH+zCZNnXKBp6DJXnDMM8/JPn1JN+d/hjo7PQPJ7psR1+27/tLsoTvwzcxZkM5lw/zXbTHdrzfHLbhQseoTYxZkrvtEacHpj8G2TqmeL/97EAxO39kvs+kv/n3liTaGdZrYfeALXo/29S4zXOdpqjr3JGy9tq/by9mE5dlq4wX7rEd7zWHbbjQa3mbGLMk95qizT9xpJ7X2c/2F7MkPzX8/Yb0xx8/lOQR6cen78zx3xNemcnXLjZ6TLvVMhxWwaY5B2o7g+nz2SWbOMmPjzSYc/dZx4l7/P2EHH8B79uXvV02ZVpEfMfEc+sm7Z/O9onz5cveHps0LWjfPTZSxpnLXudWpkXtt0leMpRx/aR+N0nt1Y+bViu2eyzDCekPsrdORm637O2yCdOC+uRXj5Txb8bM89yReX5t2dtlE6bDjm2SU7J9YfuaJA/cZZ7Tk7x7mOfjSU5d9nYxmUxtTUn+c5JHJ/mS4f2ZI33f+VOWcb9s3/xzyc5jkKE/vGSkz931aSPpLyBv1f2CXf5+32w/yeSD445jR46FuyTftcvfRy+s7rqO6ZNZ/3qY5+ok99llnheMlHPsMLfNGreNYyOfOfMAy/KzI+X8+C5/f9jIdr54QjkHHvuT3DF9kmSXPtHkzjv+fkKOT4Y9OqacbxiZ51XZcbNb+icRXjH8/R+TfNGy28SwXK8e9qFdb84blnv0JuNHjJlPv7Fh/cYc24Z+Y/P6jbE3847M87iRdXvlqm/DTWxfa9w2js5j3WI8WZnxZI84/ciwvO9L8gtT7POONxpqHybTpk7ZwHOw9E8qfmqS24yp45QcfzP59x1g+x0bKedMMTvQOHb5pDFqjttv4WPUpsZsivV++kg9P3WA7Wc/S/7FsB2+IkMSWEaeqD7Dei3qXpKlHAtuYtzmtU5T1nXurG1KzMau14H3oynrWfi1vE2N2RTr/ZyRdfreA5TT9H6WPoHjl5LcZcLyjt639NsT5tvoMe1Wy7GoBmM6QJD67OStRnfemHmOJHnvSMd80iEty0NHluWXl71tNmFaVnyTPHMo77IkJ0dCxdrGNhIqNjm2Dx+p58eWvd4tTKsy5ib5lmkOXE2rF9sknxo+/8kJ89xhZFneuexts+7TImKbPkt/q46fmzDfo0bme8ayt43JZGp7yv5umn/hyGceOmae0esCt/oicJhnq8/9hySnjJnn2SPl7HYT0l2z/WS1105Y5tcO83whyV13+fvozUzPHlPGKSNj+P87zG2zCtM+28axkc+cuc96T8r2jaLvzfifIj5vpK6zd/n7XMb+JD8xUs6TxpRz92w/UfuPx8zzJ9m+gLvrU3xy/C9d3eqG3VWd0ifibC33r46ZR7/RQL+xz7ah32iw3xiWfetJxFet8jbc1Pa1ytMebePoyPofPUAdxpMVH0+SfGm2f/3lkTn+qZG7xn5e20D7WP32YTK1PmXNzsGmXKcHjpTxqgNsm2Mj5Zy57Fitc8yyuISKlRyj1jFmU6zTW4fP35zkngfYNs3vZ2M+d/HW56acf2H3G6zqfraOcZvXOk1ZzrnzXrZWYzZSz7mHvG1W8lreOsZsj/KOZPtXHK7JmLFzyrLsZ3svy8lJPjqU8enscm00DY5pR8I6eNzI6xfvNkPXdTenfyJKkpyR5OsPaVmuGXl920OqozULj29V3TP907eS5Gld1914kPIYa5X2XeZrUbF9xvDv1Ul+bR+fZ3arst9+38jrCw6h/BYtKrYnD/9+eNwMXdddneSTO+Zn/xYR27NGXr9mwnwXp/9FoaRPwgBYG1VV6X+iOEku67rubbvNN/z/+4e3jx0+N1rO/ZLcf3j78q7rrhtT5fkjrx+/y9+/PbnlutWu/fuOco4Mn9lpdJw4f5e/Z1jGlw9vHzCswy3mtW3I16dPLE2SC4bxeTfnj7zerW3Ma+zfKuczSV45ppyPJHnD8PYbq+q00b8P779xePuGYf7dvHKoJ9l9nVbVn428vs/OP+o3mu43JraNOdJv9Nap30i2v0PY7fuDVdqGG9e+1sCktnFgxpO1GU9ekOTU9Pvdm/aa2fFGc+0DWrdu52B76rru0mx/H3KY5w7LsnExm4cVH6M2KmZV9WXpby5Mkjd1XXfFrGWsgYXEbI4W8p30Cq73TusWt2ks6nrYsmxizA5sxa/lbVrMvjHJ3YbXr5gwdq6zlYnZcL/wXwxv75DkTrvM1tyYJqFiPTx8+PfaJO+cMN/ohcevPaRledLI68sOqY7WLCO+L0xy+yS/03XdxQcsi/FWad9lvg49tlV1crYPFl7fdd31w/+fUFX3qKozq0pi2/wtfb8dTsi2DkovT//zaRzcomK7dfB+r3EzVNXp6X/Ob3R+9m8RsR09efzEuJm6rrsp/ZMDk+ScqjpxxnoAluleSf7p8HqvG5u2/n639L92MOrhu8x3K13XfTzJB4a3u/XLU5WTvfv3rXLeP9S5n3LmtW1aN21M35Fk60L5pJjue+wfzrceMrx96x4Pmtgq5zY5PskySc7OdoLspPZ+Y5KtC8BnV9VJE+pbJbcZef2FXf6u3xhfzqb3G3u1jXnRbwyfWZd+o6q+PMmDhreX7fjbqm3DTWxfK2tS25gj40lvZceTqnpi+qcxfirJj035Mccb48vZqPYBJFm/c7BpbR27Hea5w7JsaswOapXHqE2L2ehD+l4ydq71tqiYzcuivpNetfXead3iNo1FXQ9blk2M2Tys8rW8TYuZMW3xMdtreZob0yRUrIetrOUPDTdpjTN6Efr+Y+eaUVXduarOqarfSvIfh//+ZJLfnVcdjVtofKvqSUm+Lf1P7PyH/ZbDVJax7764qj5aVTdW1Ser6m1V9XNVdbe9P8oMFhHbr87209reU1WnV9Xz0/e/f5v+6fdXV9Xrq+rojGUz3lLH3MF3pv8596RPfOvmXH6rFhXb84Z/71RVTxszz0/vMj/7t4jYfnbk9R3GzTRkwJ8+vD05yX1nrAdgmR4w8nqvm9wm9an7KeceVXX7MeVcPekGo67rPpbtp/4ctyxVdWqSe8y4LLcqJ/PbNptiv+edU23HYTz/0PB2t204j7H/fklO2GtZpihnP23jxCRftse8q+KRI6/ft8vf9RvbWus39mobO+k3tm1cv1FVp1TVl1XVM9N/obWVWP78HbOu2jbcxPa1UmZoGzv9fFVdUVU3VNU/VtX/qarn7Xw6/y6MJ+PLWbqqOiPJrwxvn9V13ScnzT/C8ca2jW0fwC3W7RxsT1X14GxfM5/m3GEaq/R9+DrH7BFV9VdVdU1VXVdVH66ql1XV4+bwtN9VHqPWOWbHGeL0vcPb65K8YtrPTqHF/WxeFvWd9Kqt907rFrdpzHo9bE9V9bqqunLY166sqour6tlV9UXzKH9G6xyz76qq9w7j2TVV9cGquqCqZn5S/i5W+VreOsfsOMN58tYve1yR5OI5lm0/28WQ9HPO8PYTXdd9apfZmhvTJFSsuOHp41tPMB73k0FJkq7r/jF9NlCyfSFuv/VeXFVdVXVJrkryliQ/kKTS38z7+K7rPn2QOlh8fIeBYOvLimd3XXfVfsphb8vad5McTfJPkpyU/mnaX5M+EepDVfVDByybLDS2owcLR9I/De/fp/95rC0nJ3lUkjdW1bNmLJ8dlrjf7tRC1vVCLTi2v53tuL2gqn6jqh5TVWdV1XdU1YXZfgLfz3dd94Z91MFggbEdPZl95Ni5kgcnOXXk/ZfOWA/AMt195PXEPjXJ34283tmn7qec2vG50XL2KmO0nHksy2GWsymOZn/nnVvb8dopriltbce7VNUtT8iZ49ivbeyhqo4kefbIf718l9n0G9u0jcmORr8x73KWqqqOjXx/cG36J6o+N8mXDLP8UpLf2/GxVduGm9i+lm6fbWOnh6U/nz45/bXQByX5kSTvq6pzJ9zgZzwZX84q+K9J7prkL5L81gyfc7yxbZPbBzRvTc/BpvGTI6+nOXeYxtGswPfhGxCze6V/wN+pSW6X/gm/T0xyYZI3H/DG+ZUcozYgZjs9IttPZr6w67prZvjsXo6mvf3swBb8nfTKrPdO6xa3aezzetg0vinJXdLva3dJ/z30Lyb5m6p67Jzq2NMGxOwB6W+svl36ce2+6e+7eWNVXVhVYx+YOIWVXO8NiNlOT0iylVT40jk/eNZ+trunZnvM+h87/9jqmHbi3rOwZKeNvP7s2Lm2XZu+czl1rxn36VeT/JcZnhzDZIuO7y+n/+LirUl+Y59lMJ1Fx/ZvkrwyfWy3Bo57pz/g+M70v3RwXlV1Xde9aJ910FtUbO848vpZ6WP42iQ/k+Td6Z/m8oT0X0LeIckvVdVlXdf90Yz1sG3pY25VfWm2b9Z+S9d1H5o0P1NbWGy7rvtCkn9VVf8z/RcFTxmmUX+W5BckU8zFomL7miQ3pT9/emZVvWTn8fBwAvzzE5YPYNXN0qdeO/J6Z58673Km7d8XsSwHLWfdHfS8cz8xTfrteMOOMmYpZ7exX9vY248mecjw+pVd1+32c86rth31G4sxTdvYot9oq20kyV8leWrXdZfs8rdV24ab2L5W2aS2seVj6fuMP0/ff9yUPrHi0elvhDgpyX9Kn2jxk7t83ngyvpylqqqvS3997KYkT5vxxohV25baB3BY1vEcbKKq2jruT5J3ph/nD2LVvg9f15jdmORVSV6X5NIkV6dPYj0nydPT35j2tUleX1XndF139R717WZVx6h1jdk4ow/pu2CGz03S8n42D4u832CV1nundYvbNGa5HjaN9yS5KMnbk3w0/fnulyf5l0m+OX2//IdV9Ziu615zwLqmsa4xuy79mPa/0j+1/rPZvmH+aekTwh6X5I+q6pu6rvv8PupYxfVO1jdm4xzGg2ftZ2NU1b2zfW/LZ9MnmBxkWbaWZ+3HNAkVq++2I69vnGL+rQv5tztgvd+fvoFX+s7jrPQnT89Icu+qekrXdZ84YB0sML5V9Yj0vzKynwvWzG6R++6FSS7YJaaXJHlZVT06/UnvSUmeV1WvmvRT1OxpUbEd/TnP2yZ5fZJHDzdrJ/2vB51XVZcmeVP6X7H4xSG+9u/9WdaYO+p704+9iV+nmKeFxraq7p/+hO8rx8xyTpIfrKr3dV339/upg1ssJLZd1/1dVZ2X/lj4bkn+oqp+In1yzI3pn5Z5bpJvGd6fvJ96AJZslj71hpHXO/u6eZdzkP591dZpnc3jvHM/MU2O347zGvu1jQmq6pHpk/eT5Mr01wR3s2rbUb9xyGZoG4l+Y7dlmWc5y3ZR+l9TTfplu0/6p9k+PsnvV9WPdF336h2fWbVtuIntaxXsp20kfd9wz11ubnhXkouq6kXpb/q7Q5JnV9XLuq77vzvmNZ6ML2dpqurkJC9Kf83zeV3XXTpjEau2LbUPYO7W+BxsrOF7khcPbz+X5MkH/P5ypb4PX/OYPWTML7RdXFW/luQV6W8yvH/6ZNZn7lHfblZujFrzmN3K8NTorYSlv09/M/FBtb6fzcMiv5NepfW+xZrGbaIZr4dN4/ld1527y///ZZKXDL8Cc16SE5L8ZlXdp+u66w9Y51hrHrO7jRnTXl9V/z39QxMfnD7B4unpHyQ+q5Vb7zWP2a1U1d3T/zJSkryt67oPzKFY+9n4ZTkl/Xi+9cstP9x13UcPuCyjy7PWY9qReRfI3I3uqCePnWvb1s9Nf+4glXZd9+Gu6y7tuu49Xde9ueu65yX5qiR/kv5pQJcMnRkHs5D4Dj9DvnXB+le6rnv3LJ9nXxa273Zdd/WkC1DDF1Q/O7w9JckPzloHx1lUbHceqD1rJJniFl3X/Xm2n+hy/4y/gZu9LWXM3eHJw783JHnZHMtt3cJiOzxx761JHpP+AuaTk9x1qPceSf5t+iclPCnJ26vqK2atg+Mscr/9sfTHwklyv/Q3iVw9lPXW9MkU70jyWyOfmefPKwMctln61NuMvN7Zp867nIP076u2TmtrTued+4lpcvx2nNfYr22MMRyfXpj+QTzXJ/muruuuHDP7qm1H/cYhmrFt6Dd2X5Z5lrNUXdd9evj+4NKu6y7puu4Puq77jvQPF7h3+if/HdvxsVXbhpvYvpZun20jXdddO+lJkV3XvT39Qw7y/9u773BbqvLw498XEFGkgwo2lKIi/ARBIwH0Ioiggr0glgtGjYVEDRgbckGi0Whi7CJR7A0iFmyxXIrGCKgRjYoIFytVmvTy/v5Ya3vm7rvrOfucfc7e38/zzLP37JlZs2bWlD1rVqG853hZh9m8n3QPZ5xeCzwA+A1wzCyWX2z70uND0kgt8WewjiJiK0pe+gZAAodl5s8HWbabxfQ+fKmnWZeCp61p11Iqw/6p/vTCWjlyWIvqHrXU06yLJwIb1u8fz8zbB1yuK8+zkVjI95aLabuBJZ1uXQ2bHzaIXtfhOv0DzLxv3orSQ8y8WOpp1ueedgml4lkrr+HwWa5mUW33Uk+zLp7NTDn2kfS45HnWNS7rAJ8DHlx/el9mnjiCuDTjs6TvaVaoWPyahbAG6aKk1aL5IN2sDKXWwjqUUgjwXsBbR72OKbRQ6fs6SpdFv6W0IqD5t2jO3ep4SoYVlJq3mr2FStvmei7LzB/1mPfrje8PHXI9mjHW8zYiHkZ5uQjwxX5/8DWUBUnbWoHxU5Sa3BcDD8/Mj2fmJZl5S2b+LjPfCzyC8kCwFaPrgndaLdh5m5k3USrKvAD4MTP3VSitCPwTsBczvcwAXDnseiRpjIa5pjZ7U2u/po46nLlc3xfbNk26fs+ds0lTWH0/jure77HRQUTcl9L69ybAbcAzM/P0Hosstv3odWOezOLYGJTXjdmHsyhl5scoL+XWAt4dEZs2Ji+2fTiJx9ei1efYGNSngWvq917XDPB+siiOjYh4APCaOnp4Zl43i2AW2770+JA0MhPwDLaGeo//BrB1/enwzPx0v+VGZN7fh09imrXLzKsp/7taYe02bBgsonvUBKfZcxvfPzrgMqMwyefZKCxkeYPFtN1LPd06msf8sEF8oPHdc22WMvMC4L/q6La10uewFs12T3Cajavh2ak6zyIigBOBx9afPkvnBktmE5dmfJb0Pc0KFYtcrcRwRR3t2SNERGzCzAHz23mKz+XAd+voEyLiDvOxnmmxgOn7j/Xzm8CBEfHM9qER9vqN3x815HpULcJz99JGfO4xH+uYFguYts35fzfEvFsMuR5Vi+C8HVfG18RbwLTdn5lr7Lu6dXObmT8DPl5Hd42IB3eaT/0t9Hmbmbdn5gmZuQul4sx2lDTfMjNfX+OzXWOR/5vNeiRpTJr/Ofv1SHmvxvf2a+pswknW/M/bGh+kd8xWOO1x+f0s4tIpnFHtm4k2wHNnaz+uHxEb9wmutR8vq5UaW+sY1b1/nMd7p3DGrr5M+ial0m+rBdEv9FnM68YMj41Z8LqxtI+NHlrHx/qU5+SWxbYPJ/H4Wuy6HRsDycxbgfPqaK9rBng/WSzHxisoLQteANy5y7upHRvzP6oxrXW++H9jxqQdH9JUm5BnsNVExAbA14BWz9xHZeZ7+oQ/MvP9PnwS06yH5ruN2ezLRXGPmtQ0i4i7AfvV0XMyc8HeRU34eTZnC/zectFs91JPt07mMz9sQHO9Dvc0iWnWg/e0YlGmWUTsBuxQR7+cmQvZYOW0nWfvAQ6p378KPLtXD1fTek+zQsXS0Dp5t63drnTzgMb3OXWZ2Mdl9fPOwObzuJ5psRDp2+oK51BKy9mdhlZabt747Q1DrkerW2znbtfuGTW0hUjbnzW+r91n3ub0W4dcj1Y3lvO2VlB8Zh29lJLhrNFaiLR9YOP7D/vMe06XdWp4YzlvM/PazDw/M//QetCMiLWBnessF9TKyJK0VDQzDvvdm3pdU2cTzm87tFbbCmejiLh7twAiYktmurdfLS6ZeS0zmWkLvU2dwpkGvZ47B9qP9X6+TR3ttA9Hce8/j9IaUM+4DBDObI6NW4Ff9Zl3QUXE5pSWuu5Xfzo8Mwep5O11Y8ZEXjfmcGwMw+tG/3AW3XWjj8sa3+/T+L7Y9uEkHl+LXbdjYxhzvma0Tfd+Mr/uWD/vR/d3U09pzH9U4/dWw0H+35gxaceHNLUm6BnsLyLiTsCXgIfWn/4lM4/rE/Z8mJf34ZOYZn3MdT+O/R414Wl2CDPlAz4ywPyjNqnn2ags1HvLRbHdE5Ruf7FA+WH9zFv5rklMsz7GcU8baV7ehKdZs+HZhb6nTc15FhFvAV5cR08HnpKZtwwRn6m4p4EVKpaKM+vn+sCuPeZrdj3z3a5zzV2zRpbdws7d0d1e9wAAIABJREFUYktfjc6iSduI2IKZSjN/mI91TJl5T9vMvAj4TR3duna91c02je+/7zqXBjGu8/ZxwGb1+ydri3sarYVI22a69XqYAGj28mV6z82iud8CezNzLi9kd5SSNAoXMvOs0K9r20fUz98Dq9qmndn43jWcWvho+zra6bo8UDj0v763wrl/rwJPfcIZ1b6ZaAM8dw6aprsx05JNrzSd9b0/M28GflBHd4+IdemuFc5NwNlt084Cbu6wvtXU8B/eWmbAjOoFEREbAV9nphWoVw/RgqjXje7hLPnrxhyPjUHX4XWji8V83RhAx/cHi3AfTuLxtdjN6d1SfXHbug/M+prh/WTJ8f9G93A8PqQlaMKewVrz3QE4uRHW+zPzVX3iN3Lz9T58EtNsADs0vs9mX471HjUFadYqfHoLpSLqgpnw82xUFuq95di3e8LSDViY/LABzfU63NEkptkA5rovx5qXN8lp1tbw7GWUXhMW0lScZxHxeqD13/ws4PGZecOA8Zmae1qLFSqWhlMa3w/tNENErMXMn+argO/MR0Qi4p7A7nX0otqKiuZm3tM3M6PfAFxUZ7+o8fuyIbdFq1s05y7wQqBVIP+0eVrHNFmotD25fm4I7NNjvic3vp/ZdS4NYlzn7ThrXU+LhUjbCxvf9+ozb/Mh4MKuc2kQi+J+Wyu+raijtwAfHPU6JGk+ZWYCra5mHxARD+80X/291frHF+pyzXDOY6ZFkKdHxJ27rHJ54/vnO0z/ItDqarbj9b0tnNvrMu2a94nlHaZT4/j0Ovp/dRv+YlT7Zgr0e+5cCVxdvz+vR6Xx5Y3vnY6NUd37W+FsyOrPVM1w7gnsW0e/1Z4PVse/VUf3rfN38mRmWijutE1jUY/9U4GH1J/+KTPfMujyXjcm97ox12NjCF43lth1Y0BPa3w/t23aYtqHK5mw42sJ6HVsDOIZwEb1+xrXDO8ni+9+kpnLB3g3dUxjkb0b01bVMPy/UUzc8SFNowl8Bmv12vxJ4ID608eAl/TYjPk08vfhk5hm/dRCgK3Cjdczi0q847xHTXqaRcROwIPr6Fdy4XtKn9jzbIQW5L3luLd7AtNtIfPDBvGixnfPtVmKiPsCj66jv87MoRuoHWde3hSk2QHM9E45joZnJ/48i4i/B95YR88F9h8yP3Eq7mntkXFYAgOlq5WkFM7avcP0I+v0BFZ0mL6sMf3EDtO3Bx7VJw4bNeKRwLHj3i+TMsx3+g4Yh1V1+VXj3h+TNCzAubs1sEufODye0mJZUjI97jHu/TIJw0Kct8C9gRvqPD8BNuwwz7Mb4Xx53PtlEoaFviYDmzbO0Z+Me/sneViAa/LGwHV1+jXATl3icQBwW53vd8Ba4943S31YoGvyZsAdu0xbG3hPI4xjxr1PHBwcHOqzwlDPiZS8gVvrMmcBd2qbfqf6e+uau12XcA5rrPvdHaZvQynAmJRuj9fpEs5HG+E8tcP0pw1w/b4D8Os6z9XANh3maV7Dl8/nvlkMw7DHBiN87gSObaz7yA7Td6/7L4GVPdY3p3t/nWdTSuZuUvJENmubvjal8FsrnGVdwnlUY54vAGu3Td+c0ohFAlcCm4z7GKjxWpfSSlIr7u+YZTheNybsujGKY8PrxsReN5YD6/WZ5xWNbbugw7Ytqn04icfXUjw2gE36bQ/wsJqWSSmgvmuX+byfLJL7yRDHz4oBznn/b0zp8eHgMEkDE/gMRilU/aFGOCfR9r9swG1a1uu6yZjeh09omu3fvv626Xdp2+Z3zibNRrnd055mHZZ5WyPMJw+xTZ5nszzeKJXxE8ghlhnFM+KiPM8mNd1GuE3Le6UtsBOwbZ8wXtgI44/A+qZZx/kPpMd1E7gb8MPGNr9yNmlW51nwvLxJTLMOy5/U2L6HDLGc59lg/0MOpeShJfBL4G6zjM9E39PWiMd8BOowDwkFu1D+kCZwLfAaSjdBewMfaBxwvwQ26LB8z4OyMf3HlMzLA4GH1vUeABxXLx6tMM4F7jzu/TIpw3yn74BxWFWXXzXu/TFJwwKeu9+rYT+W0g39bpSWiz7buDkm8JJx75NJGRbqvGX1Px6/oPzh2bWu513M/Jm4er7+LEzbsNDXZEpLPa35/2Hc2z/Jw0KkLXBUY55rgTfV8HcGHgO8l5nCGAk8e9z7ZRKGBUrbpwIXA+8AnlSvxXsALwZ+1Fj+K8C6494nDg4O0zcAe1IyEVvDEY1r05lt05b3COfNjeV+SGkJeLf62cx8flOPMNau62zNe1K9Dz4MeBlwSf39NuCAHuHcC7iUmcyxf67buWf93rqnXgrcs0c4j2WmMuPFNQ4Pq3FqZtieQY8X/6PYN0vx2GCEz53ABpT7cWveD1Du1w+vYV9bf78e2LlHOHO69zfCeVFj3vMpz1u7AQcB325M+2SfffypxrzfrsvvVsM7vzHtheM+HhpxPrkRr29RXjLs2GPY3uvGdFw3RnFs4HVjUq8bq4ArgOMprY7tQWkZdU/Kc1HzHL4J2Hex78NJPb6W2rHBTGXP/6X0VnAQ5f3UQ4AnAicwU3Argbf2iIv3k0VwTAx5/KxoxH/ZfO4Dj4+ld3w4OEzSwAQ+gwFvbyx/LuXe3WubduwSzrJGOCf2mL6g78MnNM1WUv63fRB4HuXetTOlV/XXMFMYNCnvpTedTZqNcrunPc06hPeHuswVDPEuql+a4XnWCuPutOWV1nOhtWz7tI4FdhnBM2K/NBvXeTap6TaqbaJ/Qe/llDI+/wW8ktJ7wkMo14Xnsnph7FuBA02zrmm2Cvg98E7gYEqjGDtTevY8DrisEd4ZdG84sWeaNeZb0Ly8SUyztvA2AW6sy5475L7pmWZ4nkHJT2uWJ9y/T1x2pEulEib8nrZGHOYrYId5SKxSyeHqxoHRPvyy28Wo30HZNr3f8GVgi3Hvj0kb5jN9B1z/qrr8qnHvi0kbFsm5ex2L6AXspAwLdd7WPwy391jPJXSoBeqw+NO2zv99Zv6o333c2z7pw3ynLaVFpn/rc84mcDNwxLj3xyQNC5C2T+2TprcD/0GXzBgHBweH+R6AEwd8Nkgge4SzVr2e9Vr+BPr0sERpkecHPcK4EfibAbbrr1i9gYf24Y/AXw0QzgtYvSBe+/A/wOZ9whjJvllqxwYjfu4EtgXO6xHO1cDjBwhn1vf+tnCOofd/t1Pp3+r2nep83cK4jR4vY8Z0XAx8TNRh1XyfG3jdGPtxMapjA68bk3rdWDVguv4WePRS2YeTeHwttWOD1XvP6jXcChwNRJ/4eD9ZQgODV6jw/8YUHh8ODpM0DHivaw6reoS1KK6JDP4f4C9Dl3CWNeY5sc/0XsNI34dPaJqtHHBbVtKj94F+aTbq7Z7mNGsLa//Gcu8Zct/0TDM8z4bdD61heY+w5vSM2C/NxnWeTWq6jWqbGKyg9yDhXw48wTTrmWarBlz2JGDjHnHpmWaN+RY0L28S06wtvL9tzLtGr7F9lu2ZZniewZDvBeuwrEd8JvaetkYc5itgh3lKMLgP8K/1ILyO0k3QWcCr6NFjRL+DktK17H7AWym16M6rJ8EtlJrNZwPvBvYY9z6Y5GG+0nfAda/qd7F2WHxpS2lF7ZB6fn6f0mrEdZQM+IspNR5fC9x13PtgUoeFOm8ptak/ClxIyVi5ipL58npgo3Hvh0kcFiJtge0a83513Ns8LcMCpe2uwPsorTJdQ3npf1X9T/V2etQ2d1icaUvpFvQISg8UF9Twr63rej8DvCR3cHBwmM+BEVWoaIT3WOAUSgs/N9XPUxigtbRGGOtQWiU+g5IxeQPwa0rrxQ8aIpzNgTfW++q1dfhJ/W2zIcLZsa771zUul9e4/S09uoaej32zlI4N5uG5E1i/3p/Pqvfr6yitGf0rcJ8hwpnVvb9DOH8NfAL4Td2uS4BvAAcPua+fVZe7pIbzmxruoqsAP8wxwYD5RV435nffLKVjw+vGUPt7KV037k9p1e1kSk8CF1PeH1xDaYnvJMoLy4H242Lah5N6fC2VYwNYl9KIwdsp19gL6rI3U1qUPJPSuuTWQ8TJ+8kSGRiwQsUo94HHh4ODwzgGJvAZjIWrUDGW9+ETmma7Af9Y1/lzyn+tWyhlg35OyUN6DP0rsPZMs/nY7mlNs7ZwPtGI+1DvpDzPBkszRl9geNbPiIv1PJvUdBvVNtG/oPddgcMoPQWdTWl44HrKdeH3lPfQfwdsaJr1TbNHAm8Avko5x66g3NOupDyXvZ8B8ob6pVmH+RckL28S06wtvO/W+W4Fthpy33ie9UkzRlyhooZ5HybwntY+RI2AJEmSJEmSJEmSJEmSJEmSJEnS1Fhr3BGQJEmSJEmSJEmSJEmSJEmSJElaaFaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1rFAhSZIkSZIkSZIkSZIkSZIkSZKmjhUqJEmSJEmSJEmSJEmSJEmSJEnS1LFChSRJkiRJkiRJkiRJkiRJkiRJmjpWqJAkLZiIWB4RWYetxx2fSdbYzyvmEMayRjjLOkxf0ZreZfmVdfrK2cZBkiRJkiTNnXkynUXEiXWfrBp3XCRJkiRJ0poiYlV9dj9x3HGZVpb9kCRNAytUSJIkSZIkSZIkSZIkSZIkSZKkqWOFCkmSNBaj6EVDkiRJkiSpyd44JEmSJEmSlo6I2LqRl7N83PGRJE2ndcYdAUmStDhl5kog5rD8spFFRpIkSZIkSZIkSZIkSZIkacTsoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSdLIRMQmEfHPEfGLiLghIi6NiG9GxNMGWHbdiDgwIt4dEWdFxJURcUtEXBER/xMRKyJi8z5hrIqIjIgT6/j9I+KD9febIuKSiPh8RDx8wO3ZOiLeEhHn1HjcEhGXR8QZNT7367HsRhHxmoj4bkRcFhE3R8QfI+JLEfHUiIgey64fEc+IiBMi4scRcXVd92URcVpEHBERdxlkGxph7hsRX6xxuDEiLqj7+h49lllW92dGxLJh1leXX1mXXdn2+6qIyMZPRzfW0xpOrPP+Zx2/MiLW67O+dSLi4jr/V4aNryRJkiRJ0ywi1o6I50XElyPiDzUv5YqIODMiXhkRd+qx7Gp5ABFxj4j414g4v+YRXRERX4+IAwaMy3NrHsiVEfHniDg3It4QERvW6a38gxWNZZbV/IYPN4K6sEOew7Ie6904Io6NiJ9FxHURcVVEnB4RhwwSb0mSJEmSJl0tK5Gtd/61bMRREfGj+hydEbG8bZlZl58YIl7bRsS/1TyEq2t+xAURcWJE7NZn2S0j4iURcVJE/KrmCdwUEb+PiC/U8hs9y1lGxHoR8Xc1j+SyWsbjTxHxy4j4as1b2brH8rPOl5mriHh4RHyulre4MSIujIjjI+L+Ay4/6/1Xj6MLGz99uENezoouyz4kIt5f9/Gf63p/GRHvi4jth94RkqSpts64IyBJmgwR8UDgm8BWjZ/XA/YB9omIDwOn9wjieOB5HX7fFHhYHV4WEU/IzO8OEJ8nAR8H7tz4+a7AE4EDI+KQzPxMj+WPAN4E3KFt0mbAnnVYVof2ZfcBPlPnbbo78Pg6fCUinpGZf+6w+lOBR3b4fXPgEXV4SUQ8NjN/0W0bGvE5GljR9vN9gZcCz46IAzPzjH7hjMkJwJOAjSlp9+ke8z4WuFv9/qF5jpckSZIkSRMjIu4NfBF4cNukTYE96vDiiHhcZp7XJ6w9gFMo+Rgt6wH7AftFxJGZ+bYuy94B+BzwhLZJO9bh2RHx6MG2aji1kMDXgK3bJu0F7BURu2fmy+Zj3ZIkSZIkLUURsR3wDdZ8lm7OM9fyE4PEo1v5jvvW4bkRcVxmvqHDsmsDv6Nzw9RbAQfV4fkR8eROcYyILSnlZXZom7RJHbYH9q/hHdFh+ZHlywwrIl4BvI3Vt39r4AXAsyLi6X2Wn/P+m0Wc16pxfjnQXhln+zr8TUS8NDOPn+v6JEnTwQoVkqQ5i9I64NeZqUzxGeAjwKWUB5VXAodSXnx3sw5wAfB54AfAb4BbgfsA+wKHUR6wPx8RO2bmpT3C2gl4BvBH4O3A2ZSHqMcAr6a8xD8+Ir6dmZd12J6jgGPr6FXAe4HvAFdQCvY/BHgykB2W3QP4KuVB/RLgXcD/An+o++cZwLMphf8/Ajyly744l/LAfHZdNuq+eBLwdMpD/ykRsXNm3thjXzwO2A34JfBW4CfARsDTKA/AGwFfrvv0tz3CGaX9gHUp2wjwPso+brqyfn6N8vB9T8ox1KtCxaH183LKvpMkSZIkSX1ExGbAmcC9gJuADwKnAauAu1Ce4/8e2Bb4akQ8JDOv7hLclpTKFLdT8mDOBG6mNEzxBkq+ypsj4quZ+bMOy/87M5UpfkZ5Of5TYENKnsiLKflOnZxFyRN6AnBc/e0xlHyVpgtZ052BL1Hyno6jFIL4M7ALcDQlX+KlEfGlzPx6l/VLkiRJkjRtTgLuQSkX8UXKe/7tgItgZOUneoqIIyllIaCUh3gf8CtKWY/7Ay8DdgeOiojLM/Od7UHUz2/XuJ4LXAZsANyPUq5id+DRwHvo3FDou5ipTPFx4D/rNt5GySvZjTUbj2jFf5T5MkOpDZX+ax29GngLsLKOPwp4FfAJyv7oGkz9nO3+24lyLLTyW14PfKFtnvbyQe8CXlK/nw6cSClvdD2lUsrLgQcBH4iIizPT8iOSpL4ic42yoJIkDSUi/oWZWvSvzcw3t02/A/BlyoNey30zc1Vjnm2AC7LLjSkidgK+R3lgPC4zj+owzypKpQOAc4BHZeY1bfMcQnmABXhlZv5b2/RdKJUY1gLOA/bJzN91idO9mpUQ6naeR6mt/zXgKZl5fYflXkDpkQNgv8z8r7bp22Xmrzqts07fl/IwuRbwN5n5Hx3mae7HHwKPbK/pHxHPAT5aRz+XmU9vm76MUpEEYO/MXNk2fQWlUAGZuUYXnBGxktLTxmmZuaxHHI/JzBVrbOjMfMcCR1EKY9ynU3pExF0pFS/uAPx7Zr68W3iSJEmSJE2biFgOfLiOtufJfAJ4FqWww96ZuUaFg5pfcgawPvCmzHxd2/SVzPS2eRGwR2b+vm2ePSkvuQN4Z2b+fYd1nFOn/zclT+aGtnmeSunBomWNPIVe29phu05k5kX+1TXeP2ubZ1tKYYD1gC9mZscCEJIkSZIkTYNmOQHKO/wDMvMbHeYbVfmJVZRyIB/JzOVt03YAfkwpJ3AMJZ8g2+ZZi1JZ49mUxhPunZlXNqYHsE1mnt9jm4+hNBSRwP2b5TkiYj3gmhqHt2fmGj1QNObdNDP/1PbbnPNlZiMi1qU0OrEVJU9k98z8eds8OwLfpTR0AR3Kfsx1/9XpWzPTAMahmXlij7AeTekVBbqXl1kPOJVSKeQiYNvMvLVbmJIkQeeuliRJGlh9yHp+Hf0J8M/t82TmLXWeW7qFk5m/7laZok4/Fzihjj5xgKgd1l6ZovokMy0T7tVh+pGU+2MCz+xWmaLGqb1Hh2dSMgNuBJ7bKTOgLvdBSi8cAMs7TO9amaJO/yYzPTAMsi9e2KnbxMz8GKWFAIAnRcTdBwhrHD5ESY+16NzaA5TMjzs05pckSZIkSX3UF9bPqKMv6/TSHiAzf0RpRRA65GW0Oby9MkUN40zgf+popzyZFzLTquEL2itT1DBOovRuOh+O6tRrRi0QcEod3XOe1i1JkiRJ0lJ0YqfKFNVIyk/08Q+UcgJn06EyRQ3/duBwSu8PdwGe2jY9e1UGqI4FLqfkWxzUNm1TZsoqnN4rkA6VKbZm9Pkyg3oCpTIFwBvbK1PU9f4U+KdegYxg/w3r1fXz5E6VKWqcbqT0TAKlMs7ec1ynJGkKWKFCkjRXuwKb1O8f6VYpolZM6PYgvYaI2CQitomIB0XEjrXm+1V18g61NYNuzs3Mn3SJRwI/qqP3a1vnWsABdXRlfSgdRuvB77TM7NXlIcw8SO/eL9CI2CIitmvth7ovWuE/uM/i52bmOT2mtyofrAMs6xeXcagtSX6zji7vMtuh9fOcbmkvSZIkSZLW8DhgbeB6Zhpd6KaVl7FVRNy7yzxXUVoA7KaVR3G/DtP2rZ8/6lSxoeGjPabNVlIa4eimFe9NI2LjeVi/JEmSJElL0Sd6TJuX8hNtDqyfJ/dpwPMqSu+TfdcREWtFxFYRcf9G+YwHAq3GONvLaFwB3Fy/Pyci1hki/qPOlxlGKx8mKT14dPPhOs9AZrH/BhYRGzJTruWkXvPWCiKX19FhjytJ0hQa5gYuSVInOzW+n9Vn3h9QHgg7ioidgFdQKjX06i1hLUoljku7TP9Fn3i0av1v0Pb7fYHWS/Ez+oTRyW718zERMegDZcftjIg9gL+jPMRu2mP5zfuEP0iatOwEfLrP/ONyAvBoYNuI2Csz/5I+EbEbsGMdtXcKSZIkSZIG18rLuDNwa0T0mrfp7sBvOvz+q9ryYzcd82QiYj1g2zraq2EIKK1OjtrlmXlFj+nNFiQ3YKbRD0mSJEmSplmvxg5HVn6ik4i4D7BFHX1zRLx5tuuIkiFyCPB84K+AO/VYfrUyGpl5U0R8BngOpfeLh0bEZ4GVwPdqZY5uRp0vM4xWWZ8LM/PybjNl5mURsYpSnqajuey/Ie3CTAPin4qITw243MDHlSRpelmhQpI0V83C/t0qOLRc0m1CRDwfeD+D35t6PYB17CqyofVif+2235sPbn8cMB5Nd53FMmtsR0SsAI6e7fJthkmTXhU3xu0USusBm1N6o2hWeDmsft5I79YkJUmSJEnS6maTlwHlRX8ng+bJtPee3ez1oV+rlf2mz8ag8YY185MkSZIkSZpWV/aYNpLyEyMOH9ryNGojD/9JafhzEJ3i+DJK3saBwH2AI+twe0T8EPgscHxmXt223KjzZYbRKh/Sr0wJlHIlHStUjGj/DWqc+0uSNOGsUCFJGqWBu/lriogHMFOZ4lLgX4BvA6uAazPzljrfYcB/tBaba2TnQeuF+leBV80mgIjYh5nKFBcAbwPOpLQucF1m3lrnOxY4aoAgZ5Umi01m3hwRH6P0YPK0iDg8M6+rD+cH19k+36d1B0mSJEmStLpWXsblwN5DLHfhPMRFkiRJkiQtIZl5W4/Jcy4/0UezwYNjgc8NuNx1beOvY6YywGnAe4AfAhcDN7R64oyI04G96FBWJTOvAQ6KiIcBTweWATvXOO5WhyMi4omZ+d8dtmGc+TJzLVMy5/03hGaavwj43oDL9ar4I0kSYIUKSdLcNR887gac12Peu3X5fTnlnnQb8MjM/EWX+ea7B4VmN4ZbzmL5K4CtgHUz86ezjMML6ueVwMMzs1uri4Pui277vNP0Pw0Y5ricQKlQcRfgacCJwBOZacXyQ+OJliRJkiRJS9YV9XMD4Od9CkLMp2YDCVv0mbffdEmSJEmSNH6jKD/RL/yWW2azjogI4G/q6BnAo1oVADroW0YjM38A/KCGvQGlYsVy4MmU3hVOjohtMvOGtm0YR75Mq6xPvzIlXecZ9f4bQDPNr5+n40qSNKXau9WWJGlY5za+P7TPvN2mP6h+/m+PyhRQau3PpwuZeYH/iFks/6P6uVtErDvLOLT2xXd6VKaAwffFMGmyqB82M/P/gFZrDYfWz8Pq50XAtxY8UpIkSZIkLW2tvIw7Mv/5Ll1l5o3Ar+vorn1m7xfPieitU5IkSZKkJW4U5Sd6uQC4un7fY5ZhbArcvX7/XLfKABFxF+D+wwScmddm5pcy8ynAO+vPWwJ7NmYbZ75Mq6zPfSNis24zRcQWwNZdJo9q/w2al/PjxryzTXNJkjqyQoUkaa7OYabm+nNqDfQ1RMQ9gP26hNHqMWn9biuJiC2Bg2YbyUHUh7tT6+gjI2KXIYP4Yv3ciJkC/8MaZF/sAvzVgOHt1Gc7WhUSbgNWDhjmqNxYP+84xDIn1M+9ImJvYJ86fmJmWmBCkiRJkqThfImZF9EvH2dEmGkoYZeIeFCP+Z7bJ5wbG9+HyXOQJEmSJEmjM4ryE13V3hy+Ukf3i4gHziKYdRrfu5bRoPTCsE6P6f00G4fcvPF9nPky36yfQe+8luV1nk5Gtf8GysupjZJ+v44+q1b2kCRpJKxQIUmak8y8CfhwHd0ZOLJ9nohYB/gg0K3VgV/Vz+0i4q87LH9n4JPAneYc4f7eBtxOeSD8dETcs9uMHaZ9BPhtK5yI6NnLRUTsGRGPbPu5tS/2jIhtOyyzBfCxXuF2cHxErPHwGhHPAh5bR0/JzD8OGe5ctda3zRDLfAa4lpI+n6T8l0lmjkFJkiRJkjSgzPwl8Lk6+syIeGWv+SPivhFx8DxF53hmChF8MCLWyAeKiKcAT+oTTjN/Y5g8B0mSJEmSNDqjKD/Rz5spjUeuBZzUp3zH2hFxSNs8lwFX1e8HR8Qahfkj4qHAG3uEe78B4t1sfPTC1pcx58ucwkweylERsUYPEhGxA/C6HmHMef9VVwA31+/98nKOq58bUtJ8424zRsQdI+KlEbFenzAlSbJChSRpJI4Ffle/vyUiPhkR+0fEQyLimcD3gAOAs7ss36ogsBZwakS8NiIeEREPi4gXU7qQ5UZvAAAHxklEQVTtWwZ8d/42ocjMHwNH19HtgXMj4riI2Ccido6IZRHx8og4nbaKDbVyydOBm4C7AN+OiI9HxFMjYteIeGhEHBQRx0TET4AzgJ3aovDR+rk+cFpEHB4Rf12HI4D/BXYA/nvATTqb0jXk2RGxvMbjURHx3kb8rwWOGDC8Ufpe/TwoIl4UETtGxLZ1uGunBTLzOuDTdbTVdeS3M/Oi+Y6sJEmSJEkT6sXABfX72yPitIh4fkQ8PCJ2iYh9I+IfIuK/gPOBp8xHJDLzHEqDHAC7A2dFxPNqXsbeEfEuSkMLP2gu1iGoHzHTsuEbI+LREbF9I89hIRrskCRJkiRpqo2o/ES/dZzLTFmHHYCfRsRba3mVXSJi94g4OCLeSanc8XFg48bytwOfqKP/Dzizzr9bLSPyduB0Sj7DeV2icW9gZUT8rJYteWLdtodGxJMj4jPAS+u8Pwb+p235seTLZObNwOF1dBPg+xHx6rre3SPiNcyU6Ti/Sxij2H9k5q3AWXX0sBrGAxt5OZs25v0K8O919BHAzyPi6EaZnj1qftIJlAoj72ZuvYtIkqaENwtJ0pxl5tURsT+lS8C7AwfXoelE4DQ69CSQmWdFxNHAMZSH13/qsJq3Az8F9hhdzDvLzOMi4vZGfF5H51r3p3VY9vsRsQz4LHAv4JA6dHNN2/InRcSHKV1ebgW8s23+24BXUB5odx9gc06tw9F07sXhGuCgzFw1QFij9jbgqZQuG9/fNu0jlK4jOzkBeEFj/EMjj5kkSZIkSVMiM/8UEXtQ8jL2oryM7tVq5DU9ps3V4ZT8kMcDD6LkJzVdCDyLmRf5N7ZNJzOvrQUlXgU8BPhG2yx7AytHFmNJkiRJktTRXMtPDLiOd0TEdcA7gI2AI+vQyc2smZfwOko5lJ0pjVV+sm36nyiVGI6lNMrZzQ516OYXwJMzc7XGIcaZL5OZJ0fEkcBbKWVj3tw2y/WUSjFHAtt2CWZU++/NwJeAzTqEcQywojH+ihruUZQySivo7jpKORtJknqyhwpJ0khk5s8oL7rfCvyK0srA5cB3gGdl5qF9lj8WeBzlJfeVlAfZ3wH/CeyXmQvag0JmvonysPsOSkWOa4BbKV0Wnga8HnhOl2W/D2wH/C2lMsMfmHkw/y1lG18HPCAzP9ph+cNq2GdQeo+4CbiI0qPEX2fmv7cv02dbVgD717hcUuOyCngv8KDMXKNiyEKovYHsDnwK+A1lOwdZ7gfMtF5wFeUYkSRJkiRJs5SZF2fmIygVGT5BaRnxeuAWSl7I9yiNXTyy5lvMVzxuBg6iNDRxJnB1jcfPgTcBuwJXNBa5uktQr6Y0xnAG5QW7L84lSZIkSRqDuZafGHAdHwTuR2lo8ruUsiq3UgrTnwecXNd/j8w8v23ZqykVAo4Czq3x+jMlL+JtwIMz8/Qeqz8DWEapEPAdSiMQ11LyVC6p2/e3wM6ZeWGX+I8tXyYz3wbsSSl3cSkz5VM+BOyWmaf2WX6u+68VzqnAPsAXKMfILT3mzVrGaHtKGaWzmcn/uRb4P8p+fB6wZWbe0G/9kiRFW6VHSZKkRS0iNgQuBu4EvC8zXzLmKEmSJEmSpAUSEXtSCisA7JuZ3xpnfCRJkiRJkiRJ0tJmDxWSJGmpOZhSmQLgP8YZEUmSJEmStOAOrp+3AOeMMyKSJEmSJEmSJGnps0KFJElaMiJiHeCVdfTszLTghCRJkiRJEyIiNo+IjXtMfwzwojr6xcy8amFiJkmSJEmSJEmSJtU6446AJElSLxGxKbApsBnwD8D2ddKbxhYpSZIkSZI0H3YEvhARnwO+CfwauB24D3AQ8GxgbeAG4LXjiqQkSZIkSZIkSZockZnjjoMkSVJXEbECOLrt5y9n5oFjiI4kSZIkSZonEbEM+E6f2a4BnpaZ35j/GEmSJEmSJC0+EXFX4K6zWPTmzDxv1PGRJGmps4cKSZK0VNwKXAR8CnjzmOMiSZIkSZJG72xgObA/8GBgC2BjSiWK84GvAe/OzMvGFUFJkiRJkqRF4CWs2TDlIC4Cth5tVCRJWvrsoUKSJEmSJEmSJEmSJEmSJGkJiIgVzLJCRWZuPdrYSJK09FmhQpIkSZIkSZIkSZIkSZIkSZIkTZ21xh0BSZIkSZIkSZIkSZIkSZIkSZKkhWaFCkmSJEmSJEmSJEmSJEmSJEmSNHWsUCFJkiRJkiRJkiRJkiRJkiRJkqaOFSokSZIkSZIkSZIkSZIkSZIkSdLUsUKFJEmSJEmSJEmSJEmSJEmSJEmaOlaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1/j+aeOcrmpqnWAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(20,20), dpi=200)\n", + "\n", + "plt.subplot(4,3,1)\n", + "sns.boxplot(x = 'popularity', data = df)\n", + "\n", + "plt.subplot(4,3,2)\n", + "sns.boxplot(x = 'acousticness', data = df)\n", + "\n", + "plt.subplot(4,3,3)\n", + "sns.boxplot(x = 'energy', data = df)\n", + "\n", + "plt.subplot(4,3,4)\n", + "sns.boxplot(x = 'instrumentalness', data = df)\n", + "\n", + "plt.subplot(4,3,5)\n", + "sns.boxplot(x = 'liveness', data = df)\n", + "\n", + "plt.subplot(4,3,6)\n", + "sns.boxplot(x = 'loudness', data = df)\n", + "\n", + "plt.subplot(4,3,7)\n", + "sns.boxplot(x = 'speechiness', data = df)\n", + "\n", + "plt.subplot(4,3,8)\n", + "sns.boxplot(x = 'tempo', data = df)\n", + "\n", + "plt.subplot(4,3,9)\n", + "sns.boxplot(x = 'time_signature', data = df)\n", + "\n", + "plt.subplot(4,3,10)\n", + "sns.boxplot(x = 'danceability', data = df)\n", + "\n", + "plt.subplot(4,3,11)\n", + "sns.boxplot(x = 'length', data = df)\n", + "\n", + "plt.subplot(4,3,12)\n", + "sns.boxplot(x = 'release_date', data = df)" + ] + }, + { + "source": [ + "چند ستون با محدوده‌های مشابه انتخاب کنید. مطمئن شوید که ستون artist_top_genre را برای حفظ ژانرهایمان اضافه کنید.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import LabelEncoder, StandardScaler\n", + "le = LabelEncoder()\n", + "\n", + "# scaler = StandardScaler()\n", + "\n", + "X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')]\n", + "\n", + "y = df['artist_top_genre']\n", + "\n", + "X['artist_top_genre'] = le.fit_transform(X['artist_top_genre'])\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "y = le.transform(y)\n", + "\n" + ] + }, + { + "source": [ + "خوشه‌بندی K-Means این ایراد را دارد که باید به آن بگوییم چند خوشه بسازد. ما می‌دانیم که سه نوع آهنگ وجود دارد، پس بیایید روی ۳ تمرکز کنیم.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 1, 0, 0,\n", + " 0, 1, 0, 2, 0, 0, 2, 2, 1, 1, 0, 2, 2, 2, 2, 1, 1, 0, 2, 0, 2, 0,\n", + " 2, 0, 0, 1, 1, 2, 1, 0, 0, 2, 2, 2, 2, 1, 1, 0, 1, 2, 2, 1, 2, 2,\n", + " 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 0,\n", + " 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2,\n", + " 1, 2, 2, 2, 0, 2, 1, 1, 1, 2, 1, 0, 1, 2, 2, 1, 1, 1, 0, 1, 2, 2,\n", + " 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2,\n", + " 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 2, 0, 2, 2, 0, 2, 2, 1, 1, 0,\n", + " 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 2, 2, 2, 1, 1, 1, 1, 1, 0,\n", + " 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2,\n", + " 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 1, 2, 1, 2, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 1],\n", + " dtype=int32)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ], + "source": [ + "\n", + "from sklearn.cluster import KMeans\n", + "\n", + "nclusters = 3 \n", + "seed = 0\n", + "\n", + "km = KMeans(n_clusters=nclusters, random_state=seed)\n", + "km.fit(X)\n", + "\n", + "# Predict the cluster for each data point\n", + "\n", + "y_cluster_kmeans = km.predict(X)\n", + "y_cluster_kmeans" + ] + }, + { + "source": [ + "آن اعداد برای ما معنای زیادی ندارند، پس بیایید یک «امتیاز سیلوئت» بگیریم تا دقت را ببینیم. امتیاز ما در حد وسط است.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.5466747351275563" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ], + "source": [ + "from sklearn import metrics\n", + "score = metrics.silhouette_score(X, y_cluster_kmeans)\n", + "score" + ] + }, + { + "source": [ + "وارد کردن KMeans و ساخت یک مدل\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.cluster import KMeans\n", + "wcss = []\n", + "\n", + "for i in range(1, 11):\n", + " kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)\n", + " kmeans.fit(X)\n", + " wcss.append(kmeans.inertia_)" + ] + }, + { + "source": [ + "از آن مدل استفاده کنید تا با استفاده از روش آرنج، بهترین تعداد خوشه‌ها برای ساخت را تعیین کنید\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAFNCAYAAACAH1JNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5hdZX33//d3coIQgSQEUkJMQE4iVMABgyIp4SyHhD3wCLWK/VEpLSii9Kn2oG3110ptK1JbWypWeMoD8kNIEJCDnEU5hIMEpEIKBMIpkUA4J4R8f3+sNWYnmWRmktmz9t7zfl3XvvZa91p7z3c5l5kP973WfUdmIkmSpNbRUXUBkiRJ6h8DnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASdI6RMSnIuKndfsZETtWWZMkgQFOkoiIJyPizYh4re717arrkqR1McBJUuHozBxT9zq96oIkaV0McJLUPx+NiMcj4tcR8Y2I6ACIiI6I+IuIWBARiyLiwojYojx2QUR8odyeVA7FnlbuvycilnR/jyT1hf9gSFL/HAt0AnsDM4H/p2z/VPk6ENgBGAN0D8PeCvxOuT0deBw4oG7/9sxc2diyJbUTA5wkFWZHxMt1r0+v47yzM3NJZj4FnAOcWLZ/HPinzHw8M18DvgScEBHDKQLc/mUv2wHA3wMfLj83vTwuSX1mgJOkwqzM3LLu9R/rOO/puu0FwLbl9rblfv2x4cA2mfk/wOvAnsBHgKuAZyNiFwxwkjaAAU6S+mdy3fa7gWfL7WeBKWscWwG8UO7fChwHjMzMZ8r9k4CxwAONLFhS+zHASVL//ElEjI2IycAZwA/K9ouBMyNi+4gYA/wt8IPMXFEevxU4Hbit3L+l3P9pZr4zaNVLagvDqy5AkprEjyKiPkjdAMzp4bw5wL3AFsD3gfPL9u9RDKPeBmwCXAd8pu5ztwLvYlWA+ykwum5fkvosMrPqGiRJktQPDqFKkiS1GAOcJElSizHASZIktRgDnCRJUosxwEmSJLWYITeNyFZbbZVTp06tugxJkqRe3Xvvvb/OzAlrtg+5ADd16lTmzp1bdRmSJEm9iogFPbU7hCpJktRiDHCSJEktxgAnSZLUYgxwkiRJLcYAJ0mS1GIMcJIkSS3GACdJktRihtw8cA21ciUsWgTLlsGoUbD11tBhRpYkSQPLdDFQVq6EefNg2jSYOrV4nzevaJckSRpABriBsmgRzJwJC8oJkxcsKPYXLaq2LkmS1HYMcANl2bJV4a3bggVFuyRJ0gAywA2UUaNgypTV26ZMKdolSZIGkAFuoGy9NcyZsyrETZlS7G+9dbV1SZKktuNTqAOlowP22APuvBMefxzeeqvY9ylUSZI0wEwXA6mjAyZOhGuugUMPhSVLqq5IkiS1IQNcI9Rq8M47cOWVVVciSZLakAGuEfbaq5gL7vLLq65EkiS1IQNcI0QUvXA33ACvvFJ1NZIkqc0Y4BqlqwuWL4err666EkmS1GYMcI0ybVrxQIPDqJIkaYAZ4BqlowOOPbZ4IvWNN6quRpIktREDXCN1dRXh7frrq65EkiS1EQNcIx1wAIwbBz/8YdWVSJKkNmKAa6QRI2DmTPjRj4oHGiRJkgaAAa7RajVYuhRuuqnqSiRJUpswwDXawQfDu97l06iSJGnAGOAabZNN4MgjYfbsYnktSZKkjWSAGwy1GixeDD/9adWVSJKkNmCAGwxHHFH0xDmMKkmSBoABbjCMGQOHHVYEuJUrq65GkiS1OAPcYOnqgoULYe7cqiuRJEktzgA3WI46CoYPd1JfSZK00Qxwg2XsWDjooGIYNbPqaiRJUgszwA2mWg3mz4eHHqq6EkmS1MIMcINp5kyIcBhVkiRtFAPcYNpmG/jIR5xORJIkbRQD3GCr1WDePHjssaorkSRJLcoAN9hqteLdXjhJkrSBGhrgIuLMiHg4Ih6KiIsjYpOI2D4i7oqI+RHxg4gYWZ47qtyfXx6fWvc9XyrbfxURh9W1H162zY+ILzbyWgbM5Mmwzz7eBydJkjZYwwJcREwCPgt0ZubuwDDgBOBs4JuZuSPwEnBy+ZGTgZfK9m+W5xERu5Wfex9wOPCvETEsIoYB/wIcAewGnFie2/y6uuCee+Cpp6quRJIktaBGD6EOBzaNiOHAaOA5YAZwWXn8AmBWuT2z3Kc8flBERNl+SWYuy8wngPnAvuVrfmY+npnLgUvKc5vfsccW77NnV1uHJElqSQ0LcJn5DPAPwFMUwW0pcC/wcmauKE9bCEwqtycBT5efXVGeP76+fY3PrKu9+e28M+y+u8OokiRpgzRyCHUsRY/Y9sC2wGYUQ6CDLiJOiYi5ETF38eLFVZSwtq4uuP12eOGFqiuRJEktppFDqAcDT2Tm4sx8G7gc+DCwZTmkCrAd8Ey5/QwwGaA8vgXwYn37Gp9ZV/taMvO8zOzMzM4JEyYMxLVtvFqtWFJrzpyqK5EkSS2mkQHuKWBaRIwu72U7CPglcDNwXHnOSUB3grmy3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSMpHnS4soHXM7D22AN23NHpRCRJUr818h64uygeRrgPmFf+rPOAPwU+HxHzKe5xO7/8yPnA+LL988AXy+95GLiUIvxdC5yWme+U98mdDlwHPAJcWp7bGiKKXrgbb4SXXqq6GkmS1EKi6OQaOjo7O3Pu3LlVl1G4+2744AfhwgvhE5+ouhpJktRkIuLezOxcs92VGKrU2QnbbecwqiRJ6hcDXJU6Ooo54a69Fl57repqJElSizDAVa2rC956qwhxkiRJfWCAq9r++8OECU7qK0mS+swAV7Vhw2DWLLjqqqInTpIkqRcGuGZQqxX3wP3kJ1VXIkmSWoABrhnMmAFbbOHTqJIkqU8McM1g5Eg4+uhiWa0VK6quRpIkNTkDXLOo1WDJErj11qorkSRJTc4A1ywOOwxGj3YYVZIk9coA1yxGj4YjjoArroCVK6uuRpIkNTEDXDPp6oLnnoM776y6EkmS1MQMcM3kyCOLBxqc1FeSJK2HAa6ZbL45HHJIcR9cZtXVSJKkJmWAaza1Gjz5JDzwQNWVSJKkJmWAazbHHFMsr+UwqiRJWgcDXLPZaiuYPt3pRCRJ0joZ4JpRrQaPPFK8JEmS1mCAa0bHHlu82wsnSZJ6YIBrRttuC/vt531wkiSpRwa4ZtXVBfffD088UXUlkiSpyRjgmlX3MOoVV1RbhyRJajoGuGa1ww6w554Oo0qSpLUY4JpZVxf87GfF+qiSJEklA1wzq9WKd4dRJUlSHQNcM9ttN9h1V6cTkSRJqzHANbtaDW65BV58sepKJElSkzDANbuuLnjnHbjyyqorkSRJTcIA1+z22gumTHEYVZIk/YYBrtlFFMOo118Pr7xSdTWSJKkJGOBaQVcXLF8O11xTdSWSJKkJGOBawX77wcSJTuorSZIAA1xr6Ogolta65hp4882qq5EkSRUzwLWKWg3eeAOuu67qSiRJUsUMcK1i+nQYN86nUSVJkgGuZYwYAcccU8wHt3x51dVIkqQKGeBaSa0GS5fCzTdXXYkkSaqQAa6VHHIIjBnjMKokSUOcAa6VbLIJHHkkzJ5dLK8lSZKGJANcq+nqgkWL4I47qq5EkiRVxADXao44ouiJc1JfSZKGLANcqxkzBg47rLgPLrPqaiRJUgUMcK2oVoOFC+Gee6quRJIkVcAA14qOPhqGD/dpVEmShigDXCsaOxZmzCjug3MYVZKkIccA16pqNZg/Hx56qOpKJEnSIDPAtapZsyDCYVRJkoaghga4iNgyIi6LiP+OiEciYr+IGBcRN0TEY+X72PLciIhzI2J+RDwYEXvXfc9J5fmPRcRJde0fiIh55WfOjYho5PU0lW22gf33dzoRSZKGoEb3wH0LuDYzdwXeDzwCfBG4MTN3Am4s9wGOAHYqX6cA3wGIiHHAV4APAvsCX+kOfeU5n6773OENvp7m0tUF8+bBY49VXYkkSRpEDQtwEbEFcABwPkBmLs/Ml4GZwAXlaRcAs8rtmcCFWbgT2DIifgs4DLghM5dk5kvADcDh5bHNM/POzEzgwrrvGhqOPbZ4dxhVkqQhpZE9cNsDi4H/jIj7I+K7EbEZsE1mPlee8zywTbk9CXi67vMLy7b1tS/soX3oePe7YZ99DHCSJA0xjQxww4G9ge9k5l7A66waLgWg7Dlr+DwYEXFKRMyNiLmLFy9u9I8bXLUa3H03PP107+dKkqS20MgAtxBYmJl3lfuXUQS6F8rhT8r3ReXxZ4DJdZ/frmxbX/t2PbSvJTPPy8zOzOycMGHCRl1U06nVivcrrqi2DkmSNGgaFuAy83ng6YjYpWw6CPglcCXQ/STpScCccvtK4JPl06jTgKXlUOt1wKERMbZ8eOFQ4Lry2CsRMa18+vSTdd81dOy8M+y+u8OokiQNIcMb/P2fAS6KiJHA48DvU4TGSyPiZGAB8L/Kc68BPgrMB94ozyUzl0TEV4HuhT//JjOXlNt/DHwf2BT4cfkaemo1+NrXYNEi2HrrqquRJEkNFjnElmLq7OzMuXPnVl3GwHrwQXj/++G88+DTn666GkmSNEAi4t7M7Fyz3ZUY2sEee8B73uOkvpIkDREGuHYQUUzqe+ON8PLLVVcjSZIazADXLmo1WLECrrqq6kokSVKDGeDaxT77wKRJDqNKkjQEGODaRUdH0Qt37bXw+utVVyNJkhrIANdOajV46y348dCcTUWSpKHCANdOPvIRmDDBSX0lSWpzBrh2MmwYzJxZPMiwbFnV1UiSpAYxwLWbri549VX4yU+qrkSSJDWIAa7dzJgBm2/uMKokSW3MANduRo6Eo4+GOXOKeeEkSVLbMcC1o64uePFFuO22qiuRJEkNYIBrR4cdBqNHO6mvJEltygDXjkaPhiOOgCuugJUrq65GkiQNMANcu6rV4Lnn4M47q65EkiQNMANcuzrqqOKBBp9GlSSp7Rjg2tXmm8PBBxcBLrPqaiRJ0gAywLWzWg2eeAIeeKDqSiRJ0gAywLWzmTOho8NhVEmS2sx6A1xE7BMRE+v2PxkRcyLi3IgY1/jytFG22gqmT3c6EUmS2kxvPXD/DiwHiIgDgK8DFwJLgfMaW5oGRFcXPPJI8ZIkSW2htwA3LDOXlNsfA87LzB9m5l8COza2NA2IWbOKd4dRJUlqG70GuIgYXm4fBNxUd2x4D+er2UyaBPvtZ4CTJKmN9BbgLgZujYg5wJvA7QARsSPFMKpaQa0G990HTz5ZdSWSJGkArDfAZeb/C3wB+D6wf+ZvJhTrAD7T2NI0YGq14t1eOEmS2kJvT6GOBu7NzCsy8/WI2CUizgR2z8z7BqdEbbQddoA99zTASZLUJnobQr0WmAq/GTb9ObADcFpE/F1jS9OAqtXgZz8r1keVJEktrbcANzYzHyu3TwIuzszPAEcARzW0Mg2srq5iSa3Zs6uuRJIkbaTeAlz9IpozgBsAMnM5sLJRRakB3vte2GUXJ/WVJKkN9BbgHoyIfyjve9sRuB4gIrZseGUaWBFFL9wtt8CLL1ZdjSRJ2gi9BbhPA7+muA/u0Mx8o2zfDfiHBtalRqjV4J134Ec/qroSSZK0EXoLcGOAH2XmGZn5i7r2pRQPOKiV7L03TJniMKokSS2utwD3z8D4HtrHAd8a+HLUUBFFL9z118Orr1ZdjSRJ2kC9BbgdM/O2NRsz83bgtxtTkhqqVoPly+Hqq6uuRJIkbaDeAty71nNsxEAWokHyoQ/BxIlO6itJUgvrLcDNj4iPrtkYEUcAjzemJDVURwfMmgXXXANvvll1NZIkaQMM7+X454CrI+J/AfeWbZ3AfjiRb+vq6oJ/+7fiXriZM6uuRpIk9VNvPXBHAr8H3AFMKV+3Ar+dmY82uDY1yvTpMHasw6iSJLWo3nrgtgPOAd4LPEgR5BYBo4G3GluaGmbECDjmGJgzp3igYeTIqiuSJEn9sN4euMw8KzM/BGwDfAlYAvw+8FBE/HIQ6lOjdHXByy8XKzNIkqSW0tsQardNgc2BLcrXs8BdjSpKg+CQQ2DMGCf1lSSpBa03wEXEeRFxB/ADigcXfgYcn5mdmfn7g1GgGmSTTeDII2H27GJ5LUmS1DJ664F7NzAKeB54BlgIvNzoojRIajVYtAjuuKPqSiRJUj/0dg/c4cA+rFq4/gvAPRFxfUT8daOLU4N99KMwapRPo0qS1GJ6vQcuCw8B1wA/pngS9T3AGQ2uTY02ZgwcdlgR4DKrrkaSJPVRb/fAfTYiLomIpyjmfzsK+G+gRrGgvVpdrQZPPw1z51ZdiSRJ6qPe5oGbCvx/wJmZ+Vzjy9GgO/poGD686IXbZ5+qq5EkSX3Q2z1wn8/MH25MeIuIYRFxf0RcVe5vHxF3RcT8iPhBRIws20eV+/PL41PrvuNLZfuvIuKwuvbDy7b5EfHFDa1xSBs3Dg48sJhOxGFUSZJaQl/ngdsYZwCP1O2fDXwzM3cEXgJOLttPBl4q279ZnkdE7AacALwPOBz41zIUDgP+BTgC2A04sTxX/dXVBY89Bg8/XHUlkiSpDxoa4CJiO4r1VL9b7gcwA7isPOUCYFa5PbPcpzx+UHn+TOCSzFyWmU8A84F9y9f8zHw8M5cDl5Tnqr9mzoQIJ/WVJKlFNLoH7hzgfwMry/3xwMuZuaLcXwhMKrcnAU8DlMeXluf/pn2Nz6yrXf01cSLsv7/TiUiS1CIaFuAi4ihgUWbe26if0Y9aTomIuRExd/HixVWX05xqNXjwQZg/v+pKJElSLxrZA/dh4JiIeJJieHMG8C1gy4jofvp1O4oVHijfJwOUx7cAXqxvX+Mz62pfS2aeVy7/1TlhwoSNv7J2dOyxxbu9cJIkNb2GBbjM/FJmbpeZUykeQrgpMz8O3AwcV552EjCn3L6y3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSPLn3Flo66n7U2ZAp2dBjhJklrAYDyFuqY/BT4fEfMp7nE7v2w/Hxhftn8e+CJAZj4MXAr8ErgWOC0z3ynvkzsduI7iKddLy3O1oWo1uOsuWLiw6kokSdJ6RA6xub86OztzrqsO9OzRR2GXXeDcc+Ezn6m6GkmShryIuDczO9dsr6IHTs1q553hfe9zOhFJkpqcAU6r6+qC22+HRYuqrkSSJK2DAU6rq9Vg5Uq40udBJElqVgY4re63fxt22MFhVEmSmpgBTquLKIZRb7wRXn656mokSVIPDHBaW60Gb78NV11VdSWSJKkHBjitbd99YdIkJ/WVJKlJGeC0to6OYmmta6+F11+vuhpJkrQGA5x61tUFb75ZhDhJktRUDHDq2f77w1ZbOYwqSVITMsCpZ8OHw8yZxYMMy5ZVXY0kSapjgNO6dXXBK68UU4pIkqSmYYDTus2YAZtv7qS+kiQ1GQOc1m3UKDj6aJgzB1asqLoaSZJUMsBp/Wo1ePFFuO22qiuRJEklA5zW7/DDYdNNfRpVkqQmYoDT+o0eDUccAVdcAStXVl2NJEnCAKe+qNXg2WfhrruqrkSSJGGAU18cdRSMGOEwqiRJTcIAp95tsQUcfHAxnUhm1dVIkjTkGeDUN11d8MQT8ItfVF2JJElDngFOfXPMMdDR4aS+kiQ1AQOc+mbCBJg+3fvgJElqAsOrLkAt5NRTi4cZ5s+HMWNg662LXjlJkjSo/Ourvlm5EnbaCc48s3ifNg3mzXNuOEmSKmCAU98sWgTHHgsLFhT7CxbAzJlFuyRJGlQGOPXNsmWrwlu3BQuKdkmSNKgMcOqbUaNgypTV26ZMcV44SZIqYIBT32y9NcyZsyrETZkC3/senHyyT6ZKkjTIDHDqm44O2GMPuPNOePLJ4n3XXeHVV4tJfs86C95+u+oqJUkaEgxw6ruODpg4seh9mzgRtt0Wbr8dTjsN/vEfYcaMYtF7SZLUUAY4bZxRo+Db34aLLoL77oO99oKbb666KkmS2poBTgPjd38X7rkHxo0rFr7/u79zjjhJkhrEAKeBs9tucPfdcPzx8Gd/VswT99JLVVclSVLbMcBpYL3rXXDxxfDP/wzXXQcf+EAxtCpJkgaMAU4DLwJOPx1uuw1WrIAPfQjOO8854yRJGiAGODXOtGlF79v06fCHfwif+hS88UbVVUmS1PIMcGqsrbaCa66Br3wF/s//KULdo49WXZUkSS3NAKfGGzYM/uqv4Mc/LuaJ6+yEH/6w6qokSWpZBjgNnsMOK4ZUd9sNjjsOPv95V2+QJGkDGOA0uN797uLhhtNPh29+Ew48EJ55puqqJElqKQY4Db6RI4tpRi6+GB54APbeG266qeqqJElqGQY4VeeEE4rVG8aPh0MOgb/9W1dvkCSpDwxwqtZ731us3vCxj8Gf/zkccwwsWVJ1VZIkNTUDnKo3ZgxcdBF8+9tw/fXF6g1z51ZdlSRJTcsAp+YQAaedBrffDu+8Ax/+MPz7v7t6gyRJPTDAqbl88INw//0wYwaceiqcdBK8/nrVVUmS1FQaFuAiYnJE3BwRv4yIhyPijLJ9XETcEBGPle9jy/aIiHMjYn5EPBgRe9d910nl+Y9FxEl17R+IiHnlZ86NiGjU9WgQjR8PV18Nf/3X8F//Vaze8KtfVV2VJElNo5E9cCuAL2TmbsA04LSI2A34InBjZu4E3FjuAxwB7FS+TgG+A0XgA74CfBDYF/hKd+grz/l03ecOb+D1aDB1dMCXvwzXXgvPPQf77AOXXVZ1VZIkNYWGBbjMfC4z7yu3XwUeASYBM4ELytMuAGaV2zOBC7NwJ7BlRPwWcBhwQ2YuycyXgBuAw8tjm2fmnZmZwIV136V2ceihxZDq+94Hxx8PZ57p6g2SpCFvUO6Bi4ipwF7AXcA2mflceeh5YJtyexLwdN3HFpZt62tf2EN7Tz//lIiYGxFzFy9evFHXogpMngy33gqf/Syccw78zu/AwoW9fkySpHbV8AAXEWOAHwKfy8xX6o+VPWcNf8wwM8/LzM7M7JwwYUKjf5waYeRI+Na34JJL4MEHi9UbfvKTqquSJKkSDQ1wETGCIrxdlJmXl80vlMOflO+LyvZngMl1H9+ubFtf+3Y9tKudfexjxeoNEyYUw6tf+5qrN0iShpxGPoUawPnAI5n5T3WHrgS6nyQ9CZhT1/7J8mnUacDScqj1OuDQiBhbPrxwKHBdeeyViJhW/qxP1n2X2tmuu8Jdd8GJJ8Jf/iUcfbSrN0iShpRG9sB9GPgEMCMiHihfHwW+DhwSEY8BB5f7ANcAjwPzgf8A/hggM5cAXwXuKV9/U7ZRnvPd8jP/A/y4gdejZjJmTDHFyL/+azGUuvfert4gSRoyIofYTPednZ051z/07eWee+C44+D554uHHE49tVjZQZKkFhcR92Zm55rtrsSg1rfPPnDffXDQQfDHfwyf+ISrN0iS2poBTu1h/Hi46ir46lfh//7fYkkuV2+QJLUpA5zaR0cH/MVfwPXXwwsvQGcnXHpp1VVJkjTgDHBqPwcfXKzesMcexbQjZ5wBy5dXXZUkSQPGAKf2tN12cMstRXg791xXb5AktRUDnNrXyJHFU6mXXgrz5sFee8ENN1RdlSRJG80Ap/Z3/PHFHHHbbAOHHVY86ODqDZKkFmaA09Cwyy7F6g0f/zh8+ctw5JHw4otVVyVJ0gYxwGno2GwzuPBC+M534KabitUb7r676qokSeo3A5yGlohipYY77ii299+/WI5riK1IIklqbQY4DU2dncXqDYccAqedBr/3e/Daa1VXJUlSnxjgNHSNGwc/+hF87WtwySXF6g2PP16sqbpgQfHuww6SpCZkgNPQ1tEBf/7nxeoNkyfDk0/CtGkwdWrxPm+eIU6S1HSGV12A1BQOOgh22gkOOKDofYPifeZMuPHGItANG1ZpiZIkdTPASd0yV4W3bgsWFCs4vP/9sO++sN9+xWvaNNhqq2rqlCQNeQY4qduoUTBlyuohbsoUGD8ePvUp+PnP4eyz4Z13imM77bQq0O23H+y+u710kqRBETnEpk/o7OzMuXPnVl2GmtHKlcU9bzNnFiFuyhSYMwf22KO4Vw7g9deLVR1+/vNVr8WLi2ObbWYvnSRpQEXEvZnZuVa7AU6qs3IlLFoEy5YVPXJbb70qvPUkE554YvVA94tf2EsnSRoQBriSAU4NZy+dJGmArCvAeQ+cNNA22wymTy9e0HMvnffSSZI2gj1wUhXqe+nuvLN4X7SoOGYvnSSpZA+c1Ew2ppdu2rSil264//eVpKHKHjipWdlLJ0lDnj1wUqtpRC9df5+ylSQ1JXvgpFbWn166D30Inn56/fPcSZKaitOIlAxwamvrm5fu8svhzDPXXmnijjtg0qTqapYkrZNDqNJQEAE77FC8Pv7xoq27l27s2J7Xep0/v1jrdfvtV7122GHV9pQpMHLk4F+LJGmdDHBSu+u+l+7553te63XMGDjuOHj8cbj/fpg9G95+e9U5EUUP3ZrBrvu17bYOwUrSIDPASUPF1lsX97z1dA/cv/3bqvPeeQeefbYYin3iiSLYdW//5CfFsfpbL0aOhKlT1w523a9x44oQKEkaMN4DJw0lA/EU6rJlRQCsD3b1ryVLVj9/8817DnY77FAEv9GjB+zyJKndeA+cpCKsTZy4cd8xahTsvHPx6snSpT0Hu1/9Cq67Dt58c/Xzt9lm3fffTZ7shMWS1AP/ZZQ0sLbYAvbcs3itKRNeeGH1YNfdk/fzn8Oll66a1w6KNWEnT+453G2/fRH+6odnnedO0hBhgJM0eCKKHsCJE4u56db09tuwcOHa99498QRcfXUR/uptuumq++8OPBD23x9OOGHVPX6zZxf3+A0bNiiXJ0mDxQAnqXmMGLGqd23GjLWPv/EGPPlkz/ff7bzzqvAGxfusWXDOOXDqqcXDFP15bb65vXeSmpYBTlLrGD0adtuteK1pwYKe57mbOhWOOaZ4uGLJEnjqqWJy4yVL4LXX1v2zOjpgyy37H/zGjvW+PUkN578yktrDqFE9z3M3cSKcd17Pn1m+HF56aVW4W9/r17+GRx8ttl9+ef21bL75hgW/TTbp/Tq9z08SBlFgrMMAAApnSURBVDhJ7WJd89xtvfW6PzNyZPEgxDbb9O9nvfNOEeLWF/jqg+HTT6/arn9IY02jR68e6NYMeTvvXDzUcfzxq67x8suLkDpsWBHoNtmkeG/VufcMqFKfGOAktYeOjuKBhTvvbPwf/2HDYPz44tUfmfDqq33r8VuyZFWP34svFr2Fl1++KrxB8V6rwTe/WbzX6w5z9a+e2vpzvD/fsSHDyCtXwrx5PU82bYiTVuNEvpLU7DKL+fOeew523HHt4w89BLfdBm+9tfZr2bKe23s7vrGGDet/APyDP4ATT1x7GHz2bLjnnqLHdOTI4ju6t9fcX9exESOaIwTaw6h+ciJfSWpVEcXw6mab9Xyf3/jx8Ed/NHA/L7Po8duYANiX40uXrn78U5/q+UGUpUvhlFM2/rpGjOh/8Ovvues7tuWWxZPUtdqqHsYrrijmNxw2rOi17A6arToEDu0fUpvk+gxwktQqNuQ+vw0RUfxhGjVqYL+3N88/33NA3WGHYn7AZcuKYNn9qt9f37H+nLtsWdHbuXTp+j+3bNnqawL3xeWXw5lnrj4EfuyxPQ+BjxixKtDVb6/53te2RhzrqW2zzYr7P+tD6uzZxe+wo6M4b/jwIrC2YkhtomF+h1AlqZU0yX/9N0QT/XHskxUr+hcSp07teQqcBx8slpl7++3iO99+e/XtNd/7e6y38wcyB6wZUqH4PfYUUrsDXXfv48ZsD8R39GV7zz3hqKPWvr4779z4ZQrXwSFUSWoHA7GebbMazAdRBkL3H/fRo/t2/rp6GCdMgLPOakyNfbFy5cAFxV126XkYfMcd4e//vngKe8WK4jVQ28uXb9hn69/76pZber6+Zcs2+tfQXwY4SVLzaOeAOlhD4P3V0TFwQ+brC6l/8icb//2NkFmE2L4Ev2HDer6+wb7dAAOcJEmDo9V6GDdEs4bU9Ykogln3XIrrs3Jl01yfAU6SpMHSzj2M0P4htYmur+UDXEQcDnwLGAZ8NzO/XnFJkiQNXUMhpDbB9bV0JI6IYcC/AEcAuwEnRkQPj/hIkiS1j5YOcMC+wPzMfDwzlwOXADMrrkmSJKmhWj3ATQKerttfWLZJkiS1rVYPcH0SEadExNyImLt48eKqy5EkSdoorR7gngEm1+1vV7atJjPPy8zOzOycMGHCoBUnSZLUCK0e4O4BdoqI7SNiJHACcGXFNUmSJDVUS08jkpkrIuJ04DqKaUS+l5kPV1yWJElSQ7V0gAPIzGuAa6quQ5IkabBEZlZdw6CKiMXAgl5P1PpsBfy66iK0Ufwdtj5/h63N31/rG6zf4ZTMXOsG/iEX4LTxImJuZnZWXYc2nL/D1ufvsLX5+2t9Vf8OW/0hBkmSpCHHACdJktRiDHDaEOdVXYA2mr/D1ufvsLX5+2t9lf4OvQdOkiSpxdgDJ0mS1GIMcOqziJgcETdHxC8j4uGIOKPqmtR/ETEsIu6PiKuqrkX9FxFbRsRlEfHfEfFIROxXdU3qn4g4s/w39KGIuDgiNqm6Jq1fRHwvIhZFxEN1beMi4oaIeKx8HzuYNRng1B8rgC9k5m7ANOC0iNit4prUf2cAj1RdhDbYt4BrM3NX4P34u2wpETEJ+CzQmZm7U6widEK1VakPvg8cvkbbF4EbM3Mn4MZyf9AY4NRnmflcZt5Xbr9K8YdjUrVVqT8iYjvgSOC7Vdei/ouILYADgPMBMnN5Zr5cbVXaAMOBTSNiODAaeLbietSLzLwNWLJG80zggnL7AmDWYNZkgNMGiYipwF7AXdVWon46B/jfwMqqC9EG2R5YDPxnOQz+3YjYrOqi1HeZ+QzwD8BTwHPA0sy8vtqqtIG2ycznyu3ngW0G84cb4NRvETEG+CHwucx8pep61DcRcRSwKDPvrboWbbDhwN7AdzJzL+B1BnnYRhunvE9qJkUY3xbYLCJ+r9qqtLGymNJjUKf1MMCpXyJiBEV4uygzL6+6HvXLh4FjIuJJ4BJgRkT8V7UlqZ8WAgszs7vn+zKKQKfWcTDwRGYuzsy3gcuBD1VckzbMCxHxWwDl+6LB/OEGOPVZRATFvTePZOY/VV2P+iczv5SZ22XmVIqbpm/KTP/Lv4Vk5vPA0xGxS9l0EPDLCktS/z0FTIuI0eW/qQfhgyit6krgpHL7JGDOYP5wA5z648PAJyh6bh4oXx+tuihpiPkMcFFEPAjsCfxtxfWoH8re08uA+4B5FH+HXZWhyUXExcDPgV0iYmFEnAx8HTgkIh6j6Fn9+qDW5EoMkiRJrcUeOEmSpBZjgJMkSWoxBjhJkqQWY4CTJElqMQY4SZKkFmOAk9Q0IiIj4h/r9s+KiL8aoO/+fkQcNxDf1cvPOT4iHomImxtZV0RMjYjf7X+FktqBAU5SM1kG1CJiq6oLqVcuOt5XJwOfzswDG1VPaSrQrwDXz+uQ1MQMcJKayQqKSU3PXPPAmj1VEfFa+f47EXFrRMyJiMcj4usR8fGIuDsi5kXEe+q+5uCImBsRj5ZrwxIRwyLiGxFxT0Q8GBF/WPe9t0fElfSw2kFEnFh+/0MRcXbZ9mVgf+D8iPhGD5/50/Izv4iItSb9jIgnu8NrRHRGxC3l9vS6ybPvj4h3UUwa+pGy7cy+XkdEbBYRV5c1PBQRH+vLL0ZSc/G/xiQ1m38BHoyIv+/HZ94PvBdYAjwOfDcz942IMyhWLvhced5UYF/gPcDNEbEj8ElgaWbuExGjgDsi4vry/L2B3TPzifofFhHbAmcDHwBeAq6PiFmZ+TcRMQM4KzPnrvGZIygWMf9gZr4REeP6cX1nAadl5h0RMQZ4i2IR+7MyszuIntKX64iILuDZzDyy/NwW/ahDUpOwB05SU8nMV4ALgc/242P3ZOZzmbkM+B+gO7jMowht3S7NzJWZ+RhF0NsVOBT4ZEQ8ANwFjAd2Ks+/e83wVtoHuKVckHwFcBFwQC81Hgz8Z2a+UV7nkn5c3x3AP0XEZ4Ety5+5pr5exzyK5X/OjoiPZObSftQhqUkY4CQ1o3Mo7iXbrK5tBeW/WRHRAYysO7asbntl3f5KVh9pWHPtwAQC+Exm7lm+ts/M7gD4+kZdRf/95hqBTX5TZObXgT8ANqXoWdu1h8/26Toy81GKHrl5wNfKYV9JLcYAJ6nplL1Tl1KEuG5PUgxZAhwDjNiArz4+IjrK++J2AH4FXAf8UUSMAIiInSNis/V9CXA3MD0itoqIYcCJwK29fOYG4PcjYnT5c3oaQn2SVdfY1d0YEe/JzHmZeTZwD0XP4avAu+o+26frKId/38jM/wK+QRHmJLUY74GT1Kz+ETi9bv8/gDkR8QvgWjasd+wpivC1OXBqZr4VEd+lGGa9LyICWAzMWt+XZOZzEfFF4GaKnq+rM3NOL5+5NiL2BOZGxHLgGuDP1jjtrykegPgqcEtd++ci4kCKHsWHgR+X2++U/3t8H/hWH69jD+AbEbESeBv4o/XVLak5ReaaIwqSJElqZg6hSpIktRgDnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASZIktRgDnCRJUov5/wEEXUm8vjXJ1AAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(10,5))\n", + "sns.lineplot(range(1, 11), wcss,marker='o',color='red')\n", + "plt.title('Elbow')\n", + "plt.xlabel('Number of clusters')\n", + "plt.ylabel('WCSS')\n", + "plt.show()" + ] + }, + { + "source": [ + "Looks like 3 is a good number after all. Fit the model again and create a scatterplot of your clusters. They do group in bunches, but they are pretty close together." + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd3gUVduH7zOzNZWE0BKqVAHpAgpSFBTBil2wI2Lvfnasr72j2MWCBVGQpqgIAtKl914SSoD0bJ853x+zCdnsbFhCAop7X5eXZHZ2zskmOc85T/k9QkpJjBgxYsT476Ic7wnEiBEjRozjS8wQxIgRI8Z/nJghiBEjRoz/ODFDECNGjBj/cWKGIEaMGDH+48QMQYwYMWL8x6k2QyCE+FQIkS2EWB3hdSGEeFsIsVkIsVII0am65hIjRowYMSJTnSeCMcCACl4/F2ge/G84MLoa5xIjRowYMSJQbYZASjkbyKnglguBL6TBAqCGEKJedc0nRowYMWKYYzmOY2cAu8p8nRm8tqeiN6WlpcnGjRtX47RixIgR48Tj77//PiClrGX22vE0BFEjhBiO4T6iYcOGLFmy5DjPKEaMGDH+XQghdkR67XhmDWUBDcp8XT94LQwp5YdSyi5Syi61apkatBgxYsSIUUmOpyGYBFwbzB7qDuRLKSt0C8WIESNGjKqn2lxDQohvgD5AmhAiExgJWAGklO8D04CBwGbABdxQXXOJESNGjBiRqTZDIKW86jCvS+D26ho/RowYMWJER6yyOEaMGDH+48QMQYwYMWL8x4kZghgxYsT4jxMzBDFixIjxH+dfUVAWI0aM/xYysAu8vxtf2PsjLPWP74ROcGKGIEaMGP8o9OLPofBVQBoXCl9HJj6IEn/tcZ3XiUzMNRQjRox/DDKwM2gEvIAv+J8XCl8xTgkxqoWYIYgRI8Y/B+9vgG7ygg7eX4/1bP4zxFxDMWIcJQd25zD5velsWbGdFqc24/wRZ5NSO/l4T+tfijzeE/hPEjMEMU54pJRIKVGUqj8Ab125g3t7PYHf68fvDbBsxiomvDWVd+b/j/ot0qt8vBMee38ofMvkBcV4LUa1EHMNHWN25uex/sB+NN3s+BujKinOL+bl60cx0Hk1A2xXcn/fkezaYCpwW2neuvVDXAVu/N4AAD6Pn+I8F+/dM6ZKx/mvICyNIOEewI6xT7UY/064B2FpeETPklJH+jciAxHVl2MEEYbkz7+HLl26yH9jP4LMgnxumfIT2/JyUYXAplp49ewB9G180vGe2gmJlJI7uj3CtpU78PuMRVoIQXxyHGM2vk1yWtJRj6FpGufar0Lq4X9DVruFae5vjnqM/yoysB08wZiA42yEpfGRvd87D5n/AEgXSB3U+oiUdxGWJlU+138LQoi/pZRdzF6LnQiOAbqUXP3jODYcPIAnEKDY7yfX4+b2aZPZlpd7vKfHrvx83l44n2dnz2Tuzh382zYHZqxbuImd6zJLjQAYxsHn9fPLp39UyRiKomCxmntX7U57lYxRFUj57zt9CktjRMJw478jNQLaHmTuraAfMAwBHtC2IHOGIqW/Wub7bydmCI4Bi7IyyXW70cstsAFd5+tVK47TrAymbtzAOWPH8O7iBXy2fCkjpv7ELVN+qhbXVXF+MZuXb6Mwt6jKn12ezA27Ta/73D62rqwaV4EQgn5De2G1W0Ou2xxWBtx0ZpWMcTTorono2b2Q+1qhZ/dEd/1wvKd0TJCu8UCg/FXDKHjnHo8p/eOJBYuPAftdxabXA7pOVmHBMZ7NIVx+Pw/9/gueQCDk2rzMnUzfspmBzVtUyTi6rvPhg18yefR0LDYLAV+As4b24u73bka1qFUyRgl5+/NZ+vsq8g8UoJu4bOxxNpp3qjp33K1vXMfuLXtZv2gTqkVF82u069OGG569ssrGqAy66ycoeBLwBC9kQ8Ez6IASd8nxnFr1o+8FTHb+UjdOCTHCiBmCY0CnuukETHbYTouV3g0bH/sJBVmUlYlqkknj8vv5acPaKjMEP7w+hSkf/IbP48fnMf5A/xg7h6TUBIa9OLRKxgCY+M40PnzoKyw2FYEg4AugWo3FGUBRBPY4O+fc0LfKxnQmOHn1j6fYtnonmRt206hNAxq2yjC9t8TlJoSosvEjUvwmpUagFDcUvQUnuCEQttOQ7qkY/a7KooOt0/GY0j+emGvoGJCRlMRlrdvitBxyIdhVlXqJCVzY6uTjNi+LokRM27apVbdHGP/6ZLwub8g1r9vHpPemV1k8YsuK7Xz88Fj8Xj/uQg+uQje6piMAZ6IDq91Ct0GdeXfRiySmJFTJmGVp0rYhZ1zS3dQI7N2ezaPnPs8A25UMdF7NC0PfoiCnsMrnEIIWoeurvveEiAFViONssDTEyDwqwQmOAQhL0+M1q380sRPBMeLpPmfRqV4GX6xchsvnY2DzltzQoRMOi/Xwb64mumbUR1XCd6dOi5XLW7etsnEixQQ8xR50Ta8S99D0MTPxe8PdATaHjQc+u50zBnc76jEqg6vQzZ3dHqHgYCG6LtE1ndnjF7B15Q4+WP5qtdQ2AKDWB21n+HUl/dicSMohpRf0IlBSEKJ6959C2CD1W6TrS/BMBuyIuCHgvKhax/03EzMExwghBBe1OpmLjuMJoDw2VeWD8y7ipkk/AqAFC6+uansKPRs2qrJxWnRuypp5G8KuN2iVUWUxAneRxzQmIKXEU1zeRXLsmPHVbDwub8jcAr4A+7bvZ8WsNXQ885TqGTjhfsj/P0LdQw5IuK9Kh5FSgn8J0vMHiHiE84KQfH8pfciC58A9AZCgJCMTn0BxDqjSeZRHKHGIhFsg4ZZqHedEoVpNsxBigBBigxBisxDiYZPXGwkhZgghVgohZgkhYlqzx5iuGfVZcNMInjuzP4/27M3PQ67j8V59q3TXeOsb1+OIs6METx9CCOxxNu5456YqG+OMwd1xxIenbGoBjc7921XZOEfKttU78RR7w65rms6u9eaZTVWB4jwXkl8CtSGgGv9PfgEl7oIqG0NKicx/CJk7DFyfQPF7yAOD0F0TD92T/zi4J1IqIqfvh/yHkL5FVTaPGEdPtZ0IhBAq8C7QH8gEFgshJkkp15a57VXgCynl50KIM4EXgGuqa04nGlJKxq5awUdLl5DncXNqen0e7tmLZqk1j+g58TYbF7asvpNKy1Ob8c7CFxj7/A9sXrqVRm0aMOSxS6o0e6fLOe3pfHZ7/v51BZ5iL0KAzWnjuqevILVuSpWNEwktoFGYW0RiSkLIKadp+8Y44u1hxkBVFRq1rt59j+I8F5znVt8AvjmGSJx0By8EjP8KnkA6zgQkeKZhKIiWxYMsGo1I7Vp9c4txRFSna6grsFlKuRVACPEtcCFQ1hC0BkrOqjOBifzLkVJG3E3vys/npw3rKPL5OLPJSZyannFUO+8X587mq1XLcQfTP2du38rCrEymXX0tDZL/WaJnjds04LGv76m25yuKwlWPXMzmpdvwuo0UwabtG9NvaK9KPa+in+OcHxYw7tVJ5O8voMs57YlLdDJ59K/4fQFsDitDn7yMS+4ZhBCCM6/uyedPjcPn8aNrRuaY1WYho3k92vVuXblv9h+CdE8NFmyVQ1jA9xeozUBYQZY3BJjHL2IcN6rTEGQAZQXEM4HyEbsVwGDgLeBiIFEIUVNKebDsTUKI4cBwgIYNj0xv5FixKCuTZ/78g3UH9pNkt3NTx87c2qVbaXrmTxvW8cjvv6JJHb+u8+XK5XTLqE+yw8HO/Dy612/A9R06USsuPqrx8j0evli5DK+mlV6TgCfg5/2/F/H8mcdWoCtvfz5/TViE3xug23mdqNekzlE/c/nM1Ux4exp5+wvocVFXzrulP3GJzpAxJ749jaUzVpNat4ZxGiiTnbRh8Rbu7/sUn6x5I2qDu2XFdt654xPWzt+AI87OucPO4qYXhmALFo19+ez3fPfyT3iDO/wpH/wWIjHh9/r5/IlviUt0MHBYP5wJTkYtfIF37/qUxb8sQ7Wo9LmyByNevfa4BG2rFGEBBOapZxawNDBy98NQwNqheucW44ioNq0hIcSlwAAp5bDg19cA3aSUd5S5Jx0YBTQBZgOXAG2llHmRnlsVWkP5Hg/j1qxi2b49tKyZxlVt21E7vvIphWuy93H5+G9Ld+YATouFy9ucwsjeZ1Lg9dL9k/dDCrdKKPkzsikq8TYrk6+6hvTEw+vgLN+7h+smjqfQF77balUzjWlDrotq7gFd5+OlS/hq1XKKfX56NWrMQz3OICOKOZQwe/x8XrpuFIoQ6MF6iasfu4Qhjx1Zvrqr0M3fv61ECNi1Pouxz/9YmnZqc9qo3aAm7y15CWeCk4N7chnR8UGK812m2UIlOBMdPDvpYdr3bnPY8fft2M/Np9yHu+hQgNXmtNLl7A48PeEhivOLubzecHwekx1uOWo1SOPrHaOj+K7/vUjfEmTOTYA79AURh6g9HyGc6EXvQ/HoMu4jAcKJqPlDLJXzGFOR1lB1ngiygAZlvq4fvFaKlHI3xokAIUQCcElFRqBKJlVYwKCvv6DI60NH8uvmTXy4ZDHjL7+Kk2vVrtQz3160IGyRdwcCfLt6Jfd278G8XTuNnH0TSsywT9fQvDpvLPiLV/of3q+bnpiIr8xpoAQBnJSSGvXcH/j1Z6Zv2VR6spiycT1zd+7gt2uuJ9UZd9j3F+QU8tJ1o/C5QxfHb/73I90GdqJZx+hEvmaPn8/L149CtahIKXEXhmb6+Nw+sncdZOqHv3Ppfecz9rnxFOYUoQXCP4OySF2yd1t2VIZgwttTS1VED43rZ8n05ezZto+DWTlY7ZaoDEHu3iPTkFo+czVf/+9H9m7LpvXpLRn6xKXUb17viJ5xrBG2Lsj466H4U4zfPAWQiBqjEMI4uYn4W0BNRxaNNqp6bZ0g4U7wr0Z3jTdE4ByDEEp0J+EY1UN1Zg0tBpoLIZoIIWzAlcCksjcIIdLEoaTiR4BPq3E+APzfb9Mp8HrRg0uwDri1ALdPm1LpZ248eMD0cGxVVXYXFmAxydU3Q5OSOTui08GpHZ9A38YnYVdD0y8dFgsjuhwKwi3bs5sLv/2KZu+8TocPRvHmgr9Kq5x35efzy+aNYe6lAq+Hb1atjGoeC6csRVXDf438Xj8zvp4T1TMOZB3kpetG4XX5cBW4w4xACT63j/mTjdPg4p+XH9YIgOHrj9YYbVq6jYA//NRmtVvJ3LCb1HopISJ2FdHgZPPqYjP++HYuj5//AstmrGLP1n3M/GYut3V5iB3rMqN+xvFCSbwXkTYVkfgQIulJRO25CHtPpLYbGdhmSEFru0E/CLIQApmQOxxZMBJcnyALnkfuP8toUVkBUi9Gun9CFn+O9IenIsc4OqrNEEgpA8AdwHRgHTBOSrlGCPGMEKIkh60PsEEIsRGoAzxfXfMpYUGWed/T7fm5eE1cN9HQKi0Ns6Xer2lkJCbRo0GjqKs5kx2OqMd9/Zxzuahla+yqikVRqJ+UxHsDL6BtbcM/v+ngQYZO+J5V2fvQpaTA6+XDpUt4YubvAKzdn43fRPpCk5KZ27dGNQdN002/NymJaqEG+HPcfFMp5/IIASl1awCQWPPwrjy700a7Xm1o2r5xVPNo3qmJqZqo3+unfst00pvWpWWXplhsFR+k7U4bt7wSXaN1TdN47+7P8LoOnTJ0TcdT5GXM499G9YzjjbA0RMQPRcQNBj0X/cCFyP3nIA9cBPs7Q9EokHmADtqmMqqgAG6QeciCxyM+X/qWI/efgcwfiSx8BXnwMvT8h0/8CuljSLXWEUgpp0kpW0gpm0opnw9ee1JKOSn47/FSyubBe4ZJKcMTrquY8gqgZamsIbiz62k4LKGLg9Ni4aq27Ui023Farbw38AIcqorDYsGqKMZBulyw0GmxMKxj56jHdVisvNDvbFaMuJPFw27lz+uG0bvxod3v6CULQ3b7AJ5AgInr15LjdlHk90VsDGgWezCj28COpdkwZbE5bfS+7PSonuEp9kZlNGxOGxfdYbjNLr3v/LC6AdWqUDMjleS0JNLq1+TKhy/i6YkPRjUHgMF3D8LqKKck6rRx6oCOpcHvpyY8SPverbHarTgTHCSkxHPF/11Iiy5NSUiJp/XpLXh+6qN07t8+qjFz9+WHxCRKkFKy+q91Uc+99H2BzUjvQqRezRIWZmPLADJnCAQ2YNQNuIML/uF+l3TwLUKaZBdJqSHzbgVZhKEd5AM84P4ZvNOr+luocqS2Fz1/JPr+/ugHr0Z6Zh7vKZnyn6ssTrDZKDJZ5FQhiLfZKvXM1rVqM+aiS3jmz5msO7CfZLudG4NZQyXUS0ykZlw8+13FKEJgV1XqJyWTWViAVVHwaRpDTmnPpZWQdrCpKjY1vEJ37YH9pobPpqrsys+nht1hBHhN7qkZRXwAIKVODW598wZG3zsGLaChazo2h43+1/biQOZBJrw9jdant6Rll8iBwVPP7cA3L04I0yMSwpCIUK0qWkDnllevoW2PVgD0vbIH21fv5Ic3pmC1Wwn4AjTr2IRnJv0fSamJUc29PLUb1uLNOc8y6s5PWDPPyBoaOLwfNzx3Vek9SamJvDj9CXL35VGYW0xGs7pHVR0dnxwX8TSUcgT1D1I7gMwdDoHNpSmbMuEOlGNZWeubG1ywKyNhXhJjKId/FUgzV6Eb6RqHcFRvhfLRILV9yAMXBD+TAGg7kHlrkIn3osRff7ynF8J/zhDc2+10np/7Z8jiJ4Ahp7Q3VeKMxAGXi+/WrGTDgQO0q1OXy1q3ZfJV5rVwmq4z9Mfv2e8qDtmBZxYW8N7A87GrFlqmpUUVnD0STk6rxeacg2ELvVfTaJCcTIPkZCxBI1QWu6pyXouWUY9z3vD+dDyzLTO//Qu/x0+Tdo14546PmTF2DgGfhqIqdOp3CiPHP2C6aLbo3JRmnZqwZu76kOsd+rZlxOvXU5hTRItTm+KMP+Q2E0Jw4/NXc+n957N1xQ7SMlKrpEdwfHIcaRmpJNSIIy7R+LfFGj7nlDo1SKlT46jHc8Y7OPPqnsz89q+QgLs93s7Vj1xc+rXU9iILXwPvbBBOiBuCiL8BIYw/YZl3OwTWA4FDC2fxe0hLC4Sj6tRWK0TLjpAuejgsYO9V+r2EEgBTxysgK3eCP1bI4g8PGYFS3FD4BjLuitKA+j+B/5whuL5DJ3I8bj5eagQddQmXnNyax87oE/UzNh48wGXff4tPC+DVNH7ftoX3/17ExCuGUD8pvJBrfuYuiv3+MDeMX9OYtWM7T/WuniYmt3bpyq9bNoWktTosFi5o0arU6NzZtTvvLV5Yeo/DYqFRcg0Gnxy52ElKyboFG1k4bSlxiU76XtmDjGb1GPr4pUgpubH1PRQeLKSs/Vn6+yqmfvg7F9x2Ttjz9mzbx6YlW8Kur5m3gcTUBE5qZ657tG/HfsY+/wMr/1xDrQZpXPXwxXTqV3k5idx9edza5SGKc4vRdUnBwSI+e/xbdqzN5L4PR1T6uYfjrneH4ff6mfPDQiw2FalLhj55GX2u6AGA1POQBy8GPQ/QQOZC0TvIwDpEjdeRgUzwryWsGYt0I12fVbkhkHoe+DeAWi+0j7C1IxHlbEMQGMqgunF6UVIRSc+a32pth7kH24mI+4eLyHnnE94gBxAqBLaAteqEHY+W/2zPYpffT2ZBPnUTEkiyRx+gBbjs+29Yumd3yK+8KgRnNWnK++ddGHb/lI3refj3X3EFTNQxVZWArtM8tSaP9+pDjwZVJ/YGRtbQU3/+wersfSTa7VzXviN3dj0tJJ11zs7tfLliOXleDwObteCKNqfgtJqrokopeeWGd5kzfgEetxeL1YKiKjz02e30vvx0dm/Zy/D294cEP0to2qEx7y99Jez6uFd+4rMnviVQLiPH5rAy7MWhXHzXwLD37Nm2j1s7P4SnyIMWMHah9jg7t799A+feeNYRfUYljHnyW8a9MimsLsHqsPLF5lGkpRtpuWvmbWDCO9PI2ZNL9/O6MGh4P+KTKj7NSWmksVpsFmrVN5cAKcgpJGdPHvVOqh3S6lIv+gCK3iW8v4AdkTYNZAEy55rg7rMcanOUWlONOfhXGgJw/lUgEiDuGkTCbRF24ubfgyx8FVxfgLCB9IO1PSLlPYRiuOP03HvAO5NDtQV2YywZAArA0goSH0GgQWAjqI3BfkaFc5De2cjcOwEN8IGIA2tnRMoHUc/9eKDn3Gi4y8KwIWr9jlDrHtP5HK86gn8Ufk3DHQiQaLMhhCDOaqVFzbQjfk5A11m2d0/YvkeTktk7t5u+p1PddFMjAJS6ZTYcPMDNkyfy5cWX0rleaOphkc+HVVGwW478x9WxXjo/XVlx85czGjbmjCgb5Cz+ZTlzflhQWsFbsni/cuO7nHpuRwJ+LWLFbMBvHhAO+DVTP7muy4jv+eqZ8bgLPSGBaq/Lywf3f0H/a3pH7CUspWTt/I0cyMqhRZeTQiqgV81ZZy5lbbeybeUO0tJTmfrRb4y+93N8bi9SGtXLU97/ldF/v0R8snku/Nr5G3hhyFvkZucjdUmDVhk8Me4+MpqF1gkkpSaaxzd8Swg3Ahi76cA6sPfBfCduA4dx2pSBrUFjEVygZT4Uf4zU9yKS/2c67zA8E8H1FeCFkrwO/zJk/oOIlPeNKdV4DekaB+5vjHscgxDxNyIUkywve4+ohhX2XlDrV6R7MugHEfaeYDut2uWsjxYRfzPS9zehBXc2sHU95kbgcJzwhsCvabz412y+Wb2SgK6TFhfHYz37ALD2QDZNaqQwqHnLiDvg8ihCoEYIsJbP6S9ha14uFqEQOIz/1BMI8Mb8v/hq8OUALN2zm0dm/MrW3FwUAec0bc5zZ/YnyX78GqPPGDvHVE1Ttags/X0lPS7qSmJqQtg9NqeN/teY6/6cfuGpjH3+h7DMIUURnH6h6QaGFbPWmGYraZrO3m3ZpvGCg3tyefCsp9ifmYMiBAF/gL5X9eS+j0agKAoNW2Wweu76sOcGfAHqNK6Nx+Xl/fs+Dwlq+9w+DmTl8NN707n6kcFhY+buy+Phc54LyQzaunIH9/V6krE7Rkc0WCFYmoJvHuHtFzVQ6yOEDZn4BBQ8hZGtIwG7of0ffyNQ4q8OF3/DPQmZ+ABCOXwRoiz+lLAqYnzgnYvU8xFKMkKoiPirIP4qs0dUGqHWQSQMq9JnVjfCfhoy6TEofBGjZ7LfMGA1Xj/eUwvjhDcEI2fNYOL6dXg0Y+e6t6iIu36Zgk1V8WoacVYrL/01hx8vvzoqoTZFCAY2b8G0TZvw64cWLruqRsz4yfO4sVssBPyHT8ncmGPILO3Kz+eaCeNxB08SmoTpWzax/sB+GiQnE9B1Lm7VhvNbtDyiIPfRoloij6WoCkIIHvvmXh4Z8BxaQMPn8eNMcNDw5AwuutO8YrpxmwZcev/5/PDa5NKCLavNwlWPDg7ZNWdu2sOPb0xh+5pdYW6kEjS/RlKaedbQ81e9QdamvSEL/azv5nFyt+YMGt6fwfcM4rcvZ4cs9Fa7hZanNsMRb2fRz8tMTyh+r5854+ebGoJfv5gVZuCkLnEXe1n08zJOv+BU07mWRcQNQbq/MRaSQzMDtTnCasRylLjBSEsTZPFnRs9e2xmI+GsQSjCg7V+L4Vop/3A7BHaALYpqdD1S0b8SdEslG7n93llI93cgPQjH+eC8ACGOXwOmo0EGthlGWCSC/awjroBW4i5HOi8yPmMlBaEeuRfiWHBCG4ICr5cf163Fp5f7Q4TS/HqX348nEODhGdMZG9yJH46n+/RjW14em3MOIjBqEzrWTef+08yPul3SMwjo0RVXNUsx/Mefr1iKTwtd7Py6zubcHDbn5gCwZPduJm9cx8fnX1ytAmYuv5+J69eyKCsTxzn1UX9LQNsT6o+WuiwN1LY5vSVfbBnFjLFz2J+ZQ7szTqbbeZ1QI5yYAG545krOGNyNOeMXIISg9+Wn0eSUQ/GSNfM28PA5z+L3+tECuqlBsjqsdBvYydS9krsvj/ULN4ft9r0uLxNH/cyg4f1p0DKD56c8wmvDRrM/0zDI7fq0IXvHAW5oeRdSyogGyBWhGjp754HSPs1l8Xv9HMzKifh5lEVYGkDKp8j8R0ELVhvbe4e5dIStI8LW0fwhlpMNn3z51E7pBbWB6VvCsPcM9hYo97usJIBiGGxZ+CK4vqXk5CB9y4ymNKmfYyjT/zsw4iHPgWuccUFYgKcg5SOELfpaHwh2TLM2r/I5ViUntCHYX1xkWjlbHl1KFmVl4g0EovLDJ9ntTLj8albu28u2vFxa1kyrUKeobkIiN3ToxOcrlpfu8C2KgqbrIZ5dh8XCPd2NIqwV+/aiHSaQ7w74WZiVyfzMXZzeIHpV1vUH9vPrls1YFIWBzVvQuEbkfPVct5sLvv2KHLcbd8CPTVWRD7Yl/f31OHcUBbWB4Inv78cRd8hlVaNWMpfcc17UcwJo1qEJzTqYy0G8ccsHIe6mkgCxoirY42wEfBqnntOBh8bcbvp+T7EXRTU3lmXdNu37tOHzTe9QcLAQCdx08t0U5hRxuJyKSIa4bqNaptcDvsARyVAIW2dI+yVYoWtHKEeWaiwSbkZ6fiHUteMw+vgGd6lSSmMnX/QB6MXg6A2Jj6KoKcFn3GV0IpPFGIVdCmBDJD2LEAoysAtcX2O4p0pwQ2A1eGeBo3JB/OOC709wjaf0ewnGRGTuCKg97197wonECW0IFCGQUaWzAYgj2lULIWhftx7t60YnDPbg6WfQOT2Dr1Yup8jnY1DzlhT7fHy6/G9yPR6apqTyRK++dM0wmpWYCcqZ4fL7mb1je9SG4NV5c/h0+VL8moYiBKMWLeDhnr24tr35TvKthfPILmNQfZoGCgQe6MJNRRk4E5z0HNy10kVc0eBxedm1Psv0NavDyltzn6NGnRqk1I7s2qvbpDaJKQl4XaG7cIvNQs9y/YyFECSnJTFj7Bz83sBhjQBAk1PMP//c7ALT64qqkL3D6JsgpWTy6Ol8/cIE8vbl06h1fW557To6nRXaxlIIAaJyTXaEpRmkfo4seBoCa0HEg/NqROLdpffIvLtCq3U9P4FnOnqtuShqEk0NypcAACAASURBVEKth6z5FeQ9adQsqDUh4T5EyQLvW4hpqqd0Ib0zD933L0C6xhMeDwEIgG8p2I9PD+zq4oQ2BGayz2aoQtCzYUPT6tyqQgTTS89qElphe3vX7qZNUOKt0VU521SVFGd06a9r92fz6fKlpZ+LJiV+dF6Y+ydnN21G3YTwxXz6lk2mp6oDXjc9h/WhTkLl5bujxVqBto+qKCEupEgIIXjo8zt44oKX0PwBAn4Ne5yd5FqJpr59gANZOaZunfCHw3m3mPd/MAtog/E9lcQbvn1xAl//78fSE8/WlTt48oIXeXH647TtWXWd44StAyJtgunvmx7IiiDZ4IHC56DGy0htH+RcazShxwuaG/IfRirxCHtvUJJAKCYJTBaIIhj9j8KsmQ5g1EBE8TvxL+OfnX91lFgPE0S1KArxVht14hN48axDhU5+TePzFcs4/5svOe/rLxizfGnUO/TKYHYS6dO4ScQspLIoQhDQJW/M/4u/du2oUIhr2qaN+Ew0fYQQzNh2SGRu6Z7d3Dx5Av2//MxUjgOMQjx7FTWej4pK1Lvous5vX/zJnac9ys3t7mPt/A28Pe85LrzzXHpc1JVhLw7ho5Wvk1TT/DTTqlszrPbD75UsFpVNS7eZvnbGJd2xx4UbdV2XdB3YEb/PzzcvTAjLsvK6fXz2RKjonJRepG8Z0r8pKsE16d+AnncP+v4B6Ll3If2GdpHpydddQXNA75/G84pGgZ7PIdePDniQ+Y8hpQ723pjvLS0I55H1pjjeCOcFRgV3GDrYzDPZ/s2c0CeC+snJEfsnNUhKZsgp7WlcowZ9G5+ENbjoSikZNnkCS3ZnlVbbvjxvDr9t3cxXF192zLpKXdn2FMasWMpBl6t0R25TVQSUzlXTJbrUeXex0Q8hbrmVjnXr8ekFg0vvKYsiBMLkAykrgPf71s3c9ctUvIEAEvPiflUIOtdLp4ajakvkc/flsXDqUhCC7ud1okYtw9Xj84ZXZZegaTq7t+wlOS0xLI//zVs+ZOa3c0sX2a83/8isb+fx7pKXSjuOVUS7Xq1peWoz1i/chNcdOeMr4NeY++NCrvy/8ErXlqc2xRHvCCuwa9Q6g7T0VA5kHYx4atix9pAMte6eDAVPAgKkBmo6pHwQUtkr/auRxV+CtsdIOXX/gOHL10HbjvT+CamfIMwWMrUCl5N0oe8/G7S9mFbK6gWg70GoGZA6Bpl7c7BeQRhjJ72IsFRtoWS14zgXPJMNd5d0AVZAhaSXEeLIClD/DZzQhqDA60URwjToWuD1MHP7VlrXqk2X9IxSyYXFu7P4e8/uEFkGTyDAin17KwzKegMBpm3ayF+7dpCRlMTlbU45oi5f5UmyO5h85TW8t2Qhv23dTKLNELK7oEUrlu/bg1/TueeXqRxwH+oZ6/L7WbpnN+PWrGJIu/BWgOe1aMnHy5aglXOZ6VLS76SmSCl5cuaMEJdaySenCIFDtSAE1IqP580B4dW+R8PPn85g1B2foAR7G7xz+0fc+9EI+g3phTPeQUbzemRu2B32Pr/Pzy0dHkALaPQc3J37Px6B3Wkna/MeZoydHeLa8Xn87N2ezZ/j5tH/mt6HnZMQgv/9/BgT357GL5/+gdftI2dPrmkKaXIt81PF/ElLwpr2AOxav5utK3dQv2U6IkK/igYtjVoI6V8H+Y8RUlSmbUPmXg9pvyOEgu6eAvmPUrrw+xcSavF1wI0seBaR9lP4YI5LoOAZzAXjvKBtN51jcDJGzAEQ1jZQaw74VxgBVlvHals4pdQNgyPiqnyDJoQKNd4H3zzDgCo1EM4LDWN3jJHSjXRNBv8SsDRGOC9FqJVrohWJE9oQFPv9WBUVTQvfxeR7vSzMymRhViafL1/K95ddRcd66SzZnWUaW3D7/SzZnWVqCIp8Pi4Z9zVZhQW4/EZmzcdLl/DR+RcfUTZPeWrGxfFEr7480StUK+bU9Pqs3Z9tWq3sDgQYv26NqSFoUTONu7qexlsL5wHGQiel5Nm+/cj3eFiTvY8ct1mADOIsVp7qcybpiUl0zagfJqF9NOzdns2oOz4J88e/cfP7dOjblrT0VO4ZPZzHznsBv9doAq+oCrqmowd0PAFjx//XhIUAPDr2btbO2xgUuAt9pqfYy9+/rohoCApyCvnh9SnM+2kxiakJDL5nEJc/eCGXP2hIh9zc7j52rssK2cU74u1cfNcg0+ctn7XaVGYaYM1f6zmpXSMuvf98vn91ckj9gt1p47qnrwBAur4mXMpZBz3XqOy1ngIFIwmtPo5whgqsN40RKIodPfl1yL+PI1MPtRpFUsohAT4hVKMTWclM9ELwTEVq2QhbJ7CdflRVwVJKZPEnwRaYLlBqIBPuQ4m7rNLPNEMIAfYeiCgroKsDqecgD14CWg5G8NpmFAemfoGwVl5XqzwntCFolFyDRLsNj6vioLEO3PDTDywfcSdpcXE4LBZc/tAFxGGxUis+1PXg9vvJLi5m/LrV7MzPK61NKIkn3Dd9GvNuuqVKF80SKtoBVfTaiC5dGdi8Bb9v3YJFUWhXpw4P//4ruwryUYQIq7kooVZ8PINPPny7x8ow+/v56BGkmMc8/i2tujWnw5lteWfB//j+1UnsWLOLA1k55OwNLXDyefzM/XEhhblFRgMbk8/BYlOp1cC8qKc4v5hbOz9E7t680paVm5ZuZfN927j+6SsBeH7KIzw84Dn27zqIalHxe/0MefwSupxt3n8gLSMVm8MaZuRUi1raZOfakZfjKfLw06hf8PsCJKTGc8fbN9Ghb7BAUduH+eIsQM+BwKYIr5vhiPj7oTgHIu09kK7vjE5ingoa44jEoNZQK0SNVyPepvvWQM6VlMQVZLECluZQczxCVK5CXhZ/CkXvUJrVox+EgufQsSNsHYzCLaX6stiOJbLwneDPv2QN8xkS43kPIWr9UmXjnNCGQBGCV/qfy4ipPxHQNAIVBNgKfD6KfT4GNm/J83Nmhb2uCsGg5i0AQ1b6xbmzGbt6BYoQuE2URQGK/D625ebQNNVcZOxI8QYCjF6yiB/WrUGLUB/htFi44jA9DRom1+DGjp2RUtL3i0/ILCiosGGP02JhROfDV8BWloBfQ5r4yX0eP398M4dZ4/5C6pJzbzqLBz+7HSEEQ5vcZvos1aqSv7+Ajme1JT7ZiafYE6JjpFpUBt5snsY45YPfyMsuCOlb7Cn28v0rkxh81yCSaiZSu2EtPlnzJpuXbSP/QCEtT21KYkrkzKn+1/bh6+d/DLkmhJH22nWgsWte9sdqJr//G1rwM/C5fLx/7xja9WptCNTZ+wZTM8ud1qTPUPyUbiNuEA3iMJWxIgFh64BUalVgCASixpug1EVUUCglpYTc6witK9AhsAFZ8AoiOXJXsgqfWfw+4amdbih4CIkd0JCOsxHJz/+jpJ4rhfdXTOMyWiZSO4hQq2ZtOaGzhgB6NWrMlKuuYWi7jmGpm+XxBPwk2GyMHXw59ZOScFqsxFmtpCcm8uXgy0pVSt9ZtICvV6/AEwjgimAEwAjmOixVU3gipeTaieP5cOlisgoL2FtcZNQCYCzUFkXBabHSo0EjLomyuc2yvXs44HKZGgFFCBJsNhwWC8M6dalUw5xoOe2CLqgmmv8Afm8Ar8uHz+Nn+piZLJjyNwBterQqjSeEzFsR1GlcC1VVeW3m0zRu0wC704YzwUGNWkmM/OHBEKG5siz+ZbmpP99is7ChjEy2EILmnU6iy9ntKzQCAGnpqTw35RFS69XAkeDAHmcjo0U6r816GpvdipSS14a9h9flLXU3+Tx+CnOL+Hzkd8Z4cReDmgGU9bU7IX4YQk0zKo8tzYEosrjkwYgZR9K/Cbm/NzL3FiiMIAsNYDkFYT+jQiNgPG8DSPM6Cjw/HH6upniN3semGHEQ8IHnN2Tew5Uc459EpFOTNEQHq4hqPREIIQYAb2H8hn4spXyx3OsNgc+BGsF7HpZSTqvqeZyUksqTvQ0/e9O3X4u4cCcGF/q2tevw53XD2JKbg5TQLDW19DgtpeTTZX+HBJPNUISgaUoKGUmVDxiXZcmeLNbszw6JX/h1nTirlUtatSY9KYmu6fXpULde1IGzHLcrotuqe0YDHunZi0Y1UkioZOe2w5G5cTcrZq0hLskZMWBaFk+xl2kf/c5p53fh2qcuY8GUJXiKPKVuJUecnZv+dzVWm/EHkt60Lh+ueI2szXvwunw0alO/QpmLWg3TEIoIU0LVNZ2UOkYGk6ZpfPviRCa+M43ifDdtTm/BrW/cELFnAkD73m34ZtcH7FibidVmIaP5oZ9Rzt48cvflh71HC+gsmrYUwAi21vzeiBV4poOShIi7JqTPgEh5D5l7Y1CCQjWXpAZjx2/yM5dSN96vZ0f8PgziIGX0Ye4Jou+P/Fqlu9LaQUmLYp5e8M5A6rkIpXJFeFJ6ka4Jxq5cSUHEDTFiHMeSuCtMJMhVsHVGKFWztkA1GgJhCIu8C/QHMoHFQohJUsq1ZW57HKOp/WghRGtgGtC4uuYEMLB5C6Zu2hh2/ZTadUIKyoQQNDNx6fh1neIKxOPirFYEgkS7jfcGXVA1kwZW7ttHwMQd5PL7sVss3NK56xE/s0PddNP6CKfFwoBmzWlT23znfLRIKXnrtg/57YvZCGHoFEVVuAV4PcZnn9GsHu8ufokvnx7HqjnrSMuoyVWPXMxp54enRpaXe47ExXeey5zv54ekiiqqQr2T6tC0fWMA3hrxIX98M7c0HXT5zDXc0/NxPlj+KvVOivx5KYpCk7bhiQOOeHvEVpXxyYdkJIQSj0i4GRJuNr1XqHWg5hRDllo/gCz+Dny/hd9o624+Qf+yCMZDgNrU0COyd0fEXR29b9/awXi/2dZLqVw6qRACmfBAMJXWPAh/6GarET+ohCGQ0os8eAUEtmGcMgTS8xsy8X6U+OsqM/VKIeJvRPqXgXeeUayHACUNkRze1+NoqM4TQVdgs5RyK4AQ4lvgQqCsIZBAiVlLBsLzA6uY58/sz7oD+9mZn09A17EoCikOJ+8PCm8oY4ZNVWmQnMzO/PBdXKuaadzYsTO14xPo0aBhlaqCZiQmYVXUsIXbabHQMLlyLRPT4uK4pfOpfLz071INJLuqUi8xsdoCwwBzfljAjK/mmLphKsIRb+esq88o/bp+83o88tXdEe+XUjLzm7lMGj0dT7GXPlf04MI7BoS0vCxLi85Nuf+T23jr1g/RdYkW0DjplIaM/PFBhBDkZufz+1dzwnoW+Dx+xr3yE3ePHn5E3w9AfFIcXc7pwJLpy0ME7exxdi4yachTEUIICKqRyvxnzG/yrTG/LoswrxqRoNZDSf3giOYCoKiJ6PZzwVv+kC8guQLX0+GeG3cRUnEiC98EbXewSU4BpgYnWkG9ckjXhDJGgOCzPVD4KtI5+JgFo4WwIlLeR/rXg3+NUT9i61blvRiq0xBkALvKfJ0JlBfoeAr4VQhxJxAP9DN7kBBiODAcoGHDyqdjgpGfP33I9czeuZ11+/fTuEYK/U5qekTyEiN7n8nt0yaXumkEhmDcM3370SW9evKMz2xyEvE2K+6AP8Snb1EUEu12vl29klPTM0wD05qus7eoiES7PayXwb3de9Cudl0+X7mMfI+Hc5u1IMFmY8BXY8h2FdMstSaP9ux9VGmw5Zn64e+mPQ3MUC0qWkDDkeDg5O7NOWvIGYd/U5C3bvuQGV8d6p+wa0MWM7+ZyzsLX4hYUNb3yh6ccUk3tq/eRUJKPHUbH8rXztywG5vDGmYItIAWEkM4Uh4aczuPn/cCW1bswGJV8Xn99Bt6BuePOLvSz0TPNL8ud5umj2LtVE7mOohwHlWDeFHjNWRhBrg+B3yGSqnzCigciZ67A9S6kHAvitM8/Tbicx3nIByGGoAM7EQevChY+KWXzpuEeyqdmWQEaU1SqYUV/EuDVdTHDmFtBdZW1ff86mpVKYS4FBggpRwW/PoaoJuU8o4y99wXnMNrQojTgE+AtlJG7uBSVa0qD8fyvXuYtGE9Esn5LVrRqV5oo5M/tm3ludl/sK+4mPqJSTxzZn+6BQXjqov5u3YybPKE0viERQgcVitI0KShZDqoeUte6ndOqe9/2qYNPDlrBi6/YUD6NWnKS/3OIT6C33/M8qW8Mm9OWJ/jMRdeUiqId7Tce8YTrP5rfYX3WG0WajeqRd+relBwsJCu53bi1AEdUKI8Ze3Zuo9hbe8Nczk54u3cPXo4/YaaN8mpiAO7c7i26R1hhkBRFfpf04sHPjVXPo2W7Wt2sW97Nk07NCYt4+iyQfTsPqCbHLCV2ii1zdongl48FgpforQoTThBbYao+Y0hpXwUGOuMZhRo5d5BqFvHAUkjUeIqL0MhAzuQRW+DbxEotREJtyIcpvvKqNDz7gfPFMLL8OMRKZ9Glvv+B1NRq8rqzBrKAsqey+oHr5XlJmAcgJRyPkZaxHHv3PDyX7O5+sdxfLFyGV+sWMY1E77nf2VSSrfm5nD/rz+zt7gYdyBAZmEhd/08hT2FkbIZjh5vIMCt0yaFLNABKSny+Sjy+3AHAniC1c2TNhiL7N97snjwt1/IcbvxBAL4NI0Z27Zw1y9TTMfQdJ03F84LC4R7AgFemTenyr6XM4ecgT0ufKdmsVmIS3KSUCOec27oy6iFL3DdU1dw5zvD6DawU9RGAGD1X+tNexZ4ir0smb68UvNOS0/ltAu6YHOGLopWu5XLHozOtVgRjds0oNugzkdtBABIuJvQLCMAJyTcFfEtSvwQROqX4LwI7GciEkdWiREAw20lhAVZ+Arhvn0PFL0elX5SRLQd4F9pBKi1LYYmk4xOdNJ0vnFDCM/YESCSwGpeM/JvpjpdQ4uB5kKIJhgG4Erg6nL37ATOAsYIIU7G+M2tINWg+tmcc5AxK5aFZOe4AwG+WrWCwSe3oVVaLR774zcKvJ7SvYI74MenBXh+zixGDTy/WuY1ddMGCryHd6e4A36+Xr2Ci1qdzAdLFodVSXs1jXm7drK3qJC6CYn4NI13Fs3n61UrKPb5I7bT3BTsnFYVDLixL398PYcty7fjLvJgtVlQLApPfHcf3QZF3/Rj7YKNfPjAF2xaupXkWklc/uCFJNSI589x83AVutG18IXFYrVELCgDw300+r7PWTlrDc5EB+ffNoCrH7m4tKXk/31xJx899CU/f/IHPrePxqc05K53h9Ho5CM7LXlcXhZOXYq70E2n/u2oXcGcKoMSdzE6ASh6IxgwTYX4u1HiKm6+JGztEbZqXOgC282v6wcx6g2OXI5C+paHnjKkC1xfIvX9RnBc2MDex7xvcgSErRMy8X4ofDWYpilBJCFSP/3H90quDNVmCKSUASHEHcB0jNTQT6WUa4QQzwBLpJSTgPuBj4QQ92Kcwa6X1eCryi4u4vu1q8kqKKBb/Qac26xFxJjAH9u2mhZr+TWNGdu20iy1Jot3Z5k2r5+5fWvY+6qKP3dsj/reksV/Z0G+aaqsVVXZV1xM3YREbp36E39u345+mL4NjSoZkDbDarPy0m9P8sVT45g/eQk1aiVxw3NX0rZH9JLLm5dv46F+z5TKMuzfdZD37vkMRVXQSrSATGKfqlVl4DDzgrIDWQe5s/ujuArcSCnxun2Me2kimRt28+hYIyhts1u5/a0bue3NG9ACGharhaK8Yia8PZVtq3fRvGMTzhrai7jEyIVMq+eu47FBLyCRSF2iBXSufPgirh0ZXYe8aFHiLoO4y5DSB1iPmWBihah1jd17eUQikXPmK0YWjcL0lOGZiPROx3B86FBjFMIefYxJib8O6RxsxASCJ4ET0QhANdcRBGsCppW79mSZf68FqlXIY8nuLK6Z8D1+TUMHxq9dzdsL5/PTlUNN8+MjGQghBPag+qcSoXm9Ral6WeZV2fuYu3M72UXRuZ0cFgsXtTQW1K7pGWzNzQlLO/VrOk1TUtmWm8Os7dsO27rHYbFwb/fQH9OWFdtZ/PMyHAkOel92Gil1ojcUPq+fh/o9zZYVO/AUedhtU3n47Od4/Lv76H5edCeCL54ah88dekKSukQrK5ERlE+12a2oFhWLzcL/fXFnxDTPCW//jM/tC3FReN0+5k5YSPbO/dRueKjbmBACi9VC1uY93HXao3jdPrwuHzPj7Xz5zPeMWvSi6S7f5/Xz+Pkv4ioMDUSOe2USJ7VvTFp6Cg1aZRCfdGQdyCqiIteODGwH7wxAAcc5CDU94r1VgtrY3BAodStvqDRzCXAgqIIa/GfeHVDrryM7GSiJxzwwfDw4oSUmpJQMnzyhVAMIDL/6trxcHp0xnR4NGtG4RgpdM+qX/hKeVr+BaSOWgK5zWn0jJfScps34dcvmkPtsqsrgk1tXOB+338/M7Vtx+f30bNjItBHM6ux9rMneR/2kZCasX8u0zRvxa5ppYl8JJYYpzmqlWWpNrj7FEKMa0aUrkzaup8jrK93xOy0Wbul8Kgk2G9+t3hrRCAiMxa5uQgKP9uxNz4aNyCosoIbdwSf3fs6vn88i4NNQrSof/99XPPrNPVE1YgeY/tlMNi/bVpqLH/BpBNB48Zq3+X7fx6UFYRWxZfn2qFoUOOIdDHlsMF3O7kCTUxoGhejMWb9oE36TnsQ2u5UdazNDDEEJb474kMLc4tJaAE+xF5/Hz+h7xjDyhwfC7l/+x2pTX7jX5eWZS1/FmeAg4NO47MHzue6pK6p1F68XvR8sVtIBAYWvIxMfMpQt9SKjbqCq1Tb9y8yva5uRMoAQlViSLCcHC+kO9wuhGL0VjjBD6b/ACW0ItuXmkhfBrz5l00ZmbNuKIgTpiUl8c8nlpDrjWLJnN6qJdLWKYMmeTNrUrs2zffuxOSeHXQX5pal4LWumcUOHTvyxbSu14+NpU6t2yB/xoqxMbpo0obTZvSZ17ujandtPNQp8vIEAN0+eyN97jHi6LiU+TYuq0WaduHjibDb6NG7CLZ1PZfzaNazdn03rWrX5ZvAVfLR0MfMyd5LmjGN451M5v4WRhmapIPiakZjI79fehE1V+Wb1Srp89B5+TUPTdOLz9pHi9SM0I9ce4IUhbzFu78cRc/TL8sfYOWH6/GAY7o1LttLm9JaHfUaDlulk7zxw2PsURdCwVX2adTTvhVyWJqc0ZM28DYdcS0H8Xj/pzeqGzHPD4s3kZhewYtYa00rkRT8vNR2jfMZRWaQucRUYO9gfXp9CRrN6UcllVwbp3xQ0AuX+PgqfReI0BJEKNGTcdShJ4Qat8kQK4EqOTPX0ECLhDqR3DuatJcuPUdmK5hObE9oQZLuKK3y9JDtme14uj/3xG6MHXchBl8u0f4GG5IDL0P6v4XAy7eprWZSVyba8XFrUrMnPmzZyzldjsKkqmi5pkJzM5xddQu34hOAiPyGsIvm9xQs5rX5DOtVL570lC1m8OzPk9BIt+90uAsVFZBUWMGb5UmyqijsQwGmxEGe1MuGKIbyeFF6c1L9pM56ZPdPU2JzfohU2VeX3rZt5dvbMUGmLjqlofo1a47eXXlNUhWW/r+L0Cw9/KrCZdOwCYyG0OaLTTxn65GWsnru+woYxYFT0dhkQKsl9YHcOOXtyadAyHWfCIV/+4LsHMf2zmSGGwOaw0r5Pm9Lq5L3bs/m/s58ld28eiHA5ihJKgsvl6dC3jWk/g/J4ir2Me+Wn6jMEnulEXpTdhzbX7i+R9tOqTorZ3hc8vwBlPwMB1k6Vzk4S1laQ+gWy8CXwrwIRFyyQK2d0pQa26GME/yVOzMhHkBY1a1boUinBr+vM2LYVv6axsyAv4n078w69JoSgW/0GXNm2HVmFhXy9ehVeTaPQ58MV8LM55yC3T5sMwNxdO0zdGJ5AgO/XrgZg3JrVlTICQGkMwBMIoElZauDcgQC5Hg8jZ80wfV96YhIXt2qNWs79UMPhYHhQsuKdRQvCMo+kTaWwW210W+ivT7Rx/vOG98cRHx4YTEiJj2rnDtC2Ryue+P5+0pvWQVEEzgQH3c/vjM1hJS7JSVyik+S0RF6c/nhp8Zir0M1j5/2Pa5vdwYNnPc1ldYbx7UsTSp+Z3rQur8wYSbOOjVEUgdVupd/QXjw5/oHS7+/x815g79Z9uIs8uAvNd6BWuyVi4Vt8cjztelfsQiwhLzu8er3qiDInQ7oNWeoqQiT+X7B/cYkBdoBIRFRQaazrPvSDN6DvbYW+twX6vu7onlmhz7W1R6n5NUrdVYjaC4wOY6XKo4oxTuL9CDXcvRfjBD8RpDrj6Fa/AQsydx32Xl1KdCnJLop8isguNn/NEKErV20qJauz97G3qBCvSZ9gMP4U3cG+B9H2RLapKrXj4vFoAfI9HtN4Rll0KZmz0yQ4F+Tl/gPoULceY5Yvpcjno99JTbm72+kkOwwXT8TaCCnR4ywowZ7GAb/GytlrWT5rDb0u6U7bnq1M/dsBf4AeF3el34ze/DpmJkJRUFUFi03l2UkPH5FPvNvATnQb2Amfx4fFZkFRFNxFblbOXofdaeOUM04OiQm8fP0ols1Yhd8bwB8sNBv73A9kNKvHGZcYLrpWXZsz+u9X8Hn9WKxqSO3CjrWZ7Nu+37R3gqIqWO3GHBq2rs/NLw81nfOB3TmsnBVB5qHs8xRB+z7Vp/gqHOcgiz8idGceAXk4l8sRjKvWhbRfke5JEFgFluYI58UhjW3CODgoNMAscyBvOHrq9ygmqa5CCEh+BXwLjJOPcBrdxaqxMvffzgltCADeH3Qht02dxOLdmShCwa8ZvXjL/ikLoH2dutgtFlrXqsXcXeYL58m1zHcTkfL7VUWh0OujR4OG+E0avsRZrQxqbvjDzz6pGT+sXxOW4VMStC3pV/zewAvo3bgJGw8e4OLvxh7WEABYKkh5U4RgaLsODDXpaAbQvm49/ti2JWz/KAISa3EAq8OKpunoAY2J7/yM1HV++WQGfa7owX0fjShd2H//6k8+zyHhdgAAIABJREFUfngsOXtySa6VzDUjL+OD5a+ycvY6kmom0HVgp6j6CJthcxxyKTgTnHQbGK4QWZBTyKJpy0J6DYDhgvnu5YmlhqD0mSZzKc53oZgUqQHUb1GPwXcPolGbBrQ5vWVEg7Z23gYsNkuFInuqVcURZ+eG566MeM/RIqwtkAkjoGg0hjEQhLlSAHAinOeVfiWlBN8CoxWlmg6O/kes+S+UeET8VcBVh71X9601zzICoytb2kRjXtp+pOszQ5xNTUfE34Swn4awn3ZEc/uvcsIbgiS7na8GX0ZWYQH7i4tJttu56sdxFHp9uAN+HBYLNlXlxbMM3ZI7u57GJ8v+No0TTNu0kXFrV9Mtoz6P9Oxdqk7a/6SmfLZ8Wdhib1ctnJSSgqoojOx9Js/MnmkEXIMZPj0aNOSsk4weCfef3pM5O7eT5/Xg8vtxqBYsqsKzfc4is7CARJudQc1bUjPOSCtsHmWzG6uicl6LwwdfI3H/aT2Yt2tHSLWxTVW5rV0H0kY2R9d0xv7vBwLlmrnM+u4v+l/bm3a9WjPru794c8RHpTn/edn5fPjglwx/eSgX3FZ5HZsjoTCnCNWi4Dex2eU7nUWiWcfGpqcBm9PG2df1YdDw/od9Ro3ayaYuNEUR1G5UC0ecnVN6ncwVD11EnUbV68ZQEm5DOgaA5//ZO8/wKKo2DN9ntqZ3IEDoTXoTEFFRARVQUBAQ7KBi7+WzYu8FCypiwYKAgAoCIoh0lI50pNdACOnJtpnz/ZhkSbKzyZJkQ8t9XVyY2Z2Zs7iZd+YtzzMPhAmJGbLeRa8deIBQsLYFu95lI6UDefxW8GzVZaSFHTJfhbgJCHPJXh9lxrXM/2v5w2lSPYI8ds2JuoBnC9K5BBn5Mkpo+Se+zwXO+kBQQK2ISK+Z/J833c4v27awPvkwTeLiGdi8BdF2/a4mzGrll8HDuPXXaaTmG8MX3I0XFJ8X7NnNykMHmT3sFmpFRHJXh078tn0bxx26lINJCCwmE69f3tOrQDqkZWvaJ9Zk6pZNZLuc9GrQmIvq1vNqAsWHhjL3ptv4ddsW1iYfokF0LAObt/Re+IuT4XT49UQQgM1sRhGC+tExPFvM8/hkiAsJ9RafC9CkpFPrJnTpncTvX83HbDYVCQSgB4OXB72HxaYPXBX24wW9XfLbF38qdyBIO5LOjrW7ia8VS/1WRaWNVVVlxqd/MOPTP3DmOr0OYIVRTArtewTm/WoLsXHnWzfy8f1fFplajogN5+q7rwjoGC27NSMiJhxHjrNIodlis/Dy9Keo16JsapmBINVD+vCVcykosYiwEWDvjQjXVVMFIG0XI/OmgpaOsF0Gtkt0D2JA5ozTFTALOm9kDpCLTH8EEf9rcBZtMX5SBfThNEBmf5pvVlPwHSxQCn0ZGdIbUYEGLmcrQROdCxaVJToH+kRyam4u106e4JPDtygKQ1u14YVLLgP09NCkjf+yeN9eakVGckubdjSLL/mOzuFx88fOHRzKyqJ19RpcUDsp4Bz5T5s28OSffxi+Zsl/AmkUG8f5NWuVqxf9vlkzmLXD178hxm5n1R338OcPi/nwni/8GrSXhBAwy/Gj3w6bkpBS8vmj45n+6R9YbGZUj0adZrV4bfbTRCfoJjKv3vA+y2es9gYhk9mEqqrevKDJbCIkws5na94O+O77f1e9wrr5m/C4C0lGh1j5YMkrJRa6NU3zGtMIRfB8vzc5svcYJpOCUASPfDGSiwcGnsaQUtMN4XMnAW6w90OEDvTbeaPfNffNv2su+C7bwXoByHTAjAi9HuzX+J2e1VIuB9Wo3mZFJPwVtEKsdrSL7s1cnOgvUOyX+F+XCEXETUGYGwVlXWcaJYnOnTNPBCdDptPJO8sWM2P7Njyaavgo79Y0Zu/Yzv6MDNrUqMHQlm24o8P53BGgt++utOMMnjIRR75YnM1spll8At9fOzAge8ukqCi/r4VbrQxtdaKIpknJsdwcwq02Qi0nd3c0b7exvHKaw8HBrCy69O3AByNPXqseIDYxpkxBAGDe94uY+cU83E63tzd/1797efWGD3h73gvs23qQZdNXFfE8UD0qVruFWo0TkZqkdfcWDH6iX8A6P0f2pvDvws1FggDo08KT3v6VZyY8ZLjf+oWbeO2GD8jN1v2TE5LiGDX1MRCCvKw8GratF9AQXWFkxpO6VHJBIde9BemYBbHfGl7IZc6X+TLNhW9oHOD668R7MjeCYwEi5gM/Jy3ppjGIN5TxsyD1hkITxFaIeArFnt9aq8QZBwLpAVE2d7JzjapAUAxV0xg0ZSJ70tNK7eQ5lpPD/JxdLN2/l6/WruHnwUOpFx3YF++h32dyPC/P++uT63az6egRPl+9kgc7dzXcx6WqfLNuDZM3b0DVJBZFMSwWj2h/IujP3bmD5xbMI8Ohi+Rd1agJr17WM+CAYOSKVkCOy0nt+ASenfgIrwx5D0VRUD1qQG5jtlArt79WXIMwcKZ98JuPp4HqUdm0dBtpRzPYtmKHoaexy+Gmfuu6/O87/yqc/ji67xgWm8Xn80lNcvC/w4b7HDt0nGf7vl5krQe3H+LRS0cxYd9nZSqQS/c23bKyiL6OAzwbwbUIbN19d3L9g3ExuPCB88D5F9K9CWExMCYK6Qc54yg6lCXAXE+fRg4SihILCXPQNBeQi1Ksw0iEDUemP0HRgTILWDtVmLn72c5ZPUdQFhbu3cPBzIyA2jkLLpH6/ICTVxcvDOgcx3Jz2X481eceyqmqTNls3FoopWTE9J/54J9l7EpLY29GOkjpMyfRq0Ej7u6o+/+sSz7Mg3NmcjQnB6eq4lJVft+xnYfnzAxonQDVQsMMtwsgKV+IrkvfDny6+i26XdeZDr3aYPZjRF+Y869sV65hqazjxq28ikmQk5FLfO1YjDJiFpu5REvJkqjborbhZLDZaqL1xcaCeXO/XeA1pS9ASnA73F5P4pPG9Q+Gd+AyF+n0U1w11cbYgaw4Hl3T3wARdgeYG+sDWwCE6oqcUe8FcNzyoyhWnyAAeiss4SPRZxLCAZs+oBb9fqWs62zgnH0i8Ggax/NyibaHFBGa23IshTy3cRG2YPDKqKNIk5IlJfTrF0aW8Bjt77W1yYdZffhQ0QlfKQmzWBjRrgMJYeH0atiY+ELF5U9XrcBpIEO9cO8ejmRnUz28dPGt5y65lAdm/1bkMwv0yeOCp4q/Ji3lndvH6PIZmoaqaigmxecCWJgl0/7hiye/5863bip1DUbUbpLIkb2+iuWqW6Vmw+rUbFid6IQonLmuIuswmf2rj5ZGZGwE/e67iulj5njrDooisIfZGfiIsfz4sYPHDZ+QVI+qTyfnM+/7RfzwylRSDx2nYdt63PHWTTTv0sR4IUosCLOBAbwFXOvR0u4G68WI0P7e1k4RNgLpXELpMgwWvx6/QgmFuCngWoR0/asL1NmvQijGNwuViRJ+NzL0JvBsByUBYQ5e0f1s5Jx8Ivhm3Ro6jB1D9/Ff0u7zT3hn2RKvmmjdqChCDPLWYRYL93Xqwie9r8biR2XUaD8jEkLDaBAd43N/ZjOZuLap8dTpuuTDhrMIOW43uW4PQ1u1KRIEAPZmpBuGFavJRHIxNVOZP1AHsGz/PoZOnUy3r8fy2/atDG/XAatiQhECBejTuAlv9tC7ZDJTs3jntjG48lw481y4nZ78bhiJ2WIynCAuYOr7xgY5geCv5VMCGceyUBSFd/4aRbPOjbDYzNhCrFSrE89rs54pl/b/HW/eyL2jb6POebWIrhbFJYO7MmbVm37NZNp2b0lIuLH+UosL9QGnaR/O5IORYzmw/RB52Q42LtnKEz1eYtvKHcaLsPdAV3Yvjhs863U10aw3kMf6IzXdkF5Y20HU6/k58xDAguGvv1DA5r8NVggFYeuOEvGAXpw+DYJAAUIJR1jbVwWBMnDOPRFM27LJx4rx63WrsSgKD3bpSs8GjXh18QKvXAPoQ1cOj4exq1diVhRUTfURprOZTAxu0SrgdXxwZR8GT5mIS9XI87gJs1ioFx3D3eefsHXOcbmYsGE9v+/8j1y322++PsRs/L+xY2Itdh1PxVPsCcatajSIiQX0yebXlixk6pZNOD0e6kXHcDAr05saK5gstppMaJrEpphYsHcPO9OO0zyhGv/MXGPoBCYl9L6jBwMe7sstje83XJ+majjznNhCTl6HPi/LuEvJYjWTk5FLTLUoqiXFM3rJq6QdSceZ56J63QTdhP5IOmlHMqjVuIbhuXeu38OaeRuIiAmja//zWTFrLb9/NR9N0+h1y6X0uqU7Vw0P7Kmia7/zSWpWiz2b9nsL1/YwG136dqBB67p43B6+fWGyYXvtV8/+yJtznvM5phB2XVsnbWS+abvILwQXFm7LA/UQMnc8Ily30FRCeiPtV4B6EJRIcG9Fpj+Ibk1Jvg3jmKBf3KVnPzLnK91RzNIYETai1M4e6VyGzBmvdw/ZL0OE3lhpBvLnAudcIPhoxd8+/fd5Hg9frl3N/Z0vwGY2M2XQUJ6aN8crTWE1mXB4PEX2U6TEajJhNZlwqxoXJtXhIT9FXiOaxMWz+LY7mfnfNg5lZtK6Rg26163vnTvIc7u5dtIP7M/MxKmWbLnnz1Xs7o6dmLF9CznuE4b3IWYzw9t1JCLfxP6u334tIna3Oz2tyDEKQkjB605NxelSeXjOLObceCuapvlNZ5mtZmo2rFFimqjwVPDJ0Llve2Z+PtdHwM1kNvH1MxMIiQjhytsvo3H7+mz5+z8cuU4kks8eHs/K39dhsZnRVI1bXhzsTetIKXl3+BgWTF6G6tEwW0y8f9fnuqF8fnrnv9W7WDx1Oa/M+J+3LVdKydYVOziw/RD1WiTRuH2DIut5b+GL/Prx7/z5w2LMVjNXj+xFz1v0+kj60Qw8BtLXALvW7/H7+YWlOSQs1Ien3NshcxSQW+xdTnDMhvATXspCmMBcR//B1gWqLQPPJsAM5mZBN16R7u3I44Pz01oe8GxG5s2G2C8RVsPORrScryBrNN60VvZWZN4UiPv1pLwFqvDPORcIjuRkG27P87hxejyEWCzUiojku2uvx+nxsPVYCkOn/eRzqdOAdjUSual1O5rGxdEwwEnfwoRbrX6fIqZu2cTBrNKDAICRAKaUklqRkfwy5EbeXbaEvw/uJzYklDvbd2TAeXpHyM7jqaw6fLBMYnd7M9JJycmhU+/2aPd84fO61W6l+2BdsbL74K7Mn+BrmN6+Z+siMw471u5m4U/LEIpC90FdadC6rs8+BQx7ZgCLp/5Ddlo2Lodb7xCSEpfDzaIpfyOEyD+nxGKzIKXEkeNEUQSqR/MWfce/MInEBtW5sH8nlvy8goU/LS/kk6D/27sKBTFHjpN/F27m34WbadO9BTkZOTzZ6xX2bt6PEAJNkzQ9vyGvznwae74vsy3ExqDH+zHIwNc4Ms7/XW2N+iUXtYUQYGkOIgzpT8JZlHzXLIQJLIEN1FUEMuv1/EG0AlQgD5n5AiLet4lBatmQ9T5FO5WcoB5F5k7wDsOVaS3OJfowmnoIrB0Q4fchzPXKfLwzmXMuEDSLi2fdkWSf7SFmCzf+/BNxIaHc2rY9XZPqYDObcaoqJsW428KtqvRu7KegV07+3L3T7+RwYULMFno0ODHeP23LJt5ZvoTk7GwSwyN4rGu3Ij7KblVl8uaN/LxlE5lOZ5kNw6WUmBRBTLUo7vt4OB/f9yWaJtFUDYvVTN+RPTmvc2MAnhh/H2lHMlg7f4P3EaNZ58bc+tIQprw3g8i4CPZs2s/0T37XL9BCMO3937jhf9cy7NmBhuePqR7NFxve5bfP/mDNvA2YzCY2Lt3qTb9IKb0X+8L6QmqxqOnIcTLxjZ+5sH8n/vjmL5+WVCMcOU7WLdhIm+4t+OTBr9m1fk8RQ5stf//H2Ce+5eq7ehGVEElsDf8txVa7lWvuvYLpY/4okh6yhVq5+YXrS10LgDDXRZrrguc/imr6hyBCy1aMDxqu1cbbPTuR0okQxVJ17o2657BPYdwJzr+gjIFAy50KmS/hfcpwHEY6/4S4aQhzYAq4ZxNBDQRCiCuB0eiVrXFSyjeKvf4+UKB/EApUk1JWnDmuAU91u4Rbf51apPtGAE7Vw9pkvRd86f69PNzlQka070jLatUNPYztJhO9GjYO2jqrhYX7tcQsINRs4aK6dflt+1bGrVlFhM3GjG1bcBTk97OzeGb+XACubdYcTUqGT/+Z1YcPBhRkSiIpKorYEL04fdXtl9P20pYsnLwct9PNBdd0pFHbE79MJpOJt+Y+T9qRdA5sP0z1egmMe+p7Hr/8RVSPismkFPMV0P2CJ7z+M5cMvpDajRMN1xAZG8HQpwcw9OkBvDt8TJHhsZMh9bCeDlP9qMQWxxpiJSouEiklf01c6pPacTvdzBjzB/O+W4zH5aHtZS15ZsKDhEUVzb3n5ThwO9wMf30YZquZXz6cjcvpJjo+kjvfvZnzr2wX8GcQ0Z8ij9+UbwKfXysIHazLMZ9OKBGgGdV3LPl/ir8/BmPfBAFK2Yr+Unog63WKdlBpuuR29ofnZNtp0AKB0AVKPgF6AgeAlUKI6fk+xQBIKR8u9P77gcC/+WWkU63afH/t9byzbAlbU1Owm82k5uYWGczK83h4d/lSBrVoRaTNxjMXdfcWkCW6h29ieESR6d2K5sbWbZmxfWuRgKUIQUJoGJfVa4AqNRLDw/l8zSqvkJ3At7vc4fHw7vIl9G96Hkv27WVN8qESg4BAdy4TgNlkwuF2GyYdMhwONCm9WkmJ9asz5Mn+JX6mmOrRxFSPZv6ExSyfvsp7B+xvNZqqsXz6Kq5/1Lg1szBh0WGltqwaoZgU2l6qyz23urg5K39fV+o+UpPMGf8XUz/4zW9+H/D6Faybv4FXh47mtZlPA3qn1du3j2HVHP1cifWr8dhX93DLi4NxZDsIjQwtgyyIlp9ycaJ/CxRQDWQZTjWhN0H2GIoOw9kgZKBxfcLcRJ+B8Oyi6FS0HRF2S9nWoCaDNBqu08BVOfI1pxsBBQIhxGrgK2CClDKttPfn0wnYIaXclX+MiUA/YLOf998AvBDgsctF+8SaTBgwCIAhUyeRnO1bN7CaFDYcTebCpLoMbdWGZvEJjF+/hqM5OfRs0IjBLVoRZi1boTMQWlWrzsuX9uCFBX+iCIGqadSMiOTLa66lTlQ0blXl/C8+LRIo/D07HMrKotFH72H2M4ks0AviqpR0qZ3ECxdfSkJYOMdycxgydZLXma0wOW43R7KzSYwwzkE785ws/WUlacnpNO/alGadGnkvbrO/nB9QCkZRREDDaQBX3HYpv332R6mOZT5IyfWPXQPAvq0H/b7NFmpDMQk0VUNqkh1rSjBML4bb6WHd/I2kHk4jtkY0T/Z6mT0b93kL3fu3HeLJK17hy43vGfoiB/QxUgfnawYVoIFzOjK3LSLM2BvhVCDC7kCq+yHvVxA2kC6wdUdEPmX8fiEgZhwy7U7w7ANh0p3GIp7yW1wuFSUavz4MQZyQPp0J9IlgMHAb+l39KuBr4A9ZcoK5FlBYAOQA0NnojUKIukB9YH6A66kwEkJDDe+kPZokxn5CZ719Yk3aJ9as1LUNOK8FfRo3YePRo0TYbDSJjfNeTLccS0H10y1khAS/3gUSePLCi7m1bVEd/0ibjWh7iGEg0KQk3E8g3L1xH49d+gJulwe304PZYqJN9xa8+PMTJ4TfAuSiAYZfGR/qt6zD3R/cypgHv8FsNeFxqwGlikwWE4umLKd+yzqk+PFADo0M4daXBlO3RR2eu/p1wwGxgqcRIYwlecxWM+lHMzh2IJUD2w/5dDt5XB6mfzqHEa/rF+2czFzmfP0XGxZvIalpTfqO7OV3/kFzbwGZavwBsz+FcgQCKSW41+laPpbm5RZwE8KEiHoVGf6wrh1kStLNakrax5SIiJ+B9OwALR3MzfXhtrKuQQlH2q/Kt8wsfEMSgggbWer++myGPKvaVwPqFZNS7pBSPgM0ASagPx3sFUK8KISIrYB1DAGmSCkNrxBCiDuFEKuEEKtSUnynScvDLW3aYy/Wh28SgloREZxXinpoaTg9HlYcPMC65MMl5vpLwm620LFmLZrGxRdJF4RZLOXO8xfG3/ruaNfBZ07BajJxab363hbUwkgpeWngO2SmZpOX5cDj8ujF1b828tvnulpqr5u7eztqimMLtWEPtWG1W3jg0zv8DmoZ0eeOnkw6NJbHv76X/vdd6XeQqzBup4c/f1gMQMdebbCG+AY3j8vDpTd0w2ozY7EZ3zvF1ojm0iEXct4FTYq4ohUgpSSpaU2S96QUcT0rfI79Ww8BcDw5jeHNH+KrZ35kybR/mPLuDIa3eIhN859HS+mJduxaZN7PJwr9nv/8f0BZdrtLqaUhU/sh025DZr6APHYdWtpdSFm2WkxhhCkeYT2/1CBQZB9zI4S1Y7mCgPdYUS+DvSdg1SUzRJhuZWn3P0wn1UNoqcOQRzshj3ZGOzYQ6dlV7rWcDgRcIxBCtEZ/KugNTAV+ALqh38UbiYYfBAqP+NXO32bEEOBeP68hpRwLjAVdhjrQNQdCx5q1ePqi7ry2eAFmRcGjaSRFRvFlv+vKJd88d+cOHp07G9AvAmFWK+OuvpaW1cqmc1Mcm8nst+PHoiioUmISIiAHM5vJ5FeEbmDzluw4fpxv/12L1WTCpWp0SKzJWz2MfQQO7Uwm5YDv3akz18V3L/7E/AlLqNsiicYd6vPf2j04sh1Y7RYUReHRr+4hJz0HIQQXXNORmOon3zcQHh1Gt2s706JrU375aHZA+7idHqa+/xvV6iYQERtGZorm7QKyhVpp36M1rw0bjSPb6W0tLYwQcF6XJjw94SFSDqRyV9vHyM3M8xaf7aE2Rrw+FKvdSsO29fAYFKVtIVZadtMnjb9+9kfSj2Z693e7PLhdHt4duY5xi3QZE5kxClwbEFHPg6WD/w9nKvtTrMx4Gjw7KFLFcS5DZn+OiDAeEjxTEMKOiH4PqWXoBXZTbb8S3gBSuvT0m5aCtzPLswGZOgQS5p/x8wwB+RHk1wjSgS+BqVKe6OUSQkyTUl5nsI8Z2A5cjh4AVgJDpZSbir2vGfA7UL+UVBMQPD+CXLebjUePEG230yTu5LsRth5L4c0li1idfIhom53DWZk+WchIq5V/RtyNzc8k8MmwPvkww37+iVy3b5qiaVw8s4fdwiNzZjFj+1ZDbaTC2Ewmltx2p18THIC0vDy2px4jMSKCOlH+L9D7tx3kno5PllgDMJkVLDYLt782jOPJacQkRHHp0G7EVPMvrV0Wprw3g2+en4jb4UbTJEIRRcxgQL+ImyxmvThuMxMWFcYFV3dg7fyNRMaGgxDsWr/H+3mEIkBSJAjbQq28Ne8FrzZQyoFUfnx9GmvmbSC+ViyDn+hXpAPo5cHv8c9vq731DJNZITIugq+2jCY8OoyB1YeTkZLp83nMVo0JqzcTFVfwzbIiEuYhTDXQjl2bPxhW5NNB9NgTcs0ngZQO5JH2GJbylWoo1XznQs5mpGMOMuOpYjMQAKGIyKcRoYNOybpOhorwI7i+oOhb6KD1pZS7jYIAgJTSI4S4D5iD3j76lZRykxDiJWCVlHJ6/luHABMDCQLBJNRioVOt2mXad1facfpP/B5X/t13tsv40Tnb7eavPbu5slH5204bxcYZpnMsikK3Ovog1t0dOzPrv20+gnGgO5gJ9JTQWz2uLDEIAMSEhNC5dukaLrWb1CQyLqLEQKB6NFSPkz++mc+nq98u9ZhlZeAjV5PYsAY/vj4NR46TTr3bMXf8Apx5LjwuFU1V0VTp7fxxuzw4c10c3nWEr7eMZvvqnTxyyQtF+vtlfkAxm02YbRbMFhP3fzKiiEBcQu04HvjkDr/revqHB/np3RnM+GwOjhwnXfp04LZXbyA8Wm8vtYfaMEzoSLDYCv0/F1ZdpsFUAxH7HTLtHnCvzH/RAhHPlCkI6OcqIe3o09N/ZiK1THDMQHoO6FpMtsvQ718NUA/4+dy5SHVfQLqupzOBBoIpQHFH8ClACc+kIKWcBcwqtu35Yj+PCnANFcahrEy+WruadUeSaRIbx4j2Hb3aO2Vh1II/vUGgJDQp2Xg0uUICQZjVykOduzL6n2XeWoFZUYiw2bizvW6Ok+fRh7MKowjBRXXqcln9hlgUhR4NGpUaBE4GIQTPTHyYp654Gc2jldjFs3PdXn2OwCCnXhH88e0CRt/9BZpHRfVoJO8+yiWDLqBz7/akHkpj/AuTyMkoWgjXVI21f27E5XCxbv5GHxMa0INB/4evoveIHtRsWOOk128ymxjyZH+/7bZ9R/bi+5d/KpKGMps12l2cTWh44e+ZBoqeahRKOCLuW6R2HLQ0MNUpl0WjUMKR5obg2VZ89WAru/Xp6YJ0b9bnLqQHyEPmhYKpDsT+aKy1ZG6eP9hW7PsgQhGWlpWy5mBSYiDIT9u0AKKEEIXv/COB0itxpwlSSlYeOsjRnGyi7XbumTUDp8eDW9NYn3yYX7dtYXz/gXSsWatMx1916FDA7y1emC4Pd3Y4nwYxMYxds4qUnBwurluPezp2JiFM/yJ/tmoF7mIdOqqULD+wnzd7XOl9X0XTvEsTvt81hvkTlnDsYCq/jpmDw8DK0mw1G5rHBIoj18m87xaxfsFGqtdLoO9dvahRT2//y0rLZvTIL3A5TlxMnblOFv20nMuHXczFAy/g2xcn+zmyRNMkkXERWKxm1GIdPla7hep1qpHUtGzfl9K4/tGr2b56Z76gnwmpqSTWyeSxD/YVepcJlEQfeQihxOoy1QEitex8g3gT2Lp6ZasBRNTr+RdLN7owXQgoYYiIR8v1+U4HZPoj+T7HBRtywbMLmTMWEfGw7w7WLmBqlB8YC54MLKDUAFvZZM1PJ0q7KjUF+gLRQOGpnizA/7PvacSF1AToAAAgAElEQVThrCyG/TyZozk5CPRhscIpFVVK8jwenpk/lzk33lq2kwT4XGgSgjY1jKdky0qPBo3o0aBoS19ydhZ70tPZfvyY4WyBBAb+9CNhVitDWrRiaKs2mA06WcpDZFwE/e/Xp1oX/rScZINAEBJhL3NBPistm3vPf4q0I+k4cpyYrSZ+/eh3Xp7xFG0vbcmqOesxWZSic0vo8hALJi6h/eWtqNciiY1LtvocO7paFPZQGxcN6MyYh7/2eV0xKXQfErjA4MliMpt4fvKj7N92kB1r91C9XgLN2h6EzKf1C5ZUwdISET26XA0NWt5MyPif7m2gb4HoDxG2iwH0O934ObovsrpDN3sJGXDGF0alekRP9fjggrzpYBAIhBC64mvOJ5D3i/7/wN4HEfFguZ68ThdKDARSyl+BX4UQF0gpl1fSmiqU+2bPYH9GRqkF051px3F43AH5BRenY2Itluwv3ZRGk5J2NYI3i+BSVR6fO5s/du7AajL5rVW4VJX9mXoW+s2li1i8bw9fXH1t0NZl1EUEkHksq8ypoYlv/ELKgVRvft/jUvG4VN685SMm7P3MUBob9F9oU/6QWsp+47mBzOPZqB6VsKgwnpnwEC8OfMerV2S2mHjsq3uITqjYwrYRSU1rFXrqaIK0LQF1ry4XbSpf95lUD0LGU4CzyBCNTLsfqi1E5DuBCVO1M75DyJcSvm/C/2tCCUVEPA4RjwdhTaeWEm8DhRBP5P/nUCHEh8X/VML6ysWR7Gw2pxwtNQiAnl/3ZzhTGqO6X4bNVPq+ihAs2BO8vuP3li9l7q6d+daZroDsxPM8Hpbt38e/BkJ8FYXZz4VeMSllTg0tnvq3obxD1vFsDu86Qscr2qKpvv8C1hArPW7UC6iZqcZKtJpHw5HrRPWofPrIeNRCshWapjH28e9wGVhWVjSappGVlu1tIxXChDA38AYBKR1Ix19Ixx9eA5pAkXm/gZF4iAAcc8u58tMbYYrXLTd9Ln92CDEWOTzbKe23cEv+36uA1QZ/TmvyPO6AsjY2k4lrmzX3egGcLA1iYvl58DC6161PhNXq1yhGlZJ9GWUf8CmNCRvXF5GcCBRVSlYfDrzOcdL4SV+UI6uBzc9AmqZJbKE2QiNCeG7Sw9hCrNjD9AE1q93CgIf70KJrU0BXQDUirlYMoREhrJi9luPJaWieQoFAlWQdz2bpz8a+vhXF3O8WMqTWnQxKvIP+sbfy1bMTikxkS+cy5NELkBmPIjOeQh69AC13eglHLIbMwbA1VKr5JjdnNyL6A13QToQBFhAhYGmLCLv9VC/tlFBaamhG/t/jK2c5FUudqGgfd67CRFituFSNrklJPH9x+TohmsUn8FU/vZ5++6/TWLDXWItGKc/VrxSMZgoCwaIoVA9S4RjwKwSnqbpsdVlSQ/3uvZLPHh1fpLVTMSk0aluPuERd9rlznw5M2P8ZS39egSPHyflXteXvGau5PnEEWalZJDaogdVuwe3yeOcLbKFW7vtwOEII9m4+YChTkZftYM+m/T7bK4q/f1vN6LvHFvFFmPbBLKQqGf76MKSWhUy/G2Qx/+HMZ5DWtogC45kSELbuuuOXj4exAraLKuaDnMYIc13d2Mc5H9TDetHd0r5cNZczmdK6hmbgX8sMKeU1Fb6iCuRYbo6hhDRA9bAw3ul1FXUio0mKqth8b4uEaizcu9vnH86iKNSNDp7Kdutq1Q29FkpCF5wzc3n9hqW+t6y0uLAp6+Zv9NneoE3dMreO9r7jcjYt38aiycv0YwiIqRbFs5MeKfK+yNgIr63k18/+yNQPZnqDx4Hth7DaLbS9tCXJu49Qq3Eiw54dSMt8L+E6zWphDbH62GKGhNupe15wOoYAvh01yWeC2Znr5JePZ3Pzi4Mwq/NAGl2wVGTedETEfaWfxNIO7FeA84/8JwAB2CF0CMLcoLS9y4XUMpF5U/UZCHMTRMgghOnkjZ3KixBWsBtPyJ9rlNY19E6lrCJIHMjM9BvF0hwOLkzy74BVHga1aMW4tat8nL9CLBYuqxe8X7IXL+3BDVMn4fJ48EiJWQjMJhOtEqqzNTWFmJAQrmjYmN+2bSXd6UACtSIiGdP7mgqZdvbHPe/fyoPdnsPlcKG6VRSTomsJfTKizMdUFIUnv7mPG58dwLYVO4irFUuri84z1PEBvdW0cBAowOVwY7Ga+XbHJz77dO7TnuiEKFx5bm+e3mRWCIsOo9uALmVee2kk7zXW09JUjey0HKLDczDM76OCDKxWIISAqDfB1QeZNwOECWG/FmEL3ucCXa9Hpg4ALQe9pWseMmccxE5EWILn71FFyZSWGlpYWQsJBpEGomgFBFLcLStJUVF8cEUfHps7GyEEUkpCLVbGXXNtUC+4rapVZ+YNN/PFmpVsTjlKi2rVGdGuo89TyFMXXszu9DTMilKiXERFUb9VXcauf4cp781g28qdNGhdh+sfvYbaTcrfQVWrUSK1GpXeknvs4HEUP05zuzfsM9xuMpsYvexVPr7/S5b9uhKpSTr3bc/9Hw3Hagtey2DDNvUMn6CsIVYi4yNAXgxZb/ruKEIQ9sB72oUQYLsEYSvj9HEZkJmv6wNv3kDmBOlCZj6LiJtUaeuooiilpYYmSykHCSE2UDRFJAAppaw8s9MyUC86hjCLhRyD3PkVhdzFPJrGHzv/48/du4gPCWVwy1blmjQGuKJRY7rXq8/a5MPYTCba1EgMan2ggLrR0bxymX8FRdAvAOX9fCdLjXrVuO/D4ZV6zsLE1YzxW6uo28JXWiQvOw+z1UxMtSiem/SIV1uoMnLIt786lMcvH1UkPWQLtXHbKzdgMpmAOsjQWyD3O/S7aqkraFq7g6WMGv2VhWsRvk8zEtzrkdJVovBbFcGjRNE5IUSilPJwvl+AD1LK0pvnK5iTFZ2buX0bj86djSs/TaMIQbTNxqxht1AtLByXqjJs2mS2HEsh1+32plPe6nEFfZs0C9bHqOIUMPaJ75g+Zo6PN3BhwbhNy7bx/p2fcWD7IRRF4ZLBXXngkxGEhIf4O2xQ2Lx8G+Oe+oGd6/cQXyuWm18YxCWDig6xSdcKPdcu3Qj71frdvZHL12mEduR8P9LYFkT19f61fqooNyWJzgWkPpp/kBrormMSWCmlDF7jeQmURX10/ZFkxq1ZxYHMDC5MqsOtbTsQn6+v8+OG9byyeIGPtn+oxcKqO+4u04BZFSdPekoGnz78jd6WKQQXD+zCyHdvITKuZPMPj9vDkb0pRMVHekXb/KFpGhPf+Jkp784gKy2HOs1rc+8Ht9G+h/5ge+C/w9zd/vEignkWm4WW3Zrx1tzn/R22ipNAy3wDcn+gqCGMBexXoES/d6qWdU5Q7kAghBgBPI/uPSCAS4CXpJRfVeRCA6GiZaiHTZvM8gO+rYDhViuf9+nHBUmlt+JVUT7cLje3n/cQKftTvUVZs8VEjfrVGLfxfb+dRTO/mMsXT3yPmi8q1+26zjzyxUi/pjeFkVL6pHk+um8cM8fO8zGxt4VY+Wzt2xVS0zjXkdKBTLsLXOtODJKY6iFixyOU4E9rn8tUhAz140A7KXU/PCFEHLAM3ansjCbUYpyTlFIS4sespSxIKZm+fSvfrl9LjttN70ZNuL1dB792j+cSy35dRUZKZpELsMetkno4jX9mraHrNef77LNi9lo+ffibInn0pT//g5SSZyY8VOo5jXL9ezbt9wkCoIvjHd51pCoQVABC2BGx45HuzbqAm6k+WNqcs/37pwuBBoJUdKG5ArLyt53xDG3VmmX79+mSzYWIsNpoXT1wG73SGLVwPlM2b/SmoPampzFj+1Zm3HDjGZ9+klKyYvZaZo/7E6fDxeVDL+LSIReWOiOgqipH9x5j+6qd5BmI0jlzXezddMAwEEx4bZpPr73L4WbpzyvISssmIubkhdGaX9CELX9v9+oKFeB2uqnXsurJsCIRluZgaX6ql1FFPqV1DRVM5+wA/hFC/IpeI+gH/BvktVUK3evW56bWbRm/fg0mRUFBYDGZ+LLfdRXW5XMwM5PJmzYUmStwqiqHsrL4ddtWBrdoVSHnOVV8/th4Zo6d582tb1y8hXnfL+K1WU/77etfPO0fRt89FkeOE4/L4zV/L4wt1ErtpsZ34cf8CNmZLCYyUjLLFAj639+b3z6bi8etFpk0vmjgBSTUrvyBpyqqqCxKeyIoqNTtzP9TwK/BWU5wyHI6mfXfNpJzsmlXoybd6tT1XuSFEDzV7WJuatOWFQcOEGW3c1GdulgqcM5gTfIhzIriM2CW53GzcO/uMzoQHNqZzIxP/8DlOPFE5chxsmnZNlbNWU+nq9r57LNt1U7evPlDQ//fAkxmE5GxEVxwtbH3UYtuzUg5kOoTPBRFUL1eQpk+S1xiDB+veJ0vnvyetfM2EBIRQv/7ruT6x07rAfoqqig3pQ2UvVhZCwkWm1OOcsPUyaiaRq7HTajFQrO4eH64blCR4a5aEZFce15wHlUTQo27WcyKQq2IyKCcs7JY++cGhMFdvyPbwd+/rTIMBFPem4Erz3e2Q1EECD04d+nbgQfGjMBsMf6K3vzC9fw9YxWOHKc3GNhCbQx/fRgWa9lTbbUaJTJq6tknM1xFFSURUI1ACJEAPIHuVuZ1JpNSXlbKflcCo9EFwMdJKd8weM8gYBR6ymm9lHJooIsvDSkl98/+jSzXiVa1XLebzSkpfLl2Nfec37miTlUinWrVJtoe4mOKY1YUhrZqUylrCBbhMeEoJt8Umtli8tv6mbzrCEbdaiHhdl785QlaXdzcb0qpgFqNEhmz6k2+HfUTGxZvJqF2HDf87zq69C3RPbWKKqowINBi8Q/AJHS3spHALYCxIEo+QggT8AnQEzgArBRCTJdSbi70nsbA/4ALpZRpQohqJ/8R/HMwK5PD2Vk+2x2qh2lbN1VaIFCEYMJ1g7jrt1/Yk5GOSeh1iHd6XkX96JhKWYM/NE3jzWWLmbjxX1yqSrsaNXm755XUigzsSaVzn/aGF22T2cQVtxorura5tAU71+3BXcxPwO3y0KBNvVKDQAG1GiXyv+8fCOi9VVRRhX8CDQRxUsovhRAP5usPLRRCrCxln07ADinlLgAhxET0IvPmQu+5A/hESpkGIKU8enLLLxmBQNWM5yQCnKOrMJKiopg17Bb2pqeT63HTODauwu0hy8LAn34solj698H9XPrtlyy97Q4SwkovuNpDbbz++7M8d/UbuJ1uELo42uNf30tiA2MXrQEP9WX2l/PR0nNQ87X+7WE2rn2gd5mKvFVUUUX5CDQQFCR0Dwsh+gCHgNLEamoBhSe1DgDFb8GbAAghlqKnj0ZJKX8PcE2lUjMiAn8q2pUhtmZEMGWoT5atKSmGstUeTWPUwvl80juwIul5nRsz6dBYNi/fjtvppsWFTbGF+B/qiqkezWdr3ua7l35i1Zx1RMVHMPCRa7hsaLcyf5Yqqqii7AQaCF4RQkQBjwIfAZGAr8Nz2c7fGOgO1AYWCSFaSSnTC79JCHEncCdAnTqB93MfzMr0O6iyLyPdcPu5xG//+Rq3F/D3ASNzb/+YzCZaXXRewO9PqB3HI2NHntQ5qqiiiuAQUCCQUv6W/58ZQKBWXgeBpEI/187fVpgDwD9SSjewWwixHT0wFEk7SSnHAmNBl5gI8PwIhN9ZgMpQAj3dKempKDak7CJrUkp+/nAWk9+ZTlZqFk06NmTke7fStGPJ5jcZxzJZMWstCL32EBlbss5QFacHUkrQjoCwIZRTW/OqomwElKQWQjQRQvwphNiY/3NrIcSzpey2EmgshKgvdG3ZIUBxU9Vf0J8GEELEo6eKKszdvVZkpGF7pt1sZuB5LSrqNGcsA89r4bdO8XCXC8t83HFPfc9Xz/xI6sHjuBxuNi7ZymPdXyjR3vGPbxcwtM5IPrpvHB/dO46hSSP5a9LSMq/hZJBS4nK4DDuZqigZ6VqFPNYDmdITebQbWuqNSLVCS31VVAKBViu/QO/ucQNIKf9Fv7D7RUrpAe4D5gBbgMlSyk1CiJeEEAXJ5zlAqhBiM/AX8HiBnlFF8dFVfYmy2Qi1WFCEINRioXX1Gtzatn1FnuaMRFEUJg4Y7GPSc3vb9vRu3KRMx8zNyuOXj343cAJz8cMrUwz3ObovhdEjx+JyuMnLdpCX7cCZ5+Kd28aQejitTOsIlD8nLOaGpLu4OvxGrou/jUlv/1oVEAJEqoeQacNB3Y+uJuoG92rk8Zuq/g3PMAKtEYRKKVcUy7d7/L25ACnlLGBWsW3PF/pvCTyS/ycoNItPYOntdzF7x3aSs7NpXyORLrWTqkSu8mmfWJMt9z7Esv37SMnJpmeDRoSWQwgvefdRzFYTrmLSQZom+W+N8cPewsnLvZIORRCweOrf9L/vqjKvpySW/bqS9+/8zDvhnJ2Ww/cv/QRSMviJ/kE559mEzJ0IsvhlQNXTRO5VYPXViKri9CTQQHBMCNGQ/BYcIcRA4HDQVlXBhFosDKhKBZVI1wqS205IivMRbQNdcbjOeb5OYAAupxuPgeqn6lFxO3wnkCuKr5/70UfmwpHj5MfXf2bgo1fnu4FV4Rd1LycaCgsjQK1cuxIpXeD4A+n6B0y1ECHXIUwVOpZ0VhNoauhe4HOgmRDiIPAQcHfQVlXFGUtETDg9b7oYW2jRpwpriJVhzwww3Kdz7/aGgx2aR6NTn+Cl8JL3GM9EOnOdOAzUUKsohqUTYNBUID1gaVlpy5BaNjL1OmTGs5A3CbI/Rh7rhXRVnG/J2U5AgUBKuUtK2QNIAJpJKbtJKfcEdWVVBIRbVflz904mb9rA7vTg5tMD5f5PRtDv3iuxh9kQiqB2k0Re/PkJmp7fyPD9qYfTUAwkq01mhdRDwftMdZoZK5uGRYUSEnHiApednsP8CYuZ9/0iMlN9J9XPVURIf1BigMLaTnaw90CY61faOmTOV+DZC+Tmb3GBzEWmP1JVqwiQQLWGXgPeKujvF0LEAI9KKUvrHKoiiOw4nsoNUyfj9HhQpUSTGv2bNue1y3ue0hqI2WLmjjdvYvjrw/C4Vay2kkXgtq3Yger2TQ1pmmT7yh20vzw46qzDX7+R5695A2deMZP4V2/wylwsmrKcN2/5GJNJ/1n1qDz42Z30url7UNZ0JiGUMIifhsz+BBxzQdghdBgi9MbKXYhjJkWtL/PRMvT0lble5a7nDCTQ1NBVhYe88iUhegdnSVUEgpSSO2f8wvG8XLLdLvI8bpyqyoztW5m+3f+gWGWiKEqpQQD0uoI9zHcS2RZiJSEpPhhLA6D95a148ZcnaNimHla7hZqNavDI2Lvoc0dPANKOpPPmLR/jynN5u5lcDjejR47lyN4SpbbOGYQSixL5HEq1RSgJf6CE3YIuM1aZi/DX3KCV8FoVhQk0EJiEEN7fVCFECFC6MWwVQWPH8eMcycnxEdDI9bj5YcP6U7KmsnLJoK6YrWYKP8QIIbDYLXS7rlNQz92hZxs+W/s2M3MnMH77R1w29CLva4un/oPRc5WmSRZOXhbUdVVxEtj83JMqsQhTlb1oIAQaCH4A/hRCDBdCDAfmAuODt6wqSsOpevxORzs8weu0CQahESG8t/Al6raog8VmwWKz0KB1Xd5f9HKJmkXBxuVwoWmaz3bNo+J0+DfVAUhPyWDF7LXsWLu7Kk8dbNTDYBSytSx00YIqSiNQiYk3hRD/Apfnb3pZSjkneMuqojSaxSdgMSk+3Xt2s5lrmgSu+XO6UL9lHb74911SD6chBMTWOPVSBZ37tOfr5yb6bLfYLVzQt6PhPlJKvnpmAtM+mInFZkH1qNSoX5035jxLXOKp/0xnJe6lGIpLCi2/RmDcpFDFCQLWQZZSzpZSPpb/pyoInGLMisL7vXoTYjZjUfScbKjFQqPYOG5sfeaa3cQlxpwWQQAgqWktBjzUB1uo3v0khMAeauOq4ZfTqJ1xV8ziqX/zy0ezcTnc5GTk4shxsm/LAV4c8HYlr/4cQvHjJy09IE6P79LpTqBdQ9cBbwLV0J/BBPpg8Jnts3iGc0m9+sy58VYmb9rIkZxsLqpTlysaNq5Qv+WKYvvqnYx/YTK7/91LUrOa3PTCIFpe2OxUL6tUbn91KBdccz5//rAITZNcNuRCWpSw7qkfzMSRU7SDRVM1dq7bw9F9KVSrUzY/5bIgtRxk3m/g2QLmpoiQqxHK2ef3IMKGI9OfAPIKbbWAtTPC5CdIVFGEQCeL3wKullJuCeZiqjh5akdG8cgFZReIqww2Lt3KU1e8givPiZSQciCVTUu38cLUxzj/Sl9P49ON8zo35rzOjQN6b3ZatuF2k8VEdnou1SpmgLtUpHoYmToAtBz0C2QIMns0xE1BmI0nvM9UhP0KZPhuyB4DwgzSDZa2iOj3TvXSzhgCDQRHqoJAUaSUrEk+xJ70dJrExdOqmrEbV0Wfc+n+fUzdshGPJunXtBmX1W942ktqf/boeB8ROmeei08e/Jpvtp3+geBk6NrvfA7vPOJjw2kym6jbvPIuwDLzJdCOAwXF7jyQTmTmKETsuEpbR2WhhI9Eht4Inv9ASTjrgl2wCTQQrBJCTEKXjfb+RksppwVlVac5mU4Hw6b95J3klVLSqnoNvr7mOkIspffNl5VXFy/gx40byMvvCvprzy4uq9eA0Vf2Oa1F9Hat32O4/dCOw6geFZPBVPGZyvWPXcP8CUtIT8nEledCUfQ22Ic+u6tyP6dzESeCQAEauJYipTytvy9lRSjhYD27biwqi0ADQST6/HavQtskcE4Gguf/+pPtqcdwF2otXJ98mHeWL+G5iwP17Tk5dqUd54cN/+JUT9xp5rrd/Ll7F6sOH+T8mqfvHVBkfCSpB4/7bA+JCEExnXrf5ookMjaCsevfYebYeayas45qdeLp/0BvGrWtPMkFHRPGgnBnT9AtCSldyNzJ4JgBwo4IvQFsV5yVAbAiCLR99LZgL+RMQZOS2Tu2FwkCAE5VZeqWTUELBIv27sGoRS7P4+av3btO60Aw5Mn+jHvqhyLpIVuojese6ntW/mKGRYUx6PF+DHq836lbREgfyJtO0WBgAfvZfzGU0oM8fiO4t1FQQJaudRDyNyJq1Cld2+lKoF1DdmA40AKwF2yXUt4epHWdtmhSovoZEHKpvno5FUWY1YpJUaDYOSyKQrj19B7y7nfvlWQcy+Snd2agKAJN1eh7Zw9ufM5YjbSs5GTkMPHNX1j403Jsdit97+5F37t6npNy0iLif0j3Zr2PXqogTGCqjYh8vvSdz3Sc88CznaJdRHmQNxUZdhvCXLdchy8YEDybAmqgqaHvgK3AFcBLwDB017FzDrOi0L5GTVYfPljk/lxBcEndekE77xUNGzFqwXyf7SZFoV/T03uATAjBLaMGM+TJ/qQcOE5czRhCwuyl73gSuBwu7uvyNEf2pOB26nfBXzzxPRsXb+GZHx+u0HOdCQglEuJ+AdcKvYBqbqi3U4qzKxVnhHQuAZlr8IoCrpVQxkAgtePIjFF6oEEibRcjIl9EmGqUZ7mnBYF+KxpJKZ8DcqSU44E+QOfgLev05rXLexJhs2E363E0xGwmJsTOs0FKCwFE2ux83rcf4Var90+I2cw7Pa+kVuSZMc5hC7FRu3FihQcBgL8mLuXYgVRvEADdV2D59FXs23ow4OO4XW7mfb+Ilwa+w+h7xrLTT6H7TEAIgbB1RoTdiLBdcE4EASB/wMygaUMo+bLZJ4+UKjJ1SH4Q8AAqOBciUwci5ZnvXRHoE0HBb1e6EKIlkIw+XHZO0ig2jvk3385PmzayNfUYratXZ8B5LYm0BTdF061OXVaOuJvlB/ajahpdaicRVg5bybOJdX9t9BnkAhCKYMvf26nTrFapx3A53Tx6yfPs2bQfR44TxaQwd/xC7vt4OFfedlkwll1FEBAhA5E5X+NbLLeC7SKjXUrHuQi0FIo69Gogs8HxO4Sc2damgQaCsfkeBM8C04Fw4LnSdhJCXAmMRm9VGCelfKPY67cCbwMFt2wfSynPiCbn2JBQ7uoYXGVMI2xmM93rVXYHyulPjfrVsNjMPjaZQhHE14oN6Bhzxy9g98b93qK2pmo481x8fP9XXDKoa1CeZKqoeIQ5CaJHIzMeQ2+w0EBEI2I+R5RVllrdBdLA80DmIt3/IQyM2s4kSgwEQojCpvIFnUOf5P8dVsq+pvz39gQOACuFENOllJuLvXWSlPK+wJd8+uBWVTKdTqLtdr2QW8Upo/eIHkx5d0aRQKAogojYcNpeFpht4sKflvsMvoHulLZ52TY69DxzNZzONYT9UrD9De6NIGxgPq98xV1zI/04spgftwhFWJqWb7GnAaU9EUTk/90UOB/9aQDgamBFKft2AnZIKXcBCCEmAv2A4oHgjENKyUcr/uaLNStxaxp2k5kHu3TltrbB89etomQSasfx6syneeOmD8lMzUJTJQ1a1+G5yY8G3DUUHm18byOlLGJdWcWZgRCWihsws3YDpYbeheVND5lARIH9ioo5xymkxEAgpXwRQAixCGgvpczK/3kUMLOUY9cC9hf6+QDGBeYBQoiLge3Aw1LK/cXfIIS4E7gToE6dShJrKYHPV6/k89UryPPoXwiXqvLOssVEWK0MbF55pt1G7E1PZ9zaVWxKOUqLhGqMaNeRutHRp3RNlUXri5vzw55PSd59FIvdQnzNwFJCBfQd2YuVs9fiKPZUEB4VRrNOVVLG5zJCmCDuR2Tma3pNAA1slyEin6WQZ9cZS6D5jOpAYScOV/628jIDqCelbE0JZjdSyrFSyo5Syo4JCZWn3uhnLXxWKAgUkOfx8OGKv0/RqnQ2Hj1Cnx+/ZdLGf1mXfJhJG/+lz4/fsvHokVO6rspECEFig+onHQRAt64c/GQ/LHYLoREhhEaEEFM9mtdmP+P1MK7i3EUo0SjRb6HU+BelxkaUmKyH6lIAABJdSURBVA8RprOjZybQYvG3wAohxM/5P/cHvilln4NAUqGfa3OiKAyAlDK10I/j0FVOT2vcmkaW06BoBBzNMVaerCxeWPAnue4TnRIeKfG43Yxa8CdTBg09hSurHHIyc/np3RksnLQMW4iVq+/uxVUjLj+pi/iNz11Pnzt78u+iLUTEhNGme4tyawTl5TiY+t4M5v+4FLPFRJ87e9D3rl5nlcZSFWc2gUpMvCqEmA0U9F7dJqVcW8puK4HGQoj66AFgCFDkaiSESJRSHs7/8RpO0yE1l6rywd/L+GHDOnLcbsyK4iMxAXpb6alk/ZFkw+3r/Gw/m3A5XDxwwdMc3n0Ut0MPhp8+Mp5/F2/hf989cFLHioyPoF7LJMKjw8p9sfa4PTx80XPs33oQV/66vnjyB9bO38ioqY+X69hVVFFRBPpEgJRyDbDmJN7vEULcB8xBbx/9Skq5SQjxErBKSjkdeEAIcQ169eU4cOvJLL6yeHzu78zdtQNHfjpIM5CYsJvNPN3tkspeWhFCLRayXb5eumFBVEQtTF6OA03VCIsMrZTzFWbh5OUc3XfMGwRAHyhbMu0f9j97kKSmpc8RACz5+R/ev+tzXA43qkelWafGPDf5EWKqRZVpXUt/WcmhHcneIFCwrlVz1rFj3e5TIEZXRRW+BDXxKaWcJaVsIqVsKKV8NX/b8/lBACnl/6SULaSUbaSUl0optwZzPWUhOTuLP3b+5w0CBShCEGsPIdJmo0NiTb7pN4CuSae2kH1Dy9beaecC7GYzw1q1Dep5Uw+n8b8rX+Ha2FsZEH8793R8gt0b9gb1nMVZM3+D4UCZogg2L98e0DF2rNutdx0dy8KR7cDtcLN5+TaevurVMq/r30WbyMs2mDyVsCXAdVVRRbAJ+IngXGVPejpWkxlnMbE3TUrqREUxbfCwU7QyXx69oBuHs7KYu2sHVpMJl6rSs0FDHurSNWjnVFWVRy5+jiN7U1A9errsvzW7efiS5/l2x8dExkaUcoSKoXrdBCxWs48hjKIoxAVYOP7lw1lFnigAVLfK/m2H2PXvXhq0PnmNmoSkeKx2S5EnAtCNagJdVxVVBJuqVohSqBcdXcQDoACzEDRPOL06BqwmEx9e1Zf5Nw/nsz79mH/zcEZf2RdrENU31/65kbSjGd4gUIDH6eGP8QuCdt7i9B5xOSZL0c+pKIKw6FDaXR5YS2/ynhQ0zTftZ7aYSD3k66cQCL1uvsSnziCEwBZq4/yrgvukVkUVgVIVCEqhRngEVzRs5JNysZrNjGjf8RStqmQSIyK4IKkOiRHBvxs/vOsImse3cO7Mc3Fg22GDPYJDtaR4Xp7+FHE1Y7CH2bDaLTRoU493F7wY8EBZ+56tsdp9JQjcTjeNOzQo07pia8Tw2uxnSEiKxx5qwxpipV7LJN5b+CIWa+XUbqqoojTOidSQ0+Phrz27OZKTRbsaNWld/eRkY9/ueRXv/72UCRvWk+N206Z6DUZ1v5x60WVTMjybaNSuPkLxHd23h9k4r0tghu8VRdtLWzJh32cc2pGM1W6hWp2Tmzm5emQvpo+ZQ0ZKJp78FJM9zMY1915JdELZisUALS9sxg97xnBwRzIWq5nqdU/tLEwVVRRHSD8mK6crHTt2lKtWrQr4/bvSjjN4yiQcHjceTUMRgs61k/i8Tz8s56BhSUUjpeTxy19ky9/bvXlwk8VEfM1Yvtz8PraQM2vqMj0lg4lv/sLyX1cRERvGgIevpvvgrmeVCUkV5yZCiNVSSsM0xlkfCHr/MJ5tqceKmMiEmM081rUbt7XtUPELPAdxOVx8/8oU5nz9Fx6XyoXXduL2V28o1110FVVUUbGcs4HgUFYml3/7lU/HD0Dj2Djm3HhrBa+uiiqqqOL0pKRAcFYXiz2a5veR3mMwGfz/9u4/yKryvuP4+7PL7soiIhTGqFB3VaISlR9FA0karUqLP4KdmEZMmpBEy8SqI8ROitKxE1NnqjP1RyamDqYmnalKq8aUAadqiWmjbQQUURQRlE2BIGADQfm1LPvtH+esOSzrsqR7Oefe83nN3Ln3POe5dz/cs8v3nufc8xwzszKq6UIw6pghjGg+eGrhpvr6wl/n18zsSKnpQiCJ70y9lEENjR98/bO5oYFThg4r7Fc/rfqtemENN0y+halN0/mTj1zN/DueoNN7oFZgNX2MoMuvdu/ix2+sYuN7OzjnhJFcdPIpDPC0wlYB61b+DzdMuuWAK501NTdxyTUX8uf3fLWXZ5pVVm/HCEpxHsGwgc18bby/IWSV9/Dtj9O+58CJ//bu2suiec8w41ufZ9CQXq/wapaLUhQCq007fvUeC+9/muWLV/KRlhF8dtaltJ51+PMB9ae1y9uInqapaBzApnVbPNuoFZILgVWlbZu38/UJ3+T9be/TvmcfdfV1PDv/eebOn83kz+R3/KflzFFsXLOJ7kOuHe0dPqPYCssD5VaVHr79R+x4d8cHZzN37u9k7+527vqz+3M9MPvFuVfQOPDAOYSamhuZ8uXzGDz06JxSmfXOhcCq0s8XvkjHvoNPFNyzcw+/fCu/azSfOr6V2xfdQutZybUpmo8ZyBWzP8MN370mt0xmh+KhIatKRw9thraD2/d3dDJoyJG/QlrW2PM+xrwVf0dnZ6cvem9Vwb+lVpU+O+syjhp04IR2Axrq+dgnT/utLyvZ31wErFpU9DdV0lRJqyWtlTSnl35XSApJPsvL+uSiP/00l86cQsNRDQwaMpCm5iZazz6JuY/MyjuaWdWp2AllkuqBN4EpwAZgKXBVRLzerd9gYBHQCFwfEb2eLfbbnFBmtWvb5u2sXb6O4ScOy/2ro2ZFltekc+cCayPi7YhoB+YDl/fQ79vAHUAPV/g2693Q447lnKnjXQTM/h8qWQhOBNZnljekbR+QNAEYFRGLKpjDzMx6kdvRLEl1wF3ATX3oO1PSMknLtm7dWvlwZmYlUslCsBEYlVkembZ1GQycCfxUUhswCVjQ0wHjiJgXERMjYuKIET4708ysP1WyECwFRktqldQITAcWdK2MiF9HxPCIaImIFuDnwLRDHSw2M7P+VbFCEBEdwPXAU8Aq4F8i4jVJt0maVqmfa2Zmh6eiZxZHxJPAk93abv2QvudXMouZmfXMpz6amZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJVbQQSJoqabWktZLm9LD+65JelfSypOckjalkHjMzO1jFCoGkeuA+4GJgDHBVD//RPxwRZ0XEOOBO4K5K5TEzs55Vco/gXGBtRLwdEe3AfODybIeI2JFZHAREBfOYmVkPBlTwtU8E1meWNwAf795J0nXAN4BG4IIK5jEzsx7kfrA4Iu6LiFOAvwT+qqc+kmZKWiZp2datW49sQDOzGlfJQrARGJVZHpm2fZj5wB/3tCIi5kXExIiYOGLEiH6MaGZmlSwES4HRklolNQLTgQXZDpJGZxYvBdZUMI+ZmfWgYscIIqJD0vXAU0A98GBEvCbpNmBZRCwArpd0EbAP2AbMqFQeMzPrWSUPFhMRTwJPdmu7NfP4xkr+fDMzO7TcDxabmVm+XAjMzErOhcDMrOQqeozArD9FBGteeptfrn2H1rNP4qQzRuYdyawmuBBYVXh/+07m/NHf8IvX11NXV8f+jv2Mu+BM/vrxv6ChsSHveGZVzUNDVhXuvXYeb61oY8/Ovex6bzd7d7ez/Ccreejbj+UdzazquRBY4XXs6+C5J5bQ0d5xQHv77nYWPbA4p1RmtcOFwApvf8d+Ovd39rhu7+69RziNWe1xIbDCaxrYxMljTzqova5OnDN1fA6JzGqLC4FVhZseuJaBgwfS0JQcGG4c2MjgYYOZeeeXck5mVv38rSGrCqeOb+XBVfew8P6naVu5njMmjebiay7kmGGD845mVvVcCKxqDD9hGF+5bXreMcxqjoeGzMxKzoXAzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxKzoXAzKzkXAjMzEpOEZF3hsMiaSvwiz52Hw68W8E4/aVackL1ZHXO/lUtOaF6sh7pnCdFxIieVlRdITgckpZFxMS8cxxKteSE6snqnP2rWnJC9WQtUk4PDZmZlZwLgZlZydV6IZiXd4A+qpacUD1ZnbN/VUtOqJ6shclZ08cIzMzs0Gp9j8DMzA6hZguBpKmSVktaK2lO3nm6SHpQ0hZJKzNtwyQ9I2lNej80z4xpplGSnpX0uqTXJN1YxKySjpK0RNKKNOe30vZWSS+k2/+fJTXmmbOLpHpJyyUtTJeLmrNN0quSXpa0LG0r1LZPMx0r6TFJb0haJWly0XJKOi19H7tuOyTNKlLOmiwEkuqB+4CLgTHAVZLG5JvqAz8EpnZrmwMsjojRwOJ0OW8dwE0RMQaYBFyXvodFy7oXuCAixgLjgKmSJgF3AHdHxKnANuDqHDNm3QisyiwXNSfAH0TEuMxXHIu27QHuBf4tIk4HxpK8t4XKGRGr0/dxHPB7wC7gCYqUMyJq7gZMBp7KLN8M3Jx3rkyeFmBlZnk1cHz6+Hhgdd4Ze8j8r8CUImcFmoGXgI+TnKgzoKffhxzzjST5g78AWAioiDnTLG3A8G5thdr2wBBgHemxzqLm7JbtD4Hni5azJvcIgBOB9ZnlDWlbUR0XEZvSx+8Ax+UZpjtJLcB44AUKmDUdbnkZ2AI8A7wFbI+IjrRLUbb/PcA3gc50+XcoZk6AAJ6W9KKkmWlb0bZ9K7AV+EE63PZ9SYMoXs6s6cAj6ePC5KzVQlC1Ivl4UJivckk6GngcmBURO7LripI1IvZHsts9EjgXOD3nSAeRdBmwJSJezDtLH30qIiaQDK9eJ+nT2ZUF2fYDgAnA30fEeGAn3YZXCpITgPT4zzTg0e7r8s5Zq4VgIzAqszwybSuqzZKOB0jvt+ScBwBJDSRF4KGI+FHaXMisABGxHXiWZIjlWEkD0lVF2P6fBKZJagPmkwwP3UvxcgIQERvT+y0k49nnUrxtvwHYEBEvpMuPkRSGouXscjHwUkRsTpcLk7NWC8FSYHT6jYxGkt2xBTln6s0CYEb6eAbJeHyuJAn4B2BVRNyVWVWorJJGSDo2fTyQ5DjGKpKC8Lm0W+45I+LmiBgZES0kv48/iYgvUrCcAJIGSRrc9ZhkXHslBdv2EfEOsF7SaWnThcDrFCxnxlX8ZlgIipQz74MnFTwocwnwJsl48dy882RyPQJsAvaRfKK5mmSseDGwBvh3YFgBcn6KZFf1FeDl9HZJ0bICZwPL05wrgVvT9pOBJcBakl3xprzf00zm84GFRc2ZZlqR3l7r+vsp2rZPM40DlqXb/8fA0ILmHAT8LzAk01aYnD6z2Mys5Gp1aMjMzPrIhcDMrORcCMzMSs6FwMys5FwIzMxKzoXArJ9IasnOKnsYz/uvzPO/0P/JzHrnQmCWk64ziiPiE2lTC+BCYEecC4GVRvqJ+w1JD6Vz1z8mqVnShemkZa+m14toSvu3SbozbV8i6dS0/YeSPpd53fc/5Gf9TNJL6e0Tafv5afsCkrNgs8//W+D30znrZ0v6T0njMq/5nKSxFXuDrLRcCKxsTgO+FxFnADuAb5BcI+LKiDiLZCKzazP9f522f5dk9tC+2gJMiWTitiuB72TWTQBujIiPdnvOHOBnkcxdfzfJFB9fAZD0UeCoiFhxGBnM+sSFwMpmfUQ8nz7+J5L5adZFxJtp2z8C2Zk2H8ncTz6Mn9MAPCDpVZKpI7IXRloSEev68BqPApelk/99jaRgmfW7AYfuYlZTus+psp1kzpe+9O963EH6IUpSHdDT5SVnA5tJrppVB+zJrNvZp6ARuyQ9A1wOfJ7k6lZm/c57BFY2vyup65P9F0gmLGvpGv8HvgT8R6b/lZn7/04ft/Gb/5SnkXz6724IsCkiOtPXrO9DtveAwd3avk8yrLQ0Irb14TXMDpsLgZXNapILrawimanybuCrwKPpME4ncH+m/1BJr5Bca3h22vYAcJ6kFSTDRT19wv8eMCPtc/qH9OnuFWC/pBWSZgNEciGbHcAPDu+fadZ3nn3USiO95ObCiDizj/3bgIkR8W4FYx0qwwnAT4HT070Ls37nPQKzgpL0ZZLrRM91EbBK8h6BmVnJeY/AzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxK7v8A+me/ab3a2nMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "from sklearn.cluster import KMeans\n", + "kmeans = KMeans(n_clusters = 3)\n", + "kmeans.fit(X)\n", + "labels = kmeans.predict(X)\n", + "plt.scatter(df['popularity'],df['danceability'],c = labels)\n", + "plt.xlabel('popularity')\n", + "plt.ylabel('danceability')\n", + "plt.show()" + ] + }, + { + "source": [ + "دقت این مدل بد نیست، اما عالی هم نیست. ممکن است داده‌ها برای خوشه‌بندی K-Means مناسب نباشند. شاید بخواهید روش دیگری را امتحان کنید.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 811, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Result: 109 out of 286 samples were correctly labeled.\nAccuracy score: 0.38\n" + ] + } + ], + "source": [ + "labels = kmeans.labels_\n", + "\n", + "correct_labels = sum(y == labels)\n", + "\n", + "print(\"Result: %d out of %d samples were correctly labeled.\" % (correct_labels, y.size))\n", + "\n", + "print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/5-Clustering/2-K-Means/solution/tester.ipynb b/translations/fa/5-Clustering/2-K-Means/solution/tester.ipynb new file mode 100644 index 000000000..193074da5 --- /dev/null +++ b/translations/fa/5-Clustering/2-K-Means/solution/tester.ipynb @@ -0,0 +1,345 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "6f92868513e59d321245137c1c4c5311", + "translation_date": "2025-09-04T02:12:40+00:00", + "source_file": "5-Clustering/2-K-Means/solution/tester.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# موسیقی نیجریه‌ای استخراج‌شده از اسپاتیفای - یک تحلیل\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "از جایی که در درس قبلی تمام کردیم شروع کنید، با داده‌هایی که وارد و فیلتر شده‌اند.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
            0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
            1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
            2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
            3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
            4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
            \n
            " + }, + "metadata": {}, + "execution_count": 105 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import numpy as np\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "ما فقط روی ۳ ژانر تمرکز خواهیم کرد. شاید بتوانیم ۳ خوشه بسازیم!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 106 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
            1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
            3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
            4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
            5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
            6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
            \n
            " + }, + "metadata": {}, + "execution_count": 107 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "scaler = StandardScaler()\n", + "\n", + "# X = df.loc[:, ('danceability','energy')]\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "Unknown label type: 'continuous'", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;31m# we create an instance of SVM and fit out data. We do not scale our\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;31m# data since we want to plot the support vectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0mls30\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 30% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0mls50\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 50% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mls100\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 100% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/semi_supervised/_label_propagation.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 229\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mX_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 230\u001b[0;31m \u001b[0mcheck_classification_targets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[0;31m# actual graph construction (implementations should override this)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/utils/multiclass.py\u001b[0m in \u001b[0;36mcheck_classification_targets\u001b[0;34m(y)\u001b[0m\n\u001b[1;32m 181\u001b[0m if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',\n\u001b[1;32m 182\u001b[0m 'multilabel-indicator', 'multilabel-sequences']:\n\u001b[0;32m--> 183\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Unknown label type: %r\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0my_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 184\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unknown label type: 'continuous'" + ] + } + ], + "source": [ + "from sklearn.svm import SVC\n", + "from sklearn.semi_supervised import LabelSpreading\n", + "from sklearn.semi_supervised import SelfTrainingClassifier\n", + "from sklearn import datasets\n", + "\n", + "X = df[['danceability','acousticness']].values\n", + "y = df['energy'].values\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "# step size in the mesh\n", + "h = .02\n", + "\n", + "rng = np.random.RandomState(0)\n", + "y_rand = rng.rand(y.shape[0])\n", + "y_30 = np.copy(y)\n", + "y_30[y_rand < 0.3] = -1 # set random samples to be unlabeled\n", + "y_50 = np.copy(y)\n", + "y_50[y_rand < 0.5] = -1\n", + "# we create an instance of SVM and fit out data. We do not scale our\n", + "# data since we want to plot the support vectors\n", + "ls30 = (LabelSpreading().fit(X, y_30), y_30, 'Label Spreading 30% data')\n", + "ls50 = (LabelSpreading().fit(X, y_50), y_50, 'Label Spreading 50% data')\n", + "ls100 = (LabelSpreading().fit(X, y), y, 'Label Spreading 100% data')\n", + "\n", + "# the base classifier for self-training is identical to the SVC\n", + "base_classifier = SVC(kernel='rbf', gamma=.5, probability=True)\n", + "st30 = (SelfTrainingClassifier(base_classifier).fit(X, y_30),\n", + " y_30, 'Self-training 30% data')\n", + "st50 = (SelfTrainingClassifier(base_classifier).fit(X, y_50),\n", + " y_50, 'Self-training 50% data')\n", + "\n", + "rbf_svc = (SVC(kernel='rbf', gamma=.5).fit(X, y), y, 'SVC with rbf kernel')\n", + "\n", + "# create a mesh to plot in\n", + "x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n", + "y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n", + "xx, yy = np.meshgrid(np.arange(x_min, x_max, h),\n", + " np.arange(y_min, y_max, h))\n", + "\n", + "color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)}\n", + "\n", + "classifiers = (ls30, st30, ls50, st50, ls100, rbf_svc)\n", + "for i, (clf, y_train, title) in enumerate(classifiers):\n", + " # Plot the decision boundary. For that, we will assign a color to each\n", + " # point in the mesh [x_min, x_max]x[y_min, y_max].\n", + " plt.subplot(3, 2, i + 1)\n", + " Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n", + "\n", + " # Put the result into a color plot\n", + " Z = Z.reshape(xx.shape)\n", + " plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)\n", + " plt.axis('off')\n", + "\n", + " # Plot also the training points\n", + " colors = [color_map[y] for y in y_train]\n", + " plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black')\n", + "\n", + " plt.title(title)\n", + "\n", + "plt.suptitle(\"Unlabeled points are colored white\", y=0.1)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/5-Clustering/README.md b/translations/fa/5-Clustering/README.md new file mode 100644 index 000000000..121b4dd28 --- /dev/null +++ b/translations/fa/5-Clustering/README.md @@ -0,0 +1,42 @@ + +# مدل‌های خوشه‌بندی برای یادگیری ماشین + +خوشه‌بندی یکی از وظایف یادگیری ماشین است که در آن تلاش می‌شود اشیایی که به یکدیگر شباهت دارند پیدا شده و در گروه‌هایی به نام خوشه‌ها قرار گیرند. تفاوت اصلی خوشه‌بندی با سایر روش‌های یادگیری ماشین در این است که این فرآیند به صورت خودکار انجام می‌شود؛ در واقع می‌توان گفت که خوشه‌بندی نقطه مقابل یادگیری نظارت‌شده است. + +## موضوع منطقه‌ای: مدل‌های خوشه‌بندی برای سلیقه موسیقی مخاطبان نیجریه 🎧 + +مخاطبان متنوع نیجریه دارای سلیقه‌های موسیقی متنوعی هستند. با استفاده از داده‌هایی که از اسپاتیفای جمع‌آوری شده‌اند (با الهام از [این مقاله](https://towardsdatascience.com/country-wise-visual-analysis-of-music-taste-using-spotify-api-seaborn-in-python-77f5b749b421))، بیایید نگاهی به برخی از موسیقی‌های محبوب در نیجریه بیندازیم. این مجموعه داده شامل اطلاعاتی درباره امتیاز 'رقص‌پذیری'، 'آکوستیک بودن'، بلندی صدا، 'گفتاری بودن'، محبوبیت و انرژی آهنگ‌های مختلف است. کشف الگوها در این داده‌ها می‌تواند بسیار جالب باشد! + +![یک صفحه‌گردان](../../../translated_images/turntable.f2b86b13c53302dc106aa741de9dc96ac372864cf458dd6f879119857aab01da.fa.jpg) + +> عکس از مارسلا لاسکوسکی در Unsplash + +در این مجموعه درس‌ها، شما روش‌های جدیدی برای تحلیل داده‌ها با استفاده از تکنیک‌های خوشه‌بندی کشف خواهید کرد. خوشه‌بندی به‌ویژه زمانی مفید است که مجموعه داده شما فاقد برچسب باشد. اگر داده‌ها دارای برچسب باشند، تکنیک‌های طبقه‌بندی که در درس‌های قبلی یاد گرفتید ممکن است مفیدتر باشند. اما در مواردی که به دنبال گروه‌بندی داده‌های بدون برچسب هستید، خوشه‌بندی راهی عالی برای کشف الگوها است. + +> ابزارهای کم‌کد مفیدی وجود دارند که می‌توانند به شما در یادگیری کار با مدل‌های خوشه‌بندی کمک کنند. [Azure ML را برای این کار امتحان کنید](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +## درس‌ها + +1. [مقدمه‌ای بر خوشه‌بندی](1-Visualize/README.md) +2. [خوشه‌بندی K-Means](2-K-Means/README.md) + +## اعتبارها + +این درس‌ها با 🎶 توسط [جن لوپر](https://www.twitter.com/jenlooper) نوشته شده‌اند و با بازبینی‌های مفید [ریشیت داگلی](https://rishit_dagli) و [محمد ساکب خان اینان](https://twitter.com/Sakibinan) تکمیل شده‌اند. + +مجموعه داده [آهنگ‌های نیجریه‌ای](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify) از سایت Kaggle و از اسپاتیفای جمع‌آوری شده است. + +مثال‌های مفید K-Means که در ایجاد این درس کمک کردند شامل این [بررسی گل زنبق](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering)، این [دفترچه مقدماتی](https://www.kaggle.com/prashant111/k-means-clustering-with-python)، و این [مثال فرضی سازمان غیردولتی](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering) هستند. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/1-Introduction-to-NLP/README.md b/translations/fa/6-NLP/1-Introduction-to-NLP/README.md new file mode 100644 index 000000000..86d492d77 --- /dev/null +++ b/translations/fa/6-NLP/1-Introduction-to-NLP/README.md @@ -0,0 +1,179 @@ + +# مقدمه‌ای بر پردازش زبان طبیعی + +این درس به تاریخچه‌ای کوتاه و مفاهیم مهم *پردازش زبان طبیعی*، یکی از زیرشاخه‌های *زبان‌شناسی محاسباتی* می‌پردازد. + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/31/) + +## مقدمه + +پردازش زبان طبیعی، که به اختصار NLP نامیده می‌شود، یکی از شناخته‌شده‌ترین حوزه‌هایی است که یادگیری ماشین در آن به کار گرفته شده و در نرم‌افزارهای تولیدی استفاده شده است. + +✅ آیا می‌توانید نرم‌افزاری که هر روز استفاده می‌کنید و احتمالاً از NLP بهره می‌برد را نام ببرید؟ به برنامه‌های پردازش متن یا اپلیکیشن‌های موبایلی که به طور مرتب استفاده می‌کنید فکر کنید. + +شما درباره موارد زیر یاد خواهید گرفت: + +- **ایده زبان‌ها**. چگونه زبان‌ها توسعه یافتند و چه حوزه‌های اصلی مطالعه در این زمینه بوده‌اند. +- **تعاریف و مفاهیم**. همچنین درباره تعاریف و مفاهیمی که به پردازش متن توسط کامپیوترها مربوط می‌شود، از جمله تجزیه، دستور زبان، و شناسایی اسم‌ها و فعل‌ها خواهید آموخت. در این درس برخی وظایف کدنویسی وجود دارد و چندین مفهوم مهم معرفی می‌شوند که در درس‌های بعدی یاد خواهید گرفت چگونه آن‌ها را کدنویسی کنید. + +## زبان‌شناسی محاسباتی + +زبان‌شناسی محاسباتی حوزه‌ای از تحقیق و توسعه است که طی دهه‌ها به مطالعه چگونگی کار کردن کامپیوترها با زبان‌ها، و حتی فهمیدن، ترجمه کردن و ارتباط برقرار کردن با آن‌ها پرداخته است. پردازش زبان طبیعی (NLP) حوزه‌ای مرتبط است که بر چگونگی پردازش زبان‌های انسانی توسط کامپیوترها تمرکز دارد. + +### مثال - دیکته تلفنی + +اگر تاکنون به جای تایپ کردن، به تلفن خود دیکته کرده‌اید یا از یک دستیار مجازی سوالی پرسیده‌اید، گفتار شما به شکل متن تبدیل شده و سپس پردازش یا *تجزیه* شده است. کلمات کلیدی شناسایی شده سپس به فرمتی تبدیل شده‌اند که تلفن یا دستیار بتواند آن را بفهمد و بر اساس آن عمل کند. + +![درک](../../../../translated_images/comprehension.619708fc5959b0f6a24ebffba2ad7b0625391a476141df65b43b59de24e45c6f.fa.png) +> درک واقعی زبان‌شناسی دشوار است! تصویر از [Jen Looper](https://twitter.com/jenlooper) + +### چگونه این فناوری ممکن شده است؟ + +این امکان به دلیل این است که کسی یک برنامه کامپیوتری برای انجام این کار نوشته است. چند دهه پیش، برخی نویسندگان علمی-تخیلی پیش‌بینی کردند که مردم بیشتر با کامپیوترهای خود صحبت خواهند کرد و کامپیوترها همیشه دقیقاً منظور آن‌ها را خواهند فهمید. متأسفانه، مشخص شد که این مشکل سخت‌تر از آن چیزی است که بسیاری تصور می‌کردند، و در حالی که امروز این مشکل بسیار بهتر درک شده است، چالش‌های قابل توجهی در دستیابی به پردازش زبان طبیعی 'کامل' وجود دارد، به ویژه در فهمیدن معنای یک جمله. این مشکل به خصوص در فهمیدن طنز یا تشخیص احساساتی مانند طعنه در یک جمله دشوار است. + +در این مرحله، ممکن است به یاد کلاس‌های مدرسه بیفتید که معلم بخش‌های دستور زبان در یک جمله را پوشش می‌داد. در برخی کشورها، دانش‌آموزان دستور زبان و زبان‌شناسی را به عنوان یک موضوع اختصاصی آموزش می‌بینند، اما در بسیاری از کشورها، این موضوعات به عنوان بخشی از یادگیری یک زبان آموزش داده می‌شوند: یا زبان اول شما در مدرسه ابتدایی (یادگیری خواندن و نوشتن) و شاید یک زبان دوم در دبیرستان. نگران نباشید اگر در تشخیص اسم‌ها از فعل‌ها یا قیدها از صفت‌ها متخصص نیستید! + +اگر در تفاوت بین *حال ساده* و *حال استمراری* مشکل دارید، تنها نیستید. این موضوع برای بسیاری از افراد، حتی گویشوران بومی یک زبان، چالش‌برانگیز است. خبر خوب این است که کامپیوترها در اعمال قوانین رسمی بسیار خوب هستند، و شما یاد خواهید گرفت که کدی بنویسید که بتواند یک جمله را به خوبی یک انسان *تجزیه* کند. چالش بزرگ‌تر که بعداً بررسی خواهید کرد، فهمیدن *معنا* و *احساس* یک جمله است. + +## پیش‌نیازها + +برای این درس، پیش‌نیاز اصلی توانایی خواندن و فهمیدن زبان این درس است. هیچ مسئله ریاضی یا معادله‌ای برای حل وجود ندارد. در حالی که نویسنده اصلی این درس را به زبان انگلیسی نوشته است، این درس به زبان‌های دیگر نیز ترجمه شده است، بنابراین ممکن است شما ترجمه‌ای را بخوانید. در مثال‌ها، از چندین زبان مختلف استفاده شده است (برای مقایسه قوانین دستوری مختلف زبان‌ها). این زبان‌ها *ترجمه نشده‌اند*، اما متن توضیحی ترجمه شده است، بنابراین معنا باید واضح باشد. + +برای وظایف کدنویسی، شما از Python استفاده خواهید کرد و مثال‌ها با Python 3.8 نوشته شده‌اند. + +در این بخش، شما نیاز دارید و استفاده خواهید کرد از: + +- **درک Python 3**. درک زبان برنامه‌نویسی Python 3، این درس از ورودی، حلقه‌ها، خواندن فایل، و آرایه‌ها استفاده می‌کند. +- **Visual Studio Code + افزونه**. ما از Visual Studio Code و افزونه Python آن استفاده خواهیم کرد. شما همچنین می‌توانید از یک IDE Python دلخواه خود استفاده کنید. +- **TextBlob**. [TextBlob](https://github.com/sloria/TextBlob) یک کتابخانه ساده برای پردازش متن در Python است. دستورالعمل‌های موجود در سایت TextBlob را دنبال کنید تا آن را روی سیستم خود نصب کنید (همچنین corpora را همانطور که در زیر نشان داده شده نصب کنید): + + ```bash + pip install -U textblob + python -m textblob.download_corpora + ``` + +> 💡 نکته: شما می‌توانید Python را مستقیماً در محیط‌های VS Code اجرا کنید. برای اطلاعات بیشتر به [مستندات](https://code.visualstudio.com/docs/languages/python?WT.mc_id=academic-77952-leestott) مراجعه کنید. + +## صحبت کردن با ماشین‌ها + +تاریخ تلاش برای فهمیدن زبان انسانی توسط کامپیوترها به دهه‌ها قبل بازمی‌گردد، و یکی از اولین دانشمندانی که به پردازش زبان طبیعی فکر کرد *آلن تورینگ* بود. + +### آزمون تورینگ + +وقتی تورینگ در دهه ۱۹۵۰ درباره *هوش مصنوعی* تحقیق می‌کرد، او به این فکر کرد که آیا می‌توان آزمونی مکالمه‌ای به یک انسان و کامپیوتر (از طریق مکاتبه تایپی) داد که در آن انسان در مکالمه مطمئن نباشد که با یک انسان دیگر یا یک کامپیوتر مکالمه می‌کند. + +اگر پس از مدت مشخصی از مکالمه، انسان نتواند تشخیص دهد که پاسخ‌ها از کامپیوتر هستند یا نه، آیا می‌توان گفت که کامپیوتر *فکر می‌کند*؟ + +### الهام - 'بازی تقلید' + +ایده این آزمون از یک بازی مهمانی به نام *بازی تقلید* گرفته شده است که در آن یک بازجو در اتاقی تنها است و وظیفه دارد تشخیص دهد که کدام یک از دو نفر (در اتاق دیگر) به ترتیب مرد و زن هستند. بازجو می‌تواند یادداشت ارسال کند و باید سعی کند سوالاتی مطرح کند که پاسخ‌های نوشته شده جنسیت فرد ناشناس را آشکار کند. البته، بازیکنان در اتاق دیگر سعی می‌کنند بازجو را با پاسخ دادن به گونه‌ای که گمراه‌کننده یا گیج‌کننده باشد، فریب دهند، در حالی که ظاهر پاسخ دادن صادقانه را حفظ می‌کنند. + +### توسعه الیزا + +در دهه ۱۹۶۰، یک دانشمند MIT به نام *جوزف ویزنبام* [*الیزا*](https://wikipedia.org/wiki/ELIZA) را توسعه داد، یک 'روان‌درمانگر' کامپیوتری که از انسان سوال می‌پرسید و ظاهر فهمیدن پاسخ‌های آن‌ها را داشت. با این حال، در حالی که الیزا می‌توانست یک جمله را تجزیه کند و برخی ساختارهای دستوری و کلمات کلیدی را شناسایی کند تا پاسخی منطقی بدهد، نمی‌توان گفت که جمله را *فهمیده* است. اگر به الیزا جمله‌ای با فرمت "**من هستم** غمگین" ارائه می‌شد، ممکن بود کلمات جمله را بازآرایی کند و کلماتی اضافه کند تا پاسخ "چقدر **تو بوده‌ای** غمگین" را تشکیل دهد. + +این ظاهر را ایجاد می‌کرد که الیزا جمله را فهمیده و سوالی پیرو آن پرسیده است، در حالی که در واقع، فقط زمان فعل را تغییر داده و کلماتی اضافه کرده بود. اگر الیزا نمی‌توانست کلمه کلیدی‌ای را شناسایی کند که پاسخی برای آن داشته باشد، به جای آن پاسخی تصادفی می‌داد که ممکن بود برای بسیاری از جملات مختلف قابل استفاده باشد. الیزا به راحتی قابل فریب بود، برای مثال اگر کاربر می‌نوشت "**تو هستی** یک دوچرخه" ممکن بود پاسخ دهد "چقدر **من بوده‌ام** یک دوچرخه؟"، به جای پاسخی منطقی‌تر. + +[![چت با الیزا](https://img.youtube.com/vi/RMK9AphfLco/0.jpg)](https://youtu.be/RMK9AphfLco "چت با الیزا") + +> 🎥 روی تصویر بالا کلیک کنید تا ویدئویی درباره برنامه اصلی ELIZA ببینید + +> توجه: شما می‌توانید توضیحات اصلی [الیزا](https://cacm.acm.org/magazines/1966/1/13317-elizaa-computer-program-for-the-study-of-natural-language-communication-between-man-and-machine/abstract) که در سال ۱۹۶۶ منتشر شده است را بخوانید اگر حساب ACM دارید. در غیر این صورت، درباره الیزا در [ویکی‌پدیا](https://wikipedia.org/wiki/ELIZA) مطالعه کنید. + +## تمرین - کدنویسی یک ربات مکالمه‌ای ساده + +یک ربات مکالمه‌ای، مانند الیزا، برنامه‌ای است که ورودی کاربر را دریافت می‌کند و به نظر می‌رسد که به طور هوشمندانه پاسخ می‌دهد. برخلاف الیزا، ربات ما قوانین متعددی برای ایجاد ظاهر یک مکالمه هوشمندانه نخواهد داشت. در عوض، ربات ما فقط یک توانایی خواهد داشت: ادامه دادن مکالمه با پاسخ‌های تصادفی که ممکن است در تقریباً هر مکالمه سطحی کار کنند. + +### برنامه + +مراحل شما هنگام ساخت یک ربات مکالمه‌ای: + +1. دستورالعمل‌هایی چاپ کنید که به کاربر توضیح دهند چگونه با ربات تعامل داشته باشد +2. یک حلقه شروع کنید + 1. ورودی کاربر را دریافت کنید + 2. اگر کاربر درخواست خروج داد، خارج شوید + 3. ورودی کاربر را پردازش کنید و پاسخ را تعیین کنید (در این مورد، پاسخ یک انتخاب تصادفی از لیستی از پاسخ‌های عمومی ممکن است) + 4. پاسخ را چاپ کنید +3. به مرحله ۲ بازگردید + +### ساخت ربات + +بیایید ربات را بسازیم. ابتدا برخی عبارات را تعریف می‌کنیم. + +1. این ربات را خودتان در Python با پاسخ‌های تصادفی زیر ایجاد کنید: + + ```python + random_responses = ["That is quite interesting, please tell me more.", + "I see. Do go on.", + "Why do you say that?", + "Funny weather we've been having, isn't it?", + "Let's change the subject.", + "Did you catch the game last night?"] + ``` + + اینجا یک نمونه خروجی برای راهنمایی شما آورده شده است (ورودی کاربر در خطوطی که با `>` شروع می‌شوند): + + ```output + Hello, I am Marvin, the simple robot. + You can end this conversation at any time by typing 'bye' + After typing each answer, press 'enter' + How are you today? + > I am good thanks + That is quite interesting, please tell me more. + > today I went for a walk + Did you catch the game last night? + > I did, but my team lost + Funny weather we've been having, isn't it? + > yes but I hope next week is better + Let's change the subject. + > ok, lets talk about music + Why do you say that? + > because I like music! + Why do you say that? + > bye + It was nice talking to you, goodbye! + ``` + + یک راه‌حل ممکن برای این وظیفه [اینجا](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/1-Introduction-to-NLP/solution/bot.py) است. + + ✅ توقف کنید و فکر کنید + + 1. آیا فکر می‌کنید پاسخ‌های تصادفی می‌توانند کسی را فریب دهند که فکر کند ربات واقعاً آن‌ها را فهمیده است؟ + 2. ربات برای مؤثرتر بودن به چه ویژگی‌هایی نیاز دارد؟ + 3. اگر یک ربات واقعاً بتواند معنای یک جمله را 'فهمیده' باشد، آیا نیاز دارد معنای جملات قبلی در یک مکالمه را نیز 'به خاطر بسپارد'؟ + +--- + +## 🚀چالش + +یکی از عناصر "توقف کنید و فکر کنید" بالا را انتخاب کنید و یا سعی کنید آن را در کد پیاده‌سازی کنید یا یک راه‌حل روی کاغذ با استفاده از شبه‌کد بنویسید. + +در درس بعدی، درباره تعدادی از روش‌های دیگر برای تجزیه زبان طبیعی و یادگیری ماشین خواهید آموخت. + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/32/) + +## مرور و مطالعه شخصی + +به منابع زیر به عنوان فرصت‌های مطالعه بیشتر نگاه کنید. + +### منابع + +1. Schubert, Lenhart, "Computational Linguistics", *The Stanford Encyclopedia of Philosophy* (Spring 2020 Edition), Edward N. Zalta (ed.), URL = . +2. Princeton University "About WordNet." [WordNet](https://wordnet.princeton.edu/). Princeton University. 2010. + +## تکلیف + +[یک ربات پیدا کنید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/1-Introduction-to-NLP/assignment.md b/translations/fa/6-NLP/1-Introduction-to-NLP/assignment.md new file mode 100644 index 000000000..943ad0e15 --- /dev/null +++ b/translations/fa/6-NLP/1-Introduction-to-NLP/assignment.md @@ -0,0 +1,25 @@ + +# جستجو برای یک ربات + +## دستورالعمل‌ها + +ربات‌ها همه جا هستند. وظیفه شما: یکی پیدا کنید و آن را بررسی کنید! می‌توانید آن‌ها را در وب‌سایت‌ها، برنامه‌های بانکی و حتی در تماس‌های تلفنی پیدا کنید، مثلاً وقتی با شرکت‌های خدمات مالی برای مشاوره یا اطلاعات حساب تماس می‌گیرید. ربات را تحلیل کنید و ببینید آیا می‌توانید آن را گیج کنید. اگر توانستید ربات را گیج کنید، به نظر شما چرا این اتفاق افتاد؟ یک مقاله کوتاه درباره تجربه خود بنویسید. + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ---------- | ---------------------------------------------------------------------------------------------------------- | ---------------------------------------- | --------------------- | +| | یک مقاله کامل نوشته شده است که معماری فرضی ربات را توضیح می‌دهد و تجربه شما با آن را شرح می‌دهد | مقاله ناقص است یا به خوبی تحقیق نشده است | هیچ مقاله‌ای ارائه نشده است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/2-Tasks/README.md b/translations/fa/6-NLP/2-Tasks/README.md new file mode 100644 index 000000000..f6ad1ee72 --- /dev/null +++ b/translations/fa/6-NLP/2-Tasks/README.md @@ -0,0 +1,228 @@ + +# وظایف و تکنیک‌های رایج پردازش زبان طبیعی + +برای اکثر وظایف *پردازش زبان طبیعی*، متن مورد پردازش باید تجزیه شود، بررسی شود و نتایج ذخیره یا با قوانین و مجموعه داده‌ها مقایسه شوند. این وظایف به برنامه‌نویس اجازه می‌دهند تا _معنی_، _هدف_ یا فقط _تکرار_ اصطلاحات و کلمات در یک متن را استخراج کند. + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/33/) + +بیایید تکنیک‌های رایج مورد استفاده در پردازش متن را کشف کنیم. این تکنیک‌ها، همراه با یادگیری ماشین، به شما کمک می‌کنند تا حجم زیادی از متن را به صورت کارآمد تحلیل کنید. اما پیش از اعمال یادگیری ماشین به این وظایف، بیایید مشکلاتی که متخصصان NLP با آن مواجه می‌شوند را درک کنیم. + +## وظایف رایج در NLP + +راه‌های مختلفی برای تحلیل متنی که روی آن کار می‌کنید وجود دارد. وظایفی وجود دارند که می‌توانید انجام دهید و از طریق این وظایف قادر خواهید بود متن را درک کرده و نتیجه‌گیری کنید. معمولاً این وظایف را به صورت ترتیبی انجام می‌دهید. + +### توکن‌سازی + +احتمالاً اولین کاری که اکثر الگوریتم‌های NLP باید انجام دهند، تقسیم متن به توکن‌ها یا کلمات است. در حالی که این کار ساده به نظر می‌رسد، در نظر گرفتن نشانه‌گذاری و جداکننده‌های کلمات و جملات در زبان‌های مختلف می‌تواند آن را پیچیده کند. ممکن است نیاز باشد از روش‌های مختلفی برای تعیین مرزها استفاده کنید. + +![توکن‌سازی](../../../../translated_images/tokenization.1641a160c66cd2d93d4524e8114e93158a9ce0eba3ecf117bae318e8a6ad3487.fa.png) +> توکن‌سازی یک جمله از **غرور و تعصب**. اینفوگرافیک توسط [Jen Looper](https://twitter.com/jenlooper) + +### تعبیه‌ها + +[تعبیه‌های کلمات](https://wikipedia.org/wiki/Word_embedding) روشی برای تبدیل داده‌های متنی به صورت عددی هستند. تعبیه‌ها به گونه‌ای انجام می‌شوند که کلماتی با معنای مشابه یا کلماتی که با هم استفاده می‌شوند، در کنار هم قرار گیرند. + +![تعبیه کلمات](../../../../translated_images/embedding.2cf8953c4b3101d188c2f61a5de5b6f53caaa5ad4ed99236d42bc3b6bd6a1fe2.fa.png) +> "من بیشترین احترام را برای اعصاب شما دارم، آنها دوستان قدیمی من هستند." - تعبیه کلمات برای یک جمله در **غرور و تعصب**. اینفوگرافیک توسط [Jen Looper](https://twitter.com/jenlooper) + +✅ [این ابزار جالب](https://projector.tensorflow.org/) را امتحان کنید تا با تعبیه‌های کلمات آزمایش کنید. کلیک روی یک کلمه خوشه‌های کلمات مشابه را نشان می‌دهد: 'toy' با 'disney'، 'lego'، 'playstation' و 'console' خوشه‌بندی می‌شود. + +### تجزیه و برچسب‌گذاری بخش‌های گفتار + +هر کلمه‌ای که توکن‌سازی شده است می‌تواند به عنوان بخشی از گفتار برچسب‌گذاری شود - اسم، فعل یا صفت. جمله `the quick red fox jumped over the lazy brown dog` ممکن است به صورت POS برچسب‌گذاری شود: fox = اسم، jumped = فعل. + +![تجزیه](../../../../translated_images/parse.d0c5bbe1106eae8fe7d60a183cd1736c8b6cec907f38000366535f84f3036101.fa.png) + +> تجزیه یک جمله از **غرور و تعصب**. اینفوگرافیک توسط [Jen Looper](https://twitter.com/jenlooper) + +تجزیه به معنای شناسایی کلماتی است که در یک جمله به یکدیگر مرتبط هستند - برای مثال `the quick red fox jumped` یک توالی صفت-اسم-فعل است که از توالی `lazy brown dog` جدا است. + +### فراوانی کلمات و عبارات + +یک روش مفید هنگام تحلیل حجم زیادی از متن، ساخت یک دیکشنری از هر کلمه یا عبارت مورد علاقه و تعداد دفعاتی است که ظاهر می‌شود. عبارت `the quick red fox jumped over the lazy brown dog` دارای فراوانی کلمه 2 برای the است. + +بیایید به یک متن نمونه نگاه کنیم که در آن فراوانی کلمات را شمارش می‌کنیم. شعر The Winners اثر Rudyard Kipling شامل این بیت است: + +```output +What the moral? Who rides may read. +When the night is thick and the tracks are blind +A friend at a pinch is a friend, indeed, +But a fool to wait for the laggard behind. +Down to Gehenna or up to the Throne, +He travels the fastest who travels alone. +``` + +از آنجا که فراوانی عبارات می‌تواند حساس به حروف بزرگ و کوچک یا غیر حساس باشد، عبارت `a friend` دارای فراوانی 2 و `the` دارای فراوانی 6 و `travels` دارای فراوانی 2 است. + +### N-grams + +یک متن می‌تواند به توالی‌هایی از کلمات با طول مشخص تقسیم شود، یک کلمه (unigram)، دو کلمه (bigram)، سه کلمه (trigram) یا هر تعداد کلمه (n-gram). + +برای مثال `the quick red fox jumped over the lazy brown dog` با امتیاز n-gram برابر 2، n-gram‌های زیر را تولید می‌کند: + +1. the quick +2. quick red +3. red fox +4. fox jumped +5. jumped over +6. over the +7. the lazy +8. lazy brown +9. brown dog + +ممکن است تصور آن به صورت یک جعبه لغزنده روی جمله آسان‌تر باشد. اینجا برای n-gram‌های 3 کلمه‌ای است، n-gram در هر جمله به صورت برجسته نشان داده شده است: + +1. **the quick red** fox jumped over the lazy brown dog +2. the **quick red fox** jumped over the lazy brown dog +3. the quick **red fox jumped** over the lazy brown dog +4. the quick red **fox jumped over** the lazy brown dog +5. the quick red fox **jumped over the** lazy brown dog +6. the quick red fox jumped **over the lazy** brown dog +7. the quick red fox jumped over **the lazy brown** dog +8. the quick red fox jumped over the **lazy brown dog** + +![پنجره لغزنده n-grams](../../../../6-NLP/2-Tasks/images/n-grams.gif) + +> مقدار N-gram برابر 3: اینفوگرافیک توسط [Jen Looper](https://twitter.com/jenlooper) + +### استخراج عبارت اسمی + +در اکثر جملات، یک اسم وجود دارد که موضوع یا مفعول جمله است. در زبان انگلیسی، اغلب قابل شناسایی است که قبل از آن 'a' یا 'an' یا 'the' آمده است. شناسایی موضوع یا مفعول جمله با 'استخراج عبارت اسمی' یک وظیفه رایج در NLP است که هنگام تلاش برای درک معنای جمله انجام می‌شود. + +✅ در جمله "I cannot fix on the hour, or the spot, or the look or the words, which laid the foundation. It is too long ago. I was in the middle before I knew that I had begun." آیا می‌توانید عبارات اسمی را شناسایی کنید؟ + +در جمله `the quick red fox jumped over the lazy brown dog` دو عبارت اسمی وجود دارد: **quick red fox** و **lazy brown dog**. + +### تحلیل احساسات + +یک جمله یا متن می‌تواند برای احساسات تحلیل شود، یا اینکه چقدر *مثبت* یا *منفی* است. احساسات با *قطبیت* و *عینیت/ذهنیت* اندازه‌گیری می‌شوند. قطبیت از -1.0 تا 1.0 (منفی تا مثبت) و 0.0 تا 1.0 (بیشترین عینی تا بیشترین ذهنی) اندازه‌گیری می‌شود. + +✅ بعداً یاد خواهید گرفت که روش‌های مختلفی برای تعیین احساسات با استفاده از یادگیری ماشین وجود دارد، اما یک روش این است که لیستی از کلمات و عبارات که توسط یک متخصص انسانی به عنوان مثبت یا منفی دسته‌بندی شده‌اند داشته باشید و آن مدل را به متن اعمال کنید تا امتیاز قطبیت را محاسبه کنید. آیا می‌توانید ببینید که این روش در برخی شرایط چگونه کار می‌کند و در برخی دیگر کمتر مؤثر است؟ + +### انعطاف + +انعطاف به شما امکان می‌دهد یک کلمه را بگیرید و شکل مفرد یا جمع آن را به دست آورید. + +### لماتیزاسیون + +یک *لم* ریشه یا کلمه اصلی برای مجموعه‌ای از کلمات است، برای مثال *flew*، *flies*، *flying* دارای لم فعل *fly* هستند. + +همچنین پایگاه‌های داده مفیدی برای محققان NLP وجود دارند، به ویژه: + +### WordNet + +[WordNet](https://wordnet.princeton.edu/) یک پایگاه داده از کلمات، مترادف‌ها، متضادها و جزئیات بسیاری دیگر برای هر کلمه در زبان‌های مختلف است. این پایگاه داده هنگام تلاش برای ساخت ترجمه‌ها، بررسی املا یا ابزارهای زبانی از هر نوع بسیار مفید است. + +## کتابخانه‌های NLP + +خوشبختانه، نیازی نیست که همه این تکنیک‌ها را خودتان بسازید، زیرا کتابخانه‌های عالی پایتون وجود دارند که این کار را برای توسعه‌دهندگانی که در پردازش زبان طبیعی یا یادگیری ماشین تخصص ندارند، بسیار قابل دسترس‌تر می‌کنند. درس‌های بعدی شامل مثال‌های بیشتری از این موارد هستند، اما در اینجا برخی مثال‌های مفید برای کمک به شما در وظیفه بعدی آورده شده است. + +### تمرین - استفاده از کتابخانه `TextBlob` + +بیایید از کتابخانه‌ای به نام TextBlob استفاده کنیم زیرا شامل API‌های مفیدی برای انجام این نوع وظایف است. TextBlob "بر شانه‌های غول‌های [NLTK](https://nltk.org) و [pattern](https://github.com/clips/pattern) ایستاده است و با هر دو به خوبی کار می‌کند." این کتابخانه مقدار قابل توجهی از یادگیری ماشین را در API خود دارد. + +> توجه: یک [راهنمای شروع سریع](https://textblob.readthedocs.io/en/dev/quickstart.html#quickstart) مفید برای TextBlob موجود است که برای توسعه‌دهندگان باتجربه پایتون توصیه می‌شود. + +هنگام تلاش برای شناسایی *عبارات اسمی*، TextBlob چندین گزینه از استخراج‌کننده‌ها برای یافتن عبارات اسمی ارائه می‌دهد. + +1. به `ConllExtractor` نگاهی بیندازید. + + ```python + from textblob import TextBlob + from textblob.np_extractors import ConllExtractor + # import and create a Conll extractor to use later + extractor = ConllExtractor() + + # later when you need a noun phrase extractor: + user_input = input("> ") + user_input_blob = TextBlob(user_input, np_extractor=extractor) # note non-default extractor specified + np = user_input_blob.noun_phrases + ``` + + > اینجا چه اتفاقی می‌افتد؟ [ConllExtractor](https://textblob.readthedocs.io/en/dev/api_reference.html?highlight=Conll#textblob.en.np_extractors.ConllExtractor) یک "استخراج‌کننده عبارت اسمی است که از تجزیه تکه‌ای آموزش‌دیده با مجموعه داده آموزشی ConLL-2000 استفاده می‌کند." ConLL-2000 به کنفرانس سال 2000 در زمینه یادگیری محاسباتی زبان طبیعی اشاره دارد. هر سال این کنفرانس کارگاهی برای حل یک مشکل دشوار NLP برگزار می‌کرد و در سال 2000 موضوع آن تکه‌بندی اسم بود. یک مدل بر اساس روزنامه وال استریت آموزش داده شد، با "بخش‌های 15-18 به عنوان داده‌های آموزشی (211727 توکن) و بخش 20 به عنوان داده‌های آزمایشی (47377 توکن)". می‌توانید رویه‌های استفاده شده را [اینجا](https://www.clips.uantwerpen.be/conll2000/chunking/) و [نتایج](https://ifarm.nl/erikt/research/np-chunking.html) را مشاهده کنید. + +### چالش - بهبود ربات خود با NLP + +در درس قبلی یک ربات پرسش و پاسخ ساده ساختید. اکنون، ماروین را کمی همدل‌تر کنید با تحلیل ورودی شما برای احساسات و چاپ یک پاسخ متناسب با احساسات. همچنین باید یک `عبارت اسمی` شناسایی کنید و درباره آن سؤال کنید. + +مراحل شما هنگام ساخت یک ربات مکالمه‌ای بهتر: + +1. دستورالعمل‌هایی چاپ کنید که به کاربر نحوه تعامل با ربات را توضیح دهد +2. حلقه را شروع کنید + 1. ورودی کاربر را بپذیرید + 2. اگر کاربر درخواست خروج کرد، خارج شوید + 3. ورودی کاربر را پردازش کنید و پاسخ احساسی مناسب را تعیین کنید + 4. اگر یک عبارت اسمی در احساسات شناسایی شد، آن را جمع کنید و درباره آن موضوع اطلاعات بیشتری بخواهید + 5. پاسخ را چاپ کنید +3. به مرحله 2 بازگردید + +در اینجا قطعه کدی برای تعیین احساسات با استفاده از TextBlob آورده شده است. توجه داشته باشید که فقط چهار *گرادیان* پاسخ احساسی وجود دارد (می‌توانید تعداد بیشتری اضافه کنید اگر بخواهید): + +```python +if user_input_blob.polarity <= -0.5: + response = "Oh dear, that sounds bad. " +elif user_input_blob.polarity <= 0: + response = "Hmm, that's not great. " +elif user_input_blob.polarity <= 0.5: + response = "Well, that sounds positive. " +elif user_input_blob.polarity <= 1: + response = "Wow, that sounds great. " +``` + +در اینجا نمونه‌ای از خروجی برای راهنمایی شما آورده شده است (ورودی کاربر در خطوطی که با > شروع می‌شوند): + +```output +Hello, I am Marvin, the friendly robot. +You can end this conversation at any time by typing 'bye' +After typing each answer, press 'enter' +How are you today? +> I am ok +Well, that sounds positive. Can you tell me more? +> I went for a walk and saw a lovely cat +Well, that sounds positive. Can you tell me more about lovely cats? +> cats are the best. But I also have a cool dog +Wow, that sounds great. Can you tell me more about cool dogs? +> I have an old hounddog but he is sick +Hmm, that's not great. Can you tell me more about old hounddogs? +> bye +It was nice talking to you, goodbye! +``` + +یک راه‌حل ممکن برای این وظیفه [اینجا](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/2-Tasks/solution/bot.py) موجود است. + +✅ بررسی دانش + +1. آیا فکر می‌کنید پاسخ‌های همدلانه می‌توانند کسی را فریب دهند که فکر کند ربات واقعاً او را درک کرده است؟ +2. آیا شناسایی عبارت اسمی ربات را "قابل باورتر" می‌کند؟ +3. چرا استخراج یک "عبارت اسمی" از یک جمله کار مفیدی است؟ + +--- + +ربات را در بررسی دانش قبلی پیاده‌سازی کنید و آن را روی یک دوست آزمایش کنید. آیا می‌تواند آنها را فریب دهد؟ آیا می‌توانید ربات خود را "قابل باورتر" کنید؟ + +## 🚀چالش + +یکی از وظایف در بررسی دانش قبلی را انتخاب کنید و سعی کنید آن را پیاده‌سازی کنید. ربات را روی یک دوست آزمایش کنید. آیا می‌تواند آنها را فریب دهد؟ آیا می‌توانید ربات خود را "قابل باورتر" کنید؟ + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/34/) + +## مرور و مطالعه شخصی + +در درس‌های بعدی بیشتر درباره تحلیل احساسات یاد خواهید گرفت. این تکنیک جالب را در مقالاتی مانند این‌ها در [KDNuggets](https://www.kdnuggets.com/tag/nlp) بررسی کنید. + +## تکلیف + +[ربات را به صحبت وادارید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/2-Tasks/assignment.md b/translations/fa/6-NLP/2-Tasks/assignment.md new file mode 100644 index 000000000..75862580e --- /dev/null +++ b/translations/fa/6-NLP/2-Tasks/assignment.md @@ -0,0 +1,25 @@ + +# ساخت یک ربات پاسخگو + +## دستورالعمل‌ها + +در درس‌های گذشته، یک ربات ساده برنامه‌ریزی کردید که می‌توانست با شما گفتگو کند. این ربات پاسخ‌های تصادفی می‌دهد تا زمانی که شما بگویید 'خداحافظ'. آیا می‌توانید پاسخ‌ها را کمی کمتر تصادفی کنید و پاسخ‌هایی را تنظیم کنید که در صورت گفتن چیزهای خاصی مانند 'چرا' یا 'چگونه' فعال شوند؟ کمی فکر کنید که چگونه یادگیری ماشین می‌تواند این نوع کارها را کمتر دستی کند وقتی که ربات خود را گسترش می‌دهید. می‌توانید از کتابخانه‌های NLTK یا TextBlob استفاده کنید تا کارهای خود را آسان‌تر کنید. + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ---------- | ------------------------------------------- | --------------------------------------------- | ----------------------- | +| | یک فایل جدید bot.py ارائه شده و مستند شده است | یک فایل جدید ربات ارائه شده اما دارای اشکالاتی است | فایلی ارائه نشده است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/3-Translation-Sentiment/README.md b/translations/fa/6-NLP/3-Translation-Sentiment/README.md new file mode 100644 index 000000000..6c31d751a --- /dev/null +++ b/translations/fa/6-NLP/3-Translation-Sentiment/README.md @@ -0,0 +1,200 @@ + +# ترجمه و تحلیل احساسات با یادگیری ماشین + +در درس‌های قبلی یاد گرفتید که چگونه یک ربات ساده با استفاده از `TextBlob` بسازید، کتابخانه‌ای که یادگیری ماشین را در پشت صحنه برای انجام وظایف پایه‌ای پردازش زبان طبیعی مانند استخراج عبارات اسمی به کار می‌گیرد. یکی دیگر از چالش‌های مهم در زبان‌شناسی محاسباتی، ترجمه دقیق یک جمله از یک زبان گفتاری یا نوشتاری به زبان دیگر است. + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/35/) + +ترجمه یکی از مشکلات بسیار دشوار است که با وجود هزاران زبان و قوانین گرامری بسیار متفاوت هر زبان پیچیده‌تر می‌شود. یک رویکرد این است که قوانین گرامری رسمی یک زبان، مانند انگلیسی، به یک ساختار مستقل از زبان تبدیل شود و سپس با تبدیل آن به زبان دیگر ترجمه شود. این رویکرد شامل مراحل زیر است: + +1. **شناسایی**. شناسایی یا برچسب‌گذاری کلمات در زبان ورودی به عنوان اسم، فعل و غیره. +2. **ایجاد ترجمه**. تولید ترجمه مستقیم هر کلمه در قالب زبان مقصد. + +### مثال جمله، از انگلیسی به ایرلندی + +در زبان 'انگلیسی'، جمله _I feel happy_ شامل سه کلمه به ترتیب زیر است: + +- **فاعل** (I) +- **فعل** (feel) +- **صفت** (happy) + +اما در زبان 'ایرلندی'، همین جمله ساختار گرامری بسیار متفاوتی دارد - احساساتی مانند "*خوشحال*" یا "*ناراحت*" به صورت *بر روی شما* بیان می‌شوند. + +عبارت انگلیسی `I feel happy` در ایرلندی به صورت `Tá athas orm` ترجمه می‌شود. یک ترجمه *لفظی* آن می‌شود `Happy is upon me`. + +یک گوینده ایرلندی که به انگلیسی ترجمه می‌کند، می‌گوید `I feel happy`، نه `Happy is upon me`، زیرا او معنای جمله را درک می‌کند، حتی اگر کلمات و ساختار جمله متفاوت باشند. + +ترتیب رسمی جمله در ایرلندی به این صورت است: + +- **فعل** (Tá یا is) +- **صفت** (athas، یا happy) +- **فاعل** (orm، یا upon me) + +## ترجمه + +یک برنامه ترجمه ساده ممکن است فقط کلمات را ترجمه کند و ساختار جمله را نادیده بگیرد. + +✅ اگر به عنوان یک بزرگسال زبان دوم (یا سوم یا بیشتر) یاد گرفته باشید، ممکن است ابتدا با فکر کردن به زبان مادری خود شروع کرده باشید، یک مفهوم را کلمه به کلمه در ذهن خود به زبان دوم ترجمه کرده و سپس ترجمه خود را بیان کرده باشید. این شبیه به کاری است که برنامه‌های ساده ترجمه کامپیوتری انجام می‌دهند. برای رسیدن به تسلط، عبور از این مرحله بسیار مهم است! + +ترجمه ساده منجر به ترجمه‌های بد (و گاهی خنده‌دار) می‌شود: `I feel happy` به صورت لفظی به `Mise bhraitheann athas` در ایرلندی ترجمه می‌شود. این به معنای (لفظی) `me feel happy` است و یک جمله معتبر در ایرلندی نیست. حتی با وجود اینکه انگلیسی و ایرلندی زبان‌هایی هستند که در دو جزیره نزدیک به هم صحبت می‌شوند، آن‌ها زبان‌هایی بسیار متفاوت با ساختارهای گرامری مختلف هستند. + +> می‌توانید برخی ویدیوها درباره سنت‌های زبانی ایرلندی مانند [این ویدیو](https://www.youtube.com/watch?v=mRIaLSdRMMs) را تماشا کنید. + +### رویکردهای یادگیری ماشین + +تا اینجا، درباره رویکرد قوانین رسمی در پردازش زبان طبیعی یاد گرفتید. یک رویکرد دیگر این است که معنای کلمات را نادیده بگیرید و _به جای آن از یادگیری ماشین برای شناسایی الگوها استفاده کنید_. این روش در ترجمه زمانی کار می‌کند که متن‌های زیادی (یک *corpus*) یا متن‌هایی (*corpora*) در هر دو زبان مبدا و مقصد داشته باشید. + +برای مثال، رمان *غرور و تعصب*، یک رمان معروف انگلیسی نوشته جین آستن در سال 1813 را در نظر بگیرید. اگر کتاب را به زبان انگلیسی و ترجمه انسانی آن به زبان *فرانسوی* بررسی کنید، می‌توانید عباراتی را شناسایی کنید که به صورت *اصطلاحی* به زبان دیگر ترجمه شده‌اند. شما این کار را به زودی انجام خواهید داد. + +برای مثال، وقتی عبارتی انگلیسی مانند `I have no money` به صورت لفظی به فرانسوی ترجمه می‌شود، ممکن است به `Je n'ai pas de monnaie` تبدیل شود. "Monnaie" یک 'هم‌آوای کاذب' فرانسوی است، زیرا 'money' و 'monnaie' مترادف نیستند. یک ترجمه بهتر که یک انسان ممکن است انجام دهد، `Je n'ai pas d'argent` است، زیرا بهتر بیان می‌کند که شما پول ندارید (نه 'خرده پول' که معنای 'monnaie' است). + +![monnaie](../../../../translated_images/monnaie.606c5fa8369d5c3b3031ef0713e2069485c87985dd475cd9056bdf4c76c1f4b8.fa.png) + +> تصویر از [Jen Looper](https://twitter.com/jenlooper) + +اگر یک مدل یادگیری ماشین ترجمه‌های انسانی کافی برای ساخت یک مدل داشته باشد، می‌تواند دقت ترجمه‌ها را با شناسایی الگوهای رایج در متن‌هایی که قبلاً توسط گویندگان انسانی متخصص هر دو زبان ترجمه شده‌اند، بهبود بخشد. + +### تمرین - ترجمه + +می‌توانید از `TextBlob` برای ترجمه جملات استفاده کنید. جمله معروف آغازین **غرور و تعصب** را امتحان کنید: + +```python +from textblob import TextBlob + +blob = TextBlob( + "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife!" +) +print(blob.translate(to="fr")) + +``` + +`TextBlob` ترجمه بسیار خوبی ارائه می‌دهد: "C'est une vérité universellement reconnue, qu'un homme célibataire en possession d'une bonne fortune doit avoir besoin d'une femme!". + +می‌توان گفت که ترجمه TextBlob در واقع بسیار دقیق‌تر از ترجمه فرانسوی کتاب در سال 1932 توسط V. Leconte و Ch. Pressoir است: + +"C'est une vérité universelle qu'un célibataire pourvu d'une belle fortune doit avoir envie de se marier, et, si peu que l'on sache de son sentiment à cet egard, lorsqu'il arrive dans une nouvelle résidence, cette idée est si bien fixée dans l'esprit de ses voisins qu'ils le considèrent sur-le-champ comme la propriété légitime de l'une ou l'autre de leurs filles." + +در این مورد، ترجمه‌ای که با یادگیری ماشین انجام شده است، بهتر از مترجم انسانی عمل کرده است که به طور غیرضروری کلماتی را برای 'وضوح' به متن اصلی اضافه کرده است. + +> اینجا چه اتفاقی می‌افتد؟ و چرا TextBlob در ترجمه اینقدر خوب است؟ خب، در پشت صحنه، از Google Translate استفاده می‌کند، یک هوش مصنوعی پیشرفته که قادر است میلیون‌ها عبارت را تحلیل کند تا بهترین رشته‌ها را برای کار مورد نظر پیش‌بینی کند. هیچ چیز دستی در اینجا انجام نمی‌شود و برای استفاده از `blob.translate` به اتصال اینترنت نیاز دارید. + +✅ جملات بیشتری را امتحان کنید. کدام بهتر است، ترجمه با یادگیری ماشین یا ترجمه انسانی؟ در چه مواردی؟ + +## تحلیل احساسات + +یکی دیگر از حوزه‌هایی که یادگیری ماشین می‌تواند بسیار خوب عمل کند، تحلیل احساسات است. یک رویکرد غیر یادگیری ماشینی برای تحلیل احساسات این است که کلمات و عبارات 'مثبت' و 'منفی' را شناسایی کنید. سپس، با توجه به یک متن جدید، ارزش کلی کلمات مثبت، منفی و خنثی را محاسبه کنید تا احساس کلی را شناسایی کنید. + +این رویکرد به راحتی فریب می‌خورد، همانطور که ممکن است در وظیفه ماروین دیده باشید - جمله `Great, that was a wonderful waste of time, I'm glad we are lost on this dark road` یک جمله با احساس منفی و طنزآمیز است، اما الگوریتم ساده کلماتی مانند 'great'، 'wonderful'، 'glad' را به عنوان مثبت و 'waste'، 'lost' و 'dark' را به عنوان منفی شناسایی می‌کند. احساس کلی تحت تأثیر این کلمات متناقض قرار می‌گیرد. + +✅ یک لحظه مکث کنید و به این فکر کنید که چگونه به عنوان گویندگان انسانی طنز را منتقل می‌کنیم. لحن صدا نقش بزرگی ایفا می‌کند. سعی کنید جمله "Well, that film was awesome" را به روش‌های مختلف بیان کنید تا کشف کنید که چگونه صدای شما معنا را منتقل می‌کند. + +### رویکردهای یادگیری ماشین + +رویکرد یادگیری ماشین این است که به صورت دستی متن‌های مثبت و منفی - توییت‌ها، نقدهای فیلم یا هر چیزی که در آن انسان امتیاز و نظر نوشته شده‌ای داده است - جمع‌آوری کنید. سپس تکنیک‌های پردازش زبان طبیعی می‌توانند بر روی نظرات و امتیازات اعمال شوند، به طوری که الگوهایی ظاهر شوند (مثلاً نقدهای مثبت فیلم بیشتر از عبارت 'Oscar worthy' استفاده می‌کنند تا نقدهای منفی، یا نقدهای مثبت رستوران بیشتر از 'gourmet' استفاده می‌کنند تا 'disgusting'). + +> ⚖️ **مثال**: اگر در دفتر یک سیاستمدار کار می‌کردید و قانونی جدید در حال بحث بود، ممکن است مردم ایمیل‌هایی در حمایت یا مخالفت با قانون جدید به دفتر ارسال کنند. فرض کنید وظیفه شما خواندن ایمیل‌ها و دسته‌بندی آن‌ها به دو گروه *موافق* و *مخالف* باشد. اگر تعداد ایمیل‌ها زیاد باشد، ممکن است از خواندن همه آن‌ها خسته شوید. آیا خوب نبود اگر یک ربات می‌توانست همه آن‌ها را برای شما بخواند، آن‌ها را درک کند و بگوید هر ایمیل به کدام دسته تعلق دارد؟ +> +> یک راه برای دستیابی به این هدف استفاده از یادگیری ماشین است. شما مدل را با بخشی از ایمیل‌های *مخالف* و بخشی از ایمیل‌های *موافق* آموزش می‌دهید. مدل تمایل دارد عبارات و کلمات را با طرف مخالف یا موافق مرتبط کند، *اما هیچ‌کدام از محتوا را درک نمی‌کند*، فقط اینکه کلمات و الگوهای خاصی بیشتر در ایمیل‌های مخالف یا موافق ظاهر می‌شوند. شما می‌توانید آن را با برخی ایمیل‌هایی که برای آموزش مدل استفاده نکرده‌اید آزمایش کنید و ببینید آیا به همان نتیجه‌ای که شما می‌رسید، می‌رسد یا خیر. سپس، وقتی از دقت مدل راضی بودید، می‌توانید ایمیل‌های آینده را بدون نیاز به خواندن هر یک پردازش کنید. + +✅ آیا این فرآیند شبیه فرآیندهایی است که در درس‌های قبلی استفاده کرده‌اید؟ + +## تمرین - جملات احساسی + +احساسات با *قطبیت* از -1 تا 1 اندازه‌گیری می‌شود، به این معنی که -1 منفی‌ترین احساس و 1 مثبت‌ترین احساس است. احساسات همچنین با امتیاز 0 تا 1 برای عینیت (0) و ذهنیت (1) اندازه‌گیری می‌شود. + +یک بار دیگر به *غرور و تعصب* جین آستن نگاه کنید. متن این کتاب در اینجا در [پروژه گوتنبرگ](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) موجود است. نمونه زیر یک برنامه کوتاه را نشان می‌دهد که احساسات اولین و آخرین جملات کتاب را تحلیل کرده و قطبیت احساسات و امتیاز عینیت/ذهنیت آن را نمایش می‌دهد. + +شما باید از کتابخانه `TextBlob` (که در بالا توضیح داده شد) برای تعیین `sentiment` استفاده کنید (لازم نیست ماشین حساب احساسات خود را بنویسید) در وظیفه زیر. + +```python +from textblob import TextBlob + +quote1 = """It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.""" + +quote2 = """Darcy, as well as Elizabeth, really loved them; and they were both ever sensible of the warmest gratitude towards the persons who, by bringing her into Derbyshire, had been the means of uniting them.""" + +sentiment1 = TextBlob(quote1).sentiment +sentiment2 = TextBlob(quote2).sentiment + +print(quote1 + " has a sentiment of " + str(sentiment1)) +print(quote2 + " has a sentiment of " + str(sentiment2)) +``` + +خروجی زیر را مشاهده می‌کنید: + +```output +It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want # of a wife. has a sentiment of Sentiment(polarity=0.20952380952380953, subjectivity=0.27142857142857146) + +Darcy, as well as Elizabeth, really loved them; and they were + both ever sensible of the warmest gratitude towards the persons + who, by bringing her into Derbyshire, had been the means of + uniting them. has a sentiment of Sentiment(polarity=0.7, subjectivity=0.8) +``` + +## چالش - بررسی قطبیت احساسات + +وظیفه شما این است که با استفاده از قطبیت احساسات، تعیین کنید که آیا *غرور و تعصب* جملات کاملاً مثبت بیشتری نسبت به جملات کاملاً منفی دارد یا خیر. برای این وظیفه، می‌توانید فرض کنید که امتیاز قطبیت 1 یا -1 به ترتیب کاملاً مثبت یا منفی است. + +**مراحل:** + +1. یک [نسخه‌ای از غرور و تعصب](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) را از پروژه گوتنبرگ به صورت فایل .txt دانلود کنید. متادیتا را از ابتدای و انتهای فایل حذف کنید و فقط متن اصلی را باقی بگذارید. +2. فایل را در پایتون باز کنید و محتویات آن را به صورت رشته استخراج کنید. +3. یک TextBlob با استفاده از رشته کتاب ایجاد کنید. +4. هر جمله در کتاب را در یک حلقه تحلیل کنید. + 1. اگر قطبیت 1 یا -1 بود، جمله را در یک آرایه یا لیست از پیام‌های مثبت یا منفی ذخیره کنید. +5. در پایان، تمام جملات مثبت و منفی (به صورت جداگانه) و تعداد هر کدام را چاپ کنید. + +در اینجا یک [راه‌حل نمونه](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb) آورده شده است. + +✅ بررسی دانش + +1. احساسات بر اساس کلماتی که در جمله استفاده شده‌اند است، اما آیا کد *کلمات را درک می‌کند*؟ +2. آیا فکر می‌کنید قطبیت احساسات دقیق است، یا به عبارت دیگر، آیا با امتیازات موافق هستید؟ + 1. به طور خاص، آیا با قطبیت **کاملاً مثبت** جملات زیر موافق یا مخالف هستید؟ + * “What an excellent father you have, girls!” said she, when the door was shut. + * “Your examination of Mr. Darcy is over, I presume,” said Miss Bingley; “and pray what is the result?” “I am perfectly convinced by it that Mr. Darcy has no defect. + * How wonderfully these sort of things occur! + * I have the greatest dislike in the world to that sort of thing. + * Charlotte is an excellent manager, I dare say. + * “This is delightful indeed! + * I am so happy! + * Your idea of the ponies is delightful. + 2. سه جمله بعدی با قطبیت کاملاً مثبت امتیازدهی شده‌اند، اما با خواندن دقیق، آن‌ها جملات مثبتی نیستند. چرا تحلیل احساسات فکر کرده که این جملات مثبت هستند؟ + * Happy shall I be, when his stay at Netherfield is over!” “I wish I could say anything to comfort you,” replied Elizabeth; “but it is wholly out of my power. + * If I could but see you as happy! + * Our distress, my dear Lizzy, is very great. + 3. آیا با قطبیت **کاملاً منفی** جملات زیر موافق یا مخالف هستید؟ + - Everybody is disgusted with his pride. + - “I should like to know how he behaves among strangers.” “You shall hear then—but prepare yourself for something very dreadful. + - The pause was to Elizabeth’s feelings dreadful. + - It would be dreadful! + +✅ هر علاقه‌مند به جین آستن می‌داند که او اغلب از کتاب‌هایش برای نقد جنبه‌های مضحک جامعه انگلستان در دوران ریجنسی استفاده می‌کند. الیزابت بنت، شخصیت اصلی در *غرور و تعصب*، یک ناظر اجتماعی تیزبین است (مانند نویسنده) و زبان او اغلب به شدت دارای ظرافت است. حتی آقای دارسی (علاقه‌مند عاشقانه داستان) به استفاده بازیگوشانه و طعنه‌آمیز الیزابت از زبان اشاره می‌کند: "من به اندازه کافی از آشنایی با شما لذت برده‌ام تا بدانم که شما از ابراز نظراتی که در واقع نظرات خودتان نیستند، لذت زیادی می‌برید." + +--- + +## 🚀چالش + +آیا می‌توانید ماروین را با استخراج ویژگی‌های دیگر از ورودی کاربر بهتر کنید؟ + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/36/) + +## مرور و مطالعه شخصی +راه‌های زیادی برای استخراج احساسات از متن وجود دارد. به کاربردهای تجاری فکر کنید که ممکن است از این تکنیک استفاده کنند. به این فکر کنید که چگونه ممکن است این روش به اشتباه بیفتد. درباره سیستم‌های پیشرفته و آماده برای سازمان‌ها که احساسات را تحلیل می‌کنند، مانند [Azure Text Analysis](https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/how-tos/text-analytics-how-to-sentiment-analysis?tabs=version-3-1?WT.mc_id=academic-77952-leestott) بیشتر بخوانید. برخی از جملات کتاب «غرور و تعصب» را که در بالا آمده‌اند آزمایش کنید و ببینید آیا می‌تواند ظرافت‌های موجود در آنها را تشخیص دهد. + +## تکلیف + +[مجوز شاعرانه](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/3-Translation-Sentiment/assignment.md b/translations/fa/6-NLP/3-Translation-Sentiment/assignment.md new file mode 100644 index 000000000..73ed4b2d8 --- /dev/null +++ b/translations/fa/6-NLP/3-Translation-Sentiment/assignment.md @@ -0,0 +1,25 @@ + +# مجوز شاعرانه + +## دستورالعمل‌ها + +در [این دفترچه](https://www.kaggle.com/jenlooper/emily-dickinson-word-frequency) می‌توانید بیش از ۵۰۰ شعر از امیلی دیکینسون را پیدا کنید که قبلاً با استفاده از تحلیل متن Azure از نظر احساسات بررسی شده‌اند. با استفاده از این مجموعه داده، آن را با تکنیک‌های توضیح داده شده در درس تحلیل کنید. آیا احساس پیشنهادی یک شعر با تصمیم سرویس پیشرفته‌تر Azure مطابقت دارد؟ به نظر شما چرا یا چرا نه؟ آیا چیزی شما را شگفت‌زده می‌کند؟ + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| --------- | --------------------------------------------------------------------------- | --------------------------------------------------- | ------------------------ | +| | یک دفترچه ارائه شده است که تحلیل جامعی از نمونه خروجی یک نویسنده دارد | دفترچه ناقص است یا تحلیل انجام نمی‌دهد | هیچ دفترچه‌ای ارائه نشده است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان بومی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/3-Translation-Sentiment/solution/Julia/README.md b/translations/fa/6-NLP/3-Translation-Sentiment/solution/Julia/README.md new file mode 100644 index 000000000..936cd19e6 --- /dev/null +++ b/translations/fa/6-NLP/3-Translation-Sentiment/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/3-Translation-Sentiment/solution/R/README.md b/translations/fa/6-NLP/3-Translation-Sentiment/solution/R/README.md new file mode 100644 index 000000000..420b6737a --- /dev/null +++ b/translations/fa/6-NLP/3-Translation-Sentiment/solution/R/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه انسانی حرفه‌ای توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb b/translations/fa/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb new file mode 100644 index 000000000..2b3134f6c --- /dev/null +++ b/translations/fa/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb @@ -0,0 +1,100 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "27de2abc0235ebd22080fc8f1107454d", + "translation_date": "2025-09-04T03:09:49+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from textblob import TextBlob\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# You should download the book text, clean it, and import it here\n", + "with open(\"pride.txt\", encoding=\"utf8\") as f:\n", + " file_contents = f.read()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "book_pride = TextBlob(file_contents)\n", + "positive_sentiment_sentences = []\n", + "negative_sentiment_sentences = []" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for sentence in book_pride.sentences:\n", + " if sentence.sentiment.polarity == 1:\n", + " positive_sentiment_sentences.append(sentence)\n", + " if sentence.sentiment.polarity == -1:\n", + " negative_sentiment_sentences.append(sentence)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n", + "for sentence in positive_sentiment_sentences:\n", + " print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n", + "for sentence in negative_sentiment_sentences:\n", + " print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/6-NLP/4-Hotel-Reviews-1/README.md b/translations/fa/6-NLP/4-Hotel-Reviews-1/README.md new file mode 100644 index 000000000..f6e8e928c --- /dev/null +++ b/translations/fa/6-NLP/4-Hotel-Reviews-1/README.md @@ -0,0 +1,418 @@ + +# تحلیل احساسات با بررسی‌های هتل - پردازش داده‌ها + +در این بخش، شما از تکنیک‌های درس‌های قبلی برای انجام تحلیل داده‌های اکتشافی روی یک مجموعه داده بزرگ استفاده خواهید کرد. پس از اینکه درک خوبی از مفید بودن ستون‌های مختلف پیدا کردید، یاد خواهید گرفت: + +- چگونه ستون‌های غیرضروری را حذف کنید +- چگونه داده‌های جدیدی بر اساس ستون‌های موجود محاسبه کنید +- چگونه مجموعه داده حاصل را برای استفاده در چالش نهایی ذخیره کنید + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/37/) + +### مقدمه + +تا اینجا یاد گرفته‌اید که داده‌های متنی کاملاً متفاوت از داده‌های عددی هستند. اگر متن توسط انسان نوشته یا گفته شده باشد، می‌توان آن را برای یافتن الگوها، فراوانی‌ها، احساسات و معنا تحلیل کرد. این درس شما را وارد یک مجموعه داده واقعی با یک چالش واقعی می‌کند: **[515K بررسی‌های هتل در اروپا](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)** که شامل یک [مجوز عمومی CC0](https://creativecommons.org/publicdomain/zero/1.0/) است. این داده‌ها از منابع عمومی Booking.com استخراج شده‌اند. سازنده این مجموعه داده Jiashen Liu است. + +### آماده‌سازی + +شما نیاز دارید به: + +* توانایی اجرای نوت‌بوک‌های .ipynb با استفاده از Python 3 +* pandas +* NLTK، [که باید آن را به صورت محلی نصب کنید](https://www.nltk.org/install.html) +* مجموعه داده که در Kaggle موجود است [515K بررسی‌های هتل در اروپا](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe). حجم آن حدود 230 مگابایت پس از استخراج است. آن را در پوشه اصلی `/data` مرتبط با این درس‌های NLP دانلود کنید. + +## تحلیل داده‌های اکتشافی + +این چالش فرض می‌کند که شما در حال ساخت یک ربات توصیه‌گر هتل با استفاده از تحلیل احساسات و امتیازات بررسی مهمانان هستید. مجموعه داده‌ای که استفاده خواهید کرد شامل بررسی‌های 1493 هتل مختلف در 6 شهر است. + +با استفاده از پایتون، مجموعه داده بررسی‌های هتل، و تحلیل احساسات NLTK می‌توانید موارد زیر را کشف کنید: + +* کدام کلمات و عبارات در بررسی‌ها بیشتر استفاده شده‌اند؟ +* آیا *برچسب‌های* رسمی که یک هتل را توصیف می‌کنند با امتیازات بررسی‌ها همبستگی دارند (مثلاً آیا بررسی‌های منفی بیشتری برای یک هتل خاص توسط *خانواده با کودکان خردسال* نسبت به *مسافر تنها* وجود دارد، که شاید نشان دهد این هتل برای *مسافران تنها* بهتر است؟) +* آیا امتیازات احساسات NLTK با امتیاز عددی بررسی‌کننده هتل مطابقت دارند؟ + +#### مجموعه داده + +بیایید مجموعه داده‌ای که دانلود کرده‌اید و به صورت محلی ذخیره کرده‌اید را بررسی کنیم. فایل را در یک ویرایشگر مانند VS Code یا حتی Excel باز کنید. + +سرصفحه‌های مجموعه داده به شرح زیر هستند: + +*Hotel_Address, Additional_Number_of_Scoring, Review_Date, Average_Score, Hotel_Name, Reviewer_Nationality, Negative_Review, Review_Total_Negative_Word_Counts, Total_Number_of_Reviews, Positive_Review, Review_Total_Positive_Word_Counts, Total_Number_of_Reviews_Reviewer_Has_Given, Reviewer_Score, Tags, days_since_review, lat, lng* + +در اینجا آنها به صورت گروه‌بندی شده برای بررسی آسان‌تر آمده‌اند: +##### ستون‌های هتل + +* `Hotel_Name`, `Hotel_Address`, `lat` (عرض جغرافیایی)، `lng` (طول جغرافیایی) + * با استفاده از *lat* و *lng* می‌توانید نقشه‌ای با پایتون رسم کنید که مکان‌های هتل را نشان دهد (شاید با کد رنگی برای بررسی‌های مثبت و منفی) + * Hotel_Address به نظر نمی‌رسد برای ما مفید باشد، و احتمالاً آن را با یک کشور جایگزین می‌کنیم تا مرتب‌سازی و جستجو آسان‌تر شود + +**ستون‌های متا-بررسی هتل** + +* `Average_Score` + * طبق گفته سازنده مجموعه داده، این ستون *امتیاز متوسط هتل است که بر اساس آخرین نظر در سال گذشته محاسبه شده است*. این روش محاسبه کمی غیرمعمول به نظر می‌رسد، اما این داده‌ها استخراج شده‌اند، بنابراین فعلاً آن را به همین شکل می‌پذیریم. + + ✅ با توجه به سایر ستون‌های این داده، آیا می‌توانید روش دیگری برای محاسبه امتیاز متوسط پیشنهاد دهید؟ + +* `Total_Number_of_Reviews` + * تعداد کل بررسی‌هایی که این هتل دریافت کرده است - مشخص نیست (بدون نوشتن کد) که آیا این به بررسی‌های موجود در مجموعه داده اشاره دارد یا خیر. +* `Additional_Number_of_Scoring` + * این به این معناست که امتیاز بررسی داده شده است اما هیچ بررسی مثبت یا منفی توسط بررسی‌کننده نوشته نشده است. + +**ستون‌های بررسی** + +- `Reviewer_Score` + - این یک مقدار عددی با حداکثر 1 رقم اعشار بین مقادیر حداقل و حداکثر 2.5 و 10 است. + - توضیح داده نشده است که چرا 2.5 پایین‌ترین امتیاز ممکن است. +- `Negative_Review` + - اگر بررسی‌کننده چیزی ننوشته باشد، این فیلد "**No Negative**" خواهد داشت. + - توجه داشته باشید که بررسی‌کننده ممکن است یک بررسی مثبت را در ستون بررسی منفی بنویسد (مثلاً "هیچ چیز بدی در مورد این هتل وجود ندارد"). +- `Review_Total_Negative_Word_Counts` + - تعداد کلمات منفی بیشتر نشان‌دهنده امتیاز پایین‌تر است (بدون بررسی احساسات). +- `Positive_Review` + - اگر بررسی‌کننده چیزی ننوشته باشد، این فیلد "**No Positive**" خواهد داشت. + - توجه داشته باشید که بررسی‌کننده ممکن است یک بررسی منفی را در ستون بررسی مثبت بنویسد (مثلاً "هیچ چیز خوبی در مورد این هتل وجود ندارد"). +- `Review_Total_Positive_Word_Counts` + - تعداد کلمات مثبت بیشتر نشان‌دهنده امتیاز بالاتر است (بدون بررسی احساسات). +- `Review_Date` و `days_since_review` + - ممکن است یک معیار تازگی یا کهنگی برای یک بررسی اعمال شود (بررسی‌های قدیمی ممکن است به اندازه بررسی‌های جدید دقیق نباشند زیرا مدیریت هتل تغییر کرده، یا بازسازی انجام شده، یا یک استخر اضافه شده است و غیره). +- `Tags` + - این‌ها توصیف‌های کوتاهی هستند که بررسی‌کننده ممکن است برای توصیف نوع مهمان، نوع اتاق، مدت اقامت و نحوه ارسال بررسی انتخاب کند. + - متأسفانه، استفاده از این برچسب‌ها مشکل‌ساز است، بخش زیر که به مفید بودن آنها می‌پردازد را بررسی کنید. + +**ستون‌های بررسی‌کننده** + +- `Total_Number_of_Reviews_Reviewer_Has_Given` + - این ممکن است عاملی در مدل توصیه باشد، برای مثال، اگر بتوانید تعیین کنید که بررسی‌کنندگان پرکارتر با صدها بررسی بیشتر احتمال دارد منفی باشند تا مثبت. با این حال، بررسی‌کننده هر بررسی خاص با یک کد منحصر به فرد شناسایی نمی‌شود و بنابراین نمی‌توان آن را به مجموعه‌ای از بررسی‌ها مرتبط کرد. 30 بررسی‌کننده با 100 یا بیشتر بررسی وجود دارند، اما سخت است که ببینیم این چگونه می‌تواند به مدل توصیه کمک کند. +- `Reviewer_Nationality` + - برخی ممکن است فکر کنند که ملیت‌های خاص بیشتر احتمال دارد بررسی مثبت یا منفی بدهند به دلیل تمایل ملی. مراقب باشید که چنین دیدگاه‌های حکایتی را در مدل‌های خود بگنجانید. این‌ها کلیشه‌های ملی (و گاهی نژادی) هستند، و هر بررسی‌کننده فردی بود که بر اساس تجربه خود یک بررسی نوشت. ممکن است این تجربه از طریق لنزهای مختلفی مانند اقامت‌های قبلی در هتل، فاصله سفر، و خلق و خوی شخصی آنها فیلتر شده باشد. فکر کردن به اینکه ملیت آنها دلیل امتیاز بررسی بوده است سخت است که توجیه شود. + +##### مثال‌ها + +| امتیاز متوسط | تعداد کل بررسی‌ها | امتیاز بررسی‌کننده | بررسی منفی | بررسی مثبت | برچسب‌ها | +| -------------- | ---------------------- | ---------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------- | ----------------------------------------------------------------------------------------- | +| 7.8 | 1945 | 2.5 | این در حال حاضر یک هتل نیست بلکه یک سایت ساخت‌وساز است. من از صبح زود و تمام روز با صدای غیرقابل قبول ساخت‌وساز در حالی که بعد از یک سفر طولانی استراحت می‌کردم و در اتاق کار می‌کردم، مورد آزار قرار گرفتم. مردم تمام روز کار می‌کردند، یعنی با چکش‌های برقی در اتاق‌های مجاور. درخواست تغییر اتاق دادم اما هیچ اتاق ساکتی موجود نبود. بدتر از همه، بیش از حد هزینه از من گرفته شد. عصر چک‌اوت کردم چون باید خیلی زود پرواز می‌کردم و صورتحساب مناسب دریافت کردم. یک روز بعد، هتل بدون رضایت من هزینه اضافی بیش از قیمت رزرو شده را دریافت کرد. این یک مکان وحشتناک است. خودتان را با رزرو اینجا تنبیه نکنید. | هیچ چیز. مکان وحشتناک. دوری کنید | سفر کاری زوج اتاق استاندارد دوتخته اقامت 2 شب | + +همانطور که می‌بینید، این مهمان اقامت خوشایندی در این هتل نداشته است. هتل امتیاز متوسط خوبی برابر با 7.8 و 1945 بررسی دارد، اما این بررسی‌کننده به آن امتیاز 2.5 داده و 115 کلمه درباره منفی بودن اقامت خود نوشته است. اگر آنها در ستون بررسی مثبت چیزی ننوشته باشند، ممکن است نتیجه بگیرید که هیچ چیز مثبتی وجود نداشته است، اما آنها 7 کلمه هشدار نوشته‌اند. اگر فقط کلمات را بشماریم و نه معنای آنها یا احساسات کلمات، ممکن است دیدی تحریف‌شده از قصد بررسی‌کننده داشته باشیم. عجیب است که امتیاز 2.5 آنها گیج‌کننده است، زیرا اگر اقامت در آن هتل اینقدر بد بود، چرا اصلاً امتیازی داده‌اند؟ با بررسی دقیق مجموعه داده، خواهید دید که پایین‌ترین امتیاز ممکن 2.5 است، نه 0. بالاترین امتیاز ممکن 10 است. + +##### برچسب‌ها + +همانطور که در بالا ذکر شد، در نگاه اول، ایده استفاده از `Tags` برای دسته‌بندی داده‌ها منطقی به نظر می‌رسد. متأسفانه این برچسب‌ها استاندارد نشده‌اند، به این معنی که در یک هتل، گزینه‌ها ممکن است *اتاق یک‌نفره*، *اتاق دوتخته* و *اتاق دوتخته* باشند، اما در هتل بعدی، آنها *اتاق یک‌نفره لوکس*، *اتاق کلاسیک ملکه* و *اتاق اجرایی شاه* باشند. این‌ها ممکن است همان چیزها باشند، اما تنوع زیادی وجود دارد که انتخاب به این صورت می‌شود: + +1. تلاش برای تغییر همه اصطلاحات به یک استاندارد واحد، که بسیار دشوار است، زیرا مشخص نیست مسیر تبدیل در هر مورد چه خواهد بود (مثلاً *اتاق یک‌نفره کلاسیک* به *اتاق یک‌نفره* نگاشت می‌شود اما *اتاق ملکه برتر با چشم‌انداز باغ یا شهر* بسیار سخت‌تر نگاشت می‌شود). + +1. می‌توانیم یک رویکرد NLP اتخاذ کنیم و فراوانی اصطلاحات خاصی مانند *تنها*، *مسافر کاری*، یا *خانواده با کودکان خردسال* را همانطور که به هر هتل اعمال می‌شوند اندازه‌گیری کنیم و آن را در مدل توصیه لحاظ کنیم. + +برچسب‌ها معمولاً (اما نه همیشه) یک فیلد واحد هستند که شامل لیستی از 5 تا 6 مقدار جدا شده با کاما هستند که با *نوع سفر*، *نوع مهمانان*، *نوع اتاق*، *تعداد شب‌ها* و *نوع دستگاهی که بررسی با آن ارسال شده است* هم‌راستا هستند. با این حال، چون برخی بررسی‌کنندگان هر فیلد را پر نمی‌کنند (ممکن است یکی را خالی بگذارند)، مقادیر همیشه به همان ترتیب نیستند. + +به عنوان مثال، *نوع گروه* را در نظر بگیرید. در این فیلد در ستون `Tags`، 1025 امکان منحصر به فرد وجود دارد، و متأسفانه فقط برخی از آنها به یک گروه اشاره دارند (برخی نوع اتاق و غیره هستند). اگر فقط مواردی را که به خانواده اشاره دارند فیلتر کنید، نتایج شامل بسیاری از نتایج نوع *اتاق خانواده* می‌شود. اگر عبارت *با* را شامل کنید، یعنی تعداد مقادیر *خانواده با* را بشمارید، نتایج بهتر می‌شوند، با بیش از 80,000 از 515,000 نتیجه که شامل عبارت "خانواده با کودکان خردسال" یا "خانواده با کودکان بزرگتر" هستند. + +این بدان معناست که ستون برچسب‌ها کاملاً بی‌فایده نیست، اما برای مفید شدن آن نیاز به کار دارد. + +##### امتیاز متوسط هتل + +تعدادی عجایب یا تناقضات در مجموعه داده وجود دارد که نمی‌توانم آنها را بفهمم، اما در اینجا نشان داده شده‌اند تا هنگام ساخت مدل‌های خود از آنها آگاه باشید. اگر آنها را فهمیدید، لطفاً در بخش بحث به ما اطلاع دهید! + +مجموعه داده دارای ستون‌های زیر مربوط به امتیاز متوسط و تعداد بررسی‌ها است: + +1. Hotel_Name +2. Additional_Number_of_Scoring +3. Average_Score +4. Total_Number_of_Reviews +5. Reviewer_Score + +هتلی که بیشترین تعداد بررسی‌ها را در این مجموعه داده دارد *Britannia International Hotel Canary Wharf* است با 4789 بررسی از 515,000. اما اگر به مقدار `Total_Number_of_Reviews` برای این هتل نگاه کنیم، 9086 است. ممکن است نتیجه بگیرید که امتیازات بیشتری بدون بررسی وجود دارد، بنابراین شاید باید مقدار ستون `Additional_Number_of_Scoring` را اضافه کنیم. آن مقدار 2682 است، و اضافه کردن آن به 4789 ما را به 7471 می‌رساند که هنوز 1615 کمتر از `Total_Number_of_Reviews` است. + +اگر ستون‌های `Average_Score` را بگیرید، ممکن است نتیجه بگیرید که میانگین بررسی‌های موجود در مجموعه داده است، اما توضیح Kaggle این است: "*امتیاز متوسط هتل، محاسبه شده بر اساس آخرین نظر در سال گذشته*". این به نظر نمی‌رسد که مفید باشد، اما می‌توانیم میانگین خود را بر اساس امتیازات بررسی در مجموعه داده محاسبه کنیم. با استفاده از همان هتل به عنوان مثال، امتیاز متوسط هتل به عنوان 7.1 داده شده است اما امتیاز محاسبه شده (میانگین امتیاز بررسی‌کننده *در* مجموعه داده) 6.8 است. این نزدیک است، اما همان مقدار نیست، و فقط می‌توانیم حدس بزنیم که امتیازات داده شده در بررسی‌های `Additional_Number_of_Scoring` میانگین را به 7.1 افزایش داده‌اند. متأسفانه بدون راهی برای آزمایش یا اثبات این ادعا، استفاده یا اعتماد به `Average_Score`، `Additional_Number_of_Scoring` و `Total_Number_of_Reviews` زمانی که بر اساس داده‌هایی هستند که نداریم، دشوار است. + +برای پیچیده‌تر کردن موضوع، هتلی که دومین تعداد بررسی‌ها را دارد، امتیاز متوسط محاسبه شده 8.12 دارد و `Average_Score` مجموعه داده 8.1 است. آیا این امتیاز صحیح یک تصادف است یا هتل اول یک تناقض؟ +در صورتی که این هتل ممکن است یک مورد استثنایی باشد و شاید بیشتر مقادیر با هم تطابق داشته باشند (اما برخی به دلایلی تطابق ندارند)، در مرحله بعد یک برنامه کوتاه می‌نویسیم تا مقادیر موجود در مجموعه داده را بررسی کرده و استفاده صحیح (یا عدم استفاده) از مقادیر را تعیین کنیم. + +> 🚨 یک نکته احتیاطی +> +> هنگام کار با این مجموعه داده، شما کدی خواهید نوشت که چیزی را از متن محاسبه می‌کند بدون اینکه نیاز باشد خودتان متن را بخوانید یا تحلیل کنید. این جوهره پردازش زبان طبیعی (NLP) است: تفسیر معنا یا احساسات بدون نیاز به دخالت انسان. با این حال، ممکن است برخی از نظرات منفی را بخوانید. توصیه می‌کنم این کار را نکنید، زیرا نیازی به آن ندارید. برخی از این نظرات بی‌معنی یا نامربوط هستند، مانند "هوا خوب نبود"، چیزی که خارج از کنترل هتل یا هر کسی است. اما جنبه تاریکی نیز در برخی نظرات وجود دارد. گاهی اوقات نظرات منفی نژادپرستانه، جنسیت‌زده یا تبعیض‌آمیز نسبت به سن هستند. این موضوع ناخوشایند است اما در مجموعه داده‌ای که از یک وب‌سایت عمومی استخراج شده، قابل انتظار است. برخی از نویسندگان نظراتی می‌گذارند که ممکن است برای شما ناخوشایند، ناراحت‌کننده یا آزاردهنده باشد. بهتر است اجازه دهید کد احساسات را اندازه‌گیری کند تا اینکه خودتان آنها را بخوانید و ناراحت شوید. با این حال، این نوع نظرات در اقلیت هستند، اما همچنان وجود دارند. + +## تمرین - کاوش داده‌ها +### بارگذاری داده‌ها + +بررسی بصری داده‌ها کافی است، حالا کدی می‌نویسید تا پاسخ‌هایی دریافت کنید! این بخش از کتابخانه pandas استفاده می‌کند. اولین وظیفه شما این است که مطمئن شوید می‌توانید داده‌های CSV را بارگذاری و بخوانید. کتابخانه pandas یک بارگذار سریع CSV دارد و نتیجه در یک dataframe قرار می‌گیرد، همانطور که در درس‌های قبلی دیدید. فایل CSV که بارگذاری می‌کنیم بیش از نیم میلیون ردیف دارد، اما فقط ۱۷ ستون. pandas روش‌های قدرتمند زیادی برای تعامل با یک dataframe ارائه می‌دهد، از جمله امکان انجام عملیات روی هر ردیف. + +از اینجا به بعد در این درس، کدهای نمونه و توضیحاتی درباره کد و بحث‌هایی درباره معنای نتایج ارائه خواهد شد. از فایل _notebook.ipynb_ موجود برای کد خود استفاده کنید. + +بیایید با بارگذاری فایل داده‌ای که استفاده خواهید کرد شروع کنیم: + +```python +# Load the hotel reviews from CSV +import pandas as pd +import time +# importing time so the start and end time can be used to calculate file loading time +print("Loading data file now, this could take a while depending on file size") +start = time.time() +# df is 'DataFrame' - make sure you downloaded the file to the data folder +df = pd.read_csv('../../data/Hotel_Reviews.csv') +end = time.time() +print("Loading took " + str(round(end - start, 2)) + " seconds") +``` + +حالا که داده‌ها بارگذاری شده‌اند، می‌توانیم برخی عملیات را روی آن انجام دهیم. این کد را در بالای برنامه خود برای بخش بعدی نگه دارید. + +## کاوش داده‌ها + +در این مورد، داده‌ها از قبل *تمیز* هستند، به این معنی که آماده کار هستند و کاراکترهایی به زبان‌های دیگر که ممکن است الگوریتم‌های انتظار فقط کاراکترهای انگلیسی را مختل کنند، ندارند. + +✅ ممکن است با داده‌هایی کار کنید که نیاز به پردازش اولیه برای قالب‌بندی قبل از اعمال تکنیک‌های NLP داشته باشند، اما این بار اینطور نیست. اگر مجبور بودید، چگونه با کاراکترهای غیرانگلیسی برخورد می‌کردید؟ + +لحظه‌ای وقت بگذارید تا مطمئن شوید که پس از بارگذاری داده‌ها، می‌توانید با کد آن را کاوش کنید. بسیار آسان است که بخواهید روی ستون‌های `Negative_Review` و `Positive_Review` تمرکز کنید. این ستون‌ها پر از متن طبیعی برای پردازش الگوریتم‌های NLP شما هستند. اما صبر کنید! قبل از اینکه به NLP و تحلیل احساسات بپردازید، باید کد زیر را دنبال کنید تا مشخص کنید آیا مقادیر داده شده در مجموعه داده با مقادیری که با pandas محاسبه می‌کنید مطابقت دارند یا خیر. + +## عملیات روی Dataframe + +اولین وظیفه در این درس این است که بررسی کنید آیا ادعاهای زیر درست هستند یا خیر، با نوشتن کدی که dataframe را بررسی می‌کند (بدون تغییر آن). + +> مانند بسیاری از وظایف برنامه‌نویسی، روش‌های مختلفی برای انجام این کار وجود دارد، اما توصیه خوب این است که آن را به ساده‌ترین و آسان‌ترین روش ممکن انجام دهید، به خصوص اگر در آینده بازگشت به این کد آسان‌تر باشد. با dataframes، یک API جامع وجود دارد که اغلب راهی برای انجام کار مورد نظر شما به صورت کارآمد ارائه می‌دهد. + +سؤالات زیر را به عنوان وظایف کدنویسی در نظر بگیرید و سعی کنید بدون نگاه کردن به راه‌حل به آنها پاسخ دهید. + +1. شکل (shape) dataframe بارگذاری شده را چاپ کنید (شکل تعداد ردیف‌ها و ستون‌ها است). +2. تعداد فراوانی ملیت‌های نویسندگان نظرات را محاسبه کنید: + 1. چند مقدار متمایز برای ستون `Reviewer_Nationality` وجود دارد و آنها چه هستند؟ + 2. کدام ملیت نویسنده بیشترین تعداد نظرات را در مجموعه داده دارد (کشور و تعداد نظرات را چاپ کنید)؟ + 3. ۱۰ ملیت بعدی با بیشترین فراوانی و تعداد آنها چه هستند؟ +3. کدام هتل بیشترین تعداد نظرات را برای هر یک از ۱۰ ملیت برتر نویسندگان نظرات دریافت کرده است؟ +4. تعداد نظرات برای هر هتل (تعداد فراوانی هتل) در مجموعه داده چقدر است؟ +5. در حالی که یک ستون `Average_Score` برای هر هتل در مجموعه داده وجود دارد، می‌توانید یک امتیاز میانگین نیز محاسبه کنید (میانگین تمام امتیازات نویسندگان نظرات در مجموعه داده برای هر هتل). یک ستون جدید به dataframe خود اضافه کنید با عنوان ستون `Calc_Average_Score` که شامل میانگین محاسبه شده است. +6. آیا هتل‌هایی وجود دارند که `Average_Score` و `Calc_Average_Score` آنها (گرد شده به یک رقم اعشار) برابر باشند؟ + 1. سعی کنید یک تابع پایتون بنویسید که یک Series (ردیف) را به عنوان آرگومان بگیرد و مقادیر را مقایسه کند و در صورت نابرابری مقادیر، یک پیام چاپ کند. سپس از متد `.apply()` برای پردازش هر ردیف با این تابع استفاده کنید. +7. تعداد ردیف‌هایی که مقادیر ستون `Negative_Review` آنها "No Negative" است را محاسبه و چاپ کنید. +8. تعداد ردیف‌هایی که مقادیر ستون `Positive_Review` آنها "No Positive" است را محاسبه و چاپ کنید. +9. تعداد ردیف‌هایی که مقادیر ستون `Positive_Review` آنها "No Positive" **و** مقادیر ستون `Negative_Review` آنها "No Negative" است را محاسبه و چاپ کنید. + +### پاسخ‌های کد + +1. شکل (shape) dataframe بارگذاری شده را چاپ کنید (شکل تعداد ردیف‌ها و ستون‌ها است). + + ```python + print("The shape of the data (rows, cols) is " + str(df.shape)) + > The shape of the data (rows, cols) is (515738, 17) + ``` + +2. تعداد فراوانی ملیت‌های نویسندگان نظرات را محاسبه کنید: + + 1. چند مقدار متمایز برای ستون `Reviewer_Nationality` وجود دارد و آنها چه هستند؟ + 2. کدام ملیت نویسنده بیشترین تعداد نظرات را در مجموعه داده دارد (کشور و تعداد نظرات را چاپ کنید)؟ + + ```python + # value_counts() creates a Series object that has index and values in this case, the country and the frequency they occur in reviewer nationality + nationality_freq = df["Reviewer_Nationality"].value_counts() + print("There are " + str(nationality_freq.size) + " different nationalities") + # print first and last rows of the Series. Change to nationality_freq.to_string() to print all of the data + print(nationality_freq) + + There are 227 different nationalities + United Kingdom 245246 + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + ... + Comoros 1 + Palau 1 + Northern Mariana Islands 1 + Cape Verde 1 + Guinea 1 + Name: Reviewer_Nationality, Length: 227, dtype: int64 + ``` + + 3. ۱۰ ملیت بعدی با بیشترین فراوانی و تعداد آنها چه هستند؟ + + ```python + print("The highest frequency reviewer nationality is " + str(nationality_freq.index[0]).strip() + " with " + str(nationality_freq[0]) + " reviews.") + # Notice there is a leading space on the values, strip() removes that for printing + # What is the top 10 most common nationalities and their frequencies? + print("The next 10 highest frequency reviewer nationalities are:") + print(nationality_freq[1:11].to_string()) + + The highest frequency reviewer nationality is United Kingdom with 245246 reviews. + The next 10 highest frequency reviewer nationalities are: + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + Saudi Arabia 8951 + Netherlands 8772 + Switzerland 8678 + Germany 7941 + Canada 7894 + France 7296 + ``` + +3. کدام هتل بیشترین تعداد نظرات را برای هر یک از ۱۰ ملیت برتر نویسندگان نظرات دریافت کرده است؟ + + ```python + # What was the most frequently reviewed hotel for the top 10 nationalities + # Normally with pandas you will avoid an explicit loop, but wanted to show creating a new dataframe using criteria (don't do this with large amounts of data because it could be very slow) + for nat in nationality_freq[:10].index: + # First, extract all the rows that match the criteria into a new dataframe + nat_df = df[df["Reviewer_Nationality"] == nat] + # Now get the hotel freq + freq = nat_df["Hotel_Name"].value_counts() + print("The most reviewed hotel for " + str(nat).strip() + " was " + str(freq.index[0]) + " with " + str(freq[0]) + " reviews.") + + The most reviewed hotel for United Kingdom was Britannia International Hotel Canary Wharf with 3833 reviews. + The most reviewed hotel for United States of America was Hotel Esther a with 423 reviews. + The most reviewed hotel for Australia was Park Plaza Westminster Bridge London with 167 reviews. + The most reviewed hotel for Ireland was Copthorne Tara Hotel London Kensington with 239 reviews. + The most reviewed hotel for United Arab Emirates was Millennium Hotel London Knightsbridge with 129 reviews. + The most reviewed hotel for Saudi Arabia was The Cumberland A Guoman Hotel with 142 reviews. + The most reviewed hotel for Netherlands was Jaz Amsterdam with 97 reviews. + The most reviewed hotel for Switzerland was Hotel Da Vinci with 97 reviews. + The most reviewed hotel for Germany was Hotel Da Vinci with 86 reviews. + The most reviewed hotel for Canada was St James Court A Taj Hotel London with 61 reviews. + ``` + +4. تعداد نظرات برای هر هتل (تعداد فراوانی هتل) در مجموعه داده چقدر است؟ + + ```python + # First create a new dataframe based on the old one, removing the uneeded columns + hotel_freq_df = df.drop(["Hotel_Address", "Additional_Number_of_Scoring", "Review_Date", "Average_Score", "Reviewer_Nationality", "Negative_Review", "Review_Total_Negative_Word_Counts", "Positive_Review", "Review_Total_Positive_Word_Counts", "Total_Number_of_Reviews_Reviewer_Has_Given", "Reviewer_Score", "Tags", "days_since_review", "lat", "lng"], axis = 1) + + # Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found + hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count') + + # Get rid of all the duplicated rows + hotel_freq_df = hotel_freq_df.drop_duplicates(subset = ["Hotel_Name"]) + display(hotel_freq_df) + ``` + | Hotel_Name | Total_Number_of_Reviews | Total_Reviews_Found | + | :----------------------------------------: | :---------------------: | :-----------------: | + | Britannia International Hotel Canary Wharf | 9086 | 4789 | + | Park Plaza Westminster Bridge London | 12158 | 4169 | + | Copthorne Tara Hotel London Kensington | 7105 | 3578 | + | ... | ... | ... | + | Mercure Paris Porte d Orleans | 110 | 10 | + | Hotel Wagner | 135 | 10 | + | Hotel Gallitzinberg | 173 | 8 | + + ممکن است متوجه شوید که نتایج *شمارش شده در مجموعه داده* با مقدار موجود در `Total_Number_of_Reviews` مطابقت ندارند. مشخص نیست که آیا این مقدار در مجموعه داده نشان‌دهنده تعداد کل نظرات هتل بوده که همه آنها استخراج نشده‌اند یا محاسبه دیگری انجام شده است. به دلیل این عدم وضوح، `Total_Number_of_Reviews` در مدل استفاده نمی‌شود. + +5. در حالی که یک ستون `Average_Score` برای هر هتل در مجموعه داده وجود دارد، می‌توانید یک امتیاز میانگین نیز محاسبه کنید (میانگین تمام امتیازات نویسندگان نظرات در مجموعه داده برای هر هتل). یک ستون جدید به dataframe خود اضافه کنید با عنوان ستون `Calc_Average_Score` که شامل میانگین محاسبه شده است. ستون‌های `Hotel_Name`، `Average_Score` و `Calc_Average_Score` را چاپ کنید. + + ```python + # define a function that takes a row and performs some calculation with it + def get_difference_review_avg(row): + return row["Average_Score"] - row["Calc_Average_Score"] + + # 'mean' is mathematical word for 'average' + df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + + # Add a new column with the difference between the two average scores + df["Average_Score_Difference"] = df.apply(get_difference_review_avg, axis = 1) + + # Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel) + review_scores_df = df.drop_duplicates(subset = ["Hotel_Name"]) + + # Sort the dataframe to find the lowest and highest average score difference + review_scores_df = review_scores_df.sort_values(by=["Average_Score_Difference"]) + + display(review_scores_df[["Average_Score_Difference", "Average_Score", "Calc_Average_Score", "Hotel_Name"]]) + ``` + + ممکن است درباره مقدار `Average_Score` و دلیل تفاوت آن با میانگین محاسبه شده تعجب کنید. از آنجا که نمی‌توانیم بدانیم چرا برخی از مقادیر مطابقت دارند اما برخی دیگر تفاوت دارند، در این مورد بهتر است از امتیازات نظراتی که داریم برای محاسبه میانگین استفاده کنیم. با این حال، تفاوت‌ها معمولاً بسیار کوچک هستند، در اینجا هتل‌هایی با بیشترین انحراف از میانگین مجموعه داده و میانگین محاسبه شده آورده شده است: + + | Average_Score_Difference | Average_Score | Calc_Average_Score | Hotel_Name | + | :----------------------: | :-----------: | :----------------: | ------------------------------------------: | + | -0.8 | 7.7 | 8.5 | Best Western Hotel Astoria | + | -0.7 | 8.8 | 9.5 | Hotel Stendhal Place Vend me Paris MGallery | + | -0.7 | 7.5 | 8.2 | Mercure Paris Porte d Orleans | + | -0.7 | 7.9 | 8.6 | Renaissance Paris Vendome Hotel | + | -0.5 | 7.0 | 7.5 | Hotel Royal Elys es | + | ... | ... | ... | ... | + | 0.7 | 7.5 | 6.8 | Mercure Paris Op ra Faubourg Montmartre | + | 0.8 | 7.1 | 6.3 | Holiday Inn Paris Montparnasse Pasteur | + | 0.9 | 6.8 | 5.9 | Villa Eugenie | + | 0.9 | 8.6 | 7.7 | MARQUIS Faubourg St Honor Relais Ch teaux | + | 1.3 | 7.2 | 5.9 | Kube Hotel Ice Bar | + + با وجود تنها ۱ هتل که تفاوت امتیاز آن بیشتر از ۱ است، به این معنی است که احتمالاً می‌توانیم تفاوت را نادیده بگیریم و از میانگین محاسبه شده استفاده کنیم. + +6. تعداد ردیف‌هایی که مقادیر ستون `Negative_Review` آنها "No Negative" است را محاسبه و چاپ کنید. + +7. تعداد ردیف‌هایی که مقادیر ستون `Positive_Review` آنها "No Positive" است را محاسبه و چاپ کنید. + +8. تعداد ردیف‌هایی که مقادیر ستون `Positive_Review` آنها "No Positive" **و** مقادیر ستون `Negative_Review` آنها "No Negative" است را محاسبه و چاپ کنید. + + ```python + # with lambdas: + start = time.time() + no_negative_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" else False , axis=1) + print("Number of No Negative reviews: " + str(len(no_negative_reviews[no_negative_reviews == True].index))) + + no_positive_reviews = df.apply(lambda x: True if x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of No Positive reviews: " + str(len(no_positive_reviews[no_positive_reviews == True].index))) + + both_no_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" and x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of both No Negative and No Positive reviews: " + str(len(both_no_reviews[both_no_reviews == True].index))) + end = time.time() + print("Lambdas took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Lambdas took 9.64 seconds + ``` + +## روش دیگر + +روش دیگری برای شمارش آیتم‌ها بدون استفاده از Lambdas و استفاده از sum برای شمارش ردیف‌ها: + + ```python + # without lambdas (using a mixture of notations to show you can use both) + start = time.time() + no_negative_reviews = sum(df.Negative_Review == "No Negative") + print("Number of No Negative reviews: " + str(no_negative_reviews)) + + no_positive_reviews = sum(df["Positive_Review"] == "No Positive") + print("Number of No Positive reviews: " + str(no_positive_reviews)) + + both_no_reviews = sum((df.Negative_Review == "No Negative") & (df.Positive_Review == "No Positive")) + print("Number of both No Negative and No Positive reviews: " + str(both_no_reviews)) + + end = time.time() + print("Sum took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Sum took 0.19 seconds + ``` + + ممکن است متوجه شده باشید که ۱۲۷ ردیف وجود دارد که مقادیر "No Negative" و "No Positive" را برای ستون‌های `Negative_Review` و `Positive_Review` به ترتیب دارند. این به این معنی است که نویسنده به هتل یک امتیاز عددی داده است، اما از نوشتن نظر مثبت یا منفی خودداری کرده است. خوشبختانه این تعداد کمی از ردیف‌ها است (۱۲۷ از ۵۱۵۷۳۸، یا ۰.۰۲٪)، بنابراین احتمالاً مدل یا نتایج ما را به هیچ جهت خاصی منحرف نمی‌کند، اما ممکن است انتظار نداشته باشید که یک مجموعه داده نظرات شامل ردیف‌هایی بدون نظر باشد، بنابراین ارزش دارد که داده‌ها را کاوش کنید تا ردیف‌هایی مانند این را کشف کنید. + +حالا که مجموعه داده را کاوش کرده‌اید، در درس بعدی داده‌ها را فیلتر کرده و تحلیل احساسات را اضافه خواهید کرد. + +--- +## 🚀چالش + +این درس نشان می‌دهد، همانطور که در درس‌های قبلی دیدیم، چقدر مهم است که داده‌های خود و ویژگی‌های خاص آن را قبل از انجام عملیات روی آن درک کنید. داده‌های متنی به خصوص نیاز به بررسی دقیق دارند. مجموعه داده‌های متنی مختلف را بررسی کنید و ببینید آیا می‌توانید مناطقی را کشف کنید که ممکن است باعث ایجاد سوگیری یا احساسات منحرف در یک مدل شوند. + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/38/) + +## مرور و مطالعه شخصی + +[این مسیر یادگیری در NLP](https://docs.microsoft.com/learn/paths/explore-natural-language-processing/?WT.mc_id=academic-77952-leestott) را بگذرانید تا ابزارهایی را که می‌توانید هنگام ساخت مدل‌های مبتنی بر گفتار و متن امتحان کنید، کشف کنید. + +## تکلیف + +[NLTK](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/4-Hotel-Reviews-1/assignment.md b/translations/fa/6-NLP/4-Hotel-Reviews-1/assignment.md new file mode 100644 index 000000000..07a4ff446 --- /dev/null +++ b/translations/fa/6-NLP/4-Hotel-Reviews-1/assignment.md @@ -0,0 +1,19 @@ + +# ان‌ال‌تی‌کی + +## دستورالعمل‌ها + +ان‌ال‌تی‌کی یک کتابخانه شناخته‌شده برای استفاده در زبان‌شناسی محاسباتی و پردازش زبان طبیعی است. از این فرصت استفاده کنید تا کتاب '[NLTK book](https://www.nltk.org/book/)' را مطالعه کنید و تمرین‌های آن را امتحان کنید. در این تکلیف بدون نمره، شما این کتابخانه را به‌طور عمیق‌تر خواهید شناخت. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/4-Hotel-Reviews-1/notebook.ipynb b/translations/fa/6-NLP/4-Hotel-Reviews-1/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/fa/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md b/translations/fa/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md new file mode 100644 index 000000000..990214704 --- /dev/null +++ b/translations/fa/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/4-Hotel-Reviews-1/solution/R/README.md b/translations/fa/6-NLP/4-Hotel-Reviews-1/solution/R/README.md new file mode 100644 index 000000000..7691b48d4 --- /dev/null +++ b/translations/fa/6-NLP/4-Hotel-Reviews-1/solution/R/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb b/translations/fa/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb new file mode 100644 index 000000000..b160542bb --- /dev/null +++ b/translations/fa/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb @@ -0,0 +1,174 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2d05e7db439376aa824f4b387f8324ca", + "translation_date": "2025-09-04T03:09:31+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# EDA\n", + "import pandas as pd\n", + "import time" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_difference_review_avg(row):\n", + " return row[\"Average_Score\"] - row[\"Calc_Average_Score\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "print(\"Loading data file now, this could take a while depending on file size\")\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n", + "end = time.time()\n", + "print(\"Loading took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What shape is the data (rows, columns)?\n", + "print(\"The shape of the data (rows, cols) is \" + str(df.shape))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# value_counts() creates a Series object that has index and values\n", + "# in this case, the country and the frequency they occur in reviewer nationality\n", + "nationality_freq = df[\"Reviewer_Nationality\"].value_counts()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What reviewer nationality is the most common in the dataset?\n", + "print(\"The highest frequency reviewer nationality is \" + str(nationality_freq.index[0]).strip() + \" with \" + str(nationality_freq[0]) + \" reviews.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What is the top 10 most common nationalities and their frequencies?\n", + "print(\"The top 10 highest frequency reviewer nationalities are:\")\n", + "print(nationality_freq[0:10].to_string())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many unique nationalities are there?\n", + "print(\"There are \" + str(nationality_freq.index.size) + \" unique nationalities in the dataset\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What was the most frequently reviewed hotel for the top 10 nationalities - print the hotel and number of reviews\n", + "for nat in nationality_freq[:10].index:\n", + " # First, extract all the rows that match the criteria into a new dataframe\n", + " nat_df = df[df[\"Reviewer_Nationality\"] == nat] \n", + " # Now get the hotel freq\n", + " freq = nat_df[\"Hotel_Name\"].value_counts()\n", + " print(\"The most reviewed hotel for \" + str(nat).strip() + \" was \" + str(freq.index[0]) + \" with \" + str(freq[0]) + \" reviews.\") \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many reviews are there per hotel (frequency count of hotel) and do the results match the value in `Total_Number_of_Reviews`?\n", + "# First create a new dataframe based on the old one, removing the uneeded columns\n", + "hotel_freq_df = df.drop([\"Hotel_Address\", \"Additional_Number_of_Scoring\", \"Review_Date\", \"Average_Score\", \"Reviewer_Nationality\", \"Negative_Review\", \"Review_Total_Negative_Word_Counts\", \"Positive_Review\", \"Review_Total_Positive_Word_Counts\", \"Total_Number_of_Reviews_Reviewer_Has_Given\", \"Reviewer_Score\", \"Tags\", \"days_since_review\", \"lat\", \"lng\"], axis = 1)\n", + "# Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found\n", + "hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count')\n", + "# Get rid of all the duplicated rows\n", + "hotel_freq_df = hotel_freq_df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "print()\n", + "print(hotel_freq_df.to_string())\n", + "print(str(hotel_freq_df.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# While there is an `Average_Score` for each hotel according to the dataset, \n", + "# you can also calculate an average score (getting the average of all reviewer scores in the dataset for each hotel)\n", + "# Add a new column to your dataframe with the column header `Calc_Average_Score` that contains that calculated average. \n", + "df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n", + "# Add a new column with the difference between the two average scores\n", + "df[\"Average_Score_Difference\"] = df.apply(get_difference_review_avg, axis = 1)\n", + "# Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel)\n", + "review_scores_df = df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "# Sort the dataframe to find the lowest and highest average score difference\n", + "review_scores_df = review_scores_df.sort_values(by=[\"Average_Score_Difference\"])\n", + "print(review_scores_df[[\"Average_Score_Difference\", \"Average_Score\", \"Calc_Average_Score\", \"Hotel_Name\"]])\n", + "# Do any hotels have the same (rounded to 1 decimal place) `Average_Score` and `Calc_Average_Score`?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/6-NLP/5-Hotel-Reviews-2/README.md b/translations/fa/6-NLP/5-Hotel-Reviews-2/README.md new file mode 100644 index 000000000..75908c318 --- /dev/null +++ b/translations/fa/6-NLP/5-Hotel-Reviews-2/README.md @@ -0,0 +1,388 @@ + +# تحلیل احساسات با بررسی‌های هتل + +حالا که داده‌ها را به‌طور کامل بررسی کرده‌اید، وقت آن است که ستون‌ها را فیلتر کنید و سپس از تکنیک‌های پردازش زبان طبیعی (NLP) روی داده‌ها استفاده کنید تا اطلاعات جدیدی درباره هتل‌ها به دست آورید. +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/39/) + +### عملیات فیلتر کردن و تحلیل احساسات + +همان‌طور که احتمالاً متوجه شده‌اید، این مجموعه داده چند مشکل دارد. برخی ستون‌ها پر از اطلاعات بی‌فایده هستند، برخی دیگر به نظر نادرست می‌آیند. حتی اگر درست باشند، مشخص نیست چگونه محاسبه شده‌اند و نمی‌توان پاسخ‌ها را به‌طور مستقل با محاسبات خودتان تأیید کرد. + +## تمرین: کمی پردازش بیشتر داده‌ها + +داده‌ها را کمی بیشتر پاک‌سازی کنید. ستون‌هایی اضافه کنید که بعداً مفید خواهند بود، مقادیر برخی ستون‌ها را تغییر دهید و برخی ستون‌ها را کاملاً حذف کنید. + +1. پردازش اولیه ستون‌ها + + 1. ستون‌های `lat` و `lng` را حذف کنید. + + 2. مقادیر `Hotel_Address` را با مقادیر زیر جایگزین کنید (اگر آدرس شامل نام شهر و کشور باشد، آن را فقط به شهر و کشور تغییر دهید). + + این‌ها تنها شهرها و کشورهایی هستند که در مجموعه داده وجود دارند: + + آمستردام، هلند + + بارسلونا، اسپانیا + + لندن، بریتانیا + + میلان، ایتالیا + + پاریس، فرانسه + + وین، اتریش + + ```python + def replace_address(row): + if "Netherlands" in row["Hotel_Address"]: + return "Amsterdam, Netherlands" + elif "Barcelona" in row["Hotel_Address"]: + return "Barcelona, Spain" + elif "United Kingdom" in row["Hotel_Address"]: + return "London, United Kingdom" + elif "Milan" in row["Hotel_Address"]: + return "Milan, Italy" + elif "France" in row["Hotel_Address"]: + return "Paris, France" + elif "Vienna" in row["Hotel_Address"]: + return "Vienna, Austria" + + # Replace all the addresses with a shortened, more useful form + df["Hotel_Address"] = df.apply(replace_address, axis = 1) + # The sum of the value_counts() should add up to the total number of reviews + print(df["Hotel_Address"].value_counts()) + ``` + + حالا می‌توانید داده‌های سطح کشور را جستجو کنید: + + ```python + display(df.groupby("Hotel_Address").agg({"Hotel_Name": "nunique"})) + ``` + + | Hotel_Address | Hotel_Name | + | :--------------------- | :--------: | + | آمستردام، هلند | 105 | + | بارسلونا، اسپانیا | 211 | + | لندن، بریتانیا | 400 | + | میلان، ایتالیا | 162 | + | پاریس، فرانسه | 458 | + | وین، اتریش | 158 | + +2. پردازش ستون‌های متا-بررسی هتل + + 1. ستون `Additional_Number_of_Scoring` را حذف کنید. + + 1. ستون `Total_Number_of_Reviews` را با تعداد کل بررسی‌های واقعی برای آن هتل که در مجموعه داده وجود دارد جایگزین کنید. + + 1. ستون `Average_Score` را با امتیاز محاسبه‌شده خودمان جایگزین کنید. + + ```python + # Drop `Additional_Number_of_Scoring` + df.drop(["Additional_Number_of_Scoring"], axis = 1, inplace=True) + # Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values + df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count') + df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + ``` + +3. پردازش ستون‌های بررسی + + 1. ستون‌های `Review_Total_Negative_Word_Counts`، `Review_Total_Positive_Word_Counts`، `Review_Date` و `days_since_review` را حذف کنید. + + 2. ستون‌های `Reviewer_Score`، `Negative_Review` و `Positive_Review` را همان‌طور که هستند نگه دارید. + + 3. ستون `Tags` را فعلاً نگه دارید. + + - در بخش بعدی برخی عملیات فیلتر کردن اضافی روی تگ‌ها انجام خواهد شد و سپس تگ‌ها حذف خواهند شد. + +4. پردازش ستون‌های بررسی‌کننده + + 1. ستون `Total_Number_of_Reviews_Reviewer_Has_Given` را حذف کنید. + + 2. ستون `Reviewer_Nationality` را نگه دارید. + +### ستون‌های تگ + +ستون `Tag` مشکل‌ساز است زیرا به‌صورت یک لیست (در قالب متن) در ستون ذخیره شده است. متأسفانه ترتیب و تعداد بخش‌های فرعی در این ستون همیشه یکسان نیست. برای انسان سخت است که عبارات درست را شناسایی کند، زیرا 515,000 ردیف و 1427 هتل وجود دارد و هر کدام گزینه‌های کمی متفاوتی دارند که یک بررسی‌کننده می‌تواند انتخاب کند. اینجاست که NLP مفید واقع می‌شود. شما می‌توانید متن را اسکن کنید، رایج‌ترین عبارات را پیدا کنید و آن‌ها را شمارش کنید. + +متأسفانه ما به کلمات منفرد علاقه‌مند نیستیم، بلکه به عبارات چندکلمه‌ای (مثلاً *سفر کاری*) نیاز داریم. اجرای یک الگوریتم توزیع فراوانی عبارات چندکلمه‌ای روی این حجم از داده (6762646 کلمه) ممکن است زمان بسیار زیادی ببرد، اما بدون بررسی داده‌ها، به نظر می‌رسد که این هزینه ضروری است. اینجاست که تحلیل داده‌های اکتشافی مفید واقع می‌شود، زیرا شما نمونه‌ای از تگ‌ها مانند `[' سفر کاری ', ' مسافر تنها ', ' اتاق یک‌نفره ', ' اقامت 5 شب ', ' ارسال‌شده از دستگاه موبایل ']` را دیده‌اید، می‌توانید شروع به پرسیدن کنید که آیا امکان کاهش قابل‌توجه پردازش وجود دارد یا خیر. خوشبختانه، این امکان وجود دارد - اما ابتدا باید چند مرحله را دنبال کنید تا تگ‌های مورد علاقه را مشخص کنید. + +### فیلتر کردن تگ‌ها + +به یاد داشته باشید که هدف این مجموعه داده اضافه کردن احساسات و ستون‌هایی است که به شما کمک می‌کند بهترین هتل را انتخاب کنید (برای خودتان یا شاید یک مشتری که از شما خواسته است یک ربات توصیه هتل بسازید). باید از خودتان بپرسید که آیا تگ‌ها در مجموعه داده نهایی مفید هستند یا خیر. اینجا یک تفسیر ارائه شده است (اگر به دلایل دیگر به مجموعه داده نیاز داشتید، ممکن است تگ‌های مختلفی در انتخاب باقی بمانند/حذف شوند): + +1. نوع سفر مرتبط است و باید باقی بماند. +2. نوع گروه مهمان مهم است و باید باقی بماند. +3. نوع اتاق، سوئیت یا استودیویی که مهمان در آن اقامت داشته است بی‌اهمیت است (همه هتل‌ها اساساً اتاق‌های مشابه دارند). +4. دستگاهی که بررسی از آن ارسال شده است بی‌اهمیت است. +5. تعداد شب‌هایی که بررسی‌کننده اقامت داشته است *ممکن است* مرتبط باشد اگر اقامت طولانی‌تر را به دوست داشتن بیشتر هتل نسبت دهید، اما این ارتباط ضعیف است و احتمالاً بی‌اهمیت. + +به‌طور خلاصه، **دو نوع تگ را نگه دارید و بقیه را حذف کنید**. + +ابتدا، نمی‌خواهید تگ‌ها را شمارش کنید تا زمانی که در قالب بهتری باشند، بنابراین این به معنای حذف براکت‌ها و نقل‌قول‌ها است. می‌توانید این کار را به چند روش انجام دهید، اما سریع‌ترین روش را می‌خواهید زیرا پردازش حجم زیادی از داده‌ها ممکن است زمان زیادی ببرد. خوشبختانه، pandas راه آسانی برای انجام هر یک از این مراحل دارد. + +```Python +# Remove opening and closing brackets +df.Tags = df.Tags.str.strip("[']") +# remove all quotes too +df.Tags = df.Tags.str.replace(" ', '", ",", regex = False) +``` + +هر تگ به چیزی شبیه این تبدیل می‌شود: `سفر کاری، مسافر تنها، اتاق یک‌نفره، اقامت 5 شب، ارسال‌شده از دستگاه موبایل`. + +سپس با یک مشکل مواجه می‌شویم. برخی بررسی‌ها یا ردیف‌ها 5 ستون دارند، برخی 3، برخی 6. این نتیجه نحوه ایجاد مجموعه داده است و سخت است که آن را اصلاح کنیم. شما می‌خواهید شمارش فراوانی هر عبارت را انجام دهید، اما آن‌ها در هر بررسی ترتیب متفاوتی دارند، بنابراین شمارش ممکن است اشتباه باشد و یک هتل ممکن است تگی را که شایسته آن است دریافت نکند. + +در عوض، شما از ترتیب متفاوت به نفع خود استفاده خواهید کرد، زیرا هر تگ چندکلمه‌ای است اما همچنین با کاما جدا شده است! ساده‌ترین راه برای انجام این کار ایجاد 6 ستون موقت است که هر تگ در ستون مربوط به ترتیب خود وارد شود. سپس می‌توانید 6 ستون را به یک ستون بزرگ ادغام کنید و روش `value_counts()` را روی ستون حاصل اجرا کنید. با چاپ آن، خواهید دید که 2428 تگ منحصربه‌فرد وجود داشت. اینجا یک نمونه کوچک آورده شده است: + +| Tag | Count | +| ------------------------------ | ------ | +| سفر تفریحی | 417778 | +| ارسال‌شده از دستگاه موبایل | 307640 | +| زوج | 252294 | +| اقامت 1 شب | 193645 | +| اقامت 2 شب | 133937 | +| مسافر تنها | 108545 | +| اقامت 3 شب | 95821 | +| سفر کاری | 82939 | +| گروه | 65392 | +| خانواده با کودکان خردسال | 61015 | +| اقامت 4 شب | 47817 | +| اتاق دو نفره | 35207 | +| اتاق استاندارد دو نفره | 32248 | +| اتاق سوپریور دو نفره | 31393 | +| خانواده با کودکان بزرگ‌تر | 26349 | +| اتاق دلوکس دو نفره | 24823 | +| اتاق دو نفره یا دوقلو | 22393 | +| اقامت 5 شب | 20845 | +| اتاق استاندارد دو نفره یا دوقلو| 17483 | +| اتاق کلاسیک دو نفره | 16989 | +| اتاق سوپریور دو نفره یا دوقلو | 13570 | +| 2 اتاق | 12393 | + +برخی از تگ‌های رایج مانند `ارسال‌شده از دستگاه موبایل` برای ما بی‌فایده هستند، بنابراین ممکن است حذف آن‌ها قبل از شمارش فراوانی عبارات کار هوشمندانه‌ای باشد، اما این عملیات بسیار سریع است و می‌توانید آن‌ها را نگه دارید و نادیده بگیرید. + +### حذف تگ‌های مربوط به طول اقامت + +حذف این تگ‌ها مرحله اول است، این کار تعداد کل تگ‌هایی که باید در نظر گرفته شوند را کمی کاهش می‌دهد. توجه داشته باشید که آن‌ها را از مجموعه داده حذف نمی‌کنید، فقط تصمیم می‌گیرید که آن‌ها را به‌عنوان مقادیر برای شمارش/نگه‌داری در مجموعه داده بررسی‌ها حذف کنید. + +| طول اقامت | Count | +| ---------------- | ------ | +| اقامت 1 شب | 193645 | +| اقامت 2 شب | 133937 | +| اقامت 3 شب | 95821 | +| اقامت 4 شب | 47817 | +| اقامت 5 شب | 20845 | +| اقامت 6 شب | 9776 | +| اقامت 7 شب | 7399 | +| اقامت 8 شب | 2502 | +| اقامت 9 شب | 1293 | +| ... | ... | + +انواع مختلفی از اتاق‌ها، سوئیت‌ها، استودیوها، آپارتمان‌ها و غیره وجود دارد. همه آن‌ها تقریباً یک معنی دارند و برای شما مرتبط نیستند، بنابراین آن‌ها را از نظر حذف کنید. + +| نوع اتاق | Count | +| ----------------------------- | ----- | +| اتاق دو نفره | 35207 | +| اتاق استاندارد دو نفره | 32248 | +| اتاق سوپریور دو نفره | 31393 | +| اتاق دلوکس دو نفره | 24823 | +| اتاق دو نفره یا دوقلو | 22393 | +| اتاق استاندارد دو نفره یا دوقلو | 17483 | +| اتاق کلاسیک دو نفره | 16989 | +| اتاق سوپریور دو نفره یا دوقلو | 13570 | + +در نهایت، و این خوشحال‌کننده است (زیرا پردازش زیادی لازم نبود)، شما با تگ‌های *مفید* زیر باقی خواهید ماند: + +| Tag | Count | +| --------------------------------------------- | ------ | +| سفر تفریحی | 417778 | +| زوج | 252294 | +| مسافر تنها | 108545 | +| سفر کاری | 82939 | +| گروه (ترکیب‌شده با مسافران با دوستان) | 67535 | +| خانواده با کودکان خردسال | 61015 | +| خانواده با کودکان بزرگ‌تر | 26349 | +| با حیوان خانگی | 1405 | + +می‌توانید استدلال کنید که `مسافران با دوستان` تقریباً همان `گروه` است و ترکیب این دو منطقی است، همان‌طور که در بالا انجام شده است. کد شناسایی تگ‌های درست در [دفترچه تگ‌ها](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) موجود است. + +مرحله نهایی ایجاد ستون‌های جدید برای هر یک از این تگ‌ها است. سپس، برای هر ردیف بررسی، اگر ستون `Tag` با یکی از ستون‌های جدید مطابقت داشت، مقدار 1 اضافه کنید، اگر نه، مقدار 0 اضافه کنید. نتیجه نهایی شمارش تعداد بررسی‌کنندگان است که این هتل را (به‌صورت کلی) برای مثال برای کار یا تفریح انتخاب کرده‌اند، یا برای آوردن حیوان خانگی، و این اطلاعات مفیدی هنگام توصیه یک هتل خواهد بود. + +```python +# Process the Tags into new columns +# The file Hotel_Reviews_Tags.py, identifies the most important tags +# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, +# Family with young children, Family with older children, With a pet +df["Leisure_trip"] = df.Tags.apply(lambda tag: 1 if "Leisure trip" in tag else 0) +df["Couple"] = df.Tags.apply(lambda tag: 1 if "Couple" in tag else 0) +df["Solo_traveler"] = df.Tags.apply(lambda tag: 1 if "Solo traveler" in tag else 0) +df["Business_trip"] = df.Tags.apply(lambda tag: 1 if "Business trip" in tag else 0) +df["Group"] = df.Tags.apply(lambda tag: 1 if "Group" in tag or "Travelers with friends" in tag else 0) +df["Family_with_young_children"] = df.Tags.apply(lambda tag: 1 if "Family with young children" in tag else 0) +df["Family_with_older_children"] = df.Tags.apply(lambda tag: 1 if "Family with older children" in tag else 0) +df["With_a_pet"] = df.Tags.apply(lambda tag: 1 if "With a pet" in tag else 0) + +``` + +### ذخیره فایل + +در نهایت، مجموعه داده را همان‌طور که اکنون است با یک نام جدید ذخیره کنید. + +```python +df.drop(["Review_Total_Negative_Word_Counts", "Review_Total_Positive_Word_Counts", "days_since_review", "Total_Number_of_Reviews_Reviewer_Has_Given"], axis = 1, inplace=True) + +# Saving new data file with calculated columns +print("Saving results to Hotel_Reviews_Filtered.csv") +df.to_csv(r'../data/Hotel_Reviews_Filtered.csv', index = False) +``` + +## عملیات تحلیل احساسات + +در این بخش نهایی، شما تحلیل احساسات را روی ستون‌های بررسی اعمال خواهید کرد و نتایج را در یک مجموعه داده ذخیره خواهید کرد. + +## تمرین: بارگذاری و ذخیره داده‌های فیلترشده + +توجه داشته باشید که اکنون مجموعه داده فیلترشده‌ای را که در بخش قبلی ذخیره شده است بارگذاری می‌کنید، **نه** مجموعه داده اصلی. + +```python +import time +import pandas as pd +import nltk as nltk +from nltk.corpus import stopwords +from nltk.sentiment.vader import SentimentIntensityAnalyzer +nltk.download('vader_lexicon') + +# Load the filtered hotel reviews from CSV +df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv') + +# You code will be added here + + +# Finally remember to save the hotel reviews with new NLP data added +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r'../data/Hotel_Reviews_NLP.csv', index = False) +``` + +### حذف کلمات توقف + +اگر بخواهید تحلیل احساسات را روی ستون‌های بررسی منفی و مثبت اجرا کنید، ممکن است زمان زیادی طول بکشد. آزمایش‌شده روی یک لپ‌تاپ قدرتمند با CPU سریع، این عملیات 12 تا 14 دقیقه طول کشید، بسته به اینکه از کدام کتابخانه تحلیل احساسات استفاده شده است. این زمان نسبتاً طولانی است، بنابراین ارزش بررسی دارد که آیا می‌توان آن را سریع‌تر کرد. + +حذف کلمات توقف، یا کلمات رایج انگلیسی که احساسات یک جمله را تغییر نمی‌دهند، اولین مرحله است. با حذف آن‌ها، تحلیل احساسات باید سریع‌تر اجرا شود، اما دقت کمتری نخواهد داشت (زیرا کلمات توقف بر احساسات تأثیر نمی‌گذارند، اما سرعت تحلیل را کاهش می‌دهند). + +طولانی‌ترین بررسی منفی 395 کلمه بود، اما پس از حذف کلمات توقف، به 195 کلمه کاهش یافت. + +حذف کلمات توقف نیز یک عملیات سریع است، حذف کلمات توقف از 2 ستون بررسی در بیش از 515,000 ردیف روی دستگاه آزمایشی 3.3 ثانیه طول کشید. ممکن است این زمان برای شما کمی بیشتر یا کمتر باشد، بسته به سرعت CPU دستگاه، RAM، داشتن SSD یا نه، و برخی عوامل دیگر. کوتاهی نسبی این عملیات به این معناست که اگر زمان تحلیل احساسات را بهبود دهد، ارزش انجام دادن دارد. + +```python +from nltk.corpus import stopwords + +# Load the hotel reviews from CSV +df = pd.read_csv("../../data/Hotel_Reviews_Filtered.csv") + +# Remove stop words - can be slow for a lot of text! +# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches +# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends +start = time.time() +cache = set(stopwords.words("english")) +def remove_stopwords(review): + text = " ".join([word for word in review.split() if word not in cache]) + return text + +# Remove the stop words from both columns +df.Negative_Review = df.Negative_Review.apply(remove_stopwords) +df.Positive_Review = df.Positive_Review.apply(remove_stopwords) +``` + +### اجرای تحلیل احساسات +اکنون باید تحلیل احساسات را برای ستون‌های نظرات منفی و مثبت محاسبه کنید و نتیجه را در دو ستون جدید ذخیره کنید. آزمون احساسات این خواهد بود که آن را با امتیاز داده‌شده توسط نویسنده نظر برای همان نظر مقایسه کنید. به عنوان مثال، اگر تحلیل احساسات نشان دهد که نظر منفی دارای احساسات ۱ (احساسات بسیار مثبت) و نظر مثبت نیز دارای احساسات ۱ است، اما نویسنده کمترین امتیاز ممکن را به هتل داده باشد، یا متن نظر با امتیاز مطابقت ندارد یا تحلیلگر احساسات نتوانسته احساسات را به درستی تشخیص دهد. انتظار داشته باشید که برخی از امتیازات احساسات کاملاً اشتباه باشند، و اغلب این قابل توضیح خواهد بود، به عنوان مثال، نظر ممکن است بسیار طعنه‌آمیز باشد: «البته من عاشق خوابیدن در اتاقی بدون گرمایش بودم» و تحلیلگر احساسات فکر کند که این احساسات مثبت است، در حالی که یک انسان با خواندن آن متوجه طعنه خواهد شد. + +NLTK ابزارهای مختلفی برای تحلیل احساسات ارائه می‌دهد که می‌توانید با آن‌ها کار کنید و ببینید آیا احساسات دقیق‌تر هستند یا خیر. در اینجا از تحلیل احساسات VADER استفاده شده است. + +> Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. + +```python +from nltk.sentiment.vader import SentimentIntensityAnalyzer + +# Create the vader sentiment analyser (there are others in NLTK you can try too) +vader_sentiment = SentimentIntensityAnalyzer() +# Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. + +# There are 3 possibilities of input for a review: +# It could be "No Negative", in which case, return 0 +# It could be "No Positive", in which case, return 0 +# It could be a review, in which case calculate the sentiment +def calc_sentiment(review): + if review == "No Negative" or review == "No Positive": + return 0 + return vader_sentiment.polarity_scores(review)["compound"] +``` + +بعداً در برنامه خود، زمانی که آماده محاسبه احساسات هستید، می‌توانید آن را به هر نظر اعمال کنید به این صورت: + +```python +# Add a negative sentiment and positive sentiment column +print("Calculating sentiment columns for both positive and negative reviews") +start = time.time() +df["Negative_Sentiment"] = df.Negative_Review.apply(calc_sentiment) +df["Positive_Sentiment"] = df.Positive_Review.apply(calc_sentiment) +end = time.time() +print("Calculating sentiment took " + str(round(end - start, 2)) + " seconds") +``` + +این فرآیند تقریباً ۱۲۰ ثانیه روی کامپیوتر من طول می‌کشد، اما زمان آن روی هر کامپیوتر متفاوت خواهد بود. اگر می‌خواهید نتایج را چاپ کنید و ببینید آیا احساسات با نظر مطابقت دارد: + +```python +df = df.sort_values(by=["Negative_Sentiment"], ascending=True) +print(df[["Negative_Review", "Negative_Sentiment"]]) +df = df.sort_values(by=["Positive_Sentiment"], ascending=True) +print(df[["Positive_Review", "Positive_Sentiment"]]) +``` + +آخرین کاری که باید با فایل انجام دهید قبل از استفاده در چالش، ذخیره کردن آن است! همچنین باید به مرتب‌سازی مجدد تمام ستون‌های جدید خود فکر کنید تا کار با آن‌ها آسان‌تر شود (برای انسان، این یک تغییر ظاهری است). + +```python +# Reorder the columns (This is cosmetic, but to make it easier to explore the data later) +df = df.reindex(["Hotel_Name", "Hotel_Address", "Total_Number_of_Reviews", "Average_Score", "Reviewer_Score", "Negative_Sentiment", "Positive_Sentiment", "Reviewer_Nationality", "Leisure_trip", "Couple", "Solo_traveler", "Business_trip", "Group", "Family_with_young_children", "Family_with_older_children", "With_a_pet", "Negative_Review", "Positive_Review"], axis=1) + +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r"../data/Hotel_Reviews_NLP.csv", index = False) +``` + +شما باید کل کد را برای [دفترچه تحلیل](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb) اجرا کنید (بعد از اینکه [دفترچه فیلتر کردن](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) را اجرا کردید تا فایل Hotel_Reviews_Filtered.csv تولید شود). + +برای مرور، مراحل به این صورت هستند: + +1. فایل مجموعه داده اصلی **Hotel_Reviews.csv** در درس قبلی با [دفترچه کاوشگر](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb) بررسی شده است. +2. Hotel_Reviews.csv توسط [دفترچه فیلتر کردن](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) فیلتر شده و نتیجه آن **Hotel_Reviews_Filtered.csv** است. +3. Hotel_Reviews_Filtered.csv توسط [دفترچه تحلیل احساسات](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb) پردازش شده و نتیجه آن **Hotel_Reviews_NLP.csv** است. +4. از Hotel_Reviews_NLP.csv در چالش NLP زیر استفاده کنید. + +### نتیجه‌گیری + +وقتی شروع کردید، یک مجموعه داده با ستون‌ها و داده‌ها داشتید اما همه آن قابل تأیید یا استفاده نبود. شما داده‌ها را بررسی کردید، موارد غیرضروری را فیلتر کردید، برچسب‌ها را به چیزی مفید تبدیل کردید، میانگین‌های خود را محاسبه کردید، ستون‌های احساسات اضافه کردید و امیدواریم چیزهای جالبی درباره پردازش متن طبیعی یاد گرفته باشید. + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/40/) + +## چالش + +اکنون که مجموعه داده خود را برای احساسات تحلیل کرده‌اید، ببینید آیا می‌توانید با استفاده از استراتژی‌هایی که در این دوره یاد گرفته‌اید (مثلاً خوشه‌بندی)، الگوهایی پیرامون احساسات پیدا کنید. + +## مرور و مطالعه شخصی + +[این ماژول آموزشی](https://docs.microsoft.com/en-us/learn/modules/classify-user-feedback-with-the-text-analytics-api/?WT.mc_id=academic-77952-leestott) را بگیرید تا بیشتر یاد بگیرید و از ابزارهای مختلف برای بررسی احساسات در متن استفاده کنید. + +## تکلیف + +[یک مجموعه داده متفاوت را امتحان کنید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/5-Hotel-Reviews-2/assignment.md b/translations/fa/6-NLP/5-Hotel-Reviews-2/assignment.md new file mode 100644 index 000000000..1cbfc4f67 --- /dev/null +++ b/translations/fa/6-NLP/5-Hotel-Reviews-2/assignment.md @@ -0,0 +1,25 @@ + +# امتحان یک مجموعه داده متفاوت + +## دستورالعمل‌ها + +حالا که با استفاده از NLTK برای تعیین احساسات متن آشنا شدید، یک مجموعه داده متفاوت را امتحان کنید. احتمالاً نیاز به پردازش داده‌ها خواهید داشت، بنابراین یک نوت‌بوک ایجاد کنید و فرآیند فکری خود را مستند کنید. چه چیزی کشف می‌کنید؟ + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ----------- | ------------------------------------------------------------------------------------------------------------- | --------------------------------------- | ---------------------- | +| | یک نوت‌بوک کامل و مجموعه داده ارائه شده است که شامل سلول‌های مستند شده به خوبی توضیح می‌دهد که چگونه احساسات تعیین شده‌اند | نوت‌بوک فاقد توضیحات مناسب است | نوت‌بوک دارای نقص است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/5-Hotel-Reviews-2/notebook.ipynb b/translations/fa/6-NLP/5-Hotel-Reviews-2/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb b/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb new file mode 100644 index 000000000..1e84e3c68 --- /dev/null +++ b/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb @@ -0,0 +1,172 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "033cb89c85500224b3c63fd04f49b4aa", + "translation_date": "2025-09-04T03:10:07+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import time\n", + "import ast" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def replace_address(row):\n", + " if \"Netherlands\" in row[\"Hotel_Address\"]:\n", + " return \"Amsterdam, Netherlands\"\n", + " elif \"Barcelona\" in row[\"Hotel_Address\"]:\n", + " return \"Barcelona, Spain\"\n", + " elif \"United Kingdom\" in row[\"Hotel_Address\"]:\n", + " return \"London, United Kingdom\"\n", + " elif \"Milan\" in row[\"Hotel_Address\"]: \n", + " return \"Milan, Italy\"\n", + " elif \"France\" in row[\"Hotel_Address\"]:\n", + " return \"Paris, France\"\n", + " elif \"Vienna\" in row[\"Hotel_Address\"]:\n", + " return \"Vienna, Austria\" \n", + " else:\n", + " return row.Hotel_Address\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# dropping columns we will not use:\n", + "df.drop([\"lat\", \"lng\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Replace all the addresses with a shortened, more useful form\n", + "df[\"Hotel_Address\"] = df.apply(replace_address, axis = 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Drop `Additional_Number_of_Scoring`\n", + "df.drop([\"Additional_Number_of_Scoring\"], axis = 1, inplace=True)\n", + "# Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values\n", + "df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')\n", + "df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Process the Tags into new columns\n", + "# The file Hotel_Reviews_Tags.py, identifies the most important tags\n", + "# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, \n", + "# Family with young children, Family with older children, With a pet\n", + "df[\"Leisure_trip\"] = df.Tags.apply(lambda tag: 1 if \"Leisure trip\" in tag else 0)\n", + "df[\"Couple\"] = df.Tags.apply(lambda tag: 1 if \"Couple\" in tag else 0)\n", + "df[\"Solo_traveler\"] = df.Tags.apply(lambda tag: 1 if \"Solo traveler\" in tag else 0)\n", + "df[\"Business_trip\"] = df.Tags.apply(lambda tag: 1 if \"Business trip\" in tag else 0)\n", + "df[\"Group\"] = df.Tags.apply(lambda tag: 1 if \"Group\" in tag or \"Travelers with friends\" in tag else 0)\n", + "df[\"Family_with_young_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with young children\" in tag else 0)\n", + "df[\"Family_with_older_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with older children\" in tag else 0)\n", + "df[\"With_a_pet\"] = df.Tags.apply(lambda tag: 1 if \"With a pet\" in tag else 0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# No longer need any of these columns\n", + "df.drop([\"Review_Date\", \"Review_Total_Negative_Word_Counts\", \"Review_Total_Positive_Word_Counts\", \"days_since_review\", \"Total_Number_of_Reviews_Reviewer_Has_Given\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_Filtered.csv\n", + "Filtering took 23.74 seconds\n" + ] + } + ], + "source": [ + "# Saving new data file with calculated columns\n", + "print(\"Saving results to Hotel_Reviews_Filtered.csv\")\n", + "df.to_csv(r'../../data/Hotel_Reviews_Filtered.csv', index = False)\n", + "end = time.time()\n", + "print(\"Filtering took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb b/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb new file mode 100644 index 000000000..b7299d347 --- /dev/null +++ b/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb @@ -0,0 +1,137 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "341efc86325ec2a214f682f57a189dfd", + "translation_date": "2025-09-04T03:10:25+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV (you can )\n", + "import pandas as pd \n", + "\n", + "df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# We want to find the most useful tags to keep\n", + "# Remove opening and closing brackets\n", + "df.Tags = df.Tags.str.strip(\"[']\")\n", + "# remove all quotes too\n", + "df.Tags = df.Tags.str.replace(\" ', '\", \",\", regex = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# removing this to take advantage of the 'already a phrase' fact of the dataset \n", + "# Now split the strings into a list\n", + "tag_list_df = df.Tags.str.split(',', expand = True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove leading and trailing spaces\n", + "df[\"Tag_1\"] = tag_list_df[0].str.strip()\n", + "df[\"Tag_2\"] = tag_list_df[1].str.strip()\n", + "df[\"Tag_3\"] = tag_list_df[2].str.strip()\n", + "df[\"Tag_4\"] = tag_list_df[3].str.strip()\n", + "df[\"Tag_5\"] = tag_list_df[4].str.strip()\n", + "df[\"Tag_6\"] = tag_list_df[5].str.strip()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Merge the 6 columns into one with melt\n", + "df_tags = df.melt(value_vars=[\"Tag_1\", \"Tag_2\", \"Tag_3\", \"Tag_4\", \"Tag_5\", \"Tag_6\"])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The shape of the tags with no filtering: (2514684, 2)\n", + " index count\n", + "0 Leisure trip 338423\n", + "1 Couple 205305\n", + "2 Solo traveler 89779\n", + "3 Business trip 68176\n", + "4 Group 51593\n", + "5 Family with young children 49318\n", + "6 Family with older children 21509\n", + "7 Travelers with friends 1610\n", + "8 With a pet 1078\n" + ] + } + ], + "source": [ + "# Get the value counts\n", + "tag_vc = df_tags.value.value_counts()\n", + "# print(tag_vc)\n", + "print(\"The shape of the tags with no filtering:\", str(df_tags.shape))\n", + "# Drop rooms, suites, and length of stay, mobile device and anything with less count than a 1000\n", + "df_tags = df_tags[~df_tags.value.str.contains(\"Standard|room|Stayed|device|Beds|Suite|Studio|King|Superior|Double\", na=False, case=False)]\n", + "tag_vc = df_tags.value.value_counts().reset_index(name=\"count\").query(\"count > 1000\")\n", + "# Print the top 10 (there should only be 9 and we'll use these in the filtering section)\n", + "print(tag_vc[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb b/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb new file mode 100644 index 000000000..9d5ee3fcc --- /dev/null +++ b/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb @@ -0,0 +1,260 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "705bf02633759f689abc37b19749a16d", + "translation_date": "2025-09-04T03:10:43+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "[nltk_data] Downloading package vader_lexicon to\n[nltk_data] /Users/jenlooper/nltk_data...\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import time\n", + "import pandas as pd\n", + "import nltk as nltk\n", + "from nltk.corpus import stopwords\n", + "from nltk.sentiment.vader import SentimentIntensityAnalyzer\n", + "nltk.download('vader_lexicon')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "vader_sentiment = SentimentIntensityAnalyzer()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# There are 3 possibilities of input for a review:\n", + "# It could be \"No Negative\", in which case, return 0\n", + "# It could be \"No Positive\", in which case, return 0\n", + "# It could be a review, in which case calculate the sentiment\n", + "def calc_sentiment(review): \n", + " if review == \"No Negative\" or review == \"No Positive\":\n", + " return 0\n", + " return vader_sentiment.polarity_scores(review)[\"compound\"] \n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "df = pd.read_csv(\"../../data/Hotel_Reviews_Filtered.csv\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove stop words - can be slow for a lot of text!\n", + "# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches\n", + "# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends\n", + "start = time.time()\n", + "cache = set(stopwords.words(\"english\"))\n", + "def remove_stopwords(review):\n", + " text = \" \".join([word for word in review.split() if word not in cache])\n", + " return text\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove the stop words from both columns\n", + "df.Negative_Review = df.Negative_Review.apply(remove_stopwords) \n", + "df.Positive_Review = df.Positive_Review.apply(remove_stopwords)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Removing stop words took 5.77 seconds\n" + ] + } + ], + "source": [ + "end = time.time()\n", + "print(\"Removing stop words took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Calculating sentiment columns for both positive and negative reviews\n", + "Calculating sentiment took 201.07 seconds\n" + ] + } + ], + "source": [ + "# Add a negative sentiment and positive sentiment column\n", + "print(\"Calculating sentiment columns for both positive and negative reviews\")\n", + "start = time.time()\n", + "df[\"Negative_Sentiment\"] = df.Negative_Review.apply(calc_sentiment)\n", + "df[\"Positive_Sentiment\"] = df.Positive_Review.apply(calc_sentiment)\n", + "end = time.time()\n", + "print(\"Calculating sentiment took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Negative_Review Negative_Sentiment\n", + "186584 So bad experience memories I hotel The first n... -0.9920\n", + "129503 First charged twice room booked booking second... -0.9896\n", + "307286 The staff Had bad experience even booking Janu... -0.9889\n", + "452092 No WLAN room Incredibly rude restaurant staff ... -0.9884\n", + "201293 We usually traveling Paris 2 3 times year busi... -0.9873\n", + "... ... ...\n", + "26899 I would say however one night expensive even d... 0.9933\n", + "138365 Wifi terribly slow I speed test network upload... 0.9938\n", + "79215 I find anything hotel first I walked past hote... 0.9938\n", + "278506 The property great location There bakery next ... 0.9945\n", + "339189 Guys I like hotel I wish return next year Howe... 0.9948\n", + "\n", + "[515738 rows x 2 columns]\n", + " Positive_Review Positive_Sentiment\n", + "137893 Bathroom Shower We going stay twice hotel 2 ni... -0.9820\n", + "5839 I completely disappointed mad since reception ... -0.9780\n", + "64158 get everything extra internet parking breakfas... -0.9751\n", + "124178 I didnt like anythig Room small Asked upgrade ... -0.9721\n", + "489137 Very rude manager abusive staff reception Dirt... -0.9703\n", + "... ... ...\n", + "331570 Everything This recently renovated hotel class... 0.9984\n", + "322920 From moment stepped doors Guesthouse Hotel sta... 0.9985\n", + "293710 This place surprise expected good actually gre... 0.9985\n", + "417442 We celebrated wedding night Langham I commend ... 0.9985\n", + "132492 We arrived super cute boutique hotel area expl... 0.9987\n", + "\n", + "[515738 rows x 2 columns]\n" + ] + } + ], + "source": [ + "df = df.sort_values(by=[\"Negative_Sentiment\"], ascending=True)\n", + "print(df[[\"Negative_Review\", \"Negative_Sentiment\"]])\n", + "df = df.sort_values(by=[\"Positive_Sentiment\"], ascending=True)\n", + "print(df[[\"Positive_Review\", \"Positive_Sentiment\"]])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Reorder the columns (This is cosmetic, but to make it easier to explore the data later)\n", + "df = df.reindex([\"Hotel_Name\", \"Hotel_Address\", \"Total_Number_of_Reviews\", \"Average_Score\", \"Reviewer_Score\", \"Negative_Sentiment\", \"Positive_Sentiment\", \"Reviewer_Nationality\", \"Leisure_trip\", \"Couple\", \"Solo_traveler\", \"Business_trip\", \"Group\", \"Family_with_young_children\", \"Family_with_older_children\", \"With_a_pet\", \"Negative_Review\", \"Positive_Review\"], axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_NLP.csv\n" + ] + } + ], + "source": [ + "print(\"Saving results to Hotel_Reviews_NLP.csv\")\n", + "df.to_csv(r\"../../data/Hotel_Reviews_NLP.csv\", index = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md b/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md new file mode 100644 index 000000000..8c13ffc73 --- /dev/null +++ b/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/R/README.md b/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/R/README.md new file mode 100644 index 000000000..47effb52e --- /dev/null +++ b/translations/fa/6-NLP/5-Hotel-Reviews-2/solution/R/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشد. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/README.md b/translations/fa/6-NLP/README.md new file mode 100644 index 000000000..4ecf73201 --- /dev/null +++ b/translations/fa/6-NLP/README.md @@ -0,0 +1,38 @@ + +# شروع به کار با پردازش زبان طبیعی + +پردازش زبان طبیعی (NLP) توانایی یک برنامه کامپیوتری برای درک زبان انسانی به همان صورتی است که صحبت یا نوشته می‌شود - که به آن زبان طبیعی گفته می‌شود. این یک بخش از هوش مصنوعی (AI) است. NLP بیش از ۵۰ سال قدمت دارد و ریشه‌های آن در حوزه زبان‌شناسی است. کل این حوزه به کمک به ماشین‌ها برای درک و پردازش زبان انسانی اختصاص یافته است. این توانایی می‌تواند برای انجام وظایفی مانند بررسی املاء یا ترجمه ماشینی استفاده شود. NLP کاربردهای متنوعی در دنیای واقعی در زمینه‌های مختلف دارد، از جمله تحقیقات پزشکی، موتورهای جستجو و هوش تجاری. + +## موضوع منطقه‌ای: زبان‌ها و ادبیات اروپایی و هتل‌های عاشقانه اروپا ❤️ + +در این بخش از برنامه آموزشی، شما با یکی از گسترده‌ترین کاربردهای یادگیری ماشین آشنا خواهید شد: پردازش زبان طبیعی (NLP). این دسته از هوش مصنوعی که از زبان‌شناسی محاسباتی مشتق شده است، پلی است بین انسان‌ها و ماشین‌ها از طریق ارتباط صوتی یا متنی. + +در این درس‌ها، ما اصول اولیه NLP را با ساخت ربات‌های مکالمه‌ای کوچک یاد خواهیم گرفت تا ببینیم چگونه یادگیری ماشین به هوشمندتر شدن این مکالمات کمک می‌کند. شما به گذشته سفر خواهید کرد و با الیزابت بنت و آقای دارسی از رمان کلاسیک جین آستن، **غرور و تعصب**، که در سال ۱۸۱۳ منتشر شده است، گفتگو خواهید کرد. سپس دانش خود را با یادگیری تحلیل احساسات از طریق بررسی نظرات هتل‌های اروپا گسترش خواهید داد. + +![کتاب غرور و تعصب و چای](../../../translated_images/p&p.279f1c49ecd889419e4ce6206525e9aa30d32a976955cd24daa636c361c6391f.fa.jpg) +> عکس از Elaine Howlin در Unsplash + +## درس‌ها + +1. [مقدمه‌ای بر پردازش زبان طبیعی](1-Introduction-to-NLP/README.md) +2. [وظایف و تکنیک‌های رایج در NLP](2-Tasks/README.md) +3. [ترجمه و تحلیل احساسات با یادگیری ماشین](3-Translation-Sentiment/README.md) +4. [آماده‌سازی داده‌های شما](4-Hotel-Reviews-1/README.md) +5. [NLTK برای تحلیل احساسات](5-Hotel-Reviews-2/README.md) + +## اعتبارها + +این درس‌های پردازش زبان طبیعی با ☕ توسط [Stephen Howell](https://twitter.com/Howell_MSFT) نوشته شده‌اند. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/6-NLP/data/README.md b/translations/fa/6-NLP/data/README.md new file mode 100644 index 000000000..2f76b353a --- /dev/null +++ b/translations/fa/6-NLP/data/README.md @@ -0,0 +1,15 @@ + +دانلود داده‌های بررسی هتل به این پوشه. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/1-Introduction/README.md b/translations/fa/7-TimeSeries/1-Introduction/README.md new file mode 100644 index 000000000..9536117b8 --- /dev/null +++ b/translations/fa/7-TimeSeries/1-Introduction/README.md @@ -0,0 +1,199 @@ + +# مقدمه‌ای بر پیش‌بینی سری‌های زمانی + +![خلاصه‌ای از سری‌های زمانی در یک اسکچ‌نوت](../../../../translated_images/ml-timeseries.fb98d25f1013fc0c59090030080b5d1911ff336427bec31dbaf1ad08193812e9.fa.png) + +> اسکچ‌نوت توسط [Tomomi Imura](https://www.twitter.com/girlie_mac) + +در این درس و درس بعدی، شما کمی درباره پیش‌بینی سری‌های زمانی یاد خواهید گرفت، بخشی جالب و ارزشمند از مهارت‌های یک دانشمند یادگیری ماشین که کمتر شناخته شده است نسبت به سایر موضوعات. پیش‌بینی سری‌های زمانی مانند یک "گوی کریستالی" است: بر اساس عملکرد گذشته یک متغیر مانند قیمت، می‌توانید ارزش بالقوه آینده آن را پیش‌بینی کنید. + +[![مقدمه‌ای بر پیش‌بینی سری‌های زمانی](https://img.youtube.com/vi/cBojo1hsHiI/0.jpg)](https://youtu.be/cBojo1hsHiI "مقدمه‌ای بر پیش‌بینی سری‌های زمانی") + +> 🎥 برای مشاهده ویدئویی درباره پیش‌بینی سری‌های زمانی روی تصویر بالا کلیک کنید + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/41/) + +این حوزه‌ای مفید و جالب است که ارزش واقعی برای کسب‌وکار دارد، با توجه به کاربرد مستقیم آن در مسائل قیمت‌گذاری، موجودی و زنجیره تأمین. در حالی که تکنیک‌های یادگیری عمیق شروع به استفاده برای کسب بینش‌های بیشتر جهت پیش‌بینی بهتر عملکرد آینده کرده‌اند، پیش‌بینی سری‌های زمانی همچنان حوزه‌ای است که به شدت تحت تأثیر تکنیک‌های کلاسیک یادگیری ماشین قرار دارد. + +> برنامه درسی مفید سری‌های زمانی دانشگاه Penn State را می‌توانید [اینجا](https://online.stat.psu.edu/stat510/lesson/1) پیدا کنید + +## مقدمه + +فرض کنید شما مجموعه‌ای از پارکومترهای هوشمند را مدیریت می‌کنید که داده‌هایی درباره میزان استفاده و مدت زمان استفاده در طول زمان ارائه می‌دهند. + +> اگر بتوانید بر اساس عملکرد گذشته پارکومتر، ارزش آینده آن را طبق قوانین عرضه و تقاضا پیش‌بینی کنید، چه می‌شود؟ + +پیش‌بینی دقیق زمان اقدام برای دستیابی به هدف شما چالشی است که می‌توان با پیش‌بینی سری‌های زمانی به آن پرداخت. ممکن است مردم خوشحال نشوند که در زمان‌های شلوغ هزینه بیشتری برای پیدا کردن جای پارک پرداخت کنند، اما این راهی مطمئن برای کسب درآمد جهت تمیز کردن خیابان‌ها خواهد بود! + +بیایید برخی از انواع الگوریتم‌های سری‌های زمانی را بررسی کنیم و یک دفترچه یادداشت برای پاک‌سازی و آماده‌سازی داده‌ها شروع کنیم. داده‌هایی که تحلیل خواهید کرد از مسابقه پیش‌بینی GEFCom2014 گرفته شده است. این داده‌ها شامل ۳ سال بار الکتریکی ساعتی و مقادیر دمایی بین سال‌های ۲۰۱۲ تا ۲۰۱۴ است. با توجه به الگوهای تاریخی بار الکتریکی و دما، می‌توانید مقادیر آینده بار الکتریکی را پیش‌بینی کنید. + +در این مثال، شما یاد خواهید گرفت که چگونه یک گام زمانی را پیش‌بینی کنید، فقط با استفاده از داده‌های بار تاریخی. با این حال، قبل از شروع، مفید است که بفهمید پشت صحنه چه اتفاقی می‌افتد. + +## برخی تعاریف + +هنگام مواجهه با اصطلاح "سری‌های زمانی"، باید استفاده آن را در چندین زمینه مختلف درک کنید. + +🎓 **سری‌های زمانی** + +در ریاضیات، "سری‌های زمانی مجموعه‌ای از نقاط داده است که به ترتیب زمانی فهرست شده یا رسم شده‌اند. معمولاً، سری‌های زمانی دنباله‌ای است که در نقاط متوالی و با فاصله‌های مساوی در زمان گرفته شده است." نمونه‌ای از سری‌های زمانی، مقدار بسته شدن روزانه [شاخص صنعتی داو جونز](https://wikipedia.org/wiki/Time_series) است. استفاده از نمودارهای سری‌های زمانی و مدل‌سازی آماری اغلب در پردازش سیگنال، پیش‌بینی آب‌وهوا، پیش‌بینی زلزله و سایر زمینه‌هایی که رویدادها رخ می‌دهند و نقاط داده می‌توانند در طول زمان رسم شوند، مشاهده می‌شود. + +🎓 **تحلیل سری‌های زمانی** + +تحلیل سری‌های زمانی، تحلیل داده‌های سری‌های زمانی ذکر شده در بالا است. داده‌های سری‌های زمانی می‌توانند اشکال مختلفی داشته باشند، از جمله "سری‌های زمانی متوقف شده" که الگوها را در تکامل سری‌های زمانی قبل و بعد از یک رویداد متوقف‌کننده تشخیص می‌دهد. نوع تحلیل مورد نیاز برای سری‌های زمانی، به ماهیت داده‌ها بستگی دارد. خود داده‌های سری‌های زمانی می‌توانند به صورت مجموعه‌ای از اعداد یا کاراکترها باشند. + +تحلیلی که باید انجام شود، از روش‌های مختلفی استفاده می‌کند، از جمله حوزه فرکانس و حوزه زمان، خطی و غیرخطی، و موارد دیگر. [بیشتر بیاموزید](https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm) درباره روش‌های مختلف تحلیل این نوع داده‌ها. + +🎓 **پیش‌بینی سری‌های زمانی** + +پیش‌بینی سری‌های زمانی استفاده از یک مدل برای پیش‌بینی مقادیر آینده بر اساس الگوهایی است که توسط داده‌های جمع‌آوری شده قبلی به عنوان گذشته رخ داده است. در حالی که امکان استفاده از مدل‌های رگرسیون برای بررسی داده‌های سری‌های زمانی وجود دارد، با شاخص‌های زمانی به عنوان متغیرهای x در یک نمودار، چنین داده‌هایی بهتر است با استفاده از انواع خاصی از مدل‌ها تحلیل شوند. + +داده‌های سری‌های زمانی لیستی از مشاهدات مرتب شده است، برخلاف داده‌هایی که می‌توانند با رگرسیون خطی تحلیل شوند. رایج‌ترین مدل ARIMA است، که مخفف "میانگین متحرک یکپارچه خودبازگشتی" است. + +[مدل‌های ARIMA](https://online.stat.psu.edu/stat510/lesson/1/1.1) "ارزش فعلی یک سری را به مقادیر گذشته و خطاهای پیش‌بینی گذشته مرتبط می‌کنند." این مدل‌ها برای تحلیل داده‌های حوزه زمان، که داده‌ها به ترتیب زمانی مرتب شده‌اند، مناسب‌ترین هستند. + +> انواع مختلفی از مدل‌های ARIMA وجود دارد که می‌توانید درباره آن‌ها [اینجا](https://people.duke.edu/~rnau/411arim.htm) یاد بگیرید و در درس بعدی به آن‌ها پرداخته خواهد شد. + +در درس بعدی، شما یک مدل ARIMA با استفاده از [سری‌های زمانی تک‌متغیره](https://itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm) خواهید ساخت، که بر یک متغیر تمرکز دارد که ارزش آن در طول زمان تغییر می‌کند. نمونه‌ای از این نوع داده‌ها [این مجموعه داده](https://itl.nist.gov/div898/handbook/pmc/section4/pmc4411.htm) است که غلظت ماهانه CO2 را در رصدخانه Mauna Loa ثبت می‌کند: + +| CO2 | YearMonth | Year | Month | +| :----: | :-------: | :---: | :---: | +| 330.62 | 1975.04 | 1975 | 1 | +| 331.40 | 1975.13 | 1975 | 2 | +| 331.87 | 1975.21 | 1975 | 3 | +| 333.18 | 1975.29 | 1975 | 4 | +| 333.92 | 1975.38 | 1975 | 5 | +| 333.43 | 1975.46 | 1975 | 6 | +| 331.85 | 1975.54 | 1975 | 7 | +| 330.01 | 1975.63 | 1975 | 8 | +| 328.51 | 1975.71 | 1975 | 9 | +| 328.41 | 1975.79 | 1975 | 10 | +| 329.25 | 1975.88 | 1975 | 11 | +| 330.97 | 1975.96 | 1975 | 12 | + +✅ متغیری که در این مجموعه داده در طول زمان تغییر می‌کند را شناسایی کنید + +## ویژگی‌های داده‌های سری‌های زمانی که باید در نظر گرفت + +هنگام مشاهده داده‌های سری‌های زمانی، ممکن است متوجه شوید که این داده‌ها [ویژگی‌های خاصی](https://online.stat.psu.edu/stat510/lesson/1/1.1) دارند که باید برای درک بهتر الگوهای آن‌ها در نظر گرفته و کاهش دهید. اگر داده‌های سری‌های زمانی را به عنوان ارائه‌دهنده یک "سیگنال" که می‌خواهید تحلیل کنید در نظر بگیرید، این ویژگی‌ها می‌توانند به عنوان "نویز" تلقی شوند. اغلب نیاز دارید این "نویز" را با جبران برخی از این ویژگی‌ها با استفاده از تکنیک‌های آماری کاهش دهید. + +در اینجا برخی مفاهیم که باید بدانید تا بتوانید با سری‌های زمانی کار کنید آورده شده است: + +🎓 **روندها** + +روندها به عنوان افزایش‌ها و کاهش‌های قابل اندازه‌گیری در طول زمان تعریف می‌شوند. [بیشتر بخوانید](https://machinelearningmastery.com/time-series-trends-in-python). در زمینه سری‌های زمانی، این موضوع درباره نحوه استفاده و، در صورت لزوم، حذف روندها از سری‌های زمانی است. + +🎓 **[فصلی بودن](https://machinelearningmastery.com/time-series-seasonality-with-python/)** + +فصلی بودن به عنوان نوسانات دوره‌ای تعریف می‌شود، مانند شلوغی‌های تعطیلات که ممکن است بر فروش تأثیر بگذارد، به عنوان مثال. [نگاهی بیندازید](https://itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm) به نحوه نمایش فصلی بودن در داده‌ها با انواع مختلف نمودارها. + +🎓 **نقاط پرت** + +نقاط پرت از واریانس استاندارد داده‌ها فاصله زیادی دارند. + +🎓 **چرخه بلندمدت** + +مستقل از فصلی بودن، داده‌ها ممکن است چرخه بلندمدتی مانند رکود اقتصادی که بیش از یک سال طول می‌کشد را نمایش دهند. + +🎓 **واریانس ثابت** + +در طول زمان، برخی داده‌ها نوسانات ثابتی را نمایش می‌دهند، مانند مصرف انرژی در طول روز و شب. + +🎓 **تغییرات ناگهانی** + +داده‌ها ممکن است تغییر ناگهانی را نمایش دهند که نیاز به تحلیل بیشتری دارد. به عنوان مثال، تعطیلی ناگهانی کسب‌وکارها به دلیل COVID باعث تغییراتی در داده‌ها شد. + +✅ اینجا یک [نمودار نمونه سری‌های زمانی](https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python) وجود دارد که هزینه روزانه ارز درون بازی را در طول چند سال نشان می‌دهد. آیا می‌توانید هر یک از ویژگی‌های ذکر شده در بالا را در این داده‌ها شناسایی کنید؟ + +![هزینه ارز درون بازی](../../../../translated_images/currency.e7429812bfc8c6087b2d4c410faaa4aaa11b2fcaabf6f09549b8249c9fbdb641.fa.png) + +## تمرین - شروع با داده‌های مصرف برق + +بیایید شروع کنیم به ایجاد یک مدل سری‌های زمانی برای پیش‌بینی مصرف برق آینده با توجه به مصرف گذشته. + +> داده‌های این مثال از مسابقه پیش‌بینی GEFCom2014 گرفته شده است. این داده‌ها شامل ۳ سال بار الکتریکی ساعتی و مقادیر دمایی بین سال‌های ۲۰۱۲ تا ۲۰۱۴ است. +> +> Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli و Rob J. Hyndman، "پیش‌بینی انرژی احتمالی: مسابقه جهانی پیش‌بینی انرژی ۲۰۱۴ و فراتر از آن"، مجله بین‌المللی پیش‌بینی، جلد ۳۲، شماره ۳، صفحات ۸۹۶-۹۱۳، جولای-سپتامبر، ۲۰۱۶. + +1. در پوشه `working` این درس، فایل _notebook.ipynb_ را باز کنید. ابتدا کتابخانه‌هایی را اضافه کنید که به شما کمک می‌کنند داده‌ها را بارگذاری و بصری‌سازی کنید + + ```python + import os + import matplotlib.pyplot as plt + from common.utils import load_data + %matplotlib inline + ``` + + توجه داشته باشید که شما از فایل‌های موجود در پوشه `common` استفاده می‌کنید که محیط شما را تنظیم کرده و داده‌ها را دانلود می‌کنند. + +2. سپس، داده‌ها را به عنوان یک دیتافریم بررسی کنید با فراخوانی `load_data()` و `head()`: + + ```python + data_dir = './data' + energy = load_data(data_dir)[['load']] + energy.head() + ``` + + می‌توانید ببینید که دو ستون وجود دارد که تاریخ و بار را نشان می‌دهند: + + | | load | + | :-----------------: | :----: | + | 2012-01-01 00:00:00 | 2698.0 | + | 2012-01-01 01:00:00 | 2558.0 | + | 2012-01-01 02:00:00 | 2444.0 | + | 2012-01-01 03:00:00 | 2402.0 | + | 2012-01-01 04:00:00 | 2403.0 | + +3. اکنون، داده‌ها را با فراخوانی `plot()` رسم کنید: + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![نمودار انرژی](../../../../translated_images/energy-plot.5fdac3f397a910bc6070602e9e45bea8860d4c239354813fa8fc3c9d556f5bad.fa.png) + +4. اکنون، هفته اول جولای ۲۰۱۴ را رسم کنید، با ارائه آن به عنوان ورودی به `energy` در الگوی `[از تاریخ]: [تا تاریخ]`: + + ```python + energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![جولای](../../../../translated_images/july-2014.9e1f7c318ec6d5b30b0d7e1e20be3643501f64a53f3d426d7c7d7b62addb335e.fa.png) + + نموداری زیبا! به این نمودارها نگاه کنید و ببینید آیا می‌توانید هر یک از ویژگی‌های ذکر شده در بالا را تعیین کنید. با بصری‌سازی داده‌ها چه چیزی می‌توانیم نتیجه‌گیری کنیم؟ + +در درس بعدی، شما یک مدل ARIMA ایجاد خواهید کرد تا برخی پیش‌بینی‌ها انجام دهید. + +--- + +## 🚀چالش + +فهرستی از تمام صنایع و زمینه‌های تحقیقاتی که فکر می‌کنید از پیش‌بینی سری‌های زمانی بهره‌مند شوند تهیه کنید. آیا می‌توانید کاربردی از این تکنیک‌ها در هنرها، اقتصادسنجی، اکولوژی، خرده‌فروشی، صنعت، مالی یا جای دیگری پیدا کنید؟ + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/42/) + +## مرور و مطالعه شخصی + +اگرچه در اینجا به آن‌ها نمی‌پردازیم، شبکه‌های عصبی گاهی برای بهبود روش‌های کلاسیک پیش‌بینی سری‌های زمانی استفاده می‌شوند. درباره آن‌ها [در این مقاله](https://medium.com/microsoftazure/neural-networks-for-forecasting-financial-and-economic-time-series-6aca370ff412) بیشتر بخوانید. + +## تکلیف + +[برخی سری‌های زمانی دیگر را بصری‌سازی کنید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/1-Introduction/assignment.md b/translations/fa/7-TimeSeries/1-Introduction/assignment.md new file mode 100644 index 000000000..dd7794625 --- /dev/null +++ b/translations/fa/7-TimeSeries/1-Introduction/assignment.md @@ -0,0 +1,25 @@ + +# تجسم‌سازی چند سری زمانی دیگر + +## دستورالعمل‌ها + +شما شروع به یادگیری پیش‌بینی سری زمانی کرده‌اید و با نوع داده‌هایی که نیاز به مدل‌سازی خاص دارند آشنا شده‌اید. شما داده‌هایی درباره انرژی را تجسم‌سازی کرده‌اید. اکنون، به دنبال داده‌های دیگری باشید که از پیش‌بینی سری زمانی بهره‌مند شوند. سه مثال پیدا کنید (سعی کنید از [Kaggle](https://kaggle.com) و [Azure Open Datasets](https://azure.microsoft.com/en-us/services/open-datasets/catalog/?WT.mc_id=academic-77952-leestott) استفاده کنید) و یک نوت‌بوک برای تجسم‌سازی آن‌ها ایجاد کنید. هر ویژگی خاصی که دارند (مانند فصلی بودن، تغییرات ناگهانی یا روندهای دیگر) را در نوت‌بوک یادداشت کنید. + +## معیار ارزیابی + +| معیار | عالی | کافی | نیاز به بهبود | +| --------- | ------------------------------------------------------ | -------------------------------------------------- | --------------------------------------------------------------------------------------- | +| | سه مجموعه داده در نوت‌بوک رسم شده و توضیح داده شده‌اند | دو مجموعه داده در نوت‌بوک رسم شده و توضیح داده شده‌اند | تعداد کمی از مجموعه داده‌ها رسم یا توضیح داده شده‌اند یا داده‌های ارائه‌شده ناکافی هستند | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/1-Introduction/solution/Julia/README.md b/translations/fa/7-TimeSeries/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..85bca2672 --- /dev/null +++ b/translations/fa/7-TimeSeries/1-Introduction/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/1-Introduction/solution/R/README.md b/translations/fa/7-TimeSeries/1-Introduction/solution/R/README.md new file mode 100644 index 000000000..9a076abc0 --- /dev/null +++ b/translations/fa/7-TimeSeries/1-Introduction/solution/R/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/1-Introduction/solution/notebook.ipynb b/translations/fa/7-TimeSeries/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..f5cfb5379 --- /dev/null +++ b/translations/fa/7-TimeSeries/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,173 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# آماده‌سازی داده‌ها\n", + "\n", + "در این نوت‌بوک، نشان می‌دهیم که چگونه:\n", + "- داده‌های سری زمانی را برای این ماژول آماده کنیم\n", + "- داده‌ها را بصری‌سازی کنیم\n", + "\n", + "داده‌های این مثال از مسابقه پیش‌بینی GEFCom2014 گرفته شده است. \n", + "این داده‌ها شامل ۳ سال بار الکتریکی ساعتی و مقادیر دما بین سال‌های ۲۰۱۲ تا ۲۰۱۴ می‌باشد.\n", + "\n", + "تائو هانگ، پیر پینسون، شو فان، حمیدرضا زارعی‌پور، آلبرتو تروکولی و راب جی. هیندمن، \"پیش‌بینی احتمالی انرژی: مسابقه جهانی پیش‌بینی انرژی ۲۰۱۴ و فراتر از آن\"، مجله بین‌المللی پیش‌بینی، جلد ۳۲، شماره ۳، صفحات ۸۹۶-۹۱۳، جولای-سپتامبر ۲۰۱۶.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import matplotlib.pyplot as plt\n", + "from common.utils import load_data\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "داده‌ها را از فایل csv به یک دیتافریم پانداس بارگذاری کنید\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ], + "text/html": "
            \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
            load
            2012-01-01 00:00:002698.0
            2012-01-01 01:00:002558.0
            2012-01-01 02:00:002444.0
            2012-01-01 03:00:002402.0
            2012-01-01 04:00:002403.0
            \n
            " + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "data_dir = './data'\n", + "energy = load_data(data_dir)[['load']]\n", + "energy.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "تمام داده‌های بار موجود (ژانویه ۲۰۱۲ تا دسامبر ۲۰۱۴) را ترسیم کنید\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "طرح هفته اول جولای ۲۰۱۴\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhb5ZU/8O+r3bYkO7bl3YljZ3dCnJBASCCQFkqBgUDpBrRMZ6YLMJ2l26/TTjtDmelMp09nOtNOaUt31tKFtRToQAkpSUhIiJPY2Z14X+VFkiVL1vL+/pBkjHESL5Ku7r3fz/P4IbF07z1Gsa1z3/OeI6SUICIiIiIiIgIAg9IBEBERERERUfZgkkhEREREREQTmCQSERERERHRBCaJRERERERENIFJIhEREREREU1gkkhEREREREQTTEoHoITi4mJZU1OjdBhERERERESKOHDggFtK6ZruMV0miTU1Ndi/f7/SYRARERERESlCCNF2rsdYbkpEREREREQTmCQSERERERHRBCaJRERERERENEGXexKJiIiIiIgAIBwOo7OzE8FgUOlQ0sJms6Gqqgpms3nGxzBJJCIiIiIi3ers7ITD4UBNTQ2EEEqHk1JSSgwODqKzsxOLFy+e8XEsNyUiIiIiIt0KBoMoKirSXIIIAEIIFBUVzXqVlEkiERERERHpmhYTxKS5fG1MEomIiIiIiBRkt9tTcp57770X3/rWt+Z9HiaJRERERERENIFJIhERERERURaQUuILX/gCVq9ejTVr1uDxxx8HAIyOjuLd73431q9fjzVr1uDpp5+eOObrX/86li1bhssvvxwnTpxISRzsbkpERERERATga88242i3N6XnXFXhxD/fWD+j5z7xxBNobGzEoUOH4Ha7sXHjRmzduhUulwtPPvkknE4n3G43Nm3ahJtuuglvvvkmfvnLX6KxsRGRSATr16/HxRdfPO+YuZJIRERERESUBV577TXcdtttMBqNKC0txZVXXok33ngDUkp8+ctfxkUXXYSrr74aXV1d6Ovrw5/+9CfccsstyM3NhdPpxE033ZSSOLiSSEREREREBMx4xS/THnnkEQwMDODAgQMwm82oqamZ9ViL2eBKIhERERERURa44oor8PjjjyMajWJgYAA7d+7EJZdcAo/Hg5KSEpjNZrzyyitoa2sDAGzduhVPPfUUxsbG4PP58Oyzz6YkDq4kEmnQSGAcDpsZRoN2Z/4QERERac0tt9yCPXv2YO3atRBC4Jvf/CbKyspwxx134MYbb8SaNWuwYcMGrFixAgCwfv16fOhDH8LatWtRUlKCjRs3piQOIaVMyYnUZMOGDXL//v1Kh0GUFj2eMbznv3ZiZbkTP7pzA/JzzUqHRERERJS1jh07hpUrVyodRlpN9zUKIQ5IKTdM93yWmxJpzL///jhC0RgaO0bwgR/uRo9nTOmQiIiIiEhFMpYkCiF2CCGCQojRxMeJSY/dLoRoE0L4hRBPCSEKJz1WKIR4MvFYmxDi9innPeexRHrzRusQnjnUjbu21uLnf7ER3SNB3Hr/bpzq8ykdGhERERGpRKZXEj8tpbQnPpYDgBCiHsAPAXwUQCmAAID7Jx3zPQDjicfuAPD9xDEzOZZIN6IxiXufaUZ5vg13XVWHzUuK8finNiEck3j/D/Zgf+uQ0iESERERkQpkQ7npHQCelVLulFKOAvgqgPcJIRxCiDwAtwL4qpRyVEr5GoBnEE8Kz3usAl8HkaJ+tb8Dzd1efOn6lci1xHtS1Vfk44m7N6Mwz4I7frwXe1oGFY6SiIiIKPtouU/LXL62TCeJ/y6EcAshdgkhrkp8rh7AoeQTpJQtiK8cLkt8RKSUJyed41DimAsd+zZCiE8KIfYLIfYPDAyk8EsiUp5nLIxvvXgCl9QU4saLyt/2WHVhLn5z12UoyrPg/h2nFYqQiIiIKDvZbDYMDg5qMlGUUmJwcBA2m21Wx2VyBMYXARxFPIn7MIBnhRANAOwAPFOe6wHgABAF4D3HY7jAsW8jpXwAwANAvLvpnL8Koiz0nZdPYSgwjl/cuApCvHPsRZHdilsvrsL3XjmNfl8QJY7Z/aAgIiIi0qqqqip0dnZCqwtJNpsNVVVVszomY0milHLvpL/+QghxG4DrAYwCcE55uhOAD0DsPI/hAscS6cLpfh9+sbsVH964EKsr88/5vO0NFfjuH0/jd4d68JeXL85ghERERETZy2w2Y/FivjeaTMk9iRKAANAMYG3yk0KIWgBWACcTHyYhxNJJx61NHIMLHEukC//yu2PIsRjx+fe8o8r6bZaUOFBf4cTTh7ozFBkRERERqVFGkkQhRIEQ4lohhE0IYRJC3AFgK4AXADwC4EYhxBWJRjX3AXhCSumTUvoBPAHgPiFEnhBiC4DtAB5KnPqcx2bi6yJSWlOXB6+eHMCnty1Bkd16wedvb6jAoY4RnHX7MxAdEREREalRplYSzQD+FcAAADeAvwFws5TypJSyGcBdiCd8/YjvJ7xn0rH3AMhJPPYYgLsTx2AGxxJp2iN722AzG/DhSxbO6Pk3rq2AEMAzjVxNJCIiIqLpZWRPopRyAMDG8zz+KIBHz/HYEICb53IskZZ5g2E8dbAbN62tQH6OeUbHlOfn4NLFhXj6UBf+9t1Lpm1yQ0RERET6lg1zEoloDp58swtj4Sg+smnRrI7b3lCJMwN+NHVNbRxMRERERMQkkUiVpJR4+PU2XFSVj4uqCmZ17PWry2E2Cjzd2JWm6IiIiIhIzZgkEqnQvrNDONU/OutVRADIzzXjquUlePZwN6IxjgwlIiIiordjkkikQg+93ganzYQbL6qY0/HbGyrQ5w1h75nBFEdGRERERGrHJJFIZQZ8IbzY3Iv3X1yNHItxTue4emUp8ixGPM0up0REREQ0BZNEIpX51f4OhKMSd2ya2diL6djMRly7ugy/b+pBMBxNYXREREREpHZMEolUJBqTeHRvOzbXFaHOZZ/XuW5uqIQvGMGOEwMpio6IiIiItIBJIpGK7DjRj66RsTk1rJlqc10RFuSa8YejvSmIjIiIiIi0gkkikYo8/HobShxWXLOqdN7nMhkN2LykGLtPD0JKdjklIiIiojgmiUQqMRIYx46TA/jghmqYjan51t1SV4xebxBn3P6UnI+IiIiI1I9JIpFK7GkZhJTAthWulJ1zy5IiAMDu0+6UnZOIiIiI1I1JIpFK7GpxI89ixEVVBSk758LCXFQW5OA1JolERERElMAkkUgldp8exCWLC1NWagoAQghsWVKEPS2DiMa4L5GIiIiImCQSqUKPZwxn3H5sWVKc8nNvWVIMbzCC5m5Pys9NREREROrDJJFIBXafHgQAbK5LfZKYPOeuxDWIiIiISN+YJBKpwK4WNwrzLFhR5kj5uV0OK5aXOrC7hfsSiYiIiIhJIlHWk1Ji9+lBXFZbBINBpOUam5cUYd/ZIQTD0bScn4iIiIjUg0kizUgwHMWxHi9+d7gbD+xswcvH+uAeDSkdli6ccfvR6w1ic2JcRTpsqStGKBLDm+3DabsGEREREamDSekAKDtJKfHKiX48tq8DJ/t86BgKYLrml1ULcrC2ugAbFy3AbZcuhNVkzHywGre7Jb5XcEsa9iMmXVpbCKNBYPfpwbTseyQiIiIi9WCSSG8TjUk8d6QH979yGsd7fShz2nDxogXY3lCJJSV2LHHZUZ5vw6n+URzqGEFjxwga20fw3OEetA4GcO9N9Up/CZqz+7QbFfk2LCrKTds1HDYz1lblY1eLG5/H8rRdh4iIiIiyH5NEAhBPDn9zoAPf39GC1sEA6lx5+M8PrMVNDRXTzuW7ZHEhLllcOPH3e59pxs93t+JdK0qwdZkrk6FrWiwmsefMIK5eWQoh0rMfMWnLkmLcv6MF3mAYTps5rdciIiIiouzFPYmEPm8QH/nxXnzxt0fgsJnxg4+sx/995krcenHVjAe3/8N1K7CkxI7P//oQhv3jaY5YP472eDESCGNLGvcjJm2uK0Y0JrH3zFDar0VERERE2YtJos69enIA1//Pn9DYMYJvvv8iPPPpLXjv6vJZd9G0mY347w81YMg/jn986giknGYDI81acixFJvYJrl9UAJvZgF2nOQqDiIiISM+YJOpUOBrDN54/jj//6T4U26149m+24IMbqudV0ri6Mh+fuWYZfn+kF0+82ZXCaPVr1+lB1LnyUOq0pf1aVpMRG2sKOS+RiIiISOeYJOqQJxDGh364Bz94tQW3X7oQT396C5aUpGZI+11X1mFjzQL88zPN6BgKpOScejUeiWHf2SFsWZK5bqNblhTjZN8o+n3BjF2TiIiIiLILk0Qd+u4fT6GxYwTfuW0d/u2WNbCZUze2wmgQ+K8PNgAAPverQ4hONzeDZqSxYwRj4WhGR1Ikx2zsSYzdICIiIiL9YZKoM10jY3jw9Tbcur4KN62tSMs1qgtz8c83rsK+1iE8d6QnLdfQg90tbggBbKotvPCTU2RVhROFeRY8f6Q3Y9ckIiIiouzCJFFn/uelkwCAv79mWVqvc+v6KlQW5OA3BzrTeh0t2316EKsr8lGQa8nYNY0GgQ9cXIX/O9aHPi9LTomIiIj0iEmijpzq8+E3Bzpx56ZFqCzISeu1DAaBW9dX4rVTA+j1MNmYrWA4ioMdw9hcl/7RF1PdfulCRGMSj+1rz/i1iYiIiEh5TBJ15Ft/OIE8iwn3bFuSkeu9b30VYhJ48iA7nc7W8V4fwlGJdQsLMn7tRUV52LrMhV/u60AkGsv49YmIiIhIWUwSdeJg+zBebO7DJ7fWojAvM+WLNcV52FizAL850MG5ibN0pMsDAKivyFfk+h+5dCF6vUG8dKxfkesTERERkXKYJOqAlBL/8cJxFNst+MvLF2f02u+/uAotA340doxk9Lpq19TpQUGuGVUL0lsWfC7vWlGC8nwbHtnbpsj1iYiIiEg5TBJ1YOcpN14/M4S/eddS5FlNGb329WvKYTMb2MBmlpq6PVhTmQ8hhCLXNxkNuP2ShfjTKTfOuv2KxEBEREREymCSqHGxmMQ3XziO6sIc3HbJwoxf32Ez47rV5Xj2UDeC4WjGr69GoUgUJ/t8ipWaJn3okmqYDAKPvM7VRCIiIiI9YZKocS8296K524vPXrMMFpMyL/et66vgDUbw0rE+Ra6vNicSTWvWVCqbJJY4bLi2vgy/PtDJBJ+IiIhIR5gkapiUEv/7ymnUFufhprWVisVxWV0RKvJtLDmdoaYuLwAoniQCwB2bFsIzFsbvDvcoHQoRERERZQiTRA3bcXIAzd1e3HVVHYwGZfa2AfEB7e9bX4WdJwc4oH0GjnR54LSZUF2oTNOayS6rLUKdKw8Ps+SUiIiISDeYJGrY/a+cRmVBDm5Zp9wqYtKtF3Nm4kw1dXmwWsGmNZMJIfCRTYvQ2DGCpsRYDiIiIiLSNiaJGrX3zCDeaB3GJ7fWwmxU/mVeXJyHDYsW4DcHOjkz8TzGIzGc6PVlRalp0vvWV8FmNuCxfe1Kh0JEREREGaB89kBp8b0dLSi2W/ChjdVKhzLh/RdX4XT/KB7Z285E8RxO9vkwHo2hPouSxPwcM66tL8NzR3owHokpHQ4RERERpRmTRA063DmCnScH8FeX18JmNiodzoSbGiqwqbYQX3mqCZ986ADcoyGlQ8o6yZLObFpJBICbGyoxEgjj1ZMDSodC0+gcDuDh19vw6/0dCEeZyBMREdH8ZHayOmXE/a+0wGkz4SObMj8X8XxyLSY8+vFN+Omus/jmiydw7bd34uu3rMF7V5cpHVrWaOr2wGE1YVFhrtKhvM3lS4tRmGfBU41duGZVqdLh6F4kGsP+tmG8crwfr5zox8m+0YnHfvBqC7503Uq8e2VJVuxrJSIiIvXhSqLGnOrz4YXmXnxscw0cNrPS4byDwSDw8Stq8bu/uRxl+Tbc9fABfO5XhxCKcA4fABzp8mJVhRMGBbvRTsdsNODPLirHS0f74AuGlQ5H18YjMXzkJ3vx4Qdex093nYXLYcVXbliJlz57JX505wZICXz8wf247Uev40gnmw0RERHR7DFJ1Jjv72hBjtmIj21ZrHQo57Ws1IEn79mCe66qw2/f7MTTjd1Kh6S4cDSGYz3erCs1Tbp5XSVCkRheaOpVOhTdklLin55uwutnhvDPN67CwX96Dx75+CZ8/IpaLCmx45pVpXjxM1tx3/Z6nOwbxY3/+xq+8fxxpcMmIiIilWGSqCEdQwE8fagbd1y6EIV5FqXDuSCLyYAvXLscRXkW7GkZVDocxZ3uH8V4JIY1VdmZJK6rLsCiolwm9Ap6cE8bfvlGB/56Wx3+Ysti2K3v3DFgNhpw52U12PGFq7C9oQI/3NmCloHRac5GREREND0miRryfFMPojGJj22pUTqUGRNCYFNtEfa0DOq+4+mRRNOa+orsTBKFENi+tgK7Wtzo8waVDkd3dp12477fHcXVK0vxuWuWX/D5TpsZX/2zVbAYDXjg1TMZiJCIiIi0gkmihuw4MYDlpQ5ULciupicXsqmuCL3eIFoHA0qHoqjmLg/yLEbUFucpHco5bV9XCSmBZw9xNTGTWt1+3PPIm6hz5eG/P9ww4z2rxXYrPrihGk8c7ESvh4k9ERERzQyTRI0YDUXwRusQrlruUjqUWbustggAdF9yeqTLg/qK/KxrWjNZncuOi6ry8VRjl9Kh6IYvGMbHH9wPIYAf37lx2hLT8/nk1lrEJPDTXWfTFCERERFpDZNEjdh92o1wVOLKZepLEutceXA5rNhzRr9JYiQaw9EeL+ornUqHckHbGyrR1OXF6X6f0qFonpQSn/3VIZx1+3H/HeuxsGj2VQLVhbm4YU05Hnm9DZ4AO9MSERHRhTFJ1IhXTw4gz2LEhppCpUOZNSEELtP5vsQzbj+C4VjWdjad7Ma15TAI4KmDLDlNt5/tasX/He3Dl69fic11xXM+z11X1sE/HsXDe9tSGB0RERFpFZNEDZBSYseJAWxeUgyLSZ0v6WV1RXCPhnTbhTE5z04NSWKJw4YtS4rx9KEu3Sb1mXC4cwT//vwxXL2yFH85z2ZUqyqcuHKZCz/bdRbBMGeSEhER0fmpM6Ogt2kZGEXXyJgq9yMmTexLPDOkcCTKONLlQY7ZiFqXXelQZuTmhkp0DI3hzfZhpUPRJG8wjE8/ehAuuxXf+sBFEGL++1TvvqoO7tFx/PpAZwoiJCIiIi1jkqgBO04MAIAq9yMmLSrKRXm+Da/rtHlNc7cHqyqcMGZx05rJrl1dBpvZgGc4MzHlpJT40hNH0DUyhu/ctg4FuamZeXrp4kI0VBfgRzvPIBKNpeScREREpE1MEjXg1ZMDWFJiV93oi8mS+xJfP6O/fYmxmERztxerK7K/aU2S3WrClrpivHJiQHevV7o9tq8Dzx3uwefesyyle4yFELj7qjq0DwXwfFNvys5LRERE2sMkUeUC4xHsPTOEq1S8ipi0qa4Ig/5xnOzT177ErpExBMajWF6mniQRAK5aUYL2oQDOuP1Kh6IZx3q8+NqzzbhiaTHu2lqX8vNfs7IUda483L+jBbEYk3siIiKaHpNEldvTMojxaAxXLS9ROpR5e2teolvhSDKrdTCeZC0uzlM4ktlJ3ph45Xi/wpFox33PHoXDZsa3P9SQlnmZBoPAX29bgmM9XrzYzNVEIiIiml7Gk0QhxFIhRFAI8XDi71cJIWJCiNFJH38+6fmFQognhRB+IUSbEOL2Kee7PfF5vxDiKSGE+mZAzMOOEwPIMRuxcfECpUOZt+rCXFQtyNHdvMRWtzqTxOrCXCwtsU/siaX5cY+GsPfsIG6/pBrFdmvarrO9oRJ1rjx8+6WTiHI1kYiIiKahxEri9wC8MeVz3VJK+6SPX0x5/jiAUgB3APi+EKIeABL//SGAjyYeDwC4P91fQLaQUmLHyX5sriuC1WRUOpyUuKy2CHvPDumqFO6M248csxGlzvQlBuly1XIX9p0dgj8UUToU1XvpaB9iMt4UKJ2MBoG/v3oZTvaN4rkjPWm9FhEREalTRpNEIcSHAYwAeHmGz88DcCuAr0opR6WUrwF4BvGkEIgnjc9KKXdKKUcBfBXA+4QQjtRHn33Ouv3oGFL36IupLqsrwkggjGO9XqVDyZhWtx81xXkpGXOQaduWl2A8GsNunXalTaUXmntRXZiDVeXp35t6w5pyLC914L9fOslOp0RERPQOGUsShRBOAPcB+Ow0D5cIIfqEEGeFEN9OJIcAsAxAREp5ctJzDwGoT/y5PvF3AICUsgXxVcdlKf8CslCyzE8L+xGTLqtL7kvUT9LROhjA4mJ1dqbdUFOIPIsRr5zgvsT58AbD2HXajffWl2XkZoHBIPCZa5bizIAfT3OMCREREU2RyZXEfwHwEynl1EnOxwE0ACgH8C4AFwP4r8RjdgBTl5Q8AByTHvec5/EJQohPCiH2CyH2DwxoYw/VjpMDqHXlobpQnQnGdMrzc1BTlIvXdbIvMRyNoX0ogJoide1HTLKYDLh8aTF2HO/nKIx5eOV4P8JRifemudR0smvry1Bf4cR3/ngKYa4mEhER0SQZSRKFEA0Argbw7amPSSl7pZRHpZQxKeVZAP8P8RJTABgFMLX2ygnAN8PHJ1/nASnlBinlBpdL/eWZwXAUe88M4koNjL6Y6rK6+L5EPTTV6BweQzQmVde0ZrJty0vQ7QnqbnRJKr3Q1AuXw4p11ZlrQCWEwGeuXoa2wQCeeHPqvTsiIiLSs0ytJF4FoAZAuxCiF8DnAdwqhHhzmufKSXGdBGASQiyd9PhaAM2JPzcn/g4AEELUArAmjtO0vWeHEIpoY/TFVJtqi+ALRtDcPXWRWHvU2tl0suS/QZaczs3YeBQ7Tgzg2vrStIy9OJ93ryzB2qp8fOfl0xiPcDWRiIiI4jKVJD4AoA7xstIGAD8A8ByAa4UQ24QQi0RcNYBvAHgaAKSUfgBPALhPCJEnhNgCYDuAhxLnfQTAjUKIKxL7GO8D8ISU8h0riVpzsH0YQgAXL1L/6IupLqoqAACc0sHK1BkNJIll+TasLHdyXuIc7Tw1gLFwFO+tL8/4tYUQ+Mw1y9A1MobH93dk/PpERESUnTKSJEopA4my0l4pZS/iZaJBKeUAgHUAdgPwJ/57BMDfTjr8HgA5APoBPAbgbillc+K8zQDuQjxZ7Ed8L+I9mfialHa404OlJXbYrSalQ0m5YrsFADDoDykcSfq1uv1w2EwozLMoHcq8bFvuwv62YXiDYaVDUZ0Xm3qRn2PGpbXKjHi9cpkLGxYtwHdePgXPGF8/IiIiUmZOIqSU90opP5L4839JKSullLlSymop5d9OXgmUUg5JKW+WUuZJKRdKKR+dcq5HE5/Pk1Jul1IOZfrryTQpJQ51jGBtYsVNa+xWE6wmA9yj40qHknatg34sVun4i8m2rShBNCax65Rb6VBUZTwSw0vH+nD1ylKYjYr8OIYQAvfeVI8h/zi+8fwxRWIgIiKi7KLMuxKal87hMQz6x3FRtTaTRCEEiu1WuH3aX0k8M+BXdalp0rrqAjhtJu5LnKXXzwzCG4xktKvpdFZX5uPjly/GY/s6dDV+hoiIiKbHJFGFDnWOAAAaNLqSCMRLTgdGtZ0kBsNRdHvGVDv+YjKT0YArlrnwyokBjsKYhReae5FrMeKKpcVKh4K/v3oZFhbm4stPHkEwHFU6HCIiIlIQk0QVOtzpgcVkwPKyd4yD1IxiuxWDGi83bR8KQEp1N62ZbNvyEgz4QmjunjralKYTjUn8obkP25aXwGY2Kh0OcixG/Pv71uCs24/vvHxK6XCIiIhIQUwSVaixYwSryp2wmLT78hXbrXBrfCXxrAY6m06WnNn5R3Y5nZE324fhHg3hWoVLTSfbsqQYH7i4Cj/ceQZHmewTERHplvZaY2pcJBrDkU4PPrSxWulQ0qrYYcGgfxyxmMz47LhMSc5IrNFIkuhyWLGpthC/3NeOu6+qU6wRi1q80NQLi9GAbctdSofyNv94w0q8cqIf//DEYTxx92aY+DoSERGd15mBUfzxeD9CkRhCkRjC0RjGIzFYTAasKHNgVbkTi4vzVPU7lUmiypweGMVYOIq11flKh5JWRXlWRGMSnrEwFqh8PMS5nHX7UZhnQX6OWelQUuYTV9Tir36xH78/0oPtDZVKh5PVdp1249LaQjhs2fX6F+RacO9N9fj0owfxs12t+MTWWqVDIiIiykrjkRh+8GoL/vePpzEejU183mI0wGIyIBSJIhyN92qwJraKbawpxKe3Lcn697dMElXmcIcHADQ7/iKp2GEFALhHQ1n/TTRXZ93a6Gw62bblJahz5eGHr57BTWsrVD/aI11GQxGc6PPh2vrsKTWd7IY15fjVsk78cGcLPn7FYr6OREREUxxoG8I//PYITvWP4sa1FfjSdStQZLfAYjRM/N4MR2NoGRjFsR4vjnZ7cbTHi1/sbsVTB7vwTzeuyur3SupZ8yQAQGPnCBw2kyY6Yp5PsT2eGGq5w2nroF9zr6PBIPDJrbU42uPFrtMcpXAuhztHICXQsDA7b/YIIXDd6jK4R8cn9s4SERFR/EbvV546glu/vweB8Sh+9rGN+O5t61BRkAOryfi2pM9sNGBFmRO3rKvCP96wCo98fBOe/ZvLUVWYi7/7ZSM+9rM30DEUUPCrOTcmiSpzqGMEa6sKNLtPL6nYnlxJ1GaHU38ogj5vCIuLc5UOJeW2N1Si2G7FA386o3QoWauxI/vH2GysWQAA2N86rHAkRERE2ePeZ5rx6N52/OWWxfjDZ7Zi24qSWR2/styJJ+7ejH++cRXeaB3Ce769Ez/fdTZN0c4dk0QVCYajON7r0/x+ROCtJHFQoyuJrYPJzqZ2hSNJPZvZiL/YUoOdJwdwrIcdMqfT2D6CmqLcrC6lrnPZsSDXjP1tQ0qHQkRElBU6hwN46mAXPrZ5Mf7pxlXIs85t557RIPAXWxbj/z57JTbVFuLeZ4/iV290pDja+WGSqCLN3V5EYxIXZfHqQ6oU5JhhNAjNjsFodcdLC2o0uJIIAHdcuhC5FiN+xNXEd5BS4mDHCNYtXKB0KMnIF7IAACAASURBVOclhMDFixZwJZGIiCjhRzvPQAjgE1sXp+R8lQU5+NGdG3DF0mJ85akmHGzPnt+5TBJV5FCyRK1a+0miwSBQmGeB26fNctOz7lEA0NyexKSCXAs+uKEazzR2o8czpnQ4WaXbE8SAL6SK7+MNNYU44/Zr9mYNERHRTLlHQ/jlGx24ZV0lyvNzUnZek9GA7962DmX5Ntz18AH0e4MpO/d8MElUkUOdIyhz2lDqtCkdSkYU260Y9GvzzelZdwClTuucyxTU4K8uXwwJ4Oe7WpUOJas0tqvnZk9yX+KBtuy5s0lERKSEn+06i/FoDJ+6si7l5y7IteCBOy+GdyyCux4+gFAkmvJrzBaTRBU53OnRxX7EpGK7BQMabVyjxc6mU1UX5uL6NeV4dG87fMGw0uFkjYPtw7CYDFhZ7lQ6lAtaXZkPi8mA/a3cl0hERPrlC4bx4J42XLe6DHWu9PSTWFHmxH9+cC3ebB/Bvc8cTcs1ZoNJokqMBOKt6PWwHzGp2G6F26fVlUQ/al3aThIB4JNX1MIXiuDxLNuMraTGjhGsrnDCYsr+H79WkxFrq/LxBvclEhGRjj38ejt8wQjuuWpJWq9z/Zpy/PW2Ojy2rx2P7G1L67UuJPvfpRCA+CoioI4StVQptlsw6A9BSql0KCnlGQtjyD+u+ZVEAFhTlY/lpQ7sOu1WOpSsEI7GcKTLg4bq7G5aM9mGmkI0dXkwNq586QsREVGmBcNR/OS1s7hiaTFWV6a/ou+z1yzHtuUu3PtMM9oGlZtVzCRRJZJNa9ZU6anc1IpgOAa/xt6ctiaGk9cUaz9JBID6CieOchQGAOBErw+hSAwNC9Vzs2djzQJEYhKHOkeUDoWIiCjjfn2gE+7REO6+KvV7EadjNAj8x60XwWQw4JsvnMjINafDJFElDnV6UOfKg9NmVjqUjEnOStRayenZRJJYq5MkcWW5E33ekGZnXs5GsrX1OhVVBKxPjOrgvkQiItKbSDSGB3a2oKG6AJfVFmXsuiVOGz51ZS2eO9KjWPM4JokqIKVEY8cI1upoPyIAFNnjg8a11n7/rNsPIeKNXfRgVUW8QcuxHp/CkSjvYMcIiu0WVC1IXevsdCvItWBZqZ37EomISHd+d7gHHUNjuOeqOgghMnrtT26tRYnDin997qgiW6+YJKpAjycI92gIa1W0+pAKEyuJGutwetbtR0V+Dmxmo9KhZESyi+cxlpyisWMEDdUFGf9FM18bagrxZvswojFt7Q8mIiI6l3A0hv9+6SRWlDlw9crSjF8/12LC59+zHAfbR/D7I70Zvz6TRBVINq25SEf7EQHA5UgmidpaSWwd1Edn06TCPAvKnDbdJ4meQBhnBvxYt1A9TWuSNtYsgC8Ywck+rgYTEZE+/Gp/B1oHA/jCtcthMChzc/fWi6uwosyB/3jheMZnJzJJVIFTiTdmy0odCkeSWYV52is3lVLirFv7MxKnWlnu0H3zmsZE4xc1dijesKgQAPclEhGRPoyNR/E/L53ChkUL8K4VJYrFYTQIfPn6lWgfCuChPZkdicEkUQVO9o+iakEO8qwmpUPJKLPRgIJcMwY1VG46HAjDF4xgUZE+9iMmrSx34nT/aMbvgmWTxvYRCKHOioCqBTkodVqxX6HN80RERJn0892t6PeF8MXrVii+RWTrMhe2LnPhu388jZFA5t4TM0lUgVN9PiwtsSsdhiKK7VZNrSR2DAUAAAt10rQmaVWFE5GYxKm+UaVDUUxjxzCWltjhUGGHYiEENtQUYj+b1xARkcZ5AmF8f8dpvGtFCTbWFCodDgDgy9evgC8Yxnf/eDpj12SSmOUi0RjODPh1V2qaVJRn0VaSOBxPEvXS2TRJ781rkh2K1VhqmrRx0QJ0jYyhe2RM6VCIiIjS5vuvtsAXiuAL1y5XOpQJK8qc+OCGavxidyt2t7gzck0miVmufSiA8WgMS/S6kuiwaqq7afuQPpPEmqI85JiNuh2D0TYYwHAgjIZq9TWtSdqQuJvKklMiItKqXk8QP9t1Fjc3VE7c4M4WX7p+JRYX5+Guhw7gdH/6K7OYJGa5U4l/BEt1upLo0ly56RgW5Jph19n+UqNBYHmZA0d7PEqHoojGDvU2rUlaUeZAnsXI5jVERKRZ3/njKcSkxGevWaZ0KO+Qn2PGTz+2ERaTAX/x830YTPP7YyaJWS7Z2VS3K4l2C3zBCIJhbTQ86RwO6G4VMWlluRPHenyKDIRVWmPHCHItRiwrVe/3sclowPpFC7DrtBsxzkskIiKNOTMwisff6MAdly7K2vdq1YW5+PGfb0S/N4RPPLg/re+PmSRmuVP9o6gsyNHdylNSkT0+K3HQr42S046hAKoXZOcPnnRbVeGEZyyMbk9Q6VAyrrFjBKsr82EyqvtH7vaGSrQM+PHs4W6lQyEiIkqpH/3pLCxGA/562xKlQzmvhuoC/PeHGnCwYwSf+/WhtN24Vfc7Fh042TeKpSpefZiv4mSSqIGS02hMomtkDFWFOUqHoohV5fGS6WPd+mpeE4nGcKzHizWV6ht9MdX71lWivsKJ/3j+uGZW94mIiCLRGF5s7sU1q0rhcliVDueCrltTji9dtwLPHe7Bt/5wIi3XYJKYxaIxiZaBUd2OvwDi5aYANLEvsc8bRDgqdbuSuLzMCSH01+G0ZcCPUCSG1ZXZtQF+LgwGga/csArdniB+8tpZpcMhIiJKiX2tQxjyj+O61WVKhzJjn7iiFu+/uArff7UFQ2mouGOSmMXahwIYj8R027QGeGsl0e1Tf7lph047mybZrSYsKszFUZ0lic3d8WY9qyvUv5IIAJfVFeE9q0px/yun0e/TX+kwERFpz/NHemEzG3DlcpfSocyYEAI3N1RCyvTcgGeSmMWSTWv0vZIYTxIHNLCS2DEcny9XvUCf5aZAfF+i3lYSm7q8sJkNqHVp5/v4S9evxHg0hv/6w0mlQyEiIpqXWEziheZebFteglyLunqArExu5WGSqC96H38BADkWI/IsRgxqYFZix1AAQgCVOk4SV5Y50ToYwGgoonQoGdPU7cGqcieMBqF0KCmzuDgPd15Wg8f3d+CozvaYEhGRthxoH8aAL4T3qqjUNKnIbkWJw5qWKi0miVnsVJ8PFfk23XY2TSrSyKzEjuEASh02WE1GpUNRTHIw7YlefSQWsZjE0W4vVmugac1Uf/uupcjPMeNfnzuqy7EmRESkDc8f6YXFZMC7VpQoHcqcrKpwpuWGLZPELHaqfxRLdLyKmFRst2giSewcGkO1TjubJq2qiCeJR3t8CkeSGW1D8VVTrexHnCw/14y/f/dS7G4ZxMvH+pUOh4iIaNaklHihqQdblxbDYTMrHc6crCx3omVgFOORWErPyyQxS0VjEqf7R7FMx/sRk4rtVm2Umw7rd0ZiUnm+Dfk5Zt2UKDZ1xZvW1Gugs+l07ti0CLWuvLS13yYiIkqnQ50edHuCeO/qcqVDmbNV5U6EoxKn+lN7A55JYpbqHA4gFInpekZiUrFD/eWmoUgUvd4gqnTa2TRJCIFV5fppXtPU7YHZKLC0RJsVAWajAe+/uArHe30YCaj/Rg4REenL8009MBkErllZqnQoc5bcynMsxVVaTBKz1Kk+Nq1JKs6zYCgwjkg0tcvomdQ9EoSU+u5smrSy3InjvV5EY9rfx3a024vlZQ5YTNr9Ubu2qgAAcLjTo3AkREREMyelxPNHerF5STHyc9VZagrEm8nZzIaUV2lp952Lyp1MLBkvYbkpih1WSAkMqXilQu8zEidbWe5AMBxD66Bf6VDSSkqJpi6PJvcjTpZsynO4c0ThSIiIiGbuaI8X7UMBXK/CrqaTGQ0Cy8tSX6XFJDFLne4bRXm+DU6VbqJNpeSsRDXvS+wYZpKYlGxeo/WS025PEMOBMOo12Nl0svwcM2pdeWjs4EoiERGpxwtNvTAI4JpV6i01TVpV7sCxXm9Ku40zScxSJ/t9XEVMKMqzAICq9yV2DI3BbBQoc9qUDkVxS0rsMBmE5pvXJJvWrK7QZtOaydZWFeBQ5whHYRARkWr8/kgPNtUWoSixGKFmq8qdGAmE0eMJpuycTBKzUCzZ2ZT7EQHEy00BlSeJwwFUFORoaqD6XFlNRiwszEVbogRXq5q7PDAaxMSGci1bW5WPAV8Ivd7U/XIiIiJKl1N9PrQM+HGdyktNk95qXpO6G/BMErNQ5/AYguEYlnIlEYA2yk07hzj+YrISpxX9Gk8omrq9WOKyw2Y2Kh1K2l1UHW9ec4glp0REpAIvNPVCCODaem0kiSsSSWIqq7SYJGah5JwTjr+Ic9pMsBgNGFD1SuIYqgvZ2TSp1GlDn1e9r+dMNHV5NDsfcapV5U6YDAKH2LyGiIhUYF/rEFaWOVGikW1AdqsJi4pycayXSaKmneqPj79YotHZarMlhECR3QK3T50rif5QBEP+cTatmaTUaUO/L6jZPWz9viD6fSHNdzZNspmNWFHuYIdTIiLKerGYRGPHCBoWFigdSkqtKndyJVHrTvb5UOq0Ij+HnU2Tiu1W1e5JnOhsynLTCSUOK4LhGLzBiNKhpEVz4od0vQ6a1iStrSrA4Q4PYjqYf0lEROp1xu2HLxhBQ7W2ksSV5U60DQXgD6XmvRWTxCzEpjXvVGy3YNCv0iRxaAwAx19Mlizv0Oq+xOZEZ9NVOksSfaEIzmp8/iUREalbY0e86mWdBpNEKYHjvb6UnI9JYpaJxSRO9Y1y/MUURXarastNO4aSK4nck5hUmuhYq9V9iU1dXiwuzoNDR3NO1yZ+2bLklIiIslljxzAcVhPqXNp6r528MX00RR1OmSRmma6RMYyFo1xJnKLYbsWgP6TKPWwdwwHkWowoTMx7pPieRCC+d0+Lmro9uio1BeLzL3MtRnY4JSKirNbYMYKLqvNh0NhYsop8G5w2U8rGYDBJzDKnJ5rWaOvuxnwV2y0IRyW8Y+rbw9YxNIbqBbkQQls/jOajxKndlcSRwDg6h8ewulIfTWuSjAaB1RX57HBKRERZKxiO4niPT3P7EYF4o8dVFalrXsMkMcu0J0oTa4ryFI4kuyRnJapxDEbncIDjL6bItZjgsJrQp8E9icmmNXrpbDrZ2up8NHd7MR6JKR0KERHROzR1eRCJSTRUL1A6lLRYWe7EiV4foiloIsckMct0DgdgNRlQbGdp4mTJJFFtHU6llOgYCqCKnU3focRp1WS5aXN3vNxSb+WmAHBRVQHGIzGc7EvNpnkiIqJUSjat0eJKIhAfgzEWjqItBU3kmCRmma6RMVQuyGFp4hTFjnjSrLYkcTgQhn88ys6m0yh12jRZbtrU5UVlQQ4W6HAPavKXbvKXMBERUTY52DGCyoIcuBIN9LRmZXnqmtcwScwyncNjXHWahiu5kuhTV1LBzqbnVuq0aXIl8WSfDyvK9Nl4qmpBDhbkmtnhlIiIslJj+wgaFmpzFREAlpbaYTKIlDSvYZKYZbqGx1BZwIRiqgW5FhgNQnV7EjuGE0kiVxLfocRhRZ9XnR1rzyUWk2gd9GNxsT73FAshsLa6gB1OiYgo6wz4QugaGdPcfMTJrCYjlpTYU9K8JuNJohBiqRAiKIR4eNLnbhdCtAkh/EKIp4QQhZMeKxRCPJl4rE0IcfuU853zWLUJjEcw6B9HFVed3sFgECi2WzCgupXEMQBMEqdT4rRhPBKDZyysdCgp0+sNIhiOYbFLn0kiEN+XeKrfB39IfZ2IiYhIu7S+HzFpZbkTx3rm3xtAiZXE7wF4I/kXIUQ9gB8C+CiAUgABAPdPef544rE7AHw/ccxMjlWV7pF4QsEkcXouh1V9SeJwAAtyzbBbTUqHknVKNTgGo9Ud3yi+WMfdiRuq8xGT8Q5yRERE2aKxYxgmg9D8iKrlZQ70eoPwBud3Ez6jSaIQ4sMARgC8POnTdwB4Vkq5U0o5CuCrAN4nhHAIIfIA3Argq1LKUSnlawCeQTwpPO+xmfqaUqljmEni+bjsVvWVmw4FuIp4DqVOGwBoal/i2UQ3sRqdlpsC8ZVEADjcySSRiIiyR2PHCFaUO2AzG5UOJa3K8+Pvr+a7sJKxJFEI4QRwH4DPTnmoHsCh5F+klC2IrxwuS3xEpJQnJz3/UOKYCx2rOl2JJLGygEnFdFS5kjgUQDUbEU2rxKG9lcSzA37YzAaUJRJgPSq2W1FZkINGNq8hIqIsEYtJHO7waL7UFHir2aNqkkQA/wLgJ1LKzimftwOYesvZA8CReGzqzsvkYxc69m2EEJ8UQuwXQuwfGBiYQ/jp1zk8BrNRTLx5prdzOaxwj44jloIBoZkQjUl0jYyhqpArw9MpccQTqT6vdlYSWwf9qCnKg8Gg7xE2a6vzcYQriURElCVaBkbhC0XQUL1A6VDSLjneQxVJohCiAcDVAL49zcOjAKZOnXYC8F3gsQsd+zZSygeklBuklBtcLtfsvoAM6RoZQ0VBju7fYJ5Lsd2KaExiODCudCgzMjgaQjgq2a32HHIsRjhtJvRrKEk8444niXq3qCgPPZ4x1dzQISIibTuok6Y1QOqSxEx107gKQA2A9sSQeDsAoxBiFYAXAKxNPlEIUQvACuAkgBgAkxBiqZTyVOIpawE0J/7cfJ5jVadzOMD9iOcx8Y9+NIQie/avtvYnvjmTK2b0TvFZidooN41EY+gYCuDa+jKlQ1FcqcOKcDR+Q0cN36tERKRtjR0jcNhMqNVBz4D8HDPMxvmPjctUuekDAOoANCQ+fgDgOQDXAngEwI1CiCsSjWruA/CElNInpfQDeALAfUKIPCHEFgDbATyUOO85j83Q15VSnJF4fqmqsc6UZEOWEiffJJ9LidOqmXLT7pEgwlGp686mScmmRL0aeW2JiEjdGttH0FBdoItqPSFEvNmjGspNpZQBKWVv8gPxMtGglHJAStkM4C7EE75+xPcT3jPp8HsA5CQeewzA3YljMINjVSMYjqLfF0IVm5ycU3Il0a2SDqf93uRKIpPEcyl12DTTuOaMexQAdD0jMak00VmtXyOvLRERqdfYeBQn+ny6KDVNSkWzR0WGt0kp753y90cBPHqO5w4BuPk85zrnsWrS44nfcedK4rmlqsY6U5JllC4miedU4rSh3xeElBKJUnTVSs5I5J7Et1YStbJKTERE6nWky4NoTOouSewemd/v4IzOSaRz6xwOAOCMxPOxW02wmQ0qShKDKMg1w2rS9jye+Sh1JveuzW/gazZoHQzAbjWh2G5ROhTFJUvDtbJKTERE6tXYMQxAH01rklyO+c8WZ5KYJToTMxKrOHj9nIQQqpqV2O8NTbxZpuklV5yS+zfV7Izbj8XFeapfEU0Fi8mAojwL+jTwuhIRkbod6vSgakGOrhqpuexWDI6GEJ1Hl3EmiVmia3gMRoNAKUsTz8tln/+dkUwZGA2xac0FJPdramHFqdXtR40OuqbNVInTpqnxJkREpE5Hu71YXZGvdBgZ5XJYEZPAkH/uY+OYJGaJzuEAyvNtMBn5kpyP2lYSOf7i/LSyd208EkPncACLi1gJkFTqtLK7KRERKcoXDOOs24/VlVPHqmtbKvp4MCPJEl0jHH8xE2pJEqWUGPCF2Nn0ApI/xNS+4tQ+FEBMsrPpZFrqXEtEROp0tNsLAKjX4UoigHlV3zFJzBKdw2McfzEDLrsNw4EwxiMxpUM5L89YGOPRGDubXoDNbERBrnmiE6xasbPpO5Xm2+AeDSESze7vVSIi0q7mZJKot5VEe7xSiyuJKjceiaHPG0QlO5teUDLpGvRnd1KRTHpKnCw3vZASh1X15aZnE0niYu5JnFDqtEJKwD069/0QRERE89HU7UGJw6q77T/FjnindSaJKtfrCSImOf5iJtQyKzE5RJzlphdW6lR/WeLZQT8W5JpRkMvxF0mlDm3sNyUiIvU62u1FfYW+VhEBINdigt1qYpKodp0jiRmJ3JN4QapJEhOt/5kkXliJQ/1dMNnZ9J200pSIiIjUKRiO4lT/KFZX6ms/YtJ8ZyUyScwCEzMSuSfxgtSTJLLcdKZKnVb0+0KIzWOWj9LOuv1YzP2Ib1OaGP/Sl+Xfq0REpE3He32IxqQuVxKBxNi4ecwrZpKYBbqGxyAEUJbPhOJCiu3zr7HOhH5vCLkWI+xWk9KhZL0ShxWRmMRwQJ1718bGo+jxBLkfcYoiuxVGg0CfhyuJRESUec3dHgD662yaNN+JAEwSs0Dn8BjKnDZYTHw5LsRqMiI/xzyv5fNM6PcFWWo6Q2+VJWb3a3ourYOJzqZMEt/GaBBw2dXflIiIiNSpqcuL/Byzbnt+MEnUgK6RAGckzoIaZiX2+0K666Q1V8mS3L55lEQoqZWdTc+p1GlluSkRESniaLcH9RVOCCGUDkURLocV3mAEwXB0TsczScwC8RmJTBJnKl5jnd1vPAd8IbicXEmcieTeNbU2rznLlcRzKnGqvykRERGpTzgaw7Fen26b1gDx98sA4J5j9R2TRIVFojH0ejgjcTZcDuuc/8FnSr+X5aYzlWxG1K/SctOzA364HFbuP51GqZPlpkRElHmn+0cxHonptmkNMP9mj0wSFdbnCyESk+xsOgvZXm7qD0XgH4+y3HSGrCYjFuSa1VtuOuhnqek5lDpsGA6EEYrMrdSFiIhoLpq7vQD027QGYJKoel0T4y+4kjhTLocV/vEo/KGI0qFMK/nNyJXEmSt12lTbuIbjL84t2ZRIravERESkTk1dHuSYjbq+iTuRJLLcVJ06hwMAwMY1szDfGut0e2tGIpPEmVLr3jVfMAz36Dj3I55D8nuAJadERJRJR7u9WFXhhNGgz6Y1AFCYZ4EQXElUreRKYgWTxBmb7/J5uvUnyiZdXEmcsVKHdSK5VpNWd/wmj57vVJ5PcvarWleJiYhIfWIxieZuD1breD8iAJiNBhTmWpgkqlXn8BhcDitsZqPSoahGsT3Lk0RvstyUexJnqsQZTxJjMal0KLNyxj0KgEniuZQ6kkkiVxKJiCgzWgf98I9Hdb0fMWk+fTyYJCqsa4TjL2ZrvjXW6dbvC8FsFFiQa1Y6FNUoddoQjUkM+seVDmVWkiuJi4rYeGo6BblmWIwG1TYlIiIi9ZloWlOp75VEIJEkck+iOnUOB7gfcZYK8ywwzKPGOt36fUG47FbdDm+dixKVrji1DvpRWZDDSoBzEELEV4lZbkpERBnS1O2B2SiwtMShdCiKm89scSaJCorFJLpHghx/MUtGg0DRPP7Rp9uALwSXk6Wms1GaaHDSr7IVp9ZBP1cRLyDeuVZdrysREanX0W4vlpc5YDExzUmWm0o5++08/L+noIHREMajMVSy3HTW5nNnJN36vSGOv5ilEpWOSujzBCeas9D0Sp1WJokAxiMx/Pvvj+GKb/4RX3riMHafdiOqsj24RJQddre48b77d+Hzvz6kdChZR0qJpi4PVnM/IoB4khiKxOCbw9g4UxrioRnq5IzEOZtPjXW69fuC2FCzQOkwVCU51kRNXTBjMYl+XwhlXDU+rxKHDTtPupUOQ1EdQwF8+rGDONQxgksWF+Lpxm48tq8DLocVN6wpx63rq7Cmim9oiOj8Tvf78I3nj+OlY/3IsxjxZvsIrl5ZiveuLlM6tKzR7QliOBBGvc47myZNngjgtM2uVwaTRAV1jcSTRO5JnD2Xw4qTfT6lw3iH8UgMw4EwO5vOksVkQFGeRVUNTtz+ECIxyZXECyjLt2E0FMFoKAK7VX+/cp4/0oP/99vDgATuv2M9rl9TjrHxKF450Y9nD3Xj0X3teHBPK35792asW8ibS0T0ToOjIXz7pZN4bF8Hcs1GfPG9K/DRyxbh/d/fjXufacaWJUVwzDIB0KrmLg8AoL6SN96At27CD/hCqHPZZ3XseX9jCyEeAnDBehgp5Z2zuioBiJeqAeCbzDlwOaxwj8ZHJhiyaFBqcnUzOUScZq7EaUO/isoS+zzx17qUK4nnNbHf1BuEfZa/oNQsFIni688dw4N72rC2ugD/e9s6VBfG96/mWIy4fk05rl9TjmH/ON77Pzvxlaea8MynL9f14GcieicpJT72szdwtMeLOy5diL9791IUJd74f+PWi3DL/bvwrRdP4GvbVyscaXZo6vbCIICVZVxJBOY3W/xCexJPA2hJfHgA3AzACKAzcex2ACOzvioBiHdyzDEb4dDh3fX5ctmtCEclPGNhpUN5m2SSwz2Js1fiiM9KVIvexGvNctPze2tWonpe21S4/5UWPLinDZ+4YjF+/anLJhLEqRbkWfDVP1uF5m4vHn69LcNRElG2e7N9BEe6PLj3pnrct331RIIIAA3VBbhz0yI8+HobDrYPKxhl9jjd78OiojzkWNh1HEhjkiil/FryA8AyADdIKe+QUn5ZSvkRADcAWD77kAkA+nwhlDo5KmEusnVWYjLJYbnp7KmtwclEkshKgPOaaEqkolLi+RqPxPDI3na8e0UJ/vGGVRfssHfDmnJcsbQY33rxhK7+PxHRhT2ytw12qwm3rKuc9vHPX7scpQ4bvvTEEYSjsQxHl33ahwJYeI6bcnqUn2OG2Sjm9H55Nt1NNwF4fcrn9gK4bNZXJQDxlcQSrkLMSTJJdGfZytNEkshy01krddow4AuppuNjnycIo0Gg2M7X+nyS5aZqugEwX8839cA9GsKdm2tm9HwhBL52Uz1CkRj+7blj6Q2OiFRjJDCO3x3uwc3rKs65p9thM+Nr2+txvNeHH//pbIYjzD7tg0wSJxNCzHkiwGySxIMA/k0IkZO4aA6ArwNonPVVCUC8NJGlanOTrSuJA94ghACK8ixKh6I6JU4bYjK+QV8Ner1BuOxW7iG7ALvVhFyLEb0edbyuqfDQnjbUFOXiiiXFMz6m1mXHXVfW4qnGbuxu0Xc3WCKK+82BToxHYrj9kkXnfd619WV4z6pS/M/LJ9E+AeO7GwAAIABJREFUGMhQdNnHEwjDG4xwfvEUyVmJszWbJPFjALYA8Agh+hDfo3g5ADatmQMpJfq8oYm77DQ786mxTqeB0RCK8qwwGTmCdLZKHeoag9HnDaKUpaYXJIRAqdOmqs6189Hc7cH+tmF8ZNOiWTfVumfbElQX5uCrTzVhPMKyMSI9k1Li0b3tWL+wAKtmMM7ha9vrYTIY8Fe/eAMH2vS5P7FtyA8A59wDrldpTxKllK1Sys0AlgC4CcASKeVmKWXrrK9K8IUiGAtH2RlxjhxWE6wmQ9Ylif3eEJvWzJHa9q71eoIo402eGSl1WlXVuXY+HtrThhyzER+4uHrWx9rMRtx302q0DPjx49fOpCE6IlKLPWcGccbtxx2Xnn8VMak8Pwffu2M9fMEIbv3+bnzxN4cx5B9Pc5TZpX0ovorKctO3m+ts8Vkvd0gp2wHsA9AphDAIIbhkMgcTXTCZJM6JEGLOd0bSqd8X4n7EOXpr71p2vabn0sty8RkrddpU87rOhycQxlONXbh5XQXyc+c2s2zbihJcW1+K77x8SjeJNRG90yN721GQa8YNF5XP+Jgrl7nw8ueuxKe21uK3b3biXf+5A7/c146YSvb6zxeTxOm57FYMjs6+58OMEzwhRIUQ4kkhxCCACIDwpA+apeQbplKuOs3ZXO+MpFO/LzgxuJRmp9huhRDqaHASGI/AF4yw3HSG4kliEFJq+43Krw90IBiO4aObauZ1ni9fvxLjkRh+9CeuJhLp0YAvhBebevH+9VWwmWc3yiHPasKXrl+J5/72CiwrceAfnjiCL/72cJoizS7tgwEU2y3I42i5t3E5rIhJzHpleTargD8EMA7g3QBGAawH8AyAu2Z1RQIQL1UDOIh7PubarSldojEJ9+g4VxLnyGw0oCjPqopy0+T3L1cSZ6bEYUUoEoN3LKJ0KGkTi0k89HobNtYsmNH+ofNZVJSH7Q2VePj1dt2VixER8Kv9HYjEJG67dOGcz7G8zIHHP7UJt1+6EE8e7NLFz5L2oQD3I05jrn08ZpMkbgbwl1LKRgBSSnkIwF8B+NysrkgAMNHEgQnF3GVbuemQfxzRmOSMxHkocVjRr4KyxIkZiUwSZyR5M0zLzWtePTWAtsEA7rysJiXnu+eqOgQjUfz0Nba0J9KTaEzisX3t2FxXhDqXfV7nEkLgo5sWIRKT+N3h7hRFmL3ahwJYxCTxHeY6EWA2SWIU8TJTABgRQrgA+AFMP92TzqvfG4LDZkKuhUvic+VyWDEUGM+a4bHJFTA2rpm7UqdVFYlEsiSW5aYzk0wSkyuwWvTg7la4HFZcW1+WkvMtLXXgutVl+MXuVnjGuKuDSC92nhpA5/DYjBvWXMjKcidWlDnwxJtdKTlfthqPxNA9Msb9iNNw2eO/g9O5krgXwPWJP78I4HEATwDYP6srEoBE+3yuQsyLy2GFnEONdbr0J775uDo8d2ppcJKc+cfv4Zl5qymRNpPEtkE/dpwcwO2XLITFlLpebn+9bQl8oQge3N2asnMSUXZ75PU2FNutuGZVacrO+b71lWjsGMGZgdGUnTPbdI+MISY5/mI6xY747O50JokfBfBq4s9/D+AVAE0Abp/VFQlAMklkMjEfyQYx2VJyOpBIblhuOnclThvcoyFEsmR1+Fz6vEHYrSbYuTl+Rkonxptkx/dqqv3ucA+kBG6fx/6h6dRX5OPdK0rwk11n4Q9pdz8nEcV1DAXw8vF+fHhjdUpvOG1vqIRBAE8d1O5qYrKz6aKiPIUjyT65lvj7lbQliVLKESnlUOLPY1LKf5FS/n/27jy8zbPKG//31m7ttmXZlvclq90szdq00JbSBei0tEBLYYBSBjoF5jcsA7zDDMsLww868w4wzFtm2AtlK2UoOwUKbWmzJ03TJI0d77skW7K1Wvv9/iHJMSGJJevZZJ3PdeW6Umt57lSW9JznnPucj3DOZ4pcK0G2uyllIUqz2o24YsmXm9ZRuemqOXPZYZ9CssOXQhd5imPQqmGr0q7ZTOLZmSBaaqpE+Ux/zyu6sRBN4nuHxwR/bkKIsnz30BhUjOHNe4W94FRvNeDqbgcef2FqzXaZHqPxF5e1mokAxYzA0DLG/jdjbIQxFmOMDef+W1f0Sisc5xzeEJWblqohtx9sOrAo80qyvKE4rAZN0e2qyXlLDU4UHky4g7Gl3z9SmHqrXvGv62r1uUPY2FBaR9NLubK1Gtd0O/DVP40glkyLcgxCiPwWE2n88OgEbulpQKOtSvDnv2N7Eyb8izg2Ni/4cyvBhD8KnUZFfSEuITsRoLjv4GJy2f8K4JUA7gewFdnRF68A8GBRRySYjyaRTHOakViieosBOo0K476o3EsBkG1G5KTAvyTn964pIzt8KZ4AXeQpVrnsNy1WLJnG8GwYmxosoh3jva/oxlw4jkePToh2DEKIvH72whQCi0m89SphGtZc6OaeBlRp1fjJ85OiPL/cxn1RtFRXQaVici9FkVYzEaCYIPENAG7jnP+Oc97POf8dgDsA3FXUEcn5zoh0klkSlYqhtcaIUV9E7qUAyJab0hWs0pRDJjGT4fCG4jT+okhOi0HRr+tqDXrDyHBgY6M4mUQA2NNRg13t1fjvZ4Yom0jIGsQ5x8MHRrGxwYLdHTWiHMOk1+CW3gb88sWZNfk5MuaP0n7EyxA7SLxUaE4he5HyM9Yo61S69lojxpSSSQzFKUgsUa1JB8YAr4KDiblIHKkMp3LTIjXY9PCG4khn1tZ+mLMzQQDARhEziYwxfODGDZgJxPC53/SJdhxCiDyOjs6jzx3CvfvawZh4p9V3bG9CKJbCH/u8oh1DDpxzTPijtB/xMuosegRjqaIuEBQTJD4G4BeMsZsZY5sYY7cA+Gnu56QI3qVMIgUUpWqtMWHcH5V9IzbnHLMhKjctlUatgsOsV3QXTA+Nv1iVBqsB6QyHr8iN80rX5w7BoFWJfgX7qq5a3LuvHQ8fGMWzA7OiHosQIq1vHxiFrUqL27eJO3r86m4HnBb9mpuZOB9NIhxP0fiLy8gnMYqp6CkmSPwwgCcBPATgOID/RHYMxoeKeA6C8/utqAtm6dpqjYgm0kV3bBJaMJZCPJWhTKIAlN7gJF8JQOWmxWnINWKYCSj3tV2NPncQG+otUEuwD+Z/vWoj1jnN+IfHTmIhquwOwISQwswEFvHEGTfu3tWCKp24je/UKobbt7nwdL9XMTOmhTCW23bURkHiJTXZs9/BUwuFN3u8bJDIGHtF/g+AawA8DeBdAP4K2QY2T+V+TorgCcZQY9JBr6EumKVqq81+IMhdcuqhEmLB1FuU3eBkKUikctOi5INqt4IvAKxGv4idTS9k0Krxhbu3wR9J4J8eP11QBUUmw/HQU4PY+///Afd89RA+95s+PHF6BjMK6QpNSKX7/uFxZDjHW/aK07DmQndsb0Yqw/HLF6clOZ4U8jMSW2spSLyUxlyQOLNQ+HfwSpOgv3GJn+e/mVju750FH5HAE6S9a0LJl3iN+aLY1S7OZu9CuAOUXRKK02rAyckFuZdxSZ5ADGoVg8NM7+Fi5INq9xrKJM6G4pgLJ7BBxP2IF+ptsuH9N67Hvz7RjxtOOHHnlc2XvO9CNIEP/Ogk/tjnxVWdtYgkUvjGc8NIprNf4V11JvzwXVdRVQshMomn0vjBkXHcsNEpWankZpcV6+vNeOK0G2+9ql2SY4ptIhcktlRTkHgpjfmxcUVkEi8bJHLOO0pbErkYmpEonCZ7FdQqhnGZO5x6qARRME6LHr5IAsl0Blp1MRXx0nAHY6gz6yUpL1xLak06aNVsTWUS+9y5pjWN0gWJAHD/y7vwdN8sPvGzM9jdUYPmi5wYvTi5gHd/73l4gjF86vYevGVvGxhjiCXTODsTxPGxeXzm12fxyMFRfOCmDZKunxCS9asXZzAXTuBt+9olPW6Py4YjI35JjymmMV8UTote9HLdcmbQqlFr0mG6iAu1K2USiQg8wRg2SVSetNbpNCq47AaMKqbclK7Il6reagDnwFw4LspA4VJ5gjHUU6lp0VQqBqfFsKYyiX0zIQCQrNw0T61i+Pe7tuJV//Es3vO953HH9iZUm3SoNelRbdLi+bF5fPqXZ1Fn0eOxv92HbS32pccatGpsb63G9tZqHBr24buHx/Hu67th0NLJFSFSymQ4vv7sCDrrTLim2yHpsV12A9zBGNIZviYueI5TZ9OCNNoNwmUSifDSmWwXTOpsKpz2WhPG/PIGie5gDHajlk60BJB/b3iCygwS3YEYOutoFtNqNNjWVpB41h1EvVWPGpNO8mO31Bjx2TuvwAcfO4mTv3jpL26/bkMdvnDXNlRfZm33Xd2BJ88exs9emMLdu1rFXC4h5AI/fn4SL80E8cW7t4k69uJimuxGpDMcnmAMLrvyvmeLNeGPYm9nrdzLUDyXraqo2eIUJEpsLhxHhlODEyG11hjxq1Mzsq7BHaDh6kLJl2IrtcOpOxjDvi76MlqNBpsBL00H5V6GYPpmpGtaczF/tdWFV1/RiIVoAvPRBPyRJPyRBNQqhhs2OqFaIUNwVVctNjZY8M3nRnHXzhbJT1QJqVTheAr/9tt+bG+14/ZtLsmP77Kf359W7kFiPJXGTDBGTWsK4LJX4eCQr+D7K2/DzxrnWZqRSAGFUNprTViIJhGIJmVbA+0zFU6+qZNXgUFiNJFCKJaictNVarBmM4lyzzUVQjKdwaA3LPl+xAupVQy1Zj26nRbs7qjBLb0NuHFz/YoBIgAwxnDfNR3o94Swf7DwEwdCSGm+/NQgZkNxfPzWzbJcnFnNOASlmpxfBOegctMCuOwGhOIpBGOFnS9TkCixfGt/KjcVTv7q0ZhfvuY17kCMXlOB1Jr1UDHAG1LeGAzqYluaRpsBi8k0gospuZdSstG5CBLpTNnvL79tqwsOsw7f3D8i91IIqQgT/ii+/twI7tjehO2t1bKswbWGgsSl8RcUJK4ov4Wn0DEYFCRKjDKJwpN7VmIqncFcmMpNhaJWMdRZ9IosN3XT+7ck9WtoVuJZd7ZpjZTjL8Rg0Krx5j1t+GOfF0OzYbmXQ8ia99nfnIWaMXz4Fvm6Cpv0GtiN2qKamCjVuI+CxEItLzMuBAWJEvMGY1CxbDt4Ioz8B8O4TM1r5sIJZDioBFFA9VbDUtZdSbxLlQD0Wq9Gfk7TWggS+2aC0KgYuurMci+lZH+9tw06tQoP7x+VeymErGmHhn349Sk3/vbaLtkbs7lsVZiaXwNBoj8Kg1ZF814LkM8gTwcUFiQyxr7LGJthjAUZY+cYY3+T+3k7Y4wzxsLL/nxs2eP0jLFv5h7nZox94ILnvYEx1scYizLGnmKMtUn1b1oNTzAOh1kPjQLnv5Uro04Dp0WP0Tl5yk2XsksWChyE4lR4JrGBLgisylImscAvKCXrc4fQ7TRDpyn/z/I6ix63bXPhx8cnsRBNyL0cQtakdIbj0798CS6bAe96eafcy0FTdRWmCyw7VLL8+AtqvLUyp8UAtYopstz0swDaOedWALcB+BfG2I5lt9s55+bcn08v+/knAawD0AbgegAfZozdAgCMMQeAnwD4GIAaAMcAPCr6v6QEHmpwIgo5x2As7VOjwEEwTqsBswrdk2jWa2DWU2Po1TgfJCrvtS1W30wQG8u81HS5+67uwGIyjR8enZB7KYSsST8+PoEz00F85FUbFTH0vcletWbKTanUtDBqFUODtfBZiZIFiZzzM5zz/JkBz/3pKuChbwPwac75POf8LICvAbg3d9udAM5wzh/jnMeQDSi3MsY2Crp4AXmCcQoSRdBaa8RYEbNfhET7TIVXbzHAF0kgkcrIvZQ/4wlSg6JS6DQqOMw6uIPlfWISiCYxHYhhY2N5N61ZbrPLiqs6a/HtA6NIppX1viOknKUzHF9+ehD//NPT2NlWjdu2Sj/y4mKa7FUIxVMILMrXGb5UnPNcJpFmFxeq0WZQXrkpADDGvswYiwLoAzAD4NfLbh5jjE0yxr6VyxCCMVYNoBHAyWX3OwmgJ/f3nuW3cc4jAIaW3b782O9ijB1jjB2bnZ0V8p9VFC+dZIqivdYITzCOxURa8mN7gjFoVIz2mQoo/x6ZDSsr4+QOxihjXKIGm2Ep+16u+tzZWY9rKZMIAO96eSdmAjE8cnBM7qUQsiaMzkVw11cO4l+f6MeNm+vxtbfuVExZ5NL+tDLOJs6FE1hMptFaU96zHqXUaC+8zFjSIJFz/m4AFgAvQ7ZMNA5gDsAuZMtJd+Ru/17uIfmOAIFlTxPI3Sd/+/LbLrx9+bG/yjnfyTnfWVdXV/o/ZhXiqTR8kQRlnETQWpu9iiRH8xp3MAanRV/QXDJSmPx7RGn7Ej0BKhcvVYPVgJmyDxKznU03raFMIgBct6EO166vwxd+fw7eUHm/RoTIiXOO7x4aw6v+41kMeEL4jzduw0NvuhLVCrqYnO90Wc7Na8Zzo8/yo9DIylz27IXaTGblecWS77jnnKc5588BaAbwAOc8zDk/xjlPcc49AN4L4CbGmAVAvh/38m9iK4BQ7u/hC2678HZFye+xokyi8NqXxmBIX3LqCcaos6nA8l3KvArqcJrJcHhDNOqkVA02g+KC/2L1uUOwG7VwrrFueowxfPK2HsRTGXzu131yL4eQssM5x9P9Xrzxq4fwzz89jR1t1fjt+1+O27c1KSaDmNdUXVynSyU6PyORyk0L5bJVIZHOwBdZuUmZnG3ZNLj4nsR8aKvinM8jW5a6ddntWwGcyf39zPLbGGOm3HOegQLlW/o76SRTcG25Dwg5ZiV6ghQ4CC2frVNSNmMuEkcqw6nctEQNVgPmo0nEktKXhgulz51tWqO0kz4hdDhMeNfLO/GTE1M4POyTezmElIV4Ko0fHZvALV98Fvd+6yhG5iL49Gt78Z37dss+6uJSHCY9dGoVpsq43HTcl117c7Uy/x8rUTFlxpIEiYwxJ2PsjYwxM2NMzRi7GcA9AP7AGNvDGNvAGFMxxmoBfAnA05zzfBnpdwD8M2OsOteQ5p0AHs7d9jiAXsbY6xhjBgAfB/Ai51yRl0C9NCpBNDajFnajFmN+GTKJVIIouFqTDmoVU1TGyROgGYlCaMidMCnptS1GJsPR7w5hY8PaKjVd7j3Xd6PJXoVP/PwMUtTEhpBL4pzj2wdGcc2DT+HDP34RjAH//oateO4jr8Bb9rYpehuKSsXgshvKutx0Yj6KeqseBq383WLLRX5e8UwBGWSpMokcwAMAJgHMA/g/AN7HOf85gE4ATyBbInoa2X2K9yx77CeQbUYzBuAZAP/GOX8CADjnswBeB+AzuefdA+CNEvx7VuV8F8y1VaKkFG01RskziZF4CqF4igIHgalULDcrUTnlpkszEum1Lkn+/1+57kucmI8imkhjU+PaalqzXJVOjY/duhl97hC+Q01sCLmodIbjYz87jU/8/AzWOc145B278Zu/fxlet6O5bOanusp8DIY7EFNsplap8pnEqQKa10gy7CsXzF17idt+AOAHl3lsHMB9uT8Xu/1JAIodebGcJxSHVs1QbVTOxuW1pLXWhJMTC5Ie8/xwdQr8hZYNEpUTSJx/rSlILEX+vaKk17YYZ2eyW97XciYRAG7uqV9qYnPr1kY4qQKGkCWxZBrv++ELeOKMG/df24mP3LxR0VnDS3HZq/DcwJzcy1g1dzCG7jrzynckS6qNWhi0KswopdyUZHmCMTgthrL8ICkH7bVGTC0sSjrji2YkisdpNSw1e1ICTyAGtYrBYaYLAqXIl5uWaybxnCcbJK6rX9snJtTEhpCLC0STeOs3juCJM2587NbN+MdXbSrb87omexU8oZjiZhIXyhOgsVTFYozBZasqqGERBYkS8gbjcFKpqWhaa4xIZ7ik9fUUJIqn3qq8TGKdWQ91mZ4MKIVZr4FZrynbWYmjvggabQYYdZIU4siqw2HCO1/egZ+cmMKgV5FNwwmR1ExgEXd95SBOTMzjS/dsxzuu6ZB7SSVpsleB8/Ks7AjTdp9VcxU4K5GCRAm5gzHazySidkeuw6mEsxLduWYm9LoKr96S7YIZTymjCyaNOhFOg81QtkHimC+KtgqayfWmPW0AgGfOlW9JGiFCWEyk8eavHcbUwiIefvtu3LbVJfeSSpbfnzZZhs1r8t8htN2neI02g6Ia1xDkTjIpmBBNW430sxI9wRgseg1M+rWfVZBaPuuulFmJnmAM9WtsLp5cGqyGpT2e5WbMF0F7beXM5GqyV6HDYcKBQQoSSWX7wpPnMDwXwVfesgNXdzvkXo4glmYllmHzGqrkWr1GexW8ofiKZcYUJEokmkghFEtRuamI6ix6VGnVknY4peySeJxLsxKVEiTGae+DQMo1kxiOpzAXTqCtgoJEALi6uxaHhn2S7vcmRElOTizg688O457drWsmQATOj0MoxyBxKZNIQWLRmuyGgsqMKUiUSD4bQjMSxcMYQ1utUdJMojsYo5EmIsm/V7wKyDjFkmkEFpN0xVIgDVYDZsPxspvBl/9saa+gclMAuLrLgUgiLXn3aEKUIJHK4MM/fhFOiwH/+OqyaKZfMINWDYdZj6lyDBKp4/iq5ceGrHRxgIJEiVBaXBrZIFG6TKI3GKfXVCT54FsJG+rzF3mcVG4qiAabAekMx1w4IfdSipL/bKm0TOJVXbVgDNg/6JN7KYRI7qGnBtHvCeEzd/TCatDKvRzBNdkNZRkkeoIxWAyaimgiJrT8XtSVuoxTkCgRT65kjrJO4mqrNWHcH0Umw0U/VibD4aFmRKKpNuqgUbGl946cPCG6yCOk/Hum3PYljuYyiZXUuAYA7EYdrmiyYT/tSyQVps8dxENPDeL2bS7csKle7uWIItvpsvyCRHeAzr9Wy2XPlRmv0LyGgkSJ5EvmnPQLLarWGiPiqczSSb2YfJEEUhlOpQ4iUakYnBa9IvauUSWAsPLvGSW8tsUYm4uizqKvyEZV+7oceH58HpF4Su6lECKJVDpbZmqr0uITf9Uj93JE02SvwtTCIjgX/+K6kDxBmpG4WkadBrYqLZWbKoUnGINBq4LVUHknF1LKdx2UouQ0Hzg4aZ+paDrqTBiek26P6aV4glQJIKTzQWJ5Xb0e9UUqbj9i3jXdDqQyHEdG/XIvhRBJfHP/CF6cDOCTt/WgxqSTezmicdmrEEtmMB9Nyr2UorhpYkBJXPYqzKwwK5GCRIl4cnvXGKNB3GLqrMsGiX0zQdGP5aFN06LrrjNjyBuW/QqnNxiDTqOCrWrt7UeRQ41RB51aBbdCxpsUKjsjsbL2I+btbK+GTqPC/gEqOSVrXybD8V9PD+G6DXW4dUuj3MsRVX4MxlQZzUpMpTOYDcWp3LQELtvKe1EpSJSIOxijzqYScNmr0FxdhYPD4jdYWOqsRR9Soul2mhGOp2Tfu+bJdbGlizzCUKkYnFZ9WWUSFxNpuIOxis0kGrRq7GyrxnO0L5FUgLPuIOajSdy21bXmP/ebck1Myql5zVw4gQwHjSArgcteRY1rlMJL8/Qkc3WXAweHfEiL3LzGE4hBxQCHee2Wocit22kBAAx6w7KuwxOM00UegTXaDLIH/8UY91dmZ9Plru52oM8dwly4vDLAhBTr4FD2QvNVXbUyr0R8+U6X5dS8hi7Sl67RbkBg8fIlxhQkSoBznjvJpP1MUtjXXYtgLIUz0wFRj+MJxuEw66FR09tILN1OMwBgwCNzkBiivQ9Cq7cayqpxzejSjMTKDhIB4MAQjcIga9vBIR86HaaleXJrWbVRiyqtuqwyifnvDgoSV89VwO82nd1KIBRPYTGZppNMieSv/Ik908tNnbVE5zDrYKvSYnBW3iDRG4zDSU1rBJXPJMq937RQY7kgsbVCy00B4IomGywGDe1LJGtaKp3B4RE/9lZAFhEAGGNw2Q1llUlc6jhuo+/l1cpnkC+HgkQJnB9/Qb/MUnBaDFhfb8aBIXFPZDzUWUt0jDGsc5plLTcNx1MIx1P0Wgus3mpALJlZsdxFKUZ9UdSYdBXdvEitYriqsxbPDc6VTXBfaYKxJE6Mz+OxYxP4/O/6MeEXv9P3WnNqKoBwPIV9FRIkAuU3K9EdjEGjYnCY6Lx6tRoLSHLQPAYJnG+fTyeZUtnX5cAPj44jnkpDr1GLcgx3MIad7dWiPDc5r9tpxu9e8sh2fO/SjET6MhJSvozLHYzBblT+vt4xXwRtFZxFzLtmnQO/e8mDcX/ldnpVmlgyjQ/9+EUcHvbBG/rz/aJP9c/ifx7YB52GcgKFypdT7+2snCCxuboKv5egK7xQPIEYnBY9VKq13VRITA02A1bqyUSfGhKgQdzS29dVi1gygxPjC6I8fyyZxkI0SfXwEuh2muGPJOCPJGQ5/tJFHmpcI6iGXJnQSt3VlGJ0LlrR+xHz8vsSqcupcjxycAy/ODmNvZ21+MgtG/G1t+7EHz94LR5605U4NRXAl/4wIPcSy8rBIR82NljgMFfOhUGXrQpz4QRiybTcSymIm5pBlkyrVsG5Qq8UChIlkD/JXOnFIMLZ01kLFQMOiHQi46XssGTyzWvkKjn1hvLl4vRaCyn/3vGUQZAYT6UxHVikTCKATocJDVYDDoi855sUJhhL4qGnB/GydQ586Z7teOC6Lty4uR6ddWa8ZksjXr+jGV9+ehDHx/xyL7UsxFNpHBvzV0RX0+XysxLLpeTUHYzRRXoBrNSYiYJECXiCMVj0Gpj0VN0rFVuVFlc027FfpC58bsoOS2apw6k3JMvxPVRuKgqnJVvqUg6ZxAn/Ijiv7M6meYwxXN3twP6hOWREHjNEVvaVZ4awEE3iI7dsvOjtn/irzXDZq/D+R08iHE9JvLry88L4AmLJDPZ1OeReiqTOj8FQ/ucxkL24SOdfpWtaoXkNBYkS8ARj1LRGBld31eLkxIIoX4z5wIG6m4rPZathi8JhAAAgAElEQVRClVYtWybRE4zDqFPDTBd5BKXTqFBr0i+9l5Qs39mUMolZV3fXYiGaRL9Hngs3JMsbjOEbz43gtq0u9DbZLnofi0GLL9y9DZPzUXzqF2ckXmH5OTDkg4oBuztq5F6KpJrKaFZiKJZEJJGm8y8BrNS8hs56JOChUQmy2NflwJefHsLRET+u3+gU9Llpn6l0VCqGbhk7nOa72LKVdniTojXaDGWRSRz1ZTtEUiYxq8eVDUj63SFsarTKvBp59LmDeNs3j8AX/vO90nqNCp9+bS/uvLJZ9DV88Q8DSKU5PnjT+sveb1d7DR64rgsPPTWEV2x04pbeRtHXVq4ODvnQ22SruC7G+SYmk2UQJC5dpKfzr5KtNAaDgkQJeIJx7Kmwq1JKsLO9GjqNCvsH5wQPEt2BGKq0algN9BaSQrfTjEPD8uyB8gbjtJ9YJPVWAybnld+if8wXgdWggd1YWSeOl9LhMEGjYjhXoZnExUQaf/f9E0hngPuv7fyz2w4O+fDhH7+IOoseL1tXJ9oahmfDePToBN68p7WgLrN/f8N6PHNuFv/4k1Mw6TXoddlQbVJ+V2EpLSbSODExj/uu6ZB7KZLTqlWot5THrER3gHpCCOWW3obL3k5nuCLjnMMbilHTCxkYtGrsaK0WZV+iOxhDvVVP2SWJdDvNePzEFMLxlORln55QDFub7ZIes1K47AYcHvGBc67o99KoL4p2h0nRa5SSTqNCu8OEARnnl8rp0796CQPeMB55x+6/CASDsSTu+u+DeOC7z+NH91+FzS5xMq3//rtz0GtU+LtXrCvo/jqNCl+8ezte+9B+vOUbRwBkM/mbGq3ocVlx77521FZQN8+LOTbmRzLNK24/Yl5TdXnMSnTTdh/BrJRJpD2JIpuPJpFMc2p6IZN9XbU4OxOELxxf+c5F8AbjdBVLQvnmNUMSn5RyznPlpvT+FUNrjRGhWArz0aTcS7ms7IxEKjVdbp3TjIEKzCT+5tQMvn94HPdf23nRTKHVoMW33r4LZr0Gb3/4iCgn3ScnFvCrUzP4m5d1oq6IKodupxnPfeR6PPKO3fjHV23Eno4aTM5H8dBTg/jgYyfBeWU3Ijow5INGxbCrQucfu+xVmCqDIJHKTaVDQaLIaO+avPblZnodGha2/beb9plK6nyHU2mDxGAshVgyQ+9fkXQ4soHXyFxE5pVcWjKdweT8ItpqqGnNcuvqLRjzR8tmrpoQphYW8ZH/eRFbm2344I0bLnm/RlsVvvX2XYjG07j3W0cQWBTuIgjnHA8+0Ycakw7vfFnxZZF2ow4vW1eH+6/twhffuB2/e/+1+OirN+Hp/ln84axXsHWWowNDPmxrscOoq8wiO5fdgJmFmOK7FrsDMVgNGlTp1HIvZc2jIFFk1D5fXlubbTDrNdg/JNy8RM45zeiRWFuNEVo1k7x5jTdIMxLFlA8SRxUcJE7NLyKd4dTZ9ALr683gXL75pVJLpTN43w9PIMOBL92zHTrN5U+fNjVa8d9v2YHh2Qj+9pHjiKeECaafHZjDgSEf3nt9NywGYfbIvm1fO7qdZnzqly9VVNC/XDCWxKnJBeyrsPmIyzXbq5BIZzAncOWV0OgivXQoSBRZfui600K/0HLQqFXY01GDA4PCBYmz4TgSKcouSUmjVqHDYZL8hNSTe//WU+MaUbTUGKFWMUVnEkdz4y/aHVRuutz6egsA+eaXSu0//ziIo6Pz+JfX9hZcenx1twP/+votODjsw+d/f67kNWQy2Sxic3UV3ry3teTny9OqVfjkX/Vg3B/F158dFux5y8mRYT8yHLiqQvcjAuf3pym95DTfcZyIj4JEkbmXMhF0kimXq7pqMeqLCvbBd3x0HgCwteXic6mIOLqdZgzNSh0kUrm4mLRqFZqrqzDiU26QOJYbf0GZxD/XXpvtcDrgWfuZxAl/FP/5xwHceWUTXru9qajH3nllM964qwVf+9MwXphYKGkdvzw1gzPTQXzgxvXQa4QttbtmnQOv6m3AQ08NlUXzEqEdHPZBr1Fhe2vlNilzLc1KVPZYIneAKrmkQkGiyDzBGKqNWsE/0EnhrlmXvTL4TP+sIM93eMSPKq0aVzRV7peJHLqdFoz5IpKWQ3lCdJFHbO21JkWXm475ojDq1Kir8M6PF9Jpstn9cxUQJD4/Po8MB975ss6V73wRH33NJtRbDfjQYydX/fmVSGXw77/rx8YGC27fVlygWqh/es0mcHB85tdnRXl+JTs45MPO9moYtJV7rtZUnc8kKncsUSpXDkvlptKgIFFkHuqCKbsN9RZ0OEz4+ckpQZ7v0LAPO9qqV9yTQoTV7TQjw8+X/0nBG4zDYtBUbCMDKXQ4skGiUjsr5jub0viLv7Su3lwR5aZnpoPQaVRLDbSKZTVo8dk7r8CAN4wv/WFgVc/xw6PjGPNF8ZFbNkKtEud3sbnaiAeu7cavXpwRdIuG0iXTGZzzhLClwkcdWQ1aWPQaRWcSZ8NxZDiNv5AKneWKzBui2mm5McZw+zYXDo/4MRMorYxmIZpAvyeEPR01Aq2OFKq7LnuCJuW+RNr7IL4OhwmRRBqzIWU2Sxj1RdBOpaYXtc5pwbg/isXE2m52cmoygE2NVmjVqz9lum6DE3ftbMZ/PzOEk0WWnUbiKXzpDwPY3VGD6zb85dgNId1/bSeaq6vwyV+cQTKdEfVYSjHujyKV4UvfMZWsqVrZYzDcARp/ISUKEkVGM9aU4bXbmsA58PMXpkt6nsMjfnAO7K3gDmhy6awzQcUg6R4oev+Kr13BYzDSGY4J/yLNSLyE9fUWcA7J9wpLiXOO09MB9LqsJT/XP71mM+osenzoxyeL6nb6jedGMBdO4H+9aqPoGW2DVo2P3boZ5zxh/OT5SVGPpRT5C49dq8wUryUuexWm5pUbJFKfAGlRkCiidIZjNkTlpkrQ7jBha4sdj58oreT08LAfeo0KW5qpaY3UDFo1WmqMGJTwhNQTjKOeOhOLqiMXgElZRlyomcAiEukMZRIvYX19fn7p2i05HfdHEYql0NtU+me+rSpbdnrOE8b//eNgQY/xheP46p+GcXNPPa5slWbI+02b69FoM2D/oE+S48ltKUiso4tBLrsB0yVWXIlpKZNI5aaSoCBRRL5c7TTNWFOGO7a50OcOod+9+hOawyM+XNlaTY2IZNJdZ8aQROWmnHN4QzF6/4rMZTdAq2YYmVNes4TznU3p5PFi2h0maNVsTTevOT0VBABcIUCQCACv2FiP113ZjC8/PYQ/nPWseP+HnhpCNJHCh27eIMjxC8EYw/ZWO05MzEt2TDkNzYbRYDUINneynDXZjViIJhGJp+ReykW5g3Fo1Qw1Rp3cS6kIFCSKiGasKcutW11Qqxh++sLqsomBxSRemgliTyftR5RLd70Zw7MRpCTYKzMfTSKZ5lRuKjKNWoXWGqMiO5yen5FImcSL0ebmlw541m4m8fR0AFo1w7p64UoRP37rZqxzmvGObx/DRx8/ddET8mAsiQef6MN3Do7iDTta0O20CHb8QmxvqcaEf1Gxe4WFNOQNo8tJF4KA7EU7AIodg+IJxuC0GKASqXkT+XMUJIqIaqeVxWHW45puB37+wjQymeI7KR7N70fspP2IcumuMyORzmBCgj0T9P6VTofDpMg9icOzERi0Kio5vox1TssazyQGsKHBImj1iM2oxU/fczXuf3knfnBkHK/6j2dxbNQPINtp85GDo7ju357Gfz09hNu2uvDRV28S7NiFys8LLHW2o9JxzjE0G6GmNTnNS2MwlBkkugMxKjWVEAWJInLTSabi3LG9CVMLizia+0IuxuERH3QaFba1VHabbDnlW9BL0eH0fJBImUSxtdeaMOqLrOrijZgGvGF0O8101foy1tWbMTG/Njuccs5xeiqAXpfwe9ANWjX+8dWb8Oi7rgIHx11fOYiPPn4KN3/xT/jYz85gfb0Zv3jvNfj83dtgM0pfBtnbZINGxXBifG2XnHqCcYTjqVWPN1lrXHZlB4meYIw6m0qIgkQReYMxMAY4zFQ7rRQ3bq5HlVaNn66iy+nhET+2tdgretiu3PJf5FI0yvDmysWdlEUSXbvDhHgqs3RhTSmGvGHKMKxgLXc4nVpYxHw0iR6B9iNezO6OGvzm71+Ou3e14PuHxwEAX3/rTvzgnXtxhYwN0gxaNTa7rDgxvrYzieeb1tD7HMh+32lUTJHlppxzuGkslaQqMkiMJaW54ukJxuEw66EpYbYSEZZJr8FNPfX49akZJFKF72sLxZI4PRWgUlOZWQxaNNoMOFdC86FC5TOJTsokiq4jNwZDSfsSI/EUphYWKcOwgnyH03NrcF+i0E1rLsWs1+Czd27BU/9wHX77vpfjlZvrRR91UYjtLXacnFxAWmEZfiHlL27Q+zxLrWJosBkwvaCsC3YAEIqnEE2k0WCj72SpVGT0MuANYz6SEP04nhClxZXotdubEFhM4ul+b8GPOTY6jwwH9nZQ0xq5XdlWnZtXKe6JiycUQ7VRS51sJZAPEocVFCSeP3mUtmFIuWmrXbsdTs9MB6BWMWxskOZ3oMNhglZBF5W3t1YjmkivyQsAeYPeMCx6DeqoweASpc5K9ARoC5fUlPNpJLHnJaiz9wTjtJ9JgV7W7UCtSVdUl9NDIz5o1QzbJZpTRS5tX1ctZgIx0RudZN+/9GUkhQarAXqNSlGZxHwZGmUYLk+rVqHTYV6THU5PTQWwzmmu2C0G+eY1a7nkdNAbRpfTrIjMrVI02asUuScxvx2Bki/SqcggkQE4NiZ+kOgN0ow1JdKoVbh1SyOePOtFMJYs6DGHh/3Y2mxHla4yTxaU5OouBwBg/5C4g57p/SsdlYotNa9RikFvGBoVQ1stjb9YSXe9Geck2CcspaWmNSKXmipZa40RNSbdmm5eMzQbpgtBF2iyV8EdjEkyaqoY7lwmkbqbSqcig0SDVo3jo+J+6CVSGfgiCWqdrlCv3d6ERCqDx59fOZsYiadwivYjKkZbrRFN9iocGJwT9TieYJxmnEqo3WFU1BiMAW9YceV/SrXeacHk/CKiCWUO4F4NbyiOuXACvS6r3EuRDWMM21vsa3YMRjCWhDcUp6Y1F3DZq5DOcHgVNiOTxlJJryK//Ux6DU5OLhTVuKRYs+Hsm4vKTZVpW4sduztq8J9/HED4IoOMlzs2No90hmNPJ+1HVALGGPZ11eLgsE+0kQnpDMdsmMpNpdThMGPcH1XM1eshL2UYCrW+3pztcOpVTpBfqlOTAQCQtcOoEmxrsWPAG0ZgsbCqm3JCJeUX15Sblai0DqfuYAx2o7Ziy7/lUJFBolGnRjyVwZnpgGjHcNMGW0VjjOGjr96EuXACX/3T8GXve3jYB42KYUcb7UdUin3dtViIJvHSTFCU5/dF4khnOF3kkVCHw4hkmiuiq148lcaoL0InjwVaV59t7LKWGpycng5AxYBNjZWbSQSwtA//xcm1l00coiDxoprs2fNWpe1LnFmgZpBSq8gg0aTTAACOi7gv0Uvt8xVvW4sdr9nSiK/9aXjp9bqYwyN+bGm2wZj7vSHy25fbl3hgSJyS06UZifSFJJn22myH0xEF7EscnYsiw+nksVDttUbo1Ko1tS/x9FQAXXXmiv/c39JiA2Nrs3nN4GwYOrUKLbnMGcly2bP/P5QWJE4HYktrI9KoyCBRo2ZoqakSNUik2uny8OGbNyCVyeALTw5c9PZxXxQvTi5gD+1HVJR6qwHdTjP2D4rTvIbev9JT0qxEKkMrjkatQmedCQNraAzG6algRTetybMatFjnNK/J5jVD3gjaHUaaZX0Bo06DaqNWceWmM4FFNFLTGklV7DtjZ1sNjo3NizZrzROKQ6NiqDHqRHl+Ioy2WhP+em8bHj06/hct3EfmIrjrKwdh1mvwhh3NMq2QXMq+rlocHfWLsrfYE6Q9xVKrs+hh0qkV0bxmwBsCY6CGFkXodpoxsEYyibOhONzBGHoquGnNcttbqnFiYkH02bRSo86ml6a0WYnRRAoL0SRlEiVWsUHilW3VmA3FMSnSm8ATjMFp0UOlotk7Svd3r1gHk06DB5/oW/rZoDeMu79yEMl0Bj9411500smi4uzrciCaSOOkCHtlPMEYGAMcZgoSpcIYQ7vDpIggcdAbRku1kRokFGF9vQUT/rXR4fR0rl/BFZRJBJCdl7gQTWLUF5V7KYKJp9IY80XoQtAlNNmrFLE/PC+/FpedMolSqtggcWeuCcmxMb8oz+8NxlFPafGyUGPS4YHru/DkWS8ODftwzhPCG796EBkO/PBde7Gxga4mK9FVnbVQMWC/CKMwvKEYak16Gn8gsXaHMmYlDlJn06Ktr8/+/8qX6pazM1PZIHEzZRIBnG9es5ZKTsd8tO/4clz2KkwtLComezwTyCZ0Gm2USZRSxZ4Bra+3wKLX4JhI8xI9wRjNSCwj913dgUabAR//2Wm88auHoFYxPHr/3qWufUR5bEYteptsODAk/L5ETzBOpaYy6Kg1YXJ+EUkZx2CkMxzDc9TZtFj5jMzwrPxBfqlOTQXQ6TDBYtDKvRRF6HaaYdZr1lTzmvzFDMokXlyTvQrheArBmDIqA2bymUQKEiVVsUGiWsWwrdUuWvMaTzBGJ5llxKBV44M3bcA5TxgGjQqPvusq+vIoA1d11eLE+LzgJW6jcxHa+yCDdocJ6QzHhF++srYJfxSJVIaCxCK11hqhYsCwAsqFS3V6KogeKjVdolYxbG2x4cTE2skk5oPEzjqTzCtRJqXNSpwOLIIxoN5G59VSqtggEcg2r+n3hBCMCTskdjGRRjCWovb5ZeaO7U34l9f24kd/exXaHfTFUQ6u7nIgmeY4KmBFgDcUw/BcZKkknUgn3+FUzn2J1Nl0dfQaNZqrjRieLe9y0/lIAlMLi+ilUtM/s72lGmdnQlhMpOVeiiCGZsNosldV/IiTS1kag6GQ5jUzCzE4zHroNbRPXEoVHSTuaKsG58LP/6H2+eVJrWL4671taK42yr0UUqBd7TXQqVU4IOC+xCMj2X3KNPZEekoIEgcoSFy1zjpT2Zeb5l//jY0UJC63vdWOdIbjVG6/Zrkb9IbRRe/xS8o3iJkOKCNInA4swkV9PiRX0UHitlY7VAyCl5yeDxIpLU6ImKp0amxvtQu6L/HQsA8mnZoyCTKoNmphNWhkbV4z6A2j3qqHlfajFa3TYcbIXASZjDKaXaxG/nevvZYuFi63rcUOAHhhDZScZjI8O/6CtpRcksOkh06jwpRSyk0XFqlpjQwkCxIZY99ljM0wxoKMsXOMsb9ZdtsNjLE+xliUMfYUY6xt2W16xtg3c49zM8Y+cMHzXvKxKzHrNdjUaMVxgTuczgQok0iIVPZ1OXB6OoCFaEKQ5zs07MfO9hoasCwDxhg6HCaMzsm3J3HQG6Is4ip11pmwmEzDHVRO6/xijfui0KgYmmhP8p+pNetRZ9FjwFPe5cRANisVS9K+48tRqRhcNoMiyk0555gJxKhPgAykPAv6LIB2zrkVwG0A/oUxtoMx5gDwEwAfA1AD4BiAR5c97pMA1gFoA3A9gA8zxm4BgAIeu6IdbdU4Mb6AlIDd9I6N+WHSqZdKpwgh4rm6uxacZzOApZoLxzHoDWMvlZrKpt1hkm1fG+ccQ7MRyjCsUr4JSDmXnI76ImiqrqKLRBfRVWfCUJnvOQWWdzalc7TLaaquUkTjmuBiCtFEmmYkykCyT0HO+RnOeTz/n7k/XQDuBHCGc/4Y5zyGbFC4lTG2MXfftwH4NOd8nnN+FsDXANybu22lx65oR1s1ook0+tyh0v6ByxwY9GFPZy3NWCNEAltb7DDp1Hh2oPR9iYeHs1UFeztrSn4usjqbG62YDsTgDUmfjXIHYwjHU+im0Ter0unIjcGYK99AYtwfRVstBQ8X01VnxtBsRDGz81aLmlMVxmWrUkS5aX4NVG4qPUmjGMbYlxljUQB9AGYA/BpAD4CT+ftwziMAhgD0MMaqATQuvz33957c3y/52ELXtLM9ezIo1L7EqYVFDM9FsK+LMhGESEGrVuH6jU788sUZxJKldd47NOyDUadGL7W/l00+i5sP2KWUL6WjTOLq1Fv1MOnU5Z1JnIugrYb2I15MV50ZgcUkfBFhSvvlMjQbQbVRi1oz9Y24HJe9Ct5QHImUfHNrAWAm1zynkTKJkpM0SOScvxuABcDLkC0TjQMwA7iwXVYgdz/zsv++8Das8Ng/wxh7F2PsGGPs2Ozs7NLPXTYDGqwGHBMoSNyf67J4zTqHIM9HCFnZm3a3IrCYxK9PzZT0PIdHfNjZXkNVADLqcVlh1msEKR8uFmUYSsMYQ0edqWxnJS5EEwjGUmijpjUXtRbKiQFgyBumOcgFaKquAufnmzHKZTrX58NFmUTJSX4mxDlPc86fA9AM4AEAYQAXthG0AgjlbsMFt+dvwwqPvfC4X+Wc7+Sc76yrq1v6OWMMO9qr8bxAQeKBwTk4zDpsoHIlQiRzVVctOhwmfP/w+KqfYy4cxzlPmEpNZaZRq7CzvRqHR6TPJA7OhmE3auEw6yQ/9lrR6TCX7azEUV+2YRKVm15cPrAq932Jw3MUJBYi37xpUubmNTMLi9CoGOoslPmVmpyXyzXI7kk8A2Br/oeMMVP+55zzeWTLUrcue9zW3GNwuccWs5BdbdWYWlgs+YOPc479Qz7s63KAMVbScxFCCscYwz27W3BsbB7nPKvbX7w0H7GDSsXltrezFoPeMGZD8ZXvLKBBT7YtPn1+r15nnQlTC4sll37LYSw3/oIyiRfXZK+CXqPCkLd8g8RwPIW5cAJtDnqNV5IPEuVuXjO9sIh6qwFqFX0uS02SIJEx5mSMvZExZmaMqRljNwO4B8AfADwOoJcx9jrGmAHAxwG8yDnvyz38OwD+mTFWnWtI804AD+duW+mxBXn1lkaoVQw/OjZR0r9zIHdSc003lZoSIrXX72iBTq1adTbx8LAPVVo1tjTTfkS57enIZnMPj0hbcjo4G6ZS0xJ11pnBOWSddbla47lMYivtSbwolYqhs85c1pnEpQsBNZQtXklDbni97EFiIEadTWUiVSaRI1taOglgHsD/AfA+zvnPOeezAF4H4DO52/YAeOOyx34C2WY0YwCeAfBvnPMnAKCAxxbEaTHgho1O/M/xSSRLGIXxXK674tW0H5EQydWYdLi5twH/8/wkFhPFZzGy8xGraT+iAvQ22WDSqSVtXuMLx+GPJChILFGno3z3rY36omiwGmDQquVeimJlx2CU32ubN75UUkwXAlZi0KrhMOtl73A6E1ikzqYykeRsiHM+yzm/lnNu55xbOedXcM6/tuz2JznnGznnVZzz6zjno8tui3PO78s9rp5z/vkLnvuSjy3G3btaMBdO4A9nvav9Z2L/4Bzaa400hJcQmbxpdytCsRR++eJ0UY/zRxLo94RoPqJCaNUq7GyvkbR5DTWtEUbHUpBYftmmcX+EgocVdNaZMTkfLctyYgAY8+eyxfQ6F6SpWt4xGJkMhzsQg4vOq2VBl8xzrl1fh3qrftUlp8l0BodH/LiaSk0Jkc3ezhp01pnw/SPFlZweyZU1UtMa5djTWYMBbxhzYWn2JQ7OUpAoBJNegwaroWwziRQkXl5XnQkZDozlMnLlZswXRbVRC6tBK/dSykJ7rVHWPahz4TiSaU7lpjKhIDFHo1bhDTta8HS/d2kmSzFenFxAOJ6i/YiEyIgxhjftbsWJ8QWcnQkW/LhDw35UadW4osku4upIMfJZ3SMSdTk9NRmA1aChNusC6CzDMRjRRAqzoTh1Nl1BuXc4HfdH0EqvccF6XTZMB2LwyzQbMz/+gspN5UFB4jJ37WxBhgM/PjZZ9GOfG/CBsWwrfkKIfF53ZTN0muIa2Bwa9mFHWzV0GvpIVIormmww6tSSlZweGfVjZ3sNVNRBr2SddSYMz4bBOZd7KQUbo71qBcnPSizXDqdjvijaqDFRwXpc2SlzZ6YvHEkujZlcqWujjTKJcqAzomVaa43Y11WLR49NIJMp7stt/9Acel022I00X4sQOVWbdHh1bwN+emIK0URqxfvPRxLoc4eo1FRhtGoVdrRVSxIkzoXjGJ6NYHcH/Q4IodNhRjCWgk+m7MNqLAWJ1PXysow6DZrsVWWZSUykMpheWEQ7XQgoWI8r2+379FThlTlCymcSaU+iPChIvMDdu1owOb+Ig0WcmETiKZwYn6f9iIQoxJv2tCEUT+EXJ1duYJMf2k5Na5Rnb2ctznnC8Im8L/Fo7ndgVzsFiULIZ5vKaV9ifjQCNTRZWTmWEwPA1MIiMhxUbloEm1GLlpoqnJYxk2jQqlBtpD2kcqAg8QI39zTAVqXFD48W3sDmyKgfyTTH1d10kkmIEuxqr8bGBgsefKJ/xSveh4Z9MGhV2NJM+xGVRqp9iUdG/TBoVbiiiWZkCqHTkd23Vk4dTsf82YYmtio6GV1JV50ZQ97yKicGls1IpAsBRelptOGlabkyiYtw2arAGG0DkAMFiRcwaNW4Y3sTfnvajfkCS2UODM5Bp1HRVWhCFIIxhv/66x1gAN7y9cOXbEZ1bNSPn74whV3tNbQfUYG2NNtQpRV/X+LRUT+2tdjpd0AgTdVV0GlUZZVtGvNFqGlNgbrqTIgk0vAEpek8LJRxf76kmILEYvQ2WTEyF0EolpT82NMLMTRSZ1PZ0DfiRdy9qwWJdAaPn5gq6P7PDfqws62aBvASoiAdDhO+fd9uhGIpvOUbR/7ios9PT0zhTV87jGqjDp+6vVemVZLLyc5LrF4qCRZDKJbES9NB7O6gShChqFUM7bXG8sok0viLgpVrh9MxXxRVWjXqLHq5l1JW8vsS5cgmzgQWqbOpjChIvIhNjVZsbbbh0aMTK5ZTzIXjODsTpP2IhChQb5MNX3vbToz7o2+OHqYAACAASURBVLj34aOIxFPgnOPzv+vH+x59Adtb7Xj83fuWBoAT5dnbWYs+d0i0FuzHx+aR4cBuqgQRVKfDXDaZxHxDE8owFabLWb5BYmuNkUoXi9TTlO9wKm2QmExn4A3FqWmNjChIvIQ372lDvyeEb+0fvez9fvJ8dlzGPhp9QYgi7e2sxUNvuhKnpwL42+8ex//3wxfwpT8O4g07mvHIO/ZQR2KF25PrOHpkRJyS06OjfqhVDNtbaU+qkDrrTBj3RZFMZ+Reyoom56PIcFC5aYGcFj3Mek1ZNSYC8jMS6UJAsZwWA5wWveTNa9yBGDgHXDT+QjYUJF7C63c046bN9fjMr8/iwNDcRe/zVL8Xn/tNH27Y6MS2FjrBIESpbtxcjwdftwXPDszhFyen8ZFbNuJfX7+F9qCVgS3Ndhi0KhwaFqfk9OjIPHpdVpj0GlGev1J11pmRynBM5PaBKdmYn2YkFoMxhq46U1llEjnnGPfTjMTV6nFZJS83ncmNv2ikTKJs6AzpElQqhs/fvQ2dDhPe873n/+KL7qXpIN77veexqdGKL92zncoXCFG41+9oxn+9+Up8577deOC6LnrPlgmdRoWdbTWiNK+Jp9J4YXKB5iOKIF/CXQ7ZprG5fNdLyiQWqjPX4bRceENxxJIZuhCwSr1NNgx4w4gl05IdM99wjjKJ8qEg8TLMeg2++tadSGU47n/kOBYT2TeHJxjDO759FBaDFt942y66Ak1ImXjVFY14+fo6uZdBinTt+jr0uUPocwt7JfvFyQASqQx1phZBV35W4pzyA4kxfxRGnRoOM5WeF6qrzoTpQAyReErupRRkdC4/B5MuBKxGj8uKdIajzx2S7JjTC5RJlBsFiSvocJjwpXu246w7iI/8z4uIxFO47+GjCC4m8c17d6GBrnAQQoioXr+jGXqNCt8+MCbo8+bnL1KQKDy7UYcak648Mom+KNpqTVRdUIR8h9ORMmlONEbjL0qS73B6RsJ9idMLi7AaNDBTIkY2FCQW4PoNTvzDTRvw85PTeNV/PIuzM0H83zddic0uq9xLI4SQNa/apMPt21z46YkpBKLCzeo6MuLHOqcZ1SbKIImh02EqkyAxQsFDkcqtw+m4Lwq1iqGpmrJSq9FcXQVblRanp6TblzgTWKTOpjKjILFA776uC6++ogHj/ij+9209uH6jU+4lEUJIxXjrVe1YTKbx2PEJQZ4vneF4fmye9iOKqLPOpPgxGOkMx4R/kfaqFamt1ggVA4bK4CIAkM0kuuwGaNV02rsajLFc8xopM4kxNFK1nqzo3VIgxhi+cPc2/Py9V+MtV7XLvRxCCKkovU027GyrxncOjiGdufz82kKcnQkiFE9RkCiizjoz5sJxBGPCZX+F5g7GkEhnqGlNkfQaNVpqjGWUSYygnV7jkvQ22XDWHZJsrM1MYJH2I8qMgsQi6DVqbGmmUReEECKHt+1rx7g/iqf7vSU/F+1HFF9nrsPpoIK7YJ7vbEqZxGJ1lVGH0zF/FK1UUlySHpcViVRGkvfzYiKN+WgSTRQkyoqCREIIIWXhlt4GOC16fPtg6Q1sjo760WSvoj0vItrUmN23L/V8tWLQjMTV66ozYWQugowAmX0xBRaTWIgm6TUu0fnmNeK/n6dz4y+o3FReFCQSQggpC1q1Cm/e04Y/nZstqcyNc46jo37soVJTUeWbXUhxUrlao74ItGqGRhtdLChWV50Z8VQGUwuLci/lssZ92QsBrTVUblqKDocJRp0ap6fE35c4kx9/Qe9LWVGQSAghpGzcs6cFWjXDIyVkE0fmIpgLJ7CLgkRR5ZtdSNk2v1jjvihaqo1Qq2j8RbHKpcPpmJ9KioWgVjFsapTm/ZzPJLrslEmUEwWJhBBCyobTYsBrrmjEj49PIrzKQd77B+cA0H5EKfS4rOiTsNlFsUZ9UQoeVik/K1HJe06B7BxMALQnUQC9Litemg6KXmKczyTSLHJ5UZBICCGkrLx1XzvC8RR+8vxk0Y89NRnA537Th94mK7rqqPxMbD0uGxKpjCKzTZxzjPsi1Nl0lWpMOjjMevS5Q3Iv5bLGfVE4zHqYaCh7yXpcNkQSaYz6xB19MrWQfc30GrWoxyGXR0EiIYSQsrK9xY4tzTZ8a/8oYsl0wY8b80Xw9oePwG7U4Rtv2wXGqMRQbL1N2eY1Ug7hLpQvkkAkkaZMYgl6m6yS7FErxZg/Qq+xQHpy72ex9xmfngpiQ4NZ1GOQlVGQSAghpKwwxvD+G9djZC6Cj//sNDhfufRpNhTHW795BOkMx3fesRv1VipjkkKHw4wqrVqR+xJHcuMvaH7e6vW6bBjwhou6WCO1cV8UbVRqKoh1Tgt0ahVOi/h+DsdT6HMHsaONtgPIjYJEQgghZef6DU689/pu/OjYJH5wZOKy9w3HU7jv4aPwBGP4xr27lvZSEfFlm11YFNnhNF8mub7BIvNKyldvkxXpDEe/QktO46k0ZoIxtFImURA6jQrrG8yiZo9PjM8jw4GdbdWiHYMUhoJEQgghZen9N67Hy9fX4RM/P40T4/MXvU8ilcED3z2Ol2aC+PKbr8SVrXTiIbUel02SZhfFOucOwaLXwEXNMVYtPztPzMxSKSb8i+CcOpsKaXd7LY6OziOaWF3jsJUcG52HigHbW+2iPD8pHAWJhBBCypJaxfClN25Dg82AB777PGZD8aXbOOd4qs+L2x/aj2cH5vDZO6/AKzbWy7jaytXjsiIcT2E8N7heKfo9IaxvsNDe1BLkZ2Eqcc8pAIznxl/QjEThvHKzE4lUBs8OzIny/MfH5rGhwQqLQSvK85PCUZBICCGkbNmNOvzXm3dgPprA3/3geaTSGRwb9ePurxzC2x8+ikg8hYfedCXu2tki91IrVm9TNtukpJJTzrMlkuvrqdS0FIwxXNFkU2zzmvz4C8okCmdXew2sBg2efMkj+HOn0hmcGJ+nUlOFoCCREEJIWettsuGzd16BQ8N+3PTFP+H1/30QI74IPv3aXjz5gWvxmi2Nci+xoq2rN0OjYooqSfSG4ggsJrGR9iOWrKfJin53CImU8mZhjvmiMOs1qDXp5F7KmqFVq3D9Rif+2OdFWuAS8j53CJFEGjvbKUhUAgoSCSGElL07r2zG31zTAV84gQ/fsgHPfOg6vGVvG3Qa+pqTm16jxrp6ZTWvyTdaoUxi6XpdNiTSGQx4lde8ZswXQWuNkUqKBfbKTfXwRRJ4YeLie8FX6/hY9vl2UCZREejbkxBCyJrwz7duxomP3Yh3X9cNo44GZytJr8uKM1OBgsaVSCEfJG6gTGLJlsqJFbgvccwfpVJTEVy7oQ4aFcPvX/IK+rzHxubRYDWgyV4l6POS1aEgkRBCyJqhUlHGQIl6XFb4Igl4gvGV7yyBfk8IdRY9aqgMsWRtNUaY9RpFlRMD2c7G474oOhzUtEZoVoMWeztr8eRZYfclHh/1Y0d7NWV+FYKCREIIIYSIqmepeY0yAol+dwgbqNRUECoVw2aXVXHNa0Z9EaQynEqKRfLKTU4MesMYmYsI8nzTC4uYDsSoaY2CUJBICCGEEFFtarSCMWV0OE1nOAa8ISo1FVCvy4aXZoKCNzIpxTkP7TsV0w2bsiOF/iBQNvFYbj/izrYaQZ6PlI6CREIIIYSIyqzXoKPWpIhs04Q/ilgyQ5lEAV3RbEUsmcHwbFjupSw55w5BxYDOOio3FUNLjREbGyz4vUCjMI6P+mHUqbGpkd6XSkFBIiGEEEJE19NkU0QmsS/f2ZQyiYLpdWXLiZW0L/GcJ4z2WhMMWrXcS1mzbtxcj6OjfsxHEiU/17GxeWxrsUOjptBEKeiVIIQQQojoelxWTC0sYiFa+gllKc6XIZplXcda0llnhkGrwqlJ+S8C5J3zhqjUVGSv3FSPDAee6i+ty2k4nsLZmSDtR1QYChIJIYQQIroelxWA/PsS+z0htNYYaUyKgNQqhs2NVsVkEmPJNEbnInQhQGRXNNngtOhL7nL6wvgCMhzY0U77EZWEgkRCCCGEiK7HpYwOp/1ualojht4mG16aDiKjgOY1w7MRZDiwjjKJolKpGG7YVI9n+mcRT6VX/TzHxvxgDNjeahdwdaRUFCQSQgghRHQ1Jh1cNoOsmcR4Ko2RuQg1rRFBr8uGcDyFMX9U7qVgwJstKaaLAeK7cbMTkUQah4b9q36O42Pz2FBvgdWgFXBlpFQUJBJCCCFEEptdNlk7nA7PRpDOcGpaI4Kepmw5sRI62Pa7Q9CoGNprqbOp2PZ1OVClVePJVXY5TWc4TowvYGc77UdUGgoSCSGEECKJ3iYrhuciiCZSshy/P9fZdCMFiYJbX2+BTq1SxL7Ec54wOutM0GnoNFdsBq0a12+sw09fmMJcOF704/vcQYTjKZqPqED07iGEEEKIJHpdNnAOnJqUJ5Do94SgVTN0OCjDJDStWoWNjRacmZK/w+k5T4j2I0roAzeux2IijQd/01f0Y4+PzQMAdlBnU8WhIJEQQgghktjdWQONiuGZc7OyHL/fHUJXnRlamsUmih6XDaenA+BcvuY1i4k0JuajWO+kIFEq3U4L3nFNBx47PrkU9BWCc45fn5pBg9WA5uoqEVdIVoM+JQkhhBAiCatBix1t1XiqX74gkWbniae3yYqFaBKT84uyrWHQGwbnwIYGGn8hpb+7YR0arAZ8/GenkS6ww+33j4zj0LAf73lFNxhjIq+QFIuCREIIIYRI5vqNTpydCcIdiEl63FAsiamFRep4KaJeBYw56fdk951Suam0zHoN/uk1m3BmOojvHx5b8f4T/ig+86uzuKbbgb/e0yrBCkmxKEgkhBBCiGSu3+AEADxzzivpcc95wgBA4y9EtKHBAq2a4fnxBdnWMOAJQadWoa3GKNsaKtWtWxqxr6sW//bbfvgu08Qmk+H4h8dOQsUYHnz9FsoiKhQFiYQQQgiRzPp6M1w2A57qk7bk9JyHZueJzaBVY29nLZ58ySPbvsR+TwhdTjM0tO9UcowxfOr2HkQTaTz4xKWb2Hz74CgOj/jxsVs3oclOexGVit5BhBBCCJEMYwzXbXTiucE5JFIZyY7b7w7BqFPTSanIbuppwPBcBIPesCzHH/CEsb6e9iPKJd/E5kfHLt7EZmQuggef6MP1G+pw184WGVZICkVBIiGEEEIkdf0GJ8LxFI6N+SU7Zr5pjUpFpW1iumlzPQDgd6scrl6K/L5Tak4kr3wTm3u/eQT3P3IMjxwcxfBsGOlcmalOrcLnXkdlpkqnkXsBhBBCCKks+7pqoVOr8HT/LPZ1OSQ55jlPCK/cVC/JsSpZvdWAbS12/PaMG++5vlvSYw/kspcUJMrLrNfgm/fuwncOjuLZgTn89kz2gkG1UYv5aBJfuHsr6q0GeRdJVkRBIiGEEEIkZdJrsLujBk/1efHRV28S/Xhz4Th8kQTtR5TIzT0NePCJPkwvLMIlYXnvQG7fKZWbym+zy4rPvW4LOOcY90fx3OAc9g/OocFahddua5J7eaQAVG5KCCGEEMldt6EOA94wJvxR0Y91bDS7N6rHZRX9WAS4qSebsf29xCWn5zxhGLQqtFRTZ1OlYIyhrdaEN+9p+3/t3XmU3VWV6PHvTmUkEwkZCIGEKQMQmiGAIE8IIDg1zVOUp9KIz25A1O7WFlkuZwXn7nZoWxREBARFUZ8KikpAUEAlqCEMSRiSAGYmY2WqpGq/P+6viktIVZLKrXtvVX0/a9VK1W84v31z1q/q7nvObx++fv50Pnb24U4z7SZMEiVJUtWdNrW0FMZv53d9ldOZjy9j6MC+HDtxRJdfS3DI6CEcOmYIv3p0aVWvO3/ZeiaN8blTqRJMEiVJUtUdPGowE0buxT3zuna9xJaW5O55y5kxZQz9XBahal51xFj+uGAVqzc0Ve2a85etZ5JTTaWKqMpvy4gYEBHXRsSiiFgfEX+NiNcU+w6MiIyIxrKvj2537rcjYl1ELI2If9+u7TMiYm5EbIyIuyNiYjVekyRJ6ryI4LQpo7nvyefZvLW5y64z+7k1rGxs4pWHjemya+ilzjp8X5pbkrvmdu2HAK3WbtzKsnVbmGLRGqkiqvWRWl/gWeBUYDjwEeAHEXFg2TF7Z+aQ4uuKsu2fACYBE4HTgMsj4tUAETEK+DHwUWAkMAu4pUtfiSRJqogZU8ewaWszf1rQdUthzHx8OQ19glMnj+6ya+il/m7/4YwbPrBqU07nL28tWmOSKFVCVZLEzNyQmZ/IzIWZ2ZKZtwELgOm7cPqFwBWZuTozHweuAd5e7HsD8Ghm/jAzN1NKKI+KiKmVfxWSJKmSTjp4Hwb07cPdXTjl9M7HlzF94gj23qt/l11DLxURnHX4WO59YgWbmrpupLjV/KKyqdNNpcqoyeT8iBgLTAYeLdu8KCKei4jrihFCImIEMA6YXXbcbOCI4vsjyvdl5gbgqbL9kiSpTg3s18BJh+zDb+d1TfGa51ZvZO7S9U41rZGzjtiXzVtbuPeJri9ONH/pegb3b2B8FZfckHqyqieJEdEPuAm4PjPnAiuB4ylNJ50ODC32A7R+HLS2rIm1xTGt+8v3bb+//LoXR8SsiJi1YkXX/7KSJEk7d9qUMSxYuYEni+mCldT6PNwZh42teNvauRMOGsnwQf2qMuV0/rJGJo0d6vIKUoVUNUmMiD7AjUAT8B6AzGzMzFmZuS0zlxXbz4qIoUBjcWr5wkbDgNa/JI3b7dt+f5vMvDozj8vM40aP9rkESZLqwWuO3JdB/Rr48p1PVLztmY8v56BRgzlktFMQa6FfQx/OmDqGmY8vZ2tzS5ddZ1tzC48tWWfRGqmCqpYkRumjnWuBscC5mbm1nUOz+LdPZq4GlgBHle0/ihemqT5avi8iBgOH8OJprJIkqU6NGTqQi085mNseXsKfn1ldsXY3bNnGA089z+lTnWpaS2cdsS9rN23lwS4sTvSnBatYu2krM6Y4CCBVSjVHEq8CDgPOzsxNrRsj4mURMSUi+kTEPsBXgd9mZus00huAj0TEiKIgzUXAd4p9PwGmRcS5ETEQ+BjwcDGNVZIkdQMXn3Iwo4cO4NO3P05m7vyEXfC7J1bS1NzCGT6PWFOnTh7NoH4N3Prn57rsGrfPWcKgfg3MmGJfS5VSrXUSJwKXAEcDS8vWQzwfOBi4g9IU0UeALcBbyk7/OKViNIuAe4AvZuYdAJm5AjgX+DSwGngZ8OZqvCZJklQZgwf05f1nTuahRau545HKPL828/FlDB3Yl+MPHFmR9tQ5g/o38JYTJvDTvy7m2VUbK95+c0vyq0eXcvrUMQzq31Dx9qXeqlpLYCzKzMjMgWVrIQ7JzJsy83uZeVBmDs7McZn5tsxcWnbulsx8R2YOy8yxmflf27V9Z2ZOzcxBmTkjMxdW4zVJkqTKedNxBzBl7FA+d8dcmrbt2fNrLS3J3fOWM2PKGPo11KSQu8pcdMpB9Am4+t6nK972Hxc8z8rGJl575LiKty31Zv7mlCRJNdfQJ/jQ6w5j0fMbufEPi/aordnPrWFlYxNn+DxiXRg3fBBvnL4/t8x6luXrNle07V/MWcLAfn04barPI0qVZJIoSZLqwqmTR/OKSaP46swnWLOxqdPtzHx8OQ19wkImdeSSUw5hW3ML1/5+QcXabG5J7nhkGadPHcNe/ftWrF1JJomSJKmOfOi1h7Fu81a+dteTnW7jzseXMX3iCPbeq38FI9OeOHDUYM4+aj+++4dFe/QBQLk/LVjFysYtTjWVuoBJoiRJqhuHjRvGm6bvz/UPLOSJZS9Z9ninnl7RyNyl63mlVU3rzrtmHMqGpma+c//CirT3y0dKU01d5kSqPJNESZJUVy47awrDBvbjkhsfYt3m9pZVfqltzS184NaHGTqgL/9w1PgujFCdMWXfoZx5+Fiuu28hjVu27VFbzS3JLx9ZymlTnGoqdQWTREmSVFfGDBvI188/lmdWbeS93/8rLS27tnbi1+5+kocWrebK109j3+EDuzhKdca7ZhzC2k1bufmPe1acaNbCVaxY71RTqauYJEqSpLrzsoP34WNnH85dc5fzpTvn7/T4hxat4qszn+D1x4znnKMdRaxXx0wYwcmH7sM1v1vA5q3NnW7nF3OWMKCvU02lrmKSKEmS6tIFJ07kvOP257/vepI7HlnS7nHrN2/lvbf8lfEjBvGpc46oYoTqjHefdigr1m/p9LOJLcVU0xlTRjN4gFNNpa5gkihJkupSRPCpc6Zx9AF78+8/mM28pTsuZPPxnz7K4jWb+fL/OZqhA/tVOUrtrpMO3oczDx/LF+6Yy52PLdvt82ctWs1yp5pKXcokUZIk1a2B/Rr4xj9OZ/CAvlx0wyyuv38h9z25kmXrNpOZ/PSvf+PHf/kb/3L6oUyfOLLW4WoXRARfefPRTBs/nH/53l+Y/eya3Tr/F3OW0L9vH844bGwXRSgpMnftYfCe5LjjjstZs2bVOgxJkrSLHlq0mktunMXKxhfW2Bs6oC9NzS1MGz+cWy4+kb4NfvbdnaxYv4U3XHUfm5qa+fGlJzNhn706PH7Dlm3c8MAivnbXE5x86CiufttxVYpU6pki4qHM3OGNZJIoSZK6hcxk+fotPLW8kSdXNPLU8kaWrdvCh193GAeM7DjBUH16akUj5151PyP36s+PLn05Iwb3f8kxG5u2ceMDi/jmvU+zakMTp04ezRXnTNtpUimpYyaJ2zFJlCRJqg+zFq7ird/6I0eOH84V50xjzcYmVm1sYvWGJhav3cwPZz3LysYmXjFpFO995WSmTxxR65ClHsEkcTsmiZIkSfXjF3OW8O6b/8yO3paWksNJPnMqVVhHSaJ1gyVJklRTrz1yHLe+8+UsW7eZkYP7M3Jwf0bs1Z8Re/XzWVOpBkwSJUmSVHNOI5Xqhx/NSJIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2kRm1jqGqouI9cC8WsehLjUcWFvrINRl7N+ezf7t2ezfns8+7tns355jSmYO3dGOvtWOpE7My8zjah2Euk5EXJ2ZF9c6DnUN+7dns397Nvu357OPezb7t+eIiFnt7XO6qXqqn9c6AHUp+7dns397Nvu357OPezb7txfordNNZzmSKEmSJKm36ign6q0jiVfXOgBJkiRJqqF2c6JeOZIoSZIkSdqx3jqSKEmSJEnaAZNEdWsRMTIifhIRGyJiUUS8tdj+uoj4fUSsiYilEfGtiNhhiV/Vrw7697SImFP07/PFMeNrHa92T3v9u90x346IjIhDaxGj9kwH9/CMiGiJiMayrwtrHa92T0f3cESMjoibI2JtRKyOiJtqGat2Xwf374e2u3c3FffzqFrHrMrprUtgqOf4H6AJGAscDdweEbMpreFzJXAvMAC4Gfgi8M4axanOaa9/HwNelZmLI2IAcAVwFfAPNYtUnbHD/s3MRwEi4n8Bh9QwPu259u5hgMWZuX/NIlMldHQP/xh4EJgAbASm1SxKdVZ7/fsZ4DOtB0XEJ4BTMnNlTaJUl/CZRHVbETEYWA1My8z5xbYbgb9l5ge3O/YNwCcz88jqR6rO2NX+LZLETwDnZObhtYhVu29n/RsRfSm9wbwQmA1MyswnaxawdltHfQzcAXzXJLH72kn/3kWpIMYhmdlcuyjVWbvxNziApyi9x7q+JsGqS9TddNOIGF7rGNRtTAa2tf7yKswGjtjBsacAj1YlKlVKh/0bERMiYg2wCbgM+EL1Q9Qe2Nn9+z7g3sx8uOqRqVJ21sdjImJZRCyIiC8Vb0rVfXTUvycC84Dri0cCHoyIU2sRpDptV99jvQIYA/yoWoGpOuomSYyIQRFxLfB0REyodTzqFoYA67bbthZ40bOHEXEmpdGIj1UpLlVGh/2bmc9k5t7AKOAjwNzqhqc91G7/RsQBwCV4z3Z3Hd3DcylNXxsHnA5MB/6rqtFpT3XUv/sDZwF3A/sC/wn81GfWupVdeo9F6f3VrZnZWJWoVDV1kSRGxBBKzxONApZTer5I2plGYNh224YB61t/iIgTKT2P+MbtPg1T/dtp/wJk5irgekpvQHzOuvvoqH+/DHwqM9dWPSpVUrt9nJlLM/OxzGzJzAXA5cC5VY9Qe6Kje3gTsDAzr83MrZn5feBZ4OQqx6jO25X3WHsBb6L0N1g9TE2TxIgYFRH9ik8ffgJ8GDgHuCAiXl7L2NQtzAf6RsSksm1HUUwrjYhjgJ8B78jMmTWIT3umw/7dTl9K0122/4Om+tVR/54BfLGoTLy02PfAjqqfqq7tzj2c1MkH19plHfXvw5T6tJxFMLqXXbl/Xw+sAn5bxbhUJTUpXBMRBwKtpZDXAR8E5mXm5mL/NcBRmXlC1YNTtxIR36f0h+efKU1d+gXwciCAmcC/ZuYttYtQe6KD/p1C6Q/VE8A+lCqwHZqZx9YoVHVCB/27ghcnDEuAk4DZmbmp2nGq8zro4zHA08AzlKYm3kBp5On/1ihUdUIH/buEUjGT9wLfpZRMXA1MtgJm99Fe/5ZVoP418IfM9NGAHqjqn9pFxCDgW8BDwBsoDWd/AnhL2WHvBo4oXzMpIvyEUTvyLmAQpWnK3wMuLX55vR8YDVxbto6PhWu6n/b6dzyl6ojrgTlAC6U3Iepedti/mbm8mI64NDNbRxJXmiB2S+3dw8cA9wMbin/nAP9aqyDVae3dw6soLUl0GaXn2D5IqQK1CWL30t79S7E28emUPuBRD1T1kcRi2Po64J8zc25EDAP+DTgNuLi1xHlEvA+4PDPHFT8Pzcz1ERHpuh2SJEmS1CVqMToXlBZUXQuQmesoLbi6GLgUSqOGQZwyKgAACatJREFUmfklYFVE/CwiNgKfLY43QZQkSZKkLlL1JLGoMDmHF5c2n0tpusmBEXFwZrZExBhKCeWxwPsz8z3VjlWSJEmSeptaPef3OeD1ETEZIDObgceASbywJsts4M+ZuX9mXlWbMCVJkiSpd6nVmmJ3Fl83ACcW2x4p/h0OrAQmuTCnJEmSJFVXTZbAgLYFOGdTWofld8AFwCzgosxs6uC8ccBFwN2Z+TsL2UiSJElS5dRqJJHM3BgRZ1Na++o1wLeKYjU7szdwMhARMcuS6JIkSZJUOTUbSXxRELs4Gth6XERcCpwBfCczb+v6CCVJkiSpd6iLBep3J0EsfrwFaATOjIh9W/d3YYiSJEmS1CvURZJYrr1krxhBnBwRZ2TmKuBnwIHAq1v3Vy9KSZIkSeqZ6i5JLJLB9uI6D7g9IvoDPwEWAqdExOHgaKIkSZIk7am6SxIj4tXAlRGxX/HzKa37MvNKYDHw0WLk8BZgBKXCN44mSpIkSdIeqrskEWgAzgJOjojXAddExKll+/8N+EBETMjM+yktm3FsRJxWg1glSZIkqUepuyQxM28H/gS8EmihNK30PWX7f17s/2yx6fvAaGB6RDRUN1pJkiRJ6lnqKkkse6bwK8BhwETgAWDviHhb2aH3AG8uitg8BVyWmf+Rmc3VjViSJEmSepa6ShKLojWRmfOAX1NaC3Fr8f3FETG8OHQt8CBwcnHewwAdFLyRJEmSJO2CqNdaLxExFPgxcBfwG+AKYBylQjWzgLdn5vraRShJkiRJPU/fWgewIxHRJzPXR8QNwNspjRqeB/w90JyZP9ju2JbaRCpJkiRJPUvdjiS2iojvA88Dn8zM5WXbG3wGUZIkSZIqq26f4SsrYvPfwHTgwPLtJoiSJEmSVHl1myQWRWz6ZOZ9lOJ8Vev2nZ0bEQdHxLDi+9jZ8ZIkSZKkkrpNEgEysyUi9gI2AfN25ZyIeDfwCHBW0UZ9z6eVJEmSpDpS10li4X8Df6FU6XRXHAWsBk6IiEldFpUkSZIk9UDdoXBN7OIU04bMbI6ID1BaKmM68B3g5szc0sVhSpIkSVKPUPcjie0liBExoPi3oTiutZDNScB1wG3AOcBBVQhTkiRJknqEuk8StxcRIyLi28A34IXkMCJaX8uzwAHAtcBA4C0RcWVE/F0t4pUkSZKk7qRbJYkRcSTwE+B4YHJEvKHY3iczW4rDjgHmZeYqYCvwYeBI4OkahCxJkiRJ3Uq3ShKB/sCNwNuBmcBFEdG/qILavzjmj8AnI2IOMAz4PbAQGFz9cCVJkiSpe6nrJDEipkbEqRExptg0B7g1Mx8CfgUk8B6AzGwqppyOA44AvpyZpwKfB0ZWP3pJkiRJ6n7qsrppUYzmG8B5wEOUEr/LM/PnZccMAf4JOBe4IDMXFdsPApZl5saqBy5JkiRJ3Vy9jiQeARwKHAKcRWkpi69ExCmtB2RmI6Upp4uB95Wd+2xmbmwtZBMRUa2gJUmSJKm7q5skMSKGl1UoPRGYmJkrgZbM/DylZw0vjIiDy06bD3wPmBYRn4mI+4AzAFoL2ezKGouSJEmSpJKaJ4kRMSkifgXcBPwoIiYCjwHPRMTRZVVLPwscBbQtZZGZTUAzpaTyQuCazPxVVV+AJEmSJPUgNU0SI+KfgLuAvwCXUyow81GgL7CM0lRTADLzYUqFay4ozm2IiDOBW4GvZ+b4zPxOVV+AJEmSJPUwNS1cExFXAosy85ri5/2BucBkSsngscA3M/OuYv/ZwOeA44vnDscDGzJzTU1egCRJkiT1MH1rfP1vAFsAImIAsBF4ChgE/JBS4Zr3RsRTRfXS44Fft1Yuzcy/1SRqSZIkSeqhapokZuZzUKpAmplbIuJwSlNgny3WPfwqcCVwe0SsAaYA59cuYkmSJEnq2Wo9kgi8qALpDGBeUZCGzHwkIs4FjgGOyMzraxSiJEmSJPUKdZEkRkRDZjYDJwB3FNsupTRy+OnMnAXMqmGIkiRJktQr1EWSmJnNEdGXUnXTMRFxL3Ag8I7MXFHT4CRJkiSpF6lpddNyEXEkMJvS0hf/mZn/UeOQJEmSJKnXqacksT/wHkprHm6udTySJEmS1BvVTZIoSZIkSaq9PrUOQJIkSZJUP0wSJUmSJEltTBIlSZIkSW1MEiVJkiRJbUwSJUmSJEltTBIlSQIiYkJENEZEQ61jkSSplkwSJUm9VkQsjIhXAmTmM5k5JDObq3j9GRHxXLWuJ0nSrjBJlCRJkiS1MUmUJPVKEXEjMAH4eTHN9PKIyIjoW+z/bURcGRH3F/t/HhH7RMRNEbEuIh6MiAPL2psaEb+JiFURMS8izivb99qIeCwi1kfE3yLisogYDPwS2K9ovzEi9ouIEyLigYhYExFLIuJrEdG/rK2MiHdFxBNFe1dExCFFnOsi4getx7eOVEbEhyJiZTFyen51/oclSd2VSaIkqVfKzAuAZ4CzM3MI8IMdHPZm4AJgPHAI8ABwHTASeBz4OECR8P0GuBkYU5z39Yg4vGjnWuCSzBwKTAPuyswNwGuAxcU01yGZuRhoBt4HjAJOAs4A3rVdXK8CpgMnApcDVwP/CBxQtP+WsmP3LdoaD1wIXB0RU3brP0uS1KuYJEqS1L7rMvOpzFxLadTvqcy8MzO3AT8EjimO+3tgYWZel5nbMvMvwI+ANxX7twKHR8SwzFydmX9u74KZ+VBm/qFoZyHwTeDU7Q77Qmauy8xHgUeAX2fm02VxHrPd8R/NzC2ZeQ9wO3AekiS1wyRRkqT2LSv7ftMOfh5SfD8ReFkxRXRNRKwBzqc0igdwLvBaYFFE3BMRJ7V3wYiYHBG3RcTSiFgHfIbSSGBn4gJYXYxatloE7Nfe9SVJMkmUJPVmWaF2ngXuycy9y76GZOalAJn5YGaeQ2kq6v/jhamtO7r+VcBcYFJmDgM+BMQexDaimA7bagKweA/akyT1cCaJkqTebBlwcAXauQ2YHBEXRES/4uv4iDgsIvpHxPkRMTwztwLrgJay6+8TEcPL2hpaHNMYEVOBSysQ3yeLOF5BaWrsDyvQpiSphzJJlCT1Zp8FPlJMD31jZxvJzPXAWZQK1iwGlgKfBwYUh1wALCymj76T0lRUMnMu8D3g6WKa6n7AZcBbgfXANcAtnY2rsBRYXcR1E/DO4rqSJO1QZFZqpo0kSaonETED+G5m7l/rWCRJ3YcjiZIkSZKkNiaJkiRJkqQ2TjeVJEmSJLVxJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTGJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTm/wOL0q2viKFO9gAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "dddca9ad9e34435494e0933c218e1579", + "translation_date": "2025-09-04T01:51:18+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/1-Introduction/working/notebook.ipynb b/translations/fa/7-TimeSeries/1-Introduction/working/notebook.ipynb new file mode 100644 index 000000000..8be574b59 --- /dev/null +++ b/translations/fa/7-TimeSeries/1-Introduction/working/notebook.ipynb @@ -0,0 +1,64 @@ +{ + "cells": [ + { + "source": [ + "# تنظیم داده‌ها\n", + "\n", + "در این دفترچه، نحوه انجام موارد زیر را نشان می‌دهیم:\n", + "\n", + "تنظیم داده‌های سری زمانی برای این ماژول \n", + "تصویری‌سازی داده‌ها \n", + "\n", + "داده‌های این مثال از مسابقه پیش‌بینی GEFCom2014 گرفته شده است. این داده‌ها شامل ۳ سال بار الکتریکی ساعتی و مقادیر دما بین سال‌های ۲۰۱۲ تا ۲۰۱۴ می‌باشد.\n", + "\n", + "1تائو هونگ، پیر پینسون، شو فن، حمیدرضا زری‌پور، آلبرتو تروکولی و راب جی. هیندمن، \"پیش‌بینی احتمالی انرژی: مسابقه جهانی پیش‌بینی انرژی ۲۰۱۴ و فراتر از آن\"، مجله بین‌المللی پیش‌بینی، جلد ۳۲، شماره ۳، صفحات ۸۹۶-۹۱۳، جولای-سپتامبر، ۲۰۱۶.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5e2bbe594906dce3aaaa736d6dac6683", + "translation_date": "2025-09-04T01:52:08+00:00", + "source_file": "7-TimeSeries/1-Introduction/working/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/2-ARIMA/README.md b/translations/fa/7-TimeSeries/2-ARIMA/README.md new file mode 100644 index 000000000..d6c2bdac9 --- /dev/null +++ b/translations/fa/7-TimeSeries/2-ARIMA/README.md @@ -0,0 +1,406 @@ + +# پیش‌بینی سری‌های زمانی با ARIMA + +در درس قبلی، کمی درباره پیش‌بینی سری‌های زمانی یاد گرفتید و یک مجموعه داده را که نوسانات بار الکتریکی را در طول یک بازه زمانی نشان می‌داد، بارگذاری کردید. + +[![معرفی ARIMA](https://img.youtube.com/vi/IUSk-YDau10/0.jpg)](https://youtu.be/IUSk-YDau10 "معرفی ARIMA") + +> 🎥 روی تصویر بالا کلیک کنید تا ویدیو را ببینید: معرفی کوتاهی از مدل‌های ARIMA. مثال در زبان R انجام شده است، اما مفاهیم آن جهانی هستند. + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/43/) + +## مقدمه + +در این درس، شما با یک روش خاص برای ساخت مدل‌ها با استفاده از [ARIMA: *A*uto*R*egressive *I*ntegrated *M*oving *A*verage](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average) آشنا خواهید شد. مدل‌های ARIMA به‌ویژه برای داده‌هایی که [غیرایستا](https://wikipedia.org/wiki/Stationary_process) هستند، مناسب هستند. + +## مفاهیم کلی + +برای کار با ARIMA، باید با چند مفهوم آشنا شوید: + +- 🎓 **ایستایی**. از دیدگاه آماری، ایستایی به داده‌هایی اشاره دارد که توزیع آن‌ها با تغییر زمان ثابت می‌ماند. داده‌های غیرایستا نوساناتی را به دلیل روندها نشان می‌دهند که باید برای تحلیل تبدیل شوند. به عنوان مثال، فصلی بودن می‌تواند نوساناتی در داده‌ها ایجاد کند که می‌توان آن را با فرآیند «تفاضل‌گیری فصلی» حذف کرد. + +- 🎓 **[تفاضل‌گیری](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average#Differencing)**. تفاضل‌گیری داده‌ها، از دیدگاه آماری، به فرآیند تبدیل داده‌های غیرایستا به ایستا از طریق حذف روندهای غیرثابت اشاره دارد. "تفاضل‌گیری تغییرات سطح یک سری زمانی را حذف می‌کند، روند و فصلی بودن را از بین می‌برد و در نتیجه میانگین سری زمانی را تثبیت می‌کند." [مقاله‌ای از Shixiong و همکاران](https://arxiv.org/abs/1904.07632) + +## ARIMA در زمینه سری‌های زمانی + +بیایید اجزای ARIMA را بررسی کنیم تا بهتر بفهمیم چگونه به ما در مدل‌سازی سری‌های زمانی و پیش‌بینی کمک می‌کند. + +- **AR - برای خودرگرسیو (AutoRegressive)**. مدل‌های خودرگرسیو، همان‌طور که از نامشان پیداست، به گذشته نگاه می‌کنند تا مقادیر قبلی داده‌ها را تحلیل کرده و فرضیاتی درباره آن‌ها بسازند. این مقادیر قبلی به عنوان «وقفه‌ها» شناخته می‌شوند. به عنوان مثال، داده‌هایی که فروش ماهانه مدادها را نشان می‌دهند. مجموع فروش هر ماه به عنوان یک «متغیر در حال تکامل» در مجموعه داده در نظر گرفته می‌شود. این مدل به این صورت ساخته می‌شود که "متغیر در حال تکامل مورد نظر بر اساس مقادیر وقفه‌ای (یعنی قبلی) خودش رگرس می‌شود." [ویکی‌پدیا](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average) + +- **I - برای یکپارچه‌سازی (Integrated)**. برخلاف مدل‌های مشابه ARMA، حرف 'I' در ARIMA به جنبه *[یکپارچه‌سازی](https://wikipedia.org/wiki/Order_of_integration)* اشاره دارد. داده‌ها زمانی یکپارچه می‌شوند که مراحل تفاضل‌گیری اعمال شوند تا غیرایستایی حذف شود. + +- **MA - برای میانگین متحرک (Moving Average)**. جنبه [میانگین متحرک](https://wikipedia.org/wiki/Moving-average_model) این مدل به متغیر خروجی اشاره دارد که با مشاهده مقادیر فعلی و گذشته وقفه‌ها تعیین می‌شود. + +نتیجه نهایی: ARIMA برای ساخت مدلی استفاده می‌شود که تا حد ممکن با شکل خاص داده‌های سری زمانی مطابقت داشته باشد. + +## تمرین - ساخت یک مدل ARIMA + +پوشه [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/working) را در این درس باز کنید و فایل [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/2-ARIMA/working/notebook.ipynb) را پیدا کنید. + +1. نوت‌بوک را اجرا کنید تا کتابخانه `statsmodels` پایتون بارگذاری شود؛ شما به این کتابخانه برای مدل‌های ARIMA نیاز دارید. + +1. کتابخانه‌های لازم را بارگذاری کنید. + +1. حالا چند کتابخانه دیگر که برای ترسیم داده‌ها مفید هستند را بارگذاری کنید: + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from pandas.plotting import autocorrelation_plot + from statsmodels.tsa.statespace.sarimax import SARIMAX + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + from IPython.display import Image + + %matplotlib inline + pd.options.display.float_format = '{:,.2f}'.format + np.set_printoptions(precision=2) + warnings.filterwarnings("ignore") # specify to ignore warning messages + ``` + +1. داده‌ها را از فایل `/data/energy.csv` به یک دیتافریم Pandas بارگذاری کنید و نگاهی به آن بیندازید: + + ```python + energy = load_data('./data')[['load']] + energy.head(10) + ``` + +1. تمام داده‌های انرژی موجود از ژانویه 2012 تا دسامبر 2014 را ترسیم کنید. نباید شگفت‌زده شوید زیرا این داده‌ها را در درس قبلی دیدیم: + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + حالا بیایید یک مدل بسازیم! + +### ایجاد مجموعه داده‌های آموزشی و آزمایشی + +حالا که داده‌های شما بارگذاری شده‌اند، می‌توانید آن‌ها را به مجموعه‌های آموزشی و آزمایشی تقسیم کنید. شما مدل خود را روی مجموعه آموزشی آموزش خواهید داد. همان‌طور که معمول است، پس از اتمام آموزش مدل، دقت آن را با استفاده از مجموعه آزمایشی ارزیابی خواهید کرد. باید اطمینان حاصل کنید که مجموعه آزمایشی یک بازه زمانی بعدی را نسبت به مجموعه آموزشی پوشش می‌دهد تا مدل اطلاعاتی از دوره‌های زمانی آینده به دست نیاورد. + +1. یک بازه زمانی دو ماهه از 1 سپتامبر تا 31 اکتبر 2014 را به مجموعه آموزشی اختصاص دهید. مجموعه آزمایشی شامل بازه زمانی دو ماهه از 1 نوامبر تا 31 دسامبر 2014 خواهد بود: + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + + از آنجا که این داده‌ها مصرف روزانه انرژی را منعکس می‌کنند، یک الگوی فصلی قوی وجود دارد، اما مصرف بیشتر شبیه مصرف در روزهای اخیر است. + +1. تفاوت‌ها را تجسم کنید: + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![داده‌های آموزشی و آزمایشی](../../../../translated_images/train-test.8928d14e5b91fc942f0ca9201b2d36c890ea7e98f7619fd94f75de3a4c2bacb9.fa.png) + + بنابراین، استفاده از یک بازه زمانی نسبتاً کوچک برای آموزش داده‌ها باید کافی باشد. + + > توجه: از آنجا که تابعی که برای برازش مدل ARIMA استفاده می‌کنیم از اعتبارسنجی درون نمونه‌ای در طول برازش استفاده می‌کند، داده‌های اعتبارسنجی را حذف خواهیم کرد. + +### آماده‌سازی داده‌ها برای آموزش + +حالا باید داده‌ها را برای آموزش آماده کنید. این کار با فیلتر کردن و مقیاس‌بندی داده‌ها انجام می‌شود. داده‌های خود را فیلتر کنید تا فقط بازه‌های زمانی و ستون‌های مورد نیاز را شامل شود و مقیاس‌بندی کنید تا داده‌ها در بازه 0 و 1 قرار گیرند. + +1. مجموعه داده اصلی را فیلتر کنید تا فقط بازه‌های زمانی ذکر شده در هر مجموعه و فقط ستون مورد نیاز 'load' به علاوه تاریخ را شامل شود: + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + می‌توانید شکل داده‌ها را ببینید: + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +1. داده‌ها را به بازه (0, 1) مقیاس‌بندی کنید. + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + train.head(10) + ``` + +1. داده‌های اصلی در مقابل داده‌های مقیاس‌بندی شده را تجسم کنید: + + ```python + energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12) + train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12) + plt.show() + ``` + + ![اصلی](../../../../translated_images/original.b2b15efe0ce92b8745918f071dceec2231661bf49c8db6918e3ff4b3b0b183c2.fa.png) + + > داده‌های اصلی + + ![مقیاس‌بندی شده](../../../../translated_images/scaled.e35258ca5cd3d43f86d5175e584ba96b38d51501f234abf52e11f4fe2631e45f.fa.png) + + > داده‌های مقیاس‌بندی شده + +1. حالا که داده‌های مقیاس‌بندی شده را کالیبره کرده‌اید، می‌توانید داده‌های آزمایشی را نیز مقیاس‌بندی کنید: + + ```python + test['load'] = scaler.transform(test) + test.head() + ``` + +### پیاده‌سازی ARIMA + +زمان پیاده‌سازی ARIMA فرا رسیده است! اکنون از کتابخانه `statsmodels` که قبلاً نصب کرده‌اید استفاده خواهید کرد. + +حالا باید چند مرحله را دنبال کنید: + + 1. مدل را با فراخوانی `SARIMAX()` و وارد کردن پارامترهای مدل: پارامترهای p، d و q، و پارامترهای P، D و Q تعریف کنید. + 2. مدل را برای داده‌های آموزشی با فراخوانی تابع fit() آماده کنید. + 3. با فراخوانی تابع `forecast()` و مشخص کردن تعداد گام‌ها (افق پیش‌بینی)، پیش‌بینی کنید. + +> 🎓 این پارامترها برای چیست؟ در یک مدل ARIMA سه پارامتر وجود دارد که برای کمک به مدل‌سازی جنبه‌های اصلی یک سری زمانی استفاده می‌شوند: فصلی بودن، روند و نویز. این پارامترها عبارتند از: + +`p`: پارامتری که با جنبه خودرگرسیو مدل مرتبط است و مقادیر *گذشته* را در بر می‌گیرد. +`d`: پارامتری که با بخش یکپارچه مدل مرتبط است و میزان *تفاضل‌گیری* (🎓 تفاضل‌گیری را به یاد دارید؟ 👆) را برای اعمال بر سری زمانی تعیین می‌کند. +`q`: پارامتری که با بخش میانگین متحرک مدل مرتبط است. + +> توجه: اگر داده‌های شما جنبه فصلی داشته باشد - که این داده‌ها دارند - از یک مدل ARIMA فصلی (SARIMA) استفاده می‌کنیم. در این صورت باید از مجموعه دیگری از پارامترها استفاده کنید: `P`، `D` و `Q` که همان ارتباطات `p`، `d` و `q` را توصیف می‌کنند، اما به اجزای فصلی مدل مربوط می‌شوند. + +1. ابتدا مقدار افق پیش‌بینی مورد نظر خود را تنظیم کنید. بیایید 3 ساعت را امتحان کنیم: + + ```python + # Specify the number of steps to forecast ahead + HORIZON = 3 + print('Forecasting horizon:', HORIZON, 'hours') + ``` + + انتخاب بهترین مقادیر برای پارامترهای مدل ARIMA می‌تواند چالش‌برانگیز باشد زیرا تا حدی ذهنی و زمان‌بر است. ممکن است بخواهید از تابع `auto_arima()` از کتابخانه [`pyramid`](https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html) استفاده کنید. + +1. فعلاً چند انتخاب دستی را امتحان کنید تا یک مدل خوب پیدا کنید. + + ```python + order = (4, 1, 0) + seasonal_order = (1, 1, 0, 24) + + model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order) + results = model.fit() + + print(results.summary()) + ``` + + یک جدول از نتایج چاپ می‌شود. + +شما اولین مدل خود را ساختید! حالا باید راهی برای ارزیابی آن پیدا کنیم. + +### ارزیابی مدل شما + +برای ارزیابی مدل خود، می‌توانید از اعتبارسنجی به روش `walk forward` استفاده کنید. در عمل، مدل‌های سری زمانی هر بار که داده جدیدی در دسترس قرار می‌گیرد، دوباره آموزش داده می‌شوند. این کار به مدل اجازه می‌دهد تا بهترین پیش‌بینی را در هر گام زمانی انجام دهد. + +با شروع از ابتدای سری زمانی و استفاده از این تکنیک، مدل را روی مجموعه داده آموزشی آموزش دهید. سپس یک پیش‌بینی برای گام زمانی بعدی انجام دهید. پیش‌بینی با مقدار شناخته‌شده ارزیابی می‌شود. سپس مجموعه آموزشی گسترش می‌یابد تا مقدار شناخته‌شده را شامل شود و این فرآیند تکرار می‌شود. + +> توجه: برای آموزش کارآمدتر، باید پنجره مجموعه آموزشی را ثابت نگه دارید تا هر بار که یک مشاهده جدید به مجموعه آموزشی اضافه می‌کنید، مشاهده‌ای را از ابتدای مجموعه حذف کنید. + +این فرآیند تخمین قوی‌تری از عملکرد مدل در عمل ارائه می‌دهد. با این حال، هزینه محاسباتی ایجاد مدل‌های متعدد را به همراه دارد. این موضوع در صورتی که داده‌ها کوچک باشند یا مدل ساده باشد قابل قبول است، اما در مقیاس می‌تواند مشکل‌ساز باشد. + +اعتبارسنجی به روش walk-forward استاندارد طلایی ارزیابی مدل‌های سری زمانی است و برای پروژه‌های خودتان توصیه می‌شود. + +1. ابتدا یک نقطه داده آزمایشی برای هر گام HORIZON ایجاد کنید. + + ```python + test_shifted = test.copy() + + for t in range(1, HORIZON+1): + test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H') + + test_shifted = test_shifted.dropna(how='any') + test_shifted.head(5) + ``` + + | | | load | load+1 | load+2 | + | ---------- | -------- | ---- | ------ | ------ | + | 2014-12-30 | 00:00:00 | 0.33 | 0.29 | 0.27 | + | 2014-12-30 | 01:00:00 | 0.29 | 0.27 | 0.27 | + | 2014-12-30 | 02:00:00 | 0.27 | 0.27 | 0.30 | + | 2014-12-30 | 03:00:00 | 0.27 | 0.30 | 0.41 | + | 2014-12-30 | 04:00:00 | 0.30 | 0.41 | 0.57 | + + داده‌ها به صورت افقی بر اساس نقطه افق پیش‌بینی جابه‌جا می‌شوند. + +1. با استفاده از این رویکرد پنجره لغزان در یک حلقه به اندازه طول داده‌های آزمایشی، پیش‌بینی کنید: + + ```python + %%time + training_window = 720 # dedicate 30 days (720 hours) for training + + train_ts = train['load'] + test_ts = test_shifted + + history = [x for x in train_ts] + history = history[(-training_window):] + + predictions = list() + + order = (2, 1, 0) + seasonal_order = (1, 1, 0, 24) + + for t in range(test_ts.shape[0]): + model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order) + model_fit = model.fit() + yhat = model_fit.forecast(steps = HORIZON) + predictions.append(yhat) + obs = list(test_ts.iloc[t]) + # move the training window + history.append(obs[0]) + history.pop(0) + print(test_ts.index[t]) + print(t+1, ': predicted =', yhat, 'expected =', obs) + ``` + + می‌توانید فرآیند آموزش را مشاهده کنید: + + ```output + 2014-12-30 00:00:00 + 1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323] + + 2014-12-30 01:00:00 + 2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126] + + 2014-12-30 02:00:00 + 3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795] + ``` + +1. پیش‌بینی‌ها را با بار واقعی مقایسه کنید: + + ```python + eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)]) + eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1] + eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h') + eval_df['actual'] = np.array(np.transpose(test_ts)).ravel() + eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']]) + eval_df.head() + ``` + + خروجی + | | | timestamp | h | prediction | actual | + | --- | ---------- | --------- | --- | ---------- | -------- | + | 0 | 2014-12-30 | 00:00:00 | t+1 | 3,008.74 | 3,023.00 | + | 1 | 2014-12-30 | 01:00:00 | t+1 | 2,955.53 | 2,935.00 | + | 2 | 2014-12-30 | 02:00:00 | t+1 | 2,900.17 | 2,899.00 | + | 3 | 2014-12-30 | 03:00:00 | t+1 | 2,917.69 | 2,886.00 | + | 4 | 2014-12-30 | 04:00:00 | t+1 | 2,946.99 | 2,963.00 | + + پیش‌بینی داده‌های ساعتی را در مقایسه با بار واقعی مشاهده کنید. این چقدر دقیق است؟ + +### بررسی دقت مدل + +دقت مدل خود را با آزمایش میانگین درصد خطای مطلق (MAPE) آن در تمام پیش‌بینی‌ها بررسی کنید. +> **🧮 فرمول ریاضی را ببینید** +> +> ![MAPE](../../../../translated_images/mape.fd87bbaf4d346846df6af88b26bf6f0926bf9a5027816d5e23e1200866e3e8a4.fa.png) +> +> [MAPE](https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/) برای نشان دادن دقت پیش‌بینی به عنوان یک نسبت تعریف شده توسط فرمول بالا استفاده می‌شود. تفاوت بین مقدار واقعی و پیش‌بینی‌شده بر مقدار واقعی تقسیم می‌شود. +> "مقدار مطلق در این محاسبه برای هر نقطه پیش‌بینی‌شده در زمان جمع شده و بر تعداد نقاط برازش‌شده n تقسیم می‌شود." [ویکی‌پدیا](https://wikipedia.org/wiki/Mean_absolute_percentage_error) +1. معادله را در کد بیان کنید: + + ```python + if(HORIZON > 1): + eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual'] + print(eval_df.groupby('h')['APE'].mean()) + ``` + +1. MAPE یک مرحله‌ای را محاسبه کنید: + + ```python + print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%') + ``` + + MAPE پیش‌بینی یک مرحله‌ای: 0.5570581332313952 % + +1. MAPE پیش‌بینی چند مرحله‌ای را چاپ کنید: + + ```python + print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%') + ``` + + ```output + Multi-step forecast MAPE: 1.1460048657704118 % + ``` + + یک عدد پایین و مناسب بهترین است: در نظر داشته باشید که پیش‌بینی با MAPE برابر با 10 به معنای خطای 10 درصدی است. + +1. اما همان‌طور که همیشه گفته می‌شود، دیدن این نوع اندازه‌گیری دقت به صورت بصری آسان‌تر است، پس بیایید آن را رسم کنیم: + + ```python + if(HORIZON == 1): + ## Plotting single step forecast + eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8)) + + else: + ## Plotting multi step forecast + plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']] + for t in range(1, HORIZON+1): + plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values + + fig = plt.figure(figsize=(15, 8)) + ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0) + ax = fig.add_subplot(111) + for t in range(1, HORIZON+1): + x = plot_df['timestamp'][(t-1):] + y = plot_df['t+'+str(t)][0:len(x)] + ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t)) + + ax.legend(loc='best') + + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![یک مدل سری زمانی](../../../../translated_images/accuracy.2c47fe1bf15f44b3656651c84d5e2ba9b37cd929cd2aa8ab6cc3073f50570f4e.fa.png) + +🏆 یک نمودار بسیار زیبا که مدلی با دقت خوب را نشان می‌دهد. عالی کار کردید! + +--- + +## 🚀چالش + +روش‌های مختلف برای آزمودن دقت یک مدل سری زمانی را بررسی کنید. در این درس به MAPE اشاره شد، اما آیا روش‌های دیگری وجود دارد که بتوانید استفاده کنید؟ درباره آن‌ها تحقیق کنید و توضیح دهید. یک سند مفید را می‌توانید [اینجا](https://otexts.com/fpp2/accuracy.html) پیدا کنید. + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/44/) + +## مرور و مطالعه شخصی + +این درس تنها به اصول اولیه پیش‌بینی سری زمانی با ARIMA پرداخته است. زمانی را برای عمیق‌تر کردن دانش خود اختصاص دهید و به [این مخزن](https://microsoft.github.io/forecasting/) و انواع مدل‌های مختلف آن نگاهی بیندازید تا روش‌های دیگری برای ساخت مدل‌های سری زمانی یاد بگیرید. + +## تکلیف + +[یک مدل ARIMA جدید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/2-ARIMA/assignment.md b/translations/fa/7-TimeSeries/2-ARIMA/assignment.md new file mode 100644 index 000000000..b3ca0fb11 --- /dev/null +++ b/translations/fa/7-TimeSeries/2-ARIMA/assignment.md @@ -0,0 +1,25 @@ + +# یک مدل جدید ARIMA + +## دستورالعمل‌ها + +حالا که یک مدل ARIMA ساخته‌اید، یک مدل جدید با داده‌های تازه بسازید (یکی از [این مجموعه داده‌ها از دانشگاه دوک](http://www2.stat.duke.edu/~mw/ts_data_sets.html) را امتحان کنید). کار خود را در یک نوت‌بوک توضیح دهید، داده‌ها و مدل خود را بصری‌سازی کنید و دقت آن را با استفاده از MAPE آزمایش کنید. + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| --------- | ------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------ | ------------------------------------ | +| | یک نوت‌بوک ارائه شده که شامل مدل جدید ARIMA ساخته شده، آزمایش شده و با بصری‌سازی‌ها و دقت توضیح داده شده است. | نوت‌بوک ارائه شده توضیح داده نشده یا دارای اشکالات است | یک نوت‌بوک ناقص ارائه شده است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/2-ARIMA/solution/Julia/README.md b/translations/fa/7-TimeSeries/2-ARIMA/solution/Julia/README.md new file mode 100644 index 000000000..b8ba71923 --- /dev/null +++ b/translations/fa/7-TimeSeries/2-ARIMA/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/2-ARIMA/solution/R/README.md b/translations/fa/7-TimeSeries/2-ARIMA/solution/R/README.md new file mode 100644 index 000000000..7af5e86b7 --- /dev/null +++ b/translations/fa/7-TimeSeries/2-ARIMA/solution/R/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/2-ARIMA/solution/notebook.ipynb b/translations/fa/7-TimeSeries/2-ARIMA/solution/notebook.ipynb new file mode 100644 index 000000000..a02e2cd5b --- /dev/null +++ b/translations/fa/7-TimeSeries/2-ARIMA/solution/notebook.ipynb @@ -0,0 +1,1114 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "تائو هونگ، پیر پینسون، شو فان، حمیدرضا زری‌پور، آلبرتو تروکولی و راب جی. هیندمن، \"پیش‌بینی احتمالی انرژی: مسابقه جهانی پیش‌بینی انرژی 2014 و فراتر از آن\"، مجله بین‌المللی پیش‌بینی، جلد 32، شماره 3، صفحات 896-913، جولای-سپتامبر، 2016.\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## نصب وابستگی‌ها \n", + "برای شروع، برخی از وابستگی‌های مورد نیاز را نصب کنید. این کتابخانه‌ها با نسخه‌های مشخص شده برای این راه‌حل به خوبی کار می‌کنند: \n", + "\n", + "* `statsmodels == 0.12.2` \n", + "* `matplotlib == 3.4.2` \n", + "* `scikit-learn == 0.24.2` \n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "source": [ + "!pip install statsmodels" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "/bin/sh: pip: command not found\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from pandas.plotting import autocorrelation_plot\n", + "from statsmodels.tsa.statespace.sarimax import SARIMAX\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape\n", + "from IPython.display import Image\n", + "\n", + "%matplotlib inline\n", + "pd.options.display.float_format = '{:,.2f}'.format\n", + "np.set_printoptions(precision=2)\n", + "warnings.filterwarnings(\"ignore\") # specify to ignore warning messages\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 18, + "source": [ + "energy = load_data('./data')[['load']]\n", + "energy.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            load
            2012-01-01 00:00:002,698.00
            2012-01-01 01:00:002,558.00
            2012-01-01 02:00:002,444.00
            2012-01-01 03:00:002,402.00
            2012-01-01 04:00:002,403.00
            2012-01-01 05:00:002,453.00
            2012-01-01 06:00:002,560.00
            2012-01-01 07:00:002,719.00
            2012-01-01 08:00:002,916.00
            2012-01-01 09:00:003,105.00
            \n", + "
            " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2,698.00\n", + "2012-01-01 01:00:00 2,558.00\n", + "2012-01-01 02:00:00 2,444.00\n", + "2012-01-01 03:00:00 2,402.00\n", + "2012-01-01 04:00:00 2,403.00\n", + "2012-01-01 05:00:00 2,453.00\n", + "2012-01-01 06:00:00 2,560.00\n", + "2012-01-01 07:00:00 2,719.00\n", + "2012-01-01 08:00:00 2,916.00\n", + "2012-01-01 09:00:00 3,105.00" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "تمام داده‌های بار موجود (ژانویه ۲۰۱۲ تا دسامبر ۲۰۱۴) را ترسیم کنید\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## ایجاد مجموعه داده‌های آموزشی و آزمایشی\n", + "\n", + "برای ساخت مدل یادگیری ماشین، ابتدا باید داده‌ها را به دو مجموعه تقسیم کنید: داده‌های آموزشی و داده‌های آزمایشی. این کار به شما امکان می‌دهد مدل خود را آموزش داده و سپس عملکرد آن را ارزیابی کنید.\n", + "\n", + "### تقسیم داده‌ها\n", + "\n", + "برای تقسیم داده‌ها به دو مجموعه، می‌توانید از کتابخانه‌های موجود مانند scikit-learn استفاده کنید. تابع `train_test_split` در این کتابخانه به شما کمک می‌کند تا داده‌ها را به صورت تصادفی به دو بخش تقسیم کنید.\n", + "\n", + "```python\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "# تقسیم داده‌ها به مجموعه‌های آموزشی و آزمایشی\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "```\n", + "\n", + "[!NOTE]\n", + "مقدار `test_size` نشان‌دهنده درصد داده‌هایی است که برای آزمایش استفاده می‌شوند. در این مثال، ۲۰٪ از داده‌ها برای آزمایش و ۸۰٪ برای آموزش استفاده می‌شوند.\n", + "\n", + "### نکات مهم\n", + "\n", + "- **تعادل داده‌ها**: اطمینان حاصل کنید که داده‌های شما به طور متوازن بین مجموعه‌های آموزشی و آزمایشی تقسیم شده‌اند، به خصوص اگر با داده‌های نامتوازن کار می‌کنید.\n", + "- **ثابت نگه داشتن تصادفی بودن**: استفاده از `random_state` تضمین می‌کند که تقسیم داده‌ها در هر بار اجرا یکسان خواهد بود.\n", + "\n", + "[!TIP]\n", + "اگر داده‌های شما بسیار بزرگ هستند، می‌توانید از نمونه‌گیری استفاده کنید تا فقط بخشی از داده‌ها را برای آموزش و آزمایش انتخاب کنید.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00' " + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e5wtV1Xv+5tVtR792u8kEoMkIGAUJEjwwEE9IHh5eHzCiYr40XPPJSjnw8XrkQN6RRHPOXJ8AKLyFHzw1vBSQQnEhMBNQtgJeZNkJ+wk+5Gd/eze/V6rqub9Y9aomlVdtXqO2btXr+4e388nn97pXnNVrVr1mGOO3/gNpbWGIAiCIAiCIAiCIABAsNE7IAiCIAiCIAiCIIwOEiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDkSJAqCIAiCIAiCIAg5EiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDnRRu/ARrBv3z598cUXb/RuCIIgCIIgCIIgbAi33HLLSa31eXV/25ZB4sUXX4z9+/dv9G4IgiAIgiAIgiBsCEqph5v+JnJTQRAEQRAEQRAEIUeCREEQBEEQBEEQBCFHgkRBEARBEARBEAQhZ1vWJAqCIAiCIAiCsL3p9/s4fPgwlpaWNnpX1pVut4uLLroIrVbLeYwEiYIgCIIgCIIgbDsOHz6MqakpXHzxxVBKbfTurAtaa5w6dQqHDx/GJZdc4jxO5KaCIAiCIAiCIGw7lpaWsHfv3i0bIAKAUgp79+5lZ0slSBQEQRAEQRAEYVuylQNEwuczSpAoCIIgCIIgCIIwZKanp/Hud7+bPe5lL3sZpqen12GPCiRIFARBEARBEARBGDJNQWIcxwPHfeELX8CuXbvWa7cAiHGNIAiCIAiCIAjC0HnTm96EBx98EJdddhlarRa63S52796Ne++9F/fffz9++qd/GocOHcLS0hJe//rX48orrwQAXHzxxdi/fz/m5ubw0pe+FD/0Qz+EG264Ad/5nd+Jz33ucxgbG1vzvkmQKAiCIAiCIAjCtub3/+lu3HP07Dl9z++9cAd+7ye+r/Hvb3vb23DXXXfhtttuw3XXXYcf//Efx1133ZW7kH7oQx/Cnj17sLi4iGc/+9l4+ctfjr1795be48CBA/j4xz+OD3zgA7jiiivwqU99Cq961avWvO8SJAqCIAiCIAiCIGwwP/iDP1hqU/Gud70Ln/nMZwAAhw4dwoEDB1YEiZdccgkuu+wyAMCznvUsPPTQQ+dkXyRIFARBEARBEARhWzMo4zcsJiYm8n9fd911+PKXv4wbb7wR4+PjeP7zn1/bxqLT6eT/DsMQi4uL52RfxLhGEARBEARBEARhyExNTWF2drb2bzMzM9i9ezfGx8dx77334qabbhrqvkkmURAEQRAEQRAEYcjs3bsXz3ve8/C0pz0NY2NjuOCCC/K/veQlL8F73/teXHrppXjqU5+K5zznOUPdN6W1HuoGR4HLL79c79+/f6N3QxAEQRAEQRCEDeJb3/oWLr300o3ejaFQ91mVUrdorS+ve73ITQVBEARBEARBEIQcCRIFQRAEQdi2/Je/+Qae/pYvbvRuCIIgjBRDDxKVUk9WSi0ppT6S/f/zlVKpUmrO+u+XrdfvUUp9Rik1r5R6WCn1ysr7vTL7/bxS6rNKqT3D/kyCIAiCIGxOrrn3OGaX4o3eDUEQhJFiIzKJfwngG5XfHdVaT1r//W3l9T0AFwD4RQDvUUp9HwBkP98H4Jeyvy8AePd6fwBBEARBELYW29GjQRAEoYmhBolKqZ8HMA3gGsfXTwB4OYA3a63ntNZfA/CPMEEhYILGf9JaX6+1ngPwZgA/q5SaOvd7LwiCIAjCVmWpn270LgiCIIwMQwsSlVI7ALwVwG/U/Pl8pdRjSqmDSql3ZMEhADwFQKy1vt967e0AqNvl92X/DwDQWj8Ik3V8Ss32r1RK7VdK7T9x4sQ5+ESCIAiCIGwVphd7G70LgiAII8MwM4l/AOCDWuvDld/fC+AyAI8D8KMAngXg7dnfJgGcrbx+BsCU9feZAX/P0Vq/X2t9udb68vPOO8/7QwiCIAiCsPU4M9/f6F0QBGGbMT09jXe/269S7p3vfCcWFhbO8R4VDCVIVEpdBuBFAN5R/ZvW+pjW+h6tdaq1Pgjgv8NITAFgDsCOypAdAGYd/y4IgiAIgrAqkkkUBGHYjHKQGK3bO5d5PoCLATyilAJMBjBUSn2v1voHKq/VKILX+wFESqkna60PZL97BoC7s3/fnf0/AEAp9UQAnWycIAiCIAjCQAIFpBqYWZBMoiAIw+VNb3oTHnzwQVx22WX4sR/7MZx//vn4+7//eywvL+NnfuZn8Pu///uYn5/HFVdcgcOHDyNJErz5zW/GY489hqNHj+IFL3gB9u3bh2uvvfac79uwgsT3A/iE9f+/CRM0/ppS6gUAvg3gEQAXAXgbgM8BgNZ6Xin1aQBvVUr9XzCy1J8C8O+z9/kogBuVUj8M4FaYmsdPa60lkygIgiAIwqpMtCPMLseYXpQgURC2Nf/yJuDYnef2Pb/j6cBL39b457e97W246667cNttt+Hqq6/GVVddhZtvvhlaa/zkT/4krr/+epw4cQIXXnghPv/5zwMAZmZmsHPnTrz97W/Htddei3379p3bfc4YitxUa72QyUqPaa2PwchEl7TWJwA8E8ANAOazn3cC+L+t4a8FMAbgOICPA/g1rfXd2fveDeBXYYLF4zC1iK8dxmcSBEEQBGHzE4UKALDUTzZ4TwRB2M5cffXVuPrqq/HMZz4TP/ADP4B7770XBw4cwNOf/nR86Utfwhvf+EZ89atfxc6dO4eyP8PKJJbQWr/F+vfbURjV1L32NICfHvD3jwH42LncP0EQBEEQtgdZGQx6sbTAEIRtzYCM3zDQWuO3fuu38JrXvGbF32699VZ84QtfwO/8zu/ghS98IX73d3933fdnqH0SBUEQBEEQRonAxIhYliBREIQhMzU1hdlZUyX34he/GB/60IcwNzcHADhy5AiOHz+Oo0ePYnx8HK961avwhje8AbfeeuuKsevBhmQSBUEQBEEQRoFUm5+SSRQEYdjs3bsXz3ve8/C0pz0NL33pS/HKV74Sz33ucwEAk5OT+MhHPoIHHngAb3jDGxAEAVqtFt7znvcAAK688kq85CUvwYUXXripjWsEQRAEQRBGjn5igsNeIkGiIAjD52MfK1fNvf71ry/9/5Oe9CS8+MUvXjHuda97HV73utet236J3FQQBEEQhG1LHiRKJlEQBCFHgkRBEARBELYtcWL0plKTKAiCUCBBoiAIgiAI2xKtNeKsKFEyiYIgCAUSJAqCIAiCsC3pZ1lEAFiOpU+iIGxHtNarv2iT4/MZJUgUBEEQBGFb0rfMaiSTKAjbj263i1OnTm3pQFFrjVOnTqHb7bLGibupIAiCIAjbktjKJIq7qSBsPy666CIcPnwYJ06c2Ohd4bF0FujPA1OPc3p5t9vFRRddxNqEBImCIAiCIGxL+qlkEgVhO9NqtXDJJZds9G7wectO8/P3pgGl1mUTIjcVBEEQBGFbInJTQRA2Ncuz6/bWEiQKgiAIgrAtEbmpIAibmvn1k8lKkCgIgiAIwrakJ5lEQRA2I91d5ufCqXXbhASJgiAIgiBsSyiTGAUKyxIkCoKwWRjLgsT5k+u2CQkSBUEQBEHYllBN4ng7lEyiIAibh7Hd5ueCBImCIAiCIAjnFAoSJzuRZBIFQdg8UJAomURBEARBEIRzS5wauel4J0IvTlhjj04vYn45Xo/dEgRBGEzYNj/7i+u2CQkSBUEQBEHYllBN4ng7ZLub/vu3/Rt+4QM3rcduCYIgDCbNFrXipXXbhASJgiAIgiBsS1JtgsRu5FeTeMfhmXO9S4IgCKujKUhcXrdNSJAoCIIgCMK2JMnkpp1WgFQDaapXGVEeJwiCsCGkmdRdMomCIAiCIAjnliTLJHaiEADQT92yieKEKgjChkL3KskkCoIgCIIgnFtSK5MIFDWKq7HU55ncCIIg1LHUT3DVLYehNVOdMIRMYrRu7ywIgiAIgjDC5HLTiBkkMp1QBUEQ6nj3dQ/iXdccwHg7xMue/jj3gVKTKAiCIAiCsD6knnLT5b7ITQVBWDvLmSrh4Ml53kCpSRQEQRAEoY5/vesYzsz3Nno3NjXU9UIyiYIgbAT7JjsAgJNzzIxg6plJnH4EWDjt9FIJEgVBEARhk3F2qY9f/cgt+JW/vnmjd2VTkxvXZDWJfcdeiUuSSRQE4Rywa7wFADg5x1zw8+2T+M6nA+/8fqeXSpAoCIIgCJsMynjdeUT69K2F3Lgmk5vGjq0tlsW4RhCEc8jJWWZGkGoSEw81SW/W6WUSJAqCIAjCJiPOMl7Srq+gn6S4/zG3yQ+x0rjGMZMoLTAEQTgHUF00X24qNYmCIAiCIFToOQYz24m3f+l+/B/vuJ5lAFENEvvSAkMQhCFCt/JF7j3FtyaRgQSJgiAIgrDJcDVY2U7cc/QsAODgyTnnMVST2G2R3NTR3VQyiYIgnAPoHpRwZSG+NYkMJEgUBEEQhE2GazCzndgz0QYAnJ7vO4+RTKIgCBsJ1UW71kPnSJ9EQRAEQRCq9OJiQsFegd6i7B43QeL0gruRQ94nkTKJjjJe27gmleMvCIIndP/mZxKlJlEQBEEQhAp2JnFZevYBAHZnVvKnGb0jVxjXOE7U7BYYUh8qCIIv6VrlpkkPWCdliQSJgiAIgrDJsPv5LUvPPgBAKwv0zjAyiTQxo5pE1z6JdmAux18QBF+8M4naWhxMHCWnzGBSgkRBEARB2GTYtXOSyTLQJIuTSczlpnkLDLeJWi+WTK4gCGuHjGvYdeapdd9xlZym7vXagASJgiAIgrDpsDNePXHaBFDUBi4xMnt0GAu5qdtYW5bK2Z4gCIJN6l2TmADRmPl34hj8ub4uQ4JEQRAEQdhk2BkvyWQZKHBzlYwCdiaR5KZuEzV7QtcXp1lBEDyh25WXcU2LgkRH9QSZ3TgiQaIgCIIgbDJsian07DNQwMfJrObGNS3/TKL0rBQEwReSm6aa6ZSsE6A1bv7t2gZDgkRBEARB2NrYgckw5KZxkmKxN9oZSwr4lhiZVRrTDnl9EkuZRKkJFQTBEzswZNWXlzKJjjJSO0jUq9/rJEgUBEEQhE1Gf8iZxNd/4jZc+rv/uu7bWQu0Is+pEUy1hlJAm2lcYweJ7CbYgiAIGbFPkEiKB67c1A4mHbKKEiQKgiAIwiZj2MY1n7/zUQDAqTlHWdMGQCvynBrNJNUIlUIUKAC+clPJJAqC4EeqPVQhFOCxaxKtINFBoipBoiAIgiBsMvpDlpueP9UBANz/2Ny6b8uX2MfdVGsEgULElpsW23AdI9Rz6PQCrr33+EbvhiBsCLYqwfleTj0S2UGi3Vtx9TESJAqCsClZ7CV455fvF2dHYVtiZ7yGITd94nkTAIADx2fXfVu+FC0w3O8JaZZJbIVZJtExK1jKJIq76Zr4lb++Gf/5b77B+t6Gzen5Hv7y2gf4DpSCsApeQWKeScyMa3zkppJJFARhq/I3NzyEd375AP72hoc2elcEYejYk4lesv6T670TJpN4cs69Uf2woZpETtAcpxphoBAFQf7/LqTibnrOoMzvPY+e3eA9aeZPrr4Pf/zF+/Clex7b6F0Rthi23NTZBCutZBJjD7lpIkGiIAhbFDKaODq9tMF7IgjDJ/ZZfV7T9sw2RjnbQ/OrXpw6W8mnWZBImUTXSVos7qbnjEsftwMAcOfhmQ3ek2a6WR/Nh0/Nb/CeCFsNO5PovMBVDRJ9+iQ6BJYSJAqCsCnZN9kGAJxgGmn8fw+cxB/88z3rsUuCMDTiIbubUrZslNtgpB6TrUSbIFEphTBQ4m66AZyX1bsenV5kjbv67mO4+eDp9dilFVy4qwsAOMLcR0FYjZJxjeuCU16TSHJTx3lQYgWJkkkUBGGrQn3NTszygsRf/Kuv44NfOzjSGRFBWI3esPskZoHQ4ghfN3EpSHTbzyQFAmWyiFGgWJlEbvZRqKdwpeUdxys/fAuueN+N67FLKyD32yNnJEgUzi1rq0nk9km0axIlkygIwhaF6o9OMoPEnWMtAMDhITzse3GKV37gJtz6yJl135awvRh6JnETyE3tFXlXh1MjNzX/boUBqyaRJIhiZrI2fGpJhw2dF6fmeTW5n7rlMH77M3euxy4JWwR7jYlfk8g0rrHlpunqgaUEiYIgbEpoYnaSKTd93E4jGzp0ZuGc71OVgyfnccODp/DGq+5Y920J24t+kqLbMo/wYUyuqc3DKAeJiU8mURt3UwBQqhxoDiJONTotEySKcc3aSPJM4uieW3T+a8fzg/hv/3A7Pvb1R9Zjl4QtglefxGoLDAenUgAVuakEiYIgbFFoYsHtUZYHiafXP0ikDEXCnFgIwmr0E412GKAdBkORmyabQG6aeGYSg0xKGAbK2fAmSXUepPelBcaaiD3lpsOEMve+SeNRXlwRNhY/uWk1k+gqN43r/92ABImCIGxK6MbKlXrtHjeGN4/OrL8rKu2a68RTEFzpJylaYYB2NJwgkSbJXOOaWx4+jW+fmFuPXVqBfZ25TsrJuAYAQqWcg4A4TdGVTOI5Ia9J9AykuNk9H/qezxuCq3gZJp++9TAuftPnMb+8etAgnHvsxa2+6/lFQWLUzd7E8fyyJaYSJAqCsFUhiQa3kTWtWg/jgUiTd8kkCueaONFohQE6UTAUmV4hN+Vdby9/z4340T/9ynrs0gpinyAxteWmyvlaTVOgk7XhEeOatUH3cN9M4jCy27RI4uw+mUELEMeZtfPD5P3XfxsA8JC099gQ0lQX95L1Nq6xXydyU0EQtio0IeQu7CZ5kLj+EwuavIsaTTjX9NM06+8XDCVIoetmlGVzdibRVYaealtu6p6VKmUSmTehmQXHCd02gU7fZeYCBDE9hONJ3zE3a7973BilcV24fZhZ7OMFf3Id7j7K6zdJZm5yXm4MiRUkOi96U01i1AFUwDCuse7fkkkUBGGr4ivhpAn1Qm/9M4m0Mi7uh8K5hprAR6F7b7+1QHV3m6Um0TVwtjOJgVLO16pdkxgzgvTbD03jGW+9Gp+/41HnMVudJM8kup9bdjA/s7j+wQ2dT9wgcVdW3jCMTOI3Dp7GwZPz+JMv3scaRyUY00M4jsJKUq3zBaee672cArwgAsK2u3FNSW4qmURBELYovoFXLjcdQlPwZZGbCutEolFkEoewCEGBKCdIHHYtbpLqvH+qqywwSZFnEgNWTaJGJ2uBwTHPuvfYWQDAtfcddx6z1aHDx5Gb2vf/YQSJdP5zpd0TbXOODKO8YaobAQBml3jb2pVlO08z23sI54Yk1ei0uHLT7HUqBMKOp9xUMomCIGxRfJMnvjWJj5xawPGzPLMbWnUehrGCsL1ItUaggFaoWJksX2gbHLnp0pBbGpgVeV6dYKqLPolB4B7YJqlGFCiEgWLVRbczWdkwzIY2C4lHTaIdmA+zTyj3e6MFCF8pLYdWdm5xg8Qdmdx0lM11tjKJRt5z1flekmcSQyBsefZJlCBREIQtSmLdTDlZRZrscoPEH/nja/GD/+sa1hiRmwrrRZpqBEohCoZTkxjnNYmpcyA1jLpfmzgpZFs+clPjbsoIEkOFKODJfVuhn9nNLQ+fxus+/s0t6ZScZ+kYCxB2ptjXFZUDBaVc45rcuXUICyb0nJld8susSpC4MaR2JtH1XkI1iUFo5KbO7qZ2kChyU0EQtij2s5qzukuT3YUhyE17EiQK60SS1SS2QsWSOx6fXcJv/sPt7FYWJedQxwkvdxtrxa7t8TGuCZRyViiY4x9kxkHuxz/KtsXNSL3mw7fgn24/uiUn8hSYczKC9vHjBm4+0OJiP9GsQL2f8D+bL7TwwM0k0riZRWmBsREkJek6N5MYAWHk1ydR3E0FQdiq2Cv+rCBxqMY1mbupxIjCOcbITRWiMGDJHd/xpQO46pbD+OxtR1jbsycvrtfbQn+4k85Sg3sf45rAPZMYpxqhgjEOYhz/nmdGigxQTm3BurE45QdSPucjMbccs0sA7EUSzncXe5jy+JJnEpkqGcrk9oYsDxcMiS6k6+5BYvZdqdAEiqnjdyfupoIgbAdsiddy4v5wW2sLDE5NFtWhSCZRONeUMomx+/k1lmXa5pjZhiTVGM9MOJyDxCFnEhONIpPouI9xdhwBIFC8msQwCDK5r/vxp2PHzSztGhteK4Vh4yPJ9A0Spxd6eNrvfRHvuuYB9x1E5XnjoVwZRk2ir8uxb72lcG5IrXu583dIwV4QmUBRuwaJUpMoCMI2IPHMJPYtl0af4O3RGXfzGlpxFndT4VyTaJP5Mu6m7uf/JDkgemQbKEh0nSTbctNhmDel6epy05mFfqkeOS0FicyaxHxix5dJsvvtTZhMIjdIvPngadz07VOsMcOGAql+op3vyXaQyAna5rLv/sM3PczYw7KhCE+5Mny5KX+c3z7e8vAZfO3ASa9tCgWJzoLEIHDPUuc1iYF/JlHkpoIgbFXsFX/OQ9uehPhITh9jOJzS6vFWNJsQNhatM7kj0zhlqmOCRG4msZ+mGG+bsa6TUTuTOJS6sdTuN7Zye8txgme89Wr8n3/zjfx3NEEDqE+i+7bCMOtTybi+SdLn25Sd22/vivfdiJ9//02sMcPGvie7ZhN7sd/9n9YATs/zjqO96MCSmybDl5v6juMGiS9/zw141Qe/7rVNoYBMyFpRwMgkZvdvFRrzGtcgUYvcVBCEbUApk8h4aNtZFx9jDc6YXiaDjVP3FXJBcCGhiUXIczfNyu8wt+zugJimGlqjkJs6B4nFJGSpt/5BYppqdKPmmsQv3fMYAODrB0+XxgTkbhoo54xnkqYIPdxle7kBCu94kCvq8VleG57NQClIdJRlluSmnPt/9lru7dg3k9j3DMB88O2XSsdE5KYbA0neI5+axCACVMCUmyrr34ORIFEQhE1Jcg4yiT7ZDU4zcXvCM4yVZGH7kKS6kJsyzmOarM4x5Ka0sDLGrEm0F1SG0TMx0UVbirpjctZyb6TG4eVMors03J7YcRaAcrkp895Dn4ebAd4M+NyTfeWmnKxveXtre95waxJnFvus+ncAJdkzR71SSGLlGbURFPXljPpmuwUGV24aROY/kZsKgrBV8Q0S40R729ADPOOaci8vWaUVzh2pNq6cfLkj3yafJpETTLmpvaAyjHYYaSm7uvKY2L1V7zl6Nvsd8kyicTd131YUGHdZH+MaV2MdYpi1bcPGDsxdzy373sqrSfc7fnHit+DX95SbPuP3r8YV77uRNWbtDqx+x2YY9cZbGbqXm3ZGHpnEIHTKCppxcTamJX0SBUHYungHiWmaZ0RcJ3f2Q9A3kziMTIqwfbBXnzk1iTR55ARtNPkcYxrX2Nfo0DKJmZlM3T3Bvt7vPjoDwDRip7YZgVLOGRiqSWwxW2Ask9yUmdGi13OzS5sBe+HO9Z7cL7mNMs5laxwnuIlTv8XFtQT3dxyeYb2+5MDKWJSk69tXbroVFy6GSele7novyVtgBEx308QElWHLKfsoQaIgCJuSUh0Ly0igcGl0XbWzJyRLjIevPXnhjBOE1SjcTRUra5BnsjzMN7gtMOxrdBiZxDgxEtx2VC/Bpf2Z6ka451GTSVzqJ3lbkJDpbhoq09vMR27KzWhR5nHJc0I+yvVmqS4Mh1ydYu1MLHeRkOD1ZeS3gLG3N4zjX/5s/MDZN9ibZzolC2XS7F4ehUHJkGnwoOyYk3TUNbjUWZAYhCI3FQRh6+LbAiNOde7S6Dq5th++nJX8cnC59TIAwsZRuJsGrBYMNHnsMbKPlGko3E0dAynPa9SXQrZVHyTS5/j+i3bi3kdnARhlAAUoSrk7RFJmybcmkS03JUmg533Ex8l5WBhXWjMd9alJ9GmBBPDuyXGSYiJzBmYtSg7RuMa3l2MuifU8tzj1zcJKzIIT0OaoEko1iUGz3HTuBHD7JwtbX5GbCoKwHfBtgREnKbvhtu/EoiS3kyBROIeQu2nEacAMv0xW3zOTaF+jw5gkk2wrCtXAmsQnnTeJQ2cWoLXGUr+Qnxt309W3Q58rDAIEilcTSseSU8dov943kzg/hEyuL2mq0Ykok+h2XEo1iUwlCcFRd5jFRX4mnc6nYZjCeGcSSW7qWa/JqW8WVkImZBHHhMzOJA6Sm978fuAzVwI3vTsbl5jXhy1xNxUEYfTRWuNPr74Pdx3h1V/41iT27Ye9aybReh1r9Tn1m5AI24s/+eJ9+B//fA9rDE0s2iGjATP8gsQkzyTyZNqx5zXqS6oLx9e6Y0L78117xrHQS3B6vmcyiVFRk+jibkrvE2V9EjlOkra7Ka8mbm3ZnlGWBMapRqfV3LqkDgqax1ohq/6u760KSTFJmUTnxUU/aauvEYxvWQSdz/3Er1XTKJ9bm4GScY2z3JRqEsndtOE76M2Zn49kJkh5JjEEEgkSBUEYcZbjFH/+bw/gP72X5+SWpBqtMDMSYE541zLZ5RjX2PVNYlwjNPEX1z6Av/raQZzJ2jK44O1uSpksD4ketwXGRmQSoyxwrvt8JvsKPH7POADg2yfnAQDd7HMZd9PVjyVNpAOl2JlE+17FykDGfNmiHWyM8kTe9LfkmYnRvXuiE3lnElmtMxKrTMFxnP39cgJZ3566vu2dYk/pLiFy07VRaoHBNa6h+sImE5o50xsWi9PFuCAUuakgCJsDWs3lSl0Sy+zA9cGmtVkpHcvH8SYkAH+FtpNlKXwzAML24dZHzji/NpdWBkEma3OU6eWZLPeJKE0+qQWGa01WqSYxGYbczm6BUZ9JjIIAF+0eAwA8cNysslOAEii3/nKU1aOaRFezG6B8r2JJfj0yiXaQMr88uvefONWW4zTPFGm8HbLLDQieKiTFRIf3vKFtTbRDLMeJ8zXq28ux1KaD85zydIolJEhcG7YCwvmeUO2TqBvGzR03PxdOF+PI3VSMawRBGHU4mTmbcrDHW9nlTkjshygrk5jq3OxA5KZCE1mbPtY5Qo547Yhkem4Ty+U1yE3JXMQ1Czl0uWm+Il+f3TZb/koAACAASURBVIuTFGGg8LidJkh8iDKJJXdTl+2Yn2Fg3E05NaF29spZWobiHsSpSbSP+ShP5BPLuMbVuMM3SLRbj3BNyMbyTKLbuNzwqRMh1e7BX6m/LqcnY+oX7NnZK86CKyH19muDnJJbnPryUk3iIOMayiSeKcbljqjSAkMQhBGHrPG5dRip9qkt9KutKtWWeK4+y4NUaIL6r3Emdmnubkr95dzOZZ+aRMqU5Zl7x7FDl5vqQrZVN9mNU40oVNg11kKggCPTiwCAsbaZCinl5lRKk+oo9G+BAfDUEz4OlH3PrJkvWmvcd2yWPS7RhdzUVd1RLFyEzHYP1jFhnJNpqjHOPP/pecOtZbQDBU4GOPG83nwkuL01SlSFgsJwi1FfXqpJHCA3na0JEvM6RskkCoIw4vhmEuOkkJu6TpxolXqsxast8TUESFNLoicPUqGBKMgkyYxzpHA3zTIwTFdIn0wiN3OfpEWWdDjGNWZ7g/okRoFCECjsHm/jaBYkUoASBnCSjtLCVrcVGrkvR25q7ZePw6xvJtH3PsvhM988ghe/83pce+9x5zFUApD3SXTMJNL3NNYKvdo9AHwTMlKguEo5i7pJ5nPK2sc5hnOor1FOkupckeAacNvnljzb1kaqTX1zOwwYmUSSm2ZZwTp30zQBlmeAqAvEi0B/MatJjERuKgjC5oAe1Ipmk46k2kyS21HgXCPlm0m0Jy6cyZbJJJLcVDKJQj2UDeScI2lKdSxZJtFxcl1kEt3rGCkIakUBAuV+3aS6kIQPYyKpS30Sa+SmqUaYBeR7Jto4Or0EwDKuUW71hTSR7rZCBMxMov1aTpBIUsUk1c59Me1jvjiEFhgHshrPex496zyGDgfX3dSWQPOCbc92RtrUlyvF6a9bqeV1XZS0a0kZ/S1LGcF1d271M8kRVmIyieY54FWTqMJ6uWmSGaFNfYf5uThdMa4Rd1NBEEacxZ65KXLlpiTR6DRIy+qo1iS6mnfQA7EVKubEoghIpSbR8PCpeQmYK4QhyU0Zq/9WQATw5aZmjNv5n/cFVM1SzjriNC2Mm4bkbhoo1TjZShKdB+S7J9o4djYLEsm4xjHgo3vWWCtExAwS7Yk8K0i0gxsPSeAwMom0IMA1hAEKKbPrOZlYEmiO0YuvuQvVu7YZ5z/15eTLTf2ydLGv3NRy/HaWm9qyackkrolE230SGTWJKjDSiSAsCqVLb5wFiZMXmJ+LpwvjmqAhsKwgQaIgCBuKt9yUHtoRb9IKFJMZd+Makg1FvCAxTdEKA7TDQFpgwEy0/sMfX4fXfPiWjd6VkSKvSWTZ5Jughsa6ypRKxinMrA1db64TySQFojBgXaNrgcx8muoE6Z4BAHsn2vnvx6xMosta1VKeSQxMb0VmJrGQ4PrJVF3vQcOuSSTzGU7Wkua2RQsMXr1rJ2JI9FANpHiZRO75TxP+8TxIdP3e/DKCcZJighnsme2leZDoLFuXIPGckWbGNa5ydzMoMRlEoDngIzlpHiSeKYxrRlVuqpR6slJqSSn1Eet3r1RKPayUmldKfVYptcf62x6l1Geyvz2slHpl5f0axwqCMPr4Bomp9ggSK/3euC6NE21eT64kNRPrTiuQ7BmKie5X7j+xwXsyWtC8gG1cE4CdSbRf5xwk6qIvYLvBpn16oZe3lMj3MZv8dMLAy1qfg873McsI1ky2kjRFlGVt91hBIgU3oYJTfSEFQV6ZxDRlL1IBJgDgZmV7Q5ab5plEjpFMnknk1dbSoetEIdMAiF9frrWGzurGOpG7uUhhXMN14fYzN4pTzQ5IgbJTuLMiQYxrzhm0ABFyFpx0VlsImGCxriZxRSbxjGVcM7py078E8A36H6XU9wF4H4BfAnABgAUA7668vpf97RcBvCcb4zJWEIQRZ4ncTZnjyDa6zXho0ypdO+TVltgGBJwHYpKmCJVCtxWK3BRicNAELUJwjk+ayU0p6HGV3PnUEtktH5oWZa78u1vword/pfQ3mvx0WuufSaSPHygz2arrd2hnEi/ZN5H/vuiT6FaTSAtbVJPIkjt6TMgBE3BMMuubh21c08k+F8lxXbBdSgFOdjvNthk412gCfn0S7Ux6JwqdM/5Jbq7j727K6ndoyUa57VW4x9/XpVcoYy9ABEH9fasWqi0EmttZ1AaJqdUCY8SCRKXUzwOYBnCN9etfBPBPWuvrtdZzAN4M4GeVUlNKqQkALwfwZq31nNb6awD+ESYoHDh2WJ9JEIS14Z1JzLJ0vBqR4mHfYthNF4Y3ETNI1AhDhW4rYMmGtiqbZcX50OkFPP0tX1yRGVsv6LzkSZk1VBYQ2e+xGmlmwAG4139RZsPYtNcHRd8+aY7VNx85U9rHIDCLMuu9QJBamcSwIZMYJxqtzLjmPz3r8ZjqRHjy+ZO4aLfpm2gmaatva8kKEqPALbC094HbSoReO9nNgg3HwGHYQSKdi5xM4ooenIyaRLqPO9dxoTCFiQLlvJ90LuWLJEyZ9rinKyrAbWWRoh3yzKUAY3pVmLm5LjZJJvFcYM9JQlV/36qlFCQ2tMDI5abnm5+53DQEwmi05KZKqR0A3grgNyp/+j4At9P/aK0fhMkcPiX7L9Za32+9/vZszGpjBUHYBPjXJKZsuWk+kcwMb1xXW/0ziZncLgqlJhH+9v/D5ot3H8PsUoyPfv3hoWwv74HH7NsWZu0cAPcgMU5Sttw61ZWJTM22Ln+CqfT4xkOn89+ZlhMBOi3edeMD7aNSymQEazZnZxJ3jrdw3Ruejy+8/ofzNiKBGlwTdHR6EX/wz/fkjenH2iHCQLEyWYmd7WHW0o0x20T41DGuBZrgLjGkrf6ZROSZdK5sNwp46g463CS37rkGlxWjNFcJqG/dZD/RiMLAGKC4thJJTSYrb0EictOhYi9AhA0LcLWQbBRolpvGy+bn2C4jL12wjWtaI9cn8Q8AfFBrfbjy+0kAM5XfzQCYyv5W9VKmv602toRS6kql1H6l1P4TJ6QeRhBGBaqV0ZrncJpkJhW8lV3zM1QKrYZeanXQ6jO7JlHrbEISiNwU5cnELKP/17CZyjI2w9pHmkyy3U2DIpPoms1KUs02CbGvm6Z6P5oIn5zrlfYxUGBl+32hXQoyA4i6QNauSQSAvZOdvKYTQKPhDfHaj96KD37tIG552GRLu1Gw6pgqdr891yCdeglyW/fQMVdqODWJeUacaQgDFCUArkFKqk2WuhUEbLlvFJrWMa7bKibyYC1KJvlzg2cmY58X3PKGKFBoBcq5tjN3/GZmt0t9Ekd4wW/UsRcgmmTyOUduBW77uPm3XZPYmEnM7sVhBxjfUzauGSW5qVLqMgAvAvCOmj/PAdhR+d0OALOr/G21sSW01u/XWl+utb78vPPO430AQRDWDXuFm51JUTwpWyHtMO0sfNxN+4l2rhtIEmNt3Y3CdTfu2AyU2y+M7sRistMCAMwurb7Sula01kVNIqtPIgVEzEyiFaRwZXNBgIH1fgBwZsEKEhPbEZJ3/p+YXWYtGjnJTa1MYh1KKQw6jLcdmgZgMoqACYyjhm01kaQpO2tGGccJZisF+t6mOtFQ5Ka0PU5ASsFMECi0gsC5LRGpNFphgCR1vyf3kxStwGTbONsCkPfl5dbAj7eZ7qZraGURhbwFUNrHDlPuW5LEygKoN/YCRNN9K+cDLwA++6vm3yQbBVZ3Nw1bwNjuirtpBCQjEiQCeD6AiwE8opQ6BuA3AbxcKXUrgLsBPINeqJR6IoAOgPuz/yKl1JOt93pGNgarjBUEAcCdh2fYPQiHiT154fXXMo2xfVZ2wyDg9XuruKI6T67zTKIY1wCbxzad4ohhZBLtua1r/zuAMonI2yk4q5S0ZvekK8lNm9pLZNfEmYUisDaZRJ4jJGBqQp/9P7+M91//becxtnFN0BDIGvlrc5AYDjCuse+hD59aAGAMb1x7KxK2bNS9Kbt53Rjze6PAfbITse8/X7rnMRyfXWKNKWpreQZMAPXgZGT3UuotZ75PV3llnJhAqsmlt3YfS8Y1/OfNGLMmsdwnkRdwR4FCFLjXadI+diKe3NSupRPjGn+SpFiAoBY8qy54mBetLjfNM4ltK0hMTX/FEZObvh/AkwBclv33XgCfB/BiAB8F8BNKqR/OjGreCuDTWutZrfU8gE8DeKtSakIp9TwAPwXgw9n7No4d0ucShJHmhgdO4if+4mv42xse2uhdaaRsyc/IHKRmksx6aNuyoTBwlskULTD4GZggl5tKJrGXJNa/R3diQSv5wwgS7foyTiaRMimUGXOVm5oghdc2I58QUgDWkKUDTCsMIs0yG9w+iYfOmCDs2vuOO48pahL9M4mDahKnreD30ZkltKMg71PJChIT7R3s+daSTnZ5/V37SYpX/91+/ML7b3IeA/gZMNGhC/Nm4u6fzRjXZEEiw4QpCgNPuSmzT2jubsqUm9oOxMyFo4AbbGu/mlA6J8dboXONprAS+9yiBaxVlQn9hUomMQJ0ihVNXmuDRKtP4qjITbXWC1rrY/QfjEx0SWt9Qmt9N4BfhQn4jsPUE77WGv5aAGPZ3z4O4NeyMXAYKwjbmqMzZiX4jsPV0t3RwW4o7WrIAJSbG7Nlc5nhQeK82lpeyeesJEeBQqcVSpAIv0buGwFNwochN7UDDNdJpM4DIp67adWkghtsDGxUn32fp+fLNYnUpoblbuohfEita3twJrF52jMoK3h8drn0/3QvCDKJqqtaI7FrEpmZLG7rjNiSqXLkpvT+D56Ydx4DFOcgp0aQxihlen72HcfG2b2Vakpdg6J+otHKA1LHTLotN2UoUGjcONu4xs/dVFuOr67fAT0D2e6y1sLFKKtCRh06jtFqJmR2zeHybGFAAxQ/q3WJJblpVpNItYyBm9w0Yn2ac4TW+i2V//8YgI81vPY0gJ8e8F6NYwVhu9NmNl/eCEqZREZvpzSTm4bKPWizZXOuPdEA+4FobpnuTZHNym43ErkpsHnkpjRJOzuUTCI/SLSlXjSxcKnJ8jWpKGUSA4W6eWSRSeyXxgVMiZ4vhdy0CNxW7GOSIuw0T3tI7lVHVXo5s2g+Z2RN7GxTnCbiNGUHiXRsua0zKCMx2Ylw5Myi0xiAdx+u2x4ns2rfk1uhcl+4yO6t5EzrnElMKJPIWFystsBYd7mpX01ikmp0IrMAyv1s3pnEdjjSqpBRp7oAZ/+uxOyx4t9LZ4uMIGDko0AmObXub6VM4i7jbjp1QeZuGo2U3FQQhDXywj+9Du+65gBrTCcPEkc3i2WvmrrWlZhxmXGNT03iANlc07aAYkWYs5JM7qaj/B0Mi81iXEOGFq4T1rVgZ7Nd5aYl23RXiRKKyUeX2YKh3MurPiClie3ccpx/zySJbUchLyPi/MqCct1kfaASpzqXJ9YxyKn0+FmTSXzXLzwTAPLG9hSku2Ru0lQj1cjdZbkZKTIX4d7vuq2Qdb35TvppeyyXauuezMqAZdLhVkByU8dMIkmgmfWP9j46t5cgU5goRKA4clNPCbouDICcXWLpHIm4EnTzuu4Q2ttsZexza6AqZO6x4t/LsyZrqCy5KbBSPmoHieN7gHgRWJ4bPbmpIAhr58ET83j7l3ieTO1w9DOJJbkpoyaRshQst7ncpbFZNte0LYCfgaEaKDGuMdjHbZTPSQoOOa6VvvhkEm3b9IAhN61mErkOiIOuG/t304u9/Hdcsw/AL0gp9UlsqEmk/WlCDahJJLnpC7/nfNzwph/FVb/2XADlTOJqFFmbTCLpev/R1e+Nd98yQaL7uey7gEPb41w39rnFzYAFypabussrI7bcFPk+NvXgrN1W9jpzDbg7XNvnBeda0NosnLYi9xYYeQuSiFknm1iZxBG+l486SWVOAqD+/Fo8U/x7ecYEiXYLDGB1uSkALJzMjGuyFhirXKsSJArCFoYewCM9IfdssJ7qwgLdNeNjZ2CaZHODxo1xM4lajGuI47NLeOT0Qv7/nEnrsKHsNkc250viMSG0DZgo5nGZl6+sP3LNGpiflIGvCwLs7MqZeTM5IXMRbk0iyfIUVpdvEqU+iQPadAyqSRzkbnpybhljrRATnQgX7hrD93yH6b7FyeRWG8e7Zntyd2V2w/kiS8QJNtYcJHLkptaCRxS414mnWcBPEl9+cMmXZJo2Be6fzx7XablfA3RejLVCVnuJhCS4Ab9OP8qMU7jn1ng7kiBxDdjuvmGuSqg5nqUgkWoSs3sZBYtVh9OqcQ0RRMbdFFg1m7ghNYmCIAwHmogPK0j85DceQT/ReNVznuA8piQ35TSqz2RDYcOktWkMQBNJtzouoJhcjzObItvmCnGq83qY7ciL33F9qT3CKE8s6LpxlSOvBbu9AXeCxu2TWM1IcV2Bg6yXV924JNW59Jt6JcapRrelsl6m7osk9FrlHiM69UlcLZPYVMsIAGfme9gz0V7x+/z4OwQ3lCGiMgDXTGIuE/YMEsfaoXNACvhfm7Q9zgJQecGDUSeusxpByiS6SkDTwtxlftmt5rh6vbk+b2zDmxYjc1n0xeTJtFOSm4bumUQ7S9piuMvaC6dSk+hPXX157fllB4krahKbMokVuSlBfRKBItvYwPacrQjCJsO3zyE9OIc1IX/jp+7E73z2LtYY2ySBNbnIVk2b5G9aa9x88HTp2Ln0e6vdlsfkmpwkA6XyzA2nD95Www4QgRGvSbRq6tabYkU+dM6Ia11MPnO5qcM9wrffXt4nbsAkOU40zpvsACjaYJC5SKfFk5v6LGoVxjVFv7HqfTNO04F9Ege5m55e6GHv5Mog0dm2HkWGqBUGCBRDIukpd7eDy1S7n8/eNYmagkTeYh9gudIyArBAIV9048grw4AXtK0wPGOWKVB7g8S1l2P2uolOxFpcoWNiFiX5WdJWqNhS5vE2L5AVypSk/MpVblqtScxCuYFyUzuTGDbXMVaQIFEQNgH2M8n1AQUUN/JRNk3pJWmxss6ZXGQP+yCon1h8+tYjuOJ9N+Ifbz9ajHGQzdVuK3v45sYRDvtJ7x1lNYkAz4RgK1EntR3lIJEmWKle//20nSvZbqOlOhaG3NHTXTMKgsZJcpym2DdlgkRaEEh01gImNFI718UuryAx2yfqkwisDIqSZPU+iUD9otzp+R52j68MEgfa1lfIj2OY1cS5TuQ9jWuqmUtncxdPKXiRSeTV0QHFuez6eDMBf8CXm6aF3NSnTygnk5hYizlhoJwzx3kmsR3x3E01SXCD3Hxr1THZORgGASuTaEugOV4CQhl7TjJwwWnhNNAaB6CApWkgXgYic791k5tWMomOclMJEgVhE2CvCp5l9G7L5aYjbJoSp2ku43TtkQUU0rGo4eF7Ys4YTdxp9YgsisTNpMR10koGNO3QPZNoF6STm+F2zSQePrOw4nejvPpsT5LXez9tSWA/0U7nZGKvPrMyWVSj5tenj66bpkb1lEkkuWmSIjeXMttzDBI9FlNKNYkNxyROB7epGOQueHq+h701clOWcY0VbLcCvrlIKwwQetSNcWWqa61JdD2P7TEmk8io96Nzi5lJTK1MIru/LilQuBn4PJPIG8fN0qVUbxlwnFvNz9xd1ssUaXTv5aNOseBnLTjVfQeLZ4DxfUB3pwkYe3NAe9L8LZebVt1NKZNYlZuGIjcVhK2EfeOuyvYGjzM375GekMca41n/QU7LAbLXb5KW7R43K2VnKn3bgCIjwnloh9ZklxMkRoFCK8oK0rfpw/S+Y3MrfjfKEwv7+11vwyHbJRBwC6RSa2LHcTeljHtuwOTRJ85cNytfEycak50Q3VaAM/MUJKYIlXF25GzPT25aBLJBg2yLFnuayHtO1hzK0/M97K4JEn3cZSNPd2WqwfNxNwXcg3Tf1i9rMWEKVLMqpA4T7BVBOqedBTcgKpmLcBQoFaM0tpstN0hMC8dXbrAXBibD7dO7M041S+EkFKSlbLP5XWNN4vhuE+wtngZ680B7wvyt0d20B0CZv7fGgKhrfq9EbioIWwr74cKZtFJmrjfCctN+UjSXdq2jAIpMYpO0jAJPqo8CKiYJDHdTckXMg8Rk5fH8i387gN/69B24+eDpyrYUwoBpVJFqPHB8ZWC1WbnuvuPY0S37pI2ycY19HnImaV89cAKv/8Q3WduqTuQ5UuYwKKSVLvPWYmKXZfYcm6bb2Z6m2ipjJBVg93i7kJtWFldcM4R0zDnGQS6TrThJB7qb5sFlZdxSP8FCL6k1rqHMpMu1TRmCoiaOL3dshfXGQYPGceWm9jno0/PQbMv1Xmd+hllNlrNxTRbsUU0iJysYBp5yU2Zwn1avG+eg1PzstkJWVj3VyB1f2e1tlFmAcD+OabaP2bnFeHYLBSXjmkELTr05oD1lZKML1SCR5KaV7yDpmSwiOYCR5LQkN5VMoiBseuybBmfSSquro9xuoJekrCwKQe0lmqVl5rOftoJE+6HNcjfNahIHZRL/5Or78fGbD+GK992IfpKWJoQcSRoA/OW1D+BFb/8K7j121un1o843HjqN5z5pb+l3o5xJtIMnzqLML33wZnzutqOsjDGdp/k14GiKBBQSPYAnd+TKFlOHSXI/MaYwO7otzC5RCwyUM/CumcTsmHMWEkp9EhuCvSTVA41rKLisjiP5bL27aZC/92rQd21qEhlyUzuTGPGCS/u+5VOTyHre2EEio00QULibOgdg2f2fKzfNyxQYQbptLsLJdpaDy4C1SBgoE9xzTISSVENlxjXceldauHA9jnYmEeD1OBYK6koHas+veAmI2sD4XiuTSHJTunHVyE1D657VGjM/o7YxswGARDKJgrDpsSednJVFegAMw8rflzjR7P5fQDHha5KW0UR/ukZuynY3zbIkrSxrsFowe9O3T1UyiSSJctve/oeNk9mjM0tOrx915pYT7J3s4KcuuzD/3ShnEvul642/nwse1yjHudJe/We5myaWBJqTSbHkdkGDuQi1pJnsRpjLWgvEaZo1EqdMIk9uypkg0z4FypabVoLELLBoomkl/9ScCRLrjGsG1TFWia37T8QJGnR5Is9pXRIFQR5IubdgKN5/scdz16x7j9X2EciC+6DB2bFuXJ5JpHuy6/aKWkZ32a75mctNnWWjxbiIE1za/UUZ95+idzC/3jVgZiATK5AFRnvRb5SxnaOjQfOEuGfkouN7gPlTWWaxkkmsk5uGloJn/qT5ufe7RW4qCFsJezLBWdmlh+AIx4joW5lE1web1tr0hBrgCEYrqTOLVpBYmVy7PrTjrNYjbMhQAMDFe8fxI085DwBwx+GZFfbngHsmMWdI35tp17F+G1vqJxhrhXjnz12Gg3/4MgBwdt9bK4fPLLAmukDZQInjDEyqnoVl9zFxNUhk1Lty3U2LYCNgGXcUxjUmA9+cSQww2YkwtxRn4zIZGzeTmB1z7gQZKDelru5nqgf3XiwykOXfUyaxrgUGp0+lHaRHoXKW18drkKkGAdiBlP06TqBuP6e45xZ9b5wsHfUEBNxNz9JUI1TwkpsGWZlCqt1kuFXDJ86iQJDV8nKNa9hZ0pKUOXA+jlSCwZX7CmXq5Ka110CyXLiUnj0MQAOdLJMYNBjX2L0UAWA5M/E7/3utIFHkpoKw6Vmr3NS10J745zuO4rl/eI230QqrcXOS5vWDPi0AmhzBSO5kZ15dZHP120tzswl7+6XtJRr7Jts4f6qDgyfnV9imA7yay2HyxN/+Al79d7esy3trrbGYBYlKKSiqfRlSJvGH/ve1+JW/vpk1pl8yrnHfT1pEWOi5NekGyu6mgNtEPq2RKLn1SSyClDazcTZtp6mXIGX2J7sRZrNMopH2oTCucfzOKTjkmXaYn0o1N6XW2eS7CUoyVgPu0/MDMoke7qZhEBhXZm62R5HclKGAyBYEAEZNonXcfSS/Zlt8SSanLVGRNeO1T1qL3DQsLRQ6bMvKAHP6JOb9RaOA5SeQpOb8bwX8fod5nSaj3tUYKbmpa7YD/STFc/7XNfjCnY86j6m2SQEa7iXU8mLc6ndImURyN622wKgGia3s9XueaMlNJUgUzhHfevQs2+lvqZ/g7/cfWtcsxXbAfpj5GNckzEzR737ubjw6s8RyUrVhrT4nujCu8XBbJEf7Ort7oNx2ouo2594nsZy1qbuJx2mKVhDg4r0TePjUPMqZRPe6pY3iy996bF3et59oJGnxHQO8Vfy1QOf81zMzIVdKclPGJI2CkwVG5nJFJtHFuKbG3dStT2Ka72crDBjGNUUA3GQu0k81wlBhysokmuCyMHxyPZYUHLIaieeTrWJfq3NyrYtAsI6mmiAKEge2wHAK0ouaRE5GkD4HjeP1BISH3NRzUdJDblrIhHmN6qmdScQMgPM2EZnc1KnlTGlxsfw7m8NnFvCK99yAB0/MlV6T90lkyFvDQKHTCljHX5PjaxiwgmaAn6WOE53J1vk9jrcqZxf7OHZ2Cb/9mTudx9jGTU2LWwBMkBi2gZ3fVfyuXckkVo1rdFoEkADw6muAV3zIBIjSJ3HzsBwnePuX7mdLoobJ3HKMl/7ZV/Hrn7iNNe7PrjmA/37VHfji3eszAd0u+GYS7ZVLzkofTVg5Aan9sOXIxPpJionc3ZS/+tkUuNFEyg6Qy8Y1ylmGm2S1VQODxMRMWp6wdxwPnVqoZDvB+nz5e45wUOkK3dfI4AAAy3xjLfgev36q88DGL5PIWf2vGtes3GetNQ48Npufx7ZtfRHYrL6tUk1ixHNApHO4KQOfpBotkptWMokUpLjeu3K5KWuCbH4OcjdNtYZCc5SoGuo7z8z3EChg51hrxZh8YueQJbLb4nCUDBRcGgdKnkwyCoO1yU2ZLRi44+zWJWFDvWvTtuxyA86zw86AObnSljL3zQt+f/gv92L/w2fwtzc8lO8jUDiOskx5FNAJTZDo3HOyEgC7jin20V1umqQpwlCxs9TbAc68yXaqF4ndvAAAIABJREFUHliWkiybmsS93138Ls8kknFN5TtIkyKABIDzLwWe9nLz7yaJagUJEkeAq245jHddcwB//m8HNnpXGqFVomvvO84aR/2yaCVW8KNck8jIUlgPCk52j2ytZ5fcZXM+9Shaa8Spxpiv3NSSllVX/+Oa1fCytKn+Znzw5Dw+d9uR8ntVTHLqVvr6SYpWGOBxu8ZwYnY5f2iuJZM4DEnmemf5F7MH5ljLziQOR27qO3HpxymmOuac5FxvFLDNM+SmeYP7vHfhyu296VN34sfecT2uu+8EgKpxjXmNk9yxaoDC7C0HoNbdUWudT76nui0s9BIkqc7HdVru/UWB4l7iU5NY7pNY2U+4ZRKrl8Sp+R52j7drTW+Kid3q+1gyrmFMyNdiXBMo/kTetybRq0+ifS9vuCfXjssk0JxMOo0LAl4GMneqXqWX3R2HpwEY4zLA+r4V0900+2wdhroAoMxxJhtlupuyHb+1zg2wAKDnqErYytCx5CwsVheu7fcpEfeM3HTvE4vfVYPEWrlpiFpEbrp5oMnT0enFDd6TZmhVitvkmGu9LdRTCnhYWTr+yi5Q1EdRRsBtW5ZEz3Efaf/GmDba9PwzRhr1N1Z7f/LMRvYSCi7rbsav+quv4/WfuK20GkgP7UEmIfkkOQsuzmZtAErupswgkROg+OKbbZtfjnHF+27Etx4d3KYjDxLbxeOmHQ0pSPScuPSTFJNZX0fO9UYxBEcVssLdtGafb88mn7dkrrd0bnZbYeMiyaBtsWsS08IVtM7dkc6hVuZuCphrLk3LbQpcnx/0/pwaXrsFRl3GX2sNrYtsYR1NAffMYr82iwjAurY5mcQArUAxJIHIximWAUpSkQS6Zpd6npnEtbTACAKemViSOtRx1W0vLdcyuhyTUplCw/NmOU5w5IyZwx3LXKntzxaxauCLmkTA/TvQuliU1NrtmNgLEFzH79A6t0a13n6Y+DxL6/wVagP13LjGrklcTW6alOWmNtIncfOwO6tzODXC2TbfGwDdQEbZ7n4z4Nvc2x7HChKzCSv1O3PBnpC7Bjc0Se22AijFr0kcZCZjP/wLt0VL2tQwIaHj+/Cphfx3caLzZs9A/cOgnxYtAIDCVTUKbHdTt89H81jOiqQv3IUf4u6jZ3HzwdN406fuGPg6CpjsTGLEmOiuBV/HvX6qMbmWTCJjcYWOw/gA4xp637uOGnc6krOOt0OvFgx5TaJzc+/CuKZuIlm4bwb5IsnccpxnG7iTXXp/15oxs4/mZylwsMbSP93cTcvbTFKdP8uqcIKUkrogZAR7ltw0DNzr9ijbljuAOh5/+16+3sY1tikMJ0hMMylzfv473k5IFdJmSHBL2Z6Gifyh0wtINXDJvgmcXYoRJ2lu5gR4uJta1w1ncSVQQCsa/NkOnV7I72vV+mZnx++kGmzLHM+nV2StcU31O0gTkxWMOub/f+6jwFNfZuSjgCU3rWYSk7JxjU1T24zqy5w+hbCu0DPr5NwIB4mezlV5kCg3kDVhT0BYxjWemUSqH+NkEu3veLWH2kIvxs0HT+cPllYYoBUEzm0RYsuAo2mSFtdmEldfNf2uPabhLJkPAMUkOQgUVIMkJ07SvCYLKIJE++bPvY6GkUnk9N20oaDmW8dmB75usb+yJpFjGrQW7IkLx1ihH6f598iqScy+50WPPondAS0w6Ly568gMtNZ5kDjWDlnupoldk8iobYutya6ZSFb/TtexlUlcik3rmMBqgcEMEgH3YEPnk616uSn9a7C7ab3hDX2OQWOcatusTG4UcMxFzM/8vsVoE2Fne5zdTS3Jc538uQkf4xp6Gd0n2XLTvBzLPbhky01pUTJsnsgfPGkWFZ/5+F0AgOnFfqkvJ8/d1ARtbWaQSMFlK2j+bEv9BD/8R9fijVeZxT27vQc7kxgWfSpFbuqXTKk6rgM1C07xsvlJQeKl/xH4hY8DnSnz/6ohk1itSbSh/okiNx19aOXm5NzyBu9JM76rRNzJwUZxz9GzI+3O5es2l5QykO4Pe8r6nGXUJPYZQeJrPnwLrnjfjTiSSaxbkTFXcP0OckewAatv9v5QbWVV2lG3avr4PeMAgG9bQaI9SQ5rbNrT1PRttDOJ05kzbGQ9SLk1ib5ZPt9tuE60gOK+tdq1vVRTkxgFakXLkvXAPgc4Tr2JZyaRAob5NfRJrLvX0uTj5FwPj51dxmLfnM/j7YjnbupZ20YmIWZs3YJM8b6TeSaxn0v7OIEsUH5/14nXaplE2/20iab9tDNCTWNcMp55C5KQmUmsyB2dM4nVINFxnO/iYppqlksvjQGKHoSua0d0TjY50jaRZK0zBjYur46xMolN19vcsrm/XLzP1IlNL/Ty8x/gZRITMq7JWse4LuSRc2shW1z5Glr8/OxtR/MxtH+cxTvqk9iWTGKOj3u5XafcqApJstgg7NS/SVNNok6Kv1URuenmga6tUyMcJPpKw0jSMcqZxIdOzuNl7/oq3vYv9270rjRSdjf1M67hBByUJZrzDBIHTSzSVOOrB04CAG7NaqxaAbNJtOUI1vTQtidEttsiUPS7qrup00Pv2NmlYnt2TVbNw76fZ1IKuZ2dSeTY5AOFNI5TD+eLfV6wDFcc7wmLVtaL4PRDWwv2+XSWIZ1OtXE3DZSf5JfTJ5HO2+6AyXWcaly022S47zoyU5ab5pPk1bdl18RxHGYp2ADqs8BF8BPkiySzS3Ge7eEaN9nv796mw7xOWZlEe3t2zWIT9KcVJljW56/S1G5j0D5GQYAo4PQ7LGSqfplEntzUvn9zyxu6TJOicgDsfo90MROr3V46WIFSR7Vur2579KzdO2nKh84s9PNWFgBYNYmU7cxl2kyDqaa2UADwwPG50v/bvVPDNSxASE2i3zzZNiFrziRmKsNoZQseM7gpkxg3y03JuEbkpqMPnRBDKNHxxneViO5Rrg+njYAmXBS4jCK+NYl2oMQJ1EmKw6lJLE8smm88C9aqKBlxtMIgc2RzfEBZNVCNmURrf+hzVFtn1Pc7NL+zHXmrtSXVB6n9vhNZkEjOvu0wGGibXvv5stcNRW5qbYMjL3adTNS5m3LqqtaCLYGioN0Fkol1opD1HdA1xmqBkZ23FEQ3yU2fduFOACYTYAfeTWYrdRSr1mDb5OeZxJqJZN7/L1ClRRKtzXa4xk2px31LW5MtOib2LcGlJrGp3iwdkElsCizrKGoSefLDct2YW0BqxvnVjfnWsqfp4Ix47RirJrFp4a4OWrjjupumWS9BTgbSPv5N2R56n32TJttzer6Xt7IAzLPKuU9itriSy00dF6pSvXoAbAeJcZKuqLd0D9LTkimSyE09axJtdVNDTbRzJnG1Fhg29HuRm44+rjKJKtfddxyv/rv953hv6ilnpDg1ceakXRrCZNcXuhFzMg2AWdG/4n03smoEfbGPP2d7sWN2rwrduDgtMFxrEhesQOTmrMl5txWixWkAXJNJrHNc3D1uVstOZfW+qdZQymQTlFppdQ8U56wdJNqZBDORqY4pVmNJbndk2mQid4y1WNImwK9PnC/2BMS35ckgqV1dTWK0ATWJZxlBIsnEuq2AlUmka9PnWutGNLleeVz6SYpd4y20QoXpxX5Rk9gK83PZ5TlS1L8ErJrENK0Y1zRkUaKgkFsfzc7/yU5UZNIZNZAEtyl7U20P7bJTTWJ1IT/rkzp4zOrHn2TIE50ok9fzguYwZJqLeMpN7UPOWVyM0zRv5cI5twBzT2bJTXVFyswMnBXjeysZnjXVwKflIHF6oVfKwLMyido8Z3K5qcP9pAj2it6ddZ/txGyhWDs13ysFKWqVBYhvPXoW33zELOyuyFKPsFpsWPhkU0t1ymHDuZzXJHbr32SQ3LTRuMZNbtowWhgmvlLO//w334DWZmJiT8DWA/sG0E80Oo5nDhmRLDBqdIYN3Ug5k0gAeMs/3o39D5/BnUdm8OyL9ziPO3R6AbNLMb73wh3OY8p9EjkPbWtF3mPcepjkULYqChSOZlbh5+/oIAoVQ35VrH7SBLR6f+4lKXZPtLEcp3g0247d762uthAoJrzVTGIrk1EFNRkACm5bYYCpfJJs6i13jrXYNu30HQ8nk1h8FlYT4NJEXqMd1U+i6T3H2xXjmiFkEu37FjeTGDIziVrr/FhyJkx0/6EWIb2a7cWpcc7dOdbKP0fLamS9WgbmzHzPuAdbExJWn0RdTI4DZSbyWut8om3X2tEiCZ3/U90IIaNxOVA9t3gZKXuSXFeTOCCR2LjglKQ6X0yswpH70ne3c6xlMrmOk8pyvz1eU3bTOD4LEhk1qJ3INHJnLXhoq5UL814+qHdt0zgaY7bNk3IWGUGHbdXJTWuyzQCwN3Orn8mMa2yZNieTrhTy/qIu9yA7IzuoKbt9jz8xu1x211xlAeKlf/ZVAMBDb/vxXO4r7qYFSWW+1XTPsKm2gAFqgs08SGyQm+ZBYk0msakFhvRJ3Dz4yq7oYTzNMGTwxZ68s1wCs9dyap2GDV3Y8wyJGFBkRjg90QDgh//oWrzsXV9ljbFXmzh1ar6ZRBrHkra6ZhKz4/WcJ+7Nf3fBVBetwL1Gim6sUWBL2VYGbu0wwHfs7OKxrL7Qdpvjyk1JMlqXBbMnyRN5JtFMknd0rUyia5CYfcfDqEm0Jw0+GTBg8CSmriaRIytbC3YQxDFhSlMzaeJkEntJmmdBfBqQU9ag7hyJkxRREGDHWAszC30s9pKSfHeQ4cRiL8Ez/+BL+Pn331S0Ugh4fRKNSYj5d90k2V60mWib858WZqa6LVabjurruPcEZUkC+e6m5fci4lQ3juPIfWcW+2iFCmOtkGXelE/kA54zMEkyI2a2J9F6oPy5eXtp/lx0DUjt3rUcuSM5eapcgsuQcioF6mjC6S9K/XXrxtF1S5n0hV5SMnziyYtpkcq9vjOpCTbqzknbefnUfG+Fu6bLeZykusgkZvvo64C/lXBVQDw6s4g3XnUHTs0tl6XMTRng1eSmJB2tbYHRZFwjLTA2Db6TpTxIXFz/1hmlGgWfIHGEM4m+x58ehkORm2bHf7zNq5GKU42JtrtkxR5nxjAyibFbQEo95J77pCJIPH9HJ5ObOsqo8prEZmlNPzHZl8ft7OLRGROw2W5zTe6mdKzPLPTzB6jJQCIft1JummUSgwCtMEC3FWBmsQ+lTCYlz2w4ThJ85ab7HzqNf9h/iDVmuVRL6hskNo/L5aZRuSZxOJnEYhssuanlLuh6DdjHwDUjDhTHkVbkmxYuoqDIJC70Yoy3CznHIMOJq+85BgC499jsykwioyWFLTcFqpmbIkgMMsk1XXM7uhG7JjHROpexudY62XLSukC2CCKb36NpkjbI3XSQtI948MQc/vBfvoX3fuVB7BxrQSkTuLnKP9P8ewvY5iKRR5BYcill3RP4NYnaDoCVapSuL8dJ6W8lVQgzcA6DQm7KMa4ZlIGk92lHATpRgMVesuK6YfVJtGpJ3eSm5udAAxQAi/00L8M4aWUSBzl+m/cvfn90ehFxYtxNWyNuTviV+0/gtR+9ZSjbsucvg87/6+47gU/uP4TXfvTW0gJQY3Z7NeOaphYYA+WmFCRKJnHk8a3NGWYmMS5lEt33ly4UTt+wYeMr9yUXt2F8NjrmY+2QffzHs/OE1e8q+944E4RyTeIA45oss/SsJ+xGGCjsHm+h2wozuSlXWtb80O4nKVphgAt2dPHY2eX8NeXawma5aZLqvE41tjKJZlx5Y7ZkCgCecoHpXzTVMQEiO5PoKTd9xXtvxBuuGtzcfuW21p5JHLRQsthP0ImCUp+5oQWJ1ufhBIk0uWNlEu0g0aMBOU22miTQURhgVx4kJiX5bhis7F0IAP9272N4/SduW7Ffud29ax2XZVxT10uQtk1/M0FiVpPYjQbK32q3l+p8Ec69BYYlN61xvKT50yB308aaxKS4/pvGDHqMv/pv9+N9X/m2eS8r4HNV5ayQm3ICIlX0zeN83+0ogFLcrHjhbspxzgWK9hJ158hDJ+fxg//zGvzyX38jb01Uctxl1GnSuDzbzMwkUgayTpJMrxlvh5jvxaXrJgrcg/siSHR/bhQOrM2tXABgqZfgot2mzdOp+eWycc0AhccpS1lz8OR8lqXGwJ6Mo8Avf+hmfOHOY0NdzAcGXzekUpq2FqJNltr8fcV5EmdO69yaxDQWuelWwD4hOFLOiaHKTYv94gQptAo8yn0S15pJ9JUEcmTGtI9jrZBVHB0nRSbRpyaRJzd1yyxRTeLeiTaefP4kLthhbnxRGDCMFezVz/Lviv0xze3Pn+ri+OwStNYlt7kgm1hXV67tc52uLdvdMKzNJGYTv+yh/qwn7AaAPNuzWk3ib3zyNnz06w/n/0/Hz6f9Ahf7/OVmqYtxzfu51EtKUlOAt/K/FnxrEknKxskk2tczZ8JELyXZVt19oZ+maGU1iYfPLOCf73g0zzIAJjtWd2792TUPlP7/WLZYEgVmsus6sS4b12T7XVfvl11bk90onwhNdfk1uXaQyDWuKfXOs4bqPNvZ/B5Bw34OzCQ6yE3tY0WLFT7GNZRtY7mbZgsC5hxhZI6VkSRzF45INu3TAqNp8eiT+w9hZrGP6+8/gZf+2Vdxer63MkjkyE0DW9rnMCY//s0OlPbnGG9Hudw0v244fTHTausYhtxUDXZ8XYoT7J1soxMFODnXK7fAGLB4R8oAwGQSE51lEkdcbkrJFK7nhA/VOv0mjmflL3GaluYy9H2vOE+SLEBfTW5avZ8PdDelTOLgMgwJEkcA+wHCWbUjg4wZptz0riMzuPfYWdaYkgGKh9x0VFeZAP8gkWQ1vpnEBY4pTPaQ6LZCZ0MAwHxvY1mg4pMl8qljXG0c9ZCb6ET47Zddije8+KkATE9N9zoWa2LR8NCOM7np7vEW+onGfFX+05A1sM+HIpOYWpPklavWFLjTxP3fXWKMjKjXYuPNP+PT3zyC//czd+X/P8zr5pzITQcEs4v9cv0cMMQWGNnxCxS3T6IZ02FkEn3v43QutcP6bE+aamhtjtnOsRbOZAsX9z02m7+m7pwEgGdctLP0/4dOLwAoZHPOQZu2g8RsP637UCH1ND8nLWezqW5k6gQ5hisluaN79gUwgWp9IGt+DjauMT+rC0eJ1rn5zsoxq2ekOlGAx+8ZK+1HKwycgwY7+xgGjGDb+t4irtwxMC0YuPcEqnd1fU7Zmawmx2m6vzzniXuwHKe4/dB05Zx0y4prba4l2hbt86r76GBcU7RlUhhrh0Zuqv36JCa63MrCRb5ebWVh3mfluMVMhbBvsoOTc8srAuCmXTx+tnBFnVnsW865oy03naz0LV5PSjWJA66b45nD7NxyXDauqblvmV9QkNiqf8O8BUZdTeJq7qYSJI48pZ5QjBsyGQRwT/7/+Odfw0veyTNOKWUSGZksGjfKmUT78wyy8q9CshpfGcM8oyddbpPfClnZ5lTrXJbGqklM+JlE+8Y2KPuS28C3I/zIU87DCy+9AEAmv2KsdAPZ6ltY/9Amuenu8ay58XyvMrFA/bi0yL6eXYzz15QnJCsDUvMZzGue9937Sn93zaQcs1xY6TP4wBlnf1fr8X0v9GqCROU+YV0LNLnaMdZiZfwpk2Iyibxz0myXH2xHDRO7vrUAsXO8qEn59Rc9Of93U8BH991PXPkcAMBDp+bz1wcDAnWtNZb6CU7OkUzb7pOIFftZbVS/Y6yYzNBiJqcmK041W7ZY7pNYY1xjTcaaaDLYsevfqrjUJJ6a6+HyJ5QdsM3xYEppA14WPl7lvtVEcf67O+Ca/TTncTvimJAh378mx+lUa+wca+GPX/EMAMaVczlO0c2yWIFiykaDASYhteOyfbSMa5rMy0huWhjX0OcziwIucwytTQ183qjeJUi0FmryGuCacYv9BN0oNPXNC/1KANz8jJpdLuaZ04t9JNQnccTlphMd8+wZSpDoWJOYB4lLcVnK3JQBpuCvKSvY5G6qk+JvVYLA/E3kpqNP1TbXFbLXHe2aRH6wMWzs5zRn4kqyGt9MIqdxeV6T2ApZN+M4KYJEbr8rwL9GzcW4ZrxTvuG1IkZzb1vH3zCx6yfG/GJXVqQ/vdBHkhSTpqY+WXGSYs9kYWMOIJPWNE+2cuOa7KE+1W3hZ5/5nXjjS74HQBEA1F07dtBvT8oBdxv5Kpxm7v6ZRLdxdS16ht0CY7ITsXq1kk1+txVg2fH6tu8jPsY1ZOe/olG9tQDxuJ1FTcqvv+gp+b+bDCfmlmM8cd8ELnv8LgQKuPvoWShl7iNNE/K7jszgkt/6Ar7nzf+Ky//Hl/N9oIzBoB6EFEa94Knn5X+j+yTH3THVhWxxLXLTsnFNto8DahKLe0L599Q4vI4mRQKRpBpnFnq4aLfJJP7c5Y8HALQC0/LHJWiw73dqgLlLFVvuGAXumcskLRxwOc8A6kPL6cFZ1CQ2Z8Tp+O/N7suPnF6A1oWT6GoB8D/sP2T6FtYpUBiZxCBAY30tffYgMEFi1bgmb9Xk8BXQokyxAOogN01rPltdTWI/Qbcd5iZY1QC4aQGCFkyVMs/SOCmkzIEaYblp1zz/h5NJdKtJpF6V870kv74GZanzbF9TVrCxJnFAJhEw2UTJJI4+9rXlI/fiBBs2HPmVffJzgpQ8kziiq0yA/2ejuQZnQm7DySTGudzU3QEUKNf2cDMpAK9GzX4gDTqP53sJ2lFQqqkCaNLkOCG0JDLNzY2zTGLWt+pMNkmwHfGq+w2Yh92eLGND10iSWK0zarI2VeMaAHj7z12GX3v+k/L9bKoJsq8NamafZxI9F1c4bVl826TYX9VqxjUrahIZRhNrwQ4SOec/NepmZRKtz8Ptk6gUCklmzfkImJrdJ+wdr32Ppkzi/HKMiU6EbivExfsmABRmSk0T8ruPzpT+f6mfYCkuAv26zJntLAoAL3/WRbjs8bvww08uMurcTCLXJdMONmqNayjbOeA9Gt1NrcWlKvTrpvN5eqGHVJsa7IN/+DL871d8PwDzfdr7PYi4EgC4LrD4ZhJNf0WzEM0KEtPClZNjQkbnv2qotyQZ63g7wng7xMEsIz6VBQCDsqsPHJ/DG666A//t728vOYCqmnOkibpsz8rnTbGQON6OsNAvG9c0tWoCjJHJV+4/seLz0vu5LDrZmfJBypWlfoqxVhEklrLUA2o7Z7Nn4eN3j2Nm0dSERtbC0TBqzH2YzBajh5FMca1JnLXm3o/NLqEVmqx9Y3Y7d91qqi9saoERN2cfARNASpA4+pTkph4BmK/c8aGT84xtuZ38K8eNvtzUviB9zF18g3ROWxDa1lg7dG7ADGQudaGxqeadW1kmyzNoWC2TONFeeePiGDnYxfZ1E0J6TRCo3O77zEIvzxABzdKyOE2xd9IUiJ+tySTWrbZWjWvqaKoJsoMXenjQ+/tKeDjZ7bLhkPs410xitacfwDNxWAt0Hk51I7aUljKJrvdXX0WILWWsM+Ao6l0VLt47UfseTe6m88tJLrd6aua4uzO7Hpom5NWs77GZJSz2iiCx7rqxJ5qA6Q362f/6PHz4v/y7/DWsmqxU543EnWvbaibJ57JPYtO1nWcfGz4buULuneyUspgc4xSSLfrUdtL3FTHlraFS/CBRm/PDtFdx/66Lhbv6oM02Dto72c7nLlRvNsi45vAZU4d777FZK5NoHX+Hj1c2Sqv/vu2eiGPtEAvLSSWT2xy4vfajt+CXP3Rznu3S2XGkhQSX761kXNMQbGit8xrxnWOtTDZqBcADgr3ZpRidKMD5Ux2cmaeaxCA/LsOoMfdhw2oSBzy7l/opdmRZ8Eenl7Cj28qv7er7ALDkpg0h26AWGE2BJQCEkchNNwOJZ5BCF7evA+JjViHyatjZBk5N3GYwrrEDE+6qKcDLCNqwahKzfey2QvQdH75AxUjA49zykR+GgVrV3ZRkQjatMHAOgJNVJoRA8aDdlWUFpxf6pZrEoGGSEKcaU5ltf55JTMu1jHWBJX2GJpomd/axml2Kc6MSwP+6IXMgF3yDG1d308V+uiLw4PR6WwsUAE92Il5WPDWTLU4m0ZYAsmoStbVwUVfvak1Qv2NHvQW6qpGpAtm1lk2SSO441aHsS/2EvLpQc3RmEctxmgf6dQ6geU3igDxdyJI7WplE5+NvfpZqEq3N2S0ymhjkbtqUSVwt2Ds1lwWJE+UeZ6ohIK2jdN8aYC5SJU7T3HCHW5NYGNcwFo60aYvQbqhlPDK9iFe85wbcdaTIVqcapYW7erlpEYDtm+zg7qPGeM+WmzYdx4dPmSBxoVfUfwVWKwuX478UJ1lLkGZTmFImsWVqEqvmOvS6KofPGOdQkiHSceS0TqrPdpZf0090pi4KsGuc5KZWAKwUtK73Zji71MdUt4Vd4ya4NPeWYuFoGIt+Pvh6d/hQqklsuG9RoL5vyixEH51Zyuu2m0pn/OWmqchNtwK+kzRqF+CbSfSdELq2KQCKVeBRziQmjpPdKnRMvOWmjIk8bavLbIFBK7DcFWEK1nhBovk53hrcNmB2qZ9PVG1YEqXK6iew8qFNMqZdY0UmsbRqXWPAASBvErxjrJXXYZRlW8GqxjV1NNUE2d/L3HJckS36PXhZctNUZ/LfwcF9FTsoGVS3t1QnNx2SPCmXm3Zb7ExiGBh3U9dJMn2eDqO2Fihne+rqBPN618D0mvyjl38/Pvdfn1d6TdPxnO/Feauk86e6+WvzbdWcj3R/+dirTRbw6PRSKRtcV+9EbzMgSWcyiYya47X0SRzobjooSMz+uMJcUOvcoXjlmPL2q5yaNxN/UicQTUqGOlZbpGqCMntAlklkZGXzFhiMBQ+ti/5+dZPk+46dxf6Hz+An/+JrpW3RMVQNQUpqZXL3ThTHcYc1uW7aTTJrml2K8wXuMODJTRetvqRNE3n7O5roRHlQavdJBFB7DVA/Wj7xAAAgAElEQVTd/PHZwrgsUGpgLXsVbZ3fTXJTUph0WyF2jLXQi1Ms9OKS3L1uHACcXYqxoxth51gbMws98xzP5L7DqjH3gfaKSjnWk8ShJpGeQ/uy+8HR6cXc6IuO/4ognYK/1eSm1XFp3Jx9BDK5qWQSRx5fuSmdkEueARinuXrfYYWkdlz22jjVIytH8K0lWqsDJUemmmRyI5+MYOgRJPq0wKDjONYOB46bXarPJHImMXUuddWHlNbIiv8DTHUj07i2krWpG2dcURV2dKPCuMaepKmVE8KqcU0dzZnE4jqcXeqXF428M4m8msQoyLJmDFWCcyaxl2CsVT4uISNgWAv9JEWgsoULj5rEFqOOznYg5sq07ex2o3FNNkm+4tmPxzMev6v0mtVqEgHgvGzlms63Jtkc3esfnzXcfuzsUqmutP66KTI0TXBqElNttcBwDmyQ78Mgd9NBxjWN7qaJbvxsTdlHgjKJeyqZRJ67piVJHrDAshwn+Mw3D+P+rD2KLdMMQ2Ym0VNuOqgmkXY71cU9syw3ba73o9e85Se/N//9ZIeClObjSJnEONWYph6VAc+4Zn45yTNSjXWr1jNirB1isZ9ktZ10/JvbIO3MggRqM0HjBmUfq7g8EymhMJYZ1wDA6fl+yZQNqA+cZ5diTI21sG+yjRNzy1jqp5jqrJ7J3WiKns9+i/k+2wKaF3jpOUT345nFfk0msTIol5uukkms1iSuKjdtAYlkEkceX7kpnYTcTCKt2nFkiyW5qUcLDGB0zWt8J+VrDRJZRjLZSjan1xWQyY3oYc90RQXM8XAN7ul14+3BEr3ZbEWySothm17n5NbkNgcAu8fbKzKJTXUbVJC/d7JTyH/SsrtpNZitM66p0lSTVZWblnqS+hrXMO4JJJMy5winJtExSKzrk9jgrHmu6SUpojBgZQSpl5pZWQ+gtaMDYnYIui338xgoZ1JqjWuyN44GLEAMcjedXBEkZtmUplrebN+N4U2AmcU+FvtJXiNYd93YAVoTUejublpqgeF4DZT7JK68J1TNdepokoAOqklsyj4Sp+Z7UAp5bXSxLV5NXEmS2XA+/uNtR/H/fPJ2/PKHbobWujSO426apshko9wFj2wxs+F5Y2//geNzKz9bg3TXDrYu2l2YN+Vy0wFmPpRJBICT2f28VKbQcEg+dcth/M5n78RiL8FiPy4WSRom8kZ9QO7WEfqJxtxSXMrk0uetkgeJWSaRFqlUlk10KfGptrKgfbLJg8SWHSQu5+dwMOCcPPv/s/feQbdlV33g74R775df6he6X7ekDpJaCSGU0BiQhMCWisIYCxFcDBhmbMAe12AzpgjWmMwUEpjgGRMNA7YZwxQYDLKEJIJQtpAsulupWy11fvm9L990zp4/9ll773POWjvc773PUs1bVV3f63vvvmffE/Zea/1+67f2Z9hYKnH3yTXje1Jwk1JvfNhGa85hsNnawjX88WhvPr1uSwc2CJGVWAmLtsCo5wG66U0k8fPCWrStJOGIxYJEos1MUmoLIzIk7LjPgyBx0ZpEWoBTFx9yRFID0jxPC6T0OJ1BHhZptSWxUs7dOQIaSfEGiRNLU3GNJOGjjtXaEP1IIqAdtKt7Wu67K1zDoYJlnuPs0WU8cW0fSilM57Vx0jlHnp6PgUe4JhcCfPe6bI3dupn0BAS1xQnRTX/yv3wcb3vgHAAKinOMynwhBVwgrG661KGbanpS9KEWtnmlMMi1clxqv0O3B2dUJl85SGLis+3Wm3WHuiJNknFO8ryqMZ7VBgGhIJGulYSAmeMVGdaXdC+1qVOTyDnJtIf5qJyxSCLV5I4S1U25PolsL0fPd8SgRF2jl6Wkx+WdCY6tDHtBvkR356ybpJLGvO/hywCApzbHuO+JTUyaWjqaZzSS2ARlet9ITHjkMpLoHv89D10C0PQEbH6bGKQL6rIGgRHOSVUrPHZlz4g2kYiQDsD6cyJ7+8fO43t+96P4d+9/FL/+3s80SCLV5PLjtAKu/vfZo7r+95Ere+bzPnVT8snObVJS0iYRSo/I19XdKV7z03+OX3jng61epRySDlhfZVDkZj14anPcojIDEpKoEa+7T62Z1wzdNKC4+6o3/Rl+5V0Pi+/fSDOsqEPYcNoCj/zxaP2986QVIaP7OGvuy766KdFNJeEaX03iTXXTz3tbFEmk7FIykpgvfiwgtQXGwVGRG20L000N2paWQaMFfBEFxJTeWnpcbaT8F+15GOsk0MIWQhJ3xhbdcG1Q5NGiSK4AgYQI1koZh/DoyhDX9qa6Po4QkYCU+W1Hl/HU5j7GsxrzWpk5c0puNG+pbkm/xyMpbSTR0k1Te2ICmo4M+OmmO5M5fukvHsZ3/NZf6bnXtaUkJ/XSDD83Va0D7JVB+3qXh0RPIpRiaVBgPKvietJFJCCkYwHAUpl23driFn3HLqbeVSOJ7dfoviJEjmpgjjVCTlJARPfAINc07YtN704TJDJOMv0rWJOYGGwDB+uT2KabNu/7SnQYwRvA3ycxF5JNZFd2pz2qqZ5HAt20I1wjiYv81SNXce8ZHRA9dGGnhSRrJDF+fdXCTWlrAil8Dgu+LpfWjJPrI/zqX37G/DbTJiKi3s81QwEV0NUnr+1jVim86Gmank19aNtIYn/c+x++jOVBgXvPrOPdD15qahLteeTGuXWrdxzXaOe1vZl5zYckUqKQyhu0KirM8aQyjIcv7eDTF3fx02//lEnatOr0pQRQnuFpzRw/c2m3pa4szVG3zihxTytIDPepnFU1Pnt5Dz/+lo+z799oW6R0ZvFjOcl14XjUr/fE6tCwCzacpDmLiofoplILDBXok1gMcFPd9PPA3DU4JWtn6aZpNz8tWklN2Z2bNqVP3zziobme9rsfegzv/fSlpDGLCtcsgiQqpczmkkzjaTK09P8xRoIrwwQkxR2XMk8T3AwLUchEKaVrG7iaRMGx8B3LrS3p3s59JHGKHadGS1Q3rTSydvbYMmaVwsOXNC3KrRvoZnZdBUrJJCTFvS47k3nrPKYkBACLZPrUTf/68WvtubtoW0rdXkSQaGtg+jWJKSrJixrR1EZljlrFIYIuLdGqC4bnqkxwky5c4zrJonCNj26aMcFl5548vjrET3ztC/Cr3/oSMwZgAqLKouIbSwNDgVvuCHe06aaq9R5nseqmdP+PygVbYLh00+Q5tucA0JotP9tBuunOtKds6o6LozL3++11hyml8OS1fbzoacfMcV0kOb1PYhMkprbAyBvhGhZJ1K+95t5TOLc1xu5krtkdvd/GBWD2/P/I1zwP955ZbymHcr+NVEO/4PYmSGzopkVLAbc/7uruFCfWhjh7dBmb+zPsTudGuIbuke69TGwfwNbzAu1AihsH2D2AFM9deq1GEvlr4Pb+u9KgpNL9T3ME9N53ZmPJIMU9uq8wx9Egx5HlAU41KGQLSRQegD2n1VfKXna9jM73YfifMTWJxPJZHhRGzMplVnEJP6tuugDdVEIfgZtI4ueLLdqnb1G6aarzD7SdwKQ+fbUyi+thPKT//P/9a/y9X/lA0phF1WUXqUmsatveIClD22waRFmKdULrejF103llr1uquuPyoBR/G6FyLN20yOJbYDgOcC5QZDT1Sf/76MoQ13Zn2JvOHaeJHzevtXDN7Q1liEQgXGeL6z9F70km1iQ2gdmxlQG2HbrpqCQkJX5jpeP7xjzwhJaPp0xyVSsURYM2L5A48ql57js1MK6lyPgfxAiBp3MZkyhx6b6LIImjQYGqVkkiIV7hGof+KRlHQaTvcZ3rv/fyp5maLhFJdxQg15dKI6axVMrCNUZZ0fM7Y1U56dkqc0Kk0pBEiW4XczkyJnComPPomqGbCge4tDsxKK5rPpGQrrntFaTjXd2bYVYp3H1yFVmm200AMH0yfbTFrtFzkyx41tSBDwSBNUpAUDuWpzbHLdRMqtN06xYB4Fte8Qy89bu/zPy/tJ5s7uvA6a6G2nexERGidg/03V27sqfRX2o4vz+tsDJqi4t0n1NNCSbUfmjWvCMd5UrfHkCK5/o8hmtJ3SDxsaYfpIuScnX6QBMk5xluP66vg2UJyPfkZF6ZxM0zT2s00Q2ApWTHjpOwvNSc/8M0OgcpSfKDHgvwJU7166NBjqtNYP+Ku0+Y93Mv3VQKEov258jqyk83LW62wPi8sEWFU8ihPpQWGI4TmIYkuip18cd76MIO3v6x89GfP4i1H+y036bH3Hj6raGbNo5ibDBFiGAqbWhe2wx07DxbwjUCIkXN4qU+iUqlOZJ5npmNuer8Pv01hCQOsT2ZY3N/ZpFExkmoa4sa3NYEiZ88t9OaMxfsuVQ3yWQkUT+/t6yNNN2Ugu1hGt1OGwWJ8pjzWxoZoqnOGucmtScaCa4MPXWylDXt9kksE5QWD2JUI0WiK75WHWQu3TSpT9mCNMkW3Y4J9mi99SUguJqgELotoQazWmFQaNEMjSQ2QaKpyeo7kpbKeXAk0Z231EqBM1uTeAAFViZIpPlIvy2kUirSTQUklzO3rleiqRLie+bIEo4sD0yQ6NLkk9RNF6Cgq0ZwZSCMo+MTHfPc5tiItAC2TpMVE/PSrfnzT/TNs0eXUeYZSzflLtvV3SmOrQxxZEXX5O5O51jpBlIckthMMcsynN7QiYEjDaXQ1/KEKIgGSaxVS/BGYl1cc3r/PXZlzxzHR9t1fwMhnsea+9OHbk/mtalvveekDhKJJukT1NtzVNx3JnP81SNX8HPveJD97I2ww6SbRtUkzu2e+K++4QvxPV/5LLzszuPmfZ5u2nxXiG7KBZch4ZqbdNPPfXNviJQAzCCJiTc/LQCpQYNRm0us21teAEn8ip/5C/yD3/xQ9OcPYouqSdYLLD5ucJfWg1A1TlO64h8JEKQGpRZJjA9IAX9N4nazYXDqpoSUxNxf9JEW3bT36NhN+8Sa3gTPb01MZp1z7uj6DIoctx3V6mOEJK45waWUofX4MSjznG37QNflxNpQI4kVBRvpzxs5wj4qJ9GSKAtdNfVW2iFPS5KUee5Fe1zJdddCQgfXyyyS2ASJEfcyPdd5o25K3xMep/8ulWnXrXaQRFaAxrknJePQbat2yI8Tm4I3wk0AsLFsn9Nen8QWShdz/8epm7rnf1DGK3K6dcrcmmCRRvk7OHXHEJJo0cf+e7OqxrW9mVl/+GOFf9/eZN6qv3PnRUaI76n1JRxdHhiq5epITm5J1uqTuEALjJGwJtC1JCTxyc39FmrGJSBoXCi4534bBYlHVwY4e2wZn720az7vQ4AvN4H90WWdXNwez7Ey6vRJZBgobk06JRUJSfS1SjFIYkPNdGtQy0JuDbW5Z5E5ChLz3K/cDdhnn2ijRIeW1gQSbyNGxkvvPI71UYlb1ofmt0lJErfV1950jtf/m/fhX73jUwurwqeaaYFxCMermvp+QPavxw7d9MuedRL/5DXPbL2vUfFukBhJN3VrEpXS9FNfC4z8JpL4eWEu/zypTtBpVJ/Sg3ARjvasUqZwOwVtq9RiSOJhWrtPZboCaBKS6JzzRfodpqgt0ueIbhob7Cml9PUepQWJdB6HZS46g9TQlqtJHCTUytL3a+Ga9vHNfJTd0J9/9oh5nZwmztlyRULWlwbYWCrxyXPtIJHLyJv/9TigoZrEW9ZG2BnPzX21yHNjKNCe+4MU/rYakRxSDhwUeTKVPM918CIFlxLdtMjjaHYHNepBmEI3tagwDogkRgY3qtMnUUASk9VNjUPIj5GClFll2z24tPAeJY0JEn0PQAySNa/qFr22zOORLHPdcn5NcGtNJeOo6/Y8BoJ05rcRneyEh24aI1yz6zRzlxx5QnxPrY9wZGWIJxr6obtuxfephBWzWqAFhrQm0PU/e1QjWE9dG7eSJNI9WddyCxJADlI292co8gxroxJ33bKKB5u2G0UuB3uAgyQ2SZI95vz36aZttJlExI4uNwGYpwaSGBw7Bkm08xsUHrpp02MvyyyVs5UkCSCJpHAaQjtp3aRk21e94FZ86I1fYXxCXwsSV0Rtb1qZdYzaS91oWySZDwDX9qYmyRBr81rZJKGwJ7pIImdcyYGmkWZyhivL9PtuTWJI7AYAips1iZ8XVrk31oKiMAsJriQFpFYCPUVwYl4frCbxMAqdF0US6TQk0XYXpBYTJY3QhJhjkpR8nqcJENAUVxLpppT95PoIkhm66YivSQTingGXkiY5TW7/uefdtmE+t9qlzblBonFQ9Xk+e2zF0rZcJbcercOiGJIVApLSChKntk9iarAB2IDChzQTkqiU7n01rxUGRdODM5HJUOY5BiUvUgG0i/RdK/K8qc+9sc831aVaJDGCbsrdWxHnpTbXLQ1JrOra9klknK0Y4Zos6zONavM7EpHEujbHWndUiJe6qsAu3bT5G0YS+fOolMI3/vL78Dd/9l0tJHF4ULopK1wjf4cVobHjQkgifSfn/FNCxidcE4Pu7TtBihRIXW6olCfWhji6PMBWk5CjcWXzzMVY7dBN57WKSkKb859n4ppAa9vysMCxlQEu7oxbSRJJlEeXTXiCdCFIubY3w5HlAbIsw90nrSpnkecO3bQ9bjyrsDutcHx1gKMr9rqtDNsCNH1RmLYCLu0hR1fCNYlUp0aCY93eqT7hmuOrQ6wNS2w1e6ur7tsLEjv7FCGJNGtJzI18FVpHM6fOm8ZJy10bSawMtfVcU/Zwo82CImllWV/4I2/HC3/4T5LGVLXCsNT3VqgmkdbTrmlWSOfFOkAbBTSa6NYkGvQxIFxzk256uPYb7/kMPv7UVtKYWinTEyopAHMcl5S6xMVoksrU9aQKtSxCNyU7jGLjlnBQkpNcN2Pi5zhtIYlp14xqdIA0ZCNVuIau72qqcE2Npm5SRqR2PEgibaoxzwAttMuDQnS26trSmAZFbihOXSTR3ettKwuq2Vg27/laYFj0KRAkMpdt4khiU+AGOEHiAkkI3/1xeWdinIire1NTt1omiIQAbQq09AzsNetSt0+izapHH24hM3TTZu2KUYJu1bua5y1+HF23FFVgF0nsNel2kDXJOIpSCEmUUIN5Zeu/nnvbhnmdxFcKxpFUkUkS6b585PIe3v/wFTx8cddQ0ss8S+oL66qX+hRYQ2gngNY1oGvvqwnNBHXHyzueIDEJSZwb4RQpAJgZR74wgQngrHcJSGKlFIrM9l2N2eNcuq+EANOeWeYZTqyNcGl72gqIDAWUoUl6bv/mueGRRKJ7un3pWkhiZ5pUF7i+NDAIG6DFaOj3AQySqNr3CCGJlCDzXW+rblrZ30t0U0/y7lrz+9aWSoN6ucmtHgW9hvkMYGsRbd0z/ZYOkmjEVnj0y9fSyFXa3pvMcbwJvM9vHk6QaGoSD6lPYpHnorov4NTplwKSmDHodj33C9AA+n0XSQyJ3QAN3fRmkHio9kP/+WN43c/9ZdKYeaXMguKjifXGNVkLwELYMUY3YBq1tcaAbv7IOSqlFf6WE4UcXAs1Bb8e5i7AaUpu+u8iYjeLHMutSYwJpFy56xQBAhqXiiQSauPb1Hx005RngGiMozJ3nNb2OIU2O4PEI2wLDP06Ry0jh/yL77KqY2tOcNl1tmJQCglJtDWJ2gm/2tQKHoRuKo1RSuHy7hR33qIdJq2mamsSY51IOlaRZxjknppEEUlsz/dGWUXCNUQ3jUimuQqAC6mbJtYktlsA9B07E+wFArDuFC0iym/z5LR2/ZFZpcw68+pnn8LL7zyO/+lL7sQzmnuGcySNroJnjj4k0UUbnmhq6WxT9kj0y0nUcI68pZvK30HT59RNve1tsowVQLm8a9E9bow7b5/tTysjnOKr2wP0eb71SD+5FVsTCjjCNUVCLW8zHQpSOPTRZYDcsjbEpZ1Jq72HTzk0hCRKdNONJkg8sWopv26ZgtQmoiwynG3Ey77iOafxd150Vr8uUNDdejTAqsq664n+XH/+lCicVrUuH1L2OvtUaccNwrw2Kk1y0UUSe3NU7XvZ+BNOgO+eg+78aG3rWu5JQOw4LTB2pxWOrerrcf6QkMTDFK6pGmV0X+I0SDfNOLppoLYQ0EiiW5MYSzet/HTTAH5501IspS7QNaLp+VSsOJtXNdZGJa7Mp9H9zZRyWjAkqptSjUjsHOl0HARJ3J9VOJY8Ks1iGqD6xpHcvc+JIHMdxzTnv27ukfjMrus0DIsiiTYK2OsWi+YSalM2NRTKESQgI0rMOkM3NcI1EcebzCosDXK9kTYf725SSrWdVsrm0+LMbYjGIWzee81zTuFH/uhjACxti6sZoP/t/l7XJEoU1QRSxvtaI0ZAdJRFhJGkZ3Q8qzGZ13ja8RU8dGEHW+OZqUFLebYBq5yrqWX82ie2wEhAUQ5ipBKYVFvYQkTiKdD0WyhxF1//5ReucZFNyTKG7ti9l7tmUJsukljX5lnM8wz/zz/84tZ9bZ8be6/QsX2iMIWnKbhbt0SCK2UApe6aOwcOEYypSeTqxmKCxDzj93+LJPZrEqXzz9mu09/VCge1P1PVuv1Enmf4wjuYGuwEOjk9N6ZXZVSQ2D7/HLJKtO0yz3DL2gj3P7GJ46tDhm7KBYnysYs8A5dP3tqf4UiDXNH6CujgyDJJ5KTMs06v4wM/8BqcWh/1xHW4pIx7j/zw334+TqyN8CXPvKUZZz/Xtcms1n1q5zX2pvMWulp6knCzusbaoMTaUolPX9T1lnnmC7bbqPgLmlr913/R2dbr3fPfrUnsWiHc/4BFZgFgfzo3pSYXdw6nJvEwW2CQwJJPzI1qFYdSwM0K18TQTTtIYkjsBkBMn8SbQeJ1tBTRB9cslTCN7jWrFY4STTWxvxyQTjctC4LR4zYaK8DRIFILIImLtveYV7WhL4aMejsplU6lJZtVNYoQHQBdumkitS/LMCwbZzfiGrhIQgrd1G1lkTJPyj6XxkHriw0QYsC1wDB004h7eX9WtWg8nJNcK9Uilh1rnAWqi+Q2xK5D/vQTq3jT130BPvLYNadvVd8BUlFOMl9bQsEWnROiDaUi8FSDCsj3B53/W49o5VbqyzgcFCgTnm2gSVxk/nVrX1A3TQnaDmJW8Cke3TOoWJ6mbkpfTahlrEPuyvtzAhxRgiuZD0nkx8nqpu12A93Eh2k54wZg5rPiFL1I4q5DSXu8EVzRqswybatr7nniaIsxgawvceRvwSDQTXcnrQRQd0z3WJK1hVOaeTHBDc3xRU+zqVVSqE1pO0M18Cl00y7dl1vG20jiCJd2prj7ZB9J5GrpSg+SmGVC8DWvjd6Dew2OrQzlY3Wem9MbS6336Tbw9UkEdCuSn/jaF5j/l4Rr6lphWtW47cgSntwcY2cyN/s9oGv1petGz+raqOwhufxva8/ljuMr+Oz/8VW9OfaQxFkgSPQ8224LjN1pZZ7nw0D2AOtPLHq8WVV768Fdc3156XjTqmpdo64VTMmBppsG5tCjmzb/vkk3/dyxFAfLNaISpjtpyhFJiF/8yVKFawaJgaylLaYhUq7tLxgk7iWMI+GOIs+SAzey2HPZFq5JudZo9QSMUwCljCgM3TQG7aZxy4k1iYSI+BRYt8dzrA4LdoEcJgjX7E+rFjrF0Y1ItIfsNc85DcD2eOI2RPoKd3ZveMkdrc2eq3+JQimEjZTonkTBpdYUS6ZPYmxSJnw/En2bHJ/t8cwignkenWzS80YwuSX1SUwR7TiI1UbwKYE2aihZbjAb8bw140ZlfLLDzDECSfTxFDgkKxQkyuqmfqeIQ0SiahILWYBjn0ESc2IlJKBfepwObLvnhP7lVzfto0ShfpP0nRwofqVRyeRQYK4mumsXtsbY3Ju1BOAy4bq5SNbpjSX84jd/Ef7kn36ZSVoUCcI1tN8Mk5BE+7sk9WKaY5ZlOLk+ws5kjsu7U9teyIMk+ntw8nRT95wc7dQXSkH6oskVLinKjuscj9bq4w0leW9aGeEgGic9A7MmGe6Wb2SZ3BbKlqDwc5TOiaWb8gGHhBwDOjBcHhTIMh0w0l6xqL+cavRTFg0SUxRO68aX97FrNJ3ftwYxgo2qiqCbZgLd1DOuGATppjeDxOtoKVQt1zQnn6SO42mjrihMStaabCG6qadnj3SsReimVAsRIzTBWUotY9Vk43zFxuy4Bc4lff/SILX/lKbblJ5A6r9+9gq+8Ef+xEhLm82uyE0AliJ4s7yIAEeWeVtZbI9nLIoIICoAJkl5t7k0gKbvXvuzdYMQk732+WfwwR98DV7e1BlaJbd+kJjakyu6JpE5/RSkkRNIaF8qkuiuHdIzSojNmQ2LJM4rXUdRJDa4rxpa4tBTNzYWW2Dwju71NnISbYuh8PFcRCSlJpF+yyhRqdpFDbhEQmwCoudYO8JV0hj3c2TzSGe3jcDrvwsjiQ7aQHV8tCYnt8Bwz2Uykth8lkUSPYGzgGRd2pkawZPeGAERJDu/NcbLfuKd+Mf/4cMA0Go3ADC1q1UbyXrt82/Fs06vm//3NTzvGu03wyJ+D6Dfn2Uear0TtFEf2o89uWWCHKlO00XbOZOO5waJLSTRobh2T3+3bq9rnCgSHSsmAdG93rS+U6uMncnc9KkE4BWCm1U1hkVugmyad1Hw62ut/PeydG9NQ3RTz7M9q2qMBjlWBgX2ppX5rpSE5EGMjhOr0tu1a04vypARK81Hk5/Oa+PfcpZzIlj/HemmN4PE62iLqicZSlRCzYCRyS/TxC0WQb8ATaUdFPlCSOLSAsI1lGlZlG66lxIkKpfum4bkkkU78s33rw7LJHVTQzf10OYeeGIT1/ZmuP+Jzdb8ykTaHK3dqQhw1yHnjrUzmbd6r7kWcsh/5u2fwot+9O148Pw2xrOqpQ7GZd+6NYmAbjTdOx5LN+V/I43rB4nNPIJIYv9ckgNEgRSJ+ywlCtfMI+5Hei5OboyQZcBWQzfVSGIik0GRmq1HyW1WwVXlJTs0ukjtVbgAACAASURBVKmyAij6eDF0UxskpvQltTWJaUrVLkrCBXsxwU3G0k318SUERkJzZ1XtDYh8CPyi6qZ0Xw7LHFd3Z2beKftN9zx1BSAsJTwtALbKj+lI1pXdKStaQ/MD5PXudz/0GADg3Q9dAoB+n0QmAAjN0efIP+eNb8XvNMe05Q3xSKJygisuAae/17aJeO6tuh5uWtUmcWhowh6UlDNJ3dRtSr/iJBUHRe5VUqXfwR5LQnJVOJBlxzX/T7TgvUllBLdoHiLdtEnouHtq4SCJ3ectqHgsIolNkCi0bciFIB2wzITlYdmim6a0WzqIue2LFvHRSUguxqiWd1jkorbCrKrFekRASHjUVVjdtNsCQ0UI1+TlTbrpYdridFPbAy/aIazaKF20mIzzsWQkkTbtSMeOFqRF+iQOSLV1gdYeQDszHTLjJKe2AHCpu5G/jZzUlVGRtGCRA+ALpKj/3YMXtlvHcoU7YhqYd5HE1CDR1+9wezxvZT1d84mZKKXw8+98EADw0IUdXZPYQxL7TpOfotc/ly6KJBkfJMagFHwvKeoBRud7Z9KpSYw9/875lp5RkiNfG5VYG5bYHs8MZUlT+1KQ9NrU+0n3//60bqhG7RNzWMI1um7SBqVpdNPMqb+LGNdBEpNQmwgkMYSAcc29gTCS2I2b50E6FIckhpF0H5JIQeKZjSWTudeCW2lBYpbZILB7Lm0gK38H1wMyRriGC9IB3W7mOCNa436f1Cv0yU6LgJUAJXPe6dPXNY0k8ufywfN6Tf2pt35Sf3eTuDDMlRi6tZNcKZjzqOdog7a7T66aZ6VLN+XElLzqvpzYB9oofW8NCtQkBp+bzuHmVZgS6zveRhPo7UzmqGs7Py1cIwSJDXrcRRIpx8PVPwLy/ibdW1a4RqabSmv5rFHvXx0V2JvOzXfd6AQhmXsPLlLytJVAN43xJadzP52f9DFaFkM37dYkEkLoG3eTbnq4ltLPzDW3B148kki0RRKuiRvnPjBJIjnkSObxCqzdmsSkILF5iFJqEtuLQRpKtwjd1L1W8ZTA5pwMyuQgPRQkXmqCxIcuaJUztyeSGZfQFHyUGiQ2yQ6fAI0vi+aTCH/0yp7597mtsVCT2B6jEBL7aD7njIt5jLj6C4NSeMLSMudl4YnuTPRZ6pVl6aZxz/asRTf1I4nLgwLrS6URrikbhzCpBU9zT/oc+fG8YilKkkDC9TYSk7BU5vhgzyclz1lX3TSFcUHH0VSj9vsK4cQF3yex9o6TBVDSkcS4HoS5B0mcI8uAk+sjk7k3SOI8Pth2f2uRdemm+m/oPALtNSFE26Vjcc/2tf0ZjjKiNe6xpGfgwtYY955Zx0ufcQzroxLPOt2tpW5/PoS2+RApYp+c3tABLSUuBikMFDq/DpLIBUR0Hssix11NfbhFEgUKaA1DoUz5bbXnnEhBuvv8cyahnXUASfTRVAGYVh27RDdtHkEtXCOjUoMiM2MB4Jb1obi+hlFS+i3t18mf8u3dfiQxM/uNRRIPh266aInVImPcGni5JjGAJHL3ckyfxF4LjGbeQbqpPwi+qW56HW2RPoCApUSUCTWJBklMpHIuXJNY6+xymUDJdDPrWZYG9S9Sk9j+bfHOJ9US+DJ20jh6oGOPR9dtZVTgwnYaaun2/+IbN+taHgoS3SbQKU3B3UzqsMzjhWsc2jTA00mqWolZNJ9E+Hs/fdn8+9zWGPuzGsdX7eKXZby6qQ814APuSIe8cxpjUIqQuqmhmzYo+GiQHmyQyXRT/d2roxLrS4O+cM0C6LZvQ5wLG2JKrd9BrK71fWXu/4jfR9fSvZdj+stZddN4xxqwlFg6ptReJVTvJDmfUn2h5LROK4WlQToior9THBaoSaywOixxZHlgEoNFlmFQpiCJaKFN3VY1sQJAQPu3hWi7NI5Fsiq5vtO3lgPAhe0JTm8s4de+9SWolXXQpR6jXVXarvlqEj/21BYAm9Aln6TwrOVds+JFcisFYk2QHW965hGKJiUuqgCSmOe8cJCLXALA97/uXiNgk3uCbUB+brKMV9Oe134kUaKu0/9vNIHy3nRu9nvAL1xDdNMzjgLridWRTNsNMGVuhLopAQzHVoa4ujc1fmBKQvIgNq+1wON4Vi9EN01jfFkxN2mc24eWM7kFRihI7KqbNn5b5qudGQDVzSDx0OwgNYnUkysVNSB102gFuBaSmIIa6OxyiiS5zVrlGHooaZzRhpiCJLq/LUm5tcluDhMcEkAvuMuDAjuTeUJNaEM3Hcb3LQR0ADb0NI4HbE+uBy/sGGEjwC+Jzc7RoduNElpnuCq9AI++6AXbv0H1VUoVfuqtn8Dzz27g6u4M5zbHmHTophzdRSl4OXqckxbjkHPKfXHjeEoaCcAMmhYzO+M23TSaylyFn21CEleGBTaWS2ztzzW9MM9RFnp+dcDZMcerLQVdCr6kDfGwgsRK2d8GxDkmFklAkpNs1E0TEWBdx4LmmH1HPpbK3EdfQogIv5bMq4Cwgpdu6r//pftkfzbH8rBoqTSmC9e0haq6iL+l7YYDYE6UxxekSHRTX52aJJxCdr5BErutnHyIlB9ty0UmCZVnkOiZTq7YtTxl32jRTbtBSieQJTEeQzf1/bZAkM4F265yMAB8xyvvbo1x503WbSzPGUdvDYnrhOitJKyzPZm36ulDwjVlnuPWo/1aey6QDSaOBP8ihm4q3SPTud4DjiwP8PjVfStcc4hI4sqwxHg2xWQBjYvYHuR0rDzT/uuOUPI0CdBN2SBRRQjX5DnfAsOLJN5sgXGotmhNImXkh2V8Jp8eyOUD9ElMUZcyDbdT0E4XkUqotwSscE3KQ91CUhIDsKLIvDUb0vFSRXnoHlkZlknno5vZ5TZEqkncHs9xcXvSokmlCIW4dQvU4DfGSKWXqGrcvezbSKXAYVYpXN2b4W899wzOHl3GU5vjpk+iXb66NYluVlsyLuCOUillFvG4ZuJ+JBHQ9HHaXG6IcM3EBom3rI1wcWeij19YcZfYfq8kuDIoc7Gdy7ShGnXNdx9fT3NZAgBQxbSOMeJFaU5yV900ZU2m81HknCKh/huqSZQEOFKft7kH/QJ4uiP91FAgK51GjSQWBlECGrqpp5F41+q6TTftHi+ml6lBidw1oY5bSzgk0YcuSWgPAPzOf30M57cmvR59dCxunE7ayC5dWchIIq3xF0gZu6GbGlXgGMEnJ5i2wUb7M11kj5BLSvjJTeADVFqB7ujWJHaN2qR06aYhBVCa5yJ0X/f73XGA9gnyzAqX0efLPBODe6IuUt9b1zjk3iSORQo6vy5PA3RTqU8ooNfBYZEZJJF8oEMTrqmVTbguEJhOEtk1IcEtrUjrv09Y4ZpgC4wu3TQSSQzYzSBRsKpW+Nd/+iAuNRS+GHOdYqkYXToWiYtE90RrPreUmLV2KaApWfx5XeuMfMIcTSa7CYAXqklMUCltifIkIonUFDyVpmr6VCaIuwB6c5xV8ZLM5AD5EJire1PcdXIVgEYT6R5JbgreQhLjEc8Y4RqqY+NMkggnZ3tQ5rj92DIev7LXBIlFa6z702KRve7xYpzdrEFt3Gc8RjlRajDtBs7LgwI7jZOwPEylkrs1iSEkscTpjSWc3xyDFAd9NGH+eCooLjITsqY+RPx6Wkzvzt4Yx5FKSa7Qs0WOVAq7Q2rbAMBATYsgG/SdnEl0x1ld99Cr1jiGEhiHJMrrz950juVhaRQegQZJLOPr9CfzuqW+mHeCPWVe96Pk3eDSBunpdFNSO2THeBIlb7n/KQDAq559KnrcQWoSaY3fm1bYbZq5U5AOIKmWPctgkHGONuomILoK2qK4S6jej6FpA/2gtDeOCS7tvikOQ54LaGfgGdWfa79ukrlFhtVGTAxwgkRPrThRjF3VbjNH5rdZ9e7AmsAkINw5cb9NWstJ3fTYygCb+zMjRniYdNNFdDHIUntnG8VvwZcM1SR2fRkADd00EK6JdNNATWLAbgaJgv3Fpy7gzX/yKfzUWz8RPcYNTFJUlGzdTHzW1LTAWLAmcVSm1d9RdjmFktmtbUt52GitXVRtNLXfYZGn1b/QOHP+Ixc8+n6zaCVc7zKXaTyAvkbPuXUDgK5LtBnRxZzdPKOaxEThmlxGUnyOjCQRTottmWd4+olVPLk5xrW9WadPYjoiyG2IJBISQ0lrj/Mfi+bPXrfa1umsDAvsTrvCNenIvZT535vOMWpoy6c3lrA9mWNzf6bFXYq04MbUMnoo6FJjdkmi/Xqb2bQDwjUfefQqvud3PorN/VkrwZDUOkbZtVUfazHhmkVqEjMmAREKEr3qpgHURo/rB2BeJNGDNkwrTad3pfyPrw6TFL+n87pVM9UNimLWBKAveBPDSpBaANC6LR3H/X7Xnry2j7/53NN48dOPRY87iLqpW3d+rVFzdJHEFOEmX3lDN2gjpJR+k6Wbtr87CkmUgvRAcCkj8H7xJg7t9CHwRnFUQvfyDCujwiCJ9CxxawKgr7+uSbRlKM8/u2HneAAkUWLKSOfSV+86m+vzcnRlCKVsovKw6Kb1AkGi+2yliiCGkMSQuimbcIqhm/ZaYETQTSOQxJs1iYI9fHEXgOXMx5jrgIxnlQkgQkZ1MwXihVrmnWAjOvuvKNtdYH8a3yaCnL20Xo42Ozgs0+im9FGJxsaPcR/sBYLEBeimhlqWrPiq76tpVUfdJ7T4+JDEea1w25ElrC+VeOjCDl5wu+5D1R4XQRtqPmJrEtOEawpvTaKsnCg5CBTwDMscJ9etnPwtjrR8F0mx9M80+o8VoIkZZ1/rKitylgsbqYskuvdCKkvAZRf4+iTSmnHmCCkZ6my1TSTE0/sGg9yb3CLBq65J6ofX2/rPDT/Pb/jl92M6r/G655/BqpHjT+vn2A0SUxSnWz3RJCqz5zs42lxIlVMWCWmLi/THMUmSWLRTRERqDPIMx1dsT8Fb1kdJLTAm87pVM9VtSm0RQf/3dGu5TJAeCDZ6WhMOk4YdIyBLSik8fnUfX3LPyaRxMUhirfiaY3e/pBYkhSP4FMVAcZKLUiuFbrnBd77ybozKAl/34tubsWDHBRHBnG8v5PZJZMdljJKqCYjEYb17C7DUdskkKiet22WeYXVU4lqj7kuJLZZdALu+UELnw2/8yp7it9gDUghmJbTTJqr43yYhuYD2cdYHJY6ttgOSw2iBQYH0cmKQ6E4tBdxQSu8bvvKqWVWbPYYztp1LPV+gBQbRonx0U76Ha+trg5/4/6k91kjuc1xvyVzKYVLrhtoiMLHBRg9JTHDsAO3IpDyklBFNQTtdJDG5B2Hze1LGtEV5EummeZ4kt67nqJIdeUIcUzNbJEnu6y9Hzt09p9bw4IXt1vlPQhKdTTIFSTRCJrmMSPkcGUndlK7loMjx9BOr5vWvf8kd5t9ZL/tPr8vzZWurIlCDjHFkahWmsRUMRQloO0CuGA9RmVPovjROSuS4ySu33olaYNB8Yqz13FSKRUSkrGnpuY+vpxkpfw8FGrBJniu7U5s1z9KSK1bdNNyW6ONPbeHTF6lVjdMnkUGkYhIXktMKhIOUPnKp/A4yc+1iAjBWkKExYqrcfmzZvLY+Ks29FWOTTruVrlJsDCWcGxfHSuADG0AO0qX17ureDHvTCmedcxEzzodauvPgAo5pK0i0LUgskhhfk5h7GC9dddOlQYHvetXdjnJrf1xdKyglo1h6nET3DScu+mgbJbcDlEDmuQkdS3+/hNLpfoeXd3WJE63/Ek3YBJfNw3p8ddjuHczMMYQkSvdWSARLQnIBqknMcXSlHZAcBpJIP8P0fI72r+3nkuimjr6IiCQ2rAnJWFZClLpppyaRAsabdNMbY49f3QcQzjq65t4UKUW5VkpeFoDoWrcFRiqSmBwkVprWkJLZbdUkJqqb0ti05t7296T2trF94tIWhGSRCoMAl0nzpODK10uQ6Eb3nFzDQxd2WzSWJJVGZ0MYlXm0uhcVbfvaDcSo/fWcLSfT+pxb1/FNL7sDf/CP/waOrAxaY91hMY61FOy577HzZDb7rrIiZ2XO1wFXDk1sxdnkyzxP6t1pkSwZSXSD9FMOKusG9ynHKzKYInxuPZHqL/JcHnM9jX5v1gR80nNK6+il3UmLWnUgJNFzHn/g9+/DD/3hA3qODtohOZ+APyHM1bEsKlxTK+Xt98nd/1GBbDNHLpkwq3Uy4fZjK+a1rKkTr2rFPjddm8zaNYkagbHvx8yR3u+yBGg+vjGp9V9W3bQ97tzmGICcoJZUoMNIokydnsxrHF/VTjwFia2a3MQWGDF9EjnjEhAmaZlYkwuEKbh86xj7neLxmOetDgSyUoLX1vvp9Z9UyimZJ4nykK/CMTWAprxBYBcEKehdNkPtHychuYCmmw6KvLXfAIeDJPaYW4kJVyCdlZZnmTe5NQuqR/dLAKDqCLqpVJPoc2ZuCtcsbIQEpgQbLrycXBPXZLvjkUT9uUV7qQ0b4ZpYgR29iWdehTTpWLbfXkrgpv8uSjdNRRIpkE26bpVFElPquIBFkEQ0TYqbYzOLOG1Szzy9hks7E7PZtBGReGdXO8nxAkfufQzwdZqVR7hGyrTSczUsc4zKAj/5d78AL7zjaOszedYP2gA/RY8TT4kVoHGPoceFE0pi3ZJzTlp0oUQE3g1SpA3KDUiOu3Rdp01E9L1cWSQR4O/lmdC7Tao/vd5Gzw3gr5uh6315Z2quUZb43Nh67/CacHlnahKRLtrBZeQNKu45Nkc3DUn5S+0GiDIlGSv4ZJ4bzziBTg5YAY4zncBoUBICHH4GJvO285VnfJ1yKO/bXUtikdzu7woiiZJwUPNblwb8RfCq0nppwu15uTaZV7hlrQkS96dmfoRSpQieuS0wkmmjzLgQRRJomCQ9BF61nn/peH20rS2iw49j9uCALxVucN8gid0gUUASibkmI9VM4iICEWTnGAjUSybYNvOsagzKHLceWe68fnhB4nJHIClk7jOSCjiYfVsYp9k1oQRENwMx92cJAb34LtICI2A3g0TB6CKlBCnuTZ+SJaEMoG4vkRZs2BYYceMoQzFKGFc1dI8yzxtKrDxmazzDL7zzQcyquqWIlSpcQw/34nTTlPNfW0psCt3UQRJTxUXShWvqlnBNb2Nz6o/uObUGAPjk+W39WpEmQOBSUnRSID4B0VZS7Y+j5r+ciZlWgySGFMEcx45eT6wRMZSpACICtLN9KqImsSxkmXY6J0tskBj5bDcf81FdXAU+6stFczPCNQnXu8z995YoXJMQfB3E9O/V/5bqqZVS2Gvqs1t009wRYUpA4Ak59bEStsYzPHlt3/QzpVPEZeRJTCk1SKE1ItTMvS9SEZkk4ZIrPgRSoLIBlobYRZ1T0O1ppyax61xHI4l51gq4o+imOVMTGhmkc5RMPX+53QAg1ZKGrxt3/qfzGres6aSRSzdNa51kjyOqlAaQPY4pE6JIAn2KMGDXw9C4/nm070nGismouH3DJybjtsZadoJEqUwB0KrfnPFUWv3XF1gCMpLoQ8UlgGPa1BsfW+nUJB4C3ZT2stSew66a70LqpqXc3zWobspRd2PopnmBG9EC46ZwjWDkmCUhUgsiieRIDfJ4ahl9zsjkJyhQApYSVdUKId0UOpZWN/XP8f/804fwS+96GGePLeNMU/NU5jlGnuai7DwXCBIPKlyTSjed1ypdpGJB+gOhDfLma7Ot95xcBwB88tyWfq0J7oG4GjB3Q/DJpvfGKdUkEij7zwdEqUiirUkMOclpyIbP2fU5hDSN1JpEnwLiSnN93GbiFCRGq8sSkjUoxKDGbS7tXoelQWEEEKJb3Kh2704OFZw2WeSuHWaQaJDEgq/5nla1cSgv7UxadLMiQbiD7p1BAJFVSmGrUVG9tjdrobtcbVVU4iLzBBsSapD3HXKaXwwC746zSRl5nK+eeu700/zNb38ZTjSoVqiW1LXJvMKxVVv31BeuCa8JQB/NpdMaouBy7A7AhyTqv93TEaQJC4nCeV1jNPAIYnie00krSCQGinutY2oS7drpS/j5gi+uBCBEkaT3RJXS4L7Rfm0ehSTyvXK9+4ZwTtyyEFfQxEUSpQQcYBMp3PH64kb6BTHY8yCJ4fPBv0f+rZt4kn7T9Ta6bVdGiUGic41S1E0pweZtCyUkTsnYcxmlbtqlm96sSbyhRjdTShZh1goSU5AsjSQMCj9K1x0DILkFAy0SKQiYyVgVOrPuG0PzeuLqfotrny5ckx4kLipcQ9mfZLpprRxqWVpw3+0PFTXHPFzXUOYZzh5bRpFneOSyFl9qSZnHICKdmqyUvpgU2EjH8jV8lgIHV7hGMq2caP/fMC1ikMQWJU3/9TmEXCY/piaxyPvZfzo+OYRuM/EizzBcqCYxx6yuWSr5XKB/Pu34SnILDFMnKyAb9F1c/YVvzPU0Eq4B9PrFOSbjqT2/l3cskpiqbtoNmqUxO5O5uc+e3NxvNYHnsv9RCQ8GbQjJ1kvqpgrhgLQ7LkRjA2QHFCCGgZ7Qlz3rJJ53m1ZmtvdkHN3UJ1xjnu3Ac5p1nDQVcf67YwC0mDScyW0iGkc+GNz3g41QIAXwz9xkXmNjucSgyLC5b/v0+RJ+XWu1wBBq513WhG+O7nWrDJMkhOz1j0XvyeN44SZ3LtI8OQVQH7XVd04AHcyujaxDvzzMzfyVYujklR3HGYtuB4I9Trmb/t+PyMqJtHmlDG2c7DX3nkpSkl/U+khiXMDX0rdI8UEbP21Q5KgVf04mMS0wehcgQt201wLj+iCJN4NEwcgxSwkaXGpqCpQ+qxwkK5Z+6CycpQfq75pV4IuvNaDvLpu6JZ8TSV/32NW9Ftc+WbiG6L5JaqP23ynHIgpk6Le5RjSxJVMTGu9Y55k9/ymZrfbmK2Ujdc+kU+sjPNHUPNG9xY2T5gjAKO5G1yQ2m6RVyWSEazyOjBQA07n1LaxZtniNVFvcwmbDJeMRyDCSWOR8HbBbp7PhUkDztN6dtfNsK2GDkhT4nnFixVy3WDSdKNCSSiZAWdP+8XzUt+tp7v1WCHRTV4l6azxrBTyp6qZFpkVyfGvy1tgyKs5tjjXa2tzbnHCNqUkM3JNd359+q/i8CdctlPDIsoyp9wvP0RekzBpKWtd8ipxd67bA6KNL4aBBj+N/WyjhJAcboZY/aQiYNC6kbupF/Jtzt7E0wFVG3TR135CoxV11U3GOzrBQsK3fY+i35vzLc+aYMvOYoJQJwOoAAm/6JPaum00KuC3X6F4uhWtA40rhB/KKx/5gzyC53Xu59q8JRZ57eqDa9e3X//5L8eY3vBBHlgdJ4o6LGs1pkb7UZLHCfXQ8N1HO7d0huinL3qrrOLop1wLjZk3ijTFy3lNpo/bf8Q/AvK4xMFLyaTexCdwS6Y60AMXM0zrpDdrmcZgubGtltocv7rbQrcOoSVxUuIYy+WkiIfqvre2MRRI1kkaLROyiRXOUHK0uRenWI7pROoAOuhFPGypyTbdL6ZtXZA76wiKJck2KlGk1SYpABtrdtOlf/hoRO2/zG4yzm5ZtjUISBeEOt05no0M3TUG3Y/r0SUH6HcdXkpQMgWbfCiCJErXmMFtgWOEafu2iesSjKwNsj+ctJJ2uWay6Kd1TvjV5q0FqAOCRy3vYHs+NsiQvXBOJiCQjibzzGZPwKPN2/Tz9K7WWkUy6L/OEe3Iyq1rOV5feHRPs0fttUarm/Hv75snsDilI8fUS1ONkhEiPa78eRBI99zK1D1lfKrHpqJsaVkjU/a//Zpk/APYjgs3nmISfN7hk6+9inhtOpZSut38ch8B79w0hMUbHK/MMawzdVFKCNn6ZZz/lflscktg/l8EgXbhH3D3g1feewte9+PamldqNDxJpuT9QTeJCvmQmjp0J7BoytlWQim2BkUg3LW7STRc2urgptW1uXWAKlE49onzqe/0x1nEeBCigrtHNN0xBEp2MlUY75TEXtnWPnyt709Zmt2iQmHIe3QcrGUlssj/JPekMbTc2SK+b2s7FkETJ0erWUbhKYm6j9LiMsP5LEuixaA9liX0CKF4kkbKYnQWSnsUQj59TN/UhglxwE4ckghkXh1AAUnZdj1136aYZ3ZOR95YJEuWsKaG9ZF/xnNMAtENiRFoSkUQfjVDqk5hCfz6IuUI9A0E4iJDEU+sjbI9nLecyzzO23i94LM+a7AaJ9z+xCQCmHozLIhvn23Nsrt41hMBI6poxCY+8UzuZ8txwp3JWKRYRCSUT/vNHn8SzfvC/YGcyx7Rq003zrF3vF1uTqM+lO86+LlnG1ag57A7OgvTDQDKNRxL94l7u97vznDW929aXBlbdNE9D0pWy95tMpY1UN3XG2edRPjb9tpbgUOA86nH+0g3J+H6mcTWJEnJZ5JmpnQOs3oQUuHX7JHYtyxg/IVATKq0JlUPb50xq0wHoZ7vLJhkkJJ8PYpXj72ZZvL/lzi1Nld/2SQT6WiFVrRodkMQgMZpu6gaJES0wbiKJi5tFEv3OwcXtCX7t3Z+BUqqDJKYFKYMiT2pU36oTTKBJWiQxoSaxRW31t8642ASJ1/ZmrSAxpQckYBe31Ob2ZCnZH1tLtwAim9gCg6jFyUFi1an/CjgWbo+tk+ujYJ0U9115nlZgbvj4zbG4Z8dHiQqpm3qFa3K+t5lvgeSy3TFIIufIhEQLAOsschlvgyQu28xenkg3Var9bHP3JKG9ZL/0P74Yn/yx1wIIC650rWqQRE7tlYxzEAAZabjeFkM3HTdB4umNJdQK2G7ooHQ9u6iZ71hWJEdekx94csv8+z4TJGokkastpP8NKSd2T2UIkaLXu2u5Uv6aXKDvFNqkTBil4GsSeVpyaN363373o5hWNR69vKf7JEapm4pT1O93qIRRCSemJi6MJLa/vztOOpeZeXbar8ciiVISblQW2FguDd20yNKQ9G5yBeAYLwF1U2YPiEX2uIBD1gAAIABJREFU3Dm4cw6dEy5odr+TPR7zvNUqXLeaBRD/FpLYrONSgtcmT+XnO1VcJxfurdpZ29hxZg/on0suKAqp5F8vc6/lsMgxSWwVBySKICrLSgP6PpDRVyj9z0DvcYtRN+3VJEbQTW+qmy5u9ACGVEP/yW9/GO9/+Ape+ayTrSAoiW5a1aZIPB61IeQojabqZlaAuAy5Kxziqs0NmRv9yq7OQl7bm5px9NtSHEJa4JOCvQWRRFdwJfk8FjpDFZNppWMNitzQDaZVZCF1k8njUCygX390+zGLJK6PSpNhjrne3WbivsX8rx65gloBL33GcYN2Sr216lq3Ugln1oWFNVTs3UH26HV5TH9js+0G5HG8I+MPLPU4/Ze7dnROXOEaAEnCNabeeCCLfXQdSZ14aGpfkltgNEii8Lvou1i6qamRjTrUwlYre52l53tvqp/Bk02zZ1e4g/76ar5//p0P4hV3n2i1QdHtjPgxP/uOTwEAVocFHrywAwC4pTn2wsI1jPNpgkRhoHWs26+HEBEAvR5sLtXQN0Z/lrlPhB5/oZo4cuAu7050TaLTW1BSNw11Suyrm9L59yNS3T3frRNnxyxck9jMi2GTxARg3XNJNVejMsf6aGDpprlF0mMcehdxlRVYA8EGsweYfJ/n2C4rhJzaqOCS8UtikESOXRDTBol7vt1gdtWpSSQkUWyVEtgXOXZBKJEg3VtBwRsHgcydK0X0/u4cBwn72kGsy2aLrS9cuE9ijU6Q2B5rwB0P4s8hwFHqpou0wLiJJC5uFByGgpSHL+4C0Nlo15FIyZLMak037aIhXdufVnjksj7ezEH3knqpdZDEGIdw7mxavoJcpRS2xzOsDAvUCrjaSGlTL7UUMR/apA+jJpEWTuLJSyhpa0xlN6BBnkery87rukNHiEVt9Bw50Qh6H7COxZ0n18x7blPw1D6JRQBFef2/eR/e8IvvA9Cvm5QWyFCNTi9IdFBzyYpeHVHznVHIhn0tBUlsOzJ+0QJ9vBgkcdAcQ7+XVidLz7aPbio7MilKhoCljklOjGZX8NQaGnOjKUdVbXsQSnWC+1Oim2r0nYJEozia95UMyR66sIOfefun8L/+9kdajpSUXNmdzLE1nuO7XnU3XnrncfP6yYZuSntAq742JkhhKEqxtW19umlEm4h8gefNQ0ueNzT8rsXS5EkAyKduShYMgLOuuql93TdGqhMXW5AI5yNINxWCbWKbiHMUxpHE/7CpSaR1w63lja3JBfT5ldcEv3AKN8fY8w+02Qyh80/jpOcmtSYxJlGY5577pEM3XSrbdFMpuJRbrPT9yVh10/49GXi2BWG8mcACSmEoHcTc+vJRWUSDDvQ7dJlUfAsM2m+kmkTXb5SsL7gFHfAF6aYFjyR6axJvBokLm0ESAzfV1lg7FFv7s9Zn02oStXCNlMUBgMev7uFVb/4zvPJNf254zQA1wY7nd9ODmSZc09QkuvVmnAM0rVArLacP6J5jgEWkUpQMDd104SAx/li0cA6NKmdEIOUUm2tqWeT5b1oQUJAYS3/o9rfroVGdrPWdJ1Zb71tnK164Js+zpo6LH+P2vdwa235vA+E8hjLrkvNDCZvrXZPIobJxjbN5RyacRW6Ox2z2tMmSChvVlKbQtGtnYwP4Z7SqZQn6FAVcOp7bXkVSpeWU3KQx19uq1nPDO7v7hm6qAzViQ9D9poNE/hl42wPnAAC3H1tpOVJSQPrUphb2evbpdbz5DS80r5uaRIbupRAObKgFgxtcVrVGBCXHVUJ7FNIRkdg2HTSvrkmtWaTESve1J65pJWefumkMJZbm2aWS63GeMZxDHpkUk8eFEMj263PPsw3INZCExo7KvKWuvDIghoF8/7vmMlAkcZ1gL0Hmt7ktacRxTMIjlCSh46UG6fSdbCJHnqL5zkpAnLvCNd1+tt093/avFu4Tpt5y0URCsN5SYgEJe3dZ+MuWrpe5dNNRgi4Grd0rwyKZbupTNzVBa+Bc9msSK/8DAGiksXZ6kd9sgXHjjDLgQBhqHjfw9eb+rOXMxTdJV6iVXohdyL5rr37zn+P8ViMKszttt6UIUAK7xwPSWmAQHWt1VFi6KbNpkCDD0080QeJ205SXkMSEIJE+mxLsuRt7knBN1aZJxvWOtNnWlF6CtJGPClltq6oVfvSPPoaHGioavUb3h+4J5d/Yzjp0UyBNKKSNJMrX7b7HN1v/pjnKmU+6Z0OZ9fbrIalvgDZE+//GafVs2xwqG4fa0DHaxws58nKW1tLEbjuyjG99xdPxG9/2UgBIElOir/XVG1e1HAD4kB7OKLgN0YS5622TFlGHWthq57kZCGwGqkkkuun5LR3IUVafzew2RomwQZmZmlx9LB4BfmpTBzO3HlnCLWsjvOufvxo/9XVf4IhU6M91A7CYoA1oC7VUyi9kIt2PsYgIJ1wTajivv7/vgLp9Ettz1H99zcQBmHY/XXXTVrBHifUgksjXKYfUZXs96YLBHs1LSPiJNYn8uGBNoiCcRU4wIYlk7v2fpm6aiddaiyKF11Y2AeHrXcusQTFBIsfectEn3/H4eteI5IqnBvVuhwFkxkj7aaBWnws2QgI0Pgp0FALZDWQlumkCs+kg5l7LFPFEOtcrgyLJl1TN/S0h6eae9Lbz6tc3Q9VhJDEv2lC6uSkP1gLjZk0iYy5EHAtPbzZIIhXLR6uUOs595txYg851dYOQi9uT1riD1CTGjKPgb2Np4G2UToIPT29QrIsOksgVUUvmbn5JSKKD7iXJFiurbqqPGbEhNl9P41KQ3FYLDGYBuv+JTfzauz+Dt3/sPN71va+GUjqR4FLZpADMraP6qdd/AZ5z60br9ZgAwN1cfQjw5d2J+ffjV/dMcbso9d381LC0ezfY8G+GgN7c3ADA1LFEBG5dlVL9fZ4xzO+LcazJWeRqYOic5HmGH/6a55v3hmVCTaKhm8r3sU8C3Vczxhk1qhdpwp6aGTvmxkaJ7rmVxGRoLaU2FOcatI+QFB/ddKdZ867tzXDrEeuAScciJJGQ4qedWMHTmqQawF8DfW/5f6dNXNiaIC2k4xnjQQ2Cz43oJHvGBGhznJS/D0l099jHru4BQI9u2nq2QXMMBMALoKScKm2oT5/kWNMzUUjOv3DdQuqm0rmcO468q65MqFYsC8iiNvK1VoF7mWVpNH9D59+dAxAb7DHBdqC/KM3Tfbxj0GYax4m7AHrNWB31XXJpP7VJV0ndlBfl8VIdBZTaV6YA8PX9gLx3u4y0rq97Pc20CsyQ1KvbBImj0iQCY8eRKrx7/O73epViGQRYB4kBTK8rXBNTkxjRAuNmkMiY61z5HLSJw1W+1gSJK4MC25N5PP3QQUnovgj5aBe2x478cSZSmzhzudbu//uMgr+N5YFTt8QgiQ319nm36cDkU+e39RwJ7Yydo4o7/71xzfcvJWZ/yJG0ojzxSGKRparL1i26KTfPDz1yFQDw6JU9jGeVOeduIBHqkwgAX//SO8y/TQ+8qIywdYp8NYnuebq4PcF4XmNpkIeRRE/mkxtngo0AKsIHe2GHMLVxNk839Tvkeo76L0fDldDVlASQVTeVe3e6iHRvfgsgiW4LDDG45+imAmp8Pa2rUljmOfbm897n6PdSkPjktX2MSkut1wERP9HdqQ0SXQdM13H1x5xvgsTTR0bs93HXQEUkIFw1SdrUJTEY37HoeDGoeGqbiJB6sa8FBk9RtRN49LIOEl0krN/KIhzs0Tj3cDF9KrOMo5tS4i5VuEb/9dWaAVxwGYkkSjV4Wdbq00qN3Ys8TvPApZvSp/s9PyPRZobdEVNf3kquRCCJHEvAUgJ98+wq4Oq/qUlJoI8cv+OffRmeuDZujQG4gKP9Pnesri8Zqkmk+XPBpW9cKZSYuIw311xG2jJuXJToUsyHZR4NHtDavTIsosVuAPsMWg0IgW7qS94xwX1UkNgVromhm95EEhcz13H3CYvsTuwFISRxeaiDxFj6oStAQzd0dxHpBhJtJDEPiou45gZS7vG7n/kPH3wUUAp/+okLeOWzTgLQG7BPuMbSTVdx9ugyHm8oQPqh0UFwKJPlzlGan2R0/pYG8cgeHc99sOOypvqvRtvihYOoBQb9x6mbPvCEpXF+4DNX8MV3HTfHor8+hTTOUmrAqtZvk+st3Wfj0s4U+9MKy4NClPoO0X+CtBom2CDrOmmxDmEX4Y5Tkuxv2rVSwbYBco9Lq27atRSpcDpvpPAo0k0Tzz9nrlKtNI6OP2SSAhKKcj3NZRYAcp0gnd+TayNkma6tpoCR5ir5FtsGSZy2aKHSsSbz2ogocMadlxi1UbpfVecZWIQiFnUvd7LdsQqs+rPt1300dJ/AkevwPdkE3yQ+BDQZeSbYCCP+3TUBzTh5TJ5xdNPm+4SB0npQdVgh4jjmPPoVOfnn1GXFuDWJqw3dVCOJ4f3UDTbpke+hZoF72QbA7pj2e5xlTOAcou3SuH5wr5H0oHANizbHoNT94wH2et9zah33nFo374cDDuk+4emOMWtC715W/mDbtmXh/ZJuYtgkrQ+hTy6QXvJE45YH8WI3AIyatpQQsyi1r3SGYd2pKgJJFIRrDtgC42ZNImOuc+W7QXYd4Y7N/Rmmc2WEJ+Jl660jIy3iVCPzL77qOQA0jdNkaAq9IHNiN5zRQ7I0kJHEjzx6FW/8T/fjjX/wAP7skxdNsLe+VJqHnQuKDOK4VOIFZ4+Y13W9XzyS1QoSk1pZ6L/DQnasdyZz/NAfPoBv+/UP4uGLO+Z4ZZ4nISkuvTNFOEhTiXMzTw5J3JtWeNrxFQzLHO956JJDmWiCRG+xvRxsAJE1iU4mVTtM/P1Fz8b6qMT5rTH2ZxWWKfvMzDGkxkbBZXeDmlayE0nWfQaiRSo6m3ZUbRWTkVcIoy/SM+BDEjUCv2hNYv+aEUWUsxS6qZsRlcb56KYmQLmBUGJXpVBK5riJs+MrOjikdZzmKp0T2gN2pxXGs9qi/Vw2GIs1E48J2jg0l5SUJeMCSyDuXu7RTc13hlEiKQnEqpsWPIrijnONxIeAxajk9D7bpy+AZIn1R8GkTPv1UHCTm+u2WADQd+TtXnZsxSZHCEmMZSq5wZyPbupHm+lzaQkIi0Da17rPPz+Or+307TX0ndzzHaxJzPnjAfLeLQYcEckEtrYwgjbavSe1crk4jD3/dDxujpZuemPLDej5J+2IVD95dVTq8rEEf77I5SA4BkksmMQFVO0P9oC+cE1UC4ybdNOFzHXcfbTFnU6QOK9rs7BG1yQ6ClUK+t/dxf9C06D+7lNrWBuVuLg9MbUD1F4iliJmHCJSN2V2X1KKI3vkyh5GZY5RWXjpP0Q3XV8a4M6TVl1zWORiAMzOccHaQoukFOL5f/eDl/Ab7/0sAOBLn3kRd51cA4l5+NT3pGNZtC3u/FPdKkABQH/crKqxvlRiWK7gsSt7vYWF7e0UqKOQJKo5q53NlWgh3f5HNE8AuM1BjZcbhNov9R1QKRV+m0/dtOvIW6dVHNIcr0sbbV4P0EGAft1YTEAKdKmEyuvcaWXBuHur2wJDQhLFeySBAupeS2nczHNPWpGu8LEWNZf+BkB0ElwU/uT6CJd3p61+Zb4MtLsHnNsamwBdCixDzcQ5hdkY+ieHLlV1gGon3I+x9NZUtFNucSMLU0koCmDXhfWl0iQoT21YJHERKjnNk6u39A3LBIfc/Q294xhkVRgn9kkUgu1AcCPWijvPiYugU6IkuibROOQAaj6w0cI18nf4+iR6gxQmcWd+VyC4587/ouq+UckVie4r7DmSyFcMUt1DH4NJquZzzHWLoTKLVPJukNj8f2zrsEXNUI4zQhIjg71m3iQoNq1qr3CeOV7DJvFRwoGQD8T4aUpF0k3djDcpdX2eIIlZlv27LMueyrJsK8uyT2VZ9j83rz8jyzKVZdmO898bnXGjLMv+bTPuXJZl/6zzva/JsuwTWZbtZVn2Z1mWPf2gcyW1r7VR6UUEXSRxZzw3dFMgHkl0e8BJiz8FqktlgSPLutlt1WSJSUkplrZlkUQ9z64cMwDj8P/iN38RAODtHztvaj2kOgrAIonrSyVuPbLUfF7XP5qFLmKetTPHlJpE6yTnYubn4rbl+lPwTT26pNoqzlyqR5JwUK1M4MUVsQN6QRoUOW49soQnr+23aDxAAEmU2hsYZyt+s6c+ie73u2aDxCU8ekXXBJFjUWT93xbTpLhg6Dizqm6JIXDWLdKPqWMB+ghAjCMpoj0hJJERruFqSdtj4ikyvR6oAmoWEg6KeUZbDAhBNdGXITciRTfQSeiKBBQC4l85dEdSOHX7leUM2kC2M56b831ha2xVSjNGoQ7xSGLb2Q3fx1wtUTD7zwRtMQER0H++Q6qVNIY+65pJAvmSCdz605xgah+yNMhbLQS6SKJVyfRbF4GJqonjaIsBOmCIli/WJBpkyb7m0r8lM+MEJLfIM5xwgkS3BUxan0QXSWx/RiGANjN+QgyVk1uTQ8E2fSe3boWRxP4zqr/PO4zd821S3F+72l27bDKXPxaxgFpjlD8AJsVvDqWOovuKaHq/BQbA+5/X07p005R6e8CKl8UrjOtyDokBESNcw9JN6xi6aUe45jrVJB4m3fQnATxDKbUB4G8D+LEsy17svH9UKbXW/Pejzus/BOCZAJ4O4NUAvjfLstcCQJZltwD4PQBvBHAcwIcA/MeDTpSc39WRn49MWeSVYYGdyRyzucKw0DU6sciSW9ibMwsk4KqPZTi6MtCopdNXShcoxx2P6F3GkRSQxGMrA5w9alX3Lu3YdhYAv2mPZxWyTH83qfe5dXT6+OF5upTYWsWhX+6chqVco3lhe4I8A85sLOFCQ+Otaz9Fhp2js7GmCAdRuw0ayznk80rfR2ePLuPJzbFzjzjjehQlP/XE/raE2pI88waXhBSdObJsGpAvexQhQ/QYfUyGtljXXhQR0Ituux5L/w06u4Ijme5cR2SfSbjGeQbmAUemSKhJpOlQTSK3dvmEC6S+eZzNnXtEcv7tBt0fb+jPNzBINDRtem48FFBAX1eqaXORREmEBtB7ACXELmxPzP2fZXywHXJAOZGKWqlgZMPVEvmoxXqO/SCF/pWaXIlBO6X11Ye4+dZk2qdvWdOBzXJHJrEX7DV/Y4LZ9vm33ydZl5Gg5xxe73y0/BAC6V5rqfardSzBv6ic4O7Ict9p1HXR4X3DPU+SSE4IcaZz7A5TEeefu09iHHKuTcS8DusmLJJIoHmmIomicE0guMwYRKqq/b00AZ4qHwouxQSQUG/sa6V2Pc29txepSSS12RRV1MJBEjkkF/DTTbkWZ4sJ1yj7umSfS0iiUuoBpRRpyarmv7sjhn4rgB9VSl1VSn0cwK8A+PvNe38XwANKqd9VSo2hA8oXZll270HmSjfE6qj01sSRcM2ZjSXsjOcaAWpQs1hkyV3cuV5XQLtp6pHlAa7tz1rUEqn+xXe80aBo/b9rT1zdx9ljyzi+Nuy9JwWyAFrCJRZJzMzv08eL2Gw6aGfsuWwjiUKQuDXBibURbj261EYS80ThGocSWwo90TibOwEPV8QO6N9bFhluPbKMi9sT09ybKMZsk9zAhliYRSv+t7XEfJjzSYg7oS+ApWdwTlM8ktgJEucqGCR2M7sxjgW9z9Uy+rxyjtpX13Gqie1jRCCJKfWuHbop9wxQQoSzlPvfnbc0zt5HHiQxMrm1iHUbF0uoLKGrWZaZmrZWvz0m4QFox3BnMsdtR3VCbF6rVpJEorb60B6pV24sldk9ZBWJ7rECHN5RfSe5VvEKrAvVrnLnsrm/CUm84/hK6/28E+xZR947zV6AH5M44uu/9F+vmAyD9oTWcl9PwNRAyv3/ssjY4MhHed+dzPGrf/kwZlXdaoEhifLo+0ScoqU7Jt6TXAAcovvSexzaFkQSBSpz6vPmzlPWE5DAg3Bw2QUP5gFEUH8ff0/G1bv2x7nvk6VoJBzE2gKDKTWJeiD5M5OIIJFalbnJdY5urecTr9SuvzwiSOwK10TVJBYIrfaHKlyTZdn/lWXZHoBPAHgKwFuctx/JsuzxLMt+vUEIkWXZMQC3Avio87mPAnhe8+/nue8ppXYBfNp53z32P8yy7ENZln3o4sWL3nnSpqXppvJNRXTT0xtLGkmsagyLDMMiXu3ScrZzdoHU89H/30YSLUe627PHezwHpXOP79r2eIajy0Mj4gAA3/HKuwD40Yb9WWWcpDNNkHiqcbqSHFC1WJBoahLLQnSsL2yPcWp9hNPrSzi/NW71IExRXHSRlEGgBca8qs294tLNuCJ2QP/eQZHj1qP6HD54QQvskPLcQtnnPOO57o198tw2fvYdn2pq5GCOU3oyfnqeGY6v2GxUy0kWaGV+JJHbRP0CHADntMY5hBIFxe8Qto8BAArhzZerN7PXTXYQYhNAtgWGzBKgwnrOkoRrnPtfZkDIWdPUdhsp9kd//SSe8X1/jKt7bfaDP3DTn3n2Ga0qSP0MgbbytGvjWY1a2Z6HALA0dJB0Dkms/A4oRwkMKUICwj2p/LW1dDw2uRI4YB9JDM9Rql31oWB+JgPV8Ov/f+kzjnfm2KffAnHqpnx7g0CwJzAnUhHIeKVq+5pCeL2TnrlQgOmjvH//792HH/vjj+O9n77MJxc740KMCx8FOqZO3L1uLookGYe2hSjhNM9uTS4QkVzh9sXaf+2knrJuvR07jilDikH8WVRc+dcEju4OyIlhK4B4OEhikTesnMj9xijllylBov5L9Y9A37/27Ylk3RY8+ssj6KZd4RpTkxjqzeVHEw81SFRK/SMA6wC+FJomOgFwCcBLoemkL27e//fNkLXm76bzNZvNZ+h9973u++6xf1kp9RKl1EtOnjzpnadBEoclplUtUjmJbnrmyBK2xzPj3Kdk/y1KKAunuMIdR5YHuLbXRhJT1E2NcI0HSSRKwrKj8Pf9r9PKqr5gb39Wme89sTrE97722fi/v+1lzRzjkSz6vUtGyj/tt4XopqfWRzi1McL5rXEr05UirlM7i5+PjgYAb/yDB/C8f/k2fODhy5jOa5NF44rYAWBaaeSMlOYeaXqAERXI2yfRQyUpPYvkV//rd+Nn3/EgLu9OWwIEXrrXXN/vxxixAw7djpkjF1xSEO+zRRBBM082uExzZKKQFOYZuJ41iW6SBOApMj66qa/eWDpWq09igvOZkjRKtTe97ZMAgPubVjJG3VSghbsUUOrx+tlLu+b9XLgG1CPRVdQ0wk0cZQhhB9TQ9Dr3cujeyphrEKKIAXxtYYxxzcRj2mYAXBLUllz05udJXNA1+dovOovveOVd+Kdf+aze2K4CMRDjJEv1zb4xHLtD//Wudxy1z0G2OaOXuTYdiyCJLitGGic9p39831MAdGLZfd4l4Y5ahYK2vsJ1Sk2iG3MsvN9EBIl9lJpe9w4TkMTae72l5EoIKe3OEQgL0NDxeghwreBjqUrPqb0GfJ/EG1luADh1mw0FOr50Sf8lfyaGblo560TofISEa1i6aVDdtCtcE4EkAsG6xENXN1VKVQDenWXZNwP4LqXUz0PXEgLA+SzL/hcAT2VZtg5gp3l9A8DY+fd28++d5v9dc99fyCamJlGfnlmlMCz7T0gXSZzOKUhMQBJrCgDl2h6X131keYgtqkksbIY8mm5akSMpSxDPa1vL8tUvvA0vv9NmaKXFHwAmMyvck2UZ/tGr7jHvLULlXPKoNPrG+eimu5M51k+u4ejyoNXP0s1+xsT3rkx5WWTYn8m/66OPXQMAvPWBc9ibVlgbWQVQ1pGsagxLjRoDMKIwG8u2vYQso+3fELnzX9fKLIKPXdlr0Z0GntoxSoocdRBnQlJ8GdMQ3Y5zYkIZ2i5tKHbTzvNObzmqYws4MjQve7wwksIJ14RrSXV/0RDdR3+v/jss5WumxUzSnBHOXFGOMN20fzwSSLgRQSI1P/7Ueb0N0O8S21I4dcJ33qLzkq96tk0kSkk4WpdOrPWDRBFJbESyJOPW15jsP4cu1cpfj0Xj+Ocm5Ei2z0kcQtFHewB7DwyY8yJl5AHbHmljaWCSmN3jsZTAYDDL91wNBWDSvu1v+cCvkzHiRlxw76dyCv5Fh+Hx3u/78tZz4uvVOmioqJe2J0bZPc/tGeb6JIasn7jTf31XjUuuRFFwGZqw6//Ic+wG6c2xQsFlztXqhymx+nNSwCEFiTzdMaqXI/OMhmpr6ftdk1BxSze9sUiiuwf5kuS9cc3nLN2038+6ay67xqxb0jVLXEvi6KYd4Rqim4aCywCS+N+zBUYJvibRJPyUUlezLHsKwAsBvL15/YUAHmj+/QB0zSIAIMuy1eY76f2FbDzVJ5ec8llVt2pUyHamcwzLHMdWBqiVVvccFDkGeXxNoi1uz9mNXh+fNtEcR1cGmFY1ticz86Bx9RBkv/yuT+OeU2v48ntPA9AbV5ZZR5KTIHYXhF/4phe13vMFUhpJFGhzCS0YumhnfNGw/jss5RrBWRNcbywPoJRt26Gd3eZ7Ijay2ln8BoUfSbzQKKre9/gmdidzk3yQCqlnlUYbCTl87EobSeSCvZgMldSqg2h5APDY1f3W5uOrSZxWCsMyx1FH7MBVN5VrL9KcJoUwStelDcU7u1JTZM8YJkuokUTvoQyS4l6DmJpEgHre+Rf7rrop2wLDhyQm1AmapsAOapDaAkAKpA5iu5M5rjT384cf0ckZWkdKX+BGrIw8wwd/4DWtpuJlnntr4taXSvNMLreQ9P78wkgiFwDEoNT02fa9HLone89NBG2R5tlF0mNEO4D++uptleJjMjSvcQlcM0eOEhhKrPcCAHrdnzjq9ZbzJEnssbiEn79NinXI7WuGWRaFJPrnSTW27jhpf1sblRjPpri0M8Xtx2w9uphMjrlPeucyHOzxbYnC55+9brXyKqLSd3bvfyBMNy3G0Ln8AAAgAElEQVRYPYE6GDToz3XGBX6fxMoJJ04ZJDEQXMrqprxwjWmBcUjqpiRcE824a87bcoIPGkO3DokUAdROR69XmYbVmzdShWsiWmAAnxt00yzLTmVZ9o1Zlq1lWVZkWfa3AHwTgHdmWfbyLMuenWVZnmXZCQA/D+DPlVJEI/1NAP8iy7JjjSDNPwDwG817vw/g+VmWvT7LsiUA/zuAv1ZKfeIg8x03WYONRihEukGm8xpLZY61pj3Elb0phmWGgacFQ9dMAJhnIq/bpaQea9Clt9x3LogkKqXwE2/5BL79Nz6ET57TWfV5rTDIcxNgcs2sfVkjXyBFwjX8uHg1QxskpikgWuEO3qmj7y7zzFxbEoUp8zS6qZsh8/VJ3J9WRhn2/ic3cXVvamTaJbrprKGbUlD4aCdI5JICMaIwOovZv97UugTQASk5l5lTk8g5CboGN281YPapm8Zk1rnWAbH1ThxFKbkmq/nrDRJNJr87x7Dz484NCNdp+vqSds0g6R6adlWF1U3j7n+7JknOZ1BMKWHTjrW3PXAO03mN244s4X0PXwZgs8FFnrPJjq6YzKmNJRNYAvoeYoNEBwGjZ3ppYB1lrkzBpbZyxgnXqAgkXUa3Y5BExtmNQAV7NO1IJLFfTiEL15h9iqObemiqZo4LJo64YMOP0vWvt9QjrnUsJnERQrKMn9Bat8LBvbR3h2ogyyITnXl6/eL2pFUDKAvXxPTT7NJNYb5XMs4pjxEO4nQBopDEznND538x4ZrwHIH+dQshpRxzIn5NaL8WUkqWwANpfzMtMG4Ak8S1bluW1NINt09i7Jgiy8S91FK7w+JlZmiMAA3QF665TnTTw6pJVAC+C8DjAK4CeDOA71ZK/SGAuwC8FZoiej90neI3OWP/JbQYzSMA/gLAm5RSbwUApdRFAK8H8OPN974cwDcedLL7U6KxWCSRM0IYyUFQSl/8Ms+8TUI/+JkrpubFbCSFiyTym2iZ5/jK554xr/salwM2AAKAX3/PZwDYAFCCw93PcCYt/kC7JrFrKQ7oosI1FkkpMK8V66Tpnoi56fvoilv46l+kOdI46Xc9cU0HeK97/hkjdOEiiVKfxGGZtYLEMs86ARifsfNlTaX6NjdIfKLpy2h6y3mCFE2vznBs1RGuMXRTX32CLyPM1LFEKofyPdEiHMKWIxnOWnNOWgzaw6HpoXNC5z8m49pXNxWQRE/Q1p2fZO3Nt318c6wQkpjFb9qx9sCTW1geFPg5hwFB7SyK3FODnejIA+11mdBb3zMKhNVNubp0TeUMIYl9J82nZEvWdVpjpfw5xctYJDElwWXQd5ZxEX52WEqmd5Z9dCkmuOQSfjEURE6kIoRkcb3sYgIpae8OBRss/a0x2psv7Uxac5Ap6JFruXvdzPw8YxiUOkY4iEfbYltg2P+PTUBwTJmqrr3Ho/WCqxME/P00u5ctBvHn9uAg3VRgoUj7m08Q73qaEeEL+Gldo99h6Kaz+BYwWSbvpTHCNb1zGStA0xOuoZsyhCT6CaWHEiQqpS4qpV6plDqqlNpQSr1AKfUrzXu/rZS6Uym1qpS6VSn1LUqpc87YiVLq25txp5VSP9P57ncope5VSi0rpV6llPrsInO8vDPBM77vj/GnnziP8Yzopg2SKAWJc4UytwEHoLOhg0JGEt9y31P4+l96H17903+OT53fNg+Jr5k7bYbDIsfx1SG+5gtvA6Az3gBfowYA57cm5t8ff2oLAEx/RZ9DWCnZafKNG898SKKMSPWOb5DEVLppc55KOUtFgj90ba/tOXTTlEDWyZBJQTqg6ZsA8IaX3G5ec4NEnsama/2WBoX5LUeWByYI4dRso9pLCJs9UW4BTdernE3SRwuhmkRqzQHA1KX46KZe+hUTOMcoh3briOifIYdEog3FZK3TFSj791eoTnOQkHGlS+ulm3o2e6m5N9lkXuE/feQJjGdV634Tnc+Ak8wp2R7UZlWNpUFumAIAsDJykEQxcPM7aSzd0VGdHpog0VWcXiAg5YK9GCSdcdJi6KZdpzX2cvQc+Ui0H+gjzn51U5nxQvf3UPC4ZOGaUDDbCcAigpSMpY3Sb/AnxTgkK6oFQyLaac6lsC77xLOk57QVJDrnySLi7c/HrOXdgNsc2oeSMmuQGyBIljHBfQQojiJD7/4HImjazL4Yut6S6F9MP00ucRETpPfqhpU/2WHoppEJIKN1cKPppiaZT0nyNF/S0E1j+oQ610NMkgT2e4Ch7kYHiQUdpPn7+YUkfs7bx5og6hf/4mHsz+LoprOqxqDMsDayJ3lQZl56xrsfugRAL0Rvvf+cCTbKPBN53S61CwBONkIJp9ZtewnOITnfNIu/++QqzjX/ruoahROQSs3cRcfOM248q1qKqK6ZvjExohgmSJSdXc5c4RpAQA0qHdjTtXWRRE5+XpyjiyQKQTqge04CwHNvPWJeW2+CRKmWdNbMEYBBqd1ehJyQRkwAVuQ8LXbbCRL3plWjZEZIohykUJAIAB/8gdfgF77pRWa+PgXWEG0lVREP6DtbsYjIIs4WVzscg/bwlCi/g7ZIcsXUG3N9EgNZcqnhPAD84O/fj+/+j/8Nv/W+R/i61e49GaDbSa0lDmKzpjXQmpO4ozpZuSbR32C66xC64wD9jJB4zbJTk7uYumn/eseg1HxNVjqSSJFUOk01QhBDUDd16/K54wD9YANw90WZbtoNtoEFkKzmn6F6v+6tFYtkcUGb7x6xc7T/H6UAKp7/ULAhl7PQGnNpZ2r8pGGZ2/pmBkkMRWBZ1hYTUxE1idya7AYI4jjmOY1PSnL3iHcYmxgLKY5K180tC+GME+WJXUu44MarbhpAqbvPtiljudHCNQ5KzpXASNYNEqOEaxyfMNTbMoq6a5DEBLqp+3lVA8giMuU3g8QoI0SpqhUmswpZ1lY35WzaOMnkGAM6q+lrrn7f45v4G/ecwAvOHsF7HrrkKJc6dNPO0C6thhwSOm6W8cEXBYkvvOOorhmoFWa1DkDomeV8tDoCSQz1SeyN89S2dc0EiUbdNM6R7DvJTPa5URck9JeuewtdZU7KY1f28IO/fx++//fuw7yqe06yhCQ+fnUfgyLDqfWRcVZDSOK0ST4AljL83V9h5d05IQ2336ZknGoZAGw1dNNT6yPsTyu4amu+mkQSrgE0qv3VL7zNvOdTYPU6ydwGFRFILFpb1b0GKmIcTb9Lbw1mn5n7K6RuavrERTwDrpR9mfPiWS6VmDMfKv7hR68C0HV/7rWUas1CfcpSakRibVYpDDtrsqWb6mvNNZheCEl0kne3NqwOSppIa0JIlITrVakQI0DDJS5UsCa36zgtiojoJEn4WO4xyHyIm01AcEhiOAnhrlsxzzYg15v5fp9E0fPNT4/r003jauI6NZAmuJfHSPtbSOBFah3j7ssXtyfYawT/lgeFvJdGJtNSa0lNCYAb3EegNmz9XQRNuys4ZESRIpIynLqsv0ykr4oNhNfyrJMkaSYa9Zx2z0mYbtpffwAPkmjoptd3/e9az0+LRBLpXKe0wHADUqmdXYxwTY/RRkhisAUGZWYoSIzorQgEkUQvGTXLst+CZWmIppT6lvBMPrftyWsa8alqhfG8xlJZeIMNen1Y9Ommw0KWjP70xR1840ufhiu7E3zksWstypLE66bjE0TffeC4hQfQCzcAvODsEfzeh5/ApZ2Jaebso1b66mZ8gdT+VK5JXESAI7UmsVuTJWX/XbopBWGt3k7MuH/7ns/g33/gUQDAd77yrh7dTlp7Hr+6h9uOLiPPM6wMS+xNK6yO3FrS/ph5c18BwPe97l4oBbz2+bYWNc899V++PolMHRFgaxLPHFnC3nTeoo75rttsXvupXlwWGYEAjEOXVIQAjVjHEs4Iu9cgBoHk6JU3GkmMem5q66hwjp1SSqNLgSCdSwBVtcLjV/Qa+dePb5pnsoUkdp3PCITiegvXzCudBFp1GA0rToN7oI8cBtUkJeEaIzqW48wRHSRe3rHrCbcmhBxCjpIZV5Oo/3bRvfD93x8DRKANeR9ti3GQARlJ5OZq15/+97n9g9nj5W2VwDR2gf3/GCTRJybmrUlkardj1DX7DAj7umTS+Q/RFos8F2vnAc1yubg9wfntsU6SF7bVAJfwiwtSuHvSM4ZB0mNQmyyTETrvHDsJ15hAFtB78HjeT6bF1Ptx7RRC43h1U/8cNejAXbe0IF3/P58EPawWGG6iMk24Rv9NKXlikUQh4e1N5nfBoli6KYckhgJL4MA1iQ9Bi8Z8GrpJ/d8BUEAL0OQAvgbAtfAsPveNgsSre9Mm2MlNkDgR6aaqhyTqPoky93kyr7EyLLAyKrE7qVqUGZHXXemFlW4e+ku0SgmRmsx1k9bbj60AAM5tjk3W3FuTWCuRouGvSayDwjUxDylt/sl005qCRJ5uR/SYMs96wjVlIT/YQHuRuLY3i27S+vjVfZxtJMUpOLTqpjw9o1bW8fnOV96N73pVu1MMJ3gTVZMo0Ia29jWaenJthL1p1dp8fAJHMwfx7FqW9bORMVLmEpIY49gxifUIatniSnqp9V/c/RVy0Og+iHluamW/Z1D02Qz0FeFemv3Xz2+NMa1qPP/sBqZVjccbGjUJdXV/F2DXsUVqnRY1er5dCqKL3LvzItOBmx9tYGn5jgP05feeAgDcc3qteY1HwEPUVo5aFuu00mftuDhqWRs1o9fDx+srqfrHcAqsgL92zI8kkiqqfH/psao5rn49qgdk4m/TtdTt1+rA/a+PxQeXPicS8NBNA3N0P2vGhoLETFj/mz2RWmY8dmXPURLuJ9Lo2CExsUwMgOUxnF9i9ugQ3bRzPhTikiTtREL4/AN8YiwU7PkEh0LjFg3SObQ5JgERK0pl/IobXJPo3tsp+00XqJBigPYY/df11RcSrqGAm85ldG1hE4eQeE19CEiiUuqH6d9Zlr0NwFcppf7See1LALwxPIvPfXtqU1Mzn7o2NrRJA4l7kMRBkRknBNAbVlnk2J32Ocx1rVDVOrBcHRbYncxbMtkSr3vWKHKSfcNL78AnntrCd75SBw8s+gJLo6LaRU051Zl2n0hF5dmk5GywwrSqg8I1UaIwPSQxLfsjCdfQ/xZ5bnpOUnLAp8gG6ACY7Ore1Fn8ci/d9OL2BC+78zgAK+oy9AT3brsTyfhmt2F1U0m4Zns8x+qwwNpSif1Z1cpsSmIHNFe39qt9LD6LSfOXjGs2HJP97NK9XPVNn4l9Er3H6t8nSvnPvTSucu4jdn4eJ7lrleMAcEFiiNqq58ivCY9c1iq9X/rMk7j/iS18+qJWZ85z2fm01BoBSbwhQWLdQ5YoaSQGs3VI3ZRHUuYOC+QVd5/EB3/wNTi1rhFFqY5rXiusRMmft++tcPa/k31GpEMo3P+hqLQv+BR2/iW6qe++9CUX7Vop1CQ6Ca6ySHPk+6I84fVHcpBTHfm4msQuJdl+n2RBJFGkhUvCTfr8nz26hI8+plW43T65QD8ho7AIlbm5boF9o3u82FrGXpAYkxToJHgNkhhD706ku4uCQypcOrBITWLBJHjj6ab8HtAdm5L8PIi1Vejl1mi9cc3nfCKIXXOBAxFJrCPuya5YnVmTY4VrHCQx1CMRuK41iV8M4P2d1z4A4BUJ3/E5a0S5m1Y1zm2OtbJkc7G8wjWFRRwBfVMN8oyF0d0altWRdshJSXVU5mKQMm/qbMjWRiXe9IYX4tiq7k8nIUREoyJHfnc6x8xFicRx8qYozZEKe91z4Ron/y8ZOTqL0k0lmnA3AHv68RV8pmlFUuY5K/5ANm7qVAFgc3/WylK6VKauXdmd4nhznf6Hu08AgFED5YI9ovBINE6ADy5jC6K5zN3OZIa1pRIrQ41u1871p+vNXYPJvO+Qm2MJWUwgJArDBZdx9X5dxxqIcAjzrkPSvB7hkPSofREOAtBBEiP7JMYkSlxnlqX7UmlD4B7hnlGqb37FXfoefvjiTjO/3Js4AnzOp5xcWdS4IDHr3MucSqCfAso7M13hFAoQATlxFw5IGUQkAkmkr0wNLnvzdLLh4XHOMBXn/AN96qivJi7PM5b+BrT7VHJWdp7TyPi31zogLknFOOQxQSJzn8wDzdW5cZZq7h8D+Oqk5PMo1c4DwK1HNJL46JW9Vlsud16ADr5UTJDC3FtAXADcVpwOj+u2O6FxQeS+s3bFJiW7CDDN2V+nrP+yYjKBdlLdyxaH+HMIsJ82LYouCloJPq2D62mxjK+u0ed8IojSGLdOX1KkjemT2KtJjKab1vZvFJJ4/VpgfATAT2RZtgwAzd8fB/DfEr7jc9ZI0RQAHrmyi9EgpiZR9RySMqcWGFzmrQliityIKVxsalhWR6UTpLTHUZ2NZJJjR84PqWluj+eoKmVqGyWRinktH09CDUIbtk8lkzs+sFifxDyzc+A4/IB1Hu44vmLahLQpuP3vHs+q/4+9d421LcvKw7611t7nnHvuvdX16mr65Wrc3XQDbTcCxLOJTUMEthTkOIEIS8QojuNECkqIHVsxWIqFJVs4TqQosWKTOH+sOAgpOCFxlETmkcSY4E4cFAgY6AYaupuuoqpuVd17z2PvvVZ+zDVfY445xzf3PdWpNndKV/uevffcc+6155pzjPF94xtBnOKVBwJJrDjbD6/3uNgd8Mwd5yT+e3/og/jvv+cj+MJnb4cxC9qokWcD1Bww99iut1RXUz3ZjDg/mXBxvc8kuZs5iYd6TqJm/MTDvjpF9bstsA9tmaS/ENfDj6fmvzR2xmiQx+d6kJS8lte6jmqGbkcJjMy51xCKYIy356jtCS+tubsfeudbMA6OWuY/yzI+6zS2m0cS9/PS2IPWeR7KeVpiMq2cRFVwpYEkWk4DgCLfiUG/AC0nsd2vRBLzz6v3k44sQ9Fb31usE/fYFqDRrn8UfVPnKIICy9JWgwzzLL4bVzZgXnLqOhW4G0qaaioc1h6vL7hVQ3ssWuxYuf7ennn7mo+7LMjUzeVewjrp0klhEOBacAWwaKr69egVrmG3sWks1/++EZR3fco9wfez1tYxqRuanXCYDXVTC0kUnb0NyrLEjm1xP3M2aK1+tmz+PUwJqlcf7vAPP/5SUTsbUJztBFyotaLuMF0CQwjXzAcb2gZuFEn8bgBfD+DVYRg+C5ej+BEAn/eiNYBzAp5djfnffPkCt7ZjWCAW3TRtT98+cSUwlAjJPkGyfO2uF193Efpb20mNBgNORdJSrdTWcKC2rk7ig6t9ZqTURCrmxiFVjQYbBuFGHNitFvngbSRXNk+TjPQMQbcLKrHu9eefOQ+vuRs7fo5sl/sD3rYehvcudsWGoG0iXsTimRVJ3EwjPvTOWApDM8hjnk07sbkYjzBkaonbPgfm/GTCw90BF7sDznzZgIrD7ea6VJHjNpLYjkjq9B/rYCsNZIBAN45AEjXkjHFkVSSRVTel7pv4OVpuYUAMWihpZU94+cEVpnHAk7e2ePr2aRJcGU3jsy6I8cbQTWv0w7os+WzQvep0fkB38GvfzRTJURERzrBz743POefGRqR6c9tiv/S+4fYfoLz+Qbim5qRUHO7rhO7bHG9930w4275fNyK7vi4RSMBCYPTr0QoK+/Hkb+0/r9Zqe4lFi62tf38uP/fEWdhnz1MnUaBm/hModdNOB1gLsIf/N4bTEGAG7SxtLntvBfQzf56NEjyV382xV/rOUhYV1wJ+luAZgCLgUctJ/FyVwEgDlRtlj6z2W21JP+3W+fvtf+On8Z0/9DP47TVlbRxi6lgBVISATNueB5Iz4FFKYFB005Pmy7STuCzLry/L8nUA3gfg2wC8b1mWrzu2eP2brT28PuD5Z26Hv8+2UzDUa0mr1wrd7v1vu6PmAwGRnpGK3bzw2hXOTyaMYz0nbq84o2mrqu+tDuH5yYRhAO5f7bMDqCZS0aK7jBVHyhJOiflYTAkM93hMCYyUDy77xXIj7nUv6OOfqyWIA0659fbJBnfPNrj3cBeKO3tqgbaHeOXUp2+fli9CN8j9wduu23bc5m8ZrrdOJiwLcO/hdaANWTmJrehzgQiS0e6StkXWNlOcRMsslOqmPQIQUvCGyX8EajmJbUOXOUwPczTUa6qJ6WfWxqsFPJ46P8E4Dnj2zkmouzoNQzVwZKsmvjHCNX6vTINAbrxKbg9hpNWCK4B+4Nf2BLZOogxcMIqEgAyUMEGS/tw2oNyDFrIPoF1/99grcLRf95+aQS+DAkz9O0ARTpkZsY/1vZlzQyp5Kk4blZM49/1utfPNFK4ZK+kz63NnmzGccalwXU05l0G3ex3gsXL93Xjta3KcuEt5r1lj+dfV37uTSgt4dM84S5XvxqLiaVsWq9zGOqdKAEiurVbw+SZbWHMN+1prh9ld92Hwgjf6+fvgao9f/qxLvfj7v/iCG2sYIk2+Yie3AL4iNYsugeGFa3pLYNwc3dSNuyyfBPCzAH5rGIZxGJhZvPnbxe6QGRW3kpzEmpPi1B3zr//80+eOHmPQTb2IyQuvX4X/t6icbUW8Sk2uVelvGAbcOdngvkASR2URe5l8C0lki6b61rMp+M/yBw7LW/e0MY8kyN9AUvve9kR03qxNxCm3jnjq/AT3Hl4Hx8IjkFof7yR6uqlsLSSxNyfxGGqZb16W/3y93i/dvy7KBlQRyEZOYg1Zak1Tp5vy6qbeMGCorW68440tiaQwBqHsx0Tx0/e12rK0841T9LvWtDxZwNFNPSL+1rvxvrlztlENNMBO0tei+I/a9klO4v/yvX8Av/QD3xpeq0nJM3QvXbgmDzrlffQ9waS2VmijjGEHlDlg3cJN/v/EWi7FXYw5Vilp9RIYfqz6/tP63fKgwLzYwSZAc1IYJz13SF0/G8mtU/v6+nH53kYwp3H9WzmJJ5sx7AklkqjN0Q549OYWquwOMigptyCW3q1/t3Y/FUlc+gNH7m9rL9dyEpk8ZeUeNfaSGr2ytrYi3fRzhCQOfU5iqjFQ238AhNqgAPCx33h5fb/7W6PJz8a9BiT2RTfd1AvX7GM/qgTGDdFNh2F4xzAMPzoMw0sA9gB2yb/P+3Z5fcCTt05CuYKzEy4n0RvzT527C72ZRmw3o+pYpnRTX8frxdevYt08xUDw428NeFrjWacO4Z2zDe5fOjVV/1na5s8iGzXhlJuo9+bfc+ukk266UiKiYS2Ea8QcU6GJFEms0U3PthOevn2Clx5cZxGympMekMRz3UnUkthjbmebbiovozOACNSsZrhOQwhWvPzgOjjoMSex/A2c4pk+lra2KNrQWFJWqO8m6EaMsp02T8rYCusknSNnEAI1JLEWXOFzEtODXFuTLJKo002vQ7Dj2TvRSXzmzoktXFNzgCt1Ox+lpdT8k82YIRveadACXBYFVM+Jy4NOaasqThPlNtyc4nPHrH///27hGvF5bD9mjtY6aZ0dteBWUwBCBAWYexQ4PicRyOmmziBv9xuGslYuhyRKcRd7v/MfWdsXmsI1yhrxJTBOpjGk6vgzxH+e5rRRjpQIdlj9amJiQPs3kL81QAYl5foPomDNbmrwzl7HtfumTZNXz4Ajg8mHuU2b1ujufs7jUPb1SNsbXQJDq13IgA5poGYzDkUeu2/XyUb9mYRu6h/rpco6fm+2BIYUrrmhEhg9KODfAHAN4JsA3Afw5QD+OwD/esdnvCnbsix4uDvg1kksivzFX3A30Jba6qbuPT/xZ/4gfvbPfxMAYDsOqmOZ5pv5PMEX70cksUrbUgRy0lYXSYh0wNunm5VumtfAq9FGW7L1gBJpIlUaa0bhJ168Hw4DP6fTTrqpj8jVUEs/R3+DPpcgIq1kY8AFEc62E567e4oXXrvKKFK13E5PU67WjlSS2P1aa9KLtYNtsRVAa7klTvF2DHmyv3P/KtBN/TWpBT1qm52kcQJ8tLuQTSe+m6R7MUqebi79AhD+Ky+iH4skpuMxlMz0fa2WOgXammSENLToM5Cr9HqD8GQz4u7ppm7ELPl3KMfiixuzbX+YcVKp3VnNyTIct7GGJDYCOjWU1HRIVTo/g9K5x2MQyGMpgb05iVVhNuPMmcZRdVIsg1cGBTyzxmrSAViM3C83lnvsFfPRauXOhJNYQ9taww3DUNBUAZ+T3nYA9HSDdf1vRrz1Tkk31XI7AZgCX4UoT/J8dY5KACJek05Hambp1vFvH5Sk6isqQZK2kIkevD4sRsBPAQ8oUR7FTnC2VaNPJQDRqvm5XYVk3ogW2AN+b+lEEtMczBaSeJUIXr74usvT97a9RpNna3dm8wxIokU3lSUwFjIn8ebopl8H4F9ZluX/BrAsy/JzAP4EgD/d8RlvyrY7uPqFt7ZT2L6+4vmnA5W0LVzj3vPk+QmeW9UvN9NY4fB7o2II6OFhXgKqWKNttdRGXb9SWc31S5DEU083jZ+lRTospbN6raV2Ll3L2P0nv/06PvrXfgr/2U99ws1hfU93CYw1+uM3JRml2ok5PpMgIre2U3UzBoDLvaObPvfEKV54/TKjSGmOjZtPW5TkJoVrFnComXb9Q6mUdXObl0gbapUumRuH1DSU65GJJGs5IsvS3lTdZ+bzpOk/0kieiah1xSBhkcT0NziIPFnZgmND3ANp7lSLJdAyeGuo+MPrfVgfb1v3OZ+zUau5yqz/G6ebNoySqMKaX0vLcashKVZ9v2qeuFEDFSgdAFY4pcxJtI1d3bBudlPQHo7GBihOkXHm1CL5acCz1g+I95tVV843GWCZl+PUZemcxE76odaPCW75fqWzYYiSVM6N64MzRrfTiPc+dweAU/72rUbJNAMeRwQu9FxeIihZcaSsH1wikPT1H/TrzwiZaA6HmTpQ9AHx3fop0LV819Y9upn0XNdHbf/x3/8VvPfP/z3sDnMI5qcgACue6N+/mer1FT2S+OR5ROP8/zVVYEq4Rq7lYDhZRpCPXvfmJHTY2G4AACAASURBVN4ckniAo5kCwL1hGN4K4AGAd3Z8xpuy+fIXt042+Ev//Ifw7V/xLnzle56KdRI7SmAAWNVNtchbiSQCMfJQu9GuD/XcLyDJExRDHhIaw92zCpJYQxsMZKNMUI4Rm2Y/5bq8dN9FYH7s5z6dzeF0M2IYOkpgrIddrQaPpPal3/FD73yLkZN4wK3thOfunuGVhztc7qJxL/PhfGPEfGoGk6UkpuV/UQaJZriuEXZfvxGIUubB4TaQatlUZ+/I4sY96o6Bxr8+323sJvO3xjp0GoTaYW/WSezI5U0PNu2gD2qjRkReWyPpvvFFb7sLIC8bVKMotcZ7I4RrNDEx3yKbIX9+P89tx61iJIegnyZcUwncmeqmyh7Ul5MYn6PW5Fj2ST+vNV56SWYK7dfPDubMUYNbhjMlgwLzbCOCvp9EiXgnPT7H7FuDZsgTAaeauinlgCnOhrUml0VjvazrfxrwbR9+B4B8nzoGEfTj5d/NPfbSTSlWiHpOEdfRjyeDku1uhZowsOZEE8EOLTDfdNzEdQT4POUi5cOYo8aSAaJtobVaaZtHbX/nZz8JAPjHn7wX9ppxqOdNai11it3+o9ugV6sd+K6nboXnnlrTizTmVgzU1seW9V2juqm1KIVwzQ2VwGjjjHn7PwD8YQA/CuB/AvDDAC4AfKzjM96U7WJNPr21nfDBL3gCf/XbPwwAGAf3IzF007SdVJHEWHz5C544w+9962184sUHAVWsHqKHGdvmDeoeZdQmRRJvn2zw2dcusRnHYPhrIhUWbbTmyD5KTuJrly728JlXL7LPHscB22msOumyRSTRoy/5WP76p9/t3/zG9+EdT95ykaZKxG5ZFlcWYjuFBP3APx9zGkOKpIacrAa6WuYMrK8ZTopmWDCbv44kLjjdjrh7FreDIidR+Q0OjYNDQztn4tCu1YBkapsB8d6hjd3CILGNLS3/iDEIN8ohJcWUyj4dOYkJTaqFJFo5iTUEzM//S97xRPF6Lf+lNZ5bjzcbSd7PdSXoGEnuQxLrjnOdPZEG7tKXzTqJfg8Sxq6NUmMdL3cuGYM8DcKxNpsU5qGQxAYikr6uzVFDnNO6oFpTkUTGSRTnYs/+04sAa/cAQ68fhlIkZ32l2U+jwLHqmodlwZh8vl83p5sR7376HH/ru78SH3pHWuIpD0Cw7I4SpfP97Dl27+VJMGcI+/qC0TCu43jumgSH1LDJ1bqMhJMO6MI1TVZIsiaDIjfa1wOolGUxUPjavX1oBOBqVQAetX3pO96Cz7x6iZ/++O+E4LlXKQX4gKu/ZjUhSiACSO9+6hw//6nXAEQkUQtupUI6tTbKeT6KcM3nGEn8LgA/tf7/3wbwEwB+HsAf6/iMN2WLSGJ+OTxEzdBN07YZR8xLecOkdNNhGPAdX/luAMC9h077p3aj7Q+2uimg0718v+eeOMWn711mZQs0ZCnC4Zazlz9vilQ0jN17Dx1F5ZX1OoRk42FYHW7OcvFqXzX0SxNI+DPf8gH8sa/+PQAUmH9t14cZy4KQkwg4hza9jum8W+OlTXWIZvZgKw3yXtTMN5+TmDqJQd20gWS1jOuWuqn13Uon0TaaJN2LcUjdPI/IY/EOqejHXH8gv5Yscs8cps64Wec41nNC24ZFJZcuydvzwjVf9u4n4zwVR8pCSd8IJHHX2CvrEXmbtqgKdzS+n5aj5v9mDMKyTmK1C4C4XqWYBoNI5XPkgyulkmd7jrVIvhVgrCEOFt1UGtdpEKXVxkHmGx+n3MpekwLtgW3IS5pkRM3seWqKiy0kfaqkHMjUiI9+8G0h5cbPUat3SOXtdSOCKObIBiXTMXw/Zv0D8cxnlVtV4Roj2FGj81t5gpO2J5CBI42Cy6D2qjJ/7b6e6s7XozQ/3AuvX2WBoVoJJK1lwjUNgTWPJL7n2Vg+L9VzqFcBIAIe0km0lEqLOomHz21O4rIs95ZleXn9/8WyLD+wLMufW5blM+xnvFnbw2vned/alhdrUugBgDs4WnRToDTsZHmDb/7i5wAAv/Dp18JY7rPzz9vNdQoV0MoTjDfIh975Fty/2uNXX7wfNv1JMSStvCWJ2Mh+x+QkeucQcNc1NZy3U91Jl83LFtcKtbaKX6dzlBudp5aebka8Y1W//eTLDzNqH4CComE5AFoSO+OkqGUiFk5dU9vsPAUuo5sW6qalYTEvfQ5A+LPlJA7l+vfPt5pEuOmotZhnV1Hwol+7o3bYSwq0bNuKgaa1VN1UE8Sw6J+AgSQm983Hvv+b8V/9ya8W/cr5APXfTtt/HrXVAneAEqFdm+W4jaNOt9uHoJ9ONwV0o4lSN5VIYrXHOl4V3W73kygdH1wp8/aYPkB5dljqmu4eVZgMhsEr9y6Xw9WcopunuAcYIRONbsqgq8Og7K2EIS+de8aRAnRU1kISa2eAlT8vz7fF2A/CHAe5JrngYvpe+f9qP8WeOYbeHc5tazzVcWhT0AE9UHIw9hLpyPp59geO7IBTQC0Ve7IFHOxumEkCAK+vzLQHV3vMczyXayWQtJaWF9k0BHZ8Xu6XvD2ya8J4CnPrkCCbtVbYF91I4hz7MSUwbgpJHIZhOwzDXxyG4deGYbgchuET69+6vv/nUbsMSGJ5QZ1BXhehOdmUl3BbQV9SuikAvPetd/BHv/yd+I/+JU9vde9TkUQmYqo4bj5f5ve909FAliVu+qNiSFpR3ZZCmpuLlQ9UXst7FzHZ/XI3Z1L9PZQEH/2pXf8gWV+ZY01d1q+Ps+2Ed67c89965SIgKnGDrDjOjfE0Jc/0M9V+FQeMiSKrAhzr+jpPlOluecXdmmGdoL21sYp9laCA6hRcPifRXxc2sl4UBacMO2+Q9/UDysP+ptVN0zyKOt20/hkaAunGz+XWn71zmsvda5Fu40CcKsb/o7SWErRG9wUIx63i3BzmGcOg/3a1ckbHIIlcTlz8/NCPdNw0cREmULLPxiIM68b1N4WDlPVvCneIe4cVrnGKx8k4DJJYQW04JLHPIAcaNHmL7qg5AEs738x/N7kHRSXuyvlWoM3ukQl4qOyORs9aoDydvzqWGvA7ht5tn21+npqd1kJy/eeqojDNgGsZOGJR8QI8IFFLDaiol3e6eSYJALx+5UCH+5d7h4CGM7GNJP7FH/sFfOff/Bk8vN4HwMH1q8/T3wNfmCCJvk2TztRridb48fx7AYAvgSGEa9gSGDeYk/iDAL4KwJ8C8BsAngfwFwA8AeB7Oz7nTdcurt0PfUspVVCjusQoWnnH+U1TIlkp3RRwG9F/+B1fFl6v1ekzI0YSnl6bL5IOOIc0fqd6ncTooLWj3d3Uyoaxe+9BRBJfu9xlvO3tNIYEeat5lbYp0E0lkthWYK2py/qN4GQz4omzLZ442+C1yz3e8eRZ9t2q5UQqm7KWxE4hiSpFicuJ05FEhxKlhkJEEnWlWDPfUo2Qu0dLSKAUVuAQQeAI+k+BpNiHqO8no89MP/n9bHVT/fprzUVN4zi1HME2/arcR4DjZPIZ1b6bTkmp5YkDjYCH9d0SNDc9InaNfnpx78WmSCr9epCsYk0SqsAS/XKf1+6XOrPjOFDqyr7fMeqa6r61tGlbMijACtekdC/vjL1hOaEKvZtDsvIgVRROYZzLviB0Lbgi7RnZtDIpfg7tOeasnJ46ifl9wwVc3Rj5eGxQIJ43+fOt8bTgnRW8qPZrOvfxfb5xiL8muGXkJFaYE20kkWeJ9bT7K5LohBpTRLAeSACA//If/DoA4Kd/9aWcbjo2hGtW27AGMKlIopm36u+39Qm6BIYQrlkWjm46tt3AHifx2wF8eFmWl9a//8kwDP8XgJ/D57mT6CFjDRXUogFAm2rhkUIpuGLRM+KGpSEp9fnXoP79PON0pdCebEY8sxaCj0hivU5iuyaOVoPNlrsHdAP0lYcRSXztYpc5IF100/XG9je3NKwjksgbdunfvt+7njrH//uZ1/D2tzhUsS7/7GgkdSSl3FSjAmjtW9aRxGPyIdw8yyCEz8+dxmGlRNWUYmsOtx6xBtqRZM2IXGBTOTdiY/UfYZmEg3BUmOsIeOMu78ciiel1odWEK4fUqw93eO1yh3c/fZ7ljUzjUAhuMZS0WuBoMQzyWuDIUnFjlObY5qnqNlNA7gvtotStfla5jfRns+6ZtN8hW1sLJVsPlI4D49zI/EfX7L3EzdMJd/BBkvKcYoQ7aqV7mJzEfuGadV6LFyXhnG03pxyRsoaT+4+cQ32OuiqziVwqZ4BF25180Lt2LrbophqSSDhEaYA97FsMAt9JnQ6OlKRkNmeopDfMtiML6E66C6YR16T3d1OvCecA9zr3LUHD2ne7dTKFVJ6bbIFu6hHBdfiacJls96/2WYCnhSR6J/FkGvE/f+8/k/0etTPRCghE5F4aM73CNQd7QQLA1CaD9gjX1EYjZvHmbruG81BDEq8FdTRtXom05qRUOfwVuqOjP9TnX1e/yg/FUN8syUmsJ9YaSKLhSBV9KpQVIN7UwIokJlTGbrrpOITvV6V/Gk66doimr7/n2XMAUcCj1s8SxKgpeQIW/1+nqTLRfzXgoeRE3DmNFATtHrDoxVqEnHJSKtfE/G5iY2XKbQClo84oCwJaMWuunxSOOBiBi23Ib9YPqW/8az+Jb/jBn3CfNYuDrYYkGgGgWuCoWbuzSoeyjP+bMxIsZKNW85OlgKqFohtIuuwT7pmWSIgSTFvAI3uHDIEhkQ1BmwYxnkRu5gWUQaIHGO11Ug1uGXtJOkfGQAN0VgKL5KZLhEUgtTJIvarMrJqzljs8N9Yx0KYSpq9r/TRng3HANOXWZnBRsZ0Y6rQmFthD7/bdWCddzS082Ai3Rks+GL9bELNKr8lsB45KKvP6PHOvidu0Fcg5P9kEPZCbbN6evH8pSr41KMnpc8FJTBDIWrqHdxJPtyO+6G138b7nImNvGsv6rhb66/sBiV2ysHRTKVxD5iQadNMeJ/FHAPzYMAzfMgzDFw/D8K0A/u76/Od1awoQVNCXWCNLcSwD3TTvd92gqALReNOQFIZXbylLPXPHRQzONlF9qZc26vvVnYbad3O5jLUb1NMbX7vYh/eMo5dJ1m9Q2fzhWsstDDmhlTnWi4L7a+J+oG/7sCsNemdVA9USxAGsdSrbv1u1TmIzKKAYFgQlrRqRT2jJ7183uY+879msXzW/rTKkjnauh7aREye/m3PcyI3VCwl4QbBOdHUh+gAlIsjksfh5zprj0LhvAF2E4TAveHktXr0/zBmaqdJ2CUra0YpslTXSjD6PJW36UZp3OOtMDT0nxQzm+PtbCfr1lPyh9laFNkrVNlPODhY1mMU69s+3x8vXJRtcqSHVTce5yoBooxsyKGDl3vmmiZKw118GnKjAXRHMYejF/ahZbTxauKYSdGrtXVnQIszddrilKJLVT0sViY6bfW9nCDyREyrvb4bK719flnw8i8oPVBDg2UASgyOb39/U2lLYBa0p+utf1Io+1PfW2ycTHl4f1NeObZe7Q7Cz718dcnXThgjcvYTN9sDXEyeQRM/WOZ0Uuuk4VlLH2te/qOcb1E07hWvYnMS3f1nz5R666Z8F8P0A/lMA7wDwKQD/NYAf6PiMN2Vr5apV87g8AqAhiT76L6LkJt1UoQwB9qHRokmmC/JT91wdwq/6wqcA6A6wvxYWjaFwpAy5e/9arSj707dP8Kl7F3j1QuQkbvqRxJqzHZHEPoNESvl/y5e+Df/5v/yV+Jr3PhP6AHnEzn0vI9emgggCBNp2RB6L9rv5efo1+8N/6msxIOfYa+pekRKsr2WZ6wR0IIkKAsny+P367VE3zQ7Emc9JlMIdTD+5n/g1WzNKWnkUv/LC6+H/L7x+VSbbF8Em1yxWQomYtYMrQD0Hsu0Q1fNDfGuplZbvre/JQFk3zzcrIl9HEucm1Q5AJSDQUiSMc/LNIVLVLq6fQvfinJsKamPtJeLMsSTy034aImsjzuU6MUsAiKAAiyRKh69H7TL/3WznfqjcNwy9OC93Qv5uyrW0frtWkARo6RCUVEc3d3uOGUpKpGBo678rt1CyQohzw4/hHvPPq7XUudwkjCcGXdKCroxwU2/gSMvTB2x2E2DboGk7P9ngky8/bE+msz24ciji2XYM6qZ+bq2z9JXCSUSCJNbLsF3tnZN7ulVS1UbleixtfRFAuZasuumxJTCe/9rmy00ncRiGj4qnfnL9NyDaHB8B8OP2TN68LaKCek6injTvD/zy87xRI50bnm7a5wDU6vvJ/JyPfuA5fOLFX8NH3v/Wde66shpgR7ur1JNOtMHP2zuJmXDNOOCkIyfxsLhrUdSZWduOiORrCqASARiGAd/8JW9LvpcfXzE+O68Hg4Clkvx5kVz7oLHqjT19u+SnyxwR3wfgDQSAow3pYj68uuksDm3G2JX5KLQAR6dBDpSBGba4uva73U9o2p++d5FdJ00UhglA1GijgH1v66qhrT5j00n81L0LfP1f+XH84L/4+0NN2VaLJYYqyEbYX9N8p4UuS6EJg2lMEiAJHCmGfJMlUDV2+5ANPza1/gWS7uZooA0Cue+hcmoId1OAZhpCPbK0sXTTkJNoII9hjgLNZdCXWKcyPkc56cr9Brpf1mWdR7NbgRIBbbQHKANwvvn7qHZNS+Vcfo56PyJQXjhE3DqWlGvauUwCCW6O7X5pwMkb39Y+6fv10uR1xV37HpCBCyq4WwmktfKAz98AJNGjiM/cPsWn7l3gOsk3lznKaXs5EU+8f3XIAlCttIjrJCdRNu18c6yt9nco6aa9JTASdVNDlIZp1if8F5Xnw560/v/3PvJM/n9s+0MdSdQUioC4iWk3TohYi+jDrjEOUHf2rENKM0j856Q36J/7Qx/Ev/EH34s7p5vQr4YkWhGqmgPQUjPcVIzC/bzgmTW/77WLXYh2DUNfTqITrtENJve3/26tOZY88nBNDOOzV1q/Ke5CGJJeNML3Y6LdOnW6LsABOGS8pBfP2Vy0ORbrOJlHrenOJU//8fPkcxKVEgC2HYlJoKvM9dfGs2pk1ZQFgZgPAQCffvVS5CRquU7u0RSuWeS+ZQdXXL/8uTSKq/dpI4mfePE+AODv/uNPUU7i3kISA90omeM6PEMB1Sj21p5QrC3YzjYgjd1++htAUsskkh6iK81uRc7lPNtov59ngSQaTspYOYMt+qhGCWRA6ZBfGOimNpW2VricctrkfUOgPcNQQ+n6nQ3LmdIEUACYgivSTogqpcaaHGr9Gn2UfZJB4CN7Kz7H5CRKJD06Uu3xJJXZfwblJCr2nRXwk2OxgaNuuqlyHV3f+pq8fbrpchL3hxk//LHfxHd85burQIs/A95ya4tP3bvA65f7eCZWQBgAIW0DKOmmm2nAZUVh/3rv1LS1fUhXeOdTB8Kex5bAkMI184HLSTRa00lcluULH3mEz4MWECbNSaygX60Dv4YkhtqKhnCK5oA1o89VJDE3QLfTGJwxAIXUdPoZvYIrj4ok3tqOmMbB1UlMok+bacQDciOJdFP9Olr0GECnQ9momX79TdU+jVq5PrLIsZfkZwzCVgmMY/LN/Gu1OVZz4ozDphS8IYw0EZhhHKIwTzEem5MoxUXYnMQeJLEV/fRUFwD4zZcfZhFwzahgKGkaAhl/65ZwTemUUutKoT8f26ycYw0RYYNiQHl/t4Irmropg4iEvGiBJLLrv5tadgRqkI2XOGAaE0c2dX1ZSGJr32rMU+Yk0mindIAZRGp9uTv/S3XauNy2fYaIu0fr22m0cItuXaNp9wqz9cxRXkf/fKvJ/WQhgivht+5khUS6qe/DOcAa64hZl7UzuL2/5nPz82Xy+yUiDlgMlDintLXSNxySyAvX/J+/8Qq+70d/Hs8/fRsfef+z6nv8GfDkuRNjefVil9iS9bPU01S304D716VwTS2YebWfm/b8Mfe2P2fDGcCWwJB003kPbE7r7ydbj3DNP7XNI4naIVdDv9K8uaJPRZGQzUnUI4u2EaM5RVauzbHCNaUhaect1erNeGPr1nbCxe6QbX4n04DdnkMSvSS0pcbWuiaac0OXKZDXnzCSl0UWZbcjwlowgc01qCG5bSOhnpNYV3fUcwsBxkkpHWfG2AXyPCJrLN8vPxDf2JxEec9ZlKFhGAqRCt9SCt7HX7if3TcabZQJQGgIJJOTeJwR0y6B0es/BrqpUsoI0CPJzH5Xy2Vp0SQ1Y5BVdywcN/Drvzcnbhzz8ybuP+3x5JljyfGHeSrry14n9TOYKwIf85SpOoniuzlno91HDwqQqI0SFGaCAvnvls+j2U853xj7oqiVayHAo+4kHsXuAHcP5Oq+XOH4dIzwf6ufcIp6HOC0n/9/S7gJ0APzVn1RtSwLOJRau/7tc6N/j7x9usHusBSlmmrt4c45P69e7Krv8WfyU+cubea1xEmsMb6A1Lk8UYRr6jmJ1/u5ft7UUHuLbip/N5puKuokzvsbQRIfO4lIaUrlYm7lcQH6phwKYCvCNcNQdzYGsfH4Ns9o7j41NU+T7qhtPI3vFfoplEAp7qL3ayNZZ9sxOonrd9pOIy2TP6+f03LagDYltuU416J9tc3nMM+cIIaIYqafqfZTDcL+wvFxnkcUSicc55I2zTnAx0jCTyJKyDikbi79hrWfZ5rbxkQIY784nnWP+j46kujGf+eTt/CrL95fjdIh9KmWwDAoSlV131ZwRUMoDISoRuX37WI1ClhnMdJi+RI3LAMCUPaThrqpLq2fv1ZrMi+3J7dK5h9R1D5l/zHRBvH9LGpxNp6yvtrCNTpFbF5IVc5OJHEQ+zmL7Pk5+UYhiSpzwv7daoY8FShU9gULyU3H8I25v1VKrGXrrsHT2M892qUbtMAp+bulJgbxu8k9oSe9wY3HBwp9v1I/wmYqAWVZFoZKmwWuCZ0Ez4CQoouHuV5y43wVx2PRRB8UvX9VdxK9s/eWFUm89zA6iTVHNu331Pk2OIkcknjA6UZ3xKr3GrGOgeS86c5JTOok3kBO4mMnEVGFVEP4pDHoW6CbNpBE2W13aFNyagIJgJ3Hlc7JN8b41zZ+oF+4hjEkN+OgRmS8BPTZdsLl7pBFyHpKYPhDq+a0McIRGh3KQiBj5Lns159/RMxRiVovTNRacTYY4Y7NWIoHWTWy9LzV9TXDSSxpklz9Kfdeb9hxh7bMZZkJ1MCPJwueU0iiuHesMilAHXG7XJ2oD73zCfzqC/ezA0jNCSWi3ZpwE+tI9dZJ1FD7tHnjYQF3/0emhj6mVifRqlMJ1PfllhFaQ/sBDhHJBW/61UYBvgSDhnayCExwwAyHIfSr0B3bTkopJc/0k0ahhTzKfiGQT0T//cd25ySO5XnD/m6LsraYoEDBsKGFa/rtCxWRMgIQ41BB4Jn7RgZO211UxJ/Zy2MOng+S5M/XxyvPfEvd1/cr6m6b+yuKsdjv1muTaP0Ad+bU5nj7xDkwbDqRT69I62rL5q/Rk7eck/jC65e4fRJLvgFlsA8Arn2/85MoXOPP0qkuXNNi60ndAoClm4rzhi2B4esdHlYn+oaEax47iWjnqmmCDEAbSZE0F9+sw6ZNN63302gFgKPRvhG5hY9iSNYO+82UOInJ4bOdRpqO4KPZ0TgQry/MHOvOZc2RktST7Hu1rqMSxYxR02o3tVA3E7X29FYZxQSOoxL61/Q5NkR5GnN0yEb+3AICJQ33XDQI0+etfqmSIZ9bmCCJjYhp2U8YCJaTWEHcPJL4nmdu4+H1wSXpr0u0WYPTiv7XAkCdCDyDULRyEh9c9Snf+WtUr5NYGruxwH3juw1lP6DtpNTQfqCfbsesfy1vkkXAtDnawjW5E8zUaQUawYTO/Yfpp9VJfMNyEpVAIbcn95e8cnPU6abWt9NQkXmxnT1AT9+w7YRkjusj4+wdQ1OVTgqL5AIKAt+eYsIU8H04R1YGsC3bIu2nIYkM3TrSphcuT3MsUzD8860m6b6Ap8Tq7/dlti46kcSmkzh7RNDRTefF0VoBDkl88lZEEkMuYwNJbNW4nAY9sMgG/MJ5QyOJq5M4eyfxMd30xprPSdQ2vI2BJOp003Lj8X+3IXv3qBlbx6qbmuUe5IHN1DtsGJIW/aeWEzetOYmXuznPSdz0lMDwSGL8O20MbaVWx8vPX2vaQZN+r+pYrbwlA20DNJpktYvrJxwiP8f0M7W2mfpzEv1Bs4jDF7Bz4rTakUxkHcgRQT+PVpPGdU9uYRrZdYY81y9dJxYl2ffR7hsfWX3mjjsQX3pwHagvrZzQ1vfTnD2KSn4EQjEqyHbaLq576aZczndvTmJNuMaX3Gn1yRFBzpIfh+MQwWI8sl8uwLSeaywikjhg7H1TqOBatMVRj+QzdEcgDxyxaCcg2QWcs9G7J2voC6uKKnPN0nlU+yl7Cc14UYKn7eufG8lMuoGfY06R9P2a3VSl3l6nDSDVTUU9U9oBFmhWPH/b/TZKKTZTXVZ8N97ZRoHIAhzdV6Ob1tVN3VnFBgMZJNGzzjzd1I0T1fz9nIp+a8D1Lbe2LuUp2dtr6R5Aew/Scql7yhmFvZxVNw1Iolc33XN1Eo322EmEUzfdjHpBaw3mB2IESXOKQsT6IDd/m9ctb1Dfr9dpANoS7X7uNbppb2SXzfer5Xc6uumIi+tD5hRvRr4ExmGNZteuIyulreUW+vnXvpf/Htr3qo6lUsTy12pzBPrzLyaNbhfQlz7n3ioMruVDYD20TSddi74RimzpvBhqcdovFbw5JreQiVr7fhLJMpHEmpO4izWhAODF169CdLZWbxKwiyLXFI97qetMcKtFN33g6aadTmLN6fZ7U47k2uqm1aBf4/7WWAKskSavJbX+BbLh/m+j2yXd1D1aK7kQrqEdsHJfZpwUje11MNBLeW+3nPp8jtqe0O4T97u+Pbkm1NVbJoKmO2pnvuns1e0Lk12gOhvNKSp54ms/LBHg8QAAIABJREFU4gyQAVdGyAcQlMyZDwqkKF36fHU8cS0ju8lGErVALVMCxnc7Nm+VpqBra7nhRJ1tfU4i6yTaOYmSbgog0E1rAo9A1Au5c7ZxNui8BMZWC0lsiTdpudQM46KwJ1l1U08tPazlPB7TTW+uebqj1lpUF0CnCWtRXf83E2kqE9nbh1Rt8T+KIElr869RHwC0ndKxrEEIuBt0Gle66f6QCUL05CS6yGYyVhVJMebYiyQqB43vx0Roe2sStahsrab1s5w9P88aklgX81nfJ5DE3hxBYHXAyAK0h2AQ2sEOQDu0qTKJBVWSUST085FOup2TWCK5gDs0p3HAU7fjgXhr6/Mvyv2AcQC0g83nbFsBJ20veRS6qTceLvecEeH3iVrAoxUkYZBErVZotU6oxhKAfW+7vkoAwhT7cI9HCadojix937i/LaXF0K9y5ljrREMS0/1e77cKyPmyOInhZ80RiHsqdx3do9yTGSdd3gKUKuego22MfdEbzKyVDnBOSnuOcj365805KvcNgwrKGqhmsEMN5vA5iTGQAG6OYz4eiyRqdqGZ8y3W5Eze2zUxK8YB1sTLav1ON3qpuLT9xksP8IufeQ1AdBKbSOIcVUp980hiTaUacDmJ22kMZTlSBHQa6zZoiy2m5VKzecrZPFm66bR+5/lxTuKNt91hrgrK1PLoWsI1tURv5rAZVPqJ4dgoUWRGkERyz91nEE5KE0lsOUW6sRuRxAkX10K4ZjPgmkQS93PMwdRKALAO2DH5d0AZIT/MRk6oFsUkHdl0XgCfkyjH81RrqwSApFxb10TPkeKLUhcOGPvd1s08rmPWKXV/L4Rh58eTzgaDpMj1xamblmsL8MpqI+6cRifRK8ZNwxB+W98YSpq233GOFEoEcjEoqmOZI5s2L1xz/4rLWdmTdFM1J5FAUspc5brzptMP89dqrUCJiPUvHSLfzzY+S0aCm4PdD0gMUMNg9a0qXGMwJ9RArUE3HcUc2XvUT6WHShsUUZNpcs6GgjZQwTT93GAMUGnvtiiBQAwgaikmfUgit7acA3yMc1kGXFnnvlQFbs9RnsE9cwSSYGag8tsK173BFQ0RBzhnOx2qh+4rTeUWclarJ+7bZ169wB/4qz+J7/yhnwEAXK1Cba3zwO9/5ydTKE1xZ3USR2X/9213cPUOz082mBcXmMzVTfU5tvZYvQYqwfiSZwftJCp008c5iTfTWgpFrTw6oF42A9A2f4620pvsKg/D9P9tlVJ9ju4zjUO7OGg42pYG9Xta7K3thKv9nOU6nExjYezWWnq4apsqY6RpqpxR2IiX1vf9qE1cOUhbv7eGVDMKfBpyaTl7/jUZSbNyEtU5osNp60REpAM8E98LKI0E5joCa+1IYZBTVLYjkEStTiXgIqvOSYzRQo8kagEghpKmBVes9Q/ozmWrkDKgBwTS9nDNVXlI5qywJTDynFD7u9WKibfzUcqxjkV7loVBROKc0vF6xT7ifO1+6fvd3mtMEp462mfs1s5gq+xGoBd3UmL9e4JyZUeQSuZgc05b33kPaGweLiimiWlYdXKPEW4Cyu/Ws7Yy55IIXPt5yvqidHAxvd+InEQpVNTjAKfjMWryQC0Nwz6307l1OdvavsWo0nbYvJaT+I9+/RUArowFAFyuSOJrTXXTmHJwtjqJUrhGC0ruDzO2qw0KAA+u9mHdb6Z6TmIbSez/zdJ59pfA8HUSHwvX3HjbzzM2DUU8LScxblyKk1jh8FNRhFGTxOaQxPTGZgvHlxzy9bXmePpBk85F7TfWcxK34xhyElOa5nYaMS86RUD7HN9Poz4wRppWpiM4UjWRloqxy9B9Zb9HE67hNh8NSWnmJCpJ857+VRuzVtybMX6AHJWiEEhxTQLdtNe5JK4jsEbyJZJI9JOBEjYnUQuuXO1mnG4m3D1LnMQVSaypGAJ2AKKKJFp1EpXxmkaMQv9Mm89JfECq33lj42RTD/gBOdrG1ncFdCSlZ/0z9zZQ5h8xwRUtD9s5KfZYyxLntoTnm93K+20mgySFc0PkxNXODWt9KXsClzcp9wTG+I9z8o0SqRComevH0oTz3zqde3U8bV8w2Ax1zYM63RooA97RtmhOUUEg3SOnyimvf3us4+uL+vcu2SPrlPr3h3OUOAPU60/sWyFPv8ORlUEqgAxuKTZXbY7eSbyuUDl/7cUHAIAnVxGagCRe1nMSrwMzagy/xTlZAmOz0k3dGPvw/lZOopWXfhRQJM+bUALDcPiGwTmKvgTG4zqJN9dc/cJ6RLiVk6jdAHUkkUva7s1l1MbjkERdbAKw8pZ06sM4tDc7DbZfliUYCbfWnMR5iQa3FW1algX/z2+9GuYQ6KZKxDoYaY1vpxkxFpU23tT586z6nrYhtzaSqmw3e0CpSGILSWmom9Y2SOWaLMT613O57INN5huEII6JJObXZF7YnMSYb7AsizMkSZRin13/maqTqCOJB5xucyTxPBWuKe5t99hkJSgHGyPuUsuZsUSK/Pu0drEK87AlcPw8a6hgpEDHz2P2ybC2OoJAtdxagDOSS9pcu4/vVzopdh8gpc2RjqwSXKHopqPCQiH2ydoZbAUlgTwnkQoAiUDVstjCQVoJDNZJ1wxJzk7I+wCcIa+qcDf6afVF3d/2nqCKIpkBj1ysis3lLRxnQiREO0upmsPi3Ajfrd2tzIFf1xhzBhSqwJZwU3G2+etor+VFWVvMtexRNw05iZX9/dd+5z6AeE2ZnMR9kpfuh5V0Uw1J9HRTH2R9cB3pprU0KaAdKKkhiWw5r2DyBiSROATGrUASHzuJN9L2hzqSWC3k27hxak7iwhwayiZuRRa1aBgrSHIMkqjllVhKZ36eNZQuy0nMkET3WMtL/KH/7RP45/6T/x0f+/WXM0OlLVxTn6PuABuomeLY+O/GCGJodRK5nMS0H5/vpyGJN52TqNVyZIw0PZervx9D6wDK6OIC+zD0/fbCQGBzstJDyqIk+7H0nERHN72t0E115VD7sK/RAQE74KTtJYwRX6Ob+sgxq26826/zNJR68/Vvi/LUhGtaCFg0PuNzXWiPMNKYPFkNXeqladOOrKTNEYi466cjshbiXKWbtvZXsQfxSOL6+SmSaDG91MAdh2TNS05TpZDEUeat5nOvNS3gdDCQxJjLJc+AdvkeKYpE57sK+4JFEvX7xh4LyM9Sd/3b/UJt6nBu8A6YG8+9P+w/FAIsrv9iCTeVZyLTxkEi4n7uVj/dKardoxFJrDiJLz0EEJ3DqG5q10ncTCPe88xtADm7xr1HdxJTuikQbZg2kli3M7QSTz3odvgN2BIYADBtk5zEx0jijbXd3K9u2sp5qi1GKrJ7BEStHlCzvSFrDilLSes96AGjlMI04HTNSUwN54AkVqJNP/Kx3wIAvC4KoEqlM/fdEF6rNS3STddJlN/t0F8nkbn+miPFHGxa8KJVIzTtV3XujZzEPNeDN1plRNjygGV5gwOLvhTOpW1YuPHioX0gjZ/QL/m9D429J52jpu7onMSYoA8At05i/kUNSTxW3dfMP9L2LUP9ENAju0A0HuYFVF6yV7Y7aVhO8vuxDrA2z1bwonVv24hIiUAya1ITCmHQFyAGqlhHVjNAjxF88p9hB6n0QG3LuB6GIb9PDeQxnSOQ5nJ1CKAUezKHGkjkxpqlDAj0UJn1s7vep1YCZm8E/aRSsv8fcwb00kbd54rrT4ylqQL3pG6E+4YsQVIyXvLPq85T2DORgdUWJkzHAnlvSxuURRK1VCkXuNff7wGAWhDQ00qjk7jmqF8fqudBULgeB3z9+54J7weU65H1m1d10+hUpXUSD/NSoKRAm/KraXCw6SxZYJ4tgQE4pzBFEhnH0prLI3/CPwVtb6ib1gr5+te1PoBOG+UihPlzVj8tGjY35pf2qyGJlpNYyMGTiEirvERIGr6OfPBIN9UNyV95wVESQn3FcGPrRp353SqRbqCONtSQYxNJVJ09e0PW1hdXAFhxEhkkUc1JXK9JZcxaLUeGDgWU6BJ72Kd0Uy63MD/sGYPQ9/OOsx+TFa7JcuLmBeeUsl35vFc3TVsQrhlirllUXuQCEPU6iQ3na+g/EGvS+r75OpCAcxhrbA/fgsBO432bMS/DQ6mbNu5vE0lUjC0r4iEdKcbZAHIEZlkWirkinVkt91Vrkk7LKKkCOgulRUkDfJBEcRLnNgIM5AEuC3lM5+jnBfC0Uf9e3zgn3T0elgUjosPIlCBR0R4KbSv3ciYnsaz7TJTYUoIklgc8KAjkMQGIvhz4tB9BGxXOJa0cKs63iHzZzqWWg9rD1OhRKQXi2cEiueOIwpFq3dvb9eyqpRPskvN1d5iz8+DB1QFvOS/XbBSuGfE9H30/zjYT/siXvRNA3S53c3AlMDzqCCBjpfl5yN+ppeDt9p78uzEUaMAHXdc/WOEaYEUSH5fAuPHWUjd1qFn5fDAMG3TTclNleN2ac2MUwFbUTWdiP1bppiwlrdgM2knUgB4RTiWgb5+6G/T1y30YvxVtSj/r9ctdFinWhGtYURjNGPTz15qG5AJrlMmoGyn7cWhPPi+A23w0Bywigi0joeTkW0GIWr4lEyEHSuPaOtiOVzJE1s8VUja7ZVFCJiCj9fPzpPJRNCRxNwcU0Y9dJOmL6w9YdOvSQd+RaHNx31j7loEkXiX1ET2VtNX8PFsiTJICRDnANSexQV889vq714+rwZnmYbNOg3SIepwNQNxvpCHfTTetlmBoC6cAOb3YQh59k/mFPXXzSifFDgrr/aw5lg4pwOXEaYg/JbDWGRgu0c74fHOOYg9iWDL+c8t+/WfiQvxuJd3UP9+eo2QltOxIOc8UrIjpHu0+6XuDk0iglmm/GLhudlMDQK2Ax4kBAKQ239V+DogiALxWEa9JBRvPthO+55veHxw/DUxJx9puonANEK9fKy2iZfdOCuBzIJlKWdB16aCbjluHIAKPcxJvsjm6aV3GVi3keySSyGwimnNjIXtyPMYhGgcNtYyvNeeoGExUUXCxIfhru52GkGD8yoPrYOidNAqufubVi/D/1y8F3VQxRhYct9FZaEPNSbQcgJoCKNA+7DU11S6UrhdJVO4BqyxCTRCAUXEDlO9mCkes8+o1COWBCHssP8+9OOhZA1TmhHIIfPn8bl4C0v7WO6cAgLNtXcmNUeBr1Qm18mtLVoJRAqNx+AJ5rsrVwS6DEahGBpKo527zEXnfGCTxWLSnl7bo+3WjBoHumBuELAKTIfdUUKaCJBpMBqC/BIPrOyZ5kyTav74lzUk0g1vrkpMlMKzh/PzTS8I6N3oAwnZKy7SIdoC3JdxkBo4Um8S8JkOZb8kiiTK4SCOJvddfOHsMA8jPEcjTIgBbuEYyzKL92WZ3pGOxiGC0J5E99tJU/di1r2aJEmZO4u6Ay108A2p5iZFuWl6XFpLohGvynMSUbuq/i2wt8SaNhcgylbL7m1U3BYBpVTedZwAL18doj51EeLpp5bBXjB8gRiM0wzAgiYXRRG7iWjSmZWxpqI3/PAOR0qKKgEFJq6BttrGrU7bca9FJ/O3XLsP/W3TT33w5dxJTpFajxLK5BnXhDqtOYv685QBoUWTmsK+hFOzB1puTKCl66WdUi4n7DVmI8hwzRxeNbHYLv02gv5FGqzSSWUMyRcXDIdrZz43HqZtqSGLa9613nZPogysy1wwgRanC76YEEpq11Eoj0lK8bB2+gENK/aVhFE4jksij4v66HoOktNAzNbd2ad8zad+i3iHDNDpiTcrvxpwbab8UTT9GuAlw66Z2/qZzUUUxCCTRrwuWEisdAIuOmfXJnA0iuLW+3Isc1/LGjglCz8uRdOsGkg6sAddsju7RuibDIMqykEh6mcvIMbeAfuZKzZGigyvrPH2w1bpP5bkRg1v2HHsRQf8dJFPGDDiNuSqq79tyoqZxqO7t1/s5OG0eSfSgQU3hNK2TqI3n3lOeN/uDE148V+imMo80bS02g8ZCtO61tG90Ev3iYpHEXUQTHzuJN9NadFOphudblNgv+9Q2VVZIoEcgwc2hjJAwN7Ymk78Qm52Wf2TllQC6UmyKZN1Z673NC3DnbBueB3Qj8TdfeRj+H5HEdY7Kd6OcFKWfn2PtWh6rbqrVtwyHfWvzr1Kb6n3cPBUnkUESlWKysV/NcXaPvcZPzIeIzzGRZKncyioZankbVG7VmOc6ARwlaiPQdBpJVPaglO71de91SfqnG48kuveoSGJrLAUB4yiZY3kgzjZqmX6+bFf7OQSLapSktO0PM4bBMniR5yQSdRKrdW8bgQhpRLr/e0PeMlw145pYy0PqJHJOg1bKws3BHguIgbEDwRLwnyt/bkvgq41ktcfbTHnuMOPISirhTIwj+wDreUOqosoAby8iGAJABCJVBjPbgaqacc3k3GviOqwDlgYuGPRlGI5QN1XORHfeWGMhnyMRgEvHi0JR9vnrPzcPLi7h+VafdIweRDDvx+5bus3b6redhiqSeH2Yg014tZ9xvZ/x9PkJAOD+lU433TXsGS0gk461FUrhPthYC1L556paFUOJJLLCeCqS2JOT6Cmqj+mmN9N281yNPtcMtKZwzSNEPjVqmWUk606De7Roo7VagqYCovLdjjF2I5KY13vz/w81mpQb+9WHbqO4e7rB/atdZqho321eFtPW0tXf3CFa+w2q6qZGBLqdt0QEBToNC208LidRpxenn1nMsWL8sEWK82tCRNan/Joc2ARxMU/WkExpi9a1SJs8FKmcRIXGE/qu3/vf/ZYP4O/8ya/B73vXWwBUrn/P2uqmZPYHxSwk8Xo/4+4aLKKQxHmpCpD5Jmt+xvVvG8kqklLdE+J7fItISruVOd8ddRKDAJOfB2kQCnVT27l0j5Fu2kGJ1RBZBhGRTgrhmG7GMaje9lBigXgNmYBT7JPvW+yenNNUSRX0zgAQUC9n1LouNZqelZM4FXmT7rGb7jizStUoHGc2J/dYEbhe4RoZvGP2Vt8v1yCw+0madi8FvdcB1lJ15kVn2/m2ncZqCYzdYcHd4CQesJ9nPHXbOYktJNHVSCzHHIZB1fxwYzm6aYokPnErKoUDDSexdgaMZXkbxgcAxLUMJTCIm2DcOBQxIImPncQbaQ5q1n+Amvx26+ZuIYm2kyI3OvvGVqNhhEVSQ9uMblUFVmsNa7lt3mDejINwEqNKI6DfoH5zeebOiaObJjes6twvXBRTV387wog0jJ9jEeBq3h4bNe10AKRhDQCHQ5umV8uTpaPIhdHEGbuxdiFvWAN5ZJczJOM1iUgi4VwKVNZCUXyf6gG19t1MI752RRPd/MpAAqtu6vol4xi/tR9Po5v2qvT6tiwLrvaHYCRc72e88uA6y0OWbbefm6I1fkzNAT6ObopqFFkPHHHrRO5dh5mLPjsxkz6DUBqtbCkF+dtZNdvCHBUWCq2uKaPyREBnmyKJDac+Hy/Oy4/D0hZLRIpzUlJK4OKiacYcRU6i+Dy2nx+bQhIVe8ZKp9ByElmULkXAjglAUMwVlc3DM1dmcd/QTmkSlPRzb44nWFhMLmOp0svd2zJVhN9LBlXdtPXdTqaxKkp4mBfcXW3Cq92Mw7zgqXMXNKw6iXO7Xnet7rkvgTEMQ1h/PkDZyp3fN+4djabK2yXJ2dFTAsMjid5JZPoY7bGTCLdAakiKVhATSCI5jYiF7qT0GTEMIqg5G+E1g46wLGX00+o3Kd+NidpNYz23bRoj3RQA7pzmN6j23bza1VO3T3D/ap9FfDVjhM1JLGg1hIobUG4i+8Nslg0A8lxG6veuIMfHIYmcAyClnAMFt+YkanMk0AbNuF7AU5SC0WocTrGfe+xXaUzQxw4kcTOO3UiipBr51jqgtIPN/7f19TSaalrLtDVHTZWZCa5o++t+XhztfDUSrg8zvv+//Xl87V/+cfzDj7+kft5+rguQ+SbTB1ImgzXPku7YzkdJPx/oo3vJXF5qTSp00977LawRYiwgN0BZdVMteEo56fL6EwjfZhqDc8nuCX7P9nseM44ugNJfODuiNna/3uCin6eco3V21IIklkEu2Ty0I6s5N0yQZJBOac+ZGJ+zhAKBhF4c5rg+b8xRXkveSdQZQD0IMM8uQNaP3be0c2o2AlzbaVSVq/0ZmdJNd4cFT523kURny7dsZR1w2B2Wgk34xJmNJM6NPeXYgDcAfOMHnsOXvOMJ90evuunhOqKPN4AkPq6TCDsaoMHT1s2toS9sTqKakN7s49+bj5W+prV08fsbi3VKj8m3nBSHO43k310dQyBuDq28pav9ASebEXfPtnj5wRWWJfLIa5RYykA7EknsNZL10iXl96yO14vSKddyR+RkaXm5Vi7FsdLu6sY625LkMm/mQG7GGt2UE6AZgxHpvyJjJKfIBrCuLaJGli6/Xf+OmrPNOA5aACLsdYYhqSGJDGqpsgT2uZFwvZ/xy7/9OgDgb/6vH89Q09DnUE8bCGOOOd2uB0nsKd2gKhAHxLk5RUzjkFGwaBGm5DcIRmtn4IgpgST7sTUZ5Rx9o9U1RUSecQI2SdCPZwnkwQsmcKSzQniHyHfrcaS0AARTF1NNNzCYJOl7076Wk6JRYhkbKH1/+lyrTWMugsKdN/ncAK7kRumA9d03vcrY8vdm+sX7BtlcewMXPfnNZapU+97ZbvScRP+ctwmv9gcc5gW3TydsxqGak7hXnL201VI3rvfx7PBL4YlbAkmsBDNNJ1EEypl98q/8C78//hEcPhJJnPd9fYz2GEmEd5JqOYnO2ZMwulVzJqX+pH2YaIwaIWxtxhVkyX9etV8l0gHYwinld+tHSdM5b6YRZ9s4qKebykLgabvezzjdjLh7usFnX7sCEOvE1TYsJtJ3Y5Hu2cjJanw3K5fUfX4+x16DMP1/K/qm0R0tmqr23RbwyIbMpTMPqPX1XGyCNwh7VRrdWkYYCyDrKybIBuDQKEb+XFVka/RVkUT/eQwFVNlLLDS9l12wCWOVr3mWQBSumcP1/Qe/+pIauPP5KK2mqcsCBuI55Iadb609r3UdzZSDsQwUskhiKclv9JHr36utG+Ol8vUsGiLn6JuFpvuzL70H2DFTejfLEvDfLRWmsmvLIbzXNy4ojDA33yd9vtpvzPOd6NIlwnHjWAL5e30zfzfBVIqOrD1HQKQAEHtr6ZTa61izL3rSG2QuLyPel47HnL+As0PnuW/9x0BtHszszdOkHeABhZ1s5Q2fTCOuVCfRfY4PEl7uZnfeTSPunG0adNP2eVqrVrA7zDjZ5P2e8HTTRjCzqd6q2uXcWs5ajwiNpJs+zkm8mdZaWMGQEevDiuRIFUP/GYwhn47FUMRauW1MJF+TyW/NsuZIWZu/hkilkfz02hR004oheboZcfdsgxdfv1r7eQSyjPxTzsZY5ltaOTM14Rorct3KJWURYN96op9pP0ul1PUrAyWeNmw6KUciidmaBHfYTwlKdFh4o9WNFw0ZjpI2ZDS2dO5Wv90hXktG3VTW9vOtlRPXqsFJra3OvWQadeOfGUurQ+sRgVS4xhsG14cZv/PgqujTUqlOx9TXP2NsKUZy7fqrTjpvbKW/N6scmn431iCURjKLGqSiGD1062rOdytIpZxv7Jie3h1olcw9OuXrksll1EpgMOe9XFts3pgcj6cSDrqz0egn99a0b0+uPp3v6h3uZE1SKLVCpTXPm0qA3RrPvyzRNisAVEMS7QB77qQzZ44MJtOI4JEOsEo3NRx1RzetI4nennPCNa5Uzt2zDe5X6aZtJLF2lu6U1CBGuIZBEmcRzGf2yawF4RoCFXxcAuONaa1cqZohYx1SGmpG5SgMpfHvnmc2g7JfUxVVyT9iDBm9liODZI1KTqIeyQ9000p5CcAZjidTrop6fhpv7BLZIIq5D4ox2BA2Sufei6RIWgfQhwB3J9sr4zE5iVqgxEISR6UP46TXSjewkeRcbMLuI6XreZGQuL56cxKBeF2onEQluOL61oNbtTqVAJqGjJoTSkSSa3TT1v3WyqW+2ruDMQjXHGa8drHD88+cAwA+fe+y6MPQTSXlnTG2NCfF961dE/+0FvDrFRdhlUNTFgotNiEMybBEzIBfzNtjv1eYo7AJLYRPy11lAzOe3h3QcGKO/veOpTNs51JDpLjzfljfi+yR3ic7EUh5n7J7l1uT+XP7Rk5u+pky39L6BUq6o/29APeeR1X8Do6sMVaNgm7NM1JA3cVkgrRAiQAzv1v1+hMOKZCyC7i1paYhGefwyUYXrolBwihc40Xe7pxu8VpD3dRSqlZz4BXdiSfObF2MVqBE8x0YdLto8wHAEPOTWm3aAofH6qY33hjaVlkDrG04TaNWI4WIxoz9Cel6UXai37E0VS1iNDMHVElZ2QtE6sPvfhKAVhRcdxJPt1NAGwDg9klURT2mTqK20Zk5icHRyJ+3nBuJYvk+ACkuIn5vGklMJsrkJOqbnRuvXhYkvi+fox2NBDQE0t5Y0yg5L1wjo6asuEXukKZzb/Zb17U/GJlC3bW86HYU0z1m9wDp7Ml+zJ6gGf8s3VRTQJd008vdAQ+uD/jA2+4CAD5zr1Q53R/sEhjSAduF/YdR1xRO4lJX9Gzd24zjcAxFKaVW0oiU2EtYtGcb1vGSoCH2HMdBcbaX/iAcm8vltAFSSqw9R596konymPUOEd7rm0tvIK+/MOSZcyodz18aezxHAQ37JLH/A/7MV5BEQ8wKiHsri6RrYkrU/i+DK4yTPupOOk/JjGMx/YrceTLYIc8A5syJ5737AVgKelWUx7wmeX1j17d9nm6nUa2BWyKJjm66nVYksVYn0QjoawJrgLv/ZKqCzEnUA7X1AFeNldPrI2Le84jguHFIoldEfewk3kxrRQpDVLHYIN1jK4ogjR9K3GWoOYn2ZtCtinq0k6KgdFRtodHMbfuh7/oKfNfXPI8v/z1PZc9XhWtioWzSAAAgAElEQVRWjrpv5ycRSVTpn53X343djk75/E0tb5X53dLNhzHSdNluvraTWiidoHtJwRVOuTVfk+wcpZAAs7FmjhtxPdx47rFf3TQaWwGlIKzk7ZT/5gyS6Iry6gdUFUl8hABQ2c82LqaxRPut+83Po003dffzyw+uAQAf/ALnJH5KcRJ3hxnbTftaVnMSiTqJqnCNZSAo15+hXEtqJbO2Uuey39iV/dpjeUdqP8/9dFNh7C4LmoESTbgm5E5axvXk6N1Mbr8cz9dXtFSqAf33XhY7+C+vfz8CLJx7Y7wY0FyyR2sP2ij2jLV3yb2VzXeNZ4D7my0bUOo5dNTl7bz+o/xu5L0d6j4n+z/AOekZkk78bjJ4zez/ab8yJ7HZrUCpGeXc7TSodRL9cx4AuNofAtp397Sek7gz2CSa7Qrkwdpv+/A7ACSpSw0btBUoqacFdXqJy4F39oqcxMd00xtpTdqWYjQB8Sat3Tha5I3btPpVy2pCJoCdWwgIuimx2Unuv5+n9d00lcZAt1hvtOeeOMMP/JEP4Wwr6iQqUP/1fl7VTeMNdHsVvNHpb4BFJNE2ERpJLJxSi+6rOencZizHmwlH6vicxNKZdcp29bFG9bvZUTSd7shtrNMUAwOskyjHsxT7fNsk904PkpLT9BYK8dQCHkAbhdQDR/Y8WzRVaw/S8pQ5kZzyNU839Qf179x3TuK7nj7HZhzw0uo0pm1nBC78mHt1/dv3d9ovRPJr54Ya7LADQL5vavzT6388gm4q9gTWkAyO1GHpQtIlU0bu/2ofZX8NjqlllK/XkkUefR8gEa4hrn9dzZl00iUCTJxTwPEIZOmkGPfNVNoz+7l9f8vfjc+Jc4+p42ZdD6A8u4/JSaQDOYEm3Hf9i5xEMsAiz1O/NpuaB5O+ttg9IaKk+Ryqc6zYrlZO4rWWk7iWxciFa1xQwiGJjTqJRsCvphTu7/v/4Ns/jH/0fd8crkNLuKY/UHiEcM184Osdjl7d9HGdxBttLUNNRn5881zr2iGgIYnMpjWOudHEcOT9/i7RF8BApBRDnss/0vLvOLrjYRYCKCEnrm3sSpQOcNEmr27q2+31/zqtgKOfaLlHveqmTPStJm5xnAKobZBoEXmmUPpW0K+AVSSks7bcshD5KEpQgFGlBfJoay/dNKOWkcau78dSjQCdpmciiWM/kthSPG4ZXDWaqr1vlXvJwZD7buUbX+1yJPGl+06o5omzDU43umHBqJtKQ5Kh26nfzYjkt/LEKXERaaCRdOteZ68qd2+Mlaqb9iDpVSn/Rt+NQN/Zfq6vy3k6Jm8430vafVQ1Z8K5LJy99Xk64HfIfzfeAVidjXAdjX4Km4E9FwNtdH2+N1C4EIFTAEXeHnP9I93Uz5EM5BzpAMtyIoy6suun36fNnFAR3GIp6P7l3nxXp2ZbBiVba6u2l18Huqlzci52Lmi4mVzJs2adRMMu0WzX1F442Yx4693TrA9QcRKX3jOYC15nbe5BEjcrknhzdRIfO4loG5S1BWJRgNxizBc/e2hoyF7T2TiWIhYOtvhcNCTrTat1xURbNSdlbxhpcTMuX7vazaFOom+3E7ppMUdCAEJDRNiIqSZ33zLIa5TAYymZxziXjAR6LSexaVhrRjJFSfbXMj63gDSSEwf/sHDUMumUss5lpKEvtMEK5DQ95tr7z9WEolpzbeUptyhpR69JxblflrZxPQWDqWUkuHvbI4dPnG1xUjEsLKqRH1Nd/50siIAeW+dGJ5Lr+0oDjcmlSwOMbFkWmTsZDXl7TY6D2797kHRppO1nO0g1jWWQiqWPbtc8zWPyhn0dVEZdVmNbcCUw8v1u6aRkFnRHC4GUzg2LJFaCp8y5EdFO7jeQ59u8kDmJIjDcc/27adqj7OeDK33rxNs1jHhZOh5z5kjwoBftjKVLOOdS2lyH2e63UVKQgJiTeLaZsJ0GPFiRw2kccPu0rm7q6iS2HefCljeupWZvAZEqX01VUwAmtk5iPtDe5q2HyZ4Ah+vHTuJNt5bDt1E2f8A2Jp1RkT/HbloqRYwwyDUk0UIEAZ1uauUtHZPvNyrX0sqJa6qbHkq66flpIlxzTE6ogtosREDAfZe8j5tHeyw/r3SOPG00Psd+N9evNJIZdVNp3FFR5CXfIO0Dyj0erW6a1DazqGjZPBMEhis3EA3XA3GP+pZS2R4FSTQPtqP3BH1Nsvd2T9RUo8n75n/HW6sQ1b2H1+Hv080U6Khp2x3q9W59K3MS3XczqVRjRRW18v1agSMmmCONQVq4o5d+KAKFbL09YEXp5rkr30+mKjB5aloQlKWPulJUfbUcJXLp9hI2uNUXXPHT6aUJF2gbuN9N0slZJHEzlrVarfztkkoLbo6F49ZObfDNObLxb4buW+btkcGV4Eghe7R+N6lu2oskytIZbRu0FGBi5igDpz17iVZOzbKdtJx07ySebEacbqbgJG6nwQUJ13QN2Zxd0ihXpgQ7zJrPyZmt9evTBbBZCUXryUncnAH7KzzOSbzhNs8MktW5QSpIIpujoCJSnbRRZrN7FOEarbD0MXRH9karqptuRrzlVkQSz7c+J7Hsw8xRF7xpb5B+6qoiZGuDVIzkLkRQjPcowjWMEyyLWfd+t2NyEn1OVq+R3Es39b8XrSSZrGV/WPUU6t4dEiSxU5ET4A82DX1pzfLYumG6c2ncN4pKr2/++51tRwwDQg7KyWZsIoknRmRgHMqcRCuPESgDYxZ9MRr/8TlNQl0dayydBmYtp85ldNyMPoW6afwsq21Xx6En30+mKgQkkUGkFCeRFa5h3w+kecPrXmIECYHj9zuN7g70lzOiUSJxVrE5iTXV7540jF6ULr0HmJzEYVD2LaOP/9plbqHRT1xHxk4DSiTR2sd9Cw5fhyqqfynSTf3zZOBI1FdkrokU3LL6aWcbEJ3E7TTidDOG/X8a3d+Arja6M2rlyiAhEOds1nwu2HPtPUVShH2ffrrpns8t3JwB+4vHTuJNt1a9n1pOomUka5E3ZzS151LSTbkbtOi3PlISyXM5Xq/gSlcJhmSe+xBJa+ckahvJ1X7GyWYKtdOASOfT6KYLuENb9vNoQ60Ng6NedTvpng6S0RF6Cs7n41lbj4okrmu0VTqglhPULkAe3+fbgg7jRxitzL6aHjgHcjOWh70V/An9wmE/B8Owi8o2dyCJCkXGOthU4RT/GhFwKvJdmzOsOJfGWo41I8t723/Odhpxtpnw2oU79E43zki4UnMSbYdvI4J3h3mm6cWZA+CdjsoX1PdWNPukfWVuIau4WyJSnHPTi2QBbq/dHzqRRBHJ78lJ1JxEKwd160tgGPdL2qZxwDC4e5sVDhrXPunaYvsBCSXQP2+dARXaqNlP5Jeze5CkWzM01VIUhpyjRLeJPr5ftpcw1786x75+jEMEJI7DIf/d7NzaeN7k49X7SbukVzgopftaYwGlw8dcy1SRPG3X+7j/n25GPLw+rH8PSV6/cgbM7ZQDKa7j+rR/g5oNagIcSnCdCbgWrScncXPmOOv7Vf37Md300ZuX6a0vED1qYeVk1fKIeiF7+gYV9EoWEQRQOJf0AdUZIZEbJFDWSZTNVDedRgzDgD/9z34RvuH9z2b9JCLIonRFTcyFy0nppu1Wrz9n2EkDtNcBc/+fMQwG4qnkjpmKr5qTwtAWJdVFPN9qKcI9k0hiQYkygj++hQLrc4pqmN2CE+OQRI5q5JQFOw+2CrIBGHvCUP5uzL2tq6JaRdLdo1rcOLk25ycTXr1wdbG2UwNJnGdsN4xKYxqkskuQACUzxFLlHAbnNGjqpkxZhJBbO3OGHZAHE3qRjaIfgdxspwG7eaFLG/j3qOqmTUQkN5DTfuZeuf7efr2ckFwvb7z20FSnYSjORKuXTBVhkUR5v9G/tzg7/DVlHABNFbh1Ocs5+v7WGYxsjgxLxs+xoLtbgjziDO69b0Le3twWMpT9CiSxs5+/pi3UzPc7Nie0V5SnqPFN3DsacwtI6aYDTrdTgiQOkY2zV84No06ihlweWBtUAYrcZ+qLLNgInTZQ0eYDZ1wAwPbMPV4/cI834CQ++id8njc2t6eXblqjZDI5Cr2y9YBbQ6pB0qRJ5gayH68naXtld64Jue05TlPpcNNJwxUk8XTrPvN7vun9Rb/eum2un04r4JzLvt+tJjhkb8Yo+lFIrjLejjCSt+KA8p/BCNf00A+B8vfuQTZOphG71RhkaR3yQDwYjo3st0uQFI5uGqOLj4IkmgebukbW1wgKaDqcC640p1jQ2PxnULnUyr2dXptbJ1MQrjlpIIm7wxzWaq1pOYmWcBBQ7idUMetBGq0w+4SxApLe4aQo/exzQwRlvEFIBjz2mXKo3aeubmrXSdTORQs53o6ObhqcRCOIEMeU3429/vFvJigpgzk82uweYzCN+71rtQuZvOjDoe93q+kJ0GsyPQOI/b9wUshzG8jTG4AOFe71+rG1TIdhyBkv/joSiDiQOpe8cy8DQN3odge6mm7lzHibSUcSJd304fWakziOWFabU6uvaImXOdHF/LkoIMc7e0CaF10fK/189xlcwCNr874PSQSAq/vrJB4jiY/crEMgRnDK/MI2+qJTxCi6o+JsMKplmkHSiyQ6ONyeYzo3wFM5+6KYgB2RlzljabvaH6qRYZ2ix0Vai34zF+nrpVrotdQ6In2dDphMZPf/N5EshTZhIYm1pG12bRWS/MTG6hPaXX+S/iaQy8PM9dsqtNGeHMj9vJjKvr616ovWDjYVESRQqUdV3O35vVtU8hQpvbWNeRUnDSRxb+SjACik/FkkUd7fjPMgVaCZnFAgp0QFlLoTSaEd0sJIBjVHYDXwMnVT4n4bnSG5LPn3a6vgKvsPe++slNirXicxqKKu86avf64AzeaElkii0a+gSWLt1+cU0WyGccxz2Qn67qNSOcNwpGGt2UD29YjvTce0GS/uMTrbfK5ZCiCw+bxhrxQlT5hcWUlJZtdWN9106M8btnISN9OI0+2EB1eH8P6TJK9fNrNO4lAGJa1gbU24Jjr4hnNZgDDV6emtR7hme8s9Xq9OIhPtM9pjJ9Ew8FJamexn1ajRnBQmiqMpEjJQfzdqcCxtsWpItucYFbrSnCB/g+pLcRCbcdq8cI3WRoXGwNWp1G9s07kpqEZ+/u01ApSGtX1AVfp1ilQAq2S0lcelSjmTNbKWvrVVO7SZ83e71kTz82PUTeV3Y9XH8jpx9mEo+6WKi5ZjM44DliVfk+zBJnNCAY4C3au4e0zAoyYIkM57M444P4lO4nZVu9PVTZkSGEKA5kAKHNUQMOP+npXrT4lnrW/uUc5NnVI6/0usE7ZOHOAc9usUSSevo5uf+5sRb9LWJBuY2ayU2G4ncXQOMFOiI8xzkCkf/U4b66TIa8KcbWm/AskynUThADDF3MUc/bFvBwrXMZK1zBjW0uGgcqk11BL2/ebz/dJgB7P+gTwvmhau8Xl4QRV1nT9hT5aBhPb85D3Ks9kqyvyNfptxrArQAI4JcLoZg7rpZhqw3bgPrAYKm6yEsQB8QqCkcmG0/QewzwBZp9L3OaoERo9wDQBc3HOP3ml8hPbYSbSMLZEwHPvZXGvpJFJOioDsefqJfoMykfxctpiXuy/7cdGwtB+bW6U5fL4ERq1fIVxDOOnH5ltKp5Shex1TNgDQKbgUSqoY5Yd5Jur0lTRhhyQyogXxuR4HuDSaSKN17w/RPnXTrHA2MVaaW8hGyF2/OB6rbqqppFkIgKQRAsdToBeDNVHrdzB+bxpJPCmRRJ1uuphOoqQ30eqmoxSuyb9DrU++l/OO20Gsf4oCnTilMZeRdFK8U0oan0BEEnvW/yQCVQzlWt6jAIdkAatwzWEO+8Ipm5M4jTmSyOwlU44kHiPmRqubivuNOdu08WjKuzDmqfqWco7r8zQFNHMSiSDJMCA98hfY95rMHQ6OlDlajvjPC3fPADmSOJPXX7KAekpnRFEk7j4NKOkRKLWWcmOlZWn7f+qsZ07iOGYBWtlcoLA+XlpLNoxl7OXa/gPYe5Bmp7H3aTHBXrrpxcv534/QHjuJBlWmlpNoITc1umkvZM9KmZdUC3tDqNWks6mtWj+C7qg43AfjsKkZkofZqc7VjMJRGHVujsfWe7M343HIKbHMYaOjNnykT6rg9kZNAY5uF2v75QhwW7TAPcoN8tjILrOtbjcjrhM6DifjH5E9P98uuulh6TSs4wHHGmjammSjmDdTToeRktcDHhbSJvv45n+PzTjg/CQekCdrjooeRW4bCEBu2LmxOXVTSSVkaHpDbS8njC1pxNNIinA27LWVz409b9xnr8qhxhmaj5fvecx11PYt1kj2jrpHnn0Ou9UckpjkJDLXv2CTdOTErd3YoJiWt8esERmEYyiBwOpsKE66RbeWc2RaISbGdcM49Ad3AWSqqD1IukTuWds/zYtmkcQ0Bx5IgjlEPz9G79oqcxKb3Yr1z+wLTiCq3MvT8+10M+HBdaSbeptPy0ncz+1AoaZVYZXhqQrXGGi65lyyTKWszXtuQwaicM3FK+vfj44kPhau8YZaZYFotf3832aEREWy2vORtFHWsBgqCGSrV41uSkc/xTxtGknZb2fklmg0NoDJJQW0OpU0StdJt5O/d1QyZIzk+BxFyRzX6Gf6u6EDJU2dRIJupxtpBpKoIFkLeKPpGHXTY5BEjW5KIYJBhCkxkimaanQu2XwgWUg5/b+Vy1vQr9h7tPN3kzmQTH3L2r2dznuaYk7idhowjkMTSdxYSOL4CDmJWRCIuL8lu6ODblcINxFzTJWZg/pnJwLM5kgBq7rpYaFQVWu81m+g1tclcxL9/XaxGpknE0fb8ohzT76xDEwygVP/sUWZAmOssnQJX0sWSJBEMpjgcnnLNJGmcy/m6DdzRik8HYNVqi50AWbS2Utowj3MlXGI7++hm6aorHfue2tMs2JRKbpH00aDkw7Rz7ZLNBv0mJzENHiRBna20xDmsZMKNHBOdCt9QwYJ07HMlLOKDWqVwHjkOok9OYmb1Sl8TDe9uWYiiTUn0aBg6UgiRyNZskXlHm0qYYnaAH05A3683kgT26/G0QYaSGItimP024yjev2tVqv31q9u6h7bRrJ/b27IU6iBGrU2+lSRREMh8Ig6ifp15GjT7r3CaCKuyclmiJFWgiIJpLTRePgyh32s1RTpdpRTOpbOpYn2aFRO42DT1GUZqktNuObY+paW+qccyze/1rbjGOimPkLschJzJ3FZFlcCwzRAxyK308oJdf0EkkKgx5LdwQY80nu7RzhlMw5ZTq41P6Dcy7vW8pTXIKTUTQsk0R5vbJwbjHANgIBEdKmbzkuXky5rcB4TOI3ndm8/m0mS9vNONh1MGPPSUIyTXs33Y50U74CRe7KWE8ecG6kyfI+adnp/s3ME1nWSXP+eYKakqTKpCr200ZoCLqXMr96j7flpOYnp2ZjqTqRIoipcY6QcbMQaAewyPHXhmlVh1nAuU1VgNpiTtaNyElckcfPYSXzkxvKKCz6yUY9FSq0DfJ04FZGyDhvFabD6HVuCoZq3dKSTkr5W7VO5sVtGstx7GCNZR0k5Woe8Hm4ejT6V68/StmRxb2vz8cn2krZl11oqVVH389w0QPVAQj+StXQYySmSyPzWQHL4BuOa66cJ1/SUwNgdFhNFD3OsILnpa7LFdRyf6wkk9AYu5O/NFJfWKKq+pU6AF67xBr6jmx6K9y9LnX7umxMykfU+iZzEKpJS71MTcrCWiRcqWpalywHbbhTVxE4kMSogsk7pknwvu49/T0ApiHn6e1SjO7JUeS+h3ydcEwM5zL2dIlKAp9dzQZnSSekMyhB9gBIVsUrphH5Tvv4ZOnMZgHDP29ckH4MJQANlUCb9LKufpLZyzmW8vx9F3bQruCic+z7hml4nvS9QK9lUXMrTWIiyATlT7HSTCJdNYzxDK2WQrPzmqkpp5RyoC9e4x54a38fXSWTVTRMncRiBads5WNl+1zuJe5JXrCKJLSNZ2bBYARRJWQGIjXXUk4Z7848cJY2LPvc6N5pK5mF2N3VtzEIO2/czDGypxuY+o6O4rjDIe517351SdxQOaW8eBdDhFAkpcyaSqdEdrcNNDyR0yG8fgSSm6qaODm738d9tl0WE+X5pCQDKsE5oqmztNi+xrSOJtYNtfZ9Yk0wpHff58TkKARb9GASmRuUH4r68GSPd9GSKTqJEEiP91lY3ldfxqBIYRCS/QBJZByC5d3pEYeT69/NujiV+gx5EZLuWl2BRS6BUuGaQRI2BwuZy+aCBl9DnS2CMGd2UEq4Z5Z7cIdQlHalOJ9EXc7earN3G1oGU9kzP7xaonHQtx+O/27wkBe7ZgGtydi+E3ZTOM6VN00hiInDk9h97TUo9h1CnlbBn5Hej82QLdNvup9eKtgNARU3xOfYtkMSNnpO4LMtaAqNRJ3GoI4m1bjWgyKpVqQW3WPsua/MBGI9AEje3OMPJaL/rnUQrIqbVlgNsnrxWJJRZINMYb2agb2M9CKcB4IRT8vwjDrUEBEpE8P/rKpktZ9s9ak460OaDS/SRddLTz/f9KNl6dYOs95HKanGs5lBhvF4EGHCHisztYQopu/fmSEqT+x+ib/E5KrdNiZADJJK4yXMSGcMuFjdOnUvOIAcEkkhFhFen9LAEg75W69O3Zn1RI4qZ560ypSxQjMUhkHk/im5aYQm4z5kxDG4debqpf7+vh5nuk7H4sh3w6Nl/Qj+xnzMI31QJ+LF7kFPXPNJJZI1/iSwRNWF9OyZvr8iJC+u4swQGXSfRve7VEa17LfRbkcQeloBcW/PC0TiBxJHyTooxlkQpWOOzyG0jfztZq5XpJ/cS1gEu1yRfpiYdh70maYCd2bd8S39vCzTI5imQRMa3rOck2usrOtvuOZbNE68jZ4NK9pZf0xaY4t4r7Lskz/ksqZO7GdM6ibqz10o50NLAoghWRQRROUvTOVupUlK4phtJXDqcRJ+DePFKRBUfsf2udxJZuqMmf9vm44/FomIM+QKRCje2HX3O819s40LPP+o35H0/67uptDnDSakiuRaSIqJabo4dggCCNsQUu9WELbp/t4WkugwCpUN/HgXA0e2OQRL9S71RtKjc6vtwBxTgjGQfXbSUNdPma6LF6CznNABYjeR87tYcAeecs0iiVgLDUnfUhWt4GlupuEtGnwvaHNFHQxIThM/TTf13Od04ilJqJIS6WqZwjesbjeQ2PSn205HE1vUchjzg10Pb8u/3Q7J5sh6BZeYH6AgwLaS30rsjtbjfSaEQqQS19401kj1V7fXLHYAeJPE44Zru+roiL50NisXc7aQ/GVwESieRCRRm15/op4lZAf3F3FkHTF7LnmsiHSLm5JjGmFvIiusA+V5yMJCvdCwAxf3N0MmlY2mLICIbgw1uSfZWDJ7W+2i1s93YHqUDbiclkDZTvQRGYJ90qptatNGWeCWAagkxeZYyYm5qOyYncTncSD4i8NhJNHMiWk5KW5ShdCwZI03SOugozqgr6TGR/NIgtMeS/ag5DuWGYEXyNbTN9wPaOVmFuiz6k7b9/81C9YOk7frn7ahpyVlnDsQy34ntJ+m+Jvqi0B33BuKmoUSM0TSs1zmlDLkX7O92uulXNwU8ApPkf/UiiST1B8hpQ96htQzXgG4nRtreyCXS8iEY2pZKEyYQyFKkIp9Hu0/5Wvr73Tl1eRWyIHpKNwolM8y1nO9BjLov4JzL1Chh0OMqu6PjN4jOnjlFR/9c0UcW3Q7BHH+/GedaPp5zpPz36kESo7FL1NvTgosEAgkAd05dLs/LD52TeNqVk9gnXKMF/BhVcqAvuALo5xSbbgBoSGI/Tdvqp9FGASLgKgMX5F4+yL2LuP7AGnANhvz6HF0Cxjtg3PoH3DXz/fbk/RaCi/J3Y4LX8vqT6LY8gxm7MEP7Z9+v794GIggzDAPOT2M+3mYckrz+/ODwueYte0ZDEtmawwVQZPwGcq/rCfhlrScnMa2L+BhJvJlmJQDXKFEzgSTqOYnt+UyjKAjLRnEqzmWr27ElGOqF0jkDLVNJm2c7j2hQKAJGLuk4RPEH37pyRI5AV9Xr3x6uQDxZikw5Xn8eBfDG5SRqKHXf2ooHvfu8ZjcAOd3OISJkZHfNEenJP/L1FVPhDuZ380bq1S7JSSTKNgASSeSCW0W9w06qF0AGt8Qco4HQ6OMj1grddHeIuTrP3DkBENEgjw5d7aJ4zXWgm5KoeBKRZ9RN3RrRnPSbz0mMueJcXo9vIXAxz2YQoRgrQW14BH7MxF2Y203mpTP13oJjs+T7luvXHs87ia88uAbQQzd1yq1WMDJtKY0QIM97sd+xzCEtd5tikoi9nBVAkQEP5voXewJpy/iXszXZEYBIHW7mmuhlIrg9IeQIEgHQ0G8csrq87NoCYlCFRRLTHDxW7EkGGHtyGeW5AbTXlqZT4f6O/e6cTtn7fZCwyEsn9jzVljTu8WoJDAKoAFJKOL9PZq0nJ3F7K6KON1D+AnjsJJo320bcnGm/NpJSLnwmt20cdMjeRLLGiuBNy0hT8o84ldKyH+PcxANK5LYRhkxBETA2vBol9hgqLY0AC0TWzb3ZTclbInMLiw2ZNRLGwtlgcxIP8nczInaARFc7FHDDxuqeZ3MS5wXBcO2hm+4SRKRXFZWlvgEI+RWXuwPt2IzK9T9GFZhCBKsUdK5fzO2xr4lX29XopmmR+2dXJ9G/TUbVgWggsKh4qhJIqZuOQ0ZvDQaCkZcrWRqAvb7SoEBPvmtag5NWySyclL7gSorAc+IuEhGxa4WqebIkAnZ7NTBfenCNzTh0fbdMuOYNYnfIcg+9lOSI3Nu2Rd5PlEohcnm7kUTpyJKMC3l2sOh2sZaPCLgqW1G1pTmJc8d5kwYT6Jzo9T27Q/y9/Wc1+02l4jEjQJO+nwOUT14AACAASURBVN23pAPGnIs1JDGlvZ+f5EjiSZVu6tkkDeGasUxDOjrlzLie2j0KHEE37clJHAbg/Gn3/8d005tpbEReyubOc3uzk8Y4QKo7jtLZ4BaWFLwBkZOo002Xbtnu0M/4brWiyEwh3zJpmMzJEhRc+vAVjhTj3EiHCGCcy37Uxo9XIolmNxe8ELTF45FE20CQjnOvslpPjkikgLpcLj5HZBTOHtHHU17mfnGRaRxwuT8EJNGiwMX7Jj5n7VuqcE1HIOfYAFCvYZFSttK2n5fg9Dxz+zTvsz5/nUSSd6TDvRV0UyZI4j83R+Bt56bK7jDGStWje5yUWPNzphA6ORbAozaAQ9P383HqpjInsV1OSqe7W/2AHElk8xH957o8Zfc3m5MohWts5H59r7gH2H0ypUlSSK7YS3pKKfTmJJbOBufYlMIp/PUH8jxNZiXngit995t3THrSG/KcxJnqJ1M+WHXfNH2ph6IKRCSwL+Up/s0EPDTbAvB2ofvOt1MkcUxyEgWS6BXKW4FCKcAEwBTBqgrXdAIVPUHorPXkJALA+bPu8THd9GaaFe2wONO1ppdg4KIxalH2Zq8GktVyEiuUQBbt2Rf9uM2ncDbMOn1lzUNe3TE+55CUPicF4KiLko4TkVyinxiLPdhymjAXbS1LYMxmXo8WKHE5iY35KUgi891knprvzSKJgHMeXN1IswuANdp66DPIPd00q6VGGglnmxGXO74EhpbLa+Vk1ZB0Jkjl39vVTxitvGFR0nj8vAOSeDd3Ek8UJHFH0D8BnW7HUtl2WQ4kYSSP8h5dnyfRvVS4hqJAJ7maPeqHfiz3yBsx241DEtl1nI7XU6rDv5SfG+1C1r7d9jmJvU6iL4HREzgahwJJp/e7zvumQNsIhzQbzwdJWERKoKSW/D+QOMBrN1Y4xU8lpa4zW+sk+jHpDX6esgRJPwJ5pLrpwlGZN0fcN/71VCWW6ROuvwj4MSw4oESOrbSsdCzfUvbK7QRJnMZYAqNQN/VIYuMMSOtGhn7GPLUgbdqviiRWgiSkmRBbT04iAJw/4x4fI4k302i6qcJHbtZ/eYScxNxoYjfWfsEb3SDsr9HkP4M92GRE2DLshqHcROz6lu6xRLLIOXaie8OQO7JLx2EvkePjqE38gShpQ6bYh1K6xEIS/RzldWQPmmA0zXY00rcTjzCtRnKXummCCFLUvk2C2qxfkR3vbDtldFNW3TTP5TWCW8Fpi8+xQSoARQCC3RNkkfRedV/f0n0hVbcDEhQ3ddpmfy3b420TtA1wxjKHJOp14tqlGyrqpibdDuvcli7D4iShmzI0TqD8vdmadIDLDb1K1jEjClMgiYRz78vUzOr155zE68NM5yP6z83zLYk9eShpizzdtK+fPKcWMrgokZtDMKzt8TKU1CtCMikHYi8/hk3CnolAitywzmV/wXkgCjf5MWkkccqRRLYGpx8HSJgTHYJDrAiTXJO0LVMECvPP01oNSUyv5+1EuOb8ZApIoayTGAKFrTWpnDf+e9b2IC3dA4jrky2f1xOAyAfa83RTINJNHyOJN9NYuqm2sCzhDt1J5JyN5YhDQ8t/aXXTkUReybA3/0ItgUFsrqXjnN7Yel9dOIXPEZFztDdIiZrln9caT1ICOdrokB2G7rPsfjJ4kZYaqPaZyk2SymUcynxLa44yT62HopGqXvYd2o4215NbmOaILKTx75tzEudAl7EokrVcXjf3yvpXaGzM9Q/R4CJI0u4ngzJ+WIbuqDmJ6e8nHU1NAn1HRJHT+aS0LQ5JHIsgCWDkJA5lkMQ/32rpHsRSxIAK3ZSlOyZoA3vf3NpOuNzPuFwFhE63tiGzEShwuOcINknupHD36p3EwOxBEk83I672fTVQ0wAcuyfX6PWWxyfPKfZ309a/m7t9/Y+hW6djsXuCtC/Y7+a/Q2o7UeqmiX3B1hL08wwCWAuH9rt+Y+ZcUkiiKDq/P7i93PzdMrppfK7VJHjA5jdr9S2tfhLZ9i1l6p0nQcKnb58UgT7f/JpsnadyHbt+9j2u0VT3xveTudT+kfIRf+l/AH7grcBnfwFY5j4k8daT7vHsLXyfRvucOYnDMPztYRg+MwzDa8Mw/PIwDP9q8to3DcPwS8MwPByG4SeGYXg+ee10GIa/tfb77WEY/h3xudW+TLMO4VpOonVzSzU8gETpQhRn7RMWYrNbVUmvV354QQ/akEcWbbShpBbsDnYkX4v+sMnGpbpjcyjVkbUCAn68XiRX70cebMNxEaq0H8A76YAQCpltCq6kEnY5wOKAYvqluQpd6qajo8315hYCyGiqLJJ4uh1dTuLBFYxnhYM0uldXTi6x/9TopsfmkvYzJ1yTwYu//Se+Gv/jv/UNAJBIoKf7iO20pa/799M5ieOAvHQPIbhSYXdYo6W/d08JhpSGRYuEiN+tpyj42dYFnB5cOSeRQeqqxdwpxLkUbmLunVur89rjJN462eBid+h20gsUhb633d80JVka5J1oW5Tl566jDC4y16XuNLTnWDjA5F6uUd6ZpZyKwPn60gwrxwcXAazCNfZYgNtLUpXSnnxjT6ncEarwbo5DEZCh9wRvg3YGt7LanWj/3lUkMdFKSAM9w+DEp9yZfYS66VimLjFleGS+MZAgiZUfXqoyM2JuccAtcLgGdpdrTmKHq3bvk+7x+Y/wfVpTuZFP4dpfBvCeZVmeAPBtAP7SMAxfMQzDswD+GwB/AcDTAD4G4IeTfv8+gPcDeB7ANwL4s8MwfCsAEH3NZkWENQPN92vy8RXHpkc5VNJPmAR4WQDez6Pep2YQtueo5ZsxCOQxpRT8eHX5YSMnq9PYredy2RvkMYJDcp0sC1fMWqORMGeUdEqdk04Kp2TCBbZzX6Ck4A7EtJ/vTdFNJZJIGrtelKQHSZxGV7+zF4EEEpre3lHgWCpnj3BEDUk3HRQtAMQEt8R9Qwtu1eimh1zQ4SPvfxZf/PYnAJQGk/u/+wxbuEYIQBx4ddPuYuLjceqm6bVk6t36tg3odlyT1r1dGNYdSKJX6n31Yi1NsuVzEkOdShIRdGIf8e/gcBBz9XS1J29tzff6dms74eL6kDjbxL6l7cmmQ+QeexFImSfF/m7yXDxGACWdbx+S6GyE7r2E3MvleAvIPM0hZeW45zjHLUESO+6bdC/Zz3wJHv9+wO1bW/L3Ds42ybaQa5JX3F37iQBvOyexPNv8Z/jfM62T6Nt2GjPhMoATL5tEsC8d21rLVVVUEknsCeYHquj+oj8n8QN/2D2+96N8n0b7nDmJy7L8wrIsV/7P9d97AfxRAL+wLMuPLMtyCecUfngYhg+u7/3jAH5gWZZXlmX5RQA/BOC719esvmazIHEtH8v3s+BpuRgZlEgWhH2U3Darn17vsGMTT1EiYo41Kf9j6iTGnMTKWCJCDpA5carjTCIiYqx0Hq1+x+Qkpk5pD9qglsAgqF5Av3M/FY4zi3aWyfY96N7F9QHzwhfOntaoZC8iuJ1GXB/mLgQScAjM5W7G1X7uEvvQ65S1g1sHsSZZylBJ027PUVNbTJ+vNY3+A7RpoP53TnNSGGQvfT0VgODoXmOBpFvjFeyOgFK0x8qcxGBomVPMaLiRRtjuIwN+88IHOwon8YicRDYnbhxzJJFx0n3zddbe9dS5+V7fbp2MDknsCRwN6HY2SmpfX78oQMPS5EWeFOukT7k9w9CttcBRjwJuioD10E39NNmcxFSVszfguk++G7v/5zmJfSUwYnCLRBLHMaPEAv10016afHF2t+zkSp3EtBTPuUJjl0EjIGEXGCkAwiyn1rI2nhUoKXMSOVvedV5FZ3YX/TmJX/WvAd/3WeDOW/k+jfY5zUkchuGvD8PwEMAvAfgMgL8H4EsB/Jx/z7IsDwB8HMCXDsPwFIC3p6+v///S9f/VvuycaERKOokGBcLD2lK4gHE2/Hvdo3ueSTaW0X8AzXIWo4j8ABwiqKEUPTmJ0tlgKEPyBrWSjVVHlrn+quNsH241J93aD2T9qXnhDqjNlCrpuec4Kmf+uzE5WV444pj6loW6KTXH+Hv35AR5h+v1yz0ADtkAVgGCw9J1HYGVgnhYYq4Ha1xvnHDNjhTT0PYgc9+q3qPcWGWQpC/6z1LLak7iYV6qEeG0HmCcI+c0bGVEfrbVlf3nashlW0mvn93h5liqlDKIiEY3pRCYZO86kPcogEDj9E5iz1ouirkzdfo6giRpe+uqjvuup3i1v1vbCYd5weXOVvH0bUoomTTdWhjWNCVZnFOs4FD1+hP3tyqc1UU3JRG6QOX3VE72+rvHlPLLpmAUOfBkUCb9vXl10zHbJ9l7FIjXfTcvzVIPvqVgxbEUdDblSQbmmf1O1k31LQ0M+HX0x7/2+dhvOhIRHHObMB3bWstarXSgIXgz5J/fVSdxmzqJnUjiMNyYaA0AdIz86O3/Y+9dY23LsvKwb67H3udx3/fWs6u6u6qrmqYbKN79wNAQwGDAsUgHuR0S4SQGYhsbh6AkljAgISRH+EcUJYpC4jwcxxa2ZAs7kZFCTKxEUaTwAz+IiSPLEBv6XVX3cR57r1d+zDXWHGuudfb6xrr3nLvPuXtIpXtqnz3PmnvtueYcY3zf+EbTNH/COfenAHwcwLcCWAG4BuAL0VvvA7je/k7+P/4dJsb2zDn3IwB+BADe+973dq9PZVzPgsOnKBDaaZIMhZfln9iMB3xw8tBIhs3VAU64Zm4vtbmqqH2Vuuk+Qc7FPSAN6o5RADadocVgXEV8b2MCNPrvnX296HuDgSJjzPQB/QMK4JGUWDiCCS7jwJlBcoH20I6ykcxBupfFyAaXfcvafm8Mhao3LvV9sqzS1nt5goerwtNNLUjiCJJ1JpKeeDqs+Rk9I0liQb9kjH79LItp2mIMkjjWkmJ675Lsrk3dVNf26PFTSIqeI+ts6SDYEuz16KaGtawFpixNwTWSuMimadOAyq5X/eebQxKHSRJmru+5tY//C+/g7rXl5HvF9lvZ/Uergpof4B1Qs9hH9LyFRBV5Tql90oRIKSTdOaJ20vWdcopKOPhsXClFTK1kklvAMHltSkrGQToZuGlGwnJCWVksS+yqqKHlUjuO6G8MjNckMnuyf7//fxbdPitRuOkZHdOAAIb7/2//+e8djBvUCBIUe/F/tGI3s5ZH+ytOnMGxKrPFT+sFiU1l65P4hO3C1U2bpqmapvnfAbwC4I8DeATgRvS2GwAetr9D9Hv5HSbGxtf9xaZpvr5pmq9/7rkAw07K37bf52CBTFAgzqJkTq0P+b3m1fvXpzfxWCQE2Lz5n1l/t3mKZ8rkT+1Zj4UkDh7QzTSlmHoC2D5bfC+tAdHcmiwLRWYOjUFTogCPOjA1WXniejWJjJjPeC9HYo6JGxw0DJVWVNDeOV4D4OmmcpBaawvz1KGoG7rWRkzUTdcVGSSOJDyY+pKxtTXJEohqov04QwIoYkAw4+JaD2Bz8BaLz/j3N73fnWUhkApICutcx31C5fWzLHFnKU5PzFEFwayDBgQksawaOkgH0BOYstRW7S/89e6fFCZqNzCibjpxzfj+W4Lgj73u+4Y9f90QJLYB8KNWlIet9wuBjX+NDfbmthuwCg4l8f03JAk1M4pF0mVuci1LD9rCWO8X70FMwhvos7C6721yVL8tjk3dNLAS2M8mST/xewqivzEwrJsE+ER5UIkVX2Z6jv79oMeN9QAGOBCmioCbABycfb0YhAHYtTxkvDB13z65YvfTkOmaRCPd9AnbhSKJI9f+AIDfhK87BAA45w7l9aZp3nHOfQbAWwD+5/Ytb7VjsGksO4mpheWcaymB8SKegtGHjp0JpTMuLBc55My4sfo7Zo5jaBuD0o3dk6JqsJfbAilgmlow1ifR4uxaaXpxQMQ6d3HDbbonlHJA2aw1EFAzMRZJGUMSp4N7RHRTFu2ch5JKkPiuBIkk3VQOUmttoa/3sInkAKpPYvkYdNOm/7sxS2IkF8QzOpemGo2z1VIPXy83ZMrlnvXWMUk3zSLhGktNolW4Y0y4yb8+cS3lJE9lq/vjJACuJ5kW2uI+cXRtrULuLQkZQNckNt0cNs4xWsviXDOJmT/8Da/i1TsH+MQH7lJzBEIA/KilrrMsjTpa/3RSMgpSWFXUnriLAUmsjYGbRnx0Td2mdTkWyFI1iR2SXndzpertR6i7zFJOXDhnLAqUupWFRd10kSVdPfW6qnFtj3PDs8QnJYFWuIYSvEl6a8TPezq5C/T3ciYJKn829ks2InRn1CROa34kQySx+3ybkMTh3+/2cmN/RabuO07AATOQxLp6qkHihSCJzrnnnXOfds5dc86lzrnvAvBHAPwvAP4mgK9wzn3KObcH4KcB/IOmaX6rHf6XAPyUc+52K0jzwwD+2/Z3U2MnjXEMx+Rv/SI7+++e1UqBcZoAKCeZW1hjDjmwuSbxLIeQpZZZVVHPEkChatsiJHFqAzq7bnLzHJPo/svfsN5/3kmO7iNZf9FHEiff3lmWDhERTl2tf9g0ROZ0KFzDNXzWznVAGqbH7XdIotRIkXTTNOkpQtJIYuZbZxRVPamqqU2Ea9YlN268JnFa8CNWZDPtPzOTW1X0vVH9XUeRxLPXZTZCN2UP4Fi4xiOJXEa+GG3BsFlJLxZuAqadrUUW5mhxWnu1jAaHJN5L6NrahQ4SuWctnAE2ddO4drU0JGacc/imN+7RSD8QkMSjVUnND/AsDY3QMePG2jYA08HloN6PYHbo+eiaRCZJMkAgKWpfHGxwaFuX7FD3kvmuh6J/hqRk9L3R6qa1DREE2h6cba0rewb464UzuGRbYCSut9cBXEIG0IggeR8HdF//uhVM8WM3+1w+URH3SZz+fGPACMMKGdXFIM4ALRzEsPs6y2PhmqeH510U3bSBp5b+CwDvAPgLAP5M0zR/q2maLwD4FICfb3/3UQCfVmN/Bl6M5ncA/D0Av9A0za8AADF20pjDPhuBtqc25bniLrFCFCuBfhbdcdN6HKPE1o2lbkkHN0S95ciGMFvddOLBHgtkKWc3yn524xgnZsQhZK5nDdJlnFZxY64FtAGRMUgH+kgi3aMsHanTZD7bzEP7oK0jeufIRjcV2pAp0wdPiyqqmq4tFFtmKVZtn0RmXDbynFLqmgOUevrZdm6sltHQFse6b7mhAAGwOXgb65M4JSIQj9UULApJTBI0zUi9zcQZMIduHRS1azrYBoJwU6+WkXy2ZQ/xCbHpOQIKSTw2IIlxMoFEBOMgsSJq2R/HQk2iBInTY3SwHXrSTSdAASX20b5uPYPNiKCRyhkjkMz+M9YnkfnKpJarMgZggYWF7rpsUlILN8lrU6b9QgsCv8xSrBSSyJ4dOuArKpYB0WcJODe9JuVjaESQ+d7O6otpBVPk/6fqvYfAzbTC9WjpBjMumRmUuv59lNcmTeimxTGA5qnWJF5IeNoGc5/c8PtfBTDatqJtm/Fvtf+ZxjLGKD6N1cTVE5vyGIzOOGlnNSSd5IMPqE1ox00HsjECZnUI/bjpjTWWBPY/E/32RrI4U07a46KkVgTSubj+iPzekmEtKdsnca3qGvTcN5lX5OwjIiySUg6ut3lcTAlhJdDH2nswn21Qk0jSTYU2JM8cL1zjUVnLQQ94uumq4IPLsbYUVVdHwR1QAFeTCJyVuGCd1jBG5rDJxp5toM2UnzF4VLiG2MeBPpLSNA3vJHdiGjXSJO2uvTn7HLM7pu8joBDB0pa40HTTDhWf8byxtVWC3FvWf3f/jTWh8Zqsak5MZq7FSCJ7/+MkCatcGVAb7rmJEUGmRnxsnDUA68ZVdoecRTuBfi0djWQN1E35zybPs2yX7J5QGO8j4JOX69KzBFiFa8AnXTskkWSvZG0is5vjTESQE5wb910ZJDEO+Mop/zoZAgdyHDBtWUbbGU1dr3+5kIjb1DojDeU9LHAAwDuO2T6wPmoHXX0kcWuNRhLjBTkDSaRaMIzIOOu/d/a4WEnSgCTqbDdzrblUzvb3dpXMvrMLTNckjvZ7g6EmVNNNiSzhGLUPzPUi54duOD8jaw2M0E0rviZRrifB6VRNRJoM22awh3atDl+Ac7aWWQLnAt2UpcDlrZNgobbK31+VFVZFTSMpgO/btq5qPFqVs3rLARYk0ZbIAYa1jHXD0N/8v/Y+icNnG9hck9gJYM1CEhVKRyLiY9cUVGRKGCyuiWb8yFwFpOE+MuNC8FzVHGrg/3YI1C31tXsqCcMjiX3J+7rhmQwDJJEtApthQbjGQDdNxpQkp6+VuGF5CStu1GvmTlIyExcHbgbKe9xzb2L9yzUA8X+47yxPk44p4IO96TEDddOaD26GzJXp62n651RLNG2SUFmVNV2XLtfr0YTJFhjWOQ5pwqzgHLrrAJwPNAYcyNjNa2tYkyi+BhOU1nX/7JjaK8daYHBI4rCdF816z/eA1YP2D13xmsRttuBgn/2ecWh7OtOh/z7AZcSGvWa4hTXI/hMZaHkmhs3cJ641irYxyq1DESCqJtENaxKn6sfOqgllkcRS3X+2Jit2CAGutiS+jxz/f0jt40QBkq62qq4b1M20IiTgD+2uR1O7602hB7EiIS1AMJZZJ8Y553CQp0G4xqJuqhQh2dql/TzFSVFhZUQSbx4sAACfe3BKBbJBAa5/sE3R9MYo6NRhHyU8wKz/aN+qiX1VxsUOAuA/31lJiNAPcFiTOOXM62CP7dGn/26/lmvzh4vZHWxGPg729PU32UL1SbQEexrxrGoDkqiaXNPtZjqGTVsnRUr5P05N4hwT4ZoHp20LDMKR19+3RQSrP05e2zzGP/vhPtY1x0AB2uBGKIEVF4DF/gxTEx37MiwlFhDF6YCAsbWFQFynOX2tRKFEloRrqtg1bAIOCOfSuqpRVA1ysnVGnjoUZXhuqOSKQjvZ9jZScqDVTdl1LO8HAvjAJBJGNT+MSGLoVMAnLuRak6UzI+cU2zoj9uXZdYL8ADh+2/+8OOTGnIPtgkRGSj4ZiitMLaxEOSNijJMW01RlNKOSOSpcs2GYZBUH44hr+ffOQ8B6SCLRgiEZeUCnkIMxARpmIx/2Wuq/vmlc3G5Dz+Msi1uXmHo7xQ45gzaowI1VhIyvV3RI4kSQmA4DYO6QUtlIsrZNbH+RBSTRTDedzgxq21ukOCls2WAAuLWfAwC++GiNO4f55Pt1n1UxBoEfBinNRiErsWEt43R/s7OEa6ZbAAwTQPJ3zqxJjCTy9XWng8SAZFmQxIDc8HVSY+wOCqFQNZc25WIZV5uQDY1QsGgnEPokAtMJo3iOge7I1RbGfdFYKuFck8/2zpHfS3RAfJbpXmqW4D5VzwB73sv1CvW8sfdD7+VMssOP6SM+LJPBj0H3L0837SOJFnXTXr0rmXDtAiLDGTDod0gux2W7lrqSA1JgLU+DKmpJtsDINdppuv/9di6mIDHySzYNDcn8YfeAqbU1QBIn2GVjc/TXJvfyqCyCuV6aDNvi0EFitgccfdH/LEI2T8F2QWL7xW3OWgyh7amFFSNZgkhNBmARakDXKLjIIWn/pQQBjI7MeMNtLkseiwBtqj3ScxzQTScOqTEBmjnKrSFbNDUuphb7f5mM8BwkcZQiwzhbbQN4PY6uSZQeTaUfNxUkxpQQVrhAI1lWCujBIsX9EyPdtM1aWxw7ADjIU5ysS6xKG9301kEIDG8fLibfn0Z7AtA618yzHa1J5nxK3JhwjS1x1KlyTowbywgDm1UXg3DNsCZxMkhU8vqlYf3HQTCTyR8+22SfuF6fRP7Z1ghrRSINQITaGIKNZZZ0yRFrn8R+kGILpAAeSZlrIoL1diuCtUcknBJ1tlmUkudS0np0RwtKl+h6PxbJ9f/qlg/+9U0Ouf+3Rzclt8k8jXoJkglowH+m2nAmjvVJZEXgdJDIJmWWHd3Ui5exSOIiS/rCNSQDoqp9/bUlsRInoZlRMUrHrJG4RlmsnEgejbalI5E9PUd/relEyZhwTUX45nrfslCZAfjA8PhL7c8H5KAnb898kMgUnyZRAABMZ7eGfPz2b00hie1iDUGKf53JyMdKesz1BoI3DNoWcc/lelQAEAWlVd1M0r3GoP6pwvkxSixFG40CYJaCOEbtY8ZpqoufI38fB4GsMfvJiG/o61lrEuMAoCYP0t4BZaBtAUG8BrDVSZVVY1K2A7xwx0lRYV1WdEAKALf2Q2B454AIEkeQe8a5Tly8JlkBiGHiwqq2aEHg4wSc/J2pZ1sLMLFqnkGAxooktoFpF9xM18QNBYDYJt1KpZRIYopJwLZukUQWEc/TvrgFu/6dc7h3za9fvidpvybRUqcc16CyTvkcO1z65/lLRysAQcl1k+lErY1uOkyuMIh/lgbBFUsAoOuraOEg8UtiJHHD54uZSkxtv5hPXEhwwwd7fo62M7FX398Fl8QckxDIsqJsgA4SPZK4JDOgi9QL3gB+/2GEa3K1300FXtpidgGbXAS0cI28viFoO6tP4sR3Hu8HAKe6Psbw41kh/deEBTFV8hEDPnQrHh0k7uimT884ZaMzkMSJxSHvA3gaSZexq/qHxnSwF94LGIRTRrLdU0u4cwi1k0Y6oHHgUNYN8ilnNwHqGOqfcArj/lN+jtNIohwOwxqRaWd30O6BGJeqQzTMcd7BxiqyWXt5ASK/3Q8upyiWA+Ea8iDVNahWdG9/RpCYZ66rDwFCnzrmWidrewsMjSTeYZDEkYOtZpIrSbwm2ebSseKuvb9rcJKnx431SdzEMHDOYRG1cmHbsnRBSlV3a9PiJAtSxATpMd2arVvKFFJqyT53QWJZ0wkZoP9sW2mcz11fAuBR+wEtmcjiy7hecrE5XyRxmaV+jVUNFlnCJbfU921BEnt0Uzk36CBFBdsWJFEl4eYgiawwkv7ebHNsSwAMSRItnGKqLXSuu+8WNe0s9bXzdc2rJAPhXDpeVQCmGTlin+LqEQAAIABJREFUiyzBylqTmISEU0X2YPbj+v6FKUhv+s/AHHVTXz959rXivVXmCUwEl9Ec/bWng+cxJJETXRzWG9P71uIQOH3X/7xDEp+eMZtCvECY7FZMN+WlrWMk0RDsRagBQAreGOv2OkUq9YzSohgxBZGoSYw/m1zPz2Uz2lD30FXuPgJDha5puqm9T2U3rkcjZIVr5om7aEls+R6mEMF4nnRN4kgCwipSYUX3ekgiUUcEeJRgXdY4LfyhzTq8+4puahOumRckWpHEOPvZgEQ2krhOlhBgiujdbE3i2LMNEHR+JeLg58itE40kioNtQxJbxK3ihGuswllACPZ6NYmMk5b44HlV1ibaqKaxWRARIIgwvecWVzMzphI7W7jmHINEIKCJeyyVdqwEwFg6cBF0Rx2UlgRt3Y+RmsSAODPPjU6eNiQiCASULiQJp8foPchSy54kI+e9oQa4aqmcPN3Ur6uHrSgSe3YssoAkFmQLDK2U7BMC1KV65SVsQmZQqkMkeM9SN91Uk+7/Zj9JqP8GJVzT87mIYG+EzVYzZ7AL99GSlAQAHNwLP++CxKdnTPHp0Nn1/05J3wLDIHHaaWrnFWUfJhEwN8xa63mcOS4ZEbcwom1Sb8kgYGmCqCZxmls/JlwzWZM4QomllFvP+N4YJHFsjVAI5Fzabucg9Oe+yfK0n332f4uoSVT9frogceJwi4vLaUlyFdxYFcE0lZNFEkWk4uGpl7tnD21RN10baxKvL0PPI6omcSTbyhxsmuoFGBI58V5CiFLFIhWypKfnOI4kTjWL1mq7AOiATwuniMPFfN9jtXST1NYkTsBxjqQWoLGKKS2yBKuiNiEbfUTKQIdC6CP4xvPXqPcnSV+V00J37Dl2pCrq49i1Pf+c7pHJJp3wsPRc1UkZps5JbC7dcYBAGtZkr1WKNeFXc/sP0KpwGxWn9TNqqWXXa0v+5a6nUTo73fRh++ywSOIy08I1fE1iN0fDGolLPizCNRZg5CwksZoIaMdqEikkcSThyiQ8PCLYf41RWPb3Eb1r0vvWtefDz4tdkPjUjNmU4wCAyW4NVErJoCHO2FmQxLE+fZNI4sCR4cYAY/WWHJJldXZ1k+Ju3FSfxAjZADh1x1iAIwTp53j/jfcDGBeuoaTMVbDHUvTkPV1NYitcM0U3jZMrrCS5puAyMtra3nPbIxrO8bQOObRF8IZVKt1fpKgb30vNgiQ65/DyzT0AwEvtv5tsLPvJF9tHiCBdkxj+nwnu5VYPe2QR1zoTSTz78+Wp6xwm//6aor9puqmMZ747GRdq9+rp5FbSF+liEFkAbZ2Ln2Nl2FsBv5ZXZWVyWrVqogVtANC1m3n9Ob5mZqAKadx/AAkuz9d9OVzYg8SmaemHliDFBQfUUssYlw7QoiRp/+xggo0gqKeCe5LxUqkAmO+T6BEYi2OtS0wsSG7qhoENcz2N0lnuv+w3j4xJyV5NIpkkkdYtot5tQZt1IoFCjSPfyRK0jYnCTAE3cU2iBUm09+rul84AfMmHbvej5zBph8+Fn3dI4tMzpvh0KOU/vfjnqpTGGTu6lcJI1lrPY9M8e4I3BGowJ2Ok56kDvoJSN03OLFI+66Aac6w93WVifmd8tqlzdPb9j8bxDW/taCcgjeO9IIBkoWnhiPZ6oU+i7Xtjs91jdFPWcZXgi0W2geAEPjixtc4QWfx3jwtTCwwA+Ls/+a341Z/4Frx0c5qmF69J+ZlB6eI1SdUkJmPqppvHxCIVMlWKbloPX/fCDJuchKQnXMNmyUeRRANty4okameEbRPknEOeJFi3zynA1agBLdpQ1rDI3eda8dhYk/inv/1NADySCPSfb0bdGvBrua9mu3l9PAm73iKJTPsLQKnS1rUpSElc2OcsNdi5SrjWDU/l9BS4sI4t7VV0cEmjpIpxZFVgrSbOeW2hxKShqI5hXEASLT2HNUpXN5ZEjl9Pj1okkT07NN20rOuuFdAmC/tdbarjjWtJbS1I/P8z4EHcEkdsCr0cq0lkFK5j31V+tpZuyPUoJLEdZy2d6SGJTzFIzKbfcrWNOUxjBT5m4zpLpZQNwEIjWUxeS8b1+/T5f6eWo26kLONYalnsELJUKl003zTT9/+sxqnJBuRgXLiGUxsFRgIwYo2M3v+p4NINBW/YGpE5joVkFqs6NBNnMsn6O5hTk2ihJGsKrlXd9D237ZupyNtL42wLkggAJ0VFB5bhmineeP469d6zsp8cRSZKkrDZ/znjlGNBC9e4IW0ImHZC88z1+iSytMUk8cFsWTWdCISFbirX5FpgJOb9R0xaAFiCDcDX4a5Kn/jkg0QlXEMGDWJ/6Kvfgz/01e+h3w/0e+CxwWyeDhkX5ylcAwCHS0ESjT0gFU3SGkhZHEmP9ug2EdQ0+1RCtt5skCSpu7Nk8lrqnKIp0K3ibldbSCYyAf+cWfuLxklJ5hHQAQ5L5QdCEnJWTWIVUCkr3bQ0IInxPWETyQAG95ISeIxRwYl1GdPP9XWZ6+kjh0USx1puWMZ1wjXsg3q4o5tuhTH9xsZoc8BExiJSKWXph6FxNnrjJp2tBBFq0M5jKuCL0Aaql2AUgI01wz57nn35bYDot5cOof4pul0cyAJcvd8gY0rWRCSufx94evGwJQiHyA5FQrg+ieFgC/QM5rBPBuqmzPfWCX0YAtnHUTd98YZHEr/2vbeo9wMaSfSZXVbwRovksA2R51iM0gGBAbHJ4rXFOjIxus0Kruj6wrnqymJTQXCuBJgAXqURCA7oquSFinKVXJH5TQtuxUwGa01WbVLJBALd1CLsItcC7Oqmc0yfARWJJGqRFsDvQcy+9TgmQSK7H3TUPiMCNpYUYxN+c4RrdH9FlrY41qieRYADK4pHO/OWShsCjekx8qfN6qZpP3EN2BOulgB4bk2ippvahWuaVjGURxLntKmR9wOczxv7kmJltXk9xywNfd0pmmp8PV6ErP8a8+zErAn5W5TtkMTtsKqerl0a1PYQ2d0YSWwMrRSAsKBoummU/WeD0li4hkF7Ou559JDy2U9bADCGJPpDcfN1gKFwzVRN4ln1lhytYHj/p/bWGIG0UDsGTWspummorbJw5HWh+LrigvuxDC172KxKW7Ah9uGXb+CPf+sH8EMffz/1fiAgBdaaRF2rZKlJnGNxLS9zQI2qaxJVcTG6zTaBj0Uq5LWNc0yCSm93vY5hsKkmMYnoh7yTtt+ibXOEawJyM013lGy3p/m6traTmqL/fO19APj1L5S0LEnogHSh+yQaKIFzTTt47Pem1RYBv/7P+5m7vrTVJMZKkgCPgMWUNBZdnSNcEwcAXE1uPwCYEpYK10IvccSuSa+CXpmTi0Bf3ZSum1RKnuz1ArugNqmbzq5J7NFNbS0wKmPdZJYkHbrH1jfHvhMTcAuzY4wpNoUIjvqEbrP/Gphi/bNjupZ9KLDGIKxa3XRKkX9gz32Zmvj5JaGnbBck1jVV77cu+4sK2AwbD1RKWSSxo0xEzpYhcEsS19UfWSXoTeqaTezIc+O0/DbABelx1qicyP6Mcc8bYo4DKX+SNpc4L1rQOYQkAhmjDexhP7dPos72sfcf6IskFGQtlzSpB2ziRlrd1NICAPCf7z/47g9R7xWTRtkPTgs4x7UEAfq1SuftsMa1vMyBH4/xdEfuWvFzQ41zwz1h+hAdOgjM/pqlfeECC/3Qty6puj2dUaaVhIhWF2QcBMDf99TxNYn+er7Fh3xG1q9Ytr3UlpkFSdRIiiHTPdN0PZFFuEZ/30Xd4MBYB2w1QRL3SbqppoVbgg3NQrHQ6+egPYDcf1sNaowSlRVJN1V7gklMKfEBsGX/13O0qZvqhuf+Naq+P2Ll8Oqm/ZpE9rzpBYlVQ91/6UEtSrGWPonzkUQJitrXJ5l6Z/Qhn0QSh2I3k2JuUd2knydXujG4HnFfsjQkvM3CNTnXVui8bRckkgukhxIRG3msUiqj2Xq/GG1jauKANlsHxyvpDdAGy7gwRs9hk8XKdsA8JHGKFhXqE/rfGxM0+7mF6wCccJAf52sF5tJN6V6Cbl4dS9fvrQo1iVMKXcAZNYkTwjU9JJEMtgGMq5ueo+O6VMI1izSh68Zu7Id+h5YWGHNMI/CAYd/Sz00DOLLfWEydpvsrKoRI5jA15szakg1jBWnTY2gkcdG2LjGom8r3K04aE5Rqheu0RUz5INE7TuuqQpo4yiH08/SfzTv/3Jg8TbrEj58rNWy2aaeQRhLTpF+DWtWdA3xe9tz1JQDgtBhRVhoxzdKwCde4QVKSQhJVEs6CZGmNBWsAoL83ShU16VPQaUpsmwSyMEm0DoFJJVbP0XBOSYnBuqxNVFpJLnbMFQOSuGr3rIIUbuoFzjMTCRafxF8L3TUBu8I7c80zkcSJWym/12PZmsSY8UKLx0VAkSkJ9+m/Avzeb/DvPwfbBYkk1GytSTxTpZR4YPT76Yy8gvoz8FnruHE2P244RytKIYc+pW46QBs217KMZYwYZ1f+pLW9R3z/bXRT7ewa2hR02ef+HDZZkMQOjgyjkqaVSi01iZ0zYqTxxDTV8yw/6oRrTgoTIqjbV1xEkKgpMlQWM2JAVE1DftdDmqqVXcA6yWMJoIJAuAVpE7M4QHuqvyXA0Yvl+12VPJI4pgLN+gdZ2+JjVdR0M3eZ57sna1Owl6euC7it6qZzLKYlLwg6Z5721z8r3PE49lXvuQkA+Cefe0i9v6v3NgrX9Pe79jUmuEmdasli65OomUqWRunyfDPCTTJOn1PsPp6lSU8l1qxuarn/qT1xDYQ94Xhd0nME/HmzSBN8/sEKAF/esExFuZgT/AOU4m7bTmdOIoHvZRojidP0T2C8ncXUNcdqEqfYZX5cvwxM5jsbSTSAABahwM4+9L3+v6doO+EaYpMcZPGJjSs4CH0+MotkhU0Lk9fS16sVujdHyZBteK7HsfWWQJ+CGDZkW789GbuxBUn7Jwd9EiemGIuEWOim/npyrf7rZ9k4krj5WoBkaP3PFmqNVuCz1yT699tqEkP/NcCQWZ9RbznXOuGa05ISMRG7d23Z/Xz+NYn9Q5E6ENNhT1Ir3RfgaxL7IhVsAmjYJ3GqByogSFsUJJJrZD9PcKqCREaZdhEhiSUhnKLl5wEekQUEJao9dZSsiZN5iiNp6ZMowYbQ5c/TJAAGbEiWPoNZdc3Hsa98xQeJuvZ1k/UTcP41XrjG/xxqGaevN5duGusCcPt/y4wSdd+aEw7SfoIlAZG3c5yjbmrvkziC9hDXk3PjZF21158cAsD7GLcOcnz+YRskGpBEADgt/PUY4Zo+ksiJRAFDFhBLf/bv9/9P17JHCSDmmqmqmRTj1Eb9v3Pq+2MRbrq/YswKPOf99UnbM48kMn2CBrU9xMYVqEb+/2U4A737cfGmNTXO/6trgpi16Ole4f9t42IYnRmn6hosNYnRQT2VyYwznwBXkyhjzbVVI/cfIISDRsRFrE2KLQFYL7NoyGxphdmuT+IUkpiM1XpMXqqXWbdkhOeaHPaPViVuKgrplOk5ve8u30x8jo3V4Flp2jxtKEqu1KA46Fqkgk1AxEg6oDOuZ6+vLE1w1DpnQHs/2FrSha9JXJmQRL9GViUf3ARkw/+/BUmUFh+rsjKh1FKTaKL2RYm780zIAH2VRhbJyltkSaysm3Onm17fy/Effeor8darnFKyzEcrRzPBnmbl2IRrNN2Udz6z1HUUWr51DLr3A54FxNAd9b5lqYnL2t6dlgRoKLmxBXvZyHnPzFMYKLIPsc8bANw+WOD/aRFqWt0067dqYvaFWM3cIm6kz+A5aHNV8/d/rE/iRiQxHUESCcXvWHPCz7OZTBSOljwRlOtUJ7ytwjVbYs98kMh80XFhLbNxDfsdcojIoJk7GQDE1Kam4eifiRu2bmAd+XjxcxtCgpOq6s11+v6PIIlTnPUR4RoLImJtCj68/9z3liYx3ZTL5EuQ3qisKUc3DYeGOF20cIQ4CKXQTfnvzaRSN0JbPE90Q9P55tJGv8bQcmOOZUnsJNdY5pu37zQ6fC0qdfHzRmfkjXvCKJJYTx+mImwhNtUSR9t+nuLd48KkbhqQRL93MU5yYIUEIQdLTWJR1TgtamOQmGJV1HTwBfiA1IrsPY4tI5XGOcI1Pvt//kSoP/wN76Xfq/UETHRHN9wnWeSmRzclb8ciTbp2P94ZZ9RN+zQ9X3vPjSsVm8Qk3FTbEEG51XXdmJDcNEnQNPZxkjiy0k0B4OZBSEZeW3JuuCSzpJaRUd2V701QWZ7u67CSRMJEOwqxmG5qEkEc8e+mQIAhu8xQlqWRxLrB/pR/N0ZvZeimKpg1C9dsiT3zdFPmi47FFZiN6yyVUosACqACUpKmKgFHw0L90WdjaxL7FA3/GltLp7nueu5njhnJGk05QUl0/2WedL2fESWN73+4J9Pj9Gdj+73lap1YhGvk0CiquqNrMHVqWhK7qGo4x2zIiUIS+URC6vpiB/5vnT+SCNhpo7//wy/g5n6OG3s8AjnH8plIog6kmPproEW3Iwo0xxLQAhxhDpPXGskIA9N0U00DrMg5AqomcY5wTVV3/06NizPr3kkm55gJ2lnRLRgAT51dVzXFkBETaitgC2Tn2jJLux6VTL9PICSpJPnm+8Rtl7M1xtJglarn9EnM0z6Vk+9BGJ4d7/9Mj4nLYIqK+97y1HXaAxa6qZzB1tpOIIi0+Nemr6UTpyxzCwhI4rEgiYbn5rYKEm8fLqgxi6zfz3efCRJVWxbb/e+f3VSNbEQ3ZZOSZ6mbTvVJLAYU1eme52MMM0qELGITAiS99YJ9mfOwHZJIfNFjtC1g85ets4qArd8eMIIkssFll8m313+ZxqmHRg5uZunrOrWAGNih/qneNmNIorQFmbJRKX/j5mMRvOkVUZMbeZ6JQ9KYHQugrUk0IpDy/nXVICdUQPX3xt5HQNBt//OFqJs+BpL4X/wbX4fo7DgXy6IaPKZP1iAB1LCZ9b7gjalPYpcU4xoHx0i6HzuNJA7ot0SNpth+nuLUSDeVgFCy654GutlJGyT8DCjdwSLFZ+4XuFbakMRFmmDV1lte3+OO9zxNUDfonPLzVjddZEmHvljUTQFBsBytrnmRNh5sGJFEwz6pnWtLo3TdSqEikcQYJSrrpguSNs4x1UiigRKbJLOCbcDvV7NUUWubKqo8/0dtKwuL83/7wAeGeepwuOCSQLIHCZK4T4zTGgRsbaGM0/vWXs7ff90Cg+4TOnIGTPVJFPRXrsHWCMrf711rqnVGMl7yRMUOkXDNZQsSd0gi8UXHi5jZuFK1YQG8SmOXjVHjKIpexLVm61/iz1Y3DVd/pIVrojlsnKeiDbHwu2S1miZ2CqeRxP5nY+smh5LkLN00zhpNIomDmkRbbeG6V7fBZ1t13Qw7Tt5fVDXlWMsYTYmlhVMGCOTksNmWpUkXPFuRROecqRZlrmWJ67UAYA58aaPQjWmmJcKB8cSRVcyKCfTk92M0HmDzulykSYfqyRhagn4R1E0XGdfyJEscnFNIIhG8jbFCWCftYJnhpKiwKmqTmNIy9zWJpwWPQEpwI075eSOJiyx8dzWR7NBzDNQtTjjlIq3H0jAEN/0+lXxwqXvFWVCiRVu3CvgaW2bPi1Eilt6t9y2WkSBzlCb1AL//+DnagkTtc1mCdK2KDXACWGK32iDx1sGCLqXoahIlSLTQTbsEEI/kalEk0320CtdEZ0DTNJMBpvg/MQuLqRH0c7QhiVpcqhtHCeWomlyDD7RNtl277FMwFjKOlfSAzYs4pmewTnIc3FQ1n/0H+kgWsxTTyCEEGaT4AMD/bBGu0RkqVrgmUHfDa1N9wOIgHWiRROKuaMc1IIKbxwzvP/991014P0tJW0SOHXMtQG2uVR0EaEgnoVDCNZRogXoGTCp1ri/RLq+dp4lS6XmrlM61PE2GNXhETVwVHaJz1E3Z2hLNLpDxk/1dR2g8DMMgRhJZcQXAO1cnhadyLknYzDnXicIAaBvWTwSJI/XlNJKYpzhel36OBudzmaUo6wbHaz5IXCiapEXwZq4tsyTUO5FIVp70ncKy5oRTLtJkPn26I4kIVvZgr+slWDcm5dylCtLXpDBSjBL5IJ07b7rPZlj/Urdqae+kz2BrAhTwiWdLkL5Uqth+znwy54Ub/ryJEbRNJrXz7xyv/f8b6aZs2xIgYnwZgQrNFOMT0Jq5EuawaYxcQ4wtHfPX0OPqSdGzLD0D7ZzyXUfaq1w24Zrt9Igu0CiIOh0qgAIckmhVadT0AKB10Kjsv8wNahzjEAb1PZkn5xCGzyTXtFLS2GbusQAEMJ390QEKwGWnxHo1IuT3Ft9/9p7IGurolSzdNHLsmDkC/fsijgLblFfoHUXFyc+n2mnq5jg5bLQm9LwpGs/f8D0PLQf9RVqs5sYITmikAeDX1kDdtCF7oPaQRE4UKUbSgaCeO1WTGNNv2eBmL09xWtQ0iiKmVTlXxfTYGP2yBAD7ixTH68osXCPoxjvHa7q/ou7vdyHqpipIYQV2QvlGENM47xYYVhsTrqEQQV1bSCaF/bgERdWYmCRAvyZxXXHrKz5P2T6VuibRom66zDwFWmpXTeqmtf3+A96/qBv+Pi4j+idDvxX74AvXAQBvH63pMaK8/dn7p/T1ulpqUTwm778WamEEYYBxn5cFDuL2NvrvnTVGv1eux5w3eo7y85zaeYamqhNAcj8vgnn0JG27dtmnYEw2wDsyfYcE2BzcDLLIVgEahaRYePVaOMUatMk4ZgnH9RAA50iOKV5OCadkyfDBnnIKx+4HQKKyM9TmzqKbTiOQ6K7TNHxGuAsSS5siW6aCS7aVBdB3Elak45pHVBfAXu8a1tb5bqwvtpndA7I+5KItT/pCLWxN4kDsZo6YFelc6HY6tHBNhKTLPIHNyYtcBWwAT1sEQi3Pg5PCFCQu8yC4YqlJ1NR1mm66CMI1lj6Jh61S4sPTkkYS+wmn83didLDNBvd5x5zw97Ko63NvgWG1vnCNf40V/OgFUqwCZYvAWFAzINz/pmnoREm8lguyT2WmAlLL2urq/QyiMMF3stWy65pEiwDWMkvgXAgSLQnGN1+4Rr9XTCiqn33gg0SmJlG37rEguX0/bVoQBtBIrv9/C910tMWcAYQB+NIxIOqTSJyLWeQny7Wn8iQ9KnmzQxIvpTGO05gCJTCBJKb9RczWtg1oqqSy1NwsTpwhYdVNE4U2sCItfp7JjJrE4YM91Rg23A///7UZyZJx/l+rKq2Mm6xlVEkBCyIrwjXrqjY1YNbCNeuulYWhBUBV45RUXByl8ViDdAP68jgmh+mHX75x7teaY3P6JMY1iTXpkM8Vs0p77ALu+46RdICrScwjZJXpkSUmtTz3Twq7KExZo2yDKZZu2lMJZOmmC08bfbQqTXPUcvossiF7glBpzxtJlLpJgEcS+43qfTLtIlpgWKzXk85QS50lSV/cyCDuYm23AQThmrK9j1R9ebSW2e8tj5xkliEsa/dkzYvCyFs03Ze7/xLcNKY2HUJB72oSDc/pc215A9uDExgiiUxNYhDcqkwKuDpRaKGN+vfbhIriunSGdRQj2wCJJEbJDj/f6XG65Vh/HMHmEX/XmMzZFnvm1U1ZKfl4UQEcHB7qUTA5Rv9e17GYetT0KKDzsjiz20RQAdgwcGb6JALoWjDI2E33sjswoto2rgdh+EyhtnDzmLNrEifGqSxm4vhAtleTaHASJBhaKyQxJw43OZBO1hWNJMby2+wc+0Xz5++0AsAXHq4AAB968fq5X2uOxc3jy4kkCTBEBC0Jp1jMyko3ZRNAmUqmxXvf5prEqAVGzaubClr89tHaiCT64EYCnKlawVF1U3It7y/80fzOcWFCKA4WOki0IYnyuc7bh1mkaaSuyZ9vZdV03/vWqZsq4RomkSyWpqHeuyLPe0B6CdpEcgAfOJR1g9PC7ydMzWuc9C5JNeFevaUhAAs9CFu6KTHOOS8uVTfBmbck2CXgtjjxyyxVSCK/lzjn8H/8h/8SbuzzrZNutW0zPmMIEmVOq7I2KeD2lcltpSwdm4Qtb4jPqc6/3qQ5kfTeC/DsGpmbvh4reFM36BIdfu/aOCxS9+UT5dtk25WKewpG0U3PyHRs+rKTOPNGIlkxTXWuuilANjKNkUTSIdS91CxUQt1/h+GeA0A6omQ1lcl0zvkAOApkuZqsJ0c3ZZHjqrHVUcztySWHxmlRdRQnJpMsTutJ2zrAhCTWDUUhEVtkAW220K8ex/7s93wIH3/9Lj72+t3zv9gMi5vHs8mtfh0vX5OrD1GWAt0XruGSJEm03wFcgJm3FL1GJYHYoOFO25fst794ZOpvKTQ9tnXGMOHHq/RKIMuoqGo7XIbnklc3FdSm6v3/eVncgoFFpIC+KvNVEa7Jo4SrRYGyt7fSwaX/fh+1rRss5QYyT1q8TNckGgLgZdyDkL0n7dldGc7SrPe92Zz4vTwJQaKBFg4AL9/a7yH/09dKscgSfK6lm+5RdNNQkzi3TyLL0oiFa9izO1PsMj9e/JlNY4ZIIpNgGfrJvACNnhvgz7ipRIk+p2SuO7rpJTNWxnaMM80gicMaNRuSyG5aAySRHKfbDQC+nQUVXPYCMP8aKyUv90I2BlbddKBkRXxvRbdhta/R6o79z0Z/b0pd1o+buNZIsT0zxzHhGuZAFMdxVdaKbjo9rkMSiwqnBaeI11M3JYMGGdfVsRiyn49jX/XKLfzVH/lYD4nZJovppgWhVBfXJLIqpboBMMBT12PhmjRxRJLE/xtndoHNSFEsgW5BKSRIPFpX3c+MieKi1CVOOYXxnmBx0nRtLBvsAX26KRtcCitBggZrr1CribpmXTeUsiCgpPyrWp0b2+W+zBeuSXqUtNnCNeQ2Kd+v9PdbEEh1nPRm+1TmiUJSGh7tlDk+PJU5ct+1nN0WxW/92SxtOgD14AvOAAAgAElEQVT/bM5BEufarf28+w72iO8tSxOkicOqrFGUvCJwD0k00EYBVeJD7slnI4lnj9WlLHoc60vGNYlTe8lYMpMJSnV/V4ty7jbZdu2yT8H4jPwQSWQW8aD/0cRD45xD4vp0U4uyl7UmMW6BMadxNkutlHGx2hOrSBWrmzLfm2wigW5KzNENEUgrImIOLmvbwdb1SSxV1tqAJK6KqssGM8G9OK1elp9DNzQlxJJZz9LQF9PSW+4qW5YmXcIDaCXoJzYGfR8BI/0n2hM4mnak0mjKPutDm1C361q5hM/GZmh1YGgLEr1wjbRvMPdJNASymkpmQxLtdFOh9j089c7uebeB0fXNc5BEeQ62D0lsE3dGCqhG/C1tUkS4h1ED1raIAjBLwk/ORbZPpU5usX1a/ZykvUS7Jkl0W85um+K3/9t1G1za6KahvvZCgsSWcpomjl7/fo4VrSUgf1/ThJlnNG6TwiYFvLhLX6VU/72zxgB9n7Ak9tdRRJD0JYF+MpMp+YjrlC8bigjsgkTqAUiSIP/vx0z395Ngb9Dvjdy0NJXTwquXZ6Zu7LWFYdzksJ7gTYckkj0IYyrnlHDKmJIVmzWKg3QrR56tmxzefy4oTdTmY6ENLbKwSYYifSJIbGk8py2SyIjWAEFJTZBEqkdT0t8g2TnmapyFonSVbZH2KTkFkcmP+4uyQUriXK8tTkPuCTrhZN+3hnTTTc+3OEjSSoFRthObGyQKTVKuyaqbauo0jyQqRNAgrX84oyZRnNsHhqDhcUzXSbHIWZqEpEC3PrasBYZuX2Wpwe4FUoYgRT6/JC3YfVICLgtKJ3MqVIKX7ZOoWSF0TWIuc7S1lxDROYu6aYwA2+im8xD/uXZr3+9X+3lKK35LIMtqCQBxP2uj4I1KSlLnxhlIorVPYk2dicLAsgV7nZ+me/MSiVDtA1nu4zbZdu2yT8EYxynOIlhUOeOaRI4C2q9J5II99K7TgKwtTFxPWbAxBJe1uhZgQBIV111e22RxvzGA5ZEHqovl0Nbqjiy6N7j/VnXHGiba0Nw+iZ0kdlG3SCIZJGrhGhpJDJlFi5CACOmIKM9lUwM7D8uSfk1iWdWTrWMCm8GGUmhxKYCvSdRy32zQNiYkwKmbBvohYHOuNSXTSjcVZwuYdq41QtHNkRauCQ7ngakFhnZauWe7awp+cjFIouwdx+sSTcPVcskZUNRBcGvbsvK6vZBFpEK3k7IwJ7r7WLQKoOS4QU0i8X2LkufK2Keyl6g17OVyTt0/kbpJ7hmQxLxFTE+Xs9QGBVAAvZrmi0ASX7jp+/laAtJlluK0mIEk9r437lq9ceSePGDqEc/OWbTRSbXRNPgk+nqT6vXtr2Mkcbp1RjinLG2atsl2QSKxkGMlJdYp13V7srZoJNH4oHW1baomjms3EGVjZtUfCWo2E6Uj7iMQoQ0Ej7yv0PW4c7Rx1nm6qf9XC9dQYgc9uqlca3JYR1NZlRXWVUM7hIFuakcSi0rPkTs09Lgd3VTopmFN1s00Aq+RDeDx6KbM2tJy36xDOPZsMwyDsZpE1gHVe4AVSVzpmsRJuikGc2Qd0OevL7uf33P7gJ5jT92UVEUNSKK939scm0N3zDWSSLI7Ltp0sNEhWayTXNkSOUBA245WNnEXuf+PjMjxIku6BAmDvgD9ekubumm7JjtRGL4msW6MLZdUMs2SyAGA22r/sArXzLGXb+31/mVsmSc4WlVoGj64jH0gtv43LtU5v5rEfrmBjJvaEuJWLjJu0gdN+zGA/xmT9dS6v6ul3nibbBckUkGi/1cXbQNEcONcz0EAOEc+UYFb1dhqe/qNm4lrDeim3EJOkkCtZIM9eU+HyJIU0LlKVj2n1Ug/ib/rqT2yc3YHiq+bx/WEawzB9qhwDX0ApzhtkUS21mNPCddYkcSysvWt0igRW5N71S1PgyPJtgAY1kXzQg5D4RrOISyMyN7Yoc3VJPrfifjSuuKagou91GbkLUHifp52SDrABIktkqgz8uQz+vKt/e7n997hg0R9z1iHcK9DEi+GbrqIAgAL3dE78oIkbtfGMNonkUncpZpxxNcW7mWhThzgkcQuSDcgiYDU5NZtzR8XpOepw7ryTJKaTFwDAQV/eGoThYnVTU2JqnaOFubKnYOLRRJfafcFiyrzMkvM4jraT7ME91kSekyzCV6NpAMc6ytT+0E3jkASk8SXgQW/kPvO464D/mcCSYyEay4j3XQ7pfwu0Dh1034Wga0B62VjjGpnGklkEaLeHEnaRCxcU9UsvdX1HEI9h83jkq6+k0XpxnricNmfId2XCTg0lZae4xlIIt0Cw3iwhQyV6snFOhe5L2RnZcyBgCR6J7misqZCGy1rRYk1BcD2GpGralomXNb01HeXR9nPiqQNDZFENnHhejVLrLqynqP+edPzvYiQREvCAwD+1o/9Pvzl//N38I2v3aHH7C88bWvd9UmcqEmMAmAL2qnf98rt/Q3vPNtouukASTxvumkrlGNQU+2Ea6qmqyfaOuGaqE+ic+Rzo5xk9rwHQnDf9RI8ZyRR1H2DcBDzvSkn2UBbDMI1dnVTEaABbMyVsmq67401jSReBJXw1oG/HvtsA/5eds82jST2/TT2e/Ogg18fjYW5opOShD9ztgDN9BxF0A0IfiGtsN/E1+PGSenMjm56CY2pnYlbMLDIWRzsAZyTnEQIpEklsAnXm9U423C9mMpp6UlU1k2HjMxFEqfGxYevzHvKelRaMnATZyDQfY3BfZvFlOtPWa9PoiEAAwKSaBGuERqbp5vW2CMO7UUU7AG2NSKfbRckhsbZQKjDm06u9LOtNEtArX+pJWW+gTztP2/MgZhGz42fL+8kFB262tBrGQCeu77Ev/udHzS1PDlYpDhukyTAjD6JzTz580NDLzUAuNs6ruy19i64JnGOcEqnZltvbwsMjVJUBtRYzuDGqK6pazvl+ozJ/X+0stGLRSWTbV0FROiqhW6aR2izQd1UAlKAZGFFiVoTkqiCRFZI5nHszReuAQC++yteoscssiTQdlkkMULFpxC6blzSF65hfaBYpRTY7M/ELBm5HqW4qwLZAHBMI5AABi03LHoalnKDbbJnHklkHKckcrZYmqQO9roAgKRkzuF1A4FWyfQRBPoNsAFb3VJA29rXSAfUj+Gbi2oBFDGmJkLLOFsomX0qLRfIjqmbUm0DRummk8NCTWJl77+z7CGJNrTB0ji4l0UzBOla7t5So3OVTSsgirpmPnHg6wx50zQ2UaouSPSv0bShGfWPwFlI4nRNYhckGhIec21/keGkqHBSSJ9EW5DI1Mxo+zs//s34zP0T8zz/qx/6evz0L/8m3nj+GvX+ziG/oJpECUrvH6/p6+m1LMmSbatJBFSrGkNCII8ccp6S6e+b1CRa6aYW4Rp537pVpAVIxotGVw2iMLoFRpY4Wsl2jrppv58vfx8B4PYBT1d/EvahF2/g13/qO3Dv2nL6za0ts6RDZC01iYDU11qRRFtSLE3cIPiSv3WWZWewy9jrFRErZ9qXbK/RxEHpFMARSmfYViLbZs98kMg0hc2iAIClV+pgrzIEALGyFBcktnPTSCKZyY9bYJjRNsOhobnk3Tjy/sdFykwj07gmlHVcA5W2P4ezx7Tz6gkHTV6qhyRa5tihdKVdAVRqSyzCNUnisJ+neLdz7AiqkeqH1hgyu72N1VgjclVN6jaaJrQAyCfXZP+g169NjdMteABuLWu6Kc2AkL3VrG4qCYgQOOfZ+a6T/S644bLyMZJrzSR/+Us38OUv3TDP82veext/+0/9Pvr9UtsmNYnnjSSKAuvbRzy60WegCN10u5BEAL3evDySGEQ4LEkxoRx2NYnk7RgguYZE4aqsu8Qrc/8zRROuyTNRrgUAp0XdlTowliR9dVPW3wJaNo+RbmqpaX5SZgkQgfk1iYBdzKcnFkgixxp9BECVpowhiayYUq4YfvKsTpeOSVBqU0XVCSC2BGPb7JkPEpmFHDdzZx2uONhjxsh7NBw+S7iG5D+P0U2ZjbzfONv22fx1AiJipW3JzwyPfKA2aqTSskji2P23IInmmsRMo3S27OcyS3BaeNqQpY7rYJHi7aM2SCQykl3dWNV0dEULlXbd1vbsYsTosCH7xGkFUMvaci48L5bnRrfAYPetQOUPrwU67aYgMUISjTWJc0ycVXkGpqiqoU9lOAO2Ud0uTx2cAx6uLqYmUeiz77QJJ4puqhAptkzhaZj0BUwSR88vPNu2hN8yiwWHuGBqoC5L166mnm4q6AuB5GZqL69qnhKu16BlPYrGgqVOv0OlKhvdFwA+8rJP4rz1yk16zEXbMks7f8aKJEr9NUs3HZRKPY666Yb1Fc6NcHAwfQvleoEVyLXTOavkiUcSLy8r6pkPEplgaow2BHA1QbEACkt/ENCsMkD28RzZgEite54mpnsJGkRhMnUgFiWXER7rk8jQaTUiaEFE9PfGUmsG9UeGDdK/n++tCAzVTS3lOV64xgdglkbd1/YyfPHRCoAt+19Udfc5OSqtzj5fzo31SVumAu4gHMGuybpjQbAsAU13p+eYKHVTsh4liRJwAFQQfPYfEId4XdZgW4I8rknvwi91QeKEcE3EgLA6oBdl0gOvQ0gNe8Ick/v2joFuqvcE6dV3EWqSVhO0bZkldHIrVoG2KoDeN9aSSp/QLx35vZxGEvMER6uSpugBge0g4jrsHJ1zXQ2wBdmWBK+pL3L75610X8ALyfzWz313t+9to+nnmRcpikWRuGvpUgVfcjM95qw+iRSSWGmfcFpttLteTDc1stlEFXWyx7rq71peUrrp9u2yF2xVxdAW+wEAU1gLjCOJVOCmkMSarGOJhWv4LE74XFK3ZO1tM6cnUVU3WFcVUiLjOlfdNE9H0E7SSdabgZ73WTa8/2xWC924Ob0E15L9NCGJQje11XHdPljgs/dPAXAZyV4ga8nsKpEKi9N0la2r71TNxOk+iT2nafpamm5qaW+Tq7rJquJEBOJaXgCUeqI4O1JbO/X+J2ES3Hzp0RrO8XRTjSRuq3DBXp4GJclzvo8SpHSsBErdNOwlp63jamkoflG2l3sF3NpAk88U4m9JinW1nUYqoVAkf+9dv5ezipeLtE83pURC2s92tLKvrVv7vs2DpUZ2Tp9EXd/GKnJq28tTXDe0pLho0+uCfWZkjNRfs/uWBjj4XrnJaE2iXd10unRJxsq47uyY6rkdXY9XRVVI4hbv/5tsFyQSSOKgUTpZSxdnVfTf2mSaJkn3G2vf0zS2cUmv/qj/t6bGyftZZBXQ1F0vZc4cGmNQf0kgpWnSb+4t854yzVm3iuv0BYcmL9Wnm9a8I++cw6KlNllrnZZZglUr5W8LEnP8XhskXlvydNOimtfeY13uWmCI5QpJZNUFY4QC4PskNo3fSyzfm68BVkiiMUkixnw+yY6fFnUQ8jlnIZMuSDxaYT9P6fY2VvrV07Aeve+cgy+h6UqQyCBFISlQ47RVl93fwiBRkEQLbTTv1omt/muu4NDBIsVenuDtozXy1OGQrPlbtgwUoSBOCWcB4ZkURMqC/kq7ByvddE4NNhB0Aa7aeaNp8XRbnK7e1X9vLALWAzjIRIkuUwDCWbDpexinf7JIYoJC/DuCtQKouuEYdJhCIDsGxOUVrnnmg0Qm2Ih7pNCBgwvcZ6sCqM5YsI6dvg4dXLqhuA6zjrMer1sCsOlxPSSx5Pr0jambMhL7XuxDEFn/GkXlzPpNwQGuJyYQIbmGA0oX27OHVJ46FGVtpmTu5R5JLIwNyLWS2/PX9ybfr+mmXW2bgUrbOU2XcGN90qbvJYuc6ZpEi3CQfkYtGfk88apxTSP1F5NDBgk4AFTNmTjEq7JCQTa3f1yTLPyXHq0pMY1RddMtXcsaYThvJHGRJVikCd4lBYCAML9V6Vvw6Ne2yTok0RBs6GROXXPnKKBrEm00Yecc7h568ZPbBwu6dcMyS7Eu6+7+M0G6JI6PWnEdS1LyVtuo3nJGiQp0l/A2sHKquqbLey6T3VXiOny7k5Zu2iLA7FqOAQ5WTbuvi9H+rQ2+4Ri7jFX01y0wuppElpUT9waf+Hw95eJLmoB45oNEJtgY1pb4hTIpeJO4LmirDYGUD1ICBXSOuqlFgn6gZMjWMqp2D/K3pkzD9uuqxsIif65osX5DmKYIDPsdTl4Oeeo6dIKl28XOrqW2U8aZg8Qs6QQBLAjFwSLFo1VJI7lit1SQ+Nz1aYW1Mbopm4AApN/Y1Tu055iWkpfnYMrh0skVC5I4V3FXDlppb8OIHcSUTAAo6qYVU9kUJLbIUlGr5urnTTeVWq51V5+4yXJFNQJ45einYXI/nbuYJvUHy7SriWOQS612eVoI3XT73JcOSTQkBGKBKau6qZVuCgTKqUWd09NNqw7JZe6/nPfHK1tNIhCSkpbPtWzPxE7d1JC4llZBW9hZ5bHsnjqraSSx68EpNYkkkhj12GXupQYcgBC4WZFEujevYph1ZwcLAgz8yWmgws+zRRIv4eLavl32Aq0LNkjaUMiQ+NeZ4DJA77yztZgjJR+pa7JKSj1qmaVuL+lnyPlx4UBclzUWBiRRO1sAp0hVxHRTChEJSGJJOteD+iMya9S1ADBSZAAvXe/rX2x009uHC7x7vKaRXLE7h6Hu4i7hXOSabmr4bDq4LMg1ctVNS8kLcmYptq8MCaBe6wzDOC0wVZMOwqgAQVVPUtcDssQjq49rgh7ePylwkE9rvmkFYkD28vOb3+OY3M9FmlxIU/DDRdYhUlTJQZogSxxWZehTuc1IokUAJU7msOP8dwXcN6qbAiE4tPT5E7rpqeH+y/kiSKIlSLx5YK9JXGYpVkVt9EnUfndJ0Z5Npltm8EhiGyQWtiAxTsyzScm6waA0a9M1w7mhg0sSSVT0Vl4pvB+Udm1upnxQ1arpsrbA2NIj62KsCzbYjHxHJazhHEdBLKPMA0u3CyqB89RNmeA3HmcJZHNVf2RCEtX1WLpjLHcv12WyOHPEdfIsBJcskhgQQXTjLPejVPefDfj2FylOCjuSeOdggaJq8KWjlenQ1kgi09x4ob436/r34wRtfqa3KQDBuSqququnYNVNy7rpUH8b/co2rod2ssI1ktzSSGI1nXHVwjVdTeI5rxNNr6OQxGjfYus0n4bJ/bwoxdBDVdPMt2BIWiRx+9VNLXL3uuenpXRAVGlDTSJ/P+5em4ckarrpHhFwSFBi7ckIBOEay3PtA9nKVksd1yRu6TM61+5dC9+xiEZNmaD7Qje1IImdWGNNJhcH/rV/fdOZM4okks+O9BwGgkgaW5P4uMI121pusMm2b5e9QLMEGwB6srmss6WRJYB3ktdKXXOuuqkpuGyCQ8hkkvP2wADCfbHUOxVVTQun6KABCJz1SVXU1HWbgBXJErSGHSf+sG4LYm9l0c6blkBvs9akkqqYOAZF1ZhU2V64MV2HqK3LopV1aO9hQqTqFm1+prcpAMG5sqgLamTPqm4K9BFIU3ubdpy1RlmsrKf3hT7dVBCp8z2AtYPF1CRqBWKAb4vzNEwQpYtC57SYBvt8+1rqCquiwjK7GMTTarInSxsMxrQDak347eVpdw5bkmkffsn39ztuET7Ghkji9PX2FfpunaOsSTmLqTmqIB2w0eu7+v4tXFePYxpJZO//gG5qQMV7as4UmyQKwIjSrPFzY0ZNYkc3JWsSB3PkkMSy9onTXZB4yYxVCQyZPiMFVHGfHydIMQmgKMie4WcHmqriWRPrOE/noaSySa0rXjhFNxvW/zJ00zjzQ80xTXrBZeKmA+e5dF8dJFqEgwB/SAe6KTcG6GePr+/xrVK/9cueww983Sv48W9/k3p/aNvQUNlBsYBItZTkLUQMLtqWPXolV4MXpN1tTlNPkr/btzhKIOCzszTdPcoiA2hRyKnDN0GauL7a4jknE27u591nYkQ7nHNeXEohidvqJLz+3DUAwHvvHFzI9XpIosFxlZpEBsl9GqbnyAbcWpTKimQd5Pb7CADf9qHnAaBD4RmTpuwSWDKf77BNBtxve2JaEn7f+NodvPXqLfzrH3ufaY6+JtT/P/O8yd66bhO1lrP0MpjoB7z16i16zNwWGGnk81rZVDLOv372F6HPKMD7W03DAxVyhnYJV0PP4f4cJ2IHBTBts7r1JuM9xCtooZHm5l1BBzYA16MPkJq4IAcMcE7yIus3gbeKTQCcaqsfh26cVaSim6NhnDhXp2ufbWUcO/l+1kZ0L0uSbsMSH5TZ6zzdNwSXln5vQTiIrD/NAtoQxI1IummbtV5XNrTtdi9I5JHEPE3wCz/wFv3+XpuODkkkrqNquVhxo6tuC/UMhBo87mCz1oSGQzuI5FCCTwqBLOsGBxa6qcoIF1VD7QveIb+4PolJ4nD7IMcXH3HCNTKnsqpNPWifhr1+7xAAcEjS0R7XhLq+MCCCosqcOI7q+DRs2c7RgiT26N1GJOvGvm9LlCaOKgEQe/3eIX7++78C3/Lmc/QY8YPuG9RUBXF/59iOJL716i388p/8Jvr9QGjvFDQIpsfsKVGkq1iTuJen+Gs/+nF86KXr9BgJnKW/JY0kakX/hlM37RKFyucCNp85WRy0kfRPwO/JEvyypRuZOkv9dbmka48VVdW4ZkjKb4tdvhk/QaOzAVGQwgdgDidFvxiXUdvSNYksj3kUyTK1zmhMlEAJpHQvNeYB7YLEtgm2DUlsev9OB4m6BYkNyRXqz+MIB7EBKeCpLpY6CkAaYBdYFbVNtEDVFt44500ra9t0dC0YDM2Ny2pHNxUTh2xVVrRst65jnFOjY+2v2GV3K7twTUw3ZVTghFq2Ljlk9UnYncMFvki2wADCPmm5j0/Dnrvh0YbX2mDxvO3Flrq+ZwgaFm1SwGE7lU0BP69VUeG0qHqU2k2WKeaEtU3KrU7cxXY/nHP4wY/yCB0Qzu63j3zAxyCJ8py8O4NuOseEEls3DRzBAAKCKJKwcrYV7X8c+8bX7pjeL+vp0comOJSlDqsyBFJTqqFAPykJcKVZYz1oAV6/QxBEvnRjnBI7KR6n6o29n7ad+9Yme6aDRLYmUb5YjWSxUrtxD0KKbqeRLDKzNSbRy84RaNU1TZTM8JBaHlA5WE7WPgBgDlIdSMlc9dzPsrEWGFQArJAslkc+tyfaWE0i60h6JLHGqqxMh++da/PopnNMEh4WJ1kLOXgk8eod2lbrI4m25FZRhSCdc5rCs20TsxJ6Md8CYDRIJOimgFDLApJ4EetEqNpsAODry2tTbefTsE+++Rx+/vu/At//Ne+5kOu90AalN/Z5JoMgiQ7bqWwKBLrjaVHjziHvWAOCJNpa/tzat7eJmGs39v2a//yDUwAc5fogppued5DY0U3ttZ2nbTsdhjl01W0Zocbs86ZbYJRVQ6HbY76Tfn3MOiTRKDAo7+mEayoy2IuCUlb1PlP1luvKlszfFnu2g8QZzhYgtSUclSqu22MDh7WiqVrl5wH/8FiFayyBrEYNLOPkYDkpKt+njzg0dG0boGjCFJIodFN+jote4Gbsd9j6urOEa4w1ics8wcnaJpIA9AU4LHTTOZanSVuTaBGukXqDHZIoFtQ8627fmnp2OiSxtNWEaiTXtCfE9RfG/UesqDgauqAGF0U3BYKQwwee4xC3vEXSRWxrW5UTk8SOLD2OiQgWi8gCoQYb4HorPg3by/3ZfVJUtEMYzrcaZV2b+vTdmtEmYq7dbAP6zz9cIU0c9bzt5b5NR4cknvMz6tkFPEspHrcuq0uJ9jxpk/X0wNiDsx+AcS22huqm075yjCSyQRvQBw8EKLL0HAYCM5AVjyuquhPcumx2+Wb8BC1AxmRNoiCJZKY7VcIpFuGIQZ9E4tAIgU0ISi1007puTI5MR8HVKBGDJC5CQTTbp08EIMoqpo5OPdiJKqL2r1lbMJR1TQpw+H+twjUdQmSsGwN8wL0q2yBxptN0/kiid5Itmb4ekrgTrgEQDm1dk8gKbulnlFIpVQewLbgPB6KVph2r1DF00722J9pFBon/9POPAAAfe/0u9X5B0mtDkupZMFFc3CcRWUB64FU4XVcmmupFmnau2dYeuUq4sm0DxHRt53mbBImfe3BK33/nHA7yFO8ceSTxvJ/RZZaiqBocr20OuSCJu5ZL3vLUIXF2JHGR9XtMW/QcykFN4tnPgXNu1L/mkEQ1RxIoGiCJFXee6uSu99Mu39q6fDN+gsYiUsM+fXyWvFvEVuEURW21BG0huPQtIJg5Ai2SaKBEdXWCygFiHtCuCXYh2T422zpscD81T6/A2g8sGSbJHGd3KFxD0k0VtdVC9wX8vTxZV4+VoboQJLGqTTLtogi2KneHtthCHTZdkDiV3IoQcWBebSHA0uRVcMmyLYTuHiGJjHMhPdGkxcRFBIn/8ae/Bt/85j288fw16v156jySbqw3vur28q19AMB3feQFesyetGAoeeXQizaplbx/Upgca8AngNhSFjFBEnWS5bzsxl5AEi33/2CZ4UHbJ/G8kRRxwh+cliZ0dZknOC2rS1s39qTN9+BMu++NrQHut0bjEuyabq3/nTpzdB/yziekhBCDX84mGAeBLAlULNIEiYNqi7Od+9Yme6bpphVZk6gdNIAXk0kTZ4LQxTJVk8iqnaWJz/yEILHmxqlMvsWR7KNt/Gfr6KYtTZKln3gpebmX8r1NP9hB3dRG9wVsh3aMiLC1pLresjEGift5itO2BcD8IPECkMSWj+8cl0hIEofrexnePV6jqhss0su3sT5pC3XRVfe8TaHwY+1VrOqmYmyTYiDQVCnhmu65Ca+VVUMxDKTdgCTULoKW/J0ffgHf+WE+sJGEn4VJ8izYa/cO8b/9+9+GV27v02OWWdqJi2yrcI04gWXdmFp7AOiawJuEa1p0T2i452mCJN4/KfCeW/z3pinF51+T2AaJBk8rL7QAACAASURBVCQXCKyEXVIy2DJPgpItGdx4JDEEbsw+Ln5c186C1I/Q/Q4tZRFjweV0TWJ/jqxYo3MO+5LMN2pHbItdvhk/QQv9xiaCxIjKWRqEayq18Fm1rUXqsG7FJixqZ7qW0dLLEfB9Ek291KSOorI5QHmrJHbSIYn8Z5MAWNQMp5pnZ2mCsu4rsLJ9EoFWuMYoHKT7VFoccu/I9//WlO3lXoX10cqWNQWAv/LHPoo/+NbLuH7OkvfiJEttISt3f3M/xxcergBcDJVq262HJJacIptO5FiEm+YK12glNy/4NP29xTRtf10SSYyEa/ItFDgS+pWVSv4s2Kt3Duj9AAhI4oOTskO1ts32F2HdsmibppLX5Hkj9lIbrH2ppXOep2mRIUsApkWeLkK4BgAenBamxGnHStjVwHe2zJKuJtGCJK7KQOVkhGt0CxgZp18/y3SwZ1HYzxR4wKub9msS5V/mPN1fpDhalygqPnG0TfaMI4kkZDxQN60NUrtK7ZLc/LsahVbtjD1IF2mCQskPc2in/7dPNyUCKS2vbw5uFP+f3JCzVD3YNflgd1Q2vq8NEN1/sj4qCNfYvm/pJbiubHRfIDgh941ZUwD4xBv38Ik37pnGzDEJ7lfG2sJbByFIZLKRV930HiSo7DSS6LoxtSHTqgVo5JG2IPBl7RV3mTUZZ2gBH2Tu5Qx1PcHbR3XnlGyjc+d75dqC9J2NmyCJp0XdoVrbZncPl93PbC/HRVy3ZEj4ffMb9/Cvft0rePnmnm2iM2wvT7HIPJ3Q0qeyhyRegHAN4JFEVoEY8N/VaauTsEtKevNJuFX3MzcmJPOLuqZaYAQRmr4oDIckBqFGZgwQwAOAB4qGLTfCHKZsf5Hi3WMbIrtN9kwHiWxN4pDKySGJWeK6BV83PNUoVwGYR6SoYcjVA8rSVjRN0tQTTfd2MjSuBdpauqJCUXIqhkAfSWRli0Mz8RpS8mSR8l+XNV1/GhBZKaTm6h/lerpNgaUmEYBZ3fQizdeFivwzP8eb+zn++dsnAC5G3n3bLWv3IC+vX2E/TyeTRyEBEdqrWBBBLdpkYReUVYPToqYk8hOVpBIra25fOFhkOFqXOFr7upmLagRvMWF3CHN3J1wz3w4WKd49KdA02Nog8UUVrLGJO003ZZMrYkni8Bd+4C3bJB/DhOFhuf8SJDp3/ki6rkm8rfoBT9lenuDzDwuUNae4/iyY3k95JNF1ZTpNMw3AAEMkka9JVK3ijEiiIIFsz+G45YaMY87F/VwHiZdvbV2+GT9BY2sSAZ/ts1I5NRxeN40haFABmAmBDKqodW2jVpb1vEDKI4nemWQRz/2FlzK38P+llYJcU899ao79AJi4Vg8l5e9/4oJAkaW2JM/svQSBfp+qbc1QZW0hu5XGc2t/saObKnPOdXuQRbgjVpdllpZWcqsNLAFdA3laVJRjIc9Wj25Kqkdf28twtCpxtCqRJm4rD+BFlvgazS3vk3gZ7N61ZXdGiWDLtpm09gBAK4DKuj1e+7ZQFpTuou3F9vO9RraAAYKSraXcYK7NUZeVcQ87cZ3tvf8XaVqvwFKTuK5qFXxZkERe3RSIaxJ5X14z/Niewx3goEAAgPt8+3natYDZqZteMmMRKSBSbTIEibXKjrDBxkIFYDWpbgqIAmjIdHDtBkQ4xRhI9UQxbBny/TzFccvR5pHE0AKj46xPKlIF2ty8mkRbTWgsVMQGe4sWJQ2yynzdntg2OshAKy4iQaIFSTzIcdKKMeyCRG/SAuBkzaF0QEhAWFRKs5Hnhmqd0e5bpy0Czzi7cSNloFU3Jfbka8sMD09LHK0qHC6mkdWnYXkrQrYTrnl8u3c9IEM3thRJvLGn0RdSubtVQHxwYlOSfBomgjWv3+ODRBEn2jf0xJxruuWAJdjbyxM8OG17Oe7OGwD9tcz6F3nqdRLEV+b6JPq/HVNHp/ygUXVT0ueNW1lM+aGh5UYfgWT28708xf1jXzN8GRMQz/TTEHq3MSIJM5BEpwprDcGeDsBYkRwgiCQ0ja9lpFpnSK2TbsFgqj9qTCgp4B8aORDZzIpugVGQWaoO7azrWeqmgu4xDqv8bS1URNOL0wTrssGq9EER61zcPgxO07ZmqA4XGU7WpT1IVE7gTt3UWx9J5A9taw9OXaRv6+8a6oEAbh13NO0e3ZTrr3VtmWFV1rh/UuDaFlJNgcDu2AnXPL49dy2gdNtKN9WJCiuSdd/YuPxpmNBpLfdfAsvzVtIG+nuOtU+i7Fu7INGbtMdapAntu8q9O1l7X+ax+iROnDm5amVh2V99cBmCPZYGnUXMQHltyg4WKd45vrxraztP1gsya/ZB9y7k1E2TzslqjEED4NE9GyXTtaiB/39b4/KAPFJog4zr2kTYNuTPPzwFAFpdM9fSypWom04IDvVaWfjXOOGatiaxDdItgkOSQWPVTYEQ3IsAB+tc3FFB4jaKdgC+ruFoZaMWA0HaHbicG+t52DJr+8StebqpoNQmddOulrdBlhja2yyCkBLAISJxPQogqnjT15Oamc89OMXBlgaJWVuTuOuT+Pj23PUgCrOtQSLg23v8sy8emVDjRRaQrG3tAQkAf+Y73oRzwPd91cv0GOmJeX15/t/ZjX07+gX4ey5b0HJLz9KLNgnqLckO8UOOJEi09OruqJzcWdVTNzUIs+WtmFjTNJ7NRvquWeJCTaKB9bW/SDtW1DYngM6yyzfjJ2gCHTOQuK5J5Nsi9HnWlho1ADgpKlR1Q0PUIu5SWmotew23Zd4GtK2t97P4Pjf2cvzuu16U5BqZXfQPtgjXsEiiQgQ7J5m4lupdaAn2tLJXRdaE+uu5fpBIbiR3DjSSuJ2OxeHSyz+baxIPdkFibIs2SDxphWsY6xJHFnXTNNB/LDRtmdPbrRw/sybl7/bVTWvq4L6ugsRtFK0BQpC+o5s+vt27Fva7WwZRkou2H/u2NwDA1Kaj325gO/dywN/3n/mDHzFRR1+9cwAA+K6PvHhe0+pM33MLtU+fudvKyrlo64JEw32Us/q4FRMzIYlSX0i3D0u6oK0LEpn+uu3z5Vs1caUNMs8YSWTmORfd3hbbzpP1gqwwZAO0umZdN9RGosdYggapSXy08g+aRdxlXQWxCVMz9yr0JmOmuVCBlKVuDwDuHi5wWvhJstlF3QKjCxINrUssTrIWDvL93ngkUa8RWpVW2kQUFZzjUcHrM2oGLtoOFhmOV3ZpcY0U7FpgeFu0SPVpUdFBkawtE91UqQIv64QeJ4fhO239BePsxv1FAdAUb7kHn3+w6qlKbpN54SBbe6GdjZtWq3zxxnZ+3wDwqa97BV/93lumur1+4/Lt3Mvn2mv3DvF3/71P4v13+fsx155IL8cdkggg0E0bVQowZeI7nRiQxEGfRJK9pWmjFiRRnq/TsjKVc2VtvaXMUeYwZboFzGWsSXymg0RLTeIi7QvXHDBjMl8gW7X99ixBAwAcSZBIDly0lFiLHLBca102WGYWtCFkfywoKdCvpaORxDTBw8Lfj1BsvPmauv9UbUBE+sqttiCx66VpQY7b4F5aWbACHJqOsa2OxeEixbqqcbQucffacnpAazf3FUq6pZ/tom2Z+15eJ0WNO4cGtbmyMa3/UJPY0G2CgPA9idw3o+4Y9xcFWiSR2PNk73i4KnFo6Il2keZFEuzKxTsbWpI4/OpPfBJ3DhcXIoLyOPaB566Z3r9Ik05dc5uRxLn2uvF+zLXDRdppA1jOjduHO+ZKbJKEFp+GMfFVj9sgkUnwxnTTiiw3yFKnhBrt59SqqOmzRuY5CEoZuqlGEi8hSn35ZvwEzVSTmHlHHhCl0um/L1mDdRukWGsSBUlkF1aetSIJhsaiuQ72jDWaAFrk0hYk3lEbMlvMLs4WEJDEqYe7QxJ1ewnTZ/MBMFtvuVB1k7VV3XRGI2Vt25qhklqxd4+L2XTTba4/uki7sZfh0ar0fRJJJ1mQRAHqmKWs5b7ZxsaAF+3Yz1MTkpi0/R8l8QOAzu5eW4a/v610U0kcWVqJ7Oxse+P5a71a7KtiyywIp1xGR3JbzDnX+RSWYFuj1Lsg0ZsgiVJmxVge0U2pPolpP0hk9/9MCwUafFfxlVZlRde/A77kSc4pCZwZn2b/ktNNL9+Mn6BZahKXaYJ1qz7pW2BwiqhAK5zyGEEi61xLL8GgDsVfS8vkm4JLo7gL0N+QWbpprummkjWaQhKj2kKA3ETygECWRlXaTgHXVIMqNYmVeRP5o594P4AgM75tJo78O8dr02fTgeGLN7fzs1203djLcf+k8EEi6UgKA4KlaAPo6gErTVOle6CmuH9sq63K0qRTLAZEuIZRNw1r5HC5nUmSvM127/ok7myTLfMED1e7Pn1PwoRVYDlvLoMI3EXbay09+Ac/+j56zABJNJQ3hHYWNbX/Z6q8xwL4aP+uqGsaBEiVmqqAAUxC4bqqk7XUKW+LbWf69YLMUpO4yJJOoagmMx2B7liZ0DZZxFZJZlFgDUW8hEMojeONlLRecGkIpADgrhIgYJHETAVg0i9xStxCI4mdKI9BgON0XdHfNeBrSddKAdeiivrotMSqqM1Z5J/9lz+Cn/yuL9vaFgBS63G8rmzqpgpJ3NbPdtF2Yz/Hg5MSZV3TAVieOayKGqu2BphqcJ+GQ9vauqGPJJL7lsrQAr5lDZO4047dNiOJvgcqH6Tv7NkzHZhsc5/Ey2ASHFqCbX3ebKsI3EXbV75yE//wZ39/L8iZsmXWDxKZYC+N+iSWFedz5anrtC0sNd+yLk4LjySymgdZEvorsmw2AHjpVqiffmGLa6nPsmd6N7LUJOYqACjqmlNRUjVxVcM7WpIJe6drwMkGiVFPLmO7B2EVmFpgtFlyU03igd25045k94BO3Jd+Cww/lonbxAE/LaoWNSaDxKwvXGNDIJvZdNNtDqI0wmPJ0LLqnc+S3dzP8eCkwMnaom6adCg1wKF7knwpjXRTwCe43pmBJEoQVdUNmobbk3VLhDcuqObJalKXLk7TZaQb7ez8TQcmV7Em8SJNHHlLwnWHJI6bJUAEHk+4plQoHRN8ZYk6NwyAj0YSTwu+nZTugx2CxOnrSQsY4HJSmS/fjJ+gWSBqHQCsy5rqpRMLp7CMTFFDEmfL2gLDQm3SLTBC3Z59nIVu+ppSfTOhpF0LDK5IeVTdlKxJTBOH07JCVdez+iRWDX9PFi2V+bSw00233XqqcYbPxor3PEt2Yz/Dum2VQiOJbQJCMq7M+grNjW2JI6Af3O/R+5brKORse5vYPvb6XdP7L8rCXs63BdnZs2f6udwFiY9n3/LBewCAb3ztDj1mV5P4ZEzu3VHXAsMiXBMa3DP7fz4iXMMhiUG4RsQCGctUG7a1AUl8z63LXS6zvRDEBVhlyAboAICV89cFsrUhkDrsxD68Y2ELpBoVEDEIaQj2GgNkn8VBogFJvHWw6BoOs5alQRQmqJtu/nxagMZCNwW8MuPJut1EWNpcmnSKtFXNoy8HixTH68rk/F8WO5wZJALAp7/hVbz5wvUnPaVLa7pOk10niwhJZBJOOrNr6S8KREGi4bkpyn5tCUsB+k//ta/Br/yjz3a92LbN9hdBuAnYIYk7Gze9N+7WyOPZn/u+D+OnvvfDprNUv1czFHZmM9m3O7opI1wT1ySSdFNP/2yZWw3PCpTvelVWXgdiDpJYcj4oANwzqLpvoz3TQaIVSVyrLAIVJOYBybLQFoWiJ02pbX0Sa/W5uDEAeuIKTE1iT5THGCQCwN/58W/uJL8ZW2ZaOKiGc9PfWywcBHB0U8ALcJy26B6LiCyUAm7d8C1Pru/leHhazhKu2XbTtR7WIPHPf+qrnvR0LrXpone2dYwwIFZljcRxwZdWHLX0FwXQU11lD98sdcpBsNXufd9XvYzv+6qXqfc+DTuIekdeted7Z0/G9Blz1RKFF21zhX9++U9+E24fLHZq2o9hcsaLuumcFhhlzbWl0L2zLT6vLgM7LWqTLoZmvKSJo/zeNHH46Gt38G0fep66zrbZLkiEvU/iuqwp3rpQUldl7SmqpIOwSBNkiTNnnxepayli9p6Aum6PFa7JEoeTojK19xDby1PTYbjMEqzKEKQzm0hPuKZukDiexrjMfE+606KmERGhjQI24ZrrbWuD43WF569frUfyxZt7cA5oml2tx+Oadl5eILPdyyzByVqozCm9/rPU19JZ9kig7+CytbJ5MqSSs0jitpsk/Lq9fBcA7GzEXroZBC2Y/qI7e/L21qu3nvYULr3F6qYUK01q4BVTjC0LElVsC3tOC9esyhrPsaUbieuSmL6/In9G/dKPfpx+77bZM70bdcI1xJfdQxJZumneDxJZJMU5h4NFOgtJLKrGBL075zrBG0ubCMBTy07W85BEqy3zFKvSU2LLqqGklbVwTW0U19nLE6wKW2Gz5shbhGskk/X20frKyZ/naQLpk37v2tXrb3aRputmWJW0a0ufgLDQpgFPASqrUMvL0k3lWZGm1tS1ehlhqUm8GkfT/kwRsp09WyYtjNLEXZm1v7NnzzokcdW2wGDUTaM+iUXNtUDKkhEk0cCCW5U1VgYdiMUMoOIq2LPxKc8wWWCcCqivm6nb7LqlJnFd1jRFVexwmXWOBd0nsQ1ku89FXi5vUYPaKFKxt0hxYlQAnWt7undhxfXR6dp7tGI+FjGUvTzF8bo01QlqcSOLcI3QCL/4aHWlGyl/7ftuP+0pXGp7/71Qd8cGidf3chyvKxyteNo00B7AuucqnTjy65elwwJ9UaqSFKW6LDYUIbu6z/fO5tsrt/2zvVsfO7vMJuUGD079fjdH3bSsaq6/otKpENEbquuA8iUt/p0veQpI4rPCjHo2PuUZVta+TodBfARJFDSRCfh0n0SWoip2sEi7B4ClKIm4joU22htnrNvzaFtlRunmmKYIrEmJ5B6SaFRg3c9T3D+xSfn31E0NgbMgiUXVXEkn4YMv+PYEH3rxxlOeyeU2LUfOorKytr50ZEtAeLqpfS+RBveWtixxrQfAZaAvg4mQz7sdkni1mAI7ezL2cttLbaesubPLbNfb/V/o9QybTc6WTt20amh1U2GerA1lCp1wTWFTlF/oILHkfNCrYFerAMpoZd3QtTZC5ZSm1FRNopLatdBNgb6TxQaXgrZJ0TArIy+ZfEubCKClmxaVuQXGHIuRRE6RNtRb1oY+lf56KX7v3ZPetaevFyjJdWOhm6pGvlfQifyrP/wxfPHR+twTCc+SsZS0G20d4xcerkwJiKxVcrPuCXfb4NVygOpaj9JQAnAZTLfAcKRw0M6ePXv1zgG+4f238ae//c2nPZWd7Wy27eW+fZgk2DmV0qhPYl3jWj4dmvg+iX3BM5NfXtam3tSLLO38u6KqkWfPxl7+TAeJVc1lLICwsKT/iwVJFARyYQgA5vSXEyU9UQ1lingBL3jT769oCxJLEtl7HNtTSGJJfm/OOc8jr3xgaa1JfNeIJC413dQoXCN2aEBgLovdvbbE3UsuA70t9jf+xCe65AVjsra++GhFU1QBH+StFLuAXct326bUknFlTNckdn0S2SLILTfZx989KrDMkl3/z52NWp4m+Ov/ziee9jR2trPHMuccDhdpVyrF+GlJ4uBcEJ9hWViipQHo/ro8w2xV+BYYNmHCXU3iM2VFZWmU7t/3qO2Dx2UsAqxtpZuKKp7/O9w44YN3wQ0reJP1+yuy1LJlnnrlxLLqMubnZUKVOy1qn8WhA2D/YHvuOX//l3naUcRMSGIrrlM3fJ9EHSS+cGMXTO3sbPva9942tXyQtWVFEkW4KQjXcGv5ThskrgxBolapK6+YuqnsyQ9X5ZVkCexsZzvbmTapgwd4RkmWOFVywDH8dOukwlDL7pzDMktwvK7aEh9ec2K1q0k8H3POLZ1zf9E59zvOuYfOud9wzv2B9nfvd841zrlH6r8/F439r51zD5xzn3XO/UT0t7/dOfdbzrlj59yvOefeNzWff/yZB3hwWvi2FIYsAqCCREq4pg9rW+imdw9DsMAuxtC4ua1/sdTSqYbzLOC2n/s2ESfrCnvnHCQKkrgqq1Z+mOeRS584y/3fz9Pufuwb7mPdhA2LTUDcUqqVLxrQnp3tbMpEFKlubFTmZZZiVVZegMmAwAvd1BwkdnTTq6VuqpNnV7HeeGc729nOtOlSKXbPE2FIAHQ5UZYkqOoGTdOYa9n3F2knJsaCAL4Nmw9+iwtgz22LXRS3LQPwzwF8EsD/B+B7APw159xXqvfcappmrLv6zwJ4E8D7ALwI4Necc/930zS/4py7B+BvAPhjAP42gJ8D8EsAPrZpMmXd4HRdmfjIopR5ZAgSO7ppWWNdVlgYsuNvtmIfAJ/F35/ZuDlLHAoleGOhm362qHGyruhAaq4J5fO0qOnCZiAgiWvDd+2vF+4dG2zL931aSo8g7lq3VcP5F27ugsSdPTnTKLUVSTwtarNy8Z02uSX9QhnTUuZdn8QrUr+ap0nXGucqKxfvbGc72xnQV7ame+X2EoVcCwwJJIvKt0VLHO+73tzP8fmHpwD4czFWN70qbJcpu5BTq2mao6ZpfrZpmt9umqZumuZ/BPDPAHwdMfyHAPxc0zTvNE3zjwH8lwD+aPu7fwXAbzZN89ebpjmFDyjfcs59aOqPHndBog1JPDLQTbPEIXFtn0RjC4wPvnAdAHDDICUfgkRbLZ2gbdInkQ1K9/IEJ0WFk+L8g8RAN62wJltgAEGRalXyKlZAHz1kWwfIpnFaeAeZvY+6TslSN7aznU2ZFkVi9wN572lRmVWBhW7Krn3gjBYYVyhLK47Sjm66s53t7Kqb7Hf7eWrz07QoDNkCA/Dsk6K21Qje3M/x+QcrADY/eV35cqJ1uatJPFdzzr0A4IMAflO9/DvOuX/hnPtvWoQQzrnbAF4C8PfV+/4+gI+0P39E/65pmiMA/1T9Xl/zR5xzv+6c+3UAOCkqrIqKDtzkfSIKw4xzzmE/T3G8rszqpl/2og8Sf+DrX6XHdDWJRiRx0dJNOySRdAr32z6JJ0XVXfu8LNBNa6yKuuvHNjmuRUSsdNOb+9q5tq2R03Xbs8fgXH/guUMAwPPXdzWJO3tydnM/77KrliTJMktwWlaoapsq8I29DD/6ydfxl//tj9JjerUlHd306mRpdz3wdraznT0rJkHidQPA4RlfolTKMcWk/rCoGnNLih6SaCg5axqPdBZG0Ocy24VLKTrncgD/A4D/rmma33LOXQPwDQB+A8BdAP9Z+/vvAiCcy/vqT9wHcL39+RqAL0SX0L/vrGmaXwTwiwCwfOnN5qSobI3SYySRXCDX93K8e7JG3QCLlA+kXrixh1/7yW/Fe+8cTL+5tQ5JPLI1bl6KSEVXk8giiSmOVyVOC/4+zrU9hSQeFyWev84hbofLDEfr0oQaA/0gkQ2AZY2cFEI35R3dX/rRj+OffPbhM5Od2tnFWJo4vHB9id+7f2qqG97L03ZPaOgaZcAnxv7sH/hy0xz79ShCN706z8H77x3iH/7u/V2QuLOd7ezK26wgUSGJvsSBoZu2SGJVo6xt9M+b+3lg3BmEawBfPrarSTwnc84lAP57AGsAPwYATdM8AvDr7Vs+55z7MQCfcc5dB/Coff0GgFP188P250ft/2vTvz/TTta2RpqyIES4hh13Yz/DFx95ZM+aeXjt3qHp/bonF8DX0u1lvnF8oJty19vPUxy1Klbnrm6qWmAcG2ogDxcZjlYlqga4pQK/KbuhkURyE5FAWdqksME2ANy7tsS9N3Yo4s6evEmS432GhNNenrZIoq0mcY7laVC2K6urhyS+/66/77s+oTvb2c6uut3YlyCR97cWOlFIBnxyRgiyZylR0CAAjST2gsRdTeITN+cLr/4igBcAfKppmuKMt7Z4FpKmad4B8BkAb6nfv4VAU/1N/Tvn3CGAD6BPYx21E6lJNIqSPFr5oIhFBa/v5fjSo1Xvb5yXiTN439gCY9lSMq10U40enr9wTVCKPV3z9NaDhaf7WqjFQEw3tQWJxys7kriznZ2XiRz5G89fm3hnsGXW7glGddM55psit/Uo9dVqgQEAb7b15ayIw852trOdXVZ76eY+gKBUzVieuYAkki0whG1SVC2yZzintH+n1eU3mfiPojGyQxKfvP3nAL4cwHc0TdN1g3bOfRTAuwD+XwC3AfwnAP7XpmmEYvqXAPxUW0v4AoAfBvBvtr/7mwB+wTn3KQD/E4CfBvAPmqb5ranJCN3UjiT6AIwNOG7sZfjdd05MY+bavkIS08TRmZW9Vu5+XdamcT1K5rkL1ygkseD7MgrdNE8TE91Lbxz3rnGbiNx/QZst4h0729l5maxHS5Do6aYVquoCgsQ0qJt2SOIVopt+z1e8iOd/5GOdGNnOdraznV1Ve+W2DxLfPT4LBxqablTPonQdklh5JDGfCQI8d41jcEk5kSCJuz6JT9Da3oU/CuCrAXxW9UP8QQCvA/gVeIroPwKwAvBH1PCfgRej+R0Afw/ALzRN8ysA0DTNFwB8CsDPA3gHwEcBfJqZk0cSebqpBHhHgiQaahK/dOSRxOU5L6p91Sbi/2/vzoMkuasDj39fX3P03DPSwOhcSUggtCABkkBrc6wEmCtYEAiEECAsc8hgBwEGggUB5jCLN/AuYQ6DZS0IcZrDBmyFIYwIbwBhZHMYeWVAIHGIEbpmpkfTPdPH2z8yK7vU9MxU9XRVdlV9PxEV012VWfW6pjt/9fK9/P3amqRidLic3GW2rV/8bU1/XJ1eJ7F5zcl2ltxYOzbMvv2z7J9ubwmM5oNI68n2fVuSW1nYVeq0v3j+wzn/gUdXE6i0YtXoEFMzc0zNzHb8euPR4aFqwpr52U37529nZHiIR560tZr5VZL6VWOc2TPZepLYWKsbGktgtDe7aVF9bH3M2NS07NhRLU4W2ChUs0uoiQAAGwxJREFUHJidbXuinF7WlUpiZt4KHOp/8BOH2Hc/8OLyttjjXwUOu+TFQsXspq0nDo3kqTG7aavtUOtXj1Rrf3W6kjg6PFSsOTaX7c9k2KistrGWV3OFreOVxJHiZ9szNc3+mbmW200blcSIWHK7aasWtvs6UYVWgvNO2cZ5p2xra5/VI8McKE/ItHpN7lI11hGE+dlNB2UAlqR+ckxZSZzYv9iy54sbGxliYmqGzGR2rtV20/nZTdtt/zx+y/x8H+1OXlm1m470z4nMQxnYiySKdtPZtpc3mJhqbw3C5glQujFl7tqxYfZMzbS9Jtr+6caC820kiU1nYDo9cU1EsKFpbZuW203HRpianmM4Ztr62dpZn7KhkSjvLicO6nQFRuqUxsmi3ZPTLR8jl2pkaIjZuSQz5yuJVuElqedsXDPKxeccx9MesqPlfVaNDHH37Fy1FFIrx/+qkjibzLSZJJ6+Y+F8l63FCEW76dR050+erhQDmyQWk5m0XklsVA7vLCeh2dDizE3N0wB3o4d5y/gYe6baS4hWjxal/n0HZttqybxPu2kXEqINq0e4fU8xyW3Ls5uuasw4OttWlXRkeIg/euJp/FYbFZjGe7DLSqJ6XGMA3D05fZ8TXZ3QOLZOl9eWQOst3pKkleVPnvmQtrYfLa9JnL/c4PDH/0ZL6vRckVy2uwRGu5onrunG2uArxUAmiUMRbbdXNhKAnbunWDs23MbENd2tJG5bt4pb7trXVrLX2HZiarqtGJurbd2YuW/DmlF2NpLEsdZeb23Tdu1eE/r7jzulre0bvyON9Xfa+T+QVpLG7/LuyemWr9lYqvtcW9KHs5tKkg6usU7i/OUGhz/+N2Y3nZlNDsy0twQGwNWXnc3aNoob1QoHUzNkDk6n2EAmiRHF5CIHZltvr2xMOnDvgVnuv7G1hdwBdmya37adxUWXqlHda6dq1mgna7cCGRE86qStbFgzwqnbW585cak2rB7lJ3fcC7TRbrpqfrtWlztZqsaZpV3VOpVWQ9SbGseBXfumuzJxDcD0TPbl7KaSpIMbLddJbOdyg/nZTYuTi+1eFvG4045ua/tqTJxs75KzXjeQSeJQBLvbrPasHh1m3aoR9u6faatUfXzTAtYnbet8IrVtfZHMttMv3Vw1aPdavE+85JFtbX8kNqwZqWYObX1206ZKYocruY3ZTfdU61QOxkFE/adxTJic7vzspvMzF89WE9h4TaIkDYZGJXGmjcsNmme8n56d63gRZrzslru7XK2g09fqrxSD8VMuMBzBHeW1he0kDlvL2TzbuUanedr5jWs7e20PzFcS2zkR33gPdk+2127abc2tu632g29tmoG100niyPAQY8ND89ckDshBRP2nuQK/usN/N42ugH0HZpmZm2MoXGNUkgZFY53E6TYuN2h8BpycLk4udrr7pHFJ1V17i06xTs/ov1IM5KfY4aGoJkBp54P81rLldFMbSWK3S9KNM/CntbFwcyPGPZPTK/o6uubkvNVrIJsrud1IgFePDlWLyDpxjXrV+qYTMp0+hjUG230HZov1rpy0RpIGRqOSeGBmrvr+cBrjxuSB2WJx+w4vSdE4mdkoMA1KkjiQ7abDQ8GvdhdJYjstgVvGiypduzMjveMZZ7B1vLOTPzT8t7OO4Ve7p3jt77S+dGSjbL6/zSUwuq25Ffbko1pr3d3atID10etbv5Z0qVaPDvPrif3V11Iv2rhm/m+t020182eEZ5iezWr9K0lS/2tUEqskcfjwn50aSdrUzCwzs3MdrySOj923kjgon+8GMkkcGY7ql3HzeOsJXyPhaDdJvOTcE9ra/kgcu3kt73jGf25rn+bqYacndzkSxzVVBVttN42Y/8B59n/asuwxLdQc10pOuKVD6WYlsXHdcKPddNS/G0kaGKPDQ8xl0ToKrVUSV481VxKzrXUSl2JoKFg7Nlwtg2eS2MeGm85Ut1Phu+D07fzs7n089aGtLxLaC5orBd1Yy3GpnnD6/QA4adt4W/td9Ihj+emd93ZlmY7mFoSV3LorHUrzJACdTxLnB/tBWqRYkjSfFN5bTkzYTrvp1HTRbtqNZZPGV400VRJX7mfl5TTwSeK2NtYAe/zp23n86ds7EVKt7jMD6Ar+xV8zNsw/vOrRbVdy3/2sh3Yoot/UHJuVRPWq+57s6Fa7aXtr10qSel8jKZyYKpLEltZJHB5iZCiYnJ5lZi6rJTE6ad2qEX5+9z6g9W62XjeQSeJIBLPl183XrA2qLePdmwH0SJ3axoQ8ddi8tngvx4aHnKFRPau5TbtblcR9B2bZPz1nJVGSBshYmeA1Komtfg5dPTrM5IE5pmfmOt5uCsWs3zPlDKyDMk6t7IygQ4aHu/cBqBdsalqaYyUvgdELNpcJ90pPtqVWdXN206mZWSuJkjRAGpfmTEwVM8O3MnENlEli2YHSjc+u401dd4NSSRzI0bi5vVLFH+h4+QvvdXRHZks5EZLJtvrFeIcHw6rd9MCMlURJGjCNMWD3ZOvXJBb7DTExNc2B2TnWdeFzffO8FoMyTg3kJ9mRoeCZDzuGi885ru5QVozx8pffCtiRabSbHpidqzkS6chc8KDi+utHn3pUR19nbHiI4aEo2k2tJErSQGl0k+yaLCaFaTlJHB3m7nuLfdZ2YWLCdat7Y/6O5TSwJbX3XHRm3SGsKFn+240ZQPtZI0mcPDB7mC2lle39lzyMucyOt5tGBGtHh4t20+k5towPxuArSZq/Ln33vrLdtI0ksTHbaKc7XgCO2bQGKD4nD0pBxYxAANxRLgD/8BM21xxJb2tUZI9vWtNR6kXdbJleMzbMZFVJHIw2HklSc7tp45rE1ieu+eWuSaA7lcRTjl4HFB13zZO79bPBSIV1WI1f/tPvv6HmSHrb2Sdu5oIHHc1HXnxO3aFIPWN81Qj3HphhanpuYM7QSpLmk8RdbSaJa8aGubOLlcTG5+RBmrneSqIA+NRLHsnE1MxA/fJ3wtZ1q/jLF55ddxhST9mweoQ9UzPsn5lzxmlJGiBrR4tUpKokttFuWj1HFyauaSSJr378qR1/rZXCJFFAkdxsXbeq7jAkDaANa0bZPTldtJtaSZSkgVFVEtu8JrF5+bbxVZ0/ubh2bIRb3vWUjr/OSuJoLEmq1cY1o+yZnGb/9JzL8EjSAGkkiXsmpxkeCoZb7GhrTBQILm3XKSaJkqRabVwzyj37DnBgdo7VAzK1uCRpvm30wOxcy9cjAmwZn08Su1FJHESOxpKkWm1cM1q1GllJlKTBMTwUVYtpO7NqW0nsPJNESVKtNq6Zv7bEaxIlabA01kpsJ0ncsq45SfTkYic4GkuSatWcJDq7qSQNlrXlcb+tdtOmSuJoG/updb6rkqRaWUmUpMG1egmVxEa76fYNzszfKTbxSpJqdXTTIH//jatrjESS1G1bx8f4yR33tnWS8NjNa3jlfz2Fix5xXAcjG2wmiZKkWp20bV319QnbxmuMRJLUbffbuAa4h/u1cZJwaCh49RNO61xQst1UklSvzU1Tmd9/g5VESRokO8rk8NjNa2qORM1MEiVJK8ZQiwspS5L6Q2MJi3WrRg+zpbrJdlNJUu0+d8V5TE3P1h2GJKkm7Uxco84zSZQk1e5hx2+uOwRJUg0ufdQJ/PD2CS4778S6Q1ETk0RJkiRJtdgyPsb7LnlY3WFoAeu6kiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKkSmVl3DF0XERPAfyxh143A7hW+nzHWu18vxLjU/Yyx3v16Ical7tcLMS51v23AnV16raXu1wvv41L364UYl7qfMda7Xy/EuNT9eiHGpe5njPd1WmauX/SRzBy4G3DDEvf70Erfzxj92Qb5Z+uFGP3ZejPGI/jZVvx40wvvoz+bMa60/XohRn82Y2xhn4OOUbabtueLPbCfMda7Xy/EuNT9jLHe/XohxqXu1wsxHsl+3Xwt3//6Xqvb+xljvfv1QoxL3a8XYlzqfsbYokFtN70hMx9RdxySpP7meCNJWqkONUYNaiXxQ3UHIEkaCI43kqSV6qBj1EBWEiVJkiRJixvUSmJHRMSWiPh8RNwbEbdGxPPK+x8XEf8WEbsi4q5ym2PqjrffRMQrIuKGiNgfEf9nwWPnR8RNEbEvIr4WESfUFGbfOtj7HxGXRMTeptu+iMiIeHiN4faViFgVEVeVx52JiPhuRDxpke2uLN/7C+qIU+qUg42/5WOvjIifRsSe8hj1W3XG2o8Ocfw/sTzmNI8Bb6ox1L50qDEgIh4ZEV+JiLsj4o6I+ExE3L/umPvJ4cbgiLg8In5c/v5fFxE76oy3VSaJy+t9wAFgO3AJ8IGIeDDw78ATM3MTsAP4EfCB2qLsX7cBbwf+qvnOiNgGfA54E7AFuAH4VNej63+Lvv+ZeW1mrmvcgCuAnwD/WkOM/WoE+DnwGIopsN8IfDoiTmxsEBEnA88GflVDfFKnLTr+RsS5wLuAZ1H8bVwFfD4ihmuLtD8tevxvsqlpHHhbF+MaFIcaAzZTtBSeCJwATABX1xFkHzvo+x8RjwXeCTyd4jPoT4FP1BRnW2w3XSYRMQ7cA5yRmT8s77sG+GVmvr5pu1XAW4CnZ+bpdcTa7yLi7cCxmfmi8vuXAC/KzPPK78cp1i07KzNvqi3QPrXw/V/k8a8B12fmW7sa2ICJiO8Db83Mz5bfXwe8F3g/cHlmfrXO+KTlcqjxF/gO8OrMPKdp273Ajsz0hMkyW2T8PZHiQ/FoZs7UF9ngWTgGNN3/MODrebC18bQsGu8/8ChgTWb+fnn/Dopj0ymZeXONIR6WlcTlcyow0xigSt8DHgwQEcdHxC5gEngN8O7uhziwHkzxfwFAZt4L3Fzery4q23wfDXy07lj6WURspzgm3Vh+/2xgf2b+Xa2BSZ1xqPH374HhiDi3rB6+GPgusLP7YQ60WyPiFxFxddndow5aOAYs8OiD3K9lssj7H80Pl/+e0dWglmCk7gD6yDpgz4L7dgPrATLzZ8CmiNgC/B5gBat71gF3LLiv+r9RV70A+KfM/GndgfSriBgFrgU+kpk3RcR6ilaXx9cbmdQxhxp/J4DPAv+X4sPZLuBJaRtVt9wJnE2RmG+laAu+FnhinUH1s4VjwILHHgJcSdH6qA5YZAy+DvhkRHyQ4nKzK4EE1tYYZkusJC6fvcCGBfdtoBigKpl5N/AR4G8iwiS9O1r6v1FXvIDi918dEBFDwDUU12a9orz7LcA1mXlLTWFJnXaoY/zvApdRVBXHgOcDX+qViSN6XWbuzcwbMnMmM2+nOC49oTx5pWV2kDGg8dgpFJX1P8zMf6ohvL632PtfXtrxZoqTVbeUtwngF7UE2QaTxOXzQ2AkIh7QdN9DWbykPwIczW8OauqMGyn+L4DqmpSTsd2iqyLiv1BM3PTXdcfSjyIiKCbl2A5cmJnT5UPnA38QETsjYidwHMUF9a+rKVRpuR1q/D0T+FJm/jAz5zLzOorJm86rIU4VFRTw8+eyO8QY0LjU46vA2zLzmppC7GuHev8z832Z+YDM3E6RLI4AP6gn0tb5R7pMyuvcPgf8cUSMlx+Inw5cExHPjIjTImIoIo4C3gN8p6wqaplExEhErAaGKa5BWV1Waz8PnBERF5aPXwl830lrltch3v+GFwKfzUwruJ3xAeBBwNMyc7Lp/vMprn04s7zdBryUou1L6nmHGn+BbwNPiYiTovB4imuFVvwHtF5ysON/eS1o4/PPVorJs67PzN31RtyXFh0Dolhy7R+BP8/MD9YV3AA42Pu/OiLOKI8/x1PMNPu/M/OeugJtlUni8roCWAP8mmJ625dn5o3AMcB1FOXlfwPmgGfUFWQfeyPFxECvp2gpmgTemJl3ABcC76CYAe9c4Ll1BdnHFn3/oThIAhdhq2lHlGeJX0qRBO6M+fXILsnMuzJzZ+MGzAL3ZObeWoOWltfBxt+PAp8Erqe4bvG9wEs9SbjsDnb8P4n5zz8/APYDF9cUY9861BgAXE7x//CWpvs9/i+jw7z/q4GPU7TF/zPwTYol2VY8l8CQJEmSJFWsJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpEpfJYkRcUtE/Doixpvuuzwirq8xLElSnynHm8mImIiIXRHxjYh4WUT01bgqSRpM/TiYDQN/WHcQkqS+97TMXA+cALwLeB1wVb0hSZJ05PoxSfxT4DURsWnhAxFxXkR8OyJ2l/+eV97/nIi4YcG2r4qIv+1SzJKkHpWZuzPzb4HnAC+MiDMiYlVE/M+I+FlE3B4RH4yINY19IuLpEfHdiNgTETdHxO/U9xNIknRf/Zgk3gBcD7ym+c6I2AJ8GXgvsBV4D/DliNgKfBE4LSIe0LTL84CPdyNgSVLvy8x/Bn4B/DZFZfFU4EzgFOAY4EqAiDgH+CjwR8Am4NHALd2PWJKkxfVjkgjFQPzKiDiq6b6nAD/KzGsycyYzPwHcRNEutA/4G+BigDJZfCBgJVGS1I7bgC3AS4BXZebdmTkBvBN4brnN7wJ/lZlfycy5zPxlZt5UU7ySJP2GvkwSM/MHwJeA1zfdvQO4dcGmt1Kc3YWianhx+fXzgC+UyaMkSa06BhgB1gL/Uk5qswu4DmicuDwOuLmm+CRJOqy+TBJLbwZ+j/kk8DaKyQWaHQ/8svz6K8BREXEmRbJoq6kkqWURcTbFmPMFYBJ4cGZuKm8bM3NduenPgZPrilOSpMPp2yQxM38MfAr4g/KuvwNOjYjnRcRIRDwHOJ2i4khmTgOfoZj4ZgtF0ihJ0iFFxIaIeCrwSeBjmfk94MPAn0XE0eU2x0TEE8tdrgIui4jzI2KofOyB9UQvSdJv6tsksfTHwDhAZt4FPBV4NXAX8FrgqZl5Z9P2HwcuAD6TmTNdjlWS1Fu+GBETFJXB/04xIdpl5WOvA34MfCsi9gBfBU6DaoKby4A/A3YDX+c3O10kSapNZGbdMUiSJEmSVoh+ryRKkiRJktpgkihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSp0tNJYkSsioirIuLWiJiIiO9GxJOaHj8/Im6KiH0R8bWIOKHpsYsi4hvlY9cf4jVeEBEZEZd3+MeRJEmSpNr1dJIIjFCsT/UYYCPwRuDTEXFiRGwDPge8CdgC3AB8qmnfu4H/BbzrYE8eEZuBNwA3diR6SZIkSVph+m6dxIj4PvBWYCvwosw8r7x/HLgTOCszb2ra/nLg+Zn52EWe64PA94GLgI9l5l92/ieQJEmSpPr0eiXxPiJiO3AqReXvwcD3Go9l5r3AzeX9rTzXOcAjgA8uf6SSJEmStDL1TZIYEaPAtcBHykrhOmD3gs12A+tbeK5h4P3AKzJzbrljlSRJkqSVqi+SxIgYAq4BDgCvKO/eC2xYsOkGYKKFp7wC+H5mfmvZgpQkSZKkHjBSdwBHKiICuArYDjw5M6fLh24EXti03ThwMq1NQnM+8JiIeHL5/RbgrIg4MzNfcYj9JEmSJKmn9XySCHwAeBBwQWZONt3/eeBPI+JC4MvAlRTVwZugaikdpXgPhiJiNTBbJpkvAlY3PdfngL+mSEYlSZIkqW/1dLtpue7hS4EzgZ0Rsbe8XZKZdwAXAu8A7gHOBZ7btPulwCRFkvnb5dcfBsjMXZm5s3GjaGPdk5kLr3GUJEmSpL7Sd0tgSJIkSZKWrqcriZIkSZKk5WWSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIERMTx5Vq7w3XHIklSnUwSJUkDKyJuiYgLADLzZ5m5LjNnu/j6j42IX3Tr9SRJaoVJoiRJkiSpYpIoSRpIEXENcDzwxbLN9LURkRExUj5+fUS8PSK+UT7+xYjYGhHXRsSeiPh2RJzY9HwPjIivRMTdEfEfEXFR02NPjoh/j4iJiPhlRLwmIsaBvwd2lM+/NyJ2RMQ5EfHNiNgVEb+KiD+PiLGm58qIuCIiflQ+39si4uQyzj0R8enG9o1KZUS8ISLuLCunl3TnHZYk9SqTREnSQMrMS4GfAU/LzHXApxfZ7LnApcAxwMnAN4GrgS3A/wPeDFAmfF8BPg4cXe73/og4vXyeq4CXZuZ64AzgHzPzXuBJwG1lm+u6zLwNmAVeBWwDHgWcD1yxIK4nAg8HHgm8FvgQ8HzguPL5L27a9n7lcx0DvBD4UESc1tabJUkaKCaJkiQd3NWZeXNm7qao+t2cmV/NzBngM8BZ5XZPBW7JzKszcyYzvwN8Fnh2+fg0cHpEbMjMezLzXw/2gpn5L5n5rfJ5bgH+AnjMgs3enZl7MvNG4AfAP2TmT5riPGvB9m/KzP2Z+XXgy8BFSJJ0ECaJkiQd3O1NX08u8v268usTgHPLFtFdEbELuISiigdwIfBk4NaI+HpEPOpgLxgRp0bElyJiZ0TsAd5JUQlcSlwA95RVy4ZbgR0He31JkkwSJUmDLJfpeX4OfD0zNzXd1mXmywEy89uZ+XSKVtQvMN/autjrfwC4CXhAZm4A3gDEEcS2uWyHbTgeuO0Ink+S1OdMEiVJg+x24KRleJ4vAadGxKURMVrezo6IB0XEWERcEhEbM3Ma2APMNb3+1ojY2PRc68tt9kbEA4GXL0N8by3j+G2K1tjPLMNzSpL6lEmiJGmQ/QnwxrI99FlLfZLMnACeQDFhzW3ATuB/AKvKTS4FbinbR19G0YpKZt4EfAL4SdmmugN4DfA8YAL4MPCppcZV2gncU8Z1LfCy8nUlSVpUZC5Xp40kSVpJIuKxwMcy89i6Y5Ek9Q4riZIkSZKkikmiJEmSJKliu6kkSZIkqWIlUZIkSZJUMUmUJEmSJFVMEiVJkiRJFZNESZIkSVLFJFGSJEmSVDFJlCRJkiRV/j9YJ750IxgAtQAAAABJRU5ErkJggg==", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            load
            2014-11-01 00:00:000.10
            2014-11-01 01:00:000.07
            2014-11-01 02:00:000.05
            2014-11-01 03:00:000.04
            2014-11-01 04:00:000.06
            2014-11-01 05:00:000.10
            2014-11-01 06:00:000.19
            2014-11-01 07:00:000.31
            2014-11-01 08:00:000.40
            2014-11-01 09:00:000.48
            \n", + "
            " + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.10\n", + "2014-11-01 01:00:00 0.07\n", + "2014-11-01 02:00:00 0.05\n", + "2014-11-01 03:00:00 0.04\n", + "2014-11-01 04:00:00 0.06\n", + "2014-11-01 05:00:00 0.10\n", + "2014-11-01 06:00:00 0.19\n", + "2014-11-01 07:00:00 0.31\n", + "2014-11-01 08:00:00 0.40\n", + "2014-11-01 09:00:00 0.48" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "داده‌های اصلی در مقابل داده‌های مقیاس‌شده:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 24, + "source": [ + "energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)\n", + "train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAZ+klEQVR4nO3df5BV5Z3n8fdHoOjwKyq0ZFYGOroRGBEDNNHEgJg4cUdXolIzi8YVzRiyZq1UyspkslZQRl3N7jBOyk00YWOUKJgfikw07tRIIok6M2rjChFtpSxFWX8UkAnQ/Ea/+8c5rZdL3+5z6T739u3zeVWdou95zjn3e56+fb8853nOcxQRmJlZMR1V7wDMzKx+nATMzArMScDMrMCcBMzMCsxJwMyswAbXO4BqjBkzJlpaWuodhplZQ1m7du3WiGjuqqyhkkBLSwttbW31DsPMrKFI2lSpzJeDzMwKzEnAzKzAnATMzAqsofoEzKz/OnDgAJs3b2bv3r31DqWwmpqaGDduHEOGDMm8j5OAmfWJzZs3M3LkSFpaWpBU73AKJyLYtm0bmzdv5qMf/Wjm/Xw5yMz6xN69exk9erQTQJ1IYvTo0VW3xJwEzKzPOAHU15HUv5OAmVmBuU/AzHLR8s1f9unxXvv2eX12rHPPPZcVK1Zw9NFHV9zmuuuuY/bs2Zx99tlVH3/NmjUsWbKEhx9+ONP6IzFnzhyWLFlCa2trr47jJGBWAKVfyH35ZdpoIoKI4JFHHulx2xtuuKEGEdWfLweZ2YBx6623MmXKFKZMmcJ3vvMdAF577TUmTpzIZZddxpQpU3jjjTdoaWlh69atANx4441MnDiRT3/601x88cUsWbIEgMsvv5z7778fSKasuf7665k+fTqnnHIK7e3tADz99NN88pOfZNq0aXzqU5/ipZdeyhzr73//ey644AKmTp3K6aefzvr167s95p49e5g/fz6TJ0/mwgsvZM+ePX1SZzVpCUj6GPA74P6IuDRddwlwCzAGeBT4YkT8vhbxmNnAs3btWu666y6eeuopIoLTTjuNM888k2OOOYaNGzeybNkyTj/99EP2eeaZZ3jggQdYt24dBw4cYPr06cyYMaPL448ZM4Znn32W22+/nSVLlvDDH/6QSZMm8fjjjzN48GBWr17NtddeywMPPJAp3uuvv55p06axatUqfv3rX3PZZZfx3HPPVTzmHXfcwbBhw3jxxRdZv34906dP73WdQe0uB30PeKbzhaSTgR8A5wHPAkuB24H5NYrHzAaYJ554ggsvvJDhw4cDcNFFF/H4448zd+5cJkyYcFgCAHjyySf5/Oc/T1NTE01NTZx//vkVj3/RRRcBMGPGDFauXAnA9u3bWbBgARs3bkQSBw4cqCrezoTxmc98hm3btrFjx46Kx/ztb3/LV7/6VQCmTp3K1KlTM79Xd3K/HCRpPvAH4Fclq78APBQRv42IDmARcJGkkXnHY2bF05kYemPo0KEADBo0iIMHDwKwaNEizjrrLJ5//nkeeuihPrlbOo9jdifXJCBpFHADcE1Z0cnAus4XEfEKsB84qYtjLJTUJqlty5YteYZrVjgt3/zl+0ujmzVrFqtWrWL37t3s2rWLBx98kFmzZnW7zxlnnPH+F21HR0fVo3a2b9/O8ccfD8Ddd99ddbzLly8HklFDY8aMYdSoURWPOXv2bFasWAHA888//34fQm/lfTnoRuDOiNhcdhPDCGB72bbbgcNaAhGxlORyEa2trZFTnGbWx2o9Cmn69OlcfvnlfOITnwDgyiuvZNq0abz22msV95k5cyZz585l6tSpjB07llNOOYUPf/jDmd/zG9/4BgsWLOCmm27ivPOqO9/FixfzxS9+kalTpzJs2DCWLVvW7TGvuuoqrrjiCiZPnszkyZMr9l1USxH5fK9K+jiwHJgWEfslLQb+fURcKukfgCcj4n+WbL8TmBMRaysds7W1NfxQGbPqVRoi2pdDR1988UUmT57cq2PUQ0dHByNGjGD37t3Mnj2bpUuX9lmnaz109XuQtDYiuryhIM+WwBygBXg9bQWMAAZJ+hPgH4FTSwI8ARgKvJxjPGZmh1m4cCEvvPACe/fuZcGCBQ2dAI5EnklgKfCTktdfJ0kKVwHHAf8iaRbJ6KAbgJURsTPHeMzMDtN5nb2ocksCEbEb2N35WlIHsDcitgBbJP0XkstFo4HVwBV5xWJmtRERnkSujo7k8n7Npo2IiMVlr1cAxU7BZgNIU1MT27Zt83TSddL5PIGmpqaq9vPcQWbWJ8aNG8fmzZvxUO766XyyWDWcBMysTwwZMqSqJ1pZ/+AJ5MzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMcweZ9QN9+YQvs2q4JWBmVmC5JgFJ90p6S9IOSS9LujJd3yIpJHWULIvyjMXMzA6X9+WgW4C/jIh9kiYBayT9X2BbWn50RBzMOQYzM6sg15ZARGyIiH2dL9PlxDzf08zMssu9T0DS7ZJ2A+3AW8AjJcWbJG2WdJekMRX2XyipTVKbn1hkZta3ck8CEfEVYCQwC1gJ7AO2AjOBCcCMtHx5hf2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrIqIjItoi4mBEvANcDXxO0shaxGNmZolaDxEdTNd9ApH+6yGrZmY1lNuXrqTjJM2XNELSIEnnABcDv5J0mqSJko6SNBq4DVgTEdvzisfMzA6X5xDRAK4Cvk+SbDYBX4uIX0i6GLgZOA7YATxKkiDMrB8ovYMZfBfzQJZbEoiILcCZFcruA+7L673NzCwbX4M3MyswJwEzswJzEjAzKzBPJW1mPfJU1wOXWwJmZgXmJGBmVmBOAmZmBeYkYGZWYO4YNsuZO1WtP3NLwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCizXJCDpXklvSdoh6WVJV5aUfVZSu6Tdkh6TNCHPWMzM7HB5twRuAVoiYhQwF7hJ0gxJY4CVwCLgWKAN+GnOsZiZWZlcbxaLiA2lL9PlRGAGsCEifg4gaTGwVdKkiGjPMyYzM/tA7n0Ckm6XtBtoB94CHgFOBtZ1bhMRu4BX0vXl+y+U1CapbcuWLXmHa2ZWKLkngYj4CjASmEVyCWgfMALYXrbp9nS78v2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrgA5gVNlmo4CdtYjHzMwStR4iOpikT2ADcGrnSknDS9abmVmN5JYEJB0nab6kEZIGSToHuBj4FfAgMEXSPElNwHXAencKm5nVVp6jg4Lk0s/3SZLNJuBrEfELAEnzgO8C9wJPAfNzjMWsX8h7WmlPW23Vyi0JRMQW4MxuylcDk/J6fzMz65mnjTAzKzAnATOzAnMSMDMrMD9j2Kyfceeu1ZJbAmZmBeYkYGZWYE4CZmYF5iRgZlZg7hg2s6q443pgcUvAzKzAnATMzArMScDMrMAyJQFJp+QdiJmZ1V7WjuHbJQ0F7gaWR0T5oyHNLAfuhLW8ZWoJRMQs4AvAHwNrJa2Q9Ke5RmZmZrnL3CcQERuBbwF/TfKcgNsktUu6qKvtJQ2VdKekTZJ2SnpO0p+lZS2SQlJHybKoL07IzMyyy3Q5SNJU4ArgPOBR4PyIeFbSvwP+BVhZ4dhvkCSM14FzgZ+V9S8cHREHexG/mZn1QtY+gf8F/BC4NiL2dK6MiDclfaurHSJiF7C4ZNXDkl4FZgBrjyxcMzPrS1mTwHnAnoh4F0DSUUBTROyOiHuyHEDSWOAkYEPJ6k2SgqR18VcRsTV76GZm1ltZk8Bq4GygI309DPgn4FNZdpY0BFgOLIuIdkkjgJnAc8Bo4Htp+Tld7LsQWAgwfvz4jOEWi0eQFFvp778321d7HBsYsnYMN0VEZwIg/XlYlh3TVsM9wH7g6s79I6ItIg5GxDvp+s9JGlm+f0QsjYjWiGhtbm7OGK6ZmWWRNQnskjS984WkGcCebrbv3E7AncBYYF5EHKiwaVQZj5mZ9YGsl4O+Bvxc0puAgI8A/ynDfncAk4GzSzuUJZ0G/AHYCBwD3Aas8U1oZma1lSkJRMQzkiYBE9NVL3Xzv3oAJE0AvgzsA95OGgWQrnsPuBk4DthB0jF8cdXRm5lZr1TzPIGZQEu6z3RJRMSPK20cEZtIWg2V3FfFe5sNOHl3xLqj17LIerPYPcCJJKN53k1XB1AxCZiZWf+XtSXQCvxJRESPW5qZWcPIOhrneZLOYDMzG0CytgTGAC9IepqkoxeAiJibS1RmZlYTWZPA4jyDKCrf6ds4/LuygSrrENHfpEM+PxYRqyUNAwblG5qZmeUt6+MlvwTcD/wgXXU8sCqvoMzMrDaydgz/V+AMkhu7Oh8wc1xeQZmZWW1kTQL7ImJ/5wtJg/lgvh8zM2tQWTuGfyPpWuBD6bOFvwI8lF9Y1hfcmVk/vlvXGkXWlsA3gS3A70jm/nmE5HnDZmbWwLKODnoP+N/pYmZmA0TWuYNepYs+gIg4oc8jMjOzmqlm7qBOTcCfA8f2fThmZlZLWS8HbStb9R1Ja4Hr+j4ks77Xl53k7nDvmuulMWW9HDS95OVRJC2Dap5FYGZm/VDWL/K/K/n5IPAa8Bfd7SBpKHA7cDbJpaNXgP8WEf8nLf8s8D1gPPAUcHn6IBozM6uRrJeDzjrCY78BnAm8DpwL/EzSKUAHsBK4kuR+gxuBnwKnH8H7mJnZEcp6Oeia7soj4tYu1u3i0NlHH05HGc0ARgMbIuLn6fEXA1slTYqI9myhm5lZb1UzOmgm8Iv09fnA08DGrG8kaSxwErABuApY11kWEbskvQKcDLSX7bcQWAgwfvz4rG9nNVL0zsCin781vqxJYBwwPSJ2wvv/c/9lRFyaZWdJQ4DlwLKIaJc0guQO5FLbgZHl+0bEUmApQGtrq+crMjPrQ1mnjRgL7C95vT9d1yNJRwH3pPtcna7uAEaVbToK2JkxHjMz6wNZWwI/Bp6W9GD6+gJgWU87SRJwJ0nCODciDqRFG4AFJdsNB05M15uZWY1kaglExH8HrgD+LV2uiIibM+x6BzAZOD8i9pSsfxCYImmepCaSm87Wu1PYzKy2qrnhaxiwIyLuktQs6aMR8WqljdPHUX6Z5MH0byeNAgC+HBHLJc0DvgvcS3KfwPwjOgMzqxtPmd34sg4RvZ5khNBE4C5gCMmX9xmV9klv/FI35auBSdUEa2ZmfStrx/CFwFxgF0BEvEkXI3nMzKyxZE0C+yMiSKeTTjtyzcyswWVNAj+T9APgaElfAlbjB8yYmTW8rHMHLUmfLbyDpF/guoh4NNfIrKH5Ttq+5zq1PPSYBCQNAlank8j5i9/MbADp8XJQRLwLvCfpwzWIx8zMaijrfQIdwO8kPUo6QgggIr6aS1RmZlYTWZPAynQxM7MBpNskIGl8RLweET3OE2S9404/q4bv1LW+0lOfwKrOHyQ9kHMsZmZWYz0lgdJpH07IMxAzM6u9npJAVPjZzMwGgJ46hk+VtIOkRfCh9GfS1xER5Q+GMTOzBtJtEoiIQbUKxGqrUsdiaad0lm36s952nla7vztrrRFlnTvIzMwGoFyTgKSrJbVJ2ifp7pL1LZJCUkfJsijPWMzM7HDVPFnsSLwJ3AScA3yoi/KjI+JgzjGYmVkFuSaBiFgJIKkVGJfne5mZWfXybgn0ZJOkIJmd9K8iYmv5BpIWAgsBxo8fX+Pw6iNLB2OjdM5aMVV7B7zvmK+fenUMbwVmAhOAGSSPqlze1YYRsTQiWiOitbm5uYYhmpkNfHVpCUREB9CWvnxH0tXAW5JGRsTOesRkZlZE/WWIaOfdyP0lHjOzQsi1JSBpcPoeg4BBkpqAgySXgP4AbASOAW4D1kTE9jzjMTOzQ+V9OehbwPUlry8F/gZ4CbgZOI7kucWPAhfnHEvduNPrA64L61RpAIQ7lWsr7yGii4HFFYrvy/O9zcysZ74Gb2ZWYE4CZmYF5iRgZlZg9b5j2I5Qlk61RuWOQbPacUvAzKzAnATMzArMScDMrMCcBMzMCswdw0egUkfkQOuUbcRjZnmv7jqSB8Lv0KwabgmYmRWYk4CZWYE5CZiZFZiTgJlZgbljuJfckfiB3tSF67EY+uoz4jvD+45bAmZmBZZrEpB0taQ2Sfsk3V1W9llJ7ZJ2S3pM0oQ8YzEzs8Pl3RJ4E7gJ+FHpSkljgJXAIuBYkofO/zTnWMzMrEzeTxZbCSCpFRhXUnQRsCEifp6WLwa2SpoUEe15xmRmZh+oV8fwycC6zhcRsUvSK+n6Q5KApIXAQoDx48fXMkbrZxrlbmbrO/795K9eHcMjgO1l67YDI8s3jIilEdEaEa3Nzc01Cc7MrCjqlQQ6gFFl60YBO+sQi5lZYdUrCWwATu18IWk4cGK63szMaiTvIaKDJTUBg4BBkpokDQYeBKZImpeWXwesd6ewmVlt5d0x/C3g+pLXlwJ/ExGLJc0DvgvcCzwFzM85ll5p9A6qRo/fzPKR9xDRxcDiCmWrgUl5vr+ZmXXP00aYmRWYk4CZWYE5CZiZFZinku6G71DNl+uiGPrD77lSDJ6S2i0BM7NCcxIwMyswJwEzswJzEjAzKzB3DJfpD51Y9gH/Pqwr/lz0HbcEzMwKzEnAzKzAnATMzArMScDMrMAK2zFc2rHkuwar404566/8d109twTMzAqsrklA0hpJeyV1pMtL9YzHzKxo+kNL4OqIGJEuE+sdjJlZkfSHJGBmZnXSH5LALZK2SnpS0px6B2NmViT1TgJ/DZwAHA8sBR6SdGLpBpIWSmqT1LZly5Z6xGhmNmDVNQlExFMRsTMi9kXEMuBJ4NyybZZGRGtEtDY3N9cnUDOzAareLYFyAajeQZiZFUXdkoCkoyWdI6lJ0mBJXwBmA/9Yr5jMzIqmnncMDwFuAiYB7wLtwAUR8XIdYzIzK5S6JYGI2ALMrNf7m9nAlmV6E08z0f/6BMzMrIacBMzMCsxJwMyswJwEzMwKrLDPEzAzq6RIHcZuCZiZFZiTgJlZgTkJmJkVmJOAmVmBFapj2A9IN7PeyPod0kidyW4JmJkVmJOAmVmBOQmYmRWYk4CZWYEVqmPYzKySSp2+RzKgpNo7jittX4s7l90SMDMrsLomAUnHSnpQ0i5JmyRdUs94zMyKpt6Xg74H7AfGAh8HfilpXURsqG9YZmbFUM8HzQ8H5gGLIqIjIp4AfgH853rFZGZWNIqI+ryxNA14MiKGlaz7OnBmRJxfsm4hsDB9ORF4qaaB9t4YYGu9g+hHXB+Hcn0cyvVxqL6qjwkR0dxVQT0vB40AdpSt2w6MLF0REUuBpbUKqq9JaouI1nrH0V+4Pg7l+jiU6+NQtaiPenYMdwCjytaNAnbWIRYzs0KqZxJ4GRgs6WMl604F3ClsZlYjdUsCEbELWAncIGm4pDOAzwP31CumnDTspaycuD4O5fo4lOvjULnXR906hiG5TwD4EfCnwDbgmxGxom4BmZkVTF2TgJmZ1ZenjTAzKzAnATOzAnMSyEDSUEl3pvMb7ZT0nKQ/S8taJIWkjpJlUdm+P5K0Q9Lbkq4pO/ZnJbVL2i3pMUkTan1+R0LSvZLeSs/rZUlXlpRVPKeBWh9QuU6K+hkBkPQxSXsl3Vuy7pL0b2mXpFVp32BnWbfziXW3b6MorxNJcyS9V/b5WFCyfb51EhFeeliA4cBioIUkcf5HkvsZWtIlgMEV9r0FeBw4BpgMvA38h7RsDMkNcn8ONAF/C/xrvc83Y52cDAxNf56UnteMns5poNZHD3VSyM9IGv8/ped2b0kd7QRmk9wwugL4Scn29wE/Tcs+nZ77yVn2bZSlizqZA2zuZvtc66TuFdKoC7CeZO6jnv7A3wQ+V/L6xs5fEsl0GP9cUjYc2ANMqvf5VVkXE4G3gL/o6ZyKUB9d1EkhPyPAfOBnJP+B6vzCuxlYUbLNiSSTSI5Mz20/cFJJ+T3At3vat97n2ss6qZgEalEnvhx0BCSNBU7i0BvbNknaLOkuSWPS7Y4B/ghYV7LdOpLsTfrv+2WR3DvxSkl5vybpdkm7gXaSL7xH6OacBnp9QMU66VSYz4ikUcANwDVlReXn8wrpl1y6HIyIl0u2764uSvft97qpE4DjJL0j6VVJf69kgk2oQZ04CVRJ0hBgObAsItpJJneaCUwgafqPTMshaZ5B0nyj5OeRJeWlZeXl/VpEfIUk1lkkN/7to/tzGtD1ARXrpIifkRuBOyNic9n6nj4f3c0n1qh10alSnbSTTKX/R8BnSD4jt6ZludeJk0AVJB1F0hTbD1wNEMk02G0RcTAi3knXf07SSJL5keDQOZJK50dq+PmTIuLdSKYBHwdcRffnNODrAw6vk6J9RiR9HDgb+Psuinv6fHR3rg1XF526q5OIeDsiXoiI9yLiVeAbJJeaoQZ14iSQkSQBd5I8AGdeRByosGnn3XdHRcS/kVwSOLWkvHR+pA2lZWkT8EQac/6kwXwQe5fnVLD6gA/qpNxA/4zMIekHeV3S28DXgXmSnuXw8zkBGEoyl1hP84l1t29/N4fKdVIu+OC7Of86qXdHSaMswPeBfwVGlK0/jaQT8ChgNEkv/mMl5d8GfkMy8mMSyR9858iPZpKm2zySkR//gwYY+QEcR9LBNQIYBJwD7ALm9nROA7E+MtRJoT4jwDDgIyXLEuD+9FxOJrm8MYuk0/NeDh0d9BOS0TDDgTM4fCRMxX3789JDnZxFcqlQwB8DjwF31apO6l45jbCkv6AA9pI0vzqXLwAXA6+mf/BvAT8GPlKy71CS+ZF2AO8A15Qd+2ySa4J7gDVAS73PN0N9NKdfWn9Iz+t3wJeynNNArI+e6qSIn5Gy+BeTjoRJX18CvJ7Wxz8Ax5aUHQusSsteBy4pO1bFfRtp4dDRQdcA/w/YDbwB3EbJ6J6868RzB5mZFZj7BMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswP4/zu7dqmtpqTMAAAAASUVORK5CYII=", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAaCklEQVR4nO3de5RV5Znn8e+PSyjlIhEK1GBZagJeQBQL7ehSM9EWO2omhjjRqOOltaIOsTNZzdLJ0oTYtunOmpl0JEokbTAg2iRpcKKxXYKXVmNPQsE0ERQ0LsHQogIJSCF3n/ljn9JjUUXtU5x9Tp3av89aZ8m+nf285+B5ePfz7ncrIjAzs3zqU+0AzMysepwEzMxyzEnAzCzHnATMzHLMScDMLMf6VTuAUgwfPjwaGxurHYaZWU1ZsmTJhoio72hbTSWBxsZGWlpaqh2GmVlNkbSms22+HGRmlmNOAmZmOeYkYGaWYzVVEzCz2rJr1y7Wrl3L9u3bqx1KLtTV1TFq1Cj69++f+hgnATPLzNq1axk8eDCNjY1IqnY4vVpEsHHjRtauXcuRRx6Z+jhfDjKzzGzfvp1hw4Y5AVSAJIYNG1Zyr8tJwMwy5QRQOd35rJ0EzMxyzDUBM6uYxlt+Vdb3W/1355f1/To8x+rVXHDBBSxfvjz1MVdddRUXXHABX/rSl1Ktr0RMnXESMMuB4h/fSvxwWu3w5SAz67W2bt3K+eefz/jx4xk7dizz5s0DYPHixZx22mmMHz+eU045hS1btrB69WrOOOMMJkyYwIQJE3jhhRf2er89e/YwdepUJk6cyAknnMC9994LJCNzpkyZwpgxYzjnnHN45513uoztySef5KSTTmLcuHFcc8017NixA4Dbb7+diRMnMnbsWJqbm2l7+uOSJUsYP34848eP5+677y7XR1SZJCDpU5K2S3qgaN1XJK2RtFXSw5IOrkQsZpYfjz/+OIcddhjLli1j+fLlnHfeeezcuZMvf/nL/OAHP2DZsmUsWrSIAw44gBEjRrBw4UKWLl3KvHnzuOmmm/Z6v/vuu4+DDjqIxYsXs3jxYn784x/z+uuvs2DBAlatWsVLL73E7NmzO0wgxbZv385VV13FvHnzePHFF9m9ezczZswAYMqUKSxevJjly5ezbds2Hn30UQCuvvpqpk+fzrJly8r6GVWqJ3A3sLhtQdLxwL3AFcBI4D3gngrFYmY5MW7cOBYuXMjNN9/Mc889x0EHHcSqVas49NBDmThxIgBDhgyhX79+7Nq1i+uuu45x48Zx8cUX89JLL+31fk888QSzZ8/mxBNP5NRTT2Xjxo28+uqrPPvss1x66aX07duXww47jM9+9rP7jGvVqlUceeSRjB49GoArr7ySZ599FoCnn36aU089lXHjxvHUU0+xYsUKNm3axKZNmzjzzDMBuOKKK8r2GWVeE5B0CbAJeAH4ZGH1ZcAjEfFsYZ/bgJclDY6ILVnHZGb5MHr0aJYuXcpjjz3Grbfeytlnn81FF13U4b7f//73GTlyJMuWLeP999+nrq5ur30igunTpzNp0qSPrH/sscfKEu/27du58cYbaWlp4fDDD2fatGmZ322daU9A0hDgduAb7TYdD3zQp4mI14CdwOgO3qNZUouklvXr12cZrlnuNN7yqw9evdGbb77JgQceyOWXX87UqVNZunQpY8aMYd26dSxenFyc2LJlC7t372bz5s0ceuih9OnThzlz5rBnz5693m/SpEnMmDGDXbt2AfDKK6+wdetWzjzzTObNm8eePXtYt24dTz/99D7jGjNmDKtXr+b3v/89AHPmzOGss8764Ad/+PDhtLa28otf/AKAoUOHMnToUJ5//nkA5s6dW54PiOx7An8D3BcRa9vdxDAI2Nxu383A4PZvEBEzgZkATU1NkVGcZlYBlR6Z9OKLLzJ16lT69OlD//79mTFjBh/72MeYN28eX/va19i2bRsHHHAAixYt4sYbb2Ty5MnMnj2b8847j4EDB+71ftdeey2rV69mwoQJRAT19fU8/PDDXHTRRTz11FMcd9xxNDQ08OlPf3qfcdXV1TFr1iwuvvhidu/ezcSJE7n++usZMGAA1113HWPHjuWQQw754JIVwKxZs7jmmmuQxLnnnlu2z0htledyk3QiMBc4KSJ2SpoGfDIiLpf0f4BfR8T3ivbfAnwmIpZ09p5NTU3hh8qYla6zIaJZDx19+eWXOfbYY8v+vta5jj5zSUsioqmj/bPsCXwGaATeKPQCBgF9JR0HPA6MLwrwKGAA8EqG8ZiZWTtZJoGZwD8VLf81SVK4ARgB/JukM4ClJHWD+S4Km5lVVmZJICLeIxn6CYCkVmB7RKwH1ku6nuRy0TBgEXB1VrGYWfVEhCeRq5DuXN6v2LQRETGt3fKDwIOVOr+ZVV5dXR0bN270dNIV0PY8gY6Gtu6L5w4ys8yMGjWKtWvX4uHdldH2ZLFSOAmYWWb69+9f0lOurPI8gZyZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOee4gsx4g6yd8mXXGPQEzsxzLNAlIekDSOknvSnpF0rWF9Y2SQlJr0eu2LGMxM7O9ZX056LvAX0bEDknHAM9I+n/AxsL2oRGxO+MYzMysE5n2BCJiRUTsaFssvI7O8pxmZpZe5jUBSfdIeg9YCawDHivavEbSWkmzJA3v5PhmSS2SWvx0IjOz8so8CUTEjcBg4AxgPrAD2ABMBI4ATi5sn9vJ8TMjoikimurr67MO18wsVyoyOigi9kTE88Ao4IaIaI2IlojYHRFvA1OAcyUNrkQ8ZmaWqPQQ0X50XBOIwn89ZNXMrIIy+9GVNELSJZIGSeoraRJwKfCkpFMljZHUR9Iw4C7gmYjYnFU8Zma2tyyHiAZwA/AjkmSzBvh6RPxS0qXAncAI4F1gIUmCMLMeoPgOZvBdzL1ZZkkgItYDZ3Wy7SHgoazObWZm6fgavJlZjjkJmJnlmJOAmVmOeSppM+uSp7ruvdwTMDPLMScBM7MccxIwM8sxJwEzsxxzYdgsYy6qWk/mnoCZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeVYpklA0gOS1kl6V9Irkq4t2na2pJWS3pP0tKQjsozFzMz2lnVP4LtAY0QMAT4P3CHpZEnDgfnAbcDBQAswL+NYzMysnUxvFouIFcWLhdfRwMnAioj4OYCkacAGScdExMosYzIzsw9lXhOQdI+k94CVwDrgMeB4YFnbPhGxFXitsL798c2SWiS1rF+/PutwzcxyJfMkEBE3AoOBM0guAe0ABgGb2+26ubBf++NnRkRTRDTV19dnHa6ZWa5UZHRQROyJiOeBUcANQCswpN1uQ4AtlYjHzMwSlR4i2o+kJrACGN+2UtLAovVmZlYhmSUBSSMkXSJpkKS+kiYBlwJPAguAsZImS6oDvgX8zkVhM7PKynJ0UJBc+vkRSbJZA3w9In4JIGky8EPgAeA3wCUZxmLWI2Q9rbSnrbZSZZYEImI9cNY+ti8Cjsnq/GZm1jVPG2FmlmNOAmZmOeYkYGaWY37GsFkP4+KuVZJ7AmZmOeYkYGaWY04CZmY55iRgZpZjLgybWUlcuO5d3BMwM8sxJwEzsxxzEjAzy7FUSUDSuKwDMTOzyktbGL5H0gDgfmBuRLR/NKSZZcBFWMtaqp5ARJwBXAYcDiyR9KCkP880MjMzy1zqmkBEvArcCtxM8pyAuyStlPTFjvaXNEDSfZLWSNoi6d8l/UVhW6OkkNRa9LqtHA0yM7P0Ul0OknQCcDVwPrAQuDAilko6DPg3YH4n7/0HkoTxBvA54Gft6gtDI2L3fsRvZmb7IW1NYDrwj8A3I2Jb28qIeFPSrR0dEBFbgWlFqx6V9DpwMrCke+GamVk5pU0C5wPbImIPgKQ+QF1EvBcRc9K8gaSRwGhgRdHqNZKCpHcxNSI2pA/dzMz2V9oksAg4B2gtLB8IPAGcluZgSf2BucBPI2KlpEHARODfgWHA3YXtkzo4thloBmhoaEgZbr54BEm+FX//+7N/qe9jvUPawnBdRLQlAAp/PjDNgYVewxxgJzCl7fiIaImI3RHxdmH9uZIGtz8+ImZGRFNENNXX16cM18zM0kibBLZKmtC2IOlkYNs+9m/bT8B9wEhgckTs6mTXKDEeMzMrg7SXg74O/FzSm4CAQ4AvpzhuBnAscE5xQVnSqcAm4FXg48BdwDO+Cc3MrLJSJYGIWCzpGGBMYdWqffyrHgBJRwBfBXYAbyWdAiisex+4ExgBvEtSGL605OjNzGy/lPI8gYlAY+GYCZKIiNmd7RwRa0h6DZ15qIRzm/U6WRdiXei1NNLeLDYHOJpkNM+ewuoAOk0CZmbW86XtCTQBx0VEdLmnmZnVjLSjcZaTFIPNzKwXSdsTGA68JOm3JIVeACLi85lEZWZmFZE2CUzLMoi88p2+tcPflfVWaYeI/mthyOenImKRpAOBvtmGZmZmWUv7eMnrgF8A9xZWfQJ4OKugzMysMtIWhv8bcDrJjV1tD5gZkVVQZmZWGWmTwI6I2Nm2IKkfH873Y2ZmNSptYfhfJX0TOKDwbOEbgUeyC8vKwcXM6vHdulYr0vYEbgHWAy+SzP3zGMnzhs3MrIalHR30PvDjwsvMzHqJtHMHvU4HNYCIOKrsEZmZWcWUMndQmzrgYuDg8odjZmaVlPZy0MZ2q/5B0hLgW+UPyaz8ylkkd8G9Y/5calPay0ETihb7kPQMSnkWgZmZ9UBpf8j/V9GfdwOrgf+yrwMkDQDuAc4huXT0GvA/IuJfCtvPBu4GGoDfAFcVHkRjZmYVkvZy0H/q5nv/ATgLeAP4HPAzSeOAVmA+cC3J/QZ/A8wD/qwb5zEzs25KeznoG/vaHhH/u4N1W/no7KOPFkYZnQwMA1ZExM8L7z8N2CDpmIhYmS50MzPbX6WMDpoI/LKwfCHwW+DVtCeSNBIYDawAbgCWtW2LiK2SXgOOB1a2O64ZaAZoaGhIezqrkLwXA/Pefqt9aZPAKGBCRGyBD/7l/quIuDzNwZL6A3OBn0bESkmDSO5ALrYZGNz+2IiYCcwEaGpq8nxFZmZllHbaiJHAzqLlnYV1XZLUB5hTOGZKYXUrMKTdrkOALSnjMTOzMkjbE5gN/FbSgsLyF4CfdnWQJAH3kSSMz0XErsKmFcCVRfsNBI4urDczswpJ1ROIiL8Frgb+VHhdHRF3pjh0BnAscGFEbCtavwAYK2mypDqSm85+56KwmVlllXLD14HAuxExS1K9pCMj4vXOdi48jvKrJA+mfyvpFADw1YiYK2ky8EPgAZL7BC7pVgvMrGo8ZXbtSztE9NskI4TGALOA/iQ/3qd3dkzhxi/tY/si4JhSgjUzs/JKWxi+CPg8sBUgIt6kg5E8ZmZWW9ImgZ0RERSmky4Ucs3MrMalTQI/k3QvMFTSdcAi/IAZM7Oal3buoP9ZeLbwuyR1gW9FxMJMI7Oa5jtpy8+fqWWhyyQgqS+wqDCJnH/4zcx6kS4vB0XEHuB9SQdVIB4zM6ugtPcJtAIvSlpIYYQQQETclElUZmZWEWmTwPzCy8zMepF9JgFJDRHxRkR0OU+Q7R8X/awUvlPXyqWrmsDDbX+Q9M8Zx2JmZhXWVRIonvbhqCwDMTOzyusqCUQnfzYzs16gq8LweEnvkvQIDij8mcJyRET7B8OYmVkN2WcSiIi+lQrEKquzwmJxUTrNPj3Z/hZPSz3exVqrRWnnDjIzs14o0yQgaYqkFkk7JN1ftL5RUkhqLXrdlmUsZma2t1KeLNYdbwJ3AJOAAzrYPjQidmccg5mZdSLTJBAR8wEkNQGjsjyXmZmVLuueQFfWSAqS2UmnRsSG9jtIagaaARoaGiocXnWkKTDWSnHW8qnUO+B9x3z1VKswvAGYCBwBnEzyqMq5He0YETMjoikimurr6ysYoplZ71eVnkBEtAIthcW3JU0B1kkaHBFbqhGTmVke9ZQhom13I/eUeMzMciHTnoCkfoVz9AX6SqoDdpNcAtoEvAp8HLgLeCYiNmcZj5mZfVTWl4NuBb5dtHw58B1gFXAnMILkucULgUszjqVqXPT6kD8La9PZAAgXlSsr6yGi04BpnWx+KMtzm5lZ13wN3swsx5wEzMxyzEnAzCzHqn3HsHVTmqJarXJh0Kxy3BMwM8sxJwEzsxxzEjAzyzEnATOzHHNhuBs6K0T2tqJsLb5nmnPtq5DcG75Ds1K4J2BmlmNOAmZmOeYkYGaWY04CZmY55sLwfnIh8UP781n4c8yHcv0d8Z3h5eOegJlZjmWaBCRNkdQiaYek+9ttO1vSSknvSXpa0hFZxmJmZnvLuifwJnAH8JPilZKGA/OB24CDSR46Py/jWMzMrJ2snyw2H0BSEzCqaNMXgRUR8fPC9mnABknHRMTKLGMyM7MPVaswfDywrG0hIrZKeq2w/iNJQFIz0AzQ0NBQyRith6mVu5mtfPz9ZK9aheFBwOZ26zYDg9vvGBEzI6IpIprq6+srEpyZWV5UKwm0AkParRsCbKlCLGZmuVWtJLACGN+2IGkgcHRhvZmZVUjWQ0T7SaoD+gJ9JdVJ6gcsAMZKmlzY/i3gdy4Km5lVVtaF4VuBbxctXw58JyKmSZoM/BB4APgNcEnGseyXWi9Q1Xr8ZpaNrIeITgOmdbJtEXBMluc3M7N987QRZmY55iRgZpZjTgJmZjnmqaT3wXeoZsufRT70hO+5sxg8JbV7AmZmueYkYGaWY04CZmY55iRgZpZjLgy30xOKWPYhfx/WEf+9KB/3BMzMcsxJwMwsx5wEzMxyzEnAzCzHclsYLi4s+a7B0rgoZz2V/78unXsCZmY5VtUkIOkZSdsltRZeq6oZj5lZ3vSEnsCUiBhUeI2pdjBmZnnSE5KAmZlVSU9IAt+VtEHSryV9ptrBmJnlSbWTwM3AUcAngJnAI5KOLt5BUrOkFkkt69evr0aMZma9VlWTQET8JiK2RMSOiPgp8Gvgc+32mRkRTRHRVF9fX51Azcx6qWr3BNoLQNUOwswsL6qWBCQNlTRJUp2kfpIuA84EHq9WTGZmeVPNO4b7A3cAxwB7gJXAFyLilSrGZGaWK1VLAhGxHphYrfObWe+WZnoTTzPR82oCZmZWQU4CZmY55iRgZpZjTgJmZjmW2+cJmJl1Jk8FY/cEzMxyzEnAzCzHnATMzHLMScDMLMdyVRj2A9LNbH+k/Q2ppWKyewJmZjnmJGBmlmNOAmZmOeYkYGaWY7kqDJuZdaazom93BpSUesdxZ/tX4s5l9wTMzHKsqklA0sGSFkjaKmmNpK9UMx4zs7yp9uWgu4GdwEjgROBXkpZFxIrqhmVmlg/VfND8QGAycFtEtEbE88AvgSuqFZOZWd4oIqpzYukk4NcRcWDRur8GzoqIC4vWNQPNhcUxwKr9OO1wYMN+HF9r8tZecJvzwm0uzRERUd/RhmpeDhoEvNtu3WZgcPGKiJgJzCzHCSW1RERTOd6rFuStveA254XbXD7VLAy3AkParRsCbKlCLGZmuVTNJPAK0E/Sp4rWjQdcFDYzq5CqJYGI2ArMB26XNFDS6cB/BuZkeNqyXFaqIXlrL7jNeeE2l0nVCsOQ3CcA/AT4c2AjcEtEPFi1gMzMcqaqScDMzKrL00aYmeWYk4CZWY71qiSQdi4iJf5e0sbC6+8lqdLxlkMJbZ4qabmkLZJelzS10rGWS6lzTkn6mKSXJa2tVIzlVEp7JU2Q9KykVklvS/qrSsZaLiX8vR4g6UeFtv5R0iOSPlHpeMtB0hRJLZJ2SLq/i33/u6S3JL0r6SeSBnT3vL0qCfDRuYguA2ZIOr6D/ZqBL5AMST0BuBD4aqWCLLO0bRbwX4GPA+cBUyRdUrEoyyttm9tMBdZXIrCMpGqvpOHA48C9wDDgk8ATFYyznNJ+x38FfJrk/+PDgD8B0ysVZJm9CdxBMlimU5ImAbcAZwNHAEcB3+n2WSOiV7yAgSR/aUYXrZsD/F0H+74ANBct/yXwf6vdhizb3MGxdwHTq92GrNsMHAm8DPwFsLba8WfZXuBOYE61Y65wm2cA3ytaPh9YVe027Gf77wDu38f2B4E7i5bPBt7q7vl6U09gNLA7Il4pWrcM6OhfD8cXtnW1X09XSps/ULj0dQa1eWNeqW2eDnwT2JZ1YBkppb1/BvxR0guS3ilcGmmoSJTlVUqb7wNOl3SYpANJeg3/UoEYq6mj36+RkoZ15816UxJINRdR0b6b2+03qAbrAqW0udg0ku9+VgYxZS11myVdBPSNiAWVCCwjpXzHo4ArSS6RNACvAw9lGl02Smnzq8AfgP8oHHMscHum0VVfR79f0PX/9x3qTUmglLmI2u87BGiNQt+qhpQ8/5KkKSS1gfMjYkeGsWUlVZsLU5V/D7ipQnFlpZTveBuwICIWR8R2kuvEp0k6KOMYy62UNt8NDCCpgQwkmYWgt/cEOvr9gm7Ou9abkkApcxGtKGzrar+erqT5lyRdQ6GgFBE1OVKG9G3+FNAIPCfpLZIfh0MLIyoaKxBnuZTyHf8OKP6HTK39o6ZNKW0+keT6+R8L/6iZDpxSKJL3Vh39fr0dERu79W7VLoKUuaDyTyTd34HA6STdpOM72O96kmLhJ0hGFKwArq92/Bm3+TLgLeDYasdciTaTTJN+SNHriySjLw4huURU9XZk8B1/lmR0zIlAf+D7wHPVjj/jNs8C/hk4qNDmbwL/Ue34u9nmfkAd8F2SQngd0K+D/c4r/L98HDAUeIoUg0E6PW+1G17mD/Fg4GFgK/AG8JXC+jNILve07SeSSwV/LLy+R2EKjVp7ldDm14FdJF3JttePqh1/lm1ud8xnqMHRQaW2F7iB5Pr4n4BHgMOrHX+WbSa5DDQXeAfYBDwPnFLt+LvZ5mkkvbfi1zSS+k4r0FC07zeAt0nqILOAAd09r+cOMjPLsd5UEzAzsxI5CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5dj/BywbGaIaCXKXAAAAAElFTkSuQmCC", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "بیایید داده‌های آزمایشی را نیز مقیاس‌بندی کنیم\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 25, + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            load
            2014-12-30 00:00:000.33
            2014-12-30 01:00:000.29
            2014-12-30 02:00:000.27
            2014-12-30 03:00:000.27
            2014-12-30 04:00:000.30
            \n", + "
            " + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.33\n", + "2014-12-30 01:00:00 0.29\n", + "2014-12-30 02:00:00 0.27\n", + "2014-12-30 03:00:00 0.27\n", + "2014-12-30 04:00:00 0.30" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "source": [ + "# Specify the number of steps to forecast ahead\n", + "HORIZON = 3\n", + "print('Forecasting horizon:', HORIZON, 'hours')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Forecasting horizon: 3 hours\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 27, + "source": [ + "order = (4, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)\n", + "results = model.fit()\n", + "\n", + "print(results.summary())\n" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " SARIMAX Results \n", + "==========================================================================================\n", + "Dep. Variable: load No. Observations: 1416\n", + "Model: SARIMAX(4, 1, 0)x(1, 1, 0, 24) Log Likelihood 3477.239\n", + "Date: Thu, 30 Sep 2021 AIC -6942.477\n", + "Time: 14:36:28 BIC -6911.050\n", + "Sample: 11-01-2014 HQIC -6930.725\n", + " - 12-29-2014 \n", + "Covariance Type: opg \n", + "==============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "ar.L1 0.8403 0.016 52.226 0.000 0.809 0.872\n", + "ar.L2 -0.5220 0.034 -15.388 0.000 -0.588 -0.456\n", + "ar.L3 0.1536 0.044 3.470 0.001 0.067 0.240\n", + "ar.L4 -0.0778 0.036 -2.158 0.031 -0.148 -0.007\n", + "ar.S.L24 -0.2327 0.024 -9.718 0.000 -0.280 -0.186\n", + "sigma2 0.0004 8.32e-06 47.358 0.000 0.000 0.000\n", + "===================================================================================\n", + "Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 1464.60\n", + "Prob(Q): 0.83 Prob(JB): 0.00\n", + "Heteroskedasticity (H): 0.84 Skew: 0.14\n", + "Prob(H) (two-sided): 0.07 Kurtosis: 8.02\n", + "===================================================================================\n", + "\n", + "Warnings:\n", + "[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## ارزیابی مدل\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "برای هر مرحله افق یک نقطه داده آزمایشی ایجاد کنید.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 28, + "source": [ + "test_shifted = test.copy()\n", + "\n", + "for t in range(1, HORIZON):\n", + " test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')\n", + " \n", + "test_shifted = test_shifted.dropna(how='any')\n", + "test_shifted.head(5)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            loadload+1load+2
            2014-12-30 00:00:000.330.290.27
            2014-12-30 01:00:000.290.270.27
            2014-12-30 02:00:000.270.270.30
            2014-12-30 03:00:000.270.300.41
            2014-12-30 04:00:000.300.410.57
            \n", + "
            " + ], + "text/plain": [ + " load load+1 load+2\n", + "2014-12-30 00:00:00 0.33 0.29 0.27\n", + "2014-12-30 01:00:00 0.29 0.27 0.27\n", + "2014-12-30 02:00:00 0.27 0.27 0.30\n", + "2014-12-30 03:00:00 0.27 0.30 0.41\n", + "2014-12-30 04:00:00 0.30 0.41 0.57" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "پیش‌بینی‌ها را بر روی داده‌های آزمایشی انجام دهید\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 29, + "source": [ + "%%time\n", + "training_window = 720 # dedicate 30 days (720 hours) for training\n", + "\n", + "train_ts = train['load']\n", + "test_ts = test_shifted\n", + "\n", + "history = [x for x in train_ts]\n", + "history = history[(-training_window):]\n", + "\n", + "predictions = list()\n", + "\n", + "# let's user simpler model for demonstration\n", + "order = (2, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "for t in range(test_ts.shape[0]):\n", + " model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order)\n", + " model_fit = model.fit()\n", + " yhat = model_fit.forecast(steps = HORIZON)\n", + " predictions.append(yhat)\n", + " obs = list(test_ts.iloc[t])\n", + " # move the training window\n", + " history.append(obs[0])\n", + " history.pop(0)\n", + " print(test_ts.index[t])\n", + " print(t+1, ': predicted =', yhat, 'expected =', obs)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2014-12-30 00:00:00\n", + "1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323]\n", + "2014-12-30 01:00:00\n", + "2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126]\n", + "2014-12-30 02:00:00\n", + "3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795]\n", + "2014-12-30 03:00:00\n", + "4 : predicted = [0.28 0.32 0.42] expected = [0.26812891674127126, 0.3025962399283795, 0.40823634735899716]\n", + "2014-12-30 04:00:00\n", + "5 : predicted = [0.3 0.39 0.54] expected = [0.3025962399283795, 0.40823634735899716, 0.5689346463742166]\n", + "2014-12-30 05:00:00\n", + "6 : predicted = [0.4 0.55 0.66] expected = [0.40823634735899716, 0.5689346463742166, 0.6799462846911368]\n", + "2014-12-30 06:00:00\n", + "7 : predicted = [0.57 0.68 0.75] expected = [0.5689346463742166, 0.6799462846911368, 0.7309758281110115]\n", + "2014-12-30 07:00:00\n", + "8 : predicted = [0.68 0.75 0.8 ] expected = [0.6799462846911368, 0.7309758281110115, 0.7511190689346463]\n", + "2014-12-30 08:00:00\n", + "9 : predicted = [0.75 0.8 0.82] expected = [0.7309758281110115, 0.7511190689346463, 0.7636526410026856]\n", + "2014-12-30 09:00:00\n", + "10 : predicted = [0.77 0.78 0.78] expected = [0.7511190689346463, 0.7636526410026856, 0.7381378692927483]\n", + "2014-12-30 10:00:00\n", + "11 : predicted = [0.76 0.75 0.74] expected = [0.7636526410026856, 0.7381378692927483, 0.7188898836168307]\n", + "2014-12-30 11:00:00\n", + "12 : predicted = [0.77 0.76 0.75] expected = [0.7381378692927483, 0.7188898836168307, 0.7090420769919425]\n", + "2014-12-30 12:00:00\n", + "13 : predicted = [0.7 0.68 0.69] expected = [0.7188898836168307, 0.7090420769919425, 0.7081468218442255]\n", + "2014-12-30 13:00:00\n", + "14 : predicted = [0.72 0.73 0.76] expected = [0.7090420769919425, 0.7081468218442255, 0.7385854968666068]\n", + "2014-12-30 14:00:00\n", + "15 : predicted = [0.71 0.73 0.86] expected = [0.7081468218442255, 0.7385854968666068, 0.8478066248880931]\n", + "2014-12-30 15:00:00\n", + "16 : predicted = [0.73 0.85 0.97] expected = [0.7385854968666068, 0.8478066248880931, 0.9516562220232765]\n", + "2014-12-30 16:00:00\n", + "17 : predicted = [0.87 0.99 0.97] expected = [0.8478066248880931, 0.9516562220232765, 0.934198746642793]\n", + "2014-12-30 17:00:00\n", + "18 : predicted = [0.94 0.92 0.86] expected = [0.9516562220232765, 0.934198746642793, 0.8876454789615038]\n", + "2014-12-30 18:00:00\n", + "19 : predicted = [0.94 0.89 0.82] expected = [0.934198746642793, 0.8876454789615038, 0.8294538943598924]\n", + "2014-12-30 19:00:00\n", + "20 : predicted = [0.88 0.82 0.71] expected = [0.8876454789615038, 0.8294538943598924, 0.7197851387645477]\n", + "2014-12-30 20:00:00\n", + "21 : predicted = [0.83 0.72 0.58] expected = [0.8294538943598924, 0.7197851387645477, 0.5747538048343777]\n", + "2014-12-30 21:00:00\n", + "22 : predicted = [0.72 0.58 0.47] expected = [0.7197851387645477, 0.5747538048343777, 0.4592658907788718]\n", + "2014-12-30 22:00:00\n", + "23 : predicted = [0.58 0.47 0.39] expected = [0.5747538048343777, 0.4592658907788718, 0.3858549686660697]\n", + "2014-12-30 23:00:00\n", + "24 : predicted = [0.46 0.38 0.34] expected = [0.4592658907788718, 0.3858549686660697, 0.34377797672336596]\n", + "2014-12-31 00:00:00\n", + "25 : predicted = [0.38 0.34 0.33] expected = [0.3858549686660697, 0.34377797672336596, 0.32542524619516544]\n", + "2014-12-31 01:00:00\n", + "26 : predicted = [0.36 0.34 0.34] expected = [0.34377797672336596, 0.32542524619516544, 0.33034914950760963]\n", + "2014-12-31 02:00:00\n", + "27 : predicted = [0.32 0.32 0.35] expected = [0.32542524619516544, 0.33034914950760963, 0.3706356311548791]\n", + "2014-12-31 03:00:00\n", + "28 : predicted = [0.32 0.36 0.47] expected = [0.33034914950760963, 0.3706356311548791, 0.470008952551477]\n", + "2014-12-31 04:00:00\n", + "29 : predicted = [0.37 0.48 0.65] expected = [0.3706356311548791, 0.470008952551477, 0.6145926589077886]\n", + "2014-12-31 05:00:00\n", + "30 : predicted = [0.48 0.64 0.75] expected = [0.470008952551477, 0.6145926589077886, 0.7247090420769919]\n", + "2014-12-31 06:00:00\n", + "31 : predicted = [0.63 0.73 0.79] expected = [0.6145926589077886, 0.7247090420769919, 0.786034019695613]\n", + "2014-12-31 07:00:00\n", + "32 : predicted = [0.71 0.76 0.79] expected = [0.7247090420769919, 0.786034019695613, 0.8012533572068039]\n", + "2014-12-31 08:00:00\n", + "33 : predicted = [0.79 0.82 0.83] expected = [0.786034019695613, 0.8012533572068039, 0.7994628469113696]\n", + "2014-12-31 09:00:00\n", + "34 : predicted = [0.82 0.83 0.81] expected = [0.8012533572068039, 0.7994628469113696, 0.780214861235452]\n", + "2014-12-31 10:00:00\n", + "35 : predicted = [0.8 0.78 0.76] expected = [0.7994628469113696, 0.780214861235452, 0.7587287376902416]\n", + "2014-12-31 11:00:00\n", + "36 : predicted = [0.77 0.75 0.74] expected = [0.780214861235452, 0.7587287376902416, 0.7367949865711727]\n", + "2014-12-31 12:00:00\n", + "37 : predicted = [0.77 0.76 0.76] expected = [0.7587287376902416, 0.7367949865711727, 0.7188898836168307]\n", + "2014-12-31 13:00:00\n", + "38 : predicted = [0.75 0.75 0.78] expected = [0.7367949865711727, 0.7188898836168307, 0.7273948075201431]\n", + "2014-12-31 14:00:00\n", + "39 : predicted = [0.73 0.75 0.87] expected = [0.7188898836168307, 0.7273948075201431, 0.8299015219337511]\n", + "2014-12-31 15:00:00\n", + "40 : predicted = [0.74 0.85 0.96] expected = [0.7273948075201431, 0.8299015219337511, 0.909579230080573]\n", + "2014-12-31 16:00:00\n", + "41 : predicted = [0.83 0.94 0.93] expected = [0.8299015219337511, 0.909579230080573, 0.855863921217547]\n", + "2014-12-31 17:00:00\n", + "42 : predicted = [0.94 0.93 0.88] expected = [0.909579230080573, 0.855863921217547, 0.7721575649059982]\n", + "2014-12-31 18:00:00\n", + "43 : predicted = [0.87 0.82 0.77] expected = [0.855863921217547, 0.7721575649059982, 0.7023276633840643]\n", + "2014-12-31 19:00:00\n", + "44 : predicted = [0.79 0.73 0.63] expected = [0.7721575649059982, 0.7023276633840643, 0.6195165622202325]\n", + "2014-12-31 20:00:00\n", + "45 : predicted = [0.7 0.59 0.46] expected = [0.7023276633840643, 0.6195165622202325, 0.5425246195165621]\n", + "2014-12-31 21:00:00\n", + "46 : predicted = [0.6 0.47 0.36] expected = [0.6195165622202325, 0.5425246195165621, 0.4735899731423454]\n", + "CPU times: user 12min 15s, sys: 2min 39s, total: 14min 54s\n", + "Wall time: 2min 36s\n" + ] + } + ], + "metadata": { + "scrolled": true + } + }, + { + "cell_type": "markdown", + "source": [ + "مقایسه پیش‌بینی‌ها با بار واقعی\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 30, + "source": [ + "eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])\n", + "eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]\n", + "eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')\n", + "eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()\n", + "eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])\n", + "eval_df.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            timestamphpredictionactual
            02014-12-30 00:00:00t+13,008.743,023.00
            12014-12-30 01:00:00t+12,955.532,935.00
            22014-12-30 02:00:00t+12,900.172,899.00
            32014-12-30 03:00:00t+12,917.692,886.00
            42014-12-30 04:00:00t+12,946.992,963.00
            \n", + "
            " + ], + "text/plain": [ + " timestamp h prediction actual\n", + "0 2014-12-30 00:00:00 t+1 3,008.74 3,023.00\n", + "1 2014-12-30 01:00:00 t+1 2,955.53 2,935.00\n", + "2 2014-12-30 02:00:00 t+1 2,900.17 2,899.00\n", + "3 2014-12-30 03:00:00 t+1 2,917.69 2,886.00\n", + "4 2014-12-30 04:00:00 t+1 2,946.99 2,963.00" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "محاسبه **میانگین درصد خطای مطلق (MAPE)** برای تمام پیش‌بینی‌ها\n", + "\n", + "$$MAPE = \\frac{1}{n} \\sum_{t=1}^{n}|\\frac{actual_t - predicted_t}{actual_t}|$$\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 31, + "source": [ + "if(HORIZON > 1):\n", + " eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']\n", + " print(eval_df.groupby('h')['APE'].mean())" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "h\n", + "t+1 0.01\n", + "t+2 0.01\n", + "t+3 0.02\n", + "Name: APE, dtype: float64\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 32, + "source": [ + "print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "One step forecast MAPE: 0.5570581332313952 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 33, + "source": [ + "print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Multi-step forecast MAPE: 1.1460048657704118 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "پیش‌بینی‌ها را در مقابل مقادیر واقعی برای هفته اول مجموعه آزمایشی رسم کنید\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 34, + "source": [ + "if(HORIZON == 1):\n", + " ## Plotting single step forecast\n", + " eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8))\n", + "\n", + "else:\n", + " ## Plotting multi step forecast\n", + " plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']]\n", + " for t in range(1, HORIZON+1):\n", + " plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values\n", + "\n", + " fig = plt.figure(figsize=(15, 8))\n", + " ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)\n", + " ax = fig.add_subplot(111)\n", + " for t in range(1, HORIZON+1):\n", + " x = plot_df['timestamp'][(t-1):]\n", + " y = plot_df['t+'+str(t)][0:len(x)]\n", + " ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t))\n", + " \n", + " ax.legend(loc='best')\n", + " \n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "No handles with labels found to put in legend.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHjCAYAAAB7INHwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xV9f348de592bvhDBkhhEggCICIqCCgoJ7K462Wm1rtV+7tFpb/XVpq6211tFaR93WPVBQQXAwFBXUMMLeSHZyM26Se+/5/fG+J+ecDJYhN+P9fDx45JxzRz6xac59fz7vz/ttmKaJUkoppZRSSqnuxxPtASillFJKKaWUig4NCJVSSimllFKqm9KAUCmllFJKKaW6KQ0IlVJKKaWUUqqb0oBQKaWUUkoppbopDQiVUkoppZRSqpvyRXsAh1uPHj3MQYMGRXsYSimllFJKKRUVn3/+ebFpmtktPdblA8JBgwbx2WefRXsYSimllFJKKRUVhmFsa+0xTRlVSimllFJKqW5KA0KllFJKKaWU6qY0IFRKKaWUUkqpbqrL7yFUSimllFJKqa6ioaGBnTt3EggEmj0WHx9Pv379iImJOeD304BQKaWUUkoppTqJnTt3kpKSwqBBgzAMo/G6aZqUlJSwc+dOcnJyDvj9NGVUKaWUUkoppTqJQCBAVlaWKxgEMAyDrKysFlcO90UDQqWUUkoppZTqRJoGg/u7vi8aECqllFJKKaVUN6UBoVJKKaWUUkp1UxoQKqWUUkoppVQnYprmQV3fFw0IlVJKKaWUUqqTiI+Pp6SkpFnwZ1UZjY+PP6j307YTSimllFJKKdVJ9OvXj507d1JUVNTsMasP4cHQgFAppZRSSimlOomYmJiD6jO4P5oyqpRSSimllFLdlAaESimllFJKKdVNaUColFJKKaWUUt2U7iFUSqluYv16+O9/ITsbfvxjiIuL9oiUUkopFW26QqiUUt3Es8/Cjh3wxRfw5pvRHo1SSimlOgINCJVSqhsIBGDzZvt84UKor4/eeJRSSinVMWhAqJRS3cCmTeDsX1tVBUuWRG88SimllOoYNCBUSqluoKCg+bX5891BolJKKaW6Hw0IlVKqG1i/vvm13bvhq6/afyxKKaWU6jg0IFRKqS4uFIKNG+1zj+Mv//z57T8epZRSSnUcGhAqpVQXt3071NXZ52efbR/n58POne0/JqWUUkp1DBoQKqVUF+dMF83IgDPPhLQ0+5quEiqllFLdlwaESinVxTkDwtxciImBk0+2ry1ZAhUV7T8upZRSSkWfL9oDUEopdfiYZvOAEGDGDHjjDQgGoaEB3n4bZs2C2lr7XyDg/mr9a2iAkSNh6tTo/ExKKaWUajsaECqlVBdWVATl5XIcDMp+wscfl8CuulqCxXAY1q2Dr78Gr/fA3nf7dhg8GI444vCNXSmllFKHn6aMKqVUF+ZcHSwpgS1bYPNm2LNHgrlQSFYR6+oOvrjMunVtO1allFJKtT9dIVRKqS7MCghNE3w+d8uJlBTo1UsCRa8X9u6Fk06ChAT7X3y8+7iiAl59VV5fUCDPV0op1T3V1Ei16pwcyM6O9mjUodKAUCmlujArIKythaQkOc7MhCuvlCCvoADuvtt+/vjxMHp06+8XCsG8ebKvcPdu8PslsFRKKdX9vPqqZIv4fHJfGTAg2iNSh0JTRpVSqouqqoJdu+TY74esLDkePhzS0yEuDsaMgb597dfMm7fv9/R6Ydgw+9yZkqqUUqr7qK6WSUWQPepPPy371lXnowGhUkp1URs22MdVVdKDEOxKowCGIdVFLV99JSt/++J8vQaESinVPa1dK9sRLLW18OSTMgGpOhcNCJVSqouyZm5DIUnn8fmkB+GgQe7nTZ7sTvvcX6P63FwJJAE2bpSZYaWUUt1Lfr59bO1PLy+Hp56SQmWq89CAUCmluihr9c7vl32DADk9/PjMBtfzYmOlL6Hl44/3PcObmAj9+slxfT1s29aGg1ZKKdXh1dRI1WqQycbvfU/uJSBVrJ97TiYjVeegAaFSSnVBDQ32zbqyMhIQLlxI7vWnyAbCX//aFfWdfLLc1K3Xvv/+vt9/+HD72FqJVEop1T2sWyc9bAGGDpUqoxdfbK8UbtoEr73mTilVHVe7BoSGYXgNw1hpGMbcJtfvMwyjynEeZxjG/wzD2GgYxieGYQxyPHZL5HqBYRintt/olVKq89iyRVI5TTNSUIZiWLaUYWaBTO3eeadUh3n0UQiFSEuT1FHLe+/tOxW0aUCoN32llOo+1qyxj0eNkq+5uXD22fb1VatgwYL2HZc6NO29QngDsNZ5wTCM8UBGk+d9HygzTXMo8HfgL5Hn5gGXAKOAWcCDhmF4D/eglVKqs7FW7QIBSeOJ37aeLErIpMx+0t69cPXV0mti8WJXcZmKCli2rPX379ULUlPluLRUehkqpZTq+gIB2T8OUnnaOUE4bpy7P+2HH8Knn7bv+NTBa7eA0DCMfsDpwCOOa17gbuCmJk8/G3gicvwScLJhGEbk+vOmadaZprkF2AhMPNxjV0qpzsbaP1hZGWk3sWEDubRSEnTVKpg+nf43nMeo3nZkN39+6yt/hqFpo0op1R0VFNj7A4cMkZ62TtOmyTyjZe5cqUiqOq72XCG8Fwn8wo5r1wNvmKa5p8lz+wI7AEzTDAIVQJbzesTOyDWllFIRpmm3nPD7ITOpDnbsYBiOPhRxcc1f+OqrzL73VPjic6ivZ/v2fd/Ene0nNCBUSqnuYfVq+zgvr/njhgFnnmlPGpomvPACbN/ePuNTB69dAkLDMM4ACk3T/Nxx7QjgQuCfh+H7/cAwjM8Mw/isSDtkKqW6md27pWFwKCRfs/xb8NHAQLayl55sy51JaO16mDOn2WuPDH5OnzUL4fXXYP165r/Vepm4IUPsQjTbtkkakVJKqa6rvt6ecPR4YOTIlp/n8cBFF9kVqa3G9cXF7TNOdXDaa4VwCnCWYRhbgeeBk4DVwFBgY+R6omEYkYxkdgH9AQzD8AFpQInzekS/yDUX0zQfNk1zvGma47Ozsw/LD6SUUh2VtVrn90vfweQdaxnMZh7lak7nLc6vfIwpcwZwcehZbr58Jw/n3MF7zGATg2kghlnMlyZSn37Cyj+9zZ7nFrf4fWJiYPBgOQ6H7T0lSimluqb16+2CY4MGSRui1sTGwuWX222PamvhiSegqqr116joaJeA0DTNW0zT7Gea5iCkKMz7pmlmmKbZ2zTNQZHrNZEiMgBvAN+NHF8Qeb4ZuX5JpAppDjAM0K2qSinl4No/mBHG2LSJNCp4jKvkgbR0gkEpC75gbV8ezryZW3Ke5+KYV5nKx/yT6/maMRSQy+6KRJ64dB51s8+ROuNN6D5CpZTqPpzpoqNHS7XR226DJ5+Eb75p/vykJPjud+UrSOP6J5/UxvUdjS/aA2jFo8BTkRXDUiSIxDTN1YZhvACsAYLAdaZpattLpZRysNpA+P3QJ6MYArWsZCwmBnh9kJzU5BUGZGZBejrhvXvZ8Y0PfziF8khCxpccyQvztzPgnQIGH7WHnIsnMvXUJI4+2r2PcMMG+b6G0X4/q1JKqfbR0GBPOBqG9B88+WTZMpCQIMVjJkyAmTPhqKPse0FmJlxxhXQ5amiQxvXPPy+rh17tFdAhtHtjetM0F5umeUYL15MdxwHTNC80TXOoaZoTTdPc7HjsT6ZpDjFNc7hpmvPaa9xKKdUZlJXJHo1AQG68WWUbSaSGBcyUJ6Slkp5uMHOmew8gAB4v9DkCRo8mJcOHgZQYNfFQSSo7zb58uCqFJ36znmvOLuSDxSbp6dKCAmS/4q5mSfxKKaW6gg0bZA8hwMCBsHChBIMg6aAbNsBXX8Hf/ga//CXMmyf3BYC+fd2N6zduhNdf1x62HUVHXSFUSil1CJzpoh4PpO/Ip5BsaonUBU9L59JL4apI9mgoBDt3SiP7zZutr7FsSRpI0pY6qooDEAxSSSppVGBYL9qxnb/9qJzjvsolN1daGoKsTlpFBJRSSnUdTauL3nef+/EdO2TVMD4eCgvh2WfhpZdgyhRZNRw+HM46C157TZ6/cqX0s50xo/1+BtUyDQiVUqoLsQJCvx8yEmoxi4v4nKmNj8dlp3LeefbzvV6Z6R04UHpHWcJhWLEijtt+G0vVthKqtpSS3VBENcmNweXugkqevXMb0783kI8+ktcVFEgKkVJKqa4jGHTvEx8yBD7/3D7PzJRJyNJSOOII+3p9PSxaJP9GjJDA8IQTpGE9wAcfQFqapJqq6Gn3lFGllFKHj9UwuLoasgK72M4Aqolk5CencMY5PtLT9/8+Hg8ceyycOM1g8MQeHHlBLhOmp/JswtXE0ND4vMfuLibRV9/YmHjPHlmdVEop1XVs2mQXgunfH774AkpK7MeTkyElBWpq4PrrYdKk5vsD162Df/4T3nhDAkzr/d58s8WaZaodaUColFJdRCAgjX/9ftmXkVm8gU0MadwLSFoal112cO85e3bkwOtla98pVP/1IebwXOPjNdUm//7OEoYNs19jrVIqpZTqGpzpoqNGSSqoJSHBDv4aGmDpUrjuOrj3XjjvPFkBdCovl3vV8uWyylhaKo3rd+w4/D+HapkGhEop1UVs3GhXFyUcomF3EWVkND5+wowYBgw4uPccOxZ697bP59WdxFUXVpFBWeO11xelELdna+O5tp9QSqmuIxRyr+ANGACfOpq+JSXZbSUAXn5ZCpylp8O550pgeN11uCYOPR7Zb15SImmjCxbAPffICqNqfxoQKqVUF7F+vQSElZWQGi5nnZlLPAF5MDaOy67PPOj3NAw49VT7fOVKqP7dX/lRqr1KaJrwxu9XysZDJLXIalyslFKqc9uyRaqIguwPXLcOiork3DBgzBjpNWgJBOCZZ+xzn09SSG+7Df7wB9lD6PPJquLgwdLAvqwM3n8fXnyx/X4uZdOAUCmluoiCArvdRELFXnbRFx/SqnVETh3jjjm0BoHHH2/P/pomvLMik3P+czpD2NT4nFUl/Ql8JFPGDQ2wdeu3+lGUUkp1EE3TRd94w24/kZAgAd5FF8keQssLL7S8n3zQILjmGqlQevHF0rZo4EAJLMNhWSlcu/aw/jiqBRoQKqVUFxAKScqo3w9gUlYUJM5aHQQuu8JzyA3j4+Jg+nT7/MMPoe6M8/n5SV+6nrf8oyChvcWAFghQSqmuIBx2B2h9+sCKFfZ5cjJMnSpfL7nEvl5TA8/ZiSTNpKTAGWdImuikSZCdLde/+UYCTk0dbV8aECqlVBewfbvM2FZWQqg6wJ5gVmO6aE9vCTN/Oupbvf/MmXbRgLo6KSF+7HM/5fj4zxqfU0kya19aDeFwY/qqUkqpzmvbNru5fO/esjWhsFDOPR7o0QOOPFLO58yBxET7tc89B1VV+35/jwcmTpT3jo+XVNSKCnjrrbb/WVTrNCBUSqkuwNluorZMAsE4JKfnkrEF+JLivtX7Z2ZKGwrLu+9CKKsnP73rCLyRtFQfQb4q60dgyeeUldl7TJRSSnVO+fn2cV6e7POrqJDzxEQ47jjZDwjSZP6ii+znV1VJ6uj+jB0rgWH//rIiWVQEX30Fa9a03c+h9k0DQqWU6gLWr5d00XAY/H6DOOoxMEmglnOuzNj/GxyAWbPs49JS+M9/oP+Pz+TCUZJPZAAGYb74sApKSrT9hFJKdWKm6Q7KsrKksJglORmmTHG/5rLLZJuB5Zln9p/+mZ4OOTmyV71nT0kbBelPqKmj7UMDQqWU6uRM0w4IqypCmKFQ4/7Bs3md1PNntsn3ycmRggKWJUvgkUcNrnllNqk+uWvHE2CtmUvZa4spWBtuk++rlFKq/W3fbqd8ZmfDhg125ofXKymekye7X5ORAeefb59XVLh7Frbm6KPla69esvXBNOV7a+po+9CAUCmlOrmiImn0W1kJ5SUhvASJpw4DkzlHrnE3EvyWrr1WigpYPvoIXvqoF9dcIxVrrDTVT/f0Z/vLKxpLlSullOpcnKuDeXkyCWgFhElJMHx4pBhMkw3j3/mOtJKwPP20VMDel3Hj5KvHIyuRVoVSTR1tHxoQKqVUJ2e1m6ishPq6MLHU4yXIdBbR97xj9/8GByEtDW65xR1jLl4M1eOmMqCXBKFx1LGDfmxbsJ6Ni3a06fdXSil1+Jmmu91EcrJkojQ0yHlSEkyZbMKNN8qy4IwZ0mUeKTRzzjn2a0tL4dVX9/39BgyQverWe2c4djpo1dHDTwNCpZTq5Kx00fIyE1+4nngCGMDlPC11vdtYRoYEhT172tc++MAg76IxmB5vY3XTT0LHsOaXjzU2rFdKKdU57NplF4/JzJS2RtbqoM8n+wQnBz+Av/5VnrhwIfzoR42v/+537WIzAE8+afcubIlhSHEZSzBo32OqqzV19HDTgFAppTo5qwx4dVU4ki4aYDT5jOlVZG/MaGOZmfDrX8tMsGVbWSqZw3sSRx0A5aTz2tphhB/692EZg1JKqcPDuTo4ciQsX+5OF01JgSPfu8f9opdekka1yF7AM8+0HyoqkpW+fbHSRkH2L06fTmP/XE0dPbw0IFRKqU7M74cdO2DPHiAUIoYG4qjncp7GOON02ZBxmGRlwa23yldLUu4R+BN6EYPkFS3nONbe+Jg0s1JKKdXhNU0XjY2VSUdrxTA5GSaN9uOd38Ky3U9/Kj2QgO99z30L+u9/7ZTTluTlufceFhXB8cfb55o6evhoQKiUUp3Yhg2yP6Oy0oRQiARqOILdTGfRYUkXbapHD1kptPZ7pKQYpOb0oAG5qweI45+1V8E112ineqWU6gS++QbKyuQ4LQ02bbJXB2Nj5d+UyvktbwdYuRKeeAKAvn3htNPc7/v2261/35gYGD3a/VbTp2vqaHvQgFAppTqx9eth82YwwyY+giQQYA7P4Y31ySb/dtCzpwSF6elynjs6loakdALEAzCfWWx/bx08+mi7jEcppdShc64OjhgBn33mThcFk8kf39X6G/z6141lQq+6yr1K+PjjjQuILXLucsjPl5jzvPM0dfRw04BQKaU6sfz8SBPfkLSbyKSUs3kdpk2TvJ520ru3FJpJS5PZ49wj46nzJFJHPHXEcRc3wi9+ATt3ttuYlFJKHZym6aKGIStzxcVynpQEIzIKydrymf2k2FhpSmjZuxfuvBOQ6qEzHa1wd+6Ed95p/fs7C8s0NMhY+vbV1NHDTQNCpZTqpOrrYdGiyJ6MUIg46riQF0mipl3SRZs64ggJClNSICfHICE1htpIQLiQk1lRmQs/+IGmjiqlVAdVWGgHfykpkoFSXi73mbg4Seuc4p/vftE558Avf+m+ds898mLg+993P/TYPopPp6fD4MH2+cqV8rVp6ujcuYfww6lWaUColFKd1KZNUgocTDDDJFPFHJ6XB08/PSpj6ttXgsLUVMgd4QVfLLUkUEYm9/BzwvPmS/1xpZRSHY4zHXPoUAnICgvlPDkZCAWZsuoB94uuugp+9SuZFbTU18NNNwES4J10kv3Q1q3SpaI1zrTRlStlDtHnk9RRK/306681dbQtaUColFKd1BtvyEyppIuGmcECerNXaoQ7p1jbWf/+cPPNUjEuIcULhodKUlnBMbzBWVKFbvfuqI1PKaVUy5zpouGwrAw69w+m1u5ldJ0jXbR/f9mvnpzcmCba6OWX4YMPALj6avdDjz7a+iqhMyAsL5cAEmTCcepU+zFNHW07GhAqpVQn9corkc35Iek/eC0PyQNRSBdtauBA+M1vYMgQA2JjMYFisvkDv6G6vB6uvVZTR5VSqgMpLpbtfyDB3+bNEAhIfZiEBPB6YVLle3hw/O2+8kp5AODyy2HCBPebRtpQ5ObCCSfYlzdubGxZ2MyAAe52RlbaKGjq6OGiAaFSSnVCBQVSYRRMCIcYxFbG8pU82AECQoCcHNlWkp7hAV8MIbxsJYdbuEOmdp97LtpDVEopFeFcHczJkXNnMRlqa5m65wX3i6680j72eODee92Pr1olDQhpvkr4yCMtzwsahru4jDMg1NTRw0MDQqWU6oQefBCCQSI5NyYXEblJp6fD5MnRHJrL9OkwezZ443yEjBhM4Dnm8DLnwk9+Yk9HK6WUiipnQFhfL7eXwkIJ0JKSgOJiJrHcftLJJ8OgQe43mTwZLrnEfS3ShiIvD447zr68bh0sXdryWJxpo1u32n0RQVNHDwcNCJVSqpMpLJSy3Va6aBx1fJ9H5MFZs2QKtYPIzpZGwxMmGBAbh4lBGC+383s+Ks2DW2+N9hCVUqrbKyuDPXvkOCFB0kXDYVkhTEgAjxEmr3wpmTgis6blQy1/+Yu7DUVhIdxxB3Dgq4R5edLNwuJcJQRNHW1rGhAqpVQn8+KLUFUVuYmGQwxlI72I7PrvIOmiFsOA3FyYNAmye3kIxyUCsIc+3M2N7H5svuS/KqWUihrn6mC/frLHr7xcMlGSk4HycqbUv28/KT0dzj235TcbMABuvNF97e9/h82bOeooGD/evvz117BiRfO3iImRyURL04BQU0fblgaESinVidTWSuG26mrADOM1g8zkXQyQO+OsWVEeYXMjRsjNe+pUSMqIw4jcwfMZxVxzNvz2t1EeoVJKdW/OgDAQkK+FhXJbSUgAiouZwhL7SZdd5l4FbKqlNhSRILGlVcKWjBvnHl99vftxTR1tOxoQKqVUJ/Lmm1BaajWjD5NKBdOQst5MnuwuzdZBDBoks705OdCzl0FKD0lprSCdF7iI8hffhS++iO4glVKqm6qogJ075Tguzm7zUFQEiYngCdaTVrmDPBxLcK2li1qSkuDPf3Zfe+UVWLyYY46Bo46yL3/xRcu3AGdhmYYGyM9v/pymqaPz5u17WKplGhAqpVQnEQ7Ds8/KDGgoBEY4SBalHM9H8oQoNaPfH59PGhwbBhx7LMRlJGN45fazljzmcroUHVBKKdXunKmW2dmwY4esEvr9kXTRkmIms9RuN3H00e6qL6257DKYONF97ac/xQiHDmiVMC0Nhgyxz1etav6cllJHm64kqv3TgFAppTqJDz+UWdzqagCT5HAluRSQSCS/p4PtH3TKzZWvPXvC6NEGyT3iAAgQz7/5IYF3FsPixVEbn1JKdVfOdNHaWvlaVCTtBePjTSguYTKOcqD7Wx20tNSG4ssv4fHHmTRJCsdYPv1UgrmmnHHnypUtF6Dp29cudhoK2Suc6sBpQKiUUp3EM8/I15oaIBwmgzKO4ku5OHAgjBoVtbHtjxUQWsc9+iU0VkNdxwhe5Ry45RZtVq+UUu3I74ft2+U4JsadLpqUBEaVH6M+wHEskwfi4uDSSw/8Gxx3HMyZ4752660Y/soDWiV0po2Wl7ce7A0dah9v3Hjgw1NCA0KllOoE1qyR2dFQCOrqINGoJZY6O130jDMkJ7ODSk2FPn3k2OuF8883SMyUggRhvPydnxNa/qlsklRKKdUu1q615+HS06GkxG43YfUeHMVq0qmQJ513HmRkHNw3+ctfIpVpIgoL4U9/4vjj3ZOFS5bA+vXulw4Y4N4a37TaqEUDwm9HA0KllOoEnKuDpmmSHiwmjnomEKnX3UH3DzoNH24fjxkDg0fEyZQ0sIkhPMsc6UsYCkVphEop1b04C7VYFTqtJvBxviCUlbmrix5ouqhT//7N21Dcey/G5k3N3q5pP0HDcK8StlZ/rHfvSACLrG5WVBz8MLszDQiVUqqDC4fh44/luKoKYr1hEkOV5LCFZGqkDNz06dEd5AFwBoRbt0qGaFy6PWt8NzcRyl8Nzz3X/oNTSqluprraTsH0+WDbNjluTBctKwXTtAPCQYMO/V5z002y2c8SaUMxfbp7BXD+/OZzgs59hNu2SaXtpgxDVwm/DQ0IlVKqg9u2zSokIzO4SR6Zxj2ayFTpjBn77gfVQfTta8/g7t0rFUePOTYGYmMB2EVfHuYHcNttWiZOKaUOM2e6aGKiTDiCZHQmJwPFxWRQxgjWyQNXXmmX8zxYLbWhePVVPB8scrXPLS2VAjNOeXmyddHSUrVR0IDw29CAUCmlOjgrpcfaPxhfX4mBY9a2A1cXdTIM936RDRvgjjsgJtVeJfwHP6VmyzetdypWSinVJpzVRa1Jx9pauc/EBmugpsZuN2EY8L3vfbtveOmlMhPo9LOfcdqp7iXBpr0EY2Jg9Gj7vLW0UWeLik2bJLtGHRgNCJVSqoOzAsLqatk/GF9XQTLVjLKaBJ92WvQGd5CcAWFBgewlnDnL1zj9W0Q293ID/P739icUpZRSbaqmBjZvlmPDsBvTFxXZvQcBe+Jx5kyp8PJttNKGIvfjxxg82L60aJHd/sLiTBtdvVqC1qZSUmQvIcjr9+z5dsPtTjQgVEqpDs4KCKuqIIYGvATpy06yKJG7pHNfRgc3dKidcbR5s5QRv/NOiHWsEj7K99mz14D77ovSKJVSqmtbt85eQYuNtQOswkJISgxDSQkewkxiuTxwKMVkWjJpkjSsdzB+cyuzT6xpPK+thQ8+cL/MWVgmGHSvbjpp2uih0YBQKaU6sEBAUitNU2Z048IybXoMn2NAp0kXtcTH2zfsYBBeeEHaUZx7gbdxH2QF6dzFjXDXXXa5O6WUUm3GGVBZewfDYbnPxFSVQyjEaPJJxS9VX84+u+2++Z13uttQFBUxa/XfXE95+233S9LS3Cmh2n6ibbVrQGgYhtcwjJWGYcyNnD9jGEaBYRj5hmE8ZhhGTOS6YRjGfYZhbDQM4yvDMMY53uO7hmFsiPz7bnuOXyml2ps1i9vQAA31JvH1fmJpYJxVUKYTtJto6rTTGuvIsGMHLFwIv/sdJGYmgGFgYvA6Z7OqfKAEhUoppdpMba3ssQOZbNy9W45LSyPZ+8WSLjqVSHnryy93V3X5tvr3l6qjDn0e+QPjhtq9IpYvb15N1Jk2unKlXRDHacAAqZgKsH17y6mlqrn2XiG8AVjrOH8GGAGMARKAqyPXZwPDIv9+ADwEYBhGJnA7cCwwEbjdMIyD7I6plFKdhzWLW1MD4VCYeGpIoZLhrIfsbJgwIboDPARZWXDWWfb5Rx9Jz6iLLvE0rhL6SeUubiR87326EUQppdrQujTM7GEAACAASURBVHV2awePxw6sioshKaYO/JUATGapPHDVVW0/iJtugn797POGBmZveajxNByGd991v8QZEFZUwJYtzd82Jka6Y1jv0dJzVHPtFhAahtEPOB1oLB1nmubbZgTwKWD9ZpwNPBl5aDmQbhhGH+BU4D3TNEtN0ywD3gNmoZRSXZRz/6ARChFHPT0opj87ZHXwUEuAR9lRR7lv7i+9BNdeCxl94sEwCONhBRN4K3AS/PGP0RuoUkp1Mc50Ub/fPg4EwFtWAkAWJeSyHsaPhyOPbPtBJCY2a0Nx8qd3EFNb2XjeNG20f393z0JNG2077flJ4l7gJqBZEdhIqugVwPzIpb7ADsdTdkautXa96fv9wDCMzwzD+KyoqKhtRq+UUlGQny+znIEAxIYDeAkxji+kDHgn2z/Y1BlnyCInSEHRjz6CCy70QEIiAJWk8U+up+bfT9n5TUoppQ5ZIGAHScGgFJEByUKprzcbq4s2tptoq2IyLbn0UikyE5GKn+NDixvP16yRPrwWw2ieNtoSDQgPXrsEhIZhnAEUmqb5eStPeRD40DTNj9ri+5mm+bBpmuNN0xyfbX3aUEqpTqa0VLIl6+ogWB8m3qwhGT95rJW8mJkzoz3EbyU2Fi66yN7vsXmztKHoOzgWPB6C+NjOAP4buhxuvz26g1VKqS7AmS5qmnaSSWkpJIX8UF8PRNpNxMfDJZccvsEYRrNVwtmbH4BQsPG8aU9CZ0C4bVvzfYYAPXtKCwqAkhKtTXYg2muFcApwlmEYW4HngZMMw3gawDCM24Fs4OeO5+8C+jvO+0WutXZdKaW6HGf/wVBDiHgCpFJJHmvghBMgNTW6A2wDvXu72ygWFMCUqR68SVKBroI0nuJydj+zCL7+OkqjVEqprsGZLlppZ2dKcFgqWXUewhzLJ3DBBZCefngHdMIJOJsQTmlYREpNYeP522+7i8eMHOmub7NqVfO3NAz3KqEmmOxfuwSEpmneYppmP9M0BwGXAO+bpnm5YRhXI/sC55im6UwlfQP4TqTa6CSgwjTNPcA7wCmGYWREismcErmmlFJdTn6+3Airq4FQmDgC9KCYwWzu9OmiTuPHw6hRcmyacrMfNDwOvF7qiaOSVO7jJ3DrrdEdqFJKdWJ1ddLGCGQhsLxcjsNhKC0KNl44ii9JoerwpotaDAO+853G01gamFk3t/F89273XGBMjGSSWL74ouW31bTRgxPtagT/AnoBywzDWGUYxm2R628Dm4GNwH+AHwOYplkK/AFYEfn3+8g1pZTqcvLz5abdUG/iMRtIo4JRrMFHqEsFhIYB55xjT0QnJ0NWD4O4VJkGriCNBcxg5Zs7YOnSKI5UKaU6L2e6qGGA1yvHFRXgqyxpXIqbzFJp+nfiie0zsCuucJ3O3vYQ1AUaz5sWl3E2qV+9uuXWEs6ehZs2SdCrWtfuAaFpmotN0zwjcuwzTXOIaZpjI/9+H7lumqZ5XeSxMaZpfuZ4/WOmaQ6N/Hu8vcevlFLtIRyWG10gAA11drroSNZCbq57+rMLiI+Hiy+W/SyGAT16QN/B8eD1UUsi9cTwN35B+OZft9x8Siml1D4500UDdryF12PiiRSTgcj+wSuvlD/G7WHwYJg6tfH0KL6kT71dTebdd6UXr2XsWHtowaD757IkJUGfPnIcCMAu3WC2T9FeIVRKKdWCbdskVbSmBsLBMHHU2QHh7NnRHt5h0a+fXSenf38wMUjpIR3sK0hjHSOY+1EqvKM7BZRS6mA400VDISm2YinbWSXd6oFsihhmbILvfa99B+hIG/VgMrvkGUAm/yorYdky+6lpaa5th5o22gY0IFRKqQ4oP19mPuvqTAiFSKKadMpl/+Csrtt+dcoUGDZMUplyciApKwHTF0M1yQTx8gDXUXPz7zX/RymlDkJBgdxTwE4VBYkD/dvtMpyTWYoxexb0bdbV7fC68EJXtZhZJU9DVXXjedO0UWe10VWrWk4c0YDwwGlAqJRSHVB+vqS5BOvCgElPCsllA774mPbb1xEFhgHnny8lw3NypIBASo84whhUkkoJWTz+5dHSyV4ppdQBcaZVOvfcxXiCeMvt5cIpLIGrrmrHkUWkp8PZZzeeDmYLw0P2oD/8EKqq7KePG2cfV1RI26KmBgyQewjAzp3uNFnlpgGhUkp1QM79gz6CZFEi6aInnggJCdEe3mGVlCTVzuPj5YaemB6HGROLn1TCGDzDZey+5Z/2dLdSSqlW1dfD+vVybJp2M3qAmk17GivNeAkxsccWOPPMKIwSV9oowGm7HoFIE4L6enj/ffuxfv0gK8s+b6n9hM8nE4sgSSUtBY1KaEColFIdTF2dpPcEAhAOmSRQSzJVEhB24XRRp8GDJfYdOlRmeJOz4gjixU8K9cTyj81nwH//G+1hKqVUh+dMF42JsSuNhkKwe72dljmWVSR/5zyIjY3CKIFTTpGu8tZp7Wt4Ksobz51po4bhThtdubLlt9S00QOjAaFSSnUw69ZJMZlggwnhEGmUk0Cgy+8fbGr6dMjLk0pxaVmxmDHxVJCGCSzkZL649eXGQghKqY7LNOHLL2H+fPD7oz2a7seZLupMrIitq8R05GFGLV3UEhMDc+Y0nmZTzISgXU3m889h71776c6AcNs2d6EciwaEB0YDQqWU6mAa9w8G5M7dkyKGsQHfwH4wfHiUR9d+PB646CIYPVpmgzN6xVJLAtUkAfC3wssJ3/9glEeplNqXDRvg97+HO++Ef/0L7r5bO8e0J2e6KLgDKrNJhDTlqGoYNaqdRtaKpmmjO/4NQek5YZruItMjR7rq0LSYNtqjB6SmynFZGZRq9/IWaUColFIdzNdfR/YP1ocxgD7sIY81sjrYXn2hOojUVLjmGtkrkpzuIybORzFZmEABw5n7h5VSk1wp1aF88w3cd58Eg/n5kvmwaRPMmwdvvhnt0XUfGzbYPfwSEhxJFeEw3xTYfzt7UsjgH3eADJSjj3YFpdPDC4irLGo8d6aNxsTAmDH2eUtpo4ahq4QHQgNCpZTqYD77TNJ6wkGTBGpIINCt9g82NWKEVB4F6NE3lhqSqSYRgPv936Hmwf9Gb3BKKRe/H556Cm6+GVaskH1qW7fa+9YCAVktnD9f60K1h/x8+9j63wAgruwbiuuSG8+nxnyCccnF7TiyVhiGa5UwkVqm1cxrPN+40e6nCO600dWr3RVULRoQ7p8GhEop1YGUlsL27RCqDwFhMignlnpyvDvgpJOiPbyo+dGPoHdviEv0kZIYZi+9MYFSMln47N79vl4pdXjV18PcufCLX8C770rwYZqwY0fzVZqqKgkaH3pI2gGow6OhwZ0u6qwuam7bjjPf5MTpXju3Mtouu8yVDXPa3sdc+8Xn2fEhY8faTw0G3QGwZcgQ+zmbN7sDYyU0IFRKqQ7E2j/YENk/mE0huazHN3VSx7lZR0FMDFx/vTRUzuwTS4B4SskEYOnqNHeDKqVUuzFNWLIEbroJ/vc/d52nigopCjVjhqT2zZwJGRnyWEEB7NoFDz8M772nq4WHw4YNEqiD3D7KrYKdpsnOLfWNz0vBz8SrRrf/AFvTt6/80kQcyydkVNszB/PnSxsJkJ9ryBD7pS2ljSYmwhFHyHFdnU5CtEQDQqWU6kA+/VRmdYMNJgYmvdjbrdNFnU47TWrq+BJiiTMaKCWTAHEsD08gtGBRtIenVLezejX89rdSLMZZ4dHjgaOOkq1gw4fLRM6MGXDDDTBokPwLhSR9zzSl6biuFrY952qZFUABUFlJcW1i4+k0z0fEzJ5Bh+JIG/UR4pSy5wGpRlRYKBVHLc600VWrWi5apGmj+6YBoVJKdSBLl0I4bBIOhYmlodv1H9wXqyJ5VhYkJpg0EEspmVSSwurnvor28JTqNnbtgr/+Ff78Zyn373TMMfCb30jAFxMj10aMgOOPh4EDYfJkSE+Xa6WlkhEB8iH/4Ycl3VRXC7+9hgZZhQVJlywuth8zdu10pYvOOKa042WgnHsuJCU1np5W+TxU2j1LnGmjzoCwosK9x9CiAeG+aUColFIdRDgsM+7BWvk0lEY5cdQzuFeNTLcrZsyAnBxIz/RiArUk0EAMSxYGtJa9UodJfb3sbS4pgUcfhVtukb6CTkOGSCD4k5/A4sV2FndmphSFsvZwXXAB+Hzyr29fCQ6TI7VNTBM++ggefFBXC7+tjRvtdNGMDKn6atm92c7rTcHPxEuHtfPoDkBSkvyyROSxhgEBe0PkwoV2AZl+/aBXL/ulK1Y0f7v+/SE2Vo537dIWtk1pQKiUcgmHpcrlCy/Ali3RHk33smGDVOgL1ln7B4sYTgHeWTO7XbuJ1iQnw7Rp0HtwIh7C1BFHgHiWluTqtK9Sh8HGjXD22TB9uqzEPPmkuyhHdjZcdx3cfrukh777rgSPYK/qx8fbz+/RQ/YSWtavl8/9Rx5pXysqktXCd97R1cJD5WxG71Tvr6Os3D6fxmJizj6tfQZ1sBxpowYwe+/jEJZfvupqmTwAuT1OnGi/7NNPm88Per0weLAcm6YUl1E2DQiVUo2sDf6vvy698J54Qv9otqcFC+RGFWww8RImkzJNF23B7NmQmuElMSaIiYGfZNYyktJXFkd7aEp1Kdu3ww9/KIU6ysvlQ3h+vqwA7t4tgdxdd8GkSfKhPD9f0t4tZ50l1YGbOussKfQBMgk5dy5ceCFceql7tfDjj2W1cMeOw/6jdinBoPR9tDibsRvf7HGli87M2SRpFx3RtGmytBcxu/516S4f4exJ6AwIS0ul52VTzrTRltJKuzMNCJVSBALSKPjf/5ag0BIKwbPPwp490Rtbd7JsGYSDIcImeAmRTjkjWeeeTlf07CkZtEnJ8rGmlkRMDJa/vGs/r1RKHai9e+HHP5ZJQauxOUjgFxcnH7r/+U9pH1FdLXsAX33Vft7EidISoCXJyXDmmfb5Z5/JB/SRI+H//s+dIV9UBP/5j6wWOsehWrdxo51OmZ3t3ue5d7NdkTkFPxMuGNjOozsIHg9cfnnjaT92cWTdZ43nS5bYlVMHDpSf1dJS2mjTfYS6y8CmAaFS3Zhpyj6Qe+91p1gkJMi+D5CbypNPuibl1GEQDsvserBWPvEkUkUqleRMzJYqKspl4kTo0UcqVtQTSx0xLFmZaFeoUEodstJSuPZaWSH0R+p4xMTIql7fvnJ/8Hrlw/gDD0gF4Ouvh8pKeW6/frKSvy+nnGLfZwCef17uQQkJsvJ42WW6WnionOmiPp99b6+pClNRYufgTmcRMeec3s6jO0hXXOE6nb3nscbNkaGQZNbAgaWNZmbKnlWQ4jPOyrjdnQaESnVThYXw2GPw0ksyu2sZN05Kg191lV10rKpK0kedz1Nta9MmmQkP1oXwYJJJObmsxzv7lGgPrUMaNw4yjkggzmjAxKCKFJYFxxP+8ONoD02pTq2yUvYEbtsmgaFpSjGO6dNlf+DFF9vVQ8FuPv/RR9KHcNUqCfZ8vn1/n9hYKTZjWb/e3UNuxAhZLXSuMhYXy2phS83HlQgGYe1a+9w5mWsWF+MJ2wHhjLTP4Nhj23F0h2DkSJgwofF0Ju/iLbNLpraWNlpc3LwOgmFotdHWaECoVDdTXy9NgB94ALZuta/36gVXX21Xek5Lg+9+V2ZrQWbSnnrKrlqm2tbChdJuIhh0povq/sHW9OkDQ4YYJMZLc60qkqkklTXProryyJTqvGpqJAjbsEGqMNbWSmA3caLU9xg5En79a9lnPmeOpI5WV9sVG4NBua9cdpnsLXRWtmzJ1Kmy4mj53//cBWsSEiRovOwySEmRa6Ypew6tlEjltmmT/d+mVy930FO82W7bkEolE87sLUu9HZ2juEw6FUypeRerJ+FXX9lbXXJy3Ak1n37a/K00IGyZBoRKdSNr18J990kTYKtJbWysxBzXXis5+E49e0r6vjXTu2sXPPec+4at2sayZRCuayCMgccKCFN3u2ZGldsJJ0BKunyYCZBACIOl7+kytlKHor4efv5zWX0zTZkE9HrlT9CIEe6tzD17wi9+IROLOTn2imFKigSJ9fVSqfqcc+APf2g9zdPjkRVHy+7dcn9qasQIaWdhtRZwVphUbs500fh4u0qr3w/+YjulvkNXF23qkktcS86zS5+R2YsIqydh07TRFSuap40OHmwX7d6yRT/PWDQgVKobKCuDZ56RAjEVFfb1UaMkPXTKlNYnCQcMkBu29Qd040Z47TXdjN2Wysrkv2swEMTAxEuIbArJOTW3c8zeRsn48ZDVPwEPYUJ4qCaJJbsHaQMzpQ5SMAi/+pUUdwG5T4TD0mQ+I8M9MWjx+6XQy/jx8nn99NPhiCOav+/rr8sq329/23LV6rFjJeCzvPJKy6t/CQnufYnOgiJKhELudFHn/T5UUYW33m6+N8O7WHJ7O4MePeQXLOIEPiSxwq529/bb9mcSZ0BYWOguqAPye9SvnxzX1+ueVIsGhEp1YcEgfPCBVIJzlqDOzJQMjEsusfcJ7suIEdKHyrJqlewlUW2joMDeP+glTCp+8liL97RToz20Dm3oUOjdN4ZEnxTi8ZPKGvIof21xdAemVCcSDsNtt9krbsGgBBJHHy2fw8eNgzG+tbJn4IUX4J13CC1Zzv/u3UPVHj/U19Ont8n998Nbb0nKqbNYjPU95s2Diy6SLBXnhKJhyL3IUl4O8+e3PNYhQ6TXoTXO995ru/8OXcGmTXZdrT59ZF+mpWSLHR2mUsnEExMO7ANAR+FIG42jnhnlL4EpqU7bt9uB8JAh7t+//aWNavsJoQGhUl3U5s2SzrNggV2q2+uVwgDXXw/Dhh3c+x1zDJx8sn3+8cfuflPq0H3+OfgrwgTDjnRR1sKpGhDui8cDxx8PiUmyfF1ttZ94Ydt+XqmUAgnM7rjDPcFXVgZjxkh6pq+8iMvmXQ55efKB/OKLYdYs3p36O7bd9gj8415i7vojc27sR3zfLBJHD+Y7fz+aNwMzuYm76LnnS/m0vmuXbCgsLeHJx4Pcf797HEOGuFd25s61q5s2deqp8v99kP1jmhBgc6aLJifbWZWVlVBdZK8OTmMxvrM7eHXRpk4/XZarI2bVvAIVlY3nVnEZw3DvtGip2qjuI2xOA0KlupjqanjxRXj8camyZRk6VPZgnHSSu0LcwTjxRPcf2nnz5IasDl1dnaRphevqCOPBS4g0yskbYcoUr9qnE06AtCz5hW4gljpiWfppjL1xRinVItOEv/9dtgBYAgEYNAj6xhXD++9z+txr6fneM67X5TOKpUxuPD+LN+gd3i0lSbdsgVWriPtoARd9/ite3z2e3xT9H/2+WQG7dsrjX+fzxD3FPP6Y+1P6hRfaGfKBgHtcTtnZze9DuoWhebpold1ukEBVAzE1dn7tDBa4G0F2BnFxrg2n4/mM7Cq7jOg779h/9p2TC3v3Nk8L7ddP3g6kz7JWUNeAUKkuJRSCO++ERx6RVJFgUDb5X3yxTO5+23Z2hgFnnCGTxZZXXpE0FXVoNm6UG1awNoiXMAbQi0IGnTkm2kPrFMaMgeyBCcQiy+CVpLKs7mjCy1vIE1JKNfrPf2RfucU0YXB6KQM2LIT588jYnc+ZvOl6TRE9eJVzG88nsIKxfNnq94ghyDm8zsuczxU8JRdDUor0gRvW88K9uxuf27u3ZLBYFi6UPWAtmT5dCqaALEA6V8a6qy1b7Gqvffq4t4mUb2uSLppXLdWAOhtH2qgHk1nFTzdGgWVldnrosGF2v0Fonjbq8ciqNMjvfUt7W7sbDQiV6kJeeQXefFMqta1dC19/Lfv/hg+3i8J8Wx6PzOQOGiTnoZB8qNi9e58vU60oKIDCQpNgfRgvIXwEOYbPdf/gAYqNhaPHeUiKl1JxVSRTRgbrnv0iyiNTquN65hl4+GHHhSo/UwtfIW3JW7BH/pjP4TnisPsM1Y07jueOvJP6QcOhzxH061nPadmf2Ust++AlzP9xHxfwkut73vXzPbx92TONVWTOOccO9EIhyXZpSVKSZKxYnKtD3ZWzN2NGht1/sLISaorsipzTWIzvzNl0SpMmufI9Z4fehLLSxnNNGz10GhAq1UXs3Qv332+3kxgwQG4KL74o5cEXLWq78so+n/SFskqA19fDk09KxpA6cOFwpKDMrgaCePEQIo0K8uK3wOTJ+38DBcje1sQUKYHY2H5iXsV+XqVU9/Tqq5IqCkCVH9YXcE7Bn6nbubfxObmsZxLL5WTyZMz57/DajUsoOutquPxyEn/yfS5Z/wd8hbslvzMQkJvQ+vWSA79wocxQPv443Hsv/O53GNdey03x/2Q28+zBmCb/79lhLBr2A/jgA9LS4DRHJ4Tly5s3F7dMmmRvKSsvl9Y93VXTdNFae7sg/sowsVUljeczea/zpYtaDMO1SjiMDQyptvetLFpk75t0po3u2dN80rppQNjd0441IFSqC7AKA1gBWWqqO12irAweewxuukkKwVhB47cRHy9/l9PS5Ly6Gp54wr1vQe3brl1ykwr46wEDD6YUlJmaJUtf6oBMngzpfeLxECaMQRXJLN16hHsTrVKKd9+FO+4wwV8ps1EFBZzpf5a+7KKaZAAMTL7Dk9RPOYndz3/Ilw98zOu1p5C/WtJMDEOqhVp/+wFZJezZU3L1jjlGNqufey5873vS2+i22+DBB/Gs/prbZy7jRD5ofGkYD7/e8SM+mXYTXHUVsyeWuN77+edb/rDu87nrbn3wQffdC7Z1qx0INU0X9e+pwgjLbHAqlUzI2iLRdGd1+eWNhwZwWslTUCelVevqYPFieSw31/07+skn7rfJyLCrkVZWSqXv7kwDQqW6gHfflZshSErntGkSII4b535eYSE89BDceqtUtvy2M2KpqfDd70pfH5CA9KmnWu4hpZpzt5uQG3Y2hQw69+goj6xzSUuD4aNjSfDa7SfyGUXl64uiPDKlOo4PPzD57Q0VmOsKZCWvys9JLORcXuF1zqaIHuykH77eWfzvB+/zx2kLeCj/eF562eDzz+33Oflke//VQRs8GN87b3HnU/2ZmGDnODYQwy/4G18+/jnxY0dwbvJ7gNyg1qxxp0M65eXBwIFyXFcH779/iOPq5Jz/fXr1khUxkECnttiOkqezCN/pp3bu/rY5OVJNLGIW86HEXgG10kY9HumRadlf+4nunjaqAaFSnZzfD3/9q50O2r+/VBMdMAB+9jO4/XZpQO+0c2djFg/5+d8uMMzOhiuusCuX7t4Nzz3XdumpXdm6dVC4J0gwaOKJBIQTWIF3didpFtyBTJ0KSYlyXEMSITwsf35rVMekVIdgmiy55xN+fvo6/Ot2UlllUEoGyVSRQC03cB+bGMKupOFUDhtPjytOx99zSIsbz0ePdn0WPzSGQezlF/HXDWczJtfeoxggnhv4BwXFmUz7yyx6f/iiRDS0vkpoGO5m9StWtF6IpqsKhyVotlh9CEGyg+L8drA0gwVSGa6zc6SN9qKQY/wfYE0gfPqpnRziTBu1MnKcNCC0aUCoVCd3113S3gkgMRF++EOp1mYZOhRuvhluucX9xw+kOuhf/iKVSb9Nc9b+/aWSqdUbatMm2T7S3XPy96W8XLbcFG2tJoQXD2HiCTCh7zeds/pblJ16KiRmSJptEB8B4li6zGib/GilOimzNsC/xj7EnF/0YVd1GmVk4CeFdCo4jmXsYADFSQNh8BDIGcyICSmNNWKSk6V42PjxMGsWXHmlpIq2VYGyxL4Z/GPFZIadPLCxkkwVyVzP/eygPxdtv1saEn79Ndu3hlrte9u3Lxx1VOTnNVtvat9VOdNFe/d2N6OvKg5g1EuEmEolE3yrukZ/2wsusKsPAadV/a9xv0o4LFtYQQrqpaTYL2u6Sjh4sP25ZevW7l2YSANCpTqx5cvlfglyk5482b0h3ykvT7Zx/PznEsA5rV0Lv/893HOPlPA+FMOHw9ln2+dffSWV31TLCgrk5lNUZGIgeyHSKWfEjH7RHlqnlJMD/YdJ+wkTqCSNpdVHEl6ljTJV9/XOd57hz1/NpgFf47VsipnJuxg5g1iTdyHxIweT1ieJ0aPl/vDDH8q2gl/9Cr7/ffm7PmWKfHhuq2DQkpoKD7yQzYBT8+CIvmAYlJHBj3mQvuxkaLgAvlwFc9/ixXt30dDQ8vvMnCl7CkEmN7/NBGdn40wX7d/fbqFQWQmBEntT/3QW4Zs2Vf6jd3ZpaVKSNmI6i/CV2kvD1mcPr3ffaaNxcfbnoYaGQ//80xVoQKhUJxUIwB//aM9o9e4tKaL72hpgGHD00fCnP8F117lXEgFWrpQPAg88YO9BOBjjxsGMGfb5kiXdu/LbvqxbByUlJg2BcGO6aDZFDLpwwn5eqVpiGDDhWA+JcXb7iVIy2fDsiiiPTKno2L6yhPte6UsdsuQXSz2D2czd4//H9/83i+G3z2Ho0SmMGCETKr/9rdSD6dfPtfhy2GVmwoP/8tBrbB/Z35CSSiE9uY4HOZXIJ/vKCkpeep/3zvxHi+Ws09Ikbdwyf373SA5omi7qDJiLiyGhugumi1ocaaOp+Dmu3P4f/auvJAMH3GmjO3bYGVUWTRsVGhAq1Undfz9s2ybHcXFw1VWyb/BAGIYUGfvzn+Hqq5s3rF++XGaHn3vu4G+qJ5wAxx5rn7/zzqEFl11ZXZ2UUi/aXEXQ9DQWlBnr/RrvSSfu59WqNSefDEkpMiNSTyz1xLBkblmUR6VU+6uuhmdu+IR14VwA4gkwyLeb199J5NQVfyJj+lgWL7ZX/CZOlCySaOndWwqeZfaJh9xhkJPDDl8Of+dnjMSOeN54J47qEce02KDw+OMlzRVkH6GzEE5XtW2bXVm1Vy/3yqi/PIhR7Qci6aKs6LztJloyc6bd+wo4pWGu7MWIeO89+TpypP17Ac1XCTUgFBoQKtUJrV0rm+wtxxwD559/FZMnqQAAIABJREFU8O/j9Upz37vvlkrOzkwS05RqXffdJ30GD5RhSNrq8OFybjUXbi3VpzvatEn+uxRu8mNiRFJGTU4YXWaXbFUH7fjjIb1PHB5MwnioJoll67Ok8pJS3UQ4DC88UsmXS6upJR4fITIo45zTG+hxipSefvZZO7skNhbmzInigCMGDJDslJQUAzKzYNRoNvU4lpWMIxT5uFpNEm8WHSubGa+4AirsfqOxsRIjWBYu7PoVr53pooMH270IKyuhvqxJddG84fKkrsJqiBxxIh8QW2b30nz3Xfnq9cpnJEvTgPCII+wV8T17um/rLA0IlepkQiGpHGrd6LKypPG8VeXzUMTEyD7zv/0NLrxQitNYPv9cis4czGdqj0daUCUlyXlRkT1bp2T/IMA39r2LZPyMPUP3D34bMTFw5Ph4Ejzyfw4/KXxpjsH/1odRHplS7WfRItj0/KesCQ3HADIoxevzctFfJXdu9WrpHW854wzo0SM6Y21q2DCZhExIQD7wDxzEluGz2JUwjHDkI+s7nEoJmfD003DkkXbPJWDsWHsrRHU1fNiF/6/fNF00HLYzevbuhcSAnVrbqZvR74sjbTSRWqZWvNU4+7xmjVRUB3fa6LZt7kq0Ho+7jcqmTYdzwB2XBoRKdTKPPWbPAsbEyCRpbm7bvHd8PJx1lqSSOtNPN26UFhV797b+2qaSkiQotCxb1r3TMSymKQFhrb+B8trYxnTRHhQz8JLjojy6zm/KFHtCo5Z4Gojh02f1F091DwUFsPitaopWbKOIHqRRTiwNTJ1i0ndoAqGQ9Iq19OgBp58evfG2ZMwYmZxsnORMTqFi2HhWZc8kbHgJ4uNhfkAt8VIFZPp0uOkmqKvD43G3oVi61JVF2KWsX2+vZvXs6Q5kqvxhPJXyg6dSyXg+61r7By1HHSWTAhGnmPNde0ytiehRo+wJapD2JE6aNqoBoVKdyrZt8Mgj9vmoUa6MiTaTkQG/+Y30nLLs3StB4cHMng0f7q7w9cordnns7mrXLpm5LlpdiIkHT6R30pjELXhHjYjy6Dq/GTMgOUM+SYbxUUMCSz8KaQ8U1eWVl8PLLwPLlrE6lEsiNSRSA74YLv7dSAAWLJC/QZZLL5VUy45m4kSZmLRaAvhiPNQm9+TLwedhpmWwhjz+xK2UkS7/3777btm8np/P4MEwIvKnNBi0Uwe7gvJyWfV84AF45hn7em6uFFKBSLpoZaCxGfBJvI8vKx2O66ITjo5Vwql8TEKZ/QtuBYRerxS9s3zyifstmgaE3fF2oQGhUp2EacL/+392QJWaCjfeePiqwSUkwC9/KfuyLH4/3HEHfPHFgb/P7NlSRc56/RtvdM8/tpZ16+Rr4YYKwtg13KeMD7R9TfduaMAAyMmT9hNhDKpIZln5CMz13agOvep2gkEpAlZbXE3tinx20o90KjCAgXlJTDw+Hr9fJuUseXnuCbuO5sQTZRLS+rOYng6lNfHkDzwNc0Qe2xjI77id3fSRJ3z5pWwWu+ceTp0Zbgwmv/5aqkt2Vn6/ZNg8/LCsnL73nrtSptcrQb2113/PHkiss1fJZrBANvbvqwR5Z3bppY0zB/HUcXz1fKiVD0rr10t/QXCnjW7ZYjevB/ndstKmq6oOLhuqq2jXgNAwDK9hGCsNw5gbOc8xDOMTwzA2GobxP8MwYiPX4yLnGyOPD3K8xy2R6wWGYXSB7ppKHZiXXrL3fXg8sqfekSlxWHi9cM017tTP+nq4916ZaW5NeTk8/risMn79texLtG7Oq1fLfbu7svYP7t5jB38+gky/uFcrr1AHwzBgwiQfibFSMaOaRL6hFxuf0v4nqut6+23YvRtYtowNoUGRYNCEmBguvnEAHo8U97ImFD0e2W7Q0eegZs+Gm2+WY49H9geWlHqYV3gM72VcxKveC5jBAn7Iv7iLG3m0/nJe+cXH5M/6JT1jSqmslC1lb73VuSYia2tl//7jj8vi59tvNw9qk5IkyPnRj9zVRSsrwRdJF02jQtJFu+L+QUufPnDKKY2np/CuFC6IsFaIR49210fQaqNuvv0/pU3dAKwFrFqGfwH+bprm84Zh/Av4PvBQ5GuZaZpDDcO4JPK8iw3DyAMuAUYBRwALDMPINU0z1M4/h1LtqqQE/vEP+3zYMGkY3B4MA847T4rXPPaYbFo3TXjiCZlhu/hi+0PFrl2SxvL663bRmw8+kFnpadPg/ffl2ty5MHCgpKZ2JxUVMrNrlpVTWJ+GB6kAkEkpgy6ZFOXRdR3Tp8PT93soL4EQMQRIYNmbxQz7Y7RHplTbW7UqsiequprQii8oZjI+ZEIkcUAPzjgv9v+zd97xUZVZH//eKZlk0nsBkpDQQXoXpSPoKlZ0UbGtrmVddXd1d33fXVdd17K6vupr3dXXCtjQdW10QUGa9JIQCC0kJCG9TcrMff84M3NnIDQNmZTn+/nkw9yZO5MTIPe55zm/8zvs2wfffGO8Z8oUmTfYHrjiCqnavPCCJIUJCbImVlXZaIxIobomko8briCeIkJxZ7ybwLXlIIWRwbhsdiwWqaCmpclalp4um6rJyQH90fxoaBB/gG3bJCFxNnNnGxwsld1zzhHDUJNJztu0SV6vrISmugaodwBud1GL5pcwdUhuukmGTwJjWU1oyUFqUrqAxcKiRbKxbbHIHOZVq+Qt69ZJ4dRDjx4ycgvk7993rmVnoNUqhJqmdQUuAv7lPtaAScBH7lPeAi51P57pPsb9+mT3+TOB+bqu1+u6vg/YA/gUgRWKjslf/mK4a9vtIhX1navjS02N6ON9XbRagvHjxc3UV6L6xRfw0kvSu/DHP0ol8YMP/K2+6+pkZ3r8eOMGpL5eel06w+BgXzzVwcodh2jC6hWM9oktxhwTGbC4OhqDB0NyWhAaOk5M1GBn1Y4ocDgCHZpC0aIUFooMH4DvVxPqrKAe90XaauXimxMICYG33zYqZOHhssnXnrjhBpm1C7IBGRvr3lDUTBAWjh4aTpGWRCXG7CSTq4nwsgNQXkZTo4u9e0Wh8u23Yqxz9dWBX4eamsQN8/33pWfyo49knfBNBq1WSQBnz5b5wJddJsmLR3WTnW2YyxQUQGij4aIzlcWy+EZ28PXlssu8NxhBNDLBtQyOSpVw/36j4ucrG927VzYWPKSnG5vbhw51vvuT1pSM/g/wAOD5K44FynVdd0/CIQ/o4n7cBTgE4H69wn2+9/lm3qNQdEgWLzZctTVNlB++g989NDTIInfxxXDXXbLzNWeOSE48GvrToqhINCpz5kgm56OzGThQZKCetaW4WOSjM2bI5tyJLqAffyyynSuvNJzjDhyA7747g7g6AN7+wd3lOH36B0cOUyKHliQyEnoPsWPX6tHRqCGUTc4B1CxaFejQFIoWo75eql6NjUBNNWk/fEIOPrq3pCSuvs7K6tX+ErirrvJ3XGwv3HEHPPusFIMuu0wcsUeNkk1Ss90GkZGUWBIpJQbPqhVKDRZHNRQX46yr95sxV1srI5Xuussttz0DamqMgfA/hupq+PRTSQLnzZN5gr6zes1mMca56iqRzM6aJQPWLc3o+n74wXhcVgbWqjKgk8hFPVitcPfd3sNpLJJ7GV1uSjzmMuec47+p7es2arMZI0saGvxUp52CVpGMapr2M6BI1/UfNE2b0Arf7zbgNoBUX+98haKdUV0tC5YnJ0tNhV/9yv8cl0v6C15++fhG6J075evFF2X3a+JE+erb95jeEV0X67JXXjGyN5AM8xe/kA9wW9GlpIhZ2aOP+l8wCwrkYmqxyO5taqohY6mogK++gksvlUT13/+W55ctk53OlJQW+etq0zQ0QG4u4HRy+IgJfBLCqXPakG6pgzBunMai+To1NdBAELXYWf/uD0y4ZHKgQ1MofjK6LlJ8T4UjdP0KBjeu5RXcZTSrlTEXxRIUJEPoPaSlScGoPaJpYnLma3QGkkw99xzU1Jipr4+gIesoPbJWM871DRVEsYu+rHaNwVEaQr2Wgi0mkfpGox6yfr1UC+++WzYtTScplRw4IMoYj0vlpElSbQ0PP/2fIzsbPvnk+IRS06B7d9l47dfPPYvxFOi6kRBWVoKryQnVMjR4Essw4+qY4yaa49ZbxYWotpaRrCOisYTKsjKIiWXRItlQsFrFbXT1annLunUwfbrxEV27yr0MSJUwsRO19rdWD+G5wCWapl0IBCM9hM8BUZqmWdxVwK6Axyv2MNANyNM0zQJEAiU+z3vwfY8XXddfA14DGD58eDtqI1Yo/Hn8cSPpCg4WyWZUlBzrulzUXnjh9Bqg9++XauH//Z/0YEyYABOHVzF065uYX3vZGG54LP/6F+TkUPPWRyxYGce8ebLxFhIiMXlUeI2N4ob2hz+IvKe0VHZwPVXDuXNh5kwxgcvOlmqZ0ykSGc+FuiOzd69bBpR3iFJXpDcdDDU5GDKrhQZJKryMGAFxCSaK94ELE7XYWb2ikQmBDkyhaAFWrzaGkms11Vy9/ne8zSzjhKQkJl9g4bHHJFHwMGfOyROe9siAAaJcefppKC/XsA/N5GjGHLI3wL1H/kAIdbzBzewnHUrgHHsFey/7HR+vSvJ+Rl0dPPWUmKX9+c/+/ZW6Ln/Xn38uyacvS5ZIT9rMmXDBBc1X8Dw0NsLChcePPEhNlcrVgAEnbgU5Efv3G5sCBQVgb6ryvjaFJbL76zt1vSMTHQ033ggvvYSVJiaxjE8LkyAmhrw8jV27JNEeMcJICHNypKrq8TPo1s2oGh461LZdeFuaVrks6Lr+R13Xu+q6no6YwizTdf1aYDlwpfu0GwB33YDP3Me4X1+m67rufv4atwtpd6AncIxPkELRMVi3ThYgD5MmSRIHsjjdfjvcc8/xyaDFIjuWkyadeCRF0b4aPnhqP3dMyWHaff14eNdVrOQ86jl+IFUxcTy/YiAX9tnLc0/UeXsTzWapCIaGyliJYcOkcrh2rSR7SUkSg4fcXPmZNE0qhR7JUnFxx5oTdSI8ctGmnH2UEuN9PjO+ArO1g92htQEyMsRu30ojLszSR1jUA/1gO/afVyiQKpXvNXPK4beIqj/CQtzG61Yrsb3iWLTIfyj7RRfJvLqOSFoaPPSQj9okKopdE+/i0VGfU0osM/hKXFeB7YciuPnlEbw87j1Skv1rBhs3wjXXSE9fY6OYjPzpTyLtPDYZ9FBXB/PnwwMPyBrXnJtpYaEIcHyTwYQEuPNOKWyNHn3mySD4y0VLSiCoRsZNdCq5qC/33ON9OI1FoguullKsRzY6cKDIQz34yka7+ZSc8vLOZqBtj9Z2GT2W3wPzNU37K7AJeN39/OvAO5qm7QFKkSQSXdd3aJr2AbATaALuUg6jio5IQ4Msbp7qWlKSGMnk5Yl680QjH6ZPlwXGsyjW18uCtnw5rFzupPJAqWRgPtPhK4jkP1zMf7iYEOoYw/dMTNlNGgf4MH8sXzGDJizgALJ2yZ12ZBSaJgnfdddJgvrFF8b3fOYZMQCYPds/1rlzpecjNFR6QN59VxbPFStkrmJUlNzAeL4qKiTBvfhi6NKOu4V1XeYhAZTsLqHR59I7dGgb931vp4SEwKDhQXy/qJKKRiv1BJNHF/a9t5qMP14d6PAUih9FdbUkK561oU9SOec9fT9vcjUN7g29+rgUnJipMopFXHSRyCI7MnFxkrz9z/+4DbzMZvJ6TuLhLpu5f82VDM7fzCaGoKPxVeNkbnjuOuZPfp//nf4uH3xtmNHU1srn/PWv4uh9bL9lVJRUA0tKpO3B829RXCyKnZ49Ze3r0UOu/WvWSALf1GR8xsiRsl7/VGWMZxRVRQW4nDpapbjPeeWinS0h7NVLJLKff84wfiCGUkoLCyEsjMWL4de/lu6XIUMMR9H16w0T1thYWTvq6kQJ5XCcvVnPbY1WTwh1Xf8G+Mb9OJdmXEJ1XXcAV53g/Y8Bj529CBWKwPPss8bulNUqydUbb0h7X3NW1CNHyoWuTx//5202GB+3g/Elr+Dc9C4bq3qwnIl8wwSKSDjuc+qiUliWcDvLwsNl9arM9fYjAOByEbRnJz+b7uS6V8aRmibJzMCBshh7nOxcLlGaXnKJyGE88tDPPxcpjsUiC9iWLbLb7XJJ4ti7d/OSm7174ckn26/U6fBhtwtcVRVlpS50jAHBE2Z3ggbKADF6NMyLgIoSj2w0lNWfFJLxx0BHplCcOS6XuDh7Er3oaLg8+3Fcjno+cout6i2hFLvi6B9nvG/mTBnd0NZnDrYEYWHixPnKK8acuTJ7Vx6dupJfHPkr2xc20oiVvWTyCZdx7tJVPLA5g8kPfsyflownO9vdi+dO8goLJcdIT5dNyQsvhHPPNdapqVOlOujplweRIT78sCQdwcFGTxqIAc5llx2/Vv8YjhyRtcXz2K7Vem8QprJYpDujO+E4o3vvhc8/x4yLySzlw/IYaKjnyBEb27bJ/cqIEUZCmJ0tG9BRUfI70rWrMdfx8OHOo7gNdIVQoVAcw86dssCALEoRETLaoa7u+HN795ZE8DjXUc9ch1deEY9twAyMYAMj2MD9/J1d9GU5E1kechH7owdLRmf1kYxarNCrJxw8CEePEkEls/iAWXxAzNdl8Jcb5fPd2ospU2T9efFFqXCC2KFXVPib3cybB/37y+OwMEl46+tFnpOXJ9KfY29cjhyR5HHIkB/1VxpwNm50P8jN5SjGnZrZojHx0g5uBx5AevWC7j0tHCrRcWKWPsItdq5rajp5s49C0QZZuhT27ZPHFgv8fHIRIWNeYBnjKSSRemwcsaXTNVnzVp4uv1wSkM6E1Srma++9Jz17AHXOIF5KeoRhN22kaO5SqHewiSFsYggJJUXU/vYL4noGURg+kvJyY8PO6ZS/87g4Ud+kpfl/r5QU+M1vZJzF3LmyXIIkle+8I2t4ZqZci/r0kcT8TAxomsPhkITFd65kURHE1olcNIpyhvEDXDi7c17nJk2Spsxt25jKYj7kKvkL6tqNRYskIRw0SCqFDQ2yib1hg9zDgMhGPQnhwYOdJyFsp/vtCkXHxOWS5vjGRkmk8vNFlnJsMpiSInKWd945JhlsaJAXunaFa6/1JoPHomka/Wakc9dn0/mochofrUrhrnuD6Nfv2BNNpIxJ4/4bivlCu5jbeZUYxNKaN9+EyZP9Bh4OHQoPPui/4CUl+Usu8vIME1OzWSqIngSwslIW4O7dJfmLjTXe59H/tzeqqnwSwr17KcSwLesSW/+j+kYUp0dqKqSdE0EI9bgwUYeNDQ3nULti/anfrFC0IbKyxAjaw89+BslvPwl1dcznGhzYOKKl4LIFk54u58ya1fmSQQ+aJu0Ms2cbzzmdsKZ+KM5f3AapqZQTxQaG809u5V2uY1eOmcQ93zGyTwV2u1TzkpPlKy8Pfv5zSTKbG6/Uv784b994o5iU5OaKyMblkj7/7GxJNOz2M/9ZqqtlDZk3T1pJfvlLMcDxVEArKiSp0So6uVzUg6ZJlRAYzGbiKYbio+BysmSJ/JvYbDKv1oPqI1QVQoWiTfHPf8LmzZIENjZKMuXb/BwZCbfcItbYQcf6v6xfL9rSE3W+A8THywfcdptkXW7S02W20003STVvxQpZxIYPh8mTNczmGTD7E7nDcC86gNirjRwppcCBAwHZTXvoIfjHPyShNZmk7XD3btmsNJvl5/jZz0SiERUlVdEffpCfKThY5kJFR0s++9pr8q22bRPpTfJpTmjQdZF77NghefKUKadn493SfP+9W8XjctF130qOcq73tYFDzCd+o+InY7HA8BEmvnrPRW0tuDBTQSQb3vqO8yePCXR4CsVpUVYmgg8PQ4fCsC5H4OWXyaEHqxnLERLRQ0KJjdUIC5Pk5cILAxdzW2HGDFlLXn1VEjSTCQ5VRBJzyfVs/+IQpfvKvTMLHQRzuCaIzO+X8fg1QRwaMIMFn5i8JjENDdLOsXSprHHHVguLi8Ws+5xzZK3JyZFqZWqqJIJvvikbmz//uSyXJ5LwlpcbTtzZ2eJ2eTIKCiDcVg/1Yvk9hSVy8bvggh/999bumT0b/vhHTEVFTGUxc12z4ehRjpoS2bxZfodGjDCS6l27ZEM6IsLfr+DQIXey3Qnk1iohVCjaCA6HFPeOHpVju92wQrbZpOA3Z04zTmR1dbI6PfPMiSfDjx8vtqSXX95MJulPYqLkfccxbZqI7i++2N/a9MABGDtWtk5nzvR+xt/+JqMnQkNlIb3oIpGGglxkZ8ww1Cz9+8simJcn53z0keSto0aJDMczTHjJErj++pOGT1ERbN0qX2VlxvMVFbJj3Jo4HMaCQ34+5roqnJ7LrqZx7iWxJ3yvomXo0we6dXFRnIMhG13u4PxAB6ZQnAZNTVIZ8oz3SUpyj5X7/VNQV8cL/EqSQc0MwTbS0uQa6THJUEgbXWSkmM14/NRKy010PTeNpJ6hlHy7i4q6ILqQRwa5hOgOsueBOaOUn193MUvWR/kKYdi6VZK622+XNUXTxD104UL597JY5Lpz6aWSZHz/veE8eviwjMcYMEBylq5dZQM4K8tIAI8cOb2fq1s3aRs5fBj0I2In65WLnj9BfujOSnCwzLN6+GFJCJkNhUWQkMDChRpDh0qF0GqVzXePbHTSJEnm4+Mlwa+rk3+fuLhTf8v2jpKMKhRthKeeMpJBk0kqYWazSH4+/VT6F45LBr/7TsTwf//78clgZKQ0GO7YIc0G11xzymTwlPTpIyvf5GOGe9fUSKBPPOFd+cxmuaja7VIFvOgi4/SiInE+9WAywVVXGeEdPCg/WlAQTJxonLdypXFj5EtZmbz2v/8rLm8rVvgngyALbWvLP9atM5Lg9JIf2EF/72smq5kJk1WF8GyTmQkZA8Ox0oQLM3WE8F1eGnpRcaBDUyhOyddfG6YkNpskItYSqQ6uZjTvcw06JgixExKi8cADKhlsjr59Zb5gTIz/8/G947j3neEsve5NHuIRMsn1vubM3U/Z3//FoJDd9Owp13LfauHzz8tG7TPPiMu2x0XUbpdk79prJSd55BH5/r5s3w7/9V8yJeG++6SCuWLFiZNBk0muZRdeKD2LL78sm64jR7rnTFZIQtjp5aK+3HEHBAUxgO0kUwAN9VBezrJlotoJDpbbJw/ezVs6p2xUJYQKRRtA10VO4sFuF7XH++/LohEff8wbqqsl2Tv/fKP72ZcbbpAmhuee4/jGwJ9ITAx89ZVkqMf+EH/8o5Qxm8narrnG/3jevOM/dsYM43jpUpGcTppkyDUcDkkUQXrzvv9eFtJ//EOkOL7mNSA5cWqqcXyicR1ng8ZGic/DeQfeZSNDvcfhkRo9erRePJ2V5GRI7xuC3dKACw0XJnLJ4OC8VYEOTaE4KQ0N/nPmrrjCndA89RSbHH34A0/KSCBNg2Ab118vrpeK5unSBf7yF0mi+vWTzol//AMuvCKEsHdeZtCHf+L2qPe5hdfpyy6ZW1hXh2XB+/TY/QVjRjTS1CT7n7ou69G334qMdNMmSTIyM8XQxjcBTE+XpfG++6TC60HXj9+49OCpMs6cKa6pr74qsf/859Jf79kcXrIEcDZBlchopuBe5FRCKFKl2bPRcLuuAhQWUVZmjOsYMcI4fdcuw8HXNyE8lWS3o6AkowpFG+CTT/x3BkeOFFlJs7r1JUtkku3+/ce/1rWrNN35ZlZnA6tV7ET795fE1HcWxrvviqT0k0/8Vr+MDBlc70mStm6VXdIBA4y3Dhtm9E64XCIdveMOeX7DBtmBfecdqSDu39/8AODQUPnMgQPlol5bK4t+Q4OMr9i/H6/pwtlk82ZD6poUXk3G1gXs5Vnv6737B7XbMRrtCU2T/w+J0Y1UFHtko6Gs+qiAtHtO/X6FIlDs3WtUnbp3dycZBQVseHEtL3APubj7wENCSE7W+MMfAhZquyE6Gu6++wQvXnkl2qhRpM+ZQ/o38yghhu8Zw0aG0rhxI4kHDnLhJZex8XASO3b4L3sbN4q88Nprm3cR1TTpWxs4UGYXfvKJsT6AVH979pQksHdvSSxPNaNQ191ma5WVgG7IRfv06TzWmKfi3nvhzTeZxiLeZo6M0aqtZdEiO6NGSXJtsRgGQD/8ABMmyK2Uh86SEKrbEYWiDfDkk0ZyExQkkpDjksGKCkkEp05tPhn85S9FHnq2k0Ff7rxTJu56mh09rFkjW2++w5nwd3wD6Q/0RdOk78IzCLi4WIqRaWli/b1jhyy869b5J4PBwbLY3ngjPPCA9Nh43EtDQ/1HMS1Z0nwi2ZK4XP4Gr+fp37KJIdThdrUxmxk1vpNMu20DZGZCjz4WNHRc7j7CVRtsJ+65VSjaAFlZxmNPxWntffN5oeE2CkimDjtoGvHdbMya1blbxlqMbt1kkXj8cWItlfyML7ifvzONRUSU5GJ56w1GOr/nogt177JntYqKp6JCjNmef95oFTgWi0UkvU8/LX3y114rlb9XX5VK4MyZks+dzsD6rCxR0VCu5KInZNAgmDiR3mTTDXdmV1jIsmWi4gkJ8frhAYZsNCHBaGEpLDRGaXVkVEKoUASY9evFZdND9+7+fXOATHTv31+mvR9LRoZsOb7yilhktTaTJklfYe/e/s/n5cG4caJ7dTN6tJ+5KUuW+E2tACSB87VKX79eqoMul5HI5ebKgulpzP/97+U9mZnND68fN85waz1wQHbezyY7dhhSoOhoGLDzA5ZgaLlMQRbGjTu7MSgMMjOh26AYQnDgxEQTZlY7BuNYtzXQoSkUzeJyiVrCQ58+sPqzo7z4YQIuTBwgHQ2dhAQICzMdJ8lX/ATMZvjDH2D1aujZkxAcnMd3/IZ/cJVrPilL3yZhyXtcOrmKSy8VZaIngXO54O23Rdq5efOJv0VoqFSipk+X65P5DNvJGxulyoiue52/lVz0BNx3HxowjUVyXFZKVWkDa9fK4ciRxqlgtL07AAAgAElEQVQ7d0rl1mQy3EZdLnfi3cFRCaFCEWCeeMKQBZlMonDwJjUlJWIZd/HFYiXmi2fWztatzWSQrUzPnlIVPNbmurZWmgcvuwzy8tA0WSg9uFzwwQfHf1zv3v7afk2TRVPTJOcNCpLd1auvlp3zU83eDQmBc41pDyxdevaqhLruPy9snGUNpg/msxZjYGRwmMVvV1JxdomOhm7pZqLtDeho6GhUEMkPb6qEUNE2OXxYetVAqhXbt8Mrf9iH7nJRTRglxJJgKSW0SxSDB8vgc0ULM2KESFJuuQUAMy4Gso3beYU79j3A3e+N5uWx7/DeOy769PF/68GDIuh56inD2fSnouuySfD00yIEWrAAqKkGp9OQi8bESG+GwuCii6BHDyMh1HUoLmaR+3DIECMhdzqNucGdrY9QJYQKRQA5eNDfbTMmRpIcQBro+vWTnrxj6d1b3FWefdbQVwaaqCipZN7TTGPWp59K5vb881x4gdOvkLlggfReHMv06SIV1TSpKt5+u6zPGRnGjMIzYexYYw5hXp7/7ntLsmeP0Q8aeng3Q+6fgu5wkIX7jkHTSOoWRELC2fn+iubp0QO6p8rOi1c2uqiF7tQUihbGVy7qcMA/n69FzxYDsUN0I4FC7ClRoJmMNUPR8oSFiTLno4+8rREakEIByWU7Yc4cet10Lm/9aj133+1v5K3rsuF59dV4q1E/htJSmer085+LxHT+fK9KFMqlOjiVxSIX9Z3npBBMJrjnHjLJJcPjIltczDfLnDQ0iInfOecYp3tko53NaVQlhApFAHnqKUObrmkifwypLJTJ81dddbye0iNl2bxZMpy2hsUiw55ee+34JojqarjnHoInjOaKkcZ2W2UlfPnl8R/lqQI+/DDcfLNU+CZNMl5fseLMdP02G5x3nnF8tqqE3urgnj2MffdOrA01HKQbR3HPHLTbGTpcXXpbm8xM6DEsEgtNODHRSBDL96W5DRkUiraFJyE8cMA9x277DnA5AR0XGnarE+LiSEgIvECkU3DFFbBli+g8j2XNGsxjR3HDyluY93yx3ygDkLEhd90l4ydO93LT0CBr1L33yubos8/6j//1UlHOUDbyC9ztJEou2jw33giRkUaVsKmJ2rxSVrnNpn1lo9u3S1XX11jm4MGz7z0QaNRdiUIRIKqqpHDmcSoLDobf9P5CqoIff3z8GwYOlG3Gxx+Xk9syt94qjX+jRh3/2oYNXPX3kZgPH3Tf4MgIiub8PTTN31zHd/xhdbX/WIfTYdQoo6B65Ij0+p0OxcUiI1m9Wiq6X30l/Rvz58Nbb4khwHPPwYMPSv/Iso9LWfZ+EXMbr+AX/JO7eFFmhdntmEKClaInAGRkQExaBOHmOlyY0YE99ODQB2f4n0ihOMuUlcleYEOD9DTZtVrYnUMQDQxiCyZ0SE4CzcQVV6iCUKvhMZx54onjZ/rqOrzxBmmTe/DPPs9w/31NXkWKh88+g1mzZDOzOXRd1qQnn5Qk8Pe/FyFQc2tjXBzMmVHMB45LeI1fEkup/Ec4tm1DIYSFwa23GgkhQGERixdJltecbDQszPDLq67u+HuHKiFUKALE88/7X2DGn1NC4m0zRR/ii9UqZbL162X+Qnth4EBYtQpeeuk4s5sE1xGmHHlHVr+KcvbvlxbEU5GU5D9IdvHiM9u1CwqC8eON42XLTm00uW0b3H+/7NC+/DK88Ya4oy5YIMOIlyyRRXvDBqkOlh6opHLXYYL1WmoIox4b5USBPRSCQwgORvUPBgC7XUwCusXVoQM6Jmqxs3r+wUCHplD44akOFhbKBpa2cwdmVwO/4++s5lywBkFcHFarvwGXohUwmyVT27lTLEGPpbIS0wO/4+pHB/D+L5f5VZ4Ajh6F3/5WNg89xmNFRbKxeNVVMkL4ww+bTz6CgsSh9PnnZe35dcy7ZLDPOOG886R1Q9E8d99NqjmfXuyWY0cdK/9TTl2dJH/9+xunNicb7eh9hCohVCgCgGeenqc6GGTV+fXh3/sPNgIYPlwG4/z5z8fvSLYHzGYZJLhrl6x2PsxmrmyB79kDuXuZ96/qE3yIP76Dlw8cgJycMwtpxAgjPy0uloTvRNTUiPr12H+W5nA4oCKvAg4cQMNFPMUAVBDJwejBEByMpsmO47EGBIrWITMTeve3oAFOTDiwsXxtSMfXAinaFZ6EMD8fIoPqYHcO/dlBGTEcJNVbHZw61T2oXtH6ZGaKxGfhQv8p9B6ys0m5fjIvHvgZf7ol3ztI3sOiRdIZcuedMibphReanyYFsoH44IPyrf72Nxg7Rse8c5s0Fvqi5KInJzUVrriCC1jofcpx6KjXj8A3ed+2Te7TOtM8QpUQKhQB4N13ZffXU53qGVnE+L1v+J/0+OOiifTtdm6vpKRId/1//iMXZaA/OxmI2+WxrIzv38oh95F3T5l9DRwoNt8eFi8+s1AsFv82kGXLTvwt33vPp3kfSeaSkmSwfZ8+Uq0cORLOPx+S6/bS6+Ay+rGTy/mEG3mLCCrYmzyOiJRwUlLkR+/fX6pVitYnMxO6DEkkBJGNgsaq6kHUbz/DXQWF4izhcEhi0NQkG1ZhB6V3cDgbeJ+rvdVBQI2aaAtMmya9hc8+2+wgSO3LL5h5TzofnvMI54/2b3qvqJBKVHMqlcRE6Z1fsEBUKZeff5Twz+dJL1yXLrIQ/vCD/5tUQnhq7r2XqfjcNFRWsHh+CeCv3Glqkt9DVSFUKBRnDV0X6aFn1ITF7OKGo89IX4iH2bPFPKajNYf87Gcitfnd78BsliqhB5eT+Q/tFPeYrSceB6BpMGWKcbx+vSG9OV2GDjWUNaWlzc+L2rzZ38l0wgSR6vz97/Doo/Bf/yU/xt13w6zgz4j+ci799O30Iptz2Mr/cC9r064mJCWG4GAxtbFYZHCxIjCkpYEtzEpiaBVO929cOZFsfH1ToENTKABRPLhcsmFot9Rj3rMbDZ1EjrCasd7q4IAB0m6uaANYreL+kpMj/fO+je8AjY3E/+9DPPNRGn+buJioqOYVCcHBcOGF0mXxnwWN3DlgJamv/bfIWhIS5L7grbfEpeZY+vYVK2XFyRkzhpRRqfTHMBBY9WU5NTWy4Rsba5yakwPJycZtWH6+cd/WEVEJoULRyixbJhcaT1UqyVTM5Q6f0RLh4ZJ1dFRCQ+Xn27CBicOrSaTQ+9Ln/IyKtbskY/v9741BXMdw/vmGgtbp9B/dcTqYzf6OpcuX+1/oa2pkV9ZDbKysxc3y0UesuvGfuHSoIpz1jOBxHuRo2nCIi/ee1q+frOXTpp1ZrIqWw2qVKm2PNM/4CRN1hPDtV1UBjkyhEDxy0YICiKjMA5eT3mTzNTPQrTZvdVCNmmiDxMdLj8GGDf6Db91ohUeY9vQ0PiyfxgXnGJPOhw6VrpBFr+7jkeSXGfm3SzHFx0rD+2OPyeedTNYeFCRaUsXpcd99frLRhqIKVvxHmjZ79jRO27NH7hVSUuTY6TRGSnVEVEKoULQyTz8tO8C6DiacTKn6mBR8dvwefti4AnVkBg/GvGYVV18XJHOCgAaCWMDlcuV96ikYMAC+/vq4t9rtMG6ccbxsWfM7d9XVstv65z9LE361T5vioEHeeysqKvzVN++95191vOUWjnOMA+CDD6i9+ibWuoaxmcF8xBXkkwJp6d4Pt9vhgQfgzTebbzVRtC6ZmdBrRJR7/IQZHRMLczKbH4apULQiTifs3i3rw5EjEFF2AIABbOPfzBQdoWYiJsZfJaFoYwwdKvKS994TeecxRP+whMfe7MJ/Mu5h4d2f81rQr7jktz2xD8iQpsJ//1tsyE+G3S4D159/XnaYL730LP0wHZDLL2dK8k7jWHex6AUZTOybEObkyH1aZ5GNqoRQoWhFdu6UzT6pDupENR3lKj7EKzAZMAB+9avABdjamM1c+uJUQob192o4P2AWjbg1Gvv3y6DdsWPhmWcgN9f7Vl9zGU8vhi/r18su+htvyJzDhx6S6txvfysN/Q6Hf5Xwm2+gsVHaQXylouPHn6CNc/58mD2bt12z+YBZbGAYVpoISu/iTQanTJEJIrNmeXNeRYDJzISQrrHEmCpxuZfAvXo6+Z/8hMnRCkULcPCgXJeKiyHI7CToqGwUlhJDDaEQJT1qV1xx/JhXRRvDM1g4K0v6C2y2405J/vB5Ym+8GF588QRDBo9h8GBRzixbJr0On38uPQvuvnzFaWK1knDvbAZj9IqsWW+msqTRLyEsK5O/5s5iLKNuURSKVuSJJyQZdDpBczYxrGkNQ3wuSrz4Yqdb6SMi4OIrbZDZAzJ7UGztwlIm+5/0/ffSsJeZKQODHn2UrhU76NfXkNF4zGUcDlGk3nGH9OH40tAgM6AefFASynfflWSyqUmqhytXwuuvG+fHxJxAKjp3LuWz7+TPzj/xKH+SsRJAWNcoiI0jJUU2bp94QlREirZDSgoEh2ikJ9TgcvcR1hLKpn+r8ROKwOLrLhrRVAq6i3T28RUXSkJhC8ZshssvD2ycijMgLAz++lfZDT7TGSEJCXDddTLctqAANm2SRWXixGYTTMUZcOutTAsyBkI2NbpY/thqUlP9Dd1zclSFUKFQtDBFRTKzzukE3eUitLGc6SwkGreN5fXXS3NcJ8TrlhcVBQP6M7fvo+jaCS5PmzeLBnTAAKa+eqUskiVH2bNH56uvJIF7//1Tf8/6eli6VL7ee08qhA8/LP9OHm655XhHUP2dd/nsug+4XP+ID5jlrTIFxUZgT4nm5pvFUHXs2DP+a1C0AiaTDKnv1Ufq8k7MODGzal0HM3BStCt0XRJCl8vdP1iVB0AU5eSSARFSHZw8WW0ytUsyMsQydPHiE7sBWa3iXvb44zIZvaBA5lNdf73YWytajuhoplyXhAnD4nXRu0WYTTrduxun5eTIpnV4uByXl/u3nnQkVEKoULQSTz8tSYjTCVpjIwPZwgjWy4sREdIz10lJTfXpCTSZ2WkfwbZ520+ZIA85+CmxO1bg+moh2e9v5o6rSzi4owp8HFtHjBAzl9/8RhS5xxIcLOqeXbtEZrpwoZicduly/Lqd+/QCbpvj4BH9v6kggmrcw6WiohkxIYx586QFJDj4x/9dKM4+mZmQ2DeWIBq8Cf36Q0nN+78rFK1AcbHI00pKJDkMKZL+wd30khMiZXiqGjXRzpkyRTY1n3sOeveWReZXv4LPPpP/AMuXi8P4kCGqz+AsE/P7WxmGYR6wvjiNsq/XHmcso2mdo0qotkQVilagvh4+/FAWemejE5urlqFsNKyPH3200+8Azp4N331nHL+3sS8DV6yQxppPP5Xd1W+/9btpN+OiL7v4NzOpbIxAa9SJrsrBbDFhiwnj1zdVcdVD/TCF2OjfX75Hfr5UahcuhOxsudiHhsLRo/KZ9fVyzqJFkiBOnixr+PoX1vD2u11wIv0adYTgxExwXARTLg3h1VfV+t1eyMgALSaGaO0gRXoc0MgeZ3cc2/cQPLBXoMNTdEJ83UUjg2rRqquIopy1jJKLVHg4ffp0jLG0nR6rFX79a/lSBI5evZg69EPWb5RDFyaWPbKCni+O9p5y4IC0mnTrJqpfgLy8jmkQpxJChaIVeOklqKwEp1OHhkZ6k80QNmOnTqah3nlnoEMMOCNGSOVm7145Xr5cbo6SU1ONxbOoSHZSFyzAtXgpbzf9nH9xC1WInkNHo4pwxjWt4pGiP5P65CF4OUIyuuhoCA4mxWZjTnAwc3rbOJgaz+L9PXl59UBoigZdQwfsWgOmmiYqak0seFdjwSs1cMi4XOpANeH06mtl5EVhzJ6tksH2RGwsREZpJIbXUlip4UKjjmB2/XsHQ1RCqAgA2dmyYVhQAMkO8bbXkZtUwsLAZGbWrONH3CkUih/PpD+P48lLnTgxA7BwTRRPW/YD6YAouvbtUxVChULRArhcxky7JkcjVhoYwQYGsUWefPHFjjeA/kfgMWV79FE5drmkF++ee3xOSkiAX/yCg9N+wV8ebGDr6iooKyO0vIZqwtBwkc5+XuNWgnDPoaislOpiM6QCIziHb7ifGBLYQX+cmGkqduEqLvTrL/AljhKGTI4leUw8ERGS0yvaD5ommw+pKU1srZSb7kaC2LCsgiF/CnR0is5GTY3cZJaXi0IhrEQMjg6QJidERBIc7O+srFAofjpRl5zPqNi5rC7pDcAmBlP/8hskJDzi9RPIyYELLpBNX5cLDh+WPzvaJnAH+3EUirbHggUiQXQ1OXE1NNGNgyRxhN5kww03+A/U6+RMn+6dPgHAJ59Aba1xrOsivZ09G7ZmBUFMLGT2IKJfV8Ljgzm360GSraVsYfBpfb9aQnidWwBIpIi+ZHEDbzGTTxnD96SQ73d+EA3cob3KzFsTSR4jnefnnivDaxXti8xMSO8Tgobu3R1evS0iwFEpOiOe6mB+PkSEuTAVFWChSWaaAkRGMGHCCWahKhSKH4+mMXV2gvdQR2PpW3n07ObwPpeTIypfT1dPQ4O/+VxHQSWECsVZ5vnn5U9nbT1mnIxiLf3ZgSUyDJ58MrDBtTFsNrjySuO4ulpGLYGMkPjVr+SvzGFcqzGZ4Jd3mJlzeygRE4bBVVey+Mb34LbbpKJ4EuYym1JivMe/4+8E0UgspSRSyHvM5m3mcBP/x3W8yweWa5n0yiwKEiXhDAmB4cNb7MdXtCIZGRCcnkQYxviJzSVd0R31gQ5N0cnwlYtGOEuhqQkdZD6txQohIUyfHuAgFYoOyoQ/nYfVR6S1qG4cPXO+9B7v2SO/nx19HqHSqSkUZ5G1a2HHDtAbGnA26SRQTAr5MhD1r3+FxMRAh9jmuPJKePNNmQ0IMv89NFRmCx5r99ytm4yKGDgQVq+Gl18GTGZ2NfXi0COv0u2ll+QfISdHtFj19ZJN1tez7WAkK1aNdQ+GdHFe7E6mp0VRnBPG7opEGp1NfBt8Gxfav6GfY7kMJXz4X7yVZ8xIHD3af2aRov0QFgbx3cOIs+RT1RSGjkYx8RQt30HijKGBDk/RSWhqkstTVZVIR9ObZNyEVy4aGUFkpMbo0Sf5EIVC8aMJjw9mzPBGVq6RGdBbGcgdnz4KEy8FzURlpbgAd+sG69bJew4dEt+DjoRKCBWKs8gTTwDo6DV1gIWRrCOSStIHRcHttwc4urZJXBxMmwZfujfoDh6Ehx46/rxZs+Duuw0Z1ciRMHeuDJoHcRK96SazDAQ8ZihgbS3864+A+74/Ohque2I02G9mcj7sflmeX2eew7n3QaSMACM/H/Z8I4+tVtRNWjsnLQ1Soh3sK5Y+wnpsbP38IFNVQqhoJXJzobFRri12O1h259GIlUoipEIYEcnUqarNXKE4m0z7dR9Wrs2VUiCwMz+S4OI8HAniKp6TA336GOd3xAqhkowqFGeJ/fth1SrA4aBJ1winkh7sZSBb0V5+Sa3wJ2H27BO/lpAgPjwPPODfU2OxwKRJxvF338mOe3PMny8jnzzcfLMxgD4lxbCUdjplYL2Hb781Hg8ffvzQekX7Ij0d0t1DiF2YcWHiu2/VLEJF6+EZN5GfD5HB9VBWhhMzXjPRiAglF1UozjLnz4zGFm/0kC9hKhmHjQU/J0dEQp41/+hRqKtr7SjPLiohVCjOEo8/LjMH9dpaXJgZzgZMuBh0TT8YMybQ4bVp+vSBoc0UaS68EN5/H0aNav59EycaBi8NDbBy5fHnbNsmIy08nHceDD7Gg2byZMPefeNGY2D0DvfYSJNJzGQU7Zu0NEjqHYmVRpzu5XDd3rgAR6XoLOi69A/W1IgZckRtPi40DuFuVrKHktTVolyMFYqzjN0O46YYO8y76EtM1ippM6H5AfV5ea0d5dlFJYQKxVmgshK++AKorcWFiWDq6M8OEkOqSHr+wUCH1y647TbD1jk6WnoIH3kEwsNP/J7oaH9d/5IlXgUIIDt6r79uHEdFwbXXHv85iYkwYIA8drkkgfzuO+OzBg0yZKSK9ktUFET1TiKacnRkHuHu2hQai8oCHZqiE1BQIGtFfr4YatmK8qghjEakl4nICK/dvUKhOLtMvbGL/CK6KXVGwIH9gLSuOBwd21hGXWYUirPAM89AXWUDNDTgxMIAthNEI4PuGAvx8YEOr10wfLiYyzz8MHz8sVT/TgffWV1FRbBli3E8b55U+jzcfLMY1jTHpElGlXDLFti0yXhNTQrpOKT1spEQXAVIH2ENoeR8tivAUSk6Ax65aEEBREboaEcKaMDqIxeNZMaMQEWnUHQuxp6rYY2P9h7vphfszQVkMzg3t2MPqFcJoULRwjidMPc9HWpq0QETToaxES0piYH/dXGgw2tX9OsHF10EEWcwHq5nT5ECeli8WP7cvt1fKjpuHAwZcuLPiYszpKS6Lv+uIP2Fp5hmoWhHpKdDt0SRBXkG1K//sjiwQSk6BVlZolooLYUIVznO+iYKSJYXzWYyB9rp0SOwMSoUnQW7HUZMNm42djCA2JJsqBSnupwc6NLF2CjOy/NXILV3VEKoULQwr78Opfl14HLixEwP9hBKDem3TCYyRk0wP9tomn+VcOtW2LcP/vUv47moKLjuulN/1sSJx8u1zjuvZeJUtA3S0iCjlwUNMZYB+O6H4MAGpejwVFZKZfDIETHECi3Lo4xoNNx3mOERTJ+hbtEUitZkwiURECZ9KS5MODF7q4Q5ORAcbIi8HA4xl+koqKuNQtHCvPpCvdd+SkNnFGth8BAGXZYR4Mg6D2PGyJw5D088cfpSUV+io2HYMOM4Pd1fMqJo/8THQ2yfBOzU4HLfjm/OT+hYW7+KNoevu2h4OGgF+TiwYfIkhO7+QYVC0Xqcfz4QF+s9LiIe9uWC7mLvXlkWOqqxjEoIFYoW5MsvYf/uBgB0IJkjxAbXYZk2kf79AxtbZyIoCMaPN45ra43H5557cqnosUyaBMnJIlu96KKWi1HRNtA0SBuRQBwyh8SFmYKmeEq3HQ5wZIqOTFaWGBgePQoRIY00FJdTRKL39UGjQ0hJCWCACkUnJC4OBoyN9EqDcsnAWeuAI4VUV0tFv6P2EaqEUKFoQZ797xKZdwCAJtXBSRPpPSSUYKVCa1WmTDG0/h4iI09PKupLWBjceSfcfz8kJbVcfIq2Q1qGmZTIagCcngH1C/YEOCpFR6WhQQwqCgvlOKK2gGLiseGQJ4KDmX5F2Ik/QKFQnDXGT7FClJjLuDBRTRjk7gVENtpRnUZVQqhQtBBb1tWzaYvxKxVDCV2TnSIXHRTAwDopcXHHzzK8+WZ/KalCAdJHmN61CZAbABcmVi3pYFOHFW2GPXvEpCo/X65H5iP51BLilYuaIiOYMiXAQSoUnZQJE/DKRjXAQTAcPASNjezZI20GnukUhYU+NYB2TqskhJqmBWuatk7TtC2apu3QNO1h9/OTNU3bqGnaZk3TvtM0rYf7eZumae9rmrZH07S1mqal+3zWH93PZ2uaphT2ijbD47/Yg+5yuY90BrMFbcYMQkJN9OwZ0NA6LTNninwUxCCmuWH3CkVyMqT2DcVCEy73bfnaXWdgbatQnAFZWdDUJGNxIiJ0HIdLKMOwux89Sic6+iQfoFAozhrp6ZDaLxyscvNQRCK6swkOHmD3blGTduki5+o6HO4g3QWtVSGsBybpuj4IGAxM1zRtNPAycK2u64OBucB/u8+/BSjTdb0H8CzwJICmaf2Aa4D+wHTgJU3TlG2jIuDUHSxmxTajETmKCnoNtkNKCgMGiIucovXp3h0eewwefBBuuinQ0SjaKmYzpI9KIgqxF3dhYldZAq6GpgBHpuhouFyQnS29SC4XRFBJfl0kdtyNzprG9BuVNl2hCBSaBuMnaBAr93SNWCknCvbmkp8vngQdsY+wVRJCXah2H1rdX7r7y7MNGwnkux/PBN5yP/4ImKxpmuZ+fr6u6/W6ru8D9gAjW+FHUChOypKnN9OAFZD/1P2sOZgnTwBQctEAk5QkswOP7SdUKHxJGxpLgtljLGOiSg8nd/HeAEel6Gjk5ckNZUEBhISA7Wg+1YRhRtQltshgJlxgC3CUCkXnZvx4vAmhjXoxfCoqRK+qZu9elRD+JDRNM2uathkoAhbrur4W+AXwpaZpecD1wBPu07sAhwB0XW8CKoBY3+fd5LmfUygCyldfuvyOuw2KhhA7UVGQmhqgoBQKxWmT3l2jW5xUaVyYacTKuk87iBZI0WbIypL+wcJCcS6uPlRGHXbv6+OH12C3n+QDFArFWWfgQIhODobQUEy4qCBSXsjNJSfn+ISwI0wparWEUNd1p1sa2hUYqWnaAOA+4EJd17sC/wf8oyW+l6Zpt2matkHTtA3FxcUt8ZEKxYlxOlmzz5D42Kklpr/sUwwapCpTCkV7oGtX6JEpq7qnj/DbVeqXV9GyZGVBcbH0EEaENXG42IqdGu/r0+ckBDA6hUIB0id43nl4q4T1BFFNKOTmsidHx26HmBg5t6YGyssDF2tL0eouo7qulwPLgRnAIHelEOB9YKz78WGgG4CmaRZETlri+7ybru7njv0er+m6PlzX9eHx8fFn5edQKDwULtrCYZckhDoQaypH6yIDpAYODGBgCoXitLFaoddw6eXSkaRwy4GYQIel6ECUlkoymJ8v/9/slUVU6BFYcAIQYatnzNVpAY5SoVCA2200JgY0DRv1FJII1VXsWVV43ID6jiAbbS2X0XhN06Lcj0OAqcAuIFLTtF7u0zzPAXwG3OB+fCWwTNd13f38NW4X0u5AT2Bda/wMCsWJWPSvAzQhrjEuTKQmOMBkIjkZEtRmr0LRbkg7L5U4SgD5XT5YG0t1Yc0p3qVQnB5ZWWIkc+SIyEXL95fh8rkNm3JOEdYgVZVWKNoCo0ZBcKgFoqII9iSEQN2ufRw+7J8Q5uUFKMgWpLUqhMnAck3TtgLrkR7Cz4FbgY81TduC9BDe7z7/dSBW0zgyv20AACAASURBVLQ9wG+APwDour4D+ADYCXwN3KXrurOVfgaFolkWrjQaPlyY6XWOGAIoMxmFon2Rfk44ScFlgCSE9djY9klOgKNSdBSysqCkROaWRURAfr7mLxedpUadKBRtBZsNRo8GYmOx0EgVEdRjgwMHyNleryqEPwZd17fquj5E1/WBuq4P0HX9Effzn+i6fo6u64N0XZ+g63qu+3mHrutX6breQ9f1kZ7n3a89put6pq7rvXVd/6o14lcoToSrrIIfjoprjA6EUo29TxqapuSiCkV7IzUVuifXA7K548TEt/+pCHBUio5AXR0cOCByUZMJwrQayupDsCKjTRIoZvAtwwIcpUKh8GX8eCAiEs1idbuNJkBjIzkfbSEx0RgpVlAgfcHtmVbvIVQoOhI731rvHSjsxEyyrRwiI8nIgPDwAAenUCjOiJAQGDIYzLjcc5E01mwJDnRYig5ATo64ixYUQFgYlO4txYQhcJrePRtTTFQAI1QoFMdy3nlgMmsQG4MNh1c2umfpAcxmY0C953e7PaMSQoXiJ7D0wxIa3fMHnZjJ6NYAKLmoQtFeyRiTSCRiGefCzM7CuA5hKa4ILFlZUFYGDgdERkL+IRehvnLRS4ICGJ1CoWiOqCgYPBiIjcVGPUeJpQkzBfvrqc4p6FCyUZUQKhQ/Fl1n6SZxIfTcL2YODkfTZBC6QqFof6RP7E4CMq7IiYnyplDyNh8NcFSK9ozTCbt3i1wUINTuorTKipVGADLIpefsEQGMUKFQnIjx44EQO7ZgMy5MHCUe0Nnz4kK6djXOUwmhQtFJqd68h+11GQDomIiigqDMVJKSIFipzBSKdklaLxvdIisBMZZpwMraD/YHNihFu+bAAakMFhSA3Q5l+ysJ0uvw+IlOD/0ObdjQgMaoUCiaZ/x4+dMUF0MQDYZs9OMtdOtqyEdUQqhQdFLWvbGdOsRh1ImJLhFVYLXSvXuAA1MoFD+aiAgY3KMakB5CHY1vlzUGOCpFeyYrCyorZYB1RAQc3t+AnVrv6xdMcYLZHMAIFQrFiejaFTIygNgYgt3GMjoaOXnBROT8QITbHLiiAqqqAhrqT0IlhArFj2Tlwloa3P2DLkz0yJCdovT0AAalUCh+MoPH2AmhDpDf7U27wwIckaK9ouuwa5chF7XboazCjA1xsx3IVrpcNjKAESoUilMxYQJgsWILtdCIlVJi2Esmzv97u8P0EaqEUKH4EeiOepbvTQU0dMCMk25D49A0lRAqFO2dtPHpxHoH1JvZVxGDo045yyjOnKIiKC+XhDAoCMqLGwlpqjTkonwN06YFNEaFQnFyJkyQP21xYh9fSAL12Mibu5JuSYaCRCWECkUn49CnP3DIlQKIrCzaVIk1OZ7ERLGuVygU7Ze089NIMomxjAsTdXoQO75uxyu9ImBkZUF1tUjJIiIgP9fhHUZvwsWU/kcgOTnAUSoUipPRpw/Ex4MlJgKz5vL2EeaUx9Ft91LveSohVCg6GWvm7cOBZH5OzHSNrQNNU9VBhaIDEBtvok9iGQAuNFyYWPlxcYCjUrRHsrMNuWhwMFSU6wTjAGAUa4m5aEwAo1MoFKeDyQTnnw+ayYTNbqYOO5WEs4ceJH/+T28LcH6+uAq3R1RCqFD8CL5drdGAzI3SMdGjj/QSqoRQoWj/aBqcN6wWEy5ANn2+X6ud4l0KhT/V1ZCXJ+6iZjNUVOiENFV45aIz+AqmTw9ojAqF4vTwyEaDo8VMsJBEcuiJ9avPSAoVN5nGRigsDFCAPxGVECoUZ0hjXiGrjvZ2OxBCEA0kDkoCVEKoUHQUep6bSCTG+IkdhyMDHJGivZGdDbW1MpA+PBwKDjQQ6pT/U0E0MMG+Hs49N8BRKhSK02HYMDGFskXawGSmkESKSKCyKYRue5Z7z8vLC2CQPwGVECoUZ8jWNzZQQRTg7h8MqiUoyk5CAoSGBjg4hULRIqRf0Jt4igBJCI/WhVGU1xDgqBTtiexsqQ4CWCxQXe4kxC0XHc8K7JPHiNOMQqFo8wQFyf5NUJCGFhxEJZE4CGYPPei28j3vee21j1AlhArFGbLmP8U4kMnzLsx0S5abRFUdVCg6DomDkugefASQhLARC2vePxDgqBTtibw8o3+wqgpCnFVuXYnbXfSCCwIYnUKhOFMmTJB+wqAwGyCy0d30olvWIrEURiWECkXnwOVi1dZw6pGLgYZOWl8pC6qB9ApFx8FkgnE9Crz9Xi5MrPiyOqAxKdoPtbVw9CiUlIDVCoUFLkLrSwGIoJKxrFb9gwpFO2PsWOkHttnNYLFSSCJ76EEU5YTu2gDI73xtbYAD/RFYTvaipmnvAKccvqTr+pwWi0ihaMOUrtzO1oZe3v5Bm1ZPXN94QFUIFYqOxvAxNoK211OPDRdmNu4IDnRIinZCUREcOSKD6V0uqKtqJB65S5zMUqyZaZCZGeAoFQrFmRAeLr2Ey5YBNhslTbFk0xsnZrpt/YKs86aDyUReHvTqFehoz4xTVQj3AHvdXxXApYAZyHO/dyZQfjYDVCjaEuve2uUdN6GjEWVvJCTUTFwchIUFODiFQtGidJ9oDKh3YmJvSSSNjSd/j0IBkhB65KLV1RDiqsWk5KIKRbtnwgQZIUOQFR2NfJI5SCpdK7ZDbi7QPmWjJ00IdV1/2PMF9AIu0nX9Wl3XH9R1/TrgIqB3awSqULQFvl/u8OsfTO0mC7yqDioUHY8u088hBbmrd2GipslK1vqqAEelaA/k50Oxe3RlRQXYG0QumkARQ9ik5KIKRTtl/HgxiTJbTBBko5AkMZbhEGzdCnTAhPAYRgNrjnluLaCmqio6BXpVNd8fSMbh7h+0Uk9KX3EbVf2DCkXHwxIdzvCYfd5jJxZWzD0cwIgU7YWsLLdUtA6a6p2ENMq4iQtYiMlqgYkTAxyhQqH4MSQmQp8+7iqhzUYx8eyiD104jJadBQ4HeXkiF29PnElCuAn4m6ZpIQDuPx8DNp+NwBSKtsaeuesoIAndLfwJNjuJ6x4OqAqhQtFRmTS4zDug3oWJ1d85AxyRoq2j67BnjzyuqgKLqx4z8v9mOl/DuHGqx0ChaMeMHw82G2C10GQKYjXnYqOBBGc+7NxJfb2hEGgvnElCeCNwLlChaVoh0lM4DlCGMopOwfcf5vn1D0ZEQEgIxMRARESAg1MoFGeFPuMTCUdkoi7M7NhnD3BEirZOdTUUFkpiWFsLNmctGpDOfnqxW/UPKhTtHG9CiAY2G7vpSRlR7Vo2etoJoa7r+3VdHwv0AC4Beui6PlbX9f1nKziFoi2xZoPZ2z+oA93SzWiaqg4qFB2Z1Av6kuAzoL6gKoyysgAHpWjTFBZCeTnU1ICu69jqRS46na9ljInqH1Qo2jU9e8q9n6YBQTaKSCSbXpIQ5h2C0tKOmxB60HX9ILAOyNM0zaRpmpplqOjwOLL2s6miu7d/0I6DhF7RgOofVCg6Mrah/elnygZkI6hRN7PmP+1MC6RoVQ4fhspKkYuaXE6CdAfglosmJcHAgQGOUKFQ/BQ0TdqAg4IAsxmHJYyVnC8JIcDWreTlBTTEM+a0kzlN01I0TftE07QSoAlo9PlSKDo0G1/fRA2huDCjA0E2jdgkK6ASQoWiQ2O1Mik91zug3omZbz4pDWhIirZNVhY0NYlcVHM2YKOeAWynK4dh2jR3WUGhULRnxo93G8sA2GysYDxxHCWGUnrv+pSBA1ztyljmpIPpj+FVoBaYDKwAzgf+AnzZ8mEpFG2LNV+X+8hFNcIiLYSFQVQUREYGODiFQnFWGTNWw5rbQANBuDCxcbO6oVecmOxsqK+XHkJrkxjKTGORvKjkogpFh2DIEPGQqKgAgoLYWTOAJizcx/8g42svBW1CYIM8A85E7jkWuFnX9c2Aruv6FuAW4LdnJTKFoq3Q2Mj3WVHehNBCEykZQWiaqg4qFJ2B7pMyiEGqgi5M7M6PwOUKcFCKNomuw7594HDIgc1VgwYMZrNUBqdODXSICoWiBTCbYdIk94FmojIoljWMNk54662AxPVjOZOE0IlIRQHKNU2LB2qALi0elULRhij88gdym7p5HUZDTQ7i0sVWVBnKKBQdn7Dxw8hA5hHqaFQ1WMnJUuMnFMdTXg4lJVIhNOlNBFOPhSZ6sAeGD4e4uECHqFAoWojp02VIPQA2G59xsfHiRx+Js1Q74UwSwrXAhe7HC4H3gQXAhpYOSqFoS6x5by9NWHBiBsBqDyIuXiRjqkKoUHQCundndLAxcteJmeXzjwQwIEVbJT9fJGQOB2jOJoKopxe7CaJRjZtQKDoYo0dDaKj7wGpllXWi8WJ1NSxYEJC4fgxnkhBej/QOAtwLLAe2A7NbOiiFoi3x/+zdd3Rc13nu/++eMw0DYNDZAHawiKJEioJIVavLkmwV21KsuMf2spO4XFtOu7lxHKfd6zT/YieOb/yLEjtOcZMsWbZkFauQkigWQSQBNoAESJAEARKVKDOYmbPvH2c4pLooETiYmeez1izOOVPwgLYIvHP2++7n1qdzy0VdDLGqMPG4t/dgZaXP4URk8hnD9ef3nLZBvcNzj4/5HEqmo5YWSKUgnbYEMikiTLCCnd6DKghFCkosBqtWnTwy7AstZ4DTBksUYkForR201vZn749ba//MWvv71truyYsn4i+39zibjs7NFYQljDFjQWmuf1DD4kSKw6qrqinFW/6TIcCOPRGfE8l0tHu3t1wU1+KQwiHtFYQVFd7lBBEpKKd/zpMOlfCLwK1w++1w333wgx/4F+wMncm2EyFjzFeNMR3GmIQxZn/2ODyZAUX8tPO7mxkmfqp/MJyhZo73i6CWi4oUj8orVzGHI4DXR9g1WMbIiM+hZNppa8sOlHEzlJDAgFcQXnvtac1GIlIo3vteCJysppwgP3/Pd7xi8PbbsxsV5oczWTL6V8B1wKeBVcBvAtcAX5uEXCLTwsafHiWNQzq7Q0uoLEpNjfeYBsqIFA+z9iIuoDl3PJEJsPGphI+JZLrJZODQIe8KobEuERJESbCQDrj8cr/jicgkmDED5s49dbx5W8T7UCjPnElBeCdwq7X2EWvtHmvtI8B7gF+bnGgiPrOW516M5paLBsgQqoxRWQnl5d7+MyJSJGprua5uW26DepcAT/7omK+RZHrp7YWBgexAGdebMLqMPTi4sG6d3/FEZJJccsmp+6OjsGmTf1neqjMpCF+rW0pdVFKQRjbvYsfY4lxBWMYoNXNLCQS8q4PqHxQpLldekiJICvAGy2x9XltPyCk7dsDEBGQyloB1iTDBubR6G5ZdcIHf8URkktx006n7ExPw2GP+ZXmrzqQg/BHwM2PMO40x5xhjbgR+mj0vUnA2/2sLLoFcQRgrDVBT5/0no/5BkeJTf9VSaugDvInDuw6WYK3PoWTaaGk5OVDGxck2G6xgJ5x/PpSU+B1PRCbJlVee2n7CWq8gdF1/M52pMykIfw94DPhHYCvwTbytJ353EnKJ+O65x0bIECCF1xTsVMRyewqrf1Ck+Jh1a1nGntzx0HiEAwd8DCTTyt69JwfKuERPHyij5aIiBa28HBobTx339norBvLJ6xaExphrTt6Ay4EngU8Bt+ANl3kie16koNjRMTbun5G7OhhhHFNWTlWV9ynQycJQRIrIBRdwBc/kDtM2wK/uP+FjIJlOOjpOXSGMMk4ZIzRwCNau9TuaiEyySy89dT+ZhCef9C3KW/JGM5D/5TXOn1wkY7L3F521RCLTQNdPNnHEnZUrCOPBBFWzIjiO+gdFilZJCTcvbecv97q4BHAJ8MzPB/j4/yj3O5n4LJGAnh5IJCzGzRAlyQp2EsDqCqFIEbjqKrjnHq8YPFkQfv7z+fP74usWhNZadUpJUdr4gwPAubmCMBoPU1Pr/Vet/kGR4nX+lVXE9o4xQhkuAba1nEnnhRSqHTu8otDNWAK4REhyDru8tWTLlvkdT0Qm2dKl3hYUXV3eFjT790NnZ/78zqifZCKvYuNGi0uACcIYLE5FufYfFBGcS9Yyn1ONg53Hy7xlglLUtm071T/o7Vyb9iaMNjV5U0ZFpKA1NHi3kzIZaG/3L8+ZUkEo8jKp/V1s6V9EgghgiDNEqiROdTXEYt4nQCJSpNaupYktucOJlOH5jRo1Wux27z69f3BCA2VEikwgABdf7BWFa9bA5z4H11/vd6o3b0oKQmNM1BizyRizzRjTaoz5ava8Mcb8hTFmrzFmlzHm86ed/4Yxpt0Ys90Ys+a09/qoMaYte/voVOSX4rLj37YyRiy3XLS8xKWi2iEUUv+gSNFbvpwbw0++ZIP6J+4b8DORTAP79p0qCCOMU8UAM+nRQBmRIrJ8ubfLzKxZcPCg32nOzBsNlTlbksA11toRY0wI2GCMeQg4B5gLLLfWusaYk9debgKWZG/rgH8C1hljqoGvAE14w2y2GmMesNbqp7GcNc892Ac0nJowWhXTclER8TgO11x0guAzaVIEcQmw6alxv1OJjzIZOHQIkgkL1iXGOCvY6X1ooCuEIkVjyZJT97u6vGXk0ah/ec7ElFwhtJ6R7GEoe7PAbwF/aq11s8/rzT7nNuB72ddtBCqNMbOBdwKPWmv7s0Xgo8CNU/E9SJHIZHiutRwXwwQRQqSw8QrtPygiOfHLz6eOHsD7QbZzf578xJdJsX8/DA97A2UMligJr3+wvh7mzPE7nohMkcZGqKz0Wofvuiu/NqefqiuEGGMcvA3tG4F/tNY+b4xZDLzfGPMe4BjweWttG1APdJ328kPZc691XuSsGHj8BXZPLCJJBIuh2gySCM6kutr7lGfmTL8Tiojv1q7lXHZyJPvjp380zJEj+t2/WG3bdmq5qEOGIGlvwqiWi4oUldJS+MY38rO1aMqGylhrM9ba1UADsNYYsxKIAAlrbRPwHeCes/G1jDGfMsZsMcZsOXbs2Nl4SykSz39vD0BuuWhppUN5uSES8a4OBjSGSUTWruUqnswdZjLw+C/T/uURX7W0nJowGskOlDmXVi0XFSlC+VgMgg9TRq21g8ATeEs9DwH3Zh+6Dzg/e/8wXm/hSQ3Zc691/uVf45+ttU3W2qa6urqz+w1IQXvuqQngVEEYqSnXclERean6et5dt4kA3nogF4f1Pxv0OZT4Ze/elw6UmUkP1QzoCqGI5I2pmjJaZ4ypzN4vAa4HdgM/Ba7OPu1KYG/2/gPAR7LTRi8Ghqy13cAvgRuMMVXGmCrghuw5kbfNDgyy8VADFkgSpYwRJkqrcgNl8mVzURGZZMaw5NIZlDIKZCecbc2jZhE5azIZb5pgMmEBlxIS3nYTxniNRCIieWCqeghnA9/N9hEGgB9aax80xmwA/sMY80VgBPhk9vm/AG4G2oEx4DcArLX9xpg/AzZnn/en1tr+KfoepMC1/8fz9FGT6x+siYyScCPU1EAk4o0RFhEBMOvWsuj+/WxjFQCdPSWkUhAK+RxMptSRI9DXBzY7PaKEMa8gXLECyst9Tici8uZMSUFord0OXPAq5weBd73KeQt85jXe6x7OUq+hyOk2/uQwUJNbLhqriZKOQUkJzJ+v/kEROc3atazj+VxBODERYMMGuPrqN3idFJSdO2F0FHBdAriESXn9g1ouKiJ5RL/iigBYy3NbvI/2E5QQIEOwRttNiMhraGridu7DYAHIWPj5fUmfQ8lU27HjVP9gODtQZjm7NVBGRPKKCkIRILF9Ly+OLM72D0aoNoOMRyrVPygir66igsuWDVCCtym9xfD0IwmfQ8lU270bkkkLrkuUBHPpIs4JXSEUkbyiglAEeOHftjFBmAnCuASoLk8znnSoqYFwGGbP9juhiEw34YvXsJj23HH7gZB3tUiKQiYD+/bBRNJCdkP6Fez0+gxWrvQ7nojIm6aCUATY+PAQcGq7idiMUqJRiMVg3jxwHD/Tici0dPXVXMvjucOJJPxSc6+LRnd3dqBM5mUDZdas0XQhEckrKghFkkk2tlUDXv9ghCTU1FBT400OV/+giLyqa6/lPfwUhwygPsJis38/DA0Bros5/QqhlouKSJ5RQShFb/TZbezPzMcCCSLUBocYpTQ3UEb9gyLyqhoaWL0smduPEOCZX6kgLBY7d8L4OOC6hEgRxGUZezRQRkTyjgpCKXrtj3UCkCKEi0N5HMbGDDU13qqf+np/84nI9BW+/kpW0Jo77joaZGDAx0AyZXbuzG5Ib10iJFlAJzHGdYVQRPKOCkIpem3P9wOn+geD8RjhMJSVwdy56h8Ukddx3XXcxEO5w1TK8POf+5hHpoTrwp49MDHhbTsSJeHtP1hbqz4DEck7Kgil6O3d7fX/nCwITXlprn9Qy0VF5HVddRXv5DHCpACw1vLzH4/5HEomW3c39PbiVYZACeNe/+C6dd4PDxGRPKKCUIpbKkV7d1m2fzBKlASJUDy3/6A+6BWR11VRwbnryihnOHdq87NprPUxk0y6jg4NlBGRwqGCUIqau3M3be4i0gTJEKQ8MMZYKkxNDQSD0NDgd0IRme6C11/NBTTnjnsGQhw65GMgmXT79sHICOC6BEkTJcES2jRQRkTykgpCKWpHntjDOCW55aLhUgfHgYoKrxgMBn0OKCLT33XX8W5+hsG7LJhJW+7/qS4RFrJduyAx7g2UCZNiKW3esuGLLvI7mojIGVNBKEVt74Ye4LSBMrGo+gdF5MxcfDGXRV8kQgIAC/ziRyf8zSSTxnWhpQVSE17/YIQE57ALGhuhutrndCIiZ04FoRS19u3jACSzBaEtKVH/oIicmUiEc66aSRWDuVM7dhgyGR8zyaTp7oaeHl4yUOZcWrVcVETylgpCKV7WsvdABBdDiiCGDJlIjMpKb6uJuXP9Digi+cK5/houZmPueOBEkN27fQwkk6azEwYHyQ2UiWigjIjkORWEUrw6OmibmEeKMGAoYQIbChOPe/2DoZDfAUUkb1x3HTfwCA7eZcFMxnLvj3SJsBB1dMDwMOC6OGQoY5RF7NcVQhHJWyoIpWiNPredw9QzQRiAcNQQjRqiUS0XFZEztHIla6v3U8J47tSj9434GEgmS1sbjI24gCVImhXsxAk5sGqV39FERN4SFYRStPY92QWQKwidaIh43HtMA2VE5IwEAiy/YR61HM+d2rsvwJj2qC8orgs7dkA67U2RjZBkJa1eMRiN+pxOROStUUEoRWvvVm8K4ARhLGAjESoqIBBQ/6CInLnA9dfyDp7KHQ+PB9m61cdActYdPQpHjpAbKBNl3JswquWiIpLHVBBK0Wpr98bDTxDGJUCoNEI8DvX1EA77nU5E8s511/EONhBmAgDrWn78n0mfQ8nZ1NEBAwOcNlAm6U0Y1UAZEcljKgilOPX00HZiFhmCuAQIksYp8a4Qqn9QRN6SefNomn+cGKO5U+sfTfgYSM62zk4YHrK5gTIVDDOXLl0hFJG8poJQipK7tZl2GnP9g6EgBBxDWZkKQhF565bc1MhMenLHXUcCHDvmYyA5q/bvh5ETJwfKZDiPHQQq4rBkid/RRETeMhWEUpS617czRoxktn/QCQcpL4dgEObP9zudiOSrwPXXchVPEsAbOjKaCPLMMz6HkrPC2uxAmZT3v22QFKvYDhdd5DWfi4jkKf0LJkVp78Z+4LT+wRKHigqYPRsiEZ/DiUj+uvpq1pmtRPCWilpr+cn3NWq0EHR3w+HDnDZQJts/qOWiIpLnVBBKUWrbmQJOFYThWJCKCm03ISJvU1UVTeclKePUHoSbn02drCEkj3V2Qn8/pw2USXgTRjVQRkTynApCKT4nTtDWG8fFkCaExRAujxKPq39QRN6+xe9azmyO5I57+xz27/cxkJwVHR0wNOiC9QbKVNPPbLpVEIpI3lNBKMVn2zbaWJLbfzAYsBAIUFmp/kERefu8/QjXEyQDQGLC4bHHrM+p5O3q6ICRYe9Sr0OGc2nFzJsHs2b5nExE5O1RQShFZ+z5HRyiIVsQBgiHLCUlXjEYjfqdTkTy3iWXcFFoOyV4vYMWy4M/GH2DF8l09sqBMhnW8IKuDopIQVBBKEWnfX034PUPZggQjgaIx9U/KCJnSTRK0zrnJX2EO3dkSGhLwrx19Kg3VMZmvCuEISa8CaMaKCMiBUAFoRSdtm3ep/YnB8pEsgNl1D8oImfLwltWMo8DueP+IYft230MJG9LRwf09QGuzQ2UWcFOXSEUkYKgglCKy8QEbQcjWCBJGBeHcHmYigr1D4rI2WOuv45LeJ4ISQCS6QC//EXG51TyVnV2wkB/BvAGytRxnNrAAKxZ43c0EZG3TQWhFJfWVva6i0kTxMXBwcUJB2lshJISv8OJSMFYtYoLy/YS49QehI/dP/I6L5DprL0dRoZODZQ5h12wciWUlfmcTETk7VNBKEXF3dpMO43Z/kGHSMjFceD88/1OJiIFJRCg6cpSyjmRO7V/f3bZoeSVkwNlMmmvIAySYRXbtFxURAqGCkIpKt3P7GeM2KkN6SMQj8OiRX4nE5FCM/+21czlIAG8QuLEaIDnnvM5lJyxnh7vZjPehFGHNOt4XgNlRKRgqCCUotK2ZQiAJBFcHCIljgbKiMikMNdfxzo2U4I3XjSZcXjk5xM+p5Iz1dEBA/0Wmx0oE2aC89mhK4QiUjBUEErxcF3a2ry7CaJYIFweZv58iMV8TSYihWjBAi6ceZjYadtPbHh0HNf1MZOcsc5O6D+eBiwOGWbSQzyWgRUr/I4mInJWqCCU4tHeTltyLi4BJghjgHBJkJUr/Q4mIoWq6doK4gznjo8e9XoJJX+0tcHI8MnlohmW0gZNTRAM+pxMROTsUEEoxaO5mTaWnOofdDJgDE1NfgcTkUI19/YLmcshgqQBGBsP8OST/maSN89a2L4d3NMGypzHdi0XFZGCooJQisbYphYO0ZDdfzBAJOwtFT3nHL+TiUihMtdczUVszW0/kXQd1IPfdQAAIABJREFUnnho3OdU8madHCjjZgfKBMhwEZs1UEZECooKQika+zYew2Ky/YOGcEmA+nooLfU7mYgUrJoaLlw8SNlp20+8sHGCZNLHTPKmdXbCwMCpgTLBkxNGdYVQRAqICkIpDtbS1uL9BjaOtwN9pDTIsmV+hhKRYtD0zhrKOYHJHg8MWF54wddI8iZ1dMBAbwqL1z84ix7KZ5bB3Ll+RxMROWumpCA0xkSNMZuMMduMMa3GmK++7PFvGGNGTjuOGGN+YIxpN8Y8b4xZcNpj/zN7fo8x5p1TkV8KQHc3bcMzsHhbTgCEy8KsWuVvLBEpfHNuX0sDRwhnt58YTwR44lfW51TyZuzZA6MnTg2UWUy7t1zUmDd4pYhI/piqK4RJ4Bpr7SpgNXCjMeZiAGNME1D1sud/Ahiw1jYCXwe+ln3uCuAu4FzgRuBbxhhnar4FyWvNzexlKROEyOAQDFgcx2jVj4hMOnP5ZTQ5L1LKKAATNsiGR8Z8TiVvJDdQJnNqoMy5tGq5qIgUnCkpCK3n5BXAUPZms8XcXwO/97KX3AZ8N3v/x8C1xhiTPf/f1tqktbYDaAf0L7O8IfuCN2F0nBIshkjIUlYGCxf6nUxECl5JCReuTFJ+Wh/h3p1p+vt9zCRvKDdQJjthNECGNbyggTIiUnCmrIfQGOMYY14EeoFHrbXPA58FHrDWdr/s6fVAF4C1Ng0MATWnn886lD338q/1KWPMFmPMlmPHjp39b0byTvdznYwRYxxvB/pw1LBggVb9iMjUaHrXTEoZJ0AGgJETrrafmOY6O2GwP4O1vHSgjPYqEpECM2UFobU2Y61dDTQAa40x7wDuBL45CV/rn621Tdbaprq6urP99pKH2pq9C9TjRAGIxBxtNyEiU2b2ey+hnsOUnOwjTDqsf8r1OZW8no4OGDyewsXgkKGW48xYWg2VlX5HExE5q6Z8yqi1dhB4ArgaaATajTGdQMwY05592mFgLoAxJghUAH2nn89qyJ4TeW2Dg+w9Wo4FJk4bKLNmjb+xRKSIrF5NU0krZXgfTk0QZNOTo1jNlpm2du2CsZFTA2UW0oG5WMtFRaTwTNWU0TpjTGX2fglwPbDVWjvLWrvAWrsAGMsOkQF4APho9v4dwK+stTZ7/q7sFNKFwBJg01R8D5LHXnyRNpbkBsoYYygrD7B8ud/BRKRoOA5NayzlDOe2nzhyMMPevb6mkteQGyiTPjVQ5hx2aaCMiBSkqbpCOBt4whizHdiM10P44Os8/1+AmuwVw7uBPwCw1rYCPwR2Ag8Dn7HWZiY1ueS/5mbaaWQUbwf6cNClvBwaGnzOJSJFpem2esKkCJICYGzU5fHHfQ4lr6q31xsoY08bKLOKbRooIyIFaaqmjG631l5grT3fWrvSWvunr/KcstPuJ6y1d1prG621a621+0977C+stYuttcustQ9NRX7Jb+ObW+hibm6gTCQC8+ZBNOpzMBEpKjPeeznz6CKGt+XEeMph44a0z6nk1ZzqH/QGyoSZYE1wB5x/vt/RRETOuinvIRSZavs29+NiSGQHyoRLHM491+dQIlJ8Fi2iqXJfro8wRYjtz4+RTPqcS16howOG+tJYAtmBMn3MWT0TwmG/o4mInHUqCKWwjY+zd79DBocUIQBKK4MsW+ZzLhEpPsZw4bogZYxg8IaVDB5Ps3Gjz7nkFVpaIDHm5iaMzqabskvO8zuWiMikUEEoha2lhXZ3EUkiuDiAoaYuyLx5fgcTkWLU9L75BMkQwbssOD5mtR/hNJPJwLZtYNPeiAKHDEvZg1mngTIiUphUEEpha25mL0sZI4YFgo63hZQKQhHxQ+17rmA+ByhlFIDxdJDNz2jN6HRy8CD09lrcjHcVN0ia89ihCaMiUrBUEEpBsy80s5clpwbKhC11dVBT43MwESlOtbU0zT5COScAr49w/84Ex475nEtydu2CoWMTuBgCuERIsrLsIDQ2vvGLRUTykApCKWjdm7oYJp7rHyyJGRobwZg3eKGIyCS58LIoJYzj4C1JHBtK8atf+RxKcnbuhKH+DJYAQdLUcpzZa2brB4eIFCwVhFK4MhnaW5NMECGDA0BFraPloiLiq6b3LyaApYRxAMbGYP16n0MJAK4LmzZBKukNlAmSpo5jzLhsid/RREQmjQpCKVx797J3Yj5JwtmC0FA7M6SCUER8VX3zxSwKdOa2nxh3w2x7fhxrfQ4mHDjg9RDaVBqbLQiX0EbJZWv8jiYiMmlUEErham6mjSUkKMHFYAKGuhlGBaGI+CsWo2lBH6XZ7SfSBDnWlaC11e9gsmsX9Pa4uK7N9Q9eQLMGyohIQVNBKIWruZlWVjCBt5FwNOQSjUJDg8+5RKToXXhVOREmCJEGYPxEmscf9zmUsGXLS/sHGzhE/UwX6ur8jiYiMmlUEErBGt/SSgcLyWT/b15ebpkzB8Jhn4OJSNG78APLMEDs5PYT47DxOdffUEXOdWHDBmBiItc/OJ+DzFijTxFFpLCpIJTCZC37XhgiQTQ3UKaqNqDloiIyLVRetZrG0AHKsttPjNsIu5oTHD/uc7Ai1tUFXV02WxAGCJGmgS5m3qLloiJS2FQQSmHq6qJteMZLJozWzI6qIBSR6cFxaFo2QhmjOGRIEyTRP8ZPfuJ3sOK1bRsc78lgXe9K7Sy6qQiMMuuuq/wNJiIyyVQQSmFqbmYHK0nj4OJgjKG6RgNlRGT6uPDaShxcSk8uGz2R4dFHfQ5VxB55BNzEBBmc3HLRhefGcKrifkcTEZlUKgilMDU38yKryeBggUh2oIwKQhGZLi786EoMlgoGMVjGkgHa9rh0dPidrPhY6+0/yEQKNztQZh4Habyx0e9oIiKTTgWhFCT7QjN7WZpbLhovcykrg8pKn4OJiGTFVy9iSewIpYzhkCZBFHf4BPfe63ey4tPZCYcOZrCZNBkcKhmkgkEWf/hSv6OJiEw6FYRSkI5uPcwQFa8YKGOMz8FERE4yhqZVEzi4lDFKGofEsRF+9SvIZPwOV1weeQSSIyksBgMsYj9VDeXUrJztdzQRkUmnglAKT18f247UkCZIBgeDpWpWiZaLisi0c83nVgJQzjABLMPjQQ7tS7B9u8/Bisxjj5GdLuoQJMU8DrL4ijn6EFFEioIKQik8zc08zzoAMjgEDMQrteWEiEw/q+46h3lVI5QyRpAUI5SRPjbA/ff7nax4WAsvvpCBVIoMAaIkmEUPjXes9juaiMiUUEEohae5me2cj0sAi8EJQlmZBsqIyPRjDNxyRzg7bXQEF8PoQIpn16cZG/M7XXFobob+3jQWcHGYx0GcyjiL3rnE72giIlNCBaEUnuZm2llyaqBMaYZQCOrrfc4lIvIq3vXlCwkEA5QzgkOGYVtGz55Bb+qlTLr77iM3XdRgaaSdOWtmESvVelERKQ4qCKXgHN+8n2PU5X64V1Y5zJ4NwaDfyUREXmnG3AgXr0oQY4wgacaJkjw2zM8esH5HKwpPPelCaiK73USKuRyi8ealfscSEZkyKgilsIyOsqF9FpZs/yAu8RkRLRcVkWnttrsX55aNGmB4IsK2pwfp7fU7WWEbG4O9rSmwlgwOMzhGJBqg8bZz/Y4mIjJlVBBKYdmxg81cBHgFoWMs8aqgCkIRmdauuGMm8doIZYzikOYE5fS2D/Pss34nK2wPPgipsZP9gwEWsY/w8oXMXaglJSJSPFQQSmFpbqaFc7EY7wphMEB5uQbKiMj0Fg7Dze+NZKeNpkkTZHQozUM/GcV1/U5XuB78mYXURHZFiWUZe1j4jnk4jt/JRESmjgpCKShjm1vpYl62fxCiEYhEVBCKyPR3691LCETClDLq7UlIOe3P9NDe7neywuS6sGl9ElwXlwBlnKDCGWPxrVouKiLFRQWhFJSO53vppzr7aW+GeAVUZG8iItPZ0mWGZSuDuWWjo5Ry9GCK59an/Y5WkFpaoP9YBvBaDOZyCBYtpPH8mM/JRESmlgpCKRypFM17S0kSzg2UKa/VQBkRyR+3fmYeMTNOiDQWw4lMCU/8+yHGx/1OVngefBAyyRQuBothCXuJr1pIba3fyUREppYKQikcu3ezNX0ekB0og0u8OqSCUETyxo3vjRGpqyDGmLcnIeV0beujpcXvZIXnkZ8lIJPBxSFImkV00HjzMoy2HxSRIqOCUArG+PPb2UcjAC4OJuhooIyI5JWKCrjy3WWUMopDhiQRDg2W8uxPuv2OVlC6u2H/nhQAGQLM4BiB+jk0NlX6nExEZOqpIJSC0bn+IH3UZAfKuARCDmVlKghFJL/c+okZxEoNQdLenoRUsOW+gxw75neywvH005AYyWS3m3CYzwHMsqUsXux3MhGRqaeCUApG5wsD9OUGyriUlXmj3GfP9juZiMibd/HFMGtJnBjjuT0JD7UnefGZUb+jFYxf3J8kk8rgZn8NWsZuZl++mJjmyYhIEVJBKIXBWva2G4aJZ/sHM8Srg9TXo/2kRCSvBALwrt+YQamTIEiGDAEOuPVs/M4O7Ul4FoyOwqanEoC3GX0pI9RUQ+Pls3xOJiLiDxWEUhASuzvZnZiP9RaLYoDy6rCWi4pIXrrldodYXSkBMtk9CSvYu6GX/fus39Hy3saNMDpwsn/QYTbdmGXLaGz0OZiIiE9UEEpB6Hy0jT5qcscm6BCvMCoIRSQvzZsHa66uyC0bHSNGx3AVzd/XuNG366lfZUiM22z/YIBF7Ce0Yglz5/qdTETEHyoIpSB0PtdNPzVYDBbACWrCqIjktVvvKqW03BDEG37SyQKa/3sviYTfyfKX68ITDwyRIYCLQ5gJ5pUcZ+EVDQSDfqcTEfGHCkIpCJ07TtCfHSjjYAlHDZGICkIRyV/XXQc188qzpUuGYeIc3DtOy+M9fkfLWzt2QE/Xqe0m4gwTXzqLxUv065CIFC/9Cyh5L5GAw50p+qnObTkRr3SoqoKyMr/TiYi8NbEYvPPOOCXBFA4ZUoTYw1Kav/Wc39Hy1tNPWRIn0oC33UQDh9Q/KCJFTwWh5L2DLxxndNSSJIzBegNlakK6Oigiee+WWw2lNREcMhjgIPPY+8Qhjh9O+h0tLz11/yAJN4SLweCyIHCI8vMXUlfndzIREf+oIJS8t+/xTvqoBsj2DzrEKwIqCEUk761eDUvXxAkADmlGKKNrvIYX/3GD39HyzqFD0NaSIIODS4AYY9QtKKXxnBDG+J1ORMQ/U1IQGmOixphNxphtxphWY8xXs+f/wxizxxjTYoy5xxgTyp43xphvGGPajTHbjTFrTnuvjxpj2rK3j05Ffpm+rIXW54bpz04YtQQgqIEyIlIYjIHb7whSUhbAwdtIfScraP7P3dqT8Aw9/TSMD3pXVjM4VDBEfEWDlouKSNGbqiuESeAaa+0qYDVwozHmYuA/gOXAeUAJ8Mns828ClmRvnwL+CcAYUw18BVgHrAW+YoypmqLvQaahw4dhqHOAfqpOzhfFBB3KylQQikhhePe7oXxmCQFcAlgO0UDvgVE6fr7T72h5Zf3Ph0lMeD8pLAHm0YVZuoTFi/1OJiLirykpCK1nJHsYyt6stfYX2ccssAloyD7nNuB72Yc2ApXGmNnAO4FHrbX91toB4FHgxqn4HmR6am0Feo7STw1B0higrNwQjcKsWX6nExF5+2bMgKtuiBIIBnFIM04J7Syh+e+f8jta3hgZga3rx0gQxSVAlHFm1FlmL45RWup3OhERf01ZD6ExxjHGvAj04hV1z5/2WAj4MPBw9lQ90HXayw9lz73WeSlC1kLLpjHS/UMMEcfgrZ8qrw7R0AABdciKSIF4z3sgVhEiSAaAVlaw86njJI8O+JwsPzz7LCT7R8gQxCVAKaPULq3RclEREaawILTWZqy1q/GuAq41xqw87eFvAU9ba9efja9ljPmUMWaLMWbLsWPHzsZbyjR05AgMNncwQBUOLhmCEHCIVzpaLioiBeXKK6FufhRjDA4u3cxmOB2l5a9+4Xe0vLD+kXESo14xfbJ/sGLVfBWEIiL4MGXUWjsIPEF2qacx5itAHXD3aU87DMw97bghe+61zr/8a/yztbbJWttUp1nSBau1FWhvZ4BqShgnRRjCIQ2UEZGCEw7D+94XwJREcEiTJsgOzqP5+61ouszry2TgmV8MkSCKBUKkmVU6QnhmtX5WiIgwdVNG64wxldn7JcD1wG5jzCfx+gJ/3Vp7+k+0B4CPZKeNXgwMWWu7gV8CNxhjqrLDZG7InpMiYy207HBhXzt9VBMmSZoghMLE4zB37hu/h4hIPnnf+yBWeWpPwt2cw4FjJfT/5Am/o01r27bB0JFRxrP9gzFGqZ1fxvz5EAz6nU5ExH9TdYVwNvCEMWY7sBmvh/BB4NvATOA5Y8yLxpg/zj7/F8B+oB34DvDbANbafuDPsu+xGfjT7DkpMt3dMNDaDWNjjFLmzRc1hnAsSCSiK4QiUniWLYNzVjqYcBiHNMeoZYg4zX/3K7+jTWtPP54iPTxKhiAZHMoYpfbcmVouKiKSNSWfjVlrtwMXvMr5V/362amjn3mNx+4B7jmrASXvnFwumsHhBOXectFQiHiFobYWYjG/E4qInH0f+hBsfT6KMzFCmiAvsIZ5Gx/gmv0dmEUL/Y43LT19Xx8JGwEggKU0mKRiyQwVhCIiWZrDKHnHWmhpAdrb6WY2ATJMZAvC6mpdHRSRwnXLLVBWGSQQMASwtLGEIeJ0fO2Hfkeblg4ehINtyex2E4Yo49TODFIeN8yY4Xc6EZHpQQWh5J2eHujvGoHuIxyjjhCpbEEYZsYMFYQiUrgqK+Ed7zCYkigOaYaJc4TZNP/nLkgk/I437Tz9pIsdGMztP1jKKDWLK2lsBGP8TiciMj2oIJS8410d3IcFjlMDwIRTQjQWIB5XQSgihe3jHwcTCeNk915t5gJaR+aR/P6PfE42/Tx97zHSGUuaIBZDzCSpXVGn5aIiIqdRQSh5xdpT/YNDVDBGjBQhbDjCyR1GVBCKSCG74gqYMTNAIOoVhR0sJEGE1q8/4ne0aWV4GF7cNJHbbiLCBKGKEiqqgyxe7Hc6EZHpQwWh5JXeXjjek4F9+zj+KstFo1HUFyIiBc1x4N3vBiLestEEUdpppHlnGDZt8jvetPHMM+AODJGgBEuAEsaoqY8yZw6UlfmdTkRk+lBBKHmlpQU4dAgmkgxSgQEmAiUEwg41NdDQoL4QESl8n/oUmKCDEwxggG2sopMFDPzdv/odbdpYf38/NpEgQZQMAUoZo3ZpjZaLioi8jApCySvectE2JgjTzWwsMB6ppKbGEAxquaiIFIfGRliyhOxwmQxHmMMYMTb/5CDs3Ol3PN+l0/Dso6OkCZImSJgJgqURaueEVRCKiLyMCkLJG729cOwY0NZOP1U4ZEgQZcIpyfUPrlrla0QRkSlzxx1AKIRjMqQJ0soKnk1fRO/7fgvGx/2O56vmZhjpHc31D0ZJEqwsp6ZGHxyKiLycCkLJG62twNAgHD/GKGUYYJBKCIWYMQPmzIELLvA7pYjI1PjEJyAUMjixEhwytLKSNA73716KvftLfsfz1fqHTsDISG67iRij1MwvY+FCCIX8TiciMr2oIJS8cXIzeovhIHNJEiERLKesPEAs5g1ZUP+giBSLykq48EIgEiYcgkEq6GUGB5nH5m9vgXvv9TuiL6yFp+/rByBBCQEyRKIBahpKtFxURORVqCCUvHDsmLdklLZ2RokxTgmDVOSuDtbUwCWX+J1SRGRqfeADAAZTVkrAeMNlLIZHuIHhj38BDh70O+KU6+yEQx2pXP9gCQmIx6mtRQWhiMirUEEoeaG1FUiloLOTJBFShBgjBuEwdXVw000QDPqdUkRkat15J5SXAyaAUxajg4X8khsYpJIHhy7HfuCD3oSVIvL0o0kYHmacKC6GSLZ/sKEBZs70O52IyPSjglDyQksLcPAApFMcYQ7DVIBxCEYc5s6Fq67yO6GIyNQLh+Haa737JhTEjZXRxTzu5T08yvXsfKYf/uzP/A05xZ764VGwLgmiAMSCaaobSryprGorEBF5BRWEMu0dPw49PUBbO2DpYAEjlEE4RF2d4cYbIRLxO6WIiD+++EVYtMi7b6MxJoIxxojxMO/kD/jfnPjTr8NTT/kbcoo8+yxsf9ECkCBKjDFMRTm1tUbLRUVEXoMKQpn2WlvxpgS0t+PiMEwFFgPhMHPmwPXX+51QRMQ/K1fC7/wOXHQRRCIGyspImBgAW2jiFu7n4Pt/F/r6fE46uVIp+JuvZWBokDRBUoSIMQbxcmprYfFivxOKiExPKghl2mttxftFZnCAw8zmBOXeA6Eg73sflJX5Gk9ExHe/9mvwrnfB5ZdD3YwAxEoYpwSAPSzjfT3/wM9v/kesa31OOnn+67/g4LNdkE6TIEoVA0QDKZzyMpYty/ZaiojIK6gglGmtvx+6u4H2diIk2cjFWAIQClFVFfA2ZhYRKXLGwKc/DStWeFcKz10Vxg2XkMRbT3+UWfzxppv58k1bGB31Oewk6O2F7/xFj9djACQJM4fDUFVJTa1h6VKfA4qITGMqCGVaa2nJ3mlvI0CaPmq941CISy/1tpsQERFvwMwXvwh1dV5P4RXXhHGdMCnCpAlygnIefjTAB9415K28KCDf+KNextsO544XcIB0NA4zZ1FTo+WiIiKvRwWhTGutrUAyCQe72M4qXBzvgXCYT37S12giItNORYXXTxiLQXVtgEuvCBAkQ4YgI5STsg6HN3bx8Y9l+O53wXX9Tvz2NW8Y5eHv9YL1vplyhqkzfYzOXQ4Bh5kzYcECfzOKiExnKghl2hoYgCNHgI4Oou4Im7jIeyDgMGOWwxVX+BpPRGRaqq+Hz38eHAdqGkppXBaggkECZBikEptMkOno4pvfhM9+NrfKMi+5Gctff7AZkoncuXfxC5Kr1mIjJTgOrFoFoZCPIUVEpjkVhDJtnb5cdJgKhqjyjkMhbrpJ+0mJiLyWc8+F3/gN737D6jpKq6PM4ijlnGCMUug7Dv19bNoEd90FGzb4m/et+smnHmbvwWjueBXbKL/0PE5UzQOguhqWLfMrnYhIflBBKNPWye0mbFs7m2nKnY+WOdx6q3+5RETywZVXwi23eFfHZl84h2Q4Th3HWMh+Mjhw4AAkEwwOwhe+AH/7tzAx4XfqN2/w8a3807+eKgYNlvcv2MSzCz/IiRPeudpatP+giMgbUEEo09LgIBw+DPT0MDgaoouG3GO1c8KsXetfNhGRfHHnnbBuHdTMCFK6vIHjzCCAy238lCr3OOzvyPXe/dd/wcc+BocO+Zv5Tenv51t3PM6wPbWXxLtDj/DQVf+HRCpIIgHBICxfDrNm+ZhTRCQPqCCUaenkclHb1s5RZjKAN040HDFcdnmAWMzHcCIiecIY+NSnYMkSmLu0FDNnFgeYzy7O4U/4KpeOPQqHj+Sev3ev9/zubh9DvxHXZfd7/5D7Bq/OnSpnmLK73k3vRBV9fd65VavgvPPUXiAi8kZUEMq0dHIket/uXo4wB4v3E72yymiYjIjIGQiH4e67Yd48mLmiBsrj7GQF/8mv87/5A+7u+T2Co4O55/f2wm//NrnCarqx/+dr/NVTa3M/FwAuv2iCh46sYudO6OmBuXO9m5aLioi8MRWEMu0MDWWXLI2N0dETY4RSAEKkiNWVqiAUETlD5eXwpS/BggWG6OJ6CIbYwOV8j4/wAf6Lf+t9F9Wlydzzu7q8onB42MfQr+bJJ3noj55hO+djgQnCBEpL+HnqBnp6IJ2G0lLv6mBVFZxzjt+BRUSmPxWEMu2cXC461NLFGCUcZwYAFeFxFiwJ09DwOi8WEZFXNWeOt3H9gsYQZt5cXBz+hU+ymQtZ3v8s/5D+TcrLbe75+/bB5z4HY2M+hj7d0aOMvv/jfN1+PvuzoY5jzCC9oJFU2vt1JhCAm27yeic/9zmIRt/gPUVERAWhTD8nl4u27UgQJE2SCA5pyqpCXH65v9lERPLZihXeHoU188pgxgyShPkDvsYgcZY++2/8/ep/o6Tk1PNbW70iMpl87fecEuk0w3d+gt/r/RK7WMEAVUwQoqKhjJSJYAxUVnrf2x//MaxZo70HRUTeLBWEMq0MDXlLlUZHXLp7A4xml4tWMIyprFRBKCLyNl1xhTc4JlRfB7FSeqnjbv6ONA7n/8On+NuP7XhJMbV1K/z+70Mq9frvay2Mjp7drSushYMH4Yd3/og/2nADP+V2Mid/dSktI1RZxsyZ3tLQm2/29l7UEBkRkTMT9DuAyOl27vT+bNs8SDzTzyEaCOBSHhglVlfK6tX+5hMRKQR33QW7dgW4b2wutLWzxW3i63yB30n/LWs/cxFfu+tb/E7Lx3CzxdeGDd6Vty99Cfr7vYEzx497t5P3+/ogkfCWaX7sY3DZZW89XzoNO3bAxo1w5Kk27E/beZYbcbODZIIRh/pzy1nc6C0TLSuD3/xN776IiJwZFYQyrbS0eL9QHGxLMpsxhqikkkEClXEuudRoCZCIyFlgDHz5y7B7d5hd4/XYgwf4MXcwnwOcm9yJ/e53eWd8hH+PfIJUKEY6bfjOd+Chh7ytHF5PIgHf/rY37fM97zmzK3ajo14RuGlTtndxaBDuv58DzOcI9ZQwTqmThIVLWNxocgXgJz/pDZEREZEzp4JQpo3hYW9p0P79YIaHGKcEgyXOMFTM03JREZGzKBSCv/97uPPOCobG6hg7fox7+Dh1HPeeMAzz2UxLaA3ESsFx6OryNnx/M9M777vPKwo/+ck37uc7ccK7Crl582lLU9Np+Mm9hBODtHMpMzmKg8vw7BUsmh/KFYPXXAMXXviW/xpERIqeCkKZNnbu9H4R6NgzQTzRw3HqKOcEDhmIx9/W8iMREXml2bO9K4V/+D9nMRGJ0H00QDCTpoIhAljm0UU6FWL30HKIlkDknzh1AAAeyklEQVRJlI6OAGVl8I53QE0N1Nae+hPgnnu8Ag/g2We95aRf+IK39cXLDQ7C+vVen2Im87Jsz93LJUe+yUbWkSKMg8vErLmEK2LU1XnPqa+HD35w8v5+RESKgQpCmTZaWqCzE1KDJ4gzzB6WM4tuKC1lxfkhqqv9TigiUnhuuAE2bzbce281qXgFB3urKOs7wEL2s5IWbuEBnuVSHkncQDBjCM6dzchIJcuXGz7wgVe+37x58Dd/A93d3vHevfAnf+L1H86Z453r64Onn4YXXwTXfenrlyyBK4d/xryn3k83s/l3PgKAjVfQ78xg3TLvecEgfOYzEA5Pzt+LiEixUEEo08KJE9DR4e17FTgxTIogURKESEPFDG1GLyIySYzxNqF3HOjrc4hE6gkcC8LDbYx1ldLDLO7gx9RynJ+m3gP790E8zt/95TxKS6PcdttL32/GDPjKV+Ab3zg1KKy3F776VfjQh+DoUW9gjLUvfd0558CVV0L9yB5o8irN/48vMEEYwmH6KxZRP9sQi3nP//Vfh7lzJ/kvR0SkCGgel19++ctXro8pYjt3ev2DiXGXipHD9FFHBYPegxUV6h8UEZlE1dVw993e9NH584GZM+EjH4Hbbqe3dBG/5EYmiDCfTsaJYoeHYWcrf/6bXTxy//gr3q+0FH73d70CD7wBMa2t8NnPwoMPnioGjfGG1Hz2s/CBD0B9/ATccQeMjLCJi/gV14AxjNUvIeU6LF7svW71arj++qn5uxERKXS6QjjVJia8XX6/9S34wz+Ev/gLvxNNCzt2QFsbMDZKhdvPAAuIMAGhEDVzYyxb5ndCEZHCFolAU5N3O3YMmpsNzeXnMbJ0KTz9NHbTJpbb3XQzh4PMo8SOETvax5fvPE7sjwa4/MtXv2SkaDDoLUfdtQseeeTU13nhBRgdTPHrl3RwZelWare+CN/f5T1x/35wXdI4/DW/C0C6fh7HR0pYtcq7illR4e2jqP0GRUTODhWEU+nwYe+Tz40bveO//EtYtw5uvdXfXD4bGfEGD4yOestFHTLY7F5TxCu47DKjvaVERKZQXZ1XzF13HbS1RWhecz27n14Fv3iYqw48yWNcRxcNjFBGOJXit77i8O0H/geX/ftvYZefQ2cnPPmEZf+OUWLHj3NR+Tgv7C3HTSSpTvUQaOniyAMbiPN/gVfueP8D3k8HC7GV1Ry3tVRWwqxZ3mOf/vSrD6gREZG3RgXhVAoEvKkpp/vwh2HLFq+Lvkjt3OkNHQCIjx4hRJooSe+ElouKiPgmEIBly7zb2K0z2PahD9P8/2/l2h89x8MjQY4yiwlCHKeWD2y9m8+f+49UrF7Igd4Sb7xoMgHAfNJcxiGeZy3jeE2Am1hLHzV8ka9TwXDua/ZRzf/l0xCJMlw9n8SQ4aKLvMduvvmN90EUEZEzo+suU2n2bPjhD2kPLOUBbvHODQ/D+97nXR4rUg8/DENDwESSyvGjwMlJA4ZgdTkXX+xjOBERASAWg0suNfz2PU18/oXf4H/d2sIsenOPTxDmm/a3aW524fAhSCYIM8EVrOdL/C2f4B7+kv9FPYdzr9nHYv6EP+EQ9blz34z/EWNV9SQXLGFgyGHBAigrgwUL4M47p/AbFhEpEsa+fMzXZHwRY6LA00AE76rkj621XzHGLAT+G6gBtgIfttZOGGMiwPeAC4E+4P3W2s7se/1P4BNABvi8tfaXr/e1m5qa7JYtWybnG3sLRkbgw5e207VjkFt5gN/na16v3Ic+BN/7XtE1RYyOwrvf7X2QHOg/xjVHvsezXEaGIJSXs/ZDy/jWt/xOKSIir+b4M3v44K3D7O2vIUkUC0RIUkM/MznKLI4SJEMAF4PFYMkQoIXz6QvPgnAYEwkTLAlxwfkutQvLeXpjGNeFI0e8K5RXXukVo3/+597nqiIicuaMMVuttU2v9thULRlNAtdYa0eMMSFggzHmIeBu4OvW2v82xnwbr9D7p+yfA9baRmPMXcDXgPcbY1YAdwHnAnOAx4wxS621eTGu01pvL6au8GKo2s8DA7eyh2X8Fb9H/fe/Dxdf7G2qVCSOHIFvf9srBgHiYz0sopP1ZMfSabmoiMi0VnvZMr6/y/LJdx3h4Iv9jKcdwFvn0ctMes1sKIlCNJrb2J5oFBuOkOgPeBvYW2AMjmyEmjaIx6G/H1IpOP98bzjNRz6iYlBEZLJMyZJR6xnJHoayNwtcA/w4e/67wO3Z+7dlj8k+fq0xxmTP/7e1Nmmt7QDagbVT8C2cFem0t+wFjLf2JRplD8v4EN9nA5d500efe87nlJMvnYbHHoN/+Ad49NHsSddlyfAW+jht93kVhCIi017dDMM/3V/PrKuXUza/lrKGagKNjV6z35oL4JwVsHCRV9FVVkG0BBMIUFPjbXdxur4+b5/CEyegshLq62HtWnjHO/z53kRE/l97dx4fVXX3cfzzS0ISthAggIRNQZbiBhoUrVallipVoGqBFtEWWpG61/Vxq6I+VlyxWoUqKGKtqBSx6qtUBOqDUAERlUU2o+w7BBQISc7zx7nDTDBRIMnMJPf7fr3mlZkz95577v0lDL85554TBnGbVMbMUvHDQo8GngJWANudc0XBJqth/00ELYBVAM65IjPbgR9W2gKYHVNt7D5Jr1Ytv1jv8cfDQw+lsq9dO1i8mJ0l9bmOx/ntvme5/KJfkDJ/nl8DqgZauxYmTvQf+B9+6IfQpqVBy1obGVTyPH/if/yG6Rm07pBJ69aJba+IiHy/3FwY9Wwajz7ahLVr/YiYkhL/M/IoKfHbxpY3bQrbt/t1aCPlRUXQsCGccALk5MDgwaG7m0JEJK7ilhAGwzq7mFk28A+gU1Udy8wuBy4HaJ1kGYUZXHghdOoEt9xSm3W7j4KVKwB4lt/y2bpjue+iIWRPn+QzpRqiuBimT4f//Md/6C9aBBs2+A/9Fi3gzDXv0YwNbKGx36FBA04/Xf8DEBGpLlq3hscfP7x98/Ph0Udh27ZomRkMG+YXuRcRkaoT91lGnXPbgWnAqUC2mUWynpawf+qxNUArgOD9BvjJZfaXl7FP7DFGO+fynHN5TZo0qZLzqKjOnWH8eDi1V0NodsT+8tl0Z+DMYSwc+kQCW1e51q6Fp5/2CWFJCaxeDV984UfNtmkD7Y92DP7iTmYSMz5Uw0VFRELjyCP9Pfax3+H27euXuxARkaoVl4TQzJoEPYOYWW3gJ8BifGJ4cbDZZcAbwfPJwWuC999zfjrUycAAM8sIZihtD3wYj3OoCg0awMiRcPkfm2P16+0v30AzfjvmVF6/aRZxmAS2yhQXw9SpMGqU7w0Ev7xEfr7vIc3O9pMHXPvTJaSvXsn/RRJCS6FOs3p07ZqwpouISJw1agR33eWX573iCvj5zxPdIhGRcIjXmMTmwAvBfYQpwATn3D/NbBHwdzO7D5gPPBds/xzwopktB7biZxbFObfQzCYAi4Ai4MrqMsNoeVJS4PJhqRzbqil3XLSFgsIMAPZRiwceTWHBN5u57ZEcMjMT3NBDtG5d9F7BiNRUf69Iy5bR19deC40nvclWGrKQY/wbWfXpfloqtWrFv90iIpI4GRnQs2eiWyEiEi5xSQidc58A3+rvcc6tpIxZQp1ze4Ayl591zt0P3F/ZbUy0085vxPhXM7il7+csdsEYmZIS3h6znqUbGjDi0VrVYoKV4mKYMcM/IhMIgB8i+/nnlOrxvPRS6NABeOstZvLD6BsaLioiIiIiEhdxv4dQypfbO4/nHivgQiZGC/fsYfl7XzFokGPGjMS17WCsW+fXFZw2LZoM1qkD/fv7WeNWrIhue/bZ0KMHvstw5szocFGABg344Q8REREREZEqpoQwyaRfcwW3XbKKP3IP6RT6wm3b+HrlRm64Af78Z98Ll0yKi+G993wyGDtE9Jhj4Jpr/ALDU6ZEyzt08L2DAEyZQlGxn0wHgMxMOnfJoHHjuDVfRERERCS0lBAmGzMYNYoLjvuS5/k1LSKTqK5eDbt28sILcOWVPslKBuX1Cvbr53sG16+HsWOj2zds6JPE/StqvP02H9OFrwnmFddwURERERGRuFFCmIzq1IGJE+nQYCMvMogzeB9wsGIl7Ctk7lwYOBA++SRxTXQO5szxM4iW1St43HF+RtGRI/1wUfBJ4HXX+dlVAZg9GyZM4H3OiFbQIFsJoYiIiIhInCghTFZHHw3jxpHFTh7hBn7PX0gp2gsrV4IrYdMm+N3vYMIE4r40RVERvPEGTJ4cHb4a2ytYt67fZuTI0osMDxkCbdsGL5YuhfPPh927o/cPpqbRqHVdOnWK6+mIiIiIiISWEsJk1rs33HYbKTgGM5YnuYrsXathtR9GWlwMI0bAvfdCYWF8mrRjBzz7LMybFy1r1w6uvtr3Cpr5BPX552H58ug2555LtOdv/XpfsGULq2nBl7Tx5S1bcvoZKaTot1JEREREJC70X+9kN3w4nHMOACczh5cYyLEbp8K26E2EkyfD5ZfDxo1V25T8fHj6aVizJlr2ox/5CWLq1YuWTZ1KqRlRO3eGAQOCFzt3ws9+Bl98QQnGG/Tx5c2bQ06OhouKiIiIiMSREsJkl5oKL79MZBHCZmzkr/yOi1aNhD2792/22WcwaFDV3FfoHHzwgZ8c5uuvfVl6uk/yfvITSvXoLVkC48dHX+fkwFVX+dNg3z64+GIKPlrGOAbRhzcYy2+gcWPIzSUtDU45pfLbLyIiIiIiZYvLwvRSQTk58NprfsxlYSG1KOJ/9g2n47atjMh9jCLnw7hli+8pvPVW6Nu3/OoKC2HzZv8oKfFDPuvXL3vbfftg0qTSiWbjxvCrX0HTpqW33bIFnngiel9hejr84Q9B3c6xrN/tvDKlG+9wF3vJ8BtlZUGbNoBxyin+/kMREREREYkPJYTVRbdufhHCoUP3F1249knatdjDTRmPs3WPz6SKivwo0w8/hAsv9Pf8RZK/TZv8zx07vl19mzZ+aGfnztCxI9Su7SeE+dvfSs8i2rEjXHwxZGaW3r+wEB57zI8IjRg6FHJz/RqFf79hDh993K/0TnXq+GzUUsjLg1tuqehFEhERERGRQ2Eu3lNUxlleXp6bO3duoptROZyDIUMoHDuezeSwiSZsJofl1p4xjW9mVUprilza/h66Ro2ga1fIyDi0w6Sk+KUhNm/2HXiNGvkhnz16wFln+YljDmzW00/DrFnRsh49/HavvgobPt0Iq74qvVNGBhnHd+S83un07w/t2x/y1RARERERkYNgZvOcc3llvacewurEDJ56iikz6vPKyph4Ojh68yz22C5Wp7eDOrXBUti6FWbOhJNOiln7L0Zqqv8ZSSDBJ3fr1sH8+dHlLGrV8olgQYGfObRt2+i+AO+8E00GCwpgzx4YPdoPN2X7tm8lg83Tt/CLe7vQd2g6WVkVvioiIiIiInKYlBBWN7Vrk/PY7TB4HmzZvL84hRKOdwvI2rudxXuPwdWujWVmUlycwoIF/p7CHj2gSRN/S2KTJpCd7Yd6Ll0KCxf6+wTffx+2b48eLjMTjjrKDzd97bVoWceOfnhp3brRYaX5+bBrlx8mmpIC7Nrp100M5DGXARmT+NH04aR0bxaf6yUiIiIiIuVSQlgNNTmmKZx7Lmlr8slZ8B4525aSw2Zy2EwTNrGOIxi5+1q+3puFNW8OjZswc2YqRx7p14KP7d3LyPDrBzZv7petOO00PznMpk2+h7BevdLbg+8BnD8fpk/3w0pXrfJlKSm+npQU/Ayoy5eT6XbTi7fpzyu0S/0SXn8Dup8cx6slIiIiIiLl0T2E1VBRkZ+8JTsbrLgIxo2Du+/2mVlgLc25kYdZSgdIqwW5fp2/k09J4YEHSg8hXbLE9/7t3etfm/nlJE4/3Q8BXbwYPv3UDz9dtswnjFu3lh5qCtCsmZ8nhn2F5C6bQb/dL9CbyWQRzDTz3HMweHCVXhsRERERESntu+4hVEJYU+zdC6NGwX33+e49YA8ZDOcuptDTb5OeAbm55B7biEceNY4+GqZN84+I2rWhf38/THT5cpg71z/mzfNrEBYVwe7dvkdw925KTWDToAGc3GUvA6ZdwekrXyCFmN+t4cPhzjvjdDFERERERCRCCWEYEsKIXbtg5Eh46CHYsQMHvMgg/szVOILpQTMzSW/dnDP6NiI93Zc559cNbNXK9wjOm1f28hSxnPMJYu3a/h7Ffn320vbK80pnmOAXR3zmmW9PTyoiIiIiIlVOCWGYEsKIrVthxAi/Uvzu3XzAqdzO/ezEr0C/jWy+ScumU+cUCus1ZNcuIy3t4HK29HQ4/njIy/OPY46BWqklcMkl8PLLpTe+4AKYOBHSdLuqiIiIiEgiKCEMY0IYsW6dH0Y6ejSrio7gBh5hJW0pJoVNNKGEVLKsgLq1werW8UtW1Knju/0sBfCTyhx7rE/+unXzyWB6+gHHuekmePjh0mXdu8PUqcGNhSIiIiIikghKCMOcEEasXAn33MM3417jLu5hOmdRSC0cRgaFpTZNoYQf2BLyjlhD3gn7OOHMbOqcchyccIK/WfBAjz8O119fuqxDBz8LTU5OFZ6UiIiIiIh8HyWESgijFi6k5I67GDOpIaMYisMwHO1ZRjfmkMdcujKfenxd9v6tW0PXrtCli/+5aZO/RzD296hZM79S/VFHxeecRERERESkXEoIlRB+25w55N/xLOtn59O5YFZ0aYiKqlcPZsyAE0+snPpERERERKRCvish1EwfYdWtG0f+qxtHOgerV/uV5j/+OPozP//Q60xLg9dfVzIoIiIiIlJNKCEMOzO/1kSrVtC7d7R82zZYsKB0krhokV9nojxjxkDPnlXfZhERERERqRRKCKVsDRvCWWf5R8SePT4pjE0SFyyAWrXgwQdh0KBEtVZERERERA6DEkI5eJmZfjiohoSKiIiIiNQIKYlugIiIiIiIiCSGEkIREREREZGQUkIoIiIiIiISUkoIRUREREREQkoJoYiIiIiISEgpIRQREREREQkpJYQiIiIiIiIhpYRQREREREQkpJQQioiIiIiIhJQSQhERERERkZBSQigiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERERERCSklBCKiIiIiIiElDnnEt2GKmVmm4AvE92OMuQAmxPdCPkWxSX5KCbJSXFJPopJclJcko9ikpwUl6rVxjnXpKw3anxCmKzMbK5zLi/R7ZDSFJfko5gkJ8Ul+SgmyUlxST6KSXJSXBJHQ0ZFRERERERCSgmhiIiIiIhISCkhTJzRiW6AlElxST6KSXJSXJKPYpKcFJfko5gkJ8UlQXQPoYiIiIiISEiph1BERERERCSklBAeBDMbY2YbzeyzA8ofMrMlZvaJmf3DzLLL2f/eYJuPzWyKmeUG5WZmT5jZ8uD9E8vZ/1wz+zzY7taY8qPM7L9B+Stmll6Z553skjguZmb3m9lSM1tsZtdU5nknsySISYWOXxMlcUy6mNnsoN65ZnZyZZ1zdVCFcelkZrPMbK+Z3fgdxz/JzD4N4veEmVlQ3sjM/m1my4KfDSvzvJNZssYkeO/qoA0LzWxEZZ1zdZAEcbnfzFaZ2a4Dyv9gZouCuqeaWZvKON/qIIlj0trMppnZ/KD+XpVxvqHgnNPjex7Aj4ATgc8OKO8JpAXPHwQeLGf/rJjn1wDPBM97Ae8ABnQH/lvGvqnACqAtkA4sADoH700ABgTPnwGGJfpaKS4O4DfAOCAleN000dcqDDGpjOPXxEcSx2QKcF5MXdMTfa1qSFyaAt2A+4Ebv+P4HwZxsyCOkViMAG4Nnt+qv5WkiMnZwLtARqS+RF+rkMWlO9Ac2HVA+dlAneD5MOCVRF8rxYTRBP8XBjoD+Ym+VtXloR7Cg+Cc+w+wtYzyKc65ouDlbKBlOfsXxLysC0Ru3OwDjHPebCDbzJofsPvJwHLn3ErnXCHwd6BP8M1hD+C1YLsXgL6HfnbVVzLGJXhvGDDcOVcSHGfjoZ9d9ZTgmFT4+DVRssYkqCcreN4AWHsQp1NjVFVcnHMbnXNzgH3lHTuIU5ZzbrZzzuG/wIp8fvTBf55AyD5Xkjgmw4A/Oef2Ruo7pBOr5hIZl2C72c65dWWUT3POffN9x6+JkjUmhPxzpSLSEt2AGmQw8Ep5b5rZ/cClwA78t0oALYBVMZutDspif8nL2uYUoDGwPeYPL7KvlBbvuAC0A/qb2c+BTcA1zrllFTiHmqaqYlIpxw+pRMTkOuBfZvYw/vaF0w6xzWFwOHE5GC3w8YqI/fxoFvMfrfVAs0OoNwwSEZMOwBlB3XvwPSdzDqXRIVBVcTlYQ/C9uhKViJjcDUwxs6vxieY5lVRvjacewkpgZrcDRcBL5W3jnLvdOdcq2OaqeLUtzBIYlwxgj3MuD/grMKaS6q32Ev23cjDHD5sExmQYcH1Q7/XAc5VUb42Q6L+VoH5HtEc49BIYkzSgEX6Y3E3AhNj7C8Mu0X8rZnYJkAc8VJn1VmcJjMkvgeedcy3xtyK8aGbKdQ6CLlIFmdmvgfOBgcGHJ2Y2NrhR9u0ydnkJuCh4vgZoFfNey6AsVnnbbMEP0Ur7jn1DK4FxAf/N7sTg+T+A4w/zNGqUOMTkkI8fdgmOyWVE/05exQ/DFiocl4OxhtJDuWJjtyEy9Df4GarhieVJcExWAxOD4dkfAiVAziGeQo0Uh7h83/HPAW4HekeG9IZdgmMyBD+/Bs65WUAm+ls5KEoIK8DMzgVuxv9DEBlHjnPuN865Ls65XsF27WN26wMsCZ5PBi41rzuwo4wx0XOA9uZnFE0HBgCTgz+yacDFwXaXAW9U8ilWS4mMS/DeJKLDH84Ellbi6VVLcYrJIR8/zBIdE/y9HWcGz3sAGlZNpcTlewVxKjCz7kFP06VEPz8m4z9PQJ8rQFLEZP9nipl1wE9ktrkCp1QjxCMu33P8rsCo4Pj64oTExwT4CvhxcIwf4BPCTZVUd83mkmBmm2R/AC/j74vZh/+mbkhQvhx/D83HweOZcvZ/HfgM+AR4E2gR+dIEeAo/W+WnQF45+/fCJxUrgNtjytviZyVbjv+GPSPR10pxcQDZwFvBvrOAExJ9rUIUkwodvyY+kjgmpwPz8DP0/hc4KdHXqobE5YigvgJge/A8q4z984L9VwBPAhaUNwam4hP0d4FGib5WignpwPjgvY+AHom+ViGLy4jgvZLg591B+bvAhpjjT070tVJM6AzMxH+ufAz0TPS1qi6PyD82IiIiIiIiEjIaMioiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERELHzFqb2S4zS010W0RERBJJCaGIiISCmeWb2TkAzrmvnHP1nHPFcTz+WWa2Ol7HExERORhKCEVEREREREJKCaGIiNR4ZvYi0Bp4MxgqerOZOTNLC96fbmb3mdkHwftvmlljM3vJzArMbI6ZHRlTXycz+7eZbTWzz82sX8x7vcxskZntNLM1ZnajmdUF3gFyg/p3mVmumZ1sZrPMbLuZrTOzJ80sPaYuZ2a/N7NlQX33mlm7oJ0FZjYhsn2kB9LMbjOzzUGP6MD4XGEREamulBCKiEiN55wbBHwFXOCcqwdMKGOzAcAgoAXQDpgFjAUaAYuBPwIEyd2/gb8BTYP9/mJmnYN6ngOGOufqA8cC7znnvgbOA9YGQ1XrOefWAsXA9UAOcCrwY+D3B7Trp8BJQHfgZmA0cAnQKqj/lzHbHhHU1QK4DBhtZh0P6WKJiEioKCEUERHxxjrnVjjnduB781Y45951zhUBrwJdg+3OB/Kdc2Odc0XOufnA68Avgvf3AZ3NLMs5t80591F5B3TOzXPOzQ7qyQdGAWcesNkI51yBc24h8BkwxTm3MqadXQ/Y/k7n3F7n3AzgLaAfIiIi5VBCKCIi4m2Ieb67jNf1gudtgFOCYZ7bzWw7MBDfOwdwEdAL+NLMZpjZqeUd0Mw6mNk/zWy9mRUA/4vv4TucdgFsC3ojI74Ecss7voiIiBJCEREJC1dJ9awCZjjnsmMe9ZxzwwCcc3Occ33ww0knER2eWtbxnwaWAO2dc1nAbYBVoG0NgyGtEa2BtRWoT0REajglhCIiEhYbgLaVUM8/gQ5mNsjMagWPbmb2AzNLN7OBZtbAObcPKABKYo7f2MwaxNRVP9hml5l1AoZVQvvuCdpxBn5466uVUKeIiNRQSghFRCQsHgDuCIZ4Xny4lTjndgI98ZPJrAXWAw8CGcEmg4D8YAjoFfjhpDjnlgAvAyuDoaa5wI3Ar4CdwF+BVw63XYH1wLagXS8BVwTHFRERKZM5V1kjaERERCRRzOwsYLxzrmWi2yIiItWHeghFRERERERCSgmhiIiIiIhISGnIqIiIiIiISEiph1BERERERCSklBCKiIiIiIiElBJCERERERGRkFJCKCIiIiIiElJKCEVEREREREJKCaGIiIiIiEhI/T/TYeQPsPM8oAAAAABJRU5ErkJggg==", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "c193140200b9684da27e3890211391b6", + "translation_date": "2025-09-04T01:49:04+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/2-ARIMA/working/notebook.ipynb b/translations/fa/7-TimeSeries/2-ARIMA/working/notebook.ipynb new file mode 100644 index 000000000..839cf070c --- /dev/null +++ b/translations/fa/7-TimeSeries/2-ARIMA/working/notebook.ipynb @@ -0,0 +1,50 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "523ec472196307b3c4235337353c9ceb", + "translation_date": "2025-09-04T01:50:11+00:00", + "source_file": "7-TimeSeries/2-ARIMA/working/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "تائو هونگ، پیر پینسون، شو فان، حمیدرضا زری‌پور، آلبرتو تروکولی و راب جی. هیندمن، \"پیش‌بینی احتمالی انرژی: مسابقه جهانی پیش‌بینی انرژی ۲۰۱۴ و فراتر از آن\"، مجله بین‌المللی پیش‌بینی، جلد ۳۲، شماره ۳، صفحات ۸۹۶-۹۱۳، جولای-سپتامبر، ۲۰۱۶.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pip install statsmodels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/3-SVR/README.md b/translations/fa/7-TimeSeries/3-SVR/README.md new file mode 100644 index 000000000..e07b37458 --- /dev/null +++ b/translations/fa/7-TimeSeries/3-SVR/README.md @@ -0,0 +1,393 @@ + +# پیش‌بینی سری‌های زمانی با استفاده از مدل Support Vector Regressor + +در درس قبلی، یاد گرفتید که چگونه از مدل ARIMA برای پیش‌بینی سری‌های زمانی استفاده کنید. اکنون به مدل Support Vector Regressor می‌پردازیم که یک مدل رگرسیون برای پیش‌بینی داده‌های پیوسته است. + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/51/) + +## مقدمه + +در این درس، با روش خاصی برای ساخت مدل‌ها با [**SVM**: **ماشین بردار پشتیبان**](https://en.wikipedia.org/wiki/Support-vector_machine) برای رگرسیون، یا **SVR: Support Vector Regressor** آشنا خواهید شد. + +### SVR در زمینه سری‌های زمانی [^1] + +قبل از درک اهمیت SVR در پیش‌بینی سری‌های زمانی، برخی از مفاهیم مهمی که باید بدانید عبارتند از: + +- **رگرسیون:** تکنیک یادگیری نظارت‌شده برای پیش‌بینی مقادیر پیوسته از مجموعه‌ای از ورودی‌ها. ایده این است که یک منحنی (یا خط) در فضای ویژگی‌ها پیدا شود که بیشترین تعداد نقاط داده را شامل شود. [اینجا کلیک کنید](https://en.wikipedia.org/wiki/Regression_analysis) برای اطلاعات بیشتر. +- **ماشین بردار پشتیبان (SVM):** نوعی مدل یادگیری ماشین نظارت‌شده که برای طبقه‌بندی، رگرسیون و تشخیص نقاط خارج از محدوده استفاده می‌شود. این مدل یک ابرصفحه در فضای ویژگی‌ها است که در مورد طبقه‌بندی به عنوان مرز عمل می‌کند و در مورد رگرسیون به عنوان خط بهترین برازش. در SVM، معمولاً از یک تابع Kernel برای تبدیل مجموعه داده به فضایی با ابعاد بالاتر استفاده می‌شود تا بتوان آن‌ها را به راحتی جدا کرد. [اینجا کلیک کنید](https://en.wikipedia.org/wiki/Support-vector_machine) برای اطلاعات بیشتر درباره SVM. +- **Support Vector Regressor (SVR):** نوعی SVM که خط بهترین برازش (که در مورد SVM یک ابرصفحه است) را پیدا می‌کند که بیشترین تعداد نقاط داده را شامل شود. + +### چرا SVR؟ [^1] + +در درس قبلی درباره ARIMA یاد گرفتید، که یک روش آماری خطی بسیار موفق برای پیش‌بینی داده‌های سری‌های زمانی است. با این حال، در بسیاری از موارد، داده‌های سری‌های زمانی دارای *غیرخطی بودن* هستند که نمی‌توانند توسط مدل‌های خطی نقشه‌برداری شوند. در چنین مواردی، توانایی SVM در در نظر گرفتن غیرخطی بودن داده‌ها برای وظایف رگرسیون، SVR را در پیش‌بینی سری‌های زمانی موفق می‌کند. + +## تمرین - ساخت مدل SVR + +مراحل اولیه آماده‌سازی داده‌ها مشابه درس قبلی درباره [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA) است. + +پوشه [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/3-SVR/working) را در این درس باز کنید و فایل [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/3-SVR/working/notebook.ipynb) را پیدا کنید.[^2] + +1. نوت‌بوک را اجرا کنید و کتابخانه‌های لازم را وارد کنید: [^2] + + ```python + import sys + sys.path.append('../../') + ``` + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from sklearn.svm import SVR + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + ``` + +2. داده‌ها را از فایل `/data/energy.csv` به یک دیتافریم Pandas بارگذاری کنید و نگاهی بیندازید: [^2] + + ```python + energy = load_data('../../data')[['load']] + ``` + +3. تمام داده‌های انرژی موجود از ژانویه 2012 تا دسامبر 2014 را رسم کنید: [^2] + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![داده کامل](../../../../translated_images/full-data.a82ec9957e580e976f651a4fc38f280b9229c6efdbe3cfe7c60abaa9486d2cbe.fa.png) + + حالا بیایید مدل SVR خود را بسازیم. + +### ایجاد مجموعه‌های آموزشی و آزمایشی + +اکنون داده‌های شما بارگذاری شده است، بنابراین می‌توانید آن‌ها را به مجموعه‌های آموزشی و آزمایشی تقسیم کنید. سپس داده‌ها را تغییر شکل دهید تا مجموعه داده‌ای مبتنی بر زمان ایجاد کنید که برای SVR مورد نیاز خواهد بود. شما مدل خود را بر روی مجموعه آموزشی آموزش خواهید داد. پس از اتمام آموزش مدل، دقت آن را بر روی مجموعه آموزشی، مجموعه آزمایشی و سپس کل مجموعه داده ارزیابی خواهید کرد تا عملکرد کلی را مشاهده کنید. باید اطمینان حاصل کنید که مجموعه آزمایشی دوره زمانی بعدی را نسبت به مجموعه آموزشی پوشش می‌دهد تا مطمئن شوید که مدل اطلاعاتی از دوره‌های زمانی آینده کسب نمی‌کند [^2] (وضعیتی که به آن *Overfitting* گفته می‌شود). + +1. یک دوره دو ماهه از 1 سپتامبر تا 31 اکتبر 2014 را به مجموعه آموزشی اختصاص دهید. مجموعه آزمایشی شامل دوره دو ماهه از 1 نوامبر تا 31 دسامبر 2014 خواهد بود: [^2] + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + +2. تفاوت‌ها را بصری‌سازی کنید: [^2] + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![داده‌های آموزشی و آزمایشی](../../../../translated_images/train-test.ead0cecbfc341921d4875eccf25fed5eefbb860cdbb69cabcc2276c49e4b33e5.fa.png) + +### آماده‌سازی داده‌ها برای آموزش + +اکنون باید داده‌ها را برای آموزش آماده کنید، با انجام فیلتر کردن و مقیاس‌بندی داده‌ها. مجموعه داده خود را فیلتر کنید تا فقط دوره‌های زمانی و ستون‌های مورد نیاز را شامل شود، و مقیاس‌بندی کنید تا داده‌ها در بازه 0,1 قرار گیرند. + +1. مجموعه داده اصلی را فیلتر کنید تا فقط دوره‌های زمانی ذکر شده برای هر مجموعه و فقط ستون مورد نیاز 'load' به علاوه تاریخ را شامل شود: [^2] + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +2. داده‌های آموزشی را در بازه (0, 1) مقیاس‌بندی کنید: [^2] + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + ``` + +4. اکنون داده‌های آزمایشی را مقیاس‌بندی کنید: [^2] + + ```python + test['load'] = scaler.transform(test) + ``` + +### ایجاد داده‌ها با گام‌های زمانی [^1] + +برای SVR، داده‌های ورودی را به شکل `[batch, timesteps]` تبدیل می‌کنید. بنابراین، داده‌های موجود `train_data` و `test_data` را به گونه‌ای تغییر شکل می‌دهید که یک بعد جدید وجود داشته باشد که به گام‌های زمانی اشاره دارد. + +```python +# Converting to numpy arrays +train_data = train.values +test_data = test.values +``` + +برای این مثال، ما `timesteps = 5` را در نظر می‌گیریم. بنابراین، ورودی‌های مدل داده‌های 4 گام زمانی اول هستند، و خروجی داده‌های گام زمانی پنجم خواهد بود. + +```python +timesteps=5 +``` + +تبدیل داده‌های آموزشی به تنسور دو‌بعدی با استفاده از لیست‌های تو در تو: + +```python +train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0] +train_data_timesteps.shape +``` + +```output +(1412, 5) +``` + +تبدیل داده‌های آزمایشی به تنسور دو‌بعدی: + +```python +test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0] +test_data_timesteps.shape +``` + +```output +(44, 5) +``` + +انتخاب ورودی‌ها و خروجی‌ها از داده‌های آموزشی و آزمایشی: + +```python +x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]] +x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]] + +print(x_train.shape, y_train.shape) +print(x_test.shape, y_test.shape) +``` + +```output +(1412, 4) (1412, 1) +(44, 4) (44, 1) +``` + +### پیاده‌سازی SVR [^1] + +اکنون زمان پیاده‌سازی SVR است. برای مطالعه بیشتر درباره این پیاده‌سازی، می‌توانید به [این مستندات](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html) مراجعه کنید. برای پیاده‌سازی ما، مراحل زیر را دنبال می‌کنیم: + + 1. مدل را با فراخوانی `SVR()` و ارسال هایپرپارامترهای مدل تعریف کنید: kernel، gamma، c و epsilon + 2. مدل را برای داده‌های آموزشی با فراخوانی تابع `fit()` آماده کنید + 3. پیش‌بینی‌ها را با فراخوانی تابع `predict()` انجام دهید + +اکنون یک مدل SVR ایجاد می‌کنیم. در اینجا از [هسته RBF](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel) استفاده می‌کنیم و هایپرپارامترهای gamma، C و epsilon را به ترتیب 0.5، 10 و 0.05 تنظیم می‌کنیم. + +```python +model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05) +``` + +#### آموزش مدل بر روی داده‌های آموزشی [^1] + +```python +model.fit(x_train, y_train[:,0]) +``` + +```output +SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5, + kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) +``` + +#### انجام پیش‌بینی‌های مدل [^1] + +```python +y_train_pred = model.predict(x_train).reshape(-1,1) +y_test_pred = model.predict(x_test).reshape(-1,1) + +print(y_train_pred.shape, y_test_pred.shape) +``` + +```output +(1412, 1) (44, 1) +``` + +شما مدل SVR خود را ساخته‌اید! اکنون باید آن را ارزیابی کنیم. + +### ارزیابی مدل [^1] + +برای ارزیابی، ابتدا داده‌ها را به مقیاس اصلی خود بازمی‌گردانیم. سپس، برای بررسی عملکرد، نمودار سری‌های زمانی اصلی و پیش‌بینی‌شده را رسم می‌کنیم و همچنین نتیجه MAPE را چاپ می‌کنیم. + +مقیاس‌بندی خروجی پیش‌بینی‌شده و اصلی: + +```python +# Scaling the predictions +y_train_pred = scaler.inverse_transform(y_train_pred) +y_test_pred = scaler.inverse_transform(y_test_pred) + +print(len(y_train_pred), len(y_test_pred)) +``` + +```python +# Scaling the original values +y_train = scaler.inverse_transform(y_train) +y_test = scaler.inverse_transform(y_test) + +print(len(y_train), len(y_test)) +``` + +#### بررسی عملکرد مدل بر روی داده‌های آموزشی و آزمایشی [^1] + +ما زمان‌بندی‌ها را از مجموعه داده استخراج می‌کنیم تا در محور x نمودار خود نشان دهیم. توجه داشته باشید که ما از اولین ```timesteps-1``` مقادیر به عنوان ورودی برای اولین خروجی استفاده می‌کنیم، بنابراین زمان‌بندی‌ها برای خروجی پس از آن شروع می‌شوند. + +```python +train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:] +test_timestamps = energy[test_start_dt:].index[timesteps-1:] + +print(len(train_timestamps), len(test_timestamps)) +``` + +```output +1412 44 +``` + +رسم پیش‌بینی‌ها برای داده‌های آموزشی: + +```python +plt.figure(figsize=(25,6)) +plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.title("Training data prediction") +plt.show() +``` + +![پیش‌بینی داده‌های آموزشی](../../../../translated_images/train-data-predict.3c4ef4e78553104ffdd53d47a4c06414007947ea328e9261ddf48d3eafdefbbf.fa.png) + +چاپ MAPE برای داده‌های آموزشی + +```python +print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%') +``` + +```output +MAPE for training data: 1.7195710200875551 % +``` + +رسم پیش‌بینی‌ها برای داده‌های آزمایشی + +```python +plt.figure(figsize=(10,3)) +plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![پیش‌بینی داده‌های آزمایشی](../../../../translated_images/test-data-predict.8afc47ee7e52874f514ebdda4a798647e9ecf44a97cc927c535246fcf7a28aa9.fa.png) + +چاپ MAPE برای داده‌های آزمایشی + +```python +print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%') +``` + +```output +MAPE for testing data: 1.2623790187854018 % +``` + +🏆 شما نتیجه بسیار خوبی بر روی مجموعه داده آزمایشی دارید! + +### بررسی عملکرد مدل بر روی کل مجموعه داده [^1] + +```python +# Extracting load values as numpy array +data = energy.copy().values + +# Scaling +data = scaler.transform(data) + +# Transforming to 2D tensor as per model input requirement +data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0] +print("Tensor shape: ", data_timesteps.shape) + +# Selecting inputs and outputs from data +X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]] +print("X shape: ", X.shape,"\nY shape: ", Y.shape) +``` + +```output +Tensor shape: (26300, 5) +X shape: (26300, 4) +Y shape: (26300, 1) +``` + +```python +# Make model predictions +Y_pred = model.predict(X).reshape(-1,1) + +# Inverse scale and reshape +Y_pred = scaler.inverse_transform(Y_pred) +Y = scaler.inverse_transform(Y) +``` + +```python +plt.figure(figsize=(30,8)) +plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(Y_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![پیش‌بینی داده کامل](../../../../translated_images/full-data-predict.4f0fed16a131c8f3bcc57a3060039dc7f2f714a05b07b68c513e0fe7fb3d8964.fa.png) + +```python +print('MAPE: ', mape(Y_pred, Y)*100, '%') +``` + +```output +MAPE: 2.0572089029888656 % +``` + +🏆 نمودارهای بسیار خوبی، نشان‌دهنده مدلی با دقت بالا. آفرین! + +--- + +## 🚀چالش + +- سعی کنید هایپرپارامترها (gamma، C، epsilon) را هنگام ایجاد مدل تغییر دهید و بر روی داده‌ها ارزیابی کنید تا ببینید کدام مجموعه هایپرپارامترها بهترین نتایج را بر روی داده‌های آزمایشی می‌دهند. برای اطلاعات بیشتر درباره این هایپرپارامترها، می‌توانید به [این مستندات](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel) مراجعه کنید. +- سعی کنید از توابع هسته مختلف برای مدل استفاده کنید و عملکرد آن‌ها را بر روی مجموعه داده تحلیل کنید. یک مستند مفید را می‌توانید [اینجا](https://scikit-learn.org/stable/modules/svm.html#kernel-functions) پیدا کنید. +- سعی کنید از مقادیر مختلف برای `timesteps` استفاده کنید تا مدل بتواند برای پیش‌بینی به عقب نگاه کند. + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/52/) + +## مرور و مطالعه شخصی + +این درس برای معرفی کاربرد SVR در پیش‌بینی سری‌های زمانی بود. برای مطالعه بیشتر درباره SVR، می‌توانید به [این بلاگ](https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/) مراجعه کنید. این [مستندات در scikit-learn](https://scikit-learn.org/stable/modules/svm.html) توضیحات جامع‌تری درباره SVM‌ها به طور کلی، [SVRها](https://scikit-learn.org/stable/modules/svm.html#regression) و همچنین جزئیات دیگر پیاده‌سازی مانند [توابع هسته](https://scikit-learn.org/stable/modules/svm.html#kernel-functions) که می‌توانند استفاده شوند و پارامترهای آن‌ها ارائه می‌دهد. + +## تکلیف + +[یک مدل SVR جدید](assignment.md) + +## اعتبارها + +[^1]: متن، کد و خروجی در این بخش توسط [@AnirbanMukherjeeXD](https://github.com/AnirbanMukherjeeXD) ارائه شده است. +[^2]: متن، کد و خروجی در این بخش از [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA) گرفته شده است. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/3-SVR/assignment.md b/translations/fa/7-TimeSeries/3-SVR/assignment.md new file mode 100644 index 000000000..310ad9bc1 --- /dev/null +++ b/translations/fa/7-TimeSeries/3-SVR/assignment.md @@ -0,0 +1,29 @@ + +# یک مدل جدید SVR + +## دستورالعمل‌ها [^1] + +حالا که یک مدل SVR ساخته‌اید، یک مدل جدید با داده‌های تازه بسازید (یکی از [این مجموعه داده‌ها از دانشگاه دوک](http://www2.stat.duke.edu/~mw/ts_data_sets.html) را امتحان کنید). کار خود را در یک نوت‌بوک مستند کنید، داده‌ها و مدل خود را بصری‌سازی کنید و دقت آن را با استفاده از نمودارهای مناسب و MAPE آزمایش کنید. همچنین سعی کنید مقادیر مختلف هایپرپارامترها را تغییر دهید و از مقادیر متفاوت برای تایم‌استپ‌ها استفاده کنید. + +## معیار ارزیابی [^1] + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ---------- | ------------------------------------------------------------ | ------------------------------------------------------ | ---------------------------------- | +| | یک نوت‌بوک ارائه شده که شامل ساخت، آزمایش و توضیح مدل SVR با بصری‌سازی‌ها و بیان دقت است. | نوت‌بوک ارائه شده مستند نشده یا دارای اشکالاتی است. | یک نوت‌بوک ناقص ارائه شده است. | + + + +[^1]: متن این بخش بر اساس [تکلیف ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/assignment.md) نوشته شده است. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه انسانی حرفه‌ای استفاده کنید. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/3-SVR/solution/notebook.ipynb b/translations/fa/7-TimeSeries/3-SVR/solution/notebook.ipynb new file mode 100644 index 000000000..ce6308826 --- /dev/null +++ b/translations/fa/7-TimeSeries/3-SVR/solution/notebook.ipynb @@ -0,0 +1,1031 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [ + "پیش‌بینی سری‌های زمانی با استفاده از رگرسور بردار پشتیبان\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "در این دفترچه، ما نشان می‌دهیم که چگونه:\n", + "\n", + "- داده‌های سری زمانی دو‌بعدی را برای آموزش یک مدل رگرسیون SVM آماده کنیم \n", + "- SVR را با استفاده از کرنل RBF پیاده‌سازی کنیم \n", + "- مدل را با استفاده از نمودارها و MAPE ارزیابی کنیم \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## وارد کردن ماژول‌ها\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [ + "## آماده‌سازی داده‌ها\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### بارگذاری داده‌ها\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            load
            2012-01-01 00:00:002698.0
            2012-01-01 01:00:002558.0
            2012-01-01 02:00:002444.0
            2012-01-01 03:00:002402.0
            2012-01-01 04:00:002403.0
            \n", + "
            " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAH1CAYAAABbUbvGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC4S0lEQVR4nOzdd7wU1d0G8OfcQu9dQUA6goI0RQXFimL3jb3FrjHRmNg19hJrYo29d8WKFQQFC0WlSu8gvVzqBe695/1jd/bOzk7vs/t88/GTy+7M7NnZmTOn/o6QUoKIiIiIiIgIAIqiTgARERERERHFByuJRERERERElMFKIhEREREREWWwkkhEREREREQZrCQSERERERFRBiuJRERERERElFESdQKi0KxZM9m+ffuok0FERERERBSJX375Za2UsrneewVZSWzfvj0mTZoUdTKIiIiIiIgiIYRYbPQeh5sSERERERFRBiuJRERERERElMFKIhEREREREWUU5JxEIiIiIiIiANi1axeWLVuG8vLyqJMSiFq1aqFNmzYoLS21vQ8riUREREREVLCWLVuG+vXro3379hBCRJ0cX0kpsW7dOixbtgx77rmn7f043JSIiIiIiApWeXk5mjZtmncVRAAQQqBp06aOe0lZSSQiIiIiooKWjxVEhZvvxkoiERERERFRhOrVq+fLcW6//XY89NBDno/DSiIRERERERFlsJJIREREREQUA1JKXHvttejZsyf23ntvvPPOOwCALVu24LDDDkOfPn2w99574+OPP87sc88996BLly446KCDMHv2bF/SweimREREREREAO74dAZ+/2OTr8fca/cGuO24Hra2HT58OCZPnowpU6Zg7dq16N+/PwYPHozmzZvjww8/RIMGDbB27Vrsv//+OP744/Hrr7/i7bffxuTJk1FRUYE+ffqgb9++ntPMnkQiIiIiIqIYGDduHM444wwUFxejZcuWOPjggzFx4kRIKXHTTTdhn332weGHH47ly5dj1apVGDt2LE466STUqVMHDRo0wPHHH+9LOtiTSEREREREBNju8QvbG2+8gTVr1uCXX35BaWkp2rdv73hZCyfYk0hERERERBQDgwYNwjvvvIPKykqsWbMG33//PQYMGICysjK0aNECpaWlGD16NBYvXgwAGDx4MD766CNs374dmzdvxqeffupLOtiTSEREREREFAMnnXQSfvrpJ/Tq1QtCCDzwwANo1aoVzjrrLBx33HHYe++90a9fP3Tr1g0A0KdPH5x22mno1asXWrRogf79+/uSDiGl9OVASdKvXz85adKkqJNBREREREQRmzlzJrp37x51MgKl9x2FEL9IKfvpbc/hpkRERERERJTBSiIREVECvPbTIrS/YQQ2le+KOilERJTnWEkkIiJKgOfHLQQArNuyM+KUEBFRvmMlkYiIKAF2VVQBAEqLRcQpISLKP/kcp8XNd2MlkYiIKAF2VaUe8qXFfHQTEfmpVq1aWLduXV5WFKWUWLduHWrVquVoPy6BQURElAAVlameRMGORCIiX7Vp0wbLli3DmjVrok5KIGrVqoU2bdo42oeVRCIioiTJv4ZuIqJIlZaWYs8994w6GbHCSiIREVHMtb9hROZv1hGJiChonNhARESUIHk4ZYaIiGKGPYlEREQxtbOiCss3bs96TbIvkYiIAsZKIhERUUzdOHwaPvh1WdZr7EkkIqKgcbgpERFRTH0/NzfSHuuIREQUNFYSiYiIYqqqKrdKmI/reBERUbywkkhERBRTlToVQtYRiYgoaKwkEhERxVRlJWuEREQUPlYSiYiIYoo9iUREFAVWEomIiGKqUm9OIkPXEBFRwFhJJCIiiqkqdhsSEVEEWEkkIiKKKZ2ORA43JSKiwLGSSERElCCsIxIRUdBYSSQiIkoQrpNIRERBYyWRiIgopoTOa6wiEhFR0FhJJCIiShB2JBIRUdBYSSQiIoopodeVyL5EIjKws6IKOyuqok4G5QFWEomIiGJK6Aw4ZU8iERnpe9c36Hn7V1Eng/JAaJVEIcQYIUS5EGJL+r/ZqvfOFEIsFkJsFUJ8JIRoonqviRDiw/R7i4UQZ2qOa7gvERFRvmEdkYiMbN5RwZ5E8kXYPYlXSinrpf/rCgBCiB4AngFwDoCWALYBeEq1z5MAdqbfOwvA0+l97OxLRESUV9iTSEREQSuJOgFIVfw+lVJ+DwBCiFsBzBRC1AdQBeAUAD2llFsAjBNCfIJUpfAGs32llJsj+C5ERET+0ZmTKNmXSEREAQu7J/E+IcRaIcQPQohD0q/1ADBF2UBKOR+pnsMu6f8qpJRzVMeYkt7Hal8iIqJE041bQ0REFLAwexKvB/A7UpW40wF8KoToDaAegDLNtmUA6gOoBLDJ4D1Y7JtFCHEJgEsAoG3btm6/AxERUaQ43JSIiIIWWk+ilHK8lHKzlHKHlPIVAD8AOAbAFgANNJs3ALDZ4j3YeF/9+c9KKftJKfs1b97c25chIiIKgd4SGKwkEhFR0KJcAkMiNZJmBoBeyotCiA4AagKYk/6vRAjRWbVfr/Q+sNiXiIgo0XSXwOCcRCIiClgolUQhRCMhxFFCiFpCiBIhxFkABgP4EsAbAI4TQgwSQtQFcCeA4elex60AhgO4UwhRVwhxIIATALyWPrThvmF8LyIiorCxJ5GIiIIW1pzEUgB3A+iG1DzDWQBOVALSCCEuQ6rC1xTASAB/Vu17BYAXAawGsA7A5VLKGQAgpZxhsS8RERERERE5EEolUUq5BkB/k/ffBPCmwXvrAZzoZl8iIqIk45xEIiKKQpRzEomIiMiE3hIYnJNIREGZt3ozpi/XLhxAhSjMJTCIiIjIAaHTlcieRCIKyuGPfA8AWHT/sIhTQlFjTyIREVGCsI5IRERBYyWRiIiIiIiIMlhJJPLJ4nVb8cmUPxzvd9JTP2DIQ2P8TxARJZ7enEQiIqKgsZJI5JNj/jsWf3vrN8f7/bZkIxau3RpAiogo7qSUeHHcQqzfujPqpBAREWWwkkjkk607K6NOAhElzIw/NuHOz37H1e9M1t+AXYlERBQBVhKJiIgi8vuKTQCA7+essb2PZHhTIiIKGCuJRD5jAY6I7KpToxgA0KJ+Tf0NmJ1Q2kWvTMTDX8+OOhlEVCBYSSTy2UWvTIo6CUSUEPVqppYr7tqqfsQpobgbOXM1Hv92XtTJIKICwUoikc9GzVoddRKIKF9wTiIREUWAlUQiIqKAfDx5OS54eaLh+0JY1AI53JSIiCJQEnUCiIiI8tVVb08GAJRt24WGdUp9OSbrjUREFDT2JBIREQWs911fR50EIiIi21hJpIK2bssOLF2/LepkEFGeMwp6bDnlkHMSiYgoAqwkUkEb+t+xGPTA6KiTQUQFznDlHI4tJSKiCLCSSAVtzeYdUSeBiMgRLsVKRHomLlofdRIoj7CSSEREFBGr4KYcbkpEdt328Yyc16SUeHzUXKwsK48gRZRkrCQSERFFTBqNK2WvYd56b9JSrN3C0SwUrFkrN+Phb+bgyjd/jToplDCsJBIBWLaBwWuIiCgcK8vKce37U3Hxq5OiTgrlkcqq3FYl5bVtOyvDTg4lHCuJRAAO+jeD1xBR+ATHkxakXZVVAIDVm9iTSP6p5IRl8hEriVSwynexVY2I4sGwbKdbh2RBkIhyVen0JCqYa5BTrCRSwXp05Jyok0BEZI4lOyKyyawnkWMWyKmSqBNAFJW1m3f6cpzv56xBw9qlvhyLiAqLZXRTykv83SkIVRxuSj5iJZEKlmE0QYfOfXGCL8chosLFsl1hkvzhiSimONyUChafzUQUe+xxyksi3ZXIxxD5SS8QVlH6WlP3Mj4/dgG63vJFaOmiZGIlkQpWWC24H/22HJvLd+m+t2jt1lDSQETxpBTpnKyTGOcGrvJdlfjHu1OwehMX7jbDuj8FQW8Yc1G6pK+uJN49YiZ2VFSFlCpKKlYSqWCFUc6avrwMV78zGTcMn6b7/v/976cQUkFEFI6vZqzEB78uw90jZkadlERwU+HfsNWf+fRUGKp7EnPf43BnMsNKIhWsMPLG7ellNlaV6beqbzLoYSQiSjIG0DDnJXDNlW/96l9CKK/oXVaZ0Qo69yRvUzLDSiIVLL/zRr2HfvVQMoN9fE4DESVMOhPIt8La4nXbok5CIrgJoLZq0w7sqqxC+xtG4D9cyok8YGMOmWElkQqW35mjWYWPQzqIqBDMX70FADBteVnEKYk3vQAjdkkpM6NUnh+70K8kUZ4yK33oDUElUrCSSIXL58xRqLoSf/9jU/o1849i3ZGInAo623hy9Dy0v2GEq333bdcYANBj9wZ+JilvuX0GmA0hpMIlbI5jVjZjTyKZYSWRCpZf6yTqOeaxsem/zDNsvQy6bPsuXPTKRKzdsiOAlBFRnCg9SnEqqj341WzX+yo5XpO6NfxJDOWQqA5GYve6WbJuG76cvjKwNFE82O2fVq6fu0f8HlxiKPFYSaSC5XcDWpHenMT0a78t2aifBp3X3hy/BCNnrsZz3y/wLW1ERE556aWy26NB7giHc1mP+s/3uOz1X4JLEMWW3jWilFde/3lJuImhRGElkcgnenNM1K+Up+eQqOkVwooshqgSUWGbuWJTKJ9T6WLCEvMte6ymIpiS6j/tHWG7zvOHiMgMK4lUsMJu6NYbWqpXBsvMFeCM8oJVUVnlqoBOySOsQiDr+NfHMwJJi5arSzC9D/sRzXk9P5lhyswmSI03HvmIlUQqWF6iyxkcMPclVU3U7sM8jnOUKDyPfjMHnW7+AvvfNyrqpFAI4limY1CL8Lg5xRIeeyIpb+nlJ3q9zb6XfygvsZJIhSv4OmLWa3Yf5k7nmlB++e+ouQCANZsZuIiiUZzOhNibHU/qaQp25o2+/8uyIJNDMTV69uqok0AJx0oiUYDUQ1rtBoFQeh/Zik9UOIKMtuyUl14q5Xswbo25f3+ZiiDr9jw5eTx8O2uVuw+hxFGPXvrzSxMjTAnlA1YSqWD5XYYp0nnaq4d02G2UZ9mKqHDEp2qYy1N0Ux/TkY8++DXVu+d2uGnmbxv7c2ghEbnBSiIVLL9DtPt1uEx0U/YkElEEvMyLZrbljJvnhvoc2zrdrCMWNCf35KpN5cElhBKHlUQin6ifw8qD300BoHq4qfc0EVEyxKlytbOyyvW+yvfgOonhqKyS2OXh96L8YvuuM9jwtpAiJyv63zMS170/JdTPJPtYSaSCFWQRRikouSn4Vc8HilGpkYgCFZe7/ZfFGzJ/e6m4soqY6/1fluHH+Wt9OZb6+fD82IWm2/K3KBxmbTPz12zFjgrz9TLDjoWwZvMOvDuJgZXiipVEKlh+N3RbtpzbnZMouP4VUaGI233+q6qS6KbmGrOvEyv/fG8KznxuvOfjaBsQN27b6fmYlL/UeczwX5ebbssRTKTGSiIVLL9bV/06nnIcZtZEFLYKjxmPMpeao02D47RhgUN/SWE9NNnZ8iqU31hJJAqLzed09fOcGTRRofhl8QZUxGBuWWVVdRo45J0oWawi2RYXmb/PxmlSYyWRClboras2M98iDjclKhjqitiIaSsiTEku5kHxJKWzCKfqJ907E5cEkSSKCb1ijTqPKU5vYFT6Ufce8v4nVhKpYMV1AE71cFPm0Em0s6IKm8t3RZ0MSqBdldHf814bz6q/QVxz2MKj/kmv/2BadAmhyBVZ9CRKg7+pMLGSSBQz6gf6hq070fGmz32LiEfBO+3Zn7D37V9HnQxKiM3lFZm/LcpvoVDnP14KiZwGRxQ/xRY3ZtTDTacvL8MZz/6M8l3mUVgpHKwkEsXMD/PWZf7+fcUmVFZJPPHtvAhTRE78tmQjAGDUzFXRJoQS4dLXfsn8fc278VovzE3gCg6ACJ/V78T6emFYvnE7Zq3cnPO6+vKwmpOYPdw0/Jv55o+m46cF6zBzxabQP5tysZJIhcuHJ+fcVbkZshG7QSA+mfJHansJ1CpN3aI/zl/HSGMJc+Erk6JOAiXcHxu3Y/OOCusNfVTkuQswHd3Ue1LIhJOnAaObFoY5OhVELcvhpg7mugaJpZ14CL2SKIToLIQoF0K8nv73IUKIKiHEFtV/56m2byKE+FAIsVUIsVgIcabmeGemX98qhPhICNEk7O9EyWQVBcyOYY+N8yElxkqKqm/Ruau3BPpZRBS9h7+enfl74qL1oX++OlfkcNPgrdm8A1tMGgKqqiQe/no21m7ZEWKqKF9lAtcY3J9Rx0JgtmHfmNmrA4+IHUVP4pMAJmpe+0NKWU/13yua7XcCaAngLABPCyF6AED6/58BcE76/W0Angr6CxApdgZ4g0pkt+pbr29EREn3eIyGlrspL3LAg75/fzkr8/eOiuz5Vp9M/sNwv58WrMPj385Dv7tHGm7z3NiFqDKZTMaCd2GwM1rJat5z1PevMhdx47ad0SYk5sbOXYPzX5oY+PMi1EqiEOJ0ABsBjLK5fV0ApwC4VUq5RUo5DsAnSFUKgVSl8VMp5fdSyi0AbgVwshCivp3jj1+wDi+OW+jwW1C+CH0FDIvMd+zcNVn/fv+XZY72JyLyymu+qGRTfozUyCdPj5mf+fus58ZnvWdWuK+0GUlEHQApB3+KglDlcztyFGUOZU7lKz8uxtotO2KxdmwcrdmcGlmweN3WQD8ntEqiEKIBgDsBXKPzdgshxCohxEIhxKPpyiEAdAFQIaWco9p2CoAe6b97pP8NAJBSzkeq17GLnTSd9uzPuPOz3x1+E8oXcXtuXmQxhy3qYSBElP/UlTt15eWn+euwZN22KJKUdyYt3pD1b7Os3ajSrp2jbnfOu9rMFZtQto3L9eQLP0oIRTGJVLJ+6070u3skbvloetRJiaWwOjnCvBzuAvCClHKZ5vVZAHoD2A3AoQD6Angk/V49ANoQR2UA6qveLzN5P0MIcYkQYpIQYtKaNWu0bxMFzk0Grn7wRx2amojynzCYlHjGcz9j8IOjQ09PoQuyR/bo/47FKf/7MbDjU7j8aEiOywgAZXrNiKkrIk5JYQulkiiE6A3gcACPat+TUq6UUv4upaySUi4EcB1SQ0wBYAuABppdGgDYbPN99ec8K6XsJ6Xs17x5c6zjJPCCF0ZLjJPW3R0VVbhV02qmzvPZk0hUWOJyy1/99m+2t1XSzMA19ml/5q07KnDxq5Owsqzc9nk07Y00KfjPY0C0vGEUAV3v5bhUBo0oS3VUxiUTjKmgz05JwMdXHAKgPYAl6VDM9QAUCyH2klL20WwrUV15nQOgRAjRWUo5N/1aLwAz0n/PSP8bACCE6ACgZno/Uzd9OM3VF6H84XcmaXWz6mXgQmRn4K/9vNjwmFwCg4iCpl4uQclxPjIJrGJ8HJ8SVAg0eftnU//AN7+vQuM6pTixd+uIEkVJY2e0kdUm6vvWzRBmvzEb0RdWJT+s4abPAuiI1LDS3gD+B2AEgKOEEEOEEO1Eyh4A7gfwMQBIKbcCGA7gTiFEXSHEgQBOAPBa+rhvADhOCDEoPY/xTgDDpZSWi8WU7+JkWAqenzcyh5sSUdCyRpu6iW4ag4Jl0hidMSlhWEr28yyzATI/+DLcNMTWHSX4ihmu8Wku6Fs3lEqilHJbeljpSinlSqSGiZZLKdcA2BfAjwC2pv9/GoC/qXa/AkBtAKsBvAXgcinljPRxZwC4DKnK4mqk5iJeYSdNvO7Ib3qXlLrA5GpOIh/eBWX15vKok0AxEkWFy3N0U2W4KfsAbNMuX6GcOwn759HLlaKNpE3JZNSQrJePxKEMPPA+44UOWPQxF9bvF9Zw0yxSyttVfz+C6kA1etuuB3CiyftvAnjTaRpicH9QwlRUVuHmD6fj0oM7oEPzer4cU8D84Z493NSXj6QYu+uzmVEngWIkiopWdtwa55lOZg8+ZN1TnTu9de2276rMfdGDiYvW40/99vD1mBQ+vxuVrQ737qSlqKySOGNAW1fHr7AxPIrZiLmgi4UxCXYbPjtd2Lsqq3DfFzNRtp0hovOR05aYacvL8M6kpfj7O5MDSY8edSZt5wGwdssOrN7E3qikYs8xqUXR2p81J9HD5cjCnX1mw031yirrt+YuNO4l72C2kx/srqnpl+ven4obhwcT34OXZDwUbiXRxjafTP4Dz3y3AL3u+JqFtzzk9CdV8t8ivabdAD4vvVfmr5ttrBfU7+6RGHCv8RAOireiOIwBotiI4nrwPtyUz0q11ZvL0f6GEabbaE+Z8hOY9eRKhlUgDaNbL4m3pKwet04RKtxKoo0Lr6KqOhdesp6LCBc6JdMKM89SZ+4MVZ7/WEekqBksk+j8OLyYAQA/zV9nuY32PKvPndFp/HJG9vpxCawHUATiXmFsUb8mAKD3Ho2iTUhCBN0oV7CVRDtFffV8kLjfWBQ8Zfx8SZH+bWO1no/+5HHz65CXHVH+mr/GvOEnkrVRs4abMgeK0ufTVujOSQSAbTuz5yU6qZKPmb3afaIocdZtzY0iGtcmnCFdWwAA9mhSB0B80xk1PxrhKqskllp0gBVsJdHW+c1aL4YKnTLev9jgqa19aPuBZbTCwuGmheWwh7+LOgk5eAX6y05hTlsZV/Yo31WFFWX+zzH/x7tTsGQdR0cVigtenhR1EmxTbhdtxF/S5+Us/XfUXAx6YLTpNgVbSSRySmbmJLo9gJvPZEZZSNwU0KWU2LgtN5AFJdf4Bevw9oQlkXx21mLarvKs9HH8SU5BUv8GO3xY01lbT5UABj84OuvfZuav2YLut35p2etA5BfWEc35kb/+NH+t5TYFW0nkA4zcCrPe5uSjrIauUfwN/225433eGL8Eve/8BvNWbw4gRRSF0579GTcMnxbJSIKbP7QOkGVGGVbPTvGUiQvXe9rfaMixk2tDu63Txsd3Jy3F9l2V+GzqCuuNKW9E2UZdnY8wIwmKnSWWCreSaOO6y5rAzx6dvJOEvMfJZXfuCxOCS0iBWrZhG35eYB14wg9uK3ljZq8BACxYs9XP5FAMWK1T+Pd3JuO0Z34KKTXOJCB7DcVrPy92vI/62WRUSI6iROJm3UwiNzIjEpiRmPMUXcx6k8KtJPIRVvDCrvfrfZzVVejkobyrkjHR/Tb4gdE4/dmfDd/fsHUnDn5wNOau8t6Lt7PC2wXJ4lv+scqjPvxtOcZ77Kny8vl+7UPZ7JRPnDRc6w039cPOiqrQ1+Yjb5LSQ8erypwfP5+dQxRsJdEO9U1UJYFHvpmDdVtyo0RRYYh5nhr79CWRVfln1KzVWLxuG57+br7nzzL6/Rau3YoFmqHEUkpsLt9luh+RV256jqp7APL7whw3dy3m+NA4BJj3NtqtDDr5pTZu25X17/d/WYZtOyscHCGlyy1f4JJXkxMUheJj8TqLkS9sbbJl4dpgRxAVbCXR6fPrg1+X4bFRc3HD8GnBJIhiZdHarfjvyLm+DjPWHmre6s2ZZTX8wMiYEQrweTbkoTE4VBMF85UfF2Hv279mIIk8l+RyUr7nRme/MB5HPvq9L8darIk0mhU8yJdPsLZms3EDuNKzqXc9jprF5TTyVZDDi697f6rFZ6fkez7ilnJP/r5iE1ZvdhcB2U6RkZVEm54ek+opKN/l/zIHFD8XvzoJj46cg+Ubtwf2GfeMmGm9kSaPvvDliZi4SH94GSuJ4YvqjH/9+yoAwBJWEhNl9SZnD/NI1klUSXIlNV8Y5THa38ZrXmT2W/PRkj/iEn3Y6HJT0lcoIxL8sGn7LuuNXCrYSqIdepdm1A9tCsf2dGNAlc40P7eXgLZVrkPzejb2yTZq1mpc/vqvutsyL02mnRVV+G3JBle/n/paZNbkr/Vbd7oagmfG6UiUqH9SN58fdZrzgbpg7PV8bi7fhfd/WebxKJQE+VQGYJCkeGAl0UQ+3XDkTlaUOb+P7XI/o4YK9iQG58o39Svmfrh7xO846akfMX917twCOwsK81cPRp+7vvFtOKGioIJL8cIM1akGUW4XrXU+2mDgfaNw84fmDRoVhXQtJ4TfDYWBNjwaHFspxlRlehRZWQzC6s3l+HmBddAzVhIB/DjPekFJBa/XwhDE7xx0pEDWEYNjtT6Y2c/065IN+HXJBsP3Z/yxCQCwYdvOnPfu/3KW6efurKzMDD0l/y3bENxwc1sift54KqDxWelaVlZucB61PS3zDZbAcfNcWFFWjjfGL9FPT9oRPjegEAE6w6hZsAnE9OVltrYr2EqiOsT0mc+Pt70fK4nkhNn1UlRkI8y5TgnBqODGnsTw2TnlJz/1I05+6kfjY5js+87EpabHvuBlRhbMZ1FPb+DjLhp2zntYl0ZllcRTY3KjNwcdVZGcS1IRwO5wUvYkplz19m+49r0pvh3P7jKABVtJtHOB6t1wHCdNflwD4+auxQQb65vp5Y9Gn56g5wOpmD3Y+YDML05/zsok//7MkALl95VhdLytPs/LpeA4yi5s3J+u5iTbXbLFYLNZ6WVlkpz1BeHjyX/gPT/nFtvMnwu2kmiH3Zo25a9Vm8pxxCPfYUWZu2FnRqHMz35hPCYv3Wi5v14+aZR5JqkVMR8NfmA07v7sd8f77apM/aC6v7XBPvq/NZ+qcee0ZzDqdco9FdR4OTqiLlyrb+84NUw/+NVsXOxiXcQZf5RhU3lwERjJviCvpslLN2LPGz/HKU8bj5wxS0f5rkpM0ZSL4nP1x8sTo+eF8jkFW0l0WwFk60ZhUB7Yb09cirmrt+DtCebD/oyP4086zLw9YQmG/7qMw019UlFZhR0V9pa6GTN7DYDU77Rk/TY8P26ho89qf8MI08aCzeXeW/F/XrAOX0wzn1NJ4dq6owIPfz3bcjunPcnTl5f5vHam8wyMuZA7Tp8Vdrf3+7HwjYs50MMeG4dzXpjgb0IoR9RFgO/npJ6Hvyw2noOv0MvbWL62b+aKTaF8Tkkon5JHeA0XBt2FXDUZcKXDZn43Qwf1exKrXy3fVZkJq9+lpfWSGmTtlKd/xJRlZVh0/zDLbT+Z8kcIKfLm9Gd/BgBb34eCpdy6j307F898t8ByezvRbdWOfXwcAPe/tR/DmwvhGTnCIpCVG07P2xfT7aXBy4ioMbNXo0+7xq73V9P2EFH+aVK3hm/HUnrQN27bhV2VVSgtLtg+rUDYzRV41k3otsoUwhOQbHlz/OLgP0RvTqLqtb+/MznzN3sS3Zm+vCyrcDxlmb2oX75jM2reUwo+uyrs/daJHm6ax9nRXwJYEsdoKLLRbzDVZj7l5bFwz4iZ7nemxHPaaNSpRaqheq/dGlgfW/c1/c/7/Y9wes0Kid2osawkqjz89Ww8GdI4X0oGs/toqcPw+K6WwLBolRg3t3r5FoaKdm7k76tw7OPj8N6k6Beb9lofYB0z/pTfyEZg49T2wSVF//M0H+jl84f/utxTWgpN1Pev7vA/l8cq274LW3cw4E2cBVFaUBqq69YsttxWNyif6jV1D3iiA3jFFHsSXXj823l48CvzeSJxmkROwVHyJCWjkjrv2RkKFkTBX/2SehkNVhGdW7QuFcZ9djqi2uJ17sK6M1cgO5TrxM7yNwCj2xYSo7KF17Y/z/u72KfXHV9j/3tHeftgsuXzaStQtj38oEB6gYiUa83tCIiscpbqX06H3ZM1u/lC4VYSTU7Q6k3l+GLaCuyoqMp5j8/swpDzwPaxldUJvbxRXXAsVhU2iwr3brZUtm0XHvl6ds48UqX3VRnqFcQwMqIMpfHJbk+iy0xm2rIyvDvJXbAtPz6f/OP1N3AyJ1FKiW0el7xYsi4VOGkzexIDt2TdNlzxxq+4+u3fbO/jpOHJbMur3rL/mXaPnZU21Z+sI0aHgWt0nP7cz1iwRr9HgddqYbCTj0ZVgFJ/bFYlkcNNDd3x2QwM/3U59tq9IYb2bJV5XTl9ym/p92/65vgltrdlgTz/KY1PdgvubkeuHPdEKoDNqf32cLSf9tMKceTMzwvWoXZpMXrt0SjqpADwXuaw3SAB4JUfF+H2T6uX8XHTkz34wdGO9yF3lCjcTqe+AN6np/wwf52n/S0b3lXJcxokkKzZfQax70HHsvXGNxyH/+QPO3nkqs3lAIAvpq/E4nXZoeXtFKC8Xi9W+wuDvylb+a7Uw7SiKnt0gHLOlJ5E9TUxdu4a28c3+pmeH2sdwdINvQyeOVP8ZYaxB9yTGKWk50OnP/szTnjyh6iTEYnPp68M9Phz0sP6yR/akTBh2qkz0k659+2Ue/R7EvU3iOL7xVX7G0bgl8XrPR+Hw029MDl5DA6SP+zkO6s37QAAzF29BTeml5pwsr+X7QEbGakKr01jmbmlmnOnnDPtHFQAvqzrFfWjbf6aLZm/35m4BO1vGIE1m3dEmKLClpmTaPNW9bsBvbJKmhbgtO/5lWcl0bsTvQ/XdcLoXHsfbhot9TV15KPfM6CNj5SRRFHM2atR4q36oHtd6482ZSVR45vfVxu+V7bNXtAoBq4JyC+LN6CiMrcFhfKLkiUN6twMAHDGAGfDtrTHcZ0O3cA1+ke1W/AsSOlz8+Toefh5QfUwmcxwU2UYoMtz+NvSDV5Sl0pDAA/CP780MfP3u+kIrm6D8xSqXT7m98pvbHeoj5+Fo9Wby9Hxps/R/56Rtvcp5LLZXSN+t94oIOp8yE2eJKXER78tx/adlf4lyid6sR7IHeX5FVQd0ez+b1yn1NuxdcoxRmWbfB1uumzDNrz0w0Jfj9nrzq9x8INjMGfVZl8aulhJdGHiIv0C4QUvT8TR/x0bcmooCJnMMZ0Jq+f7KW85LcC5m9+jk5HmZ34ZKOXXm7Vyc2ZxeUA9XCd7O6eWmgxRV3w+zf8FuNX0rot8fbiG6ZYPp/t2LKc9iX5auj41XH7tlp2G2/BqUYnwZHjN439esB5XvzMZd0dY0QWqg9hQMErSC8wr0yncNnLO+CO15mbZtl34fk7uNIu3JizB+AXZcxC9xkCwWgJDLV97Es95YQLu+PR3rN9qnCe7sXbLDhz56Pe47oOpno/FSqIOq0vfqLD/7azVmLmCi37mBzvzDUNIhcUSGBxhaq3LzV/gs6n6FTTl/GV68Xw+oerewWvenezbcfWSWSUlFqzZkikwGKbJt1QUhtGzjYf2OKVcDjsr7f0Kfg4jc3MoNw1b+ZIlqb95ZZWMZJkBAK6GZ25OL0+walO5p/mvdn99ox6Ls18Yz0bNACk/rZLnuz3XF7ycGnGy0GCUyY3Dp+E0VeOq+rMBYK6Luaa6kdvVf6u+TFWedj4recrHk52tKetLQDHOSQyQx99n5opNmLeaE7gTweS3ttO6lRXRuYDn90Rpp8lwQe1cxSALuOW7vD3pnvvePAjO7JWbcejD3+HKN72FJqdsxT52+yn3s93AA352BNta11Wa/9sOo4Jekt37+Uz0uuPr0ObTqSt2d4+Y6WL/cEOajZy5Svd1zj8Mll93V7FRAByTD1BfYyc99WP6tdS/Z610V741yi8q8yQf0VLO4B2f/o5py8oCmVu6elO5wWczuqlrVmPmJyzyFlno6P+OxeGPfO/pGBQuiznWgbniDZ11+/Izv4xEdU9i9r/1+BH0ZYyqV2re6i1Z71n9rPd8bl5YfGL0PADAD/PWukob6fO1iJ2+0OxWPP1cgiKKbCPJZTt1gfWTKX8AALZYVHoWrNmC92K0PqXT47i91jmiJRrKNZqZHePydyguVhpL7V8w6s/Srq25bWclVm/Wr5xk9td5zaiOlK/TJtTn8LgnxuGpMfPs7ejgdAy4d5SzRGkUbCXRS572n5FzfUsHRccsQ/VvnUT/Mzd1wdHJQsmUS3v2rM6mk6AfQO6vP2VpWebvwx/5ztGxAOCf701xtR+QP8MAw/ZHWblvc0aqpzrbDVzjy8emj2UnLL33D1R/syQX7bKG9SuvWXyhYY+Nw7XvT0VVlcS7k5ZGFuQuk16Px1mwZis2bvM2zFabBm1FZM3mHbju/SmWw+TJH3rXcLEmyrcd6vKT3m6bLIZn6ze8V786alZ1g2q+zknUmvGHvelqTs/GpvJdmLpsY9ZrXAIjYIMe+FZ3gi8lh62KoOn+TgPX+MNLfjlh4XrL1vBCNn9NdJE/7eTZ7/+yLKcHkoL3x0bni1XrUe7dIrtPXpOb/YNfljn8cPVh7WUihTzcVJ30zIgDi1x8e7qi8+6kpbju/al4YZy7yIVee+a8RkdVG+NhTu66rTstowPfPeJ3vDtpGb6YHmxgr7zm022mbZQyu96zgvnpBk1zkQDVcRaonsV52pEIt023z1pMPdG68OWJOP6JH7IarbgERsCWrt+Ouz6LNnIYBUf7YNVb5DWq8o/bj924bSdOfeYn/EVvCGvMbSrfhdd/XhxYoVNCYsrSjZEFpwjDpMWpqMwJLrdHxu9zdnj3lvY+1+S9f7w3xdFnqgtaRsO3zCKfupHkBim9AvI2m0tKbEj3vjnpgfbzGssJyGUvBQ5ete/tCUtsbcdRMc75nS9pe+xeNGnk0P+1ql+1GiKqt3+hPZr8GqZt1QOprMjgprLNSqIHhXZBFyKzFhs7Q7OyA9dEe8UoAVyUcNdJctPwabjlo+n4JV3RscvJEKalG/wP154bB4C5RhL5NdxJ+f1Li8N/9Kq/g1Fh4cD7v836t9n1+v4vy9D+hhFYu8V4nu4kg+WikkDvJz/s4dyh3qN0grb8OD81L9jtVeOl52T7zkps2VHp+Th+2WURyZeNVt45OYXf/J66XvXKI9qXHvvWeI6csKjhWOWZusNNDXaJuuwUFO0ZdPs1r3p7sq3t3JQ/WEkkcimqB7A6w3TSElXkYt5BXCgt8k4jhB7/xDhb24n0/4KWxHNP/jUIhh3KfUVZ9TBZ9XewW+k12+ytdA/RorXZQ7TVd1GSoxJmz0k0zhv+Oyo3RsHYualK4uZy+z2p6t/k6THzbe+nddC/v8Xf3vrN9f5aej+h+roCzM+PtmDa925n87rJmpNK1Aid9XqXbdju+DhBBCtiI6p7QURGBVhJjJRRaFqKI3c3oM4oVc/cHifB5TXXD6Q5q8zn772dXt8raQ8npRCqh5EGvdMWlqIKnLBhm7fhnwPvq+4ZVH+HIL9Osu4kEzpzEnU3s1GRtmPQA6Mzf7tdb3nrjgqsUw1xdTTY1EEvzvkvTrS9rRXmV965uefUPYEV6QqGk3qG5XribuYz503mYY+f1/75L+vfk2puzm/BVhL9mCvhtQv89Od+tt6IYiFOmZfbtCgVIT6Uq01eutHxPk7u+ygqn1bJy9ehO0Hy65wpR7F7D77+s/1KhuVnZw039f597JyTfMlqwvgefkTQvert7B5EKaXttBtdk3q/8sbt+mnVC9RjnR9ZJIwsuauQZe80fXmZz0vuOD9WoV0K2h54L+c/qECaBVlJ3FVZhTGzo49MunS9/3OgyD7zglryijeW2Utmg+R9N0WQlS67Bffpyzeh/Q0j8OsS6/lWS9dnD8sqtIdgvvBrJI9SMBs1033ESPefXf237eGmAOasyl4Y+5UfF5lWELOWcU9wi1TSRhcAwLTl0c439zIHNcGXSuT8uFa/nL7SUT5ntakfFVdyxur82Q28pVaQlcSdFbkTQ+K+WGdFZRV6/OtLvO807DkZcpIfZQWgUXrknO7n0yXm9mHqtBcjTuIU+W50OiT8yN9zA1ZYMitch/TDqD+nz13f4IQnfwjlc5NE+zP5Pd/j21nhVxLVX8HJ3MgjH/0+69+3fTLDdLizWnzuWueyl8CwP+fOi1+XbPBUUI5TPqmw+21YP3DO9agigx29jzDwNlrB65qcSWMaRd+F58aaL43R565vVJ9tL68oyEqinns/n+l4n/lrtqL7rV/mvB7EorBbd1Ri685K3PnpDN+PTdbcFASs1odyS8pUJn/HpzOwoqx6XqvdOQLxK0Yki3Ie3eTnFSaVjShaUddv3YkpLobcFhr/ehL9OY67z/ZvuGlFVVWmkKE9Ur6U9Z2cox0VlWh/wwjPn3nyUz/i48l/uN4/kGAiOqdh1SbjiLZ29idnKqsk+tz1DdrfMALbdXqDnJ5jve2FgK83r9NDjZu7FrVKi/1LQAL4fbsGMUKFlcS0r39f6Wq/7ToVwnNeGO81OYaY34bDjxaeN8cv0RT8/fv11mzegZd+WJT1mtXRlUJPEnsSFUEWOJyeFjdpeWrMfMNeqQmL1js/oI4k/75x5VdvUZRDGLN6Ej3eSEJU91mZHaperRJPnxMXVoFrynzsAVmwxjzYlhkvIfWNtn35x0Vuk+MI8y1jM/4oy8xZXaUT8NDp3ay3vYD3fMHLkl9Tlm309NlJlITh+KwkBmDiog3YXG790GALW7JZ3d/aHmU/h5gVFznPXDKVxAT2JQadl0pp/zMmLfZWmTN6EH8+zV1DFQXPr7w62jxf3ZNob48dJqNiitJ5kNlUjfoxriSe/uxPePZ746UmnBTgrvRxyYnFPsYqcNooofeVl3hMj1UaWAxyRr2sTObcOu5J1O9KtJM/zVq5yVY8DaejL1I9pIV9NcTx27OSGJC9b/8a60wWGaZk8ePmvffzWT4cJUUvAw4iJDXlUuZjue0V4s8Qf9rfyK8lMOLy29tt5T/tWeMI3Eo7lfZY6n/HOc/5ecF60zzZSU/IhIX+jAIA4HG4afZT4Id563Dow9/Z2vfcFye4/lyKmMNGVC89iUP/MzZruRbDz3B470e1zBCZK8xKos4NtarM/wrd2i3eQ1pnJK/zJ6+4DRgURLYnhH4Bxm60sQSMcDAU1GPE1TlxHTTA3X52uYlgRub8jm4ajeqL3PP3kUBR+qaJecw3X7hdJzFJ1PPbnfKyvNKnU1KV4nw5j0FQj/7RPcU+zUn0ei+rd3caDFKC14CRHRX+P9Pt3quFWUnUsTOgICNmvNwPqzeVBxIgp5C4jhIag4zMukKYuwVb6oylTo2zCyLO53PMbHdDmx/5Zo6rtSPzndvfWrseb6RVRNXl7ce1W1GZOsbaAhgxk5Qh+ss3brfeKABm58fupZbkxsugqc9NaXF1sd3/R5B/BzzD4TrgcX6eBmHasrKc+9XoFFzx+q+2junkDNo93QVZSYwiL9pRUelPtMv0Dzvg3lG45LVfvB+vgJndJGbXyKTFG2z9lqkeP+fpCsLGbTs9DWOiXK7Dj4dQVZjucr20x0bNxYlcEiO3kcXlT/aSdnHxCPMDdZ5WWSXx6ZQ/bE2JaFG/pu7rSqCl+75wHhk8acKuwOzesFa4H5gAqzeX44lv5xb8WnpFevEIHF6f67fuxKZyTQNW1Kc16s8P2fiF62xvOyqCJZMUBVlJDItSGPx1yQZ0veVLHP3fsabbX/TKJAy8b5Tue3oPqe/nrPGcRnJn644Ky9blIDNdp8f+61u/4dGRc4JJTIjOC3DeTFgFwcgfxuSYf9FNo6Oer7Z6czn++tZvuOx164bGFg1yK4nq8+FTfToxtOujBvF9T9y3dQBHtRZEj6lflbqr356Mh76eg2kuG8DyhW50bIeneLTOSBMlrJ1tesnw8FNXSeNctnCemeF9UbvlnfiGHssjJz/1IwBg3mrz0NYjZ7pYnJsiISXwzqSlUSfDkDZa5x+qYQ2Fk+Ea+993xlEN7YrzaTTtJeewrtDkLqUTj6tmy47UVAWrZxKgfy0p+wPxvg/8ov4ZL3p1UvCfl0f3qF+X/Nb0XGunc93ygdH1oD0Tdiv5ur+JlJFedzHJGhPNzwBaClYSffDl9JUY2rNV1MkgH1lllmXbrZc4ESLaddHUZNbf8UiTE36vJ/Ts9wsy60655Xq4acSnP+rPLyRxWgdLnZLvZqdGoWxwub7f31RLPuzfoamXZCVC2L9j0u5RP05PnO6VODO7Nuw+2/W2M9pzktH6vT7/XIUWuCbq693up4c+3FQI0VkIUS6EeF312plCiMVCiK1CiI+EEE1U7zURQnyYfm+xEOJMzfEM9zXi93VoZ8iObjoK6Y7IMxURt2ZaPQx+nL8Oxz0+DjsrcudOJiUIQ5C0996KsnLHZ8VtZTuMCfpe5zBUVklURBDMKy6C+oXiErjGz/0O794i+4UEP9aWbdBf/y3sZ3VS60t2071w7VYAyFlvr7JK+hO7Ic+oLz8/nh96hzA67DXvTjE4iN4xjNO2futOHPrwGMxfoz96odAC1+hRTsE3v69C+xtGYOM2H1dIcCmKOYlPApio/EMI0QPAMwDOAdASwDYAT2m235l+7ywAT6f3sbNvpPy85hesSWWqvI3iwfaQF81m/e7+xtZCtF5d/8FUTFtehhVl23PSkbSexN53fh34/Ntx89Zie0jRgiWAH+evDfQzJi/daHiN2inIHfHId+h08xc+p6rwaM91XApCPVs3AAC0b1rHctuYJDkUhz9ib01BNTb2VtOtfOhsp0Rf1i67cc4L49GZ+Y6prFFBmhNue7ip7mv617FfedZXM1ZiwZqtePa7Bfpp4m2U+QWe/T41HWb2ys3RJSYt1EqiEOJ0ABsBqKOznAXgUynl91LKLQBuBXCyEKK+EKIugFMA3Cql3CKlHAfgE6Qqhab7hvSVAvHl9BU5rzHiYLyMmOouUujaLTttLURrxSpDVR4eykNjQbrlNok2uhwS55TTJWXcDzeVuPuz6CJCSplKQ5nJeU3y9RIEt791nHrt1RVW5fvUqRHsjJOkFfzKd1X3YqmTzuGm5r6YvtLwPbNeK+1p/XF+KuLjNe9O9ill+UF9Ds0aJWw3AOsc48nR3ufpm1Eqm0p0Vu33kFImrgHbC70cRWT+P32OADw+am5YSdIVWiVRCNEAwJ0ArtG81QNApj9bSjkfqZ7DLun/KqSU6rCMU9L7WO2bWJfZXBOFgmNVuHvs23m2jhFVlqfMmYxi/U8ypxSEtMIsh743aRl63fl1eB+YMH4V0nMD1/hzXDfUeZqT3oGkDn1MsiQWlX//Y5Pu63oF/6pMI2Y19d/Df13uY8qSQ0qJqcs2mm6jN0BkZ2WVo/VKja4vr0N9za5bJd16K3hY7VuoVm0qx8PfRBuVPsyexLsAvCClXKZ5vR4AbUzjMgD10+9pcx7lPat9swghLhFCTBJCTCrbGE4I5SAKBNrWl0KeNxSUHRWVWLmp3HpDC0G2ilkV8pRIcB/9VpgPWyt6Z+/6D6aF8tmXGqxvWhRiafy7uVw+JwzaXzRuPUR2kuM0zfnSGyCl90Kzl89Omh0V9kdizF21BUvWbcPERRsyr5llf1VVMpknxaGXf1yE45/4AePmZk9HyL6npM5fwKK1Wz2PXAgycqxSdlWec9re+QL4eR2LwzkJpZIohOgN4HAAj+q8vQVAA81rDQBstnjPat8sUspnpZT9pJT9GjZq6Cj9dmjXTgKsW2Dd/P7aG8uPUP6UbcTU3OG+bjlp3bNLADjo3/aGrEYdYCdoOyoqM+tGrSjbjvY3jLA13y+sIaxO+P2A5lwp/1z4irtlD/SWwIgqhL9e5W3mik0FuaSAXW/8vDjqJCSKXplHLxt6Z9JSDH5wNP795Sxbx+1w0+eYsiz/10ecm16SZuE64+H+Rtm6H/fxrkpvxzB75CjpU3oStc+nKiljUSkK2sqycoyyudxdHEZxhNWTeAiA9gCWCCFWAvgngFOEEL8CmAGgl7KhEKIDgJoA5qT/KxFCdFYdq1d6H1jsG6q/vzPZ8T5+3BCrN/tfCSkURjdghceMMnN8CFz19mRfjqXmJHX5XFHYVVmFrrd8iXs+T83vU9YIemtCfNevVMQh89dyeq38sngDbvt4el5fY17ptezHIXqj+hfTi4Cs5uVaTUKv4rotO/DjvLW6QSK2hRTMSisJ500reSmOn+L0zValqfBlzUk02NdJHVF7fKvX/ZAZbmow3lTCOG9M4v1g5OSnfrBudAyhfGA3Xw9rncRnAbyt+vc/kao0Xg6gBYCfhBCDAPyK1LzF4VLKzQAghBgO4E4hxEUAegM4AcAB6eO8YbZvmNxewj/MW4sDOzUzfH/Zhm245aPpLo9OZozKtkH3vg3Ys0kgi57qimFlxC870oXbF8YtxEn7ts68zkpLypxV1gule3HK0z8CAG4/vofFlskTVKEkqCtTSuksuIoqIRVVVQCKTY7tPl1JcNOH0/DVDP2WfTvffVYQEQgjOuc/LdCfL+2F3YbszeUVvn920giDXjY19VQTt0tjuG0HX1nmfhqO9XBTieOfyP8AjX+kz2FSstVQehKllNuklCuV/5AaJloupVwjpZwB4DKkKnyrkZpPeIVq9ysA1E6/9xaAy9P7wMa+kfrWxlplE40WKk178KvZGDOb84fCVFkVbEu/0cRtu+zs3muPRgCA/u0slw1NLPV5GO1xXcB8dMxjYx1tn++VgTgI6hzbOW52b0T1P/wf5uzr4QK3fZd1fh92W1vCTqGptyYssbXdjcPDmRMeZ0oFSvv7Zy97ob+vk0rivZ+7i6598IPm01zMGte0wYpyo5u6SlKifD3DOApwXEWxTiKklLdLKc9W/ftNKWVbKWVdKeUJUsr1qvfWSylPTL/XVkr5puZYhvtG7cGvZltuM8MgIhhFJ+iexKAO/9uSjZm/pyzdaLhdvsgK6R9dMhLH7fDBdVt24KYPp+UEqCiEh7tbOXMSY9hDaVVJjOPQaKfem7QU7W8YoTu01nRJgYgubo6GqA66NlnzLAt7OZIoaG9JadB7qF7X00ljj9G2VhXNHRX6S8TYYTnctAAuebsjyLbvjGaYu55IKomRC/FifHeS+fyob35f5WmOSiHcWGHLp0AOepl+vlwz6vleUlYXHsL6etrCS1K4/f3v+2IW3hy/BJ9O8S+wU1y5PUc7KipN8w8ZUJBGp5UK9eZW+Z2X9MYhr6mqkrj2/akAqpcGsiuq9I/iyAhcnY7z8M5Eez2R+SDTk6jtZVP9bTRCxI9rVe8Qduvkn08zfy5k1kk0OKBZBTUO+Ygf1F/9rs9+N9xu2vJUkCanazcHoTAriSH6dEr2ouvrdKJdOhkmQMELvJIY4s9dKFdWFBPbk1pJ1LN43VbLM6jkU+zlMNb1li/xt7d/M3w/qHlXdn4Ro+AXXkdOXPv+1KyAF3G7OoarlgFymk9E9V0WrDGObhlXeoF//KCtVCj/mrpso+2hrElRPScx+3U7eW7Y5UhtVe+KN37Fui07DbdXklfI6yQ67QXfYRFUzBt7aSnMSmKEoxUuf/1XR9vn/8CK+Al+uGl42WE+l+ezhpuqvueIqSssIzYWMr3n1BnP/my9H6zny5D5Ejrbd1Vixh/+h/J3vJahg4AXVuWanRVVWLZhu7MEhGjjNuOCK5DfeWSYgppTqK0krihLXWvHP/FD3s1jzCwPoclV7VyjfjRuO7kX9DY1q9Qo6Xvlx0WOP7sARhjrCvZr2/uxC7OSGOFwnxWbch+mnobzsIjmmlHG41cY6ELN2KIgkZ2hrglgfcp8oZffbNtVaZmHFdL1HOQ6mr+v8H8euvMesurtreJ02Xk+1SjRL0q8+MNCJ8mKhNm5YwXSGa+Luesp1nQ9XeawoT1JlAqxtghip0jiR+Oz12Ns32k8UkI59laD+Xbmc4M9JSs2rO4O7bracfjahVlJDIDRhW9nzb0+d33jd3LIBm3Gs3pTORau9W+Yj1HGFocbPx9MVS+unBMpLd5nOdEVrnifWl8c8eh3Oa/5dU1FdWmqP1Zd6Hx+3ALPxy4t1r+gP578h+7rcWL2e7ARNnqJziud8jTctHoeZ1Q2mQynt6roxu1OW7R2q/9LlVlcy1OWlWHVpuplRoJ9VnC4aSzYWXdom04Fc/ivy2wdP+Zl4UQZcO8oDHlojGH0Lb9wDqo/Tn3mp8zfOUMgeYoNCQEsW78t53WrU2Z0V8S9Qu6G3txBv+YqR3W+3hi/WDcNr/60WG9zR9TfKNaXQ5zTRrqMAp3ko+oh/dkXqp2sx5fhph73b1DL/dLrcSsXHfLQmKwyhh/s9LSvUa0runuj2r5+vhusJMbUNe9OwdRlG6NOBnkQ12dbvLJif8Ts+RJrK8rKMWWZ+3lx2gLMywZzTEhfEI1Qdq5/9Xq76iH1bRpHXxAJklWwCNOeROW9mOblhUA73DSfGQausfHUNqpkOWmUirLBj8/wlGMfH5f5++JXJwX2OWc8Zx2HAGAlMda27sjtYdyyI5joeBSeOGWG23dW4sVxC32bhxmVpA0LC2Lujl1/e0s/+qbVdakuwPy2ZEPm9btHuFuYuVDFodCr/qkvGdzB+/EScvutKCvPeW3WSuM5ojLnDwpbXBtbg5AJXONioXlflsDweAwvu+fLLbZk3TaUbd+Fj35bjvY3jMC/v5yVeS9O17Ld4H6sJMbYVzNWWm6TLzdWnAR9I8dp6YSHvp6NOz/7HZ9PT/bad6l1ErP/HWdJq9SqCQGMnLkq6mSEzq9fLIr2GG2hU52Glg1qeT++6uyMivG1ccKTP+S8tsEsSFHcM5ICUBynknXAjALX6NHe034MN/U65NOssVn9K+r1WMZtuKlbgx8cjWGPjc3MD316zPxoE+QRK4kxxmFcpMfpWjtmlMWl9ebFJknusgz58cAJk9U5Uz/DR89aY7yhjrcnLMEXFostF4wACkPLNmzH4Y/kBttRaMtu6kLapa/94j0BquPn00LwVTIVcXCBjwHN8loA9bkCqiNmTp+dCtNFr9gbiugku/FazzTbXf07rtyU26NvtnPS6o9xXhLIKVYSY06vQrCjorpA/+b4/FpMNkxGD5+4T5TPx0AhXmlPyRGPfh9NQmJm+cZgHlZOl3G4Yfg0XP5G/oaudyKInsRXflyEeau3GL7vV9CdpNi+sxIPfz0bOyuqPNVbhAA+mxL/CK35LMqh+WFTynu50U1zt9U2xsThDh+/wF400IH3fZvzWpwadjeVB7MEUhKvZFYSQ+ZH+f41TTS6VXqtMmTJ6LdI4o3s1S+LNlhvFGPPj80O4293vD1VY9uDOTfnR6+R77ZPZviQGme0PRN+D+2K26Xz5Oh5ePzbeXhz/GLrjU1MSni+mHTvTFxSWD2JypxEF/v60XjsNcjNlzamSBkfz/Wuvrv2vSm+Hm/qso147efFibyWWUmMue/m5A7r2qEpAMfp5qJkemfS0qiT4ElFlcSCNckZEpbk1vEkpz1fWRU+7v9iVta//X5mxO0ZVL4rNdpmZ6W3xqKfFqzD7Z/+7keSCoPP18H1H0wrqNxGGC2U6EGUt+bslZszf1s9N+w0XC1etxVnPvez4wCOs1ZuwtcOKrArN+3IeW1XZRV63/k1Pp683NFnA8DxT/yAWz+a7ni/OGAlMSaMWnDWb91pvW/s2nGTza/WnrFz1/pzIMqxUidK4SPfzIkgJe4k5Z79Q2e4anlFsuevFiLt/PZ8H32axBZ7MlBAP6YS3fSxb+dlvW7neTF6tve5wE7qpnZiIxz1H/vTPuzkSQ9+NRs/zl+Hbx3Oex76n7G4xOPc643bdmHjtl246zP3jUZPjk5eEBtWEkNmdBM+/V3yLp585VdPiV4vsB/8DFyjNW/1Frw1wd95rs98Nx8/zPO3wuzk4RNH05c7m9MXtI3bdmGXTq/LIQ+NAQBMXLQec9Nz3v71cfjDJePAacW+orIqtKVlnHY8JCmS4KbyXbju/Sm+Lv9UaHM0QxNE4Br/DxlbXh7tn09zP9RT4SSP8zs2gpNlPqJYRUgpF63dsjPxS4Y5wUpiTLw9IdnD/fJJvjVc/roke16NWWZ87ONjcePwab5+/n1fzMJZz4/39ZhKVFbyj17jgDK380//+ylWS7ckQaebv8A9n4ezhuRrPzube6ct4D3w5SxPlbAge8af/W4B3p20DC//sNDW9l9OX4Hnxppv+6f//ehH0igE+fY8NhNEA3A+BbpTGreiCC6oHqn0kYshp3ExZvZqHPrwGNvblwSXFApKPt30FDyzqIfbNUtflO9KVQqqqiSKYrDoN4VH+e1JXz5nu0+NmR/bsO1OK6CXvV4dRVe7fqri1yUbPaaKwlJIc6CN6j5h5T1Bfo5Vvc7sfSVZSiUx6itio9naqjF3y0fTHeX17ElMIDvhkcmaUaYU5HDOsAmR26iwdssOvJ3uNRoR4tp1c1dttt6IIsN8pHDo/da6a5fFAK/LwjZ12caokxCaFRujvQeDvNUWWqw16mS4adhlNO1oLMXKsnK8m/Cgf1ZYSQxZUOuWkXOFUPiQUn9C+A0WQ0q9nJrPp63A8F+X5bx+p4cJ3xSd+76wHjI5f41xbzXFj9797WWenp95aWWVxJnP/Zwzj1lbMPx5wTosXb/Nvw+mWNKuB5jP9mxW1/djOrk19e7jpev9KbN++Fv2EM1ZK+03Gi9Zvw0/zluLr39fBSD8OYknP6U/PP3sF8bjuvenoixBPYtO69esJCZQAdRtIpU//YgpYQepuOKNX3HNu/6uM+QGh2U7YzSs75nvFui+rnbYw9/5nRwKkN6tYVRJDHtgxfqtO/Hj/HW46u3fABg/705/9mcMemB0eAmj2EhSodwJw+GmIX1+lFG3zfKZx0bNxZmquAZBz0m0e/S1W1JLZSQpEJjT4dusJMbEEraIUiBk3vWY6kXh1KMN+0/m8u06oRS7BeqKKv37Kuzr4kWbAWr0LF6XO6Qt3xr9CLj142SuOaf1/Zw1pjED/OCktz2oe/3dif4OySyKuOYiBDBn1eZEz020i5XEPHDJa5OiTkLiVFVJwwXk8y1ei5setTj3wh3z37G2tvtkyh8BpyS/vOShcK5Yun4bNpXn/4MzSf7+7uSc1/R6DHZVeBhu6nrPXE+PUZaDcp4RD0kv2ULRGDE1nDnuW31cDiVK5744AYc/Yj0Kw8vz+NAYjPK47oOpvh7P7ZzEt31c3mu0ahj0Z1OTU9bgcNMCoO3ajtuaa0nwzcxVhu/lU+AawHyR2holycsC5tpsec2vXzF4m8q9F7wGPTAaxz0+Luu1z1XBkX5esM7zZ0Qlxu0mpvR6EvS+y06bPfRB2lFRmfOa1Xmfvrws87edaZXKsi6UXAm9FcnEuvTQTTvcPtutYjG4dWuC1g52eu6SV0KkggoJbaR8VyWeHD3P9tBDLe3SD/lKSvNWyL5tG9s6ztRlG3HCE+NQvis55y3fKvtJsXhddqXkijeqlyS47PVfcrYv31WJKVyDMTB2G1XiMK/mnBcmGL5ndDsf+/g4LHAQOIkjb5Lv2wIIZhPFaB4nn+l36pwsS+NkTuK2nc4aP//61m95vSbw+q07HW3PSmICRTm5OC6eGj0PD341G2/bHOv+5fQVGK/qxVhr0mpV4SHKXxyt3ZKbKdQoTt36RgVD7au3fzIDU5aVZbXaOxX2M49VxPip0rm3bhw+DSc8+QNWxXQJBkU+5bt638TL/elXgXbCwvWZv7XlQLOPMCr46O0yZvYaFykjCpc6q8yfnMcfTiqJ/3LYy/dpnk9TcTpiiJXEAvXOxCWJbi3Zke5B3Gxz/tNlr/+K0579OfPvLi3rG257V54t1fDE6Hk5r11w0J4A7BcMlc20efOWHRW6BX8rr/+8GCc/9YPj/SjZ9C4VpRdxsw/DXcmmGPQaSinx1oQlvswvi/7bEPkrmp5E+9tG2QhbUmz/01eWZTc+qkefVVZJxz2NQOq7a8tCFTEYrh8EVhIT6MVx3gNMXP/BNJz4ZHIL6UpP2LxVWzBzhfmcTL1CSHG+RacxYJTnl6YzWaPeEeOHRfV5K9u+Cz1v+wqPfDMn85rdOWe3fDTddHjJknWpACj3fW69Rp9hSgvjJ06+zO/Eon5YdHsSQz7/P85fhxuHT7PdKOf2fuawc0oi9d24YmN2RSeoCqSjNRUDSYE9JQ7Kb9rb/45Pq3sWbxw+FXv96ytf0nTxq/k5jL0gK4nbEj4fzY8AE0mnPPiH/7YcR1tEuzz3xdx5LjFoSI8F9dpovyzeYLid3vnauC01xEsdRfRckzlFeoxa8QY/OBrHPz4Oz3xvvUafEc7djR+9X0R5Le73ZNzT54Tf38XN8bakG+/enrjUNGiFncrrpu2MqEv5RX1P3fRhMAFXzD7TinbuuZFpy9xPUTFSUuy+6jJ27loAqXS9O2kZAH8q3aPzdBh7QVYSV8Z87gvZ4OCm1qv8JLlx2UnSrU6TevjfaJNgAEbDTYHUGp8bbEyGlpB47adFWZ/T966RhtsvsvkQMpTg3zjpjnvcfpAj9vSEL6r5lT1v+wrPfDc/53W9dYK1V4VZo8+Fr+RnKz4VLrNAUkE1WAWRL7wxfrHvx3TSk6ilnLtx89ZmXut/zyhnx0DhNEIXZCWRkm/+mtxFk/UYzZdzMvE5n8msv6Xu32pGZ+2rGSstP+uHeetw68cz8OeXJ2Ze276rEr8sXm+yFyXRtOVlmPGHvRZk5ZrKs3hRsdGwdmnOaxWV0ZzsLTsqcN8Xs1ztKyHx0FezMXGR/fxixcbtrj6L8s+slZsw6IFvbTVoFqr/jJzr+zHjFghQKfqpyzhmgQx1j2Hw+pVv/mrwTnKxkpgnFq6trjTNWrkJve/8Gqs352+PaZHNlqRXf1oUbEISYO/WDXVfr6yS9pce0DRdbtlRgeUbqgtges8Bu9ffKU//hImL1mNnRZWjUPaUQDq3rd5DO47inTpjemuh6g3jDns47aWvVS+H8t9RJoXTdLoEBJ4YPQ9/+t9Ptj/jlZ8WJ3rUCPnniW/nYen67fh+bjKGBebL8PbKkCuJU5ZuxH9HzjWcyrLFh+laRqNfPpu6Qvf1JGMlMU8MeWhM5u8Xxy3Exm27TIcPJp3d5/6KPBxa7KRlTkKiY/O6uu8tWpfdG2vnoaRkjn/630848/nxmdczQ2NUP8xRj35vO52TFm3ALR9Nw6EPf+d4HR/DtPpyFHJr2QZ7vThKr77Z9Tdn1WbMs7neXxy4Xb81CHbvgygLpXrLUqzevANL128zHepuxzPfuZ/XTPknKcPbTYebhpgOr4LoSTTLq0548gc8OnIOznp+vG4ZeN3WnabxFygbK4kF7u0JS7J6IePq31/OwnMugpjU9DDBOV+4yaLVmXD7G0ZgimbyuTairJQSW3dUYGdFdeF4wzb7wSQkJH6cn4qM6kdLH4VPG6Dgqrcn52yjt8yFUmgzKxQd+ej3OPyR77wl0CMnwQ1e+XFRcAkpIOph7G4bj5ZzyCklUJIqgmbM8vUg/bZkY9bUFrVpyzbmVDRXlDGf0MMSdJ7ZWVGlithkvf0Nw6dl9ULG1dNj5uOez2diqU6AAzNGpyDuQ9v8YnQN6LWl2jkjZm2wz4/1tjSL38MOE9JgnDfemrjE1X5JiW7qRKFFoA7yt1Mq5896iHRM+euXxettlQuSlr2YNUpFsYaiW3FMq15vspORT3H8TkEpMXtTCPEabNxbUspzfUsReZLvraZnPPczxl1/qO3tC+heNuTncDPDYXRCoNLjyV66frvtdNhRKNHH4sLt76Y8r6NqcfZLVsEhRt9l9WZnQRmC4qZglZShgRSdM54bj50VVXjjov3Qv30TPP7tXFxxSCfUrlGcvWHujIhYU+6WpFdIgki+hMSuyip88MsyfPjbckgJvHvZQE/HdNKwN2VZGXrs3sDT5yWFVU/iPADz0/+VATgRQDGAZel9TwCwMbjkkRfTlvu/Pk3Ytu+sxOs/V4dQtjvPSWFUxpi0qHDGpBv2prrIvP/PJGiEl4dvEA8Sli/D5u5HnPFHaujyu5OW+pkY3zn5dh+r1g5NiqAaGNdt2YELX56IjQ6GnxPZpUxxmLliE94cvxiPfzsP174/xXD7uDSkf2KRR8h0e+x2naWEHvxqdhBJCkRQjX/Pj12IG4ZPw/iF6zHBQcRjp/TmNX742/LAPi9uTCuJUso7lP8AdAEwTEp5lpTyJinl2QCGAegaRkLJHnWr0xvj3Q3/ipP7vpiJWz6anvO63WxHW0846tHvUVkl8cg3czynLQmcZM+FMgSXglHlMVbLhIX5sxSK3YWm84VZ3vH8uIUYNWt1VmOfo2MzWyIbqqTEjnSF8bOpK/Ca5npTrtH7XS7B4re/vfWb6ftKevWW69KLThxXQQU33bDNfYA7Iez30L4zMd6Nl0FzMidxfwA/a14bD8BbHy+RCSfBT3RpMtjZqzbji+n5F6bYjXdM5pB95FNLmZsoj361PLInMVxef7ekr12ar5UZJyHs9cLOK+flYZcNc7NXbXa1HxUW7WV6q07jcpLkS34SxHBZJ4fMl/MYFSeVxN8A3CuEqA0A6f+/B8DkANJFLuXb/VCsKTc2rVsDgP2MR6/YuWpTPOboRO05baAZ1Sm9Yfg0R8cS0K+UPfHtPMfp8usa5pzEcHmdkxr3SuKM5Zsw9D/fY3P5LuysSM2HSfp8ITtmrbRfSbvJYb5hRQAYO3etr8ek/GTVQ6iOvB1X6uzkg1/zI38JqidRe27mh7zGclzmegfNSSXxfAAHAigTQqxCao7iQQAYtCYmKiqrsGNX/DNCJ7QFRyVbOKRrC1v765U7K2K0hlnQpJT4eLK9+VF28/IbHRQEV5Y5X6cyD56LZKJcZ44NAJRoW4Ri5t9fzsKslZsxafEGPDF6Hv7x3hSMmFY9KqGQL9u/pofOfWQzryEK08qycoycaX/d6LLtu7B6c7RrLN89Yia63PJFfgX0CtAx/x3raHuvySqUaMu2K4lSykVSygMAdAJwPIBOUsoDpJSLgkocOXPOCxNwzGPObpS4KyrKLjgqGWaphwJlEIu7FpK3JgQ71/Wn+ew5SCSbt5XReqd1tNEIY0YZdllSJDKt1pu2F9ZSF0amLkt+kDTKP+PSvdCL1jlbC/qA+0ZhwD2jgkiSrtWbUhVSbaP2rkqJ0bPWhJaOIARR3NI75A4HPcXxbo6MF8frJEoplwCYAGCZEKJICMG1FmPipwXrok6C70q0lUSHOY7ekMOKSlYS9Whb/EbNXOVof71z7SYYzq0fz3C8j56Yj17MO3Z/6Z0GPfkn79vGv8Q4MHHRenS86XOs22I+fEhpXCouEhgxNdWDOHc158tZYUAsiorSG+i03LB1p/5oh6Bc/8FUAPpBUnZWhpsWv4V594/TGZr+o8dG5/Vb3QfIyQe2K3hCiN2FEB8KIdYBqACwS/UfJcAP89a6Gv4XpeIi/eGmdukON/UahjEPvP/LspzXtMMvLnxlkufPsTukIx/mXhQ6L/OEgdxRAwqnBTw7pizdiD/970eU76rEs98vQGWVxKTF5sviKMPUi4XAkK7NAQA1SqofobyG7XNyrgZ1bhZgSiifaK8qpfc/7oOHdqUbrvXm/yZ9dkwQ+beRs18Yn/v5Bh9vN1VBLq+RBE56AZ8BsBPAYQC2AOgD4BMAlwWQLgrAWc+Px7GPJ2s4qrYn0Wk5TK/YuYs9ifjD58YC9tqR7Yn8qovlDxtrlm3RiZjp1a0fT8fERRswc8UmKFmM7UquEPht6UYAwDPfLcDTY+b7nr5898qPi2xtJwRb8sm9rTtSeUfc5/UZNZAB4VayghDEuffcIGdQYEn6uQ6Ck0riAQAukFJOBiCllFMAXAjgH0EkjPz13ZzUuPa1W5L1wC0uyr5Et+yoMAx8ccHLE3HUo99nvcbANQ629fA5N3+oH26cWW7h+HG+8+HuB9z/bQApsaY0PlVUScxckWq9tyofKEG0Kqtk1n317y9TURV5rRvQOTHz19ibI1ZRKTHjj00+J4gKxe2f/g4A2FQe7wFvJnVEz1Gjo5ak5L9ks/GqkJQ42LYSqWGmALBRCNEcwCYArX1PFfnuvBcnRJ0EV4p1mjG+naUfpczodS0GrgmGXoXc7mTyJD1IKPmUYeyjZ63GkvWphe+tWryFqsdROwyegrGLUwPIgUkGQwP/+d6UkFPizJjZawwbr52sUxpHce3F1UvWwrXhLqORBE56EscDOCb991cA3gEwHID3iUsUC19OX4F/vOt/Zrp2yw4sTRfEnNqu02voJNMUOjUXzkkMz6dTGBKf9H2uWj5Ca9Ki9Xhx3ELD971SegWf0hkq+vDXs3X3qVDNb9LWEd+ZGGzE33wzZ5W9gD9c65ScMFrmojwBS4MZ9a7HtZJlVxDJlx6Py1zFPieVxHMAfJf++2oAowFMB3Cmz2miiFz2+q/44NfcgCZe9bt7JAY9MNr2OPK5qzZjQ3oeygKdjLNKSt3Kn9ro2avx6k+LdN8rpOimTiILRvksSvqQGrJPiSJ6xRu/Gm7zf//7CXd+lhoqFsSlodcTqHzO49/O091n3upUK3OVlDnrt9704XT2hjvgdTTHR78tz3ltcnqeKJETb01YgiXr3DVi+0nJX7SSPk8uSdGNmYfncrJO4kYp5fr039ullHdJKa+XUho3B1Pird5cjkEPfIuFa52tM6RHWVvMyhGPfo9hJus92rmR//zSRPzr4xm6QyCZEejzmpl7aZ37z8i5nj6b4kmvYeiN8c563fzIe4DU3EGlIqFXSbTbYl+lM9w06UPCgqR3ZryO1tWbO3Tikz94OygVnIrKKtw4fBpO+d+Puu/b7fH2w1/e1G80S3qbdhyzxls+mp6oymuUnCyBUSqEuEMIsVAIUS6EWJD+d40gE0jR+nzqCixdvx0v/2A99Kt8VyV2VBiv6WMnXsy89LpjSvTNnq0b5mzjZPhFoQ9XWmM34iTyr/I8VmfNJAqX3lIrRoxGGjgt/G/dUZHT+i6lxNNj5meOpe0JdEJK/f3zcZ1aP0xYmDtPzO75//r3lbqvL/Kp4YAK100fTsusyWsUQfd/MYhcnPSldYKJbur7IcmAk+GmDwA4HMClAHohtfTFoQD+HUC6yEd2wsxbsXNPdrv1Swy8zzhaoZ3W49krs3sbm9bNbYNw0jKl25NYQC1I934+K+okUAH7LeQhgOW7KtHjtq9w14jfs17XFipm66xHZrfgUVklUaTz5Jy+vMxuMguK3jBQu3X035bk7gsAZdvjHa2S4u/N8Uvw1gTzUQ12Kzgv/7AQz3wXTIUy6aMUdgQ0HzTZZyU5nFQS/wTgeCnl11LK2VLKrwGcBOBUOzsLIV4XQqwQQmwSQswRQlyUfr29EEIKIbao/rtVtV9NIcSL6f1WCiGu0Rz3MCHELCHENiHEaCFEOwffKe9t3VHhKsz86k2pnjyruX9aZmta2TnU+IXZrfF6GYFVxm3V8sZWKH165+0TB4FnuFYiaVU6GCslhICU0vYaenq2pNdFe+mH7GNoU6E34sFu41GVlDisW8vc1xNemAuTXh58wcsTw08IkQm7d/Ttn/6O+74IpkE26fP1f18RzBI2Xk/LN7+vynltlk7jYaFzUkk0KgLaLRreB6C9lLIBgOMB3C2E6Kt6v5GUsl76v7tUr98OoDOAdgCGALhOCDEUAIQQzZCKsHorgCZIRVp9x2Z6CsLzY51HCDzs4TEYcO8ojJ27JvOa9obcsHVnZqFa+6wvlVd/Wmy5jZNKIOst9umd1Z8crH2X8GcZBcCogKM0QqlJmVoT77ZPZvjy2epKmzbP0BvuaPf6vWH4NOzeqFbO60kvzIVJ71TZXcKIyG9GvXVxuKXjkIa4sRvfwoze+qthzkFNCieVxPcAfCqEOEoI0T1dUfso/bolKeUMKaUyQUqm/+toY9fzANwlpdwgpZwJ4DkA56ffOxnADCnle1LKcqQqlL2EEN1sfqe856bgooRinrqszLB3aN+7vsHgB0Y7Oq5VT5Ne5U9vF6u5jRe8Ut0irT/clPQ46TUkssOod+2Qh8bovr5Tc3M7HWqlzkLULdjaoxSZRDe1YjRagh2J9u2wM0GdKCCjDRokpJR4d+LSzL/jsPxE0oebBuG696cGMm2I69/mclJJvA7ASABPAvgFwONILYNxrd0DCCGeEkJsAzALwAoAn6veXiyEWCaEeCndQwghRGMAuwFQL943BUCP9N891O9JKbcCmK96nzywypzWmQwt1aO+/aSUeGfiEmwu36V6zd5x9DLu1ZureybGzK7uAS30wDVO1KtZEnUSKM8YNVJt26kf4Ep7tz7wVfYQrh/n2Q9GdOzj4zJ/a5OhVxbwWuTgcFP7pnC5CorQiwaB+L7+fRWu+2Bq5t9md/TqTeWOGlbXbdmB35ZssL29Ig4V1ULB0mIu00qiEOJQ5T8ABwEYA+ASAMchFcBmdPp1W6SUVwCoD2AQUsNEdwBYC6A/UsNJ+6bffyO9S730/6sjApSlt1He10YLUL+v/i6XCCEmCSEm2U1vvlrgoqvej1YbIURm/cPflm7E9R9Mw00fTneeFp1M8+j/6C+ZwSUw7Ou5e24kWc4zJC+c3mvaOdDfz8muFFoNBzLKp9Sv76qsQrHucFOJmR7mz7AwR5QMemslby7fhW07s6fQmE1tOffFCfjbW79hU7l1EKUVZdvR9+6ROOkp/aU2zLDtSV8Q2e2GbQyIpWXVdfCCwevKzyPSf3ew+4FSykoA44QQZwO4XEr5GFJzCQFglRDiSgArhBD1ASi1mQYAylV/KyWFLel/q6nfV3/uswCeBYCau3Uu6Ntu0qLc1qxxBssFvPFzKvqXHz1y170/BRMXbcCEmw/LRLxapZqbpPej6AeuyW3xcdKrWUjRTZ2oqOIQMPKXo+Vq0oFr1HL+7fDzpZTp41a/tnzDdv3hpjDOB+1gYY4ouf47ci722j27OGmWfS1PR41fuMZ6OZabhk9znS6OUKAomfYkSin3NPivQ/q/PaWUtiuIGiXQn5Oo3BFFUsoNSA1L7aV6vxcAJbLBDPV7Qoi66WP6E/kgT+n1Dj3zfW74ZgFgdrrl3o9W8onpyunqTTsyY7+NMsD6JkMfqySreUHY5XHV3oe/meNTSihfOLmipJQ5DVjabMcqG9pcnt0T8PDXudfkP96bor9On9Sfq2hX0tczIyoUeiWIiiqZk7+YlXuUsoveEi9aK8qqG8OdzjHkCAWKkpM5ia4JIVoIIU4XQtQTQhQLIY4CcAaAUUKI/YQQXYUQRUKIpgAeAzBGSqkMI30VwC1CiMbpgDQXA3g5/d6HAHoKIU4RQtQC8C8AU6WUXBzOhJvIfm+MX+JbIUhKoDh95annLO1SBTOoU7PYcH9n6yQyco1d7Ekkv81xGFL8ns9nZv1bW0CyKjBpF79+buwCzPijDP/6uHpY+9otO3QDFEhIW2u5GmGACaL4cdITp51D/atqnc7yXZVZx9qanletXbYLSDUYPfHtXKzZnIrVqM5vXvtpke306KWJUtgoF45QKolIFcsvB7AMwAYADwG4Wkr5CVJDVb9EaojodKTmKZ6h2vc2pILRLAbwHYAHpZRfAoCUcg2AUwDckz7ufgBOD+H7JJreQtB6LWva+tXqdIZnZwy+mSopMxXV35ZsxB2fpjp++9090tb+Ukrbg1/1tmPWom/e6ty5qms379DZksieuTrXlBPaSuEPFoFrtOXByiqJs58fj3cnLcu8Vr9WCXq1yZ1/K3WGsTvBOiJR/CzbsD3nNaP6xV2f/Z71b6WSt21nBbrd+iUe+Gp2zj6fT1uZ89pvSzfioa/noP89IyGlRK3S6kbvlZucPVNZF6IohRLOMF2ZO9jgvbcAvGWy7w4AF6T/03t/JAAueeGA7lArHdpeOKXAVm4QmdAubcHvpR8W4bbjemQWwna6vxkGXrFvlc7Da9pybVwoovBo7/TRqsjFerT3u97Q9KoqoGm9mrqf5SUEOoeFEcXP4Adzl+pauyX3WSelzBmuDgA7K6pwXDpS8ge/LsMNR1sXN9W9XD8tWIcaxdUt8//7bj5qltjvn+GcRH08K+EIqyeRYkRvCKad8s3dn83E7JWbPQ9/8HpzO1liSy+pHKZgXwUfUBQS7RqJgPNW9Pd/WZb1b73L16gyVyUl5yQSFYD5OsFmjO7eyUs3Zra3mz2oG+K37ajMaXx6asw8ewcCh5sa4WkJByuJBUh3jTAbN9yIaStw1H++1w0f7YSU3iqKTlrs2brvTQUXvaaQfKqz5pgfFa+NmrDmRsNKpYTu0hh2FXphbun6bVEngcg1o9tX1QloO8p7qWqnKilzRjg4iRbPnkSKEiuJBUg3cI1Otc3r3ENj0nLIqt7Qx8zeEfdkFhKvDQJEdukVnIIoHxk1HEnYH4qvf1zXu+aFQQ/kDusjSgrjmOnVecLKTeXYWWHdcKquJOov7eWkodv2pgXlqxm5c0HJf6wkFpjm9Wvq9iT+vGB9zmvPfLfA9edMWrQevyzOPSaQyvSe/i53yQ2tsu36lVQnmaZegbDAG/wdYU8shcVuQK2znv8569/v/7IMPy/IjTBoxLDHj8NNiQqW0e2rbTd675elhseYvXIz/vLmr1mRwvV6Ap2UYQp9hIKR1QyqFwpWEgtMav1B/6K5/LExN3IYAPzf/37CKU//pPuelMBYG4tWGwWyeeSbOboTzPWwFc6brR6DFBF5obcqyw/zsiuE/3xvCk5/9ufcDR1K9SS6359LYBAl19xV+pGYtVnCbJNlfa5+ZzJGTF2RdSy9bMFJgxIbnyhKrCQWGgHsqPCv4D9q1mrT99cZRBHr1qq+5bFfNVlP6I3xiy33T32Wzmu29iSiMOk1/FgVkBavyw1AYWWBTtCK1GdxuClRoZqwSH/kkzbQ36s/GZc9StKtTOoROJVS4oCOzbK2c9STyIyFIsRKYr7TFrIkcNXbk3075LxV5otlT166MXd/ADVV6wYZ+W72GsMhIDP+2GS5f+qz9IabMtMlipupy3KXW7G6Uw9+cIxvny89Djfl0Gyi/OMkR1B6GV/8YWHmtaoqiab1arj+fMaOoyixkpjnfl2yMdDj92iduyi1ml65yW5hSi8kvlMstxEl14qy8tA+S8JbdFNGISQqDBu27tR9XSmzTF9e3YjttSeQjdoUJVYS89y4edlz/xa6GJ6lpe6de/SbOTnv3//FLKsD2Jr7I2XupHGn9DJYZrlEyTdrZfZogvlr9OcU2VUlgcZ1Sm1tu01nri7riET5R68Mcvkbv9je3+sIA45QoCixklhg/M5v9Fr6/6eKXKof/tneEI6Fa7dik0GEU7t0C27Mc4kSbfryMgz9z9is17Z7DLLkpMX+PyPn5rzGwhxR/tFbmsfJCAev+QJXoaIosZJIjjnJ83R78mTuZHCjAtpTY6yXyjD/fE+7E1EMLTeIquzFJ1P+8NR+xEoiUf7R60l0cq9XeBxi8OmUPzztT+QFK4kUKKOFZDs2rxvS5+sNN2VhjijJ9MpoO2wscm1GL3COE3rLdRBRsulWEh3c65yrTEnGSiIFauqyjTmvSQk0qpMd7euFcQtztvOD3rAwIso/Teq6jyCo8NIZWMFaIlFBcBKMprJKmi7nRRRnrCSSY07KUU+Ozh0uKgE8+/2CrNce0QmAExSOCiNKutyb2EtkUj+MnGm+ZiwRJY/enEQnw02rZHa0U6IkYSWRPBt43yhH2+tlsGHO52ElkSjZ1m/NDWjlRx2RQ9GJSG3jttzlLpyMIOVcZUoyVhLJsW07K7L+7XgtM921Ez0kiIgKyk0fTst5rcxjJGQiIq3Vm3fkvOYkErLXwDVEUWIlkRwr2+atMLZYZ63GMCd3s7eAKP/MWbXZ8zHWbsktEBJR4dIrL6zbmtu7COivs/r4KMZFoORiJZFMHbFXy5zXvNbntuouRM3hpkQUra+mr4o6CUQUI07KCwd3aZ7zml55hygpWEkkUxWVuRH7KnVyzclLN9o+5gadVrgwR2R8/TsLgkT5psKHVaeLi6INfkNE8eJoXejgkkEUCVYSyZTe2mN6vX5/eeNX28d8PqDlLoiocK3a5HButI4iVhIp5m48ulvUSSgoExett70tRylRvmElkUzpRQzUm7TtZCHrw7u38JIkIqIcDztYRmeRzrxoAChmHZGIVN6euNTT/t1a1fcpJUThYyWRTOmuEaRTH9ygEybaSMsGtbwkiYjIk20G84TYk0hxF/FyoOTQQZ2aRZ0EItdYSSTH9EZUVDqYVMgRGUQURyWsJBKRS0s3bIs6CUS+YiWRTE1YmDse32skUo7bJ6I4YuAaiju90T0UD78t2Rh1Eoh8xUoimdqpE900zDUNiYjCwwI4ERERwEoiucA6IhEl2Y/z10WdBCJXvMxJfOvi/f1LCBHlPVYSybHN5bs8HoG1TCKKn7cmLIk6CUSBGdixadRJIKIEYSWRHLvxw2lRJ4GIiIgo1kbPXh11EohcYyWRHPMaeIaBa4jM1Shh1kxElHTz1+ivyUqUBCyJUOi8Lk5LlO9qFDNrNjOwA4fNUWESXCiRiELCkggRESXKTwsYeIYKE6uIRBQWVhKJiGKGBUEi0sOORCIKCyuJRERxw4IgEelg1kBEYWElkYiIiCgBOCeRiMLCSiIRUcywGEhEerR1xMO7t4wmIUSU91hJJCIiIkoAbQPSg/+3D/Zu3TCStBBRfmMlkYgoZjikjIh0MW8gopCwkkhEFDMsBxKRHm3WwLyCiILCSiIRERFRArBSSERhYSWRiChmWA4kIj1Ckzto/01E5BdWEomIYubqw7tEnQQiCthZ+7V1vA97EokoLKwkEhHFzHkHtI86CUQUsA7N6zneh3VEIgoLK4lEREQxN//eY/Dcuf3Qv33jqJNCEcrpSWStkYgCwkoiERFRzBUXCRyxV0vs25aVxHzhpn7HOYhEFBZWEomIiBKCVYTC1rxBzax/252j+MJ5/QJIDRHlM1YSiYiIiELw6Gm9Mn+7CUJzUKdmrj53UOfmrvYjosLFSiIRERFRCKSs/ttpHbF5/Zo5r9k9hlGF9JZh3R2mgogKBSuJRERERCHIqiQ67EosErmVQqfH0Gpcp4an/Ykof7GSSERERBQCVR3R0XDTxnVK8a9je+S87nWOKtddJCIjrCQSERERhUCquhKd1M9++9eRGLbPbq4/V/msDy4fmP26zUQc12t3159NRMnESiIRERFRAmiHlzrtCey9h7slVNo1qeNqPyJKrtAqiUKI14UQK4QQm4QQc4QQF6neO0wIMUsIsU0IMVoI0U71Xk0hxIvp/VYKIa7RHNdwXyKiKLRuVDvqJFC+4vBAUrG7bqLR3EW7+5/Wfw/baSKi/BBmT+J9ANpLKRsAOB7A3UKIvkKIZgCGA7gVQBMAkwC8o9rvdgCdAbQDMATAdUKIoQBgY18iIiKiWCguUlXKXEwIzA1c421/u1o2qIWmdZ0FuWFjGVGyhVZJlFLOkFLuUP6Z/q8jgJMBzJBSvielLEeqUthLCNEtve15AO6SUm6QUs4E8ByA89PvWe1LREREFAttGlcP28z3TuFLBneIOglE5EGocxKFEE8JIbYBmAVgBYDPAfQAMEXZRkq5FcB8AD2EEI0B7KZ+P/23EuLLcF+/0vyvY/fy61BEVCAYMZCc6Ni8btRJoJAM2LMJTujtPgiMNm+xm9com2m3LyqyO1zV3ucQUf4ItZIopbwCQH0Ag5AaJroDQD0AZZpNy9Lb1VP9W/seLPbNIoS4RAgxSQgxyct3ICKyol4LjcjK0J6tbG9rdw4Zxc++bRsBAOrUKIk2IWktG9RE/VrxSAsRxU/o0U2llJVSynEA2gC4HMAWAA00mzUAsDn9HjTvK+/BYl/t5z4rpewnpeznKL1ONiYiIiKywU3vXE50U4eNBur9j9nb/ZIaVo71sFwHEcVDlEtglCA1J3EGgF7Ki0KIusrrUsoNSA1L7aXar1d6H5jtG2jKiYiIQnK0g55GSgJvzc//OKJL5m/bw011tnNSwXRanz2oUzOHexBR3IRSSRRCtBBCnC6EqCeEKBZCHAXgDACjAHwIoKcQ4hQhRC0A/wIwVUo5K737qwBuEUI0TgekuRjAy+n3rPYlIkqkvu3srWd27kCu+pPvnj67b9RJIB8pw9H9GDrs5QhBzzOUHHdPlGhh9SRKpIaWLgOwAcBDAK6WUn4ipVwD4BQA96Tf2w/A6ap9b0MqGM1iAN8BeFBK+SUA2NjXM87+ICKn/Ch8fXD5AZh2+5GW23VpmTMFm4gS4qZjvAVjN1r/0Na+Drd3UuVj9ZAo+UKZsZyuzB1s8v5IALo5ZXrZjAvS/znal4goCn610NevVYp2Tetg8bptgX8WEQWrxGYkUSfsHlGvMukk73BaGWW2RJR8Uc5JTAS2hhERUVywUSC5erVpBEA13NSH39LLMYQQqFlivxjo5KOKA6gQE1G4WEm0wGyOiOKMSyIQJcP1R2cPeor6zi0tFhjYoanh+/u0aZj1byeN5nbnVBNRfLGSSAWvZ2vtKipERET+Ki32v8glhIB0OebpikM6QQhhGIn0kC7Nqz/HwXHbNa2DDs3rWW9IRLHGSqIFDjclIqe89O79eusRPqaEkoC9wYXFbaWuen/Nv10erm7NUMJSEFFCsZJogY9uInLKyzyhJnVrONrea4GTkoXPpOQ7Yq/Uupe92zby1EBw6eAOvqSHeQgR6WElkYgowbgUGVGyHLFXS8y/9xh0a+VuqoNSrVSGr3rNA4z2V78sBNc9JCo0rCRaYJZIRE457RuoX8v9sC/mUUTJk4Ton9o6od28hnXJ5KvhIOot5S9eBRbin40TUdw4XVPs9P57uP6sejWLXe9LRPHVrVV9W9t5rZPpVeqeOadv1jBUIQQrf0R5poZFMC1WEi1wTSpyom2TOlEngRLIbeHrvpP3xrH77O5vYogoFjq31K8k5gauCaf2ZvdzvJSbju/F/IwoLBNvPtz0fVYSiXz0xVWDok4CFZAzBrRFaXERFt0/LOqkEJGPtGsUBkkvcI2U0Qw3bVSn1P3ORORIQ4v7reAriQPaNzF9nx2J5ARDihMRkVcP/amX7W2D6kjMOazmhRfP76e7n15P4lWHdcbHfznQl3QREXD90G6Bf0bBVxJf+nN/0/edzi0iIvIz12AORFR4Si3mCgH+TYfRq2SmoplqttNsc2i3lrrHq6fTWPrXQzuh1x6NLNPC/I7Inoa1g+91L/hKotOen78d2imglBBR3vCxpMNYEUT5y6ii17ZJHctsRKnEBbHOoV7F0e6cxGfPze1hZIM7kbFHTrU/ckARxvqmBV9JdOKF8/rhmiO7Rp0MIiIqUCxr5xe9etewvXdDcZEIbckJo921hVC7H9O6UW3XaWFlkig+WEl0gHkXBaFJ3RpRJ4F8VuLjGmjMdohIT5BlEiGQUyv0UhllPhae9y4bGHUSKAQihLuKlUSiiI265uCok0A+e05nuJVbR/VsFfpnElE4/Kjouam77dawlvkxpc5SGx6Gt9n9nlU6NdHdLdJK2fpbBGSk+Cn2sWHZT6wkEkWsMXsS8067pnV9O9Z1R9mLYHbEXvpBJCj+OEolfx3evYXjfZxWxlrUr+lo+3cvHYiPr1RFGjX4uO67pdZpfD7dAFW3hvvo3XaHkeoVlgd1bu76c4mSoFk9Z/cwwDmJscCHN4Xh4C58CBYys6w+ri2M5B8nw/jCGGJE1to1rRN1EjLXzRNn9nG034A9m6BFffPeuSIBnNi7Nb66ejAOTzdAvXNp8MMY/3po58A/oxCds3+7qJNABkb942Ds7mEeb5BYSSSKgRfP74+R1wyOOhmUIG2bRF9IJX+wHSB51D9Zg1pmPWzB/7he57Xr9Uh0360BhBDo2qp+5rVOLeq5Ov55A+1XUOrWLHb1GWSOazjHV8fm7u6rMLCSSBQDxUUCNYr5cCT7vrx6UNRJIL9wyArpMLoqlHl7fjUunNKnTda/595zNPZgIxRRaOL6BGAlkYgoJv4ypKPlNq9dOAAfXD4QdTzMD6J4iWsBgYyp59gFNTPIcGkK5Q2fGhdOH9A269+lxdEVDfWGU7MNxbsw5q9R/mEpwwLzJiIKS6Pa1sPGGMQh/xSxFJy3gvhpM3VE/w8dCFZPose5zPEW10cAexItMHPLf0nJPBvWLo06CUQUgJP7tMbvdx6FOjU45LzQ9G3X2PlOmeGm4T+72qcD9hzWzTpqq15ldux1Q/xPFLlyxoA9ok4CxRwriRp/Oyw7spY65HNSKhPkTFyGYajT0WP3Blnv3XlCD8/BCYgofprWrYE9mtRBnRoltiLZxrXFudA4nbM3qHMz3df3bdsYjeo4awB0OtrUTXh9IyOvORgz7jgKz9pYl1UZFqsemmt13vS+k5Pov2TffSfvE3USKGCXDO7gaX9WEjW0+VPP1g0jSQcVttP7Z7fwndafLX5BOWu/ttYbBWhoj1aZv4OuAAzmUitkU7N6bJQy8/jp+9redv69x+CVPw8wfL9WiX4PsjSoHWUqXzY//2+HdbK5pbWS4iLUrWmvQcNu3a5XG5azqLC56YSy03hySFdvz3xWEjW0Qz+6tqrPNewofJraAnuxg9OrTaNIP/+Cg/YM7bOasjeabBrMua+mGtrs/RNIRa8uchGK1KgQqEQ3tduoFPXTwyqd+6jyYL1NhQDevXQgWjUwX9uRzD12hv2GjbA0dtiLTtWs7quaJUU4oKP+CAa7WEnUULe0H7vPbhGmhMISy6EssUxUftIbbtzPzTwhl4QI7+c26pmgYLEHN1muOszhgu4h31bVw03t1hKjqSYq+Y0fjZwD9myClg1ZSSRSWN1XfmRLrCQ6EXVzHAWiyoc7qW+7xrj/5L29HyitRkn2rcl5SP54+c/9bW33wP+FN1eDP23+e/E86/lbAGw91e0M86P48JJ3G82Xt9PWc/eJPd1/sAMfXnGA5TZOzoHtii+ZOrlP66iTYAt/b/fCOHWsJDrhY2vh//VtY70RhcKP3pU3Ltovs9aU24nC6mQICNx0TDfVv8kPh3TNjcin1xrXoXm9zN9+lMn3bdvI8D0+I/Nficm6c05/f/W1GST2OUfP6NGkRME1i4ZbU9XQGFUWw4EL0Xno/3pl/Ts1YoU/SD4Jo72QlUQTQbZw7NHYWWQ0Cs7h3Vt6Pkat0uqH9U3HdPd8PABZi6WbFTIp/gZ1Mp4X0HuP8Ia2sogQH3pL2uzXoYnlfsdFNA2ifq3CWVY5Lg03RmX6SwZ3wLVHdcXZ+7cz3FcdDTuq76P0hDr5+Jic+sRzMweWkiWMWBUseZrIucd8/D06twynNZis/f2ILlEnQdfp/ffAzcd0x+y7hwJgK2BQolwCpW+7xhw+WKAuHpQbsOjxM/pY7hfW8Cztp9QsYXHBjSAKcrVKi/GXIZ1QatJ42KhOKY7cq2VgabCjegkMf45DROFirm8iyGz1mL0ZFCcu4lJI1z4HS4qLcPHgDqhpEB6d4u2Zc/qiZ+sG1huGiIWt+ND7LWqbDB8MW27y4pFPhsFppSqo28pbA5bI9CZG3TNq1bBRpbkZDu2WOy2A8pPelXHtUV1DT0ciWd3X6dvq1H7up7exkmjCKGO79yRvAUqizrCJKHhH9Wjly1BmIiPa9VSD1KB24Qw3dSqoR7qXRh0hVEtl+JQep+wmX72dEMBTZ2X3qLPMFJxR/zg40s/Xu0a4VJO+SwZ3QIv6NTP/tntbaJf2c4KVRBPKD6C9iM+MePFtKgB8KIbGr961R07tlfNa5tgxKeWwIzG/7NEkvLntr15gvBg8Ad130x814C26qXvqj40q+6mdnqtft4Z5A4M2D1bP8TfdkDzrGFIgLCPaS/OoHi1Rs5RVEz03HdPdcyeVU/wlTDA0L/nBqPAAABeGuJB6ITu1Xxu8f9lA3fesbnM7xZKhPVrh5D65QzqUeaRRjmhuwlZZ8kEbBlsz9eZF+/l+TG89iaJ6TmBErY5n7tcW1w3tiksPNo/4vbtq/UOzctfVMY0fQNkO7NTU9rba33u3hrX9Tk5eaaAKeBZGHaWgK4lfXT1Y93VljTTWEckPB5lkmGcMYK90GC4e1AH92ltHjnTq8O4tsOj+YfjfOX1131fW4Cy2yEyCDJ7z5VWDqj+HLfGxYfRLxGGo1fPn2lzXkVJEMNFfzZbOsVK/Vgl67J5qoGzXNJoKfmlxEa44pFNOz+Bz5/bDF6p86fJDOto63hCdJYzIvrCy/wM6Gkfz1mI529w/NA0jA/asLsdYT0n0/oMXdCXRMOPMtL6l/xnxuH4jtwzzZ6kFigd1AV7vWmPx3p3apcXo3LK+4ftuHpw3Z5Y5Mc8VLjhoTxzWrQXOGagfqt5unjL2uiH2E6fRokEt640odNXXXfZV8MMNh+LjvxwYenrUCmm5C78E0ap/+cH2Kk9aNUuK0LF5PZx3QHt8efUg7NfBfs9OGI7Yq2XWCBsu8VS44laujhu9YGZdQlwdgXemjsxkb83VG7fhp/Vq8kGeBH5dN9oIcGRPozq569E54eW0N6lbAy+c3x+N6njrHfJr7pnfV1BMAgPnlVqlxei1R6NQCwJaRUWCvc4eqAMKeXlOFxUJjPrHwXj9QmdDWQd1TvXkCCHQrVWwEZa9NEK1N+nhfPhPvTI9oZS/Ylasjh298qNe1nzD0d2Mj+GhKl7QlUSji1MZGlG/lrfCpVrH5nU9H+OdS/bP+jdvruTjbxi8IE5xlGsrmvn+2iEYd/0QvHXx/tYb++CCA/fEDzccGspnFZo6FsE+gOCGD1vdM1H3dMadOl+/9bi9PB2rY/N6OKiz/eF7qc8P78HSulFt9GrT0NW+I/42CJNuOVz3vVP6tsFZ++mPwCDnBOL53GpSt6b1RgXAyW+jbFmkqsGpo576qaAriUaO67U7bji6G/55ZGqtFqkZfuqGH5m2dshIVJPRyT8dmtlvPGDDfnwUpe/nGiX278GR1xwc+Nygtk3roE3jOhjYMfjhZQvvOwY3D+uO1o3yN9DA3w7rHNixlUKB0aNBud3NAl+5cf1Q4xZnhRDC9JnVa49GlscYEMAc4LC4KUwbna0GNhqb/S68N/Y4esKp3V3mAXVrlqBZPePCLRtRk8nJ7/bS+f2DS0iCGJXvdKce6WxcFNDNUtCVRKNKVnGRwGUHd8wZCxxlhqU7R4QZaOj+fYp/4YdP7tPasCBmd4gBWQuiVX1Itxa4eNCeuPOEnrb36dSiHhrWNi+8Bd4D4OM1ZFWRIH/ce5L9a8wvJT4MN90rwUMFw26ArfLxvrz9uL3wr+N6+HdAG/hsIrdaNeScecDZo1nZtljVldiwTilqBDC3t6AriXZlWnx9enD4laGyeBa+/+vrfPFqu7+T+rI4umernPcHd3E25IjsMbod37lkf3xypf6wumIhcPOwvUxbwXU/S/NhSh3Lj9EKFIy/DHEXPCRIx/XaHUBwhfN9XA4fzBfe2z68HaBPW/eLX59/4J6e5kH+X9/cpXysRD2M0U7PNtnPL7wOJ2ejgXNGjXJ6eZEyuqR/e1U+IYGJtxyOy1TBrvz4HQq6kqic/KfP6mO6XVVV9vZ2jfnnIbhKNVzpuqFdnR3AAlvxw1W3RjGK3UTqcLjLns3qoq7OQ/7OE3p6inJJ+ox+nv06NMU+bRrp7+Py1jMqTEmDYFl+i7owlzQCwB4BrQ9o+QDPXBO5F8V/TuuNWXcNDSBVwKHdWvDZ4oKXU6a+Fu4+sWek6+c+9KdekX22ltU9MvyKA/Cf03qbLjNFznmtdFd56BqXUrKSaeGh/+uF9y8biN0a1sbBXZpnXm9YuzQrgI1BAG1HCrqSqBjSzd7aO07Pc/tmdXHM3rtl9j13YPvU33z+Epz3TJcWF/kW5ZKqRfk80lZAgs4aBjpYv8qJ/57e23Kbs/bjmqB+KS4SOWvP+cXuNaj0ZpL3+/a6o6obkM/ev11BVtIfP2NfHKopi1WkW+hLDYbR9WnbGCfu29rX4brkHX8Oc91a5S7J5eSc1a5R7GjdZy8NnQVdSbQ/DND+zzfqHwfrf5bwGPjG5msUnKAf3MrE45olBX1bOvbA/+1j+r7Xn0290PMeTVIBGtwOPde2kN6dnm+mvBzUNXbXiT3x5wPb42wfKmpNXC723r6p9wjPUYhzgSeItNk95uNn7BvAp8eDADBY1UKvMFuKwsu9e2p/59MY8s1xvXbHi5ogJrsqU1ejupL4+d8G5ezLnid7wjpPXpfryvc2kncvGxjq53kJZMfSqA2Z693GhduxefbaVn7PZ1TL9xspXxQJgTMGWBcC2jetg78d2gnPndsvhFQlzyl99OfKBH0bqKNB+v2QVZY5yMxJDOjLnLN/O9x2XA9fKqFfXjUIH1we7kOuEDl47JDPhABO2je3p1S7FEUDvYByKLxnc1CVjwPTw0iP2bt6jr5eQKQoh+cmRZDPFq2uLXN7ypxQrqcTe+fnaAW9iMdG91CJT4sR7+UySnZBVxKdFpjcVPT0Cn8F9vzIG0a/2wUHWj+g7jt5Hyy6f5j58YXANUd29TSk9Nh9dnO9b9zZ6dG/9djcNcmsbnO/Czhmy1wYfVZUcwWP6tHS8T4tGtRC33bOlzfo0Tp50S6DLOwH/Yt3alHPeiPy5LtrU3PEtWWJPRPaa+6Weg6928Konm6tGmDR/cMsh9Y1r1/Tt8I02Xf90G6468Ts6MutG9XG0Xv7Uw4phGHXd55gHon4yB65QQzV9E7Rl1enetuP6O78+a5V0JVEhWUh0mS7ujXM54WoC4Verne9m6UA7p94MTjf/7JYLDnMoTBt83TO4msXDjAsVavvjVqlzrM0V2uiGVwLc+85GqOu0R9ybpqGCKKbfv33wXjmnH74/lr7wZBaNXAXrrxj87ro1ip5lcQwBPWbN3cYeZec0+YDs+8eitcv3M9Vz9Yxe7dCjwiXDRnU2f185dtVS24YRYSmcFxlsLbrgZ38n4+unoqhUCKzu31WFBolVoleAadGcRFaWpxHvfJlt1YNMPa6IXjMYkrA8TbmlbOSaEMm8qDOe1YtHVU6EeqctI6oIxXlfDb7JEkjn6dmGH039V2gl2EeuZd5S5yjNFic4NLiIpS4WKuoOgpZePd0l/SQoLYGPZ96w56N5lxb0a45W4isWoz9ZqfxY2CH3LkqfKqkntFuGvdqlhTjoM7NUOSiV+ups/pihM58u7C88ucBmH/vMa72bVinevicm/yP/NOigX7j0AFOg5blc2Eihtx2Jhh1Yu3RpA5qqOJb6BUtWEm0oD1nRuUzZc2i5vVzbz67jwIBd5W64nSilLT944gu1cfk0zxUPN3RsrOOkN49cdMx3S2O6yVVzlh9VJyusSP2yh2qorc0ix0MLKFuMU7z4aToHWLSLYfbXirnsO65kb2dpOqukCu+cZNP13VRkXC3xBMlhvpyfeWCAZm/7zmpp8628bi4/3pop6iTEAq3Z1tZbiSoe7egK4kKpfJWZFDruvaorvjq6sHo0Nz9HA+9OYk3mvQSKpRC2eXpBTIbpSMLdmxe1zAsNPlLyUDdtA5rvXAeg9K4ZRTyX31vdW6RO2HeKvOMw6Mw6MA1QSuEuSN+s7lMouNrolm9mtijSR3dCozRUDS3GtZxF+m2EJyzfzvm9yHyGlEzCf7mscLUXjVqpGHt6t7fIV1zG4uiXFZkUOfmqF1ajAsO3BN92jW23iGBXvpz/6ylo9xGtT9jQCpieVedZTX8EEotQwhRUwjxghBisRBisxBishDi6PR77YUQUgixRfXfrZp9XxRCbBJCrBRCXKM59mFCiFlCiG1CiNFCiNxQS4bp0vzbYLuS4qKcH2CYMjHX4gFePdzUXQGwtFhg0f3DcOnB2WO/99MZJkTOWQV6admgJo5KTxwu9qEgfJgPE4kLkZTAjQY9gsqY/b8f3kX3fVsHt72pt0XvjXpDq4e0+1fZGnvdEHz998G2ttVGkbtyiLPCiNH3UiS1DpnkIf16v4idOcvKN/ZSRoxybl1c3HViT+b3Icr/KiJQXycqppZZntWvfRPdOBp6584qTzf8fIssU5mzCAD1daIDS6RG7c28ayj2btPQVRqSYEjXFjihd+vMv9u5DHY1bJ/dsOj+YWhR33zuottncFhdUSUAlgI4GEBDALcAeFcI0V61TSMpZb30f3epXr8dQGcA7QAMAXCdEGIoAAghmgEYDuBWAE0ATALwjtPEZZapcHASnzhzX1w8aE+8c4m9UPB6N24hZGpxd9/Je5u+37F5PTSqXYp92jTEQ3/qFVKqgjPhpsOiToJr6pZPtQM6NsNbF++PK122srq5D/3uOftTv9TyHgf5GFxgjyZ1MvMOreybHlJ/7sB2WHT/MPxTtbi3Hwqgkd8xpYfby6WkHRLWulHtzN+DdK4lvyvrRgXJfxzpssEmRnjNOvOPI7pkXX9hMxoJlk/0vuLhOkPGzdiNenzzMPOAfH6wOyy+UDj9Lb2yk8WFUkmUUm6VUt4upVwkpaySUn4GYCGAvjZ2Pw/AXVLKDVLKmQCeA3B++r2TAcyQUr4npSxHqkLZSwhhPY4T1QW96mE99jMZIQRuHraX7po9amZDhrw+hPI/Swye2W9+zv7t8PRZfVFSXIRPrjwIQ7qlbuBbhpnPcYuzFnkWcUxpiRzYsSmKi4Tr1k+7gjp633ZNsOj+YYZBZCg6QV1SyggFo/D+btbY/eyvB2X+/ouN3mCzqNmF/HwpgPqG7/56WGf8cMOhkX3+x3850PEIiHxQsySYoGAXHrSn5bJdeqzK0er8tJ7OHPecvdlY4wu3z7FIJrUJIVoC6AJghurlxUKIZUKIl9I9hBBCNAawG4Apqu2mAFBmy/dQvyel3Apgvup9W2qWFGFoj1Z46fz+jr8LoB8F8E99Uz0DmeGmqveUe0i9QCwAnLRva/xlSG5IYYrGXSf2zIralgSF1vp9Wr89HO+jHVrp5py5LUN6/X2Caqn3WrkutOvOq26t6qP7bg3w5dWD8LDBCAVlkeo9mtj/zRvXrZ4jaGcOtf4W6cZTG5+XpLmoHZoHt3ZhHE7Dp1cehBfPL4w5kBcP2jNnFFDP1g3x9yOS34NtJqp8ttcejXw7lnr0g5J/PHpaL9X7hSvI3zcxlUQhRCmANwC8IqWcBWAtgP5IDSftC6B++n0AUPrFy1SHKEtvo7yvfk/7vvpzLxFCTBJCTNJ5D/87p6/rdWS0UQAX3T8MD6Yf/O3T44zPO6B99eelH8LtmtZFE9VD/dHTeuPao7I7QY0ewjF4JuWFfDiPb128f+ZvdQZ8u2b9xu4+LnIcV3bywYdP7Z29T4hPXjfrpynGXT8En18VTIh8JUiB2yFb6qAR56vyuqTzu/DftG52oJdurRoYBmQ6rX9bLLp/GBrFODhMmPeOZw6SmsS5qHu3aYhDuxXGHMibh+2VCdhBwfru2kPw5kX7Zf7d0aKxpXpOs9H8+9xth+1tshRD8m5FU+qoskkQaiVRCFEE4DUAOwFcCQBSyi1SyklSygop5ar060cKIeoD2JLeVV26bQBgc/rvLZr3tO9nSCmflVL2k1IG0tR2+SEd8YbqRlI0rlsDi+4fhpP7tNHdz8tDNkGP54KmzSz1llLxYmBHVRAj1UdpC5/vX2Zv/iwZ81omPrW/855PRZvGdQznZTpRotPDVOUxIM+ezaoLDt13y50HmaS6hNrhPgceefVCfwsIrnrBLX5js/fvO3lvy3ncQDwrWXeekBvm34zRqb3x6G544szUItWV6R+gEObDJUFB/go+fGmzcmi7pnWzlj76+MqDDLd1mh692ybnXkros8NIP5NorWZftVk9b+VGt6cxtEqiSHWJvQCgJYBTpJS7DDZVvkuRlHIDgBUA1ONxeqF6mOoM9XtCiLoAOiJ7GGsorh/azVVPZJRhhim4YUIjrzGOKnmtz0FB7HK7xl2+0f7kdm7Bz/56ED658sDqYyS4NDL6n4fgNU1lRRnR0EozZ9Vug8a+bRujWzoCdFBzZMJWJGA55zyJslryHV7HZwxom9genIM6+xMU6tKDO+LYfVI9H41ql2Lfto3w6Gm9fTk2eVOIxamz9gv3ftSbR6imNBAZ1TvVLysj5azWOi4UetFeAeCl8/vj078eqPueF3Y6qcLsSXwaQHcAx0kptysvCiH2E0J0FUIUCSGaAngMwBgppTKM9FUAtwghGqcD0lwM4OX0ex8C6CmEOEUIUQvAvwBMTQ9jTYTO6UhTI/6m3zpjGDIf2YVd7dBCCo76JzGKeNqkrr+9hXZlZ8CRJCFSblr07fTG9GzdEPu0aRSbBYa92KNJHQzq3DzrtZP2bY3/nt47Zzjso5qhuWY+vOJAfPbXg3QfdIV4LcaR3WWfgvisuOlr0qIvBHBgJ+tlpkqKi/DhFQfi4C7NLbel4BUJoG6NYtx1gqOwFIl2QEdnjR9un2ATbjoM319rHY1Uue/dfk7OKISY5yNOmeWLRqMdhnRrgd0aeotH4HbUYljrJLYDcCmA3gBWqtZDPAtABwBfIjVEdDqAHQDOUO1+G1LBaBYD+A7Ag1LKLwFASrkGwCkA7gGwAcB+AE4P4zt5orpInj+vH16/cD/02F1/PZjcrndleAtQW7XejR8LvRcir8OiDunqvnAQRCGqqsC7ps2Gchhx8jsc3yvVg2BnvaokEULghN6tUVLs/pFQu0YxerZuaBjJOVHz1xBMUJbK9P1ZUuzPsYM4o6cYTI3QU7dGfo5O6NS8HnZrWDvTiEvJIITAjDuH4pyB7Q23MRvlE3du42aoKVMLnK773KJBLc/Rt4dfcYBuo6w6JTlF2WQ9NiyZlTn9mE5ixO0ItlByeCnlYpi3B7xlsu8OABek/9N7fyQAW0texFGjOjVMh8Fo72OlDiAgslovE1b+yntRVdnV0Q3jOC8oaEVFAod0bY4xs9cYbuOl7H/D0d3x18M6Ww65KWRVVfqvVyasAUOp1PrZe6wM51UaG+JoaM9WOa/pRfAGgMNCXtcrLIeng9El64oltc/+ehCOfXxc1msjrxmMTi3srR0bR3vt3gCtG9XG8o3brTc2oOTPes/BejVLMP2Oo1wfG1AFrjG4eU7vvwdGzlxluH++d3g4Kn/4eCoOczm/PpIlMAqVcnG0d9Aak1tJrO5JFEKwpdMjNxWGRh6Xxdg9PWygY3Nvv13/9o0x/qbDsl67ZHAHT8eMKyeFNacNJk62Ly4SaJBnvYh+KzZ4yHsJ2LR7w/xY37NFg1r4/c6jcPEgf+7TP/VtgxY+B8LSM7iLfkOmECIzFzVf1GcDUF7o2Tp3dFYSKoin9tPvyf/Xsf5MKVIed+qyj1JxdFu2ee+ygTlLuhk9tQ/fy7yykvP0yO86o7mAW6nsHJ6VxBDVLCnG8+f2wxsX7W+9cZq2N6h/euFlbauAm8rOuQPbOd+JsoZjGZ12s9/joM7N8M4l++NSjxW6ejVL0FITaKRUPVywkDNXB9o24QL2RipdDFE4uEtz/PPI3PXKhBC4yMMSIGHza7jp13/PHt5Wp0aJb8feo0kdTLj5cF+OVYieT/eQZjXcqn4a9RDpmiUsLlHwtM90hdFSOU7t0TjVSK1u7FQa8P55pL0hiY+e1gsn92md+Xf/9k2wV3qJLSVrO6pH7ogE4/KS0P0bQKK78/U6hJIWCZlNZiGzakXRUs87BFKtYwvuPcaXLnn2QrpTVCTQuE4pNmwzCtBrbb8O1kERrKgzU6/pKSTah1DHFvXQoVldLFi7FX8+sD1O7N3aYM/Cc2DHpjhvYDv8ZUgn2z2BRUUCVx7aGQ99PSfg1CWDUc+qn64f2g1bd1RYbicgsobP2i1/5evQ9T3Ta75lFVINth39z0OCTxCRAbO6xah/HIzDHv4OgM6cPo2HTu2F8QvWYw9V42jtGsVYdP8w22k5ad82OGnf7B5PbXviHcf3wBvjl2S9Zqdx7NBu+TOEvYZOw1LC6oisJMZRn7aN0LddY+zeqDaO0BlHnO9jtsmem4d1z/z95dWDsXT9tuwNEtwC54Wbr92iQU0sWLsVR3RviV57NPI7SYlVUlyEOxyuL2fmgE5N8fy4hb4dj1IuP6Sjre3q1CjOKszlWwAmJ4TB32rqvGT3Rt6iC1J8Jb2RtWPzeph6+5F49Js5OHFf80bOBrVKcYTDzgonlAYlJ0HQ1PffgD2bGL+ZEOcObIdXf1qs22uYtK/D8RMxNPyKA3HzsL3w5wP3ZIUwYG5bdarH9esfIIxAQuo5jS0b1EK/9k1MtiYjwvAf5LdDu7XEftpCgA1BRBq1q4aHiK9AvC4pbeHwZJMCpZf1FLX7x1UmjVnrtMXpF6MwXHlo56iT4FmDWqW47bgevg1LdcrO7e7qztIc+MyQ14V06oFT9sHp/Y3T6Ch/CTgrspNHs5JI5EK7pqlhSkah7KtiUELKhzX9FEG3lcTg58o7XVpWN2KoT+8rFwzI2daqIhZlud2qZd5KXOagdGpRD0KIzDy7Kw7piKIigZYNrIcRx+Mb+E85F+rv9w/1fFrmCwUhyuV56tawV6lTrtGYZCc5TunbBrs1rIXT+u9huE1c0+6nU/vvkVX2Gn7FAfjf2X0y/05avw8riVTQ3M61een8/nju3H6GkS5ZtvCX0zWdnKruUEhYDh5jH/3lQN3X9Vq67zt5b9NjNa0XfARPI6XFRdijifuhhnEtGCnpOmd/6wBm+d67pv5+56rW2Lvq8OT3MFG8/XzTYXjyzD7WG6bFtUGzdaPa+OnGw7LmOtqVb9mL8hsJIdCnbWMM7blb5r2k5aWsJCacl/wiYcuWxUqTujVMx/XHYVH7uD5M3FAePEbrtak5bRUuLSnClUM6AUAmQht5V8fBQutWz83nzunrMTXO+fUoj7LhQT2012j9sisP7aw7hEs9GsLNN4iyd8YundGmWU5gEKu85KRSFrT6tUrR2OOyWklhNapCL4Kwen3dL68e5HuaghT/6qB1Hs1KYsLdMqw7Wjao6ar1Jt/Wt3JDybP2bFY36/X/nt7b03Eb1alhvVHA4l9Es2f3hrUy17ffE+4fOGUftG5UG4O7NMei+4ehYYE8rOPGqj7RwiAsfBLUqhHdY/a1C/fDhJsPQ8Papbjh6G4A9HvN7z0ptydXvTRMwhq/M1pZXDdKRTip34/c6dk6Xo2B+fKsNnNI1+bosXvqvH9w+QG44/gemfeEELh+aDd8cuVBOfvtld7nrP3aolurBq4rXrcM646R1wy23tCl64Z2xTuX2F/ezsjTZ/XBn/rqr5UZBVYSE+6Qri0w/qbDUVMzp6dj87oGe1TbrWFtLLp/WM6C7IXoq6sHY9ZdQ3HGgFSLeo/dcxfidaJGSRGuH9rNj6Tl+OyvB+GnGw91vf9/TuvtX2JC4LTCfc+J5kMXFbVLi3GqyfyJoOzTJnVt2RnmR9FRVxzcdoo1rlOKFvWjq+DWKClCi/q1MOW2IzNr61YPhTLf9+9HVM/NczNEKkkFXw4zLyyVmpE+UXd66/Xad9eManHTkNG3XWMPqfJuSNfmmb9f/vOATD7St11jnHdA+6xtLz+kI7rqdFzs3ihVTr0n3ZDl9qe6aFAH1K2pP7pljIPlbYbqrP944UF74opDOmWWNtPLY/WWw9Bz9N674Y4Telhv6AM78+VZScwT2oL0gZ2a2d7XaPHWQqDcIjVKilCrtBi3HbcX3r10IDr5sIak0hLfvql1hd2Jnq0bYreGxnOkzkoPHTN68LWwEagiydrqLGCrddeJPfHpX3NbLcMw/PIDMOfuo3HXif4tLZFv3vahRTYO4jhcUQmqYFU8KPUY1TXqgrcVIeKfRgqGWYH9FtXSUmHRuw4Nl2VxcNG+d+lAdwnyyUt/zg1SFqXdGtZGqSbY4LC9d0P7ZvbLaPu2bZT175l3DsWtx+6V9Vq7ZqkyyKUHVy9N9PnfDordM79hbeuRU6wk5om9dm+AeqpWknoGLSZkrlZpce46PS4ds3crvHvpQJwecm/V3Sf2xLx7jg71M5PmnP3b+dIQ4EZJcZHtVsWke/yMfV3tt3+6RRaIblh83vcuBTnGUsQruvL9BoGRlFNQWpLnvzVladO4Dv53dt9MhSHqa1Xdk9gw3eBvtF6vm5R2sDGyrFBccNCeWf9+1GBk1XfXHqL7uvb819aJTtugVikW3T8Mx/faPfNapxb1bY8eCuPZ89gZ+2Z6Ps2wJpFH9m3bCGPnrgUA/O2wznhqzPyIUxQfJ+3bGh/+tjzn9SAjTQkhfKtwOv3ckmKR9eA7yWMYfyI3tHN9rTSsXYqH/tQr67Uvrw5uHompPK03mHVEnNzHp3wiPvVDAMDgLqlhb69dOADnvDAh83rXlvVx6eAOOHv/dhDC+5qYFC992zXGL4s36L43tGcrjLv+UCxcuxVTl20MN2Ea6tuldaPa+OyvB6FLy/p4a8KSzOtKxcFJ73dRkcCrFwzIzOuLygEdrSsjYdlNM3LOqMG2nWYE2PArDsCkRevzJuCjugJrhjlinvK6oOqlB3fwKSXB+vvhXaw3Ilw3tGvUSXCNQSWSS2khtyp7K7/xPm0a+h6cKEqNYhgIySii56L7h+GRU3s7P55BoSmOQzkHdW6e9W8hBG48pjv2aFIHbRrXSXSAJMp18SDzckzLBrWwf4emWdeqMk/rSE0+dGeQ88Q090rP1g0NKy9O12Ae3KU5mkW4hNC024/Eyz4OO/VaHFAvcaM2/IoDTONz9GnbGJcM7hjLfC1IrCRSjssP6YhaJd4qmXFzyWD9h0U+1z8KITMzqkAWJ23F2jxVP72OaI/dsgNB9dHM64jjtWq0BqoTVxzSyYeU+CykiJ5R/6R+Be14/cL9YrVkAvlvSLcWmb+VR0dNTUO7NtiNn2xV/NLpivq+cqp+rdJYTa8oKhK6C9r3advYVnwO9TIduzcMplEpTg3j8fnlKFJ7t04V4jq3qIfrh3ZLXEZkRRsprBDE7Tfs1cZbxFgnfrrBffRX8s+ezerivcsG5kRrG37FgXjzov0cHevvh3fBX4Z0tFzWwA+n9dsD719WHfThvpP3dpWHxKlwpFDKul4D01iJsuJ/3dCu+ODyA3w51kGdm2HYPrtZb0ix1tlkDnqXlvXx4vn9sE+bhpnAZ600Ad6cBDdxyuheeeWC6h64gZrImUBuY1uhUpctTlZNrRnStTk6taiXs6SEcgof+L99HH/W2ap5hR/95UDH+ydN/J5gFAnlZklaD4yTCeeP6QTRiFOLTb5r61OUVztrEXHYWHz0b99Ed/j7AaoIzCXF1jfiVYd3xrVHuVtWpqRI4A0HldJ//98+WYXCQZ2b44urkrWQs5FLDu6AMwa0xZ8PbB/ch4jgWtnt4NxCUjtir5b45pqDTbc5tFtLfHLlQRjStQX+e3pv/POo7Ckafdo2zkQO95u6FKMugim94TVKilRrYVdv/ebF+REF2it1T7DafSfvg5HXHIwHNfPclYq2m1gNNUqKAh++q6QvqOL4Ww6uG+akBKB6KEXSKolO2J2omy+chMoOwlNnWQ/ROrx7S/z1UGdD8rpHPAmf/PPoab3QqE5pJhpzUIGkhHC2LJBddWoUY6RF4TNuGtQqxX0n7406NYKNW3f5IR2tNwqY2eVkZ40wSraKqioAzhoNhBA4oXdr1FRNuenVpqGt5QLcUvcINqtfXQFRrlB1saxLy+poz15jTySRXqnGaHRJK4uGKr0coEGt6nwxqoA7lemyW1B51EAH34uVRAIAdG1VH0f3bIWHT021uNSM4TApv117VNdAo5tGzWlkST+df0D7rDldtx67Fy4etGfOdoM6N0OL+s5a5epzeZe8cdK+bTD5X0dmHoZB3Y1BhRT/8YZDc5ZS+eDyaNcmi4uSAHrz2ttYAxWoHubbMz2NorZOYZqVxPynVOzUFSsnBmqWCPDa7HpUD/2gXE3r1cTsu4fipfP7o0/b3Lm06vzr6bP7ekxFsmnbvls1qIXTdJYZa26jXKGXB4y97lD8kJ6u4mfAHSeK0+lSpoFFKf9rAjr8CEiQb0qLi/D02X3RrVWql+bCg3IL9FGK49yeuNNG8jOinRumXWzWjd6aNZ4uPGhP7NOmke62VrT5uBACNxzdLfM3JZ8ybDywgQwmx92/g/1laq7VDEFrlF7TTK1vu/CXvUmq58/thwkmEQW1zjGITKh1ev/UsMBHTu2F9y4biMZ1c3+nIj5S8t6gzs3x6gUDcKXD0SqK64/OHt7udXBOh+bZDUrqXquaJcU5wyarZG6+GGSPZjJk/wg/3HAohBB4WDWk9JMrD7Q1PUCv+NCwTilaN6oNwKzcmU5DQM+r2jWK8f5lA/Hcef18Pa7TBnmgQCuJ7ZrWwZy782+x8RN6OxtfbTafr1ZpMerqLBIalYPSQ8Ue1owtP7onAwqYUYZhmD3cDtAMw/NjPs+JqrH+lkM2LCp6eb+oOaF5vdR1ql7Py8/8x68rSJ2+OK39FRS3EUL72dxvr90b5Mwf1vbMKt68eD/8+YD2lsds3ah2pnBXv1Yp+rfXr7SzJ7EwDO7S3LdpNEfspT/3za2PrzzI9H1lOOnNw/by9XOTTFuW0ftt92nTyHTeoLI0kdtGZmUNRb0RCn7p176J7x1a3/7zEEy65XBH+xRkJRHIz56p/+vbBtPvOAq/3XpE1Enx3X0n743zBrbDoC7ZFZqureqjfi3z4YePnFpdsSyEYbReHbuPs7mbn/3V/EGn9o8jste1FAKGNdibj+nuKB2UXHu3aYjhVxyQte7pN9ccjDcvdhYBVXGQpuFDKQv08DifdZDquBfpDJ9Wq5cHw6LfuGg//OrweXJQp2aZpU/cMGqkOqBjMxTpFAjd5hMchUBOHdrN3zVcraaElBYXYdH9w3BmQAFzkshquRA7nb0f/+VAPHCK88imiufO7YeXzu/vKZ+LQr2aJY6D7rDEnGfq1SzRHVqjx8mckTaNa7tNki9aNqiFO07oiRIbY4Q+ufLArNZodYvxb//Kvwq03+45qaejhoaeDsbN//Wwzln/FkIYZurKkgNmZTkW8/JHn7aNs/Kk3RvVxgEd3QWb6dA8u/Cl9EZfdrC3YColxUU4pGvuMO6R1wzO+vd/T++NEX+z33gSV7VKi9HE4nly9N6tbB/PbpCq/57eGz1bW1foG9QqwcUGa+BayeMYbUR5y6gR20mwl3ZN6+JUnXmMdjWpW8Mwomq+YSUxj1mNyW7uoEXh1QsG5MzHiQ1NLWOfNo1w94k9LXezOyQq31hFRCspLrLd0KBHKUQrw5nN8uxiIXQ7Ev/Utw3qmfQQx3HxdYov5Rr047LRu5x3b5TdiHZC79aZIUn57m+HdrbeyKETerfGoV2tC2Fe1kK84/ge1hsR2XDvSXtHnYSCMbiLfqyFqkyE/jBTk/94OvOYdvHnq1S9OEf3bOVoyG2H5vXwlyHuJn8rtAuamnlcZ01DILuAdmN6UrlVwU9dSVHPb9uvQ/7PKaoOCFL9vXu7DCCj5/lzcydW/y8dfU0Zr9+mkXFEwgM6NtVdquPaodUNEqbtguwNIB3aS0pkXmfrgt+KigSuPaqr71GHq2z8VEbzF+0olEo8Bc9oGssNmsA3dqPzknOH79USuzWshYsHuRtZYOTdSwfi87/lxxq5brCSWEDCmIJx23F74VODydjaBU2NXDmkE0ptNAcpPWLqgl/bJsyE1ZSClnpoVVGRwK3HOp8IP0RnmN2h6SEX6uHIyu/St11j/Oe03rjdoMW+daPaaN+sru7coBb1a5kW6JWIlAcbtCpS4WpUp9RyfSzy11+GdMKTFuuitmxQE5cM7oCvrh5sOje8ab3UKAazwGpAqkdBL++oWWr+7GjftA7OHdjOdBsiQDX/zaLwNGwf/QB6dTUNJ6f22wNvX2J/IXOyr1m9mvjpxsPQ2eVyJ0YG7NkkK2BZoWElsYA0chk6+dlz7K/L8+cD98TebarnqC26fxgePa1XzpwdM5cd0hFG/YNZvYI6Q8jeT69RZrSMQ6HFKlCGYGgLUxcc2N7Rcb75+2C8eH7/rNf2aFI7E0hiuM6wLyEETty3NWobRKlUkqS3xhFQ3fup1+O9b9vGWHDvMa7nrFFyWQUueOz0fXGpZp6acv3r7ao0SHnJGxiB1/r8jb/pcNSvVYqureqjQfpZpBeZ8L+np0aRFKsO2LpR7px4ozmFL5zXX/+NtDHXDsGdJ1hPRyDKDGG0uLaLiwR6aZZ9ApCT4QghsL8PI5jG33QYxl43xPNxkur241KN3COvOTjilOQ/VhILxC3DuuPs/Z21niq9UAd1dlcQP65XaoLxSfu2QacW9lp3SosF6tUsycpbXzpf/6FfPYSs+rUW9VM9CHoL0hai24/vgSZ1a2RCPiuEEHjyzD44y2bUNCFS+3x1dXVlX10w1oaxd6JWabFuIXDv1g1x+SEdM4VGLb1Ih2ov/7k/PrnyQNfponjSDkM8vHtuxEFtUC6jK+XSwR3w0J964YcbDsWkm52FBqdsTkby3nbcXmhat0YmKM47qt4V5bVLVUGG9AqD6iH06nlKVhEjiexqn76WrMpORiOf1K/bfdba0bJBLexRwKOmzj9wTyy6f5in4eZkT/JjdJMtF7kYp6202LtpJZ9+x1Go5WG5CXV5wyyASWrb3NKJEALH9dodn075w3Ua8sFxvXbPVNa1hu2zm+EwGSNdW/k3lMNqiYCiIoHrh3Yz3cbMITYCX1DytG5UC2u37Mj8u2ndGqhfswSbd1QY75QZdZCdV9zo0zIrhTZCwakLD8peLuTYfXbPilKoNz+8bs0S1Cgpws6Kqqzze+ngDnjm+wU4qkd148AL5/VD55u/8D/hVNCa1auJRfcPM93mSpNYDW2b1MEhXZtjzOw1jhvpieKAPYlkSClOuSkA1atZ4miJDYVSITVqlc7qRUgnrD0DEPjmUFVY5w4WLfJeC8YvqHqIrYYQEile0IwsOKx7C4z6p/mwo4dtzoe+ZHAH1DUYHq1Q8iAOMc1mlh/cMsy/NU9vPKY7fr/zKJzWv7pnxs4cdqIgGE2nULz85wH4/c6jsgIJPnJqL9x/MiOiUvwxZy1Qdgr4FxyYav0N8gGsjcBq1OKvqFuzWLspXr/I3YLblOuF86qjlV5zZBeTLd178fx+ePuS/bOGmNpZ24gIQM5iwEf2aIUW9Wthvz2bZL0+/IoDsrYBgGP2Nu85v+mY7phx51DTbZQGDfVw51qlxbjqsM749h+FO0dGeU5oh7YD7heulwZrn9WpwUFQFI3rhmYvBabtJVdrnQ7opr1eT+7TBqcP8G/4KVFQWEkkQzcc3Q0L7ztGN7gAkBpm8fFfvM35+uKqQVnrFerNM1SrWVKMM9KZq1Ju0BYaFXq9UyXp73K8wRDMQmdcmMt9XfvKjzccip9uPNTyMw7t1jJn8v4rFwzAX4Z4W+icCpuSTykVCr15yTVLirF364Y5rztRmQlmkX0H/P2ILujQvHDnyOy3ZxPcfEx33OtjD4mylq/RM4gobFccUj28tKRIVK87rClv9GnbiMusUOKxkkimzFqAD+veQj+il4lDdJZReOWCAarPS/2/+eBDe0MTa6RbttWLx5cUF2HR/cPwmME6jIWqY3Orh1nuOb9JM59r90a1sVvD3AA0dnRqUQ/XHuV+/iHRnSf0xOHdW6Bfe/OgVUrj0WHd3M1ZzVQSWXHJIoTAxYM7oEEtd1G09bx72UD857TePNeUOC09BHMjiguO2ShQUU0Bu+6obhgze03Wa+q1hJR5Pt1NAqRIm3OC/nXsXtitYS3d6IeU7b3LDsCidVuzXquoNL9IlCF8RHHQqUU9PG+x/AFQPafw70e4G069355NMH7heuzGtRgD16ZxHbRpXLhRHCm5jtiL5Q5KPvYk5rmz92+rO4zP7RQwo+Uo7LJaIFlJV+eW9dHDYAHTiwZ1QJvGtXFkD/NMuHHdGrhuaDe2QtvQpG6NnOF5Q3uyEkj5x2iem11XHd4F3117SCY8PhEVpscNRiTNvHMoTu7TJuTUEPmPPYl57u4T9eeHuA0koLewuRNWPZhPntUn87d6mKhapxb1MO767LlvU28/ErLKU9JIo1ZpMTo2r4v5a7Zab0wUgZzAVxoHd2mek2cpeVCRy6ysuEhwrlEAztyvrWVEZTN/PrC94fx0oiAcrQqEpRRtPvrLgZYRT4mSgpXEAhVVNEmrSuIQ1dp2ytwfO2n1cx4MVevUoh7mr9mK2owmSDH0zqX7m76vnu+sqPLYk0j2PXduP3w8ebmtbe89yVvAm9uO6+FpfyIv+rRtjKnLytC0bo2ok0LkGw43LVAn92nt27GchH2vWZq65Pq0bWS5SG1FVaprsLSYhbmoPHxqb7x6wYCs5SoAoFYpsw6KnpvGIWURd/Y6Be+IvVriiTP7WG9IlHA3D+uOr64ejD2acA4t5Q92DxSY58/th84t6/k6XMpJ2PcuLevjoT/1whE2gskM7NAU05dvQov6DBARlXo1SzC4S3ZE2gk3HYaaJRxOQ8n010M74cJBe6JeTT7+iMgfpcVF6GoScI8oifiULDCH+xhxq62qxWzfto0ya1pZ+b++9iZ0Xz+0G84d2B6tGEUwVlowtDdF7L+n90b5rkpX+xYVCVYQiYiILPBJSa4M2LMJmqoqhR9ecaDvn1FSXMShG0SU44Te/g2XJyIiolycWESulHBZCSIiIipAnJdPhYA9ieSKVZRSIiIionwz886hrteaJkoSVhLJEa9rjBk5e/+2KGauS0RERDHGdRCpULCSSI4EtcbY3Sd6WyOLiIiIiIj8wUHV5IhSSRTs9SMiIiIiykusJJIj3Vo1AACc2s/eMhZERERERJQsHG5KjrRqWAuL7h8WdTKIiIiIiCgg7EkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIsoIpZIohKgphHhBCLFYCLFZCDFZCHG06v3DhBCzhBDbhBCjhRDtNPu+KITYJIRYKYS4RnNsw32JiIiIiIjImbB6EksALAVwMICGAG4B8K4Qor0QohmA4QBuBdAEwCQA76j2vR1AZwDtAAwBcJ0QYigA2NiXiIiIiIiIHAgluqmUcitSlT3FZ0KIhQD6AmgKYIaU8j0AEELcDmCtEKKblHIWgPMAnC+l3ABggxDiOQDnA/gSwMkW+xIREREREZEDkcxJFEK0BNAFwAwAPQBMUd5LVyjnA+ghhGgMYDf1++m/e6T/NtxX5zMvEUJMEkJMWrNmjb9fiIiIiIiIKE+EXkkUQpQCeAPAK+nevnoAyjSblQGon34PmveV92CxbxYp5bNSyn5Syn7Nmzf39iWIiIiIiIjyVKiVRCFEEYDXAOwEcGX65S0AGmg2bQBgc/o9aN5X3rPal4iIiIiIiBwKrZIohBAAXgDQEsApUspd6bdmAOil2q4ugI5IzTXcAGCF+v303zOs9g3oaxBRgC4d3AEvnd8/6mQQERERFbQwexKfBtAdwHFSyu2q1z8E0FMIcYoQohaAfwGYqgo88yqAW4QQjYUQ3QBcDOBlm/sSUYLceEx3DOnWIupkEBERERW0sNZJbAfgUgC9AawUQmxJ/3eWlHINgFMA3ANgA4D9AJyu2v02pILRLAbwHYAHpZRfAoCNfYmIiIiIiMgBIaWMOg2h69evn5w0aVLUySAiIiIiIoqEEOIXKWU/vfciWQKDiIiIiIiI4omVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDCGljDoNoRNCbAYwO8CPaAigLEHHDeP4PHb+HZ/H1tcMwNoAjx9E+pN6HSY13UEfO+jjJ/XYQR8/yXlLEu/RpB476OMz7eEfO+jjB3nsrlLK+rrvSCkL7j8AkwI+/rNJOm4Yx+ex8+/4PLbh8ROXvyT1Okxqupl2nheXxw8sb0niPZrUYzPt+XfsJKfdLF/hcNNgfJqw44ZxfB47/47PY0cjiPQn9TpMarqDPnbQx0/qsYM+fpLzliTeo0k9dtDHZ9rDP3bQx48kbynU4aaTpJT9ok4HEeUf5i9EFATmLUTkN7N8pVB7Ep+NOgFElLeYvxBREJi3EJHfDPOVguxJJHJLCPEygGVSyluiTgsR5Q/mLUQUBOYt5Fah9iQSZRFCjBFCXBR1OogovzBvIaIgMG+hoLGSSERERERERBl5WUlk6wq5JYQ4XwgxTvOaFEJ0iipNFC/MX8gN5i1khXkLucG8hYKSl5VEIiIiIiIicievK4lCiMZCiM+EEGuEEBvSf7dRvT9GCHGXEOIHIcRmIcTXQohmUaaZiJKB+QsRBYF5CxHFQV5XEpH6fi8BaAegLYDtAJ7QbHMmgD8DaAGgBoB/hplAIkos5i9EFATmLUQUuZKoExAkKeU6AB8o/xZC3ANgtGazl6SUc9Lvvwvg+PBSSDG0FUAd5R9CiFYRpoVijPkLOcS8hWxh3kIOMW+hQOR1T6IQoo4Q4hkhxGIhxCYA3wNoJIQoVm22UvX3NgD1Qk0kxc0UAD2EEL2FELUA3B5xeiimmL+QQ8xbyBbmLeQQ8xYKRF5XEgH8A0BXAPtJKRsAGJx+XUSXJIoxmW6ZvRPASABzAYwz34UKGPMXsot5CznBvIXsYt5Cgcnr4aYA6iM1ln+jEKIJgNsiTg/FVwMA6wBASnkPgHtU772u/CGlPD/cZFGMMX8hO5i3kFPMW8gO5i0UqHzuSZQA/gOgNoC1AH4G8GWUCaJ4EkL0ANAdwG9Rp4USg/kLWWLeQi4wbyFLzFsoDEJKGXUafCeE+BXAnVLKj6JOC8WbEOLfAM4G8G8p5WNRp4fij/kL2cG8hZxi3kJ2MG+hsORdJTHdujIJQDcp5eKo00NE+YP5CxEFgXkLEcVNXg03TbeufA3gemayROQn5i9EFATmLUQUR3nXk0hERERERETu5VVPIhEREREREXnDSiIRERERERFlJLqSKISoKYR4QQixWAixWQgxWQhxtOr9w4QQs4QQ24QQo4UQ7VTvnSqE+DH93hjNcbsIIT4WQqwRQqwXQnwlhOga4lcjoogFmL80E0L8IIRYJ4TYKIT4SQhxYIhfjYgiElS+ovmMc4UQUghxUcBfh4jyWKIriQBKACwFcDCAhgBuAfCuEKK9EKIZgOEAbgXQBKmoYe+o9l2P1FpE9+sctxGATwB0BdASwAQAHwfyDYgoroLKX7YAuABAcwCNAfwbwKdCiJJgvgYRxUhQ+QoAQAjRGMBNAGYEkXgiKhx5F7hGCDEVwB0AmgI4X0p5QPr1ukgtTLuvlHKWavuLAJwtpTzE5JhNAKwD0ExKuS7A5BNRjPmdvwghigAMQ6pRqqWUcnWw34CI4sbPfEUI8T8AUwGcCuB1KeXzwX8DIspHSe9JzCKEaAmgC1ItaD0ATFHek1JuBTA//bpTgwGsZAWRqHD5nb+kC4blSFUQn2cFkajw+JmvCCEGAOgH4H/+p5SICk3eDG8SQpQCeAPAK1LKWUKIegDWaDYrA1Df4XHbAHgSwDW+JJSIEieI/EVKuY8QohaAkwDU8C2xRJQIfuYrQohiAE8BuFJKWSWE8D29RFRY8qKSmB6y9RqAnQCuTL+8BUADzaYNAGx2cNzmSC1w+5SU8i0fkkpECRNU/gIAUspyAG8JIWYKISZLKadY7kREiRdAvnIFgKlSyp99SyQRFbTEDzcVqeayF5AKMHOKlHJX+q0ZAHqptqsLoCNsTuZOT/7+GsAnUsp7fE00ESVCUPmLjlIAHTwklYgSIqB85TAAJwkhVgohVgI4AMDDQognfE08ERWMxFcSATwNoDuA46SU21WvfwigpxDilPSQrn8h1co2C0gNzUi/XgKgSAhRKz30A0KIBgC+AvCDlPKGML8MEcVKEPnL/kKIg4QQNYQQtYUQ1yNVWBwf5hcjosj4nq8AOD99zN7p/yYhFQzn5uC/DhHlo0RXEtPrB12KVIa4UgixJf3fWVLKNQBOAXAPgA0A9gNwumr3cwBsRyqzHpT++7n0eycB6A/gz6pjbhFCtA3jexFR9ALMX2oiNc95HYDlAI4BMExK+UfgX4qIIhVUviKl3CilXKn8h9Qw1k1SyrKQvhoR5Zm8WwKDiIiIiIiI3Et0TyIRERERERH5i5VEIiIiIiIiymAlkYiIiIiIiDJYSSQiIiIiIqIMVhKJiIiIiIgog5VEIiIiIiIiymAlkYiICIAQom16zbriqNNCREQUJVYSiYioYAkhFgkhDgcAKeUSKWU9KWVliJ9/iBBiWVifR0REZAcriURERERERJTBSiIRERUkIcRrANoC+DQ9zPQ6IYQUQpSk3x8jhLhbCPFj+v1PhRBNhRBvCCE2CSEmCiHaq47XTQjxjRBivRBithDiVNV7xwghfhdCbBZCLBdC/FMIURfAFwB2Tx9/ixBidyHEACHET0KIjUKIFUKIJ4QQNVTHkkKIK4QQc9PHu0sI0TGdzk1CiHeV7ZWeSiHETUKIteme07NCOsVERJRQrCQSEVFBklKeA2AJgOOklPUAvKuz2ekAzgHQGkBHAD8BeAlAEwAzAdwGAOkK3zcA3gTQIr3fU0KIvdLHeQHApVLK+gB6AvhWSrkVwNEA/kgPc60npfwDQCWAvwNoBmAggMMAXKFJ11EA+gLYH8B1AJ4FcDaAPdLHP0O1bav0sVoDOA/As0KIro5OFhERFRRWEomIiIy9JKWcL6UsQ6rXb76UcqSUsgLAewD2TW93LIBFUsqXpJQVUsrfAHwA4E/p93cB2EsI0UBKuUFK+avRB0opf5FS/pw+ziIAzwA4WLPZA1LKTVLKGQCmA/haSrlAlc59NdvfKqXc8f/t3LFqVGEQhuH3K9QmGsUuiIJg0AsQsRCsLGwsFAtD+qS3EhsbxSuwsFVEbCziBWztDaQSgxA2VUIiWAiOxflz3GK32Syo2feBA2fhMDPtMB9bVQPgE/AQSZImcEmUJGmynZH3H2N+L7T3S8CNFhHdS7IHrNBd8QDuA3eBrSSDJDcnNUyynGQjyTDJPvCc7hI4zVwAu+1qeWgLWJrUX5Ikl0RJ0jyrGdX5Bgyq6uzIs1BV6wBV9bmq7tFFUT/yJ9o6rv8rYBO4UlVngCdAjjDbuRaHPXQR2D5CPUnSMeeSKEmaZzvA5RnU2QCWk6wmOdGe60muJTmZZCXJYlX9BPaBXyP9zydZHKl1un3zPclVYH0G8z1rc9yii8Z+mEFNSdIx5ZIoSZpnL4CnLR76YNoiVXUA3KH7w5ptYAi8BE61T1aBry0+ukYXRaWqNoF3wJcWU10CHgOPgAPgNfB+2rmaIbDb5noLrLW+kiSNlapZJW0kSdK/JMlt4E1VXfjLo0iS/iNeEiVJkiRJPZdESZIkSVLPuKkkSZIkqeclUZIkSZLUc0mUJEmSJPVcEiVJkiRJPZdESZIkSVLPJVGSJEmS1HNJlCRJkiT1fgOD879bTFUuuQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [ + "### ایجاد داده‌های آموزشی و آزمایشی\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7gkyVUmjL+RmVV1bdvpHitpRiOLJCQhCdCHkxAsEny4FQiz2mXNhzD74yfWsAgjFrMLfBghBAtIeCuMkLBCFllkRjNyYzTe9vS073v7+qrKjO+PyBMZmRURGSdv3+rb3fE+Tz/3dt2Kyqw0kXHO+573CCklIiIiIiIiIiIiIiIiIiIAILnQOxARERERERERERERERGxexCDxIiIiIiIiIiIiIiIiAiNGCRGREREREREREREREREaMQgMSIiIiIiIiIiIiIiIkIjBokRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNDILvQOXAhcccUV8vrrr7/QuxEREREREREREREREXFBcMstt5ySUh6y/e2yDBKvv/563HzzzRd6NyIiIiIiIiIiIiIiIi4IhBAPuf4W5aYRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNCIQWJERERERERERERERESExmVZkxgRERERERERERERcXljNBrhyJEj2NzcvNC7sqOYmZnBddddh16vFzwmBokREREREREREREREZcdjhw5gsXFRVx//fUQQlzo3dkRSClx+vRpHDlyBDfccEPwuCg3jYiIiIiIiIiIiIi47LC5uYmDBw9esgEiAAghcPDgQTZbGoPEiIiIiIiIiIiIiIjLEpdygEjo8h1jkBgRERERERERERERETFlLC0t4Td+4zfY4772a78WS0tL53+HDMQgMSIiIiIiIiIiIiIiYspwBYnj8dg77u1vfzv27du3Q3ulEI1rIiIiIiIiIiIiIiIipozXvOY1uO+++/Cc5zwHvV4PMzMz2L9/P+68807cfffd+KZv+iY88sgj2NzcxKtf/Wq86lWvAgBcf/31uPnmm7G6uoqXvexl+NIv/VJ85CMfwbXXXou//du/xezs7Lb3LQaJERERERERERERERGXNX7q72/HHUfPndfP/Lxr9uB/fv0znH//+Z//edx222349Kc/jfe///34uq/7Otx2223ahfT3fu/3cODAAWxsbOAFL3gBXv7yl+PgwYO1z7jnnnvw5je/Gb/927+NV7ziFfjrv/5rvPKVr9z2vscgMSIiIiIiIiIiIiIi4gLjC7/wC2ttKt7whjfgbW97GwDgkUcewT333DMRJN5www14znOeAwB43vOehwcffPC87EsMEiMiIiIiIiIiIiIiLmv4GL9pYX5+Xv/+/ve/H+95z3vw0Y9+FHNzc3jRi15kbWMxGAz072maYmNj47zsSzSuiYiIiIiIiIiIiIiImDIWFxexsrJi/dvy8jL279+Pubk53HnnnfjYxz421X2LTGJERERERERERERERMSUcfDgQXzJl3wJnvnMZ2J2dhZXXnml/ttLX/pS/NZv/Rae/vSn46lPfSq++Iu/eKr7JqSUU93gbsDzn/98efPNN1/o3YiIiIiIiIiIiIiIuED43Oc+h6c//ekXejemAtt3FULcIqV8vu39UW4aERERERERERERERERoRGDxIiIiIiIiIjLFv/pDz6BZ/3kOy/0bkRERETsKkw9SBRCPFkIsSmE+JPy/y8SQhRCiFXj33cZ7z8ghHibEGJNCPGQEOI7G5/3neXra0KIvxFCHJj2d4qIiIiIiIi4OPHeO09gZXN8oXcjIiIiYlfhQjCJ/wfAJxqvHZVSLhj//rDx/iGAKwH8GwC/KYR4BgCUP98I4N+Wf18H8Bs7/QUiIiIiIiIiLi1cjh4NERERES5MNUgUQnw7gCUA7w18/zyAlwN4rZRyVUr5YQB/BxUUAipo/Hsp5QellKsAXgvgXwshFs/7zkdERERERERcstgcFRd6FyIiIiJ2DaYWJAoh9gD4aQD/1fLnw0KI40KIB4QQv1IGhwDwFABjKeXdxns/A4C6XT6j/D8AQEp5HxTr+BTL9l8lhLhZCHHzyZMnz8M3ioiIiIiIiLhUsLQxvNC7EBEREbFrME0m8WcA/K6U8kjj9TsBPAfA1QC+EsDzALyu/NsCgHON9y8DWDT+vuz5u4aU8k1SyudLKZ9/6NChrt8hIiIiIiIi4hLE2bXRhd6FiIiIywxLS0v4jd/oVin3+te/Huvr6+d5jypMJUgUQjwHwFcB+JXm36SUx6SUd0gpCynlAwD+B5TEFABWAexpDNkDYCXw7xERERERERERrYhMYkRExLSxm4PEbMc+uY4XAbgewMNCCEAxgKkQ4vOklF/QeK9EFbzeDSATQjxZSnlP+dqzAdxe/n57+X8AgBDiiQAG5biIiIiIiIiICC8SARQSWF6PTGJERMR08ZrXvAb33XcfnvOc5+Crv/qrcfjwYfzlX/4ltra28M3f/M34qZ/6KaytreEVr3gFjhw5gjzP8drXvhbHjx/H0aNH8eIXvxhXXHEF3ve+9533fZtWkPgmAH9u/P+/QwWN3yeEeDGA+wE8DOA6AD8P4G8BQEq5JoR4K4CfFkL8P1Cy1G8E8H+Vn/OnAD4qhPgyAJ+Eqnl8q5QyMokRERERERERrZjvZ1jZGmNpIwaJERGXNf7pNcCxW8/vZ171LOBlP+/888///M/jtttuw6c//Wm8613vwlve8hbcdNNNkFLiG77hG/DBD34QJ0+exDXXXIN//Md/BAAsLy9j7969eN3rXof3ve99uOKKK87vPpeYitxUSrleykqPSSmPQclEN6WUJwE8F8BHAKyVP28F8P83hn8/gFkAJwC8GcD3SSlvLz/3dgDfCxUsnoCqRfz+aXyniIiIiIiIiIsfWSoAAJuj/ALvSURExOWMd73rXXjXu96F5z73ufiCL/gC3HnnnbjnnnvwrGc9C+9+97vxwz/8w/jQhz6EvXv3TmV/psUk1iCl/Enj99ehMqqxvfcMgG/y/P3PAPzZedy9iIiIiIiIiMsEZRkMhuPYAiMi4rKGh/GbBqSU+JEf+RF8z/d8z8TfPvnJT+Ltb387fvzHfxwveclL8BM/8RM7vj9T7ZMYEREREREREbGbkKgYEVsxSIyIiJgyFhcXsbKiquS+5mu+Br/3e7+H1dVVAMCjjz6KEydO4OjRo5ibm8MrX/lK/NAP/RA++clPTozdCVwQJjEiIiIiIiIiYjegkOpnZBIjIiKmjYMHD+JLvuRL8MxnPhMve9nL8J3f+Z144QtfCABYWFjAn/zJn+Dee+/FD/3QDyFJEvR6Pfzmb/4mAOBVr3oVXvrSl+Kaa665qI1rIiIiIiIiIiJ2HUa5Cg6HeQwSIyIipo8/+7N61dyrX/3q2v9vvPFGfM3XfM3EuB/4gR/AD/zAD+zYfkW5aURERERERMRlCx0kRiYxIiIiQiMGiRERERERERGXLca50pvGmsSIiIiICjFIjIiIiIiIiLgsIaXEuCxKjExiRERERIUYJEZERERERERclhiVLCIAbI1jn8SIiMsRUsr2N13k6PIdY5AYERERERERcVliZJjVRCYxIuLyw8zMDE6fPn1JB4pSSpw+fRozMzOscdHdNCIiIiIiIuKyxNhgEqO7aUTE5YfrrrsOR44cwcmTJy/0rvCweQ4YrQGLVwe9fWZmBtdddx1rEzFIjIiIiIiIiLgsMSoikxgRcTmj1+vhhhtuuNC7wcdP7lU//+cSIMSObCLKTSMiIiIiIiIuS0S5aURExEWNrZUd++gYJEZERERERERclohy04iIiIsaazsnk41BYkRERERERMRliWFkEiMiIi5GzOxTP9dP79gmYpAYERERERERcVmCmMQsEdiKQWJERMTFgtl96ufaqR3bRAwSIyIiIiIiIi5LUE3iXD+NTGJERMTFg9n96ud6DBIjIiIiIiIiIs4rKEhcGGSRSYyIiLh4QEFiZBIjIiIiIiIiIs4vxoWSm84NMgzHOWvs0aUNrG2Nd2K3IiIiIvxI++rnaGPHNhGDxIiIiIiIiIjLElSTONdP2e6m/9fP/zO+47c/thO7FREREeFHUSa1xps7tokYJEZERERERERcliikChJnsm41iZ89sny+dykiIiKiHZKCxK0d20QMEiMiIiIiIiIuS+Sl3HTQS1BIoChky4j6uIiIiIgLgqKUukcmMSIiIiIiIiLi/CIvmcRBlgIARkUYmxidUCMiIi4oaK6KTGJERERERERExPlFYTCJQFWj2IbNEc/kJiIiIsKGzVGOt9xyBFIy1QlTYBKzHfvkiIiIiIiIiIhdDC03zZhBItMJNSIiIsKG33j/fXjDe+/BXD/F1z7r6vCBsSYxIiIiIiIiImJnUHSUm26Notw0IiJi+9gqVQkPnFrjDYw1iRERERERERE2vOO2Yzi7NrzQu3FRg7peRCYxIiLiQuCKhQEA4NQqkxEsOjKJSw8D62eC3hqDxIiIiIiIiIsM5zZH+N4/uQX//vdvutC7clFDG9eUNYmjwF6Jm5FJjIiIOA/YN9cDAJxaZSb8uvZJfP2zgNd/ftBbY5AYERERERFxkYEYr1sfjX36tgNtXFPKTceBrS22onFNRETEecSpFSYjSDWJeQc1yXAl6G0xSIyIiIiIiLjIMC4Zr9iur8IoL3D38bDFD2HSuCaQSYwtMCIiIs4DqC6aLzeNNYkRERERERERDQwDg5nLCa979934V7/yQZYBRDNIHMUWGBEREVMETeUb3Dmla00iAzFIjIiIiIiIuMgQarByOeGOo+cAAA+cWg0eQzWJMz2Smwa6m0YmMSIi4jyA5qCcKwvpWpPIQAwSIyIiIiIiLjKEBjOXEw7M9wEAZ9ZGwWMikxgREXEhQXXRofXQGrFPYkREREREREQTw3G1oGBnoC9R7J9TQeLSeriRg+6TSExioIzXNK4p4vGPiIjoCJq/+UxirEmMiIiIiIiIaMBkErdizz4AwP7SSv4Mo3fkhHFN4ELNbIER60MjIiK6otiu3DQfAjukLIlBYkRERERExEUGs5/fVuzZBwDolYHeWQaTSAszqkkM7ZNoBubx+EdERHRFZyZRGsnBPFByygwmY5AYERERERFxkcGsnYtMlgItsjhMopab6hYYYQu14TgyuREREdsHGdew68wLY94JlZwW4fXaQAwSIyIiIiIiLjqYjNcwOm0CqGoDNxnMHh3GSm4aNtaUpXK2FxEREWGi6FyTmAPZrPo9Dwz+Qt9XIgaJERERERERFxlMxisyWQoUuIVKRgGTSSS5adhCzVzQjaLTbEREREfQdNXJuKZHQWKgeoLMbgIRg8SIiIiIiIiLDKbENPbsU6CAj8OsauOaXncmMfasjIiI6AqSmxaS6ZQsc6A3p34PbYMRg8SIiIiIiIhLG2ZgMg256TgvsDHc3YwlBXybDGaVxvRTXp/EGpMYa0IjIiI6wgwMWfXlNSYxUEZqBomyfa6LQWJERERERMRFhtGUmcRX//mn8fSfeMeOb2c7oIw8p0awkBJCAH2mcY0ZJLKbYEdERESUGHcJEknxwJWbmsFkAKsYg8SIiIiIiIiLDNM2rvnHWx8DAJxeDZQ1XQBQRp5To5kXEqkQyBIBoKvcNDKJERER3VDIDqoQCvDYNYlGkBggUY1BYkRERERExEWG0ZTlpocXBwCAu4+v7vi2umLcxd1USiSJQMaWm1bbCB0TYccjZ9bxvjtPXOjdiIi4IDBVCcFzOfVIZAeJZm/F9jExSIyIiLgosTHM8fr33B2dHSMuS5iM1zTkpk88NA8AuOfEyo5vqyuqFhjhc0JRMom9tGQSA1nBGpMY3U23hX//+zfhP/zBJ1jnbdo4szbE/3nfvXwHyoiIFnQKEjWTWBrXdJGbRiYxIiLiUsUffORBvP499+APP/Lghd6ViIipw1xMDPOdX1wfnFdM4qnV8Eb10wbVJHKC5nEhkSYCWZLo/4egiO6m5w3E/N7x2LkLvCdu/NK77sIvvvMuvPuO4xd6VyIuMZhy02ATrKLBJI47yE3zGCRGRERcoiCjiaNLmxd4TyIipo9xl+zztrantrGb2R5aXw3HRbCVfFEGicQkhi7SxtHd9Lzh6VfvAQDcemT5Au+JGzNlH82HTq9d4D2JuNRgMonBCa5mkNilT2JAYBmDxIiIiIsSVyz0AQAnmUYa/3LvKfzMP9yxE7sUETE1jKfsbkps2W5ug1F0WGzlUgWJQgikiYjuphcAh8p616NLG6xx77r9GG564MxO7NIErtk3AwB4lLmPERFtqBnXhCacdE0iyU0D10G5ESRGJjEiIuJSBfU1O7nCCxL/ze98HL/74Qd2NSMSEdGG4bT7JJaB0MYuvm/GtSAxbD/zAkiEYhGzRLCYRC77GGFH5UrLO46v+uNb8Io3fnQndmkC5H776NkYJEacX2yvJpHbJ9GsSYxMYkRExCUKqj86xQwS9872AABHpvCwH44LfOdvfwyffPjsjm8r4vLC1JnEi0BuambkQx1OldxU/d5LE1ZNIkkQo5nJ9tCllnTaoOvi9BqvJvevbzmCH33brTuxSxGXCMwcE78mkWlcY8pNi/bAMgaJERERFyVoYXaKKTe9eq+SDT1ydv2871MTD5xaw0fuO40ffstnd3xbEZcXRnmBmZ56hE9jcU1tHnZzkJh3YRKlcjcFACHqgaYP40Ji0FNBYjSu2R5yzSTu3muLrn8ZeH0Q/ttffQZ/9vGHd2KXIi4RdOqT2GyBEeBUCqAhN41BYkRExCUKWlhwe5TpIPHMzgeJxFDkzIVFREQbRrlEP03QT5OpyE3zi0BumndkEpNSSpgmItjwJi+kDtJHsQXGtjDuKDedJoi570oa7+bkSsSFRTe5aZNJDJWbju2/OxCDxIiIiIsSNLFypV7755ThzWPLO++KSrsWuvCMiAjFKC/QSxP0s+kEibRI5hrX3PLQGdx/cnUndmkC5n0Wuign4xoASIUIDgLGRYGZyCSeF+iaxI6BFJfd64JRx+cNgat4mSbe+skjuP41/4i1rfagIeL8w0xujUKvLwoSs5nyQwKvL1NiGoPEiIiISxUk0eA2sqas9TQeiLR4j0xixPnGOJfopQkGWTIVmV4lN+Xdby//zY/iK3/5AzuxSxMYdwkSC1NuKoLv1aIABmUbnmhcsz3QHN6VSZwGu01JkmD3yRKUgDjBrJ2fJt70wfsBAA/G9h4XBEUhq7lkp41rzPdFuWlERMSlCloQchO7uQ4Sd35hQYv3qEaLON8YFUXZ3y+ZSpBC981uls2ZTGKoDL2Qptw0nJWqMYnMSWh5PXBBd5mALt8tZgKCsDSF40nnmMva759TRmlcF+4uWN4Y4cW/9H7cfpTXb5LM3OJ1eWGQG0FicNKbahKzASAShnGNMX9HJjEiIuJSRVcJJy2o14c7zyRSZjy6H0acb1AT+CwN7+23HVDd3cVSkxgaOJtMYiJE8L1q1iSOGUH6Zx5ZwrN/+l34x88+FjzmUkeumcTwa8sM5pc3dj64oeuJGyTuK8sbpsEkfuKBM3jg1Bp+6Z13scZRCcbSFI5jxCQKKXXCaRg6l1OAl2RA2g83rqnJTSOTGBERcYmia+Cl5aZTaAq+FeWmETuEXKJiEqeQhKBAlBMkTrsWNy+k7p8aKgvMC2gmMWHVJEoMyhYYHPOsO4+dAwC8764TwWMuddDh48hNzfl/GkEiXf9cafd8X10j0yhvWJzJAAArm7xt7SvZzjPM9h4R5wd5ITHoceWm5ftECqSDjnLTyCRGRERcouhKnnStSXz49DpOnOOZ3VDWeRrGChGXFwopkQiglwoWk9UVtA2O3HRzyi0NVEaeVydYyKpPYpKEB7Z5IZElAmkiWHXR/VJWNg2zoYsFeYeaRDMwn2afUO55owREVyktB73y2uIGiXtKueluNte5lJFL6J6rwXOJZhJTIO117JMYg8SIiIhLFLkxmXJYRVrscoPEL//F9+ELf/a9rDFRbhqxUygKiUQIZMl0ahLHuiaxCA6kplH3a2KcV7KtLnJT5W7KCBJTgSzhyX17aTezm1seOoMfePOnLkmnZM3SMRIQJlPc1RWVAwpKucY12rl1CgkTes6sbHZjVmOQeGFQmExi6FxCNYlJquSmwe6mZpAY5aYRERGXKMxnNSe7S4vd9SnITYcxSIzYIeRlTWIvFSy544mVTfz3v/oMu5VFzTk0cMHL3cZ2Ydb2dDGuSYQIViio45+UxkHhxz8rt8VlpL7nj2/B33/m6CW5kKfAnMMImsePG7h1ASUXR7lkBeqjnP/duoISD1wmkcYtb8QWGBcCeU26zmUSMyDNuvVJjO6mERERlyrMjD8rSJyqcU3pbhpjxIjzDCU3FcjShCV3/JV334O33HIEf/PpR1nbMxcvoffb+mi6i85ag/suxjVJOJM4LiRSAWUcxDj+w46MFBmgnL4E68bGBT+Q6nI9Ela3xuwSADNJwjl34w6mPF2hmUSmSoaY3OGU5eERCrmspOvhQWJ5rkSqAsUi8NxFd9OIiIjLAabEaysPf7httwUGpyaL6lAikxhxvlFjEsfh19dsybStMtmGvJCYK004goPEKTOJuUTFJAbu47g8jgCQCF5NYpokpdw3/PjTseMyS/tmp9dKYdroIsnsGiQurQ/xzP/5TrzhvfeG7yAaz5sOypVp1CR2dTnuWm8ZcX5QGHN58DmkYC/JVKAoQ4PEWJMYERFxGSDvyCSODJfGLsHbY8vh5jWUcY7uphHnG7lUzJdyNw2//hfIAbED20BBYugi2ZSbTsO8qSja5abL66NaPXJRCxKZNYl6YceXSbL77c0rJpEbJN70wBl87P7TrDHTBgVSo1wGz8lmkMgJ2lbLc//HH3uIsYd1QxGecmX6clP+uG77eMtDZ/Hhe0512mZEhVyWQWKShLPUuiYx6c4kRrlpRETEpQoz4895aJuLkC6S0+MMh1PKHl+KZhMRFxZSlnJHpnHK4kAFiVwmcVQUmOursaGLUZNJnErdWGH2G5vc3tY4x7N/+l34j3/wCf0aLdAA6pMYvq00LftUMu5vkvR1bcrO7bf3ijd+FN/+po+xxkwb5pwcyiYOx93mf8oBnFnjHUcz6cCSm+bTl5t2HccNEl/+mx/BK3/34522GVGBTMh6WcJgEsv5W6TKvCY0SJRRbhoREXEZoMYkMh7aJuvSxViDM2ZYymDHRXiGPCIiBDktLFKeu2lZfofVrXAHxKKQkBKV3DQ4SKwWIZvDnQ8Si0JiJnPXJL77juMAgI8/cKY2JiF300QEM555USDt4C471AYovONBrqgnVnhteC4G1ILEQFlmTW7Kmf/L93Kn465M4qhjANYFXful0jGJctMLA5K8Z11qEpMMEAlTbiqM3/2IQWJERMRFifw8MIld2A1OM3FzwTONTHLE5YO8kJXclHEd02J1lSE3pcTKLLMm0UyoTKNnYi6rthS2Y3LOcG+kxuF1JjFcGm4u7DgJIC03Zc499H24DPDFgC5zcle5KYf1rW9ve88bbk3i8saIVf8OoCZ75qhXKklsfEZdCFT15Yz6ZrMFBldummTqX5SbRkREXKroGiSOc9nZhh7gGdfUe3nFLG3E+UMhlSsnX+7It8mnReQ8U25qJlSm0Q6jqLGrk8fE7K16x9Fz5WvQTKJyNw3fVpYod9kuxjWhxjqEada2TRtmYB56bZlzK68mvdvxG+fdEn6jjnLTZ//Uu/CKN36UNWb7Dqzdjs006o0vZdBcrtoZdWASkzSIFVTjxuWYXuyTGBERcemic5BYFJoRCV3cmQ/BrkziNJiUiMsHZvaZU5NIi0dO0EaLz1mmcY15j06NSSzNZGxzgnm/3350GYBqxE5tMxIhghkYqknsMVtgbJHclMlo0fu57NLFADNxFzonj2puo4xr2RjHCW7GRbfk4naC+88eWWa9v+bAykhK0v3dVW56KSYuponaXB46l+gWGAnT3TRXQWXaC2IfY5AYERFxUaJWx8IyEqhcGkOzduaCZJPx8DUXL5xxERFtqNxNBYs10ExWB/MNbgsM8x6dBpM4zpUEt5/ZJbi0P4szGe54TDGJm6NctwVJme6mqVC9zbrITbmMFjGPmx0X5Lu53qyQleFQqFOsycRyk4QEXl9GfgsYc3vTOP7178YPnLsGe2tMp+SIOopyLs/SpGbI5B9UHnOSjoYGl7IMEpM0yk0jIiIuXXRtgTEupHZpDF1cmw9fTia/HlxeegxAxIVD5W6asFow0OJxyGAfiWmo3E0DA6mO92hXVLIte5BI3+Pzr9uLOx9bAaCUARSgCBHuEEnMUteaRLbclCSBHeeRLk7O04JypVXL0S41iV1aIAG8OXmcF5gvnYFZSckpGtd07eWoJbEdry1OfXPEJFTCCehzVAm1msTELTddPQl85i8qW98oN42IiLgc0LUFxjgv2A23uy4sanK7GCRGnEeQu2nGacCMbkzWqCOTaN6j01gkk2wrS4W3JvHGQwt45Ow6pJTYHFXyc+Vu2r4d+l5pkiARvJpQOpacOkbz/V2ZxLUpMLldURQSg4yYxLDjUqtJZCpJCBx1h0ou8pl0up6mYQrTmUkkuWnHek1OfXPEJMiELOOYkJlMok9uetObgLe9CvjYb5TjcvX+tBfdTSMiInY/pJT45Xfdhdse5dVfdK1JHJkP+1Am0XgfK/tcdFuQRFxe+KV33oX/9Q93sMbQwqKfMhowo1uQmGsmkSfTHne8R7uikJXjq+2Y0P48/sAc1oc5zqwNFZOYVTWJIe6m9DlZ2SeR4yRpupvyauK2x/bsZknguJAY9NytS2ygoHm2l7Lq70adVSEFFohJDE4udpO2djWC6VoWQdfzKO/Wqmk3X1sXA2rGNcFyU6pJJHdTxzkYrqqfD5cmSJpJTIE8BokRERG7HFvjAr/2z/fiW3+L5+SWFxK9tDQSYC54t7PY5RjXmPVN0bgmwoVff9+9+J0PP4CzZVuGEHR2NyUmq4NEj9sC40IwiVkZONu+n2JfgccdmAMA3H9qDQAwU34v5W7afixpIZ0IwWYSzbmKxUCO+bJFM9jYzQt51d+SZyZGc/f8IOvMJLJaZ+RGmULgOPP8cgLZrj11u7Z3GneU7hKi3HR7qLXA4BrXUH2hy4RmVfWGxcZSNS5Jo9w0IiLi4gBlc7lSl9wwOwh9sEmpMqWzehxvQQLwM7SDkqXoygBEXD745MNng9+rpZVJUsraAmV6mskKX4jS4pNaYITWZNVqEvNpyO3MFhh2JjFLEly3fxYAcO8JlWWnACURYf3liNWjmsRQsxugPlexJL8dmEQzSFnb2r3zz7iQhuM0zxRprp+yyw0IPFVIgfkB73lD25rvp9ga58H3aNdejrU2HZznVEenWEIMErcHUwERPCc0+yRKx7jVE+rn+plqHLmbRuOaiIiI3Q4OM2eiHuzxMrvcBYn5EGUxiYXUZgdRbhrhQtmmj3WNkCNePyOZXtjCcmsbclMyFwllIacuN9UZeTu7N84LpInA1XtVkPggMYk1d9OQ7aifaaLcTTk1oSZ7FSwtQzUHcWoSzWO+mxfyuWFcE2rc0TVINFuPcE3IZjWTGDZOGz4NMhQyPPir9dfl9GQsugV7JnvFSbgSYr399kBOyT1OfXmtJtFnXENM4tlqnHZEjS0wIiIidjnIGp9bh1HILrWF3WqrarUlHbPP8UEa4QL1X+Ms7Artbkr95cKu5S41icSUaeY+cOzU5aaykm3ZFrvjQiJLBfbN9pAI4NGlDQDAbF8thYQIcyqlRXWWdm+BAfDUE10cKEcdWbOukFLirmMr7HG5rOSmoeqOKnGRMts9GMeEcU0WhcQc8/qn5w23ltEMFDgMcN7xfusiwR1uU6IaUaEy3GLUl9dqEj1y0xVLkKjrGCOTGBERscvRlUkc55XcNHThRFnq2R6vtqSrIUBRGBK9+CCNcCBLSkky4xqp3E1LBobpCtmFSeQy93lRsaTTMa5R2/P1ScwSgSQR2D/Xx9EySKQAJU0QJB2lxNZML1VyX47c1NivLg6zXZnErvMsB2/71KP4mtd/EO+780TwGCoB0H0SA5lEOk+zvbRTuweAb0JGCpRQKWdVN8l8Thn7uMpwDu1qlJMXUisSQgNu89qKz7btoZCqvrmfJgwmkeSmJStoczctcmBrGchmgPEGMNooaxKzKDeNiIi4OEAPakGryUAUUi2S+1kSXCPVlUk0Fy6cxZZiEkluGpnECDuIDeRcI0VBdSwlkxi4uK6YxPA6RgqCelmCRITfN4WsJOHTWEjKWp9Ei9y0kEjLgPzAfB9HlzYBGMY1Iqy+kBbSM70UCZNJNN/LCRJJqpgXMrgvpnnMN6bQAuOessbzjsfOBY+hw8F1NzUl0Lxgu2M7I6nqy4Xg9Ndt1PKGJiXNWlJGf8saI7jjzq3dTHIiJqGYRPUc6FSTKFK73DQvjdAWr1I/N5YaxjXR3TQiImKXY2OoJkWu3JQkGgOHtMyGZk1iqHkHPRB7qWAuLKqANNYkKjx0ei0GzA2kKclNGdl/IyAC+HJTNSbs+td9AYVbymnDuCgq46YpuZsmQjgXW3kudUC+f76PY+fKIJGMawIDPpqzZnspMmaQaC7kWUGiGdx0kAROg0mkhADXEAaopMyh12RuSKA5Ri9dzV2o3rXPuP6pLydfbtqNpRt3lZsajt/BclNTNh2ZxG0hl2afREZNokiUdCJJq0Lp2geXQeLClernxpnKuCZxBJYNxCAxIiLigqKz3JQe2hlv0QpUi5lw4xqSDWW8ILEo0EsT9NMktsCAWmh9xS++H9/zx7dc6F3ZVdA1iSybfBXU0NhQmVLNOIXJ2tD9FrqQzAsgSxPWPbodkJmPq06Q5gwAODjf16/PGkxiSK5qUzOJieqtyGQSKwluN5lq6Bw07ZpEMp/hsJa0tq1aYPDqXQcZQ6KHZiDFYxK51z8t+Od0kBh63roxguO8wDwz2FPbK3SQGCxbj0HieUNRGteEyt3VoFwxiIA74CM5qQ4Sz1bGNbtVbiqEeLIQYlMI8SfGa98phHhICLEmhPgbIcQB428HhBBvK//2kBDiOxuf5xwbERGx+9E1SCxkhyCx0e+N69I43+f15MoLtbAe9JLInqFa6H7g7pMXeE92F2hdwDauScBmEs33BQeJsuoL2HfYtC+tD3VLCb2P5eJnkCadrPU5kHofS0bQstjKiwJZydoeMIJECm5SgaD6QgqCOjGJRcFOUgEqAOCyssMpy001k8gxktFMIq+2lg7dIEuZBkD8+nIpJWRZNzbIws1FKuMargt3N3OjcSHZASlQdwoPViRE45rzBkpApJyEkyxrCwEVLNpqEieYxLOGcc3ulZv+HwCfoP8IIZ4B4I0A/i2AKwGsA/iNxvuH5d/+DYDfLMeEjI2IiNjl2CR3U+Y4so3uMx7alKXrp7zaEtOAgPNAzIsCqRCY6aVRbopocOACJSE4x6co5aYU9IRK7rrUEpktH1xJmVf90S34qtd9oPY3WvwMejvPJNLXT4RabNn6HZpM4g1XzOvXqz6JYTWJlNiimkSW3LHDghxQAccCs7552sY1g/J7kRw3BKZLKcBht4tym0lwjSbQrU+iyaQPsjSY8c+1uU53d1NWv0NDNsptr8I9/l1deiPqMBMQSWKft6yg2kLA3c7CGiQWRguMXRYkCiG+HcASgPcaL/8bAH8vpfyglHIVwGsB/GshxKIQYh7AywG8Vkq5KqX8MIC/gwoKvWOn9JUiIiK2ic5MYsnS8WpEqod9j2E3XRneZMwgUSJNBWZ6CUs2dKniYsk4P3JmHc/6yXdOMGM7BboueVJmCVEGROZntKEoDTiA8PovYjaUTbs9KLr/lDpWn3r4bG0fk0QlZXY6QVAYTGLqYBLHuUSvNK751uc9DouDDE8+vIDr9qu+iWqR1r6tTSNIzJKwwNLcB24rEXrvwkwZbAQGDtMOEula5DCJEz04GTWJNI8H13GhMoXJEhG8n3Qt6SQJU6Y919EVFeC2sijQT3nmUoAyvarM3EKTTZFJPB8w1ySpsM9bVtSCREcLDC03Pax+arlpCqTZ7pKbCiH2APhpAP+18adnAPgM/UdKeR8Uc/iU8t9YSnm38f7PlGPaxkZERFwE6F6TWLDlpnohWRrehGZbuzOJpdwuS2NNIrrb/08b77z9GFY2x/jTjz80le3pHnjMvm1p2c4BCA8Sx3nBllsXsrGQsWzr+U9QlR6fePCMfk21nEgw6PHumy6gfRRCKEbQsjmTSdw718P7f+hFePurv0y3EUmEvybo6NIGfuYf7tCN6Wf7KdJEsJis3GR7mLV0s8w2EV3qGLcDWuBuMqSt3ZlEaCadK9vNEp66gw43ya2HocFlwygtVALatW5ylEtkaaIMUEJbiRSKydItSKLcdKowExCpIwFnBclGAbfcdLylfs7uU/LSddO4prfr+iT+DIDflVIeaby+AGC58doygMXyb00vZfpb29gahBCvEkLcLIS4+eTJWA8TEbFbQLUyUvIcTvPSpIKX2VU/UyHQc/RSs4Gyz+yaRCnLBUkS5aaoLyZWGP2/po3FkrGZ1j7SYpLtbppUTGIom5UXkm0SYt43rno/WgifWh3W9jERYLH9XUG7lJQGELZA1qxJBICDCwNd0wnAaXhD+P4//SR+98MP4JaHFFs6kyWtY5ow++2FBunUS5DbuoeOuRDTqUnUjDjTEAaoSgBCg5RCKpa6lyRsuW+WqtYxoduqFvJgJSVz/dzgmcmY1wW3vCFLBHqJCK7t1I7fTHa71idxFyf8djvMBIRLJq/x6CeBT79Z/W7WJDqZxHIuTgfA3IG6cc1ukpsKIZ4D4KsA/Irlz6sA9jRe2wNgpeVvbWNrkFK+SUr5fCnl8w8dOsTa/4iIiJ2DmeFmMymCJ2WrpB2qnUUXd9NRLoPrBvJcWVvPZOmOG3dcDKi3X9i9C4uFQQ8AsLLZnmndLqSUVU0iq08iBURMJtEIUriyuSSBt94PAM6uG0FibjpC8q7/kytbrKRRkNzUYBJtEELAdxg//cgSAMUoAiowzhzbciEvCjZrRozjPLOVAp23xUE2FbkpbY8TkFIwkyQCvSQJbktEKo1emiAvwufkUV6glyi2jbMtALovL7cGfq7PdDfdRiuLLOUlQGkfB0y5b00SGxOgnWEmIFzzlsZvvxj4m+9Vv5NsFGh3N017wOz+hrtpBuS7JEgE8CIA1wN4WAhxDMB/B/ByIcQnAdwO4Nn0RiHEEwEMANxd/suEEE82PuvZ5Ri0jI2IiABw65Fldg/CacJcvPD6a6nG2F0yu2mS8Pq9NVxRgxfXmkmMxjXAxWObTnHENJhEc20b2v8OICYRup1CsEpJSnZPuprc1NVeorwnzq5XgbViEnmOkICqCX3B/34P3vTB+4PHmMY1iSOQVfJXd5CYeoxrzDn0odPrAJThTWhvRYIpGw1vyq7eN8s8bxS4Lwwy9vzz7juO48TKJmtMVVvLM2ACqAcng90rqLecOp+h8spxrgIpl0uvdR9rxjX8580ssyax3ieRF3BniUCWhNdp0j4OMp7c1Kyli8Y13ZFTkqSct6REe8JDvaldbqqZxL4RJBaqv+Iuk5u+CcCNAJ5T/vstAP8I4GsA/CmArxdCfFlpVPPTAN4qpVyRUq4BeCuAnxZCzAshvgTANwL44/JznWOn9L0iInY1PnLvKXz9r38Yf/iRBy/0rjhRt+RnMAeFWiSzHtqmbChNgmUyVQsMPgOTaLlpZBKHeW78vnsXFpTJn0aQaNaXcZhEYlKIGQuVm6oghdc2Qy8IKQBzsHSAaoVBKEpmg9sn8ZGzKgh7310ngsdUNYndmURfTeKSEfw+tryJfpboPpWsIDGXnYO9rrWkCzO8/q6jvMB3/9HN+I43fSx4DNDNgIkOXaqbiYd/N2VcUwaJDBOmLE06yk2ZfUK1uylTbmo6EDMTRwk32JbdakLpmpzrpcE1mhGTMK8tSmC1KhNG6w0mMQNkgYkmr9Yg0eiTuFvkplLKdSnlMfoHJRPdlFKelFLeDuB7oQK+E1D1hN9vDP9+ALPl394M4PvKMQgYGxFxWePossoEf/ZIs3R398BsKB1qyADUmxuzZXOl4UEenG2tZ/I5meQsERj00hgkolsj9wsBWoRPQ25qBhihi0ipAyKeu2nTpIIbbHgb1Zfn88xavSaR2tSw3E07CB8K4972M4nuZY+PFTyxslX7P80FSSlRDVVr5GZNIpPJ4rbOGBsyVY7clD7/vpNrwWOA6hrk1AjSGCFUz89R4NhxObdSTWloUDTKJXo6IA1k0k25KUOBQuPm2MY1JpMYft9Iw/E19BzQM5DtLmskLnazKmS3g45j1mZCZtYcbq1UBjRA9bNZl1iTm5Y1iVTLmITJTTPWtzlPkFL+ZOP/fwbgzxzvPQPgmzyf5RwbEXG5o89svnwhUGMSGb2dilJumorwoM2UzYX2RAPMB6KaMsObIqvM7kwW5abAxSM3pUXauakwifwg0ZR60cIipCarq0lFjUlMBGzryIpJHNXGJUyJXldUctMqcJvYx7xAOnAve0juZUNTerm8ob5nZizsTFMcF8ZFwQ4S6dhyW2cQI7EwyPDo2Y2gMQBvHrZtj8OsmnNyLxXhiYtybiVn2mAmMScmkZFcbLbA2HG5abeaxLyQGGQqAcr9bp2ZxH66q1Uhux3NBJz5Wg0rx6rfN89VjCCg5KNAKTk15rcak7hPuZsuXlm6m2a7Sm4aERGxTbzkl9+PN7z3HtaYgQ4Sdy+LZWZNQ+tK1LjSuKZLTaJHNufaFlBlhDmZZHI33c3nYFq4WIxryNAidMG6HZhsdqjctGabHipRQrX4mGG2YKj38rIHpLSwXd0a6/NMkth+lvIYkeB3VqjXTdoDlXEhtTzRBp9T6Ylzikl8w3c8FwB0Y3sK0kOYm6KQKCS0uyyXkSJzEe58N9NLWfdb10U/bY/lUm3MySwGrJQO9xKSmwYyiSSBZtY/mvsY3F6CTGGyFIngyE07StBlZQAU7BJL10jGlaCr981Mob3NpQzz2vKqQlaPV79vrSjWUBhyU2BSPmoGiXMHgPEGsLW6++SmERER28d9J9fwunfzPJn66e5nEmtyU0ZNIrEULLc57dLols25tgXwGRiqgYrGNQrmcdvN1yQFhxzXyq7owiSatukJQ27aZBK5Doi++8Z8bWljqF/jmn0A3YKUWp9ER00i7Y8LwlOTSHLTlzztMD7ymq/EW77vhQDqTGIbKtamlEiGzj+yed5485YKEsOv5a4JHNoe574xry0uA5YIU24aLq/M2HJT6H109eC0bqt8n7oHwh2uzeuCcy9IqRKnvSy8BYZuQZIx62Rzg0ncxXP5bkfeWJMAsF9fG2er37eWVZBotsAA2uWmALB+qjSuKVtgtNyrMUiMiLiEQQ/gXb0g79hgvZCVBXoo42MyMC7ZnG/cLJdJlNG4hnBiZRMPn1nX/+csWqcNYrc5srmuyDssCE0DJop5Qtblk/VHoayB+kkMvC0IMNmVs2tqcULmItyaRJLlCbTLNwm1PomeNh2+mkSfu+mp1S3M9lLMDzJcs28WT7tqjxrDYHKbjeND2R7trsxuOF+xRJxgY9tBIkduaiQ8siS8TrwoA36S+PKDS74kU7UpCP9+5rhBL/weoOtitpey2kvkJMFN+HX6WWmcwr225vpZDBK3AdPdN9WqBMvxrAWJVJNYzmUULDYdTpvGNYQkU+6mQCubeEFqEiMiIqYDWohPK0j8i088jFEu8covfkLwmJrclNOovpQNpY5Fq2sMQAvJsDouoFpczzGbIpvmCuNC6nqYyxFf8ysfrLVH2M0LC7pvQuXI24HZ3oC7QOP2SWwyUlxX4KTs5WUblxdSS7+pV+K4kJjpibKXaXiShN4rwmPEoD6JbUyiq5YRAM6uDXFgvj/xuj7+AcENMURUBhDKJGqZcMcgcbafBgekQPd7k7bHSQDVEx6MOnFZ1ggSkxgqAS0qc5e1rbCa4+b9Fvq8MQ1vegzmsuqLyZNpFyQ3TcOZRJMl7THcZc3EaaxJ7A5bfbn1+jKDxImaRBeT2JCbEqhPIlCxjQ5cnquViIiLDF37HNKDc1oL8h/+61vx439zG2uMaZLAWlyUWVOX/E1KiZseOFM7diH93qzb6rC4JifJRAjN3HD64F1qMANEYJfXJBo1dTuNKiOfBjPiUlaLTy03DZgjuvbb033iPIvkcS5xaGEAoGqDQeYigx5PbtolqVUZ11T9xprz5rgovH0Sfe6mZ9aHOLgwGSQG29ajYoh6aYJEMCSSHeXuZnBZyPDruXNNoqQgkZfsAwxXWkYAlgjopBtHXpkmvKBtwvCMWaZA7Q3y0F6O5fvmBxkruULHRCUl+SxpLxVsKfNcnxfIRtRRk/KLULlpsyaxDOW8clOTSUzddYwNxCAxIuIigPlMCn1AAdVEvptNU4Z5UWXWOYuL8mGfJPaFxVs/+She8caP4u8+c7QaEyCbs26rfPhq44iA/aTPzsqaRIBnQnApwSa13c1BIi2wCrnz+2k6V7LdRmt1LAy5Y0d3zSxJnIvkcVHgikUVJFJCIJdlC5hUSe1Ck12dgsRyn6hPIjAZFOV5e59EwJ6UO7M2xP65ySDRa1vfgD6OaVkTF7qQ72hc02Qug81dOkrBKyaRV0cHVNdy6ONNBfwJX25aVHLTLn1COUxibiRz0kQEM8eaSexnPHdTSRLcRJtvtY4pr8E0SVhMoimB5ngJRNRhrkm8Caf1M0BvDoAANpeA8RaQqfk2TG7aYBID5aYxSIyIuAhgZgXPMXq3abnpLjZNGReFlnGG9sgCKulY5nj4nlxVRhO3Gj0iqyJxtSgJXbSSAU0/DWcSzYJ0cjO8XJnEI2fXJ17bzdlnc5G80/tpSgJHuQy6JnMz+8xissogMWMa1zTuG1ejemISSW6aF9DmUmp7gUFih2RKrSbRcUzGhb9Nhc9d8MzaEActclOWcY0RbPcSvrlIL02Qdqgb48pUt1uTGHodm2MUk8io96Nri8kkFgaTyO6vSwoULgOvmUTeOC5LV1C9ZcJxblU/tbtsJ1Ok3TuX73ZUCT8j4WQ7BxtngbkrgJm9KmAcrgL9BfU3LTdtupsSk9iUm6ZRbhoRcSnBnLibsj3/ODV57+oF+Vhiruw/yGk5QPb6LmnZ/jmVKTvb6NsGVIwI56GdGotdTpCYJQK9rCxIv0wfpncdW514bTcvLMzzu9OGQ6ZLIBAWSBXGwo7jbkqMuzZg6tAnTt03k+8Z5xILgxQzvQRn1yhILJAK5ezI2V43uWkVyCYO2RYle1zQPScth/LM2hD7LUFiF3fZrKO7MtXgdXE3BcKD9K6tX7ZjwpQItyrEBhXsVUE6p50FNyCqmYtwFCgNozS2my03SCwqx1dusJcmiuHu0rtzXEiWwimiQlFjm9VrzprEuf0q2Ns4AwzXgP68+pvT3XQIQKi/92aBbEa9LqLcNCLikoL5cOEsWomZG+5iuekor5pLh9ZRABWT6JKWUeBJ9VFAwySB4W5Krog6SMwnj+ev//M9+JG3fhY3PXCmsS2BNGEaVRQS956YDKwuVrz/rhPYM1P3SdvNxjXmdchZpH3onpN49Z9/irWt5kKeI2VOk0paGbJurRZ2JbMX2DTdZHtctVXKSCrB/rl+JTdtJFdCGUI65hzjoJDF1jgvvO6mOrhsjNsc5Vgf5lbjGmImQ+5tYgiqmji+3LGX2o2DfOO4clPzGuzS81BtK3SuUz/TsiYr2LimDPaoJpHDCqZJR7kpM7gvmvdNcFCqfs70UharXkhox1d2exuhEhDhx7Eo97G8thjP7ogKNeMaX8JpuAr0F5VsdL0ZJJLctHEO8qFiEckBjCSnNblpZBIjIi56mJMGZ9FK2dXd3G5gmBcsFoVA7SXc0jL13c8YQaL50Ga5m5Y1iT4m8ZfedTfefNMjeMUbP4pRXtQWhBxJGgD8n/fdi6963Qdw57FzQe/f7fjEg2fwwhsP1l7bzUyiGTxxkjL/9ndvwt9++iiLMabrVN8DgaZIQCXRA3hyR65ssQhYJI9yZQqzZ6aHlU1qgYE6Ax/KJJbHnJNIqPVJdAR7eSG9xjUUXDbHkXzW7m6a6M9uA51rVZPIkJuaTGLGCy7NeatLTSLreWMGiYw2QUDlbhocgJXzP1duqssUGEG6aS7CYTvrwWXCShImQgX3HBOhvJAQpXENt96VEhehx9FkEgFej+OICrbSAev1Nd4Esj4wd9BgEkluShOXRW6aGnNWb1b9zPrKzAYA8sgkRkRc9DAXnZzMIj0ApmHl3xXjXLL7fwHVgs8lLaOF/pJFbsp2Ny1Zkl7JGrQFsx+7/3SDSSRJVNj2bn7oLADgseXNoPfvdqxu5Ti4MMA3Puca/dpuZhJHtfuNv5/rHe5RjnOlmf1nuZvmhgSaw6QYcrvEYS5CLWkWZjKslq0FxkVRNhInJpEnN+UskGmfEmHKTRtBYhlYuODK5J9eVUGizbjGV8fYxNiYfzJO0CDrC3lO65IsSXQgFd6Cofr8jSHPXdP2GW37CJTBfeJwdrSN00wizcmh26tqGcNlu+qnlpsGy0arcRknuDT7izLmn6p3ML/eNWEykLkRyAK7O+m3m2E6R2e+dcJ4qOSicweAtdMls9hgEm1y09RQ8KydUj8PPinKTSMiLiWYiwlOZpcegrs4RsTIYBJDH2xSStUTyuMIRpnU5Q0jSGwsrkMf2uOy1iN1MBQAcP3BOXz5Uw4BAD57ZHnC/hwIZxI1pnTeVLuOndvY5ijHbC/F67/tOXjg574WAILd97aLI2fXWQtdoG6gxHEGJlXP+lb4mHEzSGTUu3LdTatgI2EZd1TGNYqBdzOJCRYGGVY3x+W4UsbGZRLLY85dIAP1ptTN/Sykv/dixUDWXycm0dYCg9On0gzSs1QEy+vH25CpJgnYgZT5Pk6gbj6nuNcWnTcOS0c9AYFw07OikEgFOslNk7JMoZBhMtym4RMnKZCUtbxc4xo2S1qTMifBx5FKMLhy34g6bHJT6z2Qb1UupeeOAJDAoGQSE4dxjdlLEQC2ShO/w59nBIlRbhoRcdFju3LT0EJ7wj989ihe+HPv7Wy0wmrcnBe6frBLCwCXIxjJnUzmNUQ2Z99eoc0mzO3XtpdLXLHQx+HFAR44tTZhmw7wai6niSf+6Nvx3X90y458tpQSG2WQKISAoNqXKTGJX/r/vg///vdvYo0Z1YxrwveTkgjrw7Am3UDd3RQIW8gXFolSWJ/EKkjpMxtn03ZcvQSJ2V+YybBSMolK2ofKuCbwnFNwyDPtUD+FcDelluXi2wUiGZsB95k1D5PYwd00TRLlysxlewTJTRkKiDIhADBqEo3j3kXyq7bFl2Ry2hJVrBmvfdJ25KZpLVEYsC2DAeb0SdT9RbOE5SeQF+r67yX8foe6TpNR76qMlMLUNZcDRnmBL/7Z9+Lttz4WPKbZJgVwzCXU8mLO6HdITCK5mzZbYDSDxF75/gNPNOSmMUiMOE/43GPn2E5/m6Mcf3nzIzvKUlwOMB9mXYxrciZT9BN/ezseW95kOamaYGWfc1kZ13RwWyRHe5vdPVBvO9F0mwvvk1hnbWyT+Lgo0EsSXH9wHg+dXkOdSQyvW7pQeM/nju/I545yibyozjHAy+JvB3TNf7w0EwpFTW7KWKRRcLLOYC4nmMQQ4xqLu2lYn8RC72cvTRjGNVUA7DIXGRUSaSqwaDCJKrisDJ9CjyUFh6xG4nqxVe1rc00uZRUI2uCqCaIg0dsCIyhIr2oSOYwgfQ8ax+sJiA5y045JyQ5y00omzGtUT+1MMmYArNtElHLToJYzteRi/TUTR86u41t+8yO47+Rq7T26TyJD3pomAoNewjr+khxf04QVNAN8lnqcy1K2zu9xfKni3MYIx85t4kffdmvwGNO4yZXcAqCCxLQP7H189Vq/wSQ2jWtkUQWQAPDd7wW+5fdUgBj7JF482BrneN2772ZLoqaJ1a0xXvarH8IP/vmnWeN+9b334H+85bN45+07swC9XNCVSTQzl5xMHy1YOQGp+bDlyMRGeYF57W7Kz366AjdaSJkBct24RgTLcPOytsobJOZq0fKEg3N48PR6g+0E6/vpz9zFQWUoaF4jgwMALPON7aDr8RsVUgc23ZhETva/aVwzuc9SStxzfEVfx6ZtfRXYtG+rVpOY8RwQ6Rp2MfB5IdEjuWmDSaQgJXTu0nJT1gJZ/fS5mxZSQsAdJQpHfefZtSESAeyd7U2M0Qu7AJbIbIvDUTJQcKkcKHkyySxNtic3ZbZg4I4zW5ekjnpX17bMcgPOs8NkwIJcaWvMvTvh93P/dCdufugs/vAjD+p9BCrHUZYpjwAGqQoSg3tONgLg0DHVPobLTfOiQJoKNkt9OYCzbjKdqr1lKfmWqkk8+KTqNc0kknFN4xwUeRVAAsDhpwPPfLn63SVRbSAGibsAb7nlCN7w3nvwa/98z4XeFScoS/S+u06wxlG/LMrERnRDvSaRwVIYDwoOu0e21iub4bK5LvUoUkqMC4nZrnJTQ1rWzP6PLdnwurTJPhk/cGoNf/vpR+uf1TDJsWX6RnmBXprg6n2zOLmypR+a22ESpyHJ3GmWf6N8YM72TCZxOnLTrguX0bjA4kBdk5z7jQK2NYbcVDe4170LJ7f3mr++FV/9Kx/E++86CaBpXKPeEyR3bBqgMHvLAbC6O0op9eJ7caaH9WGOvJB63KAX3l8UqOaSLjWJ9T6Jjf1EGJPYvCVOrw2xf65vNb2pFnbt+1gzrmEsyLdjXJMI/kK+a01ipz6J5lzumJOt40oJNIdJp3FJwmMgtVN1Sy+7zx5ZAqCMywDjfAumu2n53QYMdQFAzHEpG2W6m7Idv6XUBlgAMAxUJVzKoGPJSSw2E9fm59QwHiq56cEnVq81g0Sr3DSFFVFuevGAFk9HlzYu8J64QVkpbpNjrvV2hB21gIfF0vEzu0BVH0WMQNi2DIle4D7S/s0ybbTp+aeMNOwTq7k/mtko30LBpW0yfuXvfByv/vNP17KB9ND2mYToRXIZXJwr2wDU3E2ZQSInQOmKrmzb2tYYr3jjR/G5x/xtOnSQ2K8eN/1sSkFix4XLKC+wUPZ15NxvFENwVCET7qaWff5Mufi8pXS9pWtzppc6kyS+bbFrEovKFdTm7kjXUK90NwXUPVcU9TYFoc8P+nxODa/ZAsPG+EspIWXFFtrgCriXN0ZWFhGAcW9zmMQEvUQwJIEoxwmWAUrekASGskvDjkzidlpgJAnPTCwvAuq4bNsr6rWMIcekVqbgeN5sjXM8elat4Y6VrtTmd8tYNfBVTSIQfg6krJKSUoYdEzMBwXX8To1ra7fW208TXZ6lNn8Fa6CujWvMmsQ2uWlel5uaiH0SLx7sL+scTu9itq3rBEATyG62u78Y0LW5tzmOFSSWC1bqdxYCc0EeGtzQInWml0AIfk2iz0zGfPhXbouGtMmxIKHj+9Dpdf3aOJe62TNgfxiMiqoFAFC5qmaJ6W4a9v1oHcvJSHYFN/FDuP3oOdz0wBm85q8/630fBUwmk5gxFrrbQVfHvVEhsbAdJpGRXKHjMOcxrqHPve2ocqcjOetcP+3UgkHXJAY3966Ma2wLycp9M9FJktWtsWYbuItd+vzQmjG1j+pnLXAwxtKvYe6m9W3mhdTPsiY4QUpNXZAygj1Dbpom4XV7xLZpB9DA42/O5TttXGOawnCCxKKUMuvrP3A6IVVInyHBrbE9joX8I2fWUUjghivmcW5zjHFeaDMnoIO7qXHfcJIriQB6mf+7PXJmXc9rzfrmYMfvvBlsxzVel16RVuOa5jkocsUKZgP1/2/7U+CpX6vko4AhN20yiXnduMaEq21G821B3yJiR0HPrFOruzhI7OhcpYPEOIFsC+YChGVc05FJpPoxDpNonuO2h9r6cIybHjijHyy9NEEvSYLbIowNAw7XIm1sZRLbs6aPP6AazpL5AFAtkpNEQDgkOeO80DVZQBUkmpM/9z6aBpPI6btpgoKazx1b8b5vYzRZk8gxDdoOzIULx1hhNC70eWTVJJbneaNDn8QZTwsMum5ue3QZUkodJM72U5a7aW7WJDJq28bGYlctJJt/p/vYYBI3x6p1TGK0wGAGiUB4sCH1YssuN6Xf/O6mdsMb+h6+MUG1bQaTmyUccxH1U89bjDYRJtsT7G5qSJ5t8mcXuhjX0NtonmTLTXU5VnhwyZabUlIydS/kHzilkorPfdw+AMDSxqjWl5PnbqqCtj4zSKTgspe4v9vmKMeX/cL78MNvUck9s70Hm0lMqz6VUW7ajUxpOq4DloTTeEv9pCDx6f838B1vBgaL6v/CwSQ2axJNUP/EKDfd/aDMzanVrQu8J250zRJxFwcXCnccPber3bm6us3lNQYy/GFPrM85Rk3iiBEkfs8f34JXvPGjeLSUWPcyZa4Qeg60I5gn+2buD9VWNqUdtqzp4w7MAQDuN4JEc5GcWmzai0L1bTSZxKXSGTYzHqTcmsSuLF/XbYQutIBq3mq7tzctNYlZIiZaluwEzGuA49Sbd2QSKWBY20afRNtcS4uPU6tDHD+3hY2Rup7n+hnP3bRjbRuZhKixtoRM9bkLmkkcaWkfJ5AF6p8fuvBqYxJN91MXXPtpMkKuMSGMp25BkjKZxIbcMZhJbAaJgeO6JheLQrJcemkMUPUgDM0d0TXpcqR1IS9bZ3gblzfHGEyi635b3VLzy/VXqDqxpfWhvv4BHpOYk3FN2TomNJFHzq2VbHHyPZT8/JtPH9VjaP84yTvqk9iPTKJGF/dys07ZqQrJy9ggHdg/xFWTKPPqb01EuenFA7q3Tu/iILGrNIwkHbuZSXzw1Bq+9g0fws//050XelecqLubdjOu4QQcxBKtdgwSfQuLopD40D2nAACfLGusegmzSbThCOZ6aJsLItNtEaj6XdkmdXroHTu3WW3PrMmyPOxHmkmp5HYmk8ixyQcqaRynHq4rzOuCZbgSOCdsGKwXgdMPbTswr6dzDOl0IZW7aSK6SX45fRLpup3xLK7HhcR1+xXDfdujy3W5qV4kt2/LrInjOMxSsAHYWeAq+El0kmRlc6zZHq5xk/n54W061PuEwSSa2zNrFl2gP02YYBnfvwlXuw3fPmZJgizh9DusZKrdmESe3NScv7nlDTNMk6J6ABw+R4aYiVm3V/gVKDY06/Zs26Nn7cEFVT50dn2kW1kAYNUkEtupZdpMgylXWygAuPfEau3/Zu/UdBsJiFiT2G2dbJqQuZnEUmWYTbbgUYNdTOLYLTcl45ooN939oAtiCiU6ndE1S0RzVOjD6UKAFlwUuOxGdK1JNAMlTqBOUhxOTWJ9YeGeeNaNrCgZcfTSpHRkC3xAGTVQTibR2B/6Hs3WGfZ+h+o105G3WVvSfJCanztfBonk7NtPE69tuvX7le+bitzU2AZHXhy6mLC5m3LqqrYDUwJFQXsISCY2yFLWOaB7jNUCo7xuKYh2yU2fec1eAIoJMANvl9mKDVXWGmybfM0kWhaSuv9fImpJEinVdrjGTUWHeUsaiy06JuaUEFKT6Ko3KzxMoiuwtKGqSeTJD+t1Y2EBqRrXrW6say17UfgZcesYoybRlbizgRJ3XHfTouwlyGEgzePvYnvoc65YUGzPmbWhbmUBqGdVcJ/EMrmi5aaBiapCtgfAZpA4zouJesvwIL2omSJFuWnHmkRT3eSoiQ5mEttaYJig16PcdPcjVCbRxPvvOoHv/qObz/Pe2FFnpDg1ceqi3ZzCYrcraCLmMA2Ayui/4o0fZdUIdoV5/DnbGweye03QxMVpgRFak7huBCI3lU3OZ3opepwGwBYm0ea4uH9OZctOl/W+hZQQQrEJQkxa3QPVNWsGiSaToBYyzTFVNpbkdo8uKSZyz2yPJW0CuvWJ6wpzAdK15YlPamerScwuQE3iOUaQSDKxmV7CYhLp3uxyr81ktLiePC6jvMC+uR56qcDSxqiqSeyl+loOeY5U9S8JqyaxKBrGNQ4WJUsqufXR8vpfGGQVk86ogSRwm7K7antol4NqEpuJ/LJPqn9M+/EnGfL8ICvl9bygOU2Z5iId5abmIeckF8dFoVu5cK4tQM3JLLmpbEiZmYGzYJy3muGZqwa+qAeJS+vDGgPPYhKles5ouWnAfFIFe1XvTtt3O7lSKdZOrw1rQYpoSUB87rFz+NTDKrE7wVLvYrXYtNCFTa3VKaeOa1nXJM7YP8QnN3Ua14TJTR2jI6aJrlLO//AHn4CUamFiLsB2AuYEMMolBoFXDhmRrDNqdKYNmkg5i0gA+Mm/ux03P3QWtz66jBdcfyB43CNn1rGyOcbnXbMneEy9TyLnoW1k5DuM2wmTHGKrskTgaGkVfnjPAFkqGPKrKvtJC9Dm/DzMC+yf72NrXOCxcjtmvzdbbSFQLXibTGKvlFElFgaAgttemmBRL5JVveXe2R7bpp3O8XSYxOq7sJoA1xbyEv3Mvoimz5zrN4xrpsAkmvMWl0lMmUyilFIfS86CieYfahEytGxvXCjn3L2zPf09ekYj6zYG5uzaULkHGwsSVp9EWS2OE6EW8lJKvdA2a+0oSULX/+JMhpTRuBxoXls8RspcJNtqEj1EojPhlBdSJxOb4Mh96dztne0pJjdwUVnvt8dryq4ax5dBIqMGdZCpRu6shIc0Wrkw53Jf71rXOBqjth0ecNdbJwVsyyY3tbDNAHCwdKtfLo1rTJk2h0kXArq/aMgcZDKyvqbs5hx/cmWr7q7ZkoB42a9+CADw4M9/nZb7RnfTCnljveWaM0w0W8AAlmBTB4kOuakOEi1MoqsFRuyTePGgq+yKHsZLDEOGrjAX7yyXwPK9nFqnaYNu7DWGRAyomBFOTzQA+LJfeB++9g0fYo0xs02cOrWuTCKNY0lbQ5nE8nh98RMP6teuXJxBLwmvkaKJNUtMKdtk4NZPE1y1dwbHy/pC022OKzclyaiNBTMXyfOaSVSL5D0zBpMYGiSW53gaNYnmoqELAwb4FzG2mkSOrGw7MIMgjglTUahFE4dJHOaFZkG6NCAn1sB2jYzzAlmSYM9sD8vrI2wM85p812c4sTHM8dyfeTe+/U0fq1opJLw+icokRP1uWySbSZv5vrr+KTGzONNjtelovo87JwhDEsh3N61/FmFcSOc4jtx3eWOEXiow20tZ5k16IZ/wnIFJkpkx2Z5cSq/82b29Qj8XQwNSs3ctR+5ITp5CS3AZUk4hQB1NOP1Fqb+ubRzdt8Skrw/zmuETT15MSarw+s7cEmzYrknTefn02nDCXTPkOs4LWTGJ5T52dcC/lBCqgHhseQM//JbP4vTqVl3K7GKA2+SmJB21tsBwGdfEFhgXDboulnSQuLHzrTNqNQpdgsRdzCR2Pf70MJyK3LQ8/nN9Xo3UuJCY74dLVsxxagyDSRyHBaTUQ+6FN1ZB4uE9g1JuGiij0jWJbmnNKFfsy9V7Z/DYsgrYTLc5l7spHeuz6yP9AFUMJPS4SblpySQmCXppgpleguWNEYRQTIpmNgIXCV3lpjc/eAZ/dfMjrDFbtVrSrkGie5yWm2b1msTpMInVNlhyU8NdMPQeMI9BKCMOVMeRMvKuxEWWVEzi+nCMuX4l5/AZTrzrjmMAgDuPrUwyiYyWFKbcFGgyN1WQmJSSa7rn9sxk7JrEXEotYwutdTLlpLZAtgoi3Z/hWqT53E190j7CfSdX8XP/9Dn81gfuw97ZHoRQgVuo/LPQ5y1hm4tkHYLEmkspa07g1yRKMwAWwild3xrntb/VVCHMwDlNKrkpx7jGx0DS5/SzBIMswcYwn7hvWH0SjVrSMLmp+uk1QAGwMSp0GcYpg0n0OX6rz69eP7q0gXGu3E17u9yc8AN3n8T3/+ktU9mWuX7xXf/vv+sk/uLmR/D9f/rJWgLIyW63Gde4WmB45aYUJEYmcdeja23ONJnEcY1JDN9fulE4fcOmja5yX3Jxm8Z3o2M+20/Zx3+uvE5Y/a7K88ZZINRrEj3GNSWz9Lwn7EeaCOyf62Gml5ZyU660zP3QHuUFemmCK/fM4Pi5Lf2eem2hW26aF1LXqY4NJlGNq2/MlEwBwFOuVP2LFgcqQGQziR3lpt/yWx/FD73F39x+clvbZxJ9iZKNUY5BltT6zE0tSDS+DydIpMUdi0k0g8QODchpseWSQGdpgn06SMxr8t00mexdCAD/fOdxvPrPPz2xX9ruPrSOyzCusfUSpG3T31SQWNYkzmRe+Zt1e4XUSbjwFhiG3NTieEnrJ5+7qbMmMa/uf9cY32P8u//wZrzxA/erzzICvlBVzoTclBMQiapvHud897MEQnBZ8crdlOOcC1TtJWzXyIOn1vCF//u9+K7f/4RuTVRz3GXUadI4zTYzmURiIG2SZHrPXD/F2nBcu2+yJDy4r4LE8OdG5cDqbuUCAJvDHNftV22eTq9t1Y1rPAqP04ay5oFTayVLDW9Pxt2A7/q9m/D2W49NNZkP+O8bUiktGYloxVKrv09cJ+PSaZ1bk1iMo9z0UoB5QXCknPNTlZtW+8UJUigLvJv7JG6XSewqCeTIjGkfZ3spqzh6nFdMYpeaRJ7cNIxZoprEg/N9PPnwAq7coya+LE0Yxgpm9rP+WrU/qrn94cUZnFjZhJSy5jaXlAvrZubavNbp3jLdDVMrk1gu/MqH+vOesB8ANNvTVpP4X//i0/jTjz+k/0/Hr0v7BS7M65fLUlfj3Pu5OcxrUlOAl/nfDrrWJJKUjcMkmvczZ8FEbyXZlm1eGBUFemVN4pGz6/iHzz6mWQZAsWO2a+tX33tv7f/HymRJlqjFbujCum5cU+63rd6vvLcWZjK9EFqc4dfkmkEi17im1jvPGCo12+n+jMSxn14mMUBuah4rSlZ0Ma4hto3lblomBNQ1wmCOhZIkcxNHJJvu0gLDlTz6i5sfwfLGCB+8+yRe9qsfwpm14WSQyJGbJqa0L2CMPv5uB0rze8z1My031fcNpy9m0Wwdw5CbCr/j6+Y4x8GFPgZZglOrw3oLDE/yjpQBgGISc1kyibtcbkpkCtdzoguadfounCjLX8ZFUVvL0PmeuE7yMkBvk5s253Ovuykxif4yjBgk7gKYDxBO1o4MMpaZctPbHl3GncfOscbUDFA6yE13a5YJ6B4kkqymK5O4zjGFKR8SM7002BAAUOdttgxUurBEXeoY28ZRD7n5QYYf/dqn44e+5qkAVE/N8DoWY2HheGiPS7np/rkeRrnEWlP+42ANzOuhYhILY5E8mbWmwJ0W7l90gzIyol6Lzsm/xFs/9Sh+7G236f9P8745L3JTTzC7MarXzwFTbIFRHr9EcPskqjEDBpPYdR6na6mf2tmeopCQUh2zvbM9nC0TF3cdX9HvsV2TAPDs6/bW/v/ImXUAlWwuOGiTZpBY7qcxD1VST/VzwXA2W5zJVJ0gx3ClJncMZ18AFajaA1n1029co342E0e5lNp8Z3JMOyM1yBI87sBsbT96aRIcNJjsY5owgm3jvGVcuWOiWjBw5wSqdw19TplMlstxmuaXL37iAWyNC3zmkaXGNRnGikup7iXaFu1z6z4GGNdUbZkEZvupkpvKbn0Sc1lvZREiX2+2slCfMzluo1QhXLEwwKnVrYkA2LWLJ85VrqjLGyPDOXd3y00XGn2LdxK1mkTPfXOidJhd3RrXjWss85Z6gYLEnv0DdQsMW01im7tpDBJ3PWo9oRgTMhkEcC/+//vXPoyXvp5nnFJjEhlMFo3bzUyi+X18Vv5NkKymq4xhjdGTTtvk91IW21xIqWVprJrEnM8kmhObj33RNvD9DF/+lEN4ydOvBFDKrxiZbqDMvqX2hzbJTffPlc2N14aNhQXs44qKfT23MdbvqS9IJgNS9R3Ue77kSVfU/h7KpBwzXFjpO3QBZ5x5rnbifK8PLUGiCF+wbge0uNoz22Mx/sSkKCaRd02q7fKD7cyxsBsZCYi9c1VNyg9+1ZP1766Aj+bdP3/VFwMAHjy9pt+feAJ1KSU2RzlOrZJM2+yTiIn9bDaq3zNbLWYomcmpyRoXki1brPdJtBjXGIsxF1wGO2b9WxMhNYmnV4d4/hPqDtjqeDCltAmPhR+3zFsuVNd/uAOu2k91HfczjgkZ9P65HKcLKbF3todf/JZnA1CunFvjAjMli5UIpmw08ZiEWMeV+2gY17jMy0huWhnX0PdTSYGQNYaUqgZeN6oPCRKNRI2uAbaM2xjlmMlSVd+8PmoEwO5n1MpWtc5c2hghpz6Ju1xuOj9Qz56pBImBNYk6SNwc16XMLgaYgj8XK+hyN5V59bcmkkT9LcpNdz+atrmhIHvd3V2TyA82pg3zOc1ZuJKspiuTyGlcrmsSeylrMh7nVZDI7XcFdK9RCzGumRvUJ7xexmjuber4HQu7Ua7ML/aVRfpL6yPkebVocvXJGucFDixUNuYASmmNe7GljWvKh/riTA//+rnX4odf+jQAVQBgu3fMoN9clAPhNvJNcJq5d2cSw8bZWvRMuwXGwiBj9Wolm/yZXoKtwPvbnEe6GNeQnf9Eo3ojAXH13qom5Qe/6in6d5fhxOrWGE+8Yh7Pedw+JAK4/eg5CKHmEdeC/LZHl3HDj7wdT3vtO/D8//UevQ/EGPh6EFIY9eKnHtJ/o3mS4+5YyEq2uB25ad24ptxHT01iNSfUX6fG4Ta4FAmEvJA4uz7EdfsVk/htz38cAKCXqJY/IUGDOd8Jj7lLE6bcMUvCmcu8qBxwOc8A6kPL6cFZ1SS6GXE6/gfLefnhM+uQsnISbQuA/+rmR1TfQpsChcEkJgmc9bX03ZNEBYlN4xrdqingFFBSpkqABshNC8t3s9UkjnLM9FNtgtUMgF0JCEqYCqGepeO8kjInYhfLTWfU8386TGJYTSL1qlwb5vr+8rHUmu1zsYLOmkQPkwgoNjEyibsf5r3VRe7FCTZMcORX5sXPCVI0k7hLs0xA9+9Gaw3OgtwEh0kca7lpuAMoUK/t4TIpAK9GzXwg+a7jtWGOfpbUaqoAWjQFLggNiYy7uXHJJJZ9q86WiwTTEa+534B62B0oGRu6R/LcaJ1hYW2axjUA8Lpvew6+70U36v101QSZ9wY1s9dMYsfkCqctS9c2KeapajOumahJZBhNbAdmkMi5/qlRN4tJNL4Pt0+iEKgkmZbrEVA1u084OGf9DBeTuLY1xvwgw0wvxfVXzAOozJRcC/Lbjy7X/r85yrE5rgJ9G3NmOosCwMufdx2e87h9+LInV4w6l0nkumSawYbVuIbYTs9nON1NjeRSE/Sy63peWh+ikKoG+4Gf+1r8v9/y+QDU+TT324dxIwAITbB0ZRJVf0WViGYFiUXlyskxIaPrXzjqLUnGOtfPMNdP8UDJiC+WAYCPXb33xCp+6C2fxX/7y8/UHECF5Rpxwcb2TD5vqkTiXD/D+qhuXONq1QQoI5MP3H1y4vvS54UknUym3Kdc2RwVmO1VQWKNpfbUdq6Uz8LH7Z/D8oaqCc2MxNE0asy7YKFMRk+DTAmtSVwx1t7HVzbRSxVr72S3teuWq77Q1QJj7GYfARVAxiBx96MmN+0QgHWVOz54ao2xrbCLf3Lc7pebmjdkF3OXrkE6py0IbWu2nwY3YAZKl7pU2VTzrq2SyeoYNLQxifP9yYmLY+RgFtvbFoT0niQR2u777PpQM0SAW1o2LgocXFAF4ucsTKIt29o0rrHBVRNkBi/08KDP7yrh4bDbdcOh8HGhTGKzpx/AM3HYDug6XJzJ2FJaYhJD59euihBTymgz4KjqXQWuPzhv/QyXu+naVq7lVk8tHXf3lveDa0HeZH2PLW9iY1gFibb7xlxoAqo36N/85y/BH/+nL9LvYdVkFVI3Eg+ubbMsks9nn0TXva3ZR8d3I1fIgwuDGovJMU4h2WKX2k46XxlT3poKwQ8Spbo+VHuV8HNdJe7sQZtpHHRwoa/XLlRv5jOuOXJW1eHeeWzFYBKN4x/w9epGafbzbfZEnO2nWN/KG0yuO3D7/j+9Bd/1ezdptkuWx5ESCSHnrWZc4wg2pJS6RnzvbK+UjRoBsCfYW9kcY5AlOLw4wNk1qklM9HGZRo15F1ywmkTPs3tzVGBPyYI/trSJPTM9fW83PweAITd1hGy+FhiuwBIA0izKTS8G5B2DFLq5uzogHjcKkdtgsg2cmriLwbjGDEy4WVOAxwiaYNUklvs400sxCnz4Ag0jgQ7XVhf5YZqIVndTkgmZ6KVJcACctywIgepBu69kBZfWR7WaxMSxSBgXEoulbb9mEot6LaMtsKTv4IJrcWceq5XNsTYqAbrfN2QOFIKuwU2ou+nGqJgIPDi93rYDCoAXBhmPFS/UYovDJJoSQFZNojQSF7Z6V2OBetUeuwW6sMhUgfJeKxdJJHdcHBD7Yl+QNxM1R5c3sDUudKBvcwDVNYkeni5lyR0NJjH4+KuftZpEY3NmiwwXfO6mLiaxLdg7vVoGifP1HmfCEZDaUJu3POYiTYyLQhvucGsSK+MaRuJIqrYIfUct46NLG/iW3/wIbnu0YqsLiVrizi43rQKwKxYGuP2oMt4z5aau4/jQaRUkrg+r+q/EaGURcvw3x3nZEsRtClNjEnuqJrFprkPva+LIWeUcSjJEOo6c1kl2trP+nlEuS3VRgn1zJDc1AmAhIKXdm+Hc5giLMz3sm1PBpZpbqsTRNJJ+XdDVu6MLajWJjnmLAvUrFlUi+ujypq7bdpXOdJebFlFueimg6yKN2gV0ZRK7LghD2xQAVRZ4NzOJeeBitwk6Jp3lpoyFPG1rhtkCgzKw3IwwBWu8IFH9nOv52wasbI70QtUES6LUyH4Ckw9tkjHtm62YxFrW2mLAAUA3Cd4z29N1GHXZVtJqXGODqybIPC+rW+OGbLHbg5clNy1kKf/1B/dNmEGJr25v0yY3nZI8SctNZ3psJjFNlLtp6CKZvs+AUVsL1NkeW52grndNVK/JX3j55+Nv//OX1N7jOp5rw7FulXR4cUa/V2/Lcj3S/PJn361YwKNLmzU22FbvRB/jIekUk8ioOd5On0Svu6kvSCz/OGEuKKV2KJ4cU99+E6fX1MKf1AkEl5LBhrYklQvE7AElk8hgZXULDEbCQ8qqv59tkXzXsXO4+aGz+IZf/3BtW3QMhSNIKQwm9+B8dRz3GItr126SWdPK5lgnuNOEJzfdMPqSuhby5jmaH2Q6KDX7JAKw3gNUN39ipTIuS4Tw1rI3IY3r2yU3JYXJTC/FntkehuMC68NxTe5uGwcA5zbH2DOTYe9sH8vrQ/UcL+W+06ox7wLaKyrl2EnkATWJ9By6opwPji5taKMvOv4TQToFf21y0+a4YuxmH4FSbhqZxF2PrnJTuiA3OwZgnObqo4AMiXVc+d5xIXetHKFrLdF2HSg5MtW8lBt1YQTTDkFilxYYdBxn+6l33MqmnUnkLGJsLnXNh5SUKIv/EyzOZKpxbYO1sY1TrqgCe2ayyrjGXKSJyQVh07jGBjeTWN2HK5ujetKoM5PIq0nMkpI1Y6gSgpnEYY7ZXv24pIyAYTsY5QUSUSYuOtQk9hh1dKYDMVembbLbTuOacpH8ihc8Ds9+3L7ae9pqEgHgUJm5puvNJZujuf5xZcPt4+c2a3Wl9vumYmhc4NQkFtJogREc2EDvg8/d1Gdc43Q3zaXzu7nYRwIxiQcaTCLPXdOQJHsSLFvjHG/71BHcXbZHMWWaacpkEjvKTX01ibTbhazmzLrc1F3vR+/5yW/4PP36woCCFPdxJCZxXEgsUY/KhGdcs7aVa0bKWbdqPCNm+yk2RnlZ20nH390GaW8ZJFCbCRrnYx+bCHkmEqEwWxrXAMCZtVHNlA2wB84rm2MszvZwxUIfJ1e3sDkqsDhoZ3IvNKqez92S+V22BbgTvPQcovl4eWNkYRIbg7TctIVJbNYktspNe0AemcRdj65yU7oIuUwiZe04ssWa3LRDCwxg95rXdF2UbzdIZBnJlJlsTq8roJQb0cOe6YoKqOMRGtzT++b6foneSpmRbKLHsE23Obm53OYAYP9cf4JJdNVtUEH+wYVBJf8p6u6mzWDWZlzThKsmqyk3rfUk7Wpcw5gTSCalrhFOTWJgkGjrk+hw1jzfGOYFsjRhMYLUS01l1hNIGeiAWB6CmV74dQzUmRSrcU35wZknAeFzN12YCBJLNsVVy1vuuzK8SbC8McLGKNc1grb7xgzQXMjScHfTWguMwHug3idxck5omuvY4JKA+moSXewj4fTaEEJA10ZX2+LVxNUkmY7r8e8+fRT/5S8+g+/6vZsgpayN47ibFgVK2Sg34VEmMx3PG3P7955YnfxuDumuGWxdt78yb9JyU4+ZDzGJAHCqnM9rZQqOQ/LXtxzBj//NrdgY5tgYjaskiWMhr9QH5G6dYZRLrG6Oa0wufd8mdJBYMomUpBIlmxhS4tNsZUH7ZEIHiT0zSNzS13DiuSbPbYywZybDjYcW9NqTghtOvfG0QXPONNRsdeMa+/bo2XzlYlU6sIcYWZcqoWsLjGLcIjeNTOJFgZpsi2Uc0S1IJNnMFqe2MCBDYh13EQSJXWsSaQLmTj60EOEGpEnCC6TUOJVB7qe82pJQK+fmPgKKSfEGiVuVTMUEWcIHbav2QPQziYBaoJ1dV3bfTeMaGyuYJQmu3TeLR5c2IKXEcFzoRbptIU/3R89jXJM4AnzzvJzbNOtm+AkIaovTJjf9uX/6HN55+zEAFBQnGGRJJwdcoN3ddKYhN1XypOBNdcY4l+glyjmO2+/Q7MEZlMmXBpPIvLfNerPmUNOkyQXbInmcF9gcFZoBoSCRzpWLAdPbSwUWZ1QvtaFRk2hbJNMzzCflDGUSqSZ3wHQ3tfVJtPZy9HxGCEvUBL3sSnqcXt3C/rn+RJDvkrvb0ExSucZ89P7TAIDHljdx66PL2Cpr6Wg/g5nEMihTzw1mwiNxM4nm9v/l3lMAyp6A5XdzBukOd1nNwDiOSV5IPHJmXZs2kYmQCsAm94nw7juO47/91WfwJx97GL//kQdKJpFqcu3jlAOu+v3afar+96Ez6/r9PndTWpMdW6akZJVEyDwmX2fXhnjJL78fv/bee2q9Sm1MOlCtVXppoueDx5Y3a1JmwMUkKsbrxsML+jUtN21x3H3RL74Pv/3B+51/30loVdQUHjh1g0f79mj+veFQZUJG17Eor8tJd1OSm7qMa3w1idHd9KJHVyaRsktsJjHpvi2A2wJj+6zITqOz3FSzbbwMGk3gXRwQOb211LhCW/l37XkYukigia2NSVzdrNgNE700CTZFMg0IXIxgIaVeEO6b62Npfajq44gRabEyv2bfLB5b3sDmqMC4kHqfbU5utN+uuiX1NzuTUmcSK7kptycmoOTIgF9uuro1xhs/cD++549vUfteFJUkmdVLs/2+yQsVYM/16uc7m5I8iViKmV6KzVEe1pMuIAHh2hYAzGS881Y3t5hc2IXUuyomsf4aXVfEyFENzP7SyMkVENE10EuUTPtk2btTB4mWRTL91lqTyAy2ge31SazLTcu/+0p0LIY3gL9PYuJINhHOrA0npKZqPxhy04Zxjctc5JaHzuJpV6mA6N4TqzUmWTGJ4fOrMm7izQnk8NlP7XW5NGccWhzgdz70gP5uuk1EQL2fCS0BdbCrR5c2MMolnvv4fQCqPrR1JnFy3MfuP43ZXoqnXbWID99zqqxJrI6jbZxZt/q4A4rtXFof6dd8TCIlCqm8QbmiQm/PVYZx/6lV3HdyDb/87rt10qZWp+9KACUCjy/38YFTazV3Zdc+qtYZGZ5UCxLb+1SO8gIPnl7H/37756x/32l0KZ3pvi0jue7YHvXrPTjf1+qCPUbS3MqKt8lNXS0wZEufxLSH6G56EcCcgzlZu0puyrv4adJiNWU3LlpOn75xwE1zPvFXNz+Cj9x3ijWmq3FNFyZRSqkfLmwZT5mhpf+HgAxX+gwmxRzH2U8d3PRTp5GJlFLVNthqEh0LC9+2zNqS5uU8ySQOsWrUaDndTXPFrF27fxajXOL+U0oWZdYNNDO7pgOlCy4mxTwvq1vj2nHkJASAisn0uZt+9shSfd9Nto1TtxcQJFY1MJM1iRyX5K4gmdogS1DIMEbQlCVW7oLt+yp1cMM3rjEXyU7jGp/cVFiCy8Y1eWC+j5/95mfhd77r+XoMYAmI8ooV3zPT0xK42YZxR11uKmt/syHU3ZSu/0HWsQWGKTdl72N9HwCas933dqvcdHU44WxqjguTMk/222sOk1Li6NIGnvv4/Xq7JpPM75NYBoncFhhJaVxjZRLVay952mEcO7eJta2xUndMfDdbAFYd/5/+xmfgaVct1pxDbd+NXEM//7p9ACq5aVpzwJ0cd3ZtiIMLfVy7bxbLGyOsDcfauIaukea1TGofoKrnBeqBlG0cUD0DyPHclNcqJtF+Dszef2dKltR1/dM+AurZd9WeGc0UT8h9Hfs46CXYO9vD4ZKFrDGJjhtg3Wj1xXmWnS/Q8Z7G+jOkJpFUPrO9VJtZmcoqW8KvcjftIDd1sY9AZBIvFnTt09dVbspd/AP1RSCrT18h9eQ6jZv0h97yWXznb3+cNaaru2yXmsS8qNobsDK05UODJEuhi9Ci6OZuOs6r88Z1d5ztZc7vRqycVW6aivAWGMYCOHFIZJT0Sf2+b66PpbUR1odjY9FkHzculHHNdaVkiEwgzMWWrf8U/c0FZ01iGZjtn+thxZCbDjJiUsIfrLR935jbH1X28ZRJzguJNC3Z5g6JI5+b54ZRA2OCY+O/HRADT8cyJFFiyn27MImDXoq8kCyTEK9xjSH/dMEmQaTPMRfX3/lFj9c1XU4m3XCAXJzJtJnGTOY2rtHOip7vGerKSfdWlhAjxWMSXXK7kNMhLIFDbjmOJrTc1LGBU2tbmsU14TMJacJsr+Da3tn1EUa5xI2H5iGEajcBQPfJ9MkWm6D7hm14VtaB9xwGa5SAoHYsjy1v1lgzV52mWbcIAP/uhdfjHT/45fr/rvlkeUMFTk8spX0nSxMhavdAn93EmXXF/lLD+Y1hjrlB3VykeZ8qSTCx9n095+1tOFf6ngHkeK6OY3stqRkkPlL2gzRZUludPlAGyYnAdQfUeahUAu5rcmuc68TNk69UbKIZALuSHatGwvJUefynCToGnCT5drcF+BKn6vVBL8HZMrB/4Y0H9d8Tr9zUFSSm9fcRitwvN01jC4yLAl2NU2hBPZUWGMYikMckmi514du798Qq3n3H8eD3bwf1G5v33dSYnZffarlpuVAMDaaIEeTKhsZFlYEO3c+acY2DkaJm8a4+iVLyFpJJIvSDOW98P/UxxCT2sbI1xvLGqGISLYuEoqhYg2vKIPGuY6u1fbYFe6bUzQU3k6ju3ysWBkpuSsF2nye3U6Ag0T3m+DnFDNGujsrFDbcnGhmu9D11spQ1bfZJzBhOi9sB1UiR6YqvVQfBlJuy+pR1lEnW5HaWYI/mW18CwlYT1MZuu1iDUSHRS5VphmISyyBR12RNLiQrKef2mURzv12tFGyoahK34cBqCRJpf1zfrc2l1Ck3dTC5Nph1vS6ZKjG+V+2dwd7Zng4STZk8y920gwRdloYrPcc42j7JMY8tb2qTFqCq07SaiXnl1vbjT/LNa/fNIkuEVW5qO21n14bYP9fH3jlVk7s2HGOuGUjZmMRyF4UQuHKPSgzsLSWFvpYnJEHUTGIha4Y3LtXFktH775Ez63o7Ptmu+R2I8dxfXp8+dntrXOj61icdUkEiySR9hnrrhov76tYYtzx0Br/6nnus790JTFNuGlSTOK6eib/ybc/Bf/vqp+ALbzig/26Xm5af1SY3tQWXbcY1UW66+2FeEJwATDOJzIufJgBu0KDd5ph1e7MdmMSvet0H8N1/dHPw+7eDrm6SRYfJxwzueD0IZblo4jv+kQEBNyitmMTwgBTw1ySulA8Mm7spMSUh1xe9pSY3nbh1qof2wQX1EDx+bktn1m2LOzo/vTTBNfuU+xgxiQtGcOnK0HrWMciSxNr2gc7LwYW+YhJzCjb49xsthH1STpIlURY6L+ut1IKclyTJksTL9piW6ybajA7OFyomsQwSA65luq+T0t2UPqd9nPo5k/HOW2EwiVYDGuOadMHGblduh/ZxzqbgpXETAOyZre7TiT6JNZYu5PoPczc1j38vC3fkNOuUbXNCxTS6P8Pm7tjGJFbs4+TfRnmBpfWRnn/s22r/futb41r9nblfBGJ8Dy/OYN9sT0st5wfu5JYLtT6JHVpgDBxzAp1LYhKPLm/UWDNbAoLGtQX3tu9GQeK+uR6u3T+LB0+t6ff7GODTZWC/b1YlF1c2x5gbNPokWhQoZk06JRWJSfS1StFMYinNNGtQs9TdGmp5vWLmKEhMEr9zN1Dd+yQbJTm0a04g8zZSZLzghgNYHGS4YrGvv5srSWK2+lofjvHy3/wofuU9d3d2hedCt8CYwvbysr4fcK+vNw256Zc/5RB+4CVPrv1dseLNIDFQbmrWJEqp5Ke+FhhJZBIvCpj6c1adoNGontODsItGe5RLXbjNYdty2Y1JnCbqfSr5DqAsJtE45l36HXLcFul9JDcNDfaklOp8D3hBIh3HfpY4F4PU0NZWk9hj1MrS5yvjmvr29f7I6oH+zGv36tdp0WRbbJkmIYszPeyZyXDXsXqQaMvI6/96FqBtNYlXLAywujnW11WX+0ZLoD3XBzn8nStNcsg5sJcmbCl5kqjgxRVcuuSmaRIms9suqAchR25ascLYJpMYGNzIRp9EB5PIdjfVC0L7GFeQMsqrdg+mLHxCkmYJEn03QAiTNc6Lmrw2S8KZLH3eEvucYNaaumCTrlfHsSVIt3w3kpMd9MhNQ4xr1oxm7q6FPDG+hxcH2DvXx6Ol/NCct8L7VKIys+rQAsM1J9D5v3afYrAeW9qsJUlc12RRuFuQAO4gZXljhDQRWBhkeOIV87inbLuRJu5gDzCYxDJJsm45/pNy0zrbTCZi+2bLAMxTA0kKjlXNJFb710s9ctOyx54QlZSzliRpYRLJ4bSN7aR5k5JtX/esq3Hza79Krwl9LUhME7X1Ya7nMWovtdPokswHgKX1oU4yhGJcyCpJ6HgmmkyiDbaSAyUjFe4MlxDq72ZNYpvZDQCksSbxokBuXlgdTWE6Ga6wAtLKAp1jODEutleTOI1C565MIh0Glmy3o7SYJGnEJoRsk6zkk4RnQEC7OMeUm1L209ZHkKDlpgN7TSIQdg+YkjTXosnsP/eMa/bo9803ZXNmkKgXqOo4X7t/rpJtmU5uE7KOisVwIXUwKbUgcVj1SeQGG0AVUPiYZmISpVS9r8aFRC8te3AylQxZkqCX2U0qgHqRvok0Scr63J29v6kutWISA+Smtmsr4LgU+rzxmMS8KKo+iZbFVohxjRCTSqNCfw8mk1gUeluLhgvxTNMV2JSblj/bmUT7cZRS4tvf9FH8q9d/sMYk9rcrN7Ua17g/ozKhqca1MYn0mbbFPyVkfMY1IezehhGkuAKp06WU8uBCH/tmezhXJuRoXFbecyEoDLnpuJBBSWh9/BPhnBNobpvtp9g/18PJ1c1aksRlyqPKJjxBuiNIWVofYe9sD0II3HiocuVMk8SQm9bHbY5yrA1zHJjvYd9cdd7mjJp0wGYKU3fApWfIvrn2mkSqUyPDsWbvVJ9xzYH5Phb6Gc6Vz1bT3XciSGw8p4hJpL12mbnRWoXmUWHUedM413RXZxJzLW09VpY97DQqUoRXlvWcn343nv1T72KNyQuJfqaurbaaRJpPm1CqkMaLRYtsFFBsolmTqNnHFuOaKDedLv7gXx7A5x47xxpTSKl7QrECMGPhwqlL7CaTlLquh2vU0kVuSphGsXHNOIi1SC7KMeH7OKwxibxzRjU6AI/Z4BrX0Pmd5xrXFCjrJt2M1KqHSaSHasg9QBPtbC91LraKopIx9dJES5yaTKL5rK9aWVDNxqz+m68FRsU+tQSJltO2ZVhiU+AGGEFihySE7/o4vbqlFxFn14e6bjVjmIQAdQm06x5YL+elZp/EKqsevLlO0HLTcu4KcYKu1bvq+y18HJ03jiuwySRONOk2mDUXbBKlNibRxRqM86r+6/Ou2aNfJ/OV1LKQlIFJEtd1+dDpdXzs/jO4/+SalqRniWD1hTXdS30OrG1sJ4DaOaBz76sJFQ53x9OrniCRxSSOtXGKKwAY6YV8qgMTwJjvGExiLiVSUfVdDXnGmXJfFwNMz8wsETi4MMCplWEtINISUItM0nP5l/eNnUkkuafZl67GJDZ2k+oCF2d6mmEDlBkNfT/AwiTK+jVCTCIlyHznu3I3zavvS3JTT/Juqfx+CzOZZr3M5NaEBL2Afg9Q1SJWdc/0XRpMojZbsbNfvpZGptP2+tYYB8rA+/jydIJEXZM4pT6JaZI43X0Bo04/czCJwsJuF2O/AQ2g/m4yiW1mN0ApN41B4lTxk39/B172qx9ijRnnUk8oPpnYxLgyawFUFHYI6ALkSVsL9OjiD9xHKZXD3yzTyMFEW1Pw8wFzAuY5uamfXcxuumzLrEkMCaRMu2uOAQGN4zKJxNr4Hmo+uSnnHiAZ4yBLjEVrfZxEXZ1B5hFVCwz1uk1aRgvyL35i5Tq2YASXzcVWCEvhYhKrmkS1CD9b1gpuR27qGiOlxOm1IW64Qi2YlJtqVZMYuoikbaWJQC/x1CQ6mcT6/u4UcjKuIblpQDLNdADs5G7KrEmstwCYXNjpYK8lAGvuYsWI2h/ztGhtrkdGudTzzIufehhfdMMB/KcvvQHXl9eMbSGpfRU8++hjEk224dGylq5qyh7IfhmJGttCvpKbuj+Ddt/mbuptbyOE1QDl9FrF7tnGmPvtw8Yw18Ypvro9QB3nq/dOJrdCa0IBw7gmZdTylrtDQYqNfTQVIFcs9HFqdavW3sPnHNrGJLrkpnvKIPHgfCX5NcsUXG0islTg2tK87KuefiW+6bnXqtcdEnSzHg2oXGXN+US9b3L/KVE4zAtVPiSr8+xzpd0sGeaFQaaTiyaTOLGPsn4t6/WEEeCbx6C5fzS3NZF4EhCrRguMtWGO/fPqfByfEpM4TeOavHRG9yVOW+WmwiY3baktBBSTaNYkhspNc7/ctIW/jOCAUxdogmR6PhcrG8Z5gYVBhjPjYXB/MymNFgxMd1OqEQndRzoc22ESN0Y59rNH8RDSANU3juzufYsIgrlw5C3+i/IaCc/smouGfpqyZKNAdd5C2VxibbKyhkIahgQEksQsWuSm2rgmYHtboxwzvUQ9SMu3Nx9SUtYXrZTNp8nZ9kDUC8Lyby95+mH89D/cAaCSbdlqBui/ze9rwiWJoppAyngvlWYEJEfpYozkukc3RwW2xgUef2AO955YxbnNka5B49zbQOWcq6Rl9rnP2QKDwaJsB+QSyKotrDEi4RJo+i6UuAuv//Ib15jMpgvCIndsXstNaNamySQWhb4Xk0Tgz1/1xbXrurpvqmuFtu0zhUk9TcHNuiUyXMlaWOomzH2wMYIhNYm2urGQIDER9ud/xSRO1iS6jr8Na0Z/18o4qP6evFDtJ5JE4DmP26tfrzGJjNZJpuFTUHlD4/jbmFWSbWeJwBULA9z26DIOzPctclNbkOjedpoI2PLJ5zZG2FsyVzS/Aio4qpQk7qTMU65cxMd/9CU4vDiYMNexJWXMa+SnvuGZOLgwwJc++YpyXPW+JrZGhepTOy6wPhzX2NXMk4QbFQUWehkWZjLcd1LVWybCF2zXWfFnlbX6L/+Ca2uvN49/syaxidRx/QMVMwsAG8OxLjU5uTqdmsRptsAggyWfmRvVKvZdAbfVuCZEbtpgEtvMbgCE9EmMQeJ5BMf0wUQlJeTJvUaFxD6SqTL7ywF8uWmWEo0e9qCpDDhKRqoDk9i1vcc4L7R8sQ3U20lKvpSWMMoLpG1yADTlpkxpnxDoZ+ViN+AcmEwCR25qtrLg7CdlnzO9QJs0GyDGwNYCQ8tNA67ljVFek/HYFsmFlDVh2f5ysUB1kbYHYnNB/oSD8/jFb/l8fOqRJaNv1eQCSAYtku21JRRs0TEh2RCXgacaVMB9fdDxv3qvcm6lvoz9XoqMcW8DZeJC+OetDYe7KSdo2w4qw6dwdk+zYgnP3ZQ+mljL0AW5ae9vM+AIMlwRPibRPs7tblpvN9BMfOiWM2YApt/r3EUvk7hmSNKOlIYrypXZLdtqwjxONtliSCDrSxz5WzA45KZrW7UEUHNMc1su1I1Tyv2yBDe0j899fJVaJYdaTtsZqoHnyE2bcl/bNF5nEgc4tTrEjYcmmURbLV3mYRKFcARf40L7PZjnYP9c372txn1z5Z6Z2t/pMvD1SQRUK5Kf/eZn6f+7jGuKQmKYF7hm7wyOLm9idWusn/eAqtV3nTe6VxcG2QSTa/9u9X153IE5PPjzXzexjxNM4qglSPTc22YLjLVhru/naTB7QLWe6Lq9UV5468FNmGt51/aGeV47R02klpIDJTdt2YcJuWn5e5Sb7h5wFlgmSErIX6RJwyQhfPIncI1resxAtpIt8hgpExsdg8R1xjgy7kgTwQ7cCKHHsm5cwznXqPUEDHMApYwotNw0hO2mcbPMmkRiRHwOrCubY8z3U+sE2WcY12wM8xo7ZZMbkWkP4SVPvxJA1ePJ9kCkjzD37luf/7jaw95W/xLEUjgepCT3JAkutaaY0X0SQ5My7dcjybdp4bOyOaoYwSQJTjap/UZrcsvVJ5Fj2rEdFNrwiSEb1ZIsM5gNuN/KcYMsPNmh9zGASfTpFGxMVluQ6HY39S+KbIxIUE1i6jbg2LAwiQmpEhjslxqnAtvmMaHf/O6mkyxRW79J+kwbKX6mdMm0scC2mugmTpzbxPL6qGYAJxznzWSyrtwzg9965RfgXf/ly3XSImUY19Dzps9iEqvv5XIvpn0UQuDQ4gCrW2OcXhtW7YU8TKK/B6ddbmoek32N+kJXkN41uWJLilrHNbZHc/WBUpK8Psy1cRCNc90DozIZbpZvCOFuC1WVoNj30XVMKrmpPeBwMceACgxneymEUAEjPSu6rpe5oK/SNUjkOJwW5Vrep65Rcn7fHGQxbJR5gNxUOOSmnnFpr1VuGoPE8wiOVMuE0uST1XG4bNQ0heFkrQmd5Kaenj2ubXWRm1ItRIjRhA2cWsa8zMb5io2t4zocS/r8mR63/5SS22SeQOoTD57Bc376XdpaWj/s0kQHYBzDm9kuBhxCeFtZrGyOrCwigKAAmCzlzebSAMq+e/X3FiVDTHjpM6/CTT/2EnxRWWdYOblNBoncnlzBNYmWw09BGi0Cie3jMonm3OG6R4mxuWpPxSSOc1VHkTIb3OelLLHvqRvbdLbAsC90zzdokVi1GGrfnsmIcGoS6bsMmE7VJmtgSySEJiAmFtaGcZVrjPk+wjhwsVtn4NXPzkyiwTZQHR/NyewWGOaxZDOJ5XutTKIncHYwWadWh9rwZGKMgxEkHD+3iS/82ffiP//ZJwGg1m4AsNSu5nUm66XPvBpPuXJR/9/X8LwJet700/BnAH1/ITzSeiNooz60dxw9p4McV52mybbb4NqeGSTWmERD4to8/M26vSZspki0rZAERPN80/xOrTJWt8a6TyUArxHcKC/QTxMdZNN+p6l9fi2k/1p2XVvDNrmp594e5QUGvQRzvRTrw1x/FichuR3QdkJdeptYMnpRtoFUaT6Z/HBc6PWtDYnNBOsCyk1jkHge0dU9SUuiGDUD2iY/45lbdGG/ACWl7aVJJyZxpoNxDWVauspN1zlBojTlvjwmlxC8kC8/f76fsdxNtdzUI5u7/dFlLK2PcNujy7X9y5iyOZq7uQxwc0Fu29bq1rjWe81E24L8de++G8/9mXfjnuMr2BzlNXcwW/atWZMIqEbTE9uzyk3t35HGTQaJ5X60MomTx5IWQBRIkbnPDNO4ZhxwPdJ9cWjPAEIA50q5qWISmUoGSW62Hie3UQ7TlZcwNbmprAxQ1PZC5KZVkMjpS1rVJPKcqk2WxBbshQQ3wio3Vdt3MTAuNneUF96AyMfAd3U3peuynyU4uzbS+8153jSPU9MAopKE8wLgyvmRz2SdWRtaTWto/wD3fPdXNz8CAPjwvacAYLJPoiUAaNtH30L+6a99B/6y3GZV3hDOJEojuLIl4NTnVm0iPu/qveqz80InDrVM2MOS2uByNzWb0s8ZScVemnidVOl7WLflYnJleyBrHVf+n2TB61u5Ntyi/XDKTcuEjvlMTQ0msXm/tToeO5nEMkh0tG1IHEE6UCkTZvtZTW7Kabe0HZjti7qs0clILgRUy9tPE6e3wigvnPWIgCPhUeTt7qbNFhgywLgmyaLcdJroLjeteuAFLwjzOksXbCZjvI3NJNJDO3BhRxNSlz6JPXJt7dDaA6hnptugF8ncFgCmdDfwu9EidW6QsiYsWgD4Ainqf3fPiZXatkzjjpAG5k0mkRsk+vodrmyOa1lPEz4zEykl3vDeewAA955YVTWJE0zi5KLJL9GbPJYmi+SCPUgMYSnsvaSoBxgd79WtRk1i6PE3jrfrHiU78oVBhoV+hpXNkZYsKWkfh0kvdL2f6/rfGBal1Kh+YKZlXKPqJquglCc3FUb9XcC4BpPIYm0CmMQ2BszW3BtoZxKbcfO4VQ5lYxLpvnHvo49JpCDxqj0zOnOvDLd4QaIQVRDYPJZVIOv+DFsPyBDjGluQDqh2MwcspjXm57l6hR5ttAiYa5Fkjht9+ppQTKL9WN5zXM2pv/COu9Rnl4kLrVwJkVsbyZXUchzVPlZB242H5vW90pSb2syUvO6+NrMP1Fn6iTmopSax9b5pbG6ct0tifdvbUwZ6q1tjFEW1f8q4xhEkluxxk0mkHI+t/hFwP99c11ZlXOOWm7rm8lHp3j8/SLE+HOvP2ukEIcG8BruUPJ1jyE1D1pLDsV/OT/4YNYTITZs1icQQ+sZFuel0welnZsLsgRfOJJJskYxrwsaZNwzLJIcWkkm4A2uzJpEVJJY3EacmsT4Z8Fi6LnJT81yFSwLLY9LL2EF6W5B4qgwS7z2hXM7Mnkh6HKMp+IAbJJbJDp8BjS+L5rMIf/jMuv792LlNR01ifYxEm9lH+T5jXMhtZKu/0CyFJyzNErstPMmdST5LvbIquWnYvT2qyU39TOJsL8XiTKaNa7JyQchqwVNek76F/OY4t0qUXAYJ5xtkJlFJmcODPZ+VvA1Nd1OO4oK2o6RG9b9LtCcu7H0SC+84twEKn0kM60GYeJjEMYQADi0OdOZeM4nj8GDb/K6paMpN1c+24wjU54Q22S5ty3ZvL22MsM9iWmNuy3UPnDi3iaddtYgXXL8fi4MMT7myWUtdf38b2+ZjpEh9cuUeFdBS4qLHUaDQ8TWYRFtARMcxSxM8sawPr5hEhwS0gJZQcr5b4TkmriDdvP9tcLGdRQuT6JOpAtCtOtZIblregsq4xs1K9VKhxwLAFYt95/zazpLSd6m/Tusp37PbzyQK/bypmMTpyE27llh1GWPWwLtrEluYRNu1HNIncaIFRrnfrXJTfxAc3U3PI7r0AQQqSUTGqEnUTCJTytm5JrFQ2eWMIck0M+tC8Kj+LjWJ9e8WvvikWgJfxs41jm7o0O3ReZsbpDixwmMtzf5f9sbNqpaHgkSzCTSnKbiZSe1nSbhxjSGbBuxykryQziyazyL8I/ed1r8fO7eJjVGBA/PV5CeE3d3UxxrYA+7ABXnjMIawFG3uplpuWrLggx4/2CC45abqs+cHGRZnepPGNR3Ybd8Dcex4IHJq/baDolDXlb7+A74fnUvzWg7pL1e5m4YvrIFKEkvbdLVXaat3ci0+XfWFrkXrMJeY6fEZEfWZzmEtNYk55vsZ9s72dGIwFQK9jMMkosY2NVvVhBoAAfXv1ibbpXFWJit313f65nIAOLGyhSv3zOB3v+v5KGS1QHf1GG260jbhq0m847FzAKqELq1JUs9c3kRlXuRupUCqCcKBsmcesWiuxEXewiQmid04yGQuAeBHXvY0bWCTeIJtwH3fCGF30x4XfibRJV2n/+8pA+X14Vg/7wG/cQ3JTa8yHFgPzg/cst0WpcxOuJsSwbB/ro+z60O9DuQkJLeDcaEMHjdHRSe5KU/xVZm5ucaZfWhtcLfAaAsSm+6m5bpN+GpnekAeg8SpYTs1idSTi8sakLtpsANcjUnksAYqu8yxJK+yVgn6HkmaDfRA5DCJ5ndjObeW2c0+Y0ECqAl3tpdidWvMqAkt5ab98L6FgArA+p7G8UDVk+ueE6va2AjwW2Jb99GQ2w0YrTNMl17Azr6oCdv/gJp0KZX4hXfciWdeuwdn10Y4tryJrYbc1CZ3kRJejZ5tkRayILc594WNs0vSyACmV7aYWd2sy02Dpcx5+71NTOJcP8We2QznNsZKXpgkyFK1f0XLYkdvr6gk6K7gy/VAnFaQmMvquwFhC5OKSQBrkazdTZkMsKpjQbnNyYV8qJR5kn1pY0Tsc8k4bzFW8MpN/de/6zrZGI0x209rLo1845q6UVWT8a9ku+0BsM2UxxekuOSmvjo1l3EK4XjJJDZbOfkYKT/bljiVJFSeQaZnKrlSzeWc50ZNbtoMUhqBLJnxaLmp77u1BOm2YNt0DgaA7/mKG2tjzP0mNBvL22CTt7aZ67TJW8lYZ2VrXKunbzOuyZIEV++brLW3BbKtiSPH+iJEbuq6RoZj9QzYO9vDkbMblXHNFJnEuX6GzdEQWx08LkJ7kNO2EqHWr6uOkqetFrmpNUiUAcY1SWJvgeFlEmMLjKmia00iZeT7WXgmn27I2W30SeS4S+mG2xy202SkGPWWQGVcw7mpa0wKMwBLU+Gt2XBtj2vKQ9fIXD9jHY9mZtf2QKSaxJXNMU6ubNVkUhyjELNugRr8hoBcekmqZruWfQ9SV+AwyiXOro/wNZ93Fa7dN4vHljfLPonV9NWsSTSz2i7YAu4gl1LLJB7WTNzPJAJKPk4Plx0xrtmqgsQrFgY4ubqltp9W5i6h/V7JcKWXJc52LsNSatSE7zo+nzBVAgCQh7SO0eZFvEVy092UMyfT8UgTmyOh+tlWk+gy4ODeb2MP+wXY5Y70VdsCWddhVExiqhkloJSbehqJN1EUdblpc3shvUw1S2TOCUXYXGJjEn3skovtAYC//MQjOH5ua6JHH23LNk4lbdxLuix1M4k0x58gZ+xSbqpdgUMMn4xgugo26u9pMnvEXFLCz90EvkVK65A7mjWJTVCblKbctM0BlPazi9zX/HxzHKDWBImojMvo/VkinME9SRep760JG3OvE8dOCbp9Xh62yE1dfUIBNQ/2U6GZRFoDTc24ppBVwrVDYLrFVNe0GW4pR1r/dWI1rmltgdGUmwYyiS2IQaIDeSHx6/98D06VEr4QmItiVzG6a1tkLhLcE6183wwza21KQDlZ/HFRqIw8Yx91JrsMgDvVJDJcSmumPEwmkZqCc2Wquk8lw9wFUA/HUR5uyUwLIB8Dc3Z9iCcemgeg2ES6RthNwWtMYjjjGWJcQ3VsNrgswmmx3csSXLd/FkfOrJdBYloba361UGavub2Qxa4oWRvzHg9xTnQ1mDYD59leitVykTDb50rJzZrENiYxw5V7ZnB8eRPkOOiTCdu3J1vNRUaOrKmPET+fCOndOTHGWEhxkit0b9FCiqPucLVtAKCppi7MBn2mDS6546goJtir2jiLJDCMSXTPP+vDMWb7mXZ4BEomMQuv098aFzX3xaQR7En9up8lbwaXVZDOl5uS26F1jCdR8vbbHgMAvOiph4PHbacmkeb49WGOtbKZOwXpAFi17EJAM+M22aiZgGg6aDvNXdrq/SwybWAyKJ0YZwkuq+emcxiSxMF2ttyj6n3113UyNxWYL83EACNI9NSKk8TYdO3W+2j5bpV7d8ucYElAmPtk+26uuZzcTffP9bC8MdJmhNOUm3bxxSBwe2drx2/HWrKtJrG5lgFQyk1bwjWn3LSlJrEFMUh04AN3n8Avvetu/MI77gweYwYmHBelqm4mPGuqW2B0rEkcZLz6O8oucySZzdo2zs1Gc21Xt1Fuv8M04dW/0Dh9/AMnPPp8PWkxzneWuGU8gDpHT796DwBVl1hlRLstdhNBNYlM45rEzaT4FjIui3CabLNE4AkH53F0eRNL66NGn0Q+I2h7IJJJSIgkrT7Ovy3af+t5K6o6nbl+irVh07iGz9y7Mv/rwzEGpWz5yj0zWNkaY3ljpMxdUl5wo2sZPRJ0V2N2l0X7+YZ+aLcY13zq4bP4b3/5GSxvjGoJBlbrGFnNrWpb3YxrutQkCksCoi1I9LqbtrA2atxkAOZlEj1swzBXcnrTyv/AfJ/l+D0cF7WaqWZQFDInAJOGNyGqBFcLAJq3XdsxP9/E0aUN/KvPuxLPe8L+4HHbcTc1686XSjdHk0nkGDf5yhuaQRsxpfSdKrlp/bODmERXkN4SXLoZeL95k43t9DHw2nHUxe4lAnODVDOJdC/Z5gRAnX9Vk1iVoTzz2j3VPm6DSXQpZVzH0lfvOhqr47Jvrg8pq0TltOSmRYcg0by3uCaIbUxim7upNeEUIjedaIERIDcNYBJjTaID959cA1Bp5kNgLkA2R7kOINpAdTMpwo1axo1gIzj7LynbnWJjGN4mghZ7vF6OVXawn/HkpvRWl4zNPsa8sTsEiR3kplpaxnZ8VdfVMC+CrhOafHxM4riQuGbvDBZnMtx7YhXPum4vADTGBciGyrdUNYk845rUW5Podk50LRAo4OlnCQ4tVnbyVxjW8k0mpZJ/8uQ/lQFNyLjqtaazog2J40FqMonmtcBVCZjqAl+fRJozrtpLToYqW10lEsLlfb1e4k1ukeFVEy73w/ONyfvGvp/f9qaPYTgu8LJnXoV5bcfP6+fYDBI5jtO1nmguKbPnM2yyuTZXTrdJSN1cZHKcJUkSynY6GZECvUTgwFzVU/CKxQGrBcbWuKjVTDWbUleMoP9zmrVcOkhvCTYmvCYMJY11jINZklLiyNkNfOmTDrHGhTCJhbTXHJvPS2pBkhqGT0EKFCO56Gql0Cw3+N6vuBGDLMW3PO+6ciys41oZwcTeXsjsk2gdJyxOqjogcg6buLaAStrugkvKSfN2lgjMDzIsle6+lNiyqgtQzS+U0Pnka796wvHb2QPSEcy62M4qUWX/bi4mF1BrnMVehv3z9YBkGi0wKJCeZQaJ5q5xyA0p1XPDV141ygv9jLHB2s6lGHdogUGyKJ/c1N7Dtfaxre+4TPFIablv03q7YEoOWa0bioqBCQ02JphExsIOUAsZzk1KGVEO22kyiewehOX34Yypm/Iw5aZJwrJbV/so2Qt5Yhy5mS2yJPf1l6PF3ZMOL+CeEyu1489iEo2HJIdJ1EYmiZuR8i1kXO6mdC57aYInHJzXr7/i+Y/Tv4uJ7D+97t5fa21VAGsgLAuZQrbL2FKLRAmoL4BMMx6SMnPkvjTOlcgxk1dmvRO1wKD9CUHtvsmllRFxZU0zz3V8PqGt/D0SaKBK8pxZG1ZZc8FLrlTupu1tiT732Dncd5Ja1Rh9Ei2MVEjiwrVoBdqDlEnmUvoXyJZzFxKAWQ0ZSpBS5br9s/q1xUGmr60QbDXarTSdYkMk4bZxYaoEe2ADuIN013x3dn2E9WGOa41jETLOx1qa+2ELOIa1ILFqQVIxieE1iYlH8dJ0N53ppfi+F91oOLdOjisKCSndLJYa55L7ticuJtk2Sm63SAIt903bttTnu1g61e/w9JoqcaL53yUT1sFlebMemO/Xewdb9rGNSXRdW20mWC4mF6CaxAT75uoByTSYRPoauudz8Pq6eh9Lbmr4iziZxFI14YJVlRDkbtqoSaSAMcpNdwZHzm4AaM86mjAvCk5RbmUl7zaAaKLZAoPLJLKDxFzJGjiZ3VpNItPdlMbymntX34fb26bqE8ebENgmFZoBzlj7ScGVr5cgyY2edGgB955Yq8lYWC6NxgNhkCXB7l5UtO1rNxDi9jex2DIyrU+/ehHf8YWPw9/+5y/B3rlebaw5LGRh7Qr2zL9Z99PysG86K9qQJfY64NyQic0ZD/ksSVi9Oysmy80kmkH6YYOVNYN7zvZSAV2Eb5tPXPUXSeIecz5B31eUAZ/rPqV59NTaVk1atS0m0XMcf/Rtt+In/+52tY8G2+FafAL+hLCtjqWrcU0hpbffp+36Dwpky320JRNGhUomXLd/Tr8myjrxvJDW+6aJrVG9JlExMNXfQ/aR/t5UCdD++MZw678qd9P6uGPLmwDcCWqXC3Q7k+iWTm+NCxyYV4t4ChJrNbnMFhghfRJtsCUgdNKSWZMLtEtw7a1jqs90bs9yvxUtgawrwVvV+6n5n1zKKZnnMuWhtYpNqQGU5Q0OdUGrBL2pZij841xMLqDkpr00qT1vgOkwiRPKLWbCFeCr0hIhvMmtUat79GQJAGQRIDd11ST6FjPRuKYziAnkBBsmvcyuiSuz3eFMonpf115q/dK4JtRgRz3EhdchzbWtqt8eJ3BTP7vKTblMIgWyrPOWV0wip44L6MIkomxSXG7bMonTQ+rJVy7g1OqWftjUGZHwxa5aJIcbHJnXMWCv08w9xjWuTCvdV/0swSBL8XP/+vPx7Mftq70nEZNBG+CX6NnMU0INaMxtqHHtCSVn3ZJxTGpyISYDbwYprgeUGZAcMOW6RpuI4Gs5r5hEwH4tjxy921z1p+cbdN8A/roZOt+nV4f6HAnmfVPVe7fPCadXhzoRabIdtoy8ZsU927bJTdus/F3tBkgy5YLV8EnfN55xDjk5UBlwXNUIjHoZMcDt98DWuL74SoS9Trkt79ucS0KZ3Ob3amUSXcZB5Xed6dlPgteV1isTru+Xia1xjisWyiBxY6j3j1gqjuGZ2QKDLRu1jGuTSAKlkmSCgZe1+9+1vUm2rW6iYx9neQa3rKXaG9yXTGIzSHQwiaRcczPVlsRFACNo3ceWQD2zBNt6P/MCvSzB1XtnG69PL0icbRgktcG8R7iEg35uO8YpdU1bAqKZgRj7s4SAmny7tMBoQQwSHaCTxAlSzIuekyWhDKBqL8ELNqoWGGHjKEMxYIzLS7lHliSlJNY95tzmCL/23nswyouaIxbXuIZu7u5yU87xLypJLEduajCJXHMRvnFNUTOumXiwGfVHTzq8AAC46/iKei3lGRCYkhSVFAhPQNSdVCfHUfNfG5yZVs0ktjmCGQs7ep1ZI6IlUy2MCFDP9smAmsQsddu00zGZsQaJgfd2+Taf1MV04KO+XLRv2riGcb6zxH9tOY1rGMHXdqC+r/rdVU8tpcR6WZ9dk5smhgkTg4En5tSnSji3OcLRpQ3dz5QOkS0jT2ZK3CCF5oi2Zu6TJhWBSRJbcsXHQDqkbEAlQ2yyzhx2e9ioSWwuroOZxETUAu4guWliqQkNDNJtkky1/+52A4CrlrT9vNmO/3Bc4IoFlTQy5aa81knVdpwupS3Mnk0p0yaRBCYlwkA1H7aNmzyO1d9csJrJyLDnhs9MxmyNNWsEia4yBUC5fttgl9Kqn77AEnAziT5W3EVwDMt64/1zjZrEKchN6VnG7Tlsuvl2cjfN3P1dW91NbdLdELlpkmInWmBE4xoHaGHGYqQ6Mom0kOol4dIyep+2yWc4UAKVJCovJNp8U2hbyt3Uv4//55/vxRs/eD+u3T+Lq8qapyxJMPA0F7XuZ4cgcbvGNVy56biQfJOKjvIHYhvcD98q2/qkQ4sAgLuOnVOvlcE9EFYDZj4QfLbpE+OkLBMJlP23B0RcJrGqSWxbJPOYDd9i17cgpN3g1iT6HBDnyvNjNhOnIDHYXZaYrF7qDGrM5tLmeZjppdoAIbjFjaz37rSxgsMyi9zENINEzSSm9prvYV7oBeWp1a2a3CxlGHfQtdNrYWSllDhXuqgurY9q7K6ttioocSE8wYaLNUgmF+S0fyEMvDmuSsq4x/nqqcdGP80/+o9fiIMlq9VWS2pia5xj/3xV9zRpXNM+JwCTbC4d1jYJrk3dAfiYRPWzeThaZcKOROG4KDDoeQwxPPfpVi1IJAWKea5DahKrudOX8PMFX7YSgDaJJP3N6VLa+tyovzYOYhLtvXK9zw3HMTHLQkxDE5NJdCXggCqRYtvepLmResEZ7HmYxPbjYf8brW/NxJPrO51v0GU7N2AGicY54ribUoLN2xbKkTglWI9lkLtpU24aaxJ3FHQxcbIIo1qQyGGyFJPQS/0sXXMMAHYLBpokOAyYzlilKrPuG0P79ejZjZrWnm9cww8SuxrXUPaHLTctpCEt4wX3zf5QQfuYtNc1ZInAtftnkSYCD51W5ks1K/MQRqRRk8Xpi0mBjWtbvobPrsDBNK5xQTknVv/XSosQJrEmSVM/fQtCWyY/pCYxTSaz/7R9WhCazcTTRKDfqSYxwagorFLysUP++fgDc+wWGLpO1sFs0GfZ6i98Y84nyLgGUPOXbWGyOayO7+nViknkups2g2bXmNWtsb7Oji5v1JrA27L/QQkPC9vQZlvvcjeVaA9Im+PaZGyAewEKkMJA7dCXP+UQnnHNXgAwrskwuanPuEbf2y33qWgs0mTA8W+OAVBT0tjgbhNRLuRbg/vJYKMtkALs99zWuMCe2Qy9VGB5o+rT50v4NVFrgeGonTdVE759NM9brpUkbcze5Lbob+5xduMmc19c+2lzAPVJW33HBFDB7MKgWtDP9hO9/1Ja5OR5Nc4GK7vdEuzZnLvp/35G1p1IG+dSy8YJL3naYZaTfFdMMolhAV/N34KzBi3Xab00QSHtx2QrpAXGxAkIcDedaIFxfpjEGCQ6QAszTtBgSlM5VPooN5isUPmhMXFmHqq/icqBL7zWgD47K+uWfItI+rhHzq7XtPZs4xqS+7LcRqvfOdsiCWTbdzNBMrEZXRMavrBORHX8OZmt+sPXlY1UPZMOLw7waFnzRNeWbZxrHwFox93gmsTyIVm5ZFqMazwLGVcATMfWN7EK0b1Gqm5uUWXDXbAzkO1MYprY64DNOp09pgQ04fXuLIx7WzoeUC4HvusPzunzFsqmkwTa5ZIJUNZ0cns+6dv5hHm9pQ65qelEfW5zVAt4uO6mqVAmOb45+dxmpag4tryp2Nby2rYZ1+iaxJZrsrn2p+/qvN8c560t4SGEsNT7te+jL0gZlZK0JnyOnE00W2BMskvtQYMaZ/9ubQknd7DR1vKHx4C5xrW5m3oZ//LY7Znp4azF3ZT73HBJi5vups59NIa1Bdvqbxb5rT7+7n22KWXGIUGpJQArWhh43Sdx4rxVSQGz5Rpdy5njHNC4zPEF7Y7H/mBPM7nNa7nwzwlpknh6oFbz2+//+xfgl7712dg722OZO3YF7VOXvtSEUOM+2p6ZKLc9u9vkplb1VlGEyU1tLTBiTeLOgBbvXNlo9Xv4DTAuCvS0lTzvItaBG1PuSBNQyH5Wi/SSbfMsmE6sKGe2+0+u1ditadQkdjWuoUw+zyRE/axqO0OZRMWk0SQROmnRProWWk2J0tV7VaN0AA12I1w2lCZKbsfpm5cKg32xMonumhRXplUnKVoy0OZDm37z14hU+62/g17s8rKtQUyiw7jDrNPZ05CbctjtkD59riD9cQfmWE6GQPncamESXdKaabbAqIxr7HMX1SPum+thZXNcY9LpnIW6m9I15ZuTz5VMDQA8dHodK5tj7SxpN64JZETYTKJ98RmS8MiSev08/catZSS4rsuEcU1ujfLa4qsp7w4J9ujvdVOq8vh7++a51R2uIMXXS1CNczNEalz99VYm0XMtU/uQxZkMy4a7qVaFBF3/6qcQ/gDYzwiW77Mk/LzBpbX+LuS+sbmU0vn2j7Mx8N7nhiMxRtvLEoEFi9zU5QSt12We56ntu4UxiZPHsjVId1wj5jPgxU87jG953nVlK7WdDxJput9WTWKntaRwjh051DUEa6sgGdoCgyk3TaPctDPo5HJq28y6QA6VTj2ifO57k2OqhXOvRQJqgi6+PodJNDJWiu10jzmxonr8nFkf1h52XYNEznE0byw2k1hmf9g96bRsNzRIL8razm5Momuh1ayjMJ3EzEbpYRlh9ZMs0EPZHsoS+wxQvEwiZTEbEyTdi206fpu7qY8RtAU3YUwiLOPCGArAlV1XYxdNuamgazLw2tJBojtrSmwv4auefiUAtSDRJi1MJtEnI3T1SeTIn7cD06in5zAOIibx8OIAK5uj2uIySYS13q91W5452QwSb3t0GQB0PZgti6wX355t2+pd2xgYl7tmSMIjadROcu4b26Ec5dLKiLQlE/7+M0fxlB/7J6xujTHM63LTRNTr/UJrEtWxNMdVr7sgbDVqhrrDhlb5YUsyzc4k+s29zM8393NU9m5bnOlV7qYJj0mXsrre3FLaQHdTY1x1P7q3Td+tZjjUchzVOH/phgv2fqZhNYku5jJNhK6dAyq/CVfg1uyT2IQQlnVCS02oa07IDdm+Da42HYC6t5tqkh4j+bwd5MZ6V4jw9Za5bzxX/qpPIjDpFZIXsvQBYQaJwXJTM0gMaIERmcTuqJhE/+Lg5MoWfvfDD0BK2WASeUFKL01YjeprdYIMmWTFJDJqEmvSVn/rjJNlkLi0PqoFiZwekEA1uXGb2xM42Z+qlq4DI8tsgUHSYnaQmDfqv1oWFmaPrUOLg9Y6KdtnJQmvwFzr8ctt2e4dnySqzd3Ua1yT2Hub+SZIW7Y7hEm0LWTaTAuAarFoy3hrJnG2yuwlTLmplPV723ZNEttLeOO/fR7u+l8vBdBuuNJEXjKJNrdXgm2BALiZhvONELnpZhkkXrlnBoUEVko5KJ3PJmvm21ZlkuOek28/ek7/fqsOEhWTaKstpP+2OSc2D2UbI0WvN+dyKf01ucDkorBKyrSzFPaaRLssuW3e+u9/9RkM8wIPn15XfRKD3E2du6j+3pASBiWcLDVx7Uxi/fOb41zHUuh7p/56KJPoSsINshR7ZjMtN00Fj0lvJlcAm+Klxd3U8gwIZfbMfTD3ue2Y2IJm8zOt27Pcb4Vsr1sVLYx/jUks53FXgrdKnrrvb665TuK4tgpjbrOO08+AyWNpC4raXPLPF8xz2U8TbDFbxQFME0RZqdKAyTWQ9lfI/PfAxO0W4m46UZMYIDeN7qbdQTdgm2voD7z5k/jY/WfwFU85VAuCWHLTvNBF4uGsDTFHPJmqmVkBwjLkpnGI6TbXt1zoZ9ZUFnJpfajH0XfjLAhpgmcFex2ZRNNwhX0cU5WhCsm00rZ6aaLlBsM8sJC6zOTZWCxgsv7ouv0Vk7g4yHSGOeR8N5uJ+ybzWx46g0ICL7j+gGY7Xb21ikK1UmnPrDsm1rZi7wazR6+7x0w+2Kp2A+5x9oWMP7BU49RP27mjY2Ia1wBgGdfoeuOe2+yjuZBUiYey9oXdAqNkEh3fiz7LKjfVNbJBm+qMQlbn2XV/rw/VPXiobPZsGnfQT1/N9xveew9eeOPBWhsU1c7IPub177kbADDfT3HPiVUAwBXltjsb11gWnzpIdAysFtb119sYEQATPdhMqaFvjHqv5Tpx9Phrq4mjBdzptS1Vk2j0FnS5m7Z1Spx0N6Xj72ekms98s07cOqZzTWK5XxY1SUgA1jyWVHM1yBIsDnqV3DSpmPSQBb3JuLodWFuCDcszQOf7PNs2VSG0qA0KLi3rkhAm0aYuCGmDZLu/zWB23qhJJCbR2Sql5bloUxe0JRJc11ar4Y3BQCbGmSJ5f3Mfe4zn2nbQVLOF1hd27pNYoBEk1sdqcsfD+NsY4CB30y4tMCKT2B0UHLYFKfefXAOgstHmQoKTJRkVSm7aZEOa2BjmeOi02t7IYPdYvdQaTGLIgnBsPLR8BblSSqxsjjDXT1FI4GxppU291DhmPvSQnkZNIk2cpJN3saS1MXn1AOolSbC77LgoGnKEUNZG7aPNNIL+DlQLixsOLei/mU3BuX0S0xYW5eW/+VF86299FMBk3aRrgmyr0ZkIEg3W3IV0oo6o/MwgZqN6jcMk1hcyftMCtb0QJrFXbkP9jVcnS/e2T27qXshwnAyBSjrmWsQodYVdWkNjdlpylBdVD0JXneDGkOSmin2nIFE7jiaTToaEe0+s4nXvvhuvfvOnagspV3JlbWuMc5tjfN+LbsQLbjigXz9Uyk3pGVCrrw0JUiwSpdDatkm5aUCbiKTD/eaRJY9LGX4ToTJ5MgDyuZsSWgNg0XQ3rV73jXHViTtbkDiOR6vc1BFsk9rEuY+OcWTx3y9rEmneMGt5Q2tyAXV83XOC3zjFto+hxx+oqxnajj+Nc9033JrEkERhkniuk4bcdCary01dwaW7xcrkejLU3XTymmy5tx3GeCOHCoijUNoOzPryQZYGkw70PVSZVHgLDHreuGoSzXWjC5OGW1ABX6vcNLUzid6axBgkdoZmElsuqnObakFxbmNUey+vJlEZ17iyOABw5Ow6XvRL78NX/OL7ta4ZoCbY4fpuujF5xjVlTaJZb2ZbAA1zFFLZ6QOq5xhQMVIcJ0MtN+0cJIZviybOvnblDAikjGJzJS0LPP5lCwIKEkPlD83+dhNsVCNrfcPB+drfq8VWuHFNkoiyjss+xux7eW6z6vfWcxzHtsy6a/FDCZvzXZNoY2XDGmfbFzLtWeRye5aHPT1kyYWNako5Mu3CeLAB9ns0L9wW9BwHXNqe2V7F5Uprc3JzjTnfyGv3jX2xu6HlpipQIzUEXW8qSLTfA++8/RgA4Lr9c7WFlCsgfWxZGXs99cpF/NK3Plu/rmsSLXIvifbAhlowmMFlXihG0LVwdbE9EnxGJLRNB+1XE67WLK7ESvO1R5eUk7PP3TREEkv72ZSSq3GeMbYFeWBSzD2ujYGsvz723NuAuwaS2NhBltTcled6pDBwX/8mTAWKy1yntZeg5buZLWmc4ywJj7YkCW2PG6TTZ1oTOe5d1J+ZOxjnpnFNs59t85lf9a92XCeWesuuiYTWekuXCsjx7M5Sf9nS+YIpNx0wfDFo7p7rp2y5qc/dVAetLcdysiYx998AgGIaC6MXeWyBsXOgDDjQTjVvlvT18saotpgLb5IuUUg1EZuUfRMv/qX34/i50hRmbVhvS9EiCWxuD+C1wCA51vwgreSmlocGGTI84WAZJK6UTXmJSWQEifReTrBnPthZxjV5XSYZ1juyyrZyegnSg3yQut228kLiZ/7hDtxbStHoNbo+VE8o/4PtWkNuCvCMQupMovu83XpkufY77aM780nXbFtmvf56m9U3QA/E6v960ep5bNtY2TDWhrZR317bQt6dpa1kYtfsncV3vfAJ+IP/8AIAYJkp0cf66o3zwh0A+JgeGyi4bZMJ2853lbQI2lRnFMZ903OoGagmkeSmx8+pQI6y+tbMbglKhPUyoWty1bbsDPBjyyqYuXrvDK5YGOCDP/Ri/MK3fL5hUqHe1wzAQoI2oG7Ukku/kYnregxlRGzGNW0N59XnTy5AzT6J9X1UP33NxAHodj9Nd9NasEeJ9VYm0V6n3OYuO9GTrjXYo/1yJPycNYn2ca01iQ7jLFoEE5NIMK9/nrupcJ5rZYrUPrdaExC+3rWWOSgkSLSpt0z2ybc9e71rQHLFU4N6o6EA0mNcz9OWWn1bsNFmQOOTQAcxkM1A1iU3ZSibtgPzXHLME+lYz/VS1lpSlte3i0nX16S3nddkfTNk0c4kJmmdStcX5fZaYMSaRAtMijiUnl4umUQqlg92KTUW98K4sHqN82oGISdXtmrjtlOTGDKOgr89Mz1vo3QyfHhCyWKdNJhEWxG1C+bDj8UkGuwey7ZYVu6mapsBD8Ty42kch8mttcCwTEC3PbqM3/3wA3j3Hcfxwf/xYkipEgmmlM0VgJl1VL/w8s/H06/eU3s9JAAwH64+Bvj02pb+/cjZdV3c7rT6Lr9qu7V7M9jwPwwB9XAzAwBdxxIQuDVdStXnecZYvl/IwpoWi7YaGDomSSLwU9/4TP23fsaoSdRyU/d17LNA99WM2UCN6p0yYU/NTDVmZ6NE89i6zGRoLqU2FMdKto+YFJ/cdLWc85bWR7h6b7UAc22LmERiih9/cA6PL5NqgP0cqGvL/z2rxEVVE6SMdDxjPKxB633jXCR7xrTI5mxW/j4m0XzGPnJ2HQAm5Ka1exu0jy0BcAeW1OZK29anz7WwpnsidS3+Heetzd3UdSzHxkLedFcmVitUBVSxNu5zLVuuZatKo/zZdvzNfQBCgz1LsN3SX5T207y9Q9hmGmczdwHUnDE/mFySu56nVdLV5W5qN+XxSh0dLLWvTAGw1/cD7me3qUhrrnXPJ3SrQAFWr24dJA4ynQgMHUeu8Ob2m5/rdYq1MMAqSGzh9JrGNSE1iQEtMGKQaIG5uPIt0LYMrfJSGSTO9VKsbI3D5YcGS0LXRdsa7cTKpmF/LJzSJhtMrbX5fx8o+Nsz2zPqlixMYim9fcY1KjC5+/iK2kdiO0P3UYYd/4lx5efPMLM/tJCsTHnCmcRUcN1li5rc1LafNz90FgDw8Jl1bI5yfczNQKKtTyIAvOIFj9O/6x54QRnhalHkq0k0j9PJlS1sjgvM9JJ2JtGT+bSN08FGCytiD/baF4Tcxtl2ual/Qa72Uf20yXBd7ConAVS5m7p7d5qM9MT+dWASzRYYzuDeJjd1sMbnE02XwixJsD4eT7yPvi8FiUeXNjDIKmm9CojsO7o2rIJEcwGm6rgmxxwvg8Qr9w6sn2c7BzIgAWG6SdJD3WUG49sWbS+EFee2iWhzL/a1wLBLVKsdePi0ChJNJmyylUV7sEfjzM2F9KkUwiY3pcQd17hG/fTVmgG24DKQSXTV4AlR69NKjd3TJMzzwJSb0rsne34Gss0WdUdIfXktuRLAJNpUApUk0LefTQdc9ZOblAQmmeP3/Ncvx6NLm7UxgC3gqP/dtq3mWrKtJpH23xZc+sZljhITU/FmwlSkzWLnokRTYt7PkmDygObuuX4abHYDVPdg5QHhkJv6kneW4D4oSGwa14TITSOT2A3mwt1nLLK2VZ0QYhJn+ypIDJUfmgY0dEE3J5FmIFFnEpNWcxETZiBlbr/5nj+76WFASvzznSfwFU85BEA9gH3GNZXcdB7X7pvFkVICpG4aFQS3ZbLMfXTtnwt0/GZ64cwebc+8scOypuqnYtvCjYOoBQb9s7mb3l7a4gPAxx84gy9+4gG9Lfrpc0izgVMDlte+m7ve0rw3Tq0OsTHMMdtLnVbfbfKfVlmNJdggNBdpoQvCJsMd5iQ5+dAupGxtG+DucVm5mzbBsQqn40YOj065KfP422A61brG0fb7lqSAi0U5nzCVBYC7TpCO76GFAYRQtdUUMNK+utYWK5pJHNZkoa5tbY0LbaJgg+24hLiN0vUqG/dAF4lY0LXcyHaHOrCq99Zf98nQfQZH5oLvaBl8k/kQUGbkLcFGO+PfnBNQjnOPSYRNblp+nmOgaz7IG6oQ5zjLcfQ7ctrvU1MVY9YkzpdyU8Uktj9PzWCTbvkJ1qzlWq4CYHNM/W82CEvg3CbbpXGTwb1i0luNa6xscwhLPbk9oDrfTzq8iCcdXtR/bw84XNeJXe4YMidMXMvSH2xXbVns65JmYlgnrafQJxfglzzRuNleuNkNAO2m7UqIVSy1r3TGorqTeQCT6DCu2WYLjFiTaIG5uPJdIGuGccfyxgjDsdTGE+G29dVCxjWJU43Mj3/d0wEoGafO0KRqQraZ3dhAN8lMz80kfurhs3jt39yG1/7t7XjfXSd1sLc4k+mb3RYUacZxJsOzrt2rX1f1fuFMVi1IZLWyUD/7qXthvbo1xk/+3e34D79/E+4/uaq3lyUJi0kx5Z0c4yAlJU70ftqYxPVhjscfmEM/S/Av954yJBNlkOgttncHG0BgTaKRSVULJvv1RffG4iDD8XOb2BjlmKXss2Uf29zYKLhsPqCGuXsRSWjeA8EmFY2HdlBtlSUjL9HOvrjuAR+TqBj4rjWJk+eMJKI2cOSmZkbUNc4nN9UByg5SiU2XQlcyx0ycHZhTwSHN47SvrmNCz4C1YY7NUVGx/bZsMLo1Ew8J2mxsLjkpu2ALLIGwa3lCbqo/s50lciWBrO6mqZ1FMceZIPMhoJuUnP5u7dPXwmQ5649akzL119uCm0Sft24BwORCvnqW7Z+rkiPEJIYqlcxgzic39bPN9D5eAqJiIKvXmve/fZy9ttP3rKHPtN3frTWJiX17gPvZ7Qw4ApIJ1trCANlo85pUzuXOYdbjT9uz7WMlN93ZcgO6/8k7grtOnh9kqnyMsZ5PE3cQHMIkppbEBWThD/aASeOaoBYYUW7aCebC3SdbXG0EieOi0BNrcE2i4VAloX5vTv4nygb1Nx5ewMIgw8mVLV07QO0lQiViekFE7qaWpy85xREeOrOOQZZgkKVe+Q/JTRdnerjhUOWu2U8TZwBs3ceOtYUVk5I6j/+H7zmFP/jIgwCAL3vySTzx0ALIzMPnvufaVsW2hR1/qlsFKACYHDfKCyzOZOhnc3jkzPrExGLt7dRSR+GyqLahMB6uJAtp9j+i/QSAawzWeLZkqP1W3y0upY7v5nM3bS7kq0Wrc0i5vaZstHy9RQ4CTNaNhQSkQFNKKL2LO+UsGHZtNVtguJhE5zXCkICa59I1buS5JiuTrvZtdYUpfwPgXCSYLPyhxQFOrw1r/cp8GWjzGXDs3KYO0F2BZVszcZvDbIj808Yu5UWL1M5xPYbKW7lsp7vFTfUMnNhHB4sCVPPC4kymE5SH91RMYhcpOe2nrd7SN0w4FuTmd5jYjmZWHeOcfRIdwXZLcOOsFTfuE5NBp0RJcE2iXpADKOyBjTKucX+Gr0+iN0ixJO7092oJ7m3Hv6u7b1ByxSX3dTxzXCZfIUz1BPvYmqQq32c5byFSZqeUvBkklv8PbR3WFVpyLIhJDAz2yv0mQ7FhXniN8/T2SjWJTxIOtK2BLOs0KQPlpmbGu/z9YmmBIYT4EyHEY0KIc0KIu4UQ/0/5+vVCCCmEWDX+vdYYNxBC/F457pgQ4r82PvclQog7hRDrQoj3CSGesN19JbevhUHmZQRNJnF1c6zlpkA4k2j2gHNN/hSozmQp9s6qZrd5mSUmJ6VQ2VbFJKr9bNoxA9AL/t965RcAAN59x3Fd6+GqowAqJnFxJsPVe2fK96v6Rz3RBexnYewjpyaxWiQnzszPyZVK60/BN/XoctVW2WBKPVjGQYXUgZetiB1QE1IvTXD13hkcXdqoyXiAFibR1d5AL7bCH/bUJ9H8fBNVkDiDh8+omiBaWKRi8ruFNClOLXKcUV7UzBBsaBbph9SxAJMMQMhC0sn2tDGJFuMaWy1pfUy4RGaiB6qDNWszDgq5R2sKCIdroi9Drk2KdnCR0DQJSB2Mf27IHcnh1OxXlljYBsLq5lgf7xPnNiuXUmFxqEM4k1hf7LZfx7ZaotbsvyVoCwmIgMn7u821ksbQe03oJJAvmWCbf8oDTO1DZnpJrYVAk0msXDL9aDIwQTVxNtliixywTZbvrEnUzFL1min/dkGPczC5aSJw0AgSzRYwvD6JJpNYf49EC9tsWSeESDltc3JbsE2faZu32pnEyXtUfZ53mPWZXyXF/bWrzbmrSubat0UqoNoY6Q+AyfHbxlIHyX2dbPpkCwzAvv48n2jKTTn19kBlXhbuMK7KOVwKiBDjGqvctAiRmzaMa85TTeI05aY/B+B6KeUeAN8A4H8JIZ5n/H2flHKh/Pczxus/CeDJAJ4A4MUA/ocQ4qUAIIS4AsBbAbwWwAEANwP4i+3uKC1+5wd+PTJlkef6KVa3xhiNJfqpqtEJZZbMwt7EMkECpvuYwL65nmItjb5SqkA5bHsk79ILSQeTuH+uh2v3Va57p1ardhaA/aG9OcohhPpscu8z6+jU9tv305TEFjKM/TL3qZ+5azRPrGwhEcBVe2ZwopTxFoVfImPdR+PByjEOonYbNNa2IB/n6jq6dt8sji5vGteIMW5CouSXnlTfjVFbkghvcElM0VV7Z3UD8lmPI2SbPEZt0yJbLAoviwioSbdej6V+ti52HQtJ/uI6IPtMxjXGPTBuWcikjJpE2h2qSbTNXT7jAlffPBvGxjXiWvxXD+jJ8Vr+vINBopZp033jkYAC6rxSTZvJJLpMaAD1DKCE2ImVLX39C2EPttsWoDaTikLK1sjGVkvkkxarfZwMUug3bnIlhO10za8+xs03J9Nz+ooFFdjMNmwSJ4K98mdIMFs//tXnudBUJKh9bp/vfLL8NgbSPNeu2q/athzri9wI7vbOTi4aVV10+3PDPE4uk5w2xpmOsTlMBhx/23USsiC3tYkYF+2+CV0SCbSfXCbRaVzTElwKCyOVF/5emoBdKt8WXDoTQI56Y18rtfMJ89ruUpNIbrMcV9TUYBJtTC7gl5vaWpx1M66R1esu7CYmUUp5u5SSvGRl+e/GgKHfBeBnpJRnpZSfA/DbAP59+bd/DeB2KeVfSSk3oQLKZwshnradfaULYn6QeWviyLjmqj0zWN0cKwaoZM1CmSVzcrf1ugLqTVP3zvawtDGqSUtc9S++7Q16ae3/Jh49u4Fr98/iwEJ/4m+uQBZAzbikYhKF/n5qewEPmwbbGXos60yiI0g8t4WDCwNcvW+mziQmTOMaQxKbOXqi2TA2Ah5bETugvm+WCly9dxYnV7Z0c2+SGFub5LY8EFM9aYV/t5qZj+V4EuNO7AtQyTNsi6ZwJrERJI5la5DYzOyGLCzo77ZaRt+q3CbtK4ow18T6NgKYRE69a0NuarsHKCFiA+f6N/fbNa66jjxMYmByqwuajYtdrCyxq0IIXdNW67dnSXgAamG4ujXGNftUQmxcyFqSxCVt9bE9rl65oVJmc5N5ILtnNeDwjppcJBcy3IG1U+2q7ViW1zcxiY87MFf7e9II9qqFvHc3JwL8kMSRvf5L/fSayVjYnra53NcTkBtImf/PUmENjnyS97WtMX7nQ/djlBe1FhguUx51nTh3sZI7Mq9JWwDcJvelv9nYtlYm0SFl5t5v5n66/QRc5EF7cNkkD8YtjKD6PPs1GVbvOjnO/DuB45GwHdQNBjk1iWogrWe2AoJEalVmJtdtcmu1P+FO7erDA4LEpnFNUE1iirbZfqrGNUKI3xBCrAO4E8BjAN5u/PkhIcQRIcTvlwwhhBD7AVwN4DPG+z4D4Bnl788w/yalXANwn/F3c9uvEkLcLIS4+eTJk979pIeWkpu6LyqSm165Z0YxiXmBfirQT8PdLivNdmKdINX+qP/XmcRKI93s2ePdnsHSmds3sbI5wr7ZvjZxAIDv+YonAvCzDRujXC+SriqDxMPloou1AJXdgkRdk5ilzoX1iZVNHF4c4MrFGRw/t1nrQchxXDSZlF5LC4xxXuhrxZSb2YrYAfV9e2mCq/epY3jPCWWwQ85znbLPibBr3UvcdWwFr3/P3WWNHPR2Mk/GT+2nwIG5KhtVWyQ7ZGV+JtH2EPUbcAC2RWvYgtAlQfEvCOvbAACJ9oevrd6sOm/uBUJoAqhqgeFWCVBhvQ0s4xrj+ncrINxZU267DQ7+4bNHcf1r/hFn1+vqB3/gpt7z1KuUqyD1MwTqztMmNkcFCln1PASAmb7BpNuYxNy/ALVJAtscIQHHNSn9tbW0PWtypWWDk0xi+z66ald9LJhfyUA1/Or/L7j+QGMfJ+W3QJi7qb29QUuw51BOcBnIcKfq6jWJ9vnOdc+1BZg+yfuPvPVW/K9//Bw+ct9pe3KxMa5NceGTQIfUiZvnzWSRXLCxbW2ScNrPZk0uEJBcsT0XC/+5c/WUNevtrOMsZUghjL+VFZf+OcEmdwfcieHKAHE6TGKalKqcwOeNdsrPOEGi+kn1j8Dk+tr3TCQ0W/CoDw+QmzaNa3RNYltvLj+bONUgUUr5/QAWAXwZlEx0C8ApAC+AkpM+r/z7n5ZDFsqfy8bHLJfvob+bf2v+3dz2m6SUz5dSPv/QoUPe/dRMYj/DMC+cUk6Sm161dwYrmyO9uOdk/yuW0G2cYhp37J3tYWm9ziRy3E21cY2HSSRJwqzh8PcjL1POqr5gb2OU6889ON/H/3jpU/GH/+ELy30MZ7Lo+85oK3/ed2uTmx5eHODwngGOn9usZbo45jqFMfn55GgA8Nq/vR3P+J/vxMfvP43huNBZNFsROwAMc8WckdPcQ2UPMJICefskeqQkmWeS/Ppf/zBe/557cHptWDMg8Mq9xup6328xO7Cx2yH7aAsuKYj3oQsjqPfTGlzyFjJBTIrlHjifNYlmkgSwS2R8clNfvbFrW7U+iYzFJydpxMUvvvMuAMBtZSsZ7W7qkIWbElDq8frgqTX998RxDqhHoumoqY2bbJIhtC9AtUyvcS23XVvCcg7aJGKAvbYwBLZm4iFtMwBbErQquZjYP0/igs7JN3/Btfier3gi/stXP2VibNOBGAhZJLvqm31jbOoO9dM739mkfQazbQO9bGvT0YVJNFUxrnGu+/Qfb30MgEosm/e7y7ijkG1B26TDNacm0Yw5Oj9vAoLESZaaXvcOczCJhfd8u5IrbUxpcx+BdgMa2t4EA1xI+FSqrvu0Ogf2Pok7WW4AGHWbpQQ6vHRJ/aT1TIjcNDfmibbj0WZcY5WbtrqbNo1rAphEoLUuceruplLKHMCHhRCvBPB9Uso3QNUSAsBxIcT/D8BjQohFAKvl63sAbBq/r5S/r5b/N2H+vRO2dE2iOjyjXKKfTd4hTSZxOKYgkcEkFhQAumt7TF333tk+zlFNYlplyIPlpjktJN0WxOOiqmX5+mdfgy+6ocrQuiZ/ANgaVcY9Qgh8/4uepP/WRco543Fp9I3zyU3XtsZYPLSAfbO9Wj9LM/sZEt+bNuVZKrAxcn+vzzyyBAB4x+3HsD7MsTCoHECtC8m8QD9TrDEAbQqzZ7ZqL+G20fY/EG3HvyikngQfObNekzv1PLVjlBTZZzDOxKT4MqZtcjvbIqYtQ9uUDYU+tJOk0VuO6thaFjK0X9X22pkUm3FNey2p6i/aJvdRn6t+9jP3OVNmJrzFiA2mKUe73HRye2SQsBNBIjU/vvu4egzQ93K2pTDqhG+4QuUlX/TUKpHoSsLRvHRwYTJIdDKJpUmWC7b5NST7b2OXCumvx6Jx9vumbSFZPyZhDMUk2wNU10DPclxcGXmgao+0Z6ank5jN7Vklga3BrL3nalsA5npu+1s+2OfJEHMjW3Dvl3I61hcNhcdHXvOVtfvE16u1V0pRT61saWf3JKmOsK1PYhsmE3fqp++s2ZIrQRJci0zYXP+497EZpJfbagsuE1utfrskVr3PFXC4gkS73DGol6PlHm2rraXPN+FixSu56c4yieYzyJcknxhXvq+Sm072s27CVNfoect1zphzSZjctGFcQ3LTtuCyhUm8kC0wMthrEnXCT0p5VgjxGIBnA3h3+fqzAdxe/n47VM0iAEAIMV9+Jv29EzaH6uDSonyUF7UaFcLqcIx+lmD/XA+FVO6evTRBLwmvSayK2xPrg15tnx6iCfbN9TDMC6xsjfSNZquHILzpg/fhSYcX8JVPuxKAenAJUS0kbRbE5oTwa9/x3NrffIGUYhIdsjlGC4Ym2xleNKx+9jN3jeCoDK73zPYgZdW2Qy12y88JeJAVxuTXS/1M4onSUfXWI8tY2xrr5IOrkHqUK7aRmMNHztSZRFuwF5KhcrXqIFkeADxydqP28PHVJA5ziX6WYJ9hdmC6m7prL3iLJol2lq4pGwpf7LqaInvGWLKEikn0bkozKeY5CKlJBKjnnX+yb7qbWltg+JhERp2gbgpssAbcFgCuQGo7WNsa40x5PX/yoSUA1TyS+QI3UmUkAjf96EtqTcWzJPHWxC3OZPqenK0x6ZP7184k2gKAEJaa3lu/ltuuyYn7JkC2SPvZZNJDTDuAyfnV2yrFp2QoX7MlcPU+2iSBbYn1iQCAXvcnjiZ6y3mSJNW2bAk/f5uUakFevaaVZUFMon8/qcbWHOd6vi0MMmyOhji1OsR1+6t6dGcyOeQ6mTiW7cGevS1R+/G3nrdCeh1R6TOb1z/QLjdNrX4CRWvQoN7XGNfy/VyqnPbEqYVJbAku3e6mduMa3QJjSu6mZFwTrLgrj9ssYw0aIrduMykCqJ2Omq+EotXLP3CNa2hS2F6QOBW5qRDisBDi24UQC0KIVAjxNQC+A8B7hRBfJIR4qhAiEUIcBPAGAO+XUi6Xw/8IwI8LIfaXhjTfDeAPyr+9DcAzhRAvF0LMAPgJAJ+VUt65nf3dLLMGe0qjENcFMhwXmMkSLJTtIc6sD9HPBHqeFgxN6AAwEU5dtylJ3V+yS2+/9VgrkyilxM++/U78xz+4GXcdU1n1cSHRSxIdYNqaWfuyRr5Aioxr7OPC3QyrIJHngFgZd9gXdfTZWSL0uSVTmCzhyU3NDJmvT+LGMNfOsLcdXcbZ9aG2aXfJTUel3JSCwocbQaItKRBiCqOymJPnm1qXACogpcWlMGoSbYsEVYOb1Bow+9xNQzLrttYBofVONokSuyar/OkNEnUmv7mP7Ysfc9+A9jpNX1/SJjST7pFp53m7u2nY9V/NSa7FZ6uZEuOhHYp33n4Mw3GBa/bO4KP3nwZQZYPTJLEmO5pmMof3zOjAElDXkDVINBgwuqdnetVC2VamYEpbbbAZ18gAJt3NbocwiZbFbgArOCHTDmQSJ8sp3MY1+jllk5t6ZKp6HzsmjmzBhp+lmzzfrh5xtW1ZEhdtTJZeJ9Tmrfbg3vXsbquBzFLhXMzT6ydXtmo1gG7jmpB+mk25KfTnumBblIcYB9l8AYKYxMZ9Q8e/m3FN+z4Ck+etjSm1KSfC54T6a21OyS7ywPV80y0wdkBJYqLZloVbumH2SQwdkwrhfJZW0u528zI9NMSABpg0rjlPctNp1SRKAN8H4AiAswB+CcAPSin/DsATAbwDSiJ6G1Sd4ncYY/8nlBnNQwA+AOAXpZTvAAAp5UkALwfwv8vP/SIA377dnd0YkoylYhJtIIaRFghSqpOfJcLbJPSmB87omhf9IElNJtH+EM2SBF/9eVfp132Ny4EqAAKA3/+XBwBUAaCLDjffY4Nr8gfqNYlNcBagXY1rKiYlxbiQ1kWa6omY6L6PprmFr/7FtY80zvW9Hl1SAd7LnnmVNrowmURXn8R+JmpBYpaIRgBmz9j5sqau+jYzSHy07Muoe8t5ghQlrxbYP28Y12i5qa8+wZcRttSxBDqH2nuiBSwIawvJ9qy1bZEWwvbY2PS2Y0LHPyTjOulu6mASPUFbc/9cqD9869vX22pjEkX4QzsUtx89h9leil81FBDUziJNPDXYzIU8UJ+Xib313aNAu7uprS5dSTnbmMTJRZrPyZbQXLSGWvnbHC9DmUROgkuz71bFRfu9Y5Vkevdykl0KCS5tCb8QCaLNpKKNybL1sgsJpFzP7rZgwyp/K0HP5lOrW7V9cEvQA+dy87zp/fOMsbDUIcZBdrYttAVG9f/QBIRNKZMXhXd7NF/Y6gQBfz/N5mkLYfxtz+BWualDheJ6vvkM8c4ntAlfyzqtCfoeWm46CmES1U8h3M/SEOOaiWMZakAzYVxDF2Ubk+gXlE4lSJRSnpRSfoWUcp+Uco+U8llSyt8u//ZmKeUNUsp5KeXVUsp/J6U8ZozdklL+x3LclVLK1zU++z1SyqdJKWellC+SUj7YZR9Pr27h+tf8I/75zuPYHJHctGQSXUHiWCJLqoADUNnQXupmEt9+62N4xRs/ihf/8vtx9/EVfZP4mrnTw7CfJjgw38c3PucaACrjDdhr1ADg+Lkt/fvnHjsHALq/om9BmEv3osk3bnPkYxLdjNTE9jWTyJWblscpc2epyPCHzu3SuiE35QSyRobMFaQDSr4JAN/6/Ov0a2aQaJexqVq/mV6qv8ve2Z4OQmxutkHtJRwPe5LcAkqulxsPSZ8shGoSqTUHAF2X4pObeuVXlsA5xDm0WUdEv7YtSFyyoZCsNd+BcvL6aqvT7DEyrnRqvXJTz8Pe1dybsDXO8TefehSbo7x2vTkXny2LZJuT7XYxygvM9BKtFACAuYHBJDoDN/8izSp3NFyn+zpINB2nOwSktmAvhEm3LNJC5KbNRWvo6ZhYyAey/cAk4+x3N3UrXuj67jtWXG7jmrZgthGABQQpwiobpe/gT4rZmKygFgxMtlMfS8e87DPPct2ntSDROE4VI15/f8hc3gy49aZ9LKllDjIDBBeEJbgPIMWRCkxc/0CATNvyXGw73y7Tv5B+mrbERUiQPlE3LP3JDi03DUwAaa+DnZab6mQ+Jcl5a0ktNw3pE2qcD2eSpOV5D1iku8FBYkobKX9eXEzirscdZRD1Wx+4HxujMLnpKC/QywQWBtVB7mXCK8/48L2nAKiJ6B23HdPBRpYIp67blHYBwKHSKOHwYtVewrYgOV42i7/x0DyOlb/nRYHUCEhdzdydCzvPuM1RXnNENaH7xoSYYugg0b3YtcE0rgEcrEGuAns6tyaTaLOfd+6jySQ6gnRA9ZwEgM+7eq9+bbEMEl21pKNyHwFoltrsRWgz0ggJwNLELotdMYLE9WFeOpkRk+gOUihIBICbfvQl+LXveK7eX58Da5tsheuIB0wutkIZkS6LLVvtcAjbY5dE+RdoXZIrut7Y1iexJUvuajgPAD/2ttvwg3/xafzxRx+y1602r8kWuZ2rtcR2MCpbAy0YiTuqk3XXJPobTDcXhOY4QN0jZF4za9TkdnM3nTzfISy1vSaLzyRSJMWXqQYYYjjcTc26fNt2gMlgAzCfi265aTPYBjowWeWvbfV+zUsrlMmyBW2+a6Tax+r/QQ6gzuPfFmy4y1lojjm1OtTrpH6WVPXNFiaxLQITom4mJgNqEm1zshkgOMdZ7tPwpKTtGvEOsybG2hxHXefNLAuxwWbKEzqX2IIbr7tpC0vdvLd1GctOG9cYLLmtBMaFZpAYZFxjrAnbelsGSXc1k8iQm5rvlwUAEZApj0FiEIhRyguJrVEOIerupjYMy0UyLYwBldX0NVe/9cgyvuRJB/Gsa/fiX+49ZTiXGnLTxtCmrIYWJLRdIezBFwWJz37cPlUzUEiMChWA0D1rW6MVAUxiW5/EiXGe2rYmdJCo3U3DFpKTi2RL9rl0FyT2l857jV21HJRHzqzjx952K37krbdinBcTi2QXk3jk7AZ6qcDhxYFerLYxicMy+QBUkuEf/KrK3t1mpGH223TB5loGAOdKuenhxQE2hjlMtzVfTSIZ1wCK1f76Z1+j/+ZzYPUukm0PqIBAomttVfMcyIBxtPtNeWtr9tlyfbW5m+o+cQH3gGllnyV28yxTSmyDjxX/5MNnAai6P/NcumrN2vqUcWpEQjHKJfqNObmSm6pzbWsw3YlJNJJ3V5eqDkqauOaENlMSW69KiRADGlviQrbW5DYXTl0ZEZUkad+WuQ2Cj3GrEhA2JrE9CWHOWyH3NuCuN/N9P5dEz7d/atyk3DSsJq5RA6mDe/cY1/OtzeDF1TrGfC6fXNnCemn4N9tL3c/SwGQat5ZUlwCYwX0Aa2OtvwuQaTcNh7QpUkBSxuYu6y8TmXTFBtrnctFIkpQ7GnSfNo9Ju9x0cv4BPEyilpue3/m/iYl1WiCTSMea0wLDDEhd7exCjGsmFG3EJLa2wKDMDAWJAb0VgVYm0StGFUL8MSqVhhNSyn/Xvie7G0eXFOOTFxKb4wIzWeoNNuj1fjopN+2nbsvo+06u4ttf8HicWdvCpx5ZqkmWXLpu2j5R9M0bzjbxAGriBoBnXbsXb/3kozi1uqWbOfuklb66GV8gtTF01yR2MeDg1iQ2a7Jc2X9TbkpBWK23k2Xc7/3LA/jTjz8MAPjer3jihNzONfccObuOa/bNIkkE5voZ1oc55gdmLenkmHF5XQHAa172NEgJvPSZVS1qknjqv3x9Ei11REBVk3jV3hmsD8c16ZjvvI3GhV/qZcsioyUAs7FLMsCAxlnH0p4RNs9BCANpk1fuNJMYdN8U1ULFtrCTUip2qSVItyWA8kLiyBk1R372yLK+J2tMYnPxGcBQnG/jmnGukkDzhqJhzmhwD0wyh61uki7jGm06luCqvSpIPL1azSe2OaFtQWiTZIbVJKqfTXav/fqfHAMEsA3JJNsWskAG3EyibV+r+Wfy88z+wdbtJXWXQJ66oPp/CJPoMxPz1iRaardD3DUnFRDV6y64jn+bbDFNEmftPKBULidXtnB8ZVMlydOq1YAt4RcWpNiuSc8YC5MewtoI4WbovPvYSLiGBLKAegZvjieTaSH1frZ2Cm3j7O6m/n1UpIPtvPGCdPV/exJ0Wi0wzEQlz7hG/eSUPFmZREfC25vMb5JFoXJTG5PYFlgC265JvBfKNOY+qCb13wQghTKgSQB8I4Cl9r3Y/aAg8ez6sAx2Eh0kbjnlpnKCSVR9Et3a561xgbl+irlBhrWtvCaZceq6czWx0sVDP0lW6WKktsaqSet1++cAAMeWN3XW3FuTWEinRMNfk1i0GteE3KT08GfLTQsKEu1yO5LHZImYMK7JUveNDdQniaX1UXCT1iNnN3BtaSlOwWHlbmqXZxSyWvh871fciO97Ub1TjM3wJqgm0SEbOreh2NRDCwOsD/Paw8dncDQyGM8mhJjMRoZYmbuYxJCFnSWxHiAt6+6kx63/sl1fbQs0ug5C7ptCVp/TSyfVDPQR7b00J18/fm4Tw7zAM6/dg2Fe4Egpoyajrub3Aqp5rEutU1fQ/W1KEE3m3twvggrc/GyDVZZvLIC+8mmHAQBPunKhfM3OgLdJW23SstBFK723GhcmLauzZvR6+/YmnVT9Y2wOrIC/dszPJJIrqvv6UmNluV31elAPSOZ3U7XU9deKlutfbcseXPoWkYBHbtqyj+Z79di2IFE45v/ymUgtMx45s244CU8m0mjbbWZiwhkAu8fY1iX6Gd0mN20cD4mwJEk9kdB+/AF7Yqwt2PMZDrWN6xqk29jmkAREqCmVXlfscE2ieW1znjdNosIVA9THqJ/mWr2TcQ0F3HQsg2sLyziEzGuKKTCJUsqfot+FEO8E8HVSyg8Zr30pgNe278Xux2PLSpr52NKmlk1qStzDJPZSoRchgHpgZWmCteGkhrkoJPJCBZbz/RRrW+OaTbZL1z0qHTkJ3/aCx+HOx87he79CBQ9W9gWVjIpqF5XkVGXafSYVuech5c4GSwzzotW4JsgUZoJJ5GV/XMY19N80SXTPSUoO+BzZABUAE86uD43JL/HKTU+ubOELbzgAoDJ16XuCe7PdiQv2Zrft7qYu45qVzTHm+ykWZjJsjPJaZtNldkD7atZ+1bdlz2LS/rtgazYckv1syr1M900fnH0SvduavE6k9B9717jcuI6s++dZJDeRGwsAW5DYJm1V+2ifEx46rVx6v+zJh3Dbo+dw30nlzpwk7sVnJa1xMIk7EiQWE8wSJY2cwWzR5m5qZ1LGhgrkhTcewk0/9hIcXlSMoquOa1xIzAXZn9evrfbsfyP7jMAFoeP6b4tKJw2f2hf/Lrmp77r0JRerudJRk2gkuLKUt5CfNOVpn39cC2TuQj6sJrEpSa4+z4VWJtEpC3cZN6njf+2+GXzmEeXCbfbJBSYTMhJdpMzleWt5bjS3F1rLOBEkhiQFGglezSSGyLuZcnen4ZBsLx3oUpOYWhK84XJT+zOgOZaT/NwO6i707tZoE+PK9/lMEJswiQMnk1gEXJNNszo9J4ca1xhMYluPROC81iR+MYCPNV77OIAXMj5j14Ikd8O8wLHlTeUsWZ4sr3FNWjGOgLqoeomw0uhmDcv8QC3IyUl1kCXOIGVc1tkQFgYZfvFbn43986o/nYshIhkVLeTXhmOMTJbIOc79UHTtIxX2msfChM3+3wVa6HSVm7pkws0A7AkH5vBA2YokSxKr+QNhs6xTBYDljVEtS2lKmZo4szbEgfI8/V83HgQA7QZqC/ZIwuOScQL24DK0INqWuVvdGmFhJsNcX7HbhXH+6XzbzsHWeHJBrrflyGICbaYwtuAyrN6vubAGAhaESXNBUr4esCCZkPYFLBCABpMY2CcxJFFiLmatcl8qbWi5Rmz3KNU3v/CJ6hq+/+RquX+JN3EE+Baf7uRKV9iCRNG4lm0ugX4JqH0x0zROoQARcCfu2gNSCyMSwCTSR3KDy4n9NLLh7eOMYTJs8Q9MSkd9NXFJIqzyN6Dep9KGrHGfBsa/E60DwpJUlgV5SJBouU7GLc3VbeMqqbl/DOCrk3IfR1ftPABcvVcxiQ+fWa+15TL3C1DBlwwJUizXFhAWANcdp9vHNdud0LhW5r4xd4UmJZsMMO2zv05Z/bSaybS0k2qetjDG38YA+2XTTtNFh1eCz+vgfCJU8dUEvc9ngugaY9bpuxxpQ/okTtQkBstNi+pnEJN4/lpgfArAzwohZgGg/Pm/AXya8Rm7FuRoCgAPnVnDoBdSkygnFiRZQi0wbJm3MohJE22mcLKsYZkfZEaQUh9HdTYuuBZ2tPghN82Vzf+PvT+NtmTbzsLALyL23qfLzJuZt3vvvr650tN7T3pCEtJTh1os0ckGWbRFQRmQjI1MW1AYYfCQGaYQrqrhYVcVyOAqFwUlMwYYsA1VBgRlG1OgKiMjGdGo19Nr7715sztnNxFRP1bMWE2s5ptxmnsyc88xcpyT++y1Y+1o1ppzft/85g5t24+1jSmRil2XPl4KNSht2DmVzNjxgXl9EuvKziHG4Qes8/Cuu8djmxCfgjv97LNtO4pTvPEoQBITwfbjzQ6n2xbP3zBB4h/8JR/Cf/ndX4P3vXAyHnNCGy3U2QCpAMz8zPdbSquprhY1jlcNTjc7T5I7W5PYpmsSY86P3eyTU4x+tx7lTTss0u+J8yHHi9a/ZFZG65Db1zRIit/La7iPUo6uogWGF9zHEIrRGc/PMbYmvDbU7n70Hc+hrgy1TD6r5HymaWwXjyTuuj6zBg3zbKfzLInJ5GoSo4IrGSSxFDQAmNQ7MegXEKtJzI+bIon+56XHhYEsQ9Eb3ju5T8zPvABN7Pxb0bfoHIOkQN/n1SDHeU6+G9c2oOt96jqVuKumNFVXOCx/PF1yK4X2lGixdeL8iz/z9qEet+/hqZuHawkbpIdBCoMAp5IrQImmGj8fWuEadhlr6un9v8sk5c2Y6Zog40r31pzSjZif0HYFddMSkhgMFh+UZYnNNbueGR801T87NHkP04Lqzcdb/A8//tqkdzYQCbYdcCFlk77DdAuMQLima8vQNnChSOJvBvDVAN6squrTMDWKXwPgiRetAUwQ8MLgzP/s66c4WtbjDVKim7p292RlWmBEMiQ7B8mS3l2ffWAy9EfLJpoNBoyKZEm1MnYPj9TWIUh8tN55TkpKpKLLbFLJbHDBIVwEG3bOLB88j+SGJjRJS88I6HajSqz5+3uePx7/Zh5s+zmhne1avDxshvdOt5MFIbaIiIjF8wOSuGhqfPQdz3nHDI9l62zyhc2T4xGOTKpwW2pgjlcNHm9bnG5bHErbgETAbebaJ5HjPJKYz0jG6T+ljW3qIAMEujEDSYwhZ0wgG0USWXVT6rmxnxOrLRwRgxxKmlgTXn+0RlNXuH20xN2TAye5Uhedz7QgxuXQTVP0w7QseVege6Xp/EA8wE99t6JIThQR4Rw78177mgluyoiUtrbNjnOfG279AabnfxSuSQUpiYB749B9s8cb3tcRwbaMUyOyw99DBBIoITDx85FLCsvxwmstn5ey1FpSosWm7n/Zl1+6dTius8dukBigZvIJlLqpMgCOJdjH3zOHiyHADNo59bnKaysQ3/O7rtCCJ3HdDHtFt5eyqHgs4VcSPAMwSXikahKvqgWGm6hcRNbI5LjBl5Rp5/bf7/hTfw+/7vv/Pj41lKzVlS0dmwAVY0Im788Dzh5wnhYYFN10lf0zHST2ff9Tfd9/FYAPAvg2AB/s+/6r5javv272eNPiPc+fjP8/XDajo54qWt1E6HavvnwjWg8EWHqGK3bzmftrHK8a1HW6Jm4XCUZdS6rvDQHh8apBVQEP1ztvA0qJVOToLnUikCoJp9h6LKYFhvk5pwWGywcPx9l2I+bvIugjr6UKxAGj3HqyWuDm4QL3Hm/H5s5CLYitIaKcevfkYPpHxB1y2XjzfdvmLf4lx/Vo1aDvgXuPNyNtqFSTmMs+TxBBMts9pW2Rvc0iQWLJLQzVTTUCEKHgDVP/CKRqEvOOLrOZtp111FOqie5npo6XSnjcOV6hriu8cGM19l1tqiqZOCqrJl6OcI2slW4SyBwvUdtDOGmp5AoQ3/BTawLbJzFMXDCKhECYKGGSJPraNmC6BvXkGCB2/s1PrcDRblh/Ug59mBRg+t8BEeGUjhH7GN7rBTekkmckaKNqEjvddUvtb0XhmjpRPjO8drioxz3OFa5LKecy6LY2AK4T598cL39O5om7TJ+10rHk79HrraTSAoLuFfbSyHdjUXHX+r7UbmOYUyIBFN5bueTzRdp4z2X865i1nTnvVSWCN/H999F6h3/2aVN68bf+yWfMsarK0uQTfnIO4JuUZtEtMES4RtsC4+Lopua4ff8zAP4BgJ+rqqquKmYW199Ot63nVBw5NYmpIMWoO/pf/z13jw09pkA3FRGTzzxYj7/nqJx5RbxET65B6a+qKtxYLfAwQBLryE0sMvklJJFtmiqmWRTks2TDYXnrQhsTJCG8BiG17+VbNngrLSJGubXGneMV7j3ejIGFIJCxMRIkCt00tBySqK1JnEMtExNZ/uPhfL/2cDNpG5BEIDM1iSlkKTfNON2UVzcVx4ChtprjzXe2QiSFcQjDcUwW331fzvo+X2/sot8pi9XJAoZuKoj4izftc3PjcBF10IBykX4si39e2zk1if/N7/46/Nj3fuv4t5SUPEP3igvX+Eknf0x8TShSWxO0UcaxA6Y1YGrhJvmduJen4i6FOSYpaekWGHKs9PqTu25+UqDry8kmIBakMEG6H5CacWUkN03t043j6r0LyZzM+c/VJK4W9bgmTJHE2BzLCQ9tbWGU3UEmJcMliKV3x79bflwUSez1iSPz/9JaHqtJZOqUI89oYS1J0StT95alm14RkljpgkRXYyC1/gAYe4MCwA/99OvD+83/YzT5rvCsAY5/oaabinDNzo6jWmBcEN20qqpXqqr6y1VVvQZgB2Dr/Hvi7WzT4vbRamxXcLjiahLFmb9zbE70oqmxXNTRwNKlm0ofr88+WNu+eREHQY6/LMDTMZ61GxDeOFzg4ZlRU5XPii3+LLKREk65iH5v8p6jlZJuOlAirGMdCNcEc3SFJlwkMUU3PVw2uHuywmuPNl6GLBWkj0jicTxIjBWx29rOPN00PI3GASJQs5Tj2lRjsuL1R5sxQLc1idNrYBTP4seK3VsUbaieUlao7xbQjRhlu9g8KWdrvE/cOXIOIZBCElPJFb4m0d3IY/ckiyTG6aabMdnxwg0bJD5/Y1UWrkkFwIm+necxl5q/WtQesiFBQyzBVaKAxmvi/KSTa0nFaaLdhpmTfW3O/S+/q4Vrgs9jxzFzLN0nub0jldzKCkAESQHmGQXm1yQCPt3UOOT5cVU17ZXLIYmhuEt5vZOPTK0LWeGayD0iLTBWTT2W6sgeIp8XC9qoQCpIdpTGpcTEgPw1CK81QCYlw/t/FAXLDosm78r3ceq5ydPko3vAzGRy2+Vp0zG6u8y5rqZjBWm77BYYsd6FDOjgJmoWdTWpYxfbOAv1Jx26qfxMtypTXG+2BUYoXHNBLTA0KOCfArAB8E0AHgL4EgB/FcC/rviMa2l93+PxtsXRyjZF/oK33RxpS3l1U/OeH/x9X49/8G9/EwBgWVfRwNKtN5M6wc8+tEhikrYVEchxLS2SYOmAJweLgW7q98BL0UZzsvVAJNNEqjSmnMKf+OzDcTOQOR0o6aaSkUuhljJHeUBfchCRXLExYJIIh8sGL908wGfurz2KVKq2U2jKyd6RkSJ2udey9OLYxtaXFUBTtSVG8bYe62Q/93A90k3lnKSSHqnFLqRxAny2eyKbTny3kO7FKHmauegFIOQr98E4Fkl0j8dQMt335cwNCmL3JCOkEcs+A75KrziEq0WNmweLtBPT+99heiy+uTFru7bDKtG7M1mTVQjc6hSSmEnopFDSYkAapfMzKJ35OQeBnEsJ1NYkJoXZCntOU9fRIKXk8IZJAWHWlCwMAPpC7Zc5lvmpFfOJ9crtiCAxhbblDldV1YSmCkhNej4AiJcbDPf/osaLN6Z001htJ4CiwNdElMd5PTnHSALCnhNlINWxdGv7f0lKUv0VI0mSvJBJPHnd9oWEXwQ8oER5In6C8a0yYxIJiFzPz+UgJHMZNrIHZG1RIoluDWYOSVw7gpeffWDq9MW3j9Hk2d6d3jxHJLFENw1bYPRkTeLF0U2/CsC/1vf9PwLQ933/wwB+C4Dfq/iMa2nb1vQvPFo24/L1pe+5O1JJ88I15j23j1d4aVC/XDR1gsMvTkU1oodt14+oYoq2lVMbNeOmympmnIMkHgjd1H5WLNNRUjpL91rK19LlnN1/+qkH+Mb/4O/i//x3f8LMYXiPugXGkP2RRSnMUm2DOT7vICJHyya5GAPA2c7QTV+6dYDPPDjzKFKxwMbMJy9KcpHCNT041Cx2/sdWKcPi1vWWNpRrXdJlNqmmmt6PTCY5ViPS9/lF1XymP0+a/hM6yR2RtU44JCyS6F6DNqiTDW0MbIhnwK2dyrEEcg5vChV/vNmN98fLwzonNRupnqvM/X/hdNOMU2JVWP1zWQrcUkhKqb9fsk680AMVmAYArHDKtCax7OzGHevssAjaw9HYgEhQVNhzUpl8N+GZGgfY563UV04sTLB0/Tx1WbomUUk/jI1jklsybhpsFERJEvvGpjXO6LKp8YGXbgAwyt9iKUpmMeExI3ERr+UlkpKJQKp0wUMEkj7/Vfz8M0ImsYCjWDowGQPiu+kp0Kl619wzumjita7ntf/wb/1zfODf/q+xbbsxme+CAKx4orx/0aT7KwqSePvYonHye0wVmBKuCe/l0XEqOUGSvdbWJF4cktjC0EwB4F5VVS8CeATgHYrPuJYm7S+OVgv8e7/yo/iOL30nvuy9d2yfREULDACDumks8zZFEgGbeUg9aJs2XfsFOHWCwSFbh8Zw8zCBJKbQhgKyMS1Qthmb7LjIeXntocnA/LUf/nlvDgeLGlWlaIExbHapHjwhtc/9jh99x3OFmsQWR8sGL908xBuPtzjbWuc+rIcTY8R8Ug5TSUksVv9FOSQxx3XIsEv/RsBKmY8BdwGpDi0a7M1sbqxRdxxp/MPramfXmX/pWK3SIYxt9sU+iYpaXndji230o9poISMfu0fcdePzXr4JwG8blKIo5Y53GcI1MTExMctm8F/fdV0+cEs4yWPSLyZck0jcFdVNI2uQribRvkbdk/V0jPt5ueO5p6Sj0P743sHsOdHkViGYCpMCXVdGBGVciBLxQbp9jVm3qpgjTyScUuqmVAAWCTZK92Tfx1gvw/3fVPi2j70CwF+n5iCCcjz/u5mfWropxQqJ7lPEeZTjhUnJ/LCJmjAw1EQTyY5YYj4buAXnEeDrlCclH4U5xlgygPUtYpZqbXNe+wv/4GcAAP/jz9wb15q6StdNxswNis36E/dB14Mf+M47R+Nrd4byohhzyyZq08cO+7taddPSTRkI11xQC4w8zujb/wfALwXwlwH8PwH8AIBTAD+k+IxraadD8enRssGH3nYL3/cdHwMA1JW5SAzd1LVVEkm0zZffdusQ73/xBD/x2UcjqpjcRNsOy+wDan6GWRsXSTxZLfDp+2dY1PXo+MdEKkq00VQge56axPtnJvfwyTdPvc+u6wrLpk4G6aFZJFHQF/9Ycv7d7/Y7vuGDeOX2kck0JTJ2fd+bthDLZizQH/nntU9jcJHUsSYrg65OawaGvxWClJhjwSz+cSSxx8Gyxs1DuxxMahIj16DNbBwxtFP+W6INzXOahjkN55N2dicOSdnZitUfMQ7hIrJJhWJK0zGKmkSHJpVDEks1iSkETOb/4VduTf6eqn/JHc/cjxebSd51aSVom0nWIYnpwDnNnnATd+6fi30SZQ0KnN0ySo3heH5wyTjkbhKO9dlCYR4KScwgIu7fY3OMIc5uX9CYRZFEJkgM9kXN+qNFgGPPAEOvryoEcxzTYtlxMQocq67Z9j1q5/PlvjlY1HjX3WP82d/8ZfjoK8/ZcUECgmV3TFE6GVeeo3otd5I51biu96gLzrU9njknY0Ba8MmjfRmJIB2IC9dkWSHOPTkqciN/PoBEW5YCCp96tttMAi7VBeC89pFXnsMn3zzD3/vxz43Jc1EpBfiEq5yzlBAlYAGkd905xo984j4AiyTGkluukE7K6nCe5xGuuWIk8TcC+LvD778LwA8C+BEAv17xGdfSLJLonw6BqBm6qWuLukbXTx8Yl25aVRV+9Ze9CwBw77HR/kk9aLu2rG4KxOleMu6lWwf4+XtnXtuCGLJk4fBSsOe/XhSpyDi79x4bisobw3kYi42ragi4Oc9F1L5S6FdMIOH3fcvn49d/xbsBRGD+wTZth77HWJMImIDWPY/uvHPHcy0aEHXsxjZ1yLWomZjUJLpB4qhumkGycs51Tt209N2mQWLZaQrpXkxAauY5o45FAtJgHHP+Af9cssg9s5ka52aYY52uCc07FolaOqduT4Rrvvhdt+08I4FUCSW9DCRxm1kr0xn5Mm0xKtyR+X6xGjX5P+MQTvskJocAsPdrKKbBIFL+HPnkylTJMz/HVCa/lGBMIQ4lumnoXLtJlJzVVVhvPE+5lT0nE7QHZUc+pEla1Kw8z5jiYg5JbxIlB2FpxDd+6OWx5EbmGOt3SNXtqRFBTObIJiXdY8g45v4H7J7PKrdGhWsKyY4Unb9UJ9jE1gQycRSj4DKofVSZP/VcN+ng6zwmh/vMg7WXGEq1QIqZJ1yTEVgTJPG9L9j2ea6eQ7oLAJHwCIPEklLppE9ie7U1iX3f3+v7/vXh99O+77+37/s/0Pf9J9nPuK72eGMi76Pl9GQ1EXoAYDaOHN0UmDp2YXuDb/6ClwAAP/rz98djmc/2P2/bpSlUQK5O0D4gH33Hc3i43uFffPbhuOg3EUeyVLcUIjbhuDk1iRIcAua8uo7zskkH6aGJbHGqUWuu+bU7x3ChE2rpwaLGK4P67c+8/tij9gGYUDRKAUCsiJ0JUqJtInpOXTO22AkFzqObTtRNp45F1+sCgPG/uSCxmt7/8nrOQoSbzloH81Q1BZ+Myw+MbfYhBTq0ZcJBi5mrbhoTxCjRP4ECkug8Nz/0Pd+MP//bviIYN50PkL52sfXnvJZK3AGRDO1gpcCtruN0u92Y9IvTTYG400Spm4ZIYnLEcLwkup0fF6J0fHJlWrfHjAGme0dJXdM8oxEmQ8HhDdcuU8OVnaKZZ/AMMEImMbopg65WVWRtJRz5MLhnAikgjsqWkMTUHlCqnw/3t76wHoxzrMJ7kksuuu8Nf0+Oi/gzc+jd475dOl40cMhT0IF4oqQtrCVhICvz1CeOygmnEbWM+JM54GB7wUwSAHgwMNMerXfoOrsvp1ogxcxtL7LICOxIXe6H327ZNePxIsyt1kE2UzbxL9RIYmfHMS0wLgpJrKpqWVXVv1tV1U9WVXVWVdVPDP+P6/s/QXY2IonTE2oc8rQIzWoxPYXLBPri0k0B4AMv3sCv+pJ34H//az4GIJ4NA/K8biCPZEm9zBe+4zkAZjORz6ojjmQpq5tTSDNzKdUDTc/lvVNb7H627Typfg0lQbI/qfM/StYn5phSl5X743DZ4B0D9/zn3jgdERW7QCYC58zxYkqe7mdGxyUCMCaLHBXgGO6vY0eZ7kgUd1OOtYP2po41WVcJCmicgsvXJMp5YTPrk6bglGMnDrluHDDd7C9a3dSto0jTTdOfEUMgzfF9ufUXbhz4cvexTHdhQ2wSzv95LKcEHaP7AkTglghu2q5DVcWvXaqd0RwkkauJs58/jiMDt5i4CJMo2XnHIhzrzPkvCgdF7v+icEfw7LDCNUbx2DkOgyQmUBsOSdQ55ECGJl+iO8YCgD5fbybfLVyDrBJ3Yn+boM3mJ5PwiLI7MiNTiXJ3/tFjRRN+c+jd5b1N5hnz03JIrnxuVBQmm3CdJo5YVHwCHpCoZQyoSLd3ungmCQA8WBvQ4eHZziCg456YRxL/3b/2o/h1f/rv4/FmNwIOZlx6nvIMvM9BEsWaJs7Uy4nWyPHkvQDAt8AIhGvYFhgXWJP4JwB8OYDvAvDTAN4D4A8DuAXgdys+59rZ6cZc6KNIq4IU1cVm0aZPnCyaIZLl0k0BsxD97371F49/T/XpK2aMQnh6MGmSDpiA1H6ndJ9EG6Dls91qamXG2b33yCKJ98+2Hm972dRjgXzJRKWtGemmIZKYV2BNqcvKQrBa1Lh1uMStwwXun+3wyu1D77sl24kkFuVYETuFJEYpSlxNXBxJNCiR6yhYJDGuFFust4xmyM3PkpDAVFiBQwSBGfSfCZJS3kRlXJh9ZsaF36+sbho//zEzWVN7nFSNYJ5+NV1HgHky+Yxq30WXpKTqxIFMwqP03Rw0190itplx8ebefZkiGRmnQbIm9yShChyiX+bz8uPcYLauK0pdWcbNUdeMrlt9nrYVJgVY4RqX7iXB2KXVhEbo3RyS5SeprHAKE1zqktCp5Eroz4QWa5Mic8jP0WflaPok+s8Nl3A1x/CPxyYF7H7jv547Xix5V0peJMdlg3v7PjEO8Y8JbhVqEhPMiTySyLPENPZwQBKNUKOLCKYTCQDwn/73PwUA+Hv/4jWfblpnhGsG3zAFMEWRxGLdqjxvwwt0C4xAuKbvObppnQ8DNUHidwD4WN/3rw3//6dVVf3/APwwnvAgUSDjGCoYywYAeaqFIIWh4EqJnmEXrBiSkp5/CurfdR0OBgrtalHj+aERvEUS030S8z1xYj3YynL3QNwBfeOxRRLvn269AERFNx0ebHm4Q8faIom8Y+f+X8a9884x/udP3sfbnzOoYlr+2dBI0kjKdFG1CqCpb5lGEufUQ5h5TpMQUp/b1NVAiUopxaYC7njGGshnkmNOZI8ylXMRLKzyESWXsAoCFeY8AuLc+eNYJNE9L7SacGKTevPxFvfPtnjX3WOvbqSpq4ngFkNJSyWO+oJDnkoclVTcGKU51oSqXmYKhOtCvil1blyp3YZ72UrPjDuu9e6tnpKtB6aBAxPchPWPxspriZmnEe7gkyTTfYoR7ki17mFqEvXCNcO8ehEl4YJtMycfkSodLlx/wjmk5xhXZS4il5E9oETbbSTpndoXc3TTGJJIBERugn1ctxgEXkmdHgOpkJKZnWGkvKErB7JAPEg3yTTinGivW/SccAGwNrjPCRqmvtvRqhlLeS7SRrqpIILD4VPCZaE9XO+8BE8OSZQgcdXU+H/97l/kXY/UnlhKCFjkPnRmtMI1bfmGBIAmTwbVCNekjkbM4nrbNhM8pJDETUAddU2USFNBSpLDn6A7GvpDev5p9St/Uxz7mzk1ienC2gKSWAikJmMSlBXAPtTAgCQ6VEY13bSuxu+XpH8WgvTYJur+/b0vHAOwAh6pcSVBjJSSJ1Di/8dpqkz2P5rwiNRE3DiwFITYM1CiF8cy5FSQkjgnxe8WLKxMuw1gGqgzyoJArJk1Ny4UjmgLiYvlWN8c36S+4T/4O/jaP/GD5rO6YGNLIYmFBFAqcZTt3ZmkQ5Wc/4tzEkrIRqrnJ0sBjTaKziDp4ZjxmcmJhESSaT14ZK/1EBgS2Qho0yCOFyI3XQ/KIYknGMv3STK5VVhL3DkyDhoQZyWwSK57i7AIZKwNklaVmVVzjtUOd5n7GMhTCd2/x8bFgg0mAIspt2aTixHfiaFOx8QCNfRuGcYG6dHawraMcMdoyW3huo1iVu456cqJoymVeXidedaCxzSXyDleLUY9kIs08ScfngUt3zKUZPe1MUh0EMhUuYcEiQfLGp/38k188CXL2GvqaX/XEvor4wDHL+lZumkoXEPWJBboppog8S8C+GtVVX1LVVVfUFXVtwL4L4bXn2jLChAk0BfbIysSWI50U3/cJkNRBazzFkNSGF59SVnq+RsmY3C4sOpLWtqojEsHDanvZmoZUw+o0Bvvn+7G99S1yCTHH9DQZHNN1RaONaGJOaabgss5MRfo2z5mWoPeGNRAYwXiAIY+lfnrluyTmE0KRBwLgpKWzMg7tORXh0Xuaz74gjcuWd+WOGQc7Rw27UJNXPjdTOBGLqwiJCCCYEp0tSfGAFNEkKljkXl2scAh89wAcRGGtuvx+tC8etd2HpoZpe0SlLTZimyJeySbfa6ntOnzmAScaaZGvCalmMyR5zuS9NO0/KHW1ghtlOptFtk7WNSgC+5jeT1/PP++ZJMrKaQ6GzgnGRB5dCNMCpRq78RioiTs+Q8TTlTibpLMYejFetQsdTxauCaRdMqtXV7SYpx7OeAORZFK42KlIjZwKz/bHgJP1ISGzzdD5Ze/971/vBKVH0ggwF0BSRwDWf/5pu6tCLsgN0U5/5Ne0W16bT1ZNXi8aaN/m2tn23b0sx+uW1/dNCMCd89hsz2SfuIEkihsnYMmQjet60TpWP78T/r5juqmSuEatibx7V+cn0/5E0b7/QC+B8B/DOAVAJ8A8P8A8L2Kz7iWlqtVS9ZxCQIQQxIl+x9kyYt00whlCChvGjmapHtDfuKe6UP45e+7AyAeAMu5KNEYJoFUQe5e/pZqyn73ZIVP3DvFm6dBTeJCjySmgm2LJOocklDK/1s+8jL+k//ll+HjH3h+HAP4GTvzvQq1NglEECDQthl1LLHrJvOUe/YHvusrUcHn2MfUvSwlOH4vh7VOgAJJjCCQLI9f7l+Nuqm3IXZ8TWIo3MGMC9cTuWdTTkmujuKff+bB+PtnHqynxfaTZJOxEithipjlkytAugYyHxCl60PEcmql0/em12Rg2jdPrJSRTyOJXZZqByCREMgpEto5iRlEKjnEjIvQvbjgJoHalNaSYM8pSeS742KIbBlxnt4nxRYAQVKARRLDgE+jdulft3JwXyWeG4Ze7Lc7Ia9b5FyWrl0uSQLkdAimVEcz9/IcPZSUKMGI3f+q2sKQFULsG3IM89P/vJS5weXCYTwx6FIs6coIN2kTR7E6faDMbgLKPqhrx6sFfub1x/nJKO3R2qCIh8t6VDeVueX20jcmQSIcJDHdhm29M0HuwTJSqlZHzkef1xcBIueSVTed2wLjPV+Z/XM2SKyq6huDl/7O8K+C9Tm+BsDfLs/k+ppFBeM1ifGiednwp58nTk0Y3PB0U10AkOrvF9bnfOPnv4Sf+OxP4mtefXGYe1xZDShnu5PUEyXaIPOWINETrqkrrBQ1iW1vzsWkz8xgWyKTH1MADRGAqqrwzR9+2flecvyI86k8HwwC5kry+01yyxtNqd/Y3ZMpPz2sEZExAO8gABxtKC7mw6ubdsGmzTi7YT0KLcChdMiBaWKGba4eu24PHZr2z9879c5TTBSGSUCkaKNA+dmOq4bmxtTZIPET907x1X/8b+NP/KtfNPaUzZltMZRANsb11a136um2FDFhsBiTBHASRxFHPssSSDq7OmRDjk3d/wGSbuZYQBsC5F5D5Ywh3FkBmqYa+5G5xtJNx5rEAvI4zjFAcxn0xfaptK9RQXrkeQM9zhsyzCM7bIISAXm0B5gm4MTkOUqd06lyLj/H+DgiUT4JiLj7OKRc08Glk0gwc8yPcxNO4nyX1kkZp6XJxxV3y89AmLigkruJRFquDvj4EpBEQRGfPznAJ+6dYuPUm4c1yq697ognPly3XgIqVxaxcWoSQ4vtb4a1lf8OU7qptgWGo25aEKVhrPQJfybx+rgmDb+//9wzeQtt16aRxJhCEWAXsdiDM2asg+zDNnMcIB3slTapmEMin+M+oH/gl3wIv/3rP4AbB4txXApJLGWoUgFATs1wkXAKd12P54f6vvun2zHbVVW6mkQjXBN3mMz/5bvl5jjlkY/npOB8aqX1s+IuhCMpohEyjsl2x6nTaQEOwCDjU3px580lNsfJfezMI2Xx4JKn/8g8+ZrESAuAsh+JJkBXmfMfO16pR1ZKWRCw9RAA8PNvngU1ibFaJ/OzKFzTh+tWOblixvmvuVnc+Jg8kvgTn30IAPgv/sdPUEHiroQkjnQjZ47D4RkKaIxiX1oTJvcWysE2EDq7evobQFLLQiR9zK5kh01qLruujPbLPCdIYiFIqRN7cIk+GqMEMqD0WF840k3LVNpU43IqaAufGwLtqaoUSqcPNkrBVEwABUBRcCX0E6xKaeGerFLjMmMi6ySDwFv2ln2NqUkMkXQbSOWPF1KZ5TOoIDHi35USfuGx2MSRmm4aOY9mbPqePDlYqILEXdvhB37oZ/Grv+xdSaBF9oDnjpb4xL1TPDjb2T0xAcIAGMs2gCnddNFUOEso7G92Rk07tg7FFd750oFxzWNbYITCNV3L1SQWLBsk9n3/vnMf4QmwEWGKBYkJ9Cu34aeQxLG3YkE4JRaAZbPPSSTRd0CXTT0GYwAmUtPuZ2gFV86LJB4tazR1ZfokOtmnRVPjEbmQWLpp/DyW6DFAnA5VRs3i57+o2hejVg4/WeRYJPkZhzDXAmNOvZn8LTXHZE1cYbOZCt4QTlqQmGEConGewfHYmsRQXIStSdQgibnsp1BdAOBnX3/sZcBjTgVDSYshkPZa54RrpkEpdV9F6M9zrVRzHENE2KQYMH2+c8mVmLopg4iMddEBksje/2pq2QzUwDueE4DFmDihRe+vEpKYW7cy8wxrEmm0MwyAGURq+LO6/isatHG1bTsPETc/S98uRgsv0a1TNG2tMJtmjuF5lNdzFq4nPZFcGa+1khVi6aYyhguAY6wj5r5M7cH59dWfm8yXqe8PEXGgxECxc3ItV75hkEReuOb/+9Nv4A/95R/Be+6e4GtefSH6HtkDbh8bMZY3T7eOL5neS4WmumwqPNxMhWtSycz1rsv683Oebdlnxz2AbYER0k27HbA4SL+fNI1wzVNrgiTGNrkU+uXWzU3GJBQJ2ZrEeGax7MTEgqJSrc1c4ZqpI1muW0r1mxFn62jZ4HTbeovfqqmw3XFIokhCl9TYcuckFtzQbQrC8084yX0fNmUvZ4RjyQS21iCF5OadhHRNYlrdMV5bCDBByjRwZpxdwK8jKh1Lxvkb4uXWJIbPXIkyVFXVRKRCzKXg/fhnHnrPTYw2yiQgYggkU5M4z4nJt8DQxo8j3TTSygiIZ5KZ9S5Vy5KjScacQVbdcRK4gb//tTVxde3vN3b9yR8v3HNKcvzjPCP3V/k+Se/BXBN4W6dM9UkMvpsJNvJj4kkBErWJJIWZpIB/3fx5ZMdF9jfGv5j0yi0hwHU8SJzF7gD3DPjqvlzjePcY4++lcUFQpAmA3XHye064CYgn5kv9RaNtWcCh1LHzn9839GvkycEC27aftGpK2eOtCX7ePN0m3yN78p1jUzZz3wkSU4wvwA0uVxHhmnRN4mbXpfebFGpfopuG142mmwZ9ErvdhSCJ+yARLk1pejPn6riA+KI8NsCOCNdUVTrYqIKFR6zrkF19UmqeRbpjbOHJfK9xXIQSGIq7xMflkazDZW2DxOE7LZualsnvhs/JBW1AnhKbC5xT2b7U4tN2HSeIEWQx3c+Mjos6hPrG8XaeMxqlE4HzlDbNBcBzJOGbIEvIBKRmLnrHWubp1rYxGUI7zh6v9IzKmDiSaI7/jttH+BeffTg4pdU4JtkCo0BRSqr75pIrMYSigBClqPxip4NTwAaLlhbLt7hhGRBAZD3JqJvGpfX9v6UsrMvV1FaF9UcUtS+y/hTRhuD7lajF3vEi91deuCZOEet6UpVTiSRWwXrOInsyJzEKSYwyJ8rXLeXIU4nCyLpQQnLdY4gxz3eUElvydYfkqR1nfpZbN8QSp+R1c10M4rqFa4KmvMEcj08UyripfkSZqQRM27IwVFovcU3oJAgDIhRdbLt0y43jQRyPRRMlKfpwnQ4SJdh7bkAS7z22QWIqkHXH3TlejkEihyS2OFjEA7Hks0bcx4Cz36hrEp0+iRdQk7gPEmFVSGMIX+gMio100wySGA7btnlKTkogASjXcblzEmOc/9jCD+iFaxhHclFX0YyMSEAfLhucbVsvQ6ZpgSGbVipoY4QjYnSoEgJpM8/Tcfr6I2KOkax1z2StI8EGI9yxqKfiQaUeWfG61eFvhSBxSpPk+k+Z94pjx23aYS1LR6AGcryw4TmFJAbPTqlNCpBG3M6GIOqj77iFf/GZh94GFK0JJbLdMeEmNpDS9kmMofauifPQg3v+LVMjfsxYn8RSn0ogvS7nnNAU2g9wiIgveKNXGwX4FgwxtJNFYMYArBAwjOMSdMd8kDKVkmfGhU5hCXkMx42JfCL7Lx+rrkmsp/sNe936yL3FJAUmDBtauEbvX0QRqUICoq4SCDzz3ISJ0/yQKOLPrOW2Bk+SJP7r6eNN9/ySuq+Mm/TdLq6vmByL/W5anyQ2DjB7TmqOJysTwLDlRFJe4fbVDk3O0e0jEyR+5sEZTla25RswTfYBwEbGHa+scI3spU1auCbH1gt1CwCWbhrsN2wLDOl32A5B9AUJ1+yDRORr1WKCDEAeSQlpLmKlzSZPN02Pi9EKAEOjvYzawvM4kqnNftE4QaKz+SybmqYjSDbbOgfB33tmjungMhVIhdQT73vlzmMki2mzpslh0UbdTNZa6K1hFhOYRyWUv8XnmBHlyczRIBv+az0IlHR85qxD6L5eGucqGfK1hQ6SmMmYTscFDkIpSEwgboIkvvf5EzzetKZIf7hFsz04S9n/VAJIicAzCEWuJvHRWqd8J+co3Sdx6uzaBveZ71ZNxwH5ICWF9gN6uh1z/8fqJlkELDbHsnCNHwQzfVqBTDJBuf4w42J9Ei+tJjGSKOTWZH3LKzPHON209O1iqEjXl4M9IF6+UfYTnDkOP5lgbw5NNQxSWCQXiCDw+Sk6TAEZwwWyYQK75Fu442JIIkO3trTpnqvTrKclGPJ6zkK6LyCU2Pj7pc3WqRJJzAaJnSCChm7a9YbWCnBI4u0jiySOtYwZJDHX47Kp4olFNuE37jc0kjgEiZ0EiXu66YWZ1CTGFrxFAUmM002nC4/8Pw/Zm58xZ2uuummx3UO4YTP9DjOOZIn+k6qJa4aaxLNt59ckLjQtMARJtP93jaGtpPp4yfxjFtto3O+VPFaubqmAtgExmmRyiBkXBEQyR/czY7Zo9DWJstH0weYLlGviYr0jmcw64COCMo+chc61prbQzewaR54b594nJUqyjIk9N5JZff6G2RBfe7QZqS+5mtDc94sFexSVfAZCUUeQbddON1q6KVfzra1JTAnXSMud3BgfEeQ8+bqahwhOjkeO8wWYhn2NRUScAIx9biYquCXaYh3P5DN0R8BPHLFoJxCyC7hgUa45QgAA3VBJREFUQ7smx9AXVhU1rDVz55EcF1lLaMZLJHmaP/++k8yUG8gcfYqkjMsOiyr1aoM2gFQ3DfqZ0gFwgGbZ/Tc/bhFpxVZUlw2+Gx9sY4LIAhzdN0Y3Taubmr2KTQYySKKwzoRuao5j1fxlTpNxQ8L1uaOlKXly1vZUuQeQX4NitdSadkbjWs6qm45Ioqib7rg+iQXbB4kw6qaLOt7QOgbzAzaDFAuKxox1Gy7+ZV53+IDKOG3QAOQl2mXuKbqpNrPL1vul6jsN3bTG6ab1guJFzbfAaIdsduo8slLasdpCmX/qe8n3iH2v5LGiFDH/b6k5Avr6iyZGtxvRF11wX2oMHquHwLBpF4P0WPaNUGRz58VQi91xruDNnNpCJmst40Ikq4gkpoLEre0JBQCffbAes7OpfpNAuSlySvFYS11nkls5uukjoZsqg8RU0C1rk4/kltVNk0m/zPMdYwmwTlp4Lqn7P0A2zO9ldHtKNzU/S3fyRLiGDsCm6zITpMTYXm0BvQyf7VxQ788xtibkx9j1Trcmp4S6tG0iaLpjbM8vBntp/6LILogGG9kpRurEh3HEHhAmXBkhHyCgZHZ8UsBF6dzXk8cLzqVlN5WRxFiilmkBI8Pm1q3SFPTYvZwJog6XUpPIBonlmsSQbgpgpJumBB4Bqxdy43BhfNCuHxlbOSQxJ94Uq6VmGBcTf5JVNxVqaTu089jTTS/OhO4YsxzVBYjThGNZXfk/k2maFrLnN6nUzX8eQZLc4p+iPgDIB6X1tAchYB7Qph7oprvWE4TQ1CSazKZzrCSSUpijFkmMbDQyjsnQansS5ahsOYuNKwV7Ms8UkpgW8xneFyCJ2hpBYAjAyAa07egQlpMdQGzTptokTqiSjCKhzCcM0ss1iVMkFzCbZlNXuHNiN8SjpdRfTNcDJgCIbWxSs11KOMXWkvPQTcV5ONtxToSsE6mERy5JwiCJsV6hyT6hMZYAys+2GRtJQBTFPszPWcIpsUCWfm7M/0tKi+O4xJ5Tuk9iSKK73sfHDQJy0hbHcfxKcwTsmsqdR/MzXJOZID18BChVziqOtjH+hTaZmWodYIKU/BzD+1FeL84x8twwqGDYA7WY7Igmc/iaRJtIADfH2j8eiyTG/MJizXdwT3bks50Ss2IC4Jh4WWrcwSLeKs61n37tEf7JJ+8DsEFiFknsrEqpmCCJKZVqwNQkLpt6bMvhIqBNnfZBc2yxWC01W6fszZOlmzbDd+72NYkXbtu2SwrKpOrocsI1qUJvZrOpovSTQmATySIzgiQh99x8BhGkZJHEXFAUd3YtktjgdBMI1ywqbEgkcdfZGsxYCwA2AJtTfwdMM+RtV6gJjWUxyUDWnRfA1ySGxxOqdakFQEi5Lp2TeI0U35R6EoCx321YzO19zAal5v894djJ8cJgg0FSwvuLUzed3luAKKvVuHFgg0RRjGuqary2YgwlLbbecYEUpghkX6Co1tMaWddEuObhmqtZ2ZF002hNIoGkTGuV08FbnH7o/y1lE5SIuP/DgEjGlZ3PKSPBzKE8DnAc0ILDKpYUrikwJ6KJ2gLdtA7myD6jMhUNlXZURHWmyQUbEbSBSqbF9w3GAQ393RwlELAJxFiJiQ5J5O4tEwDPCS6nCVc2uJ+qAufnGO7BmjkCTjJzpPKXFa61yZUYIg5wwbZ7KA3dN3SVc8hZqp+42CffPMXXfd/fwa/7/r8PAFgPQm25/UDWv+NVM7amuDEEiXVk/Rfbtqbf4fFqga43iUlf3TQ+x9waG++BSjC+wr2DDhIjdNN9TeLFWE6hKFdHB6TbZgCxxZ+jrWiLXcPN0P09r1Ian6P5zMKmPdloONpWDOoXWuzRssF613m1Dqumnji7KXM319iiyjhpMVVOK2zES+vLOGoRj2ykuesdQ6oZBb4YclkK9uRvYSatVJMYnSMUQZsSEQkD4I74XsDUSWDOIzD0jgwccorKNgNJjPWpBExm1QSJNlsoSGIsAcRQ0mLJldL9D8SDy1wjZSCeEHDt8VCr8pisWWFbYPg1oeXvlmomnq9HmR5rLtrT9wwiYufkHk8r9mHnWx7nvt+svYVJQqijOmc3tQeX2m6M9GIlJVbeMypXKpJUYQ02F7Tp9nsgxubhkmIxMY1Sn9w5wk3A9Ltp7i0vuCQS1zLPsL8onVx0nzeiJjEUKtIEwO7xGDV5IFWGUd633bmpgu3YusWo0ip83lKQ+A9/6g0Apo0FAJwNSOL9rLqpLTk4HILEULgmlpTctR2Wgw8KAI/Wu/G+XzTpmsQ8kqi/Zu489S0wpE/iXrjmwm3XdVhkFPFiNYl24YoEiQkOP5VFqGOS2ByS6D7YbOP4KYd8+Fv2ePGNxp1LdFydrklc1vVYk+jSNJdNja6PUwRinyPjYtQHxkmLtekYA6mUSEvC2WXovuG48wnXcItPDEnJ1iRGiuaF/pU6Zqq5N+P8AD4qRSGQwTkZ6aba4JI4j8CQyQ+RRGJcmChhaxJjyZX1tsPBosHNQydIHJDElIohUE5AJJHEUp/EyPGyTkyE/uma1CQ+ItXvxNlYLdIJP8BH29j+rkAcSdHc/8yzDUzrj5jkSqwO2wQp5WP1vZ1bP76eHTZ93joySTIJboiauNS+Ubq/ImsCVzcZrgmM82/nJEaJVASomRnH0oT9a+3OPXm82LpQYDOkNQ/SdGtgmvC2vkV2ihEE0vzkVDnD858/1vz+ovLe3vvJBqXy/nEfJfaA6Pkn1q2xTl8RyIZJKoBMbkV8rtQcJUjcJKicP/nZRwCA24MIzYgknqVrEjcjM6oer8Ux2QJjMdBNzTF24/tzNYmluvRZQFG434wtMAoBX1WZQFFaYOz7JF6cmf6F6YxwriYx9gCkkUSuaFtbyxg7HockxsUmgFLdUpz6UFf5xS4G2/d9PzoJR0NNYtdbh7uUber7Hv/4594c5zDSTSMZ69FJy3y7mBNTotLah9p/nVXfiy3IuYUkKdvNblBRJDGHpGTUTVMLZOSc9MT9H6/lKm9sYb3BmMQpIon+Oel6tibR1hv0fW8cSRKl2Hnnv6P6JMaRxBYHSx9JPHaFaybPtvmZZSVENjZG3CVVM1MSKZL3xex0EOZhW+DIPFOooKVA289j1snx3lIkgVK1tQDnJE9pc/kxMm4apJTHAC5tjgxkI8kVim5aR1goxDqZ2oNLSUnAr0mkEkBBoqrvy8JBsRYYbJAecyQ5P8EfA3COfFSFOzMu1l/U/L+8JkRFkYoJD1+siq3lnQTOhEhIbC+leg4H+8b43fLDpjXwwz3G7AETVeCScNNkb5PzWL6X+8i9xZxLjbrpWJOYWN9/8nMPAdhzytQk7py6dDlsSDeNIYlCN5Uk66ONpZumyqSAfKIkhSSy7bxGl3dEEolNoF4GSOI+SLwQ27VpJDHZyDfz4KSCxJ7ZNCKLeCmzGMuGsYIkc5DEWF1JSelM5plC6byaRA9JND9TdYnf/9/+BH7Ff/Tf4Yd+6nXPUckL16TnGA+AC6hZJLCR78YIYsT6JHI1ie44vt4vhiRedE1irJcj46TFa7n04xhaBzDNLvYob4Yybhc4CGxNlrtJlSjJcqx4TaKhm55E6KZx5dDyZp+iAwLlhFNsLWGc+BTdVDLHrLrxdjfMs6DU69//ZVGelHBNDgGzzqd9TYX2BE4aUycbQ5e0NG06kA1pcwQibsbFEdkS4pykm+bW12AN4pHE4fNdJLHE9Iom7jgkq+t9miqFJNZh3ao/95TFEk5tAUm0tVzhHpBv3xOKItH1roF/wSKJ8eemfCzA30vN+c+PG3tTj/sGH4CZ45n3j+sPhQAH578vCTdN90TG6ipExGXupXHxoCj1jFokMREkvvYYgA0OrbppuU/ioqnx3udPAPjsGvOeeJDo0k0B68PkkcS0nxFr8aRBt8drwLbAAIBm6dQk7pHEC7Ntp1c3zdU8pW5GKrM7A6KOblBdeUGOBaQsJU270QOFVgpNhYOhJtF1nEckMZFt+os/9HMAgAdBA9RQ6cx8N4x/S1ks0033SQy/W6vvk8ic/1ggxWxsseRFrkeoOy4Z3BdqEv1aD95pDTPCpQg4bG/QsujLJLgsOxbmeHbTbknnZxznXO82s/a4c4ypO5og0RboA8DRytZfpJDEueq+xfqj2LpVUD8E4pldwDoPXQ+qLlmU7VYZzyn8fmwAHJtnLnmRe7bLiMgUgWTuyZhQCIO+ADZRxQayMQd0juCTfEY5SRVP1Oac66qq/Oe0gDy6cwTcWi6FAMpkTeZQgxC5Kc0yTAhoqMzxvTs9JtUCZldI+oVKyfIbswdoaaPmc4PzTxwrpgqsKd0YnxuyBcmU8eJ/XnKegT9jGVh5YUL3WCCf7dAHZZHEWKmUSdzH3y8AQCoJKLRSGyQONeqbNrkfjArXdYWv/uDz4/uByPnwxnWDuqkNqtw+iW3XT1BSIE/5jWlwsOUsXmKebYEBmKDQRRKZwLI0l3N/wlNgu4K6aaqRr/w9NgaI00a5DKH/WmlcLBvWZebnjkshiaUgcSIHTyIiufYSY9HwxvLBLd007kj+888YSsLYX3F8sONOXfG7JTLdQBptSCHHRSQxGuyVF+TY/cU1AI4EiQySGK1JHM5J4pipXo4MHQqYokvsZu/STbnaQn+zZxxCGSeBsxyTFa7xauK6HseUst30dVE3dW0UrqlsrZlVXuQSEOk+iZngq9JviClpfTHpAwmYgDHF9hAbBXYy71vUfhseSt0083wXkcSIs1XKeISBFBNsAD4C0/c9xVwJg9lY7WvMQjoto6QKxFkoOUoaIEmSSJDY5RFgwE9wlZBHd44yL4Cnjcp7xbgg3fxs+x41bMDItCCJoj0U2jZdy5maxGnfZ6LFViRJUoqAqwgCOScBoauBd8cRtNEguKSVQ4P9zSJf5eAyVoOqYWpoVEoBu3ewSG5dYxJI5Z7t5bB3pcoJts7+um07bz94tG7x3PH0nrXCNTW++xtfxeGiwb/yxe8AkPbLzRxMCwxBHQF4rDSZR3idcgreZu3xvxtDgQYk6Tr8hxWuAQYkcd8C48Itp25qULPp66NjmKGbThdVhtcdC24KDbAj6qYdsR5H6aYsJW2yGOSLqIF4RtiVgD45MA/og7PdePxctsn9rAdnWy9THBOuYUVhYs6gzD9mMSQXGLJMhb6R4TgO7fHnBXCLTywAs4hgzkmYcvJLSYhUvSWTIQemznVpY5uvZAhvnGmkXBzmZQmZhExsnMyTqkeJIYnbbkQR5diTIv3g/AMluvU0QN+SaPPkuSmtWwUkce30RxQqac5knjkRppACRAXAqSAxQ1+ce/7N3+f14HTrsNmgIQyINMEGEDxvpCOvppsmWzDkhVMAn15cQh7FwvpCTd+8aZBSTgrHx5XmOA1IAa4mLob4UwJrysTwFO20r2fnGKxBDEtGPnc6Tr8n9sR1m9JN5fX8HENWQs6PDOfpghW23CM/xn3vGCQSqKU7ziaus8OiCaBcwmNVAABcn2+960ZEEQDuJ8RrXMHGw2WD7/6mV8fALwamuMdaLqxwDWDPX64sIuf3NhHApyWZSl7StVfQTeulQRCBfU3iRZqhm6ZlbKONfGciicwiEgtuSsheeDwmIKqrGGpp/5adY8RhopqCBwuCnNtlU40Fxm882oyO3irTcPWTb56Ovz84C+imEWekx7yFroQ2pILEUgCQUgAF8pt9TE1VhdJpkcTIM1Bqi5ASBGBU3IDIdysKRwzz0jqE4YaI8rFknrtgo2cd0LAmlEPgp69vu35E2l+8cQAAOFymldwYBb5cn9BSfe2UlVBogZHZfAG/VmXdlttgjFSjApIYr93mM/JiDJI4F+3R0hZlnBo1GOmOvkPIIjAeck8lZRJIYoHJAOhbMJixtVM3SaL9w1vcmsRicmu45cIWGKXDyfzdU8IGN/EERDkonZZF5BO8OeGmYuIo4pMUz0k1rbdkkcQwuUgjidrzHwR7DANI5gj4ZRFAWbgmZJhZ/zPP7nCPxSKC1p+E91NLU5Vjp75aSZTQCxK3Lc62dg9I1SVauun0vOSQRCNc49ckunRT+S6h5cSbYixElqnkPd+suikANIO6adcB6LkxBdsHiRC6aWKzjzg/gM1GxBzDEUmcOE3kIh7LxuScrRhqI59XQKRiWUWgQElLoG1lZzdO2TJ/s0Hip+6fjb/n6KY/+7ofJLpIbYwSy9YapIU7Sn0S/ddLAUAsi8xs9imUgt3YtDWJIUXP/YxkM3FZkANRnjlzNNnI7LDx2oz0N9JpDZ1k1pF0UfFxE1WOM8fj1E1jSKI79sWbJkiU5EpYawaQolTjdYskErK91KZOZEnxMrf5AgYplVPDKJxaJJFHxeW8zkFScuhZtLa2zz8z7thJv0OGaTTjngy/G7NvuONcNH2OcBNg7pvU/uvOJSqKQSCJcl+wlNgwACjRMb0xXrBBJLeGP2uR41Td2JwkdNfPpFtnkHRgSLh6czQ/S+ekqoK2LCSSPq1l5JhbgJ65kgqk6OTKME9Jtpae03DfsMmt8hy1iKB8h5ApU0w41b4qqozNBVFNXSXX9s2uG4M2QRIFNEgpnLp9EmPHM++Z7je71ggvHkfopmEdqWs5NkOMhVh61tyxNkiUm4tFErcWTdwHiRdjObppqIYnZiX2p2NSiyorJKARSDBzmGZImAc7JpPfE4tdrP6oVFcCxJViXSTrxtDvreuBG4fL8XUg7iT+7BuPx98tkjjMMfLdqCAlMk7mmDqXc9VNY/0tx80+t/gnqU3pMWaekSCRQRIjzWTtuFTgbH5qnR9bD2FfYzLJoXIrq2QYq9ugaqtqv9YJ4ChRiwBNp5HEyBrk0r2+6gOmSP9gIUiieU8UScwdK4KAcZTMerohdmXU0v380Na7bkwWpShJru3aDlVVcnjh1yQSfRKTfW8ziYjQiTS/iyNfclxjzjVxL1dukMgFDbFWFmYO5WMBNjHWEiwB+dzwcpcEvvJIVv54i8avHWYC2ZBK2BHHCccAw35DqqKGCV4tIjgmgAhEaprMzCeqUs41U3MfE9dhAzA3ccGgL1U1Q900siea/aZ0LPhzJBJw7vGsUFR5/5XP9ZOL/fh6box7DA0i6I9j1624z5sbt2yqJJK4abvRJ1zvOmx2He4erwAAD9dxuuk248/EEjLusZaBUrgkG1NJKnktqVVRTZFEVhgviiRqahKForqnm16MbbsumX1OOWhZ4ZpzZD5j1LKSkxwPGszPEm001UuwqIAY+W5znF2LJPr93uT3sUdT5MF+87FZKG4eLPBwvfUcldh36/q+6GvF1d/MJpq6Bkl100IGOl+3RCQFlI5F7HhcTWKcXux+5mSOCeeHbVLsnxMis97456RlC8SDebKOpEtbLJ0L18JNkapJjNB4xrHD9/5ff8vn4y/8to/jC9/5HIDE+dfcW2pKpj4pVkISN7sON4dkEYUkdn1SgEws7Plp7/+ykxxFUpJrgn2PmEVS8jat+Vb0SRwFmGQepEMYqJuWg0vz09JNFZTYGCLLICJhkEIEpou6HlVvNZRYwJ5DJuFkx/jrFrsm+zRVUgVdmQAC0u2McuclRdMr1SQ2k7pJ81NNd+xYpWpMAme2JneuCJxWuCZM3jFrq4zzNQjK40KatpaCrg2AY6U6XR9n24ktmzrZAmPb9rg5Boktdl2HOycmSMwhiaZH4vSYVVVFNT/MsQzd1EUSbx1ZpXAgEySm9oB62t6GiQGA4FyOLTCIh6BeGBRxRBL3QeKFmIGa4xcgJb+de7hzSGI5SAkXuvKDHc2GER5JCm0rDEsqsJbu4VhtmzjMi7oKgkSr0gjEH1BZXJ6/sTJ0U+eBjQb3PZfFjKu/zXAiC87PXAQ4WbfHZk2VAUDoWANA2+Zpeqk6WTqLPHGaOGfX9i7kHWvAz+xyjqQ9JxZJJILLAJUtoSgyJrlBDWMXTY2vHNBEM79pIoFVNzXjnOMUrrUcL0Y31ar0ivV9j/WuHZ2Eza7DG482Xh1yaNtdlxWtkWPGAuB5dFMks8jxxBF3n4RrV9tx2WcjZqJzCEOnlW2lEF67Us+2cY4RFgqtrhlm5YmEztJFEjNBvX88Oy85DktbnCJSXJDiUgJ7k00rzDGoSQw+jx0nx6aQxIg/UyqniNUksiidi4DNSUBQzJUom4dnrnTBc0MHpU5SUuaePV7AwmJqGacqvdyzHZaK8GtJFVU3zX23VVMnRQnbrsfNwSdcbzu0XY87xyZpmAwSu3y/7lTfc2mBUVXVeP9JgjJXO7/LPDsxmirvlzh7h6YFhiCJEiQyYwq2DxJhbpAUkhJriAk4mZxMxiIepOicGAYRjAUb498KdIS+n2Y/S+OayHdjsnZNna5ta2pLNwWAGwf+Axr7bqJ2dedkhYfrnZfxjTkjbE3ihFZDqLgB00Vk13bFtgGAX8tIXe8EcjwPSeQCgFDKeaTgpoLE2BwJtCHmXPfgKUqj01rYnOw481Ov0uigjwokcVHXaiQxpBqJ5Tao2MYmv+a+Xoym6vYyzc0xpsrMJFdi6+uu6w3tfHASNm2H7/krP4Kv/Pf/Nv6HH38t+nm7Li1AJhaWD7hMhtI8p3THfD2K+/mAju4V1vJS92SEbqp93sZ7hDgW4DugrLppLHlKBenh+ScQvkVTj8EluybImi1rHnOcuACKvnG2RW3K47TJRZlnOMfS3pFKkpQc8pDNQweyseCGSZJUYVCq2RPtayWhQMChF49zHF4vzDE8l3yQGGcAaRBgnl0Abxy7bsX2qa6Q4Fo2dVS5WvZIl266bXvcOc4jicaXz/nKccBh2/YTNuGtwzKS2GXWlLkJbwD4hs9/CR9+5Zb5j1bdtN1Y9PECkMR9n0SUswExeLr0cMfQF7YmMVqQnh0j7/WP5f4tZu7NLw8WG5TOqbdsIgG3m8m/OQSGgF0ccnVL612L1aLGzcMlXn+0Rt9bHnmKEks5aDORRK2THG9dMv2eyeNpUbrIudwSNVmxutxSLcVcaffowtqVJcnDupmWXIxjdFNOgKYenUj5ioyT7CIbwHBvET2y4vLb6e8YC7aZwCGWgBjXuoIjGUMSGdQyyhLY+U7CZtfhn33qAQDgT/+/f9xDTccxbbpsYDxm7dPtNEiipnVDVIF4RJyzU0RTVx4FixZhcq7B6LQqE0dMC6RwHNuTMZyjGK2uGWTkmSBg4ST9eJaAn7xgEkdxVggfEMkwTSAVS0AwfTGj5QYFJon7XndsKUiJUWIZH8h9v/tazpraF0Hh9ht/bgDXcmMagOmeG60ydni9mXH2uYE3V23iQlPfPC2Vyj87y0W8JlFeE59wvWvRdj1ODhos6ipZk7iLBHuupUo3Nju7d8itcOsoQBITycxikBgkypl18o9/+xfZ/4wBH4kkdjvdmILtkURIkJSqSTTBXgijl3rOuNQfdwyTjYlmCHOLcQJZks9LjktkOoCycMr0u+lRUnfOi6bG4dIeVOimYSNw1za7DgeLGjcPFvj0/TUA2ycutWAxmb4Ly3R3hZqszHcr1ZKaz/fnqHUI3d9z2bcY3bFEU419tx48shHW0hU3qOHvvtgE7xBqVRrNvYzxWADZX9FBNgCDRjHy51FFtszYKJIon8dQQCNrSQlN17ILFuOxpn8TloAVrunG8/vf/4vXook7qUfJWUxdFiggnpXv2Inl1rzceSyWHNTTRCGLJE4l+Qtjwvtf1NYLx3Pl61k0JJyjWAlNl73PfQbYY7r0bpYlIN/NFaYq95bD+F4xLimMcW4yxn09Oa72653o1iVB4MaxBPz3ihWvW8BUsoFseY5AUAJArK3ToLR8H8f8C015Q1jLy4j3ucdj9l/A+KFdp7v/baLWT2Zq6zTpALjCxE8u1Q2vmhrraJBoPkeShGfbzux3TY0bh4sM3TS/n6a6FWzbDquFP+6W0E0zycysemvUL+fuZc80IjQh3XRfk3gxlruxRkcmuD9KmZxQxVA+g3Hk3WMxFLFcbRuTyY/J5OdmmQqkSot/DJFyM/nuuZnQTROO5MGixs3DBT77YD2MEwRymvmngo16Wm9ZqplJCdeUMte5WlIWARbTZD/dcSWVUjNumigR2nAxSJmJJHr3JLjNvnFQorbnnVZzPOvIcJS0yqOxuXMvjdu29lwy6qZhbz+xXE1crgcndW8p15Kmjjv/zLFifWgFEXCFa8Qx2LQdPvdoPRmTU6l2jxm//xlnK+Ikp85/NEjnnS33erPKoe53Yx3C0ElmUQNXFENDt07WfOeSVJH9jT2m0LtHWiXzjDb+fcnUMsZaYDD7fXhvsXVj4fF4KmEVDzYy48K11R2rqdWn610l4HbuSQqljlBpi/tNIsFeOp78OUTbSgmgFJJYTrD7QTqz54TJZBoRnBkAR+mmhUDd0E3TSKL4c0a4xrTKuXm4wMMk3TSPJKb20m2kNIgRrmGQxC5I5jPrpGejcA2BCu5bYFyO5WqlUo5MaZOKoWZUjUI1df7N68xiMB2XVUWN1B8xjky8lyODZNWRmsR4Jn+kmybaSwDGcVw1virq8YF9sKfIBtHMvYo4gxlhI3fuWiQlpHUAOgRYXWwfOR5TkxhLlJSQxDoyhgnSU60b2EyyLzZRHhNK1/MiIfb+0tYkAva8UDWJkeSKGZtObqX6VALIOjLRmlAik5yim+aet1wt9XpnNsZRuKbtcP90i/c8fwwA+Pl7Z5MxDN00pLwzzlYsSJGxqXMiL8cSflpxEVY51GWh0GITgSM53iLFhJ+t22O/1zjHwCcsIXyx2lU2MSP07hENJ+Yo19u2zigHlzFEitvvq+G98H7S66QSgQyfU3btMvek/9ouU5PrfmZYb1m6AlO6Y/l7AeY951X8HgPZwrFSFPTSPC0F1JxMJkkLTBFg5rolzz8RkAIuu4C7t6JlSIV9eLWIC9fYJKEVrhGRtxsHS9zPqJuWlKqjNfAR3Ylbh2VdjFyiJBY7MOj2xLoWQGXrk3LWLIF2r2564cbQtqY9wPKOU1PHeqQQ2ZhaX5Aeb8pOjJtLU41ljDpmg5pSVnYBIvWxd90GEGsKHg8SD5bNiDYAwMnKqqLO6ZMYW+iKNYljoOG/XgpuQhRLxgCkuEhwvWkk0ZkoU5MYX+zM8dJtQez7/DmWs5FADIEsL6xulpwXrgmzpqy4hR+QunPPjhvua9kYmUbdqbrofBbT/PSeATLYC8cxa0LM+WfppjEF9JBuerZt8WjT4vNfvgkA+OS9qcrpri23wAgDsO24/jDqmkGQ2KcVPXPPNhM4zKEoudRKGpEK1hIW7VmO93HvoCHlOdZVJNju9Uk4tpbLaAO4lNjyHKX0xBPlKfY7xPheMVPeQJ7/wJFn9in3eHJqysczFNBxnSTWf0D2/AiSWBCzAuzayiLpMTElav0PkytMkF7Hg3SekmmPxYyb1M6TyY5wD2D2HLvfmwvAUtCTojzFc+L3NzZj8/vpsqmjPXCnSKKhmy6bAUlM9UksJPRjAmuAef7CUoWwJjGeqE0nuFKsHG2MiG7HI4L1wiCJooi6DxIvxnKZwjGrOFkgzc9cFiF0fihxlyoVJJYXA7Uq6uwgJYLSUb2F6mJt2/f/xi/Fb/z4e/Al777jvZ4Urhk46mLHK4skRumfyvNvjp3PTkn9Zqxulblu7uLDOGlx2W6+t1O0UTpB9woFVzjlVv+eZOcYCgkwC6sXuBHnwxzP/NSrm1pna0QpCC952fjXnEESTVPe+AaVRBLPkQCajis7F009RftLz5vMI083Nc/z6482AIAPvc0EiZ+IBInbtsNykT+XyZpEok9iVLim5CBEzj9DuQ6plcy95QaXemc3HJc/lgRSu67T000DZ7fvkU2UxIRrxtrJknPdGHo3U9sfHk/6K5ZUqoH49e77cvI/PP96BDgI7gvHswnN3vtZWoMWEX+mtHaFaytb72r3APN/tm3AVM9B0ZdXef7r8LuRz/bY99lZ/wEuSPeQdOK6hclrZv13x01rErPDJig1o5y7bKpon0R5TQCA9a4d0b6bB+maxG2BTRLzXQE/WfttH3sFgFO6lPFBc4mSdFmQMkrsWz7Ym9Qk7ummF2JZ2lbEaQLsQ5p6cGKZN27R0quWpYRMgHJtIRDQTYnFLuT+yzxL3y2m0jjSLYYH7aVbh/jef+WjOFwGfRIjUP9m1w3qpvYBOhkEb+L0N6BEJIktIjSSOAlKS3TfWJDOLcbh8ToikJpfkzgNZo2yXfpYdfS7lbNocbojt7A2jU0MsEFieLySYp/Ywnl2NEiKT9PrKcQzlvAA8ihkPHFUnmeOplpag2J1ypxIzvRvQjeVjfpzD02Q+M67x1jUFV4bgkbXtoXEhRxzF73/y8+3O27M5Kf2jWiyo5wAkrGu80/f//UMummwJrCO5BhItb0KSQ+ZMuH6Hx0TWV/HwLTklA/nkkUeZQzgCNcQ5z+t5kwG6SECTOxTwHwEchqkFJ6bZurP7Lr88x1eN74mzvx0A7fS+QCme/ecmkQ6kTPShHXnf1KTSCZYwv1U7s2s5kETv7fYNcGipP4cknNM+K6lmsRNrCZxaIvhC9eYpIRBEjN9EgsJv5RSuDz3f/I7PoZ/+Ie+eTwPOeEafaJwhnBN1/L9DmtRN933SbxQyzlqYeZHTLjWqU0ghiQyi1Zd+04Tw5GX9T1EX4ACIhVx5Ln6o1j9HUd3bLtAAGWsics7uyFKB5hsk6ibip0Mv8dpBRz9JFZ7pFU3ZbJvKXGLeQqgZYcklpFnGqUvA/oVMIiEKHvL9T1RjxJJCjCqtICfbdXSTT1qGensyjiWagTEaXpFJLHWI4k5xeOcw5WiqZbXrela0hbkvnP1xuutjyS+9tAI1dw6XOBgEXcsGHXT0JFk6HbR71bI5OfqxClxkdBBI+nW2mAvKXdfOJarbqpB0pNS/pmxiwB9Z8eZsabmaU7dsL+W5MdE1ZyJ4HIS7A2v0wm/1r9ufAAwBBvjeSyMi7AZ2H1xpI0Or2sThT2ROAUwqdtjzr+lm8ocyUTOzAA4bCfCqCubcfHnNFsTGiS3WAq6/Flb72rUbKdJydy9lVrLNyPd1AQ5p1uTNFw0puVZtk9iwS+J+a6uv7Ba1Hjx5oE3BkgEib12D+aS1551GiRxMSCJF9cncR8kIu9Qpm6QEgXI3Iz+zc9uGjFkLxtszKWIjRubfc06kmmL9bpisq2xIGVXcNLsYjz923rbjX0SxU4cuulkjoQARAwRYTOmMbn7nEOeogTOpWTOCS4ZCfRUTWLWsY45yRQlWc6lfa0H6SQ7AX7bc9SyMChlg0tLQ+9phxXwaXrMuZfPjQlF5eaaq1POUdJm35OR4L7v8851MzpMOSfBPNuCHN46XGKVcCxKVCM5ZvT+V7IgRvS4tG8okVwZGzpoTC2dm2Bk27KEtZPWkS/fk3Vl1m8Nkh46abuunKRq6mmSiqWPLoc6zTl1w9IHlVGXjbEtuBYY/nrXKymZE7pjCYEMgxsWSUwkT5l9w6Kd3DUI97euJ2sSg8Sw5vyradp1OE6SK7r7RPwaRrzMPR6z54TggRbttK1LuOAy9LnarjxuESlBAmxN4uGiwbKp8GhADpu6wslBWt3U9EnMB84TX75wLmP+FmCp8slStQjAxPZJ9A+0K/PWx8mugHazDxIv2nIB3yKy+ANlZ9I4Ff5r7KIVpYgRDnkMSSwhgkCcblqqW5pT71dHzmWpJi6rbtpO6abHB45wzZya0Ahq0xMJAfNd/DFmHvljybzcOfK0Ufsa+93MuKmTzKibhs4dlUXu/QWyvEGZn7PVTZ3eZiUqmjdPB4Hh2g1Yx7UlnlExl8p2HiSxuLHNXhPi9yT7bGuypjGavJhcx6NBiOre4834/4NFM9JRXdu26X63YtOaRPPdilSqOqGKmvh+ucQRk8wJnUFauENLPwwShWy/PWBA6bpOVe8XliowdWqxJChLHzWtqHS9HEPk0qwlbHJLl1yR6WhpwhO0Ddx1C+nkLJK4qKe9Wkv121MqLbg5TgK3fGmDmAlk7f8Zuu+0bo9MroyBFLyfpesWqptqkcSwdUbeB50KMDFzDBOnmrUk1k6t5DvFatIlSFwtahwsmjFIXDaVSRIO5RqhGb8k064skuwo9nx29uzYOJ0uQJmVMDFNTeLiENitsa9JvGDrOgbJUi6QESSRrVGIIlJK2iiz2J1HuCbWWHoO3ZF90JLqposazx1ZJPF4KTWJ0zHMHOOCN/kFUqYeVYTMLZARJ1mFCAbHO49wDRMEh82std9tTk2i1GRpnWQt3VSuF60k6dzLsllpGnVvWwdJVCpyAvzGFkNfcrOc2zcsHlwWnpuISq+YfL/DZY2qwliDslrUWSRxVcgM1NW0JrFUxwhME2Ml+qJ1/u1rMQn16LHqadDA3MtucGkDt8KYibqp/aySLYfAQVPvF5YqjEgig0hFgkRWuIZ9P+DWDQ9rSSFJCMxf72J0d0DfzohGiYK9iq1JTKl+a8owtCid+wwwNYlVFVm3CmPka09rCwvjgvPI+GnAFEksreNiY8CnUEWVP1m6qbxOJo6C/orMOQkFt0rjYnsbYIPEZVPjYFGP639Tm/8DcbXRbaFXbpgkBOyciz2fJ+y5/JoSUoRljJ5uuuNrCxeHwO50HyRetOX6/aRqEktOcizzZpym/FymdFPuAZ2MG35SEsnd9HhawRVVCwZnnrsxk5avSYwtJOtdh9WiGXunAZbOF6Ob9uA27XCcoA0pqypDvVIH6UIH8egImobz/vFKS08USRzu0VzrgFRNUL4BuX2fWA+F8xM4rcy66m44LbkYh5t9Kfkzjhs3+250DFVUtk6BJEYoMqWNLSqcIn8jEk6TetfsDBPBZeFetj0jp8+2fM6yqXG4aHD/1Gx6BwvjJKyjNYnlgG8RJO/arqPpxV4AIEFH4gvG11Zkx7hjw9pCVnF3ikhxwY0WyQLMWrtrlUhikMnX1CTGgsRSDepSWmAUnhfXmrpCVZlnmxUOqocx7r3FjgMcSqC8XtoDErTR4rigvpxdg0K6NUNTnYrCkHMM0W1ijIzz1hLm/CfnqBvHBESAEzi0/nUr19ba/cY/Xnpc6JdohYNcum/pWMA04GPOpatI7tpmZ9f/g0WNx5t2+H/l1PVH9oAuX3IQiuuYMflrkPJBiwBHJLnOJFwnpqlJXBwazvpuUP/e003PbyLTm75B4lmLUk1Wqo5IC9nTD2hAr2QRQQCT4JLeoJQZknCBBKZ9EkMrqps2Naqqwu/9xZ+Hr331BW9ciAiyKN2kJ2bP1aSoabvJ8885dqEDqg3AzO8dqqqAeEZqx4qKr7EghaEthlSX4PWcuQh3RyKJE0pUIfkjNjZY71xUozhsDGIMkshRjYyyoHJjSyAbQGFNqKbXjXm246qopSbp5me0ubFzbo5XDd48NX2xlk0GSew6LBeMSqObpCq3IAGmzJCSKmdVmaAhpm7KtEUYa2s7zrED/GSCFtmYjCOQm2VTYdv1dGsDeU9U3TSLiPgOsjuuuFYO11vulxXJ9RLnVUNTbapqsieWRoWlIiySGD5v9PUO9g45p0wAEFMFzp3O6RxlfGkPhjdHhiUjc5zQ3UuCPMEerH1uxrq9Li9kGI6bIInKcXJOc6iZjJtbE6oV5Zn0+CaenRhzC3DpphUOlo2DJFaWjbOL7BuFPokx5LJlfdAIUGQ+M36TjT6C0geaWNdyzgUALA/Nz80j8/MCgsTzf8ITbmxtj5ZumqJkMjUKWtl6wNxDUYckS5P0HWQ5nqZoe2B3DgW5+Tk2zTTgpouGE0jiwdJ85nd/06uTcdq+bWZcnFbABZe665YSHCovxpiMo5DcyPG2hJO8DDYo+QxGuEZDPwSm11uDbKyaGtvBGWRpHeGG2BYCm3Dc1kFSOLqpzS6eB0ksbmzRe2T4G0EBdQ9nkivZKU5obPIZVC115Nl2z83RqhmFa1YZJHHbduO9mrJYTWJJOAiYridUM+sqdFpRHDMea0TSFUFKZFx53wiSMuIQkgmPnaccWh6TVjct90mM7Ysl5HhZG7rpGCQWkgj2mOF3Y8+//T+TlAyTOTzabH7aZBp3vVO9C5m66LbVXbeUngB9T7p7ALH+T4IUct8G/PIGQKHCPZw/tpdpVVU+40XOI4GIA25wyQf3YQJIjW4r0FV3KWeOt2jiSGJIN328GWoS6xr94HPG+iuWxMuM6KL/mhWQ44M9wK2LTh/L/XzzGVzCw7Nup0MSAWD9cJjEHkk8t5U2AZvBmdYX5tGXOEWMojtGgg1GtSzmkGiRRAOHl+fozg0QKqcuiwmUM/JhzZhr612bzAzHKXpcpnUyruMyfVqqRbyXmiLTpwzAwkJ2+b2IZEVoEyUkMVW0zd5bE0l+YmGVgnYznqS/Bchl23HjlhHaqKYGctf1RWVfsVx/0dTGFkUECVTqvIq7muudo5K7SOnR0tZVrDJI4q5QjwJgIuXPIonh880ED6EKNFMTCviUqBGlViIpdEA6cZJBzREYHDxP3ZR43mrjSPa9//3yKriR9Yd9dgZK7FobJI6qqMO86fPvK0CzNaFTJLEwbkKTxDBOFxTRbIa69mvZCfrueamc4+FIxzrmA5XPh32ve8wy48X8tME2X2vmAghsPe+4VgYtT5ha2ZCSzN5barpppa8bLtUkLpoaB8sGj9bt+P6VU9cfWrFPYjVNSpaStSnhGhvgF4LLCQiTnF7cNMI1yyPzczMEiUy2r2D7ILHg4Lm0snBcqUdNLEhhsjgxRUIG6lejBnNpi0lHMj9Hq9Dl1gTJAxq/FatgMXZNhGtiVkdoDFyfyviDXQxuJlQjmX/+HgGmjnV5g0qMU4pUAINkdKmOKyrlTPbI6nX3VmrTZvbf5dATTebHqJuG341VH/P7xJU3w3Ccq7hYCmzqukLf+/cku7GFNaEAR4HWKu7OSXikBAHceS/qGscrGyQuB7W7uLop0wIjEKBpSYGjFAJWeL67yPmnxLOGN2uUc92glK7/Cu4Ttk8cYAL2jYukk+fRzM/8nxFvit2TbGJmMVBi1UFibQJgpkXHOM8qLPnQB21skBKeE2Zvc8dNkKxikBgEAEwz92COsu2XE4XDMZx7mXGsw4CDqqWOoZYoP29S7+cmO5j7H/DromnhGqnDG1VRh/kT/uQ0kZCfX/iM8my2hDJ/ZtyirpMCNIBhAhws6lHddNFUWC7MByYThVlWQj0BfMZESeLExNYfoLwHhH0qZcysFhga4RoAOL1nfkrQeA7bB4klZysoGLbjylzrMEikgpQAsufpJ/EHlMnk+7LFvNz9dByXDXPHsbVVsYBPWmCkxk2Ea4ggfW69ZRiUMnSvOW0DgDgFl0JJI05523VEn74pTdggiYxogX1NEwBPnSbSad3JJqpTN/UaZxPHcmsL2Qy5GWePx6qbxlTSSghASCME5lOg+wJrIjWuLVxvGklcTZHEON20LwaJIb2JVjetQ+Ea/zukxvhrOR+4tcH9T1GgnaDU1jKSQYoEpaTzCVgkUXP/N0GiiqFch88owCFZwCBc03bjunDA1iQ2tY8kMmtJ4yOJc8TcaHXT4Hlj9rbY8WjKe+DMU/0twzkOr9MUUC9IJJIkVQV3y+9RftbC2uExkCoezUf8u557ZgAfSezI8x+ygDStM6woEvecjijpDJQ6VnJTKsuKrf9usO4FiXXtJWhDM4nC9PHcXrLjsQpreWz9AcprUMxPY5/TyQS1dNPT1/3/n8P2QWKBKpOqSSwhNym6qRayZ6XMp1SL8oKQ6klXprbGxhF0x0jA3RY2m5Qj2XZGdS7lFNaBU2fmOLffW3kxriufEstsNnHUhs/0hSq42qwpwNHtbG8/HwHOixaYn+ECOTezyyyry0WNjUPH4WT8LbIn81XRTdte6VjbDY510GL3JJvFvJh2OoyUfDzhUULawjFicj0WdYXjld0gV0ONSjyLnHcQAN+xM8fm1E1DKiFD06tSaznhbIVOPI2kBMFG+d7y58buN+azB+XQwh7qH89f85jzGFu3WCdZAnVBnqWGvWQGSXRqEpnzP2GTKGrihmFsUixWt8fcI2ESjqEEAkOwEQnSS3TrcI6MTcTEuGGoK31yF4CniqpB0kPknvX93bpoFkl0a+ABJ5lDjJNjaO+taU1idtjk/mfWBSMQNV3L3f3tYNHg0cbSTcXni9Uk7rp8ojCmVVFqw5MUrimg6bHgkmUqedbtuAUZsMI1p28M/z8/krgXrhFHLXGDxHr7yf+LGZIokpWfT0gbZR2LKoFA5kal6KZ09jOYZ5lGMh23LdSWxGhsAFNLCsT6VNIonZJuF15vq2TIOMn2NYqSWQ/ZT/e6QYGSukEiQbeLO2kFJDGCZPXgnaY56qZzkMQY3ZRCBEcRJsdJpmiqNrhk64HCRsru76Va3gn9in1GldctrIFk+lumnm133k1jaxKXTYW6rrJI4qKEJNbnqEn0kkDE8x2yOxR0u4lwEzFHV5l5VP9UIsBsjRQwqJu2PYWqlo6XuwbR/rpkTaI8b6eDk7lqONqWIM6aeuMwMckkTuVjJ20KCseati7he8kCDpJIJhNMLe+0TCQb3AdzlMWcUQp3j8EqVU90AToy2HNowhrmSl3Z92vopi4qK8G9tsc0Kxblons0bXQM0hGMK/slMR90Tk2im7xwEzvLphrnsQ0VaGCC6Fz5RpgkdI9VLDlL+KClFhjn7pOoqUlcDEHhnm56cVZEElNBYoGCFUcSORpJ791U5meZSjhFbQBdzYAcT5tpYselONpABklMZXEK4xZ1HT3/JUv1e9Orm5qfeSdZ3us78hRqEM1aF8YkkcSCQuCMPonx88jRps17A6eJOCerRWUzrQRFEnBpo3bzZTZ726vJ0u2ooLSeBpdFtCdG5SxsbDF1WYbqkhKumdvfsqT+GR5LTO61ZV2PdFPJEJuaRD9I7PvetMAoOqD1pLazVBNqxgVICoEeh+wONuHhPtsa4ZRFXXk1uaX5AdO1XHUvN34PQkrddIIklo9XZ/YNRrgGwIhEqNRNu14VpIc9OOckTu2+rR1XZpK44yTIppMJtd8aignSk/V+bJAiARi5Jsdq4ph9w1WG16hpu883O0dguE+c869JZoY0VaZUQUsbTSngUsr80Wc0P79YTaK7N7q6Ey6SGBWuKZQcLIJ7BCi34UkL1wwKs4Xg0lUFZpM5ns2qSXxj+P8+SDy3sbziCR+50I8llFoH+D5xUUSqtNlEgobSuLktGJJ1SzODFPdvyTGJBzvnJIdrD+Mkx1FSjtYRng8zj8yYxPlnaVthc+/S4iPF9iFtq9xraaqKuuu6rAMaTyTokaxe4SS7SCJzrQFn8x2da25cTLhG0wJj2/ZFFH2cYwLJdf8Wmr2P7WuaRII2cRFeb6a5dIyiKuYGASJcIw6+oZu2k/f3fZp+LmaETMJ+n0RNYhJJSY9JCTmUbhMRKur7XhWALRcR1UQlkmgVENmgtHe+V3mMvGdEKYh5yjMaozuyVHmR0NcJ19hEDvNsu4gUIPR6LikzDVKUSRliDDBFRUqtdMZxjX//M3TmaQLCvF4+J/4xmAQ0ME3KuJ9VGhdSW7ng0j7f51E3VSUXg+BeJ1yjDdJ1idqQTcWVPNUTUTbAZ4odLBzhsqa2e2iiDVKpvjmpUprYB9LCNeanpsf3/D6JrLqpEyRWNdAslQeb2jMfJO5IXnEUScw5yZEFixVACSkrALGw1vGiYW39kaGkcdlnbXATU8lsO/NQp445kcOWcQUHO1RjM5+haK4bOOTa4F6GU+qOQUCqraMAFEFRIGXOZDJjdMfS5hZPJCjkt2cgia66qaGDl8fId9t6GWF+nNsCgHKsHZoq27tNJLbjSGJqYxveF9yTTCsd8/n2NQoBDsYxCEyKyg/YdXlRW7rpqrFBYogkWvptWd00PI+zWmAQmfwJksgGAM6zoxGFCe9/mXf2WME10CAiy6G9BItaAlOFawZJjDFQ2FouSRqIhD7fAqP26KaUcE0drskKoa4wkFIGidLMvWRh7za2D2Toz2iu20jlpHs5zv9uXe80uGcTrs7e3RN+kztPlzZNI4mOwJFZf8r3ZKjnMPZpJfyZ8LvRdbITdLs8Lt4rupwAmvQU7+zYCZK4iNck9n0/tMDI9Ems0khialgKKCr1qowlt1j/zrOuBeoZSOLiiHOcCvbMB4mljFistxxQ5snHmoQyN0hT24cZ0C2sbRA0AJxwil9/xKGWQIASEfz/tEpmLtg2P2NBOpDng4foIxuku58v4yjZ+ugCmR4TKqvZY2UPNR5PiwADZlMJa3uYRsrmvT6SkuX+j9k3+xpV2xbJkAMkkrjwaxIZx842N3aDS84hBwIkkcoID0Fp248OfarXp1i2v2ghi+nXrTKtLDA5FodA+uMoummCJWA+p0NVmftI6KbyfumH6a6TtvlyOeGhWX/GccF6ziB8TSLhx65BRl1zZpDIOv8hskT0hBWbU7c3qYkb72NlCwy6T6L5u6gjlp61cdyAJGpYAuG91fUcjRNwAikJUgrHClEK1vmc1LaR1y7s1cqMC9cSNgCe3pN8mxr3OOw5cRPszLol5l7vEmjgzTNAEpnYMl2TWL6/bLBtXmPZPPY8cj5oyN6Se7oEppj3Bv6dU+d86PTJXdRun8R4sJcrOYiVgVkRrIQIYmQvdedcKpUKhWvUSGKvCBKlBvH0DYsqntOe+SCRpTvG5G/zfPx6clMxjvwEkRof7HL22a9/KTsX8fojvSMv40rfLUqbKwQpSSS3hKQEWS0zR4UgQEAbYprdxoQt1NetJ6kuVYDSQV9HAXB0uzlIovxJm0Wzyq0yhtugAOMkS3axpKzpmvREs9lZLmgAMDjJ/txLcwRMcM4iibEWGCV1x7hwDU9jmyruktnnCW2OGBNDEh2ET+im8l0OFoai5DoJY1+tonCNGWud5Dw9yY6LI4m581lVfsJPQ9uS98sh2TpZQWCZ+QFxBJgW0hvo3ZZarA9SKETKQe3FWCdZqGoPzrYANEjiPOEadX/doC6dTYrZ2m1nPJlcBKZBIpMo9M4/MS4mZgXom7mzAVh4LjXnJAyImJ2jqW1tISuuA/hrSVtAvtxjAZg83wydPAwsyyKI8I7BJrdC9pZNnqbHxHpnm2MLSgecOC2QFk26BcbIPlGqm5ZooznxSgDJFmLhXsqIuUVtTk1i315IPSKwDxKLNRG5ICUvyjANLBknLaR10FmcOq6kx2Typw5h+VjhOGqO1XRBKGXyY2ibjAPyNVkTdVnoi7bl92Kj+iqk7crr5azplLPObIjTeid2XEj3LaIvEbrjroC4xVAixmmqhvPsUobMH8rf7WChVzcFBIFx6r+0SCJJ/QF82pAEtCXHdUS3HSdtV6glitVDMLStKE2YQCCnIhX+PPJjpn9zr9+NA1NXETZEd+lGY8uM4r3sr0GMui9ggkvXKWHQ4yS7Q3ENbLBXnKKhfw7oI4tuj8kced4K+5p/PBNIyffSIInW2SX67cWSiwQCCQA3Dkwtz+uPTZB4oKpJ1AnXxBJ+jCo5oEuuAPF9ii03AGJIop6mXRoXo40CRMI1TFyQa3kVrl3E+QeGhOvoyA+v0S1gJADj7n/AnDMZtyOftzG5GF43Jnkdnn8S3Q73YMYv9ND+Tsbpnm3AgjBVVeH4wNbjLerKqev3Nw6pNc/5MzEkke05PAGKCtcgXOs0CT/PNDWJbl/EPZJ4MVYqAE5RojoCSYzXJObn09RBQ1g2i5MILnPD5rZgSDdK5xw0TyWt68p1RFWEIlCoJa0rK/4gpqoRmYGuRs9//nATxJOlyEyPp6+jAC6vJjGGUuvuLbvRm8/LDgPg0+0MIkJmdocaEU39kfRXdIU7mOsmTup669QkEm0bgBBJ5JJbk36HSqoXQCa3gjlaByEzRjLWEbrptrW1Os/fWAGwaJCgQ+utFa/ZjHRTEhV3MvKMuqm5R2JB+sXXJNpaca6uR2xMXHRdMYkwOZaD2vAIfO2JuzCPW1iXzvR7GwOb3l+3zLj88SRIfOPRBoCGbmqUW0vJSNdcGiFA7vfBescyh2K12xSTJFjLWQGUMOHBnP/JmkD6MvJn755UJCDcgJs5J/E2EdyaMNYIEgnQcVxdeX152XsLsEkVFkl0a/BYsacwwaipZQz3DSB/b8V0Ksz/7bgbB433fkkSTurSiTUv6ksWnvFkCwwCqABcSji/TnqmqUlcHlnU8QLaXwD7ILH4sC2Ch9Mdl0dSpjc+U9tWV3HIvohk1QnBm5yTFqk/4lRKp+OY4MZuUEFtG+HITCgChQUvRYmdQ6WlEeAAkTVzzw6L1C2RtYWTBZl1EupJsMHWJLbhdStk7IAQXVUo4I4Lq3mdrUnseoyOq4ZuunUQEa0qKkt9AzDWV5xtWzqwqSPnf44qMIUIJino3Dhb21M+J6K2G6Obuk3uXxiCRHlbmFUHrIPAouKuSiClblpXHr11dBAKdbkhSwMo319uUkBT7+r24KRVMidBii654iLwnLhLiIiUe4VG62RJBOxkcDBfe7TBoq5U380TrrkkdkfY7kFLSbbIfdm38McFrVKIWl41khgGsiTjItw7WHR7ci/PSLhGlqKkuTWJnWK/cZMJdE308J5ta6+3fFZ2XDNVPGYEaNz3s+tWGIAx+2IKSXRp78crH0lcJemmwibJCNfU0zKk2SVnhfMZe0aBGXRTTU1iVQHHd83ve7rpxRibkQ9lc7suv9iFzjhAqjvWYbDB3Vih4A2ImsQ43bRXy3aP4wrfLdUUmWnkOy0aJmuyAgouvfkGgRQT3IQBEcAEl3rURo43RRKLw0zyIqAtzkcSyw5CGDhrldU0NSKWAmpqufgakToI9ogxQnnp9OIiTV3hbNeOSGKJAmefG/taad2KCtcoEjlzE0Bax8KlbLm26/ox6Hn+5MAfM7y+cTLJWzLgXgZ0UyZJIp/rI/Dl4CbJ7igcy1WP1gQptudnRyF04bEAHrUBDJq+6+apm4Y1ifl2UnG6e2kc4COJbD2ifK6pUzb/Z2sSQ+GaMnI/vDd4Bth10qVJUkhusJZoWiloaxKnwQYX2EyFU/jzD/h1msyd7Auu6J43CUw05Q1+TWJHjQtLPlh1X7d8SUNRBSwSqCt5sv9nEh4x3wIQv9B85xMXSaydmsQASRSF8lyiMBRgAlAUwUoK1yiBCk0S2jNNTSIAHL9gfu7pphdjpWxHiTOdsngLBi4bE23Knh2VQbJyQWKCEsiiPbvJOG7xmQQbxT59056HvLqjfc0gKbogBeCoiyEdxyK5xLjgWOzG5tOEuWzrtAVGV6zriSVKTE1iZn4RJJH5bmGdmoxmkUTABA+mb2RxCIAh29rqHHKhm3q91Egn4XBR42zLt8CI1fKWarJSSDqTpJL3qsYFTivvWExpPDLvEUm86QeJqwiSuCXon0CcbsdS2bZeDSThJNfhMzq8TqJ7rnANRYF2ajU16odyLPOTd2KWC4MksvexezxNqw75k79v5BtZi51ITaI2SJQWGJrEUV1NkHR6vVM+NxO0jQhIveNJkoRFpAKUtCT/DzgB8DCMFU6RqbjUdWZpbYJxTHmDzDNsQaJHIGeqm/YclXkx47mRv7sqscyY8fwHCT+GBQdMkeNSWZZ7LDGXvXLiIIlNbVtgTNRNBUnM7AFu38hxXGGesSStOy6JJCaSJKSbYE1TkwgAx8+bn3sk8WKMpptG+MjZ/i/nqEn0nSZ2YdUL3sQdQn2PJvkMdmMLM8Ilx66qpotIub+l+TlFssg5KtG9qvID2V6x2YfI8TxqE78hhrShothHpHVJCUmUOYbnkd1oRqepK2cjxVaCMA1Oskrd1EEEKWrfwkFthq/IHu9w2Xh0U1bd1K/lLSS3xqDNvsYmqQBMEhDsmhA2Sdeq+4q564Krbgc4KK4btHVyLvPHWzpoG2CcZQ5JjPeJy7duSKibFul2GObWqxyLlUM3ZWicwPR6sz3pAFMbunbuY0YUZoIkEsG9tKnpouefCxI3bUfXI8rn+vWWxJpcTWmLPN1UNy7cp3oyuRgiN+3oWJeP56GkogjJlBwEa/kcNgm7JwIucsMGl/qG84AVbpJj0khi4yOJbA9OOQ7gMCcUgkOsCFN4T9K+zCRR6H9ezFJIons+TxzhmuNVMyKFYZ/EMVGYuycj+418z9QaFCv3AOz9ybbP0yQg/APteLopYOmmeyTxYoylm8ZurJJwRzxI5IKNfsamEat/yQ2LI4m8kqG2/iLaAoNYXKeBs/tgx8fGhVP4GpFwjuUFMkTN/M/LHS+kBHK00crbDM1nlceFyQu31UByTDNdJKlaxmpab1maY1inpqFouKqXuk3b0OY0tYVujUhPOv9iJkjsRrpMiSKZquU1c0/c/xEaG3P+x2zwJEmSHxcmZeSwDN0xFiS61y8MNGMS6Fsii+zOx6VtcUhiPUmSAIWaxGqaJJHXc+auQSxFDEjQTVm6o4M2sM/N0bLB2a7D2SAgdLAsOzKLAAUenzmCTeIHKdyzesNxMDVI4sGixnqn64HqJuDYNTlFry9FfOE+xV632P1v5l4+/3Po1u6x2DUh9C/Y7ybfwfWdKHVTx79gewnKPEcBrJ5D+8242gsuKSQxaDq/a81aXrxuHt3UvpazEDxg65tj/S1L40JkW8xl6h07ScK7J6tJok9M7sncfhrex2Zc+RmP0VR3he8X1lLLTypG/LH/CvjeF4FP/yjQdzok8ei2+Xn4HD8mY1cWJFZV9eeqqvpkVVX3q6r6Z1VV/Vbnb99UVdWPVVX1uKqqH6yq6j3O3w6qqvqzw7hPVVX1e4LPTY5lrLQJp2oSSw93qIYHkCjdmMUZxow3YnZYUklPKz/cQ4M2+JnFMtowpRZs23ImP5b9YYuNp+qO2UNFA9lSQkCOp0Vy4+PIja2al6FyxwF8kA4EQiFdmYIbUglVAXCwQTHj3FoFlbppbWhz2tpCAB5NlUUSD5a1qUlsTcN4VjgoRvdS1eQS60+Kbjq3llTPnDAWJi/+3G/5Cvz13/m1AOBIoLvrSDloc/8u76drEusKfuseQnAlwe4oHc293poWDC4NixYJCa6bpin44dIknB6tTZDIIHXJZu4U4jwVbmKenaMheNUEiUerBU63rTpIn6Ao9LNt/k9TkkOHXIm2WVl+7jyGyUXmvKSDhvwcJwEwuZbHKO/MreyKwEl/aYaVI8lFAINwTflYgFlLXJVSTb2xUCq3hCq8mWM1ScjQa4L4oMrklte7E/nrnUQSHa0EN9FTVUZ8yuzZM9RN62npEtOGJ6w3BhwkMXHhQ1VmRszNHnAJtBtgezbUJCpCtXs/Y36+52v4MbmpXMincPbvA3hv3/e3AHwbgH+vqqovrarqBQB/CcAfBnAXwA8B+AFn3B8F8CqA9wD4BgC/v6qqbwUAYmzRShnhmIMm47J8/Ehgo1EODeknTAF82ABe5pEek3II83OM1ZsxCOScVgpyvLT8cKEmS+nspmu5ygvkHMGh8D7pe66ZdYxGwuxRYVBqgnRSOMUTLigH9xOUFNyG6I6T0RTdNEQSSWdXREk0SGJTm/6dWgQScGh6O0OBY6mcGuGIFJJeDFBiCSAmuRU8N7TgVopu2vqCDl/z6gv4grffAjB1mMzv5jPKwjWBAETLq5uqm4nX89RN3XPJ9LsVW47otr0nS8/2xLFWIImi1Pvm6dCaZMnXJI59KklE0Ih92P+PAQcxV6Gr3T5aFt8rdrRscLppnWCbWLdia3IxIDI/tQhkWCfFXrdwX5wjgOLOV4ckGh9BvZaQa3l4vB5knWblsnLMa1zg5iCJiufGXUt2Hd+CR94PmHVrSV7vMdgm2RbhPckr7g7jggRvviZxurfJZ8j1dPskii2b2hMuAzjxsiZI9rnHLt3LSVVUEknUJPNHqujuVF+T+Pm/1Pz8wDfyYzJ2ZUFi3/c/2vf9Wv47/PsAgF8F4Ef7vv+Lfd+fwQSFH6uq6kPDe38TgO/t+/6Nvu//CYDvB/Cbh7+VxhatBInH6rFkXAmeDm9GBiUKG8Kep7atNC7e71CxiLsoETHHlJT/nD6JtiYxcawgQw6QNXHRwJlERIJjufPIjZtTk+gGpRq0IdoCg6B6AfrgvpkEzizaOS2216B7p5sWXc83zm6GrKQWEVw2NTZtp0IgAYPAnG07rHedSuwj3qcsn9xqg3uSpQxNadr5OcbUFt3XUxaj/wB5GqhcZ7cmhUH23L+7AhAc3aueIOml403YHSNKkT+WFySOjlZxih4N19II82PChF/X88mOSZA4oyaRrYmrax9JZIJ0Memz9s47x8X3ih2taoMkahJHFdTBxpTapxtnBWhYmnxQJ8UG6Y3vzzB061jiSKOA6yJgGrqpTJOtSXRVObUJ153z3dj1369J1LXAsMktEkmsa48SC+jpplqa/GTvzvnJiT6Jbiue4wiNPUwaAQ67oFACELjl1L0cO14pUTKtSeR8eTN4EJ3ZnuprEr/8O4E/9Gngxov8mIxdaU1iVVX/x6qqHgP4MQCfBPBfA/gIgB+W9/R9/wjAjwP4SFVVdwC83f378PtHht+TY9k50YhUGCQWKBACa4fCBUywIe81P83rTLFxmP0HkG1nUQeZH4BDBGMohaYmMQw2GMpQ+ICWio2jgSxz/qOBc3lzSwXppfUg7D/V9dwGtWhcJT3zGkfl9K8bU5MlwhFz+ltO1E2pOdrrrakJkoDrwdkOAIdsAIMAQdurziMwUBDb3tZ6sM71wgjXbEkxjdgaVFy3ks8od6xpkkSX/WepZakgse36ZEbY7Qdo58gFDcswI9+V1ZXlc2PIZV5JT8/uMHOcqpQyiEiMbkohMM7a1ZLPKICRxilBouZenjRzZ/r0KZIkrr04qOO+8w6v9ne0bNB2Pc62ZRVPscahZNJ068CxpinJwT7FCg4lzz/xfEeFs1R0UxKhG6n8QuVkz7/56VJ+2RKMSQ08mZRxrzevblp76yT7jAL2vG+7PtvqQcwFK+ZS0NmSpzAxz6x3Yd9UMTcxIPfRb/rK99hxzUxEsPZ9QvfYpXs51isdyAjeVP7nq/okLt0gUYkkVtWFidYAgOLI57e+7/+Nqqq+G8BXAvh6AGsANwB8NnjrmwBuDn+T/4d/Q2GsZ1VVfSeA7wSAd7/73ePrpYxrCg4vUSBcp0kyFEaWv7AYT/jg5KZRT5urA5xwzdxeanNVUX2VunKfoKoKe0Aq1B2DAKycocVkXEtct5gAjft56eMF1w0Kiowy0wf4GxTAIymhcAQTXIaBM4PkAsOmHWQjmY30cBEiG1z2bTH0e2MoVN64xvTJ0kpbHy5rPFhvDd1UgyRGkKwkkl4bOqz6GU0kSTTol4xxX09ZSNMWY5DEWEuK8tol2V2duqlb2+OOLyEp7hxZZ8sNgjXBnkc3VdzLrsCUpim4iySuFmXaNOBk11v/+eaQxGmShJnrO24f4R/iDTx/46D4XrGjQXb/4XpLzQ8wDqha7CN43myiitynnHVShUg5SHpVEbWTle+UU1TCyXfjSilCaiWT3AKmyWtVUjIM0snAzWUkHBSUlcUWtV4V1bZcGsYR/Y2BeE0isyab95v/s+h2KlGYe0ZjGhDAdP3/qT/+yybjJjWCBMVe/B9XsZu5l6P9FQt7cKjKrPHTvCCxb3V9Ei/YrlzdtO/7tu/7/w7AOwH8dgAPAdwK3nYLwIPhbwj+Ln9DYWx43D/d9/2X9X3/ZS++aGHYovztcD0nN0iBApGiZJbuD/m7y6s3r5cX8VAkBMgv/sn6u/wUkzL5pTXrXEji5AHN05RC6gmg+27hudQGRHNrsjQUmTk0BpcSBRjUganJWtaVV5PIiPnEezkSc6yryUbDUGlFBe2NxxsAPN1UNlJtbeGyqbDterrWRkzUTTctGSRGEh5MfUns3iqyBIKaaDNOkQAKGBDMuLDWA8gHb6H4jHl/7/0tZTaQskgK61yHfULl9ZTVVUpxujBHJwhmHTTAIom7tqeDdACewJSmtupoZY735ulWRe0GIuqmhWOG518TBH/8/aZv2Es3FUHiEAA/HER52Ho/G9iY19hgb267Aa3gUB2ef0WS0GVGsUi6zE2OpelBu1XW+4VrEJPwBnwWlmVglc1ti6NTN7WsBPa7SdJP/J4t0d8YmNZNAnyi3KrEii9TnqN5P+hxsR7AAAfCtAFwY4GD9PFCEAZg7+Up44Wp+zbJFb2fhoVbk6ikm16wXSmSGDn2BwD8KEzdIQCgqqoTeb3v+zeqqvokgI8B+G+Gt3xsGIPcWHYSpRurqqqBEhjexCUYferYqVA65Y1VBQ45My5Wf8fMMYa2zaGkAWYjOFzqAimgTC2I9UnUOLtaml4YELHOXdhwm+4J5TigbNYasKiZGIukxJDEcnCPgG7Kop3zUFIJEu9JkEjSTWUj1dYWmnoPnUgO4PRJ3J2Dbtr7f4tZHSK5IJ7RuTTVYJyulnr6+i6TKZdz5t3HJN10EQjXaGoStcIdMeEm83rhWI6TXMpW++MkAO6KTAvXwj5xdG2tg9xrEjKAW5PYj3PIzjG4l8W5ZhIzv+YXvgvvunuMr/rA89QcARsAPxyo6yxLowvufzopGQQprCqqJ+6iQBI7ZeDmIj5uTV3uvowFslRN4oikd+NcqXr7CHWXuZXryu4zGgVKt5WFRt10tajHeupN2+HGIeeGL2qTlAQG4RpK8Kb27hEz73JyF/DXciYJKh8b+iVZhC5Rk1jW/KinSOL4/XJI4vTzx7Vc2V+RqfsOE3DADCSxa9/SIPFKkMSqql6qqurXVlV1o6qqpqqqbwHw6wD8LQB/GcBHq6r69qqqDgH8OwD+p77vf2wY/p8B+J6qqu4MgjS/DcD/ZfhbaWzRGMcwJn9rbrL056ZaKTBOEwDHSeZurJhDDuRrElMOIUst06qipgRQqNq2AEksLUDpusn8HOvg/MtnaM8/7yQH55Gsv/CRxOLbR1s0U0SEU1fzN5ueyJxOhWu4hs+uc22RhvK4oxFJlBopkm7a1J4iJI0kLkzrjG3bFVU1XRPhms2OGxevSSwLfoSKbKr1Z2Zyqw2uG9XfNYokpu/LRYRuym7AoXCNQRK5jPw22oIhr6QXCjcBZWdrtbBz1DitXi2jwiEJ1xK6tnblBoncs2b3AJ26aVi7ulMkZqqqwld/8AUa6QcskvhovaPmBxiWhovQMeNibRuAcnA5qfcjmB3ufNyaRCZJMkEgKWpfGGxwaNuY7HDOJXOtp6J/iqRkcN1oddNOhwgCQw/OodaV3QPM8ewevGNbYNSVt9YBXEIGcBFB8jxO6L7mdS2YYsbmfS6TqAj7JJa/XwwYYVghUV0MYg9whYMYdt9oy1C45q3D866KbtrDUEt/DsAbAP4kgN/V9/1f7fv+swC+HcAfG/72FQB+rTP2j8CI0fw0gL8L4Pv6vv8bAECMLRqz2S8i0HZpUZ4r7hIqRLES6Cm6Y+5+jFFiu15Tt+QGN0S9ZWRBmK1uWniwY4Es5ewG2c9xHOPERBxC5njaIF3GuSpuzLGAISBSBumAjyTSPcqaSJ0m891mbtrHQx3RG490dFOhDakyfTC0qG3b0bWFYgeLBuuhTyIzbhF5Til1zQlKXX62qypWy6hoi6Ndt6qpAAGQD95ifRJLIgLhWJeCRSGJdY2+j9TbFPaAOXRrq6jd0cE2YIWbvFpG8tmWNcQkxMpzBBwk8bECSQyTCSQiGAaJLVHLfh6zNYkSJJbHuMG27UlXToACjtjH8Lp2D1YjgkoqZ4hAMutPrE8ic8mklqtVBmCWhYXxuGxS0hVuktdK5vqFGgT+YNFg7SCJ7N7hBnzblmVA+CyBqirfk/I1XESQuW6pvphaMEX+X6r3ngI3ZYXraOkGM66eGZRW/nmU14omdNPtYwD9W1qTeCXh6RDMfV3m738TQLRtxdA2418b/qnGMsYoPsVq4rrCohyD0RknLdWQtMgHn1CbMIwrB7IhAqZ1CM248sIaSgKb34l+e5EsTslJOy9KqkUgqyqsPyKvWz2tJWX7JG6cugZ37jkzipw+IsIiKbvJ8fLjQkoIK4Eea+/BfLdJTSJJNxXakDxzvHCNQWU1Gz1g6KbrLR9cxtpStGMdBbdBAVxNIpBKXLBOqx0jc8hZ7NkGhkx5YnBUuIZYxwEfSen7nneSRzGNDk3djMfOZ59Ddkf5PAIOIrjTJS5cuumIis943tjaKkHuNff/eP6VNaHhPdl2nJjMXAuRRPb8h0kSVrnSojbccxMigkyNeGycNgAbx7V6h5xFOwG/lo5Gsibqpvx3k+dZlkt2TdgqzyNgkpebnWEJsArXgEm6jkgiyV5ZDInMcY4zEUFOcC7uuzJIYhjw7Ur+dT0FDmQ7YNqyRNsZlY7nH84m4nKtMxpb3sMCBwCM47g4AjaPhkFPP5J4bY1GEsMbcgaSSLVgiMg4u5+XHhcqSSqQRDfbzRxrLpVz+LteJdN3doFyTWK03xsUNaEu3ZTIEsaofWCOFzg/dMP5GVlrIEI3bfmaRDmeBKelmoimnrbNYDftztl8Ac7ZOljUqCpLN2UpcMvBSdBQW+Xz17sW621HIymA6du2aTs8XO9m9ZYDNEiiLpEDTGsZu56hv5mf+j6J02cbyNckjgJYs5BEB6UjEfHYMQUVKQmDhTXRjB+5dAJSex6ZcTZ4bjsONTCfbQN1TX3toZOE4ZFEX/K+63kmwwRJZIvAZpgVrlHQTeuYkmT5WHU1LS9hxY28Zu4kJbOuwsBNQXkPe+4V7n85BiD+D3fNlk09MgVMsFceM1E37fjgZspcKR/PpX+WWqK5JgmV9a6j69LleB5NmGyBoZ3jlCbMCs5hPA7A+UAx4EDG5u+taU2i+BpMUNp1/t5RWitjLTA4JHHazotmvS8PgfX94YOe8prE62zWwU6/Jw5tlzMd7ucDXEZs2muGu7Em2X8iAy3PxLSZe+FYUbSNUW6digBRNYnVtCaxVD+WqgllkcSdc/7ZmqzQIQS42pLwPHL8/ym1jxMFqMfaqq7r0fVlRUjAbNpjj6Zh1SuhB6EiIS1AEMusE+OqqsLxsrHCNRp1U0cRkq1dOlo2ON22WCuRxOeOVwCAT98/owJZqwDnb2wlml6Mgk5t9kHCA8z9H6xbHbGuyrjQQQDM90slIWw/wGlNYsmZd4M9tkef+7l+LVf+y4XsDjYjHwZ77vFztnL6JGqCPRfxbDsFkug0uabbzYwMm6FOipTyP09N4hwT4Zr7Z0MLDMKRd6+3RgTLHyev5ceYZ9+ex67jGCjAENwIJbDlArDQn2FqokNfhqXEAqI4bREwtrYQCOs0y8eqHZRIk3BtHHYNm4AD7L60aTts2x5LsnXGsqmw3dnnhkquOGgn295GSg5cdVP2Ppb3AxZ8YBIJUc0PJZJoOxXwiQs5VrF0JrJPsa0zQl+evU+wPAYev25+X51wYy7B9kEiIyVfT8UVSjdW7TgjYoyTFtJUZTSjkhkVrskMk6ziZBxxLPPeeQiYhyQSLRjqyANaQg5iAjTMQj7tteS/nhsXtttw55GysHWJqrdT6JAzaIMTuLGKkOHxtiOSWAgSm2kAzG1STjaSrG0TO1otLJKoppuWM4OuHa4anG512WAAuH20BAB87uEGd0+Wxfe7fVbFGAR+GqT0WSErsWktY7m/WUq4ptwCYJoAks9J1iQGEvnucctBokWyNEiiRW74OqkYu4NCKJyaS51ysYzrVMiGi1CwaCdg+yQC5YRROEdLd+RqC8O+aCyVcK7Jd3vjkVlL3IA4ZW4vNU1w3zjPALvfy/G2zvPGng93LWeSHWaMj/iwTAYzBuNPnm7qI4kadVOv3pVMuI4BkWIPmPQ7JG/Hg+FeGksOSIG1ZWNVUXdkC4yli3aqzr/fzkUVJAZ+SW6oTeZPuweU7q0Jklhgl8XmaI5NruVBWQRzvKaetsWhg8TFIfDoc+Z3EbJ5C2wfJA4XLp+1mELbpRsrRLIEkSoGYAFqQNcoVIFDMvykBAGUjky84TaXJQ9FgHK1R+4cJ3TTwiYVE6CZo9xqs0WlcSG12PxkMsJzkMQoRYZxtoYG8O44uiZRejTtzLhSkBhSQljhAhfJ0lJAj1cN3jxV0k2HrLXGsQOA42WD080O652Obnr72AaGd05Wxfc3wZoADM4182wH9ySzP9VVTLhGlzgaVTkL42IZYSCvumiFa6Y1icUg0ZHX3ynu/zAIZjL502eb7BPn9Unkn20XYW1JpAEIUBtFsHGwqMfkiLZPoh+k6AIpgEdS5pqIYL0+iGAdEgmn2tnbNErJcylpHt1Rg9LVbr0fi+San27LB/N6ziE3Pz26KblMLpuglyCZgAbMd+oUe2KsTyIrAucGiWxS5mCkmxrxMhZJXC1qX7iGZEC0nam/1iRWwiQ0MypE6Zh7JKxRFtsVkkfRtnQksufO0RyrnCiJCde0hG/urlsaKjMAExg+fm34/ZgcdPH2zAeJTPFpHQQAQDm7NeXjD59VQhKHm9UGKeZ1JiMfKukxx5sI3jBoW8A9l+NRAUAQlLZdX6R7xaD+UuF8jBJL0UaDAJilIMaofcw4l+pi5sifx0kgq8x+MuIb7vG0NYlhANCRG6m3QSloW4AVrwF0dVK7tlcp2wFGuON022Kza+mAFABuH9nA8O4xESRGkHvGua6r8J5kBSCmiQut2qIGgQ8TcPI5pWfbFWBi1TytAI0WSRwC0zG4KdfETQWA2CbdjkopkcQUk4BtMyCJLCK+bHxxC/b+r6oKL9ww9y/fk9SvSdTUKYc1qKxTPsdODszz/NqjNQCr5JozN1Gro5tOkysM4r9orOCKJgBw66to4SDxS0IkMfP9QqYSU9svZhIXEtzwwZ6Zo25P9Or7x+CSmGNtA1lWlA1wg0SDJB6QGdBVYwRvALP+MMI1S2e9KwVeroXsAja5CLjCNfJ6JmhL9UksXPNwPQA41fUYw49nhfivCQuiVPIRAj50Kx43SNzTTd8645SNEkhi4eaQ9wE8jWTM2LX+plEO9ux7AYVwSiTbXbqFR4fQddJIBzQMHHZdj2XJ2a2BLoT6C05h2H/KzLGMJMrmMK0RKTu7k3YPxLjG2UTtHOdtbKwim7aXFyDy235wWaJYToRryI3UrUHVontHM4LE5aIa60MA26eOOdbpRt8Cw0US7zJIYmRj65jkSh3ek2xz6VBxV9/f1TrJ5XGxPok5hkFVVVgFrVzYtixjkNJ2472pcZIFKWKC9JBuzdYtLRykVJN9HoPEXUcnZAD/2dbSOF+8eQCAR+0ntGQiiy/jvORif7lI4sGiMfdY22O1qLnklnO9NUiiRzeVfYMOUpxgW4MkOkm4OUgiK4zkXjfdHIcSAEWSxBVOUdUWVtV43jVq2ovG1M53Ha+SDNh96fG6BVBm5IitFjXW2prE2iacWrIHsxnn+xeqIL33n4E56qamfjJ9rHBtlXkCheAymKM5djl4jiGJnOjitN6YXrdWJ8DZPfP7Hkl864xZFMIbhMluhXRTXto6RBIVwV6AGgCk4I2ybm9UpHKeUVoUI6QgEjWJ4XeT45m55NGGzkNXufMITBW6ynRTfZ/KcZxHI2SFa+aJu7iS2HIdSohgOE+6JjGSgNCKVGjRPQ9JJOqIAIMSbHYdzrZm02Yd3iOHbqoTrpkXJGqRxDD72YNENuqwTpYQYAro3WxNYuzZBgg6vyPiYObI3ScukigOtg5JHBC3lhOu0QpnATbY82oSGSetNsHzetepaKMujU2DiABWhOkdt7mamZhK7GzhmksMEgGLJh6yVNpYCYCydOAq6I5uULojaOtmjNQkWsSZeW7c5GlPIoKARelskrA8xl2DNLXsdR3Z7xU1wO1A5eTppua+ejCIIrF7x2phkcQt2QLDVUo2CQHqUF55CZuQmZTqEAnelLppribdfKafJHQ/gxKu8XwuItiLsNk6Zg+u7HnUJCUBAMcv2N/3QeJbZ0zx6dTZNT9L0rfANEgsO03DvILsQxEBq6ZZa3ceyXF1RNxCibZJvSWDgDU1gprEMrc+JlxTrEmMUGIp5dbEdWOQxNg9QiGQc2m7o4Pgzz1ny8bPPpvPImoSnX4/Y5BY2NzC4nJaktwJbrSKYC6Vk0USRaTiwZmRu2c3bVE33ShrEm8e2J5HVE1iJNvKbGwu1QtQJHLCtYQQpQpFKuSWLs8xjiSWmkW7arsA6IDPFU4Rh4u53rFauiK1tQ4TcJwj6QrQaMWUVosa622nQjZ8REpBh4LtI/jBl25Q769rX5VTQ3f0HDtSFfU8duPQPKeHZLLJTXhoeq66SRmmzklsLt1xgkAq7kmvVYo24ddx6w8wqHArFafdZ1RTy+7eW/KTO56L0unppg+GZ4dFEg8WrnANX5M4zlFxj4QlHxrhGg0wkkIS20JAG6tJpJDESMKVSXgYRNB/jVFYNucR3jHpdevGS/b31T5IfMuMWZTDAIDJbk1USsmgIczYaZDEWJ++IpI4cWS4MUCs3pJDsrTOrtukeBxX6pMYIBsAp+4YCnDYIP0Sz7/yfABx4RpKytwJ9liKnrxnrEkchGtKdNMwucJKkrsUXEZG27V33DGIRlXxtA7ZtEXwhlUqPVo16HrTS02DJFZVhVeeOwQAvH34mbNY9pMvtg8QQbom0f6fCe7lVE97ZBHHSiKJ6e+3bKrRYTLv7yj6m0s3lfHMtZNxtnavKye3al+ki0FkAQx1LmaOrWJtBcy9vN61KqfVVU3UoA0AxnYz73+Rr5mZqEIq1x9AgsvLdV9OVvogse8H+qEmSKmsA6qpZQxLB2hRksbfO5hgwwrqOcE9yXhpnQCY75NoEBiNY+2WmGiQ3KaaBjbM8VyUTnP+Zb15qExKejWJZJJEWreIercGbXYTCRRqHPhOmqAtJgpTAm7CmkQNkqjv1e2XzgB8yYfb7sedQ9FOXrS/75HEt86Y4tOplH/55p+rUhpm7OhWCpGstTuP3Dw9wRsCNZiTMXLn6QZ8W0rdtE4WKac2qphjbeguhfklvltpH519/oNxfMNbPdoJSON4IwggWWhaOGI4nu2TqLtubLY7RjdlHVcJvlhkG7BO4P1TXesMkcW/93iraoEBAH/79309/ubv+UV4+3Nlml54T8rvDEoX3pNUTWIdUzfNjwlFKmSqFN20m75uhBlyTkLtCdewWfIokqigbWmRRNcZYdsEVVWFZV1jMzynAFejBgxow66DRu5+6SoeK2sS/61vehUAjyQC/vPNqFsD5l721Wzz98dF2M0BSWTaXwCOKm3XqYKUurLrnKYGe+kkXLuep3IaCpy9jzXtVdzgkkZJHcaRVoG1LezzrtkSk56iOtpxFknU9Bx2Ubqu1yRyzP30cEAS2b3DpZvuum5sBZQzu951qjresJZU14LE/J8BD8KWOGIl9DJWk8goXIe+q/yuLd2Q41FI4jBOWzrjIYlvYZC4KL/l6TZmMw0V+JiFK6VSygZgtpEsiseScX6fPvOzdDu6jZRlHEstCx1ClkrlFs33ffn8pxqn1hnkIC5cw6mNApEAjLhHoue/FFxWU8EbtkZkjmMhmcW2s83EmUyyew3m1CRqKMkuBVerbvqOO/rFVOTtpXG2BkkEgNNtSweW9pgNPvjSTeq9qewnR5EJkiRs9n/OOMexoIVrqiltCCg7octF5fVJZGmLdW2C2V3bjyIQGrqpHJNrgVGr1x8xaQGgCTYAU4e73pnEJx8kOsI1ZNAg9i9/8TvwL3/xO+j3A34PPDaYXTZTxsVlCtcAwMmBIInKHpAOTVIbSGkcSYP2uG0iqGn6VEK23mySJOnGvaR4LGefoinQg+LuWFtIJjIB85xp+4uGSUnmEXADHJbKD9gk5KyaxNaiUlq66U6BJIbnhE0kA5icS0rgMUQFC/dlSD93j8scz91yWCQx1nJDM24UrmEf1JM93fRaGNNvLEabAwoZi0CllKUf2sbZ8MYVna0aAWowzKMU8AVoA9VLMAjAYs2w0/P05bcBot9eM4X6S3S7MJAFuHq/ScaUrImoK/888PTiaUsQDpGdioRwfRLtxmbpGcxmX0/UTZnrNgp9KALZ86ibvu2WQRK/5N23qfcDLpJoMrus4I0rksM2RJ5jIUoHWAZEzsJ7i3VkQnSbFVxx6wvnqiuLlYLgpSPABPAqjYB1QNc7Xqho6SRXZH5lwa2QyaCtyepUKpmApZtqhF3kWIBe3XSOuXtASyKJrkgLYNYgZt06j0mQyK4HI7VPiYDFkmJswm+OcI3bX5GlLcYa1bMIsGVF8WjncqDS2kCjPEY+Wq1u2viJa0CfcNUEwHNrEl26qV64ph8UQ3kkcU6bGnk/wPm8oS8ptmvz93PI0nCPW6KphsfjRcj815hnJ2RNyGdRtkcSr4e1Xbl2aVLbQ2R3QySxV7RSAOwNRdNNg+w/G5SGwjUM2jNyz4OHlM9+6gKAGJJoNsX8cYCpcE2pJjFVb8nRCqbnv7S2hgikhtoxaVpL0U1tbZWGI+8Wim9aLriPZWjZzWa90wUbYh9+5RZ++9d/AL/pK99LvR+wSIG2JtGtVdLUJM6xsJaX2aCi6ppEVVyIbrNN4EORCnktO8faqvSOxxsZBrmaxDqgH/JO2tGAts0RrrHITZnuKNluQ/OthtpOaorm+w3nAeDvf6GkLeqaDkhXbp9EBSVwrrkOHnvdXLVFwNz/l/3M3TzQ1SSGSpIAj4CFlDQWXZ0jXBMGAFxNrh8AlISl7LHgJY7Ye9KooLfq5CLgq5vSdZOOkid7PMsu6FTqprNrEj26qa4FRqusm1zU9YjusfXNoe/EBNzC7IgxxUqIYNQnrPL+q2WK+XtHuZZ9KrDGIKyuumlJkX9iL36+M/HLS0KXbB8kdh1V77fZ+TcVkIeNJyqlLJI4UiYCZ0sRuNV1NdYfaSXoVeqafejIc+Nc+W2AC9LDrNGukP2Jcc97Yo4TKX+SNldXRrRgdAhJBDJEG9jNfm6fRDfbx55/wBdJ2JK1XNKkHtCJG7nqppoWAID5fn/gWz9EvVdMGmXfP9uiqriWIIBfq3TZDmtYy8ts+OEYQ3fkjhU+N9S4aromlDfRqYPArK+Lxhcu0NAPTeuSdlzTGWVaSYi46oKMgwCY895UfE2iOZ5p8SHfkfUrDoZeagcLDZLoIimKTPdMc+uJNMI17vXedj2OlXXAWhMk8Yikm7q0cE2w4bJQNPT6OWgPIOdfV4MaokS7lqSbOmuCSkypNgGwZv1356hTN3UbnpvXqPr+gJXDq5v6NYnsfuMFiW1PnX/pQS1KsZo+ifORRAmKhteLTL1EH/IikjgVuymKuQV1k2aeXOnG5HjEeVk0NuGtFq5Zcm2FLtv2QSJ5g3goEbGQhyqlMpqt9wvRNqYmDhiydah4Jb0J2qAZZ8e4c8hZqGwHzEMSS7QoW5/gXzcmaDZzs8cBOOEgM87UCsylm9K9BKt5dSxjv7fW1iSWFLqARE1iQbjGQxLJYBtAXN30Eh3XA0e4ZtXUdN3YrSPb71DTAmOOuQg8oFi33OemByqy31hInab7KzoIkcyhNCZZW5IZK0ibO4ZGEldD6xKFuqlcX3HSmKDUVbhuBsSUDxKN47RpWzR1RTmEZp7muxnnnxuzbOox8WPmSg2bba5TSCOJTe3XoLbd6ABflr148wAAcLaNKCtFzGVp6IRrqklSkkISnSScBslyNRa0AYB73ShV1NqnoNOU2CEJpGGSuDoEKpVYd46KfUpKDDa7TkWlleTiyFxRIInrYc3aksJNXuA8M5Gg8UnMsTAeE9ArvDPHTCKJhVMpf3fHsjWJIeOFFo8LgCJVEu7X/nng5/8R//5LsH2QSELN2prEpEop8cC476cz8g7UvwCftQ4bZ/PjpnPUohSy6VPqphO0IV/LEssYMc6ufKS2vUd4/nV0U9fZVbQpGLPP/hxyZiWxrSPDqKS5SqWamsTRGVHSeEKa6mWWH43CNadbFSLotq+4iiDRpchQWcyAAdH2PXmtpzRVLbuAdZJjCaAtgXAL0iamcYAOnf6WAEcvluu73vFIYkwFmvUPFkOLj/W2o5u5yzzvnW5Uwd6yqcaAW6tuOsdCWvKKoHMuG//+Z4U7zmNf9I7nAAD/7NMPqPeP9d5K4Rp/vRteY4KbpnJasuj6JLpMJU2jdHm+GeEmGefuU+w6vmhqTyVWrW6qOf+NPnEN2DXh8WZHzxEw+82qqfGZ+2sAfHnDQSPKxZzgH+Ao7g7tdOYkEvhepiGSWKZ/AvF2FqVjxmoSS+wyM84vA5P5zkYSFSCARihwtA/9MvPvLbS9cA2xSE6y+MTCZR0En4/MIll20ULxWO7xOgfdm6NkyDY8d8ex9ZaAT0G0C7Ku356MzbYgGT5y0iexMMVQJERDNzXHk2P5r6csjiTmjwVIhtb8rqHWuAp8+ppE835dTaLtvwYoMusz6i3n2ihcc7ajREzEXrhxMP5++TWJ/qZIbYjNtCeplu4L8DWJvkgFmwCa9kks9UAFBGkLgkTyHjla1jhzgkRGmXYVIIk7QjjFlZ8HeEQWEJSoM9RRsiZO5imOpKZPogQbQpe/TJMAGNAhWe4ezKprnse+8J0mSHRrX3PmJ+DMa7xwjfnd1jKWjzeXbhrqAnDr/8CMEnXfjhMOcv0ETQJiOcxxjrqpvk9iBO0hjif7xummHY5fHALA+Bi3j5f4zIMhSFQgiQBwtjXHY4RrfCSRE4kCpiwglv5s3m/+T9eyBwkg5piNUzMpxqmNmp9z6vtDEW66v2LICrzk9fWi7ZlHEpk+QZPaHmLhslQj838ZzkDvZly4aJXGmZ9uTRBzLxq6l/2/blwIozPjnLoGTU1isFGXMplh5hPgahJlrLq2KnL+AUI4KCIuom1SrAnAvMyiIrPlKsyOfRJLSGIdq/UoHsrLrGsywnNNNvuH6x2ecyikJXPn9J7n+WbicyxWg6elafO0oSC50oHioLsiFWwCIkTSATfjmr6/Fk2NR4NzBgzng60lXZmaxLUKSTT3yHrHBzcW2TD/1yCJ0uJjvWtVKLXUJKqofUHi7jITMoCv0sgiWcsBWRLbdf2l001vHi7xv/32L8TH3nWber/Mx1WOZoI9l5WjE65x6aa887loqpFCy7eOwfh+wLCAGLqju25pauIWQ+9OTQLUltzogr1FZL9n5ikMFFmH2OcNAO4cr/BPB4SaVjdd+K2amHUhVDPXiBu5e/ActLnt+PMf65OYRRKbCJJIKH6HmhNmnn0xURgteSIo142b8NYK11wTe+aDROZCh4W1zMI17XfIISKTZu5kABBSm/qeo3/W1bR1A+vIhzc/tyDUOG1bb67l8x9BEkuc9YhwjQYR0TYFn55/7ro1dUg35TL5EqT3TtaUo5vaTUOcLlo4QhyEndBN+eumUqmL0BYvE91w6XxzaaO/QNFyY44t6tBJ7nCwzC/fTbD5alTqwueNzsgr14QoktiVN1MRthArtcRx7WjZ4N7jrUrd1CKJZu1inGTLCrFCDpqaxG3b4WzbKYPEButtRwdfgAlItcjeeewgUGmcI1xjsv+XT4T6Nb/w3fR7XT0BFd2xmq6TLHLj0U3J07Fq6rHdj3HGGXVTn6Znau+5cTuHTaISbup0iKCc6q7rVUhuU9foe/04SRxp6aYA8NyxTUbeOODccElmSS0jo7or101QWZ7uW2EtiYRCOwqxkG6qEkGM+HclEGDKLlOUZblIYtfjqOTfxeitDN3UCWbVwjXXxJ55uilzoUNxBWbhSqmUagRQACcgJWmqEnD0LNQffDe2JtGnaJjX2Fo6l+vuzj05JpI1KjlBdXD+ZZ50vZ8SJQ3Pvz0n5XHud2P7vS2d+0QjXCObxrbtRroGU6fmSmJv2w5VxSzItYMk8omEpvLFDsxnXT6SCOhpo//Sh1/Gc0dL3DrkEcg5tpyJJLqBFFN/DQzodkCB5lgCrgCHnUPxWJGMMFCmm7o0wJacI+DUJM4Rrmm78WdpXJhZN04yOceFoJ0t3YIBMNTZTdtRDBkxobYCukB2rh0smrFHJdPvE7BJKkm+mT5x18vZirE0WKXqOX0Sl41P5eR7ENpnx/g/5TFhGcy25a7bsqlG7QEN3VT2YG1tJ2BFWsxr5WO5iVOWuQVYJPGxIImK5+aOEyTeOVlRY1YLv5/vERMkOm1ZdOff37upGtmAbsomJVPqpqU+idsJRbXc8zzGMKNEyAI2IUDSW6/Yl7kM2yOJxIWO0baA/MV2s4qArt8eEEES2eByzOTr679U45yHRjZu5tZ369QsYqCH+ku9bWJIorQFKVlUyl+5+GgEb7wianIhXy7EIenVjgUw1CQqEUh5/6btsSRUQN3rxp5HQNBt8/uVqJueA0n8U7/xSxHsHZdii6AGj+mTNUkA9Wxm3Re8UfVJHJNiXOPgEEk3Y8tI4oR+S9Roih0tG5wp6aYSEEp23dBA807aJOGnQOmOVw0++eYWN3Y6JHHV1FgP9ZY3D7ntfdnU6HqMTvllq5uuFvWIvmjUTQFBsCpaXfMqLR5sKJFExTrpOteaRuluK4WWRBJDlGjX9WOQlJ1j4yKJCkpsXc8KtgGzXs1SRe10qqjy/D8aWllonP87xyYwXDYVTlZcEkjWIEESj4hxrgYBW1so49x163DJn3+3BQbdJzSyB5T6JAr6K8dgawTl871jlVpn1PGSJyp2CIRrnrQgcY8kEhc6vImZhatxFiyAV2kcszHOOIqiF3Ct2fqX8Lt1fc/VH7nCNcEcsvN0aEMs/C5Zrb4PncIykuh/N7ZucipJztJNw6xREUmc1CTqags3Xt0Gn21162bYcfL+bdtRjrWMcSmxtHDKBIEsDptti6Yeg2ctklhVlaoWZa4t6sprAcBs+NJGYRzTlyXCgXjiSCtmxQR68vcYjQfI35erph5RPRlDS9CvrLrpasG1PFnUFarKQRKJ4C3GCmGdtOODBU63LdbbTiWmdLA0NYlnWx6BlOBGnPLLRhJXC3vtOiLZ4c7RUrc44ZSrNI+loQhu/D6VfHDp9orToESroW4VMDW2zJoXokQsvdtdt1hGgsxRmtQD/Ppj5qgLEl2fSxOku6rYACeAJXZ7CBJvH6/oUoqxJlGCRA3ddEwA8UiuK4qkOo9a4ZpgD+j7vhhgiv8TsrCYGkEzRx2S6IpLjeMooRynJlfhA10nu16r7FtgLGQcKukB+Zs4pGewTnIY3LQdn/0HfCSLuRWbwCEEGaSYAMD8rhGucTNUrHCNpe7a10p9wMIgHRiQROKsuI6rRQTzY6bnn7/eXW/fz1LSVoFjxxwLcBbXtrMCNKSTsHWEayjRAucZUKnUVb5Eu7x2mSZKpZetUjrXlk09rcEjauLaYBOdo27K1pa47AIZX+zvGqHxMAyDEElkxRUA41ydbg2V84CEzaqqGkVhAAwN6wtBYqS+nEYSlw0eb3Zmjgrn82DRYNf1eLzhg8SVQ5PUCN7MtYNFbeudSCRrWftO4a7jhFOu0mQ+Pt2RRARbfbA39hLsepVy7oETpG9IYaQQJTJBOrffjN9Ncf9L3aqmvZO7B2sToIBJPGuC9ANHFdvMmU/mvHzL7DchgpYzqZ1/4/HG/F9JN2XblgAB40sJVLhMMT4B7TJX7BxyY+QYYmzpmDmGO64rip4tmgTaWfJdI+1VnjThmuvpEV2hURB1M1UABTgkUavS6NIDgMFBo7L/Mjc44xiH0KrvyTw5h9B+JzmmlpLGNnMPBSCAcvbHDVAALjsl5tWIkNctPP/sOZF7aKRXsnTTwLFj5gj450UcBbYpr9A7ti0nP9+4TtM4x+KwaE3oZVM0Xrpleh5qNvqrtFDNjRGccJEGgL+3JuqmPdkD1UMSOVGkEEkHrHpuqSYxpN+ywc3hssHZtqNRFDFXlXO9LY8N0S9NAHC0avB406qFawTdeOPxhu6v6Pb3uxJ1UydIYQV2bPmGFdO47BYYWosJ11CIoFtbSCaFzbga27ZXMUkAvyZx03L3V7ifsn0q3ZpEjbrpwcJQoKV2VaVu2unPP2D8i67nz+NBQP9k6Ldin/fyTQDA64829BhR3v7Um2f08cZaalE8Js+/K9TCCMIAcZ+XBQ7C9jbu56XGuO+V4zH7jTtH+X1O7TxDU3UTQHI+r4J5dJF2vVbZt8CYbIBxZHyHBMgHN5MsslaAxkFSNLx6VzhFG7TJOOYWDushAM6RjCleloRTFvX0wS45hbHzAZCo7Ay1uRTdtIxAYjxO3/MZ4TFI3OkU2RZOcMm2sgB8J2FNOq7LgOoC6Otd7b11uQvr24bM7jFZH3LVtqx9oRa2JnEidjNHzIp0Ltx2OrRwTYCkyzyBfPJi6QRsAE9bBGwtz/3TrSpIPFhawRVNTaJLXafppisrXKPpk3gyKCU+ONvRSKKfcLp8J8YNttngfjkyJ8y53HbdpbfA0JovXGNeYwU/vECKVaAcEBgNagbY89/3PZ0oCe/lLdmncuEEpJp7a6z3U4jCWN9JV8vu1iRqBLAOFjWqygaJmgTjqy/foN8rJhTVT903QSJTk+i27tEgub6fVhaEAVwk1/xfQzeNtphTgDAAXzoGBH0SiX1xEfjJcuxSnsSjkvd7JPGJNMZxiilQAgUksfFvYra2bUJTJZWl5mZxwgwJq25aO2gDK9Ji5lnPqEmcPtilxrD2fJj/d2okS8aZn1pVWhlXrGV0kgIaRFaEazZtp2rA7ArXbMZWFooWAG2HM1JxMUrj0QbpCvTlPCab6YdfuXXpx5pjc/okhjWJHemQzxWzajx2AXe9QyQd4GoSlwGyyvTIEpNanjdPt3pRmF2H3RBMsXRTTyWQpZuuDG304XqnmqMrp88iG7ImCJX2spFEqZsEeCTRb1RvkmlX0QJDY15POkUt9aKufXEjhbiLtt0GYIVrdsN5pOrLg3uZvW7LwElmGcJy755ueFEYeYtL9+XOvwQ3vapNh1DQx5pExXP64lDewPbgBKZIIlOTaAW3WpUCrpso1NBGzft1QkVhXTrDOgqRbYBEEoNkh5lveZzbcswfR7B5xN9VJnOuiz3z6qaslHx4UwEcHG7rUVAc4/7drWNR9ajxKKDzsjiz20RQAdg0cGb6JAIYWzDI2Ny5HDeMoLaN60Fov5OtLcyPSdckFsY5Wcy64gNZryZR4SRIMLRxkMQlsbnJhnS6aWkkMZTfZufoF81fvtMKAJ99sAYAfOhtNy/9WHMsbB6/KyRJgCkiqEk4hWJWWropmwBaOMm0cO3L1yQGLTA6Xt1U0OLXH22USKIJbiTAKdUKRtVNyXv5aGW25jceb1UIxfHKDRJ1SKJ8r8v2YVZNE6hr8vvbru3H637t1E0d4RomkSzWNLbeuyX3e0B6CepEcgATOOy6Hmdbs54wNa9h0ntHqgl79ZaKAMz2IBzopsS4qjLiUl1vnXlNgl0Cbo0Tf7BoHCSRX0uqqsLf+998I24d8a2Tbg9tMz6pCBJlTutdp1LA9ZXJdaUsI5uELW8I96nRv85pTtTeewGeXSNzc4/HCt50PcZEh1m7ssMCdV8+UX6d7Hql4t4Co+imiUxH7mLXYeaNRLJCmupcdVOAbGQaIomkQ+j2UtNQCd3+Owz3HACaiJJVKZNZVZUJgINAlqvJuji6KYsct72ujmJuTy7ZNM627UhxYjLJ4rSeDq0DVEhi11MUErHVwqLNGvrVeewP/tIP4Svf/zw+/v7nL/9gMyxsHs8mt/w6Xr4m191EWQq0L1zDJUnqYL0DuABzOVD0eicJxAYNd4e+ZD/1uUeq/pZC02NbZ0wTfrxKrwSyjIqqaycH9rnk1U0FtWm9/1+WhS0YWEQK8FWZnxbhmmWQcNUoUHprKx1cmuv7cGjdoCk3kHnS4mVuTaIiAD4IexCy52TYu1vFXrrwrpvOiT9c1jZIVNDCAeCV20ce8l8+VoPVosanB7rpIUU3tTWJc/sksiyNULiG3bsXDrvMjBd/JjdmiiQyCZapn8wL0LhzA8weV0qUuPuUzHVPN33CjJWxjXGmGSRxWqOmQxLZRWuCJJLj3HYDgGlnQQWXXgBmXmOl5OVcyMLAqptOlKyI67YdF6zhNVrd0f9u9HVz1GXNuMKxIsX2zBxjwjXMhiiO43rXOXTT8rgRSdy2ONtyinieuikZNMi4sY5Fkf08j33RO2/jL3znxz0k5jpZSDfdEkp1YU0iq1LqNgAGeOp6KFzT1BWRJDE/w8wukEeKQgl0DUohQeKjTTv+zpgoLkpdYskpDNcEjZPm1saywR7g003Z4FJYCRI0aHuFak3UNbuup5QFAUfKv+2cfeN6uS/zhWtqj5I2W7iGXCbl+kp/vxWBVIdJb7ZP5bJ2kJSeRztljg/OZI7ctZa9W6P47X43TZsOwDybc5DEuXb7aDleg0Piui2aGk1dYb3rsN3xisAekqigjQJOiQ+5JqeRxPRYt5TFHcf6kmFNYmktiSUzmaDU7e+qUc69Tna9Vtm3wPiM/BRJZG7iSf+jwkNTVRXqyqebapS9tDWJYQuMOY2zWWqljAvVnlhFqlDdlLlusohYuikxx2qKQGoREXVw2ek2trFP4s7JWiuQxPW2HbPBTHAvTquR5efQDZcSosmsLxrbF1PTW+5ptkVTjwkPYJCgLywM7nkElPSfYE3gaNqBSqMq++xu2oS63djKxX43NkPrBoa6INEI10j7BnWfREUg61LJdEiinm4q1L4HZ8bZvew2MG598xwkUZ6D64ckDok7JQXURfw1bVJEuIdRA3ZtFQRgmoSf7Itsn0o3ucX2aTVzkvYSwz1Jotuyd+sUv81nd0NwqaOb2vraKwkSB8ppU1f0/W/m2NJaAvL5Lk2YeUbDNilsUsCIu/gqpe7npcYAvk+4I9bXKCJI+pKAn8xkSj7COuUnDUUE9kEi9QDUtZX/N2PK/f0k2Jv0eyMXLZfKqeHVyzPT9fraQjuuOMwTvBmRRLIHYUjlLAmnxJSs2KxRGKRrOfJs3eT0/HNBae0sPhra0GphF0lbpE8EiQON52xAEhnRGsAqqQmSSPVoqv0Fkp3j0hmnoSg9zbZqfErOlsjkh/1F2SClriqvLU5Prgluwkm/bk3pprnnWxwkaaXAKNuJzQ0ShSYpx2TVTV3qNI8kOoigQlr/ZEZNoji39xVBw3nMrZNikbOmtkmB8f64Zi0w3PZVmhpsL5BSBCny/SVpwa6TEnBpUDqZ09ZJ8LJ9El1WCF2TuJQ56tpLiOicRt00RIB1dNN5iP9cu31k1qujZUMrfksgy2oJAGE/a6XgjZOUpPaNBJKo7ZPYUXuiMLB0wd7op7m9eYlEqOsDac7jdbLrtcq+BcY4TmEWQaPKGdYkchRQvyaRC/bgHacHWVtYV56yYK8ILjvnWIACSXS47vJazsJ+YwDLI7dUF82m7ao7suje5Pxr1R07qGhDc/skjpLY225AEskg0RWuoZFEm1nUCAmIkI6I8jxpamCXYYvar0nctV2xdYxlM+hQCldcCuBrEl25bzZoiwkJcOqmln4I6Jxrl5KppZuKswWUnWsXoRjnSAvXWIfzWNUCw3VauWd7bAp+ejVIoqwdjzc79D1XyyV7wLazglvXLSvvthfSiFS47aQ0zInxPG4HBVBy3KQmkbjeouS5Vvap9BK1irVc9qk3T6VuknsGJDGvEdNzy1k6hQIoAK+m+SqQxJefM/18NQHpwaLB2XYGkuhdN+5Y3jhyTZ4w9YhnJ0UbLaqNNtYncY9XVK8f/hwiieXWGXaf0rRpuk62DxKJGzlUUmKdcrduT+4tGklUPmhjbZtTE8e1GwiyMbPqjwQ1m4nSEecRCNAGgkfuK3Sdd446zjpPNzU/XeEaSuzAo5vKsYrDRprKetdi0/a0Q2jppnokcdu6c+Q2DXfcnm4qdFN7T3Z9GYF3kQ3gfHRT5t5y5b5ZhzD2bDMMg1hNIuuAumuAFklcuzWJRbopJnNkHdCXbh6Mv7/jzjE9R0/dlFRFtUiivt/bHJtDd1y6SCLJ7rhqc4ONEclineRWl8gBLNr2aK0Td5Hz/1CJHK8W9ZggYdAXwK+31KmbDvfkKArD1yR2vbLlkpNM0yRyAOCOs35ohWvm2Cu3D72fjB0sazxat+h7PrgMfSC2/jcs1bm8mkS/3EDGlZaEsJWLjCv6oI0fA5jfUayndvu7auqNr5Ptg0QqSDQ/3aJtgAhuqspzEADOka+dwK3tdbU9fuNm4lgTuil3I9e1pVaywZ68Z0RkSQroXCUrz2lV0k/Ca11aI0dnd6L4mh/nCdcogu2ocA29ATc4G5BEttbj0BGu0SKJu1bXt8pFidia3Kfdlo11JNkWANO6aF7IYSpcwzmEWyWyF9u0uZpE8zcRX9q0XFNwsbcPGXlNkHi0bEYkHWCCxAFJdDPy5DP6yu2j8fd33+WDRPecsQ7h4YgkXg3ddBUEABq6o3HkBUm8XgtDtE8ik7hrXMYRX1t4uLB14gCPJI5BugJJBKQmtxtq/rggfdlU2LSGSdKRiWvAouAPznSiMKG6qSpRNcxRw1y5e3y1SOI7h3VBo8p8sKjV4jqun6YJ7he17THNJnhdJB3gWF8LZz0YxxFIYl2bMjDrF3LXPOw6YH4nkMRAuOZJpJteTym/KzRO3dTPIrA1YF42Rql25iKJLELkzZGkTYTCNW3H0lsrzyF055AfV4/1nSxKF+uJw2V/pnRfJuBwqbT0HBNIIt0CQ7mx2QyV05OLdS6WppCdlTEHLJJonOSWypoKbXTXOZRYVQCsrxF5Ws2VCZd7unTtlkH2syVpQ1MkkU1cVF7NEquu7M7R/T33fK8CJFGT8ACAv/o7vgZ/7u//NL78fXfpMUcrQ9vajH0SCzWJQQCsQTvd973zzlHmnWmj6aYTJPGy6aaDUI5CTXUUrmn7sZ7o2gnXBH0Sq4p8bhwnmd3vARvcj70ELxlJFHVfKxzEXDfHSVbQFq1wjV7dVARoAB1zZdf243VjzUUSr4JKePvYHI99tgFzLsdnm0YSfT+NvW4GdDD3R69hrrhJScKfSQvQlOcogm6A9Qtphf0+PB43Tkpn9nTTJ9CY2pmwBQOLnIXBHsA5yXWAQKpUAnt7vFmNsxXHC6mcmp5Eu64fkZG5SGJpXLj5yrxL5lFpycBNnAFL91UG90MWU45fMq9PoiIAAyySqBGuERqboZt2OCQ27VUQ7AG6e0S+2z5ItI2zAVuHV06u+NlWmiXg3P9SS8pcgWXjP2/MhtgEz42ZL+8kbEd0tafvZQB48eYBfvcv/jxVy5PjVYPHQ5IEmNEnsZ8nf36i6KUGAM8Pjit7rMMrrkmcI5wyqtl217cFhotStArUWPbgXqmu6dZ2yvEZk/P/cK2jF4tKJtu6CgjQVQ3ddBmgzQp1UwlIAZKFFSRqVUiiEySyQjLnsVdfvgEA+NaPvp0es1rUlrbLIokBKl5C6MZxtS9cw/pAoUopkPdnQpaMHI9S3HUCWQtwlBFIAJOWGxo9DU25wXWyZx5JZBynOnC2WJqkG+yNAQBJyZzD6wYsrZLpIwj4DbABXd2SRduG10gH1Izhm4u6AihiTE2EK+OsoWT6VFoukI2pm1JtA6J00+IwW5PY6vvvHHhIog5t0DQO9rJoiiDdlbvX1Og8zeYqIIq65rKw4bsZ8r7vdaJUY5BoXqNpQzPqH4EUkliuSRyDREXCY64drRY43bY43UqfRF2QyNTMuPbXf+fX4pNvnqrn+Z/8pi/Dv/NXfhQffOkG9f7RIb+imkQJSt98vKGP597Lkiy5bjWJgNOqRpEQWAYOOU/JNOdNahK1dFONcI28bzMo0gIk48VFVxWiMG4LjEVd0Uq2c9RN/X6+/HkEgDvHPF39IuxDb7uFH/qeb8YLNw7Kbx7sYFGPiKymJhGQ+lotkqhLijV1NQm+5LNStkiwy9jjbQNWTtmXHI7Rh0FpCeCwpTNsK5HrZs98kMg0hV0EAQBLr3SDvVYRAITKUlyQOMzNRRLJTH7YAkONtik2DZdLPo4jz39YpMw0Mg1rQlnH1VJp/Tmkxwzz8oSDiofykETNHEeUbqdXAJXaEo1wTV1XOFo2uDc6dgTVyOmH1isyu97CqqwReVpN6jb63rYAWBbvSX+jd18rjXNb8ADcvezSTWkGhKytanVTSUDYwHm5uNz75GgMbrisfIjkajPJX/D2W/iCt99Sz/MXvPsO/tp3fw39fqltk5rEy0YSRYH19Uc8uuEzUIRuer2QRABeb14eSbQiHJqkmFAOx5pE8nRMkFxFonC968bEK3P+Fw5NuCP3RDkWAJxtu7HUgbG69tVNWX8LGNg8Srqppqb5okwTIALzaxIBvZiPJxZIIscu+giAKk2JIYmsmNLSYfjJs1ouHZOgVKeK6iaA2BKM62bPfJDI3MhhM3fW4QqDPWaMvMeFw2cJ15D85xjdlFnI/cbZuu9mjmMRES1tS35neOQTtVEllZZFEmPnX4MkqmsSFy5Kp8t+HixqnG0NbUhTx3W8avD6oyFIJDKSY91Y2490RQ2VdjPU9uxjxGCzIfvEuQqgmnurquzzonlu3BYY7Lplqfz2NUunzQWJAZKorEmcY+KsyjNQoqraPpV2D7iO6nbLpkJVAQ/WV1OTKPTZN4aEE0U3dRAptkzhrTDpC1jXFT0/+2zrEn4Hi1BwiAumJuqydO1qY+imgr4QSO7CWcvbjqeEu/eg5n4UjQVNnf6ISrU6ui8AfOQVk8T52Dufo8dctR0smtGf0SKJUn/N0k0npVLnUTfN3F9237AbB9O3UI5nWYFcO51UyROPJD65rKhnPkhkgqkYbQjgaoJCARSW/iCgWauA7MM5sgGRc9/zNDG3l6BCFGbhbIjbHZcRjvVJZOi0LiKoQUTc68ZSayb1R4oF0ryf760ITNVNNeU5RrjGBGCaRt03Dhf43MM1AF32f9t24/fkqLRu9vnJXFgv2hZOwG2FI9h7shtZECxLwKW703OsHXVTsh6lDhJwAJwgOP0B4hBvdh3YliDnNeld+NoYJBaEawIGhNYBvSqTHngjQqpYE+aYnLc3FHRTd02QXn1XoSapNUHbDhY1ndwKVaC1CqBvKmtJpU/oa4/MWk4jicsaj9Y7mqIHWLaDiOuwc6yqaqwB1iDbkuBV9UUePl5L9wWMkMyPfe+3juvedTT3eeZFikJRJO5YbqmCKbkpj0n1SaSQxNb1Cctqo+PxQrqpks0mqqjFHutOf9fdE0o3vX6r7BVb2zK0RT8AYAprgTiSSAVuDpLYkXUsoXANn8Wx30vqlrS9beb0JGq7Hpu2RUNkXOeqmy6bCNpJOsnuYuDOO2XT889mtTCOm9NLcCPZTxWSKHRTXR3XneMVPvXmGQAuI+kFsprMriNSoXGanmYb6zudZuJ0n0TPaSofy6WbatrbLJ26ybblRATCWl4AlHqiODtSW1t6/0WYBDevPdygqni6qYskXlfhgsNlY5UkL/k8SpAyshIodVO7lpwNjqumofhV2eHSKOB2Cpr8wkH8NUmxsbZTSSUUiuTP3zNrOat4uWp8uiklEjJ8t0dr/b11+8i0edDUyM7pk+jWt7GKnK4dLhvcVLSkuGpz7wv2mZExUn/NrlsuwMH3yq2jNYl6ddNy6ZKMlXHj3lHquR0cj1dFdZDEa7z+52wfJBJI4qRROllLF2ZV3M/KmUuTpPuNDe/pe9242qs/8j+rNE7ezyKrgEvdNVLmzKYRg/p3BFLa1H5zb5l3yVzOulZcxxccKh7Kp5t2vCNfVRVWA7VJW+t0sKixHqT8dUHiEj8/BIk3Dni66bad195js9u3wBBbOkgiqy4YIhQA3yex781aorlupgbYQRKVSRIx5vtJdvxs21khn0sWMhmDxEdrHC0bur2Nln71VphH77vk4EtouhIkMkiRTQp0OBvUZY+uYZAoSKKGNroc7xNd/ddcwaHjVYPDZY3XH22wbCqckDV/BwMDRSiIJeEswD6Tgkhp0F9p96Clm86pwQasLsDTtt+4tHi6Lc5Y72quG4uAeQAHmShxyxQAuxfkrkOc/skiiTW24t8RrBXAqRsOQYcSAjkyIJ5c4ZpnPkhkgo2wRwodOFSW+6xVAHUzFqxj5x6HDi6rqbgOcx8vPF63BGDlcR6SuOP69MXUTRmJfSP2IYiseY2ici78puAA1xMTCJBcxQblFtuzm9SyqbDddWpK5uHSIIlbZQNyV8ntpZuHxfe7dNOxtk1BpR2dpidwYb1oc88li5y5NYka4SD3GdVk5Je1UY3re6m/KA6ZJOAAUDVn4hCvdy22ZHP785pk4V97uKHENKLqptf0XnYRhstGEleLGqumxj1SAAiw81vvTAse97XrZCOSqAg23GRO13H7KODWJOpowlVV4fkTI35y53hFt244WDTY7Lrx/DNBuiSOHw3iOpqk5O2hUb1mjxIV6DHhrWDltF1Hl/c8Sfa8I67DtzsZ6KYDAszeyyHAwapp+7oYw2dlfMMYu4xV9HdbYIw1iSwrJ+wNXvh+nnLxE5qAeOaDRCbYmNaWmBulKHhTV2PQ1ikCKROkWAroHHVTjQT9RMmQrWV02j3IZ5XMhe03bYeVRv7cocWaBaFMEZj2OyweDsumGtEJlm4XOrua2k4Zpw4SF/UoCKBBKI5XDR6udzSSK3bbCRJfvFlWWIvRTdkEBCD9xp6+TXuOuVLy8hyUHC43uaJBEucq7spGK+1tGLGDkJIJANuuH8RUckHigCxtO6e5+mXTTaWWazPWJ+Zs6VCNAF45+q0wOZ9VdTVN6o8PmrEmjkEuXbXLs63QTa+f+zIiiYqEQCgwpVU31dJNAUs51ahzGrppOyK5zPmX/f7xWleTCNikpOZ7HQx74qhuqkhcS6uga9hZ5Vz2grNX00ji2INTahJJJDHoscucSxdwAGzgpkUS6d68DsNs3DtYEGDiT5aBCjPPAUl8Am+u67fKXqGNwQZJG7IZEvM6E1xa6J13tlZzpOQDdU1WScmjlmnq9mo/Q86PsxviZtdhpUASXWcL4BSptiHdlEJELJK4I53rSf0RmTUaWwAoKTKAka439S86uumdkxXuPd7QSK7Y3RNbd/E84VwsXbqp4ru5weWWvEeednOl5AU50xTbt4oEkNc6QzHOFZjqSAchKkDQdkXqukWWeGT1vCbo4ZunWxwvy5pvrgIxIGv55c3vPCbnc9XUV9IU/GS1GBEpquSgqbGoK6x3tk/ldUYSNQIoYTKHHWeuFfCmUt0UsMGhps+f0E3PFOdf9hdBEjVB4nPH+prEg0WD9bZT+iTOeveEoj05c1tm8EjiECRudUFimJhnk5Jdj0lpVu6Ydt9wg0sSSXTorbxSuB+Ujm1uSj6o06rpSW2BcU23rKuxMdhgM/IjlbBDVXEUxF2QeWDpdlYlcJ66KRP8huM0gezSqT9SIYnO8Vi6Yyh3L8dlsjhzxHWWCxtcskiiRQQxjtOcj51z/tmA72jV4HSrRxLvHq+wbXu89mit2rRdJJFpbrxyrpv2/jfjBG1+ppcpANa52rbdWE/Bqpvuun5E/XX0K904D+1khWskueUiiW054+oK14w1iZd8n7j0OgpJDNYttk7zrTA5n1elGHri1DTzLRjqAUm8/uqmGrl7t+enpnRAVGltTSJ/Pp6/MQ9JdOmmh0TAIUGJticjYIVrNM+1CWRbXS11WJN4TZ/RufbCDXuNRTSqZILuC91UgySOYo0dmVyc+Nfm9dyeE0USyWdHeg4DViSNrUk8r3DNdS03yNn1W2Wv0DTBBgBPNpd1tlxkCeCd5I2jrjlX3VQVXPbWIWQyycthwwDsedHUO23bjhZOcYMGwHLWi6qoTTUuAlokS9Aadpz4w25bEH0ri2HetAT6kLUmlVTFxDHYtr1Kle3lW+U6RNfGLNqus+09VIhUN6DNz/QyBcA6Vxp1QRfZ06qbAj4CqWpvM4zT1iiL7bryuuDTTQWRutwN2HWwmJpEV4EY4NvivBUmiNJVoXOumAb7fJta6hbrbYuDxdUgnlqTNVnaYDDmOqDahN/hshn3YU0y7cNvN/39Hg8IH2NTJLF8vCMHfdfOUe5J2YupOTpBOqCj14/1/dfwvjqPuUgie/4ndFMFKu6pOVNskiAAI0qz4vvGjJrEkW5K1iRO5sghibvOJE73QeITZqxKoM30KSmgDvf5PEGKSgDFgewZfralqTo8a+I+XjbzUFJZpDYtL5ziNht2fzJ00zDzQ82xqb3gsq7KgfNcuq8bJGqEgwCzSVu6KTcG8LPHNw/5Vqlf//kv4ju+9J34nd/0KvV+27ahp7KDYhaRGijJ1xAxuGo78OiVXA2elXbXOU2eJP+4bnGUQMBkZ2m6e5BFBjCgkKXNt0ZTV77a4iUnE547Wo7fiRHtqKrKiEs5SOJ1dRLe/+INAMC77x5fyfE8JFHhuEpNIoPkvhXmzpENuF1RKi2SdbzUn0cA+IYPvQQAIwrPmDRll8CS+X4nQzLgzaEnpibh9+Xvu4uPves2/hcff49qjqYm1Pyfed5kbd0MiVrNXvokmOgHfOxdt+kxc1tgNIHPq2VTyTjzevpCuHsUYPytvueBCtlDx4SrouewP8dC7OAATNdZ3TpnvIf4FJptpJlfFdzABuB69AFSE2flgAHOSV4t/CbwWrEJgFNtNeMwjtOKVIxzVIwT5+psY7KtjGMn12ejRPcWdT0uWOKDMmudofva4FLT780KB5H1pwuLNlhxI5JuOmStN60ObbvjBYk8krhsanzfd3yMfr/XpmNEEonjOLVcrLjR024r5xmwNXjcxqatCbWbthXJoQSfHARy1/U41tBNnYzwtu2pdcE45FfXJ7GuK9w5XuJzDznhGpnTru1UPWjfCnv/CycAgBOSjnZeE+r6SoEIiipzXXFUx7fCDoY5apBEj96tRLJuHZm2RE1dUSUAYu9/4QR/7Fd+FL/o1RfpMeIHvalQUxXE/Y3HeiTxY++6jb/yb341/X7AtneyGgTlMYeOKNLTWJN4uGzwn3/XV+JDb79Jj5HAWfpb0kiiq+jfc+qmY6LQ8bmA/J6zCIM2kv4JmDVZgl+2dGPh7KXmuFzS1WNFtR1uKJLy18WevBlfoNHZgCBI4QOwCqdbvxiXUdtyaxJZHnMUyVK1zuhVlEAJpNxeaswDOgaJQxNsHZLYez/LQaLbgkSH5Ar15zzCQWxAChiqi6aOApAG2Fust51OtMCpLbx1yYvWYmjTMbZgUDQ33rV7uqmYOGTrXUvLdrt1jHNqdLT9FcfsbqsXrgnppowKnFDLNjsOWb0Iu3uywufIFhiAXSc15/GtsBdvGbThfUOweNn2toG6fqgIGlZDUqDC9VQ2Bcy81tsWZ9vWo9TmbOEwJ7RtUm6P4i6681FVFX7DV/AIHWD37tcfmYCPQRLlObk3g246x4QS2/U9KoIBBFhRJGHlXFe0/zz25e+7q3q/3E8P1zrBoUVTYb2zgVRJNRTwk5IAV5oV60EL8PodgiDypRtxSmxRPM6pNzZ+2vVct3L2TAeJbE2iXFgXyWKldsMehBTdzkWyyMxWTKKXnSMwqGuqKJn2IdU8oLKxnG5MAMBspG4gJXN1556yWAsMKgB2kCyWRz63J1qsJpF1JA2S2GG9a1Wb790b8+imc0wSHhon2RVyMEji07dpa81HEnXJrW1rg3TOabLPtk7MSujFfAuAaJBI0E0BoZZZJPEq7hOharMBgKkv71S1nW+Ffd2rL+KP/cqP4lf+gndcyfFeHoLSW0c8k0GQxArXU9kUsHTHs22Huye8Yw0Ikqhr+XP7SN8mYq7dOjL3/GfunwHgKNfHId30soPEkW6qr+08G9rpMMyhp90OAtSYfd7cFhi7tqfQ7Zjv5L4esxFJVAoMyntG4ZqWDPaCoJRVvV849ZabVpfMvy72bAeJM5wtQGpLOCpVWLfHBg4bh6aqlZ8HzMOjFa7RBLIuaqAZJxvL6bY1ffqITcOtbQMcmjCFJArdlJ/jygvclP0OB193lnCNsibxYFnjdKMTSQB8AQ4N3XSOLZt6qEnUCNdIvcEeSRSzap7duG6Vnp0RSdzpakJdJFe1JoT1F8r1R2zbcjR0QQ2uim4KWCGHD7zIIW7LAUkXsa3rqpxY13pk6TwmIlgsIgvYGmyA6634Vtjh0uzdp9uWdgjt/tZh13WqPn23Z7SJmGvPDQH9Zx6s0dQV9bwdLk2bjhFJvORn1LALeJZSOG6za59ItOeiTe6n+8oenH4AxrXYmqqbln3lEElkgzbABw8EKNL0HAYsM5AVj9u23Si49aTZkzfjCzQLGZM1iYIkkpnuxhFO0QhHTPokEpuGDWxsUKqhm3Zdr3JkRgquixIxSOLKFkSzffpEAGLXhtTR0oNdO0XU5jVtC4Zd15ECHOanVrhmRIiUdWOACbjXuyFInOk0XT6SaJxkTabPQxL3wjUA7Kbt1iSyglvuM0qplDobsC64txuilqYdqtQxdNPDoSfaVQaJP/6ZhwCAj7//eer9gqR3iiTVs2CiuHhEIrKA9MBrcbZpVTTVqzTXuWZbeyydhCvbNkDMre28bJMg8dP3z+jzX1UVjpcN3nhkkMTLfkYPFg22bY/HG51DLkjivuWSsWVToa70SOJq4feY1ug57CY1iennoKqqqH/NIYnOHEmgaIIkttx+6iZ3jZ/25N1bT96ML9BYRGrap4/Pko83sVY4xaG2aoI2G1yaFhDMHIEBSVRQosY6QccBYh7QsQn2VrJ9bLZ12uC+NE+jwOoHlgyTZI6zOxWuIemmDrVVQ/cFzLk83bTnylBdCZLYdiqZdlEEW+/2m7bYytlsxiCxlNwKEHFgXm0hwNLkneCSZVsI3T1AEhnnQnqiSYuJqwgS/w+/9hfga199AR986Qb1/mVTGSRdWW/8tNsrt48AAN/ykZfpMYfSgmHHK4detUmt5JunW5VjDZgEEFvKIiZIoptkuSy7dWiRRM35Pz5Y4P7QJ/GykRRxwu+f7VTo6sGyxtmufWLrxi7aTA/OZrxubA2w3xqNS7C7dGv3Z2nPcfuQjz4hJYRo/XI2wTgJZEmgYtXUqCs4bXGu57qVs2eabtqSNYmugwbwYjJNXakgdLGFU5PIqp01tcn82CCx48Y5mXyNI+mjbfx3G+mmA02SpZ8YKXk5l3Ldyg+2VTfV0X0B3aYdIiJsLalbb9krg8SjZYOzoQXA/CDxCpDEgY9fVVwioa4r3Dxc4N7jDdqux6p58hbWizZbF92Oz1sJhY+1V9Gqm4qxTYoBS1OlhGvG58a+tmt7imEg7QYkoXYVtORf/OGX8Ys/zAc2kvDTMEmeBXvfCyf4b3//N+Cdd47oMQeLZhQXua7CNeIE7rpe1doDwNgEXiVcM6B7QsO9TBMk8c3TLd5xm79uLqX48msShyBRgeQClpWwT0paO1jWVsmWDG4MkmgDN2YdFz9ubGdB6ke4/Q41ZRGx4LJck+jPkRVrrKoKR5LMV2pHXBd78mZ8gWb7jRWCxIDKuVMI17TOjc+qba2aCptBbEKjdubWMmp6OQKmT6Kql5rUUbQ6B2g5KImdjkgi/90kABY1w1Lz7EVTY9f5Cqxsn0RgEK5RCge5fSo1Drlx5P3PKtnh0qiwPlzrsqYA8Od/61fgV3zsFdy8ZMl7cZKltpCVu3/uaInPPlgDuBoq1XU3D0nccYpsbiJHI9w0V7jGVXIzgk/l6xbStM1xSSQxEK5ZXkOBI6Ffaankz4K96+4xvR4AFkm8f7obUa3rZkcre9+yaJtLJe/I/Ubs7UOw9tpA57xMc0WGNAGYK/J0FcI1AHD/bKtKnI6shH0N/GgHi3qsSdQgieudpXIywjVuCxgZ576eMjfY0yjsLxzwgFc39WsS5Seznx6tGjza7LBt+cTRdbJnHEkkIeOJummnkNp11C7JxX+sURjUztiNdNXU2DrywxzaaX76dFMikHLl9dXBjcP/JxfkReM82B35YI9UNr6vDRCcf7I+ygrX6K639BLctDq6L2CdkDeVWVMA+KoPvoCv+uALqjFzTIL7tbK28PaxDRKZbOTTbu4aJKhsGUmsxjGdItPqCtDII61B4HedUdxl7skwQwuYIPNwyVDXa7z+qBudkuvo3JleubogfW9xEyTxbNuNqNZ1s+dPDsbf2V6Oq7BuSZHw+9oPvoB/9UvfiVeeO9RNdIYdLhusFoZOqOlT6SGJVyBcAxgkkVUgBsy1Oht0EvZJSWMmCbcef+fG2GT+tuuoFhhWhMYXheGQRCvUyIwBLHgA8EDRtOWGnUPJjlYN7j3WIbLXyZ7pIJGtSZxSOTkkcVFX4w3f9TzVaOkEYAaRooZh6TygLG3FpUmqeqK5vZ0UjWuBoZZu22K741QMAR9JZGWLbTPxDlLypJHy3+w6uv7UIrJSSM3VP8rx3DYFmppEAGp106s0Uxcq8s/8HJ87WuJnXz8FcDXy7tfdFsMaZOT1Wxwtm2LyyCYgbHsVDSLoijZp2AW7tsfZtqMk8msnSSW267h14Xi1wKPNDo82pm7mqhrBa0zYHcLc3QvXzLfjVYN7p1v0Pa5tkPg2J1hjE3cu3ZRNrojVdYU/+R0f003yHCYMD835lyCxqi4fSXdrEu84/YBLdris8ZkHW+w6TnH9WTB3PeWRxGos0+n7MgADTJFEvibRaRWnRBIFCWR7DoctN2Qcsy8eLd0g8cm7t568GV+gsTWJgMn2aamcLhze9b0iaHACMBUCaVVRu05Hrdx18wIpgyQaZ5JFPI9WRspcw/+XVgpyTHfupTn6ATBxLA8l5c9/XVmBIk1tyXKh7yUI+H2qrmuGajEUsmtpPLePVnu6qWNVVY1rkEa4I1SXZW4tV8mtU7AE3BrIs21LORbybHl0U1I9+sbhAo/WOzxa79DU1bXcgFeL2tRoXvM+iU+CvXDjYNyjRLDlupm09gBAK4DKfft4Y9pCaVC6q7a3Dd/vfWQLGMAq2WrKDebaHHVZGfdgFNe5vuf/Ks3VK9DUJG7azgm+NEgir24KhDWJvC/vMvzYnsMj4OCAAAD3/Y6WzdgCZq9u+oQZi0gBgWqTIkjsnOwIG2ysnACsI9VNAVEAtZkOrt2ACKcoAylPFEOXIT9aNng8cLR5JNG2wBg560VFKkubm1eTqKsJDYWK2GBvNaCkVlaZr9sTu44OMjCIi0iQqEESj5c4HcQY9kGiMWkBcLrhUDrAJiA0KqWLyHNDtc4Y1q2zAYFnnN2wkTIwqJsSa/KNgwUenO3waN3iZFVGVt8KWw4iZHvhmvPbCzctMnTrmiKJtw5d9IVU7h4UEO+f6pQk3woTwZr3v8AHiSJOdKToiTnX3JYDmmDvcFnj/tnQy3G/3wDw72XWv1g2RidBfGWuT6L57JA6WvKDouqmpM8btrIo+aG25YaPQDLr+eGywZuPTc3wk5iAeKafBtu7jRFJmIEkVk5hrSLYcwMwViQHsCIJfW9qGanWGVLr5LZgUNUf9SqUFDAPjWyIbGbFbYGxJbNUI9rZdbPUTQXdYxxW+WxXqIimFzc1Nrse650Jiljn4s6JdZqua4bqZLXA6WanDxIdJ3CvbmrMRxL5TVvbg9Mt0tf1d7X1QAB3H480bY9uyvXXunGwwHrX4c3TLW5cQ6opYNkde+Ga89uLNyxKd13ppm6iQotkvalsXP5WmNBpNedfAsvLVtIG/DVH2ydR1q19kGhM2mOtmpr2XeXcnW6ML3OuPomFPWfptLLQrK8muLTBHkuDXgTMQHmtZMerBm88fnLvreu5s16RabMPbu9CTt20Hp2sXhk0AAbd01EyqwE1MP/XNS63yCOFNsi4sU2EbkH+zIMzAKDVNZeutHIr6qYFwSGvlYV5jROuGWoShyBdIzgkGTRW3RSwwb0IcLDOxV0nSLyOoh2AqWt4tNZRiwEr7Q48mQvrZdjBYugTt+HppoJSq9RNx1reHota0d5mZYWUAA4RCetRAFHFKx9PamY+ff8Mx9c0SFwMNYn7PonntxdvWlGY6xokAqa9x09+7pEKNV4tLJJ1XXtAAsDv+uZXUVXAL/+iV+gx0hPz5sHlX7NbR3r0CzDnXJagg2u6l161SVCvSXaIH/JIgkRNr+6RysntVZ66qUKYbTmIifV9b9hspO+6qCtbk6hgfR2tmpEVdZ0TQCl78mZ8gSbQMQOJuzWJfFsEn2etqVEDgNNti7braYhaxF12mlpLr+G2zFuBtg31fhrf59bhEp+4Z0RJbpDZRfNgi3ANiyQ6iODoJBPHcnoXaoI9V9mrJWtCzfEqP0gkF5K7xy6SeD0di5MDI/+srkk83geJoa2GIPF0EK5hbEwcadRNG0v/0dC0ZU6vD3L8zD0pn+urm3bUxn3TCRKvo2gNYIP0Pd30/PbCDbve3VaIkly1/Y5v+CAAqNp0+O0GrudaDpjz/kd+xUdU1NF33T0GAHzLR952WdMazT3nGmqfu+deV1bOVdsYJCrOo+zVjwcxMRWSKPWFdPuwegzaxiCR6a87PF+mVRNX2iDzDJFEZp5z0e3rYtdzZ70i2yqyAa66Ztf11ELijtEEDVKT+HBtHjSNuMumtWITqmbure1Nxkxz5QRSmro9AHj+ZIWzrZkkm110W2CMQaKidYnGSXaFg0y/Nx5JdO8RWpVW2kRsW1QVjwrenFEzcNV2vFrg8VovLe4iBfsWGMZWA1J9tm3poEjuLRXd1FEFPuhqepxshm8M9ReMsxv2FwVAU7zlHHzm/tpTlbxOZoSDdO2F9hY3V63ybbeu5/UGgG//0nfii999W1W35zcuv55r+Vx73wsn+Nu/9+vw3uf58zHXLqSX4x5JBGDppr1TClAy8Z1OFUjipE8iyd5yaaMaJFGer7NdqyrnWgz1ljJHmUPJ3BYwT2JN4jMdJGpqEleNL1xzzIxZmALZdui3pwkaAOCRBInkwNVAidXIAcuxNrseBwsN2mCzPxqUFPBr6WgksanxYGvOhy02zh/T7T/VKRARX7lVFySOvTQ1yPEQ3EsrC1aAw6VjXFfH4mTVYNN2eLTZ4fkbB+UBgz135KCk1/S7XbUdLE0vr9Nth7snCrW5Xa+6/21NYk+3CQLsdRK5b0bdMewvCgxIIrHmydrxYL3DiaIn2lWaEUnQKxfvbWp1XeFv/p6vw92T1ZWIoJzHPvDiDdX7V009qmteZyRxrr1feT7m2smqGbUBNPvGnZM9cyU0SUKLT8OY+KqPhyCRSfCGdNOWLDdYNJUj1Kjfp9bbjt5rZJ6ToJShm7pI4hOIUj95M75AU9UkLowjD4hSafnzJWuwGYIUbU2iIInsjbVcDCIJisaiSzfYU9ZoAhiQS12QeNdZkNlidnG2AIsklh7uEUl020uovpsJgNl6y5VTN9lp1U1nNFJ27bpmqKRW7N7j7Wy66XWuP7pKu3W4wMP1zvRJJJ1kQRIFqGNuZVfum21sDBjRjqNlo0IS66H/oyR+ANDZ3RsH9vOvK91UEkeaViJ7S9sHX7rh1WI/LXawsMIpT6IjeV2sqqrRp9AE2y5KvQ8SjQmSKGVWjC0DuinVJ7Hxg0R2/V+4QoEK31V8pfWupevfAVPyJPuUBM6MT3P0hNNNn7wZX6BpahIPmhqbQX3StMDgFFGBQTjlHEEi61xLL0GrDsUfy5XJVwWXSnEXwF+QWbrp0qWbStaohCQGtYUAuYgsLQK5U6rSjgq4qhpUqUls1YvIb/6q9wKwMuPXzcSRf+PxRvXd3MDwbc9dz+921XbrcIk3T7cmSCQdSWFAsBRtAGM9YOvSVOkeqA3efKyrrVo09ahYDIhwDaNuau+Rk4PrmSRZDtnufZ/EveXsYFnjwXrfp+8iTFgFmv3mSRCBu2p730AP/g1f8R56zARJVJQ32HYWHbX+L5zyHg3g4/p3266jQYDGUVMVMIBJKNx06mQ1dcrXxa5n+vWKTFOTuFrUo0JRR2Y6LN2xVaFtchNrJZlFgdUW8RIOoTSOV1LSvOBSEUgBwPOOAAGLJC6cAEz6JZbELVwkcRTlUQhwnG1a+loDppZ04yjgalRRH57tsN526izyH/22j+D3fcvnX9sWAFLr8XjT6tRNHSTxun63q7ZbR0vcP91h13V0ALZcVFhvO6yHGmCqwX1jN21t6wYfSSTXLSdDC5iWNUziznXsrjOSaHqg8kH63p49cwOT69wn8UkwCQ41wba731xXEbirti9853P4x3/0X/KCnJIdLPwgkQn2mqBP4q7lfK5lU43aFpqab7kvzrYGSWQ1Dxa17a/IstkA4O23bf30y9e4ljplz/RqpKlJXDoBwLbrOBUlpyau7XlHSzJhb4wNONkgMejJpWz3IKwCVQuMIUuuqkk81jt3riM5PqCF8+K3wDBjmbhNHPCzbTugxmSQuPCFa3QIZD+bbnqdgygX4dFkaFn1zmfJnjta4v7pFqcbjbppPaLUAIfuSfJlp6SbAibB9cYMJFGCqLbr0ffcmuy2RPjgFdU8aU3q0sVpehLpRnu7fHMDk6exJvEqTRx5TcJ1jyTGTRMgAucTrtk5KB0TfC1qZ99QAD4ukni25dtJuX2wbZBYPp60gAGeTCrzkzfjCzQNRO0GAJtdR/XSCYVTWEamqCGJs6VtgaGhNrktMGzdnn6chm76Pkf1TYWSji0wuCLlqLopWZPY1BXOdi3arpvVJ7Ht+XOyGqjMZ1s93fS6m6cap/hurHjPs2S3jhbYDK1SaCRxSEBIxpW5v2xzY13iCPCD+0N63apGCjnb3ia0j7//edX7r8rsWs63Bdnbs2fuc7kPEs9nv+jzXgAAfPn77tJj9jWJF2Ny7h6NLTA0wjW2wT2z/i8jwjUckmiFa0QskLGF04Zto0AS33H7yS6Xub4QxBVYq8gGuAEAK+fvFsh2ikDqZBT7MI6FLpDqnYCIQUhtsNcrIPtFGCQqkMTbx6ux4TBri8aKwlh10/z3cwVoNHRTwCgznm6GRYSlzTX1qEjbdjz6crxq8HjTqpz/J8VOZgaJAPBrf+G78OrLNy96Sk+suXWa7H2yCpBEJuHkZnY1/UWBIEhUPDfbnV9bwlKA/qNf/wvwN37kU2MvtutmRysr3ATskcS9xc1dG/f3yPnsD//yD+N7ftmHVXup+16XobA3ncm6PdJNGeGasCaRpJsa+ufA3Op5VqBc6/WuNToQc5DEHeeDAsALClX362jPdJCoRRI3ThaBChKXFsnS0BaFoidNqXV9Ejvne3FjAHjiCkxNoifKowwSAeCv/86vHSW/GTtYuMJBHaqqfN1C4SCAo5sCRoDjbED3WERk5Sjgdj3f8uTm4RIPznazhGuuu7m1Htog8Y9/+xdd9HSeaHOL3tnWMcKAWO861BUXfLmKo5r+ogA81VV28100leMg6Gr3fvkXvYJf/kWvUO99K+w46B35tD3fe7sYc/eYpy1ReNU2V/jnr/ybX407x6u9mvY5TPZ4UTed0wJj13FtKdze2Rqf1y0DO9t2Kl0Ml/HS1BXl9zZ1ha943118w4deoo5z3WwfJELfJ3Gz6yjeulBS17vOUFRJB2HV1FjUlTr7vGqqgSKm7wno1u2xwjWLusLptlW19xA7XDaqzfBgUWO9s0E6s4h4wjVdj7riaYwHC9OT7mzb0YiI0EYBnXDNzaG1weNNi5duPl2P5NueO0RVAX2/r/U4r7nOy8tktvtgUeN0I1Tmhr7/F42ppdOskYDv4LK1sst6SiVnkcTrbpLwG9fyfQCwt4i9/TkraMH0F93bxdvH3nX7rZ7CE2+huinFSpMaeIcpxpYFiSq2hj3nCtesdx1eZEs36mpMYpr+ivwe9QPf9ZX0e6+bPdOr0ShcQ1xsD0lk6aZLP0hkkZSqqnC8amYhidu2V0HvVVWNgjeaNhGAoZadbuYhiVo7WDZY7wwldtf2lLSyK1zTKcV1Dpc11ltdYbPLkdcI10gm6/VHm6dO/nzZ1JA+6S/cePr6m12luXUzrErajQOTgNDQpgFDAdq1tpaXpZvKsyJNraljeRlhqUl8Oramo5kiZHt7tkxaGDV19dTc+3t79mxEEtdDCwxG3TTok7jtuBZIizqCJCpYcOtdh7VCB2I1A6h4GuzZ+JYJkxuMUwE1dTPdkF3X1CRudh1NURU7OViMjgXdJ3EIZMfvRR5uOaAGnVKk4nDV4FSpADrXDt3ehS3XR2ds7zGI+WjEUA6XDR5vdqo6QVfcSCNcIzTCzz1cP9WNlL/kPXfe6ik80fbeF2zdHRsk3jxc4vGmxaM1T5sGhg3Y7blKJ47M/cvSYQFflGpHilI9KTYVIXt6n++9zbd33jHP9v7+2NuTbFJucP/MrHdz1E13bcf1V3R0KkT0huo64PiSGv/OlDxZJPFZYUY9G98yYbvO1OkwiI8giYImMgGf2yeRpaiKHa+a8QFgKUoirqOhjXrjlHV7Bm1r1SjdHHMpAhtSItlDEpUKrEfLBm+e6qT8PXVTReAsSOK27Z9KJ+HzXjbtCT70tltv8UyebHPlyFlUVu6t1x7pEhCGbqpfS6TBvaYtS1jrAXAZ6CfBRMjn3ogkPl1Mgb1djL0y9FLbK2vu7Um2m8P6L/R6hs0me8uobtr2tLqpME82ijKFUbhmq1OUX7lB4o7zQZ8Ge7oKoJS263q61kaonNKUmqpJdKR2NXRTwHey2OBS0DYpGmZl5CWTr2kTAQx0022rboExx0IkkVOktfWWnaJPpTleg5+/d+odu3w8S0nueg3d1Gnk+xQ6kX/ht30cn3u4ufREwrNkLCXt1lDH+NkHa1UCYjEouWnXhOeH4FWzgbq1HjtFCcCTYG4LjIoUDtrbs2fvunuMX/jeO/i3vunVt3oqe9vbbDtcmvZhkmDnVEqDPoldhxvLcmhi+iT6gmcqv3zXqXpTrxbN6N9t2w7LxbOxlj/TQWLbcRkLwN5Y0v9FgyQKArlSBABz+suJkp6ohjJFvIARvPH7K+qCxB2J7J3HDh0kcUdet6qqDI+8NYGltibxnhJJPHDppkrhGrETBQLzpNjzNw7w/BMuA31d7C/9G181Ji8Yk3vrcw/XNEUVMEHe2mEXsPfy80NTasm4MubWJI59EtkiyGtuso7fe7TFwaLe9//cW9SWTY2/+K9/1Vs9jb3t7VxWVRVOVs1YKsX4aXVdoaqs+AzLwhItDcDtr8szzNZb0wJDJ0y4r0l8pmzbahqlm/c9HPrgcRkLC2tr6aaiimc+hxsnfPAxuGEFbxZ+f0WWWnawbIxy4q4dM+aXZUKVO9t2JotDB8DmwTbcc/78HyybkSKmQhIHcZ2u5/skukHiy7f2wdTe0vYl776javkg95YWSRThJitcw93Ld4cgca0IEl2Vut1Tpm4qa/KD9e6pZAnsbW9725trUgcP8IySRV05JQccw89tnbRV1LJXVYWDRY3Hm3Yo8eE1J9b7msTLsaqqDqqq+jNVVf10VVUPqqr6R1VV/ZLhb++tqqqvquqh8+8PB2P/bFVV96uq+lRVVb8n+Oxvqqrqx6qqelxV1Q9WVfWe0nz+ySfv4/7Z1rSlUGQRACdIpIRrfFhbQzd9/sQGC+zNaBs3D/Uvmlo6p+E8C7gdLU2biNNNi8NLDhIFSVzv2kF+mOeRS584zfk/Wjbj+ThSnMeutwsWm4C47ahWvk2B9uxtbyUTUaSu11GZDxYN1rvWCDApEHihm6qDxJFu+nSpm7rJs6ex3nhve9vb3lxzS6XYNU+EIQHQ5USLukbb9ej7Xl3LfrRqRjExFgQwbdhM8Lu9AvbcdbGr4rYtAPwsgK8D8DMAfimA/7yqqi903nO77/tYd/U/CuBVAO8B8DYAP1hV1f/c9/3fqKrqBQB/CcBvBfDXAHwvgB8A8PHcZHZdj7NNq+Iji1LmI0WQONJNdx02uxYrRXb81UHsA+Cz+EczGzcv6gpbR/BGQzf91LbD6aalA6m5JpTPs21HFzYDFkncKK61OZ49d2ywLdf7bCc9grhj3XEazr/83D5I3NvFmYtSa5HEs22nVi6+OyS3pF8oY66U+dgn8SmpX1029dga52lWLt7b3va2N8BXtqZ75XqJQq4FhgSS29a0Rasr3nd97miJzzw4A8Dvi6G66dPCdinZlexafd8/6vv+j/Z9/1N933d93/+XAH4SwJcSw38TgO/t+/6Nvu//CYDvB/Cbh7/9KgA/2vf9X+z7/gwmoPxYVVUfKn3o4zFI1CGJjxR000Vdoa6GPonKFhif9/JNAMAthZS8DRJ1tXSCtkmfRDYoPVzWON22ON1efpBo6aYtNmQLDMAqUq13vIoV4KOHbOsAWTTOtsZBZs+jW6ekqRvb295K5ooiseuBvPds26pVgYVuyt77QKIFxlOUpRVHaU833dve9va0m6x3R8tG56e5ojBkCwzAsE+2na5G8LmjJT5zfw1A5ydvWlNOtNntaxIv1aqqehnA5wH4Uefln66q6ueqqvpPB4QQVVXdAfB2AD/svO+HAXxk+P0j7t/6vn8E4Medv7vH/M6qqn6oqqofAoDTbYv1tqUDN3mfiMIw46qqwtGyweNNq1Y3/fy3mSDxO77sXfSYsSZRiSSuBrrpiCSSTuHR0CfxdNuOx74ss3TTDuttN/ZjK44bEBEt3fS5I9e51t0jZ5uhZ4/Cuf7AiycAgJdu7msS93Zx9tzRcsyuapIkB4saZ7sWbadTBb51uMB3fd378ed+y1fQY7zakpFu+vRkafc98Pa2t709KyZB4k0FwGEYX6JUyjHFpP5w2/bqlhQekqgoOet7g3RulaDPk2xXLqVYVdUSwP8dwP+17/sfq6rqBoBfCOAfAXgewH88/P1bAAjn8k3nI94EcHP4/QaAzwaHcP8+Wt/3fxrAnwaAg7e/2p9uW12j9BBJJG+Qm4dL3DvdoOuBVcMHUi/fOsQP/r6vx7vvHpffPNiIJD7SNW4+EJGKsSaRRRIbPF7vcLblz+NcO3SQxMfbHV66ySFuJwcLPNrsVKgx4AeJbAAs98jpVuimvKP7A9/1lfhnn3rwzGSn9nY11tQVXr55gJ9/80xVN3y4bIY1oadrlAGTGPuDv+QLVHP061GEbvr0PAfvfeEE//gTb+6DxL3tbW9Pvc0KEh0k0ZQ4MHTTAUlsO+w6Hf3zuaOlZdwphGsAUz62r0m8JKuqqgbwfwOwAfA7AKDv+4cAfmh4y6erqvodAD5ZVdVNAA+H128BOHN+fzD8/nD4v2vu35N2utE10pQbQoRr2HG3jhb43EOD7GkzD+974UT1frcnF8DX0h0uTON4Szfljne0bPBoULG6dHVTpwXGY0UN5MlqgUfrHdoeuO0EfiW75SKJ5CIigbK0SWGDbQB44cYBXvjgHkXc28WbJDneo0g4HS6bAUnU1STOsWVjle127dOHJL73eXPe931C97a3vT3tdutIgkTe31q5iUIy4JM9QpA9TYmCCwLQSKIXJO5rEi/cKlN49WcAvAzg2/u+3ybeOuBZqPu+fwPAJwF8zPn7x2Bpqj/q/q2qqhMAH4BPY43aqdQkKkVJHq5NUMSigjcPl3jt4dr7jMsycQbfVLbAOBgomVq6qYseXr5wjVWKPdvw9NbjlaH7aqjFQEg31QWJj9d6JHFve7ssEznyD750o/BOaweLYU1QqpvOMdMUeahH6Z6uFhgA8OpQX86KOOxtb3vb25Nqb3/uCIBVqmZsuagskki2wBC2ybYdkD3FPuX6d666fM7EfxSNkT2SePH2fwLwBQC+ue/7sRt0VVVfAeAegH8O4A6A/xDA3+n7Xiim/xmA7xlqCV8G8NsA/K+Gv/1lAN9XVdW3A/ivAPw7AP6nvu9/rDQZoZvqkUQTgLEBx63DBT7xxqlqzFw7cpDEpq7ozMrhIHe/2XWqcR4l89KFaxwkccv3ZRS66bKpVXQvd+F44Qa3iMj5F7RZI96xt71dlsn9qAkSDd20RdteQZDYWHXTEUl8iuimv/Sjb8NL3/nxUYxsb3vb296eVnvnHRMk3nucwoGm5jaqZ1G6EUlsDZK4nAkCvHiDY3BJOZEgifs+iRdoQ+/C7wLwxQA+5fRD/A0A3g/gb8BQRH8EwBrAr3OG/xEYMZqfBvB3AXxf3/d/A///9u48SLKrOtD4d2rprVq9S4LWOpKQQGhAAiSBxmYZCTBbMCAQCCFAWGaRwQ4CDAQDAsxiBk/gGcIsBssaEGI1iw3YCkMYEZ4AwshmMfLIgEBiES20dXepu7q7ljN/vKVSRS+Z1ZX5KjO/X0RFV2W+l3kqO+vdPO+cdy+QmXcAFwLvAO4BzgWe205MRSWx/XbTKsHbVVUSO7gm8a5dRSVxZZffVKtblonoaJKK8dFycpfZjt74W1r+uLq9TmLrmpOdLLmxZsUou/fOsne6syUwWg8i7Sfb921JbmdhV6nb/uL5D+f8Bx5VT6DSjpXjI+yZmWPPzGzXrzceHx2pJ6yZn910cP52xkZHeORJm+uZXyVpUFXjzM6p9pPEaq1uqJbA6Gx206L62P6YsaFl2bEj25wssCpU7Jud7XiinH7Wk0piZt4KHOx/8BMH2Xcv8OLya3/3fxU45JIXCxWzm7afOFTJUzW7abvtUEesGqvX/up2JXF8dKRYc2wuO5/JsKqsdrCWV2uFreuVxLHid9u5Z5q9M3Ntt5tWlcSIWHS7absWtvs6UYWWg/NO2cJ5p2zpaJ9VY6PsK0/ItHtN7mJV6wjC/OymwzIAS9IgOaasJE7u3d+y5/u3YmyEyT0zZCazc+22m87Pbtpp++fxm+bn++h08sq63XRscE5kHszQXiRRtJvOdry8weSeztYgbJ0ApRdT5q5ZMcrOPTMdr4m2d7pacL6DJLHlDEy3J66JCNa1rG3TdrvpijH2TM8xGjMd/W6drE9ZqRLlHeXEQd2uwEjdUp0s2jE13fYxcrHGRkaYnUsyc76SaBVekvrO+tXjXHzOcTztIVvb3mfl2Ah3z87VSyG1c/yvK4mzyUyHSeLpWxfOd9lejFC0m+6Z7v7J0+ViaJPEYjKT9iuJVeXwznISmnVtztzUOg1wL3qYN02sYOeezhKiVeNFqX/3vtmOWjLv027ag4Ro3aoxbt9ZTHLb9uymK6sZR2c7qpKOjY7wR088jd/qoAJTvQbbrSSqz1UD4I6p6fuc6OqG6tg6XV5bAu23eEuSlpc/eeZDOtp+vLwmcf5yg0Mf/6uW1Om5IrnsdAmMTrVOXNOLtcGXi6FMEkciOm6vrBKAbTv2sGbFaAcT1/S2krhl7UpuuWt3R8lete3knumOYmyttvVi5r51q8fZViWJK9p7vjUt23V6TejvP+6Ujrav3iPV+jud/B9Iy0n1Xt4xNd32NRuLdZ9rSwZwdlNJ0oFV6yTOX25w6ON/NbvpzGyyb6azJTAArr7sbNZ0UNyoVzjYM0Pm8HSKDWWSGFFMLrJvtv32ymrSgV37Zrn/+vYWcgfYumF+204WF12sqrrXSdWsaifrtAIZETzqpM2sWz3GqUe3P3PiYq1bNc5P7tgFdNBuunJ+u3aXO1ms6szS9nqdSqsh6k/VcWD77umeTFwDMD2TAzm7qSTpwMbLdRI7udxgfnbT4uRip5dFPO60ozravh4Tpzq75KzfDWWSOBLBjg6rPavGR1m7cox79850VKo+vmUB65O2dD+R2nJEkcx20i/dWjXo9Fq8T7zkkR1tfzjWrR6rZw5tf3bTlkpilyu51eymO+t1KofjIKLBUx0Tpqa7P7vp/MzFs/UENl6TKEnDoaokznRwuUHrjPfTs3NdL8JMlN1yd5erFXT7Wv3lYjh+ywVGI7ijvLawk8RhczmbZyfX6LROO79+TXev7YH5SmInJ+Kr12DHVGftpr3W2rrbbj/45pYZWLudJI6NjrBidGT+msQhOYho8LRW4Fd1+e+m6grYvW+Wmbk5RsI1RiVpWFTrJE53cLlB9Rlwaro4udjt7pPqkqq77i06xbo9o/9yMZSfYkdHop4ApZMP8pvLltMNHSSJvS5JV2fgT+tg4eYqxp1T08v6OrrW5LzdayBbK7m9SIBXjY/Ui8g6cY361REtJ2S6fQyrBtvd+2aL9a6ctEaShkZVSdw3M1f/fCjVuDG1b7ZY3L7LS1JUJzOrAtOwJIlD2W46OhL8akeRJHbSErhpoqjSdToz0juecQabJ7o7+UPlv511DL/asYfX/k77S0dWZfO9HS6B0WutrbAnH9le6+7mlgWsjzqi/WtJF2vV+Ci/ntxbfy/1o/Wr5//Wut1WM39GeIbp2azXv5IkDb6qklgniaOH/uxUJWl7ZmaZmZ3reiVxYsV9K4nD8vluKJPEsdGo34wbJ9pP+KqEo9Mk8ZJzT+ho+8Nx7MY1vOMZ/7mjfVqrh92e3OVwHNdSFWy33TRi/gPn2f9p05LHtFBrXMs54ZYOppeVxOq64arddNy/G0kaGuOjI8xl0ToK7VUSV61orSRmR+skLsbISLBmxWi9DJ5J4gAbbTlT3UmF74LTj+Znd+/mqQ9tf5HQftBaKejFWo6L9YTT7wfASVsmOtrvokccy0/v3NWTZTpaWxCWc+uudDCtkwB0P0mcH+yHaZFiSdJ8UrirnJiwk3bTPdNFu2kvlk2aWDnWUklcvp+Vl9LQJ4lbOlgD7PGnH83jTz+6GyE16j4zgC7jN/7qFaP8w6se3XEl993PemiXIvpNrbFZSVS/uu/Jjl61m3a2dq0kqf9VSeHkniJJbGudxNERxkaCqelZZuayXhKjm9auHOPnd+8G2u9m63dDmSSORTBbft96zdqw2jTRuxlAD9epHUzI04SNa4rXcsXoiDM0qm+1tmn3qpK4e98se6fnrCRK0hBZUSZ4VSWx3c+hq8ZHmdo3x/TMXNfbTaGY9XumnIF1WMap5Z0RdMnoaO8+APWDDS1LcyznJTD6wcYy4V7uybbUrl7ObrpnZtZKoiQNkerSnMk9xczw7UxcA2WSWHag9OKz60RL192wVBKHcjRuba9U8Qc6Ub7hvY7u8GwqJ0Iy2dagmOjyYFi3m+6bsZIoSUOmGgN2TLV/TWKx3wiTe6bZNzvH2h58rm+d12JYxqmh/CQ7NhI882HHcPE5xzUdyrIxUb75rYAdnqrddN/sXMORSIfnggcV118/+tQju/o8K0ZHGB2Jot3USqIkDZWqm2T7VDEpTNtJ4vgod+8q9lnTg4kJ167qj/k7ltLQltTec9GZTYewrGT5by9mAB1kVZI4tW/2EFtKy9v7L3kYc5ldbzeNCNaMjxbtptNzbJoYjsFXkjR/XfqO3WW7aQdJYjXbaLc7XgCO2bAaKD4nD0tBxYxAANxRLgD/8BM2NhxJf6sqsse3rOko9aNetkyvXjHKVF1JHI42HklSa7tpdU1i+xPX/HL7FNCbSuIpR60Fio671sndBtlwpMI6pOrNf/r91zUcSX87+8SNXPCgo/jIi89pOhSpb0ysHGPXvhn2TM8NzRlaSdJ8kri9wyRx9YpR7uxhJbH6nDxMM9dbSRQAn3rJI5ncMzNUb/5u2Lx2JX/5wrObDkPqK+tWjbFzzwx7Z+accVqShsia8SIVqSuJHbSb1o/Rg4lrqiTx1Y8/tevPtVyYJAookpvNa1c2HYakIbRu9Tg7pqaLdlMriZI0NOpKYofXJLYu3zaxsvsnF9esGOOWdz2l68+znDgaS5IatX71ODunptk7PecyPJI0RKokcefUNKMjwWibHW3VRIHg0nbdYpIoSWrU+tXj3LN7H/tm51g1JFOLS5Lm20b3zc61fT0iwKaJ+SSxF5XEYeRoLElq1PrV43WrkZVESRoeoyNRt5h2Mqu2lcTuM0mUJDVq/er5a0u8JlGShku1VmInSeKmta1JoicXu8HRWJLUqNYk0dlNJWm4rCmP+x21m7ZUEsc72E/t81WVJDXKSqIkDa9Vi6gkVu2mR69zZv5usYlXktSoo1oG+fuvX9VgJJKkXts8sYKf3LGro5OEx25czSv/6ylc9IjjuhjZcDNJlCQ16qQta+vvT9gy0WAkkqReu9/61cA93K+Dk4QjI8Grn3Ba94KS7aaSpGZtbJnK/P7rrCRK0jDZWiaHx25c3XAkamWSKElaNkbaXEhZkjQYqiUs1q4cP8SW6iXbTSVJjfvcFeexZ3q26TAkSQ3pZOIadZ9JoiSpcQ87fmPTIUiSGnDpo07gh7dPctl5JzYdilqYJEqSJElqxKaJFbzvkoc1HYYWsK4rSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmomiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqJomSJEmSpJpJoiRJkiSpZpIoSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmqRmU3H0HMRMQn8xyJ2XQ/sWOb7GWOz+/VDjIvdzxib3a8fYlzsfv0Q42L32wLc2aPnWux+/fA6Lna/fohxsfsZY7P79UOMi92vH2Jc7H7GeF+nZeYR+70nM4fuC7hhkft9aLnvZ4z+bsP8u/VDjP5u/RnjYfxuy3686YfX0d/NGJfbfv0Qo7+bMbaxzwHHKNtNO/PFPtjPGJvdrx9iXOx+xtjsfv0Q42L364cYD2e/Xj6Xr39zz9Xr/Yyx2f36IcbF7tcPMS52P2Ns07C2m96QmY9oOg5J0mBzvJEkLVcHG6OGtZL4oaYDkCQNBccbSdJydcAxaigriZIkSZKk/RvWSmJXRMSmiPh8ROyKiFsj4nnl7Y+LiH+LiO0RcVe5zTFNxztoIuIVEXFDROyNiP+z4L7zI+KmiNgdEV+LiBMaCnNgHej1j4hLIuLelq/dEZER8fAGwx0oEbEyIq4qjzuTEfHdiHjSfra7snztL2giTqlbDjT+lve9MiJ+GhE7y2PUbzUZ6yA6yPH/xPKY0zoGvKnBUAfSwcaAiHhkRHwlIu6OiDsi4jMRcf+mYx4khxqDI+LyiPhx+f6/LiK2Nhlvu0wSl9b7gH3A0cAlwAci4sHAvwNPzMwNwFbgR8AHmgpygN0GvB34q9YbI2IL8DngTcAm4AbgUz2PbvDt9/XPzGszc231BVwB/AT41wZiHFRjwM+Bx1BMgf1G4NMRcWK1QUScDDwb+FUTAUpdtt/xNyLOBd4FPIvib+Mq4PMRMdpYpINpv8f/FhtaxoG39TCuYXGwMWAjRUvhicAJwCRwdSNRDq4Dvv4R8VjgncDTKT6D/hT4RDNhdsZ20yUSERPAPcAZmfnD8rZrgF9m5utbtlsJvAV4emae3kSsgy4i3g4cm5kvKn9+CfCizDyv/HmCYt2yszLzpsYCHVALX//93P814PrMfGtPAxsyEfF94K2Z+dny5+uA9wLvBy7PzK82GZ+0VA42/gLfAV6dmee0bHsvsDUzPWGyxPYz/p5I8aF4PDNnGgxt6CwcA1pufxjw9TzQ2nhaEtXrDzwKWJ2Zv1/evpXi2HRKZt7cYIiHZCVx6ZwKzFQDVOl7wIMBIuL4iNgOTAGvAd7d8wiH14Mp/i8AyMxdwM3l7eqhss330cBHm45lkEXE0RTHpBvLn58N7M3Mv2s0MKk7Djb+/j0wGhHnltXDFwPfBbb1PMrhdmtE/CIiri67e9RFC8eABR59gNu1RPbz+kfr3eW/Z/Q0qEUYazqAAbIW2Lngth3AEQCZ+TNgQ0RsAn4PsILVO2uBOxbcVv/fqKdeAPxTZv606UAGVUSMA9cCH8nMmyLiCIpWl8c3G5nUNQcbfyeBzwL/l+LD2XbgSWkbVa/cCZxNkZhvpmgLvhZ4YoMxDbSFY8CC+x4CXEnR+qgu2M8YfB3wyYj4IMXlZlcCCaxpMMy2WElcOvcC6xbcto5igKpl5t3AR4C/iQiT9N5o6/9GPfECive/uiAiRoBrKK7NekV581uAazLzlobCkrrtYMf43wUuo6gqrgCeD3ypXyaO6HeZeW9m3pCZM5l5O8Vx6QnlySstsQOMAdV9p1BU1v8wM/+pgfAG3v5e//LSjjdTnKy6pfyaBH7RSJAdMElcOj8ExiLiAS23PZT9l/THgKP4zUFN3XEjxf8FUF+TcjK2W/RURPwXiomb/rrpWAZRRATFpBxHAxdm5nR51/nAH0TEtojYBhxHcUH96xoKVVpqBxt/zwS+lJk/zMy5zLyOYvKm83ofpigqKODnzyV3kDGgutTjq8DbMvOahkIcaAd7/TPzfZn5gMw8miJZHAN+0Eyk7fOPdImU17l9DvjjiJgoPxA/HbgmIp4ZEadFxEhEHAm8B/hOWVXUEomIsYhYBYxSXIOyqqzWfh44IyIuLO+/Evi+k9YsrYO8/pUXAp/NTCu43fEB4EHA0zJzquX28ymufTiz/LoNeClF25fU9w42/gLfBp4SESdF4fEU1wot+w9o/eRAx//yWtDq889mismzrs/MHc1GPJD2OwZEseTaPwJ/npkfbCq4IXCg139VRJxRHn+Op5hp9n9n5j1NBdouk8SldQWwGvg1xfS2L8/MG4FjgOsoysv/BswBz2gqyAH2RoqJgV5P0VI0BbwxM+8ALgTeQTED3rnAc5sKcoDt9/WH4iAJXIStpl1RniV+KUUSuC3m1yO7JDPvysxt1RcwC9yTmfc2GbO0xA40/n4U+CRwPcV1i+8FXupJwiV3oOP/Scx//vkBsBe4uKEYB9bBxgDgcor/h7e03O7xfwkd4vVfBXycoi3+n4FvUizJtuy5BIYkSZIkqWYlUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1UwSJUmSJEk1k0RJkiRJUs0kUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1QYqSYyIWyLi1xEx0XLb5RFxfYNhSZIGTDneTEXEZERsj4hvRMTLImKgxlVJ0nAaxMFsFPjDpoOQJA28p2XmEcAJwLuA1wFXNRuSJEmHbxCTxD8FXhMRGxbeERHnRcS3I2JH+e955e3PiYgbFmz7qoj4296ELEnqV5m5IzP/FngO8MKIOCMiVkbE/4yIn0XE7RHxwYhYXe0TEU+PiO9GxM6IuDkifqe530CSpPsaxCTxBuB64DWtN0bEJuDLwHuBzcB7gC9HxGbgi8BpEfGAll2eB3y8FwFLkvpfZv4z8Avgtykqi6cCZwKnAMcAVwJExDnAR4E/AjYAjwZu6XW8kiQdyCAmiVAMxK+MiCNbbnsK8KPMvCYzZzLzE8BNFO1Cu4G/AS4GKJPFBwJWEiVJnbgN2AS8BHhVZt6dmZPAO4Hnltv8LvBXmfmVzJzLzF9m5k0NxStJ0m8YyCQxM38AfAl4fcvNW4FbF2x6K8XZXSiqhheX3z8P+EKZPEqS1K5jgDFgDfAv5aQ224HrgOrE5XHAzc2EJ0nSoQ1kklh6M/B7zCeBt1FMLtDqeOCX5fdfAY6MiDMpkkVbTSVJbYuIsynGnC8AU8CDM3ND+bU+M9eWm/4cOLmhMCVJOqSBTRIz88fAp4A/KG/6O+DUiHheRIxFxHOA0ykqjmTmNPAZiolvNlEkjZIkHVRErIuIpwKfBD6Wmd8DPgz8WUQcVW5zTEQ8sdzlKuCyiDg/IkbK+x7YTPSSJP2mgU0SS38MTABk5l3AU4FXA3cBrwWempl3tmz/ceAC4DOZOdPjWCVJ/eWLETFJURn87xQTol1W3vc64MfAtyJiJ/BV4DSoJ7i5DPgzYAfwdX6z00WSpMZEZjYdgyRJkiRpmRj0SqIkSZIkqQMmiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqfZ0kRsTKiLgqIm6NiMmI+G5EPKnl/vMj4qaI2B0RX4uIE1ruuygivlHed/1BnuMFEZERcXmXfx1JkiRJalxfJ4nAGMX6VI8B1gNvBD4dESdGxBbgc8CbgE3ADcCnWva9G/hfwLsO9OARsRF4A3BjN4KXJEmSpOVm4NZJjIjvA28FNgMvyszzytsngDuBszLzppbtLween5mP3c9jfRD4PnAR8LHM/Mvu/waSJEmS1Jx+ryTeR0QcDZxKUfl7MPC96r7M3AXcXN7ezmOdAzwC+ODSRypJkiRJy9PAJIkRMQ5cC3ykrBSuBXYs2GwHcEQbjzUKvB94RWbOLXWskiRJkrRcDUSSGBEjwDXAPuAV5c33AusWbLoOmGzjIa8Avp+Z31qyICVJkiSpD4w1HcDhiogArgKOBp6cmdPlXTcCL2zZbgI4mfYmoTkfeExEPLn8eRNwVkScmZmvOMh+kiRJktTX+j5JBD4APAi4IDOnWm7/PPCnEXEh8GXgSorq4E1Qt5SOU7wGIxGxCpgtk8wXAataHutzwF9TJKOSJEmSNLD6ut20XPfwpcCZwLaIuLf8uiQz7wAuBN4B3AOcCzy3ZfdLgSmKJPO3y+8/DJCZ2zNzW/VF0ca6MzMXXuMoSZIkSQNl4JbAkCRJkiQtXl9XEiVJkiRJS8skUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCQJiIjjy7V2R5uORZKkJpkkSpKGVkTcEhEXAGTmzzJzbWbO9vD5HxsRv+jV80mS1A6TREmSJElSzSRRkjSUIuIa4Hjgi2Wb6WsjIiNirLz/+oh4e0R8o7z/ixGxOSKujYidEfHtiDix5fEeGBFfiYi7I+I/IuKilvueHBH/HhGTEfHLiHhNREwAfw9sLR//3ojYGhHnRMQ3I2J7RPwqIv48Ila0PFZGxBUR8aPy8d4WESeXce6MiE9X21eVyoh4Q0TcWVZOL+nRSyxJ6lMmiZKkoZSZlwI/A56WmWuBT+9ns+cClwLHACcD3wSuBjYB/w94M0CZ8H0F+DhwVLnf+yPi9PJxrgJemplHAGcA/5iZu4AnAbeVba5rM/M2YBZ4FbAFeBRwPnDFgrieCDwceCTwWuBDwPOB48rHv7hl2/uVj3UM8ELgQxFxWkcvliRpqJgkSpJ0YFdn5s2ZuYOi6ndzZn41M2eAzwBnlds9FbglM6/OzJnM/A7wWeDZ5f3TwOkRsS4z78nMfz3QE2bmv2Tmt8rHuQX4C+AxCzZ7d2buzMwbgR8A/5CZP2mJ86wF278pM/dm5teBLwMXIUnSAZgkSpJ0YLe3fD+1n5/Xlt+fAJxbtohuj4jtwCUUVTyAC4EnA7dGxNcj4lEHesKIODUivhQR2yJiJ/BOikrgYuICuKesWlZuBbYe6PklSTJJlCQNs1yix/k58PXM3NDytTYzXw6Qmd/OzKdTtKJ+gfnW1v09/weAm4AHZOY64A1AHEZsG8t22MrxwG2H8XiSpAFnkihJGma3AyctweN8CTg1Ii6NiPHy6+yIeFBErIiISyJifWZOAzuBuZbn3xwR61se64hym3sj4oHAy5cgvreWcfw2RWvsZ5bgMSVJA8okUZI0zP4EeGPZHvqsxT5IZk4CT6CYsOY2YBvwP4CV5SaXAreU7aMvo2hFJTNvAj4B/KRsU90KvAZ4HjAJfBj41GLjKm0D7injuhZ4Wfm8kiTtV2QuVaeNJElaTiLiscDHMvPYhkORJPURK4mSJEmSpJpJoiRJkiSpZrupJEmSJKlmJVGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1f4/WCe+dKm1/scAAAAASUVORK5CYII=\n", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "اکنون باید داده‌ها را با انجام فیلتر کردن و مقیاس‌بندی برای آموزش آماده کنید.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "داده‌ها را مقیاس‌بندی کنید تا در بازه (۰، ۱) قرار گیرند.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            load
            2014-11-01 00:00:000.101611
            2014-11-01 01:00:000.065801
            2014-11-01 02:00:000.046106
            2014-11-01 03:00:000.042525
            2014-11-01 04:00:000.059087
            \n", + "
            " + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.101611\n", + "2014-11-01 01:00:00 0.065801\n", + "2014-11-01 02:00:00 0.046106\n", + "2014-11-01 03:00:00 0.042525\n", + "2014-11-01 04:00:00 0.059087" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            load
            2014-12-30 00:00:000.329454
            2014-12-30 01:00:000.290063
            2014-12-30 02:00:000.273948
            2014-12-30 03:00:000.268129
            2014-12-30 04:00:000.302596
            \n", + "
            " + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.329454\n", + "2014-12-30 01:00:00 0.290063\n", + "2014-12-30 02:00:00 0.273948\n", + "2014-12-30 03:00:00 0.268129\n", + "2014-12-30 04:00:00 0.302596" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [ + "ایجاد داده با گام‌های زمانی\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "برای SVR ما، داده‌های ورودی را به فرم `[batch, timesteps]` تبدیل می‌کنیم. بنابراین، داده‌های `train_data` و `test_data` موجود را به گونه‌ای تغییر شکل می‌دهیم که یک بُعد جدید که به زمان‌بندی‌ها اشاره دارد، اضافه شود. در مثال ما، `timesteps = 5` را در نظر می‌گیریم. بنابراین، ورودی‌های مدل داده‌های مربوط به ۴ زمان‌بندی اول هستند و خروجی داده‌های مربوط به زمان‌بندی پنجم خواهد بود.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=5" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1412, 5)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0]\n", + "train_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(44, 5)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0]\n", + "test_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 4) (1412, 1)\n", + "(44, 4) (44, 1)\n" + ] + } + ], + "source": [ + "x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]]\n", + "x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]]\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [ + "## ایجاد مدل SVR\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5,\n", + " kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Fit model on training data\n", + "\n", + "model.fit(x_train, y_train[:,0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "ایجاد پیش‌بینی مدل\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 1) (44, 1)\n" + ] + } + ], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = model.predict(x_train).reshape(-1,1)\n", + "y_test_pred = model.predict(x_test).reshape(-1,1)\n", + "\n", + "print(y_train_pred.shape, y_test_pred.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [ + "## تحلیل عملکرد مدل\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)\n", + "\n", + "print(len(y_train_pred), len(y_test_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)\n", + "\n", + "print(len(y_train), len(y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:]\n", + "test_timestamps = energy[test_start_dt:].index[timesteps-1:]\n", + "\n", + "print(len(train_timestamps), len(test_timestamps))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABasAAAGDCAYAAAAlN0y0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9eZxtV13m/aw9n7GmOyY3E4QhITIHERkUacjbIrZt+wrd7dCKgratre3Urd2grSD42ohoMwiKAxAwKCAaDGMSEkJIIGRO7s2dx5rrjHtYe6/3j7X2ObvqVtU5dc+vbt3K/X0/n3xy65xTq/Y5Z++113rWs56fUEqBYRiGYRiGYRiGYRiGYRiGYbYSa6sPgGEYhmEYhmEYhmEYhmEYhmFYrGYYhmEYhmEYhmEYhmEYhmG2HBarGYZhGIZhGIZhGIZhGIZhmC2HxWqGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhthwWqxmGYRiGYZgLGiHEzUKIn6B+7agIIZQQ4urz8bc2m+J7EUK8TwjxP8+xnZYQ4im0R8cwDMMwDMNcLAil1FYfA8MwDMMwDPMkQwjRKvxYBhABSM3Pb1JKfeT8HxUtQggF4GlKqQMDXnclgEMAXKWUPB/HtlGGfS8rfucrAP5WKfXBTTswhmEYhmEY5qLC2eoDYBiGYRiGYZ58KKWq+b+FEIcBvFEp9YWVrxNCOBeqgLtd4c+UYRiGYRiG2a5wDAjDMAzDMAxz3hBCfI8Q4rgQ4jeEEKcB/KUQYkII8VkhxIwQYsH8e1/hd74ihHij+fdPCiG+KoT4/8xrDwkh/p9zfO1VQojbhBBNIcQXhBB/JoT423WO/deEEKeEECeFED+14rnvF0J8SwjREEIcE0K8tfD0beb/iyYm47uEEE8VQnxJCDEnhJgVQnxECDG+zt9WQohfFEIcNK//QyGEVXifdwgh3iWEmAPwViGEb973USHEGRPtURryvXxYCPF7hZ9/UAhxn3lvTwghbhBC/D6AlwH4U/Oe/rRwnHmcyJgQ4q/N93pECPHbK455ze+GYRiGYRiGuThhsZphGIZhGIY53+wBMAngCgA/Cz0m/Uvz8+UAugD+dJ3f/04AjwHYAeCdAD4khBDn8NqPArgbwBSAtwL4sbX+oBDiBgC/CuBfAXgagFeteEkbwI8DGAfw/QB+Tgjxb8xzLzf/H1dKVZVSXwMgALwdwCUArgFwmTmG9fghAC8E8HwAPwigKDJ/J4CDAHYD+H0AfwDg6QCeC+BqAJcC+F9Dvpfi+34RgL8G8Gvmvb0cwGGl1G8BuB3AL5j39Aur/Pp7AIwBeAqAV0B/Pv9pxTEP+z0yDMMwDMMwFwEsVjMMwzAMwzDnmwzAW5RSkVKqq5SaU0p9UinVUUo1ocXWV6zz+0eUUn+ulEoB/BWAvdAi7dCvFUJcDuB6AP9LKRUrpb4K4DPr/M3/F8BfKqUeVEq1sUJYVkp9RSn1gFIqU0rdD+Bj670HpdQBpdTnzWcwA+D/DHjPAPAOpdS8UuoogD8G8IbCcyeVUu8x8R8h9CLAL5vXNwG8DcDrh3kvK/hpAH9hjjVTSp1QSj064DghhLDN3/vvSqmmUuowgD/C8gWBjXyPDMMwDMMwzEUAZ1YzDMMwDMMw55sZpVSY/yCEKAN4F4AbAEyYh2tCCNsImSs5nf9DKdUxZtzqKq9b77U7AMwrpTqF1x6DdjivxiUA7i38fKT4pBDiO6HdzNcB8AD4AP5ujbYghNgN4N3QURo1aBPJwlqvLxxf8e9fssZzO6GLWt5bMCoLAPYw72UFlwH45wHHtRo7ALgr2j4C7fDO2cj3yDAMwzAMw1wEsLOaYRiGYRiGOd+oFT//NwDPAPCdSqk6+rEZmxkJcQrApBHKc9YSqvPXF5+/fMXzH4V2Zl+mlBoD8D70j3/l+wW001kB+A7znv8jBr/flX//ZOHn4t+YhY5SeZZSatz8N1YoejnovRQ5BuCpazy32vsqHkMCHe1S/Dsn1vkdhmEYhmEY5iKHxWqGYRiGYRhmq6lBi6uLQohJAG/Z7D+olDoC4B7oYoSeEOK7APzAOr/yCQA/KYS41gjcK4+xBu3UDk3O878vPDcDHX3ylBWvbwFYEkJcCp0JPYhfM8UoLwPwSwA+vsZ7ywD8OYB3CSF2AYAQ4lIhxGuGfC9FPgTgPwkhvk8IYZl2nmmeO7PiPRWPITV/5/eFEDUhxBUAfgXAmgUsGYZhGIZhGIbFaoZhGIZhGGar+WMAJWg37l0APnee/u5/APBdAOYA/B60+But9kKl1M3Qx/klAAfM/4v8PIDfFUI0oQsZfqLwux3oHO47hBCLQogXA/gd6EKJSwD+CcDfD3G8n4aO77jP/M6H1nntb5jjvEsI0QDwBWj3+jDvpYdS6m7ooojvMsd6K/pu6XcD+HdCiAUhxJ+s8uv/Bbrw5EEAX4V2n//F4LfJMAzDMAzDXKwIpdbbvccwDMMwDMMwFwdCiI8DeFQptenO7o0ihFAAnqaUOrDVx8IwDMMwDMMwmwU7qxmGYRiGYZiLEiHE9UKIp5p4ixsA/CCAT23xYTEMwzAMwzDMRYuz1QfAMAzDMAzDMFvEHuj4jSkAxwH8nFLqW1t7SAzDMAzDMAxz8cIxIAzDMAzDMAzDMAzDMAzDMMyWwzEgDMMwDMMwDMMwDMMwDMMwzJbDYjXDMAzDMAzDMAzDMAzDMAyz5VzQmdU7duxQV1555VYfBsMwDMMwDMMwDMMwDMMwDLMO995776xSaucobVzQYvWVV16Je+65Z6sPg2EYhmEYhmEYhmEYhmEYhlkHIcSRUdvgGBCGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhtpwLOrN6NZIkwfHjxxGG4VYfyrYmCALs27cPrutu9aEwDMMwDMMwDMMwDMMwDMNsP7H6+PHjqNVquPLKKyGE2OrD2ZYopTA3N4fjx4/jqquu2urDYRiGYRiGYRiGYRiGYRiG2X4xIGEYYmpqioXqERBCYGpqit3pDMMwDMMwDMMwDMMwDMNcMGw7sRoAC9UE8GfIMAzDMAzDMAzDMAzDMMyFxLYUqy8UPvWpT0EIgUcffXTd1/3xH/8xOp3OOf+dD3/4w/iFX/iFc/59hmEYhmEYhmEYhmEYhmGYCx0Wq0fgYx/7GF760pfiYx/72LqvG1WsZhiGYRiGYRiGYRiGYRiGebLDYvU50mq18NWvfhUf+tCHcOONNwIA0jTFr/7qr+K6667Ds5/9bLznPe/Bn/zJn+DkyZP43u/9Xnzv934vAKBarfbauemmm/CTP/mTAIB//Md/xHd+53fiec97Hl71qlfhzJkz5/19MQzDMAzDMAzDMAzDMAzDbAXOVh/ASLzpTZvT7vvfP/Aln/70p3HDDTfg6U9/OqampnDvvffi7rvvxuHDh3HffffBcRzMz89jcnIS/+f//B98+ctfxo4dO9Zt86UvfSnuuusuCCHwwQ9+EO985zvxR3/0R1TvimEYhmEYhmEYhmEYhmEY5oJle4vVW8jHPvYx/NIv/RIA4PWvfz0+9rGP4dChQ3jzm98Mx9Ef6+Tk5IbaPH78OH70R38Up06dQhzHuOqqq8iPm2EYhmEYhmEY5pyQErj9duA7vgMYYMRhGIZhGIY5F4YWq4UQNoB7AJxQSr1WCPFhAK8AsGRe8pNKqfuEEALAuwH8awAd8/g3TRs/AeC3zet/Tyn1VyMd/RAO6M1gfn4eX/rSl/DAAw9ACIE0TSGEwPXXXz/U7+uPSBOGYe/f/+W//Bf8yq/8Cl73utfhK1/5Ct761rdSHzrDMAzDMAzDMMy5cfvtwI03Ap/8JPCnf7rVR8MwDMMwzJOQjWRW/xKAR1Y89mtKqeea/+4zj/0/AJ5m/vtZAO8FACHEJIC3APhOAC8C8BYhxMQIx75l3HTTTfixH/sxHDlyBIcPH8axY8dw1VVX4TnPeQ7e//73Q0oJQIvaAFCr1dBsNnu/v3v3bjzyyCPIsgz/8A//0Ht8aWkJl156KQDgr/5qNB2fYRiGYRiGYRiGlNOn9f+TZGuPg2EYhmGYJy1DidVCiH0Avh/AB4d4+Q8C+GuluQvAuBBiL4DXAPi8UmpeKbUA4PMAbjjH495SPvaxj+GHfuiHlj32wz/8wzh16hQuv/xyPPvZz8ZznvMcfPSjHwUA/OzP/ixuuOGGXoHFP/iDP8BrX/tavOQlL8HevXt7bbz1rW/Fj/zIj+AFL3jBwHxrhmEYhmEYhmGY88rYWP/fWbZ1x8EwDMMwzJMWoZQa/CIhbgLwdgA1AL9aiAH5LgARgC8C+E2lVCSE+CyAP1BKfdX87hcB/AaA7wEQKKV+zzz+PwF0lVL/34q/9bPQjmxcfvnlLzhy5MiyY3nkkUdwzTXXnPMbZvrwZ8kwDMMwDMMwzNDcfDMe//CdeNrYNMTbfp9zqxmGYRiGWYYQ4l6l1AtHaWOgs1oI8VoA00qpe1c89d8BPBPA9QAmoQXpkVFKfUAp9UKl1At37txJ0STDMAzDMAzDMAwzKlGEN93+H/FEYydw5sxWHw3DMAzDME9ChokB+W4ArxNCHAZwI4BXCiH+Vil1ykR9RAD+EjqHGgBOALis8Pv7zGNrPc4wDMMwDMMwDMNc6EQR4szGA/OXsljNMAzDMMymMFCsVkr9d6XUPqXUlQBeD+BLSqn/aHKoIYQQAP4NgAfNr3wGwI8LzYsBLCmlTgH4FwCvFkJMmMKKrzaPMQzDMAzDMAzDMBc6UYQkF6tnZ7f6aBiGYRiGeRLijPC7HxFC7AQgANwH4M3m8X8G8K8BHADQAfCfAEApNS+E+N8AvmFe97tKqfkR/j7DMAzDMAzDMAxzvohjJJmN++cvBToPbPXRMAzDMAzzJGRDYrVS6isAvmL+/co1XqMA/Oc1nvsLAH+xoSNkGIZhGIZhGIZhtp4oAgAcbOwEut0tPhiGYRiGYZ6MDJNZzTAMwzAMwzAMw1zsRBEEACEUi9UMwzAMw2wKLFafA7Zt47nPfS6uu+46/MiP/Ag6nc45t/WTP/mTuOmmmwAAb3zjG/Hwww+v+dqvfOUruPPOOzf8N6688krMcqYcwzAMwzAMwzCjEEUQQsERGWQ72uqjYRiGYRjmSQiL1edAqVTCfffdhwcffBCe5+F973vfsuellOfU7gc/+EFce+21az5/rmI1wzAMwzAMwzDMyJgYkLITo91It/hgGIZhGIZ5MsJi9Yi87GUvw4EDB/CVr3wFL3vZy/C6170O1157LdI0xa/92q/h+uuvx7Of/Wy8//3vBwAopfALv/ALeMYznoFXvepVmJ6e7rX1Pd/zPbjnnnsAAJ/73Ofw/Oc/H895znPwfd/3fTh8+DDe97734V3vehee+9zn4vbbb8fMzAx++Id/GNdffz2uv/563HHHHQCAubk5vPrVr8aznvUsvPGNb4SOEWcYhmEYhmEYhhmBOAYAVNwInSaL1QzDMAzD0LOhAovMcqSUuPnmm3HDDTcAAL75zW/iwQcfxFVXXYUPfOADGBsbwze+8Q1EUYTv/u7vxqtf/Wp861vfwmOPPYaHH34YZ86cwbXXXouf+qmfWtbuzMwMfuZnfga33XYbrrrqKszPz2NychJvfvObUa1W8au/+qsAgH//7/89fvmXfxkvfelLcfToUbzmNa/BI488gt/5nd/BS1/6Uvyv//W/8E//9E/40Ic+dN4/G4ZhGIZhGIZhnmSEIQDjrG6xIYZhGIZhGHq2vVh9ww0AZRzzjh3A5z63/mu63S6e+9znAtDO6p/+6Z/GnXfeiRe96EW46qqrAAC33HIL7r///l4e9dLSEvbv34/bbrsNb3jDG2DbNi655BK88pWvPKv9u+66Cy9/+ct7bU1OTq56HF/4wheWZVw3Gg20Wi3cdttt+Pu//3sAwPd///djYmJiQ58BwzAMwzAMwzDMWeTOaidGJ7SAJAFcd4sPimEYhmGYJxPbXqweJCxvBnlm9UoqlUrv30opvOc978FrXvOaZa/553/+Z7LjyLIMd911F4IgIGuTYRiGYRiGYRjmLLJMi9MAyiWFtvSBbpfFaoZhGIZhSOHM6k3iNa95Dd773vciMQO6xx9/HO12Gy9/+cvx8Y9/HGma4tSpU/jyl7981u+++MUvxm233YZDhw4BAObn5wEAtVoNzWaz97pXv/rVeM973tP7ORfQX/7yl+OjH/0oAODmm2/GwsLCprxHhmEYhmEYhmEuEoyrGsJCpZyhIz0tVjMMwzAMwxDCYvUm8cY3vhHXXnstnv/85+O6667Dm970Jkgp8UM/9EN42tOehmuvvRY//uM/ju/6ru8663d37tyJD3zgA/i3//bf4jnPeQ5+9Ed/FADwAz/wA/iHf/iHXoHFP/mTP8E999yDZz/72bj22mvxvve9DwDwlre8Bbfddhue9axn4e///u9x+eWXn9f3zjAMwzAMwzDMk4woglKAEgLlEtBOWKxmGIZhmFtv3eojePIhlLpwC2O88IUvVPfcc8+yxx555BFcc801W3RETy74s2QYhmEYhmEYZiimpyF/6y14yT/9Fn7kBQdxWecxvP5PXwrwfIJhGIa5iLn6auDAga0+igsHIcS9SqkXjtIGO6sZhmEYhmEYhmGY9YkiJJkN11EoV9DPrCbgiSeAN72JpCmGYRiGOW8oBZw4of/P0MFiNcMwDMMwDMMwAzl5Evi939vqo2C2jDjWYrWrUKlapJnVi/c+gf13nNFFHBmGYRhmm9DpAGHYqz/MEMFiNcMwDMMwDMMwA5mZAW6/fauPgtkykqTvrK5aaBOK1fFHb8LpEylw990k7TEMwzDM+WBuTv8/DLf2OJ5sbEux+kLO2d4u8GfIMAzDMAzDbAQpgTNntvoomC1DSi1W2wqVmnFWxzFJ03Fq41RnDFhaImmPYRiGYc4HuVjN9YZp2XZidRAEmJubY7F1BJRSmJubQxAEW30oDMMwDMMwzDaBxeqLnDQtZFYLtBMfiCKSpqPMwWJcQZjYJO0xDMMwzPlg7owEwM5qapytPoCNsm/fPhw/fhwzMzNbfSjbmiAIsG/fvq0+DIZhGIZhGGabIKWOAskywNp2lpeLDyl1hmapRNRgHgPiFpzVFGJ1liFO9bT09LyHK0dvkWEYhmE2n6NHMfdHtwB4I4vVxGw7sdp1XVx11VVbfRgMwzAMwzAMc1GRJECa6i2vO3du9dEwg7j5ZuBrXwPe9jaiBnvOavQzqyliQLpdxJkRq88IFqsZhmGY7cHtt2OuW4ZAhjDkVXxK+NNkGIZhGIZhGGYg8r4HAQBnjtJEPzCbSxQBjz9O2KCUkJkFx1GojNl0mdXtNuLURtUNcer06M0xDMMwzHlh927MRRXsLjURtuRWH82TCharGYZhGIZhGIYZiLzlSwCAM5/75hYfCTMMaQrs30/YYF5g0QHKdRdt6ZOJ1VHm4IrqHE5Pc2Y1wzAMs01wHMyHFVxaWUR4dHqrj+ZJBYvVDMMwDMMwDMMMRGYWSnaM6YPtrT4UZgjSMzM4sD8DWV36XKx2gUrdpiuw2G4jTh1cUZ3H6dltl1LJMAzDXKxIibmogn2VBYRHuAI1JSxWMwzDMAzDMAwzEKksXFpZwJmT6VYfCjME6T/8IzpdC6cfmqNpsCBWl+oubQxI5mAqaKHVFqO3xzAMwzDnAykxF1a1s3q2tdVH86SCxWqGYRiGYRiGYQaSZDYurSzizPTFKyjeeSfw0ENbfRTDkSoLjkix/6tEbq+8wKIL2CUPmRI0YnWngyh1UHdDhF0qGzjDMAzDbDJSopkE2Bk00W1nW300TypYrGYYhmEYhmEYZiASLnYGLSx2faDb3erD2RJuvx34xje2+iiGI1UWrqrP4uDDIU2DBWc1fF8/RhED0mohzmzUvRAh1+5kGIZhtgtSQioLNS9E2GGxmhIWqxmGYRhmizh6FLj55q0+CoZhmCHIMkgJTAUtLMUlYHFxq49oS5AS6HS2+iiGQCnIzMLOoInFU0QLC7lY7QHwPAih6GJAUgc1NyTRvhmGYRjmvJCmkJmFqhOxWE0Mi9UMwzAMs0Xcc8/FLVa320BIZPhjGGaTiWNIZWPKb6ORBBetszpJtslbzzKkysKk30FjmtpZLQDP049RqMudDuLM0c7qxNYrAgxDxPw8cOONW30UzLC0WsD09FYfBcMMSZIgVRbKTswxVsSwWM0wDMMwW8TMzDYRPTaJP/9znkAyzLYhjpFkNnbkzuoLvPNSCvj85+nb3TbOaimRKgsTfhuNxQzICBxfRWd1HgMSx/rDHoUwNJnVXUSpu00+YGa7cPTo9hlrSAn84R9u9VFsLbfcAvzZn231UTDMkKS64HTgJCxWE8NiNcMwDMNsERe7WB2GwNzcVh8FwzBDEYaQmc5l7EjvghcUowh49auB97+ftt0kueDfusaI1eNeF42YyAkvJaSy4bgCsG0IAWSp6k3WR2m3l1mdOhf3jfEiJ4qA7/5u2jaTZPs4dcMQeOc7R1//2c5ICSwtbfVRMMyQSAkBoGSzWE0Ni9UMwzAMs0Vc7GJ1kgALC1t9FAzDDEUcQyoLrmWEyQu880oS4OlPV/jMZ2jb3V7OaoEJv4Nm4uvcpVFJU+OsFgCAwEkRpc7oudVJgjh1UPeMs5oiB5vZlnz0o8Cdd46+/lFESj3e2g4kCTA7C5w5Q9vu4uI26bfAYjWzzTCxVYGdIIzEFh/MkwsWqxmGYRhmi5iZoc9s3k5Rn1LqLEmGYbYBUQSZ2XCEiZO40MXqL38VU41DaJyhPc5tk1ktJdLMwoTfQSMu0YjVvRgQPYUM3BRdSSAuS2liQIyzmsXqi5YbbwSe9jSdW0yFlNvHWZ2P4e6/n7bdD3wA+Nu/pW1zs0hTFquZbUQuVjsJwtiiidxiALBYzTAMwzBbxmY4q3/914GPfIS2zc2CndUMs42IIsjMgmNlEACy9oWt2MqbPoUxt4POEVqVans5q01mdRIQi9X6x8DLEKbu6EUWkwRx5qBcsyEzm8Xqi5hOW+HyyxWpWJ0kQKNBUwt0s8nF6gceoG03joGHH6Ztc7NgsZrZVvSc1VIv3nLleDJYrGYYhmGYrWB2FnPHOuRidbMJ/M7vbA+HdZKws5phtg1RhCSz4YgUVTdEayHZ6iNal2TPZXCFyRIgnDxut8zqmhuhTRUDkovVvg0AKPmpFqspYkAyG17VqOAsVl+cnDoFeeAQxjunyJ3VwPaIAkkW27hib4QHHqDNvpWSxer/8B+4TgqzCeQFFu1E3w+3xdar7QGL1QzDMAyzFbzzncDsLOJFAgGhQD4pO3yYtNlNgZ3VDLONiGNIZcO1Uox5XSzNE4bKbgJJUOvnaz/xBFm7281ZbeexLRQH3XNWm8zq3FlNlFnt1Xz9M4vVFycPPIA0ExifP4jWHJ0NOjHrattBrJY3/QMuV0dx5gH6HSHbRazerMzqI0eAb32Lvl3mIqeYWc1iNSksVjMMwzDMFqAWlyCEonG7FUgaXeyYSNFskja7KXBmNcNsI/IYkGqgxeqFCzuXMQlTOJY+RtWg6xC3k7NaZlqsJrvX5AUWfSNW+0pvex41X0FKRJkWq4VQ2yOvgaGnVEKmLNS9EM27HyFrVsa6H9gOudXywccwFbSwdILQWg493jp1anvEa2yWs1pK4JvfpG+XuchZJlY7HANCCIvVDMMwDLMFNJIAdTekdZAtLEDe9yAmpx/ZFmI1O6sZZhsRRZDKglMvY8wLsbRIu02dGhmlcK0UJTtBtECnLku5TYxTxlndE+ybBOJXkiwrsFjyFamz2h8L9M/srL44kRIKQM0N0Tq+SNZs8k+3YMpvYWY/XZsAoDahC0x2XYqqEyFKnb4lnAApgac+FXjsMbImN43NFKvZWc2QY/qtUt3V90MWq8lgsZphGIZhtoDZZBw7ghaUzOhmPDMzSDIbk24TzTMXuPVPKSQP70dzKePC2QyzHcgzq+tl7awmFBP+/M/po4uSKINrpah7XTSm6SaP2zEGJLATRA0Ct3LurA70FDIIQFhg0e7HgBA6q9/yFuDb3yZrblORshd/enFixNmqG6G1RPdByEPHcEllEdP3HCVrEwB+8RfpxU/plvrxRVSdolKQ334Qe5yZbbGbLU31ehW15pdl20OsZ7YZubN6zOcYEGJYrGYYhmGYLaBbmkTZMe6xxUWaRpWCVBYm/A4aj52iaXOz6HQgz8xiwmuhsXRhOzQZhoGJAbHh1ksY87poNAVZ03fdBdx/P1lzAIAkSuFYKWpuhMYsnVN3O8WApErAtpT+DOYIXJomWsTxdIHFwM90DMgoCqtSOgYkdeCNlfRDEd33deQI8NWvkjUHQL/dP/gD2jYB4E//FPjEJ+jb3TYY0afqhmg16cYFUtnYW17CzCxdnwUArRZw4ABpk8vii8i2yLVaSE7OYqJzAs35C7swLtCvvULtrhZC/8cwpEgJAcAfCxBKFqspYbGaYRiGYbYAmSg4VqrzOakmJHGMJLMx4XXQfOICD2fsdpFkNnaXGpg/vh2UH4a5yIljLVSOV7WzumVTNo0TJ8iaAwDIWPWd1RRCbd5uO0QSbQP7q5RIMwt2taQ/g3lJ0qbOrDbO6jwGZBSxOk3NQqsNu+zDs1LEHYJjNcQxcM89ZM0B0FrE7/1eX1Sjot0GTp6kbXNbkSQQAKpORBpllmQ2pvw2+cK4lMDx46RNQsYZHCuFIzIkTSJrcZJAZsbIcITWWv3KV5I2B0B3CZZFLFa328DcLBwZkl+3zEWOuf85YxWkyuIYEEJYrGYYhmGYLSBJANdKYYsMskm0Ch/HkJmNyaCN5gzdYEkp4Kd+CvjlXyZrsidW7yo1sXCSxWqGueAJQ51ZPVbRzseuBaoMnyShF6t7MSBuSCPUAjoK5dGDcFvbIGw/jwGpllB3QzSXCL6rFWJ1L7N6FPXH/K4QAsL34NsJojadmpQkwL33kjXXa7PdBh54gL7dM2do29xW5JnVXohWm84Cmwu11LU8pASOHSNu02Ttj/sdLE0TxeEkid5153XQPEZrV370UfromjRJMTmpaMXqL3wBaLdRmT1MXdecuchRiblfVSpQABcIJoTFaoZhGIbZAmSi4FoZSk6C7iLdhCTJbEz6HRphwhDHehs16cS800GS2dgZNLF4ml0IDHPBY3ZuOCUHpQDoSo9sUkYuViuFJMrgiAx1L0Rjkag/XFrSgr1IoeQF7q7OxepaWX8GDZo2dWZ1HgOiEKbOaGpVXkROCMDzENgSYYfo+1IK8fEzWJhJSKNbcm3+zjvp2gT0RzF9gW+K2lTyzGonohOrs8yMi9potmmlj80Qq/N+a8zrYnGOqI8pGhlOERRaLRBFdEl2Oemtd2AymSaNb8r7qKoToUX4ERw7Bvzu79K1x2w/0kTvhkClAgFwgWBCWKxmGIZhmC0gSQBHpAjsBGGDaGATx5DKwqTfRqMJssKNcQzs2AHSAT46HcjMxpjXRWeOxWqGueBJU8jMhuPZKJWgs4qJxGryGBCTrayd1V0aoRYAmk0kmY2yEyNZoBV9yMkzq8u+/gzaBLEtvQKLfbG6K73RxOpc+RUAfF8Xg6RyVj/6KOITM7hCHcHMDE2TgL5/79sHfP3rdG3m7V7UYnUvszpCs2PTjGGiqDcuanZtUtfjpjqrvS6W5oiuAzM2nPA6pLvuAP0ZzM2RNgk538Ck38bSfsKLoV4HYIp3nqbru6engc9+lqw5ZhsiY73AhEpFP8AxIGSwWM0wDMMw5xulejEgJTtBd4lQrM4dRJFHVgUsmV1COV5AEhPmPZoYkLoborPILgSGueCRElJZcH0LQQAd/0DkICJ3VhsXuOsJ1P0QjRZRZEmjYRbZQnRmLvC95Lmzuuyj5kVodJzRPwOzeycXq0sljB4DssJZ7VM6q1stxKmDcb9D6qxOEuDyyxSpAA7oj/GijgHJndVuhFZCtHMjinQtD7+DZhyQ2oCThDhjXCmTWZ1h3OtgcYFozGXGhhN+B03CeBVAn7Ozs4QNKoXULC4snSYsVFc8t56gu8jiGHjoIbJELGYbktcg6sWAsLOaDBarGYZhGOZ8k6Y911/JidFtEBX/ygss5pMyosC/5G9uhDt9AlgkzGk1MSB1j8VqhtkW9JzVFkplgW5K56xOWhG6VAIl0BNVHVegXlVoxD5IgkobDSSZjZobojt3gWftSwmZ2bA9G/WyRCMJRp9Er+Kspo8BSRCFRCKdbSM2O3jI4rYAJLfeicmTD6A5QyimgZ3VkBICQM0N0UoCmms2DCEzGyVH9wno0n1nUupCgAlV/VYTs+OIVBexXaQUq01ud4euMC6g3zupszpNkSqBqaCFpTOEDlXT91XdCK3DdOp6kmhfyOHDZE0y2wmlIBMFWyigXIZrpUg6dAWdL3ZYrGYYhmGY800+IbEyBLakE6vNjKnudbUwQSVWP3YQniVBWp3IOKvHvC46DS7NzjAXPCZaw/FtLVZLj8ZBND2N5ImjGO+cpCt8ZcQZ1xOojwk04hJNjlGjAQUteHTmaYVKcpIEqRJwPAv1Sqo/g1G2J2cZkGWIMweer92ZQZ5dTuCsVrDondVhqJ3VXhedM3T3r+Sz/4K620X3xDxZm0BfrCZK8Np+mAKL2lnt0+wOC0O9wGKZBRVKsTrJcOmlim6BIYoglW0KLHaxuETkgs5jQPyO3nU3yvW6AnJndRwjzSxM+p1NEqtDtGbp2s1vgQ89RNYks53IMshMwLEyoFRCxYnRblzg9Sy2ESxWMwzDMMz5Ji9SZZzVYYsul1ABqLkRmpRi9diO/kSPim4XUlna8dZksXo78MEPAkeObPVRbC0/8RNbfQTDc//9oxlezyJfZMud1VSZ1SdOIM5sXBrMY/oMnZMwyWy4ro4qbcQBjUhlwq9LTozOPJ1Td1NIUx0D4tmoV1J9Txji+/rCF9bQsszJ1E4DVKp9sTpMXXJnNVnkp1kUrbm0sS1S6Z1RlKIfoD+Kchl0GevbjUJUQzMJyMRqmemiqEIoOrG61YJ87CB2tI9SDbX6RWzzGJAGkVTTiwFp032u0OtXShE7q5MEUuk4u6VZQodqLlY7EVpLdDfGJAGuvhp48EGyJpnthJRIMwuOnQG+j4oTod26WFcb6WGxmmEYhmHON3n2a55ZTSXWmsF4pazQkR5ZNmNSn4JrpXBEhuQMkZOsFwPSRafJLoTtwF130ReT2m7cfvtWH8Hw/Nf/CnziE4QNpqnutwIbQcXWIiWFWG3bSDIbO4IWlo4sjt4esDyzug6904RQrC47MTrzF3gRJTOJtl0L9ZrSgv0QKvDbfzfGmQ/+I3D69FntAUAn9VAu64dKZTF6DIiUSDMB21aA78O3JaIukbPafOdlJyaNbUnqhQVcKhu0UkgefAz7qosXb261Oce8soModWhE1YJbGQBUh0isfuIJSAlMdk+gsUh0vpodIY4rdAxIiyiywzirx72udqwTCfb5Wg25s1oJLVYvKbrrKx8fuzFaTToxMf7Gt7EvO4LZ02y6uChJU0hlwzH3r7ITo9NmsZoKFqsZhmEY5nzTiwFJUXISdFtEYq0ZjItdO6GUoBOrQ12dvupGaO8nqiZkJqF6YMeVabYDUcRFzjsdspjmTUdK4I/+iLZBmdn9GBCqAovdLpQSGPc6WDpIZNGLYz2B9CzUxu3RIzByGg0I6H6rvUCbtf+qV5E2Z2JAtLO6VlVasB908jabkAeOoPnlbwB/93fLnzPKVFv6qFT0Q0EAhHJ0Z3WS2fActSnOasDcZ2YJxWq/CkdkEABdwb5GA8ncEi7BCUyfvvDvifPzwMGDtG2qWDtpxVhdu6AJY0AcK6O9bj0P0hQCbBwhqucRRXpBsOphzOtiseXQtGuc1YGt+wSqvCUpdZFVUmd1HgMStLEUDbcbZNh2AR0D0iYUE5Pb78J4No/OwdODX8w8+cjj0YxYXXHZWU0Ji9UMwzAMM4D3vIdsbK8xk3PXSvXEnMpFlm+nnpzU/yfa6tkXqwmz/ooiQoe2Oj2zOcQxi9WSOLp9M5FSz/MzKt3LOKsd30ap5uisYgohwfQFY14XjaOLo7cHFJzV0JnVyXCu4oEYZ3XNjdBapHXSHThA2lw/BsS1+rndgz6Dxx6DzMxrH3xQK5I5RqyOUheepx8KypZetBglDkNKRJkDz83oCyx2uxBC6UVhygKL5p7oWCniI6doGjXn7KTfRmuWNg99M5zaX/kK8Cd/QttmlugdXBgb0w9QDLyiqFfQuuaGaM4TRUtEEaT5vhoHiEKr8xiQkouKl6AT2zRRM4V4EQBkY0PZTbB7IsbsNG1x3FSZzOq4RBdZEsawhNIxIC26MWdewLVDZTphthdmp6xj68XWihOjzXMaMlisZhiGYZgBfPKTwDe/Sdhg7lC0FEpOjC6VyyOOtdOrVtM/EymLcaR6zmoysbrorA7FRVxRavsQRdvHVbxZbDexenyc8HjTVAsevo2g6pA6qwGg7oVYOkFQBBEoiNUWahOOzmml6A/Nh1lzQzQJc08BrctRfJw9pESqhM6szgX7QRewcWA2kwDHW+PAHXf0nzOLocLS8dKAdlVSZFaH0kXgqX6BxZjonlBcFF2iy79Noqwvfs7QLeAmma2LQRLmawPADTeQNgdA9y/79xO3GaWwrQyoVvXuMIoLouCsrrshmgu0NULG/S6ds9pcf65voVy1dJwbRWSHiQFxRKrHiFQxIJ/+J+yRxzH3KFWFSRSKQbb1ohmVsB5KOCLT41hCMbF3zdJt3GC2E/l8zgYQBHr3BovVZLBYzTAMwzADiCLgW98ibNCIPm7J0ZnVHSKhNndW1+vwbImoRTM51y6yTDtS5onUlKKIkHhkExJm8+AYkO0lVqcpMDVFWKytEANilzxkSpA7q5fm6SKRZGbB8SzYZV8fK4VAUywAt0S7wCYl/Q6eXgzImIXmMJnVxiXWKO/Biz/9m1C3f7Vvzc/7aKs/fQxKgkSs7kgP5SAFhEDgZYhSt38/GwXznZfsmO4+i76zuuZGaM4R3RONqDrmddGmWhQ2zMzQrwen6SaI1XGmndXVKhwrRdIm+GzzaI2xMmoe4SKT6fvqbheNWaJzoNdv2SjXHS1WU4yN8naNs1q1iGJAvn6vPl8pi82aGJDA1n0RqVidmy46dBJYnDraWd1lgfKiJI8BMTFWFTfS5wIbcEhgsZphGIZhBhCGxGJ1HgNSdvX25C5tARnU69gRtDA7RzN4zl1kVTdCc4HInZaL1RWzjZxUpWE2gzhmZ7WUQIvI/Hs+GBsDlpaIGssLw5YcwPO0Q486BqRNNDXJndW+pe2/wOgrLUr1hNuaG6JJfB6Qn1tSarHad+BWdL7ucM5qC3MTV+NEewKHj9nAww/r5/KDs/pF34KyhS5BZrUWq/Vn63uZLtpIEX9gvvOyE5OKSTJK+85qKrE6d1b7HXQWaDvaMKRfaJQSOHSI5mvqtZlkcKwUKJdRcyO0GwTCcu6sHqvoxQWqRSYz3qp7IRpNonMrj+vwLFRqxllN8cXFse4L6hWdqUskLsugCtcybm0q8mMVxJElRWd1OGJ0Ua9RiThzMO51WKy+WCkWWLQsVPwU7cSjWWxlWKxmGIZhmHVRCipO8OADhJl8+Up82TOTaItmFd5sS0W9jp1BCzMLBMV5lEISF2JAFmmLQZZ3lPWEjMXqCx52VmtNjtpZff/9wKc+RdsmlILqdFEvJXRidZoiUwKW5wC+rx+jdlZTFRTLFwQDS1cBBEY/eQviRs0N0aIS1g1JQixWp2nPXY4g0LEKgz6DJIFUNo7M6yip++Yu09nVQO/gVNFZXba0s3oU4acnVut7YOApXbSR0lntJOiGRGKSUkgSwLEy2gzkMITMndXExTuThHCHhSFN9dd++DBhm1Hac1ZX3RCtBsG4y2RLO+MV1NwQjUWisVxPrO7SidVRBKlMDEjurCaKAQEAMTGuz1miKBQZaAc8qYd0s8TqKDXO6hAt6dN8rlHU2w3BtVcuUpIEMrNgmzXccpChLX12dhDBYjXDMAzDrMdDD8GePgl5mrDcuZQ911+1nKFN6J4BANRq2Bk0MbPkjd6mlEhSqy9WU2yhVaonbrBYvX242J3V+WlLLVYfOADcfTdtm3j0UWBmBmN3fx6NaaIVhlyQtG3A97VAQZRZLYRC3etiqU0kVvccijZQKsEWGWRrxM8hF0+F0IJP1yHd6kvurC7EgAy9uGAm3odnqxirpVqsfuwx/VyrhSSz4Hp9Ucb1LSSZPZqzWkp0Uw/lUu6sVogyGme16nShlOjXRqAgd+1bqY6VoCq0aZzVY14XnUVasVpKerFaSr1zgzIKRCZKZ1ZXKnonV4Pg+gpDXWBxooa616Xrv3sxICEaHXvAi4ck77fyugDEYjXGtVjdmKNZYJFeWS8uAHR9YRzrrH2hd/TFS0T52qHU49iyQishEqu7XcSpjYobQyaKox8uRvLC02boUillek5zMQ+WCWGxmmEYhmHW42tfAwC4cWuk+fgypNTuGReoVoFWEpDmqaJex85SC7NL7uhtGueIZ0ntSGkSDMZ7H6RAMB6wWL1NuNid1Xl0L7VYnSRk9a76LOiCX3W3i6U7Hxq9PaX6161tA55ZCCNyVisltLO6Q9BnAb0iXa6vXcV1L0RzaURHpRFPlRCoVhSaiU92QeQf72bFgCAIYAmFrDOEszqzcWS2jFd8j8C35q8ATp7USmerhY70UCn37wHCsXt/65zJndUmrSXwjbOaQKxOuzEcK9WFjCMiQdHcE3uZ1VSxEgWxmiT+osBmLLKlKXDVVcDx43RtFjOrq05Ecz3kAnAeA9KiW7QATAxI16OJlcizpX0bokwUX2TaBWDE6ogst1sKF46VDte3DIspMulYmb4nzBG5wI1rv7KjpMfcFI5tEzHjWRJQ2SbcyJkLHimRZhbyW2GlrHQMCIvVJLBYzWwJr33tVh8BwzBPRrJs82LCAlvSjUONs9pxhRGraVweWZTo7MBqFTuCFmaawehOj3xi7ig9eaQQq/NJnRCw6lW9PZ1QpZmZIWuKKRDHF7dYnZ+21KKPlJswx01TCKF0DvQMwaRJ5a4xoQvs+T4EABUSZ1ZHXn9VYBQKu1cQBNr9OOr2fxODIoRArS50wUKiLy5fB6COAUmzvrO6NkysQpJAKguHp8t43vMtHEt268cPHgRaLbQTH+VKQezL7WQjOqu1WG1iQHzjrB71Zp5liLsSnpVqZ3Vs05xbRWe1S7AIkhOGkMrSzuoWvVi9GTEg1Sph36UUpFT9zGovpLke8qz98Qqqbog2VVxDLla7XSwlJZoF9xWLbAA2QawO0SSKQkkivbhQshN0Ty2StNmLAXH1tbA0SzCoV0ofq5X1d/NROaszB65lrtftUn2ZocOYj/JbYbkMjgEhhMVqZkt4/HGa8SLDMEyRW24Bfv/3iRsVemJTcmK6SVmep+oJVOuWFqsJJiRpmOhBs+9jZ7WLmW519G36+cS86ukYkDZBlevednoAlYr+N6Gz+tWvJmuKKRBFF/f4e1uJ1eYaG/O6NJnVvQUm87PnwbcTRJ3RRbWsG8EywvpSXKIRZ4pidamkc2VHFetMRIbrZKjVhc49JcpTzbvETYsBCQL9GQwSqYyz88Ssj6kpwA0cxKmt3dW5s7pamD7mQZ2jiNVhqMVqI4L7Pmic1cap7LkK5bKg25odRfo8yMVqqv7AnPcVJybdaJRl+j/yfutr30B15hDCLtGETkrtqLUVEAR0zurcHDBWQdmJ0e4SjGGA5c7qOKAZw5ixoePb/cKwmxADQrXAIkMJx8r0rrsTRMURkkTHgIzX9D1hgeBY0xQy1TnzVr2qI6wondW27P3MXGTkNYjyGJCq0NGOF/NgmRAWq5ktIYq4SCrDbBc+/GHg535ueywwdTrA9DRxo2ZSU7IThB3KSZnO/qzUbRpntVJI4ky7kjwPO8djzITV0QfPUYQ4s+H6NqoVk/U36iBfSmPSFJsiVs/OcnTgZsDOav3/7SJWKyW0kEJR/KuwGwIA4Pu6aF179D4xaUVwrRSlAHSCYppq4csVQBCg5kZojPq9GYemYynUxiw0qeKb0P94SdOQ0lSLPj1ndYSlxoBzwQjcWSYwOQk85coMB5s7emJ1W/oo1wrTx3yGPoqwbETw8phuKwhA46yOY8SpA8/NUKpYOv+XSKxOMhtOVbvVyWIlzLlEWnQZ/XUEcmf1gUOoxvPonqYUKS0tVnt6cbxJkQVtRHC37KLspejENBEziCIoJRDYiS4ySqGsm37L9cTmOas9unM2L1pYcWK0zxDdGHNnNaVYnUeLONDWV4BMrI7NLgulBFSHY0AuOvLMapNgVqkozqwmhMVqZktgsZph6FFqE4p0QYu/n/gEcNtt9G1TkyTA/Dxtm7LRgS0y7ayeo3HRIU1N8S8L1TGbpjJ5PiGzM0AI7ByXmOnWRp/o5M5qXx9rM/FHn5TlrkdbF1ISQpGqNFHE0YHkfP7ziNrJRT3+TvXudFr3K3S/Rb4IUHRWNwmG+0bxUiiI1XaCbmdEQU0pxB1d+EpMTujHiPL7lzmr3S4ag4RaAP/4j+vc6/I+1slQrjtoUxXpQl87Iz23smxZgcWKE6E7KF4iSVB2tLA1MQE841kOHl/cvcxZXa4VimDato5xGsVZ3ROrdQ46mbM6jhFnDjxHoVwxzmqKCy2PxqqVtPDXJhKWe87qCO3EJTu38vkW+SKbslF1I4RNogKTZhHftgH4vt7J1SHou3JndeDoPFmqLfpGABaeUakoxjC5S9Prx4BkbWpnNV1utwylzoF2I7TniYqC5sLyeBX1YaKLhm7TuF8pHev57g0rhWdLJM2LeDX/YiXfEdKLARF6bEBRfJoZXqwWQthCiG8JIT5rfr5KCPF1IcQBIcTHhRCeedw3Px8wz19ZaOO/m8cfE0K8hvzdMNsGFqsZhh4pgZe/XLtKqdvds4deoNkMkqRXV4yMaClEYEstzFCJ1YUYkMqYQ+OszosIGSPSzgmJmZBQrPYExsaF3qY/qiPF5KK6juo5q1WLTqzejGJSFzVLS8BNNyFuS7rdBdsQKbWAty2c1b0t6l0stZ0BLx6CnnDYF6sDO0E4agxIFCFJLXhOBpTLunUKQdEsCLq+zteueyEabXugqPjo/TEevm+NSWYuetmAVS3rreQXslhtBGTh2IDrInAShPGAqV+SoObqz39yEnj68yp4fGk3cOYMsLSEduKhMrZcrLaEQpqM0C/kYvWED0BrdGHqjj5RSBLEqa2d1VUb3dQlc6kmmQ237KBWStGMicTPorNaemQnQ35ukTurlUDNDdGlEqvNuMAxYnXNDWnEauN8dH0L5TLQkS6Zwx6AvikAZGJ1bmRAqYSSEyNsEkyY41gvKo2N6d0ARAssMtY50FUnQmuR6DyIY70jZKKm3fUU99sk6ecK+7qfIam3EIaIU51ZXXZidBYu4tX8i5VeDIgeG1Uq0DEgFLs3mA05q38JwCOFn98B4F1KqasBLAD4afP4TwNYMI+/y7wOQohrAbwewLMA3ADg/wohiMoyM9sNFqsZhh4p9bX1F39B3261uj12NElJ76yOFrvw7QSBk6A7T6Qo5QV/fAtuLYDM7NFFjzxP1daiQS8Le9QvLneR+RbGxkCTKdsTfRRQrcK3JaIlOkeKlNtjcWXbYBYnMgiEs9vjg73vPuDAAdo2pQQmxlI0KYqMrmiXXKyWsl9gsUsgVufCZz5z8Dy926Q94mdhMj9dR/Ucb6pLk1ktM0tnvzoO6qUYjchff/CZZZD/8kU0bvyn1fu4PL6pcKyUmdUenT6pyTItUFkWYNsIbIkwGuCojGM4VobAz7RY/SwXj0VX6JO00zEOaLf/ettGyYkRxSM4NY1YXRo3YnVJIEqd0Sf7SdJzVlvlAJkSpDEgrmfpQpuJTyNUmk6g4kvt/iVaFduU+KIsQ5pZqLgRwhals9qG46i+szocvMA0kDwHOnBQqRJml+fOyclJAEQL7vnYMNA582UnRqdJUGwzP1bfR62S6XOW4KYjoxSOSFFxY7QblGK1BXu8buqk0LQpMwuui96uIJJFgG4XcWbDs6T+rhbZTXvRYQos2svEap/FaiKGEquFEPsAfD+AD5qfBYBXArjJvOSvAPwb8+8fND/DPP995vU/COBGpVSklDoE4ACAFxG8B2aboZSeA/DuCIahRUrg6quBW2+lbTdJtFi9HbJqyWNAlELYiPvO6gWiD2GFewYASQxIkk/0AIgSUd5hQawen7S0WE10rLmzmnqQz2I1Md0ulAJ8SyKa2x4f7C23AF/5Cm2b8p77MDF/EM3Dc7Ttbqaz2g2xFBJMnFY6q11X94nRiM7HYl8QBLpoY4NASCoWWARQL0ndd60nUnW7SDoJGqEP3Hzzmm06jurnnhI6qycmNsdZDVsL9oGdIBwkKpvvuV7VYvU11wCPZM/oPd2p7UZlRWZ1YCcbv80sLOh7k1J9Z/WUvhf6PqGzOrN7AhUAshgQqWy4gY36mKDLLjfH5u2e0GI9obO6ViN2VhunatWJ0KUSq82Cu2MDsCxUA4lmHIzed+X59b6NchlkW/SzKNERZhMTqDgxOvN0hWEdVwClkh4bjSoCK9XvCxwH9ZrSn+uoC21KQUYpXCvV0TUNAlEd6IvV9You3EiRWx7H2rXvAAgCVNyIJl4kX2wNbP1dLbET70Lna18DPvpRwgbzhXFX31tLZUETY8UAGN5Z/ccAfh1AflVPAVhUSuXfwnEAl5p/XwrgGACY55fM63uPr/I7zEWElPq+yc5qhqFFSmB8nF702G7OatIYkDBEFAG+nehiYsRidZ6nCmCoL+7b315nwpmmepujbVxIVMV5CpnV5TGXJqc1SUy+thGrbdpBfpJwDAgp3S6kslB1Q4SL2yMMXEpgcZG4zX++BRN+G80TtPvpk2TzCizW3FCLaQRFUQH0tGo4ju4T4xGFhNz96mZAEOg2F+nF6mopHex2MoJGM/GBu+5atU2p+i5wAaI8WfTv39RitRBquVg9aHEhX+SoKYyP63t/x64jfdPPA69/Pdrf9wM9nR5Az7G9oUWLY8eA3/5t4L3v1Sd+lqGjSijX9LkUlC1dYJEiszp14HmKvFhdYsRP7awOaNo1bYhdO/XPhM5q8vgiKZEqgaoboduiKzydKqvnUKyWM5rdYblbueSgXLXQSWmc1Wk3hmulwMQE6l4XjXkCcaogrPfE6lGd1UoBSunauJZFVxw2TbVIZ2XaAd0g2nGU50uPV3W8SEiwMyjPwTYLV1WHTqyOUwfeZJVmYYHZdI4eBe65h7DBvMCiOU39QOjFVharSRg4shBCvBbAtFLq3vNwPBBC/KwQ4h4hxD0zMzPn408y55l8fMBiNcPQIiVQr5PtSu6x3ZzVi4tARhWr22wiTF3jrI4RNojcv/l2V1NERwg11MThAx8AvvnNNZ7sxYBsjljtlWyIMrULHHpC5sZ6F/UoRboMSm0vZ/V737sNri0zIRvzutti0QrQfcHSEm2bsj6Jkp0gTgkmz8V25SacA2aiZFtKxx+MGlOQX5vCqNW2bZy6I2af5vn9xvEWUG3PNgKV42sBtOyn6Ep3/T7GHEsjLukbycovpZBZjVJJu/6IclqTToJxr00joOTkN8Jlzur1p35ZLCEA/M2fNnqT76uvBp6oPgf43u9FR/p5mYFe2yUnHhwvUuDRP/4cfvOOH8Cxe84Ac3qXQgflngjuB8aZRuKsduC56N8PKWNAAlsLfzGtWI0dO/T/idTlJNFJFeTO6swUWOwSnbN5ZrXZHVarKjKxOlMClufoLfoUbSKPwMiAeh11N0RjkeBzyOt5+FY/BmTUqKUk0V20uUR7YvWo94Qo0t9X7qxuEYnVSaIXLaol1LwIzWhAvz0MvTGnADwPVTdCu0nwfZkCi+5EVbvrKSJbmE1FSuLaTkmCtOCstjxHj7lYrCZhmGXw7wbwOiHEYQA3Qsd/vBvAuBAiH63vA3DC/PsEgMsAwDw/BmCu+Pgqv9NDKfUBpdQLlVIv3Llz54bfEHPhw2L15nDHHeuIWMxFgZTapEt9bcn9h1BdOrEtRKok0boJmUjVaiFKnb6zukH04eYCTaDdM66VIm4NFsLXdWCagmL5RA++D0soZB2iGJCAPrLEdRQgBMYrCU3hRvT1me0iVn/848CJs0ZDFxjdLqLUQd0LEY7qpD1P5AtXlKS1cTiWOcEIFlZyNiMGJAtj2FZhMk7grM6UgJXPHIRAyZVaAB5ldXBFDEjJTtClEKuLBRYBlPxMZ9Wud4M07rtGbITN06eXP58vCLraWV1zIzQXaCak8ubPY3zhMFr7T5G0B6B/jprMat+WA8XqNJJwrBQvfnH/sec+V2fAA1rfWuasHlIE77G4iI98+RKc7tbxP+95HfDQQwCALoK+WF22aZzV5j7reYo2BiTfbVRy4FR8pMoavd18lRXoF+yjigE5ehITzSNoThN2MsYFXXUjdKkMErmr2KgL1SrQkjRiNQDAceBVPR2xQiFWh/paQa2mndUUiwH5OM7XmdUVJ0ZnVOd6miJTArZlFgHGLJrM6tytLDKdWU1VIzuPAQlcVCt0Cxa6CB6AINBOcIrLK18QGy/T5Yszm0qaEovV+a5WI1bDcbQBiYUuEgaOLJRS/10ptU8pdSV0gcQvKaX+A4AvA/h35mU/AeDT5t+fMT/DPP8lpZQyj79eCOELIa4C8DQAd5O9E2bbwGL15nDXXcCXvrTVR/HkJE3pq6hvBlKiN8gnI4qQHDiC6tGHEXZpi4ptBlJq4x9ZbnUU9Z3VToxuh8hBVBRSSiXt8lgaPDE3Na7WfFIqSzsUgZ5LMWqN7k7Tx6onT5ZQo299z9t09Tk1WZOYjyokk/P83rJdxOokAaant/ooBtDtIs4c1NwQsRyhkNp5RMpNcFanQosTANQZui9tM8TqnusvV5dHFavzLd92/z5QciW66YhV702usGcE4JITo9skEICLC4IAyiWlxeoBMSBJZqORBDjeGkd2coVYXdwRUi6jRuislvfch3Gvg9YM4YlQFKuHFJV7543bL6L4nOf0xepOB6vHgAy7iHX0KGbCKn7+2lvx+NJunLlDV0HtZKVeu7ZnI80sGmd1asPzAAQBHJEhaRPsjsrPLU/QObazDCoz9td6XT9GFQPysb/DZDaLxv7Tg188LGbhpuqG2lU/ahFEYLmgCC1WN5OAVKwWvqeFpFEzq7MMMlF68bJS0bUBGgT3RrPrLh8blp1Yd92jfL4mvsjJxepJlyYaKo/rcIXeZdImGhsUnPBarA5G/77yz8BBv3gnkVidZDa8CVN7hSoSh9k0pARIwxtWZFb3OjBCQ8PFzChVUX4DwK8IIQ5AZ1J/yDz+IQBT5vFfAfCbAKCUegjAJwA8DOBzAP6zUoq/xYuQfMzBBRZpSZJt4M47D2yGqHzrrcDv/i59u9QksYKTxQAIRWUzGK26EV0EhuEd7yBtDoC+DqamCHOrw9A4q6WekFPpCPngxhRYHDY/b11n9YoCi3BdBE6CcFSBXUrEqdObPNXcEI2F0bdkyqwvrE+NScyFldG3paI/L90umdVxvA3E6sJ1kGUgzNnZPDbDWS1DCUfofM72E3TCz2ZkVssohS0yYGxMZyu3RndW6y3fBbHaGyJaYxDFhSvfR2BLhBRide7SDHQnUw4ydNPBMSAy01vkf/HO1+Obd54dA9LLpjSLjE2inFaZWah5oT5GKooxILat7wfJ+qKyjDO9ION5vceuvRZ45BFtgv7MZ/TPPSxLi+DSHk5QO3oUM90adu5QeN7UMRx8QPf5nczvi+C5UE7grI4zB54nAN9H2Ylpdkfl96/ApnNs59EHlgJqNbhWimSJxrIsWyEqToxYjlgMdVmjxlntRLoPoHAg9epu6B/LVUu3PYpYXXSsOw7g+1BKjC6A50KtDSAIUPdCNJpUYrWJL3IclD2JTmyPdi3kbZqFxtK4rxfuSGJAbDhlDxUnRrtDJFYXCsNuirPa97W4TuastuGOs1i9XSB3VufjAq8vViuOASFjQ3ctpdRXlFKvNf8+qJR6kVLqaqXUjyilIvN4aH6+2jx/sPD7v6+UeqpS6hlKqVXKbDMXA9vNWf2e99C7szYDKVmsBoBXvIK+zdWiKy9E5L98Ee7D99GGVhunWdWNEDVoP4Q/+zP6c1ZKYNcuWmd1lDkIAoWSHdMJSkmCRPVjQKpDViYf6KzOt9MDfSfdqF9bz1mtxeoxr4ulhREH5KbN3IAwOaG0s5pQrKZ2VifJ5ri1t5Oz2rfMh7sNOsRNEaujFI6VYtJvY/4I3WqIlHrRgnINID9WjI2h4kbozI/4na1cDAMQeNnohYRWZFbrHSw0Ls1lzupguBiQxMSAnOqM4dj+1TOrXSNW19yQTKxOMlsXa6NCqWWiT+6AjpL1M8b1ebPcWX355boo1V/+JfC2twFPeUrhF0wcTDjsosXRo5gJa9j5wy/Hnj3Aqc4YAKAj/V7KFNk26jjWrn3jrC47Mbotgs84vxZMzQkAUF2a68u1M6Bc1uLfELuthmraCeBYKUj3xBix2rV0xATJPSFNkSrRK7DoVxxE6YhitTknFYTedpcvwlCI1Xm+tu/rGJA2QUSWlEiU3c/aD1Ldb41yvLmYZsRqstojuWBfclHxJdox3aKFAADH6bvrSZzVxv2aF1jsECzerHRWE9cMYujZHGe1yUMH+s7q7SJ0XeAQLrEyzHBsN7H65pvphYQkAb7+dfo2WawGDh+m33nTbG6P81V+5atwRAY1T2UrRm9AXnVDcme1lMDdxGFQSaLFajJndRwjlC78sqMzq7t02xxlpqvT6/y8EK3mYNFjOGd1vwCab8nR41uKok8QYNzvYGmRqE2jh0xOgkys3qwYkFtuAf7wD2nbBC5wZ3WS4Ja/b+F3b3waotSBZ28fsXpTYkCMs3rSb2NumjazWhDpPTlpbETHsTEtqs6PeBNLU0SpC9/tK+okzuq8L/AA+L7OrCYUFHOxulSCFn0GOauVhUZaweluHceOrFg9yCelruiL1URrFjKz6MXqHKGFusBN9eLCWp9Bluk4sWJ8DLTWDQD33gu88IVn/9rAdoscPYq29FB57tOw9/WvwOnrfwB4+cshy7W+Pk7prE4deIEWKUtUzsf83DJF8EpOjM7SiNdXbyEk67nAqVya0tERKKRBbrlTNc/Fp1jJ74k++kfhe1oIH0WoXFkYliq2xRSYdGxosdoNacRqE7fUW2Tz0sHxRYPIP9c8wimvkDqqsmrqmTiehWpNaAc0xXlQdFbn7ZI4q82YM48BoRCr852HkzWUHcLcbmbTSFM91SDfKWsWmOC6EEJBJeyspoDFaua8k0/GtoP4B+h7OfWx3n038Na30rYpJXD8OG2b24041k466oiZbSNWw4FjZXBVQne8ubPaiRBRFL0qkCTAN75B2iTk/kPY2T6MxQWiaVkYamd1xUbJienEpFxY9u1eZfJWd/BEZ11ndZ4pW3RWO5vkrB5CrP7iF4GvfW3tNqUqiNU7LMxHZRKFWUod+UkdAxJF9E5dYPOc1V/+MvC+943WRvvPPoxv/+EteOShDHGmC7QB2BZi9WbFgNhWhqmgjfkZWrG6WqWNAullD9dq2kW2NHp0T1e6KPv9dkp+pjOrR4wBiVMHnhERAjuhqY+QZ/iXTAzIhjKrSzjVGcPR0ysE2HyR0YXOrPZCNFs0C5gys7SgqIgWRI1NXxX8tD0n/FrflxHrHVP4tsiVVwKHDunF4JUEbqrjSwYJaq2WXkkWFsTuXdh7icAp61I88Oz/ADiF+BMqZ1oxBsTztADcJnTtG7G65oZoLo5+ffWc1b6v2yQ6txLL74vKVOSxJcK0S3FPWJFZ3fvHiEItUDidPU9HrHRGX1zoRWsEAca8LhodGmf1svgiPx28yDaIXr0B811RFcrO3eWeQKVmoS09mp2daaoXVhwHbsmBVBZdDIi5z1SGHHMPJL8OJuqoOBFdFAqzaeTdCVkUiIkvsgtGIc9KkUQcCUMBi9XMeWe7Oas7HXrx88476fMpkwQ4eXJbRIluGvmNh6DI9zK2jVg9sROOldJuRTPVvqtuhLBNu0pcLtOL1cnBo6g1jiOcJ/oAokg7q6uudvxFRLfN4mTXdVFxYrTCAdUxswzJ4ePo7l9jVaq4nR4w274TXfxoFIqFyoxYvdgY/Dncdx/wrW+t8WQu1puCJJM7bcyHFZKJjpTAxAS9s1rKzcnE3yyx+m1vAx588Nx//+8/FuFVb/8+PLawC0eWxrWr1pJa+tomYjW1szqN+s5qsqgh6GOt14nF6jx7uFbTi2GjitWpFk3K/irOaooYEJMrrHewjHaoAHqij+3rDrFUArpDxIDIzIbMLOwst3GsObF8v3Cv3wLguqh5pt8myKZc5lKlYKWjFEPEtpj376yi4TzjGcB1163+a4GXDhcDcuwYZGbB8h1ACOzZo8etL3kJMDdXeB2ps9rcZz1P38MpImaKC7hBgBpFdnnv/q1jJXaWmphe9Ab/3hBI4cKxUl0cOSYaxxWc1UIoMketVHZ/3SKPgyEQq3vXgREqO02CuhvKuJV9X2dWdwjy5osRM9DxRa0kIOlje9e16+pio+GIn0HeX3g2qnVLO6ApJh/5e7ULmfAUYrWy4bh6zF11Td896qQ5jqEAiGoFVS9GK7Qv7on4NiBN9QYLMrG6WIMI6EUwUus8FyssVjPnHRarN0esllKP70lzmLYZueBz0TqrgyockWmxeppIqevFgESI2rT5Kjt2EGZLG5IY+lhbRF9YnlldNTEghGK1zGzt+hNCi0mxt/4g99AhJLMNdO59ePXM0VUmeoEtEYWEMSClEsa9Lpaagz+HJOmLu+997wp9c0UMyNRuB3NRhcxZvRlidZpuTtFGy6Lvt48f18XQRpk3/s5bUizGJTwwfynmwwriVGe/KmBbiNVS6nOQPgfaiNULdA4qKYFajV6sto2zuuaGQ2Xir9+gREd6KBXE6sBXo2dW92JAcrGaLrMaAIRZvbM8R0cKDIgBSTIbk9UY1181h+PtceB0oZCmETxcV8dqVCtK56kSfHHkmdXmfRbPUv19OWt/BisKsRW57jrg+utX/7XSsDEgR49iLqxgalL/uHevHg9XKn0TLQAtUgJQMUVmtQPPLzirKdax83O25PRd0EujX1+9gn2+jz2lBs4sBQQHq/sCNzcynKHKrZHLndVUYnVmLYsyyx8/Z3p9k2nTnAftJtH35SjAtlH3IzSiEeM68naVBbesB0fVQKKdjNhuPjYsFN+ueQQRRnlmtWehOu7ovpDIWS2A5WL1qBO7NO0vNAqBajlDS/okWdgA9A7JcoY2RWQJs6lIqe89ZONu0xf2xOq8uD3FDjGGxWrm/BNFelBKLShuFu027bEqBTzxBH2R2CTR2zQv5iiQXKy+aJ3ViYJjGbH60BmaRgsFFsMOrVtgnRpP54bJ26w6EcIW0QWWO6vrent6Nya6bZqtg5ZnxOog0a6U9SZlSkEqS28JXc0y2tui3i/yMUyBRaWAD3xg/WNd6axeag3ePhlHGRpL+kt+17v0FvKz2jTVsyd2ezqzmkL0SYDx8c1xVm+GWD0+Tpixblhc1EXQznXeGIZAJW3gZXsO4Fh7AmNeF80kgF9xtDuvc+GL1UkCTE3RuuFlnMERKSaDNuYWCbYQ5+1KhWpFka4B6GPNgHodVTca/dzNndVBwVkdqNEzq3tRDehnVocECwFFdx4wXKSAWZydqiV4yuVSO7FXiNXFHSG1KpFYnWWQqYAjjPs1Ihhw5Ks0hY8y8JV2QK/nrFb2cuHY8IY3AL/1W6v/WuBnw8WAmOKKuy7R38muXcBjjwFvfjPwe79XeJ3rwiNcaPUC46x2EnQJI2byAosk2eU9Z3UGeB52lxo43SiTrLblWfsVJ0LrNNGN0YxhHLPAMnKBSaAvgBcKlalBC0xDtAmgfx2YQpsj54HnfYENQAjUqxkacYlE/OxFxAGollItqo6cWW31i2+7Lk3MjBHBXRcoj3t6bEqcWQ3f1+cASca41eu7qxWlheVRb7r55NB1USkrmnxtZlNJU2DPHlqxeqWzukRR3J4BwGI1swVEkXYQUYt/d9wB/P7v07YJ0DurpezHhVEiJXDJJYTbWrYh+Y3nonVWRykcYdwzc0QWvV4MSIioe4FvbQtDJJmNihsj6hA51HJn9ZguzkTmrM5db8b1V/WlHuQO2KKeZLYWUA4fPvv5XoFF8/OQMSBpCrz73eu8IJ/wl3S+9pgfYqk7IENRKSRf+ioan70V8vffgUMHMxw7trzN4sTBr7qIU4fkQpOzi5hoHkVznrYjSNPNiQHZDPJYiXMt9tO4dz/q8Ry+c+9RPO2pGS6rzuOJxk54VQ++JRE1L/zVZin17g2yKJA07S0ITvltzDcIxeqHHkdt+gl0m0SLbEr1CyxWq3rnxhAFXNc/SIlu6i4Xq4cVKddjRQzIMAtsA1GqL/IVxOqBkQKmj52sJ9hzmY5OkCcKC7+56GMW2Wp1QeMm7HR6kQqBnSBaJBR8ijEgg5zwuaDjnH2uCIFVRWwACNxs6BiQmbCKnZfpQbDjADt3As99LvD61xdely+0jrpAHseIC2K1dlbTLIT0FnB9nya7vFdgEYAQ2F3v4ky3TjKgzXeEVN0I7WmiCnDmWrCFgm9LxE0Cga7nrDY/UzqrRd9ZXXFitFsj9odpavLd9Y/1aoZGEowuVK4cG5YzPTYcVaxW1rIYkJobotkecTzbE+kERKWsHxu1L8wyQCm9g8vS161nS8St0RcBpLJ0DAi0WN1KRnRWK7VMrK5WoRcWWKy+oJGS2NDS29W6MaMQMxwsVjPnnc0Sq2+9FThxgrZNgF6sjqL+riZKkoR+G/F2Y3paj20uWmd1nPWd1QtEH0KhwOLI2ccFlKnfJOiaBMLQRJaEdGJ1GJrMag8llyCfNSdvw8x0qoHUg9z1JmVRBJnZ2r1y5MiqbUrVF1J6BRYHfG9JMmDQliSI84m52freGuRIiSIkSx00Ih9HHmxAphaO3nt29mvxWHsHMyLy7/4B9eZxdI7QZmtslrM6h3KnQV5k8lznjY2vPYQxr4t/9R934/U/7uOK6jz2L+2CXzPbGxsXvlidJFqsJiuyGEWQZtv7pN/GfJMmTxYAksUW6lYL3aNE52yaQmZCF9Qql3UMSHtwZ3vmDPDOd67d5urO6tELLJ6VWT2qs7rophQr+phBzurMxmQ9xd4rfewtL+HkocK9dKWzui7QTPzRB16djhZSrFRfXxQ1F1Zx5A4lVhcEuGEp+QOysAH93MwMZsI6dl5R7j28Zw/wnOeseK3ratF+1GFMXryz56yOyVz7PbE6z6weVfgoZlYD2D0eabGaYECbhNrIUHFitGeI6nkUCiwGdoLuEsE9Ic8VzscFtq0XjKLRxGqlsCyzmqTQZpLovOZcrK4p7aweRaFShcU0I9T3oiU2MO787GdXdMl50caCs7pOIVb3BHvRd2GNKlavXGQzMTsjx1ilqf4Mcmc1hbCcLyyY+0y1Chq3NrOppClxQet8kXdlZjXFvYZhsZo5/0SR7iSoxb977qG/PyhFL1bHMfR2V2LyzMuL+R45Pa1zqLaLs/oDH6AVv5Io6xdYXCI64GJmdUJ3401TwBEpFKVCZ5zVNTdCeI5i9dwc8Pa3Fx6I435mdVnoCTnFCZafUAWxeuCEJIqMs9oFjh49+/kVQgpsG74lEcbrf29SDhare/mc0AV/2kMUKksyG80kwP6l3bh24iSO3lrIAVkpVrsuBNH29+TUrM5+Jc5a2pTMaqWAOILnZuQ7eMbGzn3euHSmi7rXxeUv3IWf+29lXHlNCY+lV8OreNox0rzwV++SxTZ2lNp0zmqzWOSUXEwGHcy1fZpAbCMk1NwQ3RbRIlteXNAGEAQ6BmQIsXp6WmcIr9VmR3oolfp9NmVmdZ4rXHJiHbc0ymdrjkcVpzkmUkAl6xyr6eue94wOrnlegMsqCzh2VC17vpeBDPSLihGI1XlmdWAnCJdoXKqZEssWhAdmVueCzgY3DfTOg/UWLWZngSzDjLUbO/f0/8CHPqQj7JbhOPBtOXrmZ5IgSp3erqCyE6MTEkx9i9FYeQxIa3SXarGOw56JCKc7BGJ1lvWMDBUnQmuBqO/OnapWqqN7KHaFrJJZPXLdjXwRP89h9zxUnGj0aOXesep2yzVbj4sIxE+g7+ToZStvoI/99V9f4Wfo5Wv3x1s1L0SzM+LuoLy/8CxdMR0YvS8sCsAA4Ps0BYKNoJiPOStVsytmlElzPgY2B1upWeys3gbIKEWtJOnE6nzRxu/v4tJGIaL2L3JYrGbOO2G4fcTqONbzpW3hrI4y1GvqondW79tHP05oNDZHrH7nO5fHYY6KTFS/iE6DSKgzomPFjRBJuirXyR13wzl+CE5riU5TzGNAnAjROU5yH3wQ+NSnCg/kmdUVB6WKpYViihNMSr3N0cxMq6V0cAyIcXZ2Uk+r6isxEwe3WGBxSGf1unERxWJSACpBOlhYN+dNQ9Vx4JU/g++79FEcO5Iuq7DbkV5vfgPX1YUbh8jCHoTMLNpCZXm7m+CsVvd9G+LMaVTnj51zZMdq5HFT59pvNWZi1N1QV6oUAs/46Zfi/oXL4JcsncV3oYvVSQJ58Ah2PPF1LC4QLYhFkc5o9W2MjyksxSUaa45x1da8EN15yvgms+3biNWtznBFUddcuOo5q/ufZylQJDEgcWrD9S1ACAQ+dKTEKAOvlTm1QE8AjbvrF1iUysJ/ff1pPP8VNVxencex025/24OUaMQB6jX9c23cpsmsbre16GNcquEiwWA2TZEqAdvqf1++j/UXF7JszQKL6xF42cDs8uzkaZxoj2uxemf/8Re+cJUdVoTO6rb0UakJwHVRdmJ0KXaIFe+JQYC61x1d+OuJ1fqz3zWRYDqsjT7eMIYDx0pRcQkKC+YkCdLMgh2YBUyK3TZGWLbdvkPRt0csVNbLljZtmMzq9qhidV5s1TirRUCQrbxKdE9vJ9swfaxSyB5+FAcPquU1QlYWWHQcvRuA4JzVcW4AymXYIoNsjtgXrlIQs+pEaDYoYlvsnvu1XCUYz68Qq6s1cdFmVn/4w8A73rHVRzEc6W1fRfWbt9LFruU7F87KrGZnNQUsVjPnlyxDtP8oqkFCKgBPTwPBiAukq5GvvJM6q7/xbfj7H4RIYrpt31mG5FsPonbf7Re1WD0zo8Vqamd1u00vVs/O6kKblGMamSg4wsSANInEOiN6eJZ2aVFdZPJTn4VjZSg1z9Cds8b5WHWjc87XfuIJLM9WDkNEmQO/4sAvWXqiTyRWA+hv9cyL6AyIAUkzM8BerSKfcXstz02TCAfkbCeJfktrzoVWOKsrpUxHkQzhrG4kAfYfK+GVz53H0caErqYFaNEnCVCvm9e7ro5WaGxw//kqyMzSheWIyTOrKTcDJPd8G66VohIvkIvVrnvux9qYlxjzujrYD8B11+n7rFeyaRfDNotuF0lmY0fQwtJJomDCKOrlc1YnXC1SUnxpnY7ut5yIxlEL9IufOeg5P1tDCBNJArSb6ervS+qCg+V+ggNKJZAUWEwyI1bnbabeaDfyVUQfOI4WKzvrXBSm33LLLuB5uGyqg2ONsf4qlZRYiku9fqs24dCI1csyqyXNeZBlWkwsdP9DidXK3rhYHQx2Vj92bwu/cMfrMZNNLROrVyV3Vo863IhjtBIftTHtrC7ZCTqhPXonnosTgRarK06MdmiN1m4xsxqAV3GRZPbo440w1IvYVoqqG+rrmwJTDNGpBjq6h2JXSJoiXZFZHYx6HuTfVcFZrQttjh41tCxf2/d1Jv4o39cqi2zlkkJ7GGe1UsDf/i1Ove0vEUUCh/YXXt/Lojc/e57eDdAlEKuV3YsBqbkRmvMjTpZMH6IKMSAlJ0HYHvH8WlEEL6g6o4/nV4jVXtXTtVcuQrH6+HFdJPfBB7f6SAYj2xFqboTuLG1+/zJntZ0M3NXKDAeL1cz55ZvfRHTHPagee5RU/JudBa64YnuI1dFHboKXdhEsnqY73m5Xb2tJ5um2EW9DOh1tBKQeJ9g2vVh99936/2THqtTyzGpSsdqGnYt/RMqyLNfhWqmZNJA02XNWV93onK+tJ57Qua29a944q4O6BxH4vcdGRko9H8ljQIYpohNFcK1UD7DD8OzvIt+W6ha30CYD41vkKZ2T255b40Nb6awuK73ddRhndRzg8GHg+d87jvmo3BerkwRLcQljY+b1uVjddNdqcWiksnVhOWKk1PMoyvtM4pS0WO1G5GK1I86xD0gSLDUt1H2T2QUdrzQxAfgVLfh1Wtuj2OqOoIXFo0R2eLOzwfEsWJWSdtFRfGntNpLMRt0L0V0kuiHkW/QdaGeaG6EZugN3xiRf+wbaB04B/+N/nL0gZmJAyoUYEC1WD+gLhjjWYiRQqSy0AD7gQssy4Jd/ee02AawqVq+7/T93pJd0P3TZpRmOtSaA+fleu8V+qzLh6V0mo2YKmPO1FwNC4VJNU50pXHBWO76NNLMGxIBs3FldGiIOJjo1r53V8dhgsZrQWd1MAlTHbMC2UfYSdJN1YlCGpXhPtCxdaHTU3QD5ok1+C/S1U1eNupc8DHsLuBUnRnvUQqs5uQu6XtHnbJumlkfR/dobw4wYA1LMAofj0BTL7hXs64uqAIjE6n6/Zbm2NooM6GNn7z2CxpfuwRONnbi6fgYHv1iwVhezpYF+gcXuiOOtvL8wMSB1r4vm4ujX1jLyorsbKLaaJMA//MPZD+b3bwAQnqvv4aNM7pLkrDz0kRcsCtx9N2ERwE1GSuDSS/X86UInzSwdu0bprF6xIyRwEnQpIqcYFquZ88z0NKLUQc3uIInp7Gl5ccHtIFbHmXaMlNChE+mMMFRzQ5rto9sUKXVsGrWz2qZLv+hx993AJZcQnrP5oFGktGKS+TB7Y2eikzYpj/W3PFN9BkZMqrohoujc+pcnngCe8Qzg5Ml+mx3poVR3+5ORUU8wU0RnWQxIINFKgoECsBD6fd03uw9q/mwxSarlRQsDOxnsrP7YTQCA1nv/Zo0XmEJKgT7WSikb7PSJY8SZjUbk49QpYO+1E7CFQnxmoXesjYJDEa6LyYBGrE5S69yF2nXI9Q3KKJDYCuBZKapOhNYinVtZfvFWOF/5AoQ8h3N1YUFHHYxbvQtfCO2u9sraWd1uXOCLosZNuCNoYfEkUUGxPLPas4FKRT9GJFZLZWHC76C5QBff1Cv+lRdFlYMLPyWPPIFW4qPVVJj77NeWP9np6L6w1t/94HgWpFpH/ByGPAc6MI638nA7WJIE+NKX1nhSSiSZBdcu3AeNSLVuYbU4XtbXXXa5wNHWZF+4NztCxib0sVqVkhaSRr0v5iKd0GI1lUtVKksX2cyxbX0PWavvVsqIWucYA7LOQEnON7RY3SkP76weNbIjSdBKfC1WAygF0LuCRr2Hm/u35Zk6DiU1ersrMqvh+6i40ej1R0yti15mNZX4lY8L6hVtOqAwSKxccM/HMCOK1R3poeynvTZLdoJuQhGBYS9zVo8cA7LaIlt+QgwQq//yT5r45KHn46C6Eq+69FEcOlD4PlYeq+MYsXrEnWx5H+OKXiHf5tLohRABQBQE4I2K1fffD/zWb61yrCuiGop/75zIF5jyxb38HCCa1Pzf/ws8/DBJU5tOXrTwgq+bZeJgyMXqfKcNUNjVys5qClisZs4vExOIUgdVN0TSouvR4njzxGohiJ3VIoBnS5REROoolcqsFFI5s7YhUmoNgfL7ynd1Um79B4BTp4CnPY3QWZ1v88ud1aNWOs9Z+WFSOauDar8wz3rbsjdC7qx2onP+XA8dzPDyF7T7USBRhNmoih17XRrnDKBPpvyEsvRtuFrFYGd1oYN7w5feiIXDKyrH5dmMK1xJ4YBJWTKthZjWI8dWf4E5JuEWnNVDZla3Y09HUuyawPN2HMW9D5rPMHdWj/edPpN+B/Pt0QP9pdIORQHa61ZK/XU1GnRtJu3YOKtjtM/QWWiSbz0IJ4tXzzYfxOIiGkkJ9Ynl58111wF+HgMy6hbqzcYsXO0IWliaJupkTQyIXRSrR67ShV4ExI6gRZevbe4HtrMiS3OQWB3phaibDj4fN/zadyDuFK7xRkOLPhOFa9Rx9A6RESf8UerAL5sYkNxZPeBGLuU6b8cIVBWvcPy2PnfXvYXlLjtTBfuSKz2c7Iyd5ayuj5nzv1TS4u+o50G+jdjKdJ2BFsEkuhcDUjinBgk0vQKLGzsPXRcDFy2SKMPp7hjmG25/kXKdBkeOfwC0WC191Cb6ovLIETOmXQC9z7McZHqHwSjXQb5g4a4Q6UZ12YdhbyGkSrmDJz9n6+UNi4lrkoufhTGMjoMZ4X6Ti9VBX6zWW/SJ8poLYrUlFNLO6GK1KuaAmKi4QedWcvwMFqMSnpj6Trzy0kdx+Ezp7GPNF0LyAouRRxJdkzura25EJlb3PgLP21ix1UcewV2//VkcO5otf2urjI/XXbgbhnyh1TXvmWqOgH4z1OarzULKbSJWJwlSJVB1I3Spaq+YXUzLM6vjgXMvZjhYrGbOL1IiyhxU3QjJzNLg1w9JkuhOkjr+odMBxsaIxeryBHxLouQkdIKicU7U3BDdpe1xZzt+fEU28KhkGeRiExWrS3oehKHOQ6cmivS5RSpWmyI620KsNkXwSk6M7gyRSFeMATmXLZ5RhPj4NK7efzOO3X1Ku8SSBHNhFVN73J6AMfKXZia6ouCeCQIMLlRmvgsFgcPNKZw5uGLWaSYkRWe1b0uE8fqfhbzkcgDQ0R4r9/BlGZCm2i1iJk2eLxClzlBitetk+mObmMDL9+zH7Y/s6B1rz70LAK6LKb+FuRaBWG1EH99Ozjm7fDXSVEc4Uzqrk5aOdqk4EdrTdDkguTjhJF0knQ0OyBcX0YgDjO30lj38i78IvOw7Y92/XOjbG82MadzvYHGWaEISRf0t6pUKbCuDbBCI1aa43pTfwhLVsKiXJap/rNWFzlYeMJOMwwztxMNCXEEjdHHjHxZu0s0mutJFeaogguRCygYn/MtuI6YIXrVqYkCqtu4LBxyrlOt0xVKinfgoF8VqU2BvUAxI/lpAL7LJzD47BmS8Lygu+71zpRDbEtgSYYco/1ctz6zunRADCyxu7E85rtD5ygPE6kxZWGxaZxdUXEke/zBq5meSoBkHqIzr77NUAjqjxnUA2lmtRO88KfmmjsOIwtcyZ3UQILAlotaI/VceAxI4tHFTJrPaHqvqAq4UwzjjUMwX2fq7w0YTq9vSQyUXq4VAyZUDdwIMdazKhuMtX1yImqNl7WuBdXl8EQCoeJ3zIAwhGx0syCoOxZfimp1zOi837+xyoTb/XC0LNT9BMx5QJ2WI4+25lUsl7awedXyU6vo4oiBWb2gH5nveg7sO7EBJdZbfT1dkVg/rWC/y7W8DP/dzhbnryogZ34dtZaMtWBQIw+0Tf71txGqz66zmhuieww7kMAR+/udXPLhaZrXDmdVUXOCzDeZJR5oiSl3U3AjJPN2MP471nIHa/dpua3GCNAbECuDZRqSbI9qebAajdS+kceScBz7xCeAznyFs8O67Ic/Mo3zrzaTfV7OpXfvURBFQrxMORPJt375D63zMoydKRqCgigGJMhMDIhHOEPUF5jqoutE5TXI7n/48KlkLl1UXcOz2Q70LX8K4nahcE6ts9RSOrSe/AzKrlRLoqDLC1MPpIyuOY6VzJJ/oJQNiQKQ+jlYS6ByUtY41j4RwBwgeQE+snqzE2LsXwNgYXn7pE7jt8GX696TEUlLqbafvxYB0hl8ZOnkS+LM/W/Fglulzy0q1UL9AV3FWSnqxOm7F8CyJihuhdYZQrK5N9HdZHJ3d2C8vLmr36M7lCwfPfCawa4+1bZzVADDmdekE4DRFqkRvy3PdDdGcJejAOx1IZWEqaGOxSTQsl1Ifq7lUh3ZWxwptGWDh0uvwA1fcj298frH33KGjto4BmSpUWBwkfq5CGALPec7yY20lPip1E9VQsbRLdUA/O5Sz2i8cl9n+v+65mw8e8oXJyUk4Vgo5u9hrtxGXMDZpJqWuCwEgi0ccd+WiR9nVjqw2wSJblmkx0V7FWb1uDMjGndWOJ7Sov55YbaL/JieGaDt31I7qTDP3Ia+8Iq5jlJzaLNOTDYHezqiyn+p2R3RWF7Pb4ft6wXXULGiz89Kt+qg4MVoduj5GZjaceln3sy0CF2FetLFYd8MZMbs81d9NJTDXVFGsHtUJny3PgS458fAO4NUwu0wCt3BcZhwXh+v0CWahY1HWMD1rYc8VPlwrRXLsdP9Yi659ALVyikYSjHYtFDOri2L1iG7tZbn55hwYZLoAoLe9pSkeXLgE/+qSh3D8YGEyuEoeulJiQ+fA3/0dcPvtwH33mQeSBF3pouSZ7yYItPGAKCaNndWbQNFZfQ67QWZngfe+F3jggcKDUiJMXXil/rggsCW6o+7eYACwWM2cb6TsxYDEbboeODl6Cu7RAwBo1epOR4sTlMX1olDBtxO9HfXEPFGjkSnQ1KXLYNpkTp8mLlpoQoZ9FZKuRDcfOopq8xSoz61crCa7secxIGUXZTdBJxoxRzQnHymNjelJeZvIWR1KHQPixOhO0xVASzIbJSdGLDcupi3un8G438FVtVk89qgCjh8/q3iKJRTSLoUrC8vMM0O5PMyJXSoDAhlOH1txAUmptyT6yyd6gyb8MtR/s514hbDufpsAIIqjhWGO1YgEO+oR9u0DYFm4Yl+KE+1xYHERaLe1szoXRC1Lx4CE5aHdTrffDnz2syse7Hb1xDwvVEYoVqepLjK4GTEgVSdCe5ZQWE8UHCtFxYnRmd9gJ9NqoZEEqE+tkh/uujpHdbs4q70uFjseTVxH7iJzBVCpoOaGaMwR3MSM1XHc62Cp7dCsuq/IKPWrrs6BHrDYmET62jtduhLfc8l+3PdETZ/4SuGVH/1ptKSP8s5K/xfOIffzyBFg/369u0r/0UQ7H2sms7rq6GMdMQakLf1+Ti3QiwFZV6xeEQOCiQnsDFqYPW7+UKeDtvRQHjfPuy6qbohWe3QHsMxsOGVP99lEkQpnOasHOeFz8WmDUbauM0QMSKwgkGHnjiEatG14luwtpG6EhQXgb/4G+j4ipV5szx3QZaEXQkYshAgsjxUuBWrwzqgh2j1brJaji9W5kaHiayGtS9R3G9HHrpUx7nWw2Box/xjon39+McpsxDiYJNG7LIL+NRV4me5jRo5tWZmvPeKxpila0kc1KNxXHGewc90cy0JcwcICMHHVOHaVmph+dL7XrsysvmsfWqxujipWm7/renqXQS1I0IxHvL5W9lvmc42GafKBB6AUYAmFK6tzOHZnYWdQvvMw6LtfLaGQRsNfXwsn2njetRFOmzUAxDFaiY9ayXyGvq+/qwbNjr7t5qyuVLaBWF10Vp/DkHtxUdeb+vM/LzwoJeajCiZ3mT7QshA4EuGouzcYACxWM+cbKRGmjnZWR3QXcPyxm+AdfIy8bG4uVpM6q8MUXp7Vu0DUq5tiUjU3QpfCkXMeIBerJycBAL4tEXfpin9F7/0LBNNHgRad6xEAolNzGFOLpM7qxBT/qtWAZhzQCDQFsdq3E8RNmgOWsXZWl+yEeIeBDUdkfffTBliaiTHmdfGCZ4W4Z+YKyBtv0gPRcj+PrmQnoy8I5Q6qFYWv8ufWJIoghEK57uK6yZM4fWjF55ZnM1YKYrUtEQ3KrDZ9cUv6Z4vV5iJVq2xLHUasnqonuPRS89jkpG5lehpYXEQ39RDsndDPCYHJaoz5qDx0x3DvvehPGnJMpELPtU9YcFZKLVaTO6ttqTOrF+huNDJRcIRxVi9s8JrtdLR7dEUMCADA0Ts32uEF7hgxM6Yxr4uluATMzIzeZjH3s1xG3euiOU9wEzP9dO9YKQYc5ljz7fSiZHYsDCpaaNyvJ2Z8XL43QSvxkE7PQXW6ONEex7HOFMpjBcXD9FsqGb5PPPRQB4Gf4WtfTXvH2k58VOt6SuKWXR0pMcgFnqwfA7IspxboxYB018u/XemsnpjQos9JvRtE2/QFxKTptxw9nm22RhSr83Or7JkYECqxWpzlrLaEQhqvMUbKsl4cyUZwPGtwDEgC7C0vDS6uCGix2pZ60XmD9/H3vAd4xzuAY/cv4O4zV+hzNHdAVwRJIUQAy9TqckAQAyIl4tTuLzb7PnxLImyPOJ7NBeCKFtLaVAuNUiJTFqxaBeN+F4tdf3RhppdZbe4ved2NATvlokiPB9Zqsy19VMr986jkZ0TOanu5C9xORnNW532hv0KsHlQY0yx2LcZlZBlgX7Ibe0oNnNnf6B9rUVgHUCvJ0cXqFUULa1Wl5x6j7MDMxeq833LdoQqFAwDm5xGmLkp2gn3VBRx7uOAsyD+DgrN6Q074dhsLtz+Ea458DmdOZ702m0mAasmcR76vjQdEzurtJlZvH2e13oHbPYcdgouLwA/+IPDVr5oHzFxzKS7sFAVQ8lKEqUMsdFycsFjNrEu7Taz/Soko1U6UJKJzqiaZLqhF3atvhlgdhVpQLTlEFd+BXjGpqhvSTHJWQB2vAmyCWG0mDp4lEc3RnbR5trJICM+tgwcRHZtG/d4vEWdW23A9LagtxOVNEKvl6MV+DDJK++5XquiaMIQQSidWmJ83wtKcxJjXhf3D/wav2LsfX/pagOmwhl27zQs8TzvBCcRqqax+BXFAFyoTav3t5LmzetzDd+09gtPT9nLl1Gx37YnVeQyIHCxWC2Q6BmQNZ/UyG5kpTLNuhmIcI84cTI1J7awGgIkJfQ499ET/PRdsf1qsrmxIrD5LOO529aKNlen3vkR33aaxxHg1oc2szgssOhFaLbqOViYKrsmv37AI3m6vGgMCoJ/7G13gYrW5Vhwr0/EEVGK1MrmflQpqboTGIsH91jir616oxWqK2Z6peF8s/gVg/baV6l16x08KjF1SwdPHprH/niUsnWghyRzsX9qFciEFBI6jt5sPaz44dQqH3vNZvO7Sb+LOvz+lHzNF8Cpj+mBF4Ot9TEM6q1cdn+Rb/1c4q0tOsv6ugLy/yz+4ceNQnBG9c0gVxE94HupeF43WiNOp/P5d2WA+63r0CiwWHsuzoNfK8s+ycyuwOGQMyNVjM9h7yRACgWXBs1PE6cZ2GnS7wE1/p2AhxU1/ehofOfAi9KvKmYiZIVz767JKEbxSCSTiZzMJUKv2828DJ0E0an55Hg9W1rtiWiHR7o3cYe46GK8kWIzLNNntRQE4r7sxQKjcvx9429v0v9/7XuD971/eZkd6KJcKYrWXju6E7y1erhhvjXLt5pFI/vIYkGGc1UlmYzE2cX0TE9hdauD0if6C4LLPFUCtkmlhedTPQPWzems1aAF8lLlHvshmFWJAhigUDgBotbBoRMPLKgs4fqgwlsw/g0Ku8IYKvB84gIW4jGvGTuL0Y0YETxK0Eh/VgqGlQpXfjm0WA7LUQtVqk4vr7343bXv5LmTPknptbYMLbAt3PIyd930eOzCDU6fQvx8I0RsWAGb3xqj3BAYAi9XMAP7mb4C//mvCBvMYECdCEhM6q1MHni3JOwVysVopxJGCZ0mU7BjdUR0TOWZ0VLITdEdZ1V+F+Xng1a8mbRIAcOoUsVidJFAwzuo5OjVJC18p7VaeVgtR6qDuhvQxIJ6NiQlo0Y8iX7ogVo9cPKaAzhXOyBdtlNKDcQVs7P1nGZbmU4x5XeDZz8Z/fPlRfPixl2CmW8POfUboyZ3Vo4rrSYIodeE6hXPKdXVkw3oFP8wosFyx8F3XNXG6UwcOHuw/LyU60kW5WtxCmyBM1p+cyki/72/P7cM7vvyi5Z9bkiDNlg/C4Lp6e/J6k2jjrH7V8xfwgheYx6amMBW0sHDr/frnFfa9yZouZjlMx6CUzo4bG1txaXY6+joQeiEkatCNnOWtd6D28N10RWyVQtJJdAwIZeErAFKqfmb1Rp3V7baeME+tkh/eE6sv8OHjyo6VQqw2DkXb1QUW614XzUWCvstM7B1Li4sks708s7ogpABYf4xkrlkAOHlSYPzyOp42No1DD3Uwc0Qf41y30itfAKDnThs44ZcSuPFGHHvLB3Fofgz/7in34lv3mXPIbNPPxephawPkGsuq3UWSoJ14y7b+w3F0tES8zrHmnYnV70N3TSSY7laBgwd1VHGx+qDrou6GaLRHXLzJBcWKbwQvgnHcSoci0BPU1vy+egUWN5hZnRdYXGecJBOFG/Y91BMVB+E5CnHmbGhc/+m3P4zXuTfjGZ378MnP+jjSnIJX6vdVQdkaPQZklQVc27ORKmvkGJBmEqBeM5+958G3BtxnhyFfuPIdVAJdQJVk8C2lHme5LsZrKZbiYPS+q9jHAkMX2kyWOph/5DTwvvfh7i828b9/N8NsXqrB9AWV0ioxIBv4vtIUuOWWFceq7LPytUcadpv4omppedZ+1Y3Wjxoy4/+Tzbrun8fGsKfc6NfLlhJxVigGCcAtOTq6Z8hzodEAbr11xYPFaCwYZ3UyorNaSqTFIq+9QuFDLHI1m9rhusvXtWeOF8YpqxTBKznx8Ie6fz8WojKeOX4apw8YNdostNbKBWe1S2c82DbO6iiCvPd+VO+4hdxZ/fa3E5sm41jn4luZ7r82eMCL9z6BCSzgFfYduPUTZwp9yPLzM/AVuumIu20YACxWMwOYnSXuKNMUUaZvvAnhamHPWd2rpEwDuVhtimfkzupOk0gAzR2XToIusYhw443AoUOkTQLYBGe1acyzJaJ5OtWnf24RitW2jTB1UffC0fMIc+K4t82vFwNCceLGsRaAN8FZ3cusphKrVw46NuLuaDaxFAUYq2aAbeNFP/YMHGzuwEMLl2DXU0yFTd/X2wZHjdpZrfiXbaPqhmivM8jNwhiWUPhvvxjjVa8CTnfryy/O3EGUi9VCIHDNVrR1RIQkVpjwO/jSmWvxvkdeDnWqkK1h3F71oPC9O47OvlxvQG6Er3//6llcc4157MUvxqTfxtwZqau9rxCrg5JANOS2ufkv3YedncOYrESYL0b/t9vaoWilOvuV6HwFgDSSqHkhumeIKvZFEeLUgmec1e1Rc29zsgxSCjhCO6s7SxvsaM11I6qVs58zMSCdmCCfdDPJBy6XXAIAUDMbLDK5Gkb8czwLKJd1/EODYMCR99O5+EUx21uRWb2R6B7fTjA/D9Qun8DOoInpg03M/M3n4Nv6PAqKaxi2Pdwi+YMPAl/+Mr7/k/8Jnzz0fDxv6hiWlpRedUoSxJkNr+IOf6yFp/OP633vAz79afNkvsskWL4g6FjZ+t3LSrEawK5dwHS3Dhw4YOIECq93HNS9EM3O6GJ1HtWgxWqCvmC1zGrHgbeeEz7LjAC3sT/lemL9zOosQyIFPDvtF6EagOdkiNP13dor+euP+/iJp38Nzxw/ja9PX4X9jV2o1vqfpRWYeJcRxeo4teEVF5vzGK8RndWNOEC9bn7OF4VHnYPlWb2eQLUm0JaDC60ORX4hOQ7G6xkWozJJ8em04NTtLbhH618P8jP/jIXpBPjWt3DgjtP4lSv/Hh/4H4f1k/kui8LtrBQovWixge/r3e8G3vzmwgMmY3x5QesRM6tzZ3Ww3FldcQaI1Wax6/DiGHbsAFCrYU95Cadn+vFy7cTHslt63s8OeS3ccYd2ra/8u0UBuFbJaKJFlH12DMgwxepaLSxGZYzvLeGKySYOz9V6O5dWusB739ewBq/9+5FkNi6rLuD0KXPtJwmacYBqHjETBDoGhGgKum2c1VHUK24fEhmacqQEHn6YsMEkgVQWbGG+w41csGmKhVMhxr0OXrz7EO7+WtozYXrO8r4k8BXHgBDBYjWzLvPzxB2lEWurbkSbA53pAbinIrp+IcvQueNbGF88THesUaQHuZYczo00LKazHfqGvgE+/vGzDJAjkyR6IYT03JISAoBvScQtwuxXZZkMZELXfhwjUwJlJ0a0RLQMnRdo8m2IYIgt38OSf0n1uj6/mjQXmEwyEwNCkMmYkx+r6+o17o24OxYXtSNj3GS8Xv9C/MyLH8TbH/wB7LrCWAl9X1d4HlWs7m1RX8U9s46DIOlKOCLDK77PxSXfMYXZsLo8tHmlWK0PeaCDKIkyjHtdPDy3G7NhFU/cV9iZYNxetRUFfypOvP6A3JzjdqmQe3zJJZjcV8HjS7vxO/e+FrX6it9xXe10GKITb33qC6jLBew59S2cOVX4PsygWceASLLzFQBkZqPqROiu537fCO12bzGs4sZod4jE6tylaWWoOBE6jQ0uiOVf7LK8B0PPWX2Bi9V537dvn15gOrUwepvFbd+VCupuF40mwXeWX5tGTVEhjbN62RZ1W+e4y/V2tJnonomgi1oNsHbvxM5SEzP3n8bMmQzfMXkCZU8uSwTqb30f8DksLgLQO34OtXbgsr0SdiYhT04vixPIjzV/DwPeIgD9VaepdmD1JrXGoVh0U8LW19q6zebild0fR+3aa2O6WwMOHND3iLHC611XF9qkEKuVBbcWaHcmUQyILpZYGGfaeqfYmudBz1m9sT9luTYyJdYW//I6DY5aHim1Dp67QWd1luH0goenjU3jmonT+I7JE5ju1lAbL/RVeRb5KBOFfOu/t/yeCGDkSIVGUkLNrI3D87RBYNTdkoWs3nLNRjshEqvNmBuui7G60jEgQ4jV/+7f9bqDdY8VQCGzen25QjY6WIj0/aqZBHjTM27Fxz/l6VMnL7ZajAHxMy0kbUCs/su/1LfEniFqlRiQkh0PFNbXxeRrV1f0W1U3QquzzmdgBLhMWVqsrtexu9TEmfl+Mey29FGtFs6lYQplF3j44VW+t17GuD62sVqGxWjEugtmV1CvC87d9XIIySp3Vu9wMP6USR2rdeJEr90odeEFyzOrh5omZBlw9CgAoOpGej0/y3rO6mqlH91TcWO02jTy2rZxVpvzr+JECKlqcRmk1GvdZMSxdu5b5yBWnzyJxa6Pcb+DHUELC3PaJDkXVjBVWn4i9RbE2Fk9MixWM+syN0e8KJSmiFIHNTckbTeBq4UvK6YTJ44eRefwNMYf+zrikM4BHWXaWV12YrpiiIV8zjRbZ8JwDrTbWOZIoGB6Wm/f3xxndYqI6vtC31ltZSndx2q+r8BO6ArAxbGJARH9bdQEqwG9wln1us5oXaJZYEkiZQosEi7ayP6xKmBjzuqlJSzGZYxN9l0XP/bx1yKtj2PnLjP5yDOrR71u8y3qxVxC112/iI5SkKHULn/Pg3XJHiSZjcaRggi3ilitV/fXyU1TCjLOMO53kGYWfvxpd+GWLxSGBkmi3V6lFWK1O9hZDaAvDhimXvQU3HrqafiD+16D+viKIUi+yDCMWI0qqm6I3eUGTn+zkLOdu53yPHSqhRClkCqhndVU/XangyTTBbWqbohWl2ih0UwcnDyzeoPFfpJGV0cfrdbx587qAdEyW04+AdmxQxcunCc4D4rbvstl1LxQF9Yb9XMoiNUlJ6bJWTf52nmBxd73tt5Ci3FWj5cijI8D2L0bu4Imprs1zIRVPG/qGMrlFe/VcfSOrkF9+OIi0kxgT6mB//v2Bvxrn4pLKws4+aVH++8/F09MP5Al639nycFjAIDoyGn882/ehslsBjPTqvf+V+bUwnHgiBQyWeNYlep/lwVBddcVJUx3a1BnpnGsNbGsiFIvs7qzQSvySvIFpmqgF9lGEbxyejEghcccRy9arPUZnGOBxd4fWWsHj+mX3Q18TJ6TIR6Qg72MkychVAbs2IEXvesN+H+feg8m/A6qE4U/mi+IjiimtaR/1gJu/tywHDiwouvIndXjfaeub0tEo0bCFIrgWSV/4xFp67QLALBt1OsYOm9/ZgZYWGvtcEXBvn4ExPpyRRIrzEcVtH7pt1B9xj5UqgLPqh/Ho/e2gUZDmwMm+mORIMCGhKQ0TuFnXezcoXSN1fxYVwrrDlFm9YrCsFqsXt9ZLTMbFS/uO6tLSzi9VNLXZJrqdiuFNjYw3gKARx5ZQ6wu5EBPjme6Xs4o11eaLs/adxz9uSb24Httq6XF6ikX2L0bjpUiOWkiwKREM/FRm3B67epdQUMc0+IiVKp3XWJsTOcMLiyY72t5znzZiUnKBQF6qrgtxGpz/lXdCCGVAavfNB56iLDBUZzVR45gMS5jwuvoceWiAqTEfFTBVGX5ieS6Wj9gsXp0WKxm1oXcWd0rsBghkYLmIlYKsdRh+YEtaRxUho70UPdCxHONwS8ehijq5WsPfZMcst2cc8lgWo/N0CNOnQIuu4xYrDbnkmdJxITFO6URq13EdMdrvi/flmQZ0HmBJsezAd/Xg7T2iG0rhTTJtHBVq2HC72Bxicb9KeNCZjWhWC2EAup1WEIha5+Ds3qqP0v3Agsf+YjAy19uHsgzq6liQIoTEttGxY21+LUaSYIkteDYmd6ivns3fut5N+PnP/l9/UmjlOiudFZ7SkdrrNXXGpFkPAhhWQo/cMX9eOKQWPZ8IymhviJDsTyEsxrAWWL15GVV3GtdDyUsjF1aW/47rqu/v2HE6khnfO8uNXHmUGFmkDsUqcXqfDDuROeUWZ6mqxSKCUPEqQO34mmn+nqF3zZCvstCZIMFylUOdL7hYDLorMh7MAiBip9qd96FXDgmvydOTuKS8hL2nyRYcTV5qo5n6azikkQjGjH/1rQLAKhWMeZ1sThLMC5axfVXGZSLXhCrx8YA7N2LnVMZZsIaZro1PPcN16BUW6E25u60Qc7qhQU9oXtKHW/+jTHghS/ElbU5HP7M/XqQUSxaaNoc5CiV934bABD+6QfxV5+s4Nef/mlMHzJvsNvVfWy1cFyOo2NA5BrHqpTOpAaWi9X/+oWYzqbwwPyleNlnfg31qcJn4OjaE43uiGJ1fs1WAxN7YI0++Mqys2NAbL3jQkZrx3Usi48Zlvy7W6tPyMVqb/jxg+cqXWBxyH4mfPQwAjsBrroKVz+7jN/85Rh7d0hUdxVC1vP70SgKkBGoqsHyeyKADfWJP/zDK0SYJEEjCVAfM5+RiT8YlNc8zPEmea5wEOhYNwoFrCBW2yVPO+uHaFfKdTJo88xqb0UMyCBndawLRD96tIyrnyaAffuwr7KAUw/M4vN31dCWHsq7qr3Xl/xMF1gc8vuav+lLmGocxCXp0X4NanPN9s7pPFZilIUmI1b3CvYBgK134647LDLX185aqMVqx8HuHSnOdEwMhpRoS29ZJE5v5WiYic3Jk3jkznl02iv6pBXRGhPjakNFslclj9ty+guHgTtEsTqlTIHFMsZ3ecCuXbi8Oo+jD7d6x9pMguVi9bDRmXNzZqeOAnbv1uPfQ9NAHKOZ+Kjmp5bZebbROM5mE/ipnzr78TDcJjEgRgDWYjXtAY+PEzurk8RkVqd6UXwj88RTp7AQlTH+1CktVi8JoNXCXFjBZHX5Oe96gsVqIlisZtZlfp5eUFTQgmKibJrVfSmRpH1xIlogWtI0A7yqGyKepROro9SBb+nMajKxeqU4Tdbw5jAzA1x66eY4q32bVqxOhAfH0pEVSUhXCBAAfDtB1CL6EPICi74F+D4m/A4WZkevIi8zC66dAaUSJvw2FhoE7k+lIBPVFxSp1lak1BOxWk0XJtrICv/SEpbikh7kFnjJS4Ddu80Pvk9z3ebbUldUfPftZO0s0Xyyn+f4eR5+9EWH8PD8HvQqCUmJMHXhV/pKQ29r/VqD/DiGVFqguvLSBJdV5jE9XZjQJAmaiY96uTDgyotBrtfVriVWTwL3PVHHD/+IjfGpFeeSmTz13Pzr0G5mqLoRdpcaOHN8lYrvgUsrVpuiLFU3QngOGevz88Cv/Mry1JZcHHTLDipegna8sYJPa5L3BabAYnsjYnWng7moiqlKuOZ2/XKQoSOJinRtEirPUZicxBuf+VW8567rR280n5jnxaTqQtcGGDWgsuCsHid0gadquVhdduKzxYYi5nycKMfaWS0Edl27wzira7jmJRN46lNX/M6QOa3TxyKc7Ixj925zPNddhysmmjgyW9H59W5BHc1jhgbE4shQf26nF3wcaU3hVZc+gpnj5kBaLS1QjS0XlteNAcldxfby62XnVVVM15+Gx596A37yX53AT/1yIQfE1bUnmqE7mricLy6UHJQCE1FAsAhylrPaddePAckXZM7VWT0gBmQjWdgbjQFpHJhG3QuBK67QD7z+9djzgktRqxemuhuMPlgV49BcJlabmJ1BY8S/+zvgC1/Qp8qBA8Btt61styBWmxiQaNTxbH5ueRZ61VGJnNUK0N/9kEVRoRRks4PmyTWKoEupd5+W+s7qwEkQJQOc1eZWdM+DAa6+GsC+fbiksoSTjzXxho++Fs04QGV3X6x2fUsLSUOeWzOfugM7gxb2Nh7DqRPm2smvlQ3maxeZnQUef7zwwGrxRfki23qFYc29qSdWA6jv8LTbvdHoO7arZ4vVKh6ioPUf/R+0p9twuyvqdaxwwgcVW5sjRnRWyxX9lu+pwQUxu11dKD2r6R2Su3bhqtocDj2e6AsuTdGVHkrVYmb1kPOP2VksRGVMjGfA7t3YW17CqUeXgDjWC1f5qZXfZ6ONzZNuuQW4+eazH9+WzmrC6D1A14zoFUulwCwy2ULp738jdW1aLSzGJUw8fSfqbhdLLRuYm9Nj5h3Lr/teH8Ni9ciwWM2sy2Y4qwFo4S8jEqtNzqJnG+FrgUioNYPrihMjphIUo6h3rCV7A1WIh2h3GdTleImJY6Ba3TxnNeXNXWZ6IcS1UiSEDnsAepJ/Di7NVckLLBpn9YTXwcL86JMcHamgtFjtdbDQJBCr80G+SGkXbQoxIL69QbF6fh5LcYCxvavk9Ob4Pk1sSb5FPVgxIRHrTEjyLad24fk9e2AJhfTE6V67AJYLP4NEBCNQ7am18eLrM+wqNTG9UPh9KdGIS/1q5+ZYK4OKyKwVAzKltb3f/E3gf//vFb/j6jinpDv4mmi10Beri5nVeQxI2dNbRztEkR0mZqfqRuieQ5tzc9p8d+ONhQeTRN8PPIFq3UIrCWjuifkuC5Gi7oVoraELrEq7rfP3amvf+Hti9QU8CJfdREfmjI/jxXsO4+DiJNqjFjQ2EzLbCMD1OtBICMTq/NqsVOgiS1ZzVg8SgHNndSXp5TLveNFTMBtWMd2tYddeG1/+8orfMTnQg+7lv/OPz8NH9r8Iuy4x/ZHr4sprSrh39gocbk6hVCocl23rCX93gFht3MH3ZM/Hd+06iEm/jfkZ89k1m7qPnfD7v+A4Wqhd67TNhRdr+XnieUAoHTwx+SK88icvxwtfVJg6WRZqXoRGHKxbxHYg+Y4Q30ZQtrWLcNSBTJqa6I0VmdXrZZcrpfsOarG6FwMyvJDX20Y9pKC4dHgBY263V1QVAPbuRV9IMsc5TMTMuuTO6hW7jYapQ3PoEPDEE3rRcudO4PbbC0+ayK3aWDECI0E0aiRMfm55AiiV9O4l4hiQXKwemLf/6KNITs6i+e6/0LkSq7TZkR4qtWJmtUQ4QKzOz+e77/N6YvXe8hIevuU45roVHGtPorKnv5NL5KHsw9zDlpZ0/1dqapHy3pO9310WtWTE6o24aj/6Ue2w7x1Gu62d1ePLF+8cK4Ucwlm9oxb3xGoxVtfftRGr24l/lrPatdLeot96zM1m2Bk0z47Wy+cIfr9fB0ATA1KYavTi7Nb7vlotPLywFwtqTC+27tyJq2qzugZ5fq4KQFj976vkxOgOc33NzWlH7bjoO7Yf6wKLi2glPmq7zC60cyxA/Y//qIcRxa7ORGJvG2d1qnScXdimGxeq4UscDE8cI1X9AuTdjTjBWy19Hjx9F2xLIZMpMDuL+aiMyV3Lv3N2VtPBYjWzLpvhrAa0WB2nDlkBuDxXOHASmrxHoDfAqzgRhlh4Ho7cWe0YkY6i4jvQ/xzNQPxCd1ZLqQuVUBfvVDDOaqp2lUKSAI4wYnWD6HMtOqupbuzFyuS+j8mgPbpYbUQv18mAINBu7bY32qQc6F2zjie0+Eux5Rnoj/RqNVMMcgMnwtycjgHZV1v7NZ439HXbaAAf+cgaT5otmZUVearugMJX2lldGM3u3q0LoD02r3/O37+zfKKT/81VMd/F3rEOPvJxHf8w1/T7rzcFFuuVFWK1G6O9npi0jrMaAK66Sm/vW4b5DJLOgA43y9DqCFScCHvKDZyZKQxlcpGu4sO3JMIukVhttg7W3BDd9dypazA3B7z61Vgu9hW2xns1n24B1zir3aqPca+DxdYGFpg6HcxFFUzV1+6XgpLQW6gvYGd10kl0YdwgAEol7Co10JoZ8bNNUz3JMVvUx8cUFqPhioqtS8FZPeZ1sbhA0BeulVk9YDdEktmYqCa9a9P9nu9GMjaFmb3Pxs6dq/zOoH7LEHUyfOnkM7FrX188vub5Jdx06Pn4n/e8brmIMsxiGPpi9fQlz8XYDS/Wk8cw7m0Hbyc+KpMrxGqRrX3aKmXGkme/l127gDvuwNnOcgD1ss4aHrVoXy76BCWhhZlRz6ssOztuqid8rbMouhnOarNNfEOZ1a5CnG5ArD7W0M7q9cRq46Ycya1sXKq10vIYr2Hq0EgJtJoZ9t94L37gukN46H7ZH07lu4JK5kPyPH0PGxCBMZCi+7Vc1tcAxVh2hVhd80K0FgeMZxsNSGWhlfhofvyf8aY3rRj6GbG6XOu7lX3b5BWvQ37pfeNbjharn/lM7C0v4WvTTwEAPNHahXJ9+SK+UkNGUT74IGbCKnYGRqx+zJhWpERXuihVCi5wO0G4gdiWb39bRyL+1V+ZB5aWdFzHZGHcNGhHiDkWmdn42VcewItfbB6r6wrWaqnRy1nvLQIAPbE67gz+DObDCnYELQSqu3zanpsoAvPZmvHeMG7tnCgCvud7gHvu6b8XvSOk/zkGXrZ+nB0AtFr4z199A74xfYVebN21S4vVJwq7wMTy+0zJTtAdJn7NiNUTO2xg925cXp3HkccjYG5O77LYa6qFWxbKboJO4m5onnTffcB3f7eu55STd//bwllt3MpVJyL1ymUZNn4vGkTurLYyvVjR2MB9u9XSUTJX7dALM5kCjh/HXFjF1CX+spf2xOoLOS5vm8BiNbMmSm2Cs9pctJ5N7ay2TWY1YcE6s2JcdmLECZGobJzVfk0XautQidX53Wx8HAqA6tCK1ZY1uj5ZREq9G3FTnNW2HD3jL8cU1HKtFK5IETeJRg25WG0RFM/JMYNV17cAz9Mu6MURP4d8Am0DsCxM1CQWosroi0x5MUjXQlC29JZnihFOfkLVatpZvZHtXblYffnY2q/xfd3HDMhSBYCTJ4FPfnLt41zVWb3eVs88S9Ra7qzeW1rCqf39TL68rWK7y55bSeG7gOPA3r1DZ0+e7LuHGvEqYrUTob1edfp1xOrJyd48ajmuC2+YuJ1uV7uEjLP69FxBAckXWCrGWU3VFZqdC1U3Oqfb1tx0imfsXsRCUYjMF1o9XbBvw0VB1yIvsFgrYdzvYrG1gYiCdhvzYQVT42t/B8LbQNblFpF0TTHSIADKZS3Uzo0uVhe3PE/W5ej5nCjE3lQqOld6VAc40F+08ftCir5mh3BWV2XPWQ3LQlap49RiqefYW0ZetHA9vSPUBbW/OXsZdu/rX6vXvGwH7njdO/HQwiWojC3vs4ZxVuf9xMySh/rush5UZBlUqw20WrqPnSzkrueiz1qndi7U2md//i94AfAv/7KGWF1JtcN+lPMgFyp9G0HFphGrc+EvWMVZvVkFFikzq70NxIA0m2gsKYyV42WroK95DfCKVyw/zpITIxxld9RqucJG+Fo3Zgf6FGk9cgwHPvUgnr7wdbwsuAf/8umw/6RpC4DOrHaS0cWqYq5wqYSqG6E9T5tZDV8vjA7cFWLGG80kwG1f9/DhDyt88YvLj7Wd+H2xOo8ZStY/IWWiYIsUDz8q9DW6axcu+e2fwjemr4QtUhxpTCyvF7yRjPEHHsB0t45dlwe4pLyEk8f6NULaRQE4LwQ4jLO63Qb++q/x4D8fwXuvfQ8+9D4zXlpaQisJUNlRyFkftMgG9O75L7lmod9Pj4+j5oZoHpkHUl1noroiEsez5VDxhotqDONeF+NuBwszhc5+ZRSK56HuhmguDX8Pe8cvn8Z1e2bxX39J9dpcllkN9BfwBojVSWbjzqP79P2rXMZTdrdxcGFCuwUAmIoEGpNZPVRsy+wsFuIyJnZ7wNVX44r6Ao4elMCZM7rA4r7+vKHsy43FpEUR7LCFS/ZkOHWq/3AYArXaNhGrTR9TdSO6+bdudnmMFQV5ZrUj9GLFBsVqABC1as95ox56GDNhFVP7SsteymI1HSxWM2vSbAKV0edhy8md1SWHVKzuOattSZeXlMeAuLRidZQ68OrBORVhWK9dAMD4uBZ7WnR3NyHMdkzC82AzxOosSmCLDL4l9fdF4dTtxWCYzOpRCxYa0m4MSygzsCU6t4q5hHlm9ahidZ5Z7eiB50Q9xUJUHv26LbisSlVbV2UnEOmUTHsFFjeUB64UsLCAZhKgetnE2q/LM6uH+M6kXEd/NxOHSnkVZ/U6IoJ2VhcmAXv24JLKEk4djvR7WDnZBYaOAemJCE/RTiR14An9c6eDRhKgNrZ8kO8N2sGwhli9Y8fqgk/+WtdKEXcHi9Uts6V1R9DCbNPvX+8FZ3Vgy6EWFoYiSZBmxll9DouMczd9GZc/8jm0ZwvXThwjTm14gaDNEi1EoYyXYyyGGxDS2m2dvzexzmRz0ALIBYCMdZ8N1wUqFS0kLYzugNZRS/q+PT6msBCXR7uRKQWZ6t1mKJdpCriaY80nZACGE4DN+fh9z57Bb/xG/+FqVQt+1mrDlbxg31r9FgAsLiLJbChY2LW78PevuAKXVhZxYGnn8m3vpthsO1x/lpq7uWcWHb34NTWFmhuidXS+L1ZPrRB9rAxyrQKLeR+7irP6BS/Q6x75zpAi9bLU2eWjitXKgltyUKpYWuwYdQG3J1avdFavEwNyrgUWhxWr/Y0UWATiYSf7p05hKS6hPukuc08+97nA85+//DgpiuA1kwDV0vLPtTxEDIiMM7QePIwDjV24uj6Nn3vKv+C9f7Con8zHQOVyr03fkgPzmgeSL7K5elG04kSDHdBDtisA/d0HwXC7QsyYupkE+OKJa/B7L/4n/Pmfxcuel8qCGyx3Vq/7GSiFRAI7ghYmJoAJM4Tb+6xJdFMPz548gUxZvY81b1cINfjckhJ4+GEdA/LSp2tn9RnRe65VjNawbZSGKAYJALjxRiS3fw1SAlc0H8Qlrcdx/7d1ZEc78VDduVq/tX5m9bI4DgC4+mpM+h3M33cUSJK1ndWDxlsAFsMA434H434Hi48X7L/5faYgVk/6bczPD/4IAADHj+PWTy/id/y3wV88o38vL7JZdFb7Spta1htzhCGkstCJ3d561RXXVnCkNQU8+qhu01q+cKdjW4boC+bnMR9WMLnXByoVXPHsMRxpTOjM6jRAdXd/JaQcqA3FpKlbPg/MzWHv8W8sE6ujSJs6tksMiMxsVNxI74KgmH9Df4TkzmpjPLHrFT2fa26gL8y3e1UqwNVX64XPRoxvzFyJ571khVi9wRgrZm1YrH4S8fa307Y3Pw/s2bM5mdVWraJdZFTO6lSLJ4FNGwPSd1YTXSphiDiz4Y8FelJKJFarMNJb2sbG9LYW4mq85GL1Q4+hdORRJOtNcDfaZpzBsTJ4dopIEhQnAvpibZ5ZTSRWR20J39L/ka1CF90zuVjdGPH8KjqrYba9xyUSsTqvTl+qOehKd/Q2s6wv+lSrG1u4WlrSxYIsG1bgrf26PLM6HBxbkiTraA15ZvWKGBBHpOtnVmcW3ILbBHv26MnTMQk0m8gyQNhiuRVhGGe1srQjHwCuvhrjfgdLDxzVP8/PoxkHqO8826G4bsGfNcTqeh34/OfX+J283UGZ1e02WlLnOjr1MtJM6O8Q6J9bFd9s916/qaEpVDsfanJTZH4ec08sYspvA8VdLz23YaHwFZWz2jiAx+sZFuMNRFXklc13rNN3uK6+31zIzupYwbFSff4bZ3V3cXSnatFZ7fg20swavZhUvmMiCLTTiyK6Jne8ef3s14o7XGZ1rQbs29d/eN8+4Ed/dI3fGRQrAQBRhCSzETgJdu0qPF6pwPFt7AhaqEwt71+GyqyOU3hWgul5B7UagKkp7AxamHmi0SuwWNlZUKjyPnYdsVoqe1Vn9QtfCFx99er5mbVKtmFn9WOP6ZzS/pvpO6srNQtt6ZHFgCxzVg/6vrLs3GJA8pWMtbbgmfG06w0/JvE86LjAYSb7J0+ikQQY2x2s/7q8CN4o6wBJcrazesic9WR2Ca0mcCi+FFf91PfiusmTOH5K55qmSy1YltJ2SqBfYHHU+UdRyCyX9e6NRYK+e4WzuuzEg3eFmILOzUufia8uXIufueoLOPJo4Z63MsrMZOLLbJ3PNcsgUwu7Sk1cfXX/dZUKUPMjvHj3QVgi69WAzNsfKgbk4EEgijBj78bO5+3DvsoCjs3qHRx5nFvPrdyLARni+3riCTy+uBvPeEEVCAK8oLYfj307RLLQ0qLyroINvGdkWKe9PPorKIz9nvEMTAVtzO+fA+bndQTleEFQc114lhwsVicJFjo+xr0uJrwOFk+u8315HiaDNuYXhzxnjx/HfFTGVNDGU50jOLBfrVoYdqjManOeA+jtDAqe8wwdH/Ltb+v4hqBwr85z5ocphtjpYDasYsclejx7+fc+FUdaU/jogevRzKrLYqzKvl4kHFakDO9/HIGdYG/3IE4f7ndMYajHy9vCWW3Gx4Gt58xUB70pYnWSIFMC1lhNf//DFkxP0/6u9XIZeOYzMeZ1cbpTR1e6mHra8pVszqymg8XqJwlSAn/2Z7Rt5mI15Xy0t901H4xRiNVmIqSd1QldwTozeQjsBJkCTYcTxz1ntXZo0uxvSeNUT8zrdS2CE4nVSgHIMj1pINS/5R1fR+nY40gadOFWMkrhiAy+nWg3DkWsRM9ZnertcpRitS3NRITSWd3PrB73OlhojHh+5S4XI5BOTIDGWR3HPadPqeagkxI4q/PvylZAubwxZ3VuA7EHjIosCyU/0+L6gP5gXWd1kujto6s5q9dq1rj+lgkp9Tr2jnVwcrEEHD+OMHVQ8leIEEM6q3ui1tVXY1fQxPSD07oDWFxEIwlQ37Nc9BlYVG21SBJDL2JgJXmBxSFiQFpJoF1CU1MAgGx2vvd3pbLg1gJ9P6Aa6McxUmWh5MRIUmtj94OvfQ3zUQVTQRtQhe/PfPaeL8w5KxEtEtwTexEQNsbqZoFpI2J1VMHU7nWuhfw7vVDF6ixDklraIWtZ/RiQxRH77+LuFaC/EDPK2CBv0876i2HnkIl+FnmRTa8vpJSdGJ318jnzXRbB8vvGX/818NKXrvE7JlZi0Bb1JLPxhuc8giuvXPHc296GK59dR2WisKhl2zqypDugqFqUoeLGmJmztbN6xw6d4X9gCQhDdKS/3FltWUb4WmOxcbXdK4YrrwRuuWX146iWMzQ3KFa/+93AO95ReCBfZAsceFVPT3KpYkBKy92Eg2NA7H5hzmHZlBiQjTurxy6prP+6XFDc4I6bU6cKebK5o7ay/P5dchJ0BjmrFxpoJT4W7Km+uJFIqMUltKSP/5+9946XZDurQ1fl6nj65Mkzd8LNSVlXCIEEKBAkFDEPMGCEn8A8kgFjwGCDwAEeGQuEJWEZkBA85CeCJYEkJF3JQlfh5jgzd/LMOXNip8pV74+9d1V1n67au6pr0J37zvf7zW9mOuzeXb1rh/Wtb612zU+Af0WBofiEqTiteWdIE9K1GjFa7VbA9hsDq2uKxwd+KKjaDRoIGjPoGFZiYB9FyfdMXQNFiuAHOeOGjq2l+oDoVadi32ENL371LOoNaTTRpJB9PdO9zwwqh7YaLWHpIAGRh54GrK3F42DEDFL1uGaQke3gvseauGTP4eCdc8DyMubNAdbP9vG69387vrR2aISpy02yAZOZ1bUa5pZVrFl1nN9sIoIMqZPafInutwYDbDk1zBpDIit2JbWxZWufkmZWD4XB6v6ZNTRUsi4fMy/i1Je7iWa1mnxf1VBI4ooDVgPA/tlBIvly++1oaA76j5wl2tLmmCmqCGksIoakV+0WFveTdWruZbfjkc19+I6PvxUXBp0RTkZsQC24HgzkFhqqS4gn96/EjztXNtFuBNcRs1qGKtGxVAXpAglYrfGPXOJBL6jUbonNWSwGA9iBhpoekqz1TTdhRrfw4Qu34Z7jaxjNhgGyrhJS5i6zeurYBaufJdHtApub1ba5sQEsL1cMUnoRYT62WiSrXaHBom7IZKNQsQyIKtOJpqK+ujS7XVNcWG4FYHUUwXPC+LoSY7lqrkHwufugXjwDbXutWmZ1KKOmevAEXKiF23RDAirLAcmkVwhWx8xqHuNTMJxhAEPxCDjlVmQumC5RpyyXqS8BO0BTsLozJxOWZhUyICFxp2/PKqSEeto2498qBGo1cm2HgpsEBlar/PuxZkYErOYACblgNWNWp8tSRTSrIwWaknpekrD3kIbLwxngscd2tknbjTs0KRhAxZjVe/ZgacbG1dWInM43N9F1a2jtTblU8SRLAAR+BEUKM7QDMoIdnhzOwXw4JKWybRmYm8O82cfG09vx9/RDBWqTgtVV+QIwtrJE+1YESDp3Dut2A/NGH2rgJnOp58EN1RhEaGk2ehsVTLSULa/qMrS6Br9I8q7fJ2Yxe3Kc0DQNshQhdJ+hjJEYAKbjk4HV21NeW2ompWh0TGsaVBFDUE6b3hizuhJ/ZFZKrSVgNRcAzgCr9ZxiE5G5gM3Nv/LNn2W5pSTabRw+ru8wwaurLgYOR6fWDdFUHVxdl2IZkOVaDytPdXGuP4s1t416I3X/SxJUlew/Jh4gGatYnvxddvSdhmxo4mZtILfivfcSXC6WUmXrt6kmh95pF/CYWb3TGyEvKXqtDBZHkqICQQwWxZnV224N7f05Bsm0n2Xk197zHpK0AQB0u+j7Blqzo9I1RAYkvx1vgzBnt4IWZo4RceEZuYfuWbLOtpup7ypJMI2IbyzHi7QJXr2Opuagvz0lgBKGQBQRMEaWE4k0noQRnQvOrTcwv5esMbo/JN4t7HeWpKSEQVGgSgGpnsraJ1Mz2RfuPY/v/M7Rp37iJ2W84K13odEY+70VRWyuvXoVALBqt4jB7N69JCnx5AUKVptozozra+fvI52zV/DWT30Xtmp70ZmVgKUlLJh9rD/dxdPdOZzqLo0awzKppbwhwPYnxuhnzx1o4MPnb8cPf/bbAE0dLQ1RFOiyABg6HGLLraOjD4lh8yp9QxSNJiwAQNOIDMi22Nn2yYdd3DhDANrj7VWc+sJmSr4oGUuSJiA9Rp/7x7f/ffI19+3DDXNdPLm9hE2ngdZMql9Ms5rHhLcsIIqw5s1gYYm8VmrUMT/j42v3PkGA6VTUaxEh4Ajes4N1G03NwZ7aNi5fCuPPtH/td9G+8sT1waymCQZZovdoxWC1WcERMY6Ut1FddTHoC56/+31qrEt/15kZzByawV+v34OXve3Wna/nrYm7IRy7YPWzJLa3ydxQJbA8GBAmZZUgpW1FMBQfcdqzilmYGixqs7T0f1Ads5oBlQAqA6udMMWs5piGCAUr95Wj5FDereYa+H/+QahSCH31QrVJi4jKq0zjyD7eJmVWEzaOWpn2qx/JUKVqNasJWE2Z1YFazU3GQDpTBXRqLjctUMfaZBWZDZOY71XArCYHVwlq04QfyZWA1T5jVtdqdC4Q2yS8+09N9FwjAWxzolYDLAHzK89LXvLgg8CpU6N9HXj6DsMfEc3q8RL1fbd2cGnQAT76UWJMNE4sEzJYTIEIkoSlQzX86ckX4sInTxEZEM8cBQE0jcumdD2JzJ1lwGoRZrVvkEMiA6hOUy05Boo0zYTlVIU7rOsiiCQoUkh0OousXZcuEbayOUBH7mJ7Kxrpq2bIgGmirdnoblXQ15QMSAx8FWVW781BKEXlWr5SwdZuqrVfGVgd63MmYPWcMcTmxnRmbSQJFVKw2q3mUMb6WoZZXSuwLxEEUvKAyiNHsGMubGhOfl+jCJ4boanZ6HalmFm9v7GJi6dsfOfHvw9fd/zsDnMmVcsxPcphVueGphH9W8F1/OGHgRfc5eA1XzNIJJEY+7WmFr9nsyKTWR3A93I0qyMZak6uamIoCiQQ34iJkZ7rBEM3JHGDxUuX0HVrmDmS4zlB+2kqfuHt/LlzwOOP0/90CTu6uTAqXSNimu5vE8DDlQzoLQPodLBodnH1gUvouiZazdHXGwam3yOmq+5qNZK0mtbENQgQRSnskxIkuHMX3W88eamJPQc1oNPBwdoaLnz5KuD7FI8eTTApCkjClZMIOTa/hVe/evSpt76VyBg1JuyLhPwBKJ2+75kkoXbLLTjaWsPTHzudkA7aatymqXhcEpJ/4Qo2nAY2jT1EX3t5GfNGH2tnB/BCBYoUjJIO6L4od45NJ7tSMXe4if+9chTn+3OQxjNQbB3nkQMGA2y5tUSzeo12JN5XpZILTLO6K7aGPPGkhJs7V4AXvhDH2ldx8okA8H2S3O+kvjDTGBdhVi+l7hVJwg2HAnzLh/8V3vHoy9CaS01sTLOaRxqjg3rNbZOEBY0PvKuHn/vae9Fsjc5pMbNaEKzur9loqA5hVq/SvmxtwQlUzGgWnKowjWsZdH6K54OKkGV/4EAdbMHUw0ogGADJXNpuo63b6PUE3zcYUPmnZB6aecFN+IezR/GiV0yo6NkFqyuLXbD6WRJMrpP9XUXYPQ9tw6kUpHRcCYbsJwYiFYHVXqhAn20QJl0V5kTATrC6Qn1to21AVSKiwzYtkJI+mJsmWro9PWuChqfVoTJWcYVJCy9UUFNceBWC1UyjVGk3iI5o5czqcDoGXSqcYQBD9iFLlJlSUV/9UCblu6YpbCL00ENEP3NisAMm23dWZQIXl6gryVwwbSaeMhQ1NSRgvSLOnnr/38/jVHdxRHcuK8yaBNvXuJnBNLP6T/+UMLPi8DxyyEmzfaiWaK6eaiiPMqsBHHjzPTjVW8Sfn34ufuJzb0K9ObasixospkCE5311HQ9v7sP/+B8Aej0iA3KgPdJX3pzg+RSsLmLlTTUUuWD1cEjKbzsaMDeH5VoXK+foWsLuA1OFaYr9VkLBAGC5ILPacYCrV4lp4VyEjjbA1lm6UNNEq15TAF1HW7fQ3a6+ygJAIWZ13zPQ2pNTTi+aVPhKRQwA02vZIEY6wyJGOpOC6UsbdEKkLLL1jenM2mIWOCulr6IaYFyyhALAuaaFZcFqKUAWRsn6MomxzeKrvxq4447UAyLMaqYhr5N7mzGrDzS2cOGqgb5n4Lfe8pkdb9M0kOToJCCBAbUlwOookoTnmY2/+yIWH/4Env/Ie/HgfU7MUIyZkaZZTeUhA6vHgC9iiJnxHmawqBU8HspyvhY2nT8LgdW6oEFVrwf0+9gOmmjva+a/lsmAFGRWj4DV29vEYHFpVBqrrroY5mnCex68vou+bwIaTQZSVu3aw1fQ9Wpoz4y+vxKwmjGrY83qAmzCnDaDKGVYZxgk0Tbk3DuehwjAU5fq2LtXAo4excHmJs59aQ0IArihCl0Z/b1VXUYQZVRDAEmiR5v8nZpN4G1vG3uQaZdz5GB+/38dxunuAqCpBIh77nNxtH0VT39hHbBton2rq6NtckhI3sVVrNtNbCoLBKymY+DKWRtzxgDvestHR7dNVLIkVwaEgYXa6GfPH5vFl9YO4lx/FpK+E6zWFZ9PGhoOseXU0dEtdHQLWxv0N/Z9BOGYvApbE7sC2a4owslzOk7MrAK33YZj7as4dckEggAbTgNzM6mxpGnxZ2aG75M0xxgof/NthEX/xbXDaC3uTDBZHCY8O5tcdVpYWEgevu0bD+Oe//Z9OHbz6Het1SAOVvs+Bts+GpqDeXOATcZId13YgYa2bsGtUC7zmsX4d62IWR387UegnHsatavnqmNWs3W61SLVjH3BtaBPqmLS8k8zM+TP/v0TXn8dGJFfL7ELVj9LgoHUW1vVtWn9yV+i9dkPV3ogdRwQZnW9TlgIvQradhy4gQptrkk2CrzNkmgw7dNrwayuq0lt7bSAPQP+KKO0pTnodity4tVqUOWwWrA6imIZkFx364LhuyEp0a9SD50eIGMZkIruBccKyX3ADqVV9DWtWcfAWgHzxr//e+DjH89ukwDg9P+1GiQA4aA6GRAGgEeDKTc3rE0lSjbMA0NIYsV3AlwadhKjnJyoNWRhZjWbMs6eBT6Txk0GAwIizKZKPXnMaiYXMAZWK3sWcefRAX7uvtfhMyvHUG+OUwkFZUBSQNJrvm8fPvD1f4i/+9Ic/t+n78S54cIoCM7T146iBKye5EiWFbRd1+bLgPQ9E82OmoDVF+kERUEszVRgNhRiylPR3B1EMhQpJAkm0Xn7yhUgitCNWmgfmcOsMcDm6c24r/G113XCrO5O39UYGKqpNHFVwMeg3wcASOMUv3Q805nV4/cKM1icdr+RNrEFAE0jBlabU4DLDEhSUzIgJcDqzU3gN35jvK8TNKvzfDKmYlbz9VSz9Iq//uuBV75ytM0Gr6+OAz9U0DTIfd9qAdizB/v3A0/3Foh828GDO95GZEAyAFCW8FQK7ktEgJRUrH/pLOb0AY7XL+Hkg4P4fU6okWtkGJCkCKFVkcFibdQI8JoYLDItbJdjsFgQrBbSrL58GQDQVTqY6XDuHQYoipjgpWJlBcnczJjVY7rCuhzAzdsnOw78UEbPr0GSaT+Xl7Fo9rHyyBr+ywOvxNe+YDDyFsOUyBo2zQY8XdlQr6Op2WyaLx8UrI4lc3SdJNo4BpPwPDRUF92Bij17ABw8iEPNDZx7tB8zlRv66HdVVZpg4knMZCRYJAn4yZ8ce5ABlXka42GIL5yexQPrBxLG8sICjh708R/+8VX4rS+/LOlg3KYH2+cwqzd7sAIdl4cz6HQALC1h3hzg8a09WDT7+O7XrI6+QVXJvcVJCAJI5iIaczfMwA01BJE8arRK29V5RtlAwqxeNjBnDLC2Qa9zEMAONNS11O+l6yQZwvEbAECIEJaGmXYEHDiAlu6gPyS/87rTwPxs6guLAH80ETI+eX3bd6j461f/Lh7e2IfWcirBpChkzLqcyY6ez9xIG5clRr2+8/yk6AqpQBVZD7pdYgSsumhqDnpDOf5MJ1DR1mw4vetAtNrzyFmWRVXM6ocfhyqFMHur14RZ3dJs9AaCa0G/j55rotlMvufMDPDCF2Ycc3aZ1ZXFLlj9LAkGVlepW233fbQ1G26/OsEkAlZ7QKNBSrfXKtBsZszqdg0Nw0fProhJx8A/plFakayEE6gwmlp1pZ4M8FAiWkpuodutRqfVV00iraH41THs6eFck4NKJ/FYD71NGaBVrGxsE8wA+6qY1QysZk5zFYHVac1Lwh7iT/G+j2yAjCZC0szqtm6huzElSMXkVTQp1lAcTGt+lgaoZBl7mn2sDNtCG0bPDnF5OINmh88GqdUAy9cLaVafO0cOu/F5s9cjBovzoywPVQrh5QHAoRKbXabjNa8Kocohtt0a6jNj30GAWT3CwASATgfLr34O+p6BX3vwG3DvD/zpqJoH09fOAqhYX+WwFFjNPTxZFga+juasBszPk/LJy/RzWMmzoRAWfFVgNRuzlFkdWYJtXrxI/tY0SIsLhJl0kQISbO2qyZRZXaAkMS/SppmGQUp31wXn2l6PHDqaOWC1qLb4VyriihA6jmo1AtROa1zIJLfYvcL0OQXNpCZG2hiWGSyW8LI4exaJpARt1w9lKHqip9pQXQzyAGDfJ8xGs8D3iVl/Oa8pKgERM6vzgXU/lNHQyQe32+R9B37q/8Dnt05g/2EVeO1rdzbNZECymNUTEoLcoDIgUS5SmcTGBjBvDnC4uY4zTyfyISFkMl0zhn13eo31oa+hnvKYjIGvPM1qtjYXCTYOsubudGJOMHRDEtKs/sTfDLFuN7AdzcTbv8wQZFZHEfD5zyf/DkNgaYn46mF7myRL96TmSF4SAIjXkKtWMy5Sw223YdHs4W/O3YGG6uLNrx3dVximJMystm3g7W+fkJ9npAtTSQwWhzka0CLBNPEZWE2BWq5ZneehpZO1c+9exGD1+dNeUgkwBlYrmpytMw8kxKIi0jUUqMzdGmxtwQ8kPDg4hoXF5Hsdu1HBo5t78cT2ctwW+1uEWc0SOqev1Amz+sABzB+fxRPbe7F88yzwpjeNviEmB+QnBKNI2gHUzs1LUOUAL1k+PaqDnWpXiFnt1tE50sGeehcrm/RCT/q9dB26LHhetCxYvoZai5AOAEAKfESejw27gbnOaJKN6wvAxsfYQJBvOIwbWutwAnW0YkzTiBSjzxmzA7pfE5W0U1VxD4OtLQw8YrYuSxEiP6ncswMNLd2GW9G585pG6rtKAMJ+RZrVrVmockATYZU0mcylzSYBq4eCa9JwSJjVqWn/4EHg5S/PeP0uWF1Z7ILVz5LY3iYC9FUyq+1AQ0uz4VUtA0KZ1cu1LlbWK9Bsdl1iUlVTsW/WImZjVciL0AkmxloqNFjU6wRQlOhjUwVjlKoRBRNtdKsAPMCY1RXLgDAwSQ6ShbmKZp2AAEmMWV2htEalBotRlFQYzMwQHbaqwGoGCBgGdZHnT/GelyMfxICUFLN6RrfQ25zyOrB2qYZiRx9ia2161mMaoFpuW7hizQjdX74b4NJwBs25PCcxErWmIsSsToPVlgW8+MXAAw/QJ/t9sslfHHN8zyvPZgzMCUDK679/Ae/+mv+OG2dWUJ/ZWeopAdlmeEyndRxI+tZvxS980xfwJ694F/Y/d3lHm7lzQlntV1GwmjKwak2iWX1Dew2nL9fI4ZslmAwFRkMlv1VVzOqQMKsL6dezDLJKgPWOMcTmJStu0w1UaLQaoqXZ6PYr2JaxiggqKTBSupsXYZgczHaIfKbiOmBWx2siAOg6Aat5rL9UTEz8p6UaAMqs7mN9a4qkOwOSlIiwE1UPVkHWJ0AA0BG2JJsvGLBODeBy2crsvs1gQE8MWabgZz6QMklPNTOoGeQwj/HmuvAjBU3Th64nuf/O8QVctmZx6CUHsYMGByoDkmOwOKJ1LhpMU1bEMDoMsd5VMWcMoCsBvIGHiCH9bLNpmkSypQJd4R0yIIwJn8usVqCoxcHq3GqbEprViibnM2ppvO+vmvjc6g3YDhpx/j+vnyIGi54H/Mt/Sf69vU38e26+GXj4oShhVu9N+TjQJEDAAau9UMHqsEUYtQBw111YXJbw9xdvxlftOYkRnQGQc50TioHVa2vAv/t3wC//MnDmTOqJ9P0ny2jUQgw8fsI9Nxizmq3xqiqWaPM8GLIPVY1iZvWJmRU89rQJeB7x8tBHB5GqSUQGJGtwMYmuIgkWVYWpevnM6l4Pfqjggc1DWFpKHn7pV0X4+Df/Oq5aLQJIyckcayoebF/NTQSwJO+piwYBqzUN2i/8DLS6hqXnThDYpvesF/BlQHYwq+eAG24AbvjqA6OVALRdXfbFmNUOAauXa12sbJvk+/k+rEBDTUv9LrpOAGBP4LdwXfL+GggLxDDQUGwMN2ysOw3MdVL9ot8rysuKZsiAoNOB8R1vwoFlD61OanyyOSvvugKAZcENFPFkSBH5h60tQlxZpJN0GJBrS5nVpuJfH2AnG3+1GkzFq0y6xG/NEma1ypfsEW+U/i7NJlq6je5QcF9i24l2PY3Xvhb4kR/JeP0uWF1Z7ILVz5LY3gYOHaoQrA5D2IGKpubAy9t8FYy0ZvVyLZWhnSYYO62uYt+cjYuDTjVg9XhZS5VM3bpeObOayYC0dQvdXjW3NmNWCwFIosHYaVJIFuaKwveIZjWaTcJyGlYoraHL1cmAuC5h12shUK9XKgMSl6hrGkyVupJzNNF9L0L3S0/hj3/u8ZgEGgdLhLBDQK2GtmZje3P6Q7TPQJF6XRxMywumU0sBqj0dGytWiw9WWxb8QMJle47ISnCi1pAJs5rTLjNYdF1A0yLceCLE6dP0SQpW1xZShwe6cc7TrM5iVjcOL+BFR1Zx08wK6gs7DySKFCJwM8ZuEIxctzjqdXzTu9+EQ7/7b4DXv370OZ7hD+3ruPYkN0TBatdFFEmQdA2o13Fsfhunt2bJHM1YVjUVjZZMtAMrWg+YDEgh1mO3Sw46hgTMz2NWH2Jr1Y3bjGUXKLO6ErCascANhTCr9aHY/WVZ8AKJSFLkaY0/05nVbN5OgdUi5mcs1teJNMWkdv0oxVamBouiZlJZfSWyC1FSmu7mgx2TYnMzyTOwdoMxFnjcdlaUAavjA3/OazL0VPPaJMzqnP2h48ALFTRr/gibVpKIfuThw5PfpupyvmZ1ODkhmBv0fnCHYmXfG3YD820PkGUsqetYPe/AC1PAn2GgWYUJHpMBSYPVqko0xrMk2JgUSgmDRVXOMd0tAVaLHvb9vo0zvQVYoQHTzH1pYrDISQj5PuIql3MPbOLQ4DF8R+tD+I1f8/EPF47Dk7RRuRyWbOaZ4IUELI/BalnGwre8BE/3FnHXW24Gjh4deYtRk4WZ1ZYFvOpVBLT+9V9PPcGqzmiSrdGU0PeN6XRlx5nViiLErA4dD7IUoVUPCLN6Zga3HujhkbUl4MknqZfH6HsUVco3WOTIDE0MNm/lnW9puw+sLI8Y60nLS7i5cwUXhx0Y9dT3lSRiBMepBoiZ1QysprGwgBFQPA5ZJvdsKGevC75PiC9jQO3yMvDz/17BgTvnduaf2bzFy7sPh2Q/tziD2ZkQG3adDDaWDBsDqwmzWuC3cBxYvo5aQyYT99wc0W8/N8SG08D83KgxrKH4+XsOJgMyae/y8pfj6M1GzGVibapyAC/Iua70+6/ZTSzMCO75ioDVvR5JfM3pJDMVRUQS0bZhBxpMxZuuAuKfKth3bbcJsNythuXoyzpUmey57dUqNPKQ3Jv0PNuzNbFrbNvktxLwNgKQjINdsHrq2AWrnyWxtUUc1SuTAXEc2L6GmuoBQUUH0igaZVbXu1jZ5DMZuUFNqrS6hr1zDi4NxdiU3GCTL939VgJ+0n5Jhh5rVkfOlH2NS+CYDIiN7qACeRUQBpIqB0SLr18RxZ5pbMshpKom8SgiYLUUAo0GmppTjckkA0AbenVgteMQsNqIEsPCyljgCtSaRjbNTAKBB6pudNE9vYa/+FMH73vv2GYs1gKk/2eAWm9KmRkKgqsagFoNs8YQm1tTtjkGUC13HFwRmQvW1+GFCi55i2g0+X2ImdUCBotBADz9Px/AwY0HceDB/4UL5+mGqN9HBECeSe2cmVFZXnl2Xon629+Om954O+qdsTmVlSdnaYmGIQFKJrGSJIlQyia4yKtSPrDulmFWaxphG/LA6jSLSJKwZzkiFTW93ogMSKOtoO8ZlTGrI5BLUlNd2D3Bg8v2NrbdGjozAObm0DEsbF714+/hpQ0WNas6sDpUYkmgjmFha1NgM97roeeaaNU4h6zrwGBxxBg2ZlaLXdtuF7j/fuyUZEmNLdburDHAZneK9ZZpSysAJAk1E0Lzy3jsYFaPs5lFWGQlwWoRzWoAO1h/maGqaGguhnnl9FQGpFkLdkg/HDiQA1arOaZ9cUVIcbBalwO4lsD90O1i3W5gfq8OzM3hePsqTn5xG5tOA3M1Ok8xZnV3yvtrErM6BlU5Ek5FxgBAxpeUb7BYVAZEFKz2+jYe39qDWktgfAlqVqfB6rN/8GEc9E7jno2/wd7+SfzOwy/HX33Hn+1oNzcJAMTEmo7pjICUi887BAC443uet0M2q4hmtWUBe71z+DHpN3HhTGoO9/0RI8BmExh404PVxGCR/j9OhnH0mh1SpdhsRASsliQot9+COWOAJ//481i1W6i3RtsgBotSrmb1DikzXigKFCniy7aEMk5vzI6CyIuLaGs2Lg1m0GyP9lU3JDiBJgRW2448UgkwP0/A5R0hSbQiJAewz2BWaxrwnd9J5Ap2KHsphFDAXWpY24YBudMmBJvt7Xh+qempPsXMaoHfgjGr63TMz81h3hhg/ZKDdbvJlEFIMPmeQc5cwFlnjh7FKFgtE4+b3CQAEIPVi7OC8zHdL+eywFk4DtGsbkrAzAxamo3+pW7MrDYU//oAqz2PJEvabfI7bVcjH0sqpgPiu3J5q5I243Gi62jVA/Q8Q2y/RcHq1ozgPMPWr12DxaljF6x+lsT2NgGrK2NWU72kmuJWx34NQ9i+ClMlxnLLtR5Wtng0CIFIMavNukw07iqSAZGkCGg2yeJbhckBmxA1LdEVnjYDyQBFFQSs1gtoMHHCd4KEWd2ryN0gZlZXqFkdH/gjWvY+xOZGBQs8A0AbRnXgjOfBCVUYOgDTrJQFni77NmsSbF9ArmKzj65bw7pVxwffN/Ybx4kQupnUNAKoTZsMYUwfTabM6uH0c5fvEwYrxTc67RBbbo2/CdnchB/KuGx1cmV6WRgmva48thfdnzz+7s/icG0VB/qP48IpJ6FcS9JomTpjVmeBSTnMagBAo4FvfnMN99wz9jgFJwIvD6wux0rK7GtsVHbtZEAAxIcSqd2CLEUItvvJfFjTINcMcrCqqCoGQKIn2xPcgHa72HLrmJmVgYUFzBoDbLHKBFplwQx320VKEjl9TTOr25qVLfWTjn4fPc9Eq86Z59jv9AxmVsemhUAMVnP1VGn0eqQg5XOfG3siCODSvQYAQFVhyP502w02F9Ima3VJqHJjPDY3J4DVoQKFmY7FJl0CYHVB9qsqcUBwdu+IuvYxZrWbAz66LvxIRrMWjgIQAI4dA06cmPw2zZCzQZ8wTPYRRUJVoSu+2P5ge5uUuC+pwMICbmit4cxjRHN5rkHnKcMgusKD/Ka4MYlZzZKXPGZ1CbA6l1nM5mVRKRjaJutTZvR68JwIH798M47dJLAvYaAXB6z2POrlsbWFx0/ruLlzBQDw+zf/Jv6fV/4B9h8ce78Is5rOy7N1O2FWA1hcJGN2fBwDgGYqJLkiAFYPrw5Qu3Iae3tP4uKp1J6SdUpJMas9oyIZkBSzWvG4YLXnhFDlAN/6ymHyfb/6q/Hipafxoj96G/7g0ZehMea7Iav0ns2RAfFKyICoeckVIF5HAIwwq7G0BEkiSa9GZ2dfI/rerGD7m2YjHMFVM5nV4CTZ0p+XMce+4AXAK16xs1EhiUfGWNY0oN0mbOS1bSID4uuop2VbqA60m5e8ZOE4BOxu0HtpdpYwq+0GAXBbqXtM06ArPuxhzp6Dcw1+8ieBl7xk9DFVk/LHFgAMhzjdW8CeRXGw2lB8seSl4xDNagpWd3QLWxf6MQZz3TCr2SCamYGpeBh2qwFofTdMZEDWpnWFpcHuIUVBqxGi55licyFjVrcLgtW7zOqpYxesfpbE9jZhklQNVptVMqt9n4B0WgAYBpEB6db47+MF0/1kOtBShNCuAFhmk2+rhRndwvZ6BZMvO4DqelKavD2lGDTTKlZJu23DQdfWK5kgfZcYt+myX5kGVQwkyGGsMTt1xIA9MamaNSoAP4GEodekYLVTlQyIBkOPYuOvwWY1lQB+mDDpDINqHXKyut5mH13PxNDX0Q428Mgj6SfHDgGahhm9AvYnSy4wzWrDwtb29MzqgW+gYZLvKxmUYcwDfWg5+aVeUwisllSxbDk7kJzensf+xhYONDZx4ckh0OvhdHcBgaSOsqh4DEVaoq5p2RvXF7wAO8FqhZjE5jGr/RRYJhSMWZtlTFNWs1qwLDWuRqHVKWi1cKCxiYunUjIgphJXxVQlAwIAaDZJubMoWM2Y1Qsq0OlgqdbH5Q2TzM+eh223hpk5yqzWrcQNfsq+xgxgwyBA7UDgtxgOKVjNee11IgMSAwGaRvWaxa5tvw/s2wfce+/YE8zHgs0Buj69n0MQwA5UmJSdZtak0szqcRmQga+jwZh/DEzLA5WDgFR8KMWZ1bl6qkWZ1YpCNKs9Pfug7jjwQwWNerSDWf2Hfwjceefkt6kacg0WcxOCWaFp0CRxZvWG08DcXgOYnyeGZeccUvbeGGNWTwtWBwHsQINRS4372GCRkxQtWvQoy/n3wrViVm9uwo9kPLqxF8ePC4zbAsxqxwG8k2fx6OZe3PocA/j2b0/W7Jtu2tEuMVjMb9QLFXTq7ghYvbwMvOMdk98i6fSeEWFWf/4h1BSPVCel/QTY9aOLfKcVYMutT7f3ZjIgDKxmBos8c0FKgPntt/eS7c+JE3jjXSfxxhu+jEc29+2oDovn21yDxXIVIUEeE54mbhQ5HAWR6UZx3hygOT92owiU/vtOgJriYnZmdP08cSK/IiRXv53JVmbMscePA294w85GRcwQA8eHLEWk7ZkZLNV6uHrOSrxDjFSfVBW6EsARkCCE6yYyIACwuIh5c4B1m1xfaf++5LUCsi2Rl6FZTeOWW7BjrVB1OXs9YO0OLfz6g9+A73uDYOk6NQge9gX2R7ZNzi0tGZibw4xuYevcGLM6vI7A6lYL88YAGxvVNBu4QSK9J7rn5jaazIetFsTBaschBoszgmuYohASTZYE424Ixy5Y/SyJawNWU3H/qpjVQUBAOi1KwOpeBWA1Y5GZGqDrWDT7uHqlgj4HAVn8m03C/BQpo+ZFGqxmIELBCTgMgZ//+dQZLs2sliS0myG6nlkJm9B3w8RcsCpmdcpgEUClRoiqAgJW6xXISqTbbZoERLOrGQNOoMZg9ZwxwKaAuWAUAT/90/l9DSIZskE2q4quIMwrnWRv6w6x7ZL78Odu/HP8u58ZLR/1QwWqnoDVbd3G9mBK9iczQNMlKgMywGZvyjYpONOs0e+r61ClkG+ER4G9K926EFgNRSEVF7zr+o9fBACs2i10jhHA+sK5EGG3j1f+7Y/gtbecHH0Dc3znsJVVueAY5MmAlGHSxcAXJoNJ15hZ7dkBdMVPDiWtFo6113DqySApCa5pCXO9IhkQ9lk11YXVF1hjogj/8eMvwvn+LDqLGqCqOHHIwVPbi4QK67rYcuvozDMGtI3usAIfh3hNVAHTJCCCiDmN4xCwuiEIVj9TZUCYJv64DIgjNsf0+8A3fzPwoQ+NYca+T/YEbNxR2Rp3GrCastNqBrnmZkMhlRslmNWDQep29H0Cii6kmdUcBnQUke+Xp1c+Hmx+CaRsYLkos1qSUDcCDPycpDuVAZlpBXxTvVSoeaZ9TLO6KFit69BFmXTb23ADFcZ8E1hYwHKtiyuXIvJbNehvXhWzOgggIQX2AXwGNAOri7BU43ZzwCRq+FmUtS/R92YGBYBlKcTx42JtmqoYWA0Avfsex+Nbe3DzC9vA134t8Ku/Cvyn/wR84zeOvkFViaxE3nbedeGHCmYbo2C1LAPf8A0Z79EKgNXn11BXyRjSAyuZQsYYp4uzPtbs5nRyiROZ1S4sT0wGZARUlSQ876tM/NRdH8HJ7iLqs2PGqGzPxWNWF5EBUdX8fRFt1w8V7O8MRsFqSQK+53uwsN9Ec7E++h6B0n/PA5brXczOjN4rv/VbwI03Tn4PVwaEwyqeGILMantIwEIGVi/XSIINQQDL11BPy4BIEgxTghuqQkQRK9BQa9E+HztGmdVNQFYwcpOwvubsOTyHnFeLXANN4yQBADx5Rse82ceJmwTHVxGw2nHQ9wySVN6zBx1jiO3z26Oa1eCfN77ikdKsXqr1sLJeQYUgEsKcqXiw+xWB1WwfpyjFqkwsixgsCngbAUgqUJ+ppI7rKHbB6mdJbG9HOLwwwGYVgCowWoJSJbM6oMxqXScLXn/c8aFEMPMegwDA+xubuHSpGgkIAIkBXLcC8JPpOlGwuqZ4sApOwO9+N/BLv5TS04xN8Mh/2zMSum6tEtM+slBQsLpfJVhNDBYjoLISfVL2jVijdXO7gumNMfTqGjQlhOdjev0pz6Oa1aBg9VAoC+37BDzJfQFSJlaCJh9e1yJgtarhq5aewuqZIdbWkr4OfB11llPSNGLgOa1UQfpwUauR+6uvTFfu5vuknM6k8xWdY1avcOYvOnb8QBYDqwVNM7wV8qNeXbgF7RfchJpKNluP3u/iBYtn8Ivf+qXRNzCzlxwtUT8qaXyVx6wuo1EqSeR+CDN+M9amWhKs5hyehpZEDuXsYjBm9fkwke6hQK0qB/AHFTCr2cGr2aTztliJ58fPH8cDW4cJexpA49A8Br6B6Nz5+P5qzJJKm5Zmo2tXAFazecskIHhNdWGJyJPaNnqewQerReVavlKRTuACpIpJ8TDklKiz6PeJxufrXw/80R/RB0NaCSQhYVcy0N6bYm9AD/w1nVxz4YqQsdjYIJqn8ZkrCNB1a2jPJeuBCLMaAEHPREOSoMmkOiPP/AuAOLMaRPvVDXIqgxwHfqTgyB4H73mPeHc1PafsO06ylZABEb0fmB7PzAywsIA99W1cWZWJDEgzDVY7GEwhKQxgpNw5jrRsy6Tfi/oN6EYJzeq8uZtd26oNFimgeKjTEwOrVULCsXmgKh0e3U8/QAC1m4iuNFotjAhOp9rN9ZxgfY1kdOrexCYmRgGwetgLiM8QgH3qVVy6EMbzlgTE9/VMi0qkTcus3qFZzWdWMxmQHXPBkSM41NxAEClozI/JQ/L2XPRMUXRscZMLdB2948Am9u8fe+6ee7Bw88JOnxOBfbfvhlgye+h0xOcZVZO4MiASYz8LN0rki1zO+mUNI9TYfqvdxp5aF1cu+IlmtTG6X9BNagrKW8NcF2EkQTFpn48cwbzRx7n+HBr1aLTykJl651S3svNqEbBa1WWiWZ3ze1k9H3PGIPEY4gWt5BI6glPN6uaMTMBq3cLWhQFgWWRfQJNPlfhwXctIMauXaxX5kSH5TWsqR6+8UKNJYkeqFai+pPvj5qy498Yzep98HcUuWP0sie0zmzjy3l/E5vmKNH1cF7ZPweqqmNUxWE3A2qbmYOjyXVjDEDh5MucFYzrQ++rbuHixQmC5XicGcN3pM4W+7UORQtJXXafl5MWu73vfC7zylcDly6xRf8QEr9VCpcxqVQoJe6wKzW4gxRClG5wKzQU1jcmADLDVraicnupA6wbdLE67aXBdUpprImZWbwjoa3seJ/+QyhYDEAOrPQ++7ePSsIPWHsIQefmex/HpTyfPr9lNLM7T30rTKPuzAmY109dWVXQaHrac+nRyDUwGpJaA1Uu1HlZXOe+jwBYwwYBmUtDryzNP8alG9Eq0jPbxJUDTIHsOPvkxHy/dc2rnh/EM0Ma0bYVDkPFWSO8RZArLLJ+cllnNOUNbw4gwfZgMCK1+2V4j+n5WoMOsSYmG/1Y1WvMAKLPaE5PV6HbhhQoe6x9AZ5Ze36NHsWT2cPX+i6OJVqZZbVewyU9LApkmAdcFD04910SryZmPnukyIGz8pYxh66qLoSvIrN7y0Vo/g2/cdz/u+3wUtxmx8/MOsHqKvvo+rEBHzUz0tQEIrTOf/3xSab2xQQD2mI07ZqoWzwN5ZlJhSPY8RcBq0BL1ML9EPa88O6vR3AoW6lWimQoWFgo0mwf6RFGS9C4SikJAH4e/jgdbPVJS32oRGRBaYbjhNDDfoX0yTTQ0F4NpJYEsixAC0iCLJEHVcn6vMh4GQJIU5TG2qwar6f73x1/+Zdx+u1ibpuJxwWoGMDyyuReH2ls7ZT8mtKvKYX4Om/b1+N4+DhwQ6CtQjFk9CInPEICD9TWcf5joCgehBDlVkSUbGtkrTglWB2kZEEmiYHX+mY6dKSaB1abqY299C/WFDLZyzvxSilktBfkyIFRS7AM/9GliBjkWi4sT9owiMiBehEPNDRw9UgCsFpABGfl8kWAJJg6YZlkYZVbXu1i5HMZrV90Y7ZNhAK6Izjrb77MKOE3DgtnHl9cPYnlmbMNC55e8Jsswq+P1gKMxrslBsjbzgnouDAcCv69tE5LNjAYsLxMZkCs2YNs4P5jFgcYWkZKwriOwut7FyraR/3rBiDWrFcE9Ny+iCBEjYMoykY4FxGVAPAPNOXE5s12wuprYBaufJeGu99AxLFgr3WoaHGFWVw1Wh4AsQ9I1spHmLGinTxNjhMxg76c60HPGAJuC0lK5wb53rUZkQHpT3i5BgIGroqm5ZPPFGG8iDL1U9PvArbcCV67QBzxvhHHZaCukrKUCZrXnRlBlarBoVVeC40fEYFECEFkVMavHZUCmlZUAEoaiIScu39Pq38bMagKmzRkDbGzyx5bncczbx9lrIk7EdJNv+TrmDjYBWcbX6P8bn/qYF7933W5ifjYBq2d0C11rSvYnSy7Qg+vsTIhNpz7dmPV9DDx9BKyuqQIMWM+DBGp4IwhWG4oPx8rfOPlOiLrqYHVDxcyCBtx0E/bUt/Hu99fw0j0nd4rnyaTawMsCk5hmddESdQHN6hFgTzByy1Jpm3rRvlINRS5YbYEwq9mhpN0muufrVFNYkgieaBiErbxVwSY3LQOiuLCGYixKP1Tw2OaepKL16FHc1FnBE1/oAq6b6EzSBG7fqQCs9jwiCaSrdJ3xMLQEwCfbJjIgE4y+RoKBtM/UTTjba7DzkqqirlEghaejCaD36fvR/NKncOCTf0J05gFqrkj0OOOItdunSI4z3c9URQgAIbD6Z34m2QdsbxOd7X4fZP4YM1WDJEFVpXzAI0wd4goEAVIEStSLTDK89YvKgKhGMbNfWVeJPFZekq3EvKXJgRBY3e0CM7pFAGSq0bpmNwmz+iCtNNR1wqy2cxILE+Kznx0z2WQbhvoo+KcqFPjK0+0uZbCYz6wOIykx/BRsEwAinw9W//N7nkJDpFCTGSzymNWXSJb7/sEJHH/d7XxWJZOV4DGrQxk//8ZH8cIXCvQVKAxW11UXWFjAgcYWLjw1TJJhaqpjdI6JvR/KRBBQM1L6f0lCzQiJ3j6HVbxDBgQADhHm+pHW+g7Nai5YzXwqihrDyiHfYJF5P0yIhQXsHHMiMiAuAavf8wfi11/LSzABCL2AJMEKJgR1OYCb5T1Cw7Kwk1m9KqfWrtFrGJ+VeFWo7CyVAoHn3/J1+PjFm/Ca7xzLQIrIgDBQucA1UDQZQdZcyNr1AE0OxeWxVJX4UYmA1ZRZ3ZhRgaUldAzqj9Xv4+neAo601oiueP+ZDVaHLtULb7WwXOthtWvy3iIUvhclMiAiUna8YOuQHI2a3BeRAZkTBOJFDUx3gxu7YPWzISjF1lA8OFIFGtDAqMFiWJFeEjNY1IsxiFx31DjoHe8AHnhg7AUAWaB0XQhIEu1vFElEBsSwsDUt+Om6ZKIzklLPWsls4d69KWZ1XPJMDhcS02yoQgbEi6BKAQGQqtInjTWrKQjer6BEnxn2aVIiA9Kvppzepwe3hZYzvc4fkGhWm0Svec4cYGObvwnKZVaH4U5WHDsM8EpoIxkNzcH8sgrccgvuWTyJez9mx8+v2U0szEdxm23dxrY1JaBGNasZE2ZuNsK63ZgerPYNUj4IEB1RWUBH1PPQ1sn3FZUBISXa+Yd5z43Q1BysrisEl77jDvz8c/8GP3z7x3HH/o2dtuSSJAQAl2H9KXmHMmqwWBSciN3pM0AfN1BLGyyKyIDUVHcHs3prg34e+yqmibZmo7ddzXrAPqupORj0BTbO/T78SMYTa/OJru4NN+DmzhW89xOHcK7XIZtmWabszABukAP6FeyrpFGwWnFhOQK/L9OsbnNeyzbhz1Rmte/DDVUYRsL600xFjO0FoH/VQlNzSGUG87+gB/O6lnq/ppE5pgIZkHqKWS1JkdDhyfcpOPnUUwhXr2Km7pL/hyTppSnBSCk1t+R5CrA6t0S9DOuPVxnEkt5F2JS03UzGNjObvYYyIIN+hIbqkLmr1YK8MIcokgiz+jjVhpAkNGoh+qLGTyCX6Z/9MwJYswj6FgGwxoBWVZNy15kgkouBygBlkeUzq6NIKja2KAAeeBxd4ahA0oIyq7lGgE89DQB4wj+OffsF7u/YuDLnNa5LkohagQRLERkQi7CbsX8/9jc2cfFpL5EZ0lIdo3JuU62LQYAgkhJmNUDA6jydeTAZkHAnS9UwgF/5FRx56cGd0hpszFTJrOZVnAFJ1WpGu8vL2KmXL8isVuUJ7PKc4MmAeG5EGOuFwWoxcsAOzep1FRgMyNrVHL0+uiGRtZYHVrvJWZjFwqufD1mR8brvnRt9raZxNcY9Jyx8DWLZxLwx65JzsHC7RZL5jkPOLR3iadKZV7Dl1ICLF9F1TcyYLgzFhzt4ZiOegRsQCZZ6nWhW95uV4EYMg6ipnhhBhNsg8XZSWKWJYUCRQr5UYBQBto2+Z6C1IAhWKwo06Rm8T76OYhesfjbEo49CAggrbwry6x//cYp0lDJYlKQI0VQOQjSYwaKeTBLss/LC80bB6s99jrCtR14AxDrQVYHVoeunZEAG04OfnkdKSAz6IzHGm4gJA43hkJw7xsHq2KwOSA4mVcmAUFBZyDxIqFHKgoi1sCsAqxmzmmpWzxoDbA2q035VDQXLsy5WrVYlYLUV6ITsxDSrpwWr2aYwrfFWgFk9Xxtibg7A856HhubiBuMyPv95JGA1IzmoKtqaNb1UwdjhYn4uwrrT4FDHR+PDH8ZoBUVADLnSYLWh+HCGfLC6pniQ5agAWO1y9UR9L0JTdbC6JhGw+gUvwAtfouK7v82B/NM/hUl1wLmgD2O8lWD9qVKO6z0DwYvKgOj55fTTMBR565hlS8nhCQBaLXSMIba6ErwwZfpkmoRZvV0NIwMAUK+jqTnoDQS2TzTZ5fpKwqxuNPC655yD5Wt41+MvRcek87QkQTINwvGfdo5Jmy3RdcayBforClZfJ8xqPe3hVUALut+L0NRsyFKE0PHjNgeejoY+ClZXway2Aq2UDIjnUe+KX/s1YGihcfEpslfyfWw6Dcyao3sAWVMQXitmdQ7rL5ZMKqinCiC3r37J5F2UxawuO8cqCklaCNy2wyGtCtF1sl7ffDMUOcSl4Qzmbk5c3Br1CANPFwarP/hB8pXOnEkes3o++axxZrUaZSct6BgYMWUUCaqFnXkvsLFV0LyTy1hPVb+JtmmqHmyfA1ZTZvWT20sTJSB2hIgmPEsi6gXuA02DBCC0OYMrCMi6qHrA3r1YrvWwcilI5hd9FKxeMPtYW59u3gpYNSMNXUc+SBkQmTNNCSbPMfPzeO2bdJw4Mfa4CLOaeTSIBjPEzAOrPQ8RkEgpjcX3fR/wPd+T0dc8drlXEPwEJ8FEP06Vg2L3F6sI4WlWs3FFweo99S6ubOrAYEASuDOj3yMGgEXB6lTiYnYW+J3fIf4LI8HTxAe5rhNZ+3khojHug7RbgFldBKzuexSsBjBzaAb3rhzHvVeOkc+cmYEuB3D6z2ywOpb30XUsz3lYsdrVYBBeBKViZrUfyVAZkcYwyH5+kzNWfR/veezFODeYQ71d0GDxmbpPvo5iF6x+NgSt+5MkCJW4TooPfxj4ru9KmfY5Dixfh6l45GYbVFCC4nkEANeTSSKKJO6hbFz+4MqVxKMmfgEQl1Ibig/Hnh6sjsvVmAHctOCn6xKw2kzA9boqWE5OY+W8iz3+eezF5Qma1XTDYdLymyoWCj9KDBYrZ1ZXCFYzlpWGRAZkWJ32q2YqWOq4WKkCrPY8wnSpS4lmdY8/tjyPbJom7qnogxFSm05VJRljm6NZHSqYr9tkc/ic5wCKgh878kH81q+RD1yzm1hYTDRa27qNrjOlHhndMLADZq0hww40YQ3Fv/1b4M1vBj7xidHvMvAMNOtJOb1Q4opq07frvrAMSENz0O/nbPAjcghqajaGQ4mwbxoNomf0trch6/SrMRAhi/VXQltaRLO6sJYoOC7qTF+7BENRkwO4bv53HNryqAxIq0VNOjUC0tXo3Mc0q/N+K9Fg37PRIHIdA4E2KesPGDW2P3BzE//ips/gwY396NRS83QBoDI3xsDquurCckTBagOtGc5racn7M3YTzmRAzFGDJpH9BgD0B0BTJeuSGVkkSRgEhAE1CazOA6h4EQSw/FHNakUK4Q/5/WTMai+UocoBmvYa+n3gIx+O8Ndn78BcbSyjxg7bWfNsSbA6ngsy9p+BQ706CuqpAshlgZMkfaGu5gNftM3CAHgBGRBiVpbS2z90CAtmH6e6izj2goRN2GgAA98QBqvvv5+siTFY7XlkntS8HeANkYPJABXZbygVHNMyISBkYj5lzDsVhcgU5F3XoqxaWYapBgSszjkvMTbcE+frYmA1M67kyIAAENe+BQBVJVWzvLFlWQQ4bEjA/Dxhv64gmV+01HjXdSyafVxdnwICoDIgafwuBuGzLgJjwedgfv/sn6E4WF2WWS0FXI3xWKZrQhjGCCl4tK9Z1yCK4PlSMfATqTk2o90YqC1y36pE1oorA2LTSjZVBZpNLDf6WOnVgc1NkghpjV0fjTMOaISWQ04sqYsoy8AP/MDkvmpymMtSjWVACibEAOQzqz0Ukxdh/jM5LPA4bJsk1lvkGtzwvDnIiPDWT/5zHGxsAu02uf+vA7BaodUCnZmIGLhWgEEEbgBVCinhopp9fBCOMqvbusX3tbFtvOeJl2Bvsyc+vAQSLLshFrtg9bMgvL5DDgIApKgcSPvbvw3ccQfR0wNAndblaqUaXJcwq9kBkm3YCjKrV1ZS/aTtxu3pOpnYq5BBZgtfvU5KzKcFP2Owmk6KrDy7CFj94S9juX8Kez70Tly5Qt/neURLk633tRoB6barYFZH1GBRzDxIKJgEhFTh2EpLoTAZkKFZSO9xYvg+vIhsghfnAly1q2FWx4cKplnd548ttuBNZFczxo40ClabPLCWMasbFgGr63Xg1lvx4qXTeOTLTlwN0GjJcZtt3ULXNaa7tuNagGwTKLiqf/azwFveAjzySOrBICB9ZYAzkwHhJa7oZ7bqgZjmpaKgqToYWDnLJzX/ahkuJGmCrmFGqLqczVYuq6fKNKvzZEBKgOC5faVtlmdW5ycCLEdOmD5Aolnt1rDp1DFbT4x7WpqNbq9CsLpeR1Oz0RcxP6Mmd8AoWI29e3GouYEH1w9gtpGaT3SdHN6qAqs1LdZP5JW9A0gMFjuc3fgznVkdBFSzOtU/0URAFKE/kNGi0kAH9BVcPB8CQYChr6ORZijqemlmddoI0fJHmdVCWvugYHUvwmObe3HTzAqaUQ/9XoQ/+3MZf3zyRZirje0BBNjKhaUaAKhKlMv6i/dSVTLeYlmkgteeIwNSmlmt8BmKwBizGgBe+ELsmXXxfd+8AklO3t9sRBj4uvCB37aBW25JgdXDIc705rGv3d8BYBGWZnZSlH2nQsE0gHNkQAq3K2JcSQFF2RAfW6YekuR4nlSDG6KlEfk/UWa1wmNWpyULRUNVadKdMyaHQwIcNmRgbi6RamDzyyRm9caUYHUoQ03fKzygNt6nF/wsIWa1XIxZLaJZzT6vjHxRrr42vQYFgGVFV/Ln2ICcqcowq3nrV1zJRqtBZpZNYoh+/jw5y8yOIfaC+3l7SBizQskbTSPJII4MSFHNapG+el5BLWxNI5XugsxqCYBUIySzoy87gL95ze+ioTm4YXYTaDaJDMiwIs+oaxQxs1pVIdVMso+oQorUR6JZLSJlJ9Ag0dpPwOqWZqPX5ZwTbRteqODj3/ke8c/aBasri12w+lkQg20fDY0ezksCSFeuAHfeOQpWs9DloBq9pLRWLyBs8jEOVucyqw0DhuzDsfnX4eLFfJw8zayeNYbYHE7HJv2Pv1nDpWEHzRrdbLBDaYH5/MqpAfbUuthb38blp2nnfR/bbg0zraT0va3Z/EyhQDBttUqZ1YxdIYcETKxibDHwU5MARcFs3SG6X7wyNKF2ySZYrWkIQrkiGRDKrDZNzJlDbAxNblUED6wm8gepNigjxx7wNavnGg6RAQGAO++EJAFzShfr22RzFjNmJAmaoXDds7nBmLcMrKYgXeiIjQXLAp7//DGwOtasRtymCLOaSRztmfe5HkoAiAyI5uZrVjsO/FBGU/fQboufSXLZylOUvauygMFiQc3qWAYkQ7PaLykDois+YapmrWVM41f3ElBNVdFeMrFNwepOjd6jVAZESLKDF2mwWnXQtwQOhQGpHpltOKPalnv34kBjE0/35tHZmyrRr4pZndYIVlXijSACVjODRR5YTQ+5uQf9r2QwfwwjNaaZFjTv2g6H6LkGmi0Z6HSwv7aJi4916fyio26k7k06Xl1fEd57Pfgg8P3fDywu0q4wAzQ29+g6+b0EweremoMvXD2M5y+eRUOxMVjp44v3y/jcytEkaZPqb/zGCREF5YDKXPATJUEEEWZ1yUqTzHaZaVwJZrUu+0LghGWPgdX1On7h/30u3vYHzx15XasZoeeawglc2wZuugk4e5Y+MBzik5dvxMuOXpzU3VyDRQCFExbxwTwL+AqCUU8NwTa58irpKhLBMI1ICKyeNUhlwr59Yn1VpRB5XpA8pu7EoIaQ3DONZcHyddRbBKyeNwdY76rJ/JJmVjOwerNgQiIdrNLEHJ0Po0jKZUCX2heIMKujbCPEiSFoiClJUWEAGEA+uzyUCxtaS6pCJMIyZNf8UC7OrJakxCcj5/wxTg6QFqhGx9mzhLXfyQCrOWcEqx8QxvYOevqEEJQBUYsmRYWY1RLRGL9GMiAAkmtA5QG/8/g/4raXLwGGQWRABtcBWM3W+FqN3Fv9KQlzUUTAaomME9vNrt4S76hPtPZTzOqG6mLY5TOrvVCBVi82dz+jSR3XUeyC1c+CGHSDuGQ1CorfFOyM1emkQOAUiqvJAbxhBYCi5xGwukaHnWGQAy9H2N73CRvFdYlMydWrKVA9COgBi4CUMAzoSsAvmQPwn//zqBnNju4yw4p6neih2tOB1R/+BwOPbu5NwGrDIIy3AjpMK+ccLNe6hI17iaKWnocNp465WTqJmyZhv25MubixklgpqNZMiwJZcbuCEjO///s5ksZjut21hkxcyStgKMagahUO6rSvlq8TBowkYa7tY8NpcBlUbJM28Rr4PracOjq11L2kKDAVP1/nizJd3vriR/DSl9LHjh8HANzVOo0HLsyTzXp688f+Pc21ZQkLVrapaZjRLWxvio0xyyLJtZMnUw9SMClmMVNmNe+QFzg+VCnEJ/7gSbFztKIQg0UOs9qPZDRNf6cBT04IaVYXVSPiyYCEISmLK2ioRXRq8zWrC8uASBK0PONGIK5MqOmjY0VdmkMQyYRZzdjKhkFka6oGqzUHfUcAHKE37UtvXh9l1+/dC1P1sVTroXM0ZSSk69VrVssyahoxB+Ru9B0HG04DnQXOdxM0wvynih398P3RKi5AfP7udtH3DTRnNWBxEfsbW7j41JCAM56BhpEal5IETctJ2kyIX/gF4DWvAV72Mqq5zwzQ0mC16gqB1Z4H9K/08cW1w3je4lk0NQcrj22gphKQZa4z1gYHRChVSg6+wWIMVj9DNKsz251Ca19XBDWrLXnUHBbAkSM7PBAx0wqx7dUKgdWzShdDZthtWfjU5RP4mptXdnaX6d9mAPYASsmA5IJ/ZUBwKgOSe9hPV5EIBmFWq7n3rOeEmDMGqJkh8ZwQ6KsqhwjymNWlZUAECDjDIVkXmyowNwdZihD5QcKsNkbB6sVaD1c3pzCNDwKi4W+m1pTriVnNNKs5yQUA1YKf7ExR4hpIWe2yKpOihtbU1DvXHDeKYLkKakpKdm1+nsx3fVolOmeOvkcUrB6ECWObFwJgdWG5DtougPzE1bXSrPZ92I4EQ/WTPlMdlB/9xTl8z6/eHleLP9OZ1YGXMrc0TbQ0B/2N6fexfkgS0mZDheVr07O1Gf6Q8rWpqy7fMJ2ezxkDXih2Nasri12w+lkQg26QYlYXBxRXV4HlhQDtVpSAwKldty5XVILCmNUMrNZ1YnTSy9+MM2b1Bz8I/PAPE+OFGFSnoJfGFmkmAyJQLsJA8LzPHdGstsVkJVZXJz++3ZVwureQaOoaBmFQieow+T6uXAywp96FJBFGaBSRjm46DczO0L7VamhrNrpbU4LLzLRQDgm7vgLZcgCJvrQuF0qE/OVfElZ9dpvJBlAyqR76tJpZdHOtmQSs7hhDbK1PeS8wGZAW2fi0ZyR0PVMYrM5iVm86dcymwWrKyOGB1X6o4PlHN7C4SB/buxeo13Fn4xQ+9dAsOro1ulkvINnhuiTJsCMY87amxm3Om32sr3ObBEDuW3aAjLvh+wRMaiXziyEgX+PZxMW60RbfiDY0J59ZTbPwTdMXO+jS0DRkgwhMo7UMWC2F8HMMFtnrioSs5TB9aIlwYdAHSA5PWQcdZhhljM1v1JFn002B1YxZPZyCQcaCfc9ajYDVtsZfD+h7PvSz/ziK/dC68kPNDXROLCSPC0pjcWOMbVgzQpK84xweI8vGmd48Dh4RY1Y/Uzbhr3kNsLGRemCSZrWuE6NRi7OQ9XpErmtOB+bncaCxiQun3UQGxBi9hppJK00EF8izZ4Fv/VZgYYH22SeJhB3M6gF//fZ9oL86xP3rB3D3/AU0VAf3fgZ47uEN3Dp7GbP7Ro31eCCCF8jFNT9Bwc8c48ZYBqRMeXbVzOq8dpm0QQm2tohRGaIIQ0sizGrORN5uhth2a8Ljyl7rw/z934TZXYVlAdFgiHP9WRzZv3Odjpnwk64Bm9NKyIDE+u2T5sVpZEDyLgFjvxYYW4omI8gzGgVJ3MwZQ+xdDMRwe6ZZHeZUBZXoK1QVhuzzt7KWRUDpFgGLUK9DiiKEG1vUYDE1n+g69XiYDqwe+jrqabCajukoyyE5bYReJNiYyUq2jsvKCbapSgGCvCWxBGtfiFkdlbsGmfstRiySi5/5dC0ipphZ+/lYRiaVxJyfx5LZw6rVImvX3FimTRSsHtfvzwuezBCmXGfymNVMY1y0XdHKM8fBlltPPFZY3H03pG/4eiILxZjVPKP4r2SERP5IlUMCttdqhNCzOT2xi90rjbZCPBymBat9H0EkQ2HoJ/V0Gfb5RA4AiSeYSMTVRqV6uhup2AWrnwUx6EdoqGRSKKNZfebzqzhy6bNon30oAattO7ZqKwIo/uzPjkl0pMN1SWluilltKh63vMXzyJ8rV4APfQi48UaMgOpuoEJTEwDYkH2hs34QcMDqlM6iqsvZIFIqogh45SuT9v/n/ySeaqdPA9s9Gae7iyMGcEQGRPBgdPEiVoZNLNfIl59Tu+Sw63kEqJylr6MAzYiud5lgoDIzQhQxixBtN1SgtmqFxhYzkwLIdY7NQIFkE6wnYwtAJaCPHypQTZW4HNe6WFmZUjfL8xJtQQBSvSak78X2kl/8Iin3vffe0X5uuvXRsm9WPiqgWT1iridJwLFjuGv+PP7qzO2Yrw2RINmI3elFmITr68Dv/u6EJ1IJCwCArmPeGGB9Q+zaWhZQWz2LN36jhTe/mZ4NJzCrRRhJvhMUY/0pChqqi4GdczByXfihgmYtKARWq4ylmceeKXHIUaQQftZtVpZJl7fJL9tXcORFAGIcNi7HAMRjdNNpYHaRfjBlVvcsberywdAPybhXVTRrRB+dCyRlHXYNA/jX/xqHnreIzkJq3FE5nKmrN8Y+1zAAh8MkBICTV5o4MbPKZ48wZvUzZBP+1FNjSWLfhxsqo9XFug5d8fnltP0++p6JxrwJzM8TZvX5MJYZGh93qi4ToFYgeWfbxERV/uy9RP5pA4RZzWShaD9rqisGVts++p/+MixfR/O2w2hqDv72S3vxDdaHcNvsJcwdbo2+QYBZrcpBcYNFlaNZPY2WKIdZXVS+SGTeKpwQVFXCAOaBE0EAy1dR13wuaGvWZdg+P8EEAIgi2E+egwkbN2un8chDIbZXHSyYg52UbXCSC2WMEAFAkqDKdBxMmmuDoLgeOjNY5MiARJFUmE3J28P4XohZY4C9y4IgkSQl1UZZa01aslA0CjCrrUBDfYa2vbhICABPrpNKPmMUVObKq4zF6urY12IyILVRZrWep6/refCjctVh7DMnRhkpMwHwsxRYrSiQpQihm51sL1shByDHI0RJSFsFIt5v5Uis7CAHzM9jT72LK9YMLgw62HdsbI4RNFgkYHV1MiCEYFbSyDeHWR4T1wowq1VZQLPacUZl6yaFqFH8VzKYfFaKrdzUHPS3pid2EXlPYLYTYcOpV8Sslkc0q+uqi+FAjFktNFZZxMzqcl3djSR2wepnQQz6UcKsDqPCstVnPvhlHGlcxcz5hxKg2U2Yabmbj7G47z5gbS3jSdel8gd0QyHC/ESyv7t0iTCRbtrfH2FW9z0DTSMprzMEyzF5zOq4JFbThLVEgwAxO/SDHwTe8x4C3n/uc8B2X8HTvXk0G8kkWVNcDG3B2/DqVWzYDczdeQCQZRw1L+P0kz7g+0QGhFWTqyotfZ+STUhZt6pOdAO9qgwWGVDJwGpLbGx5HgGogwD49m8nf0b6mmZZGYaYPqnAh/qRDLWmUbC6h5XVKcHqMWZ1nKkVZFafOgU897kkCRLf675PQLrGGFitCjCrI5mA8em49VbcPX8Bd81dwJ7lMSYQY8+4fHCm2yXa8DuCGqDpNSVuc94cYGNT7NoOrw5Qf8/v4d9K/wmWFRHXe9+HHWgw6wkArgskrnwnIIwA0dODqvJlQByHGCzWg0IyIFzN6qgkszrPSGgKQ60okvK1X4vKgIBcAzcPWGXriDnW9sICGqqLi4MOZm+ljliShFY9IJULU84FgRcSI2NFQbMRoe9PAVYDwI034ugdTSykiNUMUJ1Kxz8Md/ymkibGdLr36X146Z6T/A15zKwu382qIgjIHLO+TuZEAAmzupa6R9mhjwdWd7uIACgzTQpWb+LiZZlWbuijGq1I6fkLgIpPPgncpJwE/sf/wNylh8lewffJeE6D1YonZLzsDV2sWi1y4P+Wb0HT8NDQHHzToYfwb+/+MF72jc3RN/DAalbuXNRgUZRZXaacnmuwWKir+e0ytnaJNnXZ5zOrmYSRyQce4nElIgPS7cIeBDAVDy9ZPoXPfLiHq5d9LJo9Ypo8FrkyIGU1qwGoKpFRmQjWlmVWXwPNahE2pe8BR1rr+PbXixMeYi3wHOAPQDnNal43mAxIm7a9sEDIFU91qQzIKLNaV8SrJft94EUvGpNNDAJCDkiD1cwfIWvuiiUwymlWR1maHey+1QuMWSZbkyfbUnJsqVKORwg7V1UphcI8YOTi+y1di/L3W0y2MD1+5uawp76NC4MO/FCBPjvmIK6qQh40lgUiA1IArM6TGYrZ5QUTYgC4iRBVicQJHWx/xJu6bZswqxt8sNq1nsHMaibXkQKrG5qDwdaUOnGMBa3KUJsmqYapAKwOIjlZhgyDXykLlJu7dw0WK4tdsPpZEP0+Yma1JnmFS3PPnFdwpLVOpCO2yXtDyyFgX6tVGFBMmyGOhOuSzU2TDjsRTV0kc8TFTzyJQ8113Hjmo+h2o7jNnmeiNQZWO+6UMiBRBM+nZS2SJAxW+z6wtUX+/cADwFvfCtxzDzlIdwcKVqyZBKzWddRVF5YreBuur6PnmWgfbAOLizjavopP/k0fv/ShuwhQOUe/s6YRzer+lLd3SgdOU0K4fgXmBrRdL1SgtuuFEiGeR8b6+94HLC2BAJQjfVVGmNVVyYBEkUTAHsPAUq2H1bVi17XbBX7gB1IPMDmcJl30ajVIUoRoKMasvnRqiLvuItLSMbuayYA0UquiqpL7K+8SpGVO0nHXXZClCO/6mvfiv7zt9OhzmkY2+ZYYWL21lTDi05/rjoPVRh/rm2LX1rpEdFlx5QqOtDaIqRTdxcbAnKgMiEO11oowqzUOs5oZLDai6pjV7EBSouxdlQMEOTIghY2vAD7oE8rQtBKHJ53KgHDKUuvjgE+ng44+xNO9eczecSB+uN0M0ROQ2cmNKELgU9YpA6unYVbTePvbga//+tQDuk4qg6Yx02GfKUnJ4UpAlxEA7r+8B89bOMsvdYyZ1RW4s08Zly+Tr3XhAvDOd9IHg2CnZrWmiV3bXo+sHa0WMD+PffVtXLyq0/3LGJMQKCSL9Mhnt3Fb+BAAYH77dCwDYgUa6o0UWK2KgdW+G+Lp3gKWblsCbrwRx9/yXPz8c/8GuhLgps4KOreOOcNxxsFIKW+BiMHPayADkikpMK3BYh6zuoRmtSYHcHn7TpaoHk+0ZbQJQAystm2SqFU8fNWeU/jsp3ysrQRYMPuTwWpWDZBxDQCUAqs1Jco02oyBxoJAksZjVqfNZAu0CyC/9N+NMKsP8a++Xzwjl+vjAEzHrBYAqy1fR22GnlUWFwm54sltAmI3UtedMqtFQZTf/32CJ545k3qQafjXR5nVpuplSxYwQLEoj4ZWhwVexvmD7Y2KgNWKQjWrBTTGC44tVQ6yweqUDm+h4Gjt+6E8HbM6F6zWRskBCwt47sI5/Nmp5+OG9trO8cw0/O38/lgWCsqA5AB/7CyjFrwGvKQoJVcVWhNEwWrKrJ5t5ryQkW6eycxqRkBjYHWtRkzIeaaFvGAV05qUVAhVIANCpIjGmNU5xEX2PgCF5+5nyj75eo9dsPpZEIMB0KAGi7ocwO0VkD6wLJy8YOKG1hpmdAvdVXKgdwY+TMUD2m3SpmBWjwtWpzVlRZnVFHy/eCHCj97+MbzywKOJzrXnEbC6RicSwyAbOx7DBRywmpVqqRSs1jQC6HBWHyZVEQTAww8Dt99OpFTPn0e8kWgu0CyyaZJDqcO/DVdWgLWne+h6JtoHZoC9e3FDax2/954a/uqhw9h2a5iZTa5rW7PRHU6hRwckZiiaRHU55enBXyApw2nXocmhsAwIA6t/+7eBn//5sT0b6+uYDEhkTykDwjQGKbu+oTr8cqGxeOc7gXe9K7XGMgBcT8DquupiuJnf1xis/uRJdDZO43WvAz71KfokA6ubqYOVopD7a5gvAxKEMmR9bKxQ/V9JAswTB0ef0zQyJwgkGZhUyw52Nfvx2MJPmdXrWwKnGMvCcMslup8ADrtPxWA1k2lgbYokrgrLgFBmdd/Oub8chxgsNqJiBotMbihTl7CkwaKUU+4ahsXLs2m7khRxDH8K9hWAZshCMiA7qtuPHUNnUcXTynHMLieHn1YL6Lq1qcFqP5ShSIRdY9QV2IHGlxnigNW6PnbZKTDBWxOFPhOpcS+iIRkEsDwVTd3lH86fQQaL586RW/eRR0hybDhEzKzWzQnMap72I9vANBrA3BxqqkeGTrdLNKs7YzegYMkzAJx8yMKJGaJXMmcOsXE1SAwWGbOaGS/zwGrXhe9FON1bwNINBJC84bteiv/r3m8DvvZrgW/+5p1JB87B3PdBqgdKgNWZjFqUZFarKhQpROhxgK+i2xwGgk9iaZadY1WVMFUFmNUTq0ImhaYROQEOOxEA4DiwA7KfvrlzBY8/pWBtDdlgdY4pKDEsRzlmtRLBjyavX4VNygA+m5I1DJQz78yVASk+ZhVVygTrAUwFVgtpVgcazHYCVt/QWsPJMyqsQEe9kwIENY2AiYLz98oK8PKXE739OGLN6tRYpqziwM1nQBdOBjHzyiywms47klIMrFalID9/yyRmCv5eqhTCd7LHAJEsEW8SgBizugRYresgmtV5YHUwNmfNz+NrDp/FB888B7d0JhgJUZ31XIA1imDZEjFuFAGrY+Av4/n4zM5vaiR4iSt6bQutCQU0qzedOjqtnEHISDf2M5hZPcG0sKk56Hcr8M2KErDaVDxYm1NiEOOa1apKzt88HMb3iWZ8wcTVM2WffL3HLlh9vUcUYWBJaGoO0GoRc8FuAYDu0iU8vLEPt81eQlu3sb1CJgI7DVYrfmXM6hH5AwamceYeb41oflwazuC1Rx7AcxbOJ5qeE8FqD44AWzkIcvrKFj4lYUEDfC1Rtt53u4SFcHi/j/kZH6dPA8cWiYh0c5mW5qoqAas9lctY/rM/A/78Y3MEpNk3C+zbh6OtqzhzycDl7TrCSIJsJMAf0WmdUgaEmRZqEvSaQkrFptWApu2GkQyl3SATueAi7PsE/PR9Yk4lSanLNs5WMAzC8OhPuUqkDxe6LpRcGY/3vQ9485uBhx6iDzCaENugMcM2jnOyd3kNuuzh8nAGnS9+DCfmN/DUU/TJGKxO3acsGcRhVgOpkuN0/NzPAW98I6n/TAc96IjMCUw3/S//Evid30k9wW4UtlHUNKKvuC0wZvt9AkTJpI3DwWlyiHJdsplg11Ulr3G8/Lkg1mktwKxuag6XWe2FCu440sNrXyvWLMAxLWQAcAlGTq4MSFmNUo72aynJEggYLLruzsMTfePNb7gNmJ3DkSPJw+0ZCT3PmA6sDgIEkRQfBiXTiPuSG0XLiFnJN0+flPOZUQREUkGwmo5ZzVT45a6yTBKNQUXVNlPEuXPAbbeR5DCAWBJokgyIiFl0zOTVdWBuDpAkKKGH4OoGBr6O+uxYybKgmRQADDZdtDQyDuf0PtbPDyfKF5mKzycQnTmDMJJwureIpb2p8SVJRCPrW75l53s48gdBAFJlUrUMiFeCWc3mrSzQhwLLhdiUrN0sQC2eY4s1yeQquAwqtgeuCdzfuk7MYbsCr3UcUkmg+JClCHNaDyfPKLlgdZYMSGwmVoZZzWRAJoyDWPe1ILM6d+2iDRc2LRRgVvteWEweDOS65hk3xtJpZZjVPNY+3cvJJt3/LCzgxcun8b9Xj5JkWCc1b9FkIze5QsOygJtv3glWD3wDjfoYWJ3HKk5LKhQJ5ruR0y6AcmMr7/jBfseCCRY1D6iMz1UlK9ly9lulZEAMSUAGZIxZLUmY/fHvxa2dy7j1zgn3nQizmiVpdV/sd2OJq6wjXcyY5Tc13ldZirKTojEIXoxZrUoCnh7MYLGV88KYWf3MMLOeGONs5VqNSGtUAVazNb5ex4LZx/rKlDrYQTAq9cXA6rzzHO0Le71wiDLsd4Mbu2D19R6um+go1mpkU9MTL1sL1rdgByoamou2ZqG7Rt5rD0KYih/LgIgyq103H6y2AupWDcQlY1xm9aWrUKQAFwcddHQr+SAAv/qOJnqegVY9YVcYsg/H5w/tXGZ17Fodxe3qcgC3LwZWX/mP74HZvwr5p38Kc+//rzh9OsKJDhHzbu6nVEtJQq0GWL4uJi+yTn4DaXEBeNGLcLS9hhvaazjU2iSZcbYBVlXyWw5LIEXpSJXgaDWVHEKmLcEBkotUrxcCqz0PWH16gJriAE8+idnZCJubqb5GKaNAKrEy7E2ZjU6zdhgAXgBIYprSX/3VwJe+RB9kvzX7vWo1cijdzF+E3YeewIxu4fKwjY5h4dh978fJk1Hcz013rJysAFg98fB08CBxCx0HrthBR5BZfegQ8F//K/CZz6SeYBvuFAu6pgiajdIvJO3fB9RqOKxewNmnHETbFBlvUVMxRSGMBA6A4NllDBYdDBwOszpUcGS/h2/6JrFmWdsAqjX/ogyiTCwtishhv4RmNYB8pk8Zg0WDU5bq+xj62iQMBj/zM8QfIDabBdBoSuhPq1lNmSMxG0NQFmpHUoYXdMwWKfl88kkigRGH5yFIl2QCfEkFAHAcuKGSSPPkhSQlSYWv8E78/HngOc9JkoFXroCA1WGGZjWHWe3ZAQzFJ/OBqgKLi1iqdbHyhfOkMmx+jK1cAKy2ex4hAQCYMwfYuGzH908sX6RpqCkuLF5uZXsbTc2B7WtYWuJ+9Ghfc2VASmpWZzFKwxCeL0NTCrbLYyiyhFgJg8VMQC2WLyrWZAzOCDGrJ89dk9ps6xa2twT2GzRRKy2TgXCktoL7Hq5jsdYn6/h407qc+XuVApWTLme3y0DwMsAfh1ldmP0qBFaD3AsFFjHCLM8GqwPHLyY5BlCwWkCzetxocnERd85dxAPrB8i5azY1b+k6NQQV9AgZErD63Ln0lwnI2XMcrOaAyn4ZzWpZJgmmHCkz9jrhYAB4zv4wcsslQlSZp1ldznsEQH7VXVEJDFByQEY1BIDEYHG8ku3mm/ETvzyLl/3cyyY2ymVW+z4hX2mCZzSaZMxMCJYBlVPtZv5eZfayMUjJTzBxmdWsWnwaAsO1jnGPGl0nMiA8HWhejMmALJh9rK1MeaYPAgRhSrNaVdFQXQwczrpUpoKHMat3ZUCmjl2w+noPy6K6YREBq2W/ELP65CNOXJY6o1vobvjEWZyatTAZEC/rwDAWucxqxuI0EuajIfPL27zLRKJk4JuYee3XAABkz0UYAr/yznlsOg206kkG3FB8OD5/ZeGB1SMlRcz4igPQsfns8/cBN8lPAYMB5gfn8PTpCHv1NdRVB80Dnfj1tboES6Cc3PdSwOz8PLBnD+afcwhffP0v44h5hSQWUsBfW7fRtSoAq6MxsLoKGZBxsFpQY90bODj//3wes6tPAP/3/41lbTPRrWaZXcayUhQCfg6mz+wCiJnVIuM1Hf0+0GwSQ8QYrGZtMsDLMMjCznFO9gYu2rqNFXsGnVaA5qkHMNgm7xn0QsKsbqfuU2awWBaszgrmJC+QwOp2gVtvJTIg588njztWSACh1JgVzkCzL1SrAQcP4nBzA+eecuBsWaRNBlYzRhKPWe1SzeoC7NeG5vLB6kjeqQXOizzTwrIardSZPPPAPy2zOlOzusTBAYCmc2RAWCl9Xew6yIZG2OpTgtUEAKbzCbt3OfN2DA4XkJgxBKo3oogYDgPAH/8x8Ed/lHqSeQ2kS4LZpjkvMWjbk/XrM4KrdflPFOfOkfn11CmCy125Ajh2RJjV9dR3YWA1JxEwHEREYoiN70OHcKCxhYuPEu3XxsLYqb0IWN2nYLVpYt4YYGPVj2Wh4nZoxZXNK0v1vJilLQxWC8iAlGFWa3qOZjXbSxUxqKJ9FWJplij7VuUQnjMZrCbM6uKsR00OiK9HXjCDxXHgZ1JoGtmTdwVey+ahvXsBRcER4zK+cH4JC/UhcODAjpfHTPjrgVkt5TOr4zm2SoPFKEr6W5BZnadZ7bthsSou2ldTYB+zA0yZm4NqqujoFs7351CbSw06tocrwKw+fBhYXR39vIFvjCZe2D2bWw1RVgYkfy4AUGxsyTJlVmdfg3hvWBCgUvP0tZlnT4mKEAD5VXfTMKuzNt/MYHHCnPV//J8tHDg+wd+CJe/yzgiMsW2Ig9W5wB8Dq0sZkOecQ6kfUqF2RUFKz8OWWxs9t41HLAPyDNesTmvRszPScEqIkZLQVF2mYPUAa1enBO1ZZUOKiEhkQDjrRxmz1V2wurLgjiRJkkxJkj4vSdIDkiQ9IknSf6CP/5EkSU9LknQ//XM3fVySJOm3JUk6KUnSg5IkPTfV1ndLkvQU/fPd1+xbPcvjne8E/uRP6H8cB33PQKMBwDDIAsFh/6bj/gdl3DV3Adi/n8iAbEekLNVTYGp+DCi6gkwvzyMAcBgCf/EXY0+Oyx+IgGkAvK6Fjm6hWQ+hfsPLAQAtqYfLlyJs9VSc7c2hVU82K4biwwmUhNaaEUFA+hpFwJveBGxvj/aVLHxJplDEnMnbIkj9Ixv7cOhWAprNGQNsbcuYibawaPZHwWojxNDXIF1fVwABAABJREFUuQddr2dj0zbJZow5J995J2aNIQ43NzBnDkjJMpAYLE4LVjPTQk2CXlfhhtXJgAAA6nVafiNzfysA8C0P5/qzmNVJhmGPtJKA1QxYZxtAtgAV1JfeEWzMqiopzxYYr+lYXSVAwp13AvfdR75mLCXD7gNNQ0u30R9wGMCWj7ZmIwhldG4jxlkteYhuF3jjvzmGj1y4bXTToygEXM/7yUpqKOqCjPhuF7jlFgImpRNDfUdDU7MngNViJc8AiB7rwYPYV9/CpQsRBlse0e5PMatFZEA8xqAS0c0DqOO9C8vjy4Co9YLChAJs5bKb8cxy17KGWlymT4mSTBDgy81j7FKmj1ApPZCM7WkYwFRnX2GHQcOALEUIrPy1NvQCogEseiFYspXDonnqKeBHfoT8+/LlsaoFthkfY1bXFA9WP//wWAisfoYwq69eJay/KALuvhv4yEeA7/3jr4M7zqxmGvacazsYgIDVbD44fBjH26v48c+9GZ++chz1xcboGwoY4dn9AKbqATffjDljgPW1KHGfbdB2FYVoVguA1bocQFVCLC5yPzpuW87RgY4NFgtWWciqTOQPJknCxCBCScZb1ppAE2KKXjAhmKcnSkuEyxgs6iKHUiYD0hA4vGoaZnQb212B17J9imnGWsVPbS9j4Uhz4tyjGXKmDIjry9CLMqBpqCoymcXlmdU5iVYAgRsUZkBzTdXY+iUXMx6OkwBZ2u12UFhahKwJXv4+DiCeHWkWsCQB+/bhpXtO4qMXbkFtITVvseo4gQpUgIDV9Trdv7Jbg2pWN9LToQCzupSXBTNDzJkLAJRIhAQI8si/blhKvkjJm7eYGV3FxrClkgBIJZ3zmNW+BrNWoL+MKJK31jL5K12wzzz9+imY1VpegqUMCC4wbwGImdU8sFqXn+HMajam2W2ikfNdvwqwOpShaHLCrF6fEvilkn5pZnVddTF08yelyBvzRBKJXbC6shAZSQ6AV0RRdBeAuwG8WpKkF9PnfjKKorvpn/vpY68BcIL++ZcA3gEAkiTNAfgFAC8C8EIAvyBJUqpYdzdE4uRJIiUbszQti+iGNSXANMkCUUCn96mnVdzUWQFuuIEAnH1iojfwDdT0MNF5FMzqMWb1vfcS2cRPfCL15DhYrSgwFQ6YBmLOM6Nb6MyEBIgyTbSVAR79EkENz/bn0WrQ/kkSDD2CE2i5JX5Awqy+7z5y2P/P/3n0i4wsUIyVxQGr/ZNnAACP+cex71V3AC9/OVQ5RFuz0NZs/J+3fhq1ZjIpEhkQgb4OXawM29DTJa/HjwMAjrTWSdk7ozhoGlqag65T1MFjLFgJji5Dq2vVM6tVFQda2zg/mBNipXlOiPP9OczeRGhky+FlUvId91UZZVaLmFTR+PjHgfe+F3jiCYwymdJsFZawKIDXr6wAy8vkDHn0KPDoo4Brh0mZOQCoKpqqg96AA6o6IdpUBqdzG2FLHW+t4ORJ4NJVDRcHs5idSd2nDADOw9PKgNW6Tg46AnNCrwe87GVEr1pJnY17loqW5oxoVhdmVhsGcPAgFDlCYDm43G1guTkcua5EBiR/ExIfSArIgKhyiCDPRZ7KgKi1gsgy1/G9HCOHHPQynp/CYBFAtfraAHSTw6xm5aMNwf6KSnbkBTVlSZc5NlQHw22O4a4TFAP/NI2w6ByONJaXzFOXLxO95rR+vxOo0NMlwapK5sO8ShPfhxuo0A2x3+yZwqy2rETp4O67iT7+xkAn3yUtaUI17Hnz1nBIwWo2Hxw6hB+/8+/x3q99D37p+R/CDbeNaTgUMFi0hyEM2QdOnMCMbmGrqyRgdTPlZaF4sDiHp9AhJepN0y8kA5KpAx1F8ANqsFiEAQ1ibJaptc+SbCV0anlsyggEKC/cbhagFkXl5i02tgTAaivQxKpCNI3IufUFvh/blBgGsLyMI611AMDCTfOTuyvCrC44BmiXrwGzOv+wX9ggmbabOV5pZ0c8UAQjVw4HJfYaQCKpwPHhibwxGRAA2L8frzzwKC4NZ0fBal0nhqAFwOoaLCwuRAm7OggwmARW50lghCGR6yvJrM5kK5fWlg7hB9lkmZgJX5C1n8suZ2dLo/i8JSHDGJZJVcglDBZNWcBgcYIMSF7Q5J2bt4+h+5SaIdhnVhGTw6wmSYAC/WTtisiAFJkLYjNIERmQBjozOdeJMaun2L5e82AyeePSGvb0YHUQjcmAbEzZpu/DCTTENk2U2DZw8gdO4BYkngCjYLUAIW83soP7q0ck6G4aGv2Td9VfB+C99H2fA9CRJGkvgFcB+LsoijaiKNoE8HcAXj1d9///F7//+8CP/Rg5oAKgwLKOZktKZEAKaFYPuj4pJT1yBBozMrFtbDk1zDbdBKQtCFa/733AH/wB8B/+Q+rJca3e2GAxf0L33RAdY0gmdEkClpawaPZx36cIcHe2P4dWMxmSsUkZ5/DIwOq/+Auiqfu3fzv6RUipiBT32VA8rt6lf5qIuj26sQf79oGUZQKYN/uY0S3825d8cuQMoOoywoxDw0i7QxfnB7NoN1Kvo+WdN7TWML+QupWZZrU9ZgRVNNIGiw2tOs3qlF7x4bkezvbmhLRfPQ8415/D7K17AUnCsnseK5eCpK+hDNVQ4rbrqpst8zIWDz4IfOxjwC/9Ekm0xDFusKh6sB3+puX3fg947DHKrJ4PgCjC618PvOMdwFpXH2XuUcM+Xhbac0K0adl3567DAIBj8tM4dQpQIx/fdvQ+tPakTg4i2f2yMiCKL8ysXtY2cI/yeezbF5F5KwzRd3ViCssOrozpwzMRAhAxMVfTBPbsAQAsK2v4zJVjOLGUKo9g7I68A1kQUDZhAQZVzFTOB6u9UIFWrxCsZqBPUY1Wjut9GESQpWIMMgCJDnLG4cmPSrDAQVh/uYxdJgMiClZrGjmMWBUyq3VdyO28cBkxZdE5vGojjySCADLH3HNPysDV97HhNDDXSGXV2HzYzweri4yvGKz+CjOrLQuYlzZQ1z085+Aarl4FejaZW2MdaECYWR2D1exQcvgwVBW4ob2Otxz7IvTFmdE3iDKrowi2FRJm9YkTJMnmBckPmZIvqql8sDpwfGhygFatAFjNAWqDkJTGFwYqReatqrVEw4SgUCgomDSx7JseugvPsZIETQlJYjTvUMqY1U2BuYvKgGz3xMBqCSB7ikYDR1rEH2Xha2+f+HLVUDLlKqaRASGa1dntFtZDF9jDeG5ExmyVzGoKKBatDMr7/nFfSwAeInJmDptb0m3Pz+PFy6fR1OxRzWoqAyIKogzXh6j/8s/iTvkhPPAAfTAIiATlDrA6P8FUquKKx1Yuw6yWCLsylwlfcmzlVoSkKlYLRV7yLoroebVYkwA5g+YmnZkMiKDsGmmU6qwLMavFweprKgMySRaqbLsFZEB6noF2O+c1VIK0iqJmFmEI/N3fVdfeDnNLTSP7Y6vEgJzUrpFiVm9N3+a2W8NMIyHNNVQHQy+/3djbqMhNJhM5Pi8nIbYbYiE0s0uSpEiSdD+AVRDA+R/pU79MpT5+Q5IkhoztB5BSJ8UF+ljW4+Of9S8lSfqCJElfuHr1arFv8ywPzwM++lHgrW9Fwii1bbJhaEpUBiSAOxA/PA57IRqaAxw5AoACD7aNLbeOTsMHdJ0cnARBPwZWf/azwHd/N/n/xgZ5zrc8kplKy4AIGId4boSObmGGnRGXlvCchfP40Ic1zLY8nO3Nj4DVse4rh63MZEA+9Sng1a8mc1D8Fpb9ZocWlt3kaVYPyJd5eqU+BlYPSP+/67tG3yBg9AIAnuWNMsgBsjE7ehSv2Pc43v7LqUWRykqIMqv7fSKDsvNDE3ZJY0ZFzzOqlQFRVRye7+NMf54PVl+6BD+Use40Mbe/Buzdi2VzGysnu3FfvVDZAVaLYuuXLhHW8wMPpORgwpCytyjrVNcJ61EAUH3kEVIFsfqlC1j6xPuBH/9xvOHu0/C9CD/9qW9EbQysbmm2ILPahmFEMI/tB3QdB5RLOHfShRx4eP/X/zfIy6l68Lxy57jR8jIgIgaL3c0ArT/6HeBd78LB5hbRrfZ99DwTLSP1mzMAXICk6fTcWPcVy8sAgBtbV/C352/H8X2piYrJgOQxq8scSlWVMJXzwGrmOG0UYPrQtgHkalaX24xnH/g9Nypens3azTJAC0N4ZWVADP7haejrqImYlAGArqOl2+h1p9gsxprViQxIU3XQ3+YkL72IADSi11bQx8H3E2a175P5+8/+jD7peVi3d4LVNcXLrzTxPGKweB0yq2sf+O9Y1Ldx55f/O9ptwPaSdSAOUbDakkaZ1bUacOxY8oJxuSBVJZIwDuc6DIewPRVmXQHZHABa6GA4CIkWuknBJEUhMkMcsNqzA6hSiMUZF/OTCbQ7I09TlrIeVaU4O0/IGLZouzyjsjAkAG2JeStzXSyrgy1J0LWISKXl7eVook1cBsTCtgizmu2fDAO49Vbsr29hrm7BuO34xJerusxnVpeUAcliVvtBORmQ3NJ/kH1RYRBBVcnYyfqtKFGjaNJC0eRcg0XfR/FrwM5JnH3nYCgRGbT0BmF2Fpoc4p+f+BzmF1Lvl4lkhJsn/8DC82CfW0UtGuJ5/ufxxS/Q+zEIYAVj8hACCabSOvN5OtAlpcxUhVSrZYHVMWu/jMFiLlgtl6qQy7y2NJleeI4FIKn8xI0VaOLkACBea3OPdQysNgT3Zew8k7XvjpOi4t0caTfr92LX9hqB1X3PJGTDrChR0cuLwQD4qZ+qrr1JOtBNzeabFvKCkQY1GajXsWD2cXWrOAPmscdSt3gQYNutodNKzM/rqouhp2XOA0BqnSl4AMvzcdgN8RCafaIoCqIouhvAAQAvlCTpdgD/FsDNAF4AYA7Av6miQ1EUvTOKoudHUfT8RWEhvv9/xBNPAHfcASwsAFtb9MHhkJRitRUqA8Jn/8YRRRgwM6HlZaBWg4wIweo6ttwacajVdXJwEgT9XJeAn6pK9mOvehUB2GlX0RgD6UyFz1T1PGL+2OnQ1y0t4QWLZ/CPj7Rw1w1dwqxupd4gCAD7PjDY9uE6IWo1cgliDeRYs5r+n7pnc5nVboiGaiOKJHIePXAAkCTM1WzMvO3biXhvOgTNmXyLlAu1W2NP/Kt/BeWnfxJz99yUPKYohCUfimXz1teB+++f9KGJtlqtrcEOtMplQPbPWbg46PDB6rU1Mk4BInmyfz/21rdx+ZyX6usoWF1TPGFm9eXLBFx+7LHUvcWAXEkif3SdaAcKgNW+T67rygNXsGx2geEQ9U/8DX7ih2w8sr4HNT21AVZVMWa1G6GtWyMVBgcaW3jgCy4WdIpcLSwkb2Asl6rBasaC5kgVAEDv9GosXXJQOh+D1X3PQNNIJdViGRD+tR1ue2QsmCaRvmm3cePMCv7+4i04fnAUoItlQLLuA+bMXoT1F2sdcsDqEmXE10Rag8MEL82kY0DCpMMTM1ichlmdc3iKACimoMyRppFk0PYUBjU0+aCwS2QYQszqwkCKoGa17xNCbkCr9V/3OuCv/5peMsqsnm+m5lRFIUnnPBkQdtgTLE/mMuD/icIeBKidewJ/8op345B3Er/wb2wgikh1VRoUYtVRnPl7aE0Afb7ma7LfwEp+eZUmtg07UGG2ddJ2u42jrTU8srGPSK4xhjBjVnOYPr7tQ5UDfOK/fEEc+2KashlAbazTWzRoiXrVzGoemzICSs1budcgkoszq0G2tdzkDTNYbAr8YMwou89/rT90CRHEMIDnPx/Kj/5feOe7sydfwqzO0JZmch1lZEB0kHbHr0EUwQtkaEVZ+2ztyrmkhQ2SabvXQgYkBv6ymNVl2OUU+LPzPDLAwGp39Do8//nAiRP4vV+zRraGAJV/yDPWY7G1hTCSIEsRnrdwFl/6LN1j0e8opQWoeTIgZTXheQBwWbBaBYIcYpPnodTYymWXTyEDkmlIH2uBl5i7eTJWBb0sAMSEltx9jOfBDtTYgokbPEmgKRMhecmFwsxqdvbKI7QAgOcRybZ6TqcZUa7CbZbnAWtr1bVHZPKkEWZ1Q3XRt6f0zWLnKGqw2NGH2B4UZ8C84Q0EP2Ntbrs1zDSTyqy6yfcOK8WsBqBp0TOC1HG9R6HZMoqiLQCfAPDqKIouU6kPB8B7QHSoAeAigIOptx2gj2U9vhuCsb1NPPRG9nqDAfqeicacQcBqARPAOIZDDF0N9QZhjaLTIWZlj25hy6mj0yabX1P1hMFqzyMs1VmqRv6KVxDmMu3qDvkDEVmFGKyeo8N1eRl3zl2AKgW4a+Ys7EAfBat5Tt80/KGL4anLwMWLwP/+3zh0CARMox9KmNX0/xSo5IPVAebNAWQ5IqW59Trw9rdj/oXH0J6Z8D0FwWrPIs+3xyqQ0WyOsr4AMkAK6GhubRGwdgeeR0tiVUNJWF8VgdURQA75Ji1H5YHVnkfkakDH1sICDjQ2ceGiFD8/SQbE4kjMsLh0CbjrLvJzpcHqKEJywxkG0VjnaAfSt2JjPcLqORtLNVrm/cgjODB4Ak91l4i8eAqcaGk2+haHSeeEVLudPrC4iAONTXzpfhlL6nr8WBwMmLgWMiCyoAzIuhdLl+y3T+PSJQBBQJjV5iizmjAR+B9v9XzUGLMaAJaXcWNnBUPfwPEbUn2SJBhaCCdQszPmzJizKLNaDuHngdVU+7TMgQRAvolOKRmQ7HHg+yh+gGbtZpVPUtCnjGa1oiv50khFx6ymoa3Zo1r0RSMIiERCSrO6ztOABmVWFznsMukaDqDKZEDW1sgtbxjAi15E/Bfg+1i3G5hvpe4vplmdt46zQ5koWP1MYFZHEcK1dchShK/acwqaHOLHg18FAtqndI061X7lJdmGtjzKrAYI6PPd3w389E/vfAMDq7PKiFm4LmGS1en1XVjAjZ0V3L9+EDUz9V7mt8ABpxjrr90pcN/mlenTe1YpCVZngn+MWV3CtJAkW/8JZUCm0drXonztVyAhQYjIQzGj7CEfJLIH1LhT18n1uO02vPHbsuccVc82WPRCeQpmtQQ/msAii3XLS7DrOXuYuDKoYHUYgFxfhMpN8JBiVheUQollQHLIJwNLJlWy6eug68BP/ATwmtfseL1qKIQFzgOrbUK+AYDjM1fx1BMJs5r1L2lUhSrlECSY78Y1SFwBKAVW58m2xJVRVcuARCWZ1Zy5u4zBIpfcRceHpBe7v7jM6iCA7RdgVstkXsqUVGASTqXWmXDyegDE+6JCvxdLLAR8k2RJikblysaDyYAIkKREw3WnA6vf8Y4xKIBhBWpypm1qDgZOBTIgKc3qtm6jOyzW5uoq8PjjxJSctUnA6mS8G6ZEyHh5YHWZCh4AWk610W6IB/fukyRpUZKkDv13DcA3AHic6lBDkiQJwLcCeJi+5UMA/rlE4sUAtqMougzgIwBeKUnSLDVWfCV9bDcEo9sF2nUf2N6GaVL54H4fXc9Ea8FIDBZFwWrLIvp5LbpYdTo43NrAuSeGRAZkJqLMak8Y9AvDCGcf7WPBuwScPInFxQT8GwxANlMjMiAc8C8M4fnAUq2HpWXah8OHYao+7l44j7vlBwEArZlUG4pCXLE5h+igb2HbNdFUbOC//3cc1Fdw7hx9MmZWJJq6hsI3Z/KdEAtmH8vzfjKnLSzg+39Qwx13THiDquYzPFi7FBgc+Z55IaqjCZIEGQ4T6czkQ1M6VHRs2d0KXB5SzGroOhqag/4WZ8y6LkzFhyyFMVg9ZwywsSknfY3kBGih7DRRZvXmJvDSl5I/sQwIM3dgh3dNI+WYHO1A9hU3zvaw0jWxvEcCvuqrgCiC+b73oK66qDVSG3yqWd3jgdVuhLZmo8NsaZeWsL+xhceeNrGsbxHwlpl00WtADEnyGi2rWS1osNiX4yRDZ3AR26tOilmd6lgMVvOv7bAXEDCJUTL27MGNM6vo6APM7R2laeg64IQqnzVS1OlbosY8WUFlIwqbf+Ul2sKQtKmVkOuQw+qZ1XkgHTOlKbNXFWD6jLyOF7pOmNXTyIDQyo34XE7lsYYiYHWRDa6gNBZjVl++HMu244UvBL74RfLkutPEXCs197PEVRbbC4jnO0UXG1/PCGb1+fNUB6QGvO1tBKi7cCE5zKaz2KoKXQngcJawiWC1JAEveQlwww0738CSdwJgtRuoyRo1P4+bZlbwJydfiNsOjGrtE4NFvoaiKhfQQwfyS8nDcDQhUySuqWY1B6AqCqrmlX2zipASzGpNA2GqcsBqSYp2Sslk9NOQfSEfB7vvE2ksQZqioiuTZUCiCF6gTG+wON7utFIwOQzFUiACBT9DL98ErwygCCDTINkLZZK8LHJtZRmGGpCkOw+sHmdW50QMPgqA1XFXpAgHW5t4/HFkg9UcZrWXBrVEgxks+tlSDaSDxX4vRZXyZVvcchIzuRWNVLO6DJEhk10+DbNaIHEz8jrBNnWedIXvwwnVmHPCDUmCpmFyMgwonxTNk4UCynnF8IB1FiJ7WSoD4gpUnYqG55HbWvR8PB7veheReo1jgmZ1Q3XQnxasZiC4TsDqlmajV5Ct/elPA8ePA08+mbS55VDlABpxsiAPrGZJ0cJg9a4MSBUhMlvuBfAJSZIeBHAfiGb1XwP4E0mSHgLwEIAFAG+nr/9bAKcBnATwhwB+EACiKNoA8Eu0jfsA/CJ9bDcEY3sbmHnks8C/+3fYu+ASs7J+H5avoTZfB0wTuuLDFWA8AgAcB0NfJ3rXANDp4FBzA2dP+eRm7kSJZrUjtrDWNQ9nTodYWHsC+NVfRevx+2JGGymvLSgDQpkoX33wDH711+jr9u4F3vY2fPybfh03d4h4d+toilEqKgNiueh7BpZaFhBFODh4PGFWMwaMnmQKDVmgPNuLsGD2sW9pdNJ7+csTtvlI0PLZ0OXIgNg+WpqF9qzgwUzTSFmuAJDAkgmXLo1/aIppZxhYMntYvVrBgpne5Oo6Djc3cPZM/nWNHHLIa5o+uY7z82S/H/hkL+B5sH0NRiOR1qirLiwBM0QW//pfEx2vNLOabH7CuE1SjslfrHwf2DizjRWrjaW79wHf8i1kQ2LbONjYHC0DZjIgeWYUASl/m6sNk6TN0hKamoO27hD29sLC6CEo3oRlNxu5JLNflJVEzBA5rwuJxqAiR8CePWhrFrZX7Vizummmxryui2m8AbD6AWpqill9++042NjAD9z6KUhjOjm6IREAIbfctyCoKhMTsiDKMSeieqqSUvxAIklRJugDAJJc8B6k/fXDyUZCpbREaV/zylLLyoDECbysucvzCNOrALO6pdvo9qaYu4IAQSQll8gwiDxWngY0CPu1ELOasuh41Ua+T/6c+ccV7L30ReD978fznxfhC18AlQGpY34mdX/xQATWKCB8XblyLf8UwTYXR48Cz3kO0R0DYS960EfBCyYDwrm2A1sZNVjkBZsPLc6+i06YkkH3PwsLuKmzgk9evglveFFq8ZVlsufytdyDbjy2ioLVWeOAmqKq8jXSrFbLAZWZABXTrK5SBmSKJJtuSPxD6bjJeF6wpLAAP8AeBIXA6szDeVlQmYaqSZPlRaYBqyWODAhLCBa8DxQpypVqKLV+cSujqCZ8wUSAqdMKsZz9/MBWiHxRgXkriiT+/O04IwmWf3HL5/Cud2EyWM2TwGDVYaWY1VEmoBgEBEgvuodRVSDIkMMhiRuJzLEFddZVKX/eKitXoUn5+61S5AAeWO15ZJ4tCFYbCqeKiZ7ZhJnVANQ84I/NMWUNFnOY1YW9YiQJmorcRAiA5H7OS16qKnQ1gONla6sXDbamlGVXd7vA3/996gG2d2DXSNMICU3QNyszKAiuaArRwTZ99FyjEEHi3nuB7/3eFFjNmNXt1O8tQO5znSnB6l0ZkKmCu8uLoujBKIqeE0XRnVEU3R5F0S/Sx18RRdEd9LHvjKKoTx+Poij6V1EUHaPPfyHV1rujKDpO/7zn2n2tZ2d0rzpob58HHAd7lau4fBnYWPEwawwJo5LJgAwFJzTHwSDtTN7p4HBzHWfPyYRZ3ZFizWre4RkAwiBCS+rjqt3G4iyVrfjYB9HdCok+9lAalQGhLLJcZjUDjQ15dL9w991otSXMGQMAQPOWlMIMz+mbRuS4qKsulu4k1LSD9lMTZECkuE0RVpbvhjjY2MSbXj3IfyELWp5tDzgGi06ARbOP1pw4QAMQMJIX29vk5Zcvjz2RLler1bBc62J1rbhD/I5Ib36oiVB3i8NQtH1ocoBmLYiZ1QAwq/awuUm+5xWrTVjMtO2a4mJo5fe31wN+71eHqIUDzD76Gez3zyZgte/D8jWYWrIpNxWPGPZxtMA9D1i/YKPrmmjdfYxkKu6+GwBwqLmBeju14DGDRTtnEXQceKGCA50BPvCBBKwGgAP1DSzVujtZf6wkM++gVwbwoKyJzM0di+1tABHQbgPz8+R33ghiZnWrNsr81OQArgizuh+OMqvvvhvKD/xL/MoPXtihCS+rMgE+c1gjhQ8OkkSMlLIOOcBUeqoSMJnxxcZcifJsRUGuRmlhtheQz9adopw+TrRVyKxuazZ6/enAattPOddTGZAhZ5r3PBDwr6gMiACzGgCe/OPPY+/gKeATn8Dt3c/i4YdBDRabmJ9J3V8M9BEBqwXHl8bAua8ks5rpmtRq5G/qNNjSbMjj7D2WcOZc24nM6rxgVSECzGoAyf7nxAncOLOCA40N3HNXiuIkSagZIaxAyz3oxuZfBefuTNZfFFF2VAl2HpvnJh2myxpfMeCLV/pfdN6iIPjEYRtFoxVaBUJIBqRIQogmcEUYdQSs9oXB6kyAKgaVy7HAtCzAfhoZEB6zugzjLU8OB0gqK6tkVjOgtkQyyDDALVMnMiDFkmwAxJnVN94ISBK+ufEJ/N1HI/h9m+wb2NxL28yVwGAmriV9N7IAYN+LSlWHqVoOs5oxoNWCeyOWGM4z7CspMZPHrCZJgBJgpiizuoRUYK50BTNYrIlfByKpkPF7MX3jsprVnGqAotU2qsaXSfNtn3gN5HVakmAYEklWiWQuBYLd8uvr5d4vScA//EPqgXFmtapS36wpyW2+T6qbdRmQJMh1k5yrRHVpQXCNr/96IgPiOEjA6lbq99Y0buKulNwUUnJ5u8zqqaIC5Gk3/qli++kNzFCzsn24hAsXgCfPGrhpZoVoMzIZEB7Dh4Vtw/J1mE06w8zN4VBzA+c2W8RgcU5OmNUiOr2Pn0JH6QMAFv7Z1wGHD6Nhr2OwYaO3FWDVaqGhe8mGgjGr89qmIN0OcweqyzxnDtBQbcgzo+W+shQhcHOuw/Y2pMBHXfOxeMsCYBg4FDyNc6fpLD5ugqGqhJXFkWz2vQgdY4if/qF+/gtZKAop+eWVk1N5kfa8YKZSVaFIIQJHTLP6xInJzGqflUKaJpZqPayuT+nuCyDyg7iPzDyCpwXuWQSsbjGwenYWkCQcMK7ix380xJ88eAc2nAbmluhYZg6/dv64vXgR+KGfqmNf93Hgve/FzAf+EFtbdDPoebg07GD/DEWkJAmGHpFDAyfD7XsRrl6NoEgRpFtuJg8eOQIAONjcQG0m9TsyZrUAWK0ZclI2t2cPuQbNTSzfsUxcJNLBNs15eo9lSmgZsMwDZ9hOaH4emJlBW7exvRnGmtVNM/WbUwNTj2dIAsAahKgxg0UWz30u8P3fv7N8gadfHzt9FwNoFFVCkKerXFJDMde0MAjIhqpom6DajBmHslgGpHJmdTmjMt7hybP8Ykw6ZrAoCFb/zd8ADzww9mAQwAp01Jl0DVsXLX6lTaH7i60zAprVAPDk1VnsrRMJCe1/fQi6HmHYD4lm9Uzqt9a0/AM0APh+IQaVZihfebCaASlsLpibAwC0NGcnbkelvLgGi45SDKwuoFkNIAGrb7oJbd3GY2/595C9UQS9ZoSEWc3RUCzDKM08mI+biBaJPIPFaTSr80AElhCsUgaEMatLJNk0XYIb5lTxAMWqQmhSWAistiLCrBaRFwGypZZisLqcZJLKZBUy2i0sUxCbA2e/pLAvAGtXCuE7ORVXJUFVAPkGySVY67H3Rs7YGjhqMWa1pgnJJfp9m7CW221g3z5okg8dDrauekTWsd1OXswDasuyimWZaFbn+W5IYbWa1SxhUfTIw0uyUd3uUt4jOZrVZGwV7CvAB6snMegF2uRqVlOwWthgEWTayvy9pmBWa3kmrozQUnAuiCWR8u7ZAdAc15mfEIYpkURoRWD1tMzqRoNs++KtH/0tdTam2feJIi6xi0UUYaevDEvssKQhS4wVAKu7XeDQIeDpp4GbbiJtxjK3LAQSd54TQlf8EgaLAsbLu8GNXbD6OoruuS20KVj9Mv1z+OhHIjx5oY4bZ1YSZrXCl6qIg1KMJJOuFvPzONxax9n+HDFYnFdIubPqCsmAuGtdNDUHshRiYVEGDh2CJBFw8t3/LcRvPPR1aKQBKmawKMis3hGdDjq6hbY+hiArCmFQWTmbwl4PUSShUQuwtEcGDh/G3vo2rpylszgzXtPlkTa5PoBOQWdyEeMrEBbVUq2H1qKgwBdje1n8CXJ7G7j1Vg6z2jCwVOthZXNKd18Q1micTRY0rmRg9du/5yRZr1QV6HRwsLGJP3mfhEdWiQxMXN6qaVS+hg/6HGhu4fY5gtTPhJvYXvfjJy8MZnFgNkk8mEYEm6dLCcDvWXhkfQ/2ztpAp0MepGD1oeYG6rOpQyVlVguB1emkTbsN/MAP4GVvWsKJH/lG4g6ZDmYklSOt4bsU8BA95NJ2dYWvpRmtrRMAY34eaLUwo1uEbM2Y1fVRME1I4w0ErK6Pg9VZwauyYEyfgpt8Sc05lNJ2AVRuWliqTeSXu/qBVNpgMROsZpvMa1CWag2jwszXtm6j2xf7fp/9LPCRcTeNIMDQ11FjzGq2LlocuY5SmtV8QJVdmqe6S9jzspvIHLO1hRv3D/HkWR3rTgNzM6NrbS6TkDYaAdeVDEjQt8gcw+YCmqxqaTYMYyezWlc44F8YYuhphKEoej+oKkm0CYDVI5JLqgq02+SwyoTHaRCwWucyq8vJgOSYdJXVPc0zWJxGs1oO4eeU0wMoPcdmMRSjSCruNQCyhPI0qwM3gCJaaaFp0BVfyHTYHoaFZEAyD+dlGdA0MllkLClclPkpSYk/xCSCQBjCCyTCBC9oWqjKAYIs804GUBnFE7gAspnVUblraxjgy4A46k6DxbwQlAGxul6y36J72P2tLp68UCOPp30BWAVPHrM6LCipELebLa3h+eX2MIomZzOrWeKqRIJFkaLsy1o2IcaSopn7rZKya5w9clydW1SzmreP8X3YgVqIWR2zlfPWmYLEk9jbh2OwWLTaRgSs7veBpupwz1+6KcMJtMrB6jLMap/itTfcAJw5Qx8MAnKma6S04/OqrSbEffcB3/EdOz8sJswBQK1G9nsFwOpejxyVf+M3yDbZsSPCrJ5JvUjTyJ7AvobM6l2weqrYBauvo9hesWJm9UtmHsF9n/PxyMUObuwkYLUu+3ALgNWSFCUb3IUFLNd6uDycgRVoMNs6AVO1AJbHB+i8oQdd8VE3AiwuAvFsEAS4uhLgi2uHUTdSEzcty7XzDOsYSFebsFB+7/dC3b+M7/vnY/1ipdR5ACidret6QNQUDh0i4Gbfj58fWaCYIze3PDsqZnrEzJTymNVRBM+L8FN3fQSveI34YUSTA3hDMc3qW27JYVZrEmCaRAZkq0AaPCNigJSC1brMN+vzLB+qFOJNX7eZPHjwIA40NrFv3sFja4swFD+57jGzmm9a+OoDD+MXnvfXwNGjhA0wTIPVHRyYS0q0VY0yajklPV7fxqrVxuGDqe91kEjVvP7I/fimV43eB03NQc/O2bBkVRjcdRf+7a8v4dixCe/hMQZATLrKlJLreRpvNNyVTZKJjpnVFtEN9n30PAPNWuoayETmJ8jQVU7HcBChpnhiYDWPNVJWT1WgXQDVMqvDkMzXpZnVEzZMUQQvkMsZauUZ00wjAyIAVtdUr7jB4lDsug2HwIMPjj0YBMQbwkjA6rrqYshLMhZl/SkKDF61EZJL88TWMva+8CCYe+9NjQt44oyJLbeO2ZnUGIrLswVkQESZ1WZ5ZvVv/uaYQU/JsPv+aJVFGqw2x8aeppEkdh5Y7XnEdNosUPodV5pw9l3jzGoA+PmfB97yFuAVrxjtqsABJ15Hi8qASBkHc2rg+swyWMzxXCgrA8KuwaR2p0gIxprVOb9ZnGgTBavlAK6AobM9DGGqJZjV4xchiqbTrNblyczHsoxtSUrWrgz2a9xukXEgpFldojJIiFldrEmAgtV5rP0ooszqAjIgPCNjGlbXS/ZbrDpQX8W9Zw/hUGtrpwzItWBWx4mryU/HvhslmNWZ+3kGAJfR2hcA7EvLVeQaLJa4b5lkZEb5wsh5TTTYGSFvaPk+nKIyIHkAcLyXF+8mAL4uPjX5KwNWZ7LAafQGMklWc66tUZMrZVZ79HYuw6xm4O/x48DJk/RB6kPUqo9Ka4j6ZgHEF/vTnx67XEzahYHVmgZFCoVwDRbDIZmiXv960ucLVw24oQKjlvo9mcdV7xoYLO4yqyuJXbD6OopuV0Jbs4E9eyBLEb71RVfwt6duxHPmz4/KgIiC1bZNMuvsoDc/D1mK0NIc9DyTMK4lCbW6RFg+nInSG7jQ5AANwyeSwpRRKgUB1ld89D0TjdaoARxhVufs3hhoPA7SAcD+/cC///f4pXcsjD5OD/y5zGqPGMvVDQpW0/LheKYclwFRFH6mGIDvRlClYkw6Uk6e8xrXhR/KODzbRaMtbrCoyQE8AbPN7W3gzjuBU6fGnmA6VKaSyIBsVwBWexTQpwaLIjIgE/U5b7sNL9/3BH73jf+Af1w5jL217eS6s8WHUxHg9hxosk/ugf37yYNeCqzuz+LAfOrH4YGUrL9DF/NGH0eOpj7fMIA77sDRQz5uetly8jiVw7G8nN/WceCGCvRagZOOplFWUg6zOv1biIagweLw6oAczGdmgHabaJh5YWpjM/qbS7qWb6xHw7IhzqzmyYCwg0OJUk9euwBKm39lgUml2gQrd+UYX5UBfbIYKVMaLALIHAeWBXJ4LsCsbmoO+kOxH9myJoPVBMRMJIxqigfLyW+zDLOaC6iCzId11cGKNYO9LzgA3H47AOCm6HE8cb6GIJShmKnrw0CEvARTURkQBlaX2IR/8YvAlSuF37YjrG2XjAUGmNC/W7oNQx/7rrEMSM794/sJWC0agjIgkTMBrG61gK/7up3XXGCd8d2wpGZ1Bls5ngvLa1ZPBDzixFXBNvM0Wmm7En1doWC/VwZYXcprAKTSwOWAE8NhgbmL7uFEfBxsG9VoVseJhSkNFrPkRUrooatqlO0PwQgVRQGqPO121m4kV8usZuzyEoCiaUSEWZ0j1dD3DCKzWCDJJiIDQgyt6X5r714AwMHgDD568Vbcsmdz9PN41zUMy1VcKQqRAclo1/NLGCEitS/KYu2HClS5bEVIxvNhCC+aQgYkR7NaHfdpEGxXk4NMSRzHjggRqIxUoACzegQ05ISmRpNlhoCp9NAzSRe0n9dKs7o/kAhYzWNW15RKNatdl9zKZZjV3S7Ztpw4QXSgAcTSjq1mMWmNdFy+TPbeDz2UenC8wl3X0dYt9LYK6D9HIaRP/gOwtoaDB4HzV02Ce6XnCro3tHP83jwP5cDqXWZ1JbELVl9HsT1QCbP6zjsBAL/4VR/BQ2/6RexbcMmNx8BqDvs3DvZCtsGl0govXHoaEqKYpVRryMTsh9OwZ/nQpAANMyRgNWVW65KLyxdDaLKPxsyosZzG06l1HAJ6TGJWZwVjQeeB9lQ7sFXzSQUuBavVyMOlS8CXn2pi260lcmwMROCWZxdkVjMG8CAfRPDSpTAiwQ5kAmD11hbwnOeQkp6RdSU2AiGa1YtmD6u9WkYr4uG7YVK+zGRA8hILyGAA3347buqs4FvU/wUJEdFuZQsQlVcZcsAkr2uRdptNYJkCyIzK5ftEBmQhNe55ICVrd+hhud7F4VvGpDl+8AeB//gfRw+VqgpJArnnssK2s5M2WRGbE+X005egSQX1imMtzfyXWUPKgNb1RNcwCIDhEFetFqm+SEcW22u8XQviJc9CMiAlDk/XQuePtpvHVi7VJnI0q9khp+iBjPYjT7O68JzFgjF9Mmg5wyGKyYCwhBhn7mZhWWQuHDkXBAGsQEONOdfTeTs3GRaG8AJ6bUXBL7Z2cZjV3noXc8YALd1GY84Ajh4FANwUPIoHT9Oy7PSgVtV8thdQmFmtGgoZUyWY1efOFarkzAyrN8aspsBJS3NgaGNjnYHVeeCf52HgG6jXCtwPggaL7tAnh34R9isvyYaU5FgpGZAMwGMKZrUqhZNlFaZhvOVUBoVBBLmETm1uOf0UCcFYGirnUDq0pILMaj9XxotFrFktClZnrbXstyphAgjky4CUZWyrSrbfQmlwPW+8ApRZXb0MSGnNap7Boudh4OujMou8EASTrJ5P9nGGEcsVHVQv49OXj+OWg2PePKyCJweoLZXEpnvZrOkw9oYomHAnyZVspm6p5J0IYB+WM1jMS7L5kVwqGcRLtjp2BEMuCFbHc1fOa5h5XoF7jC8DUlJiRg7h5RhiltnLCsmADGUxzepatTIgnkfA6jLM6m6XHOdGwGoq7dhspK6hYOUGi8uXgde8Bvj4x1MPUla7oitxm23NRndLcA4NQ2B1FXjf+4Df+i0c3Bfg/BrFMMb2xzy8pDSzehesriR2werrJYIAXUtD23CA224jjz38MPm72SR/UxkQx4GQqH0wsIl+XnqDa1l40dLT6OgWqZkABat9LTEzyghv6EGTA3Sao8zqljLE0+cUvGDxDOpjxnKqFCLIA6vzmNVZwYDlPGkJuuL/t+/6JBHdp8D8vN7HBz4A/OHHj2Fl2Mae5Shpk6d3CcqsLsikq6kurGE+sF64DKkgs7rTAV7ykrHS7PSG3TSJ5rCtCxsmZIXvg1wjRUlKXTkl1J4d7NRWXlggf2wbR1rr2NvqJ5tVynwc5rH2AXg9G7ockMoEClbroUPuIaZZvZgCq0V0/qIIvu1jyezh8F2d0efSWl4s2AEn77rmyeFkBQOo8jSrfRQvn1RV6ErGpjkVw0FKWzgGq0Og2yWaYUtjB2u2ucnbkEURbFsiJc9VyICUPUSLMqtLSGuoObqEAMoxq9mhLNNQqwQ4kcdIoYmusgaLeYcnywYBKAswq0WSK3H7FlHVYMsrgBSzOoz7WFM9DN2c+9H3i5cRM0CVU/rvr21h1hhiT4euye020G7jmHEB/+/n9+ANN3x59Pqww36W/i+QgBaCa5ek0bmwBFh9/jx3OyEUVj/YKQl0/Dhamg19YWb0xYpCx0GOLn5aBkQ0qD4nTxbJHgTiJni8JBtYeXZxsDovGeaHCpQpEldZxo1lja8yy95Bhp0ql6gIYVrQFcuAxHuDHHDCsgrMXXSddQV8HGxHKmawmAVUTsGABug6k2OwWI5ZnW+qRtjKxQFFJc+8k1VWViwD4kflEsOGKeUzq30fA89AwygAiKgqJAChm/+eYS9IKtmaTaDRwIHmJtxQwy037PQLEpIBKTEX5DKrAzk5UxRpNk+zuiwAzOYtHmBfhlnNkwEp6RGSJ8VYllmtKxwJo4LJcUBQBqQUWJ0jNzWtZnUes9pS0NRsvgxIXancYLEsWJ2WAUmD1T3PGJGvj0knghvvy5eBH/5h4L3vJfgya3ekwoX6z/S6gqaNT59JSJarqzjUfRinVxo7DeVZJYCVA1YXNUun8Uzwdnk2xC5Yfb1Ev4+uZ6I9qxDdMEVJqEmNBvlbUWDoEdncCtwYVj/YWU5fr+OepdO4YbEfb9gJWK3zmdUUrP7of7mf7JkpWN2W+7iwquPr9z+OhT1jbC85X6agFEjH2Gl5bF1qdhQzpylYvaht4gtfAC5tmrhitbG8lDDpRNh5sSt1Uc1qO19Hc6QURiQKGiy228ArXwl87GOpJxiz2iAA60zDR9c1p1swoyhhVqtqwnrkSNfEMiDjhzGqoXekScFqFgxA4JTQej07YVZT1khH7uJ97wMC28NVu4mFTuoaisiAdLvwfeBfv+BTuP3FzdzPH2kz7xKUBKt5lQvEmKYgO02kxA8pfc4Us1qJPPjbAwCA1Bq7NiKZ+DCEE6gwVUGAXVHyD2TMVKxqZnXZEnUOmASgWhkQpstYBqymDKJMpk+oQClTlqqqMBQv8/A0tOTCBosibGUWlgW8+c3AX/5l6sEggOXrqJlJ8rKmuLDykmFMRqnIEKCSQLk+DgD89W3MGkPsXUyNv4MHYao+Xnf4fvzQbZ/ASOkCj+2FlIRDgUQrAG6VyXgEAdEnrAysVr1R3dQf/VG0vu0bYcw1Rl8sSTD0iGi/5jAUh75ejFktKItUCKxmJfp5BotlZUCygBSmWV0GqOQk2cqDCDk6tWyvVXSOlWUKAis7y/+nAasVhSurUIhZLUnQNL5pI6IItivDVAsASllr7ZRgdXwwz2JWlwarqzfBU5ks2aSgmtWVGyyWvAbEYDGHWe37hFldK5Fk45wRrEFI5ljTJImhPXtwsLGJlmZh34Gx+4RXwVNWrkImYHQms7oM6QLI96CZcmwFAYepW4JZnTkfTjG2citNQI79huKVkwHh+EOw1wo3m8eEpyzcayED4kdycbDayEmE0OhbipDBolrTyLxaIbN6bg4YDIq/lzGrl5dToDKVARlnVov6ZgEErL71VuD7vx/4wAeSdoMxsLpVgFntbA7JnovGwf5jeOTSLNq6NTruBMh9notdg8WvYOyC1ddL9HpEh3KGGCkyKRAAMWAHkAycE/BZ0AAw6FKwOs2s/r7vw4Hn78H7/yFxp9fqGpl0OWC1O/ShKz7ml+kk0GwCsoy21IeCAP/h+X+Fl3916oZl2XIBZrVqlgGr80ueo0hKJp5WC5BlLCqb+MJ9ES5t1rFmN7G4PGawmAfQRRFlDRcz1OJqVjOWRxF2uWBpMkD0lbUPfgDHDjg4dy79BHPiJZ/baMnoe+Z0KEO8AaSMKCYDwjNYdDIO5ocPAwBeuuckblu+mjzO5BQ4OArRrKZg9eIiMZLU1vGzPxPiH77QRBRJkI1RhiIPRECvhyCS8c3Pu4x6Q2DjFI8VAWZ1vYQ+aZ5mdRljGioDwmVWD1MssnodUBS01SE2zvUJCybOFCXtSkD+os507sb1aHP6mgd8TmN2AyCXWV1K+/QaaVYrqjR540wNtcqW/pOy1Ml9jQDIajmGoi4HmQksy5aKaVazhBinKiZu3yKed3/1VylCI2NW1xKwuq66AszqguAfreBx8vTrkciA7N2Xur7UwPUvvuGd6BgWcODASLt5LFUgNccWWLsAFAarV1bIYSm9jEQR8Hd/V6gZAGN6qiw0Da397YmKCDFDMWvyomB1ozH56YnBOeyzIGC1oAwIvbZZUjikq1Fxg0UGeGQYuJbS70+3mwGklAIqOcCXH0jk+5cxQ1QjuJOSFmXlmwChRLZlS4USbbpJdbDzFlu6Jpp6ARmELGZ1QEB8XSvJrDaUfIPFkmA1l01ZojJKlQMEWfNhGYIIbRfgaLeXWGtlXUWYV9HneYRZXUQGhFUccfbe1iBETUnNsXv2YF9jC9994+cgzezcw/H0mv2opFRDVpKNmkSrUvEqi1hjPS+5UGZs5RnDRlHpscU1tC7NrPYzq1tLM6uZhFFWVQj7MQsMBjFmdZl1JsyWW2IgeMHEVa5kCQ3CrObLgEiGTvCKCpnVnQ45oxWN7maA1pWnIG2kBK+pDMg4s1pX/Fy2cjquXiVH8L17CYGOtTtusNjWbXS7Yn3trTloaQ5w7BgA4ODgcfyvRw/huQvndxjD8vASz5emkwEpUYG4G0nsgtXXS/R65G82G9xzT/Lcq18d/5NoG6lCgpDDXoC6MnbQO3EC+LEfG2Vlsed5zGqmK8xOibIMtNto6zbmDcp6nUmV5rINYyjArC4C0rFy3zxpCTbps4OjLAOzs1gw+3jiSQlrfYMsUDVtpM3c8mw6sWpqAWdyxtDjgNUjE7Zgu6IyIFi7CnzsY1j61F9gZSX1+FgJjlwzCAA3JVjtRynTEl0XlgHJY1b/4G2fxItuTq1gDJzJS4QA8PopsFqSgEOH8O6veS/+8GfP4od+6zi+4cBjoxsJulDlgQjxolRAt5w0WrEMiERY05kGMmyTX1TrjzJyeJI4I9rCkgTMzmJGs3DygQGWaj2M7mwgpqHoebB9DaYueIBgwGeWgecUQAqAa2KwmFVOHwVTMKuzGERTaIkm+toTnptCXzseXxlzgmVLhOlVWAZEnFk9N7ezzNHytYRZzZKMeaAyS/YVZFbrss81VfMtD4ebG7j9ttQ1SiWtUaslpsFAAiLkgdVsji3KrC7IGDl3jhSxpNc8xwF+4icKNQOAACmTzFZbrcnyvSIMxbLMai5YzXSFBZnVOqcs1Wea1aLSD0AKSMmW7plGszqr3bKSCjxmdRmdWgCUsTxZFglAqTZFZECGtkwSbYL3mG4IsLJ8n6yJWjG5IfbekWDEiLLM6iwWWQymFW9X0wA/ypEBicpVRuXJSpT2XFAUyFKE0KvWYDGutMhlVhto1EtUhHDApBFmNQDccgs0OcTvfNX7d0qxsQqerOE6BatYyQGr4+qwgvetrOQwq8tqVvMMFqdgAOdXspXQwabtankyIA6Ka1bLMnQ1JIm2SWcPIBnLBfaImZUbQAqsLsmszvq9fB8RUp4Eos3qSn6CCUDfVtESkAGJ13hhQ7L88DwCxZRiVj90Bu0n7gN+5mcAROTYygwW00c6ti8SqO4GyDBRFLJ3i8FotodmiQJdR1uzhMHq7rpHWNT79wOtFvbgCv7LC/8Cv/KCD8aV1CN9zcJLogiuJ+2UDxEIzZDhRbvM6mljF6y+XqJPwV42G9xxB/CqVwH/4l/EEhYAcY11Q0VoUhv2QzQ0h2/Kwp7naVZb/k5Acf9+tDQb8wpNlaXBalWFIkXw88BqplldkFEqYrAoSdHoItHpYLHWg2mEmDVt8jzb1ItoVlON0kIbZ0WBqXr5l7aM2QtzkhfJatJJdOHxe7G2Fo087qU/l21MpwGrY0CfbmBiGZD8t3lZB/NDh5IN6pvfnDwemwtywOqBC132EymdI0cgSxFesedRXFgz8dab792h/arzkgClweqc15TRTZMkvoFMJBMzpYJgtSYHcDnGTzEDlv1mc3No6zaeOiVhudZNtPZZaBq5BJyDuROqMA3BAwTPbLXsYZejKRsGEZQy5l+x2cvOp8qWugI55ZNlD2Ssr1KGMc0U+trQNBg5ycahXVAGJGZWi/XFtsmSd+utwBNP0AepwWIMYmoa8RrwcvrA5s8iY0tEGgvEUOrFS6fxcz+akj66/fbk3+HYPR3r12e36TkhdMUvNG9xq0wmxLlzJCeeXkZcF9jcLNQMgJSJ6xho8oIXAN/7vTtfb5hSPlPVdeGWqGLSRcDqYUjAakG94prqwhpkHPRpFVdhpk8e8zGKiHRPaWZ1MFlWoWxCkGOw6AdSORkQALoWZYKq7LMLh4DOeDx3Cf5mqqHwWVm+DzsokMAFsvVEyyYWaKh6Ruk7k5sqwfwUkQEpx37N0ayexgiQYzRalv0KgG+wWEQGhPnFcJjVMemAnQOf//yksveGG0ZfzNNrpnNMaYPFSZ4L6WrNghEDkHmGmCUSIWpeVWcYIoyk4lVnedc2vr/KyYBkaviDyYAUBKvBEoL5Ouvs84W7qmVUCALl5y5eNQD7rKIDgVd5FkXoO6oQsxq6TvZaFTKrm81y2HfvyhBtnWzeGmGPkA58H26gQq+l1s0CUqS+n1yudjvhZiZSpGOa1b2JzeyI7maAtmaTyt7DhyFLEX7g1k9BadVHz5+8SnR2/lZROCGWm2DZDeHYBauvk3DWeuQgycBqWQbe8AbgRS8aed3MDLDl1IUAxWF/MitpR5gmYYzwmNWWT4CvdHvf/u1oN0PMmxnMaukaMKvp4sMzk4oiaRT8XF7GgtnH4YUhlhs9zBmDZBFhoFce4MEY0EUyuzE7kWOwGMlQjGJuzCIyIIHjQ5HIZ6tyiGCY+o19H056AaK/a2RPkd1lbG22pmkakQHhrMGZ+pymCfzIjwA/+qMgTpk0GDgjAFbHzGoglhUxL57CI7/1MZyYWd3BrDYUD/aQb95ZRLccAKI8ZjU78BfciGlqxGUilHE71+UAHo9ZbY2VPM/PY0a38OTWMpZrvYkyIACEWGRFZEB0OacUrWzpoKLkGm3G5l9lmdUT5gPPLw/OZB74KzBYnDgOpjQq03MSDJYjk7LkoprVPt+ojIUkkekkDVYP05rVikJkQDw1t8zVL+pOH8sXCXgjyGPJO01LAOs77hh9A8/4CoDrRMWYI6qA2eyEOHOGXNv0FsXzgK2tQs0AoGD1uGY1SP7+Oc/Z+XpdR75RGd0XSHqx/YaQZrUVEWNYQRkQM2+dSSdCCiYaMwFgpg9ZBkyLK0IqZlbnmar5U8iAaFQGZILBIIDS8xaAfINFp1iiTdIE18QSYLUxqXqFHcqLgok0rokMSB5ANVUiJJ9ZXVaqIdMbgCbGCxnusuDtjZjBYkFmta743DNCbArKznWSBPzgDwJvfztwyy072hSRASlzXTMlI2OTzXJ7GADZGshl/DwUhZCwssgc01bdTRpbUQSvLLOarV9ZMiCuVAqs1vV8g8HQ9YnsXxEZkDz9Xza2yjDWpSBbBqQEA3zk9VnrQRCg7xpoGh5/LLA9Q4Wa1bperoCIAMCkLK4jdQnJYFLiQVWhSWJg9fo6sLBA/t1u72RWK/qYZnVPrOPdDZ8A6/U6cPRo8sTy8ugL2Zk2ay6kFUd6keolGjFYvSsDMlXsgtXXSXRXbczo1s7S+bFYnnWxYrWFboxBP0Jd9cSZ1UVlQABgcRHtl9yOeYPWm4yB1QqPRea6RPvULFbqmuv0DUwGFO+5B4tmH4e1i9hX38KeWjdZJBSFgKo8sLroYS82PMoHq4HUwUWwXRGwenBuHQ11FKBO67S6gQqjQT9X12EqHpz+FJNuXBo/LgOS/7ZMzWqAbJizNs1B/hTnDogpaMysptpWOHkSh4yVuI/pdk3Fhz24RszqLOCrpNM1j4lQSpOvCLM6LdcwP4+2buGp7hKRARlnVouA1Z5XmFmtyhlMJ6C84Q8HmCht/pVjWui50XTM6knjoKzjPZACqyc8Nw1DkTG+Ju3LwxBDV0Vd88TbVhRSkhqohdgN42C15esJJirLqKk+MR7OA6uLsvYZmJiXwAUZCxP1ir//+0kS+9u+bXK7HGa1JhWTASnDrD51imDpaRkQ1yVsmkK4dxRRZrVAwp0G0azWsvdHvj9aUSUSbK3lLIuEWS2oWU33BYGbcW1ZYrxERUgmADxNlYUsZ+t+lly7eNVR8RxbVgYkj1ld0mAx7lhGDB0iH1RYaidvcAUBAatF10TarjnJ2HtKsFpSlcnVUWVNNsESrXmmaiVMQekZIZPQwqQayt5fGZrwXlFZKBYCYLUVaOM5O26bIsxqy8LO6hVJIlKR4/deXMHDMRcsc12zCEjsusrl9jCsXzuC+XmUYVbnVTFNAVarcsYcy/byZe5bBtRlVAbZTjmwOp5jM+YuooVdzLhR0WQEvCqLEusMkQHhaGsXHQi85CXVeW7UBPZPFYPVrltMPSwd3c0ALcqs7qh9QjKYBOgX8M3qdoF2tAW8971oXXgsAauDgOA/uhq32dJs9AZi905vOyQyK7XaKHshLXML8PGSNLO6YGimsmuwWEHsgtXXSXTXXFLOwAGrzbqcbyCUih3lXVlBn48sjgwIAxTHZsHWHUcwf+sSOUSnJ3yagQ7CHMYb+x5FdRnlIBugAil/3HEoPXECt9wc4a3H/wH7lBUs17sjMiA6D6BjbKeCzGrC8Mh5TQkjCtGFov/0VVKGRGPWsJJybHbt2QKk62jrNrbXp5h0Y0ZYAlZzjSvBwJkC+pwM9OOA1bF0DQOrZ2dJ1tVxgM98hjxG2dYAYsabY1XIrJYkQJbJeMzSd2MbsYKO1DwDmfLMar4G8HDcTGpuDnfOXcTfXbiF3FsTwGoJQOhwSp59DYYpeI9pGgHpshJXZXVaOUCd55XUU81hzxA2bUmwWpfJgT8DRCgFUMUsqskHSAClGYoTWX8A4HmwAh21ImZiEDDWSwVrdhKzul5PXsd1+WbmMEWAFCatEuSzwGOgblKlyateNbFqIbc8G/QAU1AGRJFC+E4xsPrkSUIAH5cBASCsRcjeNPR11AzxCgYRg0UA1wastiGuWZ1nhEj76UdTAMAZRoiFk+0j7WZrYZcGq3NAHz+UyZ6gjAyIPrlEPfRDwvYrOW/l6goDsFylkAxIprZ0OjyPGiwWSDqrKmoKlZ9LzzPsUF4SyMgE7KdlVnP2MFqJ9ZvHrC6rWZ3LrE5L4BXsLwCupEIM6gi2madVDIAkBB1KOuCdE2mbZH7JWJuZDEiJKotcZnVUnlkdRdLkfTdLhFStWT0NWJ01H05rsKj4mTgokQEpBioDRG8/TwbEsSOSvC3Sbl5yoWT1afJ7ZRssAigvA5I1EFyXJhkF2tLLGSx+8YvEKHw8PMohEiw0HInudkSwKACzSpeA1ZOuUQEZkG4XaK2eBj7zGbT/9PfR2/LjjkaRlFzLrIqgvL7qFgGr9+1Lnhj/LVlfs/ZbUyRxY2b1Llg9VeyC1ddJbG8EhFmdPi1PCl0nBM1xLboJMbQkwqrlsZIMgwCKHEata4dE/3esvRe9WMJrf/wEOUSnQ5IgKxJhYuSAdACKHUg45aMAENjezsO+JGHueTfgzUe/hAONLeyrb0+QAcnpB9OWLgJWxxsQPrO61AGax6y+sIkm03QCsFzrJiaL7NqzzzUMtDUb3c0ptJeCgGjr6QkATxjrfLB6osFiVjBwJsxxo6bt6spYuzffPNLOiHEZBdJsq/rfC0D2glZyIxZrFWeVzZUpn1RV6EoAjyNVEJc8pzSr33jDl3D3/AUcWrB2btapezRPD9wONFEiZTIXZAFqU2xwAWT+Xn5AS9SLAimaRsDKCSyX2I26YmZ1aUOtPBmQaTSraTJkYgJr3OhQMIyaDGdS2f+kiCLgz/8c7VNfxtYW8IlPINasTjPXuCX6ZcA/SUqYhFlrIgDfj7IrTSYFrzwbqWSzaIcVBQ3VxcAq9htvbpJzw7gMCHtOOByHjIUCbEKuBjB7vKAOtC5na36yKGSwyECvrHmLlqWqRQ9Peaw/qtNbSrOarbc5jNLKDRa98pUmWSXq0/gCxHJeWWK1UUSY1UoBsJpJ7fCY1X5BZrUsw1TJXDqyJsSH8nKa1ZlswmnAahW5MiClEix5RqOpdksngzLug9LJIAGWZhRJ5eatvDNCEGDo6ajrvtg9weatrC0cIweUNBec+PXLki5ou6xfk9otVXUWX4NsGRBJiorPMUwirOpEo5pvEOy4UnGDRfDNYePkbUGwOpMkQtevsgmmTBmQsntZjlQgq8QWWhfpJuf/Y+/Pg23Z7rtO8Jtz5h7OcMc3T9KTLdmSLEtGtrEtY4XBZUDF4HZB0w4bUy6qu6MKKNu0HQW0C6q6mKEg6KKhKLo6gDDNFBDuCgzYBhuwMMaWZcuy9aSn4Q333fkMe++cM/uPtVbu3JlrZe71W3n87kPnF/Hi3XvuuXny5s5cudZ3fX+fb73SS0T8kR8BfviH+18nO6vrGucrNMzqI5zg4UPhki921zsazurzkxLL4gEAYOGlOBcaQ1eD4GvEfTX7szMwYV1MEr/ne5gZ7Vu+Zfcb93VWE8TqfYI2L2u8LsXqt0idnVtsgBgbYTiAfnUy/mBsNthvxzwIWNjPaviYzWK3c7y3vQ34+q9X/KU9RDoAei8KdyTpG0CRlnBsiTONB4Z85zt+Gv/nd/2r7fXmrOK0GDgP4aSb2llNET+bncLhidbqzgZzNwPe8Q4AwE3vQSNWV3kJ26p3nNWHfozTE8KkUFRRYJWHWITbtiHfLoeDK6tqu4jcdyVtWbAcu/n7qspziejT5r0+/ngvYHGQJcoOyv5PEatVi5GqQlnbcDRxFZ43vNCjOqsZBmTMWe3ssoWvXoVlAf/8N/9FfO1XbJTHHdyJ5xz1vcVqgT8YWpQS21IBtTBBFj3EeCBZ7BYlXax2PO6sljBaSSgYYD8MiImzWjYh5W7aWah3vrbv7u9MOT0F/sW/AP7qX8Uf+oM1/vP/HFJnNVx3OBCU6PrzfL6xMDC5bZjVGi7o0YDFrIavI1a7LuZeivVm/zEpTdkrNQzlzmotbnWSaLe+NxsMUzqrRZjxyIarlrN6SPzl50nCF405qylIhfZxp3RWi7FbJvrUNXdWE7pXwJ3VVd/113SvEAMWBzdGxRgSaJzzvjkOOhu4vCKf/b2dY5cl0srdPxOiWyrxzwQDMhQSLY6re8+6I7k24lkgiKrKtUfTxaR3SADjOBhZYPxYCeFnyKWY52xDMNjzfdt08KiFWjIGRDiru+YTgWwhzmGGxE/Sudo2XLtmWUyytUdVsbkIcW6omm+RMSAja7A0t/tC5B7l+ZZ0jBXVbN5qbrAoBWBTDIhqc4FimGt//8AG097dG4eHWHgp1vfi8e9t1cc+xv77gR8AfuZntl8XzmpvgIgmrbMznKUBDg7ZxtiRdYqTewXO1zYzvcmc1UPmI17nr55i6bIJoW3V23WVwLK1NIh98kGa467AMCBi4v6BDwB//I8DN27sfmMjrKtRMGQ81j7dUZc1Wpdi9VukTs9t5qweE5Y9DzejM7xxd/yjjVOLiUlji6cwROTkiM8HBp26VmJABmsPkQ6A3ot9jzCpIimYs7p7rhzCHzgFouuLXWa1XSAtRpzVNQUDMiwiXKSzerVmO5miReaGdRd37vA/29hsoBefke/jwI9xdqq/kPnX/5rPMTmnaxltOWD7ONabF4VmmBSAwZdElll9sfrLvxz48IfZrzsBpoL1OCkGBNgrjAPAVoDfs1xvwN1ADZCxbfgO45kPbQRsMnfXWX31KnDzJtzHr8P6P/2e/l8Qos9QWyp3Vu+NARFYBdVz0Ag0+x2uqRGmbBOGSHTPSJnVOZGDDeYolQqgzYKMIE7wz0slfAGgiT5Dbal5zgRKTWf1XqIPgHyTw12dNL//vR+5j6MjtnGXlS68sPXv2ePdRdkIadreVeda18gLG64OX9rzRp3VWQaas1pDrP7c54Dnn0gQru/3mNWAplidprsc8X3K8wZRDc28QPNdGzjFuFidsnnF3mL1EL6ocWXtf5oAtq4/xTNbtsOPdWoIt2QasCg7V8GTtYnMat9CVvY378j4JmDUoci4wlys3vtE+f06pChQAhYBhF7FxOr2sYtC/5lql2qcNcAU7BWwSBConKGsGB42arsUVMMQE57YxSRc+/kwBkR/jVCNi9Wlv//7dqyDR3TzaeLsYFlwbLZB1ROr+caVNgoGGHdWU7sBnBpFrd5g2fnZ+9aQa108XwYBiyoEQhOwqPmQ7eWs1uH3A/thQHTvrWYjBPIuXKqzegQViCzb/3wPD3Hkb3ByeyTcqVOf/SyLCfubfxPbjmlsndWz2W52yGg9eICzLMLy8QVwdITjYIOHr8dcK0h3P0sxjx9h4gPA+asnTGsQVbJ7phGtxXGH8mxkx13ZjK899kIbe3e3NQjd2nPtcVnDRWkauaw3oc7WDktg3cNZ/Vh0hjduH+DFoe+rKqSFg0M/GR+EubN6MFSuZFgAz9Xc3d9TpNPGgNglykI9SJZZKQ+ounJla/v6nb9zu2hxHCbQDYnVwlmt04Y0tCATRWxN3sdZvV6BoWCuXwdcFzftu7j9Wg7Aw+nGY7wn8XODAIcaYvXpKfv/YgF85CPAK68A86LAeR5isdi+hAInH3bp8pe69kSs/ZJQbPLkOeAFnfvAsoBv/3YmWF+50jtm4BQ7rkDpQQGaWD3WYaA5wW0ctVM6q9Fpo5aNSWWJOHcRea32UccBfuiH2PWViQHinh3aiS8KJOUMYbS/M82zSxQqJnpVIa88eJ4m2kaEw6al9CXaYEB0J7iexxywMmd1QRdS/FDBTeP3wILYPupaJTYyHcUEA8InpFIMSJ4zd2J0MWL15tYpIru1IHjpJRwcXMNqw/4dVlvJcxzGt1UJSZx5GWg+X7Zro1SJM/znNe+Zfe+FsfZstFBLGs7qmZthnew/Jr386QovfPbHEf3ZH0WS/EWAXcHmEmqJ1VmGB+kch4vT/f+OGJMVn1m8rtgCWtNZ7TvFKMoqSSzG/twXA2JVKFS5G032g/47UTnfaFrJCZivkS4LIwyIilNb2bRQNQw4q/Naf7Oidb6D7y8+du3tUgU0nNXu/u9EXqFfMgxIR6xOdDqXujXgrC4qAlYD487qgjKHaQwtij/nopWlu3MzlJdjsjEsNsfzSr5op6wRPA++vR4WqwV2a9971mabqI2o3H0/8Q0x7U0AMAG4zPh7sT2vMMndEMcZYlZTNlhcbDnr3ZveAAPCxm7JPWnwfAkcjCqDpnFW62JA/JGAxRT6eJEhJzwP49M19DAnfIW8dJT3rPjZWrWHtrE3tuTwEEfBKzi5V+CpPX/8yQmLLnn3u4GPfpRdb1F5DnjIMJv52Gz6ESfKWq+xKQ4QHYdAbuPI3+DV2ynOa4eJzc7x9ns9D55d7eesfn3VEavZ38nSDl7E8/ZCromKY2B2mI2L1WOd6E2WwwXkDVzWXnXprH6L1OnKYc7qfcTq2Rlu3xsZWDnnLvAlg3O3goA5q1cDg06aXgj7lY4BqQfRGkVawpEtSiwL+K//a+C7v5u1jLTOk2FAxpzVRAzIELNaXBtNxzpbPI5gQNYWc1b7PnDlCo6DDU5usZfG2cZlvKeWWH3gJTjdMwTrL/0lRhf5n/4nxiJdrdA4qxfRVqz27XIYr5JlNH7gHi+JPAfjrMsmTFev9p8Nx2Fc5SHHOtEJb4E5OKVFbB20PYehCpTOEVrgD2vxGwiNEKJiF9dgDwhsrgvPGher09Ld31ntjgcp0ZmXame1CQZE6awu6YFiXmDLw26oIULAdoI35Kw2wYDkkpbfPKc5//ZsxYsfxIjclm3jU5/C0RFwcs6vefva78GoLWp9N+EoC1uHdSiq2RRV/50s5wGLOhgQN8Um2f8zvvtqipuzM4ROgWS9HRsyjvHVYlZnGf7dnefw/ucf7P93PG+QI5lsKtaarDN22zaCPTpN0szSw4DYFQrVe0YsdCnj1qAATA/pGnKUkuaGgq+tDFUjtv5D7fprNmyIHSFj3MtN4elttO3DrBbOah1mNYDIL/sYEFNntUqgoTqgcUHOan5vqXQkE07tsLPahkd5vvhGSBarkQIAtOecvlMMG1p0N4ctazQQEyAIigAcV527UdQOLbhyD6cuWaweuGdJGJChjJC6Rq7b1ds6WSVaoa65WJ3rY0BCZzBg8SKc1QBIc07Pw+g9q/1OGEKWAHrYksUCR0HCDGB7ip6f/CTwZV8GfMd3AL/n9+yK1dmnPgv/r/0VzOo11joYbH4QKwwaZ/XJ3Qznsct0hI6zem9m9Z2YYW45jtStCxQFsElsRG1UjOcx0+CeYnWSWizEcyzrbczcZ4CxuhSrp6lLsfotUmcbhz3M+2JAxsTqokBauQj3cRSGIWZuhs16YMKSJOQFCYDpndUjoYVFWqqZn297G8M/tEU112UYkHLMWa15DfZgiVI5mmwiOvxt69jeitXLJWNS32cnc5YwRvUuBiTB2fl+/77zc+CP/lHGywoC9ntwZ3WDAdkzuJKUUL+PWC1ERd3gxoFNgCbcVNNZ7VgVynTCTRtg+PlqnNV6hwTUAVVNZZk2T3avQI48Z63qwZ4nLRylqnZ6EyFlgIXdYEAIE1yVuG4S/qVMpDYJWBSu9aIvKldFxTyzFLHasjhmRuKmEwxNXTFlzwljfJIydM1iwb7w8Y/j8KDGyVmrO6B1zNDJ1R1HwvFFQMwMnqsI19Pp4BH31UAoak7BgHh6AYsPXk9w7G9YgGZLeMky1tyj46y++0aJmZthfqDxjI2wXxuxWtdF5tVIy4EAz7pGllv7bwbsMW4x4YvA6lXNN/jGFTlgcYxZrTvGWtb2nu1uWlHDgXn5gXyz1YhZvUcrcazrrPY82FaNKtuDWa3trK4RdzEgkiBZrVLNN0zF6gEhifQciM6ogU1sADSxWnVcA/Fz6/yT3ztlWrB8Gc3uS98u98CA6GG3GqFWEeoNgBYS7dQoZfeBwTx2PGCRiAEZ6gYwvbeU3G4CYx3gmxaKrpiyZOYQVx+3NIoBEULiVNk+FZ9zUjB5LpTYliovaXPZkVwbFMX+JizLwuGywkkWbVuWR+rsDDg+Br76q5mcseOsvn8O384xL06wkcQHKStNmbM9CIDjYxz5Gzy8V+HBysdxsJEHLI50dwPA+VnNnNXPPgsAWLobnJ8Dceaw+XhLrGb5IHt8FnmOJLcRenvcYwMmIQBAWSKr3Eux+k2sS7H6LVKnG39vZ/XN6Ay37488VUXBnNUj2jcAwGcD0cPzgYlQmiIrXfghbUAfZVZrsopZeIr6W8pUwaweOE9HhGbIuFbAbnv2vtWwRAf+fSYYkJEdyNXGZhgQzwMWCyZGPyyBusZZzMI6ewGL5/tNBjYb4P3vB/7H/5GF765WAMqSOatn/HP1PIYBKS8YA6I6dG73mdVDNZT2zqvKCrlrf+RcXbtUi9VlSWsdHOpc4MnslMm472PQNUHCNQinz5BYresgGttcoDoUXR7iKrsP6ppjQAg8VTHBkzmrCyJaBC2xWhawSFyQCReVbEFiJPoA8P0aqSycJ8+xKf1Ro0SvNMTqyMmBF19kqeGrFY7qhzhZ8b/fEatZ8PAQs5omKAIYZB2y9lHCpugIBkQ7YNFNsU73f3ge3M5xJVyzx6L178tzlnmjI1b/y48G+KYnflWv42iEAZxsKvb5a65KggDDnSa6i/6xcYuKFLAsuE6FQhb+VddsI9AACSQ1CJiI1SqHouiIIWJAVJ0m2iicdgnn40ArMfmdOIbGKggBi0GFpIsB4ZkQJhgQi5/TTpkELPoDKDPqhuCQAxowFBQVm9giI4QYYMruA/ncKEsqdYegqoYctaKE015HrBZCrUKsJrmKMSAommxcXaSzWpU7QcWANOOh6hrQAxaVAcHC1EbAHzi+IieFFxOrJ3RWG6DnXFdtvmlMIkTGuBQJBGzHrj3XtUdHNU7SGU5eXe31/avV1nMRBB1nNc8Xm9UbLbG6TlL2/AqxOohxclLjM3cP8LaDu7vzJh1n9YZjRG7eBAAs7TXOTqpt7pGYM/k+R9bscc3imL0X5+74nGusE/3SWf2m16VY/RYpJhzuIVb7PkuNjUceTh1nteviWrjCvbOBny3CAi4KA0JgVg8GLAoMyL4vSotNsKz2OfUOWrDWVF1m9UUGLI7saq7azurFgonRJ4wJdpaHOAjS7UAfBFh6Cc5W+/371mvWffO938s2TIWzekes5knUaeGqNwGoSbxjok9db53VGgKNa5VqliiAPCn1BHB+XMeqB510AKblphkwq73A3gsDouXQcoeDXgAARcGwJhruT+Z0GnAo6qJ7WseVYkB4+BeJL+2qA1dNnNV24LHrpgq+okzCwNPEJSJ4kdfkcwWAwKuZmNQVFQ2c1dJ/f6fi0wyRm7OBi2Ogjjav4+HK200lBwDH4TiLAbGaiJjB0LnyTVFv3+4CfsyxTdEsl4TNjhxz7qVazOoHd0tcCfjqqDUmZRlbp+iI1V94zcWLh3e0xWpAHVSWxLU+sxrsFNIuUqFdfL4V+JpBZUPO6prArLYsuA7k4h/fvKS685QM4KpCDZA5tdJzNXh3AS3XX3fcKkAOsd3LWV1qYkA4o1OJfwAY0k8ndJhX6Fd9DEjJONbRjHAPAOqx61HDgDQuVcWfU8Vq2x5kwpOd1UJYVrigs7jUD8HjrOIxDEhc6t0PgwHBBs5qp82B7hyTfF1HAxZpm3eOo3bq1qUBrsKtBzvkSGO34ADL5gZFgbT09n9vtWoMZ5Zk9rRitUGot+fWyu6NPAfNJLIHFkonEPLo2Mar62P8J99xba/vX62A+Zz9uitW5ykzJsyqcy2xOjnPGSaPi9XXwhVu33fx0u0lXjy8zdIcRe2pQQBcrPYT4LHHAAAHOMf5Sck2d/18u44Sm7dD5j5RWcY2Xmd7XN9GrB7KNnK0pprtYwO4FKsN61KsfitUXeM02dNZ3UxARo6p46wWYvVqwG7RTBqnDb4iteA4DhP+hjons4q9gHRGnz1FBO32bGu4PZuKAdnHWb2OmeAA12XOai/GGReVz7IIB2HrRvJ9FrQ5FC7Yqs1m+7JcLDoYkPl2whZ4FWuhVonVdc1Tuff7uU2Jz2sgAK1Z6OwrKg4tynkVSaFGzAycK9uFH8HhUJ3VA+FEFKeP5w+3+ImWZy0HrFiQxXs4q3U3F1QTJpPF7hCbsiZyoB0HnlhEt5+HukZeEtEigHqcFc8AUfRpxOquQ1FgUIhidYNVkDmrCx/RXH8TwEIL0aMoJlZnbODiLYlH1QO88cDvO249b9g5Q2UA74EBKWrCe8YumaNWVnXNQnd0HESOg7lmwOKD+zWOAw5JLHbF6uvX9ZjVaczdhJQsh3iAo0lxVvs1w9YMfGZai37hhB/sCKF1xbgDog8prI4fVDnfoKDcxGFVwldzrtNiQKZxVg8xq2kbuJnCUSuOW9UWbF/vnKNQggERTlqqWK0yCFDd9cC2e2cA1UDtjFJ2XxqYA5wRZrURBkQhfDFnteZ9K/ivI87qjeY8bmxzgeQqBuA6kAcPiw7BqZ3V4rgm6BqFU5c6N3JVbGU+56Q8X7AseE7Fulu7RiyREUMQq8eQW02GA0WsVnSKAqBfV4ULvJkXERnjyg1n8Q7f8zM7uubgFx88idVqv89i2FnN3nOz4lyLWX12UrFu6zAEjo+x8FLE6wqffPAYXrx5LndW7yFWn8Uull4KHB0x3Ki7wdntmL0v24ZK32fvw33Eap0uobGuqLJETpxvjT0Hl7VfXYrVb4UqCpxlIQ6iYnzAFA/z2HOhE8oixOr1wCxbTEYJ7Djx92WVF5Z+Cw5f6JUDzOoyK/VT38eQJZxBpe+sVjgxeFVpznh0FGf1GAYkdrBwO87qMzYZOs0iHEStA/hMsEnS/V6uwlkNAMtlJ2Bxtn2B267NXI9jorLuvSWu10A7vfZu6RhLFJyHruPa58d1rAqFqt1XCJdTMqu5A5iSTu/4DqqBFj9kmfYiZy/GWZ6zzSsdsXosYJGImHGsCkWqcuQ48Jw9ula6xVs9ewJw+xnQdWvz8wXQ/7zqmp4iD9GibcsdigbOat+rkSkwIGVtwws1V/zckTEo+gCIz3ImSs9mwJUrAIDD6iFu3fOYiL1cbr9ZbFjI7gGALk7ssSmaV87+3HZ+zMFN0apCVjF25d6fGQED8vAEUmd1ngMvvAB89rN7HwppUjE3oaazOnDUTtUkrvU5muDOatn9Kkp30b/HuGUW/iV35xWVDcejhaIqu9lMOLUjrf9UDIgfWn0MSBvfRAyGZYLiCLNaA6nAXI8jrdRFwQRAzZshDOo+BoS7/bTGlnY5Diyr7gdFXxQGxMhZPYBFMglYHGBWU8XPMTGl2bgjrBEGxeo81wu0xsVhQBxXwS5v5rHahwQchzHhZSYRwzFWKqyDuKYVx3UUoio/V0e30wZgGSFuJd8QEu8tzfBWAKOh1klqsfe35jrJtmp5R6PJe2ZgQ6zpEiRhQCrkqvmhLgbkqotffPAEkmS/7x8SqxnyrcA8fzicRdap89MKB17CJjxHRwCAdx98Ab9w/ynceKLzOeo4q2OPYUDCEDg4YB3ct9bcWd26f/j7MCv2ZFaX7n5ZDuJcVSK4wWbraIf3Ze1Vl2L1W6GyDKdZhMPFHjf7PrvlQOsltMfP52L1/c0ezmqqi0zxIJNa38VCb8RZ7ei6X8cGHYqI4A4k3ovDJgRhfU+xep3yFF/OrA6cgjmn8xxnWYjDqPWG832ETo443e+zaDurl8uOs7ql+YxeV2rL75joUxTISnfvNiwAWyf8wEZIznlguo4/x6oH+WYASBMmKUOSH5PqztvH/ZlVDrxQ71nw7Gp0YV4DmozxAYeiEQZE4aoV9yuVp+rxNv2OiEB2PQKjzmrSQg8th70KA0JkVgd+LcfM5Dlb7Oqu+F0ekDvk2gcQnxcMAxJFLJ0GwFFxDy+9sWQi68HBzjFdu1SL1eLa6n5mLk+RH3jPFLoBi7bN295teQcLBbXkMp6gFrP61Nk6qzsYkKtX2amdn+93rCytWWDhXpOY7Tn7A/cB2VkdQI6tEVWWyHQ2RvcJWKxt0kbjkLOazKxub4ZIwhDF90x5roz/S3NWe77d3wxrukwIWQP8ZAfnXPzdZQeaqIaBzRVxXPG9OsWc1f7uNeDCt0VKq4OatU5FIgHbc1F2hxEE4OY8FX9uyKyWDt2GGJChMMQsrfUxIAIxM8R/5feG5e9/3DFnNQDyxpXSWU0NiR7rkLuAUNAir9lGPmGMUXY08k0ACmoJYLeN9P3VbLISDjqyRqBiQLyBTdGaf49uea4CjYXW5gLRWa3cvCxLlLUNx9/vfI+u2vjkyeNIMw2x+tZLwA/8AIL//R9txeqybJBvMyvB5sGerdJgzuqll7AJz8EBYNv46psv49nlfVjHR7vfzOdao8ZJAOeptz3ucomr4Qr3XokZNqsnVu+JAeGbw1pi9UDAokkQvQUMhyRf1mhditVvhdJxKYqHeWyA4Jy7fZ3VV8M17q0HTqARq6cVFEkOPeFSHcOATO2sFmFtOsKXENaH1iJpqd+aOrZTyGuVugwDwsVqywKsuuTM6ggHs9aJBQFCN0ey58uy7axeLDoBi/PWfTImfF4QYkZsLmiJ1U3A4jAP3dVlVgtxYsClCYA0YaqBEWa13iEBjF9bvlums8jZx1ndYBy0MCDjDkXKYtex6uF2X6KwLA0tbCZLNHFG2YpGHbd5qRZPeW7AfgVr05cygClIJGAr+myGJ4yb8xKRwzEg8zngeTiyTvDTrz6Fdx3f2lpV+DFdVcgmwJyaNcGNsScGRGsjaCisjv+svHLgexr3l+Ng7mXYZPu/l/IM8Gz2M6yqaHTNLGMf6dd+LfDTP73fsdIECHQxINxZnSby+50qVrP7dThwVttZPTSHaYQUAlZB3AcyZzVVrLbZeFeUkuBGw+ArZcCiwRjrh3Z/3BKdccSxcJ+Axbq2tFENjFW8BxpLc6wNQyDpClRlSdsMFKW6BuI9Q3Gm7ZO7QdhsdqxKbXYzEasHmNXkELwRl2IaV2zjTnONEDjFsPhF2BxunNWyRSg1KByKeRFgxq8Xa0XZO1yMMZQxdkCwJwf2QWzeya8B9boCrJNN6azWyVroniw/Rq/qGklus3wIzXvWtSr5c2CEAVFvLpDnsq4LzxpGSwDYe2Pw8NhBXrlI9wkXBLA6LbD4lz8CPHyI4PXPbuc8mw2b6zklZm6Gzd39OSBn59YWA2LbwOEhPvT4S/jamy83TuummjFr5KBVhTj3MPP4vOvgAE/MTnHrFY4gCnbFaoYB2eOacXrAvobMQb3E5P01xi6/rL3qUqx+K1TKElitcI+nTjzMYwMaXzztxfMRGJB4rv6esmRtxLqC4hgGhPKiEOFnKvdrzRys2oLimIjAXR5ak5umHVH9dxq+9kVgQBKPYUC4WA0AKKsWeqZ1gCBgGJBsv2GjaBk9Gmc1D2zZ2e3cQ6xmDuC9fuz+xxVitaabcJAlipYTXnMS5liKwD4AdUGciI0w3sjp9O5IYJ248TTd5WOBP3la6TmIRCveIAZEE93THFdxH4jrSuSpel7dR2sUBe0Z2B60Oc5OmQhUaC3KVM5q4oF9H4wBLAlYBKAvpnjefs7qVbkNWLQs4MoVHPoxPnt+HV92o5927toDGBDxPiCMW5ZVD+KLCkKr/mB7dlkiKzXHAoEByTQ+i9a/KUDauH3ynH3mH/oQ8D3fA/wv/8v4obKsZtgSHWf1yH0QxyAFLAahJcfWiBJBVfu2049hQKiufbTuAxWzmooEUuFFjJnVFxCwGPKA4I5Qa8LvH51z5Tl7rrVD8Epkis0VAGRndRiCYUA6gj0A8iajMjDcpI16hCtM2my1bbgOe/dLA9MNmNVsviH5M822/50aEauzpGIbd5r31j5itfjevQ8r0GAK9BwAuqCo2mSrbH0zCz8P11YgIw26zhpRWeHUpaKGlKKqQfcKMIBdE85qzfBWdrK8Q0yBg0kKD6Gr3zXt2SVyGS6xqlgXKfE9o8KAkLEt/FyV73DNsfboKvu+JN/v+1evnGBhM+Ra4BRIhVFjs0FWsXObuRnW9+K9jgcAZ2fAgRdv51zHx3jX8S385V//wwNi9chzyUOwrDBgc+7lEo/PTnHrVs3F6tZn4jhwHKCsJZvi3crz/TuZxCbrmLOa8v7aB295WaN1KVa/FUowPfYRfjyPpaWOidUiQXyfdZ7j4NCPcZKG6hA8A4eiOB9ZkTEglmTCLIqLCI4Nbcf20LkyJ52mWO2OByzmKXeBazrI2E7h8LetMw9zL2uY1QBgVSWqrMCDdI6j+S6zOnRyxJnGS/vOHeCHfgiLT3+MidViN7mtuu2xCUCaNLou45ulw2K1H06MmBFCnebCwbUqJQakKms4lFCWvZjVeofcOe6YWE1hKKra5gAk65ItyrSc1aW63Ve0kBLbiFXsPBMhxXUlDiLBEjXFgKic1ZQ2TwBeYEsxICxBXXPDplVBACWzmv1gAgZkwFErKl5XmLnZtiXk+BhHPpvMv+uZ1e4374uYmToYloKbwkh7diP66J3n3ONitWpe0KqqAux6+3mGVoaYr5My/gr61m8F/vJfBj760fEfnyZA4OTTOqszizGrNT+0IABzVg9gQLSc1WMBi4auP5VDsahsOA4tXM9za+VxAVwABsTAWT1z+8zqsmQCiqeY343VRTirxQbuPs5qXQzIzGIYkM6mKIV/3ZRKoLhAZzUJ4wVs+b+K8RCAPqpBPLdKZzWRWS1a6gcwIDRndY40H5hTivtB11mtyjOZYuNK6azWPuQwY5yv58icdcU1KEp6+LQq0Jp8v4rj+pY8ILgs9YKB26WacwKNYzv0NQ0dQgCWOOHJhh5w9J7KCS/Wc0R+/Zizet9n4fAqu57H0X7YjtXrZwzxCS5Wr/nPW6/ZutcumNngfjKq+4o6X4E5q8Wc6+rV7R92xWqhQYx1+QvHgnBOHhzgidkJXr/tsIDF9j1itbo8xg6ss9EmznUg04WaubDFwVw6q03qUqx+K1SWsQnDPouyfdNSxctiH2e1xVhYgxxNaoAKZ+qqeD4N30vTWe3YAwJwnnPH27QucDMMyICz2gADkg1NRKsKq9xnYrXjNGL10t1gdVrilfUxnrqy2X6/7yNy8713dgEAf+7PAbduYflvf7QJWBTn1z5XAGrh0wADMpjGLLjK2hiQYWc1FQPiDLg0GQ6H0IommNVDvEcDDtekzuo9dqDTpNZzPop7YKCd3qSNWMouN2xR93yLORQ7rr+iJjwDogaY1QUla6B1rnJmdaU/brfK9yHFKpQJIWwWAByHBeuNBSxuaoaBEGL1lSs48jdwrRIvPtvpZxzDgAin6sQ5DgID4mqGTA65vZrOKB3MjGVh7hdYF/64ywXA2WmNQ3f7PonsBEnM7meBAXFd4Ou+br+gxSwDfEI2wFDQZpJYZAyIlLEuir9r/EDTWT2EAalpY7fvKwQPA+EPGBCWDdqzHVexwdKE2NLGQ8d3+mJSUSAufUQ+Uazeg1kNQJ8r7KhFSoDNNxzdTi60MCCta1DnBEG9XSoGsEHA4j4YEMpmq+Oox8OqrGkuTcHUVYjVJuaAQQxIUrOxUNdZbReDYrU2dg0YDcQEYMZrVvHrifeWEhNn4qxWdYSAaMBqH1cmgtc1e24NnNXSd4LAV2k0LzXleUy3kD0MRYGkIIjgLssJkQl/JqHeQ11nxszqicRqbxHgWniOq1G8jzcAq5O8JVbnSDf85202bN3LndV/5u8/j7/wF/Y6BZytHBz48VZY/oZv2P5hO88FGHcri0pT1qUrbrKDAzw+O8Xr94K+sxpg9xWA0WA2nfetONcLCli8dFab16VY/RaoOuE7T/ssykTb4JBICWxfFhptqQCbzEqrqpBThC/BjlPgD/KC70LrTG6E61GFARFBQrrv9X1wFbqLPdvmAYuK4CsYYkCGNi14UJcfWOz6RhFg2zhw1ji9z7EDbSHX91kAY+7u5aRDngEnJwCApZ82AYvi/Joa2wQwCO90rQpFMiGzeowlCpa0THZWK+7ZogDNjcFxHbUMik4ValvHVV2IKsnYhIKwwTI0uUkEp3bf4wrnzIjo43j619W1K5QKZrUJX1rqfBTOakraOz9fcRzZuVK1CS+wpZP8IqdzGQGBVegfN9lUiNyMhAHx7XFndRLXWwwIAFy9igM/wVfd+By848XuNwtBUfHuIl9b3hGiDGThm61azGoMu72oYtI8LLHOA/U7sVUPXk9YuGIYNl06yRlbcAhnNcByLR8+HP/ZaWYxJJCus3rgPkhSi3R/BaGCsS5KFwOyj2uf+NwqhXUe+GRgqpUigcxZomoXOHVDsOns6orVhYfIH7+X5Sc7sigVGBDtd2I1uMmWJjWpGyCaWYgLf2fRX2SVEb5JGYB2Uc7qZtyidBjwwD6Z+9XQTanMsiA6dcfmRlnG3JNan5voMhlYK+ZxoT2XbeYvkpMtS7DNZkoInmJj3CgkWpgOBgIWycxqFQO5sOiiqmojwGCMBbizWoUBqVwEEeG43NAiXdvnOcvMIjqrlWI1MSdlDANCMl7sgZZgP3zPGzcM8Ve/7m8jsPNRnRYAVrGLhZcAV68idAqk8VaszisH/tzD+669gv/q634er7++3ymcrR0svXQrLL/jHcCv//VsvvzCC7vfvCeKtIpTtlYUx1wusfRTrDY24sLHLOx81p43jKAUlefsuPuMXWN6CTdzXGJA3ry6FKvfApVvcjZh2NNZ7duFup1BlAiT2ZfV6rpY+glWJ0NcYcKLne+UqsRqkqNUTBhV10CwRHWZsnuIqtpIgbHgKzAMCEX8bAZflbDMmU7NfWVZwMEBDv0Yn//kBsfBZvdFatuwPQdVbY224NQ10PR4A1i4CVbnbFOiN1l1R9JyuXOCem8NOavzytETfYYWI7yo4Z3KoBewxRMJA8KPK722ZcndeQRRdSQYNVmXTPTRdD2yyc0ABiSu9RLExT0wIPoAgOVMyKw2bFH3PO5Q7LSoZ6VmAF67VJuNJu1tYIsnJQaE4PYTxZjV/cXTZl0zTMdFYEDqGnFisYDFKGJfe8c74NoV/s1H/jQD73eO6VoD44voXNCd4Aq318i4pY0BUTlf+blS2K/zoMC6CNTvxFY9fCNl75TZDAhDhE6B+IRtxOf57mvIVmjq7cpywKcGLKbyP04ymwl/mveXFzpyZ5oowf7c16HmjgTDGvBvVc8W6poszgADbkITDIhnMUFR4aakaqrSzbuyRFx6u23HOjXiziI5oN3xHIdkU+m9E3mFc6cXsBjHYO9tKrNaOB+708OqYrk7FFbDGAaEKig66vGQ7NIU/37ZPWBwrqwjRJ1FlKU1Gwt1xi3bRuAyPJGqM6Z53+o4qwNneqQCxMb4QNgqpUOQz+Ok+D2DzQXHVYufDQaEItirMCAXFbAo8FUUZzXvYpLypXn43V6d3Z1jqjjQjUloYgwI2Vk91tmri8QJQ/zOF34egZ0p5y/tWqUe5m4GXLnCnNUip4OL1e6zT+JquMb/8YWP4v79/U7hbOPsMqsB4Du+g3VQHx7ufnODIh0e79KzlL2/Ws5qAEBZYl34mEWd6zeEl2mXDjKw0UsUn/EUzuoxh/llDdalWP0WqHSVs13zfd4YTVrquLMa6LCDR4575G9wcn9iDIjrwrFqtUhHaZkSwt9A0ndRO9DVp+A4wzt6xDbawfZsEMVP24bnKCYgomQ7j8fHOPASfOxnMjy/vLd1GIoKAjYpGtnaTVMgKLYpw0svwfmDAus1WKBjBwPiOwWyeOjeIrj2xYJfFYBGZVYP8dAhnPD6YrVrqzsMyqKmLZ5GnD5kt65oxVJciHhdIdJtp2+caepvoWBABp3wYpFG2gRQjFuGLepSAVi0qAdEIcXz4MscKUJQJYrVUpGuro0S7wEWgJZWfQZwvKnZfaUjUAKNWJ0NceOqCnHuIvJaDjXuFrEs9O/1xlk9wqymbrKpxq0sQ1nb+wXHtA87FLDYdANoitVRxTAgezirNw/TLQ88ihC5GTYnW2d1+x586ing1VeHj5dm9v7zIlEjmxZMrNbHgFge7zRRrUiEQ003YFF1WQ14qsxFJ3coToIB6aJ7iprsphwKFDNl+NfdTfeyZG3HoSkGRIFqiCuS+3UMA5IkIInV0dzuOauZWK1/rKZsmwk0ZcckYeL83MtZrX/YxiQyJVd4QEwzcgCPYUBEl4nmwQO/HmTtN+9bXWa14j1D7hCEouMMaCGRtA/JO1sVgZgGnYdeYKsFezE3IqBQmu4o1YagkbN6AANCDFhU8vaLAklJY1a7ViU9JjkIEcPoGvZ50RCM0o279oH59+1VXNkPrHxcrK5rlBU3+h0f73aTrdm63Hr2GQDAtex13Lu733v0PHYZs7o95xLugm7tKdIm5znbIBU7F9wUcujHeGNziFl3zTOy9myKJFYPM6t1lx07x750VhvVpVj9Fqh0XbDW9z0DFvcSq3VbUER7n2oBTd2FFjvbKmd1SWjBEW7tAVh+WVskZ7Vt1ajyIWc1QaxWTUB45VlN4hU3bXM6IXjHxzj0Y3zsF208v7zPerLb5ftskTfyttycFZgXp+w3N29i4aU4Py1x78TFlWDdE6sDe0CsprY8C/erame7KFhrj46zekxEAB0DMuisLi0ys1q5u0/pBGidr21VyvDKzYoH1Wm6Hlk4rPpbtDEge7BfAdAcVJYiRd4UreFLuIRNizrdWe3ZZb+dXCyg9+2wkZ1r1Wn9b4QkTXxTq4KZw9yfnU2xzUbf6QWgWTilQ9k0ec6clWHrM23/nK6zemx8MWBWqxZkALYbzb6mWD30niFuWnged+nu4axOVzlzLUcREIZYuCnWJ+y+yTpDxfPPj3Ors9wiOauHgsoasZpwfwEYdVbvvTHaBLWpndVUl6Yf2sMBi0TUkMr1Z+J4U4aCGmJAmhu9N8b65s5qxfsrWZf6GyFi3B7YwE0SsA1cXWf1wkVSejtjLFX4bsqy4MpMEibBjXsELFIcb45roVShGnLQWv/F2C0bBsQG0wW485qARV18USDPhhAVr/WxW0POahMEhnI9Y8gCV5o5RJ4H4fNSOqBhgJVAy9ikCrGlOqsDxbUtS1S1DccnmA5Uc06gwWKFgeb4PYBUaPKtTDZCpnRWT8ysFmJuaKVIxjIWswwWeLbLfL67QS/+8sEBcHCAq94Z7t/Zb4P2LPYYs3ofg4AwoY04q5NzPi8Ux+QO7cdnp3jp9AaiWefvj821eBVJwe6HfQYG24bnMJSttMvk0ln9ptelWP0WqHRT7s9m9Dw4dj2OFM5zvSCVMZcqdfE0FHCBVju5prN6zE1ZUNKjx9p6iG1+g+3ZaO3ETy1WZxlzg7Unoleu4KnFQ/zoJ59hzuorVzoHlSzyJLW+vcLMSVlC8LPPMldjXOLzdyI8t7wvdVY3bUrdom6EeN6w6JNlqGoLTqAxy22C9RR/XtdkxrhrK8RP8IkY0emjRAo0zhG9QwIAHEfu1OW1Wdf67Nd9Fuappbcwb0QfxZ9T0+mHRHCBGbKJzGpfIiaVJWub1J3ct85XOnEuCuS1Jre9fdjAQd4NgxQtnh7RoQjAjxzm9OncDPEGNGb1PhiQPGdiVdfJ8Sf+BPDhDwPf+q29Yw6iGgyc1YPvmYzz4DVtHo6rDn2iuv6azqw9xOrkLNuGV4YhFl7aYMXyrIafnDVuzGefBb7wheHjpbmtz6wW94Fsr7Wuyc7qfcTqurZg+7qbbMNOH4pA4weWHAMisjyozGqPB8N2xWoDfv24m5I+HlpWvXvfliXbEDToXmGLUvlnlia1vvvV5Rk0+zirNa9vtOAYkLazOrGYk5bMVwFcp+477CnhkqL2CFgkYUBcsPt1yhC8xlkt+TMDdI/YbFViQHKLBSwSnNXJAGs/jqF9P9iuzTYBFM5qEwyIepONGD495IQX72/Co6AMg6zZs0F1Vg9dA5OARc9XvBNkGUN7H1TRzcePm1Ac20MYEKqoDIVBpHVc16JtXO3FrN73uFzMDaxsNHulmeCEITCb8bkv/zMx3vs+R4QU2/DFoSoKnKUhlv6emKjm3z8iVot5oRCruZnh6x77NP7dnecxuz7vHXewi00cV+Cx9nznDG0woSzZ/M0lrJN4t1FeKoTwy9qrLsXqt0AxDEi+326W47CXYF0PPxi6zmrPg2tXcv4U0OKG7Xe4plwXjj3sKKVjQIaZ1Y49MVaCOHEeSo4GiO5yjAy+wHawby/2j4/xX3zpT+E73/FR/Lobn+s7q8e43bzW9xPGy5rNtoJ3UeKzt2d9sZoLn8oXppGzehgDAkB78Tjo1OXIEtfW5McNYSXQYihSW9FkE0bhpqS400R7siL4Kd4Q2MKiK2RgctOESelgQOxhJBAAMgtcusipa3o6PQAv4ONBFwNSdFy/WgflrvWuWC2EdaqzWmBAOu30SekipPK1AfgzlwXWdVTFZvGs24/HWcVDoo+4xj2O4o0bwLd/O3p/0Liy1JtsJEFROLYHxq3eJuMeZfsDoahEZvUYu75dyTnHmQlntZdifcr+XvaZL8D7638F+MEfBF57DYsFsNkMHy8rbOYmpDCrMzlTNi74JovueDC2iSucpfuO33sFLNIwICxgUS5WFwQWuigVBqQRqwkiQuP4kzqrJ2BWd8bYjSzQad8aYVancaXXFQQ0nQBj3UYUznq4cPsYkIQHjBqI1Q1+rnNtAdDEtH0wIATH21AIHhlXweeceReDAhh3sg0iZlIesKh7D4TDzurNBtrzOGl4KbZfomJAGrSG0llNC+90Ve5XEwyIyigkNix01568GK5Ccs+K3xM72ZTOah2UQreEs1Y25zJgVqvWM0aboqrrWtfGzmrl1IhvYO891loWEASMP30+krAo3NNBsBWrxVS6LVYfHbFf72E2QJriLA8ZUnqf+0yMWSP5acmqYKKyuBksC7h2Db/3S/4troRrzB476B0XwOick4nV+4+JY2I1APpmkCt5J16WVl2K1W+B0nJWW9Z+D7PujumeGBDSwtxSs3pNAhaV469wEOmKdGMiAmc+Op7eY6VsdeXFdnb1J3hjzuoqzRlLsoMBcewa//1X/WO8eHinL1ZzR1IvqK1Tm5OMTXKjCLh6FQBglQVeurVgYnX7Z3KRciyobHKHorguOmLHmFO3KNiChMDXdqxKHvQCoCgNFk8Daedkp48QlhXols0GJGZ1MOAeAoA41WzTF8/sQJeFBZAXpVInvFiQkJnVEg50WZoxq10XniVxrRcFW+wTndVSsbookBQeIn9cwFRVMHfZIrqHAQENA+I4DAMyRC+SYUCGSvDrB9o8SW3EQ90Q/DzF92nVRbBfhUN1H7FaLEo4s3rhpVidsXPJ7q+YM/DhQ+Cv/BWETt7O55VWLriyU4nVeU7vXtjDWS1+/r7HG+0O0wnIbpUX2HI+aaEZut2pZh6jwoBQAsUCe0BYJ4aqAYDn9ZnVprkAI9zLxlmt+U70nT0wIARntTvz2efVxoCkFlvgUwMWAbgirKx90iYOzdGARdo967g8vFOJaiDMt2wW3F7IXHQm862ReyvLeNisrrM6AMuGGHJW62SE8HMFMIzAoKAaZB1ngFnuxpizurJJc6PGAS1zVtcGc0PFGFuV9FwAYJhZzb6BJlZ7qq4Qo4BFOWPcZFNU2cEjjCcUpJ1AAin0ySov9TawASAIEDoFkrNhsTo7T9l8KgyBKIJt1ajFeNQ2qXGx2qmL8SlcmuI8C7Gc7/l+HONA80pWBeuWbZsxr15F5Ob4Nx/503j2yxa947oDCMrmuHGttVZUdkMARiHRAOB9yfPIf9NvMXqvfrHXpVj9FqjGkbHvC0NwhQd2cRqxcd+Hh+9oDguKBPbpkEMRQF7arAVH5wUkzrVSt9AWVLF6SETgrVi2o/dSczxbHXyFCTAgivugYaF3xOqdkjirA6dAthnBgJxkmHspE6u5s/rdN27jRz7+DJ5b3ttNDt53I4QaVDYm+mjjOgZEhKKgLaKHghABFNRJ/tC1NUg7b1r8FJ0WjbNas0U/dHOkA2L1amNj4aX7L8oa0Uc9FtQAmVk9tMihi9W2tI06LjxEEemQagyIEFQNMCC9cxXIEgNndbRwEHd4qoBw/tEDFqUipSi+gNr7Go88s4JRSkJj2QP4IjFxnlispo6xymN2ijGr2xiQBKsz9m/JNzkTWwDg/n1ED18bFqvrGqhrtn7UFqtzufiX56wjQHcBDciduu3SdVE1HSHq7jAyBiSUBLjyY5aVDdsjOqt9+TwmLyx4unM4Xo3o0z3XhotPOtXtPdO+EQQGhNq90jir0XfVQn/xDKDVbaT+FiYwE9AdkmsQp7a5s9rjXN2pxGr+d2pZe1RZoqxtkgYwhN8zwlW4tRSHI+YapFZyx2Eu1dyW3lsNEonKrFYFLMbQvx8G3gmkTlleF8KsviAzh+M7qGQGpKabkTY3UmFATHjNAHsnZJJAa2Nntcq1zg0NNLFaPu9uQlEJg4HjO2zjShHkS/q8RjIMipywiRuGbB67Gnborh5kWHhJ46wGsJ03Zhmbi3heI1ZfiWI8fDjys9OUrRdn+2+4s/ehfMwSxbIcit3OxWvXAABvP7wL6/q13b8wYpRqjjsxBgQAXax+5gnk73yP0Xv1i70uxeq3QDUp4vu+MMT3DdgxirTUC+QQ/N8BDAhpwiBYvTJndV1vg+V0djUFUmEgYLGoHP1xZ49ALfF9OmW5AyIC9RpggG/Gq9nR7DCrd0q0CYlyXeZ62wwv6DanBRMrWxiQD177DH7pzg08u3iwK1YPtHYBMA4qm9ShKO6BgXuLTW70xepBZzW1fVII9hflrFZgQCjto8JZnWSOcnKzTh3M3VQbAzKU8gyAhgFRbVoY8lSlAk1R6Ll+uzXErDYJWFRgQOLS0096bx935vUFDwCbxNa/r4Cto3bMWV34+19jzxtGNVA7QkSnycBxSd0AQ+5fMW4RApKVx+xUs3iIIuasdlOszpjonMUFW7j9ht8AAAjvvTYcIiTuC8/Tey/yBbR006LZrKBhkQYT6nUxCGMtxMR8DIDz4If4pNQFmSpgUbRRU5zVoaTLBOBjrAEGxPfh2BXKuCNW62xWdcuyeEiTI0XwkZ3VdoFsYJONGrCoFKtNmdWuxCShu1nTriEkDr/OFmHXomGsK0RVegieGgFB5grbDNeWl3Lhpwmb1XVWh9ZwwKJgmOvcswPvBGqXKDA2FhBNF2JjWMEYLyqHFjir2hhuNtkMnNUysdpgcwVovRM6F6JKc3owqhi7ZM7qPEdaEZjVngfXkgvAJs5qy3XYsynZXCB/XmNidVax89W5tmG4FwZk9TBnGE7urAawI1YD2BGrr4Ur3L8/8rOFyL2vOcC2mQteFVrIK17zeWH7uLwbm51cR6wWeJkxsTqu+/rGQA12ohsGmHreJQHEtC7F6rdApSm0hWXLqgefjiTmE2fdxdOQs5oyYXBdJiyr2K9iF1pnQWozN3ZZSbhxQCtIiMisHhOrCcIXAKVYzcRP/UAOpSuJV7op+87qw0Pg5s3+uYniYnWyHmFWnxbsZdlyVn/1/OO4EqxwEKQsibh1zNHgShNntUr0obgGBLZmADHDFtGEe8suURZDzGqCa4Cf79BknNo+6dsDzGpK+6htI/Aq1paquMCr2NVzVgtsy8DmgvjZWiVa0WQYEBOnD7hDsdvqWZYMrWHIrJZhQIraJnNqncDtL56Ea8anByxKnY8A4oTg9AKa+3XcWe3qOavHAhapocMj4yGpG+AiMCCOYpEnqWRdssVDO2BxBeD8HFluw1/4wLvfDQCI7n5h2Fnd5i7qlNi0kHVvCAyI7gIaaHAoVTbCrNbCgJSDrH2qQNO4yCTOau225FapGMAmIoLj2ahk95do0adiQIKAsaDb5gtTZjWG3VkNV1iXWT3SEcJCQfWFyqbtuocBMROrPZ87ljuudbLoNbT2MBARWEejOgiQLKp6Cse2qeCh4p5WFef364vrzFmtVlIaxIzmBosKDdXMY4kYEGm2zwR4FdVGiGXVsByaEx6AfNyqGSqGUm7gSJGRJpsAABBEttRh33SDUF40wtCicFZrBQ6LEgKw5JgmAYvKz0vMi4jO6qEu3Dyr9Z3gYcgwIKthc0DTxSYRq/OkZNephQG56p3i3r2Rny3LuBqpMRQp0LrH2sdt/7prv+ddvXuJ1TrO6iFzn6mz+lKsNq5LsfotUFmiiQFxXbaAHBgg0rjSm5SKttQhVAMRA+LapdxRKlqTdV8UljUcWigcbyRn9a+xWF2WTPwkBHKMvSjSTdl/SVgW8H3fB7zjHcBHPiI918jJkcQjzuqzYsus5onE7z56Ff+Xd/0rYLncvUaC7TXmrKaIPkOBmFSxep/2bN2d+GbTRv7HRQE4ZGf1xTCrfadQfmaNA1ZTTAr8enDxtE4cJlbr7O47TNiQ7u6bBizKbi0RpHQRzuoZLUCncTl0WZp8zGlCkTTL8vmz02VWlx6d/QqoxerUoQUscvbr4IQxz1HWNuxAM7xTtmEB0J8vMR4OsLAB0N8zisk4la+tPGankg2fx+yI1TVw/z7yyoF/7QB429sA20Z471UkQwn14r7YJ3S6XY7DnEm5pHsjz9kmC5FZPbR5R8kIYffWcAcPVaDZOSdRuqHb3cP6NnOqdh4yk+ArJV6FmpEiKgj6rcRlqddZIalGrJbM5Vg4sL7wFzoF0lz9rJtgQCwAddpyVmcO22Q2YVYLZ3Fr7C6Sgs1fqM5q1aaggVvZdSFv/YchW9mFUlS2LM3g7Vb5PuT89qJgLlW/1ja02IGnDt0F22DRdu0PvBNMMCCNUCsbCwxMFyqnrhGnVnUNxLkSndVKDEgBIwxIENnMJNK5EPG60nfWixJzLpkJuCjYfUcwHajWM829Rfy8LKuedlNUdDMq5pykLAfhrB7BgGTrnBkc+dobAFCxf8N6VTNEZ0usvmY/HHVWV0nGuOhTi9WyDbF3vIP9v+2wFiWuq0ovEMeNa61N3MFzLUt2v16K1W9aXQJU3gKlnfTsSQSETiVxrZdMLtpvhgRFIp/TUbmVDbiEjtsKouj+G/m5OlMHLFInoyMBMtQ2pO3ERt4ylKxLBE7Vv68ODoDv/V75QTlXOF4PvyjiVckckDPuoL5yBe7mVfyJr/onwNEzvWMyd4PiXqTyVD0Prp2pHwMqs3rEqcu6ASg8dMWmDVptqSRmda58vkyY1Z4dqzEgicU+f12GomhLzXPILK6r1MP8SAMDgpbjr5CE1Aqkgu4kpJk0S/6s4cnSZiduKHErcyGFJKTx2nFmCZHPsPVf2sUjmNW+wexMfE4dbscmtfEYBQPCxcTBCSNFULRK5QaTyTvRVT2z/LjUexbA8HuGEJC8d8BiXG2d1WnKxOr7NnD/PrIqgnf9iC2uDg8R3UkRn+UAFP9GqrPashD42La+t+8jHrAZzggLfsFET2rIMJxlVrCFnpY5YAADQs0I4ccGoBarp3ZWG2BAms9HIfqYYECazIWai3ymG4JojbGSDy5JLZKzmm2uDIjVmU0KWITvY+49wGZdY86/1DCrSZMCfsq+haLcFWvZcXPA1XxeAf4sqOcwAMihakPOajJbWQRMTu2sVm2EFAWy0oXvTR8Mm2S2nlGqfcyhTQDCWNBsqKtQDURmtRK3ZPJ5jWJAaBv5ju9ITVimGBAn9FgHS1espjDLRfF1nZRGSmXYc7e2DOuX53TXftMhpuKha+6Ji2M2zGZJNZxxzYDFwC6QrofnW9k6Z/dDEABzPrpX7J5ZbWws3BTwDhqx+ggPcfKwBjCQF3RSYOklWnMu34ccOdaqBmPVHmNu3gT+2B/rY0iBcWOAOK7YxNVlVitMgwAuxeo3sS6d1W+B0har+S5hE6KoOKbWjvmYq5jK5xxqpxduL8KLfdBZXVUoKc5qgQEZaPsGML2zurLhuYRrIMMJtCrdlPoMxT2d1cmG78gLwbHNwu6+gPYIFGOhhfuf5va4EwcsjjmrG8cXwVk90DJWlsS21BHeI5lXzNmvUh4dgJjIFh4M/KlrrFJPDwPCTlX5HFQFfYPJtUs5/YDji6hCitRZLXiqBkKK71V9IUU408gnKxGTeBikibAuxPS26w9oiR4UsVqGQWmX7njgecMBi1Se6lBrMj/uhWFAqM7qfQIWk3obpCMCFjdCrHbgX+c5BlGEyM0QrwbeeWITQ9dZDcD3amWYVFa68EKaM8sfYPinuuYAMdcYeM+Qw9ou1FndH2dNMCBDDkUT1BJsG75bIitb52sasIgRZzUFA2LbCJwSaSHnYAP6i/KmfB8HXoKz1fZzWWcee2+bOKu9vrO6cc8RRS/l2sPArex4tlxUhllYW/Pvl9yz7AcbMuFl41blUoZC9WYQryS19J3VAx08jaiq6QAHoB4LeJCx9ruLH1P5Dqd2MAGDWAmSmYWX7TlSJ3ye07E1AJQGt3hT053Vnsd5+5I/E+eve1zbhueU/Q5BAHlp0zdFLwgDMpQ7QXVWh26OZDN8PiywutxiQCwLdVUDVYX1Gtvu1DAEfB9hnYwK4GcnFROrNT6z/Z3VEh3iySe3Qnu7xFx+TKzWRBg1eLRLZvUjWZdi9VugmmAWjYWOY1Uo0+EBQnfxNMYVLmtbf/EkgspUzs/KJrmKWYufgqVJDecZEv74ccX36R4XwMC52iQMSNOir5qIUnhk7n4BizthWsBuO087XJEfc5RZTWynHxJ9mnR5nc9rLGCxwYDonWrDwh50VtOZ1arJOLl9cg8MCGWSG4ZAUnrycNiiwLrwMQ/1FjtDG1cmwZWOVcsfLY7u8ShOJ7TaXbscaJPwLwCeUyOT8KUB0MUJWZt+46w2w4BEbrbbwVHX2KQuE1MI7aOeXSKTsYpF6YrVYiwYcL8C0F+Y75uNQHVWqzAgxMwJ8ffHKkm5AzQImFjtpljFNnB+zjAgVxbsG2czxmUcWpBRndUY2BDjXGkSEkc4YBP5M58lFWvL3fe+tdh4P4QvqmuLtnhSCVSGY4HrD7WoE4UUFdKOuoHdKt+tmetL3Et8jA0i+rJonFmt/04M/Fraoi8qyWwmKOp+bp6HpZfgbM2ROHWNW6slHp+dGjGrGVt4l1ndBPURW/SVcxjxHBBFZSkGxCDUXBxXFoJHfh/w8r0aWSl3VqelSxkKR53VaaYQkojHLCqbvAkwtMlGRiI17lfJnwlMFNWpy8+te0yTgEXVNTDBqwDYfr5d7NqmppkD+DGVBoGiYB5ewjjjOpB2ROQm7nLRIaZwwlMxIK4ld4EDzFmtHbDoshB61TxDVLYpthgQywJmM9bBfrrGamMzDIgIp44ilkN1Pqymnp1UOPD1nNV7idW6GCtuDNjJm5BUnFhaAYvNvE8xPyZ1M/K6FKvN61KsfguU9iSXA+jzeARqrzPB9Ty4imADAM2kUTuMQoh0Q0FlFLFahHEo+Zy2/rgjJs0qDAh1MroPBoSydlDxHnmlccU2QXRmuRwDkoy8LJuWb6GuPfvs9g+7ipt4qQ/cW2Vt6zuAR5zwZV7pT5yF+DuIASFMbvgGkzJotORMOorwpUo7N2RWe0PO6ozIrB5Kp89zrPIQi0gvuO9C2n0FtqVEn31rgC8CWqn3HQ50RQmkaR/Xk7Soi+A3U2e1TKyW8RD2Ld/H3M2wXrWurXA++oTPS0xwVc8toN+aKsYX1WvWQFRWPrMAqpxPnC/AWU3JnAAw2MUlKsms7ftmNmMYkI0DxDFzNC+4NXA2Q+RkiAfE6jLOGAN3SrGa0mkjaqTTRNtwYFmsI0QW1AaYOX1U8wLTVtdAPucywoAMsV+pCCtennDYCzWFL0i1OyF2jjkgVmcWKQixCcEbQDVoC4oA4Dg4CFKcpQH77MsSr68P8eTijCyoAhwDUkvEaipeRCBxZPNuA/erMrBPCIpEsdrzFfMNMU+gPl8q4SfPWWdKYOBWVm2EiA3GKZjVdY28tMnXdZQDTWVW26U8G8DEWa3axBUZRNRgWMVx87ymmVlEKTYwGwwIUawO7KJLctv9OYR5p3SMbTaY6GK1NChabOJTPq9mI0R+rzdueJ3PzPcb3NhQZZuCOatFu8V8zv7eww3WMceAiLlTGDKxeiS08ey0xoEfX4hYrXWPibXnXhgQPUMmAOm5lnkF26Bz4VKsNq9LsfotUGlmkVzQQ2mpzTG10ukvxu2lFOnEi50gVjfM6iG3MolZPdD2TZ2MjjneqG1InjcYtNmI1ReCAeFtz0KY/uqvBp56iv26LVwD423vfMJA2lwY+LyyjBD8NOZ4a8I7afdWWSrE6oqHbBI2QobSzk2Y1f7A5lXjgNV1kYmgF5kdI8uwLnwsZnrPQoMBmTJIybLgOrX8PhDccqKQ0jCrOwIw1YkiynP7k/xG+KQeV7bYLQokpWscsDhzM6w3rfs9z7EpfNpxBecuUz8/dZaza6HzThwJWARA5Myrx8OypG+wNAeQHJSKARmcF7SqYet6HrBcInJzxKkNJAkb3+d8dyOK2IbowDsmXfE2V5JYzZ2qEtGnri2yoDa0iEwTTQwI+CbbwBzGsurJHYoAjJzVcsfbBMFXUzOr0XKqCjWFGvrVqmZxLvnMksxmphNdsdqv1WgsAElu0zAgAA6iDGd5xN63aYrXN0d44kqifZx2NQ77qZzVnqcOnDV4DpSb2GJeROQKKzEgJuInBjZCOLM6CCcUgHklua2/RhDdEKqwOkfPbDB6riamC5s5vfPSkpoOAJhhJRQdIVQMiOq4Rc7NLNSxy/fZZ9aZd29i/txSjut523d859qWKd0koRKr88qBZ7oRomSMEz4vm2FJ8rL/7weIGBDPY8LymFgdl+zYwjGyWDRiNXNWt9ZmQqweCrQGcH5W40CTWa0KBG1XIyprzLv3woDo4rGGWPsmIdG4FKunqMuAxbdApZmFA82ARd8pBsXqBmq/78MnFtADzGo6+1XtrKYm8TYtfgr+UElxVvO2b6UDWPBfJw5YLCqblEujXOjx2mJAFlrHDJ0ccTw8IUgSIFy0nNWWBfzgDwIvvwy8/e29Y7p2PMisrmoLtkdwKFpq0Yc0WbCsXRGh+1lT28aaTRvJnzUCOI2b5lrqABnSdQW24p/CSbjJHNY+qOusjmz1wrwosMoDzCNNsVrVlgsDDAjYbVPk/D5o30MNt1z7kAAAbxGw+6ttSRFCigFLlIkzu9eWcYSJIgKw/XzbixzeTm/urE6xXre+xgPwZhFh4SDcGIqwG4AFzupObscCFgGQXOBDuKlcLExtfW43gOFNUV2xWswLkgJjZ5MKUc33gSiCbdWoywpYr5mjdcbfFVGEyMkRx+pjZZtCvyuIlx/YvecAwPb3RK7u0HhI4RUPjVvkuQY/VwC/dszqwqBFfcRZbSJWz8MS6yLYjrOGYj0w7qxe6obVQaCx1CFVSeaQedAHUY7zPGDjd1HgQTqTZlrpVOOwbz1fDaqE+Gx5qnm3gQCsZFaL8FKiWN04yycOWPQDi3UCSDbZjDEgSsQM4d7iSIU6L3bj2gR+kYA03DlXyXWtaovG77cseG69ddi3/52GAYuW4lzzyoE/NQYkJ6xlZMeVBiwSMSCWhdAvt2NX6xhpXJHHLNcFisTePddm3UU0SKiCosUmvkdQGsW9VUvuLYiARU1ndbMpPvxteVLAt6uts3o2Yy73+yusc577I35uEDBzwHpYrD47g3bA4t4YkLk+OSBLh+eqaQrMdXQzcT0kYyFJK2iV5zFN5LLodemsfgtUmukHLI4xfdIUzJm078uCh0nlU/Oahxbm3FFLwoAokunFueaUtrERrMRFBSySd3bHeHSiNVnXWT3iegNaoQlt5IfrAu94R//6jDmrjUQf9edFfQGx9mx1eCedhz6waUOd5A91A5g4fYT4J2MAlyXi3MPMy7WP3WBAZM7qPMe6CDCb6Z1qs7kwJQYEgOsBpcKZZRL+ZUcBS2Zvq3WGQhIgF1Li1EBEAORidVkiLnyzgEXfx9xLsY5bn0ue4zwPtZ31ALgbQ92SCTA+Iyl0eAAJBIA2bg28Z4q8pnE/BbKjUL8TSQHJdqneaBRV10hyZ7sZ4DjAfM42YO7fZ/8XuxuzGRen1IdLVzljMhJSxVQYkDLO4Ng0tEiziJS1PAPI0hq+rrNaYECmDvwZYFZT+b+AWly/KAyIUcAigEVUYSWEWmCaMXbAWZ0KDA7JWa3AgFQVksJF4NLeYctZibOMO6v5+6bZNCLWoLOauhGkYt8aPAfKLAsRkGyg+0mDEKcI6VJiQIjOas9jJgkZYqWutxuMms5qX/ZOMHGpAmoxyaTLBK3PSxWIacBArjLVJtu0zuo843MCg3mc2GBoF3tuCRkhvKKgRlz4vfl8Y5SaylnddCAbXtcpmdUY6LIA0a3LMSBjwmcWV/CdFgZEOKvvr7DKw93cnzDkGSHD/8azc4sxqzXGgia0cMBWvNNxt08NbV62ir1v9VjYAC6d1Y9oXTqr3wKVZhaCSM9ZPcb0yTJNp49wkQ24igGQhFrHqpWs3rxyEBFeFI6n4NHxcyW9gBwHnp2jUIV0XYRYzYXKiLJj7CrCiXg1rkpdZrUTj74s0xS7AYtDJRzrYw5F4kaI6rh5DiZ4OHoW0MH2bLG5oDuyCme1wgFNDRodvAaGgofvKCYMAtcQ6p8vc1YrFuZZhqq24AR6F1fJpkTLpUppI3awdU20y4ShCGyfmY6zGoCZ68+3kK93RYQkAW/P1hf9APDJcNY716QMEEZ07mnDrE54C6VlAXmOu/ES1w8UiuBQCTTWgLM6Xld6oaAN71Lx5waBu0PMahZYR+WsVyizsj/xM8CADHZcicpzFl4XWttF0sEB+/+dO+z/4RYDYlmQY5Z4pZuSYTUoGJDQkmJAms+fIlYPhUnBwFk9hgEhupVtfh+078yqqGCbiD6hK12YNwu9ifnapNDlVi1n5Y5Y3ThBL8hZnWQ2whkBAyI2cGUDQp4jKV22MUhofz+YlThbhUCW4fxugqWH/eZsA+UFNtJuwKLotJrYWV0VFfkzU7aoNwYRorM6kM836tJQrFa5FEXAIpFZHfAw215/ZVWxe8vTfHbFuzatsTOSNggMovt1gAMNgMxZ99waRSp32AMgi9Xint2ZWYm5oamzunOujemC3M7nMTFzU6K9GopTm+6sBhCFNe6e+r2xizmr9Tfu+Kn2n4OpNkIUXRbUsHTPrZWbl6SARY4BUW2Ki2oQl+Jzm89ZAPS9c6xzH4tl63yCAKFzNhxoDSZWH2o6qy3PlQeNtirONLn4rgvf3iBLh5/LLLcQeHomTwDDGws27fn67b99cDp7WXvUpbP6LVCpYN1pOauLQWd1lkHP6dNwNEeY1dSgMpmj1GC31PFsedI3sOVb6b5/R5jVzWKPKlYrnDNkl8dYi1+iv4BuMCDJwMSw7aLbx/nWOKvViBkApHBBb0BMIjGrsYezurL1JzeOA2cgaJTaYQDHYS6XixCr7QKZ7LhZxnANmg5oALBDn7mKZaqP+CA1H9whd4NJirrjqpmXRq4/Idq1nNVVRk9PF+UHkDreqA4XAEAQ9FmHPGCRslnRlGVhHhRYt52PfBNkPiccz7bZ/Vo6ylljvK5Y0IvWBu5AwCJ1sduMW4qOECpWQYjrMmG5LFGDEC7Hu1fGktmFWL2zgbFcAuB7EcBWJOMDRz0wu8/WORkDohL/NuclibMPgIk+qjApXAAGhAdaU93Kss67JOFhWgYBcD1xXTjTHKJY7XmwrRpld24ggq8C+hJmMa9wnofNRlueVmat9Bhue04p/F/wTgAZ/gFgG4OFR+5iOZiXDbP61qsFnpidGIvVbtBxVtf11j1HvF89xRyGtdLT7i0/ULjguUGEKiiq5humqAY/tJENBSyGtOcrdHKksWSsFRuMuvvY3Anf21wwmcfy40rNNyZsafD5fD3grJ7ynjWdGyoENWa6MAtYDOyidx/EiUV/JwKIggpJ6fWd1QnoGBAP/ffiBBgQW+GEZ58XfSNEJVaTjDIjHVyistxi+o449myGx6IzvPr5EqsiYM5qUYJZPdItHcfA3Eu1zW0WMIwByR3W0ajFrC6RjTmrc5u5y6cUq4nP13IJHB6S/upl8boUq98CleaaAYvC5TPkrM41F08CA6JqzaUunlwXjj3iKCW82G3PYTt6Ct4jWay21KKqieMNULRnU13gAOB50tYuUWwBrekkcxy1o1YUD1jb2+3DRZ+he0v8bK3iTsIh9itJrB5xVhe1rY/sEMgS2UfFN21I70nhcpF1A0wwGZcG1glnNWXN63LOusJFBkBfrPYVbErwgEUis9p1Id8QE+MW1fUnxOpW+0LTqWDUom4z5mWbJSqSuA3aR22rRpV2AxY9M2c1GFN2024hFedNcb5a1lacUEyc4xgEZ3WlRosYbuCqWNgNZ53o2Ja+v6i8XnfPgMUsQ1q6u/fEwQEiJ8df+cQ3snu7hQEBMOqs9qnOakX3RryujMRqtoBSnO/UzmoTN6GYH3b42pvEZv9+KrM6cPrBsEXB5y/EcxUOxS5SQOQ4+PQlzHJe7zirNxsY/fuBlltXgpZIC4eGARE5DrJxS2wCEfMBDhYVzjLmrH7tlRpPzE9hFjYABJGzG5Jc14gLDxEBCwag2XDPin6YsQlixvMtufhr0skGqNntOchzDWAkYJGKAXEHgmHznLYR4jhyfr+p+1UlJhl2namua2M+Mhm3ZII9MYcJgNxZXdd8TmCw0eZ5jFvc6Zhlzmq6WB2GQCwTq2MCgrI5Vck8TqyTDZzV0hBXk/U3+AauAkdKGrsEBmQgKBwA8rxmXcPi+i4W+PrHP42f/PgR1nmARdR1Vo+L1QxlpiH+AqOGOUBw8XUxtwWyoZDJumbOap01k+MoO9FNmdWXZV6XYvWjXnWNNHe0mdWiDUtVWWbpOaublufpMSCuVaEs5AtotqtJc5TunFe7TJjVtiIEDwb8W47B6LmH+LmSg4TE7n6iEKsz6L0k+DGVgX2ixAJq30nuCFuaLPrwDRbVuZLFasESHbi3tIVK4ayWGRRNFk9i0qwIbgRggAEp5MfNc8RUsVqIT7IDiwmv5oPreWr2K9tgIorVKi6+cP1RFyQSsZoF3dBdjwDgCbG2jQERSdwGwTzNokw8p2VJb0tuVROAxs83W2VGra6NOKHqNNlQnNXl9MxqsTGsGLfI96wQlmV86bJkDhiqC3wPsTqvHLhB6z5bLvHCwV18bnUV//Rb/9IOBgTAoFidxSXZWR1FPLCus4DerGv2+ZOZ1TlSxSKy2RjWEasFvkj2AqtrOqeVO6t7YnXqMLGW6lCc82DYTtiqyWJ/O4fpjLFFwTAgBmL1YoEdZ3Uzxk6cCwCgGRMDr9IWv1SMdQDGYbYHy7q5Br/8KRcvHt42dlbPFvYup5YH40Y+0fXIg8oG3cqE97cXOkpntYmo2mBAuudqkI+xc74SZ3VSeDRntegIkTmriwJp5erfW42RofP1plOWjgGRul9Ng2EV8/nGyEAZD1VidVnSMm1axwWwew/UNdLSQegV5HurcVZ3BMA4tfU28DsVRWBjQWfsMnFWN/P5TsAi1dgGoNXdK99gITOrVTx0ENEtohNiRKxm+k7r2PM5vv6xl/CTn7rJQupnrX9PGEo3KvrHrPUNAqp8DFHtLmwN46RyTStKrEEcjXmyOFfJIjzLDXI3LmuSuhSrH/WqKqSloxegwtNSBzEgucVaJHQxICpHLTXkgot0UgFYBMtRxod9xGoCs1oZBgmGFCA73lTuNCoDGdguShU7kElikZzVzpCwDOgvoMSC9KIcigNitU91Vg9iQAj3Ft8MUuFwSmr75EALrWmADGMAW31RKc+ZWBsRbloxYZCccBaX+jv7GBZ9jDAgglktCfwhbViIaocW8mtrFFDFy+u2Z6PlnKEe17Lguezf2/Qm8qA2yzOLxJjPKqzzrehx73aJ69E5WUxpnNWKWW5zjTXSw4c2w4zGLXvEWW2wKToYtkrNBRgLWOSfoRW03jUHB/j//Ib/N/7sV/8DFpopfnYjVqvHuzSu6AGLkc1ak7sYkJWBs9rzWEiRIqG+2RTSEatdKINhUZbMBUTkQMvMDOvEMXNWRx4TETr8+rjwEPkjmBhVCdxU13jBRXAjZ/WCO6v5+W5iy0isB1pjbHeMaXebaRbD1ihyHASzmihWLxd146z+F//+AB9+4lfMxeqlzTpixDXggbvkewBQitUmbmUlKtAg2B3ANmBSimqgi9V+aCOTbVoUBZtvhbSNq0FnNWUjRGCGumtFEVxpunHVPa64zgZitXQjxGRzwXXhWXJn9SQYkE73SlJ4CF368yVE0K671og1DyFWS961YqylYEB8SfdK46ymY0Ckc6MG60g7bLN5qcKA6OoF4nkdE6uFuNoSq69HK5xtXDxI51jMd8XqwB4PbUxTMM1IUy8AoBarOTIw9DXGcI4ZGjJjNt0mOtNDrm2UqRwD4huM3ZdlXpdX/lGvPEeqyw3bx1mdazqrPe/C+JyuPcDqpb4oBvhDRs7qAawEmZ83xBKlip/8uIGKRwce3KlzD4hzHbgGALbtg/tOcpu294ld+0NoDRgwq0eCr0gICBE0KnNp1jV98TS0C20iVlsWfA9s8dS9wEQH9M7fkfTTr08LLDQDPgDenj6EASFOQlzPQllb6oBF3bA6UVZLhOIzyDgG47oZCCl+YDFm85TOaoAFTbZFqrKkuz5bNY/qHWf1nVslboTn5DZ19u9XtNMDiDc1u8YaG7iuXaKoLAZe7lQTqEUQgD27hIwKBRgE1g1tihqE2O7rrK5ra/fZ5cxqALsCGceAuCjUY3dSkQMWG8G8M8bEm5otoCnOat9H5GRKsfo09nDoxwRntXzcqkuzgEXf7odBbjJDZ/XMZwvz9qq36bKiuynVDkUzDMhiaTFXsdgMO/VwNVhPI1ZL3K/a83heduCxHAeFWJ2aOKsPLZzlIYpVgs+8FuHFwzsTOKudXXyTMC9QndUAfK9mCKuuAGyAAWk2U6UYEIPW/0COAWnETwNmdVpJxGoiHg3AVvxSOKuTwtPHiziOPGy2Ca7UP01xrqqxQPxcSnkepPPDPKPz0JUdjaYYEP4Z19muWB2XvtHz1QQsdljIcWYjcgwwIJElZVafbxwsvYTmrJblAhjiOhoUZffzMjGLQb3JBhDHA99H4ORIsvFwwR19h8+13nP8Kv7dned7YnXo5khGQxsJ5rYhHQagbbYKE94+zmqd7KgGL9J/jkyZ1ZdlXpdi9aNeec7aB3UmDGLnaYRZ7euIFILPqRogqMKX6zJntWxhbuJwGHJWmzCrB8RPcnu2OK5SrKZjQJSuCQBJZjFxRvPl49oKXIUoEcwS7d8JMNjWI4QgqutPcVzqC4gF6ymc1dRJE0cKSK8rb5+kitUsCFEyfhhO8n0fcheZyeLJ85ioJfnQVmcV5gQ3xlBQWcP/JTqzpMc1QfeIEq3iLbHa3FntyJ3Vjmnre717XEOnk6j5rMa68BsR/O6dGtejFVlM8QJ7EAOi7ay2LLgDY0GZV3As/bb/LWtf/sdFZdM6eIY2RQ2Z1aPOahlvvJ04016t8M83stN2xuhOpZuSuXwo6p8vF6s3G01mebs48zPObOnGxcnGx5G/oWFAFPcWmX/L54fdz2yTmInVzjxkTlWZs5oYADjkpiy6WBnNWiytHWb13VMfN6Jzo3HLjxyl+zUtXQQ+zXSgzHHgjm0SrxjAwc0IZ1mEj/9Cjfc9c48NVcbO6r5YbeSuR0v06VwDk4BF5RrBlFmtCFhsnJQUBjKAaGYhKSQO+8IgfNnzmKFFJlTlOVIKC1uFARHBlVRBUWwOd99fvJOL7KxWzA+NnNUDYrWRs9r3GTaz7f4UXRsGz1fjrG67a+saceaaOatnFmNWdy7Eam1h4aVksbrX0VgU7N6iGkSazvF+NkJuYDyRhg7zYkYZzXkc7+BKR8TqPMdu5zyfa33F1Vfwq6eP7YaUhyHvChsTwLm7eEoMCKV7Q+gFqowrftyscvTet1wvkYrV1FDzy5qsLq/8o15ikquzJhMYkIEQvCy39VrqxWCucL+SXWRcqFU5q8nt9EPtJ1Rn9QhWosGAUB1vivZs8uSGc8hUDvs0s5k7TedCjLmgASDPUQOwfR2H4gW49m0WdFhUElQF6K6cJrxT5aymCJUCrzJx0ChsG55TIS/74URGzmqw20bmdjJyVvOJUC3ZNl+twCa4EwYsmridGmb11BgQoOesNg5CBOCFfQxIk8RtclwhJLSc1aSw3U7NlzbWeQCs1wCAO3eAG9EZ3VkdKlr0ecUJ2MJM4/5qeJdDiBmSqKwObiQLNCPvGfE9+uc68j4AgCxjglt7ofPEE9tftwUy/uvQSpWtqVla67t8RCm4+E3AHmXcsixEfiXlcwLA6YY7qzXOt+ngUdxbLtXpw+eHfWe1yzYDic+tFfJJalesLn1EF+CsrgFYZJsmsDxydpjVd058XA/PjcatYGbvhguKEqYTwt7KoDstzxkijCjaLx5f4jwPceuVAk8fnLEvGgYszg5ctskonoOiYMzqkChSorUhOqGzekisNmJWh470ncCeWSIDGYAbutObA4ShRSZWFwWq2oITaM4NVBgQge6hTjUakap/XJNOLhVnnox1BIad1QaIGfg+M+C0EZ9lyTpZTZzVvo/Q7WxaiOc2MNtg2eHX8zqPXbKzWroZZOiAHsKAGDGrxblKxWrC2kNsLuUjwnJh953Vto33XXsFANuobSoI4Nt7oEVEzhklYHFKsVo4oGUGLFFcN9PKzVFkeQCG75nLmqQuxepHvcTu9tQYEDGY7fvwed6gUEt2+ghmtWxhLgI5iAgMcYxemQYsDjqrDViiKmd1TThXoHFQqZzVaWbpJzILYXloE1/XWTnEVQbooioP5lG50xiHioBA2IOHri1Ucoei0lldE4NGLWs7GZeIqgDoDEUfDCuhWjxRhCQR3Cjh7a/PK8zdVPu4tuco26jz0qYHLPo2c3ioMCBEzh2A7flwa2nj+jXBgIRyZ7UpBsQTbN2pndVHHhM9NhsAwN17Fq6HK7KYwpzVAxiQRN9l3jhnZIJiXtPuLdvmGBD5JptRNoItSbwHfk0wIAB23zVXr/b/nB8TjoPIyRCfK8KBk1rf5SNK4ayOY9AxIADCoJaysAHgNA70MSCBM/juoo5bUudjVWGTe5h5Gd09FCjE6sK7ELGa7CbltTiwd53V5yFzVhuMhY4K2SFQGBFB9BnIcTASKgHYV45QA7h/u8C14Jx90dRZfeD2MSCGYhpDjg0ELFLEtCFnNXXODXVHhEkYJNDClqjmW1Rnta0Qq/Oc5lhWiUllaRaCpxCAy7wyGgtUQdlGjHHVmsZ0bsgF+533LR9bTDoX4LKgzSRtIc1EUDp17EbLWd15164S18hZnXc3g/KctqYXxTfyZRiQoraNnNVSDEhVoSht/fFAZGMUw++oHrPasoDDQ7z3KhOru85qywJQD3/OTc6ZZie20+0EaBfvitjb2MaP6TvlsFhdlsh0O5kuMSCPdF2K1Y96UTAgvPVf6ayua6S5rRewOOL2ativRGeWVKQzcZTuE7Co+wIaCVhs0qMpbOWBgEVyKIngkKkwILnNUng1d0qHwr8A6C+gxDGnDirDsPORnPA7tFssNlh0J022zXE4Ev5t05aqeUxeKudIVfBJPhUDogisK+IctlWT2+kDp0C67l/bxllNWDyxE5s2YDHwa6QyBjIfXxzP4PXawYCcbHwc+DQniigvdJhYKxYOPIk7csxCxVxxf/EVb11MxKw+8rDKQ/bBA7hz32HOR6KYYvuuEjEDAElKcFZfBGLGsti4JdsIgUFLIp+MS+cFJrkAlkIAb1Wd8nuuvdBpC0z37u3+hSBgbcln8l7PJAHbaCWK1RaAKu04qxNL+/NvVxTWLEyq66qta5wIsVrjfB13YCPEMPyrx5QtS2wKHzNP9RLeoxRidVJ6dP1zLFTNYIxZHrtYFUEzxt458VmAq4mzWLERQjKdiBpxVgMg37M4PgYA3Ltb46rPndWGYvX8yOtjQC7QWU12v6quq5hzUzEgArfVec+Y5GMAUG5a5EnJxoKpndXUe0uEb8vE6tqA16zYGE2Tmq1jiHMjpbN6CgzI1AGLvs/MQkkXA+IhpCCGRFkWQr9kXSHiOhQFNoVv9NyGc4eha7oYkI3NnNWE9zfrXOh8Xty1b4wBUTirycxqVcAi1QneYB0H7sm6ZmbEbqDz4SEO/QRf99hL8KLW18VLSYIva1eac4Ojplg9iKSljDGKzI3ucdNK01nNjVKDGJBLsfpNq0ux+lEvEcyizawecFZXFbLKge9qtPeIiYIM1wED14AIllPgD8jt9BcRsCjaqIcwICbOapkI3rQkap4r0OyWSwf1ukaaOyRntfLzEqXr9GgCxRSfc0UXVVkrtVxMIr+ARjZCipoQsMgFKmk6vWHroIotbcR7hBoDEq8rukNROH0kGyzrNQ0DohwLarYAdm1am2MQWkys7ll9WIu67dAxIJZtM4ceF1I+c/cALxzcNXNAd53VNRPXQs+MxeZ1xOo0rowWj6KuPebiXrJoMCBfuBPgmcUDupg05FAEd1ZrYiD2QjWYbLIp0DUkV62KJQoYYUDYIm/ElbPO5U5osVDqfia+j8jNlc5qxnCnjzEzN8Nm1WE2x7aZszqENEwKRYHTLMLRLNMaZ5rNlYlZ+02bfo7tAlWI1b6BWN0WasVxubM6NGVWdx/ZCbo35lcC5qwWnRtnPgtw5QGfpFJlLgh3McVZLf6NCma1+LmkOjrC3M3whTshrjqn7GuGYnV06DOxWiigRcEcmgail69wKBqxRAed1USDCKAMdDYSPwHA86Ts8s2aB8NSnoVGrJb8WwVegzDf8p0SeXc9IzAgVDyacL92DB1pahY+reqQI2Md+bkOBiwaOKubjIjW2M1CbA3EagCBV+8Ky3mOszzE4YL+TghntrTb6DzmzmrCu9ZVBCzGhcGGmKprmmpsE4f1FJkmvFvWczVd654HywLqIWGZC+G+W+/ON46OAAA/9ZE/K88LkXTxtSvLLX2DgJhzDojVNaA3xggckMI4CQAoCuas1tHNfJ9hQC6Z1Y9kjV55y7JCy7J+xrKsX7As6xOWZf13/OvPW5b17yzL+rRlWX/Xsiyffz3gv/80//PnWsf6Qf71X7Us6zdd2L/qP6YiBiwqF6VA8yDrJqUOuV+LgtjyzBnIZQm5o5S6Ez8WsEgJY9gnYNGIWa3CgBDbkPikUcWjS0uXtWbqnC8PAtwLA6LjrLYq5IrrWuUlbOKkcchZfSFitQE7Temk462DJrv70hZaw8WTylkdnxf0xZPvK9PpVyuQMCDKz0s4qGxam2MjVktEcBPHOtC6b4VYff8Ibzu4a+asjtxeEGJSeohM3JRoidX8uHFiGaNFAODa4x7utsTql2/P8cLBPbqY4nlsYqwSqwUSRQfVoFqMoBWoRRy3lCnyBpuiPUctr7pgGyxUvnYx4qxON6W8i+e3/3b2/2/6pt2vBwEiN0N8Kp/ExInFxhhiwOLcS/tidWLTmdVgt2UscZEhz3GaRTicaz5nAyizpkWd8ozZrKsuK1v3bVliXQSYBQat5LYNvpKezlWrEqvFeRuMh+7Rgm0Oi86Ns8gowBWAekNMtKkHhHctF8Br2QTJBAEBAIsFrkVrfOr+FVyt7rKvGYrV3iJg4l+WsfMrywmc1XxjvLvhbpA5ocy1MTGIoIXrUAUsmkzkJMc1Yu03YrVkfUG9txxn6/5sr+moXYeiLAueW/WcqklqGW2Oq9YIDWppSmY1d5eTmdWOA8/hxh5xDZqARQNmNYDQr5izusWaP8tCHMzo7wQ79JnpoocBcchitedLskfynG22hsRrwA1jMtyUCV7EC+wRZ7Xmul6cyNDtUxTMjNi9tFysBgC87W3bX+/jrBZubQKzWsWBBkB3VjsjzOqSdQlo3V7iuPFAN+Ols/pNq31mTimAb6rr+r0AvgLAt1iW9dUA/hSAv1DX9dsBPATw+/j3/z4AD/nX/wL/PliW9S4AvwvAlwH4FgD/T8uyLj/5sSoK9nLTCVAZw4DwwUyX58MERUXoE7Udz7LgOjWbLHR39vjk5sIwIBRmtaXe0SMHqAgRXNGeTW5Dct3BpO+k9PTX+lycKPdxVuuGdyrvLTqfc8j5SN4tHXNWEyc3jmuhlLkpuahKfU823LRu+6iBmAawwLpMctzNumZ8Zaqz2smlzmpygviAs5pthhHF6gBsci/5vAAY7cKHQc1Yf0KsfmAuVvszh4nrHbE6NGASAsCNoxy3NweNky6JzdpyRdkHC+ZS5GJ1nDoM02DqrFYxq1POrNbGgEwcsMhPVTpu1TXyyqZxWpvg5f7n3WROEDFeyrwBXsm6ZO637pjwjd8I/Lf/LfBt37b79SBgbMaV6rMyQHb4PmZOhs16d4xpBHDiyjSMLLmzOstwQhGrB0KiTTcaPbfe7YrhLd9GzmoAsPj5dF21VP3T8+DJOOsTYECwWLD/c7H6/ibE1WBl7KyWuV+NHNB8EZ3Hks/G1FltWbh2mONXTx7D1foeu5/EdaGWZaG2+eeyWm1d5QZ0FRWqgaE16B0GAKbPnFDMN4q82uXI6pZiI8TcWa1eI9S1pX9vcVE564p0RWHGrAbgOXVvLpskYPMNasCiwrVvgohrxOrummaC8G3X4XMDcQ1EwKKps9rvO6ur2tYP2GyXIsz4PPHMMCDtfz/QbIqSh+5mDdr5uhgLqMxqxbjVYEt0jXj8WbTqSi0uczNi77FtD8DPP9/7ujXkrC5LJoB7mni/AQ40ANqGmBDAh8TqPKc7qyU6zKVY/ebX6Chcs1rx33r8vxrANwH4+/zr/xuA38Z//Z/y34P/+Ycty7L413+4ruu0ruvPAvg0gF83xT/iP+riD7Pl6+08MWaY4s+Fs1pz12lQUDRACjiOYmHetONpH3LQlURu7dkjYJEkIoxgQMgTZ44BUU1E09JFEBGRJSpkBxiz2LEqTWb10EaIgUNRlhwNMNGn5Nz2ycVqGy5hctMgSySLp5L6HKC1uz+lKwlskp9JMBgNBoTIrA6dAkkswYBsLMwpbgyV6CM2gmzaJH8IA7Lzcwn12NUMb2wOm4DF2+dzPBadGfFUD48dnOXhVkwTrZOGjpznHk/xudXV5rirDXeomk7sZjPmdDjZ4PQUOPDZtTARqy1A7azOuBiu46z27ZGARSIGRMXCFl0Wdq3/nhHzAsn7IM9qMr9fynrsVLwqEch4h5YFPPNM/+cGwWDAItu4ICI7fJ9hQDpi9SZ16GgRcGe1AgNSVA68kJiNoELBmGw0dsNxBQbExFkNADa/J8U14JviZLHaZuzNrNw1M+RZTXeWi2qL1XmOqgLLGTBJxlU5qwVSgRqCp8geKRODfAhe166U+NzqKq6Ga+C552jdCt0SYvXZ2STM6gZl1hWrDQVFAOqOK6r7VSFW5znRzNI6rmtVKNLd8zVyVnPsWpL1r1+VFezeItyzvithjJclssqlc4XB2OVFJyQ6STmewCRgUYJteSQDFgG4bkew58+XqVgdhth1Vpvy8Pnftax6951Y11ilHh0DErr99Qx/f5HHmKa7We6sJq+9xEaIYozRFqttG7BtZqxWictFgUzmKm6fQ3sOLb6xrlFXivPJMqYZhYSclCFmtRgfCGiRfECDaJBDBJNnJunqzQr7Uqx+k2uvO8+yLMeyrI8BuAPgnwP4DICTuq7Fm+hVAE/yXz8J4BUA4H9+CuBq++uSv9P+Wf+FZVk/a1nWz969e1f7H/QfXZm0SQxhQAgtEq5dKfEPzeKJyBWWOkpNdqEHXEkmAYvS3VdeRUlszW1Y2HJnNdmN4Hms3Vd2H/BFpLbuIybMAwYs1vKt0S40wqxmzmrai0Ip+oiJs0PgFQ/dWwIxQ7hnHQcoZYxSk00bqJ0jRpNxqDEgm1VFF5KEs1qGAdnYWLgGzGqFg4q6KA0iG2npSe+tnZ9LqCdvFHhtfQRsNijyGnZdstvUwPV35ZqN+8mi76yeQqw+v9a4KV+/H+DJ+YmxsxqLBW5GZ3jjtoXPfAZ42wEP4aMqX0PsVwBxRmBW+7Y6YNGAealkVjdhq4R7Vjg0p3SO7BmwGG9qvY2mIEDo5kjWkglHXSPOHda9QUQNzdxMoIqb2mSOGbM6spgzTeKstqx6uk02mIe1NeJfywE9iVjdCYZthBQKq5mXJxG+GLPcsHvD95kLOC9QPzxhLtLZjJRfsD1ZPnZIAhYB0N2vihyHKfIBrj2/BAAWAPolX0I+zk45/L7kzuq48BHNDO4B32JO3R7KjBjsDgCuC9uqUWade76uUdQGIXhKsRpwLTNndejmiDe798F6Y5kzq7P+Z6NEN+1zqm7NjAzt99cEbGXXtXZRZjDHgDRmjl9LZ7WJu9zFrmAv5nEGnQuA3FnNfuAEm3ft8bAocJ6FWEYF6dr2cHb8XDeFb+Ssdu1Kim0xwYAozQwmIvhI9ooQanvTjW/+ZuDpp4Hv/u7dr3MB3LPL3kZY+5hpqRlYCGzzMRTzwyLO2RyZErBY2Gp3OR93LB2Wk9BLusiSukZeWiyw0mRucFlGtddIUdd1Wdf1VwB4CswN/aUXdUJ1Xf+1uq4/UNf1B65fv35RP+atU5Q2P97um0kmIOKYUqbRUI0gMEyEL8bqVe0+El8UfPJay9R16guocRVL/qxmO/6uRRM/mbNa8meGIZPKFr8sY24X3QWEQJYMrGmTjeYCymbc4LzjnhJV5DVZ9Bna2Sa1YQH7OasJn1ezaSOZ2Jgwq/1ghPdIbSUPHekCMt7UdKePYFZL7tnVxp4WAyLCbhwiBiSymbO6ex9M0KL+5FNgYvX5OV55KcHTIljQAC1ydM3FaRb1ndUGjjcAeO6pAp87v9oIX688mLHzNXUhzOd4YnaKW3ddJlYv77CvGzCrAQyI1a42vqZZjMi4wgYt6sqOEB7MQxKreTCNbPOS7AJvOq6Gv61pVd/32vo+IidHvJK/v+PCR+QTupiAbcBiR6yOU8eMWT23mbNawismtdMPhERPkTeQVe5WrC5LbAoP89BMrK67GBAxxpgIlRKxOkkto1A1UZFfISk9vP5LD3BzdmbMaxbdG1XWb/sGYOaslmzgNnMtA0Hp6q97O64Ea+ainUistoRYfX7ewk0ZMKsvKGDRG+DUGovVnXdCmlnanTs75XmInLzXdbaJDfBFnofQyZHm/evXoJsozmqv7odvlyVjK0+Bg2m9xNLcNsrIUOVOGHWvcPEvLzuCGjWAvVW+V+129E2EAekGBKfrggl0hhuCvcDZLMMqD7CY087XC52eu15siM3m9PBOJQaktuH6xDWSilktnL+US+v7gx2CyHOm73SF5cND4I/8EeCDH5QeM3RyJOfqY5KugzBOKpjVpDHGsnhnmCQvqHW+4ufvXcJZ3Z0fC3OjQ+hmvKzJSuvOq+v6BMBPAPgaAEeWZYk74SkAr/FfvwbgaQDgf34I4H7765K/c1mqIjJ9AqeQTkAAMFep7i7ZHu5X6qTRdWu1o5Qo/MFx4FhV3zXBj1vVFmv51DwmcxVLzqdpHSQIX6oWJH6uRU1MjxaOHBnbiS+gbV9f+HOsahADQllAKRmtYF9yiKKP7/UZdwAuTqw2CVj0FMKXeA7Izmo5BsSYWR05bMLQebtvNtz1ZtCWKhOr14lthgFRdW5QndVBp21SlIkwwevJpx28tjkCzs7wiz+X491XXjMWUnphNxM5q599qmRiNT/uK/fneHr+cBJn9eOzU7x6L8Tf+Ts1PnD8GfZ16mp3yFld10hyW5uD3Cx0JcdsOkIo45ai7b2ZOFPGLeFykfzzTTAgrq14d7WqEav3vbZhyBZPMmd1UTABlMpalzmr6xqb3GVho8T7VsWsTlc5W/RP1RECs042oOVU3RGrDQKqRHXF6jxnCCviYh9gTsILcVYDePJ4jc+eX8OP/4sK3/j4p8x41QDfbO13BlVpzgQGimtfmA4kzmo21zITlK49GeDqYx7wW38r8KXT+JCYuGwje8Cc1TWgP9dslaqLyzRgUY1qIAa78+MC6J1rktlGuAohLHed1Y1YbeSs7v9REtcM3USYxzXz7vb7S4S6m2xaSMTqi3JW56VNx7ZY1naTreMuN2EgA8A8YGN1Lyjb0HQQiEwTjp47vV+wbgvD3QXbqlGlu2K1SbeNG3l9ZzV/f5FPlZvxZGI1oOnQbZXj2WzOrTBLaeWGtc4VAGoV51Uwq3XCfHnXhiojRFwYLRwtsOVLD4nVhLWi76O/GdYu/s7RNnnKhPVGKzCcG12WUY3ezZZlXbcs64j/OgLwzQA+CSZai1Sc7wTwj/mv/wn/Pfif/3hd1zX/+u+yLCuwLOt5AC8C+JmJ/h3/8RalFUe1Q9Q6JslZbatFyqblmfBidxz5zrZAKlBdxa5docwlA4xw7xJcZEpXsWgdJLZnKxf8wlVLvAYMA6IQqwH9xRMP1CoHxOo0rrQn5UonIcza6ZmDTO2s9ikvoH0CFonM6lLJbjfgpimY1UauJDCxOq8dqVhtxFBUOatj1wwD0l2V8utKXZQ6occmoioMiImz+oUAr66O8Tf/1Qv4uf9Q431XXwHmc/LxAPTDbiZgiQLA4sjdWTy9ci/C04uHZoscAPA8PL5c4Qc/+hG868UCv+mJX2TX1DSgSoHviQsPoaf3PAw5q002cH1fHd5ZVHwRrVsDzuo8J4o+ouNqJGCR5KyWtLyLkzW6b4WzOm6N0VmGB+kcx7OU7J6JFg7iwu+NM6cPKxz5sf64NYoBMQzHLbvOanOx2hLM6hZeBICR81fprJ5ArP7Ql9zGv7r1In7s30b48JO/Momz2rfLHqOTuigHsBUUlWK1mbP62jXg6hMh8Ft+y2TOsdkM2BQ+fvcffyd++dN8k9Tgs2ryMdrPQlUhF2OhibNaJlYbYNekm0xVhbRwmIuQ2h3leYjcrCHsiNoktnknm4RZ3SBmKBgQjzPxe85qM1xFE2gsE6uNnNX9eXdRmofY9sRq4ag1cFbPwgrrItjpkEsMUUsAEM4dttnKd3FP7uY49GKzMVE4djet8ZCftxXQcFvezOuvZ/h6lrwh1u7ubTvhTcPSVd1RZcmwGh6tQy5wcqQrxaRLrG11Li/fCFOK1VSMldCiVGI18f2lDK4URVmDNUSCztdNDCKXNVnt8wQ+DuAnLMv6OIB/D+Cf13X9IwD+bwD+G8uyPg3GpP4b/Pv/BoCr/Ov/DYAfAIC6rj8B4P8L4JcB/FMA/9e6rg0BeV8EdVHO6krfWe3aJXIFJ4i1EdNbnssBRykVA+JaFYpsQKwmsaUV7vJGRKA5dYcCFsmTG/FSk90HVB6ZuK5Dzuq41ndW+4oNC5g7FKXtQjzd+EIwIMQ2P8dVXANTZ7WKyVeAPbNUR0rkSp3VcQw6+1UsniQL83XiYO4RHESKRHIjHjygnoiKXX0TZ/XbI/yz196F3/ePfyt+5J8H+MprX5jI9VdsFw6moTSigoCJoGt2fV95MMfT8wfmwg+AJ66m8O0CP/T7b7EvhCFdUPE81m2TyKzFOUNLaJ4yY1YrOkIMNnCV41YjpFCd1QVyyfy+yGvawnxfDIhw/2kwqyM3Q7yWvL8FA9fUWZ20/q15jvvJAlcPRlT3gfIil22MdsbD0wclc6gRNoYBTL4RArScqi2xel0E5s5q22LTw65YbSJUShamccr58oYYkA+9+wF+5PPvwc9+aon3XZ1gjFUgO+JVqc3D3zmmglmdGAiKoh5/HHjiCfJfl9ZsbmGdB/jYywf4+KdCY/e3FAPSON6IBxXs066QYjLnBuScXiEoegbPl+sidArEye55GTmrHYfdr4XTQ/AlcW2OAekyqwvPKL/T8yXO6twxC1gMnP6Gc10zHro1gVjduWeL2tZzvXZqHlXMHNAyHSSGjnUACJberrNavLdMPjDfZ+/x9qaz+OyI2RBe5LLPq4MBsQD6OGhZ8JyqnxNC1QpEDYS4ZpVLc1aLNdJaLSxLMSBDNSZWUzedHUedmwWhFeh3bzQmtF8LDIh4z1ADdy9rkhr9JOu6/jiA90m+/jIYv7r79QTA/0FxrP8BwP+gf5pfvFVlhEGYT5izQvFCpMDyLQuug+1LvTMIFCU96MRxeJiUzPlo4Cp2VGI1dbe04TVbTLBviyYmSIEGLyL5MzG5McCAnKdR/3zznPZyH3HYA3y3lNBOr3RWC2Y1RfRRvdRMgjNEG1ZRoncVBAaE0PbMNm3kTt1JAhbzeOfreVoZJRyHc4cxWrvO6tjSxik0JUSqpP+MrRIXCy/Rd+yqWMXc5bKYWKxu7gsDIeXxt8/x0ukSH7zxMl569Rk887UPgOjp8b84VL6Pq+EKD849PAEARYE78RLXD2RQe42KIjwxP8Hrtyw8B+DW2QyPTcF/BfAbv+IO3h/9RXh3fgf7gmFLqsddj70zE25dzVO2fRfVAL6IuoEbBJCPW8070YRZ3R+7GyQQEQOSqzbGeW1iSw/bEAQInaLHZxUnS/msmmrE6tb4lOcMDRbQBTXLZ7zinlh9UuNgYmd1M98ycFaftZnVImDRUKx2XTDsx5RitVsjT2XOajqnVtS73lHg5+49g7/wn/wzOHY9kVjdR3bE60qbh9+U67IW7aT/R3EMJtQZiNXPPAP88A+T/7q0Zgsbd5MlPntvgZ/4uUM8t3zd6B7wQxt5ZQNF612V50YByUpntWFGCPuMy57zk4nVBv4s7qyOd6dx2KQO5pSOMwCwLIYzEwzkljB5IRiQypRZbSHPO2J1Zk+PAanr7XqOuDnejFs9DIgNN6CPW7Owwvq8K1ZP4KxeeEhKAJs1AOD0pGJitck8zvMQOonEWe2SxWoVBqQGjN4HrltvUZTdjWKqs3pQrHbgU/YBhBlR5awuCmSVDz/UxIA4hRy7BvB7zSflBQ11+VOd1Y2ZYyBkEgABA1L2u3pNkKGXNVnRt/cu69ek8rTSDzngA4TSWc2ZRrrJrqPuVyKqQemsFiIdkVnt2qUcAyKc4brnallwHRak2AsCFI43qlgtSyLmxyW7PGwbvluxdrzO+dZpps90EueqcpfzouyWDjKrDRbmfiBpHwWMmdWuNYyYaQKGdA476Kw2CFiM5EGIjWOdeOBg7rJFjspZTVk82TYOwgxnWdCbiKwSjgHRdXqI0KtU4qyuDdiUCrGaNGZ3KpzZuBat8P/6+r+N7/qmL7D1kikGxHFwNdzg/iZk95jgJxq4fAAAyyVuRme4fZv9tiy5SDuBWO09cZ0J35/4BPvC0ZHBwTiTLpZMyLmYoH3KQ6iG0iY7s3wfSEtvWma1bTOXi+R90CCBCGK1lrN63zEhCBA5GWKZWC2c1dSOAN/H3Nt1Vtepmdtr5+92xq3z0woHXjJpwGJe0F37AAuHTSQYENMuizCometvSrHa7/OKG2e1IQbEWi7wyW//v+N33fhx9oUJMCAyjFW8qekbuCJ7ROKsPl/ZOPAT4+tgmoXbrdnSwX+4+wxevPoAP/GxIzy/vG90bb3A7s9hGsOBoVjdDVg06egEtqFyPWe1a5YPwZ3VSgwIdR7XFqvbx92AfM82THwZBsRE+/QtFHWrI6SqkJYOQrcgi8rSgMWiMOOWYwQDYsDwn8/qXWY1z6AyEcABIFj6OxgQtslKMIfsHDToOauLTQbHqsjvWif0WBB9ZzMIgNE46Lry7g0A5hgQScAiw4AQjilc0BvFWCKY1TooSnFMlVhNdVaLObdCrI7XFek9Ln0ftIuCAfF9Jqx3M75M3zOXNUlditWPeKVxxXa3dR463tqVKZAdKApSsuuQ+9WEoej4jtJZTU7MFS5oBQcaADEMEvK2byEokgMW1RgQk0COwK/ZRLQrqMUFfLsktSY7doWimhYD4vpyVAVgthHih7Y8iEFwvSgvIIFtGULMUO4t35Yzq7kbw3GJDg8Vs1qEqhEneFbIReOuszq1ETlEDAiAg1mJsyxCd8W/Tl22KCM4q0NZQJVwwVPbfRViUpyYMRRF/dPv+Dt479VX8ed+y79kXzB1/VkWrswSPEjmrFVwUxg565s6OMDN6By379o4uVdg6Sbs/jcR/kTduMH+/7GPsf+b9KuLgMFEMiHPMlSUwFkxxnUXI3XNN9lMxi05a58F+Wofkh1XETjbYEB07wXbZmNhZfU3cFulzVUNAuYmjSV/ludMWKWKHo7DnNW515zz6qTAwiO6E0XJ2v8BnK+ApZeQ3rU1MLCBS2dWLxbAeRbuCB6loeMPAK4f5biXLCAUtSYEysRVKzace5xac2c1Dg9xFMTbe3cKZ7VEWI7XlXmOg6Qj4nTlMPejyX17ATU/dPEzd5/DR972Cbz0+gLPL++xm45Y0jkMF/5MMCAXwqyWdXIVBZLCMMzY89gGXrr7zG9Sh35vAQhCSxoUvd5YzLFNwYAI52NHqE0KD2FIdwA364Q2r1lkTVAd0KGjFpUN9oBUAYtlbcPx6NLLLKoZs7rlrAYAi/wgsFoeu1jlQUushnnAYhQhcnLEq+01WJ/ydy11fij+Xut90HQzGuKmemHZU2FAZBjK0qURVnyfvWM2amFZm999UcxqEbB4ARgQ2TxWVJnksK1a73yFua/oo2CM3jOXNUlditWPeKVJrd/mZ1ncmaVISyW+3JowKckAwficNOHD9fhuubLl2QADohCAARicq5qvTWdWD2NAqIJa4FXS+yBelbQJrutyZrV66EgSaLflNa79iRfmQxiQrHTpPHR7Yh46WHJ0j5kG8PBO+j2gYlZnuWUkVjeTxo6ovIkNAn8AHC5KnHbF6rpGVYG1ahOc1aErcSIUhVm774BYrYU8UNT7v5S1YzaWZVMhBcDVeYL76QJIU9y6BTw+OzU+TywWzFn9wMO/+YkMX3PzZeaimyKs6+ZN9n/xzjERqwUGQxb2kufMDTcVqqGumTPLpi2ig2CIWU1vffd8OV4kF8gS3XHLsraOJBnDn1ecao4Jvs8WuRL0gXAlBVTRw7Iwi3bdafdul7genpuJfpJFNACcn4EmhLsubKvud4TAnFm9PLCwKoJGVJ4iFBYAblwtcSdeNsfNUsL8tVNel68NIM4ctiFqOnY93UErTcWs7jirN+uazqwWbd8SWtPZysaB9+iJ1bOjAD9560V8y42fR+AWeG5536gziGFA+q7H1MStLJzVRWccMTHJAIDvw7Gr3eeWIzBIjFpRYh6TdpjVQqymOqtDS9oht16DZYRMhQERaxmDDbFmLBDnKhAYBpsAzbpWxpY2cVaLkMmOWF3XlpGwPJ8D67azWpy34dh99TEP99P5lll9Zk0iVs+9FOvV9jqenfBOIwOx2rLqHR2iQRoaOaslOFID8xGAQQxIWrm0SyDeBypmNaWbib+3htza4vu0ynGGMSAEYxsg1vUKfQtAllQkhFHD2pduil46q9/MuhSrH/FK4woBQfhgzEsF04fYmskERYmYBrPFE2vzlLuVawC2R3gJj6Aa6toycFYrUA01HSshdXjw41a1RbsGAIJAMvgC2Kwq2uKJo1DKWu2ka8RqirN6KGCRyqwewoCYhHdO7doXGyGSIMDShFkdudJd6DTjoip1kqsQZ1iLNj306WBe4iwLd8XqogDAd8oJAYuhI2F+ilZP6jpfIVYnqTVJizoOD9n/33iD/X8Ksfogx/2ELUhee7XGU/OHZosRAPA8PHYY4431Aj/14zm+4fFPTYIAAbB1Vot6/HH6sUSASiIZt8SzQQ3BUwUhEkVlP+BuN8l7hpyNAMAXYXXdLovCJrvsPbdWbjSK0nb/hSEiN0ccSwRpfu4WqYeWVVesvnunxvXo/GIwIOfcWU1poZUFwMEMMQMAy0N7x1ldZQUTAAwFj+vXatxNlo3gEW9qI54sAHiB0xOrk9whh7/t1JNP7l5DE8wQwFqJHf6Ztboa4xhmzGqnL1ICwNnGZYKS6XWYuGZLB6f5HB+6+St47vDE3FkdOv15nKlQKTptpBgQejcjfB+uVe128EzmrM77zurMNXNWBxw51V0jJDaZhc0wIG5PAAZgNMZ4XWc1vwcCg+BKN3D67y9TIwPU3G4ARtdgPu9gQAo+dhuOAQfXA2YSEc7qc9ucWR0EOA5iPDx3m/Xi3Ts1roUr+rvW83qYnc2qMtqwARSd46Z4kTFnNTFgcQwDAkDvnMV7S4bIg0GHFOdA99AavJKEJlZ7gS1f1/PK0pqhGDWfM9YR0u/gSQrPbKPxsozrUqx+xKtxVmsOEvs4q3WP6fr2gPuV6MyC2NnvT5aMeFEXhWoQgqLUBU5nVksdHoAxM8v3Lel90LzcKWK12IFWOOmSBNoLScaikzOry9IAA6LgNRuL1XaJIpX8+w2c1V4omTQD24kzkXPXtDl2ni/TYBrG+Cp7O/ymbamHy6rvrBZKM6VvjjM/e5M7nshtIlbbVo0y270PGAZkghb142P2f/Fvn0CsvnJU4UE6B9ZrvPZqjSfnJ5Mc9+a1Erc3B/g3P23j19/8zCTHZAe+uft7U7HaKZCncrHasurpuMImWCi0Ntkk70STDRbPlzu285y+2TyEBxOl7f4TCzIJ+qC5JgZuUiZWb+ccd98ocT1cGQd42laFMumI1SsLS5/GrA6cAmncuYe4a9+1K3L3wvLQxnm+3RC8/8DC1WBtLlZft5izmgse8aY22xAF4AlXbdtZndrGx2UH93Y/l3e+0+x4to3AKZEWu1z4OKbzf1mwXl+kBIDTtcu4so+Ys3q5BH7fB34Brl3hh977j5izegoMSEf4iwsPYWDmrJYxSo0wIILjn1Xbe0Dwmk32hR2Hj4m7eMdGrJ7aWR3bmHt0DIiS/2u0ccW7D9sYEENnteVJcEsCEUcN7wR7JGXXwHRTcDa3sc5bGJAJrisA2IsZE4H52P35uzMc+Ruzd6Jl4eo8YXNOPo+9c9fCDZONYYlJJk4sY7G64aF3hMq6tujHVTGrRcCiTghic6KefF4giqLvCFyHzMgBIItLhg0lzGGkHGheScy1As3j2r4akQYIk6e+biY1eRYF4tLDfHYpVr+ZdSlWP+KVpmDtDLoPnYJDBoAsVjueAgPS8DnpLc9SYd1kJ9514Vj1xbhflc5qGy7FWS3YeTKx2rANKQhqaXiKCUOxcSIoeFENT3JKZjWVh+7ZyvBOMrNaoFAmvrcaTq2CWe0SnT5u6PavbVUhKXgwDbXFzfex9BKcn+9+Oc64MEVlVh9aOMs7zmrxa8rE2fel7bNioUMOFVMEX00V/oW3vW339xMIwNevVribLIDVCq++bjNn9QQu6Js3anxudRXppmQM2Kmc1WEIPP88+/WVK1u3OaUEBkQ2IRcLnwnF6rxyaFgoDDCrTR3bsgU0zLpXGOtRvtEoapNpbmCJYCaJQDeFk2wW1WzB33VWm9y3vs8C0DqbYquNhSWF0SkWpV3WvgiAc+hi9eLI3RGrb9+1cTM6M8eAPGaz8YULHkkCOv6CV89ZXdfMWT2FWA1sx5TlchLOfuBVvbm3Ueiw6yJyMoWz2sHBI+is/i//S+CP/rZfBAD8rrf/LJu/mWBAIge5REhiQiXx/W1Z8JySdXW2uwSFOYCKq+DdhzsGgQlwFbAsREGFuPS3Y21VYZN7mHn0ZyGYOex+7Yzf69jGnHjPss3WPgcagNEz64qxoOUqTksXYWAgJMk6BCc4bhMMK3NWGzyv8zmYs7rDrDYeC8W7b7PB//q/ss//a26+bNx5d+WgYGI177a5e89iyC1DsbpOs2bThoWBGjqrJRiQMivh2JW5WC0xIKWlZ4YBGWBW7/zsfcr3Wc7ZgFhN6fCH6zLHttJZDaYVEI4LYNhZTcGACGxo5z2zKXzMQoOx+7KM61KsfsTLxFmtbJMgisBN262MqSsW5hSxWuzsq5zVRLHat4t+ix+AqqjIu9uuCzmuoiy314BwUGkqOWAc8BD4kLKdNuua3Jbq+I6SXQ6wNaVua0+DmFExq6ktz67LdsYl91Zm6qwe4qETxWpph0ETiEq7ByzPZeEj7eNOEEwD38eBH/fE6k3mGAkUjbO6tXjIzhLm/KQ4q1UBi0WBhBpyAmwnjZ3jJimmcVa/+OLu7w8OzI4HRtW4Ey+Zs/q2O5mz+rHHLfzYa1+KDz79OvvCVGI1AHzf9wHf+73sPxMOtmj7ljirq6xgzwiVWa3IMKBy7hqmpcqxTUUCifbsHgbEImNAlJkTrdqkmu6/IGDCr0ysnsBZvZxXbEOsLVaHK2OxOnIzxOvd++t8ZdMwIIrNMFMUDAAsjxyc58FWrL7n4ObszFj0vP6Eh7ttZ7XAX5g43gTGqiVWx4WHyMvpG63t+r2/l22I/YE/YH4siFBrrydWRw7xncg3W6XO6o3HWvXJL7GLqfkc8K51NhZNnNUzrxeyabzZbFnwHHkInlHwMjgaqbY7uArXmLgVBRWS9lopz3GWh1hGBfndGIQWksKTO6uJAYsXhgEJJAGLppsA4t8ncVOGvjqHYfRcfUkI3AQu6NnC3mFWV7l5uCA78Ixxi89z/IN/APyZb/z/wXfK6cXqBw6uRwYYENvG0k+xyvzmem42MMeA+P0Q16YzyBADUhdyZzU1YDF0ciSxYtyjoEuGEHlgDGi6s3oAA5JaJAyI9JltVZqC6WYkDEhnfswDvWfRpbP6zaxLsfoRr+ahI7QzKDEgVA7TAH/JZPEURLYclm/yYucCsIz32PC1CZM75qxWhOBVxNZB31czq00xIIECA7KhO32aTYtBZ7XeC8j2HOaAHgpYJG5aAFA6q0lcQsGsnjhgsUGWSFv/DRZPsnT6KSb5vo+ll+J8tXte68xjjhwTZ3UWoQ2ZXp/k7JiUibPnMeGry6wWAU1U94zrInDyXvBVnNjThH9F0fYaXrkCPPOM2fEA3Hzcxu34AFiv8enXIrxwcG8SYXlxPYJt1fiGm7/KvjClWO26wDveAVy7ZnYcjgGRhb0kq4KNWVMxq8uSByHSW9TFcXaqSSYnOqtl7dloYUBMNnBVYnVd63NVgwCRkyHO+udT5+butMODegc1dPc+d3sZO6v7i8jzjUNmVkuD9Qzd9QAQHvhISm9XrI7OzZ3VT3q4Ey/x+TfYKrzBX5iI1WHHWT2FS7VdL7wA/MAP9MMWiRX4VQ+rsEksdh0o70QRNioRq89izyys7CJLYKwAdu8bnGNvwwLY3gcm7len6ovV3BzghQYOYLeWOIDNuaehXyEuWs7qosDDdIbjhXwuvk81zurOvHOdOCxgkfC5+YHEVTyBWB3MbDZudTcBpnBWy8wcBp+Xylld15YZs/rA2WFWNyF1Ezirr4Yr3Lnv4LXXajwb3m6+blJXjiqWkyIwIPcd3IjOjMaDK1HMBHD+mTUBzgbvGd/vIyDY+8ugM8h14VgVyrQ/P0xLF35AWNONYUB4iKfWOfO5cW9jnFcWl4wBTXFWCwxI3T82WawW3z8QsOgTAjeb4MZOl8Wm8CcjG14WrS7F6ke8yGJ1ZMuFL4AuAqt2sxpeM53PKXVWm7Q3CT6pxK1ssjBXspUbcYIwufE8uAMBiyaTG9WmhQkGRCp+tipJLXbPahxb6SQ0RMwMiUlmzOpq8s2FZhNAxqw2SVF3Od+rs1uclNxZTa0gYBiQdevfWpZY5z7mPt315i0C9oy1FqZ3bxVMTDJwVqswIGTjiHBWd8XqzGHCxBQt6t/1XcDb3w78oT9k5irmdfUxD/eTBbBe4/N3IzyzeDCNsLxc4rHoDF+/+Hn2+0dxZicwIJINzHhV0tpIVeOL2Lyk3gJDIjh1UxQimKazgK5rhgGxaBuCQ10xAFireuEj8jSQQ0GAyM2R5P3vz+OCvb8NnNWLYw+rPATWawDAZ14N8bzpxo0QFTddsdrAWS3rCOGblx51IwSAFQbMjSfE6vsuHotOzZ3VTwX493efw2/4W98NQPD7J3ZWc1ZxZPLuusAKJHkxcWLTRQ/H4c9Cv6PvLPaZs/pRF6sNXNUA4M89tp7piAimQqXnSZzVPHiZmhECAK7DQ2d3HMAuwsjsHR6FNRNrW85qUxa2Gzgo2xxoXuvEYc5qiljto4e0m2KT8fiKjZN2190U4Wee1+885BshEZWHjpYLvHXcupiAWb2wsS62zOokrqcJm3UcXIkS/ItXvxTv/4qycUIbO6uP611n9YnHuphMxOoZ52Dz+2ATW8YdPGGI3a4FTNAZxIXl3pyzKFDWxDFG0dHZPjYAvXvM8xBchLPasuC7FROAJRlXCaELG8AoBoQRCfSP2+CLOhtMl87qN78uxepHvJqHTpcv7audquRJg2o3iwu1HtVZrWCmGfG9RPuJxEXXtDxTmNUu1Mxqk4BFp0ZRWVIHMAA6s1qwy7vO6tgyCvwBoBarKcF9Kge0aZjUiFhNmi/tgwExcYGrnNXUxZPsuRVCraEjZeklON+0/q15jlUeYDEzc2wD2Fk83Xq9xmOzM9rE2WFs7iR3emzKpDC4BqJNvyNWGwdXtuv97we+//sZv2OCspdzVLWF9CSGbxWwrXoaYfngAP/8N/9FPGZN48a5kPI8hgGRDFvxumLolkmd1Qbu16HgxpqOAZG5h5qNO4eWCzAasEhpo/R9uHaFouyP+fG6Ml6Y2gdcPOMMo8/dDvHc4r7ZfRsEjI2/3n2HnccuFkRmtW+XUme1KQYEvs82MLsYEEPR8+qTIT51egNvrA9QlxVi4Sg2cbzN3F230xTvrgus5hlrB4AJ5x9lvmVZCEMwVnFn8DpNAhaw+CiK1VeubH9twKsGAHfm74q/AN+08I20NN+t+7hELiTZvsEGi+Df7jiAze/ZMGAInB6v2CRg0/eZgNp1VqcuC1gk3Fte6LDr2prP51nNBC8Dofb4ioWH6WzasUDReRgbHtcP+yiULAPJ8dmu+aHLnNV87Gbc32nmm1eXGf7J59+Lr//KDTtv2zY+7pUrwIN0thWrTz268UQcc57uOKs3sXnAYhhxHI7MWW3ArPbtsu+CNukaFx1c3U5RXnWW62d6eB58R66XACyw0Cdkp/HT7QvAvJLUJgUsjmFAmudMFwMSqp3V0czcLHRZ9LoUqx/xogYsDgmKeVIysZaKAZlSqMUws5qcxCtaviUuujyrjfic0oW5WEDSN2D7fDN+XMuqjTAgPQYTgI0I/KEscvYVq3VeQGPizNQOxYrt9lIxIJ5KrBbPBkVYV11XIXxRxWpXwqwWriQDJh98H0u/I1ZnGdsEiAxcxWIS25qN3bpV4/HZKW2Ca1kI/bLnmhALSGNm9UU6q6eu+Ry2VeNXP+PixSv32NemEJaffpohRUQ9omI1c1b3N1KSTUVzPorv787yDdFYQ/gik3ettD27KIzQIspuI1F5jrj0tMVqAKgr7G4wgYvVhqF9WC6ZWLtaIc8Bu67g2LXZfTubIXJybM77YjXdWa3AgBjcAwC2m35dDIjhxpXj2bgWrfHM4gHO7iS4fRqylm+TgMXQYSF44n3AhSQT1+NFlizUOk648494HaKQi5Ttcaausc495n41eRYuqtoBwa+9ZnQoK+CbKz1mtRkH2nMlGBC+7mi6/QjVoJG6YrUps7rjrK4zItKxXYp55zp1yTg3GW5qClzFlevOjqO2CUI0ua6yd7ipkQFAENq9cSBNzK9BdBwysboVYjtV2OyV4xo/9vqX4oNPvMJ/WGTc0Xd81WafGR+/754GZsxqCLF6u2nBQs3NBPsowm7XAlrjtpGzOu/rECZInCZ4Wf7+K9KSdcnpvBN8f5RZrdstvT10Lce8gn1uFxGwSM56CyREgjxHVdtwiJlRlzVNXYrVj3iluU166IYe5iytzI4pw4AYuMiaNk+Js5rcMjUA9m+c1RRmtQhhkAn2JtdAFsbBjwuAjgGJbKWz+sIwIJmt35Y2wEM3QcyMYkAMmNW5RKyuiooJw1M6q3lbKvllqXJWGzL5GmZ17Gx5ZHmuz0vrVhjCsSoUm5az+g2bidXEVUno1z3XROPKobbmKpiycTYRs/oiaj7HlWCNf/PJY7zr+A32tSmE5eee273nH1EMiG8XyLriHzgGxICd14gGogSqgfoYqMZDwaymjFvgGBCJWF1UNh3L6FnM9agSq7mgoMVntKztxlRnI8A49AgAlksAQH2+wqc/Dbz96gP2dZNnIYpwHGzw8MzZ4TOuE5exX6nM6qxz3fgGLnVzAQBzrlsV8ph9ZrcfuLgZnU3y3P7Y7/4b+MprX8Ctz6V45eECT88fmgWKHXo7jNZGSJqKWT1xNSJV68XQbGBSxWohpLSfBf4us3xvEkTU5OV5wFd9Ffv1299udixJt1WDaqAGLIIFIfbWHmKOYCD+NQJNywGdFAZzDV5hiB1nNfm9tXuy7P/tuVFdc7GathHih33RJ0ktY1zF8TXnQpzVPUyeaXgn5CasBpFocG85B6w7TiCsXn8Qso3GCeabVx7zYaHGl9S/wr5gursCIDgImGEqjvH93w+sEoddAxOxepnjQdLCgCTmzOowstgY295gSQ07g4SzWoLyAmAgVudIFc5qEhbGdRmzWjI3BjgGhKIZAfC9PhKoOVeKsY2fLwA1szoDSVz3Q7tv7jPp8L+syepSrH7Ei8qsHgLQZ0lNa+kYwoAYuIobB0NHpGsSdE0CFmUYEENmtVKsrhy4xDmj53ecGKIMMSDN5LbLrDYUq+vaUovVucN2SzUDHgAonNU2XHvidnpDZrVnl8gl91ZRgPG1KZ/XyPPleIYYEAmz2oj15zhYBhnO0nB7n4qfYbh4OvATnJ1uz+3WHcdQrK56rokmYJG6gHScvphU1+z+f1Sd1YsFbkTn+NFPPI0vP2y5Z0zL83bH6S//cvNjTl2+v91c6IS9rFZgLc+6963vM+dM3HkfCO4pdX472Gliw6UGLAaSTdGiwLoIMAsUYvPYqYoN3AFnNdBi8u99shKBClysNhD+AACLBeNL39/gk58E3nnlDvu6ybPgOLg2j1mYVGvVV9c1w+0QmdUyV5axszoIsPQTrM7ZMd54GODGBM5qAHj3c+d4bHaGN17JmVi9eGg0Fh4c2SxwV1zTR91ZHXGxWjBfAWxSh21gEgWaMLL6zmrx60cRASLqO78T+B2/A/iO7zA7ju8zE4BErDYRgD3hgO44qy3K89qq5azEeR7uOoArF0FoJlbP5tbOxs3DeyWOg800zurOtV0XAeYhbS7rzbxeO33TJWwwFhxdc/Gw46w2dqzLxPqiYBgQg+M2RiGZs9rk8xJIHS5W/8rrB3jn0a1pMCBPhvjA9c/DfvnT7AtTzA35MdYPM/z5Pw/EKf/8DdBAV5b5LgZkIrE67mJAEmIAoCgVs9oEA6IKjOdF4mz7PmNWKzAgWVrTmNUQGBC5szrJiFkOwiSSy+ecaWYxjUsbAyJxVk+BWros47oUqx/xSjP9sDoAg0yfZuCZCgPShD4RF08KkS5PKzrjjLvoZHqqCbO6Cc1QOICp3G7PuxhntRe5fdYfgE3K3Z8X4azOHf0X/ICTsDBpp3ccWFaNKlMwqylpzI1Y3T+nIqcjZoac1ZZV09tShXOk10Jr3pa6jAqc58H22DnnpZksoIMAh16Ms5OtGHHrnkfHgAAI/LovVpsuIEUAWlusrirEhY/ILR5Nt9tshpvRGX785WfxTdd/sfnaJPWN38j+/1VfBRwcTHPMKctxsAhyrDK/9w47PweWRK5w6BRI4n6AjglbWowfvcm4GA9dA2e1hNH6MJ3heC4fz0ePORawSJ3sS3BAAOt+NuJIAsByiUM/xt/9qSfw/d8PfPjpT7GvGy7Orx7muJcsdoRKq65ox+ahR2m3O0wgZkzWTmHIumJWQLIu4Vv5dPz62QyPz05x65Ucr5wu8fT8gdFC7/Cai9Ms2t4HE/F/L6qCuctEqtY9EOcO3RwAIJpZiDvO6jrh4r0B+/XCy/OA3/SbgJs3zY7jSzAgE7iVpc7qojAKNQeAo0XJ7tmWA7iqLdie2Qb2/MBh4Xr83nr4oMZxsDYTUmTz+SzDuvDJeqI/64SigjurDYVaJ/KZq3hHrHbNHgFZwKLoPDSYH4eRxFmdmTuru2L1J28d4p3Hb0wiVr/4ngj/6bO/ALz8MvuC6XMLAFEEy6rxqc96+LZvA/7I1/4Y+7pB6OqVg2IHB3OeeFh4yTTO6i4GxNhZLXEsU0IQRQlntUJYZpv5mvOjEWY104wMmNUqZzXF2AY0ZsQiUYjVRJOnHzl9Z3Wes3fPpbP6Ta1LsfoRLyZWE1x6wv0qdVbzlg7dYw6IabnBAlp1XKPgCMdhg29u9Vx0jbOaGCYl5XPWtZE44QaOVKxu3OVEZ3Uzi+u8LTexbcSslgWyAACqCmnBAu20zlnFaOV8TvLcToSqdTm1ZYmsJDKrxYtSggEpCjBe2MTOagD0CW6HTyp+BmNWm7nTlrMS59nWQVQlGZv4G2JADvwEp6fbL92675k5qwOJWM0XkBYViC7EpLZYXRSIi0fX9Sec1d/85C9jYa3ZPTWVY+A3/2bgu78b+K7vmuZ4F1CLqMQqD3rj4fnawoEXk5zVoZMj3ijcrx4dMePLNsSEUEkNWAzt/nsmZy6l47lipTJS+zqrKWK1ZdWoO6uyeFMbCX8AgMUCh36Mn/jkY/hTfwr49denEauvHRa4n853hMq6JIrVglmd2btzmKJAUdvwqPcWANg2Fnzs/pWf2+BLr9xlXzcMwgMARBETq1+vcetsYTRuA8Dyit9zqT5I5zgibq5cdPkzF2npbe+BskSce4h8erhcNLN6GJD4NKPP4d5q1Xa/imeBb7ibuJX9oM9WJgfQt+pwUeIkjfpBiIaCBxOr/a1Yfb+azlndEatNske8uc9En9b9miQw7zgT90GryyI1vAeUzOrSM8vbjeweViJN+Xre5PPyfQBcsM9z/MobR/jSo2nE6vd/0yH+wLt/fPuFxx4zPibCEId+jH//K0u8973Ad73wU+zrHMVFqSuH5Q6z+tbZnL1nTJjVc4lYnRoi/fg7vCcCG2JAQqdAmsrveZJuIhB5qoDFFPCdC3BW50QMiMifUTC21wltc7gJWGzdA8374NJZ/abWpVj9iFeaW7SAxSFmtUhKpYZJyVzFJgxFxXGNGGeWBd+tpGB/E2e15fNdeBVbmWp+VTCry6Kmi5+AupU6M2ibGnJWc7xEGELPWaraCOH3lmsTxT/HYUGbkslCDdCcLp4H15Yzq/PcDANiAajS/jUAQJ8wBQFsq0YVtwS6qZzVi3pHSIjPcvMFtO8z9uvp9ho+OPNwJViTXWRhiH7Aoul1bWNAOgvoR5WnCt/Hb3zbZ/CH3/uj7PcTBOg0FQTABz/4SDsQlrMSqyLojYfnKxtLnxCC53mI3KzvrG7cr3TEjO8UfdYh37wjd6UqmNUP0xmuLGhi9T4BiwD074sgYB0sq92NhdOVjQNDFxWWSxz4MX7p1lU88wyasCpjZ/VxxZzV/HhlycIbAei7li0LgVcxd14nb8AEOSZqOWdj9yd+LsWXHb1GO0dZzWZ4LDrFG7dqVFXN1uMGx7WjgDmbWgLVeRbiYPFojrHBwkNWOtt7Ks9xmkU4mNEwOwAQzmzEbW43gNMHJXsOvhjEasuCJd5TLQGYPIfj5Xl9cSKJCc7ETh0tS5xks50NFgDmYvWhyzZbeZfBw3sljv2N2XPr+7CtGmWyK1aLP6OUHXYc0GDGK+MgwDBk57pJ2ZxL3AO+wXUV3Zdlve1k5agho4DFmSNlVoemzmrLguVY7PpuNnj9ZIYnZifTjN3Xru2e2xRidRThy49fx9/+t8/hHW8r2b1r20bvWiZWb53Vt84XxmJ1OHN6awTj4EbBgu7mTkzArE4UYjUJA+J58vPklaU1eZPFDyx5wGJdI8ldmiGRs8B7JjRem9RhvH1dDEjksvlxa9zKk5JGIrisSetSrH7EK81sGgaEu197wU9gAw8JVaBCNQg+J3VhrhDWTVOOfa/u84fQEquJLwp2EEXIJFWsDmwprsOIgQyondUpD/whOqsByMVqKkNO5aw23AQQbVi9HViTyQJ3VuddDhmAojS4t/jEpuemNG1LDUN2vvFuiFBausat1AeLakesXj3MGfvXpC8zCHAjOsPtB60xr66Ypkp1VodgbrcOBoQchgkAto3AZdzrZpHDWYeRXw7/3TerLAvv+3UePnjjc+z3j2IQ4gXWotMJIOp8bTEMCOE9GzpF31nduF+JJ+q6jCHYHWMM3zOMyafAgCzpzOqhgMUyyWndFkGA0MmRnO++Z85WNg59ggu+XcslDv0Ev3z/Bp5+omT3QzvUkVjXrta438KArB7mWLgxe78RzlcqVue5WScbr+USTKz+pRpftvwC++IUzuo5c7l95mXuSosi+vwFAIKAvf/4HCaLS/aOfUQXj8HC28WAZBnuJQtcWyrSq/aoaG4zIaU1bj28V7IN3C8GsRpALcTqCQXgBuvXuq6bxMbcVKw+rHYxIBOJ1d4yRFnbW7FaOKtNNtlEh9imNWcx5aH7Puu+bDurJwgXhOviKIxxmvDuqLI0RrbAsuA7Fdtgagdilh6imYFrX/KuTXOLlkHVqVlQIS48rO5sENkpmxtPMZdzHOCd79z+/vHHzY955Qr+s7f9LH7y00/iHU8ydAkWCyOTxJUrYGI1fye8vlriCWOxuu+EZ8G4hs5qyTyuzCs4VkUXq7sdna0ioUv4MSVyEYAJmNUyxKno7g1q/XuBr5V782Ne68Rhoda6GJCZ29tg2mxgzEO/LPO6FKsf8Upzm/ZyE6iCtC+axDGR+ei6bFc7lTmrDQRFhfjZMM6oYrWi/cTEWT0oVhu0Z3si+Kp7rlnNXMXUyZhYfPeY1a5RwCI7OZWzmiCCDgQhGt1bfAd26jYszy7l//zMwAnPW7HSeFdYz7PabHEuHIpx0XcAG6bTHy1Lls7OJ43r04LtaBvB/li6+Z0TtlA6PwdbPALkCXnjrO60egIwWuj0xCTOOjRJkb/wev757a+Pjt6003gzajGrmbO6hwFxsPRozurQyfthNwIzRNVTRUeIZJOtMHBse6EEN1UUeJjNcLwgMqtlbu1WxauS9q7xfURujvhs97xOzx0mVhu2vh9GGaraws3ghH1tgi6Dq1ex46w+eSPBkR+Tjx34dS+kS4zdpqih5YGFVR7goz/n4SsPP8PeWVPwj4+O8MziAX7hM3M8u3hgxCYF0Ntw//wXLDy7vP9oBtiCi9XtgEW+ueCFBu+ZmdPbbH1wr8KV8ItHrMavkVi93vDwcYP76/AAOOkwq402xkWJedUOs3oCsdqZWKzubDABLVexoehzZZ4xoXKzQZEUjLVv6lj3c8YCb4nVaenSMm142UE/iD7NbHN3OYDHj2K8tj7CP/vRGt/0+K+wL05lPPiqr9r++sYN8+PduIGvufkyvuzK63j7jTP2NcN3wuKKz0wHnNt9lgZs/mYiVs+dXvdKnDnMpWwQsOg7ZU9YThNibhg/Zujm/SwLXiQ2fMOsVjirM5CZ1Z5vMR2ma0Rrd2HrljChdYPNea2Fs5ogVneDYTer6lKsfgTqUqx+xCvNbVKqqRDpdiYgvOLEoj18IrSw23ohmNWGzupumJTp5MbzIEVrmDCrh8VqE2e105s0A2w+Tj5XAPB9OHa12+IHYJ26bDAnitXdSVhT/AWkzZBTBYqVJUpDZ/VgGrOBs1rFrDZx7QcSgWoTW8ytTJ3gWhY8p94NvJkopOrKcc0WDlytW58WWHiGYjUPAbz9kC2UPv1p4O1H95o/o1QYAkkn6VugYEwmIYFf74rVIkX+UcWAALti9dd93Zt3Hm9CLRe13Fm94WK17uKcC6q9lsyiwKbwMY+I94F4f3cXD1Vl9K5VBSyeZRGWc9q5zmbApvDVYvWaONkPQ6mz+nTtmjurARwe1Hhq/hD2nTfYFwwRIABweMVhjkouJt1+JcNjs1PyuMXGF6/3eSWla4xwevG5HP/gs18JpBkem51NhwQ6OsLST/HJ7/xT+J+//m+bu7X54jyJWZv+Z19x8fzy/iO7eAyWPvvMWhgQAEaishX0AwYf3K9wJdh80YjVlt0Rq00xXlA4q2Pi+qhVR0fYdVZPFdIVRWzuLcTqh2BitSEGJHDynf3bOuXZIwbOagC7YvVEQu3xImcGifUar9128dT8ofEx50HOWODiWeWObXKoOSBdK07iLgfw4uMrvHR2A//kn/r4yNM/z4431Tjwvvcxkfqd75xm8zIMYR8s8Au/449jdo938BjwqgHAmvP7PY6ZAUeYcw2eLyZUtvSCuubOajMMSODkPbMUw2oQ7wPugk4yuSZAdVb7dsEyviSVZgbM6sCSmxmKAnHh03jzfA2udFanHlsza56vE/koK3v3fXDprH4k6lKsfpSrqpCWDm1Q41wjGYB+E1v6TCNgu4CO+26vxCRUTIh/2e7fn8RZLWNWl/bFiNWGGBCVsG7ErA4CRE6O+Hz3GpylPg4ojFZg1FmdVw7cgHK/SnZKi4Ixqw02QqTBEYbOateSO6sZtoX4eQkXeOcFPIXTx/d4m6OwgIq0c0NndXAQsIkIX5ivTkvmgjZRUpZL3IjOcfskAOoaL70EvHjABSWi8CFL+p5isRsEYGJ1axMgLvxHN2ARAN72Nvb5HB0BH/jAm302v6a1WEDurI5dI2d1K0+PFRerZxFxM0gschQYEKpO64QeE006WAkT7ud8DuZKU4jVm3MDZ7WTI17tvhPONi793dWqwxs+nlk8AD7xCf6FQ6PjAYC9mLHry2+IN17J8Vh0RhbCm/Gl66wuzPMGvu03nuHjD57Et73rl9kXpkCAAE23hnf+AId+Yn5cy8JBkOEsZ+LfZz9v4/nlvUd28bi84uEsC5t7IDnPWfaKyf0qyR55cB9fVBgQy7ZQVtbOuxaA0byo6Whst31PIFYfHlk4aQXAlXk5iQO4eej5PO7l1wM8Fp1O7qxOznO29poQA5Jm0wi1xwesEwibDT73mofnJti4WgQFVp0QV8uqzc5Vsk5indKGAYsA3vF0jF85eQw/9wkfH7j+ebZZMWX2yH/33wF/8A9OczwAuHEDjl0DL7/Mfm/abSM2ZzYbnJ+ULG/Eto2ugeV3srPKkoWlewX9uI7DNJPC2aICwbEaJmK1UyDNB8Rq3VBIwaxWHDMRx6SgzEKrj2AEgDxHVjk0sVoVQM6LmfFoc04AO+uDOIZ5oPdlGdelWP0ol0g69olMH5mwDBYaQJqMiUCxbuiTaVibGHw759rsxBNf7L5XM4GuhwExc7+yg0yLAXHHnNXUSZPvY+Zm2Kxa17aqcJ6FWPpEty53a/eCAIHmumg7EsRu8UbW9m6IAbkgZ7XsRZkXllHAYuDkvedrkxiEYW4PveusFg54U+OEECK4WL0+K80xIL6Pm4cJ7myYY/ull4AXZ6+zP6M6qyVidZmVdG4cryAAa9NvhX9N4Vi/0JrPgT/2x4A/8kce2Vb6iyrB6e2Os2cblxywGMrCbsqSidUzuljNnNWdr4v3jGk+RAcDAoA8GXcCl4U9qcTqdU2b7AcBFl6K89Pdd8LpxjPHgAA4eGKBp+cPgZ/9WfaFJ54wOh6AZnyq12w8fOO1krmWjZzVfWb1FGOMc3yA//1b/jK++/mf2Dl34+qihSYQwQ+jlDlVkwQvf46L1Y8ob//JZ128tjlqxOq7b5S4Hp5PL1Y/tL6oxOpFUOyM3U0XnombMnTYGqHLrPb0W8jbdXRsMQwIH2fTuDZayzQVRaxTcp3g1VeBT78+Z2LlBMzqNspqfVaya2CAAQGYQ1uU6XpO1NXDEnfjJROrX3WZWG24czcPCqzzvrPa6FwlaEN2DSZwVj+X4e+//H6894m7bBNk6rHQJGNAVjdvsv9/5jPs/4bOasxmiNwM8UmK1z+X4fHo1NwF3l3bFwXi0tB4wkOSuzpEmoLWMc/PM3RyJJn87yapxTZHde5d32fM6kKBFsls/WPyimYW4m53GEDXCoDtul5ixkRdY525tDWz5D176ax+NOpSrH6Ui4egBT5hUSLwBypnNcXpoRDTjJEC3P3aMbsZDZBAK4W2F7B4Mc7q3IRZLViinQHdOGDR99lLfd26D7IMWeXAjxzajrHrwrUqKQ+dLHyIVl+ZWH0RzGqT0ELBrJa82E0xIDJndRP4Y+IgcrlY3XJW12BcPaOazWABqM4ZO259XjEMiOHE8cYN4E58AJyd4VO/WuHF6FV2rxIXZUys3h0L0qQ2XjiEEceLtBw5celNQRS42Lp61XzB8BasxZJxensYkMRlAYu6963D2kSTwt1xzjTOaiq7XDCru5lsYjykitVexz0ElnbuWpVRq2v3mO1qmH8Esfo42ODhg91r2IjVhk6Xd38gxO984eeA01P2hSnE6ihim8Mn7P564w3gZmQgVquc1RPkDWC5xFOLE4QnvGvlosRqUxcdgINZydzKmw1eu+3g6cXDSbAtF1HB8WyHWX33To3r4erixOopWvXfAvXU8RqvrY+aa5CnFZ37ykvKrE4ccwzIFZttrvBFTRMWP4GzeuZm2JwV+Ft/C/j9X/NxNoU3eRZ8v2cWun+vxrFvgJjxfczdTCCFAQBJPg0G5EufjfHJk8eB9Zo7q+8ZjwWLqGQdVy2hEoCxs7oGLsRZ/eILFT565wV8+OmX2Bem6oq5qLp+nf3/dW46MX0nRBGuBBs8uFfh1udSPDE/Nb8G3Y38PGfOasMuSd/juROt+ZExBsQpkBYKZ3Vq63O2XZcxqxXHTDKOZKVgQGYuQ891F+F5ztbgxO5uT7auBxqjyDws9fUNmVgtOm0undVval2K1Y9y8ZAH0lxUhLVJxGqys1oIf91jtlNdKcWF9a4I3jCrjTAgMmf1BQQsGooIjVjdGX0bDIhBwOLMzbBZt66tOHeysu7BtUsUiUScEMcmtN+Eio0QUyeh7/RZXI0rh/ICEtiaAtvAwu3p0rEt4jnoCFRTLJ48Hz1mNQBzZ+18jkM/xuk99rmvzmvmyDF0ugRX5khLF//V9wf4yZ8E3n5416jVMYjsnrOa8QPNFg6zmYW49Hec1VNMcC/rYipaOIyv3BOrPYYB0X3ZWhbCoEbc3rAAWs5q4omKFHmJs9pkU7T5i60DnzyscRRsLk6sFs5q3eMHAa4Eazw82X3mzxIPB565s/r5D1zFb3vuF7ZfmEisfmF5Dz/1i0cAgNt3YOasFp0bMma1affGwcHu7ycQlQGwd2r73zuFs6WmeKMAAGnCSURBVHpRMvFvvcbd+w5zKj+iYjWiiC2kV+wZu3u7wvXI8HzFPKUtVp/aX1QBi09djfHq+ri5BlMIwLJ5d9PJZrKJfRSysDa+YZHG1SSOWkQR5m6K1XmNz30OeOfxBLz9KGJOzfXWfPLq6zbbEDJwVi+8BOer7didZjYT6AzH7fd+SYxfuP8UsNngs7dCPLe4b7zRNg9LrPNdsdoyxbZ0xc+6RlK47D4wDfJ9eobjYI3fMPt37AuPaJdJU089tft703fNfI4rwRoPHgCvfi7Hk/OHk2Qj7GQxCeOJ4Vw+8OteTkiaWUYBiwwDIh9LSJxt32e4TKVY7ZDHWsv3enkLAOhaAdBoUVIMSJ5jnQdMrNYt34drl8jj7Wc1BRbqsszrUqx+lEuI1QbO6jTp/9EmsWn8IbED3w1tLEvEhW+GAbH7qIYkpw+QAEuhlbmVL4xZXTn00ODARlHbveMWeW2GAeFidbyRiNUGrglnwFltAbR7yy5YiFK7OAaEPMfnzLDuvZVuSkTUF5BlwRVOZclGiGvkrO4LVMxZbRCwiBa/veWsBmD+Ap7N2KTxLjveeg1zZjUALJfIKgcf/Q8e/rPfGjO3tsFkNJw7fbE6NndWRzOLiZ+tTYCUEjB6Wb8mZYVcjO4yqxOfFrAIIArKPg9dOKsNxGrfKXsbV2I8JJs8JM6RhycWc9FdtFhNdFY/6IjVpxufOatNRbrHH9/9/UQYkD/5wX+IP/z3PoA8B9644xgxZZmzus/an8RZffPm7mfytreZHa9dbXf1FGL1QY2znDmrH5y5zFH8qAo0UYSn5id47R7LXLh7u2TOakP3q23VO0HZD06dL6qAxSevJTvO6iSuWeelybwocnrdl5vUMXfSiXuTW4vjxHxjHAAQhlh4KdZnJV59FXgquLv784jneujHODvbfum1Nxw8OT8xWiMsvRSrjd0YOh7EIQuDNBTsn37GxhdWx8Bmg8/cnuP5A3Mk0DyqWO4Cvw+qfIL5sefBQssYU5ZsPe9VxmK19cTj+Eff/D/jWc8Mj/drVi++uPtvfuEFs+NFEVt3PLTwmU/XeGF5bxKxGsCuWF34iKjdcbx8r+51R2UZ2HhAxFCGDu/mq/vnlqScL61zbMGsLhz5McVG04QZV6aGMWkWFf856yKghZv7Pq6FK9w72T73U2A4L8u8LsXqR7mKAmll4KxWYEDIzmqRGq1gVpMHdYWj1DQ92g8stqMpCS00ZVbXWUesLgrGVvZpj5QXudKAxSKvmfhJHSh5SJUIpgfYuZMEZVGuC9dWiNVU1zbHgPQY6/wZILvIhADc2TFerS1aAMP2sPLPqwA8g4BFqbM6NXdWL2YV4z22mNXGTD5g63C4V6GqgPWqZsKyqVh9cIDjYIPv+PAt/Mk/dJt9zWBCHs4dhutoXdw0hXFbajSzmKu2JVbXACz3i4sF/ZYpiVgLAHlpsbRzwss29CXOau7KIQuKjiNPZ69rlLUN26NvXta1tStWPwRzaBqI1bZVo8zkThYy88/3mbP6dPffukq9acaYMATe9z7262vX+k5jSi2XeHx2hndffwOf+hTwxn0PN02d1SpmteE/H74PvPOd29+/612GB2zV8fH21xOI1QcHaJzVZVGzsK5H1VntOHj64BSvnB8BWYa7d4Br4cpMUOKdZ233ayPaf5GI1U9dz3ac1XFs7qyeL22sO502m9Qxxq5hPmfOXC5Wv3YvwBOz00mY1XM3w3pV4403gMfsO83XTY55FMQ4Od8KVa++4eKpuYGz2raxDFKcZ34zdt1aLfH47NRYrLbmMxwHG7z6hQppZrEQV1MMyKzcwYNNMTdscIEJf2aF+cyboOvu8cfxoSde2v7+URero2hXBH3mGbPjzWa4Eq7x4NTBZz5r420HdycRq22r3oqoRTFJl2Tg12xDrI0BycGc1ZT7y7KURjyAOau1A31tG64DFJWzNTK1qkH4UMYv32d6Q2fOnawKZhgz6G5Wi9U+Way+Hq5w92R7Tpdi9aNRl2L1o1zi5UZx6fE24p4zC8Amc2nMat8fxoBQF+airaV9rnXNBl0TsVqGAalrxg0zCDdwrApl2nlJmGJAFGJ1ntVmPFHhrI63X9qc5mbOEc+Da1VScaIR8Sd0Vhu59h2Hsbg6L7XVCkzwoLr2vQFntUV37fsO3y1uTew2qWvclvrE1Yy5ki7AWX01XOP+feBP/2ngT//4+80DFgFgucTveO7n8W3v/2wT3mjkrF64zP3auhGS1HyxO5tbu1iJqa7rZV1MycTqooCFmj2zhGcsDOq+s5oHNJHCY4Bt5kRXrOb3l+XQMwwA7GJATi0zBrTr9lFTrYpj0BYlgll93rmGdcVMWlOwen//7wf+6B8Fvu/7jN1uABrB+z2HX8DHP84clTM3p4vVoSVlVqelyzInTOvFF7e/FlzRKeo979n+egK8yOGRhbMsYsGVNZ9/PsICzdPHK7zC3Z9371kMW2IoVkcdsfrhuYcjE67wW6yeupH1MCCRqVi9sHbxDwDWKTGcq12LBVyrQn7GJt4vvbHEi4d3JnFWz90U6zVQVTWclM+NTMRa28bRLMNpujUzvHrXNxOrASzDAucZD8Ssa9xaHbAuE1MUymyGD1z/PP7Y3/0yfMPTn2u+ZlLzqGabFnw+n8S1PkqhWyLjSaxrRUeMP4FYHUW73SuP8FjY1Fd/Nfv/V36l+bt2NmPM6jMXL7/i4YWDaZzVO2a8ifJnfL+fO5GmFnwDJI4V+HK0BjgGhDAuWgF/1rtd43WN1KTL3Zcfd31Wsk1ByjEFYzuVzDmLAnnlwAsJ44zv43p0jrun23HvEgPyaNSlWP0ol2gpp6zJxGJX8jDHmU0TK4WorHBWk/Up12Uviaz1AhPH9AiQfF6Ns7rDe4xLH5FPPG53t7x1vkXlwA1oEzE3kDOrGwyIibPa3XVWnz0scWAiTnCuk8xZnW0K1t5EDVjsYmvKkm2EGLj2G4diSwBexzYWXmLkrC4qCbalNOCh2zZ8hydHt8LaNqmDuWcmVj95I8frm8MLYVaLdryf+AnAQcWY1aZC0nKJP/SeH8MT/r3GnWQyIfcXPtu4at1gSWrOUIwWDku6bjGrAVxObB7VCgLmAo5b46wYc4OA9E6IIkgxIADozxd3Vu+8E4HtuGCAhQLQSzsnLxoAwHWZgLKRX7vGWU0Qq68Eazw4a51XVbFx3LKmEeksi/E0205gk+LC7HuWn8XP/1y9/byoGBAhVnfmMMBE3Rsf+hDwwQ8C3/M904j13eMul31eKaGuXbfw915+P37hlxwsXD6GP8ICzdM3Evzgz/x2/D/+pIV//UuHeM/V14wxIN2g7KriDvMvFrH6sQKvtjEgqWXurD5wpM5qY3EiinAlXOP+CZvLvXT7gInVpvMtx8E8KHB3M2fdhmLeYWgOODoocZJFjTHg1bsBw4AYoFCWYc66+bhY/UZ8gMfnZ/SweFHzOf7we/8Z/vHHnsE3P/nL7Gumzup5jZU4V7Rc+yafl8v41I0BZ0pnNbCLsXrUAxYB4Hf/buDbvx34zu80P5bj4MoixYNkhrUwHpm+DzwPoVNskZl5zjAghmJ1EKDvrM5AN8wBfR56q+LcpW20SAJBAexmZBA1E9m5rs/5WpGIFgmdHEl3ftz+OZTjCmf12Xb9eh6z+e1lwOKbW5di9aNcfGdvFhJeboJB1HVW1zV3VlMxIGqxOqA6qzksf+dcJ9iF9kO7x6Mzbu3h7Sd52neXX4izOgdcewJndbplx509LMl8VgAMA6JgVifrknGACfdWKLtfBTeMigGxLPhuyYTKVnuTKQbE9W2ps7oo+OdFnIQEXtXbhZ8CA/LkzQKvrY8bsbbIKjO8jCjOrL536uL2beDHftdfx9c99ulJnNUAgLOzrVhtMCGXsYqbgCaDBclsYbMgJb7IqXPObDddlF7WxZTvY+GmWJ9vx+864fcEcYNFFbAIwCjE1ndKpbOavOAXY37rOTB2jrgua01XidXU4wtn9Wo7Ru98VlOKq1OV6wKzGd5z/Ar+2l8HPvT859nXie7iILJZwKJsI2SKDbEgAL77u4EPfMD8WO2yLHbcP/NntmO5QX3rN6zwbS/8B/z5f/gcrkcr9sVHFQMC4EPvfog//zV/D3/nH4a4Md8w4c8YA1LsZI/UVd382RdD3bhe43Z8sBuwaMisXhy5OyIlAGxyz1ystm08c3iGL5wfA3HMxerbk3xWi1mFXz25iaeup2xOH4bGAvDhssZJOmvE6jcehnhsdmrmrJ6VW/RcniMpJkAXAcBshhvROX769/9v+PDNX2q+ZlLzWY117jfj7BThnRfqrAaAp5/e/voR3rhrKgyBD3/YfG3A68pBiS+srmDu8LbhCZzVodMyTBWFGd6UV+DXvQ3nNLcZdo46dgm0RhcDUtdICgehW+iPCao8Ln4dyPetyLiKd4+7OqvoJgnPYwaJWHL9xDUhitU3onPcOd/OLR6sA1w1weRd1iR1KVY/ylUUyEoX///23jxOsusu737OrbvW1vsy+6qRZrTLkmxJ3mQJy6uIwME2tvEbDMbBBpPYway2QgIkL2sSIASIX3jBsYHYscEYG294xbKFF0kjaSTNPtMzvXdX176d/HHuraW7ZyTdc1pd3f18P5/+VNXtrtu3q8+995znPOf5uX7M/NvVAugbDZTqDpJOjItZVDF2uVu7XkdTCiTi5mgmEkoEr3c4SnUvkFDO6hWCom6FX9e9tFjdTMTOrE4ELpqdlYhDtPOSEgkETg3Fqt0SOpbm68g65fidBsdRzurqys+wXJKxndVe4lLOar1OrmuH1Zg7xeqiZSYGpPP/JaVegUWoYhwrCv5U9WNAdmxrqhiQsOfcKi5oILN6yC/gSyf34MgR4MrUObXsXbdDGi1xnJszEgPSEiI7xeqqpT3YDTJ2V4HFQl4qtwA7Nr2J6yLtVJDPta9dpcWqWjYZc2Du+2vjrPYStZVidXR/1BCrbavRVagtdqZ0hG0j5VzGWR2J1c/2842KKOXb7yvNl9W+TESArBWZDLYnF7B9tI6fu+ULrW1xuJyzekNcYwxNKFiZFF69+2F84ZERjHhhJbgeFqvHd7t43f5v47+880m8/54H1EYDzurIpVkqAZ4VnsO9fC4YxEoFKm8/zLRTzmq9PoybcpSRIRooNZso1hy1kk1TAN49VMCZ/CBQKOD0XBp70nNGRMVUCji2OIadWXPnQX8/sFBNtj7beiOsvWJIrJbFksrwNnHOhtfSQ4njsKtFdY3R7G+mM0C+o8BiK2JGM7O6y9wVOavjGm+W833fB9x5p6q7cMMNZva5gRjsb+KrFw9gfzosMqorVnteuy6AlO04CU/vOuB6YkUcabUm4hdYBNou6OUCT8vcFaOIZ1gQdIVYrTvR5DhqVVC+29xWWGqq1c1x7l+OmlAsllf538StmwWEzuolTOfbGetzRbXCj87q9YVidS8TLfeMk3sZOrNWc6oW41a4XS1buuM4Y194hYDnhPEH0b6i+AcNsdrxLHWTWOGsduPv93IxIDJ+gcVVZzWlRKESLkHRydX1ZZeglpurI6NTlMR1kRDy8s7qGJnVqzqrw8kVzXHeCgG4UBJKrI4bA7JagQspUW8KOImYBRax+ix8oepot4Ht29GVWV0pNfWdIwDgujg8OInFioc3v6HejtnQFavHx9XjxYvA0pJ6rjPQ83010O0ssFjVH+wujwHJ5aAmguis7k08Dxmn3GpSAJCbralYpJiiT5AUK8TqZrWuBucak4yu1UClZnUXJtIVKsO6E521AYw5q0urX/OKJcQTq5NJ9b8qt49rcaamN9H6XJDNQgjgkU+cwFjzQmtbHLzAQmWVPHQAG0OsNkUqhX2ZWcwXPYw4C2pbL7sJ+/oAAHcdPI3rBs6qbTrHG66QK+TVeXvsGHDlYCjSGMgE3xCkUrCtBmqLavJ6ctFXKwQ1zgPhLut3Nxoo1FwkvdWLxT4b9oyWcDo/CJkvtFfcmRCrR5J4aG4n9ljnwg36ERD9AwKLVR8oFjE3B6SdUATTEGjSyWaraOHCZAX9bsmMWD04qPpXuVCs933tSbFUqju7vFQWysigc41dXjcqMt6YmlvKZoE3vAF4xzt6+1q4RmwfraPatPHeI59SG3TPg0QCgddAuW6rcUxULD1u3ZEQz5Mr7uHVmohfYBG4dAxIrabMeG6M69fTOavjTrKEUaSdq4KAMAYkTr8wPNaUU0WhYnf3j6HqZonwZ541QmAkXcJ0Od3qa88VfSVWb6X+Vg9CsbqXCS+WcQPo/UQN5cqym3iYw5QMYlx4ohiQVQTF6HfGxXOa3ctd63U1m6cbA7LclVSr6S3tuVQMSKOBmkZmdevC2jlTGrk83JqWyyPwJUqNdlTB0kJDDfjjOnJs+7LOaj+Oszp015dr3XnNrRuljrPahZoI6Wi4+ZKtZnXjOqtdgbq0VkyE1JsJ6ESJrnBWh20g6dS0OuR9QzYWq0HbWW0gAgMAIAQO7Sjgc6/+XbzqjkX1v0sk9G/s6bTqfJbLwGOPqW2jo/H353kQQqJZ6nBWVzTdDQC8tKMmFzrFarfEjk2vEjqrO8Xq2akGBr34hcr8QKgYkI5rgXbxL8tS8UWNlddDAFqxUFm3hKVC+37SEqs1CiyqJZmXEqut2GK1EB1xBwAmztTV8vReFqtD55+VW1ARRkLEjwG5nLN6K02IJZOwhMTVI9MYsRfUtl5uA9HKoMXFlltVS1BKpTDkFTA7r86xRx8FjvSdV9/bQmL1iJ/HzFQTUgJ/8I0b8ZYrvqF3r11ecDY08xgRq7dVcXppCB/7RAK3jx5XG02I1eMZPDi9F3eLz6sN0cS+Bv0DQsWAlEr43OeAu/afDH9ZfAEwk5atzOoLZw1ety2ruxisic80Y7WEdaDDta/prPbtcAwuZaswrucaclZvcXbs93D0X/57XJcJ26qBduB74Sq5YlHpL1JoO2pdV3Qb8QBUagKupWGUiVzQy2NAIt0kzml2qczqUDPx48a8hvEqK8TqvEZ9I8tCyq2pegON7mt1OV+Pp0GEjGQrmC5lWteC2WISg4wBWXcoVvcyOgPTaOlFZdm/OOqMxczB9hK1VaNFYh9niOdBzT52dBrNZFav5qzWiAGJnNXVlVEojaaFhKspVi871kLdQ9Ktr/6eZ0gyCJ3V4WebW5TIajqrbdFEo7byMywVY4rVQsB3myuX04duBC1ndZRd3iFWF0qW+czqcNmYbcfvjK5wVjcaKNZdpLy6llgdZTbLknI+X5xzMeznzdyAoyXuk5Pq0cSARIj2ICza75498ffneeh3S1hYbH+GJgYkrSzs6Nyis7q3CXOQF3Lt++LsdBNDfj5+ZnXkrF5WtFA3usezmysK82iL1YkE+twyFotOSwQvlQ04q53LOKvLMcVqz1PCRFO2/u6jjwpcPXCht6MPIhf1xIR6TKfjr7RJ2WoSv+PeJWsbKAbEFKFodk3/WQz7S0ZyeteU0FmNxcV2jJVOJyaZxEiwhJkF5SR77DHgcCp0bG+E4momCLOKp6eVWD/oF3Gwb1pbUASwUqyOY+ZZxu7tdZxcGsav/eEgfvmGv1Xt1URm9Y4+HMhO4YgXCuCdhfZi0j+UUDEghQI+8xngnt2hQUBbrPZaYvW25KK56J6xsfZzA/tM99so1L3WxFKpLBAk9HPLvYQSqNFsqhiQJsVqY3RmdgNGroO+D2U8KBZRL9WQ0KkXFeL5Qt3DO8XqqmZmteMo801lmbDcaChndcyV8wBWjRZpFViMg+siSNS6VvMBQH4J8Z3VAJJ+s0vXiGgVboz5fxvpq2K63BarcxVPjem2Un+rB+nh3h6RVY3sHdtGkKitFKujZSJx7u/hEuJKVay+NFlnYO5B3dSjGIHWkqn4N3Y3SFw6szqus/pSmdWNhlr2rVEwAUD3hbdeRyESKjUIkqHzLxzwLuWkWj6pm1m9SgxIPg8VMRKjzfpeKNQu+wzKDVvPWR1lhnUEYudLCb0YkNUyq6OMM02jT9cES6OBQk1/wgLpNPq9Iuan1X4eP5/B4YGLZm7A0cDh1Cn1aMrx1ukY6utrCwBx8DyVRTbf/nvLtYR+FMqyLOzcQlPv3CJri6smaWZy7Q7y7HQTQ14hfgxIIFQUTGfOvG60BtThlBuOWVetEMgGVbXKIrzOatdFiJzV5dWPKbZYLQSQTMJN1FFdUILf0ccTuHpgorfPr2jy7vz57tcxsAJPubs67om1SlMtId5Kg6dQiHjHFV/Ai8ef7Om8agDte9XCQlus1nH+OQ6GU2VMF1NAtYpHH2niSOaMagO9PHFjklQKI/4SpmYTOHYMuHE0nAzScT6G1yRZaYvVSzUfaV+zvwVgxw7g8+evwh1XTGE8mVP/fwMZ7vtu6MOPX/XV9q62b9feZ3LAQ6HuopEv4ZvfBG7JHlPf0BGrM8BSVWVWP/6EhYPZaXPX7U6x2oSzelD9/VEx76WSrcYHmqaDroLpjYZyvZrKrN7qrIVYHYiWs3pmVmDEX9K+z7qeUCu8l9UhStka7ctxVMRMYdl1Klw5H1esFujQnTr2WW448WqnhfsN7GprgVFEoQD1GcQUq1NBsyu6p7XfKF4k5n0hnYa6FoR9LimlutZupf5WD0KxuoepFOrw4uT/AuEFYnWxulh34/X1w2zpFctSI2e1xo3d9a2u5fRGRMrIUbtKZnXssU4UA7LcWa3rLl+lAFzk8kj5eksSW87q5VEFcT/c0FldrzZW5EXlC0DajicCe55c1VndlBYsV6OITpBAuUOsB4B8xdGLAfFWcVZHEyxO/P+X50F1bCJxInRWx1oJ0Uk6jRuHzuLBJ9Ug+vGJLK7qNyRWR86exx9v/S4jdIrVOq5qQInVQR7Tix3F2qoGxOqooxVNBC029VYtkLUlCJRYvdD+n8/OQlX7jhsDkrRWOKtLJQPO6miVxbL7l+7S1L6g1hUJZESsdi4tVpeqMcVqQDlK/TwmT6uJxqNPOjiyUZzVZ892v47DaoVhowinrTR4CgLAsnDr6CnsTC/0/vU1igGZnzdWx2FkoK4cX4UCTp1sYm96Vgk0hopY9jyhs3pq3sGJE8D+9JTarnn/TnYKKY0G5iopDGWWLx999th9KYwnF/GuFzyoNhjKFb7+pQN43+1faW8w4KwWKXVsX/xWGi+8QyJRyqtvaPTlMgO2igHJ5/HZrydx947H1sbIYOBakBpwVQxIOLF0YSFQTnBdV+0ysTpf95AKNPvyRLFzZ/v56KjWpHBEELRjQCanLYwF+mK1qjuxrA5RRfWZtMTqRB2V4rKxpk5spuvCTdRRK62MFpFSxB+Dh87qFTEgBagJIR2xuu6uFKvzUqs/Kzy3bRBoNiEQHjdXy64rFKt7GDVDFPNkdl0EidVjQJpSIOHFO5E9D93VswHUq03YQm+5jOcLJSwvd1brFFgM7JWZ1VEMSFxn9WViQADEv6B53XEC0T4LNU87P69VBC7skeeWgIxTid9xtCzYNlBvWCtuFEt5S8NZjRWij4mImXSqW6wHgEI5oTX76ngW6qYjZqCE9eWTNrmaj4xfu/wbn450Gi/a9iS+clwNbB6/2IfD/RfM3IAjZ8+x0I0zNKS/TwC4/vq20HP4sN6+wirPM0tea4Ll4lJKOZ50PoOO8/bECWBuXuhNBJG1JRKrO53Vc8CQFz8GJEhZajLMsLPa91deD5u1BiydFTwA+pK1bmd1JYHARIHFSzmrK2qVV6xrbTKJA9lpnHhC3V/PTTrYmZrv7fMrcv0tLKhHTbFaAl2rgkolqOJfW2nwZFnAlVe2X+/evX7H8kyI/uedReA0Y0uGhyRmyilU5wuwZBMJS26dCBAASKWUWL3g4sRxiX3eRGt7bFwXKbuKfDH839RqaEoByzFwbqXT+NZ9v45DeEK9NlUETwjgla9sv9ap5RERCr7//xd34a1vrKjYCs/Tun9lRnzkax5qc0s4NeHiQHba3CTTvn3t58sdtjGw+1JoSKstVudSRsTq1j28VALqdcxXkuhP67v2CbonUl72MiOTdi3jQbGIyZkExoKcGWf1MtNcvuIoU5dGgUUvUVvprA7rnMW6ftk23Eu4tQHEN0hEBRaXO6uLIn5mNVbGm7b2m5dKN9M4XgBAtYryUq1tGN0qk8I9yhayZmw8tJYz2DYCp45SLRRru6rHOrEvwK4n2tnSYSexXJLagycvsLCwwlmtl1UsHFsN9JYVWCzpFOyLnNU1KNEruoBFjjddZ3XHoDTKrNZ2Vve76qKeV26J4xdSeMuBWa2OY8IOCwxWuidT8kVLw1mNVZ2E6hfGb1uptEC+7nU7q6uOVgzIpTKrSw0H2zRiW9wggWpTdk3azFVSGExrOn1SKdwxdhz/9ZGXAc0mTkxnsPfmWTOiz3JnjymxemwM+PVfBy5cUGtqdbBtjKSKahl1XXU+zub6cN+OOQNidROyXMH73gfYp0fw8uQTve/826oEAYa8PGbyfuv6PTtv4Sa/ALj9sXbpp8LJwM7Mal23MtSpuTwWqVSUesIyQrG60OGsriSMFFg8W7mEWF1NxHdWp1I4kJ3GU09ehZsLQMqtqVtuLzurly/L1xGro+tzp7M6KmK8lZzVAHDDDe1iu7fdtq6H8rTYNjA8DMzMqNcGhMqRoSamSxk89VgNV+wKR/5bpbgiAFgWRrNlPH5mHCefrGP/tkl1TdGJAXEcFWFUVNGGtXIDtqmInZERtWLnrIqWMCZWA8Ddd6taHkNDZiatwgKmj53L4PlHQle15kRIZjyFpZqP7zxs4+YD8+q6bapftH078IEPKFFdt28IhP+bapdYvX14QT8GJGmhUreBQgGyVoeAGpcSQ7zznSp+8CUvMbK7dFYgN+sDhQImZzJKrNYssOglE93O6mYThZqLlKOx8s5x4CfqK3KglQ5hx7t+hTGv1dJKt7YQUqsYpKqf1i32FopCK7M6lZSrxoAUC1J9tgbE6vkLZQx6BY7negA6q3uYQl6qmac4J50QK7KKAWjPkq0mKLYGTxo39lZWVCTSRVVtdfK9LlG0UEsEFwKOLVfkFcu6ZhRKZ2Z1FK1Rr6NYd7SXjY1uS+Bisa8lVh+7mMWV/ZNaQqXtCDSaVnfbArBUCJ3VMdpXqw0sc1ZLQKttpbNhpe+obUlpLgZktYgZDWd1a8lYx3nQaFqwXc1LtWVhZKiJXDXA4sUS0GzCtppmBlBjY92zzqbEakD9f3btMlJMayRTVsuowzZ7dqkPu9Lz2suIvUQdlVIT09PAt08PIeuU2LnpVSwLw9kqZkqpVjuYnU9oFVi0U566FnRMNLac1dr3xGVidcXSE5YB9KUbK5zVRgosVlZ/f7Fqa8WAHMxO4fgJpVMe3tHhVO1VMplugdpEDEhH29qSMSAAcNNN6vPYtq3bZd2rdLo/Bwe1dzc8amG6nMFjjwFHdunHNGxERocamC6nMXmhoYQkXWe5ZSHtVVGouUCjgcmLUi39NyEAL3c8mxSrLQt4y1uAV73KzP76+tDnlvCvrv82RMGMWJ0eS2GxGuDYCQdXb5tXG01et7dvV1EQJhyP0f8mFKsncmkzMSBJW/XnCwVMTwMjBmIlSAfXXQfce6+xYrujI1BjhGIRk1MCY8mcdl9exZF2GJtqNeRrHtJBI37bdRzlrF4lBgRAvDYWRousEKt1ndWOo2JASt1/a75k6WVWp6CKoq4SA6LrrLaERKNUxdyFihKrTV67SSwoVvcwxXxTa+YpSIaFnzrdutGJHfOG2RKrOwbQ5YrQHjylM0IJipH4GcWA6PRtXBcCWKVgn55j23FWitXVilTLRTQG/BCiVTU6OtZCzdPOKx7c5mGukgSWVCX1Ib+olpJritV1mVixBCdfSsR2VvuBWOmsNhEDkrXUDGxH2yrUPFW4MmZn4VKZ1doxIElbLRnrOFYAZjq46TRetv1x/OzPCbx0x1Nqm4mbsON058eZFKsNMtJXxXQprT5bKTFXTqqOiKazOmlXUSo0MTMDPDndrzKre1lM2+IMDzQwU0m3YpFmF22tAosi8NV9plOsNuCs9nyxIsO/WIKK1NCJAVkuVlcNiNV2BYXK6tf8aj0Bx2poxYA8dcrB0aNoix697KwGgJGR9vPOa+OzxfeREE3Ui8v7Wxp9jY1KNgvcfz/w3vdujCW5+/e3n197rfbu/H4flYaNR49ZOLxtQW3cSjEgUO7yi8U+iHq4wsLA359y62rsUa3iwgUYESkBqH5Qp4jWy4LHyAjec+1n8SO7vtgqMqg7EWIN9CFhNfHY2TQODIbX7V6dxE8m4VgNVJdU33CqkMSov2TGVdtUYvXZ003sTs/17mdAMDomMFXKdMSALGlfY5QBqaMfV62iUHeRSuoZ8bxEHZXysrGmjgvaceBaq4jVOgI4ALgu/MTK+mmFUkI5oGP25VIpqBXjy8XqKF5EQ6xOO2UUFmqYm6xh0Cv29rV7i0CxuodpVUuNedIFKQulZVm9rQtPzH22ihZ2itXlcACt0cHL9gG5sHI0AKDRQLWZgONpNNFLFC1sSgHLi98JWc1ZXS5DLc/WEb6EUKbq6LONYkA0ndUik1YdsYUivvUt4NbxM+obumJ10+qeCAGwVErEdlZ7HlY4CWVNPwYknbW6Y0DqdeTrHtIa8SqOn1B//3JndSNmJeaQ1pKx8HOtFBtqEsSE0yedxn37vos/+vMkXr/3AbXNVMe5M1O6V8Xq/lrLWR21K+HYesJHWDykWJCYmwOkFMg4FKt7mf4BgflKsuWims3ZWgUW4ftq9UfHfaYlVus4q5PWyhgQA1nYfVm5TKy2tcXqpF1FsbrK+xsNABIiYcX7LJJJ7M3M4vSFUKwen1Xbe/386utrPz9yJP5+PA8ZpxItigIAlCvQXsm2YRkc3Dhu4k5n9fXX6+8vFE0eO+7hyGgYL7JRPgtDjIwKfO78VXjhwUm1wYCIkPIbyqFXqeDipMC4KbE6keietOplwSOdxiuveArp+gIwNdXapkU2i32ZGXz2iT042B+21169bjsORpIFTOWTQLWKZkOqTHjN/5mfCou7Fwo4c1ZgV2qeYnUPMzputcXqWdvI6g0n5XavvKtWka/5SKf0xGo/UUO5uFoMSMwC3I4Dd7WijSac1XYN5arVXjUOVTcq7ZRj97udwF5RPw2IdDON/mwQIONUsDRbxexkHQMUq3sCitU9TKEANfOk46yudzur66WaVjHE1ZzVpbLQzqzO9lvI1fyu+IOmFBC2geJny3KgAWh1Rh0bK1y1pbK+u9xOSJUDHR1vrYai7gwsAGQy2JOew+kzAn/918BdO8NCeDpitWupY13urC6Gzuo4BRZXiQGpVZpwrYZeZnU20R0DEi3DSsafBLBdCzW5MrO63LC1xGo35XQVWJydkRj288bE6uePnsTb75vGLQNPqX3GFeiW07ksu6fF6jRQLmN+oqQ6IboDB99H4NRRLEgMDTZhiaZyVnNA0rNYqUB16EOxulBKqEnhuG7dVe4z2tEa6Lgedjqry5Z+ZnW22TUxXKtbcCyNAsm2rZaPNroHIwDa13LXjTcplEzCTTRQqQg88ABwZCgUqXpV9Ii4917lpv2lX9KbDPM8ZJwylpbam8oG+hrkOWDXLuWqP3wYGB/X318qBcdq4KHjKhon2raV8Ps8fOKeP8DvvvbzaoMBsT6dVBmyKJVw4aIw56wGuqNAelnwEKItrJ86pR5121Ymg6v6J/HtqR3YH1xQ23q4XzSWKWGylEV9eh62aKh7lm4MSNppO6snEnRW9zijOxxMlTP4L5+6Al88ts2IWC0Cv7tIcuSs1tlt2OeqlLrHsLIWOqvjjBfDuI7lOdj1cl1LM4JlIXAbKNXtrvHyUtlWWkHcFY3uKjGvUM5qrai8dBppp4z8bAXfeySBqwcmeM72ABSrexhdZ7WftlUMSIfjq1WgKW5mdZSp2+kqjmJAdMTqPgtLtfYAulIKRUqdzsIqjjfUakqo0DhWxxVKrF4m2Osuz245tjscwIW6q9/HTadxIDuNj39rB86cAe4afVht1ymw6Fiodx5ryFLJVs7qGCLoam2rVIK2OJPqd5DvaFuo1VS2tE4UTGBfMrNaR0fJDiTUeRB2bGZmoPJ0DcWAWELif/z4g0o/SSbNLac+eFA9Dg/3rJA0OAjMVVRW8dkTNeVy0T1Wy0IyLXCxmMVofxW7M/PMrO51wv+NLIZFymRTr2if76uVK4X2tSBXCgu46sSABNaKybtSWSBp6wmVfVl0OatbAnPczn1Yx6HaSKgYq050XTnhiO59r3wI3/sesCO5QWJAtm0D3vUuJVjqEInV+fZ1ulwJzQEUq3sb2wZ++ZeBn/kZY7m6ezOz+JV/8R04uXCFQX+//n43EqkUXr7zMYiLF1qvDexSOauLRVyYssyK1Z3F/3pZrAZWitW6EwGWhSvHF7EjuQB/4aLa1qN9QwAY6ytjspTF5LEFFf9g4P/lpZ22s/qCQ7G6xxna5mK2nMKHHzyI//HaTyqjkG47iP7fXc5qT+/SFRZYXC5Wl/P1+BPZrqtWyOWX7bPYVP0NjUicwGuqVf4d4+XZQqC3onG1mmSICjdq9L2z2Zaz+sv/nMKLxp/ccpPCvQjF6h5GN3snSCfUBaLD8bW02ERGY5+tYgFdmdXQzlDMDtrIVYPWsZ46m8C+zIx2niwAozEowCViQCr67vKWYzv6bBsNbVEVQEusfv9nX4j/9OsSohp+HhoDftu1VAzGMrE6rzFb6qcSK5yEJiZCEkkPTSm6XPsSelW51yqzemDIUvnia+SsBtBe5mly8OT7wG/8BvALv2Bun4ZJBG6rKOiJJxvYk541MnAIMg7O5AcxnCzizQe/oTpgPTwo2/IEAdJOBYW5CnI5wBHhORz3fPA8DPt5zMy1u1PTSz5GfL1CXa0lxB332mJFPwu7rw9YrHWI1ZHArNEhd12g2uh2zgAAqlWV5x13QBJes9549UN46CFAFMM81V4Xfkzheci4oVgdTiqUq9bWzKze6qRS+PBdf4IfOPI4MD2tti0v4rfZ2b5dPV4IxWoTMSApqJV3xSIuRs5qU4Liy18OXHON6g/v3Wtmn2vF8LB6vBgKywYEmqt2F3Cwb0q5LoCeFmrHBquYLGXx2c8C1wyeN9K2skMOlmo+GktF/OMjQ7h+6FxPfwZbHbs/jXozgUpV4FU7HzaTix+NBTrE6oa04AQa9++wwOJyF7Qyd8UUlm0bgV2LFhy2KBca8Cy9/kbgN9Uq/07dqJ5Qx2pYrC6WLZVIoOWsrmBuqo75nIWx5BLP2R6Avd0eRs0QacSApEPxr0NQnJsXGPAK8WNAlhcLAFCuWNqCYrrfxlJHEbzjZxwcyF7QG5B5HgSK5mNAXIFa+RLOap39RoUbO+IqJADL0RQq02ncMHQWb77yQdxy3Y1qm+dpuX0Gs3XMzKRXOqvLjnJWxxGrowKLXRmt+nno8H21NKrDWQ1Ab8LicpnVGve1/mEbC9Vk21k9J1TxN5Ni9WS4lN70DTibNbs/03ieqvJcrOALX3Fw37YnjXwGyX4HZ6cGMDy4gP9w89+otm+oOjlZA5JJjAU5XJxo4pPfA9545CG1Pa6TzPcx4p/HzHwCoZSC6UISo2NLejEgSUstIe6KAUkgSOiJ1Zk+S8WAVKvqfiibqr1qTLC4bkc0Vse1v1Gqqmtv3AFJ5BxdWMDu3eqxa/tmx7aRdmtYqrgq/9u2jUzgkg3I4KAqjD052Rb/OjORtwKdRSsBI4JqOmth9pwHlEqYnLYwumsJSB3Q3i8AdXw/9VNqQrDX+wTLJz50CsOGXH9VFf9l5i/bG3p4En9ssI6Hz47gbz8yji/f+d+BpP7fPzhmY66Swke/vg0vOXBeGRkofPUu/f2oNWew3V1Aq1CEKbE6LOitxreuXgSj48Cz6suH3ygVmvHHy66LpJ1Hsdh9jpZLUvU3dJzVPlBqdDirpWyv6Iv7OYTvk5XQEBFSKFlIuRoFFjMZpJ1JfPXRIdy4e05t2yrmiB6mx++eW5tCydKKAXHTrnJBd4i18wtCZbXqxoB0OasNuF9TPpodec1PnfVwsG9aW6QEAFluX9Gb1brq8OuIypGrtuNOUa5aapbQRBZ2R4FF9Q29itRIJnHL2Bn88R1/2r4Ba3aYDu0q4cnc6MrM6ooT21ntpewVy95NONbheSr6Jfx/yaq+WG17iZXO6jAGROejbbnAI2f1rFDOat02ALQFnnPn1ONWW9rk+xgJljBzoYavPujhjvHjZpzV/b5yVsvp1u8hPUwyicMDF3D08QT+/M+BH73ya2q7hlg97OcxvdA+R6cKSYwEes5qN2mvnLwz4Kx2kk47wqkQOpVTKa3JS9eFKry8zFldytXU8cYdkAwMqEdVvXTridUAMkG9KyJNOasZA7Ll2LFDCZ4TE+qakEptvUH0jh3dfSETmdVZSxllikVMzyUwGiyZ7xv1ulANADfc0P06inbTwD60H9cOTrQ39HCfc2ykiY+evBEvv+IU+tyykXNrcNzDbDmFrx0bxr1XhrWCKFb3Lp6HoVQZh7KT6n6rOYkPoP3+SC+I+nM6YzrHgW/XUCl3O6vLxWb8voHjIGlXW5p61z41tY3Al8pZHYrVzWodAqEOE/fa6DiqVkqpuyBkoWypRALNGJDvnhnEoeFQrO7h69ZWYQPcQbcuhZKlVWBR+CtjMOYXBAY1xGo3ubICqwmhdnlkx/FzLg5kNcXqsLptrdJsLXVuzRKaEKs7JgFKBtzltoPuHGgDLnAASoRY7qrV7Igd2lvFEwtj3c5qKVGuJ+Al6rHabCsGpHMSoKKfBd6atCip/1dxqaFXLRhhpMTyApP1OkoNB0FSI59y2ZKxmammcmOYGJRGS2ijz3erdZr7+rAtWMRXv+li13BZtVMDwnIwGCixunI+3LDFPteNRhDgmoEJ/MO3BjA8LJGthfmvcTukoVg9k2tf86YLSYxoZs0L11GTbF0xIPqFGzudPvXFAhKiqS36uJ5Q/YJlYnUxV9cTqzMZde0vFID5eeUuTibNTN5tEDLJRlcdA4rVWxTH6S7UuNUiQADV5nfvbr820C/aNtbERKEfKJXC6MXq1hQnstm2c/2668wI7IcPt58fOtTTfaOxbRYeX9iGFw8dVRsMtK2hHT7mKilM51yMuWG9hR7+DAgw2l/Fob6OcbJuvYEggEBHjZTOotNxsW14Vr1r0TjQUZNMQ6wulrr/3kpZ31ntB0LVTwv/9sXpKvrckra7PGlXUcgtE6tLCTW+1yyweHRyCHsyoVjNc3bdoVjdwxTKCS1n9YqsJABziwkVAxLXWZ1MrBIDYqA6/bJjfeqsp8RqnQ6DEPDsZpcAWio0tQv2OX5ihbO6VLHUfnUyqx2BqVLGvFgNtCMajh9Xj4ODWrvbsa2Jc4WBbrE6vBEJ14l1g/eynso97ZwEKBtoW56nZmCL6vNcmGui340/YQN0TAR19hYaDdSaCTiuRucmjKpoltTnOjMDDHkGinwAwNhY9/9lq7my+vownszhb782iNuuNNcJGdiZxPdmd2LECkVPOqt7myDAtYPn8aGv7MJttzTUddbVWJbpuhgJ8pjOB+1J0bqtP4EbHU+ns7oa5vzpTN6l0xBCorGYR2mmoMRkTXHGccWqmdXFXB3JhIZYLUTbRR0V/tpCrmqgQ6wO77Un5gewMz1PsXor0inUbkWxGgDuvLP93ICovHePxKn8EFAsGsnv39C84x3A3XcDb36zmf11ttebbzazzzVibH8KAk280H9QbTDQBjJjSeRqPqZyAUYTYf+QwldPs2O0hiMD5gq4wvO6Chc2SlW1uls3BiSxSgxIUcaPAXEcBKuI1crgp5dZnU6HdQHC8fLsxZqKt9QplO26SNmV1uLAiEJk6NAQqzNOBScXB7EnWIP6TiQWFKt7mEJZ86RbRayezyUw4BbjZ1YnE2ppcqegWE3oZyh6HhKiiXpJieATMx62Jxe0b+x9QRWLHYUbWxdzzbziFTEgtYT2Bd1xgRf/7XsxcV4t7WlU9CNLWmzbph6Phq4BTbHa8l1YQqJe7HAWR59HzBuQCHxIoKttlStCX5zxPKSdcisBZXG+iX4v/jkAYNVzKxJqdAo3wveRdcrI5dTL7zyRxNWDE2Zulq4LDA21X2+1G3B/P7YlF/HZR8Zx7Q5zYvXbfiqFF28/rmKLDO2TrCFBgIN9UyhVE7jturCnq+MsFgLDmQpmyun29SDK49O5brmuynvuyPkr1pSbRGu/mQxG/DxmJhsozpaMiNUqBmQVZ3W+qdeHAdpRICdOqMetJlanml0DvS+d3Y8Xjz9JsXorsmdP+/mOHet3HOvJLbcA//JfKvfvvn3auxvbYWOymEUtV4IdFdvdqmJ1X5/6bPv6zOzPsoA3vEEJ1bffbmafa8TAvn785JEvqZhMwEj/WKSSAATmSx76q6Hwxf5hT/Off+xJvGz74+qFieuA7yPjtIskF3INFZWp6az2E7UVYnW5JONHdlzCWV024KweGLJULaaweuPsVANDfl5bsE91TAJEFMq2nsnTspDOCEhY2NM8qbZttbFyD8Lebg9TqNgqeyfuSeetEgOylMAhP76z2u0L1KC0I9houhDgKn9SO6oh685jaQnwS4CfqCkTqOaNfSBVwXwliV2Rs7oE7fyllli9LAYkSGg6q12BYt3D3KzEdgDFglQXXZNideRO0xSr4fvYl5nB6QkHrVI0kQMw7mzp8kIUAEomikn5PtJOBYW8xBBU7GmfW9YTUIIAQNN48U74Pga8AuYWExCLQK0KDJuKAQFUFEhUnGmr3YD7+jCeXMTEYhrXbZsCJmFk4OD5Ah/64b8DLoRuDA5GeptUCo7VxEv3n8Xzr7KAz0M7BmMkW8HMCVVwtmIFcK3wWqApVgNoi9X1Oop1F4Hb0Fuamk5je/IcJi4I9M+VkbQT2n9/wrNVLNLyyuxLDb0YEKAtVp8MBw5bTazOoOWsnp0FXKuGjFthgcWtyB13qA7M0FDPi39ryt13qy8DKEERmJ4Ghj1DRdVImzvv7HbD9yhiZBi/98Lfa28w0Y+zLMC2IWt1WJWSuf2SNcMdH0SrYp+JMZJlIe3VsFT1MF6pIJ9rKl3HgLO6XO32m5ZKiG/Gc10lVpe791kshoYxJ34fsW/IxkIlCRRUFM7sVF05q03EgKxwVtsqykljfJ/ps+BaNYzXz6m2sNXGyj0IndU9zHzRUy7ouCf0sqxeAJjLOVrOajvtq0FpOEMGAJNLKYwnc9pRDRmnglwOeOIJtIPtNS8SA6ka5ivJdgxIdDE3HANiIrf74M4KXjB6olVDqlCAdrZyi0isjtAVq10XezKzOH2xLUzX8hXYohm/vQaBymjtclYbyEP3faTsqnJWS4mFBaliQExkrJsWqz0PA14R80sJfP7zwF1XGi6G2FnhfavdgPv7MR7k0OeVsCtpOIusc0l2lA1OepNwdcGnf+CP0G+FSxgyGa1dDvfXMV3OAOUyZiYbKq/asvRyP51lmdVhJn7Sa1z+fU9HOo1tyUVcmEpg+kIdGaeifX0R3srIEoBitQnSaagCcJUKvvJliZeMP6G+QbF66+F5wA/8APCSl2yp3PY1JQgwlszh6MkkRrzwfkCxeusxPNz92lAb8Dtr2CQSXBHT63SuPjW0wiAT1FqrowpLTX1ntePAT9RQrnSbFlTMaS3evsO4klK5e5+5vIWsU9Jqt16fr0yOoW40NyNVLSadGBDHQSo0oXVSqoaJBBpxjOl+G7vS82plO8D7QQ/Aq2YPM1NMYtjPa8WAOFYDtUIV0aVrPu9gYEgjrzcSuDrcrxfzaYwFOQPO6jJySwKPHW3i8JCZJVP96Trmq8l2DEgJYWZ1fKHOCSJndVuwL9VsZG09AfT9/+osGo8WMT+v8qWnZhPq/2+ic7NcQNMVqz0PQ14BcwvtG0J+voa0U4l/AwoCSKjJleh2aSRixrKQ9uvIV12gWMTCglAxIDqDPd8HUFqRWQ1A71htGwN+GfNFHw/8UxMv23UaaMCcsHz33eo45+aAm24ys8+NQjqN7alFXNN/HqIQOqjWQqw+eNDMPsnaMDQECAExPwcsLqptms7i4cGmigGpVDB1roIRf0n/nF2eWR06q7XF6kxGidWzLj7xd+N4/YFPAukrzR5rSKlgIAYkEhGi6+sWE6szGWCpqpzVRx9u4rqhc6pPoFv4iRACJJPYmz6Fbx4fwmhUBG+rTeQTdY/q70fLLWSoDQwOClQqHf1NXrd7myNH1AoWxwFe8Qoju+wskpxfksac1ZVV86VjitWRs7rSPX5dKlrI6K5Ejs6lKAZkRmJQ11ntuioGZNlnIJtSicwaQnhm3xD2pEND0+goV0P0AHRW9zDlegK+XdeKAQkSNZTy7cHtfN7Ru0gsu+gAwMVCRt9ZbVnIpurIVX089r0qDvebWVI/kG1gvpIy66wOnG5ntZQo1cKCWjodEc9Dv1vEwqLax/HzvioyaUKsHhnpdvl1zh7HwfMw6BUwl2vf2E6fktidntOKARnyC5ifb28qVw0UWASQjnI/CwUsLAr0u3ozxatlVsuamYKYg6kK5qtJnDzexP5UR1VqE6RSypn1Yz+29WaLLQv7d9Xwkbv+GJgynB/YKaAZyNEka4htK7eulMCZM2qbpljd3ycxX0li4kwd//4/JjAamBGrHavRquOAeh2luovAl5d/3zPY7/ZsHo/PjeLBJzK4Z+dR/WtBdM1f7qwuSH1n9fJJtauuir+vDUhmwFYD3UIBjx9t4Kr+ixTTCDFFEGBvZhYPnBrFiL2g+skUJ7YmneMiQ/3jwdGwPwCwXW0EbBv4kR8B3vjG9qouTTLJplodVS6jkJfK1GXAWV2pLnNWR2a8OGNw10WQqK2IAckVbGSdst64doVY3VTOap1+TBQDUuz4DKQEZJhhreGsPvDC7fjlm/5OvaD5qCegWN2rNBqAhBI/4zo1fR+BXe0Sq+fyjiogEfemGUU1dDir8zVXXXw1l6VmswK5qo8Hv9XEdX2nW79PByVWt2NAphddjAQabnUATmB3i9WNBsoNB77b1BarB7wiFnLqtDx+ITAnVtu2mi2O0HWneR6G/AJmc+3P8YknBQ71TWo5q7cnFzAx076JzxQC1V4121Y6FVYjzuexmBPoc0vanQUAKvojdPzVKg24VkP7/zWQqWO+klLiv3tRbaQ4YQTR34ed6QXgYvi5anRouhgfbz83tU+ydoyMqMcoWkJTrBaB+p9/858TSLp1vO2qr+kPdqNcwlIoTjcaZpzVALaN1PHh47fglXseU7cs3WONrqXLKv4UCzL+stSITKYtWN94IzA2Fn9fG5DMsKfE6lwOTz4FXJGd4v2AEFMkk3jtnofwmRNXqLFBMkn361blllvUvfDmm7uLmWowtM1ri9VbzSBCAKgiyUtV5axeWBRmCizatZWZ1UWpzHg6zurqMmd1KYGMo+msTqVUbMmCMnedO29hPFjUOx9cFym7gkKns7rRULXNNeN2vCMH8NLtYdyaoesA0YNidY9SK9bgWA110YnbcfJ95awutKul1moCbqIRXwROJiGERCMfitXNZltU18nnBJDtEzhf7MfkJLDPm1AbdcXqfuV4ixywp2dSyv2r46xOOt0FFut1lOqOKnylQxCg3ytifjESq1PmxGpAVeV+0YuA175W+38VOatnc+2b4hMnbCVWa2Ssb08uYmKuLfadnB/AvsyMtlidygg8Mr8DzVweC/NNlVmtI1B1tvcoYqYYRcxoitXDCcxVkqiWGvCqYSeX4oQZovgbGQqAppwuV18NvPWtwAc+YGZ/ZG2JxOrT4aRoNqu3P9/HgFfEd486uOfWeVzRZ0BQdF3VwS+G9+9aTd1ndJ3VALaPNXC+MIC7+x9UGzTF+suJ1cm4Tp9O3vQmtSLkrW/V288GJDOWRK7mQy7mUClJtdqO9wNCzBAEODJ4Eb9w46dxZGCCguJW5s47gd/+beDHf9zYuGtwdxojuwNg927g1a82sk+ysUinpJpwLpXwDw+P4yXbn9CPAbHqKNe6x/HlCrRjQEpVuz0+ApArOsi6+s7qfreEhVklJj/4eAo3Dp/V68fYqpBisdNZHWkyuv3NVKodP3fkiN6+iBEoVvcosxdrGNLJqwYA34dvd8eAaC+RCALsSs3j3JS6GJbmSvDtmtqfphvhRdcv4v0P3otX3jzdvugYEKsXqm1n9em5NPakZzVjQFY6q0sNA2J1Oq0u6Dn1OT510bBYbdvAm98MvOY1+vtKpTDkFzC31OGsPuXiUL+Gs9pxsD2dw0Qu3SpWeGqxX4nVmp/BG140ga9cPIj/83dumFld0h+URO29Mw9dN18bwP79wIPTe1SuWRS3wwGUGQ4d6n5tSqwWArj9dhZX3ChEYnWErnsilcKu9By+9GAS+4YNuaiiIjqdzuqGi6TfvPz7ngHj2wSSdgW3jR5XG3SXu14qBqRoSKxOp4F77tmSy6iDkTTKdQdPHrewYzjsc1CsJsQMiQSwcyc+8LxP4vmjp7ZcJj5ZW66+1sK177gD+MVfBK67br0Ph6wDmaxa2VsvVPCPx7bhZduP6ceA2DWUa91jzVJZxF/JJgSSgUSx4Xb145ZKthFndb9XxMK8xEMPAVdvX4BtNfX6yL4fOqvbMmajUFZ51SZWt77vfcp81FmPiKwbFKt7lJnJBkZ0xeogaDurpUS1CiRkKKjGPZldF/v7ZnB8bgCo1zF5poLxIGdkEHnb82r4/Ts+jB+99RE1s+d52g7ggQF0O6vnMtiT0RSrlzurGw2U62EMiA7pNAa8IuZz6thmljy9AptrSTKpnNUFrzUL++QZDwez0/FvwkJge38R5wv9rYmAqWJaLaHTFIB37QJ+/oZP4wsPpLCQs/Sd1cBKZ3XJjLP6ppuAf5rcj339C0q0t+3ebAMbkcOH289HRjgw3ars2tV+7jj6kwyDg9idnsM3Hs1ib5+hIl2uC9+uoVIOxeqowGKg76z2+gP842t+C14izNk3EAslpVjprC5CP7N6q5PN4vt2PoZ3fvgOvOQ6FoAjxDhXdhSYpaBIDHLffWb8QWTjkslaWKr5+NLXHbxw7zkl1GpnVtdRWeasLpUtNQaNue9kSqBY7xarc2XXmLN6fk7iYx8DXntNGL+nI1YHwYrM6sJ8FSm7YkaszmZpPuohKFb3KNMXG0qo1Mw1Gk/n8aePvwCNcg1PHJO4IhNmtcYVl4XAgeEcTiwNA6USJs/XMZ5cNON46uvDffu+i32N43rH2EH/oNUlVk8sprE9uah14bWTbrezul5XzmpPX6zud4tYKDgoFSXcREOZd005q01i2xjM1jFXVq51KTtmdTVcdDsGS5go9gOlEppNAFKqz0BTrEY6jVtHTuIbR9M4M5NUOdiaYrVlCTSaYqWzWvP/ZY0M4e4dj2OvFxYZpTBhjs5s6bvuYjblVmV5kT7d68vwMHan51BvCGwPQkHRQA60Z3VkVkdxUybMxX19uGW0IwJF9x4T9VNWOKuFGWf1ViabxQ/s+zaemu7Du15zSm3jPYEQc3TeD268cf2OgxCy6ciM+Fiq+fjwZwbwxmseURt1tJ1EAl6ihnLdVlGsIaWKgJ+ox953kFwpVi+VQ2e1Th8uqcbcU/MOPv5x4L6rHmttj00QIOVUVhGr2d/cjFCs7lFmppsYCZa0HZX3v+SLeCo3gmMPVXD0oQauHphQA1ONwen+0TyO50aAYhHf+67EvsysmZmsyN11UVNQ72Bg3MN8NQkUCgCApoSa1dT4XAdHbUwU+7rE6nLDge9pOt5cF/2pGhbKPr78hRpu3xvmdusKKWtEss9BoeYBhQJmZ4GRrH5e1Pbhqvpsy2VcvCCxLVhU3zAgVvt2HRm3ihtHz6tKxJpikuPILod9qSxUJI6u8DM0hHdd/UW8dujr6jUjQMwhBPDud6vc9pe8ZL2PhqwXiURboLj+ev39hc7qXX052BV1rzHlrI4W8KBeR0NaSLgG7gedjpEox10Hz4NtNdAoLROrSxSrtclk8PzRU3j4h/4jgjprGBBinEOHgG3blFA9NLTeR0MI2URkxpKYqyTxzWN9uGPbCbVRR6wWAr4HlBtOKzITAMoVC0EivrPa8l00l62Qy5VcZN2Stljd7xbxZw/fhFe+QiKo5dR2nbGt5yHl1FCsJFqC/fSFutLNWOR+0/G0YrUQYpcQ4otCiEeFEEeFEO8Ot98vhDgvhPhu+PWqjvf8vBDiKSHEMSHEPR3bXxFue0oI8XNr8ydtDqanoO+sBmCnPBzITGN+stoWqzVF4APbSziRG0FjqYj/8eEM/tWVXzPmrAYAzM6qRwMDMn84jUrDBnI55HJAxg4LQ2pcePcf9jBXSWFyLhS8Gw0s1Xykk5rOaiGQGXSQq/n4zN818Ir9T6rtPZrTKdLhjSafxxNPAIfGQmFZ47MdH65jotAPlEo4eayq8qo9T98BG7qoP/jDn8PvvPCjapumCJxN1rvy0EtlYSSzGkNDuGX0NG7tO6ZeMzPLLEeOqHWZukVGycbmJ34CuPdeVXhWl6Eh7E7PYV9qujUxasJZ7dt1FQNSr7cHJSZW2nSK1bp51QDgunCtBqqFWtfmUoVitTaeB3ge0qJgtG9ECAnxPOD++4F3vGO9j4QQsslIj6XwxYkr8YIdZ2HVwwl9TW3HD4TSNjrE6lI1ET+zOjwmAbSd1VJiqeIibVf0+nCWhf5UDZ84fT3e+vqymVpMQiCZBAp1Vy1rBnDuHLAztUCxehPyTEbrdQDvkVIeAfACAO8UQkTlMX9HSnlD+PUpAAi/9wYAVwN4BYA/EEIkhBAJAL8P4JUAjgB4Y8d+yDJmpqXKrNYd5Pk+Bv0C5qdqeOQRiWsGz2uLn3u2VXFscQx/9+kEbr86h2G/YEZQXe5oMLHPTEY9Li3h0aMdMSg6F0nHwVuueAAffvxGNaPXaGCmnMZwuvz0730arEwKDWnhi19O4MWjj6uNutnKa0X4GcpCUYnVI+Hyd42bsJdxUW0mIEtlHP1uDVf2T5oZmIfHuj+4AK8ciuqan+vukRLO5gdazup80ULaqeiLSQMD3ULq/v16+yOErCSZBF796vY9Qod0GlcOz+GDL/r/gJmZ9v51EAK+L5R7pliErK2RWJ3N6u/P8+Am6qiWuosMF8sWM6tNELXRaNUZxWpCCCGk58ns7MPJpRHcMXysLdRqCqpeYKm+YeSClhKlagJ+Qk+sBtAWq+t1NKVQq/k0zT39fRLXDJzH4R25tqFDsx+TylhqdXcoVp+fAHak5mmO2IQ8beuTUl6QUn47fL4E4DEAOy7zlu8H8BEpZUVKeRLAUwBuDb+eklKekFJWAXwk/FmyCrdcsaCEZd1BSRBgwC1ifqaBU6eFiuzQFIG9rIebhs7gp39tDD/5mjOt36NNNgscONB+3ZkvG5dMBiN+Hk+dcfE3/6eBV+98SEWA6MSrCIFbdkzg0fltSqis19FoWrBdA07NdBq5qo87b84hKIfirwkxYS1IpZBxy8hPl5RYPTSntuvcKHwf25OLmDjbwAPfFHj+6EkzbSsSpmdm1ASD52mLPnvGKjiTH2zdKCfmA2xPLug7qxOJ7kKA+/bp7Y8QsrYIATEyjD2ZOWXvAIzE93iRWF0oYGFeot8tmYmF6rz/LcuZjoXnwbEaqBbrXZuL5YQq+MPBgx7RqjOK1YQQQsiGIbNDjeFvzzyihFrb1jZJWIGnIjuinLhGA+W6jcBtxO8jui4k0O4TRo8G+m83HSnj/ud9EpieNuOshhKri53O6gsJOqs3Kc9KXRNC7AVwI4AHwk3vEkI8JIT4oBAiWku6A8DZjredC7ddajtZhVdeP4ED2RkzYrVXxNxME7IhYQmpfyInk3jv9Z/FrYcWcXgsFChNXRxuuaX9/O679feXyeAnDn8Zv/XV5+Mz/wDcs+uokYHezqESzhX6gUoFzVoDQkgzjrdMBu++5gv4lTc/qS7oltW7A9NUCtuTC3jqSanE6r5JtV2nLQQBjgxcwKOPCXzvkQSuHzpnJrM5GuzPhxMABtzqu7fVlFgdzmyfm09hZ3peO2ceAHDbbe3ne/bo748QsrYMD6vHyOliIsYqaDurp6YFRoOcmesLAIyNqccrr9TfVxgDUistE6urCcaAmCD6X0WDvF7tExBCCCGkRbovgdHkEg5mp9SGwUH9aEvfV5EdoVCLahWlhmYB7tBZLSuhSB0J4QZWxu2/ysV9+74LnD+vokt0TYMAkpkECvW2s/rcRZvO6k3KMxarhRBpAB8F8DNSyhyA/w7gAIAbAFwA8FsmDkgI8XYhxINCiAenp6dN7HJjYmjmKRKrz01YSPn11jYtBgZwZOAC/urdX2tfKE3lKt92myp49aY3mcnS9Dy89orH0WgAP/zKBSTtmhHxc3S4iclSFigWMTcrMeQVzDje0mm8+9ovIJ0LiyumUvo3tbUilcJPHP4KfuWDO/Doo8AeJzxmHSd4Xx+ODFzAA99x4SYa8BJ1M20rlerej4E2sHt7HafzQ+0lSAsp7DDhrAaAG25QItKLXsRZYkI2Anv3dr82MCHmpxIoN2wgn8fUbAKjwZK5grvvfS/w9rcDz3++/r5cF65VR7XcXbehWLUpVpvg2mu7X1OsJoQQQnqeRAL46js+1B7Kmyhq7fvKBR0JytUqSnUHQVJDL/A8ZTooKLG6UaoiYTXN9N+i2ksnT6pHA32YVJ/dlVl9ftqls3qT8ozEaiGEAyVUf0hK+TEAkFJOSikbUsomgD+GivkAgPMAdnW8fWe47VLbu5BS/pGU8mYp5c0jIyPP9u/ZPJhy0AQBBr0Cjp10MdYXOr50T+QoW3pmpn2hNCVW+z7wkz8JvPjFZvYHwO5L4Y9e/Bd4z2vCgnUGLpJWJgUpBVAoYHJKYCzImXFWRwLHhQvq0USe6lqRSuGl25/Ajmwe738/YBfCLGidY+7rw5GBCfz2J/bj3tsNZb8CSvDvLFRowlm9RyhndZi/dW4hrZzVJtqB4wD/9t8Cb36z/r4IIWvPwYPt52NjRq7dgwMSs+U0UCgoZ7W/ZOb6AqhJxec9z0yh0dUyq6Vsi9XMrNbj8OHu/xPFakIIIWRDcMXhjn7b8vpccYg0lw6xutxw4Cc1+nOui5RTQSGn+nFLczVknLIZsTrS8556Sj0aMIy5GQ+1ZqIlVk8vOBg2UeuN9BxP26qFEALA/wTwmJTytzu2b+v4sfsAPBI+/xsAbxBCeEKIfQCuAPBNAN8CcIUQYp8QwoUqwvg3Zv6MTYhBsXrAK+Kx0wHG+wy5oKML7eyseWf1WhCJBpNhTIWJgV4yiaRdRWGmhIsTTYwlDS3PjuIqTp9Wjz0uVgPA773hq3jD6yWwtKS2a4rV1w+ew2/e+xW87wfDm5qpttU5+WXAtb9zn6OiYPJ5AMBkPqnEJFPOR0LIxqEzW/6aa4ysiNm1vaGKuBaLmJpLqPuMKbHaJK6rMqs7xepaDdWGDcfTL86z5QkCNbEAqLiZqJ9ACCGEkN7miivaz02I1ZHpsEOsrjZsOL7G+NN1kXXKWFpYA7E6ijKLdILOIt9xibSBUIeSTUNRt6TneCajnjsAvAXAw0KI74bbfgHAG4UQNwCQAE4B+AkAkFIeFUL8FYBHAdQBvFNK2QAAIcS7AHwGQALAB6WUR439JZuNqFqqoRiQExeTGMucb23TIsrmnJ1tC5O9fHGIYikisdpEBnIqhZ2peZw/JTB5UWI8yJkRwXeEMe65nHrcAGI1CoVWoUl4np6Lrr8fvl3Hjx75BlC+QW0z5SLrdFZ3FjCMiTOYQaVhIz9TRhqqbmPCkuYyZQkhGwfPU9eVxx5T8T0G2LVT4mxhAChcwNS0hRv9JSDoN7Jvo4TLR7tiQKLsbrqqzfC2twE/9EPqvssJUUIIIWRjcNVV7eeGYkAAdGVWAzaEp9Hfcl1k3RJyixIAMD/TUEW9TfThIt0owkQtpg6xem4O6PNC4b6X9SgSi6cVq6WUXwWwmkXoU5d5z68C+NVVtn/qcu8jHRh1VhfQlBbGU8oBqn0i9/WpwVIu1xZVe9lZHUU+XLyoHk2In2kV+XDu7AAmJ6FiQJL60RLYsUM58qS6WfS0WN1ZtNCEq7pznwsL5otJdbrRjhzR3186jX93/afwjr++C3/87wBfhEUpuESbkK3J29+uJu8MRZjt3JPAucIAkH8SUzMCo8klM5OtpgljQGqVtlhdnK8gYF61OYTQqwdBCCGEkOeeTrOUiT5cEEAAaJYqsBAVRbT1hGXPQ9YpI7eoVsJdvAhsSy6a6cO5LrB/P3DihHq9e7f+PjvE6ocfBq4bCwtYUqzedHBtZq9isMBikKjBs+sYc2bVNt0Bj2W1ZwbPnWv9np4lOlaTYnUyiZ2pBZw9JzA5LdTybBP7dd32chnASLbymtGZXR6J1bptK5tVg/J8vhWvYaxtRQXQkkkznYVMBm++4gE8NdOHRx9pYmdyVh17L58LhJC1I5k0JlQDQHrYR77m4fx54PhEoAos9uI9wbaVs7oKtcQEwMXzDbXiiGI1IYQQQrYqQgD/+l8DL3uZionTxffhJ2qo5NQKtuJiDSmnotffcl1k3TIWc8qfevEiMJ402Ie7/fb2cxNidShKy2IJDz0EXDsYpgf0Yh+ZaEGxuleJYkB0BdBkEkIAA0EZ440Jta1zhi8ukVBZr6vHXp7J2rmz+7WhGJAjAxN45HiAY6cDHMhOmxMpd3XUIe1lJ1U6rW5ipVJ7IkDXWW1Zah9Smp1cAJRY/Z73AB/4gJn9BQEgBF40+gTe+54mXr7z0dY2QgjRJpWCJSTe8IcvhSeqyuXSi85qIeC6EtWmHS5HVWK1MVcOIYQQQshG5YYbgNe/3kwND9+Hl6ijkq8BAGampSouqO2sLrUWzF+csjAeGOzD3XorMD6uxHoT4/ogUJ/BUlU5q7On1HaK1ZsOitW9iqkIhPFxAMCAk8d4JSzaZ0Ks7iwmlUj0dsGfTvEXMHORTKVw68gpfOOJQRy/mMT+zIw5UfWGG9Tj/v3A9deb2edaIEQ7h+rkSfVoQlyP2lIkVpt0Kh86BPT3m9mXZQGpFO7a8Ti+/o0EfnDfdxgBQggxRyqFsSAHS9bxiTf+JQK71rMdcccRqDYSrYI/FyakcuUws5oQQgghxAyhs7q8ZFCsDp3VuaXQWT2dMNuH8zzg/vuBn/opM/tLpZCyK/jmYxl85zvA1UEYMdKjfWQSnx4sK0/QaKjiREKYyZdOpXDn+OMYE1NqfyZO5KuvBv7+79Xzq67qbffU0JD6u6OquYac1f1eCXN5B4fGFpSZ1pRQefPNwHXXbYxB/vAwcP58O4fKRMb24CBw9my7QFcvC8CZDF687Qn8zk+fxMBSEUiZiwAghGxx0mnsSp3Gke0n27FIveisBuAGCeWszueB/n5cvCDprCaEEEIIMUkQKLG60ACg0jhHdMXqdBpZt4QLOVUz6+KsjW3bFs2unDe58ri/H++57mP406++CC+/p4HUfAGwNXO7SU9CZ3Uv0umq1j2xhQB27MDvv/DD8O26ytM0cbHYv7/93ESxurWk0wEMqCKGuoSCwa3bz+GOXWfUNpMO4I1ysY0+1/NhVpQJZ/UVV3S/7mWxOp1G0q7hJ+/4nnrdy8dKCNlYDAzgZ2/8LH50z+eBxUW1rVfF6mQCtWaiVb/gwqSFcYrVhBBCCCHm8H34dg3lvIpinZmBclbrCMvptCqwGGVWz7mqD9erekR/P16x6yg++OI/xa++L8wuSacZxbkJoVjdi5gqrhjRmdlsIgIEUNEf992nhMU77jCzz7Xk5S9XIvW/+TfAwID+/sL/zc/e9Hn8yJEH1batKFR2TgIAwLXX6u/z6qvbz5NJc7Eda0G0SmFyUj32qJBECNmAWBYO7G0g45RVfYgeLuDqplxUmwlEgYcXpyzlrO7VgQ4hhBBCyEbD9+FZdVQKhsXqjhiQxYKNrFPuXcNBKqWc1OWy+gAARoBsUhgD0oukUsAP/ZC5Qd6ePe3ny4sN6vCKV6ivjcDzn6++TBGKkof9k4AVXhy3olh97bXAX/6ler5790rxOg7btrWf33OPuhn1KsvF6q3YBggha8fQEDA7q56nUj3rGnFTDqpTdkusPnHOxc7rFoDklet7YIQQQgghm4XIWV1sAgBm5hO4ws/rmRnSafS5JeQKCUBKyKZU3c1eFauFUGa2mRng3Dm1jWL1pqSHVaAtTDoN3HWXuf3dfDNQKinx+5ZbzO13K+O66qtaBebn1batKFSOjKhiCR/9KPCDP2hmn0IAP/MzwPHjwPd9n5l9rhWDg+pxYkI9bsU2QAhZO4aG2s97eOWGk3JRbdp44MEEGimgWpEYDZZ4TSSEEEIIMUUQwE/U22L1QgLD/ZpiteMgm2pgseJh/kJZFfQGelesBtRKeYrVmx6K1VsB2wbuvHO9j2JzIQQwNqYKAUave/mCvpZcc436Msnhw+qr1+l0gQM9LSYRQjYgnWJ1D3fE3YyHUjOBX/urg/jH/wTc/9pT6hu8JhJCCCGEmMH34SVqqBQbgJSYXnAwMr6kXQwxO2gjVw3w8z8PvPO276iNvRzlFsWEUqze1DCzmpC4dAqVQdCzy7PJGrJcrKaLkBBikg3irHYzHgo1F6enA/yv/wX8yPOOqm/wmkgIIYQQYgbHge9KlKsWUK3i/FwS48mcdk2TzKCDM/lBfOd7Am88+K1wY8bAAa8RFKu3BBSrCYlLp1DJAfnWZGQEsDouo2wHhBCTjI+3n3cWn+0x3KyPL104hNu2n8GrXw0MiTn1jR4W2AkhhBBCNhp+0kKp4aK5kEOlJlRsh6az2u1P4nR+EHffsgiRW1Qb+/oMHO0aMTCgHuuq0CT7m5sTxoAQEpdOESHKLiZbi0RCzeSGRcU4q0sIMcq+fcBb36omR/ftW++juSRONsDnJ67Cl1/6hwCeBxSL6hucwCOEEEIIMYaXsvGjn/kRnPytPPZlwyLcms5qZDLIumW87Mgk8HhBmbF6eVy7f3/361271uc4yJpCZzUhcel0Vr/iFet3HGR9ufJK9Tg+Dhw8uL7HQgjZXAgB3H57TwvVAPC8Fwb4+Mv/O25NPQpICRQK6ht0uhBCCCGEGOP7bpjGb77gf+O3/qQP1/SfVxs1ndVIp3EwO4XbBx9Xr7PZ3o443bu3+zXH4JsSOqsJicv4OHDzzWqJTA8vzyZrzA/+oCoGeeut3ZEghBCyRdi938buq88CuSawsNB2VlOsJoQQQggxxtWHajgy9TX82rHX4ZrsGbXRgLP6q/f+BsTkAfW6lyNAACWk33038LnPqcdeFtZJbChWExIXIYAf//H1Pgqy3gwMAHfcsd5HQQgh68vIiIpEmpwESiW1TXfwRAghhBBC2mSzEAL45dc9ihcuPQHYtvrSYWRE6b3Hj6vXvS5WA8B99wEHDgDXXbfeR0LWCNoACSGEEEKIHiMj6vHMGRUFEgRcbUIIIYQQYpJMBgDw9hsfxLZkzowxoDPeFAD6+/X3udbYNnDTTfpCPelZOIoghBBCCCF6RGL16dPqkcUVCSGEEELMEorVmJxUj7p51QAwOgokEu3XG8FZTTY9FKsJIYQQQogekVh96pR6ZF41IYQQQohZIrF6ako9mnBWJxLA2Fj7NcVq0gNQrCaEEEIIIXqMjqrHmRn1SGc1IYQQQohZsln1WKmoRxPOaqDbZHDokJl9EqIBxWpCCCGEEKLH2Fh3NfZIvCaEEEIIIWYYHOx+baqY9e23q37cm97U7bImZJ1gGjkhhBBCCNEjmQQOHgSefFK9vvba9T0eQgghhJDNRhAA27cDExPq9d69ZvZ7++3AzTcDrmtmf4RoQmc1IYQQQgjR5+qr28+vumr9joMQQgghZLNy8GD7+eHD5vZLoZr0EBSrCSGEEEKIPnfcAQwNAXfeyQEPIYQQQshasH17+/mePet3HISsIYwBIYQQQggh+mSzwK/92nofBSGEEELI5uXWW4GvfQ248UbAov+UbE4oVhNCCCGEEEIIIYQQ0uukUsAv/dJ6HwUhawqnYQghhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsO0JKud7HcEmEENMATq/3cTyHDAOYWe+DIJsSti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7TJ5fe6SUIzo76GmxeqshhHhQSnnzeh8H2XywbZG1gm2LrBVsW4TwPCBrB9sWWSvYtshawbZFyNrRa+cXY0AIIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSre4s/Wu8DIJsWti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7eur8YmY1IYQQQgghhBBCCCGEkHWHzmpCCCGEEEIIIYQQQggh6w7F6ssghNglhPiiEOJRIcRRIcS7w+2DQojPCiGeDB8Hwu1XCSH+SQhREUK8d5X9JYQQ3xFCfPIyv/PTQoiF5T8jhHiXEOIpIYQUQgxf5v37hBAPhD/7l0IIN9z+YiHEt4UQdSHE6+J+JsQMm6xt7Q7/lu8IIR4SQrwq7udC9NmgbWvVnxNCvFQIsSiE+G749f44nwkxwwZtWx8SQhwTQjwihPigEMIJt78pvF49LIT4uhDi+rifC9la9Nh5sGr7XuX9l7p/s2/YQ2yytsW+YQ+xQdsW+4YbgA3attg3JBsCk+eXEOJU2La/K4R48DK/8xXh+fGUEOLnOrY/53okxerLUwfwHinlEQAvAPBOIcQRAD8H4PNSyisAfD58DQBzAH4awG9eYn/vBvDY0/zO3wDwllW2fw3A3QBOP837/zOA35FSHgQwD+Bt4fYzAP4fAP/rad5Pnhs2U9v6JQB/JaW8EcAbAPzB0+yHrC0bsW1d7ue+IqW8Ifz6lafZD1lbNmLb+hCAqwBcCyAA8GPh9pMAXiKlvBbAf0CPZbSRnqaXzoNLte/lsG+4MdhMbYt9w95iI7Yt9g03BhuxbbFvSDYKps+vO8Pr5s2rfVMIkQDw+wBeCeAIgDeGvw9YBz2SYvVlkFJekFJ+O3y+BHXh3AHg+wH8WfhjfwbgX4Q/MyWl/BaA2vJ9CSF2Ang1gD95mt/5eQBLq2z/jpTy1OXeK4QQAF4G4H+vcmynpJQPAWhebh/kuWEztS0AEkA2fN4HYOJy+yJry0ZrW8/m58j6skHb1qdkCIBvAtgZbv+6lHI+/LFvRNsJeTp67DxYtX0v+x3sG24QNlPbAvuGPcVGa1vhz7FvuAHYoG2LfUOyITB5fj1DbgXwlJTyhJSyCuAj4e9aFz2SYvUzRAixF8CNAB4AMCalvBB+6yKAsWewi98F8LNY2wHBEIAFKWU9fH0OqjGTHmYTtK37AbxZCHEOwKcA/NQaHgd5FmyQtvV03CaE+J4Q4u+FEFev43GQDjZa2wqXeL4FwKdX+fbbAPz9c3EcZHPRK+fB07Rv9g03IJugbd0P9g17kg3Stp4O9g17kI3Wttg3JBsJA+eXBPAPQoh/FkK8/RI/swPA2Y7Xz7bPaLTPSbH6GSCESAP4KICfkVLmOr8XzsjJp3n/awBMSSn/ee2OkmxENknbeiOAP5VS7gTwKgB/LoTgtWWd2SRt69sA9kgprwfw3wB8fB2PhYRs0Lb1BwC+LKX8yrJjuRNqQPK+5/BYyCagx86DVds32ZhskrbFvmEPsknaFvuGPcgGbVvsG5INge75FfJCKeVNUBEf7xRCvNj8kZqFnYanIZxx+yiAD0kpPxZunhRCbAu/vw3A1NPs5g4A9wohTkFZ6V8mhPgLIcTzRbs4xL0xj+8z4fv/BMAsgH4hhB1+eyeA83H2S9aeTdS23gbgrwBASvlPAHwAlwzdJ2vPBmtbl0RKmZNS5sPnnwLgXK6gA1l7NmLbEkJ8AMAIgH+77Gevg1pq+v1Sytk4v49sTXrpPFitfbNvuHHZRG2LfcMeY4O1rUvCvmHvsRHbFvuGZKNg6PyClPJ8+DgF4P8AuFWoAo7R+fUOqHv4ro63PW2fcS37nPbT/8jWRQghAPxPAI9JKX+741t/A+CtAP5T+PiJy+1HSvnzAH4+3OdLAbxXSvnm8Ns36ByjlPKeZcf8RQCvg7rIP+2xkfVhk7WtMwDuAvCnQojDUAOSaZ3fTeKzEdvWpRBCjAOYlFJKIcStUBOs7DiuExuxbQkhfgzAPQDuklI2O7bvBvAxAG+RUj6h8zvJ1qKXzoNLtW/2DTcmm6xtsW/YQ2zEtnWZ97Nv2ENsxLbFviHZKJg6v4QQKQCWlHIpfP5yAL8ipTyLjvMrFJmvEELsgxKZ3wDghy+37zXtc0op+XWJLwAvhLLUPwTgu+HXq6CyWD4P4EkAnwMwGP78OFQuSw7AQvg8u2yfLwXwycv8zq9AdeZK4fvvCbf/dPi6DlWk5E8u8f79UIUCngLw1wC8cPst4fsLUDf0o+v9+W7lr03Wto5AVYf9Xvh3vHy9P9+t/LVB29aqPwfgXQCOhm3rGwBuX+/Pdyt/bdC2VQdwvON43x9u/xOoCtXR9gfX+/Pl18b46rHzYNX2vcr72TfcAF+brG2xb9hDXxu0bbFvuAG+NmjbYt+QXxviy9T5BXWv/l74dRTAL17md74KwBPhOfKLHdufcz1ShG8khBBCCCGEEEIIIYQQQtYNZlYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYQQQgghhBBCCFl3KFYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYSQLY8QYkgI8d3w66IQ4nz4PC+E+IM1/L0vFULcvlb7J4QQQgghZCNhr/cBEEIIIYQQst5IKWcB3AAAQoj7AeSllL/5HPzqlwLIA/j6c/C7CCGEEEII6WnorCaEEEIIIeQShM7nT4bP7xdC/JkQ4itCiNNCiB8QQvy/QoiHhRCfFkI44c89TwjxJSHEPwshPiOE2BZu/2khxKNCiIeEEB8RQuwF8A4A/yZ0cb9ICPFaIcQDQojvCCE+J4QYe5a/+1TH9m8KIQ6uywdHCCGEEEJIDChWE0IIIYQQ8sw5AOBlAO4F8BcAviilvBZACcCrQ9H4vwF4nZTyeQA+COBXw/f+HIAbpZTXAXiHlPIUgD8E8DtSyhuklF8B8FUAL5BS3gjgIwB+9pn+7o6fWwy3/x6A3zX89xNCCCGEELJmMAaEEEIIIYSQZ87fSylrQoiHASQAfDrc/jCAvQCuBHANgM8KIRD+zIXwZx4C8CEhxMcBfPwS+98J4C9DN7YL4OSz+N0RH+54/J1n/RcSQgghhBCyTtBZTQghhBBCyDOnAgBSyiaAmpRShtubUEYQAeBo6JS+QUp5rZTy5eHPvBrA7wO4CcC3hBCrGUf+G4DfC53RPwHAfxa/O0Je4jkhhBBCCCE9DcVqQgghhBBCzHEMwIgQ4jYAEEI4QoirhRAWgF1Syi8CeB+APgBpAEsAMh3v7wNwPnz+1pjH8PqOx3+KuQ9CCCGEEEKecxgDQgghhBBCiCGklFUhxOsA/FchRB9Uf/t3ATwB4C/CbQLAf5VSLggh/hbA/xZCfD+AnwJwP4C/FkLMA/gCgH0xDmNACPEQlBP7jbp/EyGEEEIIIc8Vor16kBBCCCGEELKREUKcAnCzlHJmvY+FEEIIIYSQZwtjQAghhBBCCCGEEEIIIYSsO3RWE0IIIYQQQgghhBBCCFl36KwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLuUKwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLu/F9cCxj9aYoWTAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(25,6))\n", + "plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for training data: 1.7195710200875551 %\n" + ] + } + ], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAADSCAYAAAAL37fDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABSYklEQVR4nO3dd3hU1dbA4d9Kofei0qSJ9B6KKIiIgKCoIIoFbAjYr+Varvez92vFhogNRJCqgCC9inRCB+kSpPciqfv7Y53AgAmkn0my3ueZh5kzM2f2HJKTdfZee21xzmGMMcYYY/wV4ncDjDHGGGOMBWXGGGOMMUHBgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwRSHJSJSKiILBOR8d7jb0Vki4hEercG3nYRkX4islFEVohIo4B93CUiG7zbXRn+bYwxxhhjsqmwVLz2MWAtUCRg27+dcyPPet21QDXv1gz4HGgmIiWAF4EIwAFLRGSsc+5gWhtvjDHGGJNTpCgoE5HyQCfgdeCJ87z8BmCQ06q080WkmIiUAVoDU5xzB7x9TgE6AEOT21GpUqVcpUqVUtJEY4wxxhhfLVmyZJ9zrnRa35/SnrIPgaeBwmdtf11EXgCmAc8656KBcsD2gNdEeduS256sSpUqsXjx4hQ20RhjjDHGPyKyLT3vP29OmYhcB+xxzi0566nngBpAE6AE8Ex6GhLweb1FZLGILN67d29G7NIYY4wxJuilJNH/cqCziGwFhgFtROR759xOp6KBb4Cm3ut3ABUC3l/e25bc9jM45wY45yKccxGlS6e5B9AYY4wxJls5b1DmnHvOOVfeOVcJ6A5Md87d6eWJISIC3Ais8t4yFujpzcJsDhx2zu0EJgHtRKS4iBQH2nnbjDHGGGNyvdTMvjzbEBEpDQgQCfT1tk8AOgIbgRPAPQDOuQMi8iqwyHvdK4lJ/6kRGxtLVFQUJ0+eTEfTTb58+Shfvjzh4eF+N8UYY4wxgOgkyeAUERHhzk7037JlC4ULF6ZkyZJoJ51JLecc+/fv5+jRo1SuXNnv5piz7NsH4eFQtKjfLTHGGJMaIrLEOReR1vdnu4r+J0+etIAsnUSEkiVLWm9jEFq7Flq2hCfOV3jGGGNMjpPtgjLAArIMYMcw+MybB7ffDqNGwcaNsH693y0yxhiTlbJlUBYsfvrpJ0SEdevWnfN1H374ISdOnEjz53z77bc8/PDDaX6/8dnBg7B6NcTEJPuSsWPhX/+CceOgVi145RV44YWsa6Ixxhj/WVCWDkOHDuWKK65g6NBkFyUA0h+UmWwsPh7eew/69YMnn4QBA2DJEoiOPvWSL7+EDz+ESZOgfHndduWVcPgwREb60mpjjDE+sKAsjY4dO8bcuXP56quvGDZsGADx8fE89dRT1KlTh3r16vHxxx/Tr18//vrrL6666iquuuoqAAoVKnRqPyNHjuTuu+8GYNy4cTRr1oyGDRvStm1bdu/eneXfy2SwefNg717N3I+J0YBswAB48klc/y94pc8Ofp0Qz4QJULz4mW999VX473/9abYxxpisl56SGP7r0ydz9vvFF+d9yc8//0yHDh249NJLKVmyJEuWLGHhwoVs3bqVyMhIwsLCOHDgACVKlOD9999nxowZlCpV6pz7vOKKK5g/fz4iwsCBA3nnnXd47733MupbmawWFwcTJuj9u++GypVh2TJYsoT4jVt4qF8NQmUDw698i9BvakHjxlCvHuTLB0CTJpAnj8Z1LVr49zWMMcZkjewdlPlo6NChPPbYYwB0796doUOHsmXLFvr27UtYmB7WEiVKpGqfUVFR3HrrrezcuZOYmBgrV5HdzZ0LBw5A2bIacIlA27b8fXlbbu8WQ0Tz7fyn+ihkc4yOU0ZGQlgY1K4NrVpBnTq8+io8+ihMnapvN8YYk3Nl76AsBT1ameHAgQNMnz6dlStXIiLEx8cjIjRp0iRF7w+c+RhYluKRRx7hiSeeoHPnzsycOZOXXnopo5tuskpsLEycqPc7dz4VUR04AF26QM+eebj33qrA03Do0KkeNDZuhOXL9XbTTdRu356yZYWpU+Gaa3z7NsYYY7KA5ZSlwciRI+nRowfbtm1j69atbN++ncqVK1O/fn2++OIL4uLiAA3eAAoXLszRo0dPvf/CCy9k7dq1JCQkMGbMmFPbDx8+TLly5QD47rvvsvAbmQw3Z44GWxUqQIMGAGzfDh06wL//DffeG/DaYsXgqqvgqafg7bfhuus0iBszBoYO5aUXEnjpJQjiOs/GGGMygAVlaTB06FBuuummM7Z17dqVnTt3cvHFF1OvXj3q16/PDz/8AEDv3r3p0KHDqUT/t956i+uuu44WLVpQpkyZU/t46aWX6NatG40bNz5v/pkJYjExp3vJrr8eRFi1Su/26wedOp3jvUWL6gt799ahzFmzqDr5c+rVjufnn7Ok9cYYY3yS7ZZZWrt2LTVr1vSpRTmLHctMMmUKjBwJFSvCc8+xcZPQrRsMGwbVq6diPxs3wmefwfHj7ChehxsnP8j8RaGEhmZay40xxqRDrltmyZigFh2tBcfgVC7ZoEHw3HOpDMgALrkEnnkGSpak3MFVXJlnHsO+OJzhTTbG5C779uk8pIEDYcUKv1tjAmXvRH9jgs2MGXD0KFSpArVr4xyMH6+xVZpceCE8+yx88gnPnhzDNS9V5pY2+wivUTVDm22MyQEmToTffoOePYmveilbt8K6dXpbu1b/PXYMSpWCmjXh4ou1pvWUKX433CSyoMyYjHLyJEyerPe9XrIVy6FaNShYMB37LVIEnnySUgMG0HlVJF/3PUqfD45Aw4YZ0mxjTA6wcSNHR/xKn9l3sH5Aflzpk1SukY+aNaFGDV0lpHp1KFz4zLdNnKiTkCpU8KfZ5kwWlBmTUaZNg+PHNQqrUQOAH3+EW27JgH3nzQsPPcQTeUfQ6rkr6PnpO+S/o4vO2jTG5G4xMfDdd0z8szblS59k0FVvEJY/HB57DKqeu1f9zjthyBDtkDf+s5wyYzLCiROnxwC8XjLn9Cq0Y8cM+oyQEIrefwt33niMz1e30pkDI0darQxjcruff4Y9exi7pzndP7qMsMuaaH5rv36wZcs533rzzXYaCSYpDspEJFRElonIeO/xEBFZLyKrRORrEQn3trcWkcMiEundXgjYRwfvPRtFxOJyk3NMmwZ//609ZJdeCmg92Jo1IX/+DPwcER76uCbf7evI0bj8GggOHKjFao0xuc+mTTBtGnGEsTK2Bg2bhOuybk2aaErFhx/C1q3Jvr1IEZ1TtGxZVjXYnEtqesoeA9YGPB4C1ADqAvmBXgHPzXHONfBur4AGdcCnwLVALeA2EamVnsb7JTQ0lAYNGlCnTh26devGiRMn0ryvu+++m5EjRwLQq1cv1qxZk+xrZ86cybx581L9GZUqVWLfvn1pbqM5j+PHdR0k0F4yz48/wq23ZvzHFSgAfR4vyIcFn9d1Mhcvhk8/1bU2jTG5R2wsfPcdOMdvFbrTonUeXTwkJEQrVDdurIHZRx/Bn38mu5uePWHQoKxrtkleioIyESkPdAIGJm5zzk1wHmAhUP48u2kKbHTObXbOxQDDgBvS1mx/5c+fn8jISFatWkWePHno37//Gc/HpfGP48CBA6lVK/k4Na1BmclkU6boia927VP5G85pZYz27TPnI3v1gtFzSrO/1zN6qbt2LXzzjY1BGJObjB0Lu3dDmTKMO3A5118f8FxICNx3n04IOnECPvhAM/qT0K4dTJ9uHe7BIKU9ZR8CTwMJZz/hDVv2AH4N2HyZiCwXkYkiUtvbVg4I/ImI8rZlay1btmTjxo3MnDmTli1b0rlzZ2rVqkV8fDz//ve/adKkCfXq1eMLb51O5xwPP/ww1atXp23btuzZs+fUvlq3bk1isdxff/2VRo0aUb9+fa6++mq2bt1K//79+eCDD2jQoAFz5sxh7969dO3alSZNmtCkSRN+++03APbv30+7du2oXbs2vXr1IpgLBGd7R4/q2QwIPCMuWgR162pHVmbIkwcefxze+b6srlie2GP2448WmBmTG2zerBeEInD33UyfGUKbNme9JjRUr+Dq1z8dmO3Y8Y9dhYXB1Vefnjxu/HPeoExErgP2OOeWJPOSz4DZzrk53uOlQEXnXH3gY+Cn1DRIRHqLyGIRWbx3797UvDXLxcXFMXHiROrWrQvA0qVL+eijj/jjjz/46quvKFq0KIsWLWLRokV8+eWXbNmyhTFjxrB+/XrWrFnDoEGDkuz52rt3L/fffz+jRo1i+fLljBgxgkqVKtG3b18ef/xxIiMjadmyJY899hiPP/44ixYtYtSoUfTqpSPIL7/8MldccQWrV6/mpptu4s9zdFubdJo8WRNq69aFypVPbR4+PHOGLgPdcYemsu0MqwAPPqhn1hkzTi/xZIzJmQKGLWnXjvXRlahYMZmLwLAwXbatbl1NtfjgA/jrr3+8rEcPGDw485tuzi0lJTEuBzqLSEcgH1BERL53zt0pIi8CpYE+iS92zh0JuD9BRD4TkVLADiCwEkp5b9sZnHMDgAGgyyydr3EdOmh14oxSqhT8+uu5X/P333/TwFtkumXLltx3333MmzePpk2bUtn7wzx58mRWrFhxKl/s8OHDbNiwgdmzZ3PbbbcRGhpK2bJlafOPSxuYP38+rVq1OrWvEiVKJNmOqVOnnpGDduTIEY4dO8bs2bMZPXo0AJ06daJ48eKpOgYmhY4c0SAIzsglS0jQC9jXX8/cjw8N1ZUCXn8dPvmkug5VDBigM7GKFIErrsjcBhhj/DFuHOzaBRddBNdfz9gPzzgF/VNYGPTpA59/DqtXw/vva9XYgLWXGzbUOQOHD+sSvMYf5w3KnHPPAc+BzqwEnvICsl5Ae+Bq59ypYU0RuQjY7ZxzItIU7Y3bDxwCqolIZTQY6w7cnt4vcL4AKjMk5pSdrWBAhVDnHB9//DHtz0oqmjBhQoa1IyEhgfnz55Mvs8bIzLn9+qtesTZooKWxPQsWQKNGWloss3XpAu+9p+fZ2o0awe23a9Gh77+HQoW0bcaYnGPrVu2hF4G77oLwcMaPhxEjzvO+8HB44AGdFLR2rQZmTz2lq4agu0ssj3HffZn+LUwy0lOnrD9wIfD7WaUvbgZWichyoB/Q3ZsPEAc8DExCZ3EOd86tTsfnB7X27dvz+eefE+tlTv7xxx8cP36cVq1a8eOPPxIfH8/OnTuZkdjTEqB58+bMnj2bLV59mQMHDgBQuHBhjh49eup17dq14+OPPz71ODFQbNWqFT/88AMAEydO5ODBg5nyHXO1Q4dg1iy9f0Z2rQ5dZkjB2BQQ0YoYPXrA3r1Aq1baHufgyy9hw4asaYgxJvPFxsK33+rv9zXXQJUq7NunvfMXXJCC94eHa6pDjRra0//eexCQ13zHHXpNZ/yTqqDMOTfTOXeddz/MOVf17NIXzrlPnHO1nXP1nXPNnXPzAt4/wTl3qfe+TB7c8VevXr2oVasWjRo1ok6dOvTp04e4uDhuuukmqlWrRq1atejZsyeXXXbZP95bunRpBgwYQJcuXahfvz63eslJ119/PWPGjDmV6N+vXz8WL15MvXr1qFWr1qlZoC+++CKzZ8+mdu3ajB49mosDenFMBpk4UUtQNG4M5U9PPE5I0Dyvq6/OuqbUqgVvvqmBYHQ00KmTBmdxcXpVHBWVdY0xxmSeX36BnTu1d8sbr5wwIZUFqvPk0cDs0kt1rPL993USAHoqCws7Z1kzk8kkmGfmRUREuMTZiInWrl1LzZo1fWpRzmLHMo0OHID/+z+Ij4cXXoCyZU89NXeuXsgOHJj82zPLp5/qrM9vvgFxCdpTtnSpJog8/bQmTBpjsqetW+Gtt/T+009DlSoAdOsGL72kFXlSJTpaA7KtW6FlS11vCZ0/sH07/Pe/GdXw3EVEljjnItL6fltmyZjUSuwla9LkjIAMMnCtyzR46CFNI3v7bU7XKKpeXa+GP/pIy3cYY7KfuLjTsy3btj0VkEVHa4bCOcpbJi9vXq38HxoKc+acSnXo0gVGj7bKOn6xoMyY1Dh4EObN02SuTp3OeCo+XtPMkphQm2U+/FDbMHo0Og7x4INQoYLmjXz8sRa5NcZkL7/8omUsLrwQbjhdc33WLGjdWk9HaVKmDFx7rd4fPBji4ihcWIO8hQvT3WqTBhaUGZMaU6acziW76KIznpozBy67TGMhv4SF6Trlb74JS5aghYsefRRKl4Zt26B/f1uOyZjsZNs2nekdMNsy0dix5ymFkRLXXqvB3u7dp2oc9uxpNcv8ki2DsmDOg8su7BimwZEjMHu23k+8ugyQlbMuz6VoUR1Gve8+r3h3kSLw2GOnl2NKnL1ljAluicOWCQnaBe8t4wb6KzxnjqaDpUtYmE7fBg3Kdu7k6qv1VBcTk859m1TLdkFZvnz52L9/vwUV6eCcY//+/VbfLLWmTtUp6fXrnzHjEvTcOXcuXHmlT207S5Uq8MknmgR8/DjaU5a4HNOiRbowpzEmuE2dqldWpUvDjTee8dSKFTrMGNBxlnbVqmmx6fh4GDKE0BBH+/a2OIgffBxoSZvy5csTFRVFsC/BFOzy5ctH+bMCC3MOx4/DzJl6P4n557Nm6TnNz6HLs11xBfTtqyMew4dDSIUKcP/9mls2aZImo1hgbkxwOnHi9MXTHXdoKYsAY8f+o0Ri+nTtqpHehg0wdy49erTklVfOSGEzWSCI/oSkTHh4+Knlh4zJMtOn61SnWrWgUqV/PD18uBbTDzY9e8K6dVrB4/XX0XnzVavqeiqzZ0O7dn430RiTlKlTNTC79FIt9nqWiRM1/z/DFCigC/Z++SWMGkW9l+uxfXtRDh4EW6kv62S74UtjstzJkxqUQZK9ZLGx8PvvwbvU5GuvaWA2aBBnzhqdMkUbb4wJLseOaVAGOmx51vTKv/7STu4MD5YaN4Y6deDvv2H4cG65RS84TdaxoMyY85k5U69Yq1XT21lmzNCRwNDQLG9ZioSEaEDWv7/mvVGrFlSsqBMX5s71u3nGmLNNmqQ983XqnJHcn+iXXzJ46DKRiHb558kDixdze8O1tuxSFrOgzJhziY7WHiX4R12yRH4WjE2pggV1weKHH4bNW+T07NFJk6xEhjHB5PBhvdKDZOtdZHg+WaCSJU8lkpWZMogC+RLYtCmTPsv8Q7bLKTMmS82dq0MJlSolmdcRE6OTGb/8MuubllrlysHXX0P37jBrZgPyly2r4yALFsDll/vdPJPdOafrMq5cyfqZO4ncVJgLi0VzQdFoLigRR4mi8YTkDdfpguHh2hsTeL9KFf09S3Ml1Bxi4kRNK2jYUHu0z3LihP7aXnJJJrahTRs9L/z5Jz1qLGLw4Ga89FImfp45xYIyY5ITGwuTJ+v9Tp2S/GORuPh4SDbpc27USEsSvfqa8MaN18JXX+kfgcsuyz5fwgSP6GhNWFy5ElatgoMHWbG/HD1n3sOtVRaz8GRpdv9dhD1/F+ZAdEESCxmVyHucC/Mf5YL8R7kg/xEuyr+bJqXnUKt6PHJZc2jWLHeu1XrggBYfE0m2K2zqVF1pKVOFhOiJ4o03uPH4EK6Y1pAXX8yT6+PlrGBBmTHJ+f13OHRIa5LVrZvkS378Efr0ydpmpdeDD2o9tZW3RlC39FjYuxcWL4amTf1umgl2zsGuXbB6tQZiGzZobSvPmphL6LnwPkZ8+RfVIiL0wiYmRv+N3Q+xsSScjOHgAceefSHs3leQPfsK89fui3llcQPWTi9Fg+HbuabcWK6+/CRl29fV5PMCBXz80llowoTT6+qWK5fkS8aN0yUrM93FF8PVV1Nw6lTq513LvLl1ubylXbhlNgvKjElKfLwubQI64zKJS8ToaFi2DJo3z+K2pVNoKHz2GTz4UAgzX7+W0CGD9I9BkyY2dGSSFhWlPTgrV8L+/ae3i+iwY926/FGgAbf/qwxDJwnVapZIdlchQEnvVjNg+78SEkhYvZbIEbuZMrUEd317KQe/KMgVZefT9oporryjPIWb1gyuYoAZac8e+O23c/aSJSToqGL//lnUps6dYdkyepadxuC3SnB5ywpZ9MG5Vw796TYmnRYs0D8+F12kuR1JmDwZrrkme8Yx9eppGln/yOY8VHyc5gJFRib7XU0uFhUF77yjVyEAhQppvbu6dXUmb8GCbN4Mt3TRWb41a557d8kKCSGkbm0a1a1No/+c5JmlS/l7zlR+m5PA1N9q8NrIguQN30ab5ifo2KMkTTqXyZ6/fMn55ReNulq00LUok7BokaYgZNlM77x54fbbab3vE/41OoSTUfvIVz4XDitnoRT3RYpIqIgsE5Hx3uPKIrJARDaKyI8iksfbntd7vNF7vlLAPp7ztq8XkfYZ/m2MyQgJCafXF7n22mRzrYJlrcu0euEFGPhNKDsaeVflEybYmpjmTAcP6goQ0dG6vNhzz8H//gf33qs9qwUL8uefWgz+66812M8Q+fJBixbkf+ZR2g6+i7feFuY/OJhRV39KrcPzeOmR/Txx+QJip87SOoLZ3c6deiEYGgrXXZfsy8aNy4AFyFOrTh1CmkbQqcIKfnlhgZ0jMllqBogfA9YGPH4b+MA5dwlwELjP234fcNDb/oH3OkSkFtAdqA10AD4TkSCt7GRytSVLdCihVKlk86xOntSRnCZNsrhtGahAAXj7bXjkh8ugcGH4809Ys8bvZplgcfKkLqB66JDW5+vdW2dHBlyk7NihtU3799cenExRvDi0bw8vvECp1x6nW+8SjO/2HWUSdtCu50X89eBr8P33+vObXY0bp8FOy5ZakiIZkyf7tAjHLbfQo+5yBk0vp/mnJtOkKCgTkfJAJ2Cg91iANsBI7yXfATd692/wHuM9f7X3+huAYc65aOfcFmAjYJnFJrg4pz1GAB06JNtL9uuv+nciu4+etGsHBQuH8FPBO3TDL7/YlbDR3uIvv9ShywsugAce+Ecu1+7dWs6qXz+dLJnpRKBCBejWDXn7Lf79SUVevCGSjmP7MOvHXbqO2Jtval5W4lBrdrB9u14Ihoefrh+YhK1bNV4rVCjrmnZKkSLU6n0Fe/4uwr6vx2oPqskUKe0p+xB4GkjwHpcEDjnnEqtORgGJU0XKAdsBvOcPe68/tT2J95hgEh+vZ4B583RmXjLi4vTidN48nYU4dmzWNTHTLF+uRYCKF9cyEckYPlyXicsJ3n8fXhxTnyOhxXVNzA0b/G6S8ZNzMGyYlrgoVAgeeUSrDwfYt09z0d95x6flxcLCICKC1p/fyoSpeXlpc0/+t6YTbstWTWx75hn9Dn/95UPjUinxxHnllVCsWLIvGzcuEwvGpsTll3N36618uqgpDBhwxqxbk3HOm+gvItcBe5xzS0SkdWY3SER6A70BLr744sz+OAN6Vbl5M2zcqLfNmyEmht0nCrPp6AVElWnC9gsaE3WkCNu365BFdLSeF8uW1YoRFSro8pCxsZpfki0F9pK1b5/sLK+oKC3NlFNy4kuXhsefCOH5UX34uOxbegwuvdTvZhm/TJsGs2bpz/+DD2pPWYADBzTt6dVXtcao38o2uIDJkfDMvzvRNfJyvrlqEEX/WqdV8WfM0KHXVq10fDXYZm5u3gwrVmhCfYcO53zpuHFaVtA3ItzzeVOa1zzMA6tnccGYMXDzzT42KGdKyU/o5UBnEekI5AOKAB8BxUQkzOsNKw/s8F6/A6gARIlIGFAU2B+wPVHge05xzg0ABgBERETYOEpmOHr0dAC2YYN2nydoJ+j+kwUZsbk5w7a3QMLDqZV3ExV27qdCoZFENChFhX9FUDaiLPny/XO3ffroSbp27SSL3we/NWtg2zbNr0rm8v/wYQ06P/00+w9dBrrrLvj+u4tZcKg6zdau1Z7SSpX8bpbJasuWwUgvK+Wee/6x7uLhw5po/vzzet0SLMLD4f0PQxkxoiRt3nqcb97cRb290zR5fsMGvQ0frr/X58nbylKJvWRt2uh5JxlHjuixr+BzRYo8JQrx7PPHePXLTnycf5gGvPXr+9uoHEZcKvJHvJ6yp5xz14nICGCUc26YiPQHVjjnPhORh4C6zrm+ItId6OKcu0VEagM/oHlkZYFpQDXnXLJ9oBEREW6xJRWmn3N6RTZ/Pqxfr8kgAU7E52XcsasYsrEZe2OK0u22UG7tmU9rF+7fr+sj/vbb6TUS69TR2l1JLJS7YgXcd59eoPqS+5BWzumssk2bNOpKIps2JkZ7CPr2hS5dfGhjJvvjD+hx3QHmXvk84Q3rai+JyT22boV339Xu7htv/Ed+09Gj+vP/6KPB3Ru+bp0Wo3/0UejR7SQsXKg9f1FR+gIRLefRurWW9PDr6uqPP+C99yB/fnjjjXMWyB0xQkeTX345C9uXjIQEuKLuIQbX+x9VLzqhEXpuXH0hGSKyxDkXkeb3pyMoqwIMA0oAy4A7nXPRIpIPGAw0BA4A3Z1zm733Pw/cC8QB/3LOTTzX51lQlk6HDumV4m+/nRmIhYcTV7Eq005cxpClNVixtQjXdw7h9tvPUWPo0CFdmHv2bI1OAKpX1+CsevUzTmzff69d7cOGZaPepMQTZMGCeoI8qyvQOa2i3agRPPaYP03MCq/9XzTh0ybyTN2J8H//p2PTJufbtw/eeksjr8sv16gm4Jf3+HHtIevVC267zcd2ptCxY3D//Zqi9eGHkDePd2E6c6Ym1SfmQ5UurUObl1/+j7y5TOWcBsAbN+qB7dTpnC/v0UPPOxFp/lOfsaZPc3z5zEaGNn5X1+d8+ungGxr2SZYGZVnNgrI0iIvT7qp58/TSKvH/t0gRXLPmLAptzpAZZZgxM4Qrr4Tbb9eK9CkOno4e1eSx6dNP1weqUkWvquvWPbWjRx7RzY8/nvFfMVN88IFeYidzgvy//9M/TO+/70PbslBMDFxe8wDDmr5H1TaV9C+bydlOnNCM/Z079arskUfOqE66fr0GBf/6l54vsgvntKLHsGHwww8Ba3sfPQpz5+oF5oEDui0sTOvbtG6dNcP2q1frtNVkLgIDxcXpxWBkZHAtT3ttu3heK/c5jfOshKuugu7d/W5SULCgzKioKA3EFizQy0TQ3+D69aFFCw6UrUO3W0MoUwbuuEMXtA0PT8fnnTihV51Tp2q0Atqr0rIlREQQk6cQ7drBK6/ohWjQSkjQk/PQoXpifPPNfwwjDByoJTCGDw+uk2JmmffrEV7uHcWv1/ZDXnk52eriJgeIi9PgYP16nbXz9NM6nOb58UetZff119CggX/NTI958zSgrFQJevbUXLjwcPR3f9UqPY+tXn36DRUrnp4YkBlrbjqn55lt25JNlQg0ezYMGQJffJHxTUmPyEh4+pG/mVTnSSQhXi/ggqUrz0cWlOVmJ05ovsRvv51ZOLFcOV2qo1kzKFyY7ds1B+qll87bS5560dG6Jt7kyZqJChq51K3LX1Vb0vHpOkyYKJQtm8GfmxE2bNC/Otu9Si033KDDsQEmTtQ/ShMnnvG3Ksd74Oo/uNzN5c67QnUWgMl5nNPyEfPmQZEiWq2/hK5ZGR0NTz2lnWdffQVFi/rc1nRyToOIQYN0cunVV+uP9alAc88ePY/99tvpi8zQUO05bNJEL24z6gSwfLkuPlukiNZWy5PnnC9/6intiMrwc3cG6NEDetSNpN2mz/Wi9j//yfUXcRaU5VY7dmiyxJEj+rhAAa0+36IFXHzxqWHE1au1Z6x//0xeODs2VmduzZ+vsxi9n6tZB+ry4qpuTB51lDw1qwZHktn+/TB69OnK1MWL6xVrRMQZ7Vu6VC/+Jk8OnslaWeXQxn1c2ewk067/kFLvPZf7DkBuMGEC/PyzBgVPPXVqfG/bNj1n3Hyz5jEFw69sRoqN1Z7vQYP0u956q37fiy7ynly8+PSkqMS/j2FhOq08IkLXkjrHcGOy4uI0t/err/T83b27RlvnsG2bXicuXhycF4Vbt0L37o55d39JyLIlOlry7LPpHIbJ3iwoy422bYOPPtIrukqVdCyyQYN//CLMmwcPPaT5FGleJDgtjhzRHrz582H7dt5f0ZZtx0rwUefpGhk2a/aP2kdZIjpaz8ZTpujJNzxcxzLat//H1eq2bdpxNmpUkpNMc4WRD07nl2n5+ObFrdkrmcic35IlWgBURKv1e2UNJkzQzo7PPtPru5zuwAHtLP/hB+246tlTf+/z5UNzz5Yu1Yhow4bTAVp4uObPRkToTPS8ec/c6cmTsGuXdjMm3nbt0kLcifsoXhxee+2cyfEjRmhH2qef6jyEYPX449Ckfgy3b3pVexyvuEK70HIpC8pym82bNQfk77/1iq137ySvSsaO1d/50aN9nkD311+43+fT/fmq3FBuEbdfski3V6miJ7WKFbWBabnyTCnnNEgcPVpnkYIOSXTtqifHsxw8qGken36a7NKXuYL7ayc3ttjNY/Vn0ea7u85ZbdxkI3Fx8N//6g96t27Qti1xcfDiixqDDB6cOyscrF+v333cOL12vPde/f0XQVMzli6FRYu0bE6iPHn0PFykyOkALPEcczYRne1ZpozWFkmmOPrx45oDd+SI5pEF+6/dvn3aL7BgVBR5339Tf77uuSeTh2aClwVluckff+h0ouhoTUK9774kr7S++krLUowenWTM4YujhxNoc0U0X98yibp7p/9zbbrSpU8vDZD4b/Hi6R872bpVL4U3b9bHFSvqeEUy3V/R0Tpc8NhjOhEzt9v+xmBu+ehyfv96bXAmtZjU++03HbsrUwZefJFdu4U779Tc9uefP2PiZa6UkKB1Fr/+WgO17t214+dUqtTBg9rTuHgxbNnyzx2EhelY6EUX6TFOvF1wwXnLRixfrqf1Bx7QoDC7DB2//rrWpXys8VyNbPPk0S7XMmX8blqWs6Ast1izRscUYmN1+O/uu/8xFdA5nV29aJFOJgy2HIR16zR3Y9qEaIptjdQNUVG6Pl1iYdpABQqcGaiVKKF/MUJD9buffT9w28mTMH68DqGCXsnedJOuZ5nMmS4hAe68U3vfrW6qZ/VqulwXwyvt5lKn/8PZ56+ESVpCgnaJ7dkD997LrJPNePRRLdHXtq3fjQs+hw5pSY3Bg/W68d57tfrPqcGJ/ft1BkF8/OkgrGTJVE/Tdg4+/liHUb/9NvutiHL8uA53z57lKDrmWz3vlimjk0fOHt7N4Swoyw1WrNB+7Lg4TS64885//NLHx2uXd3S0xm7BWsdv1Ci9SB8zJuArxMdrAuz27Rqkbd+ut8TSHukRFgbXXKPryp1niPTZZ/Xk+Pbb6f/YHCMhgVE3fc/iP0vz5ugaULmy3y0y6bFoEQwciCtZineKvMrEX0MYMkQnbJtzW7kSvvlGqwC1b68BWkbk6u7dq/u65BKt35tdY5gBA/S0/ep/o7Xkx86dOoR599256mLOgrKcbulS+PJLvcJt3Vr70s/6AY+O1u71GjV0GY5g//l/+mnNk/jPf87xIuc0jyMxSIuK0iSLhAQN4hL/Tep+4q16dc0bO0eCjHM6EWrIEL3gHTIkd9QiS42TQ0bR7NGmLOs3l5A7skE5d5M053QV8R07mF7zIT6eVY/hw3P1RLk0iYmBX37R4c2DB7W0RocO2pmf2nPv1Kk68fWNN/5RjSfbiYvTQZzx46EMO/VLxcTo7IlgnqmQwdIblAVpf4oBtBDsN9/oybRdOy02dtZv/ZEjGnd06aJ5CNnBG2/oEEChQnqFHhZ2+hYamnhfCA0tRlhYMcIuqkNoOS1+XaKE1kxKbeCUkKCl3NasOX1bt07nS5QrBw0b6rCBBWT/lK9VU5qU3sbcn/fT6ta44O2GNee2YoVegRQrxvtT6vDGmxaQpUWePJoJcdNN2hk0eLCmO0RF6ZriderorW5dvSWVqB8bq6uELFumNRBzQupVWJjmJL7yCnz+uVel/JtvtOp27drBP2MhSFhPWbD67Tf9bXdOE6yvv/4fAdmmTTqS+eSTWlMoO9m7V39fY2O1gysuTm+B9wMfx8ZqrdwDBzTPwzk9HGFhOh+gRIkzb8WK6Sz0NWs0WTc2VnP8a9U6fatePXMKduc4zjHznu8YuqAKXwwreqp8gslGnNOxsa1bWdvsbv7142VMmuR3o3KeI0d0kYCVK/W2apX2ppUrdzpIK19eJ7/ecIOeu3PShaBzOmFk4ECofqmDzz/X2Qv162uvQbAP42QA6ynLiWbO1Ex9gBtv1G4lz549Wr/mxx81kf+dd3Rlo+ymdGkdxkyv2Fg96R04oLfE+wcPavpTp05QrVrmVtzI8URo1b0sj42rTPTsieS1oCz7WbdOZyIXKsQHvzXliSf8blDOVKSIJrwH1nhzTucyJQZqs2bpUrtNmvjXzswiojMxn38eRo4UrW+4fr0GZsuWadUAc04WlAWbKVNg5Ei9f8stcPXVHDkCP/2kcdrRo7p5+HCvAnUuFx6uM839qEWbm4Q0b0qHCguYOMFx430nrIsxu5kwAYA9ER2J/CCULwb63J5cRER7ysqV09yznK5VK/jf/3QCZvPmxTS35ocf9A9YjRp27jiPHNRxmgNMnXoqIDt5852MOXI13bpBmzaa6/7JJzB3Ljz6qAVkJosVK8Yd7fby/fqI08tTmexh0yatcZg/P5+tapVbRpGMj958UydyOYdGaVWr6tju6NF+Ny3oWVAWLI4exf30M1OjanDvjldo9lRLFizQZNBFi7Q7OLcu92OCQ70ul7DtWEkOzVjmd1NMani9ZH+3uJox48NtxSyT6erU0RzeiRPRK4AePTQBeM4cvUAwybKgLFhMn86YP2rz7uYu3PvshSxbpnm59erZVa0JEg0bcvMlyxk1vbjO1DDBb/t2zTbPk4fBu67hlluybx0sk728/DK89JJXF7xMmdO50YMHazKwSdJ5gzIRySciC0VkuYisFpGXve1zRCTSu/0lIj9521uLyOGA514I2FcHEVkvIhtF5NlM+1bZzcmTMGMGn69pxSefaEX5nDQjx+QQefNyW5doftjYVMu1mOA3cSIACVe04ovv8tG3r8/tMbnGxRdr/nOfPt4wZocOULaszlb75Re/mxe0UvKnPxpo45yrDzQAOohIc+dcS+dcA+dcA+B3IHCweE7ic865VwBEJBT4FLgWqAXcJiK1MvC7ZF+zZrF+ZxHCCuXnkqsr+t0aY5J1cae6OCBq8hrvTGuC1q5dWnw6LIwJ7lqaN9cVgIzJKk8+qXUln30WHb7s0UOHfiZN0sJu5h/OG5Q5lbjeTbh3O3U2FpEiQBvgp/Psqimw0Tm32TkXAwwDbkhLo3OU2FiYMoX+a1rR96FcvhKwCX7Vq3Nb3dUMXVj19CLvJjj9+qsGzi1a8OHAQjz+uN8NMrmNCLz7rl4fvPsuUKWKrkyTkKDDmAkJfjcx6KRokExEQkUkEtgDTHHOBY5d3AhMc84dCdh2mTfcOVFEanvbygHbA14T5W3L3X77jRMHTzJ9X1069a3gd2uMObeQEG6+LZwRmxudXuzdBJ/9+3WIOSSEpRd1pHBhXVvRmKwWEqLFZOfM0VVTuPFGrfi9dSvMmOFv44JQioIy51y8N0xZHmgqInUCnr4NGBrweClQ0Rvu/Jjz96CdQUR6i8hiEVm8N6cnE8fHw6RJ/LipCTffGE9YuGX0m+BXvG1jyhc8xMpfd3hZvCboTJqkvRBNm/Le18V58km/G2Rys/BwGDYMvvsOfp6Uj1NTgH/+WS8gzCmpSid3zh0CZgAdAESkFDos+UvAa44kDnc65yYA4d7rdgCBXUHlvW1nf8YA51yEcy6idOnSqfs22c3ChXDgAAM3XUWv/8sBi5+Z3KFcOe5svpEhK+tpiXITXA4f1mXagO11O7JtW65aD9oEqfz5YcwYrWE262A9iIiA6GgYMsTyUwOkZPZlaREp5t3PD1wDrPOevhkY75w7GfD6i0S0iIOINPU+Yz+wCKgmIpVFJA/QHRibgd8le0lIgIkTWbL3YspWK0iZstZLZrKPjj1KMnF7bRLm2RBm0JkyRXswGzak348X8uijVlbHBIdixTQwe/xxWFbjNq3uv3q1FuM0QMp6ysoAM0RkBRpYTXHOjfee686ZQ5eggdoqEVkO9AO6e5MF4oCHgUnAWmC4c251RnyJbCkyEnbv5vPN7XjguWJ+t8aYVMl3eWOaXrCNOVNOwvHjfjfHJDp+HGbPBuDIFR2ZMkVXuTEmWJQpo+s33/NIITY2v1M3/vgjHDt27jfmEimZfbnCOdfQOVfPOVcnscSF91xr59yvZ73+E+dcbedcfedcc+fcvIDnJjjnLnXOVXXOvZ6xXyUbcQ4mTuRQdH6WnajBVW1t1qXJZooW5Y62uxmyPsKucoPJtGk6JFS7Nl9NuZi77tJKBMYEk6pVNb/slrcbsbNsYw3IRozwu1lBwUqU+mHNGvjzTwZtb02PPgVsaMFkS63uqMD8PZWJ/s3WwgwKXhFqgLh2Hfn2W7jvPn+bZExy6teHjz4Sbvz5Hg7GF9HZ3GvW+N0s31lQ5oeJE3EOBm2/irvutV4ykz2FNGrAtZXWMWFWQdi92+/mmJkz4cQJqFaNUcsvoV07KFLE70YZk7yWLeG/L4dz08LnOBEXrkn/0dF+N8tXFpRltY0bYcMGZh2oS73LClK8uN8NMiaN8uThjptOMMSWXfJfTAxMnQqAu7Yj/frBo4/63CZjUuD66+HeJ4px69xHid1zAH76ye8m+cqCsqzmrUX3+a6beOBhS/Yw2Vu9my9l27GSHJoZadPa/fT773D0KFSsyNz9NalUCSpYLWqTTfS8O4SrbilNr9l34aZNh3Xrzv+mHMqCsqy0fTusWsWu2JJsj72IJk38bpAx6VS9OjfXWsuoJZW0F9j4Y543n6ptW957X6xYrMl2nni1OAnlyjN2W32dBfD33343yRcWlGWlX3Wi6ld/38Z9vS2XzOQAItx+h/CDDWH6Z9cuXbImXz42FGzA0aPQqJHfjTIm9d4dUpYXV3blxJ6jMHy4383xhQVlWWX3bliyhHgJY/jKWnTv7neDjMkYFa6rjwO2z9gIsbF+Nyf3SVyDtHFjPvg0jy08brKtC8uE0Ovh/Ly+/Hrt/Y2M9LtJWc6CsqwyaRI4x4QCN9P66lAKFvS7QcZkkDJluL3pJoauqgsrVvjdmtzFuVM9lPurt2DBAujY0ec2GZMODzxThOknmvPHoQvg++81VzIXsaAsKxw4oIm4IvRf2YK+ff1ukDEZ6+a7CzFyS6PTvTYma2zYoOeXEiX4fHJV+vSBEDurm2wsNBQ++KoIjy6/D3fkKAwenKsmEdmvb1aYMgUSEthSsTXRLi81a/rdIGMyVrE2jahQ6BArZx3IdVe2vvr9dwBiIy5j+AihRw+f22NMBmh+mVCh6UWMjGoOy5fnqos9C8oy29GjMGcOAF9EdaRPH5/bY0xmKFyYO9rsZMgfTWCxVfjPEjExsHQpAOMOt6J9e8if3+c2GZNB3nw/H69tuIWjMXlh2DDYv9/vJmUJC8oy27RpEBtLdM0GTJxbhBtv9LtBxmSOjvdcyMTttUmYl3uuan21fLkurVSpEgOGF+P++/1ukDEZp1QpeOipArwSda/+nH/3Xa4YxrSgLDP9/feptehG0YXOnSE83Oc2GZNJ8jWtR9My25kzPxyiovxuTs7nDV1uqdia2Fi49FKf22NMBut1v/D7sTqsjr4E1q+H6dP9blKms6AsM82erRF+9eoM+OlCevf2u0HGZKLwcO7oclJrlk2Z4ndrcrYjR3Tx5pAQBi5rbL1kJkcKCYGPPgnjkTV9tZNszBity5eDWVCWmRYuBGBlxesoWtSWPTE5X8uH6vH7nirEz18EBw/63Zyca+FCcI7YWvUZNykPN93kd4OMyRyNG0PNJoX5Qe7QOohffw3x8X43K9NYUJZZdu/WIZz8+ek/9RIeeMDvBhmT+UIvLMVltY8y968qmk9pMoc3dDkuuh3t20PevD63x5hM9Npr8M7vV3C4QBnYtu3UGtI50XmDMhHJJyILRWS5iKwWkZe97d+KyBYRifRuDbztIiL9RGSjiKwQkUYB+7pLRDZ4t7sy7VsFA29W1NFLGzNvfgjt2vncHmOySNf7SzByS2OddZxL16/LVFFReitQgAFTKtnQpcnxiheHJ54M4YX9j+mGX37R4CwHSklPWTTQxjlXH2gAdBCR5t5z/3bONfBukd62a4Fq3q038DmAiJQAXgSaAU2BF0WkeEZ9kaCzZAkAQ/66ittus4KOJve4qvuFzDpQh4S/ozWv0mQsr4L/louvJDYuxBL8Ta7Qowcs/7M4kVW7QkICfPNNjlzW7byhglPHvIfh3u1c81JvAAZ575sPFBORMkB7YIpz7oBz7iAwBeiQvuYHqb17Yft2XN58fDO5LPfc43eDjMk64eHQuFkYC/ZU1iHMuDi/m5RzJCScCsoGbrjSeslMrhESAv36waPj2pJwYRnYuRN++snvZmW4FPXfiEioiEQCe9DAaoH31OveEOUHIpKY1VAO2B7w9ihvW3Lbcx5v6HJFyauoWCmE0qV9bo8xWazrvcUYtbcVHD58asKLyQDr1sHhw8SWuJBxc4tZgr/JVerVg8YRIXxb+GGN0qZOhbVr/W5WhkpRUOaci3fONQDKA01FpA7wHFADaAKUAJ7JiAaJSG8RWSwii/fu3ZsRu8x63tDl0K2XcdttPrfFGB9c006YureeTmOfPDlXFH3MEt5yM+NDOtOunViCv8l1Xn4ZPvq+FAdad9ENAwfmqJneqcp0cs4dAmYAHZxzO70hymjgGzRPDGAHEFj8oby3LbntZ3/GAOdchHMuonR27GLavx+2bcPlycuvSy/g2mv9bpAxWS9vXqjVOD/LYmrrMMOqVX43Kfs7eRKWLQNgwPx6VvfQ5EpFisCzz8LzM9pC7dpw7BgMGJBj0iRSMvuytIgU8+7nB64B1nl5YoiIADcCiWfdsUBPbxZmc+Cwc24nMAloJyLFvQT/dt62nMUbuvy94NU0bCTky+dze4zxSdebQxgVc50+mJTzftWz3LJlEBPDlhKNiSGPJfibXKt7d9i4SVhUv5dOzdy8GUaP9rtZGSIlPWVlgBkisgJYhOaUjQeGiMhKYCVQCnjNe/0EYDOwEfgSeBDAOXcAeNXbxyLgFW9bzmJDl8YA0KEDTFxbCZc3H2zYAFu3+t2k7M0buhy4o4Ml+JtcTUST/vs+UYCdNz4AoaE6qcj7+5udpWT25QrnXEPnXD3nXB3n3Cve9jbOubretjsTZ2h6Q5oPOeeqes8vDtjX1865S7zbN5n3tXxy4ABs2UJcWD5mrS5FmzZ+N8gY/xQsCFWqhrC6yvW6wXrL0u7gQVi/nljJw7il5S3B3+R6NWvCBx/AdQ9VZEfrO3Tjd99p4fZszKpnZSQv32Nm+DW0bBVCWJjP7THGZ127wqjdl+uV7LJlsGeP303KnhYsAOcYL9fTrkOIJfgbA7RqpT1m17/Vgu1VroToaOjfX//Npiwoy0iJQ5dbmtnQpTFAp07wy7T80KyZzsCcOtXvJmU/zp0auhywsrkl+BsT4PLL4bPPhM5Du7M1b3X46y/44YdsO+PbgrKMcugQbNpEdEh+Fm8pSYsWfjfIGP8VKQIXXggbLvGmIc+bB0eP+tuo7ObPP2HnTrYkVCQmT2FL8DfmLM2bw4AvQ7hp+iNs/ruMXsTMnet3s9LEgrKM4g1d/koH2ncIsWWVjPF07Qqj5lwAdevqsigzZ/rdpOzF6yX7av8N9LpffG6MMcGpSRP4alA4Xeb/m42HS8OwYdlyfUwLHTJK4tDlxiY2dGlMgM6dYexYoH173TBjBsTE+NqmbCM+HhYtIjYhhLFrq9Gli98NMiZ4NWoE340oyM2/P8H6fSXhiy/gxAm/m5UqFpRlhCNHYONGjrsC/LGvOA0a+N0gY4JHiRJQuDBsDbsEKlWC48d1GNOc3+rVcPQo449cSbuO4Zbgb8x51K8Pg38qwq2zH2LtxnBduDwb5ZdZUJYRli4F5xgbdy2dbwhBbITBmDN07Qqjx8jp3rIpU3RxbXNuiQn+m6+mdx87sRiTEnUbhvHDqLzcNqM3q2buy1bleCwoywheFf+hGyJs6NKYJNx4I/z0E9CgAZQuDfv2ncrDNMk4cQKWL2frsVLEFChmCf7GpEKtFsUY9tVx7pxxLyu+WgR//OF3k1LEgrL0OnoU/viDA7GF2RNdlOrV/W6QMcHnggsgLAz+2hUCbdvqRluo/NyWLIG4OAbu6UyvvuF+t8aYbKdG50sZ8co6es64m2Wv/QKHD/vdpPOyoCy9IiPBOUb/fS1du4X63RpjgtZNN8GYMUCLFlCokC67tGGD380KXvPna4L/ljqW4G9MGlXrezWjek/m3gldWfzC2KBPm7CgLL28WZc/bmzMrbf63BZjgliXLt6awXnywFVX6cZslOuRpfbsgY0bGb+jEe2uy2sJ/sakVUgIVZ/txpiuQ4jbvhO2bPG7RedkQVl6HDsG69ez62QxYvIW5uKL/W6QMcGrXDld/WTvXqB1awgPh1WrtAK3OdP48QAMiLqW+x+w9dqMSZciRaj09C00f/dmqFrV79ackwVl6bF8OSQkMPxYR265zYYujTmfUwn/hQrp+iiguWXmtKgoWLiQrcdLE1PsQstTNSYjVK0KVar43YrzsqAsPbyhyxEbG9Ctm89tMSYb6NrVG8IETfgX0bIPllt22s8/g3MMOHY7vR6wBH9jchMLytLq+HFYu5Ytx0pT8IKCXHCB3w0yJvhVrqzLxB48iJbG6NBBZ2B+9VW2q7ydKTZuhBUrWHakKtN3VKdrV78bZIzJShaUpZU3dDns8LV0v8NyPoxJqeuvh3HjAh5UrqxR2uDBubtEhnMwejTHYvNy/+LefPd9KHny+N0oY0xWOm9QJiL5RGShiCwXkdUi8rK3fYiIrBeRVSLytYiEe9tbi8hhEYn0bi8E7KuD956NIvJs5n2tLOAVjB2zqS433uhvU4zJTrp2hVGjvAehodCrF+TLp79TuXn5pZUrYdMmHll4J488U8ByyYzJhVLSUxYNtHHO1QcaAB1EpDkwBKgB1AXyA70C3jPHOdfAu70CICKhwKfAtUAt4DYRqZVh3yQr/f03rFnDmkNlKXdJfooV87tBxmQf1avrhMujR70NpUrB7bfr/WHDYNcu39rmm4QEGDOGHzY2IfaiCvS8z7rIjMmNzhuUOXXMexju3ZxzboL3nAMWAuXPs6umwEbn3GbnXAwwDLghHW33z/LlEB/P0APtua2HJeIak1odO8IvvwRsaNZMbzExMHAgxMX51jZfLFrEpnUxvLv6Wj4fUdrWzzUml0pRTpmIhIpIJLAHmOKcWxDwXDjQA/g14C2XecOdE0WktretHLA94DVR3rbsZ+lSnIPxW2tz3XV+N8aY7OfmmwOGMBPdfrv2mm3f7pX+zyXi4ogZPZ6eM+5hwBv7KVzcclSNya1SFJQ55+Kdcw3Q3rCmIlIn4OnPgNnOuTne46VARW+482Pgp9Q0SER6i8hiEVm8d+/e1Lw1a5w8CatXs3hfJWo3ykuBAn43yJjsp04d2LTprAmX+fJpfllICEydCqtX+9a+LDVnDs//2pIu9TYRcXed87/eGJNjpWr2pXPuEDAD6AAgIi8CpYEnAl5zJHG40zk3AQgXkVLADqBCwO7Ke9vO/owBzrkI51xE6dKlU/dtssLKlRAXx7D919C9h+V9GJMWItC+fRKrLFWuDJ076/1vvw1IPMuhTp7k1082suZgGR5/+yINSI0xuVZKZl+WFpFi3v38wDXAOhHpBbQHbnPOJQS8/iIRzYgQkabeZ+wHFgHVRKSyiOQBugNjM/j7ZL4lS0hwwtSoGrRr53djjMm+zpiFGah9e7j0UjhyRAOzHFwmY9fIuTw7qwPf3DWTkAb1/G6OMcZnKbksKwPMEJEVaGA1xTk3HugPXAj8flbpi5uBVSKyHOgHdPfmA8QBDwOTgLXAcOdc9hqfiI6GVauYs/MSmrUMtxpCxqRD48ba8RwdfdYTISFw771QoICujTl9ui/ty2wJh49y9/PleLfZSC7o2QHL7jfGnDej1Dm3AmiYxPYk3+uc+wT4JJnnJgATUtnG4LFsGcTGMnRvW257Iq/frTEmWxPRlZZGjIA77zzryeLFoWdP6N9f12WqXh3Kn2+Cd/byvwe30LDEDtp2CINq1fxujjEmCFgCQ0olJMDEicQmhDBvXzVatfK7QcZkf88/D59+ChOSulRr2BBatdLyGF9+qeUycogFkw/zy4wCvBIxFqs+bYxJZEFZSi1ZArt2MeVwM9p0yk9oqN8NMib7K1FC65W99tpZdcsSdesGZcpoQdkRI7K8fZnh8GHoe38c3135NeHNI6BChfO/yRiTK1hQlhIJCTB+PABDj3TkttvtsBmTUUqU0F+v118/9Wt2Wp48WiYjLAxmz9YUgmzMOejT82+eu3Q0lYsdPD3T1BhjsKAsZbxessUx9fjzRGmaNvW7QcbkLImB2RtvJBGYlS8PXbro/UGDdPHybOrrr6Hw/i3cUmWxDs0GY9kfY4xvLCg7H6+XLCY+lAcX9GTAl2KTpIzJBIlDmW++CePGnfVkmzZacfbECejXD/bs8aWN6bF8OfT/6CQfVf9MewA7dfK7ScaYIGNB2fksXgy7dvH6uq50u6sg1av73SBjcq7ixbWn7K23YGxgFUMRuPtuuOgiXc38zTe1XEY2cPgwPP009O3rGNRhKAXCYnXaaZEifjfNGBNkLCg7F6+XbPn+8kw70oQnnrLDZUxmSwzM3n4bfv454InCheG556BBA+0x++QTnbYZpMVl4+NhwAAdpaxRA+Z+sYaah+dDwYJY5WljTFIsyjiXxYuJ3bmXvvPv4ovvC9qMS2OySPHiOpT5zjtnBWb58kHfvnDDDfr455+1ltnJk760MzkzZkCLFrBlC8ydC/feepzQn7zlCzp0gPz5/W2gMSYonbd4bK7l9ZK9E9me6zo6ateziMyYrFSsmAZm112njxPjMESgY0ctJfHVVxAZqcOZDz4IF17oU2vVpk3w739DaCgMG6ZLebJ1K3zxBRw4ACVLwlVX+dpGY0zwsqAsOYsXs3ptCON3NmL2nHJ+t8aYXKlYMR3KvO46HaU8o85q3brwn//A559rntkbb+jyTPXrZ3k7jxzRWmuzZ+uw65VXog2eMVPrq8XHa4R2//0QHp7l7TPGZA82fJmUhATixk6gz5w76f/afsLzWS+ZMX5J7DF77z0YM+asJy+4AJ59Fho10iHMzz7TqZtZlGcWH6+LDbRsqStB/fabF5CdPKlPDBumL2rTBp56SnvKjDEmGeKCNEkWICIiwi1evDjrP3jBAv73WBTHwovz8swrsWQyY/x3+DB07aqrLtWpox1l9erp/cKFHEyerFGbc/rEPffoouaZ0I7ISFi6FH78UUcjn3suYDJlVJQOV+7ZozlwPXvq6uvGmBxPRJY45yLS+n4bvjxbQgLrv5vPiM2dmTt8pwVkxgSJokVh6lStHbtqFaxcqbVkV66EY8eEiy9uT90yjakbNYF6Bzdz6V9vE/ZQHyhbNs2fuWePLiKwdKn+u2GDTgJt2FBvw4fDxRcHvGHePPjhB4iN1aK3vXv7nudmjMk+rKfsLPHzFnD1zcV4t8M0Ir7sY0GZMdmAc/DnnxqgrZx/nJVjt/DHzsI4CaFQ6XwUvLAQBUvmo1AhoWBBKFSIM/5NvB8fDytWaBC2bZuOjjZqpAFYo0ZwySUQklTSR0wMDB2qQRnA5ZfDbbdZ/pgxuUx6e8osKAuUkMBH1/7Krj3Cm58U0ROrMSb7iYmB778n/veFnIjLw/G4vBwvXp5j1RpyvEodjoWX4PhxOH4cjh3j1H3Qkc+GDbUHLEWrd+zercOVO3ZoEHbHHXDZZZn69YwxwcmGLzPQpjErGLy0NnPv/Rqav+B3c4wxaZUnD9xzD6EtW1J44UIKL1kCx9fAqjWwCqhYEZo0gdYRWhQtrRYv1jHU6GgdpuzTB8rZbG1jTNqct6dMRPIBs4G8aBA30jn3oohUBoYBJYElQA/nXIyI5AUGAY2B/cCtzrmt3r6eA+4D4oFHnXOTzvXZWdlTlhCXQLtLt/BqvZFc9nRLrfxojMkZ4uNh7VpYtEiTw6KjdbuIjkk2barjk4UKnX5PQgIcPar1Lg4f1n8Tb4cPa3Lbpk362ogI6NFDE/uNMblWVvSURQNtnHPHRCQcmCsiE4EngA+cc8NEpD8abH3u/XvQOXeJiHQH3gZuFZFaQHegNlAWmCoilzrn4tPa+Iz0xX+2Ub/QZi6rfQSaNfO7OcaYjBQaqtM069SBO+/U5LOFC/XfDRv0NnQoVKqkQ5+HD+u45vnSO0JD4ZZbtA5GisY6jTEmeecNypx2pR3zHoZ7Nwe0AW73tn8HvIQGZTd49wFGAp+IiHjbhznnooEtIrIRaAr8nhFfJD22bUngy8F5mdvxZ+h0uyX3G5OThYdrr1hibbPISA3Q1q6FzZtPv05Ep1oWKaK3okXP/LdIEShTRh8bY0wGSFFOmYiEokOUlwCfApuAQ865OO8lUUBiIkU5YDuAcy5ORA6jQ5zlgPkBuw18j2+cgz63H+HDJj9Q4KKi1ktmTG6SLx80b663o0e1xlihQhpwFS6czFRLY4zJHCkKyrwhxgYiUgwYA9TIrAaJSG+gN8DFZxQAyhxfD0ygWvw6WpXZAJ3usl4yY3KrwoWhZk2/W2GMycVSdRnonDsEzAAuA4qJSGJQVx7Y4d3fAVQA8J4viib8n9qexHsCP2OAcy7CORdRunTp1DQvTeqGrObNOj9AqVLWS2aMMcYY35w3KBOR0l4PGSKSH7gGWIsGZzd7L7sL+Nm7P9Z7jPf8dC8vbSzQXUTyejM3qwELM+h7pE1CAk23DqdQeDR06mS9ZMYYY4zxTUqGL8sA33l5ZSHAcOfceBFZAwwTkdeAZcBX3uu/AgZ7ifwH0BmXOOdWi8hwYA0QBzzk+8zLyEhdR6V0ac0pMcYYY4zxSe6u6J+QAEuWaKHJ+vUz73OMMcYYk+NZRf/0CAnRqt7GGGOMMT6z+d7GGGOMMUHAgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwSCuiSGiOwFtvndjnQqBezzuxFByo5N8uzYJM+OTfLs2CTNjkvy7NgkLy3HpqJzLs3LEQV1UJYTiMji9NQsycns2CTPjk3y7Ngkz45N0uy4JM+OTfL8ODY2fGmMMcYYEwQsKDPGGGOMCQIWlGW+AX43IIjZsUmeHZvk2bFJnh2bpNlxSZ4dm+Rl+bGxnDJjjDHGmCBgPWXGGGOMMUHAgrIAIvK1iOwRkVVnbf+fiKwTkRUiMkZEiiXz/le910SKyGQRKettFxHpJyIbvecbJfP+DiKy3nvdswHbRUReF5E/RGStiDyagV87RYLg2KTr8zNTEB+bBiIy39vvYhFpmkFfOUUy8bjUEJHfRSRaRJ46x+c3FpGV3vHrJyLibS8hIlNEZIP3b/EM/NopEqzHxnvuEa8Nq0XknQz6yikWBMfmdRHZLiLHztr+hIis8fY9TUQqZsDXTZUgPjYXi8gMEVnm7b9jBnzdVJHk/34+7G1zIlLqHO+vLCILvNf+KCJ5vO2tRGSpiMSJyM1p+Pwk95ss55zdvBvQCmgErDprezsgzLv/NvB2Mu8vEnD/UaC/d78jMBEQoDmwIIn3hgKbgCpAHmA5UMt77h5gEBDiPb4gNx2bjPj8XHpsJgPXBuxrZg45LhcATYDXgafO8fkLveMm3nFMPBbvAM9695/NYT8z6T02VwFTgbyJ+8uFx6Y5UAY4dtb2q4AC3v0HgB/t2JzaPgB4wLtfC9iaxcflXH8/GwKVgK1AqXPsYzjQ3bvfP+D7VALqoX+Db07D5ye53+Ru1lMWwDk3GziQxPbJzrk47+F8oHwy7z8S8LAgkJiwdwMwyKn5QDERKXPW25sCG51zm51zMcAw732gJ4BXnHMJ3ufsSf23Sx+fj026Pz8zBeux8fZTxLtfFPgrBV8nw2TWcXHO7XHOLQJik/ts7zgVcc7Nd3o2HATc6D19A/Cdd/+7gO1ZJoiPzQPAW8656MT9peZ7ZQQ/j433uvnOuZ1JbJ/hnDtxvs/PTMF6bPD5XMM5/n4655Y557ae681eT3EbYKS36dR5wTm31Tm3AkhI7eefa7/JCTvXkyZJ9wI/JvekiLwO9AQOo1dWAOWA7QEvi/K2Bf5wJ/WaZt79qsCtInITsBd41Dm3IR3fIbNk1rHJkM/3mR/H5l/AJBF5F01VaJG6JmeJtByXlCiHHq9EiccO4MKAPyy7gAtTsd+s5MexuRRo6e37JNprsig1jc4imXVsUuo+tIcxGPlxbF4CJovII2iw1zaD9ptS5/r7mRIlgUMBgW3g70R6Pj/V+7WeslQQkeeBOGBIcq9xzj3vnKvgvebhDProvMBJp5WFvwS+zqD9Zhgfj02KP98vPh6bB4DHvf0+DnyVQfvNEH7/zHj7d5zumQwaPh6bMKAEOkz1b2B4YL5ZMPD750ZE7gQigP9l5H4zgo/H5jbgW+dceTRVYrCIWHyRBnbQUkhE7gauA+7wTuSIyDdewuSEJN4yBOjq3d8BVAh4rry3LdC5XhMFjPbuj0HHt4NGFhybVH9+sPD52NzF6Z+bEWgXe1BI53FJiR2cOYQTeOx2Jw4De/9m+RDdufh8bKKA0d6Q+UJ0yCbZ5OislgXH5nyf3xZ4HuicOMQbLHw+NvehuVM4534H8pG1PzepPleKyCTv2AwE9qPpIYmjh6k91yb3+anerwVlKSAiHYCn0V/ExJwCnHP3OOcaOOc6eq+rFvC2G4B13v2xQE9RzYHDSYzLLwKqeTM18gDdvfcB/MTpbuYrgT8y7tulTxYdm1R/fjDw+9igeR1XevfbAEEx5J0Bx+W8vON0RESaez09PYGfvafHogEr3r8/J7ELXwTBsfkJ71wjIpeiSctBsVh1Vhyb83x+Q+AL7/ODLZD39dgAfwJXe59REw3K9mbQvlPiXH8/k+Sca+8dm15eEDsDSJxdmdrzQpKfn6b9uiyePRLMN2Aomq8Ti14x3udt34iOF0d6t/7JvH8UsApYAYwDyiVesACforMzVgIRyby/IxpwbQKeD9heDPjFe+/vQP1ceGzS9fm59NhcASxBZwItABrnkONykbe/I8Ah736RJN4f4b1/E/AJp4tllwSmoUHqVKBEDvqZSe+xyQN87z23FGiTC4/NO95zCd6/L3nbpwK7Az5/rB2bU8emFvAbeq6JBNr5cGyS+/v5qNfWOPRCdWAy76+CzkreiI4sJM5AbuK9/zja87U6lZ+f5H6Tu1lFf2OMMcaYIGDDl8YYY4wxQcCCMmOMMcaYIGBBmTHGGGNMELCgzBhjjDEmCFhQZowxxhgTBCwoM8YEBREp6RVzjBSRXSKyw7t/TEQ+y8TPbS0iwbgElTEml7G1L40xQcE5tx9oACAiLwHHnHPvZsFHtwaOAfOy4LOMMSZZ1lNmjAlqXk/WeO/+SyLynYjMEZFtItJFRN4RkZUi8quIhHuvaywis0RkibecSuKySo+KyBoRWSEiw0SkEtAXeNzrlWspIteLyAIRWSYiU0XkwlR+9taA7QtF5BJfDpwxJtuxoMwYk91URZeN6oxWn5/hnKsL/A108oKjj4GbnXONga+B1733Pgs0dM7VA/o657YC/YEPnC65MgeYCzR3zjUEhqHL16ToswNed9jb/gnwYQZ/f2NMDmXDl8aY7Gaicy5WRFYCocCv3vaVQCWgOlAHmKJLOxKKLk0DurzMEBH5CV3nMSnlgR+93rU8wJZUfHaioQH/fpDqb2iMyZWsp8wYk91EAzjnEoBYd3qtuAT0QlPQ9ekaeLe6zrl23ms6oeuJNgIWiUhSF6YfA594PV190MWVU/rZiVwy940xJlkWlBljcpr1QGkRuQxARMJFpLaIhAAVnHMzgGeAokAh4ChQOOD9RYEd3v270tiGWwP+/T2N+zDG5DI2fGmMyVGcczEicjPQT0SKoue5D4E/gO+9bQL0c84dEpFxwEgRuQF4BHgJGCEiB4HpQOU0NKO4iKxAe9ZuS+93MsbkDnK6990YY0x6ichWIMI5t8/vthhjshcbvjTGGGOMCQLWU2aMMcYYEwSsp8wYY4wxJghYUGaMMcYYEwQsKDPGGGOMCQIWlBljjDHGBAELyowxxhhjgoAFZcYYY4wxQeD/AfLJXGzTpAfQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,3))\n", + "plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for testing data: 1.2623790187854018 %\n" + ] + } + ], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "## پیش‌بینی مجموعه داده کامل\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor shape: (26300, 5)\n", + "X shape: (26300, 4) \n", + "Y shape: (26300, 1)\n" + ] + } + ], + "source": [ + "# Extracting load values as numpy array\n", + "data = energy.copy().values\n", + "\n", + "# Scaling\n", + "data = scaler.transform(data)\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0]\n", + "print(\"Tensor shape: \", data_timesteps.shape)\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]]\n", + "print(\"X shape: \", X.shape,\"\\nY shape: \", Y.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "Y_pred = model.predict(X).reshape(-1,1)\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = scaler.inverse_transform(Y_pred)\n", + "Y = scaler.inverse_transform(Y)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrgAAAHgCAYAAAD+LG2qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5jcxN3Hv7pzBVNsmumYEjoYQkvoEFog1FDCGwiEmkACISSU0EIvCYRuG0wHUwwGA8bYuIMx7r33frbvznfnO1/Z1bx/bNNqVUbS7Eq7+/08zz23K41mZlVmRr+qCSFACCGEEEIIIYQQQgghhBBCSLFQEXYHCCGEEEIIIYQQQgghhBBCCPECFVyEEEIIIYQQQgghhBBCCCGkqKCCixBCCCGEEEIIIYQQQgghhBQVVHARQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiop2YXfAie23317stddeYXeDEEIIIYQQQgghhBBCCCGEFJhJkyZtEELsYLUv0gquvfbaCxMnTgy7G4QQQgghhBBCCCGEEEIIIaTAaJq2zG4fQxQSQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiopI5+AihBBCCCGEEEIIIYQQQgiJKm1tbVi5ciWam5vD7kpR06lTJ+y2225o37699DFUcBFCCCGEEEIIIYQQQgghhPhg5cqV2GqrrbDXXntB07Swu1OUCCFQXV2NlStXokePHtLHMUQhIYQQQgghhBBCCCGEEEKID5qbm7HddttRuRUATdOw3XbbefaCo4KLEEIIIYQQQgghhBBCCCHEJ1RuBcfPOaSCixBCCCGEEEIIIYQQQgghpMj5/PPPoWka5s6d61juf//7H5qamny389Zbb+HWW2/1fbwqqOAihBBCCCGEEEIIIYQQQggpcvr164cTTjgB/fr1cywXVMEVFajgIoQQQgghhBBCCCGEEEIIKWI2bdqE77//Hn379sWHH34IAIjH47jzzjtxyCGH4LDDDsOLL76IF154AatXr8app56KU089FQDQpUuXdD39+/fHNddcAwD48ssvceyxx+KII47Ar371K1RVVRX8dznRLuwOEEIIIYQQQgghhBBCCCGEFD033ZSfenv3di3yxRdf4Oyzz8bPfvYzbLfddpg0aRLGjx+PpUuXYurUqWjXrh1qamrQrVs3PPvssxgxYgS23357xzpPOOEEjBs3Dpqm4fXXX8fTTz+N//73v6p+VWCo4CKEEEIIIYQQQgghhBBCCCli+vXrh9tuuw0AcMUVV6Bfv35YsmQJbr75ZrRrl1AFdevWzVOdK1euxOWXX441a9agtbUVPXr0UN7vIFDBRQghhBBCCCGEEEIIIYQQEhQJT6t8UFNTg+HDh2PGjBnQNA3xeByapuHoo4+WOl7TtPTn5ubm9Oe//OUvuOOOO3D++edj5MiReOihh1R3PRDMwUUIIYQQQgghhBBCCCGEEFKk9O/fH1dddRWWLVuGpUuXYsWKFejRowcOP/xw9O7dG7FYDEBCEQYAW221FRoaGtLH77TTTpgzZw50XceAAQPS2+vq6rDrrrsCAN5+++0C/iI5qOAihBBCCCGEEEIIIYQQQggpUvr164eLLrooa9sll1yCNWvWYI899sBhhx2Gww8/HB988AEA4MYbb8TZZ5+NU089FQDw5JNP4rzzzsMvf/lL7Lzzzuk6HnroIVx66aX4+c9/7pqvKww0IUTYfbDlqKOOEhMnTgy7G4QQQgghhBBCCCGEEEIIITnMmTMHBx54YNjdKAmszqWmaZOEEEdZlacHFyGEEEIIIYSUK1VVQH192L0ghBBCCCGEEM+0C7sDhBBCCCGEEEJCoKEBeOCBxOeQkmETQgghhBBCiF/owUUIIYQQQggh5ci6dWH3gBBCCCGEEEJ8QwUXIYQQQgghhJQjsVjYPSCEEEIIIYQQ31DBRQghhBBCCCHliK6H3QNCCCGEEEII8Q0VXIQQQgghhBBSjlDBRQghhBBCCCliqOAihBBCCCGEkHKithZYuRKIx8PuCSGEEEIIIUQBlZWV6NmzJw455BBceumlaGpq8l3XNddcg/79+wMArr/+esyePdu27MiRIzF27FjPbey1117YsGGD7z6moIKLEEIIIYQQQsqJu+8GHnkE2Lgx7J4QQgghhBBCFNC5c2dMnToVM2fORIcOHdCrV6+s/TGf+Xdff/11HHTQQbb7/Sq4VEEFFyGEEEIIIYSUI599FnYPCCGEEEIIIYo58cQTsXDhQowcORInnngizj//fBx00EGIx+P4xz/+gaOPPhqHHXYYevfuDQAQQuDWW2/F/vvvj1/96ldYt25duq5TTjkFEydOBAAMHjwYRx55JA4//HCcfvrpWLp0KXr16oXnnnsOPXv2xJgxY7B+/XpccsklOProo3H00Ufjhx9+AABUV1fjzDPPxMEHH4zrr78eQgglv7WdkloIIYQQQgghhESX2lpg8mTghBMy2zZvDq8/hBBCCCGEEOXEYjF88803OPvsswEAkydPxsyZM9GjRw/06dMH22yzDSZMmICWlhYcf/zxOPPMMzFlyhTMmzcPs2fPRlVVFQ466CD88Y9/zKp3/fr1uOGGGzB69Gj06NEDNTU16NatG26++WZ06dIFd955JwDgyiuvxN/+9jeccMIJWL58Oc466yzMmTMH//73v3HCCSfggQcewNdff42+ffsq+b1UcBFCCCGEEEJIqfPMM0B1NfDxx2H3hBBCCCGEkJJG09TX6ebwtHnzZvTs2RNAwoPruuuuw9ixY3HMMcegR48eAIAhQ4Zg+vTp6fxadXV1WLBgAUaPHo3f/e53qKysxC677ILTTjstp/5x48bhpJNOStfVrVs3y3589913WTm76uvrsWnTJowePRqfJSNInHvuuejataun328HFVyEEEIIIYQQUupUV4fdA0IIIYQQQsoCRdH3PJHKwWVmyy23TH8WQuDFF1/EWWedlVVm0KBByvqh6zrGjRuHTp06KavTCebgIoQQQgghhBBCCCGEEEIIKWHOOussvPrqq2hrawMAzJ8/H42NjTjppJPw0UcfIR6PY82aNRgxYkTOsccddxxGjx6NJUuWAABqamoAAFtttRUaGhrS5c4880y8+OKL6e8ppdtJJ52EDz74AADwzTffoLa2VslvooKLEEIIIYQQQgghhBBCCCGkhLn++utx0EEH4cgjj8QhhxyCm266CbFYDBdddBH2228/HHTQQbj66qvxi1/8IufYHXbYAX369MHFF1+Mww8/HJdffjkA4De/+Q0GDBiAnj17YsyYMXjhhRcwceJEHHbYYTjooIPQq1cvAMCDDz6I0aNH4+CDD8Znn32GPfbYQ8lv0kQY/nKSHHXUUWLixIlhd4MQQgghhBBCipubbnLe37t3YfpBCCGEEEJIiTFnzhwceOCBYXejJLA6l5qmTRJCHGVVnh5chBBCCCGEEFLuRNjwkRBCCCGEEEKsoIKLEEIIIYQQQgghhBBCCCGEFBVUcBFCCCGEEEJIuaPrYfeAEEIIIYQQQjxBBRchhBBCCCGElDsMUUgIIYQQQohvBNfTgfFzDqngIoQQQgghhBBCCCGEEEII8UGnTp1QXV1NJVcAhBCorq5Gp06dPB3XLk/9IYQQQgghhBBSLPBlnBBCCCGEEF/stttuWLlyJdavXx92V4qaTp06YbfddvN0DBVchBBCCCGEEEIIIYQQQgghPmjfvj169OgRdjfKEoYoJIQQQgghhJByhx5chBBCCCGEkCKDCi5CCCGEEEIIKXeo4CKEEELCYeVKYNmysHtBCCFFCUMUEkIIIYQQQgghhBBCSBg88kji/8svA+0oqiWEEC9IeXBpmrZU07QZmqZN1TRtYnJbN03ThmqatiD5v2tyu6Zp2guapi3UNG26pmlHGur5Q7L8Ak3T/pCfn0QIIYQQQgghxBP04CKEEELCJRYLuweEEFJ0eAlReKoQoqcQ4qjk97sBDBNC7AdgWPI7AJwDYL/k340AXgUSCjEADwI4FsAxAB5MKcUIIYQQQgghhBBCCCGkbKGxCSGEeCZIDq4LALyd/Pw2gAsN298RCcYB2FbTtJ0BnAVgqBCiRghRC2AogLMDtE8IIYQQQgghRAW6HnYPCCGEkPKGCi5CCPGMrIJLABiiadokTdNuTG7bSQixJvl5LYCdkp93BbDCcOzK5Da77YQQQgghhBBCCCGEEFJeGJVaVHARQohnZDMXniCEWKVp2o4AhmqaNte4UwghNE1TMgonFWg3AsAee+yhokpCCCGEEEIIIU5QqEYIIYSEC72pCSHEM1IeXEKIVcn/6wAMQCKHVlUy9CCS/9cli68CsLvh8N2S2+y2m9vqI4Q4Sghx1A477ODt1xBCCCGEEEIIIYQQQkgxQAMTQggJhKuCS9O0LTVN2yr1GcCZAGYCGAjgD8lifwDwRfLzQABXawmOA1CXDGX4LYAzNU3rqmla12Q93yr9NYQQQgghhBBCvEMBGyGEEFJ4jF5bnIsJIcQzMiEKdwIwQNO0VPkPhBCDNU2bAOBjTdOuA7AMwGXJ8oMA/BrAQgBNAK4FACFEjaZpjwCYkCz3sBCiRtkvIYQQQgghhBDiDwrVCCGEEEIIIUWGq4JLCLEYwOEW26sBnG6xXQC4xaauNwC84b2bhBBCCCGEEEIIIYQQUkIYDUxobEIIIZ6RysFFCCGEEEIIIaSEoVCNEEIIKTxUcBFCSCCo4CKEEEIIIYQQQgghhJBCE5ZSa8oU4OOPs3OAEUJIESKTg4sQQgghhBBCSClDq3FCCCGk8ITlwdWrV+L/nnsCxx5buHYJIUQx9OAihBBCCCGEkHKHCi5CCCGk8IQ9/1ZXh9s+IYQEhAouQgghhWXNGqCpKexeEEIIIcRI2AI2QgghpBxhDi5CCAkEFVyEEEISbN4MvPwyMHVq/tqoqgIeegi45578tUEIIYQQQgghhBQDVHARQkggqOAihBCSYMgQYPp04NVX89fG/PmJ/83N+WuDEEIIKWUWLwaefTbhEa0SCtUIIYSQwsP5lxBCAkEFFyGEkASbN+e/DV3PfxuEEEJIKfPUU8C8eZnk8KqggI0QQggpPGF7cHH+J4QUOVRwEUIISaBpYfeAEEIIIbKsXRt2Dwgh+aa5mQZihJQ6VDARQkggqOAihBCSwKjgamzMTxtcvBNCCCHRhHM0IdGiuRm47TbgwQfD7gkhpFDQg4sQQjxDBRchhJAERgXXHXcA69eH1xdCCCGEOLP//mH3gBCST1asSPxfty7cfhBC8kvYIQoJIaTIoYKLEEKINVOnqq+TC3ZCCCEkMR/GYsHrUAnnaEKiBcOHE1IecP4lhJBAUMFFCCEkQYVpSggqeCOEEEKINU8/DdxyC9DSEnZPMlDARki0oIKLEFIIOP8TQoocKrgIIYQkML9E86WaEEIIyQ+LFyf+v/VWIs+OH+jBRUhpw7U4IeUH52JCCPEMFVyEEEISFELBxQU7IYQQkmHyZOD998PuBSGEEEIIIYQUJVRwEUJI2EyeDMyZE3YvCmMlSgUXIYQQko3fNQA9uAgpbejBRUj5EcZczPmfEFLktAu7A4QQUtY0NwO9eyc+v/IKUFkZXl8YopAQQggpHqjgIqS04VqckPKgtTXzmXMxIYR4hh5chBASJm1t1p/DgC/RhBBCSOGhMIsQYgXX5oSUPvX1wP33h9sHrkMIIUUOFVyEEBImup75HI+H1w+AHlyEEEJIGERFsBSVfhBCCCHlwtSp2d/t5uIFC4DHHgNWrMh7lwghpNiggosQQsLEqOAyfg6DQii4KDwjhBBCsvE7N3JOJSQabNoEvPwyMHt22D0hhBQbsu/c//kPsHw58Oqr6vvA9QQhpMihgosQQsLEqNR6912gpSW8vhBCCCEk/0RVkBTVfhESdb74Apg+HXj++bB7Qggpdtzm4uZm9W2GbWhLCCEBoYKLEELCxBiWcNo04JtvwuuLGYYoJIQQQtRjFiT5FSwpUkhpfXpjSf12VHAR4pfNm8PuASGkVAhjLub8TwgpcqjgIoSQsGhpAfr2zd5WWxtOX4DCLGy5eCaEEFLuqLKU9jinPj7lHNww+veW+zY0d+EcTYhfKivD7gEhpFjxOvdyriaEkByo4CKEkLAYNQpYujR7W6l7TXFBTgghpNwxem8DBZv7X551Ml6feyK0Pr1z9lVonJ8J8U2pr98JIYXD7X2Z4QQJISQHKrgIISQsmppytxXyBbmqCnjhhVwlW4oKThGEEEKIclQpuBQajVDBRQghhBQBNBglhJAcKL0khJAoUUgFV//+wKxZwBNPFK5NLsgJIYSUO2br6wh4f1RqtAgnhBBCQieIB9fGjUAsprQ7hBBSDFDBRQghUaKQQq716533R0DgRgghhJQcZg+uCKDRg0sOGuoQQghRiXlecZtn7PZXVwN33QU8/LCafhFCSBFBBRchhISF1eK0kIITvwmxN2wAXnsNWLnS23Hz5gGffeavTUIIIaRUMM/1IYQo/NOYK/HdygOU1VcW6Drw2GPAO++E3RMSNWgURggpFHYeXAsWJP5XVRWuL4QQEhGo4CKEkChRDMKlvn2BiROBp5/2dtyzz+anP4QQQkgxE4KCq9eck/Ha3BN9H1+WLFsGrFgB/PBD2D0h5UifPkBLS9i9IISoxqsHl52Ci4p2QkgZQwUXIYREiSgpuCpspoiamsR/vmQTQggh3gljrndpUwgtWmuQKELhIQmTSZOA777L3rZyJdDQEE5/CCHRgnM4IaSMaRd2BwghpGyxWoQ6JY3NN7KLYjvFFyGEEEK8E4IHFwB8vPgojHp3v0RVoPLGE0JQ4UUKj1GZtW4d8Mgjic+9e4fTH0KIevzO7UHkCFSOEUKKHEopCSGEeIMCHUIIIcQ/qnJwKaBq8zahta2EhobCebAYr1PKm50QoHDPcDye+bxmTWHaJIQUFjdlE9/FCSEkByq4CCEkSoRpPWVu+/33gfnzw+kHrcgIIYSUCyF5cBU9QgB33pn4K/S5oICRhE1lZdg9IISoQNX8ZayHqQQIIWUGFVyEEELs+e9/c7flU4gkBPDMM8Czz+avDUIIIaQUUD0fF7PCjAouQoLT3JwIdzh9etg9IaR88TufGY/761+BtjbXQ2J6BVrjVJYTQoofKrgIISQsrBavxSBcMvZx2jS1dcfjwKJFCc+xYjgXhBBCSDHgMqcW5ZRr7HQsVti2qeAipcjQodBuvgmj/jUk7J4QQuywm3/ME/nata5V/d/w67D3h48p6BQhhIQLFVyEEFKuqJBmvfJK8DrsKLSwihBCCCkCnpx6Fir6vOr5OCedjIAGDBgQoFchoOuZz1wzkDJkSf122NjSWV2FjY0AgOk1u6mrkxDiDRUeXED2HGnDpA17YFVjV3/tEUJIhKCCixBCokQxmFDnO0RhColFOSGksCya04q+z9UDs2Yxvj8hfgk4j07esAcEKtTPx3PnAuvWqa0znxh/f6HXTxV8jSbhs/eHj+P/hl8XdjcIIUFIzl+//uZWPDHlbP/zmfndWaKeCq0IZA+EECIBV+aEEBIWYSuzzKbcYfcHyF6YR6E/hJAsnrxiKq6/Y2sse+y9/HpwElJORGm+KybFdaEVXFG6TiRaaBoW129f2FskuY6vbd1CTX31SeMVQkhhSQ4c36w4FP0WHe0+18iGKJRAA+c1QkhpQAUXIYSERdiCkrDbtyJMa2xCiDutCeH3Xv2ewIKfakLuDCElgsf5Li3a8nycRPmZMz3VGSqF9vo2tkcPLmJE17HPh4/h25UHh90T/9x/f9qDkytwQgqIYf6K6RXAf/+b8Ki2Q6GCS8mxhBASAbgyJ4SQKFEMi8tChSgshnNBSBnTHG8XdhcIKVqmVe+GNU1b+zo2rajyMk+6lE3vnTLFV59CgR5cJAp8/jkwdiwAoKGtY37byuM9WL2xEv8af0He6ieE2GB4ruMiKaLt0ydQPZbfLWCIQkJIqUAFFyGEhMyMml1Q39op8aUYhCdUcBFCCCGB6Pnp/bjsuxt9Hav5FEjZ2HwDAITQUh981R0KRq+tQntwFdN5Ivnlm2/SH+N68YpXhqw8CI9P/XXY3SCk/DDMX2kFlx8vYR8KLoYoJISUCsW7AiOEkGInueg8rP+DuOuni0PuTESg8IgQQkipk5zfWnx6QaYtrj16cEkpxo4/3lefQoEeXCRi6I5qZAUYQ5PZhSlTQGNbR1RV5a16QogRq7nFyWhDVYjCXr3yOYwUjro6oKEh7F4QQkKGCi5CCIkAzfH2YXfBmi0sElfTg4sQQggJjJ6y1Pabg8ujZMrJUlukat1yS091hoYQwIwZ2d8L0SYhDqQ9IRVy8ZCbce/4C50Lvf460NKirM17J1yE7t2VVUcIcUKVB7IXDy4hgClTit+DKx4H/vlP4M47w+4JISRkqOAihJAIUKElF7ZhCk+EwNyNO+W9mf9MOwOt8UrbPlh+JoQQQkqF5PxW6FlOSh9WLHPv1KnAm29mvhciRCEpb1pagCeeAIYNsy2i50HBNWDpEXh/4TG5O5IP9I9V+0C74Xpg+HDlbRNCCouUkrytDfj4Y6uD5RuKxQA4hy4uCpqbM5+LZf1CCMkLVHARQkhYGBZhHyw8Bl3feja09lMc+PHD2NjS2bFM0MXjP376LeZulDAL5SKVEEJICePX2yOvFtfFMvfOm5f9nR5cJN/88AOwdKm1YDlJvkIULt+0Hfb78GHne7CpKVAbvLsJCQk/c4uDol2K1lYA/nN6Roakog5AwpuLEFK2+Av8TgghRCnN8Q5ojncIV3iStARt1V2mBgV9lFpMU5BESOQoektPQiJE3vP1mJBSjBXL3GsWZBXag6tYzhNRh43wVAhgScP2eW9+Yb1LlAXek4QUPYGeYrObttOYUCrKoLa2zGd6chNS1tCDixBCwiIP3lGB2k9+jxstyvPUnwq75TtDFBJSNOQj1wgh5cS06t2x1ZvP+5/vqqqAgQPlygrhqE4ruinXLJwruh9ASoVvVhyCfT58DEB5zIvV1cDq1WH3gpASx2OOTctjnObFpDKo6HNwJT3RAHAdQEiZQwUXIYSQLOK6y9SgYPFYUezhEAiJADU1wLp1YfeCEBKETW2dPB+T5QX99ddK+pFWfxWLgMgYlggojOV2sZwbUjC++w6YvGGPsLsBAHh31B5BoxTmYuHlcdppwK67Km6HEJKNCgWXE8n5zE8zkYIeXISQJFRwEUJIuWLrwZX/qUHThLugyLxI3biRwiVCDJx4bCt22qkEXk4JKTds5t98U1Lhgc0KLubgIvnGYrI94wzg/okXhNAZ5PTn6peOwTffKG5jxYqcTTSsIUQxYcwtpTKfyUR/EYLKL0LKACq4CCEkLKIWojC1GRpWbOqK3w//o6fjvDUtIZE3tjN7NnDXXcBHHwVum5CSIB7H6uVt7uUUsvPOwNvzjytom4QQEytX5m6rrZU6tOhDERmhsIqEwMK6HRDXNQgBHH987n7nQKBy1NQYHKc8rrkL+Rqxfn3h2iKkZInFgAUL8lO304CQ8uBKrQuKVeFl7LfduuDFF4G//S07nCEhpOSggosQQkgWQgDfrToQ7y881lEJd+e4S7CxpbO/NqwEAG1twDvvWB8weHDi/4gRvtojpOQwv8StXZv3JteuBVr19nlvh5Cyw4tg6ZFHcrfdfTewaJHzcU1Nct6epSDkKkQbxXqeSCD2++hRvDHveOg6MHZsftrYbruEPDYSONznO+5YwH4QUqq8/z4wb56aurzMS2kFV5Ejo+CaNQtobgaWLi1Ilwgh4UAFFyGElCNjxyaS01sgoElZef93+pkYs3Y/X80LgdxF+OTJwIwZme/GRWplZebzZ5/5apOQksZOOUwIKTksBVKff+4s3PrnPx3ndqprCJGjavPWtvv6Lz4SL78U/GlatSpwFWqwGFMYFpkQhSQ15Vqf3gCcvUD7LTw6XS4wpWik4fabSvE3E0LSSCu4NE2r1DRtiqZpXyW/v6Vp2hJN06Ym/3omt2uapr2gadpCTdOma5p2pKGOP2iatiD59wflv4YQQoqdQi283n7bvgseqtFlQg1atmFxnDmov/FctGuX+fztt77aJKSksUgETwgpTSxzac2fD0yd6rvORyafiz9//7viFQAVImRhsZ4bEhwhgMZGAIm1r52SZ9CKQ3HrXzT/90qyjbSGy6keapoIKV0snu+5G7s7HyMEZtbskvXdqWyimRKa19zWAZzDiZnx44Hvvgu7F0QRXjy4bgMwx7TtH0KInsm/qclt5wDYL/l3I4BXAUDTtG4AHgRwLIBjADyoaVrXAH0nhJDiJuwcXDZtC6E5L3YNfYwLf47AAsgVyPNFnRBCSDkQcK63nS1HjfJ3HICvlx+GV2efUjwCoDDWDAxRWL689RYwaFD6q+vl37jRXztDhybqnzULeO457/fZlCn+2rXhvc+7KK2PEOKM0yPfvsL07mxR+ND+D2Jpw3bulZVKiEIjbgquOWZxNil7+vYFPvnE/5xNIoWUZFLTtN0AnAvgdYniFwB4RyQYB2BbTdN2BnAWgKFCiBohRC2AoQDO9tlv4sLLLwOnHtMI3HcfY80SQixZv7mLZZiD8wbfiocnnZf44vJi7duDS2jA3/+eSKxrx3PPZSxZmUyekJLhqquAjz4KuxeERAiPQmzbUINOcyokLbWLVXFTrP0mxcG4cemPTiHE0rg8i7YY17tz5wLLl9uXtVLyjh/vr10brvq7c6Kt004DPv5YaZOEEBsqNbn34ZZ4O/dCpfJu7cXwJJXTu6EB+PHHRP5vQgCgpSXsHhAFyJre/w/APwGYR8HHkmEIn9M0rWNy264AVhjKrExus9tO8kD//sDICVsC69cntF2EkOKggAKaplgHy+3z6rpjccMO9gcq8eDSEguJNWty9n29/BBMWLcnUFsLfPllTpuW3wkhRcN77wFvvBF2LwgJEc5hwZH14Fq6NDHg1NcHb5PXjaQYMcJ5v9+wwcacs4Dne64gd2hba/rjiBHAgAGFaJSQMsNijstRcNm8Hw9deSAGrziYIQrtePHFhFfuF1/ktTukiOD6riRwlUxqmnYegHVCiEmmXfcAOADA0QC6AbhLRYc0TbtR07SJmqZNXL9+vYoqiV8LMkJIftE0NLZZK5kKQYdKibEhT2EUszy/TPWdN/gvuHL4dYkvTU3JA0rEyowQVQiR/e4bwsJ87eat4XepxvcIQgx49eCyE0i5KH1sPb+KEfNvtTqHDQ3AE08AP/1EKTwJxIpNXdNRD4asPBD//VeNmordnv0CTpZCIirDd98BsU3NBegNIeVJ2kPUYj6vkFRG/WXs73DON391aSgVorCE1gWy4+WyZYn/M2bkry+kKHhx5qnFnX+WZCFjen88gPM1TVsK4EMAp2ma9p4QYk0yDGELgDeRyKsFAKsA7G44frfkNrvtWQgh+gghjhJCHLXDDg4eBMSZdesyn/mwEhJJ2mIaurz5YvbGAj6vlVoq55b3YxfW7eD7WMBgYdrcDNx9N9CvX1ZlMZG0YE1ZwJobosKLkNA5a9DtOPZYNXWtWcM0fITIknpU3l9wjKPBSM5xMs9Ysb43WPX7zjsznzdtUtLGmDX7oq61U/GeJ+KL5Zu6pT+PrdoXd42/xPkAmfvjgw+Ae+5xDo0UgftMCGDgwMT4ccYZwPrmrcPuEiFlSY6CK8j4YM7BFYGxxhfGfnuVD/j1tCUlwwszTy2u/LPEEVcFlxDiHiHEbkKIvQBcAWC4EOL3ybxa0DRNA3AhgJnJQwYCuFpLcByAOiHEGgDfAjhT07SumqZ1BXBmchvJA9pGg1WZz4f1sMPotUtIPpGK4Z/P9pNDQ5temb3BheUNXbHfR48GbDv526dOTST1HDkya39MT05PdgtVLkJIuRORZ8CvB5dZ0F6jyBiekHIg5cH1+xHXYXXjNpkdbgquUrLUTg4iM2p2weL67d3HRBUadCFw0pf/wKOTzw1eFyGjRiXCcU+fntmWvE9jemUij86SJZ6qlPHCssPOM1QIYN48f3XW1tJJghCvNMXaW273rOAqhxCFXnJwEWIiZfBN4+nSwF/ylATva5o2A8AMANsDSEk7BwFYDGAhgNcA/BkAhBA1AB4BMCH593ByG8kju7//hG/DhBkzgCFD1PaHEJLBcg0WwsIsreCSpDWeKe9XSZc+zphrwOjB5aZ04yKEkEjg24uT76CEeMdscQ3TPOyq4JJvo1g4rP+DOO5zi0j55nWCwt9VXGeIBEFF6jZX2toyn5MKrudnno5ubz8LTJhgf1wRuD3/+c8Jo1k7hABOP71w/SEk6izftB22fOMly30V5hxcZrzkrC4FD66mJuCrrzLfKR8gHkk/U8V4/5McPCm4hBAjhRDnJT+fJoQ4VAhxiBDi90KITcntQghxixBin+T+iYbj3xBC7Jv8e1PtTyFWrGzshljc/+J3wgTgoYfU9YcQUiCEcJ2oU0KxtHAsT/m2LNtOVVthPQ3F3SxQuQghpLA0Niqtbvly4MknlVZJSPHgRQhlJCm8MXpiCQAT1++ZyA9kV08pzpkG4X5zvH3ubzQqDQA1gq9SPI/EkW22AX79a+Bhr157Cu6VpljHwHWoIMhPaXZJ1xWLAcOH+6+fkJLFKgeX2bwiYIjCVY3bYnPc2lvMb50F5aOPgLlz/bfPOb3sqSx2D0aSRRAPLlIGTJgA/PvfYfeCkNIkb2sqXU9Ijvv0cW4/VdxjOBNNZIREfn+CpeeX4YTEBUMUEhIWq1cDL5mNR01hRM0MGpSINirLvHmJ1COEEA+kFFyGF3IhNCyo2zFrvx1FH4rISEUFbh97GYDkmsK8LjCHsOC6gfjkm2+AISsPDrsbAIC1Gzvl5VZuaAA2xzqor9gBXWcKHEK8kBOi0IyXwUEI7Pb+U5hWvXuwTqUYOhT45z+BDRvU1CeDOYQrPbiIR9IeXCF4RC9dyqWpaqjgItY0NeVsmjYN+OyzooiGQEhRkLcQhWvXJmbMyZNd2k95cHlr2m8Oj+emn479Pnw4q027N9uYW9jEWMxXH7LYsCERh9Vs5U2IQhQ7PtmjcIX82mvAX/7i7ZhzzwUefhhYvFhZNwgpH2Sf3+ScaQ5RmDZUUeHBVSxv25qG52cmYptJradUe3AVy3kikeXDhUdhyzdeyN7o8qK9819+iw8+UN+X3XcHrh99teW+fN3qt9wC7LSTe7lVq4ApU4BHHslPPwgpFpTm4FIdxrd//0RM1y++CFaPD/b78GH8bwZjnRLvpKfcENZ0PXoAX35Z8GZLGiq4iDXDhmV/13X07AlcckkovSGkJAlbNpLyotKFw1TgFubQg/fXyDU/w8L6nbKPMyqqDG3pTmETAeDvfwcWLJBu25IXXwQ+/RQYMCBYPYTYMHUq0KVLniov9AAiYd3y3HPAPvsUoC+ElCsWShohXEING47za6ASScwhjt3CPiocM2nrVyb88IP/YyXutx/X7e0ehrBj7v71M9YkPljMy35z49bV2e/L13Jj4sRMjjOnNnbbDTjySOCBB/LTD0KKBc8KLify9WAX8v0k2dbC+p0wbNUBvo8nJCwaGsLuQWlBBRexxuxVsWhROP0gpIQReuFyXlm2L6z/u/XHr4Ds6+WHpj+7hUVMN+t0Pj780Fc/0qxdm/i/cGGwegixYf36AjaWx7FD14HPf5QwsyaE+MNrDi4t2yAkPae6hPUtqSgMbj8mHwouCsPKixA8EcwsWr9V7sbRYwrfkYBoGrBpk/1+PlqEuJMOp2aHF8/lUlBwGWSWUvKJvfbKX18IIaFDBRexxmwVyXi2hBSGQiq4Uh5c0DwFAc5Obm+R98KGuMiEHUxbmNoIqBpjnaD16Z2p26qcijCFhOSRoMLk++7LWDd7RdfVTd3z5gEXPfpzy32NjcF/Z2MjLdhImeFnrt+8GXj9dQCmEIVGgxGXEIVSAqBikTQb3lUENPdwSwp/l1BcH4koQSY3D/fHwhcGJeLwWbS574eP+e+DIsTUaf6PNZwGp5DNfJwIMWEefxYtQoV5DlfpwVWMD6Fh3tc04f4bevTI/l6Mv5mUBqkUGQXLZVAeUMFFrHEL+0EICYzfMCKuGIU8Ds9uxklKA554AqLOpyRdcnz400Ej058vHPInXD3imuzFuxBoirWXr1tVZuqSMmknpcRjjwHff+/v2OOPB847T21/8sUppwC/+EXYvSAk4nz1FTBnDoBcQ5P0d1cFlwTFsuY3KrisvMLNCi+FObjiOl+hS52aGmDqul0K0tZ+Hz2KaXe+6/3AQj2rH32kpBqn7hbLsENIPpC6/59+OjdEYZCKS+GhM6wDnNY3G1s6Y1H99rk7SuEckOJk0KDEfybhUgpX5yVKtmWnjwqo4CIk7+TtsXJLgp7clhIIpRVttbVS1WsiIyQSAtJCo207bE5/3tC8FT5Z/HOgogIPTTwPVU1bAUJgyzdecqyjTa/IhGLiuEQijnkq9YPtbe5y/48bB4wa5b29p57yd5xfNC2RhyMNPcZJOeBn/jIkyTHZhmSEXql6N2wAHnkEmDIla7vmVTgWVVpbgeXL018L7VEVd8pdSkqCv/4VOOKt23wf/9ubunkq39zsELEgZERLq+djUjZoTj8naxwbWcCFByERQ9botTIZovCiITdjbdPWwXJP5suDq5Dv55Lj5Z+/vzLhDUvZATERWm7aVIoMenAphatzQggJCdmcV55x82wytZFSGEnn4PKZ4Na8gEi1++/Jv8EXy3o69lUI4I25v8TWbz6PO8f91lO7lrz1lv9jCZFEhZyq0Pqeu+8GRowwbSxkHs7vvitcW4REBZn5zFAmx4MrNS+nBozhw4GVK4FevdLbn59xGiZv2NN732pro6d4fuklYPHi9FdL4WA+BFkpDy4quEqe+AY5oy87Ph20haKehI/XiBPz5gHt2nls5OOPPR5ASOkg+w6eMmb5fOkR+LFqb/d5rtQ9uCRpaOtkvaOMzgGJFq2610mSyMDVeRmgJAxa1F5sCSkB8ramMj6vVs9ucltqbAjcDcnxwRxWQUADhgxJfBawPiHJbfXNHXDd6D+gOd4B49ftlbXPFz/+6P9YQmRZswZAQtHVr5+/Kvx6cCnlnXcK19bs2YVri5AixWhoImCI3JAaF8we2ULg+ZmnyVVuHFtmzUpovV97zW9X88O8eVlfLdcQybXJ8k1dccIX/1AzZibriDFEYcnTfvHcgrZnGWbTVz1KqgnEunWJ/6efDowZI3fMZ4t7YsaM/PWJkCijS8rrjO/SMStDCy9eWfmS74XkweXkyW3boygMmCQaFPBe+PproOM//XuIE3u4OieEkCihUADjxIcLj8LLs04BAOjJBbKsMlzLWkxq8h5cJgWXLkz1WHmeJetujVemN9WnrLC4KCURYuFCoKkpe5vW74P051mzfFQIQIyVVMZaPA9F+YgUZacJKQBZHlzGzYYcXCmBVceOOcf6MngbPTrxf/Jk78cWGhvB3vh1PfBD1b5Km4qJCo5VJU5lWOE8vbh+F+gedB07bCJHDB8OVFcb6nHo7hXDbsCf/+yjc4QUObrQsMQqP5QFRgVXXA84D5kVXMU4pxllEg5GArb7ivE3k7yw6zGFybkJAEuXFqypsoMKrjJAybhtrmTTJl/VHHooUFWloD+ElAB5W1MZXzRtGrntx8vxn+ln5rcfRtracl6PjS/MutCAWCz3uJS3maGPbXpS2eW34/mKOU7Kmv32A+65x36/59ssmXxWnzzVd5+8EIsB++9fkKac8XiiYjFgwoQ89YWQAnHL6Muwfr18+dwQhakvNnl8hPA31VnNyxHE0tgmlXdMZX4Frhciz4Rek/DEFdOica1WrXLcHb1sWw44uVdNm+arSothyh1DaFJCSoFPFv8c+3/8SO4OyxCFGaVUTFTm7M/ByUur2CM0DRyYcReFN6NbUj5cey0wZ457udVV7XItVUnRQQVXiRI4ibSL9djQJyf50nHNnAnMLWzEB0Iii6+cEUOGAE88ATQ325cxLlht6mtfkVGCpcIi+MkJJj3S3HprbohC88GSgrS0FVaqAq8LdCq4SJ6oq8v+niWE9nCbtbQA01bvACDb0/G997JlOyoFt5s3A/PnK6rMaLJtxvAyaonH57FfP+CYYzwdQkj4mO7zV2aenJv7zkxybV7dvGWWYEs3enDZPT9+5zm3nJ4RwdI6m3N7WfL008C9Hx2eyEEXNqkceAVESWoCc50C0ObPsy8Q96cI95WndNkyX20RElU2tnSWLlthWPfHgnpw5Wt+L9Tc+/XX0kUZorB8eestYMAAycLvv5/PrpACQAVXGTBq9X7BhVYmYfqZj52MF1/0VxXnEUIS+HoWPv004df8/ff2ZdwUXEJkKbi8xv3PqdLth2zeDCBXGC8MU5CABrRvb9uY8YVdGPf16wfcdhtQXy/T9QSlEJKBFJxhw9zLqMrl/MILQM+nfgcgOy7/VVcBDz8sX09otLTY73NxU5m/bltpA7rTTwfuustDvwiJMGKe3GJ9+3eexUuzTs0cB0PYIjsPLi+GIMbBqkgUXAAsjVfu/ukivDrnZOVtqMqXRPKI0zwkgRIDksbG4HVY4LSeGLn6Z/jsM8XteVSa+VJcgctxQtzIycHlZrTp5aEq0gewtmULAM5Gt+kxTMsY9U5Yt2fR/mbiDenLPM/BkCNPBHZMIVlQwVUG/PqrP+Pyy7O3tbQAXbt6qMTCs4LzASHBELq18kmKtjb7fRIeXB0qMs90ykNE+gVWMt51mqSAzOzBZUQXGtDZwoLNQliX7qcQwMiRQGsrMG6cez/s4GBGXGhqAn71K/dyZhmyUcgj4vIC5qROOHGc6RlLt1GI+1ZRG62thi8ukq/9n74O996b+Lxxo3O9w4cDa9YE6hopR4QAxo+P3s0zapTzfptn54WZp+HS725KfLF7ZuNx+Tm+COdEy+Tyuo6npp2NYasOVNiQsP5MokcUwm/5uUcktUNCAOfdlJszpM/ck3DJJR7bzJMizozb6Vi1Cnj88YJ0hZDoYzHfaOYcXF7q8LKvSKhr7YRubz8HwFsOrs+X9sQxn99bEueAuBOF5UAWxWQ8VmRQwVWm1Ne7C47yhV+rLkKIAacHyWOIwrTQSzKufY6QzG1xKJEHQwDWk33aWtqiOYnfacfqxm0wdOWB0Pr09nQcIV7IClE49kfp4yocVme2i/R8vKQ55dxw4PTLumXZxXTsCHz7bfKLxCKgoSHxv2tXJuIleWDRIqBvX+Chh8LuSRauj7DNs7NiU7fMl9QAoWnY0Lxl1nZfXkcVFfhu5QGRlwFJhXxW+CPyEQaOBEfTgGGrD0h8iYAAydKQzQ3JF2VdB74e2cV7/VasXeu4u1DP/7JlwL/+ld82Zs/2aORLSJ6xfeSND56u44Jv/4SLhvw5vSkmKqXfwaVQ9aAXcMHQGm/nq+3qli3dC5GSwe62+P57IC5CUIkMHlz4NssEKrjKhfo61yK/+x1QW5tQfp12d/4SWkT9JZmQQhHoWVCo4Ep7cEn2J0vZ5EHIY9XlIz/9V7JOTdq8JrBgSQicMPAfOHPQ7envhDjhpHAy4mgo2SCfuDLL8ws2Hlwy6AEFfDU1vg4b/kOnHIPw5cv9daFAhuWknKiqCrsHlvid23bqbAjRa/B63uGdZ/HdyqSw36/5qqbhjEF/w8L6Hf0dXyCEQF4VWuY6uWpQz+bNwIYNweupjZDgsmgUoZWV7mXygcwzqjiX2pQp4Rn5EmJFpWY9P2c9HkJg6MqDsvbHrDy4QswzHdMrMHXDbgVrD8j2aHMOUZhN2vuNMoCywM7Y5MQTgRk1hb1nAWSl1nhq6lm4+mreh6qggqtEyfGUMGe+t+DDD4GpUxOGrSOmb2eqsEgW6IQUEZZrKtmFlouC64kpZ2NR/fYOIQotPLgk8fvCbuXBNaV6j0ydkh5ci+p3THheBViU1rcawiFycUtckJ0CzbdS9otXMGWwXRuWpEKYxgIquCIX04EQBUTAs8PqQXZ9tG0GhpjR+tRU74bmpIdHPC6vlLHoW5sekgBcEgGJXCQq2xMa1w6KueYaYIcdwu5FBiV5McK8R7y07WLF4/Vn2K1hBgwwpRBeIWH5smqVt8YJKTLaVVivSXSj17XFejxulYMrRN6ZfxyO+Oz+0Prk5T1LLxbjAxKM5PyhjxsvVdyX17UPjDKx6TW74913uaZUBRVcZUJgC7KIKbgWLOAYQIofqZA6rpWI3Bx5uo57J1yEXrNtEqsLkR2iUCT+amStXrNycDmUmzABeO45YPp0ABI5uKwqc2qgqcmtp7ZkCS44mJQ9jzwCbLONezmVkUCccFRwpV5ynRpTpZjKh4JLYj0R9Dw2Nwc7npQ4xaq4tXl2Plh4bOaLIUQhYBDi6Lq/d4Gk4LsopskCenC9vzB/kS7KFb9evlEmX8+NgOZet5fGXeZlVb/j1luBq64yNCtjbGDuW8RkEoQEpdLm/dis4DKXiukShh1O6x3Fc2ZjrKNzAV0HhgwBqqsDtWOHbRjmn37K2detY1PqoLz0hUSECRMAAGL9eqnioXpdR8H4rgSggqtMcVobWu6L2GLyZz8Dvvgi7F4QEgwlIQr79AFuuSXbSzO5mG3TK20XtlkhCqHhrfm/xK7vP51TrrGtQ26/sz47WJy8/jowdy7wzjuJLjvYj+tCA0aOzN2R8uDSXKYrtxhypiReWX3h4rbsGTcuK1qALUEUXF7uMsvbORm7SZ8+y3vjMuT5OUhVv2Rl+7y209QEdO7sXo6UMVEY8608uPzkyJKoF0DCgyvAzy5Ka+c8Xue4iLZHG0EknnNfwjLJd27XnxdRRb7UZVmxIvNZtQwiJeiM6Pkh5UeFTYjCrFvUwkglFrF5yDWX0WuvAZ9+Ctx7r7I2jesmy6GlrQ14442cfbtvWZOqQFlfSATRUmk4LOYRC0WrrmIdTkKFCi6ShYoxvrY2eB0ybJJPZ0JI6TJ5cvZ/IP0g24YUMnlwPT7lHPxx1B8si65q3Db3cMPU4Ulo7+bBZYXLoKQLDc2xds4vwC0twP33A/37+2qDlCarVgE77ZT4LCs/sZKH6LrB4KK1xf5YD0lsK9auzt04f36inpbWxHeJ+3ZzvIP0b9M++lC2e75pagL2PmOf/FTe0AAgE52REFsiaiVpKQzfuBF46ilg0iS5gco0LqRf6r38ZmMdTsKBlhbg8cfTXtqhU0APLpI/ImZTGQiv4Y7mzgV2uOwURY2ru1cLbtU+c2b+6h44MPE/K1YiIeHRzk7BZZx3LZ5nSw8uM46Wd2rns3iqv3b1GmUVisiRH7h4sDU2J2QjqXnm+u+ukMnkQoqVpMWo8T5Ztiwpr07NBUa4xit6qOAiclg87FOmAO+9l1u0Wzdg8OAC9ImQIsfyxVfhxNqmV1rXN2hQloLr0yVH2taxyS3cgCTLN3VFtUMIRDfrcLvTcu/4C9H5jZftJSJNTcD//pew2Bw6NF1ZKQlQiD/mzwfWrfN2jNV9uGgRcOGFic+tk2dhzZrMPr+3mfbj2Nw206HC8nTz/vhj7jaF45Fmk2ZPGV99lW6HkGLE8nEbOBBYvDjhra1pifyTMpWkQhSmxgu/3gopBZfVaNa7d0JS8PLL/uoOQHOsHeZv3NG5UAFzcpEIYLawDHi9VUwlXhVDU6YAG+pyIydY1j1nrnMBm2e+uhr4xS88dStSHHD1MaipcS4zYYLEWkAyZBUh+abSRsEV100hCk1DmqUha5B5L+CY6cWQTwUxvQLN8UxUCEtj2eRvSuUjzTqnAPrO/gWmvD87f50k4ZJ6dzbMxXvtBVx6qXVxLhOLHyq4iG/698+Oo23Eac0Yi+WmDCKkHPFjEbm2aWs8P+M0i8psksKbt69bBwwebMrB5a0fxn7LJlrf84Mn8eTUc2z32y6KXYRyM2p2TXywC1HYr19COGiCIQpJpeG90FUQkoxfKBpyXYfbGyLufbb0SOyyi3UV3tJhZAr/bvgNOOUUmU76p60N2BzLb+jAvJN03aKCixQrlmsC44JZ5ua2y9Gn61jd1FWyI1YeXBblOqoxgPHDE1PPwf4fP5K90UvuEb8Irh0Kga9TmzJiKmJk56/X5p6A/7uw0bmQzUmcPTsRltkLbtfDtzGPQ2QHO+at2MJqWZ9m6lSmMSDFhV2EEzcPro2tWxQuObAE8QKHd/v98D9ir35PpL/bpU2ob+2E2bU7A7AWF+iDaJkfJVpb7YPueMZmUq2pgXt6i0LDNaUSInZViSpcp5fRoxP/582Tq9DlgauvT0QqkeGMM4rbcowQVVg+Vi7P2r8mXIDbf7zc+ThjiEJzfc3NALJzcDm1aDWW5GP+dYt5bCX4i+sGNZXdImW2tVVW1eZtDJVzQVGOtGsnX1a88SYAQO/7Zs6+9pJ6odQ9PHJkItF6r172Zc13+6hRsFykG7e0xf0v6f7wB2Cnd5/xfXwkSD7HVHCRUuOJKWcnQvH6ID13+nWfdPLg2n57f3UqoL61U+5GC8v1Si2PbqN9+uSv7jLH17IsgoO/198h+xPmbtwZ/Zf83HN/amsTUU+9kq/fIVWBRWVO/TniCOCxx5JfnJTcXPuTiNCuwl8OrriMkWkBPbjieoWSemSZtGGPrO+WBru6jpO+vBOteuJlLSU5yBKbFGOO0RLm229zPaySaai9k17DWmAhO3K7F+bOBfr2td7X2AisXeuxf0Q5VHCVK198nvj/8cdKqttmG+Dqq+XLT5wYvE2uS0mxYzmJutzYb8w7Qbp+SwVXcrVstBZzUi5Z6uA0Yw4uOQ8uN/zk4Gr3ei9MTi1u7d6mrRLyMGwRQbYHlysLFgAA9Lm5RiHarBm527RcT+bUXXbqqYmIXv/7n4f2U5U60OGR+20X3W7MmJGdW6+YiaCMk0QNTcOqxm3DTSZtMe/YzUT3TrgIU6t393Vzp+sMGKKwKBJvWyq4dPv9AdtoWUZJRqSI4ODv7vlU2PVnz57A+edbdcT53P17/Nn4ZsUhSvvSowcwcf2eruU2Nwe4rqNG+T+WEJXMnQu8+aalRbhdiELduC63GEzSCqUoMGqUu6Jo662VvnKbhy3LqoXAwrodco4x9rUo1jdlTF0dsMMO7uVkyBJ9e/TgisWAhx8Grr8+8f3ZZ4F33snsv+46YOedA3SO8iglRGhUJKGQeuFNBbOuqoLWvNlXVQsXZj4X4vmsrQVWr85/O4TkjSAPisSLvGVs7rSCK7OYjgeImb2pTU2IIjcFl92pSnti2ZwPEdfx+dLDcdXwa/H+gmOsy3hMAk6Kn/p6oHH6IgDAb89vcc97nA7TlX2fjRgBfPnINMtDzFZcL8w8HdtIOg5aCr3MnhQWFcyYWt7xf//7X+CKKxKf+Z5AnNjt/afw1rxohROwtD5OzYHQpOb9HJsWP/O7VYhCK8GVuT8tLcB//pNwU80zUroMIVDpIwSaW50pThp4JweaPKHEgytoDi4F907BPZ9cGl++3F9Vz089BcNXHyB/QDJahBNLlwJtuo1navJErFsHbHFirqea9HldtEiyICF55rnnErFBLRLV2ym6zTm4zMREhbvRZqG8GD/4IGM8a1fvIYeg4rXemFUTRAuQwXzenHJwpY+xcvKigivSWNkq++XyZBAku1vU6ZFo3z6R+SLF3/8O3Hln5rsxB7cvuJ5UAhVcZYLt85IKWfJmMuzS++8Db73loYLwuO02YNddw+4FIf5R8VjN27gT/jjyasvKWvXK3IVtspzRgysu7F1Z3EIU/n2cTZZOAK/OPgk9P70PG1s625ZJodtZfcmeJBupQLPoiIuG/BnvLTwOfecdb90EQxOUFTfeCOy2G3D6jfsAAD79sqO0sYT5Xrn4YuDm739vXdbi1k2m8rLdn8LqdtaOPsq9fz+Ndy3jCYVzfyGipLzxBvDVV8HqIOVDbesWobZfYbLadvLq1oU/BVf6u98HwikHF4AmY+6+sWMT3q5GCUCesBQIWvx48zlWyfj1PfKT56tc2VgrVeyHH4CqKosdHrVD8+YBDQ2Z7/feC9x3n6cqXInCPNTcnG2EWhA++sh2l5dz0miTZsy2jlq5eyhVySOP2OcTJyQveIgRag5RaM7VZWnAEmTQ8Xts8jg7T7Q0yTG6avPW/toxV2fuhlVUGSFMucNTZU3HkciiwvBDCC3rgVI1N7e0AIMGJT576acKAxpiDRVc5U7q6TZOtj6DnEZhEU9IMeEnB9cNB4zJ+v7pkiPx5vzjE2/8QOLlLjXTWpHy4AoQFkV2ITho+aGYVr07ur79P/c63XJwuXVXYgBKt2Eqq8c5eJUTr72WLdRy49NPgUcm/RpA7m3mtJjNd97nufMtlnCb/Xlg54sNG4BHHw1Wh+x5iuta1vUQcQqeiQ3JGyXIPKikGx7al7UwzjHeDiq4cfLgqqjAlm+8hNFr9kt8j4XsQWphua48ap0X63jiCa22Jv3Zadw/4YREHsvcCrxd7AMOAG6/PfF5jz2AJ54AHn/cUxWu3Dvu/PTy3C1XtXIha/IkPv44sN9+aqs2M379Xrjppsx3rUpN+E7Pz6/HMeid11vw3ntqPQQIsWLFpq7Y84PHLe9Ru2c/K0ShrluvWfL9siFDdTUAw5rGrs3kA61EuC8E5tV1z9ok48GV2Zyr9CLRYtSoxNisbB33xRfZ363yO3qch+vrgXPPTXz2GPEwF96ISqCCq0xJPbpvTTsCAwYAj4w5JczuEFKW+JnHOlRkL4zTdaRcUJ57Ltu01UYYU2mT0Danj1YbFYeBAfzl4JIhy2rLa9uEAHjoIeDxKecAyF34ui26nQTYxlt7/PiEIk3quOT/A4/uguqWLu6Vh8gXXwD335+nyk2/sd0fr8asWYbdAz7PU8OkVDBbQxeaHOtjh+7IhijUTYYcqkIUOs2Ta5qcQwVbsnAhfndpDD/95L17iabkrl3elZhUcDnSqxfwyis+Dhw92nG35bPiQwqW8qpesSK73uXLbcJ8e+T56afixRcTnzt1CsGTCon8JflmUf2O6NNHXX3PfbanJ0MkO4569AIMH26zU4i0gW+HDsHbIsSJmTW7YPmm7Tytz83zrqVHchQUXMmkxq5rqjwbF1kay0rM0YENgUheOOUUU86soJgnAwUKLqvqvv/edxVEAVRwlTnXfnkxLr4YeGDU6flvzGKCveWWhGCPkHJExZqzvi0Z/u/4ZPg9c9wWm3hFsotLK+FYPtbKcVGButZOuTuM+Ud8oGsZAYVd7iLKp0gai5vBuP71ogxdtw72Cihk34bXXQf89rfGNv09ZHaekJqWrUCz2p9v1q3zJ9wbNw7WOdLMSc5MiNFjHPcTUqGJhPdzGJOAEDnPuZ2XFAC0xNt5U3DZfJftWxqnNv0OHLNmAc88gw/7t8MnTy32V4cVFuudLGMeFYsXt3wnJIs//SnxrucVMeibwG1XHHaw72P33BN4e/4vA/cByL5FamrsywGFmYvTRMzj28gdfQ7Ad9/5ONB0Aict2wHffmtd9K73D0Nty5Y+GiHEO2nlj8V6wy2TSKKQ8GeU45RsyLyO9jufJX+T5paDK+3B5a8ZM2fuNivru2WrQlh6axnXW74MgUj+WDA//TEWU+AZheT1bpfJ+ej5Vp8/371MkhNPdPfYtoTrSSXwaSY5SMW194OFJuuVV4C337Y/pK4OWLIkeNOEFA0uz5pZAPb0tLMSHzpZKIes6hMC8zbuhNVN2/rujtDUTx1vz/8Ftn3refsO+FwNG8M72An/qeAqD2bOBB5/zGUumzPHcbcXD64zzwTO/9ZesuckQ3a624XQfIUCmzrV8yGBMf7G++8HjjxS7jjj+bjhBuDkk10qt9pNi0xiR8qKWBPAO+8AP/4YSjfM+Sos7+jkm31TrIPUPW2r4FLoDW2LpqGxrQPiuktZwzirL8yjgssupJPiNoh6VISYFULLuVxLlyLb07fA8iS39pQquNwa++ILNDYmzkkhWb4cOOggubJ250NsbrbcfvUtuUZFDQvXWhrXPD3wAEcjJEJU4qT8sX0/NYlqLRVcpvqEbirz8cfWwvlJkzJJa53o1w+46SbnuU42/UFyPeMlPLMtQqCdaQ2liwpLuYdbRghGcokYQ4amPwoRcF405pGV0JTZrnXNBuQWCSKN/cxSTstCBZcSqOAickg8cK6Dzxhv1tSaBmy/PbD33p4OI6RosJpEXSMNmL63r3ARdFtUeMDHD+PblXKWrX766Ie1m7ex6YCQa9OmQJaCy+ZQV2EcKQleegn4130u19piRZqV18lDDi4veK7nGxfrdovnoU+fRO6SYkAIAM3N2d89QrkzcSMtZFm1qvCNC+GekB0w5MCSew5EPJ41jgVW9CYFAk65LdIhCgF0efNFPDDxfOc6x40zV6EGC8GWZUgnlVAgkR9cBvAfxui44ALv1ZxyCnDIIf675QdPt0hTU976kUN1Nf76V6BHj8I1mcLFlsgV8fEnltvf/TjX2O/Vz7rnPQcZIW6kZ1AvIQqN45eFB5d0Ta++mrvNKo6aVd9Gjkz8f+89+/pTCq5U/2bPBqZMyS1nNC5SgNT5kMnRraQ3JB+IhYvUVZZjTWqxrrV7ITd4fwGwvK+8KLgoecofVHCVKEqSNxpYvKpj8EpMA8a++7ofYmmk7svnk5DoYbXm8mpFdMtBIxMfbM0cg40FUglb8y3gEcJ3EgFLDy5ziEJaboXOgAH5D82jIsTBru8/hYcfznwP0ufUbbj77sD06R4P9uGOtW4d0snuC4JdXCAZGhqAT6wFWISoIr1WNr+4FohKs3DGai4yhBEzW3NboYsK4N//Nnz34cFlZWHuUK45njx/tbUAgIX1OzrXb0iu41cBJ3uU8nmFHlwFwdaDa948AMDadRUYONC0zyqfhulytbU57w8b7dP+hWtM111DJkaWVN7hAjJmDNCtW8GbJSVC2qDGMkShjQeXOQeXhCpGekzzOndNm2a/Lx7HFd9djxdmnpbZ1qtXbrlUiEII5/okMXuCCaG5yiisQhTaedCR8NHH/ACtbmPii4XXlCvJe25R/Q4YujRj6WD3nDwy7lfWObRM64s9922fvb+tjR5cEYEKrjLFzjW477zj8ers3FhA+1z2c0/1jxoFfPihc5lFSYW852f56689HkBINPGj4DIvwnLe581S/DyEJSpo6C9dB955B2JtlXtZq8PNHlzJ87Fth8wiifKp8Jk9O/9tSCm4XCyymuMdspyRgwhP9Vhi9btyZe4+p/Adq5u2wRdz97fcZ5dnzpVNNtncA4wfQXKoNE+dgyUTq50LuZx8p65feGEw/RspcpL3TjrvwoIFPt9Gg2H2LrKcWysNeSQlwrZtaO6SCKWS/I3xoLklzOfKiPEhGzMGGJoIKxPT5dv0a2AiFU5diCyB4IjFe/pqyxEuIArLihWeihsvz7Bhmcd83pzEjuWz6vHWW9nHXHFFgP5ZYLwtXadUlR5cycbspsqaxo55G/ZUhCBzCk2VDzmgW50//pjW4RPimfS9bBmi0PoYc4SRnDWDhELHFq9zV/v29vt0HR8tPhqLG3ZwriN5EpZt2g4tL/YJ9iBb5DHVrdZQQtjIMgzHUcEVWQQA9O6d+PyWQ14bFz5beiTO/PSm7I0WE8yT40/H7bcnHBY1zT6E7/Iqk/PHoEFZX0N4pSBJqOAqU+wE1B8sPBa95lglu3AgudoThknqjTeA3/3Od/ek2iOkFPG6yEq/RKbCCOmA1qd3pkBAbyvLHFzmbXm2OBE/jMXXyw/1dWy2gkszJMI1lKF8qizwq4wyH6fqdhe19l6JTn2dsL4HLvzgMjWdSOHTQ9INv+fqw0XHYO8Xbs9b2198AXz0UaDqSQmQnm8XL07cFAVGamxJh+nVpOaq9ZuTOWVGjw7WuRTG/AU2feu53cqs8EWfLZVMtof8G8xUVmRO2qp6Bfl26MFVEJTNs4Z6fvWrTBqNAw5KrA0nztsa116bfUw+54aC5uByqXu7e27El18WoOE8kI9xwzVEfMoSy+BVS4gsTh5cduR4cMnk4DIVOX/wn20saj3OXb/4hf0+2bqS48yVw6/H0QPuCaYFELmjgF3UmayfP2YMMHdudhEGjIssQmhpj119gcJwhQ737KRJwFVXJT7L5qjsfOm5GDEi813UbvTdNRIMKrhKkIJrjFMKJ58eFp4pskU4IV5w9eAyfTdbL7XFXYZ1j1IDS2uoQiIElm3aDn8Z66Ixt/ldQjOFKNT1HKtuz/KpZcuATz8FWls9HkjsKIRXvpQHl8XN4DTlaHGXHHg+UZKAOWQaYx3DfUQY6oG4kHWHjB0bVjekEJBTcG3XKTuEi6/HQIhEKIb33zfkALMfCM1tHLfjYuf6t946bYij1HLaxYMrL1baVHA54veVzfZ+81hhFC6P0zOYkxJE5dxfAnOg0lf+tEebz/MyJykUN+QQJESW9H1nGQJYIkShdA6u7K1fLj/cukNWAsNNm3I2/fn73+Hnn93r6sElg9HodEbNbsoHaJm0CkIAeO65rIg49OCKFsZ58JXZJ+PMQbcBUKuIFKvXSE0w6dvHpWxzW7vs1Dp9+/roVPHP2VGACq4SpF07YMjKg7O2mQcEpY/PwoWJ/xT2EuKJQCEKNS37mUuHETIdb148evbgKkyIwp232Gi7L8jCM6evKQWXIcyD5/X1448DQ4YwxplKUmGH8mihIaPg0o48IifNo+OatslHPPAk+VjGph/vCCySd3v/Kdx6q5q6GhuBnXbydozbOBWBU0RCRggNrfFKnP7V38JoPDd/hNU9u/vuqeLQ4+43rXm+9B229IMPEl5gybHZ8ujk5Gnu9xHbL3eu25DzzNdjOG2a9bhs8Ruz5nq7tYQQCTNdc4Imu7JGpkxxP4ZIIaXc8ZhMM+oKLuO+q0Zci8em/Dr/HSoBfI0bVvGgjXW6eXD5aZOQJOnZxzIHlzX+PLgkcmfb9ANz5sCc3HDYqgMweYNLeF9TXV8uOwzNsdzcpuaQi0EHaPP50K1CNpra+O13N2FzrH3WuoUKrmhhvDZTq/fAT+v2TmzXCz8K+31XPK3P5Xj00QI1RrKggosEpq4xnOTcslxwATBypPfjhgzJ1dnNnAkce6ySbhHiKQ63JX/9a444bGNrZ+djPC4mpXJwRWFCtumDcdEqbMr5zlGyfr2/40gO2uRJiQ8TJ+atjYrNcsooYw7bt9+2j9738stAc9zBotEFJwWMXwtjHVrJRs9Zt05tfVEYtkhIGAxCNjR3wfDVB0TihrDsQSr8sKQH17Tq3bCmaWvnOl07kps0yCkJu2fhkC6hdLJDCOCVV+z3mTAKwGx/w6hRwBNPAH36eOsLkCMMJGqwfRzNmk03pcV3w9R0KAANDYmQR4DzMLOofkdMchMk54n11WpFQr69pAw8+ijwpz9Z73Maj2xxG0CjoA0lJUuFgweXHTk5uKxm9Ndf97d+sbvfTbnuLZVqLnWd/+0t+GjxUTnFchRcgUMUmhVc1rlCje9bQ1YejJWNXbOLhB2thkgRxnXyOy3MqNkN/fur7QuRgwquMqFNr8zyqPe1MLRh24tPkytoYwYfj3vMqesxXsHAgcANN3jPCXbWWcDHH2dvGzUKGD/eWz2E2OHLg8tojW1c3CWfi08Xm3JfBMzBZdUf2Sq8tORkWR3kNVlUVGa3kVyprG/OCABlrOIt4cuwepqb81a19uMPno+55hpgkSnkd+r+v/VWoK51C9/9cQxb5LPOV2efgi22ACq3lu9XlUt04WeeAe6dcKHPHoWHqzV2+PoMEhbJi69DS8+pYViGmnGyvJbNwfXb727GlcOuT3/XRUWwmz3pbWUpWEidx2S/F9TtmO4rvvnGvl3DdkuBlBPJY42eWU4YhXO25+/HHxP/p0+Xbt+9UhIIu3vH/A64Zo1jNfrn4Ssghw4FjkrKemtrgY0bkzuWLPFvYCWDh+d+x8N3zl8/fDJlSo6sXQl2MhAx6Bu54wLGTdR1YMaMQFWQIsQpB5fdPWlelpjnPSE0YNUqYMECwzaLiqzereLx7JzdNvhRcAFAdXNuzsscfZbi+TMu671m2tzQ1klpP0ieUPjiJgClIQqt4PIwHKjgKhPmbtzZMTdkmPTpA2y5ZX7bWLgQ+PBD78eZPbgoECP5JqibvKt3ldcQhYF6I09Mr3Qv5ITdAtZwPgQ0y9WG7ncq5ICgHp5TJehmK0kHundPxsK34dFHgc+XHqGiWwWFCi7ixquzT8YpX94BIBovok7WqfeMv0haCTe2au/sDUOGeOtIWxuOGXA3rh5xTTrvhuXzklK+QYMQwM8+eiT5HcDnn9srjLbbLlOFt56lJWSVMkI3U86SvIQh8hgyj8ghnYMr5pwHM2rD/HnnAT//efLL6tV4cZakkahPFiwANq2ozWsbkcHNQMpl0hdjf3Ter8h74PPPgcMOU1IVKSL85eAyzC8WObjSjB6dVc7M8zNOw5CBpudDctFTKWNMYlFXbUuuoV1O1wKGpTd7itp6cLmkW/jz9x6t4Eko+DJEs1FMyY7nQd4VPd/efDFVAlflpUaID8a8up1w1lnB61m2DDjgAA8H1OZv4S4Tjp8Qv/jx4EqTnLA3xTpmVRbTTcN6UAVXgXJwtdkpuKTdxdxDFCY26DllvQo259R2R49+j3Ehkg/yeE5l79r5812NwpVg9Rxdn3S8UJpovlzh80nsSN4bi+p3xML6RHK3giu4hNxMeuHDCeXy4oYdpKtu1dunLbOFAPDZZ5l8uTLU1GDC+h4YtuqAtBe07uLBZbl2SbuqmNh1V0MVHtcTLS14ceapmFGzi21/jBhDOilRcJnboIJLinwZWdY3FF9oqcWLkx8KMEf97GdA38+6uhcsBT74INjxBVozeIpaQ0oPD4uNrJB+FgquxlhHzN+4I1BdnSlmMVff/uPl+Me17mH1jeGNU1Rtzt2Wg8WzYxWm1DIvdgDMv1SHRQ4uieeaObiihd07sN2qOT2nJhk9Wt1wTg+u4oOr8lJj7FjXIiNGAO8tUJ9IqinW0dlIVHJgmDoVmDdPvt0HH+sgX9gjUQhZQ8oL9xCFGZpi7bGsYbus/XttVW06oAAhCq3qlBTepbBVcEFSAGbnwRWLG4rYeHB5WNgKAQxffQCWNmxPAXpA2tospoUInNNf/AL4dQHyvFvdd3375r/dYmbiREjnGHMbgUSbteX/0qWuTgGk2LEYZ6LwIprTrQ0b8MWPO2X2+1iT6kgqn1atkj/IoLRJ9cnOMjqxT0NMZObwxfU74IWZp0qGKPQoNKiqwl/HXoGBy3o6l1u0CHjllayQTkIA+OknoFevHAs2rU9vLK7f3r19Krh8YQyTL4PsUmCbs47Dhg1O9URYcBkw1F2UCeWXzZ4d6HBpr2/TdXvuuYTsghAn0sYWHvJvm+dHs4JrwNIjsP/HjwBHeI+y0BbLfUp3ee8ZTFi3Z9a2dT4VXMfvtMiioIkgCy8hLDy4rA1xrE6vMWf5o0eHH8qWZPAiQZo7F9hnn+xtJ58MLFmSMFjVzjrT/mCZEIWN/i0S4i32L5M0ZM0fXJWXGvPnO+8XAjfeCNwx7rLC9CfJTz8Bv3n9AtdyCxdKvIObBqOH/5uH+IZJDZv2/WiXgoSoRXqtJwSuHnEtBq04NPE1KfjaeYu6nHL+Gkge7vc11aOiIuaQhyCIx5he15D5LCwsu+DtlHzwAXDrD8lQBiUsnCgERiVCVm65CNDYaL9PmVWYlaVhksjcWhG5HimOPhp49lnJwnYncfXqxP/Jky139+gBvPSS976RIsJqHojAK1HOXPfGG9n7fTyO94y/GId88oA3RUyyoZZ4+/QmJ0WUDi3Le3zoqoNw29grpBRcnuf3Dg5Gbcb2nnsOAHJDFL7xRiK5z6RJmbLJsWK9Rc4QVyIzWJcWXu6LtNGDxbUIIym9NPm+dyI2f6vE8rq6nc/k+bDyLDHu99QmgDvuAJ56yrlpIHA0NhJlqqtd75/U7SniFjm4bEMUmhRcdkJx470vEbIfAOpbOlqWa4xZb1eB0hCFdoa0c+Zkf9+wAXGRbUT7yORf47Lvbkp/36KdKScJiSRWt7ad0aOu53p2GVnW0A039znSvkCqzU8/A+DT8LGm2r1MVmOlO2cXkvDf5oha3BZ3M2cWph8mPv8c+Gr23q7l9tsPuOWW/PfHle+/T/xfvsJyt6Yl3o8JCYKfEIVpa9RPPkl4EZnqyjk+4GQpgITbZ9Y2iTY8ths40baxvaoq4N57gR9+gNg1k1tIAJYhCuMe8hWlZOMAKNjKB1zcAYiWZVfUbvOWFrlyZm+XxkagoQEJsz6L/UaqPb6TkCIjCh5clnk4TDQ0ZO/3OSzM2bgLsPvu8gckhU7VLV3S873l2iR50oTQrOdwu5MaxINL8kKJ1jbcP+H8rNVKVlvmJLvw6S0etQEyYng5PVJFLSqMgvelLyoD5p51g+spT1gpHrL2O+yTuc/btQPq6tzLkSJi3DjgppsS75wuyd47VCQk5LVN8gqkXA8um3vUwuvaDTulmq/3cb9jTeAQhdnttsbboe6r0dlWihZGMV8tz06Cx6EyOkybBqxq3NZyn5frJATQ0eFRa4x1Qu+h7rJpUVOLpUuB9r88Wr7xJJ7f5XkjKoEKrlLDbYW1cmVh+qGYX/0qei8wASMhEGKJlxCFWZ9TCi435ZOfHFymRbtUFTYhAeywDH8En2FCv/02IaF+5x3reN8+c3Bt3myy4KFgSwktLZn7vs9Xu+Qt96GXhWYh1pjrNm8NrcL6HrK1MFbBpk3yZYWAs1gnupif/VNOAQ4+GHLx+CO23iD5J5LX3OR1Vf/jLP91eRnULE6GkyfM2/N/gR/W7pO7w846O8uDy2PfPFh8PzrlXDTGMsItXWgYtXo/vDjz1OyCQebynXf2f2xZ4G/+CHi7+qqnkJx2Gko6vGW+jXRWNm7rKeqqDNL3SoDxornZ96Ekgog33sTYtXsnPJhHjnQsm1rXt7TlPvd2t55bDi5D5Vnl7Duc2ZeTs1vicCONjS5NWawZzOVjrQEVXKbzsaKxG7Z96/ns9xwLQ4LaluzoT5H29C0zevYE/vT9/1nu83KdhFAjprn0uxt95xDlfRUOpbuyKlck3fOLjWHDDO+0Fr/xwAMZUogUH5aOTx4mQ6MyzDFPRtZB3haTljm4zH3s1cs5plsAdKHJDVvG39U5E1c76xzBJgeX5FS49dYJI700JSycKCRbbgk8OOl8AMBNzx+EGTPy0w71kUnK0D1J0xL5u1YYnLKdhhWGEipxouDBhVzhTI4HkWnQ+vmAf/lvzMsPNCqg7LzDDTsHrTgUvx78V8d6sjbrxvqt52WZvuUwdWrGq8xKuAbgXxMuxF/HXpG9w4snjbn9gw6SP7bciMcL8t4pJWRdsCDv/fDCiBHgoiQA/zf8ehx+uGljnmUgKvK58ZKXFgvqdsTxA+9C+9dfxfTqXaWO8bK+NM+7trePlisPcGvczoB0ty617h1raUGXLsB7z613L2vA3Lf2e8mdM7vKbM+H8SQXqeyTBEOVgqsp1hFr1wavhxQOSudIXqmpkS87Zozzfqf5ae5cYOhQ+bacGDkS0K6/Tk1lhHhENkSh1qc3plbvkdm+bDnQ2Jh1/JQNFiGJPC70hq46CHWtnWz3/2aPacDy5cCXXwZqxw6/1i9an94YV9UjqxtCwFrBFZfra078Zb6pKsH8smcROargLFyYUGhaUfTvSh4Cie9/w4moqyvO+9ztMjkJq4zDxJo1wLp1avpEIoLFQ+wlVG2+cJvvzFbH3ir36SWVHC88hxIEbBVXxs26jeGJVN9MvNJ/x0TIKFgr5nRdQ/uK5PHG85FUcEmtN4p+AiggmzZJe/IsXJgdGsvWe99jiMJ0LcOHS/WjoOQ5RKHWddu81m/FnrvHsWFDYdqqlZDDe8Ht0U6PDxb3YCyWiI5OyosWvV36c9Vmm5eGJKk1p1UIQLv1qPmetA1RaLgnf/u/45064dhHq75c87OxuYWGDQMALO/3g209a5ucz4cKbKNdZCV5lvjNivpD8kvJL79K/gcWBiq4Sg03jwIhoG1uKkxfAGy3XeK/jBz4pJOCtaVqTJjlEAGG4w5RiZ8cXLZ1zV8A3HVX1vGrm7qits40Jni8iZ+b8StcP+rq7CoMQqDtOyXDAJhyhQAOyXA9IIQPoVPy86zaXbKFW6IiWaEpRKFfq0x6cOUFpxCFa9YUTohgcUsXjPBF7Qnmr+oSdhdySD++eVQwGwWm++wDHHts3poiYWDlwSVp6KCKWQs6YEPzVlnbEhFB89QPL0okQ9nLe5+W2ORnnrT5LcauCKF5NGm3/x23/HBlTlbxZZsyuUp14aLg8nHqy/W9YPFiYK+9XAq1a2e7q1ev7Mu+337AuHWZfBieohk43NpXjfgj3nwT0TRIKsE15PKVlXjjDWD02v0K33jAa/zilBMwerTNTpcUD598AnTv7t6GppXvmFGKvDr7ZOmyqTHNyphGdryrlAhR+PUUa6+oGTW7ZQ2Wdvehea5vV2ExP2/cmN2sRWXXjromZ5vqe1/Kg0sCFd6ZJP94WRf84x/Af5/MU84DEmlKb2VFnBEC2BSi1K4IcFwf19fLlSPEJ+45uKz3d+z7CuItsZzju/28h6kC76vL/kt+bluFgJbwFLOQMKjII6Tr/hVQFZqAqDeNd1YeXH4XthwECs7++wNHHRVuHwohnMhn/gptX4tcOUVE+vy7XAi7F9ZYm8NxqVCrS5ekN23ejIJZpJPwKGiIwrY2HHLuntb78jXAeM3OneSzpUcmNvlRu0t4cAmHcpa4Ca6SCeWt+pul4DLiZS73mcOz1JgyBVi2LHHqvv3WppDDef3Tn4DVq+3rn13THeutol9Z1Dl3rr3+YfCKQ/Daa859CY0SVHABwF13AXeOuzTv7XgeKl0OuGvMefiXXRTYKVPw0KTfeGwwl+OOA26+OXA1JCKs2NRNumzq9rPy4HI7JvXFNgeX7MNgDFFoM6ebt6fX0sY2kmOX07vKEdstl+vTwoVy5cwIYd++h0gVJEJ4yRHtwpdfAl8Obq+sPlI8lObKqpyJ4gJeNXn6jam0JI7vG4MG5aVtUp748eByWsI2xTokwv2Y2bzZuVEXurQ3ZUU21PFj1d448rP7ch8cp4W4B+qaO8oJ1rJNwtP/RENmsWQnSIvLKLhoclk4HASYDQ3A+vXZuZRS3Hqrcy7GfCc9J4VF22Vnx/1240b70060PygVxsqUr6UcllZlhZUHVyEteOfOtdwskEfzfg+amMbNuQthlR5cxiFeFxWZDTNnAq+/DrS02Nfp9jtSObj2zfUgEQIZBZcxLnpSse1LiVemawPjz545U339x3/2d1x+uVzZCy4ATj/dfr8QiKYyKYp9KjIMdqfuRGAiX7wYaEoF0mkqXEQdkh+Mo7+sgapl/m07vZVpTrI1HE1VMH26Yx+s8muambRhD/z0U+a75e9KKbgc3vOv3T83tKFlmwHyI9q27zEHl990CCTB7NmKKnKJO1vyy62S/4GFgSsrUjJYjgmrVkkfv/32idBYEVj/kjImiJCtRW+XEBaZSSbDi8eBb8d5j4l98V5Tsr4bF4Lz6pIxOSxe1FU8SiNW7Ov9nCQHg9rWLbCycdvMZkOuj0O6ZsYGy3NmZsYMb30g/nExJGhpAfbYI3f7yy8Dzz+fpz4VmHzPQ+XqdUAIgPAVXDaC7RwjDJUvux7qWlW7BXbsnC05tjw/bgOVVw+uF18EJkxwzpckOXiJrbfJPVRoGcMbg8vP4pptAQCXfnejRMXZ55GCsfzhRf5vtOOyJIovd1RwBUIIYJvcx9z5ABWoupe++05NPSQ0jJEC2nS5nHpWc4atN5XJg8vVUO+zz5z3Syh+rhl5LY47zrma1DOQ7nWQNZXHcIJphMPs6zlEob8ukAQHHww0N7uXc2PA4M6O+9+fd5Q6ZVoU4Y2oBK6syo1ye3DmzfNUXNez3zei+D5EShvHBaHL89tr9smOllY/fl6Fs+88NEj3Et2wWlJWVOC11wyPnBD2yXA90L4iLrdItjg3d467FGcNuj27iK4DQmC3LhkrIV1mKnSVnhCv2N7ONt4N5US+vc3KIXqHiuXOxImJ/1wLlBgWN4eXsEGBsVNwCZMHl8o1uwettoZcQZqld7jPNo2bdaHllnPSbLj9jtQ5swlHXN/WKfHlrLMSMfbmzcM+zyRihq1p2ta5bmP9JFLoOjBr+VaW+4QAB/FyII/XeMZS63srEOWwECtxjLNBS9w+56Cx7KTVztEH7FsAtu1g8y4qMb/v1LkOF1yRUSDIGmekyxmfr7SCy34+tFTk6R7c16T6ZreD83Sh8XvKR47MRIe/+MbtHcv+edTluOcef+2Q8oEKrnJDxvojorgNnC0twV1khXBeHxfnmSNRxWqh53ifC+GYCPWbFQc736PvvC3dNycs+1hRgRtvBJ58MrNJxatmlw6t3gWPNicxvdg259AwntM2+YSktY0dvPWL5B2n50dFTjgAGDUq/7IyVX21w6/BZBSQfYlS4Vlx9NHyZdescT6vzz4LXHll4C6RPFFQDy4bjF7GiQ3heHBpeu6NbOXp7FqlTYHsn5j5zY1tHbBu81b2CZUA98ErFaLQouljd1uFDhVJoXJlJfD44xD/fda5PhcoRyswNpPvqlXAIX851fNxocKbpzgQAof99ZTM9yjeSyQUjOvM7ls4x8tMvb//X/+LsHixuR7nY9w74j6WVG3eBgO/yeQkcj3E7JJjPCCl4NIs9iWRXlPJGN/YvJvbRmDJ1zqKKOfUU4FnnpEvn3M5izQkCaeR/CEtNdQ0rVLTtCmapn2V/N5D07SfNE1bqGnaR5qmdUhu75j8vjC5fy9DHfckt8/TNO0s5b+GRBYVD7Hb/DR0aMJF1q3hRYvsIxcKwYgRJFzcFoROgu+YXmm92EtO/hX5VNFqubHFVeTg6tKuWUrBta7WkEjUTsFlOLfGz+lzPmlSIpHT6NE5x7a25tY3fNZOrv0iDhTporQU4PueR4T7vbrLLsCrr9rv79sX6NdPYZ+IfywegJdmnYoRI0Loi4G0l3EKlWOkFw8ui/vdcszwubjP+okGpd7/Db8OO737H6C9Q2Jwt8HLkIPTTIfKODqkcnAlF/uBFeEcTO2RPTeFyEVEaVLpo+AaazELQbpNkrmWFuAPVyiIy0WKFuO7ZKdKZwNJ41xj1tfYKbKy5ifFc43r3Dd/vv0+KQ8ui21WHlwua5NB/xyJe475Dli92lSZsG/d49qpFEMNT58OPPVU2L2wZ8aMzJDtJbxhzmPw2aeJ/9OmKelXqHA9qQQvovzbAMwxfH8KwHNCiH0B1AK4Lrn9OgC1ye3PJctB07SDAFwB4GAAZwN4RdM0uWC1hPjFNFBoGrDvvsAJJ1jPfUIAWL++MH0jZY/VgsotRKHTEsw2/vfGjQD8K5yMSrWffkok/7ZDjJ+Q/KAmROEN316CqdW7uffRuMy19eCyJn3O330XA5b0hP7eBzllRk72nruMOCM+/Eh5nRs3Ap9/rrzaglLQ9e3y5QVsrLCc/83NeFuN0yq0Frm3L7vlw6RJnpxDSb6xeMj+M/1M/POf4bUPJNcE+QpR6MWDS+iobu6Stc0qRKFfoZDRCcsYovCLZT0TGw85xFe9iU7ZK7gAoENl0oNL0zB34074ernHsM0UQKhn4EDLzap0UpG9ZJHtWJEicT5/+1ug79wT7AtszihbdT05b9tYxa5eDbzzUSevvSQRZ8IEoHdv78fJ5uACPEQikB0i/BjDBBl/kgYiTka3Vko7yzWDS9+feW9nPDn1HFhZINl6uHlcR5XiSPzcc8Ddd4fdC3uM+spAU+HcZG6MMWOweXMi8nRUKNaoacWOlIJL07TdAJwL4PXkdw3AaQD6J4u8DeDC5OcLkt+R3H96svwFAD4UQrQIIZYAWAjgGAW/gZQJKt8Dli5NRCexbGPQIKk6aAxI8kGQHFw6NOsiHyQUNpVBFE5JF6ZRo2z2//BD4r8hprwKD67Ztbvg3QVu2W6BdhXuvy0tPDSdpLSHmBC4eOifMLs2Nz56xYZ1ch0ucu65p4ApsMaOVV5ldTVw0UXKqy04+Z5e0o+A7QMdXZ56Cth7b/dy46r2xvvvB2jIh8DAbl1w1FHAggUB+kLUYuvlW+B+mNvP2RBeiMKYyF4kW4YodBupJEIUDlzWM+dZO+rGI6X66dimxfMrdJHxZNc0XDfqapz/7S3+24KNRTrxRr11aC+VXoOEAMCnnwLDVx9gX8Bwz/35z8BOOyH3nrOIWEFKh3vvBW6+Wa6s8RZ4bMqvncsaCuuN2bm0CupBlLTEcr1/rQRlKczPhGyIQqtGXdbaaVmChWe3qhxc0qEgiTI6dvR3nO2l1XXccw+w115+e6Qeu+f6hReASev3KHBvygdZD67/AfgngNQItB2AjUKIlCRzJYBdk593BbACAJL765Ll09stjiGq4MI/G8kJLlWsuhrYHGdeHVIYrAQj7h5c9vf0MTssxe+GX5+7o6YGcx/+GIsbdvDTzWTHdOM/W95Z8Iv0Z1WjUatL4l4gswDWdaBqo/WqKcugy7A9dc5bGhNTWsfK3MTPFVMmOVdo4txzgQsucOl0BHnySSjzenHDbuFntz3o9FYss6MQ+bf6EmvW5rX+fBKPA0uWyJUNJIAyeBXQCo8UAiGyPbiUKk+8KGwtykoLq2SqN9dlqmfSvGzvMU9tpjy4bEb8tLBMCPv8HRL1lzvG09CvH3DTTdbljFfhgguAMWOsCuV3dhYi/22QCKA4H8LEiUBtbW69Hw/bLki1aZau28JzPST/aI2bpMsaFSOLG7Z3LmscDU2x4+ymFWnFl5d56Ztv5A5JKrgs17/pEIUOXbLy+rZq02VtMq8umQ6gnUkW4JSXnCEKSxbb+zYeR3V1Qbvim9tuA/rMPSl3B9eXSnBd2Wuadh6AdUIIC+meejRNu1HTtImapk1cz1BxxEAhnvk99wRu/eF3Dn3ITID932nEf/6T/z6R8sJWwaXrCe2DA9+tOgBNMQvljq7jwAcvwxXDbgjQMfvE7QCg9emdXVZRiEIAaJFQcKU61vflZnS/9bfWRZIL2BWrKlDf2jm9PXXOU7+to0UcdStvNKchadAg4Kuv3LtNCkcxKSnyLovzE3+ljHhj3vHY4lJna1wrKEMtEmylSQXKCygZonDuum6F6Y8Elvk0fA6pObKn2lp/FTlUbqccTM3lIhZH3GK9VV8np0BLf6VgDJMmAX36uJcbOBD47DOLHXYDZ31doH6liKzMKLIdK1+0OsNY1NCQ3Jh9fz76diJsupfLJ9pyDed+ee/JnvtH8k/FimSMs2R4fyfO2T2Tn83V9sLwuTUuF84wq0qnBrwodIwxgp2w8eCaORPQLjgfgPN7lVtO8UxB576vauya+NC5c84+q9DJ5jpf/7SrXD9KjGKaXvz09frrgTrTEqHo38GK6aJFGBnTteMBnK9p2lIAHyIRmvB5ANtqmpaSOu4GIBWgeBWA3QEguX8bANXG7RbHpBFC9BFCHCWEOGqHHQJ4GxBrwnhwZs1SVpUQQGOLhLDbR71e+WzwlvjHP5R3hZQ5tgvCRYuweWkVYg4Wx3E/1sgS1LZkrAxFnXUomSyWLIFbvjBP7be6WzmmhFnrvxpnW2ZR/Y6AENijZzeMW5eJcWZeIMf13PNoqeBiSINAKJ2OWlqyvmpaIoFtMVKIaVo0yFuoFjNO51IAaGoybUy+HdW2bInNMe/e3EX/clUu2N0Yy1dYby8Q/5pwYdb3WSu3UVe5h4HFyovZ0ttJ0psqp664abtVaPDp0z3VKYNR6XXwX07FhPU9cspssy0fYmUEncxUmmNzcC57vh2dKyDPwZAsU9TUJD6YFgp+bmvxQb+cbWtqO+Onn7zXRfJLOq9USsHpwK5bbkx/9vLW+9KsU7O+20a0kH3PdPFcziKZSsD1Pq6wliksXZr57DSsqvLgsu2PkweXoaEbHt7duoxbv0gg3ngDeOUV+/1Z944Hp5bUterbF5gyxV/fSGnjKg0VQtwjhNhNCLEXgCsADBdC/B+AEQBSZvJ/APBF8vPA5Hck9w8XQojk9is0TeuoaVoPAPsBGK/sl5DoMmCAkmr22gvo0QPocuOVSuojJGysFn+2Cq54HNu+9RzeNYQAlD42IAOX9cwsnocNdz8guQhVkYMLAJa6hH3Ianpjjef6U4K7zm+8DABYvinXar6dlmvxlq/zTeQYOdKg1zKbcSFaiWajRrm8zLW2AvPmWe/7cNEx2HLL/Pfhlcc3Kq1PCHkDXGKD0wMQy1XuFBRD35R6nXrJwWXRrtV859uDyyVEIQBguMRaw4rUWsWiyufHH5f22pqzcmtf1WsXZsceZg4ub/zvf8A2WycFmlVVif8SyqdFixJ/fhRVDFFIAODsP+7iqXxaeJ4z4drfS6efnmNvlajrB+ucs+NNkrBYDFi40EMniXLS85+E4sX4Hr9th8225aZOTeSUTtHQ1slUjwQSE67UnOzi5exWuWUbQXJwNTZ664cMqWsnm6qEnti+sTvFf/4zcItFitOffrI4ZvJkf4YDpmM4zRNAPgeXFXcBuEPTtIVI5Njqm9zeF8B2ye13ALgbAIQQswB8DGA2gMEAbhFC8BU9BAr+7CuSpK1fnz+BpZhmbSlaTCGtSGlgu8iKxdCq5yZYNZJXhUvyObYNB2CkQ8LzQVWIQhlSw0ylm1LNZhE+eXLm+yNTzs0p061T7gKcgq1g2Obakhx3Tz0VeOcd+/0eQ7BHhkLk4CoXDdeYMcABDvnkZZF9abIqN27A6uAdMHDvvSiIYq4cEUD4Ci4DQsuPV7ZruxbDg6WCy209YDPOxHVrwdfle0/IfG9tda7bDgfh3YC5B2Ftk0KvOOLIF19VWq4Z6xuS9/Wbbyb+SwywBx2U+PNFg0TkAVL0qBZS262SZi7ewnaaGD48IcA1ernE48DRA+6xLG++9V97DdhvP89dJQr5aV2uZ68dxnnx1oNH2JY74gjgpjG/T3+XXYHL3tMff7s19LjI9Y62QssOy2/fuE0o5dVrMlUZfonZEHRja67HpGWVk5yz4HSqtF8L2P6E1AsgXSTzTuqamq+t2eFu0ybg+++B445L/Nc2ZzxjX5h1Gk44wVt7OW1qWvEruMrk3TzfeHpzEkKMFEKcl/y8WAhxjBBiXyHEpUKIluT25uT3fZP7FxuOf0wIsY8QYn8hxDdqfwoBEEnVdSweTp9qaoD9/mDv7ZJFr1757QwhFlgJYGyVVBJCN7uE6deNuspTvyxJW25JPM9CKA1RKEWyf5U+lGpxUYF6g/wjZhGiEFuUtkR52bLoTB9e7hynx4KWXfZwDe2NIArH9g3evUqdmDTJ2kKcyNPn2z0tt0+v3k2Je5wQwJo1LgUsOLH7gvw9nB7qlVVw+cWyrngcndsZ8l/a5kmTM2KxKyZlpOOBY/5+otL6osCgQe6PgcztdOHvOtuuSwFkctxITM6trYm/pmbvSl9RU+teKAw4EatFwfm0nOst6v36K2Hb3MknA4cdlvn+r38BU6v3kGpfIu0TyTM1LV2kyxrnsutHX4ULL5Q7zhwK3+7dWvaWvvyFE7Dy5S/kDPtS463PEMOWiRQtyv53+pkSnXHPR/b3w76z3uEYgzy5zy6Eg7m4VCnixrBhmdvLrOB65hngxORyKRYD8P776X0t8fYYa+3kmkNVFdAvGfFVCGBzLGP8zfd8AgTz4CLFSAiL6fb/vg+PP17wZrFkCbBwlXvuHoCuySQ6pBbLmzcDzz5r2CEh0bQT3LwxT9IsRgIpIVdynFEVolAK2TYtQiHoqMjK9xHTcxfbYptt7ZosCZYsyXwu1AJR9vSNGwfceKNNHRLvN8VGQXJwiUSqiXlr/IXpIiZqkwJUg9n21KkJxbHqcbBY7+socVOvIyy3x0SlkhM8YgSwi7doWACA7lvUYcKkzKvZVh2aA/cljZffZVHWMp+GmxezXQ4u8zpip50AXc+eE/y64NqZEyfp3tnem+dXu8723NyMZaU3hp57bmLeTbHffsAXX9iXLyRbnnqM52OE0CIp+XrmTffw207eCyQb9R5c9vWJWNxxSG02DN3zpstbpHB+D5+9t0rmA5K4GMa5rDnewXqctHjvbF8hZ0hjvgedetQwZip+XL6rVL2AvAdXOidZyvPLw3N22WXAr3/t3OaCuh0d60hFg/l+5rbS7abXD8UayqOIMC655s9PfP7Zz3Jv+xyDVIvUAjJMmQJcmcxWs24d8KfvM6lrIjjNkxCggouULCoGuYa2TtiwIXg9hFjhZCU9dizw978bdkhYlZstwpTiJYFtckFZyBCfmRCFLovZmTNzNulCQ8vgTGiJmIXFsaW3nUtTXGip4e23E2FbvGJ8vnbcEXhj3i/VdSqf+Fz0e0IIvPQScMBdF7iXJdjYuoWtkhUA8PXXAABt+rT0piOOAM45B6hQPA5SAJZnFJzgmlWbfdX1yeKjcMzpW6W/b9UuHAWXdIhCn6cqp66ePRMKLuP2gAouO+Xbjp0bbA+1Mm4hiZxAOSnRli8PpS9+iOqQ+c/ndnYt06myzbUMSVLARbemO7+TZXVl0ya5cuD8HgX26JL0upfJeSXzTpwygDJwyd6Ts75L1ePSn3snXIhT3r/BvZ6UosqrgUpaDmDYZOi3VW2ffAJ88w3gJExrc5l3Uy2ceOexjuWy8KjgkopOU0RoWuLdOfW5qcm5vGoWLChMO1deCUyv2T3xJaVdK2Y4ASiBCi5Scsyb5318sJvk/z7uUnTvbihHTy+SZ1KCn5z3NBlLsnzenxYLW8eyQoTiweWHuNDw78nnGb5bTI2SFu2lQCwGNNjIAJub1elfVLxQOF1243vN+vXAmqZtA7dXCETfNzIWk/lqA/bXuOxocxcg6qLCWclq8xI9Zw7QZ+5JPjtmDd9/8oyKE/zJJ4n/U6cG60pYc4xdwnhFN5/l46LYg8vu3Dn9hJFr9k98cIwvWfykTu38+cCECdZl6upcwqUNHqy6WznoQsOKFYnPQXQXWtAKQqRU15l+2dJK6e83X58FxrPtNFZowtmDK4sK+WsoFi5KfFD4m4g30u+uEnOQZVQTifjoZsMn24i8rj3IMLV6dw+l5T24zHyz/JD05/Tvd6lM9O6T+G8hb4vt6OzubmssKxPCQ/IhLfVxNp92kx5Pdf6Ix4t1ms8Q+kksDajgIiXHAQcA48erq09BOgZCpLFVcPldaKvCSw6ulAdXARVcqTWBpXJKgo0tmWS4Vp5wVovyUl2HPPMMsLVN1KWrrwa23bag3XFE1xMKuV0P385yX1FSAMt4oRetvE89EycGryN5MmW8VmVzNNhRquNOFNi2Q6OSEyw2Jz24JPM/5LByZbIihRc7qAeXVYhCN6GQbIhCAIjHs/I1TZpiM5e7/Y7UwG9TTmqN8Pnn7mWKkBdfTEQGqEwazJ9xBnCMTcS/c89NONYVBJvJaML6HthDLnWRIxwyS5xBgwConxtT45H220ty9rktn7JvafvSOR5cqSgTP/3k3kGSF1Ih8byGKMxsNL18WIxvxrlz40Zgft1OlvV7MQRcvin3PciSVHIknzm4vq/aN1NErkW0rd9oW6Xbujnr9KXWRg79A+C6Dih3mprCt+PJR5SfSL7X8h4sOFRwkZJk82Zvg1ypW26QaGI155329h+wcqU/Dy6/yh0pku27KdE6VrZlPLgKKVaQ7J8dxvOdDk9hxEJb4nZJ4nGgutpXd5Tz6KPAzTfb75ddfy1apKY/gLpxt6UFWL3WIm9aka4pCzIfCRHNF4EwMFqx+L1pNBvDBAuC5rIp1vs6Mji4pWzRrjU0pVIWScmDykvda/RB0mWtum0laHMNcWTB2rXAqIUWeUJ0PWv+PmrAvzzXneiUc4hCqXWShFdnFionRh+0tQE1FssWM3/9aya3669+5W5LsWxZ5nOOIL7A702B5ytOeCWB5WUMQVLrdjtl7XcomxuiMLmB1rWh4cmDy+rimo773+tb5hQxzk433aDjqWlnW9afNc4qXvx59eDSfnMeBg8GZtdmPK50SbmD3pBIyLSpuV3OPlcFl3H/wIGmLto8XEL+GqaLm36vn4hQfpg/Pyt9b14wjzM33eQvT6wVqXP0wAOZ4AWEhAkVXOVGGUlGZN5lzjkHmDbNvRwhhWTCBECrSWpGUpmKJRZpec3BlcRNqCEE0n0taIjCJH7yFZgXyGfsNie3jE8Prr339tydvPDii0Dv3onPCxda5jzOIWzrLhmEsB/ry2i688zYdftg1aqwexENBv3YlfdKGbHpmVdt97WviCsZOH5a18O5gE/L6SD8qV+wUJm+QhRalL/tNuDW/qdYNKDniLlSjnBudVo2bbNWkTKCmTVLqo00IUt17rsP2E7SeD/FsGFy5YIq5FVB/RSxJfnOoVLp+tBDwOqmbWz3a8L5nUzWg8vMg5POT3yooIguLNK5nKUip1hcJ5Ny8m8P5t5HxvfO+okFzh2UysHlwwP7nHNci1iypGF7NDUBB9x9Yc4+N1mBcf8RD18oF6XJaw4u5K5vDjgAOOoo4KqrpKrwzf77A8d6SC/mRkuLxcZ167K+5uP9/rnngBEj7PcXYg4v+nUCX0aVwNmzhBACaGzJtYwwFypk2LCoM3hwIjd8Y6xj2F0hZYjdPBabMQfa228lvqSslfxakqki2b6bcMi4SAwjRGH3LeqdC0qsfuJWluo+f0q9S3fCYL/9gDvvdC+3yy72VuEqFpEq1nGlqOASev5t43/zzS3o1SvPjRQJ5/7zYM/y7Bw8hCgMSuq+1jSm6fBD68p1zgUUxDbdodOmYBV4CQmcB6wMOixDFPq43SvX2UhWdD1HWNinj/f63fJB9J13gvdK3fDq8aUYo6cVkPAcv+MONXUHDakaGYpU8hXWGBBVLOdYhdc29d7y738DNS1dHEoK+fHPgwcXCZ+0QkXiAlsWkVhDGFf5Wtx+/siq36U/O3WWTLQke9PJ/P7U7xDCUWE2o2ZX+2nSpR3jMz+1apcs4wzbNhWFKJw8GXjvvUBVSNHWpkbptHw50KmTxY6UhWse8HOKBw4E+i85Um1Hfv5zoMUiR2PYFKswooihgquEGDgQ6HLtpY5lJizsmt8wZkXIww8D3d56VqosxyhSCMToMRnrwNWrE//DzsGVxE303qa3w73/7ZZY7BbyxVw2RKHVyk/TsrzfLD3hfIQojAo//3mO8VaO4s3ut5hfSArxm1vi7dKOi24UbZ4tF6Zs8JYsmgSjWJ5lILuvlh4uxJE2PTecaRYKboaOlbHEB7/a95BvyHk1O+RsMyqfGhqAFSuAqjorSYoB0+9YtgzQl6+0LWeev/1E6VKyDtoyN6SUIyFrms23y8iRCWvqUoKKAOJGIYdNDYD4ZrD9ftn71a7TvOFDIx1eX1GIQitk71Uv5m5e5z4Vz4tsmy1xewN8x35YhFNPl1eYg0sky771FjBlitQhSqmtVRMy0DYCt09r2+Zm93WYn/vof/8DXph5uq8+2bLrrtAmTFBbp0Luugs47TQAmwIawBFXqOkoIVZavDOaOeauU7HAJpFlKeFk1W/G0pWXkALgtCbIcdn3m+xWFWmLcveiT/TZPn/9sCH1EuB6DiqtczXdeOCY9HcrIwCr310sypXJkzOfHdLPeKZPH2DUKGDqVH/H2724/fqbv+Dgg+XrKTU5gICGZ6afFXY3yorAL/rpHFz5lbAtWpStdC61e78QFELBFdiTLw8ht7xwVv8bcrYZQxRecw2wxx7APv+42FO9e+0FfLT4aNv95rNmOce6XJ/UGiDQZfR6cMj5cgoh2M/XWNPUBLz1/b55bV9AK9rBsr6tc9hdiBQNETkf2uYm4MexsqXtdxkHOeODXKT3aymgefDgMnsdb9uh0bMHl3M5eaQN2GVDFEr8ju/XJsduiXNld0t3ahezP8ii3qxHxu44jyEKdVEBCIFrrwXuvlvqkFBYvBgYM0bt8PC3vwFvv229r3PnRL4uR71RnYvnYAEtDwoRRcMvgwYlQzguXGhfqJisLSMMFVwlBNdCGaZNyxbqFjuy3gykNNA0kZvkNmwPrpSCS1bgtnJlKMI5t3PwxGc/s9y+ZbuMpjtm9ZJgseiwXYbU1jr24ccfgfXrHYt4ZvZsIObwjpCia1d1bd50E3DKKcARR6irEwBiohKLF8uVdVoLFus6UTDuXMFRpazO94i3776J8SPdHtd9nmnV7S2JNQ1qFFxuik63NpIKkyiNYcauVFXJdWz+mq0kK095cGXPvZN/8j4Wpg23gzyN225rvb2hwXp7AS6UrtvLkcK4TyzblEnuaeLrr4Fr+7qHjQwy1hUiPy0Jl1WrgJHLC5f0Vvt8gPN+4/0qG6LQmFyIk3s4CIv3bwfM75wCWvZxNsYPxuHTMo+XD5QruFLpBhyKDFpxqFSTTm1NXbOT/Rym6znnWGa9Xr+pQr4wkj81SgsuC2bPTuRAOylYOtUsvvwy4U3Vq5e9o0TfvsAxx9jXIV5+xbkRGeGECiI4Zi5r6Iabbk58TttXO/Uz4vdgscAVXwkRwec6NP72N+CPfwy7F+ro3Llw8wOJBhXmJLdSFmF5HNLTCi5JCq1hllTA3fvuQTnb/jf9VLwy++T0dythiFW9tiEYXay5f/lL4PbbHYt45uCD7S2wgpDPtZaKqh37VywudiaYc6N4OPJI4IorgJ73nONemESC1gJ4cFXYjG4//ggsWSLRRiyGTz8FTvlKIlligUhZOAOAWL5C6phVNR68LYTIEWT1699B/vgkSjy4Tj7ZevsXX1hvL4BQ4uWX7fVu5uZDk5FE1BpvY2tnviSXOH/+M3Dmh8Ff/GXvEq3VOfxL9u0m6cG1dq1k6ySfpK+WhGdujvJFmBRcqTzaJozrfCfDzKz3AUnv5SjipD+68rPfYqydM6QQaF+RfR3i1RvT++zel1as65guI9c/Q060iJ7Ggw8G5s9XW+f55yf+jxsH7O4SGV/TgKoqix1uIcTKWGnTqrdHn9dMMqWo3mAlBBVcJQSflzwSgcH5/fcTExApHYSN/F0ILSMgSy2wQwyBs/82a9O5XqQtzTStoI9Nqi0/C/xxVXtjek1mZScbojDI78uHwrqpyf+xERjilCOGfhd2F3wRVliyckaYhltZpkwBPvoImLY8uGvkhg3e13Fc93mnICEKba7LL38JXHaZRBu6jvFjo2XVtLAuk5dLtNplizfh8VyqmIaUCPna2Xj52SW9K8AEKhOG/r77EgIoO0ezIFTPXZflYGJJHs9DuYYoJHIovbwSxlGa5pxn2OjF69Q3baFBYs0QhZEgbWAqMZ6Z1+s5Ci4bzY3xOMcUVB7eBzx7cLn9PF3H8uXAovrcnJw5uFS2Y6cGiGXLbfc/8YR9HzpUZK+FxPffu7fpMURhXFQUrVGkEencbj6n6urqXPlFlN5Z8x0mPggc0gsHFVzElU6VDJeEmhr7fQVyrbrmGuCWWwrSFAkZAS0TIiECCq55dd2xxV47AvCwKCq0xsQmSb0fckJOCOC1abn++bY/USZuex7W0eW4eBJLl9qf7hX2L1NRphSVjVFH14Hp04F2F/1G+hirmPR3j/eWkyhFfT0wd27m+9y5wEsv+aqKuNDqkOwcgBoPLs1lgHdp45y7D4c+anTgfqjkvYXHpT//WLWP1DFeT6WUAY2bFXvy1TaQ0MWuDZvtIp5/wViFw6lJdeuxx4Du3fMTweLdwTvi2GPV1yt1j+g6gqg/OaeWOJqmdv2bEqA7Nemyv6FBw5VXuhfWjNEuSkDAXvQIw8zhI0RhXFRkv6/X11set7JxW0Md9oN7jneuw80kreCSqCvFsccCI9fs76leK7p2bIJ4403b/XPm2OywSg+QPOfHnbU1vljW0/owXT7MJADEI+z9pgJVU+DZZ8P7OkAInHQS8Mar0fTwLjgyizkSCCq4iCtR0syHhsOAc+ElFZg2LWHVUOCmSZFjd211oaWtUNKCk4jcCLrseKDrBR070h5ceWgzFgNemfKL3DbdOmP3HWr0lZdfDjz0UPB6gLByeAS/VmLCJNsXyGKFc27hEcIm9IYDTjHpvXLSScCJJyY+//OfwG9/C/zlL+7HlaNSOyiOObgg1HhwOeyTyfUweOL2iLdGT9i5ZLHwdM9lCf+c3IpsDFTO3n0mHnnESw8VhSj0eLCTDO3bbxO584JSDDKR4aNcvCP9MnFiIGNCzqkljmoF16xZ7k1KiIz79cuUloIeXJEg9f6tHX0U9JjzPGyes2J6pZRS5Z7xF2PRIus6/OK1Htd5QwhPaRUdcyJDg15rk0QSQLzRRvlhIUtIff9pUnv7BnVvspOYXhnKRDpqZEQmb0lWrMjNQOH6C4TAmDHAmppO+epWmqIYNTm25x0quEoIPi/5x+ol6YuBFejZE7j55jy1WVxzH1GAcZGaVoRE4UbQdXmlhK4rsxjyghKliek5t1NG3fzBybjqqtztw8eYFt1tmXBOqXFaVsF1112JsENWfPxxfvJuGcnXvFJVBczZuLNc4XXrbHcJAeC119R0ipQ1Uvd6i3PeDekyJhYvznx+5hkp+RrxSXNBPLiEbV2bN8u1sX5zl8D9UM2atQEEaAMGuBY2n5XBKw7BAw+Y0phEMA+JU5vDhiEtyPTL6acD771nvz8Ky0MAOP23wUO1WrJxY6DD1zRti2Xrt1DTFxI9hDfFuyuSlUkrTmX7RgVXJDDm0Gz57GvHsjkRP4BsBddOO9keu+++AGIxR8NM4z02e0F7VDdvaVvWa4hCV4SAkJlcZEI5ChdFSOMm6+0WsgSp+S6VL1TSuzpmyL1dWwt89pnUYYE55dTsa3HZZcC0aXLHLlsmH46YuZ3Dh0N64aCCq4Tgg5NHJGbT1jxFcozKiytRj5MHV4oQIxPmMm6c/AtdSKE28iHcim+0X0FaCZ1yhDwWAm+xbr1U208/DTz1lFRRPPYYcMopcmX79QO6dTNsmD5d6ji/49EbbwBDhmS+X3QRcPKXd0odq82d7dynJUustxfpgn7d5q3C7kL5sXSpo4dEmm+/dS2yse+nrmXmzMmOfMx5vnA8MeUc5wJ5DlE4e7ZcG8aQgFFBxmvBSNbP9KH4TXHBBbapTHJIG27nw5bX5ro5rdOCLIV0PWG/MXw4sDwZcddK1yNWrPDfiE9cz6/ED5e+mxQ8k2c+elLgOkhECWEC9SZzsS9845ir0jZwH/2wq98GiCqEyMrjo//wo3Nxtxxc22zj3N6IEY7vKsY7++DzemBq9R62ZaVzZKeUP25juBDK0hIIaC6/Mzc1QCwGfPJpBT5f2tOxrCXJa5AOVehWHJnrNn48cMklUocp55NPgM8/lyu7117ATTdlbws8FPrwlHZ91y6gPCjKObhST/OgMdbv+Cd0X8CXQUVQwVVC5Gst1BJ3cAEuF4TA1KnAKkPMZDNO51/XgTp7z2y3pkmZYVwIxmP2luAFp7FRvhvxeEEVDPkMURh/uVfACnKlX2L1GunDHcM+GPatXQuMGiVfZ22t4fuw4dL98cN11wF/+lPme1OTmnrfXXAc7vjxUjWVRYT9Pno07C6UHx98ILeGkvAkqJ8wz7XMQQclnokUURjey4XL9pnoXCBfIQqN9RZprhVt5Ajfx26usLc8B+B63ueOtvfkNaIkRKFHnC5nkH6sWwfceGP2tq5dgRkzTG1syFOM9CB8951rESE0T9b4QYjpVBiULELIGahIICsg1eBB+O9CczI62xX/y4RCX1vTAQDQ2AjsuaeadogEQmQ8sAHE23V0LJ7rwVXhaX7/7b8PxcT19hc4n+/RbvdvY5OP0Jp2ReDNAPXpp4H27YHLrtkC36/dL6cuWfS4XOkg53m9nL2qNF7kucb3eCekDX5kLYmS3HcfsN07zzqW0bYsnPd0pGf51asBAOf+yVpJvU2HzXwZVAQVXCUEjX3yyxFHAM/OOMPXsb17A9tu61xG04ANG6TS95ASYXmttRWH8ZKndCORuA8qKjzl4AoDaQs2B8ynOr5idbAKLc5FGGGU/KDyvsuHN+LM2l3Re87J6ismZYcqAZns2KdCyRuJeaHI6NLOxZNIwdxVYSUkXbYs89kQtraY0KZM8lTeeH9ucf2VruW7tLe/Nt1G9M+t1IK0giuIqMOuDTsPLgflSZBntNImpZVZqBVJb+UpU9TVpWKgi1Q4BKIUXS+4DMSTp4APB4edf30Err4auOOOjPcmKQzGy6VXOIc0tnyXM1xQNw+iT3/ojs3xDl66FxzJ8bTLyT9HY6MaJZcQmuOcbJ7DZs50rku2P8MWymmHheEYL4wfD+y4o+fDlOF33LP9qV6SriGhD6MjhBxa3Nk7LpLruCKFCi5CCoBRruHE3nsn4u8aoQCrNHnnHeC3b/zacp8uKtILwUi9k1dWyk/A8XhBc3ClnpN8PC/xoIsOi7fXDc1d8OCDcoe7LWCLxRmgWPpJyhNlCi7JQcj4XHOeLxxOQhYNUOTBZVGHcQAsUgWXZ2TPZbJc50r787LLFnJhEELJwWW4tOvWAUuXZr7nQ8FVKkgrIYXwHB4zp4qWPMWRJ6Gz38NXYfBgNXXF9QosXO8SVg4ePQWqnL1P7caId98F+vRxr37evEARYMuOmhrnSGzGEMPpKCo2WBp9GhVcAZcTazdvnbd3p7yE8bVBF5rj3PyLnRbb7rOqSxZP59/HxTKGGldFPpT1OT+taq1kweIi6DqBlAZUcJUQ9OAqfhoagNGjs7cV+VxTFPzrX8DXznlkPTN0aDKZvA3jx9vvEyJz3edt2A6xWETug4oK6YWl20tBvlARotCsxIvpclKmzZuT+VXMWGgpx6/vgYcf9tO7bJYtKx4hWKEVXIV8eSPFj6c11LBh9vUIuRtdhYLLy3GqBIClTIWmK8rBZVFHe4OVa6QsV+TxOqKmTuVXX0mWd9hnTALvhJIQhR4PNnpwnXkm0KOHXFXTpwPPP2+/307pnhPpQebKRGIRmc3Gls5oHP6Te0FaxxAHFm7YFg32qXI9MXLN/tjvgd+5lvMkSHXJURB0OjjgAOCZZ4LVUU5st51DbmORPZr6MpgwXNCg7yF3jrsUffsGqsKStjZg7Oq91FSWzullP0fHRCVa4vbecMfumJ1L2WGJLXVOv5i8GwBgi0o5za8w506TJB9TUzyeCVvqFelpXiLcutL2iOtd69eLkORCBRchinASjgUZrzjW5Z/HHweefFJtnWeeCbzxhv1+x7xKhmnwuHf+jP/9z+WAQlFRIb1Yn7xsu8K6WyfPj4oQhWbiknU++ihw8MEWOwKugAtx6QtxdxWpTJeUAZ6fsYEDbXd9uqgnUO2eE6fQHlznnFM+jkNOOJ1qTYPSi5FVlXEALNLB0Kt1bOr3u6ZjMlr12BATcpYca+q2yGpbKTaVGvN8pMIHbtqU3Ocw/T/5JHD77Qq6JVNonntuQOVtunDEZ/fjuj7HSjQWvDUavBCVaJq6eyq+aGngOurrnffrOtC9e+BmSoYNG+z3ZeXgcjHWtHzPNQz6KhQg+fAS6tcP+MtoRfmLhYB2nPM4/quv/4a9P3zcdv/fx12aNcy3OjjcyswG933SE3PnAttvIRcLXEBzDqtbQBnMv/8NdO4sV7atDZg/372c9FgVEW+JLu19aviKGK5R1EEFVwkRkTGJKCYKeo1ywClcQT7qdLquuilWdXU1sL7eOdFtQdDkxVtusYZVk8+FgWyIQlsL0gJbHzt5DnrloYeAt99WU5fxNBR0XFuxooCNkWLkbz9ehn//W6KgxI37tx8vA9bahP9QzMEHA7fc4l4u1e18zHPFhpPhhQZ3RYsXsqy/jQNgkXqkeH3PSM3Lk3+S06w6XZuvlh2aKuRYxwNfHZPVtiqqqoALXj3bcp/V5dwqmWLV0Zgpue+TT4A5c3LDmcumApMyJpJdGDhJfpPMnAksqd9erj4FfPL9ztKe9HbwXYqoRINQZhim93ldUU32xOOJMazsSVr5bFFvv0Yzvum6TdVu84yKkLmVG6qUG944KZDC4mRDOmUtZt9BITSp87F2LSBaPVh1paxSJNC0hGxG5rK4KZ+D8N13wP77q69X14Gn78tjx13YZYuNvo6jLJwAVHCVFHyo84jEDFZfDwwfnr1t2jTpw4M0TRSwerWaeoRIePIAzsJEfZV9g+YF8TPPAN2vP09F9wIj65WlLV9WWGuUVIgEBc+Lud+L6ncIVqHDG1I+PCq22ML7MXbXtXdvKAmlCBR+jkrfC6tWFbZhUnT8ULWvu5eJEbeBxmNCL+FT4bFiBTBypHu5VPX04CpMDq5UDVmXtcgVXFfu+5PvU1O5bo1UOadr03vOSZJ1KMDih44bBwyc0cOicHaIwlzlk3szl10GHHQQcMIJ/rpn18TPfpbotxszZhi+SMTDOvRQ4L6JF1rumz9fSkfmicuePkrag88OWkeTqKI3e9c26Lq/aaTsZQqjRgEA2k+dYL3fdIJ8OVsb6hC6gpDH348GFsvnqHJDF5ra+0BRZWPGZD5rLfYePLrQHCxKsxFxuYfENTycxb7f/z4j72lszC0Sjyfm1m22SXjMqZIz+aGutbMX/R3q6oC7Hts6fx1yoVW3D2dZqsgqbok7VHCVEFRw5RGJAWf4cOD00zPfa2qAnj3z0/Rf/0pLLNUsX574v88+Uu/3trS2Avffn/jstDDuPXAX2326KRBQZKIZCRFKAncZUs9JPoQYp331d7nG7XB4C+3QITfa2fz5wLXXZr5rVvlcCoiquSW0dRsnRxJB0rdlWxtETGKQD+AVRg+uDE7jUIXmU2pow4TF22W+JOs9uOuqolRwCaF5znGZEu5pzcHdik/dZV6qI85tqsjBZVmv/T477+Tnnwcm2MhRreo0K6BFo4fwShYsWGAQGjrMg4cdZviSirHok/33TyjsCCllVK7L/bxXnXIKcNZZHtrQs/+XLY2Nnoq7vX9bzguGjcremRW6XAldRF6OXunwfMm+58c3NkiX9ZNSYfDgjAFJly650U4++igzt155JbDrrp6b8IzddT20/4M49VRjOeffG/b9sbTBn4e41zDakSPsE18iUMFFiATazt4DVxsFSao9uF58MTenQXMzMGuW/3bKFtMJXrwY+PZb/9WpCMNW1bQ1jvv8Hv+dyBe6Lr1Y1DR14TsKjfG6KQn3l7wp7O6HJdm5dfH558BbbwGHHpo4IBbTsOWWCvpRbARc6KXvVY/eNIQUlFhMblwdMsRys4z+Vt+YCDWi1zonuy8HHD24lCnzExUd/9AZGQfSpKRM95nMPGz6LToGfedKuhglSZ3rCs0tzlMiNKTTiP+bPadLtZkSKAYxdnn5812xcKF8eaMHl5HbbwfGj7c/zjzFme8/8eZb8p1QhYKHwKMMuSAUNCcsKXlU3k1xUZEbn9SFMWPSzkgA3JfLqf2RMZiMKkKgU7uMpYGvEIVGDy5Vd4ri0MlR9OAyUllhf+Jdva2S6K/JWysLAA2N1u+KGuQMn8yPsNU8mDW9qnZ1BoDRo213eVnTyFKq+pgt26nPAeZmFFGipzIUKPUpIWikHh3Gjwe+/lqu7OTJwOP2eTdtJw/z9X76aeCQQ+TaJAYM2oXUOf3mG//VGV8e9GX2uX+6drSXAMyv28l/B/KJrktbo4U1HKleIPzhDwoqcVFwmUmVmzkzcxab5Ay584JxrLELtzF3bqLf9fUK5yIhsO++wLsLjgtUjZ3wkZC8IfEQpIpMm67l3TNWvJ540dffVJRQr4hxGoZVWX8ahVrpNUGRhygEgNfmnujrOBXnNabLvbKquIK3vvAzPPecfHnj8ys7z59yioQxlaRESkp5IzEm6TqwsUUyu32wpggpajQIqefulFOA0Wv2cyyjC82Xh7aX5yw1LhXp1FNQjNfVSSF44YUCD0+2SB+g2INL9XutritWTORBy3HgtvZhjXVRIdVmXFRId21zrAO2vuLXlvuEpLjc/Dy6PmuvvSZVryfG2Cu4/IwXTvz0k9qc3ypQ5Vnr5EHol6L3LisiqOAiJA/87nfAH/+Y+e40Ufz3v8C//mW/XyywfsE1OyV4ia1bbmyzjUMeAouL49fCbcSIhHdduuqJk2zLtjkkzI5qGEBPi9jOnQtqMZsvK6KlS533X7HPeOkQhVG2dJK2MlxjHUT8wAOBoUOBdetkG5Q4GbqORYuATW2dJCvNZe1aoN1xR/k+nhAjQ2d2x7RpwLtzj3Yu6OFNsudxnRCXyS8TwBPxd71PAeBsdOHEl18mBHWlTj5mrPRQl5oHoCHeVh5SRpH88bttuVGmsOOa4ebvf58u51xN4UMUxn0ouEaNyk0+n+PBJdkXpya9nIeXXgK6PveA/AGElCmyU/yoUUB1SxfHMjr85V7xIrBOCds/+8xzMyVJi12OH5MnsZOS4osv3C+AihxcqimGfIS/2nWu7T4hIPW86EKT/q1OMplMo854VnDlw4NLgpNPBsav3ytwPccd5+yhHgaq7uzGWAdFNcnDHFzqoIKrhKDFXHTwkmTatS6DxiQWA6Yno7TwestTX++QB6FD7iQWj/kTPp12GnDvvZnvdoqqeBy4ej/7zN9e81wUDF2Xtj/R9HDiYKhQqnlZ/HfrKOFalQpN1WZ9TnKEWgrWN17rcCqf1T+HFbvRkuvMMy0KxA1xW1evsijgoVOS1DEiG1HImf85Cz17AlcPvcq5oAcPrqDY1fPgg8CwYYnPA5YeAcC/8cQ332SHQypmXOcIBeOOsQqzgksXGtpdfkngNooBkZwuju+eh9g4NqgIUei9zczrdJDbJ3ctoC5/yCV/38u1zAp/+m9Cyg4NQtkYE5f0Ts3pgw+PjP/7v0RKg3Lnyann2O7L8uDyEwHC8J6kxINLsbFoMYQodPJ2EZAL89ylfYt011RcJ8/v8l6M1iR/iMy9Mno00BTraL2ziIWLKm9DKaNDL5itmSygaksdVHCVEmvt3XlJ4dC03Jw6dqxenZtU2oxxspo+HTj88Ew72eU8dLIMGTMGeP11ix0WCq6OaFHSpt2CqV07YHXTNp6PCx0hsgQ5TuhxeWWYCna/7WI88EA+hFpyv+L554Fp0+yqSNQhPukv12IJPMtDhxq+pBZ2hjiLUr8xcA6uol6rkxJnzhzghhvyV//DDydCFxuJS47fZkopB6DrHKF4ALZScJUbsr9YxZlPne9CzqMy11Qm2qDsfOXFgyvFZ8Ps15yEkPDwa9QYjwMDBiQ+jx4N3H+/fVnjmHHddb6aK3piMaDv0D1cyxnXCHo82ESiJkShYgWX4hCFWmf/UTZykOiYAKRC7XSsdBGwZdWpXsGlNByorYAhm6C/4+d/+QXmzQtURXgIEd0wgGPHRtV0vSShgquU+GZw2D0gFnz6KTJJxk3suivwySfOx9stjvxGKxo7VnqeLCk++cRGmGixmLrhgO+VtOm0sF3VuK3tPr9CyLzjIXbjy9NPLHhS70ceUVNPVgJbmbcAIXD77Q65XZPnTYyyj41tqs6SF15wD5noVocftE3ulkdWfP01cPPNSJuLtsYrMWKEh3Y7Bg8RQAUXCYWqKtciixbZGF3Y4eNmNh/ywszTPNcBAO3b+zoskjh7q6rPwZUmOQ/EVFuGRpgLXvwV3nvPXch32T17K2szdQWrm4LlkvJiRNZnzomu5fbbzz2cT26IQuvzdsstwE03uZcjGVQ924Sopq7Vfaxavz53W1sbcPHFic/jxwOPPmp/vFHYvmCBxw6WCHPnAte/fIRzISGy5qtY3GZsdZgQup5wUKaYgrFZebhdaJEMnQggE/HE4bzpQpOSRzwx5Rwl5//q/X70dRGUXrepUwNXIfMKMXnhNhg7tjgNbSPdZwltp/AZqpbkElEpKvFDZLXWZc5vfwt89JH/4+0mZ7uX786dgZUr7es7/nib8GHlisVk0rmdvNWPE49MOde+WbfFWxSJx6XHmeUNXfPcGWuUvwjIvARI5uCyu66ygrTbbgNefdW9O16ZMQOYvXFn2/1a0vOqRcKx0dj3Pn2A3r2R/oEbW7fEaf7k64QUFdpJJ7oXUtWWw3Rh3vfq7JPy25kiwGnuzYdRRmpM3P+SQwAAMZ/hqIqVXr2AdhXOL/efDNsOI39ojw8XHeNa3/g5Lvlsktfw2OevlO9kQJ6dcUb6s9NywC0hu+xaYN68xPyaKafmvi1l2UqhDa5I6aPqeTnu83tcy+y4Y7A2xA9j05/dIseUKrLXy1jszbm/sC7koGDZ2JDJ76UrELWqFnzrOiDG/qisPqUkf6dT2E4hqeBq0dv5uuZmtmovF9NT1oNr9epkQJOITrjFahgaWaUtIO/OF9F7otgor7esEifsAamL5ARQzjz/lPdzZDfU2V3v5uaEZXi509bmPwyaKgWTLiowYwZw8MFW+5wUXBEdmj14cFU3d0F1S+HjWt0x7jK1FbrcQ1JLkeTCRnbZIp0Py2cdZg47DLhz3KUObSYq69QJmFa9u3S9lZrK+AyEEBmamzPjhGaSA/i1Zi2ldy7Xn6IiB5fhcyoc0PzliTA+rsnMS4wffgC2bOduHXHjnVtJ1XfsLUc77heq84t4RGr+Xr3aen9jg682J67f03efPLNhg2uRsN9HCck3iWBYxXOji48z4WLK9fk0joMX7zXZskz1BoGphvec03eZY11ZLGa93dymFr33eSEAsWx52N2wJrlg7b6FfeQQHXIKrpheIf2Mzq/bybmAxCSao+CqWmdZbtddk9FNXNh7b+nbDACwaRNQ3xo8XKTU+BDRl4LIjm0yHlw0wlFG9EZd4ht6cEWf2+/uJOUFYcRuwHMbxNeujfBAXwA6dADuu0+ioMUk/YRD8lmvHHYYMHt27tzmpOCK6pM8Ye5WWNko55k1pXoPDFzWM78dyhNCKHYTTym4ZBcvra22u9KhSRsbA3Yqwc72jlueMY83FevWWu8oEEJoZT0GkvLAfI8bE8h/800i52MK38Yb1dWJ/x6MHEqVn37yVl6sWJk1ncTKTMEFyClWFyyzSXruEV2Rgsvv3CHV9tix1ttNc7+scK6+LVg4Rk9s3Fi4thTCEIVENUrvqDwJjP/xD+C114AhKzNh88p1XWw8xZ8tPRK3355b5qa/dsDkDRmDAWNEl3ffNdQhqXlQk4NLLbqIsMQwucbsUGF/fmU9uLwYC8/faK/g8qPIvv9+YOh79qHK161zf+SXLDF4fUuMDyeeCJz+9R0eemmNVqSR8qJucMA1SOGggosoozVefi/tfvAsHLELUVi30fE4pzCF5cLjjwNY7mKlpGoWFwK/2Mnedc6ss5habZ/oNqpWHMf88xSMXLN/2N0oKG63h9S1cglRmFPnkKG2+9Ivpi6xjoQAli0D7v2Ls0X42rXu/fH7KlSxeZPtvkLd4+X6Ik9KhBUr0h+HTO9uWcT8fDqNWb49uMZPSHywE8x75J57gEmTlFTlGaexx/gC+vzzwK23Zu9fvRo47jj3vhvbEL16Z6Vkay1HBVcB3+sFFCd3LyA5z7LEMS3N7qWUnn/ZRKARY/mm7cLuAikhhIjuu5qR//wHuPFG4IphmSTUKtbF69cDDf4cTkNj4cLs788/n1umpSX75Jw56HZcey1w6KHA1VcbDIgk4zxG0YMr4VUe0Xs3HfHEvn9rN28tpeDae+v10nOfU84vWYzP1aOPAt+sONSxrMx63MuzOm+efNnAbUZRAyZEpJ093E5rVv53EojojbqkaGnVSygLeR6p8PjU2Y11Wv9PbMtVVdlGQCk/vvoq62uszXRCVU0mLostB6ecHFQstIh/PAuB3e6h5L0hnU8vZn8veQlR+OGHwBMvyYV9UoXxVFTSWomQYNTVpT8OnWnjbrm5Sbq6wNbE9fZhY7zw5JOJ3ExBeeopYMwYb8fI5uC6/Xbg5Zez96cUJ2ecAUeMbejQMHduZl9DIb1tIsLvht/gXkgRQuTH0VA6l0eAac+P4LlTZ+eDlBt5SGgPaVhCiDfGzZAP6T5zZrC2VDyfO+4InHde8HoKSd++7mWExQD+1lsW51zypV6JB5diZVSkZejp92V7vl5+mNQkf8wOS30ZdbU3eY/Jni6vz5Wn61Dgi+baXAStiCJ9X3NRVFCo4Coh6PpYHFR6NN61FYq3mUKZGC7/5ZcDF1zgtWelycgFu2Z9z/F8k5gRGxqAqVNdCrlYjngJTakqBxgJQPq+cL4/pEbdZF3SObgcFuTpNVIBV3Ke1mUGV4V0F8MKUQiGKCRFjsxLpGkscPTgcsr9qEt4mCt8oFRUdffdSU9tD7gOnQ4FUn328m7/zfJD8NBD8uVJMHShKZG9+A9R6H7/2N1jud6Yap43lcuFleslQ0ly8iUlTHO8PRpjasKqAkBTs7tILqVTef+9aMh7ytGQNq1XWbNGqryKuUh16LVEiMKIjs+yJ0xCwdWmV/rKfW057xoLrLPOreVlytM0uZ8axjSqbawtfKOKiKwsXGIRFlmvyiKECi5CCkyFx8HXrjTfHR0wTCSn/i9b06fpcduydjzwAHDEES6FXFYqaQWXMUGKXVWc5CKD24JDCA3fDXO5XimLNJu6zBbnUknqXe7bRPgU527lhZdeMvYihA4QUkIY5hU7AwovITmcvINHjkyE37MiH8KQoGsYu/GtXTvgiSccjnP7LRIKCre+G6u4Y9xlGD3auTyR45rfu4eFqtBEqKnixGb3NZ4d5ttKxXO3fDkwblzgatLs/vuT5QpG2pyakGCcO/hWnPzlncrq69DOXdqdzist8R7phNYS7Ph0PUX2qipSuUSdysgF5AAGDHAumAzlqmIMX7Gpq9LxdG1dZ9S1RtSTXDZntaSCSxZhEImb18k5fXn1Vcs6vCq4VK6rBw92PyVCAJgxw7UubcBn7g1GcH4XemTVtgkjeBf5L0MUqoMKrhIisg81yaJyU517IQN2k3xMr0BTk7FckF6VGA45AnLOk8WJ+799s83Y7d4lNmwwyB9158CCrVVJi5gvv3QolSDuITEqUY8QMNwXzg/W8sZuOOOcdlL12iku//pXoLshvY6UB1cBkRWg2/YtLA8uUXwv4IRkoTgMiNM6wcnLOB/ri6DP5scfW2+Px4Hx4+2PC/JTjH1WFK2ReODt991Dod9y8qy8RM9xegaeObZ/plw8WqF7XnoJOOEEubJ8jyBEjuZ4B6X1dWznLrAfMiSh5Hry+YDKibVy3kdueE25EDoSXlczZzv/qLQSYc89nSuaPRuAGoPVXnMkjQokOeKhC/DQpN8orVMZLiH900iEiIyJCl9eMa7zoI2i1MuadsIE4Iz+N7mWk63znHPcT0k8DmDiRIk2uRBQjqzVFRdhSii2qYmQoqdi6WLH/Tn5eGwm+Uu/uxG77+6vD5oGrF3r79iiwCn5q3mSsZhMzAJ9uwXGDjsYcnTouuOioOXtDxMfNmyw71u6S5TKFwsxXW4abWkB1m7exna/xG0BwFsOrjDIGq9sQhT+6lfA3I3dUQio4CJFjeEGtlU0e0grKRyW/U7HLajfMac/YWOOElNfn+me07tkkPk1Vf/GjcA22wAPPmjTBk3OQmOLDjHoLe6eXp4xe/8b6Nwu2Z7LxOv2+JjXkMUq69Dq6yI1VhASdTqM/961zLRpwGOPBW9L1ZNZbI+4zNy/fIWkguvQQ90aM/4jsshapzS5555NhCj0oeAyrZOb4+3xt39kDFmFHvyirl8PjF61j3tfhPmDf+JxSD20mkxzmzYF7o9qhPAW0aKgyIQo5HuDMqjgIqTAVA7+2nG/eQy0GxPjohI1Ne7lrKiqAna2yVefL267DTj//MK2acVxv+6avcHixJknGaf1QDoGuYsHV8uqpAZDwuTNuSYSJaQWJELgjjuAgz95SLJOezRR+NhLqu/GYcOAmPCYjJCQMsduHsrN26O+7c+XusXo9U5Q4Vgqn+ngwQmj1IaGzL5AIeqcFmG12bkJHn44kZ9z8+YA7RHlxEe5C4vdyBGUfOW8dk8h9fzJ5uAq1rXghvVh94CQoqKQeW9UeWgUnQeXBVdd5a289NoiOcYrSzlQLpqydEh/l3KxmGtVbXqlktO2oG5H/O8lg4LLpk5t5YrgjeURiVOWwbigtmLYsEB9KTvyEVaA2FICUxNJEVmtNcmiQvM2yOXzBXf48IQRRiHyFbzwglR0Pk80NgJ/+pPFjkp74fnEaaawEhYrlfcXHpv13UkQlz7cZfJq1du59i0Fc3CFi4CWvrCTpzmHH5S6VkJg1SoP7TvUWfHj2HSdLk0qex/y/TJcLi9khBQCm+dpyqKts5yW/T52UscpNNkOWlU7w9A8fLh7+ZUrgcMPBx6adJ5r2X7vG+Zzw9wu+n2YU/aII3KFZBz5wkMIQB/4VfCKZs3K/u4Q3spoZR0kxLB5P9eChJBCMGWK92O0NvcwcVEibjGevvce8PbbCY8aqTpWJK1a3QTWKQ8uVTKccnmfkghR2LVjo3OkniRecnA5IZHZAgCg/aQw2aW5LQXXPxaDpAeXAHr1ciyjt4WY6NSGSD8iuu4qpxdCi/iPKB6o4Cohis1VvFypcBngckMU5o/TTwe22grYbrs8NpJHZs2ymYMllEhpPEwmVh7ZsgquRfU7JD4kTd7aV9ib0jAHV/EgK4BSpmyqrXEvpJgZNbtJzS85ZVIPTEgLNgGN8yIpC6qqPBS2eR7tHtPLLjN8CcFk+/rrgR9+yN1uVHDlOF1ZhJDp0QOYPh1Y37y1a5v/figxn1doeraCa/ESy/LLl5vap2IiVJSsodZlP1RSs5gQyq79xx8D/5l+ppK6Ck0Yd3+HijyEpSSkQKjOe7NiBfAbmzRL5udz2TLgyCMTnxsbgZkznetePimhDdICempedpnHtUtAYjYKj2uuAV57Ta6O+FvvJj5IvtcoiGbnqb2iR2GuIr8hCnOaMtVh997/6ZIjcO21gZvLbV8Aq2q3UFKPDJoGiKp1jmXeGb1X4P4oR4jovvO7RHkiaqEUlZACU+GyiM2NjpP/IbGuLnfb3LnR9qitqlLUPyGw3zbOK+zUhDljhuXhCVw68++U1XhSQOikGKFwLFy8vEbILp69vJs4WoBL9k6lB5cXrJpsnu2cdzCfRHaxS4gEk2Z3Tj/HWmuL1DGqPbg++cTwReED9e67UnnC0bcv8M47uduNdiw5fV+4MKe8THiWVr0SG2oq0gOZEMgSuNjN2xMm2OfjIoVF6CI0z6fp04Sll4Asxvn9rruAl2adqqJbBaeutTO+X7JrQdvssVV1QdsjJMqMGgV8JenIatQpPPSQe3qphjUJ4zWniDS1tYl8YR99lMiPacUnnwDjDE4v990HvPhi8HcXXbeuY8v29muojz+Wqzu+KRmP2K2TqRCFuqK5KMoCGZWkPbjs0SD3gquLCiXvwWaZjN07+tiqffHWW1D68h2PA59+Cuz2zysD16XrQEubu+hfg3CVNGxsbB+4P6qJtA5Y4vmNcveLDSq4SgiGKCwOKt1CFJpc/vMhQJfhwAOBzz93LlNVJZXn0xMPPADsv79zmdWrge7dHeYLT9oE97JOMr2RI+XqueeIbxIfkgquOHMQlQSyIQq93JJOdabuxVMu6mpbJmp0PvGosLtASFFy1O8PwPz5yS8O1tLG8cVprLn5wFGZ8KuTgfvv99ghhR5cmzYBX3zhGPkNf/xj4n9rKzBiRPa+yok/pT+3tZki1rQ0++rT/Lru2OHkg7BiTWJ+FqjIkv45rccefhhS5Uj+UaHgmrR+T+myqet9+M/boTHWyb5gyprM4SF1856wo3tnC0u1kJhZuytO7PV/BW2Tb8CkmDmsv1oLCad1gNlbzOiB7JZ6B8gsA6bX7G7rgfX11wmF1RVXJIxZ7PuS+fzYY8Bf/wqMHu3eBye6dQPuvDN3+95bbbA9Zto0ubrTywEXgXXKi5whCr0hYqkcXC7nTVLhJ3v+nTyAZUMUpkkv2oOz7bY2qTh80ukG96RzMt6kUbwdBbTil4VH8cQWIVRwlRCq3dtJfnA1gG7OFsyEOdZZheQz0r17RgClimHD3NcGqYTugwYl/j/yiCldguKTpunZpt9z5mSu44QJyY0ui632FclVsUT4xCAWwEQR0uEnCnutUou3UT92cCxnFaKr0FDIS0hwZCK27LFH4n9bW84SIotuHRvTY9vLLwOPPprxoip0Di4gEaLokENytz/6KLDzzsCbbya+v/cecNpp2WXazZ6e/vzAA4kQhKpoasr8zqNPzCgswh9ViQwqQhQubtg+67sKz3rtw36O++fXdU97T0g9aoaHtrIiuIU/ZSuElAZeHH5OTTqKrl0LtEg4ihvtXB54wL19J7sYq3FOIr2SI3V1wMSJudvP2G1OsIphWI+5DJZzlm8JQOE7YmOjmnoizpwFidjTrvmzJG7w6TW74sQP5LRD3bewcTOEhQeX2zwZ9AY2scFeL5s33Nc7EVwsCBFdWfhOO7kWYQ4udVDBRUgIrFolLycKy4NLts6VK73VqcLLPnXuHnss8f+BB0y5uNw6vi47trCbxYeWjKGgVSdWGRbRjwBdd6xFTwlcJCzgmYMrXLwsMvITotAe2cWb+HqQfIMligBDFJLiJ3UPy9zKV18N7LWX/X4duWNbx47AvfdmQuwNHizRmQAsWpT9vcYireDo0QlhWwqr8IJOAn2VyvWJUzKCFlklB99Rw2Pxhq0xv85dmOCGa7QFA9KXO+nBtWD1lq5FpR61n35yL1Mm0KCGECSSb8HFg8tmxNp5ZyRCrCGRk8ouQssB52SsSazGqblz092wLeOEivnTqk3XeiUajqdCDrqUFUlhhzJjQxnNYwkgYnHMmAHc8oN9SD4NkBImrWrcVrpdJ7mL+Qq6Ki2LfAGowX0+FRGMmCkE8MHCY8LuhjVdu7rKb4r7rokW7dyLEEJUIoRzSJ6c8h7qVY2MMsqrwirVz7q6hADLLRyhFa6LZbdODRyYyFwvSUVrwiS+esZq4Lztrdt3aTO9IJJQcIWVP4IkeHbGGai8N4an/+teNh8hCp2EqNJ3xpAhED3OlW9UAbqencQ5Cos1KrhIsePlHnYLs2McW4z1PvFE5vM55zisJwI+UIsWAfvu615OZrxs50EBQcqHu774JYBfBq7HnC9XlQJl1izgkDvOcy0n9aitWAHguET5SMy44cF1MyFA85padNp9dxcFlzs33gjssgtwruE1YtYsYNIkU10WlR14oHsZmX1e+e4751dxobm8f7e1AXCOjpGu3zUHV7K8qnGpTHJwaULHqFESBSUWiV68rh3zohuemLo6YMb63aXrLUY+WHgMBq84OOxueEcILN+0Xdi9sKbIlZ7FBt0ESggu7UsD8xgoPUFnxehTg8x66scfvdX54ouJMIS33AIccIC/frkuiN0mEmPMJ2EjtjDUkRIcnHfvYZg3z0ZHpVDBRQ+u8Hnm2XZy1nwFvlayQizXF7k8cPHFQM9P70t/r27uUvA+EFJqZDy4gsfF14OGwJDMwTVvnvX2VHhhFXjxsFGFtMcuV+RFj/l5cxSASa7TNU0+b61XwW+533EqQkgSUuz8u3d3AGr0IZ1M6QTvvRf4wx+yt8mMU3fcYR9C2JenlQ1nnAGcdZb9fqFAyJx+53M7wUJxDq5yUXDpcTz5pES5iy50LaN7OPdO88fE9XulP999N3Di5393q0y63SgyYOkR6DvvBMcyKp4l1USwS54QFhE2iD8oRS0hyt16r1hwW+ysb94aY8bIl0+Xq1rnXsgjytZThor+9rfEAsEuv5fMYjmwB1cq6YgDd91lbC/zbNXWZrd/yj7J7LxC5Fj8ZnUptXiSysHFoblYkBKqePXgcnjmpYVeIbguxeNAXGTu7+GrfWqwFUGBFykF/vCHROJ1GVwVXB6FLRs3mjZoGl55Bfilg4PMpk32xit2/TMPVzLjpYqcQ4TYsWzT9jjGEO1GlSW+UvmF4cEJnHuiuto98W6E4RswIUBtfWIN7jTO/FC1r1SaILM9i1Wdr77qXk9TE7B0qf3+trZE3k2VWCvOXMZwXUf7Cot4yAbSObJdF1uJ9Qk9uLyh6RJJZyXxcu5lc5875bhNUw5KijL4iaqhRKJwUIpKSAi4zX0nnSRf1hMSip28YFqYBZW9Wx2ftU0IdKx0WL0bY1nbJKV8+hmD4MCwva0te9HfqTWTmLR7Z/skpWnBoowHl86hORJIPHyyC2jZd5PmZufkutIeXFx8AmCIQlL8/PQT8Oab7uWWLpXx4PI2t4wYnl2hdtKJuP9+Z89tq3xZXpFScIWQTFp2XOXwWxpMmJD4v3Spcz4PWUO0Sk2Xvodk5q7Rs7eXq0yCd/86AXMGL1VWHyGk8KTeSdzGmY8+cq/LPAZ9+aXPTjkQjydCF99/v9p6R45M9N+os3cdp4VA147OLrZCUsGV2q0qBVe5KLgqoLvOfdK5qD2FKKTcxQt3fnhU2F3IIdJyD8UhNYkzzMFFSIHxOv5+ufwwZW2vmFgFQD52sDLhsGlgF8LZmitFPG7t8CQTorBjRQwt8faWux8afBweutO9/XR7hqt28slAO8PIqUsudtOLJwkF17y67vKdI/lD1+FmB+LVI8KNLl2AePxXtvudvASN7Pv+Q6gOSZ8dKVasgJcxj5AosmkT8PjUXzuWsQsBZMQYolBmfm+3aSOArlnbamrcj7NDWkEkUc5bXkP5so71SAjIoGl8US0xEs/WJYHr6TX7JDT8J3A1aU5+8JT056BRPK7+4OyAvQkXhgUlBIjrcgqudLhgh/ecfBqIpTIFXHyxVWoG62Pq6hI5zL2kN9h118RxTvWm0d0NEGTf+VMKKRVrgRO7L8hOrVDCVAj339nY1lGqLi8zouy7fKSVKKT44Q2mBKqrSwhaqpcejzwC3DnuUtdyP/0EVG3e2rXcstXWCh9fbNggX9ZkeTRxIjBtmvMhsVi2IsmI6/jvUqDP+MOzvrsJBozPlhDICu1g9OBxqsVLDi4SEYTAVu2dk8ZIrUU8hCh0e4fZ2NoZM2e617Nu89bl8j7kiPbSi2F3gZDIIABPL1DtNO+DiFP1Kt/dnATaZqFSwYyfZeI+kaKgQ4X8tZS9r9+cfzz691dYIUmjLBQYIUVMymPIbQi58cbkB4fILvmUK/Xqlfgfj+fOz2LWbMtj/vxn4MADvel66g2BVVyV4LruWmZd81ZS7WY8uIKfRAGUjQeXttk9SeXmeAepurwYPcheJ07N4WMXRjTS18YmWlRWkWQ5EhxXSaumaZ00TRuvado0TdNmaZr27+T2tzRNW6Jp2tTkX8/kdk3TtBc0TVuoadp0TdOONNT1B03TFiT//mDTJCEljRdrnqFD5coddxzQf8nPrXcaFkWVFXID54ABif+Oi9uqKrnOAb4G7NQC1nxodTWwetp61/acWlzTILdATVHhkMw+vYASwvHaesnBRSKCEK4LZJmwBgdecwyGDJFozxg604ZHJp+HQw+VqIvQopsQE17DsMiuGYyk5uw//hE5wnzZpcD337uX8ZRfQZGyX3Tt5lwgqeDi2FP8pK7h+PEhND7bWsDrhKzQr1Sh1yQpVs7bY7qyuvSkB5e0PsRhUvaj4Pr2W7lyjiKE777L2fTAA8CkSYnP553nvV+AhEePy3s8AFw7Uk58qdLAUAitbBRcFUMGK1OselkjKjWQoJKCkFCRedNtAXCaEOJwAD0BnK1p2nHJff8QQvRM/k1NbjsHwH7JvxsBvAoAmqZ1A/AggGMBHAPgQU3TsuOekEAEDU9BCkdB575hw9If7TyizIz7MdnBRkUJp30szNLWT6ZDzzgD+MX5OzgeO2t+ezS0dZZuyDXes8M+6RxMqXJ0tSweJDyvZB7lucu3lGtPQsFF5Bmx+mdo1RmJmZAUxkTaUiEKAzw+b74JvP66fPnRozOfZRyhvCiRAgubUtK47i7hg8PKc0ryxrHHhtDorFkQHpPZrZOI4lDK8A2YFCsqhesrqxKRWqTlDA7v5xXw/u4uk34AcA51bNX3Rx4B5s1LfB482N+rtKsSXNddx5H0O4V0iEK5vjkhgLIJUdi+Iq5MTOItB5dCDy4quPKK3XUVyhLe5QEhXOX0NNJRh6uCSyRISbnbJ/+crtAFAN5JHjcOwLaapu0M4CwAQ4UQNUKIWgBDARR3wG9CfFBwy965c9MfZZ2Htli3BACgDRxoX8hLqD0fk/30pEGbeU23aJH7sYdcsr90O7MWdMC6zc4eXU6TknSIQoOnFykSVq509XhQavVF5adSPlx0DD5ZbOPZSki5kpyDZKaidpX+PbiA3DWHU5v/z95Zh8lRpH/8WzOz7prsJht3d3dPiId4QgTiOZwASZCgh7veoXf84LAD7rA73B0O9wQICZIQ192Z/v3RPT3dPS3VMrrv53nyZLu7uqpmprvkVbtW2XZCFbs2fn75ZbFKqw20pOCiaT71sbNWj8m6fudO7+tMY7YesPCuJIgkxctcvi+8nYc//vBGwcUE+xMn7zbmppuMr8VKTsKTQ9OqDK8xeW6mPQMFMwTUHw8uxrxbP9l5r7iisbQHPvvMTY+IWJLU626OzlGIQu/gklAzxvyMsY8A/AZRSfW2dOliKQzhNYyxcMa/RgB+Uty+VTpndJ4g6hfdu8d3/FJoiHitsXP3SyEAzcyoDVaxR44AS5bwdk6n2t27AESsZrUKLq8NpDtNaYkdRjG1pR/KbMHOG/LJbmgoIgnYtctyK0O/a3LjJIcQQaQrSgtBs3XI3o++BwD4X3nRVv333AOcfnrk2I6Cy64Dq2kOLkAlEArWuhQOSYsAq7Xb79u9E2oRiaUuxB9OOiQwLuMrbhijMJcEUU/w2nI/GPRIweXALzKZ00xbfiehkGUZv0UeHbmtoPi9vr+1AVd5S+qJBxcA/PSTdRkegiH+hzHI8Q5++SXwwQcclZGSIjEkcRSczvO74Js9lYnuRr2B680XBCEoCEI3AI0B9GGMdQJwNoB2AHoDKAVwphcdYowtZ4y9xxh77/ffLfLsECqsktcRyYGdeS+8QHIDO+Vk3Hef+DevB1d2QBTSHP/KIhw0yvdpsIrduhW4+271uWAd/4d+7TN15NKtW9XX4+rk8r0o5DPPwQXxR+XNwUWkDn6/pZDJ01GXPLg8x0fzIkFEcfQo8OOPxtevvl60hqnbbE/ScNll6vl/61bg8sv5+2QHszlVm7Mi+MST9ip3yI5fRSEUKSfqF3/7pi9atfKwQloLEES9wev9oS0vGDMF1zdfO2rbS+6+G8jjifLOoQAym5fbF2/j8uBqXfQbR2fEr/Wbb4A1/xzFVd6M+pSDS+jjXUxgOx5cR0MZnrVLxBajoU34zH7u0njx6fe52HbQPDMT7Ru8w5adhSAIuwG8CGCcIAjbpTCERwDcBTGvFgD8DKBGcVtj6ZzReW0btwuC0EsQhF4VFeZ5dgg19FqkITZj8Bvxdtjn8kk+IY9yHbXIKJ+qchWrCIM4dGh00U2XmCwcdu827UubNupjIyWd3UX1rl0chQ4csCwSEhjXwpoUXClIZqbl7+bl73r2+fU7SXwsoAUjQUQIbwyzsoD//tesoFhy2L9PNylkeJvMhx8CZ55pfN02Ci2YpQeXYl4OvfCSq2Y/3FJi2SYAoK4O334rKjyI+sOuI5x5NnlhjPIxEEQ9wcsQhYBof3riibyNmyi4/m2SpsDoHs6P0rZ8h+E15TLh7rthbGirZPt2yyJmy4/irENAKGS5p5vd8j2pMot8OiHBKxFOlEd6OvPOTxZ5Tm2QKLlLOA8eEWe8euESCXn/eYKlgosxVsEYK5b+zgEwGsCXUl4tMMYYgKkAPpVueQLAcUykH4A9giBsB/AsgDGMsRLGWAmAMdI5wiOcuJIT8WfiNSN0lUB6CB4taMILztDWKJ2yLsFQZFHw8MMGzlqKkzffJODDD8W/f9Zp4utvTYaaPXvkP0dxGDp5Ff6glCdcf4a4SDELQxcSfLIgzUz4JS+0aPJKHXw+SyGTlyEK/3wVKbgIgogdt30xFG+8ab3p50nWvHat+ri6WmXrol+vy+mPZWXi1Vet69LmrAi6HKf/2M85NtfWYtMm4KOdTVy1R6QWsVjV0UqRIOoH7/7WzNP6bBl8mhho/uuHrvLfFraoMlx7awBtC3/hKielv7SGQzhgtp8TBIYnnrE2agyHslt0eUfTcp7ro+qJgmvGlQM8q8vtus8pNRM6J6Td+oKRrE2oS+0wnoLgYQK6eg7Pm18F4EXG2McA3oWYg+vfAO5jjH0C4BMA5QAukso/BeB7AN8C+AuA1QAgCMIfAC6U6ngXwAXSOYKoV2zZUZCwMLG8wvgqQa2l0h1vFSvoNTe2x6ZNZu2aNKao/PnnrftmFi7QczJFoZZZbGZuDy7yJEk9QiHrHFz0uyY1tFYkCDVXXMMRq5jjxXnsMfUxhwG1J+/j11LUJFMPLm2IQpfLhrDQyzIBfZ1J3lIibfHaUnz3wUzyPiaIesLe2hxP67NlCGqiOLn4wwny3716mSXt3GujQZEPfq02vObIe5VDq2c2pn67twJTFhXjQF22aR3hvE73Pmfcf0A0EvIqXKPAKWcg1Px2qDDRXSAIIgEErAoIgvAxgO4650cYlBcArDG4dieAO232keCEQranI9Y/Ks+aJ7zY5RUuCbv3WBfSrKDNFtSmhkc2rZLY4UMAPA4HY4T0hZklKg2ByRl9zb5eLz19iDgRDMY1RCHhPSQkJAg1PFMujweXkzXnypX27zHCbOx9YVs7ILRXUdbd/Btuq90F88wLBoMkh6qHeL2+Kzlukqf1EQRB6MK5B//uO5MJ/4kngAULAJivC66/PhI60ZP8uHv3AoWSEoPLg8v42o7DBVxN8noFfbG9GF24SloT0nikEwQRTarv98ke1ztI4koQKU7AUk2tCFHIOfhzbdY1q1htbixlfo+QmcDHroIrnlOAtBquzNlnWCSksBQ3szoz8wIjkpRQCILFNEkKLoIgUgkeQxeBo9DWrfbb/uAD+/c4RqFpcjv/BoOceTsFAc8956opIgUhwQRBEClHKGS5Bz/lFOtq2MIFuPde6e/33zMs94Qipdf8Vu8YluMWVPOEfQGAw4ft1WsC757vwqd6uG5L3TApuAgCMJFRepXDJEFQiELvSO0ngSDSHK/HOVPFlaIxvQXcunXAAw/olweAQ4eAb7+NHI8Zo2zXpFMefcjrrwf27/ekKplwerCcgHHYITkUksXnkL97mrxSB44NRapbDPFQnHkg0V1wDL1tBKGGS07C+eLsM7b9iDmWY68qRKG77Q537mpB4FIOEukFGboQBJEscE9Bb75pGQbm2mv5qvrsM+mPt982LKNMz5AXMM7VMPlZ3UBQ0fz2W+Rvs4WNtJn3YmZ+5ZfWcphkM7xcBggCw1fbKdweQZgh+DjCrycxtHPwDlJwpRFx9WwhUoqws5XpgkuxUNTbrF9xhfjPiCefBFq31r9mKlCzswoUBFOh1ldf8VfFw8dfZISbNeTDnU0AQUCncY3x+A/dDMuRACQF4ZAE14ff1UzBm+w4iuVPEGnMk89Yu33zhCgEYmOvEdrrjaXKVTdm4eBBqU6XhghHa/mMQ1koSDYs9ZD6YOhCEESKwDsJ/fabZ5N4WM5wJGS8vlDq0rxIqyEok2uafY5QCIcOAYtfWuK6zf9s7YjZszn65uE64EBdpnV4ZIKo51TcckGiu+AKWkd6Bym40gjmRTxjIql44/0sT+rhClFYGxFiGwntnS5I3ebguvlm6Q+LFWOvXvx94oI3JIAg4LNvMs2rEni0jERSwZFMpT4ouAiCqF/c91I1mje3Lse7Jjh6lL/tw3c/YF0I1lPp6efn4403xL/denBt25nNN3XT/F4voXUAQRDJgvDFl1zlXvuiTOVV5QUrXl1geE3pCe3FmBkKKuZbs/26IODnn103ZwtBYJ4o8QD+vF8EQaQuggDaQ3gEjZgEUQ9g+8Vk63uP5pgUiqzEjBRhysVaOHyfFaEQ8OSzGeYFLHjwQfH/3X+EsOtIHl/DXiBIubWsrCo4JiQSgKQeZ97Q2LJMfbC4SWUvqPrw+xCE12z5NRdbtliX4xXgZGUBH33EV7Z280+etKmk7YMX2r9JwUl/64Vnn+UoSHky6iU0zxAEkSwc2X2Iq9zgDUNw54P5luVOPtm6rvC8bLZHDyu4gkFg874y60rDLtgGLPnbiMhBMIge5T/oFxSEuMuNvWyPIjQRRPojgHJweQUpuAiiHsAOi4vdSWZxrZUKLgNrIaVgqdmQGq62X3nFogCHQOjll8X/L/0zV5P81JqHXmO8wiqeUHYkAEk5Lr+vkWWZ+qC4TOXlVn34fQgiUYTXBMr8m0Yo02WYwatQ51Eq3HYbX5s87NzJUSgBgjQi8dA8QxBEstBielfusjzbXMt9vIK8wGHDa+GgGHfcAdz51SDryt57z/Tyc19FjBBvvDsfH+xoql/Q40l51y5PqyMIgkhpY+JkgxRcaQS9FoQR4WfjSNDEk0oBT4jC3Xv5kjkOH25RwMbCM2QdMc4eVqtU2YPLAi4PLhpu05H6INhKZet0snwkiNizeLF1GV7PKy9lURbyMVsowysZwQTy4KqPkGCCIIhk4dARvv05wDcv8+SfDHNOj6cMr9XVivPjH39wVmbRue17I95nV99RaFzQY8OTHwwcxVRNetdcSu/BCILgg6QV3kES1zSCBHmEEX/s8eOtt8zL3PdoJHyh1zm4TJFWnVx1ey082rbN9DITBGzfDvzjO4vkXnZCFJJ5d1pRLxRc9MgSBGECjwDsjjv46nr86/bmBfbtA8C3GfRyzcKRkhEIhWi8rIeQhz5BEKmIz8exf+XYejMG/O9/wFnvTDcsU2ceNCUaG5o10z5yTd7e4uU6oD7sM4nY0yiPXA+TmZBAIQq9ghRcBFEP+Otj5ejf37zMaRdErJ+MFlNvv23D8oqTYC2/0spz42iL7Lo7d/tx6aXAG7+2Mq+HY0I6GvJTeo40pD5Y1qXyZ0zlvhNEqsAjh/rHP/jqWvLMbPMCQQ5XKom4K7hoc1ovIQEkQRCpCM/I9b//8dVlFcb3629tih1tTOBWCq5UzsFFHsKEF9DyNLkheYV3kIIrjYiJdw2RUFoX/Rq3tn793S+npDKzRv37371t98AB/knX88nZbx7GYcoZbXDDDRz1cHTs+k9H4owzOPtFpAz1QbC143BBortAEEQSEp76fCyO1htCuG3rsbeuDti925tmX3ie4zOSFUtakZ9hnE9GCQkgCYJIRXzMOw8uHt55B9j6E+dm3oZgy3QbnhAPLu+8Mb7fV+FJPUT9Zl9tdqK7QJhA60jvIAUXQSQx8ba2CC9izfJF8eShsENdXQKtSrKyvKmHU6j14YfeNEckD14puPpVfu9JPQRBEPHGt3NH/BqzsWD48UegpMSbZp9+hmPL5HGuDyKxNMjZy1WOQhQSBJGKeGkczVNX377ATTdzFKyrs9U5Mx3WZ1/6sWcPd1WeIAAQ/vPf+DZKECbsq82xLkQkDAEgNzuPIAUXQSQp558P/Li/NK5thsdVM6G9HQXX1q3WZR5+rthTD67fvt7NVxngnVUX5wcQBP6yRGpgpgy2A+OwoiQIgkg2vvwSeP6TSk/qsmMpnpThPMiDK63gtaitD57cBEGkHzbSXJnCmMeRhL78kqvC/fvF/0Mh47LfbA7guuu86hgnAhB67Y04N0oQRKoigHJweUUg0R0gvINxpdwmUoVNmwAgI65tRjy4jBeKv/3GX19NjXWZzT9ncsuEeMb9Bm2L+SoD4q7gItKPQ8FMT+oJhsjehCCI1EIQgNde866+a6/lKBQK4fBh4L9b23vXsEe0XTUi0V0gPIR3ZUehZQiCSEW8lB15uRXetiMTS86yFiIUFIjtmjVde1SIexqP7/4owc7DefFtlCCIlIVEid5BErU0gjwACLfweHBddZW3bWYEQjY8uDx+xj1ScB0+wFePIACf/5jvSZtEekEhjmIDzYoEEUM8Dsl3zz08bYbw4IPAvd/0965hgtDh5wPFXOXqBPN8rgRBEMmIVx5cgLeprlpPaIX/vF3EXT504JDhtWBdYnYCH+7ksPIlCIIA0KbIhgcBYQopuAiCkAl7UsUz9E+XFgc8DVFoC48SiuV0aM5VThCAjn8iC28iGvLgIggi1RBq6zyNyvfxx9Zl9uxh2MuXGokgXHE0FN8oCnZokr8z0V0gCCLF8dKDy8sc3QcP2dsTmYaJDYXi7sEFeBfCnqjflGfvS3QXiDjw5Iw7gYqKRHcjLaAQhQRByCQifURl8dHEpa3w0tyMg1deiWtzRApBHlyxgb5VgogdQ3vtxw97SuLa5imX0AaQIDJ9HkqTPSbLX4sjweRVDhIEIbLozIae1MMO7kdtbWIilIjKK+O2hWBihAyUm5HwAgqBXE847jigRYtE9yItIAVXGkHDH+GWYBD4z3+As96ZHr9GOUMcffYZsGu3x095nBVcBGHEnqM5ie5CWkIhCgkidny0Jb7KLbtkBoI4Wkfh44j0I56RFuxCuSQIon7BDuxHgwbJGYI/FIx/Di4AOBIkMSvhHppOCcIeNPKmEWOeOjnRXSDSgK++inODO3dyeXB16gQAmZ42feOjVZ7WRxBO2bKvPNFdIAiCSCv8QhAAKbiI9IO8AwiCSCZy4myn17HkZ3y2q5FlOSEYQtu2ceiQhvXvTot/o0TaQXM9QdiDgsMSBJFQhPfeT5i1559uSMCKlyAIgiCImMMY2b4SRLxJ5txlBEF4D0P8PTe5vVhDIbTL3hLTvhBErEhmb22CSEZIwUUQhEyiFE2JaDfTVxv/RgmCIAiCiAsH67IS3QWCiAkk9CIIIlk4eNiHH36Ib5uf76rmKicEQxCeeTbGvSGI2EA5uAjCHqTgIghCBU+c6mee8a49AYwrRCFBEIRdgiFa5hAEQRDpBYU1JggiWbjy3kpMnpzoXugjhATKY0SkLPTsEoQ9SPJDEISMEOKbRseP97hdmr0JgogBG9+bmuguEARBEARBOCbAgtj8/h+J7gZBpBw1+bsS3QWCcAx5axOEPUjBRRBEhARomp7YPwLr1sW9WVowEGlPjv9oortAEARBEARBuIAxAc2akjUgQdil9JOXKcwbQRBEPSGQ6A4QBJE8CMEQ4q33vual7sBLcW0SAMU0JtIfEoUQBEEQBEGkD9W5u7DtYEnM2ynLOYCdh/Ji3g5BxJKgwFAb8ie6GwThiP212YnuAkGkFOTBRRBEhFCIKwdXOhAkBReR5pCXIkEQBEEQRHpQVwdMa/ZR1Pnzp/3P03buvkvA1yuu9rROgkgEPR/diAUvHp/obhAEQRBxgBRcBEHIiB5c9QOBhj8izaHcdgRBEARBEOmBX8cRxcdCOG/6JwCATF+tJ+0EMhgy/PVnT0gQBEEQROpDEl6CICKEaDNDEARBmNO/9e+J7gJBEB7hZ0HdvwmCSCKkEBtm3vk3DnwAX8w613VTRUVA5tIFrushCIIgCMKC+hJCKw6QgosgiAi//ELjK0GkCSGBpngiNrxx3n8S3QWCIDyiUd5u+W8/I0Mngkg2GARDAZggQHbZ9zH3wak3n34TjjkGyOrQEj9+ssdlbQRBEARBEPGBpF8EQcgIt9ya6C4QBOERdQIlVSZiR+O8P1CevS/R3SAIwgXC1degOpeE2ASR0kjKLx9zH5u6WckeWZdWU+O6OoIgCIIgiLhACi6CICKEQintwVWYcSjRXSAIgqgXfP3hQTw6mowiCCJdWNvxxUR3gSAIC7QqLOW+jUEAKy+La38IgiAIgiCSAVJwEQQh4z6wRWLZW5uT6C4QBEHUC3JaN0amvy7R3SCSnExfbaK7QHByw+AHE90FgiCM4LBA9MKDy26bBEEQBEEQyUAg0R0gCCJ56PDQ+ah9LNG9IAiCIAgiHTgaykh0Fwhexo0Dbk90JwiCsIOg0GmJObg8VnIRBEEQBBE7yJjEM0jBRRCEzK4jecCRRPeCIAiCSAVoOU4QBEEQsUUp+xIEnZnXJwbl8bFQ7BomCIIgCIJIYihEYbpQSyFgCIIgCIIgCIJwAAmzCSJ5MXg/GYtcy/bX0WtMEARBEES9hBRc6UJtLY5t/n6ie0EQBEEQRD2BQiERBEEQRPzQzrqCACAkem5l+2tpXiYIgiAIol5CCi6CIAiCIIgUZduCMxLdBYIgUhhZHE6uHwSRvJi9n8OGAQDyB3aNX5sEQRAEQRBJBCm40gVBIHstgiAIgqhnVOXujX+jUlZ7kn0RROoTFGg7SBBeUJBxKDENFxfj9dcEDN4whOZlgiAIgiDqJbSjIQiCIAiCIAiCqG8IAmpDfvFvH20LCcIph49fg/4Nvo9J3UeCGfLfgqDWYIUVWgMGMu+VW6QtIwiCIAgiRaCdTLogCFELXrc0yNmD1R1e8rROgiAIgiDSA8r1QRApDmOoC9F2kCDcEvP50EDZJAjqa677IdC8ThAEQRBE6kE7mnRBECDAWwVXr4ofcNOg+z2tkyAIgiAID+nePf5tklU3QaQN+2uzEt0Fgkg5dv71n+oTVVWeG5uGyfLXyn97vd8nCIIgCIJIB0jBRRhCy2eCIAiCSHJat45bU2Mbf4bgspVAhhguiTGy9CaIVOOa/g9iY/cn5ePSrIPICxwGQMJzguCltKA26lwsZsRs/1HcOug+7vKe2p/EyZjlzSl/xpSmH8WlLYIgCIJIKshw1DNIwZUuCILni2ofC3lcI0EQBEEQnhLHRbGPheBjQmK8xgiC8IRRjb7Ayg6voFnBDgDA8xOvwZZ56xPcK4JIbfw+AUJNE8/rvXHgA1jc9s2kFIDdN+KvnqQzaF30m7i2IAiCIIj6BoUG9gxScKURXodFSL5lNEEQ8WL7gjNwepf/JLobBEFYEUehFwOA886TvcZonUAQqQeDgEadS7F57gage3eUZB1EefYBIBCgvHoEwYtm7vUxAUJuvvfNaN5J3TfUoxxc387ZoP5cFuuLea3eRbviXxy3F8bPQjTyEARBEAThikCiO0B4RAw8uBhZaRNEvaUg4zCy/HWJ7gZBEEkEYwJQWZnobhAE4ZaTTgJ++AFo0waoqwO+/RZo25ZCFBIELz61nXCsbE1kzyazBpQKLhf9aFm4A0Ce6lzzgt+xeV+F80o5CPhCMctfRhAEQRBJTRJ6aKcq5MGVLui4NY5q9LmrKn0Q6GUjiHoK5dYhCEILAzyzFCcIwh39Kr/HrBbv2b6PMQDZ2UDbtuLBqFHAypW05icIOwSi7YRjEWVIXo/7/VIbFu+p205IOTalxvH+9Etwi0kOMC9CC/pZCKE4Krh+WXA6RlR/Gbf2CIIgCIKIPaTgSiO0C97/HnOdq/pIwE0Q9RsKB0wQRBQkBCeIpGB2y/dwbo9/276PFNME4QGdO6uPBSEm6+aavF3iHzoKNT1cv98LF6oOS7IOoix7v2FxL3J2+1kIoTh6jzbI3UdyDoIgCIJIM0jBlS4IgudhRUiERRD1F3r/CSK1yPTVxrwNreCMdF0EkTg8F6bTC00Q/DRrpj5mzPN38tDSNRjR6CtgwQJDBZcXHlQy55wDNGwYdVpvZHhv2sVAx45ixBeX+FkIQSF2YqkMn3HIdWH5ipi1SxB26d/gu0R3gSAIImUhBVca4fU+19MFM0EQulTl7k7KzRUrLEh0FwiC4EESSucE4qDg0qwLPt9VFfM2CYIwxolOijwXCMIDdF4+rVOXU4ozD+CcCe8jOyApZgYPlq8dCaoVXVGhg30eKqpNBpieExoAJ5zgibzAxwRkmSih2hT9gq9nn+O4/qMnrIGfBfUvcnrGEUQ8eGPK5YnuAkEQRMpCCi7CEAphQhCxJ2nfsxh4hRIEETuaF+yIeRvaEWH7wSIAQHXurpi3TRCEGs/naPLgIgjnMIZrrwV+3XiD66r6Vm7BBZPe1b3292/7qY6jQgS6cSPTjgFS3i9dhgwBcnM9UXAxBlw74EGc3e1p3euFmYfRuug3V21ox0s5tcO0aa7qJQiCIAgiOSAFV7ogCNFJZydMcFWlnoXnwaVrXdVJEERqwCAkq+qNIAgNvx93Kk7p/HzM22FMUAnAxtV8BgDYMm895rZ8J+btEwShxomRTG3IRGhNEIQp1bm7cOyxiFYGMQa/H8gKGHsi2WLIEPH/3r1Ni0V1w83q3Y6CS8KTiC9VVWhWsBOX9HlMvw0IQLt27tshCIIgiCTh+Lav4ZvZGxPdjbSCFFzpguC9MFpvwRqPEEgEUe/o2zfRPYiCCe6TRhMEEQd8PpRnH4Dfg0TvVmj9O8qyxMTzfiagzkb+jPbF25IyNCtBpBIMApCVZfu+w3UZMegNQdQPJjT5FA89ZHydeZWIq1Ur4MorgeOPV52e3uwDdXuxNEdjDJg40bSNKA8yJ6xaZXrZ7wsBRUW2qy3MOIR+ld9HX+jUSXX43DHX4MROsTcSIghLGjdOdA8IgogThZmH0arodyBEcjevIAUXYQgFKiGI2EMRgQiCcEVxcdya0gq5wiF/fEwgrxCCiDMBn7MNcXXeHo97QhD1B18c4hvI3tIFBVEbhRaF6nDEPo1ntef7ikmTVIcntHsVj46+JdK+y++juKAOaNDAtIzTNs7u/jTenHoZMHSo+oLmSxrZ6Es0yt3tqA2C8JQePRLdA4Ig4oS8r/bKMIawVnAxxrIZY+8wxv7HGPuMMbZJOt+cMfY2Y+xbxtg/GGOZ0vks6fhb6XozRV1nS+e/YoyNjdmnqo/EIF+OJxZZBEGkJOTBRRApQk4OsHGjblhhr9GGKKwLRZaRpOAiiPjiZyHb3hvC8hVolLdb/yJj0eHOCYJQYRiST5obY51bV1s/g0bB5WWIQh16lP+Iac0/ko/thCgslby+lex6+RPxj/HjDe9zGgYxP3BE/EPnc8k1kmCRSCYSYPn68Khb494mQRAKaB7yDB4PriMARgiC0BVANwDjGGP9AFwG4BpBEFoB2AUg7D9/PIBd0vlrpHJgjHUAMAdARwDjANzMGCNpiIdEbUpdTpC0xSWI+gtjOmMKQRDJB2NATU18mtIcl2fvR/8G3wGwp+DSLk+mNP3IXccIop5Rk/cHBkjvHkEQ8WFOy3cwr1Uk3+RnM8/HX4fcG9c+6KT+SgxSSCVe5dO/xt6If429ybjA1KnAuHG6l5yEYP7k2E1Y0eEVICMD6NYtSn4YCu9xcnMBwHNDYYJIFWa0+DDRXSCIeolsnJpBocO9wlLBJYiEzW0ypH8CgBEAHpbO3wNgqvT3FOkY0vWRjDEmnX9AEIQjgiBsBvAtgD5efAgC+jm43Cq48vOiT44Z46pOgiBSgwAL0maPIAgVWi+x7EAd3phyOQCbCi7FiuXi3o/h4dG3edNBgqgn/Dj/bHQr3+p5vfHwBCWIVOX+kXdgcNW38nGHku1oVrBTPAjvu+Nsia0N3+dq+89xc5avTvxD+py8yqfcwFFk+oPmhQIB3dNOPLg6lW5Dhi8EXHcdkBct0wiF84aWlwOLFtmunyDShjiGOicIQkOrVkCHDonuRdrAlYOLMeZnjH0E4DcA/wXwHYDdgiBIKxxsBdBI+rsRgJ8AQLq+B0CZ8rzOPYRbYrCY9nXpZF2IIAj3JGMirjht0DN9tehVsSUubREEETvchCgM+EL4bs4GD3tDEPWAtWvl5cOqDi9hfqu3XVdJntsEYcGaNZG/zzsvslyWXkYvls/asINKMsMKJol4pBRQdiU7UCv+kZMjtc//gZ1+N64+o19cm6i+TkFAUFAoJAcMiENmNYJIUvqQzwFBJIwzzpDnKcI9XAouQRCCgiB0A9AYotdVu1h1iDG2nDH2HmPsvd9//z1WzaQlXm5Kx9V8imUruB4PgiBcEOtY/U54Y8plcVO69WuwGS9OvDoubREE4Y7N+8oNr5kpuMY2/gwbuj8lHzMAGDYMgOgtCgAtCnd40UWCqB906AB07iwfrmj/KtoU/equzmQ0tiGIZMLnA7p0iRxXV0dFOzgajK2g6sxuz+L1yZfJx4wB8czBBUCcv5s2BeA8P5YMh9bLdRuM6YQoVMs5nMpRijIPojp3l9OeEYSaRMzDNPcTBJEm2NJgCIKwG8CLAPoDKGaMhf3IGwP4Wfr7ZwA1ACBdLwKwU3le5x5lG7cLgtBLEIReFRUVdrpXv9ELUeiC6/r/A/37e1ghQRDGJNnCsn+D73U3g7GAQUhKJR9BpAxxDIf03u/NDK91Ld2K3HBCdw3dy3/Enzq+IB8zFrFOD/hib31OEGlH+L2nxNQEITOh5hPsXnxS7BrQWa/LuZykayXZh3Bpn0e5q5zW7EMw8M+D+ceOw4CG30e6lIg19Ny58ufNM5j3tXCFPzUYz5zk4AIArFpleCmoUWjxhGXvXbEZWf5a1bmN3Z/C+9MvcdY/gkgGfGTUThCJwE9hwT3HcjRjjFUwxoqlv3MAjAbwBURF17FSsUUAHpf+fkI6hnT9BUEQBOn8HMZYFmOsOYDWACJZWgnvcSE0N7w1yQTxBJEW1GMBFY0oBJEGZGTglsH/h98Wnm5YxGj5kOGzyMlBEIQhYeG2LSF39+4GldGMTKQ2Gb4gijIPx7VNrWLE7xNwVrdnue9/dMytqMlXewAxwPh9nDABaNFCPmxVqI54E+scXNoSYxp/jo+P3cRVfbviXzCrxXu2u+XIg6thQ6BbN8PLWg8uHt6Z9meUZe1XnfOzEBnqEakNKbgIIiFkawwmCPfwjGZVAF5kjH0M4F0A/xUE4d8AzgRwKmPsW4g5tu6Qyt8BoEw6fyqAswBAEITPADwI4HMAzwBYIwgCSTW8QhC4LI94oYUaQcSXWS3eQ1HmwUR3I0KcBF2U0J4gXCJtTGOROyc/w0JQOGqU+P/IkfAxAZn+OvPyEso1RsAXBM47D2jf3mk3CYLgpXt34PjjDS/TnEykMrF8fv8z4VouD65w+F07OJ2/n51wLZ6feI13IQodwBjQuXSbdTkABZlH8I9Rf7HdhmMPLrlxBkEj9ory4HKcH4zGTCLFIeMWgkgIpODyHksFlyAIHwuC0F0QhC6CIHQSBOEC6fz3giD0EQShlSAIMwVBOCKdPywdt5Kuf6+o62JBEFoKgtBWEISnY/ex6iGC4Klwiza4BBFf/jHqLxha9XWiuxE3BjT4Vv7baLwp1VhJEgQRe5rk78S3tz2PPYtPwqCGkfc0238UT467QV14xgxgwwZgyhRg7FhTMxul0E25l87wBYHqamDePI8+AUHUP7jX7c2bAxkZhpdjoSgniHgRy6d3dOMvdM/Lb154YhswAPjTn1y1pQzja0ZR5iHkZ2hCBMY4KkSBleGLAVyKN4O+O1IiWXwPsmLSzvd1zDFRp/wsRPoBwjs8epiE5Svi3iZBxIqXJl6J+0b81ZO6CjMOyX9PbvoRdp+buFzwWZyGoQQ/5I+aRni5nLWa5rqW/WRt2U0QROqyerWpV2iGz92E/PqUKwAYjzWDG36DAQ2+N7hKEISMxxvTbH8tWlYdRKEmzNOWuesxocmn6sI+H9Ckifj/9OnwtWllu73ybHeKbFubeIJIM0guRRARfCykCt/nOYFA1KkopTBj4rxoA603kW2UHlwxDFG4ee56HNPkExcN6GChYFrf7Slc0vsx7uoCLIjgspWWYde0IQq5IuEwphOSkvKIEikOhSgkkhBlONhGebtRlHnIpDQfT467Ac8dc4187GNCQpVMAQrT7zk0mqULHltrGVpZSQvf7mU/Yd+Sk1ReGPGmOneXdSGCSHKU26SksZzeuBFo1cpUaX5ipxewfcEZtqu+uPdjYpgXCcb0t5SvTL4STfN32q6fIAh3GFlK81hQM5/+GMag9jAJrzG+nn0OJjX52H4nCYJQ4cnqgbRlRIpjmrvKC1q3jjqlu4q12QfdfFAcdXi+bzBoMzxnNyvY6e7r9ftt37Kg9dtoX/ILfxO+kLheUbal7bQgRJSKkgzFqSTFzwQgP9/h3QShIRHzMGPo3+C7+LfrMb8sMM4DTKQW70y9BDNbvC8f+wzkRXbJ9NWpcj8netXrp6hpnkMKrjRC14LMIVa3+qRY2GEvjHhzSufn8L9jL0xI2wThOR06JLoHcaNn+Q+qMC9mIUu8zCtIEAQfRu8kl4KL85UNF2td9Bv8PlrcEwRBEO4xC9VZknUAgxt+47zyXr2AJUuiTru2MW3dOsqDy/bqV+GBEfc82gbhGFe2fxkjGynW+wzA2WcD5eW2qrebNsEX/vwDByoriSoX5cHFoyxkLKqcj4XAMqI9+wgiZfD58OqkK/DYmJsT3RNXNMjdl+guEB7RtOAP1UzmZyFP5jbG1NOBgMTadrnOL0lEQQqudEEQPA5RaO7BlQwJVUn0TaQNbdqIXlPJAsdM7+n717697unEjzIEkQJ4vDJnTL9Ot/M+q662LHN2t6dx/4i/4LOZ57tqiyDqC+H1etyF2gSRhPhM3oM/dXwRr0y+0nnlxxwD5OVFnR5c9S1O6vQ8EHQYaqikBEE9D65kZf589XGnTsDYsVHFNvZ4Cu2KNJ5XNTXAwoW2mpN/U05Not8XAtasAYYPNy3nOixkuD3OfGkEEVemTuUvyxj8PoGE7URSoTQm8Er27NN5xkMJjKCUDDL1dCOFVlOEKYIQ7e3gyoPL/GUz20DEC9rME2lFTU2iexBBGjusrBmdvIPascVAlg4gsQsOgkgZvFZwQdCNx+9jIeCUU5xXrBBOMabThiDgkj6PYU6r99ChZLvzdgiiHvHLwULvKiMhLZHiMBNlg5M16/UDHrDMOV2SdRDXDnhQrYCx+S7pKrgcvo+xzMGFqipgyBC+qpzs03WUWIwBWCHm2nxv2sXoVbHFtAo/CwHNm1t+FtmDSw5RyPfFaXvoZyHbbnwfH7sJNXl/2LqHqF/4mcvcPHaeSWk9btdbMhXJDRyR/17c5g1c1ueRBPaGMIJBQEgxJvtZyJMlKkP03JTB6tAkf6f7d84meYHD6G0xnxH2IQVXOuNGwWVxPdHaZlJuEelIMoTkK8vaH1Mhl1ZpZraYTpqcZASRAng1fvgUAkLlXOvzMaBdO8f1Rs3b2lwcTuM8DR3q7D6CSAPalfwKgHRTBAF4H93jT51eRJbPIgF9OApBr17OGmEsyqCLd58rgAHnn++s3RgTbdBm8Jks5n4fCwE9egCMoWfFj5bfjU9PyakzQDry4NKpx0norM6l20iSQejDGOpOWIn13Z82LLKs3at4dfLlnrZZX2hWEMnvPaz6K8xv/U4Ce0MYwZgQ5cHlSYhCnToCfgE/zFvvum677Fx0GrqX/xT3dtMdUnClC4IQLQzWscDmxWoASYZFWT2ai4l0J0ke5rO6PY2vZp/L3R9WWmK7jbqwxeSiRWIdRgUrK5NC4UcQSY/J+/rpsefbrw4CkJ0ddd5N6BI/CyHTr0nqG9DkrHCq4EqS8ZMgEkHAJ76Xnhh+0bvEzd+G35noLhA6mHpwxerxXrVK9G4ePdpxY65CFFZVqQ5djQWG351get1o/lYWL8064KxLNsvzrlVO7/JfnNzpOfmYawmi8/nDYzBBeILPB7/PfAdclHkI7Yt/MSkBIGTjufT5LEN6pgP/m3EBVrZ/RT7W8+YhkgMG9bzoVfhMMQeXEH2SSBtIwZVGRA3PjGHz3PV4b9rFmNL0I1t1Gb7n0gV5wOnd21a9XkGCbyIdSfQSqzDjMMqy+TagTheEdSE/MGUKUFkJAPh+XzmtKwiCE4YQfllwOnf5jqUOQ/317Al07ao6xeW5bfAy+1kI2f5aRTGBy4OrOJNvPFrT4UW0LvqVqyxBJBMvTbwSp3X5j+P7Ex1Rob6yoPXbie4CoYNZCH0GAWjc2Hadco1Gi9WsLNG72YVhqZchuRMisNULLajoy4Gla9FxQXf5WlXubu6q5c/D+f0GWIhLYLm200u4ZsBD8rET2cLK9i9jbOPPuPYxNwy4HwtbvykeDB1KsgzCMVzCfrtGY3PmpP0TWZR5KGrNVB/CMqYqQa0Hlwe/FYMAZjCXxHtMJuVqbCAFV7qgN4n5fGhWsBM9K37EY2NvsVWd2Qs3oeYTTGv2kdxGomA50RbmBJHKJDrnlKy4lt7rWEz0tSE/MGGCPGZ9s6eBYVma9glCDWNAg9x90Sc9xMcEICMDWL06+rxD/L4QAn5FDi4IQH6+6T2hZStQlbuHq/4bBz2ALqVbHfePIBLF0OpvcHHvx/HFrHMd3R9ehnslpKF5l0hlzDy4AAAFBbbrjIfQy58VsC4UDzxcTzAI8rohd9xQ0bhNYtuCM9GnYjNXPT4r7zEFl/V5BK9P0QndZnavnIOLD+XzsKH7UyjOOsR139pOL0XCozHm2GmdSE/O6PIsHh9zE5diims9bseDq55AyqzUgZWWyHKpO4bcg9KsA2mngKXnMTaQgitd0AtR6CYHl8kL9+T4GzGhyafiQVmZ4zYIglATchOixANkBVduLgDrNbaTIaY2pPbaMNvgJlrhRxApgccKLqaoU1mzKwVXVC4OAAMHAn37ysnjtesJ7o9FLqBEipPlr0PT/D8c3Rt2hKS3AGiQw6cQJ9IX5fwVdc3hHBYPRcRH//Ph8Yl/kY/dCL5i2l8bIQoZUxjM6hi06HZTpx7ZW0Vq22yv1Ln0Z7Qo3GF4XRdpEK3T7E900Xx+xgCccw53U8FQpO/kwUUoGdTwW0xu9jHXCxwUfGBFheaFBAF5gcO2+pDyHiVDhti+hd7C5IT5ffJ4ubTdG55t9ZgmlxcDoiOKxAkGABs3JqTtdIYUXGlE1JSUkeE4ITzXGDJxIjBggKP63cIgkEyLSAuUm9hELyuDAgPWrOGycHX6/rULxwwPb1TBDBfUUUp7gqjnaN8Vn0cxyVVtGAjW3Ci4AiwYfdLvB5YuFZPHA2KYp8suA664AmjRQuqL4yYJIqVwKlgKvyMNc/fwCUzNhGeMpaywR1i+AoMbfpvobhAJxtKDK34d4S87ZgxatQLalvwWuZ3zVr3X2ZXixGMPLrO+8LbkD+e4ysgAYG78Jndf+zm0x8ovThJuXvnxaFii8bxieblA48bc43edEBGk0h6H0KWBcWSTMFzPmyBg1+JTcFKn5z3oVIpgEVmKIXrMTHmlXprCWHRuylj8VgIAtG/veb08sHZtgZqahLSdzpCCK10QDBaRp5ziyMvKMLavcoE4aVJCQxQSRNogvVf/2drR02qXtn3NlgA8GPIBXbpwl7e70BCWr0D38p9U58w2qmTdSBDmXNL7MXn80JVbz5hhu07DFJwuNhZhAdVNA/9PrMtICFlcDBQWyjn6uEgGYSZBuMTpY5yZIWBxmzdQlGnPUtsIEvUQqYzZa+ToFcvOjqxFPQ8HHEKjRpG8YE7mWD3Dk4R4cOkVLcjHgbpMk6qkjmo6LCxfgXE1n8rHsgf4mDFAWZnptyR/hwb9DLAgDh+/RjwYMUI0pmnVCgBQG7IfJtLWI+HzoS5EchPCgiZNgJUrDS+/NPFKrO/+tPWzl5eHDF+IFDgW0BYieanTKrg8+K2UuSFlxowBjjkm7mFj6d2MDTTL1gdOPx2oqrJ1S4ZPx9oa0DF7SNysQIMCQZhzx9C/oSiTLzY8EG0pE1MFE2PoXvYjRjf6wjjiSexaJ4iUZ1m7V3Fmt2fleTmk9746mKOVyielNxdvVf834q/RdUr/r+74surYE4IG6xWCSAXKy13d7vMBdw27h/+GJJHmVGTvxRV9H050N4g0g8EbD66K7L14ZdIVQJs2MfO0mVDzKbZujdTtpNu6Cq4YrN0rsvebFzAIUTi/1TtY0f5l3VvMeqkM5Scb3ZaVARdeyBe+PKBRVinWNFn+OvHc7NnAmWfaNtZ1/P36/ZF9FiMpBqFG9f537274fAxs+B0KeQxamjYFJk605dmdJMsD53B8AGUReguTFwZBNQ9g1CjP6lUfQ/Ti7d/fcZ0ndnoeJ7R71X5fUv19S1JIwZUu6OXgClNaCowfb6s6QwVXmzbi/1L4IIIgPCBJZrhXfmkd1/Y+mHEx/tz3n4bXKXwHQajRfSPCCi69vBROFFxuNnyMYW6rd6NOv/1bc+d1WtG1KwAaL4gUpVDMo+H4vbMbSSHeJqoGNM7bjdO7/jfR3SDSDLMQhXbesaLMQxhcJYa8jNUbE5VDx8G76bkHl8F3N7Dhd/hj0Smma4rL+jyC9sXbVFUNq/4atw7+PwMFmF58RfGc0uBOFVWGMdMcXIwJYm5PKZyhSUHz65z3hQ+5cqb5/eTBRbgmPI4ZyurkggyYNIlUOAoYhGhb/ZLihPSFMIcxRBS5kyYBxx7LPYczmEcvUg7jgt5Jm/y5zz/RpfRn2/clifgv7aBZNl0QBNsT2KhGn6NTif7LGPAZDAwFBcC11wJnnCEeJ9KDiwYFgrDEzob+3d+aqY7Ncu7EIw8eLcoJggNpt+aV3NoXgxwm81q9Ey2I57G05BkFysvFdQlBpColJc7v9fJdZQxBITHJtr2A1gyE2fxl51WRyzoNxW/R2PDqL7HqsmbqW5SJ7zlzXuqFIY+FggsASrIOGt8nCFjX7T/IDdRad0Q67wt/XuV3LLUfVBisaNMm6Hqrh28HxNyehteNQxhe1Osxw/ss6+PB71eF3KIw7IQunGNObkateQF5b8DxnCVIqJbps/gMcYC8uJITBgG3DLoPm+euB/LzxRyxLnJBy/Uynd/c5fMf8AVxNJS6a+d0gxRc9ZiHR9+ma2kNmFiFMAbk5CRF7i2akIh0INHPcfOC33Fx78cAAOf1/LfqWkz7ptj4GrVDHhkEocbM4tlM6GOrDbEhZzdrwwIBeHnSlZjU9GPVusFyk1Jrc9Obk2OvPEEkC4wBF1wAluvwGfZyPU6WY/xkZSW6B4QODPDknZCVL0Y5ri07Yn7PTQPvtxtcRRefzvrZJyQgbG9YmK44pfoKQqGovxe1eRPTm32g/r2kv3MUijK/xujWLESh4b5FDlGo1zmR3MBRw3oN27PzaFRVqTzTksSZlkgSGAQxTFpRkXk56ZkzM0J11Yc44vf6M1i8kLqX6UVMWgoyj6BZwU71/MGB9nfO8NUZlvUpwhoLDlUjfibgSNDCa5iIG4nXUhDeYBai0IAMX9BwkegzSPzqllM7/xePjr7F0zoJgnBOadZBrO/+NAD7C1tHsrDzzhP/5xhbzIQKtw3+Oz6feZ6DDkT4/bhTMbuFvpKfIJIRBgGYODFyomVLMSE1vFMIq/Ju2b25Q4eoU70qtohrCqWCy2qsmTDBbssyKw3yfRBE0pKZKeaXcYLHHlzxIhYipbgaxUybFr+2CG4YBKCwECvav6zyDtjY/UnRk5gT2TNq6NC4yT+9ysFVnnsQ70272IMeKQh3rrKS/xajt1wSVi5r/xoeGXObuI7R8Lfhd+KNKZcB0AjBGePLwWXZOechCvXGGbOwiTInnIA6svInDGBMABYvti4HThmdrHROXg8uPQ/UeMIY2fUkK6rfRdo/8v5U2rlnUpOPcWbXZ+Rrut7SLh4EHxNwQrvXcOdQG/lwiZhBCq40wu76O8MXRFHmIXs3aV9+m4NB59Kf0aP8R3ttcnaFIAj7KIXZ5Zok0mZeFo7cxEeNAqqrxb85rHG0m9jwQvjXhafjhHavqSw8nVCefSDKMpSovwjLV6BPxWbTMp1Lt8apNyYoJ7916+SFf3gTe2jpGjTI2RNdlrd6hTWbapPAU9ewYWLidlV9Enas6hs3Bq65xtHG/JbB/4dNPZ/AvFZv87dHEAmG18CkffE2/G/GBZETXnpwxTE6g+fW5y1bUsivNEGevxzAmACMG4dbxz2OTH/Ek+mCXk+IluCc+JgAnH8+0LFjTJ4rvTW0cgzQ88zSQ/c9Ki9HzwqHe22jef6cc4AhQ4C5c/Wv6+bYUhwo1/xKD5Urr5TzEAIA/KICqDz7ANoXbxdPaUMUmnlwGV3Srml0CnItlzSfM1xfMCPb+t6SElXfabwi3PLz/HW65xvl7ZLn8/d3NIlnl2zh+TrA4iXWjiVA4iPpEPqofhfJsMLpb1WSdVDO+a6de716Bitz9mFJ2zc8qYtwBym40gUHIRT8TMCqDi+LsU1N6k1G8jKOJLoLBOEd0oJserMP4t502BJx24IzsKz9a6prvBtsbpQLT4W1utF6VBvPuEPxdgjLV6AyZ19MQjMQhNlT9ftxp+L2wX+PW1/0MNu7hQUn2YE6V4ITwxwmPNIfnw/o1cuyGFfv/H7HS5Bzez6JxW3edHYzQSQxjAFdyn5Wn5BQvi/ti7fhpE7P26s8jgouBojhmFIVsrKLGZ/PPB8PjbrN0b0+JojCsE2bVMoExqBWpPDUU1wMIDaegVY18q5xdcstWWLbI7Qsaz9mtnjPuECjRsD8+WIubhOU35WhgUyTJsCiRcCZZ0bXN2IE0KyZ6pRWKG22vuEWgLrwwFSFYQwruOYuML3nlyffj7qXwrATSri9UxiASy8FAFTn6RsDzGz+vvz3m79Ge0ga4ZXStTJnL1c5z98Ai3lZLwULTeXJCWMANmwQ55327SPneO5V/L2h+1M4s9uz0XVLKEMUOkYnPD+ROEjBlS44kAL5mICAL2Ru0ebxqC/AmwSBuYGjZHFBpB2eW/ONGsVdY1Xu3qiNstXr7+odLC8HTj8duDg6jMqQqq8BAD3KfwKDsYcVjQFEPCnIOIJADDz+svy1OKvb0/w3GLyYX+5uKP/tNITPk+NuwP0j/qrIV6F4xxxqm7TvqZ8F0an0Z4PSasjCmagv2F5uh5VRCqWUMg/flf0ewdK2rzurMw4wJgB5ea7rqcrdjS9mnSuGDjMos6bDi67bIeJDaNkKlGYfRLbfvof+9GYfYFm7iKFWlALhoou469JVHNmZA516T5u1r4NuiK+yMmDVKltt3zXsHjw46i+e7vsZA5AteTa1bau+OGAA0KJF9E25ucDZZwOIzP/aLpl7cHF8b5dcAlRVRd/Ls6fQdIb5xONgZXR9ShqUiTlgSKlFGKF9/jJ1lDEAgDZtgNJSw3f13B7/xjUDHpKvdyrhW297xTPjr8M/OdOReCETBIDjWr+JncedYjl+BYy+UyI5adJE9By2MS+VZB1Ah5Jt8vEJ7V5D66Lf5GMGqOZyMphOP0jBlUaYLpo0i/KyrP0GBTUToXazG0czh0Z5u3BVv4d0r2X7jZMFEkQqoXylPJ9iXb6vnsS5V6IVDrRuLSq6FP1kCOHlSVcBjOHsbk+j9oTV8ga+jifGve0u0WaT4CPA+DZGOf6jaCiFWPpx3ll4cNRtWN3hJcPyQxp+g0v7PMZVd6avzvC9fmRzd/lv+d21KbDuW7kZjfN361/s3l3/PC+SRfm+JSfhxn825rqF6/2UkwOry3o+fhFELJDmRdsGG+FxQDEeBEM+TRGbdfp8OKPLsyjJOmDvvgTCIKBd8a+GuXEA4MZBD6gEHt40TONLLHDztV7e7xF0L/9JPlYqfJGfD2RlcdflZyHF3CLhYVQTq/fdcjyQ+mIYacHii2xd9CuKMg/Kx/J86fQH6Nw5ugsQgAsvFI3Z2rSxXWVQ731mDOf0eApzWvLnUwvfJ/YJhuui49q8hbuG3m1ej0HEnLIyoF1ra9mE8l4SqxJmnNL5Obw6+XLjApZWqFJ0mOYfetgrc35beBrG1nyObM4UAl4pF3IDR1GafdByz6PrwUVvYlKi97vw/FZ/LDrV1HmDQVC9Ol7k4HK8NqB1ZEwgBVe6IAi2hucdi04zvPbJTHVs/7enXmrsauzIQo2PSU0+xqldntO9lu2vpTGBIDxALx51GKsxxat3UHfB4vOBMcDvExBcJlqiHg2SCziROHxM4FpcHzz+T+hQIuaOqMnfhZktPkBHj4Srmb6g4YtXqwjp6VS5I1s36rWxcCFfJXr3hnNzDRyInPPPRKAtR8gUxtQCSr0iCBl+H/H2/upW9iPO7/mvuLZJuOeZ8ddhcZvExM3/cta5XPkodQkLcpQGIm4fecZweb9HcW6PJ11WxNGUF2FhCMIEN/oopeBVnkucvqs6WEUBthT8hhVcDgXEX88+F1ObfSQfuzYI6dQJOE0tW2AQxLCQrVs7qjJkYNS2pO0buLDXE7rXrD6FmdK/JOsgFrfVD208t+U72L/kTzrtifXl5ABfvKkfLk6J/D0LAv44km9Znqg/aMeEvIyj6FbmIu+vXi5di7JudfgVOcYG9HroKZxcYeXBpZeDizx4khL9OZLvtzIzjtTWy4wa4+QfI28Hgg6f4yRNBZTqkIIrjYiJJ4Lfjz6VWxxbiNnhwl6P474Rf7Usd1GvxzC75Xs0KBBph9b62jUc72fAFzSMqX9ej3/jvWnRIQQBMYdfLJC7rNP3IyG1giscGsQNNIrUb8Y0/gxtin6xLCcsXwHGbCyuo47tP6vNCnaIiaIV+JixQufsbs/IfxsJhqww3WxmcyRR14E1qQHmzBHHmeOOA2pqOG9kltO8ygpP863He4lwUqcXsKL9K/FtlHBNx5JtKE2Qx1Lb4l9lobnt5XQ45n/Ys7JFi+hcNXb3BXEMUQjAWwWXSYhCALhr6D04rwcpoNOB4dVf4qd5Z0adVz1NjKnnXZvPmnLfK88ldiYVB++S8gnmWWuc0+PfaGqWZsAC5fjg2oMLAFq18nRNbeY1b/T9WAnz8x3m8M701yEv4ygAYNeRSGhVu2Gr5e/ZQ2Upkb648i6S3uVEhGDjGUXennopOnlk/Me7N9O+r+S9lby4+W2Uz7yVJ5gc5tfh3Der5fvWhYi4QgqudMGpJGfgQPPr0gJdrt3lZtTHQoYDVuui39AsP7JQN/pEazu9iJKsgzQpEemD9F71rtwSg6rN35OALwSMHat7rSDziOyJEnUfZ7g2FQbjlO67nJurOpzR/H3MaqFYRJxxhv32CULDP8fcgr6Vmz2pa0LNJ/hj0SkA7AmWGROABg2izm+euwG9K7aozvmYsddDA4WntZXnkx4lWQeQE857ogznA+DK1d/brk+Fw7WDlWJQJYTUlI23BxdZgaYm/hjk1bMFp6BzfM0n6hOjRkkXxov5dv70J5WnKIN+KC1Twmt+xaN859B78PwxV9urhwPP306TEIUA0KdyS1xDNRGxI8MXROP83fjg3MfQVmGgolpLap8Hm/tkpphrT+r0gv08boEARjf6HCOqv9SvX2/dq8wLwhGi8IJe/0KG0fjFMecqW5DXDAHvIiW41V+XZh/Ez/PXAYMHu2+TMcxo/j5O7/Jf40Lr1hnWq+f5AZhHwdBDHpPJSJfQYFuuZbWnlvYVybo27eOhzEN+oy3eKz1lH/mRJwcndnoehRmHTMtw/VZt25oqdbXvmWe/vxNPZYpiEBNIwZUu2AxRKLNwobmSq6TEaY908WninirRxkQ1Ilwky1+H2wf/zbO+EUTCkB78c3o8hQ+m8yfB9oIAC5lamhotuHnDtang3dCVlwOLFqlOPTz6dlzd/yGgqAi44AKgVSt7bevRtKn7OoiUxs8EQ8GFHkZT1MOjbsX9I/+Kkiwxp4X2Sbd8Vxo14m/fIOwIcy7LAyDGLTeag0+bYyNJtTYJuwtjFCtFITNS+FVWJsQEhuXmJKBVwg2WguRYY5GDa3LTj/DutEvw1PgbIyf//GegStXMAAAApaxJREFUpRTmMxAAunUDcnMxq+X7CC5bqa2aH521AIOA8mx7YYd48EroZub1Has2idhjppwNzwvdm/6h+k21j4ATQ48wSgHZ5f0exY2DHpDzSHLBGP7zTjHOUnhWqy/rCFoV3Y2l4v2xMTcD0Hpw+YD27YGMDFd1K383V4aol14KnHIKqtctAGbOjLps+5dlDA+Pvh1ndP2PcZmWLYGRI3UvyYqszEz1eZ9aqWrWPuCdwTCRfuiPCQ7foUsuAfJET0OuNU4insfGjT1bfcljjYPNDxnMJwfXDXgQOYGj8rFuiEKe3yovL7rc1Knyn4eCGdh+sEjRjke//8knA4358kvLkKFDTCAFVxrhyFqZMTFwtJaw98TYseLGWVneBVqNeoeSbeYJNHUID1qMAcvav+aqP06ItwKCSG+iLUk8nOx4QxTGa2HLMZEzCMCZZwKVlfoFLrtMYZXmRZdok1mf8bMQrhnwID6beT4wfLh54fXrDS/V5O9CYeZhR30wewJ1n08DhfTUZh/hibE3AVCEKHTykvTrZ/+eGGE1YmT5dZK6l5QAp5ziOEyjU3yanEKdS7di+wLyNE12EhG+R4WFB1fT/D/Qq+IH9UmNh7OS8OfRfTeskKM2iM/x8navYFSjL+zXw4HbvAdh/Cwkhj+dM8fWPqhZwQ5MavI/5w2TgDo28AqICgqAyZOj18wLFsh/usrBpaz3oouAjRtN3ztdqqttrehtrf/txO/VMKWZ+Nwr35eQwEQBnZvnWhNW2NUrUloKtGsHdOkCZGVFN2XwXdnJN6SL4gNU50ZCRAd8IaBDB2DgQNw++G9yuFO7IQrXdnwJZ3R5Vvx8BKFA76k0fYUmTDC+plDG21njeBX5gPc99GoPzhiAqiqgb19n9xJJhxt5WJ1i/8cyAmKkg06dAABHghmq6CjyXM/xIHQq+RnC8hXRFwYMEI3NGjZ03GfCO0jBlS44WcV37Kh/b1YWcNJJkb81nhQqGEOP8h/Qo/wH4zIKtF4fZVkHMKjhd1JVOh4hOl4aiZ6Iupf/lNgOEOmHl0nibWLlwWWEn4U866utenQKfz9nPW4d9HdvOkOkPWd3exovTbwSgPgcF2UeFkNxanN2KJk6FWja1Fqowhiwdq39TaLBS1Ab8gMAXpx4FQB1Di6t1VmWvw6Tmn4MQG25PrTqK/Rv8B1/X5YsUXTLwdpC68HldJxgzDLxfX4gkk9D7unkyUBpadwN48QcbZHjDF8QDXP3Gt9AJAUJV3DF6EHNDRzVH4fM2tO8rLcNuQ+N83d72zG5Kfefe1qzD3Fej3+L1uo6YV7N6FSyDU+Muxl+J+GWAbK8jRUGHjRKGBPE37ykJNpjSBHOTjAQc8xq8Z5lG6pwwBUV/LkjNRgZWujObIpnKh5bgU6lEc9sq7mWF+XnTYRnBNd4zqHg+s+Ea/HomFvl0wFfUJSNZGZiWfvXMK35RwA0IQo5FjtDrpiEy9ftiISYJQgJ7vclPE4MHQqceGJ0PUx7nLxzlaceXOefr5sreG3HF/HtnA0etUTEC10PLs5p6tweT2JF+5d1r4UEhuxAnZzH0877oVt26lRg/nzuOjQVOruPMIUUXGmErb1Wu3ZizH49Tj4ZaNaMu6r3p1+CGwc+wFXWz0Kuwx/IyQBd1kMQyYinG0Kfz7S+pvk7MLXZR6bvkt7cu7zdKziuzVvc3eha9hP2Lj6Ra5AKCn7uCT/82QoyDzuzVifqJW2KfkWnUjFXjepRKy+3vNcwxG74/M03A50727dK1FT89PjrAQBHQmI+jGHVX0cVM/f8ivz90qSr0b5YP5desmOmKOxVsQWX931EbzdveW+iOHqCwbqLSBh+Fkrss6KMksALxxzZKG+3faG1Qb2xEJB5sda5ot/DWNruDflYW+Owqq9U1rbKT3egTgw1Vrdstet+EB7i8wHXXce3p9UYQaieU5N35B+j/mLdDYUxiRuMPode7iZbzblVsA4fjjO7PotaaU4Kh1d2BVO/1bGU3RnVbZgTi9eQT/pecwJHVeGr/ZoxMPz12/6MbduKwlCSYRAaHIVk4/AEjPvqxiKPX17gMB4fI0ab8MxjjBm/kH4WQqbP2JCFQhQmlm5lP+I7TgUk72/Vs+JHrOn4ku618JohbLxl5wnUNaBo3Vr1zD886laUZ+/jq5AMpWICKbjSBcFmMumePSOLKzsvlwchCpWDkyp2Om8Xwn+0aeOqL47p0SMx7RLpCzPYoHtQr9m48NbUy8Qwn336iBO0Tpx7PdZ3fxo1+busC4a7AQEFmUesC2rhsOR1SzIKwYnYkumvUwt+160DxowRrSGNsJgnGQSga9doIcqECfZjcgMYV/MZAOBIUL1RZBCsBTXdukVZjcc7XJ8KFwt4M0Xhhu5PYWGbt+VjuaQ0nnplkc6LONqar2kyYphXhXCGjwlxf1ZkxowBJk3iK6sMvWOxFheWrzCeoznW8amy5VaFltEJd2S2ngomckwkzNGxwo9Ceo6DKo8h7/DKs9MoD5heaDvlOGTZuo0QhUvavK6+Nm0aMGMGGBP78cuC0zG+5lOrFrnwLAeXGVdcYfjxDX835bqJM0Sh8rMENJ6etscPstQnAFze9xH8U8qBZwlXYnrrMj3Kf+Sux/Ubm5cHbNpk2q3irEOY3EyMNhGPNAEMAmryd+GrWedEX3OST5zwlCx/HVoU7og679Xvoq1HO3bbmet58tnNaPEhd31EbKDVfbogCOaThNlCWBBQk/eH8XXGjDcNOoK2woxDmNfqbZ3CBoOIZH2S7a/lEjLIA9X8+XI81VgwruZT/GPk7TGrnyBklAqueDYLAZg3T1R2n356dMiMRo3075PeY88WhUYr4VmzRGtHq9thLsgCxLjJBAEAVbl71HNNy5bAjBmWVoeASd4HJgCrI54AcqmmTcXcHU5o1AgV2fs17cMwRKES+UrHjkDHjqrPW5hxiLsL8rrChXDG8TjBOO802JjHW3nNmKD6mnwsFAkFTSQtDAlUcHXrZjnuyO+5wXxshtN3IB4KcQa4tl7lHpaqqqQ2FcJrt785CaxjCu+zq/Lg8lBQ6ZWCy+g50/M0Ohr081esk5dKj0Z5u3DnsHvVJ7t3V3kQNcjd59njHBeD9MJC1An635VXHlyaP+HXKCR1FVw2w703yd+Jhjl7bN1DpDbl2fvRrvgX3WtR49dll4FlZbpuc3TjL/TzBsWC4cMto2EoQ7p7tfbimc/bFP/m6D4ithiN2fohCm2EE9Q516rwV1VoXrGcuTsuQ6R/lusCadLgNoCgdWRMIAUXAQD4cf7ZaGyi5DJ8ncMJqRUFVnd8CX8d8jf94iyksXAWxHCJEDX4UQOCzkpZHgtyc0WhZAx4fMxNeGT0rZjV8v2Y1E8QRnhqScSYaX2MwdxrZf16sMqK6PvsdsNmeRV5eZG/+/TR1Mv3Xc1u8S4+mnGh7jWy26pf7Fp0MoZXf21oVW31TNn2sNQmZjKq06DMvcPvwvYFZwAAzuz6DM7u/nREwWXSprxp9PuBE0+U59ZjmnyMnMBR486sXas6dLT59HDBHhZyvjxJzJk2r9XbCC5bydV+3HNwaRrVhjRSbpKI5GBJm9eRE+AzrkooTZpwGXtocfQOrFiBoNYTykE18UArmNB+XLnfHToAZ5+tutaldGtM+0bEB8N3123EERjPy3YwUtTpCfW0HtumLFokRjI5/XTTYqZrGg6jHruovJ5i6LFs9LsbCiD9CoWYhQfXxb0fQ8/yH9Gj/Ec5lFpA83uF9Ix/fD5k+03WVxq+mnUuHhsb7c1D+YLqJ1H7i6IisDatrW6KXYdcYCp7kP/wTuJRF5YfOvg+yIMrsSjnCSsPYCdPu/KR+GbOuWiiiW5gFt7ytsF/x+/HReZYQwOKMCHxOveegkIUxgRScKULgiAPAw1y9uDeYXfKLxkA8wFfulYnJbM3ymehey2s4FINSMbounZKdWb7a1EbsrZei8dENLnZx8gN1OpfpMGI8BClRwYuuMDjyl0ufAMBoKQkulrpHeSt3vYbo6x49mzRC+KUU4Djj9fUK5azWnBoPStUdSS7YJPwlOIs0XvJ6Hd36vGgvUtbv+ViVxDwztRLok7nZxxBw9y9AIA/9/0nVnV4RaHgMnizMjIgQL3ZC7f/73E3Gfdh2TKgc2d1v12ItvMzDiu7YB+Fom5I1Tfy6SgBlkEDcffg0oQoDGhi/iepHKJec+ewexHwhVw9567gfSg2bJCF0YJgcp/GW1T3HbBaw/boER8PLg88ZGSFgM8Hq5DMytzCP847C9cOeNBd47QXSCyS8YgqRKHZ62Txe63q8BJWd3hJPvbOg0v/vN66VRnKuyrXwrOnQQPgtNPE8OJ6cOz7cdFFaiMyD1CufWI55xlZyLsOUcgY1nd/GjmBWvh9ghxKLUcjE9Bt3+/HrkWn4Iq+D5v2PUx2oC5KcQYALXXCdRHpASlT1AoFr9YawRBnPV26qA59JvIBIj4o50Ivl1VR75rBD200Z7wz9RIsafs68gKRedly3SpFJaMQ2ImFvv00Iryx61z6s5iXQjlKmI0YYQFYeGOoMwCYWYqLbWvL67ennUiU9Wb56yIWGCYwJkRZYlpxXo9/2SpPEAmhQQOwfHebzRcnXoVTO/+XqyzPQltvPeDVxp+L4mLgxBNlT08l4QWEn5mLJ2ntSmjxSpEVOW/+TpgtdsP39q78Qe3lY7TrkkMUas4ffzxQUwNMnRp1i9M3VtdK2YpAAB8fuwkPehDiV6so1FVMGoQFeuu35q7btwNjUH1PfhZSHTMIlqFbiMTQsWR7orvgDTU1qrlS+d5PafoRnj/maq5qHviul6tubJO8Ts0IvxmmIdItEEz2LSqCQVWxvMCRmHqXEO4xm7OUv7ZhiEKL+VNL74ofcEGvJ+Rjn5WlNidGq1O9dXST/D8QWrYC383ZgPN7/ttdwzxzdkkJ0Lu3u3Y0xGt3oPUyDeM6RKFOuanNPsSUph9p2tepLxBAdqAOfSq3cHtsJ733MOE5xvsIvXP23yhtvrhEYKYIkMc+n8+z5z/I48HVo0eUoayPcnAlHHnMrqxUKTx1QxS6+a0MZOFGT0zvyh+i8ib7mGAeen7SJGD4cP7nmrSrMYEUXOmCXlJUzYvcseRn/dwb4US9JtYPgqasTEYGkKmOD8xgbA2hKxiXCucGjqr6YGRhz0pLI5aYHANDt7IfcX4v/o3C+9Mv4i5LEJ6gFYK6YECD73BFv0ewf8mfYjZxhheuyve5JOsAhlR9HVX2lM7P4eLej8ekH1V5omeLNjY+QVhRXXIIz4y/zrP6tK+ads588Pue5hVIHteCclmmDKkzfbp1J/r0ET04SkpwQa/HcVGvx+RLKit365oi3XJiheb3o3PpNlTm7LN/r4YXJl4te7at7vASlrV/NbqQViAlhyiMvweXclOjXe/4mACMGRPXPhF8rO7wEn6Yd1ZiO+GV6apiMFK+A/kZRzCi0VdcVWw7UBw5OPtsy3WJNu9uleR1at5Nsc4f55+tu3bgQTvOat95WcimCcXmydKIPLhiCk9EDwAagZjJbxKeJwxyV2k9cH0moYPtYDQPGRmKMQa0KNyBLH+d67YBg/le+bk8fo5VxkMxfEeMZBZcHlxmoRl1FFz/HHMrOpaqjSB0BZiZmcDKlRhS9Q1Cy1fh6Amr0KX0J+O2YKAoo3VC2mLXc9mJTCBDEz0Aa9ZwNOTRutkqhDoUn8nDEIVmRoTymDB+PJCd7VGLhFfIv0+TJoaGC04IT3PyUzZunPj/qFGqucnKaDtUFcl/64Ngng83JweYM4ffg4vWkTGBFFzpgiBEvyOaRdqnMy9Ax9Jt0fdKCiozDy7TGOdXX809IWo3EIwJgCDg9cmXoWPJtuiksYKAq/uJYUTC1nR29xt2rEMYQuhRbr4YJQjP8VDB5WMCfExAXsZRbdU6zXK0pZcHT/pfaSlZnbsbL0+6Kqrs6V3+gwlNPg03aNlcTd4f3C952ALbb2GBxUyu09Ii8ZRn70PnOOdDYQX5GFvzubgYtXMf5xOj9RD7aX+pSZ0Rnhp3PZ4ad714UKHIf1dSInpmTZ1qHaKQMZzT4yls6PG0vA5QzoN2nnlH74fUZnh8cTymMYb2Jb+gd+UPAICbBt2P4dU6gnA5F6h6DTOx6cem1bco+J27KzxlGRNUgoWAxoOrb+VmstZLUhgDSjIPJrobuvgUwiAZnvBjUAt9ZI+UkLVByLdzNuKvQ+4Fhg1ThfbTcna3p/HFrHNx34g7LeuM6qYHsy/X3qN1a1mwIYdXVrZtZo1r3riz+wguDtZlWhdizL5ATCcagFiV+vdsnLeL3+vHBCNvcV2hWgyeKeXnKs/eh6rc3eoCHOOBHeL1WhgJEA09uJRjpt9Eear8zRcsMCxWnr1f/0L37vKfGb6QpaCTJ3INkdy8OPEqvDAxev9rhNHc55W6J0qW1qUL0LWrJ3XzwpWDKzfXsxCFdSZG+owJwAkniLlMNfx3a3vy4Eow8v5UEGIbHrt1a+C664CZM1WntblcteRm1uHZCdcC4I9gxB0yk4gJ9O2nEeFFtPyiFhYqLpq8kH36ADBXYpkOOBkZ2uKmoR30JpIBDb8HY/ohB07p8jxennQl/j78TsP7zfA8DwdjGNjgW7QrTpOQNkRSYVf++c3sjcjyR2LDqzZ3jNlLWq3XHyH6XWYQgNWrVRO9UbflMpWVovWUCc8dcw0+mbmJu2/hui1zcHHXSCSCFgU78PGxF8a30VWrxATtp52mOm1lEGEY9chE2QSoc0iZMb7JZxjf5DOgRQtgzpzIhaZNxfdH8Q5xKag5rCnNcBQ+xCsljkU98lUDa+yWheZKqe/mbjS8VpJ1QPW3WVllf4qzD0NYvgKA5FkqfYY3p/wZL0y8GgiF8PbUSzGt2YeW9RH1AI53RZ5DHSi4lF4w8lkOgXZx1iEc3+51y+Y6l/6MdsW/WtZniEtpuHZ9r1vb6acDBQWqU6qx0+V41SBnj6v7CX0sBV1yfkmb3slDhgCTJ5tViW/nbMC1/R/0ZC4zmkO9CoFoiMYQ5s99HsX3czZg89wN6s8V9DacWbxyX7Yo3IGuZdEGqYYCSMZEy/3hw809uJQ5yQYPBlav1i3WqXQbtnOEYjVVcDVooC8IJUOYlKI48yAKpZyzbtANyWb1KNgxSrfbuAvMEgcwJoh7mnnzPAlRuL7bU1jd8WXD6z4IhqFYj4b8unIOIn7Ic7ggeJoPV3dfHvbgq6yMlFPMGVW5u3VDfI5p/AUA/nmb+3PQWB8TSMGVRoQtGQUwcQGvsCLSllFRVQVccQVemXQl3pp6qe6GM6ixjLbCX1Gme54xtTBaW1udQUiKIVXfoGn+TukemwouG5Mnb0z+16ZcgYdGuc8vQhAAXHlwtSpSC3G1r+ieo7mG9/ocWi2x4iKga1f4fRpvTL02wucvvBAoKjKtNy9wBEWZh/knfEGAsHwF5dJIccLPyOI2b6BZAV9y7XuG3YWFrd901mBmppir5rTTxP8VON1saZ9/7bxTrbWa1tKjh/p48WJRKHvllcA554gJ5SOVW3UmquxNg+7H21MvBYqLbW0f3AirwnfGdP0+d25UmOQwTfJ3ycomO5ze5T/4Y9Gp8jHvOKkdu/0sJAvSyrP3i7HcQyH0qdyCnMBR2/1S8tGMOCuE6wEJ2WfaUXDxEvZIqqxEqUJRK49RHgu0naL85E7DIlVk7wPOMg4tqX0nddcpGRnoV/m9rrDclFAIvy08DRu6P23vPoILXt2nUpDElYPL5wP69Ys6nacYkxvm7EV2wJsQgUYKDt15xak3oRWFhTiz27MoyDwihj5UGqaahVtyAHdoJpeUZB3ERzOiUwqYCiBnzlQbDukxcqTo8bJ8uXist7447jgAQMPcvZZjuJlnCdav1xeEktAzpWCMf61sVoo3LKsVbvJk630Os3X0l7PO1T1v9lkYBODUU4HSUk8UGhf3eRz9G3wvVR5dn/b7EFRzBpFInhp3Pe4adrd4kJdn6fnEvSc9/3z5T93h9MQTxRzvALJ8kbn+uzkb8aCJfJcBXIsTbk80igQQE0jBlS5oX5BZs3TfaMPXqLAQXcp+Rt/KLQYKLv4BRxuGUItPm3hV0c+jSmtTk/jk+gf68EyejaUk11aeIHKb55xDLs1ETHCyr7HyHjHCae6q8GKRZxFtx0o1ZFORrhyrTA3adfICDq3iy0VCxJ7wWH/XsHtEgSUHx7V5CzV5u5w1eKGxcsDSg8swtIjRDQrDE8MiAtCrF7BhQ+Rk+NkuKAAaN7bXJgB06iQq7yRP7sqcfehTuQXo2TPqE0xv9oFheBXH1pWLFzu7zwYCIIZQk2B6ni4GzGrxHnc7TsbJIVVfY1aL94GMDPyx6JSIIYL0e7gVZHQti29ITyJx2BZWDR8OrFwJrFuHLoMKcWipmH9DFqh7GJLMzTpYucZ3UouwfAUqcvYDzZvbbzv8R5MmwOTJeHPqZbisz6O266nI2R+d74TwBMu9m07+aO71s6bg5zPPw/TZGfLz7EZArMUohKJuG4sXi8oVr2nZMvL3jBlqY7Nhw0SZwQUXeNLUln3lntTjFNehobKyxJxFPaW8qXrj5cCB3NVFhYtTkp0NIaCjQNN5kE/p/Bz+MZIMa5MRu/Og0Th1WCfiipM5VveeGAnS2xp4cBsZrAPqsS8e8v1oBVeEloW/kzwvgQyp+gZN8neJThnHHONa4dmqUHoeq6rMC1ZUAPPm4dwe/8bycG5nnw85gVpTo2kv1wZE7CAFVxoRfuV0B2o7ySO1sw1jlkKuqFtMJotc/xFF1YLqZr9q0mNA//7mfeXYzSg180b8NP9sAJqBq7paP/cAY6LA0WbuFoIwxGUOLqfLAR7PBL3+KF+7a/o/aHE/P7Ii3YGCy7QPOguSlyZdLVVB9luJJlMxRtux/tWW7VL6E16ZdIX5TS1ayFZbejiN/619T7RPHNeTqowPz5H7w3SsWLtWVJhp3yUd743WRb/p57aCCwVX//6RfDdevGJLlkT+lnKoaAXL5/Z4EjcOvJ+rOjthlJVeMOZ1RtYzL0+6Cse1eQvIyEBJlpTb6dJLZU88x8pZot6h+6yavVQ+nygsKCgAVq5E9ogB0i0OPLis8v25pU4c+72ah+3kAwYgjpHSfMCV80lJOPefvbsITnjnYkMPLi0mIT7b9yuC74Slcng6L593o8+hKyjLyxND4g0eDCxa5K5ho887Zoy6XCAgei0pvcRd8MWsc3FBr8c9qcsUg5xC8nzrFRaRJ3T3IUuXisYs552HXuU/mObw1LU30Bnfu5f9iGnN3Yc2jnlozHqIjwncihozAbne/OVk/ezI6MJjr0HevVw8Qppqv/OwEvz96RfhnB5PUojCBCL/NitXArm5lgYKZs9VRfZefDMn4lHIE8Z/U69/RQwQ9ULXbtggj/Ezmr+PRW0cRo4xgrx1YwIpuNIFQZAFUbqThfRycs2/OslXrQTPvBNUSdYBZPqDandnxarg2Obv45NjN0lNCcCgQeJC0SGvT74MT46/gbu87MHVty+wfj3AGGpPWKVblsYkwguUeVoA/udqUMNv8PiYm8wLxciDS7n5P7nz8wCA/bVZumV5rV0YQmhWsFM6iEHs4m7ddE/HK18AYUymYjNmGs5F4qlx1wOIXugWZBzB4KpvzW+2eGYME9YLYWUN3/MsaLwR9TauU5p+ZNwvt8ntGdP/rOXlUU+8/A7o7NA9SfjrxkRz+XIx0XvfvsD06cApp8iX8jRh/rqX/4Q1HV/SrWZD96dw5PjVuKrfQ+ha9hMm1HwKANi24Ax0LPnZtAtDq/SVf1q0BjsAItb45eVAaanoVTdrFv7c91HsWXwSV71EjJk3L3Ft84QotEiAbUp2tiwIfuNXyYvDQ5Np7fzerexHbiUzA4ChQ8UuedQfbT3ab0wVNnX4cPFA2vMcCmbAFpq8XoS3mBlXKOdhw3J25tCwIleqyscEy5yxvNjy4Ap3YsECYMAAdw0rP5Pb9YQN2hX/ivE1n8W+oSVLgH798Mz46zCpyf8AKLw6vaRxY2DZMmCjdR5Omb59gSuuAKqr8cDIv+DL2fph3AB+h1q/z30wt0+O3YRFTkN7E4YwCNx7SbNIQV7kzirL2o+BDb+LLsc577teHkj9yTUJw62N+uQpuiEK1d95+E3qUf4TGNOJLEV4xosG0UHCaOdBq1HuaNB+9AvDZ0z7sEtrQfl0u3ai4al04uHRt4uGi0TSQwqudEHQTK7aAZ5nxpo8WYxLrrQil+qyM+kyJuhOML8tPE0MgagsC40Hl09Ap9JtAKRBz+eTBUROBNEdSrajKnevqCjTYWjVV/j9uEiuDT8LiUK0RYvkGOVRrqqk2SI8RLvY5V3s5QWOYnKzj80L6XkgKvDCgyvMEZ3QCoC0sJSEWIYIAkLLV6Emf5dxA7qdi5QzG+LojU1uMv11QEkJAD6rv/FNPosqe/vgv5nGzebFSqFj9CxpH9kuZVuR449s8PTm0MfG3mLckI6hiYysbDMuEsXGjcDUqcDAgcZvvY5nh5sE0J4oj3v2FK3ZGQPGjhU3HNLnDxhZqep8MX4WQqY/iFO7PIePZlyEhW3eBgBxfWBy+yfHbsJNnAJ7ANHSqi5dgNNPV4efHDkSGb4QCjOdJSWvUuRzK83yWJhX3zjnHHl+SniYGkHA34ffEXU6ajnv8L36cneVaKE6YoStPpmhXR+Pq/lMVDJzCOcFQAwjc/XVUdfmtXobj442GR9dwrKzIrl4JOF/JWd4XJnSUmDhQo97lp4cXLrW9j2jG3+Oac1MPFbCIQoVc7bKAMVsDjVCacgydar9+3UwskiP63iTa5yLNxZwhft3S04OMHgwxtZ8jsbhvUOs6NUrKl8rL36fIObfNEAI6TwHOgpJM4UBIHovWNGi8HduIy2CHztrcR8zTuOhJ9y3K3Lasei0SD4qDooyD6Ig45BpHwCgUd4uZPv5c8d2LduKn+ev070WEiIGeJ6FfJs71/CS9hNp93mMAaFl9vP1EtYMM4gOEkY1VzBmuQe3o+a3LGmg4IrCJOoLkZyQgiuNCAuizBbNZpbaOOYY0SJKZza19uDSnhCiklLKVlXatg0sy2ThuwvLM3ngNNikZ/nrUJ6tTMINcWPuZGNEEA7wM2ceXJablI0bgepqDGxg7NHCtbDUeXfkMUa6dmzz9zG75ftiWE9tGxCsLeS1QuFYeHDF4n7CEzJ9QaB3bwDmcdu1KL29upZtRXXeHtd9cWojq513bxn0f/hj0SlyyCOlUPqMLs/i1cmXK+5VMHiwqBThWFB3K/uJv4M1NaJFutncpqPgcrP1dKMc4yFgJESz+V6bGRnkBI7C7xOPh1nk7fvlYJFuiGe0bu2ZgPHqfg9i6/yzAADbF5yBP3V80ZN66y0ZNr12Ysz81u9EndN6tWrXDLa4/nrRm5AXaUwwWm8EmHrMkMP8VVbytxEIRCntWhTswLTmH/HXIWGl/NPdH0lj4qjGX+Lw8WvsNWhgPEeoyQnU2r6nZeEOPDrmVstyNw/8P5zV7WkAmtBcjOHuYXdhdYeXom/Svj+aNSiP8Rcv4TXFG1MuQyNFaNq4Lj/HjgU6dxZzS8WBbmUc4aI9JNZrDVNc7leMPLiaK8IafjD9Ikxu+rGhfOe6AQ/g05nWOdR8ebmu838S0YgeXHyYff+OIia4DOk/q8X72LvkZNHbGwYK+VGjsHX+Wbiy3yO2uma0JxMEJsv2eN/ci3s/hpGNvtC/WFkZycer68Gl8RLSjhdCdJ5uIj7EI6cVtzGJUc7shQvtrWkhelISiYMUXOmCIkShLpmZUjFnI3jQLEmqBjstMABo2lRxInK3WVJIvfJ62B04lVYlhsQ6JwFRr3DqwWW6AV+6VBRoM4bXplyB+0b8NapIcNlKZPqdJUeX3yvpXXho9O24uv9DkaTMemXNUC68mzXTj4OsR6dO4v/t25sKtvwspL+490V/i+XZ+3DDAGuPjePbvhafPANpTpfSnzCn5bvyZscwRKAOSsttq6cs238UW+aebR2i0CJEotH7qRUABxbNR/bw/vL8lheI5J7sWrYVg/RCiABiaKI1ayz7KSxf4SxUAmPRIQrDXdeRtITs5sVTYCefmi0EAWd0eRZdyrZy32I2rmq9UJS/pTxCjBqFFydFe5oo+W5vRbQHvMcwFhlTG+bupU25V5x3XmLa5fgBtWsEV94RvMZbYQV769amxeTuz5mDhjl70Kv8B+6uhBRhXJX7l8v6PIKVHV7hq+TEE1WH2j2OkWJO9bUrDrL81jl7ieRiabs3sLrDywDU4Y7BGBa1eQuTm/5PPjZEmvs8zRspEV5T9G/wvTondOPG3jWih/Qh/CwE5OeLeTnDIXNjDGMQw0WPGhXbhqTFiyehlJ3i0iBWd+/StCm+mHW+nOO4+9x2ouePwXPpZwJXbi0GAeNrPjM1fCTsw5jALV978sdOuvNSw5w96FJqvaY9qdPz3mvHw4Z1iOG6XUEIEVnbP0b9BQ+M/IvlPas7vGTfy1pCu2biCYVPxAfV3owj+pjZe6a9PVx3VCSuMHr5FYcMid4tlpUBF1wghvvmnNO+nH0uXlMYshLxhd7wNCK8SBIUE4dM9+5Au3aRl9bm5PiXIffinmF3GbetGHBMk1sOGhQ9YA0eDMyfD1x4IbAu4s4sC8YzM4G2bQ0HtaVtX8PYxvrxvrWCeC3y2fHjsbL9y+ImiVPBRRBe0LroN0ceXE/91Fn8o0cP9WRcXi7GfwciSdB13h3+3FgmHlxadBYjtq1zzjqL/0tYvFgMM7RsmamCP9NIaKXT34rsfVjb6SXLpntXbMH8VtHW9oQ9/jPhOsxq+b5uuCErlMow+RmfMkW3rI8JaFrwh+Wz5T7LgcSgQaKySmpvQ4+n8Omx58t9SRjMRNXjcYhCwxCCHnB5v0eRa+QVoPMbm/3sdwy5Fxf3fkw+fvj7HvLfcp7CwkLLPh3b4n1gxQqgY0fLsvIY7RSpPwm1XE8Hwg9GdTVYzx7mZWONgYW11vvF9vjhZM16zjmi8qhPH/Oqw6NJTg62L1wnh/7k6pZB/1Z3fBmN8nZbVzB/vuW7ZvTJjRRcRGqgncXCx6b7T7PfOfzuhUMUemjAqHxfHxt7Mx6efK94cNJJnrVhhqGnc6yZM0f0HIsDdgyjkg3tHD5t1F6gc2dk9esOf9tW4sljjzWtg/d5ZQyY2+pdvDYlft519QGfjRxci9vo50DbvnAdWhX9rntNybUDHrTVNysEQNyrSIalumtKD/N2Dq36Cuf3/Jc8Hrcu+s0yOgIgKhEv6v24o9DF2vdjb22OuoCHn4+wh960nOGrE6OA6RhdVuUaR2oxGgcNjcKaNwcmTQJOPjlybv58fXkzY8Dq1cDMmQBEI1OzEPHl2QdQknXQ8DoRW0jBlS5oPbi0I0YgAJxySlTiey4YwwntXhetxQ1DFGrV5jrlmjcXJ9EGDdTnfT5gyBDR/bNFC1FABI1ySpFYXtvOHUP/JgqWdJAFAxyT1y2D/w+X9HmM+7thvtRdUBPJwSOjb8Xdw+5RnbO9sdY+28pjDxNLM0USVvkV4XhXuD6PchFjZ2zKzRUTxUth4IwIW/UKy1eoQyoJ0VZ3ZgKSHuU/4E8dXwAA/HrIWuBNWKMyZACngmv9egDqcIYNcqT8Ay6taa3yHBg9nlZPbW6gFh1LtwNQfGYL7whDXG7GtPny5Pk7Jyeq7MhGX6J98TZH7eRZfJeO4R0jFGsN3XFICmnSrXwrJjaJ5DNsV/yrmOsL9kJVlWfvBwoKgBkzrAsvWSIaHjll1Spg1ixScKU6ymdZ573+YPpFOK3Lf1Xn/HYVXE7Gi/x8UXkkRyzQhzEBuOIKR0oiv8Kq1ml0CS1WnzTcTS8VGF71neBHa8gZNkzRE2QZCZ5Xtn8Z/SqlXDXSGjRc1kud56KlftmSu3PpNgz9q5S3jcNowgv8PhchTd3QqFHc2k2IB9f8+er/rTBYm4ZyIvuX1R1ewqP/LRS/txNOQKib2ujCLIIAzzdNkWdiA2NA26JfMIDDM85qj8GFk729IOCCXo+jUJFvSzytfnLM9mC6nk8VFQCA3hWb8fKkKy3f+U09/4VFJvJEIxiAFoUGoYttRnMa1PBb9b6GFFxJhZlzQvuSX6JS4BgRvt3Qg4sxYOJEoH17J910FhI7qhJ69mIBKbjSBSFiPWKegyu2PD3+eqzt+KL+5JuVJQ4ma9bIyVr9JolXtYkHdQeScFgrM3fjcBgzM2wq/AjCC5oX7EB+xhHVOd7H65we/xb/MArgDniaS04pVJPHGEkpEbnA8MO8szCq0efyKS5rc96QhCaYLTSUHlyq3tj0OGtZ+DuuH/gPAECn0m20WfQAOVTHiBFAx454YuzN1uEq8vKAm27CrJbvYX6rtyEsX4HmhTvFawbPvPxbWbxgx7V+C/kZh+18BHX9RjRrJv/pYyHg5puBadMAOAg5ZvbOc3A4qM47JACioljKg6bkkj6P4fNZmxy107xgB1bp5T9xi9HmvmtXcSyRlFM4/XRuJaJyUz+8OmJNyustc2DpWrQs3CEeSLkMTGFMXBPZRB6y6uqAkSO5rYYJA5J8Pde9/KcoDy5TLxUTYhGWqjDjsGNBvXLcU75lXs6r2lBQ4fcnKhThtdd61ibhEZrwk4YMHiwbu3C/zj4fbhn8f3h50pV4a+qlEQVXDJZ0mYvmYuBxLeXjuI3Z0pfhZT4xJ+3Hg4R4cA0ZAtx4I5/HNmCs4Dpmkvy3duzjXeoxQNdAKapcck93KQuDgNLsg3idwzPOx6mMlLEalBjDjObvY1zNp5ZVndPjKWT51euJqPB9ZgouvWuDBwMAKrL3Y0jVN5Z9sGMgq7rPZh4lJdp1/KSmH0f2NfPmkZIh0axdK/7PGHpXbMaQht/Ix3YwKm2o4DKA9w01fWxW8CnhaFCODaTgSiPClrxcL6adF4rDUiT8ko+r+QzFWYfkhVyGMt54uM0GDYDjjgMAZPsNQgxZXJPhEeCvXWv9eZX1cFrGxFu43aLA2nWdSC1shf9TsH3BGTinx5PigXaGVT7r4RCFLjbU4f4o47vLTRx/fCTxppS4vkn+LtVigktAPHcuUF0NrFzpuJ9mC40MX1AuoPouGjaMKmvWX+VGoHvZj/Y7SUQhC1+ys4ETT0TXsq0YWvW1YflMnzQvBAIY0/gL/H3EnZoKLcZvi7ngzG7P4sWJxrmWjJ4zyyn11FPFZxzSIlwx59hWcOmEEuSGsSgPLgBiOCEPPT4BINMfxM2DrPPZ2cboy161Crj++oigp7BQDgUoC7qHD9etR2mZqszZZxXmOIwqXGJZmai8XLaM48M4pFZsL5VDMyUFybS5tOqLIKBFwe8YzyHI0qs32yikJ08VOuuSH+edJebZkfqmoqAAT467AWd3e1q3vn+NvRF3D7tbPvZK6K+1RtcK95sX7sBV/R6K/qo5hMOECwxCB+sSfpY6dgSmTtUtonoeFyxAXXa+ZXXqCsQHINMfRN/KLVEeXJ7CGFBaKh96YM9ls3khMeNcPNqUc7cmSJyVkWFdJpzP0CDnWqi0XP5b+5V17qw4GDnSJIKAwLV3ZEKCwlWmOUa5HnXLeiE70nh+Pzz6dhzf9nWuW7VjXLQRiM5DJkVJUUbN0PZFDkke3kf066fbvixLsJmawUhJISxfYduDS2bgQGDoUOvGidgRCKgGujenXIanx18vHjidQzSTrKu8tXpoI5Hp0aOH5bjw9exzPOoQoYUUXOmCVYjCcLHwxBZrjyUp9M/2BeuwvttTOh0RX3pHCi6dEGxmnmBgzNo6w0iwp3dfAjYKP847C8vavxr3don4w7P4bZi7Fxk6z/zBpWvVz7KVAnj0aO5+KReI8t+NGom5866/HjjvPPm6UljMpeCqrBTvdxGyS5k7qUn+TsxtGcmPpUw8Lr/SbdoAs2dH5QkqzTpg2EbYi21eq7dRnbcnqWSjqYqPCbY8AHIDR43H4PXrrcdnp2E19RSkVvcoycoSw/Qi+p2wnVNH4Q3mhPtH3iHGwLdDMj3shlIeFj3myTlVJAYNEsetzp1lpTygFpApfw95HWLXG3bcOKBXL3v32EHqe0JCM6UpCXnEmfW6Xcl3czfi3J5P2m7m0dG34PoB/7B9nxk1+bv0L4wfD3TpgglNPsWI6i91i/Rr8D2qcqWwsoyphGp2hIVarO7M8IVwapfnHNcfpip3t6LNJBobE8CZXZ/BY2NuTmgfdENnAWL4zDDK90vrZSsZnwgsRuOpou2SEmDr1tg0o9cmQ4IUXPHwipCiSHQs2R4553J95DkbNwIXXKBScipRiTQ0gthRoxTXZ80CmjbFkjbRigzen5cx8EW1IWxh5+0yXe/ref/r/bjKh0ZWzlugHA9M+hNWBrw77RJ8PvM8PDL6VnHQWrFCf5yVZA5yrr9wJIjjjhPDv2m7AajPn3aaVc8BAJk+g1zaAIeCy0LBQR5cSYPfJ8Dvk34PKcoJL6qIMIg863Y9uCwdLPr2BUaPjqz9HEYxaF30m6NIHoQ1tDNOI3g2WfIY7rGCK6rtoUOBk09GWfaBSLxhnXqa5v9hWKfW2lR3/pGETgtavY0nx92gutRc4/EkLF+BAk3sYZk2bSJ/K/tZpzOhykH847hhyM5GrZ7lDJF2WOV2m99Kk8SdMTncTk6gVq3gMntG58zhyxUjobSAiRLmZ2WJG02p7WOafIpGebv0y8YIZZjSmwf9Hzb2iCjWlQtjITztzZoF5OWpEnA/O+Fa/MMkPF74O7hvxJ3RIY4IRzAmAJdeqj5n8sx0LjXJB9W0qUk70h8uw/t58TRrN1u2rctatRLzUl52mf3GGcPslu9hdst37d+bLNjxNJMVXAIwcqSo3DrnHDFU8rBhojAekdAr81q9jQlNPgEEAbsXnyR6pE+dKluw/rHoFLw08UpvPofTTfXpp8sWhLQvd4lyPEj0l8nhweWUac0/QgelENhrlH2bOlV+R3lzFqbSY/yXIfdiy9z1ie5G0tC66DeMbKSvyIwXhvsjI8FTRgawYYPo9Tt2LDB7NoAYDgHhHB9SvppGjWLUjg4Js01RGJDEjMaNge7dcXa3p3H0hFWicuvkk2Pfrh0KCkwt/qVHAj4WQp+KLeZ1MYY7h90bddrHQly/s88HMapNjx6WZes7V/Z7CENMokko0e5Z5EgTOoghCg0GmnPPjT6nNyh17Rp1ytLYKayI0gj7tV7O1Xl7AAC9Kn5A+5JfML35h2IfevRQjbO3Dvo7XpkUyb8Z8IWAK68UIxgAonyuSZPojwMAkyJhOdGmDVBUZN53AP7iAuOLFoZChmFaw3uJRK/90hkrhbpO1CEAolGAzXGKQRANCiRjUrlam0ZToxp9gYdG3Wb8XGRmAscei9xiKU1HOJJRVH8syMiQ1x6Et5CCK10IhWQPrpgKlA2Eg/0qv8eZXZ+JnGBMtogLGXiNbV9wBi7o9UR0ZdKAkqONE+yLdmsOK7iyA3WY0EQdtuX7uRvV/TFi3TqgZUv9ax06qA7HNP5M/lvPkqVhzh7jdlzAhJC+aziR0ug9llbvb1RINkHAB9Mvxlezzomu1Oy5r67m2/lK76MqB5fFbSd3fh5vTrmMq6xXKD24GICdhyOJm5sX7pDDujGoxxGl92fzgp0ozT5o2IbW24tycLnHB4E7Zs9V/R6KhC4wwmqj0ratZTtOPAi47gmHvdM8N6YeyEa0axcJfeMS3ZAk0YWcN+BSqRiFnUElvJ4I1IpKbcYi/wIBOQRWaZb43t834k45l1ZRppSLTfJIQYMGKMk6iN6VW/TbuvhiJ5/GPoq8YqE4eI+MafwZdh53SszbqffMnGl+PYFCGMtXTjsWWdygnTtVHlyAvZB2yno074PhN6bXPxMDCSV+JiDT7yJMbBrRNH8H+lV+H7sGOJ/5diW/4txwXlptFUZjZJMmQLduwPTpsgFDKFZikQYNgEsuUUU6iCvx1HJdeilw9tmi10esYQxYuRKMid6Z6NQp5cKNDhkC7P3kBwSXrcL81u+YFzZ4H5jJtejCLOW+o0SwtuNLkVxAFmgF6GYGkDVGht0DB0aUQ2bMmiVHSQIgv9shq3V8vhjGVZvDUzs0jGz0Jf5YpL/eqxMicqg2xb+KIYrDkZRYiCv/bFBHdsY1PNlY/7Qv3qbKOWpZvySvJNzRsvC36JOqOKsWKBVcTscoxX1OowFk+oM4tsUHlg/OW+8G8K1JalvLd/Kssww9ewl3kIIrjRBkBResQxQ6zbUhhQPQUpB5BH/u+0/1SXnS9amOwzTM3Wu4SZzb8p0ohZXsCaYkKyti/uSUli2NB7HJk+WNdrOCHXh2wvXyYKSn4Nq+cJ0675iHkAdX/SD8KK7t+CKWt3vF+oZQCC0Kd6BN8W/qCrwirODymXhwhVGE8Yq3KE5pvcYg4Pt9ovXo3sUnYm7Ld+X497KiThtWAdYKq94VP3jZZQIGSl6DR7g48yDyMkxCFJq1A0FUVIwbZ/teJUbKIDchSjyPD24GU6wTJLhCbLnJz+W1YN7m7//M+OuwssPLpmU6lGwXQ7yG0fY5N1e0KDSiVy9XFusV2XuxrJ39MMTxCFGY7a81VfynNIrfOeEhCtu3B665xrhsMlsZt2snCt7WrROPLcYL1RjI1DOvLzMATJjgyMuAS1lvxEknqZTHhDVb5m1Ax9Ltjo19nOYW1v7KWYEgNvWyCLvL8YKXNM6LjpLgFWVlfDmbvMIgJFnMKS1NvjCBSU5BPudvZGAsZBq+TUkyhZpOMNqoP1rsrMsZE1Q51owUXMLyFajK3av/M/DO7+3b60ZqUQnTL7ww+r7p04G2baMUXHrh+0qyNOs9qQ11rlpBdS3gC3I9XzExytIY9n4+axM2dI9EcTEMURiO0nTCCRQqziWfzzwPtwz6v+gLTsccG3tOYfkK3fOxdgxo0sTYPwIguW0iIQVXuiAI8qRhprEe2/hz9Ch3IKQ96SQxlEO+cSJfI8bXfIqhVV+pT5pN5Izh/0begWYFO1WnZat3Qb0x1gqd/CyICTWf6FatFeTpLmCU3gQZGXKS+gALin+PHQsAqA3qvz6uNtgGMB8zjjFPpCx6G8/wuSVtX496B6IIBMQYxccco6gg+vkLevBMKr1ODNcrgwYBNTUAYvMemKFc3Ad8EY/HgswjYn+POQaYOjXKE9Sn8kwzHpd+XXg6VrRXKxzd5AohRPQ2HkYCGfm505s/li61bqxvX9cZ3h3n4FLgOgeXByj7y7WvdqPg8tqDiyfBbxhBwNiaz5EbsIipDsnLK0ytcXndJ8Ch8uHZCdcCEMPC3D7k75blozxU4vDopKtIzCyMUNzQTqYZGeJa00vi8pAwMQRoeLcvjRdGTTMmqEKJKZ9rLz+/ofJebxGTlwf07YsDS9diXM2n0dfDt5Lntid8fOwm3Dfijpi3Y+fXCsyYgr9PfABYuTJm/Ykn7Yu3ieEjSbGR1lTm7KPf2CZaI2otPiZw51dkAHDqqbLBNbfC0QskjxV5D9yhg37ItIIC4KSTVEadgEn4PiXSRK4U2MvyM+m50yrOlBzX+k38uc+jAAw8uHj6EAoBK/QVGXrPvvK3i/qM/fqJ/w8eLP5fWQksXGjdB8IQHxOsPZZ4GDRIzMeel2ddVg/Fs9Cq8Df8fbiDNUbY66x/f2d9kLBUcNGYHTMsJRaMsRrG2IuMsc8ZY58xxk6Szp/PGPuZMfaR9G+C4p6zGWPfMsa+YoyNVZwfJ537ljF2Vmw+Uj1F4BtYruj3CN6ffon9l6pDBzGUgxGTJ0efk9roU7kFL026mr9Ngx2xoRBQIXg7od2r2DJ3PZ4cf6NpEzcMuB+ARsF1+eViaAVtMnllfOE5c2QvtqOhiKB0Qs0n+Gb2RsQMQSBLgHRFM4mHF3pci84bbxStxpTvn8575sWzo/TgMnwX8/LE+MfgcM32mKDCkyHgC+rnCRszJmpRXpgZyctn1uOoGPdDhrjsMQHoPOdSTiRTtM/4vHmyIYIXmD0HXsiKk8GDS9U+T4jEZPLgmjgRGD1aHmtct63dNOfmRt7vcMLsGDGm8RcAIu/BVf0eQvtikzxzGoJx8OBKhAI2HmT6g94rXzm5tv8/8O60S3Sv/Xbc6Vjf7Snda47w4DOGXyPuZzNsVW5oEIBIXiLGVK+p1fM2utHneO4YfU837ifVZD+SG6i1Frg1aCAb8xDOjH18EKzv4507vJpj2rUDrr5aFLClOpInw5X9HnE3f6cSCRrPXePiOf95/jqMafw5356LBKpc9KrYYmvd42OCuP/t1QtAdJ6rTF9txGPMruBe+5trf8O8PGDlSj5lHGM6Hlz8n7NOsd6U75PCKvqZYPh8tSv+BWd2exaAizWrlAdMVk4p0aQT0RL1GRcvFsd5M/cbwhZZ/jr9MUjzTNw48H45nYuwfEX03LRwoWhgYjRWrTfOf6q9xe8TrMO+6rFypZir2aVcgRRciYNnlKkDcJogCB0A9AOwhjEWHkmuEQShm/TvKQCQrs0B0BHAOAA3M8b8jDE/gJsAjAfQAcBcRT2EWwTBnseE1y/VMceI+SfKyoxj57tsk2cD9Zchf0fj/N2W5dZ2egmARrBXVGQYC/WZ8dfhgZF/VZ3rVLoNf+r4AgAgL+MIWhWJoTZi4X7NIKhiHxNpxOWXqw7Dr4mZNVRUYUDOJYNp06KKuQpjJQiY0/IdlVU1j7VVvOdtlQcXC2FczWfRhRiLUnBd2uefeHHiVQAUi2CdsKdy7aWlwKZNwLx5aevZEE+inpOpU8EK9ZMJy89deEF89tliKKuBA63b0W3MPoYeXHamX837kxAPLkV/TZXpBdJv4WYj6LWCKysLOPZYPgEzT9vaUGiXXgoMGACcf76uZ6Du+Ofy2Qo/A6d2eU4Mw8lJPJSjhuFdUpgr+j6MD6dflLCwfx1LtqGXQcjbkqyD+iGOtMZXvHgg9D0iGXR9PmsT3w1SX/WstQGdHFzKHJoWr1Kzgp3cXimG+yKj3106byks3LRJDjeXzJEj44WfYw7rXvajKoS79udrV7wdV/V7yFkHTH4E+RngHaPTRejEm483HQgLIrt0SWw/nMI7RivSRIxu9DkeHHUbqvP2gDGbhow0aJny7rRLbZXP8UtrtrBBtGbNVJO/S/QYKywENm2y5wXM81t1785tVBqWLYTDunUp26ouoCfUlz7XuT2elI1L/Cwk5hAqKgIQnaNaiXKPo9tPi8/48bGbVO9IOPIBAFHhpTTyDXuPG7QPQPw8Tj2ECF2y/bX6ykvN3LOm40sozT5geN2Spk2BKVPw3DHXYExjHTmPFwQCovG4y3mzLg4GiIQ+lt+8IAjbBUH4QPp7H4AvADQyuWUKgAcEQTgiCMJmAN8C6CP9+1YQhO8FQTgK4AGpLOEFyhCFPOVjsdgtLxeT6E6QnPnMNuNBE+G9Qd9kIZyLvmvnUC4vGcYwtuZzdC3bqmq7MOsIrh/4D7GIoniscmLUUojCtIMxISpkWnjha6rgatsWWLBAfW78eOCGG8Qky0quu0713F/Y63F8OetcW+/R/SPVLt48t8oL/jihDVFoJPjVKrhyA7VoUSgqp+VNh5l31qWXAg0bAoxRqCIP0BWem212BgyQN1Ro1kw0qOANO8j5zJv9rsrnbEjV17JVppsQhdkmCak9Rycvh6kH1yWXAJdd5i5hfCKFKXbb9vvFRNmMAVVVsbV8V/RNfg9atLDl/ZqfccTrXkURfl7P6fFvZPmTIKyfB7Qr/kU2SgoTz/Hcaig6vt3ruH7AA+JBONyQU4GMBwquRrm7MajhNwCAJW1ej1ww8qL0+4GTTzb24NKctmOgZ/Y7aesJz+06BU3PW/ZH8QF4w1ilLYsXI8tfh63zzzQt9sGMi7Gu63/kYx9TPx1Tmv4Pp3Z5Tv3b+Hy4f8Rf0Ltis3kfSGAfjVOFeCqycKG4TmnePNE9cQbvfuy44+RcnwUZhzGzxQfypQzGsY5Md0VngsgOh7eW1ouGa+r27SNGYxCNp2e3eNeTPvCuG0c1+gKtCn8FICq5FrV5S11g8WLgoouA226LnJOem7LsA6JxCYAGOXtV71uAhYzld0oFl858afVYdi7dphrjw5EPAABDh6pzG0r7QeUcnq5RCJKJTB+fBxegma4dzt0jG30ZpUhmMPAiTND6QM/ooGPJz5EDGo9jhq2dO2OsGYDuAMIZWNcyxj5mjN3JGAtLPxoB+Elx21bpnNF5wgsEge/97dtXFA527BjzLiEnxzjMg1kydoMPYpp/xSgZ9bBh4v8DBgBAlBdUZc4+436YdkLdDx7ByHdzNthrS4NyoLx+wAN4ZPStruojkhNLD65LLhFjfYdjRytRWPfJZGerFpTVubvRtvhX2xOrXSFOg9x9eGuqPSs4N6hCFLIgKnP24Z5hd0WVm9DkUwyr+kpXcE05teKP3lNl9GgyJgCLFsV2UVhcbHpZ+Zz1rdiMMY0/j/SNE+W8M6L6S8xo/oFJ6dhjauiRmWn5nRhSVSX+n2ZhQDx7/BSKB9kDomFDW8L++a3fxvFtX+Mq62dBjGr0ua0uApHn44Je/4q74UKskN/XBG18fRpDCxmpP43yduNPnV4UQ+Gdd554rahIFD796U/2GmvSRPxfKQSySWn2Qbw6+UoAENcPgJhzy8yLsn17w3WMyrCBaVbQFi+Y2VirvPLa5Mtx3YB/GBS08uDip16vGpo3F/NUZGWhUd5u43I6yhYG9d5JVwjp82FOq/eQG7AYd0jBFU1enrgHnjDBsmjKk5HhfJ2SDNTUiP238kCrqhKj5SB6HCzLOYhdi06OTf8IU7LCnqnS3FWZzSdbGlvzOe4cdg8+PfZ8/sYM5seAz2BNoeHyfo/imznnGhfw+aKjmGhyegnLV6BpwR/67eugHOeNvLo9IxAwlgkSMSM3cFQla+pdsRl/GXKvZX40N+O21mPMMFKLmVNFDNFbt3w68wIw8L2rhHO4RxnGWD6ARwCcLAjCXgC3AGgJoBuA7QCu8qJDjLHljLH3GGPv/f67geUdEY0goCTrIAALQduSJcCf/yzmmIg1jKkT9SoHmKIiMfzPlVdG3xe2CNFYq7Yo+B2rOryk39by5dFxeSdNAmbNEv9u2RK48kocCUY2+F/MOhdX9nuY73NYFrHeXLUo3GHdlkkXVnd4GRu7PwkA6Fz6M1oU0PuRjig9uLyyDG5esDNSP9P+YdUhsZyTnFp9K7fYvscpWg8uxoDjwpZpkyaJ/zOG+0bciRcm6ucEZACwQV8RrafE5vkKx9d8giFVX1sXrKd4blnn9+OliVdirF7oAp4fTBIeGFGn2Jwp+/77If2wilp+WXC66A0MAIKA5ydeg2HV8X8+lHNWzKwbTz4ZmDEDmDs3NvXzYNd7xYbHVuO8P6wLmaHom4+FRM/RmTMRlMayt3UMBLSeqe2Kf8Vfh/6Nq7kGOXvx32Ous91N5fORdt4qCsF4PPNGGiqVtUqooiK1h2r//tFe2laUlwPnnit6OHjASZ2exztT9fOHack0UHBpv2k7zxVvyaLMQ8gwErpZKETsKJlthYdPN3gVSzpzb8AXVIfK1ZuHJMXYy9vbOukdAMWzVR+FSXPnGqcNIJKHjAwxOsTq1c7rYAzFWYcMLweXKfLaeKQQLudU5KQknAYhL028En5fJHx63Qkr0bzAQN4jrfmUY11uoBYdS7cbN2CVg0tiSNU3GNjgW/PO2h0DzzxTjBZjZqQW9u7K2h9dv87ndZyDS2ctz6DjNcZYVF5dsn+ILcLyFcgO1GFE9Vf465B7AYgeVie0e93Ag0s6V1wMrFplv0GpTjkEYLt2+uXChjUJegD6Vm7R9WwXwuqX+rgmiRNcowxjLAOicus+QRAeBQBBEH4VBCEoCEIIwF8ghiAEgJ8BKE36GkvnjM6rEAThdkEQegmC0KtCJw8KYYAg4Kf5Z1uXYyz+yWaPO050yT72WPX5qiqVq7ZMaSlwwQWii7SC7EAdbh50v34bjImxjZU0a6a2GpTayvSJruTtin+1letCbkeHeLg/96z4ERf2fgKAKOSKRa4vIvEoPbiCnO7eVoyr+Qy1J4iLCFlRwzvhS4ngbQk2Bw2y0z1PUAonVZbEJSXAxImqsozBQMElRKzd9Tj99OjyFjw1/kbU5O2yLFdf0fsOXUXUCgQwtPob56HUAgHTV8ynUQyF+1+evd+67rIyNMjdF3n2EpUQ/corVVaUMcvjVFwMjBkjenMnihjE2Q//5l/NPhfn9/yXeNLJBkoZ3sUXAubNA3JzZW/tPjoGAma/1QntXsX0ZsbegDkBZ++ESsGVbsJ8Rd7VnMz4WXkajjGMiaGGvaZRI8/ehexAHXpX/sC1Fsn06YfNisrBZeP1MffgsghLtGaN+D0YCZI5PLi07aed0tcJc+aYX8/OVh2+PfVStCzcoQ6VGx7bNCEKuVi9Wvxd16yJulSdu9teXQSRCHw+5wLPmhrLQVQ1HoZCcg4mp/Rv8B1+P+5064JJiDKntCGcv8XQ6m9U9/h9gvGcIP1GjfN24fXJ3hichGlWsBOvTbnC0zrRooV+tBhAlNNJfDtnA85QhJ+VkT5veJxvU/QLupX9FF2OByFadmG0lxevmYdFJLynMPMwjm8nhrCWv3HG8N8J1+CEdq/K5eTfY82aSKQPB8j7WGVoWuXzUF0tdUwjH44jpp7tRMywXO0xxhiAOwB8IQjC1YrzyidyGoBPpb+fADCHMZbFGGsOoDWAdwC8C6A1Y6w5YywTwBypLOEFNsPlxZWBA4ErrogMNDw0aGDsZWa0SdEu7nSUZ+NrPlHFrObCaJGj+s5ji/Y39bNQzHJ9EYlF6cHlpSt/OHyAvOjj3exPnAjMmGHPun3hQpu9c0/YKkxYvoIv9Kjiva6TBMpm+xm/LwS0bq06xysw1n53fp7NVT1BN1y2mxFVJ/66U3Yedwqaazxle5T/KHsvMAiylWfD3L3WFY4YAfTpEwkxligFV0GBKlxvWsen79dPXINYWQmGDaoaNDAv17u3/KcPAs7q9gy2zD3b2W85YgQwdy5OaPcqVrV/WX4ZlJ7mWsx+q+XtXsX67k8bXs9xqPT1sZCceDytnpR4RTPQQV7T6T03ylDDiRojeOAQAHYr/wnX9o8OE5jpV8yBNoW6ZqWV477uXqhLF+Cqq8Q8prqVW/dFO7fE0/MvaRkwIBJKUw9pfA1vm/SU9/LYpnLr4lyntmsn/q46Id56ru6LoyesAmbP5quLIFKJ6mrgrLP4ytrw4Bpe/SWKMw+46FhysqnnE9i9+GSusrbtlqTxyvC2/v0BiD/DgIbfu2zMAV55jEyapFortyzcoZ7TNYTH9q9mn4fmhTujrh8NcuQL1FFwATD8TEeDEc/3xvVYyeBWka3HnUPvsSyjnM9HNf4SNw/6P3w9+xyxT24fdWmNrPUGDGgjBqxcKe7ZTjnFZYPe4zPJWUe4hycz+0AACwF8whj7SDq3HsBcxlg3iOP4FgArAEAQhM8YYw8C+BxAHYA1giAEAYAxthbAswD8AO4UBEEnhhDhiGT3v/XyJTaqq3HjyN+zZwNNm0YVeWr8je7aM7IUgQDceCPw1VfA7fabsIvfF6JNdRpg9guKHlyRyTvbfxRl2Qe8eZd69hQts3gIBIAhQxASOBIYJyPKsdHgXd5xOF88ZSK+9esIlvMCRxx1qVfFD3hr6mVgt99mXbge4mpskxROWos9xgySz+oQfg6KMg9h8z61JzljEL0XIHlwVYj5JLksQnNzgeOPjxwncN4O1pcEzH6/6EVuxYknAk89BRxzjHm5448H+0hcuvqYgEx/UMxFEGxsfp8egQAwbBj+cs87gK+7fPpw0HhpbvZbGSY2l8h26MGlfGvSylulpCRhTWeHlY1WCqwUV3DlBmpxUucXcPKbauWC9jlWPVcWQlizeVqZ28vwXTF10Q0LKPmfc1qLS2RlGV8z+M5DqnlI51k3yBet68Vn9LuOGoWMoUNd5aAjiKSjRPI+PvZYcS1hZ29o4VUvLF+BYIjhH9/3wvwXTtAtk3TG1Jxk+IJ80XsYsx9OT/oNdA3sLrwwKpeVCqO5nlOhExfOOw/44ANg7Fj96xwhCvVomLsX/xp7IyY9u9a4UDjUKuea6LBkKHZw6VrH0QsIfZa0fQNLX15kWsan8cjO8IXQuug36ZrLsWPQIOCzzxB8XP28ReWBKy8HTtAfvxKNae5rwjWWI7cgCK8JgsAEQegiCEI36d9TgiAsFAShs3R+siAI2xX3XCwIQktBENoKgvC04vxTgiC0ka6ZJ7og7BFHb6KEY2TR16sXMHw4sG6daBlthlU4DZ62FYkRGZMs+Vu1clavTfxMoKExTVGGKFRu/u8dfhc2z13vun5BYGLOOpuL5HDYLG7ivAgvyDisf8FIiaDoXzg0jqnwWEf4kukPyiFPzaB31R5GAkOuJ6pLF6BFC/0Npl1PAYvi2nCFtjHb7MaYoEEusXpLZSWweHF0cm0tjMmCUtWY4CaJcZ8+4vpFom3xr6jJ+0PMX6bB6Ld6cNRt6Fq61bQZpx5cjAmR0G3p/KjE8cPJAhcrYY3f5rwbazSh5pzw+3GnRp2zoySS3wGdvCAZCgteRwJYSfBr1h8KUajA5pyq/a7ChiglWQcwoIHk0VBeHilQUQFccQXaFZvkqOGBlFtEmtFuXDMxr2JYCcyT1iMst5g82TKXo98npF9IYiWLF5tfD4VU+977RvwV67o+a36P5BmsO/MoxzU9ahOkhLETXam6WozqohxPzdZN0rXSLHNPQMaAiU0/MS5w4oliuHNAtWZiMDZcnNbsQzw6+hbXyq22Rb+4uj9d2dTzCYxq9LnhdVmBo/N85AZspofRkpUFnHhiRAEtPQMBFkwur6hp0wwvkQdXbKEYZ2mIWXz6tCYQEBVXZskww9iJxa4cgJTChlWr5M1+rAWE2jGQQhQmN7NavIef5kUnluRBGaJQKQwIsJCYMN3lhOh0fJjZ4n0MaviNdcFIQ47acUqU90KzZuL/HKGIwu+vmUAsyvVd4sgJJhZnhCNcWcQHAsCZZ3oSc131PBjkbPMxAW9MuczZ415WBpx6KnD++Y776BRliMKY5eBKc7Q5LbziqXE34MvZ5wI+Hy7u/RjGNI4EOzD6rWa2+CCS6FyHGwbcj/tG3OGoP4LAVAo4ALim/4OO6koWdF9XQZBzVcaanPAG32gtGo5A0LVrXPrDjVJYYUMh2K8yEo6pPJsz7JWUJ+atqZdGh8Q57zxdwZzSgpcxACNHcvcRgOjd3qePdTkFaa301RAOMSTDEeECgPwlqTwi8vJkAfofi07FyEZfAvPnA23aqO8tLCQvOYJQcPAgsOkCpjK0xfLl5vlsiooi3gz5+ZFQ2SaYKe9T3jDKauBu316l4BrV6EsMbPCtftlwRJSmTYFzz3VmYGdiJPX7caciwyCfpe12wkydKoZp3riRr7yT9rKz8eO8szC31bvu2igtjbSjCBNu1n52oA7Tmn/kqtkPpl+Evwz5m6s6Ug3eFArn9nxS9sgyRec982o2jw5RmGRKo3HjgKVLdS/5bESVIexDEvJ0IZnDmHhFeCAoK3Nflx0Fl1KppRyMGjSQExozvetaPExyKCq4aGBMVooyD6Fx/m7LcnoKlfCGQkxUqyjr0WbC6VNzx9C/4aWJV+HsbsY5XlSEFc1Nmjhs0R4ZWgXU2rWiwnvePP0bwu/qkiXyuyQrRXQWZHohCnlJayvIGBD1W0rYscjXjo927q2TFs2q4VznmQgLU/s3+D7qGjdt27pKsuuUehOiMAaEx2jV8+HGg0tDdqAOuYFaICcH67s/jTkt35OvRf1WGgtBI8OXAQ2/Q03+Lued6tIFOO88+bOf3Pl553UlAbrPvCBEhziJEbIFq1JAqeTkk8X1pV0FTayYO1f9P2BLs/Pm1MvQNH+H4fXwczWk6uuo+vtWbsGStm/IuSRCAjO0Oj+72zM4vu1rACQL2VmzuPso3uQDjj/e1pxdnzy4TAVaZvsfKdfdLZ8PEY+zs4GNG6O/uyFDdG+vT98xQViRk6Pj3FteDqxebXzTmjV8Xl6AHF3AbIgPpLNhVMeOwOLFKgVXgAX1x6GuXdXKwkaNoopwrbHrDBRYgoDy7AP6OQrd0LOnGKbZrZe4WX86dULN2A7wLV1s7jFox0qke3d1vkevvg+pD4MbfiMbcBVkHK5Xc88vC06PeFJLTGzyMT6cfqF83LroV/lvs3WS/L011oRv79fPEwNUAKjT5KlPyjGpoEB9XFMDgPbdsYYUXETqsGGDmOjcyq2cBzsKLmXCby2CteeHjFXYRBMYBJWVjY8JpOBKYtx4RCgn7GObf4A5Ld8BoJi4nZgLn3GG/GeLwt/t388iSrdL+jzGd8+yZcD48eYbLg9Z0uYNvDDxqsiJggIxZKlRrPnworhfPwQLigGow7ZpcbMY0S6Q6c01p0HuPnw/x104TjchCr/a3VD+e0bz98MViv9LYWjntXobM1u8L1rCAqLnWAqhDlGYhJuCJCaQ6UObcNiS1q3F/3v08K6BGTNEhZIkEFAm4I6aW8aNA/r1kw9jti5golIhXZT1WQ7DNdphUMNvMLnpR7rXijMPAevXR29+w+Tmis+AnbVqLBk2DLj+eqB//8g5m2PewTqTtbTEy5OusixTmGkQjhjAyEZfYlOvfwFwN8/aEcDQWpyDpk2BGTOwr1Zajw0fDpSWcn93T467Ec9OuDZ2/SOIdMArYb8krzAT7vt9IXFeSDH8ir30RzMuxLCqr6ILjRgB5OWpFFx+X0hf0tO1q6zAD6P93vzacGR6kYaMFFwSDXL2oiJ7r/VvzKvE9CoHaWWl6GHVvn30NcbEHLj9+pmvZTp3NrwU5VHEjA1cvKBv5Wac3Pl57F18IloVOZCXuOSyPo84jgBkRFHmQeRy5AxvkLsvak4uzDyEbuVi+PP3p1+Er2efK1/rUGIcOlgAxJQx2t9KEDC35buY2ORj7v4bERWi0JdkIQr16NIFZ3R5Fuf2eDL5+5rCJMnOiXBNfcjBVVMjunoaWbzaQbMYMSUQEENIXXihYREu7xq3A1lNjRxruzp3t/3kp0TcKM46yFVO75EozDyMEdVfAgB6VvyI+0eKYaUqcvaJBZwouFq1AkaMgLB8BQY1/M7+/U4oKhJDIHi1iLYgO1CH4dVfWxcMo0iI3qL4DwDR7u5eof3FSKFggSCgeeHOqNN2hlDbOeMUDKmSQnEWF2NI1TdomLMn4iW9ejXQrRvuG3En2hb/CixZIoZUWptaoSr7VG7B/434KwB33on1Ed+qFfhqzQ1iXoA//Qk47TRvBT1jxojW1pJlrfJZtlK08wqMV7R/Wd5Ef3LsJqzq8JJ8rTjTOIScV5aXiSZTz0tUMbeWZe3HK5OucNXGpX3+iSv6PhLdzPIVYl6IcBjCVCE8Z4aNtQy8bYxY0PodzG/1tu61gF5YHIPIFNkWysmwwVm8LGTrk4V3FDqTcstCAy+vMWMiHnrSfbzjVeui39C3cnPkhNYqnCCIKITlK0wF22VZ++W/N89dj87hPJ6SR7rZCJqqoa3leaFhQ3Qt24rZLd8zzPGnXHvl2cgbFL3n05xZuRKYMEGdl8tig/PO1Evx6cwLjAusWwcMHCjuu8249lrgyiu9y0uYkQFcfLG4HnbK7Nm6OWdXd3gJfxt+l+4t7Yu3oXPpz3xGQJwyv+PbviavUQoyxfcm3iGIG+XtRkXOfuuCNvj5yf/h/3RClC9s/WbUuahnVzpzcqfn0L5YnY9sbccXcdQgrHdI8ImKXO1zHQrhzG7P4l/jbuL/AAbcM+xu/GvsjXIbRtFfkgrGcHm/R3Fmt2dJwRVDSEKeLqgUXCSsMiTsit2li+gNNns2331VVbLLvgrZg4sDFwOZcnEkLF+B0uyDUa65APD8MVc7boPwjmw/Z6xsHTL8ITw/8RrVuZ/nr0Pfyi3iQSISPmif3WRPOjFpkvG1uXPFsEWKxX15jijQlRVcMf58pFCIPad2eQ4buj8lH9sZfhvl7ZZDMpzY6UVsX7gu8kzk5ak8ZlBWJio49KwXk5iALyTHxc/xu0z4W99o1kzc0HfsKAr927SJzUZFqlOt4NIRKilCvxgJjOWzUk6nAAuhKPMQAKBN0a8ozxY31LUnrELPih/l+woyDqGfImRJuqwvs/TmaMW4n5dxBIOrDPJt1HdmzwZuvtl2uPCr+z+Ev4+4UzyQ8teGyfTrCCZ0vNtenXw5TuvyX6723DyrdjwVyYMrwr4lJ+Kqfg8bXm+lUX45Vg6WlDq7jyDSGZ11iDw+6exrvp+7AfcOE8fkZgU7I7KGggKgSxfTcdDPQsm/F9TBz0LAOefI89fKDq/gi1nn65YNr71enXw5Ar4Q97ygLRelDCwsBKZMEdeRK1eKMiaLcPoNcvehMmzoqkfLlqK3lGZujSInx9hz3Ck+n7WiyWyNnJUle4ev7/YUXpSisRzX5k1xn6Jz73vTL8HrUy7n69/FF1uXYQx/Hfo32VspTPVwgzzeHvH65Mtw86D7AIhKZqf5yh4dfQseHHVb9IVJk5A3qr9uHvF7h98NAGiYs0f2ZNSGOQ+PCdcMeEg0zALkZ5UxiLnhAdEob9kysd5hd2JtxxcdfQ47dC//CRObfiIfJ10OLitSqa8pRmrF1CGMScFFRkK49lrxu/L7DRP/2cLnw1+H3IuhVV8DGGQ+WHmh4FLUoedtMqKRjqs9EXd6lv/g/Gad56Q6b0/kwOm77ibUkfZeD/PNeE7btsDEicbXDTwtupf9iAY5e8UDve/Ywfs7vdkHUnXqe5PFgysvcBgH6iw2Q4nA4Lu2I7Cc1PRjTGr6MS7+cIJlvXp0K98KCEWRE2ma5/KD6RehU+nPABYkuiuEFmkcUim49N6Bnj1FT/Nbb7X2sFKEmPNLG1Nl3qmAL5Lfc3j1l3hBNraYL7afJsp53RCFinDUmbwJ3U34cX8pGpgJpFIZN3k7srNVYZMBjeVtOG/WjBnAoUPARx/Jl+x4oLvJW2p2p/YdTI83wgMYQ37GEV1BWhh5LSTNxUEbykFlSUlPTxCEEp29i6xE1ln/FmYejgitoQhdzRiwZg2Eh+4xbCpVDfV8TBA9QHdZ5yTNzxC9eMLzDq9CXvvNmO5duncX/xmh3X+nqlCcQwF25PjVCPhC8jrT7JPmhp9bq++jcWM+Dy6DelqfMhFC9xfBRgy3rsMBpdkHZO/AZgVi5BKevW7fyu/x/d5y/H64UKwn6wD2HDVIyQDj/LwA0KdyMx4fe4tUTiuv0OmL9rc8+eSIkefvv2PhY49Frmm/1+bNgXclJZ7HsuukzMGl/fyp+v6mGOTBlS6QgouPzExVaDLXMIbj270e8zi9svWPYmDsXv4TxjT+LKbt1jeiYj07QFi+QmVRYobuIiZWk5+b0J6ppOByIngTBHww42LkZRyVj5UsbvOG7SrbF2/DI2NuAwoKrMNVJIj9S0/SDw0VJ3YtOln/QgzyzjAI9t8t5XNg9HeK0738p4gFHpFcSF6mx7d7Xbay9uv9Vj6fKCBZt87QwphBEDf5incg/JePCSphVbiOFzSexEB0UudURTdE4YwZsqd+WLDlhunNPiTvHj1WrYoKMScrFNesAQYNEv8uKBDL2iSs2NJVBnNi6rmgeQfTJS+dFR1KtrmuQ6uAP1ynCJNVau6VFV4vH1q6xixiPEHUX3TWpiHBWMEFqJUxdZqcNmZL3ZT24AK4ZEFX938I383ZIB/zftxoDy4X31Oy5OF0y5gx4v8jRxoWyfQHVftjrr2y1b6Od99n9D0z5r3HmwI/ExytVN6aehlOV3izZ/qDUfPr17PP4QoH3LboV/lvbR26BrnK72rdOnUEE+337feLRscDB4qeX8NjoChMpRxcSlKprylGmoyaBDp1ki1A3FgtEjbh0Mz3rtiMZ8Zf50opoKfgqszZh2cnXK8uqAi5OKP5+3hv2sWeJHKsDwjLV6Bb2VbrgrHGSkHj1JNk2DBgwAAxZ4xdtM+1RTLchOJkwWCxa7lr2D2265UX5hUV1uEqEkgiZ4virEP6F6R34PXJl+H4tq/Jp91Z5Lt8LtLUg4tIYrKygLVrUZZ9AAvbiHkBTIX2LVuaP+dXXin/6WOCymtG+bfZW3Y0lOGJIUii0Q1RWFICnCnmJVNatTtBWL4C2YE6HHWRCzCtUApEdOZbWeGYY2yBbBc3sgM7Hly7jtjI6ZuinNL5OXw2c1O0cFLnSzb72rVroeHVX+GuoXeLB5s2Gd+oUIhm+evSRuZLEF7z2czzcVa3p+VjKwVXO0VeHa0BS3g9ISxfga9nn4P3p1+Ef465GUBy7WPsIO/NcnPF/fC6dWI+LB3yM46gReEO+Zh3H3E4qM5v5Uouly6DXYsWwPXXRzy0tWiez009n0Cnkp+t67Wa6HmNXvXqCStuHChyBzb4Fr8tPM2yXIAFMa3ZR7hFClMI8D9np3X5L/YsPgmA+D4q59dWhb+iddFvCm9p9XMUzs23a9HJ+HPff0batmuw07Kl+ljve5w0SQyfOXSo5VrQDUnpwaWFlFpxIU1GTQKNGonCayK+cCw8upf9hLE1n7tSCnB7fEgDZ/OC3/Hw6NvRs+LHhOXM6Fr2U0LadUNx1kHvKnOaQN5KEWoVX9uIjAxg0SJVvhZutBNyMntweaHg4l10mbRl9s7S8kaBXu6qBWK4vAENv0eFyxBfV/Z7KHLgxoNLKXht0UL8X5kgmiBiQefOqkOn3p+/HipUbfQzfEExp8TyFQCAEzu9gOeOET22osIfa5J/J7Ngq03RL/hi1rmW5eRwtFqkMcKrz6j0UJnY5GMcWrrGk3pThlatxP+VihEdYwHD3wMALrpIzJvLydGgGH3fVQ4uk1la68H1168GOW6Hl9zAETTN32FdMEb4WEhcO06eDADIzzjMJbzTov1FsgN1WNz2TdF7SxEiNIqzzpIty0k+RBDGdCjZjlLFXtZUWL5gATqXbpPXAXWCtEYIe3ApirYu+g09yn/C1Gb/AyCNg6nswQWIY5pWQG8C76c9pFFwuYrakS4hCgFzrznNuuDcnk8iOyDJzczkZ1YKLLN5xaR9DBzoyIM8TIYviIqc/ZblAr4QCjMPY2WHV+RzvK+V3yegMPOwVE8QHUu2oTp3FzJ8dWha8IeqrNKD69TO/8Xvx4m5o4uzDkWezzZtop5x3dCGZt+5HYWsV4ajUpsp4cGl7F+y9zWFIQVXOiFYx6wlPKa6WlQcVFWJxzqDlV7+LLvIC7JevcT/O3aUQ+mI14P65RHtbhwPOpb8jI9mXBT3dt3yyOhbsX3BGdYFeeCwGtK16grH4u7RIyqMD5YuFZPTJgJlDOtkVnA1aGD/Hh4Fl97727GjYZXyex8KRW0wQ2DOFZUek9D5omlTYPny6POdOiEcg0hpTeakr6d1eU6618EG0+cTE0B37QqMGhU5X1wMXHWVucU5QcQAXc8jBeGh6/s56zGj+fvy+fYl21XlAhohfX7GEYxs9CUA4ECtRggRDi0D4ImxN+GJsTcDCxbg2zkbcErn5+x+hJiS5a9Du+JfTcsIy1cYe2hJG2W7Y83T46/XPX80FEl17GehiMCmvrBmDXDCCcCUKZE1q47xz1+G/A3fz1mvX0dFBbB6NTB3LleT4Zx1Wit6O5hZMWs9uD6ecQHO6/Evx23xMLz6K2yZt8G6YIzwQRC9HSRhIYMgCu9s7mvO7PosrhvwQPQay6qejAyE/JyCSoKor0jvlTK3XUgTdlDF4MGqQ60HV1AvJHFAnNPMjEBO6/If7FtyIk+P445umGdJ0K6bmzPMeeep5oWTOj1vaLByz7C7xcg9Em7C5aaVgssMIyVWu3aiEb+WQYPEvVlZmf59K1eKMroFnPmFa2oif48aJd4XVsjFUJEb8AWBU08V971z5wIXX4zsBkV4aeKV0WVZECOqv0TdCSujrlXl7kGb4t/w84Kz8OvCM/C45Gmp58GV6a8Tc5hpDUwLC6NCGermo+3UCWjTBhg7NvqanefT7fc6YIC4H5cMATNM8n8mDaTgigsB6yJEqkEhCuNIdjZw+eURCxEdpQZjgphUccgQx834fdJv2qePOGE3bAjs2QPcfjuE5Ssw87/L8fDmnpHyimcgyho7DiTLkN2j/Ad8sEMtTCnP3ocdh/XjKRdlHkaRZA2j5cyuz2BUoy8w+qlTPO+nihkzxIVDx47i5HfXXcAHH4jX+vaNbdtmXHaZs/CG8WLjRuCtt0RXeLvwhDDQW4gsXaoK+6UqHt7Q6Czg6kK+iLI6wSR0tujd2zj5r/SbOM5hM3Ys8OyzDjsmkZdnnAA6P99d3Ymma1fgf6IlruEGkUgqXp98Gfo12GxaJqxMb164E03zIxac2hwQhqFfxo/HnvuNw8RNahoOedwDLQt3xGVD2bP8B/Rv8D1u/Mw6dr/rECWSMEk374AJ42r086EqQxSq1uanxHgdkSzk5orjPACcfz5w5IjumF+QeQQFmSZ5zxgDioqs21u9GsFLHgEAFGYahMDlwDREoeZdal64E+f3+jc2fcC39nhx4lUY/m973k+J9pqUFeKyZ4c0LyvXThzCqo6l29GxdDsgjLfdh0TsZQgiFZEVU61bY0T1l9JYWGF+U00NHh19K3YdzQUgeqXqGgmcfDJwszTXGrzzfiYgL+A+j2Us0FU2SZ/jjiH3SnP5UvX1CROA6mp53Lu492NY2PotQ4OVmvxdqs/vyoOrb1/gww8jx+kqFM/LUx83bQqcfbbx51240Lw+o72bEZWVotFiYWH0GsWGImbr/DPR+L7LRMWVwhBdyQW9HsfC1m+j+f2XiGvztm3Ff2EyMzG0+puo++4dfhdmt3wPvnWniwbQmzcD114re2CGKdGJRhTSMxbt0AF49FHx7+7dgdmzUXheJGTpixOvQvfyH0UP+o+ltf+cOeL+9zSDNYwdA+iASzXEcceJ/+8Qvdv7Vm4BWAd3dcYa5ZrJSc54ggtaLaYhlNQ6zuTmRgZpPQ8uCMBZZwG5ubhp4P9hebtXospYofICq6kRvcbKy+WcW0GNhZbSQknXAivGJIuS9f3pl6iOt8w9G1Oa/s9RXW2KfkUHjRW8KRYLounNPlAJIGUyMkTvrawsUXG6dCkwfjywIXHWuwDEvrRpI/7dpEli+6JHTQ0wc6Yzz6hweNfwYph3MZuXp/bsUaDc0Ghrq7OZl6Uo08PQmUpikezVDhwbNUe5swBg+vSIZ62N9gCIC/fmzfW9y9KF448H1q4FzjtP/EckPQMafm8pKFFevbD34/hpnphTSikg37v4RCxo/bY6xObGjcC4ccAxx6Bd8S9oUfC7eWc4ktB7xeyW7+GGgQ9wlW1d9JvhtcENv8H+JRZGGrKCi++DFWUeRH6GvlEMIIaoXtbuVfXJqVNFq+T6ht9vbNAQxuyB4nnYunZFXYkoyC3PPmCjc9qmnIUf5mFY9de279EqqONBfsZhWXCmVbDJ+wqlUDLGwpqCzCNomLMnpm0QREoje3BJ72d+Pp475ho8OvpW6/VvRQV6V/6AMY2/kE8tbfs6Hgt7ggDAJZfIxl1m46CPhcAYogTvyYCuB5f0vWX7a1GmN29oQqmt7/40avJ3cbU3sMG3WNr2ddv9lOneHThXEXY5w7lnclKTmQn8+c+R44KC+CvzGja0XqMYcG3/f2D34pPQKG83AOC5nztER+GRKM06iGYFO/HkuBtQka0Thv+EE3SVYxm+oPjelZWJso727cVQimZI76vSQEQAxHxoBQpj75UrgcJCPDr6Vnw3R5Q3dS79WTT6XrVKNHC+5hpruUE4sk11tXGZ8ePF59qtLIkx+V/tCatwepf/uKsvhrQr3o4XJl6lPkkKrphBCq4042/D78TFvR9PdDcIBfL87PdjdceXMUqxeOTFakN9df+H8OyEawEAzx1zDf4x8i/ihVatcMvg+3D/iL/YbtMNRuHATuvyH/Qo/yGufVHStOAPVx4r3ML29u0BQYCwfAUaGGzIHxlzG18i+4wMUSCWDEqlZctES7bVqxPdE2+ZOFG0SlwqWe3pCdJyjL0a9JDf2T59ooRltSE/t2TYz4LYvdietf9nM8/HjQPv1732yqQr8M3sjfhm9sao0Bd3DLkHS9u+hprC3Zja7EPd++OG9P24EusxjcUa72apTRvRKMFsgZ7qZGWJYR2qq83j4hOJ55xzHN2WG6hF4/zdANRriILMI+KroFRw1dQA06YBGRl4bOzN+HzW+eJ5I69hrSeHQ3gEYO2L+QxLXp18Oe4edrfh9YAviLyMo+aVSBvOHLNQRRI3D7oPP8w7G78uPN2wTHHWIdw+5O8AksezPWXhtAxuUrgbfSu/d9WU2bzz1m/NHder9Axc1eElvDDxKvSpMPfK1N4XL5TGktqQprJ1+qxZkZPSu8MVDjgspA2HlA7najMhKxDE9oXrrOsmiPqKtKZXhsYNy4ANWb8e6NdPHQJW2u8UZB7BlGYKo1CFt3+d4EvKHFw3DrwfXUqNc4DrenBpcwFpP5e0VnLycR8ZfSuWtX/N/o1KlHsR3pxSqUhJSeTvZPJU4/jhM/11hhGAlJzY83VMafoRAGBCk0/1P2bjxsDZZ+Pg0rW4sFdEputjghj2Wfk9ma2LRo4U320AhRkaj/asLN17y7IPoEXhDnQp/QkFYeMtn08MS8ij/GvcWFSErzcIOQ2IMq2VK737jX0+BHyiUj2pnhuJwoxDmNbsIwwPGzfNmiXmM02SVBXpCCm40owFrd9Gp9Jtie4GoUDemDIGjBvnLhazFmlR1qxgp2x1NbLRl5FnoEsXtCzcgfFNPvWuTQ6M5pc/9/knupUZLzzjgW7CzDAdOojxfHVgjHNxW1kJnHSSfPjV7HNx97C77HUyWSksFHNpKBdX6YDfLyolwxsHvR96/nzu6kY3+hwnd3peXIiOGKF64+8f8RfcNEhf+aSHE2vx5gU7kG0goB1c9S1aFf2OVkW/R72oS9u9gTuG/g0/nnQ1/jnmVu72hOUr0DhPxxtRh6fHX4/pzT7gqFRScKnCKtj8LhS/o67VJkGkAo0bc3tbluqEJgGgPx7MmSN6Ep15pup0hi8k5voaPDgSAsSAWIu3Di5di4lNP+Eq2zBnr8poZGP3J/Ha5MvlY65tL2P45NhNuGf4XcDcuXhn6iWGwrJVHV5BUeZhMZcBT9XhbyuZc1gmGjPhRNga2iKsTUHmEbw19TJX3TBT3B6uc25BH1Dky21d+BuGV3+Nt6f9GRf3fgz/HHMzHh6lP+86Cb0pLF+BwQ2jwxzxUpolejL4WAh9KyUlHGPoU7FZzNd32mnq9XJuLtCli3ne35kzRWFteDw78URR0DNvnnWHyNqZIMwpLwdatsS4mk8xvkYzbxqNrU2bAkuWiPu7FSvEqBQdzMN8PTP+OlzW59FIVA8N8rp95kx8euz5OLfHv+1+Eses6fgSbht8H24edJ/udTMPrqjjjRtFwx/JS6ZF4Q7ufoS/bk/CODMmjp2zZqWvB1eYsBK1U6fE9sMmBRn6ITn/N+MC5AUiiq/rRv1LNjwzJTMTOYHaiJIJ0hqySxd1OW0kBqXhquJ5mdT0Y/ww7yypHonSUlH2ocnFBwD/O/YiZPodPrtlZfF9TrV56pKM3YtPxsW9H4ucGDkSOOaYhPWnPkA5uAgixqiWlNOmYcpTq/DetIvR658ehJzTCkqUVkjLlomh7h59NO6Ww0aCaD8LmYZ+iQcNcvYaXGgghuwysTrhygHg96u0YUWZh9GphJTOKc2qVUC3btzFbxl8H1oW7gDazI9aeM1p9Z74h6CTNFcH20od2NtQ6QryOBaLC1u/iU/+aISPdoqehbyhccfVfIZHN0uhIM2EmR55iIQRBYskICNSFE7T4a5lW7Fn8Umqc/uX/Enfc6mqyjwXVKtWlsoEu+FW7aJUWGX46lAbMu6PNoxaWfYBtCn6VT7m8oJhLGIgFAqhd+UPrkPSRaqW6iGrTWPM5p6qKtGb0crAxgOvgqNB4+fajbGE0hNKOf2t7/604T2PjbkZvSu2WNbdqeRnfLqrERrm7JE9nZyGrH909C2yUiu4bJXq2ltTw2GkNEpExoA1a1Dx3KXGFY8apQ7rXF7OL+jJzQUOOc+rRhBpj88HrFuHQStW4KnxNwJQ5CDi8Wzo0UP8Z8HYms/FP/r0wbZnPsYvtz+Bj3bWYOnLiwBI487GjUDjxuj40EP4U+4L2HUkFzd8NsKy7i6lP+HjP2qs+2pCvwab0aviB6x+Ldow0cyDq2GuJB8Iy1ZqasR/En0qt9gOu+hZnlKDcPhpx1lnAd98Yy9/VqzRevhp+G7OBjQr2Kl7rUvZz+oQw7wGToEAMGcOVgUfwqhGX6DTw+frr0XHjQMOHAB69hSf1ZNPBq6+OqoYY0ATbVhNxsTyqY5y3ZiEHlxJ2KW0J7lVnoQ9ktBVnIj2wAj4QuhZ8aM3lWt/86wsoGVL0fqqV6+EWTVoP3NYsMSYdwJrXtZ3ewrruz0lH1/Q6wlsX3BGdMH8fFMLUQbBnqBr6lT5z54VPyK4bCX/vURiEQSc0eVZVOdKi0Gz90hn3A0ovTZhnM/j1cmXo9JI4eoC7oT0Rp/LwnoTAK7t/yBGVH8lHx81ETxrORzkKCv1bUT1l2gtCaltLxIV8c/9TKBVJpG6VFgkiA8zdCgKMw/L+TkBWIflM8LsfZGEPrUxVnApOXrCGtPrWsVDpq9OlQ/Udh4jaWznVRK8OPEqtaV6ixbRhXr1AoYMsdeP+oTVGN24cXQy+hhwOBixPn5/+kW4YUDE63pc489s1cUQeS6VczNv2MFjmnyC6rxIqOs5Ld/RDUH8ycwL8M3sjXhnWkTBZOpNJfHtnGhjuxaFO1RtKtfGViHPeldskUOme8ry5eK4c4bO+p0gCHOceFT07m1+3edD1dgu6F7+E4Yr9gPNCnaK76o0UJRnH8D1A/9h2dxfh9yLlyZFC+e9xMhA4dDSNRjY8DvxwEgJoTfwGQyGYeNEbXhXwoLCQlFZk+ReOUpaFO7Qlw/16QNAM9fX1Ymfj4fhw5HpD6Jj6XZk+WvRUc9YOiNDjMbQujV3f20ZzqbCvpm8uwkNqTN6ENaQgispyfTVcZcd3ehznNjpef7Km+vkAjjjDDHshwInXiBuUE6Hfx9+B16ddEXC+nJxn8dxZrdn5eNMfzBipaWHwXvEmICa/F3YMvdsADDMrSXToQNwVSShpFdW4ER8uLzfo8gNcAiGdZ4X2WJPWqAbKXUHNfwO/5txId6eamzx7MT6z/V6dPJklYLWso1hw3CgNpLH6d/jbsCSNuqkysWZB2TLRy6vD2kzPrHpJ/h69rkWhQ2YPRsYMECszisrSoJIBMOGifkPzeLaA+JG97zzuEMamqI3F7ZuLYYfqa4Grr8eR03e5U4lP2NVh5fc9aF9e+6iWsvsTL967cWYICbAbtwYOP5444pKSsRwtVIeEl6jnGHVX6MmXwrVWlEhhnBT9o8Jomd9OufQcIsXYW082Asdqov8RhXZ++W1gLB8BUY1/pK7nhM7PY+6ZWLO0juH3oPHxtwiX+MNO6hUih3X+k3cNPB+TG76P92yrYp+R43CSttIOXvb4L/LireWOmG35DZnzAAuuEDXItwIxiCHTPeUZs1ErxCOfF0EQWgoKrJ/z9KlEQ+Prl3F/w3G6PCwe2DpWqzq8LL9tmBPXmJFWNYwpOprOczwXUPvxjFN9EMeZwcUbRt57GzYEJ2PuW1b/falPT/tPdIAQcBNA/8PFdlq2dGEmk8iHn0nnigq5yR6V2wW35nzz0dFzn5VXVi2DDjhBPGY01Pt8PFr0WqZB+t6ACUGocwBANOnq4+vucaTNmOKUiCR7Ao5Wv/HBVJwEUQMWdbuVSxs/RZX2U4lP2Nlh1dw3YAH+RvIzgZuvDFyHDatNBngCzIOYVGbN/jbcIDSaros+4AqzNAV/R7B65Pd5Ufgpl07AEBh5mF8P2c9/r+9O4+Tojr3P/59elYYBhj2QYYdQRBkU0GFACK4gAsKroDgLipuUVzBuPyMGpNoEhOTeNUbE5NobhKNiZrExOQmmrhdjRrXaJS4xIgLLiDM+f1xqnuqu6uXmemZnh4+79eL13RXVVdVD9PVp85zzvOotjavl5014b60ZfHf6JDad9V43An611Hn6uOVp+hX+3xVPSs/atow3DDu1s3X5EJpCe7UXvygf4tenhixl0izFyEIfg3o+oEGdE0Pln5wtA9St/TmKCqQfENqTvqGhuiAc3W171DPsf/tat7zTwYO1OBu76ouqNkxvd/Lqg2K7T666DJJLXgftbXSwoVJi57eUN/8fQSN9fLY1o7f8AUyKS/39Q+HDMm+XSzmg09m0rp16etb2/l/1lm+w7u8XKqq0uYsszGXjHhEX57+48h1M+uf1wWT7olcl+T00/Ouf5g+g2uruoRqj8XkfCfERRclRtZGuuIKf1MfXC9um/Nd/Wqfr6ZvN3p0WorHxIy2AQPS0jsWtP5qZzNjhg9cbJdf6t6sChHgCs3g6l75SV4zoaKUW6Ni5vTtmbfq6O3/pDnbNc1yyHemdfhr65bZN6tX9cdZA8thqQGuLmU+UHf8Dn/QESP/qoWDowNlCePH+/TdpNUESo+Z/y67+uqWDR6Ixfwgk699zadql3xa0fnzpcMPT9o0PhCka/lnsl6hNLLNCI5Xlm1NqlNYCHfu9U1dMvUuSdLRo/8cXTMzdbZQpu+QhgYfnIi78sqmmlEpupX7mkxl1phW5xSl5+Rxv08aPCKF+rp22MEPngp8ZfoP9aVpd/gn9fX6w8Kr9c8j1uiZxWt9bW4zPzvyssv8zOR8jBzpaze10iuHn6fV47MMpJ8/P7muV2pAtyMKz+DqaDP/wg24+npp2rTincs2pIP9FQCl74tflL4w9WeSpBtnfk/jer2R1+seXXS5Fg17vPkHzKPRGr6+Tui1XjfPuqX5x2mGcKd5mTUm3WT3rv5Iuw14WXfM/aZ6VGYZRVIIobROw7r/J6+aP5J0zbQ701YnRmYHm8bMqUv5Z5rf8ExidO/6I8/x08/DLrkk8zHnzcvxBlAULWggnb7jr/XnA3xtisQNWra/t9AxoraqrYzfHPnP0q79XlZDzbsRW3rnT7xHjxx0eWI0WVSH3IljH/QPhg71o8emTk3clD4WBKKaTsrUUPOuzppwnzYsPz1p1X6Dn1Rtxadava5O//7hb6UZM/TQgVfq6cXr/FsLBbgn93lNvao2amxd03UwsTZXwGnBguzrm4FRlNjm1Nf7ovGSNCeofdHazn+zpMBNthSFMbmMM7bPGP9rXbbzz7Ie6td3BoH/mTPTC2tHSKQgDNK/VMS2qqZis54/9CJ/PvnOoo7Fkt7j+F7/StQceeqQS/TPI9boi7vc6YONY8b47/igrZH2+wil02MWdxZHHeWzDxSic6IAAa5+XT5Uj8qPtXHFqepR+am2NmY5rywp8+JBrGPH/G/a111ranllCyxLSgQKU+vGTuv/cqKN8L05N+nne38j8uX8pQKdQEWFr10XmlnS4v2EL2CLFqUNgku6Zlx6adPjPFPKrptyl+YPelq1lZuaXecqm6rYFjXmqp+9667Jz7P9vsLfL1nqQZbFnNzxJ/hfW1S6YpSODG2KxKCleEAo2G71+N9qRv2Lic9M/64fqqHbBu1ww2nJqQT79s2/zZNvuybT3+7220vyg7QrOlvazPDvsCOnK1y3jsFC7YQAV2fC6PQO4ZxzpHN2ui+5FkMeWtX5MWuWn60wcWLk6kydTEO6vaNlo/6sO+Z+M23drbNuih61nEE4x7BJ0uzZmlX/nHbq/XraTbYkHTw8ezCvR+XH6l6Ru6B0mW2NrGVw1MiImXMZGghHjHy4aV3ENh+uOE2zBz6f8Rzi729gzfvpubsjGi8LB/+ftGJF+lRwdAz1fqbQQwf+P31n5q3Zt3VOnx6zStdO/7Gm9fdF2VNzrkfW4MqzURv/237owC9qfK/1Gbfboe7NpNp+GTuey8ul887zo8fMNLH3a9qxbr0m9fEpPHTUUf5nZaX+ueqLumbanepZlfw5vHvvr6ss5lQ2f676LJkjxWLqWfWJ+lT7NAxVKanBXj78At2zz/Xp55LPd9b++0uShtX+W6eM+13u7TMco4IZXNgWTZ7sR28vWeKfFziVddYAV5Y2TaJjYMkSPbvkYp067rdp2+w5M2KkdRaJdsCIEZKa0h2N6vF28vp8RXQUlMe2qqHbBp1zWfemGaYDBiTSOKWlXz3zzMTDvGsjouj+sPBqvXjYhYn6dVlncI0cmTElaLYgVrk1+s9nXH2OGcqhWYeje76ln+x1Q+ZtzzpLGj487/pxqRJtlmzfmXmk2rlo8t16tg2yFQLIQyFmxOZj6tTk+5wWzBZbO+XutHuNbMb3el1njr8/fcXAgdK55yYuXZVlW3NfB4cMka65Rjr5ZGmffRLZX1rs5JNb93p0LEG7OfVe3sz57/6DDvILcvXptCa4kW/bvb5eWr5cOvvs5OUnneRnZHdGpZSiEO2CAFdnMmhQsc8AgaqyLYkp8fnK1BlUm0eQR4cf7juxunZNX7d4cdLT+A335Tv/VC8cdpFumX1zZLCpZ9Un+dUgkvSNPW7ThuVnqDpIf+IkqbZWDyy8Vv26fKgt4dGvQeeTlKHjP/DYosv1pQzpjcK2HHeyXjj0Iv1+4TWJZYNq3tV/z/kv/yScTqCx0Td+U9w256amJxGjP7pVbMp+DuFOrUzFaQOXTv2ZHzVbW8sXcUe1887SEUdo136v6Jgx/5tz86qyLUn/leWxrdL06Ym/pVc39kp+wdln5x3gMpOvvaP00dhhvas2Jj0fGEp7OKDL+zpuzB/8k5Qg+B/3v9oXpW9o8NNPZ8zwK2Ixn4qsGeI1RVJnS/Wo/NSnBenvUz5m+9yn2W8/afp0vXz4herX5cNmnY+k5AAXsC3q3r3puyZTbYkoeVyjsgW48grolJVpTM+3VJPyHVvWgjRFZeakq65KdAR0SUlF1OxBRGPHps0iTcwS22uv5A7+4He1JXWmz6BB0okntuz4aJnUWfQt0Kv6Y/Wpbko9nbNuZIbOp8g6W0Ha6pg5n35z7lz/Xbtunf++yyT0eYyZ00HDnsi8bXW1dO65aR27O0YVqY8671ijrw3SPyJN87Jl/ryj7jdS7Nb/5Vb3FQNopnPP9RlCCpDSLC/HHitX3b6pzGYPfE5fmn5H9MrhwxMDBipjW/IL9NfW+ppJBx6Y/d48nzbUTjvlHrCAkjas9t/a+/jBvu5tfJbibrslp6OM/x2tWOH76fKczRipOW333XZLnikm+e/rqVPze32BB8K1ufJy3yZZvrzYZ5IuyyxPtB0CXJ1Jnz7+wnr55cU+E7Qgx2qmWVYfrDg9vy+bTA2yuXNlQwYnnlbGtkhLl+r8Sb9smqacIYd0rkZhPCVZddkWda/8VJ8cc6qkHJ0BZ56ZCMZmGxVbHtuqZaMe0h/3vyrrOUjS8O7vaFSPtxLPkzrWwl/osZh0/vm+Mz9V/PcXBBOiTyo6LczW8O9p+vSs55r4f84RCEMRmUmf+1yLX15ujdLRRyeeP70hZRTlqFFJnVXZPmfh68KWDAGu1488V3s3PN20YMgQ7T/k//TRylMkSTfMuE03zvyef0/LloV2bupS/pnvCD7xRKlnz+QdV1UlHj635CLVd30v43kGu9PfDlmXNoMt4Ygjsr4+o1amrRpXt97/fggoY1vXnELzedSsPHDoE76YdoSYuaR6nGGJj2IwonXT1uQR32mf1Ayf3XN2uld/PegKScH3fvD+/rD/VZo/6OmkbZtdA8ssrQ5gmTX6zqsM57fFRbd9DhvxFx016uHmHR8ts+OO/mcBIytJgcsc7fuu5Zu0cYVvC0d+FwaDTJzk67QuXtwUSDLTj+d+S0Nr35GkpvbvpZfm/v5assR/vy9blhhcEx4U8+GK03RtfNBYuF28fLmOGPmw9h/yRGJRdVnQJog65u67+7ShOWxYfnpyuwRA+xg+XDr44Iz3rAVnlr2bIkN2mUi9euXeRrm/z2Pm9N7Rq2UmfRpuX6xcmf+5RBkc9Kek3i+h84rP4AotevnwC3XS+RF/q926pS+bNi1nXeucWhMca654n2Aeg1g6jJkzfWCvo+nf39dZO++8Yp/JNoUAV2czfHhycUAUx5FH+pQ1xx4bXeg9cPyYB/X4Ip+rOuu9a3NGbkSI19k5eezvdNqOD/gvgRUrmjaIT68OKbPGnIW143V1UoNzvauTZ5NM6L1ehw7/q39SXp4YwZqtQVxujaos26rdB7wUuT5mjTp8xF/8KOu0dSk7Xr3afy5OPtmnTgiOH2nGjPSp3XEZGsaJTq0DD/T/UoXT0CRe1PpRxmgnedZuk6Sder+W1qk1uc+r6a8L5WQvL8v8QbDQMVJnB4zv9bo2LD9d29W85ze5+mo/42DVKpkpUUw5cSP4uc8lBa2SZPowBh1Z2/d8O2MQPixrzcHBgxOzGZqllQGuvy3+gr7QzBm1QKc0apR0yCE+hVkmxx7rZ5XkESA4evSf9cCC6CLyMXMZWxD9u3zgjzFypKTMA3wSFi+O7FBqqHlXU4Lra2IPjY3aY8BLKosl77PFM6hCQa4ya4xOPxSkZGqMSu3WpYt+sOd3tdcgcrW1i8MO80GeEwpXxyXRxtt556TBK1HKrFE1FZt18tjf6dARf/V1NiLa2JlmMh8y/DF1CbIhJNq//frl11m9++7+XyA8eKZbxaamtomZbytMmyYNHKjb5tykGQNelCQ9s3ithnd/J/excmhOujEApS3rd/gxx/hZzxEm9v5ncs2tTPcoKarLc6cw7lH5qSSpZ7ze98CB6fW2mqtnT+nKK5PrjKFzC+5Bp/T5Z44N1er71TSrV/v6WUuXFna/2Rx9tB+sfc457XfMzmzKFF/7HO2GABfQFiorpR128DfDWaapD+/+jkZ0/3fu/bXyCzM+Wejre/xAC4c86fcXHoUakUu/zBpzF2aVdMfcb2rJiEcSz9cfeY7u2OtbSdt0q9ik2+d+p2lB0JmeabSzlGHka8jeg57W9/f8buJ5uKsgLTXS2LF+ZmNEoVdTyrZmUt++emzRZbp615T0B1OmSF//uu9AGDYssThRgHzMmOgClytXptdoIMDVOaR8Np84+LK0jtRf7nN9er2MyZN9+swrrtB23d7XC4demLw+GIVu5hJpPVNThppccidS96AuTMosjcT5ZOsgyxTgOuIIn+pEBZgAVV0tTZqUCLjnvcPWXP+YtQU0MfMdTUHB6Ug77+wDSi347PTv8r7eXX6GJH/dKa+M6Z1lZ+q7M2/RPg1PSZI2rjhVu/R7JSl98ropdyUG+/jXpnwv9+0rXXaZduv/onqF0rGa+X9f2/0Hqo2nOcxwLcs0myynBQsS6V4ypl3s1k06+ujoLr7Ro32nWrwOGtpWdbVvoxVw9HFiln5FRc7PRUO3DZJ8e3tMz7ekyy6T5s9v2qCxUSfu8HvNG/RM805i4ULfQRuehS1p8fBHdO++X4l8ScY2/OzZfn+hgW7x7+Ud6t5s3nkB2OaVZ0srHPSJjOz+VtqM76T7pfjs2xweOehyXTjpnrzPbeGQJ/XJylV5b59TXV1eNQjRSQQDsW6c+T39fcnF7XvssWP9gLT2THXXu7cPcpFmEyWKABfQ3k47LfEwZk5JY5yrq32B01SHHtqqQ9ZWbdaP534rfcWee0oTJkTWpYqZS/QT7bXdM/r1fl/W84delLbdwcMfT8wUUc+eGljzvh81lUdaxePG/DEpLUpYamM5PqJVks6feI8unnK3fxJ0NoSPlnOkdujcKsuC40yalLTJpD6vaVDNhogTK/cdDGvWJNLYbWrMMbK2okIaOVKXTf2plm7/kF9Gw6F0ZPtbjkpHkKJflw81uNu7yQvNfJqgIBXAyB4pge66Ot251zf1/Tnf9aO3167V92bflPQZTOpni/gMN20XnH+2FAeZZomatSgVR9ro9CuuSASqPr/Tfbpi5//Jf2eFGhEXFXwG0CrhwFHMnOqqPg4eN0qDBql39UdaOeZPmt7/ZUlSTUUoUB9cW2srN2lin9eT9hPlj/tfrR/PvbHp2ME3/6pxv4t+TSjY3+wUhRHKsg28mT5dO/d9NXrQzMqV7VcPBa2Xkuo93xpcn59wr/64/9Xp68Nf1lu26IYZ39fAmvfTt4sSf22PHtLatUkztCRpdI+3NC/D7MBbZ/+X7pj7TY3v1fTZ0jXXJNXCbdN6GxEz1wB0PlVluQdtvnDYxWmzYBJXxoYG6ZRT8krfP6XvP5PbEfK1tz89JjqIZSZVlzOoFC00YIC0dq1i5lTf9X3VlH+aeduOXL+qS/vWyQOKhQAX0N7GjUsULo9ZY3KXyzXXpNe9WL487Ya2ucx82pM0S5ZIq1ZFjkiNmUukKLxvv69qz+3+rlE93s5+oHB6vqgv+fhxgjy51+9+u67Y+aeRuwrP4Nq44lQtGPJk4vnp43+jXfu94p9MmCBde626VzQ1OPJJRfTFXe6UFNQkO/jgyM6n/l0/yL6T4P00upjKso1eC1ww+Zca3G2DdMYZ0XXA0DFlC7CMHetna+aQV5HjFIuGPa5ZA5/3f2cDB6pX9cdJn8FEh21DQ8b8zj+a+y3NGficTw2YLRgX1MKJFPVZjgrEZ7J8eVKdv6l9X9V5k36V/41AoQJchU4dASBJ+Ls3Jpf0Gd/aGPH5i7gGrJtyV3TaQzOZJV9LI5Mghvd54YWJ0bdZg1O5BPvMFSTbu+FpNR5/UsuPg44hntJakhYuTEsPnCb4++hd/VEiwJtRHgMtMif3TBefMRZll36v6ODhj+vJQ4LZkfPnp99jxAeJFbpfbtw4ae+9C7xTAB3RwG4f6MlDLsm5XWot4cQAmW7d/LUozxSFOvdcqbxc39jjNt025zu6edYtPsgWv75mm6XeHlpZWgIdTDCItHvlp9q4cnXm7erq/N9xhtr2RTV+fHqJEqATaqfqkwCixFJvYysq0u8y27OwZEjMGrUly8wkU6N08cXS/ff7BmnPnsk1OyZOlO6+WxoyRPrPf6SNG5tmgkyYIF1yibR2bcY0heHRYDUVm5NmhCSCX6tX+2PGYqqpjckdf4Lsxm/lDnCZ6ZyJ92lTY7nqKj+WdpqTHOQLHs8e+LzeWpqhHleK6rLc+cATClj8HO0gW2CkosLX28tR7yOffPEDu27Qvz6OSEOQITBl5nxw69RT09NlVFdLn36qxfHAdsoMxYTDDpM++CD7LK3Ua9KyZfkXc12wIPO2+d4Ajh0r/eY3LSvqHP6/I8AFtKlwACh1QExSTc+gtl+8dlXYvEHPaFr/f6Qtj9sa6iDb6swHI94J1QwKX6+6d/epEM9RM0IGmbW4jhdKz047SdddJ1VVac8br9bPX90pZ3rC/l1SBkXNmdP0+KSTpPfekzYnzzzIKcv33jvLzswdUAtbtCh9WfCetuaRkjwvkydLjz3m69kC2DY0Nmp8r3/l3ixlsF9a7a5jjpG+/OWkRY8uukyL7jtRr24M1ZgfPlwaO1YnbXkw+fXxdv7ChU3pai8O0srlU8ewUEaMkN56y7dP0Pl07x69vLxcuv76jpkxJBbzA06BTo4AF1BEZn40yOOLLm3qoG7r6c2hgulh29VsULfyTXru/QGSpLLU9ImSD1oFqsu2+M6pcMHtDaGRpA0NvhBrba30+uvSnXdKhx/etH6AP07UyNjG407w99zr1kl//7t0++1JTeDK2BZpjz18x3dc6PeWqJMRUXNLUuKG/qLJ8Rzec6K3k08vJ0k6OyLQFYw0m97/JZ/O0GjIdkr5BEYuvVS6KD2FZ9z4Xv/SS4ddEL0y+Ntdf9QaHf/gUfr232f4ZVdcIW3alHF2lUnS5z8fPeJx1SrpS1/Kfd6pteGynF/iRnTgwPSOvj339EGotJMsQLfyuHH+fbYkrWc48EeAC2hT8dpZW4870QeD3ODEukQ9oHHjpCOP9I/r6nyb5K67JEn/PGJNdGpgKTRjuumaEpNLvz727Zv13FokOHaXPAYqoBMJvltn1L+oxw6+XFL2bAp9qoP6cFdckT6CO95+vidL7ZigU2zmgBea/s5Dac1T9a7+qOnJ6NFZzy2j4Htxc3hA2zHHtGxfkq8tumFDxxzBDqBt5FlXOjWQnvg2j7fV6+ulc87Rlb//iR7412jd+/o4Te7zmvp3+VCvbuwjd3xoMGFUf0m/fv5nbW16QL89A1yHHCL16tXqDDzoQEaPlp57Tho0SDr22MzbRQzcAtB+6O0BiihmjdK6dZr4uR6+A1dKb7AVooM4PFMiSI+Y6vUj12jpqIeSzi0trZpzunXWTerf5X2N6/Wv9HNLLepdV+cblEOH+iKZEXWCUtMVSKHd1tdHNmArYlulpUuTF4beY8ycH6UyfXraa5MPkOF5quHDE0Xmk8yfL02YoD8dcJV+NPfbHTv3MpqvVy//c/Dg7NtJ/qYqniYwQ8284d3fiVwe/rtJPIqnOAh/ZlauTHqZmcv8t7v99oUbQZ3PNWjJkvzzey9e7APg+d74mfk0Yy2ZzRqL+c/pvHmFuZYCSBL+VMVnOMXM+TpG4RSF8fZEaidTqE3S0G1D5o9psCK+fvseb2pG/Yu+o6G+viml3JQp/hpzQfKAgr7x4ENLOKfNx56kbhWb8tue9ESdU6Y2nnN6d/kZ2m/wU/55tg6u+GzqqNTGs2ZJgwbpWzNv03OHrvUzw6Pqa555ZvLzCy/0nW4tEcwQO3jYYzpm9B99bdBddmnZviT/nUtwC9i2zJ3rf2aqNRlcO9NmcJnz167Fi5OWnzvxXk3p82ri+c/mf0MvH3Z+8j7rUjJeTJ2aPJA2VXvOqqmp8YN34veRKH2nny5ddZUfzEoddaDDYgYXUERl5vyXZJYRmgXplM0z8BJOIVRmTqN7vtm08vzzpV/8Qku3f1j7D/0/f+52cfIOqqqkNWuaNVOiIpajdlVw7uEUhZGvCb1Hk/OdXJl+d7l+p/mef02NnymTIz1ds/aJjuPSS306odTAbSZDh0o33ND8/2uz/D6ju+4q/eUviVScY3q8Kdl2zTtWSwSfl9p4nbvWXpPmzm26GW4PUWmZABTcPz4MZk8NHepT8yxY4K+Jkk8H3BrBdTU+Q/u5Q9f65fX1frZ3nFny9eWzz/TqEWvUr/pDSXu1+PAVzanhledodpSYLIHLRKpAs+z1Luvr/ezqqHZF166+8yxXm3L0aH/fcN11/nmmmq4HH+yzJ8RfE6W2Vjr7bO14zTX6zuf+W9LU7McGgFQHHeTvuzMNCAyunakzuGLmfIA+4r4i3CcxIKom9oEHSh9+KD3+uH++fHl6uvawjpg2DqUjFpN69Cj2WQDIgQAXUESRKXOc028XfEmfbKnU25/USlaAm81co4kTI6uaGp5l1qgR3d/x6QB69vS1tILtelRm6egeNqxZpzax9+u6a/7XtPDeU7JuZ6HaF5H960mzYHJ0wOf6fbR0enm2/RLgKj3l5c1PaZHr/3mffdKXnX56Ws75XEGkD44+zdepy3Z92JojeJyv4IbxNwu+rE9GTpCGHBW9HbMWgG3LqlXSV29MPB3f63X/YOed/c+JE6Vrr5XOPFNnTPi1Fg55UlL/3PutqkofnR2Y2vdVLR315/zPccAADe62oXXpiZo7O5sAV+eUz3fc9dfnbgdkC4AV0rx5fkbF00/7Wd2ZhDMUMNMZQHPFYn5gSybB/Uh4BlfPyo80vd/LklLKCcTrAkaUMEhSUyOdeKL0xhs+nXum4NaKFT7QnzJLDADQ+dDjChRRLLW4qiQ5p9kDn9e+g/+mo0f/uTA3m/F0IxMmRK+PSB0QM9d0kx4fadoGKfhi5rRgyFPpK+I33MGIq3jwbfn2f4reUejcGp1l/72lpm5LHdVVXZ1cqyzf/4NsAYV3MqSnw7Zj3jzpgAPSl48Z42dISprc55+qjOWu81JbuUmVZTkCWP3z6EjOx/Tp0tixqj9uoYavXdrymZEAOpcJE2QjR0iS3jzqbD15yKXS8cdLc0J1LWtqpLVrVRFr1A51b0bvJ16TK+7aa6NHW0+dqrqqj3Xr7JvzP8faWl8PNJ+ahJnk2/aJ1yRtTQ0jdFyZ0vCG/z4KWX+jEN+pZWW+7Z+hlicAtLmIwa9vLztbXzrvnYzXudTZXgmheuCS/KzYbMG1adN8armWpnEFAJQMAlxAEeWaiSSpMDN/5s/3NbCOOy56fUTqgDJrlM4913e+x1/XFueWom/1B75GwamnBgt8yqMu5ZslSTfPuiX6hcG57NL3H9q34W/ZDzJmjHTJJU3PozrSMtQqy+qzLIGJsWObvz90LvX1OTusThr7oDYdm302Y9723NMH1Naubd1+Kiqk1aulmTOzb3fKKf7zetZZrTsegJITr7+lsWPT2wbhOkJR7YaZM307JS7TbKtMbZhc6urap4N/+nTpW9+i7kZnc+KJvmZW1ACVYqGQPYBS0bOndNVVSZliYnLRNbOC+6SFQ57Unts9K02e3LRu/nw/I6u5GIAHANsEUhQCxRB08ESmKExViEZZLJY9PUmmGVxDh0pnnNH642cydqz0zDOJpxdPvlvnTfylNGqRT1EU3+aww3T9p7fr4sm/yLyv4Pf08EFXBs8zFLqN69ev6XGuQF2+/wfZUiANHOjzjNPxte3Klrs79W8w37+5bDnlKyqkfffNbz+FMGqUdNllwZPX2++4AIoukUY407Xr4IOlu+4qbJCgvWr5kX512zZpkv+XSRtkN8hp1Chfl7OZacFzKsZ7AdD59eihJcMf0YefVemXr41vGhSTKmhDzBr4vGYNfF5SKMC1++7MRgUAZESACyiiHpWf5N6oPUYdde8uKTnAVZahPlhBnXaaHxkbGNXjbVWXp9SuMJNmz1av229Xr+osReqnT5cefDD/Y4cDCrlqc+QKgC1YIL30UnIdgyiZCoGjczv1VP/3kW0WX2oHaj6f++uu6/ijEjv6+QEoiMQnPdNnft48aa+9Mq9vbhCpV6/2q6kxcqT0yivJA2OAuLb6nss2gMVMWrmyfY8JAK1w8PDHdfDwx7NvlO0alG2gIABgm0eACyiGXXfVi4ddoGGzI0ZepgaR2qODuKZGWrNGjQc+n1gUObKq0AGu0Hv7aOUp6lL2WdryvC1Z4msO/fjH+b+mrk765JPMdRXq6qQNG3xqmmzC9bqAVDvu6P9l09Dg/732Wv77jc9yBIAiiX9dJ9oM2QaEZPtu37Il87oobZAiOaP99/fpV1NrfwBtqRjBJgJcANrDfvtFL09Nvzptmv8O3ryZ2VsAgKyowQUUQ58+GnHzxYodF1GIvFjpQYYNU2PTGGz1rtqYvk0bBt+6ln/WtLtcI7mXLk1fVlEhjR/fvHO7/HJfeD7TtmvWSMuW+ZHnQFuKxaQLLsi9HemDAHRApuDalGtGdCY77+x/jhlTmBMqpKoqadYsX0cESFXo7+UxY3y7dMSIwu43m3i6z/ZK+wlg27Xnnj5oFSUc4Lr0UmmnnXwN4yFD2ufcAAAlixlcQLFkmn2ReqPcjrUf4sVf3fEnRG/QrVv7nMjIkZnXLVok7bFH9LrwiO58RqHm2qZnT5/vG2gP4UBrXV30Nlu3ts+5FAopCoFtgpmTTjih5Z/5ESOkK6/MPwUR1xZ0FPPmSf/7v9I++xRmf6ef7r/rWxosbonFi6WDDmrfYwLYNmXLQBG+N+/bt+3PBQDQadCKBTqarl2Tnw8Y0G6H3upydBgtWSJt2iQ9+aR/XogUQd26SRuD2WLnn+/3ma1WVbab73AwkM4vlKLPf1569FE/ujHKkCHS3/8u1da273k1kxOfP2BbYI0+6B6TkyZPzrF1DpkC+2E77CA9+2zrjwUUyoAB0g03FC5tpllxAk0EtwAUm5l00kl+wC/38gCAZqAlC3Q0M2ZIL73kO3FGjWrXlDjbdX0v+wbdu0urVvlR2lJhbobPOEO6+24/MyufAu7ZGruZamkBpWLkyOwzGBcs8NeEDl4LhkyKwDYimFXabv1QJ57oA1zhlMRAsbVnTTgA6Mw6+D0OAKBjIsAFdDQVFdJxxxXl0GdNuF8njf29fzJ0aO4XFKLY66BBvsMqX9k6Ebp39/vq3r315wV0RJWV0pw5xT6LnLY6OvuAbcIRR0gXS3b08vY5XnW1NGlS+xwLAAAUFjOzAABtgAAXgISymFNt5SZfA+OMMzJveO21Ph1gRxyxSscXUHQEuIBtQ8XwBs2YIVXtNqXYpwIAADq6jth/AAAoeQS4AKTbYYfss7NqatrvXFIx6gvo8HLW8wPQKZhJDz5Y7LMAAAAlYcSIYp8BAKATIsAFoLSUlRX7DADksKWRzykAAAAASVdcIa1f7wfSAgBQYMwPBpCuI6YOiDeGd9yxuOcBIKfN8QAXMy4BAACAbVvv3tKECcU+CwBAJ8UMLgClYfVqafNmqaqq2GcCIIfNW2leAAAAAAAAoG11wGkaAIquI866MCO4BZSIzY0EuAAAAAAAANC2CHABaDJokP85cWJRTwNAafuMGlwAAAAAAABoYwyxBtDknHOkt96SGhqKfSYASthmAlwAAAAAAABoYwS4ADSpqpIGDy72WQAocdTgAgAAAAAAQFujBwoAABTUkhGPqEflJ8U+DQAAAAAAAHRi1OACAAAFddqOD+gX+3yt2KcBAAAAAACATixngMvMGszsATN7xsyeNrPVwfJeZna/mb0Q/KwLlpuZXWdmL5rZk2Y2ObSv5cH2L5jZ8rZ7WwAAAAAAAAAAAOis8pnBtUXSWc65sZKmSVplZmMlrZH0G+fcKEm/CZ5L0j6SRgX/jpd0g+QDYpLWStpV0i6S1saDYgAAoBNqbCz2GQAAAAAAAKCTyhngcs694Zx7LHj8oaRnJW0n6QBJtwSb3SLpwODxAZJudd5DknqaWb2k+ZLud86965zbIOl+SXsX8s0AAIAOZOvWYp8BAAAAAAAAOqlm1eAys6GSJkl6WFJ/59wbwao3JfUPHm8n6bXQy14PlmVannqM483sETN75N///ndzTg8AAHQkzOACAAAAAABAG8k7wGVm3STdKel059wH4XXOOSfJFeKEnHM3OuemOuem9u3btxC7BAAAxcAMLgAAAAAAALSRvAJcZlYhH9y6zTn3k2DxW0HqQQU/3w6Wr5fUEHr5oGBZpuUAAKAzIsAFAAAAAACANpIzwGVmJum7kp51zl0bWvVzScuDx8sl/Sy0fJl50yS9H6QyvFfSPDOrM7M6SfOCZQAAoDPZf3+ppkbaa69inwkAAAAAAAA6qfI8ttld0lJJT5nZE8Gy8yVdKelHZnaMpFclLQnW3SNpX0kvSvpY0gpJcs69a2aXSvprsN0XnHPvFuJNAACADmS//aR995XMin0mAAAAAAAA6KTMl8/qmKZOneoeeeSRYp8GAAAAAAAAAAAA2pmZPeqcmxq1Lq8aXAAAAAAAAAAAAEBHQYALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSQoALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSYs65Yp9DRmb2b0mvFvs8SkwfSe8U+yQAbLO4BgEoJq5BAIqN6xCAYuIaBKCYuAahrQxxzvWNWtGhA1xoPjN7xDk3tdjnAWDbxDUIQDFxDQJQbFyHABQT1yAAxcQ1CMVAikIAAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuDqfG4t9AgC2aVyDABQT1yAAxcZ1CEAxcQ0CUExcg9DuqMEFAAAAAAAAAACAksIMLgAAAAAAAAAAAJQUAlydhJntbWbPmdmLZram2OcDoPMws1fM7Ckze8LMHgmW9TKz+83sheBnXbDczOy64Fr0pJlNDu1nebD9C2a2vFjvB0DHZ2Y3mdnbZva30LKCXXfMbEpwXXsxeK217zsE0JFluAatM7P1QXvoCTPbN7TuvOB68pyZzQ8tj7xHM7NhZvZwsPyHZlbZfu8OQEdnZg1m9oCZPWNmT5vZ6mA5bSEAbS7LNYi2EDokAlydgJmVSfq6pH0kjZV0uJmNLe5ZAehkZjvnJjrnpgbP10j6jXNulKTfBM8lfx0aFfw7XtINkr8Zk7RW0q6SdpG0Nn5DBgARbpa0d8qyQl53bpB0XOh1qccCsG27WdHXhS8H7aGJzrl7JCm47zpM0rjgNd8ws7Ic92hfDPY1UtIGSce06bsBUGq2SDrLOTdW0jRJq4LrB20hAO0h0zVIoi2EDogAV+ewi6QXnXMvO+c2S7pd0gFFPicAndsBkm4JHt8i6cDQ8lud95CknmZWL2m+pPudc+865zZIul/cRAHIwDn3oKR3UxYX5LoTrOvunHvI+WK0t4b2BQCZrkGZHCDpdufcJufcPyS9KH9/FnmPFsySmCPpjuD14esZAMg594Zz7rHg8YeSnpW0nWgLAWgHWa5BmdAWQlER4OoctpP0Wuj568p+4QGA5nCS7jOzR83s+GBZf+fcG8HjNyX1Dx5nuh5xnQLQWoW67mwXPE5dDgC5nBKk/7opNAuiudeg3pLec85tSVkOAGnMbKikSZIeFm0hAO0s5Rok0RZCB0SACwCQyx7Oucny08pXmdnM8Mpg1J8rypkB2CZx3QFQBDdIGiFpoqQ3JH2pqGcDoNMzs26S7pR0unPug/A62kIA2lrENYi2EDokAlydw3pJDaHng4JlANBqzrn1wc+3Jf2P/DTzt4LUFgp+vh1snul6xHUKQGsV6rqzPnicuhwAMnLOveWc2+qca5T0bfn2kNT8a9B/5NOHlacsB4AEM6uQ71i+zTn3k2AxbSEA7SLqGkRbCB0VAa7O4a+SRpnZMDOrlC/s9/MinxOATsDMasysNv5Y0jxJf5O/xiwPNlsu6WfB459LWmbeNEnvB2k07pU0z8zqgmns84JlAJCvglx3gnUfmNm0IP/7stC+ACBSvFM5cJB8e0jy16DDzKzKzIZJGiXpL8pwjxbMunhA0iHB68PXMwBQ0D75rqRnnXPXhlbRFgLQ5jJdg2gLoaMqz70JOjrn3BYzO0W+8VIm6Sbn3NNFPi0AnUN/Sf/j2zcql/R959yvzOyvkn5kZsdIelXSkmD7eyTtK19U9GNJKyTJOfeumV0q38CRpC845/It3g5gG2NmP5A0S1IfM3td0lpJV6pw152TJd0sqYukXwb/AEBSxmvQLDObKJ8S7BVJJ0iSc+5pM/uRpGckbZG0yjm3NdhPpnu0cyXdbmaXSXpcvhMJAOJ2l7RU0lNm9kSw7HzRFgLQPjJdgw6nLYSOyHzQFAAAAAAAAAAAACgNpCgEAAAAAAAAAABASSHABQAAAAAAAAAAgJJCgAsAAAAAAAAAAAAlhQAXAAAAAAAAAAAASgoBLgAAAAAAAAAAAJQUAlwAAAAA0Axm1tvMngj+vWlm64PHG83sG2143Flmtltb7R8AAAAASkl5sU8AAAAAAEqJc+4/kiZKkpmtk7TROXdNOxx6lqSNkv7UDscCAAAAgA6NGVwAAAAAUADBDKu7g8frzOwWM/uDmb1qZovM7Coze8rMfmVmFcF2U8zs92b2qJnda2b1wfLTzOwZM3vSzG43s6GSTpR0RjBbbIaZLTSzh83scTP7tZn1b+axXwkt/4uZjSzKLw4AAAAAWoAAFwAAAAC0jRGS5kjaX9L3JD3gnBsv6RNJ+wWBpuslHeKcmyLpJkmXB69dI2mSc26CpBOdc69I+qakLzvnJjrn/iDpj5KmOecmSbpd0jn5Hju03fvB8q9J+kqB3z8AAAAAtBlSFAIAAABA2/ilc+4zM3tKUpmkXwXLn5I0VNJoSTtKut/MFGzzRrDNk5JuM7OfSvpphv0PkvTDYNZXpaR/NOPYcT8I/fxys98hAAAAABQJM7gAAAAAoG1skiTnXKOkz5xzLljeKD/Y0CQ9HczImuicG++cmxdss5+kr0uaLOmvZhY1OPF6SV8LZmCdIKm6GceOcxkeAwAAAECHRoALAAAAAIrjOUl9zWy6JJlZhZmNM7OYpAbn3AOSzpXUQ1I3SR9Kqg29voek9cHj5S08h0NDP//cwn0AAAAAQLsjRSEAAAAAFIFzbrOZHSLpOjPrIX9/9hVJz0v6XrDMJF3nnHvPzO6SdIeZHSDpVEnrJP3YzDZI+q2kYS04jToze1J+xtfhrX1PAAAAANBerClTBQAAAABgW2Fmr0ia6px7p9jnAgAAAADNRYpCAAAAAAAAAAAAlBRmcAEAAAAAAAAAAKCkMIMLAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpPx/Taa0BNrWmiUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
            " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(30,8))\n", + "plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(Y_pred, color = 'blue', linewidth=1)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE: 2.0572089029888656 %\n" + ] + } + ], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "f8f3967282314d3995245835bdaa8418", + "translation_date": "2025-09-04T01:54:39+00:00", + "source_file": "7-TimeSeries/3-SVR/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/3-SVR/working/notebook.ipynb b/translations/fa/7-TimeSeries/3-SVR/working/notebook.ipynb new file mode 100644 index 000000000..a4437531a --- /dev/null +++ b/translations/fa/7-TimeSeries/3-SVR/working/notebook.ipynb @@ -0,0 +1,707 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [ + "پیش‌بینی سری‌های زمانی با استفاده از رگرسیون بردار پشتیبان\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "در این دفترچه، نشان می‌دهیم چگونه:\n", + "\n", + "- داده‌های سری زمانی دو‌بعدی را برای آموزش مدل رگرسیون SVM آماده کنیم \n", + "- SVR را با استفاده از هسته RBF پیاده‌سازی کنیم \n", + "- مدل را با استفاده از نمودارها و MAPE ارزیابی کنیم \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## وارد کردن ماژول‌ها\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [ + "## آماده‌سازی داده‌ها\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### بارگذاری داده‌ها\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
            \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
            load
            2012-01-01 00:00:002698.0
            2012-01-01 01:00:002558.0
            2012-01-01 02:00:002444.0
            2012-01-01 03:00:002402.0
            2012-01-01 04:00:002403.0
            \n", + "
            " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [ + "### ایجاد داده‌های آموزشی و آزمایشی\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "اکنون باید داده‌ها را با انجام فیلتر کردن و مقیاس‌بندی برای آموزش آماده کنید.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "داده‌ها را مقیاس‌بندی کنید تا در بازه (۰، ۱) قرار گیرند.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [ + "ایجاد داده با گام‌های زمانی\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "برای SVR ما، داده‌های ورودی را به فرم `[batch, timesteps]` تبدیل می‌کنیم. بنابراین، داده‌های `train_data` و `test_data` موجود را به گونه‌ای تغییر شکل می‌دهیم که یک بُعد جدید که به زمان‌بندی‌ها اشاره دارد، اضافه شود. در مثال ما، مقدار `timesteps = 5` را در نظر می‌گیریم. بنابراین، ورودی‌های مدل داده‌های مربوط به ۴ زمان‌بندی اول هستند و خروجی داده مربوط به زمان‌بندی پنجم خواهد بود.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [], + "source": [ + "x_train, y_train = None\n", + "x_test, y_test = None\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [ + "## ایجاد مدل SVR\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [], + "source": [ + "# Fit model on training data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "### انجام پیش‌بینی مدل\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = None\n", + "y_test_pred = None" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [ + "## تحلیل عملکرد مدل\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = None\n", + "test_timestamps = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(25,6))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(10,3))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "پیش‌بینی مجموعه داده کامل\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [], + "source": [ + "# Extracting load values as numpy array\n", + "data = None\n", + "\n", + "# Scaling\n", + "data = None\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=None\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = None, None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = None\n", + "Y = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(30,8))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "e86ce102239a14c44585623b9b924a74", + "translation_date": "2025-09-04T01:57:21+00:00", + "source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/fa/7-TimeSeries/README.md b/translations/fa/7-TimeSeries/README.md new file mode 100644 index 000000000..d5ee7154d --- /dev/null +++ b/translations/fa/7-TimeSeries/README.md @@ -0,0 +1,37 @@ + +# مقدمه‌ای بر پیش‌بینی سری‌های زمانی + +پیش‌بینی سری‌های زمانی چیست؟ این فرآیند شامل پیش‌بینی رویدادهای آینده با تحلیل روندهای گذشته است. + +## موضوع منطقه‌ای: مصرف برق جهانی ✨ + +در این دو درس، شما با پیش‌بینی سری‌های زمانی آشنا خواهید شد، حوزه‌ای که شاید کمتر شناخته شده باشد اما برای کاربردهای صنعتی و تجاری و سایر زمینه‌ها بسیار ارزشمند است. در حالی که شبکه‌های عصبی می‌توانند برای افزایش کارایی این مدل‌ها استفاده شوند، ما آن‌ها را در زمینه یادگیری ماشین کلاسیک مطالعه خواهیم کرد، زیرا این مدل‌ها به پیش‌بینی عملکرد آینده بر اساس داده‌های گذشته کمک می‌کنند. + +تمرکز منطقه‌ای ما بر مصرف برق جهانی است، یک مجموعه داده جالب برای یادگیری پیش‌بینی مصرف برق آینده بر اساس الگوهای بار گذشته. می‌توانید ببینید که این نوع پیش‌بینی چگونه می‌تواند در محیط‌های تجاری بسیار مفید باشد. + +![شبکه برق](../../../translated_images/electric-grid.0c21d5214db09ffae93c06a87ca2abbb9ba7475ef815129c5b423d7f9a7cf136.fa.jpg) + +عکس از [Peddi Sai hrithik](https://unsplash.com/@shutter_log?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) از برج‌های برق در جاده‌ای در راجستان در [Unsplash](https://unsplash.com/s/photos/electric-india?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) + +## درس‌ها + +1. [مقدمه‌ای بر پیش‌بینی سری‌های زمانی](1-Introduction/README.md) +2. [ساخت مدل‌های سری زمانی ARIMA](2-ARIMA/README.md) +3. [ساخت مدل Support Vector Regressor برای پیش‌بینی سری‌های زمانی](3-SVR/README.md) + +## اعتبارها + +"مقدمه‌ای بر پیش‌بینی سری‌های زمانی" با ⚡️ توسط [Francesca Lazzeri](https://twitter.com/frlazzeri) و [Jen Looper](https://twitter.com/jenlooper) نوشته شده است. نوت‌بوک‌ها ابتدا به صورت آنلاین در [مخزن "Deep Learning For Time Series" در Azure](https://github.com/Azure/DeepLearningForTimeSeriesForecasting) که توسط Francesca Lazzeri نوشته شده بود، منتشر شدند. درس SVR توسط [Anirban Mukherjee](https://github.com/AnirbanMukherjeeXD) نوشته شده است. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/1-QLearning/README.md b/translations/fa/8-Reinforcement/1-QLearning/README.md new file mode 100644 index 000000000..9392385ba --- /dev/null +++ b/translations/fa/8-Reinforcement/1-QLearning/README.md @@ -0,0 +1,256 @@ + +# مقدمه‌ای بر یادگیری تقویتی و Q-Learning + +![خلاصه‌ای از یادگیری تقویتی در یادگیری ماشین در یک اسکچ‌نوت](../../../../translated_images/ml-reinforcement.94024374d63348dbb3571c343ca7ddabef72adac0b8086d47164b769ba3a8a1d.fa.png) +> اسکچ‌نوت توسط [Tomomi Imura](https://www.twitter.com/girlie_mac) + +یادگیری تقویتی شامل سه مفهوم مهم است: عامل، حالت‌ها، و مجموعه‌ای از اقدامات برای هر حالت. با انجام یک اقدام در یک حالت مشخص، عامل یک پاداش دریافت می‌کند. دوباره بازی کامپیوتری سوپر ماریو را تصور کنید. شما ماریو هستید، در یک مرحله بازی، کنار لبه یک پرتگاه ایستاده‌اید. بالای شما یک سکه قرار دارد. شما که ماریو هستید، در یک مرحله بازی، در یک موقعیت خاص ... این حالت شماست. حرکت یک قدم به سمت راست (یک اقدام) شما را به پایین پرتگاه می‌برد و این به شما امتیاز عددی پایینی می‌دهد. اما فشار دادن دکمه پرش به شما اجازه می‌دهد امتیاز کسب کنید و زنده بمانید. این یک نتیجه مثبت است و باید به شما امتیاز عددی مثبت بدهد. + +با استفاده از یادگیری تقویتی و یک شبیه‌ساز (بازی)، می‌توانید یاد بگیرید چگونه بازی کنید تا پاداش را به حداکثر برسانید، که شامل زنده ماندن و کسب بیشترین امتیاز ممکن است. + +[![مقدمه‌ای بر یادگیری تقویتی](https://img.youtube.com/vi/lDq_en8RNOo/0.jpg)](https://www.youtube.com/watch?v=lDq_en8RNOo) + +> 🎥 روی تصویر بالا کلیک کنید تا صحبت‌های دیمیتری درباره یادگیری تقویتی را بشنوید + +## [پیش‌آزمون درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/45/) + +## پیش‌نیازها و تنظیمات + +در این درس، ما با کدی در پایتون آزمایش خواهیم کرد. شما باید بتوانید کد Jupyter Notebook این درس را روی کامپیوتر خود یا در فضای ابری اجرا کنید. + +می‌توانید [دفترچه درس](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/notebook.ipynb) را باز کنید و این درس را مرور کنید تا آن را بسازید. + +> **توجه:** اگر این کد را از فضای ابری باز می‌کنید، همچنین باید فایل [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py) را دریافت کنید، که در کد دفترچه استفاده می‌شود. آن را به همان دایرکتوری که دفترچه در آن قرار دارد اضافه کنید. + +## مقدمه + +در این درس، ما دنیای **[پیتر و گرگ](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)** را بررسی خواهیم کرد، که از یک داستان موسیقیایی افسانه‌ای توسط آهنگساز روسی، [سرگئی پروکفیف](https://en.wikipedia.org/wiki/Sergei_Prokofiev) الهام گرفته شده است. ما از **یادگیری تقویتی** استفاده خواهیم کرد تا به پیتر اجازه دهیم محیط خود را کشف کند، سیب‌های خوشمزه جمع‌آوری کند و از ملاقات با گرگ اجتناب کند. + +**یادگیری تقویتی** (RL) یک تکنیک یادگیری است که به ما اجازه می‌دهد رفتار بهینه یک **عامل** را در یک **محیط** با اجرای آزمایش‌های متعدد یاد بگیریم. یک عامل در این محیط باید یک **هدف** داشته باشد، که توسط یک **تابع پاداش** تعریف می‌شود. + +## محیط + +برای سادگی، بیایید دنیای پیتر را به یک تخته مربعی با اندازه `عرض` x `ارتفاع` در نظر بگیریم، مانند این: + +![محیط پیتر](../../../../translated_images/environment.40ba3cb66256c93fa7e92f6f7214e1d1f588aafa97d266c11d108c5c5d101b6c.fa.png) + +هر سلول در این تخته می‌تواند یکی از موارد زیر باشد: + +* **زمین**، که پیتر و موجودات دیگر می‌توانند روی آن راه بروند. +* **آب**، که به وضوح نمی‌توانید روی آن راه بروید. +* یک **درخت** یا **چمن**، جایی که می‌توانید استراحت کنید. +* یک **سیب**، که چیزی است که پیتر خوشحال می‌شود پیدا کند تا خودش را تغذیه کند. +* یک **گرگ**، که خطرناک است و باید از آن اجتناب کرد. + +یک ماژول جداگانه پایتون، [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py)، وجود دارد که شامل کدی برای کار با این محیط است. از آنجا که این کد برای درک مفاهیم ما مهم نیست، ما ماژول را وارد می‌کنیم و از آن برای ایجاد تخته نمونه استفاده می‌کنیم (بلوک کد 1): + +```python +from rlboard import * + +width, height = 8,8 +m = Board(width,height) +m.randomize(seed=13) +m.plot() +``` + +این کد باید تصویری از محیط مشابه تصویر بالا چاپ کند. + +## اقدامات و سیاست + +در مثال ما، هدف پیتر این است که بتواند یک سیب پیدا کند، در حالی که از گرگ و موانع دیگر اجتناب می‌کند. برای انجام این کار، او اساساً می‌تواند در اطراف قدم بزند تا یک سیب پیدا کند. + +بنابراین، در هر موقعیت، او می‌تواند یکی از اقدامات زیر را انتخاب کند: بالا، پایین، چپ و راست. + +ما این اقدامات را به صورت یک دیکشنری تعریف می‌کنیم و آنها را به جفت‌های تغییرات مختصات مربوطه نگاشت می‌کنیم. برای مثال، حرکت به راست (`R`) به جفت `(1,0)` مربوط می‌شود. (بلوک کد 2): + +```python +actions = { "U" : (0,-1), "D" : (0,1), "L" : (-1,0), "R" : (1,0) } +action_idx = { a : i for i,a in enumerate(actions.keys()) } +``` + +به طور خلاصه، استراتژی و هدف این سناریو به شرح زیر است: + +- **استراتژی** عامل ما (پیتر) توسط چیزی به نام **سیاست** تعریف می‌شود. سیاست یک تابع است که اقدام را در هر حالت مشخص بازمی‌گرداند. در مورد ما، حالت مسئله توسط تخته، شامل موقعیت فعلی بازیکن، نشان داده می‌شود. + +- **هدف** یادگیری تقویتی این است که در نهایت یک سیاست خوب یاد بگیریم که به ما اجازه دهد مسئله را به طور کارآمد حل کنیم. با این حال، به عنوان یک خط پایه، بیایید ساده‌ترین سیاست به نام **قدم زدن تصادفی** را در نظر بگیریم. + +## قدم زدن تصادفی + +ابتدا مسئله خود را با اجرای یک استراتژی قدم زدن تصادفی حل کنیم. با قدم زدن تصادفی، ما به طور تصادفی اقدام بعدی را از اقدامات مجاز انتخاب می‌کنیم، تا زمانی که به سیب برسیم (بلوک کد 3). + +1. قدم زدن تصادفی را با کد زیر اجرا کنید: + + ```python + def random_policy(m): + return random.choice(list(actions)) + + def walk(m,policy,start_position=None): + n = 0 # number of steps + # set initial position + if start_position: + m.human = start_position + else: + m.random_start() + while True: + if m.at() == Board.Cell.apple: + return n # success! + if m.at() in [Board.Cell.wolf, Board.Cell.water]: + return -1 # eaten by wolf or drowned + while True: + a = actions[policy(m)] + new_pos = m.move_pos(m.human,a) + if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water: + m.move(a) # do the actual move + break + n+=1 + + walk(m,random_policy) + ``` + + فراخوانی `walk` باید طول مسیر مربوطه را بازگرداند، که می‌تواند از یک اجرا به اجرای دیگر متفاوت باشد. + +1. آزمایش قدم زدن را چندین بار اجرا کنید (مثلاً 100 بار)، و آمار حاصل را چاپ کنید (بلوک کد 4): + + ```python + def print_statistics(policy): + s,w,n = 0,0,0 + for _ in range(100): + z = walk(m,policy) + if z<0: + w+=1 + else: + s += z + n += 1 + print(f"Average path length = {s/n}, eaten by wolf: {w} times") + + print_statistics(random_policy) + ``` + + توجه داشته باشید که میانگین طول مسیر حدود 30-40 قدم است، که نسبتاً زیاد است، با توجه به اینکه میانگین فاصله تا نزدیک‌ترین سیب حدود 5-6 قدم است. + + همچنین می‌توانید ببینید حرکت پیتر در طول قدم زدن تصادفی چگونه به نظر می‌رسد: + + ![قدم زدن تصادفی پیتر](../../../../8-Reinforcement/1-QLearning/images/random_walk.gif) + +## تابع پاداش + +برای هوشمندتر کردن سیاست خود، باید بفهمیم کدام حرکت‌ها "بهتر" از دیگران هستند. برای انجام این کار، باید هدف خود را تعریف کنیم. + +هدف می‌تواند به صورت یک **تابع پاداش** تعریف شود، که برای هر حالت یک مقدار امتیاز بازمی‌گرداند. هرچه عدد بالاتر باشد، تابع پاداش بهتر است. (بلوک کد 5) + +```python +move_reward = -0.1 +goal_reward = 10 +end_reward = -10 + +def reward(m,pos=None): + pos = pos or m.human + if not m.is_valid(pos): + return end_reward + x = m.at(pos) + if x==Board.Cell.water or x == Board.Cell.wolf: + return end_reward + if x==Board.Cell.apple: + return goal_reward + return move_reward +``` + +یک نکته جالب درباره توابع پاداش این است که در بیشتر موارد، *ما فقط در پایان بازی یک پاداش قابل توجه دریافت می‌کنیم*. این بدان معناست که الگوریتم ما باید به نوعی "قدم‌های خوب" را که منجر به یک پاداش مثبت در پایان می‌شوند به خاطر بسپارد و اهمیت آنها را افزایش دهد. به همین ترتیب، تمام حرکت‌هایی که منجر به نتایج بد می‌شوند باید دلسرد شوند. + +## Q-Learning + +الگوریتمی که در اینجا مورد بحث قرار می‌دهیم **Q-Learning** نام دارد. در این الگوریتم، سیاست توسط یک تابع (یا یک ساختار داده) به نام **جدول Q** تعریف می‌شود. این جدول "خوبی" هر یک از اقدامات در یک حالت مشخص را ثبت می‌کند. + +این جدول Q نامیده می‌شود زیرا اغلب راحت است که آن را به صورت یک جدول یا آرایه چندبعدی نمایش دهیم. از آنجا که تخته ما ابعاد `عرض` x `ارتفاع` دارد، می‌توانیم جدول Q را با استفاده از یک آرایه numpy با شکل `عرض` x `ارتفاع` x `طول(actions)` نمایش دهیم: (بلوک کد 6) + +```python +Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions) +``` + +توجه داشته باشید که ما تمام مقادیر جدول Q را با یک مقدار برابر مقداردهی اولیه می‌کنیم، در مورد ما - 0.25. این مربوط به سیاست "قدم زدن تصادفی" است، زیرا تمام حرکت‌ها در هر حالت به طور مساوی خوب هستند. ما می‌توانیم جدول Q را به تابع `plot` منتقل کنیم تا جدول را روی تخته تجسم کنیم: `m.plot(Q)`. + +![محیط پیتر](../../../../translated_images/env_init.04e8f26d2d60089e128f21d22e5fef57d580e559f0d5937b06c689e5e7cdd438.fa.png) + +در مرکز هر سلول یک "فلش" وجود دارد که جهت ترجیحی حرکت را نشان می‌دهد. از آنجا که همه جهت‌ها برابر هستند، یک نقطه نمایش داده می‌شود. + +اکنون باید شبیه‌سازی را اجرا کنیم، محیط خود را کشف کنیم، و توزیع بهتری از مقادیر جدول Q را یاد بگیریم، که به ما اجازه می‌دهد مسیر رسیدن به سیب را بسیار سریع‌تر پیدا کنیم. + +## جوهره Q-Learning: معادله بلمن + +هنگامی که شروع به حرکت می‌کنیم، هر اقدام یک پاداش مربوطه خواهد داشت، یعنی ما می‌توانیم به طور نظری اقدام بعدی را بر اساس بالاترین پاداش فوری انتخاب کنیم. با این حال، در بیشتر حالت‌ها، حرکت به هدف ما برای رسیدن به سیب نمی‌رسد، و بنابراین نمی‌توانیم فوراً تصمیم بگیریم کدام جهت بهتر است. + +> به یاد داشته باشید که نتیجه فوری مهم نیست، بلکه نتیجه نهایی که در پایان شبیه‌سازی به دست خواهیم آورد اهمیت دارد. + +برای در نظر گرفتن این پاداش تأخیری، باید از اصول **[برنامه‌ریزی پویا](https://en.wikipedia.org/wiki/Dynamic_programming)** استفاده کنیم، که به ما اجازه می‌دهد به صورت بازگشتی درباره مسئله خود فکر کنیم. + +فرض کنید اکنون در حالت *s* هستیم، و می‌خواهیم به حالت بعدی *s'* حرکت کنیم. با انجام این کار، پاداش فوری *r(s,a)* را دریافت خواهیم کرد، که توسط تابع پاداش تعریف شده است، به علاوه مقداری پاداش آینده. اگر فرض کنیم که جدول Q ما به درستی "جذابیت" هر اقدام را منعکس می‌کند، در حالت *s'* اقدام *a* را انتخاب خواهیم کرد که به مقدار حداکثر *Q(s',a')* مربوط می‌شود. بنابراین، بهترین پاداش آینده ممکن که می‌توانیم در حالت *s* دریافت کنیم به صورت `max` + +## بررسی سیاست + +از آنجا که جدول Q "جذابیت" هر عمل را در هر حالت فهرست می‌کند، استفاده از آن برای تعریف ناوبری کارآمد در دنیای ما بسیار آسان است. در ساده‌ترین حالت، می‌توانیم عملی را انتخاب کنیم که با بالاترین مقدار جدول Q مطابقت دارد: (کد بلاک 9) + +```python +def qpolicy_strict(m): + x,y = m.human + v = probs(Q[x,y]) + a = list(actions)[np.argmax(v)] + return a + +walk(m,qpolicy_strict) +``` + +> اگر کد بالا را چندین بار امتحان کنید، ممکن است متوجه شوید که گاهی اوقات "گیر می‌کند" و باید دکمه STOP را در نوت‌بوک فشار دهید تا آن را متوقف کنید. این اتفاق به این دلیل رخ می‌دهد که ممکن است شرایطی وجود داشته باشد که دو حالت از نظر مقدار Q بهینه به یکدیگر "اشاره" کنند، که در این صورت عامل بین این حالت‌ها به طور نامحدود حرکت می‌کند. + +## 🚀چالش + +> **وظیفه 1:** تابع `walk` را تغییر دهید تا طول مسیر را به تعداد مشخصی از مراحل (مثلاً 100) محدود کند و مشاهده کنید که کد بالا گاهی اوقات این مقدار را برمی‌گرداند. + +> **وظیفه 2:** تابع `walk` را تغییر دهید تا به مکان‌هایی که قبلاً در آن‌ها بوده است بازنگردد. این کار از حلقه زدن `walk` جلوگیری می‌کند، اما عامل همچنان ممکن است در مکانی "گیر" کند که نتواند از آن فرار کند. + +## ناوبری + +سیاست ناوبری بهتر، همان سیاستی است که در طول آموزش استفاده کردیم، که ترکیبی از بهره‌برداری و اکتشاف است. در این سیاست، هر عمل را با احتمال مشخصی انتخاب می‌کنیم که متناسب با مقادیر موجود در جدول Q باشد. این استراتژی ممکن است همچنان باعث شود عامل به موقعیتی که قبلاً بررسی کرده بازگردد، اما همان‌طور که از کد زیر می‌بینید، منجر به مسیر متوسط بسیار کوتاه‌تری به مکان مورد نظر می‌شود (به یاد داشته باشید که `print_statistics` شبیه‌سازی را 100 بار اجرا می‌کند): (کد بلاک 10) + +```python +def qpolicy(m): + x,y = m.human + v = probs(Q[x,y]) + a = random.choices(list(actions),weights=v)[0] + return a + +print_statistics(qpolicy) +``` + +پس از اجرای این کد، باید طول مسیر متوسط بسیار کوتاه‌تری نسبت به قبل دریافت کنید، در محدوده 3-6. + +## بررسی فرآیند یادگیری + +همان‌طور که اشاره کردیم، فرآیند یادگیری تعادلی بین اکتشاف و بهره‌برداری از دانش کسب‌شده درباره ساختار فضای مسئله است. مشاهده کردیم که نتایج یادگیری (توانایی کمک به عامل برای یافتن مسیر کوتاه به هدف) بهبود یافته است، اما همچنین جالب است که ببینیم طول مسیر متوسط در طول فرآیند یادگیری چگونه رفتار می‌کند: + +## خلاصه یادگیری‌ها: + +- **افزایش طول مسیر متوسط**. آنچه در اینجا مشاهده می‌کنیم این است که در ابتدا طول مسیر متوسط افزایش می‌یابد. این احتمالاً به این دلیل است که وقتی هیچ اطلاعاتی درباره محیط نداریم، احتمالاً در حالت‌های بد، آب یا گرگ گیر می‌کنیم. با یادگیری بیشتر و استفاده از این دانش، می‌توانیم محیط را بیشتر بررسی کنیم، اما هنوز نمی‌دانیم سیب‌ها کجا هستند. + +- **کاهش طول مسیر با یادگیری بیشتر**. وقتی به اندازه کافی یاد می‌گیریم، رسیدن به هدف برای عامل آسان‌تر می‌شود و طول مسیر شروع به کاهش می‌کند. با این حال، همچنان به اکتشاف باز هستیم، بنابراین اغلب از مسیر بهینه منحرف می‌شویم و گزینه‌های جدیدی را بررسی می‌کنیم که باعث طولانی‌تر شدن مسیر از حد مطلوب می‌شود. + +- **افزایش ناگهانی طول مسیر**. آنچه در این نمودار نیز مشاهده می‌کنیم این است که در برخی مواقع طول مسیر به طور ناگهانی افزایش یافته است. این نشان‌دهنده ماهیت تصادفی فرآیند است و اینکه ممکن است در برخی مواقع ضرایب جدول Q را با مقادیر جدید خراب کنیم. این باید به طور ایده‌آل با کاهش نرخ یادگیری به حداقل برسد (برای مثال، در پایان آموزش، فقط مقادیر جدول Q را با مقدار کمی تنظیم کنیم). + +به طور کلی، مهم است که به یاد داشته باشیم موفقیت و کیفیت فرآیند یادگیری به طور قابل توجهی به پارامترهایی مانند نرخ یادگیری، کاهش نرخ یادگیری و عامل تخفیف بستگی دارد. این‌ها اغلب **ابرپارامترها** نامیده می‌شوند تا از **پارامترها** که در طول آموزش بهینه‌سازی می‌شوند (برای مثال، ضرایب جدول Q) متمایز شوند. فرآیند یافتن بهترین مقادیر ابرپارامترها **بهینه‌سازی ابرپارامترها** نامیده می‌شود و شایسته یک موضوع جداگانه است. + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/46/) + +## تکلیف +[دنیای واقعی‌تر](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/1-QLearning/assignment.md b/translations/fa/8-Reinforcement/1-QLearning/assignment.md new file mode 100644 index 000000000..9db69dc08 --- /dev/null +++ b/translations/fa/8-Reinforcement/1-QLearning/assignment.md @@ -0,0 +1,41 @@ + +# دنیایی واقعی‌تر + +در شرایط ما، پیتر تقریباً بدون خستگی یا گرسنگی می‌توانست حرکت کند. در یک دنیای واقعی‌تر، او باید هر از گاهی بنشیند و استراحت کند و همچنین خودش را تغذیه کند. بیایید دنیای خود را واقعی‌تر کنیم با اعمال قوانین زیر: + +1. با حرکت از یک مکان به مکان دیگر، پیتر **انرژی** از دست می‌دهد و مقداری **خستگی** به دست می‌آورد. +2. پیتر می‌تواند با خوردن سیب انرژی بیشتری کسب کند. +3. پیتر می‌تواند با استراحت زیر درخت یا روی چمن (یعنی رفتن به مکانی روی تخته که درخت یا چمن دارد - میدان سبز) از خستگی خلاص شود. +4. پیتر باید گرگ را پیدا کرده و بکشد. +5. برای کشتن گرگ، پیتر باید سطح مشخصی از انرژی و خستگی داشته باشد، در غیر این صورت نبرد را می‌بازد. + +## دستورالعمل‌ها + +از [notebook.ipynb](notebook.ipynb) اصلی به عنوان نقطه شروع برای راه‌حل خود استفاده کنید. + +تابع پاداش را مطابق با قوانین بازی که در بالا ذکر شد تغییر دهید، الگوریتم یادگیری تقویتی را اجرا کنید تا بهترین استراتژی برای برنده شدن در بازی را یاد بگیرید، و نتایج حرکت تصادفی را با الگوریتم خود از نظر تعداد بازی‌های برده و باخته مقایسه کنید. + +> **Note**: در دنیای جدید شما، وضعیت پیچیده‌تر است و علاوه بر موقعیت انسان، شامل سطح خستگی و انرژی نیز می‌شود. شما می‌توانید وضعیت را به صورت یک تاپل (Board,energy,fatigue) نمایش دهید، یا یک کلاس برای وضعیت تعریف کنید (همچنین می‌توانید آن را از `Board` مشتق کنید)، یا حتی کلاس اصلی `Board` را در [rlboard.py](../../../../8-Reinforcement/1-QLearning/rlboard.py) تغییر دهید. + +در راه‌حل خود، لطفاً کدی که مسئول استراتژی حرکت تصادفی است را نگه دارید و در پایان نتایج الگوریتم خود را با حرکت تصادفی مقایسه کنید. + +> **Note**: ممکن است نیاز باشد که هایپرپارامترها را تنظیم کنید تا الگوریتم کار کند، به خصوص تعداد اپوک‌ها. از آنجا که موفقیت در بازی (مبارزه با گرگ) یک رویداد نادر است، می‌توانید انتظار زمان آموزش طولانی‌تری داشته باشید. + +## معیار ارزیابی + +| معیار | عالی | کافی | نیاز به بهبود | +| ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | +| | یک نوت‌بوک ارائه شده است که شامل تعریف قوانین جدید دنیا، الگوریتم Q-Learning و توضیحات متنی است. الگوریتم Q-Learning به طور قابل توجهی نتایج را در مقایسه با حرکت تصادفی بهبود می‌بخشد. | نوت‌بوک ارائه شده است، الگوریتم Q-Learning پیاده‌سازی شده و نتایج را در مقایسه با حرکت تصادفی بهبود می‌بخشد، اما به طور قابل توجهی نیست؛ یا نوت‌بوک به خوبی مستندسازی نشده و کد ساختار خوبی ندارد. | تلاش‌هایی برای تعریف مجدد قوانین دنیا انجام شده است، اما الگوریتم Q-Learning کار نمی‌کند، یا تابع پاداش به طور کامل تعریف نشده است. | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/1-QLearning/notebook.ipynb b/translations/fa/8-Reinforcement/1-QLearning/notebook.ipynb new file mode 100644 index 000000000..eba361ace --- /dev/null +++ b/translations/fa/8-Reinforcement/1-QLearning/notebook.ipynb @@ -0,0 +1,411 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "17e5a668646eabf5aabd0e9bfcf17876", + "translation_date": "2025-09-04T02:55:06+00:00", + "source_file": "8-Reinforcement/1-QLearning/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# پیتر و گرگ: مقدمه‌ای بر یادگیری تقویتی\n", + "\n", + "در این آموزش، یاد می‌گیریم که چگونه یادگیری تقویتی را برای مسئله‌ی یافتن مسیر به کار ببریم. این سناریو از داستان موسیقیایی [پیتر و گرگ](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) اثر آهنگساز روسی [سرگئی پروکفیف](https://en.wikipedia.org/wiki/Sergei_Prokofiev) الهام گرفته شده است. این داستان درباره‌ی پیشاهنگ جوانی به نام پیتر است که شجاعانه از خانه‌اش بیرون می‌رود تا در جنگل به دنبال گرگ بگردد. ما الگوریتم‌های یادگیری ماشین را آموزش خواهیم داد که به پیتر کمک می‌کنند تا منطقه‌ی اطراف را کشف کند و یک نقشه‌ی ناوبری بهینه بسازد.\n", + "\n", + "ابتدا، بیایید مجموعه‌ای از کتابخانه‌های مفید را وارد کنیم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## مروری بر یادگیری تقویتی\n", + "\n", + "**یادگیری تقویتی** (RL) یک تکنیک یادگیری است که به ما امکان می‌دهد رفتار بهینه یک **عامل** را در یک **محیط** با انجام آزمایش‌های متعدد یاد بگیریم. عامل در این محیط باید یک **هدف** داشته باشد که توسط یک **تابع پاداش** تعریف می‌شود.\n", + "\n", + "## محیط\n", + "\n", + "برای ساده‌تر کردن موضوع، بیایید دنیای پیتر را به یک صفحه مربعی با اندازه `width` x `height` در نظر بگیریم. هر سلول در این صفحه می‌تواند یکی از موارد زیر باشد:\n", + "* **زمین**، که پیتر و موجودات دیگر می‌توانند روی آن راه بروند\n", + "* **آب**، که به وضوح نمی‌توانید روی آن راه بروید\n", + "* **درخت** یا **چمن** - مکانی که می‌توانید در آن استراحت کنید\n", + "* **سیب**، که چیزی است که پیتر خوشحال می‌شود پیدا کند تا خودش را تغذیه کند\n", + "* **گرگ**، که خطرناک است و باید از آن اجتناب کرد\n", + "\n", + "برای کار با محیط، ما یک کلاس به نام `Board` تعریف خواهیم کرد. برای جلوگیری از شلوغ شدن بیش از حد این دفترچه، تمام کدهای مربوط به کار با صفحه را به یک ماژول جداگانه به نام `rlboard` منتقل کرده‌ایم که اکنون آن را وارد می‌کنیم. شما می‌توانید داخل این ماژول را بررسی کنید تا جزئیات بیشتری درباره پیاده‌سازی داخلی آن به دست آورید.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "حالا بیایید یک صفحه تصادفی ایجاد کنیم و ببینیم چگونه به نظر می‌رسد:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 1" + ] + }, + { + "source": [ + "## اقدامات و سیاست‌ها\n", + "\n", + "در مثال ما، هدف پیتر پیدا کردن یک سیب است، در حالی که باید از گرگ و سایر موانع دوری کند. این اقدامات را به صورت یک دیکشنری تعریف کنید و آنها را به جفت‌های تغییرات مختصات مربوطه نگاشت کنید.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 2" + ] + }, + { + "source": [ + "استراتژی عامل ما (پیتر) با چیزی که به آن **سیاست** گفته می‌شود تعریف شده است. بیایید ساده‌ترین سیاست به نام **حرکت تصادفی** را در نظر بگیریم.\n", + "\n", + "## حرکت تصادفی\n", + "\n", + "بیایید ابتدا مسئله خود را با پیاده‌سازی یک استراتژی حرکت تصادفی حل کنیم.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "# Let's run a random walk experiment several times and see the average number of steps taken: code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 4" + ] + }, + { + "source": [ + "## تابع پاداش\n", + "\n", + "برای هوشمندتر کردن سیاست خود، باید بفهمیم کدام حرکات \"بهتر\" از بقیه هستند.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 5" + ] + }, + { + "source": [ + "## یادگیری Q\n", + "\n", + "ساخت یک جدول Q یا آرایه چند‌بعدی. از آنجا که صفحه ما ابعاد `width` x `height` دارد، می‌توانیم جدول Q را با یک آرایه numpy با شکل `width` x `height` x `len(actions)` نمایش دهیم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 6" + ] + }, + { + "source": [ + "جدول Q را به تابع `plot` بدهید تا جدول روی تخته نمایش داده شود:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "name 'm' is not defined", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mQ\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'm' is not defined" + ] + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## ماهیت Q-Learning: معادله بلمن و الگوریتم یادگیری\n", + "\n", + "یک شبه‌کد برای الگوریتم یادگیری خود بنویسید:\n", + "\n", + "* مقداردهی اولیه جدول Q با اعداد برابر برای تمام حالت‌ها و اقدامات\n", + "* تنظیم نرخ یادگیری $\\alpha\\leftarrow 1$\n", + "* شبیه‌سازی را چندین بار تکرار کنید\n", + " 1. از یک موقعیت تصادفی شروع کنید\n", + " 1. تکرار کنید\n", + " 1. یک اقدام $a$ در حالت $s$ انتخاب کنید\n", + " 2. اقدام را اجرا کرده و به حالت جدید $s'$ بروید\n", + " 3. اگر به شرایط پایان بازی رسیدیم یا مجموع پاداش خیلی کم بود - شبیه‌سازی را متوقف کنید \n", + " 4. پاداش $r$ را در حالت جدید محاسبه کنید\n", + " 5. تابع Q را طبق معادله بلمن به‌روزرسانی کنید: $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$\n", + " 7. مجموع پاداش را به‌روزرسانی کرده و $\\alpha$ را کاهش دهید.\n", + "\n", + "## بهره‌برداری در مقابل اکتشاف\n", + "\n", + "بهترین رویکرد، ایجاد تعادل بین اکتشاف و بهره‌برداری است. هرچه بیشتر درباره محیط خود یاد بگیریم، احتمال بیشتری وجود دارد که مسیر بهینه را دنبال کنیم، اما گاهی انتخاب مسیر ناشناخته نیز مفید است.\n", + "\n", + "## پیاده‌سازی در پایتون\n", + "\n", + "اکنون آماده‌ایم تا الگوریتم یادگیری را پیاده‌سازی کنیم. پیش از آن، به یک تابع نیاز داریم که اعداد دلخواه در جدول Q را به یک بردار احتمالات برای اقدامات مربوطه تبدیل کند:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 7" + ] + }, + { + "source": [ + "ما مقدار کمی `eps` به بردار اصلی اضافه می‌کنیم تا از تقسیم بر صفر در حالت اولیه، زمانی که تمام مؤلفه‌های بردار یکسان هستند، جلوگیری کنیم.\n", + "\n", + "الگوریتم یادگیری واقعی که اجرا خواهیم کرد برای ۵۰۰۰ آزمایش، که به آن **دوره‌ها** نیز گفته می‌شود:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "# code block 8" + ] + }, + { + "source": [ + "پس از اجرای این الگوریتم، جدول Q باید با مقادیری به‌روزرسانی شود که جذابیت اقدامات مختلف را در هر مرحله تعریف می‌کنند. جدول را در اینجا تجسم کنید:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUxd7H8c9sS7KbShJCL1IEBAURFEUBxXoVVFBARS7YQETgiooFsaGAXgUsIGIDHzuCXiuKICDKpYoiHUJJAmkk2Wzfc+b5YzcRrgSQZHM2ZN6+8kr27ObMlyX8nMyZmSOklCiKoig1h8noAIqiKMrfowq3oihKDaMKt6IoSg2jCreiKEoNowq3oihKDaMKt6IoSg0TscIthLhCCLFVCLFDCDE+Uu0oiqLUNiIS87iFEGZgG3ApsB9YDQySUv5R5Y0piqLUMpHqcXcFdkgpd0kp/cAHQN8ItaUoilKrRKpwNwT2HfZ4f/iYoiiKUkmWCJ1XHOXYEWMyQog7gTsBrFZr5zPPPDNCUSrP5/PhdDpJS0szOkqFioqKsFqtOBwOo6NUKCcnh7p162I2m42OUqG9e/fSpEkTo2NUKBgMkpeXR/369Y2OUqHS0lKCwSDJyclGR6lQXl4eiYmJxMTEGB2lQps2bcLj8RytloKUsso/gG7At4c9fgh4qKLX161bV0az7du3y9mzZxsd45gWLFggV65caXSMY3rqqadkYWGh0TEqpOu6vOeee4yOcUwFBQVy0qRJRsc4phUrVsiFCxcaHeOYZs2aJbdv3250jGMK18Wj1sxIDZWsBloJIZoLIWzAQODzCLWlKIpSq0SkcEspg8A9wLfAZuAjKeWmSLSlKMqpZf369Xi9XqNjRLVIjXEjpfwK+CpS51cU5dSSlZXFq6++SkxMDPPnz6dVq1YMGTLE6FhRSa2cVBTFcFJKcnJy2LZtG8OHD6d79+589NFHZdfIlP+hCreiKIYLBAJMnjyZF198kX/961+cccYZDBgwgLfeesvoaFEpYkMliqIoJ8pmszF+/Hhuu+02OnTowMcff8z333/PV1+p0dajqXE97l27dvHRRx8ZHUNRlCrWtGlT+vfvj9lsZsqUKdx7771GR4paNarH3adPH2JjYzn33HPp0KEDS5YsiepFMYqinLj09HTuuOMO9u3bx6JFi+jVq5fRkaJWjelx79q1i9jYWGbNmkW/fv24/PLL+f33342OpShKFWvcuDHffPMN/fv3NzpKldu0aRO6rlf6PDWmcK9du5auXbtSUlLCW2+9Rb169Vi+fLm66qwop6D4+HjOPPNMVq1aZXSUKrNkyRLee+89NE2r9LlqzFDJDTfcQIcOHThw4AD169dn3Lhx5OTkIMTRl/IrilJzORwOLrjgAn744QfOPfdco+NU2s8//8zPP//MuHHjsFqtlT5fjelxQ+j/WFdffTUul4sDBw4wfPhwioqKjI6lKEoExMTEIKXE7/cbHeWkSSnZsmUL8+bNY/To0aSkpFTJeWtU4U5LS6Nnz55MmDCBjIwM3n77bSZMmMCOHTuMjqYoShW75JJLcDqd/PLLL0ZHOWmrVq1i2rRpvPLKK1W6c2eNKtxlyoZHkpOTGT16NPPmzSMzM9PYUIqiKIdZsmQJ33//PS+88EKVD+nWyMJ9uJYtWzJ06FAee+wx3G53xNurigsLkSSlrJKr1pFUEzLquq4ufEeB4cOH8/rrr1fLv+2qIqVkw4YN/PDDD4wcORK73V7lbdT4wg3QrFkzZs2axa233kpOTk7E2snKyqJfv35s3ryZgoKCiLVTGevXr+eOO+5gy5YtUfnDHgwGee+993jhhRfYsmVLVBZwp9PJxIkT+fLLL9m1a5fRcaJWdnZ2xMefmzZtihCC3bt3R7SdqrRlyxamT5/OhAkTqmxM+3+dEoUbwG6389JLL/HSSy+xffv2iLTx+eef89JLLzFmzBhmz54dkTYq6/PPP2f06NEMGDCAdevWGR3nL9xuN4WFhTRt2pSLL744Krfv3LFjB927d2fDhg1cd911RseJOkVFRcyZM4eXXnqJ2bNn88UXX0S0vbfffptbbrklom1UlWXLljFnzhzeeOMNbDZbxNqpMdMBT0T9+vUZOnQob7zxBmPHjiUjI6NKzz9ixAjGjBmDpml88sknbNmy5aTPFRcXx8yZM6t87Ou+++5j1KhR6LrOpEmTqFu37kmfq127djz44INVmA4SExPp3r0706ZNQ9M07rzzzkrdyuy6667j2muvrcKE0KlTJ95//322bdtGVlZWpbcWHT9+PG3btq2idMY7cOAA8+bN44033uC///0vzz33HFdffbXRsQy3fPlyVq5cyWOPPYbJFNk+8SlVuAFatWrF2LFjGTFiBPPmzavSK7kej4dRo0bx9ddfk5mZyV133XXS5/J6vXTu3LlKxlHbt29Pv379gND42vjx45kyZQqXX345nTt3Punz/v7773Tq1KnS+QAGDx5cnq9x48Y88MADbNy4kQcffJDY2NiTPu/HH3/ME088USUZp02bBoSGc3r06EGbNm1Yt24djz76aKXO+8QTT7BpU9XcR+STTz6p8LnS0lIuuuiiiI/Ne71ecnNzueGGG1iwYAFms5mXX36Ze+65JyLtCSGYPn06DzzwAFOnTo1IG5UhpWTz5s0sWLCAxx9/nMTExIi3ecoVboCMjAzmzZvHPffcw2OPPUbz5s2r5LzPPvss7du35+OPP+aOO+6gVatWJ30uKSVr1qypklwQGiIBGDlyJD169GDXrl20a9euUhlbtmxJ3759qySfEIJJkyZRVFTE1KlTSU1NJTk5mVatWlWqcD/00EOMHz++yjJ+8skn/PLLLyxfvpxNmzbRuXPnSr2HAHPnzq2SfMAx1y04HI4q/ZmqyJYtW7j//vuZM2cO27ZtY+bMmSxZsiRi7QkhqFevHgcPHoxYG5WxYcMGXnrpJebMmRPxnnaZU7JwQ+iH+LHHHuOdd95h8ODBtGjRotLnfPLJJ3nppZdYunRppYc4hBARWfU5a9Ys5s+fz48//ljpc0UiY0pKCqNHjyY/P59JkyZV+nxVmbGsp9q9e3ecTie33HILjRs3rvR5q+sfc6R+pv5Xeno6HTt2ZPbs2QQCAW6++eaIt1unTh2aNWvGhg0b6NixY0Tb+jt++OEHli5dyqxZs6rt7xlO4cIN0Lx5cwYPHsxzzz3HlClTSEpKqvQ5R40aVQXJIsfhcHDrrbcaHeOYasJ475VXXml0hKiVnp7OpEmT2LhxIy1atKjS4ciKpKWlcdppp7FmzRrOOussw7e6kFKyevVqVq5cydixYyN6IfJoTplZJRVp0aIFU6dOZciQIVE7hU9RaqIzzzyzWop2mQEDBrBmzZqoWCm9detW5syZw3333RexKX/HcsoXbgjNZHjzzTd5+umnIzZVUFGUyIqNjSUYDBq+CO7nn39mxowZvPbaa8TFxRmSoVYUbgiNkY0cOZJ58+axd+9eo+MoinISBg4cyNy5c6t94dbzzz+PpmksWbKEJUuW8Nxzzxk6XFNrCjeEZknccccdjB8/PipXFSqKcmy9e/fmm2++qbbtCL7++mvOPfdcTjvtNLp168a3337LiBEjqnWI6GhqVeGG0N013njjDYYOHcr+/fuNjqMoyt/UsmXLahnn9vl8ZGZmMnbsWFq2bEkwGERKWa2zRypifAIDxMXF8cILL7BixQqjoyiK8je9/fbb3H777RFvx+l0sm/fPjp06MDXX3/Nl19+icPhiIp9U2pl4QZo2LAhAwcONDqGoih/k81mY9CgQbz33nsRbSctLY0zzjiDf/7zn9xwww0MGzaMoqKiqJhHfkrP41YU5dRjsVjo2LEjn332GTfddFNE2+rbty8XXHAB9913Hy+//LIhU/+ORhVuRVFqnKSkJKxWK3l5eaSnp0esnfj4eOLj48v3iDF64U+ZWjtUoihKzXXGGWeQkJBQbbc1q67tBE6U6nErilIjDRgwwPBpeUapVOEWQmQCTkADglLKc4QQdYAPgWZAJnCjlPJQ5WIqiqIcqVmzZkZHMExVDJX0klJ2lFKeE348HlgspWwFLA4/VhRFUapIJMa4+wLvhL9+B6ja25MoiqLUcpUt3BJYJIRYK4S4M3wsQ0qZAxD+fPL3zlIURVH+orIXJy+QUmYLIeoC3wkhTvgmjOFCfyeEptxE8659+/fvp6ioKKoz5ufno+t6VGd0uVzs3r2b/Px8o6NUyO/3R/V7WFJSgsvliuqMBw4ciPp/L0VFRezbt6/a9jw5GcfaSKtShVtKmR3+nCuEWAB0BQ4KIepLKXOEEPWB3Aq+dzYwGyA1NVUuXbq0MlEiqqioiP379xPNGXfu3Indbo/qPcfz8/NZuXIlMTExRkepUGlpaVT/PXu9Xn7O+5nPln5mdJQK2XPsXOK5pNp38Ps7srKyWLt2bVTs7V2RY75/UsqT+gAcQMJhX68ErgCeA8aHj48Hph7vXHXr1pXRbPv27XL27NlGxzimBQsWyJUrVxod45ieeuopWVhYaHSMCum6Lu+55x6jYxxTQUGB7DypsySK/6u3op5cuHCh0W/VMc2aNUtu377d6BjHFK6LR62ZlRnjzgBWCCF+Bf4LfCml/AaYDFwqhNgOXBp+rPyPyy67LKp7JIqiRK+THiqRUu4CzjrK8QLgksqEqg3y8vKMjqAoSg2llrwriqLUMKpwK4qi1DCqcCuKotQwqnAriqLUMKpwK4qi1DC1snB7vV42btzIU089hdvtVtPyjqK0tJShQ4caHUNRaoTdu3fz8MMPV1t7tbJw9+jRg+eff5527drRvHlz9u7da3SkqKNpmnpfFOUE+f1+Dhw4UG3t1brCvXjxYi677DImT55MQkICL774Ip9++mlU71mgnNreeust9fNXw1X331+tK9wZGRlkZWXx8MMPU79+fbKysmjcuLHRsZRaaOHChVxzzTWYTCb69OlTfl9DRTmeWnfrsiZNmpCZmUkwGOSXX37hlVdeYfny5VF1Pznl1Fe2C+FNN91Er169cDgcbN++Hb/fj81mMzqeEuVqVY87OzubyZMnM3v2bObOnYumaWRmZqoet1LtMjMzKSoqwm63M3HiRLp3747b7Y7q3eqU6FFretzFxcW8+uqr9OvXj5YtWwIwfPhwg1MptVVsbCw//fQTzzzzDNu2bePuu++ma9eutGvXzuhoSg1QKwq3pmkMHz6cJ554gtatWxsdR6nlPB4PDz/8MJMnhzbOfPjhh3nggQdo0qSJwcmUmuKUL9x5eXk8+OCDTJs2jYyMDKPjKLVcdnY2Y8aM4e2338ZutwPw7rvvRvXNJaKBz+cjPz+fhg0bGh3lqKr7GtkpPcadk5PDq6++yr/+9S9VtBUgNG1r/vz51d5uSUkJs2fP5pVXXuHFF18sL9qAKtonYM+ePdW6wOXvUtMBq4jX62Xy5Mn06dOH9u3bGx1HiQIfffQRQ4YM4cCBAwwePLjablEmpWTChAnExcUxZMiQqO01KjXHKTlU4vF4GDx4MNOmTaNRo0ZGx6mRhBDExMTg8/mqrUdYWloa0Z7LqlWr6NmzJ9deey1+v5+tW7dy4YUXYjabI9amz+fj7rvvZty4cbRt2zZi7ZzKpJR4vV7i4uKMjlIhk8mE2WwmEAhgtVoj3t4pV7hzcnKYOnUq06ZNi+qeTceOHfn111/p1KmT0VGOKiEhgfvuu49nnnmGJ554olraHDFiBFlZWRE7/86dO1myZAlLlixh6tSpPPfcc2RlZUXsomBhYSHTp09n5MiRtGnTJiJtnOp27dpFZmYmw4cP57XXXiMnJ4f69esbHesvWrVqRbdu3fi///s//vnPf0a8vVOqcOfn5zN79mxuvfXWqO9pz5gxgz59+rBkyRKjoxyVEAIhRLWO3c2bNy+i53/ooYfIz8/nqaeeYuTIkVx55ZURK9ozZsygqKiInj17cvbZZ0ekjdrg9ddfZ//+/ZSUlPDiiy/Sp08fbr/9dqNj/UXZxcnq+vdyyoxxa5rGuHHj6N+/f9T2YhVjDR06lH79+nH//fdz5513csUVV1R5G1JKJk2aRIMGDbjqqqvo1atXlbdRW/z3v//Fbrczbdo0GjRowMyZM9m8eTP79u0zOprhToked1FREXfffTcvvviimj2iVKh169blv9ImJSVV+fn9fj9vvPEGbdq04dprr43o2Hlt0LFjRxYuXMjy5ctZtGgRH374Ia1ataJBgwZGRzNcjS/cWVlZzJo1i8cff1wVbeW4hBARKdqLFi0iMzOTmJgY+vXrV+Xnr41sNhvt27fn/fff5+DBgyxbtoy77rpL/Q+RGj5U4nQ6eemll7juuuvUikjFMB9//DEbN24kMTGRYcOGGR3nlHLTTTfxwQcfkJSUxIcffsjFF19sdKSoUGN73MFgkNtvv51nnnmGFi1aGB1HqaUWL17Mvn37uPvuu49YVKNUHSEEAwcONDpGVKmRhTs3N5dHH32U6dOnU69ePaPjKLVYz5496dmzp/r1XalWNa5wHzhwgNmzZ3PPPfeooq0YThVsxQg1rnBbrVb69OnDmWeeaXSUU9qoUaP47bffyMvLY+vWrbzxxhvEx8cbHUtRoo6u6/zzn/9ky5YtACxZsoS3334bkylylxBrXOFOTU0lNTXV6BinNJfLxdq1axk1ahSrVq1i27ZtFBYWqsKtKEfhdDrZsWMHN954I0II5s+fj9PpjMjspTI1rnArkffyyy8zbtw4mjdvTiAQ4JZbbuHJJ59kzpw5RkdTlKjz5JNPMmnSJPx+P0IIzj77bJ588kn+/e9/R6xNVbiVv3jwwQdp27Yt999/P82bN2fAgAGsWbPG6FiKEpWmTp1K8+bNmT59OlJKxowZw+7duyPa5nEHYYQQbwohcoUQvx92rI4Q4jshxPbw55TwcSGEmCGE2CGE2CiEUJs01FBvvvkmAD/++CNz5sxRwySKUgGTycS8efPIzMxk7969zJs3L6Lj23BiPe63gZeBuYcdGw8sllJOFkKMDz9+ELgSaBX+OBeYGf6s1DDdunWjS5cuBINBYmNjjY6j1DDVfUcYIwkh6NGjB926dQNCKz4j7bj/W5BSLgMK/+dwX+Cd8NfvANcednyuDPkFSBZCRN8ejMoJsVgsqmgrJ6W67wgTDWw2W7UUbTj5Je8ZUsocgPDnuuHjDYHDt+7aHz6mKIqiVJGqHog52u9HR/1frxDiTiHEGiHEGo/HU8UxottDDz3ERRddxNq1a+nUqRMrVqwwOpKiKDXIyRbug2VDIOHPueHj+4HGh72uEZB9tBNIKWdLKc+RUp4Tzbckqmq5ubk4nU7mzZvH2WefzciRI9mxYwfBYNDoaIqi1BAnOx3wc2AIMDn8+bPDjt8jhPiA0EXJ4rIhlWPRNI2FCxeeZJTIy8/PZ+fOnVWS8ZdffiElJYVNmzZhs9lIS0tj9uzZ2Gy2Sm1S9Pvvv7Nnzx4OHjxY6YyRcuDAAb755puovndgSUlJVP8sut1uHDkOTlt4mtFRKpSQmcDvrt+jepx7165dWCwWfv/99+O/2CCaplX43HELtxDifaAnkCaE2A9MJFSwPxJC3AbsBW4Iv/wr4CpgB+AGhp5IQL9fMGJE9O6lbbfrDBlir5L9vvv27Vv+ddm9HCdMmFDp8+7Zs4dZs5IoKore97FlyxiuvTYdh8NhdJQKWSyWqN7XvbS0lC4xXZicMdnoKBXacmgLTpMzqt9Hu93OM3WewZ3hNjpKhfzCX+Fzxy3cUspBFTx1yVFeK4GRJ5ys/PtMHDjQ7e9+W7VJStpB/foF5dN9otHBgwcpKsqI6vexUaPFdO7cGZvNhtPpJKVOMgcPZZPgSKIkkMuiQ3PZ5d6EKWAhRsQjdDM5zmzOS7mCy5oPxO/20Si9CSUlJTgcDg4dOoTdbicQCKBpGg6HAyklcXFx5Uv0y5Yelz32+XwkJSXh8/mQUhIbG4vJZCq/v+Z7771XJX/Puq6zaNEi9uzZw4ABA3A6nbzwwgs888wzlfqNo7CwkNWrV0f1z6Ku6+Tn50d1xo0bN1LQoYDilsVGR6lQvKnitRM1+kYKSs0jpU5BIJstrl9YVfgVM7Lv5MPsKXx28DU0P7S2nYtdT6e01EdD2+mcl3oFiTEp3L/kZiavu5/Nub/h1/0EAgFMJhO6rgOhRRCapqFpGj6fDyEEmqYhhCh/bdljv9+Ppmnouh6xawtut5vPPvuMXr160a9fPywWC02aNGHp0qURae/vWrZsWVQPZSjHppa8K9VKIlmfu4rp6yeR4cigSVJTioMBft39B5nZ+2jXsjHWgI1tu3aQ37qI5kltEewnRiYSJxJ5f8ObnF6nA5e3vIZYWxxCCMxmM7qulxeiQCCA1WpF0zQsFguaphETE4MQAovFUl6spZQEAoGIzL2Nj4/nuuuu47bbbmPv3r08/PDD+P1+xo4dW+Vt/R0//fQT//nPf0hISOCrr77isssuU3eVqYFUj1upViZh5py0i6kf6MymrYVs3JTH+o05lGTbiHHXw7XPTtY2P5vW57Fq/Xo27VrNsnVL8biCrNz5M7nOAmatfIVCXz5OpxMI/Wru8XiwWCyYTAK7PQ6v14PVasXn8xEbG4vL5SrvbTscjvIiHsm71nTt2pXJkyeTlpbGoEGDmDhxYsTaOhFSStauXUtCQgL33nsvGRkZrFy5UvW8ayBVuJVqpes6DpOdGdfMoHlqcxbv+I5PNsznxx0/sjFrI1+tXkrdpMbcdulweqXdQANPV9xuF96SAvILD7E9ZyfBgJm+M69Bs4V6zjabjZSUFHxeD+u/fpJ5Dzfhs8kdWPvFYyQmJuJ0OklNTUXXdeLi4sjPz0fTNPx+P4WF/7souOokJydzwQUXkJyczLnnnmv4fVG3bNlSfpu1Sy+9lGHDhuH3+1m3bp2huZS/TxVupVqZTCZiYmLwlnp4rd8srmrzDyxmM6eln8Z5Lc/jzGbt2ZO3h01Zv1PgLCSnIAdHQVNcW5PokNgWT3E+6F60YsHtM25HCIHX66WwsADnwU3s3LSCQyVeGrbvQ3KDjjhLSoiPjycvLw8hBC6Xi7S0NCwWCxaLheTkZKPfkmrTtm1bGjduzCOPPEJWVhaPP/44NpuNzp07Gx1N+ZvUGLdSraSU+P1+UlJSCAQCzOz3Ko/GTeDTtZ9SVFqEw+zALuLwCT+5BVsoPlRMgjWRvt36UuosJY46FOTlYkrJxn8wgKYFsVqtLFkwjdzMnziUs49OF4/lwj5jCQZDz3k8HlJSUtA0DbvdTnFxMWazGSklpaWlEd3wPtr07t2bhIQEPvjgA77//nveffddoyMpJ0H1uJVqZzKZMJlMSClJiavDk5c/yYBzBlEacLErbze/Z/3B6t2r2XtoH6c1akGTBk3YlbMLp9dJgkila5OLyF/jI6btAd5aOIeA38vqpfPx+iz0vetNulx6Z/n5y6b5ld0bsuxxmdq0ix1Au3btGDp0KIsXL6Zhw4acddZZRkdSToLqcSvVzmQyUVpaisPhwOVykRiTyOR/PMOTV07kuleu51DJIXbs20XdhDQKSwuItybgdXshIMnLKyDe6uDSzn3Yv38by+UCfhnxFima5Ipet9C0bTesVitut5uYmJjyi5OlpaXYbDb8fj92u718OqDVajX67TBE06ZNjY6gVIIq3Eq1klLi8/lITU2lsLCQ5ORkXC4XNqsNf6mfL0Z+QWZhJv9Z+x9cXhemoAmHzU5JUQlIgcftJcZsY0DvAZxz1jks27iI11c+Ro9/DOCs865G0zRKS0upU6cOJSUlJCUlUVRURFpaGk6nk7i4OAoKCrDb7UgpcblcUb3CL1JiY2M555xzWLlyJeeff77RcZS/SRVupVoJIYiJiaGwsJC4uDiKi4uxWq0Eg0Hi4+ORUtKybktGXToKKSU2i5kDK77nwH8/xR4TS2qvK0nudgnWmBgOHTpE4EAQT5Hggt79sNlsSClJTk4mPzOT1W+8TOH+vaS0aEvnIXeQXDe9fLxb1/XyWSa1kd1up3v37vzwww+qcNdAqnAr1aqsx52UlERxcTGJiYm43W4sFkv5XGz8Xkw+L1seG4X0e2l03c2c89Cz6MKE1Wxi9+wpFPy6lqCmsyO/iJi8XHy/r2bNT8vI3biOgKbRdsAwOl0/EL/Pi+b18f6dgyktKaXPY0+Q2LwFGY2bYDKZcLlcxMTEGP22KMrfogq3Uu3MZjOBQKB8FWPZhUSz2YzmLCZ79nO49u6g7b+exJqQSKDoEN5d20GAT0LD62+h6a0jCbqcNPxxMeds20zBT8toduHFdLjpdoJBP65Dh/A7i9Ek6Ej6PPI4QU1n+f/NZeOKFdw1521OO7tz+UXL2igjIwNN08jLyyM9Pd3oOMrfoAq3Uq2EEEfsI1K2daWUEoJB9sx8Fu1gNqfdPBx/3gGCeQcQSMomfwgJ/r278UqJDiSe3pbkjp3R/EE8RQWU7NmJJiWaBE1KdCnRdNClJKhLzr66DwFd5//G/YuBz06l1bm195aonTp1Yv78+fzxxx/06NHD6DjK36AKt1KtpJQEg0FSUlKOuDhpsVjYt+BdPDs20/yW4RDwInQQIvxxxDlCBRwkmtuFX8pQsQ4XaE2X6JLy4h3UJJrUCYZf0/6iXvi8fmaNuIuxH35M27PPNujdUJSTowq3Uq1MJhOxsbHk5OSQmppKfn4+DocDn9tF4fefc/rNI9HcxUgTIASmcA/dFK7cUspQ71wSquBlRVqX6LokKHU0XaJpEAwX7oCuE5QQ1HU0XaDpOm3Pv4Dc/fvx5OdH/M+s9gJRqpoq3Eq1Kutxx8XFEQgEyi8MFqz4HpsjHm9+FmaTwGQOrQ0TZjAfVrh1GepVS12ApqNLHSlB6uGetl5WoCUBPTQ8EtQlQUmogOuhYZRAUCe1UVNeHX0vr2/6AxHBse5oXuTTtWtX1qxZQ7du3SJ6h/Lvv/+eHTt20LBhQ6655pqItVNbqMIdhSZOnMiECRNCMyxOQWWFrOyzlBLnupXYm7VE87gQJoE0mULrek0CYRKYw5Vb6hIhJVIHqcnwtD7Cn0PFW9NDRQuL1LoAACAASURBVPrPwq0T0P8s3AEt1Atv0KoFW1avMuptiAp9+vShV69e3HnnnREt3LGxsSQkJLBr1y5uvvnmI54bOnQovXv3jljbp6JTszLUUF9++SXjxo1j2rRpdOnShWuuuYYnn3zS6FhVqmz/bKfTid1ux+VyYbfbMZtNSM2P5nFhMgl0kwlpIlTAzaHiDYS73ICuo5cVbglBLVSUg1qoxx0M97gDuiQQ1AhKiV+XBDRBQNPCRZzyGzEokdW9e3e6d++Ox+OhT58+Rzz32muvMW7cuCOOzZ8/n7S0tPLHJpOJhISEaslaE6jCHWF5eXn89ttvJ/TaVatW0bt3b2w2Gx9++CFz5szh4MGDp9TKPl3X8fl8JCcn43a7SUxMxO/34/f5kQUHiQnvYyLMApNJIMwCYTIR6n5LgoCm66HirMlwgQ59HZDh3rQWKtj+YKg4l5QUY7Y78GtlxTv8fHgRTm3XqVMn1q5dS8+ePSPeVlxcHM2bNz/i2LPPPsuzzz57xLGBAweSf9j1hzp16jBixIgjXtOkSRNatmx5Qu1mZmaSkJBAamrqSSaPLqpwR1hBQcEJ367qjz/+wOVysWzZMm6//Xbsdjt5eXmnVOE2mUzYbDYKCgpIT0/n0KFDJCQkEJuYRM6P32AzmSA5GcLFG1NoSknQ70PExKFTNvwBPpcTd34efk3HF9Tx6xKfpuMLSjSTBUtaBgEExdn7sddriF/XCWjg0zSCOuTlHMDv9Rr9lhju+eefp3Pnzqxfv96Q9o92DeDDDz884nFBQQHTp08/4ljZZmWHGzZsGI0aNSp/7PP5mDJlCrquI4QgKSmJMWPGVGF6Y6jCHWFt2rQ54eGOjz76iIkTJ/LCCy8waNAgzjzzTNq3bx/hhNVL13X8fj/p6aHl58nJyfj9fupffyt5Py2maOtvaA2b4Eiri24S6CZBUEBw306sjVsgAc/BbAIlxXh9PrylpXiDGn5N4glKfEENr6bjR6Dv24sfM3GNm1Cck4NwOAho4NV0igsL2bXpDzpefS1E8cVDJSQ1NfUv/452797N9u3bjzj2yCOPkJOTU/44GAxSUFDAJ598QklJCYMHD2b06NHVkjmSVOGOItdeey2XXnopd999N5988gnx8RXf5bkm03W9/D6RZdusxjRogm6xEXC5Yfd20DRs8fEEpIYZ8JcUIzb+NzRXW9MIaDp+Tcev/Tk8EpR6eO42BDQNb1EhvqBOQX4+noCGH0Fi42YcOnSI3KwDeP1Brh4xIqpnfVSXtLQ0CgoKatRQQvPmzf8y7HLeeeeVL+oCuOqqq9i5cyf9+/fn1VdfZdasWTzwwAMnPMQSrVThjiI2mw2bzcb7779vdJSIEUJgs9lwOp3ExMTg8XjKi7gWE4dfl8iAhrmkmKAWQMveF54OKBCAhixfZOPXdYKawK8fPnatl495B8MzTIJaAE2DQFDDU1pKYc5BdAkIE3HxDqPfEsOZTCZmzpzJ2LFjmTt3rtFxKiUxMfGIx4sWLeK8885j3rx5FBYWMmLECDZv3sxrr71mUMKqoW6koFSrsjvgJCcn4/F4SEhIQNd1LBYLzW6+HV94nNpVWIi71IlP0/FqOh5Nx63peIM6nmDosV8DX7jXfUTPW9dDKyZ1WT67JBiefVJSeCh0R3iTiS79rkfE1s7dAWuLmJgY7r77bhYsWMCqVasYP3680ZGqhOpxK9WqbFvX/Px84uPjKSoqwmazEQgEaHDBpazXQZc6ugygO90Q1EPXJ0WojyGlHl6EA8HwYht/+GKlXy+bLSLxa6HnA2UFXEpEbCxejy/0Gi1Ix549aXLaaQa/I0ok2Ww2Ro4cycGDB4mLi/tLj7ymUj1upVpJKQkEAqSlpeF2u0lKSiq/E43T5Sahy0WhXnZQo9RZijsQ6mG7A3r4axnqcQd1PEENT3hGiTeo4Qtq+DQNf1Di1zT8mn7YXG4dV6kbv89PQno6lw+/C3NsXETv8l6TxMTEkJiYeMQUvFNJRkbGKVO0QRVupZqVLcBxu91YrVa8Xm/5LoFxCQm0vuk2vEEZLtAa3vBsEW9QwxvUDivaoSEUb1CWD6/4NIkvPFzi1wR+HfyaPGK+d0BKMlq1oqTwEN2u6VNrb6Twvxo3bkzXrl1ZsGCB0VGUE6AKt1LtpJTl27qWLYCRUmKxWEhpeTqNLusTLtThXnUwNLb95/i2xBMIPe8Lv84XnmUSCBfv0HCJFiriusSvh1ZXtruoJ5qwcH6//lgsllp7z0mlZlOFW6lWZUXbbrcTCASIi4srv4mCx+PB5IgntX1H/JhCvW4tNDTiDmq4y4t4MHSxsvxxqDfu1UJzuH26xBsMLbbx6xq+cG9bFyZSGjbE6Syhw0UXoWkaLpfL6LckathsNoLBIMFg0OgoynGowq1Uq7JtXXNzc3E4HBQUFJTfESc5OZm4uDhaD7iVjPMuDA2N+DXcAQ13UA99BHTcfokvKPEGZXi4JNQL9wbBo0l8wdCUQG94+CSgaUiLlfYXX8rqxUt5dsFCYmJjsVqtNWrecqQNGDCAdevWsW3bNqOjKMehCrdSrcouTsbHx+Pz+XA4HOULcrxeL36/H5MQtO3TH80ai0cLj20HNDyBP3vX7sPHvLU/i7gvPGxy+DTBICYan9mJAIIL+/dDs/7ZsywtLTX6LYkaaiFSzXHcwi2EeFMIkSuE+P2wY48LIbKEEBvCH1cd9txDQogdQoitQojLIxVcqbnMZjOapmG1WgkEAuWrJy0WS/k9IJtcfDn2NmfgDUrcQVne4y6/MBk+Xjb+7QuExrt95Rct/xz3rtuyNfaUOmRu+oMOvXrhiI8v3+fiVN0692SV/V2omz9EtxPpcb8NXHGU4y9KKTuGP74CEEK0AwYCZ4S/51UhRO29G6vyF2X3nPT7/Ufce1JKecSmQbqu84+nnseUknpYwS4bMpG4whclvYE/i7lHA0+4aHs1Dd1iJbFRUyzxCRQXFnL96Hs5vWtXzGZzeQ51cfJIM2bM4K677jpi2bgSfY5buKWUy4ATnezaF/hASumTUu4GdgBdK5FPOcX871CJ3W5H13VMJhMej4dAIACELpQ1aNmKga++SUKTZngCevgjNETiK5vfXT7GrZfPRPEFQ2Pgfinw+gOUFB6iU+9L6T10KLFxcTidTjRNUxcnjyI2NhaPx2N0DOU4KjPGfY8QYmN4KCUlfKwhsO+w1+wPH/sLIcSdQog1Qog1gYD6QaktylZOFhUVERsbS0lJCRDaxc3hcBATE4OUEq/Xi9PppGXX87j6yWfpdP2N+KQon2XiN1tofmHP8imC3qBGbFpd4us1wKtpoeXwvgA2u53rRo3i0mHDEELg9XpJTk7GbDZjsVjU5vxH8eijj/5lu1QlupzsAN9M4ClCt2x9Cvg3MIwjb8Zd5qiDZVLK2cBsgISEDOnznWQSpcax2WzUrVsXs9lMenp6+UWxsmJhsViw2+3lxzpfegXtu3XnmvtD+0xICcIksCcnU3rYykeLLQaEOGKPbVtsLHWbNEEPTzmMi4tDCFG+8EZdkPur6667zugIynGcVOGWUh4s+1oI8TrwRfjhfqDxYS9tBGSfdDrllHT4WPbRenbm/7lxr8lkwpqSQnxKyl9em5JR74TaLDtjWXvVWbDVhT6lqp3U70NCiPqHPbwOKJtx8jkwUAgRI4RoDrQC/lu5iIpSs914443ld7NXlKogjtcbEEK8D/QE0oCDwMTw446EhkEygbuklDnh1z9CaNgkCIyRUn59vBBJSXVk69b/Otk/Q8RZrS7OOCOfpk2bGh2lQgcOHODXX2Pwev/aK40WKSnb6NateVTP5Pjtt9/o0KGD0TEqFAgEyMzMpFWrVkZHqVBhYSF+v5969U7styEjZGZm8kf6HwQcAaOjVGjbC9soLiw+6q+Gxy3c1SEhoa70+7caHaNCiYmZNGjwE1u23Gx0lAo1bfoNr76aTufOnY2OUqFp06YxdOhQkpKSjI5SoUceeYRJkyYZHaNCRUVFzJ07l3vvvdfoKBVas2YNBQUFXH559C7jmDdvHhdddFFUd8ZOP/10cnNzj1q4o2T1gcDvj96eYiBQgKbFRHVGTYvD4XCQcpRx4GhhtVpJSkqK2oxle6ZEaz4IZbRarVGd0W6343a7ozpjTEwM8fHxUZ3xWNdh1JwfRVGUGkYVbkVRlBpGFW5FUaKalJLdu3cbHSOqRMkYt6Ioyl+tXr2aX3/9tXy2z4UXXsjpp59udCzDqR63oihR69NPP2XXrl089thjrFq1iuXLlxsdKSqowq0oSlRasWIFDoeD8ePHM3ToUCZPnsxvv/2mhk1QhVtRlCh1wQUX4HK5ePvtt9m8eTP//ve/6dChA82aNTM62l+43W62bq2+tShqjFtRlKgkhKBXr14sXboUp9OJEIKOHTtG3cZgc+fOZc+ePQSDQWw2G8OHD4/4LfFUj1tRKqEm3C2mJmSsyGWXXcbTTz9N/fr1mTRpEuecc47RkY4gpWTOnDmcd9553HHHHSxdupS8vLyIt6sKt6KcBCkl2dnZfPjhh8yaNYusrKyoK47BYJD9+/fz6KOPsnz5cnJzc42OdMqZPn069957L02bNmXKlCm8+eabjB8/Hl3XI9quKtyKcpK6dOlCVlYWVquVTp064ff7jY50hOzsbLp160b37t1ZuHAhV1111fG/SflbxowZw4wZM/jss8/YtGkTt956K5MnT474jShU4VaUkzBr1iwef/xxLr74Ylq3bs20adOYMWOG0bHKSSmZPXs2s2fPxuVyMWbMGAYNGsT8+fONjnbKGTVqFEVFRbjdbq699loyMjIi3qYq3LXEU089Rc+ePfH5fDXmRrCBQIDvvvuO9957j0AgEFVDEb1792bRokU0atSIzz//nOnTp9O7d2+jYx3h4osv5scff+Scc87h3nvvZcWKFVG9e2RNdcMNNzB48GDatWvH6NGjq2XjKlW4a4nx48fz2Wef0aNHD5544gl+/fVXgsGg0bEqJKWkZcuWfPfdd2RlZdGgQYOoGopo2bIlubm5TJw4EQCfz8fTTz/N/v37DU4WIoSgbdu2LFq0iIULF6LrOpmZmcyaNYuioiKj4ymVpAp3LVG2peovv/xC9+7dee2113j11Vf55ptvjI52VF9++SW33nord911Fw6HgyFDhvDpp58aHaucEIIff/yR22+/nauvvpoNGzYwbdo0XnvtNXbs2GF0PADq16/PunXrqF+/Pq+88grr16/niiuuYObMmZSWlhodT6kEVbhrocsuu4xXXnmFRo0a8ccffzBo0CB27txpdKwjxMfH43Q6sdlspKSk4HQ6mTp1qtGx/uLss8+mZ8+eADRu3JjBgwczc+ZM8vPzjQ12mAEDBtC4cehWsD179uTCCy/koYceiqqhJ+XvUQtwaikhBNdffz0ul4vrr7+ecePGsWPHDq655hruu+8+EhIS/nLT3urUo0cP7rzzTnRdp27duvznP//hnXfeoWPHjkyYMIHevXuTmJgYdYsxWrduzfjx4xk4cCDNmjXj5ZdfJjY21uhYR+jevTupqal06tSJ2267jREjRmCxqFJQGdX9c6h63LWcw+GgWbNmfPzxx6xfv55zzz2X/v37s3DhQtatW2dYLiEEW7dupX///rRt25asrCx69+7N+vXr2bJlCzfffDOLFy9m165dhmWsSHp6Ot999x3Dhw9n6tSpFBYWGh3pL9q0acP69euJj49n3rx5UX29oyao7t9eVOFWgFChFEJw9dVX8/3337N//34+//xzJk6caNgwihCCiy66iH79+pXnE0LwyCOP8Mknn/DTTz8xd+5cHn/8cbxeryEZKyKE4JxzzuHCCy9kxowZUZlPCMHQoUMRQvDKK68YHalCQghuuOEGFixYYHSUCqWlpdGkSRPWr19fLe2pwq0c1ejRo7n33nu58MILmTx5MjfddFP50uloGBuNjY1l4sSJ3HrrrXTv3p3+/fvzzDPPRE2+Mr169eKaa65h5MiRUZetzJAhQ2jSpAlTpkyJyoxCiPLfAqNVWeHesGFDtbSnCrdSoTp16tC7d2+mTZvG448/TqdOnejUqRNLliwhKyvL6HgAnHbaaVxyySW89957nH766XTq1ImlS5eSnZ1tdLRyZ599Nvfffz+dOnVi9uzZUTWtEUKFsU+fPjRv3pxOnTqxYsWKqCveypFU4VaOy+Fw0Lp1azZs2MCGDRv47rvvePrpp3nvvffYu3fvEa9dvHgxgUCgWvMJIUhMTKRfv35s2LCBb7/9lqeeeuqo+YwghKBNmzZs2LABi8XC3LlzI76Xxd9lNpu58cYb2bBhA19++SXffvut0ZGUY1CFW/nbnn32WZ588kmKi4t59dVXGTduHJs2bWLEiBGsW7eOsWPH8s477xiWb/LkyTzxxBMUFxdX+/9Ejue2227D4XDw/PPPGx2lQk8//TR//PGHWh4fxVThVk5Keno6I0aMYMSIEVx//fX07dsXs9nMsGHDuPrqq1myZImhS+vr1q3LiBEjaNGihWEZKjJgwABOP/10unTpwnfffRd1wxIWi4Xhw4eza9cuunTpQk5OjtGRlP+hCrdSKU2bNuWMM87g/PPPp06dOlxzzTV07dqVzp0788UXXxgdLyqZTCb69OnDypUr+f7771m2bFnUFW+73c59993HypUrGTt2LNu3bzc6knIYVbiVSktKSuKmm25izZo1fPjhh7z88susXr2avn37Gh0tagkhsFqtTJkyhVWrVhkd56hMJhNWq5XXX3+dH3/80eg4ymHUcimlSnTs2JFhw4bx7LPPctFFF3HllVcaHanGeOCBB4yOcEwJCQncfvvtRsdQDqMKt1Il6tWrR//+/enZsyd16tSJ+EbyihJtYmNjq23puyrcSpVKS0szOoKiGGLQoEHV1tZxu0VCiMZCiCVCiM1CiE1CiNHh43WEEN8JIbaHP6eEjwshxAwhxA4hxEYhxNmR/kMoiqIYrWwbgepwIr/PBoH7pJRtgfOAkUKIdsB4YLGUshWwOPwY4EqgVfjjTmBmladWFEWpxY5buKWUOVLKdeGvncBmoCHQFyhbZfEOcG34677AXBnyC5AshKhf5ckVRak1bDYb9erVMzpG1PhbV5CEEM2ATsAqIENKmQOh4g7UDb+sIbDvsG/bHz72v+e6UwixRgixJhDw/P3kiqLUGs2aNWPKlClGx4gaJ1y4hRDxwHxgjJSy5FgvPcqxv6wukFLOllKeI6U8x2qNO9EYiqIotd4JFW4hhJVQ0f4/KWXZjf8Olg2BhD/nho/vBxof9u2NgOjZqk1RFKWGO5FZJQJ4A9gspXzhsKc+B4aEvx4CfHbY8VvDs0vOA4rLhlQURVGUyjuRedwXAIOB34QQZbuEPwxMBj4SQtwG7AVuCD/3FXAVsANwA0OrNLGiKEotd9zCLaVcwdHHrQEuOcrrJTDy70eJrk12ji76M0bbZkVHE+0Zoz0fqIxVpSZkPBoRDcGTklJkx463GB2jQmazn6SkUmy2OkZHqVAwWEJysgW73W50lArl5uaSmppq6N3jj2f//mwslgZGxzgGjYApG2tdq9FBKqS7deKD8SQmJhodpUKFhYXEx8djs9mMjlKhd999l0OHDh210xwVhTshIUOWlh40OkaFkpJ28NxzS7jjjjuMjlKhhQsXkpGRwbnnnovP58Nqtf55lxWTzgHfHg4FDyJ1iQUbIPAE3NjNibRIPAOhm7HZrGiahhCCYDCIEAKTyUQwGMRms5V/Ljt/MBjEbDYf8dqy1WPBYBCrNVRcylaTPf3004wcOZKUlBSD3qVjk1Jy44338sknLxkdpUIxMYW0f+wy1j681ugoFar3Uz1m5c+K6t0hX3vtNS655BJatmxpdJQKZWRkcPDgwaMWbrVXySlG0zQKCgqITbDx30NfUDe2KUGTl52lv5Lj34PTW4rTW0yDuBZ4/B7qWhuxPXYzuwt2cM+5j+D3BRBCUFpaihCCmJgYSktLSUtLo7S0lDp16lBcXEydOnUoKSnB4XBQVFSE1WrFZrNhs9mwWCyUlpZGbYFWlKqWm5vLkiVLGDBgQLW0pwr3KWZH0a/MP/QiolhwwLcHq4wlGJQ4SCEtpiHJpFDkduHRA9SJaQS6la93fkqcJYGnfniAge1vo4G9MQkJCUgpCQaDpKam4nK5iImJIT8/n/j4eEpKSoiLi8Pn85GcnIyUEk3TcLvdQGilW0FBAcnJyVgs6sdMObUVFhby7bffqsKtnJx0e1M+WLyeOrF1ODP9TE6r24Zd2Zm8s+J9WrZOIt0Rz/aNOZgbBrmg3UWYg7HEWZIpdOYTY0/gzf/O5B9tr+WMlLOwWKxYrVby8vKoW7cuLpeLOqmpFBYUkJSURHFxMQ6Hg5KSEqzW0GsdDgcmkwmXy0VKSora3lWpFaprc6ky6l9VNdF1nU8//fT4L6ykOOzM/seb6Jrgyz++ZvoPL7Poj0VkpNTDn5eM70A9WtU9j9iihmhFOitW/Mzu/E2s3bmeLdk7WL13HfM3zMer+7BYLAghiI+Px+/343PmsO2Xuexe+wF7f/8PVmtoTDw2Nra8V+33+/F6vZhMJrxeb5VdtV+4cKGh97BUlGOp7muFqnBXE13XeeaZZyLejslkonWdljx68SOYLIKdBTs55DlEfKwDt9+NO+Cicd3GtE3rSKKnJc0S2+HcJhF+HTM+9uZm8+1vi5n0xdNA6AdS13WQGll/fMvSD8aw9qtHWbvo3wj5559N1/XyH16TyYSUskp+mFevXs3gwYPZt28fw4YNM/Tu8Yrx5syZQ3a2WoitCnc1io2Nxev1RrQNq9VKwB+gW6NuzL9pPmnxqZjMZoq8xVhtFnyanz/2byLPmcfWvVtYvuZnmtrb0ydjML8u3kqXNo2xO818/PXHBIIBAJwlReTuWc2yL1+iyB1Dl/5vcOmw/yOghWaV+P3+8hksZRcpdV0nLi6uUr9C6rrOzp07adWqFTfffDODBg1izZo1BAKBKnmvlJojMzOTNm3aoGkad9xxBzfccMPxv+kUpgp3NTGbzcyaNYvRo0dHtJ3i4mLq1q2LkIK29drx070rSHYkk+M8wIGSg2QX57Dv0H5+3vYzy7csJy0lHU1qHMzNp8/ZA3BsbkVSjIW6SXHs3LcNKSU/LnieOZOHEZvciktueYX2Xa8miAO73Y7X66VOnTrY7fby2ShFRUXYbDby8/MrNbxRWFjIsmXLGDp0KP/4xz/o0qULTZo0Yfny5VX4jinRTkrJhg0bGDJkCD169GDu3LnY7XZ27txpdDTDqMJdTcrmN0d6LKzsYqEQAq/XS4a9Hm8OepO7e9yNXw+QWZDJlpwt+HU/rRq2Jq1OGrlFuRwqLSQrLxu3101CYTPiEgVPfDaGT/8zh22bN5Jcrx3X3Dad9l2vwuv1Yrfb8fv9WK1W3G43fr8fgLi4OOx2O5qmkZCQUKmLk2lpaVx88cXcddddXHrppUycOJHdu3dz8cUXV9XbpdQQv/32G2eccQbPP/882dnZtGzZkh07dhgdyzBqVokBpJQRuwrt9XqJi4sjEAiUL8I5Pb01rXuNpWvDLhx0HeSZT54hKz+bXQd3Uic2FRs2CvLz8bkDeEs9jLh2BKPOv4di+37efnEKKbka9z31OinpjXG73cTFxeH1eomJiSlflFM2zl1WwMsKekxMTKX+PBdeeCEJCQm8++67/Pzzz3z++edV8TYpNYgQggEDBtCrVy+EEGzatAmTycSECROMjmYYVbirUZs2bejYsSMfffRRxOZ76rqOxWLB7/cfcZFQSuh2Wjdi42K5ot0VWG1WSp2l2MyCrF3bSE9KxSfBXiedWFssKckplJQcYmvzDfQa9g+ateqIEAJN0zCZTJTm5xGwmAloOqkNGmIymcqLN1D+2sr+hpGRkcHll1/Oeeedx6ZNm3jrrbd47rnnquKtUmqQFi1a8Msvv/D4449z991306pVK6MjGUoV7mpkNpvLi2qkxMbGls+r9vl85e0CxMTE4Pf7SYhNIH/NSmIDHpy5B0nI3kNJ0SGSO3QiseN5lGbuYLfHw74Dufy2/CfOO7s7gay9ZG/fQmxcHCXxKexZvpi9v/9KfHp97Ke1Jj41jYZnnEFGq9PLl8EnJSVV2TzupKQkGjZsiMViYe/evTRp0qRKzqvUDGazmR9++IFu3brRuXNno+MYThXuU4zL5SI1NZXS0lJiY2PRdR2fz4cQAo/HQ6zHye7/m4UjJRV/nJ2k9Hoknt8DKQQC8OzfgywuJEYP4ti9jfN9buTiL8jOykSYLBwK+Imr25DWl1xBi0suR2o6W39axoHff2Xv+rU4PV6ufXgCKWlpFBcXk5qaWmXFu2nTpjRu3JiffvpJFW6lVlOFu5pdf/31TJw4kZ49e9K4cePjf8PflJiYGNqrJDYWt9uNyWTCarUipcRhNbNh1B0kndaKlIsuw2S2gNTwZ+0NbdwrJWazhaSWbdClxNG4BS2vH4im6fjcJVji4tGkTiAQxFNciC5B0yWN2p9FfSkpLijg8+kv8Mbdd3HP2++SnJxc5TsB3nDDDUyYMIEePXrQoEE07+KnKJGjZpVUs7S0NEpKSsqHMapaSUkJaWlpSCmx2+2hed2BAN5DBay6/VrsDRpS/8p+6M5i9OJCpLMY4S1FeErB60K6StAK8wgW5qG7nASLC9CchxB+P/6iQgKHDhF0lhB0uQi6XQTcLvylTnyloeGZvmPuo/RADi//81b27dxZ5asd09PTSU5OZuvWrTV2L2VFqSzV4z7FxMbG4nK5EEIQCASQUmI2m8n5z0fUadyCBpf3IZCfgzk8PdEkwnfJEAIhJbqUIAUCCbqOlKBJSVAHTdfRpUSXhB9LNF0SkBJN6gR1ga5Lzh94E9+99SablvxA89NPr/I/4+TJk+nYsSPr51Q7CwAAIABJREFU16+v8nMr0amoqIj9+/fTq1cvo6NEBdXjPsXY7XaKiooA8Hg8oVkePg/ObRtJbtOeYP4B8LrB60b4XJh8bsx+N2afG5Pfg/C5ET43eFxIrxvpdSHdbqTHheZxE3S7CLpcBFxOAq5S/O5Sgi4X/lIXfpcTn9uJCWjW4SxWffYZxXl5xr4hyikhNzeXbdu2cf755xsdJSqowm2AadOmMWLEiD9vdFCFiouLycjIQEpJfHw8FouFnKXfgs+PrgXQPC6kJ1SYhdeNyevC7HNj8bkweV0I3/+zd+ZxTlbX/3/f7DOZZFb2fVMRFEUQgUIFVERxq7VudbdqrbYI6qB+RbG1isoiboigIra/Qq1KXepSRS2KqIAiiGwCOjIDwyyZ7HmW+/sjyeOMggyQITNw369XXkme58l9TrZPTs4995yUWMeiyEgEMxzBjIYxokHMSFK8tegPYRItHCIeCREPB0mEQ8RCYaKhOtr27EmwuppQTU3GnyPAwoULufjii5tkbIWiuaNCJVmguLiYnTt3NsnY+fn5bN++HZ/PRzgcxm63k+t2EnTZMRMxTB2kzQY2kDYBNoHNbkMIkCYIU4IpkabENAxMKyRiYpigG8nQSMKU6IZEN000EzTTREvdT5ipsImuQRPFodu3b4/X62XTpk306NGjSc6hUDRXlHAfZESjUXw+H4C1ajEWi2HGY0nP2QZ2mx3TBqZdYNpsmDaBDYEpU4JtmhimxDSkJdq6KZMCbSRv60ZSsBOGmRJriWaAZsqUiJsYTVgMKi8vj/PPP5/nn3+eu+66q8nOo1A0R1SoJEvMmDGDCRMmZHxcu91OJBKxutdIKXHYnQQ3rCVevRMjHEaPhNDT8epICC0cIWFliYTQIxGMSAgtEkILh9DCye1aKEQilAyJJMIh4qEQ279eQ7S2hlgoSCwUJBoKJsMlwVCTV/Hr378/UkpWrFjRpOdRZBfTNLnnnnuYOHFitk3ZLekSFgcq00l53Fmif//+3H333RkfN503nS5oZZom7pJW4HRRt/ZLRI9eSLcbabMh7QIpJIlwEOHOBacTQ9fREjrxWITar9eQ0HViuiRuSmK6QcwwiRvg69UXw+XCmZtLLBxBFwLNkMSNZMhk27dbCVRWIpqwo3tRUREFBQVs3ryZfv36Nevu8Ycama7Fs2bNGnr37p3RMTNJz549GTx4MH//+98PyNyLEu6DjHRZ12AwiNfrRdd1OPp4igePZPt/XsCIhino2gMjNxfDJrALibH9e4TDDS4XiWCA+M4dJIxkHDtumOiGJKFLNMNA1yWaYfL9qk+J6+AoaUNc08GbBy4PCSmo3VnN1g0bOPHK31HUrl2TPt9x48Zx0kknMWrUKAoKCpr0XIrGc6jl2Nvtdqs2/YFAhUqyhNvtZuzYsSxatCij4+bm5hIIBKyyrrqebHYQjSfQTUk8Eia4fRuxUB11326mbss3hGtqCX3/LXWbNxLekRTttOesGZJEatJRNyW6KTFkesLSILDtewIVFVSsX09NeTk7tm6h/JtNmCZ0P+pocvLyMvr8dsW4ceOYOnVqk59HoWguKOHOEi6XiwEDBvDpp59mdNxEIoHX60VKicvlwm63J7vRdOiAbneS0E2iwSDhQC3hqkrCVZVEIlGiuklMN4kZBlHdIG6YxI3kpGMilTGimaBJMzkxmV6EIyUGyUnMeCxGNBjGFAJ3np9YPN4kKY8/5vTTT+eVV15p8vMoskMikcDlcmXbjGaFEu6DkPTf1Pp/V7v/9npsJW2JGAaRSIxwIEBUM4hqJlHNJKKbRDSDiG4S1SVxHeK6SVw3SeikskaS2SKaKTH0H7zwhGFiIgjXhYlGo+i6Sb/TT2X4xRcdsOfcq1evQ7qw/sHM6aefzltvvZVtM5oVSrgPMlwuF9FoFCEEuq5jmmayLrewYStohW4kJxkjoUhStA2TqG4Q1c2U1y2JGaZ1SXrdqeuUBx43zWTKn0wKumGCDhgkQyhHDB2OHRu5npyMVQb8OYQQPPjgg0yaNKnJz6U48BiGoSaef4QS7izSp08fnE5nRmtuxGIx/H4/kKxb4nA4knnZhkHXS39P3BDEdJNoLJEU7pRgRzUjGSrRDWJa6tqQxI2kkCf0lHjrJrouSZikFtyk4uCaTiwWw+5xY3M7OfWaa6mrq8t4kand0bp1awYMGMAbb7xxQM6nUGQTJdxZpKSkBLvdzvbt2zM2ps/ns1ZlhkIh4vE4drsdp9NJt0FDMXPziKXCIsl4tiSa8q6juklEk8lwiSGJ6kkxjxsmMTMp4gkD4iYkTIO4kVx0o5smCUMiHU4Gn3cBNTur6NK3L61atcLhODCJS7m5uXTp0oUNGzYkM2kUioOYPQq3EKKTEGKxEGKtEGKNEOJPqe13CyG+F0J8nrqcVu8xtwkhNgoh1gkhRjflE1A0JBQKkZ+fj5QSj8eD0+nEMAxM0ySiaYx8+BkrHztiJGPbUc0kkopzR1OTkz944CYxzSChGz+ESgyThJ5e3m4QN0E3TI4Y8guWL17MDU/OxuVyEQqFDsjkZJpf/epXfPXVV3z11VcH7JyKpuXrr7/msMMOU6GSH9EYj1sHJkgpewMnAH8QQhyZ2jddSnlM6vI6QGrfBUAf4FTgcSGEetV3w8iRI1myZAmRSCQj47lcLmKxmNXzMR3jFkLgcrlwt25D26EjU4Kc8rJ1g6iuW5kl6fBITP9h0U3ykgqbGKaVMhg3JJpp4PbnE40lGHTaabTt0gXDMHA6nU3WFHlXCCE4++yzeeGFFw5YiEbRtMybN4/f/va35OTkZNuUZsUehVtKWS6lXJG6HQTWAh1+5iFnAf+QUsallJuBjcDxmTD2YGTIkCF89tlnxGKxjIzn8XgIBoMIIUgkEpimaS0OyM3NxVFQRPvjhxDXZSqrJOlZR3WZvE5lmUR1k7hhpMSa1OUHsY6bkriRrF1iCgd9Rp5ENJFgyJln4/P7MQwDr9d7QIUbYPTo0bz55psqXKI4qNmrGLcQoitwLLAstekGIcQqIcTTQojC1LYOwHf1HlbGzwu9AtiyZUtGxqmrq6NVq1aYppkUaocDTdPQNI2amhq8ubn0ueAyOo44haiZ9LDDmkE4YRBJpQdGUqGScErAY5pBTNeJawbx9MSlnvS8DbuTw3/xS6p3VtH/pJPp0LcvtbW1OJ1Odu7cmRXP96233mL0aBWhOxgoKSlR3vYuaLRwCyHygH8B46SUdcATQA/gGKAcSC9d25WL9ZP1r0KIa4QQnwkhPtO06F4bfrDw+eefU1ZWxkknncTcuXP3Oz7r9/uprq7GZrMRiUTQNA2n04nT6aSgoIBIJILd6aTzyaehO3OsvO2okZyUjBip+7r8IePEShOURNMxblOCx0PrHj2RDjuRugAdjjgCf34+BQUFaJpGUVFRVmKTubm5nHzyyQf8vIrMM2HCBAYOHJhtM5odjRJuIYSTpGj/TUr5IoCUcruU0pBSmsBT/BAOKQPqd8HtCGz78ZhSytlSygFSygFO56H7i/rqq68yevRovF4vy5cv55133tmv8SKRCH6/35qcdDgc6LqOrutW53cpJcefcx7DbypNetn6DxcrJdAwf5icNGRKuA3iejLerUuBy18ILjflm7fw27vu5oSxpxONRgmHwzgcDoLB4AGdnEzjdDq54447Dvh5FYoDRWOySgQwF1grpZxWb3v96kHnAKtTt/8NXCCEcAshugG9gE8yZ/LBw/Lly0kkEkyaNIkOHTpw7733snXrVtauXbvPY+bk5FBXV4eU0qpVYrPZsNlseL1eYrEYUkrq6ur45ZXXcsr/3Y1udya96VQ+d1Q3SQh7KiUwleNtmCSkjZhuENclcQSRaIyKLd9yyV2T6TVoULISoduNx+NB1/WsxLgVikOBxiTZDgUuAb4UQnye2nY7cKEQ4hiSYZAtwLUAUso1QoiFwFckM1L+IKVUU/y7oH///vznP/9h7ty5vP3228yYMYMuXbpwxBFH7POYdrsdh8OBw+Gwlrynb9ff53A4cLndDL74cnoedwJvP/EodTuT/SElMPiii/nf355HSjBNiSMnl05HHcXapUsxJUgERe3acvHtt1PUqRMOp9MaN31Oh8OhhFuhaAL2KNxSyiXsOm79+s885l7g3v2w65BACMGQIUN46623mDlzJuFwmFGjRu2X2NlsNkpKSna7Pz8/HwCv1wskVxy2bt2aPsOH/+TYU664ep/tcDqd+/xYhaIlYZom06dP5+OPPwagurqam266qUnLPah63Flm5MiRjBgxgiVLljBs2LBsm6NQKPYSKSWzZ89mzJgxCCGYPXs248aNa9JzNhPhlrjd1dk2Yre4XHXEYjGqq5vOxj59+uzX+JFIhFAo1KQ27i+aplFbW9vMi+wbzfqz6HbXYtfsuKvd2TZlt7hCLiKRSLP+LMZiMerq6jJi4xVXXMGLL77I+++/jxCCq6++ml/96lc888wz+zXuz31PRHP4EhUVFcmbb74522bslnA4TGVlJV27ds22KbulvLwct9tNUVFRtk3ZLevWraN79+7NOozyxRdf0K9fv2ybsVs0TWPJkm+oqTk826bsFo+nmmOPjdOuibsf7Q+bN2+mdevWVsiwOfLQQw9RXV2967iplDLrl9atW8vmzIYNG+Ts2bOzbcbP8tJLL8mPPvoo22b8LH/+859ldXV1ts3YLaZpyhtuuCFj43399dfyzTfflFJKuXPnTjl//vz9HrOqqkoed9y9EmSzvbRtu0S+/PLL+/1c0zzyyCMyFotJKaX8xz/+ISsqKvZ7zFmzZskNGzbs9zhNSUoXd6mZqjqgQtEE1NXVcd9999G7d2+uv/56AGpra3n55ZezbFnL4oknnqCwsJDy8nImT57MgAED+NOf/tQsa9G88sorB6wTUzOJcSsUBxc+n4/zzz+fqVOnsnz5ct577z2WLVvGddddl23TWhRXX301Y8aMwe12s2LFCtauXcvtt99+QBp07C2VlZUHLP21+T17heIgQAhBly5diMVilJWV8dprrzFixIgDVp/8YMHpdDJmzBj+9a9/8fXXX1NQUEDr1q0P+fUB6lOkUDQRRx55JLNmzWLDhg1Mnz7dyqFX7B0TJkxg/fr13HvvvcyaNSvb5jQLlMetUCgULQwl3AqFQtHCaFHCrWnafie1KxQKRUunxQj39OnTOeussxBCcMopp/DRRx9l2ySFQqHICi1icjIcDrNx40buuece2rVrRyAQYPPmzQwaNEg1EVUoFIccLcLjXr58OZ07d6ZLly7cd999tGnThs8++4xgMJht0xRNSDQa5cMPP8y2GQpFs6NFCPfw4cPZuHEjN998MxdddBEXXnghJ554IgUFBdk2rUl46KGHDvlmt48//ji33XYbH3zwATfccAPffvtttk1SKJoNLUK4ASZNmsQNN9zAo48+ysqVK3nttdcoLy/PtlkZxTAMpkyZwuGHH94sV4YdKHRd5/XXX+e8887jd7/7HcFgkPLy8mZeVVChOHC0GHXo1KkTAwYM4LnnnuOYY47h8ccfZ9y4cWzatCnbpmWMl156idzcXE4//fRDWriff/55zj33XLp3786dd97JH/7wB2bMmIGmadk2TaFoFrQodRBCNGiNNWfOHObMmcPy5cuzbNn+EwwGWb9+Pf369TukRRvg8ssvZ+HChSxcuJBRo0YxaNAgOnXqdMi/LgpFmhb9TfD5fNx444289NJLrFu3Ltvm7DNSSkpLSxkxYgTDd9FC7FDk9ttvp7CwkA8//JCFCxcyYMAAbr/99mybpVA0C1pEOuDP0b59e26++Wauv/56pk+fTps2bbJt0l4RjUa58cYbufXWWznssMOybc4+YZomNTU1QPJHaOzYsUSjUSZNmsS55567T2MOGzaMIUOGcPrpp1NcXIyUkvbt2zNp0iTuuOMO3O7m2wFGoWhqWrxwAxQUFDB//nyuvvpqJkyYQN++fbNtUqOZOnUqv/71r+nVq1e2TdkrAoEAS5cuBZJtoNLFf4QQvPvuu+Tk5Oz3Oex2O8XFxda4Q4cOpaamhlmzZtG3b19Gjhx5yFeJUxyaHBTCDckv+YMPPshjjz1GIpGgf//+2TZpj2zevBld1+nVq1ezF6Da2loefPBB677NZsPj8QDg8Xj4z3/+0+TPQQjBGWecwUsvvcTSpUvZunUrV155ZZOeU6Fojhw0wg1QUlLCNddcw5QpU2jVqhUdO3ZstoIYDoe55557mDRpEt26dcu2ORbp1kgAK1euJN0LND8/n5tuusk6Li8vj+OOOy4rNp5zzjmcccYZzJ8/n2effZbLLrus2b7PKoVx/0l/Jpvreww/vM8HysaDSrgB2rVrx3333ccll1zCjBkz6NixY7ZN+gnbt2/n97//PfPnz2/SZqVSSsrKyujUqdNujwmFQlRUVFj33377bWbPng1A//79+fe//w0kP5B5eXlNZuve4nA4uOSSS3jsscd4+eWXOfPMM5tl+YN7772XW265Bb/fn21TWixSSq644greeeedbJuyWzZs2MDSpUt5/PHHD8j5DjrhBsjJyeH5559n4sSJXHbZZRx77LHZNsli/fr1zJ07lyeeeKJJRXv58uWsXr2aTz75hEGDBjFkyBB69uwJwOrVq1mxYgUAO3bsYNWqVdbjRowYwcqVK5vMrkzicDj405/+xJQpU5g3bx69evVi2LBh2TarAfF4HLfb3ay9xZZANBrNyLxJU2GaJoZh4HQ6D8j5DkrhhmTctbS0lNmzZ+N0OpvNhOV7771H3759mzz75Z///CcAkydP5uabb2bu3LlW1kq7du0sL7xfv35WOKSlcuutt/Lcc8/x4YcfYhgGJ554YrZNUiialINWuCEpUNdffz2lpaX89a9/pW3btlmzRUrJ2rVrWb9+Pf/3f//XpOdasmSJleN+2mmnUVZWxrZt2ygtLaVr164UFxe3uLTJn0MIwWWXXUYgEODee++lpKSEPn36KC9XcdDSohfgNIZWrVrx1FNPcdNNN7F+/fqs2fHll1/ywAMPMGXKlCYvjjV06FCCwSALFizgtdde46KLLuKJJ55gzJgxHHnkkQeVaNcnPz+f+++/n2nTprF06VK2bNmSbZMUiibhoBduSKYKzpo1i+eee+6ALo8Ph8O89NJLvPfeeyxYsICnnnrqgEygCSEYNmwY69ev5/HHHyeRSHD00UcfEh6ozWZj9uzZLFq0iGeeeSarP9YKRVNxUIdK6pOfn8/111/Po48+Sn5+vjVR11T85S9/YfXq1QwdOpRbbrmF559//oBNXACcfvrpnHbaabz//vuHXMzX4XAwZcoUNm3axMyZM5k0aZK1kEehOBjYo8cthPAIIT4RQnwhhFgjhJic2t5NCLFMCLFBCLFACOFKbXen7m9M7e/atE+h8bRv357bbruNO+64o0EKXKYJh8OsWrWKSZMm0apVK4LBIKFQ6IDn9AohDjnRrk+PHj2YPHnyQVu3XXHo0phQSRwYKaXsBxwDnCqEOAGYAkyXUvYCaoCrUsdfBdRIKXsC01PHNRt8Ph9/+9vfuPPOOxukwWWSN954g+HDh1NUVMSmTZt49913WbhwoSpLmgUKCgqaZX63QrE/7FG4ZZJQ6q4zdZHASOCF1PZ5wNmp22el7pPaP0o0s+Cqw+Hg3nvv5eWXX+bzzz/P+Pjnnnsub775JjNmzODss8/m8ssv58orr8TlcmX8XAqF4tCjUTFuIYQdWA70BB4DNgG1Usp0f60yoEPqdgfgOwAppS6ECADFwM4M2r3ftG7dmmuuucaq751pHnjgAb799ltmzpzJww8/TJ8+fZrkPAqF4tCjUaolpTSAY4QQBcBLQO9dHZa63pV3/ZPgrhDiGuAaSIYvskFT5nX37t2bI444ghNPPFGVIFUoFBllr9IBpZS1wHvACUCBECIt/B2BbanbZUAngNT+fKB6F2PNllIOkFIOaM5LWfcHIYQSbYVCkXEak1XSKuVpI4TIAU4C1gKLgV+nDrsMWJS6/e/UfVL735WqRJpCoVBkjMaEStoB81JxbhuwUEr5qhDiK+AfQoi/ACuBuanj5wLzhRAbSXraFzSB3QqFQnHIskfhllKuAn5SXk9K+Q1w/C62x4DzMmKdQqFQKH7CIbHkXaFQKJqK5557jieffJIvvviCe++9l6qqqiY/pxJuhUKh2EeklMyZM4cePXpQXFzMe++9R2VlZZOfVwm3QqFo9rRu3TrbJuyShx9+mD/+8Y+MHj2avn378vTTTzNx4kRM02zS8zaLIlOmafLhhx9m24zdUlFRQXl5ebO2ccuWLdTU1DT5B2Z/qK6u5tNPP23Szj/7SyQSyej7HAgE2LBhQ8ZWzYZCITyeatq2bb6fxcLCdWzZEszo6zhp0qSMjldeXs6qVavYvn37fo0zcOBAJk2axB133MG5555LaWkpF198MUuXLt1vG3/uu9wshFtKeUDiQvtKIBAgGo02axvD4TDPPGMjGGy+NnbunGDQoBpisVi2TdktNTU6l1ySydfwJF59FSAzYzocEdqd+ik5t76YkfGaAtdmP+Hwb5r19yUWi/F/tf9HzJGBz+Kf4OrQ1RACLoCP+Tgjb3dcxne7r1kIt91u58wzz9zvcaSUvPzyy7hcLkaPHs2XX37J0qVLue6667DZ9j0qtHHjRgzDyIiNTYVpmuzY0YaKisHZNmW3FBev4pRTTqGwsDDbpuwSKSXz57/N5s3N9312u6vxt32IzWduzrYpu6Xth23ps7PPfn9fTNPk8ccfZ+jQoRx11FG8+eabJBIJzj777P2uLV9eXs624dsI9Azs1zhNSZ599825D6oY99atW3n//fet5rjdu3enqqqKjz/+ONumKRSKvWTp0qXU1tbSvXt3hg4dyqBBg3j//ffZunVrtk3LOgeVcHft2pW+ffsyfvx4ysvLufvuu4nFYgwZMiTbpikUir1k6NChhMNh7r77brZt28b48ePp27cvXbt2zbZpWeegEm6AESNGMGbMGOx2OwMHDuT888/PtkkKhWIfueCCCxg4cCB2u50xY8YwYsSIbJvULDjohLtHjx5ceOGFFBYWcsEFF3D00Udn2ySFQrGP9OvXjwsuuIDCwkIuvPBCevTokW2TmgUHnXArFArFwY4SboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWHHC++uorPvjgg2yboVC0WJRw7ydSSkzT5IEHHmDLli2N7vmYftzuLuvXr+fEE09scHnuueea+Nk0PTU1NcycOZM333yTESNGNOs2ZgpFc6VZtC7LNBUVFbRr1+6AnGvTpk0MHz6cadOm8cc//pFwOMw777wDwDfffIOu67t8XCwW4/LLL0dKucv9vXr14tVks0KLTDWczSYFBQX85S9/oaKigtdff53169fj8XiybZaFYRjZNkGxC9q1a0dFRQVt27bNtinNgoNSuEtLS3n44Yf3q89kY5BSsnjxYiZPnkznzp0ZO3YsDz30EPPmzQNgyZIlJBKJXT42JyeH5cuX73fvvJaGEILvvvuOGTNmsG3bNh544AHsdnu2zbIIh7NtgeLH2Gw2ZsyYQWlpqfXdOtQ5KIX7QGKaJg6HA9M0LW8t7WXPnDmTnJycbJrX7Kirq2PJkiWMHTuWt956i9mzZ5Obm5tts4DkD/FvfvPHbJuhUOwRJdz7gRCCUaNGMWzYMB5++GHeeOMNOnbsyFVXXZVt05otubm5FBUVsXXrVhYvXtyswiQKRUtBCfd+0qNHD8rKynjwwQeZMWMGXbp0ybZJzRqHw8FFF12ElLLJQ1kKxcGKEu79RAiB3W5n4sSJ2TalxSCEOORi+wpFJtmjyyOE8AghPhFCfCGEWCOEmJza/qwQYrMQ4vPU5ZjUdiGEmCmE2CiEWCWE6N/UT0KhUCgOJRrjcceBkVLKkBDCCSwRQvwnte8WKeULPzp+DNArdRkEPJG6VigUCkUG2KPHLZOEUnedqcuuk4+TnAU8l3rcx0CBEOLAJFUrFArFIUCjZoeEEHYhxOfADuBtKeWy1K57U+GQ6UIId2pbB+C7eg8vS21TKBQKRQZolHBLKQ0p5TFAR+B4IURf4DbgCGAgUASUpg7f1azTTzx0IcQ1QojPhBCfRaPRfTJeoVAoDkX2Kh9LSlkLvAecKqUsT4VD4sAzwPGpw8qATvUe1hHYtouxZkspB0gpB6hFKgqFQtF4GpNV0koIUZC6nQOcBHydjluLZF7X2cDq1EP+DVyayi45AQhIKcubxHqFQqE4BGlMVkk7YJ4Qwk5S6BdKKV8VQrwrhGhFMjTyOXBd6vjXgdOAjUAEuCLzZisUCsWhyx6FW0q5Cjh2F9tH7uZ4Cfxh/01TKBQKxa5Qa44VCoWihaGEW6FQKFoYSrgVCoWihaGEW6FQKFoYSrgVCkWzx+fzMWiQKnmUplmUddV1nSeffDJj40UiEV588UUKCgoyMl4gEKCsrCyjNmaab775hs6dcykpWZVtU3aL37+F+fPn43a793xwltD1avr2bb7vs90eI39zPn2f7JttU3ZLbnkuS2NLqaioyOi4drs9Y9/B1atX0yPQg0T+rlsLNge+1b/d7b5mIdx2u51Ro0ZlbLxMjgVQVlaGzWbL+LiZxOFwcMIJRRx11FEZGU/XdRyO5MfDMIyM9IWcO3cLf/7zMDTNt99jNRUnn7yCl15qvu9zXV0d//rXDq4YtevlERKJxERKiUhVn5CpihM2Ybe2NSWrVq2itraW4cOHZ2S8+p+/TH0WA4EAU4+fSseOHfd7rKZisG3wbvc1C+EWQtCzZ89sm/GzbNiwoVnbuHr1atq0aZMRG7du3crtt9/OnDlzCIdjCDOLAAAgAElEQVTD/PWvf+XSSy9l4MCB+zWu1+slGOxKPF643zY2DRKbzZXR97m8vJy8vDx8vsz8WFVXV+P1eunWrRtVVVXJjTkadeFa8vML+GLHYj6MvEowVoOpC7y2IsLxMJF4mKu6T8bjzKFdXkcKvcUEAgGcTiehUIiSkhJ27tyJ3+8nEolQUlJCOBzGbrejaZolmOFw2NqXn59PZWUlJSUlAFZHo+3bt2O32zPyOm7bto3S0lJmzpxJXV0dCxYsYMCAAZxyyin71YwjPz+fjh070qlTJ0KhEDk5OYTDYZxOJw6Hg2g0is/ns/bF43GEEDidTiKRCH6/n2AwSE5ODpqm4Xa7SS5hAZfLRSgUIi8vj3A4TG5uLrquY5ombrebYDCIz+cjEong8XgwTdNylDwej/W8fq5DVLMQbkXzYvHixfzyl7/k008/5f333+ekk07i1Vdf3W/hPhR5/PHHGTlyJCNGjMjouFE9xJfR9wjpAcrq1lAVq8BT7UOYDlrbutEh5yi+2vkpDruPvr5jsOXZ+aJ6Ka9uXMDoLucxqstY2ng6IKXE4/EQj8ctEUmLk2malhilRSR9rBCCSCSCy+Wyrl0uV0afI8Cnn37K0UcfTXl5OVOmTOGyyy7jrbfe4uSTT85IF6VQKER+fj6hUIjCwkJ0XUfTNIqKiqipqaGwsNASYSkl8XickpISampqKCoqIhKJkJubSzQaRQiBaZrWmFVVVeTn5xMIBHA4HNhsNqqrqykoKKCqqgq/309dXR1CCNxuN9FoFLfb3ajnpYRb8RMuv/xyDj/8cNq1a0dlZSWzZ89m7dq12TZLUQ+bsDHzk8fQjDgd/R3pXtgdt93Ls+/Ox+9zcViXdlRtDVMVX0O/vrUUuVqjGSbtcnqwpmIV6A5audsw+rAzASzRSd+22WyYponNZkPX9QbnTreeS4u5zWZrslZ0Z511Fr/85S95++232bBhA//73/94/fXXM9avNCcnh1AohMPhoK6uDrvdjs1mIxAIcOONNzJgwACuvfZaIpGI9Zxra2vxeDzU1dXhcDiIxWJWWNFms1k/bvn5+SQSCbxeL6ZpMm/ePN555x2efPJJ8vPz0TTN2ielbLRogxJuxW5YvHgxH3zwAR9//DHjx48nPz8/2yYp6uG25/KXgY9z9oKz2OEy2OioJlfkUiS6kBtzE9mSx87vo3xdsQN37pd4qoqoKdqJ11GEw+YiUBcjlkhwQsfhOKQTr9dLOBxGCJH86++UJGJhnA47CA+mlNjtduLxOF6vF13XcTqdhMNhfD5fk/YQXbhwIV9//TWPPPII06ZNo127zPVlCYfDFBYWUldXR15eHoZhoGkafr+f119/nUWLFmEYBpdeeikFBQXE43H8fr/lcYdCIVwuF7FYDMDyuAsKCqitrSU/P5/vv/+ed955h9LSUuLxOM888wy1tbX4/X5CoWSPmrTY5+TkKI9bse+0b9+e1q1b4/f76dy5c7bNUfyIWCxG91ZdWfibhVz4z/NZvmU5Tt1BsasImQAzYXLfhffz8ZdL6ezvzJtr3qRDp0K2fFuJ25dHeWUVsYTOfW//lbvGTiYcDuP3+4nH4zhljOfvPA5Tj4GQ/OqWleQUtMU0TQoKCgiHwzgcDgKBALm5udTU1JCbm0tubm6TPNc2bdoQCATwer0Z/yw6nU50Xcdut2MYRnJSt14z62g0SmlpKXfeeSdvvfUWxx57rBWP1nUdm82GlNL615EOe0gpcblcrFq1ilNPPZVAIAAkkwjsdrsVVnI6ncAP/3KUx61QHMTk5uZSWVlJB297nvjVLG5ceCM7anbQs7gXdmnHTBj888MFeO1eorEILoeT7Z84OKLLALbt2ERd8Q5KtE78vzcXcErXUzlt0GlUVlbiccHyNx8mENJo3XkAvY45CeHMJR6PY7fbqa6utiYni4qKqKyspLi4uEk97qbE4XCgaRo2mw1N06zn8fTTT1teNEAikeCiiy7ikksu4ZxzzqFr165MmTIFKSWGYVgC7HQ6+d3vfsf27dv5+9//zj/+8Q9LtCGZFTN79mx+97vfYZomDofDmkfYm2wZJdwKRQskEomQl5cHwADPAP7fJX/nrKfO5usd6/A5fOSIHOIiTmV8JxWV5VTvrOb0gWMpcbXHxM7ReQN464v/UOR24LY5CQaDBHZs5JV/z2DH1s9o3aE/w34zlYLWXbEJgd1uxzRNiouLLY+7qqoKn8/X5B53UxKNRikqKqKurg6/34+u6yQSCf7+97+TSDTM8d62bRtTpkzhtddew+v18tlnn2EYRoNjbDYbr732GlJKVq5c+ZPzSSmZPXs2F1xwAQUFBYRCIYQQeDweEomE5fHviUN25WQ8Hmfnzp3ZNkOh2CfS3pmUEpuw0bOoF+9c9w492x5GXayOdRXr+WzrClZ9twpfnp+BfQYS1aJ8u30rwmGj7vsEJ/YYQ16ugzufv4HN2zby7cbVfP3lcoadeRvn3jCf4rbdEST/xqcFJZ0WKITA4XBgmiZ2u/0n3mJL8cDTPzxut5vq6moikQgAmqZZx0ybNq3BGo7Vq1ezbNmyn4g2JGPcK1asaCDabdq0Yd68edZ9h8NBq1at0DSN/Px8vF4vkPwXpUIlP8Prr7/O1q1b+e677zjyyCM5++yzLe9FoWgJ2Gw2YrEYIuUNa5pG2/y2vHHtq7z25Wu8+uXrLF3zERVV24kkwlSZduL2BGbCBB3WrvuKUwaOZnjJr2k9WHDjtAs5vNLOMQNGcdhxY8jNy7dEOp31IIQgkUjgdDoxDAOXy2VNUv5YcNJ//5s76TTAuro6ioqKLI87HfqApIi/9NJLFBYW7lKs98SoUaMa/BDous7OnTspKCggEAhYHrdKB9wDkydPZty4cQwfPpzLL7+cX/ziF0q4FS2KWCxmhSai0Sher5fa2lp8Ph8je47i3IG/5o0Vb1ARrCARS+Dz5BGNRIlHEyAF+gidzm06MfL4kRQVFuGvKOK7j77g5F/9gZLW7amqqsLr9aJpGg6HwxLpdH6yx+OhtrbWWrjj8/maJI+7qUmnAzqdyXBReoKwvkDn5OSwrw3Nr7zySh544AHeeusta5vdbsfv9zdIB4Tkwh3lce+GqVOnUlpaSq9evXj11VdZsGABEyZM4IUXXmgxf+8UitzcXOrq6oDkFz69Gi8dsw2Hw4w+djSB2lpyXS6itVV8O+9RYhvX4mnXgSNu+jMJpxM7sLOinIqV23B7W9Opc0/qqqsp9PlIaBobX3mR5f+cj3B6OOLM39DjxJEUFhdjGAYlJSWEQiGKi4utPOaWRjweJy8vj0gkQk5OjrWK0ePxWMckEgncbreVebI3nHXWWQANJjqllITDYbxer7Xd5XI18Mr3RMt8tfeDcePGMXjwYDRN4/XXX+fKK6/k0UcfzbZZCsVeEQ6HrdV80WiUvLw8K284fb195TJE2Wa2vLYQZ46XoydPB5sTYbdh7Kxg7Z0TMYQNM2Zirv2S1kf3Z8sLz/LdB4uJBOvI69SNw8++kDPumYqpa3z17ts8f8WFuPILGfnH8eS1bU+XXr0IBALk5OS0yH+t9eP3UkorxPPyyy/Ttm1bgsEgW7duZcWKFT9ZiNQYNm7cyHHHHcfGjRut851zzjnWnED91MO9cRwPOeH+3//+x8iRI5FS8tRTT9G7d28KCwuVt61oUbjd7gYx7kQigcfjQdM0PB4POz94k61T76TTBVfT59a/IgSE160l/TGXQtD3zmlIAbGKcgo/XkIikcAubAy44VZwOIlHIySiESJVOzClpMtxA+l83PEEqqv516Q78HfqzGUPzSDH72+xHrfT6SQej2Oz2ayl/EKIBh7yI488wiOPPLJP40+YMIFt27YxdepUIDk3MW7cONxuN6Zp4nK5rB+LvXkNW+arvY8sXbqUjz76iNLSUmw2G5s3b+aYY47JtlkKxV6TzuaAHyrmpReSVL73Bt89eT89LroWb9cexL/fgkBgQyIEqVqBguimrzGlxARaHz8YE0hEIkQrKzBN0KXElBIDMEyJYYIpk+f95SWX8v78+cy5/vdc+/QzDSbzWhLpglrplYzpycmpU6fuc1z7x6RFG5Lv25133smdd95pTYqml8knEolGZ5YcEsItpWT9+vXMnz+fBx54wPpLp0Rb0VJJZ3UIIayVfJFIBFG1ne0vP0/nsy/GXVSCGajChg0hUisCAQGYSDCTtzEliUgIQ0p0MynSppSYMnlbT1+bEgMTzQCXO4dfXPRbFj08nUevvIKb//7/svuC7CPp5esej4eamhqklDz22GM89NBDDUIjhYWF2O32BmmRNTU1uxwzPz8fp9OJaZpWDZj0sVJK5syZg91u56677rIyVQzD2Kt0wEMij/uTTz5h2rRpPPbYYy0yDqdQ/Jh0TDtdeS4QCFCQn0/Flyvxl7TFW1CMGaqFWAQRD2GLR7DHw9jikeQlFkbEwhANQywE0TBmJIyMhDAiIfRICD0cJBEOoYWCJEJBEuEg8WDyOhaqw9Q1Tr7qamrKygju2JHtl2SfCAaDFBQUkEgk8Pl8PPnkk9xzzz0NFt8ceeSRrFixgrKyMjZt2sSOHTv47LPPdlkts3fv3rz77ruUlZXx5ZdfUlZWxieffEK/fv2sYwzD4PHHH+eBBx5g27ZthMNhIOn9NzaN8qAX7nfffZe3336b6dOnqzi24qAhXZDI7XZjGEYyrS1QS+37b2DL8aAFayAWQUYjEEsKtS0ewREPY49HELEIxCPWMUYkjIxGMKNhzGgEMxJBj0TQIyG0SJhE+jocJhEOkQiHiIdDaLEETm8e7/2jZXrcOTk5RCIRHA4H27dvZ9KkSQ329+nTh1mzZlFUVGTFwuvq6mjVqhVTp06lV69e1rFut5ubb76ZXr16EY/H8fl8aJpGmzZtmDt3Lscff3yDsadOnUo4HLY6Qql0QJJ/ST7//HPef/99xo0b1yKW40oprZzONJMnT2bx4sUAXH311Vx22WXZME3RzEiHRiD5hU8kErhtgtg3X1E8aixmNIxhs2G3iaR7ZgO7zY7NBqYEYUowJdKUSNNEGhLTBMM0k/FtU6KZEk2aaEYyhKKbZnKbKdGN1G0Jbbt2QctQPPhAo2kaubm5xGIxrrvuOiu7JE15eTm33norhmFwxBFH8Oijj+LxeIhEIhx77LGccsopbNiwAYBTTjmFESNGkEgkrB+Eu+++m5UrV2KaJlu3bm1wbiEEf/jDH3jxxRdxuVx7lWp40Ar32rVreeSRR5g1a9YBWRhQUVFBYWFho/spmqbJhg0bGnxIli1bxsMPP9zguMmTJ1NaWgrQYieAFJmnfvqaldJmE0jTwIxF0G1gs9kxbQJpE2ATSLuAtDCZIM2ko2AayWvdBN0w0SVouokuk3HthGEmhdww0U2ThCnQDIlmmmiGSSwcyvbLsc+kGxg4HA7mzp3L+++/z0UXXWTtr66u5uOPP6ZHjx7cf//92O12IpEIbrebeDzeIBPE5/PRqlUrK8vH6/UyadIkxowZw4oVK35y7pkzZ3LhhRc2aGDRWA5K4f7ggw9YtGgRc+bMyVjB9d0RCAR44YUX2LRpE+3bt6dLly6cccYZPznulVdeYUe9OKBhGCxbtqzBMQMGDNjlG5wNEokEn3/+Of3798+2KYpdkEgkLIfEMAw8Hg+xQC1GOEJs+zZy/PkYNjs2u0DYQNgFCBsmNkwkupQYZlKQdSPtVUt0aZIwQEt71EZyMjIajRLXNHDnkDBlSrhBMw3ikQhNucBdSsnixYsz1sPyx2OnwxN2u50PPvjgJ8f07t2bBQsWkJeXh8Ph4O2332bHjh0UFBTQr18/LrvsMnRdZ9CgQSxbtowtW7aQk5PD2WefjcfjYdGiRYwdO5Yvvviiwbiffvop5513nuW87U2ZgINOuD/44AM++ugj7rrrriYXbUj213vmmWd4+umnWbFiBVOmTMFut/PPf/6zwXHHHntsg76DbrebOXPmNNu4ezQa5bXXXuOdd97JtiktmnPOOYf58+dzwgknkJOTk7FxPR4PO3bsQAiB1+tN9kH05WFKqPt6DfZeRyByPGCzpTztVCaJpiPcHgxpJoVX1wlv+45YOEzMMEkYkrguiZsGcR2cxW3A5ycWiRJPJBC6QSJ1nGZKErrB1tWr6Tnw+D0bvY9IKZk1a9Yuq+1lgnSnn1AoxKxZszjzzDNZt24d69ats84/depUHnzwQYQQVFVVMX78eIYMGcILL7zAOeecY5Vnvfbaa3nhhReYNm0akKxLcueddzYQ5Q4dOjBq1Cief/55SktLyc3NbXRVwDQHjXBLKVm7di2LFi1i0qRJ+P3+Jj+naZpMnDiRv/3tb8ybN48XX3yRjRs3smzZMiZOnNjg2M6dO2f0i6toGfTv359bbrnFintminSz3vRiEZ/PRzAU5MjSe1kzeRzGl2FKDu+LdLswbAJDgIhHMGtrsLdpj6kbBDeuwdAlsXicuKYRN0ziOkR1g7huEjNMtIptaNiR3nzs+QXISAzd7kAzIGGYbPxyFTZXLkf+YljGntuBJN3Y1+Px4PF4+OSTTygpKeG3v/2tdczXX3/NunXr+OCDDzj//PO56qqrKCoqstL9DMOwmicYhkFeXh5nnHEGTz/9NNOnT2fLli0N5q4KCgqYPn06N954I926dbO6Dh2SC3C++OILHn74YebOnXtAPG1Ixhnvu+8+rr/+eubMmcOIESO47bbbDpi3rzi0MQzD+pwlvUY7wleIppvYwmGqv/qc/J5HYDN07KaB0OJold9DeVkyV9sEzTRJmEkPOqEnvWiDVO62hEQ8QUwziAWCxL/7jphhojvdeNu2Z9uWrQSDEboefxh9myCMcSBIN/aNx+MUFRVRWFjId999RywWs/puQtIx3Lx5M/fffz9r1qzh3//+N8888wxSSnJycqz0wb59+3LzzTczceJEFixY8JPwh81mIxqNUl5eTu/eva1FPk6nk1gs1ug5skYLtxDCDnwGfC+lHCuE6Ab8AygCVgCXSCkTQgg38BxwHFAFnC+l3NLY8+wLixcv5t133+XJJ588oIIphKC4uJijjjqKp556ilgsxkUXXaREW9HkpJdqp8U7XV41BJgeD4l4DDSdcG0NhOsQoSA2m8CGQCIxpIkpk8Ktm6Ri1j/ErvV0/NtMxsNNU2LI5OpJQ9MI1dQSi0Sxuz1I2XLqb/+YvLw8qxt7bW0tLpeLTZs2MWTIEEaPHk1dXZ01gTlr1iyklLzyyisMHjyY0tJSq9u91+tFSsmECROYP39+A9G+4YYbLI88XRxs48aNtG/fHr/fj2EYe/2PbG887j8Ba4F0DGIKMF1K+Q8hxCzgKuCJ1HWNlLKnEOKC1HHn78V5Go2UkmXLlvHhhx8yfvz4rJSVLCkp4f7772fVqlV0795dLfBRHBDi8bhVwS4SiZCbm5sss9r7KAp/cQrb33wZEx1ZVYVDmNh0E2ETiJRwm7KeEEuZjG0bsoGA6/UmL3WZnLA0pETXJPGaAKYEu8fDGbfeYtVIaWmkQ06JRIL8/HyklAwbNoyRI0cSi8Wspeg2m41evXoxfvx4AGbMmMFNN91kpRMmEglrleS0adMs0b7rrrv4/e9/j8fjsVa5ejweYrGYVdURsLrFN1bDGuUaCiE6AqcDc1L3BTASeCF1yDzg7NTts1L3Se0fJZro53j9+vU8++yzjB8/nsLCwqY4RaM5+uijlWgrDhher5dQKNSglnR+fj5xYcffpSe6CXHNJBqJEo0miBgmUd0koievo7pJTE+KdVSTyYlJ0ySRSv/TpCRuSnRDoktBIuVxa6aJzZuXDCW4ctB0ncEnj24R6yR2RW5uboPXMB3yqKurIycnh7q6Oqu7fe/eva3H6bpu9ZKMxWI4nc4GTYDT9OrVi8LCQpxOJzabDb/fTzQaJT8/36rHnfa098bxbKzHPQO4FUinRRQDtVLK9GL+MqBD6nYH4DsAKaUuhAikjs9on7ClS5cyf/58nnjiiRb7N02h2FcikYiVpZS+HQgE8Pl82Lr2wtaqPbGKMjSZwI7AbiNVGTDpq0nZ0OtOL66xskUMA81IinfCTOdzS3QDYjW1mAKOHjUCT1ExlZWVFBQUNMiaaimk67yk86jTYU6Hw2E1AZZSYrfbG0weCiGsvOt0DZP6lzTpbvDpbZqmWXne6RBXOo7+48V3P8cePW4hxFhgh5Ryef3NuzhUNmJf/XGvEUJ8JoT4bG+rcC1evJjFixdb6TkKxaFGOu4ajUatCa/03/ouQ0/E06EzUcMklsoOSXrYJjFdJ6brRHWDqG78sN8S6dREpSGT+dxpMU/leWtmMoRS0rUb36xew9jrb8Dv97fI7jfwQypgWpzr53SnKzBKKbHZbHTr1q1BY4T//ve/AFaIJB3/rqqqApIty/r27WvtS2ed2Gw2DMNo8DjIfB73UOBMIcRpgIdkjHsGUCCEcKS87o7AttTxZUAnoEwI4QDygeofDyqlnA3MBmjTpk2jLV6zZg3//e9/ufnmm60mmwrFoUb6i5/+8qczINKCM+CWe3jlt2cQjYawC5GcmJRYZV1NwExXAUSi68lMkqQ4m+gGJMykmGummco+SQq42+endc/DadWzJ0Xt2lntvloi6SbBfr+fQCCAy+XC6XRanYSqq6vx+XxEIhEKCgoYNmwYixYtIhwOc8MNN9CpUydL2AHKysqsSoDHHXcc7dq1s+qkp2vK1NTUWJ3l063LEolEZtMBpZS3AbcBCCFOBG6WUl4shPgn8GuSmSWXAYtSD/l36v7S1P53ZQY7h/bu3Zu7775bLf9WtBiaonGuYRjWFz39lz4SieByuYhGoxR070Fu527sWPM5NmHDbpV0NZHYkCLlAaYmJ5P1tpMrJ5P1SITlaWumScxIhkwSpoHPX4DN5aJbv374CgqsmtIt0etOVweMxWIUFBRgmiaGYVBUVGS1ZYtGo/h8PqSUVn0YgMrKSiorK3c7dvpfUCAQwG63Y7PZqKmpwev1Ul1dbcXQ02GXdLPgxrA/eWulwHghxEaSMey5qe1zgeLU9vHAxN08fp+w2WxKtBUtiqbwRr1eL8FgkFAohMPhsPKRI5EIxcXFRCIRxjz2DHHNJK4bRDUjFR6RyeuESVRLhk/i6TCKIYkaENMFMd0kYZjEjeR2zTBJ6AaFHTrTa+gwPLleTrngAoLBICUlJS12ctLn81FTU4PL5aKmpsbKq043QN65cyd2u526ujoikQgDBw6kU6dOexy3bdu2jBgxwvpBcLvd2Gw2qx9oSUmJlcmSjhzszWu4V8ItpXxPSjk2dfsbKeXxUsqeUsrzpJTx1PZY6n7P1P5v9uYcCoViz0SjUXJzc8nJybGK8KdXAAYCATweD9Lhot8lVyeF2kgKd0T7IbadzC4xkvFvQ9YT8eSy9rhuErfi3RJ/2w50H3A827Zs4aQrriAQDJGTk0NtbW2DVl8tiUgkYnVc9/v9VkpjQUGBFR4xDAOv14vH42Ho0KHMmzePgoKC3Y7pcrmYM2cOJ554Im63m2AwiKZpSCmtbJWamppk3n0oZP1Y7M1rqFaKKBQtELfbjaZpVpZCNBq1VvDl5eUlGwMUFlEyeDi2Vu2I6pKIbhIxkimBP6QFyh9uGyYxzUh62XoyRTBuGCRMicufT+uevajasZ1IMET3Y47B5/MRj8fxer0t9l+wx+MhHA7jcDgIh8NWOmD6RzAYDGK324nFYlZPyt69e7Ny5UqeffZZ/H4/Pp8Pv9+P3+9n+vTprFu3jsGDB+Pz+ax2ZA6Hw6orky5RoOs6ubm5DepxN5aDZsm7QnEoUX8pdjojon7tjPSkZbfjBzPg0qt5d/qDaJGw9XiZWogjZXKS0iAd7072mtStBTgmnqIS8tq0IxKN4nZ7mPL2W5YN9SdFWyL124ulqd+erP6+dPlcm81G69atGTNmDN9++y26rlsrIwFrviFdX9s0TSt7pP57BMn5ifpZJ41FCbdC0QJJNwhOi0G6WbDNZkPTNOva5XIx7KrrMKTk1b9MRjYQqGSGiSFJ5nSnl7XLH+py61JgMySBmhq6tmvH1Q8+iC1VCS8ej1s5yUKIFtnpvb7oplc3QtITT5fLhYbecHpf/YUz9VP6NE3D6XRamSKaplmPTSQS1r70e1b/h6KxqFCJQtECSedsx2Ixq7h/elteXp61BD0YDGKz2Tj+okv59UMz6XjswGQ8O3XpMOB4PG3aEjPM1EXSa/iJxE2SS+BNiEWi9D/5JK647z5yU81CTNMkLy+PeDxOXl5ei8woASxhTS+GSYtnfdFNL1VPe+DpSn7psEo6N1sIYSVPpJs5m6aJw+Gw9judTnRdb7Av/YO3N/9aWt5PpELRQohGo1RWVhKLxSgrK0PTNEpKSjI2flFREZD8C5+Tk4MQwtpWWFiIEIL27dtb+0deejnDzjsfo54HaHc6MU0D0/jBE3e4XGj1muUCuDweXB6P5R36/X6ryFpLzeGG5A+g2+1u8BrCD+GS9L76pLux72pfmp+LW+9LTPvHKOFWKJqI//3vf0yYMIEdO3YwYcIEiouL+dvf/pax8etXoUwLyJ6u7Y2sp+PZzeK23Y3bUkkvYkrfrr/9x9sas+9AoUIlCkUTEIlEeOedd3j66afp27cvTz31FH369GHJkiXZNk1xECCaYlXX3lJYWCgvueSSbJuxW+LxuLWKqrkSCARwOBwZKwNgGAZbtmyhR48eGRkPkm3etm8vQcrmm4FQUPA9Xbp02POBe8AwDLZu3Ur37t3ZtGkTXbt2pa6uDtM09+tzZBgGVVVVtG7der9tbCrC4TCGYWS0C9X69es57LDDMjZeVVUVeXl5jV6pmA3mz59PTU3NLt36ZiHcQohKIEyGKwhmkBKUbfuCsm3fULbtGwebbV2klK12taNZCDeAEOIzKeWAbNuxK2bvclkAAAUsSURBVJRt+4aybd9Qtu0bh5JtKsatUCgULQwl3AqFQtHCaE7CPTvbBvwMyrZ9Q9m2byjb9o1DxrZmE+NWKBQKReNoTh63QqFQKBpB1oVbCHGqEGKdEGKjECKjTRf20Z4tQogvhRCfCyE+S20rEkK8LYTYkLo+IC3lhRBPCyF2CCFW19u2S1tEkpmp13GVEKJ/luy7Wwjxfer1+zzV8i6977aUfeuEEKOb0K5OQojFQoi1Qog1Qog/pbZn/bX7Gduy/rqlzuURQnwihPgiZd/k1PZuQohlqddugRDCldruTt3fmNrfNQu2PSuE2FzvtTsmtT0b3wm7EGKlEOLV1P2med1+3J34QF4AO7AJ6A64gC+AI7Ns0xag5EfbHgAmpm5PBKYcIFuGA/2B1XuyBTgN+A/JZs0nAMuyZN/dJNvb/fjYI1Pvrxvolnrf7U1kVzugf+q2D1ifOn/WX7ufsS3rr1vqfALIS912AstSr8lC4ILU9v/f3tmEalGFcfz3LLQiI1FCxLsoQ1AIsUgJFBGTyAqvwl0IQS4EwWohLQQR3Lms3IiC9qF9KWmhuDK6iisx/Eiv+NGFgsSLd6XpxtL+Lc4z3uH1fV8VmznzwvOD4T1zZmD+/N85z8x5zsyc7cBaL78PbPfySmBvBm1fAgNt9s/RJj4CvgUO+XolvuW+454HDCvNpvM3af7K/sya2tEP7PLyLmB5HQeVdIz7J1rupKUf2K3EcdJkzlMz6OtEP7BH0m1JvwPDpP+/Cl0jkk55+SZwAZhGA7zroq0TtfnmmiTplq+O80XAYmCf17d6V3i6D3jdrJqPeHTR1ola24SZ9QFvAzt93ajIt9yBexrwZ2n9Ct1P4joQcNjMTprZGq+bImkEUsMDcr5v3ElLk7z80Lumn5fSSln0eRf0ZdLdWaO8a9EGDfHNu/tngFHgJ9Jd/nVJd9pouKfPt98gzUFbizZJhXeb3btPzax4j71u77YA64HiU4uTqci33IG73RUm92Mu8yW9AiwFPjCzhZn1PCxN8XIb8CIwBxgBPvb62vWZ2QRgP7BO0l/ddm1TV7e2xvgm6a6kOUAf6e5+VhcNtepr1WZmLwEbgJnAXGASaSLzWrWZ2TvAqKST5eoux38sbbkD9xWgPGVyH3A1kxYAJF3131HgR9KJe63oYvnvaD6FHbU0wktJ17xx/QvsYKxbX6s+MxtHCozfSPrBqxvhXTttTfGtjKTrwFFSfniimRWfgS5ruKfPtz/Lw6fP/g9tb3r6SUoTln9BHu/mA8vM7A9Syncx6Q68Et9yB+5fgBk+8jqelKQ/mEuMmT1tZs8UZeANYMg1rfLdVgEH8iiELloOAu/5SPprwI0iLVAnLTnEFST/Cn0rfTT9BWAGcKIiDQZ8BlyQ9ElpU3bvOmlrgm+u4zkzm+jlp4AlpDz8EWDAd2v1rvB0ABiUj7jVpO1i6WJspBxy2bta/ldJGyT1SXqeFMcGJb1LVb5VPcr6oIU08nuZlEfbmFnLdNII/q/A+UIPKff0M/Cb/06qSc93pG7zP6Qr9OpOWkhdr63u4zng1Uz6vvLjn/WTc2pp/42u7xKwtEJdC0jdzrPAGV/eaoJ3XbRl982PNRs47TqGgE2ltnGCNDj6PfCE1z/p68O+fXoGbYPu3RDwNWNPntTeJvy4ixh7qqQS3+LNySAIgh4jd6okCIIgeEQicAdBEPQYEbiDIAh6jAjcQRAEPUYE7iAIgh4jAncQBEGPEYE7CIKgx4jAHQRB0GP8B3ecKdiRIWmrAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## بررسی سیاست\n", + "\n", + "از آنجا که Q-Table \"جذابیت\" هر عمل را در هر حالت فهرست می‌کند، استفاده از آن برای تعریف ناوبری کارآمد در دنیای ما بسیار آسان است. در ساده‌ترین حالت، می‌توانیم به سادگی عملی را انتخاب کنیم که با بالاترین مقدار Q-Table مطابقت دارد:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "# code block 9" + ] + }, + { + "source": [ + "اگر کد بالا را چندین بار امتحان کنید، ممکن است متوجه شوید که گاهی اوقات فقط \"متوقف می‌شود\" و شما مجبورید دکمه توقف را در نوت‌بوک فشار دهید تا آن را قطع کنید.\n", + "\n", + "> **وظیفه ۱:** تابع `walk` را تغییر دهید تا حداکثر طول مسیر را به تعداد مشخصی از مراحل (مثلاً ۱۰۰) محدود کند و مشاهده کنید که کد بالا گاهی این مقدار را بازمی‌گرداند.\n", + "\n", + "> **وظیفه ۲:** تابع `walk` را تغییر دهید به‌گونه‌ای که به مکان‌هایی که قبلاً در آن‌ها بوده است بازنگردد. این کار از حلقه زدن `walk` جلوگیری می‌کند، اما همچنان ممکن است عامل در مکانی \"گیر بیفتد\" که نتواند از آن فرار کند.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 5.31, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "# code block 10" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 57 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5wU5Z3v8c8vEk1islETkuPtlcFdT3LMvjbRsF5iTnajibdkQ5KjOeRKjKsnWT3rms1mwVw8q/EWL6gJXlAwxBsqQSWCIgJeuDPc5TrDfQBhhoFhYBiYgef80U8PPT19qe7p7qrp+r5fL5jup6qrnuqq/tVTTz31POacQ0RE4uE9YWdAREQqR0FfRCRGFPRFRGJEQV9EJEYU9EVEYqRf2BnI5aMf/airqakJOxsiIn3KggULmpxz/TNNi3TQr6mpoba2NuxsiIj0KWa2Mds0Ve+IiMSIgr6ISIwo6IuIxIiCvohIjCjoi4jEiIK+iEiMKOiLiMSIgr5IlXr1nW007T0QdjYkYhT0RapQy/4OfvLkQn78x/lhZ0UiRkFfpAp1HjoMQMOu/SHnRKJGQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYCBX0zu8HMlpvZO2b2jJm9z8wGmNlcM6szs2fN7Gg/7zH+fb2fXpOynGE+fbWZXVyeTRIRkWzyBn0zOxn4V2Cgc+5vgaOAwcCdwHDn3OnALuAq/5GrgF3Oub8Bhvv5MLMz/Oc+DVwCPGhmR5V2c0REJJeg1Tv9gPebWT/gA8A24AJgnJ8+BviGfz3Iv8dPv9DMzKePdc4dcM6tB+qBs3u/CSIiElTeoO+c2wLcDWwiEexbgAXAbudcp5+tATjZvz4Z2Ow/2+nn/0hqeobPdDGza8ys1sxqGxsbi9kmERHJIkj1zvEkSukDgJOAY4FLM8zqkh/JMi1bevcE50Y65wY65wb2798/X/ZEpACz1+7k0bfWhZ0NCVG/APN8GVjvnGsEMLPxwOeB48ysny/NnwJs9fM3AKcCDb466MNAc0p6UupnRKQCvvPoHACu/uJpIedEwhKkTn8TcK6ZfcDXzV8IrACmA5f7eYYAL/nXE/x7/PRpzjnn0wf71j0DgNOBeaXZDBERCSJvSd85N9fMxgELgU5gETASmAiMNbPf+rRR/iOjgCfMrJ5ECX+wX85yM3uOxAmjE7jWOXeoxNsjIiI5BKnewTl3E3BTWvI6MrS+cc61A1dkWc6twK0F5lFEREpET+SKiMSIgr6ISIwo6IuIxEigOn0R6du27t7PrLU7w86GRICCvkgMDB45h03NbWFnQyKgqqt3duxp56xbprBme2vYWREJVWPrgbCzIAENHjmb+1+vK9vyqzroT1m5neZ9B3l85oawsyIiEsicdc0Mf31N2ZZf1UFfRES6U9AXEYkRBX0RkRhR0BcRiREFfZEq1GOgChFPQV+kimUauUjiTUFfpIqpxC/pFPRFqpBK+JJNTIL+kfLOV+59k/ELG0LMi4hIeKo66FuG8k7djr387LklIeRGRCR8VR30RUSkOwV9EZEYUdAXEYkRBX2RGHBqvCmegr6ISIwo6IuIxIiCvohIjMQq6Dunek2Jp0zPrEg8xSLoK9aLiCRUddA3FW5ERLqp6qAvIiLdVXXQV7WOiEh3VR30k1TNIyJRc+iw47/+spyGXW0VXW8sgr6ISNQs3ryLx2du4IZnF1d0vQr6IiIhSFY/H65wNbSCvkiVeLuukUfeXBt2NiTiAgV9MzvOzMaZ2SozW2lm55nZCWY2xczq/N/j/bxmZg+YWb2ZLTWzs1KWM8TPX2dmQ8q1USJx9INR87j9lVVhZ0MiLmhJ/37gVefcp4DPACuBocBU59zpwFT/HuBS4HT/7xrgIQAzOwG4CTgHOBu4KXmiqBS15hGRuMsb9M3sr4AvAqMAnHMHnXO7gUHAGD/bGOAb/vUg4E8uYQ5wnJmdCFwMTHHONTvndgFTgEtKujVZKNhL3OiQl2yClPRPAxqBx81skZk9ZmbHAh93zm0D8H8/5uc/Gdic8vkGn5YtvRszu8bMas2strGxseAN6r6sXn1cpM9L/gTUn74kBQn6/YCzgIecc2cC+zhSlZNJplDrcqR3T3BupHNuoHNuYP/+/QNkT0REggoS9BuABufcXP9+HImTwHZfbYP/uyNl/lNTPn8KsDVHuoiUicr3ki5v0HfOvQtsNrNP+qQLgRXABCDZAmcI8JJ/PQH4oW/Fcy7Q4qt/JgMXmdnx/gbuRT5NREpMNZuSTb+A8/1f4CkzOxpYB1xJ4oTxnJldBWwCrvDzTgIuA+qBNj8vzrlmM7sFmO/nu9k511ySrRARkUACBX3n3GJgYIZJF2aY1wHXZlnOaGB0IRkUEZHS0RO5IiIxEqugr5taIhJVlRrONRZBXw9nSdxpjNxo++sbJ/Gth2ZVZF1VHfR1mItIVKWWRQ8ddizatLsi663qoC8iIt0p6IuIhCCsmggFfRGRGFHQFxGJkaoO+mq0IyLSXVUH/SR1sSxx5Zzj91Pr2N9xKOysSETEIugnVerhB5Go2NXWwT1T1oSdDYmQWAV9kUrae6CTZQ0trNy2hzteWaVCh0RC0F42+zT91iQMV4+pZfa6nRzT7z0c6DzMtV/6az70vveGnS2Juaou6asqX8K0cNMuADoPJ0odpptLEgFVHfRFRKQ7BX2REL2xegf7D5a2ZY3uHUguCvoiIVn9bis/enw+v3rxnZIu97ZJK0u6PKkuCvoiIWlt7wBgw859JV3uk3M26cFEyUpBX0SkAhpbD1AzdCK1GxJDg4d1Yo5V0FfpRyopebwl2+yorj3e5q1PBPvRM9d3S690m65YBX2RMKilpkSJgr6ISIgqff0Xi6DvVLEjMaOLi+jTICploMtqEZHuqjroi4hIdwr6ImWmRjsSJQr6IiIxEqugf+iwilxSebq3JFESq6B/9+TVYWdBpAc9tCWVFKug/+ryd8POgkgXXQFIGKo66KsAJVFWruNTJ5PqsHPvgbIst6qDfpLpURWpgB2t7cxZt7Pgz5V6RC0VdqIt1/7pPHS463W5bkHGIujriVyphG+OmMXgkXPCzob0YXe+uqrs6wgc9M3sKDNbZGYv+/cDzGyumdWZ2bNmdrRPP8a/r/fTa1KWMcynrzazi0u9MT3zXO41iByxZff+nNNV9BA4EpcyHQ9zfU+cienlOWIKKelfD6QOyXMnMNw5dzqwC7jKp18F7HLO/Q0w3M+HmZ0BDAY+DVwCPGhmR/Uu+yIR5n+zql6UXCLZtbKZnQJ8FXjMvzfgAmCcn2UM8A3/epB/j59+oZ9/EDDWOXfAObceqAfOLsVGBKWSv4RCx50UI+Q6/fuAXwDJuwwfAXY75zr9+wbgZP/6ZGAzgJ/e4ufvSs/wmS5mdo2Z1ZpZbWNjYwGbIiIi+eQN+mb2NWCHc25BanKGWdMHCkqfluszRxKcG+mcG+icG9i/f/982SuIWjVI2DoOHWZWfVPY2ZAIyRqWynSFGKSkfz7wdTPbAIwlUa1zH3CcmfXz85wCbPWvG4BTAfz0DwPNqekZPiNSvVJ+1fdOWcN3H5vbNU5qqbR3HCrp8qT88sb0sKp3nHPDnHOnOOdqSNyIneac+x4wHbjczzYEeMm/nuDf46dPc4nnzCcAg33rngHA6cC8km1JACrpS5gMWLtjLwBNew+WdNnN+0q7PCmf1vbOrNMqcfunN+30/xP4mZnVk6izH+XTRwEf8ek/A4YCOOeWA88BK4BXgWudcyqexMg9r61mWUNL2NkI7K7Jq3hhUUPJlucobeHtF+OWUDN0YgmXKJXwdl336r0FG3dVdP398s9yhHPuDeAN/3odGVrfOOfagSuyfP5W4NZCM9lbyRK+Wu+E6/fT6vn9tHo23PHVsLMSyIjpawH45pmn9G5BeY67Yjtce642+wkp6BI7Dh3m1y++w79eeDonHff+ovIh5VGuiomqfiJX7aMlalKPyPRCyN4DnSzc1PtSXyGFm7frGhk7fzM3vrCs1+uVvqGqg75I1OQqvV371EK+9eAs9rR3VCw/SSoeRUPq8VGufaKgLxICs54NC5ZtSdzv6Og8nOET0tcVWr2s6h2RKpIa8EvRy6buV1WHqLfeEYmFGXVN7G7rO00inVN1TRRFpcm4gr5IHt8fNZerxtT2ejmpP/rmfQfZvKut18sslYjEo9hbktKkuVwnCQV9kQDWbG8t+rOZSt03vrCMG55dknH+Yn7rqQFif4Cncy9/aJbPm64JwhLWiVZBXySICvxCexN+t+bpyz9dbYUfCJLCles+jYK+VESxDyBFRVGl7wqW5fIN4CJ9j6p3eiH53fXxuBOqhZt20XGo+psSjphezx2v9ByyrvNwdW67hhINx4qte3hyzsZQ1l1QNwx9jqorS2Lltj1868FZXP0/B/DLr54RdnbK6q7JqwEYeumnuqW3dwQP+sPGL2XHngNd74OGVYXf+LjsgbdDW3d1B/20X5HaMhenaW8igK3cVvzNzGp36PCRg+2ZeZszzpPt+OvrVV9SHlEYI7fPUqyXchs2fmmg+XLF9zCO02ufWhTCWiVMsQj65eacU2kt5nL1eJkUtUPkzTWNgZp3SjjK1Zw2VkG/HD+6toOdDBg2iT9Mqy/9wiNGN/2KU4qf7oqte/iHu6bT0pa5M7b0Y3vKiu15l7moBD16SnCF972j6p1I2u1/hE/P2xRyTnqvdkMzO/ce6JGuB3h6pxQ/3Qem1rFxZxuz1gYbX/eXL76Td577Xq/reh21qxApHwX9Eho+ZQ33vLY67GwU7fKHZ3PFI7NLvtz7X69jwLBJJV9utSpFAFZ1o2QTq6Bf7tY790+t4/d9vJpnXeO+ki9zzOwNJV9mNUn2sqnWZZJKD2dJn1Xtpc69B7IPdF1q2b5J3W+Jvqj8DGIR9CPyXcdWNX//k5Zt429vmlySZeVszlnmATh0lRE96nunGClf2uHDrixn2moOaNLTo2+t4+a/rOh6/9aaxuAfDniwhBGAo1IKlSMmLXu3LMut7qCf4rQbJ2XslOqRN9fy0uItgZbxz2Pm89mbX8s4bVtLe6/yJ6WxoWkfNUMnsrRhd1mWf+uklYyeuR6APe0dge6BFBrDcwXgbNPS0xXE+75bXl6Rf6YixCboZ3P7K6u4fuziQPO+vnJHVxPNOEoGknELGlj17p6M83QeOsySzd0DbiUD0LRVOwAYvzDYiTyb1G4Vsvn2w7OZt6G5wCVnX25qCb9ue2ugtvYihYp90O+tOFSFplc3/Pz5JVxyX+YOo+5+bQ2DRsxk+daWjNP7iuZ9+YdHXPVusL6IijnnfWX4W1z9p56jdanuXXpLQT/mWto6WNu4t6jPDhk9r0fVWDLYN+3tO2PKVox1/ddNtbdukmhR0I+5r4+YwYX3vFlU4HlzTWPgqrFstu9pp2V/6arMol8S7l2AL9f5Qaed+FDQ76W+/mPZuDP44NzFBpxcJ5RzbpvKF+6cVtyCC9TecYimvQdoj3gnY+lt7mfUNfUYo7fQ4RFFkqq7P/0y29kHAkhQ5axhyLfo1vbgDzftbjvIuAUNXPWFAV1PsmZcZ4YN+tSvXwXg7075MBOu+0LgdZaMSzQGyC7z9nx/1NweaZ+/o/uJUjVE0fDtR2bzoWP6MepHf99jWlSuQhX0e+Fzv32dE449OuxsVEwUDtrP3jwl8ffU4xhYc0KP6UGyuLShuJvM/3DX9KI+F4GvLa++kMe+YN76QltzVV4sqnfKWQoK0sqjL0j9ivpC1cHBEMbrLaQqLFXwwy//nOpuQXqrqoO+Si+5ZRvoPL3qIKnok2c54lQBy2xsPcDztZmHMIyChZt2d6uzT+3KumboxIrkQaeS+FD1Toz95qUjfa7nutlazMkzSs0Q/88TtSzcVJ4ndEvlouFv8dEPJqoKc5Xms41tEJ1vW6Kuqkv6kluuJz63tezPWHUVpWCeS2oud7T2HBgmmvKfXh2OXwcYIEUSxs7bxKvvlKcPm0JF5aeTN+ib2almNt3MVprZcjO73qefYGZTzKzO/z3ep5uZPWBm9Wa21MzOSlnWED9/nZkNKd9mJUTkO+4T0r+r826fxlm3TOkx33MBq0neWH2kI7JK1u7katFTDa57ehFPzNkYdjb6jKHjl/GTJxeEnY1ICVLS7wT+3Tn3P4BzgWvN7AxgKDDVOXc6MNW/B7gUON3/uwZ4CBInCeAm4BzgbOCm5Imi3MKIA+ffMa3qSmQOR932zE/vvrx0K7tSrgz+OGtDhXIVfQc7E/dOdBNWoiBv0HfObXPOLfSvW4GVwMnAIGCMn20M8A3/ehDwJ5cwBzjOzE4ELgamOOeanXO7gCnAJSXdmgppyjCObLotu/cXVCL77csrutWxl0vDrjbWbG/11TRHzoa9ufTc1rKf655exE+fCl6iembeJs7M0mNpKaRuT5UX/gGYsGRrrz7fm2q78++Yxr1T1hT12T3tHRVvLfbKsm1sbk60xNqyez81QyeyMEaDxBdUp29mNcCZwFzg4865bZA4MQAf87OdDKTWATT4tGzp6eu4xsxqzay2sbGAvsorKFlyK6XHZqznT7PLf9n+hTunc9Hwt3hm3mYKrXgxLGMATX4fW3cH71562Phl7Cqwx9Ig33scAnwmBfXrX2Jbdu/ngal1+WfM4OLhb2VtLVYuP31qIZfdn+gwcEZd4nsbO29TSdfR0tbB6BnrI3kPLHDQN7MPAn8G/s05l7lfXT9rhjSXI717gnMjnXMDnXMD+/fvHzR7FRW93RjM9FVHngZNDxLlrHoo1YG/cluuwy65rpKsiu17QhwfIYQDLKx7IWGNQ9Fa5iEuh72wlJtfXkHtxuhdQQQK+mb2XhIB/ynn3HifvN1X2+D/JiNKA3BqysdPAbbmSC+7CJ5sQzFtVXoXAIX90B2uqOBQlhu5Zd6nC8rwY83W3DLdna+uLvm6o6alrYPdbdXxYGMmyaveYh/oK6cgrXcMGAWsdM7dmzJpApBsgTMEeCkl/Ye+Fc+5QIuv/pkMXGRmx/sbuBf5tLJJ/sTmbdjZq+V0HjrMw2+u7XofxUu2pBcWNXDFw7MK/lzOTUqJVZm2PUpfRzVU7/x5YUPF17k6y6A45fKZm1/r6lIjTOU6dhf7gYTumryqKy0qx2aQh7POB34ALDOzZD+6NwJ3AM+Z2VXAJuAKP20ScBlQD7QBVwI455rN7BZgvp/vZudcRTqq2Nxc/I2izkOHOfu2qX2mu4Ubnl2SdVpqFc6ry4O1XT4cYASpsI2esZ7jj30v3zzzlK601G3NVsLuOHSY68cu4voL/zuf/G8fKns+o2z7nr7yLEPpjJm1gZsmLC/rOqJUIErKG/SdczPIXg9wYYb5HXBtlmWNBkYXksGwvbmmMWPAzzZcYLVJ7+MmU/VOvhJM+oH/qxeX9TZb3dzsxxL95pmn8Nry4EMMrti6h0nL3qVh1/6K9Lp54FDuHlmDtAqrViOm1/P9cz7Bhz/w3oqt8+m5pb15m0lUSvep9ERuHpnGSnWOijzl19rewYqtxZ1cnHPM39DM7LW9q9pKDdj5Si2bmttYmFYXvqe9g/1p3U8/Oafnj62zRB2ozahv6vb+3ZZ2NjX3rFd1zvGbHKW8Fxf3bozdTK4e03P4w1LoC1djSTv3HmBHa8+bt3dNXs2vKtBkWRT08ypFq4ZtLfsZMb2+4HsBVz4+n8seyDwWbT7OwRUPz+Y7j84JPH82qdUj+b6NfQe7B/gfPz4/y5zdFTp6Vr7WRsnt+drvZ2Sc/lzt5h4DuKdaVIa+epYU2aVzPoWMR1Col5duZUPTvkDzBjn5fO63r3P2rVMzTmsrc4uaMESxekdBv0hBW2IA/PTJhdw1eTV1Owobi7Y3zb0OpRxt+w/2bqCXoAE2k8U5AmsQW3bv59aJK4ouzWarMvnPP5e2iilMo2asK9uyr3t6ERfd91bZlp8qzPhYyO+5EBGM+fEN+hOXbqvYupJB93CRp/1iWgulVkt9+5HZrGvcmzM4z12fvxrIrPCD+D0Br5Q6DmVe8vXPLOLRt9ezpKH7yeOFhVtwzmUthT5V5vraJ2ZvKOvyC/HAtPqyLr8cDyNWQiGNL54tU9fbhVSPVkpsg/61Ty+s+DorudNTb8Au29LCBfe8yZYcj7v/KEA1jHMw8q2epcpccf09AY+wc2/vfsm/o7Wd7Xva6chSwh+/aAuTl7/LzLVNGaeX269fKm+rj76ot4f37raD1AydyMtLjzy+s2Z7K/uKrPZpzNC76gV3v1Fs9qpGbIN+ujezPMZeiou+Qm4LzN/QsxVr0JPFz58/0lwzU510as+XhejNpW/Qkn6q1vYOzr51KufclrnuN6llf0dkSk/VYH3Auvtsevv8yjq//lEz1nct76Lhb3HVmGD3hQpZRy6z1jbxwqLKPytRKQr63pDR8zI+hZkpZjlXmqZYre0dfOvBmaxrPFLXf8XDs3uUyA8eOsyNLyzLe7k6bsGRA/W495em6Vtqff7qlNGdgiom6N82aVX+maTkdgZsMvrioi3UDJ3Yo6O0XCF/4859jJheWDVU8hwyZ11xj/PkuxeV7Xj+7qNzuz3v8vLSrTya4Qq3r6rqoF9oy5v/9dCswKWVl3I06UvvtyVZJ/r4zPXd0qet2sHCTbsZ/nr3zqrOT+uAasLirTw9dxO3T1oZKG8Ag0bMDDxvLtv3HGCXf1x+d5YO0nK2/Cni5Higo+eN50zNLqF7oPl/RT5ok8zijLpwqoqiImg5PfnEcCENE74/ai53Tc7dvUSxFwqz1jZ161eq1K57ehG3FvDb6y56l6JVG/Snr97BnHWFt1F/fkH+yzqHY21j9svE9GqJPe2JYPlcbXGXjMkbwNkasMysb6LtYHmau33p7jf4l6eKv/9RTEk/U23S9WMX93hQbOe+g7yR8mNP78O/vsDWUoti1L1uPqve3ZO1yjOb13OMxBakBVl6s90g4XJ90z6+++hcrvxjzyqgYk4iuQpzNUMnsnFn4ne/YGMzNUMnUuevFkZMr+ebD5amoFVuVTtG7pUB24enW76lBQaemn/GgvSMYm0HO3lweqI/n3yllGxx0znHym2tfO+xuXz9Myf1OpfFSg/G5XLFw7O7vf9dno7Jvnzvm+XMTlW75L78z4ekH5Y/fWohG+74Kks272bnvgNc8KmP9yoPQa66v5RyY3b+hmb+vuYEnHNFD5F5/djFOacvbWjhEx85lr8sSbT+e6uuidM//qG8VzEQnadzq7akXyrFPhGbz/Apa7rqFPfmaZ2Q7dj/3eTVXQ9vFfoMQCllC77rGvcW9NDVlBXbmVvE1VmpRO9CvLJyxdgOf2Lfvqedt/NUgw0aMZMf/zHx9PH6pn28sXpHUaXu9I+s3LYnY0OHpCsens3m5jYeeWsd59w2tceN6VJ0lJhcwtKGYM+fpK4yW/VopVVtSb9YyX00d91OTj3hA9yTYUSgH4ya16t17G47yMz63gW3WfVNPPTGkZ4/g/Q1Xy6vr8x8WX/BPYWVtK/+UyJQfOusI2Pr5HpqtpSmrNjeZ9ujV8L3HpvLoM+elHW4zKT2tPsxXyphE8lL/cAntwz6ND84rybjPHvaO7ruzWxOuQ/0wqIGBn2mx5hNef3kicyjwS30reMKOZFsbO5d66hSUdDP4n+PzN59Qbabipn8/PklPZ4KHTxyDqveLbwljMOxo7WdptaDLNtSnkf6o6C3TQcLtaShpeuEE2cz6xNNFedv6HlvY976Zuat717KzlRd8alfv1qSvHz/sbl8+qS/yjjtpgnL+d45n+A97+mZgQUbd3XlMzUc3/DsEv7p7wqvAg3SG+2yMnWvUS4K+mlKXe02Lu3G8KX3vx0o4Kc2H92YcpL5x7veoO3gIf7j4k+WLpMRU45+byS/sfM3RaaL5Rn1Td06z0ttrnzYwR2vrmJthirN3+R4aK5c1Xf/9IfM/TtBorEBJJrD5rtKqhQF/TRjZm8sawdWQathxqS0REmtxmnzrSCC3DgSKUSh3RuVq7+aTM66pfuAK5meDM9nXY4Wd5DorqRQnQG/tC/f+2bBY0KXS6xv5KaXwpPGLyp9t7oiUVfojc58fUlNydGEsxLS85evSW569VUmvxy/jJqhE7veBy18RSXgQ8yDfmq3BVGT2v9Il7g3L5Gyatpb2Ohw/zEu9++n2PskpareS29VVujPZ1tLz76q0gdUzzTeRtTFOuhHWR88liRmolL/H1ShLTbPu31a/pn6IAX9PkTVTiLFu/GFcMZQuPkvK0JZbzYK+iJStFINc1nNRqf1uRU2BX0RKdq/R/i+mGSmoC8iRXtpcYYGBxJpCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxoqAvIhIjCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxUvGgb2aXmNlqM6s3s6GVXr+ISJxVNOib2VHACOBS4AzgO2Z2RqnX07I/OkOTiYhESaVL+mcD9c65dc65g8BYYFCpV7KuMRqjzouIRE2lg/7JwOaU9w0+rYuZXWNmtWZW29jYWNRKPnvqccXnUEQkAp695tyyLLdfWZaanWVI6zZypXNuJDASYODAgUWNFGtmbLjjq8V8VESkqlW6pN8AnJry/hRAozCIiFRIpYP+fOB0MxtgZkcDg4EJFc6DiEhsVbR6xznXaWbXAZOBo4DRzrnllcyDiEicVbpOH+fcJGBSpdcrIiJ6IldEJFYU9EVEYkRBX0QkRhT0RURixJwr6vmnijCzRmBjLxbxUaCpRNnpC+K2vaBtjgttc2E+4Zzrn2lCpIN+b5lZrXNuYNj5qJS4bS9om+NC21w6qt4REYkRBX0RkRip9qA/MuwMVFjcthe0zXGhbS6Rqq7TFxGR7qq9pC8iIikU9EVEYqQqg341Db5uZqea2XQzW2lmy83sep9+gplNMbM6/y+8XRcAAAQhSURBVPd4n25m9oDf9qVmdlbKsob4+evMbEhY2xSEmR1lZovM7GX/foCZzfV5f9Z3zY2ZHePf1/vpNSnLGObTV5vZxeFsSTBmdpyZjTOzVX5fnxeDfXyDP6bfMbNnzOx91bafzWy0me0ws3dS0kq2X83sc2a2zH/mATPLNFBVd865qvpHosvmtcBpwNHAEuCMsPPVi+05ETjLv/4QsIbEoPK/A4b69KHAnf71ZcArJEYpOxeY69NPANb5v8f718eHvX05tvtnwNPAy/79c8Bg//ph4Kf+9b8AD/vXg4Fn/esz/L4/Bhjgj4mjwt6uHNs7Bvhn//po4Lhq3sckhkldD7w/Zf/+qNr2M/BF4CzgnZS0ku1XYB5wnv/MK8ClefMU9pdShi/5PGByyvthwLCw81XC7XsJ+AqwGjjRp50IrPavHwG+kzL/aj/9O8AjKend5ovSPxIjqk0FLgBe9gd0E9AvfR+TGJvhPP+6n5/P0vd76nxR+wf8lQ+AlpZezfs4OV72CX6/vQxcXI37GahJC/ol2a9+2qqU9G7zZftXjdU7eQdf76v8Je2ZwFzg4865bQD+78f8bNm2vy99L/cBvwAO+/cfAXY75zr9+9S8d22Xn97i5+9L23sa0Ag87qu0HjOzY6nifeyc2wLcDWwCtpHYbwuo7v2cVKr9erJ/nZ6eUzUG/byDr/dFZvZB4M/Avznn9uSaNUOay5EeKWb2NWCHc25BanKGWV2eaX1ie71+JKoAHnLOnQnsI3HZn02f32Zfjz2IRJXMScCxwKUZZq2m/ZxPodtY1LZXY9CvusHXzey9JAL+U8658T55u5md6KefCOzw6dm2v698L+cDXzezDcBYElU89wHHmVlypLfUvHdtl5/+YaCZvrO9kMhrg3Nurn8/jsRJoFr3McCXgfXOuUbnXAcwHvg81b2fk0q1Xxv86/T0nKox6FfV4Ov+bvwoYKVz7t6USROA5F38ISTq+pPpP/QtAc4FWvwl5GTgIjM73peyLvJpkeKcG+acO8U5V0Ni301zzn0PmA5c7mdL397k93C5n9/59MG+1ccA4HQSN70ixzn3LrDZzD7pky4EVlCl+9jbBJxrZh/wx3hym6t2P6coyX7101rN7Fz/Hf4wZVnZhX2To0w3Ti4j0cplLfDLsPPTy235AolLtqXAYv/vMhL1mVOBOv/3BD+/ASP8ti8DBqYs68dAvf93ZdjbFmDb/5EjrXdOI/FjrgeeB47x6e/z7+v99NNSPv9L/z2sJkCrhpC39bNArd/PL5JopVHV+xj4L2AV8A7wBIkWOFW1n4FnSNyz6CBRMr+qlPsVGOi/v7XAH0hrDJDpn7phEBGJkWqs3hERkSwU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEb+P5qkdQkuhnG4AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "## تمرین\n", + "## دنیای واقعی‌تر از پیتر و گرگ\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/1-QLearning/solution/Julia/README.md b/translations/fa/8-Reinforcement/1-QLearning/solution/Julia/README.md new file mode 100644 index 000000000..987b6f39a --- /dev/null +++ b/translations/fa/8-Reinforcement/1-QLearning/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/1-QLearning/solution/R/README.md b/translations/fa/8-Reinforcement/1-QLearning/solution/R/README.md new file mode 100644 index 000000000..7a4ca9d5c --- /dev/null +++ b/translations/fa/8-Reinforcement/1-QLearning/solution/R/README.md @@ -0,0 +1,15 @@ + +این یک جای‌گیر موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb b/translations/fa/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb new file mode 100644 index 000000000..17250ef84 --- /dev/null +++ b/translations/fa/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb @@ -0,0 +1,457 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "eadbd20d2a075efb602615ad90b1e97a", + "translation_date": "2025-09-04T03:03:47+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# پیتر و گرگ: محیط واقعی\n", + "\n", + "در شرایط ما، پیتر توانست تقریباً بدون خستگی یا گرسنگی حرکت کند. در دنیای واقعی‌تر، او باید هر از گاهی بنشیند و استراحت کند و همچنین خودش را تغذیه کند. بیایید دنیایمان را واقعی‌تر کنیم، با اجرای قوانین زیر:\n", + "\n", + "1. با حرکت از یک مکان به مکان دیگر، پیتر **انرژی** از دست می‌دهد و مقداری **خستگی** کسب می‌کند.\n", + "2. پیتر می‌تواند با خوردن سیب انرژی بیشتری به دست آورد.\n", + "3. پیتر می‌تواند با استراحت زیر درخت یا روی چمن (یعنی رفتن به مکانی در صفحه که درخت یا چمن - میدان سبز - دارد) از شر خستگی خلاص شود.\n", + "4. پیتر باید گرگ را پیدا کند و بکشد.\n", + "5. برای کشتن گرگ، پیتر باید سطح مشخصی از انرژی و خستگی داشته باشد، در غیر این صورت در نبرد شکست می‌خورد.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math\n", + "from rlboard import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "## تعریف وضعیت\n", + "\n", + "در قوانین جدید بازی، باید انرژی و خستگی را در هر وضعیت صفحه پیگیری کنیم. بنابراین، یک شیء `state` ایجاد خواهیم کرد که تمام اطلاعات مورد نیاز درباره وضعیت فعلی مسئله را شامل می‌شود، از جمله وضعیت صفحه، سطح فعلی انرژی و خستگی، و اینکه آیا می‌توانیم در وضعیت پایانی گرگ را شکست دهیم یا خیر:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class state:\n", + " def __init__(self,board,energy=10,fatigue=0,init=True):\n", + " self.board = board\n", + " self.energy = energy\n", + " self.fatigue = fatigue\n", + " self.dead = False\n", + " if init:\n", + " self.board.random_start()\n", + " self.update()\n", + "\n", + " def at(self):\n", + " return self.board.at()\n", + "\n", + " def update(self):\n", + " if self.at() == Board.Cell.water:\n", + " self.dead = True\n", + " return\n", + " if self.at() == Board.Cell.tree:\n", + " self.fatigue = 0\n", + " if self.at() == Board.Cell.apple:\n", + " self.energy = 10\n", + "\n", + " def move(self,a):\n", + " self.board.move(a)\n", + " self.energy -= 1\n", + " self.fatigue += 1\n", + " self.update()\n", + "\n", + " def is_winning(self):\n", + " return self.energy > self.fatigue" + ] + }, + { + "source": [ + "بیایید سعی کنیم مسئله را با استفاده از قدم زدن تصادفی حل کنیم و ببینیم آیا موفق می‌شویم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(state):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(board,policy):\n", + " n = 0 # number of steps\n", + " s = state(board)\n", + " while True:\n", + " if s.at() == Board.Cell.wolf:\n", + " if s.is_winning():\n", + " return n # success!\n", + " else:\n", + " return -n # failure!\n", + " if s.at() == Board.Cell.water:\n", + " return 0 # died\n", + " a = actions[policy(m)]\n", + " s.move(a)\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 5, won: 1 times, drown: 94 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " elif z==0:\n", + " n+=1\n", + " else:\n", + " s+=1\n", + " print(f\"Killed by wolf = {w}, won: {s} times, drown: {n} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## تابع پاداش\n", + "\n", + "### مقدمه\n", + "تابع پاداش یکی از اجزای کلیدی در سیستم‌های یادگیری تقویتی است. این تابع به عامل کمک می‌کند تا رفتار مطلوب را از طریق ارائه بازخورد مثبت یا منفی یاد بگیرد.\n", + "\n", + "### تعریف تابع پاداش\n", + "تابع پاداش به صورت زیر تعریف می‌شود:\n", + "\n", + "- **ورودی‌ها**: وضعیت فعلی، اقدام انجام‌شده، و وضعیت بعدی.\n", + "- **خروجی**: مقدار عددی که نشان‌دهنده کیفیت اقدام انجام‌شده در وضعیت فعلی است.\n", + "\n", + "### نکات مهم\n", + "[!NOTE] تابع پاداش باید به گونه‌ای طراحی شود که عامل را به سمت اهداف مطلوب هدایت کند.\n", + "\n", + "[!WARNING] طراحی نادرست تابع پاداش ممکن است منجر به رفتارهای غیرمنتظره یا نامطلوب شود.\n", + "\n", + "### مثال\n", + "در اینجا یک مثال ساده از تابع پاداش آورده شده است:\n", + "\n", + "@@CODE_BLOCK_1@@\n", + "\n", + "### بهترین شیوه‌ها\n", + "برای طراحی یک تابع پاداش موثر، موارد زیر را در نظر بگیرید:\n", + "\n", + "- **شفافیت**: عامل باید بتواند به وضوح ارتباط بین اقدامات و پاداش‌ها را درک کند.\n", + "- **تعادل**: پاداش‌ها باید به گونه‌ای تنظیم شوند که از رفتارهای افراطی جلوگیری شود.\n", + "- **سازگاری**: تابع پاداش باید با اهداف کلی سیستم هماهنگ باشد.\n", + "\n", + "[!TIP] از آزمایش‌های متعدد برای تنظیم و بهینه‌سازی تابع پاداش استفاده کنید.\n", + "\n", + "### نتیجه‌گیری\n", + "تابع پاداش نقش حیاتی در موفقیت سیستم‌های یادگیری تقویتی دارد. طراحی دقیق و آزمایش مداوم می‌تواند به دستیابی به نتایج مطلوب کمک کند.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def reward(s):\n", + " r = s.energy-s.fatigue\n", + " if s.at()==Board.Cell.wolf:\n", + " return 100 if s.is_winning() else -100\n", + " if s.at()==Board.Cell.water:\n", + " return -100\n", + " return r" + ] + }, + { + "source": [ + "## الگوریتم Q-Learning\n", + "\n", + "الگوریتم یادگیری اصلی تقریباً بدون تغییر باقی می‌ماند، فقط به جای موقعیت تخته، از `state` استفاده می‌کنیم.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " s = state(m)\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = s.board.human\n", + " v = probs(Q[x,y])\n", + " while True:\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " if s.board.is_valid(s.board.move_pos(s.board.human,dpos)):\n", + " break \n", + " s.move(dpos)\n", + " r = reward(s)\n", + " if abs(r)==100: # end of game\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUVd7H8c+Zmt5J6CC9qVQpKoqIoggIuouCoojCIkXQXUV3F0XEh10bYAFBUQFBwRXXroggIjYiKkWE0EsI6Zle7j3PH5mMsBBqkjsJ580rr2Tu3Mz9zoT8cubcc88RUkoURVGU6sNkdABFURTlzKjCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs2owq0oilLNVFrhFkL0FUL8LoTIEkJMrqzjKIqinG9EZYzjFkKYge1AH+AA8CNwq5Rya4UfTFEU5TxTWS3uS4AsKeUuKaUfeAsYWEnHUhRFOa9UVuGuB+w/6vaB0DZFURTlHFmMOrAQYhQwCsBqtXa66KKLjIpySj6fD4fDQVpamtFRylVUVITVaiU2NtboKOXKzs4mPT0ds9lsdJRy7du3j4YNGxodo1zBYJDc3Fzq1KljdJRyOZ1OgsEgSUlJRkcpV25uLgkJCdjtdqOjlGvLli14PB5xwjullBX+AXQHPjvq9sPAw+Xtn56eLiPZjh075Lx584yOcVIrVqyQ69evNzrGSU2bNk0WFBQYHaNcuq7LcePGGR3jpPLz8+X06dONjnFS69atk++9957RMU5q7ty5cseOHUbHOKlQXTxhzaysrpIfgeZCiAuEEDbgFuD9SjqWoijKeaVSukqklEEhxDjgM8AMLJBSbqmMYymKopxvKq2PW0r5MfBxZT2+oijK+UpdOakoilLNqMKtKIpSzajCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs3U2MK9cOHCsqs2FaXKeb1eli9fbnSM0/L222/j9/uNjlGut956K6LzGaHGFe6VK1cycOBAgsEggwYNYvHixYbkkFJy3333GXJsxVhPPfUUw4cPJzc3l4EDB7Jp0yajI53QTz/9xMCBAyksLGTo0KHMnDnT6EjHyMzMZODAgRQVFTF06FBmzZpldKSIUaMKdzAYJCsrixtuuIF+/foxatQotm3bhs/nq9IcL7zwAq1ateKWW26hZcuWzJkzp0qPX9mklBQUFBgdIyK53W42bdrEI488wk033cTFF1/Mnj170HXd6GjH0HWdPXv20LlzZwYNGsTkyZPZvHkzbrfb6GhAab7du3fTtWtXBg0axIMPPsjmzZvxeDxGR4sINapwHz58mF27dtG3b1/69u1Lly5dsNlsbN68ucoyFBQUUFRUxKJFi/D5fCxcuJCCggIKCwurLENlW716NdOnTzc6RkRavXo1HTt2JD09ndtvv52hQ4fy0Ucf4fV6jY52DJfLxRdffMGQIUO45ZZbqF+/Pq1bt2bdunVGRwNKZxhcvXo1f/rTnxgyZAiNGjWiVatWfP3110ZHiwiGTetaGerXr0/Lli0ZPXo0hw4dYvz48TRt2pROnTpVWQaPx4OmacTFxfH999+zb98+4uLi8Hg8JCcnV1mOyrJixQq2b9/Ov//9b6OjRKR+/foxZMgQfv/9d6644gruuusupk+fTkxMjNHRjhEfH8+AAQMYOXIke/fu5aGHHkJKyQMPPGB0NAASEhLo168fI0eOZM+ePTz44IMAEZPPaDWqcAP079+fNm3acOeddzJ+/HgaNGhQpcevV68eMTEx/OlPf2LZsmVcdNFFNG7cmMGDB5ORkRHRc1GXR0qJrut8+eWX7Ny5k3HjxlXJ8whPYWmqXm8Mp02bxv79+5k4cSLdunWjY8eORkc6oa5du/Kvf/2LcePGcfvtt9OoUSOjIx2je/fuzJgxg3HjxvHll1/y5ZdfGh0pYlSv34jTkJGRQY8ePYiNjaV79+6GTIo/ceJEfvjhB6ZOnYrD4WDTpk38+9//ZtCgQWRnZ1d5nnO1f/9+rrzySj7//HPuu+++KlmsYf/+/Xz33Xfce++9bNu2rVr1bbZo0YKrrrqKWbNm0aBBAyyWyGwfJScn06NHDxITE+natSvNmzc3OtIxyvKtW7eOtLS0iMhXUFCAw+EwOkbNa3FHAqvVitVqZdmyZeFtixYt4uDBgzz//PM0adKEP//5zyQkJBiY8vT89NNPvPnmm3z66adVurrOqFGjaNq0Kffccw8333wzr7/+Op07d66y458rIQRXXXUVq1ev5ocffqBXr15GR6q2oqKijI5AMBhk4cKFHDx4ELvdTt26dRk2bBhCnHiBmsqmCncVqlevHnfeeSfffvstjz76KM8++6xhP/jTsXXrVt5//30eeOCBKi3aH3zwAX369GHo0KE89NBD6LrOY489Rmpq6nH7Dho0iBtvvLHKsinnp2AwyIwZM3jzzTdxOp2MGjWKYcOGHbPP119/zSuvvHLC7+/cuTPjx4+vsDw1snA/+OCDzJ49OyKLYosWLWjRogVdu3Zl5MiRzJo1i+jo6Ih7O33kyBFmzJjBc889d8KCWZkuvfRSlixZwk033cTkyZN54oknuPnmm2nXrt1x+y5fvpypU6ee9PE+++wz0tPTKyvuSU2cOJHRo0fTuXNn4uPjDclwKgsXLuTWW2/lww8/NDrKCQkhmDVrFg8++KBhJ8VHjBjBf//7XzZs2MCzzz7LgQMHjjt30atXL/7xj3+c8Pvj4uIqNE9kVYsKkpOTQ+3atSOycJdp2bIl48ePp3///gwfPpzbb78dq9VqdCwAtm3bxrRp01i0aJEhJwZTUlKoX78+48aN4/rrr+fAgQO0adPmhH2cDz/8MJMnTz7p4xn5/yA1NZXCwsKIG8d9tHr16nHw4EGjY5RLCEHt2rXJyckxLMOrr75K9+7deffdd+nQoQM333wzmZmZx+1XVb8vNbJwVwdCCDp06MCaNWt4/fXX+de//kWbNm0YPHiwYZmOHDnC/Pnz8fv9PP/884aO5njqqacoKSnhww8/5Kuvvip3PyFERP+BBhg6dCiLFi1i3LhxRkdRzpLVamXAgAHhqTSGDx9u6P89VbgjwB133MGqVavCfcr9+/evkv8QUkrWr1/PkSNH6N+/P5MnT+ZPf/oTF198MSkpKZV+/FNJSEhg6NChRsc4ZyNGjKBjx46qcJ8jIQRSSkOKpdVqZdq0aezevZuYmBgyMjKqPMPRatxwwOpICMHVV1/N6NGjyczMpFOnTpX+1lVKSZs2bVi6dCnr1q2jXr16/N///R/XXXcddevWrdRjn2+EEKSmpqppAs5B06ZNueyyy3jzzTcNzXHBBRcYXrRBFe6IYrfbmTp1Kj/88APPP/98pR5r/fr19O7dm4cffpioqCh69uzJxo0bK/WY5yshBPPnz6/QUQXnG7PZjNVqjbipA4xSI7tKhg0bRq1atYyOcdYsFgszZsyo1GPk5eWRlpaGx+Ph5ptvZvXq1eTm5lbqMc9nqamp3H777UbHOCEhBH/729+MjnFKXbp0UVM1h9TIwn3NNdcYHSHiDRgwgAkTJuDxeMjIyODJJ5/kwIEDRseqsRITE+nbt6/RMU5ICFEtziW0adPG6AgRo0YWbuXUhBDs2LGDNWvWkJOTw8GDB7HZbEbHUhTlNKjCfR6z2Wzq3YmiVEPq5KSiKEo1owq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXNOo0qEEHsAB6ABQSllZyFECvA20BjYA/xZSllzVspVFEUxWEW0uHtJKdtLKcuWJ5kMrJJSNgdWhW4riqIoFaQyukoGAm+Evn4DUMuTKIqiVKBzLdwS+FwIkSmEGBXaliGlLFsR9zBg/FRaiqIoNci5Xjl5mZTyoBAiHVgphNh29J1SSimEOOGsMKFCPwpKl/XZsWPHOUapPAcOHKCoqCiiM+bl5aHrekRndLlc7N69m7y8PKOjlMvv90f0a1hSUoLL5YrojIcPH47435eioiL2798f0ZNWnWzVpHMq3FLKg6HPR4QQK4BLgBwhRB0pZbYQog5wpJzvnQfMA0hNTZVr1qw5lyiVqqioiAMHDhDJGXfu3ElMTAz5+flGRylXXl4e69evx263Gx2lXE6nM6J/zl6vl29zv+W/a/5rdJRyxWTH0NvTO6KXazt48CCZmZlkZWUZHaVcJ339pJRn9QHEAvFHfb0e6As8BUwObZ8M/PtUj5Weni4j2Y4dO+S8efOMjnFSK1askOvXrzc6xklNmzZNFhQUGB2jXLquy3Hjxhkd46Ty8/Nlp+mdJBH8r/a62vK9994z+qU6qblz58odO3YYHeOkQnXxhDXzXFrcGcCK0DJCFmCJlPJTIcSPwDIhxEhgL/DncziGoiiK8j/OunBLKXcBF59gez7Q+1xCKYqiKOVTV04qiqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDM1rnBLKZk5cyaHDh2K6AlkFEVRzlaNKtw7duzgggsuIC0tjbvuuosbb1RTgSuKUvPUmMItpeSHH37gr3/9K23atGHx4sXUqVOH3377zehoNcaBAwfYtWuX0TEU5bx3rvNxRwwpJYcPH6ZBgwbMmjWLBx98kJSUlIie5rS6kFIyZcoUpJSYTCZ8Ph9PPvkkZrPZ6Gh89tlnNGnShObNmxsdRVGqTI0p3CaTiX79+tGrVy80TeOXX34hOTmZJ5980uhoQGnx03U9IordmdJ1nXfffZcVK1ZgsVgYNGgQU6dONfS5OBwOrrnmGq677jqWLl1KcXExK1asMCyPolSlGtNVAtCiRQt27drFNddcw+LFi/n000+NjgSUrgiyadMmhgwZwpYtWygqKjI60hmZMGECc+fO5euvv2bDhg0sWrSI0aNHG5pp586dtG7dmrvvvptnnnmGYDDIgQMHDM2kKFWlRhVuk8lEdHQ0ZrMZu90eMSutPPXUUzz22GM888wzjBkzhg8++MDoSGfk+uuvp2/fvqxcuZJ69eoxaNAg5s+fb2imd955h5tuuomXX36ZjRs30r9/f0P/UGuaxiuvvMI333xjWIaaYNOmTRF/HuXzzz/H5XIZmqHGdJVEqszMTJKSkpgzZw6PPPIIl156KZs3byYnJ4eMjMhfR3nFihXs3buXuXPncvjwYb766isef/xxLBZj/+uUnYSuVasW69evZ+/evWzfvt2wPEIIoqOj+eqrr5g7dy6xsbHMmTOH0EIjyikEAgHuuece6tevj9frxe128+KLL0bU67dz504ee+wx2rdvz7Jly2jdujUPPPCAIVlqZOGOjo7G6/UipTT8B9+qVSuWLVtGVlYWkydP5r333uOpp55i9erVrFy5MvwuwehC+L+klHz11Vds3bqVSZMmERMTg8PhQNd1EhMTjY5HfHw8q1ev5sUXX6Rbt25ceumlhuYxmUwMGzaM4uJicnNzcblcdOzYEYCZM2fSsWNHLBYL0dHRuFwuNm/ezJdffsm4ceOIjY3FZKpRb37PmNPpZMeOHTz55JO4XC4GDBiAw+EI//7u37+fYcOGnfB7V61aRUpKSqXmk1Jy8OBB4uPjueOOO9i6dSvTp09n1KhR4X0+/vhjZsyYcdz3pqWlsXLlygrNE1nVooLMmTOHTp06sWHDBsMLd2xsLI0aNWLKlCmMHDmSjz/+mEWLFnHZZZcxYMAApJQMHTqUtm3b0r17d0OzHm3t2rV88MEHPP300+HXMD4+3uBUfzCbzRw4cIDU1FRuvfVWw3/OZRITE0lMTERKSWZmJlD67mDq1Km0a9eOwYMHc/fdd9OnTx969epF06ZN+fnnn6lbt67ByY01efJknn32Wb799ltefPFF9u/ff8x1GPXq1Qu/nv+rKn72gUCAV199lX/84x/Mnj2bL7/8km3btjFw4MDwPtdee225GStajSzcQoiIumry3nvv5S9/+Qsvv/wyq1evDm9ftWoVAG+88Qbr1q2LiML9008/8fHHHwMcU7QjUdnPOBIzCiHCuZ599lkAfvnlF0aMGEHv3r2pV68eycnJzJw5k6VLl3L//fdH5POoKrNnz6Zly5bMmzePe++9lz179rBq1aqIeU1sNhv33nsvd955J6+++ipRUVEkJiby0UcfGZKnRhbuSGQymRgzZswJ77vjjjuqOM3xpJTs2bOHpUuXcvXVV3P55ZdHzC9NeSI93/+6+OKLWbx4MTNmzKBTp040aNCA9evX06lTJ6OjGc5qtTJ//nw2bNhAfHw8r776qtGRjtOqVSumTJnC888/T+/evenbt69hWVThVoDSUREPPfQQr732GrGxsUbHOS09e/akR48eRsc4I23atCE7O5sFCxbQs2dPFi5cyF/+8pdq90eooplMJvr06cPll1+OyWTCZrMZHek4iYmJXHvttfTo0cPw8xKqcCsAWCwWli1bZnSMM2K1WrFarUbHOGMrV64kKyuL9evXs3PnTqPjRJSoqCijI5xSJJzrUYVbUQzQrFkzmjVrZnQMpZqqsWOQlixZct6//VQUpWaqsS3u1q1bGx1BURSlUtTYFreiKEpNpQq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXPKwi2EWCCEOCKE2HzUthQhxEohxI7Q5+TQdiGEmC2EyBJC/CqE6FiZ4RVFUc5Hp9Pifh3434vyJwOrpJTNgVWh2wDXAc1DH6OAORUTU1GU6kRdQ1G5Tlm4pZRrgYL/2TwQeCP09RvAjUdtXyhLfQckCSHqVFRYRVGqh0ianbMmOts+7gwpZXbo68NA2VIu9YD9R+13ILRNURRFqSDnfHJSlv5pPeM/r0KIUUKIDUKIDR6P51xjKIqinDfOtnDnlHWBhD4fCW0/CDQ4ar/6oW3HkVLOk1J2llJ2jo6OPssYiqIo55+znavkfeAOYEbo83+P2j5OCPEW0BUoPqpLpVyapvHee++dZZTKl5eXx86dOyM64+bNm9m7dy85OTlGRynX4cOH+fTTT4nkP9QlJSUR/XN2u93EZsfS5L0mRkcpV/yeeDa7Nkd0P/euXbuwWCxs3rz51DsbRNO0cu87ZeEWQiwFrgTShBAHgEcpLdjLhBAjgb3An0O7fwxcD2QBbmDE6QT0+wVjxkTuiucxMTp33BET0auy7927l8TExIjOaLfbqVWrVkQv1GCxWCL6NXQ6nXSxd2FGxvGL0kaKbYXbcJgcEf06xsTE8GTKk7gz3EZHKZdf+Mu975SFW0p5azl39T7BvhIYe9rJwt9n4vBh49dbLE9iYhZ16uRHxJqQ5cnJySEjI+OsM0op+f777xk8ePAx20ePHs3DDz9cISuSrFq1ik6dOmGz2XA4HCSnJJFTeIj42ERKAkf4vHAhu9xbMAUs2EUcQjeT7ThEt+S+XHPBLfjdPurXakhJSQmxsbEUFhYSExNDIBBA0zRiY2ORUhIdHU1BQQFxcXE4HA4SExPDt30+H4mJifh8PqSUREVFYTKZwuuULlmyJKJ/zgUFBfz4448RnVHXdfLy8iI646+//kr+hfkUNys2Okq54kxx5d5XY6d1VU5fMBhk/fr1XHPNNfh8vmPue+yxx7BarUycOJGYmJhzPpaUOvmBQ+xybcGEzvvZL9EstiN+3Y+NaFrYunLIt49iTxGtkjrQKPUiEqzJ/G31MOKtqYzt8A9q2epgC9gwmUzoug6ULn2laRpSSnw+H0IINE1DCEEgEAjfL4TA7/eH34YGg8GIXCZLUU5GFe7znKZprFixgokTJx5XtMs8+uijFBcX88QTT5zzUmESycYj3zNr43QyYjNomNiI4mCAX3ZvZc+h/bRp1gBrwMb2XVnktSjigsTWCA5glwlEiwSW/ryAlikXcm2z/kTZohFCYDab0XU93KcaCASwWq1omobFYkHTNOx2O0IILBYLwWCwNIuUBAIBVbiVakfNVXKeE0Lw3XffkZ1d/jnkYDDIO++8UyGLo5qEmc5pV1En0Iktvxfw65ZcNv6aTckhG3Z3bVz7Yzi43c+Wjbl8v3EjW3b9yNqf1uBxBVm/81uOOPKZu/5FCnx5OBwOoPStucfjwWKxYDIJYmKi8Xo9WK1WfD4fUVFRuFyucGs7NjY2XMQr4l2EolQ11eI+z2VnZ/P777+fcgRASUkJGzZsoGvXrud0PF3XiTXHMLv/bO5aMYJPNn+M7oNoGYVN2vgpS+NPl9zEyD5dKHYVYfPYOOD+BG9JPnkFhezQdhIMmBk4pz8rx68GwGazERUVhdfjZvOqGWT9uJhgUKN19zvodMPjOBwOUlNT8Xq9REdHk5eXh91uJxgM4na7SU1NPafnpChVTbW4z3Nms/m0ugpOd79TMZlM2O12vE4PL980l+tb9cNiNtOkVhO6NevGRY3bsTd3L1sObibfUUB2fjax+Y1w/Z7IhQmt8RTnge5FKxbcPftuhBB4vV4KCvJx5Gxh55Z1FJZ4qdduAEl12+MoKSEuLo7c3FyEELhcLtLS0rBYLFgsFpKSks75OSlKVVMt7vNcrVq1aNCgwSn3s9vttG3b9pyPJ6XE7/eTnJxMIBBgzk0v8Y/of/Ju5rsUOYuINccSI6LxCT9H8rdRXFhMvDWBgd0H4nQ4iSaF/NwjmJIP4c8JoGlBrFYrq1fM5MiebyjM3k+HqyZx+YBJBIOl93k8HpKTk9E0jZiYGIqLizGbzUgpcTqdJCYmnvPzUpSqpFrc5zmTycSIESNo1qzZSfd76qmnsFgq5u+8yWTCZDIhpSQ5OoXHr32cIZ1vxRlwsSt3N5sPbuXH3T+yr3A/Teo3pWHdhuzK3oXD6yBepHJJw57kbfBhb32Y1957hYDfy49r/oPXZ2Hg6AV06TMq/Phlw/zMZjNA+HYZNYudUh2pFvd5TghBu3btuOyyyzCZTGzfvv2Y+zMyMmjUqBG9e/eukJOTUFq4nU4nsbGxuFwuEuwJzOj3JI9f9yiDXhxMYUkhWft3kR6fRoEznzhrPF63FwKS3Nx84qyx9Ok0gAMHtvO1XMF3Y14jWZP07XUbjVp3x2q14na7sdvt4ZOTTqcTm82G3+8nJiYGTdPQdf2cR8mcqaysLOrUqRPRFyEpkU8VbgWz2cycOXO4++67ycrKCo+NBmjYsCHz588nJSWlQo5VNs46NTWVgoICkpKScLlc2Kw2/E4/H479kD0Fe/gg8wNcXhemoIlYWwwlRSUgBR63F7vZxpCrh9D54s6s/fVz5q+fwhX9hnBxtxvQNA2n00lKSgolJSUkJiZSVFREWloaDoeD6Oho8vPziYmJQUqJy+Wqkiv8ioqKmDt3bvgPSoMGDRg+fHilH1epmVThPs9JKZFSMnnyZJYuXXpM0Qb48ccfGTVqFCtXriQuLu6cuxaEENjtdgoKCoiOjqa4uBir1UowGCQuLg4pJc3SmzG+z3iklNgsZg6v+4LDP7xLjD2K1F7XkdS9N1a7ncLCQgKHg3iKBJdefRM2mw0pJUlJSeTt2cOPr75AwYF9JDdtTac77iEpvVa4v1vXdXRdr7J5UwoKCvjss894/fXX2bFjB//85z+5/fbbVVeNclZU4T5PlRXs/fv388gjj7B8+fLjinaZ77//ni5duvD666/TuXNnzGbzWRecshZ3YmIixcXFJCQk4Ha7sVgs4bHY+L2YfF62TRmP9HupP2gYnR/+P3Rhwmo2sXvev8j/JZOgppOVV4Q99wi+zT+y4Zu1HPn1JwKaRushd9Fh8C34fV40r4+lo27HWeJkwJSpJFzQlIwGDTGZTLhcLux2+7m8lKf1nCdNmsQbb7zBrFmzGDlyJA899BDPPPMMf/3rXyv12KcjPz+f5OTkCusKUyqfKtznISkluq7z7rvvsnz5ct59992TzkQG8Pvvv/OXv/yFUaNGMWTIEFJSUs66eJvNZgKBQPgqxrITiWazGc1RzKF5T+Hal0Xr+x/HGp9AoKgQ764dIMAnod7g22g0fCxBl4N6X62i8/bfyP9mLY0vv4oLh95NMOjHVViI31GMJkFHMuDvjxHUdL5+cyG/rlvH6Fdep0nHTuGTlpVJCMFzzz3HbbfdRvfu3Vm7di1vvPEG3377baUf+2RycnL45ptvWLlyJVdeeSVNmzalc+fOhmZSTo8q3OeZspb2vHnzuP/++8OTLZ2OX375hbFjx7J+/XoWLFiA1Wo94+IthDhmHpGyPxhSSggG2Tvn/9ByDtFk2F/w5x4mmHsYgaTsMEKCf99uvFKiAwktW5PUvhOaP4inKJ+SvTvRpESToEmJLiWaDrqUBHVJxxsGENB13vzr/dzyf/+m+TleUHS6UlNTadiwIZmZmaSmpjJhwoQqOe7JbNy4kVdeeYWXX36ZBQsW8NFHH7Fw4UKjYymnQRXu84ymabz66qs8/PDDeL3es3qMJUuWoGkar732GlFRUWf0vVJKgsEgycnJx5yctFgs7F+xGE/Wb1xw218g4EXoIETo45jHKC3gINHcLvxSlhbrUIHWdIkuCRfvoCbRpE4wtE+7nr3wef3MHTOaSW8vp3XHjmf1OpyJsvHiEyZMoF27doZfal9SUsLbb7/NvHnzmD59Ok888QRLlizh/fffZ8CAAYZmU05NFe7ziK7rvPXWW4wdO/aUXSMnI6XkP//5DykpKTz55JNndAGLyWQiKiqK7OxsUlNTycvLIzY2Fp/bRcEX79Ny2Fg0dzHSBAiBKdRCN4k/ji2lLF0sT0ooK9K6RNclQamj6RJNg2CocAd0naCEoK6j6QJN12nd41KOHDiAJy/vrF+H0yWlZMeOHcTFxXHJJZdU+vFOR3x8PDfffDPPPPMMmZmZrFmzhszMTMaMGWN0NOU0qMJ9HlmyZAnDhw8/pmuk7GKYshnzymMymcJ901A6A99LL72Epmk8/fTTxMWVP3fw0cpa3NHR0QQCgfCJwfx1X2CLjcObdxCzSWAyl54oE2YwH1W4dVnaqpa6AE1HlzpSgtRDLW29rEBLAnpp90hQlwQlpQVcL+1GCQR1Uus34qX7JjB/y1ZEJfZ1SymZOHEiP//8c6Ud40wJIWjcuDEej4eDBw/y8ccfc+WVV1bYRVZK5VKnkSPQo48+espCehHdQoQAACAASURBVKYWLFjAhAkTjuvP7tKlC/369TtlX3VGRgZjxx6/Rsb8+fO57777zmiZqrJjlX2WUuL4aT0xjZuheVzoHhfS7QKvCzxuhNeN2efB7PMgvKW3pdeF9LrRPW50txvd7UJ3u9DcTjS3m4DbddSHE7/rjw+vw4HX5aBu86ZovrPrLqoJ2rZty9y5c2nRogUzZ87kzjvvNDqScppU4Y4gH330Ea1bt6ZHjx506dKFKVOmnPNjlnWP3H///RQWFoa3R0VF0aRJE959911atGhxyseJi4tj2rRprF+/njZt2hzz+G+88QYjRow4rT82ZfNne71eLBYLfr8/tM2E1Pzhwq17XEiPC+lxQ6hYC2/p13g8cNR+utdF0BP6cLsJup0EQ0Xb73bhczrxuxz4XE68TjdepxOv04mnuLjcIZAV6bbbbuPtt9+u9ONUZw6Hgx9++IEnnniC4hP8XDRNo7i4+JiPOXPm0L59e3r3Pm4xrhpPvS+qZLm5uWzatOm09v3++++5+uqrsdlsvP3227zyyivhJcnOhpSSnJwcXnrpJYqL/1iiqW7duvzrX//ixhtvPKNLr+Pi4ujWrRvLly/n1ltvZdOmTUgp0TSNL774gk8//fSUrXdd1/H5fCQlJeF2u0lISMDv9+P3+ZH5OdhDXTfCLDCZBMIsECYTpW0MSRDQdJ2grhPUSrtBAqGvA1IS0EIfusQf1AnqUFJSjDkmFr8m8etH3R+6CKcy7dq1i+joaOrXr1+pxzkXHTp0IDMzkyuvvNKwDD179qRr16706dOHFi1a8Pzzz5OWlha+v6CggDlz5hzzPUOGDGHjxo1VHTUiqMJdyfLz81mzZs1p7bt161ZcLhdr167l7rvvJiYmhtzc3HO6JFvXdQKBQHhypfT0dKZMmcKgQYPOar4MIQStW7fmhRde4K9//Ss//PBD+D6/v/zFTcuYTCZsNhv5+fnUqlWLwsJC4uPjiUpIJPurT7GZTJCUBKHijal0SEnQ70PYo9Ep67cGn8uBOy8Xv6bjC+r4dYlP0/EFJZrJgiUtgwCC4kMHiKldD7+uE9DAp2kEdcjNPoz/LEfWnK7XXnuN2267LaLnJnn66afp1KmTYUXwo48+YtCgQdx1110sWLCAtLQ07rzzzmMuTkpNTWXVqlWG5ItEqnBXslatWvH444+f1r7Lli3j0Ucf5dlnn+XWW2/loosuol27dmd9bCEE6enpTJs2jb/97W9kZWXxn//8hw4dOpxTIRFC0L17d1577TXGjRvH999/z6OPPkrv3r1P2Veu6zp+v59atUovP09KSsLv91Nn8HByv1lF0e+b0Oo1JDYtHd0k0E2CoIDg/p1YGzRFAp6cQwRKivH6fKXdHkENvybxBCW+oIZX0/Ej0Pfvw4+Z6AYNKc7ORsTGEtDAq+kUFxSwa8tW2t9wI1TSZeeZmZlYLBYuvvjiSnn8mqJJkyYsX76cmJgYunXrxsqVK3n88ccZPHiwmhKgHKpwR5Abb7yRPn36cO+99/LOO++c9kiNk7FarfTq1YvVq1cTDAZJTU095peh7CrKUymb26PssmiLxUKbNm147733wl0fpzvTnq7r4XUiy94J2Os2RLfYCLjcsHsHaBq2uDgCUsMM+EuKEb/+UDpWW9MIaDp+Tcev/dE9EpR6aOw2BDQNb1EBvqBOfl4enoCGH0FCg8YUFhZy5OBhvP4gN4wZU2nFIT8/H5PJVGETdNVUrVu3Jjs7m3vuuYdevXqRnZ3NpZdeqor2SajCHUFsNhs2m42lS5dW6OOazeZyV3rRNI1GjRoRHx9PSUlJuY/RsWPHY4bvlUlISDijLEIIbDYbDocDu92Ox+MJF3HNHo1fl8iAhrmkmKAWQDu0PzQcUCAADRm+yMav6wQ1gV8/uu9aD/d5B/XSC26CWgBNg0BQw+N0UpCdgy4BYSI6rnK6MPx+P7///nuFLD5xPvjss8/YtWsXX3/9NVlZWUbHiXhqVMl5zmKxMHjwYBo2bFjuPkIIHnjggQqZjKlsBZykpCQ8Hg/x8fHouo7FYqHxsLvxhfqpXQUFuJ0OfJqOV9PxaDpuTccb1PEES2/7NfCFWt3HtLx1vfSKSb3s5GXpNl1CSUFh6YrwJhNdbhqMiKqc2QFdLhcffPABgwcPrpTHr4maNGnCHXfcYXSMakG1uJXTmu2voiZjKpvWNS8vj7i4OIqKirDZbAQCAepe2oeNOuhSR5cBdIcbgnrp+UlR2saQUg9dhAPB0MU2/tDJSr9eNlpE4tdK7w+UFXApEVFReD2+0n20IO2vvJKGTZpUyPP6XyNHjjxuFESkEkLw1ltvGR1DOQOqxa1UKSklgUCAtLQ03G43iYmJ4ZVoHC438V16lraygxpOhxN3oLSF7Q7ooa9laYs7qOMJanhCI0q8QQ1fUMOnafiDEr+m4dd0AqFiHgjquJxu/D4/8bVqce1fRmOOiqagoKDCn+OuXbuA0hZkdSCEoGXLlkbHUM6AKtxKlSq7AMftdmO1WvF6veFZAqPj42kxdCTeoAwVaA1vaLSIN6jhDWpHFe3SLhRvUIa7V3yaxBfqLvFrAr8Ofk0eM947ICUZzZtTUlBI9/4DKmUhhYcffpiZM2eqk2tKpVGFW6lyZRftCCHCI1qklFgsFpKbtaT+NQNChTrUqg6W9m3/0b8t8QRK7/eF9vOFRpkEQsW7tLtEKy3iusSvQ1DTadPzSjRhocdNN2OxWCplzclJkyYdc/GIolQ0VbiVKlVWtGNiYggEAkRHR4cXUfB4PJhi40ht1x4/ptJWt1baNeIOarjDRTxYerIyfLu0Ne7VSsdw+3SJN1h6sY1f1/CFWtu6MJFcrx4ORwkX9uyJpmm4XK4Kf47dunUzfNpWpWZTJyeVKlU2reuRI0dITU0lPz+fuLg4AoEASUlJaJpGiyHD2bluDXvXrkIgwnNyA0gpwhNaBeUfQwMDUhLUQicjQ5e0+8r6uDUdabHRrmcvfly1hhe//QZbVBRSyjMezqgokUC1uJUqVXZyMi4uDp/PR2xsbPiCHK/Xi9/vxyQErQfcjGaNwqOF+rYDGp7AH61r99F93prEG5Slre1Qt8nRwwSDmGhwUQcCCC6/+SY0q41gMEgwGMTpdBr9kijKGTtl4RZCLBBCHBFCbD5q22NCiINCiJ9DH9cfdd/DQogsIcTvQohrKyu4Un2ZzWY0TcNqtR4zj4rFYgkPO2x41bXEtGqLNyhxByXuoI776BOToe1l/d++QGl/ty980vKPfu/0Zi2ISU5hz5atXNirF7FxceF5yNX800p1dDot7teBvifY/pyUsn3o42MAIUQb4Bagbeh7XhJCVP5qrMo5OZO5tM9V2ZqTZdO5lp2klFKGiymUXhbfb9rTmJJTjyrYWqiAS1yhk5LewB/F3KOBJ1S0vZqGbrGSUL8Rlrh4igsKGHzfBFpeckl43LoQolJOTipKZTtl4ZZSrgVOd7DrQOAtKaVPSrkbyAIiY60mpVx2uz1cMKG0RXx0QZNSVtiwuf/tKomJiQnPgeLxeMIr7NhsNuo2a84tLy0gvmFjPAE99FHaReIrG99ddjWlpodHoviCEl9Q4pcCrz9ASUEhHa7uw9UjRhAVHY3D4UDTtEo7Oakole1c+rjHCSF+DXWlJIe21QP2H7XPgdC24wghRgkhNgghNgQCnnOIoZyrpKQkkpNLf4Rms5nRo0fz/PPPhy9xj42NpXbt2hVyrLIrJ4uKioiKigrPjxIMBomNjcVutyOlxOv14nA4aHZJN254/P/oMPjP+KQIjzLxmy1ccPmV4SGC3qBGVFo6cbXr4tW00svhfQFsMTEMGj+ePnfdhRACr9dLUlISZrMZi8VCfHx8hTwvRalKZ9vBNweYRumSrdOAZ4C7zuQBpJTzgHkA8fEZ0uc7yyTKORNC8Prrr+NyuRBCULduXeLi4rjiiivCJw7PZEHgU7HZbKSnp2M2m6lVq1b4QpWjZx4sG05nMpno1Kcv7bpfRv+/TQZCq7ybBDFJSTiPuvLRYrODEMfMsW2LiiK9YUP00JDD6OhohBDhdxDqIhmlOjqrwi2lzCn7WggxH/gwdPMg0OCoXeuHtikRTAhBo0aNjtveqlWrSjne0X3ZR3fRlPnfeVFMJhPW5GTikpOP2zc54/TeCZQ9YtnxVMFWqrOz6ioRQtQ56uYgoGzEyfvALUIIuxDiAqA58MP/fr+iKIpy9sSpRhQIIZYCVwJpQA7waOh2e0q7SvYAo6WU2aH9/05pt0kQmCil/ORUIRITU2SLFvef7XOodFari7Zt807YKo0Uhw8fxm63h/uqI9H27du54IILInokx6ZNm7jwwguNjlGuQCDAnj17aN68udFRylVQUIDf76+w8yKVYc+ePWyttZVAbMDoKOXa/ux2iguKT/jW8JSFuyrEx6dLv/93o2OUKyFhD3XrfsO2bcOMjlKuRo0+5aWXatGpUyejo5Rr5syZjBgxokL7yyva3//+d6ZPn250jHIVFRWxcOFCJkyYYHSUcm3YsIH8/HyuvTZyL+NYtGgRPXv2jOjGWMuWLTly5MgJC3eEXH0g8Psjt6UYCOSjafaIzqhp0cTGxkZ0i9tqtZKYmBixGcvmTInUfFCa0Wq1RnTGmJgY3G53RGe02+3ExcVFdMaTnYdRl7wriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnCfpzZv3hyeiU9RlOolQsZxK1Vl//79LFy4EJ/Ph81mo1WrVtx8881Gx1IU5QyoFvd5RErJ3r17+eWXXxg3bhwtW7Zk6dKlVbqQgqIo504V7vOI1+tl9uzZzJo1i8cff5zWrVtz/fXXs3jxYqOjnRWv1xuez1tRzieqq+Q8Eh0dzYQJE7j33nt56aWXuOiii7j88st59913jY52xj755BN27dpFbm4uF154If3798dmsxkdS1GqhGpxn2eaNGnClVdeyezZs3n44Yfp3Lkza9asMTrWGbv//vupU6cOffv25ZFHHsHtdhsdqVwvvPACHk9krvL00UcfkZWVZXQM5Qypwn2eqVu3Lvfddx933XUX48ePZ8yYMXz++ef8+uuv1aav+5///CczZ86kfv36/Prrr6xYsYJ7773X6FjlWrFiBX6/3+gYJ/Ttt99y8GDkr3Wyb98+HnvsMaNjlGvPnj1MnTq1yo6nCvd5qnnz5uFZ5h5//HGee+45tmzZYnSs0zJlyhQmT57Mxo0b2bhxI6NHj2bWrFlGx6qWateuzeHDh9E0zegoJ+X1etm9e7fRMcrl9XrZu3dvlR1PFW4Fi8XCK6+8wsKFC6tFt4nVauWGG27g448/JjMzk4suuojY2FijY1VL48aNY+7cuRHd1aQcTxVuBShd5/GRRx7hu+++Y926dUbHOaVp06Yxfvx4+vXrx4svvhheXFhRzgeqcCthSUlJjB07lmXLlrFt27Zq0+etKEar6sWnVeFWjhEfH8+sWbN46qmn+Omnn4yOoyjVQlU3clThVo4jhODFF1/kww8/ZPXq1UbHKVeTJk2QUrJr1y6jo5Tryy+/pGfPntjtdqOjlOuOO+5gwYIFRscol5SS5cuXM2jQIKOjlCstLY2GDRuycePGKjmeKtzKCUVFRTF+/HjWrl3Lhg0bIrLbpDoU7tWrV9OzZ0+ioqKMjlKu4cOH8/rrrxsdo1xSSt555x1uvPFGo6OUq6xw//zzz1VyPFW4lXKlpKTw0EMPMXfuXLZt22Z0HEVRQlThVk4qKiqK+fPnM2fOHL755huj4yiKgircymkQQjB9+nTWrl1bLcZ5K2cuNzeXN954w+gYx3nvvfcYO3YsBw4cYMyYMRHZeNB1nYkTJ7Jo0SIWLVrExIkT0XW9Uo+pCrdyWuLj4xkzZgyffPIJmzdvjsg+70hSUlJChw4dePXVVxkzZgzXX3+90ZHKdffdd5OXl8cDDzxAhw4d2Llzp9GRgNKC+P3333PJJZeQmppKgwYN2Lp1a6UXxTPl9/tZs2YNvXr1olevXqxZs6bSpzhQhVs5bUlJSTz55JM888wzbN682eg4ANSrV4+EhASjYxxny5Yt9OjRgxEjRjB79myio6Mj8iTqwYMH8fl8rF+/nuuuu47Bgwfz22+/RcQf5u+++47Y2FgGDRpEp06duPvuu9myZQv79u0zOtoxJk2axLx582jfvj3t27dn3rx5TJo0qVKPqQq3ckbMZjPz589nyZIlEdFtMmrUKC655BKjYxzniy++oHfv3lx66aU0btyYK664IiLf5v/yyy9cdNFF1K5dm759+9K9e3fWr18fEYW7R48euFwupkyZwnPPPcekSZNo164djRs3NjraMV544QWGDBlCdHQ0drudIUOG8MILL1TqMdV83MoZs1gsPPjgg8yZMwe73U737t2NjhRxxo0bR+vWrXn++ed58803Wbp0Kdu3bzc61nGuv/56/v3vf7Nr1y5uvfVWRowYwUcffYTJFBltumHDhrFt2zb+/ve/h1vekcZkMvHcc8+FhwI+99xzlf76qcKtnJXk5GQmTJjAQw89xAUXXEDt2rWNjhRREhMTyczMZNGiRXTr1i2ip51955132LNnD0uWLGHdunWkp6cbHSmsXbt2tG3blp49e0ZUrqMJIbjxxhvDE3VVxbw5qnArZy0uLq7S3xJWVyaTiXr16vHQQw8BVT+XxZlIS0sjNTWVTp06RWROIUTEFu2jVeVEZ6dszwshGgghVgshtgohtggh7gttTxFCrBRC7Ah9Tg5tF0KI2UKILCHEr0KIjpX9JBTjCCEi8pc9UlSX16e65FRKnU5HTBB4QErZBugGjBVCtAEmA6uklM2BVaHbANcBzUMfo4A5FZ5aURTlPHbKwi2lzJZS/hT62gH8BtQDBgJlI/bfAMomEhgILJSlvgOShBB1Kjy5oijKeeqMTn0KIRoDHYDvgQwpZXborsNARujresD+o77tQGjb/z7WKCHEBiHEhkAgMhdSVRRFiUSnXbiFEHHAf4CJUsqSo++TpYM+z2jgp5RynpSys5Sys9UafSbfqiiKcl47rcIthLBSWrTflFK+G9qcU9YFEvp8JLT9INDgqG+vH9qmKIqiVIDTGVUigFeB36SUzx511/vAHaGv7wD+e9T24aHRJd2A4qO6VBRFUZRzdDrjuC8Fbgc2CSHKZgl/BJgBLBNCjAT2An8O3fcxcD2QBbiBERWaWFEU5Tx3ysItpVwHlDfAs/cJ9pfA2DOPYvzcCKcW+RkjYY6JU4n0jJGeD1TGilIdMp6IiITgiYnJsn3724yOUS6z2U9iohObLcXoKOUKBktISrJU6dVbZ+rIkSOkpqZiNpuNjlKuAwcOYbHUNTrGSWgETIewpluNDlIu3a0TF4yLyFkbyxQUFBAXF4fNZjM6SrkWL15MYWHhCRvNEVG44+MzpNOZY3SMciUmZvHUU6u55557jI5Srvfee4+MjAy6du2Kz+fDarX+MW+xSeewby+FwRykLrFgAwSegJsYcwJNE9oidDM2mxVN0xBCEAwGEUJgMpkIBoPYbLbw57LHDwaDmM3mY/YtuwIvGAxitZYWl7Ir8p544gnGjh1LcnKyQa/SyUkp+fOfJ/DOO88bHaVcdnsB7aZcQ+YjmUZHKVftb2ozN28uAwcONDpKuV5++WV69+5Ns2bNjI5SroyMDHJyck5YuNVcJTWMpmnk5+cTFW/jh8IPSY9qRNDkZafzF7L9e3F4nTi8xdSNborH7yHdWp8dUb+xOz+LcV3/jt8XQAiB0+lECIHdbsfpdJKWlobT6SQlJYXi4mJSUlIoKSkhNjaWoqIirFYrNpsNm82GxWLB6XRGbIFWlOpOFe4aJqvoF/5T+ByiWHDYtxerjCIYlMSSTJq9HkkkU+R24dEDpNjrg27lk53vEm2JZ9qXD3JLu5HUjWlAfHw8UkqCwSCpqam4XC7sdjt5eXnExcVRUlJCdHQ0Pp+PpKQkpJRomhaeIc1ms5Gfn09SUhIWi/pvpigVSf1G1TC1Yhrx1qqNpESlcFGti2iS3opdh/bwxrqlNGuRSK3YOHb8mo25XpBL2/TEHIwi2pJEgSMPe0w8C36YQ7/WN9I2+WIsFitWq5Xc3FzS09NxuVykpKZSkJ9PYmIixcXFxMbGUlJSgtVaum9sbCwmkwmXy0VycnLEzOusKDWJKtw1TDQxzOu3gAc//xsfbf2EzzZ/gV23kZFcG3+uHZ8jjebpjThUtButSOfbn7+lfrsUsg4folmqnyJ3MV6fRtMrWpFkiUYIQVxcHH6/H58jm+3b3sdR4iAlvS5pTXqjaRpRUVHhfuyytfZMJhNer5fo6Gg165yiVDDVHKphTCYTLVKa8Y+r/o7JItiZv5NCTyFxUbG4/W7cARcN0hvQOq09CZ5mNE5og2O7RPh1zPjYd+QQn21axfQPnwBKT9jpug5S4+DWz1jz1kQyP/4HmZ8/gwid19Z1HV3Xw0OrTCYTUspqO9RKUSKdKtw1jNVqJeAP0L1+d/4z9D+kxaViMpsp8hZjtVnwaX62HthCriOX3/dt4+sN39Ioph0DMm7nl1W/06VVA2IcZpZ/spxAMACAo6SII3t/ZO1Hz1PkttPl5lfpc9ebBLTSUSV+vz88gqXsJKWu66q1rSiVRHWV1DDFxcXh/ujWtdvwzYR1DH7lZrLzs7FLGzZpJwo7ufm5SL9ORnJtNKmRcySPAR2HUPRbEYn2InyJ0ezcv51WF7TlqxVPsy3zQxpc0JrLrh5Fu0tuoKSkhLiYGLxeLykpKWiaRiAQwOl0IqUkJiaGvLw8UlNT1clJRalg6jeqhik7WWixWPB6vWTE1GbBrQv4YNMHzPlyDocKssEvibfE06ZeG2zCxpGiI8RYonGUOBAaxBc3xpFQxNT/TuRPTYeQ9duvJNVuQ/+RM0nNaITX6yUmJga/34/VasXtdofHb0dHl870qGka8fHx6uSkolQCVbhrmLITgoFAIHwRTstaLWjRaxKX1OtCjiuHJ995koN5h9iVs5OUqFRs2MjPy8PnDuB1ehhz4xjG9xhHccwBXn/uXyQf0Xhg2nySazXA7XYTHR2N1+vFbreHL8op6+cuOzlZVtDtdrvBr4ii1DyqcNcwuq5jsVjw+/3HnCSUEro36U5UdBR92/TFarPidDixmQUHd22nVmIqPgkxKbWIskWRnJRMSUkhv1/wM73u6kfj5u0RQqBpGiaTCWdeLgGLmYCmk1q3HiaTKVy8gfC+6gSlcq6OHDlCWlqaevd2FFW4a5ioqKjwuGqfzwcQnhvEbrfj9/uJj4onb8N6ogIeHEdyiD+0l5KiQpIu7EBC+24492Sx2+Nh/+EjbPr6G7p1vIzAwX0c2rGNqOhoSuKS2fv1KvZt/oW4WnWIadKCuNQ06rVtS0bzluHL4BMTE9Uvm3LWsrOzWbt2LWvXrqVHjx40a9aMrl27Gh0rIqjCXcO4XC5SU1NxOp1ERUWh6zo+nw8hBB6PhyiPg91vziU2ORV/dAyJtWqT0OMKpBAIwHNgL7K4ALseJHb3dnr43MhVH3Lo4B6EyUJhwE90ej1a9O5L097XIjWd379Zy+HNv7BvYyYOj5cbH/knyWlpFBcXk5qaqoq3clY2btzIm2++yZw5c1iwYAGff/65KtwhqnDXMAkJCaVzlURF4Xa7MZlMWK1WpJTEWs38PP4eEps0J7nnNZjMFpAa/oP7SifulRKz2UJis1boUhLboCnNBt+Cpun43CVYouPQpE4gEMRTXIAuQdMl9dtdTB0pKc7P5/1Zz/LqvaMZ9/pikpKSKm0mwEAggMViUcMNa6iioiKWL1/OnDlzmDp1KjNmzGDx4sW8//77DBgwwOh4hlNNoRqmpKSEtLS08JA8q9VKIBDAW5jP93ffSEzdetS57iZ0RzF6cQHSUYzwOhEeJ3hdSFcJWkEuwYJcdJeDYHE+mqMQ4ffjLyogUFhI0FFC0OUi6HYRcLvwOx34nKXdMwMnPoDzcDYv3Dmc/Tt3omlahT6/vLw8Nm7cyC233MLPP//M4cOHK/TxlciQmJjI4MGDefrpp/npp59YuXIlGzdupF+/fkZHiwiqcNcwUVFRuFwuhBAEAgE0TcNsNpP7wTJSGjSl3rWDCORlg9eN8Loxed0Irwfh82LyehAeF8JTeh8eJ9LtRHM7CHrcBN1Ogh4nuidUtJ1Ogk4nPpcTv8uJz+Ui4PHS45ah5OzeyZbVX1Z4i3jZsmU89NBDzJo1i6lTp/Lyyy9X6OMrkUEIQZMmTQgEAhw6dIjRo0dz1VVXRfRc7lVJFe4aJiYmhqKiIgA8Hk/pKA+fB8f2X0lq1Y5g3mHwuksLt8+FyefG7Hdj9rkx+T0Inxvhc4PHhfS6kV4X0u1GelxoHjdBt4ugy0XA5SDgcuJ3Owm6XPidLvwuBz63AxPQ+MKL+f6//6U4N7fCntvevXvZv38/r7zyCrNnz2bu3LlIKdm0aVOFHUOJHG3btuWFF15g0aJFNGjQgNtvv93oSBFDFe4IIKWkqKiIFStWsHTp0nN6rOLiYjIyMpBSEhcXh8ViIXvNZ+Dzo2sBNI8L6SktzKUtbhdmnxuLz4XJ60L4QsXa60G63eguN7rHheZxoLtLi3fA80c3ScDlxOd24nM58LuceJ0uPM4SajdrhqOgAGdhYQW9SlCnTh1q167NunXrGDFiRPhEVfPmzSvsGErk6dWrV7W8+tbr9VJYWMjgwYMpLCzE6/VW2GNXv1ejhtm5cydZWVm89NJLXHLJJTzyyCPn9HiJiYnk5OQQHx+Py+XCbDYTY7fisJnR/V70IEiTCUwgTQJMApPZhBAgdRC6BF0idYmuaeh66QlITdfRdAhqkoCU+HVJUJMEdZ2ADgFdJxC67dd1grpADwagAsdx22w2mjRpwgsvvICu66SnpyOEICoqqsKOUNx5nAAAIABJREFUoSgVZebMmSxfvpzly5dz1VVXMXz4cCZNmlQhj60Kt0F8Ph/Tp0/HZDJh/n/2zjxMiur63++t3qene1b2fTMoRECWQNxQIqIRlyRuuH0JKjHiL0YFJLgnGjdcokYkiiARxYhbNCFxjcEFRVAEkQAyyLDNMHvvtdzfH91dzigDA0zTPXjf5+mnq6uqqz59u/vUrXPPPcfh4Nlnn7Wnix8I0WiUQCAAYM9ajMViWPFYsuesgUNzYGlgOQSWpmFpAg2BJVMG27IwLYllSttoG5ZMGmgzuWyYSYOdMK2UsZboJuiWTBlxC1PXD/jzfJvx48czfvx45syZwx//+Efee++9Vj+HQrE/rFixghdffNF+/f7773PYYYfx/PPPs3DhQhYtWkR5eTldu3Y94HMpw51B0rMWH3vsMY4//nj69+8PwF133cW7777L1KlT6dmzJ7179261czocDrs6TXpg0ulw0bB+Lb5AAcLnw3BoCEey1y00AcKBACySRtewwLRMdFMmH5ZElxa6AQnTxJBJg50woWLzJvLad0TXHOgmyZ64BQkjmXQqU1x++eVUV1ezdOlSVqxYwVFHHZWxcymyixCCm266iTvvvJPrr78+23K46aabdtthGDRoEOPHj7df79y5k549e3L00UdTWVmJx+NptQLKynBnkIqKCgYPHsytt97Kr3/9a1avXk3Xrl2ZOXMmV155JYFAoNWjLtKj7kIIO5e2p7QduNzUr/0c0acf0uNBahrSIZBCkgg3IDx54HJhGgZ6wiAei1D75RoShkHMkMQtScwwiZkWcRMC/QZiut248vKIhSMYQqCbkriZdJls+3ozdZWViAxGARQXF1NYWMimTZsYNGiQijjIIVrzdy2EYMCAAbz00kutdswD4frrr99tp8Ttdje5a163bh0PP/wwo0aNYsqUKVx77bXKcLcF3njjDaZNm8bQoUNZtWoV/fv35//+7/8YOXJkxs6ZTuva0NCA3+/HMAw4cgQlo05k5z+fx4yGKezZBzMvD1MTOITE3LkV4fSA202ioY74rgoSZtKPHTctDFOSMCS6aWIYEt202LrqY+IGOEs7ENcN8OeD20tCCmp3VbN5/XpG//Iyijt1ythnBbj66qv5yU9+wpgxYygsLMzouRQt51DOUZOXl9ei/X71q18xefJkZs6cyZo1a1pVg4oqyRBSSjuDXiKRYObMmQQCATt7XqbIy8ujrq4OIQSxWAzDSBY7iMYTGJYkHgnTsHMbsVA99V9vor7sK8I1tYS2fk39pg2EK5JGO91z1k1JIjXoaFgSw5KYMj1gaVK3bSt1O3aw43//o2b7dio2l7H9q41YFvT+4ZH48vMz+nkhabxnzZqV8fMoFPuKEII77rij1Y+retwZQgjBaaedxg9/+EPuvvtuHn30UdasWcM999yT0fMmEgny8/OJRqO43W5M08Q0TXxdumA4XGDoiIYGpNuNrKrEIS2E0JIz3gFTJgcm9bSv2pIkUhEjugW6tFKRJSR94VJikhzEjMdiRENRLCHw5AeJxeNYlpXxXCU//elP7fEDxaGJpmlomoZhGG0yNLC1UT3uDNK+fXu2bdtGXV0d1113HcuWLTso503fpja+Xe194a/RSjsSMU0ikRjhujqiuklUt4jqFhHDIqKbRAyLqCGJGxA3LOKGRcIgFTWSjBbRLYlpfNMLT5gWFoJwfZhoNIphWAz66TiOu2DCQfm8Qgj69u17UM6lyA59+vTh+OOP56mnnsq2lJxAXboyiBACp9PJb37zm4N2TrfbTTQatXsn8E3xXq2wHcbXm5DSxAxF0EwLh5AIJKQHMwFLymTMtmXZPe94ymgnrORApW5Z6DJp0E0LDMAk6ULpf/RxONDI8/pUZkBFq5CusJTO9/59RxnuQ4x0Dch0WlfDMNB1Hcuy6HnxFXz824/RLAvDSqAhcGiSZELXJBYyOelGSgxJKn5bohvJiTUJ08IwIWGRmnCT8oNbJnHDwuH1oHlcjLt8MvX19Xi9XmW8Fa3C6NGjD+lBz31BGe5DjEAgwK5du/B6vYRCIYQQuFwuHA4HvX50NMvy8kk01KEJcGoCzRIIIdNZXTFlssdtkexxmxYYqZmSycHKpNFOWCZxE3QzuV/ClEinix+ffR7rVn5Kj4ED8fv9yh+paDV69OiRbQk5w167QkKIbkKIt4UQXwgh1gghfpNaf4sQYqsQ4tPU49RG75khhNgghFgnhDg5kx9A0ZRQKERBQQFSSrxeLy6XC9M0sSyLiK5z4oNP2vHYETPp247qFpGUnztqmkQNk6huEjOs5EM3SRhmctJNKkQwYaSnt5vELTBMi/4/PoZP3n6bKY/Nwe12EwqF1K2tQpEBWtIdMoBrpZQrhBAB4BMhxOupbfdLKe9tvLMQ4gjgPGAA0Bl4QwhxmJSydRMzK3aL2+0mFos1qfmYdlW43W487TvQ8egT+fq/b6Kl/IaCpJ9boiGRqZ530ndtWhaGlN9Mebe+CRFMWBZxM+nv9gQLiMYS/OjUU+nYowemaeJyuVShA4UiA+y1xy2l3C6lXJFabgDWAl328JYzgGellHEp5SZgAzCiNcQq9o7X66WhoQEhBIlEAsuycDgcyWRTeXk4C4vpPOLHxA2ZiipJ9qyjhkw+p6JMooZF3DSJmZKYSeqR7G3HzeQAZdJVYmEJJwNO/AnRRIIfn34mgWAQ0zTx+/3KcCsUGWCfRo2EED2BIUA6rm2KEGKVEGKuEKIota4LsKXR28rZs6FXtCL19fW0a9cOy7KShtrpRNd1dF2npqYGf14eA867hK4njCVqJV0hYd0knDCJpMIDIylXSThlwGO6ScwwiOsmcd1KulqM5ECl6XDxg2OOp3pXFUf95CS6DBxIbW0tLpeLXbt2tXoFHIVCsQ+GWwiRDywGrpZS1gOPAn2AwcB2YJ+mrgkhLhdCLBdCLNf16L68VbEHgsEg1dXVaJpGJBJB13VcLhcul4vCwkIikQgOl4vuJ52K4fLZcdtRUyZjuc3Ua0MSNSz7ETMkMVMSTfu4LQleL+379EU6HUTq6+jSvz/BggIKCwvRdZ3i4mKVP0ShyAAtGvIXQrhIGu2npZQvAEgpdzba/hfg1dTLrUC3Rm/vmlrXBCnlHGAOQCDQQcbj+yNf8W0ikQjBlKsiXeU9Hc+dSCTwer2YpsmIs84mWl3Fq7fcQFNvxjfx3KYlkwWBU1PcDZnMHKhbFlI4yA8WgdvD9k1lXH7PPQw49lii0agdv97Q0EAwGFTGW6FoZVoSVSKAJ4C1Usr7Gq1vnD3oLGB1avkV4DwhhEcI0QvoB3zUepIVe8Ln81FfX2/nSjEMw54u7Pf7icViSCmpr6/n+F9OZuwNt2A4XMnetGEl/d6GRUI4iDZaFzMtElIjZpjEDUkcQSQaY0fZ11x08630+9GPkpkIPR47flz5uBWKzNCSHvfRwEXA50KIT1PrfgecL4QYTDLFRRkwGUBKuUYI8RzwBcmIlCtVRMnBw+Fw4HQ6cTqd9mSF9HLjbU6nE7fHw6gL/o++Q0fy+qMPU78rWR9SAqMmXMB/n/4rUoJlSZy+PLr98Ies/eADLAkSQXGnjlzwu99R3K0bTpfLPm76nE6nUxluhSID7NVwSymXArv79/1jD++5Hbj9AHQp9hNN0ygtLW12e0FBAQB+vx9I5lNp3749A4477jv7jp146X7rcLlc+/1ehUKxZ9RcZIVCoWhj5Mh8ZInHU51tEc3idtcTi8Wors5djZFIhFAolNMadV2ntrY2x/NNmDn9W/R4anHoDjzVnmxLaRZ3yE0kEsnp32IsFqO+vj6nNe7pfyJy4U9UXFwsr7vuumzLaJZwOExlZSU9e/bMtpRm2b59Ox6Ph+Li4mxLaZZ169bRu3fvnHajfPbZZwwaNCjbMppF13WWLv2KmpofZFtKs3i91QwZEqdThqsfHQibNm2iffv2tsswF7n33nuprq7e/SBRuqBtNh/t27eXucz69evlnDlzsi1jj7z44ovy/fffz7aMPfL73/9eVldXZ1tGs1iWJadMmZJtGXukqqpKDh16u0ymBMvNR8eOS+VLL72U7abaI7Nnz5br16/Ptow9krKLu7WZysetUCgUbQxluBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrWhCKBQiHA5nW4ZCodgDOZKrRJFtLMti8eLFbNy4EafTSa9evfjZz36m0rIqFDmI6nErADBNk+nTpzNy5EgGDRrE1KlTsy1JoVA0gzLcCgAmT57M4sWL2bVrF7qu88wzzzBlypRsy1IoFLtBuUoUADzyyCOMGjWKSy65BI/Hw/Tp01mxYkW2Ze2Vbdu2kZ+fTzAYzLaU3bJt2zYCgQCBQCDbUhSHEKrHrQDA7XYzZswYqqurmTt3LkcffbRdhiyXeeyxx/joo9wtafroo4+yfPnybMtQHGIow60AkrUqZ82axcSJE/H5fEybNk0NTCraBLW1tdx1113ZlnFQUYb7IGIYBqFQKNsy9kjv3r156aWXuOyyy3K8Uo1CARMnTuT000+nT58+9OvX76C597JdyUkZ7oPEhx9+yKJFi7j11ltZsmQJkUgk25KapaSkhD59+vDxxx9nW4pC0SxfffUVPp+Pq6++mt69ezN16lQ+//xzTNPM2DnLyspYsmQJU6ZM4V//+hdfffVVxs61J9q04Q6FQixYsGCv+0kpuf3225k5cybvv//+QVD2Xa655hpqa2uZMGECM2bMYNu2bVnR0VLuueceZsyYkW0ZCsV3SCQS3HDDDVx66aXs2rWLL774go0bN9KtWze2bNmCZVkZO/cLL7zAggULmDVrFgsXLuS5557L2Ln2RO6PPjXDzJkz+eyzzzj99NMZPXo0Dz30EAMGDLC3X3zxxWzdutV+PW3aNPLy8ujevftB1/roo49y5ZVXMnLkSC699FK2b9/OZZddxhtvvGH7kYUQOedTFkIgpcw5XWnSt6q5qk9xYKTLdAGUl5dzySWXAOByuZgxYwYnnXQSv/vd74hGo4wePZoJEybwt7/9LWM1TdeuXUtlZSUPPPAAV1xxBf/73/947733+Ne//gXAuHHjdjv/IRP/7TZpuGtra/n666958MEH0XWd9957j5EjR9K3b180LXkTsXDhQrp27Wq/x+/329sONhMnTuTUU09l2LBh/PWvf2Xy5MnMnDmT4cOH2z/Md955h4KCgqzo2x3BYJBrr72WO+64g5kzZ2Zbzm75z3/+g6ZpHH/88dmW0izFxcVUV1djWVbWfn9tidraWnbt2gXAypUrueOOOwDo2rUrr7zyir1ffn4+Qghef/11Kisruffee1mzZg15eXkZ03bYYYdRUlLCSy+9xJw5c3j66aeprq7mmmuuAeAf//gHQ4cO/c773nrrLYqKilpVS5s03B988AGDBw8mPz+fqVOnsmLFCkaPHs0LL7yAx+PJtrzv4PV6Of7443nwwQfp1q0bxcXF9O7dO6fjpIUQeDwe4vF4tqU0i2EYADkdtvjb3/6WMWPG8JOf/CSnLsy5hmmaLFy4kM2bN/O///0PgEGDBrFy5co9vi8vL48ePXrw0EMPZVyjw+Fg4MCBLFy4EF3X+fjjjznnnHPsGP1zzz2Xc889N+M6oI0a7lNOOYXZs2ezYcMGrrnmGi655BJmzpyZk0Y7zc0330xNTQ2rV69uM77j/v378+677/LFF19wxBFHZFuO4hAnkUgwZswYbrjhhmxLaZZx48Yxbtw4Fi9ezPz587PmpmuThhvg4Ycfpry8nEceeYRnnnmGnj17ZlvSXikqKuLYY4/NtowW07lzZ9xuN2VlZRx++OE55UuOxWIkEgl0XScajeL1enNKn2LfcDgcTJo0KdsyWszPf/7zrJ6/zRrubt260bVrV0aMGIHD4ci2nEOW66+/nlNPPZVRo0a1up/uQDjyyCNxu93U19fz6KOPsnHjRgoLC7Mtqwm1tbV8+eWX1NXVsXz5cnr06EHfvn2zLUtxCNBmDTck/bDKaGcWTdMyGl61P7z66qtMmDCBY445hvfee4+OHTuyaNEiJk+enG1pTfjoo4+47bbbqKio4KmnnsIwDJ5++ulsy1IcAqhhbsVeueWWW3IqsqRjx45s27aNI488knPPPZetW7c2iSDKBUKhEC+99BJPPPEE/fr1484772To0KF26JhCcSDs1XALIbxCiI+EEJ8JIdYIIW5Nre8lhFgmhNgghFgkhHCn1ntSrzektvfM7EdQZJpRo0bx5ZdfZluGzbBhw1i5ciVTp07l73//O/PmzeOYY47Jtqwm5OXlMXbsWBYtWsTChQvZtm0bq1evblNjHIrcpSWukjhwopQyJIRwAUuFEP8ErgHul1I+K4SYDUwCHk0910gp+wohzgPuAg5OjIwiIwghePPNN7MtowkfffQRq1at4osvvmDz5s05NzCpaRo9evRg7ty5tG/fnjfeeINRo0ZlNM5Y8f1hr4ZbJmeIpDMjuVIPCZwITEitnw/cQtJwn5FaBngeeFgIIaTKWNSmyTXDKIRg0KBBDBo0KNtSmmXIkCG88sorLFq0iKeffjqnw1UVbYsW+biFEA4hxKdABfA6sBGolVIaqV3KgS6p5S7AFoDU9jqgpDVFKxRtiXPPPVcZbUWr0iLDLaU0pZSDga7ACKD/gZ5YCHG5EGK5EGJ5NBo90MMpFArF94Z9iiqRUtYCbwOjgEIhRNrV0hVIZ3TaCnQDSG0vAKp2c6w5UsphUsphPp9vP+UrFArF94+WRJW0E0IUppZ9wEnAWpIG/Bep3S4BXk4tv5J6TWr7W8q/rVAoFK1HS6JKOgHzhRAOkob+OSnlq0KIL4BnhRB/AFYCT6T2fwJYIITYAFQD52VAt0KhUHxvaUlUySpgyG7Wf0XS3/3t9THg7FZRp1AoFIrvoGZOKhQKRRtDGW6FQqFoYyjDrVAoFG2MnMgOaFkW7733XrZlNMuOHTvYvn17TmssKyujpqYm5zL5Naa6upqPP/4Yv9+fbSnNEolEcvp7DoVCeL3VdOyYuxqLitZRVtaQ0+24fft2Vq1axc6dO7MtpVn29F/OCcMtpaSq6juh3jlDXV0d0Wg0pzWGw2GefFKjoSF3NXbvnuBHP6ohFotlW0qz1NQYXHRR7rah0xmh07iP8U17IdtSmsW9KUg4fE5O/19isRg31N5AzJm7v8W4bL5sYE4YbofDwemnn55tGc2yYcMGTNPMaY2WZVFR0YEdO0ZlW0qzlJSsYuzYsTlVkKExUkoWLHidTZty93v2eKoJdryXTadvyraUZun4XkcG7BqQ0/+X7du3s+24bdT1rcu2lGbJd+Q3u035uBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrVAoFG0MZbgVCoWijXHIGO5Zs2aRSCSyLUOhUCgyTps33O+88w5HHXUUPXv2ZPTo0dxyyy3ZlqRQKBQZpU0bbl3X2bhxI//v//0/jjjiCObNm0dNTQ27du3KtjSFQqHIGG3acMdiMTZu3MjAgQP597//zWuvvUa7du346quvsi1tryQSCZ5//vlsy1AoFG2QNm24A4EAI0eOZOLEiZx00knMnDmTsrIyRoz4TinMnCMej/PII49kW4ZCkXPce++9VFdXZ1tGTtOmDTfA2LFjWbJkCX/4wx946aWXsi1HoVDsJ6tWraJPnz50796dn/3sZ1x00UXZlpSztHnD7fV66dKlC08//TSHH344hYWFlJeXZ1uWQqHYByzL4tNPP2XatGn07duX5557jvz8fDZu3JhtaTlJmzfcaYQQdOvWjf79+/Pmm29mW44iy5SXl/Pqq69mW4aihViWxdatW+nSpQtlZWU88MADlJaWUlFRkW1pOckhY7jT/PSnP2XFihWq1/09ZuLEiUybNo01a9Zw/PHHqyijNoDT6WTs2LFcccUVFBcX89RTT/Hoo48yY8YMPv3005yupZoNcqJ0WWvSqVMnvF4vmzZtokuXLgghsi1pt2zZsoUuXbpkW0ab4euvv25xrcrly5czb948OnXqRFlZGZs2baKkpCRnfwuKJIMHD2bt2rXceOONLF26lNLSUgCmTJlCRUUFDzzwAB06dKCgoCDLSrPPIWe4Ae666y6GDBnCJ598krN/1gsuuIBPPvkk2zLaDHPnzmXTppbVWdy+fTsPPvggJ598Mueccw7PPvssw4YNy7BCxYHicDjIz8/n/vvvb7J+3rx57Nixg+nTp9O/f3+6devGhAkT0LRDzmHQYg5Jww0wffp07rnnHqZPn55tKYpWYF9mxA4ZMoTevXvTvn17fvnLX7J06dKcvYArWkbHjh2ZP38+S5cuZe3atVx22WWMGzeOs88+O9vSssIhe8k67bTTeOONN1T+ku8hL7zwAiNGjOCdd97hn//8J+3bt8+2JEUrccwxxzBp0iSmTp1KWVkZ7777brYlZYVDtsft9/u54YYbuO222/jDH/6QbTk2O3bsYOPGjYTDYd5//326detGjx49si3rkKJXr1707NmTcePGfa9vpw9VNE2jf//+HHbYYd/bO6lD9ledDg90Op05NQX+lVde4Y9//CN1dXU88sgj/OUvf8m2pEMSIYQy2oc4mqYpw90cQgivEOIjIcRnQog1QohbU+vnCSE2CSE+TT0Gp9YLIcSfhBAbhBCrhBBHZfpDNEfv3r1xuVysW7cuWxKasHnzZjZs2MDs2bPp3Lkzf/rTn3C73axYsSLb0hQKRRuiJV2SOHCilHIQMBgYJ4QYmdo2VUo5OPX4NLXuFKBf6nE58Ghri94Xrr76ahYvXkxNTU02ZQDQpUsXevTowZIlS1iyZAnLli1D13UGDBiQbWkKhaINsVcft5RSAqHUS1fqIffwljOAp1Lv+1AIUSiE6CSl3H7AavcDv9/P448/no1Tfwen00nfvn3585//jKZpvPLKK5x99tl4PJ5sS1MoFG2IFjkBhRAOIcSnQAXwupRyWWrT7Sl3yP1CiLT16QJsafT28tQ6BXDyySfz8ssv43Q6efHFF7nggguyLUmhULQxWmS4pZSmlHIw0BUYIYQYCMwA+gPDgWJgnwKmhRCXCyGWCyGWR6PRfZTd9rn44ou/twMrCoXiwNinYXcpZS3wNjBOSrldJokDTwLpJNhbgW6N3tY1te7bx5ojpRwmpRzm8/n2T71CoVB8D2lJVEk7IURhatkHnAR8KYTolFongDOB1am3vAJcnIouGQnUZcu/rVAoFIciLZmA0wmYL4RwkDT0z0kpXxVCvCWEaAcI4FPgV6n9/wGcCmwAIsDE1petUCgU319aElWyChiym/UnNrO/BK48cGkKhUKh2B1qaplCoVC0MZThVigUijaGMtwKhULRxlCGW6FQKNoYynArFApFGyMn8nEbhsFjjz2WbRnNUldXR3l5eU5r/Oqrr+jePY/S0lXZltIswWAZCxYsyOncLIZRzcCBufs9OxwxCjYVMPCxgdmW0ix52/P4IPYBO3bsyLaUZlm9ejV96vqQKMjdQitfG183uy0nDLfD4WDMmDHZltEs5eXlaJqW0xqdTicjRxbzwx/+MNtSmuWJJ8r4/e+PRdcD2ZbSLCedtIIXX8zd77m+vp7FiyuYOGb30yMkEomFlBKBsNcBaMJhr8skq1atora2luOOOy7j59pf6urqmDViFl27ds22lGYZpY1qdltOGG4hBH379s22jD2yfv36nNa4evVqOnTokNMa/X4/DQ09iceLsi2lGSSa5m7VNty+fTv5+fkEAq1zsaqursbv99OrVy+qqqqSK3069eFaCgoK+azibd6LvEpDrAbLEPi1YsLxMJF4mEm9b8Xr8tEpvytF/hLq6upwuVyEQiFKS0vZtWsXwWCQSCRCaWkp4XAYh8OBruuYponD4SAcDtvbCgoKqKystKuxpwtX7Ny5E4fDkdO/xYKCArp27Uq3bt0IhUL4fD7C4TAulwun00k0GiUQCNjb4vE4QghcLheRSIRgMEhDQwM+nw9d1/F4PCSnsIDb7SYUCpGfn084HCYvLw/DMLAsC4/HQ0NDA4FAgEgkgtfrxbIsDMPA6XTi9XrtHEZ7KgSSE4ZboThU+fOf/8yJJ57ICSec0KrHjRohPo++Q8ioo7x+DVWxHXirAwjLSXutF118P+SLXR/jdAQYGBiMlu/gs+oPeHXDIk7ucTZjepxGB28XpJR4vV7i8bhtRNLGybIs2xiljUh6XyEEkUgEt9ttP7vd7lb9jAeDUChEQUEBoVCIoqIiDMNA13WKi4upqamhqKjINsJSSuLxOKWlpdTU1FBcXEwkEiEvL49oNIoQAsuy7GNWVVVRUFBAXV0dTqcTTdOorq6msLCQqqoqgsEg9fX1CCHweDxEo1E8Hk+Lks8pw61QtEE0ofGnjx5BN+N0DXald1FvPA4/895aQDDg5rAenajaHKYqvoZBA2spdrdHNy06+fqwZscqMJy083Tg5MNOB7CNTnpZ0zQsy0LTNAzDaHJuIUST0nBtuYSYz+cjFArhdDqpr6/H4XCgaRp1dXVcddVVDBs2jMmTJxOJROzPXFtbi9frpb6+HqfTSSwWw+lMmlJN0+yLW0FBAYlEAr/fj2VZzJ8/nzfffJPHHnuMgoICdF23t0kpW2y0QRluhaJN4nHk8Yfhf+bMRWdQ4TbZ4KwmT+RRLHqQF/MQKctn19YoX+6owJP3Od6qYmqKd+F3FuPU3NTVx4glEozsehxO6cLv9xMOhxFCJG/9XZJELIzL6QDhxZISh8NBPB7H7/djGAYul4twOEwgEGizhjscDlNUVER9fT35+fmYpomu6wSDQf7xj3/w8ssvY5omF198MYWFhcTjcYLBoN3jDoVCuN2O+SXYAAAgAElEQVRuYrEYgN3jLiwspLa2loKCArZu3cqbb77J9OnTicfjPPnkk9TW1hIMBgmFkjVq0sbe5/O1qC1VOKBC0QaJxWL0bteT5855jnq9lrc3vMO/1/6bL3as4eOvVvD6Z+9wyUmXcsbgczg2eD7VO6Czv4ianZXUh+r4onwdX5Sv54+v34Hm1QiHwwSDQUzTxCVj/PXGH7D4D0fw7K2HoYercLvdCCEoLCwkHA7bvdK8vDxqampsw5Vp1qxZYxu71sDlcmEYBg6HA9M0k4O6qTsKgGg0yvTp0+nRowfLli1DCGH7ow3DQNM0pJRomobD4cDhcNj+brfbzapVqxg+fDhXXHEF4XAYSAZjpN1KLpcLl8tl9+ZVj1uhOITJy8ujsrKSLv7OPPqz2Vz13FVU1FTQt6QfDunASpj87b1F+B1+orEIbqeLnR856d9jGNsqNlJfUkGp3o1n/rWIsT3HceqPTqWyshKvGz7514PUhXTadx9Gv8E/QbjyiMfjOBwOqqur7cHJ4uJiKisrKSkpyXiPu6qqigceeACn04lpmnTr1o3LLrvsgI/rdDrRdR1N09B13f4cc+fObXIxSiQSTJgwgYsuuoizzjqLnj17ctdddyGlTF7sXC4gaYgvu+wydu7cycKFC3n22Wepq6uzj2OaJnPmzOGyyy7DsiycTqc9juBwOFqu+4A/uUKhOOhEIhHy8/MBGOYdxjMXLeSMv5zJlxXrCDgD+ISPuIhTGd/FjsrtVO+q5qfDT6PU3RkLB0fmD+Pfn/2TYo8Tj+aioaGBuooN/P2VB6jYvJz2XY7i2HNmUdi+J5oQOBwOLMuipKSEcDiM0+mkqqqKQCBATU0NeXl55OXlZeSzSimpqqri448/Zu7cuaxfv54bbriBSy+99IAvGNFolOLiYurr6wkGgxiGQSKRYOHChSQSTWO8t23bxl133cVrr72G3+9n+fLlmKbZZB9N03jttdeQUrJy5crdfpY5c+Zw3nnnUVhYSCgUQgiB1+slkUjYPf69oVwlCkUbJN07k1KiCY2+xf1481dv0rfjYdTH6lm3438s37yCVVtWEcgPMnzAcKJ6lK93bkY4Neq3Jhjd5xTy85zc+NcpbNq2ga83rObLzz/h2NNn8PMpCyjp2BtBcjAybVDSYYFCCJxOJ5Zl2S6CxrRmD1xKyfTp05kzZw533HEHHTp04De/+Q0PPvjgAR87feHxeDxUV1cTiUQA0HXd3ue+++5rModj9erVLFu27DtGG5I+7hUrVjQx2h06dGD+/Pn2a6fTSbt27dB1nYKCAvx+P5C8i1KuEoXiEEbTNGKxGCLVG9Z1nY4FHVky+VVe+/w1Xv38H3yw5n12VO0kkghTZTmIOxJYCQsMWLvuC8YOP5njSn9B+1GCq+47nx9UOhg8bAyHDT2FvPwC20inox6EECQSCVwuF6Zp4na77UHKbxuc9O1/a33Wu+66iwsuuACHw8Hzzz/PkiVLWLp06QEfOx0GWF9fT3Fxsd3jTrs+IGnEX3zxRYqKinZrrPfGmDFjmlwIDMNg165dFBYWUldXZ/e4VTigQnGIE4vFbNdENBrF7/dTW1tLIBDgxL5j+PnwX7BkxRJ2NOwgEUsQ8OYTjUSJRxMgBcYJBt07dOPEESdSXFRMcEcxW97/jJN+diWl7TtTVVWF3+9H13WcTqdtpNPxyV6vl9raWnviTiAQyGgcd4cOHbjwwgtZsGABpmly3XXXtcpx0+GALlfSXZQeIGxsoH0+H/tb0PyXv/wld999N//+97/tdQ6Hg2Aw2CQcELAHgFvCIWe4DcOweyEKxaFKXl4e9fX1QPIPn56Nl/bZhsNhTh5yMnW1teS53URrq/h6/sPENqzF26kL/X/7exIuFw5g147t7Fi5DY+/Pd2696W+upqiQICErrPh7y/wyd8WIFxe+p9+Dn1Gn0hRSQmmaVJaWkooFKKkpMSOY84UBQUFdOzYkXPOOYfJkye3Wr6beDxOfn4+kUgEn89nz2L0er32PolEAo/HY0ee7AtnnHEGQJOBTikl4XAYv99vr3e73U165XvjkDHcUkqWL1/OBx98gKZpjBw5kqFDh7bZ+FKFYk+Ew2F7Nl80GiU/P9+OG04/71y5DFG+ibLXnsPl83PkrfeD5kI4NMxdO1h74/WYQsOKWVhrP6f9kUdR9vw8trz7NpGGevK79eIHZ57P+NtmYRk6X7z1On+deD7ugiJO/H/XkN+xMz369aOurg6fz2cPlmaK2tpa8vLyWjVJWWP/vZTSdvG89NJLdOzYkYaGBjZv3syKFSu+MxGpJWzYsIGhQ4eyYcMG+3xnnXWW3bFsHHq4L7bqkDHclmVx1llnMWvWLHt58+bNynArDkk8Hk8TH3cikcDr9aLrOl6vl13v/ovNs26k23mXMmDaHQgB4XVrSf8dpBAMvPE+pIDYju0UfbiURCKBQ2gMmzINnC7i0QiJaIRIVQWWlPQYOpzuQ0dQV13N4ptmEuzWnUvufQBfMJjxHnemcLlcxONxNE2zp/ILIZr0kB966CEeeuih/Tr+tddey7Zt25g1axaQ9NdfffXVeDweLMvC7XbbF4t9acNDJqrkxhtv5PHHH6ekpISOHTvy2GOPcdNNN2VbVpslEolw8803Z1uGohnS0RyNJ4BYloUQgsp3lrD+gVvoOWEywd6HEd9aRrx8MyIWRsTCEAtDNEx045dE1q/FaKil/YhRdD7meAq69yJauYPw1i3EqnZhhMMY0Qh6JEK8IUSsvg6Hw8HxF11M/ZYtPP7rK+wwtrZIOqwy7W9OG9JZs2btt1/726SNNiS/txtvvJG6umQ7hkIhotGonQelpe3YNi+Tu+Hqq6/m/PPPZ/z48TidThYvXsxzzz2XbVltFl3XW2XUXpEZ0lEdjWfyRSIRRNVOdr70V7qfeQGe4lKsuio0NIRIzQgEBGAhwUouY0kSkRCmlBgWmJbEkhJLJpeN9LMlMbHQTXB7fBwz4UJefvB+Hv7lRK5b+EzGP28ikcDn87XqcdPT171eLzU1NUgpeeSRR7j33nubuEaKiopwOBxNwiJramp2e8yCggJcLpd9IbUsy95XSsnjjz+Ow+Hg5ptvtiNVTNPcp3DAQ6bHXVpaSmFhIU8++SRXXXUVPp+PkpKSbMtSKDJC2qedzjxXV1dHYUEBOz5fSbC0I/7CEqxQLcQiiHgILR7BEQ+jxSPJR7r3HQ1DLATRMFYkjIyEMCMhjEgII9xAIhxCDzWQCDWQCDcQb0g+x0L1WIbOSZMupaa8nIaKiox+3o0bN7J06VIuuOCCVj1uQ0MDhYWFJBIJAoEAjz32GLfddluTyTdHHHEEK1asoLy8nI0bN1JRUcHy5csZPnz4d453+OGH89Zbb1FeXs7nn39OeXk5H330EYMGDbL3MU2TP//5z9x9991s27bNngofiURa3OM+ZAy3pmksXryYp556iqOOOooHH3xwj/lsc5WXX36ZrVu3ZluGIsdJJyTyeDyYppkMa6urpfY/S9B8XvSGGohFkNEIxJKGWotHcMbDOOIRRCwC8Yi9jxkJI6MRrGgYKxrBikQwIhGMSAg9EiaRfg6HSYRDJMIh4uEQeiyBy5/PO89mtsedprXHrHw+H5FIBKfTyc6dO7/jXh0wYACzZ8+muLjY9oXX19fTrl07Zs2aRb9+/ex9PR4P1113Hf369SMejxMIBNB1nQ4dOvDEE08wYsSIJseeNWsW4XDYHmz9XocDDho0iIEDc7esU3Ps3LmTn//855x55pk888wzeL1e5s2bl21Zihwl7RqB5B8+kUjg0QSxr76gZMxpWNEwpqbh0ESye6aBQ3OgaWBJEJYESyItibQspCmxLDAtC8sCw5LolkSXFrqZdKEYlpVcZ0kMM7UsoWPPHuit5A8+2Oi6Tl5eHrFYjF/96ld2dEma7du3M23aNEzTpH///jz88MN4vV4ikQhDhgxh7NixrF+/HoCxY8dywgkn2C6dSCTCLbfcwsqVK7Esi82bNzc5txCCK6+8khdeeAG3271PoYaHnOFuK1iWxfr16+0fyY4dO/D5fIwbN45LLrmESZMmsXPnTjp06JBlpYpcpHH4mh3SpgmkZWLFIhgaaJoDSxNITYAmkA4BacNkgbQklmVhmclnwwLDtDAk6IaFIZN+7YRpJQ25aWFYFglLoJsS3bLQTYtYuPWy9R1s0gUMnE4nTzzxBP/5z3+YMGGCvb26upoPP/yQPn36cOedd+JwOIhEIng8HuLxeJNIkEAgQLt27ewoH7/fz0033cQpp5zCihUrvnPuP/3pT5x//vlNCli0lEPScB933HG8/fbb9O3bN+vhgJs3b+aNN974znrTNFm2bJn9OhwOs2HDBu6//35uuOEGTj75ZN54441W9+kpDg0SiYQ9U9E0TbxeL7G6WsxwhNjObfiCBZiaA80hEBoIhwChYaFhITGkxLSSBtkw071qiSEtEibo6R61mRyMjEajxHUdPD4SlkwZbtAtk3gkQiZjSqSUvP322xmpYdk4qZPD4eDdd9/9zj6HH344ixYtIj8/H6fTyeuvv05FRQWFhYUMGjSISy65BMMw+NGPfsSyZcsoKyvD5/Nx5pln4vV6efnllznttNP47LPPmhz3448/5uyzz7Y7b/sSmXNIGu5JkyYxZMiQVskedqA0rhTSGI/Hw+OPP27r27JlC8cddxznn38+Tz75JK+99hqffPLJwZZr4/P5GD9+PC+++CJnnXVW1nS0dc466ywWLFjAyJEjWzUiwuv1UlFRgRACv9+frIMYyMeSUP/lGhz9+iN8XtC0VE87FUmiGwiPF1NaScNrGIS3bSEWDhMzLRKmJG5I4pZJ3ABXSQcIBIlFosQTCYRhkkjtp1uShGGyefVq+g4fsXfR+4mUktmzZ+82215rkK70EwqFmD17Nqeffjrr1q1j3bp19vlnzZrFPffcgxCCqqoqrrnmGn784x/z/PPPc9ZZZ9npWSdPnszzzz/PfffdByRnct94441NjHKXLl0YM2YMf/3rX5k+fTp5eXktzgqY5pA03LlE9+7dmThx9xW5G9OxY0eWLFnCvHnzGD16NJMmTToI6prH7XZz5JFH8s477yjDfQAcddRRTJ06tdVD2dLFetOTRQKBAA2hBo6Yfjtrbr0a8/MwpT8YiPS4MTWBKUDEI1i1NTg6dMYyTBo2rME0JLF4nLiuEzct4gZEDZO4YREzLfQd29BxIP0FOAoKkZEYhsOJbkLCtNjw+So0dx5HHHNsq322g0m6sK/X68Xr9fLRRx9RWlrKhRdeaO/z5Zdfsm7dOt59913OPfdcJk2aRHFxsR3uZ5qmXTzBNE3y8/MZP348c+fO5f7776esrMzORwJQWFjI/fffz1VXXUWvXr3sqkP7MgFHGe4cweVy8YMf/IDbb7+9yTRYhaI5TNO07+aSvUYHIlCEblho4TDVX3xKQd/+aKaBwzIRehy9citsL0/GalugWxYJK9mDThjJXrRJKnZbQiKeIKabxOoaiG/ZQsy0MFwe/B07s61sMw0NEXqOOIyBGXBjHAzShX3j8TjFxcUUFRWxZcsWYrGYPakJkr3uTZs2ceedd7JmzRpeeeUVnnzySaSU+Hw+O3xw4MCBXHfddVx//fUsWrToO+4PTdOIRqNs376dww8/3J7k43K5iMViLZ7O32LDLYRwAMuBrVLK04QQvYBngRLgE+AiKWVCCOEBngKGAlXAuVLKspaep7W44IILeOaZZ9qcj7gthjAqDj7pqdpp451OrxoCLK+XRDwGukG4tgbC9YhQA5om0BBIJKa0sGTScBsWKZ/1N75rI+3/tpL+cMuSmFJiWmDqOqGaWmKRKA6PFylbP0zvYJGfn29XY6+trcXtdrNx40Z+/OMfc/LJJ1NfX28PYM6ePRspJX//+98ZNWoU06dPt6vd+/1+pJRce+21LFiwoInRnjJlit0jTycH27BhA507d7bLxe3rHdm+9Lh/A6wFgqnXdwH3SymfFULMBiYBj6aea6SUfYUQ56X2O3cfztMqTJ48mfHjx7c5w50rTJo0iTVr1lBVVcUnn3xiD84ocoN4PG5nsItEIuTl5SXTrB7+Q4qOGcvOf72EhYGsqsIpLDTDQmgCkTLclmxkiKVM+rZN2cSAG40GLw2ZHLA0pcTQJfGaOiwJDq+X8dOm2jlSMsGMGTO4++67M3LstMspkUhQUFCAlJJjjz2WE088kVgsZlem0TSNfv36cc011wDwwAMP8Nvf/tYOJ0wkEvYsyfvuu8822jfffDNXXHEFXq/XnuXq9XqJxWJ2VkfArhbf0tS4LereCSG6Aj8FHk+9FsCJwPOpXeYDZ6aWz0i9JrV9jMjC5VgIoWZO7ic1NTVs3LiRadOmccYZZ+D1etmxY0e2ZSka4ff7CYVCTXJJFxQUEBcOgj36YlgQ1y2ikSjRaIKIaRE1LCJG8jlqWMSMpLGO6jI5MGlZJFLhf7qUxC2JYUoMKUikety6ZaH585OuBLcP3TAYddLJGStbBrBs2TJGjRqVkWPn5eU1acO0y6O+vh6fz0d9fb1d3f7www+332cYhl1LMhaL4XK5mhQBTtOvXz+KiopwuVxomkYwGCQajVJQUGDnR0n3tPcln3lLe9wPANOAQOp1CVArpUxP5i8HuqSWuwBbAKSUhhCiLrX/rharagXy8/NZvHjxwTzlIcP8+fO5/PLL6du3L4lEgjPPPJMHH3xwvzOkKVqfSCRCIBBoslxXV0cgEEDr2Q+tXWdiO8rRZQIHAodGKjNgsq8mZdNed3pyjR0tYproZtJ4J6x0PLfEMCFWU4sl4MgxJ+AtLqGyspLCwkJbT1sineclHUeddlWmixK7XC6klDgcjiaDh0IIO+46ncOk8SNNuhp8ep2u63acd9rFlfajNx7A3Bt77XELIU4DKqSUrRqbJoS4XAixXAixvLWycClah6uvvprbbruN//73vxQVFXHhhRdy2223ZVuWohFpv2s0GrUHvNK39T2OHo23S3eipkUsFR2S7GFbxAyDmGEQNUyihvnNdttIpwYqTZmM504b81Sct24lXSilPXvx1eo1nPbrKQSDwYxWv8kk6VDAtHFuHNOdzsCYzr7Yq1evJoUR0vMz0i6StP+7qqoKSJYsGzhwoL0tHXWiaRqmaTZ5H7R+HPfRwOlCiFMBL0kf94NAoRDCmep1dwXSCTa2At2AciGEEyggOUjZBCnlHGAOQIcOHdpmTshDmEWLFrF69Wo+/PBDnnvuuTbZmzqUSf/x03/+dARE2uAMm3obf79wPNFoCIcQyYFJmex1S8ACrHQWQCSGkYwkSRpnC8OEhJU05rplpaJPkgbcEwjSvu8PaNe3L8WdOtnlvjL1OTM5YJ8uEhwMBqmrq8PtduNyuexKQtXV1QQCASKRCIWFhRx77LG8/PLLhMNhpkyZQrdu3WzDDlBeXm5nAhw6dCidOnWy86Snc8rU1NTYleXTpcsSiUTrhgNKKWcAMwCEEKOB66SUFwgh/gb8gmRkySXAy6m3vJJ6/UFq+1uyrSbr/R6Tzvmyr1NxFd8lEz9/0zTtP3r6lj4SieB2u4lGoxT27kNe915UrPkUTWg47JSuFhINKVI9wNTgpGnJVArXdD4SYfe0dcsiZiZdJgnLJBAsRHO76TVoEIHCQurr69E0LSO97ltuuYUbbrjBroTe2qSzA8ZiMQoLC7EsC9M0KS4utsuyRaNRAoEAUko7PwxAZWUllZWVzR47fReUzr2taRo1NTX4/X6qq6ttH3ra7ZIuFtwSDuRSNh24RgixgaQP+4nU+ieAktT6a4DrD+AciizicDiU0W4FMtEb9fv9NDQ0EAqFcDqddjxyJBKhpKSESCTCKY88SVy3iBsmUd1MuUdk8jlhEdWT7pN42o1iSqImxAxBzLBImBZxM7leNy0ShklRl+70O/pYvHl+xp53Hg0NDZSWlmZscDLtg85Ujz4QCFBTU4Pb7aampsaOq04XQN61axcOh4P6+noikQjDhw+nW7duez1ux44dOeGEE+wLgsfjQdM0ux5oaWmpHcmSvijtSxvuk+GWUr4jpTwttfyVlHKElLKvlPJsKWU8tT6Wet03tf2rfTmHQqHYO9FolLy8PHw+n52EPz0DsK6uDq/Xi3S6GXTRpUlDbSYNd0T/xredjC4xk/5vUzYy4slp7XHDIm77uyXBjl3oPWwE28rK+MnEidQ1hPD5fNTW1jYp9dWWiEQidsX1YDBohzQWFhba7hHTNPH7/Xi9Xo4++mjmz59PYWFhs8d0u908/vjjjB49Go/HQ0NDA7quI6W0o1VqamqScfepCjjAPrWhmu2hULRBPB4Puq7bUQrRaNSewZefn58sDFBUTOmo49DadSJqSCKGRcRMhgR+ExYov1k2LWK6mexlG8kQwbhpkrAk7mAB7fv2o6piJ5GGEL0HDyYQCBCPx/H7/Rm7M5s6dep38li3Jl6vl3A4jNPpJBwO2+GA6YtgQ0MDDoeDWCxm16Q8/PDDWblyJfPmzSMYDBIIBAgGgwSDQe6//37WrVvHqFGjCAQCJBIJ8vLy7LuGdGX3QCCAYRhNih9nIhxQoVDkEI2nYqcjIhrnzkgPWvYaMYphF1/KW/ffgx4J2++XqYk4UiYHKU3S/m6S6VztCTgW3uJS8jt0IhKN4vF4uev1f9saGg+KZoLi4uKMHDdN4/JiaRqXJ2u8LZ0+V9M02rdvzymnnMLXX3+NYRj2zEjAHm9I59e2LMuOHmn8HUFyfKJx1ElLUYZboWiDmKZph6qlDadhGGiahq7r9rPb7ebYSb/ClJJX/3ArsomBSkaYmJJkTHd6Wrv8Ji+3IQWaKamrqaFnp05ces89aKlMePF43I5JFkK0yUrvjY1uenYjJHvi6XS50LQ3nN7WeOJM45A+XddxuVx2pIiu6/Z7E4mEvS39nTW+ULQU5SpRKNog6ZjtWCxmJ/dPr0tXLU/f6muaxogJF/OLe/9E1yHDk/7s1KPLsBF4O3QkZlqph6TfcaOJWySnwFsQi0Q56qSfMPGPfySvqAiPx4NlWeTn5xOPx8nPz2+zcdxpw5qeDJM2no2NbnqqeroHns7kl3arpEMW0ymcXS6XXczZsiycTqe93eVyYRhGk23pC96+3LW0vUukQtFGiEajVFZWEovFKC8vR9d1SktLW+34aTeCEAKfz4cQwl5XVFSEEILOnTvb20+8+P849uxzMRv1AB0uF5ZlYpnf9MSdbjd6o2K5AG6vF7fXa/cOg8GgnVairSaYguQF0OPxNGlD+MZdkt7WmHQ19t1tS7Mnv/X++LS/jTLcCkWG+O9//8u1115LRUUF1157LSUlJTz99NOtdvzGE1PSBmRvz44WJgrzNhM33dxx2yqNUyg3/ix7+ny58NmVq0ShyACRSIQ333yTuXPnMnDgQP7yl78wYMAAli5dmm1pikMAkQuTGouKiuRFF12UbRnNEo/H7VlUuUpdXR1OpzNjM8xag507d7JzZylSZiYCoTUoLNxKjx5d9r7jXjBNk82bN9O7d282btxIz549qa+vx7KsA/odmaZJVVUV7du3P2CNmSIcDmOaJsFgcO87Z4mqqiry8/NbPFMxGyxYsICamprddutzwnALISqBMAc5g+A+UIrStj8obfuH0rZ/HGraekgp2+1uQ04YbgAhxHIp5bBs69gdStv+obTtH0rb/vF90qZ83AqFQtHGUIZboVAo2hi5ZLjnZFvAHlDa9g+lbf9Q2vaP7422nPFxKxQKhaJl5FKPW6FQKBQtIOuGWwgxTgixTgixQQiR9aILQogyIcTnQohPhRDLU+uKhRCvCyHWp56LDpKWuUKICiHE6kbrdqtFJPlTqh1XCSGOypK+W4QQW1Pt92mq5F1624yUvnVCiJMzqKubEOJtIcQXQog1QojfpNZnve32oC3r7ZY6l1cI8ZEQ4rOUvltT63sJIZaldCwSQrhT6z2p1xtS23tmQds8IcSmRm03OLU+G/8JhxBipRDi1dTrzLTbt6sTH8wH4AA2Ar0BN/AZcESWNZUBpd9adzdwfWr5euCug6TlOOAoYPXetACnAv8EBDASWJYlfbeQLG/37X2PSH2/HqBX6nt3ZEhXJ+Co1HIA+F/q/Flvuz1oy3q7pc4ngPzUsgtYlmqT54DzUutnA1ekln8NzE4tnwcsyoK2ecAvdrN/Nv4T1wALgVdTrzPSbtnucY8ANshkNZ0EyfqVZ2RZ0+44A5ifWp4PnHkwTiqlfBeobqGWM4CnZJIPSRZz7pQFfc1xBvCslDIupdwEbCD5/WdC13Yp5YrUcgOwFuhCDrTdHrQ1x0Frt5QmKaUMpV66Ug8JnAg8n1r/7bZLt+nzwBghMpPEYw/amuOg/ieEEF2BnwKPp14LMtRu2TbcXYAtjV6Xs+cf8cFAAv8WQnwihLg8ta6DlHJ7ankH0CE70vaoJZfackrq1nRuI7dSVvSlbkGHkOyd5VTbfUsb5Ei7pW73PwUqgNdJ9vJrpZTGbjTY+lLb60jWoD0o2qSU6ba7PdV29wsh0vPYD3bbPQBMA9KpFkvIULtl23DnIsdIKY8CTgGuFEIc13ijTN7b5EQoTi5pacSjQB9gMLAdmJUtIUKIfGAxcLWUsr7xtmy33W605Uy7SSlNKeVgoCvJ3n3/bGn5Nt/WJoQYCMwgqXE4UEyykPlBRQhxGlAhpfzkYJwv24Z7K9C4ZHLX1LqsIaXcmnquAF4k+cPdmb7FSj1XZE9hs1pyoi2llDtTfy4L+Avf3NYfVH1CCBdJw/i0lPKF1OqcaLvdacuVdmuMlLIWeBsYRdLNkE4D3ViDrS+1vQCoOojaxqXcT1ImC5Y/SXba7mjgdCFEGUmX74nAg2So3bJtuD8G+qVGXt0knfSvZEuMEMIvhAikl4GxwOqUpktSu10CvJwdhR0Bo5UAAAF0SURBVLAHLa8AF6dG0kcCdY3cAgeNb/kQzyLZfml956VG03sB/YCPMqRBAE8Aa6WU9zXalPW2a05bLrRbSkc7IURhatkHnETSD/828IvUbt9uu3Sb/gJ4K3U3c7C0fdnoYixI+pAbt91B+V6llDOklF2llD1J2rG3pJQXkKl2+//t2z1uwkAQhuG3g5qOlgNQpUxBC9fIMZByi5wgkVJwBeAANBAgRX5ukibFDIIGJBf2stL7SC7ASPtphEfyjt3GZLXJQUx+v4l9tHnhLCNigv8BfJ7yEHtPK+AHWAKDjvK8E7fNf8T+2NO1LMTk/CXreAAeCuV7zfX3+eccXvx+nvm+gGmLuR6JbZA9sMtjdg+1u5GteN1yrTGwzRxH4Pni2tgQw9EF0Mvv+/n5N8+PCmRbZ+2OwBvnJ086vyZy3Qnnp0paqZtvTkpSZUpvlUiSGrJxS1JlbNySVBkbtyRVxsYtSZWxcUtSZWzcklQZG7ckVeYf2tkbinO+r1AAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## نتایج\n", + "\n", + "بیایید ببینیم آیا توانستیم پیتر را برای مبارزه با گرگ آموزش دهیم!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 1, won: 9 times, drown: 90 times\n" + ] + } + ], + "source": [ + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [ + "اکنون موارد غرق شدن بسیار کمتر دیده می‌شود، اما پیتر هنوز همیشه نمی‌تواند گرگ را بکشد. سعی کنید آزمایش کنید و ببینید آیا می‌توانید با بازی کردن با هایپرپارامترها این نتیجه را بهبود دهید.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAcD0lEQVR4nO3df3BV553f8fdHPxHCQgJkIEACrIkd4raxrcZksrOTCVmM3UzwH04Gz86azXrDtHHa7HZnEryZ1tMknkna7XrDrONdN2aDM1kTrzetaYpLKHYm05nasRw7trFNkLExkrGRkQAbJPTjfvvHeSQuQjrge4UkxOc1c9E53/Occ5/nHul+OD+kq4jAzMxsLBWT3QEzM5vaHBRmZpbLQWFmZrkcFGZmlstBYWZmuaomuwPjbd68ebF06dLJ7oaZ2UXlmWeeeScimkdbNu2CYunSpbS2tk52N8zMLiqSDoy1zKeezMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4NihOO9/Tz6XMdkd8PMbMqYdr9wV66vP/I8j734FlcuuIyrFjRMdnfMzCadjyhGePNYLwA9fYOT3BMzs6nBQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0ExhpjsDpiZTRHnDApJWyQdlvTiKMv+XFJImpfmJWmzpDZJz0u6tqjtBkn70mNDUf06SS+kdTZLUqrPkbQrtd8lqWl8hnyO8U7Ek5iZXUTO54jih8DakUVJS4A1wBtF5RuBFemxEbgvtZ0D3AVcD3wcuKvojf8+4EtF6w091yZgd0SsAHaneTMzm2DnDIqI+CXQNcqie4CvceZZmnXAg5F5EmiUtBC4AdgVEV0R0Q3sAtamZQ0R8WREBPAgcHPRtram6a1FdTMzm0AlXaOQtA7oiIjfjFi0CDhYNN+eann19lHqAPMj4lCafguYn9OfjZJaJbV2dna+3+GYmVmO9x0UkmYCfwH8x/HvzujS0caY15cj4v6IaImIlubm5onqlpnZJaGUI4rfAZYBv5H0OrAY+LWkBUAHsKSo7eJUy6svHqUO8HY6NUX6eriEvpqZWZned1BExAsRcXlELI2IpWSni66NiLeA7cBt6e6nVcCxdPpoJ7BGUlO6iL0G2JmWHZe0Kt3tdBvwaHqq7cDQ3VEbiupmZjaBzuf22IeA/wdcKald0u05zXcA+4E24L8BXwaIiC7gW8DT6fHNVCO1+UFa51XgsVT/DvD7kvYBn0nzZmY2warO1SAibj3H8qVF0wHcMUa7LcCWUeqtwNWj1I8Aq8/VPzMzu7D8m9lmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBMYYY8xO6zcwuLQ6KEaTJ7oGZ2dRyPh+FukXSYUkvFtX+i6RXJD0v6b9LaixadqekNkl7Jd1QVF+bam2SNhXVl0l6KtV/Iqkm1WvTfFtavnS8Bm1mZufvfI4ofgisHVHbBVwdEf8c+C1wJ4CklcB64KNpne9LqpRUCdwL3AisBG5NbQG+C9wTEVcA3cDQZ3LfDnSn+j2pnZmZTbBzBkVE/BLoGlH7eUQMpNkngcVpeh2wLSJORcRrQBvw8fRoi4j9EdEHbAPWSRLwaeCRtP5W4OaibW1N048Aq1N7MzObQONxjeKPgcfS9CLgYNGy9lQbqz4XOFoUOkP1M7aVlh9L7c8iaaOkVkmtnZ2dZQ/IzMxOKysoJH0DGAB+PD7dKU1E3B8RLRHR0tzcPJldMTObdqpKXVHSHwGfBVZHDN9M2gEsKWq2ONUYo34EaJRUlY4aitsPbatdUhUwO7U3M7MJVNIRhaS1wNeAz0XEyaJF24H16Y6lZcAK4FfA08CKdIdTDdkF7+0pYJ4AbknrbwAeLdrWhjR9C/B4USCZmdkEOecRhaSHgE8B8yS1A3eR3eVUC+xK15efjIh/HRF7JD0MvER2SuqOiBhM2/kKsBOoBLZExJ70FF8Htkn6NvAs8ECqPwD8SFIb2cX09eMwXjMze5/OGRQRceso5QdGqQ21vxu4e5T6DmDHKPX9ZHdFjaz3Ap8/V//MzOzC8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMyZ+RZGYGDoqzaLI7YGY2xTgozMws1zmDQtIWSYclvVhUmyNpl6R96WtTqkvSZkltkp6XdG3ROhtS+32SNhTVr5P0Qlpns9Jnq471HGZmNrHO54jih8DaEbVNwO6IWAHsTvMANwIr0mMjcB9kb/pkn7V9PdnHnt5V9MZ/H/ClovXWnuM5zMxsAp0zKCLil0DXiPI6YGua3grcXFR/MDJPAo2SFgI3ALsioisiuoFdwNq0rCEinoyIAB4csa3RnsPMzCZQqdco5kfEoTT9FjA/TS8CDha1a0+1vHr7KPW85ziLpI2SWiW1dnZ2ljAcMzMbS9kXs9ORwAW9l/RczxER90dES0S0NDc3X8iumJldckoNirfTaSPS18Op3gEsKWq3ONXy6otHqec9h5mZTaBSg2I7MHTn0gbg0aL6benup1XAsXT6aCewRlJTuoi9BtiZlh2XtCrd7XTbiG2N9hxmZjaBqs7VQNJDwKeAeZLaye5e+g7wsKTbgQPAF1LzHcBNQBtwEvgiQER0SfoW8HRq982IGLpA/mWyO6vqgMfSg5znMDOzCXTOoIiIW8dYtHqUtgHcMcZ2tgBbRqm3AlePUj8y2nOYmdnE8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQjCEu6EcxmZldPBwUI2Qfi2FmZkMcFGZmlstBYWZmuRwUZmaWq6ygkPRnkvZIelHSQ5JmSFom6SlJbZJ+Iqkmta1N821p+dKi7dyZ6nsl3VBUX5tqbZI2ldNXMzMrTclBIWkR8O+Aloi4GqgE1gPfBe6JiCuAbuD2tMrtQHeq35PaIWllWu+jwFrg+5IqJVUC9wI3AiuBW1NbMzObQOWeeqoC6iRVATOBQ8CngUfS8q3AzWl6XZonLV+t7BajdcC2iDgVEa8BbcDH06MtIvZHRB+wLbU1M7MJVHJQREQH8JfAG2QBcQx4BjgaEQOpWTuwKE0vAg6mdQdS+7nF9RHrjFU/i6SNkloltXZ2dpY6JDMzG0U5p56ayP6Hvwz4AFBPdupowkXE/RHREhEtzc3Nk9EFM7Npq5xTT58BXouIzojoB34KfBJoTKeiABYDHWm6A1gCkJbPBo4U10esM1bdzMwmUDlB8QawStLMdK1hNfAS8ARwS2qzAXg0TW9P86Tlj0dEpPr6dFfUMmAF8CvgaWBFuouqhuyC9/Yy+mtmZiWoOneT0UXEU5IeAX4NDADPAvcD/wvYJunbqfZAWuUB4EeS2oAusjd+ImKPpIfJQmYAuCMiBgEkfQXYSXZH1ZaI2FNqf83MrDQlBwVARNwF3DWivJ/sjqWRbXuBz4+xnbuBu0ep7wB2lNNHMzMrj38z28zMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMYQk90BM7MpwkExgia7A2ZmU4yDwszMcjkozMwsl4PCzMxyOSjMzCxXWUEhqVHSI5JekfSypE9ImiNpl6R96WtTaitJmyW1SXpe0rVF29mQ2u+TtKGofp2kF9I6m9Nnc19QrQe6L/RTmJldVMo9ovge8L8j4irgXwAvA5uA3RGxAtid5gFuBFakx0bgPgBJc8g+TvV6so9QvWsoXFKbLxWtt7bM/pqZ2ftUclBImg38HvAAQET0RcRRYB2wNTXbCtycptcBD0bmSaBR0kLgBmBXRHRFRDewC1ibljVExJMREcCDRdsyM7MJUs4RxTKgE/h7Sc9K+oGkemB+RBxKbd4C5qfpRcDBovXbUy2v3j5K/SySNkpqldTa2dlZxpDMzGykcoKiCrgWuC8irgFOcPo0EwDpSOCC/5JzRNwfES0R0dLc3Hyhn87M7JJSTlC0A+0R8VSaf4QsON5Op41IXw+n5R3AkqL1F6daXn3xKHUzM5tAJQdFRLwFHJR0ZSqtBl4CtgNDdy5tAB5N09uB29LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVW62+m2om2ZmdkEqSpz/X8L/FhSDbAf+CJZ+Dws6XbgAPCF1HYHcBPQBpxMbYmILknfAp5O7b4ZEV1p+svAD4E64LH0MDOzCVRWUETEc0DLKItWj9I2gDvG2M4WYMso9Vbg6nL6aGZm5fFvZpuZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMIS74H0c3M7s4OCjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxylR0UkiolPSvpZ2l+maSnJLVJ+kn6mFQk1ab5trR8adE27kz1vZJuKKqvTbU2SZvK7auZmb1/43FE8VXg5aL57wL3RMQVQDdwe6rfDnSn+j2pHZJWAuuBjwJrge+n8KkE7gVuBFYCt6a2ZmY2gcoKCkmLgX8F/CDNC/g08EhqshW4OU2vS/Ok5atT+3XAtog4FRGvAW3Ax9OjLSL2R0QfsC21NTOzCVTuEcVfA18DCml+LnA0IgbSfDuwKE0vAg4CpOXHUvvh+oh1xqqfRdJGSa2SWjs7O8sckpmZFSs5KCR9FjgcEc+MY39KEhH3R0RLRLQ0NzdPdnfMzKaVqjLW/STwOUk3ATOABuB7QKOkqnTUsBjoSO07gCVAu6QqYDZwpKg+pHidsepmZjZBSj6iiIg7I2JxRCwluxj9eET8AfAEcEtqtgF4NE1vT/Ok5Y9HRKT6+nRX1DJgBfAr4GlgRbqLqiY9x/ZS+2tmZqUp54hiLF8Htkn6NvAs8ECqPwD8SFIb0EX2xk9E7JH0MPASMADcERGDAJK+AuwEKoEtEbHnAvTXzMxyjEtQRMQvgF+k6f1kdyyNbNMLfH6M9e8G7h6lvgPYMR59NDOz0vg3s83MLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkoxpD9dREzM3NQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlKjkoJC2R9ISklyTtkfTVVJ8jaZekfelrU6pL0mZJbZKel3Rt0bY2pPb7JG0oql8n6YW0zmZJKmewZmb2/pVzRDEA/HlErARWAXdIWglsAnZHxApgd5oHuBFYkR4bgfsgCxbgLuB6so9QvWsoXFKbLxWtt7aM/pqZWQlKDoqIOBQRv07T7wIvA4uAdcDW1GwrcHOaXgc8GJkngUZJC4EbgF0R0RUR3cAuYG1a1hART0b29zQeLNqWmZlNkHG5RiFpKXAN8BQwPyIOpUVvAfPT9CLgYNFq7amWV28fpT7a82+U1CqptbOzs6yxmJnZmcoOCkmzgH8C/jQijhcvS0cCF/yv60XE/RHREhEtzc3NF/rpzMwuKWUFhaRqspD4cUT8NJXfTqeNSF8Pp3oHsKRo9cWplldfPErdzMwmUDl3PQl4AHg5Iv6qaNF2YOjOpQ3Ao0X129LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVV6rtuKtmVmZhOkqox1Pwn8IfCCpOdS7S+A7wAPS7odOAB8IS3bAdwEtAEngS8CRESXpG8BT6d234yIrjT9ZeCHQB3wWHqYmdkEKjkoIuL/AmP9XsPqUdoHcMcY29oCbBml3gpcXWofzcysfP7NbDMzy+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgGMMF/wNVZmYXCQeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgfFGArhG2TNzMBBMab/+vPfTnYXzMymBAfFGJ450D3ZXTAzmxKmfFBIWitpr6Q2SZsmuz9mZpeaKR0UkiqBe4EbgZXArZJWTmQfBgtT+1rFwGCBvoHC+1pnsBDEJXQNJuLSGu9oLobxXwx9vFSV/JnZE+TjQFtE7AeQtA1YB7w03k+0efc+Hn2u44zaVf/hMXr7z34TvuLyWWfVRn6THzrWS0//IALmN8xgRnUlFcr+hlQEvPbOCQCWzatHQHt3D32DBRY11tFxtIfFTXVUV1Yg4GTfIDNrK6nU2R9Rvu/wewDMm1XL7Lqq4b9RNdQy0j9Kz10oBK8fOQnA7zTXD2+nkNoMtR3p1c4Tw9M1lRX0DRZYPi9bv79QoL27h4UNM6itrkSCrhN9HD3Zz4KGGdRWV9A3UODQsV4AFjTMQILKCtHe3TO83eWpP719g7yZ2i6fV4+Uhduxnn7m1NecHleaCLKbDw6kcS2dOxOACgnpdN+XN2evdSGgQiCJUwODHOw63Ye59TUcOdE3vJ3uk/3MrqumQtA3UKDrZN/w98TyefVUVJz5YrWl/TE0lo7uHhrqqmmYUdqPmkbbGTkKEezvPEF1pVjUWDe8rwEuq62iqb6GqgpxaqBA57un6BssUFNZweKmOoJsnxQiOPJeH8d6+gFY1FhHbXXF8Is+UAj6BgrU11ZSCHi3d4BZtZWcGijQ2z9IVWUFM2sqqa48+/+hEcGrnSe4bEYV82bV0j9YoLJCw/uuvqaSGdWVw/sAsp+RUh3v6efIiT5m1lTSN1BgoBDMrqumb6BAT//gcLs59TXMrqtGguM9A0DwzntZHySYXVdNY101kqgs2ucDg9l2evsLzK2vQYI3j/ayYPYM3u0d4J33TgHZz5okIrLv41MDBebNqh3e1pH3TvFu7wAfnDuT4z39w889ZOHsGcysqSTIfrbf6DrJ5ZdlP1uQ/Vyf7Btk863XsGr53JJfr7FM9aBYBBwsmm8Hrh/ZSNJGYCPABz/4wZKeaH5DLVctaOCNrpP0DwZz62uoqhS9/aeQsh+W9u4eFjXW8eH5sxCj/AAXlWZUV7LnzeME2ZvGrNoqqioqUHqDmlVbxQsdx1j5gQYEvPNe9kP7sSWNdBztYW59DUvmZG94zxzoZs7MGi5vqD3rKdu7e+jpH6SupoKrFjScmRA63a1I8xUSrx85ycqFDSxrrh/9rx/mBMW/XNpE32Dwm4NH+UjquyQOdvXwobn1zJ2VvZGf7Bvk8VcO87EljdRWVzBYCH72/CEAPrakkRnVFQwGw0Exb1YNH1nYMPxDMBQUH1l4ekyvdZ5gyZw6qtIb0FA3h95MD6RxrZg/iwjoHyxQIfFq5wmuuHwWVy64DAIqKkQhHSkOFuKMoLjuQ038/KW3uX7ZHN463svcWTU0zaxhUWMW3Md7+3nu4FE63z3F/IYZw8E1ZOiNeuXCBgI4drKfmsoKrlrYMMoLfQ4l/gd7f+cJls+bxfLm+uGgqKmqYFFTHR+efxmDEVRI/M/fvAlA32CBD8+/jKpKMfT/nc53T/Gr17uA7GfjA411w13qGyiw66W3uemfLUASz7cf5YrLZ6XgLXDkvVO8ffwU1y+bPWr/Xu08wbu9A3zqysuprhADheDNoz3MqKpkUVMdr3a+N9x2xeWzsu+BEh3v7ecXezupTM8DWRj29A8yt76GhY0zeLHjONcsaaS+torBQnC0p4/X3zkdsBFZP4719PPh+ZdRiDjj5//p17s41tPP714xDwQLZs/g7eOnuHLBLN5py4LiqgWnx/D28V5aD3RzxeWz+MDs7HVt7e1noBCsXNjAqfT6DrnuQ010dPec/h5K4VyIGH5tKiXqqitpnFld8muVR1P5cE/SLcDaiPiTNP+HwPUR8ZWx1mlpaYnW1taJ6qKZ2bQg6ZmIaBlt2ZS+RgF0AEuK5henmpmZTZCpHhRPAyskLZNUA6wHtk9yn8zMLilT+hpFRAxI+gqwE6gEtkTEnknulpnZJWVKBwVAROwAdkx2P8zMLlVT/dSTmZlNMgeFmZnlclCYmVkuB4WZmeWa0r9wVwpJncCBElefB7wzjt25GHjMlwaP+dJQzpg/FBHNoy2YdkFRDkmtY/1m4nTlMV8aPOZLw4Uas089mZlZLgeFmZnlclCc6f7J7sAk8JgvDR7zpeGCjNnXKMzMLJePKMzMLJeDwszMcjkoEklrJe2V1CZp02T3p1SSlkh6QtJLkvZI+mqqz5G0S9K+9LUp1SVpcxr385KuLdrWhtR+n6QNkzWm8yWpUtKzkn6W5pdJeiqN7SfpT9UjqTbNt6XlS4u2cWeq75V0w+SM5PxIapT0iKRXJL0s6RPTfT9L+rP0ff2ipIckzZhu+1nSFkmHJb1YVBu3/SrpOkkvpHU2S+fxebtDHzx/KT/I/oT5q8ByoAb4DbBysvtV4lgWAtem6cuA3wIrgf8MbEr1TcB30/RNwGNknyy6Cngq1ecA+9PXpjTdNNnjO8fY/z3wD8DP0vzDwPo0/bfAv0nTXwb+Nk2vB36SplemfV8LLEvfE5WTPa6c8W4F/iRN1wCN03k/k3008mtAXdH+/aPptp+B3wOuBV4sqo3bfgV+ldoqrXvjOfs02S/KVHgAnwB2Fs3fCdw52f0ap7E9Cvw+sBdYmGoLgb1p+u+AW4va703LbwX+rqh+Rrup9iD79MPdwKeBn6UfgneAqpH7mOzzTT6RpqtSO43c78XtptoDmJ3eNDWiPm33cwqKg+nNryrt5xum434Glo4IinHZr2nZK0X1M9qN9fCpp8zQN+CQ9lS7qKVD7WuAp4D5EXEoLXoLmJ+mxxr7xfaa/DXwNaCQ5ucCRyNiIM0X9394bGn5sdT+YhrzMqAT+Pt0uu0HkuqZxvs5IjqAvwTeAA6R7bdnmN77ech47ddFaXpkPZeDYpqSNAv4J+BPI+J48bLI/isxbe6LlvRZ4HBEPDPZfZlAVWSnJ+6LiGuAE2SnJIZNw/3cBKwjC8kPAPXA2knt1CSYjP3qoMh0AEuK5hen2kVJUjVZSPw4In6aym9LWpiWLwQOp/pYY7+YXpNPAp+T9Dqwjez00/eARklDn+JY3P/hsaXls4EjXFxjbgfaI+KpNP8IWXBM5/38GeC1iOiMiH7gp2T7fjrv5yHjtV870vTIei4HReZpYEW6e6KG7MLX9knuU0nSHQwPAC9HxF8VLdoODN35sIHs2sVQ/bZ098Qq4Fg6xN0JrJHUlP4ntybVppyIuDMiFkfEUrJ993hE/AHwBHBLajZyzEOvxS2pfaT6+nS3zDJgBdmFvyknIt4CDkq6MpVWAy8xjfcz2SmnVZJmpu/zoTFP2/1cZFz2a1p2XNKq9BreVrStsU32RZup8iC7e+C3ZHdAfGOy+1PGOH6X7LD0eeC59LiJ7NzsbmAf8H+AOam9gHvTuF8AWoq29cdAW3p8cbLHdp7j/xSn73paTvYG0Ab8I1Cb6jPSfFtavrxo/W+k12Iv53E3yCSP9WNAa9rX/4Ps7pZpvZ+B/wS8ArwI/IjszqVptZ+Bh8iuwfSTHTnePp77FWhJr9+rwN8w4oaI0R7+Ex5mZpbLp57MzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCzX/wfjiuCHCiJzlAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/1-QLearning/solution/notebook.ipynb b/translations/fa/8-Reinforcement/1-QLearning/solution/notebook.ipynb new file mode 100644 index 000000000..e6a1db941 --- /dev/null +++ b/translations/fa/8-Reinforcement/1-QLearning/solution/notebook.ipynb @@ -0,0 +1,577 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "488431336543f71f14d4aaf0399e3381", + "translation_date": "2025-09-04T03:00:57+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# پیتر و گرگ: مقدمه‌ای بر یادگیری تقویتی\n", + "\n", + "در این آموزش، یاد می‌گیریم که چگونه یادگیری تقویتی را برای مسئله‌ی یافتن مسیر به کار ببریم. این موضوع از داستان موسیقیایی [پیتر و گرگ](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) اثر آهنگساز روسی [سرگئی پروکفیف](https://en.wikipedia.org/wiki/Sergei_Prokofiev) الهام گرفته شده است. این داستان درباره‌ی پیشگام جوانی به نام پیتر است که شجاعانه از خانه‌اش بیرون می‌رود و به جنگل می‌رود تا گرگ را دنبال کند. ما الگوریتم‌های یادگیری ماشین را آموزش خواهیم داد که به پیتر کمک می‌کنند تا منطقه‌ی اطراف را کشف کند و یک نقشه‌ی ناوبری بهینه بسازد.\n", + "\n", + "ابتدا، بیایید تعدادی کتابخانه‌ی مفید را وارد کنیم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## مروری بر یادگیری تقویتی\n", + "\n", + "**یادگیری تقویتی** (RL) یک تکنیک یادگیری است که به ما امکان می‌دهد رفتار بهینه یک **عامل** را در یک **محیط** با انجام آزمایش‌های متعدد یاد بگیریم. عامل در این محیط باید یک **هدف** داشته باشد که توسط یک **تابع پاداش** تعریف می‌شود.\n", + "\n", + "## محیط\n", + "\n", + "برای ساده‌تر کردن موضوع، بیایید دنیای پیتر را به یک صفحه مربعی با اندازه `width` x `height` در نظر بگیریم. هر سلول در این صفحه می‌تواند یکی از موارد زیر باشد:\n", + "* **زمین**، که پیتر و موجودات دیگر می‌توانند روی آن راه بروند\n", + "* **آب**، که به وضوح نمی‌توانید روی آن راه بروید\n", + "* **درخت** یا **چمن** - مکانی که می‌توانید کمی استراحت کنید\n", + "* **سیب**، که چیزی است که پیتر خوشحال می‌شود پیدا کند تا خودش را تغذیه کند\n", + "* **گرگ**، که خطرناک است و باید از آن اجتناب کرد\n", + "\n", + "برای کار با محیط، ما یک کلاس به نام `Board` تعریف خواهیم کرد. برای جلوگیری از شلوغ شدن بیش از حد این دفترچه، تمام کدهای مربوط به کار با صفحه را به یک ماژول جداگانه به نام `rlboard` منتقل کرده‌ایم که اکنون آن را وارد می‌کنیم. شما می‌توانید داخل این ماژول را بررسی کنید تا جزئیات بیشتری درباره پیاده‌سازی داخلی آن به دست آورید.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from rlboard import *" + ] + }, + { + "source": [ + "حالا بیایید یک صفحه تصادفی ایجاد کنیم و ببینیم چگونه به نظر می‌رسد:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "source": [ + "## اقدامات و سیاست‌ها\n", + "\n", + "در مثال ما، هدف پیتر پیدا کردن یک سیب است، در حالی که باید از گرگ و سایر موانع دوری کند. برای این کار، او می‌تواند اساساً در اطراف قدم بزند تا سیب را پیدا کند. بنابراین، در هر موقعیتی می‌تواند یکی از اقدامات زیر را انتخاب کند: بالا، پایین، چپ و راست. ما این اقدامات را به صورت یک دیکشنری تعریف می‌کنیم و آنها را به زوج‌های تغییرات مختصات مربوطه نگاشت می‌کنیم. برای مثال، حرکت به راست (`R`) به زوج `(1,0)` مربوط می‌شود.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "استراتژی عامل ما (پیتر) با چیزی که به آن **سیاست** گفته می‌شود تعریف شده است. بیایید ساده‌ترین سیاست که **حرکت تصادفی** نام دارد را بررسی کنیم.\n", + "\n", + "## حرکت تصادفی\n", + "\n", + "ابتدا بیایید مسئله خود را با پیاده‌سازی یک استراتژی حرکت تصادفی حل کنیم.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "18" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(m):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(m,policy,start_position=None):\n", + " n = 0 # number of steps\n", + " # set initial position\n", + " if start_position:\n", + " m.human = start_position \n", + " else:\n", + " m.random_start()\n", + " while True:\n", + " if m.at() == Board.Cell.apple:\n", + " return n # success!\n", + " if m.at() in [Board.Cell.wolf, Board.Cell.water]:\n", + " return -1 # eaten by wolf or drowned\n", + " while True:\n", + " a = actions[policy(m)]\n", + " new_pos = m.move_pos(m.human,a)\n", + " if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water:\n", + " m.move(a) # do the actual move\n", + " break\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "source": [ + "بیایید آزمایش قدم‌زنی تصادفی را چندین بار اجرا کنیم و میانگین تعداد قدم‌های برداشته‌شده را ببینیم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 32.87096774193548, eaten by wolf: 7 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " else:\n", + " s += z\n", + " n += 1\n", + " print(f\"Average path length = {s/n}, eaten by wolf: {w} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## تابع پاداش\n", + "\n", + "برای هوشمندتر کردن سیاست خود، باید بفهمیم کدام حرکات \"بهتر\" از دیگران هستند.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "move_reward = -0.1\n", + "goal_reward = 10\n", + "end_reward = -10\n", + "\n", + "def reward(m,pos=None):\n", + " pos = pos or m.human\n", + " if not m.is_valid(pos):\n", + " return end_reward\n", + " x = m.at(pos)\n", + " if x==Board.Cell.water or x == Board.Cell.wolf:\n", + " return end_reward\n", + " if x==Board.Cell.apple:\n", + " return goal_reward\n", + " return move_reward" + ] + }, + { + "source": [ + "## یادگیری Q\n", + "\n", + "ساخت یک جدول Q یا آرایه چند‌بعدی. از آنجا که صفحه ما ابعاد `width` x `height` دارد، می‌توانیم جدول Q را با یک آرایه numpy با شکل `width` x `height` x `len(actions)` نمایش دهیم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "source": [ + "جدول Q را به تابع رسم منتقل کنید تا جدول را روی تخته نمایش دهید:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhU5f3+8fczk8m+BwIYBGQRZIkoiKIsIm6tuwVEZSkiqC1SXHAB259VYhUVqrUVUURA3FGwFLQKrsAXxJZNBQIkICEEkpBl9plznt8fmaRESEBJODPh8/LKlcmZ5dwkmduT5yyP0lojhBAictisDiCEEOLnkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMI1W3EqpK5VS25RSO5RSDzXWeoQQ4lSjGuM4bqWUHdgOXAbsBb4BbtZaf9/gKxNCiFNMY21x9wF2aK13aa39wFvAdY20LiGEOKU0VnFnAT8e9vXe0DIhhBAnKMqqFSulxgPjARwOR6/s7GyrohyTz+ejsrKSZs2aWR2lTmVlZTgcDhISEqyOUqfCwkIyMzOx2+1WR6nTnj17aNOmjdUx6hQMBjl48CCtWrWyOkqdnE4nwWCQ1NRUq6PU6eDBgyQnJxMTE2N1lDp99913eDweddQ7tdYN/gH0BT4+7OuHgYfrenxmZqYOZ7m5uXr27NlWx6jXBx98oFevXm11jHo9/vjjurS01OoYdTJNU0+YMMHqGPUqKSnROTk5Vseo19dff60XL15sdYx6zZo1S+fm5lodo16hXjxqZzbWUMk3QCel1BlKqWhgOPBhI61LCCFOKY0yVKK1DiqlJgAfA3bgVa31d42xLiGEONU02hi31noZsKyxXl8IIU5VcuakEEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsI02eLOy8urvhZ4WDIMgz179lgdo14ul4uDBw9aHaNeBw8exOVyWR2jXnv27MEwDKtj1ElrTV5entUx6uX3+9m3b5/VMepVVlZGWVnZSVmXZTPgNJZt27bx1VdfsXnzZnr06EHPnj3p3bu31bFq+fzzz9m2bRvbtm2ja9euXHnllbRu3drqWLW8/fbbFBQUUFFRQevWrRk5cmRYzRbi8/lYsGABe/fuJSkpiaysLIYPH251rFoKCgpYvnw533//PZ07d+bMM89k0KBBVseqZf369WzYsIFNmzaRnZ1Nv3796NKli9Wxalm6dCn5+fkUFBTQoUMHhgwZElaz62itmTdvHoWFhQC0atWK0aNHo9TRJ69pCE1ui/urr75i7dq1/OlPf2LXrl188MEHVkc6wpw5c3C73TzwwAMsX76cLVu2WB3pCI899hjdunXjhhtu4K9//Stut9vqSLV4PB5mzpzJ9ddfT/fu3XnsscesjnSE7777jmXLljF58mS8Xi+vvPKK1ZGOsHjxYnbt2sWjjz7KunXr+Oqrr6yOdISnn36ajIwMxo4dy4IFC9i/f7/VkWoxTZNp06YxYMAA+vfvz7Rp0zBNs1HX2aSKOy8vj82bNxMTE8O1117LQw89RGxsLKtWrbI6Wo1FixbRt29fPvroIx555BH+/ve/s3DhQsrLy62OVmPKlCn85S9/4aGHHmL16tUsXryY22+/3epYtdx+++1MmTKFMWPGkJqayt///ncefvhhq2PVqKioYP78+XTv3p2rrrqKkSNH0q9fP9577z2ro9VYvXo10dHR7Nq1i9GjR/Pkk0+yZcsWdu3aZXW0Gs8//zx33XUXzz33HPPnz2fBggVMmTIlrIaexo8fzzPPPMOECRMoLS3lvffeY/z48Y26ziY1VNKuXTt69OjBzp07Wb58OfPnz8fr9XLhhRdaHa3GjTfeyOjRo7ntttu4/PLLeeCBB7jllltITk62OlqNadOm0bNnT+bNm0daWho33XQTy5aF15wYL7/8Mpdffjnvv/8+FRUV3H777WzcuNHqWDWSkpIYNWoUb7/9Np9++ikrV65k1apVLFiwwOpoNfr27cuyZcu48MIL+e1vf8tTTz1F9+7dOeOMM6yOVuPuu+9m0KBBPPnkk3Tu3Jnx48fz1FNPYbOFzzbnSy+9RHZ2Nu+//z5Q9R7ftGlTo66zSRW3UoqePXuSl5fHc889h9fr5eKLL27UsaafSynFNddcw8aNG9m2bRuZmZl06NAhrDLabDZGjRrFBx98gM1m49JLLyU+Pt7qWLXExsZy+eWXM2/ePEzTZNSoUWH1ZlZK0b59e1q2bMkLL7yA3+/n2muvDaufs1KKgQMH8vnnn/Pcc88B0LNnz7DLeOutt/Lpp5/yxRdfkJ2dTfPmzcMqo81mY9iwYbz55psADBs2rNF/F5tUcQP07t2b3r17s2rVKi688MKw+gFXGzp0KDfccAPffvst559/vtVxjur++++npKSE0tJSOnXqZHWcI8TFxZGTk0Nubi5paWk0a9bM6khH6NixIzk5Oaxbt45zzjkHh8NhdaQjXHbZZVx66aWsXr2aiy66yOo4RzVu3DhcLhc7d+4kOzvb6jhHsNlsPProo+zduxfgpBxo0OSKu1q4/hJWi4qKCtvSrpaRkUFGRobVMeoVjv9T+ak+ffpYHaFeSqmwf78kJCSEZWkf7mQeGRY+f1sKIYQ4LlLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWFO6JR3pVQ+UAkYQFBr3VsplQ68DbQD8oFhWutDJxZTCCFEtYbY4h6kte6pta6eZuYhYIXWuhOwIvS1EEKIBtIYQyXXAfNCt+cB1zfCOoQQ4pR1osWtgX8rpb5VSlVP+dBCa10Yur0faHGC6xBCCHGYE72saz+tdYFSKhP4RCm19fA7tdZaKXXUqdZDRT8eIDExkdzc3BOM0nj27t1LWVlZWGcsLi7GNM2wzuhyucjLy6O4uNjqKHXy+/1h/T2sqKjA5XKFdcb9+/eH/fulrKyMH3/8Ea2PWk9hob55K0+ouLXWBaHPB5RSHwB9gCKlVCutdaFSqhVwoI7nzgZmA2RkZOjPP//8RKI0qrKyMvbu3Us4Z9y5cyfx8fGUlJRYHaVOxcXFrF69Oqxmi/8pp9MZ1j9nr9fLmoNrWPL5Equj1Cm+MJ7BnsGNPmHuiSgoKODbb79lx44dVkepU73fP631L/oAEoCkw26vBq4EngYeCi1/CJh+rNfKzMzU4Sw3N1fPnj3b6hj1+uCDD/Tq1autjlGvxx9/XJeWllodo06maeoJEyZYHaNeJSUluldOL00Y/9fy65Z68eLFVn+r6jVr1iydm5trdYx6hXrxqJ15IlvcLYAPQlODRQFvaK0/Ukp9A7yjlBoL7AaGncA6hBBC/MQvLm6t9S7g7KMsLwEGn0goIYQQdZMzJ4UQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3IsWLQrraYn8fj9Lly61Oka9CgoKWL9+vdUx6vXtt99SUFBgdYx6LV26FL/fb3WMiFZeXh7WMxMBbNu2jW3btp2UdZ3onJNh5/PPP2fOnDn07duX0aNHc8011zB06FCrY9Uya9Ys1q5dS8+ePRk5ciSTJ08mOzvb6li13HvvvRiGQVpaGs8//zwvvvgiCQkJVseq4Xa7ufPOO2nfvj1lZWUopZg5c6bVsWrZvHkz06dPp3fv3txxxx306dOHu+66y+pYEScnJ4c9e/bQvn175syZw1NPPcVpp51mdawapmkyfvx4mjVrhtaakpISZs+ejc3WeNvFTWqL2zAMtm3bRteuXbnpppu4+uqr2bhxI8Fg0OpoNfx+P2vXrmXo0KGMGDGCrKws8vPzw+qvA4/Hw9dff81dd93FnXfeWTP5azipnux1zJgx3HvvvaxatQqPx2N1rBpaa3bv3k2zZs24+eabue222/i///s/2fL+mXw+H1988QXjxo1jzJgxKKUoKioKq/eL2+1m48aNjBs3jokTJ7J582bcbnejrrNJFXdBQQHbtm2jqKiIUaNGcemllxIdHc1//vMfq6PV+Pe//03Pnj2ZM2cOjz/+OHfeeSf//Oc/qaystDpajRkzZnDPPffwu9/9juXLlzN9+nSmTp1qdaxapk6dyogRIxgzZgwHDx7kj3/8I88++6zVsWo4nU4WL15McnIyw4cP56yzzqJXr158/PHHVkeLKPPnz+fmm29m6tSpvPrqq0yZMoUZM2aE1UTEU6dO5Z577mHcuHFs3ryZZ555ptHfL01qqKRNmzZ07dqV5cuXM2fOHB588EEyMzPp06eP1dFqXH311YwcOZJOnTpx5513cvvtt3P//feTnJxsdbQaU6dO5ayzzmLKlCm0bduWoUOHsm7dOqtj1TJz5kx69+7Nq6++yg8//MC0adPYunWr1bFqJCUlMWzYMKZPn86rr77KjBkz2L17NxMnTrQ6WkQZN24cAwcO5IYbbmDQoEGMGDGC119/HbvdbnW0GjNmzKB9+/a88MIL+P1+7rjjDnbt2tWo62xSxQ1w5ZVXcvrppzN58mRuvfVWOnToYHWkIzzwwAPk5+czbdo0Jk+eTK9evayOdISXXnqJ7du3s2LFCl544QUSExOtjlRLQkICf//731m5ciVZWVnMnj3b6khHOPfcc5k8eTI5OTlce+21DB8+3OpIEenpp58mLy+PefPmkZOTQ+vWra2OVIvNZmPOnDls2rQJgDlz5jTq+DY0weJu3bo1rVu35oILLiA5OZnQLPRhpUePHnTv3p2BAweG1Zb24QYMGEDfvn0JBoPExcVZHecIDoeDK664ggEDBhAVFYXD4bA60hGaNWvGFVdcQd++fUlKSgrL38VI0KdPH3r16sVVV10VdhsQAEopLr30Uvr37w9ATExMo6+zyRV3tZSUFKsj1EspFbalXc3hcIRlIR4uHP+n8lPh/nOOBHa7PSxL+3Ano7CrNamdk0IIcSqQ4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCHLO4lVKvKqUOKKW2HLYsXSn1iVIqN/Q5LbRcKaWeV0rtUEptUkqd25jhhRDiVHQ8W9yvAVf+ZNlDwAqtdSdgRehrgF8BnUIf44EXGyamECKSyOn9jeuYxa21/hIo/cni64B5odvzgOsPWz5fV/k/IFUp1aqhwgohIkM4XS+7KfqlY9wttNaFodv7gRah21nAj4c9bm9omRBCiAZywjsnddX/Wn/2/16VUuOVUuuVUuvDaeYSIYQId7+0uIuqh0BCnw+ElhcApx/2uNahZUfQWs/WWvfWWveOhCu8CSFEuPill3X9EBgNPBn6vOSw5ROUUm8B5wPlhw2p1MkwDBYvXvwLozS+4uJidu7cGdYZt2zZwu7duykqKrI6Sp3279/PRx99FNaXYq2oqAjrn7Pb7SahMIH2i9tbHaVOSflJbHFtCetx7l27dhEVFcWWLVuO/WCLGIZR533HLG6l1JvAxUAzpdRe4P9RVdjvKKXGAruBYaGHLwN+DewA3MCY4wno9yvuuqvFsR9okfh4k9Gj42nRInwz7t69m1mzUigrC9+MHTvGcP31zcNqtvifioqKCuufs9Pp5LyY83iyxZNWR6nT1kNbqbRVhvX3MT4+nifSn8DdonEn9T0RflX3xNLHLG6t9c113DX4KI/VwO+PO1nN82zs39/35z7tpElJ2UGrViX07Ru+GYuKiigraxHW38fWrVfQq1cv0tLSftHzg8Egs2bN4oknnqi1fPbs2fz6178+4emitNa88cYbYf1zLi0t5ZtvvgnrjKZpUlxcHNYZN23aREmPEso7llsdpU6JtronjmiyM+CIpsXv9/Pqq68yceLEI/4Ev/baa/nwww+58soriYqSX2nR9Mkp7yLsBQIBZsyYwaRJk446bqq1ZtSoUSxYsIBgMGhBQiFOLiluEfZsNhuLFy/G5/PV+ZhDhw6xcuXKRp9dW4hwIL/lIuxt2bKFgwcPHvNx+fn55OXlnYREQlhLiluEPYfDcVxj18f7OCEinRS3CHudOnUiKSnpmI9r0aIFWVlyhQXR9Elxi7Bnt9vJycnB4XDU+ZjmzZszadIk7Hb7SUwmhDWkuEXYs9ls9O/fn/PPP/+oW9Tt27fnwgsv5Nxzz5XLiYpTghS3iAhxcXHMnz+fDh061CpnpRTdu3dn3rx5Mr4tThlS3CLsaa0JBoOMGzeOL7/8stax3FprPvzwQ+6++2601mF9fQwhGooUtwhbWmsMw2DDhg1cdNFFrFixos7HvvHGG1x33XXk5uZimqYUuGjS5G9LEZa01rhcLt544w1ee+011q9fX+/jDcNg2bJlaK256aabuPnmm7Hb7TLmLZokKW4RdrTWmKbJww8/zAsvvHDczzNNk2XLlvHRRx9RUFDA5MmTsdlsUt6iyZGhEhF2/H4/d999N7NmzfrZz60eXnn88ceZPn26XLtENElS3CKsuFwuHn74YV566aUTKl23280TTzzBnDlzCAQCDZhQCOtJcYuwEQgE+POf/8zMmTMxTbNmeVRU1HFdPCoqKqrWCThOp5O77rqLWbNmyc5K0aRIcVvE4/GQk5NjdYywMmXKFJ599tkjlo8YMYIzzzzzmM/v378/gwcPPmJM+6GHHuK5555rsJw/1xNPPIHbHb4zrWitmTJlitUx6rV///5fNHTWVElxW+Dee+/l4osvJjs7m7POOosvvvjC6kiWCgaD3H///Tz//PO1trTj4+O5/vrrmTFjBunp6fW+hlKKNm3asHDhQpYtW0Zi4v9mD3G73TzyyCP8/e9/r/X6je2rr76iS5cudO/enUsuuYRJkyadtHUfr2effZbs7GwuvfRSunbtyltvvWV1pCPcdNNNjBkzhujoaDp37szOnTutjmQ5Ke6TrKCgAMMwmDx5MllZWUyZMoXt27efsuOwWmvWrFnDhx9+iN9fNceeUorOnTuzcuVK3nrrLVJTU4/79Zo1a8Zll13GG2+8Qdu2bWu2vl0uF6+99hq5ubknZdgkEAiwbds2br75ZhITE3nnnXcwTZOCgoJGX/fxKikpoby8nHvvvZfY2FhmzpxJQUEBLpfL6mg1du7cSXx8PBMnTuSCCy5g3LhxbNiw4ZQf+pLiPskKCwtJS0tj8+bNbNiwgbZt27J3795T+uiHQCBQa0u4R48e/PWvf6V3797ExMT87MP57HY7l112GTk5ObRp06ZmeTAYrHfm7IYUDAb58ccf0VrzxRdfEB0dTXp6OoWFhSdl/cejtLQUm81Gfn4+69ato2XLllRWVoZVce/atYt27dqxZs0atm7dSufOnfnhhx+kuK0OcKrp3bs3u3btYs2aNZx77rmMHTuWvn37EhcXZ3U0Syil6NOnD48++igZGRmcc845LFiwgEsuueSErvQXGxvLjTfeyDvvvEOLFi3o1KkTjz32GO3btz8px3XHxcVx0UUX8frrr3P99dczevRocnNz6d27d6Ov+3h16tSJYDDI8uXLufrqqxkxYgRZWVlkZmZaHa3GZZddxsqVK8nPzycxMZG77rqLIUOGnPIzHckJOBZ48cUXKSsrY8qUKaxbt67WeOypKDExkZtuuqlmst+fDo2YpnnMsenqk3a01jXFHBcXR58+ffjuu+9QSpGcnHxSL0Q1aNAgvvnmG+69917mzJnzi2e3b0xTp07lnnvuYfz48Xz55ZfEx8dbHekIS5cuJT8/nwULFrB582aSk5OtjmQ5KW4LJCQkkJCQwLx586yOEjYcDgfNmjU76n3BYJCzzz6bdevW1VngsbGxNVuQP71ud0ZGRoPnPR4Oh4O0tDTmzp1ryfqPR1xcHHFxcSxatMjqKHVKSkqiR48eTJ8+3eooYePU/ntDRITo6GgmTpxY79Zyeno6o0aNqneyBSGaCiluERGONcShlJLZb8QpQ4pbCCEijBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhDlmcSulXlVKHVBKbTls2aNKqQKl1IbQx68Pu+9hpdQOpdQ2pdQVjRVcCCFOVcezxf0acOVRls/UWvcMfSwDUEp1BYYD3ULP+YdSSg6uFSfsWBcVOtUvOiROLccsbq31l0Dpcb7edcBbWmuf1joP2AH0OYF8QgAccQ2NqKioWifl2Gw2YmJiTnYsISxxImPcE5RSm0JDKdVXz8kCfjzsMXtDy46glBqvlFqvlFofCHhOIIY4FWRmZtZcjMvhcPDUU09x//3315R3SkqKZdckEeJk+6UXmXoReBzQoc/PArf9nBfQWs8GZgMkJbXQPt8vTCJOCQ6HgzVr1hAMBlFK0bFjR/x+P6NGjUJrTWxs7Em5XKsQ4eAXFbfWuqj6tlLqZWBp6MsC4PTDHto6tEyIE2Kz2Y6Yd9LhcHDWWWdZlEgI6/yioRKlVKvDvrwBqD7i5ENguFIqRil1BtAJWHdiEYUQQhxOHWtvvFLqTeBioBlQBPy/0Nc9qRoqyQfu0FoXhh4/laphkyAwSWu9/FghUlLS9Zln3vtL/w2NzuFw0a1bMW3btrU6Sp3279/Pxo0xeL3hd7H+amlp2+nb94ywvvTq5s2b6dGjh9Ux6hQIBMjPz6dTp05WR6lTaWkpfr+fli1bWh2lTvn5+Xzf/HsCCeE71+v2GdspLy0/6vjfMYv7ZEhKytR+/zarY9QpOTmf005bxdatt1odpU5t237EP/7RnF69elkdpU5//etfGTNmDCkpKVZHqdPUqVPJycmxOkadysrKmD9/PhMnTrQ6Sp3Wr19PSUkJV1wRvqdxLFiwgAEDBoT1xljnzp05cODAUYs7TGbAUfj94bulGAiUYBgxYZ3RMOJISEgIy+mxqjkcDlJSUsI2o9Yau90etvmgKmP1zDrhKj4+HrfbHdYZY2JiSExMDOuM9e1sl1PehRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLjFUVVUVLBy5UpmzJhBWVkZpmlaHakWrTVlZWXMnDmTFStWUFFRYXWkIwQCAcrKyhgzZgwFBQW4XC6rIx3B6/Vy6NAhhgwZQllZGT6fz+pIR3A6nWzZsoUHH3yQsrIyDMOwOlItWmvKy8t58803efPNNykvL6exZxaT4hZH1bt3b5YtW0bz5s3p2LEj5eXlVkeqpby8nI4dO5KRkcFHH30UllO2ff755/Tu3Zu7776bMWPGcMcdd1gd6Qg5OTlcfvnlPPnkk/Tr14/58+dbHekIV111FU8++SSXXHIJ3bp1Izc31+pItZimSadOndi7dy979+6lU6dOjb6hI8UtjrBo0SJuueUWEhISaN26NTNnzmTu3LlWx6pl7ty5TJgwgZ07d3LnnXcyduxY3nvvPatj1fB4PKxatYoRI0bw4YcfMn/+fDp27Mj69eutjlZjx44d2O12rrrqKv71r3+xcOFCCgoKOHDggNXRanz66acMGjSIDh064Ha7efHFF1m0aFFY/QX42muv8bvf/Q6n08mll17Kn/70J1577bVGXacUtzhC586d2b59O/369aNNmzZs2bKF7Oxsq2PVkp2dzY8//kj//v1JTU3l+++/p0uXLlbHqhEVFUXr1q1RStG/f38CgQCHDh2iVatWVkerkZaWhmmatGnThvPOO4+ioiKSkpKIj4+3OlqNdu3asWfPHs4//3zOPPNMtm/fTufOneudj/Fky87OJjc3l/79+9OiRQs2btzY6O8XKW5xhO7du1NQUMD8+fN57733eP/99znvvPOsjlXLeeedx5dffsn69eu55557yMvLo3v37lbHquFwOOjcuTNvvvkmLpeLoUOHopQiKyvL6mg1MjIySElJYebMmXi9XiZNmkRWVhaJiYlWR6vRsWNHXC4Xf/vb31i7di0vv/wy55xzTlgVd69evdi4cSPLly/nmWeeYc2aNY0+dBcms7yLcPPFF1/w3Xff8cMPP4TdmCJAcnIyubm5vPfee1x99dVhVdrV+vfvz9atW8nJyWHlypVhtSVb7b777uPee+9lypQpfP/991bHOaq3336bwsJClixZwrZt26yOcwSbzcaWLVv4/PPPUUoxY8aMRl+nFLeoU7du3ejWrZvVMeo1ZMgQqyMc09SpU62OUC+lFH/5y1+sjlGvVq1aceedd1odo14XX3zxSVuXDJUIIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMMcsbqXU6Uqpz5RS3yulvlNK/SG0PF0p9YlSKjf0OS20XCmlnldK7VBKbVJKndvY/wghhDiVHM8WdxC4T2vdFbgA+L1SqivwELBCa90JWBH6GuBXQKfQx3jgxQZPLYQQp7BjFrfWulBr/Z/Q7UrgByALuA6YF3rYPOD60O3rgPm6yv8BqUqp8LlAgxBCRLifNcatlGoHnAOsBVporQtDd+0HWoRuZwE/Hva0vaFlP32t8Uqp9Uqp9YGA52fGFkKIU9dxF7dSKhFYBEzSWte6ar2uumr4z7pyuNZ6tta6t9a6t8MR93OeKoQQp7TjKm6llIOq0l6otX4/tLioeggk9Ln6Ir4FwOmHPb11aJkQQogGcDxHlShgDvCD1vrwy159CIwO3R4NLDls+ajQ0SUXAOWHDakIIYQ4QcdzdcCLgJHAZqXUhtCyKcCTwDtKqbHAbmBY6L5lwK+BHYAbGNOgiYUQ4hR3zOLWWn8N1HXV8sFHebwGfv/zozTu5JoNI/wzNvYkpQ0h3DOGez6QjA0lEjIejQqH4CkpabpnzxFWx6iT3e4nJcVJdHS61VHqFAxWkJoaFZYX66924MABMjIysNvtVkep0969+4iKOs3qGPUwCNj24ch0WB2kTqbbJDGYSHJystVR6lRaWkpiYiLR0dFWR6nT66+/zqFDh4660RDZX9YAACAASURBVBwWxZ2U1EI7nUVWx6hTSsoOnn76M8aNG2d1lDotXryYFi1acP755+Pz+XA4HP+bUNVmst+3m0PBIrSpiSIaUHgCbuLtyXRI7oYy7URHOzAMA6UUwWAQpRQ2m41gMEh0dHTN5+rXDwaD2O32Wo9VStU83+GoKpfqaaamTZvG73//e9LS0iz6LtVPa82wYRN5772/WR2lTjExpXT/0+V8O+Vbq6PUqeWqlswqnsV1111ndZQ6vfTSSwwePJiOHTtaHaVOLVq0oKio6KjFLTPgNDGGYVBSUkJsUjTrDi0lM7YtQZuXnc6NFPp3U+l1Uukt57S4Dnj8HjIdrcmN/YG8kh1MOH8qfl8ApRROpxOlFDExMTidTpo1a4bT6SQ9PZ3y8nLS09OpqKggISGBsrIyHA4H0dHRREdHExUVhdPpDNuCFiLSSXE3MTvKNrLo0ExUuWK/bzcOHUswqEkgjWYxWaSSRpnbhccMkB7TGkwHy3e+T1xUEo+vfIDh3cdyWvzpJCUlobUmGAySkZGBy+UiJiaG4uJiEhMTqaioIC4uDp/PR2pqKlprDMPA7XYDEB0dTUlJCampqURFya+ZEA1J3lFNTPP4try14r+kx6aT3Tyb9pld2LUvn3lfv0nHM1NonpBI7qZC7FlBLuo6AHswlrioVEori4mJT+LVdS9y1VnX0y3tbKKiHDgcDg4ePEhmZiYul4v0jAxKS0pISUmhvLychIQEKioqcDiqHpuQkIDNZsPlcpGWlobNJhegFKKhSXE3MXHEM/uqV3ng35P51/fL+XjLp8SY0bRIa4n/YAy+ymZ0ymzLvrI8jDKTNRvW0Lp7Ojv276Njhp8ydzlen0GHgV1IjYpDKUViYiJ+vx9fZSHbt35IZUUl6Zmn0az9YAzDIDY2tmYc2+/3A1UzX3u9XuLi4mruE0I0DNkcamJsNhtnpnfkkUumYotS7CzZySHPIRJjE3D73bgDLk7PPJ2zmvUk2dORdsldqdyuUX4TOz72HNjHx5tXkLN0GlC1w840TdAGBd9/zOdvTeLbZY/w7b+fRYX2a5umiWmaNYdW2Ww2tNYRe6iVEOFOiruJcTgcBPwB+rbuy6JbFtEsMQOb3U6ZtxxHdBQ+w8/3e7/jYOVBtu3Zylfr19A2vjvXthjJxhXbOK/L6cRX2nl3+bsEggEAKivKOLD7G778198oc8dw3pA5XHbbQgJG1VElfr+/5giW6p2UpmnK1rYQjUSGSpqY8vLymvHos1p2ZdXEr7nxlSEUlhQSo6OJ1jHEEsPBkoNov0mLtJYY2qDoQDHXnnsTZT+UkRJThi8ljp0/bqfLGd344oNn2PrtUk4/4yz6XTqe7n2upqKigsT4eLxeL+np6RiGQSAQwOl0orUmPj6e4uJiMjIyZOekEA1M3lFNTPXOwqioKLxeLy3iW/Lqza/yz83/5MWVL7KvtBD8mqSoJLpmdSVaRXOg7ADxUXFUVlSiDEgqb0dlchl/XjKJoR1uYscPm0ht2ZVrxv6VjBZt8Xq9xMfH4/f7cTgcuN3umuO34+KqrvRoGAZJSUmyc1KIRiDF3cRU7xAMBAI1J+F0bn4mZw66hz5Z51HkKuKJ956goHgfu4p2kh6bQTTRlBQX43MH8Do93HX9Xdx94QTK4/fy2synSDtgcN/jL5PW/HTcbjdxcXF4vV5iYmJqTsqpHueu3jlZXegxMTEWf0eEaHqkuJsY0zSJiorC7/fX2kmoNfRt35fYuFiu7HoljmgHzkon0XZFwa7tNE/JwKchPr05sdGxpKWmUVFxiG1nbGDQbVfRrlNPlFIYhoHNZsNZfJBAlJ2AYZJxWhY2m62mvIGax8oOSiEanhR3ExMbG1tzXLXP5wOouTZITEwMfr+fpNgkitevJjbgofJAEUn7dlNRdojUHueQ3PMCnPk7yPN4+HH/ATZ/tYoLzu1HoGAP+3K3EhsXR0ViGru/WsGeLRtJbN6K+PZnkpjRjKxu3WjRqXPNafApKSkyVCJEI5DibmJcLhcZGRk4nU5iY2MxTROfz4dSCo/HQ6ynkryFs0hIy8AfF09K85YkXzgQrRQK8OzdjS4vJcYMkpC3nQt9bvSKpewryEfZojgU8BOXmcWZg6+kw+Ar0IbJtlVfsn/LRvb891sqPV6un/JH0po1o7y8nIyMDClvIRqYFHcTk5ycXHWtkthY3G43NpsNh8OB1poEh50Nd48jpX0n0gZcjs0eBdrAX7Cn6sK9WmO3R5HSsQum1iSc3oGONw7HMEx87gqi4hIxtEkgEMRTXoqpwTA1rbufTSutKS8p4cPnZjDnd3cw4bXXSU1NDesrAQoRqWRTqImpqKigWbNmNYfkORwOAoEA3kMlrL39euJPy6LVr36DWVmOWV6KrixHeZ0ojxO8LrSrAqP0IMHSg5iuSoLlJRiVh1B+P/6yUgKHDhGsrCDochF0uwi4XfidlficVcMz1026D+f+Ql747Sh+3LkTwzCs/pYI0eTIFncTExsbi8vlQilFIBBAa43dbqfwn++QfnoHTrviWgLFhdhDh+/ZVGiWDKVQWmNqDVqh0GCaaA2G1gRNMEwTU2tMTehrjWFqAlpjaJOgqTBNzYXDb+GTua/y3WcrOaNzZ6u/JUI0OVLcTUx8fDyFhYWkpKTg8XiIjo7GFvBRuX0TLc7qSbB4PzabqipqG9hC5U1VVaNNE7QKlXboiBSj6tT3qqI2MU0ImCaGCUGtMUJfB7XG0Bob0K7H2axdsoT+vxlCesuW1n5ThGhipLgtorXG6XSSlJTUoK9bXl5OixYt8Hg8JCYmYpomBZ98CD4/phHA8LhQNhsoUPaq0rbbqnZMGpqqLWoTtAnaMDHNqq1wQxuYhgptfWuChknQhKBpEtAQMAwMDQGz6nbLjh3ZnZuL89ChRi1uj8dDVFRUzaQNomkyDAOv10tCQoLVUepUfRTXyTh3QYrbAps3byY/P58lS5YwdOhQevXqRbNmzRrktVNSUigqKiIpKQmXy4Xdbic+xkFltB3T78UMgrbZwAbapsCmsNltKFVV1srUYGq0qTENA7NmSCS0hW1UDY34TU3Q0FXFHdriDoS+9puhYZNgABrpOO5AIMDKlStZs2YNWVlZdO7cmQEDBjTKuoS11q1bR15eHmvXruWKK67goosuIjEx0epYNbTWrFixgk2bNgGQnZ3N4MGDG/U6PbJz0gLTp0/n66+/5pFHHuHpp59m/fr1DfbaHo+nZis+Jiam5tR30+fF9LgwPC5Mj7vqw+vG9HowPW60O/TZ4z7scR4MjxvD4yLocRPwuAl4qnZKBl1OAm4XPpcLv6sSn8uJz+XC63Ljc7nxOisxAoEG+3f9lMvl4ve//z2DBg0iNjaW8ePHN9q6hLUmT57Mvn37GD16NFOmTGHv3r1WR6rFNE3Gjh1Lx44d6dixI2PHjv3ftIGNRIr7JFu6dCm9e/dmx44dPPfcc7zyyissWrSIioqKBnl9u92O2+2umb1Ga02U3UFl7g/4SosxXC6CbidBj7uqgN1OAi43/pqjRJwE3W4Mt5OA20nA5STgqloecDrxOyvxu5z4XU58TidFW7/DU3YIr7MSr7MSj7MSr9OFp9JJoBGL+5577uHhhx/mscceo1u3bkyfPp2cnJxGW5+wxiuvvMJvf/tbPv74Yz766CNef/11cnJywupopfvuu4+//OUvPPfcc0RHR/P6669z3333Neo6ZajkJLv88su54447uP322znvvPOYMWMG11xzTYONdVcfN62UqrmWdkyz5uCIpuKHzagOndAxMWibDW1XaKXxuypRMfHgcGAEgwT8QXxeN2Vbv8MfDOINanymxhs08BomPgOSOnXHiI7GER+P1+UmqBQBQ+MzqoZM9u3ZTfnBg6hGOo572rRpjBw5krlz52Kz2bjrrrv47LPPGmVd4udrqGGCESNGcN1115GTk0ObNm144IEHuOeee8LqpK7HH3+cwYMH8+abbxIbG8tvfvMbPvnkk0ZdpxT3SRYdHc3555/P22+/TW5uLnv27GH48OEN9otefVnXyspKEhISCAaDkN2HjL6XULT8PQyPi9R2HTDi4zFsCrvSGEUFqKgYiI7GX1mOr/gAfqNqHNtnmAQNjT+oCRgGwaAmYJgUbPoGXxCimrXAFwhCQiJEx+LXirLiUnbn5nLxbeNIb9WqQf5dP5WWlkZWVhZz587l0KFD9O3bl/j4+EZZl/j5GuoaNbGxsfTv35+XX36Z9u3bEwwGadmyZVhd5z0hIYEePXowe/ZsALp169boO1GluC1w5513ctttt/Hxxx8zceLEBn3t+Ph4ysvLsdvteL1eoGor3OPzEzQ1PreLyqJ9xDfPxFNWil2b4HWD34dJ1Y5IU4cK24SAofGHdjoGzaojSgz9vx2Wrn0F+AyNxzCJyWiOy+enpOggpgnte2QT10g7keLj41mwYAHr16+nVatWZGVlNcp6hPUeeeQRysvL+c9//sODDz5odZwj2Gw25syZw9atW1FK0fkknLsgxW2R6OhorrnmmgZ/Xb/fT2JiYs0x3IZhYBgGcVlZBO0OCAZQlZXo6Gh0yUHs2kQpW9UZ74ChzaqTasyqk278psYfOmIkYEJAm6EjS0In4WiNQdUx3j6vF4/Tg6kUMYnJeH0+TNNs1D9re/fu3WivLcJHSkoKgwYNsjpGvbp06XLS1hU+A0WiwVT/mXr4n6vtR/wOW7OWuA0Dt9uLq7wcT8DAEzDxBEzcQRN3wMAdNPEENb4g+IImvqCJP1hV4AHDrPowNUbwf1vhfsPEROGqcOHxeAgGTc6+6koG3HqLVd8CIZo02eJuYqKjo/F4PNhstqrxbf43ea8ttTnBPXlobWA43dgME7vSVedMVu/MpOokHKP65JrQlrcvVNp+s2pHZSB04o3fDD0WMKgaQuly0QDs2IiPjQurnUhCNBXyrmpivF4vycnJQNWOnaioKEzTxDAM2o26C5+h8AZNPF5/1dZ2MPQRMPAGzaojRwKhz4bGZ2i8hok/aOILfQ4GNf7Q+HfQ1FXj4IEgXq8Xe2wMthgHV46/g4qKirA6bEuIpkK2uJuYpKQkiouLiY2Nxel0opTC4XBgt9s54/yLWBufiL+yHJuCKJvCZiqU0tVXdf3fae9UbXFXX4/EHyrogAF+E/ymgc+AgFH1OL+h0VEOLhw6nG3/3UDb7t1JSEiQiYKFaATH3OJWSp2ulPpMKfW9Uuo7pdQfQssfVUoVKKU2hD5+fdhzHlZK7VBKbVNKXdGY/wBRm9PpJCUlBa01sbGxOBwODMPANE3cgQCXPDe35nhst1E1tu0JmLhD49wew8ATNA7bAjfxBgz8QQN/9VCJYeIPVp/ebuAzIWiYdLmwH99+9hkTXppNdHQ0Tqez0c8gE+JUdDybQ0HgPq31f5RSScC3Sqnqo8tnaq2fOfzBSqmuwHCgG3Aa8KlS6kyttfzNfBJER0fj9XprzflYPc4cHR1NTGYLWl50CXu+WoEtdGlXRdU4t8aGRtdcytUIXco1GLqwVNU1SXTNIYJ+08RnVI13xySn4PH6Of/Xv6Zl27YYhoHD4Qir422FaCqOucWttS7UWv8ndLsS+AGo76DZ64C3tNY+rXUesAPo0xBhxbHFxsZSWVmJUgq/349pmtjt9qqLTcXHE5Wazml9LsQX1KGjSqq2rD1BXfU5dJSJJ2jiM6rGub0GoY+qrW2fUbWDsmqoxMRUUXS75FI8fj8XXns9ScnJGIZBQkKCFLcQjeBn7ZxUSrUDzgHWhhZNUEptUkq9qpRKCy3LAn487Gl7qb/oRQOqqKigefPmmKZZVdRRUQQCAQKBAIcOHSIhPp5uw0fTetDleMyqoRBXwMDlN3CHDg90h4ZKXKEC9wYMvMEgvoCBr3rHZdDEb5gYdged+w2ktLiEcy+9jKzu3SkrK8PhcFBcXCw7J4VoBMdd3EqpRGARMElrXQG8CHQAegKFwLM/Z8VKqfFKqfVKqfWBgOfnPFXUIzk5mdLSUmw2G263m0AggMPhwOFwkJqaitvtxu5w0OayXxN0xNUct+0xdNWx3Ebo66D+3xEnQRNvUOM1NJ7qMW5TQ2wsmR06oqPsuCvKyerSheSUFFJTUwkEAqSnp8uck0I0guPa5a+UclBV2gu11u8DaK2LDrv/ZWBp6MsC4PTDnt46tKwWrfVsYDZAUlILHboGuThBbreb5NBQRfUs79XHc/v9fmJjYzEMgz43DMVTWsLSRx+h9mjG/47nrjr9nZpT3IM6dBq8aaKVncTkNIiOoTAvn/FPP023/v3xeDwopYiKiqKyspLk5GQpbyEa2PEcVaKAOcAPWusZhy0//OpBNwBbQrc/BIYrpWKUUmcAnYB1DRdZ1CcuLo6Kigq01ni9XoLBIDabDZvNRkJCAl6vF601FRUVDLztDi5/5FGCdkfV1nToeG5P0MSv7HgOW+Y1TPzahjdo4AtqfCjcHi/78/cw8v/9mU7nn191JcKYGGJjYwkGgzLGLUQjOZ4t7ouAkcBmpdSG0LIpwM1KqZ5UXeIiH7gDQGv9nVLqHeB7qo5I+b0cUXLy2O12oqKiiIqKqjnlvfr24fdFRUURHRND31t/S8deF/DJiy9QUXwQqPqB9r3lVr5a+Dpag2lqouLiOb1HD35YswZTg0aR3qolt06ZQvrppxPlcNS8bvU6o6KipLiFaATHLG6t9deEJgL/iWX1PCcHkKvaW8Bms9U7DVpKSgpAzWUnMzMzyczMpNtRpv26fMztvziHzAEpROORU96FECLChMn5yJqYmFKrQ9QpOroCr9dLaWn4ZnS73TidzrDOGAgEKCsra7CL7DcOI6x/F2NiyrAH7MSUNv5M4r9UtDMat9sd1r+LXq+XioqKsM5Y3/tEhcObKD09Xd9///1Wx6iTy+Xi4MGDtGvXzuoodSosLCQmJob09HSro9Rp27ZttG/fPqyHUTZu3MjZZ59tdYw6BQIBvv56F4cONf7F+n+p2NhSzjnHR6tGmv2oIeTl5ZGZmdnoM9WciGeeeYbS0tKj7yTSWlv+kZmZqcNZbm6unj17ttUx6vXBBx/o1atXWx2jXo8//rguLS21OkadTNPUEyZMsDpGvUpKSnSvXjm66pJg4fnRsuXXevHixVZ/q+o1a9YsnZuba3WMeoV68aidKWPcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwTba4V69eHdZTZAWDQdatW2d1jHqVlJSQm5trdYx67dixg5KSEqtj1Oubb74hGAxaHSOiuVwuNm/ebHWMeu3du5eCgoKTsq4wmXOy4axfv54PPviA2NhY/vWvf3HxxRdz2WWXWR2rlnfffZeNGzcSHR3NkiVLGD16NGeeeabVsWp55plnqKiowGazEQgEeOSRR4iLi7M6Vg2Px8O0adNwOByYpklSUhKTJ0+2OlYtO3bsYO7cucTExLBkyRKys7MZNmyY1bEizssvv8zu3btxOBy89dZbTJo0iebNm1sdq4Zpmjz22GM1G4pKKf70pz9hszXednGT2uLWWrNhwwZM0+QPf/gDLVu25PPPPw+rLW+tNf/85z/p3r07d999N0VFRezatSvsMs6bN48bbriB3/72t3zyySe43W6rY9Xi9Xr597//zejRo7nxxhuZP39+2H0Pd+3axf79+5kwYQJnn302H374YVhljARaaxYuXMill17K+PHj2bhxI8XFxWH1fTRNk7fffpvhw4dz8803884772CaZqOus0kVd35+Pps2baKyspJf/epXjB49mtjYWFavXm11tBrvv/8+F1xwAXPnzmXy5MlMmzaNhQsXUlFRYXW0GlOnTiUnJ4fbbruN5cuX88YbbzB+/HirY9Uybtw4Jk2axI033ojP5+P5559nypQpVseqUVlZyfz588nKymLw4MEMHjyYiy66iEWLFlkdLaL87W9/48477+Shhx7ixRdf5B//+AdTp05t9GL8OcaPH8+TTz7JLbfcwvbt20/K+6VJDZWcccYZZGdns27dOv75z3/y1FNPAXDRRRdZnOx/fvOb3zBy5Eh+9atfMXz4cCZMmMDtt99OSkqK1dFqPPHEE3Tr1o0ZM2bQsmVLbrjhBr788kurY9Xyyiuv0K9fPxYuXEhRURGTJk3i+++/tzpWjeTkZEaNGsVLL73EsmXLeP3111m7di0LFy60OlpEmThxIgMHDmTSpEmcd955jBw5kpdeegm73W51tBovv/wynTt3Zt68eQAMGTKEbdu2Neo6m1RxA/Tr1w+tNX/+85/p3r07PXv2tDrSEcaOHcvWrVt5+umnueKKK+jWrZvVkY7wxz/+kS1btrBmzRomTpxIfHy81ZFqiYuL4w9/+AMffPABSUlJ/PGPf7Q60hG6du3KlVdeyTPPPEOnTp24/fbbrY4Uke6//37y8/N55ZVXGDFiBC1btrQ6Ui02m42pU6fyxRdfoJRi6tSpjTq+DU2wuLt06UKXLl3YtWsXZ5xxBkopqyMd4eKLL6Z///78+OOPtGvXzuo4RzV8+HBcLhcul4vMzEyr4xwhJiaGcePGceDAAeLj40lMTLQ60hFat27NuHHjyM/P5/TTTw+rrcRIcs011+Dz+SguLiYrK8vqOEdQSjFmzBjKysoASE1NbfR1Nrnirta+fXurI9TLbreHbWlXS0hIICEhweoY9QrH/6n8VLj/nCNBTExMWJb24U5GYVdrUjsnhRDiVCDFLYQQEeaYxa2UilVKrVNKbVRKfaeU+nNo+RlKqbVKqR1KqbeVUtGh5TGhr3eE7m/XuP8EIYQ4tRzPFrcPuERrfTbQE7hSKXUB8BQwU2vdETgEjA09fixwKLR8ZuhxQgghGsgxi1tXcYa+dIQ+NHAJ8F5o+Tzg+tDt60JfE7p/sArHQzuEECJCHdcYt1LKrpTaABwAPgF2AmVa6+or5+wFqnf5ZgE/AoTuLwcyGjK0EEKcyo6ruLXWhta6J9Aa6AN0OdEVK6XGK6XWK6XWezyeE305IYQ4Zfyso0q01mXAZ0BfIFUpVX0ceGug+nqGBcDpAKH7U4AjrruptZ6tte6tte4dTledE0KIcHc8R5U0V0qlhm7HAZcBP1BV4ENCDxsNLAnd/jD0NaH7V+pwupSXEEJEuOM5c7IVME8pZaeq6N/RWi9VSn0PvKWUmgb8F5gTevwcYIFSagdQCgxvhNxCCHHKOmZxa603AeccZfkuqsa7f7rcCwxtkHRCCCGOIGdOCiFEhJHiFkKICCPFLYQQESYsLutqmiarVq2yOkad9u/fT2FhYVhnzM/P59ChQ2E1pdNPlZaW8s0334T1pWLdbndY/5ydTiexsaW0bBm+GdPStpGfXxnW38fCwkI2bdpEUVGR1VHqVN97OSyKW2tNSckRh3qHjfLycjweT1hndLlczJ1ro7IyfDO2aePn/PMP4fV6rY5Sp0OHgowcGb7fw6goN62u/Ia4B963OkqdovOScbmGhfX7xev18kjZI3ijwvd30ad9dd4XFsVtt9u59tprrY5Rpx07dmAYRlhnNE2TAwdasH9/X6uj1CkjYxOXX345aWlpVkc5Kq01CxZ8Ql5e+P6cY2JKSW75DHnX5lkdpU4tV7WkW3G3sH6/FBYWsm/APso7llsdpU6J9rpndZIxbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3M8//zxaa6tj1Mnn8/Hyyy9bHSPiffrpp+zYscPqGKKRFRcX8+6771odI2w0ueJeunQpAwcOpEWLFgwaNCgsyzEnJ4drrrmG6OhoBg4cyNq1a62OFHGcTicDBw5k1apVPPHEEwwbNszqSKKR3H333dxxxx3s27ePgQMHsnv3bqsjWS4spi5rKH6/n/z8fG644QbOOeccHnvsMf7973/jcrnCZoLa8vJy9uzZw7333stZZ53FoUOHyMvLo3fv3tjtdqvjRYz8/HyaNWvGkCFDaNmyJbfeeiuFhYW0atXK6miiARUXF1NQUMCDDz5IVlYWBQUF5OXl0aZNG5RSVsezTJPa4q7+Ie/fv59nn32WTp064XA42Llzp9XRavz3v/+lffv2LF68mDfeeINBgwaxbt06PB6P1dEiyoIFC+jXrx/Tp09n//79DBs2jCVLllgdSzSwzz77jAEDBvDSSy+xfPlyrr/+ehYvXhzWw6AnQ5Pa4j7ttNPo0KED8+fP5/XXX2fcuHGcffbZZGdnWx2txsUXX8ycOXMAuOGGG7j11lvJyckhMbHuiUHFkR5++GG6devGP/7xD5YvX87s2bPZvn271bFEAxs6dCgDBw6kT58+dO3alTFjxrBkyRJstia1zfmzNaniBhgyZAj9+vVj0qRJTJ8+nebNm1sd6QhPPfUURUVFTJs2jYULF9K6dWurI0WcpKQkVqxYwaJFi+jcuTPLli2zOpJoJPPnzycvL493332XJUuWcMYZZ1gdyXJNrrhTU1NJTU3l3XffxWazheU42GmnnUarVq2YP3/+Kb/l8EvZ7Xa6dOnCww8/jFIqLH/OomG0bduWNm3aMGDAAHm/hDS54q4W7jv6pGwahryRTw3yfqntmL/1SqlYpdQ6pdRGpdR3Sqk/h5a/ppTKU0ptCH30DC1XSqnnlVI7lFKblFLnNvY/QgghTiXHs8XtAy7RWjuVUg7ga6XU8tB9k7XW7/3k8b8COoU+zgdeDH0WQgjRAI65xa2rOENfOkIf9R2Lcx0wP/S8/wNSlVJycK0QQjSQ4xogVErZEnWskwAAIABJREFUlVIbgAPAJ1rr6lP9ckLDITOVUjGhZVnAj4c9fW9omRBCiAZwXMWttTa01j2B1kAfpVR34GGgC3AekA48+HNWrJQar5Rar5RaLyefCCHE8ftZu+S11v+/vTOPs6OqEv/31tvXfr1kIwtJSIyBsCeRiCAkEMBBFmUUdYAfi6BjQAWGwDgBZUYENBBxcADZQhBBkQgCKkhAPsPIEgJkkURCSEhn6e708paq9+rVcn9/1EJ3yNKJSV4/qO/n8z5Vr+7tqtP3vXfq1LnnntMDPA+cLKXc5LpDdOA+YKrbbQMwstefjXCPbX2uu6SUk6WUkxOJxO5JHxAQEPAxpD9RJYOEEDl3PwGcCKz0/NbCidE5A1ju/skTwLludMlRQF5KuWmvSB8QEBDwMaQ/USXDgPlCiBCOov+1lPJJIcQiIcQgQABvAt9w+z8NfA5YDWjA+Xte7ICAgICPLztV3FLKpcDh2zg+fTv9JfCtf1y0gICAgIBtESw7CwgICKgzAsUdEBAQUGcEijsgICCgzggUd0BAQECdESjugICAgDpjQKR1NU2TO++8s9ZibJd8Pk9ra+uAlnHNmjWMGpWkpWVprUXZLtnsWhYsWEAsFtt55xphml1MmjRwP+dQqELDew1MunNSrUXZLslNSf5a+SubN2+utSjbZfny5RyQP4BqQ7XWomyX9833t9s2IBR3KBRixowZtRZju7S2tqIoyoCWMRwOc9RRTRx88MG1FmW73HPPWv7zP4/BMDK1FmW7nHjiEhYuHLifc6FQ4Le/bef8GdteHiGRSGyklAiEfwxAESH/2N5k6dKl9PT0cOyxx+71a+0u+XyeuVPnDujqU9OUadttGxCKWwjBuHHjai3GDnnnnXcGtIzLly9nyJAhA1rGVCpFsTgaXW+stSjbQaIo0QE9hl1dXaRSKcaMGUNnZ6dzMGFQUHtoaMjxVvvzvKQ9SbHSjW0KUkoTqq6i6SoXjv0B8UiCYekRNKaayefzRCIRSqUSLS0tbNmyhWw2i6ZptLS0oKoqoVAIwzCwLItQKISqqn5bQ0MDHR0dtLS0AB8UtWhrayMUCg3ocWxoaGDEiBGMHDmSUqlEIpFAVVUikQjhcJhyuUwmk/HbdF1HCEEkEkHTNLLZLMVikUQigWEYxGIxv4BxNBqlVCqRTqdRVZVkMolpmti2TSwWo1gskslk0DSNeDyObduYpkk4HCYej/sFI3ZUJGRAKO6AgIBdo2yWWFZ+gZKZp7Wwgs7KZuJdGYQdZrAyhuGJg/nbltcIhzJMyhyGkg7xVtdfeXL1I5y0/z8zY/9TGRIfjpSSeDyOruu+EvGUk23bvjLylIjXVwiBpmlEo1F/G41Gazkku0WpVKKhoYFSqURjYyOmaWIYBk1NTXR3d9PY2OgrYSkluq7T0tJCd3c3TU1NaJpGMpmkXC4jhMC2bf+cnZ2dNDQ0kM/nCYfDKIpCV1cXuVyOzs5OstkshUIBIQSxWIxyuUwsFutXpZ9AcQcE1CGKULjt1dsxLJ0R2RGMbRxLLJTi/kULyGaifGL/YXSuU+nUV3DopB6aooMxLJthiQNYsXkpmGEGxYZw0idOA/CVjrevKAq2baMoCqZp9rm2V0bMU+YDtbZrf0gkEpRKJcLhMIVCgVAohKIo5PN5Lr30UiZPnswll1yCpmn+/9zT00M8HqdQKBAOh6lUKoTDjipVFMW/uTU0NFCtVkmlUti2zfz583nuuee48847aWhowDAMv01K2W+lDYHiDgioS2KhJP815eec8cjptEctVoe7SIokTWJ/kpUY2to0WzaUWbm5nVhyGfHOJrqbtpAKNxFWouQLFSrVKkeNOJawjJBKpVBVFSGE8+gfkVQrKpFwCEQcW0pCoRC6rpNKpTBNk0gkgqqqZDKZulXcqqrS2NhIoVAgnU5jWRaGYZDNZnn66ad5/PHHsSyLc889l1wuh67rZLNZ3+IulUpEo1EqlQqAb3Hncjl6enpoaGhgw4YNPPfcc8yePRtd17nvvvvo6ekhm81SKjk1ajxln0gkAos7IOCjSqVSYeyg0fz6S7/mK7/5Mq+vfZ2IGaY52oSsgl21+dFXbuTlZX9lVHYUf1rxJ4aPbGTt+x3EMmk2dXRSqZr86NkbuO7UH6CqKtlsFl3XicgKD845EtusgJB84d/eIJEbim3b5HI5VFUlHA6Tz+dJJpN0d3eTTCZJJpO1HpZdJhKJYJomoVAIy7KcSd1ehYnL5TKzZ89mzpw5PPPMMxx++OG+P9o0TRRFQUrpP3V4bg8pJdFolKVLl3LyySeTz+cBJ4ggFAr5bqVIJAJ88JQTWNwBAR9hkskkHR0dDE/tx/984Q4u/fWltHe3M655PCEZwq5a/OalR0iFUpQrGtFwhLZXw3xy/8lsbH+XQnM7LcZIfvWnR5g5+mQ+96nP0dHRQTwKr//pp+RLBoNHTWb8YScgIkl0XScUCtHV1eVPTjY1NdHR0UFzc3PdWtzhcBjDMFAUBcMw/P/j3nvv9a1ogGq1yle/+lXOOecczjzzTEaPHs1NN92ElBLLsnwFHIlE+PrXv05bWxsPPfQQDz/8sK+0ASzL4q677uLrX/86tm0TDof9eYRQKNR/uffEPx8QELBv0TSNdDoNwOT4ZH51zkOc/oszWNm+ikw4Q0Ik0IVOh76FzR2b6NrSxT9NOZWW6H7YhDgkPZln3voDTbEwMSVCsVgk376a3z8xj/Z1ixk8/AiO+dJccoNHowhBKBTCtm2am5t9i7uzs5NMJlPXFne5XKapqYlCoUA2m8U0TarVKg899BDVat8Y740bN3LTTTfx1FNPkUqlWLx4MZZl9emjKApPPfUUUkreeOOND11PSsldd93F2WefTS6Xo1QqIYQgHo9TrVZ9i39nBCsnAwLqEM86k1KiCIVxTeN57hvPMW7oJyhUCqza/HcWr1vC0vVLyaSzTDloCmWjzPtt6xBhhcKGKscdcArpZJg5D87ivY2reX/1clYue51jTruGL85aQPPQsQicx3hPoXhhgUIIwuEwtm0TCoU+ZC3WiwXu3XhisRhdXV1omgaAYRh+n1tuuaXPGo7ly5fzyiuvfEhpg+PjXrJkSR+lPWTIEObPn++/D4fDDBo0CMMwaGhoIJVKAc5TVOAqCQj4CKMoCpVKBeFaw4ZhMLRhKH+85EmeWvYUTy57mr+u+D82d7ahVVU67RB6qIpdtcGEt1f9jZlTTuLYlrMYPE1w6S1fYUJHiMMmz+ATR55CMt3gK2kv6kEIQbVaJRKJYFkW0WjUn6TcWuF4j/8DHS8MsFAo0NTU5FvcnusDHCW+cOFCGhsbt6msd8aMGTP63AhM02TLli3kcjny+bxvcQfhgAEBH3EqlYrvmiiXy6RSKXp6eshkMkwfN4MvTjmLPy75I5uLm6lWqmTiacpaGb1cBSkwjzcZNWQk06dOp6mxiezmJtb/31uc+IVv0TJ4Pzo7O0mlUhiGQTgc9pW0F58cj8fp6enxF+5kMpm6jOP2wgEjEcdd5E0Q9lbQiUSC3S1ofsEFF3DzzTfzzDPP+MdCoRDZbLZPOCA4C3cCizsg4CNMMpmkUCgAzg/eW43n+WxVVeWkw08i39NDMhql3NPJ+/P/m8rqt4kPG84nv/ufVCMRQsCWzZvY/MZGYqnBjBw1jkJXF42ZDFXDYPXvH+P13yxAROJ88rQvccBx02lsbsayLFpaWiiVSjQ3N/txzPWGruuk02k0TSORSPirGOPxuN+nWq0Si8X8yJNd4fTTTwfoM9EppURVVVKplH88Go32scp3Rn2OdkDAxxxVVf3VfOVymXQ67ccNe9u2N15BtL7H2qd+TSSR4pAf3ApKBBFSsLZs5u05V2MJBbtiY7+9jMGHHMHaR+9n/YvPoxULpEeOYcIZX+Hz18/FNg3+tuhZHjz/K0QbGpl+2eWkh+7H/uPHk8/nSSQS/mRpPdHbfy+l9F08v/vd7xg6dCjFYpF169axZMmSDy1E6g+rV6/myCOPZPXq1f71zjzzTH9OoHfo4a7MCwSKOyCgDonFYn183NVqlXg8jmEYxONxtrz4J9bNncPIsy/ioKtuQAhQV72NpxukEEyacwtSQGXzJhpf/l+q1SohoTB51lUQjqCXNaplDa2zHVtK9j9yCqOOnEq+q4vfXvs9siNHcd5P5pHIZuvW4o5EIui6jqIo/lJ+IUQfC/lnP/sZP/vZz3br/FdccQUbN25k7ty5gDM38Z3vfIdYLIZt20SjUf9msStjGESVBATUIV40R+8FILZtI4Sg44U/8s687zP6q5eQHfsJ9A1r0VvXISoqoqJCRYWySvndlWjvvI1Z7GHw1Gns95nP0jBqDOWOzagb1lPp3IKpqphlDUPT0IslKoU8oVCIz55zLoX167n7X7/ph7HVI15Ypedv9hTp3Llzd9uvvTWe0gbnc5szZw75vDOOpVKJcrns50Hp7zjW520yIOBjjhfVIYTwV/JpmobobKPtdw8y6oyvEWtqwc53oqAghLsiEBCAjQTb2ceWVLUSlpSYNli2xJYSWzr7pre1JRY2hgXRWILPfPVfePynt/LfF5zPlQ/9qrYDspt4y9fj8Tjd3d1IKbn99tv5yU9+0sc10tjYSCgU6hMW2d3dvc1zNjQ0EIlE/Bupbdt+Xykld999N6FQiOuuu86PVLEsa5fCAQOLOyCgDvF82l7muXw+T66hgc3L3iDbMpRUrhm71AMVDaGXUHSNkK6i6Jrz8qzvsgqVEpRVbE1FaiUsrYSplTDVIlW1hFEqUi0VqapF9KKzrZQK2KbBiRdeRHdrK8X29loPyW5RLBbJ5XJUq1UymQx33nkn119/fZ/FNwceeCBLliyhtbWVd999l/b2dhYvXsyUKVM+dL6JEyeyaNEiWltbWbZsGa2trbz66qsceuihfh/Lsvj5z3/OzTffzMaNG1FVFXCs//5a3IHiDgioQ7yERLFYDMuynLC2fA89f/kjSiKOUeyGioYsa1BxFLWia4R1lZCuISoa6Jrfx9JUZFnDLqvYZQ1b0zA1DVMrYWgqVW+rqlTVElW1hK6WMCpVIqk0LzxcnxZ3IpFA0zTC4TBtbW1ce+21fdoPOugg7rjjDpqamnxfeKFQYNCgQcydO5fx48f7fWOxGFdeeSXjx49H13UymQyGYTBkyBDuuecepk6d2ufcc+fORVVVvyLUroQDfuQUt5c74IILLvCTlw80bNumWCxy2WWX+YltBhqWZfHaa69x9913D1gZBzred/Hb3/42hUJhj34XvSRHXqKjarVKRBFU1vyNaHMLdlnFKmuORV12/NqhSplQtYyiawi97Cjtiuq8XIvb0pytqakYmopR9pS25ihsTUVXVfRSiUqphF7RGDp6f4w95A/eFrZts27dOn74wx/u8e+iYRhEo1Fs2+Yb3/jGhxTnpk2buOqqqzjhhBOYNWuWn7/cNE0OP/xwZs6c6fedOXMmxx9/PNVqlXA4jK7rXHPNNZx88snMmjWLdevW9Tm3EIJvfetbfhjgroQafuQU9/z585kwYQKXXXYZhxxyCNdff32tRfoQF198MSeccAJf+tKXGDt2LH/+859rLdKHOOyww7jzzjvRdZ1hw4bR09NTa5HqjkWLFjF27FjOOussZs6cyUUXXbTHzu2Fr3l+VD+kzbawKxpmueQo47JjSVMuIysqlDVk2du6FrbmbM2yo7DNsoqheu4Sz8IuopeKVEsFV2mrVEolKoUCFbW0x/6vbeEpvgkTJjBy5Ej+/ve/77FzewUMQqEQ99xzD7/85S/7tHd1dfHyyy/T1dXFjTfeSCgUQtM0YrGYvzjJI5PJMGjQIJLJpD/Zee2111KpVHj55Zdpa2vrc+7bbruNxx57zI8Z771ac2d8pBR3T08PGzdu5MILL2Tp0qUsXLgQKSWtra21Fs1n5cqVtLS0cO6555LP57n99ttZunQpuq7XWjSfF154geOPP55p06Yxbdo0Zs+ezdNPP11rseoKXdd56623uOCCC3jnnXd47LHHGDx4MCtXrtwj569Wq0SjUd9VEo/HqZQrWKpGpW0jlqo6L011FHC5hKGqGCUNU9UwNdX1ZTvthqpiqk6/qlrC0JxttVTEKKlonZ2UOtpdhV10XyoVtYSuaeyt57HFixdz0EEHcdpppzF48GBuuOEGnn/++T329NI7qVMoFOLFF1/8UJ+JEyeycOFC0uk04XCYv/zlLzz44IM8++yzHHrooZx33nl87Wtf46ijjuKVV17hoYce8hNNxeNxHn/88T4+bo/XXnsN0zT9J4hdeZL4yEWV9K7OMRAf7z3rSFGUD6WSHCj0rn7S25oL2DV61w70FnfsqXGMx+O0t7cjhCCVSjl1EDNpbAmFlSsIjf8kIhEHRUGGBAg3ksQwEbE4lrQxbDBME3XjeiqqSsWyqVoS3ZTotoVuQqR5CGSyVLQyerWKMC2qbj/DllRNi3XLlzNuytSdC70b9P69eBEae/q76H3XS6USd9xxB6eddhqrVq1i1apVAH544I9//GOEEHR2dnL55Zfz6U9/mkcffZQzzzzTT896ySWX8Oijj3LLLbcATl6SOXPm9NFFw4cPZ8aMGTz44IPMnj2bZDK5y9+Nj5TFncvlGDZsGL/4xS846KCD+MIXvoCiKAOqkvOECRPo7OzkvvvuI51Oc+mll3LwwQf7ExQDgWOPPZYXX3yRl156iZdeeombb76ZU045pdZi1RWxWIxDDjmEe++9l7Fjx/LFL36Rjo4OJkyYsEfO7xXrbWhowDRNMpkMRb3KgbN/iNbVwZZlr6Pn875PuqKqaF1bKK1/D62Yp9zTQ/eSl8gveZnSujWom1rRNrWibtxAceN6iq2tFDa8z+YVb7D+5f9ly7ur0QoFSp2daMUi5WIJrVBk5Ssvo0SiHPiZY/bI/7U1Rx55JG+//TYLFy6kra2N//iP/+C4447bYSHdXSEajfo+6Xg8zquvvsq8efNobm72+6xcuZIHHniAT33qU9xwww189rOfpampyb+JeMm4vCXx6XSaz3/+89x7771MmTKFBx54gKVLl/rny+Vy3HrrrbzyyiuMGTPGT9K1KwtwPnIW93nnncc555zDxRdfzNKlS/fYB7wnueuuu9A0jX//939nzZo1A1LGN998kyVLlvDWW2+xadOmASnjQGf69OmsWbOGK664gmeffdZP37mnsCzL/1wcqzGEyDRimDaKqtL1tzdpGPdJFMskZFsIQ8fo2ACbWp1YbRsM26ZqOxZ01XSsaAs3dltCVa9SMSwq+SL6+vVULBszEiM1dD82rl1HsagxeuonmHTssXv0f+vNH/7wB1pbW1mwYAHr16/fo99Fr7Cvrus0NTXR2NjI+vXrqVQq/pMnOFb3e++9x4033siKFSt44oknuO+++5BSkkgk/PDBSZMmceWVV3L11VfzyCOPfOipX1EUyuUymzZtYuLEif4in0gkQqVS6bcB12/FLYQIAYuBDVLKU4UQY4CHgWbgdeAcKWVVCBEDHgCOBDqBL0sp1/b3Ov8o3hLge+65Z19dcpdRFIV0Os1tt91Wa1G2i6IoTJ48mcmTJ9dalLrF+y7Omzdvj5/bW6rtKW8vvWoJsONxqnoFDBO1pxvUAqJURFEECgKJxJI2tnQUt2mD4bo+nC2Yto3pLroxpcS2JZaUWDZYhkGpu4eKViYUiyPl3s2/rSgKo0aN4nvf+94eP3c6nfarsff09BCNRnn33Xf59Kc/zUknnUShUPAnMO+44w6klPz+97/35368avepVAopJVdccQULFizoo7RnzZrllzPzkoOtXr2a/fbbj2w2i2VZVKtVEolEv+XeFYv728DbQNZ9fxNwq5TyYSHEHcCFwP+4224p5TghxNluvy/vwnUCAgJ2gq7rfjSCpmkkk0knzerEg2n8zEza/vQ7bExkZydhYaOYNkIRCFdx27KXIpbS8W1bso8C95W3ZWNKMCzbWV1pSPTuPLaEUDzO56/6Nz9HSr3huZyq1SoNDQ1IKTnmmGOYPn06lUrFr0yjKArjx4/n8ssvB2DevHl897vfxTAMkskk1WrV98HfcsstvtK+7rrr+OY3v0k8HvdXucbjcSqVip/VEfCrxfc3NW6/njmEECOAfwLudt8LYDrwqNtlPnCGu3+6+x63fYYIZrYCAvYoqVSKUqnUJ5d0Q0MDugiR3X8cpg26YVPWypTLVTTLpmzaaKazLZs2FdNR1mVDOhOTtk3VllQtG0NKdFtiWhJTCqquxW3YNkoq7bgSogkM02TaiSfVZdkycNLj9h5Dz+VRKBRIJBIUCgW/uv3EiRP9vzNN068lWalUiEQifYoAe4wfP57GxkYikQiKopDNZimXyzQ0NPghg56lvSv5zPtrcc8DrgIy7vtmoEdK6S3mbwWGu/vDgfUAUkpTCJF3+2/pt1QBAQE7RNM0MplMn/18Pk8mk0EZPR5l0H5UNrdiyCohBCEFNzOgY6tJ2dfqNm3biRLxokUsC8NylHfVdZlULYlpQaW7B1vAITOOJ97UTEdHB7lczpennvDyvNi27StXcCxgrwiwlJJQKNRn8lAI4cddezlMer88vIVS3jHDMPxsjp6Ly/Oj70qI404tbiHEqUC7lPL1fp+1HwghLhZCLBZCLN5TWbgCAj4ueH7XcrnsT3h5j/X7H30c8eGjKFs2FdOmYnkWtk3FNKmYJmXTomxaH7T7StqdqLQkVYsPlLnlKG/DdlwoLaPHsGb5Ck7911lks9m6rH4DH4QCesq5d0y3l4HRC0ccM2ZMn8II3sI5z0Xi+b87OzsBp2TZpEmT/DZvJa2iKFiW1efvYM/HcR8NnCaE+BwQx/Fx/xTICSHCrtU9Atjg9t8AjARahRBhoAFnkrIPUsq7gLsAhgwZMvACrgMCBjDeD9/78XsREJ7Cmfxv1/P7f/k85XKJkBDOxKR0rG4J2IDtZQFEYppOJImjnG1MC6q2o8wN23ajTxwFHstkGTxuAoPGjaNp2DA/xroe8YoEZ7NZ8vk80WiUSCTiVxLq6uoik8mgaRq5XI5jjjmGxx9/HFVVmTVrFiNHjvQVO0Bra6ufCfDII49k2LBhfp50L6dMd3e3X1neK13mhST2l532lFJeA1wDIIQ4DrhSSvk1IcRvgLNwIkvOAx53/+QJ9/1f3fZFciCuhAkIqGMsy/J/6N4jvaZpRKNRyuUyubEHkBw1hvYVb6IIhZCf0tVGoiCFawG6k5OWLd0Uro7LxLCFb2kbtk3FclwmVdsik82hRKOMOfRQMrkchUIBRVHq0ur2sgNWKhVyuRy2bWNZFk1NTX5ZtnK5TCaTQUrpV4EH6OjooKOjY7vn9p6CvNzbiqLQ3d1NKpWiq6vL96F7bhevWHB/+EcCImcDlwshVuP4sL34u3uAZvf45cDV/8A1AgICtkEqlaJYLFIqlQiHw348sqZpNDc3o2kap9x+H7pho5sWZcNy3SPS2VZtyobjPtE9N4olKVtQMQUV06Zq2eiWc9ywbKqmRePwUYw/+hjiyRQzzz6bYrFIS0tL3U5OZjIZuru7iUajdHd3+3HVXgHkLVu2EAqFKBQKaJrGlClTGDly5E7PO3ToUI4//nj/hhCLxVAUxa8H2tLS4keyePH9uzKGu6S4pZQvSClPdffXSCmnSinHSSn/WUqpu8cr7vtxbvuaXblGQEDAzimXyySTSRKJhJ+Ev1Qq+RZePB5HhqMces5FjqK2HMWtGR/4tp3oEsvxf1uylxJ3lrXrpo3u+7sl2aHDGTt5KhvXruWE888nXyyRSCTo6enpU+qrntA0za+4ns1m/ZDGXC7nu0csyyKVShGPxzn66KOZP38+uVxuu+eMRqPcfffdHHfcccRiMYrFIoZhIKX0o1W6u7uduHu3Ag6wS2MYLIcLCKhDvOx0XpRCuVz2V/Cl02mnMEBjEy3TjkUZNIyyKdFMG81yQgI/CAuUH+xbNhXDcqxs0wkR1C2Lqi2JZhsYPG48ne1taMUSYw87jEwmg67rpFKpXcpsN5CIx+Ooqko4HEZVVT8c0LsJFotFQqEQlUrFr0k5ceJE3njjDe6//36y2SyZTIZsNks2m+XWW29l1apVTJs2jUwmQ7VaJZlMEg6H/bwylUqFTCaDaZokk8k++bj7y0duyXtAwMeB3kuxvYiI3rkzvEnLMVOnMfnci1h0648xNNX/e+kuxJHSmaS08PzdYEo3ftu2MW2beFML6SHD0MplYrE4Nz37jC9D70nReqR3eTGP3uXJerf1Tng1ePBgTjnlFN5//31M0/RXRgL+fIOXX9u2bT96pPdnBM78RO+ok/4SKO6AgDrES2zkKYNQKOQXVTAMw99Go1GOufAbWFLy5H/9ANlHQTkRJpbEien2lrVL/NWSphQoliTf3c3oYcO46Mc/RnEz4em67sck72qSpIFCb6XrrW4ExxL30uVCX2vYa+u9cKZ3SJ9hGEQiET9SxCuUAE46Xq/N+8x63yj6S+AqCQioQ7yY7Uql4if39455Vcu9R31FUZj61XM56ye3MeLwKY4/230NnzyV+JChVCzbfUnGH3scuo2zBN6GilbmiBNP4Pwf/YhkYyOxWAzbtkmn0+i6TjqdrsuIEsBXrN5iGE959la63lJ1zwL3Cih4bhUvNttLJx2JRPxizrZtEw6H/fZIJIJpmn3avBverjy11N8tMiAgAICmpibAeYRPJBIIIfxjjY2NCCHYb7/9/Pbp5/4/jvnnL2P1sgBDkQi2bWFbH1ji4WgUo1exXIBoPE40Hvetw2w2ixCC5ubmuo3hBucGGIvF+owhfOAu8dp641Vj31abx4781rvj096aQHEHBNQpvdObegpkZ9tQOt2vc8e3k4J2e+etV7xFTN5+7+NbH+tP274icJUEBAQE1BliICxqbGxslOecc06txdguuq77q6iTozRIAAAFj0lEQVQGKvl8nnA4vMeT9e9J2traaGtrQcqBG4GQy21g//2H77xjjbAsi87OTgYPHlxrUbaLqqpYlkU2m9155xrR2dlJOp0eUJWntmbBggV0d3dv06wfEIpbCNEBqAzcDIItBLLtDoFsu0cg2+7xUZNtfynloG01DAjFDSCEWCylHJDlVgLZdo9Att0jkG33+DjJFvi4AwICAuqMQHEHBAQE1BkDSXHfVWsBdkAg2+4RyLZ7BLLtHh8b2QaMjzsgICAgoH8MJIs7ICAgIKAf1FxxCyFOFkKsEkKsFkLUvOiCEGKtEGKZEOJNIcRi91iTEOJZIcQ77rZxH8lyrxCiXQixvNexbcoiHG5zx3GpEOKIGsn3fSHEBnf83nRL3nlt17jyrRJCnLQX5RophHheCPE3IcQKIcS33eM1H7sdyFbzcXOvFRdCvCqEeMuV7wfu8TFCiFdcOR4RQkTd4zH3/Wq3fXQNZLtfCPFer7E7zD1ei99ESAjxhhDiSff93hm3rasT78sXEALeBcYCUeAt4MAay7QWaNnq2M3A1e7+1cBN+0iWY4EjgOU7kwX4HPAHQABHAa/USL7v45S327rvge7nGwPGuJ97aC/JNQw4wt3PAH93r1/zsduBbDUfN/d6Aki7+xHgFXdMfg2c7R6/A/imu/+vwB3u/tnAIzWQ7X7grG30r8Vv4nLgIeBJ9/1eGbdaW9xTgdXSqaZTxalfeXqNZdoWpwPz3f35wBn74qJSyheBrn7KcjrwgHR4GaeY87AayLc9TgcellLqUsr3gNU4n//ekGuTlHKJu18E3gaGMwDGbgeybY99Nm6uTFJKWXLfRtyXBKYDj7rHtx47b0wfBWYIsXeSeOxAtu2xT38TQogRwD8Bd7vvBXtp3GqtuIcD63u9b2XHX+J9gQSeEUK8LoS42D02REq5yd3fDAypjWg7lGUgjeUs99H03l5upZrI5z6CHo5jnQ2osdtKNhgg4+Y+7r8JtAPP4lj5PVJKcxsy+PK57XmcGrT7RDYppTd2P3TH7lYhhLeOfV+P3TzgKsBLtdjMXhq3WivugchnpJRHAKcA3xJCHNu7UTrPNgMiFGcgydKL/wEOAA4DNgFzayWIECIN/Bb4jpSy0Lut1mO3DdkGzLhJKS0p5WHACBzr/pO1kmVrtpZNCDEJuAZHxilAE04h832KEOJUoF1K+fq+uF6tFfcGoHfJ5BHusZohpdzgbtuBhThf3DbvEcvdttdOwu3KMiDGUkrZ5v64bOAXfPBYv0/lE0JEcBTjL6WUj7mHB8TYbUu2gTJuvZFS9gDPA9Nw3AxeGujeMvjyue0NQOc+lO1k1/0kpVOw/D5qM3ZHA6cJIdbiuHynAz9lL41brRX3a8B4d+Y1iuOkf6JWwgghUkKIjLcPzASWuzKd53Y7D3i8NhLCDmR5AjjXnUk/Csj3cgvsM7byIZ6JM36efGe7s+ljgPHAq3tJBgHcA7wtpbylV1PNx257sg2EcXPlGCSEyLn7CeBEHD/888BZbretx84b07OARe7TzL6SbWWvm7HA8SH3Hrt98rlKKa+RUo6QUo7G0WOLpJRfY2+N296YWd2VF87M799x/Gjfq7EsY3Fm8N8CVnjy4PiengPeAf4MNO0jeX6F89hs4PjHLtyeLDgz57e747gMmFwj+Ra411/qfjmH9er/PVe+VcApe1Guz+C4QZYCb7qvzw2EsduBbDUfN/dahwBvuHIsB67t9dt4FWdy9DdAzD0ed9+vdtvH1kC2Re7YLQce5IPIk33+m3CvexwfRJXslXELVk4GBAQE1Bm1dpUEBAQEBOwigeIOCAgIqDMCxR0QEBBQZwSKOyAgIKDOCBR3QEBAQJ0RKO6AgICAOiNQ3AEBAQF1RqC4AwICAuqM/w9pIihoDh14YgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## ماهیت Q-Learning: معادله بلمن و الگوریتم یادگیری\n", + "\n", + "کد شبه‌ای برای الگوریتم یادگیری ما بنویسید:\n", + "\n", + "* مقداردهی اولیه جدول Q با اعداد برابر برای تمام حالت‌ها و اقدامات\n", + "* تنظیم نرخ یادگیری $\\alpha\\leftarrow 1$\n", + "* شبیه‌سازی را بارها تکرار کنید\n", + " 1. از یک موقعیت تصادفی شروع کنید\n", + " 1. تکرار کنید\n", + " 1. یک اقدام $a$ را در حالت $s$ انتخاب کنید\n", + " 2. اقدام را اجرا کنید و به حالت جدید $s'$ بروید\n", + " 3. اگر به شرایط پایان بازی برسیم یا مجموع پاداش خیلی کم باشد - شبیه‌سازی را متوقف کنید \n", + " 4. پاداش $r$ را در حالت جدید محاسبه کنید\n", + " 5. تابع Q را طبق معادله بلمن به‌روزرسانی کنید: $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$\n", + " 7. مجموع پاداش را به‌روزرسانی کنید و $\\alpha$ را کاهش دهید.\n", + "\n", + "## بهره‌برداری در مقابل اکتشاف\n", + "\n", + "بهترین رویکرد، ایجاد تعادل بین اکتشاف و بهره‌برداری است. هرچه بیشتر درباره محیط خود یاد بگیریم، احتمال بیشتری وجود دارد که مسیر بهینه را دنبال کنیم، اما گاهی انتخاب مسیر ناشناخته نیز مفید است.\n", + "\n", + "## پیاده‌سازی در پایتون\n", + "\n", + "اکنون آماده‌ایم تا الگوریتم یادگیری را پیاده‌سازی کنیم. پیش از آن، به تابعی نیاز داریم که اعداد دلخواه در جدول Q را به یک بردار احتمالات برای اقدامات مربوطه تبدیل کند:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "source": [ + "ما مقدار کمی `eps` به بردار اصلی اضافه می‌کنیم تا در حالت اولیه، زمانی که تمام مؤلفه‌های بردار یکسان هستند، از تقسیم بر صفر جلوگیری کنیم.\n", + "\n", + "الگوریتم یادگیری واقعی که اجرا خواهیم کرد برای 5000 آزمایش، که به آن **دوره‌ها** نیز گفته می‌شود:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " m.random_start()\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " m.move(dpos,check_correctness=False) # we allow player to move outside the board, which terminates episode\n", + " r = reward(m)\n", + " cum_reward += r\n", + " if r==end_reward or cum_reward < -1000:\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "source": [ + "پس از اجرای این الگوریتم، جدول Q باید با مقادیر به‌روزرسانی شود که جذابیت اقدامات مختلف را در هر مرحله تعریف می‌کند. جدول را اینجا مشاهده کنید:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXwURd7H8U/NmUzug4Rb7kMRQW4RFRFFlwVdXFRUdlFRQTxQ8FgUFVRQ1xMeZBE8F0VXF1R0PUCUS+VQhKDcoCQkQO7MPdNdzx+ZzMJKAMlMepLUm1deyXSa7u8M5Jea6qpqIaVEURRFqTtMRgdQFEVRfh9VuBVFUeoYVbgVRVHqGFW4FUVR6hhVuBVFUeoYVbgVRVHqmKgVbiHEECHEdiHELiHE/dE6j6IoSkMjojGOWwhhBnYAg4FcYD1wjZTyp4ifTFEUpYGJVou7N7BLSrlHSukHFgHDo3QuRVGUBiVahbsZsP+Ix7mhbYqiKEoNWYw6sRDiZuBmAKvV2qNr165GRTkhn89HRUUFmZmZRkepVmlpKVarlYSEBKOjVCs/P5+srCzMZrPRUar166+/0rJlS6NjVCsYDHL48GGaNGlidJRqOZ1OgsEgqampRkep1uHDh0lOTsZutxsdpVpbt27F4/GIY35TShnxD6Af8NkRjx8AHqhu/6ysLBnLdu7cKefNm2d0jONavHixXLt2rdExjmv69OmyuLjY6BjV0nVdTpgwwegYx1VUVCQff/xxo2Mc1+rVq+WSJUuMjnFcc+fOlTt37jQ6xnGF6uIxa2a0ukrWA+2FEK2FEDbgauDDKJ1LURSlQYlKV4mUMiiEmAB8BpiBV6SUW6NxLkVRlIYman3cUspPgE+idXxFUZSGSs2cVJQo0HWd9evX8/rrr6PretW1HkWJCFW4FSUKunbtyrx58yguLqZJkyZUVFQYHekomqZx4MABo2Mop8iw4YCKUl99/fXXDB48mMmTJ1NYWIjP5+PTTz9l5MiRRkcDKvPt2rWLnJwcunfvzsUXX0zjxo2NjqX8DnWuxb1nzx7effddo2MoSrWCwSAWi4WcnBw++OADrFYrgUDA6Fhhs2fPxul0cvfdd/POO++wfft2oyMpv1OdanEPGzaMuLg4+vTpw5lnnsmKFStielKM0jANGjSICRMmsGTJElwuF4FAgN27dxsdC4BFixYxePBgrrjiCqZMmcK8efOYPHkyPXv2jOnJW0eSUuL1elm4cCGtWrWif//+xMfHGx2rVtWZFveePXuIi4tj7ty5jBgxgksuuYScnByjYynKMeXk5DBr1ixuueUW8vPzSUpKMjoSACNHjmTZsmUsX74cv9/P1KlTGTt2LA6Hw+hoJ83j8dC8eXN8Ph+fffYZnTt3NjpSraszhXvjxo307t2b8vJyXn31VRo3bsyqVavU1XolJpnNZkwmEyaTCYvFghDHnrlc20wmE0OHDuX777/HarWyfft2WrZsGTP5Tsbbb7/No48+Sq9evbj11lu58cYbWbx4sdGxalWd6Sr585//zJlnnklBQQFNmjRh0qRJ5Ofn16n/cErD0q1bN9asWcOWLVs488wzjY4TNnr0aPx+P0888QSnnXYabdu2NTrS79K8eXNeeuklCgoKmDBhAnl5eVx88cVGx6pVdabFDbBixQqGDh2Ky+WioKCAW2+9ldLSUqNjKcoxZWVloes6hYWFRkf5DZvNxvnnn4+UEr/fb3Sc32XAgAF8+umnBINBpk6dyjfffEOfPn2MjlWr6lThzszM5IILLuChhx4iOzub1157jYceeohdu3YZHU1R6pyBAwfi8/n45ptvjI7yu/Xq1YtevXpx0003sWnTJqPj1Lo6VbirVHWPpKamcuedd/Lmm2+yb98+Y0MpilIr5syZw6233sqIESPo3bt3g+wurZOF+0jt2rVjzJgxTJ06FbfbbXQc5RQsXbqUAQMGcPHFFxMIBNA0DU3T1IXnWmAymerUlPwZM2bQoUMHRo0aZXQUQ9X5wg3QqlUr5s6dy+jRo8nPz4/qufbu3RvT/8mDwSD79+8/8Y4xZMiQIXz22We89dZb9OvXj169etG7d282bNjAtm3b2LZtGx6Px+iY9dKDDz7IjBkzcDqdRkc5obKyMg4cOECXLl0aZCv7SHVmVMmJOBwOZs2axaxZsxgzZgzt27eP+DmWL1/OBx98QNeuXenVqxdnnXVWxM9RU2+99RabN2+mU6dODB06tE5MZbZYLFgsFhwOBxs2bAAqJ1lMnDgxXFDOPPPM8ASRgQMH1rmRELHKZrPF1KzO6pSVlTFnzhxGjhxJmzZtDMuxZcsWkpKSaNWq1Unt/9lnn7F//35atWrFRRddFLEc9aZwAzRp0oQxY8awYMECJk6cSHZ2dkSPbzKZeOSRR3jsscc4fPhwjQq3x+Nh3LhxEWm9t23blqpbv6WmpnLXXXdxyy230KlTpxoV7p9++oknn3yyxvmgslX9ewgheP7558OPly5dSlFREQD/+Mc/OHjwIABXXHEFl19+eUQyKrHr4MGDbNu2jQceeMCQ8wcCAW655RaaNm2K1+vF6/Uya9aso1r+q1atYv78+Uf9vbPOOouMjIyI366vXhVugPbt2zNx4kTGjRvHm2++GdFpvAMHDuTiiy9m9+7deDyeGq2ZEh8fz2uvvRaRt3xxcXFs3LgRqBwqdeGFF3LgwAFuuOGGGj3/Ll26MHXq1BrnA0hLS6vRtO+hQ4eGvy4oKAivtvevf/2LRx99FICLLroonNdsNh93NmBVK9NqtZ5yppNR9Uu0Z8+eMTN78n+98cYbXHPNNSxdutToKMek6zp33nknr732mmEZKioq2LFjB4899hgul4sBAwawbNmyo6baDxw4kAcffPCov9e0adOoLCVQ7wo3QHZ2Nm+++SYTJkxg6tSptG7dOiLH/emnn3j//feZM2cOmqZx//331+h4QoiI9dVVFe49e/bwxRdfcMcddzBu3Dj69+9fo+OaTLF3GaRx48bhdxIPPPBA+N9h+fLl/PGPfwQqf2BuvfVWoLI49+3bFyEEUkrWrl3Lhg0b0HWdXr160b9//6j1mWZkZFBSUoKu61E5fiQ0a9aMvLw8o2NUa/PmzWRnZ0f8HfTvcd999/H888+zevVq5syZg9PpZPTo0cycOfOo/Wrr56VeFm6AhIQEpk6dyuuvv871118fkT7RTZs28f777+P1ern44otjsqgtW7YMn89H69atadmyZUxmjKQjf/kNHjyYwYMHA5CXl8ecOXPC+3z55ZdAZd/57NmzmT17NmazmVGjRrF3796YvvN8Q7ZixQpWrFjBP/7xD0NzzJo1i06dOjF//nwmTJjAvffey5NPPmnYRdJ6W7gBWrduzfXXX8/TTz/Nk08+SUpKSo2ON2rUKFavXh3VFlpNTZw4kc2bN9OzZ0+joxiqWbNmPP744wD4/X6WL18OwL333ktFRQULFiwIv/2+9957eeaZZ4yMayghBFOmTOHvf/87kyZNMjpOmJSSzz//nEsvvRS73W5oFqvVyty5c1m3bh3Jycm8/PLLhuap14UbKi/cPfXUU4wePZoFCxaQkZFRo+Ode+65EUoWHTabrcEX7f9ls9m49NJLAejbty/9+/fnxRdfJCkpiT//+c988MEHBic0lhCCbt268eGHHxodJUzTND766COaNm1Kv379jI6D2WxmyJAhnH/++ZhMJsN/kdT7wg2QnJzMK6+8wvTp0xk/fnxUhgoqdUNKSgrdu3dn3rx5CCFo0aIFqampRsdS/kdJSQnz5s3jk09i637jsbLud4Mo3ADp6encdtttvPHGG9x00020bNnS6EiKAUwmEwsXLuSnn35CSskZZ5xhdKSYkJmZSceOHfnmm29iooU7e/ZsbrnlFqNjxKz6feXqf7Rr146xY8dy//33q+nxDdzpp59ea0XbbDajaVqtnOtUpaam0qJFi5i4OUkwGOTDDz9k2LBhRkeJWQ2qcAO0aNGCBQsWMGbMGHJzc42OozQAS5cu5ZJLLjE6Rp3x4IMP8tFHH8XsAIBY0OAKN1T2Uz377LOsXr3a6ChKA2CxWOrEtPKOHTty6NAhiouLDc0xc+ZMmjVrZmiGWNcgCzdUDhe7+uqrjY6hKDGjT58+7Nu3j4KCAqOjKCfQYC5OKopyYjNmzCA5OdnoGMoJqMKtKFEmhKgzt9bKzMw0OoJyEhpsV4mi1BYhhOFTtpX6RRVuRVGUOqZGXSVCiH1ABaABQSllTyFEOvAO0ArYB4yUUpbULKaiKIpSJRIt7oFSym5SyqoFMu4Hlksp2wPLQ48VRVGUCIlGV8lw4PXQ168D6vYkiqIoEVTTwi2Bz4UQG4UQN4e2ZUspq+7YWwAYt/q5oihKPVTT4YDnSinzhBBZwBdCiG1HflNKKYUQx7ypYqjQ3wyQmJjIzp07axglenJzcyktLY3pjIWFhei6HtMZXS4Xe/fupbCw0Ogo1fL7/TH9GpaXl+NyuWI6Y0FBQcz/vJSWlrJ///6I3PM1Wo5316QaFW4pZV7o8yEhxGKgN3BQCNFESpkvhGgCHKrm784D5gFkZGTIr776qiZRoqq0tJTc3FxiOePu3btxOBzhG+rGosLCQtauXWv4WsbH43Q6Y/rf2ev18s3hb/jgq9hdQ9yR72CQZ1BM364tLy+PjRs3smvXLqOjVOu4r5+U8pQ+gAQg6Yiv1wJDgKeB+0Pb7weeOtGxsrKyZCzbuXOnnDdvntExjmvx4sVy7dq1Rsc4runTp8vi4mKjY1RL13U5YcIEo2McV1FRkezxeA9JDP9pvLqxXLJkidEv1XHNnTtX7ty50+gYxxWqi8esmTXp484GVgshfgTWAR9LKT8FZgKDhRA7gYtCj5X/4XQ6ufLKK42OoShKBOzevZu777671s53yl0lUso9wFnH2F4EDKpJqIZAShnT3RqKopy8QCBAaWlprZ1PzZxUFEWpY1ThVhRFqWNU4VYURaljVOFWFEWpY+pV4c7Pz+e1114zOoaiKEpU1avCXVZWpu4jGSFOp5MxY8YYHaNeCwQCBINBo2ModZC6A45yTJqm8euvvxodo17SdZ1vv/2WVatWkZaWRrdu3ejVq5e6q3kdVtv/dvWqxZ2enk7Tpk3JyckxOoqiVMvv93PVVVdxxhlnEBcXx1VXXWV0JKWGZC2veVKvCndWVhYtW7Zk48aNRkdRlGrdd999LFy4kGAwSPv27XnhhReYNm2a0bGUOqReFW5FqQvuv/9+rr76atasWUPr1q156qmnuPPOO42OpdQhqnArSi1LS0sjEAhgs9l44oknaNOmDSkpKUbHUuoQdXFSUWrZ7Nmzef755+nYsSMpKSm0b9/e6EhKHVPvWtzDhg1j48aN7N+/3+goSh2gaVqtXVjSdZ0nn3ySDh06MGrUKHr27KmKtnJK6l3hzsrKoqysDK/Xa3QUJYaVlpaydetWRo4cSU5ODgUFBVE9n9/vZ8GCBbRq1YqhQ4eqoX/1jBoOqCi14IMPPmDcuHE8++yzTJ06leeeey6q56u6g9JVV12FyaR+7Oqb2h4OqPq4lQbj3Xff5aOPPgJgz5496LrO9OnTmTt3LvPmzWPTpk1ROa+UkhdeeIFx48ZF5fh10cyZM9m6dWv4sdVqZd68eVgskSlJK1aswGq1cu6550bkeLGmXhbu+Ph4vF4vUsqYfUvqdruJj483Oka1hBDY7XZ8Pl+t3yPS5/Ph9/tPat9XXnnlpNenGTVqFA8//DAA//73v3G5XFx33XXs3LkTt9tNhw4dTjVytXw+H+PHj2fSpEl07tw54sevq0aPHo3b7Q4/DgaD9O3bF03Tjrl/8+bNeeutt6o9nsViIT4+Hk3T6NatG0OGDMHv93P77bezcePGqL/LMZlMmM1mAoEAVqs1queCelq4X3rpJXr06MGGDRtitnBfeumlrF+/3ugY1UpKSuKee+7hiSee4NFHH43KOaSUrFq16jc3RV21ahUrVqw4qWOMHj36pCdcCSHC/x+6du3Kk08+SadOnZg/fz4jR47E4XD8vidwAsXFxbzwwgvcdtttdOrUKaLHruuaNm161GMpJevWrat2/7y8PIYPH17t9zt27MhVV12Fpmn4/X4uu+wyOnXqRHl5OT/++CPdu3ePWPZjad++Pf369WPhwoX89a9/jeq5oJ4WbiFErfc5/V6x/G4A/lvkovk6SilZsWIFgUDgqO3nn38+Dz30UNTOCzBkyBCGDBnCnDlz+OKLLzCZTBF9rh6Ph9mzZ3PBBRdw9tlnR+y49dWRv1SPpUWLFnz55ZfVfv/nn39m4cKF6LpOeXk5y5cvJy0tjZ49e7Jx48aoF+6q7LVVd+pl4VbqBpPJFO66MMr48eOjclyPx8Pq1auZOnVqVI6vHK1z58489thjBINBXn75ZTIzM/n888955plnyM/PNzpexKnL24oSYYWFhdx444289957RkdpcMxmM9u3byc9PZ2WLVuybdu2mH5ne6rqbYv7wgsv5KuvvuLCCy80OorSgOzcuZO5c+fy8ssvk5ycbHScBkcIQXp6OqNHjzY6SlTV2xb3I488olZcU2pVbm4ub7zxBrfeeiuZmZlGx1HqsXpbuBWlNkkpKSgooLy8XE1jV6Ku3naVKEpt+vnnn5k1axYLFiwwOorSAKgWt6JEwCeffMKCBQsiNvNPUY6n3v4vi4uLY+TIkSxatIirr77a6Dh1zu23386WLVs4fPgw27dvZ8GCBSQmJhodK2ZNmjTJ6AhKA1JvC/dFF11EXl4eFRUVTJkyhfXr15Oenm50rDrB5XKxceNGbr/9dr777jt27NhBcXGxKtyKEiPqZeHesmULrVu35tFHH+WLL74AYN26dQwZMsTgZHXD7NmzmTRpEq1btyYQCHDdddcxbdo05s+fb3Q0RVGop4V7z549tGvXjlatWnHRRRexf/9+fv75Z1W4T9J9991H586dmTx5Mq1bt+aqq65iw4YNRsdSFCXkhBcnhRCvCCEOCSFyjtiWLoT4QgixM/Q5LbRdCCFeFELsEkJsFkIYskjD8OHDWbhwIc8//zx5eXncfffdXH/99UZEqbNeeeUVAL7++mvmz5+vukkUJYacTIv7NWA28MYR2+4HlkspZwoh7g89vg+4FGgf+ugDvBT6XOvWrVvHpk2bWLduHbt37yYpKcmIGHVWv3796NWrF8FgkLi4OKPjKHVMfZxmHktOWLillCuFEK3+Z/Nw4ILQ168DX1FZuIcDb8jKJbK+FUKkCiGaSClrfZWXpKQkBgwYwIABA2r71PWGxWJRw9uUUxLrq3PWdaf6U5l9RDEuALJDXzcDjrxLb25oW/1bnusUrVq1in/+85/s37+fcePGcdlllx13nWFFUWKbruvceeedbNmyBYDvv/+eF154Iao3b6jxkUOt69/961UIcbMQYoMQYoPH46lpjDpB13W2bt1K27ZtyczMpF+/fqxfv77au34oihL7fD4fq1evZtCgQVx00UWsXr0an88X1XOeauE+KIRoAhD6fCi0PQ9occR+zUPbfkNKOU9K2VNK2TOWb+EVSfv27WPHjh389a9/pVevXlx++eXYbLaYvhOOoijHd8899zB37ly6detGt27dmDt3Lvfcc09Uz3mqXSUfAn8BZoY+f3DE9glCiEVUXpQsO5n+bU3TWLJkySlGib7CwkJ2794dkYw2m41Zs2YxYsQIFixYQF5eHgUFBTU+dk5ODr/88gsHDx6sccZoKSgo4NNPP43pe22Wl5fH9P9Ft9tNQn4CbZa0MTpKtZL2JZHjyonpfu49e/ZgsVjIyck58c4nMHjwYCZPnszdd98NwOTJk5k4cWKN/x8d7534CQu3EOJtKi9EZgohcoGHqSzY7wohbgR+AUaGdv8EuAzYBbiBMScT0O8XjBuXfeIdDeJw6PzlLw6ys2ue8cj+7OzsbM4555waHxPgl19+Ye7cFEpLY/d1bNfOzuWXNyIhIcHoKNWyWCwR+XeOFqfTSS97L2ZmzzQ6SrW2lWyjwlQR06+jw+HgifQncGe7T7zzyXgSxjEu/PV4an5nJb+o/obZJzOq5JpqvjXoGPtK4LaTThb+eyYKCvr93r9Wa1JSdtGkSRH9+sVuxoMHD1Jamh3Tr2Pz5svp0aMHNpuNiooK0tJTOVhygKSEFMoDh/i85A32uLdiCliwi0SEbia/4gB904Zwceur8bt9NG/UkvLychISEigpKcHhcBAIBNA0jYSEBKSUxMfHh6foV1RUkJKSEn7s8/lISUnB5/MhpSQuLg6TyRS+v+Zbb70VsX9nv99PIBCI6C+q4uJi1q9fX+OMuq7z6aefkpuby8iRIykvL+fFF19k+vTpNX5HpOs6hYWFMf3zsnnzZorOLKKsXZnRUaqVaKp+7oQa66XUKil1igIH2OPaigmdD/Pn0C7hbPy6HxvxdLD14YDvV8o8pXRK7c5pGV1JtqYxecW1JFkzuK37gzSyNcEWsGEymcJ3iDeZTGiahpQSn8+HEAJN0xBCEAgEwt8XQuD3+8NvQ4PBIDabLeLPc/ny5ezcuZODBw/So0cPLrnkEqxWa8TPc6pcLhcfffQRd999N1dccQVvv/02TZs2ZeXKlVxyySVGx1NOQC3rqtQqieSHQ98xbcMDvLThRczOZpSVBfh280+88ekS1uz4mtxf89j43Y+s3ruCX4p/IefgFuwymXiRzNubXuGzXR/i9FZgs9kQQmA2m4+6S3sgEMBqtaJpGhaLBU3TsNvtCCGwWCwEg8HKLFL+5g7zkTJ+/HhSU1O58MILueuuu3C7I/SWPEKSkpIYPnw4N954I3v27OGBBx5g06ZNdaJo+/1+5s6da3QMQ6nCrdQqkzDTM/NCmgR6sHV7MZu3HuaHzfmUH7BhdzfGtd9B3g4/W384zHc//MDWPetZ+f1XeFxB1u7+hkMVRcxd+38U+wqpqKgAKt+aezweLBYLJpPA4YjH6/VgtVrx+XzExcXhcrnCre2EhIRwEXc4HBF/jg8//DDPP/88bdq0YdeuXbz//vvcfvvtET9PTfXp04cZM2aQkZHBqFGjeOihh4yOdEIzZ85kyJAhJCUlce6557J69WqjIxlCdZUotUrXdRLMDl7844vcsHgM/8n5BN0H8TIOm7Tx/S6NP/cewY2De1HmKsXmsZHr/g/e8iIKi0vYqe0mGDAz/KU/8sXtK4DKkTpxcXF4PW5yls9k1/p/EgxqdO73F3oMnUZFRQUZGRl4vV7i4+MpLCzEbrcTDAZxu91kZGRE9Dn+7W9/o3///owfP54ff/yR119/nXfeeSei54iEtLQ0+vfvT0pKCn379o35ZSHKysrIzc3lxRdfJCEhgbKyMvbu3Uvfvn0b3Axf1eJWapXJZMJut+N1evjHiLlc1ukPWMxm2jRqQ992fenaqgu/HP6FrXk5FFUUk1+UT0LRabi2p3Bmcmc8ZYWge9HKBDe9eBNCCLxeL8XFRVQc3MruraspKffSrMswUpt2o6K8nMTERA4fPowQApfLRWZmZng6f2pqasSfo91uZ+DAgbz77rusXr2atm3bqju+R0BOTg5NmzYN38X93HPP5ccff4y5bqja0LB+TSmGk1Li9/tJS0sjEAjw0og5PBj/EP/e+G9KnaUkmBNwiHh8ws+hom2UlZSRZE1meL/hOCucxJNO0eFDmNIO4D8YQNOCWK1WVix+nkP71lCSv5/uF05kwLCJBIOV3/N4PKSlpaFpGg6Hg7KyMsxmM1JKnE4nKSkpEX+eTz/9NJ9//jnfffddneiCqAv69+/Pq6++yq233sqOHTu44YYbePjhhxvkL0VVuJVaZzKZwhcT0+LTmXbJNKzCzr/WvcvB4kMQABEAoQm6N+9OvDmePfl7iLfEk2TNoG3LTrz9+eu0ubiAV5fMZ/TQv7D+q/fJbtKc4be8QnarruHjVw3zM5vN4VElR04MUavY1S2PPfYY/fv3p23btrz66qs0a9bM6EiGUIVbqXUmkwmn00lCQgIul4tkezIz//AE0y59mCv+70+UlJewa/8espIyKXYWkWhNwuv2QkBy+HARidYEBvcYRm7uDlbJxXw77lXSNMmQgddxWud+WK1W3G43drs9fHHS6XRis9nw+/04HA40TUPX9agO0UtNTUXXdUpLS6PSJdMQNW7cmJSUFL7++uuYGl5Z21ThVmpV1TjrjIwMiouLSU1NxeVyYbPa8Dv9LL1tKfuK9/HRxo9weV2YgiYSbA7KS8tBCjxuL3azjasuuoqeZ/Vk5ebPeXntVM7/w1Wc1XcomqbhdDpJT0+nvLyclJQUSktLyczMpKKigvj4eIqKinA4HEgpcblcUZvh17t3bz766CN++OEHBg4cGJVzNFTRXHmvLlCFW6lVQgjsdjvFxcXEx8dTVlaG1WolGAySmJiIlJJ2We24ffDtSCmxWcwUrF5Gwbp/47DHkTHwUlL7DcJqt1NSUkKgIIinVND/ohHYbDaklKSmplK4bx/rF8ymOPdX0tp2psdfxpKa1Sjc363rOrqux/S6KcpvvfDCC0yePFkVbqMDKA1LVYs7JSWFsrIykpOTcbvdWCyW8Fhs/F5MPi/bpt6O9HtpfsW19HxgBrowYTWb2DvvSYp+3EhQ09lVWIr98CF8OevZsGYlhzZ/T0DT6HzVDXT/09X4fV40r4+3b74eZ7mTYVMfJbl1W7JbtMRkMuFyubDb7Ua/LMpJ2rJlC5MmTWrw1yZU4VZqndlsJhAIhGcxVl1INJvNaBVlHJj3NK5fd9H57mlYk5IJlJbg3bMTBPgkNPvTdZw2+jaCrgqafb2cnjt+pmjNSloNuJAzR91EMOjHVVKCv6IMTYKOZNiURwhqOqsWvsHm1au5Zf5rtDm7B2az2eiXQ1F+N1W4lVolhDhqHZGqNUOklBAM8stLM9AOHqDNtbfiP1xA8HABAklVA0tI8P+6F6+U6EByx86kduuB5g/iKS2i/JfdaFKiSdCkRJcSTQddSoK65OyhwwjoOgsn3c3VM56ifR9DbomqnIJ169Zx2mmnkZWVZXQUw6nCrdQqKSXBYJC0tLSjLk5aLBb2L/4nnl0/0/q6W5oHB38AACAASURBVCHgReggROjjqGNUFnCQaG4Xfikri3WoQGu6RJeEi3dQk2hSJxjap8t5A/F5/cwddwsT3/kXnc8+26BXQ/k9fv75Z5o0aUJ6errRUQynCrdSq0wmE3FxceTn55ORkUFhYSEJCQn43C6Kl31Ix2tvQ3OXIU2AEJhCLXRTqHJLKStb55LKCl5VpHWJrkuCUkfTJZoGwVDhDug6QQlBXUfTBZqu0/mc/hzKzcVTWGjky6Eop0QVbqVWVbW44+PjCQQC4QuDRauXYUtIxFuYh9kkMJkrRw0IM5iPKNy6rGxVS12ApqNLHSlB6qGWtl5VoCUBvbJ7JKhLgpLKAq5XdqMEgjoZzU9jzp138PLWnxCqrzumlZaWkpeXx/nnn290lJjQsMfUxKiHH344vPRofVQ1IqDqs5SSiu/X4mjVDs3jQve4kG4XeF3gcSO8bsw+D2afB+GtfCy9LqTXje5xo7vd6G4XutuF5naiud0E3K4jPpz4Xf/98FZU4HVV0LR9WzSf18iXQjlJhw4dYvv27fTv39/oKDFBFe4Y8vHHH9O5c2fOOeccevXqxdSpU42OFHFV62d7vV4sFgt+vz+0zYTU/OHCrXtcSI8L6XFDqFgLb+XXeDxwxH6610XQE/pwuwm6nQRDRdvvduFzOvG7KvC5nHidbrxOJ16nE09ZWfhGDIpSl6iukig7fPgwW7ZsOal9v/vuOy666CJsNhvvvPMO8+fP5+DBgzF9777fS9d1fD4fqampuN1ukpOT8fv9+H1+ZNFB7KF1TIRZYDIJhFkgTCYq2xiSIKDpOkFdJ6hVdoMEQl8HpCSghT50iT+oE9ShvLwMsyMBvybx60d8PzQJJ5ratGnD3r17GTBgQMwuPdq9e3c2btzIBRdcYHSUY5JSsnXrVk4//XSjo8SM2PyfVI8UFRXx1VdfndS+P/30Ey6Xi5UrV3LTTTfhcDg4fPhwvSrcJpMJm81GUVERjRo1oqSkhKSkJOKSU8j/+lNsJhOkpkKoeGOqHFIS9PsQ9nh0qvqtweeqwF14GL+m4wvq+HWJT9PxBSWayYIlM5sAgrIDuTgaN8Ov6wQ08GkaQR0O5xfg90a3q2TMmDEMGjSIESNGRGUVwkj4+9//To8ePfjhhx+MjnJMUkqmTZsWs/mMoAp3lHXq1Ilp06ad1L7vvvsuDz/8MM8++yzXXHMNXbt2pUuXLlFOWLt0Xcfv99OoUeX089TUVPx+P03+NJrDa5ZTun0LWrOWJGRmoZsEukkQFBDcvxtri7ZIwHPwAIHyMrw+X2W3R1DDr0k8QYkvqOHVdPwI9P2/4sdMfIuWlOXnIxISCGjg1XTKiovZs/Unug29HBr4LDyl7lGFO4ZcfvnlDB48mPHjx/Pee++RmFj9XZ7rMl3XMZvN6LoeXmbV3rQlusVGwOWGvTtB07AlJhKQGmbAX16G2Lyucqy2phHQdPyajl/7b/dIUOqhsdsQ0DS8pcX4gjpFhYV4Ahp+BMktWlFSUsKhvAK8/iBDx41r8NOnY92hQ4fq1bvOSFCFO4bYbDZsNhtvv/220VGiRgiBzWajoqICu92Ox+MJF3HNHo9fl8iAhrm8jKAWQDuwPzQcUCAADRmeZOPXdYKawK8f2Xeth/u8g3rlhJugFkDTIBDU8DidFOcfRJeAMBGfmGD0S6KcwNVXX83SpUuNjhFT1KgSpVZV3QEnNTUVj8dDUlISuq5jsVhode1N+EL91K7iYtzOCnyajlfT8Wg6bk3HG9TxBCsf+zXwhVrdR7W8db1yxqRedfGycpsuoby4BF3XkSYTvUb8CRGnVgdU6h7V4lZqVdWyroWFhSQmJlJaWorNZiMQCNC0/2B+0EGXOroMoFe4IahXXp8UlW0MKfXQJBwIhibb+EMXK/161WgRiV+r/H6gqoBLiYiLw+vxVe6jBel2wQW0bNPG4FdEOZ5gMKgWAjsG1eJWapWUkkAgQGZmJm63m5SUlPCdaCpcbpJ6nVfZyg5qOCucuAOVLWx3QA99LStb3EEdT1DDExpR4g1q+IIaPk3DH5T4NQ2/phMIFfNAUMfldOP3+Ulq1IhLbr0Fc1w8xcXFRr8kynE88sgjPPjggyQkqC6tI6nCrdSqqgk4brcbq9WK1+sNrxIYn5REh1E34g3KUIHW8IZGi3iDGt6gdkTRruxC8QZluHvFp0l8oe4Svybw6+DX5FHjvQNSkt2+PeXFJfT74zB1I4UYp2kaZrNZXUD+H6pwK7VOShle1rVqAoyUEovFQlq7jjS/eFioUIda1cHKvu3/9m9LPIHK7/tC+/lCo0wCoeJd2V2iVRZxXeLXIajpnH7eBWjCwjkjrsRisTTo+xYqdZcq3EqtqiraDoeDQCBAfHx8+CYKHo8HU0IiGV264cdU2erWKrtG3EENd7iIBysvVoYfV7bGvVrlGG6fLvEGKyfb+HUNX6i1rQsTac2aUVFRzpnnnYemabhcLqNfEqUaX375JUlJSfRRa6b/hircSq2qWtb10KFDJCQkUFRUFL4jTmpqKvHx8XS4ajTZfQdUdo34NdwBDXdQr/wI6Lj9El9Q4g3KUHdJZSvcGwSPJvEFK4cEekPdJwFNQ1qsdLlwMOuXf8WMxUuwx8VhtVrJyMiI+nPu2bMn69ati/p56puqbjR1a7nfUqNKlFpVdXEyMTERn89HQkJCeEKO1+tFSolJCDoPu5I936wh4HUf0br472qCOqGbJoQm3ISXbz1iCKA/tCZJEBOtunYngGDAlSPQrDaCwSBSSpxOJ0lJSVF9zjNmzODss89m06ZNUT2P0nCcsMUthHhFCHFICJFzxLZHhBB5QohNoY/LjvjeA0KIXUKI7UKIS6IVXKm7zGYzmqZhtVoJBALh2ZMWiyU89KvlhZfg6HQG3qDEHZThFnf4wmRoe1X/ty9Q2d/tC1+0/G+/d1a7DjjS0tm39SfOHDiQhMRETKHFrGJ14aeGrqysjMWLF3PttdcaHSUmnUxXyWvAkGNsf05K2S308QmAEOJ04GrgjNDfmSOEUIMwlbCqe05WLedadZFSShkuplA5Lf4P0/+OKS3jiIJd1WUicYUuSnoD/y3mHg08oaLt1TR0i5Xk5qdhSUyirLiYP915Bx179w6PUhBCqIuTMSoQCJCXl0fLli2NjhKTTli4pZQrgZMd7DocWCSl9Ekp9wK7gN41yKfUM//bVeJwONB1HZPJhMfjIRAIAJXT/5u2a8/Vc14hqWUrPAE99FF5IdJXNb473Meth0ei+IKVfeB+KfD6A5QXl9D9osFcNGYMcfHxVFRUoGmaujgZw+x2O4MGDTI6RsyqycXJCUKIzaGulLTQtmbA/iP2yQ1t+w0hxM1CiA1CiA2BgKcGMZS6pOpiU2lpKXFxcZSXlwOVM+QSEhKw2+1IKfF6vVRUVNCud1+GTptB9z+NxCdFeJSJ32yh9YALwkMEvUGNuMwsEhs3xatpldPhfQFsDgdX3H47g2+4ASEEXq+X1NRUzGYzFosl6v3byqlJSkrinnvuMTpGzDrVDr6XgOlU3rJ1OvAMcMPvOYCUch4wDyApKVv6fKeYRKlzbDYbWVlZmM1mGjVqFJ5cUdVNYrFYcDgc4W09Bg+hS79z+ePk+4HQXd5NAkdqKs4jZj5abHYQ4qg1tm1xcWS1bIkeGnIYHx+PECI88aY2JnYIIXj//fejfh6l4Tilwi2lPFj1tRDiZaBq6a48oMURuzYPbVOUsCP7sqs+H+l/16YwmUxY09JITEv7zb5p2Y1P6pxVR6w6X23OxBNC0LZt21o7n1L/nVJXiRCiyREPrwCqRpx8CFwthLALIVoD7QE1gFVRYpgQgtGjRxsdQ/kdhJTy+DsI8TZwAZAJHAQeDj3uRmVXyT7gFillfmj/KVR2mwSBu6SU/zlRiJSUdNmhw92n+hyizmp1ccYZhZx22mlGR6lWQUEBP/5ox+v9bas0VqSl7aBfv9YxPZJjy5YtnHnmmUbHqFYgEGDfvn20b9/e6CjVKi4uxu/307jxyb0bMsK+ffv4qdFPBBICRkep1o5nd1BWXHbMt4YnLNy1ISkpS/r9242OUa3k5H08/PCaGo8pPXTo0FGPrVYracd4+38qPv30Uxo1akSPHj0icrxoeP755xkzZkzM3nsRYMqUKTz++OMROZbf7ycQCJCQkBAewZKcnFyjY5aWlvLGG29wxx13RCRjNGzYsIGioiIuuSR2p3G8+eabnHfeeTHdGOvYsSOHDh06ZuGOkdkHAr8/dluKgUARdru9RkX266+/ZvDgweHhbgBnnHEG7733Hp06dapxxvj4eBISEiL2iyAQCLB+/XrOOeeciBwPKn9RpaSkRCxjpFWtmRKJfH6/n0WLFpGenk6LFi1o2bIlL7zwAnfccQetWrWqUcZI/sKPBofDgdvtjumMdrudxMTEiGV0Op3s3LmT7t27R+R4cPzrMGqtkigLBoN8+OGHXHvttUcVbYCtW7cyduxYtmzZQiy88zmS2+3moYceMjpGnaXrOsXFxWRkZPDQQw+FW96lpaVGR1OiIDc3l1mzZtXa+VThjiIpJV9++SW33noreXnHHlyzZs0a/vznP/+mG0Wp2+Li4ujduzdjx45l48aNjBgxgn379tGtWzejoyn1QIx0ldRPUkpKS0uPW5SllOzZs+c3rXGl7rvwwgvZunUrl112GYsWLYrprgOlblEt7ijy+XysWbMGTdOOu18gEGDZsmW1lEqpLWazGYfDEZ74o5YnVSJFFe4oslgstGvX7oSTPcxmM6effnotpVIUpa5ThTuKzGYzTZo0OeFdqi0WC82aHXNJF0VRlN9QhTuKhBAMHjyYUaNGHXe/5557juzs7FpKpShKXacKdxQJIUhKSuJPf/oTN9xww29mDDZp0oRx48Zx3nnnnbBVrig1oWkar732mtExjuk///kPBw8ePPGOSpgq3FEkpUQIwdChQytvtxW6o3kVt9vNmWeeSefOnQ1KqDQEc+bMYfjw4UgpufTSS1m1apXRkQA4ePAgl156KVu2bGHSpEkxPRs01qjhgFFWXl7Oo48+yptvvvmb0SVlZWVMmjSJjIwMhg4dGl7KVFEixe12s2PHDh544AFat26N0+lk79699OvXz9Dbtkkpyc3NpXnz5owePRpN07jxxhspLS0lNTXVsFx1hWpxR4mu6+zbt4/x48fz/PPPEwwGj7mf2+3mmmuu4bnnnqO4uDjmZlAqddsPP/xAdnY2HTt2ZPr06TRp0oQffvghJmZwzp8/n7Fjx/Lhhx/yn//8hxEjRrB48WKjY9UJqsUdYVVdIvPmzWPp0qV89tlnJyzGuq7z5JNPkpOTw9ixY7ngggvC90RUlJro378/b7/9NhMnTuT222+nT58+vPvuu2RmZhqaSwjBfffdxyWXXMKCBQsYP348NpuNDRs2GJqrrlCFO4KqivYrr7zC/fffH74t18moqKhg0aJFrF69mo8++oiuXbuqwn2EYDAYvsmv8vvce++95Ofn89xzz3HvvfcipQxffzFSkyZNWLhwIe+88w6PPfYYmqbxzDPPMHHixGPeYEP5L1W4I0jXdV599VXGjRt3wtmS1cnNzeWcc85h7dq1al0LKpcx3bdvHzNnzmTSpEk0btyY5s2bGx2rTmnZsiUtWrTg9ddfx2w288ADD9C4cWMGDBhgaPG22+307NmTbt26hQv1W2+9xWuvvUbv3r0544wzDP/lEqvUr7UIevPNN7n55ptPuWhX8Xg8XHPNNaxcuTJCyequZcuWMWHCBGbMmMFzzz3HE088YXSkOkkIgc1mw2w289RTT7Fs2TKWLl164r9YCywWS/h2dtdddx2apjFv3jw+/vhjo6PFLFW4I2TBggXcddddR/VnCyFwOBwnbDUIIUhISDhq27Zt27j55pv57rvvopK3LiguLmbt2rUsWLCAl19+mcTERFq0aMHatWuNjlbnTZkyhT179sTkxcCxY8fy9NNPs3v3bj744AOj48QkVbhrSNM03n77bSZPnkxZWdlR32vVqhWzZ88+YX+d1WplyZIlpKSkHDVJZ/v27Vx55ZXs2LGjQY42SU5O5qyzzmLZsmWMGzeOyy67jBdffJFdu3ZRVlbWIF+TSLHb7XTp0oWcnJxqRzwZyW63M3bsWDZv3szKlStj/t+6trt0VOGuASklK1eu5Prrr6ekpCS8vXHjxvTv359vv/2WzMzMk/pHPfvss/n111+55557jmp95+bm0q9fP/Lz86PyHGKZxWKhdevWLF68mBUrVjBnzhzuv/9+9u/fz7XXXsvy5cvZs2eP0THrrAsvvJDmzZvz5ptvxmTxdjgcPPjggyxZsiTmuw1r+xeLKtw1oOs6f//734/q027atCnTpk3jk08+oVGjRid9rKrp8ZMmTeK22247agnQiooK5s6dG/Otjmg477zzWLZsGX6/n48//pg777yTKVOm8N5777FmzRreeOMNHnnkEbxer9FRj+nLL7/kvPPOi8klXYUQjBkzBiEE//d//2d0nGMSQvDMM8+wZs2amOzWqZKZmUnLli354YcfauV8qnDXgBCCVq1ahdcZsVqtTJ8+nVGjRpGcnPy73z4JIcjIyOC+++5j/Pjx4e12u73WR1IkJCQwatSomFnf4qabbjpqpl9cXBwPP/wwo0eP5txzz+XKK6/kiSeeCA91ixUrVqzgvPPOIy4uzugo1frLX/5Cy5YtefLJJ2PqtasihOCuu+7il19+4ZNPPonJjFWFe9OmTbVyPlW4a0AIwfTp05k8eTJt27Zl/fr1jB49+jcXGn/vf7S0tDRmzJjByy+/TJs2bZg9e3a4ZVRbqropYr0rok2bNgwaNIi33nqLjh070r17d7766isOHDhgdLQ6QwjBsGHDaNSoEW+88YbRcY7J4XAwfvx41qxZw9q1a2OyeNcmVbhrQAhBWloajz/+ONu2baNr165HtQqllAQCgZOaOXnkrcuEENjtdm644Qa2b9/O6NGjDV1XItYJIUhOTmbEiBFs2rSJzz77LGbf+scqs9lM+/btyc/P/81F9lhhs9l4/PHH+fDDD/n888+NjmMoVbhrSAiByWTCYrEcs0Xctm1bevTocdxjXHHFFcfsAz3yuGoiwsmbOXMmjz/+uNEx6pwBAwbQt29fHn/88d+sZBlLHnvsMbZu3cq4cePYvHmz0XEMoQp3FAkhaN269QlvSzZo0KDfdK8oihEuuOACRo8ezU033RSTI02g8lrSLbfcwrhx43jxxRcpKCgwOlKtU4U7yk6mtaxa1EosOeOMM7jpppv429/+ZnSUaiUkJNC1a1fmzp3LXXfdxc6dO42OVKtU4VYU5ShCCJo2bUpcXBy7d+82Os5xWSwW5s2bx6uvvsrGjRuNjlNrVOFWFOU3WrVqxXXXXceLL74YE2t3H09ycjITJkxg8eLF7Nixw+g4tUINVVAU5Zg6dOjA1KlTSUpKMjrKCTVt2pTJkycTHx9vdJRaoQq3oijVysjIMDrCSUtJSTE6Qq05YVeJEKKFEGKFEOInIcRWIcSdoe3pQogvhBA7Q5/TQtuFEOJFIcQuIcRmIcTZ0X4SiqIoDcnJ9HEHgXuklKcDfYHbhBCnA/cDy6WU7YHloccAlwLtQx83Ay9FPLWiKEoDdsLCLaXMl1J+H/q6AvgZaAYMB14P7fY6cHno6+HAG7LSt0CqEKJJxJMriqI0UL9rVIkQohXQHfgOyJZSVq01WgBkh75uBuw/4q/lhrb977FuFkJsEEJsCAQ8vzN23XEyix7put7g115QFOXknXThFkIkAu8Dd0kpj7oLrqysOr+r8kgp50kpe0ope1qt9fdKcFxc3FGzIs1mM/Hx8UdNuMnIyFA3R1UU5aSdVLUQQlipLNoLpZT/Dm0+WNUFEvp8KLQ9D2hxxF9vHtrWIFksFrKzs0lOTiYxMZG//vWvbNq0ibPOOguHw0FGRgYZGRlq5qSi1FFSStxuN36/H7/fj9vtjvo76BMOBxSVFWUB8LOU8tkjvvUh8BdgZujzB0dsnyCEWAT0AcqO6FJpcIQQPPjgg0yZMiX82GQysWHDhvA+sdja3rhxIzk5Oezfv581a9bQp08ftUKhohyDruu0atWK1NRUhBA89NBD5Ofnh9fpj4aT+UnsD1wPbBFCVK0S/jcqC/a7QogbgV+AkaHvfQJcBuwC3MCYiCauY6pbhySa/6iRcO2119KtWzf279/Pddddx/fff09aWprRsRQl5ixatIh7772X9PR0hBAUFRWxaNEirr322qid84SFW0q5GqjuffygY+wvgdt+f5TYvzhXFy4gRiLjs88+y7Rp08jIyODrr7/m0ksv5W9/+xtz5syJQMLYfx0jme/aa68lMzMz4s851l9DaDgZTzvtNL799ltGjhyJEIKnnnqKvn37RvX5i1h4cVNS0mS3btcZHaNaZrOfJk2cpKenGx2lWuXl5VgsFhwOR0SOlZCQgKZpBAIBEhISKC4urvHzP3ToEBkZGTH9biM39wAWS1OjYxyHRsB0AGuW1egg1dLdOonBRJKTk42OUq3i4mISExOx2WwRO17Vz0ckflYA/vnPf1JSUnLMRnNMFO6kpGzpdB40Oka1UlJ28fTTKxg7dqzRUaq1ZMkSsrOz6dOnDz6fD6vV+t/F8E06Bb5fKAkeROoSCzZA4Am4cZiTaZt8BkI3Y7NZ0TQNIQTBYDDcHx8MBrHZbOHPVccPBoOYzeaj9q3qGgoGg1itlcWlqqvoscce47bbbovZLhcpJSNH3sF7780yOkq17PZiuky9mI1/i92V8BqvaczcwrkMHz7c6CjV+sc//sGgQYNo166d0VGqlZ2dzcGDB49ZuNXVpnpG0zSKioqIS7KxrmQpWXGnETR52e38kXz/L1R4nVR4y2ga3xaP30OWtTk7435mb9EuJvSZgt8XQAiB0+kM30LN6XSSmZmJ01n5rqOsrIz09PRwy7y0tBSr1YrNZsNms2GxWHA6nTFboBUlGtatW4cQgl69ekX9XKpwG8TlcjF58uSI9RtX2VX6I++XPIcoExT4fsEq4wgGJQmkkWlvRipplLpdePQA6fbmoFv5z+5/E29JYvqX93J1lxtp6mhBUlISUkqCwSAZGRm4XC7sdjuFhYUkJiZSXl5OfHw8Pp+P1NRUpJRomobb7QYq7w9YVFREamqqGo2iNAg5OTmqcNd3uq7z888/R/y4jRynsWj5D6THpdO1UVfaZHViz4F9vL76bdp1SKFRQiI7N+djbhak/+nnYQ7GEW9JpbiiELsjiVfWvcQfOl/OGWlnYbFYsVqtHD58mKysLFwuF+kZGRQXFZGSkkJZWRkJCQmUl5djtVbum5CQgMlkwuVykZaWFpNDHRWlrlOFu56Jx8G8P7zCvZ9P5uOf/sNnOcuw6zay0xrjP2zHV5FJ+6zTOFC6F61U55tN39C8Szq7Cg7QLsNPqbsMr0+j7fmdSLVUzvBMTEzE7/fjq8hnx7YPqSivID2rKZltBqFpGnFxceF+bL/fD1SOTfd6vb+ZJaooSs2p5lA9YzKZ6JDejgcvnILJIthdtJsSTwmJcQm4/W7cARctslrQObMbyZ52tEo+nYodEuHXMePj10MH+GzLch5f+hhQecFO13WQGnk/fcZXi+5i4ycPsvHzZxCh69q6rh+13orJZDqpNVoURTk1qnDXM1arlYA/QL/m/Xh/1PtkJmZgMpsp9ZZhtVnwaX5+yt3K4YrDbP91G6s2fMNpji4My76eH5dvp1enFjgqzPzrP/8iEAwAUFFeyqFf1rPy41mUuu30unIBg29YSECrHFXi9/vDI1iqLlLquh7x1ramaVRUVDBp0iR27twZ7k9XlIZGFe56pqysjKysLIQUdG58OmvuWE1qQir5FQUUlB/kQFk++0ty+WbHN6zatorMtEZoUuPgoUKGnX0VCT+3J8VuISslnt37dyCl5OvFf2f+zBuIS23PoOv+jy69hxIkAYfDgdfrJT09HYfDER6NUlpais1mo7CwEE3TIvbctm7dSufOncMTgmJ5uJmiRJMq3PVM1cVCIQRer5dsR2NeueYVxp8/Hr8eYF/RPrblb8Ov+2nfrAOZ6ZkcKj1EibOYvMMHcHvdJBW3Ij5Z8OgHd/Hvj+az4+fNpDY+nT/e+AJdel+G1+vF4XDg9/uxWq3hBXYA4uPjcTgcaJpGUlJSxC5OaprG0qVLeemllygvL2fWrFmcc845rFy5MiLHV5S6RF2crGeqLggGAoHwJJyOjTrQYeBEejfrxUHXQZ547wnyCg+w5+Bu0uMysGGjqLAQnzuA1+lh3OXjuP2cCZQ5cnntuSdJO6Rxz/SXSWvUArfbTXx8PF6vF7vdHp6UU9XPXVXAqwq63W6PyPMSQtC6dWv27dvH2rVrad++PQcOHKBZs98s9a4o9Z4q3PWMrutYLBb8fv9RFwmlhH5t+hEXH8eQ04dgtVlxVjixmQV5e3bQKCUDnwRHeiPibHGkpaZRXl7C9tabGHjDH2jVvhtCCDRNw2Qy4Sw8TMBiJqDpZDRthslkChdvILxvpC5QmkwmunXrxrBhwygsLOTTTz9lyJAhtG3bNiLHV5S6RBXueiYuLi48rtrn8wH/XYnQbrfj9/tJikuicMNa4gIeKg4dJOnAL5SXlpB6ZneSu/XFuW8Xez0e9hccYsuqNfQ9+1wCeb9yYOc24uLjKU9M45dVy/k150cSGzXB0aYDiRmZNDvjDLLbdwxPg09JSYnoOO7OnTuzc+dOXnjhBZ566ineeuutiB1bUeoSVbjrGZfLRUZGBk6nk7i4OHRdx+fzIYTA4/EQ56lg78K5JKRl4I93kNKoMcnnnI8UAgF4cn9BlhVj14Mk7N3BOT43cvlSDuTtQ5gslAT8xGc1o8OgIbQddAlS09m+ZiUFOT/y6w8bqfB4ufxvD5GWmUlZ2Fk8WgAAIABJREFUWVlU7u5z55138uqrr0b0mEr9smbNGqxWK7179zY6SlSowl3PJCcnV65VEheH2+3GZDJhtVqRUpJgNbPp9rGktGlP2nkXYzJbQGr4836tXLhXSsxmCyntOqFLSUKLtrT709Vomo7PXY4lPhFN6gQCQTxlxegSNF3SvMtZNJGSsqIiPnzhWRaMv4UJr/2T1NTUqK0EWNWqr1rISlGg8iL2gAED6NevH4FAgEmTJvHVV1/Vuxm89evZKJSXl4fXf3Y4HJXjugMBvCVFfHfT5TiaNqPJpSPQK8rQy4qRFWUIrxPhcYLXhXSVoxUfJlh8GN1VQbCsCK2iBOH34y8tJlBSQrCinKDLRdDtIuB24XdW4HNWds8Mv+senAX5zP7raPbv3h3R4YBH+vTTTxk2bFhUjq3UXTt37iQrK4trrrmGBx98kKysLHbt2mV0rIhThbueiYuL+3/2zjs+qir9/+9zpyaTmRRClw6KgFJl7QUUddfG7irY145tXQUEf2tdtwgK2MWGuigKVlx1LevqV3HXgqAUhSU0qSGkTDJzp9xyfn/MzDVR0AAJMwnn/XrNa+6ce+fcZ24yn3nuc55zHqLRKEIIDMPAsixcLhcV/5hHSZdedD5xNMb2LRDXEXEdLa4j4jFEIo4WjyFiUUQstY9YBKlHsPQ6zJiOqUcwYxHsWFq0IxHMSIRENEIyGiERjWLE4hw+9hzK165m+Qf/brbp7pkfJIWiPhdffDGHHXYYTz/9NOvWrePUU0/lrbfeyrZZTY4S7lZGfn4+NTU1AMRisVSWRyJG3f+WUNR3AOb2rRDXU8KdiKIldFxJHVdCR0vGEAkdkdAhFkXGdWQ8itR1ZCyKFdMx9ShmNIoRrcOIRkjqEcxolGQkSjJaR0KvQwO6HzSQz+bPJ1xRkd0Lotgn+OKLLxgzZgznnnsu99xzDwcffDCff/45kydP5ve//322zWtylHC3MsLhMO3bt0dKSUFBAW63my0fvgOJJLZlYMWiyFhKmFMedxRXQsediKLFo4hEWqzjMaSuY0d17FgUK1aHrafE24h9HyYxohESeoREtI5kNEI8EiUWqaVD797UVVURqa5uls8ZCoW46qqrmDFjRrP0r8htTNOkurqaK6+8koEDB/L4449z9913c+mll7Jo0SKEEASDQWeN7NaGGpxsZRQWFlJeXk4wGCQajeJyucj3eajzurCTcWwTpKaBBlIToAk0l4YQIG0QtgRbIm2JbVnYdmoA0rJtLBtMS2JISdKWmJbEtG0MGwzbxki/Tto2pi2wTQOaaaEpTdMIhULU1tY2S/+K3GT58uVs3LiRLVu28Pzzz3PHHXc4a9pnBLpLly5ceumlDdpaG0q4WxmxWIxgMAjgzFqMx+PYiXjKc9bApbmwNbBdAlvTsDWBhsCWacG2bSxbYlvSEW3TlimBtlLbppUS7KRlp8VaYlhg2DIt4jaWikErmojKykruvfde3G43mqax33778c477+z0+NYq2BmUcGeJ6667jmnTpjV5vy6Xy6lOkxmYdLs81K36lrxgISIvD9OlIVwpr1toAoQLAdikRNe0wbItDEumHrbEkDaGCUnLwpQpwU5asG39WvLbdcDQXBgWKU/chqRpNfvg4ZAhQ1iwYAGLFi1iyJAhzXouxd6l/rLAN9xwA5s2beKqq67igAMOoFOn3Cvm/N1337F06VJuvPHGvXI+JdxZYvHixQwaNKjJ+83kTQshnLW0faVtweOl9tuliF59kD4fUtOQLoEUkmS0DuHLB48HyzQxkiaJuE7NiuUkTZO4KUnYkrhpEbdsEhYE+wzA8nrx5OcTj+qYQmBYkoSVCpls/m494YoKRDNWdC8pKUFKSVVVVbOdQ7F77InHW15eztatW7nwwgsBeOCBBxg0aJBzJ5mL6LpOOBymY8eOe+V8SrhbGZllXevq6ggEApimCQcPp81hIyj/50tYsShF3Xth5edjaQKXkFjlmxBuH3i9JOvCJLZvI2ml4tgJy8a0JElTYlgWpikxLJtNS74gYYK7tD0Jw4RAAXj9JKWgZnsV61et4tiLL6NkL/0jK3KLXV2jxrIs5s6di23bfPXVV0SjURYvXtzqQx67ixLuVkZ+fj7hcBiXy0U8HgdSXngskcS0JQk9Sl35ZvLbtiNWU4VL2qn0wGQCm9RApC3Tgm2DYUmS6UFH05aYtsSS3w9YRjdvImFJYpaNr01bookkleUV2Db0POhg8goKmvXznnrqqcydO5fDDz+c/Pz8Zj2XonmYM2cOH330EYMGpRYyu+qqq+jZs2e2zcpplHC3MpLJJAUFBcRiMbxeL5ZlYVkWeZ07Y7o8YBqIujqk14usrMAlbYTQUjPeAUumBiaNTKzaliTTGSOGDYa005klpGLhUmKRGsRMxOPEIjFsIfAVhIgnEti23azTjYcNG8bkyZNJJpNKuFsQyWSSTZs2ceaZZ3LBBRdw7bXX0q9fP+VhNxIl3K2QzG1q/dvVnuddxYa3/4G+aR2WHsdyhxGGhUtKhABE6ngLmU4BpEG2SOo5lS1i2GCZ33vhScvGRhCvjRJLJDBNm6GjT+Loc8/J0hVQ5DoTJkxg48aNfPrpp2ia1urWEmlulHC3MrxeL7FYDE3TUvFtvi/eqxW1xfxuLVJaWBEdzbJxCYlAQmYwE7CldIQ743kn0qKdtFMDlYZtY8iUoFs2mIBFKoTS94ijcaGR78/bK1/I3/zmN8ybN4/LL7+82c+laBruv//+bJvQolE/c62MeDxOKBQCUuuWuN3uVF62ZdH9gitJWIK4aROLJ4kZNjEz/TAs4qadyhwx0s+WJGFJ4pZN0rRJpJ9NU5JMx79NO5UymDRM4vE4Lr8PzefhpMuvoLa2ttkWmarPuHHjnEkYCsW+gPK4WxnBYJDt27fj9/uJRCIIIfB4PLhcLnr84gg+yy8gWRdGE+DWBJotEEJmVnXFkimP2yblcVs2mOmZkqm8bkjakLQtEhYYVjqkYkmk28PhZ45l5eKv6DZgAIFAALdb/YspFE3Nz3rcQoguQogPhBDfCCGWCyGuS7ffLoTYJIT4Kv34Zb333CSEKBNCrBRCnNicH0DRkEgkQmFhIVJK/H4/Ho8Hy7KwbRvdMBhx31NOPrZu2eimTcyw0Y30tmURM616HrhN3LBImlZq0k06RTBpZqa3WyRsMC2bvocfyZcffMA1jz6G1+slEok4pcyam2HDhrFo0aK9ci6FIts0JlRiAuOllP2AQ4GrhRD90vtmSCkHpR9vAaT3jQX6AycBDwshmm8WhqIBXq+XeDzu1HzMZHUIIfB6vfjatafDESPSgpwKk+imRcw0iaWFOhMeiZvfT7pJPdJhEyvlYSes1LGGbeELFRKLJ/nFL39Jh27dsCwLj8ezV7IEhBDcfPPN3HPPPc1+LoUiF/hZ4ZZSbpFSLkpv1wHfAj9VWvt04AUpZUJKuRYoA1pn/aAcxO/3U1dXhxCCZDKJbdu4XK7UYlP5+biLSug0/HASpiRmfO9Zx0yZejZsJ/adsKy0WJN+fC/WCVumQyU2tnDTf8TxxJJJDj/tDIKhEJZlEQgE9mp6l8pMUGSLvZ3GuEv/6UKI7sBg4LN00zVCiCVCiFlCiOJ0W2dgQ723beSnhV7RhNTW1tK2bVts204JtduNYRgYhkF1dTWB/Hz6j72Q/Y4bRcxOedhRwyKatNANKxU2SYdKomkBjxsWcdMkYVgkMgOXZsrztlweDjjyGKq2VzLk+BPoPGAANTU1eDwetm/fvlcGJwG6du3Kk08+uVfOpVD8kF2dKbqnNFq4hRAFwMvAH6SUtcAjQC9gELAF2KUVk4QQlwshFgohFhpGbFfeqvgJQqEQVVVVaJqGrusYhoHH48Hj8VBUVISu67g8Hrqe8EtMT14qrm1KYpZEN1Nx75gp04/vs07ipiRuSWKZGLctwe+nXa/eSLcLvTZM5759CRUWUlRUhGEYlJSUNFvNyR+iaZqzGqJC0dpp1JC/EMJDSrSfk1K+AiClLK+3/3HgjfTLTUCXem/fL93WACnlY8BjAMFge5lI7I75ih+i6zqhdKgiU+U9k8+dTCbx+/1YlsXw0WcSq6rkjdtvpuFd3vf53Knp7zhT3E2ZngZv20jhoiBUDF4fW9au4/K776b/UUcRi8UQQuB2u6mrqyMUCu018VYo9hUak1UigCeBb6WU0+u11189aDSwLL39OjBWCOETQvQA+gCfN53JLRvDMIhEIliWRTQaJZlMNmn/eXl51NbWIqUkHo9jmqYzMy0QCBCPx5FSUltbyzEXX8Gom2/HdHlS3nQ6nztm2iSFi1i9trhlk5QacdMiYUoSCPRYnK3rvuP82+6gzy9+kVqJ0OfD7/djmuZej3ErFPsKjfG4jwDOB5YKIb5Kt/0/4GwhxCBSS1ysA64AkFIuF0LMA74hlZFytZRy7wQ6WwBPP/0006dPZ8OGDRx55JGcdtpp3HnnnU3Wv8vlwu1243a7nbhbZrv+Prfbjdfn47Bzf0fvoYfy3iMPUrs9VR9SAoedcy4fP/csUoJtS9x5+XQ56CC+/e9/sSVIBCUdO3Du//t/lHTpgtvjcfrNnNPtdivhVrR6lixZwrJlyygvL2fBggUMGTKk2dfN+VnhllIuAHb07dtp6WQp5V+Av+yBXa2SiooKtmzZwnPPPccll1zCSy+9xOzZs1mzZk2TrYamaRqlpaU73V9YWAhAIBAAoF27drRr147+Rx/9o2NHXXTpbtvh8Xh2+70KRUvi6quvpnfv3mzYsIErr7ySF198kb59+zbrOVX+1F7E7/eTl5dHTU0N999/P7quY9t2Ti8Qr1Aods5TTz3F7373OyZMmMCwYcN49tlnufvuu5t94lmOzEeW+Hy5W8XE660lHo83SaUVn8/HmDFjmD9/PqNGjeKCCy7A5XLtcd+6rhOJRHK6GoxhGNTU1Oz11Kldw8rp/0WfrwaX4cJXlbsZNN6IF13Xc/p/MR6PU1tbu8c2Hn/88YwbN44TTjiB2267jalTp3LOOedQU1Ozxzb+1PdE5MKXqKSkRE6YMCHbZuyUaDRKRUUF3bt3z7YpO2XLli34fD5KSkqybcpOWblyJT179szpMMrXX3/NwIEDs23GTjEMgwUL1lBdfUC2Tdkpfn8Vgwcn9loZr91h7dq1tGvXzgkZ5iL33HMPVVVVOx4kyhTlzOajXbt2MpdZtWqVfOyxx7Jtxk/y6quvyv/85z/ZNuMnufPOO2VVVVW2zdgptm3La665Jttm/CSVlZVy6NC/yNSSYLn56NBhgXzttdeyfal+kpkzZ8pVq1Zl24yfJK2LO9TMVhnjvuOOO9iwYcPPH6hQKBQtkFYp3GvWrHHqLSoUCkVro1UKt0KhUOxtVqxYwYoVK/bKuXIkq0ShUChaJrZtc+mll9K2bVsgNV/jiSeeaNbVKpVwKxQKxR4QiUT45ptveOWVVwD49a9/TSQScUoINgcqVKJQKBR7wK233srUqVN55513ePfdd5k6dSq33nprs55TedwKhUKxB0ybNo2ePXsyePBghBAsWrSINWvWNOs5lcetyDkyuarjxo1zthWKXEXTNGbNmkXv3r3p1asXs2bNavZqTEq4FTnH9OnT6du3L5deein7778/M2fOzLZJCsVOEUIwcuRI+vXrR//+/Rk5cmSzr4qphFuRU2zbto1oNMrcuXPZvn07zz77LFVVVTm97oVCsbdRwq3IKUzTREqJx+Nh/fr1zJ49u0EVH4VCoYRbkWN06tQJn8/Hb3/7Ww499FAef/xxCgoKfnKNcYViX0MJtyLnmDhxIl9//TVTp06lrq4O27Z5/fXXm32N4+Zg8+bN1NXVZdsMRStDCbci53C5XHi9Xp577jm8Xi/jx4+nrKyMOXPmZNu0XeaRRx5h4cKF2TZD0cpQwq1oEdxwww0kk0meeOKJbJuiUGQdJdyKFoGmaZx33nmYpsmLL76IZan604p9FyXcu8gnn3yS0xNCkskkX375ZbbNaBa8Xi9XXHEFq1ev5vXXX8/pv4PixxiGwdtvv+08DMPItkktFjXlfReYM2cOq1ev5q233mLUqFEcc8wx2TbpR8yYMYNEIsErr7zC5ZdfTrdu3bJtUpMihGDy5Mk8+OCDPPXUU1x88cXZNknRSCzLauBULFiwYIc/vmeffTYDBgzYm6a1OJRw7wIDBw7k1FNP5aGHHuKTTz7hqKOOyrZJDpkvwMiRI+nevTu///3v+e677+jSpctu97l48WKaqhboWWed1ST9ZBg3bhyzZ8/m6aef5sILL2z2mWqKPcfv9/PHP/4RSP2//uc//9lhfv7DDz/Mt99+26Ctc+fO/P3vf//RsUKInf7tpZREo1Fuvvlmpk+f/pPH7imZ79/e+j9slcLdvn17ysvL6d27d5NeyP79+zNq1ChWr15NLBbjxRdfbLK+95SCggKmTp1Kr169GDFiBJs3b+aLL76goKBgt/scMmQIr7/+epPY5/F4uOeee5qkLwC3283555/PQw89xGuvvcZpp52Gy+Vqsv6bipKSEqqqqrBtu9nXr2hJCCE44ogjdrhv+PDhPxL0DRs2MHTo0B8dO3ny5B22h0Ihbr75Zr766ivuueceevbsyRNPPMHxxx/fNB/gB6xatYr//ve/PPzww83S/w9plcI9depUBg8ezJdfftmkwv3hhx8yd+5c/vznP1NaWspNN93UZH3vKa+99hqQuv38xz/+wbhx45g8eTJHHnlkli1rPtxuN9dddx1TpkzhpZdeYsyYMdk26Udcf/31jBw5kuOPP57CwsJsm9MiyMvL+1Fbv379WLx48Y/aZ8yYwZtvvvmj9s6dO7N8+XLOPPNMYrEY9913H0uXLuWoo47C5/M1uc22bWNZFh6Pp8n73hGtUribC9M0uf322xkwYACHHHJIts3ZIVVVVdx3332cfvrp9O7dO9vm7BVuvPFGHn/8cR5//HEuu+yybJuj2Itcf/31O2xfsWIFH374IYZhYBgGbre7VWUiKeHeBY4//nh69OhBz549czameu6557J582a6du2abVP2GkIIfve73zF79mzmzJnD2LFjVVhiH6dv377069eP+fPnc8wxx3DOOefwxBNPNIu3nQ3Uf/cu0qtXr5wVbUiFD/Yl0c7g9Xq56KKL2LRpU85Mj6+pqeHTTz8lHA6zcOFCysrKsm3SPsVjjz3Ge++9x/PPP8/q1aubLb6dDZRwK1oNmqYxceJE1qxZw7PPPpttc/j888+ZMGEC27Zt4+9//zu33XZbtk3ap3C5XIRCIR588EHcbndOO1y7ihJuRavjuuuuw7KsrE6Pj0QivPbaazz55JP06dOHu+66i6FDh/LOO+9kzSZF6+FnhVsI4RdCfC6E+FoIsVwIcUe6vYcQ4jMhRJkQYq4Qwptu96Vfl6X3d2/ej6BQNMTlcnHeeedhGAYvvfRSVgal8vPzGTVqFHPnzmXOnDls3ryZZcuW5VTuv6Ll0hiPOwGMkFIOBAYBJwkhDgWmADOklL2BauCS9PGXANXp9hnp4xSKvYrH42HcuHGUlZUxf/78vT49XtM0unXrxsKFC3n11Vf529/+Rv/+/cnPz9+rdihaJz8r3DJFJP3Sk35IYATwUrr9GeCM9Pbp6dek948UrSm4pGgxZKbH19bWZuX8gwcP5vXXX6e4uJjnnnuO8ePHZ8UOReujUTFuIYRLCPEVsA14D1gN1EgpM9ObNgKd09udgQ0A6f1hoE1TGq1Q7Aq/+93vsjowNWbMmFaThqbIDRol3FJKS0o5CNgPGA703dMTCyEuF0IsFEIsjMVie9qdQqFQ7DPsUlaJlLIG+AA4DCgSQmQm8OwHbEpvbwK6AKT3FwKVO+jrMSnlMCnlsB1NcVUoFArFjmlMVklbIURRejsPOAH4lpSA/zZ92IXA/PT26+nXpPf/W6qFkxUKhaLJaMyU947AM0IIFymhnyelfEMI8Q3wghDiz8Bi4Mn08U8Cs4UQZUAVMLYZ7FYoFIqcoWfPnvztb3/ba+f7WeGWUi4BBu+gfQ2pePcP2+PAmU1inUKhULQAvF4v7du332vnUzMnFQqFooXR6oT77bff5uSTT2b16tX86le/4plnnvn5NykUCkULolUJt2EYrFmzhrPOOotu3bpx3XXXsWrVKuLxeLZNUygUiiYjJ9bjtm2bTz75ZI/72bRpE//5z3+48sorCQaDFBQUEIvFePLJJxk0aNBu97t161a2bNnSJDY2F+vWraO6ujonljPdGVVVVXzxxRcEAoFsm7JTdF3P6b9zJBLB76+iQ4fctbG4eCXr1tXl9HXcsmULS5Ysoby8PNum7JSf+i7nhHBLKams/FGq9y7j9/s566yzqKysZPLkyVRVVTmV2Pek/3A4TCwWaxIbm4toNMpTT2nU1eWujV27JvnFL6pz+g6outrk/PNz9xq63TodT/qCvBtfybYpO8W7NkQ0elZOf1/i8Tg319xM3J27/4sJmdjpvpwQbpfLxWmnnZZtM3ZKWVkZlmXltI22bbNtW3u2bj0s26bslDZtljBq1CiKi4uzbcoOkVIye/Z7rF2bu39nn6+KUId7WHva2mybslM6fNKB/tv75/T3ZcuWLWw+ejPh3uFsm7JTClw7L/TdqmLcCoVCsS+ghFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4s4SUkkQiwWOPPcZHH31EIrHzdQkUCoWiPkq4s0QkEqFTp05YlsXLL7/MgAEDsm2SQqFoIeTEIlP7Ii+++CK33347Q4YM4eSTTyYUCvHmm2/yq1/9KtumKRSKHCcnPe7Fixfz0ksvZduMZqVt27ZUVFTw3nvvsWLFCrZv306bNm2ybZZCoWgB5JxwDx8+nAceeIBVq1bRo0cPIpFItk1qFo477jgeffRRqqurefbZZ/n000859NBDs22WQqFoAeSUcC9atIiDDjqIKVOmMHDgQILBIB9//HG2zWoWAoEA8+bNY/78+Vx//fUsWrQo2yYpFK2eWCzG4sWLs23GHpNTMe7169fTo0cP6urq+Prrr4lEIpxzzjmMGzfOOaZLly5cddVVWbSyaUgmk/zrX/9i1qxZDB06NNvmtDo2btzIV199xSmnnJJtUxQ5wqxZsygrK8Pv97NmzRoYmW2Ldp+cEu7Ro0czYcIEwuEwBxxwAOFwmOeff578/HznmI0bN3Lsscc2eN8VV1zBmDFjGrQJIRBC7A2zd4tkMsmCBQu48847s21Kq+Oiiy4ikUgwcOBA7r77bl5++WVKS0uzbZZiD5BSIqXcoz7mzZvHDTfcwKBBg3jooYeayLLskFPCDbBkyRI+/fRTVq5cyfr16wkEAg0EeEclxB555JEfea333XcfHTp0cF673W569uzZvMbvAhs2bKBz587ZNqPF8N133zW6VuXChQt5+umn6dixI+vWrWPt2rW0adMmp3/IWyNSSsrKyvZYcCFVsPu6667boz5Wr17N5s2bOemkk+jVq9ce25RNck64A4EAI0eOZOTIHd/HuFwuCgoa1mKbOHEiEydObNB24403Nqjg7PP5OOKIIxocc8ABB2RtQPDcc8/lyy+/zMq5WyKzZs1i7drG1VncsmUL9913HyeeeCJnnXUWL7zwAsOGDWtmCxU/xLIspkyZgmEYe9xXhw4d9jg2fdJJJzF27FiOPfZY7r33XhUqyUWmTp3a4HU0GuWFF15o0Pb+++/z+OOPN2gbP348/fr1a3b7FLvG7bff3uhjBw8eTM+ePWnXrh0XX3wxCxYsUN52FnC73TzxxBPZNsPh+uuvZ82aNTz88MNNcheQTVqtcP+QQCDAJZdc0qCturq6gVcO8Ne//pVly5Zx0kkn8de//rVZbJk0aRL33nuvEpNm4pVXXuHbb7/lww8/5J///Cft2rXLtkmKHODEE0/EMAy2bdvGG2+8kW1z9oh9Rrh3RHFxMcXFxQ3ann76aaSUzSqqmzdvpnPnzkq4m4kePXrQvXt3TjrpJDQtpzJeFVnG4/G0irGlfVq4d0Rzf9G/+uorunfv/qMfDEXTkutZRQrFnvCzKiWE8AshPhdCfC2EWC6EuCPd/rQQYq0Q4qv0Y1C6XQgh7hdClAkhlgghhjT3h2hJfP755+y///5qertCodhtGuNxJ4ARUsqIEMIDLBBC/DO9b6KU8oeLipwM9Ek/fgE8kn5WAOeff362TVAoFC2cnxVumRp+zSwY4kk/fmpI9nTg7+n3fSqEKBJCdJRSbtlja1sBeXl52TZBoVC0cBoV0BVCuIQQXwHbgPeklJ+ld/0lHQ6ZIYTwpds6AxvqvX1juk2hUCgUTUCjhFtKaUkpBwH7AcOFEAOAm4C+wCFACTBpV04shLhcCLFQCLEwFovtotkKhUKx77JLKRRSyhrgA+AkKeUWmSIBPAUMTx+2CehS7237pdt+2NdjUsphUsphKnygUCgUjacxWSVthRBF6e084ARghRCiY7pNAGcAy9JveR24IJ1dcigQVvFthUKhaDoak1XSEXhGCOEiJfTzpJRvCCH+LYRoCwjgKyCz9upbwC+BMkAHLmp6sxUKhWLfpTFZJUuAwTtoH7GT4yVw9Z6bplAoFIodoeYDKxQKRQtDCbdCoVC0MJRwKxQKRQtDCbdCoVC0MJRwKxQKRQsjJ5Z1NU2TRx99NNtm7JRwOMzGjRtz2sY1a9bQtWs+paVLsm3KTgmF1jF79mx8Pt/PH5wlTLOKAQNy9+/scsUpXFvIgEcHZNuUnZK/JZ//xv/L1q1bs23KTlm2bBm9wr1IFiazbcpO+c78bqf7ckK4XS7XTmtM5gIbN25E07ScttHtdnPooSUcdNBB2TZlpzz55DruvPMoDCOYbVN2ygknLOKNcU+HAAAgAElEQVTVV3P371xbW8vLL2/jopE7nh4hkUjsVDEQhNMGoAmX09acLFmyhJqaGo4++ugm6c+yLFwu14+294RwOMy04dPYb7/99riv5uIw7bCd7ssJ4RZC0Lt372yb8ZOsWrUqp21ctmwZ7du3z2kbA4EAdXXdSSRytYiERNO8TXoNt2zZQkFBAcFg0/xYVVVVEQgE6NGjB5WVlanGPIPaaA2FhUV8ve0DPtHfoC5ejW0KAloJ0UQUPRHlkp534Pfk0bFgP4oDbQiHw3g8HiKRCKWlpWzfvp1QKISu65SWlhKNRnG5XBiG4QhmNBp19hUWFlJRUUFpaSnwfRGS8vJyXC5Xk1zHzZs3M2nSJO6//35qa2uZO3cuw4YNY9SoUXtUKKOwsJD99tuPLl26EIlEyMvLIxqN4vF4cLvdxGIxgsGgsy+RSCCEwOPxoOs6oVCIuro68vLyMAwDn8/n1LH0er1EIhEKCgqIRqPk5+djmia2bePz+airqyMYDKLrOn6/H9u2MU0Tt9uN3+93PtdPFXXJCeFWKForDz/8MCNGjOC4445r0n5jZoSlsQ+JmGE21i6nMr4Vf1UQYbtpp/Wgc95BfLP9C9yuIAOCg9AKXHxd9V/eKJvLid3OZGS3U2jv74yUEr/fTyKRcEQkI062bTtilBGRzLFCCHRdx+v1Os9er7dJPyPAF198wcEHH8yWLVuYMmUKF154Ie+++y4nnHBCk1Q4ikQiFBYWEolEKC4uxjRNDMOgpKSE6upqiouLHRGWUpJIJCgtLaW6upqSkhJ0XSc/P59YLIYQAtu2nT4rKyspLCwkHA7jdrvRNI2qqiqKioqorKwkFApRW1uLEAKfz0csFsPn8zXqcynhVihaIJrQuP/zhzCsBPuF9qNncU98rgBP/3s2oaCX/bt1pHJ9lMrEcgYOqKHE2w7DsumY14vlW5eA6aatrz0n7n8agCM6mW1N07BtG03TME2zwbkzZeEyYq5pWrOViTv99NM55phjeO+991i1ahUff/wxb731VpOVGMzLyyMSieB2u6mtrcXlcqFpGuFwmGuvvZZhw4ZxxRVXoOu685lramrw+/3U1tbidruJx+O43Skp1TTN+XErLCwkmUwSCASwbZtnnnmG999/n0cffZTCwkIMw3D2SSkbLdqghFuhaJH4XPn8+ZCHOWPu6WzzWpS5q8gX+ZSIbuTHfejrCti+KcaKrdvw5S/FX1lCdcl2Au4S3JqXcG2ceDLJofsdjVt6CAQCRKNRhBCpW3+PJBmP4nG7QPixpcTlcpFIJAgEApimicfjIRqNEgwGm7W+57x581ixYgUPPPAA06dPp2PHjk3WdzQapbi4mNraWgoKCrAsC8MwCIVCvPXWW8yfPx/LsrjgggsoKioikUgQCoUcjzsSieD1eonH4wCOx11UVERNTQ2FhYVs2rSJ999/n0mTJpFIJHjqqaeoqakhFAoRiaRq1GTEPi8vT3ncCkVrJR6P07Ntd+adNY+zXxzDl+u+xGO6aeMtQSbBTtr87ey7+HTpf+ka6so7y9+hc5di1n1XgS9YwJaKSuJJk7+991duO+UOotEooVCIRCKBR8Z59pah2GYchOTXExeTV9QB27YpKioiGo3idrsJh8Pk5+dTXV1Nfn4++fn5zfJZ27dvTzgcJhAI0LVr1ybt2+PxYJomLpcLy7JSg7r1Ck3HYjEmTZrELbfcwrvvvsvgwYOdeLRpmmiahpTSuevIhD2klHi9XpYsWcJJJ51EOBwGUkkELpfLCSt5PB7g+7sc5XErFK2Y/Px8Kioq6BzoxCO/nsm1865lW/U2erfpg0u6sJMWL34yl4ArQCyu43V7KP/cTd9uw9i8bTW1bbZRanTh+XfmMqr7SfzyF7+koqICvxe+fOc+whGDdl2H0WfQ8QhPPolEApfLRVVVlTM4WVJSQkVFBW3atGlWj7s5cbvdGIaBpmkYhuF8jlmzZjleNEAymeScc87h/PPPZ/To0XTv3p0pU6YgpcSyLEeAPR4Pl112GeXl5cyZM4cXXnjBEW1IZcU89thjXHbZZdi2jdvtdsYRdiVbRgm3QtEC0XWdgoICAIb5h/H8+XM4/fEzWLFtJUF3kDyRR0IkqEhsZ2vFFqq2V/GrQ06h1NsJGxcHFwzj3a//SYnPjU/zUFdXR3hbGf94/V62rV9Iu85DOOqsaRS1644mBC6XC9u2adOmjeNxV1ZWEgwGm93jbk5isRglJSXU1tYSCoUwTZNkMsmcOXNIJhvmeG/evJkpU6bw5ptvEggEWLhwIZZlNThG0zTefPNNpJQsXrz4R+eTUvLYY48xduxYioqKiEQiCCHw+/0kk0nH4/851MxJhaIFkvHOpJRoQqN3SR/eH/c+vTvsT228lpVb/8fC9YtYsmEJwYIQh/Q/hJgR47vy9Qi3Ru2mJMf2OpmCfDe3PHsNazeX8V3ZMlYs/ZKjTruJ31wzmzYdeiJI3cZnBCWTFiiEwO12Y9s2LpfrR95iS/HAMz88Pp+PqqoqdF0HwDAM55jp06c3mMOxbNkyPvvssx+JNqRi3IsWLWog2u3bt+eZZ55xXrvdbtq2bYthGBQWFhIIBIDUXZQKlSgUrRhN04jH44i0N2wYBh0KO/D2FW/w5tI3eWPpW/x3+X/YWlmOnoxSabtIuJLYSRtM+HblN4w65ESOLv0t7Q4TXDv9bA6ocDFo2Ej2H3oy+QWFjkhnsh6EECSTSTweD5Zl4fV6nUHKHwpO5vY/18mkAdbW1lJSUuJ43JnQB6RE/NVXX6W4uHiHYv1zjBw5ssEPgWmabN++naKiIsLhsONxq3RAhaKVE4/HndBELBYjEAhQU1NDMBhkRO+R/OaQ3/L2orfZWreVZDxJ0F9ATI+RiCVBCszjTLq278KI4SMoKS4htLWEDf/5mhN+fTWl7TpRWVlJIBDAMAzcbrcj0pn8ZL/fT01NjTNxJxgMNksed3OTSQf0eFLhoswAYX2BzsvLY3cLml988cVMnTqVd99912lzuVyEQqEG6YCQmrijPG6FohWTn59PbW0tkPrCZ2bjZWK20WiUEwefSLimhnyvl1hNJd898yDxsm/xd+xM3+vvJOnx4AK2b93C1sWb8QXa0aVrb2qrqigOBkkaBmX/eIUvX5yN8Pjpe9pZ9Dp2BMVt2mBZFqWlpUQiEdq0aePkMbc0EokEBQUF6LpOXl6eM4vR7/c7xySTSXw+n5N5siucfvrpAA0GOqWURKNRAoGA0+71eht45T9Hy7zaCsU+TjQadWbzxWIxCgoKnLzhzHP54s8QG9ey7s15ePICHHzHDNA8CJeGtX0r394yGUto2HEb+9ultDt4COteepoNH32AXldLQZceHHDG2Zz6p2nYpsE3/36PZy86G29hMSN+fwMFHTrRrU8fwuEweXl5zmBpS6J+/F5K6YR4XnvtNTp06EBdXR3r169n0aJFP5qI1BjKysoYOnQoZWVlzvlGjx7tjAnUTz3clXGBFi3cf//73zn//PNbzECIQtFU+Hy+BjHuZDKJ3+/HMAz8fj/bP3qH9dNuocvYS+l/418RAqIrvyXzVZFCMOCW6UgB8a1bKP50AclkEpfQGHbNjeD2kIjpJGM6euU2bCnpNvQQug4dTriqipdv/SOhLl258J57yQuFWqzH7fF4SCQSaJrmTOUXQjTwkB944AEeeOCB3ep//PjxbN68mWnTpgGpsYk//OEP+Hw+bNvG6/U6Pxa7cg1bZFbJ/PnzGT16NKZp8utf/5rXXnst2ya1OnRd57bbbsu2GYqdkMnmqD8BxLZthBBUfPg2q+69ne7nXEGo5/4kNq0jsXE9Ih5FxKMQj0IsSmz1CvRV32LW1dBu+GF0OvIYCrv2IFaxleimDcQrt2NGo5gxHUPXSdRFiNeGcblcHHP+BdRu2MATV13ppLG1RDJplZl4c0ZIp02btttx7R+SEW1I/d1uueUWwuHUdYxEIsRiMWcdlMZexxb3M2kYBv/73/8488wzOf744/H7/axcuRLDMBqMBCv2DMMwWLBgQbbNUOyETFaHEMKZyafrOqKynPLXnqXrGefiKynFDleioSFEekYgIAAbCXZqG1uS1CNYUmLaYNkSW0psmdo2M8+2xMLGsMDry+PIc85j/n0zePDii5gw5/nsXpDdJDN93e/3U11djZSShx56iHvuuadBaKS4uBiXy9UgLbK6unqHfRYWFuLxeJwfUtu2nWOllDzxxBO4XC5uu+02J1PFsqxdSgdscR73mjVrqKmpYcSIEdx8883O8oqZGJJCsS+QiWlnVp4Lh8MUFRaydeliQqUdCBS1wY7UQFxHJCJoCR1XIoqW0FOPjPcdi0I8ArEoth5F6hEsPYKpRzCjdSSjEYxIHclIHcloHYm61HM8UottGpxwyaVUb9xI3bZt2b4ku0VdXR1FRUUkk0mCwSCPPvoof/rTnxpMvunXrx+LFi1i48aNrF69mm3btrFw4UIOOeSQH/V34IEH8u9//5uNGzeydOlSNm7cyOeff87AgQOdYyzL4uGHH2bq1Kls3ryZaDQKpLz/xnrcLU64DzjgAEpKSrj66quZNGkSp556Kp988kmLnLWlUOwumQWJfD4flmWl0trCNdT839toeX6MumqI68iYDvGUUGsJHXciiiuhI+I6JHTnGEuPImM6diyKHdOxdR1T1zH1CIYeJZl5jkZJRiMkoxES0QhGPIknUMCHL7RMjzsvLw9d13G73ZSXl3Prrbc22N+/f39mzpxJSUmJEwuvra2lbdu2TJs2jT59+jjH+nw+JkyYQJ8+fUgkEgSDQQzDoH379jz55JMMHz68Qd/Tpk0jGo06FaFafTrg2LFjOfTQQ7npppuc2/k//vGPQGrAsqmWfMx1bNsmkUhwww03MGrUqGybo9iLZEIjkPrCJ5NJfJogvuYb2ow8BTsWxdI0XJpIuWcauDQXmga2BGFLsCXSlkjbRloS2wbLtrFtMG2JYUsMaWNYqRCKadupNltiWultCR26d8Noonjw3sYwDPLz84nH44wbN87JLsmwZcsWbrzxRizLom/fvjz44IP4/X50XWfw4MGMGjWKVatWATBq1CiOO+44ksmk84Nw++23s3jxYmzbZv369Q3OLYTg6quv5pVXXsHr9e5SqmGLFO7OnTvTuXNnhgwZQl5eHgBDhgxh7dq1TJw4kcsuu4yePXu2yAkBu8J1113HggULmDlzJhMnTmTKlCnZNkmxl6ifvuaktGkCaVvYcR1TA01zYWsCqQnQBNIlICNMNkhbYts2tpV6Nm0wLRtTgmHamDIV105adkrILRvTtknaAsOSGLaNYdnEo5FsX47dJlPAwO128+STT/J///d/nHPOOc7+qqoqPv30U3r16sVdd92Fy+VC13V8Ph+JRKJBJkgwGKRt27ZOlk8gEODWW2/l5JNPZtGiRT869/3338/ZZ5/doIBFY2mRwp0hI9qZ7X79+nH66adz9913M2TIELp3786vfvWrJj3n888/73g62Wbp0qWMHj2a8vJybrjhhmybo9iLJJNJxzGxLAu/3088XIMV1YmXbyYvVIiludBcAqGBcAkQGjYaNhJTSiw7JcimlfGqJaa0SVpgZDxqKzUYGYvFSBgG+PJI2jIt3GDYFgldpzlzSqSUfPDBB01Ww/KHfWfCEy6Xi48++uhHxxx44IHMnTuXgoIC3G437733Htu2baOoqIiBAwdy4YUXYpomv/jFL/jss89Yt24deXl5nHHGGfj9fubPn88pp5zC119/3aDfL774gjPPPNPx8HclM6dFC/eOOProozn66KN5+eWXWbVqFS+//DK/+c1vmqx/TdNyKhSTsSczbbapyMvL49RTT+XVV19l9OjRTdr3vsTo0aOZPXs2hx56aANHY0/x+/1s27YNIQSBQCBVBzFYgC2hdsVyXH36IvL8oGlpTzudSWKYCJ8fS9op4TVNops3EI9GiVs2SUuSMCUJ2yJhgqdNewiGiOsxEskkwrRIpo8zbEnStFi/bBm9Dxn+80bvJlJKZs6cucPV9pqCTKWfSCTCzJkzOe2001i5ciUrV650zj9t2jTuvvtuhBBUVlZyww03cPjhh/PSSy8xevRoZ3nWK664gpdeeonp06cDqXVJbrnllgai3LlzZ0aOHMmzzz7LpEmTyM/Pb/SqgBlanXBn+M1vfoOu6zzwwAMMGTKEN954g06dOu1xv2PGjGkC65qGxYsX8/LLL3P88cdz4403NmmoxOv1cvDBB/Phhx8q4d4DhgwZwsSJE524Z1ORKdabmSwSDAapi9TRb9JfWH7HH7CWRik9YADS58XSBJYAkdCxa6pxte+EbVrUlS3HMiXxRIKEYZCwbBImxEyLhGkTt2yMrZsxcCEDhbgKi5B6HNPlxrAgadmULV2C5s2n35FHNdln25tkCvv6/X78fj+ff/45paWlnHfeec4xK1asYOXKlXz00UeMGTOGSy65hJKSEifdz7Isp3iCZVkUFBRw6qmnMmvWLGbMmMG6desaOFZFRUXMmDGDa6+9lh49ejhVh3ZlAk6rFW5IrecwceJEJkyYwAUXXMCVV15Jjx496Ny5c7ZNaxLuvfdeEokE48eP5/rrr8+2OYq9jGVZzt1fymt0IYLFGKaNFo1S9c1XFPbui2aZuGwLYSQwKjbBlo2pXG0bDNsmaac86KSZ8qIt0rnbEpKJJHHDIh6uI7FhA3HLxvT4CHToxOZ166mr0+k+fH8GNEMYY2+QKeybSCQoKSmhuLiYDRs2EI/HG9zJSilZu3Ytd911F8uXL+f111/nqaeeQkpJXl6ekz44YMAAJkyYwOTJk5k7d+6Pwh+aphGLxdiyZQsHHnigM8nH4/EQj8edDJOfo9HCLYRwAQuBTVLKU4QQPYAXgDbAl8D5UsqkEMIH/B0YClQCY6SU6xp7nqYm84/9yCOP8Ne//pW8vDyuuOIKOnTokC2TmgxN08jLy+Phhx9Ws0f3MTJTtTPinVleNQLYfj/JRBwMk2hNNURrEZE6NE2gIZBILGljy5RwmzbpmPX3sWszE/+2U/Fw25ZYUmLZYBkGkeoa4noMl8+PlC1n/e0fUlBQ4FRjr6mpwev1snr1ag4//HBOPPFEamtrnQHMmTNnIqXkH//4B4cddhiTJk1yqt0HAgGklIwfP57Zs2c3EO1rrrnG8cgzi4OVlZXRqVMnQqEQlmXt8h3Zrnjc1wHfAqH06ynADCnlC0KImcAlwCPp52opZW8hxNj0cVmPL4RCIe666y6++eabJr1lba1ccsklLF++nMrKSr788ktncEaRGyQSCWcFO13Xyc/PTy2zeuBBFB85ivJ3XsPGRFZW4hY2mmkjNIFIC7ct6wmxlKnYtiUbCLhZb/DSlKkBS0tKTEOSqA5jS3D5/Zx640RnjZSWRibklEwmKSwsRErJUUcdxYgRI4jH405lGk3T6NOnj5MEcO+993L99dc76YTJZNKZJTl9+nRHtG+77TauvPJK/H6/M8vV7/cTj8edVR0Bp1p8YzPhGjXKJoTYD/gV8ET6tQBGAC+lD3kGOCO9fXr6Nen9I0UO/Rz369ePwsLCbJuR01RXV7N69WpuvPFGTj/9dPx+P1u3bs22WYp6BAIBIpFIg7WkCwsLSQgXoW69MW1IGDYxPUYslkS3bGKmjW6mnmOmTdxMiXXMkKmBSdsmmU7/M6QkYUtMS2JKQTLtcRu2jRYoSIUSvHkYpslhJ5zYYifA5efnN7iGmZBHbW0teXl51NbWOtXtDzzwQOd9pmk6tSTj8Tgej6dBEeAMffr0obi4GI/Hg6ZphEIhYrEYhYWFzvooGUdyV9KXG+tx3wvcCATTr9sANVLKzGT+jUAmcNwZ2AAgpTSFEOH08dsbbZUiqzzzzDNcfvnl9O7dm2QyyRlnnMF999232yukKZoeXdcJBoMNtsPhMMFgEK17H7S2nYhv3Yghk7gQuDTSKwOmfDUpG3rdmck1TraIZWFYKfFO2pl8bolpQby6BlvAwSOPw1/ShoqKCoqKihx7WhKZdV4yedSZ0Krb7XaKAEspcblcDQYPhRBO3nVmDZP6jwyZavCZNsMwnDzvTIgrE0fflcywn/W4hRCnANuklF82utdGIIS4XAixUAixsKlW4VI0DX/4wx/405/+xMcff0xxcTHnnXcef/rTn7JtlqIembhrLBZzBrwyt/XdjjgWf+euxCybeDo7JOVh28RNk7hpEjMtYqb1/X5HpNMDlZZM5XNnxDyd523YqRBKafcerFm2nFOuuoZQKNRiJ7tlUgEz4lw/pzuzAmNm9cUePXo0KIzwr3/9C8AJkWTi35WVlUCqZNmAAQOcfZmsE03TsCyrwfug6fO4jwBOE0L8EvCTinHfBxQJIdxpr3s/YFP6+E1AF2CjEMINFJIapGyAlPIx4DGA9u3bt8w1IVsxc+fOZdmyZXz66afMmzevRXpTrZnMFz/z5c9kQGQEZ9jEP/GP804lFovgEiI1MClTXrcEbMDOrAKIxDRTmSQpcbYxLUjaKTE3bDudfZIScF8wRLveB9C2d29KOnZ0yn21RDJFgkOhEOFwGK/Xi8fjcSoJVVVVEQwG0XWdoqIijjrqKObPn080GuWaa66hS5cujrADbNy40VkJcOjQoXTs2NFZJz2zpkx1dbVTWT5TuiyZTDZtOqCU8ibgJgAhxLHABCnluUKIF4HfksosuRCYn37L6+nX/03v/7dsqYv17sMMHDjQ8RbUcrl7RnP8+1uW5XzRM7f0uq7j9XqJxWIU9exFftcebFv+FZrQcDlLutpINKRIe4DpwUnLluklXDPrkQjH0zZsm7iVCpkkbYtgqAjN66XHwIEEi4qora1F07QW6XVnVgeMx+MUFRVh2zaWZVFSUuKUZYvFYgSDQaSUDWZNV1RUUFFRsdO+M3dBmbW3NU2jurqaQCBAVVWVE0PPhF0yxYIbw55MAZwE3CCEKCMVw34y3f4k0CbdfgMweQ/OocgiLpdLiXYT0BzeaCAQoK6ujkgkgtvtdvKRdV2nTZs26LrOyQ89RcKwSZgWMcNKh0dk6jlpEzNS4ZNEJoxiSWIWxE1B3LRJWjYJK9VuWDZJ06K4c1f6HHEU/vwAo8aOpa6ujtLS0hY7OBkMBqmursbr9VJdXe3kVWcKIG/fvh2Xy0VtbS26rnPIIYfQpUuXn+23Q4cOHHfccc4Pgs/nQ9M0px5oaWmpk8kSCAQAduka7pJwSyk/lFKekt5eI6UcLqXsLaU8U0qZSLfH0697p/ev2ZVzKBSKnycWi5Gfn09eXp6zCH9mBmA4HMbv9yPdXgaef2lKqK2UcOvG97HtVHaJlYp/W7KeiKemtSdMm4QT75aEOnSm57DhbF63juMvuohwXYS8vDxqamoalPpqSei67lRcD4VCTkpjUVGREx6xLItAIIDf7+eII47gmWeeoaioaKd9er1ennjiCY499lh8Ph91dXUYhoGU0slWqa6uTuXdpyvgALt0DXNn0Q2FQtFofD4fhmE4WQqxWMyZwVdQUJAqDFBcQulhR6O17UjMlOimjW6lUgK/TwuU329bNnHDSnnZZipFMGFZJG2JN1RIu959qNxWjl4XoeegQQSDQRKJBIFAoMXemfn9fqLRKG63m2g06qQDZn4E6+rqcLlcxONxpyblgQceyOLFi3n66acJhUIEg0FCoRChUIgZM2awcuVKDjvsMILBIMlkkvz8fNxut7OuTGaJAtM0yc/Pb7Aed2Np1VPeFYrWSv2p2JmMiPprZ2QGLXsMP4xhF1zKv2fcjaFHnffL9EQcKVODlBaZeDep5VydCTg2/pJSCtp3RI/F8Pn8THnvXceG+oOiLZH65cUy1C9PVn9fZvlcTdNo164dJ598Mt999x2maTozIwFnvCGzvrZt2072SP2/EaTGJ+pnnTQWJdwKRQvEsiwnVS0jnKZpomkahmE4z16vl6MuGYclJW/8+Q5kA4FKZZhYklROd2Zau/x+XW5TCjRLEq6upnvHjlx6991o6ZXwEomEk5MshGiRld7ri25mdiOkPPHMcrnQ0BvO7Ks/caZ+Sl+m/m0mU8QwDOe9yWTS2Zf5m9X/oWgsKlSiULRAMjnb8XjcWdw/05apWp651dc0jeHnXMBv77mf/QYfkopnpx+dhw3H374DcctOPyR9jj6WhE1qCrwNcT3GkBOO56K//Y384mJ8Ph+2bVNQUEAikaCgoKBFZpQAjrBmJsNkxLO+6Gamqmc88MxKfpmwSiY3WwiBpml4PB6nmLNt27jdbme/x+PBNM0G+zI/eLty19LyfiIVihZCLBajoqKCeDzOxo0bMQyD0tLSJuu/pKQESN3C5+XlIYRw2oqLixFC0KlTJ2f/iAt+x1FnjsGq5wG6PB5s28K2vvfE3V4vRr1iuQBevx+v3+94h6FQCCEEbdq0abE53JD6AfT5fA2uIXwfLsnsq0+mGvuO9mX4qbj17sS0f4gSboWimfj4448ZP34827ZtY/z48bRp04bnnnuuyfqvX9AjIyA/9+xq5EJh/nSK2g/ZWb8tlcwkpsx2/fYftjVm395ChUoUimZA13Xef/99Zs2axYABA3j88cfp37+/U9xaodgTRC5MaiwuLpbnn39+ts3YKYlEwplFlauEw2HcbreTzJ+LlJeXU15eipS5m4FQVLSJbt32vNCGZVmsX7+enj17snr1arp3705tbS22be/R/5FlWVRWVtKuXbs9trG5iEajWJZFKBT6+YMbyf/+9z/233//JuuvsrKSgoKCRs9UzAazZ8+murp6h259Tgi3EKICiJK7KwiWomzbHZRtu4eybfdobbZ1k1K23dGOnBBuACHEQinlsGzbsSOUbbuHsm33ULbtHvuSbSrGrVAoFC0MJdwKhULRwsgl4X4s2wb8BMq23UPZtnso23aPfca2nIlxKxQKheV94zkAAATgSURBVKJx5JLHrVAoFIpGkHXhFkKcJIRYKYQoE0JkveiCEGKdEGKpEOIrIcTCdFuJEOI9IcSq9HPxXrJllhBimxBiWb22HdoiUtyfvo5LhBBDsmTf7UKITenr91W65F1m301p+1YKIU5sRru6CCE+EEJ8I4RYLoS4Lt2e9Wv3E7Zl/bqlz+UXQnwuhPg6bd8d6fYeQojP0nbMFUJ40+2+9Ouy9P7uWbDtaSHE2nrXblC6PRvfCZcQYrEQ4o306+a5bj+sTrw3H4ALWA30BLzA10C/LNu0Dij9QdtUYHJ6ezIwZS/ZcjQwBFj2c7YAvwT+CQjgUOCzLNl3O6nydj88tl/67+sDeqT/7q5msqsjMCS9HQT+lz5/1q/dT9iW9euWPp8ACtLbHuCz9DWZB4xNt88ErkxvXwXMTG+PBeZmwbangd/u4PhsfCduAOYAb6RfN8t1y7bHPRwok6lqOklS9StPz7JNO+J04Jn09jPAGf+/vbMJsaoM4/jvWdgHJYkRMngXqQgtQlQUikRkRGk0kmAWQaCLoE0uWgkiuHNpH4toUSloodCY6NKPEVqFYY02MlaCQg2jA4qjbaSPf4v3OTOHy9xLszjnPQeeH1zu+bhwfvzvPc+97/Pee08dB5X0HXD/f7rsAo4p8T3pYs4DGfx6sQs4KemxpFvATdLzX4XXlKQfffkRMAEspwHZ9XHrRW25uZMk/emri/wmYBAY8e3d2RWZjgBbzar5E48+br2o9Zwwsw6wE/jC142KcstduJcDv5fW/6D/i7gOBJwzsytm9p5vWyZpypfvAMvyqPV1aVKWe31oeqTUVsri50PQdaRPZ43KrssNGpKbD/fHgGngPOlT/gNJf8/jMOvn+2dI16CtxU1Skd0hz+4jMyt+x153dh8D+4Dirxafp6LcchfuJrJJ0npgCHjfzDaXdyqNbRrxVZwmuZT4DFgFrAWmgMO5RMzsWeAU8IGkh+V9ubObx60xuUn6R9JaoEP6dP9SLpduut3M7GVgP8lxI7CUdCHzWjGzN4BpSVfqOF7uwj0JlC+Z3PFt2ZA06ffTwGnSC/duMcTy++l8hj1dGpGlpLt+cv0LfM7csL5WPzNbRCqMX0v61jc3Irv53JqSWxlJD4BLwKukNkPxN9Blh1k/3/8ccK9Gt9e9/SSlC5YfJU92rwFvmtltUst3EPiEinLLXbh/AFb7zOsTpCb92VwyZvaMmS0uloHtwLg77fGH7QHO5DGEPi5ngd0+k/4KMFNqC9RGVw/xLVJ+hd/bPpu+AlgNXK7IwYAvgQlJH5Z2Zc+ul1sTcnOPF8xsiS8/DWwj9eEvAcP+sO7sikyHgVEfzdTldqP0ZmykHnI5u1qeV0n7JXUkvUiqY6OS3qGq3KqYWV3IjTTz+yupj3Ygs8tK0gz+VeB64UPqPV0EfgMuAEtr8jlBGjb/ReqPvdvLhTRz/qnn+DOwIZPfcT/+NX9xDpQef8D9fgGGKvTaRGqDXAPG/LajCdn1ccuemx9rDfCTe4wDB0vnxmXS5Og3wJO+/Slfv+n7V2ZwG/XsxoGvmPvmSe3nhB93C3PfKqkkt/jlZBAEQcvI3SoJgiAIFkgU7iAIgpYRhTsIgqBlROEOgiBoGVG4gyAIWkYU7iAIgpYRhTsIgqBlROEOgiBoGf8BWrDWh9zMdxMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## بررسی سیاست\n", + "\n", + "از آنجا که جدول Q \"جذابیت\" هر اقدام را در هر حالت فهرست می‌کند، استفاده از آن برای تعریف مسیر کارآمد در دنیای ما بسیار آسان است. در ساده‌ترین حالت، می‌توانیم فقط اقدامی را انتخاب کنیم که با بالاترین مقدار جدول Q مطابقت دارد:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "def qpolicy_strict(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = list(actions)[np.argmax(v)]\n", + " return a\n", + "\n", + "walk(m,qpolicy_strict)" + ] + }, + { + "source": [ + "اگر کد بالا را چندین بار امتحان کنید، ممکن است متوجه شوید که گاهی اوقات فقط \"متوقف\" می‌شود و شما باید دکمه توقف را در نوت‌بوک فشار دهید تا آن را قطع کنید.\n", + "\n", + "> **وظیفه ۱:** تابع `walk` را تغییر دهید تا طول مسیر را به تعداد مشخصی از مراحل (مثلاً ۱۰۰) محدود کند و مشاهده کنید که کد بالا گاهی این مقدار را بازمی‌گرداند.\n", + "\n", + "> **وظیفه ۲:** تابع `walk` را تغییر دهید تا به مکان‌هایی که قبلاً در آن‌ها بوده است، بازنگردد. این کار از حلقه زدن `walk` جلوگیری می‌کند، اما همچنان ممکن است عامل در مکانی \"گیر بیفتد\" که قادر به فرار از آن نباشد.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 3.45, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 15 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de3xcdZ3/8deHVlBxf1ykPxYBN3XF9Yd3rAKL666i3HdxFRV+/rCrII+foj9FH6th2ZW7UAEREAqFVoHl0gqVFgK9t/RCL6T3W9qm1zSkbdqkSZu0uX5/f8x3kkkykzmTzMyZzHk/H488cuZ7zsx8z5yZz/me7+2Ycw4REYmGY8LOgIiI5I+CvohIhCjoi4hEiIK+iEiEKOiLiETI8LAz0J9TTjnFlZSUhJ0NEZEhZfny5fudcyOSrSvooF9SUkJ5eXnY2RARGVLMbGeqdareERGJEAV9EZEIUdAXEYkQBX0RkQhR0BcRiRAFfRGRCFHQFxGJEAV9EQlswZZadh5oCjsbMggFPThLRArLteOXAbDj3stDzokMlEr6IiIRoqAvIhIhCvoiIhGioC8iEiEK+iIiEaKgLyISIYGCvpndZGbrzWydmb1gZu82s5FmttTMKs1sopkd67c9zj+u9OtLEl7nZp++ycwuzs0uiYhIKmmDvpmdDvw/YJRz7uPAMOBqYAzwoHPuw0A9cJ1/ynVAvU9/0G+HmZ3tn/cx4BLgMTMblt3dERGR/gSt3hkOvMfMhgPvBWqALwMv+fVPA1/zy1f6x/j1F5qZ+fQXnXMtzrntQCXw+cHvgoiIBJU26DvnqoH7gV3Egn0DsBw46Jxr95vtBk73y6cDVf657X779yemJ3lOFzO7wczKzay8trZ2IPskIiIpBKneOYlYKX0k8AHgeGLVMznhnBvnnBvlnBs1YkTS+/qKiMgABane+Qqw3TlX65xrAyYDFwAn+uoegDOAar9cDZwJ4NefABxITE/yHBERyYMgQX8XcJ6ZvdfXzV8IbADmAlf5bUYDU/zyVP8Yv36Oc8759Kt9756RwFnAsuzshoiIBJF2lk3n3FIzewlYAbQDK4FxQBnwopnd5dPG+6eMB541s0qgjliPHZxz681sErETRjtwo3OuI8v7IyIi/Qg0tbJz7lbg1l7J20jS+8Y5dxT4ZorXuRu4O8M8iohIlmhErohIhCjoi4hEiIK+iEiEKOiLiESIgr6ISIQo6IuIRIiCvohIhCjoi8iAHG3r4NDRtrCzIRlS0BeRAbnwgTf5xG0zws6GZEhBX0QGpPrgkbCzIAOgoC8iEiEK+iIiEaKgLyISIQr6IiIRoqAvEhGfu3sW4+ZvDTsbEjIFfZGIqD3Uwm9erwg7GxIyBX0RkQgp2qD/y5dW8/Ly3WFnQ0SkoBRt0J9Uvptf/Hl12NkQESkoRRv0RUSkLwV9EZEIUdAXkUHp7HTc8eoGquqaw86KBKCgLyKDsqGmkQmLtnPj8yvCzooEoKAvIoPiXOx/Z3xBCpqCvohIhCjoi4hEiIK+iEiEKOiLiESIgr6IdGlqaef6p9+mpkG3QixWCvoi0qVsbQ2zNu7jgRmbw86K5IiCvohIhCjoi4hEiIK+iGSFxmYNDQr6IjIoZmHnQDKhoC8iEiEK+iIRN2vDXta/0xB2NiRPFPRFIu76Z8q5/OGFg36d9e80crilPQs5klxS0BeRrHl9bU3YWZA0AgV9MzvRzF4yswoz22hm55vZyWY208y2+P8n+W3NzB42s0ozW2Nm5yS8zmi//RYzG52rnRKR/FGvnaElaEn/IWCac+6jwKeAjUApMNs5dxYw2z8GuBQ4y//dAIwFMLOTgVuBc4HPA7fGTxQiIpIfaYO+mZ0AfBEYD+Cca3XOHQSuBJ72mz0NfM0vXwk842KWACea2WnAxcBM51ydc64emAlcktW9ERGRfgUp6Y8EaoE/mtlKM3vKzI4HTnXOxSvw9gCn+uXTgaqE5+/2aanSezCzG8ys3MzKa2trM9sbERHpV5CgPxw4BxjrnPsM0ER3VQ4AzjkHZKVmzzk3zjk3yjk3asSIEdl4SRER8YIE/d3AbufcUv/4JWIngb2+2gb/f59fXw2cmfD8M3xaqnQREcmTtEHfObcHqDKzv/NJFwIbgKlAvAfOaGCKX54KfNf34jkPaPDVQNOBi8zsJN+Ae5FPE5EhTNMwDC3DA273E+A5MzsW2AZ8j9gJY5KZXQfsBL7lt30duAyoBJr9tjjn6szsTuBtv90dzrm6rOyFiIgEEijoO+dWAaOSrLowybYOuDHF60wAJmSSQREZvLqm1vy8kfrsFzyNyBWJgB88Ux52FqRAKOiLRMDu+uawsyAFQkFfRLJqxa56Gprbws6GpKCgLyJZ9fXH3uI745eEnQ1JQUFfJAKM/ParXFfdmNf3k+AU9EVEIkRBX0QkQhT0RSJAo2YlTkFfRCRCFPRFJJCfvbgy7TZOQ3ILnoK+SAQMtHZnwZZafvJCLNi/suqd7GVIQqOgLyIpXTt+Ga+uVrAvJgr6IhFgaskVT0FfRCRCFPRFJGuc2nELnoK+iAxK4xFNrjaUKOiLSMZmrN/TtVw6eW2IOZFMKeiLSMZueHZ51/Kuuu65+lW7U/gU9EWkj5b2TqrqdOOVYhT0xugiEiGvrn5H/fOLlEr6IpI1ib13Nu05FF5GJCUFfZEICGNs1hWPLMj/m0paCvoikhNtHWrWLUQK+iIiEaKgLxIBmnpH4hT0RUQiREFfRLJGN1EpfAr6IhFgA76NSozTTGpFQ0FfRCRCFPRFRCJEQV8kAtR7R+IU9EUka1T1X/gU9EVEIkRBX0QkQhT0RUQiREFfRNIKWlevKv3Cp6AvEgF567yjltyCp6AvIt1SxOw9jUfzmw/JmcBB38yGmdlKM3vNPx5pZkvNrNLMJprZsT79OP+40q8vSXiNm336JjO7ONs7IyK58ff3zgk7C5IlmZT0fwpsTHg8BnjQOfdhoB64zqdfB9T79Af9dpjZ2cDVwMeAS4DHzGzY4LIvIkFY0NFZGsRV9AIFfTM7A7gceMo/NuDLwEt+k6eBr/nlK/1j/PoL/fZXAi8651qcc9uBSuDz2dgJEREJJmhJ//fAL4FO//j9wEHnXLt/vBs43S+fDlQB+PUNfvuu9CTP6WJmN5hZuZmV19bWZrArIiKSTtqgb2ZXAPucc8vzkB+cc+Occ6Occ6NGjBgx6Nc72NyahVyJDG35qrWZWF6VfiMJVZCS/gXAv5jZDuBFYtU6DwEnmtlwv80ZQLVfrgbOBPDrTwAOJKYneU7OrKw6mOu3EBFvXXVj2FmQNNIGfefczc65M5xzJcQaYuc4574DzAWu8puNBqb45an+MX79HBe7A8NU4Grfu2ckcBawLGt7IiIiaQ1Pv0lKvwJeNLO7gJXAeJ8+HnjWzCqBOmInCpxz681sErABaAdudM51DOL9RSQo9coRL6Og75ybB8zzy9tI0vvGOXcU+GaK598N3J1pJkUk90pKy/i///i3YWdDckwjckWky9pqtYEVOwV9kQhQ7Y7EKeiLiESIgr6ISIQo6ItIl/2HNJix2Cnoi0iXTXsPhZ0FybGiD/pqwBLJYJZNKXpFH/R1Hx8RkW6DGZErIkPYC8t2cYwuACJHQV8kApLF9psnr817PiR8RV+9IyIi3RT0RYpce0cn2/c3hZ0NKRAK+iJF7rfTN9HeqS4NEqOgL1Lkxs3f1ietpuFICDmRQqCgLxIx9U2tnH/PnLCzISFR0BeJmMajbWFnQUJU9EFf3ZBFRLoVfdAXEZFuRR/01WdBRKRb0Qd9ERHppqAvEjGmlq5IU9AXiZjaw0fDzoKESEFfJGK+MXZx2FmQECnoi4hEiIK+iEiEKOiLiERI0Qd99VMQEelW9EFfRES6KeiLiESIgr6ISIQUfdDX3Dsi4SkpLWPmhr1hZ0MSFH3QF5Fw3Tx5TdhZkAQK+iJSMK54ZAGvrKwOOxtFTUFfRArGuupGfjZxVdjZKGoK+iIiEaKgLyI5piGShaTog76+biJhUx+6QlL0QV+kmIydt5XyHXVhZ0OGsLRB38zONLO5ZrbBzNab2U99+slmNtPMtvj/J/l0M7OHzazSzNaY2TkJrzXab7/FzEbnbrdEitOYaRVc9bjmw5eBC1LSbwd+4Zw7GzgPuNHMzgZKgdnOubOA2f4xwKXAWf7vBmAsxE4SwK3AucDngVvjJwoRKWaqZC0kaYO+c67GObfCLx8CNgKnA1cCT/vNnga+5pevBJ5xMUuAE83sNOBiYKZzrs45Vw/MBC7J6t6IiEi/MqrTN7MS4DPAUuBU51yNX7UHONUvnw5UJTxtt09Lld77PW4ws3IzK6+trc0ke0mpCUlEpFvgoG9m7wNeBn7mnGtMXOecc2QpvjrnxjnnRjnnRo0YMSIbLykiIl6goG9m7yIW8J9zzk32yXt9tQ3+/z6fXg2cmfD0M3xaqnQJ2a4DzextPBp2NmQA5lbso76pNexsyBASpPeOAeOBjc653yWsmgrEe+CMBqYkpH/X9+I5D2jw1UDTgYvM7CTfgHuRT5OQffG+uZz7m9lhZ2PIOHC4hY/c8gbLd9aHmo+GI218709vc/0z5aHmQ4aWICX9C4BrgS+b2Sr/dxlwL/BVM9sCfMU/Bngd2AZUAk8CPwJwztUBdwJv+787fJrIkLJsex2tHZ08OX9bqPlo7+gEYPv+plDzIUPL8HQbOOcWkrrP1YVJtnfAjSleawIwIZMMDpY6i4kUp4o9jXz0r/9H2NkYcjQiV2SAXIH0DYuVswqX5aDkNW1dDZf8fgGvrn4n+y9e5BT0RRK0dXRy8+Q1vHPwSMptchHEBsIKJSMh2Lz3sP9/KOScDD0K+iIJFlbu54VlVZROXpt227AL2IVewk9Ue6iF+6ZX0Nk5dPJcrBT0RZKIbhk6N0pfXsOjc7eyeNuBlNsM5CQ2hM57BUNBXySJoRBLhlL1Tkt7rKdRZ5ai9NDZ88KTtveOyFBV03CEdw8fxknHHxto+zte3cDra2vSb1hgIWconKDislUyP9rekZ0XiqCiL+kPpR+EZNf598zh3HuCDzqbsGg7e4bQyOTCOvWkVnuoJeuN34/O3ZrdFywADUfaKCktY/KK3Tl9n6IP+ku2pq5DlOLX6qsV0mkZQMmxd4Gis9PRoYbKotbW0Unj0bYBPW9pP+0ZAFV1zQA8tWD7gPIWVNEH/flb9oedBRkCWgKeHHbXN6dscPw/45fyt//x+oDev2xNDWOmVQzoub2t3FUf+hQR+ZLvsRI3PreCT942I+PnPTBjM98et4RVVQdzkKvMFH3QHyqXwEFtqz3MjPV7eHPz4KedHgp2hDTFQLLAXlXXzBfGzOXBWZuTPuetQVxV3vj8CsbOy06Vxb8+9hbfGPtWVl4r2/oL0YXQE2f5znpKSsvYdyh5Nd+MDXsBOHS0jYbm4CX+LX48wf5DLYPP5CAVfdAvNl9+4E1ueHY5oycsY9Oe4ANTnHM8MGMTW2sP5zB3PTU0t/GRW97gra0Du9qasqqaf7p/XsGc4Pb5H2x8YFCuTHq7ig3vNKbfMI343DyFqqbhCCWlZazYlf2rkpLSMq5/OvOJ6CYsilWtLNnWc1qwlvYO5id8Dz9zx0w+dUfmJf4COK8Vf9AvhA85Vw5lULdYe7iFR+ZUcu1TS3OYo57WVB+ktaOTR+dWDuj5a3c3ALA5g5NbEB2djvumV3DgcOpS1xr/3v3JVcn0ly+v4bKHFwTePlU+CqlRuq2jb5fNBb7q9fmluwb12gcOt9BwpO9vYdbGvUxZVU1JaVngm8nHawZ6X+nd/uoGvjthWdfj9iHcdlP0QV88/x1t7cjfl9X8T2iwwTFZvW1bRydH2wbWbW9h5X4enbuV//hL6lG38SCyac8hLnxgHg3NbRn3QIn3xphbEbvVREt7BzN99UBQN09ew6i7ZiZdly4/zsGsDN8vV+Il55fK+/ZMSfX9aO/opLqf6TDiPnvXLM65M/ln9PNJqwEC30z+mBQf6vo0V15XjX0ra9VzuVb0QX9jzeAvk4tCnho3nHNdpaT472egQb+/oHbxg/P56H9Ny+j1SkrLKCkt66r2SGy8TZXHh+dsYWttE/M27+Prj2VWTx6vfntsXuxKZ8wbm/jBM+Us2x58RvEXllWx/3Dym6QE+VyXpOkxkm+JJfJ0X8k7X9vABffO6feKLP4ZDLTX1KGjbT16bsW/cw/P3pLR65TvrO+3Ib6QxtEVfdCX/Lr0oQV85D/fALp/1Iu3HehRH5oN2wbRwJvs0vxIa/KrhncPHwZAS9vg6sedc131xfXNrextPNrVRS+I3fU9tx1K8+4kSnbV9vKK3Un3J96W03i0fcDvly7WfuK2GVw1tvsqIL791tqe369sxexddc2hF0QV9CWrKvYcoq3D0dreSVtCcE2sDy00zjn+9NaOPul/mLOF494V+4mk68e/Jclsj4mBrLVXo+q5v5nNP/x2Lm+sraEuwO0Oxy/czrZejfDJSo/J6raHghW76lO2v8U/x6q6ZtZV92xraU5xsu56bpK0zk7X4yS6NuE1X1mV+VTN//lK+sn54u58bQOXPhS8vSYXFPSLRF1TKyWlZUxZle62w/kpIZ5z50xGZynQ57JQe8G9c/jof03j8Tf71sfeP2NzmhJed8a++uD8wO+5NKFnyA+fW8H1T7/d9ThVT6U/LtrRI1ik+kxqE7oaPrlgG0OlvfHWqetZVdWzF0/vuYX+4bdzueKRhT3SEk/W2/c3sbhXt9lk1T6Pz9/KF8bMpXJf/72w9h9uCdRu9N9LBtcQvXjrAfb3U4WVbQr6Q1ji1zleCnxm8c5+n7P/cCt3l21Iuu7f/7w6W1njcMvAL8lTmblhL+ffMzvQKNsgU/g6B9UHj/Q7MOtQvGphAJWyiUHLEk4f8WqeuMTGyv5OlIn5vPyRhXz6jljjpXOO7fub+lwxPLN4Z5/3ClviySrx81lX3cg3xqZubA1SnfWl++dxzZNL+p0/6WhbB1NWxkrz6RqJR901i+//6W2f17RvD8SutJLnNfULXPPkEr71xOKuE8xARvxmQkF/CHs2SYAP8uN4MsUw7z8v7+5Z8Vbl/gH3jgni7F9P46kFmd1j9rap66lpOJpy4EyilVka+Tg1fmemJJ9rPCnV55TLevfe9cJfun8eX/ztXAp9OGLQj+QXk7oLII5YQ2lQyX4XcT/87+Vs8lVxQY5PpgPuPnX7DMYmuWpMJd7Yv622iReWVQGwuz59j6XBUNAP2Z/Lq3qMADx0NNbN7y8r00+6NDXhVnHpSiKWQTCo2NPI/35qKXe8lvyKIG5ddQMlpWVU7Mm8Yaq5tYO7yjb2SX9m8Y6uElj85NT7pxkscKTeKNux+N43evbaONjcmlFj3d7G7Fza5+LqKiwvr9jddcP3xiNtVGTweaaavrmj0zF3U3Y7FCQb7Pj62hpeXf0Ozjne3FzLj59fweyKnl1ndx5oYuy8rfwhYQxLR2f3ldwbgWZ7HRgF/ZBNKo+d3edv3k9JaRlPvBkr/T4+L7NScDLlO+oC1PH3ddAPL09X5zlt3R4AZq7PTl/w/Ydb+PWU9fzbhGVZv8roWbebedQ/mqT3jhlcPW5xn0bgrz26iEsfWjDo+e57108Xg4F8JKUvr+XY4cFDVaqj+9XfvZnyOQP9rL/9RN8qqXXVjfzkhZXc/uoGRk9YxmtravoUNK4dv4wx03oOEEzc5IfPrRhQfoJQ0A9ZvAQeH3Y/ZXUsSMd/HLVp5uroXXed+Oiqxxfz0xdXJX3ehnca09ZpLtte1+/8Isf4PAZtLDzgG8ZSXVbHA3PDkTb+/aU1XekT367qdyqGICXcB2Zs6loeSEl/x4G+XUSd6ztcP7ZtrGfI7xPm6Pn62EUZv+c1Ty7J+DmF1B88mR51+gGfU9fcyruGdYeq/u5fHHuT5Mm9u/kmbpbus06V11RjKAC27Es9knxXku66+Tp0kQ76902v6Cqthq3dX9ol/ijmVOzlc3fP6jfg9a6CWbkrWF32ZQ8v4IJ756Td7kfPL2f5zjqfN9czYPsI8+CszYG6HX72rllcO35pj32ctWFv12CpxPTVCXXy2/c3pWzg3LTnEB+/dTpXj1tMSWlZV5fFHz+/ssd2Cyu75/8ZyF2ckp3YZvuRtqkk1gevq85P3+yFBT6rbKdzTCqv4puPv9U1l1E6HZ2OYcd0h8S/T/O9zdbdufIhjJN0pO+cFb8Rw457Lwdi9emfuG0GY77xCb79uQ/mJQ/L/JwgvXvd1DW18vLyWKl/1a6D/ONHRiR9/p/e2sEFHz6Fk49/V1eac65P1UImX67EYLWo8gCLKhez497LueeNCsbN38bW31zGsGOMhN8h5TvquuZS6c/bO+p7/Civf6acn154FjsPNHGMf0Gz5PlNlhZvT4iXuG+auIpLPvbX1DT0bOwdnpDZ219dDxAov73fpxAlhrhbp64PLR9BLN1ex1I/IvntHcEaZ48x65rKIoigIb8+QEFlMIKcexZVdv/W+rZd9f0dZ0OkS/q9xQNFupsYHDjcQklpGTPWd18lHGzu7iff2t5Jc+vgGtX2HWqhLGBjzg+eKSfx4vCuso18NmEukoPNrSlHnCaTagj6hIWxzyVeDdN7npJnl/TfXTSu95e7qr6ZV1a9w+QVvmorgwvd3tVXcyr28cuX1/RIe2T2lh4/nvoMpsSNC3oFJdl3jGU2aCrovQR+Pil7XZSTybTnT++TRK4uWBT0gR8/v4LW9s7AH3KF72b1u5nddbbxngYTFm7n2+MWc/avpw8oLwM90A1Hukst4xdu50BCKebTd8zkn/+wMNnTAnt0bmWfkvZAyyB9Bsz0ehhkIrFMPDAz3SCr3Eo3anSwDg1imoKhIGg1UC7l4yb0fUr6OXqfyAb9xMag19bUUL6zrmtekKDHtyJhyt/EL0W2S4VB7g70/T/1P3f4wRSl29518akGhvxx0Y6u5U/ePp3New91VcfE8hjczyf1LJ33fm5Nw9GkQbrQGylTSTdDoxSG+6YnnzDtD3O2hHInslyN84hs0D/ST5dAw7i7bENXcFr/TgOXPbSAppZ2rnx0Ed9JMid91zzcad73wOEW7nljI3sakg8wStYItauuOdAI04HoPSVtqlvB7T/cQpuflvloWyfP9arKGTc/eBfT19f2bDwP2vAW78Y8kFvkZTK4R6Ip1c3W75+R/E5p2fbq6p5VWLkq6UeqIXfsvK3s2N/EmKs+2e/lfuPRtq6BQb/71qe5/OFY1cijcyt79CpJFHQa4V+9vJZZG/fyxJvbWPirL/VZ37sBEmDyimr+5uTj+fQHT+z/xfMssU5/MCWhZJ9ZssvpeLXQr6cUdmOlSDaoTj8LxkyrYKIfDJVM/ENOFngBHgtwk4T+SqGdnY5ZG7sHMn1hzNy0rxe3dPuBrE1glg2O7M3VHvS7He/WWii3TxTJpVzd9D0SQT9I3VjZmuQ9ZUpKy/p9XlNLO00t7fxrkhts3DRxFfdNr8A5R0enY9r6gY8JGMxNt3NhTsW+rAXfPQ19B9tsTzJf/kBvlCEyFOWqpB+p6p24+Ztr+wSV55buYuQpx2f8WjdNXMU1536wKyAlDsL5y8pYF8QPnPgebvnLuiHbEJlMNieFCtpfeyBdLUWkp0gE/abWDt53XPeuprqhR7IJwNLZuKcxbXfAW/6yDsjtvPAiUlxyNbI4EkH/47dO54pPnpaT166qy+00qCISTWrIHaTXUtTZZ8OOQdyvVUQkmVyV9CMT9HPptlf7n3deRCRTN01MPkPuYCnoi4gUoFkbg08ylwkFfRGRCMl70DezS8xsk5lVmllpvt9fRCTK8hr0zWwY8ChwKXA2cI2ZnZ3PPIiIRFm+S/qfByqdc9ucc63Ai8CV2X6T3fV9b0UmIiL5D/qnA4mT3+z2aV3M7AYzKzez8tragQ3zz/ZNtUVE8u0r/+vUnLxuwQ3Ocs6NA8YBjBo1akAdVT/8P/+q6xaIIiLSLd8l/WrgzITHZ/g0ERHJg3wH/beBs8xspJkdC1wNTM1zHkREIiuv1TvOuXYz+zEwHRgGTHDO6Y4YIiJ5kvc6fefc68Dr+X5fERHRiFwRkUhR0BcRiRAFfRGRCFHQFxGJEAty0/CwmFktsHMQL3EKsD9L2RkKora/oH2OCu1zZv7GOTci2YqCDvqDZWblzrlRYecjX6K2v6B9jgrtc/aoekdEJEIU9EVEIqTYg/64sDOQZ1HbX9A+R4X2OUuKuk5fRER6KvaSvoiIJFDQFxGJkKIM+sV083UzO9PM5prZBjNbb2Y/9eknm9lMM9vi/5/k083MHvb7vsbMzkl4rdF++y1mNjqsfQrCzIaZ2Uoze80/HmlmS/1+TfRTc2Nmx/nHlX59ScJr3OzTN5nZxeHsSTBmdqKZvWRmFWa20czOj8Axvsl/p9eZ2Qtm9u5iO85mNsHM9pnZuoS0rB1XM/usma31z3nYzCxtppxzRfVHbMrmrcCHgGOB1cDZYedrEPtzGnCOX/4rYDOxm8r/Fij16aXAGL98GfAGYMB5wFKffjKwzf8/yS+fFPb+9bPfPweeB17zjycBV/vlx4Ef+uUfAY/75auBiX75bH/sjwNG+u/EsLD3q5/9fRq43i8fC5xYzMeY2G1StwPvSTi+/1Zsxxn4InAOsC4hLWvHFVjmtzX/3EvT5insDyUHH/L5wPSExzcDN4edryzu3xTgq8Am4DSfdhqwyS8/AVyTsP0mv/4a4ImE9B7bFdIfsTuqzQa+DLzmv9D7geG9jzGxezOc75eH++2s93FP3K7Q/oATfAC0XunFfIzj98s+2R+314CLi/E4AyW9gn5WjqtfV5GQ3mO7VH/FWL2T9ubrQ5W/pP0MsBQ41TlX41ftAeJ3UU61/0Ppc/k98Eug0z9+P3DQOdfuHyfmvWu//PoGv/1Q2t+RQC3wR1+l9ZSZHU8RH2PnXDVwP7ALqCF23JZT3Mc5LlvH9XS/3Du9X8UY9IuSmb0PeBn4mXOuMXGdi53mi6LvrZldAexzzi0POy95NJxYFcBY59xngCZil/1diukYA/h67CuJnfA+ABwPXBJqpuR29Y8AAAHSSURBVEIQxnEtxqBfdDdfN7N3EQv4zznnJvvkvWZ2ml9/GrDPp6fa/6HyuVwA/IuZ7QBeJFbF8xBwopnF7/SWmPeu/fLrTwAOMHT2F2IltN3OuaX+8UvETgLFeowBvgJsd87VOufagMnEjn0xH+e4bB3Xar/cO71fxRj0i+rm6741fjyw0Tn3u4RVU4F4K/5oYnX98fTv+p4A5wEN/lJyOnCRmZ3kS1kX+bSC4py72Tl3hnOuhNixm+Oc+w4wF7jKb9Z7f+Ofw1V+e+fTr/a9PkYCZxFr9Co4zrk9QJWZ/Z1PuhDYQJEeY28XcJ6Zvdd/x+P7XLTHOUFWjqtf12hm5/nP8LsJr5Va2I0cOWo4uYxYL5etwC1h52eQ+/IFYpd/a4BV/u8yYvWZs4EtwCzgZL+9AY/6fV8LjEp4re8Dlf7ve2HvW4B9/ye6e+98iNiPuRL4M3CcT3+3f1zp138o4fm3+M9hEwF6NYS8r58Gyv1xfoVYL42iPsbA7UAFsA54llgPnKI6zsALxNos2ohd0V2XzeMKjPKf31bgD/TqDJDsT9MwiIhESDFW74iISAoK+iIiEaKgLyISIQr6IiIRoqAvIhIhCvoiIhGioC8iEiH/H6G+/rPuz7xgAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "آنچه در اینجا مشاهده می‌کنیم این است که در ابتدا طول متوسط مسیر افزایش یافته است. احتمالاً این به این دلیل است که وقتی هیچ اطلاعاتی درباره محیط نداریم - احتمال دارد در وضعیت‌های نامطلوب، مانند افتادن در آب یا مواجهه با گرگ، گرفتار شویم. با یادگیری بیشتر و استفاده از این دانش، می‌توانیم مدت بیشتری محیط را کاوش کنیم، اما هنوز به‌خوبی نمی‌دانیم سیب‌ها کجا هستند.\n", + "\n", + "وقتی به اندازه کافی یاد بگیریم، دستیابی به هدف برای عامل آسان‌تر می‌شود و طول مسیر شروع به کاهش می‌کند. با این حال، هنوز در حالت کاوش هستیم، بنابراین اغلب از مسیر بهینه منحرف می‌شویم و گزینه‌های جدیدی را بررسی می‌کنیم که باعث طولانی‌تر شدن مسیر نسبت به حالت بهینه می‌شود.\n", + "\n", + "آنچه همچنین در این نمودار مشاهده می‌کنیم این است که در یک نقطه طول مسیر به‌طور ناگهانی افزایش یافته است. این نشان‌دهنده ماهیت تصادفی فرآیند است و اینکه ممکن است در یک نقطه \"ضریب‌های جدول Q\" را خراب کنیم، با جایگزین کردن آنها با مقادیر جدید. این موضوع باید به‌طور ایده‌آل با کاهش نرخ یادگیری به حداقل برسد (یعنی در انتهای آموزش، مقادیر جدول Q را فقط با مقدار کمی تنظیم کنیم).\n", + "\n", + "به‌طور کلی، مهم است به یاد داشته باشیم که موفقیت و کیفیت فرآیند یادگیری به‌شدت به پارامترهایی مانند نرخ یادگیری، کاهش نرخ یادگیری و عامل تخفیف بستگی دارد. این پارامترها اغلب **فراپارامتر** نامیده می‌شوند تا آنها را از **پارامترها** که در طول آموزش بهینه‌سازی می‌شوند (مانند ضریب‌های جدول Q) متمایز کنیم. فرآیند یافتن بهترین مقادیر فراپارامترها **بهینه‌سازی فراپارامتر** نامیده می‌شود و شایسته یک موضوع جداگانه است.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "## تمرین\n", + "#### دنیای واقعی‌تر برای داستان پیتر و گرگ\n", + "\n", + "در وضعیت ما، پیتر تقریباً بدون خستگی یا گرسنگی می‌توانست حرکت کند. در یک دنیای واقعی‌تر، او باید هر از گاهی بنشیند و استراحت کند و همچنین خودش را تغذیه کند. بیایید دنیای خود را واقعی‌تر کنیم با اجرای قوانین زیر:\n", + "\n", + "1. با حرکت از یک مکان به مکان دیگر، پیتر **انرژی** از دست می‌دهد و مقداری **خستگی** کسب می‌کند.\n", + "2. پیتر می‌تواند با خوردن سیب انرژی بیشتری به دست آورد.\n", + "3. پیتر می‌تواند با استراحت زیر درخت یا روی چمن (یعنی رفتن به مکانی در صفحه که درخت یا چمن - زمین سبز - دارد) از شر خستگی خلاص شود.\n", + "4. پیتر باید گرگ را پیدا کرده و بکشد.\n", + "5. برای کشتن گرگ، پیتر باید سطح مشخصی از انرژی و خستگی داشته باشد، در غیر این صورت در نبرد شکست می‌خورد.\n", + "\n", + "تابع پاداش بالا را مطابق قوانین بازی تغییر دهید، الگوریتم یادگیری تقویتی را اجرا کنید تا بهترین استراتژی برای برنده شدن در بازی را یاد بگیرید، و نتایج حرکت تصادفی را با الگوریتم خود از نظر تعداد بازی‌های برده و باخته مقایسه کنید.\n", + "\n", + "> **Note**: ممکن است نیاز باشد که هایپرپارامترها را تنظیم کنید تا کار کند، به خصوص تعداد دوره‌ها. از آنجا که موفقیت در بازی (مبارزه با گرگ) یک رویداد نادر است، می‌توانید انتظار زمان آموزش طولانی‌تری داشته باشید.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/2-Gym/README.md b/translations/fa/8-Reinforcement/2-Gym/README.md new file mode 100644 index 000000000..271d271ff --- /dev/null +++ b/translations/fa/8-Reinforcement/2-Gym/README.md @@ -0,0 +1,351 @@ + +# اسکیت با CartPole + +مسئله‌ای که در درس قبلی حل کردیم ممکن است شبیه به یک مسئله ساده و غیرکاربردی به نظر برسد. اما اینطور نیست، زیرا بسیاری از مسائل دنیای واقعی نیز چنین سناریویی دارند - از جمله بازی شطرنج یا Go. این مسائل مشابه هستند، زیرا ما نیز یک صفحه با قوانین مشخص و یک **وضعیت گسسته** داریم. + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/47/) + +## مقدمه + +در این درس، ما همان اصول یادگیری Q را به مسئله‌ای با **وضعیت پیوسته** اعمال خواهیم کرد، یعنی وضعیتی که با یک یا چند عدد حقیقی مشخص می‌شود. ما با مسئله زیر سروکار خواهیم داشت: + +> **مسئله**: اگر پیتر بخواهد از دست گرگ فرار کند، باید بتواند سریع‌تر حرکت کند. ما خواهیم دید که چگونه پیتر می‌تواند اسکیت کردن را یاد بگیرد، به خصوص حفظ تعادل، با استفاده از یادگیری Q. + +![فرار بزرگ!](../../../../translated_images/escape.18862db9930337e3fce23a9b6a76a06445f229dadea2268e12a6f0a1fde12115.fa.png) + +> پیتر و دوستانش خلاقیت به خرج می‌دهند تا از دست گرگ فرار کنند! تصویر از [جن لوپر](https://twitter.com/jenlooper) + +ما از نسخه ساده‌شده‌ای از حفظ تعادل که به عنوان مسئله **CartPole** شناخته می‌شود استفاده خواهیم کرد. در دنیای CartPole، ما یک اسلایدر افقی داریم که می‌تواند به چپ یا راست حرکت کند و هدف این است که یک میله عمودی را روی اسلایدر متعادل نگه داریم. + +## پیش‌نیازها + +در این درس، ما از کتابخانه‌ای به نام **OpenAI Gym** برای شبیه‌سازی **محیط‌های مختلف** استفاده خواهیم کرد. شما می‌توانید کد این درس را به صورت محلی (مثلاً از Visual Studio Code) اجرا کنید، که در این صورت شبیه‌سازی در یک پنجره جدید باز می‌شود. هنگام اجرای کد به صورت آنلاین، ممکن است نیاز به انجام تغییراتی در کد داشته باشید، همانطور که [اینجا](https://towardsdatascience.com/rendering-openai-gym-envs-on-binder-and-google-colab-536f99391cc7) توضیح داده شده است. + +## OpenAI Gym + +در درس قبلی، قوانین بازی و وضعیت توسط کلاس `Board` که خودمان تعریف کرده بودیم مشخص می‌شد. در اینجا ما از یک **محیط شبیه‌سازی خاص** استفاده خواهیم کرد که فیزیک پشت میله متعادل را شبیه‌سازی می‌کند. یکی از محبوب‌ترین محیط‌های شبیه‌سازی برای آموزش الگوریتم‌های یادگیری تقویتی، [Gym](https://gym.openai.com/) است که توسط [OpenAI](https://openai.com/) نگهداری می‌شود. با استفاده از این Gym می‌توانیم **محیط‌های مختلفی** از شبیه‌سازی CartPole تا بازی‌های آتاری ایجاد کنیم. + +> **توجه**: می‌توانید سایر محیط‌های موجود در OpenAI Gym را [اینجا](https://gym.openai.com/envs/#classic_control) مشاهده کنید. + +ابتدا، Gym را نصب کرده و کتابخانه‌های مورد نیاز را وارد می‌کنیم (کد بلاک 1): + +```python +import sys +!{sys.executable} -m pip install gym + +import gym +import matplotlib.pyplot as plt +import numpy as np +import random +``` + +## تمرین - مقداردهی اولیه به محیط CartPole + +برای کار با مسئله تعادل CartPole، باید محیط مربوطه را مقداردهی اولیه کنیم. هر محیط با موارد زیر مرتبط است: + +- **فضای مشاهده** که ساختار اطلاعاتی را که از محیط دریافت می‌کنیم تعریف می‌کند. برای مسئله CartPole، ما موقعیت میله، سرعت و برخی مقادیر دیگر را دریافت می‌کنیم. + +- **فضای عمل** که اقدامات ممکن را تعریف می‌کند. در مورد ما، فضای عمل گسسته است و شامل دو عمل - **چپ** و **راست** می‌شود. (کد بلاک 2) + +1. برای مقداردهی اولیه، کد زیر را تایپ کنید: + + ```python + env = gym.make("CartPole-v1") + print(env.action_space) + print(env.observation_space) + print(env.action_space.sample()) + ``` + +برای مشاهده نحوه کار محیط، بیایید یک شبیه‌سازی کوتاه برای 100 مرحله اجرا کنیم. در هر مرحله، یکی از اقدامات را برای انجام دادن ارائه می‌دهیم - در این شبیه‌سازی، ما فقط به صورت تصادفی یک اقدام از `action_space` انتخاب می‌کنیم. + +1. کد زیر را اجرا کنید و ببینید چه نتیجه‌ای می‌دهد. + + ✅ به یاد داشته باشید که ترجیحاً این کد را روی نصب محلی پایتون اجرا کنید! (کد بلاک 3) + + ```python + env.reset() + + for i in range(100): + env.render() + env.step(env.action_space.sample()) + env.close() + ``` + + شما باید چیزی مشابه این تصویر ببینید: + + ![CartPole بدون تعادل](../../../../8-Reinforcement/2-Gym/images/cartpole-nobalance.gif) + +1. در طول شبیه‌سازی، ما نیاز داریم که مشاهداتی دریافت کنیم تا تصمیم بگیریم چگونه عمل کنیم. در واقع، تابع `step` مشاهدات فعلی، یک تابع پاداش و یک پرچم `done` را برمی‌گرداند که نشان می‌دهد آیا ادامه شبیه‌سازی منطقی است یا خیر: (کد بلاک 4) + + ```python + env.reset() + + done = False + while not done: + env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + print(f"{obs} -> {rew}") + env.close() + ``` + + شما باید چیزی شبیه به این را در خروجی نوت‌بوک ببینید: + + ```text + [ 0.03403272 -0.24301182 0.02669811 0.2895829 ] -> 1.0 + [ 0.02917248 -0.04828055 0.03248977 0.00543839] -> 1.0 + [ 0.02820687 0.14636075 0.03259854 -0.27681916] -> 1.0 + [ 0.03113408 0.34100283 0.02706215 -0.55904489] -> 1.0 + [ 0.03795414 0.53573468 0.01588125 -0.84308041] -> 1.0 + ... + [ 0.17299878 0.15868546 -0.20754175 -0.55975453] -> 1.0 + [ 0.17617249 0.35602306 -0.21873684 -0.90998894] -> 1.0 + ``` + + بردار مشاهده‌ای که در هر مرحله از شبیه‌سازی بازگردانده می‌شود شامل مقادیر زیر است: + - موقعیت چرخ دستی + - سرعت چرخ دستی + - زاویه میله + - نرخ چرخش میله + +1. حداقل و حداکثر مقدار این اعداد را دریافت کنید: (کد بلاک 5) + + ```python + print(env.observation_space.low) + print(env.observation_space.high) + ``` + + همچنین ممکن است متوجه شوید که مقدار پاداش در هر مرحله شبیه‌سازی همیشه 1 است. این به این دلیل است که هدف ما زنده ماندن برای مدت زمان طولانی‌تر است، یعنی نگه داشتن میله در موقعیت عمودی معقول برای طولانی‌ترین مدت ممکن. + + ✅ در واقع، شبیه‌سازی CartPole حل‌شده در نظر گرفته می‌شود اگر بتوانیم میانگین پاداش 195 را در 100 آزمایش متوالی به دست آوریم. + +## گسسته‌سازی وضعیت + +در یادگیری Q، ما نیاز داریم که یک جدول Q بسازیم که مشخص کند در هر وضعیت چه کاری انجام دهیم. برای انجام این کار، وضعیت باید **گسسته** باشد، به عبارت دقیق‌تر، باید شامل تعداد محدودی از مقادیر گسسته باشد. بنابراین، ما باید به نوعی مشاهدات خود را **گسسته‌سازی** کنیم و آنها را به مجموعه‌ای محدود از وضعیت‌ها نگاشت کنیم. + +روش‌های مختلفی برای انجام این کار وجود دارد: + +- **تقسیم به بازه‌ها**. اگر بازه یک مقدار خاص را بدانیم، می‌توانیم این بازه را به تعدادی **بازه کوچک‌تر** تقسیم کنیم و سپس مقدار را با شماره بازه‌ای که به آن تعلق دارد جایگزین کنیم. این کار را می‌توان با استفاده از متد [`digitize`](https://numpy.org/doc/stable/reference/generated/numpy.digitize.html) در numpy انجام داد. در این حالت، ما دقیقاً اندازه وضعیت را می‌دانیم، زیرا به تعداد بازه‌هایی که برای گسسته‌سازی انتخاب می‌کنیم بستگی دارد. + +✅ ما می‌توانیم از درون‌یابی خطی برای آوردن مقادیر به یک بازه محدود (مثلاً از -20 تا 20) استفاده کنیم و سپس اعداد را با گرد کردن به اعداد صحیح تبدیل کنیم. این روش کنترل کمتری بر اندازه وضعیت به ما می‌دهد، به خصوص اگر بازه‌های دقیق مقادیر ورودی را ندانیم. برای مثال، در مورد ما، 2 مورد از 4 مقدار ورودی هیچ حد بالا/پایینی ندارند که ممکن است منجر به تعداد نامحدودی از وضعیت‌ها شود. + +در مثال ما، از روش دوم استفاده خواهیم کرد. همانطور که بعداً متوجه خواهید شد، با وجود عدم تعریف حد بالا/پایین، این مقادیر به ندرت مقادیر خارج از بازه‌های محدود خاصی می‌گیرند، بنابراین آن وضعیت‌هایی با مقادیر افراطی بسیار نادر خواهند بود. + +1. در اینجا تابعی است که مشاهدات مدل ما را می‌گیرد و یک تاپل از 4 مقدار صحیح تولید می‌کند: (کد بلاک 6) + + ```python + def discretize(x): + return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int)) + ``` + +1. بیایید روش دیگری برای گسسته‌سازی با استفاده از بازه‌ها را نیز بررسی کنیم: (کد بلاک 7) + + ```python + def create_bins(i,num): + return np.arange(num+1)*(i[1]-i[0])/num+i[0] + + print("Sample bins for interval (-5,5) with 10 bins\n",create_bins((-5,5),10)) + + ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter + nbins = [20,20,10,10] # number of bins for each parameter + bins = [create_bins(ints[i],nbins[i]) for i in range(4)] + + def discretize_bins(x): + return tuple(np.digitize(x[i],bins[i]) for i in range(4)) + ``` + +1. حالا یک شبیه‌سازی کوتاه اجرا کنیم و این مقادیر گسسته محیط را مشاهده کنیم. می‌توانید هر دو `discretize` و `discretize_bins` را امتحان کنید و ببینید آیا تفاوتی وجود دارد. + + ✅ `discretize_bins` شماره بازه را که از 0 شروع می‌شود بازمی‌گرداند. بنابراین برای مقادیر متغیر ورودی در اطراف 0، عددی از وسط بازه (10) بازمی‌گرداند. در `discretize`، ما به بازه مقادیر خروجی اهمیت ندادیم و اجازه دادیم که منفی باشند، بنابراین مقادیر وضعیت جابجا نشده‌اند و 0 معادل 0 است. (کد بلاک 8) + + ```python + env.reset() + + done = False + while not done: + #env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + #print(discretize_bins(obs)) + print(discretize(obs)) + env.close() + ``` + + ✅ خطی که با `env.render` شروع می‌شود را لغو کامنت کنید اگر می‌خواهید ببینید محیط چگونه اجرا می‌شود. در غیر این صورت می‌توانید آن را در پس‌زمینه اجرا کنید که سریع‌تر است. ما از این اجرای "نامرئی" در طول فرآیند یادگیری Q استفاده خواهیم کرد. + +## ساختار جدول Q + +در درس قبلی، وضعیت یک جفت عدد ساده از 0 تا 8 بود و بنابراین نمایش جدول Q با یک آرایه numpy با شکل 8x8x2 راحت بود. اگر از گسسته‌سازی با بازه‌ها استفاده کنیم، اندازه بردار وضعیت ما نیز مشخص است، بنابراین می‌توانیم از همان روش استفاده کنیم و وضعیت را با یک آرایه با شکل 20x20x10x10x2 نمایش دهیم (در اینجا 2 بعد فضای عمل است و ابعاد اول مربوط به تعداد بازه‌هایی است که برای هر یک از پارامترهای فضای مشاهده انتخاب کرده‌ایم). + +با این حال، گاهی اوقات ابعاد دقیق فضای مشاهده مشخص نیست. در مورد تابع `discretize`، ما ممکن است هرگز مطمئن نباشیم که وضعیت ما در محدوده‌های خاصی باقی می‌ماند، زیرا برخی از مقادیر اصلی محدود نیستند. بنابراین، ما از رویکرد کمی متفاوت استفاده خواهیم کرد و جدول Q را با یک دیکشنری نمایش می‌دهیم. + +1. از جفت *(state, action)* به عنوان کلید دیکشنری استفاده کنید و مقدار مربوط به مقدار ورودی جدول Q باشد. (کد بلاک 9) + + ```python + Q = {} + actions = (0,1) + + def qvalues(state): + return [Q.get((state,a),0) for a in actions] + ``` + + در اینجا ما همچنین تابع `qvalues()` را تعریف می‌کنیم که لیستی از مقادیر جدول Q را برای یک وضعیت مشخص که مربوط به تمام اقدامات ممکن است بازمی‌گرداند. اگر ورودی در جدول Q موجود نباشد، مقدار پیش‌فرض 0 را بازمی‌گردانیم. + +## بیایید یادگیری Q را شروع کنیم + +حالا آماده‌ایم که به پیتر یاد بدهیم چگونه تعادل را حفظ کند! + +1. ابتدا، برخی از ابرپارامترها را تنظیم کنیم: (کد بلاک 10) + + ```python + # hyperparameters + alpha = 0.3 + gamma = 0.9 + epsilon = 0.90 + ``` + + در اینجا، `alpha` **نرخ یادگیری** است که مشخص می‌کند تا چه حد باید مقادیر فعلی جدول Q را در هر مرحله تنظیم کنیم. در درس قبلی با مقدار 1 شروع کردیم و سپس `alpha` را در طول آموزش به مقادیر پایین‌تر کاهش دادیم. در این مثال، برای سادگی آن را ثابت نگه می‌داریم و شما می‌توانید بعداً با تنظیم مقادیر `alpha` آزمایش کنید. + + `gamma` **ضریب تخفیف** است که نشان می‌دهد تا چه حد باید پاداش آینده را نسبت به پاداش فعلی اولویت دهیم. + + `epsilon` **عامل اکتشاف/بهره‌برداری** است که تعیین می‌کند آیا باید اکتشاف را به بهره‌برداری ترجیح دهیم یا برعکس. در الگوریتم ما، در درصد `epsilon` موارد، اقدام بعدی را بر اساس مقادیر جدول Q انتخاب می‌کنیم و در تعداد باقی‌مانده موارد، یک اقدام تصادفی اجرا می‌کنیم. این به ما امکان می‌دهد مناطقی از فضای جستجو را که قبلاً ندیده‌ایم کشف کنیم. + + ✅ از نظر تعادل - انتخاب اقدام تصادفی (اکتشاف) مانند یک ضربه تصادفی در جهت اشتباه عمل می‌کند و میله باید یاد بگیرد که چگونه تعادل را از این "اشتباهات" بازیابی کند. + +### بهبود الگوریتم + +ما همچنین می‌توانیم دو بهبود در الگوریتم خود از درس قبلی ایجاد کنیم: + +- **محاسبه میانگین پاداش تجمعی**، در طول تعدادی شبیه‌سازی. ما پیشرفت را هر 5000 تکرار چاپ خواهیم کرد و پاداش تجمعی خود را در آن بازه زمانی میانگین می‌گیریم. این بدان معناست که اگر بیش از 195 امتیاز کسب کنیم - می‌توانیم مسئله را حل‌شده در نظر بگیریم، حتی با کیفیتی بالاتر از حد مورد نیاز. + +- **محاسبه حداکثر نتیجه تجمعی میانگین**، `Qmax`، و جدول Q مربوط به آن نتیجه را ذخیره خواهیم کرد. وقتی آموزش را اجرا می‌کنید، متوجه خواهید شد که گاهی اوقات نتیجه تجمعی میانگین شروع به کاهش می‌کند و ما می‌خواهیم مقادیر جدول Q را که مربوط به بهترین مدل مشاهده‌شده در طول آموزش است حفظ کنیم. + +1. تمام پاداش‌های تجمعی را در هر شبیه‌سازی در بردار `rewards` برای رسم نمودار بعدی جمع‌آوری کنید. (کد بلاک 11) + + ```python + def probs(v,eps=1e-4): + v = v-v.min()+eps + v = v/v.sum() + return v + + Qmax = 0 + cum_rewards = [] + rewards = [] + for epoch in range(100000): + obs = env.reset() + done = False + cum_reward=0 + # == do the simulation == + while not done: + s = discretize(obs) + if random.random() Qmax: + Qmax = np.average(cum_rewards) + Qbest = Q + cum_rewards=[] + ``` + +آنچه ممکن است از این نتایج متوجه شوید: + +- **نزدیک به هدف ما**. ما بسیار نزدیک به دستیابی به هدف کسب 195 پاداش تجمعی در بیش از 100 اجرای متوالی شبیه‌سازی هستیم، یا ممکن است واقعاً به آن دست یافته باشیم! حتی اگر اعداد کمتری کسب کنیم، هنوز نمی‌دانیم، زیرا ما میانگین را در طول 5000 اجرا می‌گیریم و فقط 100 اجرا در معیار رسمی مورد نیاز است. + +- **پاداش شروع به کاهش می‌کند**. گاهی اوقات پاداش شروع به کاهش می‌کند، که به این معنی است که ممکن است مقادیر یادگرفته‌شده در جدول Q را با مقادیری که وضعیت را بدتر می‌کنند "خراب" کنیم. + +این مشاهده با رسم پیشرفت آموزش واضح‌تر می‌شود. + +## رسم پیشرفت آموزش + +در طول آموزش، ما مقدار پاداش تجمعی را در هر یک از تکرارها در بردار `rewards` جمع‌آوری کرده‌ایم. اینجا نحوه نمایش آن در برابر شماره تکرار آمده است: + +```python +plt.plot(rewards) +``` + +![پیشرفت خام](../../../../translated_images/train_progress_raw.2adfdf2daea09c596fc786fa347a23e9aceffe1b463e2257d20a9505794823ec.fa.png) + +از این نمودار، نمی‌توان چیزی گفت، زیرا به دلیل ماهیت فرآیند آموزش تصادفی، طول جلسات آموزش بسیار متفاوت است. برای درک بهتر این نمودار، می‌توانیم **میانگین متحرک** را در طول یک سری آزمایش‌ها، مثلاً 100، محاسبه کنیم. این کار را می‌توان به راحتی با استفاده از `np.convolve` انجام داد: (کد بلاک 12) + +```python +def running_average(x,window): + return np.convolve(x,np.ones(window)/window,mode='valid') + +plt.plot(running_average(rewards,100)) +``` + +![پیشرفت آموزش](../../../../translated_images/train_progress_runav.c71694a8fa9ab35935aff6f109e5ecdfdbdf1b0ae265da49479a81b5fae8f0aa.fa.png) + +## تغییر ابرپارامترها + +برای پایدارتر کردن یادگیری، منطقی است که برخی از ابرپارامترهای خود را در طول آموزش تنظیم کنیم. به طور خاص: + +- **برای نرخ یادگیری**، `alpha`، می‌توانیم با مقادیر نزدیک به 1 شروع کنیم و سپس این پارامتر را کاهش دهیم. با گذشت زمان، ما مقادیر احتمالی خوبی در جدول Q خواهیم داشت و بنابراین باید آنها را به آرامی تنظیم کنیم و نه اینکه کاملاً با مقادیر جدید بازنویسی کنیم. + +- **افزایش epsilon**. ممکن است بخواهیم `epsilon` را به آرامی افزایش دهیم تا کمتر اکتشاف کنیم و بیشتر بهره‌برداری کنیم. احتمالاً منطقی است که با مقدار پایین‌تر `epsilon` شروع کنیم و به تدریج به نزدیک 1 برسیم. +> **وظیفه ۱**: با مقادیر هایپرپارامترها بازی کنید و ببینید آیا می‌توانید پاداش تجمعی بیشتری کسب کنید. آیا به بالای ۱۹۵ می‌رسید؟ +> **وظیفه ۲**: برای حل رسمی مسئله، باید میانگین پاداش ۱۹۵ را در طول ۱۰۰ اجرای متوالی به دست آورید. این مقدار را در طول آموزش اندازه‌گیری کنید و مطمئن شوید که مسئله را به طور رسمی حل کرده‌اید! + +## مشاهده نتیجه در عمل + +جالب است که ببینیم مدل آموزش‌دیده چگونه رفتار می‌کند. بیایید شبیه‌سازی را اجرا کنیم و همان استراتژی انتخاب عمل را که در طول آموزش استفاده کردیم دنبال کنیم، یعنی نمونه‌گیری بر اساس توزیع احتمالی در Q-Table: (بلاک کد ۱۳) + +```python +obs = env.reset() +done = False +while not done: + s = discretize(obs) + env.render() + v = probs(np.array(qvalues(s))) + a = random.choices(actions,weights=v)[0] + obs,_,done,_ = env.step(a) +env.close() +``` + +شما باید چیزی شبیه به این ببینید: + +![یک چرخ دستی متعادل](../../../../8-Reinforcement/2-Gym/images/cartpole-balance.gif) + +--- + +## 🚀چالش + +> **وظیفه ۳**: در اینجا، ما از نسخه نهایی Q-Table استفاده کردیم که ممکن است بهترین نسخه نباشد. به یاد داشته باشید که ما بهترین Q-Table را در متغیر `Qbest` ذخیره کرده‌ایم! همین مثال را با بهترین Q-Table امتحان کنید، با کپی کردن `Qbest` به `Q` و ببینید آیا تفاوتی مشاهده می‌کنید. + +> **وظیفه ۴**: در اینجا ما بهترین عمل را در هر مرحله انتخاب نمی‌کردیم، بلکه بر اساس توزیع احتمالی مربوطه نمونه‌گیری می‌کردیم. آیا منطقی‌تر است که همیشه بهترین عمل را با بالاترین مقدار Q-Table انتخاب کنیم؟ این کار را می‌توان با استفاده از تابع `np.argmax` انجام داد تا شماره عمل مربوط به بالاترین مقدار Q-Table را پیدا کنید. این استراتژی را پیاده‌سازی کنید و ببینید آیا تعادل بهبود می‌یابد. + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/48/) + +## تکلیف +[آموزش یک ماشین کوهستانی](assignment.md) + +## نتیجه‌گیری + +ما اکنون یاد گرفته‌ایم که چگونه عوامل را آموزش دهیم تا فقط با ارائه یک تابع پاداش که حالت مطلوب بازی را تعریف می‌کند و با دادن فرصت به آن‌ها برای جستجوی هوشمندانه فضای جستجو، به نتایج خوبی دست یابند. ما الگوریتم Q-Learning را با موفقیت در موارد محیط‌های گسسته و پیوسته، اما با اعمال گسسته، به کار برده‌ایم. + +مهم است که همچنین شرایطی را مطالعه کنیم که در آن حالت عمل نیز پیوسته باشد و فضای مشاهده بسیار پیچیده‌تر باشد، مانند تصویر صفحه بازی آتاری. در این مسائل، اغلب نیاز داریم از تکنیک‌های قدرتمندتر یادگیری ماشین، مانند شبکه‌های عصبی، استفاده کنیم تا به نتایج خوبی برسیم. این موضوعات پیشرفته‌تر، موضوع دوره پیشرفته‌تر هوش مصنوعی ما خواهد بود. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/2-Gym/assignment.md b/translations/fa/8-Reinforcement/2-Gym/assignment.md new file mode 100644 index 000000000..1ac4b3cd3 --- /dev/null +++ b/translations/fa/8-Reinforcement/2-Gym/assignment.md @@ -0,0 +1,57 @@ + +# آموزش ماشین کوهستانی + +[OpenAI Gym](http://gym.openai.com) به گونه‌ای طراحی شده است که تمام محیط‌ها یک API مشابه ارائه می‌دهند - یعنی همان متدهای `reset`، `step` و `render`، و همان انتزاعات **فضای عمل** و **فضای مشاهده**. بنابراین باید امکان پذیر باشد که همان الگوریتم‌های یادگیری تقویتی را با تغییرات کد حداقلی به محیط‌های مختلف تطبیق داد. + +## محیط ماشین کوهستانی + +[محیط ماشین کوهستانی](https://gym.openai.com/envs/MountainCar-v0/) شامل یک ماشین گیر افتاده در یک دره است: + +هدف این است که از دره خارج شده و پرچم را بگیرید، با انجام یکی از اقدامات زیر در هر مرحله: + +| مقدار | معنی | +|---|---| +| 0 | شتاب به سمت چپ | +| 1 | بدون شتاب | +| 2 | شتاب به سمت راست | + +اما نکته اصلی این مسئله این است که موتور ماشین به اندازه کافی قوی نیست که در یک حرکت از کوه بالا برود. بنابراین، تنها راه موفقیت این است که ماشین را به جلو و عقب برانید تا شتاب لازم را ایجاد کنید. + +فضای مشاهده فقط شامل دو مقدار است: + +| شماره | مشاهده | حداقل | حداکثر | +|-----|--------------|-----|-----| +| 0 | موقعیت ماشین | -1.2| 0.6 | +| 1 | سرعت ماشین | -0.07 | 0.07 | + +سیستم پاداش برای ماشین کوهستانی کمی پیچیده است: + + * پاداش 0 زمانی داده می‌شود که عامل به پرچم (موقعیت = 0.5) در بالای کوه برسد. + * پاداش -1 زمانی داده می‌شود که موقعیت عامل کمتر از 0.5 باشد. + +قسمت زمانی پایان می‌یابد که موقعیت ماشین بیشتر از 0.5 شود، یا طول قسمت بیشتر از 200 باشد. + +## دستورالعمل‌ها + +الگوریتم یادگیری تقویتی ما را برای حل مسئله ماشین کوهستانی تطبیق دهید. با کد موجود در [notebook.ipynb](notebook.ipynb) شروع کنید، محیط جدید را جایگزین کنید، توابع گسسته‌سازی حالت را تغییر دهید، و سعی کنید الگوریتم موجود را با حداقل تغییرات کد آموزش دهید. نتیجه را با تنظیم هایپرپارامترها بهینه کنید. + +> **توجه**: تنظیم هایپرپارامترها احتمالاً برای همگرایی الگوریتم لازم است. + +## معیار ارزیابی + +| معیار | عالی | کافی | نیاز به بهبود | +| -------- | --------- | -------- | ----------------- | +| | الگوریتم Q-Learning با موفقیت از مثال CartPole تطبیق داده شده است، با حداقل تغییرات کد، که قادر است مسئله گرفتن پرچم را در کمتر از 200 مرحله حل کند. | یک الگوریتم جدید Q-Learning از اینترنت گرفته شده است، اما به خوبی مستند شده است؛ یا الگوریتم موجود تطبیق داده شده است، اما به نتایج مطلوب نمی‌رسد. | دانشجو نتوانسته است هیچ الگوریتمی را با موفقیت تطبیق دهد، اما گام‌های قابل توجهی به سمت حل مسئله برداشته است (گسسته‌سازی حالت، ساختار داده Q-Table، و غیره را پیاده‌سازی کرده است). | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را رعایت کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان بومی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/2-Gym/notebook.ipynb b/translations/fa/8-Reinforcement/2-Gym/notebook.ipynb new file mode 100644 index 000000000..79a31a894 --- /dev/null +++ b/translations/fa/8-Reinforcement/2-Gym/notebook.ipynb @@ -0,0 +1,396 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.4 64-bit ('base': conda)" + }, + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "coopTranslator": { + "original_hash": "f22f8f3daed4b6d34648d1254763105b", + "translation_date": "2025-09-04T03:06:19+00:00", + "source_file": "8-Reinforcement/2-Gym/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## اسکیت کردن با CartPole\n", + "\n", + "> **مسئله**: اگر پیتر بخواهد از دست گرگ فرار کند، باید بتواند سریع‌تر از او حرکت کند. در اینجا خواهیم دید که چگونه پیتر می‌تواند اسکیت کردن را یاد بگیرد، به‌ویژه حفظ تعادل، با استفاده از Q-Learning.\n", + "\n", + "ابتدا، بیایید gym را نصب کنیم و کتابخانه‌های مورد نیاز را وارد کنیم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 1" + ] + }, + { + "source": [ + "## ایجاد محیط cartpole\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 2" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "برای دیدن نحوه کار محیط، بیایید یک شبیه‌سازی کوتاه را برای ۱۰۰ مرحله اجرا کنیم.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "در طول شبیه‌سازی، ما نیاز داریم که مشاهداتی دریافت کنیم تا تصمیم بگیریم چگونه عمل کنیم. در واقع، تابع `step` مشاهدات فعلی، تابع پاداش و علامت `done` را به ما بازمی‌گرداند که نشان می‌دهد آیا ادامه شبیه‌سازی منطقی است یا خیر:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 4" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "ما می‌توانیم مقدار حداقل و حداکثر این اعداد را به دست آوریم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "#code block 5" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 6" + ] + }, + { + "source": [ + "بیایید روش‌های گسسته‌سازی دیگر را با استفاده از بازه‌ها بررسی کنیم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "#code block 7" + ] + }, + { + "source": [ + "بیایید اکنون یک شبیه‌سازی کوتاه اجرا کنیم و آن مقادیر گسسته محیط را مشاهده کنیم.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -2, -2)\n(0, 1, -2, -5)\n(0, 2, -3, -8)\n(0, 3, -5, -11)\n(0, 3, -7, -14)\n(0, 4, -10, -17)\n(0, 3, -14, -15)\n(0, 3, -17, -12)\n(0, 3, -20, -16)\n(0, 4, -23, -19)\n" + ] + } + ], + "source": [ + "#code block 8" + ] + }, + { + "source": [ + "## ساختار جدول Q\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 9" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 10" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 22.0, alpha=0.3, epsilon=0.9\n", + "5000: 70.1384, alpha=0.3, epsilon=0.9\n", + "10000: 121.8586, alpha=0.3, epsilon=0.9\n", + "15000: 149.6368, alpha=0.3, epsilon=0.9\n", + "20000: 168.2782, alpha=0.3, epsilon=0.9\n", + "25000: 196.7356, alpha=0.3, epsilon=0.9\n", + "30000: 220.7614, alpha=0.3, epsilon=0.9\n", + "35000: 233.2138, alpha=0.3, epsilon=0.9\n", + "40000: 248.22, alpha=0.3, epsilon=0.9\n", + "45000: 264.636, alpha=0.3, epsilon=0.9\n", + "50000: 276.926, alpha=0.3, epsilon=0.9\n", + "55000: 277.9438, alpha=0.3, epsilon=0.9\n", + "60000: 248.881, alpha=0.3, epsilon=0.9\n", + "65000: 272.529, alpha=0.3, epsilon=0.9\n", + "70000: 281.7972, alpha=0.3, epsilon=0.9\n", + "75000: 284.2844, alpha=0.3, epsilon=0.9\n", + "80000: 269.667, alpha=0.3, epsilon=0.9\n", + "85000: 273.8652, alpha=0.3, epsilon=0.9\n", + "90000: 278.2466, alpha=0.3, epsilon=0.9\n", + "95000: 269.1736, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "#code block 11" + ] + }, + { + "source": [ + "## نمایش پیشرفت آموزش\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "از این نمودار نمی‌توان چیزی گفت، زیرا به دلیل ماهیت فرآیند آموزش تصادفی، طول جلسات آموزش بسیار متفاوت است. برای درک بهتر این نمودار، می‌توان میانگین متحرک را بر روی مجموعه‌ای از آزمایش‌ها، مثلاً ۱۰۰، محاسبه کرد. این کار را می‌توان به راحتی با استفاده از `np.convolve` انجام داد:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "#code block 12" + ] + }, + { + "source": [ + "## تغییر مقادیر هایپرپارامترها و مشاهده نتیجه در عمل\n", + "\n", + "حالا جالب خواهد بود که ببینیم مدل آموزش‌دیده چگونه عمل می‌کند. بیایید شبیه‌سازی را اجرا کنیم و همان استراتژی انتخاب عمل را که در طول آموزش استفاده کردیم دنبال کنیم: نمونه‌گیری بر اساس توزیع احتمالی در Q-Table:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 13" + ] + }, + { + "source": [ + "## ذخیره نتیجه به صورت GIF متحرک\n", + "\n", + "اگر می‌خواهید دوستانتان را تحت تأثیر قرار دهید، ممکن است بخواهید تصویر GIF متحرک از میله تعادل را برایشان ارسال کنید. برای انجام این کار، می‌توانیم از `env.render` استفاده کنیم تا یک فریم تصویر تولید کنیم و سپس با استفاده از کتابخانه PIL آن‌ها را به GIF متحرک ذخیره کنیم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/2-Gym/solution/Julia/README.md b/translations/fa/8-Reinforcement/2-Gym/solution/Julia/README.md new file mode 100644 index 000000000..461253f58 --- /dev/null +++ b/translations/fa/8-Reinforcement/2-Gym/solution/Julia/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/2-Gym/solution/R/README.md b/translations/fa/8-Reinforcement/2-Gym/solution/R/README.md new file mode 100644 index 000000000..917acd44d --- /dev/null +++ b/translations/fa/8-Reinforcement/2-Gym/solution/R/README.md @@ -0,0 +1,15 @@ + +این یک جایگزین موقت است + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/2-Gym/solution/notebook.ipynb b/translations/fa/8-Reinforcement/2-Gym/solution/notebook.ipynb new file mode 100644 index 000000000..a4a876562 --- /dev/null +++ b/translations/fa/8-Reinforcement/2-Gym/solution/notebook.ipynb @@ -0,0 +1,528 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "5c0e485e58d63c506f1791c4dbf990ce", + "translation_date": "2025-09-04T03:08:54+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/notebook.ipynb", + "language_code": "fa" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## اسکیت کردن با CartPole\n", + "\n", + "> **مسئله**: اگر پیتر بخواهد از دست گرگ فرار کند، باید بتواند سریع‌تر از او حرکت کند. در اینجا خواهیم دید که چگونه پیتر می‌تواند اسکیت کردن را یاد بگیرد، به‌ویژه حفظ تعادل، با استفاده از Q-Learning.\n", + "\n", + "ابتدا، بیایید gym را نصب کنیم و کتابخانه‌های مورد نیاز را وارد کنیم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: gym in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.18.3)\n", + "Requirement already satisfied: Pillow<=8.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (7.0.0)\n", + "Requirement already satisfied: scipy in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.10.4 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.19.2)\n", + "Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.6.0)\n", + "Requirement already satisfied: pyglet<=1.5.15,>=1.4.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.5.15)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n" + ] + } + ], + "source": [ + "import sys\n", + "!pip install gym \n", + "\n", + "import gym\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random" + ] + }, + { + "source": [ + "## ایجاد محیط cartpole\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env = gym.make(\"CartPole-v1\")\n", + "print(env.action_space)\n", + "print(env.observation_space)\n", + "print(env.action_space.sample())" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Discrete(2)\nBox(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)\n0\n" + ] + } + ] + }, + { + "source": [ + "برای دیدن نحوه عملکرد محیط، بیایید یک شبیه‌سازی کوتاه برای ۱۰۰ مرحله اجرا کنیم.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "for i in range(100):\n", + " env.render()\n", + " env.step(env.action_space.sample())\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/gym/logger.py:30: UserWarning: \u001b[33mWARN: You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.\u001b[0m\n warnings.warn(colorize('%s: %s'%('WARN', msg % args), 'yellow'))\n" + ] + } + ] + }, + { + "source": [ + "در طول شبیه‌سازی، ما نیاز داریم مشاهداتی دریافت کنیم تا تصمیم بگیریم چگونه عمل کنیم. در واقع، تابع `step` مشاهدات فعلی، تابع پاداش و علامت `done` را به ما بازمی‌گرداند که نشان می‌دهد آیا ادامه شبیه‌سازی منطقی است یا خیر:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " print(f\"{obs} -> {rew}\")\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[ 0.03044442 -0.19543914 -0.04496216 0.28125618] -> 1.0\n", + "[ 0.02653564 -0.38989186 -0.03933704 0.55942606] -> 1.0\n", + "[ 0.0187378 -0.19424049 -0.02814852 0.25461393] -> 1.0\n", + "[ 0.01485299 -0.38894946 -0.02305624 0.53828712] -> 1.0\n", + "[ 0.007074 -0.19351108 -0.0122905 0.23842953] -> 1.0\n", + "[ 0.00320378 0.00178427 -0.00752191 -0.05810469] -> 1.0\n", + "[ 0.00323946 0.19701326 -0.008684 -0.35315131] -> 1.0\n", + "[ 0.00717973 0.00201587 -0.01574703 -0.06321931] -> 1.0\n", + "[ 0.00722005 0.19736001 -0.01701141 -0.36082863] -> 1.0\n", + "[ 0.01116725 0.39271958 -0.02422798 -0.65882671] -> 1.0\n", + "[ 0.01902164 0.19794307 -0.03740452 -0.37387001] -> 1.0\n", + "[ 0.0229805 0.39357584 -0.04488192 -0.67810827] -> 1.0\n", + "[ 0.03085202 0.58929164 -0.05844408 -0.98457719] -> 1.0\n", + "[ 0.04263785 0.78514572 -0.07813563 -1.2950295 ] -> 1.0\n", + "[ 0.05834076 0.98116859 -0.10403622 -1.61111521] -> 1.0\n", + "[ 0.07796413 0.78741784 -0.13625852 -1.35259196] -> 1.0\n", + "[ 0.09371249 0.98396202 -0.16331036 -1.68461179] -> 1.0\n", + "[ 0.11339173 0.79106371 -0.1970026 -1.44691436] -> 1.0\n", + "[ 0.12921301 0.59883361 -0.22594088 -1.22169133] -> 1.0\n" + ] + } + ] + }, + { + "source": [ + "ما می‌توانیم مقدار حداقل و حداکثر این اعداد را به دست آوریم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "print(env.observation_space.low)\n", + "print(env.observation_space.high)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def discretize(x):\n", + " return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int))" + ] + }, + { + "source": [ + "بیایید روش‌های دیگر گسسته‌سازی با استفاده از بازه‌ها را نیز بررسی کنیم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "def create_bins(i,num):\n", + " return np.arange(num+1)*(i[1]-i[0])/num+i[0]\n", + "\n", + "print(\"Sample bins for interval (-5,5) with 10 bins\\n\",create_bins((-5,5),10))\n", + "\n", + "ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter\n", + "nbins = [20,20,10,10] # number of bins for each parameter\n", + "bins = [create_bins(ints[i],nbins[i]) for i in range(4)]\n", + "\n", + "def discretize_bins(x):\n", + " return tuple(np.digitize(x[i],bins[i]) for i in range(4))" + ] + }, + { + "source": [ + "بیایید اکنون یک شبیه‌سازی کوتاه اجرا کنیم و آن مقادیر گسسته محیط را مشاهده کنیم.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -1, -3)\n(0, 0, -2, 0)\n(0, 0, -2, -3)\n(0, 1, -3, -6)\n(0, 2, -4, -9)\n(0, 3, -6, -12)\n(0, 2, -8, -9)\n(0, 3, -10, -13)\n(0, 4, -13, -16)\n(0, 4, -16, -19)\n(0, 4, -20, -17)\n(0, 4, -24, -20)\n" + ] + } + ], + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " #env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " #print(discretize_bins(obs))\n", + " print(discretize(obs))\n", + "env.close()" + ] + }, + { + "source": [ + "## ساختار جدول Q\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "Q = {}\n", + "actions = (0,1)\n", + "\n", + "def qvalues(state):\n", + " return [Q.get((state,a),0) for a in actions]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# hyperparameters\n", + "alpha = 0.3\n", + "gamma = 0.9\n", + "epsilon = 0.90" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 108.0, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v\n", + "\n", + "Qmax = 0\n", + "cum_rewards = []\n", + "rewards = []\n", + "for epoch in range(100000):\n", + " obs = env.reset()\n", + " done = False\n", + " cum_reward=0\n", + " # == do the simulation ==\n", + " while not done:\n", + " s = discretize(obs)\n", + " if random.random() Qmax:\n", + " Qmax = np.average(cum_rewards)\n", + " Qbest = Q\n", + " cum_rewards=[]" + ] + }, + { + "source": [ + "## نمایش پیشرفت آموزش\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "از این نمودار نمی‌توان چیزی گفت، زیرا به دلیل ماهیت فرآیند آموزش تصادفی، طول جلسات آموزش بسیار متفاوت است. برای درک بهتر این نمودار، می‌توانیم **میانگین متحرک** را بر روی مجموعه‌ای از آزمایش‌ها، مثلاً ۱۰۰، محاسبه کنیم. این کار را می‌توان به راحتی با استفاده از `np.convolve` انجام داد:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
            ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "def running_average(x,window):\n", + " return np.convolve(x,np.ones(window)/window,mode='valid')\n", + "\n", + "plt.plot(running_average(rewards,100))" + ] + }, + { + "source": [ + "## تغییر مقادیر هایپرپارامترها و مشاهده نتیجه در عمل\n", + "\n", + "حالا جالب خواهد بود که ببینیم مدل آموزش‌دیده چگونه عمل می‌کند. بیایید شبیه‌سازی را اجرا کنیم و همان استراتژی انتخاب عمل که در طول آموزش استفاده کردیم را دنبال کنیم: نمونه‌گیری بر اساس توزیع احتمالی در Q-Table:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "obs = env.reset()\n", + "done = False\n", + "while not done:\n", + " s = discretize(obs)\n", + " env.render()\n", + " v = probs(np.array(qvalues(s)))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + "env.close()" + ] + }, + { + "source": [ + "## ذخیره نتیجه به صورت GIF متحرک\n", + "\n", + "اگر می‌خواهید دوستانتان را تحت تأثیر قرار دهید، ممکن است بخواهید تصویر GIF متحرک از میله تعادل را برایشان ارسال کنید. برای انجام این کار، می‌توانیم از `env.render` استفاده کنیم تا یک فریم تصویر تولید کنیم و سپس با استفاده از کتابخانه PIL آن‌ها را به GIF متحرک ذخیره کنیم:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/8-Reinforcement/README.md b/translations/fa/8-Reinforcement/README.md new file mode 100644 index 000000000..f6a09e2e4 --- /dev/null +++ b/translations/fa/8-Reinforcement/README.md @@ -0,0 +1,67 @@ + +# مقدمه‌ای بر یادگیری تقویتی + +یادگیری تقویتی (RL) یکی از الگوهای اصلی یادگیری ماشین محسوب می‌شود، در کنار یادگیری نظارت‌شده و یادگیری بدون نظارت. RL تماماً درباره تصمیم‌گیری است: گرفتن تصمیمات درست یا حداقل یادگیری از آن‌ها. + +تصور کنید یک محیط شبیه‌سازی‌شده مثل بازار سهام دارید. اگر یک قانون خاص اعمال کنید، چه اتفاقی می‌افتد؟ آیا اثر مثبت دارد یا منفی؟ اگر اتفاقی منفی رخ دهد، باید از این _تقویت منفی_ درس بگیرید و مسیر خود را تغییر دهید. اگر نتیجه مثبت باشد، باید بر اساس آن _تقویت مثبت_ پیش بروید. + +![پیتر و گرگ](../../../translated_images/peter.779730f9ba3a8a8d9290600dcf55f2e491c0640c785af7ac0d64f583c49b8864.fa.png) + +> پیتر و دوستانش باید از گرگ گرسنه فرار کنند! تصویر از [Jen Looper](https://twitter.com/jenlooper) + +## موضوع منطقه‌ای: پیتر و گرگ (روسیه) + +[پیتر و گرگ](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) یک داستان موسیقایی است که توسط آهنگساز روسی [سرگئی پروکفیف](https://en.wikipedia.org/wiki/Sergei_Prokofiev) نوشته شده است. این داستان درباره پیشاهنگ جوانی به نام پیتر است که شجاعانه از خانه‌اش بیرون می‌رود تا در جنگل گرگ را دنبال کند. در این بخش، الگوریتم‌های یادگیری ماشین را آموزش خواهیم داد که به پیتر کمک کنند: + +- **کاوش** در منطقه اطراف و ساخت یک نقشه ناوبری بهینه +- **یادگیری** نحوه استفاده از اسکیت‌برد و حفظ تعادل روی آن برای حرکت سریع‌تر. + +[![پیتر و گرگ](https://img.youtube.com/vi/Fmi5zHg4QSM/0.jpg)](https://www.youtube.com/watch?v=Fmi5zHg4QSM) + +> 🎥 روی تصویر بالا کلیک کنید تا به موسیقی پیتر و گرگ اثر پروکفیف گوش دهید + +## یادگیری تقویتی + +در بخش‌های قبلی، دو مثال از مسائل یادگیری ماشین را مشاهده کردید: + +- **نظارت‌شده**، که در آن مجموعه داده‌هایی داریم که راه‌حل‌های نمونه‌ای برای مسئله‌ای که می‌خواهیم حل کنیم پیشنهاد می‌دهند. [دسته‌بندی](../4-Classification/README.md) و [رگرسیون](../2-Regression/README.md) وظایف یادگیری نظارت‌شده هستند. +- **بدون نظارت**، که در آن داده‌های آموزشی برچسب‌گذاری‌شده نداریم. مثال اصلی یادگیری بدون نظارت [خوشه‌بندی](../5-Clustering/README.md) است. + +در این بخش، شما را با نوع جدیدی از مسئله یادگیری آشنا خواهیم کرد که نیازی به داده‌های آموزشی برچسب‌گذاری‌شده ندارد. چند نوع از این مسائل وجود دارد: + +- **[یادگیری نیمه‌نظارت‌شده](https://wikipedia.org/wiki/Semi-supervised_learning)**، که در آن مقدار زیادی داده بدون برچسب داریم که می‌توانند برای پیش‌آموزش مدل استفاده شوند. +- **[یادگیری تقویتی](https://wikipedia.org/wiki/Reinforcement_learning)**، که در آن یک عامل از طریق انجام آزمایش‌ها در یک محیط شبیه‌سازی‌شده یاد می‌گیرد چگونه رفتار کند. + +### مثال - بازی کامپیوتری + +فرض کنید می‌خواهید به یک کامپیوتر آموزش دهید که یک بازی مثل شطرنج یا [سوپر ماریو](https://wikipedia.org/wiki/Super_Mario) را بازی کند. برای اینکه کامپیوتر بتواند بازی کند، باید پیش‌بینی کند که در هر وضعیت بازی چه حرکتی انجام دهد. در حالی که این ممکن است شبیه یک مسئله دسته‌بندی به نظر برسد، اینطور نیست - زیرا ما مجموعه داده‌ای با وضعیت‌ها و اقدامات مربوطه نداریم. حتی اگر داده‌هایی مثل مسابقات شطرنج موجود یا ضبط بازی‌های سوپر ماریو داشته باشیم، احتمالاً این داده‌ها تعداد کافی از وضعیت‌های ممکن را پوشش نمی‌دهند. + +به جای جستجوی داده‌های موجود بازی، **یادگیری تقویتی** (RL) بر اساس ایده *بازی کردن کامپیوتر* بارها و مشاهده نتیجه است. بنابراین، برای اعمال یادگیری تقویتی، به دو چیز نیاز داریم: + +- **یک محیط** و **یک شبیه‌ساز** که به ما اجازه دهد بازی را بارها انجام دهیم. این شبیه‌ساز باید تمام قوانین بازی و همچنین وضعیت‌ها و اقدامات ممکن را تعریف کند. + +- **یک تابع پاداش** که به ما بگوید در هر حرکت یا بازی چقدر خوب عمل کرده‌ایم. + +تفاوت اصلی بین سایر انواع یادگیری ماشین و RL این است که در RL معمولاً نمی‌دانیم که آیا برنده می‌شویم یا می‌بازیم تا زمانی که بازی تمام شود. بنابراین، نمی‌توانیم بگوییم که یک حرکت خاص به تنهایی خوب است یا نه - فقط در پایان بازی پاداش دریافت می‌کنیم. هدف ما طراحی الگوریتم‌هایی است که به ما اجازه دهند مدل را تحت شرایط نامطمئن آموزش دهیم. ما درباره یک الگوریتم RL به نام **Q-learning** یاد خواهیم گرفت. + +## درس‌ها + +1. [مقدمه‌ای بر یادگیری تقویتی و Q-Learning](1-QLearning/README.md) +2. [استفاده از محیط شبیه‌سازی Gym](2-Gym/README.md) + +## اعتبارها + +"مقدمه‌ای بر یادگیری تقویتی" با ♥️ توسط [Dmitry Soshnikov](http://soshnikov.com) نوشته شده است. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/9-Real-World/1-Applications/README.md b/translations/fa/9-Real-World/1-Applications/README.md new file mode 100644 index 000000000..54e907a7f --- /dev/null +++ b/translations/fa/9-Real-World/1-Applications/README.md @@ -0,0 +1,159 @@ + +# پس‌نوشت: یادگیری ماشین در دنیای واقعی + +![خلاصه‌ای از یادگیری ماشین در دنیای واقعی در قالب یک اسکیچ‌نوت](../../../../translated_images/ml-realworld.26ee2746716155771f8076598b6145e6533fe4a9e2e465ea745f46648cbf1b84.fa.png) +> اسکیچ‌نوت از [تومومی ایمورا](https://www.twitter.com/girlie_mac) + +در این دوره آموزشی، شما روش‌های مختلفی برای آماده‌سازی داده‌ها برای آموزش و ایجاد مدل‌های یادگیری ماشین یاد گرفتید. شما مجموعه‌ای از مدل‌های کلاسیک رگرسیون، خوشه‌بندی، طبقه‌بندی، پردازش زبان طبیعی و سری‌های زمانی را ساختید. تبریک می‌گویم! حالا ممکن است از خود بپرسید که هدف از این همه چیست... این مدل‌ها در دنیای واقعی چه کاربردهایی دارند؟ + +در حالی که توجه زیادی در صنعت به هوش مصنوعی (AI) معطوف شده است که معمولاً از یادگیری عمیق استفاده می‌کند، مدل‌های کلاسیک یادگیری ماشین همچنان کاربردهای ارزشمندی دارند. حتی ممکن است شما همین حالا از برخی از این کاربردها استفاده کنید! در این درس، بررسی خواهید کرد که چگونه هشت صنعت و حوزه موضوعی مختلف از این نوع مدل‌ها برای بهبود عملکرد، قابلیت اطمینان، هوشمندی و ارزشمندی برنامه‌های خود برای کاربران استفاده می‌کنند. + +## [آزمون پیش از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/49/) + +## 💰 امور مالی + +بخش مالی فرصت‌های زیادی برای یادگیری ماشین ارائه می‌دهد. بسیاری از مسائل در این حوزه به خوبی با استفاده از یادگیری ماشین مدل‌سازی و حل می‌شوند. + +### تشخیص تقلب در کارت اعتباری + +ما قبلاً در دوره درباره [خوشه‌بندی k-means](../../5-Clustering/2-K-Means/README.md) یاد گرفتیم، اما چگونه می‌توان از آن برای حل مسائل مربوط به تقلب در کارت اعتباری استفاده کرد؟ + +خوشه‌بندی k-means در تکنیکی به نام **تشخیص نقاط پرت** برای شناسایی تقلب در کارت اعتباری مفید است. نقاط پرت یا انحرافات در مشاهدات یک مجموعه داده می‌توانند به ما بگویند که آیا یک کارت اعتباری به صورت عادی استفاده می‌شود یا اتفاق غیرمعمولی در حال رخ دادن است. همان‌طور که در مقاله زیر نشان داده شده است، می‌توانید داده‌های کارت اعتباری را با استفاده از الگوریتم خوشه‌بندی k-means مرتب کنید و هر تراکنش را بر اساس میزان پرت بودن آن به یک خوشه اختصاص دهید. سپس می‌توانید خوشه‌های پرریسک‌تر را برای شناسایی تراکنش‌های تقلبی یا قانونی ارزیابی کنید. +[منبع](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.680.1195&rep=rep1&type=pdf) + +### مدیریت ثروت + +در مدیریت ثروت، یک فرد یا شرکت سرمایه‌گذاری‌ها را به نمایندگی از مشتریان خود مدیریت می‌کند. وظیفه آن‌ها حفظ و رشد ثروت در بلندمدت است، بنابراین انتخاب سرمایه‌گذاری‌هایی که عملکرد خوبی دارند ضروری است. + +یکی از روش‌های ارزیابی عملکرد یک سرمایه‌گذاری خاص استفاده از رگرسیون آماری است. [رگرسیون خطی](../../2-Regression/1-Tools/README.md) ابزاری ارزشمند برای درک عملکرد یک صندوق نسبت به یک معیار است. همچنین می‌توانیم استنباط کنیم که آیا نتایج رگرسیون از نظر آماری معنادار هستند یا خیر و این نتایج چقدر بر سرمایه‌گذاری‌های مشتری تأثیر می‌گذارند. حتی می‌توانید تحلیل خود را با استفاده از رگرسیون چندگانه گسترش دهید، جایی که عوامل ریسک اضافی نیز در نظر گرفته می‌شوند. برای مثالی از نحوه عملکرد این روش برای یک صندوق خاص، مقاله زیر را درباره ارزیابی عملکرد صندوق با استفاده از رگرسیون بررسی کنید. +[منبع](http://www.brightwoodventures.com/evaluating-fund-performance-using-regression/) + +## 🎓 آموزش + +بخش آموزش نیز حوزه‌ای بسیار جالب است که می‌توان یادگیری ماشین را در آن به کار برد. مسائل جالبی برای حل وجود دارند، مانند شناسایی تقلب در آزمون‌ها یا مقالات و مدیریت سوگیری، چه عمدی و چه غیرعمدی، در فرآیند تصحیح. + +### پیش‌بینی رفتار دانش‌آموزان + +[Coursera](https://coursera.com)، یک ارائه‌دهنده دوره‌های آنلاین باز، یک وبلاگ فنی عالی دارد که در آن درباره بسیاری از تصمیمات مهندسی بحث می‌کنند. در این مطالعه موردی، آن‌ها یک خط رگرسیون را ترسیم کردند تا هرگونه همبستگی بین امتیاز پایین NPS (شاخص ترویج‌کننده خالص) و حفظ یا ترک دوره را بررسی کنند. +[منبع](https://medium.com/coursera-engineering/controlled-regression-quantifying-the-impact-of-course-quality-on-learner-retention-31f956bd592a) + +### کاهش سوگیری + +[Grammarly](https://grammarly.com)، یک دستیار نوشتاری که خطاهای املایی و گرامری را بررسی می‌کند، از سیستم‌های پیشرفته [پردازش زبان طبیعی](../../6-NLP/README.md) در محصولات خود استفاده می‌کند. آن‌ها یک مطالعه موردی جالب در وبلاگ فنی خود منتشر کردند که در آن درباره نحوه مقابله با سوگیری جنسیتی در یادگیری ماشین صحبت کردند، موضوعی که در [درس مقدماتی عدالت](../../1-Introduction/3-fairness/README.md) ما یاد گرفتید. +[منبع](https://www.grammarly.com/blog/engineering/mitigating-gender-bias-in-autocorrect/) + +## 👜 خرده‌فروشی + +بخش خرده‌فروشی قطعاً می‌تواند از یادگیری ماشین بهره‌مند شود، از ایجاد یک سفر مشتری بهتر گرفته تا مدیریت بهینه موجودی. + +### شخصی‌سازی سفر مشتری + +در Wayfair، شرکتی که کالاهای خانگی مانند مبلمان می‌فروشد، کمک به مشتریان برای یافتن محصولات مناسب برای سلیقه و نیازهایشان بسیار مهم است. در این مقاله، مهندسان شرکت توضیح می‌دهند که چگونه از یادگیری ماشین و پردازش زبان طبیعی برای "نمایش نتایج مناسب برای مشتریان" استفاده می‌کنند. به طور خاص، موتور هدف‌گذاری پرسش آن‌ها برای استفاده از استخراج موجودیت، آموزش طبقه‌بندی‌کننده، استخراج دارایی و نظر، و برچسب‌گذاری احساسات در بررسی‌های مشتری ساخته شده است. این یک مورد استفاده کلاسیک از نحوه عملکرد پردازش زبان طبیعی در خرده‌فروشی آنلاین است. +[منبع](https://www.aboutwayfair.com/tech-innovation/how-we-use-machine-learning-and-natural-language-processing-to-empower-search) + +### مدیریت موجودی + +شرکت‌های نوآور و چابکی مانند [StitchFix](https://stitchfix.com)، یک سرویس جعبه‌ای که لباس به مصرف‌کنندگان ارسال می‌کند، به شدت به یادگیری ماشین برای توصیه‌ها و مدیریت موجودی متکی هستند. تیم‌های استایلینگ آن‌ها با تیم‌های بازرگانی همکاری می‌کنند. در واقع: "یکی از دانشمندان داده ما با یک الگوریتم ژنتیکی کار کرد و آن را برای پیش‌بینی موفقیت یک لباس که هنوز وجود ندارد، به کار برد. ما این ابزار را به تیم بازرگانی ارائه دادیم و اکنون آن‌ها می‌توانند از آن به عنوان یک ابزار استفاده کنند." +[منبع](https://www.zdnet.com/article/how-stitch-fix-uses-machine-learning-to-master-the-science-of-styling/) + +## 🏥 مراقبت‌های بهداشتی + +بخش مراقبت‌های بهداشتی می‌تواند از یادگیری ماشین برای بهینه‌سازی وظایف تحقیقاتی و همچنین مسائل لجستیکی مانند بازپذیری بیماران یا جلوگیری از گسترش بیماری‌ها استفاده کند. + +### مدیریت آزمایش‌های بالینی + +سمیت در آزمایش‌های بالینی یک نگرانی عمده برای تولیدکنندگان دارو است. چه میزان سمیت قابل تحمل است؟ در این مطالعه، تحلیل روش‌های مختلف آزمایش بالینی منجر به توسعه یک رویکرد جدید برای پیش‌بینی احتمال نتایج آزمایش‌های بالینی شد. به طور خاص، آن‌ها توانستند از جنگل تصادفی برای تولید یک [طبقه‌بندی‌کننده](../../4-Classification/README.md) استفاده کنند که قادر به تمایز بین گروه‌های دارویی است. +[منبع](https://www.sciencedirect.com/science/article/pii/S2451945616302914) + +### مدیریت بازپذیری بیمارستان + +مراقبت بیمارستانی هزینه‌بر است، به ویژه زمانی که بیماران باید دوباره بستری شوند. این مقاله درباره شرکتی بحث می‌کند که از یادگیری ماشین برای پیش‌بینی احتمال بازپذیری با استفاده از الگوریتم‌های [خوشه‌بندی](../../5-Clustering/README.md) استفاده می‌کند. این خوشه‌ها به تحلیل‌گران کمک می‌کنند تا "گروه‌هایی از بازپذیری‌ها را کشف کنند که ممکن است علت مشترکی داشته باشند." +[منبع](https://healthmanagement.org/c/healthmanagement/issuearticle/hospital-readmissions-and-machine-learning) + +### مدیریت بیماری + +همه‌گیری اخیر توجه زیادی را به روش‌هایی که یادگیری ماشین می‌تواند در جلوگیری از گسترش بیماری کمک کند، جلب کرده است. در این مقاله، استفاده از ARIMA، منحنی‌های لجستیک، رگرسیون خطی و SARIMA را خواهید شناخت. "این کار تلاشی است برای محاسبه نرخ گسترش این ویروس و پیش‌بینی مرگ‌ها، بهبودی‌ها و موارد تأیید شده، به طوری که بتوانیم بهتر آماده شویم و زنده بمانیم." +[منبع](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979218/) + +## 🌲 بوم‌شناسی و فناوری سبز + +طبیعت و بوم‌شناسی شامل بسیاری از سیستم‌های حساس است که تعامل بین حیوانات و طبیعت را در کانون توجه قرار می‌دهد. مهم است که بتوان این سیستم‌ها را به دقت اندازه‌گیری کرد و در صورت وقوع اتفاقی مانند آتش‌سوزی جنگل یا کاهش جمعیت حیوانات، به درستی عمل کرد. + +### مدیریت جنگل + +شما در درس‌های قبلی درباره [یادگیری تقویتی](../../8-Reinforcement/README.md) یاد گرفتید. این روش می‌تواند هنگام تلاش برای پیش‌بینی الگوها در طبیعت بسیار مفید باشد. به طور خاص، می‌توان از آن برای ردیابی مشکلات بوم‌شناختی مانند آتش‌سوزی جنگل‌ها و گسترش گونه‌های مهاجم استفاده کرد. در کانادا، گروهی از محققان از یادگیری تقویتی برای ساخت مدل‌های پویایی آتش‌سوزی جنگل از تصاویر ماهواره‌ای استفاده کردند. با استفاده از یک "فرآیند گسترش فضایی (SSP)" نوآورانه، آن‌ها آتش‌سوزی جنگل را به عنوان "عامل در هر سلول در چشم‌انداز" تصور کردند. "مجموعه اقداماتی که آتش می‌تواند از یک مکان در هر لحظه انجام دهد شامل گسترش به شمال، جنوب، شرق، غرب یا عدم گسترش است." + +این رویکرد تنظیمات معمول RL را معکوس می‌کند زیرا پویایی فرآیند تصمیم‌گیری مارکوف (MDP) مربوطه یک تابع شناخته‌شده برای گسترش فوری آتش‌سوزی است. درباره الگوریتم‌های کلاسیکی که این گروه استفاده کرده‌اند در لینک زیر بیشتر بخوانید. +[منبع](https://www.frontiersin.org/articles/10.3389/fict.2018.00006/full) + +### حسگرهای حرکتی حیوانات + +در حالی که یادگیری عمیق انقلابی در ردیابی بصری حرکات حیوانات ایجاد کرده است (می‌توانید [ردیاب خرس قطبی خود را بسازید](https://docs.microsoft.com/learn/modules/build-ml-model-with-azure-stream-analytics/?WT.mc_id=academic-77952-leestott) اینجا)، یادگیری ماشین کلاسیک همچنان در این کار جایگاه خود را دارد. + +حسگرها برای ردیابی حرکات حیوانات مزرعه و اینترنت اشیا از این نوع پردازش بصری استفاده می‌کنند، اما تکنیک‌های یادگیری ماشین پایه برای پیش‌پردازش داده‌ها مفید هستند. برای مثال، در این مقاله، وضعیت‌های گوسفندان با استفاده از الگوریتم‌های مختلف طبقه‌بندی‌کننده نظارت و تحلیل شدند. ممکن است منحنی ROC را در صفحه ۳۳۵ بشناسید. +[منبع](https://druckhaus-hofmann.de/gallery/31-wj-feb-2020.pdf) + +### ⚡️ مدیریت انرژی + +در درس‌های ما درباره [پیش‌بینی سری‌های زمانی](../../7-TimeSeries/README.md)، مفهوم پارکومترهای هوشمند برای تولید درآمد برای یک شهر بر اساس درک عرضه و تقاضا مطرح شد. این مقاله به طور مفصل توضیح می‌دهد که چگونه خوشه‌بندی، رگرسیون و پیش‌بینی سری‌های زمانی با هم ترکیب شدند تا مصرف انرژی آینده در ایرلند را بر اساس اندازه‌گیری‌های هوشمند پیش‌بینی کنند. +[منبع](https://www-cdn.knime.com/sites/default/files/inline-images/knime_bigdata_energy_timeseries_whitepaper.pdf) + +## 💼 بیمه + +بخش بیمه یکی دیگر از بخش‌هایی است که از یادگیری ماشین برای ساخت و بهینه‌سازی مدل‌های مالی و اکچوئری استفاده می‌کند. + +### مدیریت نوسانات + +MetLife، یک ارائه‌دهنده بیمه عمر، به طور شفاف درباره نحوه تحلیل و کاهش نوسانات در مدل‌های مالی خود صحبت می‌کند. در این مقاله، تجسم‌های طبقه‌بندی باینری و ترتیبی را مشاهده خواهید کرد. همچنین تجسم‌های پیش‌بینی را کشف خواهید کرد. +[منبع](https://investments.metlife.com/content/dam/metlifecom/us/investments/insights/research-topics/macro-strategy/pdf/MetLifeInvestmentManagement_MachineLearnedRanking_070920.pdf) + +## 🎨 هنر، فرهنگ و ادبیات + +در هنر، به عنوان مثال در روزنامه‌نگاری، مسائل جالب زیادی وجود دارند. شناسایی اخبار جعلی یک مشکل بزرگ است زیرا ثابت شده است که می‌تواند بر نظر مردم تأثیر بگذارد و حتی دموکراسی‌ها را سرنگون کند. موزه‌ها نیز می‌توانند از یادگیری ماشین در همه چیز از یافتن ارتباط بین آثار تا برنامه‌ریزی منابع بهره‌مند شوند. + +### شناسایی اخبار جعلی + +شناسایی اخبار جعلی در رسانه‌های امروزی به یک بازی موش و گربه تبدیل شده است. در این مقاله، محققان پیشنهاد می‌کنند سیستمی که ترکیبی از چندین تکنیک یادگیری ماشین است آزمایش شود و بهترین مدل به کار گرفته شود: "این سیستم بر اساس پردازش زبان طبیعی برای استخراج ویژگی‌ها از داده‌ها ساخته شده و سپس این ویژگی‌ها برای آموزش طبقه‌بندی‌کننده‌های یادگیری ماشین مانند Naive Bayes، ماشین بردار پشتیبان (SVM)، جنگل تصادفی (RF)، گرادیان نزولی تصادفی (SGD) و رگرسیون لجستیک (LR) استفاده می‌شوند." +[منبع](https://www.irjet.net/archives/V7/i6/IRJET-V7I6688.pdf) + +این مقاله نشان می‌دهد که چگونه ترکیب حوزه‌های مختلف یادگیری ماشین می‌تواند نتایج جالبی تولید کند که به جلوگیری از انتشار اخبار جعلی و ایجاد آسیب واقعی کمک کند؛ در این مورد، انگیزه انتشار شایعات درباره درمان‌های COVID بود که خشونت جمعی را برانگیخت. + +### یادگیری ماشین در موزه‌ها + +موزه‌ها در آستانه یک انقلاب هوش مصنوعی قرار دارند که در آن فهرست‌بندی و دیجیتالی کردن مجموعه‌ها و یافتن ارتباط بین آثار با پیشرفت فناوری آسان‌تر می‌شود. پروژه‌هایی مانند [In Codice Ratio](https://www.sciencedirect.com/science/article/abs/pii/S0306457321001035#:~:text=1.,studies%20over%20large%20historical%20sources.) به باز کردن رمز و راز مجموعه‌های غیرقابل دسترس مانند آرشیو واتیکان کمک می‌کنند. اما، جنبه تجاری موزه‌ها نیز از مدل‌های یادگیری ماشین بهره می‌برد. + +برای مثال، مؤسسه هنر شیکاگو مدل‌هایی برای پیش‌بینی علاقه‌مندی مخاطبان و زمان بازدید آن‌ها از نمایشگاه‌ها ساخت. هدف ایجاد تجربیات بازدیدکننده شخصی‌سازی‌شده و بهینه در هر بار بازدید کاربر از موزه است. "در سال مالی ۲۰۱۷، مدل پیش‌بینی حضور و پذیرش را با دقت ۱ درصد پیش‌بینی کرد، می‌گوید اندرو سیم‌نیک، معاون ارشد مؤسسه هنر." +[منبع](https://www.chicagobusiness.com/article/20180518/ISSUE01/180519840/art-institute-of-chicago-uses-data-to-make-exhibit-choices) + +## 🏷 بازاریابی + +### بخش‌بندی مشتریان + +موثرترین استراتژی‌های بازاریابی مشتریان را بر اساس گروه‌بندی‌های مختلف به روش‌های متفاوت هدف قرار می‌دهند. در این مقاله، استفاده از الگوریتم‌های خوشه‌بندی برای پشتیبانی از بازاریابی متمایز مورد بحث قرار گرفته است. بازاریابی متمایز به شرکت‌ها کمک می‌کند تا شناخت برند را بهبود بخشند، مشتریان بیشتری را جذب کنند و درآمد بیشتری کسب کنند. +[منبع](https://ai.inqline.com/machine-learning-for-marketing-customer-segmentation/) + +## 🚀 چالش +بخش دیگری را شناسایی کنید که از برخی تکنیک‌هایی که در این دوره آموزشی یاد گرفتید بهره‌مند می‌شود و بررسی کنید که چگونه از یادگیری ماشین استفاده می‌کند. + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/50/) + +## مرور و مطالعه شخصی + +تیم علم داده Wayfair چندین ویدئوی جالب درباره نحوه استفاده از یادگیری ماشین در شرکت خود دارد. ارزش دارد که [نگاهی بیندازید](https://www.youtube.com/channel/UCe2PjkQXqOuwkW1gw6Ameuw/videos)! + +## تکلیف + +[یک شکار گنج یادگیری ماشین](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/9-Real-World/1-Applications/assignment.md b/translations/fa/9-Real-World/1-Applications/assignment.md new file mode 100644 index 000000000..0990651b9 --- /dev/null +++ b/translations/fa/9-Real-World/1-Applications/assignment.md @@ -0,0 +1,27 @@ + +# شکار گنج یادگیری ماشین + +## دستورالعمل‌ها + +در این درس، شما با بسیاری از موارد استفاده واقعی که با استفاده از یادگیری ماشین کلاسیک حل شده‌اند، آشنا شدید. در حالی که استفاده از یادگیری عمیق، تکنیک‌ها و ابزارهای جدید در هوش مصنوعی، و بهره‌گیری از شبکه‌های عصبی به تولید سریع‌تر ابزارها در این حوزه‌ها کمک کرده است، یادگیری ماشین کلاسیک با استفاده از تکنیک‌های این دوره همچنان ارزش زیادی دارد. + +در این تکلیف، تصور کنید که در یک هکاتون شرکت می‌کنید. از آنچه در این دوره یاد گرفته‌اید استفاده کنید تا یک راه‌حل با استفاده از یادگیری ماشین کلاسیک برای حل یک مشکل در یکی از حوزه‌های مطرح شده در این درس پیشنهاد دهید. یک ارائه تهیه کنید که در آن توضیح دهید چگونه ایده خود را اجرا خواهید کرد. امتیاز اضافی اگر بتوانید داده‌های نمونه جمع‌آوری کنید و یک مدل یادگیری ماشین برای حمایت از مفهوم خود بسازید! + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| --------- | ------------------------------------------------------------------ | ---------------------------------------------- | ---------------------- | +| | یک ارائه پاورپوینت ارائه شده است - امتیاز اضافی برای ساخت مدل | یک ارائه ساده و غیرنوآورانه ارائه شده است | کار ناقص است | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/9-Real-World/2-Debugging-ML-Models/README.md b/translations/fa/9-Real-World/2-Debugging-ML-Models/README.md new file mode 100644 index 000000000..30c34b816 --- /dev/null +++ b/translations/fa/9-Real-World/2-Debugging-ML-Models/README.md @@ -0,0 +1,178 @@ + +# پس‌نوشت: اشکال‌زدایی مدل در یادگیری ماشین با استفاده از اجزای داشبورد هوش مصنوعی مسئولانه + +## [پیش‌زمینه آزمون](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/) + +## مقدمه + +یادگیری ماشین بر زندگی روزمره ما تأثیر می‌گذارد. هوش مصنوعی در حال ورود به برخی از مهم‌ترین سیستم‌هایی است که بر ما به عنوان افراد و جامعه تأثیر می‌گذارند، از جمله مراقبت‌های بهداشتی، امور مالی، آموزش و اشتغال. به عنوان مثال، سیستم‌ها و مدل‌ها در وظایف تصمیم‌گیری روزانه مانند تشخیص‌های پزشکی یا شناسایی تقلب دخیل هستند. در نتیجه، پیشرفت‌های هوش مصنوعی همراه با پذیرش سریع آن با انتظارات اجتماعی در حال تحول و مقررات رو به رشد مواجه شده‌اند. ما دائماً شاهد مناطقی هستیم که سیستم‌های هوش مصنوعی همچنان از انتظارات فاصله دارند؛ چالش‌های جدیدی را آشکار می‌کنند؛ و دولت‌ها شروع به تنظیم راه‌حل‌های هوش مصنوعی کرده‌اند. بنابراین، مهم است که این مدل‌ها تحلیل شوند تا نتایج منصفانه، قابل اعتماد، فراگیر، شفاف و پاسخگو برای همه ارائه دهند. + +در این برنامه آموزشی، ما ابزارهای عملی را بررسی خواهیم کرد که می‌توانند برای ارزیابی اینکه آیا یک مدل دارای مسائل هوش مصنوعی مسئولانه است یا خیر، استفاده شوند. تکنیک‌های سنتی اشکال‌زدایی یادگیری ماشین معمولاً بر اساس محاسبات کمی مانند دقت تجمعی یا میانگین خطای از دست رفته هستند. تصور کنید چه اتفاقی می‌افتد وقتی داده‌هایی که برای ساخت این مدل‌ها استفاده می‌کنید فاقد برخی جمعیت‌شناسی‌ها مانند نژاد، جنسیت، دیدگاه سیاسی، مذهب یا نمایندگی نامتناسب این جمعیت‌شناسی‌ها باشد. یا زمانی که خروجی مدل به گونه‌ای تفسیر شود که به نفع برخی جمعیت‌ها باشد؟ این می‌تواند منجر به نمایندگی بیش از حد یا کم از این گروه‌های ویژگی حساس شود و در نتیجه مسائل مربوط به انصاف، فراگیری یا قابلیت اطمینان از مدل ایجاد شود. عامل دیگر این است که مدل‌های یادگیری ماشین به عنوان جعبه‌های سیاه در نظر گرفته می‌شوند، که درک و توضیح اینکه چه چیزی باعث پیش‌بینی مدل می‌شود را دشوار می‌کند. همه این‌ها چالش‌هایی هستند که دانشمندان داده و توسعه‌دهندگان هوش مصنوعی با آن‌ها مواجه می‌شوند وقتی ابزارهای کافی برای اشکال‌زدایی و ارزیابی انصاف یا قابلیت اعتماد مدل ندارند. + +در این درس، شما یاد خواهید گرفت که چگونه مدل‌های خود را با استفاده از موارد زیر اشکال‌زدایی کنید: + +- **تحلیل خطا**: شناسایی مناطقی در توزیع داده‌های شما که مدل نرخ خطای بالایی دارد. +- **نمای کلی مدل**: انجام تحلیل مقایسه‌ای در میان گروه‌های مختلف داده برای کشف تفاوت‌ها در معیارهای عملکرد مدل شما. +- **تحلیل داده‌ها**: بررسی مناطقی که ممکن است نمایندگی بیش از حد یا کم داده‌های شما وجود داشته باشد که می‌تواند مدل شما را به نفع یک جمعیت داده نسبت به دیگری منحرف کند. +- **اهمیت ویژگی‌ها**: درک اینکه کدام ویژگی‌ها پیش‌بینی‌های مدل شما را در سطح جهانی یا محلی هدایت می‌کنند. + +## پیش‌نیاز + +به عنوان پیش‌نیاز، لطفاً بررسی کنید [ابزارهای هوش مصنوعی مسئولانه برای توسعه‌دهندگان](https://www.microsoft.com/ai/ai-lab-responsible-ai-dashboard) + +> ![تصویر متحرک ابزارهای هوش مصنوعی مسئولانه](../../../../9-Real-World/2-Debugging-ML-Models/images/rai-overview.gif) + +## تحلیل خطا + +معیارهای عملکرد سنتی مدل که برای اندازه‌گیری دقت استفاده می‌شوند، عمدتاً محاسباتی بر اساس پیش‌بینی‌های درست و نادرست هستند. به عنوان مثال، تعیین اینکه یک مدل ۸۹٪ از زمان دقیق است با خطای از دست رفته ۰.۰۰۱ می‌تواند عملکرد خوبی در نظر گرفته شود. خطاها اغلب به طور یکنواخت در مجموعه داده‌های زیرین شما توزیع نمی‌شوند. ممکن است امتیاز دقت مدل ۸۹٪ دریافت کنید اما کشف کنید که مناطق مختلفی از داده‌های شما وجود دارد که مدل در ۴۲٪ از زمان شکست می‌خورد. پیامد این الگوهای شکست با گروه‌های خاص داده می‌تواند منجر به مسائل مربوط به انصاف یا قابلیت اعتماد شود. ضروری است مناطقی را که مدل عملکرد خوبی دارد یا ندارد، درک کنید. مناطقی از داده‌ها که تعداد زیادی نادرستی در مدل شما وجود دارد ممکن است به یک جمعیت داده مهم تبدیل شوند. + +![تحلیل و اشکال‌زدایی خطاهای مدل](../../../../translated_images/ea-error-distribution.117452e1177c1dd84fab2369967a68bcde787c76c6ea7fdb92fcf15d1fce8206.fa.png) + +مولفه تحلیل خطا در داشبورد RAI نشان می‌دهد که چگونه شکست مدل در میان گروه‌های مختلف با یک تصویر درختی توزیع شده است. این ابزار برای شناسایی ویژگی‌ها یا مناطقی که نرخ خطای بالایی در مجموعه داده شما دارند مفید است. با مشاهده اینکه بیشتر نادرستی‌های مدل از کجا می‌آیند، می‌توانید شروع به بررسی علت اصلی کنید. همچنین می‌توانید گروه‌های داده‌ای ایجاد کنید تا تحلیل انجام دهید. این گروه‌های داده‌ای در فرآیند اشکال‌زدایی کمک می‌کنند تا مشخص شود چرا عملکرد مدل در یک گروه خوب است اما در گروه دیگر اشتباه است. + +![تحلیل خطا](../../../../translated_images/ea-error-cohort.6886209ea5d438c4daa8bfbf5ce3a7042586364dd3eccda4a4e3d05623ac702a.fa.png) + +شاخص‌های بصری در نقشه درختی به یافتن سریع‌تر مناطق مشکل کمک می‌کنند. به عنوان مثال، هرچه سایه قرمز تیره‌تر یک گره درختی باشد، نرخ خطا بالاتر است. + +نقشه حرارتی یکی دیگر از قابلیت‌های تصویری است که کاربران می‌توانند از آن برای بررسی نرخ خطا با استفاده از یک یا دو ویژگی برای یافتن عوامل مؤثر بر خطاهای مدل در کل مجموعه داده یا گروه‌ها استفاده کنند. + +![نقشه حرارتی تحلیل خطا](../../../../translated_images/ea-heatmap.8d27185e28cee3830c85e1b2e9df9d2d5e5c8c940f41678efdb68753f2f7e56c.fa.png) + +از تحلیل خطا استفاده کنید وقتی که نیاز دارید: + +* درک عمیقی از نحوه توزیع شکست‌های مدل در یک مجموعه داده و در میان چندین ابعاد ورودی و ویژگی کسب کنید. +* معیارهای عملکرد تجمعی را تجزیه کنید تا گروه‌های اشتباه را به طور خودکار کشف کنید و مراحل کاهش هدفمند خود را اطلاع دهید. + +## نمای کلی مدل + +ارزیابی عملکرد یک مدل یادگیری ماشین نیازمند درک جامع از رفتار آن است. این امر با بررسی بیش از یک معیار مانند نرخ خطا، دقت، یادآوری، دقت یا MAE (میانگین خطای مطلق) برای یافتن تفاوت‌ها در میان معیارهای عملکرد قابل دستیابی است. یک معیار عملکرد ممکن است عالی به نظر برسد، اما نادرستی‌ها می‌توانند در معیار دیگری آشکار شوند. علاوه بر این، مقایسه معیارها برای تفاوت‌ها در کل مجموعه داده یا گروه‌ها به روشن شدن مناطقی که مدل عملکرد خوبی دارد یا ندارد کمک می‌کند. این امر به ویژه در مشاهده عملکرد مدل در میان ویژگی‌های حساس در مقابل ویژگی‌های غیرحساس (مانند نژاد بیمار، جنسیت یا سن) برای کشف احتمالی نابرابری مدل مهم است. به عنوان مثال، کشف اینکه مدل در گروهی که ویژگی‌های حساس دارد بیشتر اشتباه می‌کند می‌تواند نابرابری احتمالی مدل را آشکار کند. + +مولفه نمای کلی مدل در داشبورد RAI نه تنها در تحلیل معیارهای عملکرد نمایندگی داده در یک گروه کمک می‌کند، بلکه به کاربران امکان مقایسه رفتار مدل در میان گروه‌های مختلف را می‌دهد. + +![گروه‌های مجموعه داده - نمای کلی مدل در داشبورد RAI](../../../../translated_images/model-overview-dataset-cohorts.dfa463fb527a35a0afc01b7b012fc87bf2cad756763f3652bbd810cac5d6cf33.fa.png) + +قابلیت تحلیل مبتنی بر ویژگی این مولفه به کاربران امکان می‌دهد گروه‌های داده‌ای را در یک ویژگی خاص محدود کنند تا ناهنجاری‌ها را در سطح جزئی شناسایی کنند. به عنوان مثال، داشبورد دارای هوش داخلی برای تولید خودکار گروه‌ها برای ویژگی انتخاب‌شده توسط کاربر (مانند *"زمان در بیمارستان < ۳"* یا *"زمان در بیمارستان >= ۷"*) است. این امر به کاربر امکان می‌دهد یک ویژگی خاص را از یک گروه داده بزرگ‌تر جدا کند تا ببیند آیا این ویژگی یک عامل کلیدی در نتایج اشتباه مدل است. + +![گروه‌های ویژگی - نمای کلی مدل در داشبورد RAI](../../../../translated_images/model-overview-feature-cohorts.c5104d575ffd0c80b7ad8ede7703fab6166bfc6f9125dd395dcc4ace2f522f70.fa.png) + +مولفه نمای کلی مدل از دو کلاس معیارهای تفاوت پشتیبانی می‌کند: + +**تفاوت در عملکرد مدل**: این مجموعه معیارها تفاوت (اختلاف) در مقادیر معیار عملکرد انتخاب‌شده در میان زیرگروه‌های داده را محاسبه می‌کنند. در اینجا چند مثال آورده شده است: + +* تفاوت در نرخ دقت +* تفاوت در نرخ خطا +* تفاوت در دقت +* تفاوت در یادآوری +* تفاوت در میانگین خطای مطلق (MAE) + +**تفاوت در نرخ انتخاب**: این معیار شامل تفاوت در نرخ انتخاب (پیش‌بینی مطلوب) در میان زیرگروه‌ها است. مثالی از این تفاوت در نرخ تأیید وام است. نرخ انتخاب به معنای کسری از نقاط داده در هر کلاس است که به عنوان ۱ طبقه‌بندی شده‌اند (در طبقه‌بندی دودویی) یا توزیع مقادیر پیش‌بینی (در رگرسیون). + +## تحلیل داده‌ها + +> "اگر داده‌ها را به اندازه کافی شکنجه کنید، به هر چیزی اعتراف خواهند کرد" - رونالد کوز + +این جمله ممکن است افراطی به نظر برسد، اما واقعیت این است که داده‌ها می‌توانند دستکاری شوند تا هر نتیجه‌ای را پشتیبانی کنند. چنین دستکاری گاهی اوقات به طور غیرعمدی اتفاق می‌افتد. به عنوان انسان، همه ما تعصب داریم و اغلب دشوار است که آگاهانه بدانیم چه زمانی در داده‌ها تعصب وارد می‌کنیم. تضمین انصاف در هوش مصنوعی و یادگیری ماشین همچنان یک چالش پیچیده است. + +داده‌ها یک نقطه کور بزرگ برای معیارهای عملکرد سنتی مدل هستند. ممکن است امتیازات دقت بالایی داشته باشید، اما این همیشه تعصب داده‌های زیرین که ممکن است در مجموعه داده شما باشد را منعکس نمی‌کند. به عنوان مثال، اگر مجموعه داده‌ای از کارکنان دارای ۲۷٪ زنان در موقعیت‌های اجرایی در یک شرکت و ۷۳٪ مردان در همان سطح باشد، یک مدل تبلیغاتی شغلی هوش مصنوعی که بر اساس این داده‌ها آموزش دیده است ممکن است عمدتاً مخاطبان مرد را برای موقعیت‌های شغلی سطح بالا هدف قرار دهد. داشتن این عدم تعادل در داده‌ها پیش‌بینی مدل را به نفع یک جنسیت منحرف کرد. این نشان‌دهنده یک مسئله انصاف است که در آن تعصب جنسیتی در مدل هوش مصنوعی وجود دارد. + +مولفه تحلیل داده‌ها در داشبورد RAI به شناسایی مناطقی که در آن‌ها نمایندگی بیش از حد و کم در مجموعه داده وجود دارد کمک می‌کند. این ابزار به کاربران کمک می‌کند علت اصلی خطاها و مسائل انصاف ناشی از عدم تعادل داده‌ها یا عدم نمایندگی یک گروه داده خاص را تشخیص دهند. این ابزار به کاربران امکان می‌دهد مجموعه داده‌ها را بر اساس نتایج پیش‌بینی‌شده و واقعی، گروه‌های خطا و ویژگی‌های خاص تجسم کنند. گاهی اوقات کشف یک گروه داده کم‌نمایندگی می‌تواند نشان دهد که مدل به خوبی یاد نمی‌گیرد، بنابراین نادرستی‌های بالا وجود دارد. داشتن مدلی که تعصب داده دارد نه تنها یک مسئله انصاف است بلکه نشان می‌دهد که مدل فراگیر یا قابل اعتماد نیست. + +![مولفه تحلیل داده‌ها در داشبورد RAI](../../../../translated_images/dataanalysis-cover.8d6d0683a70a5c1e274e5a94b27a71137e3d0a3b707761d7170eb340dd07f11d.fa.png) + +از تحلیل داده‌ها استفاده کنید وقتی که نیاز دارید: + +* آمار مجموعه داده خود را با انتخاب فیلترهای مختلف برای تقسیم داده‌های خود به ابعاد مختلف (که به عنوان گروه‌ها نیز شناخته می‌شوند) بررسی کنید. +* توزیع مجموعه داده خود را در میان گروه‌ها و ویژگی‌های مختلف درک کنید. +* تعیین کنید که آیا یافته‌های شما مربوط به انصاف، تحلیل خطا و علیت (مشتق‌شده از سایر مولفه‌های داشبورد) نتیجه توزیع مجموعه داده شما است یا خیر. +* تصمیم بگیرید که در کدام مناطق داده بیشتری جمع‌آوری کنید تا خطاهایی که از مسائل نمایندگی، نویز برچسب، نویز ویژگی، تعصب برچسب و عوامل مشابه ناشی می‌شوند را کاهش دهید. + +## تفسیر مدل + +مدل‌های یادگیری ماشین تمایل دارند جعبه‌های سیاه باشند. درک اینکه کدام ویژگی‌های کلیدی داده‌ها پیش‌بینی مدل را هدایت می‌کنند می‌تواند چالش‌برانگیز باشد. مهم است که شفافیت ارائه شود که چرا یک مدل یک پیش‌بینی خاص انجام می‌دهد. به عنوان مثال، اگر یک سیستم هوش مصنوعی پیش‌بینی کند که یک بیمار دیابتی در معرض خطر بازگشت به بیمارستان در کمتر از ۳۰ روز است، باید بتواند داده‌های پشتیبانی‌کننده‌ای که منجر به پیش‌بینی آن شده است را ارائه دهد. داشتن شاخص‌های داده پشتیبانی‌کننده شفافیت را به ارمغان می‌آورد تا به پزشکان یا بیمارستان‌ها کمک کند تصمیمات آگاهانه بگیرند. علاوه بر این، توانایی توضیح اینکه چرا یک مدل برای یک بیمار خاص پیش‌بینی کرده است، مسئولیت‌پذیری با مقررات بهداشتی را امکان‌پذیر می‌کند. وقتی از مدل‌های یادگیری ماشین به روش‌هایی استفاده می‌کنید که بر زندگی افراد تأثیر می‌گذارد، ضروری است که درک کنید و توضیح دهید چه چیزی رفتار مدل را تحت تأثیر قرار می‌دهد. قابلیت توضیح و تفسیر مدل به پاسخ دادن به سوالات در سناریوهایی مانند موارد زیر کمک می‌کند: + +* اشکال‌زدایی مدل: چرا مدل من این اشتباه را انجام داد؟ چگونه می‌توانم مدل خود را بهبود دهم؟ +* همکاری انسان-هوش مصنوعی: چگونه می‌توانم تصمیمات مدل را درک کنم و به آن‌ها اعتماد کنم؟ +* رعایت مقررات: آیا مدل من الزامات قانونی را برآورده می‌کند؟ + +مولفه اهمیت ویژگی‌ها در داشبورد RAI به شما کمک می‌کند تا اشکال‌زدایی کنید و درک جامعی از نحوه پیش‌بینی مدل داشته باشید. این ابزار همچنین برای حرفه‌ای‌های یادگیری ماشین و تصمیم‌گیرندگان مفید است تا توضیح دهند و شواهدی از ویژگی‌هایی که رفتار مدل را تحت تأثیر قرار می‌دهند برای رعایت مقررات ارائه دهند. سپس کاربران می‌توانند توضیحات جهانی و محلی را بررسی کنند تا تأیید کنند کدام ویژگی‌ها پیش‌بینی مدل را هدایت می‌کنند. توضیحات جهانی لیست ویژگی‌های برتر را که بر پیش‌بینی کلی مدل تأثیر گذاشته‌اند، نمایش می‌دهند. توضیحات محلی نشان می‌دهند که کدام ویژگی‌ها منجر به پیش‌بینی مدل برای یک مورد خاص شده‌اند. توانایی ارزیابی توضیحات محلی نیز در اشکال‌زدایی یا ممیزی یک مورد خاص برای درک بهتر و تفسیر اینکه چرا مدل یک پیش‌بینی دقیق یا نادرست انجام داده است، مفید است. + +![مولفه اهمیت ویژگی‌ها در داشبورد RAI](../../../../translated_images/9-feature-importance.cd3193b4bba3fd4bccd415f566c2437fb3298c4824a3dabbcab15270d783606e.fa.png) + +* توضیحات جهانی: به عنوان مثال، چه ویژگی‌هایی بر رفتار کلی مدل بازگشت بیمار دیابتی به بیمارستان تأثیر می‌گذارند؟ +* توضیحات محلی: به عنوان مثال، چرا یک بیمار دیابتی بالای ۶۰ سال با بستری‌های قبلی پیش‌بینی شده است که در کمتر از ۳۰ روز به بیمارستان بازگردد یا بازنگردد؟ + +در فرآیند اشکال‌زدایی عملکرد مدل در میان گروه‌های مختلف، اهمیت ویژگی‌ها نشان می‌دهد که یک ویژگی در میان گروه‌ها چه سطحی از تأثیر دارد. این ابزار به آشکار کردن ناهنجاری‌ها هنگام مقایسه سطح تأثیر ویژگی در هدایت پیش‌بینی‌های اشتباه مدل کمک می‌کند. مولفه اهمیت ویژگی‌ها می‌تواند نشان دهد که کدام مقادیر در یک ویژگی به طور مثبت یا منفی بر نتیجه مدل تأثیر گذاشته‌اند. به عنوان مثال، اگر یک مدل یک پیش‌بینی نادرست انجام داده باشد، این مولفه به شما امکان می‌دهد تا جزئیات را بررسی کنید و مشخص کنید کدام ویژگی‌ها یا مقادیر ویژگی‌ها پیش‌بینی را هدایت کرده‌اند. این سطح از جزئیات نه تنها در اشکال‌زدایی کمک می‌کند بلکه شفافیت و مسئولیت‌پذیری را در موقعیت‌های ممیزی فراهم می‌کند. در نهایت، این مولفه می‌تواند به شناسایی مسائل انصاف کمک کند. برای مثال، اگر یک ویژگی حساس مانند قومیت یا جنسیت به شدت در هدایت پیش‌بینی مدل تأثیرگذار باشد، این می‌تواند نشانه‌ای از تعصب نژادی یا جنسیتی در مدل باشد. + +![اهمیت ویژگی‌ها](../../../../translated_images/9-features-influence.3ead3d3f68a84029f1e40d3eba82107445d3d3b6975d4682b23d8acc905da6d0.fa.png) + +از تفسیر مدل استفاده کنید وقتی که نیاز دارید: + +* تعیین کنید که پیش‌بینی‌های سیستم هوش مصنوعی شما چقدر قابل اعتماد هستند با درک اینکه کدام ویژگی‌ها برای پیش‌بینی‌ها مهم‌ترین هستند. +* به اشکال‌زدایی مدل خود نزدیک شوید با درک آن ابتدا و شناسایی اینکه آیا مدل از ویژگی‌های سالم استفاده می‌کند یا صرفاً همبستگی‌های نادرست. +* منابع احتمالی نابرابری را کشف کنید با درک اینکه آیا مدل پیش‌بینی‌ها را بر اساس ویژگی‌های حساس یا ویژگی‌هایی که به شدت با آن‌ها مرتبط هستند، انجام می‌دهد. +* اعتماد کاربران به تصمیمات مدل خود را با تولید توضیحات محلی برای نشان دادن نتایج آن‌ها ایجاد کنید. +* یک ممیزی مقرراتی از یک سیستم هوش مصنوعی را تکمیل کنید تا مدل‌ها را تأیید کنید و تأثیر تصمیمات مدل بر انسان‌ها را نظارت کنید. + +## نتیجه‌گیری + +تمام مولفه‌های داشبورد RAI ابزارهای عملی هستند که به شما کمک می‌کنند مدل‌های یادگیری ماشین بسازید که کمتر مضر و قابل اعتمادتر برای جامعه باشند. این ابزارها به پیشگیری از تهدیدات به حقوق بشر، تبعیض یا حذف گروه‌های خاص از فرصت‌های زندگی، و خطر آسیب جسمی یا روانی کمک می‌کنند. همچنین به ایجاد اعتماد در تصمیمات مدل شما کمک می‌کنند با تولید توضیحات محلی برای نشان دادن نتایج آن‌ها. برخی از آسیب‌های احتمالی را +- **نمایش بیش از حد یا کمتر از حد**. ایده این است که یک گروه خاص در یک حرفه خاص دیده نمی‌شود و هر خدمت یا عملکردی که به ترویج این وضعیت ادامه دهد، به آسیب رساندن کمک می‌کند. + +### داشبورد RAI در Azure + +[داشبورد RAI در Azure](https://learn.microsoft.com/en-us/azure/machine-learning/concept-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu) بر اساس ابزارهای متن‌باز توسعه‌یافته توسط مؤسسات و سازمان‌های برجسته علمی، از جمله مایکروسافت، ساخته شده است. این ابزارها برای دانشمندان داده و توسعه‌دهندگان هوش مصنوعی بسیار مفید هستند تا رفتار مدل را بهتر درک کنند، مشکلات نامطلوب را شناسایی کرده و کاهش دهند. + +- برای یادگیری نحوه استفاده از اجزای مختلف، به [مستندات داشبورد RAI](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu) مراجعه کنید. + +- برخی از [دفترچه‌های نمونه داشبورد RAI](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks) را بررسی کنید تا سناریوهای مسئولانه‌تر هوش مصنوعی را در Azure Machine Learning دیباگ کنید. + +--- +## 🚀 چالش + +برای جلوگیری از ورود تعصبات آماری یا داده‌ای از ابتدا، باید: + +- تنوع در پیشینه‌ها و دیدگاه‌ها در میان افرادی که روی سیستم‌ها کار می‌کنند داشته باشیم +- در مجموعه داده‌هایی سرمایه‌گذاری کنیم که تنوع جامعه ما را منعکس کنند +- روش‌های بهتری برای شناسایی و اصلاح تعصب زمانی که رخ می‌دهد توسعه دهیم + +به سناریوهای واقعی فکر کنید که در آن‌ها ناعادلانه بودن در ساخت و استفاده از مدل‌ها مشهود است. چه موارد دیگری باید در نظر گرفته شود؟ + +## [آزمون پس از درس](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/6/) +## مرور و مطالعه شخصی + +در این درس، برخی از ابزارهای عملی برای ادغام هوش مصنوعی مسئولانه در یادگیری ماشین را آموختید. + +این کارگاه را تماشا کنید تا عمیق‌تر به موضوعات بپردازید: + +- داشبورد هوش مصنوعی مسئولانه: یک مرکز جامع برای عملیاتی کردن RAI در عمل توسط بسیمرا نوشی و مهرنوش سامکی + +[![داشبورد هوش مصنوعی مسئولانه: یک مرکز جامع برای عملیاتی کردن RAI در عمل](https://img.youtube.com/vi/f1oaDNl3djg/0.jpg)](https://www.youtube.com/watch?v=f1oaDNl3djg "داشبورد هوش مصنوعی مسئولانه: یک مرکز جامع برای عملیاتی کردن RAI در عمل") + +> 🎥 روی تصویر بالا کلیک کنید برای ویدیو: داشبورد هوش مصنوعی مسئولانه: یک مرکز جامع برای عملیاتی کردن RAI در عمل توسط بسیمرا نوشی و مهرنوش سامکی + +برای یادگیری بیشتر درباره هوش مصنوعی مسئولانه و نحوه ساخت مدل‌های قابل اعتمادتر، به منابع زیر مراجعه کنید: + +- ابزارهای داشبورد RAI مایکروسافت برای دیباگ مدل‌های یادگیری ماشین: [منابع ابزارهای هوش مصنوعی مسئولانه](https://aka.ms/rai-dashboard) + +- ابزارهای هوش مصنوعی مسئولانه را بررسی کنید: [گیت‌هاب](https://github.com/microsoft/responsible-ai-toolbox) + +- مرکز منابع RAI مایکروسافت: [منابع هوش مصنوعی مسئولانه – مایکروسافت AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- گروه تحقیقاتی FATE مایکروسافت: [FATE: عدالت، پاسخگویی، شفافیت و اخلاق در هوش مصنوعی - تحقیقات مایکروسافت](https://www.microsoft.com/research/theme/fate/) + +## تکلیف + +[داشبورد RAI را بررسی کنید](assignment.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/9-Real-World/2-Debugging-ML-Models/assignment.md b/translations/fa/9-Real-World/2-Debugging-ML-Models/assignment.md new file mode 100644 index 000000000..51ca1c8e4 --- /dev/null +++ b/translations/fa/9-Real-World/2-Debugging-ML-Models/assignment.md @@ -0,0 +1,25 @@ + +# بررسی داشبورد هوش مصنوعی مسئول (RAI) + +## دستورالعمل‌ها + +در این درس با داشبورد RAI آشنا شدید، مجموعه‌ای از اجزای ساخته شده بر اساس ابزارهای "متن‌باز" که به دانشمندان داده کمک می‌کند تحلیل خطا، بررسی داده‌ها، ارزیابی انصاف، تفسیر مدل، ارزیابی‌های فرضی/چه-اگر و تحلیل علّی را بر روی سیستم‌های هوش مصنوعی انجام دهند. برای این تکلیف، برخی از نمونه [دفترچه‌ها](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks) داشبورد RAI را بررسی کنید و یافته‌های خود را در قالب یک مقاله یا ارائه گزارش دهید. + +## معیار ارزیابی + +| معیار | عالی | قابل قبول | نیاز به بهبود | +| ------ | ------ | -------- | ------------- | +| | مقاله یا ارائه پاورپوینت ارائه شده که اجزای داشبورد RAI، دفترچه‌ای که اجرا شده و نتایج حاصل از اجرای آن را مورد بحث قرار می‌دهد | مقاله ارائه شده بدون نتیجه‌گیری | هیچ مقاله‌ای ارائه نشده | + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/9-Real-World/README.md b/translations/fa/9-Real-World/README.md new file mode 100644 index 000000000..e74065df0 --- /dev/null +++ b/translations/fa/9-Real-World/README.md @@ -0,0 +1,32 @@ + +# پس‌نوشت: کاربردهای واقعی یادگیری ماشین کلاسیک + +در این بخش از برنامه آموزشی، با برخی از کاربردهای واقعی یادگیری ماشین کلاسیک آشنا خواهید شد. ما اینترنت را جستجو کرده‌ایم تا مقالات و گزارش‌هایی درباره کاربردهایی که از این استراتژی‌ها استفاده کرده‌اند پیدا کنیم، و تا حد امکان از شبکه‌های عصبی، یادگیری عمیق و هوش مصنوعی اجتناب کرده‌ایم. درباره نحوه استفاده از یادگیری ماشین در سیستم‌های تجاری، کاربردهای زیست‌محیطی، امور مالی، هنر و فرهنگ و موارد دیگر بیاموزید. + +![chess](../../../translated_images/chess.e704a268781bdad85d1876b6c2295742fa0d856e7dcf3659147052df9d3db205.fa.jpg) + +> عکس از الکسیس فووه در Unsplash + +## درس + +1. [کاربردهای واقعی یادگیری ماشین](1-Applications/README.md) +2. [اشکال‌زدایی مدل‌ها در یادگیری ماشین با استفاده از اجزای داشبورد هوش مصنوعی مسئولانه](2-Debugging-ML-Models/README.md) + +## اعتبارها + +"کاربردهای واقعی" توسط تیمی از افراد، از جمله [جن لوپر](https://twitter.com/jenlooper) و [اورنلا آلتونیان](https://twitter.com/ornelladotcom) نوشته شده است. + +"اشکال‌زدایی مدل‌ها در یادگیری ماشین با استفاده از اجزای داشبورد هوش مصنوعی مسئولانه" توسط [روث یاکوبو](https://twitter.com/ruthieyakubu) نوشته شده است. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/CODE_OF_CONDUCT.md b/translations/fa/CODE_OF_CONDUCT.md new file mode 100644 index 000000000..d0bd92e83 --- /dev/null +++ b/translations/fa/CODE_OF_CONDUCT.md @@ -0,0 +1,23 @@ + +# منشور رفتاری کد متن‌باز مایکروسافت + +این پروژه منشور رفتاری کد متن‌باز مایکروسافت را پذیرفته است. [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/) + +منابع: + +- [منشور رفتاری کد متن‌باز مایکروسافت](https://opensource.microsoft.com/codeofconduct/) +- [پرسش‌های متداول درباره منشور رفتاری مایکروسافت](https://opensource.microsoft.com/codeofconduct/faq/) +- برای سوالات یا نگرانی‌ها با [opencode@microsoft.com](mailto:opencode@microsoft.com) تماس بگیرید + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را رعایت کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادقتی‌هایی باشند. سند اصلی به زبان بومی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/CONTRIBUTING.md b/translations/fa/CONTRIBUTING.md new file mode 100644 index 000000000..6f610086d --- /dev/null +++ b/translations/fa/CONTRIBUTING.md @@ -0,0 +1,24 @@ + +# مشارکت + +این پروژه از مشارکت‌ها و پیشنهادات استقبال می‌کند. بیشتر مشارکت‌ها نیاز دارند که شما با توافقنامه مجوز مشارکت‌کننده (CLA) موافقت کنید و اعلام کنید که حق این کار را دارید و واقعاً حقوق استفاده از مشارکت خود را به ما اعطا می‌کنید. برای جزئیات بیشتر، به https://cla.microsoft.com مراجعه کنید. + +> مهم: هنگام ترجمه متن در این مخزن، لطفاً اطمینان حاصل کنید که از ترجمه ماشینی استفاده نمی‌کنید. ما ترجمه‌ها را از طریق جامعه بررسی خواهیم کرد، بنابراین فقط برای ترجمه به زبان‌هایی که در آن‌ها مهارت دارید داوطلب شوید. + +وقتی یک درخواست کششی (pull request) ارسال می‌کنید، یک ربات CLA به طور خودکار تعیین می‌کند که آیا نیاز دارید یک CLA ارائه دهید و درخواست کششی را به طور مناسب تزئین می‌کند (مانند برچسب‌گذاری، نظرگذاری). فقط دستورالعمل‌های ارائه‌شده توسط ربات را دنبال کنید. شما فقط یک بار این کار را برای تمام مخازن استفاده‌کننده از CLA انجام خواهید داد. + +این پروژه [قوانین رفتاری متن‌باز مایکروسافت](https://opensource.microsoft.com/codeofconduct/) را پذیرفته است. +برای اطلاعات بیشتر، به [پرسش‌های متداول قوانین رفتاری](https://opensource.microsoft.com/codeofconduct/faq/) مراجعه کنید یا با [opencode@microsoft.com](mailto:opencode@microsoft.com) تماس بگیرید و سوالات یا نظرات اضافی خود را مطرح کنید. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/PyTorch_Fundamentals.ipynb b/translations/fa/PyTorch_Fundamentals.ipynb new file mode 100644 index 000000000..b365c3902 --- /dev/null +++ b/translations/fa/PyTorch_Fundamentals.ipynb @@ -0,0 +1,2830 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "authorship_tag": "ABX9TyOgv0AozH1FKQBD+RkgT2bV", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU", + "coopTranslator": { + "original_hash": "0ca21b6ee62904d616f2e36dc1cf0da7", + "translation_date": "2025-09-04T01:01:23+00:00", + "source_file": "PyTorch_Fundamentals.ipynb", + "language_code": "fa" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EHh5JllMh1rG", + "outputId": "f55755ad-c369-414c-85ec-6e9d4f061a02", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.2.1+cu121'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import torch\n", + "torch.__version__" + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"I am excited to run this\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UPlb-duwXAfz", + "outputId": "cfd687e4-1238-49f4-ab6b-ee1305b740d2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "I am excited to run this\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "print(torch.__version__)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "byWVlJ9wXDSk", + "outputId": "fd74a5c4-4d4a-41b2-ef3c-562ea3e4811f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2.2.1+cu121\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "Osm80zoEYklS" + } + }, + { + "cell_type": "code", + "source": [ + "# scalar\n", + "scalar = torch.tensor(7)\n", + "scalar" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-o8wvJ-VXZmI", + "outputId": "558816f5-1205-4de1-fe1f-2f96e9bd79e6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(7)" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mCZ2tXC4Y_Sg", + "outputId": "2d86dbdc-56e1-45c6-d3dd-14515f2a457a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ssN00By0ZQgS", + "outputId": "490f40d1-5135-4969-a6d3-c8c902cdc473" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "7" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# vector\n", + "vector = torch.tensor([7, 7])\n", + "vector\n", + "#vector.ndim\n", + "#vector.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Bws__5wlZnmF", + "outputId": "944e38f9-5ba1-4ddc-a9c6-cfb6a19bb488" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([7, 7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "vector.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9pjCvnsZZzNG", + "outputId": "e030a4da-8f81-4858-fbce-86da2aaafe52" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([2])" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Matrix\n", + "MATRIX = torch.tensor([[7, 8],[9, 10]])\n", + "MATRIX" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "a747hI9SaBGW", + "outputId": "af835ddb-81ff-4981-badb-441567194d15" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[ 7, 8],\n", + " [ 9, 10]])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XdTfFa7vaRUj", + "outputId": "0fbbab9c-8263-4cad-a380-0d2a16ca499e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX[0]\n", + "MATRIX[1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TFeD3jSDafm7", + "outputId": "69b44ab3-5ba7-451a-c6b2-f019a03d0c96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Tensor\n", + "TENSOR = torch.tensor([[[1, 2, 3],[3,6,9], [2,4,5]]])\n", + "TENSOR" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ic3cE47tah42", + "outputId": "f250e295-91de-43ec-9d80-588a6fe0abde" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]]])" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Wvjf5fczbAM1", + "outputId": "9c72b5b8-bafe-4ae7-9883-b051e209eada" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([1, 3, 3])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mwtXZwiMbN3m", + "outputId": "331a5e36-b1b0-4a5f-a9b8-e7049cbaa8f9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "3" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vzdZu_IfbP3J", + "outputId": "e24e7e71-e365-412d-ff50-fc094b56d2f3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]])" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "A8OL9eWfcRrJ" + } + }, + { + "cell_type": "code", + "source": [ + "random_tensor = torch.rand(3,4)\n", + "random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hAqSDE1EcVS_", + "outputId": "946171c3-d054-400c-f893-79110356888c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.4414, 0.7681, 0.8385, 0.3166],\n", + " [0.0468, 0.5812, 0.0670, 0.9173],\n", + " [0.2959, 0.3276, 0.7411, 0.4643]])" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "g4fvPE5GcwzP", + "outputId": "8737f36b-6864-4059-eaed-6f9156c22306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XsAg99QmdAU6", + "outputId": "35467c11-257c-4f16-99aa-eca930bcbc36" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.size()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cii1pNdVdB68", + "outputId": "fc8d2de6-9215-43de-99f7-7b0d7f7d20fa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_image_tensor = torch.rand(size=(3, 224, 224)) #color channels, height, width\n", + "random_image_tensor.ndim, random_image_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aTKq2j0cdDjb", + "outputId": "6be42057-20b9-4faf-d79d-8b65c42cc27e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([3, 224, 224]))" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor_ofownsize = torch.rand(size=(5,10,10))\n", + "random_tensor_ofownsize.ndim, random_tensor_ofownsize.shape\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IyhDdj-Pd6nC", + "outputId": "43e5e334-6d4d-4b67-f87d-7d364c6d8c67" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([5, 10, 10]))" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "UOJW08uOert_" + } + }, + { + "cell_type": "code", + "source": [ + "zero = torch.zeros(size=(3, 4))\n", + "zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGvXtaXyefie", + "outputId": "d40d3e28-8667-4d2f-8b62-f0829c6162ad" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "zero*random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OyUkUPkDe0uH", + "outputId": "26c2e4be-36ba-4c6c-9a90-2704ec135828" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones = torch.ones(size=(3, 4))\n", + "ones\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "y_Ac62Aqe82G", + "outputId": "291de5d9-b9df-49de-c9d1-d098e3e9f4d8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1., 1., 1., 1.],\n", + " [1., 1., 1., 1.],\n", + " [1., 1., 1., 1.]])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TvGOA9odfIEO", + "outputId": "45949ef4-6649-4b6c-d6af-2d4bfb8de832" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones*zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "--pTyge-fI-8", + "outputId": "c4d9bb7e-829b-43db-e2db-b1a2d64e61f0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "qDcc7Z36fSJF" + } + }, + { + "cell_type": "code", + "source": [ + "one_to_ten = torch.arange(start = 1, end = 11, step = 1)\n", + "one_to_ten" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "w3CZB4zUfR1s", + "outputId": "197fcba1-da0a-4b4a-ed11-3974bd6c01aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 27 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ten_zeros = torch.zeros_like(one_to_ten)\n", + "ten_zeros" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WZh99BwVfRy8", + "outputId": "51ef8bfb-6fa0-4099-ff66-b97d65b2ddea" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "نوع داده‌های تنسور\n" + ], + "metadata": { + "id": "pGGhgsbUgqbW" + } + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor = torch.tensor([3.0, 6.0,9.0], dtype = None, device = None, requires_grad = False)\n", + "float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JORJl4XkfRsx", + "outputId": "71114171-0f49-481f-b6fc-6cb48e2fb895" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3., 6., 9.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6wOPPwGyfRLn", + "outputId": "f23776a1-b682-404a-9f67-d5bcb0402666" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor = float_32_tensor.type(torch.float16)\n", + "float_16_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tFsHCvmZfOYe", + "outputId": "d3aa305a-7591-47f5-97fd-61bff60b44bd" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float16" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TQiCGTPuwq0q", + "outputId": "98750fce-1ca3-4889-e269-8b753efdea96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor = torch.tensor([3, 6, 9], dtype = torch.int32)\n", + "int_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5hlrLvGUw5D_", + "outputId": "41d890a0-9aee-446c-d906-631ce2ab0995" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9], dtype=torch.int32)" + ] + }, + "metadata": {}, + "execution_count": 33 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ihApD9u3xTNW", + "outputId": "d295eed0-6996-4e0f-8502-ff4b55cd1373" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(0,100,10)" + ], + "metadata": { + "id": "utKhlb_KxWDQ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p78D74E9Rj7Y", + "outputId": "781a1614-a900-41f5-9e5d-358f0b2390aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])" + ] + }, + "metadata": {}, + "execution_count": 36 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.min()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4BcSs5NeRkcj", + "outputId": "3f24a8dc-58e9-4a5f-9834-e85856a34f9d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.max()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hinqvXVLRm4q", + "outputId": "5c7d8a53-3913-4ac1-bba3-5ba8ff68250a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 38 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mean(x.type(torch.float32))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "k7okc0_vRpnB", + "outputId": "91e5494f-dc57-417c-ea4d-25dbc547c893" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 39 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.type(torch.float32).mean()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "29QcDTjHRq10", + "outputId": "62937c6c-78e0-49f2-dde3-1543ee8f7907" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 40 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.sum()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wlpY_G_sbdKF", + "outputId": "475d8258-af65-4011-a258-b93d4d8142d4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(450)" + ] + }, + "metadata": {}, + "execution_count": 41 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmax()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GT6HJzwhbk4n", + "outputId": "2e455c20-c322-4bcf-d07c-1259d3ccefc6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmin()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "egL3oi2Mb19P", + "outputId": "f71fb32f-6338-44a3-b377-75bea0a3ab54" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 43 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p2U8DZKib3DP", + "outputId": "b9f613b9-74e9-45f4-ed01-05babb6a6793" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 44 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[9]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "24qBFlGYcABe", + "outputId": "5813cfcb-7f63-4bd7-ee46-f95ccbfda939" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 45 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(1, 10)\n", + "x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0GPOxEzkcBHO", + "outputId": "aefbd903-4f4c-4d2c-c90f-eccd682fe018" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([9])" + ] + }, + "metadata": {}, + "execution_count": 46 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped = x.reshape(1,9)\n", + "x_reshaped, x_reshaped.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "spmRgQjwddgp", + "outputId": "85a7c55c-2909-4ea2-fc68-386dddc65742" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]]), torch.Size([1, 9]))" + ] + }, + "metadata": {}, + "execution_count": 47 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped.view(1,9)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tH2ahWGydqqP", + "outputId": "65d92263-4fc4-434a-c06d-c5e08436f7fe" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 48 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked = torch.stack([x, x, x, x], dim = 1)\n", + "x_stacked" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jgCeJcaud_-1", + "outputId": "7f293a37-6ef1-43b6-aee5-9d6d91c94f9e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 49 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XhJHIK6cfPse", + "outputId": "06c47b89-3a9e-453e-bcc3-00cbcb0b8b49" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 50 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ej2c3Xxzf0tq", + "outputId": "94024061-eb37-446d-c4a8-e4d16cb6de81" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 52 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4DJYo1a0f5M0", + "outputId": "efca2b47-1b14-44de-9a9a-2c83629d153f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 53 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=-2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "J4iEjn2ah2HL", + "outputId": "22395593-7c16-4162-beae-dd2bbe7bda35" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 55 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "tensor = torch.tensor([1, 2, 3])\n", + "tensor = tensor - 10\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cFfiD7Nth7Z_", + "outputId": "1139e1f8-fc1a-46ca-d636-f2bc4fd2eef6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-9, -8, -7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mul(tensor, 10)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dyA7BM_GHhqE", + "outputId": "0e3b9671-d9e8-4a32-87bb-59bc05986142" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-90, -80, -70])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.sub(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "owtUsZ1KNegI", + "outputId": "189b7b23-0041-4e09-b991-cd209a48506a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-109, -108, -107])" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.add(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "K5STXlQONsyc", + "outputId": "00cbb79a-0a1d-4e21-86ec-5c91c37a2d01" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([91, 92, 93])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.divide(tensor, 2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xqMGnzIUNvp0", + "outputId": "c894cf3e-f148-45f8-cfc8-d78740735306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-4.5000, -4.0000, -3.5000])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(tensor, tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ruGzKpV8NyBc", + "outputId": "fddb63bf-006f-48b6-ae28-287fbcda8bc5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8GS3r9yTeGfD", + "outputId": "c80b12ac-30b5-4f3d-c38c-9e41ba511b0e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "QmuYHqXTemC0", + "outputId": "402fe3ba-70b5-4bb2-c83b-254db84ff810" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 622 µs, sys: 0 ns, total: 622 µs\n", + "Wall time: 516 µs\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "torch.matmul(tensor,tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dGr1fzdNepd8", + "outputId": "97bd6c91-bc25-4b38-cdf5-f22dcdef243e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 424 µs, sys: 998 µs, total: 1.42 ms\n", + "Wall time: 1.43 ms\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.rand(3,2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pGYDoK2gevfo", + "outputId": "2c8783d5-0453-47c5-c7ed-af10d25d6989" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5999, 0.0073],\n", + " [0.9321, 0.3026],\n", + " [0.3463, 0.3872]])" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(torch.rand(3,2), torch.rand(2,3))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KGBGQoB8e2DP", + "outputId": "4c2ef361-a2d0-41ee-c328-3992cbbc138d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.3528, 0.1893, 0.0714],\n", + " [1.2791, 0.7110, 0.2563],\n", + " [0.8812, 0.4553, 0.1803]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch" + ], + "metadata": { + "id": "ib8DMtkBe_LJ" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x = torch.rand(2,9)" + ], + "metadata": { + "id": "nJo8ZBdrQY1b" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wi6oRv4MQfgf", + "outputId": "55c99f55-31f6-4cf5-ba4e-19a47c3a0167" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5894, 0.4391, 0.2018, 0.5417, 0.3844, 0.3592, 0.9209, 0.9269, 0.0681],\n", + " [0.0746, 0.1740, 0.6821, 0.6890, 0.0999, 0.7444, 0.2391, 0.4625, 0.8302]])" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "y=torch.randn(2,3,5)\n", + "y" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zpx8myAUQgoc", + "outputId": "07756d70-56bd-437c-c74e-9aecc1a77311" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[ 1.5552, -0.4877, 0.5175, -1.7958, -0.6187],\n", + " [-0.3359, -1.9710, 0.0112, -1.7578, -1.5295],\n", + " [ 0.0932, 1.4079, 0.9108, 0.3328, -0.6978]],\n", + "\n", + " [[-0.9406, -1.0809, -0.2595, 0.1282, 1.6605],\n", + " [ 1.1624, 1.0902, 1.7092, -0.2842, -1.3780],\n", + " [-0.1534, -1.2795, -0.5495, 0.9902, 0.1822]]])" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original = torch.rand(size=(224,224,3))\n", + "x_original" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "s4U-X9bJQnWe", + "outputId": "657a7a76-962c-4b41-a76b-902d0482266c" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[0.4549, 0.6809, 0.2118],\n", + " [0.4824, 0.9008, 0.8741],\n", + " [0.1715, 0.1757, 0.1845],\n", + " ...,\n", + " [0.8741, 0.6594, 0.2610],\n", + " [0.0092, 0.1984, 0.1955],\n", + " [0.4236, 0.4182, 0.0251]],\n", + "\n", + " [[0.9174, 0.1661, 0.5852],\n", + " [0.1837, 0.2351, 0.3810],\n", + " [0.3726, 0.4808, 0.8732],\n", + " ...,\n", + " [0.6794, 0.0554, 0.9202],\n", + " [0.0864, 0.8750, 0.3558],\n", + " [0.8445, 0.9759, 0.4934]],\n", + "\n", + " [[0.1600, 0.2635, 0.7194],\n", + " [0.9488, 0.3405, 0.3647],\n", + " [0.6683, 0.5168, 0.9592],\n", + " ...,\n", + " [0.0521, 0.0140, 0.2445],\n", + " [0.3596, 0.3999, 0.2730],\n", + " [0.5926, 0.9877, 0.7784]],\n", + "\n", + " ...,\n", + "\n", + " [[0.4794, 0.5635, 0.3764],\n", + " [0.9124, 0.6094, 0.5059],\n", + " [0.4528, 0.4447, 0.5021],\n", + " ...,\n", + " [0.0089, 0.4816, 0.8727],\n", + " [0.2173, 0.6296, 0.2347],\n", + " [0.2028, 0.9931, 0.7201]],\n", + "\n", + " [[0.3116, 0.6459, 0.4703],\n", + " [0.0148, 0.2345, 0.7149],\n", + " [0.8393, 0.5804, 0.6691],\n", + " ...,\n", + " [0.2105, 0.9460, 0.2696],\n", + " [0.5918, 0.9295, 0.2616],\n", + " [0.2537, 0.7819, 0.4700]],\n", + "\n", + " [[0.6654, 0.1200, 0.5841],\n", + " [0.9147, 0.5522, 0.6529],\n", + " [0.1799, 0.5276, 0.5415],\n", + " ...,\n", + " [0.7536, 0.4346, 0.8793],\n", + " [0.3793, 0.1750, 0.7792],\n", + " [0.9266, 0.8325, 0.9974]]])" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted=x_original.permute(2, 0, 1)\n", + "print(x_original.shape)\n", + "print(x_permuted.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DD19_zvbQzHo", + "outputId": "1d64ce1b-eb48-47e3-90b6-7f1340e7f2b2" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "torch.Size([224, 224, 3])\n", + "torch.Size([3, 224, 224])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NnPmMk4ZRF7w", + "outputId": "2cd5da7f-4a23-4a76-8c4a-bb982113f2a4" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z0ylNoAARgTo", + "outputId": "ddca0298-cddf-4048-9b71-a791655e5bed" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]=0.989" + ], + "metadata": { + "id": "RXw0xXsDRi4L" + }, + "execution_count": 13, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1sFdV6wzRo3f", + "outputId": "1cf87d2c-6d88-453a-d136-0f625a2800f1" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xTX-hx2SR1wp", + "outputId": "0d4908c4-c3bc-44e3-8ec6-1487104cc209" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x=torch.arange(1,10).reshape(1,3,3)\n", + "x, x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mZomOe7gR4Q8", + "outputId": "0b3c922f-ec11-46de-b8a5-9f9533d866ad" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]]]),\n", + " torch.Size([1, 3, 3]))" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3y7v4SQvSBs1", + "outputId": "8c53307d-e628-404d-db66-56c6bdffab7c" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hf9uG4xLSNya", + "outputId": "3075bc42-9ffa-426b-8a86-95628ffcd824" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zA4G2Se4SRB3", + "outputId": "324312d2-ed0a-49eb-f81f-e904e53992fe" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(1)" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][2][2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Mwy3zmKKSdbk", + "outputId": "d35172c3-b099-40a6-ddf1-a453c2adfa44" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[:,1,1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fE3nCM1KS7XT", + "outputId": "01f5d755-9737-4235-9f73-dce89ff6ba16" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([5])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,0,:]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "luNDINKNTTxp", + "outputId": "091195ef-2f71-4602-e95f-529a69193150" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,:,2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KG8A4xbfThCL", + "outputId": "5866bc41-9241-4619-be7b-e9206b3f80ab" + }, + "execution_count": 26, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np" + ], + "metadata": { + "id": "CZ3PX0qlTwHJ" + }, + "execution_count": 27, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array = np.arange(1.0, 8.0)" + ], + "metadata": { + "id": "UOBeTumiT3Lf" + }, + "execution_count": 28, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RzcO32E9UCQl", + "outputId": "430def24-c42c-461f-e5e7-398544c695d3" + }, + "execution_count": 29, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1., 2., 3., 4., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.from_numpy(array)\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JJIL0q1DUC6O", + "outputId": "8a3b1d7c-4482-4d32-f34f-9212d9d3a177" + }, + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1., 2., 3., 4., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "array[3]=11.0" + ], + "metadata": { + "id": "j3Ce6q3DUIEK" + }, + "execution_count": 33, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dc_BCVdjUsCc", + "outputId": "65537325-8b11-4f36-fc73-e56f30d6a036" + }, + "execution_count": 34, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 1., 2., 3., 11., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VG1e_eITUta2", + "outputId": "a26c5198-23b6-4a6d-d73a-ba20cd9782b8" + }, + "execution_count": 35, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1., 2., 3., 11., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 35 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.ones(7)\n", + "tensor, tensor.dtype\n", + "numpy_tensor = tensor.numpy()\n", + "numpy_tensor, numpy_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Swt8JF8vUuev", + "outputId": "c9e5bf6a-6d2c-41d6-8327-366867ffdd2d" + }, + "execution_count": 37, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(array([1., 1., 1., 1., 1., 1., 1.], dtype=float32), dtype('float32'))" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "random_tensor_A = torch.rand(3,4)\n", + "random_tensor_B = torch.rand(3,4)\n", + "print(random_tensor_A)\n", + "print(random_tensor_B)\n", + "print(random_tensor_A == random_tensor_B)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGcagTteVFTD", + "outputId": "49405790-08e7-4210-b7f1-f00b904c7eb9" + }, + "execution_count": 38, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.9870, 0.6636, 0.6873, 0.8863],\n", + " [0.8386, 0.4169, 0.3587, 0.0265],\n", + " [0.2981, 0.6025, 0.5652, 0.5840]])\n", + "tensor([[0.9821, 0.3481, 0.0913, 0.4940],\n", + " [0.7495, 0.4387, 0.9582, 0.8659],\n", + " [0.5064, 0.6919, 0.0809, 0.9771]])\n", + "tensor([[False, False, False, False],\n", + " [False, False, False, False],\n", + " [False, False, False, False]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "RANDOM_SEED = 42\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_C = torch.rand(3,4)\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_D = torch.rand(3,4)\n", + "print(random_tensor_C)\n", + "print(random_tensor_D)\n", + "print(random_tensor_C == random_tensor_D)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HznyXyEaWjLM", + "outputId": "25956434-01b6-4059-9054-c9978884ddc1" + }, + "execution_count": 46, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[True, True, True, True],\n", + " [True, True, True, True],\n", + " [True, True, True, True]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!nvidia-smi" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vltPTh0YXJSt", + "outputId": "807af6dc-a9ca-4301-ec32-b688dbde8be8" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Thu May 23 02:57:59 2024 \n", + "+---------------------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |\n", + "|-----------------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|=========================================+======================+======================|\n", + "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", + "| N/A 60C P8 11W / 70W | 0MiB / 15360MiB | 0% Default |\n", + "| | | N/A |\n", + "+-----------------------------------------+----------------------+----------------------+\n", + " \n", + "+---------------------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=======================================================================================|\n", + "| No running processes found |\n", + "+---------------------------------------------------------------------------------------+\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "torch.cuda.is_available()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "L6mMyPDyYh1j", + "outputId": "279c5dd8-c2a8-4fbd-f321-2f5d7c6e90e6" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "device" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "oOdiYa7ZYytx", + "outputId": "d73b04fc-8963-4826-9722-08d118d5ab91" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'cuda'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.cuda.device_count()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vOdsazLqZFM5", + "outputId": "8189cd6a-9017-4663-a652-3e15c517d9c3" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.tensor([1,2,3], device = \"cpu\")\n", + "print(tensor, tensor.device)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cdik9Vw3ZMv0", + "outputId": "044a68fd-83a1-409d-8e3b-655142ca0270" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([1, 2, 3]) cpu\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu = tensor.to(device)\n", + "tensor_on_gpu" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zmp835rrZp-z", + "outputId": "37fa3413-18a3-47bf-ae51-5b36ff85a3ef" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3], device='cuda:0')" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu.numpy()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 159 + }, + "id": "jhriaa8uZ1yM", + "outputId": "bc5a3226-1a12-4fea-8769-a44f21cdc323" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "error", + "ename": "TypeError", + "evalue": "can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtensor_on_gpu\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first." + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_cpu = tensor_on_gpu.cpu().numpy()" + ], + "metadata": { + "id": "LHGXK3GgaOzL" + }, + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "j-El4LlCajfq" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fa/README.md b/translations/fa/README.md new file mode 100644 index 000000000..e8d9242a7 --- /dev/null +++ b/translations/fa/README.md @@ -0,0 +1,177 @@ + +[![GitHub license](https://img.shields.io/github/license/microsoft/ML-For-Beginners.svg)](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE) +[![GitHub contributors](https://img.shields.io/github/contributors/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/) +[![GitHub issues](https://img.shields.io/github/issues/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/issues/) +[![GitHub pull-requests](https://img.shields.io/github/issues-pr/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/pulls/) +[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) + +[![GitHub watchers](https://img.shields.io/github/watchers/microsoft/ML-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/ML-For-Beginners/watchers/) +[![GitHub forks](https://img.shields.io/github/forks/microsoft/ML-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/ML-For-Beginners/network/) +[![GitHub stars](https://img.shields.io/github/stars/microsoft/ML-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/ML-For-Beginners/stargazers/) + +### 🌐 پشتیبانی چندزبانه + +#### پشتیبانی شده از طریق GitHub Action (خودکار و همیشه به‌روز) + +[French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](./README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](../hi/README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md) + +#### به جامعه بپیوندید + +[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr) + +# یادگیری ماشین برای مبتدیان - یک برنامه آموزشی + +> 🌍 با ما به دور دنیا سفر کنید و یادگیری ماشین را از طریق فرهنگ‌های جهانی کشف کنید 🌍 + +مدافعان ابری در مایکروسافت خوشحال هستند که یک برنامه آموزشی ۱۲ هفته‌ای و ۲۶ درس درباره **یادگیری ماشین** ارائه دهند. در این برنامه آموزشی، شما درباره چیزی که گاهی به عنوان **یادگیری ماشین کلاسیک** شناخته می‌شود، یاد خواهید گرفت، عمدتاً با استفاده از کتابخانه Scikit-learn و اجتناب از یادگیری عمیق که در برنامه آموزشی [AI برای مبتدیان](https://aka.ms/ai4beginners) پوشش داده شده است. این درس‌ها را با برنامه آموزشی ['علم داده برای مبتدیان'](https://aka.ms/ds4beginners) ترکیب کنید! + +با ما به دور دنیا سفر کنید و این تکنیک‌های کلاسیک را بر روی داده‌هایی از مناطق مختلف جهان اعمال کنید. هر درس شامل آزمون‌های قبل و بعد از درس، دستورالعمل‌های نوشتاری برای تکمیل درس، یک راه‌حل، یک تکلیف و موارد دیگر است. روش آموزشی مبتنی بر پروژه ما به شما امکان می‌دهد در حین ساختن یاد بگیرید، روشی اثبات‌شده برای تثبیت مهارت‌های جدید. + +**✍️ تشکر فراوان از نویسندگان ما** Jen Looper، Stephen Howell، Francesca Lazzeri، Tomomi Imura، Cassie Breviu، Dmitry Soshnikov، Chris Noring، Anirban Mukherjee، Ornella Altunyan، Ruth Yakubu و Amy Boyd + +**🎨 همچنین از تصویرگران ما تشکر می‌کنیم** Tomomi Imura، Dasani Madipalli و Jen Looper + +**🙏 تشکر ویژه 🙏 از نویسندگان، بازبینان و مشارکت‌کنندگان محتوای Microsoft Student Ambassador**، به ویژه Rishit Dagli، Muhammad Sakib Khan Inan، Rohan Raj، Alexandru Petrescu، Abhishek Jaiswal، Nawrin Tabassum، Ioan Samuila و Snigdha Agarwal + +**🤩 سپاسگزاری ویژه از Microsoft Student Ambassadors Eric Wanjau، Jasleen Sondhi و Vidushi Gupta برای درس‌های R ما!** + +# شروع کار + +این مراحل را دنبال کنید: +1. **مخزن را فورک کنید**: روی دکمه "Fork" در گوشه بالا-راست این صفحه کلیک کنید. +2. **مخزن را کلون کنید**: `git clone https://github.com/microsoft/ML-For-Beginners.git` + +> [تمام منابع اضافی این دوره را در مجموعه Microsoft Learn ما پیدا کنید](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +**[دانش‌آموزان](https://aka.ms/student-page)**، برای استفاده از این برنامه آموزشی، کل مخزن را به حساب GitHub خود فورک کنید و تمرین‌ها را به صورت فردی یا گروهی انجام دهید: + +- با آزمون قبل از درس شروع کنید. +- درس را بخوانید و فعالیت‌ها را انجام دهید، در هر بررسی دانش مکث کنید و تأمل کنید. +- سعی کنید پروژه‌ها را با درک درس‌ها ایجاد کنید، نه فقط اجرای کد راه‌حل؛ با این حال، آن کد در پوشه‌های `/solution` در هر درس مبتنی بر پروژه موجود است. +- آزمون بعد از درس را انجام دهید. +- چالش را کامل کنید. +- تکلیف را انجام دهید. +- پس از تکمیل یک گروه درس، به [تابلوی بحث](https://github.com/microsoft/ML-For-Beginners/discussions) مراجعه کنید و با پر کردن ابزار ارزیابی پیشرفت مناسب (PAT) "بلند یاد بگیرید". PAT یک ابزار ارزیابی پیشرفت است که یک معیار است که شما برای پیشبرد یادگیری خود پر می‌کنید. همچنین می‌توانید به PAT‌های دیگر واکنش نشان دهید تا با هم یاد بگیریم. + +> برای مطالعه بیشتر، توصیه می‌کنیم این [ماژول‌ها و مسیرهای یادگیری Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott) را دنبال کنید. + +**معلمان**، ما [برخی پیشنهادات](for-teachers.md) در مورد نحوه استفاده از این برنامه آموزشی را درج کرده‌ایم. + +--- + +## راهنمای ویدئویی + +برخی از درس‌ها به صورت ویدئوی کوتاه در دسترس هستند. می‌توانید همه این‌ها را در درس‌ها یا در [لیست پخش یادگیری ماشین برای مبتدیان در کانال YouTube توسعه‌دهنده مایکروسافت](https://aka.ms/ml-beginners-videos) پیدا کنید. + +[![ML for beginners banner](../../translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.fa.png)](https://aka.ms/ml-beginners-videos) + +--- + +## تیم را ملاقات کنید + +[![Promo video](../../images/ml.gif)](https://youtu.be/Tj1XWrDSYJU) + +**Gif توسط** [Mohit Jaisal](https://linkedin.com/in/mohitjaisal) + +> 🎥 روی تصویر بالا کلیک کنید تا ویدئویی درباره پروژه و افرادی که آن را ایجاد کرده‌اند مشاهده کنید! + +--- + +## روش آموزشی + +ما دو اصل آموزشی را هنگام ساخت این برنامه آموزشی انتخاب کرده‌ایم: اطمینان از اینکه این برنامه مبتنی بر پروژه‌های **عملی** است و شامل **آزمون‌های مکرر** می‌شود. علاوه بر این، این برنامه آموزشی دارای یک **موضوع مشترک** است که به آن انسجام می‌بخشد. + +با اطمینان از اینکه محتوا با پروژه‌ها هماهنگ است، فرآیند برای دانش‌آموزان جذاب‌تر می‌شود و حفظ مفاهیم افزایش می‌یابد. علاوه بر این، یک آزمون کم‌استرس قبل از کلاس، قصد دانش‌آموز را به سمت یادگیری یک موضوع هدایت می‌کند، در حالی که یک آزمون دوم پس از کلاس، حفظ بیشتر را تضمین می‌کند. این برنامه آموزشی به گونه‌ای طراحی شده است که انعطاف‌پذیر و سرگرم‌کننده باشد و می‌توان آن را به طور کامل یا جزئی انجام داد. پروژه‌ها کوچک شروع می‌شوند و تا پایان چرخه ۱۲ هفته‌ای به طور فزاینده‌ای پیچیده می‌شوند. این برنامه آموزشی همچنین شامل یک پس‌نوشت درباره کاربردهای واقعی یادگیری ماشین است که می‌تواند به عنوان اعتبار اضافی یا به عنوان پایه‌ای برای بحث استفاده شود. + +> [قوانین رفتاری](CODE_OF_CONDUCT.md)، [مشارکت](CONTRIBUTING.md)، و [راهنمای ترجمه](TRANSLATIONS.md) ما را پیدا کنید. ما از بازخورد سازنده شما استقبال می‌کنیم! + +## هر درس شامل + +- اسکچ‌نوت اختیاری +- ویدئوی تکمیلی اختیاری +- راهنمای ویدئویی (فقط برخی درس‌ها) +- آزمون گرم‌آپ قبل از درس +- درس نوشتاری +- برای درس‌های مبتنی بر پروژه، راهنمای گام‌به‌گام برای ساخت پروژه +- بررسی دانش +- یک چالش +- مطالعه تکمیلی +- تکلیف +- آزمون بعد از درس + +> **توجهی درباره زبان‌ها**: این درس‌ها عمدتاً به زبان Python نوشته شده‌اند، اما بسیاری از آن‌ها به زبان R نیز در دسترس هستند. برای تکمیل یک درس R، به پوشه `/solution` بروید و به دنبال درس‌های R بگردید. آن‌ها شامل پسوند .rmd هستند که نشان‌دهنده یک فایل **R Markdown** است که می‌توان آن را به سادگی به عنوان ترکیبی از `تکه‌های کد` (از R یا زبان‌های دیگر) و یک `هدر YAML` (که راهنمایی می‌کند چگونه خروجی‌ها مانند PDF قالب‌بندی شوند) در یک `سند Markdown` تعریف کرد. به این ترتیب، به عنوان یک چارچوب نویسندگی نمونه برای علم داده عمل می‌کند زیرا به شما امکان می‌دهد کد خود، خروجی آن و افکار خود را با نوشتن آن‌ها در Markdown ترکیب کنید. علاوه بر این، اسناد R Markdown می‌توانند به فرمت‌های خروجی مانند PDF، HTML یا Word تبدیل شوند. + +> **توجهی درباره آزمون‌ها**: همه آزمون‌ها در [پوشه Quiz App](../../quiz-app) قرار دارند، برای مجموعاً ۵۲ آزمون که هر کدام شامل سه سؤال هستند. آن‌ها از داخل درس‌ها لینک شده‌اند، اما برنامه آزمون را می‌توان به صورت محلی اجرا کرد؛ دستورالعمل‌های موجود در پوشه `quiz-app` را دنبال کنید تا به صورت محلی میزبان یا در Azure مستقر کنید. + +| شماره درس | موضوع | گروه‌بندی درس | اهداف یادگیری | درس مرتبط | نویسنده | +| :-----------: | :------------------------------------------------------------: | :-------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------: | +| 01 | مقدمه‌ای بر یادگیری ماشین | [مقدمه](1-Introduction/README.md) | یادگیری مفاهیم پایه‌ای پشت یادگیری ماشین | [درس](1-Introduction/1-intro-to-ML/README.md) | محمد | +| 02 | تاریخچه یادگیری ماشین | [مقدمه](1-Introduction/README.md) | یادگیری تاریخچه‌ای که زمینه این حوزه را فراهم کرده است | [درس](1-Introduction/2-history-of-ML/README.md) | جن و ایمی | +| 03 | انصاف و یادگیری ماشین | [مقدمه](1-Introduction/README.md) | مسائل فلسفی مهم پیرامون انصاف که دانش‌آموزان باید هنگام ساخت و اعمال مدل‌های یادگیری ماشین در نظر بگیرند چیست؟ | [درس](1-Introduction/3-fairness/README.md) | تومومی | +| 04 | تکنیک‌های یادگیری ماشین | [مقدمه](1-Introduction/README.md) | چه تکنیک‌هایی توسط محققان یادگیری ماشین برای ساخت مدل‌های یادگیری ماشین استفاده می‌شود؟ | [درس](1-Introduction/4-techniques-of-ML/README.md) | کریس و جن | +| 05 | مقدمه‌ای بر رگرسیون | [Regression](2-Regression/README.md) | شروع کار با پایتون و Scikit-learn برای مدل‌های رگرسیون | +
            • [Python](2-Regression/1-Tools/README.md)
            • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html)
            |
            • Jen
            • Eric Wanjau
            | +| 06 | قیمت کدو تنبل در آمریکای شمالی 🎃 | [Regression](2-Regression/README.md) | مصورسازی و پاکسازی داده‌ها برای آماده‌سازی جهت یادگیری ماشین |
            • [Python](2-Regression/2-Data/README.md)
            • [R](../../2-Regression/2-Data/solution/R/lesson_2.html)
            |
            • Jen
            • Eric Wanjau
            | +| 07 | قیمت کدو تنبل در آمریکای شمالی 🎃 | [Regression](2-Regression/README.md) | ساخت مدل‌های رگرسیون خطی و چندجمله‌ای |
            • [Python](2-Regression/3-Linear/README.md)
            • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html)
            |
            • Jen and Dmitry
            • Eric Wanjau
            | +| 08 | قیمت کدو تنبل در آمریکای شمالی 🎃 | [Regression](2-Regression/README.md) | ساخت مدل رگرسیون لجستیک |
            • [Python](2-Regression/4-Logistic/README.md)
            • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html)
            |
            • Jen
            • Eric Wanjau
            | +| 09 | یک اپلیکیشن وب 🔌 | [Web App](3-Web-App/README.md) | ساخت یک اپلیکیشن وب برای استفاده از مدل آموزش‌داده‌شده | [Python](3-Web-App/1-Web-App/README.md) | Jen | +| 10 | مقدمه‌ای بر دسته‌بندی | [Classification](4-Classification/README.md) | پاکسازی، آماده‌سازی و مصورسازی داده‌ها؛ مقدمه‌ای بر دسته‌بندی |
            • [Python](4-Classification/1-Introduction/README.md)
            • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) |
              • Jen and Cassie
              • Eric Wanjau
              | +| 11 | غذاهای خوشمزه آسیایی و هندی 🍜 | [Classification](4-Classification/README.md) | مقدمه‌ای بر دسته‌بندها |
              • [Python](4-Classification/2-Classifiers-1/README.md)
              • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) |
                • Jen and Cassie
                • Eric Wanjau
                | +| 12 | غذاهای خوشمزه آسیایی و هندی 🍜 | [Classification](4-Classification/README.md) | دسته‌بندهای بیشتر |
                • [Python](4-Classification/3-Classifiers-2/README.md)
                • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) |
                  • Jen and Cassie
                  • Eric Wanjau
                  | +| 13 | غذاهای خوشمزه آسیایی و هندی 🍜 | [Classification](4-Classification/README.md) | ساخت یک اپلیکیشن وب توصیه‌گر با استفاده از مدل شما | [Python](4-Classification/4-Applied/README.md) | Jen | +| 14 | مقدمه‌ای بر خوشه‌بندی | [Clustering](5-Clustering/README.md) | پاکسازی، آماده‌سازی و مصورسازی داده‌ها؛ مقدمه‌ای بر خوشه‌بندی |
                  • [Python](5-Clustering/1-Visualize/README.md)
                  • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) |
                    • Jen
                    • Eric Wanjau
                    | +| 15 | بررسی سلیقه‌های موسیقی نیجریه‌ای 🎧 | [Clustering](5-Clustering/README.md) | بررسی روش خوشه‌بندی K-Means |
                    • [Python](5-Clustering/2-K-Means/README.md)
                    • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) |
                      • Jen
                      • Eric Wanjau
                      | +| 16 | مقدمه‌ای بر پردازش زبان طبیعی ☕️ | [Natural language processing](6-NLP/README.md) | یادگیری اصول اولیه پردازش زبان طبیعی با ساخت یک ربات ساده | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Stephen | +| 17 | وظایف رایج در پردازش زبان طبیعی ☕️ | [Natural language processing](6-NLP/README.md) | تعمیق دانش پردازش زبان طبیعی با درک وظایف رایج در کار با ساختارهای زبانی | [Python](6-NLP/2-Tasks/README.md) | Stephen | +| 18 | ترجمه و تحلیل احساسات ♥️ | [Natural language processing](6-NLP/README.md) | ترجمه و تحلیل احساسات با آثار جین آستن | [Python](6-NLP/3-Translation-Sentiment/README.md) | Stephen | +| 19 | هتل‌های عاشقانه اروپا ♥️ | [Natural language processing](6-NLP/README.md) | تحلیل احساسات با بررسی نظرات هتل‌ها 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen | +| 20 | هتل‌های عاشقانه اروپا ♥️ | [Natural language processing](6-NLP/README.md) | تحلیل احساسات با بررسی نظرات هتل‌ها 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen | +| 21 | مقدمه‌ای بر پیش‌بینی سری‌های زمانی | [Time series](7-TimeSeries/README.md) | مقدمه‌ای بر پیش‌بینی سری‌های زمانی | [Python](7-TimeSeries/1-Introduction/README.md) | Francesca | +| 22 | ⚡️ مصرف برق جهانی ⚡️ - پیش‌بینی سری‌های زمانی با ARIMA | [Time series](7-TimeSeries/README.md) | پیش‌بینی سری‌های زمانی با ARIMA | [Python](7-TimeSeries/2-ARIMA/README.md) | Francesca | +| 23 | ⚡️ مصرف برق جهانی ⚡️ - پیش‌بینی سری‌های زمانی با SVR | [Time series](7-TimeSeries/README.md) | پیش‌بینی سری‌های زمانی با رگرسیون بردار پشتیبان | [Python](7-TimeSeries/3-SVR/README.md) | Anirban | +| 24 | مقدمه‌ای بر یادگیری تقویتی | [Reinforcement learning](8-Reinforcement/README.md) | مقدمه‌ای بر یادگیری تقویتی با Q-Learning | [Python](8-Reinforcement/1-QLearning/README.md) | Dmitry | +| 25 | به پیتر کمک کنید تا از گرگ فرار کند! 🐺 | [Reinforcement learning](8-Reinforcement/README.md) | یادگیری تقویتی با Gym | [Python](8-Reinforcement/2-Gym/README.md) | Dmitry | +| Postscript | سناریوها و کاربردهای واقعی یادگیری ماشین | [ML in the Wild](9-Real-World/README.md) | کاربردهای جالب و آموزنده یادگیری ماشین کلاسیک | [Lesson](9-Real-World/1-Applications/README.md) | Team | +| Postscript | اشکال‌زدایی مدل در یادگیری ماشین با داشبورد RAI | [ML in the Wild](9-Real-World/README.md) | اشکال‌زدایی مدل در یادگیری ماشین با استفاده از اجزای داشبورد هوش مصنوعی مسئولانه | [Lesson](9-Real-World/2-Debugging-ML-Models/README.md) | Ruth Yakubu | + +> [تمام منابع اضافی این دوره را در مجموعه Microsoft Learn ما پیدا کنید](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +## دسترسی آفلاین + +شما می‌توانید این مستندات را به صورت آفلاین با استفاده از [Docsify](https://docsify.js.org/#/) اجرا کنید. این مخزن را Fork کنید، [Docsify را نصب کنید](https://docsify.js.org/#/quickstart) روی دستگاه محلی خود، و سپس در پوشه اصلی این مخزن، دستور `docsify serve` را اجرا کنید. وب‌سایت روی پورت 3000 در localhost شما اجرا خواهد شد: `localhost:3000`. + +## فایل‌های PDF + +یک فایل PDF از برنامه درسی با لینک‌ها را [اینجا](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf) پیدا کنید. + +## 🎒 دوره‌های دیگر + +تیم ما دوره‌های دیگری تولید می‌کند! بررسی کنید: + +- [هوش مصنوعی مولد برای مبتدیان](https://aka.ms/genai-beginners) +- [هوش مصنوعی مولد برای مبتدیان .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet) +- [هوش مصنوعی مولد با جاوااسکریپت](https://github.com/microsoft/generative-ai-with-javascript) +- [هوش مصنوعی مولد با جاوا](https://github.com/microsoft/Generative-AI-for-beginners-java) +- [هوش مصنوعی برای مبتدیان](https://aka.ms/ai-beginners) +- [علم داده برای مبتدیان](https://aka.ms/datascience-beginners) +- [یادگیری ماشین برای مبتدیان](https://aka.ms/ml-beginners) +- [امنیت سایبری برای مبتدیان](https://github.com/microsoft/Security-101) +- [توسعه وب برای مبتدیان](https://aka.ms/webdev-beginners) +- [اینترنت اشیا برای مبتدیان](https://aka.ms/iot-beginners) +- [توسعه XR برای مبتدیان](https://github.com/microsoft/xr-development-for-beginners) +- [تسلط بر GitHub Copilot برای برنامه‌نویسی جفتی](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming) +- [تسلط بر GitHub Copilot برای توسعه‌دهندگان C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers) +- [ماجراجویی Copilot خود را انتخاب کنید](https://github.com/microsoft/CopilotAdventures) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/SECURITY.md b/translations/fa/SECURITY.md new file mode 100644 index 000000000..55fbc2134 --- /dev/null +++ b/translations/fa/SECURITY.md @@ -0,0 +1,51 @@ + +## امنیت + +مایکروسافت امنیت محصولات و خدمات نرم‌افزاری خود را جدی می‌گیرد، که شامل تمامی مخازن کد منبع مدیریت‌شده از طریق سازمان‌های GitHub ما می‌شود، از جمله [Microsoft](https://github.com/Microsoft)، [Azure](https://github.com/Azure)، [DotNet](https://github.com/dotnet)، [AspNet](https://github.com/aspnet)، [Xamarin](https://github.com/xamarin)، و [سازمان‌های GitHub ما](https://opensource.microsoft.com/). + +اگر فکر می‌کنید که یک آسیب‌پذیری امنیتی در هر مخزن متعلق به مایکروسافت پیدا کرده‌اید که مطابق با [تعریف مایکروسافت از آسیب‌پذیری امنیتی](https://docs.microsoft.com/previous-versions/tn-archive/cc751383(v=technet.10)?WT.mc_id=academic-77952-leestott) است، لطفاً آن را به ما گزارش دهید، همان‌طور که در زیر توضیح داده شده است. + +## گزارش مسائل امنیتی + +**لطفاً آسیب‌پذیری‌های امنیتی را از طریق مسائل عمومی GitHub گزارش ندهید.** + +در عوض، لطفاً آن‌ها را به مرکز پاسخگویی امنیتی مایکروسافت (MSRC) در [https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report) گزارش دهید. + +اگر ترجیح می‌دهید بدون ورود به سیستم گزارش دهید، ایمیلی به [secure@microsoft.com](mailto:secure@microsoft.com) ارسال کنید. اگر ممکن است، پیام خود را با کلید PGP ما رمزگذاری کنید؛ لطفاً آن را از [صفحه کلید PGP مرکز پاسخگویی امنیتی مایکروسافت](https://www.microsoft.com/en-us/msrc/pgp-key-msrc) دانلود کنید. + +شما باید ظرف ۲۴ ساعت پاسخی دریافت کنید. اگر به هر دلیلی پاسخی دریافت نکردید، لطفاً از طریق ایمیل پیگیری کنید تا مطمئن شوید پیام اصلی شما دریافت شده است. اطلاعات بیشتر را می‌توانید در [microsoft.com/msrc](https://www.microsoft.com/msrc) پیدا کنید. + +لطفاً اطلاعات درخواستی زیر را (تا حد امکان) ارائه دهید تا به ما کمک کنید ماهیت و دامنه مشکل احتمالی را بهتر درک کنیم: + + * نوع مشکل (مانند سرریز بافر، تزریق SQL، اسکریپت‌نویسی بین‌سایتی، و غیره) + * مسیرهای کامل فایل‌های منبع مرتبط با بروز مشکل + * مکان کد منبع آسیب‌دیده (برچسب/شاخه/تعهد یا URL مستقیم) + * هرگونه پیکربندی خاص مورد نیاز برای بازتولید مشکل + * دستورالعمل‌های گام‌به‌گام برای بازتولید مشکل + * کد اثبات مفهوم یا کد بهره‌برداری (در صورت امکان) + * تأثیر مشکل، از جمله نحوه‌ای که یک مهاجم ممکن است از مشکل سوءاستفاده کند + +این اطلاعات به ما کمک می‌کند گزارش شما را سریع‌تر بررسی کنیم. + +اگر برای یک برنامه جایزه اشکال گزارش می‌دهید، گزارش‌های کامل‌تر می‌توانند به دریافت جایزه بالاتر کمک کنند. لطفاً برای جزئیات بیشتر درباره برنامه‌های فعال ما به صفحه [برنامه جایزه اشکال مایکروسافت](https://microsoft.com/msrc/bounty) مراجعه کنید. + +## زبان‌های ترجیحی + +ما ترجیح می‌دهیم تمامی ارتباطات به زبان انگلیسی باشد. + +## سیاست + +مایکروسافت از اصل [افشای هماهنگ‌شده آسیب‌پذیری](https://www.microsoft.com/en-us/msrc/cvd) پیروی می‌کند. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/SUPPORT.md b/translations/fa/SUPPORT.md new file mode 100644 index 000000000..a433cff65 --- /dev/null +++ b/translations/fa/SUPPORT.md @@ -0,0 +1,24 @@ + +# پشتیبانی +## نحوه ثبت مشکلات و دریافت کمک + +این پروژه از GitHub Issues برای پیگیری اشکالات و درخواست‌های ویژگی استفاده می‌کند. لطفاً قبل از ثبت مشکلات جدید، مشکلات موجود را جستجو کنید تا از ایجاد موارد تکراری جلوگیری شود. برای مشکلات جدید، اشکال یا درخواست ویژگی خود را به عنوان یک Issue جدید ثبت کنید. + +برای دریافت کمک و پرسش درباره استفاده از این پروژه، یک Issue ثبت کنید. + +## سیاست پشتیبانی مایکروسافت + +پشتیبانی از این مخزن محدود به منابع ذکر شده در بالا است. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/docs/_sidebar.md b/translations/fa/docs/_sidebar.md new file mode 100644 index 000000000..03d698a97 --- /dev/null +++ b/translations/fa/docs/_sidebar.md @@ -0,0 +1,57 @@ + +- مقدمه + - [مقدمه‌ای بر یادگیری ماشین](../1-Introduction/1-intro-to-ML/README.md) + - [تاریخچه یادگیری ماشین](../1-Introduction/2-history-of-ML/README.md) + - [یادگیری ماشین و عدالت](../1-Introduction/3-fairness/README.md) + - [تکنیک‌های یادگیری ماشین](../1-Introduction/4-techniques-of-ML/README.md) + +- رگرسیون + - [ابزارهای مورد استفاده](../2-Regression/1-Tools/README.md) + - [داده‌ها](../2-Regression/2-Data/README.md) + - [رگرسیون خطی](../2-Regression/3-Linear/README.md) + - [رگرسیون لجستیک](../2-Regression/4-Logistic/README.md) + +- ساخت یک اپلیکیشن وب + - [اپلیکیشن وب](../3-Web-App/1-Web-App/README.md) + +- طبقه‌بندی + - [مقدمه‌ای بر طبقه‌بندی](../4-Classification/1-Introduction/README.md) + - [طبقه‌بندها ۱](../4-Classification/2-Classifiers-1/README.md) + - [طبقه‌بندها ۲](../4-Classification/3-Classifiers-2/README.md) + - [یادگیری ماشین کاربردی](../4-Classification/4-Applied/README.md) + +- خوشه‌بندی + - [بصری‌سازی داده‌ها](../5-Clustering/1-Visualize/README.md) + - [خوشه‌بندی K-Means](../5-Clustering/2-K-Means/README.md) + +- پردازش زبان طبیعی (NLP) + - [مقدمه‌ای بر پردازش زبان طبیعی](../6-NLP/1-Introduction-to-NLP/README.md) + - [وظایف پردازش زبان طبیعی](../6-NLP/2-Tasks/README.md) + - [ترجمه و تحلیل احساسات](../6-NLP/3-Translation-Sentiment/README.md) + - [بررسی‌های هتل ۱](../6-NLP/4-Hotel-Reviews-1/README.md) + - [بررسی‌های هتل ۲](../6-NLP/5-Hotel-Reviews-2/README.md) + +- پیش‌بینی سری‌های زمانی + - [مقدمه‌ای بر پیش‌بینی سری‌های زمانی](../7-TimeSeries/1-Introduction/README.md) + - [مدل ARIMA](../7-TimeSeries/2-ARIMA/README.md) + - [مدل SVR](../7-TimeSeries/3-SVR/README.md) + +- یادگیری تقویتی + - [یادگیری Q](../8-Reinforcement/1-QLearning/README.md) + - [Gym](../8-Reinforcement/2-Gym/README.md) + +- یادگیری ماشین در دنیای واقعی + - [کاربردها](../9-Real-World/1-Applications/README.md) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/for-teachers.md b/translations/fa/for-teachers.md new file mode 100644 index 000000000..9f599fa7a --- /dev/null +++ b/translations/fa/for-teachers.md @@ -0,0 +1,37 @@ + +## برای آموزگاران + +آیا دوست دارید از این برنامه آموزشی در کلاس خود استفاده کنید؟ لطفاً با خیال راحت این کار را انجام دهید! + +در واقع، می‌توانید از آن در خود GitHub با استفاده از GitHub Classroom استفاده کنید. + +برای این کار، این مخزن را فورک کنید. شما نیاز دارید برای هر درس یک مخزن ایجاد کنید، بنابراین باید هر پوشه را به یک مخزن جداگانه استخراج کنید. به این ترتیب، [GitHub Classroom](https://classroom.github.com/classrooms) می‌تواند هر درس را به صورت جداگانه شناسایی کند. + +این [دستورالعمل‌های کامل](https://github.blog/2020-03-18-set-up-your-digital-classroom-with-github-classroom/) به شما ایده‌ای می‌دهد که چگونه کلاس خود را تنظیم کنید. + +## استفاده از مخزن به همین شکل + +اگر می‌خواهید از این مخزن به همان شکلی که اکنون هست استفاده کنید، بدون استفاده از GitHub Classroom، این کار نیز امکان‌پذیر است. شما باید با دانش‌آموزان خود ارتباط برقرار کنید که کدام درس را با هم مرور کنند. + +در یک قالب آنلاین (Zoom، Teams یا دیگر ابزارها) ممکن است اتاق‌های گروهی برای آزمون‌ها تشکیل دهید و دانش‌آموزان را راهنمایی کنید تا آماده یادگیری شوند. سپس دانش‌آموزان را دعوت کنید تا آزمون‌ها را انجام دهند و پاسخ‌های خود را به عنوان 'issues' در زمان مشخص ارسال کنند. شما می‌توانید همین کار را با تکالیف انجام دهید، اگر می‌خواهید دانش‌آموزان به صورت گروهی و عمومی کار کنند. + +اگر قالب خصوصی‌تر را ترجیح می‌دهید، از دانش‌آموزان خود بخواهید برنامه آموزشی را درس به درس به مخازن GitHub خود به عنوان مخازن خصوصی فورک کنند و به شما دسترسی بدهند. سپس آن‌ها می‌توانند آزمون‌ها و تکالیف را به صورت خصوصی انجام دهند و از طریق issues در مخزن کلاس شما به شما ارسال کنند. + +راه‌های زیادی برای اجرای این برنامه در قالب کلاس آنلاین وجود دارد. لطفاً به ما اطلاع دهید که چه چیزی برای شما بهتر کار می‌کند! + +## لطفاً نظرات خود را با ما در میان بگذارید! + +ما می‌خواهیم این برنامه آموزشی برای شما و دانش‌آموزانتان مفید باشد. لطفاً [بازخورد](https://forms.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR2humCsRZhxNuI79cm6n0hRUQzRVVU9VVlU5UlFLWTRLWlkyQUxORTg5WS4u) خود را با ما به اشتراک بگذارید! + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/quiz-app/README.md b/translations/fa/quiz-app/README.md new file mode 100644 index 000000000..cf818e718 --- /dev/null +++ b/translations/fa/quiz-app/README.md @@ -0,0 +1,127 @@ + +# آزمون‌ها + +این آزمون‌ها، آزمون‌های قبل و بعد از جلسات آموزشی برای برنامه درسی یادگیری ماشین در https://aka.ms/ml-beginners هستند. + +## تنظیم پروژه + +``` +npm install +``` + +### کامپایل و بارگذاری مجدد برای توسعه + +``` +npm run serve +``` + +### کامپایل و کوچک‌سازی برای تولید + +``` +npm run build +``` + +### بررسی و اصلاح فایل‌ها + +``` +npm run lint +``` + +### سفارشی‌سازی تنظیمات + +به [مرجع تنظیمات](https://cli.vuejs.org/config/) مراجعه کنید. + +اعتبار: سپاس از نسخه اصلی این اپلیکیشن آزمون: https://github.com/arpan45/simple-quiz-vue + +## استقرار در Azure + +در اینجا یک راهنمای گام‌به‌گام برای شروع کار آورده شده است: + +1. فورک کردن یک مخزن GitHub +اطمینان حاصل کنید که کد اپلیکیشن وب استاتیک شما در مخزن GitHub شما قرار دارد. این مخزن را فورک کنید. + +2. ایجاد یک اپلیکیشن وب استاتیک Azure +- یک [حساب Azure](http://azure.microsoft.com) ایجاد کنید. +- به [پرتال Azure](https://portal.azure.com) بروید. +- روی "ایجاد یک منبع" کلیک کنید و "Static Web App" را جستجو کنید. +- روی "ایجاد" کلیک کنید. + +3. پیکربندی اپلیکیشن وب استاتیک +- اصول: + - اشتراک: اشتراک Azure خود را انتخاب کنید. + - گروه منابع: یک گروه منابع جدید ایجاد کنید یا از یک گروه موجود استفاده کنید. + - نام: یک نام برای اپلیکیشن وب استاتیک خود ارائه دهید. + - منطقه: منطقه‌ای را انتخاب کنید که به کاربران شما نزدیک‌تر باشد. + +- #### جزئیات استقرار: + - منبع: "GitHub" را انتخاب کنید. + - حساب GitHub: به Azure اجازه دهید به حساب GitHub شما دسترسی پیدا کند. + - سازمان: سازمان GitHub خود را انتخاب کنید. + - مخزن: مخزنی را که شامل اپلیکیشن وب استاتیک شما است انتخاب کنید. + - شاخه: شاخه‌ای را که می‌خواهید از آن استقرار انجام دهید انتخاب کنید. + +- #### جزئیات ساخت: + - پیش‌تنظیم‌های ساخت: چارچوبی را که اپلیکیشن شما با آن ساخته شده است انتخاب کنید (مانند React، Angular، Vue و غیره). + - مکان اپلیکیشن: پوشه‌ای را که شامل کد اپلیکیشن شما است مشخص کنید (مانند / اگر در ریشه باشد). + - مکان API: اگر API دارید، مکان آن را مشخص کنید (اختیاری). + - مکان خروجی: پوشه‌ای را که خروجی ساخت در آن تولید می‌شود مشخص کنید (مانند build یا dist). + +4. بررسی و ایجاد +تنظیمات خود را بررسی کنید و روی "ایجاد" کلیک کنید. Azure منابع لازم را تنظیم کرده و یک فایل گردش کار GitHub Actions در مخزن شما ایجاد خواهد کرد. + +5. گردش کار GitHub Actions +Azure به طور خودکار یک فایل گردش کار GitHub Actions در مخزن شما ایجاد می‌کند (.github/workflows/azure-static-web-apps-.yml). این گردش کار فرآیند ساخت و استقرار را مدیریت خواهد کرد. + +6. نظارت بر استقرار +به تب "Actions" در مخزن GitHub خود بروید. +باید یک گردش کار در حال اجرا را مشاهده کنید. این گردش کار اپلیکیشن وب استاتیک شما را در Azure می‌سازد و مستقر می‌کند. +پس از تکمیل گردش کار، اپلیکیشن شما در URL ارائه شده Azure فعال خواهد بود. + +### فایل نمونه گردش کار + +در اینجا یک نمونه از فایل گردش کار GitHub Actions آورده شده است: +name: Azure Static Web Apps CI/CD +``` +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened, closed] + branches: + - main + +jobs: + build_and_deploy_job: + runs-on: ubuntu-latest + name: Build and Deploy Job + steps: + - uses: actions/checkout@v2 + - name: Build And Deploy + id: builddeploy + uses: Azure/static-web-apps-deploy@v1 + with: + azure_static_web_apps_api_token: ${{ secrets.AZURE_STATIC_WEB_APPS_API_TOKEN }} + repo_token: ${{ secrets.GITHUB_TOKEN }} + action: "upload" + app_location: "/quiz-app" # App source code path + api_location: ""API source code path optional + output_location: "dist" #Built app content directory - optional +``` + +### منابع اضافی +- [مستندات اپلیکیشن‌های وب استاتیک Azure](https://learn.microsoft.com/azure/static-web-apps/getting-started) +- [مستندات GitHub Actions](https://docs.github.com/actions/use-cases-and-examples/deploying/deploying-to-azure-static-web-app) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/sketchnotes/LICENSE.md b/translations/fa/sketchnotes/LICENSE.md new file mode 100644 index 000000000..5425664b9 --- /dev/null +++ b/translations/fa/sketchnotes/LICENSE.md @@ -0,0 +1,102 @@ + +حقوق دارید، سپس پایگاه داده جدید شما مشمول شرایط این مجوز عمومی خواهد بود؛ و + + c. شما نمی‌توانید هیچ شرایط یا محدودیت اضافی یا متفاوتی را بر پایگاه داده اعمال کنید یا اقدامات تکنولوژیکی مؤثری را اعمال کنید که استفاده از حقوق اعطا شده تحت این مجوز عمومی را محدود کند. + + +بخش ۵ -- ضمانت‌ها و سلب مسئولیت‌ها. + + الف. مگر در مواردی که به طور جداگانه توسط مجوزدهنده تضمین شده باشد، مجوزدهنده مجوزهای ارائه‌شده تحت این مجوز عمومی را "همان‌طور که هست" و بدون هیچ‌گونه ضمانت صریح یا ضمنی ارائه می‌کند. این شامل، اما نه محدود به، ضمانت‌های مربوط به قابلیت فروش، تناسب برای هدف خاص، عدم نقض حقوق، یا عدم وجود نقص‌های پنهان یا دیگر موارد نمی‌شود. + + ب. تا حدی که توسط قانون قابل اجرا مجاز است، مجوزدهنده هیچ مسئولیتی در قبال شما تحت هیچ نظریه حقوقی (شامل، اما نه محدود به، قرارداد، مسئولیت مدنی، یا غیره) برای هرگونه خسارت مستقیم، غیرمستقیم، خاص، تبعی، یا دیگر خسارات ناشی از این مجوز عمومی یا استفاده از مواد مجوزدار ندارد، حتی اگر مجوزدهنده از احتمال چنین خساراتی آگاه شده باشد. + + +بخش ۶ -- مدت زمان و خاتمه. + + الف. مدت زمان این مجوز عمومی همان مدت زمان حقوق مجوزدار است که تحت این مجوز عمومی اعطا شده است. با این حال، اگر شما این مجوز عمومی را نقض کنید، حقوق شما تحت این مجوز عمومی به طور خودکار خاتمه می‌یابد. + + ب. در صورت خاتمه حقوق شما تحت این مجوز عمومی، حقوق افراد یا نهادهایی که مواد مجوزدار یا مواد اقتباسی را از شما دریافت کرده‌اند، تحت این مجوز عمومی به شرطی که به طور کامل از آن پیروی کنند، خاتمه نمی‌یابد. + + ج. بخش‌های ۱، ۵، ۶، ۷ و ۸ پس از خاتمه این مجوز عمومی همچنان معتبر خواهند بود. + + +بخش ۷ -- سایر شرایط و مقررات. + + الف. اگر هر یک از شرایط این مجوز عمومی به هر دلیلی غیرقابل اجرا تشخیص داده شود، این امر بر قابلیت اجرای سایر شرایط تأثیری نخواهد داشت. + + ب. هیچ‌گونه شرایط یا مقرراتی تحت این مجوز عمومی به عنوان چشم‌پوشی از هرگونه نقض یا عدم رعایت قبلی یا بعدی تلقی نخواهد شد. + + ج. هیچ‌گونه حقوقی تحت این مجوز عمومی قابل واگذاری نیست مگر در مواردی که به طور صریح در اینجا ذکر شده باشد. هرگونه تلاش برای واگذاری حقوق تحت این مجوز عمومی بدون رضایت کتبی قبلی از مجوزدهنده باطل است. + + +بخش ۸ -- تفسیر. + + الف. این مجوز عمومی هیچ‌گونه حقوقی را که تحت قانون قابل اجرا ممکن است محدود یا مستثنی شود، محدود نمی‌کند. + + ب. تا حدی که ممکن است، در صورت وجود هرگونه تضاد بین این مجوز عمومی و سایر توافقات، این مجوز عمومی غالب خواهد بود. + + ج. هیچ‌چیز در این مجوز عمومی به عنوان کاهش، محدودیت، یا تأثیرگذاری بر حقوق اخلاقی مجوزدهنده یا دیگر حقوق مشابه تحت قانون قابل اجرا تفسیر نخواهد شد. +حقوق، سپس پایگاه داده‌ای که شما در آن حقوق پایگاه داده Sui Generis دارید (اما نه محتوای فردی آن)، ماده‌ای اقتباسی محسوب می‌شود، + +از جمله برای اهداف بخش ۳(b)؛ و +ج. شما باید شرایط بخش ۳(a) را رعایت کنید اگر تمام یا بخش قابل توجهی از محتوای پایگاه داده را به اشتراک بگذارید. + +برای رفع هرگونه ابهام، این بخش ۴ مکمل است و جایگزین تعهدات شما تحت این مجوز عمومی نمی‌شود، جایی که حقوق مجاز شامل سایر حقوق کپی‌رایت و مشابه است. + +### بخش ۵ -- سلب مسئولیت از ضمانت‌ها و محدودیت مسئولیت + +الف. مگر اینکه به طور جداگانه توسط مجوزدهنده انجام شده باشد، تا حد ممکن، مجوزدهنده ماده مجاز را به صورت «همان‌طور که هست» و «همان‌طور که در دسترس است» ارائه می‌دهد و هیچ گونه نمایندگی یا ضمانتی از هر نوع در مورد ماده مجاز، چه صریح، ضمنی، قانونی یا دیگر، ارائه نمی‌دهد. این شامل، بدون محدودیت، ضمانت‌های مالکیت، قابلیت فروش، تناسب برای یک هدف خاص، عدم نقض، عدم وجود نقص‌های پنهان یا دیگر، دقت، یا حضور یا عدم حضور خطاها، چه شناخته شده یا قابل کشف باشد. جایی که سلب ضمانت‌ها به طور کامل یا جزئی مجاز نیست، این سلب ممکن است برای شما اعمال نشود. + +ب. تا حد ممکن، در هیچ شرایطی مجوزدهنده تحت هیچ نظریه قانونی (از جمله، بدون محدودیت، سهل‌انگاری) یا به هر شکل دیگر مسئولیتی در قبال شما برای هرگونه خسارت مستقیم، ویژه، غیرمستقیم، اتفاقی، تبعی، تنبیهی، نمونه‌ای یا دیگر زیان‌ها، هزینه‌ها، مخارج یا خسارت‌هایی که از این مجوز عمومی یا استفاده از ماده مجاز ناشی می‌شود، نخواهد داشت، حتی اگر مجوزدهنده از امکان چنین زیان‌ها، هزینه‌ها، مخارج یا خسارت‌ها مطلع شده باشد. جایی که محدودیت مسئولیت به طور کامل یا جزئی مجاز نیست، این محدودیت ممکن است برای شما اعمال نشود. + +ج. سلب مسئولیت از ضمانت‌ها و محدودیت مسئولیت ارائه شده در بالا باید به گونه‌ای تفسیر شود که، تا حد ممکن، نزدیک‌ترین تقریب به یک سلب کامل و انصراف از تمام مسئولیت‌ها باشد. + +### بخش ۶ -- مدت و خاتمه + +الف. این مجوز عمومی برای مدت زمان حقوق کپی‌رایت و مشابه مجاز در اینجا اعمال می‌شود. با این حال، اگر شما نتوانید این مجوز عمومی را رعایت کنید، حقوق شما تحت این مجوز عمومی به طور خودکار خاتمه می‌یابد. + +ب. جایی که حق شما برای استفاده از ماده مجاز تحت بخش ۶(a) خاتمه یافته است، این حق دوباره برقرار می‌شود: + +۱. به طور خودکار از تاریخ رفع تخلف، به شرطی که ظرف ۳۰ روز از کشف تخلف توسط شما رفع شود؛ یا +۲. با بازگرداندن صریح توسط مجوزدهنده. + +برای رفع هرگونه ابهام، این بخش ۶(b) بر هیچ حقی که مجوزدهنده ممکن است برای جبران تخلفات شما تحت این مجوز عمومی داشته باشد، تأثیر نمی‌گذارد. + +ج. برای رفع هرگونه ابهام، مجوزدهنده ممکن است همچنین ماده مجاز را تحت شرایط یا ضوابط جداگانه ارائه دهد یا توزیع ماده مجاز را در هر زمان متوقف کند؛ با این حال، انجام این کار این مجوز عمومی را خاتمه نمی‌دهد. + +د. بخش‌های ۱، ۵، ۶، ۷ و ۸ پس از خاتمه این مجوز عمومی باقی می‌مانند. + +### بخش ۷ -- شرایط و ضوابط دیگر + +الف. مجوزدهنده تحت هیچ شرایط اضافی یا متفاوتی که توسط شما اعلام شده باشد، مگر اینکه صریحاً موافقت شده باشد، متعهد نخواهد بود. + +ب. هرگونه ترتیبات، تفاهم‌ها یا توافقات در مورد ماده مجاز که در اینجا بیان نشده باشد، جدا از و مستقل از شرایط و ضوابط این مجوز عمومی است. + +### بخش ۸ -- تفسیر + +الف. برای رفع هرگونه ابهام، این مجوز عمومی کاهش، محدودیت، محدود کردن یا اعمال شرایط بر هرگونه استفاده از ماده مجاز که به طور قانونی بدون اجازه تحت این مجوز عمومی قابل انجام باشد، را انجام نمی‌دهد و نباید به این شکل تفسیر شود. + +ب. تا حد ممکن، اگر هر بند از این مجوز عمومی غیرقابل اجرا تلقی شود، باید به حداقل حد لازم اصلاح شود تا قابل اجرا شود. اگر بند قابل اصلاح نباشد، باید از این مجوز عمومی جدا شود بدون اینکه بر قابلیت اجرای شرایط و ضوابط باقی‌مانده تأثیر بگذارد. + +ج. هیچ شرط یا ضابطه‌ای از این مجوز عمومی لغو نخواهد شد و هیچ عدم رعایتی مورد موافقت قرار نخواهد گرفت مگر اینکه صریحاً توسط مجوزدهنده موافقت شده باشد. + +د. هیچ چیزی در این مجوز عمومی محدودیت یا انصراف از هرگونه امتیازات و مصونیت‌هایی که برای مجوزدهنده یا شما اعمال می‌شود، از جمله از فرآیندهای قانونی هر حوزه قضایی یا مرجع، تشکیل نمی‌دهد یا ممکن است به این شکل تفسیر شود. + +======================================================================= + +Creative Commons طرف این مجوزهای عمومی نیست. با این حال، Creative Commons ممکن است یکی از مجوزهای عمومی خود را برای ماده‌ای که منتشر می‌کند اعمال کند و در آن موارد به عنوان «مجوزدهنده» در نظر گرفته می‌شود. متن مجوزهای عمومی Creative Commons به حوزه عمومی تحت CC0 Public Domain Dedication اختصاص داده شده است. به جز برای هدف محدود نشان دادن اینکه ماده تحت یک مجوز عمومی Creative Commons به اشتراک گذاشته شده است یا به شکل دیگری که توسط سیاست‌های Creative Commons منتشر شده در creativecommons.org/policies مجاز است، Creative Commons استفاده از علامت تجاری "Creative Commons" یا هر علامت تجاری یا لوگوی دیگر Creative Commons را بدون رضایت کتبی قبلی خود، از جمله، بدون محدودیت، در ارتباط با هرگونه تغییرات غیرمجاز در هر یک از مجوزهای عمومی خود یا هرگونه ترتیبات، تفاهم‌ها یا توافقات دیگر در مورد استفاده از ماده مجاز، مجاز نمی‌داند. برای رفع هرگونه ابهام، این بند بخشی از مجوزهای عمومی نیست. + +Creative Commons ممکن است از طریق creativecommons.org تماس گرفته شود. + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fa/sketchnotes/README.md b/translations/fa/sketchnotes/README.md new file mode 100644 index 000000000..970d4a3a5 --- /dev/null +++ b/translations/fa/sketchnotes/README.md @@ -0,0 +1,21 @@ + +تمام یادداشت‌های تصویری این برنامه آموزشی را می‌توانید از اینجا دانلود کنید. + +🖨 برای چاپ با کیفیت بالا، نسخه‌های TIFF در [این مخزن](https://github.com/girliemac/a-picture-is-worth-a-1000-words/tree/main/ml/tiff) موجود هستند. + +🎨 طراحی شده توسط: [تومومی ایمورا](https://github.com/girliemac) (توییتر: [@girlie_mac](https://twitter.com/girlie_mac)) + +[![CC BY-SA 4.0](https://img.shields.io/badge/License-CC%20BY--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-sa/4.0/) + +--- + +**سلب مسئولیت**: +این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش می‌کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌هایی باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما هیچ مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم. \ No newline at end of file diff --git a/translations/fr/1-Introduction/1-intro-to-ML/README.md b/translations/fr/1-Introduction/1-intro-to-ML/README.md new file mode 100644 index 000000000..e4a4d4053 --- /dev/null +++ b/translations/fr/1-Introduction/1-intro-to-ML/README.md @@ -0,0 +1,159 @@ + +# Introduction au machine learning + +## [Quiz avant le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/) + +--- + +[![ML pour débutants - Introduction au Machine Learning pour débutants](https://img.youtube.com/vi/6mSx_KJxcHI/0.jpg)](https://youtu.be/6mSx_KJxcHI "ML pour débutants - Introduction au Machine Learning pour débutants") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo expliquant cette leçon. + +Bienvenue dans ce cours sur le machine learning classique pour débutants ! Que vous soyez complètement novice sur ce sujet ou un praticien expérimenté cherchant à réviser une thématique, nous sommes ravis de vous accueillir ! Nous souhaitons créer un point de départ convivial pour vos études en machine learning et serions heureux d'évaluer, répondre et intégrer vos [retours](https://github.com/microsoft/ML-For-Beginners/discussions). + +[![Introduction au ML](https://img.youtube.com/vi/h0e2HAPTGF4/0.jpg)](https://youtu.be/h0e2HAPTGF4 "Introduction au ML") + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo : John Guttag du MIT introduit le machine learning. + +--- +## Premiers pas avec le machine learning + +Avant de commencer ce programme, vous devez configurer votre ordinateur pour exécuter des notebooks en local. + +- **Configurez votre machine avec ces vidéos**. Utilisez les liens suivants pour apprendre [comment installer Python](https://youtu.be/CXZYvNRIAKM) sur votre système et [configurer un éditeur de texte](https://youtu.be/EU8eayHWoZg) pour le développement. +- **Apprenez Python**. Il est également recommandé d'avoir une compréhension de base de [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), un langage de programmation utile pour les data scientists que nous utilisons dans ce cours. +- **Apprenez Node.js et JavaScript**. Nous utilisons également JavaScript à quelques reprises dans ce cours pour créer des applications web, donc vous devrez avoir [node](https://nodejs.org) et [npm](https://www.npmjs.com/) installés, ainsi que [Visual Studio Code](https://code.visualstudio.com/) disponible pour le développement en Python et JavaScript. +- **Créez un compte GitHub**. Puisque vous nous avez trouvés ici sur [GitHub](https://github.com), vous avez peut-être déjà un compte, mais sinon, créez-en un, puis forkez ce programme pour l'utiliser vous-même. (N'hésitez pas à nous donner une étoile aussi 😊) +- **Explorez Scikit-learn**. Familiarisez-vous avec [Scikit-learn](https://scikit-learn.org/stable/user_guide.html), un ensemble de bibliothèques ML que nous utilisons dans ces leçons. + +--- +## Qu'est-ce que le machine learning ? + +Le terme "machine learning" est l'un des termes les plus populaires et fréquemment utilisés aujourd'hui. Il est fort probable que vous ayez entendu ce terme au moins une fois si vous avez une certaine familiarité avec la technologie, quel que soit votre domaine. Cependant, les mécanismes du machine learning restent un mystère pour la plupart des gens. Pour un débutant, le sujet peut parfois sembler écrasant. Il est donc important de comprendre ce qu'est réellement le machine learning et d'apprendre à son sujet étape par étape, à travers des exemples pratiques. + +--- +## La courbe de la hype + +![courbe de la hype ML](../../../../translated_images/hype.07183d711a17aafe70915909a0e45aa286ede136ee9424d418026ab00fec344c.fr.png) + +> Google Trends montre la récente "courbe de la hype" du terme "machine learning" + +--- +## Un univers mystérieux + +Nous vivons dans un univers rempli de mystères fascinants. De grands scientifiques comme Stephen Hawking, Albert Einstein, et bien d'autres ont consacré leur vie à rechercher des informations significatives pour dévoiler les mystères du monde qui nous entoure. C'est la condition humaine d'apprentissage : un enfant humain apprend de nouvelles choses et découvre la structure de son monde année après année en grandissant. + +--- +## Le cerveau de l'enfant + +Le cerveau et les sens d'un enfant perçoivent les faits de leur environnement et apprennent progressivement les schémas cachés de la vie, ce qui aide l'enfant à élaborer des règles logiques pour identifier ces schémas. Le processus d'apprentissage du cerveau humain fait de nous les créatures vivantes les plus sophistiquées de ce monde. Apprendre continuellement en découvrant des schémas cachés, puis en innovant à partir de ces schémas, nous permet de nous améliorer tout au long de notre vie. Cette capacité d'apprentissage et d'évolution est liée à un concept appelé [plasticité cérébrale](https://www.simplypsychology.org/brain-plasticity.html). Superficiellement, nous pouvons établir des similitudes motivantes entre le processus d'apprentissage du cerveau humain et les concepts du machine learning. + +--- +## Le cerveau humain + +Le [cerveau humain](https://www.livescience.com/29365-human-brain.html) perçoit des éléments du monde réel, traite les informations perçues, prend des décisions rationnelles et effectue certaines actions en fonction des circonstances. C'est ce que nous appelons se comporter intelligemment. Lorsque nous programmons une imitation de ce processus comportemental intelligent dans une machine, cela s'appelle l'intelligence artificielle (IA). + +--- +## Quelques terminologies + +Bien que les termes puissent prêter à confusion, le machine learning (ML) est un sous-ensemble important de l'intelligence artificielle. **Le ML consiste à utiliser des algorithmes spécialisés pour découvrir des informations significatives et trouver des schémas cachés à partir des données perçues afin de corroborer le processus de prise de décision rationnelle**. + +--- +## IA, ML, Deep Learning + +![IA, ML, deep learning, data science](../../../../translated_images/ai-ml-ds.537ea441b124ebf69c144a52c0eb13a7af63c4355c2f92f440979380a2fb08b8.fr.png) + +> Un diagramme montrant les relations entre l'IA, le ML, le deep learning et la data science. Infographie par [Jen Looper](https://twitter.com/jenlooper) inspirée de [ce graphique](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining) + +--- +## Concepts à couvrir + +Dans ce programme, nous allons couvrir uniquement les concepts fondamentaux du machine learning qu'un débutant doit connaître. Nous abordons ce que nous appelons le "machine learning classique", principalement en utilisant Scikit-learn, une excellente bibliothèque que de nombreux étudiants utilisent pour apprendre les bases. Pour comprendre les concepts plus larges de l'intelligence artificielle ou du deep learning, une solide connaissance fondamentale du machine learning est indispensable, et nous souhaitons vous l'offrir ici. + +--- +## Dans ce cours, vous apprendrez : + +- les concepts fondamentaux du machine learning +- l'histoire du ML +- le ML et l'équité +- les techniques de régression en ML +- les techniques de classification en ML +- les techniques de clustering en ML +- les techniques de traitement du langage naturel en ML +- les techniques de prévision de séries temporelles en ML +- l'apprentissage par renforcement +- les applications réelles du ML + +--- +## Ce que nous ne couvrirons pas + +- le deep learning +- les réseaux neuronaux +- l'IA + +Pour une meilleure expérience d'apprentissage, nous éviterons les complexités des réseaux neuronaux, du "deep learning" - la construction de modèles à plusieurs couches utilisant des réseaux neuronaux - et de l'IA, que nous aborderons dans un autre programme. Nous proposerons également un programme à venir sur la data science pour se concentrer sur cet aspect de ce domaine plus vaste. + +--- +## Pourquoi étudier le machine learning ? + +Le machine learning, d'un point de vue système, est défini comme la création de systèmes automatisés capables d'apprendre des schémas cachés à partir de données pour aider à prendre des décisions intelligentes. + +Cette motivation s'inspire vaguement de la manière dont le cerveau humain apprend certaines choses à partir des données qu'il perçoit du monde extérieur. + +✅ Réfléchissez un instant à pourquoi une entreprise pourrait vouloir utiliser des stratégies de machine learning plutôt que de créer un moteur basé sur des règles codées en dur. + +--- +## Applications du machine learning + +Les applications du machine learning sont désormais presque partout et sont aussi omniprésentes que les données qui circulent dans nos sociétés, générées par nos smartphones, appareils connectés et autres systèmes. Compte tenu du potentiel immense des algorithmes de machine learning de pointe, les chercheurs explorent leurs capacités à résoudre des problèmes réels multidimensionnels et multidisciplinaires avec des résultats très positifs. + +--- +## Exemples de ML appliqué + +**Vous pouvez utiliser le machine learning de nombreuses façons** : + +- Pour prédire la probabilité d'une maladie à partir des antécédents médicaux ou des rapports d'un patient. +- Pour exploiter les données météorologiques afin de prévoir des événements climatiques. +- Pour comprendre le sentiment d'un texte. +- Pour détecter les fausses nouvelles et stopper la propagation de la propagande. + +La finance, l'économie, les sciences de la Terre, l'exploration spatiale, le génie biomédical, les sciences cognitives, et même les domaines des sciences humaines ont adopté le machine learning pour résoudre les problèmes complexes et gourmands en traitement de données de leur domaine. + +--- +## Conclusion + +Le machine learning automatise le processus de découverte de schémas en trouvant des informations significatives à partir de données réelles ou générées. Il s'est avéré extrêmement précieux dans les applications commerciales, de santé et financières, entre autres. + +Dans un avenir proche, comprendre les bases du machine learning deviendra indispensable pour les personnes de tous domaines en raison de son adoption généralisée. + +--- +# 🚀 Défi + +Dessinez, sur papier ou en utilisant une application en ligne comme [Excalidraw](https://excalidraw.com/), votre compréhension des différences entre l'IA, le ML, le deep learning et la data science. Ajoutez quelques idées de problèmes que chacune de ces techniques est bonne à résoudre. + +# [Quiz après le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/) + +--- +# Révision et auto-apprentissage + +Pour en savoir plus sur la façon de travailler avec des algorithmes de ML dans le cloud, suivez ce [parcours d'apprentissage](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott). + +Suivez un [parcours d'apprentissage](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) sur les bases du ML. + +--- +# Devoir + +[Mettez-vous en route](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/1-Introduction/1-intro-to-ML/assignment.md b/translations/fr/1-Introduction/1-intro-to-ML/assignment.md new file mode 100644 index 000000000..df18cef87 --- /dev/null +++ b/translations/fr/1-Introduction/1-intro-to-ML/assignment.md @@ -0,0 +1,23 @@ + +# Démarrez rapidement + +## Instructions + +Dans cet exercice non noté, vous devez réviser vos connaissances en Python et configurer votre environnement pour pouvoir exécuter des notebooks. + +Suivez ce [parcours d'apprentissage Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), puis configurez vos systèmes en regardant ces vidéos introductives : + +https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6 + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/1-Introduction/2-history-of-ML/README.md b/translations/fr/1-Introduction/2-history-of-ML/README.md new file mode 100644 index 000000000..26327fce3 --- /dev/null +++ b/translations/fr/1-Introduction/2-history-of-ML/README.md @@ -0,0 +1,164 @@ + +# Histoire de l'apprentissage automatique + +![Résumé de l'histoire de l'apprentissage automatique sous forme de sketchnote](../../../../translated_images/ml-history.a1bdfd4ce1f464d9a0502f38d355ffda384c95cd5278297a46c9a391b5053bc4.fr.png) +> Sketchnote par [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [Quiz avant le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/) + +--- + +[![ML pour débutants - Histoire de l'apprentissage automatique](https://img.youtube.com/vi/N6wxM4wZ7V0/0.jpg)](https://youtu.be/N6wxM4wZ7V0 "ML pour débutants - Histoire de l'apprentissage automatique") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo sur cette leçon. + +Dans cette leçon, nous allons parcourir les étapes majeures de l'histoire de l'apprentissage automatique et de l'intelligence artificielle. + +L'histoire de l'intelligence artificielle (IA) en tant que domaine est étroitement liée à celle de l'apprentissage automatique, car les algorithmes et les avancées computationnelles qui sous-tendent l'apprentissage automatique ont alimenté le développement de l'IA. Il est utile de se rappeler que, bien que ces domaines en tant qu'aires d'étude distinctes aient commencé à se cristalliser dans les années 1950, des découvertes importantes [algorithmiques, statistiques, mathématiques, computationnelles et techniques](https://wikipedia.org/wiki/Timeline_of_machine_learning) ont précédé et chevauché cette époque. En fait, les gens réfléchissent à ces questions depuis [des centaines d'années](https://wikipedia.org/wiki/History_of_artificial_intelligence) : cet article explore les bases intellectuelles historiques de l'idée d'une "machine pensante". + +--- +## Découvertes notables + +- 1763, 1812 [Théorème de Bayes](https://wikipedia.org/wiki/Bayes%27_theorem) et ses prédécesseurs. Ce théorème et ses applications sous-tendent l'inférence, décrivant la probabilité qu'un événement se produise en fonction de connaissances préalables. +- 1805 [Théorie des moindres carrés](https://wikipedia.org/wiki/Least_squares) par le mathématicien français Adrien-Marie Legendre. Cette théorie, que vous apprendrez dans notre unité sur la régression, aide à ajuster les données. +- 1913 [Chaînes de Markov](https://wikipedia.org/wiki/Markov_chain), nommées d'après le mathématicien russe Andrey Markov, sont utilisées pour décrire une séquence d'événements possibles basée sur un état précédent. +- 1957 [Perceptron](https://wikipedia.org/wiki/Perceptron), un type de classificateur linéaire inventé par le psychologue américain Frank Rosenblatt, qui sous-tend les avancées en apprentissage profond. + +--- + +- 1967 [Plus proche voisin](https://wikipedia.org/wiki/Nearest_neighbor), un algorithme initialement conçu pour cartographier des itinéraires. Dans un contexte d'apprentissage automatique, il est utilisé pour détecter des motifs. +- 1970 [Rétropropagation](https://wikipedia.org/wiki/Backpropagation), utilisée pour entraîner les [réseaux neuronaux à propagation avant](https://wikipedia.org/wiki/Feedforward_neural_network). +- 1982 [Réseaux neuronaux récurrents](https://wikipedia.org/wiki/Recurrent_neural_network), dérivés des réseaux neuronaux à propagation avant, qui créent des graphes temporels. + +✅ Faites quelques recherches. Quelles autres dates se démarquent comme étant cruciales dans l'histoire de l'apprentissage automatique et de l'IA ? + +--- +## 1950 : Des machines qui pensent + +Alan Turing, une personne véritablement remarquable, élu [par le public en 2019](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) comme le plus grand scientifique du 20e siècle, est crédité d'avoir contribué à poser les bases du concept de "machine capable de penser". Il a affronté les sceptiques et son propre besoin de preuves empiriques de ce concept, notamment en créant le [Test de Turing](https://www.bbc.com/news/technology-18475646), que vous explorerez dans nos leçons sur le traitement du langage naturel. + +--- +## 1956 : Projet de recherche d'été à Dartmouth + +"Le projet de recherche d'été à Dartmouth sur l'intelligence artificielle a été un événement marquant pour l'intelligence artificielle en tant que domaine", et c'est ici que le terme "intelligence artificielle" a été inventé ([source](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)). + +> Chaque aspect de l'apprentissage ou toute autre caractéristique de l'intelligence peut en principe être décrit si précisément qu'une machine peut être conçue pour le simuler. + +--- + +Le chercheur principal, le professeur de mathématiques John McCarthy, espérait "progresser sur la base de l'hypothèse que chaque aspect de l'apprentissage ou toute autre caractéristique de l'intelligence peut en principe être décrit si précisément qu'une machine peut être conçue pour le simuler." Les participants comprenaient une autre figure de proue du domaine, Marvin Minsky. + +L'atelier est crédité d'avoir initié et encouragé plusieurs discussions, notamment "l'essor des méthodes symboliques, des systèmes axés sur des domaines limités (premiers systèmes experts) et des systèmes déductifs versus inductifs." ([source](https://wikipedia.org/wiki/Dartmouth_workshop)). + +--- +## 1956 - 1974 : "Les années dorées" + +Des années 1950 jusqu'au milieu des années 1970, l'optimisme était élevé quant à la capacité de l'IA à résoudre de nombreux problèmes. En 1967, Marvin Minsky déclarait avec confiance : "Dans une génération... le problème de la création de 'l'intelligence artificielle' sera en grande partie résolu." (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall) + +La recherche en traitement du langage naturel a prospéré, la recherche a été affinée et rendue plus puissante, et le concept de "micro-mondes" a été créé, où des tâches simples étaient accomplies en utilisant des instructions en langage clair. + +--- + +La recherche était bien financée par des agences gouvernementales, des avancées ont été réalisées en computation et en algorithmes, et des prototypes de machines intelligentes ont été construits. Certaines de ces machines incluent : + +* [Shakey le robot](https://wikipedia.org/wiki/Shakey_the_robot), qui pouvait se déplacer et décider comment accomplir des tâches "intelligemment". + + ![Shakey, un robot intelligent](../../../../translated_images/shakey.4dc17819c447c05bf4b52f76da0bdd28817d056fdb906252ec20124dd4cfa55e.fr.jpg) + > Shakey en 1972 + +--- + +* Eliza, un premier "chatterbot", pouvait converser avec des gens et agir comme un "thérapeute" primitif. Vous en apprendrez davantage sur Eliza dans les leçons sur le traitement du langage naturel. + + ![Eliza, un bot](../../../../translated_images/eliza.84397454cda9559bb5ec296b5b8fff067571c0cccc5405f9c1ab1c3f105c075c.fr.png) + > Une version d'Eliza, un chatbot + +--- + +* "Blocks world" était un exemple de micro-monde où des blocs pouvaient être empilés et triés, et des expériences pour enseigner aux machines à prendre des décisions pouvaient être testées. Les avancées réalisées avec des bibliothèques telles que [SHRDLU](https://wikipedia.org/wiki/SHRDLU) ont aidé à propulser le traitement du langage. + + [![blocks world avec SHRDLU](https://img.youtube.com/vi/QAJz4YKUwqw/0.jpg)](https://www.youtube.com/watch?v=QAJz4YKUwqw "blocks world avec SHRDLU") + + > 🎥 Cliquez sur l'image ci-dessus pour une vidéo : Blocks world avec SHRDLU + +--- +## 1974 - 1980 : "Hiver de l'IA" + +Au milieu des années 1970, il était devenu évident que la complexité de la création de "machines intelligentes" avait été sous-estimée et que ses promesses, compte tenu de la puissance de calcul disponible, avaient été exagérées. Le financement s'est tari et la confiance dans le domaine a diminué. Certains problèmes qui ont affecté la confiance incluent : +--- +- **Limitations**. La puissance de calcul était trop limitée. +- **Explosion combinatoire**. Le nombre de paramètres nécessaires à l'entraînement augmentait de manière exponentielle à mesure que l'on demandait davantage aux ordinateurs, sans une évolution parallèle de la puissance et des capacités de calcul. +- **Manque de données**. Il y avait un manque de données qui entravait le processus de test, de développement et de raffinement des algorithmes. +- **Posons-nous les bonnes questions ?**. Les questions mêmes qui étaient posées ont commencé à être remises en question. Les chercheurs ont commencé à recevoir des critiques sur leurs approches : + - Les tests de Turing ont été remis en question, notamment par la théorie de la "chambre chinoise", qui postulait que "programmer un ordinateur numérique peut donner l'impression qu'il comprend le langage, mais ne pourrait pas produire une véritable compréhension." ([source](https://plato.stanford.edu/entries/chinese-room/)) + - L'éthique de l'introduction d'intelligences artificielles telles que le "thérapeute" ELIZA dans la société a été contestée. + +--- + +En même temps, diverses écoles de pensée en IA ont commencé à se former. Une dichotomie s'est établie entre les pratiques ["scruffy" vs. "neat AI"](https://wikipedia.org/wiki/Neats_and_scruffies). Les laboratoires _scruffy_ ajustaient les programmes pendant des heures jusqu'à obtenir les résultats souhaités. Les laboratoires _neat_ "se concentraient sur la logique et la résolution formelle de problèmes". ELIZA et SHRDLU étaient des systèmes _scruffy_ bien connus. Dans les années 1980, à mesure que la demande pour rendre les systèmes d'apprentissage automatique reproductibles augmentait, l'approche _neat_ a progressivement pris le devant de la scène, car ses résultats sont plus explicables. + +--- +## Années 1980 : Systèmes experts + +À mesure que le domaine se développait, ses avantages pour les entreprises devenaient plus clairs, et dans les années 1980, la prolifération des "systèmes experts" s'est également accrue. "Les systèmes experts étaient parmi les premières formes véritablement réussies de logiciels d'intelligence artificielle (IA)." ([source](https://wikipedia.org/wiki/Expert_system)). + +Ce type de système est en réalité _hybride_, consistant en partie en un moteur de règles définissant les exigences métier, et un moteur d'inférence qui exploitait le système de règles pour déduire de nouveaux faits. + +Cette époque a également vu une attention croissante portée aux réseaux neuronaux. + +--- +## 1987 - 1993 : "Refroidissement de l'IA" + +La prolifération du matériel spécialisé pour les systèmes experts a eu l'effet malheureux de devenir trop spécialisée. L'essor des ordinateurs personnels a également concurrencé ces grands systèmes spécialisés et centralisés. La démocratisation de l'informatique avait commencé, et elle a finalement ouvert la voie à l'explosion moderne des big data. + +--- +## 1993 - 2011 + +Cette époque a marqué une nouvelle ère pour l'apprentissage automatique et l'IA, permettant de résoudre certains des problèmes causés auparavant par le manque de données et de puissance de calcul. La quantité de données a commencé à augmenter rapidement et à devenir plus largement disponible, pour le meilleur et pour le pire, notamment avec l'avènement du smartphone vers 2007. La puissance de calcul a augmenté de manière exponentielle, et les algorithmes ont évolué en parallèle. Le domaine a commencé à gagner en maturité à mesure que les jours libres et expérimentaux du passé se cristallisaient en une véritable discipline. + +--- +## Aujourd'hui + +Aujourd'hui, l'apprentissage automatique et l'IA touchent presque toutes les parties de nos vies. Cette époque appelle à une compréhension attentive des risques et des effets potentiels de ces algorithmes sur la vie humaine. Comme l'a déclaré Brad Smith de Microsoft : "La technologie de l'information soulève des questions qui touchent au cœur des protections fondamentales des droits humains, comme la vie privée et la liberté d'expression. Ces questions augmentent la responsabilité des entreprises technologiques qui créent ces produits. À notre avis, elles appellent également à une réglementation gouvernementale réfléchie et au développement de normes autour des utilisations acceptables" ([source](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)). + +--- + +Il reste à voir ce que l'avenir nous réserve, mais il est important de comprendre ces systèmes informatiques ainsi que les logiciels et algorithmes qu'ils exécutent. Nous espérons que ce programme vous aidera à mieux comprendre afin que vous puissiez décider par vous-même. + +[![L'histoire de l'apprentissage profond](https://img.youtube.com/vi/mTtDfKgLm54/0.jpg)](https://www.youtube.com/watch?v=mTtDfKgLm54 "L'histoire de l'apprentissage profond") +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo : Yann LeCun discute de l'histoire de l'apprentissage profond dans cette conférence + +--- +## 🚀Défi + +Plongez dans l'un de ces moments historiques et apprenez-en davantage sur les personnes derrière eux. Ce sont des personnages fascinants, et aucune découverte scientifique n'a jamais été créée dans un vide culturel. Que découvrez-vous ? + +## [Quiz après le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/) + +--- +## Révision et étude personnelle + +Voici des éléments à regarder et écouter : + +[Ce podcast où Amy Boyd discute de l'évolution de l'IA](http://runasradio.com/Shows/Show/739) + +[![L'histoire de l'IA par Amy Boyd](https://img.youtube.com/vi/EJt3_bFYKss/0.jpg)](https://www.youtube.com/watch?v=EJt3_bFYKss "L'histoire de l'IA par Amy Boyd") + +--- + +## Devoir + +[Créez une chronologie](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/1-Introduction/2-history-of-ML/assignment.md b/translations/fr/1-Introduction/2-history-of-ML/assignment.md new file mode 100644 index 000000000..fd2e21801 --- /dev/null +++ b/translations/fr/1-Introduction/2-history-of-ML/assignment.md @@ -0,0 +1,25 @@ + +# Créer une chronologie + +## Instructions + +En utilisant [ce dépôt](https://github.com/Digital-Humanities-Toolkit/timeline-builder), créez une chronologie sur un aspect de l'histoire des algorithmes, des mathématiques, des statistiques, de l'IA ou du ML, ou une combinaison de ces sujets. Vous pouvez vous concentrer sur une personne, une idée ou une longue période de réflexion. Assurez-vous d'ajouter des éléments multimédias. + +## Grille d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | -------------------------------------------------- | -------------------------------------- | --------------------------------------------------------------- | +| | Une chronologie déployée est présentée comme une page GitHub | Le code est incomplet et non déployé | La chronologie est incomplète, peu approfondie et non déployée | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/1-Introduction/3-fairness/README.md b/translations/fr/1-Introduction/3-fairness/README.md new file mode 100644 index 000000000..e19b04052 --- /dev/null +++ b/translations/fr/1-Introduction/3-fairness/README.md @@ -0,0 +1,170 @@ + +# Construire des solutions de Machine Learning avec une IA responsable + +![Résumé de l'IA responsable dans le Machine Learning sous forme de sketchnote](../../../../translated_images/ml-fairness.ef296ebec6afc98a44566d7b6c1ed18dc2bf1115c13ec679bb626028e852fa1d.fr.png) +> Sketchnote par [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [Quiz avant le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/) + +## Introduction + +Dans ce programme, vous commencerez à découvrir comment le machine learning peut influencer et influence déjà notre vie quotidienne. Aujourd'hui, des systèmes et des modèles participent à des tâches de prise de décision quotidienne, comme les diagnostics médicaux, les approbations de prêts ou la détection de fraudes. Il est donc essentiel que ces modèles fonctionnent correctement pour fournir des résultats fiables. Comme pour toute application logicielle, les systèmes d'IA peuvent ne pas répondre aux attentes ou produire des résultats indésirables. C'est pourquoi il est crucial de comprendre et d'expliquer le comportement d'un modèle d'IA. + +Imaginez ce qui peut se produire lorsque les données utilisées pour construire ces modèles manquent de certaines représentations démographiques, comme la race, le genre, les opinions politiques ou la religion, ou lorsqu'elles représentent ces groupes de manière disproportionnée. Que se passe-t-il lorsque les résultats du modèle favorisent certains groupes démographiques ? Quelles sont les conséquences pour l'application ? De plus, que se passe-t-il lorsque le modèle produit un résultat négatif et nuit aux personnes ? Qui est responsable du comportement des systèmes d'IA ? Ce sont quelques-unes des questions que nous explorerons dans ce programme. + +Dans cette leçon, vous allez : + +- Prendre conscience de l'importance de l'équité dans le machine learning et des préjudices liés à l'équité. +- Vous familiariser avec la pratique d'exploration des cas particuliers et des scénarios inhabituels pour garantir la fiabilité et la sécurité. +- Comprendre la nécessité de concevoir des systèmes inclusifs pour autonomiser tout le monde. +- Explorer l'importance de protéger la vie privée et la sécurité des données et des personnes. +- Découvrir l'importance d'une approche transparente pour expliquer le comportement des modèles d'IA. +- Être attentif au rôle essentiel de la responsabilité pour instaurer la confiance dans les systèmes d'IA. + +## Prérequis + +En guise de prérequis, veuillez suivre le parcours d'apprentissage "Principes de l'IA responsable" et regarder la vidéo ci-dessous sur le sujet : + +En savoir plus sur l'IA responsable en suivant ce [parcours d'apprentissage](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott) + +[![Approche de Microsoft sur l'IA responsable](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Approche de Microsoft sur l'IA responsable") + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo : Approche de Microsoft sur l'IA responsable + +## Équité + +Les systèmes d'IA doivent traiter tout le monde de manière équitable et éviter d'affecter différemment des groupes similaires de personnes. Par exemple, lorsque les systèmes d'IA fournissent des recommandations sur les traitements médicaux, les demandes de prêt ou l'emploi, ils doivent faire les mêmes recommandations à tous ceux qui présentent des symptômes, des circonstances financières ou des qualifications professionnelles similaires. Chacun de nous, en tant qu'humain, porte des biais hérités qui influencent nos décisions et nos actions. Ces biais peuvent se refléter dans les données que nous utilisons pour entraîner les systèmes d'IA. Ces manipulations peuvent parfois se produire involontairement. Il est souvent difficile de savoir consciemment quand vous introduisez un biais dans les données. + +**L'« inéquité »** englobe les impacts négatifs, ou « préjudices », pour un groupe de personnes, comme ceux définis en termes de race, de genre, d'âge ou de handicap. Les principaux préjudices liés à l'équité peuvent être classés comme suit : + +- **Allocation**, si un genre ou une ethnie, par exemple, est favorisé par rapport à un autre. +- **Qualité du service**. Si vous entraînez les données pour un scénario spécifique mais que la réalité est beaucoup plus complexe, cela conduit à un service de mauvaise qualité. Par exemple, un distributeur de savon qui semble incapable de détecter les personnes à la peau foncée. [Référence](https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773) +- **Dénigrement**. Critiquer ou étiqueter injustement quelque chose ou quelqu'un. Par exemple, une technologie de reconnaissance d'images a tristement mal identifié des images de personnes à la peau foncée comme des gorilles. +- **Sur- ou sous-représentation**. L'idée qu'un certain groupe n'est pas représenté dans une certaine profession, et tout service ou fonction qui continue de promouvoir cela contribue au préjudice. +- **Stéréotypage**. Associer un groupe donné à des attributs préassignés. Par exemple, un système de traduction entre l'anglais et le turc peut présenter des inexactitudes dues à des mots associés à des stéréotypes de genre. + +![traduction en turc](../../../../translated_images/gender-bias-translate-en-tr.f185fd8822c2d4372912f2b690f6aaddd306ffbb49d795ad8d12a4bf141e7af0.fr.png) +> traduction en turc + +![traduction en anglais](../../../../translated_images/gender-bias-translate-tr-en.4eee7e3cecb8c70e13a8abbc379209bc8032714169e585bdeac75af09b1752aa.fr.png) +> traduction en anglais + +Lors de la conception et des tests des systèmes d'IA, nous devons nous assurer que l'IA est équitable et qu'elle n'est pas programmée pour prendre des décisions biaisées ou discriminatoires, que les êtres humains sont également interdits de prendre. Garantir l'équité dans l'IA et le machine learning reste un défi sociotechnique complexe. + +### Fiabilité et sécurité + +Pour instaurer la confiance, les systèmes d'IA doivent être fiables, sûrs et cohérents dans des conditions normales et inattendues. Il est important de savoir comment les systèmes d'IA se comporteront dans une variété de situations, en particulier lorsqu'il s'agit de cas particuliers. Lors de la création de solutions d'IA, il est nécessaire de se concentrer fortement sur la manière de gérer une grande variété de circonstances que les solutions d'IA pourraient rencontrer. Par exemple, une voiture autonome doit donner la priorité à la sécurité des personnes. En conséquence, l'IA qui alimente la voiture doit prendre en compte tous les scénarios possibles que la voiture pourrait rencontrer, comme la nuit, les orages ou les tempêtes de neige, les enfants traversant la rue, les animaux domestiques, les travaux routiers, etc. La capacité d'un système d'IA à gérer de manière fiable et sûre une large gamme de conditions reflète le niveau d'anticipation que le data scientist ou le développeur d'IA a pris en compte lors de la conception ou des tests du système. + +> [🎥 Cliquez ici pour une vidéo : ](https://www.microsoft.com/videoplayer/embed/RE4vvIl) + +### Inclusion + +Les systèmes d'IA doivent être conçus pour engager et autonomiser tout le monde. Lors de la conception et de la mise en œuvre des systèmes d'IA, les data scientists et les développeurs d'IA identifient et abordent les obstacles potentiels dans le système qui pourraient exclure involontairement des personnes. Par exemple, il y a 1 milliard de personnes handicapées dans le monde. Avec les avancées de l'IA, elles peuvent accéder à une large gamme d'informations et d'opportunités plus facilement dans leur vie quotidienne. En abordant ces obstacles, cela crée des opportunités d'innover et de développer des produits d'IA avec de meilleures expériences qui profitent à tout le monde. + +> [🎥 Cliquez ici pour une vidéo : inclusion dans l'IA](https://www.microsoft.com/videoplayer/embed/RE4vl9v) + +### Sécurité et confidentialité + +Les systèmes d'IA doivent être sûrs et respecter la vie privée des personnes. Les gens ont moins confiance dans les systèmes qui mettent leur vie privée, leurs informations ou leur vie en danger. Lors de l'entraînement des modèles de machine learning, nous nous appuyons sur les données pour produire les meilleurs résultats. Ce faisant, l'origine des données et leur intégrité doivent être prises en compte. Par exemple, les données ont-elles été soumises par les utilisateurs ou sont-elles disponibles publiquement ? Ensuite, lors du travail avec les données, il est crucial de développer des systèmes d'IA capables de protéger les informations confidentielles et de résister aux attaques. À mesure que l'IA devient plus répandue, protéger la vie privée et sécuriser les informations personnelles et professionnelles importantes devient de plus en plus critique et complexe. Les problèmes de confidentialité et de sécurité des données nécessitent une attention particulière pour l'IA, car l'accès aux données est essentiel pour que les systèmes d'IA fassent des prédictions et des décisions précises et éclairées sur les personnes. + +> [🎥 Cliquez ici pour une vidéo : sécurité dans l'IA](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- En tant qu'industrie, nous avons réalisé des avancées significatives en matière de confidentialité et de sécurité, largement alimentées par des réglementations comme le RGPD (Règlement Général sur la Protection des Données). +- Cependant, avec les systèmes d'IA, nous devons reconnaître la tension entre le besoin de données personnelles pour rendre les systèmes plus efficaces et la protection de la vie privée. +- Tout comme avec la naissance des ordinateurs connectés à Internet, nous observons également une augmentation significative du nombre de problèmes de sécurité liés à l'IA. +- En même temps, nous avons vu l'IA être utilisée pour améliorer la sécurité. Par exemple, la plupart des scanners antivirus modernes sont aujourd'hui alimentés par des heuristiques d'IA. +- Nous devons nous assurer que nos processus de data science s'harmonisent avec les dernières pratiques en matière de confidentialité et de sécurité. + +### Transparence + +Les systèmes d'IA doivent être compréhensibles. Une partie essentielle de la transparence consiste à expliquer le comportement des systèmes d'IA et de leurs composants. Améliorer la compréhension des systèmes d'IA nécessite que les parties prenantes comprennent comment et pourquoi ils fonctionnent afin qu'elles puissent identifier les problèmes de performance potentiels, les préoccupations en matière de sécurité et de confidentialité, les biais, les pratiques d'exclusion ou les résultats involontaires. Nous croyons également que ceux qui utilisent les systèmes d'IA doivent être honnêtes et transparents sur le moment, la raison et la manière dont ils choisissent de les déployer, ainsi que sur les limites des systèmes qu'ils utilisent. Par exemple, si une banque utilise un système d'IA pour soutenir ses décisions de prêt aux consommateurs, il est important d'examiner les résultats et de comprendre quelles données influencent les recommandations du système. Les gouvernements commencent à réglementer l'IA dans divers secteurs, donc les data scientists et les organisations doivent expliquer si un système d'IA répond aux exigences réglementaires, en particulier lorsqu'il y a un résultat indésirable. + +> [🎥 Cliquez ici pour une vidéo : transparence dans l'IA](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- Parce que les systèmes d'IA sont si complexes, il est difficile de comprendre leur fonctionnement et d'interpréter les résultats. +- Ce manque de compréhension affecte la manière dont ces systèmes sont gérés, opérationnalisés et documentés. +- Ce manque de compréhension affecte surtout les décisions prises en utilisant les résultats produits par ces systèmes. + +### Responsabilité + +Les personnes qui conçoivent et déploient des systèmes d'IA doivent être responsables de leur fonctionnement. La nécessité de responsabilité est particulièrement cruciale avec les technologies sensibles comme la reconnaissance faciale. Récemment, la demande pour la technologie de reconnaissance faciale a augmenté, notamment de la part des organisations de maintien de l'ordre qui voient le potentiel de cette technologie dans des utilisations comme la recherche d'enfants disparus. Cependant, ces technologies pourraient potentiellement être utilisées par un gouvernement pour mettre en danger les libertés fondamentales de ses citoyens, par exemple en permettant une surveillance continue de certains individus. Ainsi, les data scientists et les organisations doivent être responsables de l'impact de leur système d'IA sur les individus ou la société. + +[![Un chercheur en IA met en garde contre la surveillance de masse via la reconnaissance faciale](../../../../translated_images/accountability.41d8c0f4b85b6231301d97f17a450a805b7a07aaeb56b34015d71c757cad142e.fr.png)](https://www.youtube.com/watch?v=Wldt8P5V6D0 "Approche de Microsoft sur l'IA responsable") + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo : Avertissements sur la surveillance de masse via la reconnaissance faciale + +En fin de compte, l'une des plus grandes questions pour notre génération, en tant que première génération à introduire l'IA dans la société, est de savoir comment garantir que les ordinateurs resteront responsables envers les personnes et comment garantir que les personnes qui conçoivent les ordinateurs restent responsables envers tout le monde. + +## Évaluation de l'impact + +Avant d'entraîner un modèle de machine learning, il est important de réaliser une évaluation de l'impact pour comprendre l'objectif du système d'IA, son utilisation prévue, son lieu de déploiement et les personnes qui interagiront avec le système. Ces éléments sont utiles pour les examinateurs ou les testeurs qui évaluent le système afin de savoir quels facteurs prendre en compte lors de l'identification des risques potentiels et des conséquences attendues. + +Les domaines suivants sont à examiner lors de l'évaluation de l'impact : + +* **Impact négatif sur les individus**. Être conscient de toute restriction ou exigence, utilisation non prise en charge ou toute limitation connue entravant les performances du système est essentiel pour garantir que le système n'est pas utilisé de manière à nuire aux individus. +* **Exigences en matière de données**. Comprendre comment et où le système utilisera les données permet aux examinateurs d'explorer les exigences en matière de données dont vous devez tenir compte (par exemple, les réglementations RGPD ou HIPAA). En outre, examinez si la source ou la quantité de données est suffisante pour l'entraînement. +* **Résumé de l'impact**. Rassemblez une liste des préjudices potentiels qui pourraient découler de l'utilisation du système. Tout au long du cycle de vie du ML, vérifiez si les problèmes identifiés sont atténués ou résolus. +* **Objectifs applicables** pour chacun des six principes fondamentaux. Évaluez si les objectifs de chaque principe sont atteints et s'il existe des lacunes. + +## Débogage avec une IA responsable + +Tout comme le débogage d'une application logicielle, le débogage d'un système d'IA est un processus nécessaire pour identifier et résoudre les problèmes du système. De nombreux facteurs peuvent affecter les performances d'un modèle qui ne répond pas aux attentes ou aux principes de responsabilité. La plupart des métriques traditionnelles de performance des modèles sont des agrégats quantitatifs des performances d'un modèle, ce qui n'est pas suffisant pour analyser comment un modèle viole les principes de l'IA responsable. De plus, un modèle de machine learning est une boîte noire qui rend difficile la compréhension de ce qui motive ses résultats ou l'explication de ses erreurs. Plus tard dans ce cours, nous apprendrons à utiliser le tableau de bord de l'IA responsable pour aider à déboguer les systèmes d'IA. Ce tableau de bord fournit un outil holistique pour les data scientists et les développeurs d'IA afin de réaliser : + +* **Analyse des erreurs**. Identifier la répartition des erreurs du modèle qui peut affecter l'équité ou la fiabilité du système. +* **Vue d'ensemble du modèle**. Découvrir où il y a des disparités dans les performances du modèle à travers les cohortes de données. +* **Analyse des données**. Comprendre la répartition des données et identifier tout biais potentiel dans les données pouvant entraîner des problèmes d'équité, d'inclusion et de fiabilité. +* **Interprétabilité du modèle**. Comprendre ce qui affecte ou influence les prédictions du modèle. Cela aide à expliquer le comportement du modèle, ce qui est important pour la transparence et la responsabilité. + +## 🚀 Défi + +Pour éviter que des préjudices ne soient introduits dès le départ, nous devrions : + +- avoir une diversité de parcours et de perspectives parmi les personnes travaillant sur les systèmes +- investir dans des ensembles de données qui reflètent la diversité de notre société +- développer de meilleures méthodes tout au long du cycle de vie du machine learning pour détecter et corriger les problèmes liés à l'IA responsable lorsqu'ils surviennent + +Réfléchissez à des scénarios réels où le manque de fiabilité d'un modèle est évident dans sa construction et son utilisation. Que devrions-nous également prendre en compte ? + +## [Quiz après le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/6/) +## Révision et étude personnelle +Dans cette leçon, vous avez appris les bases des concepts d'équité et d'injustice en apprentissage automatique. + +Regardez cet atelier pour approfondir les sujets : + +- À la recherche d'une IA responsable : Mettre les principes en pratique par Besmira Nushi, Mehrnoosh Sameki et Amit Sharma + +[![Responsible AI Toolbox : Un cadre open-source pour construire une IA responsable](https://img.youtube.com/vi/tGgJCrA-MZU/0.jpg)](https://www.youtube.com/watch?v=tGgJCrA-MZU "RAI Toolbox : Un cadre open-source pour construire une IA responsable") + + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo : RAI Toolbox : Un cadre open-source pour construire une IA responsable par Besmira Nushi, Mehrnoosh Sameki et Amit Sharma + +Lisez également : + +- Centre de ressources RAI de Microsoft : [Responsible AI Resources – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- Groupe de recherche FATE de Microsoft : [FATE : Fairness, Accountability, Transparency, and Ethics in AI - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +RAI Toolbox : + +- [Dépôt GitHub de Responsible AI Toolbox](https://github.com/microsoft/responsible-ai-toolbox) + +Découvrez les outils d'Azure Machine Learning pour garantir l'équité : + +- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott) + +## Devoir + +[Explorez RAI Toolbox](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/1-Introduction/3-fairness/assignment.md b/translations/fr/1-Introduction/3-fairness/assignment.md new file mode 100644 index 000000000..3fdf983f0 --- /dev/null +++ b/translations/fr/1-Introduction/3-fairness/assignment.md @@ -0,0 +1,25 @@ + +# Explorez la boîte à outils IA responsable + +## Instructions + +Dans cette leçon, vous avez découvert la boîte à outils IA responsable, un "projet open-source et communautaire visant à aider les data scientists à analyser et améliorer les systèmes d'IA." Pour cet exercice, explorez l'un des [notebooks](https://github.com/microsoft/responsible-ai-toolbox/blob/main/notebooks/responsibleaidashboard/getting-started.ipynb) de la boîte à outils RAI et présentez vos conclusions dans un document ou une présentation. + +## Grille d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ---------- | ------- | ----------- | +| | Un document ou une présentation PowerPoint est fourni, discutant des systèmes de Fairlearn, du notebook exécuté, et des conclusions tirées de son exécution | Un document est fourni sans conclusions | Aucun document n'est fourni | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/1-Introduction/4-techniques-of-ML/README.md b/translations/fr/1-Introduction/4-techniques-of-ML/README.md new file mode 100644 index 000000000..35cdc080d --- /dev/null +++ b/translations/fr/1-Introduction/4-techniques-of-ML/README.md @@ -0,0 +1,132 @@ + +# Techniques d'apprentissage automatique + +Le processus de création, d'utilisation et de maintenance des modèles d'apprentissage automatique ainsi que des données qu'ils utilisent est très différent de nombreux autres flux de travail de développement. Dans cette leçon, nous allons démystifier ce processus et présenter les principales techniques que vous devez connaître. Vous allez : + +- Comprendre les processus qui sous-tendent l'apprentissage automatique à un niveau général. +- Explorer des concepts de base tels que les "modèles", les "prédictions" et les "données d'entraînement". + +## [Quiz pré-lecture](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7/) + +[![ML pour débutants - Techniques d'apprentissage automatique](https://img.youtube.com/vi/4NGM0U2ZSHU/0.jpg)](https://youtu.be/4NGM0U2ZSHU "ML pour débutants - Techniques d'apprentissage automatique") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo expliquant cette leçon. + +## Introduction + +À un niveau général, l'art de créer des processus d'apprentissage automatique (ML) comprend plusieurs étapes : + +1. **Définir la question**. La plupart des processus ML commencent par poser une question qui ne peut pas être résolue par un simple programme conditionnel ou un moteur basé sur des règles. Ces questions tournent souvent autour de prédictions basées sur un ensemble de données. +2. **Collecter et préparer les données**. Pour répondre à votre question, vous avez besoin de données. La qualité et, parfois, la quantité de vos données détermineront dans quelle mesure vous pouvez répondre à votre question initiale. La visualisation des données est un aspect important de cette phase. Cette phase inclut également la division des données en groupes d'entraînement et de test pour construire un modèle. +3. **Choisir une méthode d'entraînement**. Selon votre question et la nature de vos données, vous devez choisir comment entraîner un modèle pour qu'il reflète au mieux vos données et fasse des prédictions précises. Cette partie du processus ML nécessite une expertise spécifique et, souvent, beaucoup d'expérimentation. +4. **Entraîner le modèle**. À l'aide de vos données d'entraînement, vous utiliserez divers algorithmes pour entraîner un modèle à reconnaître des motifs dans les données. Le modèle peut s'appuyer sur des poids internes ajustables pour privilégier certaines parties des données afin de construire un meilleur modèle. +5. **Évaluer le modèle**. Vous utilisez des données jamais vues auparavant (vos données de test) issues de votre ensemble collecté pour évaluer les performances du modèle. +6. **Ajuster les paramètres**. En fonction des performances de votre modèle, vous pouvez recommencer le processus en utilisant différents paramètres ou variables qui contrôlent le comportement des algorithmes utilisés pour entraîner le modèle. +7. **Prédire**. Utilisez de nouvelles entrées pour tester la précision de votre modèle. + +## Quelle question poser + +Les ordinateurs sont particulièrement doués pour découvrir des motifs cachés dans les données. Cette capacité est très utile pour les chercheurs qui se posent des questions sur un domaine donné et qui ne peuvent pas être facilement résolues par un moteur basé sur des règles conditionnelles. Dans une tâche actuarielle, par exemple, un data scientist pourrait construire des règles artisanales sur la mortalité des fumeurs par rapport aux non-fumeurs. + +Cependant, lorsque de nombreuses autres variables entrent en jeu, un modèle ML pourrait s'avérer plus efficace pour prédire les taux de mortalité futurs en se basant sur des antécédents médicaux. Un exemple plus joyeux pourrait être de faire des prévisions météorologiques pour le mois d'avril dans un lieu donné en se basant sur des données telles que la latitude, la longitude, le changement climatique, la proximité de l'océan, les motifs du courant-jet, et plus encore. + +✅ Ce [diaporama](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf) sur les modèles météorologiques offre une perspective historique sur l'utilisation du ML dans l'analyse météorologique. + +## Tâches préalables à la construction + +Avant de commencer à construire votre modèle, plusieurs tâches doivent être accomplies. Pour tester votre question et formuler une hypothèse basée sur les prédictions d'un modèle, vous devez identifier et configurer plusieurs éléments. + +### Données + +Pour répondre à votre question avec certitude, vous avez besoin d'une quantité suffisante de données du bon type. À ce stade, deux choses sont nécessaires : + +- **Collecter des données**. En gardant à l'esprit la leçon précédente sur l'équité dans l'analyse des données, collectez vos données avec soin. Soyez conscient des sources de ces données, des biais inhérents qu'elles pourraient contenir, et documentez leur origine. +- **Préparer les données**. Il existe plusieurs étapes dans le processus de préparation des données. Vous pourriez avoir besoin de regrouper les données et de les normaliser si elles proviennent de sources diverses. Vous pouvez améliorer la qualité et la quantité des données par divers moyens, comme convertir des chaînes de caractères en nombres (comme nous le faisons dans [Clustering](../../5-Clustering/1-Visualize/README.md)). Vous pourriez également générer de nouvelles données à partir des données originales (comme nous le faisons dans [Classification](../../4-Classification/1-Introduction/README.md)). Vous pouvez nettoyer et éditer les données (comme nous le ferons avant la leçon sur [l'application web](../../3-Web-App/README.md)). Enfin, vous pourriez également avoir besoin de les randomiser et de les mélanger, selon vos techniques d'entraînement. + +✅ Après avoir collecté et traité vos données, prenez un moment pour vérifier si leur structure vous permettra de répondre à votre question. Il se peut que les données ne soient pas adaptées à votre tâche, comme nous le découvrons dans nos leçons sur le [Clustering](../../5-Clustering/1-Visualize/README.md) ! + +### Caractéristiques et cible + +Une [caractéristique](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection) est une propriété mesurable de vos données. Dans de nombreux ensembles de données, elle est exprimée comme un en-tête de colonne tel que 'date', 'taille' ou 'couleur'. Votre variable caractéristique, généralement représentée par `X` dans le code, représente la variable d'entrée utilisée pour entraîner le modèle. + +Une cible est ce que vous essayez de prédire. La cible, généralement représentée par `y` dans le code, correspond à la réponse à la question que vous posez à vos données : en décembre, quelle **couleur** de citrouilles sera la moins chère ? À San Francisco, quels quartiers auront les meilleurs **prix** immobiliers ? Parfois, la cible est également appelée attribut d'étiquette. + +### Sélectionner votre variable caractéristique + +🎓 **Sélection et extraction de caractéristiques** Comment savoir quelle variable choisir lors de la construction d'un modèle ? Vous passerez probablement par un processus de sélection ou d'extraction de caractéristiques pour choisir les bonnes variables pour un modèle performant. Cependant, ces deux processus sont différents : "L'extraction de caractéristiques crée de nouvelles caractéristiques à partir de fonctions des caractéristiques originales, tandis que la sélection de caractéristiques renvoie un sous-ensemble des caractéristiques." ([source](https://wikipedia.org/wiki/Feature_selection)) + +### Visualiser vos données + +Un aspect important de la boîte à outils du data scientist est la capacité de visualiser les données à l'aide de plusieurs bibliothèques excellentes comme Seaborn ou MatPlotLib. Représenter vos données visuellement peut vous permettre de découvrir des corrélations cachées que vous pouvez exploiter. Vos visualisations peuvent également vous aider à détecter des biais ou des données déséquilibrées (comme nous le découvrons dans [Classification](../../4-Classification/2-Classifiers-1/README.md)). + +### Diviser votre ensemble de données + +Avant l'entraînement, vous devez diviser votre ensemble de données en deux ou plusieurs parties de tailles inégales qui représentent toujours bien les données. + +- **Entraînement**. Cette partie de l'ensemble de données est utilisée pour entraîner votre modèle. Elle constitue la majorité de l'ensemble de données original. +- **Test**. Un ensemble de test est un groupe indépendant de données, souvent issu des données originales, que vous utilisez pour confirmer les performances du modèle construit. +- **Validation**. Un ensemble de validation est un plus petit groupe indépendant d'exemples que vous utilisez pour ajuster les hyperparamètres ou l'architecture du modèle afin de l'améliorer. Selon la taille de vos données et la question posée, vous pourriez ne pas avoir besoin de construire ce troisième ensemble (comme nous le notons dans [Prévisions de séries temporelles](../../7-TimeSeries/1-Introduction/README.md)). + +## Construire un modèle + +À l'aide de vos données d'entraînement, votre objectif est de construire un modèle, ou une représentation statistique de vos données, en utilisant divers algorithmes pour l'**entraîner**. Entraîner un modèle l'expose aux données et lui permet de faire des hypothèses sur les motifs perçus qu'il découvre, valide et accepte ou rejette. + +### Décider d'une méthode d'entraînement + +Selon votre question et la nature de vos données, vous choisirez une méthode pour les entraîner. En parcourant la [documentation de Scikit-learn](https://scikit-learn.org/stable/user_guide.html) - que nous utilisons dans ce cours - vous pouvez explorer de nombreuses façons d'entraîner un modèle. Selon votre expérience, vous devrez peut-être essayer plusieurs méthodes différentes pour construire le meilleur modèle. Vous passerez probablement par un processus où les data scientists évaluent les performances d'un modèle en lui fournissant des données non vues, en vérifiant la précision, les biais et d'autres problèmes de qualité, et en sélectionnant la méthode d'entraînement la plus appropriée pour la tâche. + +### Entraîner un modèle + +Avec vos données d'entraînement, vous êtes prêt à les 'ajuster' pour créer un modèle. Vous remarquerez que dans de nombreuses bibliothèques ML, vous trouverez le code 'model.fit' - c'est à ce moment que vous envoyez votre variable caractéristique sous forme de tableau de valeurs (généralement 'X') et une variable cible (généralement 'y'). + +### Évaluer le modèle + +Une fois le processus d'entraînement terminé (il peut nécessiter de nombreuses itérations, ou 'époques', pour entraîner un grand modèle), vous pourrez évaluer la qualité du modèle en utilisant des données de test pour mesurer ses performances. Ces données sont un sous-ensemble des données originales que le modèle n'a pas encore analysées. Vous pouvez imprimer un tableau de métriques sur la qualité de votre modèle. + +🎓 **Ajustement du modèle** + +Dans le contexte de l'apprentissage automatique, l'ajustement du modèle fait référence à la précision de la fonction sous-jacente du modèle lorsqu'il tente d'analyser des données qu'il ne connaît pas. + +🎓 **Sous-ajustement** et **sur-ajustement** sont des problèmes courants qui dégradent la qualité du modèle, car celui-ci s'ajuste soit pas assez bien, soit trop bien. Cela entraîne des prédictions soit trop alignées, soit trop peu alignées avec les données d'entraînement. Un modèle sur-ajusté prédit trop bien les données d'entraînement car il a appris les détails et le bruit des données de manière excessive. Un modèle sous-ajusté n'est pas précis car il ne peut ni analyser correctement ses données d'entraînement ni les données qu'il n'a pas encore 'vues'. + +![modèle sur-ajusté](../../../../translated_images/overfitting.1c132d92bfd93cb63240baf63ebdf82c30e30a0a44e1ad49861b82ff600c2b5c.fr.png) +> Infographie par [Jen Looper](https://twitter.com/jenlooper) + +## Ajustement des paramètres + +Une fois votre entraînement initial terminé, observez la qualité du modèle et envisagez de l'améliorer en ajustant ses 'hyperparamètres'. Lisez-en davantage sur le processus [dans la documentation](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott). + +## Prédiction + +C'est le moment où vous pouvez utiliser des données complètement nouvelles pour tester la précision de votre modèle. Dans un cadre ML 'appliqué', où vous construisez des actifs web pour utiliser le modèle en production, ce processus pourrait impliquer de recueillir des entrées utilisateur (par exemple, un clic sur un bouton) pour définir une variable et l'envoyer au modèle pour inférence ou évaluation. + +Dans ces leçons, vous découvrirez comment utiliser ces étapes pour préparer, construire, tester, évaluer et prédire - toutes les démarches d'un data scientist et plus encore, à mesure que vous progressez dans votre parcours pour devenir un ingénieur ML 'full stack'. + +--- + +## 🚀Défi + +Dessinez un organigramme reflétant les étapes d'un praticien ML. Où vous situez-vous actuellement dans le processus ? Où prévoyez-vous rencontrer des difficultés ? Qu'est-ce qui vous semble facile ? + +## [Quiz post-lecture](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8/) + +## Révision et auto-apprentissage + +Recherchez en ligne des interviews de data scientists qui discutent de leur travail quotidien. En voici [une](https://www.youtube.com/watch?v=Z3IjgbbCEfs). + +## Devoir + +[Interviewez un data scientist](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/1-Introduction/4-techniques-of-ML/assignment.md b/translations/fr/1-Introduction/4-techniques-of-ML/assignment.md new file mode 100644 index 000000000..c3c201bc2 --- /dev/null +++ b/translations/fr/1-Introduction/4-techniques-of-ML/assignment.md @@ -0,0 +1,25 @@ + +# Interviewer un data scientist + +## Instructions + +Dans votre entreprise, dans un groupe d'utilisateurs, ou parmi vos amis ou camarades d'études, discutez avec quelqu'un qui travaille professionnellement en tant que data scientist. Rédigez un court article (500 mots) sur leurs occupations quotidiennes. Sont-ils des spécialistes ou travaillent-ils en mode 'full stack' ? + +## Rubrique + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ------------------------------------------------------------------------------------ | ------------------------------------------------------------------ | --------------------- | +| | Un essai de la longueur correcte, avec des sources attribuées, présenté sous forme de fichier .doc | L'essai est mal attribué ou plus court que la longueur requise | Aucun essai n'est présenté | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/1-Introduction/README.md b/translations/fr/1-Introduction/README.md new file mode 100644 index 000000000..fe1e61451 --- /dev/null +++ b/translations/fr/1-Introduction/README.md @@ -0,0 +1,36 @@ + +# Introduction au machine learning + +Dans cette section du programme, vous serez initié aux concepts de base qui sous-tendent le domaine du machine learning, ce qu'il est, et vous découvrirez son histoire ainsi que les techniques utilisées par les chercheurs pour travailler avec lui. Explorons ensemble ce nouvel univers du ML ! + +![globe](../../../translated_images/globe.59f26379ceb40428672b4d9a568044618a2bf6292ecd53a5c481b90e3fa805eb.fr.jpg) +> Photo par Bill Oxford sur Unsplash + +### Leçons + +1. [Introduction au machine learning](1-intro-to-ML/README.md) +1. [L'histoire du machine learning et de l'IA](2-history-of-ML/README.md) +1. [Équité et machine learning](3-fairness/README.md) +1. [Techniques du machine learning](4-techniques-of-ML/README.md) +### Crédits + +"L'introduction au Machine Learning" a été écrite avec ♥️ par une équipe composée de [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) et [Jen Looper](https://twitter.com/jenlooper) + +"L'histoire du Machine Learning" a été écrite avec ♥️ par [Jen Looper](https://twitter.com/jenlooper) et [Amy Boyd](https://twitter.com/AmyKateNicho) + +"Équité et Machine Learning" a été écrit avec ♥️ par [Tomomi Imura](https://twitter.com/girliemac) + +"Techniques du Machine Learning" a été écrit avec ♥️ par [Jen Looper](https://twitter.com/jenlooper) et [Chris Noring](https://twitter.com/softchris) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction professionnelle humaine. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/2-Regression/1-Tools/README.md b/translations/fr/2-Regression/1-Tools/README.md new file mode 100644 index 000000000..cd1185d0a --- /dev/null +++ b/translations/fr/2-Regression/1-Tools/README.md @@ -0,0 +1,238 @@ + +# Commencez avec Python et Scikit-learn pour les modèles de régression + +![Résumé des régressions dans une sketchnote](../../../../translated_images/ml-regression.4e4f70e3b3ed446e3ace348dec973e133fa5d3680fbc8412b61879507369b98d.fr.png) + +> Sketchnote par [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [Quiz avant le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/9/) + +> ### [Cette leçon est disponible en R !](../../../../2-Regression/1-Tools/solution/R/lesson_1.html) + +## Introduction + +Dans ces quatre leçons, vous allez découvrir comment construire des modèles de régression. Nous discuterons bientôt de leur utilité. Mais avant de commencer, assurez-vous d'avoir les bons outils en place pour démarrer le processus ! + +Dans cette leçon, vous apprendrez à : + +- Configurer votre ordinateur pour des tâches locales d'apprentissage automatique. +- Travailler avec les notebooks Jupyter. +- Utiliser Scikit-learn, y compris son installation. +- Explorer la régression linéaire avec un exercice pratique. + +## Installations et configurations + +[![ML pour débutants - Configurez vos outils pour créer des modèles d'apprentissage automatique](https://img.youtube.com/vi/-DfeD2k2Kj0/0.jpg)](https://youtu.be/-DfeD2k2Kj0 "ML pour débutants - Configurez vos outils pour créer des modèles d'apprentissage automatique") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo expliquant comment configurer votre ordinateur pour l'apprentissage automatique. + +1. **Installez Python**. Assurez-vous que [Python](https://www.python.org/downloads/) est installé sur votre ordinateur. Vous utiliserez Python pour de nombreuses tâches de science des données et d'apprentissage automatique. La plupart des systèmes informatiques incluent déjà une installation de Python. Il existe également des [packs de codage Python](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott) utiles pour faciliter la configuration pour certains utilisateurs. + + Certaines utilisations de Python nécessitent une version spécifique du logiciel, tandis que d'autres en nécessitent une différente. Pour cette raison, il est utile de travailler dans un [environnement virtuel](https://docs.python.org/3/library/venv.html). + +2. **Installez Visual Studio Code**. Assurez-vous que Visual Studio Code est installé sur votre ordinateur. Suivez ces instructions pour [installer Visual Studio Code](https://code.visualstudio.com/) pour une installation de base. Vous allez utiliser Python dans Visual Studio Code dans ce cours, donc il pourrait être utile de revoir comment [configurer Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) pour le développement Python. + + > Familiarisez-vous avec Python en parcourant cette collection de [modules d'apprentissage](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott) + > + > [![Configurez Python avec Visual Studio Code](https://img.youtube.com/vi/yyQM70vi7V8/0.jpg)](https://youtu.be/yyQM70vi7V8 "Configurez Python avec Visual Studio Code") + > + > 🎥 Cliquez sur l'image ci-dessus pour une vidéo : utiliser Python dans VS Code. + +3. **Installez Scikit-learn**, en suivant [ces instructions](https://scikit-learn.org/stable/install.html). Étant donné que vous devez utiliser Python 3, il est recommandé d'utiliser un environnement virtuel. Notez que si vous installez cette bibliothèque sur un Mac M1, il existe des instructions spéciales sur la page liée ci-dessus. + +4. **Installez Jupyter Notebook**. Vous devrez [installer le package Jupyter](https://pypi.org/project/jupyter/). + +## Votre environnement de création ML + +Vous allez utiliser des **notebooks** pour développer votre code Python et créer des modèles d'apprentissage automatique. Ce type de fichier est un outil courant pour les data scientists, et ils peuvent être identifiés par leur suffixe ou extension `.ipynb`. + +Les notebooks sont un environnement interactif qui permet au développeur de coder, d'ajouter des notes et de rédiger de la documentation autour du code, ce qui est très utile pour des projets expérimentaux ou orientés recherche. + +[![ML pour débutants - Configurez Jupyter Notebooks pour commencer à créer des modèles de régression](https://img.youtube.com/vi/7E-jC8FLA2E/0.jpg)](https://youtu.be/7E-jC8FLA2E "ML pour débutants - Configurez Jupyter Notebooks pour commencer à créer des modèles de régression") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo expliquant cet exercice. + +### Exercice - travailler avec un notebook + +Dans ce dossier, vous trouverez le fichier _notebook.ipynb_. + +1. Ouvrez _notebook.ipynb_ dans Visual Studio Code. + + Un serveur Jupyter démarrera avec Python 3+. Vous trouverez des zones du notebook qui peuvent être `exécutées`, des morceaux de code. Vous pouvez exécuter un bloc de code en sélectionnant l'icône qui ressemble à un bouton de lecture. + +2. Sélectionnez l'icône `md` et ajoutez un peu de markdown, ainsi que le texte suivant **# Bienvenue dans votre notebook**. + + Ensuite, ajoutez du code Python. + +3. Tapez **print('hello notebook')** dans le bloc de code. +4. Sélectionnez la flèche pour exécuter le code. + + Vous devriez voir l'instruction imprimée : + + ```output + hello notebook + ``` + +![VS Code avec un notebook ouvert](../../../../translated_images/notebook.4a3ee31f396b88325607afda33cadcc6368de98040ff33942424260aa84d75f2.fr.jpg) + +Vous pouvez intercaler votre code avec des commentaires pour auto-documenter le notebook. + +✅ Réfléchissez un instant à la différence entre l'environnement de travail d'un développeur web et celui d'un data scientist. + +## Prise en main avec Scikit-learn + +Maintenant que Python est configuré dans votre environnement local et que vous êtes à l'aise avec les notebooks Jupyter, familiarisons-nous avec Scikit-learn (prononcez-le `sci` comme dans `science`). Scikit-learn fournit une [API étendue](https://scikit-learn.org/stable/modules/classes.html#api-ref) pour vous aider à effectuer des tâches d'apprentissage automatique. + +Selon leur [site web](https://scikit-learn.org/stable/getting_started.html), "Scikit-learn est une bibliothèque open source d'apprentissage automatique qui prend en charge l'apprentissage supervisé et non supervisé. Elle fournit également divers outils pour l'ajustement de modèles, le prétraitement des données, la sélection et l'évaluation de modèles, ainsi que de nombreuses autres utilités." + +Dans ce cours, vous utiliserez Scikit-learn et d'autres outils pour construire des modèles d'apprentissage automatique afin d'effectuer ce que nous appelons des tâches d'apprentissage automatique "traditionnel". Nous avons délibérément évité les réseaux neuronaux et l'apprentissage profond, car ils sont mieux couverts dans notre prochain programme "IA pour débutants". + +Scikit-learn simplifie la création de modèles et leur évaluation pour une utilisation. Il se concentre principalement sur l'utilisation de données numériques et contient plusieurs ensembles de données prêts à l'emploi pour servir d'outils d'apprentissage. Il inclut également des modèles préconstruits que les étudiants peuvent essayer. Explorons le processus de chargement de données préemballées et d'utilisation d'un estimateur pour créer un premier modèle ML avec Scikit-learn à l'aide de données de base. + +## Exercice - votre premier notebook Scikit-learn + +> Ce tutoriel a été inspiré par l'[exemple de régression linéaire](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py) sur le site web de Scikit-learn. + +[![ML pour débutants - Votre premier projet de régression linéaire en Python](https://img.youtube.com/vi/2xkXL5EUpS0/0.jpg)](https://youtu.be/2xkXL5EUpS0 "ML pour débutants - Votre premier projet de régression linéaire en Python") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo expliquant cet exercice. + +Dans le fichier _notebook.ipynb_ associé à cette leçon, videz toutes les cellules en appuyant sur l'icône de la "poubelle". + +Dans cette section, vous allez travailler avec un petit ensemble de données sur le diabète intégré à Scikit-learn à des fins d'apprentissage. Imaginez que vous vouliez tester un traitement pour des patients diabétiques. Les modèles d'apprentissage automatique pourraient vous aider à déterminer quels patients répondraient mieux au traitement, en fonction de combinaisons de variables. Même un modèle de régression très basique, lorsqu'il est visualisé, pourrait fournir des informations sur les variables qui vous aideraient à organiser vos essais cliniques théoriques. + +✅ Il existe de nombreux types de méthodes de régression, et le choix dépend de la réponse que vous recherchez. Si vous voulez prédire la taille probable d'une personne en fonction de son âge, vous utiliseriez la régression linéaire, car vous cherchez une **valeur numérique**. Si vous souhaitez déterminer si un type de cuisine doit être considéré comme végétalien ou non, vous cherchez une **catégorie** et utiliseriez la régression logistique. Vous en apprendrez davantage sur la régression logistique plus tard. Réfléchissez un peu à des questions que vous pourriez poser aux données, et à la méthode la plus appropriée. + +Commençons cette tâche. + +### Importer des bibliothèques + +Pour cette tâche, nous allons importer quelques bibliothèques : + +- **matplotlib**. C'est un [outil de graphisme](https://matplotlib.org/) utile que nous utiliserons pour créer un graphique linéaire. +- **numpy**. [numpy](https://numpy.org/doc/stable/user/whatisnumpy.html) est une bibliothèque utile pour manipuler des données numériques en Python. +- **sklearn**. C'est la bibliothèque [Scikit-learn](https://scikit-learn.org/stable/user_guide.html). + +Importez quelques bibliothèques pour vous aider dans vos tâches. + +1. Ajoutez les imports en tapant le code suivant : + + ```python + import matplotlib.pyplot as plt + import numpy as np + from sklearn import datasets, linear_model, model_selection + ``` + + Ci-dessus, vous importez `matplotlib`, `numpy` et vous importez `datasets`, `linear_model` et `model_selection` de `sklearn`. `model_selection` est utilisé pour diviser les données en ensembles d'entraînement et de test. + +### L'ensemble de données sur le diabète + +L'[ensemble de données sur le diabète](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) intégré comprend 442 échantillons de données sur le diabète, avec 10 variables de caractéristiques, dont certaines incluent : + +- age : âge en années +- bmi : indice de masse corporelle +- bp : pression artérielle moyenne +- s1 tc : cellules T (un type de globules blancs) + +✅ Cet ensemble de données inclut le concept de "sexe" comme variable de caractéristique importante pour la recherche sur le diabète. De nombreux ensembles de données médicaux incluent ce type de classification binaire. Réfléchissez un peu à la manière dont de telles catégorisations pourraient exclure certaines parties de la population des traitements. + +Chargez maintenant les données X et y. + +> 🎓 Rappelez-vous, il s'agit d'apprentissage supervisé, et nous avons besoin d'une cible nommée 'y'. + +Dans une nouvelle cellule de code, chargez l'ensemble de données sur le diabète en appelant `load_diabetes()`. L'entrée `return_X_y=True` indique que `X` sera une matrice de données, et `y` sera la cible de régression. + +1. Ajoutez des commandes print pour afficher la forme de la matrice de données et son premier élément : + + ```python + X, y = datasets.load_diabetes(return_X_y=True) + print(X.shape) + print(X[0]) + ``` + + Ce que vous obtenez en réponse est un tuple. Ce que vous faites est d'attribuer les deux premières valeurs du tuple à `X` et `y` respectivement. Apprenez-en davantage [sur les tuples](https://wikipedia.org/wiki/Tuple). + + Vous pouvez voir que ces données contiennent 442 éléments organisés en tableaux de 10 éléments : + + ```text + (442, 10) + [ 0.03807591 0.05068012 0.06169621 0.02187235 -0.0442235 -0.03482076 + -0.04340085 -0.00259226 0.01990842 -0.01764613] + ``` + + ✅ Réfléchissez un peu à la relation entre les données et la cible de régression. La régression linéaire prédit les relations entre la caractéristique X et la variable cible y. Pouvez-vous trouver la [cible](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) pour l'ensemble de données sur le diabète dans la documentation ? Que démontre cet ensemble de données, étant donné la cible ? + +2. Ensuite, sélectionnez une partie de cet ensemble de données à tracer en sélectionnant la 3ème colonne de l'ensemble de données. Vous pouvez le faire en utilisant l'opérateur `:` pour sélectionner toutes les lignes, puis en sélectionnant la 3ème colonne à l'aide de l'index (2). Vous pouvez également remodeler les données pour qu'elles soient un tableau 2D - comme requis pour le tracé - en utilisant `reshape(n_rows, n_columns)`. Si l'un des paramètres est -1, la dimension correspondante est calculée automatiquement. + + ```python + X = X[:, 2] + X = X.reshape((-1,1)) + ``` + + ✅ À tout moment, imprimez les données pour vérifier leur forme. + +3. Maintenant que vous avez des données prêtes à être tracées, vous pouvez voir si une machine peut aider à déterminer une séparation logique entre les nombres dans cet ensemble de données. Pour ce faire, vous devez diviser à la fois les données (X) et la cible (y) en ensembles de test et d'entraînement. Scikit-learn propose une méthode simple pour cela ; vous pouvez diviser vos données de test à un point donné. + + ```python + X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33) + ``` + +4. Vous êtes maintenant prêt à entraîner votre modèle ! Chargez le modèle de régression linéaire et entraînez-le avec vos ensembles d'entraînement X et y en utilisant `model.fit()` : + + ```python + model = linear_model.LinearRegression() + model.fit(X_train, y_train) + ``` + + ✅ `model.fit()` est une fonction que vous verrez dans de nombreuses bibliothèques ML comme TensorFlow. + +5. Ensuite, créez une prédiction en utilisant les données de test, avec la fonction `predict()`. Cela sera utilisé pour tracer la ligne entre les groupes de données. + + ```python + y_pred = model.predict(X_test) + ``` + +6. Il est maintenant temps de montrer les données dans un graphique. Matplotlib est un outil très utile pour cette tâche. Créez un nuage de points de toutes les données de test X et y, et utilisez la prédiction pour tracer une ligne à l'endroit le plus approprié, entre les regroupements de données du modèle. + + ```python + plt.scatter(X_test, y_test, color='black') + plt.plot(X_test, y_pred, color='blue', linewidth=3) + plt.xlabel('Scaled BMIs') + plt.ylabel('Disease Progression') + plt.title('A Graph Plot Showing Diabetes Progression Against BMI') + plt.show() + ``` + + ![un nuage de points montrant des points de données autour du diabète](../../../../translated_images/scatterplot.ad8b356bcbb33be68d54050e09b9b7bfc03e94fde7371f2609ae43f4c563b2d7.fr.png) +✅ Réfléchissez un peu à ce qui se passe ici. Une ligne droite traverse de nombreux petits points de données, mais que fait-elle exactement ? Pouvez-vous voir comment cette ligne pourrait vous permettre de prédire où un nouveau point de données, encore inconnu, devrait se situer par rapport à l'axe y du graphique ? Essayez de mettre en mots l'utilité pratique de ce modèle. + +Félicitations, vous avez construit votre premier modèle de régression linéaire, créé une prédiction avec celui-ci, et l'avez affichée dans un graphique ! + +--- +## 🚀Défi + +Tracez une autre variable de ce jeu de données. Indice : modifiez cette ligne : `X = X[:,2]`. Étant donné la cible de ce jeu de données, que pouvez-vous découvrir sur la progression du diabète en tant que maladie ? +## [Quiz après la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/10/) + +## Révision & Étude personnelle + +Dans ce tutoriel, vous avez travaillé avec une régression linéaire simple, plutôt qu'une régression univariée ou multiple. Lisez un peu sur les différences entre ces méthodes, ou regardez [cette vidéo](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef). + +Lisez davantage sur le concept de régression et réfléchissez aux types de questions qui peuvent être résolues grâce à cette technique. Suivez [ce tutoriel](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) pour approfondir votre compréhension. + +## Devoir + +[Un autre jeu de données](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/2-Regression/1-Tools/assignment.md b/translations/fr/2-Regression/1-Tools/assignment.md new file mode 100644 index 000000000..4cef9f055 --- /dev/null +++ b/translations/fr/2-Regression/1-Tools/assignment.md @@ -0,0 +1,27 @@ + +# Régression avec Scikit-learn + +## Instructions + +Examinez le [jeu de données Linnerud](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html#sklearn.datasets.load_linnerud) dans Scikit-learn. Ce jeu de données comporte plusieurs [cibles](https://scikit-learn.org/stable/datasets/toy_dataset.html#linnerrud-dataset) : « Il se compose de trois variables d'exercice (données) et de trois variables physiologiques (cibles) collectées auprès de vingt hommes d'âge moyen dans un club de fitness ». + +Avec vos propres mots, décrivez comment créer un modèle de régression qui tracerait la relation entre le tour de taille et le nombre de redressements assis réalisés. Faites de même pour les autres points de données de ce jeu de données. + +## Barème + +| Critères | Exemplaire | Adéquat | À améliorer | +| ------------------------------ | ----------------------------------- | ----------------------------- | -------------------------- | +| Soumettre un paragraphe descriptif | Un paragraphe bien écrit est soumis | Quelques phrases sont soumises | Aucune description n'est fournie | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/2-Regression/1-Tools/notebook.ipynb b/translations/fr/2-Regression/1-Tools/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/fr/2-Regression/1-Tools/solution/Julia/README.md b/translations/fr/2-Regression/1-Tools/solution/Julia/README.md new file mode 100644 index 000000000..baf8235e0 --- /dev/null +++ b/translations/fr/2-Regression/1-Tools/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb b/translations/fr/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb new file mode 100644 index 000000000..678d0b3f4 --- /dev/null +++ b/translations/fr/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb @@ -0,0 +1,450 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_1-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "c18d3bd0bd8ae3878597e89dcd1fa5c1", + "translation_date": "2025-09-04T01:31:15+00:00", + "source_file": "2-Regression/1-Tools/solution/R/lesson_1-R.ipynb", + "language_code": "fr" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "YJUHCXqK57yz" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Introduction à la Régression - Leçon 1\n", + "\n", + "#### Mettre les choses en perspective\n", + "\n", + "✅ Il existe de nombreux types de méthodes de régression, et le choix dépend de la réponse que vous cherchez. Si vous voulez prédire la taille probable d'une personne en fonction de son âge, vous utiliseriez la `régression linéaire`, car vous recherchez une **valeur numérique**. Si vous souhaitez déterminer si un type de cuisine doit être considéré comme végétalien ou non, vous cherchez une **catégorie** et utiliseriez donc la `régression logistique`. Vous en apprendrez davantage sur la régression logistique plus tard. Réfléchissez un peu aux questions que vous pourriez poser à partir des données, et à laquelle de ces méthodes elles conviendraient le mieux.\n", + "\n", + "Dans cette section, vous travaillerez avec un [petit ensemble de données sur le diabète](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html). Imaginez que vous vouliez tester un traitement pour des patients diabétiques. Les modèles d'apprentissage automatique pourraient vous aider à déterminer quels patients répondraient mieux au traitement, en fonction de combinaisons de variables. Même un modèle de régression très basique, lorsqu'il est visualisé, pourrait révéler des informations sur des variables qui vous aideraient à organiser vos essais cliniques théoriques.\n", + "\n", + "Cela dit, commençons cette tâche !\n", + "\n", + "

                      \n", + " \n", + "

                      Illustration par @allison_horst
                      \n", + "\n", + "\n" + ], + "metadata": { + "id": "LWNNzfqd6feZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. Chargement de notre ensemble d'outils\n", + "\n", + "Pour cette tâche, nous aurons besoin des packages suivants :\n", + "\n", + "- `tidyverse` : Le [tidyverse](https://www.tidyverse.org/) est une [collection de packages R](https://www.tidyverse.org/packages) conçue pour rendre la science des données plus rapide, plus facile et plus agréable !\n", + "\n", + "- `tidymodels` : Le framework [tidymodels](https://www.tidymodels.org/) est une [collection de packages](https://www.tidymodels.org/packages/) dédiée à la modélisation et à l'apprentissage automatique.\n", + "\n", + "Vous pouvez les installer avec la commande suivante :\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\"))`\n", + "\n", + "Le script ci-dessous vérifie si vous avez les packages nécessaires pour compléter ce module et les installe pour vous si certains sont manquants.\n" + ], + "metadata": { + "id": "FIo2YhO26wI9" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse, tidymodels)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "id": "cIA9fz9v7Dss", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2df7073b-86b2-4b32-cb86-0da605a0dc11" + } + }, + { + "cell_type": "markdown", + "source": [ + "Maintenant, chargeons ces packages géniaux et rendons-les disponibles dans notre session R actuelle. (Ceci est juste pour illustration, `pacman::p_load()` l'a déjà fait pour vous)\n" + ], + "metadata": { + "id": "gpO_P_6f9WUG" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# load the core Tidyverse packages\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# load the core Tidymodels packages\r\n", + "library(tidymodels)\r\n" + ], + "outputs": [], + "metadata": { + "id": "NLMycgG-9ezO" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. Le jeu de données sur le diabète\n", + "\n", + "Dans cet exercice, nous allons mettre en pratique nos compétences en régression en réalisant des prédictions sur un jeu de données sur le diabète. Le [jeu de données sur le diabète](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt) comprend `442 échantillons` de données relatives au diabète, avec 10 variables prédictives, notamment `l'âge`, `le sexe`, `l'indice de masse corporelle`, `la pression artérielle moyenne`, et `six mesures de sérum sanguin`, ainsi qu'une variable cible `y` : une mesure quantitative de la progression de la maladie un an après la ligne de base.\n", + "\n", + "|Nombre d'observations|442|\n", + "|----------------------|:---|\n", + "|Nombre de prédicteurs|Les 10 premières colonnes sont des prédicteurs numériques|\n", + "|Cible/Variable cible|La colonne 11 est une mesure quantitative de la progression de la maladie un an après la ligne de base|\n", + "|Informations sur les prédicteurs|- âge en années\n", + "||- sexe\n", + "||- bmi indice de masse corporelle\n", + "||- bp pression artérielle moyenne\n", + "||- s1 tc, cholestérol sérique total\n", + "||- s2 ldl, lipoprotéines de basse densité\n", + "||- s3 hdl, lipoprotéines de haute densité\n", + "||- s4 tch, cholestérol total / HDL\n", + "||- s5 ltg, possiblement le logarithme du taux de triglycérides sériques\n", + "||- s6 glu, taux de sucre dans le sang|\n", + "\n", + "\n", + "\n", + "\n", + "> 🎓 Rappelez-vous, il s'agit d'un apprentissage supervisé, et nous avons besoin d'une cible nommée 'y'.\n", + "\n", + "Avant de pouvoir manipuler des données avec R, vous devez importer les données dans la mémoire de R ou établir une connexion permettant à R d'accéder aux données à distance.\n", + "\n", + "> Le package [readr](https://readr.tidyverse.org/), qui fait partie de Tidyverse, offre une manière rapide et conviviale de lire des données rectangulaires dans R.\n", + "\n", + "Maintenant, chargeons le jeu de données sur le diabète disponible à cette URL source : \n", + "\n", + "Nous effectuerons également une vérification de cohérence sur nos données en utilisant `glimpse()` et afficherons les 5 premières lignes avec `slice()`.\n", + "\n", + "Avant d'aller plus loin, introduisons également un élément que vous rencontrerez souvent dans le code R 🥁🥁 : l'opérateur pipe `%>%`\n", + "\n", + "L'opérateur pipe (`%>%`) permet d'exécuter des opérations dans une séquence logique en passant un objet à une fonction ou une expression d'appel. Vous pouvez considérer l'opérateur pipe comme signifiant \"et ensuite\" dans votre code.\n" + ], + "metadata": { + "id": "KM6iXLH996Cl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import the data set\r\n", + "diabetes <- read_table2(file = \"https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt\")\r\n", + "\r\n", + "\r\n", + "# Get a glimpse and dimensions of the data\r\n", + "glimpse(diabetes)\r\n", + "\r\n", + "\r\n", + "# Select the first 5 rows of the data\r\n", + "diabetes %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "Z1geAMhM-bSP" + } + }, + { + "cell_type": "markdown", + "source": [ + "`glimpse()` nous montre que ces données contiennent 442 lignes et 11 colonnes, toutes de type de données `double`.\n", + "\n", + "
                      \n", + "\n", + "> glimpse() et slice() sont des fonctions de [`dplyr`](https://dplyr.tidyverse.org/). Dplyr, qui fait partie du Tidyverse, est une grammaire de manipulation de données offrant un ensemble cohérent de verbes pour résoudre les défis les plus courants en matière de manipulation de données.\n", + "\n", + "
                      \n", + "\n", + "Maintenant que nous avons les données, concentrons-nous sur une seule caractéristique (`bmi`) à cibler pour cet exercice. Cela nécessitera de sélectionner les colonnes souhaitées. Alors, comment faire cela ?\n", + "\n", + "[`dplyr::select()`](https://dplyr.tidyverse.org/reference/select.html) nous permet de *sélectionner* (et éventuellement renommer) des colonnes dans un tableau de données.\n" + ], + "metadata": { + "id": "UwjVT1Hz-c3Z" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select predictor feature `bmi` and outcome `y`\r\n", + "diabetes_select <- diabetes %>% \r\n", + " select(c(bmi, y))\r\n", + "\r\n", + "# Print the first 5 rows\r\n", + "diabetes_select %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "RDY1oAKI-m80" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Données d'entraînement et de test\n", + "\n", + "Il est courant en apprentissage supervisé de *diviser* les données en deux sous-ensembles : un ensemble (généralement plus grand) pour entraîner le modèle, et un ensemble plus petit \"mis de côté\" pour évaluer les performances du modèle.\n", + "\n", + "Maintenant que nous avons des données prêtes, nous pouvons voir si une machine peut aider à déterminer une séparation logique entre les nombres de ce jeu de données. Nous pouvons utiliser le package [rsample](https://tidymodels.github.io/rsample/), qui fait partie du framework Tidymodels, pour créer un objet contenant les informations sur *comment* diviser les données, puis deux autres fonctions de rsample pour extraire les ensembles d'entraînement et de test créés :\n" + ], + "metadata": { + "id": "SDk668xK-tc3" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\r\n", + "# Split 67% of the data for training and the rest for tesing\r\n", + "diabetes_split <- diabetes_select %>% \r\n", + " initial_split(prop = 0.67)\r\n", + "\r\n", + "# Extract the resulting train and test sets\r\n", + "diabetes_train <- training(diabetes_split)\r\n", + "diabetes_test <- testing(diabetes_split)\r\n", + "\r\n", + "# Print the first 3 rows of the training set\r\n", + "diabetes_train %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "EqtHx129-1h-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. Entraîner un modèle de régression linéaire avec Tidymodels\n", + "\n", + "Nous sommes maintenant prêts à entraîner notre modèle !\n", + "\n", + "Dans Tidymodels, vous spécifiez les modèles en utilisant `parsnip()` en définissant trois concepts :\n", + "\n", + "- Le **type** de modèle distingue les modèles tels que la régression linéaire, la régression logistique, les modèles d'arbres de décision, etc.\n", + "\n", + "- Le **mode** du modèle inclut des options courantes comme la régression et la classification ; certains types de modèles prennent en charge l'un ou l'autre, tandis que d'autres n'ont qu'un seul mode.\n", + "\n", + "- Le **moteur** du modèle est l'outil de calcul qui sera utilisé pour ajuster le modèle. Souvent, il s'agit de packages R, tels que **`\"lm\"`** ou **`\"ranger\"`**.\n", + "\n", + "Ces informations sur le modèle sont capturées dans une spécification de modèle, alors construisons-en une !\n" + ], + "metadata": { + "id": "sBOS-XhB-6v7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- \r\n", + " # Type\r\n", + " linear_reg() %>% \r\n", + " # Engine\r\n", + " set_engine(\"lm\") %>% \r\n", + " # Mode\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Print the model specification\r\n", + "lm_spec" + ], + "outputs": [], + "metadata": { + "id": "20OwEw20--t3" + } + }, + { + "cell_type": "markdown", + "source": [ + "Après qu'un modèle a été *spécifié*, il peut être `estimé` ou `entraîné` en utilisant la fonction [`fit()`](https://parsnip.tidymodels.org/reference/fit.html), généralement avec une formule et des données.\n", + "\n", + "`y ~ .` signifie que nous allons ajuster `y` comme la quantité/variable cible prédite, expliquée par tous les prédicteurs/caractéristiques, c'est-à-dire `.` (dans ce cas, nous n'avons qu'un seul prédicteur : `bmi`).\n" + ], + "metadata": { + "id": "_oDHs89k_CJj" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>%\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Train a linear regression model\r\n", + "lm_mod <- lm_spec %>% \r\n", + " fit(y ~ ., data = diabetes_train)\r\n", + "\r\n", + "# Print the model\r\n", + "lm_mod" + ], + "outputs": [], + "metadata": { + "id": "YlsHqd-q_GJQ" + } + }, + { + "cell_type": "markdown", + "source": [ + "À partir des résultats du modèle, nous pouvons observer les coefficients appris lors de l'entraînement. Ils représentent les coefficients de la ligne de meilleure adéquation qui minimise l'erreur globale entre la variable réelle et la variable prédite.\n", + "
                      \n", + "\n", + "## 5. Faire des prédictions sur le jeu de test\n", + "\n", + "Maintenant que nous avons entraîné un modèle, nous pouvons l'utiliser pour prédire la progression de la maladie y pour le jeu de données de test en utilisant [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html). Cela servira à tracer la ligne entre les groupes de données.\n" + ], + "metadata": { + "id": "kGZ22RQj_Olu" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\r\n", + "predictions <- lm_mod %>% \r\n", + " predict(new_data = diabetes_test)\r\n", + "\r\n", + "# Print out some of the predictions\r\n", + "predictions %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "nXHbY7M2_aao" + } + }, + { + "cell_type": "markdown", + "source": [ + "Youhou ! 💃🕺 Nous venons de former un modèle et de l'utiliser pour faire des prédictions !\n", + "\n", + "Lorsqu'on effectue des prédictions, la convention de tidymodels est de toujours produire un tibble/data frame de résultats avec des noms de colonnes standardisés. Cela permet de combiner facilement les données originales et les prédictions dans un format utilisable pour des opérations ultérieures, comme la création de graphiques.\n", + "\n", + "`dplyr::bind_cols()` lie efficacement plusieurs data frames par colonne.\n" + ], + "metadata": { + "id": "R_JstwUY_bIs" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Combine the predictions and the original test set\r\n", + "results <- diabetes_test %>% \r\n", + " bind_cols(predictions)\r\n", + "\r\n", + "\r\n", + "results %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "RybsMJR7_iI8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 6. Visualiser les résultats du modèle\n", + "\n", + "Il est maintenant temps de voir cela visuellement 📈. Nous allons créer un nuage de points avec toutes les valeurs de `y` et `bmi` du jeu de test, puis utiliser les prédictions pour tracer une ligne à l'endroit le plus approprié, entre les regroupements de données du modèle.\n", + "\n", + "R propose plusieurs systèmes pour créer des graphiques, mais `ggplot2` est l'un des plus élégants et des plus polyvalents. Cela permet de composer des graphiques en **combinant des composants indépendants**.\n" + ], + "metadata": { + "id": "XJbYbMZW_n_s" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plot\r\n", + "theme_set(theme_light())\r\n", + "# Create a scatter plot\r\n", + "results %>% \r\n", + " ggplot(aes(x = bmi)) +\r\n", + " # Add a scatter plot\r\n", + " geom_point(aes(y = y), size = 1.6) +\r\n", + " # Add a line plot\r\n", + " geom_line(aes(y = .pred), color = \"blue\", size = 1.5)" + ], + "outputs": [], + "metadata": { + "id": "R9tYp3VW_sTn" + } + }, + { + "cell_type": "markdown", + "source": [ + "✅ Réfléchissez un peu à ce qui se passe ici. Une ligne droite traverse de nombreux petits points de données, mais que fait-elle exactement ? Pouvez-vous voir comment cette ligne pourrait vous permettre de prédire où un nouveau point de données, encore jamais vu, devrait se situer par rapport à l'axe y du graphique ? Essayez de mettre en mots l'utilité pratique de ce modèle.\n", + "\n", + "Félicitations, vous avez construit votre premier modèle de régression linéaire, créé une prédiction avec celui-ci, et l'avez affichée dans un graphique !\n" + ], + "metadata": { + "id": "zrPtHIxx_tNI" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/2-Regression/1-Tools/solution/notebook.ipynb b/translations/fr/2-Regression/1-Tools/solution/notebook.ipynb new file mode 100644 index 000000000..c97fd93ca --- /dev/null +++ b/translations/fr/2-Regression/1-Tools/solution/notebook.ipynb @@ -0,0 +1,675 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Importer les bibliothèques nécessaires\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from sklearn import datasets, linear_model, model_selection\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Charger le jeu de données sur le diabète, divisé en données `X` et caractéristiques `y`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 10)\n", + "[ 0.03807591 0.05068012 0.06169621 0.02187239 -0.0442235 -0.03482076\n", + " -0.04340085 -0.00259226 0.01990749 -0.01764613]\n" + ] + } + ], + "source": [ + "X, y = datasets.load_diabetes(return_X_y=True)\n", + "print(X.shape)\n", + "print(X[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sélectionnez une seule fonctionnalité à cibler pour cet exercice\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442,)\n" + ] + } + ], + "source": [ + "# Selecting the 3rd feature\n", + "X = X[:, 2]\n", + "print(X.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 1)\n", + "[[ 0.06169621]\n", + " [-0.05147406]\n", + " [ 0.04445121]\n", + " [-0.01159501]\n", + " [-0.03638469]\n", + " [-0.04069594]\n", + " [-0.04716281]\n", + " [-0.00189471]\n", + " [ 0.06169621]\n", + " [ 0.03906215]\n", + " [-0.08380842]\n", + " [ 0.01750591]\n", + " [-0.02884001]\n", + " [-0.00189471]\n", + " [-0.02560657]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [ 0.01211685]\n", + " [-0.0105172 ]\n", + " [-0.01806189]\n", + " [-0.05686312]\n", + " [-0.02237314]\n", + " [-0.00405033]\n", + " [ 0.06061839]\n", + " [ 0.03582872]\n", + " [-0.01267283]\n", + " [-0.07734155]\n", + " [ 0.05954058]\n", + " [-0.02129532]\n", + " [-0.00620595]\n", + " [ 0.04445121]\n", + " [-0.06548562]\n", + " [ 0.12528712]\n", + " [-0.05039625]\n", + " [-0.06332999]\n", + " [-0.03099563]\n", + " [ 0.02289497]\n", + " [ 0.01103904]\n", + " [ 0.07139652]\n", + " [ 0.01427248]\n", + " [-0.00836158]\n", + " [-0.06764124]\n", + " [-0.0105172 ]\n", + " [-0.02345095]\n", + " [ 0.06816308]\n", + " [-0.03530688]\n", + " [-0.01159501]\n", + " [-0.0730303 ]\n", + " [-0.04177375]\n", + " [ 0.01427248]\n", + " [-0.00728377]\n", + " [ 0.0164281 ]\n", + " [-0.00943939]\n", + " [-0.01590626]\n", + " [ 0.0250506 ]\n", + " [-0.04931844]\n", + " [ 0.04121778]\n", + " [-0.06332999]\n", + " [-0.06440781]\n", + " [-0.02560657]\n", + " [-0.00405033]\n", + " [ 0.00457217]\n", + " [-0.00728377]\n", + " [-0.0374625 ]\n", + " [-0.02560657]\n", + " [-0.02452876]\n", + " [-0.01806189]\n", + " [-0.01482845]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [-0.06979687]\n", + " [ 0.03367309]\n", + " [-0.00405033]\n", + " [-0.02021751]\n", + " [ 0.00241654]\n", + " [-0.03099563]\n", + " [ 0.02828403]\n", + " [-0.03638469]\n", + " [-0.05794093]\n", + " [-0.0374625 ]\n", + " [ 0.01211685]\n", + " [-0.02237314]\n", + " [-0.03530688]\n", + " [ 0.00996123]\n", + " [-0.03961813]\n", + " [ 0.07139652]\n", + " [-0.07518593]\n", + " [-0.00620595]\n", + " [-0.04069594]\n", + " [-0.04824063]\n", + " [-0.02560657]\n", + " [ 0.0519959 ]\n", + " [ 0.00457217]\n", + " [-0.06440781]\n", + " [-0.01698407]\n", + " [-0.05794093]\n", + " [ 0.00996123]\n", + " [ 0.08864151]\n", + " [-0.00512814]\n", + " [-0.06440781]\n", + " [ 0.01750591]\n", + " [-0.04500719]\n", + " [ 0.02828403]\n", + " [ 0.04121778]\n", + " [ 0.06492964]\n", + " [-0.03207344]\n", + " [-0.07626374]\n", + " [ 0.04984027]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03207344]\n", + " [ 0.00457217]\n", + " [ 0.02073935]\n", + " [ 0.01427248]\n", + " [ 0.11019775]\n", + " [ 0.00133873]\n", + " [ 0.05846277]\n", + " [-0.02129532]\n", + " [-0.0105172 ]\n", + " [-0.04716281]\n", + " [ 0.00457217]\n", + " [ 0.01750591]\n", + " [ 0.08109682]\n", + " [ 0.0347509 ]\n", + " [ 0.02397278]\n", + " [-0.00836158]\n", + " [-0.06117437]\n", + " [-0.00189471]\n", + " [-0.06225218]\n", + " [ 0.0164281 ]\n", + " [ 0.09618619]\n", + " [-0.06979687]\n", + " [-0.02129532]\n", + " [-0.05362969]\n", + " [ 0.0433734 ]\n", + " [ 0.05630715]\n", + " [-0.0816528 ]\n", + " [ 0.04984027]\n", + " [ 0.11127556]\n", + " [ 0.06169621]\n", + " [ 0.01427248]\n", + " [ 0.04768465]\n", + " [ 0.01211685]\n", + " [ 0.00564998]\n", + " [ 0.04660684]\n", + " [ 0.12852056]\n", + " [ 0.05954058]\n", + " [ 0.09295276]\n", + " [ 0.01535029]\n", + " [-0.00512814]\n", + " [ 0.0703187 ]\n", + " [-0.00405033]\n", + " [-0.00081689]\n", + " [-0.04392938]\n", + " [ 0.02073935]\n", + " [ 0.06061839]\n", + " [-0.0105172 ]\n", + " [-0.03315126]\n", + " [-0.06548562]\n", + " [ 0.0433734 ]\n", + " [-0.06225218]\n", + " [ 0.06385183]\n", + " [ 0.03043966]\n", + " [ 0.07247433]\n", + " [-0.0191397 ]\n", + " [-0.06656343]\n", + " [-0.06009656]\n", + " [ 0.06924089]\n", + " [ 0.05954058]\n", + " [-0.02668438]\n", + " [-0.02021751]\n", + " [-0.046085 ]\n", + " [ 0.07139652]\n", + " [-0.07949718]\n", + " [ 0.00996123]\n", + " [-0.03854032]\n", + " [ 0.01966154]\n", + " [ 0.02720622]\n", + " [-0.00836158]\n", + " [-0.01590626]\n", + " [ 0.00457217]\n", + " [-0.04285156]\n", + " [ 0.00564998]\n", + " [-0.03530688]\n", + " [ 0.02397278]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [-0.0547075 ]\n", + " [-0.00297252]\n", + " [-0.06656343]\n", + " [-0.01267283]\n", + " [-0.04177375]\n", + " [-0.03099563]\n", + " [-0.00512814]\n", + " [-0.05901875]\n", + " [ 0.0250506 ]\n", + " [-0.046085 ]\n", + " [ 0.00349435]\n", + " [ 0.05415152]\n", + " [-0.04500719]\n", + " [-0.05794093]\n", + " [-0.05578531]\n", + " [ 0.00133873]\n", + " [ 0.03043966]\n", + " [ 0.00672779]\n", + " [ 0.04660684]\n", + " [ 0.02612841]\n", + " [ 0.04552903]\n", + " [ 0.04013997]\n", + " [-0.01806189]\n", + " [ 0.01427248]\n", + " [ 0.03690653]\n", + " [ 0.00349435]\n", + " [-0.07087468]\n", + " [-0.03315126]\n", + " [ 0.09403057]\n", + " [ 0.03582872]\n", + " [ 0.03151747]\n", + " [-0.06548562]\n", + " [-0.04177375]\n", + " [-0.03961813]\n", + " [-0.03854032]\n", + " [-0.02560657]\n", + " [-0.02345095]\n", + " [-0.06656343]\n", + " [ 0.03259528]\n", + " [-0.046085 ]\n", + " [-0.02991782]\n", + " [-0.01267283]\n", + " [-0.01590626]\n", + " [ 0.07139652]\n", + " [-0.03099563]\n", + " [ 0.00026092]\n", + " [ 0.03690653]\n", + " [ 0.03906215]\n", + " [-0.01482845]\n", + " [ 0.00672779]\n", + " [-0.06871905]\n", + " [-0.00943939]\n", + " [ 0.01966154]\n", + " [ 0.07462995]\n", + " [-0.00836158]\n", + " [-0.02345095]\n", + " [-0.046085 ]\n", + " [ 0.05415152]\n", + " [-0.03530688]\n", + " [-0.03207344]\n", + " [-0.0816528 ]\n", + " [ 0.04768465]\n", + " [ 0.06061839]\n", + " [ 0.05630715]\n", + " [ 0.09834182]\n", + " [ 0.05954058]\n", + " [ 0.03367309]\n", + " [ 0.05630715]\n", + " [-0.06548562]\n", + " [ 0.16085492]\n", + " [-0.05578531]\n", + " [-0.02452876]\n", + " [-0.03638469]\n", + " [-0.00836158]\n", + " [-0.04177375]\n", + " [ 0.12744274]\n", + " [-0.07734155]\n", + " [ 0.02828403]\n", + " [-0.02560657]\n", + " [-0.06225218]\n", + " [-0.00081689]\n", + " [ 0.08864151]\n", + " [-0.03207344]\n", + " [ 0.03043966]\n", + " [ 0.00888341]\n", + " [ 0.00672779]\n", + " [-0.02021751]\n", + " [-0.02452876]\n", + " [-0.01159501]\n", + " [ 0.02612841]\n", + " [-0.05901875]\n", + " [-0.03638469]\n", + " [-0.02452876]\n", + " [ 0.01858372]\n", + " [-0.0902753 ]\n", + " [-0.00512814]\n", + " [-0.05255187]\n", + " [-0.02237314]\n", + " [-0.02021751]\n", + " [-0.0547075 ]\n", + " [-0.00620595]\n", + " [-0.01698407]\n", + " [ 0.05522933]\n", + " [ 0.07678558]\n", + " [ 0.01858372]\n", + " [-0.02237314]\n", + " [ 0.09295276]\n", + " [-0.03099563]\n", + " [ 0.03906215]\n", + " [-0.06117437]\n", + " [-0.00836158]\n", + " [-0.0374625 ]\n", + " [-0.01375064]\n", + " [ 0.07355214]\n", + " [-0.02452876]\n", + " [ 0.03367309]\n", + " [ 0.0347509 ]\n", + " [-0.03854032]\n", + " [-0.03961813]\n", + " [-0.00189471]\n", + " [-0.03099563]\n", + " [-0.046085 ]\n", + " [ 0.00133873]\n", + " [ 0.06492964]\n", + " [ 0.04013997]\n", + " [-0.02345095]\n", + " [ 0.05307371]\n", + " [ 0.04013997]\n", + " [-0.02021751]\n", + " [ 0.01427248]\n", + " [-0.03422907]\n", + " [ 0.00672779]\n", + " [ 0.00457217]\n", + " [ 0.03043966]\n", + " [ 0.0519959 ]\n", + " [ 0.06169621]\n", + " [-0.00728377]\n", + " [ 0.00564998]\n", + " [ 0.05415152]\n", + " [-0.00836158]\n", + " [ 0.114509 ]\n", + " [ 0.06708527]\n", + " [-0.05578531]\n", + " [ 0.03043966]\n", + " [-0.02560657]\n", + " [ 0.10480869]\n", + " [-0.00620595]\n", + " [-0.04716281]\n", + " [-0.04824063]\n", + " [ 0.08540807]\n", + " [-0.01267283]\n", + " [-0.03315126]\n", + " [-0.00728377]\n", + " [-0.01375064]\n", + " [ 0.05954058]\n", + " [ 0.02181716]\n", + " [ 0.01858372]\n", + " [-0.01159501]\n", + " [-0.00297252]\n", + " [ 0.01750591]\n", + " [-0.02991782]\n", + " [-0.02021751]\n", + " [-0.05794093]\n", + " [ 0.06061839]\n", + " [-0.04069594]\n", + " [-0.07195249]\n", + " [-0.05578531]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03315126]\n", + " [ 0.04984027]\n", + " [-0.08488624]\n", + " [ 0.00564998]\n", + " [ 0.02073935]\n", + " [-0.00728377]\n", + " [ 0.10480869]\n", + " [-0.02452876]\n", + " [-0.00620595]\n", + " [-0.03854032]\n", + " [ 0.13714305]\n", + " [ 0.17055523]\n", + " [ 0.00241654]\n", + " [ 0.03798434]\n", + " [-0.05794093]\n", + " [-0.00943939]\n", + " [-0.02345095]\n", + " [-0.0105172 ]\n", + " [-0.03422907]\n", + " [-0.00297252]\n", + " [ 0.06816308]\n", + " [ 0.00996123]\n", + " [ 0.00241654]\n", + " [-0.03854032]\n", + " [ 0.02612841]\n", + " [-0.08919748]\n", + " [ 0.06061839]\n", + " [-0.02884001]\n", + " [-0.02991782]\n", + " [-0.0191397 ]\n", + " [-0.04069594]\n", + " [ 0.01535029]\n", + " [-0.02452876]\n", + " [ 0.00133873]\n", + " [ 0.06924089]\n", + " [-0.06979687]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [ 0.01858372]\n", + " [ 0.00133873]\n", + " [-0.03099563]\n", + " [-0.00405033]\n", + " [ 0.01535029]\n", + " [ 0.02289497]\n", + " [ 0.04552903]\n", + " [-0.04500719]\n", + " [-0.03315126]\n", + " [ 0.097264 ]\n", + " [ 0.05415152]\n", + " [ 0.12313149]\n", + " [-0.08057499]\n", + " [ 0.09295276]\n", + " [-0.05039625]\n", + " [-0.01159501]\n", + " [-0.0277622 ]\n", + " [ 0.05846277]\n", + " [ 0.08540807]\n", + " [-0.00081689]\n", + " [ 0.00672779]\n", + " [ 0.00888341]\n", + " [ 0.08001901]\n", + " [ 0.07139652]\n", + " [-0.02452876]\n", + " [-0.0547075 ]\n", + " [-0.03638469]\n", + " [ 0.0164281 ]\n", + " [ 0.07786339]\n", + " [-0.03961813]\n", + " [ 0.01103904]\n", + " [-0.04069594]\n", + " [-0.03422907]\n", + " [ 0.00564998]\n", + " [ 0.08864151]\n", + " [-0.03315126]\n", + " [-0.05686312]\n", + " [-0.03099563]\n", + " [ 0.05522933]\n", + " [-0.06009656]\n", + " [ 0.00133873]\n", + " [-0.02345095]\n", + " [-0.07410811]\n", + " [ 0.01966154]\n", + " [-0.01590626]\n", + " [-0.01590626]\n", + " [ 0.03906215]\n", + " [-0.0730303 ]]\n" + ] + } + ], + "source": [ + "#Reshaping to get a 2D array\n", + "X = X.reshape(-1, 1)\n", + "print(X.shape)\n", + "print(X)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Divisez les données d'entraînement et de test pour `X` et `y`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sélectionnez le modèle et ajustez-le avec les données d'entraînement\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                      LinearRegression()
                      In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
                      On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
                      " + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = linear_model.LinearRegression()\n", + "model.fit(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Utilisez des données de test pour prédire une ligne\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Afficher les résultats dans un graphique\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbmUlEQVR4nO3de3wU1f0//tcQIHIxiQmBALsQUdSigNYLxn6iSaECaj/5NKTawAfRWi2IbUBRS71gtIrKp5rUj5dqK7ZfXfwAWcVS8ALuYtCIQEERvAC/cAtJoCBJQAhkc35/rLtmk92dmd2Z2ZnZ1/Px2Edl92Tm7CTd894z7/M+khBCgIiIiMhEuiW6A0RERESdMUAhIiIi02GAQkRERKbDAIWIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHS6J7oDsWhvb8f+/ftx+umnQ5KkRHeHiIiIFBBCoKWlBYMGDUK3btHnSCwZoOzfvx9OpzPR3SAiIqIY7N27Fw6HI2obSwYop59+OgD/G0xLS0twb4iIiEiJ5uZmOJ3O4DgejSUDlMBtnbS0NAYoREREFqMkPYNJskRERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpqMqQHn++ecxatSo4OqZvLw8rFy5Mvh6QUEBJEkKeUyfPj3kGHv27MG1116L3r17o3///rj77rvR1tamzbshIiIiW1C1zNjhcODxxx/H8OHDIYTA3/72NxQVFWHTpk04//zzAQC33norHn744eDP9O7dO/jfPp8P1157LXJycvDRRx+hvr4eN954I3r06IHHHntMo7dEREREVicJIUQ8B8jMzMSCBQtwyy23oKCgABdeeCEqKirCtl25ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5m5ubkZ6ejqamJtZBISIisgg143fMOSg+nw+vv/46jh07hry8vODzr732Gvr164cLLrgAc+fOxbfffht8raamBiNHjgwGJwAwfvx4NDc3Y+vWrRHP1draiubm5pAHERERac/n88Hr9WLRokXwer3w+XwJ6YfqSrJbtmxBXl4eTpw4gb59++KNN97AiBEjAACTJ0/G0KFDMWjQIHz22We499578dVXX8HtdgMAGhoaQoITAMF/NzQ0RDzn/PnzUV5errarREREpILb7UZZWRn27dsXfM7hcKCyshLFxcWG9kX1LZ6TJ09iz549aGpqwtKlS/GXv/wFa9asCQYpHb3//vsYO3YsduzYgbPOOgu33XYbdu/ejXfeeSfY5ttvv0WfPn2wYsUKTJw4Mew5W1tb0draGvx3oJY/b/EQERFpw+12o6SkBJ3DgkBZ+qVLl8YdpOh6i6dnz544++yzcfHFF2P+/PkYPXo0Kisrw7YdM2YMAGDHjh0AgJycHDQ2Noa0Cfw7Jycn4jlTU1ODK4e4/w4REZG2fD4fysrKugQnAILPzZo1y9DbPXHXQWlvbw+Z3eho8+bNAICBAwcCAPLy8rBlyxYcOHAg2Oa9995DWlpa2BkYIiIi0l91dXXIbZ3OhBDYu3cvqqurDeuTqhyUuXPnYuLEiRgyZAhaWlrgcrng9XrxzjvvYOfOnXC5XLjmmmuQlZWFzz77DLNnz8aVV16JUaNGAQCuvvpqjBgxAlOnTsWTTz6JhoYG3H///Zg5cyZSU1N1eYNEREQUXX19vabttKAqQDlw4ABuvPFG1NfXIz09HaNGjcI777yDn/zkJ9i7dy9WrVqFiooKHDt2DE6nE5MmTcL9998f/PmUlBQsX74cM2bMQF5eHvr06YNp06aF1E0hIiIiYwXudGjVTgtx10FJBNZBISIi0o7P50Nubi7q6urC5qFIkgSHw4Ha2lqkpKTEfB5D6qAQERGRPaSkpAQXvARW7QQE/l1RURFXcKIWAxQiIiJCcXExli5disGDB4c873A4NFlirBZv8RAREVGQz+dDdXU16uvrMXDgQOTn52s2c6Jm/FZdSZaIiIjsKyUlBQUFBYnuBm/xEBERkfkwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREptM90R0gIjIzn8+H6upq1NfXY+DAgcjPz0dKSkqiu6W5ZHmfZB0MUIiIInC73SgrK8O+ffuCzzkcDlRWVqK4uDiBPdNWsrxPshbe4iEiCsPtdqOkpCRk0AaAuro6lJSUwO12J6hn2kqW90nWIwkhRKI7oVZzczPS09PR1NSEtLS0RHeHiGzG5/MhNze3y6AdIEkSHA4HamtrLX0bJFneJ5mHmvGbMyhERJ1UV1dHHLQBQAiBvXv3orq62sBeaS9Z3idZEwMUIqJO6uvrNW1nVsnyPsmaGKAQEXUycOBATduZVbK8T7ImBihERJ3k5+fD4XBAkqSwr0uSBKfTifz8fIN7pq1keZ+kzokTwMaNwPHjie0HAxQiok5SUlJQWVkJAF0G78C/KyoqLJ84mizvk5Q5dgzIzQV69QIuucT/37t2Ja4/DFCIiMIoLi7G0qVLMXjw4JDnHQ4Hli5dapv6IMnyPikyIYCbbgL69gV27/7++QMHgBdeSFi3uMyYiCiaZKmwmizvk0L95S/ArbdGfv2ZZ4A77tDufLotM37++ecxatQopKWlIS0tDXl5eVi5cmXw9RMnTmDmzJnIyspC3759MWnSJDQ2NoYcY8+ePbj22mvRu3dv9O/fH3fffTfa2trUdIOIyDApKSkoKChAaWkpCgoKbDtoJ8v7JL9PPgEkKXpw0rcvMGOGcX3qTFWA4nA48Pjjj2Pjxo3YsGEDfvzjH6OoqAhbt24FAMyePRv/+Mc/sGTJEqxZswb79+8PmR70+Xy49tprcfLkSXz00Uf429/+hldeeQUPPvigtu+KiIiIujh40B+YjBkTvd0f/wi0tACJjFPjvsWTmZmJBQsWoKSkBNnZ2XC5XCgpKQEAfPnll/jBD36AmpoaXH755Vi5ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5eYuHiIhIubY24OqrAY8neruiIsDtBrrplKFqSCVZn8+H119/HceOHUNeXh42btyIU6dOYdy4ccE25513HoYMGYKamhoAQE1NDUaOHBkMTgBg/PjxaG5uDs7CEBERkXbKy4EePaIHJ+npwOHDwJtv6hecqKV6N+MtW7YgLy8PJ06cQN++ffHGG29gxIgR2Lx5M3r27ImMjIyQ9gMGDEBDQwMAoKGhISQ4CbweeC2S1tZWtLa2Bv/d3NystttEZAJMxCQyzooVwLXXyrf79FNg1Cj9+6OW6gDl3HPPxebNm9HU1ISlS5di2rRpWLNmjR59C5o/fz7Ky8t1PQcR6cvtdqOsrCxk7xeHw4HKykouZf0OAzjSwv/3/wFnnSXfzuUCSkv170+sVE/k9OzZE2effTYuvvhizJ8/H6NHj0ZlZSVycnJw8uRJHDlyJKR9Y2MjcnJyAAA5OTldVvUE/h1oE87cuXPR1NQUfOzdu1dtt4kogdxuN0pKSrpsTFdXV4eSkhK43e4E9cw83G43cnNzUVhYiMmTJ6OwsBC5ubm8NqTYt98CZ58tH5z85jdAe7u5gxNAg0Jt7e3taG1txcUXX4wePXpg9erVwde++uor7NmzB3l5eQCAvLw8bNmyBQcOHAi2ee+995CWloYRI0ZEPEdqampwaXPgQUTW4PP5UFZWhnD5+IHnZs2aBZ/PZ3TXTIMBHMVDCOBXvwL69AF27ozcbuRIf/n6P/3Jv5LH7FSt4pk7dy4mTpyIIUOGoKWlBS6XC0888QTeeecd/OQnP8GMGTOwYsUKvPLKK0hLS8NvfvMbAMBHH30EwP9BdeGFF2LQoEF48skn0dDQgKlTp+JXv/oVHnvsMcWd5ioeSiROw6vj9XpRWFgo287j8aCgoED/DpmMz+dDbm5ul+AkQJIkOBwO1NbW8u+Muli4EPjlL+Xb7d4NDBmif3/kqBm/VeWgHDhwADfeeCPq6+uRnp6OUaNGBYMTAHj66afRrVs3TJo0Ca2trRg/fjyee+654M+npKRg+fLlmDFjBvLy8tCnTx9MmzYNDz/8cAxvk8h4zKNQr76+XtN2dlNdXR0xOAH8s0x79+5FdXV1UgZwFN7Gjf79cuSsWgWMHat/f/SgKkD561//GvX10047Dc8++yyeffbZiG2GDh2KFStWqDktkSkEpuE7TzoGpuG5b0l4AwcO1LSd3TCAIzX+/W9g4EB/XZNonngCuOceY/qkF5OsdiYyN+ZRxC4/Px8Oh6PLbrkBkiTB6XQiPz/f4J6ZAwM4UiJQaC07O3pwcu21/tetHpwADFCIFFEzDU+hUlJSUFlZCQBdgpTAvysqKpI2vyI/P7/LTsIdJXsAR8Cjj/oLrb33XuQ2ffoAhw4By5cntjy9lhigECnAafj4FBcXY+nSpV0GYofDkfS3xpYtW4YTJ06EfY0BXHJ75x3/apv774/ebtMm4OhRIDPTmH4ZRXWhNqJkxGn4+BUXF6OoqIgroDqIlNcUkJmZiRdffDGpA7hkVFsLDBsm3+7//T/gv/9b//4kStybBSYClxmT0QJLQevq6sIOJlwKSmrJLS8G/DNMu3bt4t9Ukvj2W+DCC4Ht26O3mzEDePZZa9Qy6cyQzQKJkgnzKEhrcnlNALBv3z7mNSUBIYDp0/15JNGCkx/8wB/EPPecNYMTtRigECnEPArSEvOaCAD+/nf/7sF//nP0drW1wLZtQK9exvTLDJiDQqSC2jwKVp2lSJjXlNw2bQJ++EP5du++C3xXCzXpMAeFSCesOkvRMK8pOR06BAweDLS2Rm/36KPA739vTJ+MxBwUogSz0+ZvPp8PXq8XixYtgtfrZTE6jTCvKbn4fMCECUC/ftGDk/Hj/YXW7BicqMUAhUhjdqo663a7kZubi8LCQkyePBmFhYXIzc21VIBlZsxrSg7z5wPdu/vrmkSSmuovY//22/YptBYv3uIh0phddu+NVKMj8O2eA6h2zJCrZIY+2M2qVcryRzZuVJaPYge67WZMRPLssDpDbhZIkiTMmjULRUVFHMQ0kJKSktBglflS2tq9G8jNlW+3cCFw001698a6eIuHSGNGrs7QKz+Eew8lDzvlSyXa8ePAiBHywcmttwLt7QxO5DBAIdKYUbv36pkfYodZIJJnp3ypRBICuP12oHdv4IsvIrcbPhw4dgx48cXkKLQWLwYoRBozYnWG3t96WaMjMjutauJMWfxcLn+hteefj95u507g66/9QQwpwwCFSAd6rs4w4luvUbNAVmO3VU1azJTZKWBT49NP/bMgU6ZEb7dypX+GRcnmfxSKAQqRToqLi7Fr1y54PB64XC54PB7U1tbGnXSo97fewGqOwAoe1ujws2OuRrwzZXYL2JQ4fBjo29e/qV80jzziD0wmTDCkW/YkLKipqUkAEE1NTYnuCpHhXC6XACD7cLlcqo9dVVUlHA5HyHFSUlJC/u10OkVVVZUO78y82traulyXjg9JkoTT6RRtbW2J7qoqgfclSZLq91VVVRX25yRJEpIk2e5vpK1NiGuvFcIfdkR+/OQnQpw6lejempea8ZszKEQWo1d+SKQZgsCU/axZszSbBbIau+ZqxJovlWzJtQsW+Aut/fOfkdukpAAHDvj3zunOAh6aYIBCZDF65IdEG3ACx6yqqkra4l12XtUUS76UXQO2zt5/359ncs890dutX+8vT5+dbUy/kgXjPCKLCXzrLSkpgSRJIUFFrPkhagYcM1e/1YvdVzWp3aVbq4DNrNVr9+wBhg6Vb/fXvwK//KX+/UlWnEEhsiCtVwnZeYZAC8mwqilQzba0tBQFBQVRAwUtAjYzJtieOAGMGiUfnNxyi7/QGoMTfTFAIbIoLVcJ2X2GIF7RcjUA/wzTH//4R1N8+zdCvAGb2VZECQH89rdAr17Ali2R2511FnD0KPCXv7DQmhG4WSARwefzITc3F3V1dWHzUCRJgsPhQG1tbdIMwuGE27MmINn2rgkEGQDC3maMNJMX+FuLdEvR6L+1118HSkvl2+3Y4Q9QKD5qxm/OoBCRIdVv7aC4uBhPP/102NesXA8lFrHeZjRLgu2WLf5ZELngZPly/wwLgxPjMUAhIgDfDziDBg0KeX7w4MEhA06yVg4F/O999uzZYV+z4/JaObHcZkx0vtORI0BGhj/XJJp58/yBybXX6tINUoCreIgoRKS8AiD8LY5kurXB1U5dBZJrlUpUvlN7O1BcDCxbFr1dYSFrmZgFZ1CICIB84uI999xjqsTGREj0t38ziHcGLRErop5+2l9ITS44aWz01z5hcGIODFCISLYyqBACTz31VNJUDo0k2Vc7abE02Mh8J6/Xn2dy553R261b57+d079/3KckDTFAISLZWxcAogYfdqkcKicZ6qFEouXSYD13+waAffv8gUlhYfR2L77oD0wuuyyu05FOGKAQkWa3JOx8awNI3tVOeuy9o8du362twA9/CDid0dtNm+bPSbn11phPRQbgnTYiE0lU6W+tbknY9dZGR4Fv/+GShSsqKmyZLKxXcrDaBNto7rzTn2sSzdChwOefA337qj++Wcvy2xkDFCKTCLdCJjMzE2VlZbjvvvt0/TAM3LqQu80TSaC4lh1vbYSjdu8aqzNzcvCSJcD118u3+/prYPjw2M6R7KvXEkZYUFNTkwAgmpqaEt0VIiGEEG1tbcLj8QiXyyU8Ho9oa2tT9fNVVVVCkiQBIOwjKytLVFVV6dT77/sQ6fzRHpIkCUmSdO8fyYv37zASj8ej6G/B4/Focj4lPv9cCH8GSfTHW2/Fd55I/9/k331s1IzfDFCI4lRVVSUcDkfIh5fD4VD8wdXW1tbl5yM99P4wLC8vVx2gOJ1OfkibQLx/h9EE/kYjBdGSJAmn06lZQBTNN98IccYZ8oHJ/ffHfy65/28a+b7tggEKkUG0+Hal9NtpIBjQ88NQyQeyw+EQq1at0vxbOsXOiG/5gXN0Po9RMwk+nxCTJskHJvn5Qpw8qc05zThzZHVqxm+u4iGKkVYrG9Tct9d7KW9glYokSRFXqVRWVmLs2LEoLS1FQUGBbfMurEKPFTbh6L00OJo//clfaK2qKnq7hgbggw+AHj20Oa+Zc2+SAQMUohhptemZ2pUven8YJnIgIvWM3HxPj6XB0VRX++uZlJVFb/fRR/75kwEDtD1/shfmSzSu4iGKkVbfrtSuoDHiwzDZVqlYmdHf8rVcGhxJXR3gcMi3e/55YPp0/foR+P9mXV1d2BmqZFu9ZjTOoBDFSKtvVx1vq0RjdJXSwEDEWznmZqdv+SdPApdeKh+cTJniL7SmZ3ACJG9hPrNggEIUIy3Lngduq2RlZUU8FsAPQ+rKLuX3Z80CUlOBDRsitxk8GGhuBl591X/rxwi85Zk4DFCIYqT1t6vi4mI0NjaivLwcmZmZIa/xw5Aisfq3/D/8wR9sfPcWIvryS/8eO6efbky/OjI694a+o2Z50GOPPSYuueQS0bdvX5GdnS2KiorEl19+GdLmqquu6rIE69e//nVIm927d4trrrlG9OrVS2RnZ4s5c+aIU6dOKe4HlxmTmYSrPxFvbRC9Cm6Rfenxd6inNWuUFVp7881E95S0pGb8loQIk/kTwYQJE/CLX/wCl156Kdra2vD73/8en3/+ObZt24Y+ffoAAAoKCnDOOefg4YcfDv5c7969kZaWBsC/JO7CCy9ETk4OFixYgPr6etx444249dZb8dhjjynqR3NzM9LT09HU1BQ8LlEicZ8OMgMr/B0ePAj07y/fbu5cQOGQQBaiZvxWFaB0dvDgQfTv3x9r1qzBlVdeCcAfoFx44YWoqKgI+zMrV67Eddddh/3792PAd2vCXnjhBdx77704ePAgevbsKXteBihERNbS3u6vT9LeHr3doEFAbS2gYCggC1IzfseVg9LU1AQAXe6Xv/baa+jXrx8uuOACzJ07F99++23wtZqaGowcOTIYnADA+PHj0dzcjK1bt4Y9T2trK5qbm0MeRERkDTfd5C+0JhecfP21f4kxgxMC4qiD0t7ejlmzZuFHP/oRLrjgguDzkydPxtChQzFo0CB89tlnuPfee/HVV1/B7XYDABoaGkKCEwDBfzc0NIQ91/z581FeXh5rV4mIKAFefx0oLVXW7oYb9O8PWUvMAcrMmTPx+eefY+3atSHP33bbbcH/HjlyJAYOHIixY8di586dOOuss2I619y5c3HnnXcG/93c3Ayn0xlbx4mISFdffw2ce658u5tuAhYu1L07ZFExBSh33HEHli9fjg8++AAOmYo6Y8aMAQDs2LEDZ511FnJycvDJJ5+EtGlsbAQA5OTkhD1GamoqUlNTY+kqEZGurJCYapQTJ4BeveTb9ejhb9uNhS4oClV/HkII3HHHHXjjjTfw/vvv48wzz5T9mc2bNwP4vophXl4etmzZggMHDgTbvPfee0hLS8OIESPUdIeIKKHcbjdyc3NRWFiIyZMno7CwEP3798fDDz8c9+Z8VnPZZcqCk4MH/RVjGZyQHFV/IjNnzsSrr74Kl8uF008/HQ0NDWhoaMDx48cBADt37sQjjzyCjRs3YteuXXjrrbdw44034sorr8SoUaMAAFdffTVGjBiBqVOn4tNPP8U777yD+++/HzNnzuQsCRFZhtvtRklJSZc9lA4fPox58+ZhwIABwdw7O3v8cX+htfXro7d75JE1EALo18+YfpENqCmwgk4F2AKPhQsXCiGE2LNnj7jyyitFZmamSE1NFWeffba4++67uxRk2bVrl5g4caLo1auX6Nevn7jrrrtYqI2ILKOtra1LUbRwD0mSTFsoLV5r1yortAb8XkiSJJxOJwsOkn6F2syCdVCIKJG8Xi8KCwsVtXU6naitrbVNXsqhQ0pnQf4F4OKQZzwej+47IZO5GVYHhYgoGdXX1ytuu3fvXlRXV+vYG2O0t/s381MWnPRC5+AEUHfdiBigEBGpFEj6V8rqA/Mtt/gLrZ08KdfyXAASgBNhX1V73Si5MUAhIlIpPz9ftsRCR1YdmBcv9ifAvvxy9HZ//3s7HA4nJGl72NclSYLT6UR+fr4OvSS7YoBCRKRSSkoKKisrZdtZdWDeudMfmMhVd50yxZ8GO3Vqt+D1kCQppE3g3xUVFbbJwyFjMEAhshmfzwev14tFixbB6/UmXT0OoxQXF6OqqgpZWVlhX7fiwNza6g9Mzj5bvq3PB7z66vf/Li4uxtKlSzF48OCQdg6HA0uXLkVxcbHGvSW74yoeIhtxu90oKysLqc3hcDhQWVnJAUInPp8Pjz76KCorK3H48OHg806nExUVFZa57ldcAdTUyLdrbAT694/8OivrUjRqxm8GKEQ2ESgc1vn/0oFv8vwWqy+rDswLFgD33CPfzuMBuEI4dlb9+9AaAxSiJOPz+ZCbm9ulqmmAJElwOBy2qscRDQcDeR9/DOTlybd76CFg3jzdu2NrnNn8HuugECWZ6urqiMEJ4N9Hyy71OOSE2x8nNzc3KcrOK3H4sD/PRC44ueACfwIsg5P4RNoSoa6uDiUlJfy7jIIBCpENKK2zYfV6HHJiGQySJalYCOD004EIOb0hjh0DtmzRv0925/P5UFZW1uW2K4Dgc7NmzbLt31y8GKAQmZDaQVNpnQ2r1uNQIpbBIFlmW6ZP9+8efPRo9HZbt/oDmd69jemX3XFmMz4MUIhMJpZBM1A4rHMNigCr1uNQQ+1gkAxT7263/3bOn/8cvd0rr/gDkxEjDOlW0uDMZnwYoBCZSKyDZsfCYclaKEvNYGD3qffaWn9gMmlS9HbXX+8PTKZNM6ZfyYYzm/FhgEJkEvEOmsleKEvNYGDXqfeTJ/2BybBh8m3b2oD/+z/9+5TMOLMZHwYoRCahxaBZXFyMXbt2wePxwOVywePxoLa21vbBCaBuMLDj1PtVV/l3G5ZTX++fNbHxZJppcGYzPgxQiExCq0EzJSUFBQUFKC0tRUFBQdJ8+KkZDOw09V5R4Z81+eCD6O1Wr/YHJjk5hnSLvpPsM5vxYIBCZBJ2GjQTRelgYIep9/Xr/YHJ7NnR2z3wgD8w+fGPjekXdZXMM5vxYCVZIpMIVIOtq6sLm4eSbNVg46GkkmwgIRlAyPU2+9YAR44AZ5wh3+7cc4Evv9S9O0SqsJIskQXxfrV2lNzmstrUuxD+ImtKgpOjRxmckPVxBoXIZMLt22G1nXGtxAr79vzmN8D//q98uy1b/CXqicyKmwUSWZwVBk0jJev1eOstoKhIvt3LLwM336x/f4jipWb87m5Qn4hIhcAtCkrOnWB37wZyc+XbFRcDVVW6d4coIRigEJFpBRJZO0/0BirrmjFXJB4nTyqrZQL4C60lwSQSJTEmyRKRKdm9HH1nP/mJsuCkro6F1ig5MEAhIlOyazn6zv73f/31TFatit7u3Xf9gcmgQcb0iyjReIuHiEzJKuXoY03g3bgRuOQS+ePPnQs89pgGHSWyGAYoFpSsKxoouVihsm4sCbxNTUBGhvyxhw0Dduzwz64QJSMuM7aYZFzRQMnJ7JV1IyXwRqpEG9gH58AB+WO3tAB9+2raXSJTYCVZmwp8IHa+Lx9Y0eB2uxPUM7Iyn88Hr9eLRYsWwev1mibp1MyVddUm8N55J9Ctm3xw8umn/kCGwQkRAxTLSLYVDWQMt9uN3NxcFBYWYvLkySgsLERubq5pgl2zlqNXmsD75JNbIUnA009HP96LL/oDk1GjNO4okYXxFo9FeL1eFBYWyrbzeDws8EWKqL1FkUhmy7tatGgRJk+eHKWFA8Be2eP89Kf+arFEyYKVZG3IKisaKPGUDOZyM3KSJGHWrFkoKioyRQK22SrrRk7M7Q7glKJjnDoFdOcnMFFEvMVjEVZY0UCJp/SWTbLUGNFLfn4+HA5Hp9yYf0JJcLJ3r/92DoMTougYoFhE+A/E70mSBKfTifz8fIN7RmahJok60TNyZk3MVapjAi8wHYAAcE3Un1m50h+YOBx6947IHhigWISZVzRQ4qlNok7kjJzZE3OVGjasGEK0A3g+ars5c/yByYQJxvSLyC6YJGsx4eqgOJ1OVFRUmCahUQmzJT3GwkzvQW0SdaJqjFgpMTeS5mYgPV2+3ZAhwK5dLLRG1JGq8VtYUFNTkwAgmpqaEt2VhGhraxMej0e4XC7h8XhEW1tborukSlVVlXA4HAL+eXEBQDgcDlFVVZXorilmtvfgcrlC+hLp4XK5Qt6DJElCkqSQNoHntH4vbW1tXa5Z5/M6nU7T/j23twsxeLAQ/vmQ6I8k/WgikqVm/GaAQoYKDIrhBic9BkU9mPE9eDweRQGKx+Pp8l46Bw1Op1OX9xBrH81gzhxlgcm//pXonhKZm5rxm7d4yDCB2wqRVo8kunS5EmZ9D/HcsjHqVpV87RA/l8uF0tJSzc8fi7ffBiZOlG/33HPAjBn694fI6ljqnkzJDktbzfoe4kmiDtQYKS0tRUFBgS7Bic/nQ2Njo6K2ZlgqX1fnzx2RC04mTPDPnTA4IdIeAxQyTKKXtmph2bJlitol4j2YtSx8YNXO7Nmzo7Yzw1L5tjZ/YKJkKfDJk/6lw0SkD5YKIsMYvbRV61sXbrcbFRUVitomahaguLgYRUVFplldFGnVTmdmWCpfVKSs7PyePYDTqX9/zMZMq9YoSahJbnnsscfEJZdcIvr27Suys7NFUVGR+PLLL0PaHD9+XNx+++0iMzNT9OnTRxQXF4uGhoaQNrt37xbXXHON6NWrl8jOzhZz5swRp06dUtwPJslaU2AVR7gEU2i4iqOtrU2Ul5eLzMxMzVbZyK1A0fo92IHSawYdE3OVeOklZQmwy5cnpHumYLZVa2Rduq3iGT9+vFi4cKH4/PPPxebNm8U111wjhgwZIo4ePRpsM336dOF0OsXq1avFhg0bxOWXXy6uuOKK4OttbW3iggsuEOPGjRObNm0SK1asEP369RNz587V5Q2Suei9tLWqqkpkZWVFDB5iPYfSFSgA+KH9HaXX7Omnn1Yd0Gmx1P7TT5UFJrNmqT60rZhx1RpZl2HLjA8cOCAAiDVr1gghhDhy5Ijo0aOHWLJkSbDNF198IQCImpoaIYQQK1asEN26dQuZVXn++edFWlqaaG1tVXReBijWptfS1qqqKt1mOJTWGZmV7KNZB7HUZlEi3m/zLS3KApOcHH/tk2Rm9do1ZD5qxu+4kmSbmpoAAJmZmQCAjRs34tSpUxg3blywzXnnnYchQ4agpqYGAFBTU4ORI0diwIABwTbjx49Hc3Mztm7dGvY8ra2taG5uDnmQdRUXF2PXrl3weDxwuVzweDyora2NK4kzUOpdjohxlY3SnJKioiJVx7UzPXKO1Ow31JkQwLBhwOmny5/nyBGgvp5VYM26ao2SQ8wBSnt7O2bNmoUf/ehHuOCCCwAADQ0N6NmzJzIyMkLaDhgwAA0NDcE2HYOTwOuB18KZP38+0tPTgw9nMmao2YzWS1vlPkg7U7vKhps1qqf1NVO731BHc+cC3boBtbXRz7Fhgz+QUVLKPhnYYeUdWVfMAcrMmTPx+eef4/XXX9eyP2HNnTsXTU1NwcfevXt1PydZi9oPSLWrbLhZo3paXzOl3+afeeaZYJDy7rv+WZDHH49+7Gee8QcmF1+sqCtJI5GbShLFFKDccccdWL58OTweDxwdCgbk5OTg5MmTOHLkSEj7xsZG5OTkBNt0LtgU+HegTWepqalIS0sLeRB1pOYDMtaZDrPWGTEzLa+Z0iB09uzZcDovgyQB48dHbzt2rD8wueMOxd1IKpw5pIRSk9zS3t4uZs6cKQYNGiS+/vrrLq8HkmSXLl0afO7LL78MmyTb2NgYbPPnP/9ZpKWliRMnTijqB5NkqTO5JczokNQXbzKu1TdrTAQtrpmyVUHdFCXAAkIozMlPekZvKkn2ptsqnhkzZoj09HTh9XpFfX198PHtt98G20yfPl0MGTJEvP/++2LDhg0iLy9P5OXlBV8PLDO++uqrxebNm8Xbb78tsrOzucyY4hbpgzTwyMrK4oephckHoUsVBSa7diX6nViPkZtKkr3pFqBE+taycOHCYJtAobYzzjhD9O7dW/zsZz8T9fX1IcfZtWuXmDhxoujVq5fo16+fuOuuu1iojTQR7oM0MzNTlJeX22KmI9lnb8IHoTcrCkyWLUt0760t2f/2SBvczZiSml1LcrvdbpSVlYUkijocDlRWViZV/sv31wEA5BPmf/KTr/Huu+fo3i8ikqdm/GaAQmQBkfa0CSQvJlOSbmsrMGaMwKefyhUpOQSgHzweDwoKCgzoGRHJUTN+czdjIpOLp/6H3cyaBZx2GhQEJxmQpGyuMCGyMAYoRCbHap7A//2fv57Jd2VVorgUgARJ8lebZm0aIutigEJkcslczXPLFn9g8otfRG+XlTUNgARgAwDWpiGyg+6J7gBRR3ZNcI1HMlbzPHIEyM0FvtvuK6J584CHHgJ8vpdRXX0z/26IbIRJsmQaXKUSns/nQ25uLurq6sLmoUiSBIfDgdraWssPyu3twKRJwJtvRm931VXAe+8BPXoY0i0i0giTZMly4tml1u6SZR+gigogJUU+OGlsBLxeBidEdscAhRKOq1TkmXkfIJ/PB6/Xi0WLFsHr9ar+Pa1Z488zmT07ert16/wl1/r3j6OzRGQZvMVDCef1elFYWCjbjvUszJejE89tuX37AKdT/hwvvgjcemu8PSUiM1AzfjNJlhIumVepqJWSkmKaIC1S8bjAbblIMzutrcAVVwD/+lf040+dCvztb/7ZFSJKPrzFQwmXjKtUrC7W23Jz5vgLrUULTpxOoKUF+PvfGZwQJTPOoFDC5efnw+FwyK5S6VwR1Cy3O8zSDyOpKR5XUFCApUuBn/9c/rhffQWcw21ziAicQSETiGWVitvtRm5uLgoLCzF58mQUFhYiNzfX8NU+ZumH0ZTeblu//hgkST44eestfwKslYKTeJODiUiGxjspG0LNds1kHVVVVcLhcAgAwYfT6RRVVVVd2kmSFNIOgJAkSUiS1KW9nv01Qz8SwePxdHnfoY80ARwU/rAj8uO++xL9TmIT7m/V4XDY+ndOpAU14zdX8ZCpyN0uCRQti3R7waiiZWbpR6JELh4nAXgdwPVRfz4/H1i92pq1TLizNFHs1IzfDFDIUsyyJNks/UikwEANBBJj7wDwjOzPNTQAAwbo2ze98oKSPTAlihcryZJtmWVJsln6kUiB4nH9+v0X/Hc5ogcnH33kv7Gjd3CiZ14Qd5YmMg4DFLIUsyxJNks/Emn/fmDSpGIcPBh94H/+eX9gkpenf5/03jKBgSmRcRigkKVcccUV6NevX8TXJUmC0+nssiRZa4Gl0Z1XHRndj0Q4eRK47DKgU9X9LqZM8W/+N326MStejNgygYEpkXEYoJBluN1unHXWWfj3v/8d9vV4N85TM4gmywZ+nd1zD5CaCqxfH7nN4MFAczPw6qv+QmtGLcU24vZLMgemRIbTaymRnrjM2K+trU14PB7hcrmEx+MRbW1tie6SbiIt6e34CCxJjuW6xLpsVOnSaKurqoq+XDjw+PLLzj9n3FJsl8sls/TZ/3C5XHGdJ/CeOr+vZFheThQvNeM3AxSLSqY6DG1tbV3ea+dHdna2aG1tjem6xDuI2jlQ/OILZYHJG290/Vm535skScLpdGp2veRrs/gfHo8n7nMlS2BKpDUGKDaXbAXClA485eXlqq+LFoOoHQOUpiYhBgyQD0x+97vIxzAyYBDi+99lpJk2rQMiO/7eifTGAMXGjP5WagZKp+4zMzNVX5d4B1G7zWS1twtxww3ygUlenhCtrdGPZdQtl454+4XI3NSM30yStZhkrMOgdEXE4cOHI74W6brEs2xU7yWtRnv2WaBbN+D//i96u/37/TVNevaM3i4RK14CtVkGd1pi5HA4WOGVyGIYoFhMMtZhULJyIisrS9GxOl+X/v37K/q5zu2MWNJqlA8/9K+2ueOO6O3WrvXPnyiNJxK14qW4uBi7du2Cx+OBy+WCx+NBbW0tgxMii2GAYjHJWIdByZLe3/72t4qOpdV1scNMVkODPzD5j/+I3u6ZZ/yByY9+pO74iVyKnZKSgoKCApSWlqKgoMB2y72JkgEDFItJ1joMclP39913X0zX5cCBA4rO37mdlWeyTp0CrrhCfibkhhsAn09+ZiUa3nIholh1T3QHSJ3At9KSkhJIkhRyi8HOBcIA/2BXVFQUcRO4WK5LrDNSVp3J+v3vgfnzo7cZMAD4+mtAq3045X5vZqHXBoNEFCM9s3X1ksyreAJiqcOQDMsi1V6XWJemGr2kNV5vvqmsnsm2bYnuaWLYbTUWkVlxmXGSUBNwJNMHsNpALNalqVZY0vrVV8oCk6VLE93TxEm2ukJEicQAhULwA1herJVBzVpRtLlZiMGD5QOTOXMS2s2ES8a6QkSJpGb8loQIs07S5Jqbm5Geno6mpiakaXWj3KZ8Ph9yc3MjrjiRJAkOhwO1tbVJf7891hwEM+UuCAFMnQq89lr0dpde6l82LFfLxO68Xi8KCwtl23k8HhQUFOjfISKbUzN+M0nWpLQa9NQsh032D+DA0lSjfk5rf/4zMH26fLu6OmDQIP37YwVWXo1FZHcMUEzI7XajrKwsJLBwOByorKxUvSyTH8D29/HHQF6efLsPPgBstvo8blZdjUWUDFgHxWS0Lp/OD2D7amz0F1qTC04qKvy3fhicdJWsdYWIrIABionoUT6dH8D2c+oUcOWVQE5O9HaTJvkLrZWVGdMvK0pktVsiio4BionoUT6dH8D28sAD/sTWaH8CWVnAkSPA0qX+zf8oOla7JTIn5qCYiNI8kLq6Oni9XsUJtIEP4HB5LRUVFfwAtoDly4Gf/lS+3eefA+efr39/7MYq1W6JkgmXGZuI0iWP2dnZOHjwYPDfShNozbQcVg92fH/btwPnnCPfbvFi4Oc/178/RETxUDN+M0AxkUDNkrq6urB5KJEEbtUk83S0liufzODoUeCCC4Ddu6O3u/NO4I9/DH3OjoGaFfC6E8lTNX7rVS1OT3auJBupfLrcI5krXtqpUm57uxDTpslXgL34YiFOnOj688m0pYGZ8LoTKaNrqfs1a9aI6667TgwcOFAAEG+88UbI69OmTesyUIwfPz6kzaFDh8TkyZPF6aefLtLT08Uvf/lL0dLSorgPdg5QhAj/YZedna0oUPF4PInuvqGUlCp3OBxi1apVsnvzJHozxZdeUrZvzt694X/eioFaoq+5Fqx43YkSRdcAZcWKFeK+++4Tbrc7YoAyYcIEUV9fH3wcPnw4pM2ECRPE6NGjxccffyyqq6vF2WefLUpLSxX3we4BihBdP7hfffVVRQGKy+VKdNcN5fF4VM00Rfpmm8hvwOvWKQtMvN7Ix7DinjJ2mHWw4nUnSiTDNguMFKAUFRVF/Jlt27YJAGL9+vXB51auXCkkSRJ1dXWKzpsMAUpnSgfiZJtBcblcqgOUzt9sE/UNuLFRWWDy1FPyx7La34ddZh2sdt2JEk3N+K1LlQSv14v+/fvj3HPPxYwZM3Do0KHgazU1NcjIyMAll1wSfG7cuHHo1q0b1q1bp0d3bIEF18KLpQKu6FD07uTJk5oXx5PT1gYUFAADBkRv97Of+QutzZ4tf0wrbWmgR0HCRLHSdSeyGs0DlAkTJuDvf/87Vq9ejSeeeAJr1qzBxIkTgx82DQ0N6N+/f8jPdO/eHZmZmWhoaAh7zNbWVjQ3N4c8kg0LroUnF7hFIr4revfcc89pXhwvmoceAnr0ANasidwmIwP45hvA7VZeaM1KWxroUZAwUax03YmsRvMA5Re/+AX+8z//EyNHjsR//dd/Yfny5Vi/fj28Xm/Mx5w/fz7S09ODD6fTqV2HLYQVL7uKFrgpsXPnTkXt4v0GvGKFf9+c8vLo7T77zB+cZGSoO76VZtjsNOtgpetOZDW6F8IeNmwY+vXrhx07dgAAcnJycODAgZA2bW1tOHz4MHIibC4yd+5cNDU1BR979+7Vu9umVVxcjF27dsHj8cDlcsHj8aC2tjYpg5OASIGbEmeddZaidrF+A9650x+YXHtt9HaLFvkzTkaOjOk0lpphs9Osg5WuO5HlxJPsgjBJsp3t3btXSJIkli1bJoT4Pkl2w4YNwTbvvPMOk2Qpbh1XPq1atSrq6goAwul0itbWVuFwOCLWnYl1FcbRo0KceaZ8AmxZmbbXINLKmPLyctMs5Q2sfNH6midSuOvudDotk+xLZBRdV/G0tLSITZs2iU2bNgkA4qmnnhKbNm0Su3fvFi0tLWLOnDmipqZG1NbWilWrVokf/vCHYvjw4eJEh6pSEyZMEBdddJFYt26dWLt2rRg+fDiXGZPm7r777qgByt133y2EiFwcL5YVJe3tQtx8s3xgMnq0EMeP6/O+OwZq5eXlYvDgwSHva/DgwQkPWLS85mZhh5ouRHrTNUCJtKxu2rRp4ttvvxVXX321yM7OFj169BBDhw4Vt956q2hoaAg5xqFDh0Rpaano27evSEtLEzfffDMLtZGm5OpTBL7hBgYRLb4Bv/yysmXDe/bo9a5DRVrK2/mRqNojesw6MEggMjc14zf34iFTindfE6UbL3o8HhQUFMR1zg0bgEsvle/T6tXAj38s304LgX2doq2WCUjkXk5a7l9jt/2YiOyIe/GQpWlRYVRpAbd4Ku8eOCBESor8jMmCBTGfImZqK+xaMe+jI7sUfiOyu4QXaiP78/l88Hq9WLRoEbxer2ZFtdxuN0pKSrp886+rq0NJSQncbrei4+i5UqStDRg3Dujf319ILZKf/tTfds4c1aeQJXf91S7RFRaqPdKZnQq/EVEHekdLeuAMSmLptYeKlvua6LVS5JFH5GdMTj9diE7bT2lKyfWPZY8ixDmjlCgsN09kHZxBId1oNcMRjpYVRrWuT/HOO/56Jg88EL3d5s1AczNwxhmKDqua0usfa4VdK9Qe6czowm96zR4SUSgGKKSY3lPpWg80WlTera31ByYTJkRv9+qr/vmT0aMVdS0maq6/2gq7Vq54amThN7fbjdzcXBQWFmLy5MkoLCxEbm5uXIE5EUWg72SOPniLRxtql2TqPZWu1/FjWXp67JgQw4fL386ZOdNf+8QIsVyfcLeDOj+snkhqVOE3JuISxU/XOihmwAAlfrHkkei9MsYMFUbb24W47Tb5wOT884X49lvduhFWrNe/c+E2O1Y81bvwm5b5UUTJjAEKRRXrN0EjkhETWWH0b39TVmht1y7duhCVVtffrsXM9Cw3z0RcIm0wQKGI4vkmaORUupHf8v/1L2WBybvv6nJ6xcwww2R2egVfRtTVIUoGasbv7qCkomalTKDCakAg8bKkpASSJIUka2q5c2txcTGKioo0qzDaWaB66ddfH8Idd/wMp05FzxWfPx/43e80OXVcjLr+VpaSktLl71YLRu/ArGWFXSLL0jta0gNnUGKnxTdBK+/cWlVVJQYPHiKAlbIzJhMnCmHGyQgrX3+rMnL2Sq86Q0RmwL14KKJY9qgJx4rf8NxuNyZN2gDgsajtevUC9u4FsrKM6VcsrHj9jaDndQnUoAEQdvZKi72MAufo/LGcyP2SiLTEvXgoomTNY1i5sk1Rnsn69fZ638nEiJkHPWevuFKIkgEryVJEWldYNbtdu/yF1iZOlHs/UwFIOHrUenvRdJSsVU71rHDcUXFxMXbt2gWPxwOXywWPx4Pa2lpNZjW0rKRMZAcMUJKQFhVWze74cWDECODMM+VaPgdAAvAqAO3KoSdCslY5NXqzwEAibmlpKQoKCjQL5o0u2U9kdgxQkpSe3wQTSQjg9tuB3r2BL76I1vJLAL0AzAx51op70QDGzSCYkV1mHoxeKURkdlxmnMT0WpKZKK++CkydqqTlmQB2hTwjSRIcDocl96KRm0GQJAmzZs1CUVGRbW7ddWSXmYfABo91dXVhf5dW/hsligVnUMjyNm/255nIBScPPLAWktQNkrQ75Hmr597YZQYhVnaZeUi2/DAiOQxQyLIOH/bfyrnooujtHn3Uf+vn4Yf/w5a5N4meQUh0Ym5g5iHSrs1W2qk5GfLDiJTiLR6yHJ8PKCoC/vnP6O2uvhpYsQLo+IVT7yq1iZDIGQS3242ysrKQGRyHw4HKykrDBlO7Vdi1498oUSxYqI0sZcEC4J57orfp0QPYvx/o18+YPiWaz+dDbm6ubO5CbW2tpoOc2YqKhQuWnE4nKioqOPNAZBJqxm8GKGQJq1cD48bJt9uwAbj4Yv37YzZGVDntKBAURcp90SsoUtIvzjwQmZea8Zs5KGRqe/b4E2DlgpOFC/15JskYnADG5y6YNTFXrxolRGQ85qCQKZ04AVx6KfD559HbFRbuwAMP7MOVV+YDSO7ByMjchUQn5hKR/TFAIVMRAigrA555Jnq77t1r0dZ2Pjye4/B4jE/MNCujatvYZWkvEZkXc1DINBYtAiZPVtLybAA7Q54x+26vdsuNSFRiLhFZG3NQyFI++8yfZyIXnPzjHz44HE50Dk4AffZc0Yod98hhUTEi0hsDFEqYI0eA9HRg9Ojo7crL/bd++vY1Z2JmNHbeI4dFxYhIT8xBIcO1twPFxcCyZdHbjR0LvP020P27v1KrJWaq2SMHgCVvAbGoGBHphQEKGeqpp4C77oreRpKAhgagf//Q562WmKl0Ke6jjz6Kl156KaHVWONht00nicgceIuHDOH1+gMPueDkk0/8MyydgxPAenuuKJ3JmTdvni1vARERxYMBCulq3z5/YFJYGL3dX/7izzO59NLIbayWmBnPTI6Zk34pvERvmkhkNwxQSBetrcAPfwg4ndHb3Xyzf8bklluUHddKiZlyMz5yzJj0S+HZcaUWUaIxQCHN3XkncNppwKZNkduceSZw9Cjw8sv+GRY1iouLsWvXLng8HrhcLng8HtTW1poqOAGUzfgoYZakXwrPziu1iBKJhdpIM4sXAzfcIN9u+3bg7LP1749ZhNtlNysrC4cOHVL08x6PJ5iEareCb1Zn1k0TicyKhdrIUFu3+mdB5IKTf/zDn2eSTMEJ0HXGZ9WqVejVq5fsz3VO+uVtBPMx66aJRHbAAIViduQIkJkJXHBB9HYPPugPTK67zpBumVLHXXZTUlKiDmoBQohg0i9vI5iT1WrzEFkJAxRSLVBo7YwzgG++idzuqquAkyf9lWDpe0oHq1mzZqG4uFi24FugLVeNGM9qtXmIrISF2jrg/X15FRXA7Nny7RoagAEDdO+OrvT6e1A6WHWsMKv0NgILphkrsFJLbtNEs9TmIbISzqB8h/f3o/vgA3+eiVxw8vHH/ts5geDEqrUh9Px7UFtwjrcRzMtqtXmILEVYUFNTkwAgmpqaNDleVVWVkCRJAAh5SJIkJEkSVVVVmpzHivbtE8IfckR/vPhi15+tqqoSDocj5Jo6HI6w17OtrU14PB7hcrmEx+MRbW1tBry78Iz4ewico/N5wp3D4/F06Uu4h8fjibtfFJtwf+tOpzOpPzuIwlEzfid9gNLW1tblg6XzgOF0OoMDppkGUj2dOCHExRfLByZTpwrR3t7159UM8moCGb2p/XuIh9JBLdCncNdT6z5R7JLls4EoHgxQVFDz7dRMA6me7rpLPjBxOoVoaQn/82oGebPNXhk9W6F0UFMz40JEZFZqxm/VOSgffPABfvrTn2LQoEGQJAlvvvlmyOtCCDz44IMYOHAgevXqhXHjxmH79u0hbQ4fPowpU6YgLS0NGRkZuOWWW3D06FG1XdGE0vv2y5Yts/0yz6VL/Xkmf/xj9HZffQXs2QP07Rv+daVJnV6v13SrU4zO9+i4/LigoCBiroKVSvybiVVzoIgohiTZY8eOYfTo0Xj22WfDvv7kk0/iT3/6E1544QWsW7cOffr0wfjx43HixIlgmylTpmDr1q147733sHz5cnzwwQe47bbbYn8XcVC6ouLVV1811UCqpS++8AcmP/959HbLlvnnT845J3o7pYO31+s1XZErMy8btUqJf7Ng4juRxcUzVQNAvPHGG8F/t7e3i5ycHLFgwYLgc0eOHBGpqali0aJFQgghtm3bJgCI9evXB9usXLlSSJIk6urqFJ1XjxyUaPf3s7OzbZmk2NQkRHa2/O2c++5Td1ylt0nuv/9+Re1cLpc+FyAMub8HfHdbr+OtGOYemI/Zbh0SkZ+ut3iiqa2tRUNDA8aNGxd8Lj09HWPGjEFNTQ0AoKamBhkZGbjkkkuCbcaNG4du3bph3bp1YY/b2tqK5ubmkIdWlCwTnDJliqJjGbXMMzBt/dprr6GiogKvvfaaqunr9nbg+uuB9HTg4MHI7X70I3+htT/8QV3/lC6jVVqzw8jZimh/DwHHjx/HsmXLAFj7W7pdb3+wsB2RTcQTCaHTDMqHH34oAIj9+/eHtPv5z38urr/+eiGEEI8++qg455xzuhwrOztbPPfcc2HPM2/evLDfZLVaZixE9BUVZlrmGa6f6PDNXu6b4TPPKFs2XF8ffz/lkjrNvDqlqqpKZGVlReyXJEni7rvvtuy3dDsnfJvp/69EFMqwVTxGBSgnTpwQTU1NwcfevXs1D1CEiDxVb5aBNNK0dee+hBtk1q5VFph89JG2/ZVbRmvW1SlKViKlpKREfd2sS3/tfvvD5XIpClCMvHVIRH4Ju8WTk5MDAGhsbAx5vrGxMfhaTk4ODhw4EPJ6W1sbDh8+HGzTWWpqKtLS0kIeeoi0osIM1SKjTVt31nH6ur7enwD7H/8R/Weef94fouTladFbv2hJnYHbC62trXjooYdMtzpFyUqkaLcIhEl3sU2G2x9mTnQmIhXiiYSA8Emy//M//xMSLYVLkt2wYUOwzTvvvJOwJFk1ElktUum0deDx7rteMWaM/IzJ5MnhC63pKdx1HDx4sCgvL9cl0TSWJFal38LlHoFv6WZJpE2G2x9mmfEkoq50vcXT0tIiNm3aJDZt2iQAiKeeekps2rRJ7N69WwghxOOPPy4yMjLEsmXLxGeffSaKiorEmWeeKY4fPx48xoQJE8RFF10k1q1bJ9auXSuGDx8uSktLdXmDWkvUQKNuwJwvG5gMHChEc7MhXQ9h9O2FWHMt1AaE0QZ6M+V7JMvtDyNuHZol6CSyEl0DlEgf3NOmTRNC+GdRHnjgATFgwACRmpoqxo4dK7766quQYxw6dEiUlpaKvn37irS0NHHzzTeLlkhlScNIZICSKMoGzP+SDUwAIb74IjHvwcgy8kLEFwwp+RauJAdlyZIlpsr3SIYZlAA9ZzzNFHQSWQlL3dtQ9MH9HEWBSYe7cbr0T+7bpJGDoxbBkNy38MAqnkivL1682NCATM11SZbbH3rMctg9yZhITwxQbKrrB2NfAdTJBia/+53+/VLybdLI2wtaBUNy38Ktsjy983sy48opKzB6FpDIbhig2FhVVZUYPNghgNdkA5MxY4Robf3+ZxP9bVLrATva+9EyGJK7bpFeN3O+RyITvq3MrEEnkVWoGb+7gyylsbEYdXXyS2/r6oBBg77/t9vtRllZWcjSWYfDgcrKypiX8sotWZUkCbNmzUJRURFSUlKCFWbr6urC/owkSXA4HMjPzw97rurqatTX12PgwIE4ePAg7rzzzojvR8ulpoHl52pfV9qHzptpGqG4uBhFRUUh1zQ/P1/XpfJ2YPRmkkRJTe9oSQ/JOIPy0UfKCq2tXdv1ZxcvXhxxOjqeKf1Yvk3GcnshWvXcSMcwQ66Fkn19Ag/OXFgDZ1CI4sNbPDZSX68sMHnmmfA/v2TJEt0qnsZ6C0PN7QUl1XMjvR8z5Foorf7LvAVrMEPgS2RlDFBs4ORJIX70I/nA5IYbhPD5wh+jqqpK8cAeyze+eL5NKsmHkUtIlDtnW1ubKC8vF5mZmYqCIb2Ul5fzW7eNmCHwJbIq5qBY3H33AY89Fr1Ndjawfbt/R+JwAvkhSsVyzzyenBK5vA5Avtx8NMuWLcPUqVNDfj4zMxNlZWW47777DM21GD58uKJ2zFuwhuLiYixdujRsTldFRUXCtmcgshsGKCby1ltAUZF8u61bgREjordRO7jHsi9JYI+ikpISSJIUEqRosUdRPAN2RUVFl+e++eYbPPTQQ7jgggsMHUS4N4z9MMmYSH+abhZIsfn6a/+GfnLBydKl/hs7csEJoG5wdzqdYWc5lAh8m9Rjs79YBmxJkiIOEoEAyujN8AIzTZ03mgyQJCmu3wElRqTNRYlIGwxQEujoUcDhAM49N3q7OXP8gcmkScqPrWZwj3cn5mi7FsdDbmDvLDCLY7Zdhs2wGzYRkdUwQEkAIYD//m/g9NP99UoiufRS4MQJYMEC9edQMrinpKRg8eLFmtzu0OPbZLSBPRyHw4FZs2YpOrbR+R56zjQREdmRJMJlN5pcc3Mz0tPT0dTUhLS0tER3R5UXXwR+/Wv5dvv2AZ3GMtXcbjdKSkoAIGwS65IlS4Kvm1mkInNPP/00+vXrF5IDUF1djcLCQtljejwe2SRdPXQuOMe8BSJKJmrGbybJGmTdOuDyy+XbffABoFUqQqTVBk6n03KrDToHWEIIdOvWrUuQEc/KIiMoWb1EREScQdFdYyOQkyPfrqICULEqWBUrf2sPzAJ1/jMN3PIJd3sk0sxRtJ8hIiL9qRm/GaDo5NQpYOxYQC4Xc9IkYPFioBuzgbrw+XzIzc2NuFw6MBtSW1vbJeAKd1vIijNHRER2wgAlwebNAx5+OHqbrCxg587IhdbsIp7ZG6/XG1c+iZVnjoiI7Ig5KAnyz38C110n3+7zz4Hzz9e/P0aIFgTEu4NyrDvHdu7T9ddfz8CEiMhiGKBoYMcOQEk188WLgZ//XP/+GCVaAAIgbO5IXV0dSkpKFOWBxFKBNd6giIiIzIG3eOJw7Jh/JmT37ujtZs8GnnrKmD51pOctjmjJq0IIZGVl4dChQ2F/NlruSOf+5+bmyq7ICRwnloRaIiIyjprxm6mZMRACuPlmoG/f6MHJRRf5C60lIjhxu93Izc1FYWEhJk+ejMLCQuTm5sLtdsd97MBGhOGChsBzkYKTQBsl1VzVVGCV65MQArfddhtWr15taJl7IiKKDQMUlf76V/+Km1deid5u717gX/8CUlMN6VaIwExC59Uvgdsr8QYp8ewy3JGSHBOlFViV9OnQoUMYN26cZoEa6cfn88Hr9WLRokXwer0MKomSEAMUhdav92/o96tfRW/n8fhnWBwOY/rVmZLZjXg3y9OqTLzSHBMle/2o6ZNWgRrpQ8/ZPyKyDibJyjh4EBgwwB90RPPHPwJ33mlMn6KRm0noeHsl1oqmsewy3FEs1VzlKrCq6ZMQApIkYdasWSgqKjJ0hQ+XPkcXKY9ITXK1Vvi7IkowYUFNTU0CgGhqatLtHKdOCfHjHwvhD00iP4qKhPD5dOuGai6XSwCQfbhcrpjP0dbWJhwOh5AkKeyxJUkSWVlZQpKkLm0Cz1VVVWn4ruX7FOnh8Xg07Uc0VVVVwuFwhJzf4XBofi2sKvA7jPS7kiRJOJ1O0dbWpntf+Lsi0oea8Zu3eMJ45BGgRw/g/fcjt0lPBw4fBt5801xVYGNZmquWkuTVF1980dDde9XufBxg1K7GeucF2YGa2T898XdFZBL6x0va02sGZe1a+RkTQIjPPtP0tJpSMruh1bfQcN8ynU5nyLfMtrY24fF4hMvlEh6PR7S2tob8W+tvw+H6FO1hxAyKmWYGzMyI2T85/F0R6UvN+M0A5Tv79wvRq1f0wGTRIs1Op6uqqqqwt1cCjyVLlmh2rs4BSOCDO9zzRk2bt7W1iVWrVonMzExTDDQej8c0wZKZmeE6maEPRHbGACUGr78eOTD5zW+EaG/X7FSKRBr4lYo2k5CZmSnKy8t1G5zDnTsrKytioKBHTkqgH0bmwURihpkBKzBy9i8S/q6I9MUAJQbbtgmRkhIamIwcKcTx45qdQjGtZhoWL14c9UM2KytL80E6EBQovcWi98Cj5DaU3vitXLlEB5X8XRHpiwFKjN59V4gbbxRi6lQhdu/W9NCKRRrg1X5Ay91L7/jQ6kNfzTmN/NCPdzZKi/MnembAShIZVPJ3RaQvNeM39+IxkcDeM5FWMijdwwYAvF4vCgsLFZ3X6XQqOqYcNecMx+VyobS0NK4+mFVgZQiAkBof3CcovETWIOHvikg/3IvHorRcZqlm+axWSzfjXbIbbwG4RJIrza60ZL9W57O6QGG+0tJSFBQUGFogTevfFRHFhpVkTUTpAF9XVwev1xv126XawV6LeiCxBhixVJY1E7fbjbKyspDg0uFwoLKyMmQwKy4uRlFRUVwzAz6fD48++igqKytx+PDhqOej2GnxuyKiOOl7t0kfRlSSTQSlCXr9+vWTTaBVmw+iRf5HLNVcjV5Ro7WqqipD8nsC50rEaigiIq0wB8WiAjkodXV1YTf7iyTSvfFI+5p0/lmleS1KRLt/L4RAVlYWDh06FHze6XSioqLCkt/8fT4fBgwYEPJ+OsvKykJjY2Pc19btdmPSpElR22j9uyQi0hpzUCxKSQn5cAKBQOddigP30rOyssL+XOCYFRUVmg1o0e7fV1VVobGxMequxFbi9XqjBicAcOjQIXi93rjOE9ihWo4wqBQ8EZERGKCYTKQBPlKQERBpcCouLkZjYyPKy8uRmZkZ8ppeSX/FxcXYtWtX2EAkkcmPWlMaeMQboMglT3dm1P5CRER6YpKsCXVO0Nu+fXtwZkVOuMEpJSUFDz74IO677z7Dkv4CgUi8uOW9+oDDyquhiIgCGKCYVGCAd7vdeOihhxTnpEQbnLQKGowSbnVMZmYmysrKcN999+keqMgFRwUFBfjDH/4ge5x4r7magMPpdFp2NRQRUUdMkjUxucJtHdklQTIQFCxbtgwVFRUR22VlZeHFF1/ULX9FydJho5JklSZPS5KU0DodnO0iIjmqxm99FhLpy0zLjPUso6502TG+W2Zq9SWm0TY4jPTQc5PBcNe483U2apmx3A7VeuyrpLZ/RuxUTUTWxr14DKL3h7LSnVUzMzMtPxDEsskgAM33RZGrHxNuL5aqqioxePBg3QfncH9veu9MrbRfWuwfRUT2l9AAZd68eV0+qM4999zg68ePHxe33367yMzMFH369BHFxcWioaFB1TnMEKAY8aGsdAZl1apVGryjxDHTJoOx7mZr1IaEid74MFx/1AZ0RJS81IzfuiwzPv/881FfXx98rF27Nvja7Nmz8Y9//ANLlizBmjVrsH//fsvVwQjUpRBh8gFEhJokscjPz4fD4YhYA0WSJDidTkslvoajdhltZ1ouq1V6rM7t7LR8Wg0t948iIupIl1U83bt3R05OTpfnm5qa8Ne//hUulws//vGPAQALFy7ED37wA3z88ce4/PLL9eiO5tR8KMcTPAQKt5WUlAQrsQboUWQtFlokRpppk0Glx0rEUl6le/4YKdaAjohIji4zKNu3b8egQYMwbNgwTJkyBXv27AEAbNy4EadOncK4ceOCbc877zwMGTIENTU1EY/X2tqK5ubmkEciGfmhbOadVd1uN3Jzc1FYWIjJkyejsLAQubm5cLvdqo4TzyaDWi+rVTprZfRS3sAWAp0D47q6OpSUlKi+5loxc0BHRBan9f2lFStWiMWLF4tPP/1UvP322yIvL08MGTJENDc3i9dee0307Nmzy89ceuml4p577ol4zHB5LUhgDkqseQrxMFvugZY5OGbbZDDSiplEJX2aOc9D7nfHHBQi6shUq3i++eYbkZaWJv7yl7/EHKCcOHFCNDU1BR979+5NaIBi1g9lIxM1tR4w5ZbR9u3bN+TfTqdT10Ah3IoZvc8ZSSICYjXMFtARkXklPEm2o4yMDJxzzjnYsWMHcnJycPLkSRw5ciSkTWNjY9iclYDU1FSkpaWFPBJJyaZ+RueGaHW7RQk9EiMj3cpyOp2oqqrCkSNHDN1kMNp+QkYze56HmW9DEpGF6R0ttbS0iDPOOENUVlaKI0eOiB49eoilS5cGX//yyy8FAFFTU6P4mGZYZiyEeb5lG12HQml9FpfLpfrYZruVZQZmn0EJ4O+OiOSoGb81L3U/Z84c/PSnP8XQoUOxf/9+zJs3D5s3b8a2bduQnZ2NGTNmYMWKFXjllVeQlpaG3/zmNwCAjz76SPE5zFTqPtHlveXK4Sspga/2PXi9XhQWFsr2zePxBFcxJfo6WZlcqXu7bHNARPaX0FL3N9xwgxg4cKDo2bOnGDx4sLjhhhvEjh07gq8HCrWdccYZonfv3uJnP/uZqK+vV3UOs8ygmEG8365jqYarNgeHZdDjxzwPIrIDUyXJ6oEByvfiud0Sz60hpQMmy6Brxyy3FImIYpXQWzxGMNMtnkSL5XYLoM2toXCFw5xOJyoqKlBcXKzJOSgUb5URkZWpGb8ZoFhcrPkJsQY24c4facDU6hxERGQPasZvXUrdk3FiLYev1dLVwB40sfys2nZERJQ8dK+DQvqLpQ6FESXKWQadiIhixVs8NqImP8GIpatcHktERB2pGb85g2IjgdstpaWlKCgoiDroG1EN14wVd4mIyBoYoCQxI0qUsww6ERHFgrd4yJClq1weS0REXGZMlCAMxIiIIuMyY6IECFe4zuFwoLKykreyiIhUYg4KkQbcbjdKSkq6VM2tq6tDSUkJ3G53gnpGRGRNDFCI4uTz+VBWVhZ2KXXguVmzZsHn8xndNSIiy2KAQhSn6urqiPsNAf4gZe/evaiurjawV0RE1sYAhShOLOlPRKQ9BihEcWJJfyIi7TFAIYpTfn4+HA5Hl2q5AZIkwel0Ij8/3+CeERFZFwMUojixpD8RkfYYoBBpgCX9iYi0xUqyRBpiJVkioshYSZYoQQI7ShMRUXx4i4eIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHQYoBAREZHpMEAhIiIi02GAQkRERKbDAIWIiIhMx5KVZAPV+ZubmxPcEyIiIlIqMG4r2WXHkgFKS0sLAMDpdCa4J0RERKRWS0sL0tPTo7ax5GaB7e3t2L9/P04//XS0tLTA6XRi79693DhQR83NzbzOBuB1Ng6vtTF4nY1hlesshEBLSwsGDRqEbt2iZ5lYcgalW7ducDgcAABJkgAAaWlppv6l2AWvszF4nY3Da20MXmdjWOE6y82cBDBJloiIiEyHAQoRERGZjuUDlNTUVMybNw+pqamJ7oqt8Tobg9fZOLzWxuB1NoYdr7Mlk2SJiIjI3iw/g0JERET2wwCFiIiITIcBChEREZkOAxQiIiIyHdMHKIcPH8aUKVOQlpaGjIwM3HLLLTh69GjUn3nxxRdRUFCAtLQ0SJKEI0eOaHJcu4vlmpw4cQIzZ85EVlYW+vbti0mTJqGxsTGkjSRJXR6vv/66nm/FVJ599lnk5ubitNNOw5gxY/DJJ59Ebb9kyRKcd955OO200zBy5EisWLEi5HUhBB588EEMHDgQvXr1wrhx47B9+3Y934IlaH2db7rppi5/txMmTNDzLViCmuu8detWTJo0Cbm5uZAkCRUVFXEfM1lofZ0feuihLn/P5513no7vQAPC5CZMmCBGjx4tPv74Y1FdXS3OPvtsUVpaGvVnnn76aTF//nwxf/58AUB88803mhzX7mK5JtOnTxdOp1OsXr1abNiwQVx++eXiiiuuCGkDQCxcuFDU19cHH8ePH9fzrZjG66+/Lnr27ClefvllsXXrVnHrrbeKjIwM0djYGLb9hx9+KFJSUsSTTz4ptm3bJu6//37Ro0cPsWXLlmCbxx9/XKSnp4s333xTfPrpp+I///M/xZlnnpk01zQcPa7ztGnTxIQJE0L+bg8fPmzUWzIltdf5k08+EXPmzBGLFi0SOTk54umnn477mMlAj+s8b948cf7554f8PR88eFDndxIfUwco27ZtEwDE+vXrg8+tXLlSSJIk6urqZH/e4/GEDVDiPa4dxXJNjhw5Inr06CGWLFkSfO6LL74QAERNTU3wOQDijTfe0K3vZnbZZZeJmTNnBv/t8/nEoEGDxPz588O2v/7668W1114b8tyYMWPEr3/9ayGEEO3t7SInJ0csWLAg+PqRI0dEamqqWLRokQ7vwBq0vs5C+AOUoqIiXfprVWqvc0dDhw4NO3DGc0y70uM6z5s3T4wePVrDXurP1Ld4ampqkJGRgUsuuST43Lhx49CtWzesW7fOdMe1sliuycaNG3Hq1CmMGzcu+Nx5552HIUOGoKamJqTtzJkz0a9fP1x22WV4+eWXFW21bXUnT57Exo0bQ65Pt27dMG7cuC7XJ6CmpiakPQCMHz8+2L62thYNDQ0hbdLT0zFmzJiIx7Q7Pa5zgNfrRf/+/XHuuedixowZOHTokPZvwCJiuc6JOKbV6XlNtm/fjkGDBmHYsGGYMmUK9uzZE293dWXqAKWhoQH9+/cPea579+7IzMxEQ0OD6Y5rZbFck4aGBvTs2RMZGRkhzw8YMCDkZx5++GEsXrwY7733HiZNmoTbb78dzzzzjObvwWz+/e9/w+fzYcCAASHPd74+HTU0NERtH/hfNce0Oz2uMwBMmDABf//737F69Wo88cQTWLNmDSZOnAifz6f9m7CAWK5zIo5pdXpdkzFjxuCVV17B22+/jeeffx61tbXIz89HS0tLvF3WTUJ2M/7d736HJ554ImqbL774wqDe2JsZrvUDDzwQ/O+LLroIx44dw4IFC/Db3/5W1/MSxeMXv/hF8L9HjhyJUaNG4ayzzoLX68XYsWMT2DMi9SZOnBj871GjRmHMmDEYOnQoFi9ejFtuuSWBPYssIQHKXXfdhZtuuilqm2HDhiEnJwcHDhwIeb6trQ2HDx9GTk5OzOfX67hmpOe1zsnJwcmTJ3HkyJGQWZTGxsao13HMmDF45JFH0Nraaqt9Izrr168fUlJSuqxqinZ9cnJyorYP/G9jYyMGDhwY0ubCCy/UsPfWocd1DmfYsGHo168fduzYkZQBSizXORHHtDqjrklGRgbOOecc7NixQ7Njai0ht3iys7Nx3nnnRX307NkTeXl5OHLkCDZu3Bj82ffffx/t7e0YM2ZMzOfX67hmpOe1vvjii9GjRw+sXr06+NxXX32FPXv2IC8vL2KfNm/ejDPOOMPWwQkA9OzZExdffHHI9Wlvb8fq1asjXp+8vLyQ9gDw3nvvBdufeeaZyMnJCWnT3NyMdevWRb3mdqbHdQ5n3759OHToUEhgmExiuc6JOKbVGXVNjh49ip07d5r77znRWbpyJkyYIC666CKxbt06sXbtWjF8+PCQpa/79u0T5557rli3bl3wufr6erFp0ybx0ksvCQDigw8+EJs2bRKHDh1SfNxkFMu1nj59uhgyZIh4//33xYYNG0ReXp7Iy8sLvv7WW2+Jl156SWzZskVs375dPPfcc6J3797iwQcfNPS9Jcrrr78uUlNTxSuvvCK2bdsmbrvtNpGRkSEaGhqEEEJMnTpV/O53vwu2//DDD0X37t3F//zP/4gvvvhCzJs3L+wy44yMDLFs2TLx2WefiaKiIi4z1vg6t7S0iDlz5oiamhpRW1srVq1aJX74wx+K4cOHixMnTiTkPZqB2uvc2toqNm3aJDZt2iQGDhwo5syZIzZt2iS2b9+u+JjJSI/rfNdddwmv1ytqa2vFhx9+KMaNGyf69esnDhw4YPj7U8r0AcqhQ4dEaWmp6Nu3r0hLSxM333yzaGlpCb5eW1srAAiPxxN8bt68eQJAl8fChQsVHzcZxXKtjx8/Lm6//XZxxhlniN69e4uf/exnor6+Pvj6ypUrxYUXXij69u0r+vTpI0aPHi1eeOEF4fP5jHxrCfXMM8+IIUOGiJ49e4rLLrtMfPzxx8HXrrrqKjFt2rSQ9osXLxbnnHOO6Nmzpzj//PPFP//5z5DX29vbxQMPPCAGDBggUlNTxdixY8VXX31lxFsxNS2v87fffiuuvvpqkZ2dLXr06CGGDh0qbr311qQeNAPUXOfAZ0bnx1VXXaX4mMlK6+t8ww03iIEDB4qePXuKwYMHixtuuEHs2LHDwHekniREEqz3JCIiIksx9TJjIiIiSk4MUIiIiMh0GKAQERGR6TBAISIiItNhgEJERESmwwCFiIiITIcBChEREZkOAxQiIiIyHQYoREREZDoMUIiIiMh0GKAQERGR6TBAISIiItP5/wEp1b8yUKjSwAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test, y_test, color='black')\n", + "plt.plot(X_test, y_pred, color='blue', linewidth=3)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "16ff1a974f6e4348e869e4a7d366b86a", + "translation_date": "2025-09-04T01:29:05+00:00", + "source_file": "2-Regression/1-Tools/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fr/2-Regression/2-Data/README.md b/translations/fr/2-Regression/2-Data/README.md new file mode 100644 index 000000000..d26503cd0 --- /dev/null +++ b/translations/fr/2-Regression/2-Data/README.md @@ -0,0 +1,226 @@ + +# Construire un modèle de régression avec Scikit-learn : préparer et visualiser les données + +![Infographie sur la visualisation des données](../../../../translated_images/data-visualization.54e56dded7c1a804d00d027543f2881cb32da73aeadda2d4a4f10f3497526114.fr.png) + +Infographie par [Dasani Madipalli](https://twitter.com/dasani_decoded) + +## [Quiz avant le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/11/) + +> ### [Cette leçon est disponible en R !](../../../../2-Regression/2-Data/solution/R/lesson_2.html) + +## Introduction + +Maintenant que vous êtes équipé des outils nécessaires pour commencer à construire des modèles d'apprentissage automatique avec Scikit-learn, vous êtes prêt à poser des questions à vos données. Lorsque vous travaillez avec des données et appliquez des solutions d'apprentissage automatique, il est très important de savoir poser les bonnes questions pour exploiter pleinement le potentiel de votre ensemble de données. + +Dans cette leçon, vous apprendrez : + +- Comment préparer vos données pour la construction de modèles. +- Comment utiliser Matplotlib pour la visualisation des données. + +## Poser les bonnes questions à vos données + +La question que vous souhaitez résoudre déterminera le type d'algorithmes d'apprentissage automatique que vous utiliserez. La qualité de la réponse que vous obtiendrez dépendra fortement de la nature de vos données. + +Examinez les [données](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) fournies pour cette leçon. Vous pouvez ouvrir ce fichier .csv dans VS Code. Un rapide coup d'œil montre immédiatement qu'il y a des valeurs manquantes et un mélange de chaînes de caractères et de données numériques. Il y a aussi une colonne étrange appelée 'Package' où les données sont un mélange de 'sacks', 'bins' et d'autres valeurs. Les données, en fait, sont un peu désordonnées. + +[![ML pour débutants - Comment analyser et nettoyer un ensemble de données](https://img.youtube.com/vi/5qGjczWTrDQ/0.jpg)](https://youtu.be/5qGjczWTrDQ "ML pour débutants - Comment analyser et nettoyer un ensemble de données") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo expliquant comment préparer les données pour cette leçon. + +En réalité, il est rare de recevoir un ensemble de données entièrement prêt à être utilisé pour créer un modèle d'apprentissage automatique. Dans cette leçon, vous apprendrez à préparer un ensemble de données brut en utilisant des bibliothèques Python standard. Vous apprendrez également différentes techniques pour visualiser les données. + +## Étude de cas : 'le marché des citrouilles' + +Dans ce dossier, vous trouverez un fichier .csv dans le dossier racine `data` appelé [US-pumpkins.csv](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) qui contient 1757 lignes de données sur le marché des citrouilles, triées par ville. Ce sont des données brutes extraites des [Rapports standard des marchés terminaux des cultures spécialisées](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice) distribués par le Département de l'Agriculture des États-Unis. + +### Préparer les données + +Ces données sont dans le domaine public. Elles peuvent être téléchargées en plusieurs fichiers distincts, par ville, depuis le site web de l'USDA. Pour éviter trop de fichiers séparés, nous avons concaténé toutes les données des villes en une seule feuille de calcul, ce qui signifie que nous avons déjà _préparé_ un peu les données. Ensuite, examinons de plus près ces données. + +### Les données sur les citrouilles - premières conclusions + +Que remarquez-vous à propos de ces données ? Vous avez déjà vu qu'il y a un mélange de chaînes de caractères, de nombres, de valeurs manquantes et de valeurs étranges qu'il faut interpréter. + +Quelle question pouvez-vous poser à ces données en utilisant une technique de régression ? Que diriez-vous de "Prédire le prix d'une citrouille en vente pendant un mois donné". En regardant à nouveau les données, il y a des modifications à apporter pour créer la structure de données nécessaire à cette tâche. + +## Exercice - analyser les données sur les citrouilles + +Utilisons [Pandas](https://pandas.pydata.org/), (le nom signifie `Python Data Analysis`) un outil très utile pour façonner les données, afin d'analyser et de préparer ces données sur les citrouilles. + +### Premièrement, vérifier les dates manquantes + +Vous devrez d'abord prendre des mesures pour vérifier les dates manquantes : + +1. Convertir les dates au format mois (ce sont des dates américaines, donc le format est `MM/DD/YYYY`). +2. Extraire le mois dans une nouvelle colonne. + +Ouvrez le fichier _notebook.ipynb_ dans Visual Studio Code et importez la feuille de calcul dans un nouveau dataframe Pandas. + +1. Utilisez la fonction `head()` pour afficher les cinq premières lignes. + + ```python + import pandas as pd + pumpkins = pd.read_csv('../data/US-pumpkins.csv') + pumpkins.head() + ``` + + ✅ Quelle fonction utiliseriez-vous pour afficher les cinq dernières lignes ? + +1. Vérifiez s'il y a des données manquantes dans le dataframe actuel : + + ```python + pumpkins.isnull().sum() + ``` + + Il y a des données manquantes, mais peut-être que cela n'aura pas d'importance pour la tâche à accomplir. + +1. Pour rendre votre dataframe plus facile à manipuler, sélectionnez uniquement les colonnes dont vous avez besoin, en utilisant la fonction `loc` qui extrait du dataframe original un groupe de lignes (passé en premier paramètre) et de colonnes (passé en second paramètre). L'expression `:` dans le cas ci-dessous signifie "toutes les lignes". + + ```python + columns_to_select = ['Package', 'Low Price', 'High Price', 'Date'] + pumpkins = pumpkins.loc[:, columns_to_select] + ``` + +### Deuxièmement, déterminer le prix moyen des citrouilles + +Réfléchissez à la manière de déterminer le prix moyen d'une citrouille pour un mois donné. Quelles colonnes choisiriez-vous pour cette tâche ? Indice : vous aurez besoin de 3 colonnes. + +Solution : prenez la moyenne des colonnes `Low Price` et `High Price` pour remplir la nouvelle colonne Price, et convertissez la colonne Date pour n'afficher que le mois. Heureusement, selon la vérification ci-dessus, il n'y a pas de données manquantes pour les dates ou les prix. + +1. Pour calculer la moyenne, ajoutez le code suivant : + + ```python + price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2 + + month = pd.DatetimeIndex(pumpkins['Date']).month + + ``` + + ✅ N'hésitez pas à imprimer les données que vous souhaitez vérifier en utilisant `print(month)`. + +2. Maintenant, copiez vos données converties dans un nouveau dataframe Pandas : + + ```python + new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price}) + ``` + + En imprimant votre dataframe, vous verrez un ensemble de données propre et ordonné sur lequel vous pourrez construire votre nouveau modèle de régression. + +### Mais attendez ! Il y a quelque chose d'étrange ici + +Si vous regardez la colonne `Package`, les citrouilles sont vendues dans de nombreuses configurations différentes. Certaines sont vendues en mesures de '1 1/9 bushel', d'autres en '1/2 bushel', certaines par citrouille, certaines par livre, et d'autres dans de grandes boîtes de largeurs variées. + +> Les citrouilles semblent très difficiles à peser de manière cohérente + +En examinant les données originales, il est intéressant de noter que tout ce qui a `Unit of Sale` égal à 'EACH' ou 'PER BIN' a également le type `Package` par pouce, par bin, ou 'each'. Les citrouilles semblent être très difficiles à peser de manière cohérente, alors filtrons-les en sélectionnant uniquement les citrouilles contenant le mot 'bushel' dans leur colonne `Package`. + +1. Ajoutez un filtre en haut du fichier, sous l'importation initiale du fichier .csv : + + ```python + pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)] + ``` + + Si vous imprimez les données maintenant, vous verrez que vous obtenez uniquement les 415 lignes de données contenant des citrouilles par bushel. + +### Mais attendez ! Il y a encore une chose à faire + +Avez-vous remarqué que la quantité de bushel varie selon les lignes ? Vous devez normaliser les prix pour afficher les prix par bushel, alors faites quelques calculs pour les standardiser. + +1. Ajoutez ces lignes après le bloc créant le dataframe new_pumpkins : + + ```python + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9) + + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2) + ``` + +✅ Selon [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308), le poids d'un bushel dépend du type de produit, car c'est une mesure de volume. "Un bushel de tomates, par exemple, est censé peser 56 livres... Les feuilles et les légumes verts prennent plus de place avec moins de poids, donc un bushel d'épinards ne pèse que 20 livres." Tout cela est assez compliqué ! Ne nous embêtons pas à convertir un bushel en livres, et affichons plutôt les prix par bushel. Toute cette étude des bushels de citrouilles montre cependant à quel point il est important de comprendre la nature de vos données ! + +Maintenant, vous pouvez analyser les prix par unité en fonction de leur mesure en bushel. Si vous imprimez les données une fois de plus, vous verrez comment elles sont standardisées. + +✅ Avez-vous remarqué que les citrouilles vendues par demi-bushel sont très chères ? Pouvez-vous comprendre pourquoi ? Indice : les petites citrouilles sont beaucoup plus chères que les grandes, probablement parce qu'il y en a beaucoup plus par bushel, étant donné l'espace inutilisé occupé par une grande citrouille creuse pour tarte. + +## Stratégies de visualisation + +Une partie du rôle du data scientist est de démontrer la qualité et la nature des données avec lesquelles il travaille. Pour ce faire, il crée souvent des visualisations intéressantes, comme des graphiques, des diagrammes et des tableaux, montrant différents aspects des données. De cette manière, il peut montrer visuellement des relations et des lacunes qui sont autrement difficiles à découvrir. + +[![ML pour débutants - Comment visualiser les données avec Matplotlib](https://img.youtube.com/vi/SbUkxH6IJo0/0.jpg)](https://youtu.be/SbUkxH6IJo0 "ML pour débutants - Comment visualiser les données avec Matplotlib") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo expliquant comment visualiser les données pour cette leçon. + +Les visualisations peuvent également aider à déterminer la technique d'apprentissage automatique la plus appropriée pour les données. Un nuage de points qui semble suivre une ligne, par exemple, indique que les données sont un bon candidat pour un exercice de régression linéaire. + +Une bibliothèque de visualisation de données qui fonctionne bien dans les notebooks Jupyter est [Matplotlib](https://matplotlib.org/) (que vous avez également vue dans la leçon précédente). + +> Obtenez plus d'expérience avec la visualisation des données dans [ces tutoriels](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott). + +## Exercice - expérimenter avec Matplotlib + +Essayez de créer des graphiques simples pour afficher le nouveau dataframe que vous venez de créer. Que montrerait un graphique linéaire de base ? + +1. Importez Matplotlib en haut du fichier, sous l'importation de Pandas : + + ```python + import matplotlib.pyplot as plt + ``` + +1. Relancez tout le notebook pour actualiser. +1. En bas du notebook, ajoutez une cellule pour tracer les données sous forme de boîte : + + ```python + price = new_pumpkins.Price + month = new_pumpkins.Month + plt.scatter(price, month) + plt.show() + ``` + + ![Un nuage de points montrant la relation entre le prix et le mois](../../../../translated_images/scatterplot.b6868f44cbd2051c6680ccdbb1510697d06a3ff6cd4abda656f5009c0ed4e3fc.fr.png) + + Ce graphique est-il utile ? Quelque chose vous surprend-il ? + + Ce n'est pas particulièrement utile car tout ce qu'il fait est d'afficher vos données sous forme de points répartis dans un mois donné. + +### Rendez-le utile + +Pour obtenir des graphiques affichant des données utiles, vous devez généralement regrouper les données d'une manière ou d'une autre. Essayons de créer un graphique où l'axe y montre les mois et les données démontrent la distribution des données. + +1. Ajoutez une cellule pour créer un graphique en barres groupées : + + ```python + new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar') + plt.ylabel("Pumpkin Price") + ``` + + ![Un graphique en barres montrant la relation entre le prix et le mois](../../../../translated_images/barchart.a833ea9194346d769c77a3a870f7d8aee51574cd1138ca902e5500830a41cbce.fr.png) + + Ce graphique est une visualisation de données plus utile ! Il semble indiquer que le prix le plus élevé des citrouilles se produit en septembre et octobre. Cela correspond-il à vos attentes ? Pourquoi ou pourquoi pas ? + +--- + +## 🚀Défi + +Explorez les différents types de visualisation que Matplotlib propose. Quels types sont les plus appropriés pour les problèmes de régression ? + +## [Quiz après le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/12/) + +## Révision et auto-apprentissage + +Examinez les nombreuses façons de visualiser les données. Faites une liste des différentes bibliothèques disponibles et notez celles qui sont les meilleures pour certains types de tâches, par exemple les visualisations 2D contre les visualisations 3D. Que découvrez-vous ? + +## Devoir + +[Explorer la visualisation](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/2-Regression/2-Data/assignment.md b/translations/fr/2-Regression/2-Data/assignment.md new file mode 100644 index 000000000..fb9208e76 --- /dev/null +++ b/translations/fr/2-Regression/2-Data/assignment.md @@ -0,0 +1,23 @@ + +# Explorer les visualisations + +Il existe plusieurs bibliothèques disponibles pour la visualisation de données. Créez des visualisations en utilisant les données de citrouille de cette leçon avec matplotlib et seaborn dans un notebook d'exemple. Quelles bibliothèques sont les plus faciles à utiliser ? + +## Grille d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ---------- | ------- | ----------- | +| | Un notebook est soumis avec deux explorations/visualisations | Un notebook est soumis avec une exploration/visualisation | Aucun notebook n'est soumis | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/2-Regression/2-Data/notebook.ipynb b/translations/fr/2-Regression/2-Data/notebook.ipynb new file mode 100644 index 000000000..0557421f6 --- /dev/null +++ b/translations/fr/2-Regression/2-Data/notebook.ipynb @@ -0,0 +1,46 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "coopTranslator": { + "original_hash": "1b2ab303ac6c604a34c6ca7a49077fc7", + "translation_date": "2025-09-04T01:36:14+00:00", + "source_file": "2-Regression/2-Data/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/2-Regression/2-Data/solution/Julia/README.md b/translations/fr/2-Regression/2-Data/solution/Julia/README.md new file mode 100644 index 000000000..af4774545 --- /dev/null +++ b/translations/fr/2-Regression/2-Data/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/2-Regression/2-Data/solution/R/lesson_2-R.ipynb b/translations/fr/2-Regression/2-Data/solution/R/lesson_2-R.ipynb new file mode 100644 index 000000000..15aec3c6b --- /dev/null +++ b/translations/fr/2-Regression/2-Data/solution/R/lesson_2-R.ipynb @@ -0,0 +1,669 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_2-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "f3c335f9940cfd76528b3ef918b9b342", + "translation_date": "2025-09-04T01:38:13+00:00", + "source_file": "2-Regression/2-Data/solution/R/lesson_2-R.ipynb", + "language_code": "fr" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Construire un modèle de régression : préparer et visualiser les données\n", + "\n", + "## **Régression linéaire pour les citrouilles - Leçon 2**\n", + "#### Introduction\n", + "\n", + "Maintenant que vous disposez des outils nécessaires pour commencer à construire des modèles de machine learning avec Tidymodels et le Tidyverse, vous êtes prêt à poser des questions à vos données. Lorsque vous travaillez avec des données et appliquez des solutions de machine learning, il est crucial de savoir poser les bonnes questions pour exploiter pleinement le potentiel de votre jeu de données.\n", + "\n", + "Dans cette leçon, vous apprendrez :\n", + "\n", + "- Comment préparer vos données pour la construction de modèles.\n", + "\n", + "- Comment utiliser `ggplot2` pour la visualisation des données.\n", + "\n", + "La question à laquelle vous souhaitez répondre déterminera le type d'algorithmes de machine learning que vous utiliserez. Et la qualité de la réponse que vous obtiendrez dépendra fortement de la nature de vos données.\n", + "\n", + "Voyons cela à travers un exercice pratique.\n", + "\n", + "

                      \n", + " \n", + "

                      Illustration par @allison_horst
                      \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "Pg5aexcOPqAZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. Importer les données sur les citrouilles et invoquer le Tidyverse\n", + "\n", + "Nous aurons besoin des packages suivants pour découper et analyser cette leçon :\n", + "\n", + "- `tidyverse` : Le [tidyverse](https://www.tidyverse.org/) est une [collection de packages R](https://www.tidyverse.org/packages) conçue pour rendre la science des données plus rapide, plus facile et plus amusante !\n", + "\n", + "Vous pouvez les installer avec la commande suivante :\n", + "\n", + "`install.packages(c(\"tidyverse\"))`\n", + "\n", + "Le script ci-dessous vérifie si vous avez les packages nécessaires pour compléter ce module et les installe pour vous si certains sont manquants.\n" + ], + "metadata": { + "id": "dc5WhyVdXAjR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse)" + ], + "outputs": [], + "metadata": { + "id": "GqPYUZgfXOBt" + } + }, + { + "cell_type": "markdown", + "source": [ + "Maintenant, lançons quelques packages et chargeons les [données](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) fournies pour cette leçon !\n" + ], + "metadata": { + "id": "kvjDTPDSXRr2" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n =50)" + ], + "outputs": [], + "metadata": { + "id": "VMri-t2zXqgD" + } + }, + { + "cell_type": "markdown", + "source": [ + "Un rapide `glimpse()` montre immédiatement qu'il y a des valeurs manquantes et un mélange de chaînes de caractères (`chr`) et de données numériques (`dbl`). La colonne `Date` est de type caractère, et il y a aussi une colonne étrange appelée `Package` où les données sont un mélange de `sacks`, `bins` et d'autres valeurs. En réalité, les données sont un peu en désordre 😤.\n", + "\n", + "En fait, il est assez rare de recevoir un jeu de données complètement prêt à l'emploi pour créer un modèle de machine learning directement. Mais ne vous inquiétez pas, dans cette leçon, vous apprendrez à préparer un jeu de données brut en utilisant des bibliothèques R standard 🧑‍🔧. Vous découvrirez également différentes techniques pour visualiser les données. 📈📊\n", + "
                      \n", + "\n", + "> Un rappel : L'opérateur pipe (`%>%`) permet d'effectuer des opérations dans une séquence logique en passant un objet à une fonction ou une expression d'appel. Vous pouvez considérer l'opérateur pipe comme signifiant \"et ensuite\" dans votre code.\n" + ], + "metadata": { + "id": "REWcIv9yX29v" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. Vérifier les données manquantes\n", + "\n", + "L'un des problèmes les plus courants auxquels les data scientists doivent faire face est celui des données incomplètes ou manquantes. R représente les valeurs manquantes ou inconnues avec une valeur sentinelle spéciale : `NA` (Non Disponible).\n", + "\n", + "Alors, comment savoir si le tableau de données contient des valeurs manquantes ?\n", + "
                      \n", + "- Une méthode simple serait d'utiliser la fonction de base R `anyNA`, qui retourne les objets logiques `TRUE` ou `FALSE`.\n" + ], + "metadata": { + "id": "Zxfb3AM5YbUe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " anyNA()" + ], + "outputs": [], + "metadata": { + "id": "G--DQutAYltj" + } + }, + { + "cell_type": "markdown", + "source": [ + "Super, il semble qu'il manque certaines données ! C'est un bon point de départ.\n", + "\n", + "- Une autre méthode consisterait à utiliser la fonction `is.na()` qui indique quels éléments individuels d'une colonne sont manquants avec une valeur logique `TRUE`.\n" + ], + "metadata": { + "id": "mU-7-SB6YokF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "W-DxDOR4YxSW" + } + }, + { + "cell_type": "markdown", + "source": [ + "D'accord, c'est fait, mais avec un grand tableau de données comme celui-ci, il serait inefficace et pratiquement impossible de vérifier toutes les lignes et colonnes individuellement 😴.\n", + "\n", + "- Une méthode plus intuitive serait de calculer la somme des valeurs manquantes pour chaque colonne :\n" + ], + "metadata": { + "id": "xUWxipKYY0o7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " colSums()" + ], + "outputs": [], + "metadata": { + "id": "ZRBWV6P9ZArL" + } + }, + { + "cell_type": "markdown", + "source": [ + "Bien mieux ! Il manque des données, mais peut-être que cela n'aura pas d'importance pour la tâche en cours. Voyons ce que l'analyse supplémentaire peut révéler.\n", + "\n", + "> En plus des ensembles impressionnants de packages et de fonctions, R dispose d'une très bonne documentation. Par exemple, utilisez `help(colSums)` ou `?colSums` pour en savoir plus sur la fonction.\n" + ], + "metadata": { + "id": "9gv-crB6ZD1Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Dplyr : Une grammaire pour manipuler les données\n", + "\n", + "

                      \n", + " \n", + "

                      Illustration par @allison_horst
                      \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "o4jLY5-VZO2C" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`dplyr`](https://dplyr.tidyverse.org/), un package du Tidyverse, est une grammaire de manipulation de données qui offre un ensemble cohérent de verbes pour vous aider à résoudre les défis les plus courants en matière de manipulation de données. Dans cette section, nous allons explorer certains des verbes de dplyr !\n" + ], + "metadata": { + "id": "i5o33MQBZWWw" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::select()\n", + "\n", + "`select()` est une fonction du package `dplyr` qui vous aide à choisir les colonnes à conserver ou à exclure.\n", + "\n", + "Pour rendre votre data frame plus facile à manipuler, supprimez plusieurs de ses colonnes en utilisant `select()`, en ne gardant que les colonnes dont vous avez besoin.\n", + "\n", + "Par exemple, dans cet exercice, notre analyse portera sur les colonnes `Package`, `Low Price`, `High Price` et `Date`. Sélectionnons ces colonnes.\n" + ], + "metadata": { + "id": "x3VGMAGBZiUr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(Package, `Low Price`, `High Price`, Date)\n", + "\n", + "\n", + "# Print data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "F_FgxQnVZnM0" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::mutate()\n", + "\n", + "`mutate()` est une fonction du package `dplyr` qui vous permet de créer ou de modifier des colonnes, tout en conservant les colonnes existantes.\n", + "\n", + "La structure générale de `mutate` est :\n", + "\n", + "`data %>% mutate(new_column_name = what_it_contains)`\n", + "\n", + "Explorons `mutate` en utilisant la colonne `Date` pour effectuer les opérations suivantes :\n", + "\n", + "1. Convertir les dates (actuellement de type caractère) en un format de mois (ce sont des dates américaines, donc le format est `MM/DD/YYYY`).\n", + "\n", + "2. Extraire le mois des dates dans une nouvelle colonne.\n", + "\n", + "En R, le package [lubridate](https://lubridate.tidyverse.org/) facilite le travail avec les données de type Date-heure. Utilisons donc `dplyr::mutate()`, `lubridate::mdy()`, `lubridate::month()` pour atteindre les objectifs ci-dessus. Nous pouvons supprimer la colonne Date, car nous n'en aurons plus besoin dans les opérations suivantes.\n" + ], + "metadata": { + "id": "2KKo0Ed9Z1VB" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load lubridate\n", + "library(lubridate)\n", + "\n", + "pumpkins <- pumpkins %>% \n", + " # Convert the Date column to a date object\n", + " mutate(Date = mdy(Date)) %>% \n", + " # Extract month from Date\n", + " mutate(Month = month(Date)) %>% \n", + " # Drop Date column\n", + " select(-Date)\n", + "\n", + "# View the first few rows\n", + "pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "5joszIVSZ6xe" + } + }, + { + "cell_type": "markdown", + "source": [ + "Youpi ! 🤩\n", + "\n", + "Ensuite, créons une nouvelle colonne `Price`, qui représente le prix moyen d'une citrouille. Maintenant, prenons la moyenne des colonnes `Low Price` et `High Price` pour remplir la nouvelle colonne Price. \n", + "
                      \n" + ], + "metadata": { + "id": "nIgLjNMCZ-6Y" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new column Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(Price = (`Low Price` + `High Price`)/2)\n", + "\n", + "# View the first few rows of the data\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "Zo0BsqqtaJw2" + } + }, + { + "cell_type": "markdown", + "source": [ + "Ouiii !💪\n", + "\n", + "\"Mais attendez !\", direz-vous après avoir parcouru rapidement l'ensemble des données avec `View(pumpkins)`, \"Il y a quelque chose d'étrange ici !\"🤔\n", + "\n", + "Si vous regardez la colonne `Package`, les citrouilles sont vendues dans de nombreuses configurations différentes. Certaines sont vendues en mesures de `1 1/9 boisseau`, d'autres en mesures de `1/2 boisseau`, certaines à l'unité, d'autres au poids, et certaines dans de grandes caisses de largeurs variables.\n", + "\n", + "Vérifions cela :\n" + ], + "metadata": { + "id": "p77WZr-9aQAR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Verify the distinct observations in Package column\n", + "pumpkins %>% \n", + " distinct(Package)" + ], + "outputs": [], + "metadata": { + "id": "XISGfh0IaUy6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Incroyable !👏\n", + "\n", + "Les citrouilles semblent être très difficiles à peser de manière cohérente, alors filtrons-les en sélectionnant uniquement les citrouilles contenant le mot *bushel* dans la colonne `Package` et mettons cela dans un nouveau cadre de données `new_pumpkins`.\n" + ], + "metadata": { + "id": "7sMjiVujaZxY" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::filter() et stringr::str_detect()\n", + "\n", + "[`dplyr::filter()`](https://dplyr.tidyverse.org/reference/filter.html) : crée un sous-ensemble des données ne contenant que les **lignes** qui remplissent vos conditions, dans ce cas, les citrouilles ayant le mot *bushel* dans la colonne `Package`.\n", + "\n", + "[stringr::str_detect()](https://stringr.tidyverse.org/reference/str_detect.html) : détecte la présence ou l'absence d'un motif dans une chaîne de caractères.\n", + "\n", + "Le package [`stringr`](https://github.com/tidyverse/stringr) fournit des fonctions simples pour les opérations courantes sur les chaînes de caractères.\n" + ], + "metadata": { + "id": "L8Qfcs92ageF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Retain only pumpkins with \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(Package, \"bushel\"))\n", + "\n", + "# Get the dimensions of the new data\n", + "dim(new_pumpkins)\n", + "\n", + "# View a few rows of the new data\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "hy_SGYREampd" + } + }, + { + "cell_type": "markdown", + "source": [ + "Vous pouvez voir que nous avons réduit à environ 415 lignes de données contenant des citrouilles par boisseau.🤩\n", + "
                      \n" + ], + "metadata": { + "id": "VrDwF031avlR" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::case_when()\n", + "\n", + "**Mais attendez ! Il y a encore une chose à faire**\n", + "\n", + "Avez-vous remarqué que la quantité par boisseau varie selon les lignes ? Vous devez normaliser les prix afin d'afficher le prix par boisseau, et non par 1 1/9 ou 1/2 boisseau. Il est temps de faire quelques calculs pour standardiser cela.\n", + "\n", + "Nous allons utiliser la fonction [`case_when()`](https://dplyr.tidyverse.org/reference/case_when.html) pour *modifier* la colonne Price en fonction de certaines conditions. `case_when` permet de vectoriser plusieurs instructions `if_else()`.\n" + ], + "metadata": { + "id": "mLpw2jH4a0tx" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(Price = case_when(\n", + " str_detect(Package, \"1 1/9\") ~ Price/(1 + 1/9),\n", + " str_detect(Package, \"1/2\") ~ Price/(1/2),\n", + " TRUE ~ Price))\n", + "\n", + "# View the first few rows of the data\n", + "new_pumpkins %>% \n", + " slice_head(n = 30)" + ], + "outputs": [], + "metadata": { + "id": "P68kLVQmbM6I" + } + }, + { + "cell_type": "markdown", + "source": [ + "Nous pouvons maintenant analyser le prix par unité en fonction de leur mesure en boisseaux. Toute cette étude des boisseaux de citrouilles, cependant, montre à quel point il est `important` de `comprendre la nature de vos données` !\n", + "\n", + "> ✅ Selon [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308), le poids d'un boisseau dépend du type de produit, car il s'agit d'une mesure de volume. \"Un boisseau de tomates, par exemple, est censé peser 56 livres... Les feuilles et les légumes verts occupent plus d'espace avec moins de poids, donc un boisseau d'épinards ne pèse que 20 livres.\" Tout cela est assez compliqué ! Ne nous embêtons pas à convertir les boisseaux en livres, et fixons plutôt les prix par boisseau. Toute cette étude des boisseaux de citrouilles, cependant, montre à quel point il est important de comprendre la nature de vos données !\n", + ">\n", + "> ✅ Avez-vous remarqué que les citrouilles vendues au demi-boisseau sont très chères ? Pouvez-vous deviner pourquoi ? Indice : les petites citrouilles coûtent beaucoup plus cher que les grosses, probablement parce qu'il y en a beaucoup plus par boisseau, étant donné l'espace inutilisé occupé par une grosse citrouille creuse pour tarte.\n" + ], + "metadata": { + "id": "pS2GNPagbSdb" + } + }, + { + "cell_type": "markdown", + "source": [ + "Maintenant, pour le simple plaisir de l'aventure 💁‍♀️, déplaçons également la colonne Mois à la première position, c'est-à-dire avant la colonne `Package`.\n", + "\n", + "`dplyr::relocate()` est utilisé pour modifier la position des colonnes.\n" + ], + "metadata": { + "id": "qql1SowfbdnP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new data frame new_pumpkins\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(Month, .before = Package)\n", + "\n", + "new_pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "JJ1x6kw8bixF" + } + }, + { + "cell_type": "markdown", + "source": [ + "Bon travail !👌 Vous avez maintenant un ensemble de données propre et bien organisé sur lequel vous pouvez construire votre nouveau modèle de régression !\n" + ], + "metadata": { + "id": "y8TJ0Za_bn5Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. Visualisation des données avec ggplot2\n", + "\n", + "

                      \n", + " \n", + "

                      Infographie par Dasani Madipalli
                      \n", + "\n", + "\n", + "\n", + "\n", + "Il existe un *sage* dicton qui dit ceci :\n", + "\n", + "> \"Le simple graphique a apporté plus d'informations à l'esprit de l'analyste de données que tout autre outil.\" --- John Tukey\n", + "\n", + "Une partie du rôle du data scientist est de démontrer la qualité et la nature des données avec lesquelles il travaille. Pour ce faire, il crée souvent des visualisations intéressantes, ou des graphiques, diagrammes et courbes, montrant différents aspects des données. De cette manière, il peut mettre en évidence visuellement des relations et des lacunes qui seraient autrement difficiles à détecter.\n", + "\n", + "Les visualisations peuvent également aider à déterminer la technique d'apprentissage automatique la plus appropriée pour les données. Un nuage de points qui semble suivre une ligne, par exemple, indique que les données sont un bon candidat pour un exercice de régression linéaire.\n", + "\n", + "R propose plusieurs systèmes pour créer des graphiques, mais [`ggplot2`](https://ggplot2.tidyverse.org/index.html) est l'un des plus élégants et des plus polyvalents. `ggplot2` vous permet de composer des graphiques en **combinant des composants indépendants**.\n", + "\n", + "Commençons par un simple nuage de points pour les colonnes Price et Month.\n", + "\n", + "Dans ce cas, nous commencerons avec [`ggplot()`](https://ggplot2.tidyverse.org/reference/ggplot.html), fournirons un jeu de données et une correspondance esthétique (avec [`aes()`](https://ggplot2.tidyverse.org/reference/aes.html)), puis ajouterons des couches (comme [`geom_point()`](https://ggplot2.tidyverse.org/reference/geom_point.html)) pour les nuages de points.\n" + ], + "metadata": { + "id": "mYSH6-EtbvNa" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plots\n", + "theme_set(theme_light())\n", + "\n", + "# Create a scatter plot\n", + "p <- ggplot(data = new_pumpkins, aes(x = Price, y = Month))\n", + "p + geom_point()" + ], + "outputs": [], + "metadata": { + "id": "g2YjnGeOcLo4" + } + }, + { + "cell_type": "markdown", + "source": [ + "Est-ce un graphique utile 🤷 ? Y a-t-il quelque chose qui vous surprend ?\n", + "\n", + "Ce n'est pas particulièrement utile, car tout ce qu'il fait est de montrer vos données sous forme de dispersion de points pour un mois donné. \n" + ], + "metadata": { + "id": "Ml7SDCLQcPvE" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **Comment le rendre utile ?**\n", + "\n", + "Pour afficher des graphiques avec des données pertinentes, il est généralement nécessaire de regrouper les données d'une certaine manière. Par exemple, dans notre cas, calculer le prix moyen des citrouilles pour chaque mois fournirait davantage d'informations sur les tendances sous-jacentes de nos données. Cela nous amène à une autre fonctionnalité essentielle de **dplyr** :\n", + "\n", + "#### `dplyr::group_by() %>% summarize()`\n", + "\n", + "L'agrégation par groupes en R peut être facilement réalisée avec :\n", + "\n", + "`dplyr::group_by() %>% summarize()`\n", + "\n", + "- `dplyr::group_by()` modifie l'unité d'analyse, passant de l'ensemble du jeu de données à des groupes individuels, comme par exemple par mois.\n", + "\n", + "- `dplyr::summarize()` crée un nouveau tableau de données avec une colonne pour chaque variable de regroupement et une colonne pour chaque statistique récapitulative que vous avez spécifiée.\n", + "\n", + "Par exemple, nous pouvons utiliser `dplyr::group_by() %>% summarize()` pour regrouper les citrouilles en fonction de la colonne **Month**, puis calculer le **prix moyen** pour chaque mois.\n" + ], + "metadata": { + "id": "jMakvJZIcVkh" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price))" + ], + "outputs": [], + "metadata": { + "id": "6kVSUa2Bcilf" + } + }, + { + "cell_type": "markdown", + "source": [ + "Succinct!✨\n", + "\n", + "Les caractéristiques catégoriques comme les mois sont mieux représentées à l'aide d'un diagramme en barres 📊. Les couches responsables des graphiques en barres sont `geom_bar()` et `geom_col()`. Consultez `?geom_bar` pour en savoir plus.\n", + "\n", + "Créons-en un !\n" + ], + "metadata": { + "id": "Kds48GUBcj3W" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month then plot a bar chart\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price)) %>% \r\n", + " ggplot(aes(x = Month, y = mean_price)) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"Pumpkin Price\")" + ], + "outputs": [], + "metadata": { + "id": "VNbU1S3BcrxO" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 Voici une visualisation des données plus utile ! Cela semble indiquer que le prix le plus élevé des citrouilles se produit en septembre et octobre. Est-ce que cela correspond à vos attentes ? Pourquoi ou pourquoi pas ?\n", + "\n", + "Félicitations pour avoir terminé la deuxième leçon 👏 ! Vous avez préparé vos données pour la construction du modèle, puis découvert davantage d'informations grâce aux visualisations !\n" + ], + "metadata": { + "id": "zDm0VOzzcuzR" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/2-Regression/2-Data/solution/notebook.ipynb b/translations/fr/2-Regression/2-Data/solution/notebook.ipynb new file mode 100644 index 000000000..496b15525 --- /dev/null +++ b/translations/fr/2-Regression/2-Data/solution/notebook.ipynb @@ -0,0 +1,437 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                      70BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      71BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      72BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      73BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1617.017.017.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      74BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/8/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      \n", + "

                      5 rows × 26 columns

                      \n", + "
                      " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade \\\n", + "70 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "71 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "72 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "73 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "74 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "\n", + " Date Low Price High Price Mostly Low ... Unit of Sale Quality \\\n", + "70 9/24/16 15.0 15.0 15.0 ... NaN NaN \n", + "71 9/24/16 18.0 18.0 18.0 ... NaN NaN \n", + "72 10/1/16 18.0 18.0 18.0 ... NaN NaN \n", + "73 10/1/16 17.0 17.0 17.0 ... NaN NaN \n", + "74 10/8/16 15.0 15.0 15.0 ... NaN NaN \n", + "\n", + " Condition Appearance Storage Crop Repack Trans Mode Unnamed: 24 \\\n", + "70 NaN NaN NaN NaN N NaN NaN \n", + "71 NaN NaN NaN NaN N NaN NaN \n", + "72 NaN NaN NaN NaN N NaN NaN \n", + "73 NaN NaN NaN NaN N NaN NaN \n", + "74 NaN NaN NaN NaN N NaN NaN \n", + "\n", + " Unnamed: 25 \n", + "70 NaN \n", + "71 NaN \n", + "72 NaN \n", + "73 NaN \n", + "74 NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "City Name 0\n", + "Type 406\n", + "Package 0\n", + "Variety 0\n", + "Sub Variety 167\n", + "Grade 415\n", + "Date 0\n", + "Low Price 0\n", + "High Price 0\n", + "Mostly Low 24\n", + "Mostly High 24\n", + "Origin 0\n", + "Origin District 396\n", + "Item Size 114\n", + "Color 145\n", + "Environment 415\n", + "Unit of Sale 404\n", + "Quality 415\n", + "Condition 415\n", + "Appearance 415\n", + "Storage 415\n", + "Crop 415\n", + "Repack 0\n", + "Trans Mode 415\n", + "Unnamed: 24 415\n", + "Unnamed: 25 391\n", + "dtype: int64" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Month Package Low Price High Price Price\n", + "70 9 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "71 9 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "72 10 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "73 10 1 1/9 bushel cartons 17.00 17.0 15.30\n", + "74 10 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "... ... ... ... ... ...\n", + "1738 9 1/2 bushel cartons 15.00 15.0 30.00\n", + "1739 9 1/2 bushel cartons 13.75 15.0 28.75\n", + "1740 9 1/2 bushel cartons 10.75 15.0 25.75\n", + "1741 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "1742 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "\n", + "[415 rows x 5 columns]\n" + ] + } + ], + "source": [ + "\n", + "# A set of new columns for a new dataframe. Filter out nonmatching columns\n", + "columns_to_select = ['Package', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Get an average between low and high price for the base pumpkin price\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "# Convert the date to its month only\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "\n", + "# Create a new dataframe with this basic data\n", + "new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price})\n", + "\n", + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9)\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2)\n", + "\n", + "print(new_pumpkins)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcXklEQVR4nO3dfZRcdZ3n8fdnKg80GbAJdLKkSQyTycnoEodoLQlGOXE0JiauZNiZFRbOoqPkuIddnWE3M7BwxmEOOcTJLOJZ96wbkBFHJjrjYGTFMWRRhlkXohUTCYoRkAh0kPQY4gO2Etrv/lG3YqW6bj3d7qrum8/rnD5d9btP3/u7v/p09a3bfRURmJlZfv1arwswM7OJ5aA3M8s5B72ZWc456M3Mcs5Bb2aWc9N6XUA9Z511VixcuLDXZZiZTRl79uz554gYqDdtUgb9woULKZVKvS7DzGzKkPT9tGk+dWNmlnMOejOznHPQm5nlnIPezCznHPRmZjnX9KobSXcAbwcOR8R5SdtW4F8DLwFPAu+OiKN1ll0LfAQoALdHxJbxK717Lr/tIb765JHjz1cums1dV104Zr7VtzzA44dfPP588ZxZ7LpmVTdKTLVj7xBbdx7g0NER5vX3sWnNEjYsG+xpTWbWXa28o/8EsLambRdwXkS8BvgucF3tQpIKwP8A3ga8GrhM0qszVdsDtSEP8NUnj3D5bQ+d0FYb8gCPH36R1bc8MNElptqxd4jr7t7P0NERAhg6OsJ1d+9nx96hntVkZt3XNOgj4kHgSE3bfRHxcvL0YeCcOoteADwREd+LiJeATwMXZ6y362pDPq29NuSbtXfD1p0HGDk2ekLbyLFRtu480KOKzKwXxuMc/R8A/1CnfRB4pur5s0lbXZI2SipJKg0PD49DWXbo6Ehb7WaWT5mCXtL1wMvAXVkLiYhtEVGMiOLAQN2/4rU2zevva6vdzPKp46CX9C7KH9JeHvVvUzUEzK96fk7SNqWsXDS7pfbFc2bVnS+tvRs2rVlC3/TCCW190wtsWrOkRxWZWS90FPTJ1TR/DLwjIn6WMtvXgcWSzpU0A7gUuKezMnvnrqsuHBPq9a662XXNqjGh3uurbjYsG+TmS5Yy2N+HgMH+Pm6+ZKmvujE7yajZPWMlbQdWAWcBzwMfpHyVzUzgh8lsD0fE+yTNo3wZ5bpk2XXArZQvr7wjIja3UlSxWAz/UzMzs9ZJ2hMRxbrTJuPNwR30ZmbtaRT0/stYM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzTYNe0h2SDkt6tKrt9yV9S9IvJdX9R/fJfAcl7Ze0T5LvJGJm1gOtvKP/BLC2pu1R4BLgwRaWf1NEnJ925xMzM5tY05rNEBEPSlpY0/YYgKQJKsvMzMbLRJ+jD+A+SXskbWw0o6SNkkqSSsPDwxNclpnZyWOig/4NEfFa4G3A1ZIuSpsxIrZFRDEiigMDAxNclpnZyWNCgz4ihpLvh4HPARdM5PbMzGysCQt6SbMknVZ5DLyV8oe4ZmbWRa1cXrkdeAhYIulZSe+R9LuSngUuBO6VtDOZd56kLyaLzgX+r6RvAl8D7o2IL03MbpiZWZpWrrq5LGXS5+rMewhYlzz+HvDbmaozM7PM/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznmt54RNIdwNuBwxFxXtL2+8CfAa8CLoiIUsqya4GPAAXg9ojYMk51j7Fj7xBbdx7g0NER5vX3sWnNEjYsG2x7PatveYDHD794/PniObN4avhFXo5fzTNN8MTN68csu/Dae8e0Hdwydr5qN+zYz/bdzzAaQUHisuXzuWnD0pZqbWWf6+3PrmtWtbR+K8tyjJZv3sXzP3np+PO5p81g9/WrgebjpdF2x2u8t6vR/jSTpR+b6VV/TBWKiMYzSBcBPwU+WRX0rwJ+Cfwv4L/UC3pJBeC7wGrgWeDrwGUR8e1mRRWLxSiV6v7sqGvH3iGuu3s/I8dGj7f1TS9w8yVL2zrYtaHYSG3Y13vRVqSF/Q079vOph58e037FigVNXwCt7HPa/jjsW5flGNWGYsXc02bUba84uGV9w+0WXzl7XMZ7uxrtT7Owz9KPzYzX63+qk7QnIor1pjU9dRMRDwJHatoei4gDTRa9AHgiIr4XES8BnwYubrHmtmzdeeCEgwwwcmyUrTublXiiVkMeOOEdfqe2736mrfZqrexz2v60s58nuyzHKC3MG4V8K9sdr/Heronan6x61R9TyUSeox8Eqo/is0lbXZI2SipJKg0PD7e1oUNHR9pqnyxGU36bSmuvNlX3earJcowmartT8dhPZD9Oxf7otknzYWxEbIuIYkQUBwYG2lp2Xn9fW+2TRUFqq73aVN3nqSbLMZqo7U7FYz+R/TgV+6PbJjLoh4D5Vc/PSdrG3aY1S+ibXjihrW96gU1rlrS1nsVzZrU877RxeJ1ftnx+W+3VWtnntP1pZz9PdlmO0dzTZrTV3up2x2u8t2ui9ierXvXHVDKRQf91YLGkcyXNAC4F7pmIDW1YNsjNlyxlsL8PAYP9fR19ELPrmlVjQnDxnFljQr3eVTdpH7g2uurmpg1LuWLFguPvagpSyx9OtbLPafvjD2Jbl+UY7b5+9ZgQrHxw2Wy8NNrueI33djXan2ay9GMzveqPqaSVq262A6uAs4DngQ9S/nD2vwMDwFFgX0SskTSP8mWU65Jl1wG3Ur688o6I2NxKUe1edWNmdrJrdNVN06DvBQe9mVl7Ml1eaWZmU5uD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnNNg17SHZIOS3q0qm22pF2SHk++n5Gy7KikfcnXhNxdyszMGmvlHf0ngLU1bdcC90fEYuD+5Hk9IxFxfvL1js7LNDOzTjUN+oh4kPKtA6tdDNyZPL4T2DC+ZZmZ2Xjp9Bz93Ih4Lnn8A2BuynynSCpJeljShkYrlLQxmbc0PDzcYVlmZlYr84exUb7pbNqNZ1+Z3MPw3wG3SlrUYD3bIqIYEcWBgYGsZZmZWaLToH9e0tkAyffD9WaKiKHk+/eAB4BlHW7PzMw61GnQ3wNcmTy+Evh87QySzpA0M3l8FrAS+HaH2zMzsw61cnnlduAhYImkZyW9B9gCrJb0OPCW5DmSipJuTxZ9FVCS9E3gK8CWiHDQm5l12bRmM0TEZSmT3lxn3hLw3uTx/wOWZqrOzMwy81/GmpnlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Oca3rjEQBJdwBvBw5HxHlJ22zgM8BC4CDwbyPihTrLXgnckDy9KSLuzF72WKtveYDHD794/PniObPYdc0qAHbsHWLrzgMcOjrCvP4+Nq1ZwoZlg22tr9bBLevHrDvtDun1TBM8cfN6Lr/tIb765JHj7SsXzeauqy5saR3LN+/i+Z+8dPz53NNmsPv61Q33o7pf8mThtfeOaasco6zLvuaDX+LHvxg9/vz0mQUeuXEt0HxsNVp3s+22u+xgf19LY/yGHfvZvvsZRiMoSFy2fD43bWjtHkHnXnvvCeNcwFPj1M/dcrK8Jqoponk8SboI+Cnwyaqg/wvgSERskXQtcEZE/EnNcrOBElAEAtgDvK7eD4RqxWIxSqVSyzuRFsqL58zi6jct5rq79zNy7Fcv1L7pBW6+ZGnqC6FZyFfc+s7zx6x7PLQS9rUhX1Ed9o36JU8Du16AVDQLkmbL1oZ8xekzC/z5hqUNx1ajdTdycMv6jpetV0e1G3bs51MPPz1m/itWLGga9rUhX9FK2Gc5RuMpz68JSXsiolhvWkunbiLiQeBITfPFQOXd+Z3AhjqLrgF2RcSRJNx3AWtb2WY70kL58cMvsnXngTFBPHJslK07D7S9vlr11j0eqt/hp6kX8rXtjfrFWlMv5CvtnYytbkmrY/vuZ+rOn9ZeLe0tYTu/yfbayfqayHKOfm5EPJc8/gEwt848g0D1CHo2aRtD0kZJJUml4eHhDGWd6NDRkbbax2PddnKYyLE1HurVMZryG3xau+XDuHwYG+XzP5lGSkRsi4hiRBQHBgbGoywA5vX3tdU+Huu2k8NEjq3xUK+OglR33rR2y4csQf+8pLMBku+H68wzBMyven5O0jauFs+Zldq+ac0S+qYXTmjvm15g05olba+vVr11j4eVi2Y3nWfuaTOatjfqF2vN6TPrH9/TZxY6GlvdklbHZcvn15k7vb1a2o+CqfQj4mR9TWQJ+nuAK5PHVwKfrzPPTuCtks6QdAbw1qRtXO26ZtWYA1X5cGXDskFuvmQpg/19iPKVCY0+iE1bX62DW9aPWXc7pqm8jtpQb/Wqm93Xrx4T9rVX3TTqlzxJ+zCvlQ/5mi37yI1rx4R95aqbZmOr0bqbbbeTZVsZ4zdtWMoVKxYcfwdfkFr6IBbKH7jWjvNWr7rJcozG08nymqjV6lU324FVwFnA88AHgR3A3wILgO9TvrzyiKQi8L6IeG+y7B8A/zVZ1eaI+Ktm22v3qhszs5Ndo6tuWgr6bnPQm5m1J/PllWZmNnU56M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczy7lMQS/pA5IelfQtSX9YZ/oqST+StC/5+tMs2zMzs/ZN63RBSecBVwEXAC8BX5L0hYh4ombWf4qIt2eo0czMMsjyjv5VwO6I+FlEvAz8I3DJ+JRlZmbjJUvQPwq8UdKZkk4F1gHz68x3oaRvSvoHSf8ybWWSNkoqSSoNDw9nKMvMzKp1fOomIh6T9CHgPuBFYB8wWjPbN4BXRsRPJa0DdgCLU9a3DdgG5ZuDd1qXmZmdKNOHsRHx8Yh4XURcBLwAfLdm+o8j4qfJ4y8C0yWdlWWbZmbWnqxX3cxJvi+gfH7+b2qm/wtJSh5fkGzvh1m2aWZm7en41E3i7yWdCRwDro6Io5LeBxARHwN+D/gPkl4GRoBLI8KnZczMuihT0EfEG+u0fazq8UeBj2bZhpmZZeO/jDUzyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcy/T96SR8ArgIE3BYRt9ZMF/ARyjcO/xnwroj4RpZtdssNO/azffczjEYgoHK3lILErBm/xo9/8avb4y6eM4td16zi8tse4qtPHmlp/QKe2rIeYMxyKxfN5q6rLgTgt67/Ij8f/dW9Wk4piO9sXgfA8s27eP4nLx2fNve0Gey+fvUJtVcM9vexac0SNiwbbHv/CxKXLZ/PTRuWtrTs6lse4PHDLx5/XukfgB17h9i68wCHjo4wr6qmTrbX6BhVlm9lvQuvvXfMug9uWV+3HwsSK37jDA7+cIRDR0c4dUaBn700StRst+I1H/zSCWPl9JkFHrlxbcPtVjQaF82WbaTRmGom7fhN9LJZNBsDjepqdAza1Wg7E9036vSGT5LOAz4NXAC8BHwJeF9EPFE1zzrgP1EO+uXARyJiebN1F4vFKJVKHdU1Hm7YsZ9PPfx0W8ucUtAJL55WCHj9otl1fzisXDSbPQdfqLvOUwriFadOPyHkW6mjb3qBmy9Z2nQApe3/FSsWNA3f2pCvWDxnFle/aTHX3b2fkWO/Cr6+6QVeu+AVdfug0fZaOUaL58yqW0v1eusFZlaV9deGfMXpMwt12ysOblmf+qZhZcp4qV62kdqQr2gl7HfsHap7/FoZU1mWzaLZWG5U19+Vnk49Bu2GfaPtAOPSN5L2RESx3rQsp25eBeyOiJ9FxMvAP1K+b2y1i4FPRtnDQL+kszNssyu2736m7WXaDXkovwNNe9F+9ckjqev8+WjUDflmdYwcG2XrzgNN60rb/1b6pV6wVtq37jxwwmCu1JTWB422l6WWTo5vOyrrTwvzRiFf0WhcZNFoTDWTdvxaGVNZls2i2VhuVNd4HoNG2+lG32QJ+keBN0o6U9KplN+1z6+ZZxCo7ulnk7YxJG2UVJJUGh4ezlBWdqM5vq3toaMjTedJ2/+s/dLKtlvdXpZaJvr45nX8pB2/Vo5rlmWzaDaWu1VXo+10o4aOgz4iHgM+BNxH+bTNPqD5W5X09W2LiGJEFAcGBjpdzbgoSD3d/kSa19/XdJ60/c/aL61su9XtZalloo9vXsdP2vFr5bhmWTaLZmO5W3U12k43ash01U1EfDwiXhcRFwEvAN+tmWWIE9/ln5O0TWqXLa/9xaS5Uwrtv7hF+XxfPSsXzU5d5ykFMfe0GW3X0Te9wKY1S5rWlbb/rfTL4jmzUts3rVlC3/TCmJrS+qDR9rLU0snxbUdl/afPLNSdntZerdG4yKLRmGom7fi1MqayLJtFs7HcqK7xPAaNttONvskU9JLmJN8XUD4//zc1s9wD/HuVrQB+FBHPZdlmN9y0YSlXrFhw/Kd+9UugII15oS6eM4vvbF7X1gCoXHVz11UXjlmu8mHPdzavG/MCrHxotvv61WPCfu5pM/jO5nUn1F4x2N/X8oc7tftfkFr6IBZg1zWrxgRs5aqbDcsGufmSpQz296Gqmu666sK2t9fsGF2xYgG7rlnVdL1pH14e3LK+bj8WJFYumn18H2bNKBzfdu36H7lx7ZixUrnqptF2gYbjotmyjTQaU82kHb9WxlSWZbNoNpYb1dXoGLSr0Xa60TcdX3UDIOmfgDOBY8A1EXG/pPcBRMTHkssrPwqspXx55bsjounlNL2+6sbMbKppdNVNpuvoI+KNddo+VvU4gKuzbMPMzLLxX8aameWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5zLeivBP5L0LUmPStou6ZSa6e+SNCxpX/L13mzlmplZuzoOekmDwPuBYkScBxSAS+vM+pmIOD/5ur3T7ZmZWWeynrqZBvRJmgacChzKXpKZmY2njoM+IoaAvwSeBp4DfhQR99WZ9d9IekTSZyXNT1ufpI2SSpJKw8PDnZZlZmY1spy6OQO4GDgXmAfMknRFzWz/G1gYEa8BdgF3pq0vIrZFRDEiigMDA52WZWZmNbKcunkL8FREDEfEMeBu4PXVM0TEDyPiF8nT24HXZdiemZl1IEvQPw2skHSqJAFvBh6rnkHS2VVP31E73czMJt60TheMiN2SPgt8A3gZ2Atsk/TnQCki7gHeL+kdyfQjwLuyl2xmZu1QRPS6hjGKxWKUSqVel2FmNmVI2hMRxXrT/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznOr7DFICkPwLeCwSwH3h3RPy8avpM4JOU7xX7Q+CdEXEwyzbzaMfeIbbuPMChoyPM6+9j05olbFg22HSaWSc8pk4+HQe9pEHg/cCrI2JE0t8ClwKfqJrtPcALEfGbki4FPgS8M0O9ubNj7xDX3b2fkWOjAAwdHeG6u/cfn542zS9M60Sj8eYxlV9ZT91MA/okTQNOBQ7VTL8YuDN5/FngzcmNxC2xdeeB4y+6ipFjo2zdeaDhNLNOeEydnDoO+ogYAv4SeBp4DvhRRNxXM9sg8Ewy/8vAj4Az661P0kZJJUml4eHhTsuacg4dHUltbzTNrBMeUyenjoNe0hmU37GfC8wDZkm6otP1RcS2iChGRHFgYKDT1Uw58/r7UtsbTTPrhMfUySnLqZu3AE9FxHBEHAPuBl5fM88QMB8gOb3zCsofylpi05ol9E0vnNDWN73ApjVLGk4z64TH1Mkpy1U3TwMrJJ0KjABvBko189wDXAk8BPwe8OWIiAzbzJ3KB2CNroLwFRI2XloZb5Y/ypK7km6kfBXNy8BeypdaXg+UIuIeSacAfw0sA44Al0bE95qtt1gsRqlU+zPDzMzSSNoTEcW60ybjG2wHvZlZexoFvf8y1sws5xz0ZmY556A3M8s5B72ZWc5Nyg9jJQ0D328y21nAP3ehnHZMxppgctblmlo3GeuajDXB5KyrWzW9MiLq/rXppAz6VkgqpX3C3CuTsSaYnHW5ptZNxromY00wOeuaDDX51I2ZWc456M3Mcm4qB/22XhdQx2SsCSZnXa6pdZOxrslYE0zOunpe05Q9R29mZq2Zyu/ozcysBQ56M7OcmxJBL+kOSYclPVrVNlvSLkmPJ9/PmAQ1/ZmkIUn7kq91Xa5pvqSvSPq2pG9J+kDS3rO+alBTr/vqFElfk/TNpK4bk/ZzJe2W9ISkz0iaMQlq+oSkp6r66vxu1VRVW0HSXklfSJ73rJ+a1NXTvpJ0UNL+ZNulpK2nWQVTJOgp33B8bU3btcD9EbEYuD953uuaAD4cEecnX1/sck0vA/85Il4NrACulvRqettXaTVBb/vqF8DvRMRvA+cDayWtoHwD+w9HxG8CL1C+wX2vawLYVNVX+7pYU8UHgMeqnveyn6rV1gW976s3JduuXDvf66yaGkEfEQ9S/n/21apvPH4nsGES1NRTEfFcRHwjefwTyi+AQXrYVw1q6qko+2nydHryFcDvUL6RPXS/r9Jq6ilJ5wDrgduT56KH/ZRW1yTW06yCKRL0KeZGxHPJ4x8Ac3tZTJX/KOmR5NRO139Fq5C0kPINX3YzSfqqpibocV8lv/bvAw4Du4AngaPJjewBnqXLP5Rqa4qISl9tTvrqw5JmdrMm4Fbgj4FfJs/PpMf9lFJXRS/7KoD7JO2RtDFp6/nrbyoH/XHJ7Ql7/s4H+J/AIsq/dj8H/LdeFCHp14G/B/4wIn5cPa1XfVWnpp73VUSMRsT5wDnABcBvdbuGWrU1SToPuI5ybf8KmA38SbfqkfR24HBE7OnWNlvRoK6e9VXiDRHxWuBtlE9TXlQ9sVevv6kc9M9LOhsg+X64x/UQEc8nL9RfArdRDo+ukjSdcqDeFRF3J8097at6NU2GvqqIiKPAV4ALgX6Vb2QP5bAd6nFNa5PTXxERvwD+iu721UrgHZIOAp+mfMrmI/S+n8bUJelTPe4rImIo+X4Y+Fyy/Z5n1VQO+sqNx0m+f76HtQDHD2LF7wKPps07QdsX8HHgsYi4pWpSz/oqraZJ0FcDkvqTx33AasqfH3yF8o3soft9Va+m71SFhCif3+1aX0XEdRFxTkQsBC4FvhwRl9PDfmpQ1xW97CtJsySdVnkMvDXZfu+zKiIm/RewnfKv98conw98D+XzhPcDjwP/B5g9CWr6a2A/8Ajlg3t2l2t6A+VfCx8B9iVf63rZVw1q6nVfvYbyDe0fofxi/NOk/TeArwFPAH8HzJwENX056atHgU8Bv97NvqqqbxXwhV73U5O6etZXSZ98M/n6FnB90t7TrIoI/wsEM7O8m8qnbszMrAUOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/N8s9l//aWz4AAAAASUVORK5CYII=", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "price = new_pumpkins.Price\n", + "month = new_pumpkins.Month\n", + "plt.scatter(price, month)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Pumpkin Price')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAARAElEQVR4nO3de5AlZX3G8e8joKigiIwbVNYVQ6ErwcVaiRW0CgUNikEQKxFTijHJahlUSsvUqknE/LVE0KoYNVkDigloNCoQLt5AxUuCLrrhIhqUQgMiLBGE0goR+OWP0+sMszOzZ8ft0zO830/VqTndfc7phwae6XlPX1JVSJLa8aChA0iSJsvil6TGWPyS1BiLX5IaY/FLUmMsfklqzK5DBxjHPvvsU6tWrRo6hiQtK1dcccVtVTU1e/6yKP5Vq1axadOmoWNI0rKS5IdzzXeoR5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYZXECl3auVesvHDoCN2w4eugIUrMsfjXNX4JqkUM9ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqTG/Fn2S/JF9M8p0k1yR5Yzf/lCQ3JdncPV7YVwZJ0rZ27fGz7wHeXFXfSrIncEWSz3fL3lNVp/W4bknSPHor/qq6Gbi5e35XkmuBx/W1PknSePrc4/+VJKuAQ4DLgcOAk5K8EtjE6K+C2yeRQ9L8Vq2/cOgI3LDh6KEjNKH3L3eT7AF8Eji5qu4EPgA8CVjD6C+C0+d537okm5Js2rJlS98xJakZvRZ/kt0Ylf7ZVfUpgKq6parurar7gA8Ch8713qraWFVrq2rt1NRUnzElqSl9HtUT4Azg2qp694z5+8542XHA1X1lkCRtq88x/sOAVwBXJdnczXsbcEKSNUABNwCv6TGDJGmWPo/q+SqQORZd1Nc6F+IXV5I04pm7ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JakxvxZ9kvyRfTPKdJNckeWM3f+8kn09yXffzUX1lkCRtq889/nuAN1fVauCZwJ8lWQ2sBy6pqgOAS7ppSdKE9Fb8VXVzVX2re34XcC3wOODFwFndy84Cju0rgyRpWxMZ40+yCjgEuBxYUVU3d4t+AqyY5z3rkmxKsmnLli2TiClJTei9+JPsAXwSOLmq7py5rKoKqLneV1Ubq2ptVa2dmprqO6YkNWOs4k/y0CQH7uiHJ9mNUemfXVWf6mbfkmTfbvm+wK07+rmSpMXbbvEn+T1gM/CZbnpNkvPHeF+AM4Brq+rdMxadD5zYPT8ROG8HM0uSfg3j7PGfAhwK3AFQVZuBJ47xvsOAVwDPTbK5e7wQ2AA8L8l1wJHdtCRpQnYd4zW/rKqfjXbgf2XOcfn7vaDqq0DmWXzEGOuVJPVgnOK/JsnLgV2SHAC8Afh6v7EkSX0ZZ6jn9cBTgbuBc4CfASf3mEmS1KPt7vFX1S+At3cPSdIyN85RPZ9PsteM6Ucl+WyvqSRJvRlnqGefqrpj60RV3Q48prdEkqRejVP89yVZuXUiyRMY46geSdLSNM5RPW8Hvprky4wOz3w2sK7XVJKk3ozz5e5nkjyd0aWVYXTNndv6jSVJ6su8Qz1Jntz9fDqwEvhx91jZzZMkLUML7fG/idGQzulzLCvgub0kkiT1at7ir6p1SR4E/EVVfW2CmSRJPVrwqJ6qug/4uwllkSRNwDiHc16S5PjMukqbJGl5Gqf4XwN8Arg7yZ1J7kpy5/beJElamsY5nHPPSQSRJE3GQodzHpDkvCRXJzknyeMmGUyS1I+FhnrOBC4Ajge+Dbx3IokkSb1aaKhnz6r6YPf8XUm+NYlAkqR+LVT8uyc5hOnbJz505nRV+YtAkpahhYr/ZuDdM6Z/MmPaM3claZla6Mzd50wyiCRpMsY5jl+S9ABi8UtSYyx+SWrMOHfgojt56wkzX19Vl/UVSpLUn+0Wf5JTgT8AvgPc280uwOKXpGVonD3+Y4EDq+runrNIkiZgnOK/HtgN2KHiT3Im8CLg1qo6qJt3CvCnwJbuZW+rqot25HMlqW+r1l84dARu2HB0b589TvH/Atic5BJmlH9VvWE77/swo5u4fGTW/PdU1Wk7ElKStPOMU/znd48dUlWXJVm1w4kkSb0a53r8Z+3kdZ6U5JXAJuDNVXX7XC9Kso7Rzd5ZuXLlTo4gSe1a6Hr8H+9+XpXkytmPRa7vA8CTgDWMrgV0+nwvrKqNVbW2qtZOTU0tcnWSpNkW2uN/Y/fzRTtrZVV1y9bnST7I6Hr/kqQJmnePv6pu7p6urqofznwAL1jMypLsO2PyOODqxXyOJGnxxvly9y+T3F1VlwIk+XPgOcDfL/SmJB8FDgf2SXIj8A7g8CRrGJ0AdgOjG7lLkiZonOI/BrggyVuAo4AnAy/e3puq6oQ5Zp+xY/EkSTvbOEf13JbkGOALwBXAS6uqek8mSerFvMWf5C5GQzJbPRjYH3hpkqqqR/QdTpK08y10B649JxlEkjQZ416W+SXAsxj9BfCVqjq3z1CSpP5s90YsSd4PvBa4itHhl69N8r6+g0mS+jHOHv9zgads/UI3yVnANb2mkiT1ZpxbL34fmHmxnP26eZKkZWicPf49gWuTfKObfgawKcn5AFV1TF/hJEk73zjF/1e9p5AkTcw4J3B9GSDJI7j/zdZ/2mMuSVJPxrnZ+jrgr4H/Be4Dwuiwzv37jSZJ6sM4Qz1vAQ6qqtv6DiNJ6t84R/X8gNF9dyVJDwDj7PG/Ffh6ksvZsZutS5KWoHGK/x+ASxmduXtfv3EkSX0bp/h3q6o39Z5EkjQR44zxX5xkXZJ9k+y99dF7MklSL8bZ4996J623zpjn4ZyStEyNcwLXEycRRJI0GeOcwPXKueZX1Ud2fhxJUt/GGep5xoznuwNHAN8CLH5JWobGGep5/czpJHsBH+srkCSpX+Mc1TPbzwHH/SVpmRpnjP/fGB3FA6NfFKuBj/cZSpLUn3HG+E+b8fwe4IdVdWNPeSRJPZu3+JPszugm67/J6HINZ1TVPZMKJknqx0Jj/GcBaxmV/guA0yeSSJLUq4WGelZX1W8BJDkD+MYCr91GkjOBFwG3VtVB3by9gX8BVgE3AL9fVbfveGxJ0mIttMf/y61PFjnE82HgqFnz1gOXVNUBwCXdtCRpghYq/qclubN73AUcvPV5kju398FVdRkw+768L2Y0hET389jFhJYkLd68Qz1VtUsP61tRVTd3z38CrOhhHZKkBSzmBK6doqqK6fMDttFdCnpTkk1btmyZYDJJemCbdPHfkmRfgO7nrfO9sKo2VtXaqlo7NTU1sYCS9EA36eI/Hzixe34icN6E1y9Jzeut+JN8FPh34MAkNyb5Y2AD8Lwk1wFHdtOSpAka55INi1JVJ8yz6Ii+1ilJ2r7BvtyVJA3D4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYXYdYaZIbgLuAe4F7qmrtEDkkqUWDFH/nOVV124Drl6QmOdQjSY0ZqvgL+FySK5KsGyiDJDVpqKGeZ1XVTUkeA3w+yXer6rKZL+h+IawDWLly5RAZJekBaZA9/qq6qft5K/Bp4NA5XrOxqtZW1dqpqalJR5SkB6yJF3+ShyfZc+tz4PnA1ZPOIUmtGmKoZwXw6SRb139OVX1mgByS1KSJF39VXQ88bdLrlSSNeDinJDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGjNI8Sc5Ksn3knw/yfohMkhSqyZe/El2Ad4HvABYDZyQZPWkc0hSq4bY4z8U+H5VXV9V/wd8DHjxADkkqUmpqsmuMHkpcFRV/Uk3/Qrgt6vqpFmvWwes6yYPBL430aDb2ge4beAMS4XbYprbYprbYtpS2RZPqKqp2TN3HSLJOKpqI7Bx6BxbJdlUVWuHzrEUuC2muS2muS2mLfVtMcRQz03AfjOmH9/NkyRNwBDF/03ggCRPTPJg4GXA+QPkkKQmTXyop6ruSXIS8FlgF+DMqrpm0jkWYckMOy0BbotpbotpbotpS3pbTPzLXUnSsDxzV5IaY/FLUmMsfklqzJI9jn9IM442+nFVfSHJy4HfAa4FNlbVLwcNOGFJ9gdewugw3HuB/wLOqao7Bw0maVH8cncOSc5m9EvxYcAdwB7Ap4AjGG2zE4dLN1lJ3gC8CLgMeCHwbUbb5DjgdVX1pcHCSVoUi38OSa6sqoOT7Mro5LLHVtW9SQL8Z1UdPHDEiUlyFbCm++d/GHBRVR2eZCVwXlUdMnDEiUnySOCtwLHAY4ACbgXOAzZU1R2DhVtCklxcVS8YOsekJHkEo/8uHg9cXFXnzFj2/qp63WDh5uFQz9we1A33PJzRXv8jgZ8CDwF2GzLYQHZlNMTzEEZ//VBVP0rS2rb4OHApcHhV/QQgyW8AJ3bLnj9gtolK8vT5FgFrJhhlKfgQcB3wSeDVSY4HXl5VdwPPHDTZPCz+uZ0BfJfRCWZvBz6R5HpG/xI/NmSwAfwj8M0klwPPBk4FSDLF6JdhS1ZV1akzZ3S/AE5N8uqBMg3lm8CXGRX9bHtNNsrgnlRVx3fPz03yduDSJMcMGWohDvXMI8ljAarqx0n2Ao4EflRV3xg02ACSPBV4CnB1VX136DxDSfI54AvAWVV1SzdvBfAq4HlVdeSA8SYqydXAcVV13RzL/ruq9pvjbQ9ISa4FnlpV982Y9yrgLcAeVfWEobLNx+KXxpTkUcB6RvePeEw3+xZG15raUFW3D5Vt0rrLq19VVdtcLj3JsVV17uRTDSPJ3wCfq6ovzJp/FPDeqjpgmGTzs/ilnSDJH1XVh4bOsRS4LaYt1W1h8Us7QZIfVdXKoXMsBW6LaUt1W/jlrjSmJFfOtwhYMcksQ3NbTFuO28Lil8a3AvhdYPZYfoCvTz7OoNwW05bdtrD4pfFdwOgojc2zFyT50sTTDMttMW3ZbQvH+CWpMV6dU5IaY/FLUmMsfglIUkn+ecb0rkm2JLlgkZ+3V5LXzZg+fLGfJe1sFr808nPgoCQP7aafx+jKrIu1F7DkrsoogcUvzXQRcHT3/ATgo1sXJNk7yblJrkzyH0kO7uafkuTMJF9Kcn13/wKADcCTkmxO8q5u3h5J/jXJd5Oc3V3mW5o4i1+a9jHgZUl2Bw4GLp+x7J3At7t7MbwN+MiMZU9mdBz3ocA7ustVrwd+UFVrquot3esOAU4GVgP7A4f1+M8izcvilzpVdSWwitHe/kWzFj8L+KfudZcCj+5uwAFwYVXdXVW3Mboxy3xna36jqm7sruK4uVuXNHGewCXd3/nAacDhwKPHfM/dM57fy/z/X437OqlX7vFL93cm8M6qumrW/K8AfwijI3SA27Zzs/m7gD37CCj9utzjkGaoqhuBv51j0SnAmd0FuX7B6HaLC33O/yT5WnfDkouBC3d2VmmxvGSDJDXGoR5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSY/4fZDFW+b6+4WkAAAAASUVORK5CYII=", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar')\n", + "plt.ylabel(\"Pumpkin Price\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "95726f0b8283628d5356a4f8eb8b4b76", + "translation_date": "2025-09-04T01:36:32+00:00", + "source_file": "2-Regression/2-Data/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fr/2-Regression/3-Linear/README.md b/translations/fr/2-Regression/3-Linear/README.md new file mode 100644 index 000000000..014f6a439 --- /dev/null +++ b/translations/fr/2-Regression/3-Linear/README.md @@ -0,0 +1,380 @@ + +# Construire un modèle de régression avec Scikit-learn : quatre approches de régression + +![Infographie sur la régression linéaire vs polynomiale](../../../../translated_images/linear-polynomial.5523c7cb6576ccab0fecbd0e3505986eb2d191d9378e785f82befcf3a578a6e7.fr.png) +> Infographie par [Dasani Madipalli](https://twitter.com/dasani_decoded) +## [Quiz pré-lecture](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/13/) + +> ### [Cette leçon est disponible en R !](../../../../2-Regression/3-Linear/solution/R/lesson_3.html) +### Introduction + +Jusqu'à présent, vous avez exploré ce qu'est la régression à l'aide d'un exemple de données issues du jeu de données sur les prix des citrouilles que nous utiliserons tout au long de cette leçon. Vous l'avez également visualisée à l'aide de Matplotlib. + +Vous êtes maintenant prêt à plonger plus profondément dans la régression pour l'apprentissage automatique. Bien que la visualisation permette de comprendre les données, la véritable puissance de l'apprentissage automatique réside dans l’_entraînement des modèles_. Les modèles sont entraînés sur des données historiques pour capturer automatiquement les dépendances entre les données, et ils permettent de prédire des résultats pour de nouvelles données que le modèle n'a jamais vues auparavant. + +Dans cette leçon, vous en apprendrez davantage sur deux types de régression : la _régression linéaire de base_ et la _régression polynomiale_, ainsi que sur certaines notions mathématiques sous-jacentes à ces techniques. Ces modèles nous permettront de prédire les prix des citrouilles en fonction de différentes données d'entrée. + +[![ML pour débutants - Comprendre la régression linéaire](https://img.youtube.com/vi/CRxFT8oTDMg/0.jpg)](https://youtu.be/CRxFT8oTDMg "ML pour débutants - Comprendre la régression linéaire") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo d'introduction à la régression linéaire. + +> Tout au long de ce programme, nous supposons une connaissance minimale des mathématiques et cherchons à les rendre accessibles aux étudiants venant d'autres domaines. Soyez attentif aux notes, 🧮 encadrés, diagrammes et autres outils d'apprentissage pour faciliter la compréhension. + +### Prérequis + +Vous devriez maintenant être familier avec la structure des données sur les citrouilles que nous examinons. Vous pouvez les trouver préchargées et pré-nettoyées dans le fichier _notebook.ipynb_ de cette leçon. Dans ce fichier, le prix des citrouilles est affiché par boisseau dans un nouveau DataFrame. Assurez-vous de pouvoir exécuter ces notebooks dans des kernels dans Visual Studio Code. + +### Préparation + +Pour rappel, vous chargez ces données afin de poser des questions à leur sujet. + +- Quel est le meilleur moment pour acheter des citrouilles ? +- Quel prix puis-je attendre pour une caisse de citrouilles miniatures ? +- Devrais-je les acheter en paniers d'un demi-boisseau ou en cartons de 1 1/9 boisseau ? +Continuons à explorer ces données. + +Dans la leçon précédente, vous avez créé un DataFrame Pandas et l'avez rempli avec une partie du jeu de données original, en standardisant les prix par boisseau. Cependant, en faisant cela, vous n'avez pu rassembler qu'environ 400 points de données, uniquement pour les mois d'automne. + +Examinez les données préchargées dans le notebook accompagnant cette leçon. Les données sont préchargées et un nuage de points initial est tracé pour montrer les données mensuelles. Peut-être pouvons-nous obtenir un peu plus de détails sur la nature des données en les nettoyant davantage. + +## Une ligne de régression linéaire + +Comme vous l'avez appris dans la leçon 1, l'objectif d'un exercice de régression linéaire est de tracer une ligne pour : + +- **Montrer les relations entre les variables**. Montrer la relation entre les variables. +- **Faire des prédictions**. Faire des prédictions précises sur la position d'un nouveau point de données par rapport à cette ligne. + +Il est typique d'utiliser la **régression des moindres carrés** pour tracer ce type de ligne. Le terme "moindres carrés" signifie que tous les points de données entourant la ligne de régression sont élevés au carré, puis additionnés. Idéalement, cette somme finale est aussi petite que possible, car nous voulons un faible nombre d'erreurs, ou "moindres carrés". + +Nous faisons cela car nous voulons modéliser une ligne ayant la plus faible distance cumulative par rapport à tous nos points de données. Nous élevons également les termes au carré avant de les additionner, car nous nous intéressons à leur magnitude plutôt qu'à leur direction. + +> **🧮 Montrez-moi les maths** +> +> Cette ligne, appelée _ligne de meilleure adéquation_, peut être exprimée par [une équation](https://fr.wikipedia.org/wiki/R%C3%A9gression_lin%C3%A9aire_simple) : +> +> ``` +> Y = a + bX +> ``` +> +> `X` est la "variable explicative". `Y` est la "variable dépendante". La pente de la ligne est `b` et `a` est l'ordonnée à l'origine, qui fait référence à la valeur de `Y` lorsque `X = 0`. +> +>![calculer la pente](../../../../translated_images/slope.f3c9d5910ddbfcf9096eb5564254ba22c9a32d7acd7694cab905d29ad8261db3.fr.png) +> +> Tout d'abord, calculez la pente `b`. Infographie par [Jen Looper](https://twitter.com/jenlooper) +> +> En d'autres termes, et en se référant à la question initiale sur les données des citrouilles : "prédire le prix d'une citrouille par boisseau selon le mois", `X` ferait référence au prix et `Y` au mois de vente. +> +>![compléter l'équation](../../../../translated_images/calculation.a209813050a1ddb141cdc4bc56f3af31e67157ed499e16a2ecf9837542704c94.fr.png) +> +> Calculez la valeur de Y. Si vous payez environ 4 $, cela doit être en avril ! Infographie par [Jen Looper](https://twitter.com/jenlooper) +> +> Les calculs de cette ligne doivent démontrer la pente de la ligne, qui dépend également de l'ordonnée à l'origine, ou de la position de `Y` lorsque `X = 0`. +> +> Vous pouvez observer la méthode de calcul de ces valeurs sur le site [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html). Consultez également [ce calculateur des moindres carrés](https://www.mathsisfun.com/data/least-squares-calculator.html) pour voir comment les valeurs influencent la ligne. + +## Corrélation + +Un autre terme à comprendre est le **coefficient de corrélation** entre les variables X et Y données. À l'aide d'un nuage de points, vous pouvez rapidement visualiser ce coefficient. Un graphique avec des points de données alignés de manière nette présente une forte corrélation, tandis qu'un graphique avec des points dispersés partout entre X et Y présente une faible corrélation. + +Un bon modèle de régression linéaire sera celui qui a un coefficient de corrélation élevé (proche de 1 plutôt que de 0) en utilisant la méthode des moindres carrés avec une ligne de régression. + +✅ Exécutez le notebook accompagnant cette leçon et examinez le nuage de points associant le mois au prix. Les données associant le mois au prix des ventes de citrouilles semblent-elles avoir une corrélation élevée ou faible, selon votre interprétation visuelle du nuage de points ? Cela change-t-il si vous utilisez une mesure plus fine comme le *jour de l'année* (c'est-à-dire le nombre de jours depuis le début de l'année) ? + +Dans le code ci-dessous, nous supposerons que nous avons nettoyé les données et obtenu un DataFrame appelé `new_pumpkins`, similaire à ce qui suit : + +ID | Mois | JourDeLAnnee | Variété | Ville | Emballage | Prix Bas | Prix Haut | Prix +---|------|--------------|---------|-------|-----------|----------|-----------|------ +70 | 9 | 267 | TYPE TARTE | BALTIMORE | cartons de 1 1/9 boisseau | 15.0 | 15.0 | 13.636364 +71 | 9 | 267 | TYPE TARTE | BALTIMORE | cartons de 1 1/9 boisseau | 18.0 | 18.0 | 16.363636 +72 | 10 | 274 | TYPE TARTE | BALTIMORE | cartons de 1 1/9 boisseau | 18.0 | 18.0 | 16.363636 +73 | 10 | 274 | TYPE TARTE | BALTIMORE | cartons de 1 1/9 boisseau | 17.0 | 17.0 | 15.454545 +74 | 10 | 281 | TYPE TARTE | BALTIMORE | cartons de 1 1/9 boisseau | 15.0 | 15.0 | 13.636364 + +> Le code pour nettoyer les données est disponible dans [`notebook.ipynb`](notebook.ipynb). Nous avons effectué les mêmes étapes de nettoyage que dans la leçon précédente et avons calculé la colonne `JourDeLAnnee` à l'aide de l'expression suivante : + +```python +day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days) +``` + +Maintenant que vous comprenez les mathématiques derrière la régression linéaire, créons un modèle de régression pour voir si nous pouvons prédire quel emballage de citrouilles aura les meilleurs prix. Une personne achetant des citrouilles pour un champ de citrouilles pour les fêtes pourrait vouloir cette information pour optimiser ses achats. + +## Recherche de corrélation + +[![ML pour débutants - Recherche de corrélation : la clé de la régression linéaire](https://img.youtube.com/vi/uoRq-lW2eQo/0.jpg)](https://youtu.be/uoRq-lW2eQo "ML pour débutants - Recherche de corrélation : la clé de la régression linéaire") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo sur la corrélation. + +Dans la leçon précédente, vous avez probablement vu que le prix moyen pour différents mois ressemble à ceci : + +Prix moyen par mois + +Cela suggère qu'il devrait y avoir une certaine corrélation, et nous pouvons essayer d'entraîner un modèle de régression linéaire pour prédire la relation entre `Mois` et `Prix`, ou entre `JourDeLAnnee` et `Prix`. Voici le nuage de points montrant cette dernière relation : + +Nuage de points du prix vs jour de l'année + +Voyons s'il existe une corrélation à l'aide de la fonction `corr` : + +```python +print(new_pumpkins['Month'].corr(new_pumpkins['Price'])) +print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price'])) +``` + +Il semble que la corrélation soit assez faible, -0,15 pour `Mois` et -0,17 pour `JourDeLAnnee`, mais il pourrait y avoir une autre relation importante. Il semble qu'il existe différents groupes de prix correspondant à différentes variétés de citrouilles. Pour confirmer cette hypothèse, traçons chaque catégorie de citrouilles avec une couleur différente. En passant un paramètre `ax` à la fonction de tracé `scatter`, nous pouvons tracer tous les points sur le même graphique : + +```python +ax=None +colors = ['red','blue','green','yellow'] +for i,var in enumerate(new_pumpkins['Variety'].unique()): + df = new_pumpkins[new_pumpkins['Variety']==var] + ax = df.plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var) +``` + +Nuage de points du prix vs jour de l'année + +Notre enquête suggère que la variété a plus d'effet sur le prix global que la date de vente réelle. Nous pouvons le voir avec un graphique en barres : + +```python +new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar') +``` + +Graphique en barres du prix vs variété + +Concentrons-nous pour le moment uniquement sur une variété de citrouilles, le "type tarte", et voyons quel effet la date a sur le prix : + +```python +pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE'] +pie_pumpkins.plot.scatter('DayOfYear','Price') +``` +Nuage de points du prix vs jour de l'année + +Si nous calculons maintenant la corrélation entre `Prix` et `JourDeLAnnee` à l'aide de la fonction `corr`, nous obtiendrons quelque chose comme `-0,27` - ce qui signifie qu'entraîner un modèle prédictif a du sens. + +> Avant d'entraîner un modèle de régression linéaire, il est important de s'assurer que nos données sont propres. La régression linéaire ne fonctionne pas bien avec des valeurs manquantes, il est donc logique de se débarrasser de toutes les cellules vides : + +```python +pie_pumpkins.dropna(inplace=True) +pie_pumpkins.info() +``` + +Une autre approche consisterait à remplir ces valeurs vides avec les valeurs moyennes de la colonne correspondante. + +## Régression linéaire simple + +[![ML pour débutants - Régression linéaire et polynomiale avec Scikit-learn](https://img.youtube.com/vi/e4c_UP2fSjg/0.jpg)](https://youtu.be/e4c_UP2fSjg "ML pour débutants - Régression linéaire et polynomiale avec Scikit-learn") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo sur la régression linéaire et polynomiale. + +Pour entraîner notre modèle de régression linéaire, nous utiliserons la bibliothèque **Scikit-learn**. + +```python +from sklearn.linear_model import LinearRegression +from sklearn.metrics import mean_squared_error +from sklearn.model_selection import train_test_split +``` + +Nous commençons par séparer les valeurs d'entrée (caractéristiques) et la sortie attendue (étiquette) en tableaux numpy distincts : + +```python +X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1) +y = pie_pumpkins['Price'] +``` + +> Notez que nous avons dû effectuer un `reshape` sur les données d'entrée pour que le package de régression linéaire les comprenne correctement. La régression linéaire attend un tableau 2D en entrée, où chaque ligne du tableau correspond à un vecteur de caractéristiques d'entrée. Dans notre cas, comme nous n'avons qu'une seule entrée, nous avons besoin d'un tableau de forme N×1, où N est la taille du jeu de données. + +Ensuite, nous devons diviser les données en ensembles d'entraînement et de test, afin de pouvoir valider notre modèle après l'entraînement : + +```python +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) +``` + +Enfin, entraîner le modèle de régression linéaire réel ne prend que deux lignes de code. Nous définissons l'objet `LinearRegression` et l'ajustons à nos données à l'aide de la méthode `fit` : + +```python +lin_reg = LinearRegression() +lin_reg.fit(X_train,y_train) +``` + +L'objet `LinearRegression` après l'ajustement contient tous les coefficients de la régression, accessibles via la propriété `.coef_`. Dans notre cas, il n'y a qu'un seul coefficient, qui devrait être d'environ `-0,017`. Cela signifie que les prix semblent légèrement baisser avec le temps, mais pas beaucoup, environ 2 centimes par jour. Nous pouvons également accéder au point d'intersection de la régression avec l'axe Y à l'aide de `lin_reg.intercept_` - il sera d'environ `21` dans notre cas, indiquant le prix au début de l'année. + +Pour voir à quel point notre modèle est précis, nous pouvons prédire les prix sur un ensemble de test, puis mesurer à quel point nos prédictions sont proches des valeurs attendues. Cela peut être fait à l'aide de la métrique de l'erreur quadratique moyenne (MSE), qui est la moyenne de toutes les différences au carré entre les valeurs attendues et prédites. + +```python +pred = lin_reg.predict(X_test) + +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') +``` +Notre erreur semble se situer autour de 2 points, soit environ 17 %. Pas très bon. Un autre indicateur de la qualité du modèle est le **coefficient de détermination**, que l'on peut obtenir comme suit : + +```python +score = lin_reg.score(X_train,y_train) +print('Model determination: ', score) +``` +Si la valeur est 0, cela signifie que le modèle ne prend pas en compte les données d'entrée et agit comme le *pire prédicteur linéaire*, qui est simplement une moyenne des résultats. Une valeur de 1 signifie que nous pouvons prédire parfaitement tous les résultats attendus. Dans notre cas, le coefficient est d'environ 0,06, ce qui est assez faible. + +Nous pouvons également tracer les données de test avec la ligne de régression pour mieux comprendre comment la régression fonctionne dans notre cas : + +```python +plt.scatter(X_test,y_test) +plt.plot(X_test,pred) +``` + +Régression linéaire + +## Régression polynomiale + +Un autre type de régression linéaire est la régression polynomiale. Bien qu'il existe parfois une relation linéaire entre les variables - plus le volume de la citrouille est grand, plus le prix est élevé - ces relations ne peuvent parfois pas être représentées par un plan ou une ligne droite. + +✅ Voici [quelques exemples supplémentaires](https://online.stat.psu.edu/stat501/lesson/9/9.8) de données qui pourraient utiliser la régression polynomiale. + +Regardez à nouveau la relation entre la date et le prix. Ce nuage de points semble-t-il devoir nécessairement être analysé par une ligne droite ? Les prix ne peuvent-ils pas fluctuer ? Dans ce cas, vous pouvez essayer la régression polynomiale. + +✅ Les polynômes sont des expressions mathématiques qui peuvent contenir une ou plusieurs variables et coefficients. + +La régression polynomiale crée une courbe pour mieux ajuster les données non linéaires. Dans notre cas, si nous incluons une variable `DayOfYear` au carré dans les données d'entrée, nous devrions pouvoir ajuster nos données avec une courbe parabolique, qui aura un minimum à un certain moment de l'année. + +Scikit-learn inclut une API [pipeline](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html?highlight=pipeline#sklearn.pipeline.make_pipeline) utile pour combiner différentes étapes de traitement des données. Un **pipeline** est une chaîne d'**estimateurs**. Dans notre cas, nous allons créer un pipeline qui ajoute d'abord des caractéristiques polynomiales à notre modèle, puis entraîne la régression : + +```python +from sklearn.preprocessing import PolynomialFeatures +from sklearn.pipeline import make_pipeline + +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) + +pipeline.fit(X_train,y_train) +``` + +Utiliser `PolynomialFeatures(2)` signifie que nous inclurons tous les polynômes de degré 2 des données d'entrée. Dans notre cas, cela signifie simplement `DayOfYear`2, mais avec deux variables d'entrée X et Y, cela ajoutera X2, XY et Y2. Nous pouvons également utiliser des polynômes de degré supérieur si nous le souhaitons. + +Les pipelines peuvent être utilisés de la même manière que l'objet `LinearRegression` original, c'est-à-dire que nous pouvons `fit` le pipeline, puis utiliser `predict` pour obtenir les résultats de prédiction. Voici le graphique montrant les données de test et la courbe d'approximation : + +Régression polynomiale + +Avec la régression polynomiale, nous pouvons obtenir un MSE légèrement inférieur et un coefficient de détermination plus élevé, mais pas de manière significative. Nous devons prendre en compte d'autres caractéristiques ! + +> Vous pouvez voir que les prix minimaux des citrouilles sont observés autour d'Halloween. Comment expliquez-vous cela ? + +🎃 Félicitations, vous venez de créer un modèle qui peut aider à prédire le prix des citrouilles pour tartes. Vous pouvez probablement répéter la même procédure pour tous les types de citrouilles, mais cela serait fastidieux. Apprenons maintenant à prendre en compte la variété des citrouilles dans notre modèle ! + +## Caractéristiques catégorielles + +Dans un monde idéal, nous voulons pouvoir prédire les prix pour différentes variétés de citrouilles en utilisant le même modèle. Cependant, la colonne `Variety` est quelque peu différente des colonnes comme `Month`, car elle contient des valeurs non numériques. Ces colonnes sont appelées **catégorielles**. + +[![ML pour débutants - Prédictions avec caractéristiques catégorielles et régression linéaire](https://img.youtube.com/vi/DYGliioIAE0/0.jpg)](https://youtu.be/DYGliioIAE0 "ML pour débutants - Prédictions avec caractéristiques catégorielles et régression linéaire") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo sur l'utilisation des caractéristiques catégorielles. + +Voici comment le prix moyen dépend de la variété : + +Prix moyen par variété + +Pour prendre en compte la variété, nous devons d'abord la convertir en forme numérique, ou **encoder**. Il existe plusieurs façons de le faire : + +* Un simple **encodage numérique** construira un tableau des différentes variétés, puis remplacera le nom de la variété par un indice dans ce tableau. Ce n'est pas la meilleure idée pour la régression linéaire, car la régression linéaire prend la valeur numérique réelle de l'indice et l'ajoute au résultat, en la multipliant par un coefficient. Dans notre cas, la relation entre le numéro d'indice et le prix est clairement non linéaire, même si nous nous assurons que les indices sont ordonnés d'une manière spécifique. +* **L'encodage one-hot** remplacera la colonne `Variety` par 4 colonnes différentes, une pour chaque variété. Chaque colonne contiendra `1` si la ligne correspondante est d'une variété donnée, et `0` sinon. Cela signifie qu'il y aura quatre coefficients dans la régression linéaire, un pour chaque variété de citrouille, responsable du "prix de départ" (ou plutôt "prix supplémentaire") pour cette variété particulière. + +Le code ci-dessous montre comment nous pouvons encoder une variété en one-hot : + +```python +pd.get_dummies(new_pumpkins['Variety']) +``` + + ID | FAIRYTALE | MINIATURE | MIXED HEIRLOOM VARIETIES | PIE TYPE +----|-----------|-----------|--------------------------|---------- +70 | 0 | 0 | 0 | 1 +71 | 0 | 0 | 0 | 1 +... | ... | ... | ... | ... +1738 | 0 | 1 | 0 | 0 +1739 | 0 | 1 | 0 | 0 +1740 | 0 | 1 | 0 | 0 +1741 | 0 | 1 | 0 | 0 +1742 | 0 | 1 | 0 | 0 + +Pour entraîner une régression linéaire en utilisant la variété encodée en one-hot comme entrée, nous devons simplement initialiser correctement les données `X` et `y` : + +```python +X = pd.get_dummies(new_pumpkins['Variety']) +y = new_pumpkins['Price'] +``` + +Le reste du code est identique à celui que nous avons utilisé ci-dessus pour entraîner la régression linéaire. Si vous essayez, vous verrez que l'erreur quadratique moyenne est à peu près la même, mais nous obtenons un coefficient de détermination beaucoup plus élevé (~77 %). Pour obtenir des prédictions encore plus précises, nous pouvons prendre en compte davantage de caractéristiques catégorielles, ainsi que des caractéristiques numériques, comme `Month` ou `DayOfYear`. Pour obtenir un grand tableau de caractéristiques, nous pouvons utiliser `join` : + +```python +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] +``` + +Ici, nous prenons également en compte `City` et le type de `Package`, ce qui nous donne un MSE de 2,84 (10 %) et un coefficient de détermination de 0,94 ! + +## Tout rassembler + +Pour créer le meilleur modèle, nous pouvons utiliser les données combinées (catégorielles encodées en one-hot + numériques) de l'exemple ci-dessus avec la régression polynomiale. Voici le code complet pour votre commodité : + +```python +# set up training data +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] + +# make train-test split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + +# setup and train the pipeline +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) +pipeline.fit(X_train,y_train) + +# predict results for test data +pred = pipeline.predict(X_test) + +# calculate MSE and determination +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') + +score = pipeline.score(X_train,y_train) +print('Model determination: ', score) +``` + +Cela devrait nous donner le meilleur coefficient de détermination, presque 97 %, et un MSE=2,23 (~8 % d'erreur de prédiction). + +| Modèle | MSE | Détermination | +|--------|-----|---------------| +| `DayOfYear` Linéaire | 2,77 (17,2 %) | 0,07 | +| `DayOfYear` Polynomial | 2,73 (17,0 %) | 0,08 | +| `Variety` Linéaire | 5,24 (19,7 %) | 0,77 | +| Toutes les caractéristiques Linéaire | 2,84 (10,5 %) | 0,94 | +| Toutes les caractéristiques Polynomial | 2,23 (8,25 %) | 0,97 | + +🏆 Bien joué ! Vous avez créé quatre modèles de régression en une seule leçon et amélioré la qualité du modèle à 97 %. Dans la section finale sur la régression, vous apprendrez la régression logistique pour déterminer des catégories. + +--- +## 🚀Défi + +Testez plusieurs variables différentes dans ce notebook pour voir comment la corrélation correspond à la précision du modèle. + +## [Quiz post-lecture](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/) + +## Révision et auto-apprentissage + +Dans cette leçon, nous avons appris la régression linéaire. Il existe d'autres types importants de régression. Lisez sur les techniques Stepwise, Ridge, Lasso et Elasticnet. Un bon cours pour approfondir est le [cours de Stanford sur l'apprentissage statistique](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning). + +## Devoir + +[Construisez un modèle](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/2-Regression/3-Linear/assignment.md b/translations/fr/2-Regression/3-Linear/assignment.md new file mode 100644 index 000000000..9b9022531 --- /dev/null +++ b/translations/fr/2-Regression/3-Linear/assignment.md @@ -0,0 +1,25 @@ + +# Créer un modèle de régression + +## Instructions + +Dans cette leçon, vous avez appris à construire un modèle en utilisant à la fois la régression linéaire et la régression polynomiale. En utilisant ces connaissances, trouvez un jeu de données ou utilisez l'un des ensembles intégrés de Scikit-learn pour créer un nouveau modèle. Expliquez dans votre notebook pourquoi vous avez choisi la technique utilisée et démontrez la précision de votre modèle. Si celui-ci n'est pas précis, expliquez pourquoi. + +## Critères d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ------------------------------------------------------------ | -------------------------- | ------------------------------- | +| | présente un notebook complet avec une solution bien documentée | la solution est incomplète | la solution est erronée ou contient des bugs | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/2-Regression/3-Linear/notebook.ipynb b/translations/fr/2-Regression/3-Linear/notebook.ipynb new file mode 100644 index 000000000..4857302a0 --- /dev/null +++ b/translations/fr/2-Regression/3-Linear/notebook.ipynb @@ -0,0 +1,128 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Tarification des citrouilles\n", + "\n", + "Chargez les bibliothèques nécessaires et le jeu de données. Convertissez les données en un dataframe contenant un sous-ensemble des données :\n", + "\n", + "- Ne conserver que les citrouilles dont le prix est indiqué par boisseau\n", + "- Convertir la date en mois\n", + "- Calculer le prix comme une moyenne des prix haut et bas\n", + "- Convertir le prix pour refléter la tarification par quantité de boisseaux\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Un nuage de points de base nous rappelle que nous n'avons des données mensuelles que d'août à décembre. Nous avons probablement besoin de plus de données pour pouvoir tirer des conclusions de manière linéaire.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.scatter('Month','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "plt.scatter('DayOfYear','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "b032d371c75279373507f003439a577e", + "translation_date": "2025-09-04T01:01:34+00:00", + "source_file": "2-Regression/3-Linear/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fr/2-Regression/3-Linear/solution/Julia/README.md b/translations/fr/2-Regression/3-Linear/solution/Julia/README.md new file mode 100644 index 000000000..3d64b7f31 --- /dev/null +++ b/translations/fr/2-Regression/3-Linear/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb b/translations/fr/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb new file mode 100644 index 000000000..eda5592ee --- /dev/null +++ b/translations/fr/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb @@ -0,0 +1,1084 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_3-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "5015d65d61ba75a223bfc56c273aa174", + "translation_date": "2025-09-04T01:06:43+00:00", + "source_file": "2-Regression/3-Linear/solution/R/lesson_3-R.ipynb", + "language_code": "fr" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "EgQw8osnsUV-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Régression linéaire et polynomiale pour le prix des citrouilles - Leçon 3\n", + "

                      \n", + " \n", + "

                      Infographie par Dasani Madipalli
                      \n", + "\n", + "\n", + "#### Introduction\n", + "\n", + "Jusqu'à présent, vous avez exploré ce qu'est la régression avec des données d'exemple issues du jeu de données sur les prix des citrouilles que nous utiliserons tout au long de cette leçon. Vous l'avez également visualisée en utilisant `ggplot2`. 💪\n", + "\n", + "Vous êtes maintenant prêt à approfondir la régression pour l'apprentissage automatique. Dans cette leçon, vous allez en apprendre davantage sur deux types de régression : *la régression linéaire de base* et *la régression polynomiale*, ainsi que sur certaines notions mathématiques sous-jacentes à ces techniques.\n", + "\n", + "> Tout au long de ce programme, nous supposons une connaissance minimale des mathématiques et cherchons à les rendre accessibles aux étudiants venant d'autres domaines. Soyez attentif aux notes, 🧮 aux encadrés, aux diagrammes et à d'autres outils pédagogiques pour faciliter la compréhension.\n", + "\n", + "#### Préparation\n", + "\n", + "Pour rappel, vous chargez ces données afin de poser des questions à leur sujet.\n", + "\n", + "- Quel est le meilleur moment pour acheter des citrouilles ?\n", + "\n", + "- Quel prix puis-je attendre pour une caisse de citrouilles miniatures ?\n", + "\n", + "- Devrais-je les acheter dans des paniers d'un demi-boisseau ou dans des boîtes de 1 1/9 boisseau ? Continuons à explorer ces données.\n", + "\n", + "Dans la leçon précédente, vous avez créé un `tibble` (une réinvention moderne du tableau de données) et l'avez rempli avec une partie du jeu de données original, en standardisant les prix par boisseau. Cependant, en faisant cela, vous n'avez pu recueillir qu'environ 400 points de données et uniquement pour les mois d'automne. Peut-être pouvons-nous obtenir un peu plus de détails sur la nature des données en les nettoyant davantage ? Nous verrons... 🕵️‍♀️\n", + "\n", + "Pour cette tâche, nous aurons besoin des packages suivants :\n", + "\n", + "- `tidyverse` : Le [tidyverse](https://www.tidyverse.org/) est une [collection de packages R](https://www.tidyverse.org/packages) conçue pour rendre la science des données plus rapide, plus facile et plus amusante !\n", + "\n", + "- `tidymodels` : Le [framework tidymodels](https://www.tidymodels.org/) est une [collection de packages](https://www.tidymodels.org/packages/) pour la modélisation et l'apprentissage automatique.\n", + "\n", + "- `janitor` : Le [package janitor](https://github.com/sfirke/janitor) fournit de petits outils simples pour examiner et nettoyer des données désordonnées.\n", + "\n", + "- `corrplot` : Le [package corrplot](https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html) offre un outil visuel exploratoire sur les matrices de corrélation qui prend en charge le réordonnancement automatique des variables pour aider à détecter des motifs cachés entre les variables.\n", + "\n", + "Vous pouvez les installer avec la commande suivante :\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"corrplot\"))`\n", + "\n", + "Le script ci-dessous vérifie si vous avez les packages nécessaires pour compléter ce module et les installe pour vous s'ils sont manquants.\n" + ], + "metadata": { + "id": "WqQPS1OAsg3H" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, corrplot)" + ], + "outputs": [], + "metadata": { + "id": "tA4C2WN3skCf", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "c06cd805-5534-4edc-f72b-d0d1dab96ac0" + } + }, + { + "cell_type": "markdown", + "source": [ + "Nous allons ensuite charger ces formidables packages et les rendre disponibles dans notre session R actuelle. (Ceci est simplement une illustration, `pacman::p_load()` l'a déjà fait pour vous)\n", + "\n", + "## 1. Une ligne de régression linéaire\n", + "\n", + "Comme vous l'avez appris dans la Leçon 1, l'objectif d'un exercice de régression linéaire est de pouvoir tracer une *ligne* *de* *meilleur ajustement* pour :\n", + "\n", + "- **Montrer les relations entre les variables**. Illustrer la relation entre les variables.\n", + "\n", + "- **Faire des prédictions**. Réaliser des prédictions précises sur la position d'un nouveau point de données par rapport à cette ligne.\n", + "\n", + "Pour tracer ce type de ligne, nous utilisons une technique statistique appelée **Régression des Moindres Carrés**. Le terme `moindres carrés` signifie que tous les points de données entourant la ligne de régression sont élevés au carré, puis additionnés. Idéalement, cette somme finale est aussi petite que possible, car nous voulons un faible nombre d'erreurs, ou `moindres carrés`. Ainsi, la ligne de meilleur ajustement est celle qui nous donne la valeur la plus basse pour la somme des erreurs au carré - d'où le nom *régression des moindres carrés*.\n", + "\n", + "Nous procédons ainsi car nous souhaitons modéliser une ligne ayant la plus faible distance cumulative par rapport à tous nos points de données. Nous élevons également les termes au carré avant de les additionner, car nous nous intéressons à leur magnitude plutôt qu'à leur direction.\n", + "\n", + "> **🧮 Montrez-moi les calculs**\n", + ">\n", + "> Cette ligne, appelée *ligne de meilleur ajustement*, peut être exprimée par [une équation](https://fr.wikipedia.org/wiki/R%C3%A9gression_lin%C3%A9aire_simple) :\n", + ">\n", + "> Y = a + bX\n", + ">\n", + "> `X` est la '`variable explicative` ou `prédicteur`'. `Y` est la '`variable dépendante` ou `résultat`'. La pente de la ligne est `b` et `a` est l'ordonnée à l'origine, qui correspond à la valeur de `Y` lorsque `X = 0`.\n", + ">\n", + "\n", + "> ![](../../../../../../2-Regression/3-Linear/solution/images/slope.png \"pente = $y/x$\")\n", + " Infographie par Jen Looper\n", + ">\n", + "> Tout d'abord, calculez la pente `b`.\n", + ">\n", + "> En d'autres termes, et en se référant à la question initiale sur les données des citrouilles : \"prédire le prix d'une citrouille par boisseau selon le mois\", `X` ferait référence au prix et `Y` au mois de vente.\n", + ">\n", + "> ![](../../../../../../translated_images/calculation.989aa7822020d9d0ba9fc781f1ab5192f3421be86ebb88026528aef33c37b0d8.fr.png)\n", + " Infographie par Jen Looper\n", + "> \n", + "> Calculez la valeur de Y. Si vous payez environ 4 $, cela doit être en avril !\n", + ">\n", + "> Les calculs qui déterminent la ligne doivent démontrer la pente de la ligne, qui dépend également de l'ordonnée à l'origine, ou de la position de `Y` lorsque `X = 0`.\n", + ">\n", + "> Vous pouvez observer la méthode de calcul de ces valeurs sur le site [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html). Consultez également [ce calculateur des moindres carrés](https://www.mathsisfun.com/data/least-squares-calculator.html) pour voir comment les valeurs des nombres influencent la ligne.\n", + "\n", + "Pas si effrayant, n'est-ce pas ? 🤓\n", + "\n", + "#### Corrélation\n", + "\n", + "Un autre terme à comprendre est le **Coefficient de Corrélation** entre les variables X et Y données. À l'aide d'un nuage de points, vous pouvez rapidement visualiser ce coefficient. Un graphique avec des points de données alignés de manière nette présente une forte corrélation, tandis qu'un graphique avec des points dispersés partout entre X et Y présente une faible corrélation.\n", + "\n", + "Un bon modèle de régression linéaire sera celui qui a un Coefficient de Corrélation élevé (proche de 1 plutôt que de 0) en utilisant la méthode de Régression des Moindres Carrés avec une ligne de régression.\n" + ], + "metadata": { + "id": "cdX5FRpvsoP5" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **2. Une danse avec les données : créer un tableau de données pour la modélisation**\n", + "\n", + "

                      \n", + " \n", + "

                      Illustration par @allison_horst
                      \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "WdUKXk7Bs8-V" + } + }, + { + "cell_type": "markdown", + "source": [ + "Chargez les bibliothèques nécessaires et le jeu de données. Convertissez les données en un tableau contenant un sous-ensemble des données :\n", + "\n", + "- Ne sélectionnez que les citrouilles dont le prix est indiqué par boisseau\n", + "\n", + "- Convertissez la date en mois\n", + "\n", + "- Calculez le prix comme une moyenne des prix élevés et bas\n", + "\n", + "- Ajustez le prix pour refléter la tarification par quantité de boisseaux\n", + "\n", + "> Nous avons couvert ces étapes dans la [leçon précédente](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/2-Data/solution/lesson_2-R.ipynb).\n" + ], + "metadata": { + "id": "fMCtu2G2s-p8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "library(lubridate)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "ryMVZEEPtERn" + } + }, + { + "cell_type": "markdown", + "source": [ + "Dans l'esprit de l'aventure pure, explorons le [`package janitor`](../../../../../../2-Regression/3-Linear/solution/R/github.com/sfirke/janitor) qui offre des fonctions simples pour examiner et nettoyer des données désordonnées. Par exemple, examinons les noms de colonnes de nos données :\n" + ], + "metadata": { + "id": "xcNxM70EtJjb" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "5XtpaIigtPfW" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤔 Nous pouvons faire mieux. Transformons ces noms de colonnes en `friendR` en les convertissant au format [snake_case](https://en.wikipedia.org/wiki/Snake_case) à l'aide de `janitor::clean_names`. Pour en savoir plus sur cette fonction : `?clean_names`\n" + ], + "metadata": { + "id": "IbIqrMINtSHe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Clean names to the snake_case convention\n", + "pumpkins <- pumpkins %>% \n", + " clean_names(case = \"snake\")\n", + "\n", + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "a2uYvclYtWvX" + } + }, + { + "cell_type": "markdown", + "source": [ + "Beaucoup de tidyR 🧹 ! Maintenant, une danse avec les données en utilisant `dplyr` comme dans la leçon précédente ! 💃\n" + ], + "metadata": { + "id": "HfhnuzDDtaDd" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(variety, city_name, package, low_price, high_price, date)\n", + "\n", + "\n", + "\n", + "# Extract the month from the dates to a new column\n", + "pumpkins <- pumpkins %>%\n", + " mutate(date = mdy(date),\n", + " month = month(date)) %>% \n", + " select(-date)\n", + "\n", + "\n", + "\n", + "# Create a new column for average Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(price = (low_price + high_price)/2)\n", + "\n", + "\n", + "# Retain only pumpkins with the string \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(string = package, pattern = \"bushel\"))\n", + "\n", + "\n", + "# Normalize the pricing so that you show the pricing per bushel, not per 1 1/9 or 1/2 bushel\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(price = case_when(\n", + " str_detect(package, \"1 1/9\") ~ price/(1.1),\n", + " str_detect(package, \"1/2\") ~ price*2,\n", + " TRUE ~ price))\n", + "\n", + "# Relocate column positions\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(month, .before = variety)\n", + "\n", + "\n", + "# Display the first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "X0wU3gQvtd9f" + } + }, + { + "cell_type": "markdown", + "source": [ + "Bon travail ! 👌 Vous avez maintenant un ensemble de données propre et bien organisé sur lequel vous pouvez construire votre nouveau modèle de régression !\n", + "\n", + "Que diriez-vous d'un nuage de points ?\n" + ], + "metadata": { + "id": "UpaIwaxqth82" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set theme\n", + "theme_set(theme_light())\n", + "\n", + "# Make a scatter plot of month and price\n", + "new_pumpkins %>% \n", + " ggplot(mapping = aes(x = month, y = price)) +\n", + " geom_point(size = 1.6)\n" + ], + "outputs": [], + "metadata": { + "id": "DXgU-j37tl5K" + } + }, + { + "cell_type": "markdown", + "source": [ + "Un nuage de points nous rappelle que nous n'avons des données mensuelles que d'août à décembre. Nous aurons probablement besoin de plus de données pour pouvoir tirer des conclusions de manière linéaire.\n", + "\n", + "Rejetons un coup d'œil à nos données de modélisation :\n" + ], + "metadata": { + "id": "Ve64wVbwtobI" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Display first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "HFQX2ng1tuSJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "Que faire si nous voulions prédire le `prix` d'une citrouille en fonction des colonnes `ville` ou `emballage`, qui sont de type caractère ? Ou encore plus simplement, comment pourrions-nous trouver la corrélation (qui nécessite que ses deux entrées soient numériques) entre, par exemple, `emballage` et `prix` ? 🤷🤷\n", + "\n", + "Les modèles d'apprentissage automatique fonctionnent mieux avec des caractéristiques numériques plutôt que des valeurs textuelles, il est donc généralement nécessaire de convertir les caractéristiques catégorielles en représentations numériques.\n", + "\n", + "Cela signifie que nous devons trouver un moyen de reformater nos prédicteurs pour les rendre plus faciles à utiliser efficacement par un modèle, un processus connu sous le nom de `ingénierie des caractéristiques`.\n" + ], + "metadata": { + "id": "7hsHoxsStyjJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Prétraitement des données pour la modélisation avec recipes 👩‍🍳👨‍🍳\n", + "\n", + "Les activités qui reformattent les valeurs des prédicteurs pour les rendre plus faciles à utiliser efficacement par un modèle sont appelées `ingénierie des caractéristiques`.\n", + "\n", + "Différents modèles ont des exigences de prétraitement différentes. Par exemple, les moindres carrés nécessitent `l'encodage des variables catégorielles` telles que le mois, la variété et city_name. Cela consiste simplement à `traduire` une colonne avec des `valeurs catégorielles` en une ou plusieurs `colonnes numériques` qui remplacent la colonne d'origine.\n", + "\n", + "Par exemple, supposons que vos données incluent la caractéristique catégorielle suivante :\n", + "\n", + "| ville |\n", + "|:--------:|\n", + "| Denver |\n", + "| Nairobi |\n", + "| Tokyo |\n", + "\n", + "Vous pouvez appliquer un *encodage ordinal* pour substituer une valeur entière unique à chaque catégorie, comme ceci :\n", + "\n", + "| ville |\n", + "|:-----:|\n", + "| 0 |\n", + "| 1 |\n", + "| 2 |\n", + "\n", + "Et c'est ce que nous allons faire avec nos données !\n", + "\n", + "Dans cette section, nous allons explorer un autre package incroyable de Tidymodels : [recipes](https://tidymodels.github.io/recipes/) - conçu pour vous aider à prétraiter vos données **avant** d'entraîner votre modèle. Au cœur de ce package, une recette est un objet qui définit les étapes à appliquer à un ensemble de données afin de le préparer à la modélisation.\n", + "\n", + "Maintenant, créons une recette qui prépare nos données à la modélisation en substituant un entier unique à toutes les observations dans les colonnes des prédicteurs :\n" + ], + "metadata": { + "id": "AD5kQbcvt3Xl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\n", + "pumpkins_recipe <- recipe(price ~ ., data = new_pumpkins) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "# Print out the recipe\n", + "pumpkins_recipe" + ], + "outputs": [], + "metadata": { + "id": "BNaFKXfRt9TU" + } + }, + { + "cell_type": "markdown", + "source": [ + "Super ! 👏 Nous venons de créer notre première recette qui spécifie un résultat (prix) et ses prédicteurs correspondants, et qui encode toutes les colonnes prédicteurs en un ensemble d'entiers 🙌 ! Décomposons cela rapidement :\n", + "\n", + "- L'appel à `recipe()` avec une formule indique à la recette les *rôles* des variables en utilisant les données `new_pumpkins` comme référence. Par exemple, la colonne `price` a été assignée au rôle de `outcome`, tandis que le reste des colonnes ont été assignées au rôle de `predictor`.\n", + "\n", + "- `step_integer(all_predictors(), zero_based = TRUE)` spécifie que tous les prédicteurs doivent être convertis en un ensemble d'entiers, avec une numérotation commençant à 0.\n", + "\n", + "Nous sommes sûrs que vous vous posez des questions comme : \"C'est tellement génial !! Mais que faire si je voulais vérifier que les recettes font exactement ce que je m'attends à ce qu'elles fassent ? 🤔\"\n", + "\n", + "C'est une excellente réflexion ! Vous voyez, une fois votre recette définie, vous pouvez estimer les paramètres nécessaires pour prétraiter les données, puis extraire les données traitées. Vous n'avez généralement pas besoin de faire cela lorsque vous utilisez Tidymodels (nous verrons la convention normale dans un instant -> `workflows`), mais cela peut être utile si vous voulez effectuer une sorte de vérification pour confirmer que les recettes fonctionnent comme prévu.\n", + "\n", + "Pour cela, vous aurez besoin de deux autres verbes : `prep()` et `bake()`. Et comme toujours, nos petits amis R par [`Allison Horst`](https://github.com/allisonhorst/stats-illustrations) vous aident à mieux comprendre cela !\n", + "\n", + "

                      \n", + " \n", + "

                      Illustration par @allison_horst
                      \n" + ], + "metadata": { + "id": "KEiO0v7kuC9O" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`prep()`](https://recipes.tidymodels.org/reference/prep.html) : estime les paramètres nécessaires à partir d'un ensemble d'entraînement qui peuvent ensuite être appliqués à d'autres ensembles de données. Par exemple, pour une colonne prédictive donnée, quelle observation sera assignée à l'entier 0, 1, 2, etc.\n", + "\n", + "[`bake()`](https://recipes.tidymodels.org/reference/bake.html) : prend une recette préparée et applique les opérations à n'importe quel ensemble de données.\n", + "\n", + "Cela dit, préparons et appliquons nos recettes pour vraiment confirmer qu'en coulisses, les colonnes prédictives seront d'abord encodées avant qu'un modèle ne soit ajusté.\n" + ], + "metadata": { + "id": "Q1xtzebuuTCP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep the recipe\n", + "pumpkins_prep <- prep(pumpkins_recipe)\n", + "\n", + "# Bake the recipe to extract a preprocessed new_pumpkins data\n", + "baked_pumpkins <- bake(pumpkins_prep, new_data = NULL)\n", + "\n", + "# Print out the baked data set\n", + "baked_pumpkins %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "FGBbJbP_uUUn" + } + }, + { + "cell_type": "markdown", + "source": [ + "Youpi ! 🥳 Les données traitées `baked_pumpkins` ont tous leurs prédicteurs encodés, confirmant que les étapes de prétraitement définies comme notre recette fonctionnent comme prévu. Cela les rend plus difficiles à lire pour vous, mais beaucoup plus compréhensibles pour Tidymodels ! Prenez un moment pour découvrir quelle observation a été associée à un entier correspondant.\n", + "\n", + "Il est également important de mentionner que `baked_pumpkins` est un tableau de données sur lequel nous pouvons effectuer des calculs.\n", + "\n", + "Par exemple, essayons de trouver une bonne corrélation entre deux points de vos données afin de potentiellement construire un bon modèle prédictif. Nous utiliserons la fonction `cor()` pour cela. Tapez `?cor()` pour en savoir plus sur cette fonction.\n" + ], + "metadata": { + "id": "1dvP0LBUueAW" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the correlation between the city_name and the price\n", + "cor(baked_pumpkins$city_name, baked_pumpkins$price)\n", + "\n", + "# Find the correlation between the package and the price\n", + "cor(baked_pumpkins$package, baked_pumpkins$price)\n" + ], + "outputs": [], + "metadata": { + "id": "3bQzXCjFuiSV" + } + }, + { + "cell_type": "markdown", + "source": [ + "Il s'avère qu'il n'y a qu'une faible corrélation entre la Ville et le Prix. Cependant, il existe une meilleure corrélation entre le Colis et son Prix. Cela a du sens, n'est-ce pas ? En général, plus la boîte de produits est grande, plus le prix est élevé.\n", + "\n", + "Pendant qu'on y est, essayons également de visualiser une matrice de corrélation de toutes les colonnes en utilisant le package `corrplot`.\n" + ], + "metadata": { + "id": "BToPWbgjuoZw" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the corrplot package\n", + "library(corrplot)\n", + "\n", + "# Obtain correlation matrix\n", + "corr_mat <- cor(baked_pumpkins %>% \n", + " # Drop columns that are not really informative\n", + " select(-c(low_price, high_price)))\n", + "\n", + "# Make a correlation plot between the variables\n", + "corrplot(corr_mat, method = \"shade\", shade.col = NA, tl.col = \"black\", tl.srt = 45, addCoef.col = \"black\", cl.pos = \"n\", order = \"original\")" + ], + "outputs": [], + "metadata": { + "id": "ZwAL3ksmutVR" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 Bien mieux.\n", + "\n", + "Une bonne question à poser maintenant à propos de ces données serait : '`Quel prix puis-je attendre d'un lot de citrouilles donné ?`' Allons-y !\n", + "\n", + "> Note : Lorsque vous **`bake()`** la recette préparée **`pumpkins_prep`** avec **`new_data = NULL`**, vous extrayez les données d'entraînement traitées (c'est-à-dire encodées). Si vous aviez un autre ensemble de données, par exemple un ensemble de test, et que vous souhaitiez voir comment une recette le prétraiterait, vous pourriez simplement cuire **`pumpkins_prep`** avec **`new_data = test_set`**.\n", + "\n", + "## 4. Construire un modèle de régression linéaire\n", + "\n", + "

                      \n", + " \n", + "

                      Infographie par Dasani Madipalli
                      \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "YqXjLuWavNxW" + } + }, + { + "cell_type": "markdown", + "source": [ + "Maintenant que nous avons créé une recette et confirmé que les données seront prétraitées correctement, construisons un modèle de régression pour répondre à la question : `Quel prix puis-je attendre d'un paquet de citrouilles donné ?`\n", + "\n", + "#### Entraîner un modèle de régression linéaire en utilisant l'ensemble d'entraînement\n", + "\n", + "Comme vous l'avez probablement déjà compris, la colonne *price* est la variable `outcome`, tandis que la colonne *package* est la variable `predictor`.\n", + "\n", + "Pour ce faire, nous allons d'abord diviser les données de manière à ce que 80 % soient utilisées pour l'entraînement et 20 % pour le test, puis définir une recette qui encodera la colonne prédictive en un ensemble d'entiers, et enfin construire une spécification de modèle. Nous ne préparerons ni ne ferons cuire notre recette, car nous savons déjà qu'elle prétraitera les données comme prévu.\n" + ], + "metadata": { + "id": "Pq0bSzCevW-h" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\n", + "# Split the data into training and test sets\n", + "pumpkins_split <- new_pumpkins %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "\n", + "# Extract training and test data\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "\n", + "\n", + "# Create a recipe for preprocessing the data\n", + "lm_pumpkins_recipe <- recipe(price ~ package, data = pumpkins_train) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "\n", + "# Create a linear model specification\n", + "lm_spec <- linear_reg() %>% \n", + " set_engine(\"lm\") %>% \n", + " set_mode(\"regression\")" + ], + "outputs": [], + "metadata": { + "id": "CyoEh_wuvcLv" + } + }, + { + "cell_type": "markdown", + "source": [ + "Bon travail ! Maintenant que nous avons une recette et une spécification de modèle, nous devons trouver un moyen de les regrouper dans un objet qui prétraitera d'abord les données (prep+bake en coulisses), ajustera le modèle sur les données prétraitées et permettra également des activités de post-traitement potentielles. De quoi vous rassurer, non ? 🤩\n", + "\n", + "Dans Tidymodels, cet objet pratique s'appelle un [`workflow`](https://workflows.tidymodels.org/) et regroupe commodément vos composants de modélisation ! C'est ce que nous appellerions des *pipelines* en *Python*.\n", + "\n", + "Alors, regroupons tout dans un workflow ! 📦\n" + ], + "metadata": { + "id": "G3zF_3DqviFJ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Hold modelling components in a workflow\n", + "lm_wf <- workflow() %>% \n", + " add_recipe(lm_pumpkins_recipe) %>% \n", + " add_model(lm_spec)\n", + "\n", + "# Print out the workflow\n", + "lm_wf" + ], + "outputs": [], + "metadata": { + "id": "T3olroU3v-WX" + } + }, + { + "cell_type": "markdown", + "source": [ + "👌 De plus, un workflow peut être ajusté/entraîné de manière très similaire à un modèle.\n" + ], + "metadata": { + "id": "zd1A5tgOwEPX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Train the model\n", + "lm_wf_fit <- lm_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the model coefficients learned \n", + "lm_wf_fit" + ], + "outputs": [], + "metadata": { + "id": "NhJagFumwFHf" + } + }, + { + "cell_type": "markdown", + "source": [ + "À partir des résultats du modèle, nous pouvons observer les coefficients appris lors de l'entraînement. Ils représentent les coefficients de la droite de meilleure ajustement qui minimise l'erreur globale entre les variables réelles et prédites.\n", + "\n", + "#### Évaluer les performances du modèle avec le jeu de test\n", + "\n", + "Il est temps de voir comment le modèle s'en est sorti 📏 ! Comment procéder ?\n", + "\n", + "Maintenant que nous avons entraîné le modèle, nous pouvons l'utiliser pour faire des prédictions sur le `test_set` en utilisant `parsnip::predict()`. Ensuite, nous pouvons comparer ces prédictions aux valeurs réelles des étiquettes pour évaluer à quel point le modèle fonctionne bien (ou pas !).\n", + "\n", + "Commençons par faire des prédictions pour le jeu de test, puis associons les colonnes au jeu de test.\n" + ], + "metadata": { + "id": "_4QkGtBTwItF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\n", + "predictions <- lm_wf_fit %>% \n", + " predict(new_data = pumpkins_test)\n", + "\n", + "\n", + "# Bind predictions to the test set\n", + "lm_results <- pumpkins_test %>% \n", + " select(c(package, price)) %>% \n", + " bind_cols(predictions)\n", + "\n", + "\n", + "# Print the first ten rows of the tibble\n", + "lm_results %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "UFZzTG0gwTs9" + } + }, + { + "cell_type": "markdown", + "source": [ + "Oui, vous venez de former un modèle et de l'utiliser pour faire des prédictions ! 🔮 Est-il performant ? Évaluons les résultats du modèle !\n", + "\n", + "Dans Tidymodels, nous faisons cela en utilisant `yardstick::metrics()` ! Pour la régression linéaire, concentrons-nous sur les métriques suivantes :\n", + "\n", + "- `Root Mean Square Error (RMSE)` : La racine carrée de la [MSE](https://en.wikipedia.org/wiki/Mean_squared_error). Cela donne une métrique absolue dans la même unité que la variable cible (dans ce cas, le prix d'une citrouille). Plus la valeur est petite, meilleur est le modèle (de manière simpliste, cela représente le prix moyen par lequel les prédictions sont erronées !).\n", + "\n", + "- `Coefficient of Determination (souvent appelé R-squared ou R2)` : Une métrique relative où une valeur plus élevée indique un meilleur ajustement du modèle. Essentiellement, cette métrique représente la proportion de la variance entre les valeurs prédites et réelles que le modèle est capable d'expliquer.\n" + ], + "metadata": { + "id": "0A5MjzM7wW9M" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Evaluate performance of linear regression\n", + "metrics(data = lm_results,\n", + " truth = price,\n", + " estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "reJ0UIhQwcEH" + } + }, + { + "cell_type": "markdown", + "source": [ + "Là va la performance du modèle. Voyons si nous pouvons obtenir une meilleure indication en visualisant un nuage de points du package et du prix, puis en utilisant les prédictions pour superposer une ligne de tendance.\n", + "\n", + "Cela signifie que nous devrons préparer et transformer le jeu de test afin de coder la colonne package, puis l'associer aux prédictions faites par notre modèle.\n" + ], + "metadata": { + "id": "fdgjzjkBwfWt" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Encode package column\n", + "package_encode <- lm_pumpkins_recipe %>% \n", + " prep() %>% \n", + " bake(new_data = pumpkins_test) %>% \n", + " select(package)\n", + "\n", + "\n", + "# Bind encoded package column to the results\n", + "lm_results <- lm_results %>% \n", + " bind_cols(package_encode %>% \n", + " rename(package_integer = package)) %>% \n", + " relocate(package_integer, .after = package)\n", + "\n", + "\n", + "# Print new results data frame\n", + "lm_results %>% \n", + " slice_head(n = 5)\n", + "\n", + "\n", + "# Make a scatter plot\n", + "lm_results %>% \n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\n", + " geom_point(size = 1.6) +\n", + " # Overlay a line of best fit\n", + " geom_line(aes(y = .pred), color = \"orange\", size = 1.2) +\n", + " xlab(\"package\")\n", + " \n" + ], + "outputs": [], + "metadata": { + "id": "R0nw719lwkHE" + } + }, + { + "cell_type": "markdown", + "source": [ + "Super ! Comme vous pouvez le constater, le modèle de régression linéaire ne généralise pas vraiment bien la relation entre un colis et son prix correspondant.\n", + "\n", + "🎃 Félicitations, vous venez de créer un modèle qui peut aider à prédire le prix de quelques variétés de citrouilles. Votre champ de citrouilles pour les fêtes sera magnifique. Mais vous pouvez probablement créer un meilleur modèle !\n", + "\n", + "## 5. Construire un modèle de régression polynomiale\n", + "\n", + "

                      \n", + " \n", + "

                      Infographie par Dasani Madipalli
                      \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "HOCqJXLTwtWI" + } + }, + { + "cell_type": "markdown", + "source": [ + "Parfois, nos données peuvent ne pas avoir une relation linéaire, mais nous souhaitons tout de même prédire un résultat. La régression polynomiale peut nous aider à faire des prédictions pour des relations non linéaires plus complexes.\n", + "\n", + "Prenons par exemple la relation entre le colis et le prix dans notre ensemble de données sur les citrouilles. Bien qu'il y ait parfois une relation linéaire entre les variables - plus le volume de la citrouille est grand, plus le prix est élevé - ces relations ne peuvent parfois pas être représentées par un plan ou une ligne droite.\n", + "\n", + "> ✅ Voici [quelques exemples supplémentaires](https://online.stat.psu.edu/stat501/lesson/9/9.8) de données qui pourraient utiliser la régression polynomiale\n", + ">\n", + "> Regardez à nouveau la relation entre la variété et le prix dans le graphique précédent. Ce nuage de points semble-t-il devoir nécessairement être analysé par une ligne droite ? Peut-être pas. Dans ce cas, vous pouvez essayer la régression polynomiale.\n", + ">\n", + "> ✅ Les polynômes sont des expressions mathématiques qui peuvent comporter une ou plusieurs variables et coefficients\n", + "\n", + "#### Entraîner un modèle de régression polynomiale en utilisant l'ensemble d'entraînement\n", + "\n", + "La régression polynomiale crée une *courbe* pour mieux ajuster les données non linéaires.\n", + "\n", + "Voyons si un modèle polynomial sera plus performant pour faire des prédictions. Nous suivrons une procédure quelque peu similaire à celle utilisée précédemment :\n", + "\n", + "- Créer une recette qui spécifie les étapes de prétraitement à effectuer sur nos données pour les préparer à la modélisation, c'est-à-dire : encoder les prédicteurs et calculer les polynômes de degré *n*\n", + "\n", + "- Construire une spécification de modèle\n", + "\n", + "- Regrouper la recette et la spécification de modèle dans un workflow\n", + "\n", + "- Créer un modèle en ajustant le workflow\n", + "\n", + "- Évaluer les performances du modèle sur les données de test\n", + "\n", + "Allons-y !\n" + ], + "metadata": { + "id": "VcEIpRV9wzYr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\r\n", + "poly_pumpkins_recipe <-\r\n", + " recipe(price ~ package, data = pumpkins_train) %>%\r\n", + " step_integer(all_predictors(), zero_based = TRUE) %>% \r\n", + " step_poly(all_predictors(), degree = 4)\r\n", + "\r\n", + "\r\n", + "# Create a model specification\r\n", + "poly_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>% \r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Bundle recipe and model spec into a workflow\r\n", + "poly_wf <- workflow() %>% \r\n", + " add_recipe(poly_pumpkins_recipe) %>% \r\n", + " add_model(poly_spec)\r\n", + "\r\n", + "\r\n", + "# Create a model\r\n", + "poly_wf_fit <- poly_wf %>% \r\n", + " fit(data = pumpkins_train)\r\n", + "\r\n", + "\r\n", + "# Print learned model coefficients\r\n", + "poly_wf_fit\r\n", + "\r\n", + " " + ], + "outputs": [], + "metadata": { + "id": "63n_YyRXw3CC" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### Évaluer les performances du modèle\n", + "\n", + "👏👏 Vous avez construit un modèle polynomial, passons maintenant à la prédiction sur le jeu de test !\n" + ], + "metadata": { + "id": "-LHZtztSxDP0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make price predictions on test data\r\n", + "poly_results <- poly_wf_fit %>% predict(new_data = pumpkins_test) %>% \r\n", + " bind_cols(pumpkins_test %>% select(c(package, price))) %>% \r\n", + " relocate(.pred, .after = last_col())\r\n", + "\r\n", + "\r\n", + "# Print the results\r\n", + "poly_results %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "YUFpQ_dKxJGx" + } + }, + { + "cell_type": "markdown", + "source": [ + "Woo-hoo, évaluons les performances du modèle sur le test_set en utilisant `yardstick::metrics()`.\n" + ], + "metadata": { + "id": "qxdyj86bxNGZ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "metrics(data = poly_results, truth = price, estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "8AW5ltkBxXDm" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 Bien meilleure performance.\n", + "\n", + "Le `rmse` est passé d'environ 7 à environ 3, ce qui indique une réduction de l'erreur entre le prix réel et le prix prédit. Vous pouvez *grossièrement* interpréter cela comme signifiant qu'en moyenne, les prédictions incorrectes se trompent d'environ 3 $. Le `rsq` est passé d'environ 0,4 à 0,8.\n", + "\n", + "Tous ces indicateurs montrent que le modèle polynomial fonctionne bien mieux que le modèle linéaire. Beau travail !\n", + "\n", + "Voyons si nous pouvons visualiser cela !\n" + ], + "metadata": { + "id": "6gLHNZDwxYaS" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Bind encoded package column to the results\r\n", + "poly_results <- poly_results %>% \r\n", + " bind_cols(package_encode %>% \r\n", + " rename(package_integer = package)) %>% \r\n", + " relocate(package_integer, .after = package)\r\n", + "\r\n", + "\r\n", + "# Print new results data frame\r\n", + "poly_results %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_line(aes(y = .pred), color = \"midnightblue\", size = 1.2) +\r\n", + " xlab(\"package\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "A83U16frxdF1" + } + }, + { + "cell_type": "markdown", + "source": [ + "Vous pouvez voir une courbe qui correspond mieux à vos données ! 🤩\n", + "\n", + "Vous pouvez la rendre encore plus lisse en passant une formule polynomiale à `geom_smooth` comme ceci :\n" + ], + "metadata": { + "id": "4U-7aHOVxlGU" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_smooth(method = lm, formula = y ~ poly(x, degree = 4), color = \"midnightblue\", size = 1.2, se = FALSE) +\r\n", + " xlab(\"package\")" + ], + "outputs": [], + "metadata": { + "id": "5vzNT0Uexm-w" + } + }, + { + "cell_type": "markdown", + "source": [ + "Tout comme une courbe fluide !🤩\n", + "\n", + "Voici comment faire une nouvelle prédiction :\n" + ], + "metadata": { + "id": "v9u-wwyLxq4G" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a hypothetical data frame\r\n", + "hypo_tibble <- tibble(package = \"bushel baskets\")\r\n", + "\r\n", + "# Make predictions using linear model\r\n", + "lm_pred <- lm_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Make predictions using polynomial model\r\n", + "poly_pred <- poly_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Return predictions in a list\r\n", + "list(\"linear model prediction\" = lm_pred, \r\n", + " \"polynomial model prediction\" = poly_pred)\r\n" + ], + "outputs": [], + "metadata": { + "id": "jRPSyfQGxuQv" + } + }, + { + "cell_type": "markdown", + "source": [ + "La prédiction du `modèle polynomial` est logique, étant donné les diagrammes de dispersion de `price` et `package` ! Et, si ce modèle est meilleur que le précédent, en regardant les mêmes données, vous devez prévoir un budget pour ces citrouilles plus coûteuses !\n", + "\n", + "🏆 Bravo ! Vous avez créé deux modèles de régression en une seule leçon. Dans la section finale sur la régression, vous apprendrez la régression logistique pour déterminer des catégories.\n", + "\n", + "## **🚀Défi**\n", + "\n", + "Testez plusieurs variables différentes dans ce notebook pour voir comment la corrélation correspond à la précision du modèle.\n", + "\n", + "## [**Quiz après la leçon**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/)\n", + "\n", + "## **Révision & Étude personnelle**\n", + "\n", + "Dans cette leçon, nous avons appris la régression linéaire. Il existe d'autres types importants de régression. Lisez à propos des techniques Stepwise, Ridge, Lasso et Elasticnet. Un bon cours pour approfondir est le [cours de Stanford sur l'apprentissage statistique](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning).\n", + "\n", + "Si vous souhaitez en savoir plus sur l'utilisation du formidable framework Tidymodels, veuillez consulter les ressources suivantes :\n", + "\n", + "- Site web de Tidymodels : [Commencez avec Tidymodels](https://www.tidymodels.org/start/)\n", + "\n", + "- Max Kuhn et Julia Silge, [*Tidy Modeling with R*](https://www.tmwr.org/)*.*\n", + "\n", + "###### **MERCI À :**\n", + "\n", + "[Allison Horst](https://twitter.com/allison_horst?lang=en) pour avoir créé les illustrations incroyables qui rendent R plus accueillant et engageant. Retrouvez plus d'illustrations dans sa [galerie](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n" + ], + "metadata": { + "id": "8zOLOWqMxzk5" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/2-Regression/3-Linear/solution/notebook.ipynb b/translations/fr/2-Regression/3-Linear/solution/notebook.ipynb new file mode 100644 index 000000000..a84894dc7 --- /dev/null +++ b/translations/fr/2-Regression/3-Linear/solution/notebook.ipynb @@ -0,0 +1,1111 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Régression linéaire et polynomiale pour la tarification des citrouilles - Leçon 3\n", + "\n", + "Chargez les bibliothèques nécessaires et le jeu de données. Convertissez les données en un dataframe contenant un sous-ensemble des données :\n", + "\n", + "- Ne sélectionnez que les citrouilles dont le prix est indiqué par boisseau\n", + "- Convertissez la date en mois\n", + "- Calculez le prix comme une moyenne des prix élevés et bas\n", + "- Convertissez le prix pour qu'il reflète la tarification par quantité de boisseaux\n" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                      0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                      1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                      2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      \n", + "

                      5 rows × 26 columns

                      \n", + "
                      " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 167, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      MonthDayOfYearVarietyCityPackageLow PriceHigh PricePrice
                      709267PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
                      719267PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
                      7210274PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
                      7310274PIE TYPEBALTIMORE1 1/9 bushel cartons17.017.015.454545
                      7410281PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
                      \n", + "
                      " + ], + "text/plain": [ + " Month DayOfYear Variety City Package Low Price \\\n", + "70 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "71 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "72 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "73 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 17.0 \n", + "74 10 281 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "\n", + " High Price Price \n", + "70 15.0 13.636364 \n", + "71 18.0 16.363636 \n", + "72 18.0 16.363636 \n", + "73 17.0 15.454545 \n", + "74 15.0 13.636364 " + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "new_columns = ['Package', 'Variety', 'City Name', 'Month', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Un nuage de points nous rappelle que nous n'avons des données mensuelles que d'août à décembre. Nous avons probablement besoin de plus de données pour pouvoir tirer des conclusions de manière linéaire.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkT0lEQVR4nO3dfXRV9Z3v8fc3EB7kYcAQA+Wh0IZSUWLqzWVARi+W+lQdodXOtHcQZ41dOGumc1tn5graXqc67Ywybe2009Urtb3F2mnrkhYVtEIj1NoRNTAQEFQyhRpoCBihgEJIyPf+cXZiHs5Jzsbss0/O/rzWOivnfM/Z53zdhm9+57d/D+buiIhIchTFnYCIiOSWCr+ISMKo8IuIJIwKv4hIwqjwi4gkzOC4E8jGuHHjfOrUqXGnISIyoGzZsuUNdy/tHh8QhX/q1KnU1NTEnYaIyIBiZr9NF1dXj4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EuHphPNbK8/StOJ5rhTEZEIDYjhnBK9x7YdYNnqWoqLimhpa2PFDRVcXzkx7rREJAJq8QtNJ5pZtrqWUy1tHG9u5VRLG7evrlXLX6RAqfAL+4+cpLio669CcVER+4+cjCkjEYmSCr8waexwWtrausRa2tqYNHZ4TBmJSJRU+IWSkUNZcUMFQwcb5xQPYuhgY8UNFZSMHBp3aiISARV+ASC1AaeBBT9FpGBFWvjNbJ+Z7TCzbWZWE8TONbMNZrYn+Dk2yhykb+0Xd5tb23j79BmaW3VxV6SQ5aLFf7m7V7p7VfB4OVDt7tOB6uCxxEgXd0WSJY6unoXAquD+KmBRDDlIJ7q4K5IsURd+B9ab2RYzWxrEyty9ASD4eV7EOUgf2i/uDisuYtTQwQwrLtLFXZECFvXM3Xnu/jszOw/YYGavZHtg8IdiKcCUKVOiyk8C11dOZF75OPYfOcmkscNV9EUKWKQtfnf/XfDzEPAzYDbQaGYTAIKfhzIcu9Ldq9y9qrS0x85hEoGSkUO5aPIYFX2RAhdZ4TezEWY2qv0+cCWwE3gcuDl42c3AY1HlICIiPUXZ1VMG/MzM2j/n393952b2EvCImd0CvA58IsIcRESkm8gKv7v/BrgoTbwJWBDV54qISO80c1dEJGFU+KVDzd4mvrb+VWr2NsWdiohESBuxCACLH9zMc3Wpgv+NZ+q4tLyEH3x6TsxZiUgU1OIXavY2dRT9dr+qa1LLX6RAqfALz+55I1RcRAY2FX7hsunjQsVFZGBT4ReqppVwaXlJl9il5SVUTSvJcISIDGQq/ALAjVWTGTKoiCGDjCGDivhE1eS4UxKRiKjwS8dGLKfPtHH6jHP6jDZiESlkKvyijVjOUvWugyx7dDvVuw7GnYpIKBrHL9qI5Sxcef8mXmt8C4Cf1OxnRtkInr5tfqw5iWRLLX7p2IhlyCBj6OBUP782YsmsetfBjqLf7tXGt9TylwFDhV8AqNn3JqfPOM2tqX7+mt++GXdKeWv9rsZQcZF8o8Iv1DUe56HNr3eJPfT869Q1Ho8po/x25cyyUHGRfKPCL2yrPxoqnnQLZo5nRtmILrEZZSNYMHN8TBmJhKOLu0Ll5DGh4gJP3zaf6l0HWb+rkStnlqnoy4ASeYvfzAaZ2X+a2drg8RfN7ICZbQtuH406B+ldedkolsztuqH9krlTKC8bFVNGA8OCmeO578aLVPSz1HSime31RzU/JA/kosX/WWA3MLpT7H53/0oOPluydM/CWSyZM5Vt9UepnDxGRV/61WPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaiRVpi9/MJgHXAg9G+TnSP8rLRnFj1WQVfelX7TPDT7W0cby5lVMtmhket6i7er4O3A60dYt/xsxqzex7ZjY23YFmttTMasys5vDhwxGnKSJR0czw/BNZ4Tez64BD7r6l21PfBt4PVAINwFfTHe/uK929yt2rSktLo0pTRCKmmeH5J8oW/zzgejPbB/wY+LCZPezuje5+xt3bgO8AsyPMQURi1j4zfFhxEaOGDmZYcZFmhscssou77n4HcAeAmc0H/t7dF5vZBHdvCF72MWBnVDmISH64vnIi88rHsf/ISSaNHa6iH7M4xvGvMLNKwIF9wK0x5CAiOVYycqgKfp7ISeF3903ApuD+Tbn4TBERSU9LNoiIJIwKv4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EsHLZsbztLvv8AHv/AkS7//QtypDAh1jcd5tKZeO7vlAW3EIoCWzQ1r6vJ1HffXv/IGU5evY9+918aYUX67a82OLtt7Lpk7hXsWzooxo2RTi1+0bG5ImVr4avmnpz2d848Kv2jZ3JCerWsKFU867emcf1T4RcvmhnRZeUmoeNJpT+f8o8IvWjY3pJV//oeh4kmnPZ3zj7l73Dn0qaqqymtqauJOo+A1nWjWsrkhLP3+Czxb18Rl5SUq+lmoazyuPZ1zzMy2uHtVj7gKv4hIYcpU+NXVIyKSMJEXfjMbZGb/aWZrg8fnmtkGM9sT/Ey72brkniZwhfPlJ3Yy959/wZef0CZy2ViztZ5Pr3qJNVvr404l8SLv6jGzvwWqgNHufp2ZrQDedPd7zWw5MNbdl/X2HurqiZ4mcIXzvuXr6DwOqgj4jSZwZTTnnzZw8NjpjscTRg/h+TuviDGjZIilq8fMJgHXAg92Ci8EVgX3VwGLosxB+qYJXOF8+YmdtHWLtQVx6WnN1vouRR+g4dhptfxjFHVXz9eB26HLv5Oy9s3Wg5/npTvQzJaaWY2Z1Rw+fDjiNJNNE7jCWbvzYKh40q3dkeF8ZYhL9CIr/GZ2HXDI3beczfHuvtLdq9y9qrS0tJ+zk840gSuc6y4cHyqedNfNynC+MsQlelG2+OcB15vZPuDHwIfN7GGg0cwmAAQ/D0WYg2RBE7jC+fwfX9jjH05REJeeFl08mQmjh3SJTRg9hEUXT44pI8nJOH4zmw/8fXBx91+Apk4Xd89199t7O14Xd3NDE7jC+fITO1m78yDXXTheRT8La7bWs3bHQa6bNV5FP0dincDVrfCXAI8AU4DXgU+4+5u9Ha/CLyISXqbCn5P1+N19E7ApuN8ELMjF54qISE+auSsikjAFXfg1EzWcBzbu4Zp/fZYHNu6JO5UBQVsJykBVsFsvaiZqOOd/4UlOtqau9+xuOM7Xq/ew+0sfjTmr/KWtBGUgK8gWv2aihvPAxj0dRb/dyVZXyz8DbSUoA11BFn7NRA1nTW1DqHjSaStBGegKsvBrJmo4iyomhIonnbYSlIGuIAu/ZqKGc+vl0xk+2LrEhg82br18ekwZ5TdtJSgDXUHvwKWZqOE8sHEPa2obWFQxQUU/C9pKUPKdtl4U6WdqWEi+i3Xmrkih0XBhGcgKso9fJEoaLiwDnQq/dFj0zV/yvuXrWPTNX8adSl7TcOGzo5n0+UNdPQLA1OXrOu5vO3CCqcvXsU97yKY1aexwjje3dokdb27VcOFeqGssv6jFLxlb+Gr5p/dnK/8jVDzp1DWWf1T4hdoDJ0LFk+6VQ2+HiiedusbyT5R77g4zsxfNbLuZvWxmdwfxL5rZATPbFty0EljMKiaODBVPug+ed06oeNJpJn3+ibLF3wx82N0vAiqBq81sTvDc/e5eGdyejDAHycKav/kfoeJJ9/O/vTxUPOnaZ9IPHVzUcdNM+nhFVvg9pb2voDi45f9ssYT6o/KSLo8v7fZY5N2o2fcmza1tHbea3/a626pELNI+fjMbZGbbgEPABnd/IXjqM2ZWa2bfM7OxUeYgfavZ28RzdU1dYr+qa6Jmb1OGI5Jt6fdfCBVPOi1jnX8iLfzufsbdK4FJwGwzuxD4NvB+Ut0/DcBX0x1rZkvNrMbMag4fPhxlmon37J43QsWT7tm69H8QM8WTTstY55+cjOpx96OkNlu/2t0bgz8IbcB3gNkZjlnp7lXuXlVaWpqLNBPrsunjQsWT7rIM3WCZ4kmnZazzT5SjekrNbExwfzjwEeAVM+u8yPvHgJ1R5SDZqZqWvmBliifdyj//w1DxpMu0cqlWNI1PlC3+CcBGM6sFXiLVx78WWGFmO4L45cBtEeYgWfj7n2wNFU+6//nAr0PFk06/X/knsiUb3L0W+FCa+E1RfaacnQ27D4WKJ92Lvz0aKp50+v3KP5q5K1xx/nmh4kk3+71jQsWTTr9f+UeFX/jKn14cKp50/37rvFDxpNPvV/5R4RcA/mDYoF4fi7wb40cP6fJ4QrfHklsq/MLD/7GX35860yX2+1NnePg/9saUUX6r+Id1oeJJt2ZrPQePne4Sazh2mjVb62PKSLIq/Gb2ATOrNrOdweMKM/tCtKlJrjxW2xAqnnTHMqwmnCmedGt3HAwVl+hl2+L/DnAH0AIdI3Y+GVVSklsLKyaEiifd6Axri2WKJ911s8aHikv0si3857j7i91irWlfKQPO4kumpe3jX3zJtJgyym+1d6ffmSxTPOkWXTy5R5/+hNFDWHTx5JgykmwL/xtm9n6C1TXN7EZS6+xIgVjYbRu8hR/Stni9+ddPVnZ5/I1uj6Wr5++8gq//SQUfOf88vv4nFTx/5xVxp5Ro5t73Sslm9j5gJXAJcATYCyx2932RZheoqqrympqaXHxUItU1Hucj9z/bI/6L2y7TtPo0mk40M+++ZzjV8s7mIsOKi/j1sg9rjXnJK2a2xd2rusezmrnr7r8BPmJmI4Aid9d6qgWkt9UTVfh7at9K8BTvFP72rQRV+GUgyHZUzz+Z2Rh3f8vdj5vZWDP7UtTJSW5o9cRwtJWgDHTZ9vFfEyytDIC7HwG0V26BGDtiCIOKrEtsUJExdoQm2aTTvpVgEWCk/hFpK8G+1TUe59Gaem3AkgeyXaRtkJkNdfdm6FhmWb/lBWL/kZMUGXSewlVkqOuiF/9nzY6Ojh4PHl9fqQvimdy1ZkeXXbiWzJ3CPQtnxZhRsmXb4n8YqDazW8zsL4ANwKro0pJcamk9Q8uZrhf5W844La1nMhyRbJrpHI62Xsw/WRV+d18BfBk4H7gA+McgJgXghb3pN77OFE86zXQOR1sv5p+s1+N396eApyLMRWRAWFgxgZf2HUkbl540eCD/9NriN7Pngp/HzexYp9txMzvWx7HDzOxFM9tuZi+b2d1B/Fwz22Bme4KfY/vvP0fOxlUXpJ86nymedJrpHE552SiWzJ3SJbZk7hQNFY5Rry1+d/+j4OfZ/B9qBj7s7ifMrBh4zsyeAj4OVLv7vWa2HFgOLDuL95d+oj1Rw0vXxy+Z3bNwFkvmTGVb/VEqJ4/R71bM+uzjN7Oi9lU5w/CUE8HD4uDmwELeuTC8ClgU9r2lf12+ojpUPOm05+7ZKS8bxY1Vk1X080Cfhd/d24DtZjalr9d2Z2aDzGwbcIjUZusvAGXu3hC8dwOQdv81M1tqZjVmVnP48OGwHy0h7H3zVKh40mnPXRnosh3OOQF4OViT//H2W18HufsZd68EJgGzzezCbBNz95XuXuXuVaWlpdkeJmdh2rnDQsWTTnvuykCX7aieu9/Nh7j7UTPbBFwNNJrZBHdvMLMJpL4NSIw23r6Aqct77h618fYFMWST//791nlpz5f23JWBoq9RPcPM7HPAJ4APAr9291+23/o4ttTMxgT3hwMfAV4BHgduDl52M/DYu/ovkH6x795rmRismT5x9BD23au15Xuz795ruWTaGAYXwSXTxuh8yYDSV4t/Faldt34FXAPMBD6b5XtPAFaZ2SBSf2Aecfe1ZvY88IiZ3QK8TuqPisTsrjU7OBDsi3rg2GnuemyHptT3QS18Gaj6Kvwz3X0WgJl9F+i+C1dGwfaMH0oTbwLUh5BHMk2pXzJnqkZgiBSgvi7utrTfcXdttVigNKVeJFn6avFf1GmGrgHDg8dGaqj+6Eizk5zQlPqz84Wfbueplxu55oIyvvTxi+JORyRrfc3cHdTb81IYystGMaNsBK82vtURm1E2Qt08veg8qufhF/fz8Iv7dYFXBoxsx/FLAatrPN6l6AO82viWls3N4As/3R4qLpJvVPhFffwhPfVyY6i4SL5R4RfGnlMcKp5011xQFioukm9U+IUjb7eEiiddpgu5usArA4UKv2hUz1nYd++1LJ49iZIRxSyePUkXdmVAyXoHLilc7RtlPPR8182wNaqnd1/6+EV86eNxZyESngq/ANooQyRJVPilQ3nZKBV8kQRQH7+ISMKo8EuHusbjPFpTr4lbIgVOXT0CpJZl7rxC55K5U7Qss0iBUotfMi7LrJa/SGGKrPCb2WQz22hmu83sZTP7bBD/opkdMLNtwe2jUeUg2dGSDSLJEmVXTyvwd+6+1cxGAVvMbEPw3P3u/pUIP1tC0AQukWSJrPC7ewPQENw/bma7gYlRfZ6cvbEjhqQ2WOgUsyAuIoUnJ338ZjaV1DaMLwShz5hZrZl9z8zGZjhmqZnVmFnN4cOHc5FmYu0/cpKRQ7u2AUYOHcz+IydjykhEohR54TezkcBq4HPufgz4NvB+oJLUN4KvpjvO3Ve6e5W7V5WWlkadZqJNGjuclra2LrGWtjYmjR0eU0YiEqVIC7+ZFZMq+j90958CuHuju59x9zbgO8DsKHOQvpWMHMqKGyoYbDDIYLDBihsqKBk5NO7URCQCUY7qMeC7wG53/1qn+IROL/sYsDOqHCR7/7ZxD60OZxxaHb61cU/cKYlIRKIc1TMPuAnYYWbbgtidwKfMrJLUtcR9wK0R5iBZqN51kNfSbL1YvesgC2aOjykrEYlKlKN6niM1OKS7J6P6TDk763el3zJw/a5GFX6RAqSZu8KVM9NvGZgpLiIDmwq/sGDmeGaUjegSm1E2Qq19kQKlRdoEgKdvm0/1roOs39XIlTPLVPRFCpgKv3RYMHO8Cr5IAqirR0QkYVT4RUQSRoVfOmgHLpFkUB+/ANqBSyRJ1OIX7cAlkjAq/KIduEQSRoVftAOXSMKo8AvlZaNYMndKl9iSuVMoLxsVU0YiEiVd3BUA7lk4iyVzprKt/iiVk8eo6IsUMBV+6VBeNkoFPwQtcRGOzld4TSea2X/kJJPGDu/XjZFU+EXOwpX3b+rYw+AnNfuZUTaCp2+bH2tO+UznK7zHth1g2epaiouKaGlrY8UNFVxfObFf3jvKHbgmm9lGM9ttZi+b2WeD+LlmtsHM9gQ/0262LpKvetu4RnrS+Qqv6UQzy1bXcqqljePNrZxqaeP21bU0nWjul/eP8uJuK/B37n4+MAf4azObCSwHqt19OlAdPJY8ULO3ia+tf5WavU1xp5LXetu4RnrS+Qpv/5GTFBd1Lc/FRUXsP3KyX94/ssLv7g3uvjW4fxzYDUwEFgKrgpetAhZFlYNkb/GDm7nxgc1845k6bnxgMzc9uDnulPKWNq4JR+crvEljh9PS1tYl1tLWxqSxw/vl/XMynNPMpgIfAl4Ayty9AVJ/HIDzcpGDZFazt4nn6rq28n9V16SWfwbauCYcna/wSkYOZcUNFQwrLmLU0MEMKy5ixQ0V/XaBN/KLu2Y2ElgNfM7dj5ml24Y37XFLgaUAU6ZM6ePV8m48u+eNjPGqaSU5zmZg0MY14eh8hXd95UTmlY+LZFSPuXu/vVmPNzcrBtYCT7v714LYq8B8d28wswnAJnef0dv7VFVVeU1NTWR5Jl3N3iZufKBn186jt85R4RcZwMxsi7tXdY9HOarHgO8Cu9uLfuBx4Obg/s3AY1HlINmpmlbCpeVdC/yl5SUq+n1Ys7WeT696iTVb6+NOZUBoOtHM9vqj/TYyRc5elF0984CbgB1mti2I3QncCzxiZrcArwOfiDAHydKeQ11X4qw7pJU5ezPnnzZw8NhpAH6x+xD3/fwVnr/zipizyl9RjkmX8KIc1fOcu5u7V7h7ZXB70t2b3H2Bu08Pfr4ZVQ6SnTVb6zuKWLuGY6fVks1A5yucqMekS3gFvUibvlpmZ+2O9BNpMsWTTucrnKjHpEt4BVv4H9t2gHn3PcPiB19g3n3P8Pi2A3GnlLeum5V+hEWmeNLpfIUT9Zh0Ca8gC7++WobT+PtToeJJt+jiyUwYPaRLbMLoISy6eHJMGeW3qMekS3gFuUhb+1fLU7zTymj/aqlftp7W1DZkjN96+fQcZzMwPH/nFazZWs/aHQe5btZ4Ff0+RDkmXcIryMKvr5bhLKqYwO6GnqN4FlVMiCGbgWPRxZNV8EMoGTlUBT9PFGRXT/tXy6GDjXOKBzF0sOmrZS9uvXw6wwd3nVE9fLCptS9SoAqy8AOk5iMbWPBTevXfpp7b5XFVt8fSk1YzDaeu8TiP1tRT16g5InEryK6e9ou7za3vdPfcvrqWeeXj1OpPo7dF2jR7N73FD27uOGffeKaOS8tL+MGn58ScVf66a80OHtr8esfjJXOncM/CWTFmlGwF2eLXuOFwelukTXrSaqbh1DUe71L0AR56/nW1/GNUkIVfF3fDuWz6uFDxpNMfynC21R8NFZfoFWTh17jhcDJ156ibJz39oQyncvKYUHGJXkH28YPGDYfx5Sd2Zox//o8vzHE2+e9Xrx3KGNcfy57Ky0axZO4UHnq+ax9/edmoGLNKtoIt/KBxw9lauzPD2jM7D6rwp/HIlv0Z47dddX6OsxkY7lk4iyVzprKt/iiVk8eo6MesILt6JJzrLsyw9kyGeNJNGnNOqLiklJeN4saqySr6eUCFX/jT2e8NFU+68d3W6ekrLil/8/BLXHDXU/zNwy/FncqAUb3rIMse3U71rv5d+bWgu3okO8/VHc4YV+usp5r634eKC0xdvq7j/hM7D/HE8nXsu/faGDPKf1fev4nXGt8C4Cc1+5lRNoKnb5vfL+8d5daL3zOzQ2a2s1Psi2Z2wMy2BbePRvX5kr2jb7eEiifdmdYzoeJJl6mFr5Z/ZtW7DnYU/XavNr7Vby3/KLt6vg9cnSZ+f+cduSL8fMnSW6dbQ8WTrunt9OclUzzpnnkt/fyGTHGB9bsaQ8XDinLrxWcBbas4AFw1M/1F3EzxpJv1npGh4kn34Q+kn9+QKS5w5cyyUPGw4ri4+xkzqw26gsZmepGZLTWzGjOrOXw4fR+09I+qaSVpV+fUmPT07l50Uah40n1z8X8PFRdYMHM8M8pGdInNKBvBgn5qjOW68H8beD9QCTQAX830Qndf6e5V7l5VWlqao/SSqXrXQU62epfYyVbv95EEhWLS2OEMK+76T2dYcZGWBOnFvnuvpXxc6vyUjxuuC7tZePq2+dxx1Qc4f8Io7rjqA/12YRdyXPjdvdHdz7h7G/AdYHYuP1/Si7o/sdCUjBzKqZaua0GdamnTZMFeTL9jHXVvpBZJrHvjJNPvWNfHEbL4wc3889OvsbvhOP/89Gvc9ODmfnvvnBZ+M+u8pdPHgPRrBUhOzXrP6FDxpPvCT7eHiifd/U/vpqXrF0paPBWX9KJeATbK4Zw/Ap4HZpjZfjO7BVhhZjvMrBa4HLgtqs+X7A0bkn46R6Z40j31cvpvQpniSfdYbfouw0xxiX4F2ChH9XzK3Se4e7G7T3L377r7Te4+y90r3P16d0+/y7fklFZPDOeaC9KPrMgUT7qFFekvSGaKS/QrwGrJBpGQLv9g+gKfKZ50mRau04J2mVVNK+HS8q6j6i4tL+m3kXb6Li+9bpShJRt66u1ieH8NtyskmUaHVe86qPPVix98eg41e5t4ds8bXDZ9XL8Or1aLX9TVE1LUk2sKjUaNnb2qaSX87ZUz+n1OjQq/dGyU0Zk2ysgs6sk1hUZ/KPOPuXvfr4pZVVWV19TUxJ1GwatrPK6NMkKo3nWQ9bsauXJmmYp+H666fxOvdlp0rD9XmpTMzGyLu1f1iKvwi0gu6A9l7mUq/Lq4K3KWmk40a0/nEBbMHK+CnydU+EXOwmPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaIlnRxV2RkJpONLNsdS2nWto43tzKqZY2bl9dS9OJ5rhTE8mKCr9ISPuPnKS4qOs/neKiIvYfORlTRiLhqPCLhDRp7HBa2rquztnS1qZlmWXAUOEXCalk5FBW3FBBcREMKoLiIlhxQ4Uu8Pah6UQz2+uPqkssD+jirshZ+LeNe2hfkv8M8K2Ne3Rxtxe6GJ5f1OIXCal610Fe6zQZCeDVxre0Y1kGuhief1T4RULS2jPh6GJ4/olyI5bvmdkhM9vZKXaumW0wsz3Bz4ybrYvkK609E44uhuefKFv83weu7hZbDlS7+3SgOngsMqBokbZw2i+GDysuYtTQwQwrLtLF8JhFulaPmU0F1rr7hcHjV4H57t4Q7L+7yd1n9PU+WqtH8pHWnglHS1zkXr6s1VPWvt1iUPzPy/RCM1sKLAWYMmVKppeJxEZrz4RTMnKoCn6eyNuLu+6+0t2r3L2qtLQ07nRERApGrgt/Y9DFQ/DzUI4/X0Qk8XJd+B8Hbg7u3ww8luPPFxFJvCiHc/4IeB6YYWb7zewW4F7gCjPbA1wRPBYRkRyK7OKuu38qw1MLovpMERHp24DYetHMDgO/PcvDxwFv9GM6/UV5haO8wlFe4eRrXvDucnuvu/cYHTMgCv+7YWY16caxxk15haO8wlFe4eRrXhBNbnk7nFNERKKhwi8ikjBJKPwr404gA+UVjvIKR3mFk695QQS5FXwfv4iIdJWEFr+IiHSiwi8ikjAFU/jN7DYze9nMdprZj8xsWLfnzcy+YWZ1ZlZrZhfnSV7zzez3ZrYtuN2Vo7w+G+T0spl9Ls3zcZ2vvvLKyfl6NxsJmdnVZvZqcO76dc+Jd5nXPjPbEZy3fl3nPENenwj+P7aZWcbhiDGcr2zzyvX5+hczeyX49/YzMxuT4dh3f77cfcDfgInAXmB48PgR4M+7veajwFOAAXOAF/Ikr/mk9izI5fm6ENgJnENq9vYvgOl5cL6yySsn5wu4DLgY2NkptgJYHtxfDtyX5rhBwH8B7wOGANuBmXHnFTy3DxiXw/N1PjAD2ARUZTgujvPVZ14xna8rgcHB/fui/P0qmBY/qUIx3MwGkyocv+v2/ELgIU/ZDIxpXyk05rzicD6w2d3fdvdW4JfAx7q9Jo7zlU1eOeHuzwJvdgsvBFYF91cBi9IcOhuoc/ffuPtp4MfBcXHnFal0ebn7bnd/tY9Dc36+sswrUhnyWh/83gNsBialObRfzldBFH53PwB8BXgdaAB+7+7ru71sIlDf6fH+IBZ3XgBzzWy7mT1lZhdEmVNgJ3CZmZWY2TmkWveTu70m5+cry7wg9+erXZeNhIB0GwnFcd6yyQvAgfVmtsVSGx3lgzjOV7biPF9/Qeobd3f9cr4KovAHfZoLgWnAe4ARZra4+8vSHBrpWNYs89pKaj2Ni4BvAmuizAlSLR5SXyU3AD8n9XWxtdvLcn6+sswr5+crpJyftxDmufvFwDXAX5vZZXEnhM5XD2b2eVK/9z9M93SaWOjzVRCFH/gIsNfdD7t7C/BT4JJur9lP19bjJKLvdukzL3c/5u4ngvtPAsVmNi7ivHD377r7xe5+GamvnHu6vSSO89VnXnGdr0A2GwnFcd6y2uDI3X8X/DwE/IxUt0HcYvk9y0Yc58vMbgauA/7Mg079bvrlfBVK4X8dmGNm55iZkVr6eXe31zwOLAlGq8wh1e3SEHdeZjY+eA4zm03q/0lTxHlhwX7HZjYF+Djwo24vieN89ZlXXOcrkM1GQi8B081smpkNAT4ZHBdrXmY2wsxGtd8ndSFxZ/fXxSCO89WnOM6XmV0NLAOud/e3M7ysf85XFFes47gBdwOvkPqf8wNgKPCXwF8GzxvwLVJXxHfQy9X8HOf1GeBlUt0am4FLcpTXr4BdwecuCGL5cL76yisn54vUH5wGoIVUK+sWoASoJvUtpBo4N3jte4AnOx37UeC14Nx9Ph/yIjUKZHtwezlHeX0suN8MNAJP58n56jOvmM5XHan++23B7f9Gdb60ZIOISMIUSlePiIhkSYVfRCRhVPhFRBJGhV9EJGFU+EVEEkaFXwQwMzezH3R6PNjMDpvZ2rN8vzFm9ledHs8/2/cS6W8q/CIpbwEXmtnw4PEVwIF38X5jgL/q60UicVDhF3nHU8C1wf1P0WnWsKXWvF8TrJW+2cwqgvgXg7XVN5nZb8zsfwWH3Au8P1jL/V+C2EgzezRYc/2H7TOQRXJNhV/kHT8GPmmpzXIqgBc6PXc38J/uXgHcCTzU6bkPAleRWsvlH8ysmNS6+P/l7pXu/r+D130I+Bwwk9TM0HkR/reIZKTCLxJw91pgKqnW/pPdnv4jUktu4O7PACVm9gfBc+vcvdnd3yC1QFpZho940d33u3sbqSn5U/v1P0AkS4PjTkAkzzxOag+F+aTWwGnX23K4zZ1iZ8j87yrb14lESi1+ka6+B9zj7ju6xZ8F/gxSI3SAN9z9WC/vcxwYFUWCIu+WWhwinbj7fuBf0zz1ReD/mVkt8DbvLIOc6X2azOzXwWbaTwHr+jtXkbOl1TlFRBJGXT0iIgmjwi8ikjAq/CIiCaPCLyKSMCr8IiIJo8IvIpIwKvwiIgnz/wEDeg/76NO6rgAAAABJRU5ErkJggg==", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('Month','Price')" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAshElEQVR4nO3dfZyU5Xno8d+1y7IgiwLLunJkV2xWSangRreKIVoVQ03qEdKon74YTKMlzan9pCatmLTHGtvaiE3M6UlOq4k59SVNJJiA9ZgIEqxRwThQXhQ0bAOyGFhwBd01sO7Ldf6YZ5aZ3ZndmWfuZ+aemev7+Sw7c+8z19zP7HDtM/erqCrGGGMqR1WxK2CMMaawLPEbY0yFscRvjDEVxhK/McZUGEv8xhhTYcYVuwLZmD59us6aNavY1TDGmJKyefPmN1W1YXh5SST+WbNmEYvFil0NY4wpKSLyerpya+oxxpgKY4nfGGMqjCV+Y4ypMJb4jTGmwljiN8aYCmOJ32TU1dPLto6jdPX0FrsqxhiHSmI4pym8NVvfYPlj26mpqqJvcJAVH5/H1a2nF7taxhgH7IrfjNDV08vyx7ZzvG+Q7t5+jvcNcutj2+3K35gyYYnfjLD/yDFqqlLfGjVVVew/cqxINTLGuGSJ34wwc+pE+gYHU8r6BgeZOXVikWpkjHHJEr8Zob6ulhUfn8eEmiom145jQk0VKz4+j/q62rziWmexMX6wzl2T1tWtp7OgZTr7jxxj5tSJeSd96yw2xh+RJn4R2Qt0AwNAv6q2icg04FFgFrAXuE5Vj0RZDxNOfV1t3gkfUjuLjxNvQrr1se0saJnuJL4xJjeFaOq5TFVbVbUtuH8bsF5VzwLWB/dNGbPOYmP8Uow2/sXAg8HtB4ElRaiDKSDrLDbGL1EnfgXWishmEVkWlDWq6gGA4PupEdfBFFlUncXGmHCi7txdoKq/FJFTgXUi8mq2Dwz+UCwDaG5ujqp+pkBcdxYbY8KL9IpfVX8ZfD8E/BC4AOgUkRkAwfdDGR57v6q2qWpbQ8OIncNMCaqvq+XcpimW9I0pssgSv4hMEpHJidvAIuBl4HHghuCwG4A1UdXBGGPMSFE29TQCPxSRxPP8m6r+WEReAlaKyI3APuDaCOtgjDFmmMgSv6r+Ajg3TXkXsDCq5zXGGDM6W7LBGGMqjCX+InK9do3v8YwxfrC1eorE9do1vsczxvjDrviLwPVGJ77HM8b4xRJ/Ebheu8b3eMYYv1jiLwLXa9f4Hs8Y4xdL/EXgeu0a3+MlWGexMX4QVS12HcbU1tamsVis2NVwrqun1+naNT7Hs85iYwpPRDYnLYk/xEb1FJGrjU58j2cbsRjjF2vqMZEr5c5i181T7Z3drIp10N7Z7SSeNZ+ZMOyK30SuVDuLXTdP3b56Bw9t2jd0f+lFzdy5eK439TOVw674Tc5yvWotxY1YXM9laO/sTkn6AA9t3Bf6yt/mWph82BW/yUnYq9ZS24gl0TyV6JOAE81TYeq+teNoxvKWxslFr5+pLHbFb7KW71VrKW3E4rp5qrVpSk7lYynV5jPjB0v8JmujXbWWG9fNUy2Nk1l6UeoWoksvag51tR9F/UxlsaYekzXXV62+c908defiuSydP4utHUdpbZoSOulHVT9TOSJP/CJSDcSAN1T1KhG5A/hj4HBwyBdV9cmo62Hyl7hqfWhjaht/vgnMZ67nRrQ0Tnb6ermun+tJgMZPhbji/yywCzg5qexeVf3HAjy3ccz1Vavxhw0PrRyRtvGLyEzgd4BvRfk8prBaGidzTVuTJf0yYsNDK0vUnbtfA24FBoeV3ywi20Xk2yIyNd0DRWSZiMREJHb48OF0hxhjHCnl2dUmd5ElfhG5CjikqpuH/eifgfcBrcAB4CvpHq+q96tqm6q2NTQ0RFVNYww2PLTSRHnFvwC4WkT2At8DLheRR1S1U1UHVHUQ+CZwQYR1MMZkwYaHVpbIOndV9QvAFwBE5FLgL1T1ehGZoaoHgsM+BrwcVR2MMdmz4aGVoxjj+FeISCugwF7g00WogzEmDdfDQ42fCpL4VfUZ4Jng9icK8ZzGGGPSsyUbjDGmwljiN8aYCmOJ3xhjKowlfmOMqTCW+I0xpsJY4jfGmApjid8UTFdPL9s6jka68Nf6nQdZvmob63cerIh4rl9T3+MZN0RVi12HMbW1tWksFit2NUweCrHk76J7n+Hnne8O3Z/dOImnbrm0bOO5fk19j2dyJyKbVbVteLld8ZvIFWLJ3/U7D6YkVYDXOt8NfWXtezzXr6nv8YxblvhN5Aqx5O/anZ05lZd6PNevqe/xjFuW+E3kCrHk76I5jTmVl3o816+p7/GMW5b4TeQKseTvwjmnMbtxUkrZ7MZJLJxzWlnGc/2a+h7PuGWdu6ZgCrGR9/qdB1m7s5NFcxpDJ9VSiuf6NfU9nslNps5dS/zGGFOmbFSPMcYYoACJX0SqReQ/ReSJ4P40EVknIruD72k3Wzf+cjkpZ/WWDm568CVWb+lwULPKmzAU29PFV9e+RmxPl5fx2ju7WRXroL2z20k840bkTT0i8jmgDThZVa8SkRXAW6r6ZRG5DZiqqstHi2FNPf5wOSln/l3rOPjOe0P3Z5w8no1f/LAXdSsF139rE8+1n0jQF7fU8/BN872Jd/vqHTy0ad/Q/aUXNXPn4rmh45ncFaWpR0RmAr8DfCupeDHwYHD7QWBJlHUw7riclLN6S0dK0gc48M57oa/8K23CUGxPV0qSBvhpe1foK3XX8do7u1OSPsBDG/fZlb8nom7q+RpwK5A8oLcxsdl68P3UdA8UkWUiEhOR2OHDhyOupsmGy0k5T+xIP2M1U3kh61YKnt39Zk7lhY63teNoTuWmsCJL/CJyFXBIVTeHebyq3q+qbara1tDQ4Lh2JgyXk3Kumpt+KGOm8kLWrRRcctb0nMoLHa+1aUpO5aaworziXwBcLSJ7ge8Bl4vII0CniMwACL4firAOxiGXk3KWnNfEjJPHp5TNOHk8S85rKnrdSkHbmfVc3FKfUnZxSz1tZ9ZneERh47U0TmbpRc0pZUsvaqalcXKoeMatgozjF5FLgb8IOnfvAbqSOnenqeqtoz3eOnf94nJSzuotHTyx4yBXzT0tdNKPqm6lILani2d3v8klZ00PnaSjjNfe2c3WjqO0Nk2xpF8ERZ3ANSzx1wMrgWZgH3Ctqr412uMt8RtjTO4yJf5xhXhyVX0GeCa43QUsLMTzGmOMGclm7hpjTIUp68Tv+yxO1/VzPUvS93iFYFsRmnJUkKaeYvB9Fqfr+rmeJel7vEKwrQhNuSrLK37fZ3G6rp/rWZK+xysE24rQlLOyTPy+z+J0XT/XsyR9j1cIthWhKWdlmfh9n8Xpun6uZ0n6Hq8QbCtCU87KMvH7PovTdf1cz5L0PV4h2FaEppyV9Q5cvs/idF0/17MkfY9XCLYVoSlltvWiqQiWWI05oagzd40pBBsuaUx2yrKN31QeGy5pTPYs8ReR61mc63ceZPmqbazfGW4zk2zjhX2edI9zteduVMMlfd/T1vXv3GYWVwZr4y8S180Si+59hp93vjt0f3bjJJ665VLn8cI+T7rHvX2sz9meu109vbT93dMkv5sFiP31FaHb+n3f09b179yayspPUfbcNem5bpZYv/NgSgIAeK3z3dBXgZni3fvUrlDPkymeyz13t+47wvBLGA3Kw/B9T1vXv3NrKqsslviLwHWzxNqdnTmVh423Znv6pDLW8+RSj7B77rp+DXzf09b1+drM4soS5Z67E0TkZyKyTUReEZEvBeV3iMgbIrI1+PpoVHXwletZnIvmNOZUHjbe4nnp98Md63lyqUfYPXddvwa+72nr+nxtZnFlifKKvxe4XFXPBVqBK0Uk0aB5r6q2Bl9PRlgHL7mexblwzmnMbpyUUja7cRIL54RLopni3fLbvx7qeTLFc7nnruvXwPc9bV2fb1Qzi21Zaz9FNo5f473GPcHdmuDL/57kArm69XQWtEx3NtnoqVsuZf3Og6zd2cmiOY2hE8BY8RomT+C1pLblUydPCB1v/l3r8qrjcK7fXJ3dx1PuHxp2P1cP3zTf6Z62rn/nrt+Ttqy1vyId1SMi1cBmoAX4hqouF5E7gE8C7wAx4POqOmoPXDmO6ilFsT1dXHPfphHlqz49P+cktnpLB3++cvuI8q9dNy/UVf/6nQe58aHNI8ofWHp+qIToOl6l6erpZcHdP+F434nmowk1VTy//PJQf1Bcx6sURRnVo6oDqtoKzAQuEJFzgH8G3ke8+ecA8JV0jxWRZSISE5HY4cOHo6ymyZLLDspMnbi+dO66jldpbFlrvxVkVI+qHiW+2fqVqtoZ/EEYBL4JXJDhMferapuqtjU0NBSimmPyfTKPa8PbU/PtoEyOl6kT15fOXdfxEh55YQ/X/ssLPPLCnrziRBXP1YQ6W9bab5G18YtIA9CnqkdFZCJwBXC3iMxQ1QPBYR8DXo6qDi4lT775p5+0O53M4yKea5naU0+ZUM3bxweGjjtlQnVWzTzp4qWLlU/n7oyTx3Ng2ISwfDq4XcYDOPeOHw+d70t7j3DP2tfYdseV3sSbf9e6obkVT+86xN0/fjX0hLr6ulrOmDYxpT/ojGnh+w3q62ppnjYxZe5CPvEqXZRX/DOADSKyHXgJWKeqTwArRGRHUH4ZcEuEdXDC98k8rmWazLN+58GURA3w9vGBMeudLt5frtrO8f7UK7jeAc1ra8Mjx/pTyo4c6/cm3iMv7En72oW9Uncdb/WWDqcT6mJ7ulKSPsQnmOXzfybdhDVf/s+UmsgSv6puV9UPqOo8VT1HVe8Myj+hqnOD8quTrv695ftkHtcytadmat8eq97p4lVXCdXibxuw63hrtqd/m2cqL3Q8130ulfZ/ptTYzN0s+D6Zx7VM7amZ2rfHqne6eAODyoD62wbsOt7ieTNyKi90PNd9LpX2f6bUWOLPgu+TeVzLNJln4ZzTQtU7Ea92nHBSTTW144R7rpnHPdecSzXxN2E1ONnasJr44myu4klwX/KMd/0Hz+SUCdUpZadMqOb6D57pRbwl5zU5nVBXaf9nSo1txJIl15NvXMdzLdNknt2HulOOax92P5P4bBGJZ1CNp9O7ntxJciv1Pzy5M68JOf9z9Y6heAPB/XziLV+1bWhSmAb3fZowNHF8auf4SeOrRzl6bK5n9FTa/5lSYlf8OWg7s57PLZrt7A3nOp5r9XW1nNs0ZSjph+0ATHTu9vYP8qv3BujtH+Tz39/mtDPRdWfnfRt2c6w/NRUe61fu27Dbi/q57ox1HS+h0v7PlIqsEr+InC0i60Xk5eD+PBH562irZnwTtgMwXUfpYIbLy7Cdia47O1dneFym8rH43hnrOp7xW7ZX/N8EvgD0QXzEDvB7UVXK+ClsB2C6jtIqSX9s2M5E152dSzI8LlP5WHzvjHUdz/gt28R/kqr+bFhZf9ojTdZKbeXCsB2A6TqLv3LtuU47E113dn76srOYOC71r9PEccKnLzvLi/q57ox1Hc/4LatF2kTkR8DNwPdV9TwRuQa4UVU/EnUFoTwXaSvllQtXb+ngiR0HuWruaTklhq6e3hGdxWFjZfLIC3tYs/0Ai+fNCJ1Uk923YTertx9gybwZoZN+VPVbs/UNPve9rSjxPvN7f68179+569+HKa5Mi7Rlm/h/Dbgf+CBwBNgDXK+qex3XM61yS/y2cqHJl/3OTTbyWp1TVX+hqlcADcD7VfVDhUr65cj3WaZh2AYZheXD79yUrqzG8YvIXcCKYJVNRGQq8XX0bWRPCL7PMs2VbZBReMX+nZvSlm3n7kcSSR8g2Dil4vbKdcX1NneF3jYvuTzTgm7ZXvn73sHta7zE73x8NdRWVzG+Or+ZxQntnd2sinXQ3pndxDxTmrKduVstIrWq2gsQLLNsDYl5cL3NXaG2zRte/qeXtlBTVcVxTlx9Vouw4dVDXPb+UwEy1sn3Dm7f48X2vsV7A0Dw2sdefyuveLev3sFDm/YN3V96UTN3Lp4bOp7xV7adu7cCVwP/l/jM7k8Bj6vqimirF1dunbu+y9Rx+MTNH+Kqrz+XUl47TgChd9gSy3W11RzvG0BEmDCuekSi872D2/d47Z3dXHHvsyPKn77lEloaJxc9nvFDvp27K4C/B34d+A3gbwuV9E3hZeo43NpxdET5+Opqbr6shQk1VUxKWiump3eA/kHoG9C0TUC+d3D7Hm9rx9Gcygsdz/gt60XaVPVHwI8irIvxRKaOw9amKWnL/+DCZv7gwmY2vHqIO/79FXp6U9ekSUgkuvq6Wu87uH2P19o0JafyQsczfhv1il9Engu+d4vIO0lf3SLyzhiPnSAiPxORbSLyioh8KSifJiLrRGR38H2qu9OpbK728D3RcVjF+GphfHW8s7ilcXKwvHLV0FeiQ/HIu+/R09tP30DmpsNj7/XzlbWvsXpLB0fefY+Pf2Am4wRqqoXx1eKkg7umCqqroKbKzbLM46vFaf1cxWtpnMzSi5pTypZe1By6WcZ1POO3Ua/4VfVDwfcwv/1e4HJV7RGRGuC5YAbw7wLrVfXLInIbcBuwPER8k8T1Hr4rYx28N5C4QlW+H+vg6tbTie19K6U9P/b6W8T2vpXSKZhJv8Z3TBqxa1LwxyLxHGF9fcNuEk3oA8A3NuzOK178NTjxhyzf+rmO53od5TsXz2Xp/Fls7ThKa9MUS/plbMw2fhGpSqzKmQuN6wnu1gRfCiwGHgzKHwSW5BrbpCrUnsCrt3SMSPAPbdyXVdLPRj51Xr/zYNo9WdfvDLe6pO/7LLd3dqf9XeQ7DLOlcTLXtDVZ0i9zYyZ+VR0EtolI81jHDici1SKyFThEfLP1F4HGxD67wfdTMzx2mYjERCR2+PDhXJ+6ohRqf9NCLNEbts6Z9gPOVB62Hr7sGWudsSYf2U7gmgG8EqzJ/3jia6wHqeqAqrYCM4ELROScbCumqverapuqtjU0NGT7sIpUqP1NC7FEb9g6Z9oPOFN52Hr4smesdcaafGSb+L8EXAXcCXwl6SsrwazfZ4ArgU4RmQEQfD+UfXVNOoXa33TJeU1pOwCHl4WVT50XzjmN2Y2TUspmN05i4Zxwf6x83zPWOmNNPkadwCUiE4A/AVqAHcADqprVOvwi0gD0qerRYKbvWuBu4LeArqTO3WmqeutosWwCV3Zc70eaKV57Z/eIDsDkMiDt7U3/9ebQksTvn3Eyz+5+k1PrxnOo5z1ndV6/8yBrd3ayaE5j6KSfrFCvaVjpfhfGJIRalllEHiW+69ZPgY8Ar6vqZ7N8wnnEO2+riX+yWKmqd4pIPbASaAb2Adeq6lujxbLEX/qSlys41tefcUavMcadTIl/rAlcc1R1bhDgAWD4LlwZBdszfiBNeRewMNs4pvQlL+R2Yk0fpW8g/uHx1se2s6Bluq0jb0yBjNXG35e4kW0TjzHDpVuuIJmtI29MYY2V+M9Nnq0LzMt25q4pX7ku3ZtuuYJkx/sH6OtPv8xD1HWzeKYSjTVzt3q0n5vKE2bp3sRyBbcOa+OH+CJufQPKNfdtynsZYNfLCldaPFM5sh3OaUzWs0WHb9SyreMoC1qm8/zyy3nkpgt58YtX8N2bLhyxrk8+M09dz2SttHimsmS9Oqcxo80WTQwlzHb0zoZX00/fSI7lum4Wz5g4u+I3WRtrtujwbRhHW4/f92WFKy2eqSyW+E3WxpotmsvoHd+XFa60eKayZLX1YrHZBC6/ZJotmm57wWTpthp0PfPU4hlzQqiZu76wxF86Ht/6xojROzZD15jiCDtz15icXN16OgtaprP/yLGhbQUTt21mrjF+sMRvnKuvq01J8pbwjfGLde4aY0yFsSt+UzBdPb3WBGSMByzxm4KwZZmN8Yc19ZjI5TKxyxgTvcgSv4g0icgGEdklIq+IyGeD8jtE5A0R2Rp8fTSqOpjCSV6fZzhbltkYv0TZ1NMPfF5Vt4jIZGCziKwLfnavqv5jhM9tCii5GSdd081YyzL3DQ4OtfsbY6IX2RW/qh5Q1S3B7W5gF2ANuWVmeDNOuqabxLLME2qqmFw7jnFVUFMtTK4dx4SaKlZ8fJ518BpTQAXp3BWRWcS3YXwRWADcLCJLgRjxTwVH0jxmGbAMoLm5efiPjScSzTgntlQ80XSTnMxtYpcx/oi8c1dE6oDHgD9X1XeAfwbeB7QCB4CvpHucqt6vqm2q2tbQ0BB1NU1I6ZpxMjXd1NfVcm7TlKEJXonbxpjCijTxi0gN8aT/HVX9AYCqdqrqgKoOAt8ELoiyDiZaw5txRmu6Sd4m0LYMNKZ4Imvqkfjeeg8Au1T1q0nlM1T1QHD3Y8DLUdXBFMbwZpx0SX/4NoHJbMtAYworyjb+BcAngB0isjUo+yLw+yLSCiiwF/h0hHUwBTJ8fZ5k6bYJTPbQxn0snT/LlhU2pkAiS/yq+hwgaX70ZFTPafyUaZvA4cdY4jemMGzmrolcNtsB2paBxhSOJX4TuXTbBCazLQONKSxbpM0UxJ2L57J0/qyhbQIB2zLQmCKxxG8KpqVxckqSt4RvTHFYU48xxlQYS/zGGFNhLPGbjEZbatmHeMaYcKyN36Q11lLLxY5njAnPrvjNCNkstVzMeMaY/FjiNyOk2zErn12yXMczxuTHEr8ZIZellosRzxiTH0v8ZoRcllouRjxjTH5EVYtdhzG1tbVpLBYrdjUqTldPr9NdslzHM8aMTkQ2q2rb8HIb1WMyGm2pZR/ipeP7HyuLZ/F8YInflA3fh6BaPIvni8ja+EWkSUQ2iMguEXlFRD4blE8TkXUisjv4PjWqOpjK4fsQVItn8XwSZeduP/B5Vf11YD7wpyIyB7gNWK+qZwHrg/sVyfeZsaU009b3IagWz+L5JModuA4AB4Lb3SKyCzgdWAxcGhz2IPAMsDyqevjK94+ZpfSxFfwfgmrxLJ5PCjKcU0RmAR8AXgQaE5utB99PLUQdfOL7x8xS+9gK/g9BtXgWzyeRD+cUkTrgP4C/V9UfiMhRVZ2S9PMjqjqinV9ElgHLAJqbm89//fXXI61nIW3rOMr133qR7t7+obLJteN45KYLOTfEFoS+xysk30dpWDyLV0hFGc4pIjXAY8B3VPUHQXGniMxQ1QMiMgM4lO6xqno/cD/Ex/FHWc9C8/1jZql9bE3m+xBUi2fxfBDlqB4BHgB2qepXk370OHBDcPsGYE1UdfBV4mNh7bgqThpfTe04Nx8z3ccTTqqppnacpMQL2+mb7nG+d0hbPFOOorziXwB8AtghIluDsi8CXwZWisiNwD7g2gjr4C1N/KsydM+/eAJCEDMubKdvuscpeN0hbfH87tA34dmSDUXQ1dPLgrt/wvG+E80pE2qqeH755aGu0gsV74mbP8RVX38u5+dJF692XBWg9PafeP+Vwmtg8UwpydTGX9aLtPn6Mdj3McSZ4m3tOBrqedLFq64SqqX0XgOLZ8pB2S7Z4PPH4JlTJ3K8fyCl7Hj/QF6dsT1JI3AAenr7ncdrbZoSqtM33fn2DQxSJanH+dQhbfFKp0Pf5K4sr/hLYVz78Ca2fJrcjrz73ohWfQ3KXcYDQo9VTne+t//33/B2HLXF83scuslPWV7xJz62HufEFUziY2uYN3IU8SbWjEsZJz+xZlzoeFs7jmYsb2mc7DTeNW1NLGiZntNY5Uzne85/O4Xnl1/ubNzz1a2n51w3ixddPOOvskz8vn8Mdh2vNcOkqkzl+cbLdazyaOfr+zhqi2fKUVk29Yw1Dj1sPF8/Vrc0TmbpRc0pZUsvag51tR9FPNfzDIwx+SnLK37IPA49LN8/Vp9/xjS+97N9CFUog7SdMc2reK7nGRSK71P6Ky2ecaMsx/FX2phk38d0l+rvw+eRYZUYz+SuosbxV9qYZN/HdJfi78P3kWGVFs+4VZaJP6oxyb5OCCt053Ou9R4tnuvXdPWWDm568CVWb+nIK47vf/wqLZ5xqyzb+BOdibcO+5iZT7OCzx+D6+tqaZ42kZ93vjtUdsa08G2q9XW1tJ0xlefau4bKfvOMqdTX1Yaqd31dLdedP5OHNu0bKruubSbPtb/p9DWdf9c6Dr4Tn7vw9K5D3P3jV9n4xQ+HijVz6kR+1Zc66exXfflNsvN5ZJjv8YxbZXnFD/HO0+eXX84jN13I88svzyuh+P4xOLanKyXpA7zW+S6xPV0ZHjG69s7ulKQP8NP2LmJ7ukLVu6unl5Wb96eUPfrSfm5dtc3Za7B6S8dQ0k848M57oa/8j7z7HgODqf1fA4MaelJcfV0t17XNTCm7rm2mNyPDfI9n3CrLK/4EV2OSfZ8Q9uzuNzOWt51Zn3O8TBO4nt39Zqh6pzvf6ioJRvicuKrO5zX44dZfZixfcl5TzvGeaz+csTzMsNaunl5WxlL/+K2M7eezC88O/R71faSZTQjzV9le8bvk+8fgS86anlP5WDJN4LrkrOkc60tdw+dY39hrAqU734FBHdGU0p3H+kIfyFDnTOVjmV43IafysUTV5l1fV8u5TVOcJVXf4xk3LPFnwfePwW1n1nNxS+qV/cUt9aGu9gGmThofvyJPUl0lTDlpPPH9dU4Yfj+ddM0cl53dkPbYPYd7cqxt3NzTT8mpfCwTa9L/18hUPpao2rxddWYnrN95kOWrtrF+50En8WJ7uvjq2tdCNztGHa+9s5tVsQ7aO7srIl5CWTf1uOT7x+CHb5pPbE8Xz+5+k0vOmh466UP86vSkmuqUtXVOqqlma8fRtO3eYzXPpGvmWLerM+2xYZuntu1/O2P5wjmnFT1efV0ttdXC8b4TZbXVktfv3WVnNsCie58Z6it6NLaf2Y2TeOqWS0PHu/5bm4b6iv7pJ+1c3FLPwzfN9ybe7at3pAw4WHpRM3cunlu28ZJFufXit0XkkIi8nFR2h4i8ISJbg6+PRvX8UfD9Y3DbmfV8btHsvJI+ZL46HVcFw/I+gwpvdh8fNV66Zo5xGd55vzb9pJzrO9rjfIm3eksHbx9Pbdp6+/hA6Ct1153Z63ceTDtAIOyVf2xPV8YBAj7Ea+/sTkmqAA9t3Bf6ytr3eMNF2dTzr8CVacrvVdXW4OvJCJ/fhJSpKeoXb/4q7fGZro4T0rbxk76JqH8wbfGYMj3Ol3hP7EifQDOVFzre2p3pP4FlKh/LaAMOfIg32gq05RhvuMgSv6o+C7wVVXwTratbT+eRT13AHy2YxSOfuoCrW08P3YmcvEhb4uvW356d9tioVhQtdryr5qZvHspUPpZLM7zmmcrHsmhOY07lY3E94KBQAxh8eb+4jjdcMTp3bxaR7UFT0NRMB4nIMhGJiUjs8OH0Q+tMdG5fvYNr7tvEP/2knWvu28Tta3bk1Ykc2/sWvf2DQ1/7j/zK6xVFXcdbcl4TM04en1I24+TxoYaaAsxtSv9fJ1P5WBbOOY3ZjZNSymY3TgrVnwHuBxy4juf7+8V1vOEiXaRNRGYBT6jqOcH9RuBN4ssz/i0wQ1U/NVacctts3Xftnd1cce+zI8qfvuUSWhons3pLB0/sOMhVc0/LKnGNFu/1rndZu7OTRXMaQyeZZOt3HvQ63n0bdrN6+wGWzJvBpy87K3ScqBa+e+SFPazZfoDF82Zw/QfPDB0nIdf3SqHj+f5+yXfARqZF2go6qkdVhxoMReSbwBOFfH6TndHaFx/auHeo0+npXYfY0nF0zJEGmeLdvuZlXvhFvDXw0dh+p6MgfI+360A3b7xzPHS80ZbVcFG/l/Ye4eeHe5ydb7bvlWLF8/H9krw8yv0//YXT1U0L2tQjIjOS7n4MeDnTsaZ4MrUjTj2pJtRIg0zxEkk/l1iZ+D6qIop46Ua5+FQ/ixc+XtSrm0Y5nPO7wEZgtojsF5EbgRUiskNEtgOXAbdE9fwmvEzti0d+1Zf2+LFGGqSL98H3pd/YxZdREBbP4hUzXtSrm0bW1KOqv5+m+IGons+4defiuSydP4utHUdpbZpCS+PkjFcv2Yw0OP+MaTz60n4S+29devapvPBfIwd9+TIKwuJZvGLGi3p1U1uywWTU0jiZa9qahkYSTJ00fsToewnKR5P42NrbP8jxYFTPV5/+Ode1pbZX5jNqIWzdLF5cS+PktKNm8hmVUmnxotinOqrVTW3JBpO1/UeOUVc7LmUph7racaFW56ypquIPL5zFsovfl/KpotB1s3hxXT29vPT6kZSyl14/QldPr8XLUrpPyfmIcnVTS/wma2E/fo72uPq6Widjk31fQdX3eL4vPe57vISWxsnOxtqDu6Xlh7OmHpO1sB8/C7Eph+8rqPoez/c/TL7HKzWRTuByxSZw+aWrpzfUx8+wjytE3SwePL71jRHbleYzbrzS4vko0wQuS/zGmCE+/2EqhXi+8WLmrjGlptwTw3Cu25QrLV6psMRvTAbJU+bLtSnAVCbr3DUmjainzBtTTJb4jUkj6inzxhSTJX5j0qj04X6mvFniNyaNqOYetHd2syrW4WzvVNfxunp62dZx1Jq0ypx17hqTgesp88nrtQNO1393Ec86syuHXfEbM4r6ulrObZri5Eq/ktd/N36xxG9MAVT6+u/GL1FuxPJtETkkIi8nlU0TkXUisjv4Hm5naGNKTKWv/278EuUV/78CVw4ruw1Yr6pnAeuD+8aUPdfrtZfa+u/GL5Gu1SMis4AnVPWc4P5rwKWqeiDYf/cZVZ09Vhxbq8eUi/bObmfrtUcRr9KWqCh3vqzV06iqBwCC5H9qpgNFZBmwDKC5uTnTYcaUFNfrtZfK+u/GL9527qrq/arapqptDQ0Nxa6OMcaUjUIn/s6giYfg+6ECP78xxlS8Qif+x4Ebgts3AGsK/PzGGFPxohzO+V1gIzBbRPaLyI3Al4EPi8hu4MPBfWOMMQUUWeeuqv5+hh8tjOo5jTHGjK0ktl4UkcPA6xE+xXTgzQjj+6Dcz7Hczw/sHMtFIc/xDFUdMTqmJBJ/1EQklm6sazkp93Ms9/MDO8dy4cM5ejuc0xhjTDQs8RtjTIWxxB93f7ErUADlfo7lfn5g51guin6O1sZvjDEVxq74jTGmwljiN8aYClP2iV9EmkRkg4jsEpFXROSzw37+FyKiIjI9qewLItIuIq+JyG8Xvta5Ge0cReTPgvN4RURWJJWXxTmKSKuIbBKRrSISE5ELkh5Tauc4QUR+JiLbgnP8UlCecQOjUjrHUc7vHhF5VUS2i8gPRWRK0mNK5vwg8zkm/dyPfKOqZf0FzADOC25PBn4OzAnuNwFPEZ8cNj0omwNsA2qBM4H/AqqLfR5hzhG4DHgaqA1+dmoZnuNa4CNB+UeJ7/FQqucoQF1wuwZ4EZgPrABuC8pvA+4uxXMc5fwWAeOC8rtL9fxGO8fgvjf5puyv+FX1gKpuCW53A7uA04Mf3wvcCiT3cC8Gvqeqvaq6B2gHLsBjo5zjZ4Avq2pv8LPEaqjldI4KnBwcdgrwy+B2KZ6jqmpPcLcm+FLi5/JgUP4gsCS4XVLnmOn8VHWtqvYH5ZuAmcHtkjo/GPV3CB7lm7JP/MmCHcE+ALwoIlcDb6jqtmGHnQ50JN3fz4k/FN5LPkfgbOBiEXlRRP5DRH4zOKyczvHPgXtEpAP4R+ALwWEleY4iUi0iW4kvWb5OVV9k2AZGQGIDo5I7xwznl+xTwI+C2yV3fpD+HH3LNxWT+EWkDniMeKLoB/4KuD3doWnKSmLMa/I5quo7xBfhm0r84/RfAitFRCivc/wMcIuqNgG3AA8kDk3zcO/PUVUHVLWV+FXvBSJyziiHl9w5jnZ+IvJXxP9vfidRlC5E5JXMU5pznIdn+aYiEr+I1BBPFt9R1R8A7yPenrZNRPYS/wVtEZHTiP/FbUp6+ExONB94K805QvxcfhB8/PwZMEh8gahyOscbgMTt73PiY3JJnmOCqh4FngGuJPMGRiV7jsPODxG5AbgK+EMNGr8p4fODlHNcjG/5ppgdIYX4Iv4X9SHga6Mcs5cTnS2/QWpnyy8ojQ6lEecI/AlwZ3D7bOIfKaXMznEXcGlweyGwuYR/jw3AlOD2ROCnxJPhPaR27q4oxXMc5fyuBHYCDcOOL6nzG+0chx1T9HxT6M3Wi2EB8AlgR9DuBvBFVX0y3cGq+oqIrCT+RuwH/lRVBwpS0/DSniPwbeDbIvIy8B5wg8bfbeV0jn8M/C8RGQccB5ZByf4eZwAPikg18U/jK1X1CRHZSLyZ7kZgH3AtlOQ5Zjq/duKJb128JZJNqvonJXh+kOEcMx1crHO0JRuMMabCVEQbvzHGmBMs8RtjTIWxxG+MMRXGEr8xxlQYS/zGGFNhLPGbsiUiA8Gqna8EqyV+TkRCv+dF5EPByouvBl/Lkn7WECyN8Z8SX0X0M0k/uzBYebIShk+bEmBvRFPOjml86jwicirwb8QXcvubXAMFsyz/DViiqluCZXWfEpE3VPX/EZ889qqq3iAijcBGEVkFdAFfB/6HnliILNfnFuJDrwfDPN6Y4WwcvylbItKjqnVJ938NeIn4shVnAA8Dk4If36yqL4jIw8AqVV0TPOY7wKPAbxJffPH2pHgLgTuAPwMeJz5T8w3gIuCPgse8BJxPfGLZl4FLiU9W+oaq3hesPbSG+JpKNcBfq+qaYCG6HwEbgnhLVPV1l6+PqVyW+E3ZGp74g7IjwPuBbmBQVY+LyFnAd1W1TUR+i/iib0tE5BRgK3AWsBJ4MPEHIYh1CrBHVaeJyCeBNlW9OfhZFbCR+EqabcDHie+H8HciUgs8T3wGbgdwkqq+E3yK2BQ83xnEp+9/UFU3RfICmYplTT2m0iRWQ6wBvi4ircAA8bWMUNX/EJFvBE1Dvws8pqr9QXNLuquktFdOqjooIvcR/2PQJSKLgHkick1wyCnEE/x+4C4RuYT4InqnA43BMa9b0jdRsMRvKkbQ1DNAfHXLvwE6gXOJD3I4nnTow8AfAr9HfH14gFeIX7k/nnTc+cTXWMlkMPiC+B+cP1PVp4bV6ZPEF/Y6X1X7gtUbJwQ/fjf7szMmezaqx1QEEWkA/gX4erBQ3SnAgaDD9BNAddLh/0p83wZU9ZWg7BvAJ4NPCIhIPfFtAleQnaeAzwRLSyMiZ4vIpKAeh4KkfxnxJh5jImVX/KacTQxW8qwhvvLhw8BXg5/9H+AxEbmWeAfq0NW1qnaKyC5gdVLZARG5HvimiEwmfgX/NVX99yzr8i1gFvF12AU4THwLxe8A/y4iMeL9Ca+GOVFjcmGdu8YMIyInATuIb+7+drHrY4xr1tRjTBIRuYL4Vff/tqRvypVd8RtjTIWxK35jjKkwlviNMabCWOI3xpgKY4nfGGMqjCV+Y4ypMP8fFF03YlhPduQAAAAASUVORK5CYII=", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.14878293554077535\n", + "-0.16673322492745407\n" + ] + } + ], + "source": [ + "print(new_pumpkins['Month'].corr(new_pumpkins['Price']))\n", + "print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Il semble que la corrélation soit assez faible, mais il existe une autre relation plus importante - car les points de prix dans le graphique ci-dessus semblent former plusieurs groupes distincts. Faisons un graphique qui montrera différentes variétés de citrouilles :\n" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA7VklEQVR4nO2deXxU5fX/34cQzACyR6WyBEEpyBIlYF3rAlQtAi61Rtx+xq9tNZbar1q7iHxb7FdxrVr7VZt+QYGIS12wdcMvtmqtLIoIRFHbhCKUhMhO2M/vj3uTzCQzSWbmzsydmfN+ve7rzj1z7+c+T2Zy5rnneZ7ziKpiGIZhZA/tUl0AwzAMI7mY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFlG+1QXoC306tVLCwoKUl0MwzCMtGLZsmWbVDW/qT0tHH9BQQFLly5NdTEMwzDSChGpCme3UI9hGEaWYY7fMAwjyzDHbxiGkWWkRYzfMBLJvn37WLduHbt37051UQwjJvLy8ujTpw+5ubltOt8cv5H1rFu3jkMPPZSCggJEJNXFMYyoUFVqa2tZt24dAwYMaNM1FuoxIlJTA0uWOPtMZvfu3fTs2dOcvpGWiAg9e/aM6onVHL8RlvJy6N8fxo1z9uXlqS5RYjGnb6Qz0X5/zfEbzaipgZISqKuDrVudfUlJ5rf8DSNbMMdvNKOyEjp0CLXl5jp2IzHk5ORQWFjIsGHD+M53vsOuXbsA6Ny5MwCVlZUEAgEKCwsbtieeeCJE4/zzz6ewsJBBgwbRtWvXhvPOPPNMfvKTnzScV1VVxVFHHcWWLVs4/fTTGTx4MCNHjuTkk0/m008/BWiw12tcdNFFSfpLGElBVX2/jRo1So3kUV2tGgioQuMWCDj2TGT16tWpLoJ26tSp4fWll16q9957b4j9n//8px577LFt0lq0aJF++9vfbjjetWuXDh48uKGekyZN0jlz5qiq6je/+U1dsmSJqqo++uijet555zWzG+lBuO8xsFTD+FRr8RvNyM+HsjIIBKBLF2dfVubY4yGjOosTWJlTTz2Vzz//3DO9QCDAfffdx3XXXccrr7zC9u3bmTJlSrPzTjvtNE/va/gXc/xGWIqLoaoKFi509sXF8ellVGdxAiuzf/9+XnnlFYYPH97svS+++CIk1PP222+3Wffcc8+lR48eXHHFFTzyyCNhz1mwYEHIfadMmdJwr5tvvjn6yhi+JaHj+EWkEtgOHAD2q2qRiPQA5gMFQCVwsapuTmQ5jNjIz4+/lQ+hncV1dY6tpATGjvVGP6kkqDJ1dXUUFhYCTou/pKSk2TkDBw5k+fLlMd/j+uuvp66ujsGDB4fYp0yZQiAQoKCggIceeqjBPnfuXIqKimK+n+FfkjGB6wxV3RR0fCvwpqreKSK3usc/CX+pkQnUdxbX+0lo7CxOO8efoMoEAoG4nHpbaNeuHe3aNX/INweffaQi1DMJmO2+ng1MTkEZjCRSUAB794ba9u1z7GlHRlXGyFYS7fgVeF1ElonIta7tcFXdAODuD0twGYwUk6jO4pSQwso0jfE/+OCDCb1fcIx/7NixCb2XkVzEGfGTIHGRr6nqehE5DHgDuAF4SVW7BZ2zWVW7h7n2WuBagH79+o2qqgq7noCRRtTUOBGRggJ/Of2KigqGDBkS3UV+rYyRtYT7HovIMlVtFsdLaIxfVde7+2oReR4YA2wUkd6qukFEegPVEa59DHgMoKioKHG/TkbS8Kqz2BdkVGWMbCNhoR4R6SQih9a/BsYDK4GXgCvd064EXkxUGQzDMIzmJLLFfzjwvJs8qD0wT1VfFZElwNMiUgKsBb6TwDIYhmEYTUiY41fVfwAjw9hrgbMSdV/DMAyjZWzmrmEYRpZhjj+FeJ3uxe96hmH4A3P8KcLrdC9+1zNaRkS4/PLLG473799Pfn4+EyZMAGDWrFmUlpYCMH36dDp27Eh1deOAuPr0zU1fA9x///3k5eWxdetWamtrG8bmH3HEERx55JENx2vWrGHYsGEh106fPp177rkHgKuuuooBAwZQWFjIyJEjefPNNxvOszTO6YU5/hTg9UInftczWqdTp06sXLmSOjcVxBtvvMGRRx4Z8fxevXpx7733tkm7vLyc0aNH8/zzz9OzZ0+WL1/O8uXL+f73v8+NN97YcNyh6SIMYbj77rtZvnw5DzzwAN///vdD3ps7d26D1rPPPtumshmpwRx/CvB6oRO/62UiiQiDnXPOOfzpT38CHGdd3EJK1Kuvvpr58+fz1Vdftaj5xRdfsGPHDmbMmEG5h49tJ554Il9++aVnekZyMcefArxO9+J3vUwjUWGwSy65hKeeeordu3ezYsUKTjjhhIjndu7cmauvvprf/OY3rZTV+QE59dRT+fTTT0PCQ/Hw6quvMnny5BCbpXFOH8zxpwCv0734Xa+eTOgsTmQYbMSIEVRWVlJeXs65557b6vk//OEPmT17Ntu2bYt4zlNPPcUll1xCu3btuOCCC3jmmWcinhtpwe5g+80338xRRx3FZZddxs9+9rOQ84JDPXfffXer5TdSRzLSMhthKC52Urh7le7F73rl5Y6D7NDBeZooK4t/cZdUkOgU0xMnTuSmm27irbfeora2tsVzu3XrxqWXXhpxYZUVK1bw2WefMW7cOAD27t3LUUcdxfXXXx/2/J49e7J5c+jSGF999RUDBgxoOL777ru54IILePDBB7nyyitZtmxZNNUzfIK1+FNIfj6MHu1dyhe/6mVSZ3Giw2BXX30106ZNC7sCVzh+/OMf8+ijj7J///5m75WXlzN9+nQqKyuprKxk/fr1fPnll0RKeNi5c2d69+7dMFrnq6++4tVXX+WUU04JOa9du3ZMnTqVgwcP8tprr0VZQ8MPmOM3Ek46dxbv2wc7dzp7iD8MVlcHmzaFPjEE06dPH6ZOndrm8nXt2osJE85nz549zd576qmnOP/880Ns559/Pk899VREvSeeeIIZM2ZQWFjImWeeye23387AgQObnSci/OIXv2DmzJkNNkvjnD4kNC2zVxQVFenSpUtTXQwjRmpqnE7QYGcXCDhr+fohwWWktMy1tU4ZRUDVqUPPns57sWRlXrsWgvtWDzsM+vWLvdwtlc/IPqJJy2wtfiNqKipg9mxn3xbScSGWffscp3rwIBw44OyrqkJb/tGEwerqQp0+OMeRWv7xls8wWsI6d42ouOEGePjhxuPSUghanzsiXncWJ5q9e52WdDAijj03N3q9nTsj2wOB1JfPyC6sxW+0mYqKUKcPznE0LX8vO58TSYcOTvgkGNXmfRVtpVOn6Oyt4XX5jOzCHL/RZhYvjs6ezuTmOjHzdu0gJ8fZ9+8fe2s6EHBi+sEcdlhsrf1ElM/ILizUY7SZMWOis6c7PXs6fRJ79zot6Xidar9+ztPOzp1OSz9Wp5+o8hnZQ8Jb/CKSIyIfisjL7vF0EflSRJa7W+tTFA1fMGSIE9MPprTUsWcqubmOk/bKqQYC0KtX/E6/Hq/L13T4qpGZJCPUMxVoGgW+X1UL3e3PSSiD4REPPQSrV8OsWc6+LR27Ruvk5OQ0jIEvLCyk0p3kEJxSuZ633norJF1zfn4+hYWFfP3rX+f+++9n9+7dfP3rX+fjjz9uuGbmzJmcddZZDfo9evRoSLFcP+Z+0aIP6dBBmDXrNT7+2BkuCs3TPIOTrjk4pXNhYSFbtmxJzB/H8JyEhnpEpA/wbeAO4MeJvJeRPIYMyexWfioIBAIsX768mT04pfJVV10V9trvfve7PPzww9TW1jJ48GAuuugiHnjgAa677jr++te/sn79eh599FGWLl1K9+7dASe3/oQJExry5u/bB7NmlVNYeAqvvFLOCSd8i6oqJ5QUiRtvvJGbbrop3qobKSDRLf4HgFuAg03spSKyQkT+ICLdw10oIteKyFIRWVqTjnP7jYymZmcNS75cQs3OxH03o02p3LNnTwYNGsSGDRs4++yz6d27N0888QQ33ngj06dPb3D64dizR3nzzWe5/fZZvP/+6+zZs7theKiReSTM8YvIBKBaVZtmcfodMBAoBDYAYVeTUNXHVLVIVYvy02H8n5E1lH9cTv8H+jPuyXH0f6A/5Svjz8tcV1fXEDKpT7MQbUrltWvXsnv3bkaMGAHAAw88wM9//nNqampCVvcKx9Kl7/K1rw2gT5+BjBp1Ou++++dWh4fef//9DWU+44wzoquwkVIS2eI/GZgoIpXAU8CZIjJHVTeq6gFVPQg8DmTomBAjE6nZWUPJSyXU7a9j656t1O2vo+TFkrhb/vWhnuXLl/P8888DbU+pPH/+fI499liOOuoopk6dSl5eHgBf+9rXOPPMM/nBD37Q6v2feaac4uJLaNcOzj77El5/vbzV4aHBq3ctWrQo+kobKSNhMX5V/SnwUwAROR24SVUvE5HeqrrBPe18YGWiymAYXlO5pZIOOR2o29+YayE3J5fKLZXkd/LuyTSalMr1Mf733nuPb3/725xzzjkcccQRgJNJs127ltt3Bw4c4LnnniM39yV+85s7OHhQ+eqrWjp02A4c6lmdDP+QiglcM0XkYxFZAZwB3JiCMhhGTBR0K2DvgdDA974D+yjoVuDpfaJNqQzOcoiXX355q6tyNWXhwoWMHDmSf/3rX1RWVrJ2bRUXXnghL7zwQpy1MPxKUhy/qr6lqhPc15er6nBVHaGqE4Na/4bhe/I75VM2qYxA+wBdDulCoH2Askllnrb2IbaUygA/+clP+N///V+2b9/e5nuVl5c3u9eFF17IvHnzANi1axd9+vRp2O677z4gNMYfPATV8D+WltnIeiKlZW6Jmp01VG6ppKBbgedO3zBiIZq0zJaywTBiIL9Tvjl8I22xJG2GYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvJI2aGliyxNknipdfhmuucfZesGWLs1ykV4knvdbzOo2y3/UMbzDHbySF8nJnhahx45x9G3KORc3w4XDeec5C7uedB27KmphZtQo+/xw2bXL2q1YlTk9EQvLp7N+/n/z8/JD0y6XuYgg//OEP+dWvfkVtLXz8Mdxyyx1MmXI9tbVO1s36dMuFhYWcdNJJDdfn5+dz3HHHcfTRR/Otb32Lv/3tbyHlq9f78Y+nc/PN9zSkZQYoKChg06ZNQPMU0nfeeScAp59+OvXDrgsKChg6dDhDh47gtNO+yeuvV7WY5nnr1q1cccUVDBw4kIEDB3LFFVeEpKJetWoVZ555JscccwxHH300v/rVr6gfij5r1ixEhDfffLPh/Oeffx4R4dlnnw25z6xZsyguLg6xbdq0ifz8fPbs2QPApEmTOPHEE0POCU5DPXTo0JCkeVdddVXDfU4//XQGDx7c8Le56KKLuOOOOxqOg/92Dz74INOnT+eee+5p0An32W3cuJEJEyYwcuRIhg4dyrnnxr+EiQ3nNBJOTQ2UlEBdnbOBczx2rHfr7778Mqxskvzj448du+s7o2LLlsay1lNX59i7dfNer1OnTqxcuZK6ujoCgQBvvPEGRx55ZFitGTNmUFhYyMiRU1AVXnjh98yZ8yFVVXDwINx9990N6ZaDqU/tALBo0SIuuOACFi1axJAhQ9i3j4brVZ2tPi1z03w9kVJIN+WhhxbRtWsvHn30dh5/fAa9ez8eMc1zSUkJw4YN44knngDg9ttv55prruGZZ56hrq6OiRMn8rvf/Y7x48eza9cuLrzwQh555JGGFBbDhw+nvLycs846C3AmwI0cObLZfS644AJuuukmdu3aRceOHQF49tlnmThxIocccghbtmzhgw8+oHPnzvzzn/9kwIABDdfWp6H+7LPPGDVqFBdddBG5YZIZzZ07l6Ki0KHzP//5zwHnRy/4bzd9+vSQ88J9dtOmTWPcuHFMnToVcNJ5xIu1+I2EU1nZPMtjbq5j94pI2QVizToQKRTTaK8Blrh7L/TgnHPO4U9/+hPQmJkzHF26dOG22+5g5sxSZs68nu9975ccemg3RBzH3RbOOOMMrr32Wh577DHASb8sEnpOPGmZVRv1hg8/kZqaLyPqff755yxbtozbbrutwTZt2jSWLl3KF198wbx58zj55JMZP348AB07duThhx9ueNIAOPXUU1m8eDH79u1jx44dfP755xQWFja7V5cuXTjttNNYsGBBg+2pp55q+Fs/99xznHfeeVxyySURZ0kfffTRdOzYkc2bN0f7Z4mJDRs20KdPn4bjEfE+ymKO30gCBQXN/+H37XPsXjF5cnT21ojUqnfs5UB/YJy7bz1u1bKeQ72z2b17NytWrOCEE06IqHfZZcVs27aZnTu3ce65TohI1Vl0/eabb24IF0yZMiWixvHHH88nn3wCOD/MwZP4y8vv55JLCjnpJEdn/fr1De8Fp5AuLCxk/vz5zbRFGvXee+9VvvnNyRHTPK9evbohDFJPfUhk1apVrFq1ilGjRoVcM3DgQHbs2MG2bdvc+wljx47ltdde48UXX2TixIkR611cXNzg1NevX8+aNWsa0krX/+AWFxdHXAPhgw8+4Oijj+awww4L+/6UKVMa/jY333xzxHKEI9xnd/3111NSUsIZZ5zBHXfcEfJZxIqFeoyEk5/vxN1LSpyW/r59zrGXyyxMmODE+INWG2T48NjCPOA45EAgNDwTCEC3bjVACVDnbrjHY4HIFYqs13g8YsQIKisrKS8vbzWOu3HjOrZu/TcHDgh79uwgEOhM//6O448U6mlKcLqW3Fyn76WqynHal156I7fddhM9ezrvFwT9Src11HPDDWfw739vpEePw7j++hkR0zyrKtL0cSPIHul9IMR+ySWX8OCDD7J161buvfdefv3rX4e9ZsKECVx33XVs27aNp59+mosuuoicnBw2btzI559/zimnnIKI0L59e1auXMmwYcMAJzfR448/zj/+8Q9effXViPUOF+ppK+E+u29961sN93zllVc47rjjWLlyJfGsU2ItfiMpFBc7TmXhQmcfIYoRFytWwIIFzg/MggXOcTwceywMGuQsjj5okHMMlUDTZmuua49FL5SJEydy0003RQzz1DN16lR++cvpFBdfzDPP/BfDh9PgpNvKhx9+GJLbpWdPGnR6945eryl//esiKiurGDnyWJ59dlpEvWOPPZYPP/yQg0FxqoMHD/LRRx8xZMgQjj32WJrm6vrHP/5B586dOfTQxrTRY8aMYeXKlWzatIljjjkmYrkCgQBnn302zz//fEiYZ/78+WzevJkBAwZQUFBAZWVlSLjnxhtv5NNPP2X+/PlcccUV7N69O5Y/S0z06NGDSy+9lCeffJLRo0fz17/+NS49c/xG0sjPh9GjvW3pN2XCBPj972Nv6TelWzcnJNXYMi8Amgaq97n2WPRCufrqq5k2bRrDhw+PqPHKK69QXV3NFVdcwfTpt/Hyy8/z2Wer23T/ev7yl7/w2GOP8R//8R8h9txcJxwTFHWJiy5dAjz88APMmfMEX331VdhzBg0axHHHHceMGTMabDNmzOD4449n0KBBTJkyhXfeeYeFCxcCTqjphz/8Ibfcckszrf/+7/+O2NIPpri4mPvuu4+NGzfyjW98A3DCPK+++mpDKuxly5aFjfNfcMEFFBUVMXv27Db9DeLl//7v/9i1axcA27dv54svvqBfv35xaZrjN4yoyAfKgADQxd2X0VKYJxr69OnTMHojHLt37+ZHP/oRjzzyCCJCp06dmDlzZsNQTwiNExcWFrLX7WCZP38+hYWFHHPMMfz617/mueeeizorKTSP8d96660tnt+7d2+Ki4v57W9/C4RP81xWVsaaNWsYNGgQAwcOZM2aNZSVlQFOC/3FF19kxowZDB48mOHDhzN69OiQOtdzzjnntGkZyPHjx7N+/Xq++93vIiLuOgRrG34EAAYMGECXLl14//33m10/bdo07rvvvpCnlHqCY/xjx45ttSzBhPvsli1bRlFRESNGjODEE0/kmmuuYfTo0VHpNiXhaZlFJAdYCnypqhNEpAcwH6eJVAlcrKotdo9bWmZ/UVPjjMgpKIi/9T53Ljz9NFx8MbTQD5nQssWSltkZzVOJ8zVOXZbOHTtg61bo2hXCDI9PuV5dnTOBq1Mnp0/DSBzRpGVORot/KlARdHwr8KaqHg286R4baYKXE7H69oXLLoOXXnL2cT69JmWSWCP5wGhS6fTXrIFPPoENG5z9mjX+0lu71pmkVlnp7NeujU/P8I6EOn4R6QN8G/h9kHkSUB8cmw1MTmQZDO8Inoi1dauzLymJLQXD3Lmwbl2o7V//cuypLls6sGMHuCMZG9i2zbH7Qa+uDqqrQ23V1c0nsRmpIdEt/geAW4DgQNjh9cstuvuwg2FF5FoRWSoiS2sy9b83zfByItbTT0dnb414y5YOK9EFE5TNoE32ZOvt3Bmd3YiPaL+/CXP8IjIBqFbVZbFcr6qPqWqRqhbFM17V8A4vJ2JdfHF09taIp2x5eXnU1tamlfPv2jU6e7L1OnWKzm7EjqpSW1tLXl5em69J5ASuk4GJInIukAd0EZE5wEYR6a2qG0SkN1DdoorhG7yciDVlCvz0p054p56+fWPv4I2nbH369GHdunWk25Pljh0QPJQ8Ly/075lqvT17IHjN90MP9TZNh9FIXl5eSFqH1kjKYusicjpwkzuq526gVlXvFJFbgR6q2nxAbhA2qsdfZNqonnTm3Xfh9ddh/Hg4+WT/6VVUwOLFMGYMxDBy1IiTSKN6UuH4ewJPA/2AtcB3VDX8zA4Xc/yGYRjRE8nxJyVXj6q+Bbzlvq4FzkrGfQ3DMIzm2MxdwzCMLCOjHX8ylvqLB6/LV1EBs2c7+2zQSwZef0Z+/04aWYKq+n4bNWqURsu8eaqBgGrXrs5+3ryoJRKK1+UrLa1fN8nZSkszWy8ZeP0Z+f07aWQewFIN41OT0rkbL9F27tbUOFP2m+Y+r6ryx0gPr8tXUQFDhza3r14d20gKv+slA68/I79/J43MJJW5epJOMpb6iwevy7d4cXT2dNdLBl5/Rn7/ThrZRUY6/mQs9RcPXpdvzJjo7Omulwy8/oz8/p00souMdPz1szgDAejSxdl7vdRfPHhdviFDoGlq8tLS2MMoftdLBl5/Rn7/ThrZRUbG+Ovx+yxOr8vn9SxJv+slA68/I79/J43MIqUzd+PFZu4abcUcq2E0klWdu0Z2ktyFWAwjfTHHb2QE2bYQi2HEgzn+FOL1LM6XX4ZrrnH2idSL9T7hrps7FyZNin3lrXoSNVzy3Xfh9tudvRd4ref1Z24zi7OEcLO6/LbFMnPX73g9i3PYsNCZscOHJ0Yv1vuEu65Pn1Bb376xl7e6WlUkVE/EscfKuHGheuPHx66VCD2vP3ObWZx5EGHmbsqdelu2THP81dXOP1bwP20gELuTWrAgVKt+W7DAW73bbovtPpH0wm1z5nhb5lj/Bu+8E17vnXf8oed1fb3+Thr+IJLjt1BPCvA6LPHCC9HZY9WbPz+2+0RTjljX3PX6b/D669HZk63ndX1tZnF2kcg1d/NEZLGIfCQiq0Tkv1z7dBH5UkSWu9u5iSqDX/F6FufkydHZY9X77ndju0805Yh1zV2v/wbjx0dnT7ae1/W1mcVZRrjHAC82QIDO7utc4H3gG8B0nNW4sjbUo9oYT+3SxZt46vDhoY/p8cZ7I+nFep9w1/XtG2qLJ8YfT9kiMX58qF68MXmv9byur9ffSVUnVLR4sXchI6/1Mh2SHepx77vDPcx1N//PFksSxcVOZsaFC519cXF8eitWwIIFzhDGBQuc40ToHXFE6Hm9e8eupx5/G7zWW78+9HjDhvj0XnsN3nkHpk1z9q+9Fp+e15+5199Jr+dV2DwNDwn3a+DVBuQAy4EdwF2ubTpQCawA/gB0b00nE1v86YiXHZRz5oTX8kvnrtd62YbXncXW+RwbpKJzV1UPqGoh0AcYIyLDgN8BA4FCYANwb7hrReRaEVkqIktrbFCxL/CygzJSJ65fOne91ss2LK21v0nKqB5V3YKz2PrZqrrR/UE4CDwOhE3Oq6qPqWqRqhbl+yTpit8n83hN08k88XZQButF6sT1S+eu13r1/O53cNppzt4LvNbzakKdpbX2OeEeA7zYgHygm/s6ALwNTAB6B51zI/BUa1p+CPX4fTKP10SazNO9e2i5e/SIXa9Hj9i0IuF1Z7HXerH+7ZKl5+WEOlXvO5+9nrCWDZDsCVzACOBDnFj+SmCaa38S+Ni1vxT8QxBpS7Xj9/tkHq+JFE+NFPdurdyR9PLymtv8EgP2Wu+RR8L/7R55xB96Xve5ZNv/jF+J5PgTOapnhaoep6ojVHWYqv7StV+uqsNd+0RVjXOsROLx+2Qer4kUT40U326t3OH02rWDnJzm9/BLDNhrvUgjUGIdmeK1ntd9Ltn2P5Nu2MzdNuD3yTxeEymeGim+3Vq5w+kdPAgHDjS/h19iwF7rRRoaGeuQSa/1vO5zybb/mbQj3GOA37ZUh3pU/T+Zx2siTeaJtdzz5jmhnU6dnP28ec7Wvr1qTo6zj3fCUL1eu3be6eXkOMnecnLi1/O6T8PvfSTZ9j/jR4gQ6rEVuKLg3XedR8vx4+Hkk/2n5zXhVrPq2xfWrWs8p29fWLu2da3ycmeiUbt2Tmu/rAxuuSU2rUj06AGbN4ce19bGrtepE+zaFXq8Y0fk85Ndvlg/i2TpQfb9z/iNSCtwpbw135bNDy1+I/YOwHAdpR06xKYVCa87O++6K7zeXXf5o3xed8Z6rWf4A+Lp3BWRY0TkTRFZ6R6PEJFfePvbZPidWDsAw3WUHjwYm1Yk/N556vfOWK/1DH/T1s7dx4GfAvvAGbEDXJKoQhn+JNYOwHAdpe0ifPNi7Uz0e+ep3ztjvdYzfE64x4CmG7DE3X8YZFvelmu92DI11JOOmQtj7QAM11nsdWei152dnTqF6nXq5K/y+X3CmpF6iHMc/yYRGQhOdk0RuQgnz44RI+mauXDtWpgzByZOdPZt7fwLl/kxVq1I1NbCI4/Aqac6+3g6TsHpyL3rLigsdPbxdOwmonx33QXt2zvzIdq3d47jwevPw/AvbRrVIyJHAY8BJwGbgX8Cl6lqZUJL5+KXUT1eUVPjOOe6ukZbIOA4xFjSEnmtZ/gf+8yNthBpVE+bWvyq+g9VHYuTf+frqnpKspx+JuL3Waax0DShm5FY/PCZG+lLW0f1/FpEuqnqTlXdLiLdRWRGoguXqfh9lmm02AIZySfVn7mR3rQ1xn+OOqmVAVDVzUDWrZXrFfn5zgSmQAC6dHH2ZWWxP6J7rVdPpFZ8zc4alny5hJqdNdTUOBOz6upg61ZnX1LS9pZ/sJYXZIte/Wd+SPca8gYu4ZDuNZ585hVra5j9xhIq1tqjWybTvo3n5YjIIaq6B0BEAsAhiStW5lNcDGPHNp8Z6xe9+pm2HTo4LcuyMuce5R+XU/JSCR1yOrD3wF5+NqyMDh2KQ2LNOTnw5z/DuW7TIFKZmmqVTSqjeFjs6/1lm97ftpWz57oSONABcvbyt21lFBO73g2PlvPwv0rgYAf4y15K+5bx0PfiXH/R8CVt7dy9BZgI/C/OyJ6rgZdUdWZii+eQaZ27fidSx+GyT2oY9WR/6vY3vhFoH0Dvq2L3V6Fe/dBDYfduEHGuDf7xAKfl2/+B5lpVP6oiv1P0v1rZplextoahj/WH3KAPaV+A1ddWMaRf6vUMfxBv5+5M4A5gCHAs8KtkOX0j+UTqOFz8aSUdckLfyM3J5ef3VBIIQOfOjfbt252Y89694UNAlVvCa1VuqYytzFmmt/jTSqdlHszBXMfuAz3D37Q5LbOqvqKqN6nqf6rqa4kslJFaInUcjhlcwN4DoW/sO7CP711cQFUVPPyw09KPRPCok4Ju4bUKuhXEVuYs0xszuADaNZ0Ovc+x+0DP8DctOn4RecfdbxeRbUHbdhHZ1sq1eSKyWEQ+EpFVIvJfrr2HiLwhIp+5++7eVSe78WoN34aOw0Mat7IyGNIvn7JJZeTlBAhIF/JyApRNKiO/Uz6bNsG2bc4PRCTq6mDaNGc9101r87myWxkdJMAh2oVD2jVqxVTmTk7ZOkiA3INd6CDe6B3SztvyeaU3pF8+pX3LYF8AdneBfQFK+5bFHJYJ0dsTv57hc8JN5/ViAwTo7L7OBd4HvgHMBG517bcCd7WmlakpG7wkWWsCl5aq0rFa+dpipWO1lpa6tjCZHdu0BWnFW+Zhw0L14l2Tddw4b8vntV64zyJeVldV66zXF+vqqgTm/TCSBrGuuYvzVLCytfNa0egIfACcAHyKu84u0Bv4tLXrzfG3TLLWN42UutfLLdYyR1oPeMECb/8GflkzdvXq8HqrV8emZ2QmkRx/qzF+VT0IfCQi/aJ9mhCRHBFZDlQDb6jq+8Dh6q6z6+4Pi3DttSKyVESW1th00BZJ1vqmyUjRG2uZI60HHMkeazn8smbs4sXR2Q0jmLZ27vYGVrk5+V+q31q7SFUPqGoh0AcYIyLD2lowVX1MVYtUtSjfko+0SLLWN01Git5YyxxpPeBI9ljL4Zc1Y8eMic5uGCGEewxougHfDLe15dogjduBm7BQT0JI1vqmTeP5ccf4PSzz8OGhevHG+P2+Zmy4z8IwgiGWNXdFJA/4PjAI+BgoU9X9bflBEZF8YJ+qbnFn+r4O3OX+aNSq6p0icivQQ1VvaUnLJnC1jWStb1pR4YQUxoyBIUOa2yD867fecmYEFxfDiBGO9hFHwL//7V2ZX37ZCe9MngwTJsSv5/c1Y8N9FoZRT6QJXK05/vk4q269DZwDVKnq1DbecAQwG8jBCSk9raq/FJGewNNAP2At8B1V/aolLXP86U9wCohduyLP6DUMwztidfwfq+pw93V7YLGqHp+4YobHHH96Ey4FRDCWR94wEkOsKRsapuO0NcRjGE0JlwIiGMsjbxjJpTXHPzJ4ti4woq0zd43MpaICZs929m0hXAqIYHbvbvn9aIi2bKZnZCXhenz9ttmoHv8Q60iS4MXWc3NVO3RwNi9HpXg9yiXb9IzMg1hG9fgFi/H7g4oKGDq0uX316tARJTU1jTn4IfzrNWvglFNa1/K6bKZnZBNxpWU2DGjbbNHgZRiPPBL69GlcknHhQhg92unE/fzz6O7hRdlMzzAczPEbbaa12aJNl2FsKR+/1zNPTS8+PSO7MMdvtJkhQ6C0NNRWWtoYWohm9E5rWl6XzfQMoxGL8RtRE2m2aCzj9b2eeWp6htFITBO4/II5/vShfoZubq7zAyACeXlO2Mdm6BpGconk+NunojBG5lJcDGPHhh/JYzNzDcMfmOM3PCc/P9TJm8M3DH9hnbuGYRhZhrX4jaQRaWKXPREYRnIxx28kBUvLbBj+wUI9RsKJZmKXYRiJJ2GOX0T6isgiEakQkVUiMtW1TxeRL0Vkubudm6gyGMmjpgaWLAnvwC0ts2H4i0S2+PcD/6mqQ4BvANeLSH1aqftVtdDd/pzAMhhJIDg/T//+znEwraVl3revMe5vGEbiSZjjV9UNqvqB+3o7UAEcmaj7GamhaRgnXOgmP9+J4wcC0KWL08Lv0MF5HQg471kHr2Ekj6TE+EWkADgOeN81lYrIChH5g4h0j3DNtSKyVESW1lgA2LeEC+OEC90UFzvpGhYuhC+/hHXrnNdVVdaxaxjJJuEpG0SkM/AX4A5V/aOIHA5sAhT4FdBbVa9uScNSNviXcPl5bA1dw/AHKcnHLyK5wHPAXFX9I4CqblTVA6p6EHgcsESyaUzTME5LoZvgZQJtyUDDSB0JG8cvIgKUARWqel+QvbeqbnAPzwdWJqoMRnJomp8nnNO/4QZ4+OHw15eWwkMPJbKEhmEEk7BQj4icArwNfAwcdM0/A4qBQpxQTyXwvaAfgrBYqCe9ibRMYDC2ZKBheE/Ss3Oq6juAhHnLhm9mGW1ZDnDxYnP8hpEsbOaukXDashygLRloGMnDHL+RcMItExiMLRloGMnFkrQZSeGhh+C66xqXCQRbMtAwUoU5fiNpDBkS6uTN4RtGarBQj2EYRpZhjt8wDCPLMMdvRKalXMt+0DMMIybM8RvhaS3Xcqr1DMOImYQnafMCm7mbZLzOvGaZ3AwjJaQkSZuRprQ113Kq9AzDiAtz/EZzwi2ZFc8yWV7rGYYRF+b4jeZEk2s5FXqGYcSFxfiNyNTUtJxrOdV6hmG0SNKzcxoZQH6+tw7aa71w+P3HyvRMzw+oqu+3UaNGqWG0yrx5qoGAateuzn7ePNMzvfTV8wBgqYbxqQlz1kBfYBFQAawCprr2HsAbwGfuvntrWub4jVaprnb+2aBxCwQcu+mZXrrpeUQkx5/Izt39wH+q6hDgG8D1IjIUuBV4U1WPBt50j7MTv8+MTaeZtn4fgmp6pucjEub4VXWDqn7gvt6O0/I/EpgEzHZPmw1MTlQZfI3fZ8am20xbvw9BNT3T8xPhHgO83oACYC3QBdjS5L3NrV2fcaEevz9m+vSxtVXqY6xdungbszU900uFngcQIdST8OGcItIZ+Atwh6r+UUS2qGq3oPc3q2r3MNddC1wL0K9fv1FVVVUJLWdSWbLEaUlv3dpo69IFFi6E0aMzTy+Z+H2UhumZXhKJNJwzoY5fRHKBl4HXVPU+1/YpcLqqbhCR3sBbqjq4JZ2MG8fv91w4llvHMDKCpOfqEREByoCKeqfv8hJwpfv6SuDFRJXBtwTPZO3UyduZsV7q5eU5enl5oXqxdvqGu87vHdKmZ2QgiRzVczJwOXCmiCx3t3OBO4FxIvIZMM49zk7qn7a8euryWk8kdA+xd/qGu87vHdKmF5+e4V/CBf79tlnnrk/0Vq+O7T6R9PLy0u9vYHpGGkEKxvGnHr8+BidqDHEvoAhnnwi9xYtjK3e4+rZrBzk50WtFcw/TS52e4Wsy1/H7+TG4oCC04xRg9+74xhBP2A5VOHOhq4AJO7zXGzMmtrHK4eq7dy8cOBC9Vkv38PO47GzTM/xNuMcAv21Rh3r8/hhcXa2amxuql5sbu17NatWdTf5sO3HsXuvFMlY5Un3/53/8PY7a9OLTM1IOEUI9mZmds/6xNbiVWf/YGstIl0TodewYOk4+EIhdr3qxMyc6mH2uvdcQb/WKr4SxY6Mbqxypvscf7wwR9Wrcc3Fx9GUzvcTpGb4lMx2/3x+DvdY7bAzkNrHluvZE6EWbXrml+vo99bPpGRlIZsb4WxuHHqueX1ek6jUEPiyFXcBWnP2HpbG19hOh5/U8A8Mw4iIzHX894cahx0pxsROWWLjQ2RcX+0tv7Ukw+BA4L8/Zrz3JX3rg/TyDZODXkWHZqmd4Q7jAv9+2lHfu+p106MxOx8/D7wt1ZJueETUkeyEWL7eoHf/ixc6XLdjRdOni2DMRr+vrd71k4Pcfv2zTM2IikuPPzFBPosYk+/UxONmdz9GWuyU9j/+mL8/dzDWTqnl57ub4hNyRXBUMZjZXUMFgf02QyjY9w1vC/Rr4bYspZUOixjj79TF42LDQ1tXw4fHpjRsXqjd+fHzlLi0N1Sst9fxvMKxPrcLBhm1439rYxaqrtbTdb0P0Sts97J8WcLbpGTFBVoV66qmudsIJ8X7Z/P5P8c47oVr12zvvxKa3enVkPZ/m6lkw5yvXQQdLHtQFc76KSc/5EzTXWx3jnDhVDf/jFw9+n8BlE8JSTiTHn5mhnnry852FQ+IdNuj3x+DXX4/O3hqLF0fW82munhfm7IjK3hqLF26Lyt4qNTXOENZgysriC3H5faSZ13qGZ2S24/cKv0/gGj8+OntrjIkw8Wv8eNi1K9RWV9e2XD1791JDL5ZQRA294OBB2Lkz9Lxt22L+G0w+aWNU9tYYc3j4Fd8i2VslUTFvrxo36aJneII5/rbg9wlcJ5/c3MmPH+/YY6FXL2jfZFJ3+/bQo0fzORFtmSORn095yRv0p4pxLKQ/VZSf+0T4c9esianIE477N8NZDmjDNpzlTDju3zHpDelYRSkPhuiV8iBDOsbo+BM14GDuXJg0ydl7wcsvwzXXOHsvePdduP12Z+9HvYoKmD3b2WeDXj3h4j9+23yTj9+rPoNE6b3zjuq0abHH9uuJNPxy1izVnJxQe05Oq8Myw4b42+/Rano170eYNi22Mk+bpgq6gLO1hEd1AWd7oreawTqLK3Q1g+PTU1Xt3j20rj16xK6lqtqnT6he377x6SVrgIBf9Lzuc/GhHsnu3AX+AFQDK4Ns04EvgeXudm5btHzj+LOFSJ2xc+Y0d9SgumBBi3Jhf0cCe3QxRc215syJrcyRymZ6bWPBgpg+24h4PeAgWQMYYu2996leJMefyFDPLODsMPb7VbXQ3f6cwPsbsRIpFBUpDLNkSYtyYaMcB9pRQGXzk/fvj6nIEa/zi97TT0dnT7beCy9EZ28NrwccJGsAQyR7uus1IWGOX1X/CnyVKH0jwRQXwxtvwI9+5OyLi2PuRG74Hck7SJfAXgJ5Bym749/ks6n5yZE6llsj0nV+0bv44ujsrXF2uDZVC/bWmDw5OntreD3gIFkDGPzyffFarynhHgO82oACmod6KoEVOKGg7i1cey2wFFjar1+/6B6TjPiJFF8cPz7U3tY4a2mpVtNLF1PkxPZLS30ZE02oXt++oXrxxOQXLw4fCognDcbw4aFa8cb4Y/2uJEvP79+XdIzxa3jHfziQg/OkcQfwh7boWIw/ybQWX5wzR3XixLbHk1vSW7BAtaQk9lhyU/yud9ddqoWFzj4eEjUz9pFHVE891dl7QbTflWTr+f37EueADV84/ra+13Qzx59kZs0K76hnzYqtFRJJ76yzfNdCSis9G+WS2XoepDTxheMHege9vhF4qi065viTTKQWeqSRH62NNIik58NREKZner7Q8+iJLpLjT1jnroiUA+8Bg0VknYiUADNF5GMRWQGc4Tp/w28MGQKlpaG20lKorQ1/fmsjDcLpnXVWbFqR8PuoCtMzvWhIcHbThK25q6rhEnOUhbEZfuShh+C665wv7pgxjvOONHuwLSMNTjoJfv97Z6avqjP65M03Y9OKpgymZ3rpqJeomd71hHsM8NtmoR6fUF2t2q5d6ONnu3axZ+csKQm1xRMTjbVspteI30fh+F3Ph9lXycrsnIa3VFbCoYeG2jp3ji07Z24ufO97sHo1zJrl7B96KPllMz2Hmhp4++1Q29tvx549NNv0wPn+evV9hoRmN01YqMfIQGJ9/Gzpuvx8J4yUqrKZnkP9j3NdXaOtPqYcS/LAbNOrZ8gQb77P9eTnJySzqbX4jbYTa1ZRr7ORJuMe2abn9x8mv+ulG+HiP37bLMbvM2LNKup1NtJk3COb9Py+Apff9XwIEWL84rznb4qKinTp0qWpLoZhZD41NU64oz4MZ3ppjYgsU9WipnaL8RtGS2S4Y2iG1zHlbNNLEyzGbxiRKC+H/v1h3DhnX16e6hIZhieY4zeMcNTUQEmJM+pj61ZnX1IS33A/w/AJ5vgNIxwJnjJvGKnEHL9hhCPbh/sZGY05fsMIR6LmHlRUwOzZkfMepVqvpsZZStNCWhmNOX7DiITXU+ZvuAGGDoWrrnL2N9zgLz3rzM4abBy/YSSDigrHOTdl9erYpvh7rVdT4zj74BQGgYDzg5eFwx0zhUjj+K3FbxjJIMvzvxv+IpELsfxBRKpFZGWQrYeIvCEin7n77om6v2H4imzP/274ikS2+GcBZzex3Qq8qapHA2+6x4aR+URa1SzWTI5e6yUjkZ7hGxIa4xeRAuBlVR3mHn8KnK6qG0SkN/CWqg5uTcdi/EbGUFERuqqZ3/SyLUVFhhMpxp9sx79FVbsFvb9ZVcOGe0TkWuBagH79+o2qqqpKWDkNwzAykbTr3FXVx1S1SFWL8q3lYRiG4RnJdvwb3RAP7r46yfc3DMPIepLt+F8CrnRfXwm8mOT7G4ZhZD2JHM5ZDrwHDBaRdSJSAtwJjBORz4Bx7rFhGIaRRBK2EIuqRprfflai7mkYhmG0TlqkbBCRGiCRw3p6AZsSqO8HMr2OmV4/sDpmCsmsY39VbTY6Ji0cf6IRkaXhhjxlEplex0yvH1gdMwU/1NG3wzkNwzCMxGCO3zAMI8swx+/wWKoLkAQyvY6ZXj+wOmYKKa+jxfgNwzCyDGvxG4ZhZBnm+A3DMLKMjHf8ItJXRBaJSIWIrBKRqU3ev0lEVER6Bdl+KiKfi8inIvKt5Jc6Olqqo4jc4NZjlYjMDLJnRB1FpFBE/i4iy0VkqYiMCbom3eqYJyKLReQjt47/5dojLmCUTnVsoX53i8gnIrJCRJ4XkW5B16RN/SByHYPe94e/UdWM3oDewPHu60OBNcBQ97gv8BrO5LBerm0o8BFwCDAA+ALISXU9YqkjcAawEDjEfe+wDKzj68A5rv1cnDUe0rWOAnR2X+cC7wPfAGYCt7r2W4G70rGOLdRvPNDetd+VrvVrqY7usW/8Tca3+FV1g6p+4L7eDlQAR7pv3w/cAgT3cE8CnlLVPar6T+BzIMb17JJDC3X8AXCnqu5x36vPhppJdVSgi3taV2C9+zod66iqusM9zHU3xanLbNc+G5jsvk6rOkaqn6q+rqr7XfvfgT7u67SqH7T4GYKP/E3GO/5g3IVhjgPeF5GJwJeq+lGT044E/hV0vI7GHwrfE1xH4BjgVBF5X0T+IiKj3dMyqY4/Au4WkX8B9wA/dU9LyzqKSI6ILMdJWf6Gqr4PHK6qG8D5AQQOc09PuzpGqF8wVwOvuK/Trn4Qvo5+8zdZ4/hFpDPwHI6j2A/8HJgW7tQwtrQY8xpcR1XdhpOErzvO4/TNwNMiImRWHX8A3KiqfYEbgbL6U8Nc7vs6quoBVS3EafWOEZFhLZyednVsqX4i8nOc/8259aZwEgkvZJyEqeMIfOZvssLxi0gujrOYq6p/BAbixNM+EpFKnA/oAxE5AucXt2/Q5X1oDB/4ljB1BKcuf3QfPxcDB3ESRGVSHa8E6l8/Q+NjclrWsR5V3QK8BZxN5AWM0raOTeqHiFwJTACmqBv8Jo3rByF1nITf/E0qO0KSseH8oj4BPNDCOZU0drYcS2hnyz9Ijw6lZnUEvg/80n19DM4jpWRYHSuA093XZwHL0vhzzAe6ua8DwNs4zvBuQjt3Z6ZjHVuo39nAaiC/yflpVb+W6tjknJT7m4Tl4/cRJwOXAx+7cTeAn6nqn8OdrKqrRORpnC/ifuB6VT2QlJLGTtg6An8A/iAiK4G9wJXqfNsyqY7/AfxGRNoDu4FrIW0/x97AbBHJwXkaf1pVXxaR93DCdCXAWuA7kJZ1jFS/z3Ec3xtOJJK/q+r307B+EKGOkU5OVR0tZYNhGEaWkRUxfsMwDKMRc/yGYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvZCwicsDN2rnKzZb4YxGJ+TsvIqe4mRc/cbdrg97Ld1NjfChOFtEfBL13gpt5MhuGTxtpgH0RjUymTp2p84jIYcA8nERut0cr5M6ynAdMVtUP3LS6r4nIl6r6J5zJY5+o6pUicjjwnog8C9QCDwPXaWMismjvLThDrw/Gcr1hNMXG8RsZi4jsUNXOQcdHAUtw0lb0B54EOrlvl6rq30TkSeBZVX3RvWYuMB8YjZN8cVqQ3lnAdOAG4CWcmZpfAicC/8+9ZgkwCmdi2Z3A6TiTlX6rqo+6uYdexMmplAv8QlVfdBPRvQIscvUmq2qVl38fI3sxx29kLE0dv2vbDHwd2A4cVNXdInI0UK6qRSLyTZykb5NFpCuwHDgaeBqYXf+D4Gp1Bf6pqj1E5CqgSFVL3ffaAe/hZNIsAi7EWQ9hhogcAryLMwP3X0BHVd3mPkX83b1ff5zp+yep6t8T8gcyshYL9RjZRn02xFzgYREpBA7g5DJCVf8iIr91Q0MXAM+p6n433BKulRS25aSqB0XkUZwfg1oRGQ+MEJGL3FO64jj4dcCvReQ0nCR6RwKHu+dUmdM3EoE5fiNrcEM9B3CyW94ObARG4gxy2B106pPAFOASnPzwAKtwWu4vBZ03CifHSiQOuhs4Pzg3qOprTcp0FU5ir1Gqus/N3pjnvr2z7bUzjLZjo3qMrEBE8oH/AR52E9V1BTa4HaaXAzlBp8/CWbcBVV3l2n4LXOU+ISAiPXGWCZxJ23gN+IGbWhoROUZEOrnlqHad/hk4IR7DSCjW4jcymYCbyTMXJ/Phk8B97nuPAM+JyHdwOlAbWtequlFEKoAXgmwbROQy4HERORSnBf+Aqi5oY1l+DxTg5GEXoAZnCcW5wAIRWYrTn/BJLBU1jGiwzl3DaIKIdAQ+xlncfWuqy2MYXmOhHsMIQkTG4rS6HzKnb2Qq1uI3DMPIMqzFbxiGkWWY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFnG/wfSVo6szTyIxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax=None\n", + "colors = ['red','blue','green','yellow']\n", + "for i,var in enumerate(new_pumpkins['Variety'].unique()):\n", + " ax = new_pumpkins[new_pumpkins['Variety']==var].plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAGKCAYAAAAVEBpAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcxklEQVR4nO3df5h3dV3n8ecrwEBEARm4bhW8UxEDfwDekqztpiiFmiGGCW5GZhduLRVpJaX5a7e9bP25musurAiRgqaopGEiF+TiKnrzQ4SQIEMSEG615BbzB/DeP8538sswv+c7c85n5vm4rrnm/PjOzIvx/r488znnfE6qCklSe36s7wCSpOWxwCWpURa4JDXKApekRlngktSoHdfyh+211161efPmtfyRktS8yy677BtVNTVz+5oW+ObNm9m6deta/khJal6Sr862fcEhlCQ7J/l8ki8muSbJ60bbX5vk5iRXjj6eNenQkqS5LeYI/PvAEVX1nSQ7AZckOX+0761V9abViydJmsuCBV7drZrfGa3uNPrw9k1J6tmirkJJskOSK4HbgQuq6tLRrpOSXJXk9CR7rFZISdJ9LarAq+ruqjoYeBhwWJLHAu8CHgkcDNwKvHm2r01yYpKtSbZu27ZtIqElSUu8Dryq/gW4GDiqqm4bFfs9wGnAYXN8zalVtaWqtkxN3ecqGEnSMi3mKpSpJLuPlncBngF8OcmmsZcdA1y9KgklSbNazFUom4Azk+xAV/gfqKqPJTkrycF0JzRvBF66aiklSfexmKtQrgIOmWX7i1YlkSRpUdb0TkwN3+ZTPt53hAXd+IZn9x1BGgQns5KkRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1KjmH6nWwiPAwMeASZo8j8AlqVEWuCQ1asECT7Jzks8n+WKSa5K8brR9zyQXJLl+9HmP1Y8rSZq2mCPw7wNHVNUTgIOBo5I8GTgFuLCq9gcuHK1LktbIggVene+MVncafRRwNHDmaPuZwHNXI6AkaXaLGgNPskOSK4HbgQuq6lJgn6q6FWD0ee85vvbEJFuTbN22bduEYkuSFlXgVXV3VR0MPAw4LMljF/sDqurUqtpSVVumpqaWGVOSNNOSrkKpqn8BLgaOAm5Lsglg9Pn2SYeTJM1tMVehTCXZfbS8C/AM4MvAecAJo5edAHx0lTJKkmaxmDsxNwFnJtmBrvA/UFUfS/JZ4ANJXgLcBDx/FXNKkmZYsMCr6irgkFm2fxN4+mqEkiQtzDsxJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhq1YIEn2TfJRUmuTXJNkt8ZbX9tkpuTXDn6eNbqx5UkTdtxEa+5C3h5VV2eZDfgsiQXjPa9taretHrxJElzWbDAq+pW4NbR8vYk1wIPXe1gkqT5LWkMPMlm4BDg0tGmk5JcleT0JHvM8TUnJtmaZOu2bdtWllaS9G8WXeBJHgB8CDi5qu4A3gU8EjiY7gj9zbN9XVWdWlVbqmrL1NTUyhNLkoBFFniSnejK+71VdS5AVd1WVXdX1T3AacBhqxdTkjTTYq5CCfBu4NqqesvY9k1jLzsGuHry8SRJc1nMVShPAV4EfCnJlaNtfwQcn+RgoIAbgZeuQj5J0hwWcxXKJUBm2fXXk48jSVos78SUpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJatSCBZ5k3yQXJbk2yTVJfme0fc8kFyS5fvR5j9WPK0matpgj8LuAl1fVTwJPBv5zkgOBU4ALq2p/4MLRuiRpjSxY4FV1a1VdPlreDlwLPBQ4Gjhz9LIzgeeuUkZJ0iyWNAaeZDNwCHApsE9V3QpdyQN7TzydJGlOiy7wJA8APgScXFV3LOHrTkyyNcnWbdu2LSejJGkWiyrwJDvRlfd7q+rc0ebbkmwa7d8E3D7b11bVqVW1paq2TE1NTSKzJInFXYUS4N3AtVX1lrFd5wEnjJZPAD46+XiSpLnsuIjXPAV4EfClJFeOtv0R8AbgA0leAtwEPH9VEkqSZrVggVfVJUDm2P30ycaRJC2Wd2JKUqMscElqlAUuSY2ywCWpURa4JDXKApekRi3mOnBJy7D5lI/3HWFRbnzDs/uOoGXyCFySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjXIyK0lNcHKw+/IIXJIaZYFLUqMWLPAkpye5PcnVY9tem+TmJFeOPp61ujElSTMt5gj8DOCoWba/taoOHn389WRjSZIWsmCBV9WngW+tQRZJ0hKsZAz8pCRXjYZY9pjrRUlOTLI1ydZt27at4MdJksYtt8DfBTwSOBi4FXjzXC+sqlOraktVbZmamlrmj5MkzbSsAq+q26rq7qq6BzgNOGyysSRJC1lWgSfZNLZ6DHD1XK+VJK2OBe/ETHI28FRgryRfA14DPDXJwUABNwIvXb2IkqTZLFjgVXX8LJvfvQpZJElL4J2YktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY1asMCTnJ7k9iRXj23bM8kFSa4ffd5jdWNKkmZazBH4GcBRM7adAlxYVfsDF47WJUlraMECr6pPA9+asflo4MzR8pnAcycbS5K0kOWOge9TVbcCjD7vPdcLk5yYZGuSrdu2bVvmj5MkzbTqJzGr6tSq2lJVW6amplb7x0nShrHcAr8tySaA0efbJxdJkrQYyy3w84ATRssnAB+dTBxJ0mIt5jLCs4HPAgck+VqSlwBvAI5Mcj1w5GhdkrSGdlzoBVV1/By7nj7hLJKkJfBOTElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGLfhU+vkkuRHYDtwN3FVVWyYRSpK0sBUV+MjTquobE/g+kqQlcAhFkhq10gIv4JNJLkty4iQCSZIWZ6VDKE+pqluS7A1ckOTLVfXp8ReMiv1EgP3222+FP06SNG1FR+BVdcvo8+3Ah4HDZnnNqVW1paq2TE1NreTHSZLGLLvAk+yaZLfpZeBngasnFUySNL+VDKHsA3w4yfT3eV9VfWIiqSRJC1p2gVfVV4AnTDCLJGkJvIxQkhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1akUFnuSoJNcluSHJKZMKJUla2LILPMkOwDuBZwIHAscnOXBSwSRJ81vJEfhhwA1V9ZWq+gFwDnD0ZGJJkhaSqlreFybHAkdV1a+P1l8E/FRVnTTjdScCJ45WDwCuW37cNbMX8I2+Q6wj/j4nx9/lZLXy+3x4VU3N3LjjCr5hZtl2n/83qKpTgVNX8HPWXJKtVbWl7xzrhb/PyfF3OVmt/z5XMoTyNWDfsfWHAbesLI4kabFWUuBfAPZP8hNJ7gccB5w3mViSpIUsewilqu5KchLwN8AOwOlVdc3EkvWrqSGfBvj7nBx/l5PV9O9z2ScxJUn98k5MSWqUBS5JjbLAJalRG77Akzxwnn37rWUWaS5JHpzkmCRP7DtLi5J8YGz5T2fs++TaJ5qMDV/gwMXTC0kunLHvI2uapHHr9U3ShyQfS/LY0fIm4Grg14CzkpzcZ7ZG7T+2fOSMffe5w7EVFvi97yjdc559Wti6fJP05Ceq6urR8ouBC6rqOcBP0RW5lma+y+2avRRvJbfSrxc1x/Js65rfunyT9OSHY8tPB04DqKrtSe7pJ1LT7p/kELqD1l1Gyxl97NJrshWwwGHvJC+j+x9yepnRukeNS7Mu3yQ9+ackv0U3ZcWhwCcAkuwC7NRnsEZ9HXjLLMvT603a8DfyJHnNfPur6nVrlaV1SS6ab39VPW2tsrQuyd7A64FNwDur6pOj7U8DnlhVb+ozn4Zhwxf4fJKcXFVv6zuHNC7JjlV1V985WpJkf+CNwKOALwG/V1U395tq5TyJOb+XLfwSLSTJkUku6DtHS5JcMrZ81ozdn1/jOOvB6cDHgV8ELgfe0W+cybDA5+dVKEuQ5Igkf5/kO0n+IsmBSbYCbwDe1Xe+xuw6tnzQjH3+u1y63arqtKq6rqreCGzuO9AkeBJzfo4vLc2b6Z6+9Fm6Z6V+DvjjqvofvaZqk1f0TNbOYyfV4d4n2amqy3tLtgIbvsCTbGf2N0SA+69xnNZVVV08Wv5Ikm2W97LtnuQYur+Sd0/yvNH2AA/qL1azZrvyZHq9gCPWPNEEeBJTE5PkK8DvjW160/h6VZ275qEaleQ98+2vqhevVZb1IMkDq+qOvnNMmgU+iyS7As8FXlhVz+45TjMWKJ2qKu8gVC+S/APwyqo6p+8sk2SBj4weC/cs4IXAUcCHgHOr6q96DaYNaeyGsllV1Vvm2697S/Jw4G3AA4DfqKob+k00GY6BJ0cCxwM/B1wEnAUc5p+oSzdL6RTwDeCSqvrHHiK1bLe+A6wnVfVV4JgkRwGfSfIF4J6x/b/QW7gV2PAFTvdMz/8L/PR0ySTxxNvyzFY6m4FXJnntevvzdZV9s6r+rO8Q60mSA4A/oHu/v5OxAm/Vhh9CGV1KdBxwLPAV4Bzg1VX18F6DrSNJ9gQ+VVWH9p2lFUku9/c1OUneAPwC8PKqOr/vPJOy4W/kqaorquoVVfVI4LXAIcD9kpyf5MR+060PVfUtvPlE/doCHLqeyhss8Hs9aKCqPlNVJwEPpTvhcXhfudaTJEcA/9x3jsY8Pskds3xsT7LuLodbA3tW1ff6DjFpjoHPMmVsVd1DNzb+N2sfp11JvsR9b4raE7gF+JW1T9S0L1XVIX2H0LBZ4PCgsbvc7sObT5bkecAPxtaL7mTcnT3lkaY9Isl5c+30KpR2PQj4eWYfoy3AAl+893vibWL+su8A68w2url61hULHG7yDsGJ8UTl5Bw8vZDkT6vqFWPrn6yqn+0lVbu2V9Xf9h1i0ixwZ3abpKn57iD07sEledTY8pHAK8bWfdTf0t3Yd4DVYIHDt9brRDc92IHuVmWPxFeXBx1LVFVznudqmQUOnwQuS/Kaqnpf32Ead2tVvb7vEOuED4jWgjb8nZgASR5KNzfwXnRPjhmfI8GTmIuU5IrZLn1Lsi9w3OhJKFqEJBczz5G2D4gWeAQOQFXdnOTjwJ8Az+FHBe5VKEvz9OmFJHsBz6ebKOxh+Htckqp6at8Z1pMkv1xVfzFafkpVfWZs30mtzjuz4Y/AkxxEd9R9C/C7VXVrz5GalWQ34Bi6KXkfDXwYeEFVPazXYA2a794E8C/DpRqfW2bmPDMtzzvjETh8EDi5qu5z12WSXb0JZUlup3ti+qvoppCt0WPBtHTPmWeffxkuXeZYnm29GRZ4d73tXkm2AFdV1Q+S7A2cDPwq8JD+ojXnj+hmdnwX8L4k7+85T7Ocj37iao7l2dabseEnswL+E3Al8A7gc0lOAK6lO9P/xB5zNaeq3lpVP0U3bWeAjwAPSfKKJI/uNVyDkuwwOpcwvX6/JCcmubbPXI16TJKrRvP1TC9Prx/Qd7jlcgw8+Tu6hzl8K8l+wA3Af6iqz/UcbV1I8ji6MfFfGk3Zq0VIchzwv4E7gevppjo+C/gC8F+q6vL+0rVn9Ei1OY2e2NMcC/y+JzSurqrH9plJSnI18NyquiHJocBn6S7F/HDP0TQgFnhyO91TeKYdN75eVb+95qEalWQ7s48nhu6p9A9c40jNmuXA4stV9Zg+M7Vs7N/m9AnL6X+nTf/b9CQm/P6M9ct6SbEOVJUP4p2cvWfMK/OA8XXnlVma9fpvc8MfgUtDlOQ18+wupyxYmiQ7012w8CjgKuD0qrqr31Qrt+ELPMlfMf8ty01O9N6HWf5MZbS+I3C/qvIvvglI8qSq+kLfOVoyuqT1h3RPpH8m8NWq+p1+U62cbyh4U98B1ouZf6aO7sz8TeCldHdlapmSHEh3fuZ44Nt0D+nV4h1YVY8DSPJuuhvOmrfhC3yuSd6nJ2AC1t0k8Kstye50N0L9CvA+4ElV9c0+M7VodOnb8aOPu4CHA1uq6sY+czXqh9MLVXVX0uzNl/ey4Qt83IwJmB6KR41LMvr9vRx4AXA6cEhVfbvfVG1K8v/oHvd3DnBsVV2f5B8t72V7QpLpOf9DN0XvHXgVStvmmIDpEU7AtCxfpXv24HuA7wIvGT/S8cqJJdlGN4vjPnRP4Lmehm/57ltV7dB3htWw4QscJ2CapDfyo5JZl5dtrZWqOjrJg4BfBF6X5FHA7kkOq6p1MX6rlfMqlOR36ca6d6Ubr30/cEFVPaLXYNrQkuxUVT8cW9+bbmjqeGDfqtq3t3AajA1f4NOSPILuzXEcsD/wGuDDVfX3vQZrSJK3z7ffu1oXb3SH8EeBs4GLauyNmuThrc7docna8AWeZL+qumnGtsfRlfkLnIBp8UYzOc6pqs5cqyytS/Jg4Fh+dEDxQeDsqrq012AaFAv83k/q+FBV/WLfmaRxSR5Cd3XUccDewDlV9cp+U2kILPCxB/HO9VBeLU6S8+bb712ty5fkAcDzgJcBm6pqn54jaQC8CmX+J3VoaQ4H/olu3PZSGn5U1RCM5u94Dt1w3lOATwB/CHyyz1waDo/Ak7vpJs0P3VN4vju9i4Yv8O9Dkh2AI+kK5/HAx+nGba/pNViDkrwPeAbwabqbeT5WVd/rN5WGZsMXuFZHkh+nK/I3Aq+vqnf0HKkpoxPC51bV9r6zaLgscE3UqLifTVfem4Hz6KbuvLnPXNJ6ZIFrYpKcCTwWOJ/uSomre44krWsWuCYmyT105xPg3ieEPZ8grQILXBqgJM+bb39VnbtWWTRcFrg0QKO/Zq4cfcCMpxxV1a+tdSYNjwUuDdBoRswX0D3D8aN0l2Pe0G8qDY0FLg1Ykl2Bo+nK/MHAK+d6ipQ2nh/rO4CkeX2P7hmYd9BNebxzv3E0JB6BSwOU5Gl019IfBnyK7rLMrf2m0tBY4NIAjU5iXgVcQndJ5r3eqM6tLnAyK2moXtx3AA2fR+DSwI2mkq2qunPBF2tD8SSmNFBJfiPJTcBXgZuSfDXJb/adS8NhgUsDlORVdHOBP7WqHlxVDwaeBjxztE9yCEUaoiTXAU+YOQd4kl2AL1bVo/tJpiHxCFwaqNke4FBV/wrc00McDZAFLg3T15I8febGJEcAt/aQRwPkEIo0QEkOopsD5RLgMrrrwJ9E92zMo31MncAClwZr9FDjFwIH0c1GeA3wXp+NqWneyCMNVFV9L8lFwO10R+DXWt4a5xG4NEBJHgj8H+CJdHOC/xjwBLrhlJdU1R39pdNQWODSACU5A7gReH1V3TPaFuCPgUdV1a/0l05DYYFLA5Tk+qraf6n7tLF4GaE0TFn4JdroLHBpmD6T5NWjYZN/k+SPgc/1lEkD4xCKNECjk5jvBg6lO4lZwCHAFXQnMb/dXzoNhQUuDViSRwIHMroOvKr+IcnJVfW2fpNpCCxwqTFJbqqq/frOof45Bi61xxOcAixwqUX+2SzAW+mlQUqyndmLOsAuaxxHA+UYuCQ1yiEUqSFJdk/yyr5zaBgscGmAkuyb5NQkH0vy60nun+TNwPXA3n3n0zA4Bi4N058Dfwt8CDiK7u7La4DHVdXX+wym4XAMXBqgJF+sqieMrd8G7FdV3+8xlgbGI3BpoJLswY+u+f46cP8kuwJU1bd6C6bB8AhcGqAkN9I9fX62m3aqqh6xtok0RBa4JDXKIRRpgJIcOt/+qrp8rbJouDwClwZo9DDjuVRVHbFmYTRYFrgkNcobeaQBSvIHY8vPn7Hvv619Ig2RBS4N03Fjy384Y99RaxlEw2WBS8OUOZZnW9cGZYFLw1RzLM+2rg3Kk5jSACW5G7iTH83//d3pXcDOVbVTX9k0HBa4JDXKG3mkAUqy53z7nQtF4BG4NEhJ/pFurDvAJuAWfnTy0rlQBFjg0uAluaKqDuk7h4bHq1Ck4fMoS7OywCWpUZ7ElAYoycvGVveesU5VvWWNI2mALHBpmHYbWz5txroEeBJTkprlGLgkNcoCl6RGWeCS1ChPYkoDleQA4ETgMaNN1wKnVdV1/aXSkHgELg1QksOBi4HtwKl0V6LcCVyU5Mk9RtOAeBWKNEBJzgf+tKounrH9Z4BTquqZvQTToFjg0gAl+fuqevQc+66rqgPWOpOGxyEUaZi2z7PvzjVLoUHzJKY0TPsmefss2wM8dK3DaJgscGmYfn+efVvXLIUGzTFwqTFJdqyqu/rOof45Bi4NUJJLxpbPmrH782scRwNlgUvDtOvY8kEz9gUJC1waqvnGNh33FOBJTGmodk9yDN1B1u5JnjfaHuBB/cXSkHgSUxqgJGcwz5F2Vb147dJoqCxwSWqUY+DSACV5R5L7PEYtyWOSfKqPTBoeC1wapq8DVyZ5IUCS+yf578B5wDt7TabBcAhFGqgkPwH8Gd0DjR8CfAD4r1X13V6DaTA8ApeGa/roake69+q1lrfGWeDSACV5FfAp4M+r6t8B/x44OsnfJjmw33QaCq8Dl4ZpCjikqrYDVNXNwLFJngl8CPjJPsNpGBwDlxqT5Mer6vt951D/PAKXBmiOucDH/faaBNGgWeDSMF3WdwANn0MoktQoj8ClAUpy3nz7q+oX1iqLhssCl4bpcOCfgLOBS3EOcM3CIRRpgJLsABwJHA88Hvg4cHZVXdNrMA2KN/JIA1RVd1fVJ6rqBODJwA3AxUl+q+doGhCHUKSBSvLjwLPpjsI3A28Hzu0zk4bFIRRpgJKcCTwWOB84p6qu7jmSBsgClwYoyT3AnaPV8TdpgKqqB659Kg2NBS5JjfIkpiQ1ygKXpEZZ4JLUKAtczUtycZKfm7Ht5CT/c5Ff//okz1jgNb+a5CErySlNmgWu9eBs4LgZ244bbZ9Xkh2q6tVVtdCT3n+V7rmU0mBY4FoPPgj8/OjGF5JspivbFybZmuSaJK+bfnGSG5O8OsklwPOTnJHk2NG+J44eW3ZZkr9Jsmm0bwvw3iRXJnl2kg+Pfb8jk3iDjdacBa7mVdU3gc8DR402HQe8H3hlVW2hm0vkZ5I8fuzLvldVP11V50xvSLIT8A7g2Kp6InA68CdV9UFgK/Afq+pg4K+Bn0wyNfrSFwPvWbX/QGkOFrjWi/FhlOnhk19KcjlwBXAQMP4w4PfP8j0OoLv78YIkVwKvAh4280XV3TxxFvDLSXanmznw/In8V0hL4FwoWi8+ArwlyaHALsA/A78HPKmq/jnJGcDOY6+/8z7fobvL8ZqqOnwRP+89wF8B3wP+sqruWkF2aVk8Ate6UFXfAS6mG/Y4G3ggXUl/O8k+wDMX8W2uA6aSHA7dkEqSg0b7tgO7jf28W4Bb6I7Sz5jMf4W0NB6Baz05m262vuOq6stJrgCuAb4CfGahL66qH4xOWL49yYPo3h9vG32PM4D/leRfgcOr6l+B9wJTVfV3q/EfIy3EuVCkZUryZ8AVVfXuvrNoY7LApWVIchndEM2RVfX9vvNoY7LAJalRnsSUpEZZ4JLUKAtckhplgUtSoyxwSWrU/wdO32Yxjk19aAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.2669192282197318\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 174, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcL0lEQVR4nO3df5RcZZ3n8fenSduJJJDQCTEnPwxOhFkWYpSWhYkogsPiHA5wNuiZOSK4OpOVHT3i6iaic3D1zHpMMqszLu4ZGWUJLMMsQxAcZjiQBZTBJUCTyQ9+KdlBSCKE0CRDtyZth/7uH3U7qW6qOl3Vdavurft5ndMnVU9Vfe/zVFe+dfu5z/1eRQRmZlYcHa3ugJmZNZcTv5lZwTjxm5kVjBO/mVnBOPGbmRXMlFZ3YCJmz54dixcvbnU3zMxy5Yknnng1IuaMbc9F4l+8eDG9vb2t7oaZWa5IeqFSu6d6zMwKxonfzKxgnPjNzArGid/MrGCc+M3MCia1xC9poaQHJT0j6SlJn0va10l6VtI2ST+UNDOtPtjk9A0MsnXnfvoGBjMZz8zqk+ZyzkPAFyJis6QZwBOSNgIbgWsi4pCkNcA1wOoU+2F1uGvLblZv2EZnRwdDw8OsXbGUi5fNz0w8M6tfanv8EfFSRGxObvcDzwDzI+K+iDiUPG0TsCCtPlh9+gYGWb1hGweHhukfPMTBoWFWbdhW9556o+OZ2eQ0ZY5f0mLg3cCjYx76JHBPldeslNQrqXfv3r0p99DK7dp3gM6O0R+Nzo4Odu07kIl4ZjY5qSd+SdOBDcDVEfF6WftXKE0H3VLpdRFxfUT0RETPnDlvOuPYUrRg1jSGhodHtQ0ND7Ng1rRMxDOzyUk18UvqpJT0b4mIO8rarwQuAj4WvgRY5nRP72LtiqVM7exgRtcUpnZ2sHbFUrqnd2UinplNjtLKu5IErAdei4iry9ovBL4FfCAiJjSH09PTE67V03x9A4Ps2neABbOmNSRJNzqemY1P0hMR0TO2Pc1VPcuBjwPbJW1J2r4MfAfoAjaWvhvYFBGfTrEfVqfu6V0NTdCNjmdm9Ukt8UfEw4AqPPQPaW3TzMyOzmfumpkVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/tZW+gUG27txP38Cg4zle7uOlJbWLrZs1211bdrN6wzY6OzoYGh5m7YqlXLxsvuM5Xi7jpcl7/NYW+gYGWb1hGweHhukfPMTBoWFWbdhW956X4zleK+OlzYnf2sKufQfo7Bj9ce7s6GDXvgOO53i5i5c2J35rCwtmTWNoeHhU29DwMAtmTXM8x8tdvLQ58Vtb6J7exdoVS5na2cGMrilM7exg7YqldE/vcjzHy128tCkiWt2Ho+rp6Yne3t5Wd8NyoG9gkF37DrBg1rSG/KdzPMdrZbzJkvRERPS8qd2J38ysPVVL/KlN9UhaKOlBSc9IekrS55L2EyRtlPRc8u+stPqQdVlfQ5yXNclmVps01/EfAr4QEZslzQCekLQR+ARwf0R8U9KXgC8Bq1PsRyZlfQ1xntYkm1ltUtvjj4iXImJzcrsfeAaYD1wCrE+eth64NK0+ZFXW1xDnbU2ymdWmKat6JC0G3g08CsyNiJeg9OUAnFjlNSsl9Urq3bt3bzO62TRZX0OctzXJZlab1BO/pOnABuDqiHh9oq+LiOsjoicieubMmZNeB1sg62uI87Ym2cxqk2ril9RJKenfEhF3JM17JM1LHp8HvJJmH7Io62uI87Ym2cxqk9pyTkmiNIf/WkRcXda+DugrO7h7QkSsGi9Wuy7nzPoa4qytSTaz2lRbzpnmqp7lwMeB7ZK2JG1fBr4J3CbpU8CLwEdS7EOmdU/vamhCzXo8M8uG1BJ/RDwMqMrD56e1XTMzG59r9ZiZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBN/C2X9ilnV4tW7nUqvy+t74HiWZ2nW6rFxZP2KWdXi1budSq8LyOV74HiWd77Yegv0DQyyfM0DHBw6UvN+amcHP119Xl1F0ZoV7+7PvI+Lrnu45u1Uitc1pQMIBg8d+fzl4T1wPMuTpl9s3arL+hWzqsXbsnN/XdupFO+YDnGM8vceOJ61A0/1tEDWr5hVLd6yhTPr2k6leG8MBzD6r808vAeOZ+3Ae/wtkPUrZlWLt2TujLq2UyneusuWsu6yd+XuPXA8awee42+hrF8xq1q8erdT6XV5fQ8cz/Kg2hy/E7+ZWZvywV0zMwOc+M3MCseJ38ysYJz4zcwKxonfzKxgnPjNzAqmrRN/1isXOp6ZtULblmzIeuVCx3PlR7NWacs9/r6BQVZv2MbBoWH6Bw9xcGiYVRu21b2n6XjZimdmk5Na4pd0g6RXJD1Z1rZM0iZJWyT1SjozjW1nvXKh47nyo1krpbnHfyNw4Zi2tcDXImIZcG1yv+GyXrnQ8Vz50ayVUkv8EfEQ8NrYZuC45PbxwC/T2HbWKxc6nis/mrVSqkXaJC0G7o6I05L7/wq4FxClL53fiYgXjhan3iJtWa9c6HhmlqaWVOeskPi/A/wkIjZI+iiwMiI+VOW1K4GVAIsWLTrjhReO+v1gZmZlslKd80rgjuT23wJVD+5GxPUR0RMRPXPmzGlK58zMiqDZif+XwAeS2+cBzzV5+2ZmhZfaCVySbgXOBWZL2gV8Ffgj4C8kTQEOkkzlmJlZ86SW+CPiD6o8dEZa2zQzs6NryzN3zcysOid+M7OCceI3MysYJ34zs4Jp68RftPrvWa+fX7Tfh1lWuR5/m8h6/fyi/T7Msqwt9/iLVv896/Xzi/b7MMu6tkz8Rav/nvX6+UX7fZhlXVsm/qLVf896/fyi/T7Msq4tE3/R6r9nvX5+nn8fWT/AXbR41hiplmVulKzU48+6rNfPz9vvI+sHuIsWz2rXknr8jVJv4jerV9/AIMvXPMDBoSNTVFM7O/jp6vPq+tJyvMnFs/pkpR6/WS5k/QB30eJZY00o8Us6WdL9kp5M7i+V9Cfpds2sdbJ+gLto8ayxJrrH/1fANcAQQERsA34/rU6ZtVrWD3AXLZ411oTm+CU9HhHvlfRPEfHupG1LRCxLu4PgOX5rnawf4C5aPKtNtTn+iZZseFXSbwGRBLsMeKmB/TPLpO7pXQ1NWI5nWTDRxP/HwPXAb0vaDTwPXJ5ar8zMLDUTSvwR8c/AhyQdC3RERH+63TIzs7RMdFXPNyTNjIhfRUS/pFmS/jTtzpmZWeNNdFXPhyNi/8idiNgH/F4qPTIzs1RNNPEfI+nwERpJ04DCHbHJeh2T3uf7+NZ9P6P3+b6GxNuxp5/be3eyY8/omb16+13pdVl/T83a0UQP7v4v4H5J/5PSyp5PAutT61UGZb2OyeXf38TDO0oJ/zsP7OCcJd3c/Idn1R3v2ju3c9OmFw/fv+LsRXz9ktPr7nel1wVk+j01a1cTrtUj6cPA+YCA+yLi3jQ7Vq7V6/izXsek9/k+Lvvepje13/4fzqLnpO6a4+3Y08+Hvv1QxXiX3/BYzf2uNN6uKR1AMHjoyOcvS++pWTuYdK2eiLgnIr4YEV9oZtLPgqzXMXnouVdraj+aLTv3V41XT78rjfeYDnGMsvuemrWzcRO/pIeTf/slvV720y/p9eZ0sfWyXsfk/e+cXVP70SxbOLNqvHr6XWm8bwwHb0R239MRPgZh7WjcxB8R70v+nRERx5X9zIiI45rTxdbLeh2TnpO6OWfJ6Cmdc5Z01zXNA7Bk7gyuOHvRqLYrzl5Ez0nddfW70njXXbaUdZe9q6Hv6UfPWDCq7aM9CyY1zXPXlt0sX/MAl3//UZaveYAfbdldd6w04pnV66hz/JI6gG0RcVpNgaUbgIuAV8pfK+mzwGeAQ8DfR8Sqo8Vq9Rz/iKzXMel9vo+HnnuV979zdt1Jv9yOPf1s2bmfZQtnsmTujMPt9fa70usa9R5k/TiMj0FYK9RdqycihiVtlbQoIl482vPL3AhcB9xU1okPApcASyNiUNKJNcRruazXMek5qf69/EqWzJ0xKuGPqLfflV7XqPdgZI7/IEcS68gcfz3xsx7PbDImupxzHvCUpMeAX400RsTF1V4QEQ9JWjym+SrgmxExmDznldq6a81UbW+8kX+pNOqvlKwfh3F9esuSiSb+rzVoeycD50j6r8BB4IsR8XilJ0paCawEWLRoUaWnWIqqrYlv5Fr5Rp570D29i0UnTOPnew7vl/D2E+r/Ykoj3toVS1k15r3z3r61wriJX9JU4NPAEmA78IOIODTJ7c0CzgLeC9wm6R1R4UBDRFxPqSIoPT092b8wcBvpGxhk9YZtHBwaPjw1sWrDNk6dd1zF9uVLZtecwHqf7zuc9Ef8444+ep/vq2vPv/f5vlFJGuBne36VmXgAFy+bz/Ils12f3lruaOv41wM9lJL+h4H/Nsnt7QLuiJLHgGGgvjWHlppqa+K37NzfsLXyjT73IOvxRnRP7+JdC2c66VtLHS3xnxoRl0fE94DLgHMmub07gfOgdB1f4C3A5P4nWcNVm49etnBmw+apG33uQdbjmWXJ0RL/0MiNWqd4JN0KPAKcImmXpE8BNwDvSC7a/jfAlZWmeay1qp1nsGTujIadf9Docw+yHs8sS8Zdxy/pDY6s4hEwDfh1cjuadRJXVtbxF02eVvXkJZ5ZM1Vbxz/hIm2t5MRvZla7SRdpMxvRyLr/1Wr+t2u8Ozfv5A/XP86dm3dmMt79T7/M6tu3cv/TLzckXqOvEdGsa060a7wR3uO3mpSvvQcmtfa+Ws3/emU93lnf2MjLr//m8P15x72FR778u5mJd8G3fzxqCespc4/l3s+fW3e8Rn5W0oiX9c9LI+J5j98mbby197Xasad/1Ica4KZHXqx7zybr8e7cvHNUkgZ46fXf1L2n3uh49z/9csXzFurd82/kZyWNeFn/vDQ63lhO/DZhjVzbXq3mf7X2vMe7e3vlBFqtvdnx7nt6T03tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9q7XmPd9Hpb6upvdnxLjh1bk3tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9K1UDbId6l71nIvOPeMqpt3nFv4dL3LMxEvPNPfRunzD12VNspc4/l/FPr+yLJ+nkVWf+8NDreWD64azVr5Nr2ajX/2zXenZt3cvf2l7no9LfVnaTTjHf/0y9z39N7uODUuXUn/XJZP68i65+XycbzOn4zs4Lxqh6zNuRr+Fo9JlqP38wyppHXRrBi8R6/WQ6VXzOhf/AQB4eGWbVhm/f8bUKc+M1yqNo1E+q5NoIVjxO/WQ75Gr42GU78ZjlU7ZoJvrKXTYQP7prllK/ha/Vy4jfLse7pXU74VjNP9VhVeaktbma18R6/VZTF2uJm1hje47c3yVttcTOrjRO/vUneaoubWW2c+O1N8lZb3Mxq48Rvb5K32uJmVhuXZbaqslZb3MxqU60ss1f1WFVL5s5oaIJudDwzq4+neqxmjVyPn/VzBRzP8VoZL63rLXiP32rSyPX4WT9XwPEcr5Xx0rzeQmp7/JJukPSKpCcrPPZFSSFpdlrbt8Zr5Hr8rJ8r4HiO18p4aV9vIc2pnhuBC8c2SloI/C7w4tjHLNsauR4/6+cKOJ7jtTJe2tdbSC3xR8RDwGsVHvo2sArI/nIiG6WR6/Gzfq6A4zleK+Olfb2Fph7clXQxsDsitk7guSsl9Urq3bt3bxN6Z0fTyPX4WT9XwPEcr5Xx0r7eQqrr+CUtBu6OiNMkvRV4ELggIv5F0i+Anoh49WhxvI4/Wxq5Hj/r5wo4nuO1Ml7fwOCkrrdQbR1/MxP/6cD9wK+ThxcAvwTOjIiXx4vjxG9mVrtqib9pUz0RsT0iToyIxRGxGNgFvOdoSd+yp961xWmtSU5zG0WLZ8WQ2jp+SbcC5wKzJe0CvhoRP0hre9Yc9a4tTnNNclrbKFo8Kw7X6rEJ6xsYZPmaBzg4dGS1wdTODn66+rxx5x/rfV0z+uZ41s5aPtVj+Vfv2uK01ySnsY2ixbNiceK3Cat3bXHaa5LT2EbR4o3I+jGIrMfLCyd+m7B61xanvSY5jW0ULR6UjhksX/MAl3//UZaveYAfbdldd6wixssTz/FbzepdWzzZNcmt2EZR4mX9GETW42WV6/Fbw3RP76rrP0e9r2vlNooSb+SYwUGOJMKRYwb1xC9avLzxVI+ZZf4YRNbj5Y0Tv5ll/hhE1uPljef4zeywrB6DyEu8rPEcv5kdVVaPQeQlXl54qsfMrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgUkv8km6Q9IqkJ8va1kl6VtI2ST+UNDOt7ZuZWWVp7vHfCFw4pm0jcFpELAV+DlyT4vbNzKyC1BJ/RDwEvDam7b6IOJTc3QQsSGv7ZmZWWSvn+D8J3FPtQUkrJfVK6t27d28Tu2Vm1t5akvglfQU4BNxS7TkRcX1E9EREz5w5c5rXObMyfQODbN25n76BwVZ3xaxhpjR7g5KuBC4Czo+IaPb2zSbqri27Wb1hG50dHQwND7N2xVIuXja/1d0ym7Sm7vFLuhBYDVwcEb9u5rbNatE3MMjqDds4ODRM/+AhDg4Ns2rDNu/5W1tIcznnrcAjwCmSdkn6FHAdMAPYKGmLpL9Ma/tmk7Fr3wE6O0b/9+js6GDXvgMt6pFZ46Q21RMRf1Ch+Qdpbc+skRbMmsbQ8PCotqHhYRbMmtaiHpk1js/cNauge3oXa1csZWpnBzO6pjC1s4O1K5bSPb2r1V0zm7SmH9w1y4uLl81n+ZLZ7Np3gAWzpjnpW9tw4jcbR/f0Lid8azue6jEzKxgnfjOzgnHiNzMrGCd+M7OCceI3MysYJ34zs4Jx4jczKxgnfjOzgnHiN2uiHXv6ub13Jzv29Gcynq8/UAw+c9esSa69czs3bXrx8P0rzl7E1y85PTPxfP2B4vAev1kT7NjTPypJA9z0yIt176k3Op6vP1AsTvxmTbBl5/6a2psdz9cfKBYnfrMmWLZwZk3tzY7n6w8UixO/WRMsmTuDK85eNKrtirMXsWTujEzE8/UHikV5uN55T09P9Pb2trobZpO2Y08/W3buZ9nCmXUn6TTj9Q0M+voDbUTSExHRM7bdq3rMmmjJ3BkNSdBpxfP1B4rBUz1mZgXjxG9mVjBO/GZmBePEb2ZWME78ZmYFk4vlnJL2Ai+kuInZwKspxs+Cdh9ju48PPMZ20cwxvj0i5oxtzEXiT5uk3kprXdtJu4+x3ccHHmO7yMIYPdVjZlYwTvxmZgXjxF9yfas70ATtPsZ2Hx94jO2i5WP0HL+ZWcF4j9/MrGCc+M3MCqbtE7+khZIelPSMpKckfW7M41+UFJJml7VdI2mHpJ9J+rfN73VtxhujpM8m43hK0tqy9rYYo6RlkjZJ2iKpV9KZZa/J2xinSnpM0tZkjF9L2k+QtFHSc8m/s8pek5sxjjO+dZKelbRN0g8lzSx7TW7GB9XHWPZ4NvJNRLT1DzAPeE9yewbwc+DU5P5C4F5KJ4fNTtpOBbYCXcBJwP8Djmn1OOoZI/BB4P8AXcljJ7bhGO8DPpy0/x7w4xyPUcD05HYn8ChwFrAW+FLS/iVgTR7HOM74LgCmJO1r8jq+8caY3M9Mvmn7Pf6IeCkiNie3+4FngPnJw98GVgHlR7gvAf4mIgYj4nlgB3AmGTbOGK8CvhkRg8ljryQvaacxBnBc8rTjgV8mt/M4xoiIgeRuZ/ITlMayPmlfD1ya3M7VGKuNLyLui4hDSfsmYEFyO1fjg3F/h5ChfNP2ib+cpMXAu4FHJV0M7I6IrWOeNh/YWXZ/F0e+KDKvfIzAycA5kh6V9BNJ702e1k5jvBpYJ2kn8GfANcnTcjlGScdI2gK8AmyMiEeBuRHxEpS+AIETk6fnboxVxlfuk8A9ye3cjQ8qjzFr+aYwiV/SdGADpURxCPgKcG2lp1Zoy8Wa1/IxRsTrlK6wNovSn9P/GbhNkmivMV4FfD4iFgKfB34w8tQKL8/8GCPijYhYRmmv90xJp43z9NyNcbzxSfoKpf+bt4w0VQqReicnqcIYl5KxfFOIxC+pk1KyuCUi7gB+i9J82lZJv6D0C9os6W2UvnEXlr18AUemDzKrwhihNJY7kj8/HwOGKRWIaqcxXgmM3P5bjvyZnMsxjoiI/cCPgQuBPZLmAST/jkzZ5XaMY8aHpCuBi4CPRTL5TY7HB6PGeAlZyzetPBDSjB9K36g3AX8+znN+wZGDLf+a0Qdb/pl8HFB60xiBTwNfT26fTOlPSrXZGJ8Bzk1unw88kePf4xxgZnJ7GvCPlJLhOkYf3F2bxzGOM74LgaeBOWOen6vxjTfGMc9peb4pwsXWlwMfB7Yn824AX46If6j05Ih4StJtlD6Ih4A/jog3mtLT+lUcI3ADcIOkJ4HfAFdG6dPWTmP8I+AvJE0BDgIrIbe/x3nAeknHUPpr/LaIuFvSI5Sm6T4FvAh8BHI5xmrj20Ep8W0szUSyKSI+ncPxQZUxVntyq8bokg1mZgVTiDl+MzM7wonfzKxgnPjNzArGid/MrGCc+M3MCsaJ39qWpDeSqp1PJdUS/5Okuj/zkt6XVF58NvlZWfbYnKQ0xj+pVEX0qrLH/k1SebIIy6ctB/xBtHZ2IEqnziPpROCvKRVy+2qtgZKzLP8auDQiNidlde+VtDsi/p7SyWPPRsSVkuYCj0i6HegDrgP+YxwpRFbrtkVp6fVwPa83G8vr+K1tSRqIiOll998BPE6pbMXbgZuBY5OHPxMR/1fSzcDtEXFX8ppbgP8NvJdS8cVry+KdD/wX4LPAjyidqbkbOBv498lrHgfOoHRi2TeBcymdrPTdiPheUnvoLko1lTqBP4mIu5JCdPcADybxLo2IFxr5/lhxOfFb2xqb+JO2fcBvA/3AcEQclPRO4NaI6JH0AUpF3y6VdDywBXgncBuwfuQLIYl1PPB8RJwg6RNAT0R8JnmsA3iEUiXNHmAFpesh/KmkLuCnlM7A3Qm8NSJeT/6K2JRs7+2UTt//nYjYlMobZIXlqR4rmpFqiJ3AdZKWAW9QqmVERPxE0neTqaF/B2yIiEPJdEulvaSKe04RMSzpe5S+DPokXQAslXRZ8pTjKSX4XcA3JL2fUhG9+cDc5DkvOOlbGpz4rTCSqZ43KFW3/CqwB3gXpUUOB8ueejPwMeD3KdWHB3iK0p77j8qedwalGivVDCc/UPrC+WxE3DumT5+gVNjrjIgYSqo3Tk0e/tXER2c2cV7VY4UgaQ7wl8B1SaG644GXkgOmHweOKXv6jZSu20BEPJW0fRf4RPIXApK6KV0mcC0Tcy9wVVJaGkknSzo26ccrSdL/IKUpHrNUeY/f2tm0pJJnJ6XKhzcD30oe+x/ABkkfoXQA9fDedUTskfQMcGdZ20uSLgf+StIMSnvwfx4RfzfBvnwfWEypDruAvZQuoXgL8HeSeikdT3i2noGa1cIHd83GkPRWYDuli7v/S6v7Y9ZonuoxKyPpQ5T2uv+7k761K+/xm5kVjPf4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCub/A2eoKqxqO9IQAAAAAElFTkSuQmCC", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']\n", + "print(pie_pumpkins['DayOfYear'].corr(pie_pumpkins['Price']))\n", + "pie_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Régression Linéaire\n", + "\n", + "Nous allons utiliser Scikit Learn pour entraîner un modèle de régression linéaire :\n" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n", + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.77 (17.2%)\n" + ] + } + ], + "source": [ + "X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1)\n", + "y = pie_pumpkins['Price']\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "lin_reg = LinearRegression()\n", + "lin_reg.fit(X_train,y_train)\n", + "\n", + "pred = lin_reg.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXXElEQVR4nO3df3BV5Z3H8feXEDGKEF0QTYCmdTEtv4R6tW5/rL+qYVerjF21bmeHrW5ZXWvXtmJFO63tdEdrnFY722mHGRl1a9mqpGzX1kZrtdqtQC+gBtBYLYgkKFGM+CMCCd/9495gSHJzf+Se3HuefF4zjDfPPfecJ1/hc899znOfY+6OiIiEYUypOyAiIsWjUBcRCYhCXUQkIAp1EZGAKNRFRAIydiQPNmnSJK+rqxvJQ4qIxN66detec/fJuWw7oqFeV1dHMpkcyUOKiMSemb2U67YafhERCYhCXUQkIAp1EZGAKNRFRAKiUBcRCUjW2S9mNg24GzgG2A8sc/fbzawR+AywF3gR+IK7d0bYVxkBqza00djcSntnFzXVVSxpqGfh/NpSd0tEcpTLmXo38DV3/whwCnClmc0EHgZmu/tc4HlgaXTdlJGwakMbS5taaOvswoG2zi6WNrWwakNbqbsmIjnKGuruvsPd16cfvwU8C9S6+0Pu3p3ebDUwNbpuykhobG6la1/PQW1d+3pobG4tUY9EJF95jambWR0wH1jT76lLgQczvGaxmSXNLNnR0VFQJ2VktHd25dUuIuUn51A3s/HASuBqd9/dp/0GUkM09wz2Ondf5u4Jd09MnpzTt1ylRGqqq/JqF5Hyk1Oom1klqUC/x92b+rQvAs4FPu+6hVLsLWmop6qy4qC2qsoKljTUl6hHIpKvXGa/GHAH8Ky7f79P+wLg68Cp7v5udF2UkdI7y0WzX0Tiy7KdYJvZJ4EngBZSUxoBrgd+CIwDXk+3rXb3y4faVyKRcC3oJSKSHzNb5+6JXLbNeqbu7n8AbJCnfp1vx0REJFr6RqmISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gEJOs9SkWitmpDG43NrbR3dlFTXcWShnoWzq8t+33LQKp36SnUpaRWbWhjaVMLXft6AGjr7GJpUwvAsMMgyn3LQKp3edDwi5RUY3PrgRDo1bWvh8bm1rLetwykepcHhbqUVHtnV17t5bJvGUj1Lg8KdSmpmuqqvNrLZd8ykOpdHhTqUlJLGuqpqqw4qK2qsoIlDfVlvW8ZSPUuD7pQKiXVewEtihkTUe5bBlK9y4O5+4gdLJFIeDKZHLHjiYiEwMzWuXsil22znqmb2TTgbuAYYD+wzN1vN7OjgJ8DdcBW4CJ3f6PQTpeC5tSKSGhyGVPvBr7m7h8BTgGuNLOZwHXAI+4+A3gk/XNs9M6pbevswnl/Tu2qDW2l7pqISMGyhrq773D39enHbwHPArXA+cBd6c3uAhZG1MdIaE6tiIQor9kvZlYHzAfWAFPcfQekgh84OsNrFptZ0sySHR0dw+xu8WhOrYiEKOdQN7PxwErganffnevr3H2ZuyfcPTF58uRC+hgJzakVkRDlFOpmVkkq0O9x96Z086tmdmz6+WOBndF0MRqaUysiIcoa6mZmwB3As+7+/T5P/RJYlH68CPif4ncvOgvn13LTBXOora7CgNrqKm66YI5mv4hIrGWdp25mnwSeAFpITWkEuJ7UuPq9wHRgG3Chu+8aal+apy4ikr+izlN39z8AluHpM/PpmIiIREtrv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBET3KBUpkO6cJeVIoS5SgN47Z/XeaKX3zlmAgl1KSsMvIgXQnbOkXCnURQqgO2dJuVKoixRAd86ScqVQFymA7pwl5UoXSkUK0HsxVLNfpNwo1EUKtHB+rUJcyo6GX0REAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJSNlPaYzrSnhx7beIxFtZh3pcV8KLa79FJP7KevglrivhxbXfIhJ/WUPdzJab2U4z29inbZ6ZrTazp8wsaWYnR9G5uK6EF9d+i0j85XKmfiewoF/bLcC33X0e8M30z0UX15Xw4tpvEYm/rKHu7o8Du/o3AxPSjycC7UXuFxDflfDi2m8Rib9CL5ReDTSb2a2k3hg+XrQe9RHXlfDi2m8RiT9z9+wbmdUBD7j77PTPPwR+7+4rzewiYLG7fzrDaxcDiwGmT59+4ksvvVSsvouIjApmts7dE7lsW+jsl0VAU/rxfUDGC6XuvszdE+6emDx5coGHExGRXBQa6u3AqenHZwB/Lk53RERkOLKOqZvZCuA0YJKZbQe+BXwRuN3MxgLvkR5eERGR0soa6u5+SYanTixyX0REZJjK+hulIiKSH4W6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhACr1H6Yhq3vQK//pf6w5qO/yQCmbVTGRmzQRm1UxgVs1EZkwZT2WF3qdEZPSKRahPPbJqQNs7e3tYu3UXa7fuyvr6D006nJk1E9JvABOZVTOBSePHRdFVEZGSyunG08WSSCQ8mUwWZV9vvLOXzTt2s6n9TTa172ZT+25e2Pl2Ufbd6/JTj+NLZ/w148fF4r1PRAKVz42nYxvqueru2c+LHe+wecebbGrbnX4DeJPd73UX7Rizaydw42dmkag7qmj7FBHppVAv0Notu/jOA5vY2LY7smM0zJrCrReewBGHVkZ2DBEJi0I9Ym/v6ebHj73Ajx59MdLj3PmFkzit/uhIjyEi5U+hXkb+9+l2rlqxIdJjfOaEGm6+YA6Ha+xfJEgK9Ryt2tBGY3Mr7Z1d1FRXsaShnoXza0vSl9ff3sPVP3+KJ/78WqTH+d5n53DxSdMjPYaIFJdCPQerNrSxtKmFrn09B9qqKiu46YI5JQv2XK1ct52v3fd0pMeoPqySJ649XWP/ImVAoZ6DT9z8O9o6uwa011ZX8X/XnVGCHhXfltfe4fRbH4v8OLd/bh7nzyvvN0KROFOo5+CD1/2KwX5zA7bcfM5Id6fkbvzlJu7849ZIj3HMhEP53TWnctghGvsXyUc+oT5q/3XVVFcNeqZeUz3w26ujwY3nzeLG82Zl3e75V9/i7B88XtAxXtn9HjO/2ZzTtj+8ZD7nnVBT0HFERrNRe6Ye5zH1OHB3rr3/Ge5btz3S4xx1+CH88bozOLSyItLjiJRSUYdfzGw5cC6w091n92m/CvgS0A38yt2vzXawcgp1KK/ZL6NVpmsbUfj+RSdwwUenjsixRIqp2KH+t8DbwN29oW5mpwM3AOe4+x4zO9rdd2Y7WLmFupRePtc29u93/vnOP/H48x2R96v1uwsYN1Zn/1Ieijqm7u6Pm1ldv+YrgJvdfU96m6yBLtGL4yePfK5tjBlj3H3pyTntN7l1F//wkycL7lf9N36T03Y/+sePcs7cYws+jkixFXqh9HjgU2b2H8B7wDXu/qfBNjSzxcBigOnT9aWXqPS/RtDW2cXSphaAsg720z88mZ+u3jZo+3Ak6o7itovnZb1u0t2zn0/d8ig73nyvoONc+bP1XPmz7NtVVVbwzI1na71/iVyhoT4WOBI4BTgJuNfMPuSDjOW4+zJgGaSGXwrtqAytsbn1oPAC6NrXQ2Nza1mH+qPPDT6Ukqk9H7nUZGzFGJ5cemZO+/vt5lf5l7sLGz7s2tfDjBsezGnbOxYlOPMjUwo6jkihob4daEqH+Foz2w9MAqIf7JRBtWe42JipvVxE2e9i7/vTM6ewNYfvMOzt3s+J332Ytwpc3vmyu3J745g/vZr7L/84FWOsoONImAoN9VXAGcBjZnY8cAgQ7aIlMqS4zruPst+lqskhY8fQcmNDTts+8Ew7X/pZYQu+bdjWyXHX/zqnbVde8Tec+AGt9z8aZA11M1sBnAZMMrPtwLeA5cByM9sI7AUWDTb0IiNnSUP9oOPHSxrqS9ir7KLsdxxqcu7cGs6dm/1LVnu6e1hw2xNsee2dgo7z2R/ndtH4ytOP45qz6zHT2X9cjdovH4UojrNfINp+x7Umw/GbjTu4/KfrIz1G9WGVrPq3T1A36fBIjyMpWvtFRLLa093D9U0bWbk+mm/9jh1jXJiYxkWJqcybVq2z/2HQ2i+jVFzPSuPa7yiN5KeX2y6el3Xfa/7yOhcvW53Xcbr3OyvWbmPF2oFTVvubP72aixLTOHfusVrueZh0ph6IuK5lE9d+RynKmkRd7/f29XDzg8/x3Cu7Wf2XXcPeX3/jxo7hosQ0LkpMY3bthFFz9q/hl1EoruvDx7XfUYqyJuVU7+1vvEvT+jbuTb7M9jeKP/U28YEjuTAxlXPm1jA+5rd61PDLKKR56uGI09z94Zh65GF8+cwZfPnMGUNut69nP4+1dnBf8mUe2vxqzvtPvvQGyZfe4OsrW4bc7vBDKrgwMY3PnTyNDx8zIef9lyuFeiA0Tz0cIc7dH47KijGcNXMKZ83M/i3bba+/y/3rt3N/8mXac1z64Z29Pdz5x60ZbxIzftxYZtZMYFbNBGYeO4FZNROZMWV82S75oFAPRBzmZA8mrv2O0mifuz8c0//qML561vF89azjh9xub/d+fvfcTu5Lvswjzw29HuHbe7pZu2UXa7dkv0bwoUmHp98AJqbeBGomMGn8uLx+h+HSmHpA4jqLJK79jpLm7pePznf3snnHbja372ZT+242tb/J86++nfd+Hrjqk8yunVhQH3ShVERkhHX37GfLa+8cCP7NO1JvAp3v7gPgD18/nalHHlbQvnWhVERkhI2tGMOMKUcwY8oRJf3kU54j/SIiUhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIB0Tx1OYi+bSgSbwp1OaD/WtttnV0sbUqtcKdgF4kHDb/IAY3NrQct9ATQta+HxubWEvVIRPKlUJcDymmtbREpjEJdDsi0pnY5r7UtIgdTqMsBSxrqqaqsOKgtpLW2RUYDXSiVA3ovhmr2i0h8KdTlIAvn1yrERWJMoS4lp7nxA8X1zkf6fznQSNdEoS4lpbnxA0VZk7juO65KUZOsF0rNbLmZ7TSzjYM8d42ZuZlNiqR3EjzNjR8oyprEdd9xVYqa5DL75U5gQf9GM5sGnAVsK3KfZBTR3PiBoqxJXPcdV6WoSdZQd/fHgV2DPPUD4Fpg5O5cLcHR3PiBoqxJXPcdV6WoSUHz1M3sPKDN3Z/OYdvFZpY0s2RHR0chh5OAaW78QFHWJK77jqtS1CTvC6VmdhhwA3B2Ltu7+zJgGUAikdBZvRxEc+MHirImcd13XJWiJuaePWfNrA54wN1nm9kc4BHg3fTTU4F24GR3f2Wo/SQSCU8mk8PrsYjIKGNm69w9kcu2eZ+pu3sLcHSfg20FEu7+Wr77Eoma5k3LaJPLlMYVwJNAvZltN7PLou+WyPD1zhFu6+zCeX+O8KoNbaXumkhksp6pu/slWZ6vK1pvRIpoqDnCOluXUGmVRgmW5k3LaKRlAiRYNdVVtA0S4KN53nTU4noNI679HozO1CVYmjc9suJ6DSOu/c5EoS7BWji/lpsumENtdRUG1FZXcdMFc2J7Blbu4rr2S1z7nYmGXyRoWh9+5MT1GkZc+52JztRFpCjiuvZLXPudiUJdRIoirtcw4trvTDT8IiJFEde1X+La70xyWvulWLT2i4hI/vJZ+0XDLyIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAcka6ma23Mx2mtnGPm2NZvacmT1jZr8ws+pIeykiIjnJ5Uz9TmBBv7aHgdnuPhd4Hlha5H6JiEgBsoa6uz8O7OrX9pC7d6d/XA1MjaBvIiKSp2KMqV8KPJjpSTNbbGZJM0t2dHQU4XAiIpLJsELdzG4AuoF7Mm3j7svcPeHuicmTJw/ncCIiksXYQl9oZouAc4Ez3d2L1yURESlUQaFuZguArwOnuvu7xe2SiIgUKpcpjSuAJ4F6M9tuZpcB/wkcATxsZk+Z2U8i7qeIiOQg65m6u18ySPMdEfRFRESGSd8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAUvPSuiETnG6taWLHmZXrcqTDjko9N47sL5xRl36s2tNHY3Ep7Zxc11VUsaahn4fzaouxbSk+hLlJmvrGqhZ+u3nbg5x73Az8PN9hXbWhjaVMLXft6AGjr7GJpUwuAgj0QGn4RKTMr1rycV3s+GptbDwR6r659PTQ2tw5731IeFOoiZaYnw43EMrXno72zK692iR+FukiZqTDLqz0fNdVVebVL/CjURcrMJR+blld7PpY01FNVWXFQW1VlBUsa6oe9bykPulAqUmZ6L4ZGMful92KoZr+Ey7wI43S5SiQSnkwmR+x4IiIhMLN17p7IZVsNv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBGREZ7+YWQfwEjAJeG3EDly+VAfVAFSDXqpD5hp8wN0n57KDEQ31Awc1S+Y6PSdkqoNqAKpBL9WhODXQ8IuISEAU6iIiASlVqC8r0XHLjeqgGoBq0Et1KEINSjKmLiIi0dDwi4hIQBTqIiIBKXqom9k0M3vUzJ41s01m9u/9nr/GzNzMJvVpW2pmL5hZq5k1FLtPpTBUHczsqvTvusnMbunTHlQdMtXAzOaZ2Woze8rMkmZ2cp/XBFUDADM71MzWmtnT6Tp8O91+lJk9bGZ/Tv/3yD6vCaoOQ9Sg0cyeM7NnzOwXZlbd5zVB1QAy16HP88PPR3cv6h/gWOCj6cdHAM8DM9M/TwOaSX8BKd02E3gaGAd8EHgRqCh2v0b6T6Y6AKcDvwXGpZ87OtQ6DFGDh4C/S7f/PfBYqDVI/14GjE8/rgTWAKcAtwDXpduvA74Xah2GqMHZwNh0+/dCrsFQdUj/XJR8LPqZurvvcPf16cdvAc8CvSvw/wC4Fuh7dfZ84L/dfY+7bwFeAE4m5oaowxXAze6+J/3czvRLgqvDEDVwYEJ6s4lAe/pxcDUA8JS30z9Wpv84qd/3rnT7XcDC9OPg6pCpBu7+kLt3p9tXA1PTj4OrAQz5dwGKlI+RjqmbWR0wH1hjZucBbe7+dL/NaoG+t0nfzvtvAkHoWwfgeOBTZrbGzH5vZielNwu6Dv1qcDXQaGYvA7cCS9ObBVsDM6sws6eAncDD7r4GmOLuOyD1Bggcnd48yDpkqEFflwIPph8HWQMYvA7FzMfIQt3MxgMrSf0D7gZuAL452KaDtAUzz7JvHdx9N6lbCB5J6qPnEuBeMzMCrsMgNbgC+Iq7TwO+AtzRu+kgLw+iBu7e4+7zSJ2Jnmxms4fYPMg6DFUDM7uBVE7c09s02C4i7+QIGKQOcyliPkYS6mZWSeof8T3u3gQcR2o86Gkz20rql1lvZseQeufpe0fdqbz/cTzWBqkDpH7fpvTHsLXAflKL+ARZhww1WAT0Pr6P9z9OBlmDvty9E3gMWAC8ambHAqT/2zsUF3Qd+tUAM1sEnAt83tMDyQReAzioDudTzHyM6ELA3cBtQ2yzlfcvBMzi4AsBfyGcCyID6gBcDnwn/fh4Uh+tLMQ6DFGDZ4HT0o/PBNYF/ndhMlCdflwFPEEqxBo5+ELpLaHWYYgaLAA2A5P7bR9cDYaqQ79thpWPY4fI+0J9AvgnoCU9bgRwvbv/erCN3X2Tmd1L6n9sN3Clu/dE0K+RNmgdgOXAcjPbCOwFFnnq/16IdchUgy8Ct5vZWOA9YDEE/XfhWOAuM6sg9en4Xnd/wMyeJDX8dhmwDbgQgq1Dphq8QCqwHk6NQrLa3S8PtAaQoQ6ZNi6kDlomQEQkIPpGqYhIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiATk/wHell9jjLoNCQAAAABJRU5ErkJggg==", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test,y_test)\n", + "plt.plot(X_test,pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "La pente de la ligne peut être déterminée à partir des coefficients de régression linéaire :\n" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([-0.01751876]), 21.133734359909326)" + ] + }, + "execution_count": 178, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lin_reg.coef_, lin_reg.intercept_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 179, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([16.64893156])" + ] + }, + "execution_count": 179, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Pumpkin price on programmer's day\n", + "\n", + "lin_reg.predict([[256]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Régression polynomiale\n", + "\n", + "Parfois, la relation entre les caractéristiques et les résultats est intrinsèquement non linéaire. Par exemple, les prix des citrouilles peuvent être élevés en hiver (mois=1,2), puis baisser en été (mois=5-7), avant de remonter. La régression linéaire ne peut pas identifier cette relation avec précision.\n", + "\n", + "Dans ce cas, nous pouvons envisager d'ajouter des caractéristiques supplémentaires. Une méthode simple consiste à utiliser des polynômes à partir des caractéristiques d'entrée, ce qui aboutirait à une **régression polynomiale**. Dans Scikit Learn, nous pouvons pré-calculer automatiquement les caractéristiques polynomiales en utilisant des pipelines :\n" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.73 (17.0%)\n", + "Model determination: 0.07639977655280217\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 180, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbw0lEQVR4nO3de3Cc1Znn8e+jm93ClmRb8kWyjYBgDb6ATQQhFwIhFzu7meBQNVOVyu5Sm9RQSWWnJlMTZ3BIZWq2dpcMnprZzM5WTbEDFVLDsJOZOM4USTAEkkBYMJExjOwYY8AXkGRLsi35otb92T+6JbfurXa3ut+j36eqS2+ffvvto0f2T6/Oe/q0uTsiIhKGonx3QEREskehLiISEIW6iEhAFOoiIgFRqIuIBKRkLl+surra6+vr5/IlRUQib//+/Z3uXpPOvnMa6vX19TQ1Nc3lS4qIRJ6ZnUh3Xw2/iIgERKEuIhIQhbqISEAU6iIiAVGoi4gEZMbZL2a2Bvg+sBIYBh529++a2S7gd4F+4G3gP7t7Vw77KnNgz4EWdu09QmtXnNqqGDu2NrB9S12+uyUiaUrnTH0Q+BN3vwG4Dfiqma0HngE2uvuNwJvAztx1U+bCngMt7NzdTEtXHAdauuLs3N3MngMt+e6aiKRpxlB39zZ3fzW5fQE4DNS5+9PuPpjc7WVgde66KXNh194jxAeGxrTFB4bYtfdInnokIrM1qzF1M6sHtgD7xj30ReBnUzznPjNrMrOmjo6OjDopc6O1Kz6rdhEpPGmHupktAn4IfM3dz6e0P0BiiObxyZ7n7g+7e6O7N9bUpPUuV8mT2qrYrNpFpPCkFepmVkoi0B93990p7fcCnwG+4PoIpcjbsbWBWGnxmLZYaTE7tjbkqUciMlvpzH4x4BHgsLv/VUr7NuBPgTvcvSd3XZS5MjLLRbNfRKLLZjrBNrOPAC8AzSSmNAJ8E/gbYAFwJtn2srt/ebpjNTY2uhb0EhGZHTPb7+6N6ew745m6u/8asEke+ulsOyYiIrmld5SKiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQGb8jFKRXNtzoIVde4/Q2hWntirGjq0NbN9SV/DHlolU7/xTqEte7TnQws7dzcQHhgBo6Yqzc3czwBWHQS6PLROp3oVBwy+SV7v2HhkNgRHxgSF27T1S0MeWiVTvwqBQl7xq7YrPqr1Qji0Tqd6FQaEueVVbFZtVe6EcWyZSvQuDQl3yasfWBmKlxWPaYqXF7NjaUNDHlolU78KgC6WSVyMX0HIxYyKXx5aJVO/CYO4+Zy/W2NjoTU1Nc/Z6IiIhMLP97t6Yzr4znqmb2Rrg+8BKYBh42N2/a2ZLgX8C6oHjwO+7+7lMO50PmlMrIqFJZ0x9EPgTd78BuA34qpmtB+4HnnX364Fnk/cjY2RObUtXHOfynNo9B1ry3TURkYzNGOru3uburya3LwCHgTrgbuCx5G6PAdtz1Mec0JxaEQnRrGa/mFk9sAXYB6xw9zZIBD+wfIrn3GdmTWbW1NHRcYXdzR7NqRWREKUd6ma2CPgh8DV3P5/u89z9YXdvdPfGmpqaTPqYE5pTKyIhSivUzayURKA/7u67k82nzWxV8vFVQHtuupgbmlMrIiGaMdTNzIBHgMPu/lcpD/0rcG9y+17gx9nvXu5s31LHg/dsoq4qhgF1VTEevGeTZr+ISKTNOE/dzD4CvAA0k5jSCPBNEuPqPwDWAieB33P3s9MdS/PURURmL6vz1N3914BN8fDHZ9MxERHJLa39IiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEH1GqUiG9MlZUogU6iIZGPnkrJEPWhn55CxAwS55peEXkQzok7OkUCnURTKgT86SQqVQF8mAPjlLCpVCXSQD+uQsKVS6UCqSgZGLoZr9IoVGoS6Soe1b6hTiUnA0/CIiEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQAp+SmNUV8KLar9FJNoKOtSjuhJeVPstItFX0MMvUV0JL6r9FpHomzHUzexRM2s3s4MpbZvN7GUze83Mmszs1lx0Lqor4UW13yISfemcqX8P2Dau7SHgz919M/Dt5P2si+pKeFHtt4hE34yh7u7PA2fHNwMVye1KoDXL/QKiuxJeVPstItGX6YXSrwF7zewvSfxi+FDWepQiqivhRbXfIhJ95u4z72RWDzzp7huT9/8G+JW7/9DMfh+4z90/McVz7wPuA1i7du37T5w4ka2+i4jMC2a2390b09k309kv9wK7k9v/DEx5odTdH3b3RndvrKmpyejFuuMD9A8OZ/RcEZH5JNNQbwXuSG7fBRzNTncm97+ePcqt/+PnfGtPM/tPnCWdvy5EROajGcfUzewJ4E6g2szeA/4M+APgu2ZWAvSSHF7JlbtuWE77hT7+Zf97/MPLJ1m7tDzxAQWba7m2ZlEuX1pEJFLSGlPPlsbGRm9qasr4+Rf7Btl78BR7Xmvhxbc6GXa4aU0Vn9tcy+/eVMuyRQuy2FsRkcIwmzH1SIV6qtPne/nX11r50YEWftt2nuIi4451NWzfUscnb1hBrKx45oOIiETAvAj1VEdOXWDPay38+EALrd29XFVWzLaNq/jcljo+eN0yioss668pIjJX5l2ojxgedvYdO8ueAy38tLmNC32DrKhYwN2b69i+uY4bVi3GTAEvItEyb0M9Ve/AEM+90c6PDrTwyyPtDAw5DSsWs31LHXdvrtVb9kUkMhTq45y71M+TzW3sOdDC/hPnMIPbrlnG57bUsW3TSioWls55n0RE0qVQn8aJM5f4cfIC67HOS5SVFHFXw3I+vWklH/ud5Qp4ESk4CvU0uDuvv9c9Ov7efqGP0mLjw++rZtuGlXxi/QqqNUVSRAqAQn2WhoedA+92sffQKZ46eIqTZ3soMrilfinbNq5k64aVGoMXkbxRqF8Bd+dw2wWeOnSKvQdPceT0BQBuWl3JpzasZNvGlVynd7GKyBxSqGfROx0X2XvoNE8dOsXr73YBcP3yRaNn8BtqKzRNUkRySqGeI23dcZ4+dJqnDp5i37EzDDusXhJjW/IM/ua1SyjSG51EJMsU6nPgzMU+nj3czlOHTvHro530Dw1Ts3gBn1q/gm0bV3LbtcsoLS7oz/UWkYhQqM+xC70D/OJIB3sPnuIXR9rp6R+iYmEJn7hhBZ9Yv4IPX1dNZbmmSopIZhTqedQ7MMQLRzt56uApfn74NN3xAYossZrk7dfX8NHrq9m8pooSncWLSJoU6gVicGiY197t4vmjnbxwtIPX3+1i2GHxghI+9L5lyZCvYe2y8nx3VUQKmEK9QHX3DPDi24mAf/7NTlq64gBcvaycj15fw+3XV/PB65axWO9qFZEUCvUIcHeOdV7ihaOdPP9mBy+9c4ae/iGKi4yb11YlQn5dDZvqKrV0sMg8p1CPoP7BYV49eY4XjnbwwtFOmlu6cYfKWCkfeV81t19fze3raqjTO1tF5h2FegDOXOzjxbfP8MKbiZA/db4XgOtqrkqMxa+r5rZrl1FeNuPHzIpIxCnUA+PuvNV+kV8lA37fsTP0DgxTWmw0Xr2U29dV89Hra1i/qkJvfhIJkEI9cL0DQ+w/cY7nkxdcD7edB2DpVWWjQzUfuGYZa5bGtISBSAAU6mnac6CFXXuP0NoVp7Yqxo6tDWzfUpfvbs1a+4VeXnyrkxfe7OT5o510XuwDYPniBdxSv5TG+iXcUr+U31m5WPPjRSJIoZ6GPQda2Lm7mfjA0GhbrLSYB+/ZFMlgHzE87LzZfoGm4+doOn6W3xw/Nzp18qqyYm6+egmNVyeCfvOaKq5aoDF5kUKnUE/Dh7/z3GjYpaqrivHi/XfloUe509oVp+nE5ZB/49R53KG4yNhQW0Hj1Uu5pX4J769fwvLFC/PdXREZZzahPm9P01onCfTp2qOstirGZ6tifPamWgDO9w5w4GRXMuTP8o+vnODRF48BUL+snMb6pdy0poqNtRXcsKqChaXF+ey+iMzCvA312qrYpGfq8+ETjioWlnLHuhruWFcDJObIH2rtpun4OX5z/CzPvdHOv+x/D4Aig/ctX8TG2krW11awsS7xNZuf5RrKtQ2RQjBvh19CHVPPBnentbuXgy3dHGrp5lDreQ62dnP6fN/oPlcvK2djbSUb6irYUFvJxtoKlmXwma76OYjMLKvDL2b2KPAZoN3dN6a0/yHwX4BB4Cfu/o0M+5sXI4GhM8SJzIy6qhh1VTG2blg52t5xoY9DrcmQb+mmuaWbnzS3jT6+qnIhG2qTIV9XyYbaClZVLpx2WuWuvUfGBDpAfGCIXXuP6GchkoF0hl++B/wt8P2RBjP7GHA3cKO795nZ8tx0L7e2b6lTcMxCzeIF3NmwnDsbLv+4u3sGONTWzW+TQX+w9TzPvdHOcPIPwKVXlaUEfeLr1UvLR98kNZ+ubYjMhRlD3d2fN7P6cc1fAb7j7n3Jfdpz0DeZpXyMTVeWl/Kh66r50HXVo209/YMcbruQOKtvSQzdPPLrdxgYSiT9ogUlrK+tYENtBVXlpZzrGZhw3Gxd29B4vcw3mV4oXQfcbmb/HegFvu7uv5lsRzO7D7gPYO3atRm+nMxk/Nh0S1ecnbubAeY8xMrLSnj/1Ut4/9VLRtv6Boc4evoih1q7OZgM+ideOUnvwPCkx7imupyDLd3UV1/Fogzn0hdSTUTmSloXSpNn6k+OjKmb2UHgOeCPgFuAfwKu9RkOVkgXSkMTxXn3Q8POBx98lvYLfdPut3zxAq6pvmrM7dqaq1iztJwFJVNPt4xiTSQcQ8NOW3eck2d7ePdsDx9rWM7yiszeBzIX89TfA3YnQ/wVMxsGqoGODI8nVyiKY9PFRUbHNIH+d//hZt7pvMSxjksc67zEM789zZlL/aOPFxmsXlI+JuhHtmsrY5GsiUTL+d4BTp5JhPbJlNu7Z3to6YqPDjkC/J//1Mgn1+f+zX2Zhvoe4C7gl2a2DigDOrPVKZm9qM67n6rfdVUxtm1cNaG9u2eAY2cucazzIsc6LvFO5yWOn7lE0/GzXOq/PIumrKSI4iJjcHjiH48rKxbi7lrsTGY0MDRMW1fv5bA+dzm0T57toWvc9aCq8lLWLi1nQ10ln960irVLy0dvqyrn5t3a6UxpfAK4E6g2s/eAPwMeBR5NDsP0A/fONPQiubVja8Ok8713bG3IY69mNtt+V5aXsrm8is1rqsa0uzsdF/oSZ/bJ2/97q5NDrecZ/w+z7Xwv67+9l5WVC1lZsZBVlQtZUZn4urJiYaK9ciHVVy3QUsaBcncu9Q/R1dNPV88AXT0DnO3p571zY8+6W7t6GUo5MSgtNlYvKWfN0nJuXF05GthrkrdsvikvU/P2zUchiupMj1z2e8+BFh566g1au3upXlTGv9+0ijVLyznV3Uvb+V5OdSdup8/3TjirLykyVqSE/MgvgJUp4b988ULKSrTyZT71Dgxxrqefc5cG6IpfDulzPf10xwc4d6mfrvjAaICf6xmgO94/ZmgkVfWiskRILykfE9prl5WzsmJhXj5eUgt6iczS8LDTeamP0919tHXHOZUS+G3J0G/tjk+YrWMGVbFSqsrLqIiVUhUrpTJ5qyq/vH25rWz0Ma2pM1b/4HAieKcJ4smCu29w8hlUAAtLi6iKlVFVnqj5kvKR7TKqYon7lcn2JeWl1FbFCnLlUi3oNU/pTD1zRUXG8sWJM+9Nqysn3cfdOR8fpO18fEzgd17sozs+kDgr7Onn+JlLo/enO2cqKylKBHzKL4GK5HZbdy8vvX2G7vgAS8pL2b6ljtuvr6asuJiykqLErTjxdUHylto+3br5uaq3uzM07Ay5c7F3cFwQpwb05cA+d+ly3Xr6h6Y8dmmxjQnixPBHMpxHwjo27v48/cWpM/VARHUNlaj2Ox3Dw86FvkG6ewZGQ74r3j+6PdLelfJ4d3yAzot90559pqPIGA34BaXFia8lRcQHhjh1vnfMLxszWF0VY/HCUoZHgjkZzkPDzvDoNqOPj7QNpmynEyVFxmjwTnamXJn8Ov7suryseF5f2NaZ+jwU1TVUotrvdBQV2eiwy2xMNb++ZtEC/vcXbqZ/cJj+oSH6BobpHxqmb3A40TaYuJ+63TcwNGafnx8+PSF83aH9Qh8NKxdTZEZxUcrNjKLUr0WMaSsuTn4tsjHPXbSgZNJhjsULSnTxOccU6oGI6pzsqPY7l6b63jsv9nHrNUuv6NjX3P+TSdv7B4f5+3tvuaJjS2HQZftATDUfPQrz1GfTPh/ksiaqd/gU6oHYsbWB2LiLQlGZpx7FfudSLmuieodPwy+BiOr68FHtdy7lsiaqd/g0+0VEpMDNZvaLhl9ERAKiUBcRCYhCXUQkIAp1EZGAKNRFRAKiUBcRCYhCXUQkIAp1EZGA6B2lMkYhrG0uIplTqMuo8Wubt3TF2bm7GUDBLhIRGn6RUdOtbS4i0aBQl1Fa21wk+hTqMkprbYtEn0JdRmmtbZHo04VSGaW1tkWiT6EuY2zfUqcQF4kwhbrknebGT5TLmkT12FE11zVRqEteaW78RLmsSVSPHVX5qMmMF0rN7FEzazezg5M89nUzczOrzknvJHiaGz9RLmsS1WNHVT5qks7sl+8B28Y3mtka4JPAySz3SeYRzY2fKJc1ieqxoyofNZkx1N39eeDsJA/9NfANYO4+uVqCo7nxE+WyJlE9dlTloyYZzVM3s88CLe7+ehr73mdmTWbW1NHRkcnLScA0N36iXNYkqseOqnzUZNYXSs2sHHgA+FQ6+7v7w8DDAI2NjTqrlzE0N36iXNYkqseOqnzUxNxnzlkzqweedPeNZrYJeBboST68GmgFbnX3U9Mdp7Gx0Zuamq6sxyIi84yZ7Xf3xnT2nfWZurs3A8tTXuw40OjunbM9lkiuad60zDfpTGl8AngJaDCz98zsS7nvlsiVG5kj3NIVx7k8R3jPgZZ8d00kZ2Y8U3f3z8/weH3WeiOSRdPNEdbZuoRKqzRKsDRvWuYjLRMgwaqtitEySYDP53nTuRbVaxhR7fdkdKYuwdK86bkV1WsYUe33VBTqEqztW+p48J5N1FXFMKCuKsaD92yK7BlYoYvq2i9R7fdUNPwiQdP68HMnqtcwotrvqehMXUSyIqprv0S131NRqItIVkT1GkZU+z0VDb+ISFZEde2XqPZ7Kmmt/ZItWvtFRGT2ZrP2i4ZfREQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQCMmOom9mjZtZuZgdT2naZ2Rtm9m9m9iMzq8ppL0VEJC3pnKl/D9g2ru0ZYKO73wi8CezMcr9ERCQDM4a6uz8PnB3X9rS7DybvvgyszkHfRERklrIxpv5F4GdTPWhm95lZk5k1dXR0ZOHlRERkKlcU6mb2ADAIPD7VPu7+sLs3untjTU3NlbyciIjMoCTTJ5rZvcBngI+7u2evSyIikqmMQt3MtgF/Ctzh7j3Z7ZKIiGQqnSmNTwAvAQ1m9p6ZfQn4W2Ax8IyZvWZmf5fjfoqISBpmPFN3989P0vxIDvoiIiJXSO8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYBkvPSuiOTOt/Y088S+dxlyp9iMz39gDf9t+6asHHvPgRZ27T1Ca1ec2qoYO7Y2sH1LXVaOLfmnUBcpMN/a08w/vHxy9P6Q++j9Kw32PQda2Lm7mfjAEAAtXXF27m4GULAHQsMvIgXmiX3vzqp9NnbtPTIa6CPiA0Ps2nvkio8thUGhLlJghqb4ILGp2mejtSs+q3aJHoW6SIEpNptV+2zUVsVm1S7Ro1AXKTCf/8CaWbXPxo6tDcRKi8e0xUqL2bG14YqPLYVBF0pFCszIxdBczH4ZuRiq2S/hMs/COF26Ghsbvampac5eT0QkBGa2390b09lXwy8iIgFRqIuIBEShLiISEIW6iEhAFOoiIgGZ09kvZtYBnACqgc45e+HCpTqoBqAajFAdpq7B1e5ek84B5jTUR1/UrCnd6TkhUx1UA1ANRqgO2amBhl9ERAKiUBcRCUi+Qv3hPL1uoVEdVANQDUaoDlmoQV7G1EVEJDc0/CIiEhCFuohIQLIe6ma2xsx+YWaHzeyQmf3RuMe/bmZuZtUpbTvN7C0zO2JmW7Pdp3yYrg5m9ofJ7/WQmT2U0h5UHaaqgZltNrOXzew1M2sys1tTnhNUDQDMbKGZvWJmryfr8OfJ9qVm9oyZHU1+XZLynKDqME0NdpnZG2b2b2b2IzOrSnlOUDWAqeuQ8viV56O7Z/UGrAJuTm4vBt4E1ifvrwH2knwDUrJtPfA6sAC4BngbKM52v+b6NlUdgI8BPwcWJB9bHmodpqnB08Cnk+3/DvhlqDVIfl8GLEpulwL7gNuAh4D7k+33A38Rah2mqcGngJJk+1+EXIPp6pC8n5V8zPqZuru3ufurye0LwGFgZAX+vwa+AaRenb0b+L/u3ufux4C3gFuJuGnq8BXgO+7el3ysPfmU4OowTQ0cqEjuVgm0JreDqwGAJ1xM3i1N3pzE9/tYsv0xYHtyO7g6TFUDd3/a3QeT7S8Dq5PbwdUApv23AFnKx5yOqZtZPbAF2GdmnwVa3P31cbvVAakfk/4el38JBCG1DsA64HYz22dmvzKzW5K7BV2HcTX4GrDLzN4F/hLYmdwt2BqYWbGZvQa0A8+4+z5ghbu3QeIXILA8uXuQdZiiBqm+CPwsuR1kDWDyOmQzH3MW6ma2CPghif/Ag8ADwLcn23WStmDmWabWwd3Pk/gIwSUk/vTcAfzAzIyA6zBJDb4C/LG7rwH+GHhkZNdJnh5EDdx9yN03kzgTvdXMNk6ze5B1mK4GZvYAiZx4fKRpskPkvJNzYJI63EgW8zEnoW5mpST+Ez/u7ruB60iMB71uZsdJfDOvmtlKEr95Uj9RdzWX/xyPtEnqAInvd3fyz7BXgGESi/gEWYcpanAvMLL9z1z+czLIGqRy9y7gl8A24LSZrQJIfh0Zigu6DuNqgJndC3wG+IInB5IJvAYwpg53k818zNGFgO8D/3OafY5z+ULABsZeCHiHcC6ITKgD8GXgvya315H408pCrMM0NTgM3Jnc/jiwP/B/CzVAVXI7BrxAIsR2MfZC6UOh1mGaGmwDfgvUjNs/uBpMV4dx+1xRPpZMk/eZ+jDwH4Hm5LgRwDfd/aeT7ezuh8zsByR+sIPAV919KAf9mmuT1gF4FHjUzA4C/cC9nvjphViHqWrwB8B3zawE6AXug6D/LawCHjOzYhJ/Hf/A3Z80s5dIDL99CTgJ/B4EW4epavAWicB6JjEKycvu/uVAawBT1GGqnTOpg5YJEBEJiN5RKiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgH5/+EaqS+WjFbpAAAAAElFTkSuQmCC", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)\n", + "\n", + "plt.scatter(X_test,y_test)\n", + "plt.plot(sorted(X_test),pipeline.predict(sorted(X_test)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Encodage des variétés\n", + "\n", + "Dans un monde idéal, nous voudrions pouvoir prédire les prix de différentes variétés de citrouilles en utilisant le même modèle. Pour prendre en compte la variété, nous devons d'abord la convertir en une forme numérique, ou **encoder**. Il existe plusieurs façons de le faire :\n", + "\n", + "* Un encodage numérique simple qui construit une table des différentes variétés, puis remplace le nom de la variété par un indice dans cette table. Ce n'est pas la meilleure idée pour une régression linéaire, car la régression linéaire prend en compte la valeur numérique de l'indice, et cette valeur numérique n'est probablement pas corrélée de manière significative avec le prix.\n", + "* Un encodage one-hot, qui remplacera la colonne `Variety` par 4 colonnes différentes, une pour chaque variété, contenant 1 si la ligne correspondante est de la variété donnée, et 0 sinon.\n", + "\n", + "Le code ci-dessous montre comment nous pouvons encoder une variété en one-hot :\n" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      FAIRYTALEMINIATUREMIXED HEIRLOOM VARIETIESPIE TYPE
                      700001
                      710001
                      720001
                      730001
                      740001
                      ...............
                      17380100
                      17390100
                      17400100
                      17410100
                      17420100
                      \n", + "

                      415 rows × 4 columns

                      \n", + "
                      " + ], + "text/plain": [ + " FAIRYTALE MINIATURE MIXED HEIRLOOM VARIETIES PIE TYPE\n", + "70 0 0 0 1\n", + "71 0 0 0 1\n", + "72 0 0 0 1\n", + "73 0 0 0 1\n", + "74 0 0 0 1\n", + "... ... ... ... ...\n", + "1738 0 1 0 0\n", + "1739 0 1 0 0\n", + "1740 0 1 0 0\n", + "1741 0 1 0 0\n", + "1742 0 1 0 0\n", + "\n", + "[415 rows x 4 columns]" + ] + }, + "execution_count": 181, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.get_dummies(new_pumpkins['Variety'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Régression linéaire sur les variétés\n", + "\n", + "Nous allons maintenant utiliser le même code que précédemment, mais au lieu de `DayOfYear`, nous utiliserons notre variété encodée en one-hot comme entrée :\n" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "metadata": {}, + "outputs": [], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety'])\n", + "y = new_pumpkins['Price']" + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 5.24 (19.7%)\n", + "Model determination: 0.774085281105197\n" + ] + } + ], + "source": [ + "def run_linear_regression(X,y):\n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + " lin_reg = LinearRegression()\n", + " lin_reg.fit(X_train,y_train)\n", + "\n", + " pred = lin_reg.predict(X_test)\n", + "\n", + " mse = np.sqrt(mean_squared_error(y_test,pred))\n", + " print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + " score = lin_reg.score(X_train,y_train)\n", + " print('Model determination: ', score)\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nous pouvons également essayer d'utiliser d'autres fonctionnalités de la même manière, et de les combiner avec des fonctionnalités numériques, telles que `Month` ou `DayOfYear` :\n" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.84 (10.5%)\n", + "Model determination: 0.9401096672643048\n" + ] + } + ], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety']) \\\n", + " .join(new_pumpkins['Month']) \\\n", + " .join(pd.get_dummies(new_pumpkins['City'])) \\\n", + " .join(pd.get_dummies(new_pumpkins['Package']))\n", + "y = new_pumpkins['Price']\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Régression polynomiale\n", + "\n", + "La régression polynomiale peut également être utilisée avec des caractéristiques catégorielles qui sont encodées en one-hot. Le code pour entraîner une régression polynomiale serait essentiellement le même que celui que nous avons vu précédemment.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.23 (8.25%)\n", + "Model determination: 0.9652870784724543\n" + ] + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d77bd89ae7e79780c68c58bab91f13f8", + "translation_date": "2025-09-04T01:02:38+00:00", + "source_file": "2-Regression/3-Linear/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fr/2-Regression/4-Logistic/README.md b/translations/fr/2-Regression/4-Logistic/README.md new file mode 100644 index 000000000..938bdf2a6 --- /dev/null +++ b/translations/fr/2-Regression/4-Logistic/README.md @@ -0,0 +1,413 @@ + +# Régression logistique pour prédire des catégories + +![Infographie sur la régression logistique vs linéaire](../../../../translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.fr.png) + +## [Quiz avant le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/) + +> ### [Cette leçon est disponible en R !](../../../../2-Regression/4-Logistic/solution/R/lesson_4.html) + +## Introduction + +Dans cette dernière leçon sur la régression, l'une des techniques classiques de base en apprentissage automatique, nous allons examiner la régression logistique. Vous utiliseriez cette technique pour découvrir des modèles permettant de prédire des catégories binaires. Ce bonbon est-il au chocolat ou non ? Cette maladie est-elle contagieuse ou non ? Ce client choisira-t-il ce produit ou non ? + +Dans cette leçon, vous apprendrez : + +- Une nouvelle bibliothèque pour la visualisation des données +- Des techniques pour la régression logistique + +✅ Approfondissez votre compréhension de ce type de régression dans ce [module d'apprentissage](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott) + +## Prérequis + +Après avoir travaillé avec les données sur les citrouilles, nous sommes maintenant suffisamment familiers avec elles pour réaliser qu'il existe une catégorie binaire sur laquelle nous pouvons travailler : `Color`. + +Construisons un modèle de régression logistique pour prédire, à partir de certaines variables, _quelle couleur une citrouille donnée est susceptible d'avoir_ (orange 🎃 ou blanche 👻). + +> Pourquoi parlons-nous de classification binaire dans une leçon sur la régression ? C'est uniquement pour des raisons linguistiques, car la régression logistique est [en réalité une méthode de classification](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression), bien qu'elle soit basée sur des principes linéaires. Découvrez d'autres façons de classifier les données dans le prochain groupe de leçons. + +## Définir la question + +Pour nos besoins, nous exprimerons cela comme une binaire : 'Blanche' ou 'Non blanche'. Il existe également une catégorie 'rayée' dans notre ensemble de données, mais elle contient peu d'exemples, donc nous ne l'utiliserons pas. Elle disparaît de toute façon une fois que nous supprimons les valeurs nulles de l'ensemble de données. + +> 🎃 Fait amusant : nous appelons parfois les citrouilles blanches des citrouilles 'fantômes'. Elles ne sont pas très faciles à sculpter, donc elles ne sont pas aussi populaires que les citrouilles oranges, mais elles ont un look sympa ! Nous pourrions donc reformuler notre question ainsi : 'Fantôme' ou 'Non fantôme'. 👻 + +## À propos de la régression logistique + +La régression logistique diffère de la régression linéaire, que vous avez apprise précédemment, de plusieurs manières importantes. + +[![ML pour débutants - Comprendre la régression logistique pour la classification en apprentissage automatique](https://img.youtube.com/vi/KpeCT6nEpBY/0.jpg)](https://youtu.be/KpeCT6nEpBY "ML pour débutants - Comprendre la régression logistique pour la classification en apprentissage automatique") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo sur la régression logistique. + +### Classification binaire + +La régression logistique n'offre pas les mêmes fonctionnalités que la régression linéaire. La première propose une prédiction sur une catégorie binaire ("blanche ou non blanche"), tandis que la seconde est capable de prédire des valeurs continues, par exemple, en fonction de l'origine d'une citrouille et du moment de la récolte, _de combien son prix augmentera_. + +![Modèle de classification des citrouilles](../../../../translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.fr.png) +> Infographie par [Dasani Madipalli](https://twitter.com/dasani_decoded) + +### Autres classifications + +Il existe d'autres types de régression logistique, notamment multinomiale et ordinale : + +- **Multinomiale**, qui implique d'avoir plus d'une catégorie - "Orange, Blanche et Rayée". +- **Ordinale**, qui implique des catégories ordonnées, utile si nous voulons ordonner nos résultats logiquement, comme nos citrouilles classées par un nombre fini de tailles (mini, petite, moyenne, grande, XL, XXL). + +![Régression multinomiale vs ordinale](../../../../translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.fr.png) + +### Les variables n'ont PAS besoin d'être corrélées + +Vous vous souvenez que la régression linéaire fonctionnait mieux avec des variables plus corrélées ? La régression logistique est l'opposé - les variables n'ont pas besoin d'être alignées. Cela fonctionne pour ces données qui ont des corrélations relativement faibles. + +### Vous avez besoin de beaucoup de données propres + +La régression logistique donnera des résultats plus précis si vous utilisez davantage de données ; notre petit ensemble de données n'est pas optimal pour cette tâche, donc gardez cela à l'esprit. + +[![ML pour débutants - Analyse et préparation des données pour la régression logistique](https://img.youtube.com/vi/B2X4H9vcXTs/0.jpg)](https://youtu.be/B2X4H9vcXTs "ML pour débutants - Analyse et préparation des données pour la régression logistique") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo sur la préparation des données pour la régression linéaire. + +✅ Réfléchissez aux types de données qui se prêtent bien à la régression logistique. + +## Exercice - nettoyer les données + +Tout d'abord, nettoyez un peu les données en supprimant les valeurs nulles et en sélectionnant uniquement certaines colonnes : + +1. Ajoutez le code suivant : + + ```python + + columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color'] + pumpkins = full_pumpkins.loc[:, columns_to_select] + + pumpkins.dropna(inplace=True) + ``` + + Vous pouvez toujours jeter un coup d'œil à votre nouveau dataframe : + + ```python + pumpkins.info + ``` + +### Visualisation - graphique catégoriel + +À ce stade, vous avez chargé le [notebook de départ](./notebook.ipynb) avec les données sur les citrouilles et les avez nettoyées pour conserver un ensemble de données contenant quelques variables, y compris `Color`. Visualisons le dataframe dans le notebook en utilisant une bibliothèque différente : [Seaborn](https://seaborn.pydata.org/index.html), qui est construite sur Matplotlib que nous avons utilisé précédemment. + +Seaborn offre des moyens intéressants de visualiser vos données. Par exemple, vous pouvez comparer les distributions des données pour chaque `Variety` et `Color` dans un graphique catégoriel. + +1. Créez un tel graphique en utilisant la fonction `catplot`, avec nos données sur les citrouilles `pumpkins`, et en spécifiant une correspondance de couleurs pour chaque catégorie de citrouilles (orange ou blanche) : + + ```python + import seaborn as sns + + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + + sns.catplot( + data=pumpkins, y="Variety", hue="Color", kind="count", + palette=palette, + ) + ``` + + ![Une grille de données visualisées](../../../../translated_images/pumpkins_catplot_1.c55c409b71fea2ecc01921e64b91970542101f90bcccfa4aa3a205db8936f48b.fr.png) + + En observant les données, vous pouvez voir comment les données de couleur se rapportent à la variété. + + ✅ À partir de ce graphique catégoriel, quelles explorations intéressantes pouvez-vous envisager ? + +### Prétraitement des données : encodage des caractéristiques et des étiquettes + +Notre ensemble de données sur les citrouilles contient des valeurs de type chaîne pour toutes ses colonnes. Travailler avec des données catégoriques est intuitif pour les humains mais pas pour les machines. Les algorithmes d'apprentissage automatique fonctionnent bien avec des nombres. C'est pourquoi l'encodage est une étape très importante dans la phase de prétraitement des données, car il nous permet de transformer des données catégoriques en données numériques, sans perdre aucune information. Un bon encodage permet de construire un bon modèle. + +Pour l'encodage des caractéristiques, il existe deux principaux types d'encodeurs : + +1. Encodeur ordinal : il convient bien aux variables ordinales, qui sont des variables catégoriques dont les données suivent un ordre logique, comme la colonne `Item Size` dans notre ensemble de données. Il crée une correspondance de sorte que chaque catégorie soit représentée par un nombre, qui est l'ordre de la catégorie dans la colonne. + + ```python + from sklearn.preprocessing import OrdinalEncoder + + item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']] + ordinal_features = ['Item Size'] + ordinal_encoder = OrdinalEncoder(categories=item_size_categories) + ``` + +2. Encodeur catégoriel : il convient bien aux variables nominales, qui sont des variables catégoriques dont les données ne suivent pas un ordre logique, comme toutes les caractéristiques différentes de `Item Size` dans notre ensemble de données. Il s'agit d'un encodage one-hot, ce qui signifie que chaque catégorie est représentée par une colonne binaire : la variable encodée est égale à 1 si la citrouille appartient à cette variété et à 0 sinon. + + ```python + from sklearn.preprocessing import OneHotEncoder + + categorical_features = ['City Name', 'Package', 'Variety', 'Origin'] + categorical_encoder = OneHotEncoder(sparse_output=False) + ``` + +Ensuite, `ColumnTransformer` est utilisé pour combiner plusieurs encodeurs en une seule étape et les appliquer aux colonnes appropriées. + +```python + from sklearn.compose import ColumnTransformer + + ct = ColumnTransformer(transformers=[ + ('ord', ordinal_encoder, ordinal_features), + ('cat', categorical_encoder, categorical_features) + ]) + + ct.set_output(transform='pandas') + encoded_features = ct.fit_transform(pumpkins) +``` + +D'autre part, pour encoder l'étiquette, nous utilisons la classe `LabelEncoder` de scikit-learn, qui est une classe utilitaire pour normaliser les étiquettes de sorte qu'elles contiennent uniquement des valeurs entre 0 et n_classes-1 (ici, 0 et 1). + +```python + from sklearn.preprocessing import LabelEncoder + + label_encoder = LabelEncoder() + encoded_label = label_encoder.fit_transform(pumpkins['Color']) +``` + +Une fois que nous avons encodé les caractéristiques et l'étiquette, nous pouvons les fusionner dans un nouveau dataframe `encoded_pumpkins`. + +```python + encoded_pumpkins = encoded_features.assign(Color=encoded_label) +``` + +✅ Quels sont les avantages d'utiliser un encodeur ordinal pour la colonne `Item Size` ? + +### Analyser les relations entre les variables + +Maintenant que nous avons prétraité nos données, nous pouvons analyser les relations entre les caractéristiques et l'étiquette pour avoir une idée de la capacité du modèle à prédire l'étiquette à partir des caractéristiques. La meilleure façon de réaliser ce type d'analyse est de tracer les données. Nous utiliserons à nouveau la fonction `catplot` de Seaborn pour visualiser les relations entre `Item Size`, `Variety` et `Color` dans un graphique catégoriel. Pour mieux tracer les données, nous utiliserons la colonne encodée `Item Size` et la colonne non encodée `Variety`. + +```python + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size'] + + g = sns.catplot( + data=pumpkins, + x="Item Size", y="Color", row='Variety', + kind="box", orient="h", + sharex=False, margin_titles=True, + height=1.8, aspect=4, palette=palette, + ) + g.set(xlabel="Item Size", ylabel="").set(xlim=(0,6)) + g.set_titles(row_template="{row_name}") +``` + +![Un catplot de données visualisées](../../../../translated_images/pumpkins_catplot_2.87a354447880b3889278155957f8f60dd63db4598de5a6d0fda91c334d31f9f1.fr.png) + +### Utiliser un graphique en essaim + +Étant donné que `Color` est une catégorie binaire (Blanche ou Non), elle nécessite 'une [approche spécialisée](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar) pour la visualisation'. Il existe d'autres façons de visualiser la relation de cette catégorie avec d'autres variables. + +Vous pouvez visualiser les variables côte à côte avec des graphiques Seaborn. + +1. Essayez un graphique en essaim pour montrer la distribution des valeurs : + + ```python + palette = { + 0: 'orange', + 1: 'wheat' + } + sns.swarmplot(x="Color", y="ord__Item Size", data=encoded_pumpkins, palette=palette) + ``` + + ![Un essaim de données visualisées](../../../../translated_images/swarm_2.efeacfca536c2b577dc7b5f8891f28926663fbf62d893ab5e1278ae734ca104e.fr.png) + +**Attention** : le code ci-dessus pourrait générer un avertissement, car Seaborn échoue à représenter une telle quantité de points de données dans un graphique en essaim. Une solution possible est de réduire la taille du marqueur, en utilisant le paramètre 'size'. Cependant, soyez conscient que cela affecte la lisibilité du graphique. + +> **🧮 Montrez-moi les mathématiques** +> +> La régression logistique repose sur le concept de 'maximum de vraisemblance' en utilisant des [fonctions sigmoïdes](https://wikipedia.org/wiki/Sigmoid_function). Une 'fonction sigmoïde' sur un graphique ressemble à une forme en 'S'. Elle prend une valeur et la mappe entre 0 et 1. Sa courbe est également appelée 'courbe logistique'. Sa formule ressemble à ceci : +> +> ![fonction logistique](../../../../translated_images/sigmoid.8b7ba9d095c789cf72780675d0d1d44980c3736617329abfc392dfc859799704.fr.png) +> +> où le point médian de la sigmoïde se trouve au point 0 de x, L est la valeur maximale de la courbe, et k est la pente de la courbe. Si le résultat de la fonction est supérieur à 0,5, l'étiquette en question sera attribuée à la classe '1' du choix binaire. Sinon, elle sera classée comme '0'. + +## Construisez votre modèle + +Construire un modèle pour trouver ces classifications binaires est étonnamment simple avec Scikit-learn. + +[![ML pour débutants - Régression logistique pour la classification des données](https://img.youtube.com/vi/MmZS2otPrQ8/0.jpg)](https://youtu.be/MmZS2otPrQ8 "ML pour débutants - Régression logistique pour la classification des données") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo sur la construction d'un modèle de régression linéaire. + +1. Sélectionnez les variables que vous souhaitez utiliser dans votre modèle de classification et divisez les ensembles d'entraînement et de test en appelant `train_test_split()` : + + ```python + from sklearn.model_selection import train_test_split + + X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])] + y = encoded_pumpkins['Color'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + + ``` + +2. Maintenant, vous pouvez entraîner votre modèle en appelant `fit()` avec vos données d'entraînement, et afficher son résultat : + + ```python + from sklearn.metrics import f1_score, classification_report + from sklearn.linear_model import LogisticRegression + + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('F1-score: ', f1_score(y_test, predictions)) + ``` + + Regardez le tableau de bord de votre modèle. Ce n'est pas mal, compte tenu du fait que vous avez seulement environ 1000 lignes de données : + + ```output + precision recall f1-score support + + 0 0.94 0.98 0.96 166 + 1 0.85 0.67 0.75 33 + + accuracy 0.92 199 + macro avg 0.89 0.82 0.85 199 + weighted avg 0.92 0.92 0.92 199 + + Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 + 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 + 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 + 0 0 0 1 0 0 0 0 0 0 0 0 1 1] + F1-score: 0.7457627118644068 + ``` + +## Meilleure compréhension via une matrice de confusion + +Bien que vous puissiez obtenir un rapport de tableau de bord [termes](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report) en imprimant les éléments ci-dessus, vous pourriez comprendre votre modèle plus facilement en utilisant une [matrice de confusion](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix) pour nous aider à comprendre comment le modèle fonctionne. + +> 🎓 Une '[matrice de confusion](https://wikipedia.org/wiki/Confusion_matrix)' (ou 'matrice d'erreur') est un tableau qui exprime les vrais vs faux positifs et négatifs de votre modèle, évaluant ainsi la précision des prédictions. + +1. Pour utiliser une matrice de confusion, appelez `confusion_matrix()` : + + ```python + from sklearn.metrics import confusion_matrix + confusion_matrix(y_test, predictions) + ``` + + Regardez la matrice de confusion de votre modèle : + + ```output + array([[162, 4], + [ 11, 22]]) + ``` + +Dans Scikit-learn, les lignes (axe 0) sont les étiquettes réelles et les colonnes (axe 1) sont les étiquettes prédites. + +| | 0 | 1 | +| :---: | :---: | :---: | +| 0 | TN | FP | +| 1 | FN | TP | + +Que se passe-t-il ici ? Disons que notre modèle est chargé de classifier les citrouilles entre deux catégories binaires, catégorie 'blanche' et catégorie 'non blanche'. + +- Si votre modèle prédit qu'une citrouille n'est pas blanche et qu'elle appartient à la catégorie 'non blanche' en réalité, nous appelons cela un vrai négatif, indiqué par le nombre en haut à gauche. +- Si votre modèle prédit qu'une citrouille est blanche et qu'elle appartient à la catégorie 'non blanche' en réalité, nous appelons cela un faux négatif, indiqué par le nombre en bas à gauche. +- Si votre modèle prédit qu'une citrouille n'est pas blanche et qu'elle appartient à la catégorie 'blanche' en réalité, nous appelons cela un faux positif, indiqué par le nombre en haut à droite. +- Si votre modèle prédit qu'une citrouille est blanche et qu'elle appartient à la catégorie 'blanche' en réalité, nous appelons cela un vrai positif, indiqué par le nombre en bas à droite. + +Comme vous l'avez probablement deviné, il est préférable d'avoir un plus grand nombre de vrais positifs et de vrais négatifs et un plus petit nombre de faux positifs et de faux négatifs, ce qui implique que le modèle fonctionne mieux. +Comment la matrice de confusion est-elle liée à la précision et au rappel ? Rappelez-vous, le rapport de classification imprimé ci-dessus montrait une précision (0,85) et un rappel (0,67). + +Précision = tp / (tp + fp) = 22 / (22 + 4) = 0,8461538461538461 + +Rappel = tp / (tp + fn) = 22 / (22 + 11) = 0,6666666666666666 + +✅ Q : Selon la matrice de confusion, comment le modèle s'en est-il sorti ? +R : Pas mal ; il y a un bon nombre de vrais négatifs mais aussi quelques faux négatifs. + +Revisitons les termes que nous avons vus précédemment à l'aide de la cartographie TP/TN et FP/FN de la matrice de confusion : + +🎓 Précision : TP/(TP + FP) La fraction des instances pertinentes parmi les instances récupérées (par exemple, quels labels ont été bien étiquetés). + +🎓 Rappel : TP/(TP + FN) La fraction des instances pertinentes qui ont été récupérées, qu'elles soient bien étiquetées ou non. + +🎓 f1-score : (2 * précision * rappel)/(précision + rappel) Une moyenne pondérée de la précision et du rappel, avec le meilleur score étant 1 et le pire étant 0. + +🎓 Support : Le nombre d'occurrences de chaque label récupéré. + +🎓 Exactitude : (TP + TN)/(TP + TN + FP + FN) Le pourcentage de labels prédits correctement pour un échantillon. + +🎓 Macro Moyenne : Le calcul de la moyenne non pondérée des métriques pour chaque label, sans tenir compte du déséquilibre des labels. + +🎓 Moyenne Pondérée : Le calcul de la moyenne des métriques pour chaque label, en tenant compte du déséquilibre des labels en les pondérant par leur support (le nombre d'instances réelles pour chaque label). + +✅ Pouvez-vous réfléchir à quelle métrique surveiller si vous voulez que votre modèle réduise le nombre de faux négatifs ? + +## Visualiser la courbe ROC de ce modèle + +[![ML pour débutants - Analyse de la performance de la régression logistique avec les courbes ROC](https://img.youtube.com/vi/GApO575jTA0/0.jpg)](https://youtu.be/GApO575jTA0 "ML pour débutants - Analyse de la performance de la régression logistique avec les courbes ROC") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo sur les courbes ROC. + +Faisons une autre visualisation pour voir la fameuse courbe 'ROC' : + +```python +from sklearn.metrics import roc_curve, roc_auc_score +import matplotlib +import matplotlib.pyplot as plt +%matplotlib inline + +y_scores = model.predict_proba(X_test) +fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1]) + +fig = plt.figure(figsize=(6, 6)) +plt.plot([0, 1], [0, 1], 'k--') +plt.plot(fpr, tpr) +plt.xlabel('False Positive Rate') +plt.ylabel('True Positive Rate') +plt.title('ROC Curve') +plt.show() +``` + +En utilisant Matplotlib, tracez la [caractéristique de fonctionnement du récepteur](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc) ou ROC du modèle. Les courbes ROC sont souvent utilisées pour obtenir une vue d'ensemble des résultats d'un classificateur en termes de vrais positifs contre faux positifs. "Les courbes ROC présentent généralement le taux de vrais positifs sur l'axe Y et le taux de faux positifs sur l'axe X." Ainsi, la pente de la courbe et l'espace entre la ligne médiane et la courbe sont importants : vous voulez une courbe qui monte rapidement et dépasse la ligne. Dans notre cas, il y a des faux positifs au départ, puis la ligne monte correctement : + +![ROC](../../../../translated_images/ROC_2.777f20cdfc4988ca683ade6850ac832cb70c96c12f1b910d294f270ef36e1a1c.fr.png) + +Enfin, utilisez l'API [`roc_auc_score`](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score) de Scikit-learn pour calculer la véritable 'Surface sous la courbe' (AUC) : + +```python +auc = roc_auc_score(y_test,y_scores[:,1]) +print(auc) +``` +Le résultat est `0.9749908725812341`. Étant donné que l'AUC varie de 0 à 1, vous voulez un score élevé, car un modèle qui est 100 % correct dans ses prédictions aura une AUC de 1 ; dans ce cas, le modèle est _plutôt bon_. + +Dans les prochaines leçons sur les classifications, vous apprendrez comment itérer pour améliorer les scores de votre modèle. Mais pour l'instant, félicitations ! Vous avez terminé ces leçons sur la régression ! + +--- +## 🚀Défi + +Il y a beaucoup plus à découvrir sur la régression logistique ! Mais la meilleure façon d'apprendre est d'expérimenter. Trouvez un ensemble de données qui se prête à ce type d'analyse et construisez un modèle avec celui-ci. Qu'apprenez-vous ? Astuce : essayez [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) pour des ensembles de données intéressants. + +## [Quiz post-lecture](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/16/) + +## Révision & Auto-étude + +Lisez les premières pages de [cet article de Stanford](https://web.stanford.edu/~jurafsky/slp3/5.pdf) sur quelques utilisations pratiques de la régression logistique. Réfléchissez aux tâches qui conviennent mieux à l'un ou l'autre type de tâches de régression que nous avons étudiées jusqu'à présent. Qu'est-ce qui fonctionnerait le mieux ? + +## Devoir + +[Reprendre cette régression](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/2-Regression/4-Logistic/assignment.md b/translations/fr/2-Regression/4-Logistic/assignment.md new file mode 100644 index 000000000..b6b8ea084 --- /dev/null +++ b/translations/fr/2-Regression/4-Logistic/assignment.md @@ -0,0 +1,25 @@ + +# Réessayer une Régression + +## Instructions + +Dans la leçon, vous avez utilisé un sous-ensemble des données sur les citrouilles. Maintenant, retournez aux données originales et essayez d'utiliser l'ensemble complet, nettoyé et standardisé, pour construire un modèle de Régression Logistique. + +## Critères d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ----------------------------------------------------------------------- | ------------------------------------------------------------ | ----------------------------------------------------------- | +| | Un notebook est présenté avec un modèle bien expliqué et performant | Un notebook est présenté avec un modèle qui fonctionne minimalement | Un notebook est présenté avec un modèle peu performant ou aucun | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/2-Regression/4-Logistic/notebook.ipynb b/translations/fr/2-Regression/4-Logistic/notebook.ipynb new file mode 100644 index 000000000..de03c6168 --- /dev/null +++ b/translations/fr/2-Regression/4-Logistic/notebook.ipynb @@ -0,0 +1,269 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Variétés de citrouilles et couleur\n", + "\n", + "Chargez les bibliothèques nécessaires et le jeu de données. Convertissez les données en un dataframe contenant un sous-ensemble des données :\n", + "\n", + "Examinons la relation entre la couleur et la variété\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                      0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                      1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                      2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      \n", + "

                      5 rows × 26 columns

                      \n", + "
                      " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "dee08c2b49057b0de8b6752c4dbca368", + "translation_date": "2025-09-04T01:18:00+00:00", + "source_file": "2-Regression/4-Logistic/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fr/2-Regression/4-Logistic/solution/Julia/README.md b/translations/fr/2-Regression/4-Logistic/solution/Julia/README.md new file mode 100644 index 000000000..d6213603f --- /dev/null +++ b/translations/fr/2-Regression/4-Logistic/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb b/translations/fr/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb new file mode 100644 index 000000000..9fc05be2d --- /dev/null +++ b/translations/fr/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb @@ -0,0 +1,686 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Construire un modèle de régression logistique - Leçon 4\n", + "\n", + "![Infographie régression logistique vs linéaire](../../../../../../translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.fr.png)\n", + "\n", + "#### **[Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/)**\n", + "\n", + "#### Introduction\n", + "\n", + "Dans cette dernière leçon sur la régression, l'une des techniques *classiques* de base en apprentissage automatique, nous allons examiner la régression logistique. Vous utiliseriez cette technique pour découvrir des modèles permettant de prédire des catégories binaires. Ce bonbon est-il au chocolat ou non ? Cette maladie est-elle contagieuse ou non ? Ce client choisira-t-il ce produit ou non ?\n", + "\n", + "Dans cette leçon, vous apprendrez :\n", + "\n", + "- Les techniques de régression logistique\n", + "\n", + "✅ Approfondissez votre compréhension de ce type de régression dans ce [module d'apprentissage](https://learn.microsoft.com/training/modules/introduction-classification-models/?WT.mc_id=academic-77952-leestott)\n", + "\n", + "## Prérequis\n", + "\n", + "Après avoir travaillé avec les données sur les citrouilles, nous sommes maintenant suffisamment familiers avec elles pour réaliser qu'il existe une catégorie binaire sur laquelle nous pouvons travailler : `Color`.\n", + "\n", + "Construisons un modèle de régression logistique pour prédire, à partir de certaines variables, *quelle couleur une citrouille donnée est susceptible d'avoir* (orange 🎃 ou blanche 👻).\n", + "\n", + "> Pourquoi parlons-nous de classification binaire dans une leçon sur la régression ? Uniquement pour des raisons linguistiques, car la régression logistique est [en réalité une méthode de classification](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression), bien qu'elle soit basée sur des modèles linéaires. Découvrez d'autres façons de classifier des données dans le prochain groupe de leçons.\n", + "\n", + "Pour cette leçon, nous aurons besoin des packages suivants :\n", + "\n", + "- `tidyverse` : Le [tidyverse](https://www.tidyverse.org/) est une [collection de packages R](https://www.tidyverse.org/packages) conçue pour rendre la science des données plus rapide, plus facile et plus amusante !\n", + "\n", + "- `tidymodels` : Le [framework tidymodels](https://www.tidymodels.org/) est une [collection de packages](https://www.tidymodels.org/packages/) pour la modélisation et l'apprentissage automatique.\n", + "\n", + "- `janitor` : Le [package janitor](https://github.com/sfirke/janitor) fournit des outils simples pour examiner et nettoyer des données désordonnées.\n", + "\n", + "- `ggbeeswarm` : Le [package ggbeeswarm](https://github.com/eclarke/ggbeeswarm) propose des méthodes pour créer des graphiques de type \"beeswarm\" en utilisant ggplot2.\n", + "\n", + "Vous pouvez les installer avec :\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"ggbeeswarm\"))`\n", + "\n", + "Alternativement, le script ci-dessous vérifie si vous avez les packages nécessaires pour compléter ce module et les installe pour vous s'ils sont manquants.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, ggbeeswarm)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Définir la question**\n", + "\n", + "Pour nos besoins, nous exprimerons cela comme un binaire : 'Blanc' ou 'Non Blanc'. Il existe également une catégorie 'rayée' dans notre ensemble de données, mais elle contient peu d'exemples, donc nous ne l'utiliserons pas. De toute façon, elle disparaît une fois que nous supprimons les valeurs nulles de l'ensemble de données.\n", + "\n", + "> 🎃 Petit fait amusant, nous appelons parfois les citrouilles blanches des citrouilles 'fantômes'. Elles ne sont pas très faciles à sculpter, donc elles ne sont pas aussi populaires que les citrouilles orange, mais elles ont un look sympa ! On pourrait donc reformuler notre question comme : 'Fantôme' ou 'Non Fantôme'. 👻\n", + "\n", + "## **À propos de la régression logistique**\n", + "\n", + "La régression logistique diffère de la régression linéaire, que vous avez apprise précédemment, de plusieurs manières importantes.\n", + "\n", + "#### **Classification binaire**\n", + "\n", + "La régression logistique n'offre pas les mêmes fonctionnalités que la régression linéaire. La première permet de prédire une `catégorie binaire` (\"orange ou non orange\"), tandis que la seconde est capable de prédire des `valeurs continues`, par exemple, étant donné l'origine d'une citrouille et le moment de la récolte, *de combien son prix augmentera*.\n", + "\n", + "![Infographie par Dasani Madipalli](../../../../../../translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.fr.png)\n", + "\n", + "### Autres classifications\n", + "\n", + "Il existe d'autres types de régression logistique, notamment multinomiale et ordinale :\n", + "\n", + "- **Multinomiale**, qui implique d'avoir plus d'une catégorie - \"Orange, Blanc et Rayée\".\n", + "\n", + "- **Ordinale**, qui implique des catégories ordonnées, utile si nous voulons ordonner nos résultats de manière logique, comme nos citrouilles classées par un nombre fini de tailles (mini,petite,moyenne,grande,très grande,énorme).\n", + "\n", + "![Régression multinomiale vs ordinale](../../../../../../translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.fr.png)\n", + "\n", + "#### **Les variables N'ONT PAS besoin d'être corrélées**\n", + "\n", + "Vous vous souvenez que la régression linéaire fonctionnait mieux avec des variables plus corrélées ? La régression logistique est l'inverse - les variables n'ont pas besoin d'être alignées. Cela fonctionne pour ces données qui présentent des corrélations relativement faibles.\n", + "\n", + "#### **Vous avez besoin de beaucoup de données propres**\n", + "\n", + "La régression logistique donnera des résultats plus précis si vous utilisez davantage de données ; notre petit ensemble de données n'est pas optimal pour cette tâche, donc gardez cela à l'esprit.\n", + "\n", + "✅ Réfléchissez aux types de données qui se prêtent bien à la régression logistique.\n", + "\n", + "## Exercice - nettoyer les données\n", + "\n", + "Commencez par nettoyer un peu les données, en supprimant les valeurs nulles et en sélectionnant uniquement certaines colonnes :\n", + "\n", + "1. Ajoutez le code suivant :\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Load the core tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the data and clean column names\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\") %>% \n", + " clean_names()\n", + "\n", + "# Select desired columns\n", + "pumpkins_select <- pumpkins %>% \n", + " select(c(city_name, package, variety, origin, item_size, color)) \n", + "\n", + "# Drop rows containing missing values and encode color as factor (category)\n", + "pumpkins_select <- pumpkins_select %>% \n", + " drop_na() %>% \n", + " mutate(color = factor(color))\n", + "\n", + "# View the first few rows\n", + "pumpkins_select %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vous pouvez toujours jeter un coup d'œil à votre nouveau dataframe en utilisant la fonction [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) comme indiqué ci-dessous :\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "pumpkins_select %>% \n", + " glimpse()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Confirmons que nous allons effectivement traiter un problème de classification binaire :\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Subset distinct observations in outcome column\n", + "pumpkins_select %>% \n", + " distinct(color)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualisation - graphique catégoriel\n", + "À ce stade, vous avez de nouveau chargé les données sur les citrouilles et les avez nettoyées afin de conserver un ensemble de données contenant quelques variables, y compris la couleur. Visualisons le dataframe dans le notebook en utilisant la bibliothèque ggplot.\n", + "\n", + "La bibliothèque ggplot propose des moyens astucieux de visualiser vos données. Par exemple, vous pouvez comparer les distributions des données pour chaque variété et couleur dans un graphique catégoriel.\n", + "\n", + "1. Créez un tel graphique en utilisant la fonction geombar, en utilisant nos données sur les citrouilles, et en spécifiant une correspondance de couleur pour chaque catégorie de citrouille (orange ou blanche) :\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "# Specify colors for each value of the hue variable\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# Create the bar plot\n", + "ggplot(pumpkins_select, aes(y = variety, fill = color)) +\n", + " geom_bar(position = \"dodge\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(y = \"Variety\", fill = \"Color\") +\n", + " theme_minimal()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "En observant les données, vous pouvez voir comment les données de Couleur sont liées à la Variété.\n", + "\n", + "✅ Étant donné ce graphique catégoriel, quelles explorations intéressantes pouvez-vous envisager ?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Prétraitement des données : encodage des caractéristiques\n", + "\n", + "Notre ensemble de données sur les citrouilles contient des valeurs sous forme de chaînes pour toutes ses colonnes. Travailler avec des données catégorielles est intuitif pour les humains, mais pas pour les machines. Les algorithmes d'apprentissage automatique fonctionnent mieux avec des nombres. C'est pourquoi l'encodage est une étape très importante dans la phase de prétraitement des données, car il nous permet de transformer des données catégorielles en données numériques, sans perdre d'informations. Un bon encodage permet de construire un bon modèle.\n", + "\n", + "Pour l'encodage des caractéristiques, il existe deux principaux types d'encodeurs :\n", + "\n", + "1. Encodeur ordinal : il convient bien aux variables ordinales, qui sont des variables catégorielles dont les données suivent un ordre logique, comme la colonne `item_size` dans notre ensemble de données. Il crée une correspondance où chaque catégorie est représentée par un numéro, correspondant à l'ordre de la catégorie dans la colonne.\n", + "\n", + "2. Encodeur catégoriel : il convient bien aux variables nominales, qui sont des variables catégorielles dont les données ne suivent pas un ordre logique, comme toutes les caractéristiques autres que `item_size` dans notre ensemble de données. Il s'agit d'un encodage en one-hot, ce qui signifie que chaque catégorie est représentée par une colonne binaire : la variable encodée est égale à 1 si la citrouille appartient à cette variété, et 0 sinon.\n", + "\n", + "Tidymodels propose un autre package pratique : [recipes](https://recipes.tidymodels.org/) - un package pour le prétraitement des données. Nous allons définir une `recipe` qui spécifie que toutes les colonnes prédictives doivent être encodées en un ensemble d'entiers, la `prep` pour estimer les quantités et statistiques nécessaires à toute opération, et enfin la `bake` pour appliquer les calculs aux nouvelles données.\n", + "\n", + "> En général, recipes est souvent utilisé comme préprocesseur pour la modélisation, où il définit les étapes à appliquer à un ensemble de données afin de le préparer à la modélisation. Dans ce cas, il est **fortement recommandé** d'utiliser un `workflow()` plutôt que d'estimer manuellement une recette avec prep et bake. Nous verrons tout cela dans un instant.\n", + ">\n", + "> Cependant, pour l'instant, nous utilisons recipes + prep + bake pour spécifier les étapes à appliquer à un ensemble de données afin de le préparer à l'analyse des données, puis extraire les données prétraitées avec les étapes appliquées.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Preprocess and extract data to allow some data analysis\n", + "baked_pumpkins <- recipe(color ~ ., data = pumpkins_select) %>%\n", + " # Define ordering for item_size column\n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " # Convert factors to numbers using the order defined above (Ordinal encoding)\n", + " step_integer(item_size, zero_based = F) %>%\n", + " # Encode all other predictors using one hot encoding\n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE) %>%\n", + " prep(data = pumpkin_select) %>%\n", + " bake(new_data = NULL)\n", + "\n", + "# Display the first few rows of preprocessed data\n", + "baked_pumpkins %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "✅ Quels sont les avantages d'utiliser un encodeur ordinal pour la colonne Taille de l'Article ?\n", + "\n", + "### Analyser les relations entre les variables\n", + "\n", + "Maintenant que nous avons pré-traité nos données, nous pouvons analyser les relations entre les caractéristiques et l'étiquette afin de comprendre dans quelle mesure le modèle sera capable de prédire l'étiquette à partir des caractéristiques. La meilleure façon de réaliser ce type d'analyse est de représenter les données graphiquement. \n", + "Nous utiliserons à nouveau la fonction ggplot geom_boxplot_ pour visualiser les relations entre Taille de l'Article, Variété et Couleur dans un graphique catégoriel. Pour mieux représenter les données, nous utiliserons la colonne Taille de l'Article encodée et la colonne Variété non encodée.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Define the color palette\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins_select_plot<-pumpkins_select\n", + "pumpkins_select_plot$item_size <- baked_pumpkins$item_size\n", + "\n", + "# Create the grouped box plot\n", + "ggplot(pumpkins_select_plot, aes(x = `item_size`, y = color, fill = color)) +\n", + " geom_boxplot() +\n", + " facet_grid(variety ~ ., scales = \"free_x\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(x = \"Item Size\", y = \"\") +\n", + " theme_minimal() +\n", + " theme(strip.text = element_text(size = 12)) +\n", + " theme(axis.text.x = element_text(size = 10)) +\n", + " theme(axis.title.x = element_text(size = 12)) +\n", + " theme(axis.title.y = element_blank()) +\n", + " theme(legend.position = \"bottom\") +\n", + " guides(fill = guide_legend(title = \"Color\")) +\n", + " theme(panel.spacing = unit(0.5, \"lines\"))+\n", + " theme(strip.text.y = element_text(size = 4, hjust = 0)) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Utiliser un swarm plot\n", + "\n", + "Étant donné que Color est une catégorie binaire (Blanc ou Non), elle nécessite 'une [approche spécialisée](https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf) pour la visualisation'.\n", + "\n", + "Essayez un `swarm plot` pour montrer la distribution de la couleur par rapport à item_size.\n", + "\n", + "Nous utiliserons le [package ggbeeswarm](https://github.com/eclarke/ggbeeswarm), qui propose des méthodes pour créer des graphiques de type beeswarm à l'aide de ggplot2. Les graphiques beeswarm permettent de représenter des points qui se chevaucheraient normalement en les disposant côte à côte.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create beeswarm plots of color and item_size\n", + "baked_pumpkins %>% \n", + " mutate(color = factor(color)) %>% \n", + " ggplot(mapping = aes(x = color, y = item_size, color = color)) +\n", + " geom_quasirandom() +\n", + " scale_color_brewer(palette = \"Dark2\", direction = -1) +\n", + " theme(legend.position = \"none\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Maintenant que nous avons une idée de la relation entre les catégories binaires de couleur et le groupe plus large des tailles, explorons la régression logistique pour déterminer la couleur probable d'une citrouille donnée.\n", + "\n", + "## Construisez votre modèle\n", + "\n", + "Sélectionnez les variables que vous souhaitez utiliser dans votre modèle de classification et divisez les données en ensembles d'entraînement et de test. [rsample](https://rsample.tidymodels.org/), un package de Tidymodels, fournit une infrastructure pour une division et un rééchantillonnage efficaces des données :\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Split data into 80% for training and 20% for testing\n", + "set.seed(2056)\n", + "pumpkins_split <- pumpkins_select %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "# Extract the data in each split\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "# Print out the first 5 rows of the training set\n", + "pumpkins_train %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "🙌 Nous sommes maintenant prêts à entraîner un modèle en ajustant les caractéristiques d'entraînement à l'étiquette d'entraînement (couleur).\n", + "\n", + "Nous allons commencer par créer une recette qui spécifie les étapes de prétraitement à effectuer sur nos données pour les préparer à la modélisation, c'est-à-dire : encoder les variables catégoriques en un ensemble d'entiers. Tout comme `baked_pumpkins`, nous créons une `pumpkins_recipe` mais nous ne faisons pas de `prep` ni de `bake`, car cela sera intégré dans un workflow, comme vous le verrez dans quelques étapes.\n", + "\n", + "Il existe plusieurs façons de spécifier un modèle de régression logistique dans Tidymodels. Voir `?logistic_reg()`. Pour l'instant, nous allons spécifier un modèle de régression logistique via le moteur par défaut `stats::glm()`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create a recipe that specifies preprocessing steps for modelling\n", + "pumpkins_recipe <- recipe(color ~ ., data = pumpkins_train) %>% \n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " step_integer(item_size, zero_based = F) %>% \n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE)\n", + "\n", + "# Create a logistic model specification\n", + "log_reg <- logistic_reg() %>% \n", + " set_engine(\"glm\") %>% \n", + " set_mode(\"classification\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Maintenant que nous avons une recette et une spécification de modèle, nous devons trouver un moyen de les regrouper dans un objet qui prétraitera d'abord les données (prep+bake en arrière-plan), ajustera le modèle sur les données prétraitées et permettra également des activités de post-traitement potentielles.\n", + "\n", + "Dans Tidymodels, cet objet pratique s'appelle un [`workflow`](https://workflows.tidymodels.org/) et contient commodément vos composants de modélisation.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Bundle modelling components in a workflow\n", + "log_reg_wf <- workflow() %>% \n", + " add_recipe(pumpkins_recipe) %>% \n", + " add_model(log_reg)\n", + "\n", + "# Print out the workflow\n", + "log_reg_wf\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Après qu'un workflow a été *spécifié*, un modèle peut être `entraîné` en utilisant la fonction [`fit()`](https://tidymodels.github.io/parsnip/reference/fit.html). Le workflow estimera une recette et prétraitera les données avant l'entraînement, ce qui nous évitera de le faire manuellement avec prep et bake.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Train the model\n", + "wf_fit <- log_reg_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the trained workflow\n", + "wf_fit\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Le modèle affiche les coefficients appris pendant l'entraînement.\n", + "\n", + "Maintenant que nous avons entraîné le modèle avec les données d'entraînement, nous pouvons faire des prédictions sur les données de test en utilisant [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html). Commençons par utiliser le modèle pour prédire les étiquettes de notre ensemble de test ainsi que les probabilités pour chaque étiquette. Lorsque la probabilité est supérieure à 0,5, la classe prédite est `WHITE`, sinon c'est `ORANGE`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make predictions for color and corresponding probabilities\n", + "results <- pumpkins_test %>% select(color) %>% \n", + " bind_cols(wf_fit %>% \n", + " predict(new_data = pumpkins_test)) %>%\n", + " bind_cols(wf_fit %>%\n", + " predict(new_data = pumpkins_test, type = \"prob\"))\n", + "\n", + "# Compare predictions\n", + "results %>% \n", + " slice_head(n = 10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Très bien ! Cela offre des perspectives supplémentaires sur le fonctionnement de la régression logistique.\n", + "\n", + "### Meilleure compréhension grâce à une matrice de confusion\n", + "\n", + "Comparer chaque prédiction avec sa valeur réelle \"vérité terrain\" correspondante n'est pas une méthode très efficace pour évaluer la qualité des prédictions du modèle. Heureusement, Tidymodels a quelques astuces supplémentaires dans sa manche : [`yardstick`](https://yardstick.tidymodels.org/) - un package utilisé pour mesurer l'efficacité des modèles à l'aide de métriques de performance.\n", + "\n", + "Une métrique de performance associée aux problèmes de classification est la [`matrice de confusion`](https://wikipedia.org/wiki/Confusion_matrix). Une matrice de confusion décrit la performance d'un modèle de classification. Elle répertorie combien d'exemples de chaque classe ont été correctement classés par un modèle. Dans notre cas, elle vous montrera combien de citrouilles orange ont été classées comme orange et combien de citrouilles blanches ont été classées comme blanches ; la matrice de confusion indique également combien ont été classées dans les catégories **erronées**.\n", + "\n", + "La fonction [**`conf_mat()`**](https://tidymodels.github.io/yardstick/reference/conf_mat.html) de yardstick calcule cette table croisée des classes observées et prédites.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Confusion matrix for prediction results\n", + "conf_mat(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Interprétons la matrice de confusion. Notre modèle doit classer les citrouilles entre deux catégories binaires, la catégorie `blanche` et la catégorie `non-blanche`.\n", + "\n", + "- Si votre modèle prédit qu'une citrouille est blanche et qu'elle appartient réellement à la catégorie 'blanche', on appelle cela un `vrai positif`, représenté par le chiffre en haut à gauche.\n", + "\n", + "- Si votre modèle prédit qu'une citrouille n'est pas blanche et qu'elle appartient réellement à la catégorie 'blanche', on appelle cela un `faux négatif`, représenté par le chiffre en bas à gauche.\n", + "\n", + "- Si votre modèle prédit qu'une citrouille est blanche et qu'elle appartient réellement à la catégorie 'non-blanche', on appelle cela un `faux positif`, représenté par le chiffre en haut à droite.\n", + "\n", + "- Si votre modèle prédit qu'une citrouille n'est pas blanche et qu'elle appartient réellement à la catégorie 'non-blanche', on appelle cela un `vrai négatif`, représenté par le chiffre en bas à droite.\n", + "\n", + "| Vérité |\n", + "|:-----:|\n", + "\n", + "\n", + "| | | |\n", + "|---------------|--------|-------|\n", + "| **Prédit** | BLANC | ORANGE |\n", + "| BLANC | VP | FP |\n", + "| ORANGE | FN | VN |\n", + "\n", + "Comme vous l'avez probablement deviné, il est préférable d'avoir un plus grand nombre de vrais positifs et de vrais négatifs, et un plus petit nombre de faux positifs et de faux négatifs, ce qui implique que le modèle fonctionne mieux.\n", + "\n", + "La matrice de confusion est utile car elle donne naissance à d'autres métriques qui peuvent nous aider à mieux évaluer les performances d'un modèle de classification. Passons en revue certaines d'entre elles :\n", + "\n", + "🎓 Précision : `VP/(VP + FP)` définie comme la proportion de positifs prédits qui sont réellement positifs. Aussi appelée [valeur prédictive positive](https://en.wikipedia.org/wiki/Positive_predictive_value \"Positive predictive value\").\n", + "\n", + "🎓 Rappel : `VP/(VP + FN)` défini comme la proportion de résultats positifs parmi le nombre d'échantillons qui étaient réellement positifs. Aussi connu sous le nom de `sensibilité`.\n", + "\n", + "🎓 Spécificité : `VN/(VN + FP)` définie comme la proportion de résultats négatifs parmi le nombre d'échantillons qui étaient réellement négatifs.\n", + "\n", + "🎓 Exactitude : `VP + VN/(VP + VN + FP + FN)` Le pourcentage d'étiquettes prédites correctement pour un échantillon.\n", + "\n", + "🎓 F-Mesure : Une moyenne pondérée de la précision et du rappel, avec un maximum de 1 et un minimum de 0.\n", + "\n", + "Calculons ces métriques !\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Combine metric functions and calculate them all at once\n", + "eval_metrics <- metric_set(ppv, recall, spec, f_meas, accuracy)\n", + "eval_metrics(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualiser la courbe ROC de ce modèle\n", + "\n", + "Faisons une dernière visualisation pour observer la fameuse [`courbe ROC`](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) :\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make a roc_curve\n", + "results %>% \n", + " roc_curve(color, .pred_ORANGE) %>% \n", + " autoplot()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Les courbes ROC sont souvent utilisées pour visualiser les performances d'un classificateur en termes de vrais positifs par rapport aux faux positifs. Les courbes ROC présentent généralement le `Taux de Vrais Positifs`/Sensibilité sur l'axe Y, et le `Taux de Faux Positifs`/1-Spécificité sur l'axe X. Ainsi, la pente de la courbe et l'espace entre la ligne médiane et la courbe sont importants : vous voulez une courbe qui monte rapidement et dépasse la ligne. Dans notre cas, il y a des faux positifs au départ, puis la courbe monte et dépasse correctement.\n", + "\n", + "Enfin, utilisons `yardstick::roc_auc()` pour calculer la véritable Aire Sous la Courbe. Une façon d'interpréter l'AUC est comme la probabilité que le modèle classe un exemple positif aléatoire plus haut qu'un exemple négatif aléatoire.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Calculate area under curve\n", + "results %>% \n", + " roc_auc(color, .pred_ORANGE)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Le résultat est d'environ `0,975`. Étant donné que l'AUC varie de 0 à 1, vous voulez obtenir un score élevé, car un modèle qui fait des prédictions 100 % correctes aura une AUC de 1 ; dans ce cas, le modèle est *plutôt bon*.\n", + "\n", + "Dans les prochaines leçons sur les classifications, vous apprendrez comment améliorer les scores de votre modèle (comme gérer les données déséquilibrées dans ce cas).\n", + "\n", + "## 🚀Défi\n", + "\n", + "Il y a beaucoup à découvrir sur la régression logistique ! Mais la meilleure façon d'apprendre est d'expérimenter. Trouvez un jeu de données qui se prête à ce type d'analyse et construisez un modèle avec celui-ci. Qu'apprenez-vous ? astuce : essayez [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) pour trouver des jeux de données intéressants.\n", + "\n", + "## Révision & Étude personnelle\n", + "\n", + "Lisez les premières pages de [cet article de Stanford](https://web.stanford.edu/~jurafsky/slp3/5.pdf) sur certaines utilisations pratiques de la régression logistique. Réfléchissez aux tâches qui conviennent mieux à l'un ou l'autre type de régression parmi celles que nous avons étudiées jusqu'à présent. Qu'est-ce qui fonctionnerait le mieux ?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "langauge": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "feaf125f481a89c468fa115bf2aed580", + "translation_date": "2025-09-04T01:21:13+00:00", + "source_file": "2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/fr/2-Regression/4-Logistic/solution/notebook.ipynb b/translations/fr/2-Regression/4-Logistic/solution/notebook.ipynb new file mode 100644 index 000000000..446deab5e --- /dev/null +++ b/translations/fr/2-Regression/4-Logistic/solution/notebook.ipynb @@ -0,0 +1,1255 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Régression Logistique - Leçon 4\n", + "\n", + "Chargez les bibliothèques nécessaires et le jeu de données. Convertissez les données en un dataframe contenant un sous-ensemble des données :\n" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                      0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                      1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                      2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                      \n", + "

                      5 rows × 26 columns

                      \n", + "
                      " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \\\n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \\\n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      City NamePackageVarietyOriginItem SizeColor
                      2BALTIMORE24 inch binsHOWDEN TYPEDELAWAREmedORANGE
                      3BALTIMORE24 inch binsHOWDEN TYPEVIRGINIAmedORANGE
                      4BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
                      5BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
                      6BALTIMORE36 inch binsHOWDEN TYPEMARYLANDmedORANGE
                      \n", + "
                      " + ], + "text/plain": [ + " City Name Package Variety Origin Item Size Color\n", + "2 BALTIMORE 24 inch bins HOWDEN TYPE DELAWARE med ORANGE\n", + "3 BALTIMORE 24 inch bins HOWDEN TYPE VIRGINIA med ORANGE\n", + "4 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "5 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "6 BALTIMORE 36 inch bins HOWDEN TYPE MARYLAND med ORANGE" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Select the columns we want to use\n", + "columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color']\n", + "pumpkins = full_pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Drop rows with missing values\n", + "pumpkins.dropna(inplace=True)\n", + "\n", + "pumpkins.head()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Jetons un coup d'œil à nos données !\n", + "\n", + "En les visualisant avec Seaborn\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHpCAYAAACVw6ZvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3klEQVR4nO3deVRU5f8H8PeFkQFZZXNQ2RQBwy3NNRVGMTCz3JW0JJcyjdwXLJcwBSszTcU0wKxccl9KyoVxS0VTEhXXRM1A+7qwmOz394eH+/M6A7IKV9+vc+7Jee6zfO7IkXfP3JkRRFEUQURERKRgRlVdABEREVF5MdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdDQc0sURaSnp4MfxUREpHwMNPTcysjIgLW1NTIyMqq6FCIiKicGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8VVUXQFTVrq5qAkszZnsipXIbdqWqS6BqgP+KExERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdCUU3BwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp8PPz8/g/MWHo0bN4ZGo8HcuXP1xvbv3x9t27ZFfn4+Zs2aJY1RqVRwc3PDuHHjkJmZKavP0PH4c0dERM8+BpqnRBRFDBw4EGFhYRgzZgySkpKg0+ng7OwMPz8/bNmyBQDg7e0NjUYDnU4njc3IyMCJEyfg4OAg+2V9+PBhZGdno3PnzlJbYGAgUlJSkJycjJ07d0Kr1WLMmDF47bXXkJeXJ6spLCwMKSkpsiMkJETWJyMjA1988UWJr3PTpk3SXPHx8QCA3bt3S2379+/H8uXL8cknnyAxMVEat379euzYsQPfffcdjI2NAQA+Pj7StcybNw/Lly/HhAkTZOs9Onfh0bJlyxLXS0REzwZVVRfwvPjpp5+wYcMGbNu2DT169JDaly9fjtu3b2P48OHo2rUrzM3NodVqodPpMHXqVADAwYMH4enpiU6dOkGn08HPzw/Aw10gV1dXuLu7S/Op1WpoNBoAQN26ddGiRQu0bdsWXbp0wcqVKzF8+HCpr6WlpdS3KCEhIfjyyy8xevRoODo6PvE6bW1tpT8X7ibZ2dnJ1nn99dfx5ptvYsiQITh69Cju3buH0aNHIyIiAl5eXlI/lUoljRswYAD27NmDbdu24ZtvvpH6PD43ERE9n7hD85SsXr0anp6esjBTaMKECbh9+zZ27doFANBqtTh48KC0oxIXFwc/Pz/4+voiLi5OGhcXFwetVvvEtTt37oxmzZph06ZNpa47KCgIHh4eCAsLK/XY4ixcuBC3b9/G7NmzMWrUKDRu3Fhvd+hxZmZmyMnJKfOa2dnZSE9Plx1ERPRs4A5NBdixYwcsLCxkbfn5+bLHFy5cQKNGjQyOL2y/cOECgIeB5v79+zh27BjatWsHnU6HSZMmoUOHDhgyZAiysrIgiiLi4+NlOy7F8fb2xqlTp2RtU6ZMwccffyxr27lzJzp27Cg9LryvpkePHhg3bhwaNGhQovWexMrKCjExMXjllVdgbm6OU6dOQRCEIvv/8ccfWL16tezlNQBo3749jIzkubzwPpvHhYeH45NPPtFrd307EVZWVmW4CiIiqi4YaCqAVqtFZGSkrO3o0aMYPHiwrE0UxRLN5+HhgXr16kGn08HHxwcnT56Er68vHB0d4eLigsOHD0MURWRnZ5doh6Zw7ccDw6RJkxAcHCxrq1u3rt7YgIAAdOjQAdOnT8fq1atLtF5JdO7cGW3btkXz5s3h6uqqdz4xMREWFhbIz89HTk4OunfvjsWLF8v6rFu3rsig+LjQ0FCMHz9eepyeng5nZ+fyXQQREVULDDQVwNzcHB4eHrK2v//+W/bY09MTSUlJBscXtnt6ekptfn5+iIuLQ9OmTdGwYUPp/pXCl51EUYSHh0eJfyEnJSXJ7rUBAHt7e726ixIREYF27dph0qRJJepfUiqVCiqV4R9DLy8vbNu2DSqVCnXq1IGJiYleH2dn5xJfg1qthlqtLle9RERUPfEemqdk4MCBuHjxIrZv3653bv78+bCzs0PXrl2lNq1Wi99//x27du2SbgIGIN0YrNPpSrw7s3fvXiQmJqJPnz5lrr9169bo3bu3dKPy02BiYgIPDw+4ubkZDDNERESFuEPzlAwcOBDr16/HkCFD8Pnnn6NLly5IT0/HkiVLsG3bNqxfvx7m5uZS/8L7aKKjo7FixQqp3dfXV7pvZtSoUXrrZGdnIzU1Ffn5+bh58yZiY2MRHh6O1157DW+//basb0ZGBlJTU2VtNWvWLPJ+kjlz5sDHx6fIHZWqcPv2bb1rsLGxgampaRVVREREVYE7NE+JIAj46aefMG3aNCxYsABeXl7o2LEjrl69Cp1Op/fhfO7u7nB1dUVGRgZ8fX2ldhcXF9SpUwc5OTmynZtCsbGxcHJygpubGwIDAxEXF4dFixZh69at0ue7FJoxYwacnJxkx+TJk4u8Bk9PTwwdOlT24X5Vzd/fX+8aCj/Th4iInh+CWNI7VYmeMenp6bC2tkZaWhrf5UREpHDcoSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVTVXUBRFXt6qomsDRjtq8obsOuVHUJRPQc4r/iREREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0z5ng4GAIggBBEGBiYgIPDw+EhYUhLy8PAKDT6SAIAu7duyd7bOhITU3Vm3/WrFlF9i88/P39ERAQoDd26dKlsLGxwd9//623bu3atdGnTx/89ddfUn83NzeD80dERFTOk0dERNWWqqoLoKcvMDAQMTExyM7Oxi+//ILRo0ejRo0aCA0NLXLM+fPnYWVlJWtzdHTU6zdx4kSMHDlSetyqVSu8++67GDFihNSWm5uLJk2a4JtvvsF7770HALhy5QomT56MyMhI1KtXD5cuXZLWtbS0xMWLF/Huu++iR48eOHXqFIyNjQEAYWFhsrkBwNLSspTPCBERKR0DzXNIrVZDo9EAAN5//31s3rwZ27ZtKzbQODo6wsbG5olzW1hYwMLCQnpsbGwMS0tLab1CCxcuxAcffIBXXnkFbm5uGDZsGF555RW89dZbBtd1cnLCjBkzMGjQIFy6dAleXl4AYHDuomRnZyM7O1t6nJ6eXqJxRERU/THQEMzMzHD79u2nuuaQIUOwefNmDB06FL1798bp06dx5syZYseYmZkBAHJycsq0Znh4OD755BO9dssOi2BlaQ7bBv5lmpeIiKoe76F5jomiiN27d+PXX39F586di+1br149affFwsICPj4+5V5/+fLlOH36NMaOHYvly5fDwcGhyL4pKSn44osvULduXWl3BgCmTJkiq8vCwgIHDhwwOEdoaCjS0tKk4/r16+W+BiIiqh64Q/Mc2rFjBywsLJCbm4uCggK8+eabmDVrVrFjDhw4ILs3pUaNGuWuw9HREe+99x62bNmCnj17GuxTr149iKKI//77D82aNcPGjRthYmIinZ80aRKCg4NlY+rWrWtwLrVaDbVaXe66iYio+mGgeQ5ptVpERkbCxMQEderUgUr15B8Dd3f3Et1DU1oqlarY9Q8cOAArKys4OjoavNnX3t4eHh4eFV4XEREpCwPNc8jc3FwxIaCyghQRET1bGGioRG7duoWsrCxZm52dXYW89FQeGRkZep+HU7NmTb23mBMR0bONNwVTiXh5ecHJyUl2/PHHH1VdFmbMmKFX1+TJk6u6LCIiesoEURTFqi6CqCqkp6fD2toaV05u4du2iYgUjjs0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/LZteu7Z1tfy27mJiBSOOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmYlz/Zuw65UYjVERFQW3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCml4OBgCIIgHXZ2dggMDMSpU6dk/QRBwJYtW2RtcXFxeO211+Dg4ABTU1M0aNAAAwYMwP79+4td083NDYIgYO3atXrnfHx8IAgCVq5cqXcuPDwcxsbG+Pzzzw3Om5qaipCQENSvXx9qtRrOzs7o0aMH9uzZI1v7q6++kh6LooiJEyfCysoKOp2uyFqLOt58803UrFkTq1evlo0rKChA+/bt0bdvXwDy59nExAQeHh4ICwtDXl4eAECn0xW5RmpqarHPJxERPXsYaMogMDAQKSkpSElJwZ49e6BSqfDaa68VO2bp0qXo0qUL7OzssG7dOpw/fx6bN29G+/btMW7cuCeu6ezsjJiYGFnbkSNHkJqaCnNzc4NjoqOjMXnyZERHR+udS05ORsuWLbF37158/vnnSExMRGxsLLRaLUaPHm1wvvz8fAwbNgyrVq1CXFwc/Pz89PocO3ZMem42btwIADh//rzUFhkZiYiICISEhCAlJUUaN3/+fPz1119YtmyZ1Fb4PF+8eBETJkzArFmz9MLZo3MXHo6OjoafRCIiemapqroAJVKr1dBoNAAAjUaDqVOnomPHjvj333/h4OCg1//atWsYO3Ysxo4diy+//FJ2rmnTpvjwww+fuOagQYOwYMECXL9+Hc7OzgAeBpZBgwZh1apVev337duHBw8eICwsDKtWrcLvv/+O9u3bS+dHjRoFQRAQHx8vC0Q+Pj4YOnSo3nzZ2dkICgrC8ePHceDAAXh5eRms89Hrt7W1BQA4OjrCxsZGag8JCcGWLVswYsQI7NixA+fOncOMGTOwbt062NvbS/0efZ7ff/99bN68Gdu2bUNoaKjU5/G5iYjo+cQdmnLKzMzEDz/8AA8PD9jZ2Rnss3HjRuTm5mLy5MkGzwuC8MR1ateujYCAAHz33XcAgP/++w/r1q0zGD4AICoqCkFBQahRowaCgoIQFRUlnbtz5w5iY2MxevRog7s7jweEzMxMdO/eHWfPnsWhQ4eKDDMlJQgCYmJicODAAaxYsQLBwcEYOHAgXn/99WLHmZmZIScnp8zrZmdnIz09XXYQEdGzgTs0ZbBjxw5YWFgAAO7fvw8nJyfs2LEDRkaG8+GFCxdgZWUl7TYAD0POkCFDpMeHDx9GkyZNil136NChmDBhAj766CNs2LABDRo0QPPmzfX6paenY8OGDTh8+DAAYPDgwejYsSMWLlwICwsLXLp0CaIowtvbu0TXO3v2bFhaWiIpKcngDlRZuLq64quvvsLw4cNRr149/Pbbb0X2FUURe/bswa+//oqQkBDZuXr16unNe+bMGYPzhIeH45NPPtFrt+ywCFaW+sHOtoF/SS6FiIiqAe7QlIFWq0VCQgISEhIQHx+PgIAAdOvWDVevXi1yzOO7MAEBAUhISMDPP/+M+/fvIz8//4nrdu/eHZmZmdi/fz+io6OL3J1Zs2YNGjRogGbNmgEAmjdvDldXV6xbtw7Aw4BQGq+88gru37+PuXPnlmrck7zzzjtwcnJCSEgIrKys9M4XBkdTU1N069YNAwYMwKxZs2R9Dhw4IP1dJCQk4JdffilyvdDQUKSlpUnH9evXK/R6iIio6nCHpgzMzc3h4eEhPf72229hbW2NFStW4NNPP9Xr37BhQ6SlpSE1NVXapbGwsICHhwdUqpL/FahUKrz11luYOXMmjh49is2bNxvsFxUVhTNnzsjmLigoQHR0NIYNG4aGDRtCEAScO3euROt26dIFISEheOONN1BQUICFCxeWuOYnUalURT4HWq0WkZGRMDExQZ06dQz2c3d3L/E9NGq1Gmq1ujzlEhFRNcUdmgogCAKMjIzw4MEDg+f79u2LGjVqYN68eeVea+jQodi3bx/eeOMN1KpVS+98YmIijh8/Dp1OJ9u50Ol0OHz4MM6dOwdbW1sEBARgyZIluH//vt4c9+7d02t75ZVXsH37dqxYsaJENzFXhMLg6OLiUqrgR0REzx/+liiD7Oxs6bNO7t69i8WLFyMzMxM9evQw2N/FxQXz58/HmDFjcOfOHQQHB8Pd3R137tzBDz/8AAAwNjYu0dqNGjXC//73P9SsWdPg+aioKLRu3RqdOnXSO9eqVStERUXh888/x5IlS/Dyyy+jdevWCAsLQ9OmTZGXl4ddu3YhMjISSUlJeuP9/f2xY8cO9OjRAwUFBVi8eHGJaq5Mt27dQlZWlqzNzs4ONWrUqKKKiIioKnCHpgxiY2Ph5OQEJycntGnTBseOHcP69esNfi5LoZCQEPz222/4999/0bdvXzRs2BCvvvoqrly5gtjY2CfeEPwoOzs7mJmZ6bXn5OTghx9+QJ8+fQyO69OnD1atWoXc3FzUr18fJ06cgFarxYQJE9C4cWN07doVe/bsQWRkZJFrd+7cGT///DNWrlyJ0aNHl/p+nIrm5eUl/V0UHn/88UeV1kRERE+fIFb1bySiKpKeng5ra2tcObmF73IiIlI47tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeLx27bpuWdbXwsrK6uqLoOIiMqBOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmaVl+3dhl2ptLmJiOgh7tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0ChMcHAwBEHAyJEj9c6NHj0agiAgODhY6tuzZ0+9sREREbJxW7ZsgSAI0mOdTgdBEHDv3j29Nby9vaFWq5GamirrW9yh0+kwa9YsNG/eXG++5ORkCIKAhIQEg/M5ODjg1VdfRWJiosHn4fEjMDCwBM8iERE9axhoFMjZ2Rlr167FgwcPpLasrCysXr0aLi4uxY41NTXFvHnzcPfu3VKve/DgQTx48AB9+/bFd999BwBo3749UlJSpKN///4IDAyUtbVv377Ua50/fx4pKSn49ddfkZ2dje7duyMnJ0fW5/F1UlJSsGbNmlKvRUREysdAo0AtWrSAs7MzNm3aJLVt2rQJLi4uePHFF4sd6+/vD41Gg/Dw8FKvGxUVhTfffBNvvfUWoqOjAQAmJibQaDTSYWZmBrVaLWszMTEp9VqOjo7QaDRo0aIFxo4di+vXr+PcuXOyPo+vo9FoUKtWrVKvRUREysdAo1BDhw5FTEyM9Dg6OhrvvPPOE8cZGxtj7ty5+Prrr/H333+XeL2MjAysX78egwcPRteuXZGWloYDBw6UqfbSSEtLw9q1awGgTMHoUdnZ2UhPT5cdRET0bFBVdQFUNoMHD0ZoaCiuXr0KADh06BDWrl0LnU73xLG9evVC8+bNMXPmTERFRZVovbVr16Jhw4bw8fEBAAwcOBBRUVHo2LFjma+hOPXq1QMA3L9/HwDw+uuvw9vbW9Znx44dsLCwkLVNmzYN06ZNMzhneHg4PvnkE712yw6LYGVpXhFlG3Tn8u4n9rFt4F9p6xMRPQ8YaBTKwcEB3bt3x8qVKyGKIrp37w57e/sSj583bx46d+6MiRMnlqh/dHQ0Bg8eLD0ePHgwfH198fXXX8PS0rLU9T/JgQMHULNmTRw5cgRz587FsmXL9PpotVpERkbK2mxtbYucMzQ0FOPHj5cep6enw9nZueKKJiKiKsNAo2BDhw7FBx98AABYsmRJqcZ26tQJAQEBCA0Nld4VVZSzZ8/iyJEjiI+Px5QpU6T2/Px8rF27FiNGjHjielZWVkhLS9NrL3wnlbW1tazd3d0dNjY28PLywq1btzBgwADs379f1sfc3BweHh5PXLuQWq2GWq0ucX8iIlIO3kOjYIGBgcjJyUFubi4CAgJKPT4iIgLbt2/H4cOHi+0XFRWFTp064c8//0RCQoJ0jB8/vsQvWXl5eeHvv//GzZs3Ze0nTpyAqalpse/OGj16NE6fPo3NmzeXaC0iInr+cIdGwYyNjZGUlCT9ubSaNGmCQYMGYdGiRUX2yc3Nxffff4+wsDA0btxYdm748OH48ssvcebMGenemqIEBATAy8sLQUFB+PTTT6HRaHDixAl8/PHHGDNmTLH116xZEyNGjMDMmTPRs2dP6TNzsrOzpc/DKaRSqUr10hsRET0buEOjcFZWVrCysirz+LCwMBQUFBR5ftu2bbh9+zZ69eqld65Ro0Zo1KhRiXZpVCoVfvvtN7i4uCAoKAiNGzfGzJkzMWbMGMyePfuJ4z/44AMkJSVh/fr1UltsbCycnJxkR4cOHZ44FxERPXsEURTFqi6CqCqkp6fD2toaV05uqdR3OZUE3+VERFQ+3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFU1V1AURVzba+tlzfWE5ERFWPOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4pQ40cXFxlVEHERERUZmVOtAEBgaiQYMG+PTTT3H9+vXKqImIiIioVEodaG7cuIEPPvgAGzZsQP369REQEICffvoJOTk5lVEfUaW7uqoJkqPcq7oMIiIqh1IHGnt7e4wbNw4JCQk4evQoPD09MWrUKNSpUwcffvgh/vzzz8qok4iIiKhI5bopuEWLFggNDcUHH3yAzMxMREdHo2XLlujYsSPOnDlTUTUSERERFatMgSY3NxcbNmzAq6++CldXV/z6669YvHgxbt68iUuXLsHV1RX9+vWr6FqJiIiIDCr1l1OGhIRgzZo1EEURb731Fj777DM0btxYOm9ubo4vvvgCderUqdBCiYiIiIpS6kBz9uxZfP311+jduzfUarXBPvb29nx7NxERET01pX7JaebMmejXr59emMnLy8P+/fsBACqVCr6+vhVTIREREdETlDrQaLVa3LlzR689LS0NWq22QooiIiIiKo1SBxpRFCEIgl777du3YW5uXiFFEREREZVGie+h6d27NwBAEAQEBwfLXnLKz8/HqVOn0L59+4qvkIiIiOgJShxorK2tATzcobG0tISZmZl0zsTEBG3btsWIESMqvkIiIiKiJyhxoImJiQEAuLm5YeLEiXx5iYiIiKqNMr3LSa1WY/fu3fjmm2+QkZEBAPjnn3+QmZlZ4QUSERERPUmpP4fm6tWrCAwMxLVr15CdnY2uXbvC0tIS8+bNQ3Z2NpYtW1YZdRIREREVqdQ7NGPGjMFLL72Eu3fvyu6j6dWrF/bs2VOhxREREVHpzZo1C82bN6/qMp6qUgeaAwcO4OOPP4aJiYms3c3NDTdu3KiwwoiIiJ5XqampCAkJQf369aFWq+Hs7IwePXpw46AYpQ40BQUFyM/P12v/+++/YWlpWSFFPY+e9MPr5uaGr776Surv5uYGQRBw5MgR2Txjx46Fn5+f9HjWrFkQBAGCIEClUsHe3h6dOnXCV199hezsbNlYPz8/qe+jx8iRI6U+j7ZbWVmhVatW2Lp1q2yelStXGpzH1NRU6hMcHIyePXsW+Xw8fr1FWbNmDYyNjTF69Ogn9iUiUoLk5GS0bNkSe/fuxeeff47ExETExsZCq9U+1X/rcnNzn9paFaHUgeaVV16R/aIRBAGZmZmYOXMmXn311Yqs7blR1h9eU1NTTJky5Ynz+/j4ICUlBdeuXUNcXBz69euH8PBwtG/fXrqpu9CIESOQkpIiOz777DNZn5iYGKSkpOD48eN4+eWX0bdvXyQmJsr6WFlZ6c1z9erVUjwrJRMVFYXJkydjzZo1yMrKqvD5iYietlGjRkEQBMTHx6NPnz7w9PSEj48Pxo8fL/1P7LVr1/DGG2/AwsICVlZW6N+/P27evFnknAUFBQgLC0O9evWgVqvRvHlzxMbGSueTk5MhCALWrVsHX19fmJqa4scff6z0a61IpQ408+fPx6FDh/DCCy8gKysLb775pvRy07x58yqjxmdeSX54DXn33Xdx5MgR/PLLL8XOr1KpoNFoUKdOHTRp0gQhISHYt28fTp8+rfd3VrNmTWg0GtlhZWUl62NjYwONRgNPT0/Mnj0beXl5el9GKgiC3jy1a9cu5TNTvCtXruD333/H1KlT4enpiU2bNhXbPzs7G+np6bKDiKg6uXPnDmJjYzF69GiDH49iY2ODgoICvPHGG7hz5w727duHXbt24a+//sKAAQOKnHfhwoWYP38+vvjiC5w6dQoBAQF4/fXXcfHiRVm/qVOnYsyYMUhKSkJAQECFX19lKnWgqVevHv78809MmzYN48aNw4svvoiIiAicPHkSjo6OlVHjM60kP7xFcXd3x8iRIxEaGoqCgoJSrevt7Y1u3bo9MQQUJy8vD1FRUQCgd0/V0xATE4Pu3bvD2toagwcPlmopSnh4OKytraXD2dkZAGDZYRGs/FY8jZKJiIp16dIliKIIb2/vIvvs2bMHiYmJWL16NVq2bIk2bdpg1apV2LdvH44dO2ZwzBdffIEpU6Zg4MCB8PLywrx589C8eXO9l/bHjh2L3r17w93dHU5OThV5aZWu1IEGePh//IMHD8Znn32GpUuXYvjw4bJ3PFHJleSHtzgff/wxrly5UqatQW9vbyQnJ8vali5dCgsLC9nx+NxBQUGwsLCAWq3GuHHj4Obmhv79+8v6pKWl6c3TrVu3UtdYlIKCAqxcuRKDBw8GAAwcOBAHDx7ElStXihwTGhqKtLQ06bh+/XqF1UNEVBFEUXxin6SkJDg7O0v/UwYAL7zwAmxsbJCUlKTXPz09Hf/88w9efvllWfvLL7+s1/+ll14qY+VVr0SfQ7Nt2zZ069YNNWrUwLZt24rt+/rrr1dIYc+LkvzwFsfBwQETJ07EjBkzit1uLGrtx79odNCgQfjoo49kbY+/VLRgwQL4+/vjr7/+wrhx47Bo0SLY2trK+lhaWuLEiROytooMvbt27cL9+/el+7bs7e3RtWtXREdHY/bs2QbHqNVq2XeQERFVNw0bNoQgCDh37lyVrK/kbwEoUaDp2bMnUlNT4ejoWOw7UwRBMPgOKCpaRfzwjh8/HkuXLsXSpUtLNS4pKQnu7u6yNmtra3h4eBQ7TqPRwMPDAx4eHoiJicGrr76Ks2fPyl5yNDIyeuI85REVFYU7d+7IQlJBQQFOnTqFTz75BEZGZdp8JCKqUra2tggICMCSJUvw4Ycf6gWMe/fuoVGjRrh+/TquX78u7dKcPXsW9+7dwwsvvKA3p5WVFerUqYNDhw7B19dXaj906BBat25duRf0FJXoX/2CggLpl1VBQUGRB8NM6T36w3v//n298/fu3XviHBYWFpg+fTrmzJmj966lopw7dw6xsbHo06dPaUuWad26NVq2bIk5c+aUa57SuH37NrZu3Yq1a9ciISFBOk6ePIm7d+/it99+e2q1EBFVtCVLliA/Px+tW7fGxo0bcfHiRSQlJWHRokVo164d/P390aRJEwwaNAgnTpxAfHw83n77bfj6+hb5ktGkSZMwb948rFu3DufPn8fUqVORkJCAMWPGPOWrqzyl+uqD3NxcBAYGYtmyZWjYsGFl1fTcWbJkCV5++WW0bt0aYWFhaNq0KfLy8rBr1y5ERkYafE30ce+++y4WLFiA1atXo02bNrJzeXl5SE1NRUFBAW7fvg2dTodPP/0UzZs3x6RJk2R9//vvP6Smpsra1Go1atWqVeTaY8eORa9evTB58mTUrVsXwMOXsx6fBwAcHR2l3ZO0tDQkJCTIztvZ2Un/x3Hjxg29866urvj+++9hZ2eH/v37671k9uqrryIqKgqBgYFF1ktEVJ3Vr18fJ06cwJw5czBhwgSkpKTAwcEBLVu2RGRkJARBwNatWxESEoJOnTrByMgIgYGB+Prrr4uc88MPP0RaWhomTJiAW7du4YUXXsC2bduerd/lYinZ29uLFy5cKO0weoJ//vlHHD16tOjq6iqamJiIdevWFV9//XUxLi5OFEVRdHV1FRcsWCD1f/yxKIri6tWrRQCir6+v1DZz5kwRgAhANDY2Fm1tbcUOHTqICxYsELOysmTjfX19pb6PHgEBAVIfAOLmzZtl4woKCkRvb2/x/fffF0VRFGNiYgzOA0BMSUkRRVEUhwwZYvD8sGHDpOszdP77778XmzRpIo4aNcrg87hu3TrRxMRE/Pfff5/4nKelpYkAxCsnt4i3L+16Yn8iIqq+BFEs3V2p48aNg1qtRkRERPmSFFEVS09Ph7W1Na6c3AIrS3PYNvCv6pKIiKiMSv1t23l5eYiOjsbu3bvRsmVLvRuWvvzyyworjoiIiKgkSh1oTp8+jRYtWgAALly4IDv3+P0MRERERE9DqQPN4x9xT0RERFTV+GEdREREpHil3qEBgOPHj+Onn37CtWvXkJOTIztXnu8GIiIiIiqLUu/QrF27Fu3bt0dSUhI2b96M3NxcnDlzBnv37oW1tXVl1EhERERUrFIHmrlz52LBggXYvn07TExMsHDhQpw7dw79+/eHi4tLZdRIREREVKxSB5rLly+je/fuAAATExPcv38fgiBg3LhxWL58eYUXSERERPQkpb6HplatWtL3BdWtWxenT59GkyZNcO/ePfz3338VXiAREdHTlBzl/uROFcRt2JWnttazrsQ7NKdPnwYAdOrUCbt27QIA9OvXD2PGjMGIESMQFBSELl26VE6VREREJLl+/TqGDh2KOnXqwMTEBK6urhgzZgxu374t9fHz84MgCBAEAaampvD09ER4eDgMfUHA4cOHYWxsLL0C86jk5GQIggBHR0e9L0Bu3rw5Zs2aJWu7dOkShg4dChcXF6jVatStWxddunTBjz/+iLy8PKlfYW2PH2vXri3Tc1LiQNO0aVO0adMGTZo0Qb9+/QAAH330EcaPH4+bN2+iT58+iIqKKlMRREREVDJ//fUXXnrpJVy8eBFr1qzBpUuXsGzZMuzZswft2rXDnTt3pL4jRoxASkoKzp8/j9DQUMyYMQPLli3TmzMqKgohISHYv38//vnnH4PrZmRk4Isvvii2tvj4eLRo0QJJSUlYsmQJTp8+DZ1Oh+HDhyMyMhJnzpyR9Y+JiUFKSors6NmzZ+mfFAAl/i6nAwcOICYmBhs2bEBBQQH69OmD4cOHo2PHjmVamKiqFX6XU1paGqysrKq6HCKqJqr7S07dunXD6dOnceHCBZiZmUntqampaNCgAd5++21ERkbCz88PzZs3x1dffSX1admyJVxdXWUfsZKZmQknJyccP34cM2fORNOmTTFt2jTpfHJyMtzd3TFp0iRERkbi8uXLcHR0BPBwh6Znz56YNWsWRFGEj48Patasifj4eBgZ6e+ZiKIofauAIAjYvHlzmQPM40q8Q9OxY0dER0cjJSUFX3/9NZKTk+Hr6wtPT0/MmzcPqampFVIQERERGXbnzh38+uuvGDVqlCzMAIBGo8GgQYOwbt06vZeVRFHEgQMHcO7cOZiYmMjO/fTTT/D29oaXlxcGDx6M6Ohogy9LBQUFwcPDA2FhYQZrS0hIQFJSEiZOnGgwzACV+xVJpX6Xk7m5Od555x3s27cPFy5cQL9+/bBkyRK4uLjg9ddfr4waiYiICMDFixchiiIaNWpk8HyjRo1w9+5d/PvvvwCApUuXwsLCAmq1Gp06dUJBQQE+/PBD2ZioqCgMHjwYABAYGIi0tDTs27dPb25BEBAREYHly5fj8uXLeucLv9/Ry8tLart16xYsLCykY+nSpbIxQUFBsvMWFha4du1aKZ6R/1eurz7w8PDAtGnT8PHHH8PS0hI///xzeaYjIiKiEijh3SIYNGgQEhIScOjQIXTr1g0fffQR2rdvL50/f/484uPjERQUBABQqVQYMGBAkffEBgQEoEOHDpg+fXqJ1rezs0NCQgISEhJgY2Oj9+0CCxYskM4XHnXq1CnR3I8r01cfAMD+/fsRHR2NjRs3wsjICP3798ewYcPKOh0RERE9gYeHBwRBQFJSEnr16qV3PikpCbVq1YKDgwMAwNraGh4eHgAevrTk4eGBtm3bwt/fH8DD3Zm8vDxZiBBFEWq1GosXLzb4DQARERFo164dJk2aJGtv2LAhgIch6cUXXwQAGBsbS+urVPqRQ6PRSOfLq1Q7NP/88w/mzp0LT09P+Pn54dKlS1i0aBH++ecfrFixAm3btq2QooiIiEifnZ0dunbtiqVLl+LBgweyc6mpqfjxxx8xYMAAg/eqWFhYYMyYMZg4cSJEUUReXh5WrVqF+fPny3ZI/vzzT9SpUwdr1qwxWEPr1q3Ru3dvTJ06Vdb+4osvwtvbG1988QUKCgoq7qJLqMQ7NN26dcPu3bthb2+Pt99+G0OHDpW9TkZERESVb/HixWjfvj0CAgLw6aefwt3dHWfOnMGkSZNQt25dzJkzp8ix7733HmbPno2NGzdCpVLh7t27GDZsmN5OTOFHsYwcOdLgPHPmzIGPj49s10UQBMTExKBr1654+eWXERoaikaNGiE3Nxf79+/Hv//+C2NjY9k89+7d03tTkaWlJczNzUv7tABiCfXo0UPcsmWLmJeXV9IhRNVaWlqaCEBMS0ur6lKIiEolOTlZHDJkiFi7dm2xRo0aorOzsxgSEiL+73//k/r4+vqKY8aM0Rv73nvviT4+PuJrr70mvvrqqwbnP3r0qAhA/PPPP8UrV66IAMSTJ0/K+rz77rsiAHHmzJmy9vPnz4tDhgwR69WrJ6pUKtHa2lrs1KmT+M0334i5ublSPwAGj/Dw8DI9JyX+HBqiZw0/h4aI6NlRrnc5EREREVUHZX6XE9Gz4uqqJrA008/2/NI4IiLl4A4NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/h4aIiOgRdy7vfmpr2Tbwf2prPeu4Q0NERKQQy5Ytg6WlJfLy8qS2zMxM1KhRA35+frK+Op0OgiDg8uXLcHNzw1dffaU336xZs9C8eXODj93c3CAIQpFHcHAwABR5fu3atRV89cXjDg0REZFCaLVaZGZm4vjx42jbti0A4MCBA9BoNDh69CiysrJgamoKAIiLi4OLiwsaNGhQprWOHTuG/Px8AMDvv/+OPn364Pz589J335mZmUl9Y2JiEBgYKBtvY2NTpnXLioGGiIhIIby8vODk5ASdTicFGp1OhzfeeAN79+7FkSNHpJ0anU4HrVZb5rUcHBykP9va2gIAHB0dDQYVGxsbaDSaMq9VEfiSExERkYJotVrExcVJj+Pi4uDn5wdfX1+p/cGDBzh69Gi5Ao3SMNAQEREpiFarxaFDh5CXl4eMjAycPHkSvr6+6NSpE3Q6HQDg8OHDyM7OlgWaKVOmwMLCQnbMnTu3QmoKCgrSm/vatWsVMndJ8SUnIiIiBfHz88P9+/dx7Ngx3L17F56ennBwcICvry/eeecdZGVlQafToX79+nBxcZHGTZo0SbqRt9CiRYuwf//+cte0YMEC+PvL37FVp06dcs9bGtyheQYEBwcbvMP80qVLAIDw8HAYGxvj888/1xu7cuVK2euhK1eulMYbGRnByckJAwYMwLVr1yCKIvz9/REQEKA3z9KlS2FjYwN/f/9i74p3c3OTxpSmrpJe8+M3pRERPWs8PDxQr149xMXFIS4uDr6+vgAeBghnZ2f8/vvviIuLQ+fOnWXj7O3t4eHhITsK740pL41Goze3SvV090wYaJ4RgYGBSElJkR3u7u4AgOjoaEyePBnR0dElmsvKygopKSm4ceMGNm7ciPPnz6Nfv34QBAExMTE4evQovvnmG6n/lStXMHnyZHz99dfYuHGjrAbg4d3vhY+PHTsmjSttXSW55jVr1pRpLiIiJdFqtdDpdNDpdLK3a3fq1Ak7d+5EfHz8c3X/DMBA88xQq9XQaDSyw9jYGPv27cODBw8QFhaG9PR0/P7770+cSxAEaDQaODk5oX379hg2bBji4+ORnp4OZ2dnLFy4EBMnTsSVK1cgiiKGDRuGV155BW+99Rasra1lNQD/f/e7RqOR7povS10lueZatWqVeh4iIqXRarU4ePAgEhISpB0aAPD19cU333yDnJycpxpo7t27h9TUVNlx//79p7Y+wHtonnlRUVEICgpCjRo1EBQUhKioKLRv377E42/duoXNmzfD2NgYxsbGAIAhQ4Zg8+bNGDp0KHr37o3Tp0/jzJkzT7WussjOzkZ2drb0OD09vVLXIyJlUsKn92q1Wjx48ADe3t6oXbu21O7r64uMjAzp7d1PyzvvvKPXFh4ejqlTpz61GiCS4g0ZMkQ0NjYWzc3NpaNv375iWlqaaGZmJiYkJIiiKIonT54ULSwsxIyMDGlsTEyMaG1tLXsMQDQ3Nxdr1qwpAhABiB9++KFszZs3b4r29vaikZGRuHnz5iJrA6B3vix1leSazc3NxTlz5hQ5ZubMmdL1PHpcOblFvH1pV5HjiIio+uMOzTNCq9UiMjJSemxubo41a9agQYMGaNasGQCgefPmcHV1xbp16zBs2LAi57K0tMSJEyeQm5uLnTt34scff8ScOXNkfRwdHfHee+9hy5Yt6NmzZ6lqLWtdj3v8mgEUe4NbaGgoxo8fLz0ufAmNiIiUj4HmGWFubg4PDw9ZW1RUFM6cOSO707ygoADR0dHFBgcjIyNprkaNGuHy5ct4//338f3338v6qVSqMt3FXta6HmfomoujVquhVqtLVSsRESkDA80zKjExEcePH4dOp5PtWty5cwd+fn44d+4cvL29SzTX1KlT0aBBA4wbNw4tWrSoNnUREREVYqB5RkVFRaF169bo1KmT3rlWrVohKirK4Oe/GOLs7IxevXphxowZ2LFjx1OrKz8/HwkJCbI+arUajRo1AvDwJt/U1FTZeZVKBXt7+3LVSEREysO3bT+DcnJy8MMPP6BPnz4Gz/fp0werVq1Cbm5uieccN24cfv75Z8THxz+1ujIzM/Hiiy/Kjh49ekj9Y2Nj4eTkJDs6dOhQ5vqIiEi5BFEUxaougqgqpKenw9raGldOboGVpbki3qpJRESGcYeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUT1XVBRBVNdv6WlhZWVV1GUREVA7coSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgoefe1VVNkBzlXtVlEBFROTDQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQKFRwcDAEQZAOOzs7BAYG4tSpU7J+giBgy5YteuOTk5MhCAISEhL0zvn5+WHs2LHSYzc3N9lahUdERESR8xZ3zJ49G+bm5rh06ZJs7D///INatWph8eLFeuuam5ujRYsWWL9+vdR/1qxZBuf39vYuxTNJRETPAgYaBQsMDERKSgpSUlKwZ88eqFQqvPbaa5WyVlhYmLRW4RESEqLXz9nZWdZnwoQJ8PHxkbVNnDgRAQEBCA4ORkFBgTR2xIgRaNmyJUaPHq237smTJ9GqVSsMGDAAv//+u3T+8blTUlJw8ODBSnkOiIio+lJVdQFUdmq1GhqNBgCg0WgwdepUdOzYEf/++y8cHBwqdC1LS0tpreIYGxvL+llYWEClUumN/eabb+Dj44Mvv/wSEydOxMqVK3Ho0CEkJiZCEAS9dTUaDZYsWYIffvgB27dvR/v27QHA4NxFyc7ORnZ2tvQ4PT29ROOIiKj6Y6B5RmRmZuKHH36Ah4cH7OzsqrqcJ3JwcMDy5csRFBSEZs2aYdy4cVi4cCGcnZ2LHKNSqVCjRg3k5OSUac3w8HB88skneu2ubyfCysqqTHMSEVH1wJecFGzHjh2wsLCAhYUFLC0tsW3bNqxbtw5GRhX/1zplyhRprcLjwIED5ZqzZ8+e6N+/PwIDA+Hr64shQ4YU2TcnJwfh4eFIS0tD586dpfbExES9ukaOHGlwjtDQUKSlpUnH9evXy1U/ERFVH9yhUTCtVovIyEgAwN27d7F06VJ069YN8fHxcHV1rdC1Jk2ahODgYFlb3bp1yz3v9OnTsWrVKnz88ccGz0+ZMgUff/wxsrKyYGFhgYiICHTv3l067+XlhW3btsnGFLXbolaroVary10zERFVPww0CmZubg4PDw/p8bfffgtra2usWLECn376abFjC3/pp6Wl6Z27d+8erK2tZW329vaytSqKSqWS/fdxhUHKwsICtWvXlt1fAwAmJiaVUhcRESkLX3J6hgiCACMjIzx48OCJfW1tbWFvb48//vhD1p6eno5Lly7B09OzssoslcIgpdFo9MIMERFRIe7QKFh2djZSU1MBPHzJafHixcjMzESPHj1k/a5cuaL3eTMNGzbE+PHjMXfuXNSuXRtt27bF7du3MXv2bDg4OKB3796y/hkZGdJahWrWrFnlN9Pm5eXp1SUIAmrXrl1FFRERUVVgoFGw2NhYODk5AXj49mZvb2+sX78efn5+sn7jx4/XG3vgwAFMnjwZFhYWmDdvHi5fvgxbW1u8/PLLiIuLg5mZmaz/jBkzMGPGDFnbe++9h2XLllXsRZXSmTNnpOegkFqtRlZWVhVVREREVUEQRVGs6iKIqkJ6ejqsra2RlpZW5TtNRERUPryHhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+Bhp57V1c1QXKUe1WXQURE5cBAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BTCsHBwejZs6esbcOGDTA1NcX8+fOlPoIgICIiQtZvy5YtEARBerxy5UrY2NgYXEcQBGzZskXWtnHjRvj5+cHa2hoWFhZo2rQpwsLCcOfOnSLnS0pKgrOzM/r164ecnJxi13y09sePwMDAIsfMmjULzZs312tPTk6GIAhISEiQPTZ0HDlyRDb2wYMHsLW1hb29PbKzs/XmdnNzk8aamZnBzc0N/fv3x969e4usk4iInm0MNOXw7bffYtCgQYiMjMSECROkdlNTU8ybNw93796tkHU++ugjDBgwAK1atcLOnTtx+vRpzJ8/H3/++Se+//57g2OOHTuGjh07IjAwEOvWrYOJiUmJ1goMDERKSorsWLNmTYVcBwDs3r1bb/6WLVvK+mzcuBE+Pj7w9vbWC3aFwsLCkJKSgvPnz2PVqlWwsbGBv78/5syZU2G1EhGRcqiqugCl+uyzzzBz5kysXbsWvXr1kp3z9/fHpUuXEB4ejs8++6xc68THx2Pu3Ln46quvMGbMGKndzc0NXbt2xb179/TG7N27F2+88QZGjRqFefPmlWo9tVoNjUZTrpqLY2dn98T5o6KiMHjwYIiiiKioKAwYMECvj6WlpTSPi4sLOnXqBCcnJ8yYMQN9+/aFl5dXpdRPRETVE3doymDKlCmYPXs2duzYoRdmAMDY2Bhz587F119/jb///rtca/3444+wsLDAqFGjDJ5//CWkzZs3o3v37vj4449LHWaqg8uXL+Pw4cPo378/+vfvjwMHDuDq1aslGjtmzBiIooitW7caPJ+dnY309HTZQUREzwYGmlLauXMnPvvsM2zduhVdunQpsl+vXr3QvHlzzJw5s1zrXbx4EfXr10eNGjWe2DczMxP9+vXDpEmTMGXKlDKtt2PHDlhYWMiOuXPnFjsmMTFRb4yPj4/Bvu3bt9fr+6jo6Gh069YNtWrVgq2tLQICAhATE1Oi2m1tbeHo6Ijk5GSD58PDw2FtbS0dzs7OAADXtxPhNuxKidYgIqLqiS85lVLTpk3xv//9DzNnzkTr1q31fiE/at68eejcuTMmTpxY5vVEUSxxXzMzM3To0AErVqxAUFAQGjVqVOr1tFotIiMjZW22trbFjvHy8sK2bdtkbTdu3ICfn59e33Xr1hVZV35+Pr777jssXLhQahs8eDAmTpyIGTNmwMjoyflbFEXZzdePCg0Nxfjx46XH6enpUqghIiJlY6Appbp162LDhg3QarUIDAzEzp07YWlpabBvp06dEBAQgNDQUAQHB8vOWVlZ4f79+ygoKJD9oi68J8ba2hoA4OnpiYMHDyI3N/eJuzTGxsbYsmULevfuDa1Wi7i4uFKHGnNzc3h4eJRqjImJid4Ylcrwj5azs3OR8//666+4ceOG3j0z+fn52LNnD7p27VpsHbdv38a///4Ld3d3g+fVajXUanWxcxARkTLxJacycHV1xb59+5CamorAwEBkZGQU2TciIgLbt2/H4cOHZe1eXl7Iy8uT3tZc6MSJEwAeBhkAePPNN5GZmYmlS5canP/xm4LVajU2bdqEVq1aQavV4uzZs6W8uqoTFRWFgQMHIiEhQXYMHDgQUVFRTxy/cOFCGBkZ6b21noiInn3coSkjZ2dn6HQ6aLVaBAQEIDY2FlZWVnr9mjRpgkGDBmHRokWydh8fH7zyyisYOnQo5s+fj/r16+P8+fMYO3YsBgwYgLp16wIA2rRpg8mTJ2PChAm4ceMGevXqhTp16uDSpUtYtmwZOnToIHv3E/Aw1GzcuBH9+vWDVqvF3r17pXta8vPz9UKUWq2WdnKys7ORmpoqO69SqWBvb1+u56vQ7du39ea3sbFBRkYGtm/fjm3btqFx48ay82+//TZ69eqFO3fuSC9/ZWRkIDU1Fbm5ubhy5Qp++OEHfPvttwgPDy/1DhMRESkfA0051KtXTxZqfv31V4P9wsLCsG7dOr32devWYebMmXjvvffwzz//oF69eujVqxemT58u6zdv3jy0bNkSS5YswbJly1BQUIAGDRqgb9++GDJkiME1TUxMsGHDBvTv318KNcDDG4dffPFFWd8GDRrg0qVLAIDY2Fg4OTnJznt5eeHcuXMle1KewN/fX69tzZo1uHHjBszNzQ3eaN2lSxeYmZnhhx9+wIcffggAmDFjBmbMmAETExNoNBq0bdsWe/bsgVarrZA6iYhIWQSxNHedEj1D0tPTYW1tjbS0NIO7a0REpBy8h4aIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUr0oDTXBwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp+P8tZfkufy0cePXrOhw83NDQDg5+dn8PzIkSMNXkdxcwqCAK1Wixo1auDgwYOycffv30f9+vUxceJEvXVNTU3xwgsvYOnSpVL/lStXGpzf1NTUYF1ERPTsUsQOjSiKGDhwIMLCwjBmzBgkJSVBp9PB2dkZfn5+2LJlCwDA29sbGo0GOp1OGpuRkYETJ07AwcFBFhQOHz6M7OxsdO7cWWoLDAxESkoKkpOTsXPnTmi1WowZMwavvfYa8vLyZDWFhYUhJSVFdoSEhMj6ZGRk4IsvvijxdZa3/tJauHChrH4AiImJkR4fO3ZM6jtixAi96/3ss88Mzvton6+++gpWVlaytu3btyMkJATBwcG4f/++NG7y5MkwMzPDp59+qrfu2bNn0b9/f4wePRpr1qyRzj8+d0pKCq5evVrm54SIiJRJEYHmp59+woYNG7Bq1SoMHz4c7u7uaNasGZYvX47XX38dw4cPl34xarVaWSA4ePAgPD090aNHD1m7TqeDq6sr3N3dpTa1Wg2NRoO6deuiRYsWmDZtGrZu3YqdO3di5cqVsposLS2h0Whkh7m5uaxPSEgIvvzyS9y6davE11qe+kvL2tpaVj8A2NjYSI8dHBykvjVr1tS7XisrK4PzPtrH2toagiDI2iwsLDB37lyYmJhgypQpAIC4uDh8++23WLVqlWyHpXDd+vXrY9asWWjYsCG2bdsmnX98bo1Gg9q1axusKzs7G+np6bKDiIieDYoINKtXr5Z+qT9uwoQJuH37Nnbt2gXgYSA4ePCgtKMSFxcHPz8/+Pr6Ii4uThoXFxcHrVb7xLU7d+6MZs2aYdOmTaWuOygoCB4eHggLCyvxmIquv7oyNTXFqlWrsHz5cmzduhVDhw7FtGnT0LJly2LHmZmZIScnp0xrhoeHw9raWjqcnZ0BAHf+isOdy7sr9CAioqerygPNjh07YGFhITu6desm63PhwgU0atTI4PjC9gsXLgB4GAju378vvVyi0+ng6+uLTp064ejRo8jKysKDBw8QHx9f4kDg7e2N5ORkWduUKVP06j5w4ICsT+F9NcuXL8fly5dLtFZ56i/Jc1lWS5cu1Zv7xx9/LNecL730EkJDQ9G7d2/Y2dnho48+KrJvfn4+fvjhB5w6dUr2MltaWlqJrzk0NBRpaWnScf369XLVT0RE1YeqqgvQarWIjIyUtR09ehSDBw+WtYmiWKL5PDw8UK9ePeh0Ovj4+ODkyZPw9fWFo6MjXFxccPjwYYiiiOzs7BIHGlEUIQiCrG3SpEkIDg6WtdWtW1dvbEBAADp06IDp06dj9erVlVp/SZ/Lshg0aJBe4CjqpZ3SmD59OsLCwjB16lSoVPo/jkuXLsW3336LnJwcGBsbY9y4cXj//fel85aWljhx4oRsjJmZmcG11Go11Gp1uWsmIqLqp8oDjbm5OTw8PGRtf//9t+yxp6cnkpKSDI4vbPf09JTa/Pz8EBcXh6ZNm6Jhw4ZwdHQEAOllG1EU4eHhIb3k8CRJSUl696rY29vr1V2UiIgItGvXDpMmTSpR/7LWX5Lnsqysra1LfL2lURhiDIUZ4P+DlJmZGZycnGBkJN9UNDIyqpS6iIhIWar8JaeSGDhwIC5evIjt27frnZs/fz7s7OzQtWtXqU2r1eL333/Hrl274OfnJ7V36tQJOp0OOp2uxLsze/fuRWJiIvr06VPm+lu3bo3evXtj6tSpJepfkfUrXWGQqlu3rl6YISIiKlTlOzQlMXDgQKxfvx5DhgzB559/ji5duiA9PR1LlizBtm3bsH79etk7jArvQ4mOjsaKFSukdl9fXwwfPhwAMGrUKL11srOzkZqaivz8fNy8eROxsbEIDw/Ha6+9hrffflvWNyMjA6mpqbK2mjVrFvnOnzlz5sDHx6fInYhHlbX+yvTff//pXa9arUatWrWeah2PE0VRry4AcHR0ZAAiInqOKOJffEEQ8NNPP2HatGlYsGABvLy80LFjR1y9ehU6nU7vA+Xc3d3h6uqKjIwM+Pr6Su0uLi6oU6cOcnJyZDsfhWJjY+Hk5AQ3NzcEBgYiLi4OixYtwtatW2FsbCzrO2PGDDg5OcmOyZMnF3kNnp6eGDp0qOzD8YpS1vor04oVK/SuNygo6KnWYEh6erpeXU5OTqV6qzwRESmfIJb0bluiZ0x6ejqsra1x5eQWWFmaP3lAKdg28K/Q+YiIqHiK2KEhIiIiKg4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESmeIr5tm6gy2dbXFvkt6UREpAzcoSEiIiLFY6AhIiIixWOgISIiIsXjPTT03BJFEQCQnp5exZUQ0dNmaWkJQRCqugyqQAw09Ny6ffs2AMDZ2bmKKyGipy0tLY1vBnjGMNDQc8vW1hYAcO3aNVhbW1dxNSWXnp4OZ2dnXL9+XTH/ICuxZkCZdSuxZuDp121paVnpa9DTxUBDzy0jo4e3kFlbWyvqH/5CVlZWiqtbiTUDyqxbiTUDyq2bqh5vCiYiIiLFY6AhIiIixWOgoeeWWq3GzJkzoVarq7qUUlFi3UqsGVBm3UqsGVBu3VR9CGLhe1eJiIiIFIo7NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDT03FqyZAnc3NxgamqKNm3aID4+vspq2b9/P3r06IE6depAEARs2bJFdl4URcyYMQNOTk4wMzODv78/Ll68KOtz584dDBo0CFZWVrCxscGwYcOQmZlZaTWHh4ejVatWsLS0hKOjI3r27Inz58/L+mRlZWH06NGws7ODhYUF+vTpg5s3b8r6XLt2Dd27d0fNmjXh6OiISZMmIS8vr9LqjoyMRNOmTaUPcGvXrh127txZrWt+XEREBARBwNixY6t13bNmzYIgCLLD29u7WtdMCiYSPYfWrl0rmpiYiNHR0eKZM2fEESNGiDY2NuLNmzerpJ5ffvlF/Oijj8RNmzaJAMTNmzfLzkdERIjW1tbili1bxD///FN8/fXXRXd3d/HBgwdSn8DAQLFZs2bikSNHxAMHDogeHh5iUFBQpdUcEBAgxsTEiKdPnxYTEhLEV199VXRxcREzMzOlPiNHjhSdnZ3FPXv2iMePHxfbtm0rtm/fXjqfl5cnNm7cWPT39xdPnjwp/vLLL6K9vb0YGhpaaXVv27ZN/Pnnn8ULFy6I58+fF6dNmybWqFFDPH36dLWt+VHx8fGim5ub2LRpU3HMmDFSe3Wse+bMmaKPj4+YkpIiHf/++2+1rpmUi4GGnkutW7cWR48eLT3Oz88X69SpI4aHh1dhVQ89HmgKCgpEjUYjfv7551LbvXv3RLVaLa5Zs0YURVE8e/asCEA8duyY1Gfnzp2iIAjijRs3nkrdt27dEgGI+/btk2qsUaOGuH79eqlPUlKSCEA8fPiwKIoPg5yRkZGYmpoq9YmMjBStrKzE7Ozsp1K3KIpirVq1xG+//bba15yRkSE2bNhQ3LVrl+jr6ysFmupa98yZM8VmzZoZPFddaybl4ktO9NzJycnBH3/8AX9/f6nNyMgI/v7+OHz4cBVWZtiVK1eQmpoqq9fa2hpt2rSR6j18+DBsbGzw0ksvSX38/f1hZGSEo0ePPpU609LSAPz/l37+8ccfyM3NldXt7e0NFxcXWd1NmjRB7dq1pT4BAQFIT0/HmTNnKr3m/Px8rF27Fvfv30e7du2qfc2jR49G9+7dZfUB1fu5vnjxIurUqYP69etj0KBBuHbtWrWvmZSJX05Jz53//e9/yM/Pl/0jCQC1a9fGuXPnqqiqoqWmpgKAwXoLz6WmpsLR0VF2XqVSwdbWVupTmQoKCjB27Fi8/PLLaNy4sVSTiYkJbGxsiq3b0HUVnqssiYmJaNeuHbKysmBhYYHNmzfjhRdeQEJCQrWtee3atThx4gSOHTumd666Ptdt2rTBypUr4eXlhZSUFHzyySfo2LEjTp8+XW1rJuVioCGichs9ejROnz6NgwcPVnUpJeLl5YWEhASkpaVhw4YNGDJkCPbt21fVZRXp+vXrGDNmDHbt2gVTU9OqLqfEunXrJv25adOmaNOmDVxdXfHTTz/BzMysCiujZxFfcqLnjr29PYyNjfXeTXHz5k1oNJoqqqpohTUVV69Go8GtW7dk5/Py8nDnzp1Kv6YPPvgAO3bsQFxcHOrVqyerOycnB/fu3Su2bkPXVXiuspiYmMDDwwMtW7ZEeHg4mjVrhoULF1bbmv/44w/cunULLVq0gEqlgkqlwr59+7Bo0SKoVCrUrl27Wtb9OBsbG3h6euLSpUvV9rkm5WKgoeeOiYkJWrZsiT179khtBQUF2LNnD9q1a1eFlRnm7u4OjUYjqzc9PR1Hjx6V6m3Xrh3u3buHP/74Q+qzd+9eFBQUoE2bNpVSlyiK+OCDD7B582bs3bsX7u7usvMtW7ZEjRo1ZHWfP38e165dk9WdmJgoC2O7du2ClZUVXnjhhUqp25CCggJkZ2dX25q7dOmCxMREJCQkSMdLL72EQYMGSX+ujnU/LjMzE5cvX4aTk1O1fa5Jwar6rmSiqrB27VpRrVaLK1euFM+ePSu+++67oo2NjezdFE9TRkaGePLkSfHkyZMiAPHLL78UT548KV69elUUxYdv27axsRG3bt0qnjp1SnzjjTcMvm37xRdfFI8ePSoePHhQbNiwYaW+bfv9998Xra2tRZ1OJ3tb7n///Sf1GTlypOji4iLu3btXPH78uNiuXTuxXbt20vnCt+W+8sorYkJCghgbGys6ODhU6ttyp06dKu7bt0+8cuWKeOrUKXHq1KmiIAjib7/9Vm1rNuTRdzlV17onTJgg6nQ68cqVK+KhQ4dEf39/0d7eXrx161a1rZmUi4GGnltff/216OLiIpqYmIitW7cWjxw5UmW1xMXFiQD0jiFDhoii+PCt29OnTxdr164tqtVqsUuXLuL58+dlc9y+fVsMCgoSLSwsRCsrK/Gdd94RMzIyKq1mQ/UCEGNiYqQ+Dx48EEeNGiXWqlVLrFmzptirVy8xJSVFNk9ycrLYrVs30czMTLS3txcnTJgg5ubmVlrdQ4cOFV1dXUUTExPRwcFB7NKlixRmqmvNhjweaKpj3QMGDBCdnJxEExMTsW7duuKAAQPES5cuVeuaSbkEURTFqtkbIiIiIqoYvIeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiKgUkpOTIQgCEhISqroUInoEAw0REREpHgMNESlKQUEBPvvsM3h4eECtVsPFxQVz5swBACQmJqJz584wMzODnZ0d3n33XWRmZkpj/fz8MHbsWNl8PXv2RHBwsPTYzc0Nc+fOxdChQ2FpaQkXFxcsX75cOu/u7g4AePHFFyEIAvz8/CrtWomo5BhoiEhRQkNDERERgenTp+Ps2bNYvXo1ateujfv37yMgIAC1atXCsWPHsH79euzevRsffPBBqdeYP38+XnrpJZw8eRKjRo3C+++/j/PnzwMA4uPjAQC7d+9GSkoKNm3aVKHXR0Rlo6rqAoiISiojIwMLFy7E4sWLMWTIEABAgwYN0KFDB6xYsQJZWVlYtWoVzM3NAQCLFy9Gjx49MG/ePNSuXbvE67z66qsYNWoUAGDKlClYsGAB4uLi4OXlBQcHBwCAnZ0dNBpNBV8hEZUVd2iISDGSkpKQnZ2NLl26GDzXrFkzKcwAwMsvv4yCggJpd6WkmjZtKv1ZEARoNBrcunWr7IUTUaVjoCEixTAzMyvXeCMjI4iiKGvLzc3V61ejRg3ZY0EQUFBQUK61iahyMdAQkWI0bNgQZmZm2LNnj965Ro0a4c8//8T9+/eltkOHDsHIyAheXl4AAAcHB6SkpEjn8/Pzcfr06VLVYGJiIo0louqDgYaIFMPU1BRTpkzB5MmTsWrVKly+fBlHjhxBVFQUBg0aBFNTUwwZMgSnT59GXFwcQkJC8NZbb0n3z3Tu3Bk///wzfv75Z5w7dw7vv/8+7t27V6oaHB0dYWZmhtjYWNy8eRNpaWmVcKVEVFoMNESkKNOnT8eECRMwY8YMNGrUCAMGDMCtW7dQs2ZN/Prrr7hz5w5atWqFvn37okuXLli8eLE0dujQoRgyZAjefvtt+Pr6on79+tBqtaVaX6VSYdGiRfjmm29Qp04dvPHGGxV9iURUBoL4+AvKRERERArDHRoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUrz/A+sUfVTiRBWAAAAAAElFTkSuQmCC", + "text/plain": [ + "
                      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "# Specify colors for each values of the hue variable\n", + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# Plot a bar plot to visualize how many pumpkins of each variety are orange or white\n", + "sns.catplot(\n", + " data=pumpkins, y=\"Variety\", hue=\"Color\", kind=\"count\",\n", + " palette=palette, \n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Prétraitement des données\n", + "\n", + "Encodons les caractéristiques et les étiquettes pour mieux visualiser les données et entraîner le modèle\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['med', 'lge', 'sml', 'xlge', 'med-lge', 'jbo', 'exjbo'],\n", + " dtype=object)" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the different values of the 'Item Size' column\n", + "pumpkins['Item Size'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OrdinalEncoder\n", + "# Encode the 'Item Size' column using ordinal encoding\n", + "item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']]\n", + "ordinal_features = ['Item Size']\n", + "ordinal_encoder = OrdinalEncoder(categories=item_size_categories)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OneHotEncoder\n", + "# Encode all the other features using one-hot encoding\n", + "categorical_features = ['City Name', 'Package', 'Variety', 'Origin']\n", + "categorical_encoder = OneHotEncoder(sparse_output=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_MICHIGANcat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIA
                      21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                      31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.01.0
                      43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                      53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                      61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                      \n", + "

                      5 rows × 48 columns

                      \n", + "
                      " + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_MICHIGAN cat__Origin_NEW JERSEY \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NEW YORK cat__Origin_NORTH CAROLINA cat__Origin_OHIO \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_PENNSYLVANIA cat__Origin_TENNESSEE cat__Origin_TEXAS \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VERMONT cat__Origin_VIRGINIA \n", + "2 0.0 0.0 \n", + "3 0.0 1.0 \n", + "4 0.0 0.0 \n", + "5 0.0 0.0 \n", + "6 0.0 0.0 \n", + "\n", + "[5 rows x 48 columns]" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.compose import ColumnTransformer\n", + "ct = ColumnTransformer(transformers=[\n", + " ('ord', ordinal_encoder, ordinal_features),\n", + " ('cat', categorical_encoder, categorical_features)\n", + " ])\n", + "# Get the encoded features as a pandas DataFrame\n", + "ct.set_output(transform='pandas')\n", + "encoded_features = ct.fit_transform(pumpkins)\n", + "encoded_features.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIAColor
                      21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                      31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.01.00
                      43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                      53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                      61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                      \n", + "

                      5 rows × 49 columns

                      \n", + "
                      " + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_NEW JERSEY cat__Origin_NEW YORK \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NORTH CAROLINA cat__Origin_OHIO cat__Origin_PENNSYLVANIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_TENNESSEE cat__Origin_TEXAS cat__Origin_VERMONT \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VIRGINIA Color \n", + "2 0.0 0 \n", + "3 1.0 0 \n", + "4 0.0 0 \n", + "5 0.0 0 \n", + "6 0.0 0 \n", + "\n", + "[5 rows x 49 columns]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "# Encode the 'Color' column using label encoding\n", + "label_encoder = LabelEncoder()\n", + "encoded_label = label_encoder.fit_transform(pumpkins['Color'])\n", + "encoded_pumpkins = encoded_features.assign(Color=encoded_label)\n", + "encoded_pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['ORANGE', 'WHITE']" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the mapping between the encoded values and the original values\n", + "list(label_encoder.inverse_transform([0, 1]))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAYpCAYAAABBoEQQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxVdf7H8ff1IuAI4oqAIqiIuORS5lqCpqnTkE2NOo6ZYlk5uOVYaf1m1MbCpkUrNbMhW8a0Tdtm1FwAzTRFpVxJDVMTRBNZHEGB8/vDh3e8gXpZT6f7ej4e5zH3nu853/vhjMGbL9/zPTbDMAwBAAAAFlLD7AIAAACAsiLEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcD7MLAAAAwK9fTEyMS8ctWbLEpeMIsQAAAKhy2dnZTu/PnTunDRs2KDo6ulz92QzDMCqjMAAAAMBVaWlp6tChg3Jzc8t1PnNiAQAAUO0qOo5KiAUAAIDlEGIBAABgOdzYBQAAgCqXlJTk9P7HH39UUVGREhMTZbPZHPsjIyNd6o8buwAAAFDl7Ha7DMNwCqw/ZxiGiouLXeqPkVgAAABUuaysrErtj5FYAAAAWA43dgEAAKDaLF++XHfddZfatm2rtm3b6q677tJ7771X5n4YiQUAAECVKy4u1pAhQ/Txxx+rVatWatOmjWw2m/bv36/U1FTdc889eu+991SjhmtjrMyJBQAAQJWbN2+ekpKS9Omnn+qOO+5wavvPf/6jkSNH6qWXXtIjjzziUn+MxAIAAKDKdejQQZMnT9aYMWNKbV+yZInmzp2rb7/91qX+CLEAAACocrVq1dKBAwcUEhJSavsPP/ygiIgInT9/3qX+uLELAAAAVc7b21vZ2dlXbc/JyVGtWrVc7o8QCwAAgCrXo0cPLViw4Krt8+fPV/fu3V3ujxu7AAAAUOX+9re/KTIyUqdPn9Zf/vIXtW3bVpK0f/9+vfDCC/r000+VmJjocn/MiQUAAEC1+Oyzz3T//ffr9OnTTvsbNmyof/7zn7rzzjtd7osQCwAAgGpz/vx5rV27Vt99950kKTw8XP379y/TfFiJEAsAAIBfiNTUVLVu3dqlY5kTCwAAAFMcPnxYCQkJji0jI0PFxcUunUuIBQAAQLU4cuSII7AmJibq+PHj8vHx0S233KLJkycrKirK5b6YTgAAAIAq17x5c/3www+qXbu2evXqpT59+igqKko333yzatQo+6qvhFgAAABUOQ8PD/n4+CgmJkb9+/fXrbfeKl9f33L3R4gFAABAlcvMzFRSUpKSkpKUmJio7777Tp07d1ZUVJT69OmjW265RT4+Pi73R4gtJ8MwlJubK19fX9lsNrPLAQAAsJSffvpJiYmJjlCbmpqqzp07a+vWrS6dz41d5ZSbmys/Pz9lZ2erTp06ZpfjVgzDUEFBgdllAKa48t+/l5cXv0SbhGsPVFyDBg3Uq1cvFRcXq7i4WNnZ2frmm29cPp8QC8spKCjQkCFDzC4DgBv74IMP5O3tbXYZgOUcO3ZMSUlJ2rhxozZu3KgffvhB3bp1U9++ffXOO++oe/fuLvdFiAUAAECVa9GihU6cOKFu3bopKipKr732mnr06CFPT89y9UeIhaU9M2i/PO2uLYoM/BoUFNr05Oq2kqSnB+6Tlwe3NVSXC0U19MSqNmaXAVjW0aNHVbNmTRmGIcMwHNMIyosQC0vztBfzQxxuy8vD4N9/teIXZqAifvzxRyUmJiohIUHvvfeenn76aXl6eqpr167q06ePIiMj1bNnT3l5ebnUHyG2gljcAQAA/Npdvqm0InPBGzdurGHDhmnYsGGSLoXay0/vevvtt/X3v/9dnp6eOn/+vEv9EWIriLvkAQDAr93lm6o/++yzSuuzSZMmuvfee3XvvfdKujTdYP369S6fX/ZnfOnSnWVjxoxRUFCQPD09FRISokmTJumnn35yHBMVFSWbzSabzSZvb2+Fh4crLi6u1JHLLVu2yG6364477ijRduTIEdlsNvn7+ys3N9eprVOnTpo5c6bTvkOHDmnMmDFq1qyZvLy81KRJE912221aunSpCgsLHcddru3n2/Lly8tzSQAAAFABzZo1U0xMjMvHl3kk9vvvv1ePHj0UHh6uZcuWqXnz5tq7d68effRRrVq1Slu3blX9+vUlSWPHjtVTTz2lgoICbdiwQQ8++KDq1q2rcePGOfUZHx+vCRMmKD4+XidOnFBQUFCJz83NzdXzzz+vWbNmXbW2bdu2qV+/fmrXrp0WLFigiIgISVJycrIWLFig9u3bq2PHjo7jlyxZooEDBzr1Ubdu3bJeEgAAAFyHKwHVMAy9+eabLvVX5hAbGxsrT09PffHFF6pVq5akS8m5c+fOatmypZ588km9+uqrkqTf/OY3CggIcBQ+f/58rV271inE5uXl6b333lNycrIyMjL05ptv6oknnijxuRMmTNCLL76o2NhY+fv7l/pFjx49WuHh4dq8ebNq1PjfIHOrVq00fPjwEqPAdevWddRXXvn5+crPz69QHyibK683U5IBVJcrv9/wfR/upjL+zb/99tsaOHDgVW/cKigo0KpVq6omxJ45c0Zr1qzR008/7QiwlwUEBGjEiBF67733tHDhQqc2wzD05Zdf6sCBA2rVqpVT2/vvv6+IiAi1bt1a9957ryZPnqzp06eXeBLK8OHDtXbtWj311FOaP39+idpSUlK0f/9+LVu2zCnAXqkiT1cpKChwmv+ak5MjSXrwwQdVs2bNcveLirlQZJN3TZIsgKp3oeh/P0NGjhxpYiWAdb3xxhtq3LhxqW2nTp0q0+BimebEHjx4UIZhqE2b0tfJa9OmjbKysnTq1ClJ0sKFC+Xj4yMvLy/17t1bxcXFmjhxotM58fHxjgm9AwcOVHZ2tpKSkkr0bbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAAA/4+HhoaKioqu2FxYWym63u95feYpwdVmpESNG6Mknn1RWVpZmzJihnj17qmfPno721NRUbdu2TStXrrxUjIeHhg0bpvj4eEVFRZXob8CAAbrlllv017/+Ve++++51P79BgwZKSUmRdOlGswsXLji1z507V/369XPaV9p8XEmaPn26pkyZ4nifk5Oj4OBgLV68uNTpDag6+fn5jlEQTzujsACqx5Xfb9555x0eOwu3cuXP3vKqV6+eTp48edWsdfLkScd9Va4oU4gNCwuTzWbT/v379fvf/75E+/79+1WvXj01atRIkuTn56ewsDBJl6YNhIWFqXv37o7gGB8fr8LCQqcvxjAMeXl5af78+fLz8yvxGXPmzFGPHj306KOPOu2/PE0hNTVVnTt3liTZ7XbH53t4lPxSAwICHO3X4+XlVeocDm9vb76RmagCM0QAoEyu/H7D936g7Dp27KhVq1Y5ctrPrV69Wh06dHC5vzJNJ2jQoIH69++vhQsXlliINiMjQ0uXLtWwYcNKnXvq4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/++Qo9wgwAAACVb8SIEZozZ442bNhQoi0hIUHPPPOMhg8f7nJ/ZZ5OMH/+fPXs2VMDBgzQ7NmznZbYatKkiZ5++umrnvvQQw/p73//uz766CN5eHgoKytL999/f4kR13vuuUfx8fF6+OGHS+3n6aefVrt27ZxGV202m5YsWaL+/furV69emj59utq0aaOLFy9q48aNOnXqVIl5FmfPnlVGRobTPl9fX9WuXbuslwUAAADXcN9992nFihXq16+fbrjhBrVp00Y2m00HDhzQN998o9/+9rcaPXq0y/2V+WEHrVq1UnJyslq0aKGhQ4eqZcuWevDBB9WnTx9t2bLlmnMZ6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMKbHcQ/fu3bVjxw61bt1asbGxatu2rXr27Klly5Zp7ty5JdanjYmJUWBgoNP2yiuvlPWSAAAAwAUrV67Um2++qZCQEO3du1e7d+9WkyZN9M9//lOffvppmVaSshmu3qUFJzk5OfLz89PZs2dLDeKoOvn5+RoyZIgk6fnf7ZWXB/+E4T4KCm2a+nk7Sfz7r25XXvsPPviAObFwK4ZhqKCg4Bf1775cqxPgfyqy9iwq7kJRDUnMgYb7KCi0lfoaVe/S9xvAPdlstl9UgJUIsbC4J1aVvmYx4A6eXN3W7BIAwGXNmze/7jGGYejIkSMu9UeIBQAAQJU7evSonnrqKfn6+kqSTp8+reeee07PPvusJCkvL0//93//53J/zIktp8tzYrOzs1WnTh2zy3Erl+flAO7oyn//Xl5eTGkyCdceKDu73a4TJ044Hjv7/fffq2PHjsrNzZV06UmrAQEBLi+VykgsLOeXOC8HqE61atUyuwQAMB2z1AEAAGA5hFgAAACY4ufTcsoyTYcQCwAAgCr30EMP6Te/+Y3jfZMmTbRq1SrHe19fX8XFxbncHzd2lRM3dgEAAJiHG7sAAABQ5X744QeXjgsJCXHpOEIsAAAAqlyLFi1kGIZsNpuunAjw8/euLrFV5XNiFy1aJF9fXxUWFjr25eXlqWbNmoqKinI6NjExUTabTYcPH1ZoaKjmzZtXor+ZM2eqU6dOpb4PDQ2VzWa76jZ69GhJumr78uXLK/mrBwAAgCTt2rVLKSkpjv+9vO3cuVOPPfaYatWqJX9/f5f7q/KR2D59+igvL0/Jycnq3r27JGnTpk0KCAjQ119/rfz8fMeanwkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjrmrF65tuKSJUs0cOBAp/Pr1q1brs8FAADAtXXo0KHEvi+++ELTp0/XoUOH9Nhjj2nq1Kku91flIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFA+27dv17Rp0/Tll1/qwQcf1Jo1a9SwYcMy9VEtS2z16dNHCQkJjvcJCQmKiopSZGSkY//58+f19ddfVyjEAgAA4Jfr4MGDGjZsmHr27KnAwEAdOHBAr7zySpkDrFSNIXbz5s0qLCxUbm6udu3apcjISPXu3VuJiYmSpC1btqigoMApxD7++OPy8fFx2p555plKqWn48OEl+j569OhVjy8oKFBOTo7TBgAAANc8/PDDateunbKzs7V9+3b961//UvPmzcvdX7WsThAVFaVz585p+/btysrKUnh4uBo1aqTIyEjFxMQoPz9fiYmJatGihZo1a+Y479FHH3XcjHXZyy+/rI0bN1a4prlz56pfv35O+4KCgq56fFxcnGbNmlXhzwUAAHBHr7/+ury9vZWZmamYmJirHrdr1y6X+quWEBsWFqamTZsqISFBWVlZioyMlHQpNAYHB+urr75SQkKC+vbt63Rew4YNFRYW5rTv8lzXigoICCjR97VMnz5dU6ZMcbzPyclRcHBwpdQCAADwazdjxoxK7a/a1ont06ePEhMTlZWVpUcffdSxv3fv3lq1apW2bdumcePGVVc5Zebl5SUvLy+zywAAALCkv/3tb5XaX7WG2NjYWF28eNExEitJkZGRGj9+vC5cuFCtN3WdPXtWGRkZTvt8fX1Vu3btaqsBAAAA5VMtN3ZJl0Ls+fPnFRYWpsaNGzv2R0ZGKjc317EUV3WJiYlRYGCg0/bKK69U2+cDAACg/GzGlc/5gstycnLk5+en7Oxsx8MUAAAAUD2qbSQWAAAAqCyEWAAAAJju7NmzZbo/ihALAAAA0124cEFJSUkuH0+IBQAAgOVU2xJbvzaX74fj8bMAAMCd+Pr6ymazlfm8H3744Zrtp06dKlN/rE5QTt9//71atmxpdhkAAADVKjMzU40aNSrzeXa7XYZhyGazqbT4eXl/cXGxS/0xEltOlx9/e/ToUfn5+Zlcjfu5/NjfY8eOscSZCbj+5uL6m4drby6uv7kuX39PT89ynb9r165rtp85c0Z9+/Z1uT9CbDnVqHFpOrGfnx//IZmoTp06XH8Tcf3NxfU3D9feXFx/c5VnKoEkdejQ4ZrtmZmZZeqPG7sAAADwi1CWgEyIBQAAgOk8PT3Vtm1bl48nxJaTl5eXZsyYIS8vL7NLcUtcf3Nx/c3F9TcP195cXH9zVfX137Rpk06fPu3y8axOAAAAANPk5uZq0qRJevfddzVjxgxNnz7dpfO4sQsAAACmSEhI0JgxY1S/fn3t2LFD7dq1c/lcQiwAAACqXN++fZ3Why0sLNTWrVv1xBNP6G9/+5vsdnuZ+iPEAgAAoMp16tTJ6X1hYaH27Nmj/fv368yZM2V+gAJzYgEAAGCK48ePKyYmRt9++63mz5+vIUOGuHwuqxOU04IFCxQaGipvb29169ZN27ZtM7skt7Bx40ZFR0crKChINptNH3/8sdkluY24uDjdfPPN8vX1lb+/v+666y6lpqaaXZbbePXVV9WhQwfHIu89evTQqlWrzC7Lbc2ZM0c2m02TJ082uxS3MHPmTNlsNqctIiLC7LLcyo8//qh7771XDRo0UK1atXTDDTcoOTm5wv02bdpUa9eu1d/+9jfFxMRo6NChLp9LiC2H9957T1OmTNGMGTO0c+dOdezYUQMGDCjzkyZQdufOnVPHjh21YMECs0txO0lJSYqNjdXWrVu1du1aXbx4UbfffrvOnTtndmluoWnTppozZ4527Nih5ORk9e3bV4MHD9bevXvNLs3tbN++Xa+99tp1nz6EytWuXTulp6c7ti+//NLsktxGVlaWevXqpZo1a2rVqlXat2+fXnjhBdWrV6/SPiM2NlYpKSk6fvy4y+cwnaAcunXrpptvvlnz58+XJBUXFys4OFgTJkzQtGnTTK7OfdhsNq1cuVJ33XWX2aW4pVOnTsnf319JSUnq3bu32eW4pfr16+u5557T/fffb3YpbiMvL0833nijFi5cqNmzZ6tTp06aN2+e2WX96s2cOVMff/yxUlJSzC7FLU2bNk2bN2/Wpk2bqvyzDMNw+ald3NhVRhcuXNCOHTuc1jCrUaOG+vXrpy1btphYGVC9srOzJV0KUqheRUVF+uCDD3Tu3Dn16NHD7HLcSmxsrO644w7169dPs2fPNrsct3Lw4EEFBQXJ29tbPXr0UFxcnJo1a2Z2WW7h008/1YABAzRkyBAlJSWpSZMm+vOf/6yxY8eWqZ9Zs2Zd9xjDMDRz5kyX+iPEltHp06dVVFSkxo0bO+1v3LixDhw4YFJVQPUqLi7W5MmT1atXL7Vv397sctzG7t271aNHD+Xn58vHx0crV64s0yMaUTHLly/Xzp07tX37drNLcTvdunXTm2++qdatWys9PV2zZs3Srbfeqj179sjX19fs8n71vv/+e7366quaMmWKnnjiCW3fvl0TJ06Up6enRo0a5XI/n3zyieP1hQsXdODAAadpOZdXKyDEAqgysbGx2rNnD3PSqlnr1q2VkpKi7Oxsffjhhxo1apSSkpIIstXg2LFjmjRpktauXStvb2+zy3E7gwYNcrzu0KGDunXrppCQEL3//vtMp6kGxcXF6tKli5555hlJUufOnbVnzx4tWrSoTCF2586djtdpaWnq2LGj075Tp04pICDA5f64sauMGjZsKLvdrpMnTzrtP3nyZJkuPGBV48eP1+eff66EhAQ1bdrU7HLciqenp8LCwnTTTTcpLi5OHTt21EsvvWR2WW5hx44dyszM1I033igPDw95eHgoKSlJL7/8sjw8PFRUVGR2iW6lbt26Cg8P16FDh8wuxS0EBgaW+GW5TZs2Onr0aLn7tNvtKiwsdNp38eJF1ajhejQlxJaRp6enbrrpJq1fv96xr7i4WOvXr2duGn7VDMPQ+PHjtXLlSm3YsEHNmzc3uyS3V1xcrIKCArPLcAu33Xabdu/erZSUFMfWpUsXjRgxQikpKWV+0hAqJi8vT4cPH1ZgYKDZpbiFXr16lVhS8bvvvlNISEi5+wwKCtLFixe1Y8cOx77NmzeXaXCE6QTlMGXKFI0aNUpdunRR165dNW/ePJ07d04xMTFml/arl5eX5/Sbd1pamlJSUlS/fn0m+Fex2NhYvfvuu/rkk0/k6+urjIwMSZKfn59q1aplcnW/ftOnT9egQYPUrFkz5ebm6t1331ViYqLWrFljdmluwdfXt8T879q1a6tBgwbMC68GU6dOVXR0tEJCQnTixAnNmDFDdrtdw4cPN7s0t/DII4+oZ8+eeuaZZzR06FBt27ZNixcv1uLFi8vdp4eHh373u99p0KBBGj58uPLz87V06VI9+OCDrndioFxeeeUVo1mzZoanp6fRtWtXY+vWrWaX5BYSEhIMSSW2UaNGmV3ar15p112SsWTJErNLcwtjxowxQkJCDE9PT6NRo0bGbbfdZnzxxRdml+XWIiMjjUmTJpldhlsYNmyYERgYaHh6ehpNmjQxhg0bZhw6dMjsstzKZ599ZrRv397w8vIyIiIijMWLF1e4z8zMTGPYsGFGw4YNjaCgIOPhhx828vLyXD6fdWIBAABgOUwnAAAAQJX74YcfXDrO1bm2jMQCAACgytntdscTuUqLn5f3FxcXu9QfI7EAAACoFuvWrVPDhg0lScePH9fQoUP11VdfSZLOnDmjvn37utwXIRYAAADVol27do6nnvr4+Mhmszme2pWZmVmmvlgnFgAAAJZDiAUAAECVq+zbsAixAAAAqHI2m+26+0o75moIsQDgBo4cOSKbzaaUlBSzSwHgppYtW6a6des63rdo0UI5OTmO9w0aNNCWLVtc7o8QCwDlMHr0aN11112O91FRUZo8ebJp9aSlpelPf/qTgoKC5O3traZNm2rw4ME6cOCAJCk4OFjp6ek8IhWAaYYOHSovL6+rttvtdnXt2tXl/lidAAAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZd+OAQEBJhbKABUIkZiAaCCRo8eraSkJL300kuy2Wyy2Ww6cuSIJGnPnj0aNGiQfHx81LhxY40cOVKnT592nBsVFaUJEyZo8uTJqlevnho3bqzXX39d586dU0xMjHx9fRUWFqZVq1Zd9fP37t2rw4cPa+HCherevbtCQkLUq1cvzZ49W927d5dUcjrB6NGjHbVeuSUmJkqSCgoKNHXqVDVp0kS1a9dWt27dHG0A8EtAiAWACnrppZfUo0cPjR07Vunp6UpPT1dwcLDOnj2rvn37qnPnzkpOTtbq1at18uRJDR061On8t956Sw0bNtS2bds0YcIEjRs3TkOGDFHPnj21c+dO3X777Ro5cqT++9//lvr5jRo1Uo0aNfThhx+qqKjI5Zov15qenq5JkybJ399fERERkqTx48dry5YtWr58ub799lsNGTJEAwcO1MGDByt2sQCgkvDYWQAoh9GjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxl59WI12au9qgQQPdcMMNjn2Xn25zrafZxMbGKiMjQ0uXLlWPHj30wQcfqF27dlq7du01a9y1a5dGjhyp+fPnq1evXpKk3bt3q6ioSOHh4U61JyUlOdUNAGbixi4AqCJ5eXmKjo7Ws88+W6ItMDDQ8bpmzZpObTabzWnf5XUTi4uLr/l5vr6+io6OVnR0tGbPnq0BAwZo9uzZ6t+/f6nHZ2Rk6M4779QDDzyg+++/36luu92uHTt2yG63O53j4+NzzRoAoLoQYgGgEnh6epaYj3rjjTfqo48+UmhoqDw8qvfbrc1mU0REhL766qtS2/Pz8zV48GBFREToxRdfdGrr3LmzioqKlJmZqVtvvbU6ygWAMmM6AQBUgtDQUH399dc6cuSITp8+reLiYsXGxurMmTMaPny4tm/frsOHD2vNmjWKiYlx+QYsV6SkpGjw4MH68MMPtW/fPh06dEjx8fF64403NHjw4FLPeeihh3Ts2DG9/PLLOnXqlDIyMpSRkaELFy4oPDxcI0aM0H333acVK1YoLS1N27ZtU1xcnP79739XWt0AUBGMxAJAJZg6dapGjRqltm3b6vz580pLS1NoaKg2b96sxx9/XLfffrsKCgoUEhKigQMHqkaNyhtDaNq0qUJDQzVr1izHUlqX3z/yyCOlnpOUlKT09HS1bdvWaX9CQoKioqK0ZMkSzZ49W3/5y1/0448/qmHDhurevbt+97vfVVrdAFARrE4AAAAAy2E6AQAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBwPswsAAADAr19MTIxLxy1ZssSl42yGYRgVKQgAAAC4nrvvvtvx+ty5c9qwYYOio6Md+woKCrRq1SoVFxe71B8hFgAAANUqLS1NHTp0UG5urmPfqVOnFBAQoKKiIpf6YE4sAAAAqlXNmjV18eJFp335+fny8HB9pishtpwMw1BOTo4YyAYAACiboKAgGYahdevWOfb95z//UbNmzVzugxu7yik3N1d+fn46efKk6tSpY3Y5bsUwDBUUFEiSvLy8ZLPZTK7IfXH9AQDlUaNGDY0YMULR0dEaMGCAzp8/r3Xr1mnmzJku98Gc2HLKycmRn5+fBgwYoJo1a5pdDmCKDz74QN7e3maXAQCwoPPnz2vWrFlav369PD09deedd+rRRx9VjRquTRRgJBYAAADVrlatWpozZ065zyfEVtCM/t+pvo/ZVbiXgkKbnlzdVpL09MB98vLgjwnV6UJRDT2xqo3ZZQAALCYpKcml4yIjI106jhBbQTVrFMvLgzmBZvHyMAix1c619fuAXxvm4wMV07dvXxmGcc3/dgzDcHmdWEJsBV0o4psYALiDgoICDRkyRBLzwYHyyMrKqtT+CLEAAACocpW9mlO51ok9duyYxowZo6CgIHl6eiokJESTJk3STz/95DgmKipKNptNNptN3t7eCg8PV1xcXKnrqm7ZskV2u1133HFHibYjR47IZrPJ39/f6akOktSpU6cSSzEcOnRIY8aMUbNmzeTl5aUmTZrotttu09KlS1VYWOg47nJtP9+WL19enksCAACAa0hKSnJpc1WZR2K///579ejRQ+Hh4Vq2bJmaN2+uvXv36tFHH9WqVau0detW1a9fX5I0duxYPfXUUyooKNCGDRv04IMPqm7duho3bpxTn/Hx8ZowYYLi4+N14sQJBQUFlfjc3NxcPf/885o1a9ZVa9u2bZv69eundu3aacGCBYqIiJAkJScna8GCBWrfvr06duzoOH7JkiUaOHCgUx9169Yt6yUBAADAdZQ2J7a091U2JzY2Nlaenp764osvVKtWLUlSs2bN1LlzZ7Vs2VJPPvmkXn31VUnSb37zGwUEBEiSYmJiNH/+fK1du9YpxObl5em9995TcnKyMjIy9Oabb+qJJ54o8bkTJkzQiy++qNjYWPn7+5doNwxDo0ePVnh4uDZv3uy0xlirVq00fPjwEqPAdevWddQHwDVX/meUn59vXiFANbvy3ztLrAPlk5qaqsaNG0u69Nf2W265RceOHZPNZtOpU6cUHh7ucl9lCrFnzpzRmjVr9PTTTzsC7GUBAQEaMWKE3nvvPS1cuNCpzTAMffnllzpw4IBatWrl1Pb+++8rIiJCrVu31r333qvJkydr+vTpJe5cGz58uNauXaunnnpK8+fPL1FbSkqK9u/fr2XLll11kdyK3ElaUFDguCtVuvSwA8AdXXkz48iRI02sBDBPQUFBiZ+DAK6vTp06jrmxPj4+MgxDfn5+ki79oliWXxDLNCf24MGDMgxDbdqUvkZkmzZtlJWVpVOnTkmSFi5cKB8fH3l5eal3794qLi7WxIkTnc6Jj4/XvffeK0kaOHCgsrOzS50PYbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAABVrFyrE7iakkeMGKEnn3xSWVlZmjFjhnr27KmePXs62lNTU7Vt2zatXLnyUjEeHho2bJji4+MVFRVVor8BAwbolltu0V//+le9++671/38Bg0aKCUlRdKlG80uXLjg1D537lz169fPaV9p83Elafr06ZoyZYrjfU5ODkEWbsnT/r///t955x2WGYLbyM/Pd/z1wcvLy+RqAOup7Gk4ZQqxYWFhstls2r9/v37/+9+XaN+/f7/q1aunRo0aSZL8/PwUFhYm6dK0gbCwMHXv3t0RHOPj41VYWOgUHA3DkJeXl+bPn+8YXr7SnDlz1KNHDz366KNO+y9PU0hNTVXnzp0lSXa73fH5Hh4lv9SAgABH+/V4eXnxTQuQdOWsHG9vb0Is3BIPOgDK7uf/3dSsWVOhoaHXPOZayjSdoEGDBurfv78WLlyo8+fPO7VlZGRo6dKlGjZsWKkF+Pj4aNKkSZo6daoMw1BhYaHefvttvfDCC0pJSXFs33zzjYKCgrRs2bJSa+jatavuvvtuTZs2zWl/586dFRERoeeff97lu9oAAABQPbZs2aIGDRo43gcHB2v37t2O9/7+/kpPT3e5vzJPJ5g/f7569uypAQMGaPbs2U5LbDVp0kRPP/30Vc996KGH9Pe//10fffSRPDw8lJWVpfvvv7/EiOs999yj+Ph4Pfzww6X28/TTT6tdu3ZOo6s2m01LlixR//791atXL02fPl1t2rTRxYsXtXHjRp06dUp2u92pn7NnzyojI8Npn6+vr2rXrl3WywIAAIBr6Nq163WPKW0Fqqsp88MOWrVqpeTkZLVo0UJDhw5Vy5Yt9eCDD6pPnz7asmWLY43Y0tSvX1/33XefZs6cqfj4ePXr16/UKQP33HOPkpOT9e2335baT3h4uMaMGVNieZ/u3btrx44dat26tWJjY9W2bVv17NlTy5Yt09y5c0usTxsTE6PAwECn7ZVXXinT9bhyfiAA4NfLy8tLH3zwgT744AOmlwG/ADaDxe7KJScnR35+fkqeG6IGvsyNqk4FhTZN/bydJOn53+2Vlwf/hKvTldef58cDAMxSrtUJ8D8XimqooPD6x6HyFBTaSn2N6nGhqFxPqwYAoFIRYito1tpw1axZ0+wy3NaTq9uaXQIAAKgE//3vf/Xcc89pxowZLh3PkAoAAABMl5eXp1mzZrl8PCOxFfT22287Hp+G6mEYhuMRwF5eXqzXaCJubgEAVKay/EwnxFYQi72bg2eWm+fKXyIAAKhMZVlvgBALoEwKCgo0ZMgQSaxOAABwXYsWLa4ZUouKisrUHyEWQJlcuT5zfn4+IRYA4JLJkydfsz0vL0//93//53J/hFgAAABUuYkTJ16zPTMzs0whltUJAAAAYDmEWABlUlxcXOprAAAqqiyrExBiAZRJbm5uqa8BAKiICxcuqG/fvi4fX+UhdtGiRfL19VVh4f+ezZqXl6eaNWsqKirK6djExETZbDYdPnxYoaGhmjdvXon+Zs6cqU6dOpX6PjQ0VDab7arb6NGjJemq7cuXL6/krx4AAADX8/bbb6tDhw6y2+0un1PlN3b16dNHeXl5Sk5OVvfu3SVJmzZtUkBAgL7++munu5sTEhLUrFkztWzZslyftX37dsfyDF999ZXuuecepaamOh5GcOXaokuWLNHAgQOdzq9bt265PhcAAABld+rUKT300ENat26dXnjhBY0dO9blc6s8xLZu3VqBgYFKTEx0hNjExEQNHjxYGzZs0NatWx0jsomJierTp0+5P6tRo0aO1/Xr15ck+fv7lxpO69atq4CAgHJ/FgAAAFz380fKFhYW6rXXXlP79u21e/duhYSElKm/alliq0+fPkpISNC0adMkXRpxfeyxx1RUVKSEhARFRUXp/Pnz+vrrrzVmzJjqKKnMCgoKnJ5SlJOTY2I1AAAA1vLJJ584vS8sLFRWVpbuvvvuMgdYqRpD7OTJk1VYWKjz589r165dioyM1MWLF7Vo0SJJ0pYtW1RQUOA0Evv444+XWC/swoULatu2bYVrGj58eIl5F/v27VOzZs1KPT4uLq7EbxAAAABwzc6dO0vs++yzzzR27FitWLFC8fHxat68ucv9VcvqBFFRUTp37py2b9+uTZs2KTw8XI0aNVJkZKRjXmxiYqJatGjhFCIfffRRpaSkOG0PP/xwpdQ0d+7cEn0HBQVd9fjp06crOzvbsR07dqxS6gAAAHBX0dHR2rt3rxo0aKAOHTpo4cKFLp9bLSOxYWFhatq0qRISEpSVlaXIyEhJUlBQkIKDg/XVV18pISGhxLIKDRs2VFhYmNO+y3NdKyogIKBE39fi5eUlLy+vSvlsAAAAXNKgQQN98MEHevfddxUbG6s///nPLp1XbevE9unTR4mJiUpMTHRaWqt3795atWqVtm3bVqGbugAAAGBdf/rTn7R3716Xj6+WkVjpUoiNjY3VxYsXHSOxkhQZGanx48frwoUL1Rpiz549q4yMDKd9vr6+ql27drXVAAAA4C6SkpJcOu5a0zuvVK0h9vz584qIiFDjxo0d+yMjI5Wbm+tYiqu6xMTElNgXFxfnWEEBAAAAladv374yDMPxaNkrX19mGIbLjzS3GYZhVHqVbiAnJ0d+fn7Kzs52PEwBcAdnzpzRqFGjJElvvfVWpc1TBwD8ul25POmRI0d0yy236Pjx4459p06dUnh4uOPBVddTbSOxAH4datSoUeprAACu5cpBP19fXxUXFzvtO3/+vMoytspPIAAAAFQrf39/nT9/Xunp6Y59Bw8elL+/v8t9MBILoEy8vb1LfQ0AgKtq166tTp066Q9/+IOmTp2q/Px8PfXUU7rllltc7oM5seXEnFi4K8MwHI9g9vLyKjEpHwAAV2zfvl333HOPfvzxR0lS27Zt9emnn7r81C5CbDllZ2erbt26OnbsGCEWAAC4DV9f30obwCgsLFRqaqo8PT0VFhZWpn4JseX0/fffq2XLlmaXAQAAUK0yMzPVqFEjs8tgTmx5XV5W6OjRo/Lz8zO5GveTk5Oj4OBgRsJNwvU3F9ffPFx7c3H9zXX5+nt6epbrfFemCRiGoSNHjrjUHyG2nC4vLeTn58d/SCaqU6cO199EXH9zcf3Nw7U3F9ffXOWdSnD06FE99dRT8vX1lSSdPn1azz33nJ599llJUl5env7v//7P5f4IsQAAAKgWDzzwgOPJrd9//73mzp2riRMnSro0TaEsIZZ1YgEAAGA5hNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrl/a9Wd1AgAAAFQ5u92uEydOOE0n6NSpk3JyciRdmk4QGBiooqIil/pjJBYAAABV7qGHHtJvfvMbx/smTZpo1apVjve+vr6Ki4tzuT9GYgEAAGA5jMQCAADAcgix5bRgwQKFhobK29tb3bp107Zt28wuyS1s3LhR0dHRCgoKks1m08cff2x2SW4jLi5ON998s3x9feXv76+77rpLqampZpflNl599VV16NDBsT5mjx49nP4Mh+o1Z84c2Ww2TZ482exS3MLMmTNls9mctoiICLPLcis//vij7r33XjVo0EC1atXSDTfcoOTkZFNrIsSWw3vvvacpU6ZoxowZ2rlzpzp27KgBAwYoMzPT7NJ+9c6dO6eOHTtqwYIFZpfidpKSkhQbG6utW7dq7dq1unjxom6//XadO3fO7NLcQtOmTTVnzhzt2LFDycnJ6tu3rwYPHqy9e/eaXZrb2b59u1577TV16NDB7FLcSrt27ZSenu7YvvzyS7NLchtZWVnq1auXatasqVWrVmnfvn164YUXVK9ePVPrYk5sOXTr1k0333yz5s+fL0kqLi5WcHCwJkyYoGnTpplcnfuw2WxauXKl7rrrLrNLcUunTp2Sv7+/kpKS1Lt3b7PLcUv169fXc889p/vvv9/sUtxGXl6ebrzxRi1cuFCzZ89Wp06dNG/ePLPL+tWbOXOmPv74Y6WkpJhdiluaNm2aNm/erE2bNpldihNGYsvowoUL2rFjh/r16+fYV6NGDfXr109btmwxsTKgemVnZ0u6FKRQvYqKirR8+XKdO3dOPXr0MLsctxIbG6s77rjD6WcAqsfBgwcVFBSkFi1aaMSIETp69KjZJbmNTz/9VF26dNGQIUPk7++vzp076/XXXze7LEJsWZ0+fVpFRUWONc4ua9y4sTIyMkyqCqhexcXFmjx5snr16qX27dubXY7b2L17t3x8fOTl5aWHH35YK1euVNu2bc0uy20sX75cO3fuLNMSQKgc3bp105tvvqnVq1fr1VdfVVpamm699Vbl5uaaXZpb+P777/Xqq6+qVatWWrNmjcaNG6eJEyfqrbfeMrUuD1M/HYAlxcbGas+ePcxJq2atW7dWSkqKsrOz9eGHH2rUqFFKSkoiyFaDY8eOadKkSVq7dq28vb3NLsftDBo0yPG6Q4cO6tatm0JCQvT+++8znaYaFBcXq0uXLnrmmWckSZ07d9aePXu0aNEijRo1yrS6GIkto4YNG8put+vkyZNO+0+ePKmAgACTqgKqz/jx4/X5558rISFBTZs2Nbsct+Lp6amwsDDddNNNiouLU8eOHfXSSy+ZXZZb2LFjhzIzM3XjjTfKw8NDHh4eSkpK0ssvvywPDw+XnzCEylG3bl2Fh4fr0KFDZpfiFgIDA0v8stymTRvTp3QQYsvI09NTN910k9avX+/YV1xcrPXr1zM3Db9qhmFo/PjxWrlypTZs2KDmzZubXZLbKy4uVkFBgdlluIXbbrtNu3fvVkpKimPr0qWLRowYoZSUFNntdrNLdCt5eXk6fPiwAgMDzS7FLfTq1avEkorfffedQkJCTKroEqYTlMOUKVM0atQodenSRV27dtW8efN07tw5xcTEmF3ar15eXp7Tb95paWlKSUlR/fr11axZMxMr+/WLjY3Vu+++q08++US+vr6OOeB+fn6qVauWydX9+k2fPl2DBg1Ss2bNlJubq3fffVeJiYlas2aN2aW5BV9f3xLzv2vXrq0GDRowL7waTJ06VdHR0QoJCdGJEyc0Y8YM2e12DR8+3OzS3MIjjzyinj176plnntHQoUO1bds2LV68WIsXLza3MAPl8sorrxjNmjUzPD09ja5duxpbt241uyS3kJCQYEgqsY0aNcrs0n71SrvukowlS5aYXZpbGDNmjBESEmJ4enoajRo1Mm677Tbjiy++MLsstxYZGWlMmjTJ7DLcwrBhw4zAwEDD09PTaNKkiTFs2DDj0KFDZpflVj777DOjffv2hpeXlxEREWEsXrzY7JIM1okFAACA5TAnFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgDcwJEjR2Sz2ZSSkmJ2KQBQKQixAFAOo0eP1l133eV4HxUVpcmTJ5tWT1pamv70pz8pKChI3t7eatq0qQYPHqwDBw5IkoKDg5Wenq727dubViMAVCYPswsAAFTMxYsX1b9/f7Vu3VorVqxQYGCgjh8/rlWrVuns2bOSJLvdroCAAHMLBYBKxEgsAFTQ6NGjlZSUpJdeekk2m002m01HjhyRJO3Zs0eDBg2Sj4+PGjdurJEjR+r06dOOc6OiojRhwgRNnjxZ9erVU+PGjfX666/r3LlziomJka+vr8LCwrRq1aqrfv7evXt1+PBhLVy4UN27d1dISIh69eql2bNnq3v37pJKTicYPXq0o9Yrt8TERElSQUGBpk6dqiZNmqh27drq1q2bow0AfgkIsQBQQS+99JJ69OihsWPHKj09Xenp6QoODtbZs2fVt29fde7cWcnJyVq9erVOnjypoUOHOp3/1ltvqWHDhtq2bZsmTJigcePGaciQIerZs6d27typ22+/XSNHjtR///vfUj+/UaNGqlGjhj788EMVFRW5XPPlWtPT0zVp0iT5+/srIiJCkjR+/Hht2bJFy5cv17fffqshQ4Zo4MCBOnjwYMUuFgBUEpthGIbZRQCA1YwePVpnz57Vxx9/LOnSiGqnTp00b948xzGzZ8/Wpk2btGbNGse+48ePKzg4WKmpqQoPD1dUVJSKioq0adMmSVJRUZH8/Px099136+2335YkZWRkKDAwUFu2bHGMrP7cggUL9Nhjj8lut6tLly7q06ePRowYoRYtWki6NBLbvHlz7dq1S506dXI6d8WKFRoxYoTWrVunXr166ejRo2rRooWOHj2qoKAgx3H9+vVT165d9cwzz1T08gFAhTESCwBV5JtvvlFCQoJ8fHwc2+WRzsOHDzuO69Chg+O13W5XgwYNdMMNNzj2NW7cWJKUmZl51c+KjY1VRkaGli5dqh49euiDDz5Qu3bttHbt2mvWuGvXLo0cOVLz589Xr169JEm7d+9WUVGRwsPDnWpPSkpyqhsAzMSNXQBQRfLy8hQdHa1nn322RFtgYKDjdc2aNZ3abDab0z6bzSZJKi4uvubn+fr6Kjo6WtHR0Zo9e7YGDBig2bNnq3///qUen5GRoTvvvFMPPPCA7r//fqe67Xa7duzYIbvd7nSOj4/PNWsAgOpCiAWASuDp6VliPuqNN96ojz76SKGhofLwqN5vtzabTREREfrqq69Kbc/Pz9fgwYMVERGhF1980amtc+fOKioqUmZmpm699dbqKBcAyozpBABQCUJDQ/X111/ryJEjOn36tIqLixUbG6szZ85o+PDh2r59uw4fPqw1a9YoJibG5RuwXJGSkqLBgwfrww8/1L59+3To0CHFx8frjTfe0ODBg0s956GHHtKxY8f08ssv69SpU8rIyFBGRoYuXLig8PBwjRgxQvfdd59WrFihtLQ0bdu2TXFxcfr3v/9daXUDQEUwEgsAlWDq1KkaNWqU2rZtq/PnzystLU2hoaHavHmzHn/8cd1+++0qKChQSEiIBg4cqBo1Km8MoWnTpgoNDdWsWbMcS2ldfv/II4+Uek5SUpLS09PVtm1bp/0JCQmKiorSkiVLNHv2bP3lL3/Rjz/+qIYNG6p79+763e9+V2l1A0BFsDoBAAAALIfpBAAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAy/EwuwAAAAD8+sXExLh03JIlS1w6zmYYhlGRggAAAIDrsdvtGjhwoLy8vCRJ586d04YNGxQdHS1JKigo0KpVq1RcXOxSf4RYAAAAVDm73a4TJ06ocePGkqS0tDR16NBBubm5kqRTp06pcePGLodY5sQCAACg2v18HLWs46qEWAAAAFQ5X19fZWVlOd5nZWXp3LlzysvLkyRlZGSofv36LvdHiAUAAECVi4iI0CuvvKLi4mIVFxdr4cKFCgoK0tSpU7V582Y9+eSTuvnmm13ujzmxAAAAqHIff/yx/vCHP6h27doqLi5W7dq1tXr1av3xj3/UwYMHFRwcrM8++0w33HCDS/0RYgEAAFAtNm7cqM8++0y1atXS2LFjFRwcLEn66aef1KBBgzL1RYgFAACA5TAnFgAAAJbDE7sAAABQ5ex2u0vLaLm6TiwhFgAAAFVu5cqVldofc2IBAABgOYzEAgAAoNocO3ZMH374oQ4ePChJatWqlf7whz84VipwFSOxAAAAqBbz58/XX/7yFxUWFsrPz0+GYSgnJ0ceHh6aO3eu/vznP7vcF6sTAAAAoMpt2LBBkydP1vjx45Wenq4zZ84oKytL6enpmjhxoiZMmKCEhASX+2MkFgAAAFXud7/7nRo2bKg333yz1PYxY8bo1KlT+uyzz1zqj5FYAAAAVLmvv/5ao0ePvmr7fffdp6+//trl/gixAAAAqHI5OTlq3ry54/1///tfrVixwvG+ZcuWys3Ndbk/QiwAAACqXIMGDXTmzBnH+4yMDI0aNcrxPjs7W02bNnW5P5bYAgAAQJXr0aOH3nnnHdWrV082m03Hjx93at+wYYO6dOnicn/c2AUAAIAqt27dOg0YMMDx6Fmbzabf/OY3jikEN998s1588UXdeuutLvVHiAUAAEC12Lt3r4qKihzv7Xa72rVrV66+CLEAAACwHG7sAgAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOILSfDMJSTkyPuiwMAAKh+POygnHJzc+Xn56fs7GzVqVPH7HIAAAB+0Vq0aHHdwT/DMHTkyBGX+iPEAoCFGIahgoICs8twS1de+zp16qhGDf6YCZTF5MmTr9p28uRJLV26VEePHnW5P0IsAFhIQUGBhgwZYnYZbu+dd95R3bp1zS4DsJSJEyc6vS8qKtK///1vLVmyRGvWrFFkZKT+8Y9/uNwfIRYAAADV5sCBA3rjjTf0r3/9S7Vr11ZMTIzmz5+vJk2alKkfQiwAWNQzg/bL015sdhluI6/ArplrI8wuA7C0rKwstWvXTr1799by5cvVu3fvcvdFiAUAC7nypoiaNYrl5cEKKdWloJBfGMx05ZxkLy8v2Ww2kytCefzmN7/RH//4R3388ceaMWOGYmJiNGTIENWqVavMfTErHQAs5Mqbui4U8UMc7uPyfPAhQ4Zwc6OFeXl5aenSpUpPT9fQoUP18ssvKzAwUA899JC+/vrrMvVVrhB77NgxjRkzRkFBQfL09FRISIgmTZqkn376yXFMVFSUbDabbDabvL29FR4erri4uFKXVtiyZYvsdrvuuOOOEm1HjhyRzWaTv7+/cnNzndo6deqkmTNnOu07dOiQxowZo2bNmsnLy0tNmjTRbbfdpqVLl6qwsNBx3OXafr4tX768TNdi7ty5ZToelePZZ59VdHS0nn32WbNLAQAAZVSnTh2NGzdOycnJ2rhxo2rVqqU77rhD7dq1c7mPMofY77//Xl26dNHBgwe1bNkyHTp0SIsWLdL69evVo0cPnTlzxnHs2LFjlZ6ertTUVE2fPl1/+9vftGjRohJ9xsfHa8KECdq4caNOnDhR6ufm5ubq+eefv2Zt27Zt04033qj9+/drwYIF2rNnjxITE/XAAw/o1Vdf1d69e52OX7JkidLT0522u+66q0zXY8uWLcrMzCzTOaiYzMxMffnll5KkL7/8kusPAIAF1K9fX/Xq1SuxRUZG6u2339aFCxe0f/9+l/sr85zY2NhYeXp66osvvnDMX2jWrJk6d+6sli1b6sknn9Srr74q6dK8h4CAAEly3Hm2du1ajRs3ztFfXl6e3nvvPSUnJysjI0NvvvmmnnjiiRKfO2HCBL344ouKjY2Vv79/iXbDMDR69GiFh4dr8+bNTuv3tWrVSsOHDy8xCly3bl1HfRXx+OOPa8mSJRXuB655/PHHS7zn+gMA8Mv20ksvVeqTTssUYs+cOaM1a9bo6aefLjEBNyAgQCNGjNB7772nhQsXOrUZhqEvv/xSBw4cUKtWrZza3n//fUVERKh169a69957NXnyZE2fPr3EhO3hw4dr7dq1euqppzR//vwStaWkpGj//v1atmzZVRegrqpJ4KdPn9b69et12223VUn/+J/169fr9OnTTvu4/gCqxRU/e/Pz85Wfn29eLW7oyuvNI9+t6Y9//KNq1qxZaf2VKcQePHhQhmGoTZs2pba3adNGWVlZOnXqlCRp4cKF+uc//6kLFy7o4sWL8vb2LrHQbXx8vO69915J0sCBA5Wdna2kpCRFRUU5HWez2TRnzhxFR0frkUceUcuWLZ3av/vuO0lS69atHfsyMzPVokULx/t//OMf+vOf/+x4P3z4cNntdqd+9u3bp2bNmpX42goKCpwmkufk5Di1v/LKK4qKiirRHypPUVGRXnnllVLbuP4AqtqVN9KNHTvWxEpQUFBQrrvZYa4mTZroT3/6k+6//37dcMMNFe6vXDd2ufob0IgRI5SSkqLNmzdr0KBBevLJJ9WzZ09He2pqqrZt26bhw4dLkjw8PDRs2DDFx8eX2t+AAQN0yy236K9//atLn9+gQQOlpKQoJSVFdevW1YULF5za586d62i/vAUFBZXaV1xcnPz8/BxbcHCwU3tRUZFWr17tUl0on9WrV6uoqKjUNq4/AAC/bNOmTdO2bdvUuXNndevWTa+99lqJm/bLokwjsWFhYbLZbNq/f79+//vfl2jfv3+/6tWrp0aNGkmS/Pz8FBYWJunStIGwsDB1795d/fr1k3RpFLawsNApOBqGIS8vL82fP19+fn4lPmPOnDnq0aOHHn30Uaf9l6cppKamqnPnzpIku93u+HwPj5JfakBAgKP9eqZPn64pU6Y43ufk5DgFWbvdroEDB7rUF8pn4MCBev3110sNslx/AFXN0/6/AZzXX3+dx85Ws/z8fI0cOVLSpWWaYD1TpkzRlClTtHnzZkVGRio/P19TpkzRH/7wB40ZM0aRkZFl6q9MIbZBgwbq37+/Fi5cqEceecRpKD8jI0NLly7VfffdV+rcUx8fH02aNElTp07Vrl27VFRUpLffflsvvPCCbr/9dqdj77rrLi1btkwPP/xwiX66du2qu+++W9OmTXPa37lzZ0VEROj555/X0KFDrzovtry8vLyu+R/NxIkT+VN2FbPb7ZowYYLmzZtXoo3rD6DKXfGjzdvbW97e3ubV4uZ40IG11atXTzabTd9884327Nmjd955RyNHjpS3t7diYmI0ffp0l/opc9KbP3++CgoKNGDAAG3cuFHHjh3T6tWr1b9/fzVp0kRPP/30Vc996KGH9N133+mjjz7S559/rqysLN1///1q376903bPPfdcdUqBJD399NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJkHP27FllZGQ4befOnSvrJVHDhg3Vt2/fMp+HsrvtttvUsGFDp31cfwAArKl9+/Z69tlnlZaWpiFDhrg8ZVQqR4ht1aqVkpOT1aJFCw0dOlQtW7bUgw8+qD59+mjLli2qX7/+Vc+tX7++7rvvPs2cOVPx8fHq169fqVMG7rnnHiUnJ+vbb78ttZ/w8HCNGTOmxJ2h3bt3144dO9S6dWvFxsaqbdu26tmzp5YtW6a5c+c6Le0lXVr2KzAw0Gm72o1D18KC+9Xr59eb6w8AgDV98803evTRRxUSEqKPP/64TD/Ty7xOrCSFhITozTffvOYxiYmJpe4v7WEHP9e1a1enm8dKu5Hstdde02uvvVZif3h4+HVru1qf5dGjR49S161F1fH399ctt9yiL7/8UrfccgvXH27lymlNV87RBH7tvLy89MEHHzhew7p++uknGYahG264QUePHtWQIUP04Ycfqnv37mXqp1whFv/zyCOPmF2CW3r88cdLPPQAcAdXzgVkWiDcyeXH2MO6nnvuOX300UdKTk5Wjx49NGbMGA0bNky/+c1vytUfIRYALOpCUQ1JxWaX4TYuFlXuDcOAu3nxxRc1cuRIvf322woPD69wf4RYALCoJ1aV/uAZAPglOn78uOMm+6ysLB08eFA2m01hYWGqV69emfvj10oAAABUObvdrrS0NP32t79Vw4YN1b17d3Xr1k0NGzbUb3/7W/3www9l6s9m8ADicsnJyZGfn5+ys7NVp04ds8sB4CYMw3B6BDaqz5XXvk6dOpW+Hjnwa3fy5EndeOONstvtio2NVUREhKRLD6qaP3++ioqKtHPnTjVu3Nil/gix5USIBWAGQizcFb9EWN/EiROVkJCgbdu2OT0wS7r0RLabb75ZUVFRLi93SogtJ0IsADPk5+dryJAhZpcBmOqdd97hsb8W1KJFCz3//PO6++67S23/+OOP9Ze//EWHDx92qT9+jQEAAECVS09PV4cOHa7a3r59e/34448u98fqBABgUa/8fay8PGuaXQZQLXLy/qupf3/T7DJQAY0aNVJhYeFV2y9evOjyfFiJEAsLunJelJeXl9Pi74A78fKsKS8vQizcg2fB/yILMyGt6aabbtIXX3zhuKHr51avXq2OHTu63B/TCWA5BQUFGjJkiIYMGcINLgDgJi5c/N8IHt/7remRRx7Ra6+9puzs7BJtOTk5ev311zV58mSX+2MkFgAAAFWud+/e2rt3b6ltderU0b59+8rUX5WPxC5atEi+vr5OcyDy8vJUs2ZNRUVFOR2bmJgom82mw4cPKzQ0VPPmzSvR38yZM9WpU6dS34eGhspms111Gz16tCRdtX358uWV/NUDAACgKlT5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr68vb0lSQkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjqWwLpyTbIlS5Zo4MCBTuezXAcAAEDVaNGihUvzmdPS0lzqr8pDbOvWrRUYGKjExERHiE1MTNTgwYO1YcMGbd261TEim5iYqD59+pT7sxo1auR4Xb9+fUmSv79/qeG0bt26CggIKPdnwTxX/geQn59vYiVA9bvy3zw3twCwkp/Pd12/fr3WrFmjv/71r/L19S1zf9UyJ7ZPnz5KSEjQtGnTJF0acX3sscdUVFSkhIQERUVF6fz58/r66681ZsyY6iipzAoKCpwmkufk5JhYjXu78v+HkSNHmlgJYK4LFwvl7e1pdhkA4JKJEyc6Xq9bt07Tp09XnTp1lJiYqH//+9/y9Czb97NqWZ2gT58+2rx5swoLC5Wbm6tdu3YpMjJSvXv3VmJioiRpy5YtKigocBqJffzxx+Xj4+O0PfPMM5VS0/Dhw0v0ffTo0aseHxcXJz8/P8cWHBxcKXUAAAC4k/Xr1+vOO+/UQw89pP379+vHH3/UH//4RxUXF5epn2oZiY2KitK5c+e0fft2ZWVlKTw8XI0aNVJkZKRiYmKUn5+vxMREtWjRQs2aNXOc9+ijjzpuxrrs5Zdf1saNGytc09y5c9WvXz+nfUFBQVc9fvr06ZoyZYrjfU5ODkHWJF5eXo7X77zzjmNONeAO8vPzHX+B8KzJAjMArCUhIUF33nmnHnzwQb344ouSLo3K9uzZUw888IDeeOMNl/uqlu+AYWFhatq0qRISEpSVlaXIyEhJl0JjcHCwvvrqKyUkJKhv375O5zVs2FBhYWFO+y7Pda2ogICAEn1fi5eXl1N4gnmufLiBt7c3IRZuiwd9ALCSpKQkRUdH64EHHnBagSooKEjr1q3TLbfcoqlTp+r55593qb9qe9hBnz59lJiYqMTERKeltXr37q1Vq1Zp27ZtFbqpCwAAAL9c0dHRiomJ0UsvvVSiLSwsTKtXr9Y///lPl/urtr9F9enTR7Gxsbp48aJjJFaSIiMjNX78eF24cKFaQ+zZs2eVkZHhtM/X11e1a9euthoAAADcxahRo/TKK69ctb1Tp0769NNPXe6vWkPs+fPnFRERocaNGzv2R0ZGKjc317EUV3WJiYkpsS8uLs6xggJ+uby8vPTBBx84XgMAfv2unAPO935rulaAvax3794u92czWGiwXHJycuTn56fs7GzHwxQAoKrl5+dryJAhkqTFz/5ZXl41Ta4IqB45uf/VhL++LunSTb08oAjc2goAFlVw4aLZJQDVhn/v+DlCLABY1OVRKQBwR9W2OgEAAABwNT/99JOaN2/u8vHMiS2n7Oxs1a1bV8eOHWNOLIBqYxiG06OXAXdx5b/9OnXqqEYNxuHM4uvrWyXrVGdmZiogIMDlJ3cxnaCcfvrpJ0niqV0AAMCtZGZmqlGjRmaXQYgtr8tPDjt69Kj8/PxMrsb9XH7sLyPh5uD6m4vrbx6uvbm4/ua6fP09PT3LdX5SUtI128+cOVOm/gix5XT5zxh+fn78h2SiOnXqcP1NxPU3F9ffPFx7c3H9zVXeqQR9+/aVYRiVNhWBEAsAAIAql5WVdc32U6dOqVWrVi73R4gFAABAlbve6Hl+fn6Z+uPWvnLy8vLSjBkzePSdSbj+5uL6m4vrbx6uvbm4/uaqjutflqkGLLEFAAAA0+Xm5urhhx/W0qVLXTqekVgAAACY7q233tLHH3/s8vHMiQUAAIBpjh49qjFjxiglJUXx8fEun8dILAAAAEzx1ltvqWPHjqpVq5b27t2rP/7xjy6fy0gsAAAAqlyLFi105a1YhYWFSk9P16JFi/TAAw+UuT9GYstpwYIFCg0Nlbe3t7p166Zt27aZXZJb2Lhxo6KjoxUUFCSbzVamuTOomLi4ON18883y9fWVv7+/7rrrLqWmpppdltt49dVX1aFDB8ci7z169NCqVavMLsttzZkzRzabTZMnTza7FLcwc+ZM2Ww2py0iIsLsstzKjz/+qHvvvVcNGjRQrVq1dMMNNyg5OblMfUyePFmPPPKI0xYcHKz4+HgdOHCgzDUxElsO7733nqZMmaJFixapW7dumjdvngYMGKDU1FT5+/ubXd6v2rlz59SxY0eNGTNGd999t9nluJWkpCTFxsbq5ptvVmFhoZ544gndfvvt2rdvn2rXrm12eb96TZs21Zw5c9SqVSsZhqG33npLgwcP1q5du9SuXTuzy3Mr27dv12uvvaYOHTqYXYpbadeundatW+d47+FBhKkuWVlZ6tWrl/r06aNVq1apUaNGOnjwoOrVq1emfiZOnFhi34MPPqjJkyfrxhtv1KxZszR16lSXl9liia1y6Natm26++WbNnz9fklRcXKzg4GBNmDBB06ZNM7k692Gz2bRy5UrdddddZpfilk6dOiV/f38lJSWpd+/eZpfjlurXr6/nnntO999/v9mluI28vDzdeOONWrhwoWbPnq1OnTpp3rx5Zpf1qzdz5kx9/PHHSklJMbsUtzRt2jRt3rxZmzZtqrLP+Pe//62xY8cqNDRUX331lUvnMJ2gjC5cuKAdO3aoX79+jn01atRQv379tGXLFhMrA6pXdna2pEtBCtWrqKhIy5cv17lz59SjRw+zy3ErsbGxuuOOO5x+BqB6HDx4UEFBQWrRooVGjBiho0ePml2S2/j000/VpUsXDRkyRP7+/urcubNef/31Sv2MO+64Q3v37lXTpk1dPocQW0anT59WUVGRGjdu7LS/cePGysjIMKkqoHoVFxdr8uTJ6tWrl9q3b292OW5j9+7d8vHxkZeXlx5++GGtXLlSbdu2Nbsst7F8+XLt3LlTcXFxZpfidrp166Y333xTq1ev1quvvqq0tDTdeuutys3NNbs0t/D999/r1VdfVatWrbRmzRqNGzdOEydO1FtvvVWpn1OvXj29//77Lh/PhBIAZRYbG6s9e/boyy+/NLsUt9K6dWulpKQoOztbH374oUaNGqWkpCSCbDU4duyYJk2apLVr18rb29vsctzOoEGDHK87dOigbt26KSQkRO+//z7TaapBcXGxunTpomeeeUaS1LlzZ+3Zs0eLFi3SqFGjXO4nJibmuscYhqE333zTpf4YiS2jhg0bym636+TJk077T548qYCAAJOqAqrP+PHj9fnnnyshIaFMf/ZBxXl6eiosLEw33XST4uLi1LFjR7300ktml+UWduzYoczMTN14443y8PCQh4eHkpKS9PLLL8vDw0NFRUVml+hW6tatq/DwcB06dMjsUtxCYGBgiV+W27RpU+YpHdnZ2Y7txIkT+te//uW0LzMzU2+//bbL/TESW0aenp666aabtH79escNRcXFxVq/fr3Gjx9vbnFAFTIMQxMmTNDKlSuVmJio5s2bm12S2ysuLlZBQYHZZbiF2267Tbt373baFxMTo4iICD3++OOy2+0mVeae8vLydPjwYY0cOdLsUtxCr169Siyp+N133ykkJKRM/axYscLxOi0tTR06dHDad+rUqTINCBJiy2HKlCkaNWqUunTpoq5du2revHk6d+6cS8PkqJi8vDyn37zT0tKUkpKi+vXrq1mzZiZW9usXGxurd999V5988ol8fX0dc8D9/PxUq1Ytk6v79Zs+fboGDRqkZs2aKTc3V++++64SExO1Zs0as0tzC76+viXmf9euXVsNGjRgXng1mDp1qqKjoxUSEqITJ05oxowZstvtGj58uNmluYVHHnlEPXv21DPPPKOhQ4dq27ZtWrx4sRYvXlzuPmvWrKmLFy867cvPzy/b0mkGyuWVV14xmjVrZnh6ehpdu3Y1tm7danZJbiEhIcGQVGIbNWqU2aX96pV23SUZS5YsMbs0tzBmzBgjJCTE8PT0NBo1amTcdtttxhdffGF2WW4tMjLSmDRpktlluIVhw4YZgYGBhqenp9GkSRNj2LBhxqFDh8wuy6189tlnRvv27Q0vLy8jIiLCWLx4cYX6KyoqMjw9PY21a9c69i1atMgICwtzuQ/WiQUAAEC1GzNmjJYtW6YBAwbo/PnzWrdunWbOnKm//vWvLp1PiAUAAEC1O3/+vGbNmqX169fL09NTd955px599FHVqOHaugOEWAAAAFgON3YBAACgyiUlJbl0XGRkpEvHMRILAACAKme322UYhmw2m2Nfae+Li4td6o+HHQAAAKBapKamKisrS1lZWdq1a5d8fHx05swZZWVl6bvvvnMKtNfDdAIAAABUizp16qhOnTqSJB8fHxmGIT8/P0mX1oktywQBRmIBAABgOYRYAAAAVLnKvg2LEAsAbuDIkSOy2WxKSUkxuxQAburn811r1qyp0NDQax5zLYRYACiH0aNH66677nK8j4qK0uTJk02rJy0tTX/6058UFBQkb29vNW3aVIMHD9aBAwckScHBwUpPT1f79u1NqxGAe9uyZYsaNGjgeB8cHKzdu3c73vv7+ys9Pd3l/rixCwAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZeWtgkICDC3UABurWvXrtc9xt/f3+X+GIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKwhO7AKAcRo8erbNnz+rjjz+WdGlEtVOnTpo3b57jmNmzZ2vTpk1as2aNY9/x48cVHBys1NRUhYeHKyoqSkVFRdq0aZMkqaioSH5+frr77rv19ttvS5IyMjIUGBioLVu2OEZWf27BggV67LHHZLfb1aVLF/Xp00cjRoxQixYtJF0aiW3evLl27dqlTp06OZ27YsUKjRgxQuvWrVOvXr109OhRtWjRQkePHlVQUJDjuH79+qlr16565plnKnr5AKDCGIkFgCryzTffKCEhQT4+Po7t8kjn4cOHHcd16NDB8dput6tBgwa64YYbHPsaN24sScrMzLzqZ8XGxiojI0NLly5Vjx499MEHH6hdu3Zau3btNWvctWuXRo4cqfnz56tXr16SpN27d6uoqEjh4eFOtSclJTnVDQBm4sYuAKgieXl5io6O1rPPPluiLTAw0PG6Zs2aTm02m81p3+UlZ673PHFfX19FR0crOjpas2fP1oABAzR79mz179+/1OMzMjJ055136oEHHtD999/vVLfdbteOHTtkt9udzvHx8blmDQBQXQixAFAJPD09S8xHvfHGG/XRRx8pNDRUHh7V++3WZrMpIiJCX331Vant+fn5Gjx4sCIiIvTiiy86tXXu3FlFRUXKzMzUrbfeWh3lAkCZMZ0AACpBaGiovv76ax05ckSnT59WcXGxYmNjdebMGQ0fPlzbt2/X4cOHtWbNGsXExLh8A5YrUlJSNHjwYH344Yfat2+fDh06pPj4eL3xxhsaPHhwqec89NBDOnbsmF5++WWdOnVKGRkZysjI0IULFxQeHq4RI0bovvvu04oVK5SWlqZt27YpLi5O//73vyutbgCoCEZiAaASTJ06VaNGjVLbtm11/vx5paWlKTQ0VJs3b9bjjz+u22+/XQUFBQoJCdHAgQNVo0bljSE0bdpUoaGhmjVrlmMprcvvH3nkkVLPSUpKUnp6utq2beu0PyEhQVFRUVqyZIlmz56tv/zlL/rxxx/VsGFDde/eXb/73e8qrW4AqAhWJwAAAIDlMJ0AAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOV4mF0AAAAA3EdMTMx1jzEMQ2+++eY1j7EZhmFUUk0AAADANd19991XbTMMQ7t27dLRo0dVXFx8zX4YiQUAAEC1WbFiRYl9p0+f1tKlS/XGG28oJydHDz/88HX7YSQWAAAA1a64uFirV6/WkiVL9Pnnn+uWW27RmDFjdPfdd8vLy+u65xNiAQAAUK3y8vIUEREhT09PjR49WjExMQoODi5TH6xOAAAAgGpnt9tls9lkGMZ157+WhhALAACAauXj46MjR45o4cKF2rt3r9q2bav+/ftr2bJlKigocKkPphMAAADAVGfOnNG//vUvLVmyRD/88IOGDx+uBQsWXPMcQiwAAACqze9///urttlsNu3atUs//PADS2wBAADgl6N+/fq61hhqnz59XOqHkVgAAABYDiOxAAAAqDauPHZWkpYsWXLNdkIsAAAAqk12dnal9MN0gnIyDEO5ubny9fWVzWYzuxwAAAC3wjqx5ZSbmys/Pz/l5OSYXQoAAIDbYTpBBbm6IC8AAABcmxNrGIbefPPNax5DiK2g/Px8s0sAAACwjGvNiS0qKtK6det0/vx5QiwAAAB+OVasWFHq/k8++URPPPGEvL29NWPGjOv2w5xYAAAAmGbTpk3q2bOnhg8frt/97nf6/vvv9dhjj133PEJsBV3vkWgAAAAoac+ePYqOjtZtt92mdu3a6dChQ3r22Wfl5+fn0vmE2ArKy8szuwQAbmbcuHGKjo7WuHHjzC4FAMrshx9+0KhRo9SpUyd5eHho9+7dev311xUUFFSmfsoVYo8dO6YxY8YoKChInp6eCgkJ0aRJk/TTTz85jomKipLNZpPNZpO3t7fCw8MVFxdX6rNyt2zZIrvdrjvuuKNE25EjR2Sz2eTv76/c3Fyntk6dOmnmzJlO+w4dOqQxY8aoWbNm8vLyUpMmTXTbbbdp6dKlKiwsdBx3ubafb8uXLy/PJQGAanH48GEdP35cknT8+HEdPnzY5IoAoGxat26tDz74QFOnTtXo0aN14MABffLJJyW26ynzjV3ff/+9evToofDwcC1btkzNmzfX3r179eijj2rVqlXaunWr6tevL0kaO3asnnrqKRUUFGjDhg168MEHVbdu3RKjB/Hx8ZowYYLi4+N14sSJUpN4bm6unn/+ec2aNeuqtW3btk39+vVTu3bttGDBAkVEREiSkpOTtWDBArVv314dO3Z0HL9kyRINHDjQqY+6deuW9ZIAQLWZOnVqifcrV640qRoAKLvCwkIZhqHnnnvuqscYhnHdKZtlHomNjY2Vp6envvjiC0VGRqpZs2YaNGiQ1q1bpx9//FFPPvmk49jf/OY3CggIUEhIiGJiYtShQwetXbvWqb+8vDy99957GjdunO64446rLqcwYcIEvfjii8rMzCy13TAMjR49WuHh4dq8ebOio6PVqlUrtWrVSsOHD9eXX36pDh06OJ1Tt25dBQQEOG3e3t5lvSQAUC2WLFni9Bcl6dIPg+s9XxwAfkkKCwtVVFR0zc2Ve47KFGLPnDmjNWvW6M9//rNq1arl1BYQEKARI0bovffeKzFlwDAMbdq0SQcOHJCnp6dT2/vvv6+IiAi1bt1a9957r954441SpxwMHz5cYWFheuqpp0qtLSUlRfv379fUqVNVo0bpX1ZFHg9bUFCgnJwcpw0AqsvFixevuizNihUrdPHixWquCADMVabpBAcPHpRhGGrTpk2p7W3atFFWVpZOnTolSVq4cKH++c9/6sKFC7p48aK8vb01ceJEp3Pi4+N17733SpIGDhyo7OxsJSUlKSoqyuk4m82mOXPmKDo6Wo888ohatmzp1P7dd99JujTP4rLMzEy1aNHC8f4f//iH/vznPzveDx8+XHa73amfffv2qVmzZiW+tri4uGtOZQCAqvT6669ft/3K728A8EuVlJTk0nGRkZHXbC/Xww5KGyktzYgRI/Tkk08qKytLM2bMUM+ePdWzZ09He2pqqrZt2+aYz+Xh4aFhw4YpPj6+RIiVpAEDBuiWW27RX//6V7377rvX/fwGDRooJSVF0qUbzS5cuODUPnfuXPXr189p39XujJs+fbqmTJnieJ+Tk6Pg4ODr1gAAlWHs2LFatWrVNdsBwAr69u0rwzCu+RdyV+bElinEhoWFyWazaf/+/fr9739fon3//v2qV6+eGjVqJEny8/NTWFiYpEvTBsLCwtS9e3dHcIyPj1dhYaFTcDQMQ15eXpo/f36p64TNmTNHPXr00KOPPuq0v1WrVpIuBePOnTtLkux2u+PzPTxKfqkBAQGO9uvx8vKSl5eXS8cCQGWrWbOm7r777lKnFNxzzz2qWbOmCVUBQNllZWVVSj9lmhPboEED9e/fXwsXLtT58+ed2jIyMrR06VINGzas1GTt4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/+eR5AAOBXKSYmpsQv5B4eHho9erQ5BQFAOaxbt061atVSnTp1rrldT5lXJ5g/f74KCgo0YMAAbdy4UceOHdPq1avVv39/NWnSRE8//fRVz33ooYf03Xff6aOPPtLnn3+urKws3X///Wrfvr3Tds899yg+Pv6q/Tz99NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJ+a9nz55VRkaG03bu3LmyXhIAqDbPP//8Nd8DwC/dsGHD1LRpU02dOlX79+8vdz9lDrGtWrVScnKyWrRooaFDh6ply5Z68MEH1adPH23ZssWxRmxp6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMUX5+vtP+7t27a8eOHWrdurViY2PVtm1b9ezZU8uWLdPcuXNLrE8bExOjwMBAp+2VV14p6yUBgGrTsmVLNW3aVJLUtGnTEje5AsAv3YkTJzR79mzt2LFD7dq1U8+ePfX666+X+SmoNsPVu7TgJCcnR35+fkpLS1NoaKjZ5QAAAFjK/v371aFDB/3jH//Qv/71L3333XcaMmSI7r//fvXq1eu655frsbP4n6utSQsAAICruzyO+sgjj2jHjh3avn27AgMDde+99zqeunotJDAAAACYLjw8XL1799Ytt9yiH3744brHE2IriMfUAgAAlF9ycrKmTJmiJk2aaNKkSbrhhhtcCrHletgB/oe1YwEAAMrmwIEDeuONN1RcXKyoqCgNHTpUH374oUtzYS8jxFbQtZ42AQAAAGft27fXvn371L17dy1evFh//OMfVbt2bUd7YWGhNm/eXDWPncX/sLgDAACA6wYOHKgPPvhAbdq0KbX9zJkz6tOnT+U+dhYlFRQUmF0CAACAZbjykBZX/tLNjV0V9PMHLgAAAKBiXPlLNyOxAAAAqDYxMTHXbD9//rxL/RBiK+h68zUAAADwP9nZ2ddsd3WqJiG2gsr6nF8AAAB3tmLFimu2nzp1So0bN75uP1U+J3bRokXy9fVVYWGhY19eXp5q1qypqKgop2MTExNls9l0+PBhhYaGat68eSX6mzlzpjp16lTq+9DQUNlstqtuo0ePlqSrti9fvrySv3oAAACUhasrP1X5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr7jqVcJCQlq1qyZWrZsWa7P2r59u4qKiiRJX331le655x6lpqaqTp06kqRatWo5jl2yZIkGDhzodH7dunXL9bkAAACoPK6sTlDlIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFD56tevr4SEhOseVy1zYvv06aOEhARNmzZN0qUR18cee0xFRUVKSEhQVFSUzp8/r6+//lpjxoypjpIAAABgkqKiIq1Zs0apqanKyckp9ZjevXtfs49qC7GTJ09WYWGhzp8/r127dikyMlIXL17UokWLJElbtmxRQUGB00js448/rv/7v/9z6uvChQtq27ZthWsaPny47Ha70759+/apWbNmpR5fUFDgdLfc1S44AAAAri4jI0O33367UlNT1bRpU/n5+ZU4xjAMzZgx45r9VEuIjYqK0rlz57R9+3ZlZWUpPDxcjRo1UmRkpGJiYpSfn6/ExES1aNHCKUQ++uijjpuxLnv55Ze1cePGCtc0d+5c9evXz2lfUFDQVY+Pi4vTrFmzKvy5AAAA7uyJJ56Qv7+/1q9f7zQVtKyqJcSGhYWpadOmSkhIUFZWliIjIyVdCo3BwcH66quvlJCQoL59+zqd17BhQ4WFhTntuzzXtaICAgJK9H0t06dP15QpUxzvc3JyFBwcXCm1AAAAuIuEhAS9++67FQqwUjWuE9unTx8lJiYqKytLjz76qGN/7969tWrVKm3btk3jxo2rrnLKzMvLS15eXmaXAQAAYGmnTp2qlJvrqzXExsbG6uLFi46RWEmKjIzU+PHjdeHChQqtTFBWZ8+eVUZGhtM+X19f1a5du9pqAAAAcDfNmzfXjh071Lx58wr1U60h9vz584qIiHB6CkNkZKRyc3MdS3FVl9Ke2xsXF+dYQQEAAACVb9SoUZo0aZJycnJ00003XXWd/pCQkGv2YzNcfSwCnOTk5MjPz09paWkKDQ01uxwAAABLKCoq0t/+9jfNmzdP+fn5JZ7QZbPZZBiGiouLr9kPIbacLofYH3744arLcgEAAKB0hmHo6NGjys7OLrW9Q4cO1zy/2qYTAAAAAJfZbLbrThm4FkIsAAAAqk1SUpJLx125EEBpCLEV5O3tbXYJAAAAltG3b18ZhiGbzebYV9r7682JJcSW0+WpxAUFBTyCFgAAuA1fX1+nwFlWWVlZTu+PHDmiW265RceOHZPNZtOpU6cUHh5+3X4IseX0008/SRI3dQEAALeSmZlZoadt1alTx+l9rVq1ZBiG/Pz8JKnUFQtKQ4gtp8uPvz169KjjoqP6XH7s77Fjx0r8x4Cqx/U3F9ffPFx7c3H9zXX5+nt6elZqv1u3btW5c+eUnZ0tPz8/nThxQg0bNrzueYTYcqpRo4Ykyc/Pj/+QTFSnTh2uv4m4/ubi+puHa28urr+5KjKV4Ernz5/XggULFB8fL0n685//rOHDh2vevHm6+eabr3t+jUqpAgAAAHDB8ePHNW3aNDVt2lSfffaZEhMTddddd2n58uUaPHiwDh06pGefffa6/TASCwAAgGrTsmVLRURE6I033tDgwYMlSStWrNB3332nCxcuKCIiQh4e14+ohNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrsq6/kuXLtUf/vCHEvtdWZHgSjx2FgAAAJbDSCwAAACqTUxMjEvHLVmy5JrtjMQCAACg2tjtdg0cONAxLeHcuXPasGGDoqOjJV16kNSqVauu+8QuQiwAAACqjd1u14kTJ9S4cWNJUlpamjp06KDc3FxJ0qlTpxQQEKCioqJr9sMSWwAAADDNz8dTDcNw6YldhNhyWrBggUJDQ+Xt7a1u3bpp27ZtZpfkFjZu3Kjo6GgFBQXJZrPp448/NrsktxEXF6ebb75Zvr6+8vf311133aXU1FSzy3Ibr776qjp06OBY5L1Hjx5atWqV2WW5rTlz5shms2ny5Mlml+IWZs6cKZvN5rRFRESYXZZb+fHHH3XvvfeqQYMGqlWrlm644QYlJyebWhMhthzee+89TZkyRTNmzNDOnTvVsWNHDRgwQJmZmWaX9qt37tw5dezYUQsWLDC7FLeTlJSk2NhYbd26VWvXrtXFixd1++2369y5c2aX5haaNm2qOXPmaMeOHUpOTlbfvn01ePBg7d271+zS3M727dv12muvqUOHDmaX4lbatWun9PR0x/bll1+aXZLbyMrKUq9evVSzZk2tWrVK+/bt0wsvvKB69epV2mf8/ClgLj0VzECZde3a1YiNjXW8LyoqMoKCgoy4uDgTq3I/koyVK1eaXYbbyszMNCQZSUlJZpfiturVq2f885//NLsMt5Kbm2u0atXKWLt2rREZGWlMmjTJ7JLcwowZM4yOHTuaXYbbevzxx41bbrml0vpr06aNcfr0acf7rKwspwx19uxZY9CgQdfth5HYMrpw4YJ27Nihfv36OfbVqFFD/fr105YtW0ysDKhe2dnZkqT69eubXIn7KSoq0vLly3Xu3Dn16NHD7HLcSmxsrO644w6nnwGoHgcPHlRQUJBatGihESNG6OjRo2aX5DY+/fRTdenSRUOGDJG/v786d+6s119/vdz97du3Tw0aNHC8r1u3rqZNm+Z47+fnp//85z/X7YcQW0anT59WUVGR4466yxo3bqyMjAyTqgKqV3FxsSZPnqxevXqpffv2ZpfjNnbv3i0fHx95eXnp4Ycf1sqVK9W2bVuzy3Iby5cv186dOxUXF2d2KW6nW7duevPNN7V69Wq9+uqrSktL06233uq4mx1V6/vvv9err76qVq1aac2aNRo3bpwmTpyot956y9S6eNgBgDKLjY3Vnj17mJNWzVq3bq2UlBRlZ2frww8/1KhRo5SUlESQrQbHjh3TpEmTtHbtWnl7e5tdjtsZNGiQ43WHDh3UrVs3hYSE6P3339f9999vYmXuobi4WF26dNEzzzwjSercubP27NmjRYsWadSoUabVxUhsGTVs2FB2u10nT5502n/y5EkFBASYVBVQfcaPH6/PP/9cCQkJatq0qdnluBVPT0+FhYXppptuUlxcnDp27KiXXnrJ7LLcwo4dO5SZmakbb7xRHh4e8vDwUFJSkl5++WV5eHhcdz1LVK66desqPDxchw4dMrsUtxAYGFjil+U2bdqYPqWDEFtGnp6euummm7R+/XrHvuLiYq1fv565afhVMwxD48eP18qVK7VhwwY1b97c7JLcXnFxsQoKCswuwy3cdttt2r17t1JSUhxbly5dNGLECKWkpMhut5tdolvJy8vT4cOHFRgYaHYpbqFXr14lllT87rvvFBISYlJFlzCdoBymTJmiUaNGqUuXLuratavmzZunc+fOufwsYJRfXl6e02/eaWlpSklJUf369dWsWTMTK/v1i42N1bvvvqtPPvlEvr6+jjngfn5+qlWrlsnV/fpNnz5dgwYNUrNmzZSbm6t3331XiYmJWrNmjdmluQVfX98S879r166tBg0aMC+8GkydOlXR0dEKCQnRiRMnNGPGDNntdg0fPtzs0tzCI488op49e+qZZ57R0KFDtW3bNi1evFiLFy82t7BKWy/BzbzyyitGs2bNDE9PT6Nr167G1q1bzS7JLSQkJBiSSmyjRo0yu7RfvdKuuyRjyZIlZpfmFsaMGWOEhIQYnp6eRqNGjYzbbrvN+OKLL8wuy62xxFb1GTZsmBEYGGh4enoaTZo0MYYNG2YcOnTI7LLcymeffWa0b9/e8PLyMiIiIozFixebXZJhMwwXnusFAAAA/IIwJxYAAACWQ4gFAACA5RBiAQAAYDmEWAAAAFgOIRYAAACWQ4gFAACA5RBiAQAAYDmEWABwA0eOHJHNZlNKSorZpQBApSDEAkA5jB49WnfddZfjfVRUlCZPnmxaPWlpafrTn/6koKAgeXt7q2nTpho8eLAOHDggSQoODlZ6ejqPSAXwq+FhdgEAgIq5ePGi+vfvr9atW2vFihUKDAzU8ePHtWrVKp09e1aSZLfbFRAQYG6hAFCJGIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKYjMMwzC7CACwmtGjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxHTp0cLy22+1q0KCBbrjhBse+xo0bS5IyMzOv+lmxsbHKyMjQ0qVL1aNHD33wwQdq166d1q5de80ad+3apZEjR2r+/Pnq1auXJGn37t0qKipSeHi4U+1JSUlOdQOAmbixCwCqSF5enqKjo/Xss8+WaAsMDHS8rlmzplObzWZz2mez2SRJxcXF1/w8X19fRUdHKzo6WrNnz9aAAQM0e/Zs9e/fv9TjMzIydOedd+qBBx7Q/fff71S33W7Xjh07ZLfbnc7x8fG5Zg0AUF0IsQBQCTw9PUvMR73xxhv10UcfKTQ0VB4e1fvt1mazKSIiQl999VWp7fn5+Ro8eLAiIiL04osvOrV17txZRUVFyszM1K233lod5QJAmTGdAAAqQWhoqL7++msdOXJEp0+fVnFxsWJjY3XmzBkNHz5c27dv1+HDh7VmzRrFxMS4fAOWK1JSUjR48GB9+OGH2rdvnw4dOqT4+Hi98cYbGjx4cKnnPPTQQzp27JhefvllnTp1ShkZGcrIyNCFCxcUHh6uESNG6L777tOKFSuUlpambdu2KS4uTv/+978rrW4AqAhGYgGgEkydOlWjRo1S27Ztdf78eaWlpSk0NFSbN2/W448/rttvv10FBQUKCQnRwIEDVaNG5Y0hNG3aVKGhoZo1a5ZjKa3L7x955JFSz0lKSlJ6erratm3rtD8hIUFRUVFasmSJZs+erb/85S/68ccf1bBhQ3Xv3l2/+93vKq1uAKgIVicAAACA5TCdAAAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWI6H2QUAAADA/WRlZengwYOy2WwKCwtTvXr1ynQ+I7EAAACoNmlpafrtb3+rhg0bqnv37urWrZsaNmyo3/72t/rhhx9c7sdmGIZRhXUCAAAAkqSTJ0/qxhtvlN1uV2xsrCIiIiRJqampmj9/voqKirRz5041btz4un0RYgEAAFAtJk6cqISEBG3btk21atVyasvPz9fNN9+sqKgovfLKK9fti+kEAAAAqBaff/65Zs2aVSLASpK3t7f+/ve/6z//+Y9LfRFiAQAAUC3S09PVoUOHq7a3b99eP/74o0t9EWIBAABQLRo1aqTCwsKrtl+8eNGl+bASIRYAAADV5KabbtIXX3xx1fbVq1erY8eOLvVFiAUAAEC1mDJlil577TVlZ2eXaMvJydHrr7+uyZMnu9QXqxMAAADAcnhiFwAAAKpFixYt5Mr4aVpa2nWPIcQCAACgWrg6VcAVTCcAAACA5XBjFwAAACyH6QQAAACoFq7MiTUMQ0eOHLluX4RYAAAAVItrzYlNS0vT4sWLdf78eZf6Yk4sAAAATHP69Gk9/fTTWrRokbp3765nn31WXbt2ve55jMQCAACg2p07d04vvviinn/+eTVv3lwrV67UwIEDXT6fEAsAAIBqU1hYqMWLF2v27NmqVauWFi5cqBEjRpS5H0IsAAAAqsXy5cv117/+VdnZ2XryyScVGxsrD4/yxVHmxJaTYRjKzc2Vr6+vbDab2eUAAAD84tntdnl5eelPf/qTfH19r3rc3Llzr9sXI7HllJubKz8/P2VnZ6tOnTpmlwMAqGKGYaigoECS5OXlxQAGUA5RUVEyDEPff//9VY9xdXyVkdhyysnJIcQCgBvJz8/XkCFDJEkffPCBvL29Ta4IcG88sQsAABfk5+eX+hqAOZhOAAAAgGoxa9Ysl46bMWPGdY8hxAIA4ILi4uJSXwNw3VNPPaV27dpddUWCwsJC7dmzhxALAEBlyc3NdXpdv359E6sBrGvt2rVq3LhxqW2nTp1SQECAS/2Ua07ssWPHNGbMGAUFBcnT01MhISGaNGmSfvrpJ8cxUVFRstlsstls8vb2Vnh4uOLi4kq942zLli2y2+264447SrQdOXJENptN/v7+Tt9AJKlTp06aOXOm075Dhw5pzJgxatasmby8vNSkSRPddtttWrp0qQoLCx3HXa7t59vy5cvLc0kAAABwHXa7/Zp/ySgqKlKNGq7F0zKH2O+//15dunTRwYMHtWzZMh06dEiLFi3S+vXr1aNHD505c8Zx7NixY5Wenq7U1FRNnz5df/vb37Ro0aISfcbHx2vChAnauHGjTpw4Uern5ubm/j979x5WVZX/cfxzPAiaECpeAC8gIuAlFTMVKQHT1CnTLHMYNEQrc9DUxkprJq1UbKaL5TUbMptKLc2aZgbNFNBMRUzM+y1MTRCvXBxFgf37w8fz6wTqAYEzp/N+Pc9+Ovu2zpf9mH5crr2WXn/99RvWlpaWpk6dOmnv3r2aO3eudu3apZSUFD3++OOaP3++du/ebXX9okWLlJWVZbUNHDiwvI8EAAAANvD09LTq9Py1M2fOqG7duja1Ve7hBPHx8XJ1ddXXX3+t2rVrS5KaN2+u0NBQtWzZUi+++KLmz58vSbrtttssXcJxcXGaM2eO1qxZo9GjR1vaKygo0LJly5Senq7s7Gx98MEHeuGFF0p979ixY/Xmm28qPj5ejRo1KnXeMAwNHz5cQUFB2rhxo1WKb9WqlaKjo0v1AtetW9fmLmsAAADcmjZt2ig5OVnt2rUr83xKSoratGljU1vl6ok9e/asVq9erT/+8Y+WAHuNt7e3YmJitGzZslJh0TAMbdiwQfv27ZOrq6vVuU8//VQhISEKDg7W0KFD9f7775c55CA6OlqBgYF65ZVXyqwtIyNDe/fu1cSJE6/bDc3E1AAAAPbzyCOPaPr06dq3b1+pc/v379err76qQYMG2dRWuULswYMHZRiGWrduXeb51q1b69y5czp16pQkad68eXJ3d5ebm5t69OihkpISPf3001b3JCYmaujQoZKkvn37Kjc3V6mpqaXaNplMmjlzphYuXKjDhw+XOn/gwAFJUnBwsOVYTk6O3N3dLdu8efOs7omOjrY67+7urqNHj5b5sxUWFiovL89qAwAAgO2eeuoptWjRQh06dNCAAQM0adIkTZ48WQ899JA6dOigpk2bWv2L/Y1U6MUuWxf5iomJUUZGhjZu3Kh+/frpxRdfVPfu3S3n9+/fr7S0NEVHR0uSXFxcNGTIECUmJpbZXp8+fXT33XfrL3/5i03f7+XlpYyMDGVkZKhu3bq6fPmy1fm33nrLcv7a5uvrW2ZbCQkJ8vT0tGzNmjWzqQYAAABcVbNmTa1du1YvvviiMjMzNXfuXM2ePVsHDx7Uc889p9TU1FL/an895RoTGxgYKJPJpL179+qhhx4qdX7v3r2qV6+eGjZsKOnq4N3AwEBJV4cNBAYGqlu3burVq5ekq72wRUVFVsHRMAy5ublpzpw58vT0LPUdM2fOVFhYmJ599lmr461atZJ0NRiHhoZKuvoG3LXvL2s+Mm9vb8v5m5k8ebKeeeYZy35eXh5BFgAAoJxuu+02vfTSS3rppZduqZ1y9cR6eXmpd+/emjdvni5evGh1Ljs7Wx9//LGGDBlS5thTd3d3jRs3ThMnTpRhGCoqKtKHH36oN954w6ondMeOHfL19dWSJUvKrKFLly4aNGiQJk2aZHU8NDRUISEhev3116tkEmo3NzfdfvvtVhsAAADso9yzE8yZM0fdu3dXnz59NG3aNLVo0UK7d+/Ws88+qyZNmmj69OnXvXfUqFF69dVXtWLFCrm4uOjcuXMaOXJkqR7Xhx9+WImJiXrqqafKbGf69OmlVnswmUxatGiRevfurfDwcE2ePFmtW7fWlStXtH79ep06dUpms9mqnfPnzys7O9vqmIeHh+rUqVPexwIAAICbiIqKuuk1hmEoJSXlpteVe0xsq1atlJ6eroCAAD366KNq2bKlnnzySUVFRWnTpk03XMGkfv36euyxxzR16lQlJiaqV69eZQ4ZePjhh5Wenq4ffvihzHaCgoI0YsQIXbp0yep4t27dtG3bNgUHBys+Pl5t2rRR9+7dtWTJEr311lulBgrHxcXJx8fHaps9e3Z5HwkAAABssH79egUHBys0NFShoaEKCAjQd999Z9kPDg7W+vXrbWrLZNj6lhas5OXlydPTU7m5uQwtAAAncPbsWcXGxkqSFi9ezLKzQAWYzWadOHHCsuzsjz/+qA4dOlhWZc3JyZG3t7dNQ0MrNDsBAADO5pdzkNu6LCaAqsP/hQAAAHA4hFgAAADYza9ntbJ1hVVCLAAANqhVq1aZnwHYrk+fPnJzc7PsN27cWO+++65l/7bbbtOoUaNsaosXuyqIF7sAwLkYhqHCwkJJV+cOt7W3CEDVoCcWAAAADqfcix0AAOCMCgsLNXjwYEnSZ599xpACoALMZrNsGQRgyxRbhFgAAGzwywV2Ll26RIgFKmDlypVW+ydPntT48eO1ZMkSSVJubq5lPuabIcQCAACgWjz44INW+z/++KNq1KhhOZ6Tk2NzW4yJBQAAgF38+OOPunjxooqLiyVdfXHew8PDpnsJsQAA2OCXY/RsGa8H4Ma2bt2qCRMmqKSkRLNnz1ZBQYHmzp2r4OBgm+4nxAIAYINra7v/+jOA8lm1apX69u2r3/3ud3rnnXcUEBCgZ555Rrfffrvmzp2rP//5zza1U+UhdsGCBfLw8FBRUZHlWEFBgWrWrKnIyEira1NSUmQymXT48GH5+/tr1qxZpdqbOnWqOnbsWOa+v7+/TCbTdbfhw4dL0nXPL126tJJ/egAAAFzTtm1bPfTQQ2rdurX27t2rqKgopaena8GCBXrnnXe0ffv2UuNmr6fKX+yKiopSQUGB0tPT1a1bN0nShg0b5O3trS1btli94ZmcnKzmzZurZcuWFfqurVu3WsZUfPfdd3r44Ye1f/9+y2IEtWvXtly7aNEi9e3b1+r+unXrVuh7AQAAcHNRUVH65ptv5OPjYzlWt25dPfnkk+Vuq8pDbHBwsHx8fJSSkmIJsSkpKRowYIDWrVunzZs3W3pkU1JSFBUVVeHvatiwoeVz/fr1JUmNGjUqM5zWrVtX3t7eFf4uAAAAlM+cOXMqra1qmWIrKipKycnJmjRpkqSrPa7PPfeciouLlZycrMjISF28eFFbtmzRiBEjqqOkcissLLQsNyhdfXsOAAAAtlu8eLFN19kyV2y1hdjx48erqKhIFy9e1Pbt2xUREaErV65owYIFkqRNmzapsLDQqif2+eefLzW49/Lly2rTps0t1xQdHS2z2Wx1bM+ePWrevHmZ1yckJOjll1++5e8FAABwViNGjNDtt98uk8kk6epMH3l5eZZ/NTcMw+YFD6olxEZGRurChQvaunWrzp07p6CgIDVs2FARERGKi4vTpUuXlJKSooCAAKsQ+eyzz1pexrrmnXfe0fr162+5prfeeku9evWyOubr63vd6ydPnqxnnnnGsp+Xl6dmzZrdch0AAADOZN++fWrcuLEkKTMzUx06dNDZs2clSadOnbJ5uGe1hNjAwEA1bdpUycnJOnfunCIiIiRdDY3NmjXTd999p+TkZPXs2dPqvgYNGigwMNDq2LWxrrfK29u7VNs34ubmJjc3t0r5bgAAAFzteTUM47r7N1Jt88RGRUUpJSVFKSkpVlNr9ejRQ0lJSUpLS7ull7oAAADgPKqlJ1a6GmLj4+N15coVS0+sJEVERGjMmDG6fPlytYbY8+fPKzs72+qYh4eH6tSpU201AAAAOBNbe1ltUa09sRcvXlRgYKBlHIR0NcTm5+dbpuKqLnFxcfLx8bHaZs+eXW3fDwAA4GyuvdB1Te3atdWjRw+r89fWD7hpW0ZlRmInkpeXJ09PT+Xm5loWUwAA/HadPXvW8sb04sWLK+0dDcCZ5OTkqFGjRpXSVrX1xAIA4Mhq1KhR5mcAtqusACtV45hYAAAAOLe4uDibrlu0aNFNryHEAgBgg1+O07N1zB4Aax9++KEiIiIsixvcCsbEVlBubq7q1q2rY8eOMSYWAJyAYRiW5cfd3NxKvaACOAsPD48K//o3m836/vvv1aFDh1uug57YCjpz5owksWoXAABwKjk5OWrYsKG9yyDEVtS1t1KPHj0qT09PO1fjfK4t+0tPuH3w/O2L528/PHv74vnb17Xn7+rqau9SJBFiK+zam6menp78j2RHt99+O8/fjnj+9sXztx+evX3x/O3rf2UoDXOEAAAAoFqMHDlSXl5eldIWPbEAAACoFgsXLqy0tgixFeTm5qYpU6bIzc3N3qU4JZ6/ffH87Yvnbz88e/vi+dtXZTz/Fi1a2HRdZmbmTa9hii0AAABUC7PZrIkTJ6pJkyY3vO7pp5++aVuEWAAAAFSLypwnlhe7AAAA4HAIsQAAAHA4hFgAAAA4HEJsBc2dO1f+/v6qVauWunbtqrS0NHuX5BTWr1+v/v37y9fXVyaTSV988YW9S3IaCQkJuuuuu+Th4aFGjRpp4MCB2r9/v73Lchrz589X+/btLZO8h4WFKSkpyd5lOa2ZM2fKZDJp/Pjx9i7FKUydOlUmk8lqCwkJsXdZTuXnn3/W0KFD5eXlpdq1a+uOO+5Qenp6udv5xz/+IT8/v0qpiRBbAcuWLdMzzzyjKVOmWAYn9+nTRzk5OfYu7TfvwoUL6tChg+bOnWvvUpxOamqq4uPjtXnzZq1Zs0ZXrlzRfffdpwsXLti7NKfQtGlTzZw5U9u2bVN6erp69uypAQMGaPfu3fYuzels3bpV7777rtq3b2/vUpxK27ZtlZWVZdm+/fZbe5fkNM6dO6fw8HDVrFlTSUlJ2rNnj9544w3Vq1ev3G399a9/1QcffKCzZ8/eemEGyq1Lly5GfHy8Zb+4uNjw9fU1EhIS7FiV85FkrFy50t5lOK2cnBxDkpGammrvUpxWvXr1jL///e/2LsOp5OfnG61atTLWrFljREREGOPGjbN3SU5hypQpRocOHexdhtN6/vnnjbvvvrtS2ho7dqzRpEkTw83NzRg8eLCxatUqo6SkpEJt0RNbTpcvX9a2bdvUq1cvy7EaNWqoV69e2rRpkx0rA6pXbm6uJKl+/fp2rsT5FBcXa+nSpbpw4YLCwsLsXY5TiY+P1/3332/1ZwCqx8GDB+Xr66uAgADFxMTo6NGj9i7Jafzzn/9U586dNXjwYDVq1EihoaF67733KtTWO++8o+PHj+ujjz7SihUrNHToUPn7+2vKlCk2LXDwS4TYcjp9+rSKi4vVuHFjq+ONGzdWdna2naoCqldJSYnGjx+v8PBwtWvXzt7lOI2dO3fK3d1dbm5ueuqpp7Ry5Uq1adPG3mU5jaVLl+r7779XQkKCvUtxOl27dtUHH3ygVatWaf78+crMzNQ999yj/Px8e5fmFH788UfNnz9frVq10urVqzV69Gg9/fTTWrx4cYXbbNOmjWrUqKHs7GzNnTtX+/bt0x133KHevXtryZIlNrXBsrMAyi0+Pl67du1iTFo1Cw4OVkZGhnJzc7V8+XLFxsYqNTWVIFsNjh07pnHjxmnNmjWqVauWvctxOv369bN8bt++vbp27So/Pz99+umnGjlypB0rcw4lJSXq3LmzZsyYIUkKDQ3Vrl27tGDBAsXGxt5S22azWQ888IAeeOAB5efna+bMmRo2bJiio6Nvei8htpwaNGggs9mskydPWh0/efKkvL297VQVUH3GjBmjf/3rX1q/fr2aNm1q73KciqurqwIDAyVJd955p7Zu3aq3335b7777rp0r++3btm2bcnJy1KlTJ8ux4uJirV+/XnPmzFFhYaHMZrMdK3QudevWVVBQkA4dOmTvUpyCj49Pqb8st27dWitWrKiU9s+cOaOlS5fqo48+0sGDBzV69Gib7mM4QTm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIIMBWs4KCAh0+fFg+Pj72LsUphIeHl5pS8cCBA7c0VVZxcbEMw1D//v3VtGlTrVy5UuPGjdOJEyc0e/Zsm9qgJ7YCnnnmGcXGxqpz587q0qWLZs2apQsXLiguLs7epf3mFRQUWP3NOzMzUxkZGapfv76aN29ux8p+++Lj4/XJJ5/oyy+/lIeHh2UMuKenp2rXrm3n6n77Jk+erH79+ql58+bKz8/XJ598opSUFK1evdrepTkFDw+PUuO/69SpIy8vL8aFV4OJEyeqf//+8vPz04kTJzRlyhSZzWab/skZt27ChAnq3r27ZsyYoUcffVRpaWlauHChFi5cWO62PvvsM61YsUJJSUlq2rSpOnXqpDlz5lQsEFfKfAlOaPbs2Ubz5s0NV1dXo0uXLsbmzZvtXZJTSE5ONiSV2mJjY+1d2m9eWc9dkrFo0SJ7l+YURowYYfj5+Rmurq5Gw4YNjXvvvdf4+uuv7V2WU2OKreozZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXFihdmrVqmUMHjzYWL169S3XZDIMwyh/9AUAAADK5+zZs5U2NSMhFgAAAA6HF7sAAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCgBM4cuSITCaTMjIy7F0KAFQKQiwAVMDw4cM1cOBAy35kZKTGjx9vt3oyMzP1hz/8Qb6+vqpVq5aaNm2qAQMGaN++fZKkZs2aKSsrS+3atbNbjQBQmVzsXQAA4NZcuXJFvXv3VnBwsD7//HP5+Pjo+PHjSkpK0vnz5yVJZrNZ3t7e9i0UACoRPbEAcIuGDx+u1NRUvf322zKZTDKZTDpy5IgkadeuXerXr5/c3d3VuHFjDRs2TKdPn7bcGxkZqbFjx2r8+PGqV6+eGjdurPfee08XLlxQXFycPDw8FBgYqKSkpOt+/+7du3X48GHNmzdP3bp1k5+fn8LDwzVt2jR169ZNUunhBMOHD7fU+sstJSVFklRYWKiJEyeqSZMmqlOnjrp27Wo5BwD/CwixAHCL3n77bYWFhemJJ55QVlaWsrKy1KxZM50/f149e/ZUaGio0tPTtWrVKp08eVKPPvqo1f2LFy9WgwYNlJaWprFjx2r06NEaPHiwunfvru+//1733Xefhg0bpv/+979lfn/Dhg1Vo0YNLV++XMXFxTbXfK3WrKwsjRs3To0aNVJISIgkacyYMdq0aZOWLl2qH374QYMHD1bfvn118ODBW3tYAFBJTIZhGPYuAgAczfDhw3X+/Hl98cUXkq72qHbs2FGzZs2yXDNt2jRt2LBBq1evthw7fvy4mjVrpv379ysoKEiRkZEqLi7Whg0bJEnFxcXy9PTUoEGD9OGHH0qSsrOz5ePjo02bNll6Vn9t7ty5eu6552Q2m9W5c2dFRUUpJiZGAQEBkq72xLZo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYflWOPGjSVJOTk51/2u+Ph4ZWdn6+OPP1ZYWJg+++wztW3bVmvWrLlhjdu3b9ewYcM0Z84chYeHS5J27typ4uJiBQUFWdWemppqVTcA2BMvdgFAFSkoKFD//v312muvlTrn4+Nj+VyzZk2rcyaTyeqYyWSSJJWUlNzw+zw8PNS/f3/1799f06ZNU58+fTRt2jT17t27zOuzs7P14IMP6vHHH9fIkSOt6jabzdq2bZvMZrPVPe7u7jesAQCqCyEWACqBq6trqfGonTp10ooVK+Tv7y8Xl+r97dZkMikkJETfffddmecvXbqkAQMGKCQkRG+++abVudDQUBUXFysnJ0f33HNPdZQLAOXGcAIAqAT+/v7asmWLjhw5otOnT6ukpETx8fE6e/asoqOjtXXrVh0+fFirV69WXFyczS9g2SIjI0MDBgzQ8uXLtWfPHh06dEiJiYl6//33NWDAgDLvGTVqlI4dO6Z33nlHp06dUnZ2trKzs3X58mUFBQUpJiZGjz32mD7//HNlZmYqLS1NCQkJ+ve//11pdQPAraAnFgAqwcSJExUbG6s2bdro4sWLyszMlL+/vzZu3Kjnn39e9913nwoLC+Xn56e+ffuqRo3K60No2rSp/P399fLLL1um0rq2P2HChDLvSU1NVVZWltq0aWN1PDk5WZGRkVq0aJGmTZumP/3pT/r555/VoEEDdevWTQ888ECl1Q0At4LZCQAAAOBwGE4AAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADsfF3gUAAADAecTFxdl03aJFi2543mQYhlEZBQEAAAA3M2jQIKv9CxcuaN26derfv78kqbCwUElJSSopKblhO4RYAAAA2E1mZqbat2+v/Px8SdKpU6fk7e2t4uLiG97HmFgAAADYza/7Uw3DKHWsLIRYAAAAVJsrV65USjuEWAAAAFSbJk2aaPz48dq5c6ckqU6dOvrd735ndY3JZLppO4RYAAAAVJtJkyYpLS1NoaGh6tq1q7744gv9/e9/t5xv2LChDh48eNN2eLELAAAA1W7jxo2KiIhQ27ZtdejQIT3yyCMaMWKEIiIibLqfnlgAAABUu3r16slkMmnHjh3asmWLvL29NWzYMAUFBSkhIeGm99MTCwAAgGq3Z88edejQwepFr+LiYr300kt67bXXVFRUdMP7WbELAAAAdrVjxw599NFHWrJkiTw9PfXaa6/d9B5CbAUZhqH8/Hx5eHjY9AYdAAAA/t+ZM2dkGIbuuOMOHT16VIMHD9by5cvVrVs3m+4nxFZQfn6+PD09dfLkSd1+++32LgeoNoZhqLCwUJLk5ubGX+LglPi1D1Tc3/72N61YsULp6ekKCwvTiBEjNGTIEN12223laocxsRWUl5cnT09P9enTRzVr1rR3OQCAavTZZ5+pVq1a9i4DcEg+Pj567LHHNHLkSAUFBVW4HXpiAQAAUG2OHz8us9l8y+0QYm/RlN4HVN/d3lUA1aewyKQXV7WRJE3vu0duLvxjDpzD5eIaeiGptb3LABzeRx99ZNN1sbGxNzxPiL1FruYSubkwLgrOyc3FIMTCiZTYuwDgN2HChAk3vcYwDEJsVWNEMQA4h1/+fs/rJEDFnT17tlLaYcWuW3S5mF5YAHAGv/z9/toMHQDsp0Ih9tixYxoxYoR8fX3l6uoqPz8/jRs3TmfOnLFcExkZKZPJJJPJpFq1almWECvrb6+bNm2S2WzW/fffX+rckSNHZDKZ1KhRI+Xn51ud69ixo6ZOnWp17NChQxoxYoSaN28uNzc3NWnSRPfee68+/vhjq5UfrtX2623p0qUVeSQAAACwweLFi23abqbcwwl+/PFHhYWFKSgoSEuWLFGLFi20e/duPfvss0pKStLmzZtVv359SdITTzyhV155RYWFhVq3bp2efPJJ1a1bV6NHj7ZqMzExUWPHjlViYqJOnDghX1/fUt+bn5+v119/XS+//PJ1a0tLS1OvXr3Utm1bzZ07VyEhIZKk9PR0zZ07V+3atVOHDh0s1y9atEh9+/a1aqNu3brlfSQAAACw0a/HxJaUlCgvL8+SwQzDUG5ubuWPiY2Pj5erq6u+/vpr1a5dW5LUvHlzhYaGqmXLlnrxxRc1f/58SdJtt90mb29vSVJcXJzmzJmjNWvWWIXYgoICLVu2TOnp6crOztYHH3ygF154odT3jh07Vm+++abi4+PVqFGjUucNw9Dw4cMVFBSkjRs3qkaN/+9kbtWqlaKjo0v1AtetW9dSHwAAAKrer8fEZmZmqkOHDpbjp06dsimflWs4wdmzZ7V69Wr98Y9/tATYa7y9vRUTE6Nly5aVCouGYWjDhg3at2+fXF1drc59+umnCgkJUXBwsIYOHar333+/zCEH0dHRCgwM1CuvvFJmbRkZGdq7d68mTpxoFWB/6VZWVyksLFReXp7VBgAAgFtz+fJllZT8/+wfv/x8I+UKsQcPHpRhGGrduux58lq3bq1z587p1KlTkqR58+bJ3d1dbm5u6tGjh0pKSvT0009b3ZOYmKihQ4dKkvr27avc3FylpqaWattkMmnmzJlauHChDh8+XOr8gQMHJEnBwcGWYzk5OXJ3d7ds8+bNs7onOjra6ry7u7uOHj1a5s+WkJAgT09Py9asWbPrPSYAAADYKCkpSf/973+Vk5Mj6WrPbOPGjW96X4Ve7LJ1apGYmBhlZGRo48aN6tevn1588UV1797dcn7//v1KS0tTdHS0JMnFxUVDhgxRYmJime316dNHd999t/7yl7/Y9P1eXl7KyMhQRkaG6tatq8uXL1udf+uttyznr21ljceVpMmTJys3N9eyHTt2zKYaAAAAUNrx48c1ZswYffzxxzKZTPr973+vOXPmaPTo0erRo8dN7y9XiA0MDJTJZNLevXvLPL93717Vq1dPDRs2lCR5enoqMDBQd911lz799FPNmTNH33zzjeX6xMREFRUVydfXVy4uLnJxcdH8+fO1YsUK5ebmlvkdM2fO1LJly7R9+3ar461atZJ0NRhfYzabFRgYqMDAQLm4lB7+6+3tbTl/o+skyc3NTbfffrvVBgAAgPLZsmWLfv/736tly5bKy8tTamqqxo0bp2+//Vbjxo1TrVq19Prrr9+0nXKFWC8vL/Xu3Vvz5s3TxYsXrc5lZ2fr448/1pAhQ8oce+ru7q5x48Zp4sSJMgxDRUVF+vDDD/XGG29Y9YTu2LFDvr6+WrJkSZk1dOnSRYMGDdKkSZOsjoeGhiokJESvv/66zWMpAAAAUL26d++uCxcuaMuWLfrwww9122236c0337T8a/emTZvUtGnTm7ZT7tkJ5syZo+7du6tPnz6aNm2a1RRbTZo00fTp069776hRo/Tqq69qxYoVcnFx0blz5zRy5Eh5enpaXffwww8rMTFRTz31VJntTJ8+XW3btrXqNTWZTFq0aJF69+6t8PBwTZ48Wa1bt9aVK1e0fv16nTp1Smaz2aqd8+fPKzs72+qYh4eH6tSpU97HAgAAABts2bJFnTt3LnX82qQBx48fV1xcnNasWXPDdso9JrZVq1ZKT09XQECAHn30UbVs2VJPPvmkoqKitGnTJsscsWWpX7++HnvsMU2dOlWJiYnq1atXqQArXQ2x6enp+uGHH8psJygoSCNGjNClS5esjnfr1k3btm1TcHCw4uPj1aZNG3Xv3l1LlizRW2+9VWp+2ri4OPn4+Fhts2fPLu8jAQAAgI3KCrDXfPjhh2rfvn2pjseymAwWgK6QvLw8eXp6auubfmpwO0vPwnkUFpk08V9tJUmvP7Bbbi78FgLncOmKSc/+++qv/U8//bTUVJMAKu7UqVMaNWqUvvnmG73xxht64oknbnpPuYcTwNqVkhoqLLr5dcBvRWGRqczPwG/dlZL//8fLW5l3HHB2v159taioSO+++67atWunnTt3ys/Pz6Z2CLG36OU1QapZs6a9ywDs4sVVbexdAgDAwXz55ZdW+0VFRTp37pwGDRpkc4CVCLEAAACoRt9//32pY1999ZWeeOIJff7550pMTFSLFi1u2g5jYivo2pjYkydPMmcsnIphGCosLJR0df5k/lkVzohf+0DlO3v2rEaNGqVVq1bptdde0x//+McbXk+IraBrITY3N5cQCwAAUEk++eQTxcfH69y5cze8rkLLzgIA4GwMw9ClS5d06dIlm5dfB1B+/fv3v+E0XNcQYgEAsEFhYaEGDx6swYMHW4bUAKh8Fy9e1Nq1a296HSEWAAAb/HKBnV8vtgOg+hFiAQAA4HCYYgsAABuUlJSU+RlA+ZjN5koZV06IBQDABvn5+Vaf69evb8dqAMe1cuXKG57Pzc1VbGzsTdup8uEECxYskIeHh4qK/n9t1oKCAtWsWVORkZFW16akpMhkMunw4cPy9/fXrFmzSrU3depUdezYscx9f39/mUym627Dhw+XpOueX7p0aSX/9AAAAPilBx988IZbnz59bGqnyntio6KiVFBQoPT0dHXr1k2StGHDBnl7e2vLli26dOmSatWqJUlKTk5W8+bN1bJlywp919atW1VcXCxJ+u677/Twww9r//79lnlca9eubbl20aJF6tu3r9X9devWrdD3AgAAwDZXrlxRzZo1b7mdKu+JDQ4Olo+Pj1JSUizHUlJSNGDAALVo0UKbN2+2Oh4VFVXh72rYsKG8vb3l7e1t+WeeRo0aWY55enparq1bt67l+LXtWpgGAABA1WjSpInGjx+vnTt3lnnebDbL39//pu1Uy+wEUVFRSk5OtuwnJycrMjJSERERluMXL17Uli1bbinEAgAA4H/bpEmTlJaWptDQUHXt2lXvvvuu1ZhzLy8v/fjjjzdtp9pC7MaNG1VUVKT8/Hxt375dERER6tGjh6WHdtOmTSosLLQKsc8//7zc3d2tthkzZlRKTdHR0aXaPnr06HWvLywsVF5entUGAACA8nnmmWf03XffKTU1Vdu2bdO8efPk7e2t2NhYpaam2txOtYTYyMhIXbhwQVu3btWGDRsUFBSkhg0bKiIiwjIuNiUlRQEBAWrevLnlvmeffVYZGRlW21NPPVUpNb311lul2vb19b3u9QkJCfL09LRszZo1q5Q6AAAAnFG9evVkMpm0Y8cObdmyRd7e3ho2bJiCgoKUkJBw0/urJcQGBgaqadOmSk5OVnJysiIiIiRJvr6+atasmb777jslJyerZ8+eVvc1aNBAgYGBVltlTWni7e1dqm0Xl+u/5zZ58mTl5uZatmPHjlVKHQAAAM6uXbt2eu2115SZmanBgwfrL3/5y03vqbZ5YqOiopSSkqJz587p2WeftRzv0aOHkpKSlJaWptGjR1dXOeXm5uYmNzc3e5cBAADwm7Njxw599NFHWrJkiTw9PfXaa6/d9J5qDbHx8fG6cuWKpSdWkiIiIjRmzBhdvny5Wl/qOn/+vLKzs62OeXh4qE6dOtVWAwAAgLM6c+aMDMPQHXfcoaNHj2rw4MFavny5ZUrWm6nWEHvx4kWFhISocePGluMRERHKz8+3TMVVXeLi4kodS0hI0KRJk6qtBgAAAGfzt7/9TStWrFB6errCwsI0YsQIDRkyRLfddlu52jEZlbF4rRPKy8uTp6encnNzLYspAAB+u86ePWtZCnPx4sUsOwtUkI+Pjx577DGNHDlSQUFBFW6n2npiAQBwZDVq1CjzM4DyOX78uMxm8y23Q4gFAABAtfnoo49suu7av3xcDyEWAAAA1WbEiBGqU6fODac2NQyDEAsAQGWoVatWmZ8BlN+GDRvUoUOHW2qDEFtB196HY/lZAHAOhmEoMTFR0tWlyC9fvmznigD78PDwkMlksncZhNiKOnPmjCSx/CwAAHAqOTk5atiwob3LIMRW1LWpVY4ePSpPT087V+N88vLy1KxZMx07dowpzuyA529fPH/74dnbF8/fvq49f1dXV3uXIokQW2HXplfx9PTkfyQ7uv3223n+dsTzty+ev/3w7O2L529ftzqUoGXLlnJzc7vlOgixAAAAqDYHDhyolHYIsQAAAKg2cXFxNl23aNGiG55nyZEKcnNz05QpUyqlOxzlx/O3L56/ffH87Ydnb188f/uqrOf/4YcfKicnR7m5ucrNzdWJEyf00UcfWfZzcnK0ePHim7ZjMq7NFQUAAABUMbPZrBMnTqhx48aSpMzMTLVv3175+fmSpFOnTsnb21vFxcU3bIeeWAAAANjNr/tTDcModawshFgAAAA4HEIsAAAA7OrX03bZMo0XIRYAAADVJjg4WC4u/z9BVv369fXCCy9Y9t3c3NSnT5+btkOIraC5c+fK399ftWrVUteuXZWWlmbvkpzC+vXr1b9/f/n6+spkMumLL76wd0lOIyEhQXfddZc8PDzUqFEjDRw4UPv377d3WU5j/vz5at++vWWS97CwMCUlJdm7LKc1c+ZMmUwmjR8/3t6lOIWpU6fKZDJZbSEhIfYuy6n8/PPPGjp0qLy8vFS7dm3dcccdSk9Pr1Bbe/bskZeXl2W/bt26mjRpkmXf09NT//nPf27aDiG2ApYtW6ZnnnlGU6ZM0ffff68OHTqoT58+ysnJsXdpv3kXLlxQhw4dNHfuXHuX4nRSU1MVHx+vzZs3a82aNbpy5Yruu+8+Xbhwwd6lOYWmTZtq5syZ2rZtm9LT09WzZ08NGDBAu3fvtndpTmfr1q1699131b59e3uX4lTatm2rrKwsy/btt9/auySnce7cOYWHh6tmzZpKSkrSnj179MYbb6hevXp2rYsptiqga9euuuuuuzRnzhxJUklJiZo1a6axY8da/U0CVctkMmnlypUaOHCgvUtxSqdOnVKjRo2UmpqqHj162Lscp1S/fn397W9/08iRI+1ditMoKChQp06dNG/ePE2bNk0dO3bUrFmz7F3Wb97UqVP1xRdfKCMjw96lOKVJkyZp48aN2rBhg71LsUJPbDldvnxZ27ZtU69evSzHatSooV69emnTpk12rAyoXrm5uZKuBilUr+LiYi1dulQXLlxQWFiYvctxKvHx8br//vut/gxA9Th48KB8fX0VEBCgmJgYHT161N4lOY1//vOf6ty5swYPHqxGjRopNDRU7733nr3LIsSW1+nTp1VcXGyZoPeaxo0bKzs7205VAdWrpKRE48ePV3h4uNq1a2fvcpzGzp075e7uLjc3Nz311FNauXKl2rRpY++ynMbSpUv1/fffKyEhwd6lOJ2uXbvqgw8+0KpVqzR//nxlZmbqnnvusUyOj6r1448/av78+WrVqpVWr16t0aNH6+mnn7ZpVa2q5HLzSwDAWnx8vHbt2sWYtGoWHBysjIwM5ebmavny5YqNjVVqaipBthocO3ZM48aN05o1a1SrVi17l+N0+vXrZ/ncvn17de3aVX5+fvr0008ZTlMNSkpK1LlzZ82YMUOSFBoaql27dmnBggWKjY21W130xJZTgwYNZDabdfLkSavjJ0+elLe3t52qAqrPmDFj9K9//UvJyclq2rSpvctxKq6urgoMDNSdd96phIQEdejQQW+//ba9y3IK27ZtU05Ojjp16iQXFxe5uLgoNTVV77zzjlxcXG66PCYqV926dRUUFKRDhw7ZuxSn4OPjU+ovy61bt7b7kA5CbDm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIkNlstneJTqWgoECHDx+Wj4+PvUtxCuHh4aWmVDxw4ID8/PzsVNFVDCeogGeeeUaxsbHq3LmzunTpolmzZunChQuKi4uzd2m/eQUFBVZ/887MzFRGRobq16+v5s2b27Gy3774+Hh98skn+vLLL+Xh4WEZA+7p6anatWvbubrfvsmTJ6tfv35q3ry58vPz9cknnyglJUWrV6+2d2lOwcPDo9T47zp16sjLy4tx4dVg4sSJ6t+/v/z8/HTixAlNmTJFZrNZ0dHR9i7NKUyYMEHdu3fXjBkz9OijjyotLU0LFy7UwoUL7VuYgQqZPXu20bx5c8PV1dXo0qWLsXnzZnuX5BSSk5MNSaW22NhYe5f2m1fWc5dkLFq0yN6lOYURI0YYfn5+hqurq9GwYUPj3nvvNb7++mt7l+XUIiIijHHjxtm7DKcwZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXGjvkgzmiQUAAIDDYUwsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAHACR44ckclkUkZGhr1LAYBKQYgFgAoYPny4Bg4caNmPjIzU+PHj7VZPZmam/vCHP8jX11e1atVS06ZNNWDAAO3bt0+S1KxZM2VlZbFEKoDfDBd7FwAAuDVXrlxR7969FRwcrM8//1w+Pj46fvy4kpKSdP78eUmS2WyWt7e3fQsFgEpETywA3KLhw4crNTVVb7/9tkwmk0wmk44cOSJJ2rVrl/r16yd3d3c1btxYw4YN0+nTpy33RkZGauzYsRo/frzq1aunxo0b67333tOFCxcUFxcnDw8PBQYGKikp6brfv3v3bh0+fFjz5s1Tt27d5Ofnp/DwcE2bNk3dunWTVHo4wfDhwy21/nJLSUmRJBUWFmrixIlq0qSJ6tSpo65du1rOAcD/AkIsANyit99+W2FhYXriiSeUlZWlrKwsNWvWTOfPn1fPnj0VGhqq9PR0rVq1SidPntSjjz5qdf/ixYvVoEEDpaWlaezYsRo9erQGDx6s7t276/vvv9d9992nYcOG6b///W+Z39+wYUPVqFFDy5cvV3Fxsc01X6s1KytL48aNU6NGjRQSEiJJGjNmjDZt2qSlS5fqhx9+0ODBg9W3b18dPHjw1h4WAFQSk2EYhr2LAABHM3z4cJ0/f15ffPGFpKs9qh07dtSsWbMs10ybNk0bNmzQ6tWrLceOHz+uZs2aaf/+/QoKClJkZKSKi4u1YcMGSVJxcbE8PT01aNAgffjhh5Kk7Oxs+fj4aNOmTZae1V+bO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKs9sS1atND27dvVsWNHq3s///xzxcTE6JtvvlF4eLiOHj2qgIAAHT16VL6+vpbrevXqpS5dumjGjBm3+vgA4JbREwsAVWTHjh1KTk6Wu7u7ZbvW03n48GHLde3bt7d8NpvN8vLy0h133GE51rhxY0lSTk7Odb8rPj5e2dnZ+vjjjxUWFqbPPvtMbdu21Zo1a25Y4/bt2zVs2DDNmTNH4eHhkqSdO3equLhYQUFBVrWnpqZa1Q0A9sSLXQBQRQoKCtS/f3+99tprpc75+PhYPtesWdPqnMlksjpmMpkkSSUlJTf8Pg8PD/Xv31/9+/fXtGnT1KdPH02bNk29e/cu8/rs7Gw9+OCDevzxxzVy5Eirus1ms7Zt2yaz2Wx1j7u7+w1rAIDqQogFgErg6upaajxqp06dtGLFCvn7+8vFpXp/uzWZTAoJCdF3331X5vlLly5pwIABCgkJ0Ztvvml1LjQ0VMXFxcrJydE999xTHeUCQLkxnAAAKoG/v7+2bNmiI0eO6PTp0yopKVF8fLzOnj2r6Ohobd26VYcPH9bq1asVFxdn8wtYtsjIyNCAAQO0fPly7dmzR4cOHVJiYqLef/99DRgwoMx7Ro0apWPHjumdd97RqVOnlJ2drezsbF2+fFlBQUGKiYnRY489ps8//1yZmZlKS0tTQkKC/v3vf1da3QBwK+iJBYBKMHHiRMXGxqpNmza6ePGiMjMz5e/vr40bN+r555/Xfffdp8LCQvn5+alv376qUaPy+hCaNm0qf39/vfzyy5aptK7tT5gwocx7UlNTlZWVpTZt2lgdT05OVmRkpBYtWqRp06bpT3/6k37++Wc1aNBA3bp10wMPPFBpdQPArWB2AgAAADgchhMAAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAw3GxdwEAAAD47YuLi7PpukWLFtl0nckwDONWCgIAAABuxmw2q2/fvnJzc5MkXbhwQevWrVP//v0lSYWFhUpKSlJJSYlN7RFiAQAAUOXMZrNOnDihxo0bS5IyMzPVvn175efnS5JOnTqlxo0b2xxiGRMLAACAavfrftTy9qsSYgEAAFDlPDw8dO7cOcv+uXPndOHCBRUUFEiSsrOzVb9+fZvbI8QCAACgyoWEhGj27NkqKSlRSUmJ5s2bJ19fX02cOFEbN27Uiy++qLvuusvm9hgTCwAAgCr3xRdf6JFHHlGdOnVUUlKiOnXqaNWqVfr973+vgwcPqlmzZvrqq690xx132NQeIRYAAADVYv369frqq69Uu3ZtPfHEE2rWrJkk6cyZM/Ly8ipXW4RYAAAAOBzGxAIAAMDhsGIXAAAAqpzZbLZpGi1b54klxAIAAKBavPXWW2rRokWltMWY2AoyDEP5+fny8PCQyWSydzkAAAD/08xms77//nt16NChUtpjTGwF5efny9PT07JUGgDgt80wDF26dEmXLl0q98pCACofIRYAABsUFhZq8ODBGjx4sAoLC+1dDuD0CLEAANjg0qVLZX4GYB+82AUAAIAqt2HDBrVq1UqSdO7cOeXl5ZV5nZ+fn03tEWIBAABQ5cLCwvTaa6/pzTff1OnTp0udN5lMMgyDKbYAAKhMv/yD1dY/ZAH8v3nz5unNN9/UCy+8oDvvvFOenp631B4hFgAAG/xyNpr8/HzVr1/fjtUAjue9997TrFmz9Ic//KFS2qvQi13Hjh3TiBEj5OvrK1dXV/n5+WncuHE6c+aM5ZrIyEiZTCaZTCbVqlVLQUFBSkhIKHNakk2bNslsNuv+++8vde7IkSMymUxq1KhRqemsOnbsqKlTp1odO3TokEaMGKHmzZvLzc1NTZo00b333quPP/5YRUVFluuu1fbrbenSpRV5JAAAALiBw4cPq1u3bpXWXrlD7I8//qjOnTvr4MGDWrJkiQ4dOqQFCxZo7dq1CgsL09mzZy3XPvHEE8rKytL+/fs1efJkvfTSS1qwYEGpNhMTEzV27FitX79eJ06cKPN78/Pz9frrr9+wtrS0NHXq1El79+7V3LlztWvXLqWkpOjxxx/X/PnztXv3bqvrFy1apKysLKtt4MCB5X0kAAAAuIn69euXORa2osodYuPj4+Xq6qqvv/5aERERat68ufr166dvvvlGP//8s1588UXLtbfddpu8vb3l5+enuLg4tW/fXmvWrLFqr6CgQMuWLdPo0aN1//3364MPPijze8eOHas333xTOTk5ZZ43DEPDhw9XUFCQNm7cqP79+6tVq1Zq1aqVoqOj9e2336p9+/ZW99StW1fe3t5WW61atcr7SAAAAHAT4eHhevXVV687K0F5lSvEnj17VqtXr9Yf//hH1a5d2+qct7e3YmJitGzZslJDBgzD0IYNG7Rv3z65urpanfv0008VEhKi4OBgDR06VO+//36ZQw6io6MVGBioV155pczaMjIytHfvXk2cOFE1apT9Y93K8rCFhYXKy8uz2gAAAGCbmTNnau/evWrSpIlCQ0MVFRVV5marcoXYgwcPyjAMtW7duszzrVu31rlz53Tq1ClJV99Cc3d3l5ubm3r06KGSkhI9/fTTVvckJiZq6NChkqS+ffsqNzdXqamppdo2mUyaOXOmFi5cqMOHD5c6f+DAAUlScHCw5VhOTo7c3d0t27x586zuiY6Otjrv7u6uo0ePlvmzJSQkyNPT07I1a9bseo8JAAAAv9K8eXPt3r1bCxcu1MCBAxUaGlrmZqsKzU5g65rRMTExevHFF3Xu3DlNmTJF3bt3V/fu3S3n9+/fr7S0NK1cufJqMS4uGjJkiBITExUZGVmqvT59+ujuu+/WX/7yF33yySc3/X4vLy9lZGRIuvqi2eXLl63Ov/XWW+rVq5fVMV9f3zLbmjx5sp555hnLfl5eHkEWAACgHNzc3BQdHV0pbZUrxAYGBspkMmnv3r166KGHSp3fu3ev6tWrp4YNG0qSPD09FRgYKOnqsIHAwEB169bNEhwTExNVVFRkFRwNw5Cbm5vmzJlT5vxhM2fOVFhYmJ599lmr49dWgNi/f78lxZvNZsv3u7iU/lG9vb0t52/Gzc1Nbm5uNl0LAACAqlWu4QReXl7q3bu35s2bp4sXL1qdy87O1scff6whQ4aUOfbU3d1d48aN08SJE2UYhoqKivThhx/qjTfeUEZGhmXbsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/11JqEGAAD4H9OiRYubbv7+/ja3V+7hBHPmzFH37t3Vp08fTZs2TS1atNDu3bv17LPPqkmTJpo+ffp17x01apReffVVrVixQi4uLjp37pxGjhxZqsf14YcfVmJiop566qky25k+fbratm1r1btqMpm0aNEi9e7dW+Hh4Zo8ebJat26tK1euaP369Tp16pTMZrNVO+fPn1d2drbVMQ8PD9WpU6e8jwUAAAA3cPToUb3yyivy8PCQJJ0+fVp/+9vf9Nprr0m6OmPVn//8Z9sbNCrgyJEjRmxsrNG4cWOjZs2aRrNmzYyxY8cap0+ftlwTERFhjBs3rtS9o0aNMtq2bWs88MADxu9+97sy29+yZYshydixY4eRmZlpSDK2b99udc2TTz5pSDKmTJlidXz//v1GbGys0bRpU8PFxcXw9PQ0evToYbz77rvGlStXLNdJKnNLSEiw6Rnk5uYakozc3FybrgcAOLYjR44YDzzwgPHAAw8YR44csXc5gMOpUaOGkZ2dbdk/fPiw4e7ubtk/efKkYTKZbG7PZBg2vqUFK3l5efL09FRubq5uv/12e5cDAKhiZ8+eVWxsrCRp8eLFLDsLlJPZbNaJEyfUuHFjSVcX0OrQoYNlRdacnBx5e3vbPCy0QsvOAgDgbH45B/n15iMHUH34vxAAAAB28evJAMqzMBUhFgAAG/xyWXKWKAfKb9SoUbrtttss+02aNFFSUpJl38PDQwkJCTa3x5jYCmJMLAA4F8MwVFhYKOnq3OG3spQ5gFtXoRW7AABwNiaTiR5Y4H8IwwkAAADgcAixAAAAcDiEWAAAANidYRj66aefbL6eEAsAAAC7O3XqlFq0aGHz9YRYAAAA/E9gnlgAAAA4nPLM/FrlU2wtWLBAzz77rM6dOycXl6tfV1BQoHr16ik8PFwpKSmWa1NSUhQVFaVDhw7p3nvv1fjx4zV+/Hir9qZOnaovvvhCGRkZpfb9/f1vOJYiNjZWH3zwwXVT/pIlS/T73//+ln5eAAAAlPbyyy/f8HxBQUG52qvyEBsVFaWCggKlp6erW7dukqQNGzbI29tbW7Zs0aVLlyzz7iUnJ6t58+Zq2bJlhb5r69atKi4uliR99913evjhh7V//37LYgS1a9e2XLto0SL17dvX6v66detW6HsBAABwY19++eUNzxcVFZWrvSoPscHBwfLx8VFKSoolxKakpGjAgAFat26dNm/erMjISMvxqKioCn9Xw4YNLZ/r168vSWrUqFGZ4bRu3bry9vau8HcBAADAdt9///0Nz586dUqNGze2ub1qGRMbFRWl5ORky35ycrIiIyMVERFhOX7x4kVt2bLllkJsVSosLFReXp7VBgAAgMpRnvGwUjWG2I0bN6qoqEj5+fnavn27IiIi1KNHD8uY2E2bNqmwsNAqxD7//PNyd3e32mbMmFEpNUVHR5dq++jRo9e9PiEhQZ6enpatWbNmlVIHAAAArirP7ARVPpxAkiIjI3XhwgVt3bpV586dU1BQkBo2bKiIiAjFxcXp0qVLSklJUUBAgJo3b26579lnn9Xw4cOt2nrnnXe0fv36W67prbfeUq9evayO+fr6Xvf6yZMn65lnnrHs5+XlEWQBAAAqiaen501f/vqlagmxgYGBatq0qZKTk3Xu3DlFRERIuhoamzVrpu+++07Jycnq2bOn1X0NGjRQYGCg1bFrY11vlbe3d6m2b8TNzU1ubm6V8t0AAAD4f6dPn9ZTTz2lVatW6c9//rNN91TbPLFRUVFKSUlRSkqK5UUuSerRo4eSkpKUlpb2PzseFgAAAFXjyy+/VLt27XTy5En98MMPNt9XLT2x0tUQGx8frytXrlh6YiUpIiJCY8aM0eXLl6s1xJ4/f17Z2dlWxzw8PFSnTp1qqwEAAMBZ/Hou/6KiIr366qv67LPP9Oqrr1oN27RFtYbYixcvKiQkxGr6hIiICOXn51um4qoucXFxpY4lJCRo0qRJ1VYDAACAswgICJBhGDKZTJb/mkwmrVq1qtR7SrYwGeWdzwCSrr7Y5enpqdzcXMtiCgAAACjbr4cKFBUVafr06UpOTtabb75Z6mX+myHEVhAhFgAA4NZ99NFHevrppxUWFqb33nvvhrNF/VK1vdgFAAAA/NrQoUO1a9cuFRUVqV27djbfV21jYgEAAICy+Pr6avXq1Zo3b57N9zCcoIIYTgAAAGA/9MRW0LXsn5eXZ+dKAAAAqo+Hh0e5loe95trsBDdiGIaOHDliU3uE2Ao6c+aMJLH0LAAAcCo5OTlq2LBhue8bP3685fPp06f1t7/9Ta+99prlWEFBgc2rdUkMJ6iw8+fPq169ejp69Kg8PT3tXY7TycvLU7NmzXTs2DGGc9gBz9++eP72w7O3L56/fV17/ufPn7/l7PPjjz+qQ4cOys/PtxzLycmRt7e3SkpKbGqDntgKqlHj6sQOnp6e/I9kR7fffjvP3454/vbF87cfnr198fztqyJDCX7N3d1dly5d0uXLl+Xq6irpaki+7bbbbG6DKbYAAABQrRo1aiQPDw+98cYbkqTi4mK9/vrrCg4OtrkNemIBAABQ7V544QU9//zz+utf/6orV67o4sWLWrZsmc33E2IryM3NTVOmTJGbm5u9S3FKPH/74vnbF8/ffnj29sXzt6/Kfv4TJ05Uu3bttHbtWrm6uqp///7q1q2bzffzYhcAAAAcDj2xAAAAqHIvv/yyTddNmTLFpuvoiQUAAECVM5vNatu2rVxcrvahXr58Wfv27VP79u0lSUVFRdq1a5fNU2wRYgEAAFDlzGazTpw4ocaNG0uSMjMz1b59e8tcsadOnZK3t7eKi4ttao8ptgAAAFDtft2PahjGTZel/SVCbAXNnTtX/v7+qlWrlrp27aq0tDR7l+QU1q9fr/79+8vX11cmk0lffPGFvUtyGgkJCbrrrrvk4eGhRo0aaeDAgdq/f7+9y3Ia8+fPV/v27S2TvIeFhSkpKcneZTmtmTNnymQyWS2jiaozdepUmUwmqy0kJMTeZTmVn3/+WUOHDpWXl5dq166tO+64Q+np6XatiRBbAcuWLdMzzzyjKVOm6Pvvv1eHDh3Up08f5eTk2Lu037wLFy6oQ4cOmjt3rr1LcTqpqamKj4/X5s2btWbNGl25ckX33XefLly4YO/SnELTpk01c+ZMbdu2Tenp6erZs6cGDBig3bt327s0p7N161a9++67lnF8qB5t27ZVVlaWZfv222/tXZLTOHfunMLDw1WzZk0lJSVpz549euONN1SvXr1ytVNWL+strf5loNy6dOlixMfHW/aLi4sNX19fIyEhwY5VOR9JxsqVK+1dhtPKyckxJBmpqan2LsVp1atXz/j73/9u7zKcSn5+vtGqVStjzZo1RkREhDFu3Dh7l+QUpkyZYnTo0MHeZTit559/3rj77rtvuZ3atWsbJ0+etOyfOnXKGD16tGX/zJkzRuvWrW1uj57Ycrp8+bK2bdumXr16WY7VqFFDvXr10qZNm+xYGVC9cnNzJUn169e3cyXOp7i4WEuXLtWFCxcUFhZm73KcSnx8vO6//36rPwNQPQ4ePChfX18FBAQoJiZGR48etXdJTuOf//ynOnfurMGDB6tRo0YKDQ3Ve++9V+52/vvf/6pRo0aW/QYNGmjevHmW/fr162vPnj02t0eILafTp0+ruLjY8mbdNY0bN1Z2dradqgKqV0lJicaPH6/w8HC1a9fO3uU4jZ07d8rd3V1ubm566qmntHLlSrVp08beZTmNpUuX6vvvv1dCQoK9S3E6Xbt21QcffKBVq1Zp/vz5yszM1D333GN5qx1V68cff9T8+fPVqlUrrV69WqNHj9bTTz+txYsX27UuFjsAUG7x8fHatWsXY9KqWXBwsDIyMpSbm6vly5crNjZWqampBNlqcOzYMY0bN05r1qxRrVq17F2O0+nXr5/lc/v27dW1a1f5+fnp008/1ciRI+1YmXMoKSlR586dNWPGDElSaGiodu3apQULFig2NtZuddETW04NGjSQ2WzWyZMnrY6fPHlS3t7edqoKqD5jxozRv/71LyUnJ6tp06b2LsepuLq6KjAwUHfeeacSEhLUoUMHvf322/Yuyyls27ZNOTk56tSpk1xcXOTi4qLU1FS98847cnFxsXleS1SOunXrKigoSIcOHbJ3KU7Bx8en1F+WW7dubfchHYTYcnJ1ddWdd96ptWvXWo6VlJRo7dq1jE3Db5phGBozZoxWrlypdevWqUWLFvYuyemVlJSosLDQ3mU4hXvvvVc7d+5URkaGZevcubNiYmKUkZEhs9ls7xKdSkFBgQ4fPiwfHx97l+IUwsPDS02peODAAfn5+dmpoqsYTlABzzzzjGJjY9W5c2d16dJFs2bN0oULFxQXF2fv0n7zCgoKrP7mnZmZqYyMDNWvX1/Nmze3Y2W/ffHx8frkk0/05ZdfysPDwzIG3NPTU7Vr17Zzdb99kydPVr9+/dS8eXPl5+frk08+UUpKilavXm3v0pyCh4dHqfHfderUkZeXF+PCq8HEiRPVv39/+fn56cSJE5oyZYrMZrOio6PtXZpTmDBhgrp3764ZM2bo0UcfVVpamhYuXKiFCxfat7Bbni/BSc2ePdto3ry54erqanTp0sXYvHmzvUtyCsnJyYakUltsbKy9S/vNK+u5SzIWLVpk79KcwogRIww/Pz/D1dXVaNiwoXHvvfcaX3/9tb3LcmpMsVV9hgwZYvj4+Biurq5GkyZNjCFDhhiHDh2yd1lO5auvvjLatWtnuLm5GSEhIcbChQvtXZJhMoxyrO8FAAAA/A9gTCwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAcAJHjhyRyWRSRkaGvUsBgEpBiAWAChg+fLgGDhxo2Y+MjNT48ePtVk9mZqb+8Ic/yNfXV7Vq1VLTpk01YMAA7du3T5LUrFkzZWVlsUQqgN8MF3sXAAC4NVeuXFHv3r0VHByszz//XD4+Pjp+/LiSkpJ0/vx5SZLZbJa3t7d9CwWASkRPLADcouHDhys1NVVvv/22TCaTTCaTjhw5IknatWuX+vXrJ3d3dzVu3FjDhg3T6dOnLfdGRkZq7NixGj9+vOrVq6fGjRvrvffe04ULFxQXFycPDw8FBgYqKSnput+/e/duHT58WPPmzVO3bt3k5+en8PBwTZs2Td26dZNUejjB8OHDLbX+cktJSZEkFRYWauLEiWrSpInq1Kmjrl27Ws4BwP8CQiwA3KK3335bYWFheuKJJ5SVlaWsrCw1a9ZM58+fV8+ePRUaGqr09HStWrVKJ0+e1KOPPmp1/+LFi9WgQQOlpaVp7NixGj16tAYPHqzu3bvr+++/13333adhw4bpv//9b5nf37BhQ9WoUUPLly9XcXGxzTVfqzUrK0vjxo1To0aNFBISIkkaM2aMNm3apKVLl+qHH37Q4MGD1bdvXx08ePDWHhYAVBKTYRiGvYsAAEczfPhwnT9/Xl988YWkqz2qHTt21KxZsyzXTJs2TRs2bNDq1astx44fP65mzZpp//79CgoKUmRkpIqLi7VhwwZJUnFxsTw9PTVo0CB9+OGHkqTs7Gz5+Pho06ZNlp7VX5s7d66ee+45mc1mde7cWVFRUYqJiVFAQICkqz2xLVq00Pbt29WxY0erez///HPFxMTom2++UXh4uI4ePaqAgAAdPXpUvr6+lut69eqlLl26aMaMGbf6+ADgltETCwBVZMeOHUpOTpa7u7tlu9bTefjwYct17du3t3w2m83y8vLSHXfcYTnWuHFjSVJOTs51vys+Pl7Z2dn6+OOPFRYWps8++0xt27bVmjVrbljj9u3bNWzYMM2ZM0fh4eGSpJ07d6q4uFhBQUFWtaemplrVDQD2xItdAFBFCgoK1L9/f7322mulzvn4+Fg+16xZ0+qcyWSyOmYymSRJJSUlN/w+Dw8P9e/fX/3799e0adPUp08fTZs2Tb179y7z+uzsbD344IN6/PHHNXLkSKu6zWaztm3bJrPZbHWPu7v7DWsAgOpCiAWASuDq6lpqPGqnTp20YsUK+fv7y8Wlen+7NZlMCgkJ0XfffVfm+UuXLmnAgAEKCQnRm2++aXUuNDRUxcXFysnJ0T333FMd5QJAuTGcAAAqgb+/v7Zs2aIjR47o9OnTKikpUXx8vM6ePavo6Ght3bpVhw8f1urVqxUXF2fzC1i2yMjI0IABA7R8+XLt2bNHhw4dUmJiot5//30NGDCgzHtGjRqlY8eO6Z133tGpU6eUnZ2t7OxsXb58WUFBQYqJidFjjz2mzz//XJmZmUpLS1NCQoL+/e9/V1rdAHAr6IkFgEowceJExcbGqk2bNrp48aIyMzPl7++vjRs36vnnn9d9992nwsJC+fn5qW/fvqpRo/L6EJo2bSp/f3+9/PLLlqm0ru1PmDChzHtSU1OVlZWlNm3aWB1PTk5WZGSkFi1apGnTpulPf/qTfv75ZzVo0EDdunXTAw88UGl1A8CtYHYCAAAAOByGEwAAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACH42LvAgAAAPDbFxcXZ9N1ixYtsuk6QiwAAACqXG5urtX+zz//rB07duh3v/tdhdojxAIAAKDKff7555bPx44dU2RkpK5cuaKgoCDNnDmz3O0xJhYAAADV5vjx44qMjFSTJk20du1azZ8/X3/961/L3Q49sQAAAKgWJ06cUFRUlHx9fZWUlKQ6deroyy+/1P3336/69evr8ccft7ktQiwAAACqXFZWliIjI9W4cWOtWrVKderUkSRFRkZqyZIlGjJkiOrWratHHnnEpvZMhmEYVVkwAAAAEBISIi8vL61evVru7u6lzn/44YcaNWqULl68aFN79MQCAACgynl5eWnVqlVlBlhJeuyxx3TmzBmb26MnFgAAAFWuoKDgugG2IgixAAAAqHK2LHZgGIY++OADm9ojxAIAAKDKDRo06LrniouL9c033+jixYsqKSmxqT3GxAIAAKDK/XKxg1/68ssv9cILL6hWrVqaMmWKze2x2AEAAACq3YYNG9S9e3dFR0frgQce0I8//qjnnnvO5vsJsQAAAKg2u3btUv/+/XXvvfeqbdu2OnTokF577TV5enqWqx1CLAAAAKrcTz/9pNjYWHXs2FEuLi7auXOn3nvvPfn6+laoPV7sAgAAQJWrVauWatSooaefflphYWHXvW7AgAE2tUeIBQAAQJVzcXHRzWKnYRg2z05AiAUAAIDDYUwsAAAAHA7zxAIAAKDa7NmzR/v371deXl6Z52NjY21qh+EEAAAAqHJ5eXl69NFHtWbNGrm4uKhOnTqlrjEMQ+fOnbOpPXpiAQAAUOWmTJminJwcbdu2TR07drzl9uiJBQAAQJULCgrSggUL1LNnz0ppjxe7AAAAUOVOnDihgICASmuPEAsAAIAq17RpU+3bt6/S2mNMLAAAAKrcoEGDNGHCBLm6uurOO++Up6fnLbXHmFgAAABUuf/+97964okntHTp0huu3MWKXQAAAPifk5WVpQMHDig3N7fM8w8++KBN7RBiK8gwDOXn58vDw0Mmk8ne5QAAADgVxsRWUH5+vjw9PZWbm6vbb7/d3uUAAAA4hLS0NH3yySc6cOCATCaTAgMDFRMToy5dupSrHWYnAADABoZh6NKlS7p06dINx/MBuL5JkyYpLCxMixYtUlZWlk6cOKEPPvhA3bp104svvliutgixAADYoLCwUIMHD9bgwYNVWFho73IAh7N8+XK9+eabmjVrls6ePavt27dr+/btOnv2rN555x399a9/1YoVK2xujxALAIANLl26VOZnALaZO3euJkyYoLFjx8psNluOm81mjRkzRn/60580Z84cm9sjxAIAAKDKbd++XQ899NB1zw8cOFDbt2+3uT1CLAAANvjl3JW2zmMJ4P+VlJTI19f3uud9fX1VXFxsc3uEWAAAbJCfn1/mZwC2admypQ4ePHjd8wcPHlTLli1tbq9CIfbYsWMaMWKEfH195erqKj8/P40bN05nzpyxXBMZGSmTySSTyaRatWopKChICQkJZb7RuWnTJpnNZt1///2lzh05ckQmk0mNGjUq9ZtGx44dNXXqVKtjhw4d0ogRI9S8eXO5ubmpSZMmuvfee/Xxxx+rqKjIct212n69LV26tCKPBAAAADfwyCOP6N13373u+QULFujhhx+2ub1yh9gff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W11+b3uGX28CBA8v7SAAAAHATY8eO1T333FPmSl15eXnq0aOHxowZY3N75V7sID4+Xq6urvr6669Vu3ZtSVLz5s0VGhqqli1b6sUXX9T8+fMlSbfddpu8vb0lSXFxcZozZ47WrFmj0aNHW9orKCjQsmXLlJ6eruzsbH3wwQd64YUXSn3v2LFj9eabbyo+Pl6NGjUqdd4wDA0fPlxBQUHauHGjatT4/3zeqlUrRUdHl+oFrlu3rqU+AAAAVJ3bb79dY8eOLfe56ylXiD179qxWr16t6dOnWwLsNd7e3oqJidGyZcs0b948q3OGYejbb7/Vvn371KpVK6tzn376qUJCQhQcHKyhQ4dq/Pjxmjx5cqmlXKOjo7VmzRq98sorZU6/kJGRob1792rJkiVWAfaXWB4WAADAPhYvXmzTdbGxsTZdV64Qe/DgQRmGodatW5d5vnXr1jp37pxOnTolSZo3b57+/ve/6/Lly7py5Ypq1aqlp59+2uqexMREDR06VJLUt29f5ebmKjU1VZGRkVbXmUwmzZw5U/3799eECRNKDfw9cOCAJCk4ONhyLCcnRwEBAZb9v/71r/rjH/9o2Y+Ojraap0yS9uzZo+bNm5f62QoLC60mt87LyyvzGQAAAKC0CRMmWO0XFRXp4sWL8vDwsBwzDMPmEFuhF7tsXW4vJiZGGRkZ2rhxo/r166cXX3xR3bt3t5zfv3+/0tLSFB0dLUlycXHRkCFDlJiYWGZ7ffr00d13362//OUvNn2/l5eXMjIylJGRobp16+ry5ctW59966y3L+Wvb9aZ+SEhIkKenp2Vr1qyZTTUAAADg6r/oX9tOnjype+65R5L0/vvvW46fO3fO5vbKFWIDAwNlMpm0d+/eMs/v3btX9erVU8OGDSVJnp6eCgwM1F133aVPP/1Uc+bM0TfffGO5PjExUUVFRfL19ZWLi4tcXFw0f/58rVixosxBv5I0c+ZMLVu2rNRkuNeGKezfv99yzGw2KzAwUIGBgXJxKd3p7O3tbTl/o+skafLkycrNzbVsx44du8GTAgAAQFkuX76shx56SBkZGXrxxRf1hz/8QevWrSt3O+UKsV5eXurdu7fmzZunixcvWp3Lzs7Wxx9/rCFDhpQ59tTd3V3jxo3TxIkTZRiGioqK9OGHH+qNN96w6gndsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/31KpmE2s3NTbfffrvVBgAAANsVFRXpkUce0bZt27R27VpNnTpVr7zyigYOHKitW7eWq61yz04wZ84cde/eXX369NG0adPUokUL7d69W88++6yaNGmi6dOnX/feUaNG6dVXX9WKFSvk4uKic+fOaeTIkfL09LS67uGHH1ZiYqKeeuqpMtuZPn262rZta9VrajKZtGjRIvXu3Vvh4eGaPHmyWrdurStXrmj9+vU6depUqfGv58+fV3Z2ttUxDw8P1alTp7yPBQAAADdQXFysRx55RFu3blVycrJCQkIkSRMnTtTZs2f1u9/9TuvXr7/uu1e/Vu4xsa1atVJ6eroCAgL06KOPqmXLlnryyScVFRWlTZs2qX79+te9t379+nrsscc0depUJSYmqlevXqUCrHQ1xKanp+uHH34os52goCCNGDFCly5dsjrerVs3bdu2TcHBwYqPj1ebNm3UvXt3LVmyRG+99ZbV1F7S1Wm/fHx8rLbZs2eX95EAAADgJgYPHqzNmzdr3bp1lgB7zYwZM/Twww+rT58+NrdnMmx9SwtW8vLy5OnpqdzcXIYWAIATOHv2rOWt6cWLF9+w0wZAad7e3lq3bp3atGlz3WuGDBmiZcuW2dRehWYnAADA2fxyDvLrzUcO4PpuFmAl6eOPP7a5vXKPiQUAAADKa+vWrTd9eevaCqy2IMQCAACgyo0YMUJ16tS57nSmEiEWAIBKV6tWrTI/A7Ddhg0b1KFDh0ppixALAIAN3Nzc9Nlnn1k+A7AvQiwAADYwmUz0wAL/Q3i9EgAAAA6HEAsAAIAq17Jly0odisNwAgAAAFS5AwcOVGp7hFgAAABUubi4OJuuW7RokU3XsexsBbHsLAAAgO3MZrP69u1rGVJw4cIFrVu3Tv3795ckFRYWKikpSSUlJTa1R4itIEIsAACA7cxms06cOKHGjRtLkjIzM9W+fXvl5+dLkk6dOiVvb28VFxfb1F6Vv9i1YMECeXh4qKioyHKsoKBANWvWVGRkpNW1KSkpMplMOnz4sPz9/TVr1qxS7U2dOlUdO3Ysc9/f318mk+m627UVIK53funSpZX80wMAAKAsv+5HNQyj1LEbqfIxsVFRUSooKFB6erq6desm6epqDd7e3tqyZYsuXbpkmXcvOTlZzZs3V8uWLSv0XVu3brWk9++++04PP/yw9u/fb+kprV27tuXaRYsWqW/fvlb3161bt0LfCwAAgOpV5SE2ODhYPj4+SklJsYTYlJQUDRgwQOvWrdPmzZstPbIpKSmKioqq8Hc1bNjQ8rl+/fqSpEaNGpUZTuvWrStvb+8KfxcAAABujclkuuH+jVTLPLFRUVFKTk627CcnJysyMlIRERGW4xcvXtSWLVtuKcRWpcLCQuXl5VltAAAAsE1wcLBcXP6//7R+/fp64YUXLPtubm7q06ePze1VW4jduHGjioqKlJ+fr+3btysiIkI9evRQSkqKJGnTpk0qLCy0CrHPP/+83N3drbYZM2ZUSk3R0dGl2j569Oh1r09ISJCnp6dla9asWaXUAQAA4Az27NkjLy8vy37dunU1adIky76np6f+85//2NxetcwTGxkZqQsXLmjr1q06d+6cgoKC1LBhQ0VERCguLk6XLl1SSkqKAgIC1Lx5c8t9zz77rOVlrGveeecdrV+//pZreuutt9SrVy+rY76+vte9fvLkyXrmmWcs+3l5eQRZAAAAO6mWEBsYGKimTZsqOTlZ586dU0REhKSrobFZs2b67rvvlJycrJ49e1rd16BBAwUGBloduzbW9VZ5e3uXavtG3NzcKnWpNAAAAFRctQwnkK4OKUhJSVFKSorV1Fo9evRQUlKS0tLS/mfHwwIAAOB/S7UtOxsVFaX4+HhduXLF0hMrSRERERozZowuX75crSH2/Pnzys7Otjrm4eGhOnXqVFsNAAAAqJhq7Ym9ePGiAgMDLSs1SFdDbH5+vmUqruoSFxcnHx8fq2327NnV9v0AAACoOJadrSCWnQUAALDdyy+/bNN1U6ZMsek6QmwFEWIBAABs16lTJ6v9y5cva9++fWrfvr3lmGEY2r59u03tEWIriBALAABQcZmZmWrfvr3y8/MrdH+1jYkFAAAArrnVftRqm53gt+bag2f5WQAA4Ew8PDxkMpnsXQYhtqLOnDkjSazaBQAAnEpOTo4aNmxo7zIIsRV1beWwo0ePytPT087VOJ9ry/4eO3aMMcl2wPO3L56//fDs7Yvnb1/Xnr+rq2uF7v/pp5+s9o8fPy7DMHTkyBGrnl0/Pz+b2iPEVlCNGleHE3t6evI/kh3dfvvtPH874vnbF8/ffnj29sXzt6+KDiUICAiwGgd7rZ2AgADLvmEYKikpsak9QiwAAACqnK1TZ9mKEAsAAIAq98v5YCsDIbaC3NzcNGXKFLm5udm7FKfE87cvnr998fzth2dvXzx/+7rV5//rMbHXY+uYWBY7AAAAQJUzm80yDMMy9vXXGBMLAACA/0nffPONGjRoIOnq7ASPPvqovvvuO0nS2bNn1bNnT5vbIsQCAACgWrRt21aNGzeWJLm7u8tkMlnGyubk5JSrLZadBQAAgMMhxAIAAKDKVfZrWITYCpo7d678/f1Vq1Ytde3aVWlpafYuySmsX79e/fv3l6+vr0wmk7744gt7l+Q0EhISdNddd8nDw0ONGjXSwIEDtX//fnuX5TTmz5+v9u3bWyZ5DwsLU1JSkr3LclozZ86UyWTS+PHj7V2KU5g6dapMJpPVFhISYu+ynMrPP/+soUOHysvLS7Vr19Ydd9yh9PT0crVR1iIJvz5WnoUUCLEVsGzZMj3zzDOaMmWKvv/+e3Xo0EF9+vQp91gOlN+FCxfUoUMHzZ07196lOJ3U1FTFx8dr8+bNWrNmja5cuaL77rtPFy5csHdpTqFp06aaOXOmtm3bpvT0dPXs2VMDBgzQ7t277V2a09m6davefffdSp/zEjfWtm1bZWVlWbZvv/3W3iU5jXPnzik8PFw1a9ZUUlKS9uzZozfeeEP16tUrVztLlixR3bp1LfsBAQHKy8uz7Ht5eWnTpk02t8cUWxXQtWtX3XXXXZozZ44kqaSkRM2aNdPYsWM1adIkO1fnPEwmk1auXKmBAwfauxSndOrUKTVq1Eipqanq0aOHvctxSvXr19ff/vY3jRw50t6lOI2CggJ16tRJ8+bN07Rp09SxY0fNmjXL3mX95k2dOlVffPGFMjIy7F2KU5o0aZI2btyoDRs23FI7b775poYNG6aGDRtWSl30xJbT5cuXtW3bNvXq1ctyrEaNGurVq1e5/vYAOLrc3FxJV4MUqldxcbGWLl2qCxcuKCwszN7lOJX4+Hjdf//9Vn8GoHocPHhQvr6+CggIUExMjI4ePWrvkpzGP//5T3Xu3FmDBw9Wo0aNFBoaqvfee6/c7UyfPl1NmzbVI488oqSkJJvng70eQmw5nT59WsXFxZbpIa5p3LixsrOz7VQVUL1KSko0fvx4hYeHq127dvYux2ns3LlT7u7ucnNz01NPPaWVK1eqTZs29i7LaSxdulTff/+9EhIS7F2K0+natas++OADrVq1SvPnz1dmZqbuuece5efn27s0p/Djjz9q/vz5atWqlVavXq3Ro0fr6aef1uLFi8vVTk5Ojv71r3/Jzc1N999/v/z8/PTnP/9Zhw8frlBdzBMLoNzi4+O1a9cuxqRVs+DgYGVkZCg3N1fLly9XbGysUlNTCbLV4NixYxo3bpzWrFmjWrVq2bscp9OvXz/L5/bt26tr167y8/PTp59+ynCaalBSUqLOnTtrxowZkqTQ0FDt2rVLCxYsUGxsrM3tmM1m9e7dW02aNNFnn32md955Rx999JHuuOMOdevWTSNHjtTDDz9s8/9j9MSWU4MGDWQ2m3Xy5Emr4ydPnpS3t7edqgKqz5gxY/Svf/1LycnJatq0qb3LcSqurq4KDAzUnXfeqYSEBHXo0EFvv/22vctyCtu2bVNOTo46deokFxcXubi4KDU1Ve+8845cXFxUXFxs7xKdSt26dRUUFKRDhw7ZuxSn4OPjU+ovy61bt76lIR2GYeihhx7SihUrlJ2drejoaC1cuFC+vr42t0GILSdXV1fdeeedWrt2reVYSUmJ1q5dy9g0/KYZhqExY8Zo5cqVWrdunVq0aGHvkpxeSUmJCgsL7V2GU7j33nu1c+dOZWRkWLbOnTsrJiZGGRkZMpvN9i7RqRQUFOjw4cPy8fGxdylOITw8vNSUigcOHJCfn1+ltF9cXCzDMGQYhlxcbB8kwHCCCnjmmWcUGxurzp07q0uXLpo1a5YuXLiguLg4e5f2m1dQUGD1N+/MzExlZGSofv36at68uR0r++2Lj4/XJ598oi+//FIeHh6WMeCenp6qXbu2nav77Zs8ebL69eun5s2bKz8/X5988olSUlK0evVqe5fmFDw8PEqN/65Tp468vLwYF14NJk6cqP79+8vPz08nTpzQlClTZDabFR0dbe/SnMKECRPUvXt3zZgxQ48++qjS0tK0cOFCLVy48JbaXb58uT755BOtWrVK99xzj8aOHVu+GYcMVMjs2bON5s2bG66urkaXLl2MzZs327skp5CcnGxIKrXFxsbau7TfvLKeuyRj0aJF9i7NKYwYMcLw8/MzXF1djYYNGxr33nuv8fXXX9u7LKcWERFhjBs3zt5lOIUhQ4YYPj4+hqurq9GkSRNjyJAhxqFDh+xdllP56quvjHbt2hlubm5GSEiIsXDhwnK3cfnyZSMpKcn4wx/+YNSoUcPw9/c3Xn75ZePo0aMVqol5YgEAAFDlvLy89N///lcPPfSQRo4cqXvvvfeW2iPEAgAAoMrNmTNHQ4cOtVq161YQYgEAAOBweLELAAAAVc6WWW0Mw9CRI0dsao+eWAAAAFQ5s9msV155RR4eHmWeLygo0J///Gebl6MlxAIAAKDKmc1mnThxQo0bNy7zfE5Ojry9vW0OsSx2AAAAgCrn6uqqK1euXPf85cuXy7WsMyEWAAAAVc7b21uZmZnXPX/kyJHr9tKWhRALAACAKtetWzf94x//uO75f/zjH+rSpYvN7RFiAcAJHDlyRCaTSRkZGfYuBYCTGj16tN5//3299NJLOnv2rOX4uXPnNHXqVP3973/XU089ZXN7hFgAqIDhw4dbrfEdGRmp8ePH262ezMxM/eEPf5Cvr69q1aqlpk2basCAAdq3b58kqVmzZsrKylK7du3sViMA59ajRw/NnDlTM2fOVMOGDeXt7S0fHx81aNBA06dP17Rp0xQVFWVze8wTCwAO7sqVK+rdu7eCg4P1+eefy8fHR8ePH1dSUpLOnz8v6epbwd7e3vYtFIDTmzhxogYNGqQvvvhCmZmZMgxD/v7+GjBggFq1alW+xgwAQLnFxsYaAwYMsHyWZLVlZmYahmEYO3fuNPr27WvUqVPHaNSokTF06FDj1KlTlnYiIiKMMWPGGOPGjTPq1q1rNGrUyFi4cKFRUFBgDB8+3HB3dzdatmxp/Oc//7luLdu3bzckGUeOHLnuNZmZmYYkY/v27detWZKRnJxsGIZhXLp0yfjTn/5k+Pr6GrfddpvRpUsXyzkA+F/AcAIAuEVvv/22wsLC9MQTTygrK0tZWVlq1qyZzp8/r549eyo0NFTp6elatWqVTp48qUcffdTq/sWLF6tBgwZKS0vT2LFjNXr0aA0ePFjdu3fX999/r/vuu0/Dhg3Tf//73zK/v2HDhqpRo4aWL1+u4uJim2u+VmtWVpbGjRunRo0aKSQkRJI0ZswYbdq0SUuXLtUPP/ygwYMHq2/fvjp48OCtPSwAqCQsdgAAFTB8+HCdP39eX3zxhaSrY2I7duyoWbNmWa6ZNm2aNmzYoNWrV1uOHT9+XM2aNdP+/fsVFBSkyMhIFRcXa8OGDZKk4uJieXp6atCgQfrwww8lSdnZ2fLx8dGmTZvUrVu3MuuZO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKsvdrVo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYfl2LV5E3Nycq77XfHx8crOztbHH3+ssLAwffbZZ2rbtq3WrFlzwxq3b9+uYcOGac6cOQoPD5ck7dy5U8XFxQoKCrKqPTU11apuALAnXuwCgCpSUFCg/v3767XXXit1zsfHx/K5Zs2aVudMJpPVMZPJJEk3XYrRw8ND/fv3V//+/TVt2jT16dNH06ZNU+/evcu8Pjs7Ww8++KAef/xxjRw50qpus9msbdu2yWw2W93j7u5+wxoAoLoQYgGgEri6upYaj9qpUyetWLFC/v7+cnGp3t9uTSaTQkJC9N1335V5/tKlSxowYIBCQkL05ptvWp0LDQ1VcXGxcnJydM8991RHuQBQbgwnAIBK4O/vry1btujIkSM6ffq0SkpKFB8fr7Nnzyo6Olpbt27V4cOHtXr1asXFxdn8ApYtMjIyNGDAAC1fvlx79uzRoUOHlJiYqPfff18DBgwo855Ro0bp2LFjeuedd3Tq1CllZ2crOztbly9fVlBQkGJiYvTYY4/p888/V2ZmptLS0pSQkKB///vflVY3ANwKemIBoBJMnDhRsbGxatOmjS5evKjMzEz5+/tr48aNev7553XfffepsLBQfn5+6tu3r2rUqLw+hKZNm8rf318vv/yyZWWua/sTJkwo857U1FRlZWWpTZs2VseTk5MVGRmpRYsWadq0afrTn/6kn3/+WQ0aNFC3bt30wAMPVFrdAHArmJ0AAAAADofhBAAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcFzsXQAAAAB+++Li4my6btGiRTZdR4gFAABAlcvNzbXav3DhgtatW6f+/ftXqD2TYRhGZRQGAAAA2CozM1Pt27dXfn5+he5nTCwAAACq3a32oxJiAQAA4HAIsQAAAHA4vNgFAACAKpeammq1//PPP6u4uFgpKSkymUyW4xERETa1x4tdAAAAqHJms1mGYVgF1l8zDEMlJSU2tUdPLAAAAKrcuXPnKrU9emIBAADgcHixCwAAANVm6dKlGjhwoNq0aaM2bdpo4MCBWrZsWbnboScWAAAAVa6kpESDBw/WF198oVatWql169YymUzau3ev9u/fr4cffljLli1TjRq29bEyJhYAAABVbtasWUpNTdU///lP3X///Vbn/vOf/2jYsGF6++23NWHCBJvaoycWAAAAVa59+/YaP368RowYUeb5RYsW6a233tIPP/xgU3uEWAAAAFS52rVra9++ffLz8yvz/E8//aSQkBBdvHjRpvZ4sQsAAABVrlatWsrNzb3u+by8PNWuXdvm9gixAAAAqHJhYWGaO3fudc/PmTNH3bp1s7k9XuwCAABAlXvppZcUERGh06dP609/+pPatGkjSdq7d6/eeOMN/fOf/1RKSorN7TEmFgAAANXiq6++0siRI3X69Gmr4w0aNNDf//53Pfjggza3RYgFAABAtbl48aLWrFmjAwcOSJKCgoLUu3fvco2HlQixAAAA+B+xf/9+BQcH23QtY2IBAABgF4cPH1ZycrJly87OVklJiU33EmIBAABQLY4cOWIJrCkpKTp+/Ljc3d119913a/z48YqMjLS5LYYTAAAAoMq1aNFCP/30k+rUqaPw8HBFRUUpMjJSd911l2rUKP+sr4RYAAAAVDkXFxe5u7srLi5OvXv31j333CMPD48Kt0eIBQAAQJXLyclRamqqUlNTlZKSogMHDig0NFSRkZGKiorS3XffLXd3d5vbI8QCAACg2p05c0YpKSmWULt//36FhoZq8+bNNt3Pi10AAACodl5eXgoPD1dJSYlKSkqUm5urHTt22Hw/PbEAAACoFseOHVNqaqrWr1+v9evX66efflLXrl3Vs2dPRUZGqlu3bnJ1dbWpLUIsAAAAqlxAQIBOnDihrl27KjIyUj179lRYWJjNofXXyj+fAQAAAFBOR48elclkkmEYMgzDMoygouiJBQAAQJU7efKkUlJSLIsdHDp0SK6ururSpYuioqIUERGh7t27y83Nzab2CLEAAACodj///LPVkrM//fSTXF1ddfHiRZvuJ8QCAADA7o4ePaq1a9cqLi7OpusJsQAAAHA4zBMLAACAKmdLD6thGPrggw9sao+eWAAAAFQ5s9msvn37XvfFrcLCQiUlJdk8YwEhFgAAAFXObDbrxIkTaty4cZnnT506JW9vbxUXF9vUHvPEAgAAoMq5uLjcMKAWFRXJbDbb3B4hFgAAAFWuXr16Onny5HXPnzx5UvXr17e5PUIsAAAAqlyHDh2UlJR03fOrVq1S+/btbW6PEAsAAIAqFxMTo5kzZ2rdunWlziUnJ2vGjBmKjo62uT1e7AIAAEC1GDhwoP75z3/qjjvuUOvWrWUymbRv3z7t2LFDv/vd7/TVV1/JZDLZ1BYhFgAAANXCMAz94x//0PLly5WZmSnDMOTv769BgwZp+PDhqlHD9kEChFgAAAA4HMbEAgAAwOGw7CwAAACqXIsWLW56jWEYOnLkiE3tMZwAAAAAVc5sNuuVV16Rh4eHJOn06dP629/+ptdee02SVFBQoD//+c8sOwsAAID/Hb9edvbHH39Uhw4dlJ+fL0nKycmRt7e3zSGWMbEAAABwOIRYAAAAOBxCbAUZhqG8vDwxGgMAAKBifr2wga0LHUiE2ArLz8+Xp6enZRwHAAAArm/UqFG67bbbLPtNmjRRUlKSZd/Dw0MJCQk2t8eLXRWUl5cnT09P5ebm6vbbb7d3OQAAAE6FeWIBAABQ5X766SebrvPz87PpOkIsAAAAqlxAQIAMw5DJZLJ6p+jX+7ZOsUWIBQAAQJXbvn17mccNw9CSJUs0e/Zsy0IItiDEAgAAoMq1b9++1LGvv/5akydP1qFDh/Tcc89p4sSJNrdHiAUAAEC12rp1qyZNmqRvv/1WTz75pFavXq0GDRqUq40KTbF17NgxjRgxQr6+vnJ1dZWfn5/GjRunM2fOWK6JjIyUyWSSyWRSrVq1FBQUpISEhDLnVd20aZPMZrPuv//+UueOHDkik8mkRo0alZrOqmPHjpo6darVsUOHDmnEiBFq3ry53Nzc1KRJE9177736+OOPVVRUZLnuWm2/3pYuXVqRRwIAAICbOHjwoIYMGaLu3bvLx8dH+/bt0+zZs8sdYKUKhNgff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W1y9atEhZWVlW28CBA8v7SAAAAHATTz31lNq2bavc3Fxt3bpVH330kVq0aFHh9so9T2y/fv20a9cuHThwQLVr17Ycz87OVsuWLfXYY49p/vz5ioyMVMeOHTVr1izLNXfeeaf8/Pz0+eefW44VFBTIx8dH6enpmjJlitq3b68XXnjBcv7IkSNq0aKFnn32Wc2fP1+HDx9Wo0aNJF3tiR04cKCmTp0qwzDUtm1b3XbbbUpLS1ONGqXz+bU34qSrPbErV66scGhlnlgAAADbmc1m1apVS8HBwTdc8fR6L4D9WrnGxJ49e1arV6/W9OnTrQKsJHl7eysmJkbLli3TvHnzrM4ZhqFvv/1W+/btU6tWrazOffrppwoJCVFwcLCGDh2q8ePHa/LkyaWWHYuOjtaaNWv0yiuvaM6cOaVqy8jI0N69e7VkyZIyA6xUvqXMfq2wsFCFhYWW/by8vAq3BQAA4GymTJlSqe2VK8QePHhQhmGodevWZZ5v3bq1zp07p1OnTkmS5s2bp7///e+6fPmyrly5olq1aunpp5+2uicxMVFDhw6VJPXt21e5ublKTU1VZGSk1XUmk0kzZ85U//79NWHCBLVs2dLq/IEDByRJwcHBlmM5OTkKCAiw7P/1r3/VH//4R8t+dHS0zGazVTt79uxR8+bNS/1sCQkJevnll8v8uQEAAHBjL730UqW2V6EXu2wdgRATE6OMjAxt3LhR/fr104svvqju3btbzu/fv19paWmKjo6WJLm4uGjIkCFKTEwss70+ffro7rvv1l/+8hebvt/Ly0sZGRnKyMhQ3bp1dfnyZavzb731luX8tc3X17fMtiZPnqzc3FzLduzYMZtqAAAAQOUrV09sYGCgTCaT9u7dq4ceeqjU+b1796pevXpq2LChJMnT01OBgYGSrg4bCAwMVLdu3dSrVy9JV3thi4qKrIKjYRhyc3PTnDlz5OnpWeo7Zs6cqbCwMD377LNWx68NU9i/f79CQ0MlXR17ce37XVxK/6je3t6W8zfj5uYmNzc3m64FAABA1SpXT6yXl5d69+6tefPm6eLFi1bnsrOz9fHHH2vIkCFljj11d3fXuHHjNHHiRBmGoaKiIn344Yd64403rHpCd+zYIV9fXy1ZsqTMGrp06aJBgwZp0qRJVsdDQ0MVEhKi119/3eblygAAAOCYyr3YwZw5c9S9e3f16dNH06ZNU4sWLbR79249++yzatKkiaZPn37de0eNGqVXX31VK1askIuLi86dO6eRI0eW6nF9+OGHlZiYqKeeeqrMdqZPn662bdta9a6aTCYtWrRIvXv3Vnh4uCZPnqzWrVvrypUrWr9+vU6dOlVq/Ov58+eVnZ1tdczDw0N16tQp72MBAABANSr3mNhWrVopPT1dAQEBevTRR9WyZUs9+eSTioqK0qZNm1S/fv3r3lu/fn099thjmjp1qhITE9WrV68yhww8/PDDSk9P1w8//FBmO0FBQRoxYoQuXbpkdbxbt27atm2bgoODFR8frzZt2qh79+5asmSJ3nrrLY0ePdrq+ri4OPn4+Fhts2fPLu8jAQAAQCXYv3+/zdeWe55YXMU8sQAAALfm8OHDSk5OtmzZ2dk2Dwst93ACAAAAoCKOHDliCawpKSk6fvy43N3ddffdd2v8+PGlpli9EUIsAAAAqlyLFi30008/qU6dOgoPD1d8fLwiIyN11113XXehqhshxAIAAKDKHTt2TLfffrvi4uLUu3dv3XPPPfLw8KhwexVa7AAAAAAojxMnTui9997TlStX9Nxzz8nLy0tdu3bV888/r1WrVqmgoKBc7fFiVwXxYhcAAEDFnTlzRikpKUpNTVVKSoplwarNmzfbdD/DCeBwDMNQYWGhvcsA7OKXv/7d3NzKXFwG+K3j1/5vg5eXl8LDw1VSUqKSkhLl5uZqx44dNt9PiIXDKSws1ODBg+1dBgDATj777DPVqlXL3mWgAo4dO6bU1FStX79e69ev108//aSuXbuqZ8+e+sc//qFu3brZ3BYhFgAAAFUuICBAJ06cUNeuXRUZGal3331XYWFhcnV1rVB7hFg4tNmvPiE315r2LgOoNoWXr2jsX96TxK9/OJdf/tqHYzp69Khq1qwpwzBkGIZlGEFFEWJvEe/F2Zeba025ufGHOJwTv/7hTH755y1/9jqmn3/+WSkpKUpOTtayZcs0ffp0ubq6qkuXLoqKilJERIS6d+8uNzc3m9ojxN4iXjACAKDqXb5SZPlcWFio2rVr27EaVETjxo01ZMgQ/V97dx7U1PX2AfwbAgEUBBcIIEtcitQqoKKojLKIWyvitKOORQxorbVxQes6OhV/MmBra9W64liq4zhWrVq7oLWa4C6KUrepVcBxA8EphkUIGPL+4ZDXFNSwJLeY72cmM7kn9548nkmbJ4fnnjN+/HgAz5Pa2t27duzYgRUrVkAikaCiosKo/ky+TuzmzZvh6OiIZ8/+/8NXVlYGGxubOluLqVQqiEQi5OTkQCaTYc2aNXX6S0xMRGBgYL3HMpkMIpHopY+4uDgAeOnru3fvbuZ/PRERERHVp2PHjpg4cSK2bduG3Nxc5OXlYePGjUZfb/KZ2PDwcJSVleHixYv6O85OnjwJNzc3nD9/HpWVlfo7DJVKJby9vdGlS5dGvdeFCxeg1WoBAGfOnMEHH3yAmzdv6tdxffFXW1paGkaMGGFwvbOzc6Pel4iIiIiaxtvbG/Hx8Uafb/Iktlu3bnB3d4dKpdInsSqVCtHR0Th+/DjOnTunn5FVqVQIDw9v9Hu5uLjon7dr1w4A4OrqWm9y6uzsDDc3t0a/B2svWgAAEfNJREFUFxEREREZz9gENS0tzajzzFITGx4eDqVSiUWLFgF4PuO6YMECaLVaKJVKhIWFoaKiAufPn8fkyZPNEVKzqaysRGVlpdBhWJQXx5vF/URERC2DWq02OC4vL8fx48cRFRXVqP7MlsQmJCTg2bNnqKiowOXLlxEaGorq6mps3rwZAHD27FloNBqDmdiFCxdi6dKlBn1VVVWhe/fuTY5pwoQJEIvFBm03btyAt7d3vedrNBqDm7hKSkoAAB9//DFsbHh3sFCqqp/Bzq5x68sRERGR+ezfv9/gOC8vD/7+/nXajWWWJDYsLAzl5eW4cOECiouL4evrCxcXF4SGhiI+Ph6VlZVQqVTo3LmzQRI5f/58/c1YtdatW4cTJ040OaZvvvkGkZGRBm0eHh4vPT8lJQXLly9v8vsSERERUdP/mmqWJLZr167w9PSEUqlEcXExQkNDATxPGr28vHDmzBkolUpEREQYXNehQwd07drVoK221rWp3Nzc6vT9KosXL8bcuXP1xyUlJfDy8kJqaipcXV2bJSYyTmVlJWJjYwEAEhuuEkdERGSJzJYBhIeHQ6VSobi4GPPnz9e3Dx48GOnp6cjMzMT06dPNFU6D2dra1rv4rp2dHfdvFpBIJBI6BCIiIhKAWZNYhUKB6upq/UwsAISGhmLGjBmoqqpq0soEDfXkyRMUFBQYtDk6OqJ169Zmi4GIiIjIUmRkZBgcP3jwAFqtVr9PQK0X88RXMWsSW1FRAT8/P0ilUn17aGgoSktL9UtxmUt9yzykpKToV1AgIiIiouYTEREBnU5X56+oQ4YM0T/X6XSoqakxqj+zJbEymazeAl4fH5962+/cuVNvP4mJiUhMTHzpca2wsLCXFgw357JMxu7vS0RERI334j0Q/O5tmYqLi5u1P94V00SsySQiIjK9F79v+d3bMtXuoNpcmMRSi6apqhY6BCKzevEzz88/WRJ+3lu+f9fEvoyxNbEiHbc8apSSkhI4OTlBrVY3+y8LerXKykqMHTtW6DCIiEgge/fu5cpALZBYLK63JvZF/8maWCIiIiKyXM1dE8uZ2EZSq9VwdnbGvXv3OBNrZjqdzmALYCJL8uLn39bWlrWBZJH42ReWo6OjSca/tLQUs2bNQlpamlHnM4ltpNzcXHTp0kXoMIiIiIjMqrCwEC4uLibp183NjeUEpla7/e3du3fh5OQkcDSWp3bbX86EC4PjLyyOv3A49sLi+AurdvwlEonJ3qMhM7xMYhvJysoKAODk5MT/kATUpk0bjr+AOP7C4vgLh2MvLI6/sExZytGQAgEmsURERERkcrWrEzQXJrFEREREZHIHDhx45etqtRpyudzo/pjENpKtrS2WLVvGre8EwvEXFsdfWBx/4XDshcXxF1ZTx3/06NGvfL2wsLBB/XF1AiIiIiISXENXJ7AycTxERERERK8lFoshk8mMPp8zsURERETU4rAmloiIiIhMLjw8/LXn6HQ6qFQqo/rjTCwRERERmZxYLMbUqVPRqlUrAM9XI9i5cycUCgUA4OnTp0hNTWVNrKlt2LABMpkMdnZ2CA4ORmZmptAhWYQTJ04gKioKHh4eEIlEOHjwoNAhWYyUlBT07dsXjo6OcHV1xZgxY3Dz5k2hw7IYmzZtgr+/v36R9wEDBiA9PV3osCzWypUrIRKJkJCQIHQoFiExMREikcjg4efnJ3RYFuXBgweYOHEi2rdvD3t7e/Ts2RMXL15scD/Lly/H6tWrsXr1aixZsgQSiUR//L///a9BfTGJbYQffvgBc+fOxbJly3Dp0iUEBARg+PDhDV4aghquvLwcAQEB2LBhg9ChWJyMjAwoFAqcO3cOR48eRXV1NYYNG4by8nKhQ7MInp6eWLlyJbKysnDx4kVEREQgOjoa169fFzo0i3PhwgVs2bIF/v7+QodiUd555x3k5+frH6dOnRI6JItRXFyMkJAQ2NjYID09HTdu3MDXX3+Ntm3bChoXywkaITg4GH379sX69esBADU1NfDy8sLMmTOxaNEigaOzHCKRCAcOHMCYMWOEDsUiFRUVwdXVFRkZGRg8eLDQ4Vikdu3aYdWqVZgyZYrQoViMsrIy9O7dGxs3bkRSUhICAwOxZs0aocN64yUmJuLgwYPIzs4WOhSLtGjRIpw+fRonT55sUj9isRgPHz6EVCoFAOTm5iIgIAClpaUAuMSWyVVVVSErKwuRkZH6NisrK0RGRuLs2bMCRkZkXmq1GsDzRIrMS6vVYvfu3SgvL8eAAQOEDseiKBQKvPfeewbfAWQet27dgoeHBzp37oyYmBjcvXtX6JAsxqFDhxAUFISxY8fC1dUVvXr1wtatW5ulb5FI9MrjV2ES20CPHz+GVqvV/4qoJZVKUVBQIFBUROZVU1ODhIQEhISEoEePHkKHYzGuXr0KBwcH2Nra4pNPPsGBAwfQvXt3ocOyGLt378alS5eQkpIidCgWJzg4GN9//z0OHz6MTZs2IS8vD4MGDdLP4JFp5ebmYtOmTXjrrbdw5MgRTJ8+HbNmzcL27dsb1M/w4cMNdvuSSqXYsmWL/rhVq1aYNm2a0f1xiS0iajCFQoFr166xJs3MunXrhuzsbKjVauzbtw9yuRwZGRlMZM3g3r17mD17No4ePQo7Ozuhw7E4I0eO1D/39/dHcHAwfHx8sGfPHpbTmEFNTQ2CgoKQnJwMAOjVqxeuXbuGzZs3Qy6XG93Pb7/9ZnDcunVrTJgwQX/s4OCAjRs3Gt0fZ2IbqEOHDhCLxXj06JFB+6NHj+Dm5iZQVETmM2PGDPzyyy9QKpXw9PQUOhyLIpFI0LVrV/Tp0wcpKSkICAjA2rVrhQ7LImRlZaGwsBC9e/eGtbU1rK2tkZGRgXXr1sHa2hparVboEC2Ks7MzfH19cfv2baFDsQju7u51fiy//fbbgpd0MIltIIlEgj59+uDYsWP6tpqaGhw7doy1afRG0+l0mDFjBg4cOIDjx4+jU6dOQodk8WpqaqDRaIQOwyIMGTIEV69eRXZ2tv4RFBSEmJgYZGdnQywWCx2iRSkrK0NOTg7c3d2FDsUihISE1FlS8e+//4aPj49AET3HcoJGmDt3LuRyOYKCgtCvXz+sWbMG5eXliI+PFzq0N15ZWZnBL++8vDxkZ2ejXbt28Pb2FjCyN59CocCuXbvw008/wdHRUV8D7uTkBHt7e4Gje/MtXrwYI0eOhLe3N0pLS7Fr1y6oVCocOXJE6NAsgqOjY53679atW6N9+/asCzeDefPmISoqCj4+Pnj48CGWLVsGsVhs8KdoMp05c+Zg4MCBSE5Oxrhx45CZmYnU1FSkpqYKG5iOGuXbb7/VeXt76yQSia5fv366c+fOCR2SRVAqlToAdR5yuVzo0N549Y07AF1aWprQoVmEyZMn63x8fHQSiUTn4uKiGzJkiO73338XOiyLFhoaqps9e7bQYViE8ePH69zd3XUSiUTXsWNH3fjx43W3b98WOiyL8vPPP+t69Oihs7W11fn5+elSU1OFDknHdWKJiIiISHBcJ5aIiIiIWiSuE0tERERELU5DCgR4YxcRERERmdzrNkeo3QnSWKyJJSIiIiKTe9025TqdDmq12uiaWCaxRERERCS4oqIiSKVS3thFRERERC1HQ+dVmcQSERER0X8CVycgIiIDd+7cgUgkQnZ2ttChEBHVy8HBAaGhoUafzySWiKgR4uLiMGbMGP1xWFgYEhISBIsnLy8PH374ITw8PGBnZwdPT09ER0fjr7/+AgB4eXkhPz+fW6QS0X+SRqPB559/jlOnThl9DZfYIiJq4aqrqzF06FB069YN+/fvh7u7O+7fv4/09HQ8efIEACAWi+Hm5iZsoERE9cjKyoJcLodGo4FKpTL6Os7EEhE1UVxcHDIyMrB27VqIRCKIRCLcuXMHAHDt2jWMHDkSDg4OkEqliI2NxePHj/XXhoWFYebMmUhISEDbtm0hlUqxdetWlJeXIz4+Ho6OjujatSvS09Nf+v7Xr19HTk4ONm7ciP79+8PHxwchISFISkpC//79AdQtJ4iLi9PH+uKj9gtEo9Fg3rx56NixI1q3bo3g4OAGfbkQEb2OVqvF8uXLERISgoiICFy5cgUDBw40+nomsURETbR27VoMGDAAU6dORX5+PvLz8+Hl5YUnT54gIiICvXr1wsWLF3H48GE8evQI48aNM7h++/bt6NChAzIzMzFz5kxMnz4dY8eOxcCBA3Hp0iUMGzYMsbGxePr0ab3v7+LiAisrK+zbtw9ardbomGtjzc/Px+zZs+Hq6go/Pz8AwIwZM3D27Fns3r0bV65cwdixYzFixAjcunWraYNFRBZLLBbDyspK/7CxscGKFSuwZ88erFu3Dvb29g3qj+vEEhE1QlxcHJ48eYKDBw8CeD6jGhgYiDVr1ujPSUpKwsmTJ3HkyBF92/379+Hl5YWbN2/C19cXYWFh0Gq1OHnyJIDnMxNOTk54//33sWPHDgBAQUEB3N3dcfbsWf3M6r9t2LABCxYsgFgsRlBQEMLDwxETE4POnTsDeD4T26lTJ1y+fBmBgYEG1+7fvx8xMTH4448/EBISgrt376Jz5864e/cuPDw89OdFRkaiX79+SE5OburwEZEFOnTokMGxVqvFypUrUVRUhG3btiE8PLxB/bEmlojIRP78808olUo4ODjUeS0nJwe+vr4AAH9/f327WCxG+/bt0bNnT32bVCoFABQWFr70vRQKBSZNmgSVSoVz585h7969SE5OxqFDhzB06NCXXnf58mXExsZi/fr1CAkJAQBcvXoVWq1WH18tjUaD9u3bG/EvJyKqa/To0XXaoqOjkZycjHfffReTJ0/GqlWr0KpVK6P6YxJLRGQiZWVliIqKwhdffFHnNXd3d/1zGxsbg9dEIpFBW+26ia/bxcbR0RFRUVGIiopCUlIShg8fjqSkpJcmsQUFBRg9ejQ++ugjTJkyxSBusViMrKwsiMVig2vqS8iJiBrLysoKS5cuxahRoxAbG4sePXogNzfXqGuZxBIRNQOJRFKnHrV379748ccfIZPJYG1t3v/dikQi+Pn54cyZM/W+XllZiejoaPj5+WH16tUGr/Xq1QtarRaFhYUYNGiQOcIlIgsXGBiIS5cuYcmSJUZfwxu7iIiagUwmw/nz53Hnzh08fvwYNTU1UCgU+OeffzBhwgRcuHABOTk5OHLkCOLj442+AcsY2dnZiI6Oxr59+3Djxg3cvn0b27Ztw3fffYfo6Oh6r5k2bRru3buHdevWoaioCAUFBSgoKEBVVRV8fX0RExODSZMmYf/+/cjLy0NmZiZSUlLw66+/NlvcREQvsrGxwZdffmn0+ZyJJSJqBvPmzYNcLkf37t1RUVGBvLw8yGQynD59GgsXLsSwYcOg0Wjg4+ODESNGwMqq+eYQPD09IZPJsHz5cv1SWrXHc+bMqfeajIwM5Ofno3v37gbtSqUSYWFhSEtLQ1JSEj777DM8ePAAHTp0QP/+/TFq1Khmi5uILEtERARet56ATqczejk/rk5ARERERCY3d+5c/XO1Wo2dO3dCoVDo254+fYrU1NTX1v/XYhJLRERERGaVm5uLgIAAlJaW6tuKiooglUqNTmJZE0tEREREZmVvb4+qqiqDhLW8vBy2trZG98EkloiIiIjMyt3dHdbW1ti1a5e+bfv27foNWozBG7uIiIiIyOw+/fRTyOVyfPXVV6ioqMCtW7ewYcMGo69nTSwRERERCWLz5s04duwYJBIJRo8ejfHjxxt9LZNYIiIiImpxWE5ARERERCa3fft2o86Ty+VGnceZWCIiIiIyObFYjDZt2kAkEgEAampqUFJSAmdnZwDPNzpQq9VcJ5aIiIiI/jvEYjEePnwIqVQKAMjLy0NAQABKSkoAPF8n1s3NzehtubnEFhERERGZnU6nM9iG9t/Hr8MkloiIiIhaHCaxRERERGRyzV3ByiSWiIiIiEyu9oauWvb29hg8eLDB63Z2dsb3xxu7iIiIiMjUCgsL4eLiUieZbSwmsURERETU4rCcgIiIiIhaHCaxRERERNTiMIklIiIiohaHSSwRERERtThMYomIiIioxWESS0REREQtDpNYIiIiImpxmMQSERERUYvzf6ZZxmSdoxyiAAAAAElFTkSuQmCC", + "text/plain": [ + "
                      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size']\n", + "\n", + "g = sns.catplot(\n", + " data=pumpkins,\n", + " x=\"Item Size\", y=\"Color\", row='Variety',\n", + " kind=\"box\", orient=\"h\",\n", + " sharex=False, margin_titles=True,\n", + " height=1.8, aspect=4, palette=palette,\n", + ")\n", + "# Defining axis labels \n", + "g.set(xlabel=\"Item Size\", ylabel=\"\").set(xlim=(0,6))\n", + "g.set_titles(row_template=\"{row_name}\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9+0lEQVR4nO3deXQc1Z33/3dV9aatZcnaF1tesTEYL3gLdmzAxDAOkEDCPgES8jwTiJMZMkxgzu8MhFmAMUlIgkOWYSDJQIAwLE54MAEvbLHBbGFzAjZeZFuLV+1qqZffH1dSd6m7Zcu2UBs+r3N0wP3tunVv1e263666V7JisVgMERERkQxkD3cFRERERNJRoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLM9wV+BoRKNRdu/eTV5eHpZlDXd1RERE5DDEYjFaWlqoqKjAtge+Z3JcJyq7d++murp6uKshIiIiR6C2tpaqqqoB33NcJyp5eXmAaWgwGBzm2oiIiMjhaG5uprq6um8cH8hxnaj0Pu4JBoNKVERERI4zhzNtQ5NpRUREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0J/165dfPe73+Xpp5+mvb2d8ePHc99993HqqacOd9U+2SIhqP1fOPg25E2E0ZeAJzseb3wR6laBNwg1l0N2wh+Nat0G238L4Tao/DwUzY3HultNrHULFMyA6i+C7TWxWBR2r4I9L0KgDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHoKMOihdAxdlg9eTZ0W6ofRwOvAG542D0peDNjW+7dwPs+gN4ckwstyYea99pyu1uhvKzoWRBPBZuh+0PQ8tfYcRUqL4QHH9PW2JQ/xw0rAF/sWlLoGSwZ0FERA7BisViseHa+YEDB5g+fTqnn3463/jGNyguLubDDz9k3LhxjBs37pDbNzc3k5+fT1NTk/7Wz2B07oXVi6DpvfhrOTWweB1kj4JXroGP/jses31w2sNQ/QXY9hCs/1uIhePxCdfBrLuhZTM8twg6dsVjBdPhzNXg5MAL55vkp5c3HxY9DcXzYNOd8OYN7npO+0848QaTaKw9G7qb4rHyJfDZlRBph9VnmiSlV1YlnLkWghPgtWXwwd3xmOWBeb+Gmkth55Pw0kUQ7YrHx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kUpD7mIiMQNZvwe1kTlxhtv5OWXX+bFF188ou2VqByhjd+ED1ckvz7qyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4dzM8f647qep16gqTSGxanhyrWGr2u3pRcsyTB+dtgacmmzs1/S18CrbeDzt+lxybcB2MnAUbrkqO5Y6Fcz+M3+kREZGUBjN+D+sVdeXKlZx66ql8+ctfpqSkhOnTp/PLX/4y7ftDoRDNzc2uHzkCiXcCXK8/CbueTB0L7YMP70mdpIB5jFT3dPr97UxTbtN7sOW/k5MUMK9tvjd1knKocuuehh3/mzoWbjFtSZWk9JW7Mk3s8fT7bP0IDr6TOiYiIkdkWBOVjz76iHvuuYcJEybwzDPP8I1vfINvfetb/OpXv0r5/ttuu438/Py+n+rq6o+5xp8QvfMs+rP95iftdtkDxAJgedPH0u0TwMlKH/McYp/pyrW84AkMsO0hyrV9g4/BwMdPREQGbVgTlWg0yowZM/iP//gPpk+fzv/5P/+Hr3/96/zsZz9L+f6bbrqJpqamvp/a2tqPucafEDWXp3n9MvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7rJgHoz/abWPGC5Nihyh11EdRcYerWX6DMtCWnJvW2NQOUW3N5+ljBDMiflDomIiJHZFgTlfLyck488UTXa5MnT2bHjh0p3+/3+wkGg64fOQJT/hkqPu9+rXgBTLvDrOCZdkd8pQ6YgX3+I+YOxYJHwV8Uj9k+mHkXFJwCM38II+e4y62+ECZdD6MvhonLcCUOeRNg3v0QKIbPPGAmpPby5JjXAsXmPXkTEwq1TKJRc4kpu/pL7n2OnGPqUjAVZv7IfQfEXwTzf2faMv937sTL8sC023uOwe3JCVLFUnPsqs6Fyf/knouSU2PqKyIix9SwTqa97LLLqK2tdU2m/Yd/+AdeeeUV/vSnPx1ye02mPUr73+hZnnyCWXmTqKPOLL/1BqH8HHASBvtIJ+x+2ixPLv9c8rLcxpegdbO5w1Aw1R1r2QJ7XoKscihb7B7su5tNuQAV55h994pFTX066qB4PuT1WxV24O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrHL3tnvWx5cnF85wx1q3QePzpv1lZ4E97Kv9RUSOC8fNqp+NGzfymc98hu9973tcdNFFvPrqq3z961/nF7/4BZdfnub2egIlKiIiIsef42bVz6xZs3j88cf57W9/y0knncS//uu/ctdddx1WkiIiIiKffMN6R+Vo6Y6KiIjI8ee4uaMiIiIiMhAlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3Du/JZbbuF73/ue67UTTjiBv/zlL8NUo34e9ANd8X9f3AHbH4Gm9yB/Coy+CJxAPN6wFuqeBX8h1FwOWeXxWMsW2P4QRDqh+gtQODMe626GbQ9C2zYYORsqzwO759TEorDrKdj7MmRVwZjLwVcQ3/bAn6H2MbAcGH0xBE+IxzobYev/QGgPlJ4OZWeBZZlYJAS1/wsH34a8iTD6EvBkx7dtfBHqVoE3aNqSXRWPtW6D7b+FcBtUfh6K5ia0pdXEWrdAwQyo/iLY3nhbdq+CPS9CoAzGXAH+kfFtD74HtY+a/6/+EoyYEo+F9sG2B6CjDooXQMXZYPXk2dFuqH0cDrwBueNg9KXgzY1vu3cD7PoDeHJMLLcmHmvfacrtbobys6FkQTwWboftD0PLX2HEVKi+EBx/T1tiUP8cNKwBf7FpS6Akvm3zX822sQhUXwAFp8RjXQdg6wPQsROKPmOOYV9bwrBrJex7FXJqoOYycw567X8dap8w9Rh9KeSNi8c66kxbQvuh/CxzzntFOo9d3930X7D9Z/H4uO/AnDv5pIt07CXSsRfL8eLJqcTyxI9ftLuNSNtuYrEonuxSbP+Ivlgs2k24dTexcDu2fwROdilWz/mOxWJEOhqJdu7H8gRMuY4vXm6omXB7HRYWTk4Fti/er2OREOHWXcQiIZxAEXZWEVbP5zsWixBpqyfa1YztzcHJqcSynXhbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7bUEe1uwfbm4eSUu8738c6KxWKx4dr5LbfcwqOPPspzzz3X95rH46GoqGiAreKam5vJz8+nqamJYDB46A0G40Hr0O/JmwBnroOsMvjTFWaA7uVkwYLHzIC65T549etm0Oo1+Z9g+h1mcF5zJnQ2xGMj58IZfwTLA+v+BhrXxWP+kXD6H6FwBrxzK7xzc0KFLDj1JzDxOmhYB8+fC+HWeLjqfJj/KHQdhNWLzKDVK6cGFq+D7FHwyjXw0X/HY7YPTnvYDFLbHoL1fwuxcDw+4TqYdTe0bIbnFkHHrnisYDqcuRqcHHjhfJP89PLmw6KnoXgebLoT3rzBfXyn/SeceINJNNaeDd1N8Vj5EvjsSoi0w+ozTZLSK6sSzlwLwQnw2jL44O6EQ+SBeb+Gmkth55Pw0kUQTUhGx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kXwwU/htW8CCR+tk2+Bk2+G/W/C2rNM4tWrZKE5DrEIrDkL9m2IxwIlcMYak7S9dSO8f0dCW2yY/UsY91XY/Qy8+EWIdMTjoy+Bzzxg+tZzC6Hlw3jsaPpuKp6RcNHegd9znIrFYnTteZNI2+74i5aNv+RUnOwSwi21dO19m8Tz7ckfh69wMtGuFjrrN5gvBj1s/wj8ZXMBi1DDq0Q7E/qC7SVQNhfbn0/3gQ/oPviBqy7ekSfhDdYQ6dhLqGGj67w42aX4SmZCNExn3Xpi3S3x6nqy8JfNw/Jk0bX3bSKttQml2vhKZuDJKSPcuouuPW+525I3Gl/RyUS72wjVrScW6YyX6wsSKJsLtodQw0aiHXsSivXgL52DEyigu2kL3fs3udtSMBnviHFEOg8QanjFJOm9m2YV4y+dBdEInfUbiHXFP/uWE8BfPhfbm0vXvncJN29LKNXCVzwNT24l4bZ6uhrfAKLxY5Rbja9oKrFwB6H69cTC8c+L5c0jUD4XbC9dja8TaU+4JlsO/tJZOFlFdDdvo3vfu+62jJiIt2Ai0VCTOd/R7nhbAoX4S+cAMUL1G4iGDiYcIx+B8nnYvjy69m8i3LTFVa6vaCqevFFE2hsJNb5mvuz1tiWnAl/xdIiEzPkOt8Wr68nBXz4POyGZzjSDGb+HPVF54okneOutt45o+yFLVH4/HVoOs05jr4KKpWbg6i+rAs5+E1aONt9G+1uy0QzOiYlIr5NvMYNf/8EboHAWzLsfnpqSHLO9cN5WeO6z0PpRcnzu/bBvI3y4Ijk26ssw5ip4fmlyzD8Slm6CleMg3JIcP3MdbFoOu59Kjk2+wSRCr12XHMufAgt/D78f7/oQAmYgPnezSbgSk6pep64wicSm5cmxiqVmv6sXJcc8eXDeFnhqsjth6LXwKdh6P+z4XXJswnUwchZsuCo5ljsWFr8AK8e4LlR9lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpnLZsF1KhlS4bXfPgOdmOX78FQvo3Lkmue8C/or5dO/f5E5EenhHTATbSRq8AWxfPr7iaXTuej5FbSwCVWf0DLLtSVFf0SnmW3nL9qSYk1OOJ7fKJDhJO/USqFpEZ+1a95eQ3raUzaO7aQvRjsakmCd/LJYnO2nwBjP4+0tnmWOUQqDqDEING11JVS/vyJOIhdsJNyVfx+ysErz54wjVr08u1PIQqDqdzl3rUn4O/aWzCLfu7Lu742pL3mhs/wi69v45RbHZ+Mvm9bQlua8HKhfStectoglJVV9bCidDNJKUeALYgZF4CycT2v1SirbY5hjtfpFYQrLby1cyg0h7I5HWnUkxJ7cKf/G05DIzxGDG72F99APw4YcfUlFRQSAQYN68edx2222MGjUq5XtDoRChUPxkNTc3D02lDjdJAXMbPtWgBGbg+PCe9Bf67b9NnaSA+bbuyUkd278Rtv4mdSzaDZt/kTpJ6S13X4oLFZg7DImPlRKF9pm2pEpSwDxGqns6/T5zxqSONb0HW+5NeaEnFoXN96ZOUnrLbUu+IAOmLjljU8fCLaYtqZKU3nJ3rkwTezx1QgDmmG/+Rfr+sPXXqZMUMI+uEu+GJGpcZx69pBLphM33pK9T7ePpz8vR9N1PkUhbQ8rXY5GQSQhS9V0g0ro7ZZICEG6v73vM0F+0q4lwioGnZ6+EW7anTFIAIu31REPJAyWYdiQ+ZnDvtNvcmUiRpACE2+pSJil95SY8bnHVtruFcMuO1PsEwi07UiYpptx6Ymk+E9GORsKe1PskFibcsi1t3w63N7jvliTus70+ZUJgim0n3LqDVEkKQLh1Z8okBXrakuauZLRzH+HWXSljxKLmGKWpU6StnkjiXazEWJo2Ho+GdTLtnDlzuP/++1m1ahX33HMPW7duZcGCBbS0pO64t912G/n5+X0/1dXVH3ONU3D8YPvTx9MlGwBOtplbkoo9ULmW2TbtPgeI2f74PItB7ZOB9+kEwEpzEXQC6fd5qHIHastA5VpeGOi256HaYvsGH4ND1DcHSPNIcaByLcc8jkm7z4H62EBtOcT59g5Q7qeJlf4yaVkDfNezbNKdb8uyByw37XXhkPt00pd7iH0esi0DlGsdYVsYYB6FmWNxpG0Z6PjZA5Q7wPEDLAZoy0DtHPAYWQPWd+ByD3G+PyGGtSXnnHMOX/7yl5k6dSpLlizh//2//8fBgwd55JFHUr7/pptuoqmpqe+ntrY25fuO2ui/O/z31lxuflIJTjLzRXyFyTHLhjFfMfNGBltu+edg3NVmvkV/nlwY/3dmIutgy625zPykklMDE79pJsEmsUyZoy5Kve3oy9Lvs3gBjP+6e2JnL9tvYsULkmOHKnfURVBzBSkHikCZaUtOTeptawYod6DjVzDDHHtPbnLM8phzVr5k8OVWnQ9jr0x94fEVwIRrITh58OUequ9OSNN3P2U8uZUpX7e8uXiCNfHJ4v23y6vCyS5NGXNyKtOWa2cV48mrJmXftRw8+aOxfPmpy82txElTrie3AicnTVs8WTjBmrSJvze3CienPGXMk1uZtlzbX4g3OCp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntTJ/UDHfqDjZ/ny8eSPTpM4WHjyqrGzilNuO9AxcrJLe853CrYXb7AGy5vimtJTridNuelePx5lVMo1YsQIJk6cyObNm1PG/X4/wWDQ9TMkTrvn8N5Xthim3gplZ5g5JYkdOLsKTnsIPFkw/xH3IxXbD7N+biZ7nrrCTDhNVHO5GXzGXg3jrsF1wcqfYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt3hvvgGykwbPAFY8Cj4EyY72z6YeZdZ1TLzhzByjrvc6gth0vVmRdLEZe625E0wc20Cxaa+iXcGPDnmtUCxeU/exIRCLZNo1Fxiyq7+knufI+eYuhRMhZk/ct9R8BeZeRuegPlvYuJleWDa7T3H4PbkBKliqTl2VeeaydCJF9+cGlNfX76ZeJy4UsfJgrn3mXM2+xfmHCa2Zdw15lxPuLYnuUpQMM30kbzxps8k3gHxFfS0Jduc98SVWZYDJ91s+ubUW01fTXSkfTfdHaHyNEnqJ4CTVWTmlCS03XIC+ItnYNkO/pKZ7s+LZeMrmortzcU38iQsn/s65eRU4gnW4ORW4+S6ByjLm2e29WThKz7F3ccsD/6SGVi2F3/xdKx+d+88+WPxZJfizR+PnVXiitn+QryFk3ECBXgLJrnaguPHVzITu68tiXfgbLyFU7D9QXyFU1yrmQCc7DKz39wKk7QltsWTg6/4FCzHbyZ9JvYxy8FXPL0ndgpWv7t3nmCNGYTzx+JkuxMk2z/C1MUXxFs4BdcwZvvw97TFVzKzX+Jl4S2YZI5B4aSkBMnMexmPJ7sUT/44V8zyZJljbnvxl8xwf0m0bHzFp5hzVjQVy5vn2rb3PHuCNUnJiuUL4ht5ErY3B1/RVPf5tr34S2b29LEZWK4vcxaeERNM3yyYiB1wL0CxA+b1T4phnUzbX2trK6NGjeKWW27hW9/61iHfP6SrfgBeuBJ2/tr8f9YY+OJHsPdVaH4fgidC0Wz3+9t3Qv0as8SzfIn74hVuh91Pm2f+FWe7l+XGYtD4vJkYWjjLvSwXzFLXvRvMAFJ6RnyJMZilrrtXmeXM5ee4l+VGw1D/rFmmXLLQvSwXYP8bPcuTTzArbxJ11Jnlt96gKTdhmSGRTtOWcJu5uxNwXxRpfAlaN5s7DAVT3bGWLbDnJbP8tWyx+4PZ3WzKBag4xz3Yx6KmPh11UDzfvSwX4MDb8eXJJf0SjM5GqPujSX4qznHfvYl0mZVI3U2mPln9vjXuWR9fnlzY7y5V6zZz3gIlZul3wpJJulvN3JBo2JzvxME+FjPLmttroWiee0k5QNP78eXJJQvd5zu0z5xvJ2DakjhYRbuh7hmzPLnsDHfiAse27yauivuETqLtLxruINqxD8vxYmcVu27lx6IRIh2NEIvgZJW4luWapa77iIU7sP0jXMtywSx1jYYOYHmysAMj+5ayglnqGunYA5Zlyk3oY7FYlGjHXmKREHZgpGtZLkA01ES0qxnLm+taYgxmqWukYy/YHpzskgHaUuxalgsQ6dxPrLsN25+P3S8Ji3a3maXWTsC1XNqU202k3cyncLKLXfNlzNLmvcQindiBQteyXHOMmomGmrC82a4lxuYYhXqOkdNzjJyEcqNE2hshGsbJKnItKTdtOUCsZ3my7XffpYp2txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHiIQOEOtqxfLl4vjTzDXMIMfNqp9//Md/5Nxzz2X06NHs3r2bm2++mbfeeov333+f4uLUt9ASDXmiIiIiIsfccbPqZ+fOnVx66aXs27eP4uJi5s+fz4YNGw4rSREREZFPvmFNVB56KM2SSxEREREybDKtiIiISCIlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3BXINHtt9/OTTfdxLe//W3uuuuu4a4OPGi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qolwL54nHK4bDcyeLFYjEhHI9HO/VieAJ6cSizH1xePhpoJt9dhYeHkVGD74v06FgkRbt1FLBLCCRRhZxVh9Xy+Y7EIkbZ6ol3N2N4cnJxKLNvp2zbSuY9I+x4s24OTW4ntyYrvs7udSNtuYtEwTnYpTiB+vYlFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW+VuS1cLkbY6AJyccmxfXkJbunra0okTKMTOKkloS7SnLU3Ynmyc3EosOz50RToPEGlvMG3JqcD2xq9j0XAHkdZdPW0pxgnErzexaIRI226i3a3YvmBPW5x4Wzr3EunY29OWSqzezz4Q7Wo1x4gYnuxybH/8MxqLdBFu20Us3IntL8DJLnW3pb2BaOgglicbT24FVu/1EYiGDhJub8DCxsmtwPbmpOw3nzZWLBaLDXclADZu3MhFF11EMBjk9NNPP6xEpbm5mfz8fJqamggGg4d8/6D0T1JSyZsAZ66DrDL40xVmgO7lZMGCx8yAuuU+ePXrZtDqNfmfYPodZnBecyZ0NsRjI+fCGX8EywPr/gYa18Vj/pFw+h+hcAa8cyu8c3NChSw49Scw8TpoWAfPnwvh1ni46nyY/yh0HYTVi8yg1SunBhavg+xR8Mo18NF/x2O2D0572AxS2x6C9X8LsXA8PuE6mHU3tGyG5xZBx654rGA6nLkanBx44XyT/PTy5sOip6F4Hmy6E968wX18p/0nnHiDSTTWng3dTfFY+RL47EqItMPqM02S0iurEs5cC8EJ8Noy+ODuhEPkgXm/hppLYeeT8NJFEO2Kx8deDXPuhfYdpi1t2+Kx/CmmXF8BvPRl2PlEPObJgYV/gNJF8MFP4bVvAgkfrZNvgZNvhv1vwtqzTOLVq2ShOQ6xCKw5C/ZtiMcCJXDGGpO0vXUjvH9HQltsmP1LGPdV2P0MvPhFiHTE46Mvgc88YPrWcwuh5cN47Gj6bjqXZcSl5LgRi0YINbxKtDOhL9heAmVzsf35dB/4gO6DH7i28Y48CW+whkjHXkING13nxckuxVcyE6JhOuvWE+tu6YtZniz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPWyT2XU/eaHxFJxPtbiNUt55YpDNeri9IoGwu2B5CDRuJduxJKNaDv3QOTqCA7qYtdO/f5G5LwWS8I8YR6TxAqOEVk6T3bppVjL90FkQjdNZvINYV/+xbTgB/+Vxsby5d+94l3LwtoVQLX/E0PLmVhNvq6Wp8A4jGj1FuNb6iqcTCHYTq1xMLxz8vljePQPlcsL10Nb5OpD3hmmw5+Etn4WQV0d28je5977rbMmIi3oKJRENNdNZvMF+eetsSKMRfOgeIEarfQDR0MOEY+QiUz8P25dG1fxPhpi2ucn1FU/HkjeKTaDDjd0YkKq2trcyYMYOf/vSn/Nu//RvTpk0b3kTlcJKUXmOvgoqlZuDqL6sCzn4TVo4230b7W7LRDM6JiUivk28xg1//wRugcBbMux+empIcs71w3lZ47rPQ+lFyfO79sG8jfLgiOTbqyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4d7NJuBKTql6nrjCJxKblybGKpWa/qxclxzx5cN4WeGqyO2HotfAp2Ho/7PhdcmzCdTByFmy4KjmWOxYWvwArx7guVH2Wvgfrr4L9G5Nj05ebO1Tv3JIcK1lk4s/MSo45AThvO6yaDh0p7mrM/505Jx/dnxw7mr6bihKVQUk1eAPYvnx8xdPo3PV8iq0sAlVn9Ayy7UlRX9Ep5lt5y/akmJNTjie3yiQ4STv1EqhaRGftWveXkB7+snl0N20h2tGYFPPkj8XyZCcN3mAGf3/pLDp3rknRFkxbGja6kqpe3pEnEQu3E25Kvo7ZWSV488cRql+fXKjlIVB1Op271qX8HPpLZxFu3dl3d8fVlrzR2P4RdO39c4pis/GXzetpS3JfD1QupGvPW0QTkqq+thROhmgkKfEEsAMj8RZOJrT7pRRtscmqXuy6M/VJMZjxOyMe/Vx33XUsXbqUxYsX82//9m9p3xcKhQiFQn3/bm5u/jiqN7DaJ1IPSmAGjg/vSX+h3/7b1EkKmG/rnjS3/fZvhK2/SR2LdsPmX6ROUnrL3ZfiQgXmDkPiY6VEoX2mLamSFDCPkeqeTr/PnDGpY03vwZZ7k5MUMK9tvjd1ktJbblvyBRkwdckZmzoWbjFtSZWk9Ja7c2Wa2OOpEwIwx3zzL9L3h62/SZ2kgHl0lXg3JFHjOvPoJZVIp2lLujrVPp7+vBxN35WjFmmrT/l6tKuJcOvONFvFCLfuSJmkAETa64mGkgdKs78G12MG9067zZ2JFEkKQLitLmWS0lduwuMWV227Wwi37Ei9TyDcsiNlkmLKrSeW5jMR7Wgk7Em9T2Jhwi3b0vbtcHuD+25J4j7b64lFQiljsXB7T1tSJ+Th1p0pkxToaUuau5LRzn1EWtN8fmNRIh178ORWpo5/Sgx7ovLQQw/xxhtvsHFjmgt4gttuu43vfe97H0OtBsHxg+1PH0+XbAA42WZuSaoObA9UrmW2HajcdGx/fJ7FoPZ5iHKdAFheiKX4kDuB9Ps8VLnpLkaHKtfygieQOnaofToB87grmqYt9gDfbg55XixSXuicQPrHK5YD9gBtGbCPDVDfo+m7cvSsAdYyWE760AAxLCd9uZY94D4ta4DhoHfbVF8oLLtvnkraOqVjD9BO2yEWOdK2DHT8bMw6klRtGeD49dQpfXCgmI1FLE2KYx2iL2jNy7AegdraWr797W/zwAMPEAgMcCHucdNNN9HU1NT3U1tbe8htjszIQ7+lV83l5ieV4CQzX8RXmByzbBjzFTNvZLDlln8Oxl1t5lv058mFCX9nJrIOttyay8xPKjk1MPGbZhJsEsuUOeqi1NuOviz9PosXwPivuyd29rL9Jla8IDl2qHJHXQQ1V5i69RcoM23JqUm9bc0A5Q50/ApmmGPvyU2OWR5zzsqXDL7cqvNh3FWpL1i+Aph4LQQnD77cI+27ckyk+5ZsZxXjyasmZd+1HDzB0Vi+/JTbOrmVOGnK9eRW4OSkjlmeLJxgTdrE35tbhZNTnjLmya1MW67tL8QbHJW671o23rxR2P7UfczJqUh7jJyccrx5VSljOH6c4BishAnC7m0r05c7wPGzfPl4gqPTJCQWnrxq7KzilNsOdIyc7NKe852C7cXJKkkd+xQZ1kTl9ddfp7GxkRkzZuDxePB4PDz//PP8+Mc/xuPxEIm4v2H6/X6CwaDrZ0hctvfw3le2GKbeCmVnmDkliR04uwpOewg8WTD/EfcjFdsPs35uJnueusJMOE1UczlMuNZM7Bx3Da4LVv4UM4Eyu8rMN3ESPozeoNmnL99Mokx83GLZZs5G1bkw5Z+h4vPufRYvgGl3mBU80+6Ir9QBM7DPf8TcoVjwKPiLEtrig5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVSY+SP3HQV/kZm34QmY/yYmXpYHpt3ecwxuT06QKpaaY1d1rpkMnXjxzakx9fXlm4nHiSt1nCyYe585Z7N/Yc5hYlvGXWPO9YRre5KrBAXTTB/JG2/6TOIdEF9BT1uyzXlPXJllOXDSzaZvTr3V9NVER9p300o9KEh6Tm41Tq57gLK8efiKpmJ7svAVn+LuY5YHf8kMLNuLv3g6Vr+7jZ78sXiyS/Hmj8fuN7jZ/kK8hZNxAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPcbcguM/vNrcATrHG3xZODr/gULMePr3i6u49ZDr7i6T2xU7D6rW7xBGvw5FbiyR+Lk+1OkGz/CFMXXxBv4RRcw5jtw9/TFl/JzH6Jl4W3YJI5BoWTkhIkM+9lPJ7sUjz541wxy5NljrntxV8yw/0l0bLxFZ9izlnRVCxvnmvb3vPsCdYkJSuWL4hv5EnY3hx8RVPd59v24i+ZOfBdnE+JYZ1M29LSwvbt7jkGV199NZMmTeK73/0uJ5100oDbD+mqH4AHg0DC89PLYrD3VWh+H4InQtFs9/vbd0L9GrPEs3yJe7APt8Pup80z/4qz3ctyYzFofN5MDC2c5V6WC2ap694NZgApPSO+xBjMUtfdq8xy5vJz3Mtyo2Gof9YsUy5Z6F6WC7D/jZ7lySeYlTeJOurM8ltv0JSbOJkr0mnaEm4zd3cC/TL+xpegdbO5w1Aw1R1r2QJ7XjLLX8sWuz+Y3c2mXICKc9yDfSxq6tNRB8Xz3ctyAQ68HV+eXNIvwehshLo/muSn4hz33ZtIl1mJ1N1k6pPV71vjnvXx5cmF/e5StW4z5y1QYpZ+JyyZpLvVzA2Jhs35ThzsYzGzrLm9FormuZeUAzS9H1+eXLLQfb5D+8z5dgKmLYmDVbQb6p4xy5PLznAnLnBs+27ihHNNoj0q0a5WoqEDWJ4s7MDIvqWsYJa6Rjr2gGXhZJW4luXGYlGiHXuJRULYgZGuZbkA0VAT0a5mLG+ua4kxQCzcSaRjL9genOwS16ObWDRCpKMRYhGcrGLXslyASOd+Yt1t2P58bJ/7uhvtbjNLrZ2Aa7m0KbebSLtZFeRkF7vmy5ilzXuJRTqxA4VJy3KjXc1EQ01Y3mzXEmNzjEI9x8jpOUZOQrlRIu2NEA3jZBVh9XscHOk8QKxnebLtd9+lina3E+3ch+X4e9qSeIzCPcco1nOM4tdHs7R5H7FwB7a/wLWk3LSlpWd5crrz3ZiyLZ80x92qn0SLFi0a/lU/IiIiMmQGM35rlo6IiIhkrGFf9dPfunXrhrsKIiIikiGO6I7KwYMH+a//+i9uuukm9u/fD8Abb7zBrl27DrGliIiIyOEb9B2Vt99+m8WLF5Ofn8+2bdv4+te/TmFhIY899hg7duzg17/+9VDUU0RERD6FBn1H5frrr+eqq67iww8/dP3uk7/5m7/hhRdeOKaVExERkU+3QScqGzdu5P/+3/+b9HplZSX19al/JbSIiIjIkRh0ouL3+1P+jZ0PPviA4uLUv5VPRERE5EgMOlE577zzuPXWW+nuNn/wybIsduzYwXe/+10uvPDCY15BERER+fQadKLy/e9/n9bWVkpKSujo6GDhwoWMHz+evLw8/v3f/30o6igiIiKfUoNe9ZOfn8+zzz7LSy+9xNtvv01rayszZsxg8eLFh95YREREZBAGnajs2LGD0tJS5s+fz/z58/tej8Vi1NbWMmrUqGNaQREREfn0GvSjn5qaGmbMmMGWLVtcrzc2NjJmzJg0W4mIiIgM3hH9ZtrJkycze/ZsVq9e7Xo9w/6+oYiIiBznBp2oWJbFT3/6U/6//+//Y+nSpfz4xz92xURERESOlUHPUem9a/IP//APTJo0iUsvvZR33nmHf/mXfznmlRMREZFPt6P668nnnHMOf/rTnzjvvPN49dVXj1WdRERERIAjSFQWLlyIz+fr+/eJJ57IK6+8wgUXXKA5KiIiIocpEon0/fLUTyKfz4dtH9FUWBcrdhxnF83NzeTn59PU1EQwGBzu6oiIiBxSLBajvr6egwcPDndVhpRt24wZM8Z1c6PXYMbvw7qj0tzc3FdQqr/zk0gJg4iISHq9SUpJSQnZ2dmfyIUo0WiU3bt3U1dXx6hRo46qjYeVqBQUFFBXV0dJSQkjRoxIucNYLIZlWUQikSOujIiIyCdZJBLpS1JGjhw53NUZUsXFxezevZtwOIzX6z3icg4rUVmzZg2FhYUArF279oh3JiIi8mnWOyclOzt7mGsy9Hof+UQikaFPVBYuXJjy/0VERGTwPomPe/o7Vm087Om4e/fuZfv27a7X3nvvPa6++mouuugiHnzwwWNSIREREZFeh52oLFu2zPVbaBsbG1mwYAEbN24kFApx1VVX8Zvf/GZIKikiIiKfToedqGzYsIHzzjuv79+//vWvKSws5K233uLJJ5/kP/7jP1ixYsWQVFJERESOzi233MK0adOGuxqDdtiJSn19PTU1NX3/XrNmDRdccAEej5nmct555/Hhhx8e8wqKiIiIGYeXLVvG2LFj8fv9VFdXc+655yb9geBPmsNOVILBoOuX07z66qvMmTOn79+WZREKhY5p5URERAS2bdvGzJkzWbNmDcuXL+edd95h1apVnH766Vx33XUfWz2G4zfpHnaiMnfuXH784x8TjUZ59NFHaWlp4YwzzuiLf/DBB1RXVw9JJUVERD7Nrr32WizL4tVXX+XCCy9k4sSJTJkyheuvv54NGzYAsGPHDs4//3xyc3MJBoNcdNFFNDQ0pC0zGo1y6623UlVVhd/vZ9q0aaxataovvm3bNizL4uGHH2bhwoUEAgEeeOCBIW9rf4edqPzrv/4rK1euJCsri4svvph/+qd/oqCgoC/+0EMPaemyiIjIMbZ//35WrVrFddddR05OTlJ8xIgRRKNRzj//fPbv38/zzz/Ps88+y0cffcTFF1+cttwf/ehHfP/73+fOO+/k7bffZsmSJSmncdx44418+9vfZtOmTSxZsuSYt+9QDvuPEk6dOpVNmzbx8ssvU1ZW5nrsA3DJJZdw4oknHvMKioiIfJpt3ryZWCzGpEmT0r5n9erVvPPOO2zdurXv6cavf/1rpkyZwsaNG5k1a1bSNnfeeSff/e53ueSSSwC44447WLt2LXfddZdrcczf//3fc8EFFxzjVh2+Qf315KKiIs4///yUsaVLlx6TComIiEjc4fzt4E2bNlFdXe2agnHiiScyYsQINm3alJSoNDc3s3v3bk477TTX66eddhp//vOfXa+deuqpR1H7o3f0f39ZREREhsyECROwLIu//OUvw7L/VI+bPk5KVERERDJYYWEhS5YsYcWKFbS1tSXFDx48yOTJk6mtraW2trbv9ffff5+DBw+mnJYRDAapqKjg5Zdfdr3+8ssvZ9w0jkE9+hEREZGP34oVKzjttNOYPXs2t956K1OnTiUcDvPss89yzz338P7773PyySdz+eWXc9dddxEOh7n22mtZuHBh2kc3N9xwAzfffDPjxo1j2rRp3Hfffbz11lvDsrJnIEpUREREMtzYsWN54403+Pd//3e+853vUFdXR3FxMTNnzuSee+7BsiyefPJJli1bxmc/+1ls2+bss8/mJz/5Sdoyv/Wtb9HU1MR3vvMdGhsbOfHEE1m5ciUTJkz4GFt2aFbscGbppNDY2EhjYyPRaNT1+tSpU49JxQ5Hc3Mz+fn5NDU1EQwGP7b9ioiIHInOzk62bt3KmDFjCAQCw12dITVQWwczfg/6jsrrr7/OlVdeyaZNm/pmIluWRSwWw7IsIpHIYIsUERERSWnQicpXv/pVJk6cyL333ktpaSmWZQ1FvUREREQGn6h89NFH/O///i/jx48fivqIiIiI9Bn08uQzzzwz6ZfBiIiIiAyFQd9R+a//+i+uvPJK3n33XU466SS8Xq8rft555x2zyomIiMin26ATlfXr1/Pyyy/z9NNPJ8U0mVZERESOpUE/+lm2bBlXXHEFdXV1RKNR14+SFBERETmWBp2o7Nu3j3/4h3+gtLR0KOojIiIi0mfQicoFF1zA2rVrh6IuIiIiIi6DnqMyceJEbrrpJl566SVOPvnkpMm03/rWt45Z5UREROTT7YhW/eTm5vL888/z/PPPu2KWZSlRERER+ThEI7DnReiog6xyKF4AtjPku12xYgXLly+nvr6eU045hZ/85CfMnj17yPY36ERl69atx2zn99xzD/fccw/btm0DYMqUKfzLv/wL55xzzjHbx1F5sN9v3b24A7Y/Ak3vQf4UGH0ROAl/v6BhLdQ9C/5CqLncdJxeLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQW9v0k4EoLa/4WDb0PeRBh9CXiy49s2vgh1q8AbNG3JrorHWrfB9t9CuA0qPw9FcxPa0mpirVugYAZUfxFsb7wtu1eZD1agDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHzAeyeAFUnA1Wz5PLaDfUPg4H3oDccTD6UvDmxrfduwF2/QE8OSaWWxOPte805XY3Q/nZULIgHgu3w/aHoeWvMGIqVF8Ijr+nLTGofw4a1oC/2LQlUBLftvmvZttYBKovgIJT4rGuA7D1AejYCUWfMcewry1h2LUS9r0KOTVQc5k5B732vw61T5h6jL4U8sbFYx11pi2h/VB+ljnnvSKdx67vrur/l1i9cFkXcvyIdO4j0r4Hy/bg5FZie7L6YtHudiJtu4lFwzjZpTiB+PUmFg0Tad1FNNyO7cvHySnD6um7sViMaEcjkc79WI4fT24VluOLl9vVQqStDgAnpxzblxcvN9JFuHUXsUgnTqAQO6uk77eex2JRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3mDaklOB7Y1fx6LhDiKtu3raUowTiF9vYtEIkbbdRLtbsX3BnrY48bZ07iXSsbenLZVYvZ/9TFH7GLz+bXMN65VdBTN/ZK45Q+Thhx/m+uuv52c/+xlz5szhrrvuYsmSJfz1r3+lpKTk0AUcgSP+o4RdXV1s3bqVcePG4fEc2R9h/v3vf4/jOEyYMIFYLMavfvUrli9fzptvvsmUKVMOuf2Q/lHC/klKKnkT4Mx1kFUGf7rCDNC9nCxY8JgZULfcB69+3QxavSb/E0y/wwzOa86EzoZ4bORcOOOPYHlg3d9A47p4zD8STv8jFM6Ad26Fd25OqJAFp/4EJl4HDevg+XMh3BoPV50P8x+FroOwepEZtHrl1MDidZA9Cl65Bj7673jM9sFpD5tBattDsP5vIRaOxydcB7PuhpbN8Nwi6NgVjxVMhzNXg5MDL5xvkp9e3nxY9DQUz4NNd8KbN7iP77T/hBNvMInG2rOhuykeK18Cn10JkXZYfaZJUnplVcKZayE4AV5bBh/cnXCIPDDv11BzKex8El66CKIJg+zYq2HOvdC+w7SlbVs8lj/FlOsrgJe+DDufiMc8ObDwD1C6CD74Kbz2TSDho3XyLXDyzbD/TVh7lkm8epUsNMchFoE1Z8G+DfFYoATOWGOStrduhPfvSGiLDbN/CeO+CrufgRe/CJGOeHz0JfCZB0zfem4htHwYjx1N303nsiO6lMjHKBaL0bX3bSKttQmv2vhKZuDJKSPcuouuPW+R2Hc9eaPxFZ1MtLuNUN16YpHOvpjlCxIomwu2h1DDRqIdexKK9eAvnYMTKKC7aQvd+ze56uItmIx3xDginQcINbxikvTeTbOK8ZfOgmiEzvoNxLrin33LCeAvn4vtzaVr37uEm7cllGrhK56GJ7eScFs9XY1vAPE/nOvkVuMrmkos3EGofj2xcPzzYnnzCJTPBdtLV+PrRNoTrsmWg790Fk5W0WEe6fSOyR8lrH0MXvwSrmsMAD3j1oJHhyxZmTNnDrNmzeLuu811NRqNUl1dzbJly7jxxhtd7z1Wf5Rw0IlKe3s7y5Yt41e/+hUAH3zwAWPHjmXZsmVUVlYmVXSwCgsLWb58OV/72tcO+d4hS1QOJ0npNfYqqFhqBq7+sirg7Ddh5WjzbbS/JRvN4JyYiPQ6+RYz+PUfvAEKZ8G8++GpFMmc7YXztsJzn4XWj5Ljc++HfRvhwxXJsVFfhjFXwfNLk2P+kbB0E6wcB+GW5PiZ62DTctj9VHJs8g0mEXrtuuRY/hRY+Hv4/XhzxyWRZcO5m03ClZhU9Tp1hUkkNi1PjlUsNftdvSg55smD87bAU5PdCUOvhU/B1vthx++SYxOug5GzYMNVybHcsbD4BVg5xtzl6W/pe7D+Kti/MTk2fbm5Q/XOLcmxkkUm/sys5JgTgPO2w6rp0LE7OT7/d+acfHR/cuxo+m4qSlQyXqS9gVBDiv5newlULaKzdq37S0gPf9k8upu2EO1oTIp58sdiebLp3vduUszy5uEvnUXnzjUp6xOoOoNQw0Zi3cnXFO/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoOp3OXetSfg79pbMIt+7su7vjakveaGz/CLr2Jv/2dcuTTaDq9KP++3ZHnahEI7Cyxn0nxcUyd1bO23rMHwN1dXWRnZ3No48+yhe+8IW+16+88koOHjzIk08+6Xr/sP315Jtuuok///nPrFu3jrPPPrvv9cWLF3PLLbcccaISiUT43e9+R1tbG/PmzUv5nlAoRCgU6vt3c3PzEe3rmKp9IvWgBGbg+PCe9Bf67Q+lTlLAfFv35KSO7d8IW3+TOhbths2/SJ2k9Ja7L8WFCswdhsTHSolC+0xbUiUpYB4j1SX/EsC+feaMSR1reg+23JucpIB5bfO9qZOU3nLbtqeO1T1tHgOlEm4xbUmVpPSWu3NlmtjjqRMCMMd88y/S94etv06dpIB5dJV4NyRR4zrTV1KJdJq2pKtT7ePpz8vR9F05LrnuEiSKdps7EymSFIBwe13KJAUg0taAlfC4JVGsu4Vwy4609Qm37EiZpJhy64ml+UxEOxoJe1Lvk1iYcMu2tH073N6Q9jhE2uuJRUIpY7FwO7GuFiz/Mb57P1h7XhwgSQGIQXuteV/pomO667179xKJRJJ+PUlpaSl/+ctfjum+Eg06UXniiSd4+OGHmTt3riuznDJlClu2bBl0Bd555x3mzZtHZ2cnubm5PP7445x44okp33vbbbfxve99b9D7GFKOH+wBnl160yQbYG6xW07q2+r2QOVa4KT5kMLAMdsfn2cxqH0eolwnAJYXYik+5E4g/T4PVW66i9GhyrW8R75PJ2Aed0XTtMX2Jb/ea8D65mBuzaa48+AE0j9esRzTV9Luc6A+NkB9D9V3BypXjk9W+t9IYVnphwML22yb6guFZffNU0m98QDf6geIWbZDLJKmXMs+RFsGKNeyMb+ZI1VbnAHLHTD2celIvhN0VO87Dgz6qO/ZsyflhJm2trYjuiV2wgkn8NZbb/HKK6/wjW98gyuvvJL3338/5Xtvuukmmpqa+n5qa2tTvu9jVXO5+UklOMk8KvAVJscsG8Z8xcwbGWy55Z+DcVeb+Rb9eXJhwt+ZiayDLbfmMvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7r7omdvWy/iRUvSI4dqtxRF0HNFfQ9s00UKDNtyalJvW3NAOUOdPwKZsD4vzPnoD/LY85Z+ZLBl1t1Poy9MvVF0lcAE6+F4OTBl3uovjsxTd+V45aTU5nydcuThROsSZvce3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV4clOX6+SU482rShnD8eMEx2B5Uif3Tk5l+nJzK3HSxCxfPrYvxWf745aV+jwc8fsGoaioCMdxaGhw35FqaGigrCzV2HBsDDpROfXUU3nqqfg8hN7k5L/+67/SPrIZiM/nY/z48cycOZPbbruNU045hR/96Ecp3+v3+wkGg66fIXG4z9rLFsPUW6HsDDOnJDGLz66C0x4CTxbMf8T9SMX2w6yfm8mep64wE04T1VwOE641EzvHXYNrsM2fYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt0RX6kDZmCf/wh4AmaSlj9hQpntg5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVQzAz7xjoK/yMzb8ATMfxMTL8sD027vOQa3JydIFUvNsas610yGTrz45tSY+vryzcTjxJU6ThbMvc+cs9m/MOcwsS3jrjHnesK1PclVgoJppo/kjTd9JvEOiK+gpy3Z5rwnrsyyHDjpZtM3p95q+mqiI+27clxzAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPc5WWX4ckfiye3Ak+wxhWzPDn4ik/Bcvz4iqe7+5jl4Cue3hM7BavfnWdPsAZPbiWe/LE42e4B1/aPMHXxBfEWTsE1jNk+/D1t8ZXM7Jd4WXgLJpljUDgpKUEy817G48kuxZPvfmxsebLwF/e7Tg+X4gU9n/V0NwYsyK5O/wXvKPh8PmbOnMnq1av7XotGo6xevfqIxv/DNejJtC+99BLnnHMOV1xxBffffz//9//+X95//33+9Kc/8fzzzzNz5sxDFzKAM844g1GjRnH//fcf8r1DuuoHkifVXhaDva9C8/sQPBGK+q0bb98J9WvMEs/yJe7BPtwOu582z/wrznYvy43FoPF5MzG0cJZ7WS6Ypa57N5jOWXpGfIkxmKWuu1eZ5czl57iX5UbDUP+sWaZcstC9LBdg/xs9y5NPMCtvEnXUmeW33qApN2GZIZFO05Zwm7m7E+h3h63xJWjdbO4wFEx1x1q2wJ6XTLZfttg92Hc3m3IBKs5xD/axqKlPRx0Uz3cvywU48HZ8eXJJvw9oZyPU/dEkPxXnuO/eRLrMSqTuJlOf/t9C9qyPL08u7HeXqnWbOW+BErP0O2HJJN2tZm5INGzOd+JgH4uZZc3ttVA0z72kHKDp/fjy5JKF7vMd2mfOtxMwbUl81BTthrpnzPLksjPciQsc276b+NnQJNrjTizcSaRjL9genOwS16ObWDRCpKMRYhGcrOKkZbmRzv3Eutuw/fnYPvd1N9rdRrRzP5YTwM4qct1lj0W7ibSbVUFOdjFWQh8zS5v3Eot0YgcKsfslLtGuZqKhJixvtmuJMUAsEiLSsQcsByerBCthAmksFiXS3gjRME5WEZbHfec20nmAWM/yZNuf368t7UQ792E5/p62HJvHPsd21Q+4HyUP/aqfhx9+mCuvvJKf//znzJ49m7vuuotHHnmEv/zlL0lzV4Zt1Q/Ali1buP322/nzn/9Ma2srM2bM4Lvf/S4nn3zyoMq56aabOOeccxg1ahQtLS08+OCD3HHHHTzzzDOcddZZh9x+yBMVERGRY+iYJCqQ5veoVJs73EP4e1QA7r777r5f+DZt2jR+/OMfM2fOnKT3DWuicqx87WtfY/Xq1dTV1ZGfn8/UqVP57ne/e1hJCihRERGR48sxS1Rg2H4z7eEatuXJjuNQV1eXNKF23759lJSUEIkcxi+G6nHvvfcOdvciIiICJik5xkuQM9GgH7qluwETCoXw+QZYtikiIiIySId9R+XHP/4xYFb59P5hwl6RSIQXXniBSZMmHfsaioiIyKfWYScqP/zhDwFzR+VnP/sZjhN/Dubz+aipqeFnP/vZsa+hiIiIfGoddqLS+1eTTz/9dB577DEKCvS7FURERGRoDXoy7dq1a4eiHiIiIiJJDjtRuf766w/rfT/4wQ+OuDIiIiIiiQ47UXnzzTcP+Z6j/fPXIiIiIokOO1HRIx8RERH5uA3Z36wOBoN89NFHQ1W8iIiIfAoMWaIyjL+ZX0RE5BMvFosR6dhLuHUXkY69Qz7uvvDCC5x77rlUVFRgWRZPPPHEkO6v16BX/YiIiMjwCrfV0b3vPWKRzr7XLCeAd+QUPDnlA2x55Nra2jjllFP46le/ygUXDO0fPkykREVEROQ4Em6ro6vx9aTXY5FO83rJzCFJVs455xzOOeecY17uoQzZox8RERE5tmKxGN373hvwPd373vtETb9QoiIiInKciHbucz3uSSUW6STaue9jqtHQU6IiIiJynIhFQsf0fceDIUtUOjo66OjoGKriRUREPnUsx39M33c8GLJEJSsri6ysrKEqXkRE5FPHDozEcgIDvsdyAtiBkR9TjYaeVv2IiIgcJyzLwjtySspVP728I6cMyZ+0aW1tZfPmzX3/3rp1K2+99RaFhYWMGjXqmO+vlxIVERGR44gnpxxKZn7sv0fltdde4/TTT+/7d+8fK77yyiu5//77h2SfoERFRETkuOPJKcfJLutZBRTCcvzmsdAQ/nHgRYsWDcuy5yFLVPSXlEVERIaOZVk4WUXDXY0hp7/1IyIiIhlryBKVp59+msrKyqEqXkRERD4FDuvRT++EmcPxgx/8AID58+cfWY1EREREehxWovLmm2+6/v3GG28QDoc54YQTAPjggw9wHIeZM2ce+xqKiIh8wkSj0eGuwpA7VlNADitRWbt2bd///+AHPyAvL49f/epXFBQUAHDgwAGuvvpqFixYcEwqJSIi8knk8/mwbZvdu3dTXFyMz+f7RC4+icVi7Nmzx/zeF6/3qMqyYoNMeSorK/njH//IlClTXK+/++67fO5zn2P37t1HVaHBaG5uJj8/n6amJoLB4Me2XxERkSPV1dVFXV0d7e3tw12VIWVZFlVVVeTm5ibFBjN+D3p5cnNzM3v27El6fc+ePbS0tAy2OBERkU8Vn8/HqFGjCIfDRCKR4a7OkPF6vTiOc9TlDDpR+eIXv8jVV1/N97//fWbPng3AK6+8wg033MAFF1xw1BUSERH5pOt9JHK0j0U+DQadqPzsZz/jH//xH7nsssvo7u42hXg8fO1rX2P58uXHvIIiIiLy6TWoOSqRSISXX36Zk08+GZ/Px5YtWwAYN24cOTk5Q1bJdDRHRURE5PgzZHNUHMfhc5/7HJs2bWLMmDFMnTr1qCoqIiIiMpBB/2bak046iY8++mgo6iIiIiLiMuhE5d/+7d/4x3/8R/7whz9QV1dHc3Oz60dERETkWBn071Gx7Xhuk/hLamKxGJZlfaxLrTRHRURE5PgzpL9HJfG31IqIiIgMpUEnKgsXLhyKeoiIiIgkGXSiAnDw4EHuvfdeNm3aBMCUKVP46le/Sn5+/jGtnIiIiHy6DXoy7Wuvvca4ceP44Q9/yP79+9m/fz8/+MEPGDduHG+88cZQ1FFEREQ+pQY9mXbBggWMHz+eX/7yl3g85oZMOBzmmmuu4aOPPuKFF14Ykoqmosm0IiIix5/BjN+DTlSysrJ48803mTRpkuv1999/n1NPPfVj/WuQSlRERESOP4MZvwf96CcYDLJjx46k12tra8nLyxtscSIiIiJpDTpRufjii/na177Gww8/TG1tLbW1tTz00ENcc801XHrppUNRRxEREfmUGvSqnzvvvBPLsvjKV75COBwGwOv18o1vfIPbb7/9mFdQREREPr0GPUelV3t7u+uvJ2dnZx/Tih0OzVERERE5/gzpb6btlZ2dzcknn3ykmwNw22238dhjj/GXv/yFrKwsPvOZz3DHHXdwwgknHFW5x8yDlvvfF3fA9keg6T3InwKjLwInEI83rIW6Z8FfCDWXQ1Z5PNayBbY/BJFOqP4CFM6Mx7qbYduD0LYNRs6GyvPA7jk1sSjsegr2vgxZVTDmcvAVxLc98GeofQwsB0ZfDMGEY9fZCFv/B0J7oPR0KDsLev/sQSQEtf8LB9+GvIkw+hLwJCSbjS9C3SrwBk1bsqvisdZtsP23EG6Dys9D0dyEtrSaWOsWKJgB1V8E2xtvy+5VsOdFCJTBmCvAPzK+7cH3oPZR8//VX4IRU+Kx0D7Y9gB01EHxAqg4G6yeJ5fRbqh9HA68AbnjYPSl4M2Nb7t3A+z6A3hyTCy3Jh5r32nK7W6G8rOhZEE8Fm6H7Q9Dy19hxFSovhAcf09bYlD/HDSsAX+xaUugJL5t81/NtrEIVF8ABafEY10HYOsD0LETij5jjmFfW8KwayXsexVyaqDmMnMOeu1/HWqfMPUYfSnkjYvHOupMW0L7ofwsc857RTqPXd9941ZoXBmPV1wKix5EMkcsFiHSVk+0qxnbm4OTU4llO33xSOc+Iu17sGwPTm4ltierLxbtbifStptYNIyTXYoTiF9vYtEwkdZdRMPt2L58nJwyrJ6+G4vFiHY0Euncj+X48eRWYTm+eLldLUTa6gBwcsqxffE5jbFIF+HWXcQinTiBQuyskr4/0RKLRXva0oTtycbJrcSy40NXpPMAkfYG05acCmxv/DoWDXcQad3V05ZinED8ehOLRoi07Sba3YrtC/a0xYm3pXMvkY69PW2pxOr97MvH7ojvqBwLZ599NpdccgmzZs0iHA7zz//8z7z77ru8//775OTkHHL7Ib2j0j9JSSVvApy5DrLK4E9XmAG6l5MFCx4zA+qW++DVr5tBq9fkf4Lpd5jBec2Z0NkQj42cC2f8ESwPrPsbaFwXj/lHwul/hMIZ8M6t8M7NCRWy4NSfwMTroGEdPH8uhFvj4arzYf6j0HUQVi8yg1avnBpYvA6yR8Er18BH/x2P2T447WEzSG17CNb/LcTC8fiE62DW3dCyGZ5bBB274rGC6XDmanBy4IXzTfLTy5sPi56G4nmw6U548wb38Z32n3DiDSbRWHs2dDfFY+VL4LMrIdIOq880SUqvrEo4cy0EJ8Bry+CDuxMOkQfm/RpqLoWdT8JLF0G0Kx4fezXMuRfad5i2tG2Lx/KnmHJ9BfDSl2HnE/GYJwcW/gFKF8EHP4XXvgkkfLROvgVOvhn2vwlrzzKJV6+SheY4xCKw5izYtyEeC5TAGWtM0vbWjfD+HQltsWH2L2HcV2H3M/DiFyHSEY+PvgQ+84DpW88thJYP47Gj6bsp+eGyzkO8Rz4OsUgXnXXriXW39L1mebLwl83D8mTRtfdtIq21CVvY+Epm4MkpI9y6i649b5HYdz15o/EVnUy0u41Q3Xpikfh5tnxBAmVzwfYQathItGNPQrEe/KVzcAIFdDdtoXv/Jlc9vQWT8Y4YR6TzAKGGV0yS3rtpVjH+0lkQjdBZv4FYV/yzbzkB/OVzsb25dO17l3DztoRSLXzF0/DkVhJuq6er8Q0g2hd1cqvxFU0lFu4gVL+eWDj+ebG8eQTK54LtpavxdSLtCddky8FfOgsnq+hQh18O05AuTx5Ke/bsoaSkhOeff57Pfvazh3z/kCUqv6uA7rrDe+/Yq6BiqRm4+suqgLPfhJWjzbfR/pZsNINzYiLS6+RbzODXf/AGKJwF8+6Hp6Ykx2wvnLcVnvsstH6UHJ97P+zbCB+uSI6N+jKMuQqeX5oc84+EpZtg5TgItyTHz1wHm5bD7qeSY5NvMInQa9clx/KnwMLfw+/HmzsuiSwbzt1sEq7EpKrXqStMIrFpeXKsYqnZ7+pFyTFPHpy3BZ6a7E4Yei18CrbeDzt+lxybcB2MnAUbrkqO5Y6FxS/AyjHmLk9/S9+D9VfB/o3JsenLzR2qd25JjpUsMvFnZiXHnACctx1WTYeO3cnx+b8z5+Sj+5NjR9N3U7ksYy4ln2pde98h3LI96XUnpxxPbhWhhhT9z/YSqFxE58617i8hPfxl8+hu2kK0ozEp5skfi+XJpnvfu0kxy5uHv3QWnTvXpKxroOoMQg0bXUlVL+/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoPp3OnetSfg79pbMIt+7su7vjakveaGz/CLr2/jlFsdkEqk53/TFeOXIfy6OfodDUZLLmwsLClPFQKEQoFOr7d3Nz89BU5HCTFDC34VMNSmAGjg/vSX+h3/5Q6iQFzLd1T5q7Svs3wtbfpI5Fu2HzL1InKb3l7ktxoQJzhyHxsVKi0D7TllRJCpjHSHVPp99nzpjUsab3YMt/JycpYF7bcm/qJKW33LbkCzJg6pIzNnUs3GLakipJ6S1358o0scdTJwRgjvnmX6TvD1t/kzpJAfPoKvFuSKLGdaavpBLpNG1JV6fax9Ofl6Ppu5KxXHcCEl9va8DqfQzbX7TbJDcpkhSAcHtdyiSlr1xv6jmKse4Wwi3Jv86ir9yWHSmTFFNuPbE0n4loRyPhNPskFibcvD1t3w63N6Q/Ru31xCKhlLFYuJ1YVwuWX/MhP26DXp48VKLRKH//93/PaaedxkknnZTyPbfddhv5+fl9P9XV1R9zLVNw/GAP8OwyXbIB5ha75aSO2QOVa4EzwORlzwAx2x+fZzGofTLwPp0AWGkugk4g/T7BHIcj3We6ci0veAKpY4dTru0bfOyQ5WYDab6NDVSu5YA9QFsG7GMDteUo+q5kLivNZd2y08egb65JyhgDbGvZA26b9hp3iJiZUzPAPgcYvqyByrXsAcp1BjxGA8ZkyGTMUb/uuut49913eeihNN8cgZtuuommpqa+n9ra2rTvPSrFKR59pFNzuflJJTjJzBfxpbhDZNkw5itm3shgyy3/HIy72sy36M+TC+P/zkxkHWy5NZeZn1RyamDiN80k2CSWKXPURam3HX1Z+n0WL4DxX3dP7Oxl+02seEFy7FDljroIaq4gZWIQKDNtyalJvW3NAOUOdPwKZsCEvzPnoD/LY85Z+ZLBl1t1Poy7KvVF0lcAE6+F4OTBl3ukfVcympNbmfJ1T24FTk7qmOXJwgmOSZv4e3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV40rTFySnHk1eVMobjxwnWYHlSfwFycirTl5tbmfb4Wb58bF+Kz7YMuYxIVL75zW/yhz/8gbVr11JVlabzAX6/n2Aw6PoZEmf94fDeV7YYpt4KZWeYOSWJWXx2FZz2EHiyYP4j7kcqth9m/dxM9jx1hZlwmqjmcphwrZnYOe4aXINt/hQzgTK7ysw3Sbwb4Q2affryzSTKxMctlm3mbFSdC1P+GSo+795n8QKYdodZwTPtjvhKHTAD+/xHzB2KBY+CP2FCme2DmXeZVS0zfwgj57jLrb4QJl1vViRNXOZuS94EM9cmUGzqm/gN3pNjXgsUm/fkTUwo1DKJRs0lpuzqL7n3OXKOqUvBVJj5I/cdBX+RmbfhCZj/JiZelgem3d5zDG5PTpAqlppjV3WumQydePHNqTH19eWbiceJK3WcLJh7nzlns39hzmFiW8ZdY871hGt7kqsEBdNMH8kbb/pM4h0QX0FPW7LNeU9cmWU5cNLNpm9OvdX01URH2nfTKZh/6PfIx8KbPx47q8T1mu0vxFs4GSdQgLdgEq7PoePHVzIT23bwl8zsdwfOxls4BdsfxFc4Bds/wlWuk12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wULK/77p0nWIMntxJP/licbHeCZPtHmLr4gngLp+Aaxmwf/p62+Epm9ku8LLwFk8wxKJyUlCCZeS/j8WSX4skf54pZniz8xf2u0/KxGdbJtLFYjGXLlvH444+zbt06JkyYMKjth/z3qKw6A/avNf9vBeHSJtj7KjS/D8EToWi2+/3tO6F+jVniWb7EPdiH22H30+aZf8XZ7mW5sRg0Pm8mhhbOci/LBbPUde8GM4CUnhFfYgxmqevuVWY5c/k57mW50TDUP2uWKZcsdC/LBdj/Rs/y5BPMyptEHXVm+a03aMpNWGZIpNO0Jdxm7u4E3BdFGl+C1s3mDkPBVHesZQvsecksfy1b7B7su5tNuQAV57gH+1jU1KejDornu5flAhx4O748uaRfgtHZCHV/NMlPxTnuuzeRLrMSqbvJ1Cer37fGPevjy5ML+92lat1mzlugxCz9TlgySXermRsSDZvznTjYx2JmWXN7LRTNcy8pB2h6P748uWSh+3yH9pnz7QRMWxIf80W7oe4Zszy57Ax34gLHtu8mrorTJNqMFA01Ee1qxvLmupYYA8TCnUQ69oLtwckucT26iUUjRDoaIRbBySpOWpYb6dxPrLsN25+P7XNfd6PdbUQ792M5AeysItfE01i0m0i7WRXkZBe75suYpc17iUU6sQOF2P0Sl2hXM9FQE5Y327XEGCAWCRHp2AOWg5NV4lqGHYtFibQ3QjSMk1WE1e9xcKTzALGe5cm2P79fW9qJdu7Dcvw9bcmI7/WfGMfNqp9rr72WBx98kCeffNL1u1Py8/PJyhpg3kIP/cI3ERGR489xk6ikW+Z13333cdVVVx1yeyUqIiIix5/jZnlyBv0KFxEREclAeugmIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhnLM5w7f+GFF1i+fDmvv/46dXV1PP7443zhC18Yziq5PWi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qqlQEM8TjVctgP55ItFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW4Xl+Pq2jXa1EGmrA8DJKcf25cXLjXQRbt1FLNKJEyjEzirB6rlWxWJRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3oBle3ByKrC98etYNNxBpHUXsWgYJ7sYJ5BwvZHjhhWLxWLDtfOnn36al19+mZkzZ3LBBRcMOlFpbm4mPz+fpqYmgsHgoTcYjP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6EC//IuXDGH8HywLq/gcZ18Zh/JJz+RyicAe/cCu/cnFAhC079CUy8DhrWwfPnQrg1Hq46H+Y/Cl0HYfUiM2j1yqmBxesgexS8cg189N/xmO2D0x42g9S2h2D930IsHI9PuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDdimRj0G0u41Q3Xpikc6+1yxfkEDZXLA9hBo2Eu3YE9/A9uAvnYMTKKC7aQvd+ze5yvMWTMY7YhyRzgOEGl4xSXrvplnF+EtnQTRCZ/0GYl3xz77lBPCXz8X25tK1713CzdsSSrXwFU/Dk1tJuK2ersY3gGhf1Mmtxlc0tS8JkuEzmPF7WBOVRJZlZU6icjhJSq+xV0HFUjNw9ZdVAWe/CStHm2+j/S3ZaAbnxESk18m3mMGv/+ANUDgL5t0PT01JjtleOG8rPPdZaP0oOT73fti3ET5ckRwb9WUYcxU8vzQ55h8JSzfBynEQbkmOn7kONi2H3U8lxybfYBKh165LjuVPgYW/h9+PN3dcElk2nLvZJFyJSVWvU1eYRGLT8uRYxVKz39WLkmOePDhvCzw12Z0w9Fr4FGy9H3b8Ljk24ToYOQs2XJUcyx0Li1+AlWPMXZ7+lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpqJE5ROts/5Voh2NSa978sdiebLp3vduUszy5uEvnUXnzjUpywxUnUGoYSOx7uRrinfkScTC7YSbkq9jdlYJ3vxxhOrXJxdqeQhUnU7nrnUpP4f+0lk42aUp6yMfn8GM38P66GewQqEQoVCo79/Nzc3DWJsetU+kHpTADBwf3pP+Qr/9odRJCphv656c1LH9G2Hrb1LHot2w+Repk5TecvelGCjB3GFIfKyUKLTPtCVVkgLmMVLd0+n3mTMmdazpPdhyb3KSAua1zfemTlJ6y23bnjpW97R5DJRKuMW0JVWS0lvuzpVpYo+nTgjAHPPNv0jfH7b+JnWSAubRVeLdkESN60xfSSXSCZvvSV+n2sfTn5ej6bvyqRKLRVMmKQCRtgashMctru26Wwi3pH8sGG7ZkTJJMeXWE0vzmYh2NBJOs09iYcIt29L27XB7gxKV48xxNZn2tttuIz8/v++nurp6uKtk5grY/vRxb5pkA8wtdstJHbMHKtcCJ82HFAaO2f74PItB7fMQ5ToBsLzpY+n2eahyPYfYZ7pyLe+R79MJmMddg40dstxsIM3duoHKtRywA6ljkD6hPVS5h+q7A5Urnz5WmuHCsvvmqaSOp7nGAdjpY5btkHaIsmysAYYva4B9DlhXyUjH1Rm76aabaGpq6vupra0doj0NItuuudz8pBKcZB4V+AqTY5YNY75i5o0Mttzyz8G4q818i/48uTDh78xE1sGWW3OZ+UklpwYmftNMgk1imTJHXZR629GXpd9n8QIY/3X3xM5ett/Eihckxw5V7qiLoOYKUiYGgTLTlpya1NvWDFDuQMevYIY59p7c5JjlMeesfMngy606H8ZdlXqg8BXAhGshOHnw5R6q705M03flU8eybJyc8pQxT24lTk5lypjtL8QbHJW671o23rxR2P7UfczJqcCTm7pcJ6ccT15VyhiOHyc4BsuTlWbb1GVK5jquEhW/308wGHT9DInL6g/vfWWLYeqtUHaGmVOSmMVnV8FpD4EnC+Y/4n6kYvth1s/NZM9TV5gJp4lqLjeDz9irYdw1uAbb/ClmAmV2lZlv4iR8GL1Bs09fvplEmfi4xbLNnI2qc2HKP0PF5937LF4A0+4wK3im3RFfqQNmYJ//CHgCsOBR8BcltMUHM+8yq1pm/hBGznGXW30hTLrerEiauMzdlrwJZq5NoNjUN/EbvCfHvBYoNu/Jm5hQqGUSjZpLTNnVX3Lvc+QcU5eCqTDzR+47Cv4iM2/DEzD/TUy8LA9Mu73nGNyenCBVLDXHrupcMxk68eKbU2Pq68s3E48TV+o4WTD3PnPOZv/CnMPEtoy7xpzrCdf2JFcJCqaZPpI33vSZxDsgvoKetmSb8564Msty4KSbTd+ceqvpq4mOtO+mlXfot8hxzVc4Bds/wvWak12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wUrH53nj3BGjy5lXjyx+JkuxMk2z/C1MUXxFs4BdcwZvvwl8zEth18JTP73VW18BZMwgkcTn+WTKLJtAN5sBA4EP/3ZTHY+yo0vw/BE6Fotvv97Tuhfo1Z4lm+xD3Yh9th99PmmX/F2e5lubEYND5vJoYWznIvywWz1HXvBjOAlJ4RX2IMZqnr7lVmOXP5Oe5ludEw1D9rlimXLHQvywXY/0bP8uQTzMqbRB11ZvmtN2jKTVhmSKTTtCXcZu7uJC7LBWh8CVo3mzsMBVPdsZYtsOcls/y1bLF7sO9uNuUCVJzjHuxjUVOfjjoonu9elgtw4O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrH7fGvesjy9PLux3l6p1mzlvgRKz9DthySTdrWZuSDRsznfiYB+LmWXN7bVQNM+9pByg6f348uSShe7zHdpnzrcTMG1JfDQW7Ya6Z8zy5LIz3IkLHNu+mzjhXJNoP1UinfuJdbdh+/Oxfe7rbrS7jWjnfiwngJ1V5FpdE4t2E2k3q4Kc7GKshD5mljbvJRbpxA4UYvdLXKJdzURDTVje7KQlxrFIiEjHHrAcnKySnkdGveVGibQ3QjSMk1WE5RngEap8rI6bVT+tra1s3rwZgOnTp/ODH/yA008/ncLCQkaNGnXI7Yc8UREREZFj7rhZ9fPaa69x+unxX0p1/fXXA3DllVdy//33D1OtREREJFMMa6KyaNEiMuTJk4iIiGSg42oyrYiIiHy6KFERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkY3mGuwIAK1asYPny5dTX13PKKafwk5/8hNmzZw93teBBy/3viztg+yPQ9B7kT4HRF4ETiMcb1kLds+AvhJrLIas8HmvZAtsfgkgnVH8BCmfGY93NsO1BaNsGI2dD5Xlg95yaWBR2PQV7X4asKhhzOfgK4tse+DPUPgaWA6MvhuAJ8VhnI2z9HwjtgdLToewssHraFAlB7f/CwbchbyKMvgQ82fFtG1+EulXgDZq2ZFfFY63bYPtvIdwGlZ+HorkJbWk1sdYtUDADqr8Itjfelt2rYM+LECiDMVeAf2R824PvQe2j5v+rvwQjpsRjoX2w7QHoqIPiBVBxNlg9eXa0G2ofhwNvQO44GH0peHPj2+7dALv+AJ4cE8uticfad5pyu5uh/GwoWRCPhdth+8PQ8lcYMRWqLwTH39OWGNQ/Bw1rwF9s2hIoiW/b/FezbSwC1RdAwSnxWNcB2PoAdOyEos+YY9jXljDsWgn7XoWcGqi5zJyDXvtfh9onTD1GXwp54+KxjjrTltB+KD/LnPNekc5j13dXnYqbA5eFOd60b/2D699Zo88h0lZHtLsF25uHk1OOZTt98UjHXiIde7EcL56cSixP/PhFu9uItO0mFoviyS7F9o/oi8Wi3YRbdxMLt2P7R+Bkl2L1nO9YLEako5Fo534sT8CU6/ji5YaaCbfXYWHh5FRg++L9OhYJEW7dRSwSwgkUYWcVYfV8vmOxCJG2eqJdzdjeHJycSndbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7Ycm77bWf8XiO7ti+MpJbt6FsPJisViseGswMMPP8xXvvIVfvaznzFnzhzuuusufve73/HXv/6VkpKSAbdtbm4mPz+fpqYmgsHggO8dtP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6GeGzkXDjjj2B5YN3fQOO6eMw/Ek7/IxTOgHduhXduTqiQBaf+BCZeBw3r4PlzIdwaD1edD/Mfha6DsHqRGbR65dTA4nWQPQpeuQY++u94zPbBaQ+bQWrbQ7D+byGWMDBNuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDeikZlP5JSiqWJwd/+Twsx0/XnjeJtO1OCNr4S07FyS4h3FJL1963STzfnvxx+AonE+1qobN+g/li0MP2j8BfNhewCDW8SrQzoS/YXgJlc7H9+XQf+IDugx+46uQdeRLeYA2Rjr2EGja6zouTXYqvZCZEw3TWrSfW3ZLQliz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPW+625I3GV3Qy0e42QnXriUU64+X6ggTK5oLtIdSwkWjHnoRiPfhL5+AECuhu2kL3/k3uthRMxjtiHJHOA4QaXjFJeu+mWcX4S2dBNEJn/QZiXfHPvuUE8JfPxfbm0rXvXcLN2xLPGr7iaXhyKwm31dPV+AYQjR+j3Gp8RVOJhTsI1a8nFo5/XixvHoHyuWB76Wp8nUh7wjXZcvCXzsLJKqK7eRvd+951t2XERLwFE4mGmsz5jnbH2xIoxF86B4gRqt9ANHQw4Rj5CJTPw/bl0bV/E+GmLa5yfUVT8eSNItLeSKjxNfNlr7ctORX4iqdDJGTOd7gtXt2j6LvpZI/5/CHfMxiDGb+HPVGZM2cOs2bN4u67zWASjUaprq5m2bJl3HjjjQNuO2SJyuEkKb3GXgUVS83A1V9WBZz9Jqwcbb6N9rdkoxmcExORXiffYga//oM3QOEsmHc/PDUlOWZ74byt8NxnofWj5Pjc+2HfRvhwRXJs1JdhzFXw/NLkmH8kLN0EK8dBuCU5fuY62LQcdj+VHJt8g0mEXrsuOZY/BRb+Hn4/3vUhBMxAfO5mk3AlJlW9Tl1hEolNy5NjFUvNflcvSo558uC8LfDUZHfC0GvhU7D1ftjxu+TYhOtg5CzYcFVyLHcsLH4BVo5xXaj6LH0P1l8F+zcmx6YvN3eo3rklOVayyMSfSfGtxgnAedth1XTo2J0cn/87c04+uj85djR9N5XjJFFp3/pHoOuQ7wNwcqtwskt6Bjw3y/Hjr1hA5841yX0X8FfMp3v/Jnci0sM7YiLYTtLgDWD78vEVT6Nz1/MpamQRqDqjZ5BtT4r6ik4x38pbtie3JaccT26VSXCSduolULmIzp1r3V9CettSNo/upi1EOxqTYp78sVie7KTBG8zg7y+dZY5RCoGqMwg1bHQlVb28I08iFm4n3JR8HbOzSvDmjyNUvz65UMtDoOp0OnetS/k59JfOIty6s+/ujqsteaOx/SPo2vvnFMVm4y+b19OW5L4eqFxI1563iCYkVX1tKZwM0UhS4glgB0biLZxMaPdLKdpim2O0+0ViCcluL1/JDCLtjURadybFjqbvpjKcicqwPvrp6uri9ddf56abbup7zbZtFi9ezPr1yR0wFAoRCsVPVnNz88dSzwHVPpF6UAIzcHx4T/oL/fbfpk5SwHxb9+Skju3fCFt/kzoW7YbNv0idpPSWuy/FhQrMHYbEx0qJQvtMW1IlKWAeI9U9nX6fOWNSx5regy3/nfrDEovClntTJym95bYlX5ABU5ecsalj4RbTllRJSm+5O1emiT2eOiEAc8w3/yJ9f9j6m9RJCphHV4l3QxI1rjOPXlKJdJq2pKtT7ePpz8vR9N3j2uElKYD5Vp3mu1wsEjIJQZoLfbh1V8okBSDcXt/3mKG/aFcT4RQDT89eCbfuSJmkmPrWEw0lD5QAkbYG12MG9067e9qS+hFeuL0uZZLSV27C4xZXbbtbCLfsSL1PINyyI2WSYsqtJ5bmMxHtaCTsSb1PYmHCLdvS9u1we4P7bkniPtvrUyYEpth2wq07SHf3Idy6M2WSAj1tSXNXMtq5j3DrrpQxYlFzjNLUKdJWTyTxLlZi7Cj6bqYZ1sm0e/fuJRKJUFpa6nq9tLSU+vr6pPffdttt5Ofn9/1UV1d/XFVNz/GD7U8fT5dsADjZZm5JKvZA5Vpm27T7HCBm++PzLAa1TwbepxMAK81F0Amk3yeYRw1Hus905VpeSHgOO+hybd/gYzDwsXeygTR36wYq13LAHqAtA/axgdpyiPPtHaDcTwvLjs8fShlP/13PJCKpz7d1yHLTXBf6yh1gu3TlHmKf1kAxBtjWsgfcFnuA+g4QM3MsjrQtAx0/e4ByBzh+gMUhjn3a2EDHyDpEfYfqfGfEFNXDclyt+rnppptoamrq+6mtrT30RkOt5nLzk0pwkpkv4itMjlk2jPmKmTcy2HLLPwfjrk59kfTkwvi/MxNZB1tuzWXmJ5WcGpj4TTMJNollyhx1UeptR1+Wfp/FC2D8190TO3vZfhMrXpAcO1S5oy6CmitIOVAEykxbcmpSb1szQLkDHb+CGebYe3KTY5bHnLPyJYMvt+p8GHdV6ouOrwAmXgvByYMv91B9d0Kavnu8s4sO/Z4enpxKPLmVKWOWNxdvsCY+Wbz/tnlVONmlKWPOAOXaWcV48qpJ2XctB09wNJYvP3W5uZU4acr15Fbg5KRpiycLJzgmbeLvya3CySlPE6tMW67tL8SbNyp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntRfgAY69gMdP8uXjyd/dJqExMKTV42dVZxy24GOkZNd2nO+U7C9eII1WN4U15Secj1pyj1U3/UM0HczzbAmKkVFRTiOQ0OD+zZcQ0MDZWXJA6Lf7ycYDLp+hsThPmsvWwxTb4WyM8ycksQOnF0Fpz0EniyY/4j7kYrth1k/N5M9T11hJpwmqrkcJlxrJnaOuwbXBSt/iplAmV1l5psk3o3wBs0+fflmEmXi4xbLNnM2qs6FKf8MFf2eNxYvgGl3mBU80+5wd+BAmWmDJwALHgV/woXe9sHMu8yqlpk/hJFz3OVWXwiTrjcrkiYuc7clb4KZaxMoNvVNvDPgyTGvBYrNe/ImJhRqmUSj5hJTdvWX3PscOcfUpWAqzPyR+46Cv8jM2/AEzH8TEy/LA9Nu7zkGtycnSBVLzbGrOtdMhk68+ObUmPr68s3E48SVOk4WzL3PnLPZvzDnMLEt464x53rCtT3JVYKCaaaP5I03fSbxDoivoKct2ea8J67Mshw46WbTN6feavpqoiPtu58A2aPnHvpNgB0owlswESeryMwpSei7lhPAXzwDy3bwl8x0f14sG1/RVGxvLr6RJ2H53NcpJ6cST7AGJ7caJ9c9QFnePLOtJwtf8SnuPmZ58JfMwLK9+IunY/W7e+fJH4snuxRv/njsLPdCBNtfiLdwMk6gAG/BJFdbcPz4SmZi97Ul8Q6cjbdwCrY/iK9wims1E4CTXWb2m1thBr7Etnhy8BWfguX4zaTPxD5mOfiKp/fETsHqd/fOE6wxg3D+WJxsd4Jk+0eYuviCeAun4BrGbB/+nrb4Smb2S7wsvAWTzDEonJSUIJl5L+PxZJfiyR/nilmeLHPMbS/+khnuL4mWja/4FHPOiqZiefNc2/aeZ0+wJilZsXxBfCNPwvbm4Cua6j7fthd/ycyePjYDy/VlzsIzYoLpmwUTsQPu5PuI+25aqRPjj0tGTKadPXs2P/nJTwAzmXbUqFF885vfHL7JtL36T6q9LAZ7X4Xm9yF4IhT1W0LdvhPq15glnuVL3B0g3A67nzbP/CvOdi/LjcWg8XkzMbRwlntZLpilrns3mAGk9Iz4EmMwS113rzLLmcvPcS/LjYah/lmzTLlkoXtZLsD+N3qWJ59gVt4k6qgzy2+9QVNuwjJDIp2mLeE2c3cn4L4o0vgStG42dxgKprpjLVtgz0tm+WvZYvcHs7vZlAtQcY57sI9FTX066qB4vntZLsCBt+PLk0v6JRidjVD3R5P8VJzjvnsT6TIrkbqbTH2y+n1r3LM+vjy5sN9dqtZt5rwFSszS74Qlk3S3mrkh0bA534mDfSxmljW310LRPPeScoCm9+PLk0sWus93aJ85307AtCVxsIp2Q90zZnly2RnuxAWObd9N/GwcJ5No+2vf9ieI7e/5l032mL8hEjpArKsVy5eL43cnaNFwB9GOfViOFzur2HUrPxaNEOlohFgEJ6vEtSzXLHXdRyzcge0f4VqWC2apazR0AMuThR0Y2beUFcxS10jHHrAsU25CH4vFokQ79hKLhLADI13LcgGioSaiXc1Y3lzXEmMwS10jHXvB9uBklwzQlmLXslyASOd+Yt1t2P587H5JWLS7zSy1dgKu5dKm3G4i7WY+hZNd7JovY5Y27yUW6cQOFLqW5Zpj1Ew01ITlzXYtMTbHKNRzjJyeY+QklBsl0t4I0TBOVpFrWa5pywFiPcuTbb97MI52txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHjmnfTVwVd6wn0fY6rlb9PPzww1x55ZX8/Oc/Z/bs2dx111088sgj/OUvf0mau9LfkCcqIiIicswdN6t+AC6++GL27NnDv/zLv1BfX8+0adNYtWrVIZMUERER+eQb9jsqR0N3VERERI4/gxm/j6tVPyIiIvLpokRFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0L/aPT+Ut3m5uZhromIiIgcrt5x+3B+Of5xnai0tLQAUF1dfYh3ioiISKZpaWkhPz9/wPcc13/rJxqNsnv3bvLy8lx/Kls+mZqbm6murqa2tlZ/20nkE0af70+XWCxGS0sLFRUV2PbAs1CO6zsqtm1TVVU13NWQj1kwGNSFTOQTSp/vT49D3Unppcm0IiIikrGUqIiIiEjGUqIixw2/38/NN9+M3+8f7qqIyDGmz7ekc1xPphUREZFPNt1RERERkYylREVEREQylhIVERERyVhKVERERCRjKVGR48aKFSuoqakhEAgwZ84cXn311eGukogcpRdeeIFzzz2XiooKLMviiSeeGO4qSYZRoiLHhYcffpjrr7+em2++mTfeeINTTjmFJUuW0NjYONxVE5Gj0NbWximnnMKKFSuGuyqSobQ8WY4Lc+bMYdasWdx9992A+TtP1dXVLFu2jBtvvHGYaycix4JlWTz++ON84QtfGO6qSAbRHRXJeF1dXbz++ussXry47zXbtlm8eDHr168fxpqJiMhQU6IiGW/v3r1EIhFKS0tdr5eWllJfXz9MtRIRkY+DEhURERHJWEpUJOMVFRXhOA4NDQ2u1xsaGigrKxumWomIyMdBiYpkPJ/Px8yZM1m9enXfa9FolNWrVzNv3rxhrJmIiAw1z3BXQORwXH/99Vx55ZWceuqpzJ49m7vuuou2tjauvvrq4a6aiByF1tZWNm/e3PfvrVu38tZbb1FYWMioUaOGsWaSKbQ8WY4bd999N8uXL6e+vp5p06bx4x//mDlz5gx3tUTkKKxbt47TTz896fUrr7yS+++//+OvkGQcJSoiIiKSsTRHRURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEMtott9zCtGnThrsaIjJMlKiIyJCqr69n2bJljB07Fr/fT3V1Neeee67rj0yKiKSjP0ooIkNm27ZtnHbaaYwYMYLly5dz8skn093dzTPPPMN1113HX/7yl4+lHt3d3Xi93o9lXyJybOmOiogMmWuvvRbLsnj11Ve58MILmThxIlOmTOH6669nw4YNAOzYsYPzzz+f3NxcgsEgF110EQ0NDWnLjEaj3HrrrVRVVeH3+5k2bRqrVq3qi2/btg3Lsnj44YdZuHAhgUCABx54YMjbKiJDQ4mKiAyJ/fv3s2rVKq677jpycnKS4iNGjCAajXL++eezf/9+nn/+eZ599lk++ugjLr744rTl/uhHP+L73/8+d955J2+//TZLlizhvPPO48MPP3S978Ybb+Tb3/42mzZtYsmSJce8fSLy8dCjHxEZEps3byYWizFp0qS071m9ejXvvPMOW7dupbq6GoBf//rXTJkyhY0bNzJr1qykbe68806++93vcskllwBwxx13sHbtWu666y5WrFjR976///u/54ILLjjGrRKRj5vuqIjIkIjFYod8z6ZNm6iuru5LUgBOPPFERowYwaZNm5Le39zczO7duznttNNcr5922mlJ7z/11FOPsOYikkmUqIjIkJgwYQKWZX1sE2b7S/W4SUSOP0pURGRIFBYWsmTJElasWEFbW1tS/ODBg0yePJna2lpqa2v7Xn///fc5ePAgJ554YtI2wWCQiooKXn75ZdfrL7/8csr3i8jxT3NURGTIrFixgtNOO43Zs2dz6623MnXqVMLhMM8++yz33HMP77//PieffDKXX345d911F+FwmGuvvZaFCxemfXRzww03cPPNNzNu3DimTZvGfffdx1tvvaWVPSKfUEpURGTIjB07ljfeeIN///d/5zvf+Q51dXUUFxczc+ZM7rnnHizL4sknn2TZsmV89rOfxbZtzj77bH7yk5+kLfNb3/oWTU1NfOc736GxsZETTzyRlStXMmHChI+xZSLycbFihzPjTURERGQYaI6KiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMb6/wHCnL2DXQSZ/gAAAABJRU5ErkJggg==", + "text/plain": [ + "
                      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Suppressing warning message claiming that a portion of points cannot be placed into the plot due to the high number of data points\n", + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')\n", + "\n", + "palette = {\n", + " 0: 'orange',\n", + " 1: 'wheat'\n", + "}\n", + "sns.swarmplot(x=\"Color\", y=\"ord__Item Size\", hue=\"Color\", data=encoded_pumpkins, palette=palette)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Attention** : Ignorer les avertissements n'est PAS une bonne pratique et doit être évité autant que possible. Les avertissements contiennent souvent des messages utiles qui nous permettent d'améliorer notre code et de résoudre un problème. \n", + "La raison pour laquelle nous ignorons cet avertissement spécifique est de garantir la lisibilité du graphique. Tracer tous les points de données avec une taille de marqueur réduite, tout en maintenant la cohérence avec la palette de couleurs, génère une visualisation peu claire.\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "# X is the encoded features\n", + "X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])]\n", + "# y is the encoded label\n", + "y = encoded_pumpkins['Color']\n", + "\n", + "# Split the data into training and test sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.94 0.98 0.96 166\n", + " 1 0.85 0.67 0.75 33\n", + "\n", + " accuracy 0.92 199\n", + " macro avg 0.89 0.82 0.85 199\n", + "weighted avg 0.92 0.92 0.92 199\n", + "\n", + "Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0\n", + " 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0\n", + " 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1\n", + " 0 0 0 1 0 0 0 0 0 0 0 0 1 1]\n", + "F1-score: 0.7457627118644068\n" + ] + } + ], + "source": [ + "from sklearn.metrics import f1_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "# Train a logistic regression model on the pumpkin dataset\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "# Evaluate the model and print the results\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('F1-score: ', f1_score(y_test, predictions))" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[162, 4],\n", + " [ 11, 22]])" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import confusion_matrix\n", + "confusion_matrix(y_test, predictions)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAIjCAYAAABBOWJ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgUElEQVR4nO3dd1gUV8MF8LOUZelqsItBjTV2jcYKKgoWFDWKJUKIvUc0tqjYoibWxKDGFqwRNGqMjQiC3WhE7CX2BiixgHR27/eHL/tJBGVxl9lyfs/DE3aY2T07ETjcuTMjE0IIEBEREWmRmdQBiIiIyPiwYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBCZgODgYMhkMvWHhYUFypYtiy+++AIPHz7MdRshBDZs2ICWLVuiSJEisLGxQa1atTBz5kwkJyfn+Vo7duxA+/bt4eTkBLlcjjJlyqBnz544ePBgvrKmpaVh8eLFaNy4MRwdHaFQKFClShWMGDEC169fL9D7J6LCJ+O9SIiMX3BwMPz9/TFz5kxUqFABaWlpOHnyJIKDg+Hi4oKLFy9CoVCo11cqlejTpw9CQ0PRokULdOvWDTY2Njhy5Ag2b96MGjVqIDw8HCVLllRvI4TAl19+ieDgYNSrVw+fffYZSpUqhdjYWOzYsQNnzpzBsWPH0LRp0zxzJiQkwNPTE2fOnEGnTp3g7u4OOzs7XLt2DVu2bEFcXBwyMjJ0uq+ISEsEERm9X375RQAQp0+fzrF8woQJAoAICQnJsXzOnDkCgBg3btwbz7Vr1y5hZmYmPD09cyyfP3++ACC++uoroVKp3thu/fr14q+//nprzo4dOwozMzOxbdu2N76WlpYmxo4d+9bt8yszM1Okp6dr5bmIKHcsGEQmIK+CsXv3bgFAzJkzR70sJSVFFC1aVFSpUkVkZmbm+nz+/v4CgDhx4oR6m2LFiolq1aqJrKysAmU8efKkACAGDhyYr/VdXV2Fq6vrG8v9/PzEhx9+qH58+/ZtAUDMnz9fLF68WFSsWFGYmZmJkydPCnNzczF9+vQ3nuPq1asCgFi6dKl62bNnz8To0aNFuXLlhFwuF5UqVRLz5s0TSqVS4/dKZAo4B4PIhN25cwcAULRoUfWyo0eP4tmzZ+jTpw8sLCxy3c7X1xcAsHv3bvU2T58+RZ8+fWBubl6gLLt27QIA9OvXr0Dbv8svv/yCpUuXYtCgQVi4cCFKly4NV1dXhIaGvrFuSEgIzM3N0aNHDwBASkoKXF1dsXHjRvj6+uLHH39Es2bNMGnSJAQEBOgkL5Ghy/2nBxEZpRcvXiAhIQFpaWn466+/MGPGDFhZWaFTp07qdS5fvgwAqFOnTp7Pk/21K1eu5PhvrVq1CpxNG8/xNg8ePMCNGzdQvHhx9TIfHx8MHjwYFy9eRM2aNdXLQ0JC4Orqqp5jsmjRIty8eRNnz55F5cqVAQCDBw9GmTJlMH/+fIwdOxbOzs46yU1kqDiCQWRC3N3dUbx4cTg7O+Ozzz6Dra0tdu3ahXLlyqnXSUpKAgDY29vn+TzZX0tMTMzx37dt8y7aeI636d69e45yAQDdunWDhYUFQkJC1MsuXryIy5cvw8fHR71s69ataNGiBYoWLYqEhAT1h7u7O5RKJQ4fPqyTzESGjCMYRCYkKCgIVapUwYsXL7B27VocPnwYVlZWOdbJ/gWfXTRy898S4uDg8M5t3uX15yhSpEiBnycvFSpUeGOZk5MT2rRpg9DQUMyaNQvAq9ELCwsLdOvWTb3eP//8g/Pnz79RULI9fvxY63mJDB0LBpEJadSoERo2bAgA8Pb2RvPmzdGnTx9cu3YNdnZ2AIDq1asDAM6fPw9vb+9cn+f8+fMAgBo1agAAqlWrBgC4cOFCntu8y+vP0aJFi3euL5PJIHI5y16pVOa6vrW1da7Le/XqBX9/f8TExKBu3boIDQ1FmzZt4OTkpF5HpVKhbdu2GD9+fK7PUaVKlXfmJTI1PERCZKLMzc0xd+5cPHr0CD/99JN6efPmzVGkSBFs3rw5z1/W69evBwD13I3mzZujaNGi+PXXX/Pc5l28vLwAABs3bszX+kWLFsXz58/fWH737l2NXtfb2xtyuRwhISGIiYnB9evX0atXrxzrVKpUCS9fvoS7u3uuH+XLl9foNYlMAQsGkQlzc3NDo0aNsGTJEqSlpQEAbGxsMG7cOFy7dg3ffPPNG9vs2bMHwcHB8PDwwKeffqreZsKECbhy5QomTJiQ68jCxo0bcerUqTyzNGnSBJ6enli9ejV27tz5xtczMjIwbtw49eNKlSrh6tWrePLkiXrZuXPncOzYsXy/fwAoUqQIPDw8EBoaii1btkAul78xCtOzZ0+cOHECYWFhb2z//PlzZGVlafSaRKaAV/IkMgHZV/I8ffq0+hBJtm3btqFHjx5Yvnw5hgwZAuDVYQYfHx/89ttvaNmyJbp37w5ra2scPXoUGzduRPXq1REREZHjSp4qlQpffPEFNmzYgPr166uv5BkXF4edO3fi1KlTOH78OJo0aZJnzidPnqBdu3Y4d+4cvLy80KZNG9ja2uKff/7Bli1bEBsbi/T0dACvzjqpWbMm6tSpg/79++Px48dYsWIFSpYsicTERPUpuHfu3EGFChUwf/78HAXldZs2bcLnn38Oe3t7uLm5qU+ZzZaSkoIWLVrg/Pnz+OKLL9CgQQMkJyfjwoUL2LZtG+7cuZPjkAoRgVfyJDIFeV1oSwghlEqlqFSpkqhUqVKOi2QplUrxyy+/iGbNmgkHBwehUCjExx9/LGbMmCFevnyZ52tt27ZNtGvXThQrVkxYWFiI0qVLCx8fHxEVFZWvrCkpKWLBggXik08+EXZ2dkIul4vKlSuLkSNHihs3buRYd+PGjaJixYpCLpeLunXrirCwsLdeaCsviYmJwtraWgAQGzduzHWdpKQkMWnSJPHRRx8JuVwunJycRNOmTcWCBQtERkZGvt4bkSnhCAYRERFpHedgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1pncvUhUKhUePXoEe3t7yGQyqeMQEREZDCEEkpKSUKZMGZiZvX2MwuQKxqNHj+Ds7Cx1DCIiIoN1//59lCtX7q3rmFzByL699P3799W3hyYiIqJ3S0xMhLOzs/p36duYXMHIPizi4ODAgkFERFQA+ZliwEmeREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1khaMw4cPw8vLC2XKlIFMJsPOnTvfuU1UVBTq168PKysrfPTRRwgODtZ5TiIiItKMpAUjOTkZderUQVBQUL7Wv337Njp27IhWrVohJiYGX331FQYMGICwsDAdJyUiIiJNWEj54u3bt0f79u3zvf6KFStQoUIFLFy4EABQvXp1HD16FIsXL4aHh4euYhoVIQSi7z3Dk6R0qaMQEVEhaFLJCY7WloX+upIWDE2dOHEC7u7uOZZ5eHjgq6++ynOb9PR0pKf//y/TxMREXcUzCCdvPUXvVSeljkFERIVk76gWLBjvEhcXh5IlS+ZYVrJkSSQmJiI1NRXW1tZvbDN37lzMmDGjsCLqvQsPnwMAnOys4PKBjbRhiIhI52zk5pK8rkEVjIKYNGkSAgIC1I8TExPh7OwsYSJp3XuaAgDo9YkzxnlUlTgNERFp05kzZ/DTTz9h5cqVsLQs/FGL1xlUwShVqhTi4+NzLIuPj4eDg0OuoxcAYGVlBSsrq8KIZxDuPU0FAJQvxtELIiJjcvr0abRr1w7Pnz9H+fLlJR+9N6jrYDRp0gQRERE5lh04cABNmjSRKJHhuf+/EQxnFgwiIqNx6tQptG3bFs+fP0ezZs0wbtw4qSNJWzBevnyJmJgYxMTEAHh1GmpMTAzu3bsH4NXhDV9fX/X6Q4YMwa1btzB+/HhcvXoVy5YtQ2hoKMaMGSNFfIOjVAk8ePaqYJTn/AsiIqPw119/oW3btnjx4gWaN2+Offv2wd7eXupY0haMv//+G/Xq1UO9evUAAAEBAahXrx6mTZsGAIiNjVWXDQCoUKEC9uzZgwMHDqBOnTpYuHAhVq9ezVNU8yn2RSoylQKW5jKUclBIHYeIiN7TyZMn0a5dOyQmJqJFixZ6Uy4AQCaEEFKHKEyJiYlwdHTEixcv4ODgIHWcQnX8ZgL6rPoLFZxsETnOTeo4RET0HlJTU1GpUiXExsbC1dUVu3fvhp2dnU5fU5PfoQY1B4PeD+dfEBEZD2tra2zevBkdO3bEnj17dF4uNGVQZ5HQ+8k+RfVDFgwiIoOVmZmpPgXVzc0Nbm5u0gbKA0cwTAhPUSUiMmxHjx5FtWrVcPHiRamjvBMLhgm5x0MkREQG68iRI/D09MStW7fw7bffSh3nnVgwTEj2HAyOYBARGZbDhw+jffv2SE5Ohru7O9auXSt1pHdiwTARSWmZeJqcAQBwLpb7VU+JiEj/HDp0SF0u2rZti127duV59Wp9woJhIrIPjxSzlcNeIe316YmIKH8iIyPRoUMHpKSkwMPDA7///rtBlAuABcNk8BRVIiLDIoTA3LlzkZKSAk9PT+zcudNgygXAgmEyeIoqEZFhkclk2LZtGyZMmIAdO3ZAoTCsKzCzYJiIe5zgSURkEO7evav+3MHBAfPmzTO4cgGwYJgMXgODiEj/HThwANWqVcO8efOkjvLeWDBMBOdgEBHptz///BNeXl5IS0vD8ePHoVQqpY70XlgwTABv005EpN/CwsLQuXNnpKeno0uXLti2bRvMzc2ljvVeWDBMAG/TTkSkv/bt24cuXbogPT0d3t7eCA0NhVwulzrWe2PBMAHZEzzLFbWBuZlM4jRERJRt79698Pb2Rnp6Orp27YqQkBCjKBcAC4ZJ4CXCiYj0040bN5CRkYHu3bsbVbkAeLt2k8BTVImI9NOoUaNQoUIFeHp6qm/Bbiw4gmECeIoqEZH+OHjwIJ49e6Z+7OXlZXTlAmDBMAn3/k0GwFNUiYik9vvvv8PT0xPt2rVDYmKi1HF0igXDBPAQCRGR9Hbs2IHPPvsMmZmZqFy5MmxsjPtnMguGkUtMy8SzlEwAvAYGEZFUtm/fjp49eyIrKwt9+vTB+vXrYWFh3NMgWTCMXPYZJB/YymFnZdz/mImI9NFvv/0GHx8fZGVloW/fviZRLgAWDKPHS4QTEUln586d6nLRr18/rFu3zuCv0Jlfxl+hTBznXxARSad69eooUaIE2rZti7Vr15pMuQBYMIweCwYRkXSqVq2KU6dOoXTp0iZVLgAeIjF6d/9lwSAiKky//vor/vzzT/XjcuXKmVy5ADiCYfQ4B4OIqPBs2rQJvr6+kMvlOHXqFGrVqiV1JMlwBMOIvbpN+/+u4slTVImIdGrjxo3w9fWFSqXC559/jo8//ljqSJJiwTBisS9SkaUSkJub8TbtREQ6tGHDBnW5GDhwIH7++WeYmZn2r1geIjEiT5LSkZKRpX4cc/85AKBcUWvepp2ISEfWrVsHf39/CCEwaNAgLF++3OTLBcCCYTR2n3+EEZvP5vo1zr8gItKNqKgodbkYMmQIgoKCWC7+hwXDSFx+9OqmOZbmMlhZ/P9sZbmFGbrVLytVLCIio9a8eXP4+PigaNGiCAoKgkzG0eJsLBhG5vNPP0Sgl2lPLCIiKiwWFhbYsGEDzM3NWS7+g+M4REREGli9ejUGDBgAlUoF4FXJYLl4E0cwiIiI8mnlypUYPHgwAMDd3R29evWSOJH+4ggGERFRPvz888/qcjF69Gj4+PhInEi/sWAQERG9w/LlyzFkyBAAwJgxY7B48WIeFnkHFgwiIqK3CAoKwrBhwwAAY8eOxcKFC1ku8oEFg4iIKA93795FQEAAAGDcuHGYP38+y0U+cZInERFRHj788EOEhobi1KlTmD17NsuFBlgwiIiI/iMpKQn29vYAgC5duqBLly4SJzI8PERCRET0msWLF6NmzZq4ffu21FEMGgsGERHR/yxatAgBAQG4d+8efvvtN6njGDQWDCIiIgALFy7E2LFjAQBTp05Vf04Fw4JBREQmb/78+Rg3bhwAYNq0aZgxYwYndL4nFgwiIjJp33//PcaPHw8AmD59OsuFlvAsEiIiMllpaWnYtGkTAGDGjBmYNm2axImMBwsGERGZLIVCgfDwcGzfvl19nxHSDh4iISIik3P27Fn158WLF2e50AEWDCIiMimzZs1C/fr1sXLlSqmjGDUWDCIiMhmvz7N4+vSpxGmMG+dgEBGRScg+QwQA5s2bhwkTJkicyLixYBARkVETQmD69OmYOXMmgFenpX799dcSpzJ+LBhERGS0hBCYNm0aZs+eDQBYsGABr9BZSFgwiIjIJCxatAhjxoyROobJYMEgIiKjJZPJMHPmTLRv3x5NmzaVOo5J4VkkRERkVIQQWLVqFVJSUgC8KhksF4WPBYOIiIyGEAITJkzAoEGD0LlzZyiVSqkjmSweIiEiIqMghMD48eOxYMECAEDXrl1hbm4ucSrTxYJBREQGTwiBcePGYdGiRQCAoKAgDBs2TOJUpo0Fg4iIDJoQAgEBAViyZAkAYPny5RgyZIi0oYgFg4iIDNvUqVPV5WLFihW8cZme4CRPIiIyaN26dUOxYsXw888/s1zoEY5gEBGRQatfvz7++ecfFCtWTOoo9BqOYBARkUHJPlvk5MmT6mUsF/qHBYOIiAyGSqXC8OHDMX/+fLRv3563XNdjPERCREQGQaVSYdiwYfj5558hk8mwZMkSjlzoMRYMIiLSeyqVCkOHDsXKlSshk8kQHBwMX19fqWPRW7BgGAkhdQAiIh1RqVQYPHgwVq9eDTMzM6xbtw6ff/651LHoHVgwjMSp26+OQ5Z2VEichIhIu4KCgtTlYv369ejbt6/UkSgfWDCMwLW4JJy5+wwWZjJ41ysrdRwiIq0aOHAgwsLC0KdPH/Tp00fqOJRPLBhG4NdT9wAA7tVLooQ9RzCIyPCpVCrIZDLIZDIoFAr88ccfkMlkUsciDfA0VQOXmqHEb9EPAAC9G5eXOA0R0ftTKpXw9/fH119/DSFezTBjuTA8kheMoKAguLi4QKFQoHHjxjh16tRb11+yZAmqVq0Ka2trODs7Y8yYMUhLSyuktPpnz4VYJKVloVxRa7T4yEnqOERE7yW7XKxfvx5LlizB+fPnpY5EBSRpwQgJCUFAQAACAwMRHR2NOnXqwMPDA48fP851/c2bN2PixIkIDAzElStXsGbNGoSEhGDy5MmFnFx/ZB8e6d2oPMzM2PCJyHAplUr4+flhw4YNMDc3x5YtW1CnTh2pY1EBSVowFi1ahIEDB8Lf3x81atTAihUrYGNjg7Vr1+a6/vHjx9GsWTP06dMHLi4uaNeuHXr37v3OUQ9j9frkzh4Ny0kdh4iowLKysuDr64tNmzbBwsICISEh+Oyzz6SORe9BsoKRkZGBM2fOwN3d/f/DmJnB3d0dJ06cyHWbpk2b4syZM+pCcevWLezduxcdOnTI83XS09ORmJiY48NYcHInERmD7HKxefNmWFhYIDQ0FN27d5c6Fr0nyc4iSUhIgFKpRMmSJXMsL1myJK5evZrrNn369EFCQgKaN28OIQSysrIwZMiQtx4imTt3LmbMmKHV7Prg9cmdfTi5k4gM2LFjx7BlyxZYWFhg69at8Pb2ljoSaYHkkzw1ERUVhTlz5mDZsmWIjo7G9u3bsWfPHsyaNSvPbSZNmoQXL16oP+7fv1+IiXUne3KnczFrNOfkTiIyYK6urggODsa2bdtYLoyIZCMYTk5OMDc3R3x8fI7l8fHxKFWqVK7bTJ06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZmb/YlKysrWFlZaf8NSCz78EivTzi5k4gMT2ZmJp4/f47ixYsDAO8rYoQkG8GQy+Vo0KABIiIi1MtUKhUiIiLQpEmTXLdJSUl5o0SYm5sDgPpcaVPAyZ1EZMgyMzPRu3dvtGzZEnFxcVLHIR2R9EqeAQEB8PPzQ8OGDdGoUSMsWbIEycnJ8Pf3B/Cq0ZYtWxZz584FAHh5eWHRokWoV68eGjdujBs3bmDq1Knw8vJSFw1TsO3Mq8M8bWtwcicRGZbMzEz06tUL27dvh1wux8WLF/MctSbDJmnB8PHxwZMnTzBt2jTExcWhbt262L9/v3ri571793KMWEyZMgUymQxTpkzBw4cPUbx4cXh5eeHbb7+V6i1I4u+7zwAAHh/zm5KIDEdGRgZ69eqFHTt2QC6XY8eOHTnOJCTjIhOmdGwBQGJiIhwdHfHixQs4ODhIHUdjWUoVak4PQ1qmChFjXVGpuJ3UkYiI3ikjIwM9e/bE77//DisrK+zcuROenp5SxyINafI7lDc7MzA3nrxEWqYKdlYWqPCBrdRxiIjeKSMjAz169MCuXbtgZWWF33//HR4eHlLHIh0zqNNUCbjw4AUA4OMyDjx7hIgMwtOnT3Hp0iUoFArs2rWL5cJEcATDwFx8+Kpg1CrrKHESIqL8KVWqFCIjI3Hjxg20atVK6jhUSDiCYWDOZxeMciwYRKS/0tPTERUVpX7s7OzMcmFiWDAMSJZShSuxr+6lUpMjGESkp9LS0tCtWze4u7tj69atUschibBgGBBO8CQifZeWloauXbti7969kMvl+OCDD6SORBLhHAwDwgmeRKTPUlNT4e3tjT///BM2NjbYs2cP3NzcpI5FEmHBMCAXOMGTiPRUamoqunTpggMHDsDGxgZ79+6Fq6ur1LFIQiwYBuQCJ3gSkR5KT09H586dER4eDltbW+zduxctW7aUOhZJjHMwDAQneBKRvpLL5ahcuTJsbW2xb98+lgsCwIJhMDjBk4j0lUwmw08//YTo6Gi0aNFC6jikJ1gwDAQneBKRPklOTsbMmTORmZkJADAzM0OVKlUkTkX6hHMwDAQneBKRvkhOTkbHjh1x6NAh3Lp1C8HBwVJHIj3EEQwDwQmeRKQPXr58iQ4dOuDQoUNwcHDAkCFDpI5EeoojGAbg9QmeHMEgIqlkl4sjR47AwcEBf/75Jxo3bix1LNJTHMEwAK9P8HThBE8ikkBSUhLat2+PI0eOwNHREQcOHGC5oLfiCIYBOM8JnkQkISEEevTogaNHj6JIkSI4cOAAGjZsKHUs0nMcwTAAvEU7EUlJJpNh0qRJKFu2LMLDw1kuKF84gmEAOMGTiKTm6uqKGzduQKFQSB2FDARHMPQcJ3gSkRRevHgBLy8vXLx4Ub2M5YI0wREMPccJnkRU2J4/fw4PDw+cOnUKN27cwMWLF2Fubi51LDIwLBh6jhM8iagwPX/+HO3atcPp06fxwQcfYMuWLSwXVCA8RKLnOMGTiArLs2fP0LZtW5w+fRpOTk44ePAg6tSpI3UsMlAcwdBjSpVAxJXHAIB65YtKnIaIjNnTp0/Rtm1bREdHq8tFrVq1pI5FBowjGHrs8D9P8PB5KhytLdGmegmp4xCREZs8eTKio6NRvHhxREZGslzQe2PB0GO//nUPANCtflkoLHkMlIh0Z/78+fD29sbBgwdRs2ZNqeOQEeAhEj0Vn5iGiKuvDo/0aVRe4jREZIxSU1NhbW0NALC3t8eOHTskTkTGhCMYeir09H0oVQKfuBRF5ZL2UschIiOTkJCATz/9FHPnzpU6ChkpFgw9pFQJbDl9HwDQpzFHL4hIu548eYLWrVvj/Pnz+OGHH/D06VOpI5ERYsHQQ69P7mxfs7TUcYjIiDx+/BitW7fGhQsXUKpUKURFRaFYsWJSxyIjxDkYeoiTO4lIF7LLxaVLl1C6dGlERkaiatWqUsciI8URDD3DyZ1EpAvx8fFo1aoVLl26hDJlyiAqKorlgnSKIxh6hpM7iUgXwsLCcPnyZXW5qFy5stSRyMixYOgRTu4kIl3x9fVFWloaWrVqxXJBhYIFQ49wcicRaVNcXBysrKxQtOirWw0MGjRI4kRkSjgHQ49s/t/kzu71y3FyJxG9l9jYWLi5uaFdu3Z4/vy51HHIBLFg6Im4F2k4mD25s7GzxGmIyJA9evQIbm5uuHbtGuLj4/Hs2TOpI5EJYsHQE6F/v5rc2cilGD4qwcmdRFQwDx8+hJubG65fv44PP/wQhw4dQoUKFaSORSaIczD0gFIlEPK/yZ29OXpBRAX04MEDtGrVCjdu3MCHH36IqKgouLi4SB2LTBRHMPTA4euc3ElE7+f+/ftwc3PDjRs34OLiwnJBkmPB0AObT3FyJxG9n9TUVKSkpKBChQosF6QXeIhEYpzcSUTaUKVKFURGRsLa2hrly/M6OiQ9jmBIjJM7iaig7t69i4iICPXjqlWrslyQ3mDBkNDrkzt55U4i0sSdO3fg5uaGjh074uDBg1LHIXoDC4aEXp/c6VmzlNRxiMhAZJeLO3fuwNnZmTctI73EgiEhTu4kIk3dvn0brq6uuHv3LipXroyoqCiULVtW6lhEb2DBkAgndxKRpm7dugU3Nzfcu3cPVapUYbkgvcazSAqRSiVw/Oa/eJmeicirTzi5k4jyLfvy3/fv30fVqlURGRmJ0qV53RzSXywYhWjTX3cx9fdLOZZxcicR5UeJEiXQrFkzxMTE4ODBgywXpPdYMAqJEALrTtwFAFQpaQcHhSVcnGzRoRZ/SBDRu1lYWGDDhg14/vw5nJycpI5D9E4sGIXk77vPcOPxS1hbmuO3oU1hr7CUOhIR6bnr169j1apV+O6772BmZgYLCwuWCzIYLBiFZPNfr84Y6VynDMsFEb3TtWvX0KpVK8TGxsLOzg6BgYFSRyLSCM8iKQTPUzKw50IsAKA351wQ0TtcvXpVXS5q1qyJoUOHSh2JSGMcwSgEv0U/REaWCjVKO6BOOUep4xCRHssuF3FxcahVqxYiIiJQvHhxqWMRaYwjGDomhMCv/7ugVu/G5SGTySRORET66sqVK3Bzc0NcXBxq166NgwcPslyQwWLB0LHTd/5/cqd33TJSxyEiPZWWlgYPDw/Ex8ejbt26OHjwICd0kkFjwdCx7NELTu4kordRKBQICgpC48aNER4ejg8++EDqSETvhQVDh54lc3InEb2dEEL9uZeXF44fP85yQUbhvQpGWlqatnIYpe1nObmTiPJ2/vx5NGzYELdu3VIvMzPj331kHDT+l6xSqTBr1iyULVsWdnZ26m+MqVOnYs2aNVoPaKiEENj816srd3JyJxH917lz59C6dWtER0dj3LhxUsch0jqNC8bs2bMRHByM77//HnK5XL28Zs2aWL16tVbDGbLTd57h5pNkTu4kojfExMSgTZs2+Pfff9GwYUP+cUZGSeOCsX79eqxcuRJ9+/aFubm5enmdOnVw9epVrYYzZNmjF5zcSUSvO3v2rLpcfPLJJzhw4ACKFi0qdSwirdO4YDx8+BAfffTRG8tVKhUyMzO1EsrQPUvOwN6LcQB4t1Qi+n/R0dFo06YNnj59ikaNGuHAgQMoUqSI1LGIdELjglGjRg0cOXLkjeXbtm1DvXr1tBLK0L0+ubM2J3cSEV7Nyxo7diyePXuGxo0b488//4SjI38+kPHS+FLh06ZNg5+fHx4+fAiVSoXt27fj2rVrWL9+PXbv3q2LjAaFkzuJKDcymQxbt27FhAkTsHjxYjg4OEgdiUinNB7B6NKlC/744w+Eh4fD1tYW06ZNw5UrV/DHH3+gbdu2ushoUDi5k4he9++//6o/d3Jywpo1a1guyCQU6GZnLVq0wIEDB7SdxShwcicRZTt9+jQ8PDwwb948DBo0SOo4RIVK4xGMihUr5mjk2Z4/f46KFStqJZSh4uROIsp26tQpuLu749mzZ9i0aROUSqXUkYgKlcYF486dO7l+o6Snp+Phw4daCWWofot+wMmdRIS//voLbdu2RWJiIlq0aIE9e/bkOK2fyBTk+xDJrl271J+HhYXlmP2sVCoREREBFxcXrYYzJK/flr0PJ3cSmawTJ07Aw8MDSUlJaNmyJfbs2QM7OzupYxEVunwXDG9vbwCvZkL7+fnl+JqlpSVcXFywcOFCrYYzJKduP1VP7uzCyZ1EJun48ePw9PREUlIS3NzcsHv3btja2kodi0gS+S4YKpUKAFChQgWcPn0aTk5OOgtliHhbdiKKjIxEUlISWrVqhT/++IPlgkyaxmeR3L59Wxc5DBondxIRAEyePBllypSBj48PbGxspI5DJKkC3Rc4OTkZe/fuxYoVK/Djjz/m+NBUUFAQXFxcoFAo0LhxY5w6deqt6z9//hzDhw9H6dKlYWVlhSpVqmDv3r0FeRtawyt3Epmu6OhoJCcnA3h1CNnf35/lgggFGME4e/YsOnTogJSUFCQnJ6NYsWJISEiAjY0NSpQogVGjRuX7uUJCQhAQEIAVK1agcePGWLJkCTw8PHDt2jWUKFHijfUzMjLQtm1blChRAtu2bUPZsmVx9+5dya/lf+nRCwCAZ81SnNxJZEIOHz6MDh06oFGjRti9ezeLBdFrNB7BGDNmDLy8vPDs2TNYW1vj5MmTuHv3Lho0aIAFCxZo9FyLFi3CwIED4e/vjxo1amDFihWwsbHB2rVrc11/7dq1ePr0KXbu3IlmzZrBxcUFrq6uqFOnjqZvQyesLAo0IEREBujQoUNo3749kpOTYWlpyT8uiP5D49+IMTExGDt2LMzMzGBubo709HQ4Ozvj+++/x+TJk/P9PBkZGThz5gzc3d3/P4yZGdzd3XHixIlct9m1axeaNGmC4cOHo2TJkqhZsybmzJnz1gvYpKenIzExMccHEdH7iIqKUo/kenh4YOfOnbC2tpY6FpFe0bhgWFpawszs1WYlSpTAvXuvzp5wdHTE/fv38/08CQkJUCqVKFmyZI7lJUuWRFxcXK7b3Lp1C9u2bYNSqcTevXsxdepULFy4ELNnz87zdebOnQtHR0f1h7Ozc74zEhH918GDB9XlwtPTk+WCKA8az8GoV68eTp8+jcqVK8PV1RXTpk1DQkICNmzYgJo1a+oio5pKpUKJEiWwcuVKmJubo0GDBnj48CHmz5+PwMDAXLeZNGkSAgIC1I8TExNZMoioQA4ePIhOnTohNTUV7du3x/bt26FQKKSORaSXNC4Yc+bMQVJSEgDg22+/ha+vL4YOHYrKlStjzZo1+X4eJycnmJubIz4+Psfy+Ph4lCpVKtdtSpcuDUtLyxyX3K1evTri4uKQkZEBuVz+xjZWVlawsrLKdy4iorwUKVIECoUCrVu3xm+//cafLURvoXHBaNiwofrzEiVKYP/+/QV6YblcjgYNGiAiIkJ9lVCVSoWIiAiMGDEi122aNWuGzZs3Q6VSqQ/TXL9+HaVLl861XBARaVP9+vVx/PhxVKhQgeWC6B20dtpDdHQ0OnXqpNE2AQEBWLVqFdatW4crV65g6NChSE5Ohr+/PwDA19cXkyZNUq8/dOhQPH36FKNHj8b169exZ88ezJkzB8OHD9fW2yAiyuHPP//E8ePH1Y+rVavGckGUDxqNYISFheHAgQOQy+UYMGAAKlasiKtXr2LixIn4448/4OHhodGL+/j44MmTJ5g2bRri4uJQt25d7N+/Xz3x8969e+qRCgBwdnZGWFgYxowZg9q1a6Ns2bIYPXo0JkyYoNHrEhHlx/79++Ht7Q25XI4TJ07g448/ljoSkcHId8FYs2YNBg4ciGLFiuHZs2dYvXo1Fi1ahJEjR8LHxwcXL15E9erVNQ4wYsSIPA+JREVFvbGsSZMmOHnypMavQ0SkiX379qFr165IT09H+/btUblyZakjERmUfB8i+eGHH/Ddd98hISEBoaGhSEhIwLJly3DhwgWsWLGiQOWCiEgf7d27F97e3khPT0fXrl0RGhrKeV5EGsp3wbh58yZ69OgBAOjWrRssLCwwf/58lCtXTmfhiIgK2+7du9G1a1dkZGSge/fuCAkJgaUl75BMpKl8F4zU1FT1dfZlMhmsrKxQunRpnQUjIipsx48fR7du3ZCRkYHPPvsMv/76K8sFUQFpNMlz9erVsLOzAwBkZWUhODgYTk5OOdbR5GZnRET6pH79+nB3d4ednR02bdrEckH0HvJdMMqXL49Vq1apH5cqVQobNmzIsY5MJmPBICKDpVAosH37dlhYWMDCQuPLBBHRa/L9HXTnzh0dxiAiksaOHTtw8uRJzJs3DzKZjJf+JtISVnQiMlnbt2+Hj48PsrKyULduXfTu3VvqSERGQ2tX8iQiMiTbtm1Dz549kZWVhb59+6rPkiMi7WDBICKTs3XrVvTq1QtKpRL9+vXDunXrOOeCSMtYMIjIpISEhKB3795QKpXw9fXFL7/8kuMOzUSkHSwYRGQy7t+/j379+kGpVMLPzw9r165luSDSkQIVjJs3b2LKlCno3bs3Hj9+DODVdfsvXbqk1XBERNrk7OyM1atXo3///lizZg3LBZEOaVwwDh06hFq1auGvv/7C9u3b8fLlSwDAuXPnEBgYqPWARETvKzMzU/25r68vVq9ezXJBpGMaF4yJEydi9uzZ6tu2Z2vdujXvckpEemfjxo2oV68e4uLipI5CZFI0LhgXLlxA165d31heokQJJCQkaCUUEZE2bNiwAX5+frh06RJWrlwpdRwik6JxwShSpAhiY2PfWH727FmULVtWK6GIiN7XunXr4OfnB5VKhcGDB2PKlClSRyIyKRoXjF69emHChAmIi4uDTCaDSqXCsWPHMG7cOPj6+uoiIxGRRoKDg+Hv7w8hBIYMGYJly5bBzIwnzREVJo2/4+bMmYNq1arB2dkZL1++RI0aNdCyZUs0bdqUfyEQkeR++eUXfPnllxBCYNiwYSwXRBLR+NJ1crkcq1atwtSpU3Hx4kW8fPkS9erVQ+XKlXWRj4go39LS0jB37lwIITB8+HAsXboUMplM6lhEJknjgnH06FE0b94c5cuXR/ny5XWRiYioQBQKBSIiIrBu3Tp88803LBdEEtJ43LB169aoUKECJk+ejMuXL+siExGRRm7fvq3+3NnZGVOmTGG5IJKYxgXj0aNHGDt2LA4dOoSaNWuibt26mD9/Ph48eKCLfEREb/Xzzz+jSpUqCA0NlToKEb1G44Lh5OSEESNG4NixY7h58yZ69OiBdevWwcXFBa1bt9ZFRiKiXC1fvhxDhgxBVlYWTp8+LXUcInrNe02trlChAiZOnIh58+ahVq1aOHTokLZyERG91bJlyzBs2DAAwNixY/H9999LnIiIXlfggnHs2DEMGzYMpUuXRp8+fVCzZk3s2bNHm9mIiHL1008/Yfjw4QCAr7/+GvPnz+ecCyI9o/FZJJMmTcKWLVvw6NEjtG3bFj/88AO6dOkCGxsbXeQjIsph6dKlGDVqFABg/PjxmDdvHssFkR7SuGAcPnwYX3/9NXr27AknJyddZCIiytO1a9cAvLrx4pw5c1guiPSUxgXj2LFjushBRJQvS5cuRbt27eDl5cVyQaTH8lUwdu3ahfbt28PS0hK7du1667qdO3fWSjAiomy///472rdvD7lcDplMxp8zRAYgXwXD29sbcXFxKFGiBLy9vfNcTyaTQalUaisbEREWLlyIcePGwdvbG9u2bYO5ubnUkYgoH/JVMFQqVa6fExHp0vz58zF+/HgAQO3atXnTMiIDovF36/r165Genv7G8oyMDKxfv14roYiIvvvuO3W5CAwMxIwZMzjngsiAaFww/P398eLFizeWJyUlwd/fXyuhiMi0zZs3DxMnTgQATJ8+HdOnT5c2EBFpTOOzSIQQuf4V8eDBAzg6OmolFBGZrvnz52PSpEkAgJkzZ2Lq1KkSJyKigsh3wahXrx5kMhlkMhnatGkDC4v/31SpVOL27dvw9PTUSUgiMh2NGjWCjY0NJk2ahClTpkgdh4gKKN8FI/vskZiYGHh4eMDOzk79NblcDhcXF3Tv3l3rAYnItLi6uuLKlSsoX7681FGI6D3ku2AEBgYCAFxcXODj4wOFQqGzUERkWhYsWABPT0/UrFkTAFguiIyAxpM8/fz8WC6ISGumT5+Or7/+Gq1bt8a///4rdRwi0pJ8jWAUK1YM169fh5OTE4oWLfrWU8WePn2qtXBEZLyEEJg+fTpmzpwJ4NWNyz744AOJUxGRtuSrYCxevBj29vbqz3kuOhG9DyEEpk2bhtmzZwN4dYhk7NixEqciIm3KV8Hw8/NTf/7FF1/oKgsRmQAhBKZOnYpvv/0WALBo0SKMGTNG4lREpG0az8GIjo7GhQsX1I9///13eHt7Y/LkycjIyNBqOCIyPqtXr1aXi8WLF7NcEBkpjQvG4MGDcf36dQDArVu34OPjAxsbG2zdulV9WV8iorz06tULzZo1w5IlS/DVV19JHYeIdETjK3lev34ddevWBQBs3boVrq6u2Lx5M44dO4ZevXphyZIlWo5IRIbu9SsA29vbIyoqKsfF+ojI+Gg8giGEUN9RNTw8HB06dAAAODs7IyEhQbvpiMjgCSHw9ddfY+7cueplLBdExk/j7/KGDRti9uzZcHd3x6FDh7B8+XIAwO3bt1GyZEmtByQiwyWEwLhx47Bo0SIAgKenJ+rVqydxKiIqDBqPYCxZsgTR0dEYMWIEvvnmG3z00UcAgG3btqFp06ZaD0hEhkkIgYCAAHW5WL58OcsFkQnReASjdu3aOc4iyTZ//nyYm5trJRQRGTYhBMaMGYMffvgBAPDzzz9j0KBBEqciosJU4AOhZ86cwZUrVwAANWrUQP369bUWiogMlxACo0ePxtKlSwEAK1euxMCBAyVORUSFTeOC8fjxY/j4+ODQoUMoUqQIAOD58+do1aoVtmzZguLFi2s7IxEZkEOHDmHp0qWQyWRYtWoV+vfvL3UkIpKAxnMwRo4ciZcvX+LSpUt4+vQpnj59iosXLyIxMRGjRo3SRUYiMiBubm5YsmQJVq9ezXJBZMI0HsHYv38/wsPDUb16dfWyGjVqICgoCO3atdNqOCIyDCqVCsnJyep7Fo0ePVriREQkNY1HMFQqFSwtLd9Ybmlpqb4+BhGZDpVKhWHDhqFVq1Z4/vy51HGISE9oXDBat26N0aNH49GjR+plDx8+xJgxY9CmTRuthiMi/aZSqTBkyBD8/PPPiI6OxuHDh6WORER6QuOC8dNPPyExMREuLi6oVKkSKlWqhAoVKiAxMVE9a5yIjJ9KpcLgwYOxatUqmJmZYf369ejcubPUsYhIT2g8B8PZ2RnR0dGIiIhQn6ZavXp1uLu7az0cEeknlUqFgQMHYu3atepy0bdvX6ljEZEe0ahghISEYNeuXcjIyECbNm0wcuRIXeUiIj2lUqkwYMAA/PLLLzAzM8OGDRvQp08fqWMRkZ7Jd8FYvnw5hg8fjsqVK8Pa2hrbt2/HzZs3MX/+fF3mIyI9Exsbi/3798PMzAybNm1Cr169pI5ERHoo33MwfvrpJwQGBuLatWuIiYnBunXrsGzZMl1mIyI9VLZsWURGRmLr1q0sF0SUp3wXjFu3bsHPz0/9uE+fPsjKykJsbKxOghGR/lAqlYiJiVE/rlq1Krp16yZdICLSe/kuGOnp6bC1tf3/Dc3MIJfLkZqaqpNgRKQflEolvvjiC3z66acICwuTOg4RGQiNJnlOnToVNjY26scZGRn49ttv4ejoqF6WfWtmIjJ8WVlZ8PPzw+bNm2FhYYGXL19KHYmIDES+C0bLli1x7dq1HMuaNm2KW7duqR/LZDLtJSMiSWVlZcHX1xe//vorLCwsEBISwsMiRJRv+S4YUVFROoxBRPokKysLn3/+OUJCQmBhYYHQ0FB07dpV6lhEZEA0vtAWERm3rKws9O3bF6GhobC0tMTWrVvRpUsXqWMRkYFhwSCiN5ibm8PS0hLbtm3j5b+JqEA0vhcJERk3CwsLrF+/HseOHWO5IKICY8EgImRmZmLZsmVQKpUAXpWMTz75ROJURGTIWDCITFxGRgZ8fHwwfPhwDB8+XOo4RGQkClQwjhw5gs8//xxNmjTBw4cPAQAbNmzA0aNHtRqOiHQru1zs2LEDVlZWnMxJRFqjccH47bff4OHhAWtra5w9exbp6ekAgBcvXmDOnDlaD0hEupGRkYEePXpg586dsLKyws6dO9G+fXupYxGRkdC4YMyePRsrVqzAqlWrYGlpqV7erFkzREdHazUcEelGeno6PvvsM+zatQsKhQK7du2Cp6en1LGIyIhofJrqtWvX0LJlyzeWOzo64vnz59rIREQ61rdvX/zxxx/qctG2bVupIxGRkdF4BKNUqVK4cePGG8uPHj2KihUrFihEUFAQXFxcoFAo0LhxY5w6dSpf223ZsgUymQze3t4Fel0iU+Xn5wdHR0f88ccfLBdEpBMaF4yBAwdi9OjR+OuvvyCTyfDo0SNs2rQJ48aNw9ChQzUOEBISgoCAAAQGBiI6Ohp16tSBh4cHHj9+/Nbt7ty5g3HjxqFFixYavyaRqfPy8sKdO3fg7u4udRQiMlIaF4yJEyeiT58+aNOmDV6+fImWLVtiwIABGDx4MEaOHKlxgEWLFmHgwIHw9/dHjRo1sGLFCtjY2GDt2rV5bqNUKtG3b1/MmDGjwKMmRKYkLS0N/fv3z3FzwiJFikgXiIiMnsYFQyaT4ZtvvsHTp09x8eJFnDx5Ek+ePMGsWbM0fvGMjAycOXMmx19RZmZmcHd3x4kTJ/LcbubMmShRogT69+//ztdIT09HYmJijg8iU5KamoouXbpg7dq16NSpk/piWkREulTge5HI5XLUqFHjvV48ISEBSqUSJUuWzLG8ZMmSuHr1aq7bHD16FGvWrEFMTEy+XmPu3LmYMWPGe+UkMlTZ5eLAgQOwtbXFihUrYG5uLnUsIjIBGheMVq1aQSaT5fn1gwcPvlegt0lKSkK/fv2watUqODk55WubSZMmISAgQP04MTERzs7OuopIpDdSUlLQpUsXhIeHw9bWFvv27eOcJSIqNBoXjLp16+Z4nJmZiZiYGFy8eBF+fn4aPZeTkxPMzc0RHx+fY3l8fDxKlSr1xvo3b97EnTt34OXlpV6mUqkAvLp3wrVr11CpUqUc21hZWcHKykqjXESGLiUlBZ07d0ZERATs7Oywb98+NG/eXOpYRGRCNC4YixcvznX59OnT8fLlS42eSy6Xo0GDBoiIiFCfaqpSqRAREYERI0a8sX61atVw4cKFHMumTJmCpKQk/PDDDxyZIPqf8ePHq8vF/v370axZM6kjEZGJKfAcjP/6/PPP0ahRIyxYsECj7QICAuDn54eGDRuiUaNGWLJkCZKTk+Hv7w8A8PX1RdmyZTF37lwoFArUrFkzx/bZM+H/u5zIlE2fPh3nzp3Dd999h6ZNm0odh4hMkNYKxokTJ6BQKDTezsfHB0+ePMG0adMQFxeHunXrYv/+/eqJn/fu3YOZGW/6SvQuSqVSPYHTyckJhw8ffut8KSIiXdK4YHTr1i3HYyEEYmNj8ffff2Pq1KkFCjFixIhcD4kAQFRU1Fu3DQ4OLtBrEhmTly9folOnTujduzcGDx4MACwXRCQpjQuGo6NjjsdmZmaoWrUqZs6ciXbt2mktGBHlT1JSEjp06ICjR4/i3Llz6N69e77PsiIi0hWNCoZSqYS/vz9q1aqFokWL6ioTEeVTUlIS2rdvj2PHjsHR0RFhYWEsF0SkFzSa3GBubo527drxrqlEeiAxMRGenp7qcnHgwAE0atRI6lhERAAKcKnwmjVr5rifAREVvuxycfz4cRQpUgTh4eH45JNPpI5FRKSmccGYPXs2xo0bh927dyM2Npb3+SCSQGhoKE6cOIGiRYsiPDwcDRs2lDoSEVEO+Z6DMXPmTIwdOxYdOnQAAHTu3DnHLHUhBGQyGW+kRFQI+vfvjydPnsDDwwP169eXOg4R0RvyXTBmzJiBIUOGIDIyUpd5iCgPL168gIWFBWxtbSGTyTBp0iSpIxER5SnfBUMIAQBwdXXVWRgiyt3z58/Rrl072NnZYffu3bCxsZE6EhHRW2k0B4MX7iEqfM+ePUPbtm1x+vRpnD9/Hvfu3ZM6EhHRO2l0HYwqVaq8s2Q8ffr0vQIR0f97+vQp2rZti+joaDg5OSEiIgLVqlWTOhYR0TtpVDBmzJjxxpU8iUg3nj59Cnd3d5w9exZOTk44ePAgatWqJXUsIqJ80ahg9OrVCyVKlNBVFiL6n3///Rfu7u6IiYlB8eLFcfDgQd4xmIgMSr7nYHD+BVHhefToEe7evYsSJUogMjKS5YKIDI7GZ5EQke7VqlUL4eHhUCgUqFGjhtRxiIg0lu+CoVKpdJmDyOQlJCTg9u3b6kt+8wJaRGTINL5UOBFp35MnT9C6dWu0adMGJ0+elDoOEdF7Y8Egktjjx4/RunVrXLhwAXZ2dihatKjUkYiI3ptGZ5EQkXZll4tLly6hTJkyiIyMRJUqVaSORUT03jiCQSSR+Ph4tGrVCpcuXULZsmURFRXFckFERoMjGEQSePLkCVq1aoUrV66oy8VHH30kdSwiIq1hwSCSgL29PVxcXJCUlITIyEiWCyIyOiwYRBJQKBTYvn07Hj9+jPLly0sdh4hI6zgHg6iQPHr0CN999536onUKhYLlgoiMFkcwiArBw4cP0apVK/zzzz9QqVSYNGmS1JGIiHSKIxhEOvbgwQO4ubnhn3/+wYcffojevXtLHYmISOdYMIh06P79+3Bzc8ONGzfg4uKCQ4cOwcXFRepYREQ6x4JBpCPZ5eLmzZuoUKECoqKi8OGHH0odi4ioULBgEOlAeno62rRpg1u3bqFixYosF0RkclgwiHTAysoK06ZNQ5UqVRAVFcWzRYjI5LBgEOnI559/jvPnz8PZ2VnqKEREhY4Fg0hLbt++DU9PT8TGxqqXWVlZSZiIiEg6LBhEWnDr1i24ubkhLCwMQ4YMkToOEZHkWDCI3tPNmzfh5uaGe/fuoUqVKli+fLnUkYiIJMcreRK9h+xy8eDBA1StWhWRkZEoXbq01LGIiCTHEQyiArpx4wZcXV3x4MEDVKtWDVFRUSwXRET/w4JBVEADBgzAw4cPUb16dURGRqJUqVJSRyIi0hssGEQFtGHDBnh5ebFcEBHlgnMwiDSQmpoKa2trAICzszN27dolcSIiIv3EEQyifLp27RqqVq2K0NBQqaMQEek9FgyifLh69Src3Nxw//59zJs3D1lZWVJHIiLSaywYRO9w5coVuLm5IS4uDrVr18aff/4JCwseXSQiehsWDKK3uHz5Mtzc3BAfH486deogIiICTk5OUsciItJ7LBhEebh06RJatWqFx48fo27duiwXREQaYMEgysPmzZvx+PFj1KtXDxEREfjggw+kjkREZDB4IJkoD7Nnz0aRIkXQv39/FCtWTOo4REQGhSMYRK+5ceMGMjIyAAAymQxff/01ywURUQGwYBD9z7lz5/Dpp5+iZ8+e6pJBREQFw4JBBCAmJgatW7fGv//+i0ePHiE1NVXqSEREBo0Fg0ze2bNn0aZNGzx9+hSNGzfGgQMH4OjoKHUsIiKDxoJBJi06OlpdLj799FOEhYWxXBARaQELBpmsM2fOoE2bNnj27BmaNGnCckFEpEUsGGSykpOTkZGRgaZNm2L//v1wcHCQOhIRkdHgdTDIZLVs2RKRkZGoXr067O3tpY5DRGRUWDDIpJw6dQoKhQK1a9cGADRq1EjiRERExomHSMhknDx5Em3btkWbNm1w9epVqeMQERk1FgwyCSdOnEC7du2QmJiIGjVqoFy5clJHIiIyaiwYZPSOHz8ODw8PJCUlwdXVFXv37oWdnZ3UsYiIjBoLBhm1Y8eOqcuFm5sb9uzZA1tbW6ljEREZPRYMMlpnzpyBp6cnXr58idatW7NcEBEVIp5FQkarSpUqqFOnDhQKBXbt2gUbGxupIxERmQwWDDJa9vb22LdvH8zNzVkuiIgKGQ+RkFE5dOgQ5s+fr35sb2/PckFEJAGOYJDRiIyMRKdOnZCSkoLy5cvDx8dH6khERCaLIxhkFA4ePIiOHTsiJSUFnp6e6NKli9SRiIhMGgsGGbyIiAh06tQJqamp6NChA3bs2AGFQiF1LCIik8ZDJGTQwsPD4eXlhbS0NHTo0AHbt2+HlZWV1LGIiEweRzDIYD18+BCdO3dGWloaOnbsyHJBRKRHOIJBBqts2bKYN28ewsPDsXXrVpYLIiI9whEMMjhCCPXno0aNws6dO1kuiIj0DAsGGZR9+/ahRYsWePbsmXqZmRn/GRMR6Rv+ZCaDsXfvXnh7e+PYsWM5LqZFRET6hwWDDMLu3bvRtWtXZGRkoHv37pgxY4bUkYiI6C1YMEjv/fHHH+jWrRsyMjLw2Wef4ddff4WlpaXUsYiI6C30omAEBQXBxcUFCoUCjRs3xqlTp/Jcd9WqVWjRogWKFi2KokWLwt3d/a3rk2HbtWsXunfvjszMTPTo0QObN29muSAiMgCSF4yQkBAEBAQgMDAQ0dHRqFOnDjw8PPD48eNc14+KikLv3r0RGRmJEydOwNnZGe3atcPDhw8LOTnpWnp6OkaPHo3MzEz4+PiwXBARGRDJC8aiRYswcOBA+Pv7o0aNGlixYgVsbGywdu3aXNfftGkThg0bhrp166JatWpYvXo1VCoVIiIiCjk56ZqVlRXCwsIwcuRIbNy4ERYWvGwLEZGhkLRgZGRk4MyZM3B3d1cvMzMzg7u7O06cOJGv50hJSUFmZiaKFSuW69fT09ORmJiY44P0W0JCgvrzKlWq4Mcff2S5ICIyMJIWjISEBCiVSpQsWTLH8pIlSyIuLi5fzzFhwgSUKVMmR0l53dy5c+Ho6Kj+cHZ2fu/cpDvbtm1DhQoVEBYWJnUUIiJ6D5IfInkf8+bNw5YtW95698xJkybhxYsX6o/79+8XckrKr61bt6JXr154+fIltm3bJnUcIiJ6D5KOOzs5OcHc3Bzx8fE5lsfHx6NUqVJv3XbBggXq+1DUrl07z/WsrKx4GWkDEBoaij59+kCpVMLX1xcrVqyQOhIREb0HSUcw5HI5GjRokGOCZvaEzSZNmuS53ffff49Zs2Zh//79aNiwYWFEJR3asmWLulz4+flh7dq1MDc3lzoWERG9B8lnzgUEBMDPzw8NGzZEo0aNsGTJEiQnJ8Pf3x8A4Ovri7Jly2Lu3LkAgO+++w7Tpk3D5s2b4eLiop6rYWdnBzs7O8neBxXMr7/+is8//xwqlQr+/v5YtWoVywURkRGQvGD4+PjgyZMnmDZtGuLi4lC3bl3s379fPfHz3r17OW5mtXz5cvUVHV8XGBiI6dOnF2Z00oJ9+/ZBpVLhyy+/xKpVq3jjMiIiIyF5wQCAESNGYMSIEbl+LSoqKsfjO3fu6D4QFZq1a9fC1dUV/v7+LBdEREaEP9Gp0B09ehRKpRIAYGFhgf79+7NcEBEZGf5Up0K1bt06tGzZEv3791eXDCIiMj4sGFRogoOD4e/vDyEErK2tIZPJpI5EREQ6woJBhWLt2rX48ssvIYTA0KFDERQUxMMiRERGjD/hSefWrFmDAQMGQAiBYcOGsVwQEZkA/pQnnXq9XIwYMQI//fQTD40QEZkAvThNlYxXiRIlYGlpiaFDh2LJkiUsF0REJoIFg3TKy8sLZ86cQc2aNVkuiIhMCA+RkNatW7cON2/eVD+uVasWywURkYlhwSCtWrZsGb744gu0atUKCQkJUschIiKJsGCQ1gQFBWH48OEAXt1j5oMPPpA4ERERSYUFg7Ri6dKl6vvJjB8/Ht9//z0PixARmTAWDHpvP/74I0aNGgUAmDBhAubNm8dyQURk4lgw6L1s3LgRo0ePBgBMmjQJc+fOZbkgIiKepkrvx9PTE7Vr14aXlxdmzZrFckFERABYMOg9OTk54fjx47CxsWG5ICIiNR4iIY3Nnz8fK1asUD+2tbVluSAiohw4gkEa+e677zBx4kQAwCeffIIGDRpInIiIiPQRRzAo3+bNm6cuFzNmzGC5ICKiPLFgUL7MmTMHkyZNAgDMmjUL06ZNkzgRERHpMx4ioXf69ttvMWXKFPXnkydPljgRERHpOxYMeqvDhw+ry8XroxhERERvw4JBb9WyZUtMmzYNNjY2mDBhgtRxiIjIQLBg0BuEEMjMzIRcLgfwakInERGRJjjJk3IQQiAwMBAeHh5ISUmROg4RERkoFgxSE0Jg2rRpmDVrFqKiorB7926pIxERkYHiIRIC8KpcTJkyBXPmzAEALFq0CD179pQ4FRERGSoWDIIQApMnT8a8efMAAIsXL8ZXX30lbSgiIjJoLBgmTgiBSZMm4bvvvgMA/PDDDxg1apTEqYiIyNCxYJi4R48eYeXKlQCApUuXYsSIERInIiIiY8CCYeLKli2LiIgI/P333xg4cKDUcYiIyEiwYJggIQTu3LmDChUqAADq1auHevXqSZyKiIiMCU9TNTFCCIwdOxZ16tTBiRMnpI5DRERGigXDhAghMGbMGCxevBhJSUm4dOmS1JGIiMhI8RCJiRBCYPTo0Vi6dCkAYOXKlRgwYIDEqYiIyFixYJgAIQRGjhyJoKAgAMCqVatYLoiISKdYMIycEAIjRozAsmXLIJPJsHr1anz55ZdSxyIiIiPHgmHkMjMzcefOHchkMqxZswb+/v5SRyIiIhPAgmHk5HI5fvvtNxw6dAgeHh5SxyEiIhPBs0iMkEqlwtatWyGEAAAoFAqWCyIiKlQsGEZGpVJhyJAh6NmzJ8aPHy91HCIiMlE8RGJEVCoVBg0ahDVr1sDMzAx169aVOhIREZkoFgwjoVKpMHDgQKxduxZmZmbYsGED+vTpI3UsIiIyUSwYRkCpVGLAgAEIDg6GmZkZNm3ahF69ekkdi4iITBjnYBiBQYMGITg4GObm5ti8eTPLBRERSY4Fwwi0atUKcrkcmzdvho+Pj9RxiIiIeIjEGHz++edwdXWFs7Oz1FGIiIgAcATDIGVlZWHixImIjY1VL2O5ICIifcKCYWCysrLg6+uL7777Dh4eHsjKypI6EhER0Rt4iMSAZGVloV+/ftiyZQssLCwwc+ZMWFjwfyEREekf/nYyEFlZWejbty9CQ0NhaWmJrVu3okuXLlLHIiIiyhULhgHIzMxE3759sXXrVlhaWuK3336Dl5eX1LGIiIjyxDkYBmDChAnYunUr5HI5tm/fznJBRER6jwXDAAQEBODjjz/G9u3b0alTJ6njEBERvRMPkegpIQRkMhkAoFy5coiJieGETiIiMhgcwdBDGRkZ6NGjB0JCQtTLWC6IiMiQsGDomfT0dHz22Wf47bff0L9/fzx58kTqSERERBrjn8V6JLtc7N69GwqFAtu3b0fx4sWljkVERKQxFgw9kZ6eju7du2PPnj1QKBTYtWsX2rZtK3UsIiKiAmHB0ANpaWno3r079u7dC4VCgT/++APu7u5SxyIiIiowzsHQA+vWrcPevXthbW2N3bt3s1wQEZHB4wiGHhg0aBCuX7+Ojh07onXr1lLHISIiem8sGBJJTU2Fubk55HI5ZDIZFi5cKHUkIiIireEhEgmkpqaiS5cu6NmzJzIyMqSOQ0REpHUcwShkKSkp6NKlC8LDw2Fra4urV6+idu3aUsciIiLSKhaMQpSSkgIvLy8cPHgQtra22LdvH8sFEREZJR4iKSTJycno1KkTDh48CDs7O+zfvx8tWrSQOhYREZFOcASjEGSXi6ioKNjb22P//v1o2rSp1LGIiIh0hgWjEFy9ehWnT5+Gvb09wsLC0KRJE6kjERER6RQLRiFo0KAB9uzZA7lcznJBREQmgQVDR16+fIkHDx6gWrVqAABXV1eJExERERUeTvLUgaSkJLRv3x4tWrTAhQsXpI5DRERU6FgwtCwxMRGenp44evQoMjMzkZaWJnUkIiKiQqcXBSMoKAguLi5QKBRo3LgxTp069db1t27dimrVqkGhUKBWrVrYu3dvISV9u7T0dHh6euL48eMoUqQIwsPD8cknn0gdi4iIqNBJXjBCQkIQEBCAwMBAREdHo06dOvDw8MDjx49zXf/48ePo3bs3+vfvj7Nnz8Lb2xve3t64ePFiISd/0+pVq3DixAkULVoU4eHhaNiwodSRiIiIJCETQggpAzRu3BiffPIJfvrpJwCASqWCs7MzRo4ciYkTJ76xvo+PD5KTk7F79271sk8//RR169bFihUr3vl6iYmJcHR0xIsXL+Dg4KCV9zBy42n8cfExnkWuhfk/kQgPD0f9+vW18txERET6QpPfoZKOYGRkZODMmTNwd3dXLzMzM4O7uztOnDiR6zYnTpzIsT4AeHh45Ll+eno6EhMTc3xom0z26r/WNjaIiIhguSAiIpMnacFISEiAUqlEyZIlcywvWbIk4uLict0mLi5Oo/Xnzp0LR0dH9Yezs7N2wr+mcqkiqFfOAVPHjkS9evW0/vxERESGxuivgzFp0iQEBASoHycmJmq9ZIxsUxkj21TW6nMSEREZMkkLhpOTE8zNzREfH59jeXx8PEqVKpXrNqVKldJofSsrK1hZWWknMBEREeWLpIdI5HI5GjRogIiICPUylUqFiIiIPC+p3aRJkxzrA8CBAwd4CW4iIiI9IvkhkoCAAPj5+aFhw4Zo1KgRlixZguTkZPj7+wMAfH19UbZsWcydOxcAMHr0aLi6umLhwoXo2LEjtmzZgr///hsrV66U8m0QERHRayQvGD4+Pnjy5AmmTZuGuLg41K1bF/v371dP5Lx37x7MzP5/oKVp06bYvHkzpkyZgsmTJ6Ny5crYuXMnatasKdVbICIiov+Q/DoYhU0X18EgIiIyBQZzHQwiIiIyTiwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdZLfrr2wZd88NjExUeIkREREhiX7d2d+bsRucgUjKSkJAODs7CxxEiIiIsOUlJQER0fHt64jE/mpIUZEpVLh0aNHsLe3h0wm08pzJiYmwtnZGffv34eDg4NWntPUcZ9qH/epdnF/ah/3qXbpYn8KIZCUlIQyZcrAzOztsyxMbgTDzMwM5cqV08lzOzg48JtCy7hPtY/7VLu4P7WP+1S7tL0/3zVykY2TPImIiEjrWDCIiIhI61gwtMDKygqBgYGwsrKSOorR4D7VPu5T7eL+1D7uU+2Sen+a3CRPIiIi0j2OYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWDkU1BQEFxcXKBQKNC4cWOcOnXqretv3boV1apVg0KhQK1atbB3795CSmo4NNmnq1atQosWLVC0aFEULVoU7u7u7/x/YGo0/TeabcuWLZDJZPD29tZtQAOk6T59/vw5hg8fjtKlS8PKygpVqlTh9/5rNN2fS5YsQdWqVWFtbQ1nZ2eMGTMGaWlphZRW/x0+fBheXl4oU6YMZDIZdu7c+c5toqKiUL9+fVhZWeGjjz5CcHCw7gIKeqctW7YIuVwu1q5dKy5duiQGDhwoihQpIuLj43Nd/9ixY8Lc3Fx8//334vLly2LKlCnC0tJSXLhwoZCT6y9N92mfPn1EUFCQOHv2rLhy5Yr44osvhKOjo3jw4EEhJ9dPmu7PbLdv3xZly5YVLVq0EF26dCmcsAZC032anp4uGjZsKDp06CCOHj0qbt++LaKiokRMTEwhJ9dPmu7PTZs2CSsrK7Fp0yZx+/ZtERYWJkqXLi3GjBlTyMn11969e8U333wjtm/fLgCIHTt2vHX9W7duCRsbGxEQECAuX74sli5dKszNzcX+/ft1ko8FIx8aNWokhg8frn6sVCpFmTJlxNy5c3Ndv2fPnqJjx445ljVu3FgMHjxYpzkNiab79L+ysrKEvb29WLduna4iGpSC7M+srCzRtGlTsXr1auHn58eC8R+a7tPly5eLihUrioyMjMKKaFA03Z/Dhw8XrVu3zrEsICBANGvWTKc5DVV+Csb48ePFxx9/nGOZj4+P8PDw0EkmHiJ5h4yMDJw5cwbu7u7qZWZmZnB3d8eJEydy3ebEiRM51gcADw+PPNc3NQXZp/+VkpKCzMxMFCtWTFcxDUZB9+fMmTNRokQJ9O/fvzBiGpSC7NNdu3ahSZMmGD58OEqWLImaNWtizpw5UCqVhRVbbxVkfzZt2hRnzpxRH0a5desW9u7diw4dOhRKZmNU2L+bTO5mZ5pKSEiAUqlEyZIlcywvWbIkrl69mus2cXFxua4fFxens5yGpCD79L8mTJiAMmXKvPHNYooKsj+PHj2KNWvWICYmphASGp6C7NNbt27h4MGD6Nu3L/bu3YsbN25g2LBhyMzMRGBgYGHE1lsF2Z99+vRBQkICmjdvDiEEsrKyMGTIEEyePLkwIhulvH43JSYmIjU1FdbW1lp9PY5gkMGZN28etmzZgh07dkChUEgdx+AkJSWhX79+WLVqFZycnKSOYzRUKhVKlCiBlStXokGDBvDx8cE333yDFStWSB3NIEVFRWHOnDlYtmwZoqOjsX37duzZswezZs2SOhrlE0cw3sHJyQnm5uaIj4/PsTw+Ph6lSpXKdZtSpUpptL6pKcg+zbZgwQLMmzcP4eHhqF27ti5jGgxN9+fNmzdx584deHl5qZepVCoAgIWFBa5du4ZKlSrpNrSeK8i/0dKlS8PS0hLm5ubqZdWrV0dcXBwyMjIgl8t1mlmfFWR/Tp06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZm/PtYU3n9bnJwcND66AXAEYx3ksvlaNCgASIiItTLVCoVIiIi0KRJk1y3adKkSY71AeDAgQN5rm9qCrJPAeD777/HrFmzsH//fjRs2LAwohoETfdntWrVcOHCBcTExKg/OnfujFatWiEmJgbOzs6FGV8vFeTfaLNmzXDjxg11WQOA69evo3Tp0iZdLoCC7c+UlJQ3SkR2eRO8hVaBFPrvJp1MHTUyW7ZsEVZWViI4OFhcvnxZDBo0SBQpUkTExcUJIYTo16+fmDhxonr9Y8eOCQsLC7FgwQJx5coVERgYyNNU/0PTfTpv3jwhl8vFtm3bRGxsrPojKSlJqregVzTdn//Fs0jepOk+vXfvnrC3txcjRowQ165dE7t37xYlSpQQs2fPluot6BVN92dgYKCwt7cXv/76q7h165b4888/RaVKlUTPnj2legt6JykpSZw9e1acPXtWABCLFi0SZ8+eFXfv3hVCCDFx4kTRr18/9frZp6l+/fXX4sqVKyIoKIinqeqDpUuXivLlywu5XC4aNWokTp48qf6aq6ur8PPzy7F+aGioqFKlipDL5eLjjz8We/bsKeTE+k+Tffrhhx8KAG98BAYGFn5wPaXpv9HXsWDkTtN9evz4cdG4cWNhZWUlKlasKL799luRlZVVyKn1lyb7MzMzU0yfPl1UqlRJKBQK4ezsLIYNGyaePXtW+MH1VGRkZK4/F7P3o5+fn3B1dX1jm7p16wq5XC4qVqwofvnlF53l4+3aiYiISOs4B4OIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg8jIBAcHo0iRIlLHKDCZTIadO3e+dZ0vvvgC3t7ehZKHiAqGBYNID33xxReQyWRvfNy4cUPqaAgODlbnMTMzQ7ly5eDv74/Hjx9r5fljY2PRvn17AMCdO3cgk8kQExOTY50ffvgBwcHBWnm9vEyfPl39Ps3NzeHs7IxBgwbh6dOnGj0PyxCZKt6unUhPeXp64pdffsmxrHjx4hKlycnBwQHXrl2DSqXCuXPn4O/vj0ePHiEsLOy9nzuv23e/ztHR8b1fJz8+/vhjhIeHQ6lU4sqVK/jyyy/x4sULhISEFMrrExkyjmAQ6SkrKyuUKlUqx4e5uTkWLVqEWrVqwdbWFs7Ozhg2bBhevnyZ5/OcO3cOrVq1gr29PRwcHNCgQQP8/fff6q8fPXoULVq0gLW1NZydnTFq1CgkJye/NZtMJkOpUqVQpkwZtG/fHqNGjUJ4eDhSU1OhUqkwc+ZMlCtXDlZWVqhbty7279+v3jYjIwMjRoxA6dKloVAo8OGHH2Lu3Lk5njv7EEmFChUAAPXq1YNMJoObmxuAnKMCK1euRJkyZXLcJh0AunTpgi+//FL9+Pfff0f9+vWhUChQsWJFzJgxA1lZWW99nxYWFihVqhTKli0Ld3d39OjRAwcOHFB/XalUon///qhQoQKsra1RtWpV/PDDD+qvT58+HevWrcPvv/+uHg2JiooCANy/fx89e/ZEkSJFUKxYMXTp0gV37tx5ax4iQ8KCQWRgzMzM8OOPP+LSpUtYt24dDh48iPHjx+e5ft++fVGuXDmcPn0aZ86cwcSJE2FpaQkAuHnzJjw9PdG9e3ecP38eISEhOHr0KEaMGKFRJmtra6hUKmRlZeGHH37AwoULsWDBApw/fx4eHh7o3Lkz/vnnHwDAjz/+iF27diE0NBTXrl3Dpk2b4OLikuvznjp1CgAQHh6O2NhYbN++/Y11evTogX///ReRkZHqZU+fPsX+/fvRt29fAMCRI0fg6+uL0aNH4/Lly/j5558RHByMb7/9Nt/v8c6dOwgLC4NcLlcvU6lUKFeuHLZu3YrLly9j2rRpmDx5MkJDQwEA48aNQ8+ePeHp6YnY2FjExsaiadOmyMzMhIeHB+zt7XHkyBEcO3YMdnZ28PT0REZGRr4zEek1nd2nlYgKzM/PT5ibmwtbW1v1x2effZbrulu3bhUffPCB+vEvv/wiHB0d1Y/t7e1FcHBwrtv2799fDBo0KMeyI0eOCDMzM5GamprrNv99/uvXr4sqVaqIhg0bCiGEKFOmjPj2229zbPPJJ5+IYcOGCSGEGDlypGjdurVQqVS5Pj8AsWPHDiGEELdv3xYAxNmzZ3Os89/by3fp0kV8+eWX6sc///yzKFOmjFAqlUIIIdq0aSPmzJmT4zk2bNggSpcunWsGIYQIDAwUZmZmwtbWVigUCvWtsBctWpTnNkIIMXz4cNG9e/c8s2a/dtWqVXPsg/T0dGFtbS3CwsLe+vxEhoJzMIj0VKtWrbB8+XL1Y1tbWwCv/pqfO3curl69isTERGRlZSEtLQ0pKSmwsbF543kCAgIwYMAAbNiwQT3MX6lSJQCvDp+cP38emzZtUq8vhIBKpcLt27dRvXr1XLO9ePECdnZ2UKlUSEtLQ/PmzbF69WokJibi0aNHaNasWY71mzVrhnPnzgF4dXijbdu2qFq1Kjw9PdGpUye0a9fuvfZV3759MXDgQCxbtgxWVlbYtGkTevXqBTMzM/X7PHbsWI4RC6VS+db9BgBVq1bFrl27kJaWho0bNyImJgYjR47MsU5QUBDWrl2Le/fuITU1FRkZGahbt+5b8547dw43btyAvb19juVpaWm4efNmAfYAkf5hwSDSU7a2tvjoo49yLLtz5w46deqEoUOH4ttvv0WxYsVw9OhR9O/fHxkZGbn+opw+fTr69OmDPXv2YN++fQgMDMSWLVvQtWtXvHz5EoMHD8aoUaPe2K58+fJ5ZrO3t0d0dDTMzMxQunRpWFtbAwASExPf+b7q16+P27dvY9++fQgPD0fPnj3h7u6Obdu2vXPbvHh5eUEIgT179uCTTz7BkSNHsHjxYvXXX758iRkzZqBbt25vbKtQKPJ8Xrlcrv5/MG/ePHTs2BEzZszArFmzAABbtmzBuHHjsHDhQjRp0gT29vaYP38+/vrrr7fmffnyJRo0aJCj2GXTl4m8RO+LBYPIgJw5cwYqlQoLFy5U/3Wefbz/bapUqYIqVapgzJgx6N27N3755Rd07doV9evXx+XLl98oMu9iZmaW6zYODg4oU6YMjh07BldXV/XyY8eOoVGjRjnW8/HxgY+PDz777DN4enri6dOnKFasWI7ny57voFQq35pHoVCgW7du2LRpE27cuIGqVauifv366q/Xr18f165d0/h9/teUKVPQunVrDB06VP0+mzZtimHDhqnX+e8IhFwufyN//fr1ERISghIlSsDBweG9MhHpK07yJDIgH330ETIzM7F06VLcunULGzZswIoVK/JcPzU1FSNGjEBUVBTu3r2LY8eO4fTp0+pDHxMmTMDx48cxYsQIxMTE4J9//sHvv/+u8STP13399df47rvvEBISgmvXrmHixImIiYnB6NGjAQCLFi3Cr7/+iqtXr+L69evYunUrSpUqlevFwUqUKAFra2vs378f8fHxePHiRZ6v27dvX+zZswdr165VT+7MNm3aNKxfvx4zZszApUuXcOXKFWzZsgVTpkzR6L01adIEtWvXxpw5cwAAlStXxt9//42wsDBcv34dU6dOxenTp3Ns4+LigvPnz+PatWtISEhAZmYm+vbtCycnJ3Tp0gVHjhzB7du3ERUVhVGjRuHBgwcaZSLSW1JPAiGiN+U2MTDbokWLROnSpYW1tbXw8PAQ69evFwDEs2fPhBA5J2Gmp6eLXr16CWdnZyGXy0WZMmXEiBEjckzgPHXqlGjbtq2ws7MTtra2onbt2m9M0nzdfyd5/pdSqRTTp08XZcuWFZaWlqJOnTpi37596q+vXLlS1K1bV9ja2goHBwfRpk0bER0drf46XpvkKYQQq1atEs7OzsLMzEy4urrmuX+USqUoXbq0ACBu3rz5Rq79+/eLpk2bCmtra+Hg4CAaNWokVq5cmef7CAwMFHXq1Hlj+a+//iqsrKzEvXv3RFpamvjiiy+Eo6OjKFKkiBg6dKiYOHFiju0eP36s3r8ARGRkpBBCiNjYWOHr6yucnJyElZWVqFixohg4cKB48eJFnpmIDIlMCCGkrThERERkbHiIhIiIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi07v8A1k+hWenkwRsAAAAASUVORK5CYII=", + "text/plain": [ + "
                      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import roc_curve, roc_auc_score\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "y_scores = model.predict_proba(X_test)\n", + "# calculate ROC curve\n", + "fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])\n", + "\n", + "# plot ROC curve\n", + "fig = plt.figure(figsize=(6, 6))\n", + "# Plot the diagonal 50% line\n", + "plt.plot([0, 1], [0, 1], 'k--')\n", + "# Plot the FPR and TPR achieved by our model\n", + "plt.plot(fpr, tpr)\n", + "plt.xlabel('False Positive Rate')\n", + "plt.ylabel('True Positive Rate')\n", + "plt.title('ROC Curve')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.9749908725812341\n" + ] + } + ], + "source": [ + "# Calculate AUC score\n", + "auc = roc_auc_score(y_test,y_scores[:,1])\n", + "print(auc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "vscode": { + "interpreter": { + "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" + } + }, + "coopTranslator": { + "original_hash": "ef50cc584e0b79412610cc7da15e1f86", + "translation_date": "2025-09-04T01:18:47+00:00", + "source_file": "2-Regression/4-Logistic/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fr/2-Regression/README.md b/translations/fr/2-Regression/README.md new file mode 100644 index 000000000..f996890ef --- /dev/null +++ b/translations/fr/2-Regression/README.md @@ -0,0 +1,54 @@ + +# Modèles de régression pour l'apprentissage automatique +## Sujet régional : Modèles de régression pour les prix des citrouilles en Amérique du Nord 🎃 + +En Amérique du Nord, les citrouilles sont souvent sculptées en visages effrayants pour Halloween. Découvrons-en davantage sur ces légumes fascinants ! + +![jack-o-lanterns](../../../translated_images/jack-o-lanterns.181c661a9212457d7756f37219f660f1358af27554d856e5a991f16b4e15337c.fr.jpg) +> Photo par Beth Teutschmann sur Unsplash + +## Ce que vous allez apprendre + +[![Introduction à la régression](https://img.youtube.com/vi/5QnJtDad4iQ/0.jpg)](https://youtu.be/5QnJtDad4iQ "Vidéo d'introduction à la régression - Cliquez pour regarder !") +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo d'introduction rapide à cette leçon + +Les leçons de cette section couvrent les types de régression dans le contexte de l'apprentissage automatique. Les modèles de régression peuvent aider à déterminer la _relation_ entre les variables. Ce type de modèle peut prédire des valeurs telles que la longueur, la température ou l'âge, révélant ainsi les relations entre les variables en analysant les points de données. + +Dans cette série de leçons, vous découvrirez les différences entre la régression linéaire et la régression logistique, ainsi que les situations où l'une est préférable à l'autre. + +[![ML pour débutants - Introduction aux modèles de régression pour l'apprentissage automatique](https://img.youtube.com/vi/XA3OaoW86R8/0.jpg)](https://youtu.be/XA3OaoW86R8 "ML pour débutants - Introduction aux modèles de régression pour l'apprentissage automatique") + +> 🎥 Cliquez sur l'image ci-dessus pour une courte vidéo présentant les modèles de régression. + +Dans ce groupe de leçons, vous apprendrez à vous préparer pour les tâches d'apprentissage automatique, notamment en configurant Visual Studio Code pour gérer les notebooks, l'environnement commun des data scientists. Vous découvrirez Scikit-learn, une bibliothèque pour l'apprentissage automatique, et vous construirez vos premiers modèles, en vous concentrant sur les modèles de régression dans ce chapitre. + +> Il existe des outils low-code utiles qui peuvent vous aider à apprendre à travailler avec des modèles de régression. Essayez [Azure ML pour cette tâche](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +### Leçons + +1. [Outils de travail](1-Tools/README.md) +2. [Gestion des données](2-Data/README.md) +3. [Régression linéaire et polynomiale](3-Linear/README.md) +4. [Régression logistique](4-Logistic/README.md) + +--- +### Crédits + +"ML avec régression" a été écrit avec ♥️ par [Jen Looper](https://twitter.com/jenlooper) + +♥️ Les contributeurs aux quiz incluent : [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan) et [Ornella Altunyan](https://twitter.com/ornelladotcom) + +Le jeu de données sur les citrouilles est suggéré par [ce projet sur Kaggle](https://www.kaggle.com/usda/a-year-of-pumpkin-prices) et ses données proviennent des [Rapports standards des marchés terminaux des cultures spécialisées](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice) distribués par le Département de l'Agriculture des États-Unis. Nous avons ajouté quelques points autour de la couleur en fonction de la variété pour normaliser la distribution. Ces données sont dans le domaine public. + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/3-Web-App/1-Web-App/README.md b/translations/fr/3-Web-App/1-Web-App/README.md new file mode 100644 index 000000000..053b973a1 --- /dev/null +++ b/translations/fr/3-Web-App/1-Web-App/README.md @@ -0,0 +1,359 @@ + +# Construire une application web pour utiliser un modèle de machine learning + +Dans cette leçon, vous allez entraîner un modèle de machine learning sur un ensemble de données hors du commun : _les observations d'OVNIs au cours du siècle dernier_, issues de la base de données de NUFORC. + +Vous apprendrez : + +- Comment "pickler" un modèle entraîné +- Comment utiliser ce modèle dans une application Flask + +Nous continuerons à utiliser des notebooks pour nettoyer les données et entraîner notre modèle, mais vous pouvez aller plus loin en explorant l'utilisation d'un modèle "dans la nature", pour ainsi dire : dans une application web. + +Pour ce faire, vous devez construire une application web en utilisant Flask. + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/17/) + +## Construire une application + +Il existe plusieurs façons de construire des applications web pour consommer des modèles de machine learning. Votre architecture web peut influencer la manière dont votre modèle est entraîné. Imaginez que vous travaillez dans une entreprise où l'équipe de data science a entraîné un modèle qu'elle souhaite que vous utilisiez dans une application. + +### Points à considérer + +De nombreuses questions doivent être posées : + +- **S'agit-il d'une application web ou mobile ?** Si vous construisez une application mobile ou devez utiliser le modèle dans un contexte IoT, vous pourriez utiliser [TensorFlow Lite](https://www.tensorflow.org/lite/) et intégrer le modèle dans une application Android ou iOS. +- **Où résidera le modèle ?** Dans le cloud ou localement ? +- **Support hors ligne.** L'application doit-elle fonctionner hors ligne ? +- **Quelle technologie a été utilisée pour entraîner le modèle ?** La technologie choisie peut influencer les outils nécessaires. + - **Utilisation de TensorFlow.** Si vous entraînez un modèle avec TensorFlow, par exemple, cet écosystème permet de convertir un modèle TensorFlow pour une utilisation dans une application web via [TensorFlow.js](https://www.tensorflow.org/js/). + - **Utilisation de PyTorch.** Si vous construisez un modèle avec une bibliothèque comme [PyTorch](https://pytorch.org/), vous avez la possibilité de l'exporter au format [ONNX](https://onnx.ai/) (Open Neural Network Exchange) pour une utilisation dans des applications web JavaScript via [Onnx Runtime](https://www.onnxruntime.ai/). Cette option sera explorée dans une future leçon pour un modèle entraîné avec Scikit-learn. + - **Utilisation de Lobe.ai ou Azure Custom Vision.** Si vous utilisez un système SaaS de machine learning comme [Lobe.ai](https://lobe.ai/) ou [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott), ce type de logiciel offre des moyens d'exporter le modèle pour de nombreuses plateformes, y compris la création d'une API sur mesure interrogeable dans le cloud par votre application en ligne. + +Vous avez également la possibilité de construire une application web Flask complète capable d'entraîner le modèle directement dans un navigateur web. Cela peut également être fait avec TensorFlow.js dans un contexte JavaScript. + +Pour nos besoins, puisque nous avons travaillé avec des notebooks basés sur Python, explorons les étapes nécessaires pour exporter un modèle entraîné depuis un notebook vers un format lisible par une application web construite en Python. + +## Outil + +Pour cette tâche, vous avez besoin de deux outils : Flask et Pickle, tous deux fonctionnant avec Python. + +✅ Qu'est-ce que [Flask](https://palletsprojects.com/p/flask/) ? Défini comme un "micro-framework" par ses créateurs, Flask fournit les fonctionnalités de base des frameworks web en utilisant Python et un moteur de templates pour construire des pages web. Consultez [ce module d'apprentissage](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) pour vous entraîner à construire avec Flask. + +✅ Qu'est-ce que [Pickle](https://docs.python.org/3/library/pickle.html) ? Pickle 🥒 est un module Python qui sérialise et désérialise une structure d'objet Python. Lorsque vous "picklez" un modèle, vous sérialisez ou aplatissez sa structure pour une utilisation sur le web. Attention : Pickle n'est pas intrinsèquement sécurisé, soyez donc prudent si vous êtes invité à "dé-pickler" un fichier. Un fichier picklé a l'extension `.pkl`. + +## Exercice - Nettoyer vos données + +Dans cette leçon, vous utiliserez des données provenant de 80 000 observations d'OVNIs, collectées par le [NUFORC](https://nuforc.org) (National UFO Reporting Center). Ces données contiennent des descriptions intéressantes d'observations d'OVNIs, par exemple : + +- **Description longue.** "Un homme émerge d'un faisceau de lumière qui éclaire un champ herbeux la nuit et court vers le parking de Texas Instruments." +- **Description courte.** "Les lumières nous ont poursuivis." + +Le fichier [ufos.csv](../../../../3-Web-App/1-Web-App/data/ufos.csv) contient des colonnes sur la `ville`, l'`état` et le `pays` où l'observation a eu lieu, la `forme` de l'objet, ainsi que sa `latitude` et sa `longitude`. + +Dans le [notebook](notebook.ipynb) vierge inclus dans cette leçon : + +1. Importez `pandas`, `matplotlib` et `numpy` comme dans les leçons précédentes, et importez le fichier ufos. Vous pouvez examiner un échantillon de l'ensemble de données : + + ```python + import pandas as pd + import numpy as np + + ufos = pd.read_csv('./data/ufos.csv') + ufos.head() + ``` + +1. Convertissez les données ufos en un petit dataframe avec des titres actualisés. Vérifiez les valeurs uniques dans le champ `Country`. + + ```python + ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']}) + + ufos.Country.unique() + ``` + +1. Réduisez ensuite la quantité de données à traiter en supprimant les valeurs nulles et en ne conservant que les observations entre 1 et 60 secondes : + + ```python + ufos.dropna(inplace=True) + + ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)] + + ufos.info() + ``` + +1. Importez la bibliothèque `LabelEncoder` de Scikit-learn pour convertir les valeurs textuelles des pays en nombres : + + ✅ LabelEncoder encode les données par ordre alphabétique + + ```python + from sklearn.preprocessing import LabelEncoder + + ufos['Country'] = LabelEncoder().fit_transform(ufos['Country']) + + ufos.head() + ``` + + Vos données devraient ressembler à ceci : + + ```output + Seconds Country Latitude Longitude + 2 20.0 3 53.200000 -2.916667 + 3 20.0 4 28.978333 -96.645833 + 14 30.0 4 35.823889 -80.253611 + 23 60.0 4 45.582778 -122.352222 + 24 3.0 3 51.783333 -0.783333 + ``` + +## Exercice - Construire votre modèle + +Vous pouvez maintenant vous préparer à entraîner un modèle en divisant les données en groupes d'entraînement et de test. + +1. Sélectionnez les trois caractéristiques sur lesquelles vous souhaitez entraîner votre modèle comme vecteur X, et le vecteur y sera le `Country`. Vous voulez pouvoir entrer `Seconds`, `Latitude` et `Longitude` et obtenir un identifiant de pays en retour. + + ```python + from sklearn.model_selection import train_test_split + + Selected_features = ['Seconds','Latitude','Longitude'] + + X = ufos[Selected_features] + y = ufos['Country'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + ``` + +1. Entraînez votre modèle en utilisant la régression logistique : + + ```python + from sklearn.metrics import accuracy_score, classification_report + from sklearn.linear_model import LogisticRegression + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('Accuracy: ', accuracy_score(y_test, predictions)) + ``` + +La précision n'est pas mauvaise **(environ 95%)**, ce qui n'est pas surprenant, car `Country` et `Latitude/Longitude` sont corrélés. + +Le modèle que vous avez créé n'est pas très révolutionnaire, car vous devriez pouvoir déduire un `Country` à partir de sa `Latitude` et de sa `Longitude`, mais c'est un bon exercice pour s'entraîner à partir de données brutes que vous avez nettoyées, exportées, puis utilisées dans une application web. + +## Exercice - "Pickler" votre modèle + +Il est maintenant temps de _pickler_ votre modèle ! Vous pouvez le faire en quelques lignes de code. Une fois qu'il est _picklé_, chargez votre modèle picklé et testez-le avec un tableau de données exemple contenant des valeurs pour les secondes, la latitude et la longitude. + +```python +import pickle +model_filename = 'ufo-model.pkl' +pickle.dump(model, open(model_filename,'wb')) + +model = pickle.load(open('ufo-model.pkl','rb')) +print(model.predict([[50,44,-12]])) +``` + +Le modèle renvoie **'3'**, qui est le code pays pour le Royaume-Uni. Incroyable ! 👽 + +## Exercice - Construire une application Flask + +Vous pouvez maintenant construire une application Flask pour appeler votre modèle et renvoyer des résultats similaires, mais de manière plus visuellement attrayante. + +1. Commencez par créer un dossier appelé **web-app** à côté du fichier _notebook.ipynb_ où se trouve votre fichier _ufo-model.pkl_. + +1. Dans ce dossier, créez trois autres dossiers : **static**, avec un dossier **css** à l'intérieur, et **templates**. Vous devriez maintenant avoir les fichiers et répertoires suivants : + + ```output + web-app/ + static/ + css/ + templates/ + notebook.ipynb + ufo-model.pkl + ``` + + ✅ Consultez le dossier solution pour voir l'application terminée + +1. Le premier fichier à créer dans le dossier _web-app_ est le fichier **requirements.txt**. Comme _package.json_ dans une application JavaScript, ce fichier liste les dépendances nécessaires à l'application. Dans **requirements.txt**, ajoutez les lignes : + + ```text + scikit-learn + pandas + numpy + flask + ``` + +1. Ensuite, exécutez ce fichier en naviguant vers _web-app_ : + + ```bash + cd web-app + ``` + +1. Dans votre terminal, tapez `pip install` pour installer les bibliothèques listées dans _requirements.txt_ : + + ```bash + pip install -r requirements.txt + ``` + +1. Vous êtes maintenant prêt à créer trois autres fichiers pour terminer l'application : + + 1. Créez **app.py** à la racine. + 2. Créez **index.html** dans le répertoire _templates_. + 3. Créez **styles.css** dans le répertoire _static/css_. + +1. Construisez le fichier _styles.css_ avec quelques styles : + + ```css + body { + width: 100%; + height: 100%; + font-family: 'Helvetica'; + background: black; + color: #fff; + text-align: center; + letter-spacing: 1.4px; + font-size: 30px; + } + + input { + min-width: 150px; + } + + .grid { + width: 300px; + border: 1px solid #2d2d2d; + display: grid; + justify-content: center; + margin: 20px auto; + } + + .box { + color: #fff; + background: #2d2d2d; + padding: 12px; + display: inline-block; + } + ``` + +1. Ensuite, construisez le fichier _index.html_ : + + ```html + + + + + 🛸 UFO Appearance Prediction! 👽 + + + + +
                      + +
                      + +

                      According to the number of seconds, latitude and longitude, which country is likely to have reported seeing a UFO?

                      + +
                      + + + + +
                      + +

                      {{ prediction_text }}

                      + +
                      + +
                      + + + + ``` + + Examinez le templating dans ce fichier. Remarquez la syntaxe "mustache" autour des variables fournies par l'application, comme le texte de prédiction : `{{}}`. Il y a également un formulaire qui envoie une prédiction à la route `/predict`. + + Enfin, vous êtes prêt à construire le fichier Python qui pilote la consommation du modèle et l'affichage des prédictions : + +1. Dans `app.py`, ajoutez : + + ```python + import numpy as np + from flask import Flask, request, render_template + import pickle + + app = Flask(__name__) + + model = pickle.load(open("./ufo-model.pkl", "rb")) + + + @app.route("/") + def home(): + return render_template("index.html") + + + @app.route("/predict", methods=["POST"]) + def predict(): + + int_features = [int(x) for x in request.form.values()] + final_features = [np.array(int_features)] + prediction = model.predict(final_features) + + output = prediction[0] + + countries = ["Australia", "Canada", "Germany", "UK", "US"] + + return render_template( + "index.html", prediction_text="Likely country: {}".format(countries[output]) + ) + + + if __name__ == "__main__": + app.run(debug=True) + ``` + + > 💡 Astuce : lorsque vous ajoutez [`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode) lors de l'exécution de l'application web avec Flask, toute modification apportée à votre application sera immédiatement reflétée sans avoir besoin de redémarrer le serveur. Attention ! Ne pas activer ce mode dans une application en production. + +Si vous exécutez `python app.py` ou `python3 app.py`, votre serveur web démarre localement, et vous pouvez remplir un court formulaire pour obtenir une réponse à votre question brûlante sur les lieux où les OVNIs ont été observés ! + +Avant cela, examinez les parties de `app.py` : + +1. Tout d'abord, les dépendances sont chargées et l'application démarre. +1. Ensuite, le modèle est importé. +1. Enfin, index.html est rendu sur la route principale. + +Sur la route `/predict`, plusieurs choses se produisent lorsque le formulaire est soumis : + +1. Les variables du formulaire sont collectées et converties en un tableau numpy. Elles sont ensuite envoyées au modèle, et une prédiction est renvoyée. +2. Les pays que nous voulons afficher sont retransformés en texte lisible à partir de leur code pays prédit, et cette valeur est renvoyée à index.html pour être rendue dans le template. + +Utiliser un modèle de cette manière, avec Flask et un modèle picklé, est relativement simple. Le plus difficile est de comprendre la forme des données qui doivent être envoyées au modèle pour obtenir une prédiction. Tout dépend de la manière dont le modèle a été entraîné. Celui-ci nécessite trois points de données en entrée pour produire une prédiction. + +Dans un cadre professionnel, vous pouvez voir à quel point une bonne communication est nécessaire entre les personnes qui entraînent le modèle et celles qui le consomment dans une application web ou mobile. Dans notre cas, c'est une seule personne : vous ! + +--- + +## 🚀 Défi + +Au lieu de travailler dans un notebook et d'importer le modèle dans l'application Flask, vous pourriez entraîner le modèle directement dans l'application Flask ! Essayez de convertir votre code Python dans le notebook pour entraîner le modèle directement dans l'application, sur une route appelée `train`. Quels sont les avantages et les inconvénients de cette méthode ? + +## [Quiz après la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/18/) + +## Révision et auto-apprentissage + +Il existe de nombreuses façons de construire une application web pour consommer des modèles de machine learning. Faites une liste des façons dont vous pourriez utiliser JavaScript ou Python pour construire une application web exploitant le machine learning. Réfléchissez à l'architecture : le modèle doit-il rester dans l'application ou vivre dans le cloud ? Si c'est le cas, comment y accéderiez-vous ? Dessinez un modèle architectural pour une solution web appliquée au machine learning. + +## Devoir + +[Essayez un modèle différent](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/3-Web-App/1-Web-App/assignment.md b/translations/fr/3-Web-App/1-Web-App/assignment.md new file mode 100644 index 000000000..79697c7c5 --- /dev/null +++ b/translations/fr/3-Web-App/1-Web-App/assignment.md @@ -0,0 +1,25 @@ + +# Essayez un modèle différent + +## Instructions + +Maintenant que vous avez créé une application web en utilisant un modèle de Régression entraîné, utilisez l'un des modèles d'une leçon précédente sur la Régression pour recréer cette application web. Vous pouvez conserver le style ou le concevoir différemment pour refléter les données sur les citrouilles. Veillez à modifier les entrées pour qu'elles correspondent à la méthode d'entraînement de votre modèle. + +## Critères d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------------------------- | --------------------------------------------------------- | --------------------------------------------------------- | -------------------------------------- | +| | L'application web fonctionne comme prévu et est déployée sur le cloud | L'application web contient des défauts ou produit des résultats inattendus | L'application web ne fonctionne pas correctement | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/3-Web-App/1-Web-App/notebook.ipynb b/translations/fr/3-Web-App/1-Web-App/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/fr/3-Web-App/1-Web-App/solution/notebook.ipynb b/translations/fr/3-Web-App/1-Web-App/solution/notebook.ipynb new file mode 100644 index 000000000..ee83468bb --- /dev/null +++ b/translations/fr/3-Web-App/1-Web-App/solution/notebook.ipynb @@ -0,0 +1,267 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5fa2e8f4584c78250ca9729b46562ceb", + "translation_date": "2025-09-04T02:22:00+00:00", + "source_file": "3-Web-App/1-Web-App/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " datetime city state country shape \\\n", + "0 10/10/1949 20:30 san marcos tx us cylinder \n", + "1 10/10/1949 21:00 lackland afb tx NaN light \n", + "2 10/10/1955 17:00 chester (uk/england) NaN gb circle \n", + "3 10/10/1956 21:00 edna tx us circle \n", + "4 10/10/1960 20:00 kaneohe hi us light \n", + "\n", + " duration (seconds) duration (hours/min) \\\n", + "0 2700.0 45 minutes \n", + "1 7200.0 1-2 hrs \n", + "2 20.0 20 seconds \n", + "3 20.0 1/2 hour \n", + "4 900.0 15 minutes \n", + "\n", + " comments date posted latitude \\\n", + "0 This event took place in early fall around 194... 4/27/2004 29.883056 \n", + "1 1949 Lackland AFB, TX. Lights racing acros... 12/16/2005 29.384210 \n", + "2 Green/Orange circular disc over Chester, En... 1/21/2008 53.200000 \n", + "3 My older brother and twin sister were leaving ... 1/17/2004 28.978333 \n", + "4 AS a Marine 1st Lt. flying an FJ4B fighter/att... 1/22/2004 21.418056 \n", + "\n", + " longitude \n", + "0 -97.941111 \n", + "1 -98.581082 \n", + "2 -2.916667 \n", + "3 -96.645833 \n", + "4 -157.803611 " + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      datetimecitystatecountryshapeduration (seconds)duration (hours/min)commentsdate postedlatitudelongitude
                      010/10/1949 20:30san marcostxuscylinder2700.045 minutesThis event took place in early fall around 194...4/27/200429.883056-97.941111
                      110/10/1949 21:00lackland afbtxNaNlight7200.01-2 hrs1949 Lackland AFB&#44 TX. Lights racing acros...12/16/200529.384210-98.581082
                      210/10/1955 17:00chester (uk/england)NaNgbcircle20.020 secondsGreen/Orange circular disc over Chester&#44 En...1/21/200853.200000-2.916667
                      310/10/1956 21:00ednatxuscircle20.01/2 hourMy older brother and twin sister were leaving ...1/17/200428.978333-96.645833
                      410/10/1960 20:00kaneohehiuslight900.015 minutesAS a Marine 1st Lt. flying an FJ4B fighter/att...1/22/200421.418056-157.803611
                      \n
                      " + }, + "metadata": {}, + "execution_count": 23 + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "ufos = pd.read_csv('../data/ufos.csv')\n", + "ufos.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array(['us', nan, 'gb', 'ca', 'au', 'de'], dtype=object)" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ], + "source": [ + "\n", + "ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']})\n", + "\n", + "ufos.Country.unique()\n", + "\n", + "# 0 au, 1 ca, 2 de, 3 gb, 4 us" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nInt64Index: 25863 entries, 2 to 80330\nData columns (total 4 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 Seconds 25863 non-null float64\n 1 Country 25863 non-null object \n 2 Latitude 25863 non-null float64\n 3 Longitude 25863 non-null float64\ndtypes: float64(3), object(1)\nmemory usage: 1010.3+ KB\n" + ] + } + ], + "source": [ + "ufos.dropna(inplace=True)\n", + "\n", + "ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)]\n", + "\n", + "ufos.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Seconds Country Latitude Longitude\n", + "2 20.0 3 53.200000 -2.916667\n", + "3 20.0 4 28.978333 -96.645833\n", + "14 30.0 4 35.823889 -80.253611\n", + "23 60.0 4 45.582778 -122.352222\n", + "24 3.0 3 51.783333 -0.783333" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      SecondsCountryLatitudeLongitude
                      220.0353.200000-2.916667
                      320.0428.978333-96.645833
                      1430.0435.823889-80.253611
                      2360.0445.582778-122.352222
                      243.0351.783333-0.783333
                      \n
                      " + }, + "metadata": {}, + "execution_count": 26 + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "\n", + "ufos['Country'] = LabelEncoder().fit_transform(ufos['Country'])\n", + "\n", + "ufos.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "Selected_features = ['Seconds','Latitude','Longitude']\n", + "\n", + "X = ufos[Selected_features]\n", + "y = ufos['Country']\n", + "\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", + " FutureWarning)\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", + " \"this warning.\", FutureWarning)\n", + " precision recall f1-score support\n", + "\n", + " 0 1.00 1.00 1.00 41\n", + " 1 1.00 0.02 0.05 250\n", + " 2 0.00 0.00 0.00 8\n", + " 3 0.94 1.00 0.97 131\n", + " 4 0.95 1.00 0.97 4743\n", + "\n", + " accuracy 0.95 5173\n", + " macro avg 0.78 0.60 0.60 5173\n", + "weighted avg 0.95 0.95 0.93 5173\n", + "\n", + "Predicted labels: [4 4 4 ... 3 4 4]\n", + "Accuracy: 0.9512855209742895\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import accuracy_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('Accuracy: ', accuracy_score(y_test, predictions))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[3]\n" + ] + } + ], + "source": [ + "import pickle\n", + "model_filename = 'ufo-model.pkl'\n", + "pickle.dump(model, open(model_filename,'wb'))\n", + "\n", + "model = pickle.load(open('ufo-model.pkl','rb'))\n", + "print(model.predict([[50,44,-12]]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/3-Web-App/README.md b/translations/fr/3-Web-App/README.md new file mode 100644 index 000000000..52d958f1b --- /dev/null +++ b/translations/fr/3-Web-App/README.md @@ -0,0 +1,35 @@ + +# Construire une application web pour utiliser votre modèle ML + +Dans cette section du programme, vous serez initié à un sujet appliqué en apprentissage automatique : comment sauvegarder votre modèle Scikit-learn sous forme de fichier pouvant être utilisé pour faire des prédictions dans une application web. Une fois le modèle sauvegardé, vous apprendrez à l'utiliser dans une application web construite avec Flask. Vous commencerez par créer un modèle à partir de données sur les observations d'OVNI ! Ensuite, vous construirez une application web qui vous permettra de saisir un nombre de secondes avec une valeur de latitude et de longitude pour prédire quel pays a signalé avoir vu un OVNI. + +![Parking OVNI](../../../translated_images/ufo.9e787f5161da9d4d1dafc537e1da09be8210f2ee996cb638aa5cee1d92867a04.fr.jpg) + +Photo par Michael Herren sur Unsplash + +## Leçons + +1. [Construire une application web](1-Web-App/README.md) + +## Crédits + +"Construire une application web" a été écrit avec ♥️ par [Jen Looper](https://twitter.com/jenlooper). + +♥️ Les quiz ont été rédigés par Rohan Raj. + +Le jeu de données provient de [Kaggle](https://www.kaggle.com/NUFORC/ufo-sightings). + +L'architecture de l'application web a été en partie suggérée par [cet article](https://towardsdatascience.com/how-to-easily-deploy-machine-learning-models-using-flask-b95af8fe34d4) et [ce dépôt](https://github.com/abhinavsagar/machine-learning-deployment) par Abhinav Sagar. + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/4-Classification/1-Introduction/README.md b/translations/fr/4-Classification/1-Introduction/README.md new file mode 100644 index 000000000..8dc1970d8 --- /dev/null +++ b/translations/fr/4-Classification/1-Introduction/README.md @@ -0,0 +1,313 @@ + +# Introduction à la classification + +Dans ces quatre leçons, vous allez explorer un aspect fondamental de l'apprentissage automatique classique : _la classification_. Nous allons utiliser divers algorithmes de classification avec un ensemble de données sur les cuisines brillantes d'Asie et d'Inde. Préparez-vous à avoir faim ! + +![juste une pincée !](../../../../translated_images/pinch.1b035ec9ba7e0d408313b551b60c721c9c290b2dd2094115bc87e6ddacd114c9.fr.png) + +> Célébrez les cuisines pan-asiatiques dans ces leçons ! Image par [Jen Looper](https://twitter.com/jenlooper) + +La classification est une forme d'[apprentissage supervisé](https://wikipedia.org/wiki/Supervised_learning) qui partage de nombreux points communs avec les techniques de régression. Si l'apprentissage automatique consiste à prédire des valeurs ou des noms en utilisant des ensembles de données, alors la classification se divise généralement en deux groupes : _classification binaire_ et _classification multicatégorie_. + +[![Introduction à la classification](https://img.youtube.com/vi/eg8DJYwdMyg/0.jpg)](https://youtu.be/eg8DJYwdMyg "Introduction à la classification") + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo : John Guttag du MIT introduit la classification + +Rappel : + +- **La régression linéaire** vous a aidé à prédire les relations entre les variables et à faire des prédictions précises sur la position d'un nouveau point de données par rapport à cette ligne. Par exemple, vous pourriez prédire _quel serait le prix d'une citrouille en septembre par rapport à décembre_. +- **La régression logistique** vous a permis de découvrir des "catégories binaires" : à ce prix, _cette citrouille est-elle orange ou non-orange_ ? + +La classification utilise divers algorithmes pour déterminer d'autres façons d'attribuer une étiquette ou une classe à un point de données. Travaillons avec ces données sur les cuisines pour voir si, en observant un groupe d'ingrédients, nous pouvons déterminer leur origine culinaire. + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/) + +> ### [Cette leçon est disponible en R !](../../../../4-Classification/1-Introduction/solution/R/lesson_10.html) + +### Introduction + +La classification est l'une des activités fondamentales du chercheur en apprentissage automatique et du data scientist. De la classification basique d'une valeur binaire ("cet email est-il un spam ou non ?") à la classification et segmentation complexe d'images utilisant la vision par ordinateur, il est toujours utile de pouvoir trier les données en classes et leur poser des questions. + +Pour exprimer le processus de manière plus scientifique, votre méthode de classification crée un modèle prédictif qui vous permet de cartographier la relation entre les variables d'entrée et les variables de sortie. + +![classification binaire vs multicatégorie](../../../../translated_images/binary-multiclass.b56d0c86c81105a697dddd82242c1d11e4d78b7afefea07a44627a0f1111c1a9.fr.png) + +> Problèmes binaires vs multicatégorie pour les algorithmes de classification. Infographie par [Jen Looper](https://twitter.com/jenlooper) + +Avant de commencer le processus de nettoyage de nos données, de leur visualisation et de leur préparation pour nos tâches d'apprentissage automatique, apprenons un peu plus sur les différentes façons dont l'apprentissage automatique peut être utilisé pour classer des données. + +Dérivée des [statistiques](https://wikipedia.org/wiki/Statistical_classification), la classification utilisant l'apprentissage automatique classique utilise des caractéristiques telles que `smoker`, `weight` et `age` pour déterminer _la probabilité de développer une maladie X_. En tant que technique d'apprentissage supervisé similaire aux exercices de régression que vous avez effectués précédemment, vos données sont étiquetées et les algorithmes d'apprentissage automatique utilisent ces étiquettes pour classer et prédire les classes (ou "caractéristiques") d'un ensemble de données et les attribuer à un groupe ou un résultat. + +✅ Prenez un moment pour imaginer un ensemble de données sur les cuisines. Qu'est-ce qu'un modèle multicatégorie pourrait répondre ? Qu'est-ce qu'un modèle binaire pourrait répondre ? Et si vous vouliez déterminer si une cuisine donnée était susceptible d'utiliser du fenugrec ? Et si vous vouliez voir si, avec un sac de courses contenant de l'anis étoilé, des artichauts, du chou-fleur et du raifort, vous pourriez créer un plat typique indien ? + +[![Paniers mystères fous](https://img.youtube.com/vi/GuTeDbaNoEU/0.jpg)](https://youtu.be/GuTeDbaNoEU "Paniers mystères fous") + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo. Tout le concept de l'émission 'Chopped' repose sur le 'panier mystère' où les chefs doivent préparer un plat à partir d'un choix aléatoire d'ingrédients. Un modèle d'apprentissage automatique aurait sûrement aidé ! + +## Bonjour 'classificateur' + +La question que nous voulons poser à cet ensemble de données sur les cuisines est en fait une **question multicatégorie**, car nous avons plusieurs cuisines nationales potentielles avec lesquelles travailler. Étant donné un lot d'ingrédients, à laquelle de ces nombreuses classes les données correspondent-elles ? + +Scikit-learn propose plusieurs algorithmes différents pour classer les données, selon le type de problème que vous souhaitez résoudre. Dans les deux prochaines leçons, vous apprendrez à utiliser plusieurs de ces algorithmes. + +## Exercice - nettoyer et équilibrer vos données + +La première tâche à accomplir, avant de commencer ce projet, est de nettoyer et **équilibrer** vos données pour obtenir de meilleurs résultats. Commencez avec le fichier _notebook.ipynb_ vierge dans le dossier racine. + +La première chose à installer est [imblearn](https://imbalanced-learn.org/stable/). Il s'agit d'un package Scikit-learn qui vous permettra d'équilibrer les données plus efficacement (vous en apprendrez davantage sur cette tâche dans un instant). + +1. Pour installer `imblearn`, exécutez `pip install`, comme suit : + + ```python + pip install imblearn + ``` + +1. Importez les packages nécessaires pour importer vos données et les visualiser, et importez également `SMOTE` depuis `imblearn`. + + ```python + import pandas as pd + import matplotlib.pyplot as plt + import matplotlib as mpl + import numpy as np + from imblearn.over_sampling import SMOTE + ``` + + Vous êtes maintenant prêt à importer les données. + +1. La tâche suivante consiste à importer les données : + + ```python + df = pd.read_csv('../data/cuisines.csv') + ``` + + Utiliser `read_csv()` permettra de lire le contenu du fichier csv _cusines.csv_ et de le placer dans la variable `df`. + +1. Vérifiez la forme des données : + + ```python + df.head() + ``` + + Les cinq premières lignes ressemblent à ceci : + + ```output + | | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | + | --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | + | 0 | 65 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 1 | 66 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 2 | 67 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 3 | 68 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 4 | 69 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + ``` + +1. Obtenez des informations sur ces données en appelant `info()` : + + ```python + df.info() + ``` + + Votre sortie ressemble à : + + ```output + + RangeIndex: 2448 entries, 0 to 2447 + Columns: 385 entries, Unnamed: 0 to zucchini + dtypes: int64(384), object(1) + memory usage: 7.2+ MB + ``` + +## Exercice - découvrir les cuisines + +Maintenant, le travail commence à devenir plus intéressant. Découvrons la distribution des données par cuisine. + +1. Tracez les données sous forme de barres en appelant `barh()` : + + ```python + df.cuisine.value_counts().plot.barh() + ``` + + ![distribution des données sur les cuisines](../../../../translated_images/cuisine-dist.d0cc2d551abe5c25f83d73a5f560927e4a061e9a4560bac1e97d35682ef3ca6d.fr.png) + + Il existe un nombre fini de cuisines, mais la distribution des données est inégale. Vous pouvez corriger cela ! Avant de le faire, explorez un peu plus. + +1. Découvrez combien de données sont disponibles par cuisine et imprimez-les : + + ```python + thai_df = df[(df.cuisine == "thai")] + japanese_df = df[(df.cuisine == "japanese")] + chinese_df = df[(df.cuisine == "chinese")] + indian_df = df[(df.cuisine == "indian")] + korean_df = df[(df.cuisine == "korean")] + + print(f'thai df: {thai_df.shape}') + print(f'japanese df: {japanese_df.shape}') + print(f'chinese df: {chinese_df.shape}') + print(f'indian df: {indian_df.shape}') + print(f'korean df: {korean_df.shape}') + ``` + + La sortie ressemble à ceci : + + ```output + thai df: (289, 385) + japanese df: (320, 385) + chinese df: (442, 385) + indian df: (598, 385) + korean df: (799, 385) + ``` + +## Découvrir les ingrédients + +Vous pouvez maintenant approfondir les données et découvrir quels sont les ingrédients typiques par cuisine. Vous devriez nettoyer les données récurrentes qui créent de la confusion entre les cuisines, alors apprenons-en davantage sur ce problème. + +1. Créez une fonction `create_ingredient()` en Python pour créer un dataframe d'ingrédients. Cette fonction commencera par supprimer une colonne inutile et triera les ingrédients par leur nombre : + + ```python + def create_ingredient_df(df): + ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value') + ingredient_df = ingredient_df[(ingredient_df.T != 0).any()] + ingredient_df = ingredient_df.sort_values(by='value', ascending=False, + inplace=False) + return ingredient_df + ``` + + Vous pouvez maintenant utiliser cette fonction pour avoir une idée des dix ingrédients les plus populaires par cuisine. + +1. Appelez `create_ingredient()` et tracez les données en appelant `barh()` : + + ```python + thai_ingredient_df = create_ingredient_df(thai_df) + thai_ingredient_df.head(10).plot.barh() + ``` + + ![thaï](../../../../translated_images/thai.0269dbab2e78bd38a132067759fe980008bdb80b6d778e5313448dbe12bed846.fr.png) + +1. Faites de même pour les données japonaises : + + ```python + japanese_ingredient_df = create_ingredient_df(japanese_df) + japanese_ingredient_df.head(10).plot.barh() + ``` + + ![japonais](../../../../translated_images/japanese.30260486f2a05c463c8faa62ebe7b38f0961ed293bd9a6db8eef5d3f0cf17155.fr.png) + +1. Maintenant pour les ingrédients chinois : + + ```python + chinese_ingredient_df = create_ingredient_df(chinese_df) + chinese_ingredient_df.head(10).plot.barh() + ``` + + ![chinois](../../../../translated_images/chinese.e62cafa5309f111afd1b54490336daf4e927ce32bed837069a0b7ce481dfae8d.fr.png) + +1. Tracez les ingrédients indiens : + + ```python + indian_ingredient_df = create_ingredient_df(indian_df) + indian_ingredient_df.head(10).plot.barh() + ``` + + ![indien](../../../../translated_images/indian.2c4292002af1a1f97a4a24fec6b1459ee8ff616c3822ae56bb62b9903e192af6.fr.png) + +1. Enfin, tracez les ingrédients coréens : + + ```python + korean_ingredient_df = create_ingredient_df(korean_df) + korean_ingredient_df.head(10).plot.barh() + ``` + + ![coréen](../../../../translated_images/korean.4a4f0274f3d9805a65e61f05597eeaad8620b03be23a2c0a705c023f65fad2c0.fr.png) + +1. Maintenant, supprimez les ingrédients les plus courants qui créent de la confusion entre les cuisines distinctes, en appelant `drop()` : + + Tout le monde aime le riz, l'ail et le gingembre ! + + ```python + feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1) + labels_df = df.cuisine #.unique() + feature_df.head() + ``` + +## Équilibrer l'ensemble de données + +Maintenant que vous avez nettoyé les données, utilisez [SMOTE](https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html) - "Synthetic Minority Over-sampling Technique" - pour les équilibrer. + +1. Appelez `fit_resample()`, cette stratégie génère de nouveaux échantillons par interpolation. + + ```python + oversample = SMOTE() + transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df) + ``` + + En équilibrant vos données, vous obtiendrez de meilleurs résultats lors de leur classification. Pensez à une classification binaire. Si la majorité de vos données appartient à une classe, un modèle d'apprentissage automatique va prédire cette classe plus fréquemment, simplement parce qu'il y a plus de données pour elle. L'équilibrage des données permet de corriger ce déséquilibre. + +1. Vous pouvez maintenant vérifier le nombre d'étiquettes par ingrédient : + + ```python + print(f'new label count: {transformed_label_df.value_counts()}') + print(f'old label count: {df.cuisine.value_counts()}') + ``` + + Votre sortie ressemble à ceci : + + ```output + new label count: korean 799 + chinese 799 + indian 799 + japanese 799 + thai 799 + Name: cuisine, dtype: int64 + old label count: korean 799 + indian 598 + chinese 442 + japanese 320 + thai 289 + Name: cuisine, dtype: int64 + ``` + + Les données sont propres, équilibrées et très appétissantes ! + +1. La dernière étape consiste à sauvegarder vos données équilibrées, y compris les étiquettes et les caractéristiques, dans un nouveau dataframe qui peut être exporté dans un fichier : + + ```python + transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer') + ``` + +1. Vous pouvez jeter un dernier coup d'œil aux données en utilisant `transformed_df.head()` et `transformed_df.info()`. Sauvegardez une copie de ces données pour les utiliser dans les leçons futures : + + ```python + transformed_df.head() + transformed_df.info() + transformed_df.to_csv("../data/cleaned_cuisines.csv") + ``` + + Ce nouveau fichier CSV se trouve maintenant dans le dossier racine des données. + +--- + +## 🚀Défi + +Ce programme contient plusieurs ensembles de données intéressants. Explorez les dossiers `data` et voyez si certains contiennent des ensembles de données qui seraient appropriés pour une classification binaire ou multicatégorie. Quelles questions poseriez-vous à cet ensemble de données ? + +## [Quiz après la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/) + +## Révision et auto-apprentissage + +Explorez l'API de SMOTE. Pour quels cas d'utilisation est-elle la mieux adaptée ? Quels problèmes résout-elle ? + +## Devoir + +[Explorez les méthodes de classification](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/4-Classification/1-Introduction/assignment.md b/translations/fr/4-Classification/1-Introduction/assignment.md new file mode 100644 index 000000000..4af6bc911 --- /dev/null +++ b/translations/fr/4-Classification/1-Introduction/assignment.md @@ -0,0 +1,25 @@ + +# Explorer les méthodes de classification + +## Instructions + +Dans la [documentation de Scikit-learn](https://scikit-learn.org/stable/supervised_learning.html), vous trouverez une longue liste de façons de classifier des données. Faites une petite chasse au trésor dans ces documents : votre objectif est de rechercher des méthodes de classification et de les associer à un ensemble de données de ce programme, une question que vous pouvez poser à cet ensemble, et une technique de classification. Créez un tableau ou une table dans un fichier .doc et expliquez comment l'ensemble de données fonctionnerait avec l'algorithme de classification. + +## Critères d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ------------------------------------------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| | un document est présenté avec un aperçu de 5 algorithmes accompagnés d'une technique de classification. L'aperçu est bien expliqué et détaillé. | un document est présenté avec un aperçu de 3 algorithmes accompagnés d'une technique de classification. L'aperçu est bien expliqué et détaillé. | un document est présenté avec un aperçu de moins de trois algorithmes accompagnés d'une technique de classification, et l'aperçu n'est ni bien expliqué ni détaillé. | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/4-Classification/1-Introduction/notebook.ipynb b/translations/fr/4-Classification/1-Introduction/notebook.ipynb new file mode 100644 index 000000000..601c52121 --- /dev/null +++ b/translations/fr/4-Classification/1-Introduction/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d544ef384b7ba73757d830a72372a7f2", + "translation_date": "2025-09-04T02:39:50+00:00", + "source_file": "4-Classification/1-Introduction/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/4-Classification/1-Introduction/solution/Julia/README.md b/translations/fr/4-Classification/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..4d19529ef --- /dev/null +++ b/translations/fr/4-Classification/1-Introduction/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb b/translations/fr/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb new file mode 100644 index 000000000..36e7b38fb --- /dev/null +++ b/translations/fr/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb @@ -0,0 +1,720 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_10-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "2621e24705e8100893c9bf84e0fc8aef", + "translation_date": "2025-09-04T02:43:42+00:00", + "source_file": "4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb", + "language_code": "fr" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Construire un modèle de classification : Délicieuses cuisines asiatiques et indiennes\n" + ], + "metadata": { + "id": "ItETB4tSFprR" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Introduction à la classification : Nettoyer, préparer et visualiser vos données\n", + "\n", + "Dans ces quatre leçons, vous explorerez un aspect fondamental de l'apprentissage automatique classique : *la classification*. Nous allons parcourir l'utilisation de divers algorithmes de classification avec un jeu de données sur toutes les cuisines brillantes d'Asie et d'Inde. Préparez-vous à avoir l'eau à la bouche !\n", + "\n", + "

                      \n", + " \n", + "

                      Célébrez les cuisines pan-asiatiques dans ces leçons ! Image par Jen Looper
                      \n", + "\n", + "La classification est une forme d'[apprentissage supervisé](https://wikipedia.org/wiki/Supervised_learning) qui partage de nombreux points communs avec les techniques de régression. En classification, vous entraînez un modèle à prédire à quelle `catégorie` appartient un élément. Si l'apprentissage automatique consiste à prédire des valeurs ou des noms en utilisant des jeux de données, alors la classification se divise généralement en deux groupes : *classification binaire* et *classification multiclasses*.\n", + "\n", + "Rappelons-nous :\n", + "\n", + "- **La régression linéaire** vous a aidé à prédire les relations entre des variables et à faire des prédictions précises sur la position d'un nouveau point de données par rapport à cette ligne. Par exemple, vous pouviez prédire des valeurs numériques comme *quel serait le prix d'une citrouille en septembre par rapport à décembre*.\n", + "\n", + "- **La régression logistique** vous a permis de découvrir des \"catégories binaires\" : à ce prix, *cette citrouille est-elle orange ou non-orange* ?\n", + "\n", + "La classification utilise divers algorithmes pour déterminer d'autres façons d'attribuer une étiquette ou une classe à un point de données. Travaillons avec ces données culinaires pour voir si, en observant un groupe d'ingrédients, nous pouvons déterminer son origine culinaire.\n", + "\n", + "### [**Quiz avant la leçon**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/)\n", + "\n", + "### **Introduction**\n", + "\n", + "La classification est l'une des activités fondamentales du chercheur en apprentissage automatique et du data scientist. Qu'il s'agisse de classer de manière basique une valeur binaire (\"cet email est-il un spam ou non ?\") ou de réaliser une classification et une segmentation complexes d'images à l'aide de la vision par ordinateur, il est toujours utile de pouvoir trier des données en classes et de leur poser des questions.\n", + "\n", + "Pour formuler le processus de manière plus scientifique, votre méthode de classification crée un modèle prédictif qui vous permet de cartographier la relation entre les variables d'entrée et les variables de sortie.\n", + "\n", + "

                      \n", + " \n", + "

                      Problèmes binaires vs multiclasses pour les algorithmes de classification. Infographie par Jen Looper
                      \n", + "\n", + "Avant de commencer le processus de nettoyage de nos données, de leur visualisation et de leur préparation pour nos tâches d'apprentissage automatique, apprenons un peu plus sur les différentes façons dont l'apprentissage automatique peut être utilisé pour classer des données.\n", + "\n", + "Dérivée des [statistiques](https://wikipedia.org/wiki/Statistical_classification), la classification utilisant l'apprentissage automatique classique utilise des caractéristiques, telles que `fumeur`, `poids` et `âge`, pour déterminer *la probabilité de développer une maladie X*. En tant que technique d'apprentissage supervisé similaire aux exercices de régression que vous avez effectués précédemment, vos données sont étiquetées et les algorithmes d'apprentissage automatique utilisent ces étiquettes pour classer et prédire des classes (ou 'caractéristiques') d'un jeu de données et les attribuer à un groupe ou un résultat.\n", + "\n", + "✅ Prenez un moment pour imaginer un jeu de données sur les cuisines. Qu'est-ce qu'un modèle multiclasses pourrait répondre ? Qu'est-ce qu'un modèle binaire pourrait répondre ? Et si vous vouliez déterminer si une cuisine donnée était susceptible d'utiliser du fenugrec ? Et si vous vouliez voir si, avec un sac de courses contenant de l'anis étoilé, des artichauts, du chou-fleur et du raifort, vous pouviez créer un plat typique indien ?\n", + "\n", + "### **Bonjour 'classificateur'**\n", + "\n", + "La question que nous voulons poser à ce jeu de données culinaires est en fait une question **multiclasses**, car nous avons plusieurs cuisines nationales potentielles à examiner. Étant donné un lot d'ingrédients, à laquelle de ces nombreuses classes les données appartiendront-elles ?\n", + "\n", + "Tidymodels propose plusieurs algorithmes différents pour classer les données, en fonction du type de problème que vous souhaitez résoudre. Dans les deux prochaines leçons, vous apprendrez à utiliser plusieurs de ces algorithmes.\n", + "\n", + "#### **Prérequis**\n", + "\n", + "Pour cette leçon, nous aurons besoin des packages suivants pour nettoyer, préparer et visualiser nos données :\n", + "\n", + "- `tidyverse` : Le [tidyverse](https://www.tidyverse.org/) est une [collection de packages R](https://www.tidyverse.org/packages) conçue pour rendre la science des données plus rapide, plus facile et plus amusante !\n", + "\n", + "- `tidymodels` : Le [framework tidymodels](https://www.tidymodels.org/) est une [collection de packages](https://www.tidymodels.org/packages/) pour la modélisation et l'apprentissage automatique.\n", + "\n", + "- `DataExplorer` : Le [package DataExplorer](https://cran.r-project.org/web/packages/DataExplorer/vignettes/dataexplorer-intro.html) est conçu pour simplifier et automatiser le processus d'exploration des données (EDA) et la génération de rapports.\n", + "\n", + "- `themis` : Le [package themis](https://themis.tidymodels.org/) fournit des étapes supplémentaires pour traiter les données déséquilibrées.\n", + "\n", + "Vous pouvez les installer avec :\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "Alternativement, le script ci-dessous vérifie si vous avez les packages nécessaires pour compléter ce module et les installe pour vous s'ils manquent.\n" + ], + "metadata": { + "id": "ri5bQxZ-Fz_0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, DataExplorer, themis, here)" + ], + "outputs": [], + "metadata": { + "id": "KIPxa4elGAPI" + } + }, + { + "cell_type": "markdown", + "source": [ + "Nous chargerons plus tard ces packages géniaux et les rendrons disponibles dans notre session R actuelle. (Ceci est juste pour illustration, `pacman::p_load()` l'a déjà fait pour vous)\n" + ], + "metadata": { + "id": "YkKAxOJvGD4C" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Exercice - nettoyer et équilibrer vos données\n", + "\n", + "La première tâche à accomplir, avant de commencer ce projet, est de nettoyer et **équilibrer** vos données pour obtenir de meilleurs résultats.\n", + "\n", + "Faisons connaissance avec les données ! 🕵️\n" + ], + "metadata": { + "id": "PFkQDlk0GN5O" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# View the first 5 rows\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": { + "id": "Qccw7okxGT0S" + } + }, + { + "cell_type": "markdown", + "source": [ + "Intéressant ! À première vue, la première colonne semble être une sorte de colonne `id`. Obtenons un peu plus d'informations sur les données.\n" + ], + "metadata": { + "id": "XrWnlgSrGVmR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Basic information about the data\r\n", + "df %>%\r\n", + " introduce()\r\n", + "\r\n", + "# Visualize basic information above\r\n", + "df %>% \r\n", + " plot_intro(ggtheme = theme_light())" + ], + "outputs": [], + "metadata": { + "id": "4UcGmxRxGieA" + } + }, + { + "cell_type": "markdown", + "source": [ + "D'après les résultats, nous constatons immédiatement que nous avons `2448` lignes et `385` colonnes, et `0` valeurs manquantes. Nous avons également 1 colonne discrète, *cuisine*.\n", + "\n", + "## Exercice - découvrir les cuisines\n", + "\n", + "C'est maintenant que le travail devient plus intéressant. Découvrons la répartition des données, par type de cuisine.\n" + ], + "metadata": { + "id": "AaPubl__GmH5" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Count observations per cuisine\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(n)\r\n", + "\r\n", + "# Plot the distribution\r\n", + "theme_set(theme_light())\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " ggplot(mapping = aes(x = n, y = reorder(cuisine, -n))) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"cuisine\")" + ], + "outputs": [], + "metadata": { + "id": "FRsBVy5eGrrv" + } + }, + { + "cell_type": "markdown", + "source": [ + "Il existe un nombre fini de cuisines, mais la répartition des données est inégale. Vous pouvez corriger cela ! Avant de le faire, explorez un peu plus.\n", + "\n", + "Ensuite, attribuons chaque cuisine à son propre tibble et découvrons combien de données sont disponibles (lignes, colonnes) par cuisine.\n", + "\n", + "> Un [tibble](https://tibble.tidyverse.org/) est une version moderne d'un data frame.\n", + "\n", + "

                      \n", + " \n", + "

                      Illustration par @allison_horst
                      \n" + ], + "metadata": { + "id": "vVvyDb1kG2in" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create individual tibble for the cuisines\r\n", + "thai_df <- df %>% \r\n", + " filter(cuisine == \"thai\")\r\n", + "japanese_df <- df %>% \r\n", + " filter(cuisine == \"japanese\")\r\n", + "chinese_df <- df %>% \r\n", + " filter(cuisine == \"chinese\")\r\n", + "indian_df <- df %>% \r\n", + " filter(cuisine == \"indian\")\r\n", + "korean_df <- df %>% \r\n", + " filter(cuisine == \"korean\")\r\n", + "\r\n", + "\r\n", + "# Find out how much data is available per cuisine\r\n", + "cat(\" thai df:\", dim(thai_df), \"\\n\",\r\n", + " \"japanese df:\", dim(japanese_df), \"\\n\",\r\n", + " \"chinese_df:\", dim(chinese_df), \"\\n\",\r\n", + " \"indian_df:\", dim(indian_df), \"\\n\",\r\n", + " \"korean_df:\", dim(korean_df))" + ], + "outputs": [], + "metadata": { + "id": "0TvXUxD3G8Bk" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **Exercice - Découvrir les principaux ingrédients par cuisine avec dplyr**\n", + "\n", + "Vous pouvez maintenant explorer les données plus en profondeur et découvrir quels sont les ingrédients typiques par cuisine. Il est important d'éliminer les données récurrentes qui créent de la confusion entre les cuisines, alors apprenons à résoudre ce problème.\n", + "\n", + "Créez une fonction `create_ingredient()` en R qui retourne un dataframe d'ingrédients. Cette fonction commencera par supprimer une colonne inutile et triera les ingrédients en fonction de leur fréquence.\n", + "\n", + "La structure de base d'une fonction en R est la suivante :\n", + "\n", + "`myFunction <- function(arglist){`\n", + "\n", + "**`...`**\n", + "\n", + "**`return`**`(value)`\n", + "\n", + "`}`\n", + "\n", + "Une introduction claire aux fonctions en R est disponible [ici](https://skirmer.github.io/presentations/functions_with_r.html#1).\n", + "\n", + "Allons-y ! Nous allons utiliser les [verbes dplyr](https://dplyr.tidyverse.org/) que nous avons appris dans nos leçons précédentes. Pour rappel :\n", + "\n", + "- `dplyr::select()`: vous aide à choisir quelles **colonnes** conserver ou exclure.\n", + "\n", + "- `dplyr::pivot_longer()`: vous permet de \"réorganiser\" les données, en augmentant le nombre de lignes et en réduisant le nombre de colonnes.\n", + "\n", + "- `dplyr::group_by()` et `dplyr::summarise()`: vous aident à calculer des statistiques récapitulatives pour différents groupes et à les présenter dans un tableau clair.\n", + "\n", + "- `dplyr::filter()`: crée un sous-ensemble des données ne contenant que les lignes qui satisfont vos conditions.\n", + "\n", + "- `dplyr::mutate()`: vous aide à créer ou modifier des colonnes.\n", + "\n", + "Découvrez ce [tutoriel *artistique* learnr](https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome) par Allison Horst, qui introduit certaines fonctions utiles de manipulation de données dans dplyr *(partie du Tidyverse)*.\n" + ], + "metadata": { + "id": "K3RF5bSCHC76" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Creates a functions that returns the top ingredients by class\r\n", + "\r\n", + "create_ingredient <- function(df){\r\n", + " \r\n", + " # Drop the id column which is the first colum\r\n", + " ingredient_df = df %>% select(-1) %>% \r\n", + " # Transpose data to a long format\r\n", + " pivot_longer(!cuisine, names_to = \"ingredients\", values_to = \"count\") %>% \r\n", + " # Find the top most ingredients for a particular cuisine\r\n", + " group_by(ingredients) %>% \r\n", + " summarise(n_instances = sum(count)) %>% \r\n", + " filter(n_instances != 0) %>% \r\n", + " # Arrange by descending order\r\n", + " arrange(desc(n_instances)) %>% \r\n", + " mutate(ingredients = factor(ingredients) %>% fct_inorder())\r\n", + " \r\n", + " \r\n", + " return(ingredient_df)\r\n", + "} # End of function" + ], + "outputs": [], + "metadata": { + "id": "uB_0JR82HTPa" + } + }, + { + "cell_type": "markdown", + "source": [ + "Nous pouvons maintenant utiliser la fonction pour avoir une idée des dix ingrédients les plus populaires par cuisine. Testons-la avec `thai_df`.\n" + ], + "metadata": { + "id": "h9794WF8HWmc" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Call create_ingredient and display popular ingredients\r\n", + "thai_ingredient_df <- create_ingredient(df = thai_df)\r\n", + "\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "agQ-1HrcHaEA" + } + }, + { + "cell_type": "markdown", + "source": [ + "Dans la section précédente, nous avons utilisé `geom_col()`, voyons maintenant comment utiliser également `geom_bar` pour créer des diagrammes en barres. Utilisez `?geom_bar` pour en savoir plus.\n" + ], + "metadata": { + "id": "kHu9ffGjHdcX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a bar chart for popular thai cuisines\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10) %>% \r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"steelblue\") +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "fb3Bx_3DHj6e" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "RHP_xgdkHnvM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Japanese cuisines and make bar chart\r\n", + "create_ingredient(df = japanese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"darkorange\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "019v8F0XHrRU" + } + }, + { + "cell_type": "markdown", + "source": [ + "Qu'en est-il des cuisines chinoises ?\n" + ], + "metadata": { + "id": "iIGM7vO8Hu3v" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Chinese cuisines and make bar chart\r\n", + "create_ingredient(df = chinese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"cyan4\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lHd9_gd2HyzU" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "ir8qyQbNH1c7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Indian cuisines and make bar chart\r\n", + "create_ingredient(df = indian_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#041E42FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "ApukQtKjH5FO" + } + }, + { + "cell_type": "markdown", + "source": [ + "Enfin, tracez les ingrédients coréens.\n" + ], + "metadata": { + "id": "qv30cwY1H-FM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Korean cuisines and make bar chart\r\n", + "create_ingredient(df = korean_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#852419FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lumgk9cHIBie" + } + }, + { + "cell_type": "markdown", + "source": [ + "À partir des visualisations de données, nous pouvons maintenant éliminer les ingrédients les plus courants qui créent de la confusion entre les cuisines distinctes, en utilisant `dplyr::select()`.\n", + "\n", + "Tout le monde adore le riz, l'ail et le gingembre !\n" + ], + "metadata": { + "id": "iO4veMXuIEta" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "iHJPiG6rIUcK" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Prétraitement des données avec des recettes 👩‍🍳👨‍🍳 - Gérer des données déséquilibrées ⚖️\n", + "\n", + "

                      \n", + " \n", + "

                      Illustration par @allison_horst
                      \n", + "\n", + "Étant donné que cette leçon porte sur les cuisines, nous devons mettre les `recettes` dans leur contexte.\n", + "\n", + "Tidymodels propose un autre package pratique : `recipes` - un package pour le prétraitement des données.\n" + ], + "metadata": { + "id": "kkFd-JxdIaL6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Jetons un coup d'œil à la répartition de nos cuisines à nouveau.\n" + ], + "metadata": { + "id": "6l2ubtTPJAhY" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "old_label_count <- df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "old_label_count" + ], + "outputs": [], + "metadata": { + "id": "1e-E9cb7JDVi" + } + }, + { + "cell_type": "markdown", + "source": [ + "Comme vous pouvez le constater, il existe une répartition assez inégale dans le nombre de cuisines. Les cuisines coréennes sont presque trois fois plus nombreuses que les cuisines thaïlandaises. Les données déséquilibrées ont souvent des effets négatifs sur les performances du modèle. Prenons l'exemple d'une classification binaire. Si la majorité de vos données appartient à une seule classe, un modèle d'apprentissage automatique va prédire cette classe plus fréquemment, simplement parce qu'il dispose de plus de données pour celle-ci. Équilibrer les données permet de corriger tout déséquilibre et d'éliminer cette disparité. De nombreux modèles fonctionnent mieux lorsque le nombre d'observations est égal et, par conséquent, ont tendance à rencontrer des difficultés avec des données déséquilibrées.\n", + "\n", + "Il existe principalement deux façons de traiter les ensembles de données déséquilibrés :\n", + "\n", + "- ajouter des observations à la classe minoritaire : `Sur-échantillonnage`, par exemple en utilisant un algorithme SMOTE\n", + "\n", + "- supprimer des observations de la classe majoritaire : `Sous-échantillonnage`\n", + "\n", + "Voyons maintenant comment traiter les ensembles de données déséquilibrés en utilisant une `recette`. Une recette peut être considérée comme un plan qui décrit les étapes à appliquer à un ensemble de données afin de le préparer à l'analyse.\n" + ], + "metadata": { + "id": "soAw6826JKx9" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = df_select) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "cuisines_recipe" + ], + "outputs": [], + "metadata": { + "id": "HS41brUIJVJy" + } + }, + { + "cell_type": "markdown", + "source": [ + "Décomposons nos étapes de prétraitement.\n", + "\n", + "- L'appel à `recipe()` avec une formule indique à la recette les *rôles* des variables en utilisant les données de `df_select` comme référence. Par exemple, la colonne `cuisine` a été assignée au rôle de `outcome`, tandis que les autres colonnes ont été assignées au rôle de `predictor`.\n", + "\n", + "- [`step_smote(cuisine)`](https://themis.tidymodels.org/reference/step_smote.html) crée une *spécification* d'une étape de recette qui génère de manière synthétique de nouveaux exemples de la classe minoritaire en utilisant les plus proches voisins de ces cas.\n", + "\n", + "Maintenant, si nous souhaitons voir les données prétraitées, nous devons [**`prep()`**](https://recipes.tidymodels.org/reference/prep.html) et [**`bake()`**](https://recipes.tidymodels.org/reference/bake.html) notre recette.\n", + "\n", + "`prep()`: estime les paramètres nécessaires à partir d'un ensemble d'entraînement qui peuvent ensuite être appliqués à d'autres ensembles de données.\n", + "\n", + "`bake()`: applique une recette préparée à tout ensemble de données.\n" + ], + "metadata": { + "id": "Yb-7t7XcJaC8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep and bake the recipe\r\n", + "preprocessed_df <- cuisines_recipe %>% \r\n", + " prep() %>% \r\n", + " bake(new_data = NULL) %>% \r\n", + " relocate(cuisine)\r\n", + "\r\n", + "# Display data\r\n", + "preprocessed_df %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Quick summary stats\r\n", + "preprocessed_df %>% \r\n", + " introduce()" + ], + "outputs": [], + "metadata": { + "id": "9QhSgdpxJl44" + } + }, + { + "cell_type": "markdown", + "source": [ + "Vérifions maintenant la répartition de nos cuisines et comparons-les avec les données déséquilibrées.\n" + ], + "metadata": { + "id": "dmidELh_LdV7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "new_label_count <- preprocessed_df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "list(new_label_count = new_label_count,\r\n", + " old_label_count = old_label_count)" + ], + "outputs": [], + "metadata": { + "id": "aSh23klBLwDz" + } + }, + { + "cell_type": "markdown", + "source": [ + "Miam ! Les données sont propres, équilibrées et très appétissantes 😋 !\n", + "\n", + "> Normalement, une recette est généralement utilisée comme préprocesseur pour la modélisation, où elle définit les étapes à appliquer à un ensemble de données afin de le préparer pour la modélisation. Dans ce cas, un `workflow()` est typiquement utilisé (comme nous l'avons déjà vu dans nos leçons précédentes) au lieu d'estimer manuellement une recette.\n", + ">\n", + "> Ainsi, vous n'avez généralement pas besoin d'utiliser **`prep()`** et **`bake()`** pour les recettes lorsque vous utilisez tidymodels, mais ce sont des fonctions utiles à avoir dans votre boîte à outils pour vérifier que les recettes font ce que vous attendez, comme dans notre cas.\n", + ">\n", + "> Lorsque vous utilisez **`bake()`** sur une recette préparée avec **`new_data = NULL`**, vous obtenez les données que vous avez fournies lors de la définition de la recette, mais ayant subi les étapes de prétraitement.\n", + "\n", + "Sauvegardons maintenant une copie de ces données pour les utiliser dans les prochaines leçons :\n" + ], + "metadata": { + "id": "HEu80HZ8L7ae" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Save preprocessed data\r\n", + "write_csv(preprocessed_df, \"../../../data/cleaned_cuisines_R.csv\")" + ], + "outputs": [], + "metadata": { + "id": "cBmCbIgrMOI6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Ce nouveau fichier CSV se trouve maintenant dans le dossier racine des données.\n", + "\n", + "**🚀Défi**\n", + "\n", + "Ce programme contient plusieurs ensembles de données intéressants. Explorez les dossiers `data` et voyez si certains contiennent des ensembles de données adaptés à une classification binaire ou multi-classes. Quelles questions poseriez-vous à propos de cet ensemble de données ?\n", + "\n", + "## [**Quiz après le cours**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/)\n", + "\n", + "## **Révision & Étude personnelle**\n", + "\n", + "- Consultez [le package themis](https://github.com/tidymodels/themis). Quelles autres techniques pourrions-nous utiliser pour gérer des données déséquilibrées ?\n", + "\n", + "- Site de référence des modèles Tidy [site web de référence](https://www.tidymodels.org/start/).\n", + "\n", + "- H. Wickham et G. Grolemund, [*R for Data Science: Visualize, Model, Transform, Tidy, and Import Data*](https://r4ds.had.co.nz/).\n", + "\n", + "#### REMERCIEMENTS À :\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) pour avoir créé les illustrations incroyables qui rendent R plus accueillant et engageant. Retrouvez plus d'illustrations dans sa [galerie](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) et [Jen Looper](https://www.twitter.com/jenlooper) pour avoir créé la version originale en Python de ce module ♥️\n", + "\n", + "

                      \n", + " \n", + "

                      Illustration par @allison_horst
                      \n" + ], + "metadata": { + "id": "WQs5621pMGwf" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/4-Classification/1-Introduction/solution/notebook.ipynb b/translations/fr/4-Classification/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..8b7adf40e --- /dev/null +++ b/translations/fr/4-Classification/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,713 @@ +{ + "cells": [ + { + "source": [ + "# Délicieuses cuisines asiatiques et indiennes\n", + "\n", + "## Introduction\n", + "\n", + "La cuisine asiatique et indienne est connue pour ses saveurs riches, ses épices uniques et ses techniques de cuisson variées. Que vous soyez amateur de plats épicés ou que vous préfériez des saveurs plus douces, il y a quelque chose pour tout le monde.\n", + "\n", + "## Pourquoi choisir ces cuisines ?\n", + "\n", + "- **Diversité des saveurs** : Chaque région a ses propres spécialités, offrant une grande variété de plats.\n", + "- **Utilisation d'ingrédients frais** : Les légumes, les herbes et les épices sont souvent utilisés dans leur forme la plus fraîche.\n", + "- **Options végétariennes** : Ces cuisines proposent de nombreuses options pour les végétariens et les végétaliens.\n", + "\n", + "[!NOTE] Ces cuisines sont également adaptées à ceux qui aiment expérimenter avec des saveurs nouvelles et audacieuses.\n", + "\n", + "## Plats populaires\n", + "\n", + "### Cuisine asiatique\n", + "\n", + "1. **Sushi** : Une combinaison de riz vinaigré, de poisson cru et parfois de légumes.\n", + "2. **Pad Thaï** : Un plat de nouilles sautées avec des œufs, des cacahuètes, et une sauce sucrée-salée.\n", + "3. **Dim Sum** : Petits plats cuits à la vapeur, souvent servis dans des paniers en bambou.\n", + "\n", + "### Cuisine indienne\n", + "\n", + "1. **Poulet Tikka Masala** : Poulet mariné dans des épices et cuit dans une sauce crémeuse à la tomate.\n", + "2. **Biryani** : Riz épicé mélangé avec de la viande, des légumes ou des œufs.\n", + "3. **Chole Bhature** : Pois chiches épicés servis avec un pain frit moelleux.\n", + "\n", + "[!TIP] Essayez de préparer ces plats à la maison pour une expérience culinaire enrichissante !\n", + "\n", + "## Conseils pour cuisiner\n", + "\n", + "- **Soyez patient avec les épices** : Ajoutez-les progressivement pour équilibrer les saveurs.\n", + "- **Investissez dans des ustensiles adaptés** : Un wok ou une cocotte peut faire toute la différence.\n", + "- **Goûtez au fur et à mesure** : Ajustez les assaisonnements selon vos préférences.\n", + "\n", + "[!WARNING] Certaines épices peuvent être très fortes. Utilisez-les avec modération si vous n'êtes pas habitué.\n", + "\n", + "## Conclusion\n", + "\n", + "La cuisine asiatique et indienne offre une expérience culinaire inoubliable. Que vous choisissiez de dîner dans un restaurant ou de cuisiner à la maison, ces plats sont sûrs de ravir vos papilles. Alors, pourquoi ne pas essayer quelque chose de nouveau aujourd'hui ?\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "Installez Imblearn qui activera SMOTE. Il s'agit d'un package Scikit-learn qui aide à gérer les données déséquilibrées lors de la classification. (https://imbalanced-learn.org/stable/)\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: imblearn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.0)\n", + "Requirement already satisfied: imbalanced-learn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imblearn) (0.8.0)\n", + "Requirement already satisfied: numpy>=1.13.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.19.2)\n", + "Requirement already satisfied: scipy>=0.19.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.4.1)\n", + "Requirement already satisfied: scikit-learn>=0.24 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.24.2)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.16.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.24->imbalanced-learn->imblearn) (2.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install imblearn" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "import numpy as np\n", + "from imblearn.over_sampling import SMOTE" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../../data/cuisines.csv')" + ] + }, + { + "source": [ + "Ce jeu de données comprend 385 colonnes indiquant toutes sortes d'ingrédients dans diverses cuisines d'un ensemble donné de cuisines.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 65 indian 0 0 0 0 0 \n", + "1 66 indian 1 0 0 0 0 \n", + "2 67 indian 0 0 0 0 0 \n", + "3 68 indian 0 0 0 0 0 \n", + "4 69 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 385 columns]" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      065indian00000000...0000000000
                      166indian10000000...0000000000
                      267indian00000000...0000000000
                      368indian00000000...0000000000
                      469indian00000000...0000000010
                      \n

                      5 rows × 385 columns

                      \n
                      " + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 2448 entries, 0 to 2447\nColumns: 385 entries, Unnamed: 0 to zucchini\ndtypes: int64(384), object(1)\nmemory usage: 7.2+ MB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "korean 799\n", + "indian 598\n", + "chinese 442\n", + "japanese 320\n", + "thai 289\n", + "Name: cuisine, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "df.cuisine.value_counts()" + ] + }, + { + "source": [ + "Afficher les cuisines dans un graphique en barres\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD4CAYAAAAtrdtxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAASY0lEQVR4nO3df7TldV3v8eerGZkRRoeAiXtE5UgNIkUCjlwQIzAiC7NscdcSbcmsfkxl5SXX0juuyzK9d3UvlXnpplajma0kMtCUhluImNcr8msGBmb4pZaTQCFQOYom0fi+f+zPkd14hpnzOWefvYfzfKy113z35/vde7/22fvMa3++3733SVUhSVKPbxt3AEnSgcsSkSR1s0QkSd0sEUlSN0tEktRt+bgDLKYjjjiipqenxx1Dkg4oW7dufbiq1sy2bkmVyPT0NFu2bBl3DEk6oCT5u72tc3eWJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqduS+sT69vt3Mb3xqnHH0ALZefG5444gLXnORCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktRtIkokyaFJXtuWz0yyeY6X/29Jzh5NOknS3kxEiQCHAq/tvXBVvbmqPraAeSRJ+2FSSuRi4DuTbAN+E1iV5Iokdye5NEkAkrw5yc1JdiTZNDT+viTnjTG/JC1Jk1IiG4G/qaoTgTcAJwEXAscDxwCnt+3eUVUvrKrvAZ4KvGxfV5xkQ5ItSbbs/tqu0aSXpCVqUkpkTzdV1X1V9Q1gGzDdxs9KcmOS7cBLgO/e1xVV1aaqWldV65YdvHp0iSVpCZrUL2B8dGh5N7A8yUrgXcC6qro3yVuAleMIJ0kamJSZyFeAp+1jm5nCeDjJKsBjIJI0ZhMxE6mqf0xyXZIdwL8AX5xlmy8leTewA3gAuHmRY0qS9jARJQJQVa/ay/gvDS1fBFw0yzbrR5dMkrQ3k7I7S5J0ALJEJEndLBFJUjdLRJLUzRKRJHWbmHdnLYYTjlrNlovPHXcMSXrScCYiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6rZ83AEW0/b7dzG98apxx9CY7Lz43HFHkJ50nIlIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG77VSJJPj3qIJKkA89+lUhVvWjUQSRJB579nYk8kmRVkmuT3JJke5Ifa+umk9yd5NIkdyW5IsnBbd2bk9ycZEeSTUnSxj+R5NeT3JTkM0m+r40vS/Kb7TK3J/m5Nj6V5JNJtrXrmtn+nCTXt0yXJ1k1ih+SJGl2czkm8nXgFVV1MnAW8FszpQA8F3hXVT0P+DLw2jb+jqp6YVV9D/BU4GVD17e8qk4BLgR+tY39NLCrql4IvBD42STPAV4FXF1VJwLPB7YlOQK4CDi7ZdoCvH4ud16SND9z+dqTAP8jyRnAN4CjgCPbunur6rq2/H7gdcDbgLOSvBE4GDgMuAP4i7bdh9q/W4HptnwO8L1JzmvnVwNrgZuB9yZ5CvDhqtqW5PuB44HrWpcdBFz/LaGTDcAGgGVPXzOHuytJ2pe5lMirgTXAC6rqsSQ7gZVtXe2xbSVZCbwLWFdV9yZ5y9D2AI+2f3cP5Qjwy1V19Z433srrXOB9Sd4O/DNwTVWd/0Shq2oTsAlgxdTaPXNKkuZhLruzVgMPtgI5Czh6aN2zk5zWll8FfIrHC+PhdqziPPbtauAX2oyDJMcmOSTJ0cAXq+rdwHuAk4EbgNOTfFfb9pAkx87h/kiS5ml/ZyIFXAr8RZLtDI4/3D20/h7gF5O8F7gT+N2q+lqSdwM7gAcY7JLal/cw2LV1Szve8hDw48CZwBuSPAY8Arymqh5Ksh64LMmKdvmLgM/s532SJM1Tqp54D0+Sw4FbqurovayfBja3g+cTbcXU2pq64JJxx9CY+FXwUp8kW6tq3WzrnnB3VpJnMDhY/bZRBJMkHdiecHdWVf098ITHGapqJzDxsxBJ0sLzu7MkSd0sEUlSN0tEktRtLh82POCdcNRqtvgOHUlaMM5EJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd2WjzvAYtp+/y6mN1417hhSt50XnzvuCNK/40xEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3Ra0RJK8L8l5s4w/I8kVC3lbkqTxW5QPG1bV3wPfUi6SpAPbvGYiSV6T5PYktyX54zZ8RpJPJ/nbmVlJkukkO9ry+iQfSvJXST6b5DeGru+cJNcnuSXJ5UlWtfGLk9zZbuttbWxNkg8mubmdTp/PfZEkzV33TCTJdwMXAS+qqoeTHAa8HZgCXgwcB1wJzLYb60TgJOBR4J4kvwP8S7u+s6vqq0n+C/D6JO8EXgEcV1WV5NB2Hb8N/K+q+lSSZwNXA8+bJecGYAPAsqev6b27kqRZzGd31kuAy6vqYYCq+qckAB+uqm8AdyY5ci+XvbaqdgEkuRM4GjgUOB64rl3PQcD1wC7g68AfJNkMbG7XcTZwfNsW4OlJVlXVI8M3VFWbgE0AK6bW1jzuryRpD6M4JvLo0HL2Y5vdLUeAa6rq/D03TnIK8AMMjqv8EoMC+zbg1Kr6+kKEliTN3XyOiXwc+E9JDgdou7Pm4wbg9CTf1a7vkCTHtuMiq6vq/wC/Ajy/bf9R4JdnLpzkxHneviRpjrpnIlV1R5JfA/5vkt3ArfMJUlUPJVkPXJZkRRu+CPgK8JEkKxnMVl7f1r0OeGeS2xncj08CPz+fDJKkuUnV0jlMsGJqbU1dcMm4Y0jd/HsiGockW6tq3Wzr/MS6JKmbJSJJ6maJSJK6WSKSpG6WiCSp26J8AeOkOOGo1Wzx3S2StGCciUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6LR93gMW0/f5dTG+8atwxJM3RzovPHXcE7YUzEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUbWQlkuTTc9z+zCSb2/LLk2wcTTJJ0kIZ2edEqupF87jslcCVCxhHkjQCo5yJPNL+PTPJJ5JckeTuJJcmSVv30jZ2C/ATQ5ddn+QdbflHk9yY5NYkH0tyZBt/S5L3tuv+2ySvG9V9kSTNbrGOiZwEXAgcDxwDnJ5kJfBu4EeBFwD/YS+X/RRwalWdBPwp8MahdccBPwScAvxqkqeMJr4kaTaL9bUnN1XVfQBJtgHTwCPA56vqs238/cCGWS77TOADSaaAg4DPD627qqoeBR5N8iBwJHDf8IWTbJi53mVPX7OQ90mSlrzFmok8OrS8m7mV1+8A76iqE4CfA1bO5XqralNVrauqdcsOXj2Hm5Uk7cs43+J7NzCd5Dvb+fP3st1q4P62fMHIU0mS9tvYSqSqvs5gN9NV7cD6g3vZ9C3A5Um2Ag8vUjxJ0n5IVY07w6JZMbW2pi64ZNwxJM2RXwU/Xkm2VtW62db5iXVJUjdLRJLUzRKRJHWzRCRJ3SwRSVK3xfrE+kQ44ajVbPFdHpK0YJyJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrotH3eAxbT9/l1Mb7xq3DEkaVHtvPjckV23MxFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1W9ASSTKdZMdCXqckaXJNxEwkyZL60KMkPVmMrESSHJPk1iTfl+QPk2xv589q69cnuTLJx4Fr29gbktyc5PYkbx26rg8n2ZrkjiQbhsYfSfJrSW5LckOSI0d1fyRJ32okJZLkucAHgfXAKUBV1QnA+cAfJVnZNj0ZOK+qvj/JOcDatv2JwAuSnNG2+6mqegGwDnhdksPb+CHADVX1fOCTwM/OkmVDki1Jtuz+2q5R3F1JWrJGUSJrgI8Ar66q24AXA+8HqKq7gb8Djm3bXlNV/9SWz2mnW4FbgOMYlAoMiuM24AbgWUPj/wpsbstbgek9w1TVpqpaV1Xrlh28eqHuoySJ0XwB4y7gCwzK4859bPvVoeUA/7Oqfn94gyRnAmcDp1XV15J8ApiZyTxWVdWWd7PEvlBSksZtFDORfwVeAbwmyauA/we8GiDJscCzgXtmudzVwE8lWdW2PSrJdwCrgX9uBXIccOoIMkuSOozklXtVfTXJy4BrgP8OnJBkO/BvwPqqejTJnpf5aJLnAde3dY8APwn8FfDzSe5iUD43jCKzJGnu8vjeoCe/FVNra+qCS8YdQ5IW1Xz/nkiSrVW1brZ1E/E5EUnSgckSkSR1s0QkSd0sEUlSN0tEktRtSX0474SjVrNlnu9SkCQ9zpmIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqtqT+KFWSrzD7n+adFEcAD487xBMw3/yYb37MNz/zyXd0Va2ZbcWS+u4s4J69/XWuSZBki/n6mW9+zDc/SzWfu7MkSd0sEUlSt6VWIpvGHWAfzDc/5psf883Pksy3pA6sS5IW1lKbiUiSFpAlIknqtmRKJMlLk9yT5HNJNo4pw3uTPJhkx9DYYUmuSfLZ9u+3t/Ek+d8t7+1JTl6EfM9K8tdJ7kxyR5L/PEkZk6xMclOS21q+t7bx5yS5seX4QJKD2viKdv5zbf30KPO121yW5NYkmycw284k25NsS7KljU3EY9tu89AkVyS5O8ldSU6blHxJntt+bjOnLye5cFLytdv8lfZ7sSPJZe33ZfTPv6p60p+AZcDfAMcABwG3AcePIccZwMnAjqGx3wA2tuWNwK+35R8B/hIIcCpw4yLkmwJObstPAz4DHD8pGdvtrGrLTwFubLf7Z8Ar2/jvAb/Qll8L/F5bfiXwgUX4Gb4e+BNgczs/Sdl2AkfsMTYRj227zT8CfqYtHwQcOkn5hnIuAx4Ajp6UfMBRwOeBpw4979YvxvNvUX7o4z4BpwFXD51/E/CmMWWZ5t+XyD3AVFueYvCBSIDfB86fbbtFzPoR4AcnMSNwMHAL8B8ZfAp3+Z6PNXA1cFpbXt62ywgzPRO4FngJsLn9BzIR2drt7ORbS2QiHltgdftPMJOYb49M5wDXTVI+BiVyL3BYez5tBn5oMZ5/S2V31swPeMZ9bWwSHFlV/9CWHwCObMtjzdymtycxeLU/MRnb7qJtwIPANQxmmF+qqn+bJcM387X1u4DDRxjvEuCNwDfa+cMnKBtAAR9NsjXJhjY2KY/tc4CHgD9suwPfk+SQCco37JXAZW15IvJV1f3A24AvAP/A4Pm0lUV4/i2VEjkg1OBlwdjfc51kFfBB4MKq+vLwunFnrKrdVXUig1f9pwDHjSvLsCQvAx6sqq3jzvIEXlxVJwM/DPxikjOGV475sV3OYFfv71bVScBXGewe+qZxP/cA2jGFlwOX77lunPnasZgfY1DGzwAOAV66GLe9VErkfuBZQ+ef2cYmwReTTAG0fx9s42PJnOQpDArk0qr60CRmBKiqLwF/zWCKfmiSme+BG87wzXxt/WrgH0cU6XTg5Ul2An/KYJfWb09INuCbr1apqgeBP2dQwpPy2N4H3FdVN7bzVzAolUnJN+OHgVuq6ovt/KTkOxv4fFU9VFWPAR9i8Jwc+fNvqZTIzcDa9k6FgxhMR68cc6YZVwIXtOULGByHmBl/TXuXx6nArqFp80gkCfAHwF1V9fZJy5hkTZJD2/JTGRyvuYtBmZy3l3wzuc8DPt5eLS64qnpTVT2zqqYZPL8+XlWvnoRsAEkOSfK0mWUG+/V3MCGPbVU9ANyb5Llt6AeAOycl35DzeXxX1kyOScj3BeDUJAe33+OZn9/on3+LcSBqEk4M3i3xGQb70P/rmDJcxmB/5WMMXnn9NIP9kNcCnwU+BhzWtg3wzpZ3O7BuEfK9mMF0/HZgWzv9yKRkBL4XuLXl2wG8uY0fA9wEfI7BboYVbXxlO/+5tv6YRXqcz+Txd2dNRLaW47Z2umPmd2BSHtt2mycCW9rj+2Hg2ycs3yEMXq2vHhqbpHxvBe5uvxt/DKxYjOefX3siSeq2VHZnSZJGwBKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd3+PxNFbW14TY8fAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df.cuisine.value_counts().plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "thai df: (289, 385)\njapanese df: (320, 385)\nchinese df: (442, 385)\nindian df: (598, 385)\nkorean df: (799, 385)\n" + ] + } + ], + "source": [ + "\n", + "thai_df = df[(df.cuisine == \"thai\")]\n", + "japanese_df = df[(df.cuisine == \"japanese\")]\n", + "chinese_df = df[(df.cuisine == \"chinese\")]\n", + "indian_df = df[(df.cuisine == \"indian\")]\n", + "korean_df = df[(df.cuisine == \"korean\")]\n", + "\n", + "print(f'thai df: {thai_df.shape}')\n", + "print(f'japanese df: {japanese_df.shape}')\n", + "print(f'chinese df: {chinese_df.shape}')\n", + "print(f'indian df: {indian_df.shape}')\n", + "print(f'korean df: {korean_df.shape}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def create_ingredient_df(df):\n", + " # transpose df, drop cuisine and unnamed rows, sum the row to get total for ingredient and add value header to new df\n", + " ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value')\n", + " # drop ingredients that have a 0 sum\n", + " ingredient_df = ingredient_df[(ingredient_df.T != 0).any()]\n", + " # sort df\n", + " ingredient_df = ingredient_df.sort_values(by='value', ascending=False, inplace=False)\n", + " return ingredient_df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAeAklEQVR4nO3de7RVdb338fcHRFAhTPBCeNnogzckQJcdb11ES01QSxGLUtNHjl1EM2twhmbUo+PY5dhN07DHII+nuKSPFKe0FPEasTcCG1TUEk8QCmjuJIRg+33+WL+ti82+AWvvORfr8xpjjT3Xb/7mnN85x2J/+M0595qKCMzMzPKiW9YFmJmZlXIwmZlZrjiYzMwsVxxMZmaWKw4mMzPLlV2yLmBn0L9//6ipqcm6DDOzitG/f3/uv//++yPi9ObzHExlUFNTQ21tbdZlmJlVFEn9W2r3qTwzM8sVB5OZmeWKg8nMzHLF15jMzLrApk2bWLFiBRs2bMi6lC7Xq1cv9t9/f3r06NGh/g6mMqhf2UDNxNlZl2G2Q5bfdGbWJezUVqxYQZ8+faipqUFS1uV0mYjg1VdfZcWKFQwaNKhDy/hUnplZF9iwYQP9+vWrqlACkES/fv22aaRYEcEkaYqk81pof4+kme0su7y1WxLNzLpStYVSk23d74o+lRcRfwW2CiwzM6tcuQwmSRcC1wABLAYagQ9IuhrYD/hKRMyUVAP8OiKOktQd+CZwOvAWcEdE/LBknbsB9wD3RMQdkj4FTAB2BeYBn4uIRknrgO8Do4A3gbMj4pWu2G8zqx7lvi5d7muEvXv3Zt26dWVdZ0fl7lSepCHAdcDIiBgGXJlmDQBOohgYN7Ww6HigBhgeEe8F7i6Z1xv4FfDzFEpHAGOBEyNiOMXgG5f67gH8IW37EeCyVuocL6lWUm3j+obt3l8zM9tS7oIJGAnMiIi1ABHxWmr/fxHxVkQ8DezbwnKnAj+OiM3NlgO4D/hpRPwsvT8FOAaYL2lhen9wmvdP4Ndpuo5i2G0lIiZHRCEiCt1377sdu2lm1nUmTpzIrbfe+vb7SZMmccMNN3DKKadw9NFHM3ToUO67776tlnv44YcZNWrU2++/8IUvMGXKFADq6ur44Ac/yDHHHMNpp53GqlWrylJrHoOpNRtLprf1CuLjwOl65wqcgKkRMTy9DouISWnepnjnefON5PR0p5nZthg7dizTp09/+/306dO56KKLuPfee1mwYAFz5szhS1/6Eu/8+mvbpk2buOKKK5g5cyZ1dXVccsklXHvttWWpNY+/dB8C7pV0c0S8KmmvDi73O+BfJc2JiM2S9ioZNV2fXrcCnwMeBO6T9N2IWJ220SciXir3zpiZ5cGIESNYvXo1f/3rX1mzZg3vfve72W+//fjiF7/II488Qrdu3Vi5ciWvvPIK++23X7vrW7ZsGUuWLOHDH/4wAI2NjQwYMKAsteYumCJiqaQbgbmSGoGnOrjoT4BDgcWSNgF3ALeUzL8SuFPStyLiK5KuAx6Q1A3YBHwecDCZ2U5rzJgxzJw5k5dffpmxY8dy9913s2bNGurq6ujRowc1NTVb/b3RLrvswltvvfX2+6b5EcGQIUN48skny15n7oIJICKmAlPbmN87/VwOHJWmNwNXp1dp35qSt58paZ8GTGtt3Wl6JtDm30mZmVWKsWPHctlll7F27Vrmzp3L9OnT2WeffejRowdz5szhpZe2/r/5QQcdxNNPP83GjRt58803efDBBznppJM47LDDWLNmDU8++STHH388mzZt4rnnnmPIkCE7XGcug6nSDB3Yl1p/nYuZbYMsvgJqyJAhvPHGGwwcOJABAwYwbtw4Ro8ezdChQykUChx++OFbLXPAAQdw/vnnc9RRRzFo0CBGjBgBwK677srMmTOZMGECDQ0NbN68mauuuqoswaSOXuiy1hUKhfCDAs2sLc888wxHHHFE1mVkpqX9l1QXEYXmfSvprjwzM6sCDiYzM8sVB5OZWRep1ksn27rfDiYzsy7Qq1cvXn311aoLp6bnMfXq1avDy/iuPDOzLrD//vuzYsUK1qxZk3UpXa7pCbYd5WAyM+sCPXr06PATXKudT+WZmVmuOJjMzCxXHExmZpYrvsZUBvUrG8r+NEqzvMriq3SsunjEZGZmuVJ1wSTpvyXtmXUdZmbWsqo6lZeeYDsqIt5qt7OZmWVipx8xSaqRtEzSz4AlQKOk/mnehZIWS1ok6a7UtrekX0qan14nZlm/mVm1qZYR02Dgooj4g6TlAJKGANcBJ0TE2pJHuH8f+G5EPCbpQOB+YKvvqpc0HhgP0P1de3fBLpiZVYdqCaaXIuIPzdpGAjMiYi1ARLyW2k8Fjiye9QPgXZJ6R8S60oUjYjIwGaDngMHV9eVXZmadqFqC6R/b0LcbcFxEbGi3p5mZld1Of42pDQ8BYyT1Ayg5lfcAcEVTJ0nDM6jNzKxqVW0wRcRS4EZgrqRFwM1p1gSgkG6KeBq4PKsazcyqkart2SCdoVAoRG1tbdZlmJlVFEl1EVFo3l61IyYzM8snB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Uq1fLt4p6pf2UDNxNlZl2GWmeU3nZl1CbYT8YjJzMxyxcFkZma5UjHBJOksSRPLtK5Jkq4px7rMzKy8KuIak6RdImIWMCvD7W/OYttmZtWmy0dMki5MD+FbJOkuSTWSHkptD0o6MPWbIul2SfOAb0m6WNItad5oSfMkPSXp95L2Te2TJN0p6WFJf5Y0oWS710p6TtJjwGEl7YdI+q2kOkmPSjq8pe134SEyM6tqXTpikjQEuA44ISLWpseZTwWmRsRUSZcAPwDOSYvsn/o2Srq4ZFWPAcdFREj638BXgC+leYcDJwN9gGWSbgPeC1wADKe4zwuAutR/MnB5RDwv6V+AHwEjm2+/hX0ZD4wH6P6uvXfksJiZWYmuPpU3EpgREWsBIuI1SccDH0/z72LL0cmMlkKBYmBMkzQA2BV4sWTe7IjYCGyUtBrYF3g/cG9ErAeQNCv97A2cAMyQ1LR8zw5sn4iYTDHU6DlgsB8DbGZWJnm/xvSPVtp/CNwcEbMkfQiYVDJvY8l0I23vYzfg9YgYvo3bNzOzTtLV15geAsZI6geQTuU9QfE0G8A44NEOrKcvsDJNX9SB/o8A50jaTVIfYDRARPwdeFHSmFSPJA3r6M6YmVn5demIKSKWSroRmCupEXgKuAL4qaQvA2uAz3RgVZMonn77G8WwG9TOdhdImgYsAlYD80tmjwNuk3Qd0AP4RepnZmYZUIQvj+yoQqEQtbW1WZdhZlZRJNVFRKF5e8X8ga2ZmVUHB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Urev128ItSvbKBm4uysyzDL3PKbzsy6BNsJeMRkZma54mAyM7NcyTSYJJ0j6cgO9Jsi6bwW2j8k6ddlrKcg6Qdp+mJJt5Rr3WZm1jFZj5jOAdoNpq4SEbURMSHrOszMqlmbwSTpJkmfL3k/SdI1kr4sab6kxZK+XjL/q5KWSXpM0s8lXZPaD5H0W0l1kh6VdLikE4CzgG9LWpj6XJbWu0jSLyXtXlLOqZJqJT0naVQLte4h6U5Jf5T0lKSz29ivXpJ+Kqk+9T05tXd4BCZpfKqntnF9Q0cWMTOzDmhvxDQNOL/k/fkUnzI7GHgfMBw4RtIHJB0LnAsMA84ASh/+NBm4IiKOAa4BfhQRTwCzgC9HxPCI+BNwT0QcGxHDgGeAS0vWUZO2eSZwu6RezWq9FngoIt4HnEwx8PZoZb8+D0REDAU+AUxtYX1tiojJEVGIiEL33ftuy6JmZtaGNm8Xj4inJO0j6T3A3sDfgKHARyg+Fh2gN8Wg6gPcFxEbgA2SfgUgqTdwAsVHoTetumcrmzxK0g3Anmm995fMmx4RbwHPS/ozcHizZT8CnNU0SgN6AQdSDLjmTgJ+mPbxWUkvAYe2dSzMzKxrdOTvmGYA5wH7URxBHQT8e0T8uLSTpKtaWb4b8HpEDO/AtqYA50TEIkkXAx8qmdf8GfDN3ws4NyKWdWA7ZmaWUx25+WEacAHFcJpBcRRzSRoJIWmgpH2Ax4HR6fpNb2AUQET8HXhR0pjUX5KGpXW/QXGk1aQPsEpSD2BcszrGSOom6RDgYKB5AN0PXKE0LJM0oo19erRp/ZIOpTiycqCZmeVAu8EUEUspBsbKiFgVEQ8A/wU8KakemAn0iYj5FK8ZLQZ+A9QDTXcFjAMulbQIWAo03ZjwC+DL6QaEQ4CvAvMohtyzzUr5H+CPad2Xp1OGpf4P0ANYLGlpet+aHwHdUv3TgIsjYmN7x8LMzDqfIpqfEduBlUm9I2JdupvuEWB8RCwo2wZyqlAoRG1tbdZlmJlVFEl1EVFo3l7u78qbnP5gthcwtRpCyczMyquswRQRnyzn+naUpNOAbzZrfjEiPpZFPWZm1r6d+tvFI+J+trzl3MzMci7rryQyMzPbgoPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrO/XfMXWV+pUN1EycnXUZZhVh+U1nZl2C5ZxHTGZmlisOplZIGi7po1nXYWZWbRxMrRsOOJjMzLpY7oJJ0oWSFktaJOkuSTWSHkptD0o6MPXbV9K9qd8iSSek9qslLUmvq1JbjaRnJN0haamkByTtluY9LKmQpvtLWi5pV+AbwFhJCyWNzeZomJlVn1wFk6QhwHXAyIgYBlwJ/JDiIzTeC9wN/CB1/wEwN/U7Glgq6RjgM8C/AMcBl5U8yXYwcGtEDAFeB85trY6I+CdwPTAtIoZHxLQWah0vqVZSbeP6hq1XYmZm2yVXwQSMBGZExFqAiHgNOJ7iE3MB7gJOKul7W+rXGBENad69EfGPiFgH3AO8P/V/MSIWpuk6oGZHCo2IyRFRiIhC99377siqzMysRN6CqTOVPjq9kXduld/MO8ehV5dWZGZmW8lbMD0EjJHUD0DSXsATwAVp/jjg0TT9IPDZ1K+7pL5p3jmSdpe0B/Cxkv6tWQ4ck6bPK2l/A+izQ3tjZmbbLFfBFBFLgRuBuZIWATcDVwCfkbQY+DTF606knydLqqd4au7I9Cj3KcAfgXnATyLiqXY2+x3gs5KeAvqXtM8BjvTND2ZmXUsRkXUNFa/ngMEx4KLvZV2GWUXwNz9YE0l1EVFo3u6vJCqDoQP7Uut/bGZmZZGrU3lmZmYOJjMzyxUHk5mZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFX8lURnUr2ygZuLsrMswq2j+Dj1r4hGTmZnlSsUHk6RvSDo16zrMzKw8Kv5UXkRc39nbkNQ9Iho7eztmZlZhIyZJX5W0TNJjkn4u6RpJUySdl+Yvl/R1SQsk1Us6PLXvLel3kpZK+omklyT1T/M+JemP6YGAP5bUPbWvk/Qf6YGFx2e202ZmVaZigknSscC5wDDgDGCrh0slayPiaOA24JrU9jXgoYgYAswEDkzrPAIYC5wYEcOBRoqPbwfYA5gXEcMi4rEW6hkvqVZSbeP6hrLso5mZVdapvBOB+yJiA7BB0q9a6XdP+lkHfDxNnwR8DCAifivpb6n9FOAYYL4kgN2A1WleI/DL1oqJiMnAZCg+wXZ7dsjMzLZWScHUURvTz0ba3z8BUyPi31qYt8HXlczMul7FnMoDHgdGS+olqTcwahuXPR9A0keAd6f2B4HzJO2T5u0l6aAy1mxmZtuoYkZMETFf0ixgMfAKUA909OLO14GfS/o08CTwMvBGRKyVdB3wgKRuwCbg88BLZd8BMzPrEEVUzuURSb0jYp2k3YFHgPERsaADy/UEGiNis6TjgdvSzQ5lUSgUora2tlyrMzOrCpLqImKrG9kqZsSUTJZ0JNCL4rWhdkMpORCYnkZF/wQu66wCzcxsx1RUMEXEJ7dzueeBEWUux8zMOkEl3fxgZmZVwMFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeVKRf2BbV7Vr2ygZuLsrMswqzrLbzoz6xKsE3jEZGZmueJgMjOzXKmIYJJ0uaQL0/QUSedt53qGS/poeaszM7NyqohrTBFxe5lWNRwoAP/dfIakXSJic5m2Y2Zm2ymXwZRGR9cAQfHBgH8C1kXEd5r1ux4YDewGPAH8a0SEpIeBecDJwJ7Apen9N4DdJJ0E/DtwBHAIcDDwP5I+A9xGMbw2A1dHxJzO3VszMyuVu1N5koYA1wEjI2IYcGUb3W+JiGMj4iiK4VT6uPVdIuJ9wFXA1yLin8D1wLSIGB4R01K/I4FTI+ITFJ9eGxExFPgEMFVSr1bqHC+pVlJt4/qOPkjXzMzak7tgAkYCMyJiLUBEvNZG35MlzZNUn5YbUjLvnvSzDqhpYx2zIuLNNH0S8J9pu89SfMT6oS0tFBGTI6IQEYXuu/dtZ5fMzKyjcnkqryPSSOZHQCEi/iJpEsUn2zbZmH420vZ+/qNzKjQzs+2RxxHTQ8AYSf0AJO3VSr+mEForqTfQkTv13gD6tDH/UWBc2u6hFB/JvqwjRZuZWXnkLpgiYilwIzBX0iLg5lb6vQ7cASwB7gfmd2D1c4AjJS2UNLaF+T8CuqVTg9OAiyNiYwv9zMyskygisq6h4hUKhaitrc26DDOziiKpLiIKzdtzN2IyM7Pq5mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeWKg8nMzHLFwWRmZrniYDIzs1yp2G8Xz5P6lQ3UTJyddRlm1omW33Rm1iVUDY+YzMwsVxxMZmaWKw4mMzPLlVwEk6QLJS2WtEjSXZJGp0emPyXp95L2ldRN0vOS9k7LdJP0gqS90+uXkuan14mpzyRJd0p6WNKfJU1I7TWSnpF0h6Slkh6QtFuad4ik30qqk/SopMOzOzJmZtUn82CSNAS4DhgZEcOAK4HHgOMiYgTwC+ArEfEW8J+kJ8wCpwKLImIN8H3guxFxLHAu8JOSTRwOnAa8D/iapB6pfTBwa0QMAV5PywFMBq6IiGOAayg+PLClusdLqpVU27i+YYePg5mZFeXhrryRwIyIWAsQEa9JGgpMkzQA2BV4MfW9E7gP+B5wCfDT1H4qxSfTNq3zXelx6wCz01NoN0paDeyb2l+MiIVpug6oScucAMwoWVfPloqOiMkUQ4yeAwb7aYtmZmWSh2BqyQ+BmyNilqQPAZMAIuIvkl6RNJLiCKhp9NSN4ghrQ+lKUriUPhq9kXf2uXn7bmk9r0fE8LLujZmZdVjmp/KAh4AxkvoBSNoL6AusTPMvatb/JxRP6c2IiMbU9gBwRVMHSdsVLBHxd+BFSWPSeiRp2Pasy8zMtk/mwRQRS4EbgbmSFgE3UxwhzZBUB6xttsgsoDfvnMYDmAAU0g0UTwOX70BJ44BLUy1LgbN3YF1mZraNFFFZl0ckFSje6PD+rGtp0nPA4Bhw0feyLsPMOpG/+aH8JNVFRKF5e16vMbVI0kTgs7xzbSkXhg7sS60/tGZmZZH5qbxtERE3RcRBEfFY1rWYmVnnqKhgMjOznZ+DyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFQeTmZnlSkV9JVFe1a9soGbi7KzLMLOdWDV9V59HTGZmlitVEUySJkh6RtLf0hfBttbvYkm3dGVtZma2pWo5lfc54NSIWJF1IWZm1radfsQk6XbgYOA3kr7YNCKSNEbSEkmLJD1Sssh7JP1W0vOSvpVJ0WZmVWynD6aIuBz4K3Ay8LeSWdcDp0XEMOCskvbhwFhgKDBW0gEtrVfSeEm1kmob1zd0TvFmZlVopw+mNjwOTJF0GdC9pP3BiGiIiA3A08BBLS0cEZMjohARhe679+2Ccs3MqkPVBlMaSV0HHADUSeqXZm0s6dZI9VyHMzPLhar9pSvpkIiYB8yTdAbFgDIzs4xV7YgJ+LakeklLgCeARVkXZGZmVTJiioiaNDklvYiIj7fQ9e35qc+oTi3MzMy2UhXB1NmGDuxLbRV9XYiZWWeq5lN5ZmaWQw4mMzPLFQeTmZnlioPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYr/uaHMqhf2UDNxNlZl2Fm1qWWd9I33njEZGZmueJgMjOzXKnaYJJ0saRb0vTlki7MuiYzM6vSa0ySttjviLg9q1rMzGxLFR1Mkr4KfApYA/wFqAMagPHArsALwKcjYr2kKcAGYATwOLC4ZD2TgHUR8R1J/wu4Hdib4qPVx0TEn7pqn8zMql3FnsqTdCxwLjAMOAMopFn3RMSxETEMeAa4tGSx/YETIuLqNlZ9N3BrWv4EYFUr2x8vqVZSbeP6hh3cGzMza1LJI6YTgfsiYgOwQdKvUvtRkm4A9gR6A/eXLDMjIhpbW6GkPsDAiLgXIK27RRExGZgM0HPA4NihPTEzs7dV7IipDVOAL0TEUODrQK+Sef/IpCIzM+uwSg6mx4HRknpJ6g2MSu19gFWSegDjtmWFEfEGsELSOQCSekravZxFm5lZ2yo2mCJiPjCL4k0MvwHqKd748FVgHsXgenY7Vv1pYIKkxcATwH5lKdjMzDpEEZV7eURS74hYl0Y1jwDjI2JBV9dRKBSitra2qzdrZlbRJNVFRKF5eyXf/AAwWdKRFK8jTc0ilMzMrLwqOpgi4pNZ12BmZuVVsdeYzMxs5+RgMjOzXHEwmZlZrlT0XXl5IekNYFnWdWyH/sDarIvYDq67a7nurlUtda8FiIjTm8+o6JsfcmRZS7c85p2kWtfddVx313LdXaucdftUnpmZ5YqDyczMcsXBVB6Tsy5gO7nuruW6u5br7lplq9s3P5iZWa54xGRmZrniYDIzs1xxMO0ASadLWibpBUkTs66nNZIOkDRH0tOSlkq6MrVPkrRS0sL0+mjWtTYnabmk+lRfbWrbS9LvJD2ffr476zpLSTqs5JgulPR3SVfl9XhLulPSaklLStpaPMYq+kH6zC+WdHTO6v62pGdTbfdK2jO110h6s+TY356zulv9bEj6t3S8l0k6LZuqW617WknNyyUtTO07drwjwq/teAHdgT8BBwO7AouAI7Ouq5VaBwBHp+k+wHPAkcAk4Jqs62un9uVA/2Zt3wImpumJwDezrrOdz8nLwEF5Pd7AB4CjgSXtHWPgoxSffybgOGBezur+CLBLmv5mSd01pf1yeLxb/Gykf6eLgJ7AoPQ7p3te6m42/z+A68txvD1i2n7vA16IiD9HxD+BXwBnZ1xTiyJiVaRHgkTxKb3PAAOzrWqHnA1MTdNTgXMyrKU9pwB/ioiXsi6kNRHxCPBas+bWjvHZwM+i6A/AnpIGdE2lW2qp7oh4ICI2p7d/APbv8sLa0crxbs3ZwC8iYmNEvAi8QPF3T5drq25JAs4Hfl6ObTmYtt9A4C8l71dQAb/sJdUAIyg+5RfgC+m0x515OyWWBPCApDpJ41PbvhGxKk2/DOybTWkdcgFb/mPN+/Fu0toxrqTP/SUUR3dNBkl6StJcSe/Pqqg2tPTZqJTj/X7glYh4vqRtu4+3g6mKSOoN/BK4KiL+DtwGHAIMB1ZRHIrnzUkRcTRwBvB5SR8onRnF8wa5/JsHSbsCZwEzUlMlHO+t5PkYt0bStcBm4O7UtAo4MCJGAFcD/yXpXVnV14KK/GyU+ARb/gdsh463g2n7rQQOKHm/f2rLJUk9KIbS3RFxD0BEvBIRjRHxFnAHGZ0iaEtErEw/VwP3UqzxlabTR+nn6uwqbNMZwIKIeAUq43iXaO0Y5/5zL+liYBQwLoUq6VTYq2m6juK1mkMzK7KZNj4blXC8dwE+DkxratvR4+1g2n7zgcGSBqX/GV8AzMq4phal87//F3gmIm4uaS+9NvAxYEnzZbMkaQ9JfZqmKV7YXkLxOF+Uul0E3JdNhe3a4n+ReT/ezbR2jGcBF6a7844DGkpO+WVO0unAV4CzImJ9Sfvekrqn6YOBwcCfs6lya218NmYBF0jqKWkQxbr/2NX1teNU4NmIWNHUsMPHO4u7O3aWF8U7lJ6j+L+Ba7Oup406T6J4KmYxsDC9PgrcBdSn9lnAgKxrbVb3wRTvSFoELG06xkA/4EHgeeD3wF5Z19pC7XsArwJ9S9pyebwphucqYBPFaxiXtnaMKd6Nd2v6zNcDhZzV/QLFazJNn/PbU99z02doIbAAGJ2zulv9bADXpuO9DDgjT3Wn9inA5c367tDx9lcSmZlZrvhUnpmZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWK/8fnSxrKwF+wYgAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "thai_ingredient_df = create_ingredient_df(thai_df)\r\n", + "thai_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 11 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAdqUlEQVR4nO3de5xXdb3v8dcbREhBvICJeBkvKAocbmN57eb9btsLFpmkD3nUMT1mdg4dtWNnu/fW3NXOtHQ6JewyE1DTorwcNDVF5TfcBi9gKZ5AVLAaRcQQP+eP9Z36McwMg/5m1vrN7/18PObBWt91+X3WmoE337XWrK8iAjMzs6LolXcBZmZm5RxMZmZWKA4mMzMrFAeTmZkVioPJzMwKZau8C+gJBg0aFHV1dXmXYWZWNQYNGsR99913X0Qc13qZg6kC6urqKJVKeZdhZlZVJA1qq92X8szMrFAcTGZmVigOJjMzKxTfYzIz6wbr169n+fLlrFu3Lu9Sul2/fv3Ybbfd6NOnT6fWdzBVQNOKZuqmzMq7DHufll1zYt4lWA1Yvnw5AwYMoK6uDkl5l9NtIoLXX3+d5cuXs9dee3VqG1/KMzPrBuvWrWOnnXaqqVACkMROO+20RT3FmgomSb+RtH3edZhZbaq1UGqxpcddU5fyIuKEvGswM7OO9ahgkvQ14J2IuF7Sd4HREfEpSZ8CzgcOA+qB/sBvgd8DhwIrgFMj4m1J+wA3AoOBtcAFEfFcDodjZj1Ype9LV/peaf/+/VmzZk1F99lZPe1S3qPAEWm6HugvqU9qe6TVusOAGyNiBPBX4PTU3gBcFBHjgcuAH7T1QZImSypJKm1Y21zhwzAzq109LZgagfGStgPeAeaQBdQRZKFV7sWIWFC2XZ2k/mQ9qBmSFgA3A0Pa+qCIaIiI+oio773NwC44FDOzypkyZQo33njj3+evuuoqrr76ao488kjGjRvHqFGjuPvuuzfZ7ne/+x0nnXTS3+e//OUvM3XqVAAaGxv5+Mc/zvjx4zn22GNZuXJlRWrtUcEUEeuBF4FJwONkYfRJYF/g2Varv1M2vYHssmYv4K8RMabs64AuL9zMrItNmDCB6dOn/31++vTpnHvuudx1113MmzePhx56iK9+9atERKf2t379ei666CJmzpxJY2Mj5513HpdffnlFau1R95iSR8kuwZ0HNAHfARojIjb3ZEhEvCHpRUlnRsQMZRv8l4hY2OVVm5l1obFjx/Laa6/x8ssvs2rVKnbYYQd22WUXvvKVr/DII4/Qq1cvVqxYwauvvsouu+yy2f0tWbKExYsXc/TRRwOwYcMGhgxp8wLTFuupwXQ5MCci3pK0jk0v43VkIvBDSVcAfYBfAA4mM6t6Z555JjNnzuSVV15hwoQJ3HrrraxatYrGxkb69OlDXV3dJr9vtNVWW/Hee+/9fb5leUQwYsQI5syZU/E6e1wwRcRsskBpmd+vbLouTa4GRpa1/3vZ9IvAJuODmJlVuwkTJnDBBRewevVqHn74YaZPn87OO+9Mnz59eOihh3jppZc22WbPPffkmWee4Z133uHtt99m9uzZHH744ey///6sWrWKOXPmcMghh7B+/XqWLl3KiBEjPnCdPS6Y8jBq6EBKfq2NmW2BPF6FNWLECN58802GDh3KkCFDmDhxIieffDKjRo2ivr6e4cOHb7LN7rvvzllnncXIkSPZa6+9GDt2LABbb701M2fO5OKLL6a5uZl3332XSy65pCLBpM7e6LL21dfXhwcKNLOOPPvssxxwQO0+S9XW8UtqjIj61uv2qKfyzMys+jmYzMysUBxMZmbdpFZvnWzpcTuYzMy6Qb9+/Xj99ddrLpxaxmPq169fp7fxU3lmZt1gt912Y/ny5axatSrvUrpdywi2neVgMjPrBn369On0CK61zpfyzMysUBxMZmZWKA4mMzMrFN9jqoCmFc0VH43SiiuPV8mY1RL3mMzMrFBqNpgkTZJ0Q5r+oqTP512TmZnV6KU8SRsdd0TclFctZma2saoOJklXAp8DVgF/AhqBZmAysDXwB+CciFgraSqwDhgLPAYsKtvPVcCaiPh3SfsCNwGDyYZcPzMi/thdx2RmVuuq9lKepIOA04HRwPFAy6vT74yIgyJiNPAscH7ZZrsBh0bEpR3s+lbgxrT9ocDKdj5/sqSSpNKGtc0f8GjMzKxFNfeYDgPujoh1wDpJv0rtIyVdDWwP9AfuK9tmRkRsaG+HkgYAQyPiLoC07zZFRAPQANB3yLDaevmVmVkXqtoeUwemAl+OiFHAN4HyNwe+lUtFZmbWadUcTI8BJ0vqJ6k/cFJqHwCslNQHmLglO4yIN4Hlkk4DkNRX0jaVLNrMzDpWtcEUEXOBe8geYvgt0ET24MOVwJNkwfXc+9j1OcDFkhYBjwO7VKRgMzPrFFXz2CCS+kfEmtSreQSYHBHzuruO+vr6KJVK3f2xZmZVTVJjRNS3bq/mhx8AGiQdSHYfaVoeoWRmZpVV1cEUEZ/NuwYzM6usqr3HZGZmPZODyczMCsXBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrlKr+BduiaFrRTN2UWXmXYVVo2TUn5l2CWeG4x2RmZoXiYDIzs0Kp+mCS9L8lHZV3HWZmVhlVf48pIr7R1Z8hqXdHQ7KbmVnlVFWPSdKVkpZI+r2k2yRdJmmqpDPS8mWSvilpnqQmScNT+2BJD0h6WtL/kfSSpEFp2eckPSVpgaSbJfVO7WskfVvSQuCQ3A7azKzGVE0wSToIOB0YDRwPbDK4VLI6IsYBPwQuS23/C3gwIkYAM4E90j4PACYAh0XEGGAD/xiOfVvgyYgYHRG/b6OeyZJKkkob1jZX5BjNzKy6LuUdBtwdEeuAdZJ+1c56d6Y/G4F/StOHA58GiIh7Jf0ltR8JjAfmSgL4EPBaWrYBuKO9YiKiAWgA6DtkWPUOA2xmVjDVFEyd9U76cwObPz6RjXz79TaWrfN9JTOz7lc1l/KAx4CTJfWT1B84aQu3PQtA0jHADql9NnCGpJ3Tsh0l7VnBms3MbAtVTY8pIuZKugdYBLwKNAGdvbnzTeA2SecAc4BXgDcjYrWkK4D7JfUC1gMXAi9V/ADMzKxTFFE9t0ck9Y+INZK2AR4BJkfEvE5s1xfYEBHvSjoE+GF62KEi6uvro1QqVWp3ZmY1QVJjRGzyIFvV9JiSBkkHAv3I7g1tNpSSPYDpqVf0N+CCrirQzMw+mKoKpoj47Pvc7nlgbIXLMTOzLlBNDz+YmVkNcDCZmVmhOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoVSVb9gW1RNK5qpmzIr7zKsB1l2zYl5l2CWG/eYzMysUHpcMEmqk7Q4TX9C0q/T9CmSpuRbnZmZbU7NXMqLiHuAe/Kuw8zMOla4HpOkbSXNkrRQ0mJJEyQdJOnx1PaUpAGpZ/SopHnp69DN7HeSpBvSdJ2kByUtkjRb0h6pfaqk69NnvSDpjO44ZjMz+4ci9piOA16OiBMBJA0E5gMT0mCB2wFvA68BR0fEOknDgNuATcb1aMf3yYbNmCbpPOB64LS0bAhwODCcrIc1s60dSJoMTAbovd3gLT9KMzNrU+F6TGQj0x4t6VpJR5CNpbQyIuYCRMQbEfEu0Af4kaQmYAZw4BZ8xiHAz9P0T8mCqMUvI+K9iHgG+HB7O4iIhoioj4j63tsM3IKPNjOzjhSuxxQRSyWNA04ArgYebGfVr5ANsT6aLGDXVaiEd8qmVaF9mplZJxWuxyRpV2BtRPwMuA74KDBE0kFp+QBJWwEDyXpS7wHnAL234GMeB85O0xOBRytVv5mZfTCF6zEBo4DrJL0HrAe+RNZz+b6kD5HdXzoK+AFwh6TPA/cCb23BZ1wE3CLpa8Aq4AsVrN/MzD4ARUTeNVS9vkOGxZBz/yPvMqwH8ZsfrBZIaoyITR5aK2KPqeqMGjqQkv8hMTOriMLdYzIzs9rmYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxQHk5mZFYqDyczMCsXBZGZmheJgMjOzQvEriSqgaUUzdVNm5V2G9XB+f57VCveYzMysUBxMZmZWKA4mMzMrlB4fTJI+J+kpSQsk3Sypt6TzJS1N7T+SdENadx9JT0hqknS1pDV5129mVmt6dDBJOgCYABwWEWOADWRDqV8JHAwcBgwv2+R7wPciYhSwfDP7niypJKm0YW1zl9RvZlaLenQwAUcC44G5khak+UuBhyPizxGxHphRtv4hZfM/72jHEdEQEfURUd97m4FdULqZWW3q6cEkYFpEjElf+wNX5VyTmZl1oKcH02zgDEk7A0jaEZgPfFzSDpK2Ak4vW/+Jsvmzu7VSMzMDengwRcQzwBXA/ZIWAQ8AQ4B/BZ4CHgOWAS03iS4BLk3r7lvWbmZm3aTHv/khIm4Hbi9vk7Q4IhpSj+ku4Jdp0Qrg4IgISWcD+3dvtWZm1uODqR1XSToK6Afczz+CaTxwgyQBfwXO68zORg0dSMmvizEzq4iaDKaIuKyd9keB0d1cjpmZlenR95jMzKz6OJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaHU5JsfKq1pRTN1U2blXYbViGV+/ZX1cO4xmZlZodRsMEn6naT6vOswM7ON1WwwmZlZMfWoYJK0raRZkhZKWixpgqRvSJqb5hvSkBbl2/SSNFXS1Wn+GElzJM2TNENS/3yOxsysNvWoYAKOA16OiNERMRK4F7ghIg5K8x8CTipbfyvgVuD5iLhC0iCyEW+PiohxQAm4tK0PkjRZUklSacNaD3RrZlYpPS2YmoCjJV0r6YiIaAY+KelJSU3Ap4ARZevfDCyOiH9J8wcDBwKPSVoAnAvs2dYHRURDRNRHRH3vbQZ22QGZmdWaHvW4eEQslTQOOAG4WtJs4EKgPiL+JOkqslFrWzxOFlzfjoh1gIAHIuIz3V27mZllelSPSdKuwNqI+BlwHTAuLVqd7hWd0WqTHwO/AaZL2gp4AjhM0r5pf9tK2q97qjczM+hhPSZgFHCdpPeA9cCXgNOAxcArwNzWG0TEdyQNBH4KTAQmAbdJ6ptWuQJY2vWlm5kZgCIi7xqqXn19fZRKpbzLMDOrKpIaI2KT3yftUZfyzMys+jmYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKxcFkZmaF4mAyM7NCcTCZmVmhOJjMzKxQetq78nLRtKKZuimz8i7DrBCWXXNi3iVYlXOPyczMCsXBZGZmhZJrMEk6TdKBnVhvqqTWYykh6ROSfl3BeuolXZ+mJ0m6oVL7NjOzzsm7x3Qa2VDmhRARpYi4OO86zMxqWYfBJOkaSReWzV8l6TJJX5M0V9IiSd8sW36lpCWSfi/pNkmXpfZ9JN0rqVHSo5KGSzoUOIVsYL8FaZ0L0n4XSrpD0jZl5RwlqSRpqaST2qh1W0k/kfSUpPmSTu3guPpJukVSU1r3k6m9oj0wMzPbcpvrMd0OnFU2fxawChgGfAQYA4yX9DFJBwGnA6OB44HywZ8agIsiYjxwGfCDiHgcuAf4WkSMiYg/AndGxEERMRp4Fji/bB916TNPBG6S1K9VrZcDD0bER4BPkgXetu0c14VARMQo4DPAtDb21yFJk1NQljasbd6STc3MrAMdPi4eEfMl7SxpV2Aw8Bey4cuPAean1fqTBdUA4O6IWAesk/QrAEn9gUOBGZJadt2Xto2UdDWwfdrvfWXLpkfEe8Dzkl4Ahrfa9hjglJZeGtAP2IMs4Fo7HPh+OsbnJL0E7NfRuWgtIhrIApe+Q4Z5GGAzswrpzO8xzQDOAHYh60HtCfxbRNxcvpKkS9rZvhfw14gY04nPmgqcFhELJU0CPlG2rPU//q3nBZweEUs68TlmZlZQnXn44XbgbLJwmkHWizkv9YSQNFTSzsBjwMnp/k1/4CSAiHgDeFHSmWl9SRqd9v0mWU+rxQBgpaQ+wMRWdZwpqZekfYC9gdYBdB9wkVK3TNLYDo7p0Zb9S9qPrGflQDMzK4DNBlNEPE0WGCsiYmVE3A/8HJgjqQmYCQyIiLlk94wWAb8FmoCWmy8TgfMlLQSeBloeTPgF8LX0AMI+wJXAk2Qh91yrUv4f8FTa9xfTJcNy/wz0ARZJejrNt+cHQK9U/+3ApIh4Z3PnwszMup4iKnd7RFL/iFiTnqZ7BJgcEfMq9gEFVV9fH6VSKe8yzMyqiqTGiKhv3V7pd+U1pF+Y7QdMq4VQMjOzyqpoMEXEZyu5vw9K0rHAta2aX4yIT+dRj5mZbV6Pfrt4RNzHxo+cm5lZweX9SiIzM7ONOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXSo3+Pqbs0rWimbsqsvMswqyrLrjkx7xKsoNxjMjOzQqmKYJK0q6SZeddhZmZdryqCKSJejogz8vhsSb7caWbWjQoXTJKukXRh2fxVki6TtDjNT5J0p6R7JT0v6Vtl6x4jaY6keZJmlA1meIKk5yQ1Srpe0q9T+0fS+vMlPS5p/7LPuEfSg8Dsbj0BZmY1rnDBRDZw31ll82eRDR5YbgwwARgFTJC0u6RBwBXAURExDigBl0rqB9wMHB8R44HBZft5DjgiIsYC3wD+tWzZOOCMiPh4W0VKmiypJKm0YW1zW6uYmdn7ULjLVBExX9LOknYlC5G/AH9qtdrsiGgGkPQMsCewPXAg8FgaXX1rYA4wHHghIl5M294GTE7TA4FpkoYBQTYCbosHIuLPHdTZADQA9B0yrHKjLZqZ1bjCBVMyAzgD2IWsB9Va+TDoG8iOQ2Rh8pnyFSWN6eBz/hl4KCI+LakO+F3Zsre2uGozM/vAingpD7IwOpssnGZ0cpsngMMk7QsgaVtJ+wFLgL1T8EB2CbDFQGBFmp70wUo2M7NKKGQwRcTTwABgRUSs7OQ2q8jC5TZJi0iX8SLibeC/AvdKagTeBFpuCn0L+DdJ8ylu79HMrKYoouffHpHUPyLWKLv5dCPwfER8t1L77ztkWAw59z8qtTuzmuA3P5ikxoiob91eK72ECySdS/ZAxHyyp/QqZtTQgZT8l8zMrCJqIphS76hiPSQzM+s6hbzHZGZmtcvBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKpSbe/NDVmlY0UzdlVt5lmFkX8Dv9up97TGZmVig1F0ySfiNp+7zrMDOzttXUpbw07MVJEfFe3rWYmVnbenyPSVKdpCWS/hNYDGyQNCgt+7ykRZIWSvppahss6Q5Jc9PXYXnWb2ZWa2qlxzQMODcinpC0DEDSCOAK4NCIWC1px7Tu94DvRsTvJe0B3Acc0HqHkiYDkwF6bze4Gw7BzKw21EowvRQRT7Rq+xQwIyJWA0TEn1P7UcCB2VU/ALZrGQG3fOOIaAAaIBvBtssqNzOrMbUSTG9twbq9gIMjYl1XFWNmZu3r8feYOvAgcKaknQDKLuXdD1zUspKkMTnUZmZWs2o2mCLiaeBfgIclLQS+kxZdDNSnhyKeAb6YV41mZrWox1/Ki4hlwMiy+bqy6WnAtFbrrwYmdFN5ZmbWSo8Ppu4wauhASn5tiZlZRdTspTwzMysmB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxS/+aECmlY0UzdlVt5lmJl1q2Vd9MYb95jMzKxQHExmZlYoDiYzMysUB5OZmRVKlwaTpG0lzZK0UNJiSRMkHSlpvqQmST+R1FfSpyT9smy7oyXd1c4+e0uamvbXJOkrqf0CSXPTZ90haZvUPlXSGWXbrymb/h9pHwslXZPa9pF0r6RGSY9KGt5V58fMzDbV1T2m44CXI2J0RIwE7gWmAhMiYhTZU4FfAh4ChksanLb7AvCTdvY5BhgaESPTPm5J7XdGxEERMRp4Fji/o8IkHQ+cCnw0bfOttKgBuCgixgOXAT9oZ/vJkkqSShvWNnd8FszMrNO6OpiagKMlXSvpCKAOeDEilqbl04CPRUQAPwU+J2l74BDgt+3s8wVgb0nfl3Qc8EZqH5l6OE3ARGDEZmo7CrglItYCRMSfJfUHDgVmSFoA3AwMaWvjiGiIiPqIqO+9zcDNnQczM+ukLv09pohYKmkccAJwNfBgB6vfAvwKWAfMiIh329nnXySNBo4FvgicBZxH1hM7LSIWSpoEfCJt8i4pgCX1ArbuoIZewF8jYkxnjs/MzCqvq+8x7QqsjYifAdeR9YTqJO2bVjkHeBggIl4GXgau4B+X59ra5yCgV0TckdYdlxYNAFZK6kPWY2qxDBifpk8B+qTpB4AvlN2L2jEi3gBelHRmalMKQTMz6yZd/eaHUcB1kt4D1pPdTxpIdqlsK2AucFPZ+rcCgyPi2Q72ORS4JfV+AL6e/rwSeBJYlf4ckNp/BNwtaSHZPa63ACLiXkljgJKkvwG/Af4nWaj9UNIVZCH2C2Dh+zx+MzPbQspu7xSDpBuA+RHx47xr2RL19fVRKpXyLsPMrKpIaoyI+tbthXlXnqRGst7MV/OuxczM8lOYYEqPZ29E0pNA31bN50REU/dUZWZm3a0wwdSWiPho3jWYmVn38iuJzMysUBxMZmZWKIV6Kq9aSXoTWJJ3HZ00CFiddxFbwPV2LdfbdaqpVuj+elcDRMRxrRcU+h5TFVnS1iOPRSSpVC21guvtaq6361RTrVCsen0pz8zMCsXBZGZmheJgqoyGvAvYAtVUK7jeruZ6u0411QoFqtcPP5iZWaG4x2RmZoXiYDIzs0JxMH0Ako6TtETSHyRNybue1iTtLukhSc9IelrSf0vtV0laIWlB+joh71pbSFomqSnVVUptO0p6QNLz6c8d8q4TQNL+ZedwgaQ3JF1SpPMr6SeSXpO0uKytzfOZxh+7Pv08L0qDfOZd63WSnkv13JVGuEZSnaS3y87xTe3vuVvrbfd7L+nr6dwukXRsQeq9vazWZWnk7vzPb0T46318Ab2BPwJ7k42KuxA4MO+6WtU4BBiXpgcAS4EDgauAy/Kur52alwGDWrV9C5iSpqcA1+ZdZzs/D68Aexbp/AIfIxtMc/HmzifZSNO/BQQcDDxZgFqPAbZK09eW1VpXvl6Bzm2b3/v0924h2Uup90r/dvTOu95Wy78NfKMI59c9pvfvI8AfIuKFiPgb2YCCp+Zc00YiYmVEzEvTbwLPkg20WG1OBaal6WnAaTnW0p4jgT9GxEt5F1IuIh4B/tyqub3zeSrwn5F5Athe0pDuqbTtWiPi/oh4N80+AezWXfVsTjvntj2nAr+IiHci4kXgD2T/hnSbjuqVJOAs4LburKk9Dqb3byjwp7L55RT4H31JdcBYstF9Ab6cLo/8pCiXxpIA7pfUKGlyavtwRKxM068AH86ntA6dzcZ/qYt6fqH981n0n+nzyHp0LfaSNF/Sw5KOyKuoNrT1vS/6uT0CeDUini9ry+38OphqgKT+wB3AJRHxBvBDYB9gDLCSrAtfFIdHxDjgeOBCSR8rXxjZdYZC/Y6DpK2BU4AZqanI53cjRTyfbZF0OfAucGtqWgnsERFjgUuBn0vaLq/6ylTN976Vz7Dxf6xyPb8OpvdvBbB72fxuqa1QJPUhC6VbI+JOgIh4NSI2RMR7wI/o5ksKHYmIFenP14C7yGp7teWSUvrztfwqbNPxwLyIeBWKfX6T9s5nIX+mJU0CTgImpiAlXRJ7PU03kt2z2S+3IpMOvveFPLcAkrYC/gm4vaUt7/PrYHr/5gLDJO2V/sd8NnBPzjVtJF03/jHwbER8p6y9/L7Bp4HFrbfNg6RtJQ1omSa78b2Y7Lyem1Y7F7g7nwrbtdH/Not6fsu0dz7vAT6fns47GGguu+SXC0nHAf8dOCUi1pa1D5bUO03vDQwDXsinyn/o4Ht/D3C2pL6S9iKr96nurq8dRwHPRcTylobcz29eT130hC+yp5iWkv1v4vK862mjvsPJLtMsAhakrxOAnwJNqf0eYEjetaZ69yZ7cmkh8HTLOQV2AmYDzwP/F9gx71rLat4WeB0YWNZWmPNLFpgrgfVk9zXOb+98kj2Nd2P6eW4C6gtQ6x/I7s20/PzelNY9Pf2MLADmAScX5Ny2+70HLk/ndglwfBHqTe1TgS+2WjfX8+tXEpmZWaH4Up6ZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVij/H6ovFeU7ywQTAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "japanese_ingredient_df = create_ingredient_df(japanese_df)\r\n", + "japanese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfeElEQVR4nO3deZwV1Z338c8XbCEKYlSMiEurISECsl1NULO5xD2aCYgT4hLzkkcn4pgEnyGPJoMTM+OSbTRGJRmFUUcF1GjCqHGUuBL1NggNKmgiPmGJ4tZiEILwmz/qtN603U033O5bl/6+X69+dd1Tp079Thfxl3Oqbh1FBGZmZnnRrdIBmJmZlXJiMjOzXHFiMjOzXHFiMjOzXHFiMjOzXNmm0gFsDXbZZZeora2tdBhmZlWlrq7u1Yjo27TciakMamtrKRaLlQ7DzKyqSHqpuXJP5ZmZWa44MZmZWa44MZmZWa74HpOZWSdYv349y5YtY+3atZUOpdP17NmTPfbYg5qamjbVd2Iqg/rlDdROmlXpMKyDLb30uEqHYFVs2bJl9O7dm9raWiRVOpxOExG89tprLFu2jH322adNx3gqz8ysE6xdu5add965SyUlAEnsvPPO7RopOjGZmXWSrpaUGrW3305MZmaWK7m4xyTpNGAiEMACYDpwEbAt8BowDlgFLAYOjohVkroBS4BRqZlrgb3S9vkR8Zikyals3/T7pxFxpaRa4B7gUeBgYDlwYkS8I2k/4GqgL7AGOCsinuu43ptZV1Tu+9Llvgfaq1cv3n777bK22VYVHzFJGkSWhA6LiKHAP5IljE9FxHDgVuD/RsRG4CayJAVwBDA/IlYB/w78JCIOBL4M/LLkFAOBo4CDgH+W1PhYyADg6ogYBLyZjgOYAkyIiJFkyfLnLcQ9XlJRUnHDmoYt/juYmVmm4okJOAyYERGvAkTE68AewH2S6oELgEGp7vXAaWn7TOCGtH0E8DNJTwN3AztI6pX2zYqIdan9V4CPpPIXI+LptF0H1KZjDgZmpLauA/o1F3RETImIQkQUum/XZwv/BGZmHWvSpElcffXV732ePHkyl1xyCYcffjgjRoxgyJAh3HXXXR847ne/+x3HH3/8e5/PPfdcpk6dCkBdXR2f/exnGTlyJEcddRQrV64sS6x5SEzNuQr4WUQMAf4P0BMgIv4EvCzpMLIR0D2pfjeyEdaw9NM/IhrHoOtK2t3A+9OXzZV3A94saWdYRHyiIzpoZtaZxo4dy/Tp09/7PH36dE4//XTuvPNO5s6dy+zZs/n2t79NRLSpvfXr1zNhwgRmzpxJXV0dZ555JhdeeGFZYs3DPaYHgTsl/TgiXpO0E9CH7L4PwOlN6v+SbErvxojYkMp+C0wArgCQNKxkNNRmEfGWpBcljYmIGcoeJTkgIuZvRr/MzHJj+PDhvPLKK6xYsYJVq1bx4Q9/mN12241vfvObPPzww3Tr1o3ly5fz8ssvs9tuu22yvcWLF7Nw4UKOPPJIADZs2EC/fs1OMLVbxRNTRCyS9APgIUkbgHnAZLLptDfIElfpt7LuJpvCu6Gk7DzgakkLyPr0MHD2ZoY0DrhG0kVADdk9LicmM6t6Y8aMYebMmfz5z39m7Nix3HzzzaxatYq6ujpqamqora39wPeNttlmGzZu3Pje58b9EcGgQYOYM2dO2eOseGICiIhpwLQmxR+c7MwMJXvo4b0n5dL9o7HNtDu5yefBJR8Hl5T/sGT7ReDotsZuZlYtxo4dy1lnncWrr77KQw89xPTp09l1112pqalh9uzZvPTSB1eh2HvvvXnmmWdYt24d77zzDg888ACHHnooH//4x1m1ahVz5sxh1KhRrF+/niVLljBo0KBmztw+uUhMbSVpEnAO7z+ZlwtD+veh6NfVmFk7VOIVV4MGDWL16tX079+ffv36MW7cOE444QSGDBlCoVBg4MCBHzhmzz335OSTT2bw4MHss88+DB8+HIBtt92WmTNnct5559HQ0MC7777L+eefX5bEpLbe6LKWFQqF8EKBZtaaZ599lk98ous+S9Vc/yXVRUShad28PpVnZmZdlBOTmZnlihOTmVkn6aq3TtrbbycmM7NO0LNnT1577bUul5wa12Pq2bNnm4+pqqfyzMyq1R577MGyZctYtWpVpUPpdI0r2LaVE5OZWSeoqalp8wquXZ2n8szMLFecmMzMLFecmMzMLFd8j6kM6pc3lH01SsuvSrxKxqwr8YjJzMxypcslJkn/LWnHSsdhZmbN61JTeWnhv+MjYuMmK5uZWUVs9SMmSbWSFkv6T2AhsEHSLmnfaZIWSJov6cZU1lfS7ZKeSj+HVDJ+M7OupquMmAYAp0fE7yUtBZA0CLgIODgiXk1LugP8O/CTiHhU0l7AfcAH3lUvaTwwHqD7Dn07oQtmZl1DV0lML0XE75uUHQbMSKvfEhGvp/IjgP2zWT8AdpDUKyLeLj04IqYAUwB69BvQtV5+ZWbWgbpKYvpLO+p2Az4VEWs3WdPMzMpuq7/H1IoHgTGSdgYomcr7LTChsZKkYRWIzcysy+qyiSkiFgE/AB6SNB/4cdp1HlBID0U8A5xdqRjNzLoidbW1QTpCoVCIYrFY6TDMzKqKpLqIKDQt77IjJjMzyycnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzy5Wu8nbxDlW/vIHaSbMqHYblxNJLj6t0CGZVzSMmMzPLFScmMzPLlapITJJ2lzSz0nGYmVnHq4rEFBErImJ0Jc4tyffhzMw6Ue4Sk6RLJX2j5PNkSRMlLUyfz5B0h6R7JT0v6fKSul+QNEfSXEkzJPVK5cdKek5SnaQrJf0mlR+U6s+T9Likj5ec425JDwIPdOofwMysi8tdYgJuA04u+Xwy8ESTOsOAscAQYKykPSXtAlwEHBERI4Ai8C1JPYHrgGMiYiTQt6Sd54BPR8Rw4HvAv5bsGwGMjojPNhekpPGSipKKG9Y0bG5fzcysidxNU0XEPEm7StqdLIm8AfypSbUHIqIBIC1/vjewI7A/8JgkgG2BOcBA4I8R8WI69hZgfNruA0yTNAAIoKbkHPdHxOutxDkFmALQo98ALwNsZlYmuUtMyQxgNLAb2QiqqXUl2xvI+iGyZPL3pRUlDWvlPN8HZkfElyTVAr8r2feXdkdtZmZbLI9TeZAlo1PIktOMNh7ze+AQSR8FkLS9pI8Bi4F9U+KBbAqwUR9gedo+Y8tCNjOzcshlYoqIRUBvYHlErGzjMavIksstkhaQpvEi4h3gH4B7JdUBq4HGm0KXA/8maR75HT2amXUpitj6b49I6hURbyu7+XQ18HxE/KRc7RcKhSgWi+VqzsysS5BUFxGFpuW5HDF1gLMkPQ0sIpu+u67C8ZiZWQu6xPRVGh2VbYRkZmYdp6uMmMzMrEo4MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa50iS/YdrT65Q3UTppV6TDM2mTppcdVOgSzVnnEZGZmuVL1iUnS+ZK2K1Nbn2tcdt3MzCqj6hMTcD7QrsQkqXsHxWJmZluoqhJTWvxvlqT5khZK+mdgd2C2pNmpzjWSipIWSbq45Nilki6TNBcYI+mjkv4ntTVX0n6pai9JMyU9J+nmtFSGmZl1kmp7+OFoYEVEHAcgqQ/wNeDzEfFqqnNhRLyeRkUPSDogIhakfa9FxIh07BPApRFxp6SeZEl6T2A4MAhYATwGHAI82jQQSeOB8QDdd+jbMb01M+uCqmrEBNQDR6aRz6cjoqGZOienUdE8sgSzf8m+2wAk9Qb6R8SdABGxNiLWpDpPRsSyiNgIPA3UNhdIREyJiEJEFLpv16csnTMzsyobMUXEEkkjgGOBSyQ9ULpf0j7ARODAiHhD0lSgZ0mVv7ThNOtKtjdQZX8jM7NqV1UjJkm7A2si4ibgCmAEsBronarsQJZ8GiR9BDimuXYiYjWwTNJJqd0e5Xqyz8zMtky1jQaGAFdI2gisB84BRgH3SloREZ+XNA94DvgT2T2ilpwKXCfpX1JbYzo2dDMzawtFRKVjqHo9+g2Ifqf/tNJhmLWJ3/xgeSGpLiIKTcurbcSUS0P696Ho/7GbmZVFVd1jMjOzrZ8Tk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YpfSVQG9csbqJ00q9JhmLWL35lneeURk5mZ5YoTk5mZ5UpFE5OkkyTt34Z6UyWNbqb8c5J+U8Z4CpKuTNtnSPpZudo2M7O2qfSI6SRgk4mps0REMSLOq3QcZmZdWauJSdKlkr5R8nmypImSLpD0lKQFki4u2f9dSYslPSrpFkkTU/l+ku6VVCfpEUkDJR0MfJFsRdqnU52zUrvzJd3eZLnzIyQVJS2RdHwzsW4v6XpJT0qaJ+nEVvrVU9INkupT3c+n8jaPwCSNT/EUN6xpaMshZmbWBpsaMd0GnFzy+WRgFTAAOAgYBoyU9BlJBwJfBoYCxwClqxJOASZExEhgIvDziHgcuBu4ICKGRcQfgDsi4sCIGAo8C3y9pI3adM7jgGsl9WwS64XAgxFxEPB5soS3fQv9+gYQETEE+HtgWjPttSoipkREISIK3bfr055DzcysFa0+Lh4R8yTtKml3oC/wBjAE+AIwL1XrRZaoegN3RcRaYK2kXwNI6gUcDMyQ1Nh0jxZOOVjSJcCOqd37SvZNj4iNwPOS/ggMbHLsF4AvNo7SgJ7AXmQJrqlDgatSH5+T9BLwsdb+FmZm1jna8j2mGcBoYDeyEdTewL9FxHWllSSd38Lx3YA3I2JYG841FTgpIuZLOgP4XMm+aFK36WcBX46IxW04j5mZ5VRbHn64DTiFLDnNIBvFnJlGQkjqL2lX4DHghHT/phdwPEBEvAW8KGlMqi9JQ1Pbq8lGWo16Aysl1QDjmsQxRlI3SfsB+wJNE9B9wASlYZmk4a306ZHG9iV9jGxk5YRmZpYDm0xMEbGILGEsj4iVEfFb4L+AOZLqgZlA74h4iuye0QLgHqAeaHwqYBzwdUnzgUVA44MJtwIXpAcQ9gO+CzxBluSeaxLK/weeTG2fnaYMS30fqAEWSFqUPrfk50C3FP9twBkRsW5TfwszM+t4img6I7YFjUm9IuLt9DTdw8D4iJhbthPkVKFQiGKxWOkwzMyqiqS6iCg0LS/3u/KmpC/M9gSmdYWkZGZm5VXWxBQRXylne1tK0lHAZU2KX4yIL1UiHjMz27St+u3iEXEff/vIuZmZ5VylX0lkZmb2N5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV7bq7zF1lvrlDdROmlXpMMw6xNJLj6t0CNbFeMRkZma54sRkZma54sTUhKSzJZ2WtqdKGl3pmMzMuhLfY2oiIq6tdAxmZl1ZWUdMkraXNEvSfEkLJY2VNFLSQ5LqJN0nqV+qe56kZyQtkHRrKjtI0py0cODjkj6eys+Q9CtJ90taKulcSd9K9X4vaadUbz9J96ZzPSJpYCux1kp6MJ3/AUl7pfLJkia2oa/jJRUlFTesadhUdTMza6NyT+UdDayIiKERMRi4F7gKGB0RI4HrgR+kupOA4RFxAHB2KnsO+HREDAe+B/xrSduDgb8DDkxtrEn15gCnpTpTgAnpXBPJVqptyVVka0YdANwMXNmejkbElIgoRESh+3Z92nOomZm1otxTefXAjyRdBvwGeIMsodwvCaA7sDLVXQDcLOlXwK9SWR9gmqQBQJAtld5odkSsBlZLagB+XXLOAyT1Ag4GZqRzAfRoJdZRZIkO4Ebg8vZ318zMyq3cCwUukTQCOBa4BHgQWBQRo5qpfhzwGeAE4EJJQ4DvkyWgL0mqBX5XUn9dyfbGks8byfrRDXgzIoaVrUNmZtbpyn2PaXeyKbabgCuATwJ9JY1K+2skDZLUDdgzImYD/0Q2UuqVfi9PzZ3RnnNHxFvAi5LGpHNJ0tBWDnkcOCVtjwMeac/5zMysY5R7Km8IcIWkjcB64BzgXeBKSX3S+X4KLAFuSmUCroyINyVdTjaVdxGwOa9SGAdck46vAW4F5rdQdwJwg6QLgFXA1zbjfAAM6d+Hor8db2ZWFoqISsdQ9QqFQhSLxUqHYWZWVSTVRUShabm/YGtmZrmy1X/BVtKFwJgmxTMi4gfN1Tczs8ra6hNTSkBOQmZmVcJTeWZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitb/ePinaF+eQO1kzbnDUpmtqWW+nVgWx2PmMzMLFecmMzMLFe2usSUlkxfmLY/J+k3afuLkiZVNjozM9uULnOPKSLuBu6udBxmZta63I2YJG0vaZak+ZIWShor6UBJj6eyJyX1TiOjRyTNTT8Hb6LdMyT9LG3XSnpQ0gJJD0jaK5VPlXRlOtcfJY3ujD6bmdn78jhiOhpYERHHAaTFBOcBYyPiKUk7AO8ArwBHRsRaSQOAW4APrOvRgquAaRExTdKZwJXASWlfP+BQYCDZCGtmcw1IGg+MB+i+Q9/299LMzJqVuxETUA8cKekySZ8G9gJWRsRTkC2hHhHvkq1Q+wtJ9cAMYP92nGMU8F9p+0ayRNToVxGxMSKeAT7SUgMRMSUiChFR6L5dn3ac2szMWpO7EVNELJE0AjgWuAR4sIWq3wReBoaSJdi1ZQphXcm2ytSmmZm1Ue5GTJJ2B9ZExE3AFcAngX6SDkz7e0vaBuhDNpLaCJwKdG/HaR4HTknb44BHyhW/mZltmdyNmIAhwBWSNgLrgXPIRi5XSfoQ2f2lI4CfA7dLOg24F/hLO84xAbhB0gXAKuBrZYzfzMy2gCKi0jFUvUKhEMVisdJhmJlVFUl1EfGBh9ZyN5VnZmZdmxOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlSh7flVd16pc3UDtpVqXDMLMyWnrpcZUOocvyiMnMzHKlyyamJkutn53eUm5mZhXWJafy0npO74mIaysVi5mZ/a2qTkySvgt8lWxNpT8BdUADMB7YFngBODUi1kiaSrbK7XDgMWBBSTuTgbcj4oeSPgpcC/QFNgBjIuIPndUnM7Ourmqn8tKKtl8mW1r9GKBxTY87IuLAiBgKPAt8veSwPYCDI+JbrTR9M3B1Ov5gYGUL5x8vqSipuGFNwxb2xszMGlXziOkQ4K6IWAuslfTrVD5Y0iXAjkAv4L6SY2ZExIaWGpTUG+gfEXcCpLabFRFTgCkAPfoN8GqLZmZlUrUjplZMBc6NiCHAxUDPkn3tWX7dzMwqoJoT02PACZJ6SuoFHJ/KewMrJdUA49rTYESsBpZJOglAUg9J25UzaDMza13VJqaIeAq4m+whhnuAerIHH74LPEGWuJ7bjKZPBc6TtAB4HNitLAGbmVmbKKJ6b49I6hURb6dRzcPA+IiY29lx9Og3IPqd/tPOPq2ZdSC/+aHjSaqLiELT8mp++AFgiqT9ye4jTatEUgIY0r8PRf8jNjMri6pOTBHxlUrHYGZm5VW195jMzGzr5MRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma5UtVvfsiL+uUN1E6aVekwzKwD+J15nc8jJjMzy5WqT0yS/kXSEZWOw8zMyqPqp/Ii4nsdfQ5J3Vtbkt3MzMqnqkZMkr4rabGkRyXdImmipKmSRqf9SyVdLGmupHpJA1N5X0n3S1ok6ZeSXpK0S9r3VUlPSnpa0nWSuqfytyX9SNJ8YFTFOm1m1sVUTWKSdCDwZWAocAzwgcWlklcjYgRwDTAxlf0z8GBEDAJmAnulNj8BjAUOiYhhwAbeX459e+CJiBgaEY82E894SUVJxQ1rGsrSRzMzq66pvEOAuyJiLbBW0q9bqHdH+l0H/F3aPhT4EkBE3CvpjVR+ODASeEoSwIeAV9K+DcDtLQUTEVOAKZCtYLs5HTIzsw+qpsTUVuvS7w1sun8iW/n2O83sW+v7SmZmna9qpvKAx4ATJPWU1As4vp3Hngwg6QvAh1P5A8BoSbumfTtJ2ruMMZuZWTtVzYgpIp6SdDewAHgZqAfaenPnYuAWSacCc4A/A6sj4lVJFwG/ldQNWA98A3ip7B0wM7M2qZrElPwwIiZL2g54GKiLiF807oyI2pLtIvC59LEBOCoi3pU0CjgwItalercBtzU9UUT06rBemJlZi6otMU2RtD/Qk+ze0Nw2HrcXMD2Niv4KnFXOoIb070PRry0xMyuLqkpMEfGVzTzueWB4mcMxM7MOUE0PP5iZWRfgxGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrlSVV+wzav65Q3UTppV6TDMzDrV0g56441HTGZmlitOTGZmlitOTGZmlitOTGZmlisdmpgkbS9plqT5khZKGivpcEnzJNVLul5SD0mHSfpVyXFHSrqzhTa7S5qa2quX9M1Ufpakp9K5bk9rNpHqji45/u2S7X9KbcyXdGkq20/SvZLqJD0iaWBH/X3MzOyDOnrEdDSwIiKGRsRg4F5gKjA2IoaQPRV4DjAbGCipbzrua8D1LbQ5DOgfEYNTGzek8jsi4sCIGAo8C3y9tcAkHQOcCHwyHXN52jUFmBARI4GJwM9bOH68pKKk4oY1bV1I18zMNqWjE1M9cKSkyyR9GqgFXoyIJWn/NOAzERHAjcBXJe0IjALuaaHNPwL7SrpK0tHAW6l8cBrh1APjgEGbiO0I4IaIWAMQEa9L6gUcDMyQ9DRwHdCvuYMjYkpEFCKi0H27Ppv6O5iZWRt16PeYImKJpBHAscAlwIOtVL8B+DWwFpgREe+20OYbkoYCRwFnAycDZ5KNxE6KiPmSzuD9ZdXfJSXgtILttq3E0A14MyKGtaV/ZmZWfh19j2l3YE1E3ARcQTYSqpX00VTlVOAhgIhYAawALuL96bnm2twF6BYRt6e6I9Ku3sBKSTVkI6ZGS4GRafuLQE3avh/4Wsm9qJ0i4i3gRUljUplSEjQzs07S0W9+GAJcIWkjsJ7sflIfsqmybYCngGtL6t8M9I2IZ1tpsz9wQxr9AHwn/f4u8ASwKv3uncp/AdwlaT7ZPa6/AETEvZKGAUVJfwX+G/h/ZEntGkkXkSWxW4H5m9l/MzNrJ2W3d/JB0s+AeRHxH5WOpT0KhUIUi8VKh2FmVlUk1UVEoWl5bt6VJ6mObDTz7UrHYmZmlZObxJQez/4bkp4AejQpPjUi6jsnKjMz62y5SUzNiYhPVjoGMzPrXH4lkZmZ5YoTk5mZ5UqunsqrVpJWA4srHUcZ7QK8Wukgysx9yr+trT+w9fWp3P3ZOyL6Ni3M9T2mKrK4uUceq5Wk4tbUH3CfqsHW1h/Y+vrUWf3xVJ6ZmeWKE5OZmeWKE1N5TKl0AGW2tfUH3KdqsLX1B7a+PnVKf/zwg5mZ5YpHTGZmlitOTGZmlitOTFtA0tGSFkt6QdKkSsezuSQtlVQv6WlJxVS2k6T7JT2ffn+40nG2RtL1kl6RtLCkrNk+pHW2rkzXbUFazDJXWujPZEnL03V6WtKxJfu+k/qzWNJRlYm6ZZL2lDRb0jOSFkn6x1RezdeopT5V83XqKelJSfNTny5O5ftIeiLFfpukbVN5j/T5hbS/tiyBRIR/NuMH6A78AdiXbFXc+cD+lY5rM/uyFNilSdnlwKS0PQm4rNJxbqIPnyFbNHLhpvpAtqLyPYCATwFPVDr+NvZnMjCxmbr7p39/PYB90r/L7pXuQ5MY+wEj0nZvYEmKu5qvUUt9qubrJKBX2q4hW9vuU8B04JRUfi1wTtr+B+DatH0KcFs54vCIafMdBLwQEX+MiL+SLSh4YoVjKqcTgWlpexpwUgVj2aSIeBh4vUlxS304EfjPyPwe2FFSv86JtG1a6E9LTgRujYh1EfEi8ALZv8/ciIiVETE3ba8GniVb9LOar1FLfWpJNVyniIi308ea9BPAYcDMVN70OjVev5nA4ZK0pXE4MW2+/sCfSj4vo/V/lHkWwG8l1Ukan8o+EhEr0/afgY9UJrQt0lIfqvnanZumtq4vmV6tqv6k6Z7hZP9vfKu4Rk36BFV8nSR1l/Q08ApwP9nI7s2IeDdVKY37vT6l/Q3AzlsagxOTARwaESOAY4BvSPpM6c7IxulV/b2CraEPwDXAfsAwYCXwo8qG036SegG3A+dHxFul+6r1GjXTp6q+ThGxISKGAXuQjegGdnYMTkybbzmwZ8nnPVJZ1YmI5en3K8CdZP8YX26cOkm/X6lchJutpT5U5bWLiJfTfzQ2Ar/g/WmgquiPpBqy/4DfHBF3pOKqvkbN9anar1OjiHgTmA2MIptKbXy3amnc7/Up7e8DvLal53Zi2nxPAQPS0yrbkt34u7vCMbWbpO0l9W7cBr4ALCTry+mp2unAXZWJcIu01Ie7gdPSk1+fAhpKppNyq8k9li+RXSfI+nNKekJqH2AA8GRnx9eadN/hP4BnI+LHJbuq9hq11Kcqv059Je2Ytj8EHEl272w2MDpVa3qdGq/faODBNPLdMpV+CqSaf8ieHFpCNgd7YaXj2cw+7Ev2pNB8YFFjP8jmiR8Angf+B9ip0rFuoh+3kE2brCebA/96S30ge/Lo6nTd6oFCpeNvY39uTPEuSP9B6FdS/8LUn8XAMZWOv5n+HEo2TbcAeDr9HFvl16ilPlXzdToAmJdiXwh8L5XvS5ZEXwBmAD1Sec/0+YW0f99yxOFXEpmZWa54Ks/MzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLlfwHH5sUVMquziAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "chinese_ingredient_df = create_ingredient_df(chinese_df)\r\n", + "chinese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfTElEQVR4nO3de5RXdb3/8ecLHEEdQkU0fngZNBRFBGH0eMtMTSs17QjiL0tMj/ws01ylHUrr4MnWsU4Xu1iGHsPMo1zSBcVKLe+aF2ZAbhJqggWSgOUkGoTj+/fH/ox8HecK35m9v8zrsdZ3zd6f/dmf/d6f9WXefPbesz+KCMzMzIqiV94BmJmZlXJiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtku7wC2BbvttlvU1NTkHYaZWUWpr69fFxEDm5c7MZVBTU0NdXV1eYdhZlZRJL3YUrkv5ZmZWaE4MZmZWaE4MZmZWaH4HpOZWTfYtGkTK1euZMOGDXmH0u369u3LnnvuSVVVVYfqOzGVwaJVDdRMmpN3GLaNWnHtKXmHYGWwcuVK+vXrR01NDZLyDqfbRASvvPIKK1euZMiQIR3ax5fyzMy6wYYNGxgwYECPSkoAkhgwYECnRopdnpgkXSppqaTbuvpY5SBphaTd8o7DzLY9PS0pNenseXfHpbzPAidGxMpuONbbJG0XEW925zHNzGzrdWliknQDsC/wG0l3APsBBwNVwOSImCXpPOBjwI5p+10R8aW0//qIqE7LY4FTI+I8SfsBtwE7AbOAyyKiWtJxwNeBvwHDgP0lfRK4FNgeeBL4bEQ0SjoJuBroA/wR+HRErC+JfQfgTuDOiLixyzrJzHqkct+XLve9yOrqatavX99+xS7QpZfyIuIi4CXgg2RJ5P6IODyt/7eknVLVUcB4YAQwXtJe7TT9feD7ETECaD4SGw18PiL2l3RgavfoiBgFNALnpEt1V5GN5EYDdcAXStqoBn4F3N5aUpI0UVKdpLrGNxra7wwzM+uQ7nz44SRgkqSngQeBvsDeadt9EdEQERuAZ4B92mnrSGBGWv7fZtueiojlafkEYAwwNx33BLIR3BHAQcBjqXxCs2POAn4WET9vLYCImBIRtRFR23vH/u2Ea2aWr0mTJnH99de/vT558mSuueYaTjjhBEaPHs2IESOYNWvWu/Z78MEHOfXUU99e/9znPsfUqVMBqK+v5wMf+ABjxozh5JNPZvXq1WWJtTsTk4AzI2JU+uwdEUvTto0l9RrZfImxdN73vh08zuvNjnlLyTEPiIjJqfy3JeUHRcQFJfs9BnxYPfVOpZltc8aPH8/06dPfXp8+fToTJkzgrrvuYt68eTzwwAN88YtfJCLaaGWzTZs2cckllzBz5kzq6+s5//zzufLKK8sSa3cmpnuAS5p+2Us6tAP7vCzpQEm9gI+XlD8BnJmWz25j//uAsZJ2T8fcVdI+af+jJb0vle8kaf+S/b5Gdp/q+uYNmplVokMPPZQ1a9bw0ksvsWDBAnbZZRfe+9738pWvfIVDDjmEE088kVWrVvHyyy93qL1ly5axePFiPvShDzFq1CiuueYaVq4szzNu3fkHtl8HrgMWpkSzHDi17V2YBPwaWEt2H6g6lV8G/ELSlcDdQIs3eSLiGUlXAfemY24CLo6IJ9JDF7dL6pOqXwU8W7L754GbJX2r6WEMM7NKNm7cOGbOnMlf/vIXxo8fz2233cbatWupr6+nqqqKmpqad/290Xbbbcdbb7319nrT9ohg+PDhPP7442WPs8sTU0TUlKz+vxa2TwWmlqyfWrI8E5jZQrOrgCMiIiSdDRyQ6j9Idv+qtP1pwLQWjns/cFg78X66hWObmVWk8ePHc+GFF7Ju3Toeeughpk+fzu67705VVRUPPPAAL7747lko9tlnH5555hk2btzIP/7xD+677z6OOeYYDjjgANauXcvjjz/OkUceyaZNm3j22WcZPnz4VsdZqa8kGgP8KF0WfBU4P89gRgzuT51fG2NmnZDHq6aGDx/Oa6+9xuDBgxk0aBDnnHMOp512GiNGjKC2tpZhw4a9a5+99tqLs846i4MPPpghQ4Zw6KHZXZjtt9+emTNncumll9LQ0MCbb77JZZddVpbEpI7e6LLW1dbWhicKNLO2LF26lAMPPDDvMHLT0vlLqo+I2uZ1/a48MzMrFCcmMzMrFCcmM7Nu0lNvnXT2vJ2YzMy6Qd++fXnllVd6XHJqmo+pb9+OviOhcp/KMzOrKHvuuScrV65k7dq1eYfS7ZpmsO0oJyYzs25QVVXV4RlcezpfyjMzs0JxYjIzs0JxYjIzs0LxPaYyWLSqoeyzUZptiTxec2NWbh4xmZlZoTgxmZlZoTgxtUMZ95OZWTcp9C9cSTWS/iDpNklLJc2UtKOkMZIeklQv6R5Jg1L9ByV9X9LTkhZLOjyVT5Z0q6THJT0n6cKSY1whaa6khZKuLjnuMkk/BxYDe+Vx/mZmPVElPPxwAHBBRDwm6WbgYrJp1k+PiLWSxgPfYPOcTDtGxChJxwI3Awen8kOAI4CdgPmS5qRtQ4HDAQGz035/SuUTIuKJloKSNBGYCND7PQPLfc5mZj1WJSSmP0fEY2n5F8BXyBLKb7N5AukNrC6pfztARDws6T2Sdk7lsyLiH8A/JD1AloyOAU4C5qc61WQJ6U/Ai60lpdT+FGAKQJ9BQ3vWy6/MzLpQJSSm5r/0XwOWRMSRHawfbZQL+K+I+GnpBkk1wOudjtTMzLZaoe8xJXtLakpCnwCeAAY2lUmqklQ6l+/4VH4M0BARDan8dEl9JQ0AjgPmAvcA50uqTvsMlrR7l5+RmZm1qhJGTMuAi9P9pWeAH5IllB9I6k92DtcBS1L9DZLmA1Vsvu8EsBB4ANgN+HpEvAS8JOlA4PF0WXA98EmgscvPyszMWqQizw2SLqn9OiIObqdqU/0Hgcsjoq5Z+WRgfUR8u8whAlBbWxt1dXXtVzQzs7dJqo+I2ubllXApz8zMepBCX8qLiBVsfty7I/WPa6V8cnkiMjOzruYRk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFUqh/8C2Uixa1UDNpDl5h2HWI6y49pS8Q7Au5hGTmZkVihOTmZkVSq6JSdIZkg7qQL2pksa2UH6cpF+XMZ5aST9Iy+dJ+lG52jYzs47Je8R0BtBuYuouEVEXEZfmHYeZWU/WZmKSdK2ki0vWJ0u6XNIVkuZKWijp6pLtX5W0TNKjkm6XdHkq30/S3ZLqJT0iaZiko4CPAf8t6elU58LU7gJJv5S0Y0k4J0qqk/SspFNbiHUnSTdLekrSfEmnt3FefSX9TNKiVPeDqbysIzAzM+u89kZM04CzStbPAtYCQ4HDgVHAGEnHSjoMOBMYCXwEKJ38aQpwSUSMAS4HfhwRvwdmA1dExKiI+CNwZ0QcFhEjgaXABSVt1KRjngLcIKlvs1ivBO6PiMOBD5IlvJ1aOa+LgYiIEcD/BW5pob02SZqYEmVd4xsN7e9gZmYd0ubj4hExX9Lukv4PMBD4GzACOAmYn6pVkyWqfsCsiNhANr35rwAkVQNHATPS9OUAfVo55MGSrgF2Tu3eU7JtekS8BTwn6QVgWLN9TwI+1jRKA/oCe5MluOaOIZuinYj4g6QXgf3b6ovmImIKWcKlz6ChxZ0G2MyswnTk75hmAGOB95KNoPYB/isiflpaSdJlrezfC3g1IkZ14FhTgTMiYoGk84DjSrY1/+XffF3AmRGxrAPHMTOzgurIww/TgLPJktMMslHM+WkkhKTBknYHHgNOS/dvqoFTASLi78BySeNSfUkamdp+jWyk1aQfsFpSFXBOszjGSeolaT9gX6B5AroHuERpWCbp0DbO6ZGm9iXtTzayckIzMyuAdhNTRCwhSxirImJ1RNwL/C/wuKRFwEygX0TMJbtntBD4DbAIaLr5cg5wgaQFwBKg6cGEO4Ar0gMI+wFfBZ4kS3J/aBbKn4CnUtsXpUuGpb4OVAELJS1J6635MdArxT8NOC8iNrbXF2Zm1vUUUb7bI5KqI2J9epruYWBiRMwr2wEKqra2Nurq6vIOw8ysokiqj4ja5uXlflfelPQHs32BW3pCUjIzs/Iqa2KKiE+Us72tJelk4JvNipdHxMfziMfMzNq3Tb9dPCLu4Z2PnJuZWcHl/UoiMzOzd3BiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtmm/46puyxa1UDNpDl5h2HWY6y49pS8Q7Au5BGTmZkVSsUnJkn/KenEvOMwM7PyqPhLeRHxta4+hqTeEdHY1ccxM7MKGzFJ+qqkZZIelXS7pMslTZU0Nm1fIelqSfMkLZI0LJUPlPRbSUsk3STpRUm7pW2flPSUpKcl/VRS71S+XtJ30hxSR+Z20mZmPUzFJCZJhwFnAiOBjwDvmsMjWRcRo4GfAJensv8A7o+I4WQTG+6d2jwQGA8cnaZ+b2TzzLk7AU9GxMiIeLSFeCZKqpNU1/hGQ/PNZma2hSrpUt7RwKw0c+0GSb9qpd6d6Wc98K9p+Rjg4wARcbekv6XyE4AxwNw0I/sOwJq0rRH4ZWvBRMQUYApAn0FDyzfboplZD1dJiamjmqZIb6T98xPZhIZfbmHbBt9XMjPrfhVzKQ94DDhNUl9J1cCpndz3LABJJwG7pPL7gLGSdk/bdpW0TxljNjOzTqqYEVNEzJU0G1gIvAwsAjp6c+dq4HZJnwIeB/4CvBYR6yRdBdwrqRewCbgYeLHsJ2BmZh1SMYkp+XZETJa0I/AwUB8RNzZtjIiakuU64Li02gCcHBFvSjoSOCwiNqZ604BpzQ8UEdVddhZmZtaqSktMUyQdBPQluzc0r4P77Q1MT6OifwIXljOoEYP7U+dXpJiZlUVFJaaI+MQW7vcccGiZwzEzsy5QSQ8/mJlZD+DEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmhVJRb34oqkWrGqiZNCfvMMxsK63wq8UKwSMmMzMrlB6bmCSdJ+lHafkiSefmHZOZmfXQS3mS3nHeEXFDXrGYmdk7VXRikvRV4JPAWuDPQD3Z3EsTge2B54FPRcQbkqYCG8jeMv4Y2YSDTe1MBtZHxLclvQ+4ARhINj37uIj4Y3edk5lZT1exl/IkHQacCYwEPgLUpk13RsRhETESWApcULLbnsBREfGFNpq+Dbg+7X8UsLqV40+UVCeprvGNjk6ka2Zm7ankEdPRwKyI2ABskPSrVH6wpGuAnYFq4J6SfWZERGNrDUrqBwyOiLsAUtstiogpwBSAPoOGxladiZmZva1iR0xtmAp8LiJGAFeTzXbb5PVcIjIzsw6r5MT0GHCapL6SqoFTU3k/YLWkKuCczjQYEa8BKyWdASCpj6Qdyxm0mZm1rWITU0TMBWaTPcTwG2AR2YMPXwWeJEtcf9iCpj8FXCppIfB74L1lCdjMzDpEEZV7e0RSdUSsT6Oah4GJETGvu+PoM2hoDJpwXXcf1szKzG9+6F6S6iOitnl5JT/8ADBF0kFk95FuySMpAYwY3J86f6HNzMqiohNTRHwi7xjMzKy8KvYek5mZbZucmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFAq+s0PRbFoVQM1k+bkHYaZdTG/S697eMRkZmaF4sRkZmaF4sRkZmaFUojEJOlcSQslLZB0q6TTJD0pab6k30naQ1IvSc9JGpj26SXpeUkD0+eXkuamz9GpzmRJN0t6UNILki5N5TWSlkq6UdISSfdK2iFt20/S3ZLqJT0iaVh+PWNm1vPknpgkDQeuAo6PiJHA54FHgSMi4lDgDuBLEfEW8As2T5d+IrAgItYC3we+FxGHAWcCN5UcYhhwMnA48B9pynWAocD1ETEceDXtBzAFuCQixgCXAz9uJe6Jkuok1TW+0bDV/WBmZpkiPJV3PDAjItYBRMRfJY0ApkkaBGwPLE91bwZmAdcB5wM/S+UnAgdJamrzPZKq0/KciNgIbJS0BtgjlS+PiKfTcj1Qk/Y5CphR0lafloKOiClkSYw+g4ZW7jTAZmYFU4TE1JIfAt+NiNmSjgMmA0TEnyW9LOl4shFQ0+ipF9kIa0NpIym5bCwpamTzOTcv3yG182pEjCrr2ZiZWYflfikPuB8YJ2kAgKRdgf7AqrR9QrP6N5Fd0psREY2p7F7gkqYKkrYosUTE34HlksaldiRp5Ja0ZWZmWyb3xBQRS4BvAA9JWgB8l2yENENSPbCu2S6zgWo2X8YDuBSoTQ9QPANctBUhnQNckGJZApy+FW2ZmVknKaKybo9IqiV70OH9ecfSpLa2Nurq6vIOw8ysokiqj4ja5uVFvcfUIkmTgM+w+d6SmZltY3K/lNcZEXFtROwTEY/mHYuZmXWNikpMZma27XNiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQqmoNz8U1aJVDdRMmpN3GGbWDVZce0reIWzzPGIyM7NCcWIyM7NCqZjEJOlj6SWu5WhrsqTLy9GWmZmVV0XcY5K0XUTMJpuLKa/jv5nHsc3MeppuHzFJOjdN6LdA0q2SaiTdn8ruk7R3qjdV0g2SngS+Jek8ST9K206T9KSk+ZJ+J2mPVD5Z0s2SHpT0gqRLS457paRnJT0KHFBSvp+kuyXVS3pE0rCWjt+NXWRm1qN164hJ0nDgKuCoiFiXplG/BbglIm6RdD7wA+CMtMueqW6jpPNKmnoUOCIiQtK/AV8Cvpi2DQM+CPQDlkn6CXAIcDYwiuyc5wH1qf4U4KKIeE7SvwA/Bo5vfvwWzmUiMBGg93sGbk23mJlZie6+lHc8MCMi1gFExF8lHQn8a9p+K+8cncxoKSmQJYxpkgYB2wPLS7bNiYiNwEZJa4A9gPcDd0XEGwCSZqef1cBRZNO4N+3fpwPHJyKmkCU1+gwaWlnTAJuZFVjR7zG93kr5D4HvRsRsSccBk0u2bSxZbqTtc+wFvBoRozp5fDMz6yLdfY/pfmCcpAEA6VLe78kus0E2ZfojHWinP7AqLU/oQP2HgTMk7SCpH3AaQET8HVguaVyKR5JGdvRkzMys/Lp1xBQRSyR9A3hIUiMwH7gE+JmkK4C1wKc70NRksstvfyNLdkPaOe48SdOABcAaYG7J5nOAn0i6CqgC7kj1zMwsB4rw7ZGtVVtbG3V1dXmHYWZWUSTVR0Rt8/KK+QNbMzPrGZyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUIr+dvGKsGhVAzWT5uQdhpkVzIprT8k7hIrkEZOZmRVKj0pMkv5T0ol5x2FmZq3rUZfyIuJrecdgZmZtq/gRk6QvSFqcPpdJqpG0VNKNkpZIulfSDqnuVElj0/IJkuZLWiTpZkl9UvkKSVdLmpe2Dcvz/MzMepqKTkySxpBNLPgvwBHAhcAuwFDg+ogYDrwKnNlsv77AVGB8RIwgGzl+pqTKuogYDfwEuLyVY0+UVCeprvGNhrKel5lZT1bRiQk4BrgrIl6PiPXAncD7geUR8XSqUw/UNNvvgFTn2bR+C3BsyfY729gXgIiYEhG1EVHbe8f+W30iZmaWqfTE1JqNJcuNdP5eWtP+W7KvmZlthUpPTI8AZ0jaUdJOwMdTWXuWATWS3pfWPwU81EUxmplZJ1T0aCAi5kmaCjyVim4C/taB/TZI+jQwQ9J2wFzghi4L1MzMOkwRkXcMFa/PoKExaMJ1eYdhZgXjNz+0TVJ9RNQ2L6/oEVNRjBjcnzp/Ac3MyqLS7zGZmdk2xonJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxa8kKoNFqxqomTQn7zDMrAL4/Xnt84jJzMwKJdfEJGlnSZ/NM4YUx02SDso7DjMzy3/EtDPQqcQkqXc5A5DUOyL+LSKeKWe7Zma2ZfJOTNcC+0l6WtJcSb9u2iDpR5LOS8srJH1T0jxgnKQHJX1PUp2kpZIOk3SnpOckXVPSxiclPZXa/2lTUpO0XtJ3JC0Ajkzt1aZtH5Y0T9ICSfd1Z2eYmVn+iWkS8MeIGAVc0U7dVyJidETckdb/mSaYugGYBVwMHAycJ2mApAOB8cDRqf1G4Jy0707AkxExMiIebTqApIHAjcCZETESGNdaMJImpsRY1/hGQ2fP28zMWlFJT+VNa7Y+O/1cBCyJiNUAkl4A9gKOAcYAcyUB7ACsSfs0Ar9s4RhHAA9HxHKAiPhra8FExBRgCmQz2G7B+ZiZWQuKlJje5J0juL7Ntr/ebH1j+vlWyXLT+naAgFsi4sstHGtDRDRuRaxmZtZF8r6U9xrQLy2/CBwkqY+knYETtrLt+4CxknYHkLSrpH3a2ecJ4FhJQ5r22coYzMysk3IdMUXEK5Iek7QY+A0wHVgMLAfmb2Xbz0i6CrhXUi9gE9l9qBfb2GetpInAnWmfNcCHtiYOMzPrHEX49sjW6jNoaAyacF3eYZhZBfCbHzaTVJ8eYnuHIt1jqlgjBvenzl82M7OyyPsek5mZ2Ts4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4zQ9lsGhVAzWT5uQdhplZt+qq1yt5xGRmZoXixGRmZoXS4xOTpIsknZt3HGZmlunx95gi4oa8YzAzs80qbsQk6VxJCyUtkHSrpKmSxpZsX59+HifpIUmzJL0g6VpJ50h6StIiSfulepMlXZ6WH5T0zVTnWUnvz+cszcx6ropKTJKGA1cBx0fESODz7ewyErgIOBD4FLB/RBwO3ARc0so+26U6lwH/0UYsEyXVSaprfKOhk2diZmatqajEBBwPzIiIdQAR8dd26s+NiNURsRH4I3BvKl8E1LSyz53pZ30bdYiIKRFRGxG1vXfs38HwzcysPZWWmFryJuk8JPUCti/ZtrFk+a2S9bdo/f5aU53GNuqYmVkXqbTEdD8wTtIAAEm7AiuAMWn7x4CqfEIzM7NyqKgRQUQskfQN4CFJjcB84N+BWZIWAHcDr+cZo5mZbR1FRN4xVLza2tqoq6vLOwwzs4oiqT4iapuXV9qlPDMz28Y5MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4qbwykPQasCzvODphN2Bd3kF0guPtWpUWL1RezI63ZftExMDmhRX1d0wFtqylRx6LSlKd4+06jrfrVVrMjrdzfCnPzMwKxYnJzMwKxYmpPKbkHUAnOd6u5Xi7XqXF7Hg7wQ8/mJlZoXjEZGZmheLEZGZmheLEtBUkfVjSMknPS5qUdzwtkbRC0iJJT0uqS2W7SvqtpOfSz11yjvFmSWskLS4pazFGZX6Q+nyhpNEFiXeypFWpn5+W9NGSbV9O8S6TdHIO8e4l6QFJz0haIunzqbyQfdxGvIXsY0l9JT0laUGK9+pUPkTSkymuaZK2T+V90vrzaXtNQeKdKml5Sf+OSuXd/32ICH+24AP0JpuufV+yWXMXAAflHVcLca4AdmtW9i1gUlqeBHwz5xiPBUYDi9uLEfgo8BtAwBHAkwWJdzJweQt1D0rfjT7AkPSd6d3N8Q4CRqflfsCzKa5C9nEb8Rayj1M/VaflKuDJ1G/TgbNT+Q3AZ9LyZ4Eb0vLZwLRu7t/W4p0KjG2hfrd/Hzxi2nKHA89HxAsR8U/gDuD0nGPqqNOBW9LyLcAZOcZCRDwM/LVZcWsxng78PDJPADtLGtQ9kWZaibc1pwN3RMTGiFgOPE/23ek2EbE6Iual5deApcBgCtrHbcTbmlz7OPXT+rRalT4BHA/MTOXN+7ep32cCJ0hSN4XbVryt6fbvgxPTlhsM/LlkfSVt/+PJSwD3SqqXNDGV7RERq9PyX4A98gmtTa3FWOR+/1y61HFzyeXRQsWbLhsdSva/5ML3cbN4oaB9LKm3pKeBNcBvyUZtr0bEmy3E9Ha8aXsDMCDPeCOiqX+/kfr3e5L6NI836fL+dWLa9h0TEaOBjwAXSzq2dGNkY/VC/81AJcQI/ATYDxgFrAa+k2847yapGvglcFlE/L10WxH7uIV4C9vHEdEYEaOAPclGa8NyDqlNzeOVdDDwZbK4DwN2Bf49r/icmLbcKmCvkvU9U1mhRMSq9HMNcBfZP5qXm4bi6eea/CJsVWsxFrLfI+Ll9I/9LeBGNl9KKkS8kqrIfsnfFhF3puLC9nFL8Ra9jwEi4lXgAeBIskteTe8jLY3p7XjT9v7AK90cKvCOeD+cLqFGRGwEfkaO/evEtOXmAkPTkzfbk93EnJ1zTO8gaSdJ/ZqWgZOAxWRxTkjVJgCz8omwTa3FOBs4Nz0pdATQUHI5KjfNrrl/nKyfIYv37PQk1hBgKPBUN8cm4H+ApRHx3ZJNhezj1uItah9LGihp57S8A/AhsvtiDwBjU7Xm/dvU72OB+9OINc94/1DynxSR3Q8r7d/u/T509dMV2/KH7GmVZ8muJ1+ZdzwtxLcv2dNKC4AlTTGSXc++D3gO+B2wa85x3k52aWYT2fXrC1qLkezJoOtTny8CagsS760pnoVk/5AHldS/MsW7DPhIDvEeQ3aZbiHwdPp8tKh93Ea8hexj4BBgfoprMfC1VL4vWYJ8HpgB9EnlfdP682n7vgWJ9/7Uv4uBX7D5yb1u/z74lURmZlYovpRnZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF8v8BEBScEicaSW4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "indian_ingredient_df = create_ingredient_df(indian_df)\r\n", + "indian_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAAD4CAYAAABYIGfSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5xXVb3/8dcbHCEFp1SyCbQho0hAQAYTNPV4KfOSdhTpRF7SXxz9HbFOWnHSftFJfz/NfuZdo1JILQXKS3KCTPBOyowIwyWsRI8gKd5GkSCEz/ljr5Ev48www56ZLzPf9/PxmMfs79prr/XZCx58WGvv796KCMzMzGz7dCt2AGZmZp2ZE6mZmVkOTqRmZmY5OJGamZnl4ERqZmaWw07FDsA61p577hmVlZXFDsPMrFOpqal5JSL6NLbPibTEVFZWUl1dXewwzMw6FUnPN7XPS7tmZmY5OJGamZnl4ERqZmaWg6+RmpnZe2zcuJGVK1eyfv36YofSoXr27Em/fv0oKytr8TFOpCWmdlUdlRNnFjsM68Keu+y4YodgbWDlypX07t2byspKJBU7nA4REbz66qusXLmS/v37t/g4L+2amdl7rF+/nj322KNkkiiAJPbYY49Wz8KdSDuYpJMk7deCelMkndJI+eGS7muf6MzMtiilJFpve87ZibTjnQRsM5GamVnn4GukDUi6DHghIq5PnycBawEBpwI9gLsi4ntp/3eBLwNrgBeAmoj4kaR9geuBPsA64KvA7sDngcMkXQycDBwBjAd2Bv4CnBYR61I4R0maCOwGfCMitpqJStoVuBYYDJQBkyLinjYfFDMreW19b0VbX0vv1asXa9eubdM2W8oz0ve6kyxh1juVLEkOAA4EhgEjJB0qaSRZMhwKfA6oKjhuMjAhIkYAFwI3RMTjwL3ANyNiWET8FfhNRIyMiKHAMuDsgjYqU5/HATdJ6tkg1ouAORFxIPBPwBUpuW5F0nhJ1ZKqN62r244hMTOzpjiRNhARC4APSvqwpKHA68AQ4DPAAuApYCBZYj0YuCci1kfEW8BvAST1AkYD0yU9DfwEqGiiy8GSHpFUC4wDBhXsmxYRmyPiz8Czqd9CnwEmpj4eBHoC+zRyTpMjoioiqrrvUt7KETEz63gTJ07k+uuvf/fzpEmTuOSSSzjyyCM54IADGDJkCPfc894FuAcffJDjjz/+3c/nnXceU6ZMAaCmpobDDjuMESNG8NnPfpbVq1e3SaxOpI2bDpwCjCWboQr4f2kWOSwiPhYRP2/m+G7AGwX1h0XEJ5uoOwU4LyKGAN8nS4b1okHdhp8FnFzQxz4Rsaxlp2hmtuMaO3Ys06ZNe/fztGnTOOOMM7jrrrt46qmnmDt3LhdccAERDf9ZbNzGjRuZMGECM2bMoKamhrPOOouLLrqoTWJ1Im3cncAXyZLpdGA2cFaaaSKpr6QPAo8BJ0jqmfYdDxARbwIrJI1J9ZVmtwBvAb0L+uoNrJZURjYjLTRGUrd0vfWjwPIG+2cDE5RuM5M0vA3O3cys6IYPH87LL7/Miy++yMKFC/nABz7Ahz70Ib7zne+w//77c9RRR7Fq1SpeeumlFrW3fPlyFi9ezNFHH82wYcO45JJLWLlyZZvE6puNGhERSyT1BlZFxGqyRPdJYF7KWWuBL0fEfEn3AouAl4BaoP4i5DjgxnRTURlwB7Aw/f6ppPPJEvV3gSfIrsM+wdZJ9r+BJ8luNjonItY3uDX7B8BVwCJJ3YAVpGRuZtbZjRkzhhkzZvC3v/2NsWPHcvvtt7NmzRpqamooKyujsrLyPd/53Gmnndi8efO7n+v3RwSDBg1i3rx5bR6nE2kT0lJr4eergasbqfqjiJgkaRfgYaAm1V8BHNNIu4+x9ddfbkw/Deud2URcD5JdDyUi/g786zZPxsysExo7dixf/epXeeWVV3jooYeYNm0aH/zgBykrK2Pu3Lk8//x732z2kY98hKVLl7Jhwwb+/ve/88ADD3DIIYfwiU98gjVr1jBv3jxGjRrFxo0beeaZZxg0aFAjPbeOE2l+k9MDFnoCUyPiqWIH1Jwhfcup9iPczKyVivHox0GDBvHWW2/Rt29fKioqGDduHCeccAJDhgyhqqqKgQMb3n8Je++9N6eeeiqDBw+mf//+DB+eXfHaeeedmTFjBueffz51dXW88847fP3rX2+TRKqWXqi1rqGqqir8Ym8z25Zly5bxyU82dY9k19bYuUuqiYiqxur7ZiMzM7McnEjNzMxycCI1M7NGleKlv+05ZydSMzN7j549e/Lqq6+WVDKtfx9pz54Nn8baPN+1a2Zm79GvXz9WrlzJmjVrih1Kh+rZsyf9+vVr1TFOpGZm9h5lZWX079+/2GF0Cl7aNTMzy8GJ1MzMLAcnUjMzsxx8jbTE1K6qa/M33Zu1VDEeM2fW3jwjNTMzy8GJ1MzMLIeiJFJJJ6U3prT2uLXtEU9XIWmKpFOKHYeZWSlpVSJVpi2S70ls/U5OMzOzTmmbSVFSpaTlkn4BLAZOk1QrabGkywvq3SipWtISSd8vKL9M0lJJiyT9SNJo4PPAFZKelrRv+pklqUbSI5IGpmP7S5qX+rtkG3FWSHo4tblY0qdT+WdSG09Jmi6pV2NxpbITJD0haYGkP0jaK5VPkjQ1xfa8pH+W9MMU1yxJZaneCEkPpfOYLamimXjPL+j/jlS2q6SbJT2ZYjgxlXeXdIWk+an+v6ZySbou/fn8AfhgE32NT3821ZvW1TX7521mZq3T0rt2BwBnAP8N/BEYAbwO/F7SSRFxN3BRRLwmqTvwgKT9gVXAF4CBERGS3h8Rb0i6F7gvImYASHoAOCci/izpU8ANwBHA1cCNEfELSf+2jRi/BMyOiEtTDLtI2hO4GDgqIt6W9G3gG5KubxhXauNR4KBU9r+AbwEXpH37Av9ENpOeB5wcEd+SdBdwnKSZwLXAiRGxRtJY4FLgrCbinQj0j4gNBf1fBMyJiLNS2ZMpQY4D6iJipKQewGOSfg8MBz6RYtoLWArc3LCjiJgMTAboUTGgdB6caWbWAVqaSJ+PiD+mGdKDEbEGQNLtwKHA3cCpksanNivI/nFfCqwHfi7pPuC+hg2nGeJoYLqk+uIe6ffBwMlp+1bgcpo2H7g5zQ7vjoinJR2W4ngstb0zWRKsayKufsCdaSa5M7CioP3fRcRGSbVAd2BWKq8FKskS2mDg/tRXd2B1M/EuAm6XdDfZ+AF8Bvi8pAvT557APql8f225/llO9p+bQ4FfRcQm4EVJc5rpz8zM2kFLE+nbze2U1B+4EBgZEa9LmgL0jIh3JB0IHAmcApxHNtMs1A14IyKGNdF8i2ZQEfGwpEOB44Apkq4kmzXfHxH/0kjMjcV1LXBlRNwr6XBgUsEhG1I/myVtjC2vRNhMNo4ClkTEqJbEm+I8FDgBuEjSkNTGyRGxvEGsAiZExOwG5ce2sC8zM2snrb1x6EngMEl7puXTfwEeAnYjS7Z16bri5+Dd2WZ5RPwX8O/A0NTOW0BvgIh4E1ghaUw6RpLq6z0GfDFtj2suMEkfAV6KiJ8CPwMOIFuGPljSx1KdXSV9vJm4ysmWoyFbym6N5UAfSaNSX2WSBjURazdg74iYC3w79dsLmA1MSIkTScPTIbOBcwuuxX5c0q7Aw8DYdA21gmzp2czMOlCrnmwUEaslTQTmks2eZkbEPQCSFgB/Al4gS4CQJct7JPVM9b+Ryu8AfirpfLIZ4TjgRkkXA2Vp/0Lga8Av07XNe7YR3uHANyVtBNYCp6drlWcCv0rXFiG7ZvpWE3FNIltifh2YA7T41QcR8Y+09HqNpHKysb0KWNJI9e7AbamegGvSteMfpGMWpWS7Ajie7D8GlcBTKcmuIbvz+S6ymfRSsuvX87YV55C+5VT76TJmZm1GpfTSVoOqqqqorq4udhhmZp2KpJqIqGpsn59sZGZmlkOne2h9uinn1gbFGyLiU8WIZ1vSV20OblB8dUTcUox4zMysbXW6RBoRtUBTd/jucCJiW99/NTOzTsxLu2ZmZjk4kZqZmeXgRGpmZpaDE6mZmVkOTqRmZmY5OJGamZnl0Om+/mL51K6qo3LizGKHYbaV5/zYSuvEPCM1MzPLwYnUzMwsByfSIpC0ttgxmJlZ23AiNTMzy8GJtJXSy8FnSlooabGksZKOlLRAUq2kmyX1kHSEpLsLjjta0l0Fn38saYmkByT1SWX7SpolqUbSI5IGpvITJD2R+vhDenk6kial/h6U9Gx6v6uZmXUgJ9LWOwZ4MSKGRsRgYBYwBRgbEUPI7oQ+l+zl5wPrkyTwFeDmtL0rUB0Rg4CHgO+l8snAhIgYAVwI3JDKHwUOiojhZC89/1ZBPAOBzwIHAt+TVNYwYEnjJVVLqt60ri73AJiZ2RZOpK1XCxwt6XJJnwYqgRUR8UzaPxU4NLI3pt8KfFnS+4FRwO9Snc3AnWn7NuAQSb2A0cB0SU8DPwEqUp1+wGxJtcA3gUEF8cyMiA0R8QrwMrBXw4AjYnJEVEVEVfddyttgCMzMrJ6/R9pKEfGMpAOAY4FLgDnNVL8F+C2wHpgeEe801SzZf2reiIjGXhF3LXBlRNwr6XBgUsG+DQXbm/CfqZlZh/KMtJUkfRhYFxG3AVeQzTQrJX0sVTmNbLmWiHgReBG4mCyp1usGnJK2vwQ8GhFvAiskjUn9SNLQVKccWJW2z2iXEzMzs+3i2UvrDQGukLQZ2Eh2PbScbEl2J2A+cFNB/duBPhGxrKDsbeBASReTLceOTeXjgBtTeRnZ9dCFZDPQ6ZJeJ5sB92+nczMzs1ZSdinP2ouk64AFEfHzYscCUFVVFdXV1cUOw8ysU5FUExFVje3zjLQdSaohm31eUOxYzMysfTiRtqP0NRYzM+vCfLORmZlZDk6kZmZmOTiRmpmZ5eBEamZmloMTqZmZWQ5OpGZmZjk4kZqZmeXgRGpmZpaDH8hQYmpX1VE5cWaxwzBrV89ddlyxQ7AS4hmpmZlZDk6kOzhJ/5VeDG5mZjsgL+3uwCQJOD4iNhc7FjMza5xnpDsYSZWSlkv6BbAY2CRpz7TvdEmLJC2UdGsq6yPp15Lmp5+Dixm/mVmp8Yx0xzQAOCMi/ijpOQBJg4CLgdER8Yqk3VPdq4EfR8SjkvYBZgOfLGxM0nhgPED33fp00CmYmZUGJ9Id0/MR8ccGZUcA0yPiFYCIeC2VHwXsl60CA7CbpF4Rsba+ICImA5MBelQM8JvczczakBPpjuntVtTtBhwUEevbKxgzM2uar5F2HnOAMZL2AChY2v09MKG+kqRhRYjNzKxkOZF2EhGxBLgUeEjSQuDKtOt8oCrdhLQUOKdYMZqZlSIv7e5gIuI5YHDB58qC7anA1Ab1XwHGdlB4ZmbWgBNpiRnSt5xqPz7NzKzNeGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7Mc/IjAElO7qo7KiTOLHYZZUT3nx2RaG/KM1MzMLAcnUjMzsxy6XCKVVClpcSPlD0qq2o72zpR0XdtEZ2ZmXU2XS6QGknzt28ysg3TVRLqTpNslLZM0Q9IuhTsl3SipWtISSd8vKB8p6XFJCyU9Kal3g+OOkzRP0p6NdSppiqSbUtvPSDo+lXeXdIWk+ZIWSfrXVH64pIclzZS0PB3bLe1bK+nHKcYHJPVJ5ftKmiWpRtIjkgY26PsJ4IcN4hqfYqretK4u9+CamdkWXTWRfgK4ISI+CbwJ/O8G+y+KiCpgf+AwSftL2hm4E/haRAwFjgL+Xn+ApC8AE4FjI+KVZvquBA4EjgNuktQTOBuoi4iRwEjgq5L6p/oHAhOA/YB9gX9O5bsC1RExCHgI+F4qnwxMiIgRwIXADQV99wNGR8Q3CgOKiMkRURURVd13KW8mdDMza62uugT4QkQ8lrZvA85vsP9USePJzr+CLIkFsDoi5gNExJsAkgCOAKqAz9SXN2NaRGwG/izpWWAg8Blgf0mnpDrlwADgH8CTEfFs6utXwCHADGAzWWKvP4ffSOoFjAamp7gAehT0PT0iNm0jPjMza0NdNZFGU5/TTPBCYGREvC5pCtBzG+39Ffgo8HGgejv6FtkscnbhDkmHNxdrI+XdgDciYlgTdd7eRmxmZtbGuurS7j6SRqXtLwGPFuzbjSzh1EnaC/hcKl8OVEgaCSCpd8FNO88DJwO/kDRoG32PkdRN0r5kyXc5MBs4V1JZavvjknZN9Q+U1D9dGx1bEGs3oH4G+yXg0TQbXiFpTGpHkoa2dFDMzKztddVEuhz4N0nLgA8AN9bviIiFwALgT8AvgcdS+T/IEtm1khYC91MwU42IPwHjyJZV922m7/8GngR+B5wTEeuBnwFLgafSV3N+wpbVgPnAdcAyYAVwVyp/myzJLiZbWv7PVD4OODvFuAQ4sVUjY2ZmbUoRTa0kWmulZeL7ImJGC+sfDlwYEcc3sm9tRPRq2wihqqoqqqu3tTptZmaFJNWkm1Tfo6vOSM3MzDpEV73ZqF1JuggY06B4ekSc2Zp2IuJB4MEm9rX5bNTMzNqeE+l2iIhLgUuLHYeZmRWfl3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWbNeO6y44odgrWCZ6RmZmY5OJGamZnl4ETayUk6R9LpaXuKpFO2dYyZmbUdXyPt5CLipmLHYGZWykp6RippV0kzJS2UtFjSWEkjJD0kqUbSbEkVqe75kpZKWiTpjlR2oKR5khZIelzSJ1L5mZLulnS/pOcknSfpG6neHyXtnurtK2lW6usRSQObibVS0pzU/wOS9knlkyRduI3zHC+pWlL1pnV1bTV8ZmZGiSdS4BjgxYgYGhGDgVnAtcApETECuJktb3mZCAyPiP2Bc1LZn4BPR8Rw4P8A/7eg7cHAPwMjUxvrUr15wOmpzmRgQurrQuCGZmK9Fpia+r8duKalJxkRkyOiKiKquu9S3tLDzMysBUp9abcW+P+SLgfuA14nS4D3SwLoDqxOdRcBt0u6G7g7lZUDUyUNAAIoK2h7bkS8BbwlqQ74bUGf+0vqBYwGpqe+AHo0E+sossQMcCvww9afrpmZtbWSTqQR8YykA4BjgUuAOcCSiBjVSPXjgEOBE4CLJA0BfkCWML8gqZKtX9K9oWB7c8HnzWTj3g14IyKGtdkJmZlZhyvppV1JHyZbcr0NuAL4FNBH0qi0v0zSIEndgL0jYi7wbbKZaK/0e1Vq7szW9B0RbwIrJI1JfUnS0GYOeRz4YtoeBzzSmv7MzKx9lPSMFBgCXCFpM7AROBd4B7hGUjnZ+FwFPAPclsoEXBMRb0j6IdnS7sXA9jwuaBxwYzq+DLgDWNhE3QnALZK+CawBvrId/TGkbznVfmqKmVmbUUQUOwbrQFVVVVFdXV3sMMzMOhVJNRFR1di+kl7aNTMzy6vUl3Z3OJIuAsY0KJ4eEZc2Vt/MzIrLiXQHkxKmk6aZWSfhpV0zM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvDXX0pM7ao6Kiduz9MMzayUPOdHibaYZ6RmZmY5OJGamZnl4ERqZmaWgxOpmZlZDk6kBSTtKmmmpIWSFksaK+lISQsk1Uq6WVIPSUdIurvguKMl3dVEm90lTUnt1Ur691T+VUnzU1+/lrRLKp8i6ZSC49cWbH87tbFQ0mWpbF9JsyTVSHpE0sD2Gh8zM3svJ9KtHQO8GBFDI2IwMAuYAoyNiCFkdzmfC8wFBkrqk477CnBzE20OA/pGxODUxi2p/DcRMTIihgLLgLObC0zS54ATgU+lY36Ydk0GJkTECOBC4IZGjh0vqVpS9aZ1ddseBTMzazEn0q3VAkdLulzSp4FKYEVEPJP2TwUOjext6LcCX5b0fmAU8Lsm2nwW+KikayUdA7yZygenGWQtMA4YtI3YjgJuiYh1ABHxmqRewGhguqSngZ8AFQ0PjIjJEVEVEVXddylvyTiYmVkL+XukBSLiGUkHAMcClwBzmql+C/BbYD3Z+0LfaaLN1yUNBT4LnAOcCpxFNtM9KSIWSjoTODwd8g7pPziSugE7NxNDN+CNiBjWkvMzM7O25xlpAUkfBtZFxG3AFWQzzUpJH0tVTgMeAoiIF4EXgYvZslzbWJt7At0i4tep7gFpV29gtaQyshlpveeAEWn780BZ2r4f+ErBtdTdI+JNYIWkMalMKWmbmVkH8Yx0a0OAKyRtBjaSXQ8tJ1s63QmYD9xUUP92oE9ELGumzb7ALWl2CfAf6fd3gSeANel371T+U+AeSQvJrtG+DRARsyQNA6ol/QP4L+A7ZEn4RkkXkyXdO4CF23n+ZmbWSsou99n2kHQdsCAifl7sWFqqqqoqqqurix2GmVmnIqkmIqoa2+cZ6XaSVEM2W7yg2LGYmVnxOJFup/R1k61IegLo0aD4tIio7ZiozMysozmRtqGI+FSxYzAzs47lu3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWZdzHOXHVfsEIrGM1IzM7McnEjNzMxycCI1MzPLwYm0lSSdLmmRpIWSbpV0gqQnJC2Q9AdJe0nqJunPkvqkY7pJ+oukPunn15Lmp5+DU51Jkm6W9KCkZyWdn8orJS2T9FNJSyT9XtL70r59Jc2SVCPpEUkDizcyZmalyYm0FSQNAi4GjoiIocDXgEeBgyJiONlLtb8VEZuB28heug1wFLAwItYAVwM/joiRwMnAzwq6GAh8FjgQ+J6kslQ+ALg+IgYBb6TjACYDE9KbaC4Ebmgi7vGSqiVVb1pXl3sczMxsC9+12zpHANMj4hWAiHhN0hDgTkkVwM7AilT3ZuAe4CrgLOCWVH4UsJ+k+jZ3k9Qrbc+MiA3ABkkvA3ul8hUR8XTargEq0zGjgekFbTV8hRspzslkSZceFQP8JnczszbkRJrftcCVEXGvpMOBSQAR8YKklyQdQTbDrJ+ddiObwa4vbCQlww0FRZvY8ufTsPx9qZ03ImJYm56NmZm1ipd2W2cOMEbSHgCSdgfKgVVp/xkN6v+MbIl3ekRsSmW/BybUV5C0XYkwIt4EVkgak9qRpKHb05aZmW0/J9JWiIglwKXAQ5IWAleSzUCnS6oBXmlwyL1AL7Ys6wKcD1SlG5aWAufkCGkccHaKZQlwYo62zMxsOyjCl8zai6QqshuLPl3sWOr1qBgQFWdcVewwzKyL6epPNpJUExFVje3zNdJ2ImkicC5bro3uEIb0Lae6i/+FNzPrSF7abScRcVlEfCQiHi12LGZm1n6cSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvAjAktM7ao6KifOLHYYZlYCuvrzd+t5RmpmZpaDE2mRSaqUtDhtHy7pvrT9+fTgezMz24F5aXcHFRH3kr3P1MzMdmCekeYkaVdJMyUtlLRY0lhJIyU9nsqelNQ7zTwfkfRU+hm9jXbPlHRd2q6UNCe9DPwBSfuk8imSrkl9PSvplI44ZzMz28Iz0vyOAV6MiOMAJJUDC4CxETFf0m7A34GXgaMjYr2kAcCvgEZfEtuIa4GpETFV0lnANcBJaV8FcAgwkGwGO6PhwZLGA+MBuu/WZ/vO0szMGuUZaX61wNGSLpf0aWAfYHVEzAeIiDcj4h2gDPippFpgOrBfK/oYBfwybd9Kljjr3R0RmyNiKbBXYwdHxOSIqIqIqu67lLfq5MzMrHmekeYUEc9IOgA4FrgEmNNE1X8HXgKGkv0HZn0bhbChYFtt1KaZmbWQZ6Q5SfowsC4ibgOuAD4FVEgamfb3lrQTUE42U90MnAZ0b0U3jwNfTNvjgEfaKn4zM8vHM9L8hgBXSNoMbATOJZsZXivpfWTXR48CbgB+Lel0YBbwdiv6mADcIumbwBrgK20Yv5mZ5aCIKHYM1oF6VAyIijOuKnYYZlYCutKTjSTVRESjN4h6RlpihvQtp7oL/eU2Mys2XyM1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBTzYqMbWr6qicOLPYYZiZdaj2fFyhZ6RmZmY5OJGamZnl4ETaSUg6U9J1afuc9Do2MzMrMl8j7QTSi8HfFRE3FSsWMzPbmhNpB5L0XeDLZC/nfgGoAeqA8cDOwF+A0yJinaQpwHpgOPAYsKignUnA2oj4kaSPATcBfYBNwJiI+GtHnZOZWanz0m4HkTQSOBkYCnwOqH9B7G8iYmREDAWWAWcXHNYPGB0R32im6duB69Pxo4HVjfQ9XlK1pOpN6+ra4GzMzKyeZ6Qd52DgnohYD6yX9NtUPljSJcD7gV7A7IJjpkfEpqYalNQb6BsRdwGktt8jIiYDkwF6VAyI3GdiZmbv8oy0+KYA50XEEOD7QM+CfW8XJSIzM2sxJ9KO8xhwgqSeknoBx6fy3sBqSWXAuNY0GBFvASslnQQgqYekXdoyaDMza54TaQeJiPnAvWQ3Df0OqCW70ei7wBNkifZP29H0acD5khYBjwMfapOAzcysRRThS2YdRVKviFibZo0PA+Mj4qmOjKGqqiqqq6s7skszs05PUk1EVDW2zzcbdazJkvYjuw46taOTqJmZtT0n0g4UEV8qdgxmZta2fI3UzMwsBydSMzOzHJxIzczMcvBduyVG0lvA8mLHsQPZE3il2EHsQDweW3gstlbq4/GRiOjT2A7fbFR6ljd1C3cpklTt8djC47GFx2JrHo+meWnXzMwsBydSMzOzHJxIS8/kYgewg/F4bM3jsYXHYmsejyb4ZiMzM7McPCM1MzPLwYnUzMwsByfSEiLpGEnLJf1F0sRix9MRJN0s6WVJiwvKdpd0v6Q/p98fSOWSdE0an0WSDihe5G1P0t6S5kpaKmmJpK+l8pIbj/Re4CclLUxj8f1U3l/SE+mc75S0cyrvkT7/Je2vLLtjiJIAAALmSURBVGb87UVSd0kLJN2XPpf0eLSUE2mJkNQduB74HLAf8C/pTTRd3RTgmAZlE4EHImIA8ED6DNnYDEg/44EbOyjGjvIOcEFE7AccBPxb+jtQiuOxATgiIoYCw4BjJB0EXA78OCI+BrwOnJ3qnw28nsp/nOp1RV8DlhV8LvXxaBEn0tJxIPCXiHg2Iv4B3AGcWOSY2l1EPAy81qD4RGBq2p4KnFRQ/ovI/BF4v6SKjom0/UXE6vpX90XEW2T/YPalBMcjndPa9LEs/QRwBDAjlTcci/oxmgEcKUkdFG6HkNQPOA74WfosSng8WsOJtHT0BV4o+LwylZWivSJiddr+G7BX2i6ZMUpLccOBJyjR8UjLmE8DLwP3A38F3oiId1KVwvN9dyzS/jpgj46NuN1dBXwL2Jw+70Fpj0eLOZFaSYvs+18l9R0wSb2AXwNfj4g3C/eV0nhExKaIGAb0I1uxGVjkkIpG0vHAyxFRU+xYOiMn0tKxCti74HO/VFaKXqpfoky/X07lXX6MJJWRJdHbI+I3qbhkxwMgIt4A5gKjyJav659BXni+745F2l8OvNrBobang4HPS3qO7LLPEcDVlO54tIoTaemYDwxId+HtDHwRuLfIMRXLvcAZafsM4J6C8tPT3aoHAXUFS56dXrqG9XNgWURcWbCr5MZDUh9J70/b7wOOJrtmPBc4JVVrOBb1Y3QKMCe60NNsIuI/IqJfRFSS/dswJyLGUaLj0Vp+slEJkXQs2XWQ7sDNEXFpkUNqd5J+BRxO9gqol4DvAXcD04B9gOeBUyPitZRoriO7y3cd8JWIqC5G3O1B0iHAI0AtW66DfYfsOmlJjYek/clululONqGYFhH/KemjZDOy3YEFwJcjYoOknsCtZNeVXwO+GBHPFif69iXpcODCiDje49EyTqRmZmY5eGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHL4Hx9S2FkSapv/AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "korean_ingredient_df = create_ingredient_df(korean_df)\r\n", + "korean_ingredient_df.head(10).plot.barh()" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      00000000000...0000000000
                      11000000000...0000000000
                      20000000000...0000000000
                      30000000000...0000000000
                      40000000000...0000000010
                      \n

                      5 rows × 380 columns

                      \n
                      " + }, + "metadata": {}, + "execution_count": 15 + } + ], + "source": [ + "feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1)\n", + "labels_df = df.cuisine #.unique()\n", + "feature_df.head()\n" + ] + }, + { + "source": [ + "Équilibrez les données avec le suréchantillonnage SMOTE jusqu'à la classe la plus élevée. En savoir plus ici : https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "oversample = SMOTE()\n", + "transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "new label count: korean 799\nchinese 799\njapanese 799\nindian 799\nthai 799\nName: cuisine, dtype: int64\nold label count: korean 799\nindian 598\nchinese 442\njapanese 320\nthai 289\nName: cuisine, dtype: int64\n" + ] + } + ], + "source": [ + "print(f'new label count: {transformed_label_df.value_counts()}')\r\n", + "print(f'old label count: {df.cuisine.value_counts()}')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      00000000000...0000000000
                      11000000000...0000000000
                      20000000000...0000000000
                      30000000000...0000000000
                      40000000000...0000000010
                      \n

                      5 rows × 380 columns

                      \n
                      " + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "transformed_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy \\\n", + "0 indian 0 0 0 0 0 0 \n", + "1 indian 1 0 0 0 0 0 \n", + "2 indian 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 thai 0 0 0 0 0 0 \n", + "3991 thai 0 0 0 0 0 0 \n", + "3992 thai 0 0 0 0 0 0 \n", + "3993 thai 0 0 0 0 0 0 \n", + "3994 thai 0 0 0 0 0 0 \n", + "\n", + " apricot armagnac artemisia ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 ... 0 0 0 \n", + "3991 0 0 0 ... 0 0 0 \n", + "3992 0 0 0 ... 0 0 0 \n", + "3993 0 0 0 ... 0 0 0 \n", + "3994 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 0 0 0 0 \n", + "3991 0 0 0 0 0 0 0 \n", + "3992 0 0 0 0 0 0 0 \n", + "3993 0 0 0 0 0 0 0 \n", + "3994 0 0 0 0 0 0 0 \n", + "\n", + "[3995 rows x 381 columns]" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisia...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      0indian000000000...0000000000
                      1indian100000000...0000000000
                      2indian000000000...0000000000
                      3indian000000000...0000000000
                      4indian000000000...0000000010
                      ..................................................................
                      3990thai000000000...0000000000
                      3991thai000000000...0000000000
                      3992thai000000000...0000000000
                      3993thai000000000...0000000000
                      3994thai000000000...0000000000
                      \n

                      3995 rows × 381 columns

                      \n
                      " + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "# export transformed data to new df for classification\n", + "transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer')\n", + "transformed_df" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 3995 entries, 0 to 3994\nColumns: 381 entries, cuisine to zucchini\ndtypes: int64(380), object(1)\nmemory usage: 11.6+ MB\n" + ] + } + ], + "source": [ + "transformed_df.info()" + ] + }, + { + "source": [ + "Enregistrez le fichier pour une utilisation future\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "transformed_df.to_csv(\"../../data/cleaned_cuisines.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "1da12ed6d238756959b8de9cac2a35a2", + "translation_date": "2025-09-04T02:40:28+00:00", + "source_file": "4-Classification/1-Introduction/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/fr/4-Classification/2-Classifiers-1/README.md b/translations/fr/4-Classification/2-Classifiers-1/README.md new file mode 100644 index 000000000..26a79cbb6 --- /dev/null +++ b/translations/fr/4-Classification/2-Classifiers-1/README.md @@ -0,0 +1,253 @@ + +# Classificateurs de cuisine 1 + +Dans cette leçon, vous utiliserez le jeu de données que vous avez sauvegardé lors de la dernière leçon, rempli de données équilibrées et propres sur les cuisines. + +Vous utiliserez ce jeu de données avec une variété de classificateurs pour _prédire une cuisine nationale donnée en fonction d'un groupe d'ingrédients_. En le faisant, vous en apprendrez davantage sur certaines des façons dont les algorithmes peuvent être utilisés pour des tâches de classification. + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/) +# Préparation + +En supposant que vous avez terminé [Leçon 1](../1-Introduction/README.md), assurez-vous qu'un fichier _cleaned_cuisines.csv_ existe dans le dossier racine `/data` pour ces quatre leçons. + +## Exercice - prédire une cuisine nationale + +1. En travaillant dans le dossier _notebook.ipynb_ de cette leçon, importez ce fichier ainsi que la bibliothèque Pandas : + + ```python + import pandas as pd + cuisines_df = pd.read_csv("../data/cleaned_cuisines.csv") + cuisines_df.head() + ``` + + Les données ressemblent à ceci : + +| | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | +| 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + + +1. Maintenant, importez plusieurs autres bibliothèques : + + ```python + from sklearn.linear_model import LogisticRegression + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + from sklearn.svm import SVC + import numpy as np + ``` + +1. Divisez les coordonnées X et y en deux dataframes pour l'entraînement. `cuisine` peut être le dataframe des étiquettes : + + ```python + cuisines_label_df = cuisines_df['cuisine'] + cuisines_label_df.head() + ``` + + Cela ressemblera à ceci : + + ```output + 0 indian + 1 indian + 2 indian + 3 indian + 4 indian + Name: cuisine, dtype: object + ``` + +1. Supprimez la colonne `Unnamed: 0` et la colonne `cuisine` en appelant `drop()`. Sauvegardez le reste des données comme caractéristiques entraînables : + + ```python + cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) + cuisines_feature_df.head() + ``` + + Vos caractéristiques ressemblent à ceci : + +| | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| ---: | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: | +| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | + +Vous êtes maintenant prêt à entraîner votre modèle ! + +## Choisir votre classificateur + +Maintenant que vos données sont propres et prêtes pour l'entraînement, vous devez décider quel algorithme utiliser pour la tâche. + +Scikit-learn regroupe la classification sous l'apprentissage supervisé, et dans cette catégorie, vous trouverez de nombreuses façons de classifier. [La variété](https://scikit-learn.org/stable/supervised_learning.html) peut sembler déroutante au premier abord. Les méthodes suivantes incluent toutes des techniques de classification : + +- Modèles linéaires +- Machines à vecteurs de support +- Descente de gradient stochastique +- Plus proches voisins +- Processus gaussiens +- Arbres de décision +- Méthodes d'ensemble (classificateur par vote) +- Algorithmes multiclasses et multi-sorties (classification multiclasses et multi-étiquettes, classification multiclasses-multi-sorties) + +> Vous pouvez également utiliser [les réseaux neuronaux pour classifier des données](https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification), mais cela dépasse le cadre de cette leçon. + +### Quel classificateur choisir ? + +Alors, quel classificateur devriez-vous choisir ? Souvent, tester plusieurs et chercher un bon résultat est une façon de procéder. Scikit-learn propose une [comparaison côte à côte](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html) sur un jeu de données créé, comparant KNeighbors, SVC de deux façons, GaussianProcessClassifier, DecisionTreeClassifier, RandomForestClassifier, MLPClassifier, AdaBoostClassifier, GaussianNB et QuadraticDiscriminationAnalysis, montrant les résultats visualisés : + +![comparaison des classificateurs](../../../../translated_images/comparison.edfab56193a85e7fdecbeaa1b1f8c99e94adbf7178bed0de902090cf93d6734f.fr.png) +> Graphiques générés à partir de la documentation de Scikit-learn + +> AutoML résout ce problème de manière élégante en exécutant ces comparaisons dans le cloud, vous permettant de choisir le meilleur algorithme pour vos données. Essayez-le [ici](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott) + +### Une meilleure approche + +Une meilleure façon que de deviner au hasard est de suivre les idées de cette [fiche pratique ML téléchargeable](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott). Ici, nous découvrons que, pour notre problème multiclasses, nous avons quelques choix : + +![fiche pratique pour les problèmes multiclasses](../../../../translated_images/cheatsheet.07a475ea444d22234cb8907a3826df5bdd1953efec94bd18e4496f36ff60624a.fr.png) +> Une section de la fiche pratique des algorithmes de Microsoft, détaillant les options de classification multiclasses + +✅ Téléchargez cette fiche pratique, imprimez-la et accrochez-la sur votre mur ! + +### Raisonnement + +Voyons si nous pouvons raisonner sur différentes approches données les contraintes que nous avons : + +- **Les réseaux neuronaux sont trop lourds**. Étant donné notre jeu de données propre mais minimal, et le fait que nous exécutons l'entraînement localement via des notebooks, les réseaux neuronaux sont trop lourds pour cette tâche. +- **Pas de classificateur à deux classes**. Nous n'utilisons pas de classificateur à deux classes, ce qui exclut le one-vs-all. +- **Un arbre de décision ou une régression logistique pourrait fonctionner**. Un arbre de décision pourrait fonctionner, ou une régression logistique pour des données multiclasses. +- **Les arbres de décision boostés multiclasses résolvent un problème différent**. L'arbre de décision boosté multiclasses est le plus adapté aux tâches non paramétriques, par exemple les tâches conçues pour établir des classements, donc il n'est pas utile pour nous. + +### Utiliser Scikit-learn + +Nous utiliserons Scikit-learn pour analyser nos données. Cependant, il existe de nombreuses façons d'utiliser la régression logistique dans Scikit-learn. Consultez les [paramètres à passer](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression). + +Essentiellement, il y a deux paramètres importants - `multi_class` et `solver` - que nous devons spécifier lorsque nous demandons à Scikit-learn d'effectuer une régression logistique. La valeur de `multi_class` applique un certain comportement. La valeur du solver correspond à l'algorithme à utiliser. Tous les solveurs ne peuvent pas être associés à toutes les valeurs de `multi_class`. + +Selon la documentation, dans le cas multiclasses, l'algorithme d'entraînement : + +- **Utilise le schéma one-vs-rest (OvR)**, si l'option `multi_class` est définie sur `ovr` +- **Utilise la perte d'entropie croisée**, si l'option `multi_class` est définie sur `multinomial`. (Actuellement, l'option `multinomial` est prise en charge uniquement par les solveurs ‘lbfgs’, ‘sag’, ‘saga’ et ‘newton-cg’.)" + +> 🎓 Le 'schéma' ici peut être 'ovr' (one-vs-rest) ou 'multinomial'. Étant donné que la régression logistique est vraiment conçue pour prendre en charge la classification binaire, ces schémas lui permettent de mieux gérer les tâches de classification multiclasses. [source](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/) + +> 🎓 Le 'solver' est défini comme "l'algorithme à utiliser dans le problème d'optimisation". [source](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression). + +Scikit-learn propose ce tableau pour expliquer comment les solveurs gèrent les différents défis présentés par les différentes structures de données : + +![solveurs](../../../../translated_images/solvers.5fc648618529e627dfac29b917b3ccabda4b45ee8ed41b0acb1ce1441e8d1ef1.fr.png) + +## Exercice - diviser les données + +Nous pouvons nous concentrer sur la régression logistique pour notre premier essai d'entraînement, puisque vous avez récemment appris à ce sujet dans une leçon précédente. +Divisez vos données en groupes d'entraînement et de test en appelant `train_test_split()` : + +```python +X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) +``` + +## Exercice - appliquer la régression logistique + +Étant donné que vous utilisez le cas multiclasses, vous devez choisir quel _schéma_ utiliser et quel _solver_ définir. Utilisez LogisticRegression avec un paramètre multiclasses et le solveur **liblinear** pour entraîner. + +1. Créez une régression logistique avec multi_class défini sur `ovr` et le solveur défini sur `liblinear` : + + ```python + lr = LogisticRegression(multi_class='ovr',solver='liblinear') + model = lr.fit(X_train, np.ravel(y_train)) + + accuracy = model.score(X_test, y_test) + print ("Accuracy is {}".format(accuracy)) + ``` + + ✅ Essayez un solveur différent comme `lbfgs`, qui est souvent défini par défaut +> Remarque, utilisez la fonction Pandas [`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html) pour aplatir vos données si nécessaire. +La précision est bonne à plus de **80 %** ! + +1. Vous pouvez voir ce modèle en action en testant une ligne de données (#50) : + + ```python + print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}') + print(f'cuisine: {y_test.iloc[50]}') + ``` + + Le résultat est affiché : + + ```output + ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object') + cuisine: indian + ``` + + ✅ Essayez un autre numéro de ligne et vérifiez les résultats. + +1. En approfondissant, vous pouvez vérifier la précision de cette prédiction : + + ```python + test= X_test.iloc[50].values.reshape(-1, 1).T + proba = model.predict_proba(test) + classes = model.classes_ + resultdf = pd.DataFrame(data=proba, columns=classes) + + topPrediction = resultdf.T.sort_values(by=[0], ascending = [False]) + topPrediction.head() + ``` + + Le résultat est affiché - la cuisine indienne est sa meilleure supposition, avec une bonne probabilité : + + | | 0 | + | -------: | -------: | + | indian | 0.715851 | + | chinese | 0.229475 | + | japanese | 0.029763 | + | korean | 0.017277 | + | thai | 0.007634 | + + ✅ Pouvez-vous expliquer pourquoi le modèle est assez sûr qu'il s'agit d'une cuisine indienne ? + +1. Obtenez plus de détails en affichant un rapport de classification, comme vous l'avez fait dans les leçons sur la régression : + + ```python + y_pred = model.predict(X_test) + print(classification_report(y_test,y_pred)) + ``` + + | | précision | rappel | f1-score | support | + | ------------ | --------- | ------ | -------- | ------- | + | chinese | 0.73 | 0.71 | 0.72 | 229 | + | indian | 0.91 | 0.93 | 0.92 | 254 | + | japanese | 0.70 | 0.75 | 0.72 | 220 | + | korean | 0.86 | 0.76 | 0.81 | 242 | + | thai | 0.79 | 0.85 | 0.82 | 254 | + | précision | 0.80 | 1199 | | | + | moyenne macro| 0.80 | 0.80 | 0.80 | 1199 | + | moyenne pondérée | 0.80 | 0.80 | 0.80 | 1199 | + +## 🚀Défi + +Dans cette leçon, vous avez utilisé vos données nettoyées pour construire un modèle d'apprentissage automatique capable de prédire une cuisine nationale en fonction d'une série d'ingrédients. Prenez le temps de parcourir les nombreuses options que Scikit-learn propose pour classifier les données. Approfondissez le concept de 'solver' pour comprendre ce qui se passe en coulisses. + +## [Quiz après la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/22/) + +## Révision & Étude personnelle + +Approfondissez un peu plus les mathématiques derrière la régression logistique dans [cette leçon](https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf) +## Devoir + +[Étudiez les solvers](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/4-Classification/2-Classifiers-1/assignment.md b/translations/fr/4-Classification/2-Classifiers-1/assignment.md new file mode 100644 index 000000000..0a8f8b140 --- /dev/null +++ b/translations/fr/4-Classification/2-Classifiers-1/assignment.md @@ -0,0 +1,23 @@ + +# Étudiez les solveurs +## Instructions + +Dans cette leçon, vous avez appris à connaître les différents solveurs qui associent des algorithmes à un processus d'apprentissage automatique pour créer un modèle précis. Parcourez les solveurs mentionnés dans la leçon et choisissez-en deux. Avec vos propres mots, comparez et opposez ces deux solveurs. Quel type de problème abordent-ils ? Comment fonctionnent-ils avec différentes structures de données ? Pourquoi choisiriez-vous l'un plutôt que l'autre ? +## Grille d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ---------------------------------------------------------------------------------------------- | ------------------------------------------------ | ---------------------------- | +| | Un fichier .doc est présenté avec deux paragraphes, chacun sur un solveur, les comparant de manière réfléchie. | Un fichier .doc est présenté avec seulement un paragraphe | Le devoir est incomplet | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/4-Classification/2-Classifiers-1/notebook.ipynb b/translations/fr/4-Classification/2-Classifiers-1/notebook.ipynb new file mode 100644 index 000000000..d7e586f9f --- /dev/null +++ b/translations/fr/4-Classification/2-Classifiers-1/notebook.ipynb @@ -0,0 +1,41 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "68829b06b4dcd512d3327849191f4d7f", + "translation_date": "2025-09-04T02:22:31+00:00", + "source_file": "4-Classification/2-Classifiers-1/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Construire des modèles de classification\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/4-Classification/2-Classifiers-1/solution/Julia/README.md b/translations/fr/4-Classification/2-Classifiers-1/solution/Julia/README.md new file mode 100644 index 000000000..48f012f59 --- /dev/null +++ b/translations/fr/4-Classification/2-Classifiers-1/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb b/translations/fr/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb new file mode 100644 index 000000000..5efc015e7 --- /dev/null +++ b/translations/fr/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb @@ -0,0 +1,1298 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_11-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "6ea6a5171b1b99b7b5a55f7469c048d2", + "translation_date": "2025-09-04T02:24:35+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb", + "language_code": "fr" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Construire un modèle de classification : Délicieuses cuisines asiatiques et indiennes\n" + ], + "metadata": { + "id": "zs2woWv_HoE8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Classificateurs de cuisine 1\n", + "\n", + "Dans cette leçon, nous allons explorer une variété de classificateurs pour *prédire une cuisine nationale donnée en fonction d'un groupe d'ingrédients.* Ce faisant, nous découvrirons certaines des façons dont les algorithmes peuvent être utilisés pour des tâches de classification.\n", + "\n", + "### [**Quiz avant le cours**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/)\n", + "\n", + "### **Préparation**\n", + "\n", + "Cette leçon s'appuie sur notre [leçon précédente](https://github.com/microsoft/ML-For-Beginners/blob/main/4-Classification/1-Introduction/solution/lesson_10-R.ipynb) où nous avons :\n", + "\n", + "- Fait une introduction douce aux classifications en utilisant un jeu de données sur toutes les brillantes cuisines d'Asie et d'Inde 😋.\n", + "\n", + "- Exploré quelques [verbes dplyr](https://dplyr.tidyverse.org/) pour préparer et nettoyer nos données.\n", + "\n", + "- Réalisé de belles visualisations avec ggplot2.\n", + "\n", + "- Montré comment gérer des données déséquilibrées en les prétraitant avec [recipes](https://recipes.tidymodels.org/articles/Simple_Example.html).\n", + "\n", + "- Démontré comment `prep` et `bake` notre recette pour confirmer qu'elle fonctionne comme prévu.\n", + "\n", + "#### **Prérequis**\n", + "\n", + "Pour cette leçon, nous aurons besoin des packages suivants pour nettoyer, préparer et visualiser nos données :\n", + "\n", + "- `tidyverse` : Le [tidyverse](https://www.tidyverse.org/) est une [collection de packages R](https://www.tidyverse.org/packages) conçue pour rendre la science des données plus rapide, plus facile et plus amusante !\n", + "\n", + "- `tidymodels` : Le framework [tidymodels](https://www.tidymodels.org/) est une [collection de packages](https://www.tidymodels.org/packages/) pour la modélisation et l'apprentissage automatique.\n", + "\n", + "- `themis` : Le package [themis](https://themis.tidymodels.org/) fournit des étapes supplémentaires pour les recettes afin de gérer les données déséquilibrées.\n", + "\n", + "- `nnet` : Le package [nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf) propose des fonctions pour estimer des réseaux de neurones à propagation avant avec une seule couche cachée, ainsi que des modèles de régression logistique multinomiale.\n", + "\n", + "Vous pouvez les installer comme suit :\n" + ], + "metadata": { + "id": "iDFOb3ebHwQC" + } + }, + { + "cell_type": "markdown", + "source": [ + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "Alternativement, le script ci-dessous vérifie si vous avez les packages nécessaires pour compléter ce module et les installe pour vous s'ils sont manquants.\n" + ], + "metadata": { + "id": "4V85BGCjII7F" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, themis, here)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "an5NPyyKIKNR", + "outputId": "834d5e74-f4b8-49f9-8ab5-4c52ff2d7bc8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. Divisez les données en ensembles d'entraînement et de test.\n", + "\n", + "Commençons par reprendre quelques étapes de notre leçon précédente.\n", + "\n", + "### Supprimez les ingrédients les plus courants qui créent de la confusion entre les cuisines distinctes, en utilisant `dplyr::select()`.\n", + "\n", + "Tout le monde adore le riz, l'ail et le gingembre !\n" + ], + "metadata": { + "id": "0ax9GQLBINVv" + } + }, + { + "cell_type": "code", + "execution_count": 3, + "source": [ + "# Load the original cuisines data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger)) %>%\r\n", + " # Encode cuisine column as categorical\r\n", + " mutate(cuisine = factor(cuisine))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Display distribution of cuisines\r\n", + "df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "New names:\n", + "* `` -> ...1\n", + "\n", + "\u001b[1m\u001b[1mRows: \u001b[1m\u001b[22m\u001b[34m\u001b[34m2448\u001b[34m\u001b[39m \u001b[1m\u001b[1mColumns: \u001b[1m\u001b[22m\u001b[34m\u001b[34m385\u001b[34m\u001b[39m\n", + "\n", + "\u001b[36m──\u001b[39m \u001b[1m\u001b[1mColumn specification\u001b[1m\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", + "\u001b[1mDelimiter:\u001b[22m \",\"\n", + "\u001b[31mchr\u001b[39m (1): cuisine\n", + "\u001b[32mdbl\u001b[39m (384): ...1, almond, angelica, anise, anise_seed, apple, apple_brandy, a...\n", + "\n", + "\n", + "\u001b[36mℹ\u001b[39m Use \u001b[30m\u001b[47m\u001b[30m\u001b[47m`spec()`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to retrieve the full column specification for this data.\n", + "\u001b[36mℹ\u001b[39m Specify the column types or set \u001b[30m\u001b[47m\u001b[30m\u001b[47m`show_col_types = FALSE`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to quiet this message.\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 indian 0 0 0 0 0 0 0 0 \n", + "2 indian 1 0 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 0 0 \n", + "5 indian 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 0 0 \n", + "2 0 ⋯ 0 0 0 0 0 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 1 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                      A tibble: 5 × 381
                      cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      <fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
                      indian0000000000000000000
                      indian1000000000000000000
                      indian0000000000000000000
                      indian0000000000000000000
                      indian0000000000000000010
                      \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 799\n", + "2 indian 598\n", + "3 chinese 442\n", + "4 japanese 320\n", + "5 thai 289" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 799 |\n", + "| indian | 598 |\n", + "| chinese | 442 |\n", + "| japanese | 320 |\n", + "| thai | 289 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 799\\\\\n", + "\t indian & 598\\\\\n", + "\t chinese & 442\\\\\n", + "\t japanese & 320\\\\\n", + "\t thai & 289\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                      A tibble: 5 × 2
                      cuisinen
                      <fct><int>
                      korean 799
                      indian 598
                      chinese 442
                      japanese320
                      thai 289
                      \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 735 + }, + "id": "jhCrrH22IWVR", + "outputId": "d444a85c-1d8b-485f-bc4f-8be2e8f8217c" + } + }, + { + "cell_type": "markdown", + "source": [ + "Parfait ! Maintenant, il est temps de diviser les données de manière à ce que 70 % des données soient utilisées pour l'entraînement et 30 % pour les tests. Nous appliquerons également une technique de `stratification` lors de la division des données afin de `maintenir la proportion de chaque cuisine` dans les ensembles de données d'entraînement et de validation.\n", + "\n", + "[rsample](https://rsample.tidymodels.org/), un package de Tidymodels, offre une infrastructure pour une division et un échantillonnage efficaces des données :\n" + ], + "metadata": { + "id": "AYTjVyajIdny" + } + }, + { + "cell_type": "code", + "execution_count": 4, + "source": [ + "# Load the core Tidymodels packages into R session\r\n", + "library(tidymodels)\r\n", + "\r\n", + "# Create split specification\r\n", + "set.seed(2056)\r\n", + "cuisines_split <- initial_split(data = df_select,\r\n", + " strata = cuisine,\r\n", + " prop = 0.7)\r\n", + "\r\n", + "# Extract the data in each split\r\n", + "cuisines_train <- training(cuisines_split)\r\n", + "cuisines_test <- testing(cuisines_split)\r\n", + "\r\n", + "# Print the number of cases in each split\r\n", + "cat(\"Training cases: \", nrow(cuisines_train), \"\\n\",\r\n", + " \"Test cases: \", nrow(cuisines_test), sep = \"\")\r\n", + "\r\n", + "# Display the first few rows of the training set\r\n", + "cuisines_train %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Display distribution of cuisines in the training set\r\n", + "cuisines_train %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training cases: 1712\n", + "Test cases: 736" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 chinese 0 0 0 0 0 0 0 0 \n", + "2 chinese 0 0 0 0 0 0 0 0 \n", + "3 chinese 0 0 0 0 0 0 0 0 \n", + "4 chinese 0 0 0 0 0 0 0 0 \n", + "5 chinese 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 1 0 \n", + "2 0 ⋯ 0 0 0 0 1 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 0 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                      A tibble: 5 × 381
                      cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      <fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
                      chinese0000000000000100000
                      chinese0000000000000100000
                      chinese0000000000000000000
                      chinese0000000000000000000
                      chinese0000000000000000000
                      \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 559\n", + "2 indian 418\n", + "3 chinese 309\n", + "4 japanese 224\n", + "5 thai 202" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 559 |\n", + "| indian | 418 |\n", + "| chinese | 309 |\n", + "| japanese | 224 |\n", + "| thai | 202 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 559\\\\\n", + "\t indian & 418\\\\\n", + "\t chinese & 309\\\\\n", + "\t japanese & 224\\\\\n", + "\t thai & 202\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                      A tibble: 5 × 2
                      cuisinen
                      <fct><int>
                      korean 559
                      indian 418
                      chinese 309
                      japanese224
                      thai 202
                      \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 535 + }, + "id": "w5FWIkEiIjdN", + "outputId": "2e195fd9-1a8f-4b91-9573-cce5582242df" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. Gérer les données déséquilibrées\n", + "\n", + "Comme vous avez peut-être remarqué dans le jeu de données original ainsi que dans notre ensemble d'entraînement, il y a une distribution assez inégale dans le nombre de cuisines. Les cuisines coréennes sont *presque* 3 fois plus nombreuses que les cuisines thaïlandaises. Les données déséquilibrées ont souvent des effets négatifs sur les performances du modèle. De nombreux modèles fonctionnent mieux lorsque le nombre d'observations est équilibré et, par conséquent, ont tendance à rencontrer des difficultés avec des données déséquilibrées.\n", + "\n", + "Il existe principalement deux façons de gérer des ensembles de données déséquilibrés :\n", + "\n", + "- ajouter des observations à la classe minoritaire : `Sur-échantillonnage`, par exemple en utilisant un algorithme SMOTE qui génère de manière synthétique de nouveaux exemples de la classe minoritaire en utilisant les plus proches voisins de ces cas.\n", + "\n", + "- supprimer des observations de la classe majoritaire : `Sous-échantillonnage`\n", + "\n", + "Dans notre leçon précédente, nous avons démontré comment gérer des ensembles de données déséquilibrés en utilisant une `recette`. Une recette peut être considérée comme un plan décrivant les étapes à appliquer à un ensemble de données pour le préparer à l'analyse. Dans notre cas, nous souhaitons obtenir une distribution égale du nombre de nos cuisines pour notre `ensemble d'entraînement`. Passons directement à la pratique.\n" + ], + "metadata": { + "id": "daBi9qJNIwqW" + } + }, + { + "cell_type": "code", + "execution_count": 5, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing training data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "# Print recipe\r\n", + "cuisines_recipe" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Data Recipe\n", + "\n", + "Inputs:\n", + "\n", + " role #variables\n", + " outcome 1\n", + " predictor 380\n", + "\n", + "Operations:\n", + "\n", + "SMOTE based on cuisine" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 200 + }, + "id": "Az6LFBGxI1X0", + "outputId": "29d71d85-64b0-4e62-871e-bcd5398573b6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Vous pouvez bien sûr confirmer (en utilisant prep+bake) que la recette fonctionnera comme prévu - toutes les étiquettes de cuisine ayant `559` observations.\n", + "\n", + "Étant donné que nous utiliserons cette recette comme préprocesseur pour la modélisation, un `workflow()` effectuera tout le travail de préparation et de cuisson pour nous, donc nous n'aurons pas à estimer manuellement la recette.\n", + "\n", + "Nous sommes maintenant prêts à entraîner un modèle 👩‍💻👨‍💻 !\n", + "\n", + "## 3. Choisir votre classificateur\n", + "\n", + "

                      \n", + " \n", + "

                      Illustration par @allison_horst
                      \n" + ], + "metadata": { + "id": "NBL3PqIWJBBB" + } + }, + { + "cell_type": "markdown", + "source": [ + "Maintenant, nous devons décider quel algorithme utiliser pour cette tâche 🤔.\n", + "\n", + "Dans Tidymodels, le [`package parsnip`](https://parsnip.tidymodels.org/index.html) offre une interface cohérente pour travailler avec des modèles à travers différents moteurs (packages). Veuillez consulter la documentation de parsnip pour explorer les [types de modèles et moteurs](https://www.tidymodels.org/find/parsnip/#models) ainsi que leurs [arguments de modèles correspondants](https://www.tidymodels.org/find/parsnip/#model-args). La variété peut sembler déroutante au premier abord. Par exemple, les méthodes suivantes incluent toutes des techniques de classification :\n", + "\n", + "- Modèles de classification basés sur des règles C5.0\n", + "\n", + "- Modèles discriminants flexibles\n", + "\n", + "- Modèles discriminants linéaires\n", + "\n", + "- Modèles discriminants régularisés\n", + "\n", + "- Modèles de régression logistique\n", + "\n", + "- Modèles de régression multinomiale\n", + "\n", + "- Modèles de Bayes naïfs\n", + "\n", + "- Machines à vecteurs de support\n", + "\n", + "- Plus proches voisins\n", + "\n", + "- Arbres de décision\n", + "\n", + "- Méthodes d'ensemble\n", + "\n", + "- Réseaux de neurones\n", + "\n", + "Et la liste continue !\n", + "\n", + "### **Quel classifieur choisir ?**\n", + "\n", + "Alors, quel classifieur devriez-vous choisir ? Souvent, tester plusieurs modèles et rechercher un bon résultat est une méthode pour évaluer.\n", + "\n", + "> AutoML résout ce problème de manière élégante en effectuant ces comparaisons dans le cloud, vous permettant de choisir le meilleur algorithme pour vos données. Essayez-le [ici](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)\n", + "\n", + "Le choix du classifieur dépend également de notre problème. Par exemple, lorsque le résultat peut être catégorisé en `plus de deux classes`, comme dans notre cas, vous devez utiliser un `algorithme de classification multiclasses` plutôt qu'une `classification binaire.`\n", + "\n", + "### **Une meilleure approche**\n", + "\n", + "Une meilleure approche que de deviner au hasard est de suivre les idées présentées dans cette [fiche pratique ML téléchargeable](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott). Ici, nous découvrons que, pour notre problème multiclasses, nous avons plusieurs options :\n", + "\n", + "

                      \n", + " \n", + "

                      Une section de la fiche pratique des algorithmes de Microsoft, détaillant les options de classification multiclasses
                      \n" + ], + "metadata": { + "id": "a6DLAZ3vJZ14" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **Raisonnement**\n", + "\n", + "Voyons si nous pouvons réfléchir à différentes approches en fonction des contraintes que nous avons :\n", + "\n", + "- **Les réseaux neuronaux profonds sont trop lourds**. Étant donné notre ensemble de données propre mais minimal, et le fait que nous exécutons l'entraînement localement via des notebooks, les réseaux neuronaux profonds sont trop lourds pour cette tâche.\n", + "\n", + "- **Pas de classificateur à deux classes**. Nous n'utilisons pas de classificateur à deux classes, ce qui exclut l'approche un-contre-tous.\n", + "\n", + "- **Un arbre de décision ou une régression logistique pourraient fonctionner**. Un arbre de décision pourrait convenir, ou une régression multinomiale/régression logistique multiclasses pour des données multiclasses.\n", + "\n", + "- **Les arbres de décision multiclasses boostés résolvent un problème différent**. L'arbre de décision multiclasses boosté est le plus adapté aux tâches non paramétriques, par exemple les tâches conçues pour établir des classements, donc il ne nous est pas utile.\n", + "\n", + "En général, avant de se lancer dans des modèles d'apprentissage automatique plus complexes, comme les méthodes d'ensemble, il est judicieux de construire le modèle le plus simple possible pour avoir une idée de ce qui se passe. Donc, pour cette leçon, nous commencerons par un modèle de `régression multinomiale`.\n", + "\n", + "> La régression logistique est une technique utilisée lorsque la variable de résultat est catégorielle (ou nominale). Pour la régression logistique binaire, le nombre de variables de résultat est de deux, tandis que pour la régression logistique multinomiale, le nombre de variables de résultat est supérieur à deux. Voir [Méthodes de régression avancées](https://bookdown.org/chua/ber642_advanced_regression/multinomial-logistic-regression.html) pour en savoir plus.\n", + "\n", + "## 4. Entraîner et évaluer un modèle de régression logistique multinomiale.\n", + "\n", + "Dans Tidymodels, `parsnip::multinom_reg()` définit un modèle qui utilise des prédicteurs linéaires pour prédire des données multiclasses en utilisant la distribution multinomiale. Consultez `?multinom_reg()` pour découvrir les différentes façons/moteurs que vous pouvez utiliser pour ajuster ce modèle.\n", + "\n", + "Pour cet exemple, nous ajusterons un modèle de régression multinomiale via le moteur par défaut [nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf).\n", + "\n", + "> J'ai choisi une valeur pour `penalty` un peu au hasard. Il existe de meilleures façons de choisir cette valeur, notamment en utilisant la `validation croisée` et en `ajustant` le modèle, ce que nous aborderons plus tard.\n", + ">\n", + "> Consultez [Tidymodels : Commencer](https://www.tidymodels.org/start/tuning/) si vous souhaitez en savoir plus sur l'ajustement des hyperparamètres du modèle.\n" + ], + "metadata": { + "id": "gWMsVcbBJemu" + } + }, + { + "cell_type": "code", + "execution_count": 6, + "source": [ + "# Create a multinomial regression model specification\r\n", + "mr_spec <- multinom_reg(penalty = 1) %>% \r\n", + " set_engine(\"nnet\", MaxNWts = 2086) %>% \r\n", + " set_mode(\"classification\")\r\n", + "\r\n", + "# Print model specification\r\n", + "mr_spec" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 166 + }, + "id": "Wq_fcyQiJvfG", + "outputId": "c30449c7-3864-4be7-f810-72a003743e2d" + } + }, + { + "cell_type": "markdown", + "source": [ + "Excellent travail 🥳 ! Maintenant que nous avons une recette et une spécification de modèle, nous devons trouver un moyen de les regrouper dans un objet qui prétraitera d'abord les données, puis ajustera le modèle sur les données prétraitées, tout en permettant également des activités de post-traitement potentielles. Dans Tidymodels, cet objet pratique s'appelle un [`workflow`](https://workflows.tidymodels.org/) et contient commodément vos composants de modélisation ! C'est ce que nous appellerions des *pipelines* en *Python*.\n", + "\n", + "Alors, regroupons tout dans un workflow !📦\n" + ], + "metadata": { + "id": "NlSbzDfgJ0zh" + } + }, + { + "cell_type": "code", + "execution_count": 7, + "source": [ + "# Bundle recipe and model specification\r\n", + "mr_wf <- workflow() %>% \r\n", + " add_recipe(cuisines_recipe) %>% \r\n", + " add_model(mr_spec)\r\n", + "\r\n", + "# Print out workflow\r\n", + "mr_wf" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow ════════════════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 333 + }, + "id": "Sc1TfPA4Ke3_", + "outputId": "82c70013-e431-4e7e-cef6-9fcf8aad4a6c" + } + }, + { + "cell_type": "markdown", + "source": [ + "Les flux de travail 👌👌 ! Un **`workflow()`** peut être ajusté de la même manière qu'un modèle. Alors, il est temps d'entraîner un modèle !\n" + ], + "metadata": { + "id": "TNQ8i85aKf9L" + } + }, + { + "cell_type": "code", + "execution_count": 8, + "source": [ + "# Train a multinomial regression model\n", + "mr_fit <- fit(object = mr_wf, data = cuisines_train)\n", + "\n", + "mr_fit" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow [trained] ══════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Call:\n", + "nnet::multinom(formula = ..y ~ ., data = data, decay = ~1, MaxNWts = ~2086, \n", + " trace = FALSE)\n", + "\n", + "Coefficients:\n", + " (Intercept) almond angelica anise anise_seed apple\n", + "indian 0.19723325 0.2409661 0 -5.004955e-05 -0.1657635 -0.05769734\n", + "japanese 0.13961959 -0.6262400 0 -1.169155e-04 -0.4893596 -0.08585717\n", + "korean 0.22377347 -0.1833485 0 -5.560395e-05 -0.2489401 -0.15657804\n", + "thai -0.04336577 -0.6106258 0 4.903828e-04 -0.5782866 0.63451105\n", + " apple_brandy apricot armagnac artemisia artichoke asparagus\n", + "indian 0 0.37042636 0 -0.09122797 0 -0.27181970\n", + "japanese 0 0.28895643 0 -0.12651100 0 0.14054037\n", + "korean 0 -0.07981259 0 0.55756709 0 -0.66979948\n", + "thai 0 -0.33160904 0 -0.10725182 0 -0.02602152\n", + " avocado bacon baked_potato balm banana barley\n", + "indian -0.46624197 0.16008055 0 0 -0.2838796 0.2230625\n", + "japanese 0.90341344 0.02932727 0 0 -0.4142787 2.0953906\n", + "korean -0.06925382 -0.35804134 0 0 -0.2686963 -0.7233404\n", + "thai -0.21473955 -0.75594439 0 0 0.6784880 -0.4363320\n", + " bartlett_pear basil bay bean beech\n", + "indian 0 -0.7128756 0.1011587 -0.8777275 -0.0004380795\n", + "japanese 0 0.1288697 0.9425626 -0.2380748 0.3373437611\n", + "korean 0 -0.2445193 -0.4744318 -0.8957870 -0.0048784496\n", + "thai 0 1.5365848 0.1333256 0.2196970 -0.0113078024\n", + " beef beef_broth beef_liver beer beet\n", + "indian -0.7985278 0.2430186 -0.035598065 -0.002173738 0.01005813\n", + "japanese 0.2241875 -0.3653020 -0.139551027 0.128905553 0.04923911\n", + "korean 0.5366515 -0.6153237 0.213455197 -0.010828645 0.27325423\n", + "thai 0.1570012 -0.9364154 -0.008032213 -0.035063746 -0.28279823\n", + " bell_pepper bergamot berry bitter_orange black_bean\n", + "indian 0.49074330 0 0.58947607 0.191256164 -0.1945233\n", + "japanese 0.09074167 0 -0.25917977 -0.118915977 -0.3442400\n", + "korean -0.57876763 0 -0.07874180 -0.007729435 -0.5220672\n", + "thai 0.92554006 0 -0.07210196 -0.002983296 -0.4614426\n", + " black_currant black_mustard_seed_oil black_pepper black_raspberry\n", + "indian 0 0.38935801 -0.4453495 0\n", + "japanese 0 -0.05452887 -0.5440869 0\n", + "korean 0 -0.03929970 0.8025454 0\n", + "thai 0 -0.21498372 -0.9854806 0\n", + " black_sesame_seed black_tea blackberry blackberry_brandy\n", + "indian -0.2759246 0.3079977 0.191256164 0\n", + "japanese -0.6101687 -0.1671913 -0.118915977 0\n", + "korean 1.5197674 -0.3036261 -0.007729435 0\n", + "thai -0.1755656 -0.1487033 -0.002983296 0\n", + " blue_cheese blueberry bone_oil bourbon_whiskey brandy\n", + "indian 0 0.216164294 -0.2276744 0 0.22427587\n", + "japanese 0 -0.119186087 0.3913019 0 -0.15595599\n", + "korean 0 -0.007821986 0.2854487 0 -0.02562342\n", + "thai 0 -0.004947048 -0.0253658 0 -0.05715244\n", + "\n", + "...\n", + "and 308 more lines." + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "GMbdfVmTKkJI", + "outputId": "adf9ebdf-d69d-4a64-e9fd-e06e5322292e" + } + }, + { + "cell_type": "markdown", + "source": [ + "Les résultats affichent les coefficients que le modèle a appris pendant l'entraînement.\n", + "\n", + "### Évaluer le modèle entraîné\n", + "\n", + "Il est temps de voir comment le modèle s'est comporté 📏 en l'évaluant sur un jeu de test ! Commençons par faire des prédictions sur le jeu de test.\n" + ], + "metadata": { + "id": "tt2BfOxrKmcJ" + } + }, + { + "cell_type": "code", + "execution_count": 9, + "source": [ + "# Make predictions on the test set\n", + "results <- cuisines_test %>% select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test))\n", + "\n", + "# Print out results\n", + "results %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class\n", + "1 indian thai \n", + "2 indian indian \n", + "3 indian indian \n", + "4 indian indian \n", + "5 indian indian " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | .pred_class <fct> |\n", + "|---|---|\n", + "| indian | thai |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & .pred\\_class\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t indian & thai \\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                      A tibble: 5 × 2
                      cuisine.pred_class
                      <fct><fct>
                      indianthai
                      indianindian
                      indianindian
                      indianindian
                      indianindian
                      \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "CqtckvtsKqax", + "outputId": "e57fe557-6a68-4217-fe82-173328c5436d" + } + }, + { + "cell_type": "markdown", + "source": [ + "Beau travail ! Dans Tidymodels, l'évaluation des performances des modèles peut être effectuée à l'aide de [yardstick](https://yardstick.tidymodels.org/) - un package utilisé pour mesurer l'efficacité des modèles à l'aide de métriques de performance. Comme nous l'avons fait dans notre leçon sur la régression logistique, commençons par calculer une matrice de confusion.\n" + ], + "metadata": { + "id": "8w5N6XsBKss7" + } + }, + { + "cell_type": "code", + "execution_count": 10, + "source": [ + "# Confusion matrix for categorical data\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class)\n" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " Truth\n", + "Prediction chinese indian japanese korean thai\n", + " chinese 83 1 8 15 10\n", + " indian 4 163 1 2 6\n", + " japanese 21 5 73 25 1\n", + " korean 15 0 11 191 0\n", + " thai 10 11 3 7 70" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 133 + }, + "id": "YvODvsLkK0iG", + "outputId": "bb69da84-1266-47ad-b174-d43b88ca2988" + } + }, + { + "cell_type": "markdown", + "source": [ + "Lorsqu'on traite plusieurs classes, il est généralement plus intuitif de visualiser cela comme une carte thermique, comme ceci :\n" + ], + "metadata": { + "id": "c0HfPL16Lr6U" + } + }, + { + "cell_type": "code", + "execution_count": 11, + "source": [ + "update_geom_defaults(geom = \"tile\", new = list(color = \"black\", alpha = 0.7))\n", + "# Visualize confusion matrix\n", + "results %>% \n", + " conf_mat(cuisine, .pred_class) %>% \n", + " autoplot(type = \"heatmap\")" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deWBU9b3//0+ibApWrbYuvYorXaxoaatWvVqpqG2HsCmLBAqoVXBDjCKbKMqOQUDFFVxKqyhVFLUqWKJsxg3Lz2IFGilLiEqptMX0hpzvnJkMCbx5/W5vz5k5Z+D5/OOc85nEz3w8Mw9mMjmo84gocC7qBRDtCQGJKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQijHkLb+NUZVRb2Ahn26OeoVNCxWpyZWi/mbeGbnGNJl42PUmbNiVM+7nohRlz4ao/o/HqOuFc/sHEMasShGdfwsRt3+1qYYNXJ9jLq9MkZNE89sIMUkIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSbI+EVLQktatJvB8FpNGtv9LoqMteTx7d/f2vND6h5M3oIS07xT0XxjyhQJpx+sGNj79pbfCJgkJ6o7V72t/f4FKdFSmkRa3dnNTBgnYHNPneY7GCVPvB1ggg3ezaTZraq+C8RYvGF7a64cbW7rLIIU1sdmR8IE1ynX4957qC9pFDGtvsiDSkywsn+D0eJaRxycWkIC1pcdzYSecUzIwTpP+0YJBOONJ/CTqncP6iI49YsGjRwqMOjhrSS03GTY0PpJNaVia3P92nImJIc5vcWZqG1LVFoInCgPRCkzF3pyF1bLa8snLdd1pGC+nTOy8uvvdLr+iVEZ2KF/hv7WoTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZgHS8cf624sKF5RdO84/+plbEDGk8oWfxQjSt7/pb7vu80ngmYJBWvTa+jpIPz0ickhLFlSmIa1vVuSPR7lXI4V0w9jN6wdM94qu+fCfj3XZ5v+MVDRwi/dKl23eoPFfVD/es3pj+/e3b7xudmaYDUjD3C+fmz+6aee64Zsnfz3QdOF82BAjSFPckOV/nrFfv+AzBf6woQ7SWa3Wr18dLaRkaUiL3FB/MMdNjhLS6sTG5KbcK3ra8zYmKlKQ5nrepsQnqxKbkz8zdStblVjtedu9zDD5zyxpn+wPIUJadFsz5wp7pz5i+P1vH2i372gg7dT9+yfPz/WVwScKC1Lrlh0PdAddvyYOkJ5zd/mDN9ywKCG92b42tS9anHwvl/g4BSl9WJZINbv2ng4ls9Z7mWHye9/4cbL3QoR0T/MzRt91SWHqI4bJzh0+KdBsex6kZw/4yYzfXL7PzfGB1LKw20P3F7mL4gDpSTfVHyxzN0YJaVH77WlIS+ohpQ+XJjJv4zbNG9mhrH64uwJBeuPwE/0Xo66FTya3L44f2ragF5AatPGo7/ovRlcULo0NpLff87dd3ZwYQHrOTfIHZW54lJDWJCo876MXdgNpbWJl8usbvZotyd30wZlhFiA97VJwJrjMLL9wDwGpvrfddf7uCXdPbCCle8IFmi8kSEvcLf7gqfQLU1SQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpgVSD383Wg3+PkbHkyTugVI9ZW7/v7uEXdXbCCtXOlv73fjYgBpQ4uf+4MhrixSSFvu6NJz2rbdQdo8ruslJSu82ll9Ova6+++ZYRYgvdH8mDeSuw7usRcLT/WPLnGTgVTfxq+02pjc9Xa/jwukdwsv9AfnFbwRA0iVlzZ5p7Jy7bHfDjTXHnGt3UB32qgJFxe2XbSo2H332pLzC77zRsSQ5pWW9nADSkvfiQOkTXe6Hz/wxOWFRcFnCgbp2QkTurorJ0xYvL6Paztu1OmuX6DpgkGaO2lSN9d/0qRlle8dfPTQO37QaA6QFo06qWmjlleWLVr0Zkmrps2O7fFqoNlCgNQ7fS2ZezAWkDY9+P39Gp8wZH3wiYJB6ll3Vu5dv3ZM6xZNT5kYaLaAkHrVLWZ6ZeWiC1s0Pe2ZQLPtIZDCjau/ZVz9rQKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEiqmEDqOSJGnXJfjOpw+z0xqtOUGNU76rPRsMvEMzvHkEa+GqMuHBajznv8tRg1IOoFNGzgKzFqiHhm5xjSvZ/GqF/MjFHd3on6zWXD7ox6AQ27oypG3Sue2UCKSUCSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyhQTpraYHhzDLL/7zp/3YY9zg1MFDHQ7Z92sXz0ge3fTt5o2O6j0jWkjLTnHPhTFPGJDmt23e/OTSquAThQFpXcl/NW45bFPwiUKEVJN4f6fxpkTFrjdlGVLVmS5aSL0bH1wH6QeFF155puswc+b1BUf37HWi6xQppInNjowNpJcbtbx90jnuluAzhQEpsc9V0y9xJcEnChFS7Qdbd4W0601ZhjSp8bmRQhrWqPiyNKQS1y25/f43Z8z82qEPzJz58GEHRAnppSbjpsYG0o8O+ONnn1V9Z7+NgWcKAdJsd1ty+/Mzg78kZfGtXRLSv/29oUD6wwEll0YKadyomXWQftT0ofRND/e4zt+d7R6IEFL5ws/iA2nydH/bx/0p8EwhQOrSfF3wSVKF+9auNrFwRP++8z1v9aAuVy9Mv7WrGN6964gN3o4vZQ/SRSeujxZSsjpIh540c2aDH4tmnPDV/3TCkD5siA+kdOceGnyOECAdfW5VVWXwaapC/xmpaOAW75Uu22r7lW6rGpKGdGXptn+MKfEyX8oepIcK5n0aE0gzCs7t8/WC/S9KvQw9dNfw0/e5BkgNe9jdHnyS4JA2FfaadEzBQf0/iR+kuf5buk/+mNjoeUvSkLZ+6XmLO9RmvpT8xgVtkr0dNqQ/HdL307hAut8deuxVN15Y0Ma/qcS5Q274jyfcIyH9utlFsfjUrsId9b0Hnrqq8Gfxg7TY8zYnPi5rv93zPklDWj6kuLhboibzpeQ3lvdM9mHYkLoeviY2kB50zacndz9xtya3U6+/7LSCBJDqG7dPpw0hTBMc0l/cQWuSu8vcK7GDtCSlZX77Ws9bk4K0odPsam+pD2lJBtJuCg7pqYKHKyoquh1csS4GkGY2+6a/HeT61N3cPkUKSKmudIM+DWOeEH5GanGmv/2NuyvwTNmBtDxR6XllKUhlRTWe92j2IfVzdZ0fB0itDvO317orphQP948Gur5AqmtgQWkIs3wWCqQzjve3j7l7As+UHUjVPUq3rrs5BWllYsW/Fg5OVGUb0tsv+LU74IU34wCplytJbs8oHD+14Jv+p3ftUmMgJXvahfWJRQiQxrunk9su+7wVeKbsQPI+ur7z1e8k/uzfNKN7jylbB3bblGVI6aL9GWlonz5nu4v69Jkw86GWTdr3+6E7f+bMn7nju/c+veC4//QaoTAgzSst7eEGlJYGnyq4gcrjDipN9V7gqUKAtK71foPuLnKXB59pz7rWLmJIP657d3nVzJn3tv3KPocVJ/XM6H1046bfuGj6fzpnGJB6163rwcAzBYf0UeYt+GOBpwrjEqGP+3yt0XFj43WtXZC4+lvF1d8yrv62AUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAcl28S9jVKt2Mer4blGfjob9KOoFNOxnV8Soi8QzO8eQ7loVo7r/JUYNf/KNGDXkTzFq1PoYNU08s3MMafLaGNUz6rcJDbvtmWUxanhFjIrV+8z7xDMbSDEJSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIs/yBt6n1EoUsFpFwHJFn+Qbp437a9+6UCUq4Dkiz/IH312WwBAtL/FpBk+QdpvyogRRWQZPkH6ezXgRRVQJLlH6S3f7gYSBEFJFn+QTrzv9x+R6cCUq4Dkiz/IJ3dNhOQch2QZPkHKfsBSQUkWT5C+uyFBx56+Qsg5T4gyfIP0vZBjfzLGvYfD6ScByRZ/kEa7zo+/OIL91/gHgVSrgOSLP8gfeuG9P6K7wEp1wFJln+QmsxP7+c1A1KuA5Is/yDt/3x6/2xzIOU6IMnyD9JZP672d9vanQukXAckWf5Bmldw1JWjbr/8iMJXgZTrgCTLP0jeb7/pf/z93XnZcgQkGZBkeQjJ89a/VV6ZNUZA0gFJlpeQshyQVECS5RmkVqO9VjsCUq4DkizPIJ1W6p22IyDlOiDJ8gxSTgKSCkiy/IPU5sP0/ulvASnXAUmWf5BceWr3P7c1BlKuA5Is3yC5+rhoNecBSZZvkN6/2xWl/uuQl434C5ByHZBk+QbJ8y74U7YAAel/C0iy/IPkbZyS3FTdtglIOQ9IsvyDtPIw/1OGCnfYaiDlOiDJ8g9Sh+Pf8ncfHt8JSLkOSLL8g3ToI+n9/S2AlOuAJMs/SM2eSO9/tV9MIc07t3nzk8ZW+Ie/P9k9GT2kkvSvC86OGtJrmV9cjF+2bNoPvtL4xMFLo4T0/Dn773/SmDUVFdenV3Vm9JCWneKeC2OefwvSjy6o8Xdf/ODMzC01ifdjBOnZfY8eNuYsd2PycHSzI+IA6ZeFd/n9OmpIbw5JdX7Br5ZNKmx1402nuCsihPTbfY8eOvosN6iiom/hWL+ZkUOa2OzIHEJ6ueDYASNH9Dm08OXMLbUfbI0RpNNbvLt2bcW391uz9rdNRk2KA6TuBwSfI10Yb+1eP7TDsmXfOLJs2bJFRx8cIaTTWrxdUbHmW/utqri4RaCJQoP0UpNxU3MIyXuljf9CfHJc/4bs+Lv9bbFbvrbsd2tjAelnRwafI10YkC458NVliwdO9A9/7sqigzRusr/t6d6ruPDweEAqX/hZTiF53mcf/H8N/4vF/lu7iuHdu47Y4FUnXh7cr+9SLzOuTSwc0b/vfM/bPL5Xl8GrPO+1qzoX31u9Y5gFSOnOPiS1iwWks1tVVa0NPk1VKJCeLCzJHC5tfVigqcL4sOHsQyoqzjyxomJlDCAlyzGkXfIhXVm67R9jSpKH1/3Ve7XDlszYKxq4xXulyzZv0Pgvqh/vWb2x/fvbN143OzNM/sP/XJfsy7Ah3eeGxQfSKcd0PsgdNOgvsYB0/qFvpPZvzH34gn3HRg3pHje0ouLklkUHuoOu/WhvgrTbvyHrQ9qatLC4Q21N4jnP2971lczYK5rreZsSn6xKbE7+LNWtbFVidfLrXmaY/IcXtEn2dsiQZjZrVxEfSMcU9pj5UEf30+AzBYf0ZOGg9MFU5w4vDTZXcEiPNDt/TUVFy8JL7r8n4S7YmyDt9m/I+pCWDyku7paoqUksS95w1azM2CtanHxbl/i4LJFqdu09HUpmrfcyw+T3rrg52c4XSQSGNGqfotVr4wPp/RX+trubG3im4JC6Nn49ffC7icPPL/hFtJBu36f9x8ndknJ/cLF7ai+CtNuSkDZ0ml3tLfUh+f9fzCt+nRl7RUtSkJYmquu+edO8kR3K6oe7Kyikfu7aT9bGCFK637hRgecIDGnp13/UYNTXzYgSUl93zZ/rR4+6EUB6v6yoxvMe9SE97XnVnV/LjDOQ1iZWJr9xo1ezJbmbPjgzzAqkqwvG7jiOBaTVq/3tQ25i4JkCQ3rE3eLvXip5xN/d5YZGCGlAwZj0wYoV/vYeN3ovgrR/g3b8DdkkpJWJFf9aODhRVZMYUFE9q+PfMuMMJG9oSVXNi10+f7XPx7Wbh0zJDLMB6VduZP0gDpA+KLzI37UtWBI9pKvdr/zd7wq/tyS56+qmRgfp8cwr0LLCdv7u3ILX9yJIXZO1anRG5w6nFLS5ugEkb0b3HlO2Duy2IfHiTZ37lXuZ8aYMpM3jul5SssKrndWnY6+7/54ZZgHSmmMPHDvOb8naOePGXeJ+OW7cm9FCqurnzp8w+gx3efCZAkP6uft9at/bnXz9ze0KTloSGaRVxxw4JnVBw6KK3u680SN/6PoEmS4MSPNKS3u4AaWl7+QAUrLZJ23wdyu/ObchpB2H74g5/g8FgvR+5oKyB9deWnc0LWJIG8efckDTU0uDTxQc0tmF6f3Swa2aNjuu5+uBJgsE6d3M4/RAxeo7Tm7RtPW4QI7CgNQ788zJDaSTnkrv72tdd8P2jxI7PnWLHlLYcfW3jKu/Vf8WpMavpfezm9TdsLDDqFog5SQgyfIP0hGXpna1XQ8PTgZI/7eAJMs/SLe67147atSAb7nBQMp1QJLlH6TacYf7P5EdMrwGSLkOSLL8g5Sk9Mmypau3Z4sRkHRAkuUjpG1vzfnU+x8g5T4gyfIQ0sQWzi3xhvwia5SApAKSLP8gPeDaT09CenTf8UDKdUCS5R+kk6/0tiUhebecCKRcByRZ/kFq+moa0u8aASnXAUmWf5C+9nwa0lMHACnXAUmWf5B+cs4/fUifn9QOSLkOSLL8g/T6Psdf5/r2PqDRm0DKdUCS5R8k77VT/Ssbfvj7bDkCkgxIsjyE5Hmb3ntvc9YYAUkHJFn+QToje/+JVSD9LwFJln+QvjEJSFEFJFn+QXruW7/9F5CiCUiy/IN09ndd4yOO9gNSrgOSLP8gnXle27qAlOuAJMs/SNkPSCogyfIO0rZlb24BUkQBSZZvkCa3cK5R/y/FNwIpuwFJlmeQnnEtbxh2lrtafCOQshuQZHkG6eyW/v8utm+jvwEpioAkyzNIzYf727dc1i5YBdL/X0CS5Rkkd7+/3eBeFt8JpKwGJFm+QXrQ3250LwEpioAkAxKQ/v2AJMs3SLcsSTbPlfo7IOU6IMnyDVLDgJTrgCTLM0i3NgxIuQ5IsjyDlJOApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZOvQM0Yd/4sYdWq7TjHqB5fGqJ/2iVEXimd2jiFNWR+jij+PUaOWboxRiWkxanTUj03DYvKKBCQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiRbUEhvtHZP+/sbXKqzIodUduEBTdr8KoSJAkNa1No9s+tRFJBGHOWuSx1cf3zjxifcsPNtkUEK7XEKBVJN4p1oIY1tdkQa0uWFE/wejxrS2y2OmzD53IIngs8UFNK45Kl5ZpejKCB1a3xQGs2V7shLLj1s35sa3hYZpPAepz0C0twmd5amIXVtEWii0CB1bvbh559vOumY4DMFhPR8k9GT03zqj6KANKjRJT3TaA498K5p0ya0aNXwtsgghfc47RGQFr22vg7ST4+IBaSqZh393Wj3euCpAkJaPH9jHZ/6oygg3XrLtDSaMe4sf9y2YHz9bZFBCvFxCg1SzbCRNX8d36tzyYfe9sTv+k32No/v1WXwKs+rGN6964gNXm1i4Yj+fednBVKyOkhntVq/fnX0kJa54f5urpsaeKrgHzbU84kQUrI0mjvcef6gixtYf1tkkEJ8nEKDVFrypTfo1i1fPtz1b17RwFX/9AaN/6L68Z7V3pWl2/4xpsRL3rjFe6XLtuS3f74s2d+yAql1y44HuoOuXxMxpBfc3f5uiRsReKo9DdLU/Y7yB23cZTGAFOLjFBakJ/p/4a1OrPW86osXeEVPet6qxGbPq+1W5m390vMWd6j1iuZ63qbEJ8lvX9Am2dtZgdSysNtD9xe5iyKG9Iy7z9+9424KPNWeBmlawv33yNsuaOH6xgBSiI9TSJDGJv7geW+2r00O+v/GKyrzvLJEqtne8iHFxd0SNV7RYs/bnPcB240AABDoSURBVPg4+R2rpyRblxVIb7/nb7u6OdFCmucm+7vF7tbAU+1xkO4+r8C5b13qrowBpBAfp5Ag9RsxsKYO0lVPeEVLPG9pojr1tQ2dZlcnBzWpG9OQdlNYkNI94UZGC+ltN8zfzUn/gReoPQ7StGljS+5M/ow0LAaQQnycQoJUvrXPI94a/43bts7zU2bWJlYmv7LRKyuq8bxHcwVp5Up/e78bFy2kT1sk/N1wtzjwVHsgJL/v7jclBpBCfJxC+7BhRYd3vZKRX2y7r+c/Uma8oSVVNS92+XxlYsW/Fg5OVOUE0ruFF/qD8wreiBbS58VNln/++YZjvxN8pj0O0umHTp42bXDhORZX7iGF+DiF93ukx4u3VN3R89Lbkj/8pCBtHtf1kpIVnjeje48pWwd225RFSM9OmNDVXTlhwuL1fVzbcaNOd/0CTRcCpD98teXwMT9sNDf4TAEhzZ04sZu7auLEpQ2OooB0Q48ep7u2PXqMnHZFwQnFHZp/dWzD2yKDFN7jtEdca9czfYWdu3f92jGtWzQ9ZWKg2UK51m7ZRS2anvFcCBMFhFRcd2rua3AUBaSz6u69z7Rpfb7RqPlpd+58W1SQwnuc9ghIIcfV3zKu/lYByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSRUTSB2LY9SJfWJUm469Y1TLs2NUIurHpmEXimd2jiFNq4xRvaP+c79ht77zWYwatSlGXV8eo24Xz2wgxSQgyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSLagkBa1dnNSBwvaHdDke49FCym5mGd2PYoW0pz/PrjJSZM+DT5RcEh/cnXNjBbSgsw6JpSXzzq7eeOT7oo1pKIlOw1rEu9nBdK4ZkekIS1pcdzYSecUzIwSkr+YZ3Y5ihbSrMKTx0443Q2OA6R1d6UqKng9WkiLh6Y6v2BW+Zz9j7p56GkFE+MKafnHBlLtB1uzAemFJmPuTkPq2Gx5ZeW677SMENLzTUZPTvOpP4oYUsuj13322cbjD40DpHSrDy8OPkkIb+0WHtqxvPyCpi+Vly894RtxhXTbiwaSLBikJQsq05DWNyvyx6Pcq9FBWjx/Yx2f+qNoIVXe8YS/6+HWxQbSZQd/FHySECB1PXB++bKm5/uHg9wT8YQ0pH2n672iV0Z0Kl7geRXDu3cdsSFrb+0q6yAtckP9wRw3OTpIyer5xAJSuk9P+0bwSUKC9Gbh2BBmCQ5pduHN5eVPuwH+8XQ3Ip6QvH7+K9I1H/7zsS7bvCtLt/1jTEkdpPXPJKvKBqTn3F3+4A03DEg7tWH5y50bzQw+T0iQOhz+lxBmCQ6p3aGLyssfcMP846fc1XGG9LTnbUxUeFu/9LzFHWrTkBa0SfZ2NiA96ab6g2XuRiDt1DPOHfWbEOYJB9KbhXeGMU1gSLMLb0xup7nb/MGz7vI4Q1rseZsTH3vLhxQXd0vUZP8VaZI/KHPDgbRTH/1qaseCgcHnCQfS5Y1XhzFNYEjdGi9Mbh90Q/3BU+6aOENakoK0odPsam9pBtJuCgnSEneLP3gq/cIEpJ0a5F4NPEcokCqP+EkY0wSG9NbXz/R3c1x/f3dP+oUp3pDKimo879HsQ9rQ4uf+YIgrA1J9fxz3O3/3azc5HpBecpPCmCYwpBnpl6Jl+5/n7wa4p2IKqf/Df89AWplY8a+FgxNV2YZUeWmTdyor1x777UBz7WmQPio8syq5+6V7Jh6Qhrvgv4z1CwrpGjcrte/Q+Pny8kX/dUKgybIIaW7nPhlI3ozuPaZsHdhtQ3YgzZ00qZvrP2nSssr3Dj566B0/aDQnQkhzJ07s5q6aOHFpg6NoIX12nfvhqImdCr5fFQ9I3d2aMKYJDCnhFqb28w48csCgk/edHldI/5eCQepVd9nU9MrKRRe2aHraM4FmCwipuG4x9zU4ihjSp5NObrb/t66uCD5TKJAuKAxjluCQ/ruw7uDpc/Zvcup9wSbbIyCFHFd/y7j6WwUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkVUwgzXg8Rg2MegENGzY16hU07NqoF9CwWD1O08QzO8eQiPbMgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQghIRCGUl5CmTY56BQ2ad+emqJdQ34d3Lo16CfV9eeesqJfQoBl3ZnX6vISUaBf1Chp0R5uPo15Cfa+2eTzqJdS3tc3VUS+hQb2/n9XpgRQ0IKmAFPeApAKSDEg2IKmAJAMSUfwDElEIAYkohPIDUtGS1K4m8X7ECzFL2JSoyPmqYnAaTDWJd6Jegq7u6ZMpK+cvryDVfrA14oWYJSQh5XxVMTgNpthCWv6xgZSV85dXkGJYElLUS4hFsYV024u5efrEHNKnd15cfO+XXtErIzoVL/Bfk2sTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZruGS1g9qMvVC9Nv7SqGd+86YoO340vZXkPmDqsTLw/u13epZxaQ69PjQ6oZNrLmr+N7dS750Nue+F2/yTvuNadnZ+eGtO90febpk1nH3vjW7oaxm9cPmO4VXfPhPx/rss0/A0UDt3ivdNnmDRr/RfXjPas3tn9/+8brZmeGWV9QgyXU9ivdVjUkDenK0m3/GFPi7Vhd1tdQd4c1iev+6r3aYYtZQK5Pjw+ptORLb9CtW758uOvfkutY9c8d95rTs7NL/fxXpPTTp/6k7XWQVic2JjflXtHTnrcx/ZQtmuu/n/pkVWJz8s1ut7JVidWet93LDLO+ogZL+KO/uCXpVW390vMWd6jNfCn7a6i7w5rEc8l//a6v7LqAnJ+eJKQn+n+RfMDWel71xQu8oie9+nvN6dnZpRSk9NOn/qTtdZDebF+b2hctTr5ZSXycehanD8sSqWbX3tOhZNZ6LzPM+ooaLqH9ds/7JA1p+ZDi4m6JmsyXsr+GujusSSxL3nDVrF0XkPPTU5MYm/hD5gHr/xuvKIl2x73m9OzsUgpS3f3uOGl7HaRF/nPVS/+0mIGUPlyayLxP2TRvZIey+mGWa7CE+f6TZk0K0oZOs6u9pf5TZUluIGXusCaRfI54V/x61wXk/PTUJPqNGFhTB+mqJ1LryNxrbs/OLvV7ccfTp/6k7XWQ1vifiX30wm4grU2sTH59o1ezJbmbPjgzzHoNlrA8Uen/qetDKiuq8bxHcwgpc4c1ieS7lurOr+26gJyfnppE+dY+jyQfsOQbt22d56fWkbnX3J6dXWoAqf6k7XWQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpj1BTVYQnWP0q3rbk5BWplY8a+FgxNVOYOUucOaxICK6lkd/2YWkOvT43/YsKLDu17JyC+23dfzH+lPnOvuNbdnZ5f6P/z3zP3Wn7S9D9KWO7r0nLZtd5A2j+t6SckKr3ZWn4697v57Zpj1Gi7ho+s7X/1O4s/+TTO695iydWC3TbmClLnDDYkXb+rcr9wzC8j16Un9Hunx4i1Vd/S89LZ1db+6ydxrTs/OLs3t3GfHA7bjpO19kGg3NfgTNba/B93rAlLetf0j/zPtdECKS0DKuxZ2GFWbOQZSXAISUQgBiSiEgEQUQkAiCiEgEYUQkPK3X7pMp+32622Pzu169uqAlL+9PnXq1Gtd5+TWXNb9nv+4AimHASm/e92V7u7mKUDKcUDK7+ognXn28984w2vd2j8u+qp3QfLtXhuv7XFrLmze/JLsX8lLQMr36iCdd/I373mhHtKfilz5h17blq1HP3tjwS+iXeFeEpDyuzpIbd2c5HYHJK+f23Hjj74W4fL2noCU32UgNf6XZyE19a/J61UY4fL2noCU32UgHeFvd4V0tD/sx0OcizjL+V0G0tH+FkjRxVnO73aCdOpJ/vY0IEUQZzm/2wnSeYckfyja1CwJ6TL3P0DKaZzl/G4nSJPdmMp3f/ydJKQR7rangZTLOMv53U6Qqm84sknr5we08Ly/nNqoFZByGWeZKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYXQ/wMhANIDIZLX1QAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 436 + }, + "id": "HsAtwukyLsvt", + "outputId": "3032a224-a2c8-4270-b4f2-7bb620317400" + } + }, + { + "cell_type": "markdown", + "source": [ + "Les cases plus foncées dans le graphique de la matrice de confusion indiquent un grand nombre de cas, et vous devriez normalement voir une ligne diagonale de cases plus foncées représentant les cas où l'étiquette prédite et l'étiquette réelle sont identiques.\n", + "\n", + "Calculons maintenant les statistiques récapitulatives pour la matrice de confusion.\n" + ], + "metadata": { + "id": "oOJC87dkLwPr" + } + }, + { + "cell_type": "code", + "execution_count": 12, + "source": [ + "# Summary stats for confusion matrix\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class) %>% \n", + "summary()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " .metric .estimator .estimate\n", + "1 accuracy multiclass 0.7880435\n", + "2 kap multiclass 0.7276583\n", + "3 sens macro 0.7780927\n", + "4 spec macro 0.9477598\n", + "5 ppv macro 0.7585583\n", + "6 npv macro 0.9460080\n", + "7 mcc multiclass 0.7292724\n", + "8 j_index macro 0.7258524\n", + "9 bal_accuracy macro 0.8629262\n", + "10 detection_prevalence macro 0.2000000\n", + "11 precision macro 0.7585583\n", + "12 recall macro 0.7780927\n", + "13 f_meas macro 0.7641862" + ], + "text/markdown": [ + "\n", + "A tibble: 13 × 3\n", + "\n", + "| .metric <chr> | .estimator <chr> | .estimate <dbl> |\n", + "|---|---|---|\n", + "| accuracy | multiclass | 0.7880435 |\n", + "| kap | multiclass | 0.7276583 |\n", + "| sens | macro | 0.7780927 |\n", + "| spec | macro | 0.9477598 |\n", + "| ppv | macro | 0.7585583 |\n", + "| npv | macro | 0.9460080 |\n", + "| mcc | multiclass | 0.7292724 |\n", + "| j_index | macro | 0.7258524 |\n", + "| bal_accuracy | macro | 0.8629262 |\n", + "| detection_prevalence | macro | 0.2000000 |\n", + "| precision | macro | 0.7585583 |\n", + "| recall | macro | 0.7780927 |\n", + "| f_meas | macro | 0.7641862 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 13 × 3\n", + "\\begin{tabular}{lll}\n", + " .metric & .estimator & .estimate\\\\\n", + " & & \\\\\n", + "\\hline\n", + "\t accuracy & multiclass & 0.7880435\\\\\n", + "\t kap & multiclass & 0.7276583\\\\\n", + "\t sens & macro & 0.7780927\\\\\n", + "\t spec & macro & 0.9477598\\\\\n", + "\t ppv & macro & 0.7585583\\\\\n", + "\t npv & macro & 0.9460080\\\\\n", + "\t mcc & multiclass & 0.7292724\\\\\n", + "\t j\\_index & macro & 0.7258524\\\\\n", + "\t bal\\_accuracy & macro & 0.8629262\\\\\n", + "\t detection\\_prevalence & macro & 0.2000000\\\\\n", + "\t precision & macro & 0.7585583\\\\\n", + "\t recall & macro & 0.7780927\\\\\n", + "\t f\\_meas & macro & 0.7641862\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                      A tibble: 13 × 3
                      .metric.estimator.estimate
                      <chr><chr><dbl>
                      accuracy multiclass0.7880435
                      kap multiclass0.7276583
                      sens macro 0.7780927
                      spec macro 0.9477598
                      ppv macro 0.7585583
                      npv macro 0.9460080
                      mcc multiclass0.7292724
                      j_index macro 0.7258524
                      bal_accuracy macro 0.8629262
                      detection_prevalencemacro 0.2000000
                      precision macro 0.7585583
                      recall macro 0.7780927
                      f_meas macro 0.7641862
                      \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 494 + }, + "id": "OYqetUyzL5Wz", + "outputId": "6a84d65e-113d-4281-dfc1-16e8b70f37e6" + } + }, + { + "cell_type": "markdown", + "source": [ + "Si nous nous concentrons sur certains indicateurs comme la précision, la sensibilité, le ppv, nous ne sommes pas mal partis pour un début 🥳 !\n", + "\n", + "## 4. Approfondir\n", + "\n", + "Posons une question subtile : Quels critères sont utilisés pour choisir un type de cuisine donné comme résultat prédit ?\n", + "\n", + "Eh bien, les algorithmes d'apprentissage automatique statistiques, comme la régression logistique, sont basés sur la `probabilité` ; ce qui est réellement prédit par un classificateur, c'est une distribution de probabilité sur un ensemble de résultats possibles. La classe avec la probabilité la plus élevée est alors choisie comme le résultat le plus probable pour les observations données.\n", + "\n", + "Voyons cela en action en réalisant à la fois des prédictions de classes strictes et des probabilités.\n" + ], + "metadata": { + "id": "43t7vz8vMJtW" + } + }, + { + "cell_type": "code", + "execution_count": 13, + "source": [ + "# Make hard class prediction and probabilities\n", + "results_prob <- cuisines_test %>%\n", + " select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test)) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test, type = \"prob\"))\n", + "\n", + "# Print out results\n", + "results_prob %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class .pred_chinese .pred_indian .pred_japanese .pred_korean\n", + "1 indian thai 1.551259e-03 0.4587877 5.988039e-04 2.428503e-04\n", + "2 indian indian 2.637133e-05 0.9999488 6.648651e-07 2.259993e-05\n", + "3 indian indian 1.049433e-03 0.9909982 1.060937e-03 1.644947e-05\n", + "4 indian indian 6.237482e-02 0.4763035 9.136702e-02 3.660913e-01\n", + "5 indian indian 1.431745e-02 0.9418551 2.945239e-02 8.721782e-03\n", + " .pred_thai \n", + "1 5.388194e-01\n", + "2 1.577948e-06\n", + "3 6.874989e-03\n", + "4 3.863391e-03\n", + "5 5.653283e-03" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 7\n", + "\n", + "| cuisine <fct> | .pred_class <fct> | .pred_chinese <dbl> | .pred_indian <dbl> | .pred_japanese <dbl> | .pred_korean <dbl> | .pred_thai <dbl> |\n", + "|---|---|---|---|---|---|---|\n", + "| indian | thai | 1.551259e-03 | 0.4587877 | 5.988039e-04 | 2.428503e-04 | 5.388194e-01 |\n", + "| indian | indian | 2.637133e-05 | 0.9999488 | 6.648651e-07 | 2.259993e-05 | 1.577948e-06 |\n", + "| indian | indian | 1.049433e-03 | 0.9909982 | 1.060937e-03 | 1.644947e-05 | 6.874989e-03 |\n", + "| indian | indian | 6.237482e-02 | 0.4763035 | 9.136702e-02 | 3.660913e-01 | 3.863391e-03 |\n", + "| indian | indian | 1.431745e-02 | 0.9418551 | 2.945239e-02 | 8.721782e-03 | 5.653283e-03 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 7\n", + "\\begin{tabular}{lllllll}\n", + " cuisine & .pred\\_class & .pred\\_chinese & .pred\\_indian & .pred\\_japanese & .pred\\_korean & .pred\\_thai\\\\\n", + " & & & & & & \\\\\n", + "\\hline\n", + "\t indian & thai & 1.551259e-03 & 0.4587877 & 5.988039e-04 & 2.428503e-04 & 5.388194e-01\\\\\n", + "\t indian & indian & 2.637133e-05 & 0.9999488 & 6.648651e-07 & 2.259993e-05 & 1.577948e-06\\\\\n", + "\t indian & indian & 1.049433e-03 & 0.9909982 & 1.060937e-03 & 1.644947e-05 & 6.874989e-03\\\\\n", + "\t indian & indian & 6.237482e-02 & 0.4763035 & 9.136702e-02 & 3.660913e-01 & 3.863391e-03\\\\\n", + "\t indian & indian & 1.431745e-02 & 0.9418551 & 2.945239e-02 & 8.721782e-03 & 5.653283e-03\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                      A tibble: 5 × 7
                      cuisine.pred_class.pred_chinese.pred_indian.pred_japanese.pred_korean.pred_thai
                      <fct><fct><dbl><dbl><dbl><dbl><dbl>
                      indianthai 1.551259e-030.45878775.988039e-042.428503e-045.388194e-01
                      indianindian2.637133e-050.99994886.648651e-072.259993e-051.577948e-06
                      indianindian1.049433e-030.99099821.060937e-031.644947e-056.874989e-03
                      indianindian6.237482e-020.47630359.136702e-023.660913e-013.863391e-03
                      indianindian1.431745e-020.94185512.945239e-028.721782e-035.653283e-03
                      \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "xdKNs-ZPMTJL", + "outputId": "68f6ac5a-725a-4eff-9ea6-481fef00e008" + } + }, + { + "cell_type": "markdown", + "source": [ + "✅ Pouvez-vous expliquer pourquoi le modèle est assez sûr que la première observation est en thaï ?\n", + "\n", + "## **🚀Défi**\n", + "\n", + "Dans cette leçon, vous avez utilisé vos données nettoyées pour construire un modèle d'apprentissage automatique capable de prédire une cuisine nationale en fonction d'une série d'ingrédients. Prenez le temps de parcourir les [nombreuses options](https://www.tidymodels.org/find/parsnip/#models) que Tidymodels propose pour classifier les données et [d'autres méthodes](https://parsnip.tidymodels.org/articles/articles/Examples.html#multinom_reg-models) pour ajuster une régression multinomiale.\n", + "\n", + "#### MERCI À :\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) pour avoir créé les illustrations incroyables qui rendent R plus accueillant et engageant. Retrouvez plus d'illustrations dans sa [galerie](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) et [Jen Looper](https://www.twitter.com/jenlooper) pour avoir créé la version originale en Python de ce module ♥️\n", + "\n", + "
                      \n", + "J'aurais bien ajouté quelques blagues, mais je ne comprends pas les jeux de mots culinaires 😅.\n", + "\n", + "
                      \n", + "\n", + "Bon apprentissage,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Gold Microsoft Learn Student Ambassador.\n" + ], + "metadata": { + "id": "2tWVHMeLMYdM" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/4-Classification/2-Classifiers-1/solution/notebook.ipynb b/translations/fr/4-Classification/2-Classifiers-1/solution/notebook.ipynb new file mode 100644 index 000000000..d770ca649 --- /dev/null +++ b/translations/fr/4-Classification/2-Classifiers-1/solution/notebook.ipynb @@ -0,0 +1,281 @@ +{ + "cells": [ + { + "source": [ + "Construire des modèles de classification\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      00indian00000000...0000000000
                      11indian10000000...0000000000
                      22indian00000000...0000000000
                      33indian00000000...0000000000
                      44indian00000000...0000000010
                      \n

                      5 rows × 382 columns

                      \n
                      " + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "from sklearn.svm import SVC\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      00000000000...0000000000
                      11000000000...0000000000
                      20000000000...0000000000
                      30000000000...0000000000
                      40000000000...0000000010
                      \n

                      5 rows × 380 columns

                      \n
                      " + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy is 0.8181818181818182\n" + ] + } + ], + "source": [ + "lr = LogisticRegression(multi_class='ovr',solver='liblinear')\n", + "model = lr.fit(X_train, np.ravel(y_train))\n", + "\n", + "accuracy = model.score(X_test, y_test)\n", + "print (\"Accuracy is {}\".format(accuracy))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "ingredients: Index(['artemisia', 'black_pepper', 'mushroom', 'shiitake', 'soy_sauce',\n 'vegetable_oil'],\n dtype='object')\ncuisine: korean\n" + ] + } + ], + "source": [ + "# test an item\n", + "print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')\n", + "print(f'cuisine: {y_test.iloc[50]}')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0\n", + "korean 0.392231\n", + "chinese 0.372872\n", + "japanese 0.218825\n", + "thai 0.013427\n", + "indian 0.002645" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      0
                      korean0.392231
                      chinese0.372872
                      japanese0.218825
                      thai0.013427
                      indian0.002645
                      \n
                      " + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "#rehsape to 2d array and transpose\n", + "test= X_test.iloc[50].values.reshape(-1, 1).T\n", + "# predict with score\n", + "proba = model.predict_proba(test)\n", + "classes = model.classes_\n", + "# create df with classes and scores\n", + "resultdf = pd.DataFrame(data=proba, columns=classes)\n", + "\n", + "# create df to show results\n", + "topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])\n", + "topPrediction.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.75 0.73 0.74 223\n indian 0.93 0.88 0.90 255\n japanese 0.78 0.78 0.78 253\n korean 0.87 0.86 0.86 236\n thai 0.76 0.84 0.80 232\n\n accuracy 0.82 1199\n macro avg 0.82 0.82 0.82 1199\nweighted avg 0.82 0.82 0.82 1199\n\n" + ] + } + ], + "source": [ + "y_pred = model.predict(X_test)\r\n", + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "9408506dd864f2b6e334c62f80c0cfcc", + "translation_date": "2025-09-04T02:23:09+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/fr/4-Classification/3-Classifiers-2/README.md b/translations/fr/4-Classification/3-Classifiers-2/README.md new file mode 100644 index 000000000..91627e8b8 --- /dev/null +++ b/translations/fr/4-Classification/3-Classifiers-2/README.md @@ -0,0 +1,249 @@ + +# Classificateurs de cuisine 2 + +Dans cette deuxième leçon sur la classification, vous explorerez davantage de méthodes pour classifier des données numériques. Vous apprendrez également les implications du choix d'un classificateur plutôt qu'un autre. + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/) + +### Prérequis + +Nous supposons que vous avez terminé les leçons précédentes et que vous disposez d'un jeu de données nettoyé dans votre dossier `data`, appelé _cleaned_cuisines.csv_, à la racine de ce dossier de 4 leçons. + +### Préparation + +Nous avons chargé votre fichier _notebook.ipynb_ avec le jeu de données nettoyé et l'avons divisé en dataframes X et y, prêts pour le processus de construction du modèle. + +## Une carte de classification + +Précédemment, vous avez appris les différentes options disponibles pour classifier des données en utilisant la fiche de référence de Microsoft. Scikit-learn propose une fiche similaire, mais plus détaillée, qui peut vous aider à affiner davantage vos choix de classificateurs (également appelés estimateurs) : + +![Carte ML de Scikit-learn](../../../../translated_images/map.e963a6a51349425ab107b38f6c7307eb4c0d0c7ccdd2e81a5e1919292bab9ac7.fr.png) +> Conseil : [visitez cette carte en ligne](https://scikit-learn.org/stable/tutorial/machine_learning_map/) et cliquez sur les chemins pour lire la documentation. + +### Le plan + +Cette carte est très utile une fois que vous avez une compréhension claire de vos données, car vous pouvez "suivre" ses chemins pour prendre une décision : + +- Nous avons >50 échantillons +- Nous voulons prédire une catégorie +- Nous avons des données étiquetées +- Nous avons moins de 100K échantillons +- ✨ Nous pouvons choisir un Linear SVC +- Si cela ne fonctionne pas, puisque nous avons des données numériques : + - Nous pouvons essayer un ✨ KNeighbors Classifier + - Si cela ne fonctionne pas, essayer ✨ SVC et ✨ Ensemble Classifiers + +C'est un chemin très utile à suivre. + +## Exercice - diviser les données + +En suivant ce chemin, nous devrions commencer par importer quelques bibliothèques nécessaires. + +1. Importez les bibliothèques nécessaires : + + ```python + from sklearn.neighbors import KNeighborsClassifier + from sklearn.linear_model import LogisticRegression + from sklearn.svm import SVC + from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + import numpy as np + ``` + +1. Divisez vos données d'entraînement et de test : + + ```python + X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) + ``` + +## Classificateur Linear SVC + +Le clustering par vecteurs de support (SVC) fait partie de la famille des machines à vecteurs de support (SVM) en apprentissage automatique (en savoir plus ci-dessous). Dans cette méthode, vous pouvez choisir un 'kernel' pour décider comment regrouper les étiquettes. Le paramètre 'C' fait référence à la 'régularisation', qui régule l'influence des paramètres. Le kernel peut être l'un des [plusieurs](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC) ; ici, nous le définissons sur 'linear' pour garantir que nous utilisons Linear SVC. La probabilité est par défaut 'false' ; ici, nous la définissons sur 'true' pour obtenir des estimations de probabilité. Nous définissons l'état aléatoire sur '0' pour mélanger les données et obtenir des probabilités. + +### Exercice - appliquer un Linear SVC + +Commencez par créer un tableau de classificateurs. Vous ajouterez progressivement à ce tableau au fur et à mesure des tests. + +1. Commencez avec un Linear SVC : + + ```python + C = 10 + # Create different classifiers. + classifiers = { + 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0) + } + ``` + +2. Entraînez votre modèle en utilisant le Linear SVC et affichez un rapport : + + ```python + n_classifiers = len(classifiers) + + for index, (name, classifier) in enumerate(classifiers.items()): + classifier.fit(X_train, np.ravel(y_train)) + + y_pred = classifier.predict(X_test) + accuracy = accuracy_score(y_test, y_pred) + print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100)) + print(classification_report(y_test,y_pred)) + ``` + + Le résultat est assez bon : + + ```output + Accuracy (train) for Linear SVC: 78.6% + precision recall f1-score support + + chinese 0.71 0.67 0.69 242 + indian 0.88 0.86 0.87 234 + japanese 0.79 0.74 0.76 254 + korean 0.85 0.81 0.83 242 + thai 0.71 0.86 0.78 227 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +## Classificateur K-Neighbors + +K-Neighbors fait partie de la famille "neighbors" des méthodes d'apprentissage automatique, qui peuvent être utilisées pour l'apprentissage supervisé et non supervisé. Dans cette méthode, un nombre prédéfini de points est créé et les données sont regroupées autour de ces points afin que des étiquettes généralisées puissent être prédites pour les données. + +### Exercice - appliquer le classificateur K-Neighbors + +Le classificateur précédent était bon et fonctionnait bien avec les données, mais peut-être pouvons-nous obtenir une meilleure précision. Essayez un classificateur K-Neighbors. + +1. Ajoutez une ligne à votre tableau de classificateurs (ajoutez une virgule après l'élément Linear SVC) : + + ```python + 'KNN classifier': KNeighborsClassifier(C), + ``` + + Le résultat est un peu moins bon : + + ```output + Accuracy (train) for KNN classifier: 73.8% + precision recall f1-score support + + chinese 0.64 0.67 0.66 242 + indian 0.86 0.78 0.82 234 + japanese 0.66 0.83 0.74 254 + korean 0.94 0.58 0.72 242 + thai 0.71 0.82 0.76 227 + + accuracy 0.74 1199 + macro avg 0.76 0.74 0.74 1199 + weighted avg 0.76 0.74 0.74 1199 + ``` + + ✅ En savoir plus sur [K-Neighbors](https://scikit-learn.org/stable/modules/neighbors.html#neighbors) + +## Classificateur Support Vector + +Les classificateurs par vecteurs de support font partie de la famille des [machines à vecteurs de support](https://wikipedia.org/wiki/Support-vector_machine) en apprentissage automatique, utilisées pour les tâches de classification et de régression. Les SVM "cartographient les exemples d'entraînement en points dans l'espace" pour maximiser la distance entre deux catégories. Les données suivantes sont cartographiées dans cet espace afin que leur catégorie puisse être prédite. + +### Exercice - appliquer un classificateur Support Vector + +Essayons d'obtenir une meilleure précision avec un classificateur Support Vector. + +1. Ajoutez une virgule après l'élément K-Neighbors, puis ajoutez cette ligne : + + ```python + 'SVC': SVC(), + ``` + + Le résultat est très bon ! + + ```output + Accuracy (train) for SVC: 83.2% + precision recall f1-score support + + chinese 0.79 0.74 0.76 242 + indian 0.88 0.90 0.89 234 + japanese 0.87 0.81 0.84 254 + korean 0.91 0.82 0.86 242 + thai 0.74 0.90 0.81 227 + + accuracy 0.83 1199 + macro avg 0.84 0.83 0.83 1199 + weighted avg 0.84 0.83 0.83 1199 + ``` + + ✅ En savoir plus sur [Support-Vectors](https://scikit-learn.org/stable/modules/svm.html#svm) + +## Classificateurs ensemblistes + +Suivons le chemin jusqu'à la fin, même si le test précédent était très bon. Essayons quelques 'classificateurs ensemblistes', en particulier Random Forest et AdaBoost : + +```python + 'RFST': RandomForestClassifier(n_estimators=100), + 'ADA': AdaBoostClassifier(n_estimators=100) +``` + +Le résultat est très bon, surtout pour Random Forest : + +```output +Accuracy (train) for RFST: 84.5% + precision recall f1-score support + + chinese 0.80 0.77 0.78 242 + indian 0.89 0.92 0.90 234 + japanese 0.86 0.84 0.85 254 + korean 0.88 0.83 0.85 242 + thai 0.80 0.87 0.83 227 + + accuracy 0.84 1199 + macro avg 0.85 0.85 0.84 1199 +weighted avg 0.85 0.84 0.84 1199 + +Accuracy (train) for ADA: 72.4% + precision recall f1-score support + + chinese 0.64 0.49 0.56 242 + indian 0.91 0.83 0.87 234 + japanese 0.68 0.69 0.69 254 + korean 0.73 0.79 0.76 242 + thai 0.67 0.83 0.74 227 + + accuracy 0.72 1199 + macro avg 0.73 0.73 0.72 1199 +weighted avg 0.73 0.72 0.72 1199 +``` + +✅ En savoir plus sur [Classificateurs ensemblistes](https://scikit-learn.org/stable/modules/ensemble.html) + +Cette méthode d'apprentissage automatique "combine les prédictions de plusieurs estimateurs de base" pour améliorer la qualité du modèle. Dans notre exemple, nous avons utilisé Random Trees et AdaBoost. + +- [Random Forest](https://scikit-learn.org/stable/modules/ensemble.html#forest), une méthode d'agrégation, construit une 'forêt' d'arbres de décision infusés de hasard pour éviter le surapprentissage. Le paramètre n_estimators est défini sur le nombre d'arbres. + +- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) ajuste un classificateur à un jeu de données, puis ajuste des copies de ce classificateur au même jeu de données. Il se concentre sur les poids des éléments mal classés et ajuste l'ajustement pour le prochain classificateur afin de corriger. + +--- + +## 🚀Défi + +Chacune de ces techniques possède un grand nombre de paramètres que vous pouvez ajuster. Faites des recherches sur les paramètres par défaut de chacune et réfléchissez à ce que modifier ces paramètres signifierait pour la qualité du modèle. + +## [Quiz après la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/) + +## Révision et étude personnelle + +Il y a beaucoup de jargon dans ces leçons, alors prenez un moment pour consulter [cette liste](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott) de terminologie utile ! + +## Devoir + +[Jeu de paramètres](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/4-Classification/3-Classifiers-2/assignment.md b/translations/fr/4-Classification/3-Classifiers-2/assignment.md new file mode 100644 index 000000000..82d5ca644 --- /dev/null +++ b/translations/fr/4-Classification/3-Classifiers-2/assignment.md @@ -0,0 +1,25 @@ + +# Jeu de Paramètres + +## Instructions + +De nombreux paramètres sont définis par défaut lorsque vous travaillez avec ces classificateurs. L'Intellisense dans VS Code peut vous aider à les explorer. Adoptez l'une des techniques de classification en apprentissage automatique abordées dans cette leçon et réentraînez les modèles en modifiant différentes valeurs de paramètres. Créez un notebook expliquant pourquoi certains changements améliorent la qualité du modèle tandis que d'autres la dégradent. Soyez précis dans votre réponse. + +## Grille d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ---------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------- | ----------------------------- | +| | Un notebook est présenté avec un classificateur entièrement construit, ses paramètres ajustés et les changements expliqués dans des zones de texte | Un notebook est partiellement présenté ou mal expliqué | Un notebook est défectueux ou erroné | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/4-Classification/3-Classifiers-2/notebook.ipynb b/translations/fr/4-Classification/3-Classifiers-2/notebook.ipynb new file mode 100644 index 000000000..2724e6df3 --- /dev/null +++ b/translations/fr/4-Classification/3-Classifiers-2/notebook.ipynb @@ -0,0 +1,163 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      00indian00000000...0000000000
                      11indian10000000...0000000000
                      22indian00000000...0000000000
                      33indian00000000...0000000000
                      44indian00000000...0000000010
                      \n

                      5 rows × 382 columns

                      \n
                      " + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      00000000000...0000000000
                      11000000000...0000000000
                      20000000000...0000000000
                      30000000000...0000000000
                      40000000000...0000000010
                      \n

                      5 rows × 380 columns

                      \n
                      " + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "15a83277036572e0773229b5f21c1e12", + "translation_date": "2025-09-04T02:31:59+00:00", + "source_file": "4-Classification/3-Classifiers-2/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/fr/4-Classification/3-Classifiers-2/solution/Julia/README.md b/translations/fr/4-Classification/3-Classifiers-2/solution/Julia/README.md new file mode 100644 index 000000000..babd2080d --- /dev/null +++ b/translations/fr/4-Classification/3-Classifiers-2/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction professionnelle humaine. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb b/translations/fr/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb new file mode 100644 index 000000000..dc04e0919 --- /dev/null +++ b/translations/fr/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb @@ -0,0 +1,650 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "lesson_12-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "fab50046ca413a38939d579f8432274f", + "translation_date": "2025-09-04T02:33:50+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb", + "language_code": "fr" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "jsFutf_ygqSx" + }, + "source": [ + "# Construire un modèle de classification : Délicieuses cuisines asiatiques et indiennes\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HD54bEefgtNO" + }, + "source": [ + "## Classificateurs de cuisine 2\n", + "\n", + "Dans cette deuxième leçon sur la classification, nous allons explorer `davantage de méthodes` pour classifier les données catégorielles. Nous examinerons également les implications du choix d'un classificateur plutôt qu'un autre.\n", + "\n", + "### [**Quiz avant la leçon**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/)\n", + "\n", + "### **Prérequis**\n", + "\n", + "Nous supposons que vous avez terminé les leçons précédentes, car nous allons reprendre certains concepts abordés auparavant.\n", + "\n", + "Pour cette leçon, nous aurons besoin des packages suivants :\n", + "\n", + "- `tidyverse` : Le [tidyverse](https://www.tidyverse.org/) est une [collection de packages R](https://www.tidyverse.org/packages) conçue pour rendre la science des données plus rapide, plus facile et plus agréable !\n", + "\n", + "- `tidymodels` : Le framework [tidymodels](https://www.tidymodels.org/) est une [collection de packages](https://www.tidymodels.org/packages/) dédiée à la modélisation et à l'apprentissage automatique.\n", + "\n", + "- `themis` : Le package [themis](https://themis.tidymodels.org/) fournit des étapes supplémentaires pour traiter les données déséquilibrées.\n", + "\n", + "Vous pouvez les installer avec la commande suivante :\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"kernlab\", \"themis\", \"ranger\", \"xgboost\", \"kknn\"))`\n", + "\n", + "Sinon, le script ci-dessous vérifie si vous avez les packages nécessaires pour compléter ce module et les installe pour vous s'ils sont manquants.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vZ57IuUxgyQt" + }, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, themis, kernlab, ranger, xgboost, kknn)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z22M-pj4g07x" + }, + "source": [ + "## **1. Une carte de classification**\n", + "\n", + "Dans notre [leçon précédente](https://github.com/microsoft/ML-For-Beginners/tree/main/4-Classification/2-Classifiers-1), nous avons tenté de répondre à la question : comment choisir entre plusieurs modèles ? En grande partie, cela dépend des caractéristiques des données et du type de problème que nous voulons résoudre (par exemple, classification ou régression ?)\n", + "\n", + "Auparavant, nous avons appris les différentes options disponibles pour classifier des données en utilisant l'aide-mémoire de Microsoft. Le framework de Machine Learning en Python, Scikit-learn, propose un aide-mémoire similaire mais plus détaillé, qui peut vous aider à affiner davantage vos estimateurs (un autre terme pour désigner les classificateurs) :\n", + "\n", + "

                      \n", + " \n", + "

                      \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u1i3xRIVg7vG" + }, + "source": [ + "> Conseil : [consultez cette carte en ligne](https://scikit-learn.org/stable/tutorial/machine_learning_map/) et cliquez sur les chemins pour lire la documentation. \n", + "> \n", + "> Le [site de référence Tidymodels](https://www.tidymodels.org/find/parsnip/#models) propose également une excellente documentation sur les différents types de modèles.\n", + "\n", + "### **Le plan** 🗺️\n", + "\n", + "Cette carte est très utile une fois que vous comprenez bien vos données, car vous pouvez \"suivre\" ses chemins pour arriver à une décision :\n", + "\n", + "- Nous avons \\>50 échantillons\n", + "\n", + "- Nous voulons prédire une catégorie\n", + "\n", + "- Nous avons des données étiquetées\n", + "\n", + "- Nous avons moins de 100K échantillons\n", + "\n", + "- ✨ Nous pouvons choisir un Linear SVC\n", + "\n", + "- Si cela ne fonctionne pas, étant donné que nous avons des données numériques :\n", + "\n", + " - Nous pouvons essayer un ✨ KNeighbors Classifier\n", + "\n", + " - Si cela ne fonctionne pas, essayez ✨ SVC et ✨ Ensemble Classifiers\n", + "\n", + "C'est un chemin très utile à suivre. Maintenant, passons directement à l'action en utilisant le framework de modélisation [tidymodels](https://www.tidymodels.org/) : une collection cohérente et flexible de packages R développée pour encourager de bonnes pratiques statistiques 😊.\n", + "\n", + "## 2. Diviser les données et gérer un ensemble de données déséquilibré.\n", + "\n", + "Dans nos leçons précédentes, nous avons appris qu'il existait un ensemble d'ingrédients communs à travers nos cuisines. De plus, il y avait une répartition assez inégale du nombre de cuisines.\n", + "\n", + "Nous allons gérer cela en :\n", + "\n", + "- Supprimant les ingrédients les plus courants qui créent de la confusion entre des cuisines distinctes, en utilisant `dplyr::select()`.\n", + "\n", + "- Utilisant une `recipe` qui prétraite les données pour les préparer à la modélisation en appliquant un algorithme de `sur-échantillonnage`.\n", + "\n", + "Nous avons déjà vu cela dans la leçon précédente, donc cela devrait être un jeu d'enfant 🥳 !\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "6tj_rN00hClA" + }, + "source": [ + "# Load the core Tidyverse and Tidymodels packages\n", + "library(tidyverse)\n", + "library(tidymodels)\n", + "\n", + "# Load the original cuisines data\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\n", + "\n", + "# Drop id column, rice, garlic and ginger from our original data set\n", + "df_select <- df %>% \n", + " select(-c(1, rice, garlic, ginger)) %>%\n", + " # Encode cuisine column as categorical\n", + " mutate(cuisine = factor(cuisine))\n", + "\n", + "\n", + "# Create data split specification\n", + "set.seed(2056)\n", + "cuisines_split <- initial_split(data = df_select,\n", + " strata = cuisine,\n", + " prop = 0.7)\n", + "\n", + "# Extract the data in each split\n", + "cuisines_train <- training(cuisines_split)\n", + "cuisines_test <- testing(cuisines_split)\n", + "\n", + "# Display distribution of cuisines in the training set\n", + "cuisines_train %>% \n", + " count(cuisine) %>% \n", + " arrange(desc(n))" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zFin5yw3hHb1" + }, + "source": [ + "### Gérer les données déséquilibrées\n", + "\n", + "Les données déséquilibrées ont souvent des effets négatifs sur les performances du modèle. De nombreux modèles fonctionnent mieux lorsque le nombre d'observations est équilibré et, par conséquent, ont tendance à rencontrer des difficultés avec des données non équilibrées.\n", + "\n", + "Il existe principalement deux façons de traiter les ensembles de données déséquilibrés :\n", + "\n", + "- ajouter des observations à la classe minoritaire : `Sur-échantillonnage`, par exemple en utilisant un algorithme SMOTE qui génère de manière synthétique de nouveaux exemples de la classe minoritaire en utilisant les plus proches voisins de ces cas.\n", + "\n", + "- supprimer des observations de la classe majoritaire : `Sous-échantillonnage`\n", + "\n", + "Dans notre leçon précédente, nous avons démontré comment traiter les ensembles de données déséquilibrés en utilisant une `recette`. Une recette peut être considérée comme un plan décrivant les étapes à appliquer à un ensemble de données pour le préparer à l'analyse. Dans notre cas, nous souhaitons obtenir une distribution égale du nombre de nos cuisines pour notre `ensemble d'entraînement`. Allons-y directement.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cRzTnHolhLWd" + }, + "source": [ + "# Load themis package for dealing with imbalanced data\n", + "library(themis)\n", + "\n", + "# Create a recipe for preprocessing training data\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>%\n", + " step_smote(cuisine) \n", + "\n", + "# Print recipe\n", + "cuisines_recipe" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KxOQ2ORhhO81" + }, + "source": [ + "Nous sommes prêts à entraîner des modèles 👩‍💻👨‍💻 !\n", + "\n", + "## 3. Au-delà des modèles de régression multinomiale\n", + "\n", + "Dans notre leçon précédente, nous avons étudié les modèles de régression multinomiale. Explorons maintenant des modèles plus flexibles pour la classification.\n", + "\n", + "### Machines à vecteurs de support\n", + "\n", + "Dans le contexte de la classification, les `Machines à vecteurs de support` sont une technique d'apprentissage automatique qui cherche à trouver un *hyperplan* qui sépare \"au mieux\" les classes. Prenons un exemple simple :\n", + "\n", + "

                      \n", + " \n", + "

                      https://commons.wikimedia.org/w/index.php?curid=22877598
                      \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C4Wsd0vZhXYu" + }, + "source": [ + "H1~ ne sépare pas les classes. H2~ les sépare, mais seulement avec une petite marge. H3~ les sépare avec la marge maximale.\n", + "\n", + "#### Classificateur Linéaire à Vecteurs de Support\n", + "\n", + "Le clustering par vecteurs de support (SVC) est une branche de la famille des machines à vecteurs de support, une technique d'apprentissage automatique. Dans le SVC, l'hyperplan est choisi pour séparer correctement `la plupart` des observations d'entraînement, mais `peut mal classer` quelques observations. En permettant à certains points d'être du mauvais côté, le SVM devient plus robuste face aux valeurs aberrantes, ce qui améliore la généralisation aux nouvelles données. Le paramètre qui régule cette violation est appelé `cost`, avec une valeur par défaut de 1 (voir `help(\"svm_poly\")`).\n", + "\n", + "Créons un SVC linéaire en définissant `degree = 1` dans un modèle SVM polynomial.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vJpp6nuChlBz" + }, + "source": [ + "# Make a linear SVC specification\n", + "svc_linear_spec <- svm_poly(degree = 1) %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svc_linear_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svc_linear_spec)\n", + "\n", + "# Print out workflow\n", + "svc_linear_wf" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rDs8cWNkhoqu" + }, + "source": [ + "Maintenant que nous avons intégré les étapes de prétraitement et la spécification du modèle dans un *workflow*, nous pouvons passer à l'entraînement du SVC linéaire et évaluer les résultats en même temps. Pour les métriques de performance, créons un ensemble de métriques qui évaluera : `accuracy`, `sensitivity`, `Positive Predicted Value` et `F Measure`.\n", + "\n", + "> `augment()` ajoutera une ou plusieurs colonnes pour les prédictions aux données fournies.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "81wiqcwuhrnq" + }, + "source": [ + "# Train a linear SVC model\n", + "svc_linear_fit <- svc_linear_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svc_linear_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0UFQvHf-huo3" + }, + "source": [ + "#### Machine à Vecteurs de Support\n", + "\n", + "La machine à vecteurs de support (SVM) est une extension du classificateur à vecteurs de support afin de gérer une frontière non linéaire entre les classes. En substance, les SVM utilisent l’*astuce du noyau* pour agrandir l’espace des caractéristiques et s’adapter aux relations non linéaires entre les classes. Une fonction noyau populaire et extrêmement flexible utilisée par les SVM est la *fonction de base radiale.* Voyons comment elle se comporte avec nos données.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-KX4S8mzhzmp" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Make an RBF SVM specification\n", + "svm_rbf_spec <- svm_rbf() %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svm_rbf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svm_rbf_spec)\n", + "\n", + "\n", + "# Train an RBF model\n", + "svm_rbf_fit <- svm_rbf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svm_rbf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QBFSa7WSh4HQ" + }, + "source": [ + "Beaucoup mieux 🤩 !\n", + "\n", + "> ✅ Veuillez consulter :\n", + ">\n", + "> - [*Support Vector Machines*](https://bradleyboehmke.github.io/HOML/svm.html), Hands-on Machine Learning avec R\n", + ">\n", + "> - [*Support Vector Machines*](https://www.statlearning.com/), An Introduction to Statistical Learning with Applications in R\n", + ">\n", + "> pour en savoir plus.\n", + "\n", + "### Classificateurs des plus proches voisins\n", + "\n", + "Le *K*-nearest neighbor (KNN) est un algorithme dans lequel chaque observation est prédite en fonction de sa *similarité* avec d'autres observations.\n", + "\n", + "Essayons d'en ajuster un à nos données.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "k4BxxBcdh9Ka" + }, + "source": [ + "# Make a KNN specification\n", + "knn_spec <- nearest_neighbor() %>% \n", + " set_engine(\"kknn\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "knn_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(knn_spec)\n", + "\n", + "# Train a boosted tree model\n", + "knn_wf_fit <- knn_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "knn_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HaegQseriAcj" + }, + "source": [ + "Il semble que ce modèle ne donne pas de très bons résultats. Modifier les arguments du modèle (voir `help(\"nearest_neighbor\")`) pourrait probablement améliorer ses performances. Assurez-vous d'essayer.\n", + "\n", + "> ✅ Veuillez consulter :\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> pour en savoir plus sur les classificateurs *K*-Nearest Neighbors.\n", + "\n", + "### Classificateurs par ensemble\n", + "\n", + "Les algorithmes d'ensemble fonctionnent en combinant plusieurs estimateurs de base pour produire un modèle optimal, soit en :\n", + "\n", + "`bagging` : appliquant une *fonction de moyenne* à une collection de modèles de base\n", + "\n", + "`boosting` : construisant une séquence de modèles qui s'appuient les uns sur les autres pour améliorer les performances prédictives.\n", + "\n", + "Commençons par essayer un modèle de Forêt Aléatoire, qui construit une grande collection d'arbres de décision, puis applique une fonction de moyenne pour obtenir un meilleur modèle global.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "49DPoVs6iK1M" + }, + "source": [ + "# Make a random forest specification\n", + "rf_spec <- rand_forest() %>% \n", + " set_engine(\"ranger\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "rf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(rf_spec)\n", + "\n", + "# Train a random forest model\n", + "rf_wf_fit <- rf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "rf_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RGVYwC_aiUWc" + }, + "source": [ + "Bon travail 👏 !\n", + "\n", + "Essayons également un modèle Boosted Tree.\n", + "\n", + "Boosted Tree définit une méthode d'ensemble qui crée une série d'arbres de décision séquentiels où chaque arbre dépend des résultats des arbres précédents dans le but de réduire progressivement l'erreur. Il se concentre sur les poids des éléments mal classés et ajuste l'ajustement pour le prochain classificateur afin de corriger.\n", + "\n", + "Il existe différentes façons d'ajuster ce modèle (voir `help(\"boost_tree\")`). Dans cet exemple, nous ajusterons les Boosted Trees via le moteur `xgboost`.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Py1YWo-micWs" + }, + "source": [ + "# Make a boosted tree specification\n", + "boost_spec <- boost_tree(trees = 200) %>% \n", + " set_engine(\"xgboost\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "boost_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(boost_spec)\n", + "\n", + "# Train a boosted tree model\n", + "boost_wf_fit <- boost_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "boost_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zNQnbuejigZM" + }, + "source": [ + "> ✅ Veuillez consulter :\n", + ">\n", + "> - [Machine Learning for Social Scientists](https://cimentadaj.github.io/ml_socsci/tree-based-methods.html#random-forests)\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> - - Explore le modèle AdaBoost, une bonne alternative à xgboost.\n", + ">\n", + "> pour en savoir plus sur les classificateurs ensemblistes.\n", + "\n", + "## 4. Extra - comparer plusieurs modèles\n", + "\n", + "Nous avons ajusté un bon nombre de modèles dans ce laboratoire 🙌. Cela peut devenir fastidieux ou compliqué de créer de nombreux workflows à partir de différents ensembles de préprocesseurs et/ou spécifications de modèles, puis de calculer les métriques de performance une par une.\n", + "\n", + "Voyons si nous pouvons résoudre ce problème en créant une fonction qui ajuste une liste de workflows sur l'ensemble d'entraînement, puis retourne les métriques de performance basées sur l'ensemble de test. Nous allons utiliser `map()` et `map_dfr()` du package [purrr](https://purrr.tidyverse.org/) pour appliquer des fonctions à chaque élément d'une liste.\n", + "\n", + "> Les fonctions [`map()`](https://purrr.tidyverse.org/reference/map.html) vous permettent de remplacer de nombreuses boucles for par un code à la fois plus concis et plus facile à lire. Le meilleur endroit pour apprendre les fonctions [`map()`](https://purrr.tidyverse.org/reference/map.html) est le [chapitre sur l'itération](http://r4ds.had.co.nz/iteration.html) dans R for data science.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Qzb7LyZnimd2" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "# Define a function that returns performance metrics\n", + "compare_models <- function(workflow_list, train_set, test_set){\n", + " \n", + " suppressWarnings(\n", + " # Fit each model to the train_set\n", + " map(workflow_list, fit, data = train_set) %>% \n", + " # Make predictions on the test set\n", + " map_dfr(augment, new_data = test_set, .id = \"model\") %>%\n", + " # Select desired columns\n", + " select(model, cuisine, .pred_class) %>% \n", + " # Evaluate model performance\n", + " group_by(model) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class) %>% \n", + " ungroup()\n", + " )\n", + " \n", + "} # End of function" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Fwa712sNisDA" + }, + "source": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "3i4VJOi2iu-a" + }, + "source": [ + "# Make a list of workflows\n", + "workflow_list <- list(\n", + " \"svc\" = svc_linear_wf,\n", + " \"svm\" = svm_rbf_wf,\n", + " \"knn\" = knn_wf,\n", + " \"random_forest\" = rf_wf,\n", + " \"xgboost\" = boost_wf)\n", + "\n", + "# Call the function\n", + "set.seed(2056)\n", + "perf_metrics <- compare_models(workflow_list = workflow_list, train_set = cuisines_train, test_set = cuisines_test)\n", + "\n", + "# Print out performance metrics\n", + "perf_metrics %>% \n", + " group_by(.metric) %>% \n", + " arrange(desc(.estimate)) %>% \n", + " slice_head(n=7)\n", + "\n", + "# Compare accuracy\n", + "perf_metrics %>% \n", + " filter(.metric == \"accuracy\") %>% \n", + " arrange(desc(.estimate))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KuWK_lEli4nW" + }, + "source": [ + "[**workflowset**](https://workflowsets.tidymodels.org/) permet aux utilisateurs de créer et d'ajuster facilement un grand nombre de modèles, mais il est principalement conçu pour fonctionner avec des techniques de rééchantillonnage telles que la `validation croisée`, une approche que nous n'avons pas encore abordée.\n", + "\n", + "## **🚀Défi**\n", + "\n", + "Chacune de ces techniques possède un grand nombre de paramètres que vous pouvez ajuster, comme par exemple `cost` pour les SVM, `neighbors` pour les KNN, ou `mtry` (Prédicteurs Sélectionnés Aléatoirement) pour les Forêts Aléatoires.\n", + "\n", + "Faites des recherches sur les paramètres par défaut de chacun et réfléchissez à ce que modifier ces paramètres pourrait signifier pour la qualité du modèle.\n", + "\n", + "Pour en savoir plus sur un modèle particulier et ses paramètres, utilisez : `help(\"model\")`, par exemple `help(\"rand_forest\")`.\n", + "\n", + "> En pratique, nous *estimons* généralement les *meilleures valeurs* pour ces paramètres en entraînant de nombreux modèles sur un `jeu de données simulé` et en mesurant les performances de tous ces modèles. Ce processus s'appelle **l'optimisation**.\n", + "\n", + "### [**Quiz après le cours**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/)\n", + "\n", + "### **Révision & Étude Personnelle**\n", + "\n", + "Il y a beaucoup de jargon dans ces leçons, alors prenez un moment pour consulter [cette liste](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott) de terminologie utile !\n", + "\n", + "#### MERCI À :\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) pour avoir créé les illustrations incroyables qui rendent R plus accueillant et engageant. Retrouvez plus d'illustrations dans sa [galerie](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) et [Jen Looper](https://www.twitter.com/jenlooper) pour avoir créé la version originale en Python de ce module ♥️\n", + "\n", + "Bon apprentissage,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Gold Microsoft Learn Student Ambassador.\n", + "\n", + "

                      \n", + " \n", + "

                      Illustration par @allison_horst
                      \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/4-Classification/3-Classifiers-2/solution/notebook.ipynb b/translations/fr/4-Classification/3-Classifiers-2/solution/notebook.ipynb new file mode 100644 index 000000000..be6475e54 --- /dev/null +++ b/translations/fr/4-Classification/3-Classifiers-2/solution/notebook.ipynb @@ -0,0 +1,302 @@ +{ + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      00indian00000000...0000000000
                      11indian10000000...0000000000
                      22indian00000000...0000000000
                      33indian00000000...0000000000
                      44indian00000000...0000000010
                      \n

                      5 rows × 382 columns

                      \n
                      " + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 2 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      00000000000...0000000000
                      11000000000...0000000000
                      20000000000...0000000000
                      30000000000...0000000000
                      40000000000...0000000010
                      \n

                      5 rows × 380 columns

                      \n
                      " + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Essayez différents classificateurs\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.svm import SVC\n", + "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "C = 10\n", + "# Create different classifiers.\n", + "classifiers = {\n", + " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n", + " 'KNN classifier': KNeighborsClassifier(C),\n", + " 'SVC': SVC(),\n", + " 'RFST': RandomForestClassifier(n_estimators=100),\n", + " 'ADA': AdaBoostClassifier(n_estimators=100)\n", + " \n", + "}\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy (train) for Linear SVC: 76.4% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.64 0.66 0.65 242\n", + " indian 0.91 0.86 0.89 236\n", + " japanese 0.72 0.73 0.73 245\n", + " korean 0.83 0.75 0.79 234\n", + " thai 0.75 0.82 0.78 242\n", + "\n", + " accuracy 0.76 1199\n", + " macro avg 0.77 0.76 0.77 1199\n", + "weighted avg 0.77 0.76 0.77 1199\n", + "\n", + "Accuracy (train) for KNN classifier: 70.7% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.65 0.63 0.64 242\n", + " indian 0.84 0.81 0.82 236\n", + " japanese 0.60 0.81 0.69 245\n", + " korean 0.89 0.53 0.67 234\n", + " thai 0.69 0.75 0.72 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.73 0.71 0.71 1199\n", + "weighted avg 0.73 0.71 0.71 1199\n", + "\n", + "Accuracy (train) for SVC: 80.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.71 0.69 0.70 242\n", + " indian 0.92 0.92 0.92 236\n", + " japanese 0.77 0.78 0.77 245\n", + " korean 0.87 0.77 0.82 234\n", + " thai 0.75 0.86 0.80 242\n", + "\n", + " accuracy 0.80 1199\n", + " macro avg 0.80 0.80 0.80 1199\n", + "weighted avg 0.80 0.80 0.80 1199\n", + "\n", + "Accuracy (train) for RFST: 82.8% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.80 0.75 0.77 242\n", + " indian 0.90 0.91 0.90 236\n", + " japanese 0.82 0.78 0.80 245\n", + " korean 0.85 0.82 0.83 234\n", + " thai 0.78 0.89 0.83 242\n", + "\n", + " accuracy 0.83 1199\n", + " macro avg 0.83 0.83 0.83 1199\n", + "weighted avg 0.83 0.83 0.83 1199\n", + "\n", + "Accuracy (train) for ADA: 71.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.60 0.57 0.58 242\n", + " indian 0.87 0.84 0.86 236\n", + " japanese 0.71 0.60 0.65 245\n", + " korean 0.68 0.78 0.72 234\n", + " thai 0.70 0.78 0.74 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.71 0.71 0.71 1199\n", + "weighted avg 0.71 0.71 0.71 1199\n", + "\n" + ] + } + ], + "source": [ + "n_classifiers = len(classifiers)\n", + "\n", + "for index, (name, classifier) in enumerate(classifiers.items()):\n", + " classifier.fit(X_train, np.ravel(y_train))\n", + "\n", + " y_pred = classifier.predict(X_test)\n", + " accuracy = accuracy_score(y_test, y_pred)\n", + " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n", + " print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "7ea2b714669c823a596d986ba2d5739f", + "translation_date": "2025-09-04T02:32:25+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/fr/4-Classification/4-Applied/README.md b/translations/fr/4-Classification/4-Applied/README.md new file mode 100644 index 000000000..ec0a6a710 --- /dev/null +++ b/translations/fr/4-Classification/4-Applied/README.md @@ -0,0 +1,329 @@ + +# Construire une application web de recommandation de cuisine + +Dans cette leçon, vous allez créer un modèle de classification en utilisant certaines des techniques apprises dans les leçons précédentes, ainsi que le délicieux ensemble de données sur les cuisines utilisé tout au long de cette série. De plus, vous allez construire une petite application web pour utiliser un modèle sauvegardé, en tirant parti du runtime web d'Onnx. + +L'un des usages pratiques les plus utiles de l'apprentissage automatique est la création de systèmes de recommandation, et vous pouvez faire le premier pas dans cette direction dès aujourd'hui ! + +[![Présentation de cette application web](https://img.youtube.com/vi/17wdM9AHMfg/0.jpg)](https://youtu.be/17wdM9AHMfg "ML appliqué") + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo : Jen Looper construit une application web en utilisant des données de cuisine classifiées + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/25/) + +Dans cette leçon, vous apprendrez : + +- Comment construire un modèle et le sauvegarder au format Onnx +- Comment utiliser Netron pour inspecter le modèle +- Comment utiliser votre modèle dans une application web pour effectuer des inférences + +## Construisez votre modèle + +Créer des systèmes d'apprentissage automatique appliqués est une partie importante de l'intégration de ces technologies dans vos systèmes d'entreprise. Vous pouvez utiliser des modèles dans vos applications web (et donc les utiliser hors ligne si nécessaire) en utilisant Onnx. + +Dans une [leçon précédente](../../3-Web-App/1-Web-App/README.md), vous avez construit un modèle de régression sur les observations d'OVNI, l'avez "picklé" et utilisé dans une application Flask. Bien que cette architecture soit très utile à connaître, il s'agit d'une application Python full-stack, et vos besoins peuvent inclure l'utilisation d'une application JavaScript. + +Dans cette leçon, vous pouvez construire un système de base basé sur JavaScript pour effectuer des inférences. Cependant, vous devez d'abord entraîner un modèle et le convertir pour une utilisation avec Onnx. + +## Exercice - entraîner un modèle de classification + +Commencez par entraîner un modèle de classification en utilisant l'ensemble de données nettoyé sur les cuisines que nous avons utilisé. + +1. Commencez par importer des bibliothèques utiles : + + ```python + !pip install skl2onnx + import pandas as pd + ``` + + Vous avez besoin de '[skl2onnx](https://onnx.ai/sklearn-onnx/)' pour aider à convertir votre modèle Scikit-learn au format Onnx. + +1. Ensuite, travaillez avec vos données de la même manière que dans les leçons précédentes, en lisant un fichier CSV avec `read_csv()` : + + ```python + data = pd.read_csv('../data/cleaned_cuisines.csv') + data.head() + ``` + +1. Supprimez les deux premières colonnes inutiles et sauvegardez les données restantes sous 'X' : + + ```python + X = data.iloc[:,2:] + X.head() + ``` + +1. Sauvegardez les étiquettes sous 'y' : + + ```python + y = data[['cuisine']] + y.head() + + ``` + +### Commencez la routine d'entraînement + +Nous utiliserons la bibliothèque 'SVC' qui offre une bonne précision. + +1. Importez les bibliothèques appropriées de Scikit-learn : + + ```python + from sklearn.model_selection import train_test_split + from sklearn.svm import SVC + from sklearn.model_selection import cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report + ``` + +1. Séparez les ensembles d'entraînement et de test : + + ```python + X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3) + ``` + +1. Construisez un modèle de classification SVC comme vous l'avez fait dans la leçon précédente : + + ```python + model = SVC(kernel='linear', C=10, probability=True,random_state=0) + model.fit(X_train,y_train.values.ravel()) + ``` + +1. Maintenant, testez votre modèle en appelant `predict()` : + + ```python + y_pred = model.predict(X_test) + ``` + +1. Affichez un rapport de classification pour vérifier la qualité du modèle : + + ```python + print(classification_report(y_test,y_pred)) + ``` + + Comme nous l'avons vu précédemment, la précision est bonne : + + ```output + precision recall f1-score support + + chinese 0.72 0.69 0.70 257 + indian 0.91 0.87 0.89 243 + japanese 0.79 0.77 0.78 239 + korean 0.83 0.79 0.81 236 + thai 0.72 0.84 0.78 224 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +### Convertissez votre modèle en Onnx + +Assurez-vous de faire la conversion avec le bon nombre de tenseurs. Cet ensemble de données contient 380 ingrédients répertoriés, donc vous devez noter ce nombre dans `FloatTensorType` : + +1. Convertissez en utilisant un nombre de tenseurs de 380. + + ```python + from skl2onnx import convert_sklearn + from skl2onnx.common.data_types import FloatTensorType + + initial_type = [('float_input', FloatTensorType([None, 380]))] + options = {id(model): {'nocl': True, 'zipmap': False}} + ``` + +1. Créez le fichier onx et sauvegardez-le sous le nom **model.onnx** : + + ```python + onx = convert_sklearn(model, initial_types=initial_type, options=options) + with open("./model.onnx", "wb") as f: + f.write(onx.SerializeToString()) + ``` + + > Notez que vous pouvez passer des [options](https://onnx.ai/sklearn-onnx/parameterized.html) dans votre script de conversion. Dans ce cas, nous avons défini 'nocl' sur True et 'zipmap' sur False. Étant donné qu'il s'agit d'un modèle de classification, vous avez l'option de supprimer ZipMap qui produit une liste de dictionnaires (non nécessaire). `nocl` fait référence à l'inclusion des informations de classe dans le modèle. Réduisez la taille de votre modèle en définissant `nocl` sur 'True'. + +Exécuter l'ensemble du notebook permettra maintenant de construire un modèle Onnx et de le sauvegarder dans ce dossier. + +## Visualisez votre modèle + +Les modèles Onnx ne sont pas très visibles dans Visual Studio Code, mais il existe un excellent logiciel gratuit que de nombreux chercheurs utilisent pour visualiser le modèle et s'assurer qu'il est correctement construit. Téléchargez [Netron](https://github.com/lutzroeder/Netron) et ouvrez votre fichier model.onnx. Vous pouvez voir votre modèle simple visualisé, avec ses 380 entrées et son classificateur listé : + +![Visualisation Netron](../../../../translated_images/netron.a05f39410211915e0f95e2c0e8b88f41e7d13d725faf660188f3802ba5c9e831.fr.png) + +Netron est un outil utile pour visualiser vos modèles. + +Vous êtes maintenant prêt à utiliser ce modèle dans une application web. Construisons une application qui sera utile lorsque vous regardez dans votre réfrigérateur et essayez de déterminer quelle combinaison de vos ingrédients restants vous pouvez utiliser pour cuisiner une cuisine donnée, comme déterminé par votre modèle. + +## Construisez une application web de recommandation + +Vous pouvez utiliser votre modèle directement dans une application web. Cette architecture vous permet également de l'exécuter localement et même hors ligne si nécessaire. Commencez par créer un fichier `index.html` dans le même dossier où vous avez sauvegardé votre fichier `model.onnx`. + +1. Dans ce fichier _index.html_, ajoutez le balisage suivant : + + ```html + + +
                      + Cuisine Matcher +
                      + + ... + + + ``` + +1. Ensuite, dans les balises `body`, ajoutez un peu de balisage pour afficher une liste de cases à cocher reflétant certains ingrédients : + + ```html +

                      Check your refrigerator. What can you create?

                      +
                      +
                      + + +
                      + +
                      + + +
                      + +
                      + + +
                      + +
                      + + +
                      + +
                      + + +
                      + +
                      + + +
                      + +
                      + + +
                      +
                      +
                      + +
                      + ``` + + Notez que chaque case à cocher a une valeur. Cela reflète l'index où l'ingrédient se trouve selon l'ensemble de données. Par exemple, la pomme, dans cette liste alphabétique, occupe la cinquième colonne, donc sa valeur est '4' puisque nous commençons à compter à 0. Vous pouvez consulter le [tableau des ingrédients](../../../../4-Classification/data/ingredient_indexes.csv) pour découvrir l'index d'un ingrédient donné. + + En continuant votre travail dans le fichier index.html, ajoutez un bloc de script où le modèle est appelé après la dernière balise ``. + +1. Tout d'abord, importez le [runtime Onnx](https://www.onnxruntime.ai/) : + + ```html + + ``` + + > Le runtime Onnx est utilisé pour permettre l'exécution de vos modèles Onnx sur une large gamme de plateformes matérielles, avec des optimisations et une API à utiliser. + +1. Une fois le runtime en place, vous pouvez l'appeler : + + ```html + + ``` + +Dans ce code, plusieurs choses se produisent : + +1. Vous avez créé un tableau de 380 valeurs possibles (1 ou 0) à définir et envoyer au modèle pour effectuer des inférences, en fonction de la case à cocher sélectionnée. +2. Vous avez créé un tableau de cases à cocher et un moyen de déterminer si elles ont été cochées dans une fonction `init` appelée au démarrage de l'application. Lorsqu'une case est cochée, le tableau `ingredients` est modifié pour refléter l'ingrédient choisi. +3. Vous avez créé une fonction `testCheckboxes` qui vérifie si une case a été cochée. +4. Vous utilisez la fonction `startInference` lorsque le bouton est pressé et, si une case est cochée, vous démarrez l'inférence. +5. La routine d'inférence inclut : + 1. La configuration d'un chargement asynchrone du modèle + 2. La création d'une structure Tensor à envoyer au modèle + 3. La création de 'feeds' qui reflètent l'entrée `float_input` que vous avez créée lors de l'entraînement de votre modèle (vous pouvez utiliser Netron pour vérifier ce nom) + 4. L'envoi de ces 'feeds' au modèle et l'attente d'une réponse + +## Testez votre application + +Ouvrez une session terminal dans Visual Studio Code dans le dossier où se trouve votre fichier index.html. Assurez-vous que vous avez [http-server](https://www.npmjs.com/package/http-server) installé globalement, et tapez `http-server` à l'invite. Un localhost devrait s'ouvrir et vous pouvez visualiser votre application web. Vérifiez quelle cuisine est recommandée en fonction des différents ingrédients : + +![Application web d'ingrédients](../../../../translated_images/web-app.4c76450cabe20036f8ec6d5e05ccc0c1c064f0d8f2fe3304d3bcc0198f7dc139.fr.png) + +Félicitations, vous avez créé une application web de 'recommandation' avec quelques champs. Prenez le temps de développer ce système ! + +## 🚀Défi + +Votre application web est très minimaliste, alors continuez à la développer en utilisant les ingrédients et leurs index issus des données [ingredient_indexes](../../../../4-Classification/data/ingredient_indexes.csv). Quelles combinaisons de saveurs fonctionnent pour créer un plat national donné ? + +## [Quiz après la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/26/) + +## Révision & Étude personnelle + +Bien que cette leçon ait seulement effleuré l'utilité de créer un système de recommandation pour les ingrédients alimentaires, ce domaine des applications ML est très riche en exemples. Lisez davantage sur la façon dont ces systèmes sont construits : + +- https://www.sciencedirect.com/topics/computer-science/recommendation-engine +- https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-recommendation-engines/ +- https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/ + +## Devoir + +[Construisez un nouveau système de recommandation](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/4-Classification/4-Applied/assignment.md b/translations/fr/4-Classification/4-Applied/assignment.md new file mode 100644 index 000000000..0f701edf1 --- /dev/null +++ b/translations/fr/4-Classification/4-Applied/assignment.md @@ -0,0 +1,25 @@ + +# Construire un système de recommandation + +## Instructions + +À partir des exercices de cette leçon, vous savez maintenant comment créer une application web en JavaScript utilisant Onnx Runtime et un modèle Onnx converti. Essayez de construire un nouveau système de recommandation en utilisant les données de ces leçons ou provenant d'autres sources (n'oubliez pas de donner crédit, s'il vous plaît). Vous pourriez créer un système de recommandation pour animaux de compagnie basé sur divers attributs de personnalité, ou un système de recommandation de genres musicaux en fonction de l'humeur d'une personne. Faites preuve de créativité ! + +## Critères d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ---------------------------------------------------------------------- | ------------------------------------- | --------------------------------- | +| | Une application web et un notebook sont présentés, tous deux bien documentés et fonctionnels | L'un des deux est manquant ou comporte des défauts | Les deux sont soit manquants, soit défectueux | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/4-Classification/4-Applied/notebook.ipynb b/translations/fr/4-Classification/4-Applied/notebook.ipynb new file mode 100644 index 000000000..3cb5d0753 --- /dev/null +++ b/translations/fr/4-Classification/4-Applied/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2f3e0d9e9ac5c301558fb8bf733ac0cb", + "translation_date": "2025-09-04T02:31:15+00:00", + "source_file": "4-Classification/4-Applied/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/4-Classification/4-Applied/solution/notebook.ipynb b/translations/fr/4-Classification/4-Applied/solution/notebook.ipynb new file mode 100644 index 000000000..af1e23968 --- /dev/null +++ b/translations/fr/4-Classification/4-Applied/solution/notebook.ipynb @@ -0,0 +1,290 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "49325d6dd12a3628fc64fa7ccb1a80ff", + "translation_date": "2025-09-04T02:31:37+00:00", + "source_file": "4-Classification/4-Applied/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: skl2onnx in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (1.8.0)\n", + "Requirement already satisfied: protobuf in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (3.8.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.19.2)\n", + "Requirement already satisfied: onnx>=1.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.9.0)\n", + "Requirement already satisfied: six in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from skl2onnx) (1.12.0)\n", + "Requirement already satisfied: onnxconverter-common<1.9,>=1.6.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.8.1)\n", + "Requirement already satisfied: scikit-learn>=0.19 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (0.24.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.4.1)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from protobuf->skl2onnx) (45.1.0)\n", + "Requirement already satisfied: typing-extensions>=3.6.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from onnx>=1.2.1->skl2onnx) (3.10.0.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (2.1.0)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (0.16.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install skl2onnx" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd \n" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      00indian00000000...0000000000
                      11indian10000000...0000000000
                      22indian00000000...0000000000
                      33indian00000000...0000000000
                      44indian00000000...0000000010
                      \n

                      5 rows × 382 columns

                      \n
                      " + }, + "metadata": {}, + "execution_count": 60 + } + ], + "source": [ + "data = pd.read_csv('../../data/cleaned_cuisines.csv')\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                      00000000000...0000000000
                      11000000000...0000000000
                      20000000000...0000000000
                      30000000000...0000000000
                      40000000000...0000000010
                      \n

                      5 rows × 380 columns

                      \n
                      " + }, + "metadata": {}, + "execution_count": 61 + } + ], + "source": [ + "X = data.iloc[:,2:]\n", + "X.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine\n", + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      cuisine
                      0indian
                      1indian
                      2indian
                      3indian
                      4indian
                      \n
                      " + }, + "metadata": {}, + "execution_count": 62 + } + ], + "source": [ + "y = data[['cuisine']]\n", + "y.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.svm import SVC\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SVC(C=10, kernel='linear', probability=True, random_state=0)" + ] + }, + "metadata": {}, + "execution_count": 65 + } + ], + "source": [ + "model = SVC(kernel='linear', C=10, probability=True,random_state=0)\n", + "model.fit(X_train,y_train.values.ravel())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.72 0.70 0.71 236\n indian 0.91 0.88 0.89 243\n japanese 0.80 0.75 0.77 240\n korean 0.80 0.81 0.81 230\n thai 0.76 0.85 0.80 250\n\n accuracy 0.80 1199\n macro avg 0.80 0.80 0.80 1199\nweighted avg 0.80 0.80 0.80 1199\n\n" + ] + } + ], + "source": [ + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from skl2onnx import convert_sklearn\n", + "from skl2onnx.common.data_types import FloatTensorType\n", + "\n", + "initial_type = [('float_input', FloatTensorType([None, 380]))]\n", + "options = {id(model): {'nocl': True, 'zipmap': False}}\n", + "onx = convert_sklearn(model, initial_types=initial_type, options=options)\n", + "with open(\"./model.onnx\", \"wb\") as f:\n", + " f.write(onx.SerializeToString())\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/4-Classification/README.md b/translations/fr/4-Classification/README.md new file mode 100644 index 000000000..39dc01716 --- /dev/null +++ b/translations/fr/4-Classification/README.md @@ -0,0 +1,41 @@ + +# Commencer avec la classification + +## Sujet régional : Délicieuses cuisines asiatiques et indiennes 🍜 + +En Asie et en Inde, les traditions culinaires sont extrêmement variées et très savoureuses ! Examinons des données sur les cuisines régionales pour essayer de comprendre leurs ingrédients. + +![Vendeur de nourriture thaïlandaise](../../../translated_images/thai-food.c47a7a7f9f05c21892a1f9dc7bf30669e6d18dfda420c5c7ebb4153f6a304edd.fr.jpg) +> Photo par Lisheng Chang sur Unsplash + +## Ce que vous allez apprendre + +Dans cette section, vous allez approfondir votre étude de la Régression et découvrir d'autres classificateurs que vous pouvez utiliser pour mieux comprendre les données. + +> Il existe des outils low-code utiles qui peuvent vous aider à apprendre à travailler avec des modèles de classification. Essayez [Azure ML pour cette tâche](https://docs.microsoft.com/learn/modules/create-classification-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +## Leçons + +1. [Introduction à la classification](1-Introduction/README.md) +2. [Plus de classificateurs](2-Classifiers-1/README.md) +3. [Encore d'autres classificateurs](3-Classifiers-2/README.md) +4. [ML appliqué : créer une application web](4-Applied/README.md) + +## Crédits + +"Commencer avec la classification" a été écrit avec ♥️ par [Cassie Breviu](https://www.twitter.com/cassiebreviu) et [Jen Looper](https://www.twitter.com/jenlooper) + +Le jeu de données sur les cuisines délicieuses provient de [Kaggle](https://www.kaggle.com/hoandan/asian-and-indian-cuisines). + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/5-Clustering/1-Visualize/README.md b/translations/fr/5-Clustering/1-Visualize/README.md new file mode 100644 index 000000000..e1ee57073 --- /dev/null +++ b/translations/fr/5-Clustering/1-Visualize/README.md @@ -0,0 +1,347 @@ + +# Introduction au clustering + +Le clustering est un type d'[apprentissage non supervisé](https://wikipedia.org/wiki/Apprentissage_non_supervis%C3%A9) qui suppose qu'un ensemble de données est non étiqueté ou que ses entrées ne sont pas associées à des sorties prédéfinies. Il utilise divers algorithmes pour trier les données non étiquetées et fournir des regroupements en fonction des motifs qu'il discerne dans les données. + +[![No One Like You par PSquare](https://img.youtube.com/vi/ty2advRiWJM/0.jpg)](https://youtu.be/ty2advRiWJM "No One Like You par PSquare") + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo. Pendant que vous étudiez l'apprentissage automatique avec le clustering, profitez de quelques morceaux de Dance Hall nigérian - voici une chanson très appréciée de 2014 par PSquare. + +## [Quiz avant le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/) + +### Introduction + +Le [clustering](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124) est très utile pour explorer les données. Voyons s'il peut aider à découvrir des tendances et des motifs dans la manière dont les audiences nigérianes consomment de la musique. + +✅ Prenez une minute pour réfléchir aux utilisations du clustering. Dans la vie quotidienne, le clustering se produit chaque fois que vous avez une pile de linge et que vous devez trier les vêtements des membres de votre famille 🧦👕👖🩲. En science des données, le clustering se produit lorsqu'on essaie d'analyser les préférences d'un utilisateur ou de déterminer les caractéristiques d'un ensemble de données non étiqueté. Le clustering, d'une certaine manière, aide à donner un sens au chaos, comme un tiroir à chaussettes. + +[![Introduction au ML](https://img.youtube.com/vi/esmzYhuFnds/0.jpg)](https://youtu.be/esmzYhuFnds "Introduction au clustering") + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo : John Guttag du MIT introduit le clustering. + +Dans un cadre professionnel, le clustering peut être utilisé pour déterminer des choses comme la segmentation de marché, par exemple pour savoir quels groupes d'âge achètent quels articles. Une autre utilisation serait la détection d'anomalies, peut-être pour détecter des fraudes dans un ensemble de données de transactions par carte de crédit. Ou encore, vous pourriez utiliser le clustering pour identifier des tumeurs dans un lot de scans médicaux. + +✅ Prenez une minute pour réfléchir à la manière dont vous avez pu rencontrer le clustering 'dans la nature', dans un contexte bancaire, e-commerce ou commercial. + +> 🎓 Fait intéressant, l'analyse de clusters a vu le jour dans les domaines de l'anthropologie et de la psychologie dans les années 1930. Pouvez-vous imaginer comment elle aurait pu être utilisée ? + +Alternativement, vous pourriez l'utiliser pour regrouper des résultats de recherche - par exemple des liens d'achat, des images ou des avis. Le clustering est utile lorsque vous avez un grand ensemble de données que vous souhaitez réduire et sur lequel vous voulez effectuer une analyse plus détaillée. Cette technique peut donc être utilisée pour mieux comprendre les données avant de construire d'autres modèles. + +✅ Une fois vos données organisées en clusters, vous leur attribuez un identifiant de cluster. Cette technique peut être utile pour préserver la confidentialité d'un ensemble de données ; vous pouvez alors vous référer à un point de données par son identifiant de cluster, plutôt que par des données identifiables plus révélatrices. Pouvez-vous penser à d'autres raisons pour lesquelles vous préféreriez utiliser un identifiant de cluster plutôt que d'autres éléments du cluster pour l'identifier ? + +Approfondissez votre compréhension des techniques de clustering dans ce [module d'apprentissage](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott). + +## Premiers pas avec le clustering + +[Scikit-learn propose une large gamme](https://scikit-learn.org/stable/modules/clustering.html) de méthodes pour effectuer du clustering. Le type que vous choisissez dépendra de votre cas d'utilisation. Selon la documentation, chaque méthode présente divers avantages. Voici un tableau simplifié des méthodes prises en charge par Scikit-learn et leurs cas d'utilisation appropriés : + +| Nom de la méthode | Cas d'utilisation | +| :--------------------------- | :------------------------------------------------------------------- | +| K-Means | usage général, inductif | +| Propagation d'affinité | nombreux clusters, clusters inégaux, inductif | +| Mean-shift | nombreux clusters, clusters inégaux, inductif | +| Clustering spectral | quelques clusters, clusters égaux, transductif | +| Clustering hiérarchique Ward | nombreux clusters contraints, transductif | +| Clustering agglomératif | nombreux clusters contraints, distances non euclidiennes, transductif | +| DBSCAN | géométrie non plate, clusters inégaux, transductif | +| OPTICS | géométrie non plate, clusters inégaux avec densité variable, transductif | +| Mélanges gaussiens | géométrie plate, inductif | +| BIRCH | grand ensemble de données avec des valeurs aberrantes, inductif | + +> 🎓 La manière dont nous créons des clusters dépend beaucoup de la façon dont nous regroupons les points de données. Décomposons quelques notions : +> +> 🎓 ['Transductif' vs. 'inductif'](https://wikipedia.org/wiki/Transduction_(machine_learning)) +> +> L'inférence transductive est dérivée des cas d'entraînement observés qui correspondent à des cas de test spécifiques. L'inférence inductive est dérivée des cas d'entraînement qui mènent à des règles générales, lesquelles sont ensuite appliquées aux cas de test. +> +> Un exemple : Imaginez que vous avez un ensemble de données partiellement étiqueté. Certains éléments sont des 'disques', d'autres des 'CD', et certains sont non étiquetés. Votre tâche est de fournir des étiquettes pour les éléments non étiquetés. Si vous choisissez une approche inductive, vous entraîneriez un modèle en recherchant des 'disques' et des 'CD', et appliqueriez ces étiquettes aux données non étiquetées. Cette approche aurait du mal à classer des éléments qui sont en réalité des 'cassettes'. Une approche transductive, en revanche, gère ces données inconnues plus efficacement en regroupant des éléments similaires et en appliquant une étiquette à un groupe. Dans ce cas, les clusters pourraient refléter 'objets musicaux ronds' et 'objets musicaux carrés'. +> +> 🎓 ['Géométrie non plate' vs. 'plate'](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering) +> +> Tirée de la terminologie mathématique, la géométrie non plate vs. plate fait référence à la mesure des distances entre les points par des méthodes géométriques 'plates' ([euclidiennes](https://wikipedia.org/wiki/G%C3%A9om%C3%A9trie_euclidienne)) ou 'non plates' (non euclidiennes). +> +>'Plate' dans ce contexte fait référence à la géométrie euclidienne (dont certaines parties sont enseignées comme géométrie 'plane'), et 'non plate' fait référence à la géométrie non euclidienne. Quel est le lien entre la géométrie et l'apprentissage automatique ? Eh bien, en tant que deux domaines enracinés dans les mathématiques, il doit y avoir une manière commune de mesurer les distances entre les points dans les clusters, et cela peut être fait de manière 'plate' ou 'non plate', selon la nature des données. Les [distances euclidiennes](https://wikipedia.org/wiki/Distance_euclidienne) sont mesurées comme la longueur d'un segment de ligne entre deux points. Les [distances non euclidiennes](https://wikipedia.org/wiki/G%C3%A9om%C3%A9trie_non_euclidienne) sont mesurées le long d'une courbe. Si vos données, visualisées, semblent ne pas exister sur un plan, vous pourriez avoir besoin d'utiliser un algorithme spécialisé pour les traiter. +> +![Infographie Géométrie Plate vs Non Plate](../../../../translated_images/flat-nonflat.d1c8c6e2a96110c1d57fa0b72913f6aab3c245478524d25baf7f4a18efcde224.fr.png) +> Infographie par [Dasani Madipalli](https://twitter.com/dasani_decoded) +> +> 🎓 ['Distances'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf) +> +> Les clusters sont définis par leur matrice de distances, c'est-à-dire les distances entre les points. Cette distance peut être mesurée de plusieurs façons. Les clusters euclidiens sont définis par la moyenne des valeurs des points et contiennent un 'centroïde' ou point central. Les distances sont donc mesurées par rapport à ce centroïde. Les distances non euclidiennes font référence aux 'clustroïdes', le point le plus proche des autres points. Les clustroïdes peuvent à leur tour être définis de différentes manières. +> +> 🎓 ['Contraint'](https://wikipedia.org/wiki/Constrained_clustering) +> +> Le [clustering contraint](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf) introduit l'apprentissage 'semi-supervisé' dans cette méthode non supervisée. Les relations entre les points sont marquées comme 'ne peut pas lier' ou 'doit lier', ce qui impose certaines règles à l'ensemble de données. +> +>Un exemple : Si un algorithme est laissé libre sur un lot de données non étiquetées ou semi-étiquetées, les clusters qu'il produit peuvent être de mauvaise qualité. Dans l'exemple ci-dessus, les clusters pourraient regrouper 'objets musicaux ronds', 'objets musicaux carrés', 'objets triangulaires' et 'biscuits'. Si on lui donne des contraintes ou des règles à suivre ("l'objet doit être en plastique", "l'objet doit pouvoir produire de la musique"), cela peut aider à 'contraindre' l'algorithme à faire de meilleurs choix. +> +> 🎓 'Densité' +> +> Les données 'bruyantes' sont considérées comme 'denses'. Les distances entre les points dans chacun de ses clusters peuvent s'avérer, après examen, plus ou moins denses, ou 'concentrées', et ces données doivent donc être analysées avec la méthode de clustering appropriée. [Cet article](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html) montre la différence entre l'utilisation du clustering K-Means et des algorithmes HDBSCAN pour explorer un ensemble de données bruyant avec une densité de cluster inégale. + +## Algorithmes de clustering + +Il existe plus de 100 algorithmes de clustering, et leur utilisation dépend de la nature des données disponibles. Discutons de quelques-uns des principaux : + +- **Clustering hiérarchique**. Si un objet est classé par sa proximité avec un objet voisin, plutôt qu'avec un objet plus éloigné, les clusters sont formés en fonction de la distance de leurs membres par rapport aux autres objets. Le clustering agglomératif de Scikit-learn est hiérarchique. + + ![Infographie Clustering Hiérarchique](../../../../translated_images/hierarchical.bf59403aa43c8c47493bfdf1cc25230f26e45f4e38a3d62e8769cd324129ac15.fr.png) + > Infographie par [Dasani Madipalli](https://twitter.com/dasani_decoded) + +- **Clustering par centroïde**. Cet algorithme populaire nécessite de choisir 'k', ou le nombre de clusters à former, après quoi l'algorithme détermine le point central d'un cluster et regroupe les données autour de ce point. Le [clustering K-means](https://wikipedia.org/wiki/K-means_clustering) est une version populaire du clustering par centroïde. Le centre est déterminé par la moyenne la plus proche, d'où son nom. La distance au cluster est minimisée. + + ![Infographie Clustering par Centroïde](../../../../translated_images/centroid.097fde836cf6c9187d0b2033e9f94441829f9d86f4f0b1604dd4b3d1931aee34.fr.png) + > Infographie par [Dasani Madipalli](https://twitter.com/dasani_decoded) + +- **Clustering basé sur la distribution**. Basé sur la modélisation statistique, le clustering basé sur la distribution se concentre sur la détermination de la probabilité qu'un point de données appartienne à un cluster, et l'y attribue en conséquence. Les méthodes de mélange gaussien appartiennent à ce type. + +- **Clustering basé sur la densité**. Les points de données sont attribués à des clusters en fonction de leur densité, ou de leur regroupement les uns autour des autres. Les points de données éloignés du groupe sont considérés comme des valeurs aberrantes ou du bruit. DBSCAN, Mean-shift et OPTICS appartiennent à ce type de clustering. + +- **Clustering basé sur une grille**. Pour les ensembles de données multidimensionnels, une grille est créée et les données sont réparties entre les cellules de la grille, créant ainsi des clusters. + +## Exercice - regroupez vos données + +Le clustering en tant que technique est grandement facilité par une bonne visualisation, alors commençons par visualiser nos données musicales. Cet exercice nous aidera à décider quelle méthode de clustering utiliser le plus efficacement en fonction de la nature de ces données. + +1. Ouvrez le fichier [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/notebook.ipynb) dans ce dossier. + +1. Importez le package `Seaborn` pour une bonne visualisation des données. + + ```python + !pip install seaborn + ``` + +1. Ajoutez les données des chansons à partir de [_nigerian-songs.csv_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/data/nigerian-songs.csv). Chargez un dataframe avec des données sur les chansons. Préparez-vous à explorer ces données en important les bibliothèques et en affichant les données : + + ```python + import matplotlib.pyplot as plt + import pandas as pd + + df = pd.read_csv("../data/nigerian-songs.csv") + df.head() + ``` + + Vérifiez les premières lignes de données : + + | | nom | album | artiste | genre_principal_artiste | date_sortie | durée | popularité | dansabilité | acoustique | énergie | instrumentalité | vivacité | volume | discours | tempo | signature_temps | + | --- | ------------------------ | ---------------------------- | -------------------- | ----------------------- | ------------ | ------ | ---------- | ----------- | ---------- | ------- | --------------- | -------- | -------- | ----------- | ------- | -------------- | + | 0 | Sparky | Mandy & The Jungle | Cruel Santino | r&b alternatif | 2019 | 144000 | 48 | 0.666 | 0.851 | 0.42 | 0.534 | 0.11 | -6.699 | 0.0829 | 133.015 | 5 | + | 1 | shuga rush | EVERYTHING YOU HEARD IS TRUE | Odunsi (The Engine) | afropop | 2020 | 89488 | 30 | 0.71 | 0.0822 | 0.683 | 0.000169 | 0.101 | -5.64 | 0.36 | 129.993 | 3 | +| 2 | LITT! | LITT! | AYLØ | indie r&b | 2018 | 207758 | 40 | 0.836 | 0.272 | 0.564 | 0.000537 | 0.11 | -7.127 | 0.0424 | 130.005 | 4 | +| 3 | Confident / Feeling Cool | Enjoy Your Life | Lady Donli | nigerian pop | 2019 | 175135 | 14 | 0.894 | 0.798 | 0.611 | 0.000187 | 0.0964 | -4.961 | 0.113 | 111.087 | 4 | +| 4 | wanted you | rare. | Odunsi (The Engine) | afropop | 2018 | 152049 | 25 | 0.702 | 0.116 | 0.833 | 0.91 | 0.348 | -6.044 | 0.0447 | 105.115 | 4 | + +1. Obtenez des informations sur le dataframe en appelant `info()` : + + ```python + df.info() + ``` + + Le résultat ressemble à ceci : + + ```output + + RangeIndex: 530 entries, 0 to 529 + Data columns (total 16 columns): + # Column Non-Null Count Dtype + --- ------ -------------- ----- + 0 name 530 non-null object + 1 album 530 non-null object + 2 artist 530 non-null object + 3 artist_top_genre 530 non-null object + 4 release_date 530 non-null int64 + 5 length 530 non-null int64 + 6 popularity 530 non-null int64 + 7 danceability 530 non-null float64 + 8 acousticness 530 non-null float64 + 9 energy 530 non-null float64 + 10 instrumentalness 530 non-null float64 + 11 liveness 530 non-null float64 + 12 loudness 530 non-null float64 + 13 speechiness 530 non-null float64 + 14 tempo 530 non-null float64 + 15 time_signature 530 non-null int64 + dtypes: float64(8), int64(4), object(4) + memory usage: 66.4+ KB + ``` + +1. Vérifiez les valeurs nulles en appelant `isnull()` et en vérifiant que la somme est égale à 0 : + + ```python + df.isnull().sum() + ``` + + Tout semble correct : + + ```output + name 0 + album 0 + artist 0 + artist_top_genre 0 + release_date 0 + length 0 + popularity 0 + danceability 0 + acousticness 0 + energy 0 + instrumentalness 0 + liveness 0 + loudness 0 + speechiness 0 + tempo 0 + time_signature 0 + dtype: int64 + ``` + +1. Décrivez les données : + + ```python + df.describe() + ``` + + | | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature | + | ----- | ------------ | ----------- | ---------- | ------------ | ------------ | -------- | ---------------- | -------- | --------- | ----------- | ---------- | -------------- | + | count | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | + | mean | 2015.390566 | 222298.1698 | 17.507547 | 0.741619 | 0.265412 | 0.760623 | 0.016305 | 0.147308 | -4.953011 | 0.130748 | 116.487864 | 3.986792 | + | std | 3.131688 | 39696.82226 | 18.992212 | 0.117522 | 0.208342 | 0.148533 | 0.090321 | 0.123588 | 2.464186 | 0.092939 | 23.518601 | 0.333701 | + | min | 1998 | 89488 | 0 | 0.255 | 0.000665 | 0.111 | 0 | 0.0283 | -19.362 | 0.0278 | 61.695 | 3 | + | 25% | 2014 | 199305 | 0 | 0.681 | 0.089525 | 0.669 | 0 | 0.07565 | -6.29875 | 0.0591 | 102.96125 | 4 | + | 50% | 2016 | 218509 | 13 | 0.761 | 0.2205 | 0.7845 | 0.000004 | 0.1035 | -4.5585 | 0.09795 | 112.7145 | 4 | + | 75% | 2017 | 242098.5 | 31 | 0.8295 | 0.403 | 0.87575 | 0.000234 | 0.164 | -3.331 | 0.177 | 125.03925 | 4 | + | max | 2020 | 511738 | 73 | 0.966 | 0.954 | 0.995 | 0.91 | 0.811 | 0.582 | 0.514 | 206.007 | 5 | + +> 🤔 Si nous travaillons avec le clustering, une méthode non supervisée qui ne nécessite pas de données étiquetées, pourquoi montrons-nous ces données avec des étiquettes ? Lors de la phase d'exploration des données, elles sont utiles, mais elles ne sont pas nécessaires pour que les algorithmes de clustering fonctionnent. Vous pourriez tout aussi bien supprimer les en-têtes de colonnes et vous référer aux données par numéro de colonne. + +Regardez les valeurs générales des données. Notez que la popularité peut être '0', ce qui montre des chansons sans classement. Supprimons ces données bientôt. + +1. Utilisez un barplot pour découvrir les genres les plus populaires : + + ```python + import seaborn as sns + + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top[:5].index,y=top[:5].values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + ![most popular](../../../../translated_images/popular.9c48d84b3386705f98bf44e26e9655bee9eb7c849d73be65195e37895bfedb5d.fr.png) + +✅ Si vous souhaitez voir plus de valeurs en haut du classement, modifiez le top `[:5]` pour une valeur plus grande ou supprimez-le pour voir tout. + +Notez que lorsque le genre principal est décrit comme 'Missing', cela signifie que Spotify ne l'a pas classifié. Supprimons-le. + +1. Supprimez les données manquantes en les filtrant : + + ```python + df = df[df['artist_top_genre'] != 'Missing'] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + Re-vérifiez maintenant les genres : + + ![most popular](../../../../translated_images/all-genres.1d56ef06cefbfcd61183023834ed3cb891a5ee638a3ba5c924b3151bf80208d7.fr.png) + +1. Les trois genres principaux dominent largement ce dataset. Concentrons-nous sur `afro dancehall`, `afropop` et `nigerian pop`, et filtrons également le dataset pour supprimer tout ce qui a une valeur de popularité égale à 0 (ce qui signifie qu'il n'a pas été classé dans le dataset et peut être considéré comme du bruit pour nos objectifs) : + + ```python + df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')] + df = df[(df['popularity'] > 0)] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + +1. Faites un test rapide pour voir si les données présentent une corrélation particulièrement forte : + + ```python + corrmat = df.corr(numeric_only=True) + f, ax = plt.subplots(figsize=(12, 9)) + sns.heatmap(corrmat, vmax=.8, square=True) + ``` + + ![correlations](../../../../translated_images/correlation.a9356bb798f5eea51f47185968e1ebac5c078c92fce9931e28ccf0d7fab71c2b.fr.png) + + La seule corrélation forte est entre `energy` et `loudness`, ce qui n'est pas très surprenant, étant donné que la musique forte est généralement assez énergique. Sinon, les corrélations sont relativement faibles. Il sera intéressant de voir ce qu'un algorithme de clustering peut tirer de ces données. + + > 🎓 Notez que la corrélation n'implique pas la causalité ! Nous avons une preuve de corrélation mais aucune preuve de causalité. Un [site web amusant](https://tylervigen.com/spurious-correlations) propose des visuels qui soulignent ce point. + +Y a-t-il une convergence dans ce dataset autour de la popularité perçue d'une chanson et de sa capacité à faire danser ? Une FacetGrid montre qu'il existe des cercles concentriques qui s'alignent, quel que soit le genre. Est-il possible que les goûts nigérians convergent à un certain niveau de capacité à faire danser pour ce genre ? + +✅ Essayez différents points de données (énergie, loudness, speechiness) et plus ou différents genres musicaux. Que pouvez-vous découvrir ? Consultez le tableau `df.describe()` pour voir la répartition générale des points de données. + +### Exercice - distribution des données + +Ces trois genres sont-ils significativement différents dans la perception de leur capacité à faire danser, en fonction de leur popularité ? + +1. Examinez la distribution des données de nos trois genres principaux pour la popularité et la capacité à faire danser le long d'un axe x et y donné. + + ```python + sns.set_theme(style="ticks") + + g = sns.jointplot( + data=df, + x="popularity", y="danceability", hue="artist_top_genre", + kind="kde", + ) + ``` + + Vous pouvez découvrir des cercles concentriques autour d'un point de convergence général, montrant la distribution des points. + + > 🎓 Notez que cet exemple utilise un graphique KDE (Kernel Density Estimate) qui représente les données à l'aide d'une courbe de densité de probabilité continue. Cela nous permet d'interpréter les données lorsque nous travaillons avec plusieurs distributions. + + En général, les trois genres s'alignent vaguement en termes de popularité et de capacité à faire danser. Déterminer des clusters dans ces données faiblement alignées sera un défi : + + ![distribution](../../../../translated_images/distribution.9be11df42356ca958dc8e06e87865e09d77cab78f94fe4fea8a1e6796c64dc4b.fr.png) + +1. Créez un scatter plot : + + ```python + sns.FacetGrid(df, hue="artist_top_genre", height=5) \ + .map(plt.scatter, "popularity", "danceability") \ + .add_legend() + ``` + + Un scatter plot des mêmes axes montre un schéma similaire de convergence. + + ![Facetgrid](../../../../translated_images/facetgrid.9b2e65ce707eba1f983b7cdfed5d952e60f385947afa3011df6e3cc7d200eb5b.fr.png) + +En général, pour le clustering, vous pouvez utiliser des scatter plots pour montrer des clusters de données, donc maîtriser ce type de visualisation est très utile. Dans la prochaine leçon, nous utiliserons ces données filtrées et appliquerons le clustering k-means pour découvrir des groupes dans ces données qui semblent se chevaucher de manière intéressante. + +--- + +## 🚀Défi + +En préparation de la prochaine leçon, créez un tableau sur les différents algorithmes de clustering que vous pourriez découvrir et utiliser dans un environnement de production. Quels types de problèmes le clustering cherche-t-il à résoudre ? + +## [Quiz post-lecture](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/) + +## Révision et auto-apprentissage + +Avant d'appliquer des algorithmes de clustering, comme nous l'avons appris, il est judicieux de comprendre la nature de votre dataset. Lisez-en davantage sur ce sujet [ici](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html) + +[Cet article utile](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/) vous guide à travers les différentes façons dont divers algorithmes de clustering se comportent, en fonction des formes des données. + +## Devoir + +[Recherchez d'autres visualisations pour le clustering](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/5-Clustering/1-Visualize/assignment.md b/translations/fr/5-Clustering/1-Visualize/assignment.md new file mode 100644 index 000000000..8ed34fc6d --- /dev/null +++ b/translations/fr/5-Clustering/1-Visualize/assignment.md @@ -0,0 +1,25 @@ + +# Recherchez d'autres visualisations pour le clustering + +## Instructions + +Dans cette leçon, vous avez travaillé avec certaines techniques de visualisation pour vous familiariser avec le traçage de vos données en vue de leur clustering. Les nuages de points, en particulier, sont utiles pour identifier des groupes d'objets. Recherchez différentes manières et différentes bibliothèques pour créer des nuages de points et documentez votre travail dans un notebook. Vous pouvez utiliser les données de cette leçon, d'autres leçons, ou des données que vous trouvez vous-même (veillez cependant à en créditer la source dans votre notebook). Tracez des données à l'aide de nuages de points et expliquez ce que vous découvrez. + +## Grille d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | -------------------------------------------------------------- | ---------------------------------------------------------------------------------------- | ----------------------------------- | +| | Un notebook est présenté avec cinq nuages de points bien documentés | Un notebook est présenté avec moins de cinq nuages de points et est moins bien documenté | Un notebook incomplet est présenté | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/5-Clustering/1-Visualize/notebook.ipynb b/translations/fr/5-Clustering/1-Visualize/notebook.ipynb new file mode 100644 index 000000000..8887c9ef5 --- /dev/null +++ b/translations/fr/5-Clustering/1-Visualize/notebook.ipynb @@ -0,0 +1,50 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python383jvsc74a57bd0e134e05457d34029b6460cd73bbf1ed73f339b5b6d98c95be70b69eba114fe95", + "display_name": "Python 3.8.3 64-bit (conda)" + }, + "coopTranslator": { + "original_hash": "40e0707e96b3e1899a912776006264f9", + "translation_date": "2025-09-04T01:57:39+00:00", + "source_file": "5-Clustering/1-Visualize/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/5-Clustering/1-Visualize/solution/Julia/README.md b/translations/fr/5-Clustering/1-Visualize/solution/Julia/README.md new file mode 100644 index 000000000..ee20959fb --- /dev/null +++ b/translations/fr/5-Clustering/1-Visualize/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb b/translations/fr/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb new file mode 100644 index 000000000..40ee4b840 --- /dev/null +++ b/translations/fr/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb @@ -0,0 +1,499 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## **Musique nigériane extraite de Spotify - une analyse**\n", + "\n", + "Le clustering est un type d'[apprentissage non supervisé](https://wikipedia.org/wiki/Apprentissage_non_supervis%C3%A9) qui suppose qu'un ensemble de données n'est pas étiqueté ou que ses entrées ne sont pas associées à des sorties prédéfinies. Il utilise divers algorithmes pour trier les données non étiquetées et fournir des regroupements en fonction des motifs qu'il discerne dans les données.\n", + "\n", + "[**Quiz avant le cours**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/)\n", + "\n", + "### **Introduction**\n", + "\n", + "[Le clustering](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124) est très utile pour explorer les données. Voyons s'il peut aider à découvrir des tendances et des motifs dans la manière dont les audiences nigérianes consomment de la musique.\n", + "\n", + "> ✅ Prenez une minute pour réfléchir aux utilisations du clustering. Dans la vie quotidienne, le clustering se produit chaque fois que vous avez une pile de linge à trier pour séparer les vêtements des membres de votre famille 🧦👕👖🩲. En science des données, le clustering intervient lorsqu'il s'agit d'analyser les préférences d'un utilisateur ou de déterminer les caractéristiques d'un ensemble de données non étiqueté. Le clustering, d'une certaine manière, aide à donner du sens au chaos, comme un tiroir à chaussettes.\n", + "\n", + "Dans un cadre professionnel, le clustering peut être utilisé pour déterminer des segments de marché, comme identifier quels groupes d'âge achètent quels articles, par exemple. Une autre utilisation serait la détection d'anomalies, peut-être pour repérer des fraudes dans un ensemble de données de transactions par carte de crédit. Ou encore, vous pourriez utiliser le clustering pour identifier des tumeurs dans un lot de scans médicaux.\n", + "\n", + "✅ Prenez une minute pour réfléchir à la manière dont vous avez pu rencontrer le clustering 'dans la nature', dans un contexte bancaire, e-commerce ou commercial.\n", + "\n", + "> 🎓 Fait intéressant, l'analyse de clusters a vu le jour dans les domaines de l'anthropologie et de la psychologie dans les années 1930. Pouvez-vous imaginer comment elle aurait pu être utilisée ?\n", + "\n", + "Alternativement, vous pourriez l'utiliser pour regrouper des résultats de recherche - par liens d'achat, images ou avis, par exemple. Le clustering est utile lorsque vous avez un grand ensemble de données que vous souhaitez réduire et sur lequel vous voulez effectuer une analyse plus détaillée. Cette technique peut donc être utilisée pour mieux comprendre les données avant de construire d'autres modèles.\n", + "\n", + "✅ Une fois vos données organisées en clusters, vous leur attribuez un identifiant de cluster. Cette technique peut être utile pour préserver la confidentialité d'un ensemble de données ; vous pouvez alors vous référer à un point de données par son identifiant de cluster, plutôt que par des données identifiables plus révélatrices. Pouvez-vous penser à d'autres raisons pour lesquelles vous préféreriez utiliser un identifiant de cluster plutôt que d'autres éléments du cluster pour l'identifier ?\n", + "\n", + "### Premiers pas avec le clustering\n", + "\n", + "> 🎓 La manière dont nous créons des clusters dépend beaucoup de la façon dont nous regroupons les points de données en groupes. Décomposons un peu le vocabulaire :\n", + ">\n", + "> 🎓 ['Transductif' vs. 'inductif'](https://wikipedia.org/wiki/Transduction_(machine_learning))\n", + ">\n", + "> L'inférence transductive est dérivée des cas d'entraînement observés qui correspondent à des cas de test spécifiques. L'inférence inductive est dérivée des cas d'entraînement qui mènent à des règles générales, lesquelles sont ensuite appliquées aux cas de test.\n", + ">\n", + "> Un exemple : Imaginez que vous avez un ensemble de données partiellement étiqueté. Certains éléments sont des 'disques', d'autres des 'CD', et certains sont vides. Votre tâche est de fournir des étiquettes pour les éléments vides. Si vous choisissez une approche inductive, vous entraîneriez un modèle à rechercher des 'disques' et des 'CD', et appliqueriez ces étiquettes aux données non étiquetées. Cette approche aurait du mal à classer des éléments qui sont en réalité des 'cassettes'. Une approche transductive, en revanche, gère ces données inconnues plus efficacement en regroupant des éléments similaires et en appliquant ensuite une étiquette à un groupe. Dans ce cas, les clusters pourraient refléter 'objets musicaux ronds' et 'objets musicaux carrés'.\n", + ">\n", + "> 🎓 ['Géométrie non plate' vs. 'plate'](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering)\n", + ">\n", + "> Tirée de la terminologie mathématique, la géométrie non plate vs. plate fait référence à la mesure des distances entre les points par des méthodes géométriques 'plates' ([Euclidiennes](https://wikipedia.org/wiki/G%C3%A9om%C3%A9trie_euclidienne)) ou 'non plates' (non Euclidiennes).\n", + ">\n", + "> 'Plate' dans ce contexte fait référence à la géométrie Euclidienne (dont certaines parties sont enseignées comme la géométrie 'plane'), et 'non plate' fait référence à la géométrie non Euclidienne. Quel rapport avec l'apprentissage automatique ? Eh bien, en tant que deux domaines enracinés dans les mathématiques, il doit y avoir une manière commune de mesurer les distances entre les points dans les clusters, et cela peut être fait de manière 'plate' ou 'non plate', selon la nature des données. Les [distances Euclidiennes](https://wikipedia.org/wiki/Distance_euclidienne) sont mesurées comme la longueur d'un segment de ligne entre deux points. Les [distances non Euclidiennes](https://wikipedia.org/wiki/G%C3%A9om%C3%A9trie_non_euclidienne) sont mesurées le long d'une courbe. Si vos données, visualisées, semblent ne pas exister sur un plan, vous pourriez avoir besoin d'utiliser un algorithme spécialisé pour les traiter.\n", + "\n", + "

                      \n", + " \n", + "

                      Infographie par Dasani Madipalli
                      \n", + "\n", + "\n", + "\n", + "> 🎓 ['Distances'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf)\n", + ">\n", + "> Les clusters sont définis par leur matrice de distances, c'est-à-dire les distances entre les points. Cette distance peut être mesurée de plusieurs façons. Les clusters Euclidiens sont définis par la moyenne des valeurs des points et contiennent un 'centroïde' ou point central. Les distances sont donc mesurées par rapport à ce centroïde. Les distances non Euclidiennes font référence aux 'clustroïdes', le point le plus proche des autres points. Les clustroïdes peuvent à leur tour être définis de différentes manières.\n", + ">\n", + "> 🎓 ['Contraint'](https://wikipedia.org/wiki/Constrained_clustering)\n", + ">\n", + "> Le [clustering contraint](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf) introduit l'apprentissage 'semi-supervisé' dans cette méthode non supervisée. Les relations entre les points sont marquées comme 'ne peut pas lier' ou 'doit lier', ce qui impose certaines règles à l'ensemble de données.\n", + ">\n", + "> Un exemple : Si un algorithme est laissé libre sur un lot de données non étiquetées ou semi-étiquetées, les clusters qu'il produit peuvent être de mauvaise qualité. Dans l'exemple ci-dessus, les clusters pourraient regrouper 'objets musicaux ronds', 'objets musicaux carrés', 'objets triangulaires' et 'biscuits'. Si on lui donne des contraintes ou des règles à suivre (\"l'objet doit être en plastique\", \"l'objet doit pouvoir produire de la musique\"), cela peut aider à 'contraindre' l'algorithme à faire de meilleurs choix.\n", + ">\n", + "> 🎓 'Densité'\n", + ">\n", + "> Les données 'bruyantes' sont considérées comme 'denses'. Les distances entre les points dans chacun de ses clusters peuvent s'avérer, après examen, plus ou moins denses, ou 'concentrées', et ces données doivent donc être analysées avec la méthode de clustering appropriée. [Cet article](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html) montre la différence entre l'utilisation des algorithmes de clustering K-Means et HDBSCAN pour explorer un ensemble de données bruyant avec une densité de clusters inégale.\n", + "\n", + "Approfondissez votre compréhension des techniques de clustering dans ce [module d'apprentissage](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott)\n", + "\n", + "### **Algorithmes de clustering**\n", + "\n", + "Il existe plus de 100 algorithmes de clustering, et leur utilisation dépend de la nature des données à traiter. Discutons de quelques-uns des principaux :\n", + "\n", + "- **Clustering hiérarchique**. Si un objet est classé par sa proximité avec un objet voisin, plutôt qu'avec un objet plus éloigné, les clusters sont formés en fonction de la distance entre leurs membres. Le clustering hiérarchique se caractérise par la combinaison répétée de deux clusters.\n", + "\n", + "

                      \n", + " \n", + "

                      Infographie par Dasani Madipalli
                      \n", + "\n", + "\n", + "\n", + "- **Clustering par centroïde**. Cet algorithme populaire nécessite de choisir 'k', ou le nombre de clusters à former, après quoi l'algorithme détermine le point central d'un cluster et regroupe les données autour de ce point. Le [clustering K-means](https://wikipedia.org/wiki/K-means_clustering) est une version populaire du clustering par centroïde qui divise un ensemble de données en K groupes prédéfinis. Le centre est déterminé par la moyenne la plus proche, d'où son nom. La distance au carré par rapport au cluster est minimisée.\n", + "\n", + "

                      \n", + " \n", + "

                      Infographie par Dasani Madipalli
                      \n", + "\n", + "\n", + "\n", + "- **Clustering basé sur la distribution**. Basé sur la modélisation statistique, le clustering basé sur la distribution se concentre sur la détermination de la probabilité qu'un point de données appartienne à un cluster, et l'y attribue en conséquence. Les méthodes de mélange gaussien appartiennent à ce type.\n", + "\n", + "- **Clustering basé sur la densité**. Les points de données sont attribués à des clusters en fonction de leur densité, ou de leur regroupement autour les uns des autres. Les points de données éloignés du groupe sont considérés comme des anomalies ou du bruit. DBSCAN, Mean-shift et OPTICS appartiennent à ce type de clustering.\n", + "\n", + "- **Clustering basé sur une grille**. Pour les ensembles de données multidimensionnels, une grille est créée et les données sont réparties entre les cellules de la grille, créant ainsi des clusters.\n", + "\n", + "La meilleure façon d'apprendre le clustering est de l'essayer vous-même, et c'est ce que vous ferez dans cet exercice.\n", + "\n", + "Nous aurons besoin de quelques packages pour compléter ce module. Vous pouvez les installer avec : `install.packages(c('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork'))`\n", + "\n", + "Alternativement, le script ci-dessous vérifie si vous avez les packages nécessaires pour compléter ce module et les installe pour vous si certains sont manquants.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork')\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Exercice - Regroupez vos données\n", + "\n", + "Le clustering, en tant que technique, est grandement facilité par une bonne visualisation. Commençons donc par visualiser nos données musicales. Cet exercice nous aidera à déterminer quelle méthode de clustering utiliser le plus efficacement en fonction de la nature de ces données.\n", + "\n", + "Allons-y directement en important les données.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core tidyverse and make it available in your current R session\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# Import the data into a tibble\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\")\r\n", + "\r\n", + "# View the first 5 rows of the data set\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Parfois, nous pouvons vouloir obtenir un peu plus d'informations sur nos données. Nous pouvons examiner les `données` et `leur structure` en utilisant la fonction [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) :\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Glimpse into the data set\r\n", + "df %>% \r\n", + " glimpse()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Bon travail ! 💪\n", + "\n", + "On peut observer que `glimpse()` vous donne le nombre total de lignes (observations) et de colonnes (variables), puis les premières entrées de chaque variable dans une ligne après le nom de la variable. De plus, le *type de données* de la variable est indiqué immédiatement après le nom de chaque variable entre `< >`.\n", + "\n", + "`DataExplorer::introduce()` peut résumer ces informations de manière concise :\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe basic information for our data\r\n", + "df %>% \r\n", + " introduce()\r\n", + "\r\n", + "# A visual display of the same\r\n", + "df %>% \r\n", + " plot_intro()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Super ! Nous venons d'apprendre que nos données ne contiennent aucune valeur manquante.\n", + "\n", + "Pendant que nous y sommes, nous pouvons explorer les statistiques courantes de tendance centrale (par exemple, [moyenne](https://en.wikipedia.org/wiki/Arithmetic_mean) et [médiane](https://en.wikipedia.org/wiki/Median)) ainsi que les mesures de dispersion (par exemple, [écart-type](https://en.wikipedia.org/wiki/Standard_deviation)) en utilisant `summarytools::descr()`.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe common statistics\r\n", + "df %>% \r\n", + " descr(stats = \"common\")\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Examinons les valeurs générales des données. Notez que la popularité peut être `0`, ce qui indique des chansons qui n'ont pas de classement. Nous les supprimerons bientôt.\n", + "\n", + "> 🤔 Si nous travaillons avec le clustering, une méthode non supervisée qui ne nécessite pas de données étiquetées, pourquoi montrons-nous ces données avec des étiquettes ? Lors de la phase d'exploration des données, elles sont utiles, mais elles ne sont pas nécessaires pour que les algorithmes de clustering fonctionnent.\n", + "\n", + "### 1. Explorer les genres populaires\n", + "\n", + "Allons-y et découvrons les genres les plus populaires 🎶 en comptant le nombre d'occurrences.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Popular genres\r\n", + "top_genres <- df %>% \r\n", + " count(artist_top_genre, sort = TRUE) %>% \r\n", + "# Encode to categorical and reorder the according to count\r\n", + " mutate(artist_top_genre = factor(artist_top_genre) %>% fct_inorder())\r\n", + "\r\n", + "# Print the top genres\r\n", + "top_genres\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Ça s'est bien passé ! On dit qu'une image vaut mille lignes d'un tableau de données (en fait, personne ne dit jamais ça 😅). Mais vous voyez l'idée, n'est-ce pas ?\n", + "\n", + "Une façon de visualiser des données catégoriques (variables de type caractère ou facteur) est d'utiliser des diagrammes en barres. Créons un diagramme en barres des 10 genres les plus populaires :\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Change the default gray theme\r\n", + "theme_set(theme_light())\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Maintenant, c'est beaucoup plus facile d'identifier que nous avons des genres `manquants` 🧐 !\n", + "\n", + "> Une bonne visualisation vous montrera des choses auxquelles vous ne vous attendiez pas, ou soulèvera de nouvelles questions sur les données - Hadley Wickham et Garrett Grolemund, [R For Data Science](https://r4ds.had.co.nz/introduction.html)\n", + "\n", + "Notez que lorsque le genre principal est décrit comme `Manquant`, cela signifie que Spotify ne l'a pas classifié, alors débarrassons-nous-en.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " filter(artist_top_genre != \"Missing\") %>% \r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "À partir de cette petite exploration des données, nous apprenons que les trois genres principaux dominent ce jeu de données. Concentrons-nous sur `afro dancehall`, `afropop` et `nigerian pop`, et filtrons également le jeu de données pour supprimer tout ce qui a une valeur de popularité égale à 0 (ce qui signifie qu'il n'a pas été classé avec une popularité dans le jeu de données et peut être considéré comme du bruit pour nos objectifs) :\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "nigerian_songs <- df %>% \r\n", + " # Concentrate on top 3 genres\r\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \r\n", + " # Remove unclassified observations\r\n", + " filter(popularity != 0)\r\n", + "\r\n", + "\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "nigerian_songs %>%\r\n", + " count(artist_top_genre) %>%\r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Voyons s'il existe une relation linéaire apparente entre les variables numériques de notre ensemble de données. Cette relation est quantifiée mathématiquement par la [statistique de corrélation](https://en.wikipedia.org/wiki/Correlation).\n", + "\n", + "La statistique de corrélation est une valeur comprise entre -1 et 1 qui indique la force d'une relation. Des valeurs supérieures à 0 indiquent une corrélation *positive* (des valeurs élevées d'une variable tendent à coïncider avec des valeurs élevées de l'autre), tandis que des valeurs inférieures à 0 indiquent une corrélation *négative* (des valeurs élevées d'une variable tendent à coïncider avec des valeurs faibles de l'autre).\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Narrow down to numeric variables and fid correlation\r\n", + "corr_mat <- nigerian_songs %>% \r\n", + " select(where(is.numeric)) %>% \r\n", + " cor()\r\n", + "\r\n", + "# Visualize correlation matrix\r\n", + "corrplot(corr_mat, order = 'AOE', col = c('white', 'black'), bg = 'gold2') \r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Les données ne sont pas fortement corrélées, sauf entre `energy` et `loudness`, ce qui est logique, étant donné que la musique forte est généralement assez énergique. `Popularity` a une correspondance avec `release date`, ce qui est également logique, car les chansons plus récentes sont probablement plus populaires. La longueur et l'énergie semblent également avoir une corrélation.\n", + "\n", + "Il sera intéressant de voir ce qu'un algorithme de clustering peut tirer de ces données !\n", + "\n", + "> 🎓 Notez que corrélation ne signifie pas causalité ! Nous avons une preuve de corrélation, mais aucune preuve de causalité. Un [site web amusant](https://tylervigen.com/spurious-correlations) propose des visuels qui soulignent ce point.\n", + "\n", + "### 2. Explorer la distribution des données\n", + "\n", + "Posons-nous des questions plus subtiles. Les genres sont-ils significativement différents dans la perception de leur danseabilité, en fonction de leur popularité ? Examinons la distribution des données de nos trois genres principaux pour la popularité et la danseabilité le long d'un axe x et y donné à l'aide de [courbes de densité](https://www.khanacademy.org/math/ap-statistics/density-curves-normal-distribution-ap/density-curves/v/density-curves).\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Perform 2D kernel density estimation\r\n", + "density_estimate_2d <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre)) +\r\n", + " geom_density_2d(bins = 5, size = 1) +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " xlim(-20, 80) +\r\n", + " ylim(0, 1.2)\r\n", + "\r\n", + "# Density plot based on the popularity\r\n", + "density_estimate_pop <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " theme(legend.position = \"none\")\r\n", + "\r\n", + "# Density plot based on the danceability\r\n", + "density_estimate_dance <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = danceability, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\")\r\n", + "\r\n", + "\r\n", + "# Patch everything together\r\n", + "library(patchwork)\r\n", + "density_estimate_2d / (density_estimate_pop + density_estimate_dance)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Nous observons que des cercles concentriques s'alignent, quel que soit le genre. Serait-il possible que les goûts nigérians convergent à un certain niveau de dansabilité pour ce genre ?\n", + "\n", + "En général, les trois genres s'alignent en termes de popularité et de dansabilité. Identifier des regroupements dans ces données faiblement alignées sera un défi. Voyons si un diagramme de dispersion peut nous aider à confirmer cela.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# A scatter plot of popularity and danceability\r\n", + "scatter_plot <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre, shape = artist_top_genre)) +\r\n", + " geom_point(size = 2, alpha = 0.8) +\r\n", + " paletteer::scale_color_paletteer_d(\"futurevisions::mars\")\r\n", + "\r\n", + "# Add a touch of interactivity\r\n", + "ggplotly(scatter_plot)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Un nuage de points des mêmes axes montre un schéma similaire de convergence.\n", + "\n", + "En général, pour le regroupement, vous pouvez utiliser des nuages de points pour montrer des groupes de données, donc maîtriser ce type de visualisation est très utile. Dans la prochaine leçon, nous utiliserons ces données filtrées et appliquerons le regroupement par k-means pour découvrir des groupes dans ces données qui semblent se chevaucher de manière intéressante.\n", + "\n", + "## **🚀 Défi**\n", + "\n", + "En préparation de la prochaine leçon, créez un graphique sur les différents algorithmes de regroupement que vous pourriez découvrir et utiliser dans un environnement de production. Quels types de problèmes le regroupement cherche-t-il à résoudre ?\n", + "\n", + "## [**Quiz après le cours**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/)\n", + "\n", + "## **Révision & Auto-apprentissage**\n", + "\n", + "Avant d'appliquer des algorithmes de regroupement, comme nous l'avons appris, il est important de comprendre la nature de votre jeu de données. Lisez davantage sur ce sujet [ici](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html)\n", + "\n", + "Approfondissez votre compréhension des techniques de regroupement :\n", + "\n", + "- [Entraîner et évaluer des modèles de regroupement avec Tidymodels et ses outils](https://rpubs.com/eR_ic/clustering)\n", + "\n", + "- Bradley Boehmke & Brandon Greenwell, [*Hands-On Machine Learning with R*](https://bradleyboehmke.github.io/HOML/)*.*\n", + "\n", + "## **Devoir**\n", + "\n", + "[Explorez d'autres visualisations pour le regroupement](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/assignment.md)\n", + "\n", + "## REMERCIEMENTS À :\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) pour avoir créé la version originale en Python de ce module ♥️\n", + "\n", + "[`Dasani Madipalli`](https://twitter.com/dasani_decoded) pour avoir créé les illustrations incroyables qui rendent les concepts d'apprentissage automatique plus compréhensibles et faciles à assimiler.\n", + "\n", + "Bon apprentissage,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Gold Microsoft Learn Student Ambassador.\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "99c36449cad3708a435f6798cfa39972", + "translation_date": "2025-09-04T02:01:19+00:00", + "source_file": "5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/fr/5-Clustering/1-Visualize/solution/notebook.ipynb b/translations/fr/5-Clustering/1-Visualize/solution/notebook.ipynb new file mode 100644 index 000000000..93e410b60 --- /dev/null +++ b/translations/fr/5-Clustering/1-Visualize/solution/notebook.ipynb @@ -0,0 +1,840 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Defaulting to user installation because normal site-packages is not writeable\n", + "Requirement already satisfied: seaborn in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (0.11.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (3.5.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.21.4)\n", + "Requirement already satisfied: pandas>=0.23 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.3.4)\n", + "Requirement already satisfied: scipy>=1.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.7.2)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (4.28.1)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.4.7)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (1.3.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (8.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (0.11.0)\n", + "Requirement already satisfied: packaging>=20.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (21.2)\n", + "Requirement already satisfied: setuptools-scm>=4 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (6.3.2)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.3 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from pandas>=0.23->seaborn) (2021.3)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from python-dateutil>=2.7->matplotlib>=2.2->seaborn) (1.16.0)\n", + "Requirement already satisfied: tomli>=1.0.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (1.2.2)\n", + "Requirement already satisfied: setuptools in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (59.1.1)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                      0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                      2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                      \n", + "
                      " + ], + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Obtenez des informations sur la trame de données\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 530 entries, 0 to 529\n", + "Data columns (total 16 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 530 non-null object \n", + " 1 album 530 non-null object \n", + " 2 artist 530 non-null object \n", + " 3 artist_top_genre 530 non-null object \n", + " 4 release_date 530 non-null int64 \n", + " 5 length 530 non-null int64 \n", + " 6 popularity 530 non-null int64 \n", + " 7 danceability 530 non-null float64\n", + " 8 acousticness 530 non-null float64\n", + " 9 energy 530 non-null float64\n", + " 10 instrumentalness 530 non-null float64\n", + " 11 liveness 530 non-null float64\n", + " 12 loudness 530 non-null float64\n", + " 13 speechiness 530 non-null float64\n", + " 14 tempo 530 non-null float64\n", + " 15 time_signature 530 non-null int64 \n", + "dtypes: float64(8), int64(4), object(4)\n", + "memory usage: 66.4+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "name 0\n", + "album 0\n", + "artist 0\n", + "artist_top_genre 0\n", + "release_date 0\n", + "length 0\n", + "popularity 0\n", + "danceability 0\n", + "acousticness 0\n", + "energy 0\n", + "instrumentalness 0\n", + "liveness 0\n", + "loudness 0\n", + "speechiness 0\n", + "tempo 0\n", + "time_signature 0\n", + "dtype: int64" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Regardez les valeurs générales des données. Notez que la popularité peut être '0' - et il y a de nombreuses lignes avec cette valeur.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      release_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                      count530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000
                      mean2015.390566222298.16981117.5075470.7416190.2654120.7606230.0163050.147308-4.9530110.130748116.4878643.986792
                      std3.13168839696.82225918.9922120.1175220.2083420.1485330.0903210.1235882.4641860.09293923.5186010.333701
                      min1998.00000089488.0000000.0000000.2550000.0006650.1110000.0000000.028300-19.3620000.02780061.6950003.000000
                      25%2014.000000199305.0000000.0000000.6810000.0895250.6690000.0000000.075650-6.2987500.059100102.9612504.000000
                      50%2016.000000218509.00000013.0000000.7610000.2205000.7845000.0000040.103500-4.5585000.097950112.7145004.000000
                      75%2017.000000242098.50000031.0000000.8295000.4030000.8757500.0002340.164000-3.3310000.177000125.0392504.000000
                      max2020.000000511738.00000073.0000000.9660000.9540000.9950000.9100000.8110000.5820000.514000206.0070005.000000
                      \n", + "
                      " + ], + "text/plain": [ + " release_date length popularity danceability acousticness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 2015.390566 222298.169811 17.507547 0.741619 0.265412 \n", + "std 3.131688 39696.822259 18.992212 0.117522 0.208342 \n", + "min 1998.000000 89488.000000 0.000000 0.255000 0.000665 \n", + "25% 2014.000000 199305.000000 0.000000 0.681000 0.089525 \n", + "50% 2016.000000 218509.000000 13.000000 0.761000 0.220500 \n", + "75% 2017.000000 242098.500000 31.000000 0.829500 0.403000 \n", + "max 2020.000000 511738.000000 73.000000 0.966000 0.954000 \n", + "\n", + " energy instrumentalness liveness loudness speechiness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 0.760623 0.016305 0.147308 -4.953011 0.130748 \n", + "std 0.148533 0.090321 0.123588 2.464186 0.092939 \n", + "min 0.111000 0.000000 0.028300 -19.362000 0.027800 \n", + "25% 0.669000 0.000000 0.075650 -6.298750 0.059100 \n", + "50% 0.784500 0.000004 0.103500 -4.558500 0.097950 \n", + "75% 0.875750 0.000234 0.164000 -3.331000 0.177000 \n", + "max 0.995000 0.910000 0.811000 0.582000 0.514000 \n", + "\n", + " tempo time_signature \n", + "count 530.000000 530.000000 \n", + "mean 116.487864 3.986792 \n", + "std 23.518601 0.333701 \n", + "min 61.695000 3.000000 \n", + "25% 102.961250 4.000000 \n", + "50% 112.714500 4.000000 \n", + "75% 125.039250 4.000000 \n", + "max 206.007000 5.000000 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsIElEQVR4nO3debyt9dz/8ddbpzI20EETGRKZwpHMGVJyU6ZUJN25C0Uh81CmW4RkCLmLTCXTLXT/lFA3bkPSQETRdKSOBkMpOn1+f3yvzXKcOtN3t9Y++/V8PPbjrH2ta639qWvvtd7rO6aqkCRJ0oq72bgLkCRJWlkYrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJ0ybhzyNf1yf8ZeT7Z4+7PknqLS4QKummkHAe8PwqvjHuWpZHwpwqrht3HZImmy1Wkm5yCasnvDfht8PXexNWH+7bMuGihNcm/D7hvBtr3Uq4S8LJCX9K+EbCBxM+NXL/FgnfS7gy4fSELUfu+3bCWxK+Ozz++IR1hvs2SqiE3RMuAL45HP/3hJ8nXJHw9YQ7D8eTcHDCpQl/TDgz4T7T839Q0qQyWEkah9cBWwCbAfcHNgdeP3L/HYF1gPWBXYHDEja5gef6DPBD4HbAAcAuU3ckrA98DXgrcFtgP+ALCXNHHr8zsBtwe2C14ZxRjwbuBWydsB3wWuBpwFzgf4GjhvOeADwKuAewJrADcNkS/j9IWskYrCSNw7OBN1dxaRULgDcxEogGb6ji2ipOooWjHRZ9koQ7AQ8G3ljFX6v4DnDsyCnPAY6r4rgqrq/iBOAUYNuRcz5WxS+r+AtwDC3sjTqgiquG+18AvL2Knw/dgv8JbDa0Wv0NuA1wTyDDORcv+/8aSTOZwUrSOKwHnD/y/fnDsSlXVHHVjdw/+jyXV3H1yLELR27fGXjm0A14ZcKVwCOAdUfO+d3I7auBWy/yMxZ9vkNGnutyIMD6VXwT+ADwQeDShMMS1lhMzZJWYgYrSePwW1pImXKn4diUtRNudSP3T7kYuG3CLUeObThy+0Lgk1WsNfJ1qyoOXIZaR2f4XAjsucjz3aKK7wFU8b4qHgRsSusSfMUy/BxJKwGDlaRxOAp4fcLcYbD4G+EfA84Hb0pYLeGRwL8Bn1v0Sao4n9a1d8Bw7kOBJ4+c8ingyQlbJ6yScPNhcPwGy1n3h4HXJNwbIGHNhGcOtx+c8JCEVYGrgGuA65fz50iaoeaMuwBJs9JbgTWAM4bvPzccm/I74ApaK9XVwAuq+MUNPNezgY/TBor/EPgssApAFRcOA87fSQtzC4dzXrg8RVfxpYRbA0cP46r+AJww1L8GcDBwV1qo+jpw0PL8HEkzl+tYSZoow3IIn6pavlalhM8Cv6hi/66FSdJSsCtQ0ow2dMHdLeFmCdsA2wH/PeayJM1SdgVKmunuCHyRto7VRcALq/jJeEuSNFvZFShJktSJXYGSJEmdGKwkSZI6mYgxVuuss05ttNFG4y5DkiRpiX784x//vqrmLu6+iQhWG220Eaeccsq4y5AkSVqiJOff0H12BUqSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpkz7gKW1YNe8YlxlzAr/Pig5467BEmSZhxbrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHWyxGCV5OZJfpjk9CQ/S/Km4fhdkvwgyTlJPptkteH46sP35wz3bzTN/w2SJEkTYWlarK4FHltV9wc2A7ZJsgXwDuDgqro7cAWw+3D+7sAVw/GDh/MkSZJWeksMVtX8efh21eGrgMcCnx+OHwlsP9zebvie4f7HJUmvgiVJkibVUo2xSrJKktOAS4ETgHOBK6vquuGUi4D1h9vrAxcCDPf/Abhdx5olSZIm0lIFq6paWFWbARsAmwP3XNEfnGSPJKckOWXBggUr+nSSJEljt0yzAqvqSuBbwEOBtZLMGe7aAJg/3J4PbAgw3L8mcNlinuuwqppXVfPmzp27fNVLkiRNkKWZFTg3yVrD7VsAWwE/pwWsZwyn7Qp8ebh97PA9w/3frKrqWLMkSdJEmrPkU1gXODLJKrQgdkxVfTXJWcDRSd4K/AQ4fDj/cOCTSc4BLgd2nIa6JUmSJs4Sg1VVnQE8YDHHf00bb7Xo8WuAZ3apTpIkaQZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKmTJQarJBsm+VaSs5L8LMk+w/EDksxPctrwte3IY16T5JwkZyfZejr/AyRJkibFnKU45zrg5VV1apLbAD9OcsJw38FV9a7Rk5NsCuwI3BtYD/hGkntU1cKehUuSJE2aJbZYVdXFVXXqcPtPwM+B9W/kIdsBR1fVtVX1G+AcYPMexUqSJE2yZRpjlWQj4AHAD4ZDeyc5I8kRSdYejq0PXDjysItYTBBLskeSU5KcsmDBgmWvXJIkacIsdbBKcmvgC8C+VfVH4EPA3YDNgIuBdy/LD66qw6pqXlXNmzt37rI8VJIkaSItVbBKsiotVH26qr4IUFWXVNXCqroe+Cj/6O6bD2w48vANhmOSJEkrtaWZFRjgcODnVfWekePrjpz2VOCnw+1jgR2TrJ7kLsDGwA/7lSxJkjSZlmZW4MOBXYAzk5w2HHstsFOSzYACzgP2BKiqnyU5BjiLNqNwL2cESpKk2WCJwaqqvgNkMXcddyOPeRvwthWoS5IkacZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktTJEoNVkg2TfCvJWUl+lmSf4fhtk5yQ5FfDv2sPx5PkfUnOSXJGkgdO93+EJEnSJFiaFqvrgJdX1abAFsBeSTYFXg2cWFUbAycO3wM8Edh4+NoD+FD3qiVJkibQEoNVVV1cVacOt/8E/BxYH9gOOHI47Uhg++H2dsAnqvk+sFaSdXsXLkmSNGmWaYxVko2ABwA/AO5QVRcPd/0OuMNwe33gwpGHXTQcW/S59khySpJTFixYsKx1S5IkTZylDlZJbg18Adi3qv44el9VFVDL8oOr6rCqmldV8+bOnbssD5UkSZpISxWskqxKC1WfrqovDocvmeriG/69dDg+H9hw5OEbDMckSZJWakszKzDA4cDPq+o9I3cdC+w63N4V+PLI8ecOswO3AP4w0mUoSZK00pqzFOc8HNgFODPJacOx1wIHAsck2R04H9hhuO84YFvgHOBqYLeeBUuSJE2qJQarqvoOkBu4+3GLOb+AvVawLkmSpBnHldclSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInSwxWSY5IcmmSn44cOyDJ/CSnDV/bjtz3miTnJDk7ydbTVbgkSdKkWZoWq48D2yzm+MFVtdnwdRxAkk2BHYF7D485NMkqvYqVJEmaZEsMVlV1MnD5Uj7fdsDRVXVtVf0GOAfYfAXqkyRJmjFWZIzV3knOGLoK1x6OrQ9cOHLORcOxf5FkjySnJDllwYIFK1CGJEnSZFjeYPUh4G7AZsDFwLuX9Qmq6rCqmldV8+bOnbucZUiSJE2O5QpWVXVJVS2squuBj/KP7r75wIYjp24wHJMkSVrpLVewSrLuyLdPBaZmDB4L7Jhk9SR3ATYGfrhiJUqSJM0Mc5Z0QpKjgC2BdZJcBOwPbJlkM6CA84A9AarqZ0mOAc4CrgP2qqqF01K5JEnShFlisKqqnRZz+PAbOf9twNtWpChJkqSZyJXXJUmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJ0sMVkmOSHJpkp+OHLttkhOS/Gr4d+3heJK8L8k5Sc5I8sDpLF6SJGmSLE2L1ceBbRY59mrgxKraGDhx+B7gicDGw9cewIf6lClJkjT5lhisqupk4PJFDm8HHDncPhLYfuT4J6r5PrBWknU71SpJkjTRlneM1R2q6uLh9u+AOwy31wcuHDnvouGYJEnSSm+FB69XVQG1rI9LskeSU5KcsmDBghUtQ5IkaeyWN1hdMtXFN/x76XB8PrDhyHkbDMf+RVUdVlXzqmre3Llzl7MMSZKkybG8wepYYNfh9q7Al0eOP3eYHbgF8IeRLkNJkqSV2pwlnZDkKGBLYJ0kFwH7AwcCxyTZHTgf2GE4/ThgW+Ac4Gpgt2moWZIkaSItMVhV1U43cNfjFnNuAXutaFGSJEkzkSuvS5IkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE6WuNyC1NMFb77vuEtY6d3pjWeOuwRJmrVssZIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpmzIg9Och7wJ2AhcF1VzUtyW+CzwEbAecAOVXXFipUpSZI0+VYoWA0eU1W/H/n+1cCJVXVgklcP37+qw8+RNGYPf//Dx13CSu+7L/7uuEuQtAKmoytwO+DI4faRwPbT8DMkSZImzooGqwKOT/LjJHsMx+5QVRcPt38H3GEFf4YkSdKMsKJdgY+oqvlJbg+ckOQXo3dWVSWpxT1wCGJ7ANzpTndawTIkSZLGb4VarKpq/vDvpcCXgM2BS5KsCzD8e+kNPPawqppXVfPmzp27ImVIkiRNhOUOVkluleQ2U7eBJwA/BY4Fdh1O2xX48ooWKUmSNBOsSFfgHYAvJZl6ns9U1f9L8iPgmCS7A+cDO6x4mZIkSZNvuYNVVf0auP9ijl8GPG5FipIkSZqJXHldkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUyZxxFyBJmn4nPerR4y5hpffok08adwmaALZYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6mTPuAiRJ0o37wMu/Mu4SVnp7v/vJXZ7HFitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqZNqCVZJtkpyd5Jwkr56unyNJkjQppiVYJVkF+CDwRGBTYKckm07Hz5IkSZoU09VitTlwTlX9uqr+ChwNbDdNP0uSJGkipKr6P2nyDGCbqnr+8P0uwEOqau+Rc/YA9hi+3QQ4u3shk2Md4PfjLkLLzes3c3ntZjav38y1sl+7O1fV3MXdMbaV16vqMOCwcf38m1KSU6pq3rjr0PLx+s1cXruZzes3c83mazddXYHzgQ1Hvt9gOCZJkrTSmq5g9SNg4yR3SbIasCNw7DT9LEmSpIkwLV2BVXVdkr2BrwOrAEdU1c+m42fNELOiy3Ml5vWbubx2M5vXb+aatdduWgavS5IkzUauvC5JktSJwUqSJKkTg9UMlOSuSVYfdx2SJOmfGaxmmCRrA/sBrzNcSdINS5Jx16DZx2A1gyTZqKquAL4ArAnsZ7iaPL6YzyxJHpTELbdWMklSVZXk4Ul2T/K4YfkfzQCjr6PD/sMzhsFqhkiyFvCuJK+rqhOBLwLrYbgam6k//CT3HV681wcYXswNVxNs5NrNo22t9YYk2463KvU0/B0+BvgkcHfgvcBLktx9rIVpiaZC8XD7ecATZlIoNljNHFcB7wPunWS/qjoJOAbD1ViMfBp+PO06vAV4S5KXj74oaDIN1+6JwFHA6bRFjV+U5OnjrUy9JNkEeAGwb1W9BtgV2BjYaqyFaYlGQtVewD7A2VX11/FWtfQMVhNu6pN1Vf0N+D7wQWCLRcLV7YE3Gq5uOsMb8wOBVwDbV9Vjgc/RtnKyW2lmmAe8vqoOBfanhay9kmwz3rK0IjIAHgXcDdg6ya2q6lTaNd5jGKuqCZbk9sAutJ1bzkvy9CQvGFqZJ5rBaoIt0hy6JkBVfRd4D/DQkXD1VWA14NZjK3aWGZqlHw08Blh/OPwd4I/Ag8dVl27YYrpnbwk8D6CqLgV+APwV+I8km9+01WlFjVzfdYA5VfVR4G1AaG/OAL8D/jQc0wRJMjfJFsPtbYA7AicABwMfB3YANgMeO6YSl9q0bGmjPkZC1UuAxwGXJTm+qo4eXkP2SfLGqnpzku9U1V/GWe/KbqT7b1Xgb7TWw7WBVyW5oqp+kuQ0YOcktwT+Ypfg5Biu3YNpQfjrwH8C705ySFXtA9yK1uW+ALgr8MOxFatlNlzfbYE3A/OTXAXsTruuuybZmfae986qunyMpWrxVgVen6RoDQU7AF8BzgVOrqpfD1vlzUtys6q6foy13iiD1YRL8gLg6cCzgYNobwS3q6oPJpkD7J7ktr5QTL/hhfvJwFNp3a8H0bpiLwOOTXIErQXroKq6enyVatRIIN4S+DBwKfAU4LO0cYsHJDkJWJfWjfsU4N7jqVbLK8m9gLcCewOnAZ8BPlZVOya5BtgaOLOqvjqc71jICVJVv03yf7ThFR+oqj/QPtz8EP4+iP35wM6THKrArsCJluTmwLW0N/JnALcAngO8PMkLq+pkYE9D1U0jyYOAdwD/Rev22wW4P23W0adorYofqaqvzLTpwSujoWVxKhBvRlv/7UlV9SjgPOAJwDpV9Qza39UjaIF5N+DT46hZK+Ra4Czg1Kq6uqq2B9YdBkD/N62r9/5JdjRUTYbFdM9/lfa3+Pgk+42c93DgzsBzquqsm7DE5WKL1QRZtHmzqq4BPpZkQ2AbYPeqmp/kdNoMpqOq6soxlTsb3Qv4YVV9D/hekmcArwK+BbwbuJjWgnh6Vf10jHXOekluBxyd5ClDF/lDgS2B+9G6Ft4N7As8J8lqVXV8krsAzwSeUVW/GE/lWlojLZGr0BoJLqe1Os6jffABOJqWra9LciStC/9bhqrxW2QM8bNoYx5/VVVfTXI5cMjQnXsu7UPQW2fK+53BakIk2aCqLhpuvxi4C/Bb4DD+MeDyLkmeBFwC7DFTfslmqpEX7qnAexawbZJ5VXVKVX0+bWHJjavqpCSfA64H/jDWwkVVXZbk+cBGSf5aVR9KchvawPTLh+t1MK3b4aLhMb9J8qqqumqctWvpDH+b2wHPpQ1GP4g27vH9SQ4HrqF1C+4znP834MgxlatFjISqvWmtVB8AvpFkt6o6Ksmew7E5wPNm0vtdDO7jNTSFrkEbE/B24AzauI//on26Xoe2/sqewAOBBwHPrqozxlHvbJO2TtVDgStpM1ReQGuZmg+cTZu+/bSp65FklapaOJ5qBf98DZK8DngjcK+Rwa9bAe+rqhOnQvOkD4bVv0pyT9rr5Ntpr5MH0Lrn/0YbT7UB8PmqOn5cNerGJbk/beHW7WnhandgLdoEgw8Pk4BuPtOGuxisJkSShwGH01pFPlhV30yyHq2raQ1gr6q6Osmaw6A+TbOhX/8IWrfRc2n9/+cDc4GH0WYbfbSqjnXMxmQYaWXcArh0CFOvAl4KPLyqzk3yclq42hm40kA18yS5D+3v8uyqeslwbGvatPxHVtU5YyxPN2Bxr5NJ1qGNb9y3qrZMshvtvfAZVfXFcdS5ohy8PkZTA/eGX7bv0RL7vYFtoc2SAA4EFgIfHD5VG6puAknuAbyI1rJxGO0T1e2A+1XV+6pqR1rztKFqggyhampF9aktht5BW/vt5CT3qKp3M0z6MFTNWL+kDZG4V5KNk6xeVV+n7aM6d7ylaXEWGVP16CTbJlm7qn4PrE7rAYC2FuBngZ+MqdQVZovVmCzyS/Z42to582nrIv0Pbcr+R4b770h7z7hkXPXONsOb80toM41eOoy/WQM4CXhWVf1yrAVqsYYB6F+hhd5TktwXWLWqTh1arl4JbFCu+TZjTXX1DrM+Dwf+AnyDtozGUcB2VfWjcdaoG5bkpbQlhM4AtqB1/60B/DttketNgCdX1W/GVuQKMliN2fBLtj1tZtmjaYui3ZU2yPLDVfXesRU3i4x0Id0VuJo2w2gT2ti2C2ifhEPb/PpJVXXh2IrVP1nkQ8qtaAtEXk5ruXgALRx/oqo+leTudhPNXCN/p3OGmX6r0QasP5j2oedrwwxPW5EnUJL7AW+qqqcm2Qf4t6raKm1NxvsA96XNvD77Rp9owtkVOEZJNgW2rqpHA2sCV9DGfPyANqZnlyRrjbHEWWOkC+mrtG6jH9Fm9x1Fm779OdoL+KsMVZNj5I122yT701ovLqBNuz+etv3F12gTPwBm7Kfg2WhkuMTGQ8s9AEOomlNtY94XAafQpuufaqiaHFPXb8TFwOlJPkob8vLE4fh2wFlV9cmZHqrAYHWTWswv2V+BC5K8FrgHbUXZvyXZrqp+CDxsJk0xncmGF+23Av9RVTvTgtSxwK9os46+B3yb1rK4uGupMRhC1VNoe8KdWlXXV9UhVbV3VR1HC1TPA/7fcL4zNmeIkdC8Ne1v8b9pm2TfHf4pXP2NFq5uD7wGlxGaCEOX7VRL8m2HQeqXAxsBdwd2Ha7hc2kzd283tmI7syvwJrJId8V2tDFV3we+RFt4ctPhl+z5tOUVtq+qy8ZW8CwwMtX+wbSVuA8E9q9/rCf2fmBhVe2btn7YU2kDKj9SVdeNq+7ZLsm6wAOq6rhhnM0RwDtprVEPoW1JczBwW2B/4Iiq+vK46tXySzKPNjP6NcAdaBN8zgX+e6pLd2TM1Wq0lfR/O7aCBfy9N+YOVfWtJC+j/U3eHngTrUHhubT3wKLNsN6xqn42rnp7M1jdxIZ1dPagrX10TpLH0nZevz0taO1IW7bflbunSZJbTA1eTvII4FDaIoL7AseNTBp4FrBZVb1m+P4JwOlOIhivtI12zwN+W1VXJvkEbbunWwA/o6319uuq2iPJetX2ILN7aIZJW9D1QGCbqrrbcOyRwE60iT6fm5pEEtchmyhJ3kRbR+y7tOu1A631+OXAx2jbC92b9r538kweqL44Bqub0NCEfTiw09SnquET91q0T2JXAP+3MvQxT6ph/Zv3Av9GG4fzYdoigh8dWq4Ooy0EeiXwLOC1VfW18VSrUUnuDMwdZvutCRwCfBn4Ou1anVZVP0myCW2R3R2r6orxVaxltWgAHrmW5wAvHlqYt6RtSv+fK9sb8kw30n17M+B1tMkjfx2WpyFtfbkv0Qat/3iMpU4rx1hNo8WMw/k9bfDeaklWG34J/0ZbaPK9VfVxQ9X0GULsvrQ1UtYCHklbM+VZSdYfpmjvDPyaNgPwpVX1NcdTjVeaNWifcj+d5PHV1nP7X1pAfmJVfWwIVU8HPg8caqiaWUbelLdKsnuS5w+vhy+mtUa+Z2iZ+jbwSkPVZBkNxUPr4duAE4G1kzw2yS2r6vu0D0NrjLHUaWeL1TRZZEzVOsBVwHXAMcDxVfWh4b6dacssvKzco2xaDcHq9cDdaDul7wmsQhvTdh1wSFVdPL4KdWOSvJ02Q/M64AND6N2F9vfz7WE5hXcOt4+z+2/mGBnv+CTaZJFX0LqMPlNV+w2t/W8FLq+qF9n1N1kWeb/bmfbB9dqqOjzJvsBmtO7b3wBvALZcmYOxsyemwSK/ZC+j9TGfTpvVsjfwuaHb6Tpgc2AXQ9X0mmodTPIdWqD6dlWdNdz3JVrLx6uT/KdjqCZHklWHVl1oszLXoi2g+/wkVNUnk1wPPCnJVVX1yuFxhqoZIG1B15tV22poHdrr4w60WdLnAc9MW51797TlNFaHv7eIaEKMvN+9ENgN+BSwXZKnV9W2aRsq70UbZrHVyhyqwK7AaTHyS/Zg2oC9F9PW0tmX9on7CbSWq/+jDWI/czyVzg4jXQx3pS0a+TTgZkneOrxofxc4jhZ01xpjqRqRtsnu4UkeMxw6nrbe2xa0BXRflGSbqvo0bZzVuVOPNVTNGA8Dbpe2Jc3vaRN7VqPNHnsE8BhgtyQfqKqzy83nJ8owlmrq9hxa6/FLq237tTWwMMn7hwlBnwTeVbNg1wpbrKbJMNvsi7Tupe8nuQXwJ1oT93pTXYGafkOoegptRe5zaGOoPkKbofKSJO+rqv9Ncma5btgkuT3D/plJPgxcT5t2vxNtvNXNaa2MN6uqI8dXppZXVX06ya2BHyV5TlWdkbb5/I+HrsE70hbs/fp4K9Wi0havXg84a2hEuBj4G21ZjCmvoDUoUFUH3cQljo0tVp0sOsC5qr5DS+g7JFlnmN5/Mm0m01ZJ1nZQ9E1jmInyBmBr2oyUF9FaDd9F+4T18rSFBq8cW5H6F1V1MvAo4J7Ab2lbPR1Nu34b0AapH0ZbD0czyNRrX9rin/ehvVZ+dJi1ex6wZpJDaVtJfbmqTvD1cuJsAvxbkiNpYx4voi3E+5Ekmw/nPBS4e5Jbzqbr5+D1DhYZU/U44DbACVV1VZKDaV0X21XVpcMA6lWr6uoxljyrJNmAtrTC2rQBsDvTllm4HPg4sKDctHViDW++7wXuR5u+vQ3w3ao6cQjELtY6Aw1vvofQuo6+P4xH3Zm2dyq0631VVZ00phJ1I4b3so/RFv98bVV9YDi+J//YZuhBwLNrJVr8c2kYrDrKP3bt/hWtOfQdVXVSkoNog6MfVVV+uh6TJG8DLq2qQ9K2UXgJ8PSqOn/MpWkJhtli7wK2qKo/LDKoXTNMkg1pq+NfXlV7jBx/GfAfwDPLRZInzqKzMZM8ENiK9qH1TODoaqvgP5C2vNB1NQtXwneM1QoY+v+vqKprk2xFm+3wiCSvpg3K3G1ozHpFkmtp61UZrMbnTGDP4ZPW04B9DFUzw7C0wkLgl0nu6RpVM951wBm0mWPbVNXUXo7vSbIKTiKZSFOhKsmuwKrABVX1jiQvoPXM/CnJ2rRemw/O1kkktlgth6GveC5tjMd/0aaWrg3cmjaTZVda8+jHaJtNvrKqvjWeajUlbZHJp9KuzRHliuozztByddWwSKRmiJGZuQ+lvXZeQJtE8jza1ibHVNWJYyxRS2mYCPRu4NO0rr5vVtXBafvcPgR4HPDk2db9N8oWq+WTYbzUW4CX0RZC+yxwWZJ/B/6nqq5J8l3aJpM2aU+AqvojcGSST1fb8Nq1jmaYqTDstZtZhlD1BNqYqvcwbGsCHAssBJ6Xtpny8WMsU0uQtiDv5sBTqurnSR4EvGn4c3xvkk8Ca8z2IS8Gq+Uw0sd8S9pWC0ekLdf/MeB7wKFJ7kGbEfHM2f5LNoEWgmsdzWReu5ljWOtoLdrCvE8FbgucBZxaVZck+Rxt4U93PZgwIy2NUx9k7kSbYPBt4OfAacD+wMFJVquqd+JwF7sCl1eSZwGvAp5Im8XyXOBQ2j50D6cN6PtUVf1iXDVK0qRI8iraAq+Ppc0UOzfJ82jL0JznauqTZZHZ7hvTxlNdO/TK7EdrNPjZsDDofYDLqurCMZY8MWyxWn63A06utv3JR5JcRltT55ZV9VHAKcKSZrUkm9GWmnkTbfLOLsBjhlB1f9qH03Oq6tdjLFOLMRKqprYZujTJfFoL1RzgqCS7VNXptJYrDQxWy+8CYLNhjaT5VfX5YQr/k5McXVV/GnN9knSTG+k+eiTwTGDrJJdW1RvTtinaP8l1tI15XzUspqwJlLaDyJ60HpiNaLPdP0TrDlwP+FCSLavqr2MrcgIZrJbf/wLPpm0a+pMkt6QNVN/HUCVptpkKVEOoehRt1tjewHzgMWn7Ae4wvFmvTVut+8dORJgci7kWC4HTqup3SS6h7YDwAOAhVXVA2h6OhqpFGKxuxA39wQ+rPf8hyV60NP8IYGNgv6o67yYuU5LGKm1/v3sl+XZVLaQNcv5AVX05yYm01ql3DC+ph4w+1lA1GRYZU/Vi4I7AQbSemd2GyVkXJLmetp3N94HLxlbwBDNY3YBFfsm2AwJcX1XHDlP151TV5UneUW2z0FtV1VXjrVqSxuLBtB0nbjV08/0BOCDJMVX1myTfo61b9egkC6rqM+MsVv9q5P3uP2gb1J9aVVcm2Q/YL8kmwC+B+wMHjD5G/8xNmG/AyC/ZC4C30BL6B5K8crj/umEa8dQvlnv/SZqVqurLwO9oM6O3B46n7cd5yDCu6n60/Tp/Baw/pjK1BMOMvxfQZrkvTHJ74ERgX9qMzk2AXarqN2MrcgawxWoRi7RU3Zw2G2LXqvpJkmOAryf5c1UdOjo92OQuabYZfb0cWvBPAp4A/JW2CGiAT9K2sNkdeCCw1bCt1HW+bo7XIu9369AaCJ5SVfOTvAK4ZmhE+HNVvXCsxc4gBqsbMLRUnU1r+rxF2uaTvxmmnu443uokafyGgeqPBu5L29rko0n+TNs26vqqOijJocPpmwNvBJ5abqA9douEqr2Bu9IC8BeHU64Cbj0MhdknybZVdel4qp1ZDFaDJJtU1dnDC8XTaNOEd6INznspbXbLJcCGwC2H7RcWjq9iSRqPkSUVHkLr/jsLmJfku0O4Wgg8Z1g88gu0ldcfRlvT6udjK1x/NxKqXkTrmdkJOBVYL8mBwDXA+2nLKjzXULX0XHkdSLI1bW2OB9LGAbwbOLeqXjzcfwRtevBVtD7m3arK/f8kzVpJNgfeTNtk/owkO9LC05lDuNoJOGtYQJJhyxOn5k+QtI3p3wO8gdaYsC1tS5pbA2fSWh53rqqzxlbkDDTrW6yGT1Sb036xNqVNC/4WsF2SJ1fVV6rq34dPZqvQFgM9f2wFS9JkWAt4PG3xyDOAzwPXM4yhqqpD4Z/WtzJUTZiq+uOwbNA9aV20j0kS4FLgN8ATbKladrM+WA0D884FXk9bDO0xtCbQv9BWUV9YVcdV1Q/GWackTZKqOn4YNvH2JL+tqqOSfJ72AfT0kfPsFplg1fb/uxqYk+S+tBXWvwkcbKhaPrM+WA3OoM2G+COwZlX9PskXaZ++dklybVWdONYKJWnCVNWxw7pVbxm6+o4Ejhp3XVpmFwBfpXULrkfbYNkNlZfTrBxjtchsiNWAhVW1cFgI7bHA/lX1o2EfwCcCX62qi8dYsiRNrCRPAQ6kdQ3+bnQpGs0MwxIYd6TN5pw/7npmslkXrBYzxXRTWkvVAVV1TZLXAg8BDqyq/3P2nyQtWZK5VbVg3HVI4zbrgtWUYYrps2i7dJ8KfAN4Y1Wdm+StwN2B51XVNWMsU5IkzSCzMljdwBTTS2lLLbywqs5JcruqcoNJSZK01GZlsAJIsjptiul7R6aYLgA+QusWdGVgSZK0TGbtrMDFTDG9M22zyY8YqiRJ0vKYtS1W8PdWq31pM1mmppi6wqwkSVouszpYgVNMJUlSP7M+WEmSJPVys3EXIEmStLIwWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRO/j/0nFv+UbvkvAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top[:5].index,y=top[:5].values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Règles importantes pour les genres musicaux sur Spotify\n", + "=======================================================\n", + "\n", + "### Introduction\n", + "Spotify propose une vaste gamme de genres musicaux pour organiser et découvrir de la musique. Cependant, certains genres peuvent ne pas être classifiés ou reconnus par la plateforme.\n", + "\n", + "### Genres non classifiés\n", + "Certains genres, comme \"Missing\", ne sont pas pris en charge par Spotify. Cela signifie qu'ils ne sont pas officiellement reconnus ou catégorisés dans leur système.\n", + "\n", + "### Pourquoi certains genres sont-ils absents ?\n", + "- **Manque de données** : Si un genre n'a pas suffisamment de données associées, il peut ne pas être inclus.\n", + "- **Classification ambiguë** : Certains genres peuvent être trop similaires à d'autres pour être distingués.\n", + "- **Décisions éditoriales** : Spotify peut choisir de ne pas inclure certains genres pour des raisons éditoriales ou techniques.\n", + "\n", + "### Que faire si un genre est manquant ?\n", + "Si vous remarquez qu'un genre est absent ou mal classifié :\n", + "1. Vérifiez si le genre est correctement orthographié.\n", + "2. Recherchez des genres similaires qui pourraient correspondre.\n", + "3. Contactez le support Spotify pour signaler le problème.\n", + "\n", + "### Conclusion\n", + "Bien que Spotify offre une grande variété de genres, il est important de noter que certains peuvent ne pas être disponibles. Cela ne signifie pas que la musique associée à ces genres est introuvable, mais simplement qu'elle peut être classée différemment.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAHuCAYAAADELJsvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZdklEQVR4nO3debytc9n48c/lHENmcsxzREqGjBkbRMgYGRJShqg0e2gQ9aSJRkoTqUilqJSkNOjXQElFnlQkKZ4iPWnC9fvj+q72sjucs89ea6/7nPN5v177tde613B/73vdw/WdIzORJElStyww6gRIkiTpPxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSRqaCP6v7++BCP7W9/zgUadPkrosHMxW0lSI4GbgeZl8ddRpmRMRTM/kvlGnQ9L8w5I0SVMugoUjeEcEv2t/74hg4fbajhH8NoITI/jfCG5+uFK3CNaK4JsR/CWCr0bw3gg+1vf6VhF8J4K7I/hxBDv2vXZlBKdGcFX7/FciWK69tmYEGcEREfwG+Fpb/twIbojgrggui2CNtjwiOCOCOyK4J4KfRPC44exBSfMDgzRJo3ASsBWwMbARsAXw6r7XVwSWA1YBDgXOjmC9h/iuTwDfBx4JnAwc0nshglWALwJvAJYFXg58JoIZfZ8/CDgcWB5YqL2n3w7AY4CdI9gTOBHYB5gBfAs4v73vacD2wKOBpYD9gT/OYj9I0kMySJM0CgcDp2RyRyZ3Aq+nL7hqXpPJPzL5BhVo7T/+SyJYHdgceG0m/8zk28AlfW95NnBpJpdm8kAmlwNXA7v2vecjmfxPJn8DLqQCx34nZ/LX9vrRwJsyuaFVff43sHErTfsXsASwPhDtPbdPfNdIUjFIkzQKKwO39D2/pS3ruSuTvz7M6/3f86dM7u1bdmvf4zWA/VpV590R3A1sC6zU957f9z2+F1h83DrGf987+77rT0AAq2TyNeA9wHuBOyI4O4IlZ5JmSZotBmmSRuF3VMDTs3pb1rNMBIs9zOs9twPLRrBo37LV+h7fCpyXydJ9f4tlctoE0trfu+pW4Khx3/eITL4DkMm7MnkCsAFV7fmKCaxHkh7EIE3SKJwPvDqCGa2h/mthrLF/8/oIFopgO2B34FPjvySTW6jqy5Pbe7cGntH3lo8Bz4hg5wimRbBI65iw6hym+33Af0XwWIAIlopgv/Z48wi2jGBB4K/A34EH5nA9ksT0USdA0nzpDcCSwHXt+afasp7fA3dRpWf3Akdn8vOH+K6DgXOoRvrfBz4JTAPI5NbW2P8tVGB4f3vPMXOS6Ew+G8HiwAWtHdqfgctb+pcEzgDWpgK0y4C3zsl6JAkcJ01Sx7QhMj6WOWelXRF8Evh5Jq8baMIkaYpZ3SlprtaqGR8VwQIR7ALsCXxuxMmSpEmzulPS3G5F4CJqnLTfAsdk8qPRJkmSJs/qTkmSpA6yulOSJKmDOlHdudxyy+Waa6456mRIkiTN0jXXXPO/mTlj1u+cnE4EaWuuuSZXX331qJMhSZI0SxFxy6zfNXlWd0qSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB00fdQLGu/Osjw19HTOOefbQ1yFJkjQZlqRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkddAsg7SIWCQivh8RP46In0XE69vytSLiexFxU0R8MiIWassXbs9vaq+vOeRtkCRJmufMTknaP4AnZ+ZGwMbALhGxFfBm4IzMXAe4Cziivf8I4K62/Iz2PkmSJE3ALIO0LP/Xni7Y/hJ4MvDptvxcYK/2eM/2nPb6UyIiBpVgSZKk+cFstUmLiGkRcS1wB3A58Evg7sy8r73lt8Aq7fEqwK0A7fU/A4+cyXceGRFXR8TVd95556Q2QpIkaV4zW0FaZt6fmRsDqwJbAOtPdsWZeXZmbpaZm82YMWOyXydJkjRPmVDvzsy8G/g6sDWwdERMby+tCtzWHt8GrAbQXl8K+OMgEitJkjS/mJ3enTMiYun2+BHATsANVLD2zPa2Q4GL2+NL2nPa61/LzBxgmiVJkuZ502f9FlYCzo2IaVRQd2FmfiEirgcuiIg3AD8CPtTe/yHgvIi4CfgTcMAQ0i1JkjRPm2WQlpnXAZvMZPmvqPZp45f/HdhvIKmTJEmaTznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB80ySIuI1SLi6xFxfUT8LCJe3JafHBG3RcS17W/Xvs/8V0TcFBE3RsTOw9wASZKkedH02XjPfcDLMvOHEbEEcE1EXN5eOyMz39b/5ojYADgAeCywMvDViHh0Zt4/yIRLkiTNy2ZZkpaZt2fmD9vjvwA3AKs8zEf2BC7IzH9k5q+Bm4AtBpFYSZKk+cWE2qRFxJrAJsD32qLjIuK6iPhwRCzTlq0C3Nr3sd8yk6AuIo6MiKsj4uo777xz4imXJEmah812kBYRiwOfAY7PzHuAs4BHARsDtwNvn8iKM/PszNwsMzebMWPGRD4qSZI0z5utIC0iFqQCtI9n5kUAmfmHzLw/Mx8APsBYleZtwGp9H1+1LZMkSdJsmp3enQF8CLghM0/vW75S39v2Bn7aHl8CHBARC0fEWsC6wPcHl2RJkqR53+z07twGOAT4SURc25adCBwYERsDCdwMHAWQmT+LiAuB66meocfas1OSJGliZhmkZea3gZjJS5c+zGfeCLxxEumSJEmarznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10CyDtIhYLSK+HhHXR8TPIuLFbfmyEXF5RPyi/V+mLY+IeFdE3BQR10XEpsPeCEmSpHnN7JSk3Qe8LDM3ALYCjo2IDYATgCsyc13givYc4OnAuu3vSOCsgadakiRpHjfLIC0zb8/MH7bHfwFuAFYB9gTObW87F9irPd4T+GiW7wJLR8RKg064JEnSvGxCbdIiYk1gE+B7wAqZeXt76ffACu3xKsCtfR/7bVs2/ruOjIirI+LqO++8c6LpliRJmqfNdpAWEYsDnwGOz8x7+l/LzARyIivOzLMzc7PM3GzGjBkT+agkSdI8b7aCtIhYkArQPp6ZF7XFf+hVY7b/d7TltwGr9X181bZMkiRJs2l2encG8CHghsw8ve+lS4BD2+NDgYv7lj+n9fLcCvhzX7WoJEmSZsP02XjPNsAhwE8i4tq27ETgNODCiDgCuAXYv712KbArcBNwL3D4IBMsSZI0P5hlkJaZ3wbiIV5+ykzen8Cxk0yXJEnSfM0ZByRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpg2YZpEXEhyPijoj4ad+ykyPitoi4tv3t2vfaf0XETRFxY0TsPKyES5IkzctmpyTtHGCXmSw/IzM3bn+XAkTEBsABwGPbZ86MiGmDSqwkSdL8YpZBWmZ+E/jTbH7fnsAFmfmPzPw1cBOwxSTSJ0mSNF+aTJu04yLiulYdukxbtgpwa997ftuW/YeIODIiro6Iq++8885JJEOSJGneM6dB2lnAo4CNgduBt0/0CzLz7MzcLDM3mzFjxhwmQ5Ikad40R0FaZv4hM+/PzAeADzBWpXkbsFrfW1dtyyRJkjQBcxSkRcRKfU/3Bno9Py8BDoiIhSNiLWBd4PuTS6IkSdL8Z/qs3hAR5wM7AstFxG+B1wE7RsTGQAI3A0cBZObPIuJC4HrgPuDYzLx/KCmXJEmah80ySMvMA2ey+EMP8/43Am+cTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdNMsgLSI+HBF3RMRP+5YtGxGXR8Qv2v9l2vKIiHdFxE0RcV1EbDrMxEuSJM2rZqck7Rxgl3HLTgCuyMx1gSvac4CnA+u2vyOBswaTTEmSpPnLLIO0zPwm8Kdxi/cEzm2PzwX26lv+0SzfBZaOiJUGlFZJkqT5xpy2SVshM29vj38PrNAerwLc2ve+37Zl/yEijoyIqyPi6jvvvHMOkyFJkjRvmnTHgcxMIOfgc2dn5maZudmMGTMmmwxJkqR5ypwGaX/oVWO2/3e05bcBq/W9b9W2TJIkSRMwp0HaJcCh7fGhwMV9y5/TenluBfy5r1pUkiRJs2n6rN4QEecDOwLLRcRvgdcBpwEXRsQRwC3A/u3tlwK7AjcB9wKHDyHNkiRJ87xZBmmZeeBDvPSUmbw3gWMnmyhJkqT5nTMOSJIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10Cx7d85Pfn/m64a+jhVf8Pqhr0OSJM39LEmTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA6aPpkPR8TNwF+A+4H7MnOziFgW+CSwJnAzsH9m3jW5ZEqSJM1fBlGS9qTM3DgzN2vPTwCuyMx1gSvac0mSJE3AMKo79wTObY/PBfYawjokSZLmaZMN0hL4SkRcExFHtmUrZObt7fHvgRVm9sGIODIiro6Iq++8885JJkOSJGneMqk2acC2mXlbRCwPXB4RP+9/MTMzInJmH8zMs4GzATbbbLOZvkeSJGl+NamStMy8rf2/A/gssAXwh4hYCaD9v2OyiZQkSZrfzHGQFhGLRcQSvcfA04CfApcAh7a3HQpcPNlESpIkzW8mU925AvDZiOh9zycy88sR8QPgwog4ArgF2H/yyZQkSZq/zHGQlpm/AjaayfI/Ak+ZTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQdNHnQCV687aY+jrePwxlwx9HZIkaTAsSZMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6qDpo06ARu+yD+069HXsfMSlQ1+HJEnzEoM0jdR55+w89HUccthlQ1+HJEmDZnWnJElSBxmkSZIkdZDVnZpvvf384Ve1vuxAq1olSXPGIE0agcM/u8vQ1/GRvb880+W7fu41Q1/3pXudOvR1SNK8bmjVnRGxS0TcGBE3RcQJw1qPJEnSvGgoQVpETAPeCzwd2AA4MCI2GMa6JEmS5kXDqu7cArgpM38FEBEXAHsC1w9pfZLmArtddObQ1/HFfV4w0+W7f/rjQ1/3F5558EyX7/HpLwx93Zc8c/eZLt/nM98d+rov2nermS5/0WdvHfq637X3ajNdfv5n7hz6ug/cd8ZMl1/10eGve5vnzHzdN7/j90Nf95rHrzjT5X8447qhr3uFlzx+psvvePdXh77u5V/41KGvY7zIzMF/acQzgV0y83nt+SHAlpl5XN97jgSObE/XA26cxCqXA/53Ep+fDNftul2363bdrtt1z1/rXiMzZx4pD9DIOg5k5tnA2YP4roi4OjM3G8R3uW7X7bpdt+t23a7bdXfBsDoO3Ab0l0Gv2pZJkiRpNgwrSPsBsG5ErBURCwEHAJcMaV2SJEnznKFUd2bmfRFxHHAZMA34cGb+bBjragZSbeq6Xbfrdt2u23W7btfdFUPpOCBJkqTJce5OSZKkDjJIkyRJ6iCDtJmIiLUjYuFRp0OSJM2/DNLGiYhlgJcDJ83rgVpExKjT0AUz2w+T3TcRMeXnlr9nt4ziGJhbeex2X//x3EZt0GyIiKUiYpX2eJ2IWHRCn7fjwJiIWDMzb46IpwB7AHcAb8vMfwxwHZEd2Om9dETENsD6wM3AtzLzn1O17vZ4WmbeP+x1PkxaFsjMB9rjVYH7M/P2SX7nv7cpItYD7s3Moc2P0ztu2+ODqd/z+8CPM/M3w1rvIIw7FnrH5L9/kzn5nlGLiMcBv83Mu+dkWya57t4+3A5YjLrGf2mq1j9Z7fh9NHAtcG1m/rotf9DvO4rfu2/fLgzcN8rr1ihFxHOAv2TmZ0ew7ik9nyYrIqYD2wOPBdYB1gSelZl/n93vMKfXRMTSwNsi4qTMvAK4CFgZePmclKj1coYRsWFEbNOLpNtJPvJcY0vHk4DzqIPnHcCLImKdYa533E35MOBpo8qVRcQTqBOIiHgp8Hnggog4u+89E/qtImJ94IT2+Bhq/34hIl7dbpwDFREzgFdGxEsj4lDgpcC9wPOA50fEJoNe5yC14/AZbZ+fGxGPz8wHZrXfI2LbiNi1BUQjP6/6zvfHAKcA74qIpdq2TNl1tu2H3YEzqevXmyLiJVO1/slo58sxwI+p69GT2/L+a8a67ca34BSnrReg7QZcALw3Io4d9jrb/8dGxNYRsdyISui3jIjP9y16AnBPfxqHuO6DIuKoiHghwFSfT5OVmfcBvwD2AZ4FnDORAA0M0vr9FXgX8NiIeHlmfgO4kDkI1PpO6Ke27zgVODUiXtaVHH8r4TkaOD4z/ws4FFgX2GmY6+272B4LvBi4cSpK7x7CtsApLWf4RGBX6mR6dC9Qm4Pfam1gzYh4O7BX+97DgH9SAenyg0n6v/0FuII6Tg8FnpeZbwJeQ41RuDV0tzopIh4LvB74CnAT8JmI2LJXovYQn9kS+Ci1X49rwf5IA7W27r2AjwC/A2ZQgdoyU3ljaaXBLwf2BP5GHXdHRMRrpmL9cyLKMsDjgN2BxYH/Ac5p+22h9r7jgfdR1+lDh3AuzSxtK0bE6u333ZE6Vl9DZYQOjYhFhrXuts49gXOBw4EP0zKVUykzv0dd0y5uixYDHtFL47DW24L244GFgadHxDfbOmeZiRu1/vS1WpSPAp+m4ovt+t4368xGZs7Xf7Qq3/Z4IWCbtjNf3pbtALwTeCOw8AS+d1NqMN/12vOnU7nDvUa9ve3v+cDVwHuBxdprOwI/ApYZchqWB74LrEdlFPalAsbNRrA/jgb+X/vNF+87Dq4D9puD75sO7AKc1fZlr0nBBsC3gKcOYRsWpqrnvwt8CJjWlu8MfA1YdJTH3MOkexPgc8CpfcuOpKreV3qIzywNHAVs354fBLwfOHTE27IQ8BngiX2/9+nAB4Gl2rIYchpWpCaMXgfYgiqRWrIdG/8HnDzq37wvrf+xL4BXA98GLutbdhwVmBwEXNnOry+1xycByw8xjesAVwGPbc/3oDJdu7Vrxhpt+doDXOfjgEPa41Xbti4GHAz8EFh22MdR/2/Uu5a059+mgo3XAvu3ffHYdqytPMhjov3OFwDb9C37HDUw/siP3wlsx07tWrAqsBTwJuA0qknKrlRc8LC/53xdkjauGH0pgMy8irq4bt1XovYF6iK8+Gx+70JUcPckYJW2+NtUEfHmA92I2dQX2S8HTM/MD1CBZ1DTdgH8niqZGWguJSJmRMRW7fEu1M3kcuAM4BzqhN+YVr0xTFE9d/+dA8/M9wEfoE6iJ0TEElkle18B/jWb37lhb/9mFW9/FfgUNV/tqyNikcy8nrpprjuAbdglIl7fHk/LajP5ZerieT9wYnvrQu35tMmuc0juoC7Gm0TEqm1bzga+Tt2MHqSVKnwceAmwYVv8ZeqG/ZSIOGJKUj1z04BlGPt9f0FNj7chcHJELNa71gxaK4laHvgksHpm3kRlhC7JzHuA+6jqzyuHsf6JGnfdfUlEvKZVYf4a+AdVAhkRcQAVkN8OJPBs4AXUvn4nlQl5UUSsNOj0tYf7Ar8C7oiInan5qM8FXgXslpm3RMTTWhqWGMB6l6Wa2fTaQN8BXE+VJh0LPDMz/wRsFxFLTnZ9s0hLZLk/InaPave6LbAScDKVET2Kqtp/HXWdmcz6plOBCxGxOXWP+BewQt/bTqBKMDut79h+EfAGqnbmfcAawFuo7TqVysD9cpbXhVFHnV34A14EXEwVJx/Qlj2Ruui9tj1/xOxEz1RbiaBukKdQpWmbtNf2oUpsFmWKckPj0rgrVXp2MfAJqsj62VTAdAXwDWD3Iax3ZSrQ/XzbH0tRua/DaLlQKsd8DrDAELd/b6pk6YlUoNr/2qFUcPVm6oL4S1op6Cy+8+nAz4Anz+S17akA8ItUW5ufAetOchueRpXy7dm/DcDefen5ZnvPl4HHT/Vx9jBp750jGwNbtovWI6gSqNOoIH1rKrjdcNxnN6EC582pavKfA5u315Ztx/HjRrAt69JK/ahc82XArn2//wep0ocnTEGaXgV8FliCuoleQd1QbwO27k93F/7a7/gtYP32fEkqg3Fu+61/QAVlm/S9fj5jJcVfAN4GLDfgdPVK1BcEfgPcDazVln2Kuk5Op66n1wNPH9B6l2vb84J27q5G1b5c1zt+qIz/z3r7bAp+oxdRNQLr9S27FPhc3/MlBrCezYFXtt/+e23ZwcCdwBbt+eHUNbqTNQPjtucpVGZzOlXo85123PSO5fWpDNWsv2vUGzPqP6q66xtUScr57YJ2bHtt+3bQLDub3/UMKtD7AlWS9rh2IbqVasvwTeAZI9rOx1DF5U+kgsTPARe0155JBRMv6nv/QC/mVNXE3cAbZvLaYVRvrg2GuP0rUwHq5uOW7wq8uj0+isrNv6l3UZ7Fd67SLphP6d9n7SL70fZ4h/a7n88kA7T2fScCr5jJ8h+03zGoAO7NwKqjONZmkf7d2kW/dyM+ngrULgSuoarfe0FOb3+u0I7PK/u+5/i273vVi9OncBt66doZuIGqZn4RVWq2N1Vd+17gt1Szhw8Aew4pLWsDS7bHi7b1rtue7wc8F3jaqH/3/v3WHi8EfKxdl9YCjmCss8AMqhrt1VQv5XX7PvND4K1U6fu3gVUGmT4qEPwkVZKzOFWSdgPVdrf3vgupYO3y3rE6yfXO6NvGD1JtCY9vz59CNWH4YDv3b2AIGemHSNfj2j5errf/+177OXBhezzpjDUVEH+Mqm06rm/5UVQNxIeoe8RjR30cz+rYbs/Xp4Ls51LB2lJtG35Ga6oxu39DmWB9btEaff6DurA+h7GSpQ9FxAOZeVZEfD9nozdGVE/BN1O96rYHDqF+nPOoE/4pwFmZ+fkYzbAT/6ByfT9s27NXRHyjNeB/P9XWZ+tWxfDJbEfanJpJB4kvUCfbqyPi7sx8W3vfNlSJyrOzqgSHZWHqInzTuP3/QHuNzHx/RNxJ7aObZ+M776EC/L9GxHLAn6hqmfOAx7Qi/O9SDY2vz8w75zTxffvzLmDTiHgVddFajLqRfIS62G9O3Ty+mpl/ndP1DUNELE41an9hZn47ItaiSk9/T7VFO4dqO3UFPKhR8l1UKeyxEfGyzHx7Zr6jNbr9WFQP1numajsyMyNiM+pcfwYVRB5M5ZrPB55KBU/voEpHtgT+e5BpiIhp1HH7QeD6iPgzFdTcR+3jozLzU33vH3mHpd76I2KjzPxxRNxLNbl4BBUMrEyVSn2tnU9PBXbOzLsiYnpm/jMi9qVKJjagMtO3DTCJ0zPznqjesEtSbc7WjoiVgc9FxJKZeUpm7h811tX0rOrkOdaqVg+jeoAvRF0v/gqsERFPyswrIuL3VEnyMsCRmfmtYfyeM/nOu6iMBhGxcLahqFqTkPUjYg2ohvyTXV9m/isiTgd+AqwaNRTLBe2a/APgf6lhT343xxs4JOOq7x8D3J2ZP2/P16ba3P45In5D3SNumdAKRh2BTuUfDxHxUxHvl2m5MqrK4CfA0hP47mdT3Wt7z59JlW6sTF2oX0RVtU1JlQxjuf1pVC5laermt23fe44Bjm6PF6Sq/FYY1Lrb42dRxdTbtudPbPvlGKrq7m0T2c+TTMvJVEBwAxUQXNx+63uoXNzJzEYJYt++DaptwUVUCdwXqRLK71HF9BcA75md75zANizU9t33qRKFi6kq9Cup3O236EgJ2vjtpkomvgCsM+74eEt7vGpL/4ntuH0SFbwdAyxCNRd4N/Divs+vOUXbsjZwSnu8GNXG5Jd9r29Ptft6bS9NVCna54GNBr1PGeuM8AiqBO8CKkB8PnVj3XZQ6xzwflyJaoz/XCrIfFL73VelArUvU9W1q1LVamvx4Mbry7f/A63yoqrMfw48pj0/hKrqfEZ7vklL9xsHuM7lGOtYtmK7lmzanv8XVfKyA7DgFPwu/deYRdu5uhBV2r1H32sHU22JB5YmWq90WokvVbv1bqqjxqFUU5jOVNM/zHYcR2Xa3w1c3pa9E7iEak93/Zxcm0e+YVO4A1fte/xCKjf2cirHtCBVfL1tuym8D5gxi+/rXSwXaP83pdp5bdb3nvOAHdrjldqPuNoUbvOeVHufi6i2PvtQVU3HtZPiZwyht2Hf+o+jcobPBv4OHNi3r75DBRpDq+Icl5Zem5w9aUOttAvgZlSQ81pmo43AuItZ7zuf2o6ZRalSlc2Bs9tF5lED3IaXAC9oj99KNV7uvXYEVZIy2z2Qp/A47D/3Tmm/e69H8f5t/y/anq9MZZqeRA3JcRRVDfoWapDT3ak2Xi9r7x9aG8Zx2zAd2Kq3LVTPv8uo6sXeNWBHqmqz185yKQbYXqrvmrMbFZSPD1iPoNqlPUC72Xftj7rW7kD1Wjy2b/kLqJvYv6tn2++8B2MB6cHt3H3Y9sGTSNupVHOXR7fnB1CZ9d3b802pJhOPYvIZrwWpzMi72jVoaapU9C19638FdQ/ZidYrfwp+nxdRGYsrqYKGbdr5987291MGWNDQft9fUBnkzzNWzfv8di79io5WcY7bjp2pQpAlqNLhy/teezlVkj5H7YNHvnFTsPOiXSx/TQVgW1E3iSOpUo4LqBzdi6jSlZ/M7s6kbs6voYK+9anqjVdRQcnm1E3m8X3vnzaMbXyItK1P5Ux3o3Ijv6aC0C2pgORshthWBdiIsbr4Y6m2JL9irORuUWazrd8A0rI/Yx0WNqVubou0155GlaYtPcHvPJgqEVySCswuogW8bX1fZYDDA1Bt575EK+mkep6dTpVSPrul5dFTdXzNIq1rAM9tj3cBbqQyMIdTpVBvbMteSZVe7NLeu0D7m0YFvUe15QtTN6v3tOf7MLWdBPo7aPwI+HR7vC7VBvUdjAVqy7T/A7uhjlv/U6mG5Bu1/fgHalaU/vevOOpjYCbbsB9jJYwLUiXql1FV31ABy7btWP4fqnRwK6qk+CNUgHAjQ7hh0xfoUxmdOxgLlA5qv/le7fmkG8n3ras3RuCbqeGIlqSCtrcx1kbtxGEe6zw407lPu46sw1gm6ZlUxukAqn31OgNc9yHUtbhXevkEqqT9+PZ8YWZRWDLC43l8LcFWbV8dT5U+LtSWbzPpdY16Y6dwpz6Rqub6DK0nXjv43tkuAr2c/FKz+X3btIvGkVQwdAJwIBXsXUDlCvaY2Q86Bdv6uHYBfFffsp2pruwDO8nGrXNm4x4tRw3oemV7fjiVy99nCvfF3lTw3QsEprcLwReoG/8PmWAOhwp0v9M7Aalc8KsYG3rjhkHeTKipRD5G6/XUlq1PlT58hhqWYsNBrW8A6d2Cajx/MlVls027IJ9OzYgQVA76mYxrRNt3Hr6SygAt0Z4vTlWFLsEUlZ6NS9djqEB5OnXT/nBbvg5VzXhmez7QtFEZi48wVjr3rHZ+P713DFIl4m/q+0z0/x/RMRDj/r+XKoVZoz1fuB0fd1IlJgdRwe6CVGnadVQQs2K7hhzLAEulZ5Lexfsejw/UDm3n9IxB/L48ODBajwq239rO6aWo6sT3MORM17h0LEe1mz6tb9lGVKe3gV5b+o6Jk4A/Avu259OoQO2bwCtHdezO5jb0MmW9bdmQasP3g773HEZ1MllyUusa9cYOeUeOv1A8gcq5v63vPStRxcwfmd0TkKp2+ThjvUCXaydZ/4Xykf3rnuLtXojqPXc5ldtfuC1/D62Kbhj7uT3egbqZ9UoUngW8vz3el7qhzbLn5ADTdnS7ObyMVk1Cldb0BhKcUFqoAGNXxjqF9KrtZrSL7JMZcJuw9nvuQrV3exVjQxD0jutFpvoYm400b0UN+HlJ37K9qEDtBGYyYDLweKo932rt85+jcvRLU4HJ9xjwcAsT2J79gXf2/R7XA2e3549mCEOdtO99BjXW0vm06njqRv5Z4Ent+QepxshdKUntvx6s2ff4BCpTtGZ7/jzg7dQMDbfz4EDpue29TxpSGpdjbAiX3lRP/QNan0BVffZKeWY6uPKc7huqjdvjqVLnXhXZW6mgbWkqqJ2qYTaOou4Vh1All4v2vfbeQR/bPPie9Nx2LvUGDJ5ODdEzZc2CJpj2Tfsev7idl2+mqqyf1I7lA6kS0B8ygFLQkW/0EHdm/4XiqVSuYLl2gNxEq0ppr6/IBBrMUzf3L7WbSG/8nCWpHPZIL5SM3cAXpNp0vJ+qatihHUCbD3HdL6FKFc9sB+gmbb3nUiU+P2UKA7S+dB1KFUE/hQEENFSQtyNVCvsahjhuT99FfUGqPda7qTYOU1Z1Pom0b0dVx/V3qX9m229rj3vvLlRJyk+pDjbLUaWg51MByfdpY8FN8TZs1C6+C7UbWC9jthAVGJ07pPWuQjVR2IkqSX05lStfo73+ESro3ZkKMCY9vMsQtuFYqm3TJ6lx8Bah2ll9l5qR41dUoHJh+31PGPf5I6jG+osywBLKdi79VzveDmrpeQpVJX85LUCgBmm9a1DrZ6z05cntWvxBqmp3H6oDyClUdef6U3V+t+vYlYy1+/tk+9udCt6uZzbH85rN9R1HlZR9ul0HlqZqo65jgB1shri//h9VS7VF+79vO85/0n7XHaiMx9sYUJA98o2egp36EqrHxclU6ccMqrrq5/SNfTOL7+jdKNemArqFqOLN91DVMo+iqj2uY4Q5gL50Tm//F6KqEq5tJ8TT+t834HU/Hvhse/xixnq39HJGhzAbg8MOYNsfNLVI3+OjqcD66bN7AZzZfmIsCJ5GtWd7OzWu2iCCv5n+Ln3rXIgqxfsIfWPadfmPamd0Da3DQ1u2wrj3rEvdtLajgqLXUVV5M6gb5GNoHUyGcew+TNqXpIL729tNa5t2ju/YXl+QCY55NIF1b0kF5Nu1C/56VMP2C4FHUm2EPtZuDvuO+neeSfp3bGlbrT1+TTtugwo896cC85XaflyRanj9hvb5HdrvvviQ0rch1R7sQ8Bb+5a/h7r59kotJ13FSl9nHqqE+DTGpjXbmhpeYicqMH8TU1eCtgR1/7odOKhv+SktHZ9hgB272rXgJ+233opq+nB+OyZObuf8QoNa34D3Vf995fJ2vTqwb9nuVO/+gWfYR77xQ96xGwBfbo/PoBp3L9ieb9FuHkvP5nc9ncpVfIIa72v1dtG+kCo1uowBjTw90QOHusmtyEwClHYB/CAVrC3HgG5y47+HuqGe3NZzWd/69x32iTduu1ejAqherrU/UDu+HQOzPJHGfefy9AUWfd89rZ2cb2KS1XDj1rcnVUqyx0zWuRBVetK5xuEPc2w8kWq/+R+BJXWT3gh4X287qfZKF1E57kfN7DunYBt6zRW2pHLPX6HGUvwaVQKzTN97h5HpCap6957edYUaluJUqpq9N8DojFHsn4f6zfv+P50aF7J3DVqbaiLSG3H9lVSp+7VUELozVb17DZWZ+gGt1HBI6ZxOBbuntd92+773fJAqXVqESZagUZ2KXsTYgMOfpNq7bdeXlkMY6xQzlKD0YdK3IhUsfYDWbrfvtYH2FKcC0vN6vwN1Dz0P2KotG0lThgkcM/3X6CuAH/c9X5JqjzzwuWRHvgOGsTP7nq9D9WI8kYpyez369mz/Z+sgbAfyNYw1FH91u7gsT1XpvYcqPl9kZukY8oHTP+r5cTx4DKr+ErWLqVKfSY9vw4PHLVqWCv6mUQ30v04LIKib2o8ZUHuO2UjXC6gA8b+pm1kvsOnvvbX0BL/zJe3YuYIHTwTePw7dYgPchqOp0ppXUeM0vbLvtc5Vcfbth02ogHWmVSNULnrbccseT/XifBXV/ueIvteOb8fsd5iikoW+dS9P3ahfS5UCb0vdaHdox/hfh3lMM1Zy+h4qUD2BsaBsFart0meoIKIT40f1nWu9tkZrtevS/r3jhMrg7kt1CPgWFZCvQvWOf3PfteRlDKGDU9+xuj4VmG1Cte97Y7tm9I8hOZCOP1R13npUJ7Vej82Pt9+v10b2QKr6b9qwfk8e3M5s8XGvrd5+g7Pom81gUGlp3/3Gti9+Ahze99q5wKGDXN8wjpn2eFuq9mTZ9vwbVKbtUVSV9Y3DuC6MfCcMaWfuSeXeF2gX+v9hLGB5XrtAPHIW39e76GxOlRJ9iAeP9/Ru4B3t8W7URf1YpnZ6ms2o6H0dqlTvLKrtSn+g1l9VtvIA1rkBYw2WX0rlOK+nOgjsTbUfOptqC/eTQV3sZiNd+7STZoWWhg+Oe312qzj7A7r92sV8ASqYuOyh3jug43aRdtL3ShvWasfuCya7niHt8945shPVfuoTVGbmUGaRo6QaxH+DylycSzWOv4XKUD2Tat/5OCpQuoI2J+4Qt6V3A9+eKt3bmirhuJpqPH0KY5mwKQsaqerez1NBRO/msCodaYNGBVy9HrnHUCWgz6MC3V2oHs8ntmPih1Sv3idTJWVLtc+tQmXunj0Fv+/uVOnN96nBcjejgsNTqNqWgVVf05chppqbvJuxQO3iloYT2zk/tB7vVM/op1FVjAdRvQ7Hz128OlW6+Q4GWGVHjXd2M3BRe74zVV14GtVp4FpG0E55Drbjle1a9SWqrffz2/KvMjZh+lCa84x844ewM4+jSiLWac+fTAUNn6NypNfyMD0u6BsokYqcr6MaDl/MgzsbPIsH9+Z8GgMYrX8C27lEu3n0j3q+HdVo/yT6OjAw2Ea3vXYcz20n2zJUo9tLqaBmdaqq49CpPPnaunenhvnoH6dmowl8xwbjfuPdqdKTV1EldL2q8o0HmO7ezePodpy9j5bB6DuuPjxV+3E207xk3+P1qFKB3hyae1MZlt6YcTNr17cCVdXVm1j7uHbMnky1UXk7fTctpqgahGrv9ytam7O2bMt2bP8L+ERb9qDetUNIx787/7T/K1MZj7czRWMLzmY6F6VK+86lSoMub+ffRdRNbSOqtOoj1M3/KKrqeEbf814J4cmMDdQ8yDHm+tuDrd1+301buo6hSskf347JgbQHo28stXZOH0AFrO+ngsHe0B7nUTUNvZ6NAy8ppzKvZ1LB8dVUwNTreb/AuPeuykx6XU9i3c+lMm3b06oCqWrmx1IFCm+mQ0MHjUt7f+Z5RSo4691TntL2aa938GcY0tBWmfNYkEaVKH2DvhIjKgc+g6q2OoyHiXapnPtXqRKNtagbcy9i3pzK3b+Fyv38mL4R36f6wGnP1+OhRz0faIDEWDCxANUI+CLaBO1t+VZUA9QnTPE+2Zu6uW5Jjbl0Vd9rx1DtXWa3Wvtx7WL9GCr3uRdVuvOpvvccSTXYnlRus/84bBfSK9pF7I3tgtYbtPYIqvdeJ6o62345o124plHV/DcCL+97z4vbeTTTUmUqsO8fZ67XbvJzVLA95eN8UaVnP2JsWp4N+9L3SKrqflidBHrbuyTjmiMwFrCtQgWLnRhmoy99j6GCm+8xNv7k5u2adCJjPSUPbtfMXin8gVS17ZfaMfRrBlw6yFh7sN6wGo8CvtT3+spUoHQZbaiNAaxzUaqK+plUW+Hr27XydCqD+xGqY0yvI8xFVEnpwGtg2vXkGirzvjfwSyoTtOMUHBfLUcFpb6rFzzPWLm+NUR+3E9iO3ahCh5/3XRsWpXrhvnoq0rAAc7E2OW2//6UChYUiYqE28em/qFHO35GZ52TmjQ/xXQtS7WA+SdWdb0c12n1WRKySmT+giop/RbWveElmfnEmaRiK3iSuEbFTRBwREc9r2/JCqvv26RGxQGZeSbVj+vWg1w3/nkz3jVRQsUxEPDkiFs3M71KljUsOar0PlZa+xwtQAfgTqKqU9wM3R8S2EXEEVdR+TraJgR/mOx8fEa/LzJ9SE3y/AnhpZn6ONuxBRGwdES+j9vebMvPeSWzDzsCXImLpNiHv86gJ2O/IzJOAvwDvi4iPUSVsb8ixCeFH7T7q91+EqrI8jSqpXj0i9mjvuYrahoVn9gWZeRdtUOmIeFw7Rz/F2DAji7T35RC3Y7z7qVLzbSPi/VQu/8yIOCgz/wh8PDO/OYzzvZ3Xz6BmL/hCRDw7Ih7dXrs/IqZlTSS+V2b+z6DXPxmZeQNVknY7cFJELNaulR+i2n49KyKWp6qK1qNuemTm+dRx82ngH9RE6r8YcPL+QQVgS0TEJpn5S2CRiHh9S8PvqCDmd8CREbFUu6bMsXZdOIO6hryL6gG4T1vPA1Q708dQ9xLaa/dSmZ5B+yd1nT6gre8Z1DX62RGxN9SE4BExY5ArjYjjqAB9UyrjDNWOc/GIOAT4TDsmOiciVo6IRdrj7akMxJepY/XQiNig/cY3Ufe/6UOPAUYdqU4iwh0/WvIjqIv8Z4Fj+l47iLp5P2zj7vbZ11OlJN+iqr42pEpiTmOKGr8/RNp6pWS7UTeSnakLy9va8nWo0paBj3o+bj8fRDXOP6I9P55qSP1GKtC4hSluX0BVZ19FlYQsTZWefZ66ccxyIEGqZHBL6mbx6rZsO9rwKu35Ce04+AiTzHFTxf2voUoWntj25yuo6r9n9L1vy/b6GqM67h7umKBKCr5JXfgXbPvom+38+S59PVMf4jt6PRW/xNg0UVtQkxFvNBXb0P6vRZVSTWvH9xnAru21o6lqmaHOm0hV/9xA3dQOo9qfnci42U+GmYYBbMOjqHZXH2RsgOeNGLvJvZAqXfsbcNIUpGd8e7DefL2bUG0nz2vH7vVUKem5DLYt1k7UGGuvaM+nU6WHb2IS8zjOQTreTmU8j2/Pl6NqAz5Mta26nMHOL/uCdh1YhRoj8WNUDcU5VMbs/zFF8zXPQdp3owpplqXatf8YOLK9tjFjtQZvpUp+p2aolFHvmDncmf2Bw0upRqgfpHLhq1BVKR+mot9rmUW9d98Feyfg9zy4Gm+bdmK9kylsc9bWvRZjQxAsR93Q1qfaF3yHCoo+1F5fb5gnPhX8fJ+qPrgMuLQtP4oKHN/OEKtiqNzn49vj7YHT+147kQqger2l/j0ExwSOowOoXOeL2vMnUjfoVzDWY20gVRJUMHA91bFiOaoK8bh2vO46lcfYHKT93z0KqZ56l7bjcYG2r84Bnjeb37Uk1VbnVVSGaMt2LE3JecbYsDrnU1Wda/W9tnX7fXaagnTsTBtjsD3flqou7lR7HWYSJPLgjjbrUUHuJ6kqob2oG/YyjE2dtx6VwTx5SGl8uPZgJ1HNMlZo5/YZVND2xJbOh+1MNgdp2YuasuvA9nwaNTfp0Dp9jP+NqEzsoVTJ5nOowoylqHZV72ewk6UvSd2HV6LuE1+mguHPUm3xrqWDARqVCXsE1T7xudQsEOtRhTWf63vftLY/n8FUtrce9Q6a5M7dnIrUt6Lq3L9KRcCLtxPzcMaNbD6zH6j9X5u6eT6RquJ6A2MNLLejgpChDcb6EGk7mCpd6AUJq1GNXH9E3RTXporQ3zOEdfdffKdTJXXb9C37PPDu9vgVDHlIAqrUbjmqncX2VK7sc1SQuAcVqM3RyNhUj9hLqZv11xkrUduaCjpOYIClKVTO8mpa9+22bGUqF3o+8JSpPM5mkdYVaL2a28Xp0nYh3q4t248q/XpmO05eRd0AJ7QN1A31u0zRqOP857A6J1E31FXbefZ5+ko2h5SGNdv/lagbRP+4eO8HnjXq378vPf0ZmpXoC2h48JA8G9BqHqjgYB+qdPArjPUC3YuqLnrkoM6p9r0P1x7sFCoj92r6AhOqDe/QRrun2steQxtmYgp/o31718b2fOd2bTmICQ5DNME0LEyVoH69lyaqyvN0hjCG2IDTvlO7Bvyh73j6Lq2GamTpGvWOmcQO3ZYaFPCk9vwR1PRPl9FX3Tmb37UHFeV/muoY0Out+DrGArWlR7Sdi7eLSK8UaUva8BJUQPk2Bpzbp6oNew1bN283rvN4cI+79WkDkA55+/sHo30c1aum14BzT6oX2U3A34H/noPvX4GqLl2KsarPTwEv7tvfkyrZGXfxXIixxuC94LDXS2hVqh3dyKrWZ5L2M6mqoG2pksZntjT+ggc3Av8K1eN4Nap0e0IXZOqmvsaQt2VWw+q8k7H5OXuB6UCrGBnLFG5MteM6oz1/IVWN8moqc3ATU9wJZ1Zpbo9fRmUwLuHB0331B2q9Xqk7UI3VvzXu88czvJkE9qY6MXyJFnhRmd3XUc1ZLmj/l2qv7cSQS0Wo+8v1VEZsYE1RHmZ9x7d98FYqQ3U+Vcq1K9UmbT+GOybbulQp1IZUxu6TdHQuznHp3o0KKK9gbBikJalS4KFM/zZb6Rr1jpnADpxZUfvbqXrjXjfu3rQ5F1FF7LM8CKlSuB9QN+uDqfr7N1PFml+jStSmbOyz/m2lcj9bUSVV32Os9+GnqJvn7YyVaAwyR7olFfycC3yvLTu4HcBbtOeHUyWXiw7xZF+GsWBxR6rdyzuom+kT+t63PZVTm2VR+vi0UoHRzxgbDmIxKtf9P7RAbVDHLVWleSZtHsO27MR24dy6Pe9EL86+NC9Ma9DOgwfzPbDto53a8xX7XuvaNszRsDpDTM9ubd1vBP5EBRBLUKX/57fz7mHb9I1oP/YyMI+mmoH8jOpANdPfncpgnk5lJHekqtuuYYBVbA+Rzk60BxuXphlTtJ7pVO1Sr1ftiu16dmJ7vj8DGC9zFmlYmCpRv7wdI52r4mzpHH8vWICqqTmIyjz3hhFaqm3LSGZ5GfmOmujOpEq59mKsceoZVGPE5dvzBZlAA1DqJr05NR7V96lG+F+lqjx3ZYgTks8iXVu07epNmfFSKge7avvbFdhhSOtesJ3o9/Dg3PJRVFD8IarkcagD1VLtRU6jqil+0ZYtSuUQ30GVOPRKpWYZSI87jjZgrBr5lVTV6dp92/kG+kpZBrAtL6CGh+k1qP04Y1Wdb6By+JOe/3PA+79/IOT3U21M1mAsE3EocCsdGrtrJtvQmWF1qKqfxaic+n5t2YpUadOb+963xPjjddR/VID2Q+Bdfcs2pdrtnfgwn1upnU9fpBqqT0k7O0bQHmxEv0v/NW3pdox9h74p2Kiqzw9McboWpErVVxn1PpqN/XYkVbr6YqrTwALten0xY52IRnYujnxnTXDHvoQqevwIFenu0Ja/leodNce5FSpX++L2+DlUQLTGiLZzNarq9exxy1/atnPgOVH+c2DDTanc0GlUKdq0vuWrM+TcWF863kqVbvb32F2ipesDwJYT3T6qROtnVBXdvlSnhJdRHTHe1v4PbHBCZt6gttezqjfo8kAbLQ8w7f2B2nlUSeDqfa9PyXEwh2nvjb/2fCoYeg5VEvRVxsZvegzVi/Mkxsb5GuoFmcpg7NL3fDtquIRXDnO9E0zjzGoueqPjb9h3XGxBlfIv+3D7rf0Wk56SboLbMGXtwUb9G1FBxQnt8Q7t/nhIe34w1Xh/sWEf23PbH1U1/DWq0+E3qMzyyu21lzLWCWbo1dQPmcZR76RZ7MAVGSvt2ImxHoUnUF1hz6ENMEmVRqw5iXUdQDUafzl9A22OaLtXoqbDuYb/nPT2FYybA3HA6z6UGk7jae350dR0Jnu0144b5ok+/rupzhHPo3o+HsDYxNcrUqOUT6i9GJXD/gSV63w+NSzAYVQR/Q5UVdQw5g2cWYPa/6UyB1N685rob8GD54D9SDvv1hh1+mYj/SMfVqdvHz6Kagc3rZ1TX2FswOJNWxpv7p13Xfjd2+M923nXK2V+NVXqvBFjgdpAJ+Ie8LZMaXuwEW3jUVSg3KviXJyqcfpFO65uZIqm55ub/qjCkHe3a/MrqHaMb6Mycr35p5cedTp7F5BOaYPDzaBKkz5IHWjLUAfftlSwsAd1w1iHyoF+fZLrXJJqdLoHNQ3PFyfzfRNcd2+g2q2p7f4NNWjuYdTYPhdm5hVTkI49qHZ+H6cGiP1aZp4REc+jqjueQvV4+9mQ1v/vQXMj4tlUidnNmfmliNiPumFcSO2TacBbMvOfs/jOp1EjXX86IlalSrDuzczd2+uHUMfUj4DzM/PPw9i2tq51qfZdL6CqDQ+h2s38ZljrnIi+43BdajDaP/T9HtMz876IWJg67/47a/DfTuof/JkqAbwyMw9or21D5ZwXpbbjD0NOyy5UE4ErqIFLj6XGytuKOtd3okp99gW+nTUg9chFxEuo3pnfpc65j2bmBRFxAtVe9kWZ+ZNRpnF2RMSMzLxz1u+c+0TEI6h2jGdRtT/7UQH0t6nOHSsBf8nM20eWyI5qA9gvS8UQp1Ht0LeiCgR+CDwnOzCI+PRRJ+AhRGbeERGnUkWO/8jMTwJ/jIjnUlN7/D0irgISmPTNIjPvAc6NiI+3m9G/A4ZhazeTp1EN4k+niqZ3p06y+4HD2qjjXxlWGlqwsgXVYPmGiHgC8Pq2G94REedRwc7QLnZ9AcFLqIDsU8CrImJLqsTpASpQ3JoaZPBhA7Tmt8DfImL1zPxNRLwVODUiXpyZ78zM81rgseEwtmmc31AN8E+ncvb7dTBA25mqjvsz8LGI+HJm3tTOiemZ+Y+IOHiqzo050bcta1OZnn2A4yPiDcDbM/OqNrL8XlSJ6tCCtIjYkGo0fyD1+7+I6hhwONUAf3WqTdxqVMeFC4aVlologex2mbldRJxI3eyfGhFk5mkR8U/g7pEmcjbNqwEaQGb+LSIupYKMWxkbf3E74JPZsRkquiRrppM/RMQGwHWZ+a+IWIu6/767CwEa0Pnqzj2BK6kpJQ5vy3amGtqeRTVeH/R8b1NaZ081UlyWGvdrfWpYjZ8wVhWyPBWoDrTBLWPVML3/JwF/BPZtz6dRpWnfZArbylANvT9KVQe+kqqmOouqtuoNVrvkBL9zaSrAO6Y934mqsulvXDuh75zE9nW2QS2wGRUYr0P13juLqv4f2uTBQ9yWkQ6r086fJakqpyupWoAFqGDn7dQ4bL2q+3WpUpAp73XYl97+Ks7F29/q1JArV1Dtmd5JlTAcNOrf178H/XaLUJ1glm3Pe013BjaDwtz8N6t7OmM9/D8K3EbHeqOOPAEPs+Oe1S4IK1B17ldRDSCnU22H3sAUTcswRdv7Kqp7+HcZ6/V3GNUma6BtKcZdkNdlrN3fc6mc2GPb8+nUeE5DG+Nm/AlEVXGuQlX/XEm1gzq6nUSnzum+YGwC9ue1509tF7KjR/3bd+Gv7ff3Ar/sW7Yd1VHgJDo2sfcstmVkw+rwn5mfx1GZrhf2vWdlqld6b7y/abTAcdR/VE+3kxnrPf8KxoayeAEVuHd6UNL59Y/KBBzRjrehDnMyt/yNu9dt0869pfuW9dpVLk8VSnRuPLeuVndCjUb9zaz2Iu+PiD9SdcWLZuYHqJ4Yc7WI2BjYMzNfT+VUD6EGCP1lRGxEBW43ZeavBrne7B29NRHu/sAdEXEbVcowHTg/Ig7JzB9TpRFDMa4N2s5UQ/rfZuZtbXLb72fmP1vVypepmRUemJN1Zeb3ImJX4CsR8UBmfjgi7qdKOuZL/fs/M/8SEe8C1omI91JBxbciYhoV6PxrlGmdoN9SAcVGVLf6jYH3UUNwvA24MzPvG/RK+6pZdwT2joibqKBwD+DL7bh7b2b+LiJela26Pqta5a5Bp2cC6V4gMx+IiF7HoD0z86/t5e9T58w61Nhyu2fmHaNKqx7WIlSNwf5ZE9/P18bdX46keif/BPhuRFyUmTdk5v2tKdEd1OD4ndPJjgMAEbE7dXE7BbitXfwuaS8fnJl/GV3q5lzfhXw7qpHnzsA7MvOsiLgQ+AdwH3VjeV1mXvLQ3zapdGxL5Yp3Atakqlk3pwbyex01btyOOXvtviablsOpXmM3UifRp6kT5gaqGnhHatDUnw9gXZtRN55DM/O8yX7f3Gpcw/rVqWvBByPi0VTv6XuAl7ab9zKZObIgYk5FxBuBOzLznRHxHKo92L6ZecsQ1/kU6rw6k8qdb0iVmt1KNR14Y2a+Z1jrn4jWUennmXlXa0T9XuDzmfn59vz+9vtvSpVCXJa2ceq0qWxLPbdonc6eRBV6PJ665y4AfGwQ95Rh63JJ2reoHPxxwI8iYlGqk8CL58YArXfytBvj9lQPyuOoOvAnRcTCmbl/C56WoUqNrhnUSTeT77kfuDYzfx8Rf6AmPd6EGnfs5Ih4z7ACtHE5nGdRN4DHUu11nkX97qdTweMWVLA6kNLEzLy6dYq4dxDfNzfqKznZjRqF/RXARyJi/cx8eUT8N1Ul+B6qRGpoPV6H7CfAUS3g2Ie6dgwtQGs2oAKxcyNiKSrzc3hmHhIRe1HT13XF5sAtEfG3rI5YdwKPjoiFeud+K+H+aWa+e6Qp1WwxQHuwiFiMai6zYosbrooIqNk9joqIs7qe8VhglCuPtrdmsnx61lAIx1I3iG2pm/dJmXnz1KVwMCJiZeDJreoIquTiPZl5MZV7fRewX+tx+O3M/HxmXgODOenGBUUvbCUMNwAbR8ThLXb8DVVUvl772B8nu97ZSEuvCmUfarT9X1OjPP+BGidutcz8whCqe3+UmTcO8jvnBhGxVkQ8qgVoy1GZhP2pcYJupo7BD2XmTVRp6vsA5rSKuQMupcZ025oKnK4a9Ar6zumeRal2XbRr2LXAUhGxVmZ+LzOvfKjr3lTprT8z30W1+bwmIh5JtQHdCtgmIpZtJRCvoa4LUueNP7datf1zgL9GxFlt2VVUZ5g/MsJmBrNrZNWd427We1K9+R7oVe/F2LhMvVz/Yn3tJOYqbft+QbWVuY/qaXYGVYX366jhAM6l2qV9OjM/MaR0PJ9qBP7DzNyn5ZJfTg2a+z9UddDeLVgaqlb9dAhV5ft+quH6Xllt0DakqmE/nkMew2p+EhEHU8fhj7OG0liNKrU9l2o0uyY1sfeZmXncyBI6YH3XkoFVBUXEEr0S/dZ0YR3g59T+fTk1n/DzIuKx1Bhpzxl1jr2virv3/zCq6v+5VLXs3lSGaWeqTfDi1LRw140qzdLsGhdTPJe6tv25NeNYhToPf5mZx7b3PCIz/za6FM+ekZWk9e3Mo6lee+sB74mIV7bX72vBS++iOtdWT7USs99T7VT2okYbfx/wzohYn6onX4m6wK8yjDS0g/ZoKldxf0QsT+UmjqcmkF2PmkZkKgK0/akqzRdk5t3UjAK3AZ9uVS0/oUoaDdAGKDM/TvXe/UFEPD4zb6Wq365ppWUrUtXMF48wmcNwPwyuKqg1vfhiROzbzt+zqXaTR1NjzF0EPBAR36C69b951AFaszr8e1zG/ajg7O7MfDk16fwlwCWZeQhwDLCPAZrmIgH/7hB3BDULw1kR8ZrMvI063jeNiNOhxpgbWUonYMrbpI2LdhehqlsOzcwfRTWcvywi/i8zz+yvZpkb69r7tzUz/9Qu2k+j5un7LHVQnUeVrh1BTQ+zU2tDc99ktnncfl6OCnL3yOo5+Qrg7y0Q/r/MPGYSmzmhtDSLUyVlG1MTp/8lIo5nbHaJ/Zm7ehN2Wl/Jyc5U84HzgA9ExBFUNedSEXEmVZKyf1avznmmAfKgtyMz742IM6gOFn8FjsjM70QNhHk4NZXbkVEzXPwrM/8w6v3Z2h++JSI2p4b1eQHwxayepgtQPd9OBb4VETvl8NvuSQMREU+iaof+3M7BpwPPoDrBfRt4VkQsm5kviYh9qLEq5xoj6zjQStBupKrZHtGqNX/douADRpWuQWo3xh2oqoSvZeYHIuL/qF6rD2TmW9vNEaqB/Gup6sZJBSjjArTjqIvyfVQOH+rGsnirhn1xROyaQ+pWP5M2aHfm2PAXp0TEHZn5jcz8awsaloK5MyjvqnYcbkGNf/WSdtzdT7XX2gt4CVWa+8nM/FbvM6NJ7dwhMz8bEX+heh8/mZrv91Yq975fe89v+94/ygBtIaqJxaupDjobUYPn7hYRX8vMH1Alf68B/ka1q5PmFpsCv4zqAPPrqKFknkBlOLePmrHm/0XEL7MjPasnYsqCtIhYLzNvbDeMfagL2YFU472XUI2Y/0CNxr5o1Ngl3ZiWYYL6Si62pKo4rwc2i4irWqB2P/DsiJhOXeSXpnqB7ZkDGN+mLyh6AVUqdSA1MPDKEXEa8HdqYtmVqbYyQxsfpi8tL6c6CdwTET8EPkCVJJ4RNWbU5Zl5L3NxtXZXtbZnrwR+kpnfBcjM06Pa2F5OTU916QiTOFfKzK+2dl1vbTeA81smbIPWnODOLgS7We08f0O1R02qZ9uCVKnfc6PGb7umZQ5fP8KkShOWmW+Pmm/4TxGxRmb+b1SHntvaW1ai5hueK69xU9ImrVWzfCkilo6Ix1BtkK7PzDsy8yRqMuf3RcTHqHYdb5hbAzR4UMnF64EDM3M/ajDWDSPi+Zl5ITX9zo2ZeX9m/hF46yACtJ6oCeM3pXrF7ktNIJ5UlcZvgEdR1TTXD2qdD5OWnakqoN2oDgKPpRp0nkO1zXtdRDwiYrS93uZh91Ftjp4QNdk3UIEaNeH70iNK11wvMz9LZTLfGxEXU9WIp7Zr28gDtD5XU80MfkeV4v+eyiD+GnhJRGwyysRJExERK0V1MCMinpGZv6CuZd+N6qn8I2rO5oup2UbelAMeJWCqDL13Zyst+i/gV9QFYWOqF+OeVIPaz7f3bUlNj3LbvNAeImrC9EuBV7VIfzrVc2on4EeZeWZ739DaqkRNHL4+NVjuk1oQdAfVJum0IVZxLthfZdv2xQZUkPh0qsTwHxGxQWZeHxFLZQ1XoAHoK8ndmppg/DfU+XcYFSBfmJlXjDCJ85xWO3AK8PzM/H8daIPW38xgAaqDyDSqynsl4DWZeVPLNO8CnN8CN6nzImJNqgPeD6jOdvtm5h9bW9HdqQKKB6gaql9l5i9HldbJGnp1Z1bj9F9S7SHup6q8/k61fXhGRNyfmZdm5veGnZaplJlfaRfuN0XE71pVyKepC+WP+943tAt5C4TuBaa3XMea1DQ1ZwwxQFsSODAiPk7Nj7k0VYrzTNrvnzWkyvHA1hFxqAHaYLUA7WnUhNinU51Udqd6790PHNaaE3xlhMmcp2TmRRFxZWb+qT3vSoB2JFVqflvWuGgvjYh3A6+NiDdm5g0RcdNk28FKU6F3bGfmzRFxLjWO36tagBZZnQMWoDKm62Tm5aNN8eRNVZu066i2RvcAS7U644uoSPeQiPjHvJizz8xLIuI+4NSooSXOBc6f4mT8BvgCdbNemWp/dOswVtRK0O6JiAeokpvfUyWnC1ETx98HvCAi/kGV6jw7M/8+jLTMr9oFamngKKq35rJUm8gfZvUy/BQ1eO3tI0vkPKoXoI3auDapBwEvBK6MiLWBUzLzhRFxDvCyiDjWAE1zg3GZj0dTVfgHAOdGxF2Z+VGAzHxxRPyOuvYNZVD2qTSU6s5xO3Mhag64+1vj8SdT0/z8IKqL+tOBL2TmPHvTiIg9gNOokqXf5xSP4B41pMeKVFuU22b1/jlcxwbUEBp7tXVdQA2j8eSWy1mTGs18a6rDwPsz82fDSIsgIl5F9ZR9MjXX7S9bI/dvAjdP9TGoqdOaNaxAzWRyLNV56JlU298/Ay/MzLsjYoV0LEJ1XK+tcl9M8TJqwOXDs4aUego1csEhVMHT9pl5/IiSO3ADD9LGBWjHUW2R7gFOzpof7kRgS6pN1P+LubgX50RExIzMvHPU6RimljtfhepN+meqx+5B1CC5P48aQPW6aLNIjDCp86SI2Jhq7/f6iDiF6r33pNb2aCMqcH5+Zn57lOnU1Iiat3BDqtH0kyJidWpWhNcDb5sfrrua+8WD55I9kJoZZ+dWa7N6Zv4mavy/s6lY44U5Dw3CPPDqznFF7ftRN+kfAqtFxGsz878j4g3U+Fw/ml+qu+blAK0XaGfmYRHxQSpXs29mnhE1OvtnonruPjkiDsjqzaoB6OsksB11vu0cNfbca6NGw39dq3LfmGq7YYA2n8gae/ABYIGoyd4fB3we+IQBmrqulaA9GnhHROzWMvYJfAnYKyLWAPaIiJ9TPayfRg0effeo0jwMw6ruXJJqA/Ua6saxK9WrcCXgmJazf6Q367nbuFLT/rkMz6LNBZiZd0bEUcD21CTXQx/yY34wbt9vD3ycKrlcnxrI8TuZ+Y6I2Jaaw+53mXnNqHsdarBm9nv2105EzTbySmBzqgp0n8z8+dSnVJozETGDOn5/TLWnfTGV4Xg78L/UFIMfycxrR5XGYRraEBwx8+Ef7qQm0z7Zxqpzt5lUa69H9dp9bWb+LSLeQwVq+7cG6/8ustbkRMTKwGOAK1tbz2cDq2TmmyNicarU7M3UUBvvHGFSNUQRsUivJiIingAskDV7wL8nlW+Pl6Z6dt+V88DwRpr39bdDa4U+L6bGIHxca+P8iHaf2ZMaVmbvzLx5ZAkeoqENZpuZ/6B6dPaGf9iNmtD7/QZoc7+ZVGufRk3e/qGIWDszj6Pmhfxo63Hobz44m1O9Mxdr1cl/Bp4fEWtl5v9RUxT9CtghIg4aYTo1JO2aenhELN7OwQuA0yLiUvj30EcLtsd3Z+a1BmiaW2QTNX3klzLzVGp8zx9FxEotQHsWFaAdMq8GaDD8IThmNvzDb4a8Tk2RGJvV4AAqUPsRNczG+yPiqMw8NCJWtJPAYGXmxRGxLDXl2KXUyPHvA94ZEa8EFqGaFlxDdeTQvGcVqrf4otQ5uHnrsfmNiLg0M3fNzH/NLx2zNO+JiKcz1q6dzHxla2P57Yh4IvBV4NvDGrGgK4YapGUNpno68AmGOPyDRqP1rjmWqtbee1y19vMi4nXpKOYD01/FnJl/iohvUI1l/0kNWBtUbvM+4Ajq5r1TK1G5z7Zoc7+IWDQz783ML0fEItTwGstTQfndmblDRHw9ap7gbQzQNLcY14RmYWAtasaAJwC3AGTmCa1Jx1eATeaHAoCpmHHgX8BQBk/V6OV/zmqwBlWt/T6rtQerFf/vQLX1+1pmfiBqQu89qEzQWyPizPb2LYDXUsGzv8M8oN2cto2Iu4GNgD9QYxMeDWwTEfdm5i0ts3RpRKyWQxq4WhqkcQHaUsDfMvPMqHFWnx8Rd2fm1wAy87iIWH5+CNBg6mYc0LzNau0h6htmY0uqivN6YLNWWvKBiLgfeHbU/LCfoWYceCI1ZtoNI0u4Bu0+ai7WU4BHAjtm5q3tRnYwMC0iLs/MX2XmrqNMqDS7omYPWAK4JiJeSg1Uu0hEHN16qP+dGrJrwcy8rH1snh3SajyDNE2a1drD1QK0LahBSA/MGhD4AOCJEfH8FqhNA25s1Vt/jIi32pt23pI1GPi3qZ5u3wbWjYjbW9XnfdQQLP+IiN9Qs7xYva1Oa00xXgT8K2rWml2B51Nt0b4RETtk5vsi4hHAcyPiW626f745tg3SNBBWaw/d0lRD8Z2ouXA/Tc19u1PLYZ4JD5qA2ABtHhM1vdx61NRqz6HmZl2aGjz6WmqsvKt6Q29IXRY188y/IuJU4BXA7sDVmflr4C2tk8AVEfG0rIHRl87Me0ea6BEY2hAckgYnM78C7EPlJg9sN+JPA18Drux733yTw5zX9caK6nt8D1XScEhmfgj4BTXMyieoXr5fzczfjSSx0gS0zGSvTdk04NVU54C1ImIzgMx8G3AW8Lk2zubdI0nsiA1tMFtJgxcRuwKnAu/KzHNHnR4NX0Qsnpn/16qGtqRmcvl0q+beCXgy8PHM/OlIEypNUEQcQ3V82ocaTuZ1wN+o47s3MPOymfmn0aVytAzSpLlMq/Y6jar+/P380stpftNKz54InAPslJk3t0Bte+CNwLmZedYIkyjNsXYdOxXYozfQctQUUCdS0z99MDN/2N/zc35kdac0l8nMS4AdMvN3Bmjzlv4qzta28CrgQuDTEbFGa/t5FfBr4BkRscyIkipN1srAJzPzlohYqA28fCfVQeou4LdgEw47DkhzoXYx0zxk3FhRe1Pzbd5Itde5G7goIp5PDVL8AHBoZt41mtRKk3YLsFdEfCYzbwSIiMOAWzLzpJGmrEOs7pSkDomI44EDgW8AywKPAJ5LDVq7KfAY4HmZed2o0ihNVptW8BVUYdFV1FhpLwUOysxfjDJtXWKQJkkd0QYkPgf4rzZQ7YrAscBfM/O0NutAZuZfR5lOaRAiYiVgT6rzwJ+BN5n5eDCDNEkakXFVnEtTN6qrgAsy811t+b7Azpl55MgSKg1RmzUDx3f8T3YckKQRGBegvQA4uj3/L2CXiDikvXURYEZELNbfsUCaV2TmPw3QZs6SNEkaoYg4impz9sxWxbk4NR7a+4DvAZsD+2Tmz0aYTEkjYO9OSRqRNifh04HXAvdGxNHARtTcnJsCKwF/yczbR5dKSaNiSZokjVBEHAkcQ819ez3wG+DxwHHOwynN3yxJk6TR+ijwI+CXmfmniDiAmkh9IcAgTZqPWZImSR0QEQsAhwPHAwc6F6ckS9IkqRsWoWYS2D8zbxh1YiSNniVpktQR8/tk0pIezCBNkiSpgxzMVpIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOuj/A/TuAEmJ9MDRAAAAAElFTkSuQmCC", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[df['artist_top_genre'] != 'Missing']\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlmklEQVR4nO3de9yt9Zz/8de7tqLofEsqEokGs7El50PoMNgxv9JBysSWKeeQzISGwaQQid2InFKK0dCMkpQzu6SSoiiVXXuriE46fH5/XNc9Ldve7cP9vVvrvvfr+Xjcj73W97rWWp96rPte7/U9XakqJEmSNHGrDLsASZKk6cJgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmaNAl/Hvi5M+Hmgft7DLs+SWotbhAq6Z6QcBnwiiq+OexaVkTCjCpuH3YdkkabPVaS7nEJqyd8KOF3/c+HElbvjz0z4cqEgxJ+n3DZ3fVuJTwk4ayEPyV8M+HIhM8NHN8m4fsJf0j4WcIzB459O+HfEr7XP/7UhA36Y5slVMI+Cb8FvtW3/1PCLxKuT/hGwoP79iR8MGFBwg0J5yc8anL+D0oaVQYrScPwdmAbYCbw98DWwL8MHH8AsAGwMbAXMDdhyyU81xeAHwPrA+8E9hw/kLAx8HXg3cB6wAHASQljA4/fHXg5cH9gtf6cQc8AHglslzAbOAh4MTAGfAc4rj/vecDTgYcDawO7ANcu5f+DpGnGYCVpGPYADqliQRULgXcxEIh6/1rFrVWcSReOdln0SRIeBDwBOLiKv1TxXeDkgVNeCpxSxSlV3FnFacA8YMeBcz5VxS+ruBk4gS7sDXpnFTf2x/cF3lvFL/phwX8HZva9VrcB9wMeAaQ/Z/7y/6+RNJUZrCQNwwOBywfuX963jbu+ihvv5vjg81xXxU0DbVcM3H4wsHM/DPiHhD8ATwU2Gjjn6oHbNwH3XeQ1Fn2+Dw8813VAgI2r+BbwUeBIYEHC3IS1FlOzpGnMYCVpGH5HF1LGPahvG7duwpp3c3zcfGC9hDUG2jYduH0F8Nkq1hn4WbOK9y1HrYMrfK4AXrXI892niu8DVHFEFY8HtqIbEnzzcryOpGnAYCVpGI4D/iVhrJ8sfjDcNeG8966E1RKeBjwf+NKiT1LF5XRDe+/sz30S8IKBUz4HvCBhu4RVE+7dT47fZAXr/jjwtoS/A0hYO2Hn/vYTEp6YcC/gRuAW4M4VfB1JU9SMYRcgaaX0bmAt4Lz+/pf6tnFXA9fT9VLdBOxbxUVLeK49gE/TTRT/MXA8sCpAFVf0E87/gy7M3dGf8+oVKbqKryTcF/hiP6/qj8Bpff1rAR8ENqcLVd8ADl2R15E0dbmPlaSR0m+H8LmqFetVSjgeuKiKdzQtTJKWgUOBkqa0fgjuoQmrJGwPzAb+a8hlSVpJORQoaap7APBlun2srgReXcVPh1uSpJWVQ4GSJEmNOBQoSZLUiMFKkiSpkZGYY7XBBhvUZpttNuwyJEmSlurss8/+fVWNLe7YSASrzTbbjHnz5g27DEmSpKVKcvmSjjkUKEmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqZMawC2jt8W/+zLBL0DRz9qEvG3YJkqQpwh4rSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1MhSg1WSTZOckeTCJD9P8rq+fb0kpyX5Vf/vun17khyR5JIk5yV53GT/R0iSJI2CZemxuh14U1VtBWwD7JdkK+BA4PSq2gI4vb8PsAOwRf8zBziqedWSJEkjaKnBqqrmV9U5/e0/Ab8ANgZmA8f2px0L7NTfng18pjo/BNZJslHrwiVJkkbNcs2xSrIZ8FjgR8CGVTW/P3Q1sGF/e2PgioGHXdm3Lfpcc5LMSzJv4cKFy1u3JEnSyFnmYJXkvsBJwOur6obBY1VVQC3PC1fV3KqaVVWzxsbGluehkiRJI2mZglWSe9GFqs9X1Zf75mvGh/j6fxf07VcBmw48fJO+TZIkaVpbllWBAT4J/KKqDh84dDKwV397L+CrA+0v61cHbgP8cWDIUJIkadqasQznPAXYEzg/ybl920HA+4ATkuwDXA7s0h87BdgRuAS4CXh5y4IlSZJG1VKDVVV9F8gSDm+7mPML2G+CdUmSJE057rwuSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiNLDVZJjkmyIMkFA23HJzm3/7ksybl9+2ZJbh449vFJrF2SJGmkzFiGcz4NfBT4zHhDVb1k/HaSw4A/Dpx/aVXNbFSfJEnSlLHUYFVVZyXZbHHHkgTYBXh247okSZKmnInOsXoacE1V/Wqg7SFJfprkzCRPW9IDk8xJMi/JvIULF06wDEmSpOGbaLDaDThu4P584EFV9VjgjcAXkqy1uAdW1dyqmlVVs8bGxiZYhiRJ0vCtcLBKMgN4MXD8eFtV3VpV1/a3zwYuBR4+0SIlSZKmgon0WD0HuKiqrhxvSDKWZNX+9ubAFsCvJ1aiJEnS1LAs2y0cB/wA2DLJlUn26Q/tyl8PAwI8HTiv337hRGDfqrquYb2SJEkja1lWBe62hPa9F9N2EnDSxMuSJEmaetx5XZIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGlhqskhyTZEGSCwba3pnkqiTn9j87Dhx7W5JLklycZLvJKlySJGnULEuP1aeB7RfT/sGqmtn/nAKQZCtgV+Dv+sd8LMmqrYqVJEkaZUsNVlV1FnDdMj7fbOCLVXVrVf0GuATYegL1SZIkTRkTmWO1f5Lz+qHCdfu2jYErBs65sm/7G0nmJJmXZN7ChQsnUIYkSdJoWNFgdRTwUGAmMB84bHmfoKrmVtWsqpo1Nja2gmVIkiSNjhUKVlV1TVXdUVV3Akdz13DfVcCmA6du0rdJkiRNeysUrJJsNHD3RcD4isGTgV2TrJ7kIcAWwI8nVqIkSdLUMGNpJyQ5DngmsEGSK4F3AM9MMhMo4DLgVQBV9fMkJwAXArcD+1XVHZNSuSRJ0ohZarCqqt0W0/zJuzn/PcB7JlKUJEnSVOTO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1stRgleSYJAuSXDDQdmiSi5Kcl+QrSdbp2zdLcnOSc/ufj09i7ZIkSSNlWXqsPg1sv0jbacCjquoxwC+Btw0cu7SqZvY/+7YpU5IkafQtNVhV1VnAdYu0nVpVt/d3fwhsMgm1SZIkTSkt5lj9E/A/A/cfkuSnSc5M8rQlPSjJnCTzksxbuHBhgzIkSZKGa0LBKsnbgduBz/dN84EHVdVjgTcCX0iy1uIeW1Vzq2pWVc0aGxubSBmSJEkjYYWDVZK9gecDe1RVAVTVrVV1bX/7bOBS4OEN6pQkSRp5KxSskmwPvAV4YVXdNNA+lmTV/vbmwBbAr1sUKkmSNOpmLO2EJMcBzwQ2SHIl8A66VYCrA6clAfhhvwLw6cAhSW4D7gT2rarrFvvEkiRJ08xSg1VV7baY5k8u4dyTgJMmWpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDWyTMEqyTFJFiS5YKBtvSSnJflV/++6fXuSHJHkkiTnJXncZBUvSZI0Spa1x+rTwPaLtB0InF5VWwCn9/cBdgC26H/mAEdNvExJkqTRt0zBqqrOAq5bpHk2cGx/+1hgp4H2z1Tnh8A6STZqUKskSdJIm8gcqw2ran5/+2pgw/72xsAVA+dd2bf9lSRzksxLMm/hwoUTKEOSJGk0NJm8XlUF1HI+Zm5VzaqqWWNjYy3KkCRJGqqJBKtrxof4+n8X9O1XAZsOnLdJ3yZJkjStTSRYnQzs1d/eC/jqQPvL+tWB2wB/HBgylCRJmrZmLMtJSY4DnglskORK4B3A+4ATkuwDXA7s0p9+CrAjcAlwE/DyxjVLkiSNpGUKVlW12xIObbuYcwvYbyJFSZIkTUXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzNW9IFJtgSOH2jaHDgYWAd4JbCwbz+oqk5Z0deRJEmaKlY4WFXVxcBMgCSrAlcBXwFeDnywqj7QokBJkqSpotVQ4LbApVV1eaPnkyRJmnJaBatdgeMG7u+f5LwkxyRZd3EPSDInybwk8xYuXLi4UyRJkqaUCQerJKsBLwS+1DcdBTyUbphwPnDY4h5XVXOralZVzRobG5toGZIkSUPXosdqB+CcqroGoKquqao7qupO4Ghg6wavIUmSNPJaBKvdGBgGTLLRwLEXARc0eA1JkqSRt8KrAgGSrAk8F3jVQPN/JJkJFHDZIsckSZKmrQkFq6q6EVh/kbY9J1SRJEnSFOXO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNTJj2AVIWn6/PeTRwy5B08yDDj5/2CVI04I9VpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzMm+gRJLgP+BNwB3F5Vs5KsBxwPbAZcBuxSVddP9LUkSZJGWaseq2dV1cyqmtXfPxA4vaq2AE7v70uSJE1rkzUUOBs4tr99LLDTJL2OJEnSyGgRrAo4NcnZSeb0bRtW1fz+9tXAhos+KMmcJPOSzFu4cGGDMiRJkoZrwnOsgKdW1VVJ7g+cluSiwYNVVUlq0QdV1VxgLsCsWbP+5rgkSdJUM+Eeq6q6qv93AfAVYGvgmiQbAfT/Lpjo60iSJI26CQWrJGsmud/4beB5wAXAycBe/Wl7AV+dyOtIkiRNBRMdCtwQ+EqS8ef6QlX9b5KfACck2Qe4HNhlgq8jSZI08iYUrKrq18DfL6b9WmDbiTy3JEnSVOPO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1ssLBKsmmSc5IcmGSnyd5Xd/+ziRXJTm3/9mxXbmSJEmja8YEHns78KaqOifJ/YCzk5zWH/tgVX1g4uVJkiRNHSscrKpqPjC/v/2nJL8ANm5VmCRJ0lTTZI5Vks2AxwI/6pv2T3JekmOSrLuEx8xJMi/JvIULF7YoQ5IkaagmHKyS3Bc4CXh9Vd0AHAU8FJhJ16N12OIeV1Vzq2pWVc0aGxubaBmSJElDN6FgleRedKHq81X1ZYCquqaq7qiqO4Gjga0nXqYkSdLom8iqwACfBH5RVYcPtG80cNqLgAtWvDxJkqSpYyKrAp8C7Amcn+Tcvu0gYLckM4ECLgNeNYHXkCRJmjImsirwu0AWc+iUFS9HkiRp6nLndUmSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpkItstSJI0aZ7ykacMuwRNM997zfcm/TXssZIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGJi1YJdk+ycVJLkly4GS9jiRJ0qiYlGCVZFXgSGAHYCtgtyRbTcZrSZIkjYrJ6rHaGrikqn5dVX8BvgjMnqTXkiRJGgmpqvZPmvw/YPuqekV/f0/giVW1/8A5c4A5/d0tgYubF6K7swHw+2EXIU0y3+daGfg+v+c9uKrGFndgxj1dybiqmgvMHdbrr+ySzKuqWcOuQ5pMvs+1MvB9PlomayjwKmDTgfub9G2SJEnT1mQFq58AWyR5SJLVgF2BkyfptSRJkkbCpAwFVtXtSfYHvgGsChxTVT+fjNfSCnMYVisD3+daGfg+HyGTMnldkiRpZeTO65IkSY0YrCRJkhoxWKmJJJsnWX3YdUiSNEwGK01YknWBA4C3G64kaepJkmHXMF0YrDQhSTarquuBk4C1gQMMV5rK/IDRyiZJqqqSPCXJPkm27bdK0gowWGmFJVkH+ECSt1fV6cCXgQdiuNIUMB6gkjy6/0DZGKD/gDFcaaXRv+efBXwWeBjwIeC1SR421MKmKLdb0ApLci/gScC+wDlV9YEkzwB2AX4HfKCqbh1mjdLiDHxDfw7wEWA+cBnwc+Dw8g+jViJJtgQOAT5fVScneRzwKuDcqjpquNVNPfZYabmNf5uvqtuAHwJHAtskOaCqzgROAO4PHGzPlUZRH6oeB7wZ2Kmqng18ie5SXLOHWpx0D0kPeDrwUGC7JGtW1TnAccCcfg6tloPBSstl/Jt+f3ttgKr6HnA48KSBcPU1YDXgvkMrVlqCfv7IM4BnARv3zd8FbgCeMKy6pHvCwFD3BsCMqjoaeA8QukvQAVwN/Klv03KYlEvaaPoaCFWvBbYFrk1yalV9sf9dfV2Sg6vqkCTfraqbh1mvNG5g+O9ewG10Pa3rAm9Ncn1V/TTJucDuSdYAbnZIUNNR/3uwI93w31VJbgT2AdYE9kqyO10++I+qum6IpU5JBisttyT7Av8I7AEcChyWZP2qOjLJDGCfJOv5C6lR0n+YvAB4Ed1Q9aF0w9bXAicnOYauB+vQqrppeJVKkyvJI4F3A/sD5wJfAD5VVbsmuQXYDji/qr7Wnx+/ZCw7g5WWS5J7A7fSfTi9DLgP8FLgk0nurKqjkvy4qm4ZZp3SopI8Hng/8Aq6OSV7AmfQrYR6AF0P7FFV9d9JVq2qO4ZWrDS5bgUupFt0dAuwU5Izk+wHfAJYh25qx67A8Yaq5eMcK92tJH/1HqmqW6rqU3RdxtsD+1XVGcDPgH9Oso6hSiPqkcCPq+r7VfU+4H+B1wP3Bg6j673aJ8mjDFWaTga2Flm1Hwq/DtgImDVw2heBO6rqduBY4CzgDEPV8jNYaYmSbFJVd/a3X5Pk8CQHJFmLuyY2PiTJHOAa4NlV9YfhVSzdZeDDZPzv3IXAaklmAVTVicBFwBZV9Xu6VYFfBv44hHKlSdMPg8+m+/JwPN2XjCOBjyTZP8kr6IYFL+nPv62qjq2qa4ZW9BTmPlb6G/0H0lp0Y+/vBc4DjgD+E3gM3UqSvej2OXkc8Hhgj6o6bxj1SkvS71P1JOAPwGl0e67NB64CLqZbUv7i8feuQ4CajpI8gu7v93vp/n6/k24o/Da6+VSbACdW1anDqnE6MVhpiZI8Gfgk3Tf9I6vqW0keCLyVLnjtV1U3JVm7qvyWr5GS5CnAMXTDfC+j2wLkcmAMeDLdcPbR/YaITs7VtJTkUXS/AxdX1Wv7tu2ATwNPq6pLhljetORQoP7KwPBJqur7dBPT/w7YEaCqfge8D7gDODLJKoYqjZokDwf+GTiiquYCOwHrA4+pqiOqaldgb0OVVgK/pJu68cgkWyRZvaq+QXd917HhljY92WOl/7PI5p/PARbSDZmsC/wP3TL0T/THH0A3dO8YvEZOkh2A19KtfnpDVf2mnxt4JvCSqvrlUAuU7gHjQ9v9hPVPAjcD3wQW0A2Dz66qnwyzxunIYKW/keQNdN/wz6DbnXoXYHO6lSIfr6oPDa04aTEGNv/cHLiJbtXTlnTzAH9L9+08dJPT/6GqrhhasdI9YOB3YkZV3d5fbeBIuisLnAl8vapOtce2PYcC9VeSbAVsV1XPANYGrgf+UFU/opunsmeSdYZYovQ3+g+QHejmUR0O/IRudd9xdEvKv0T3ofJWQ5Wmo4FpHFv0IwoA9KFqRlX9hW54fB6wBnCOoWpyGKxWcgPXjBr3F+C3SQ4CHg7sXlW3JZldVT8GnuyWCho1/QfJu4FXVtXudEHqZOBXdCuhvg98m64XdnHve2nKGuid2o7uff9fwH5JHgZ/Fa5uowtX9wfehpuETwqD1UpskTlVs/tVgL8GNgT2pht/v6Xf4+SA/rI1tw6vYuku4/tTJXkC3WKKc+lW/VFV7wa+AxxUVT+lmyP4ULoNQGf4LV3TSR+qZtFdVeAFwJvoFh3ttEi4WrXvudoZOKwPWmrMYLUSGwhV+wP/BizoNwT9MN23+xOTHEi3cdyrq+raYdUqjUtyH4CqujPJU+km5T6Kbn+efxg49bt0k3Wpqq/TbY54Yr+ztDRtJLkf8HLgcVV1SVV9j+76f5sDL+lXydJPZF+lqv7Sr/DWJLAbcCXXf5vZGdh+4BftO8D5dFstXE+3iuriIZUo/Z9+T54PJXk+3SU5/hX4SFWdkeTPwNwkD6XbEPQlwEHjj3XzQ00ngyMOVfWnJEcAD0tyJPCaqvpOklWBPeg2AqU/987hVLzycFXgSmbRyYr9RPSPAwcCvwNu67uVNwMud8hEo6JfMn4U8CPgv4Hn0Q17rAvsVVVXJXkk3UrW9YEf9JvaOkFX08rAnKrnAg+i+yz/z75n6kDgBuCNfa/uulV1/VALXsk4FLgSWWRO1Qb9kMqNwOrADn33cCXZnW5i4xpDLFdanKvogtOX6FY3HUI3t+o1STaqql9U1cer6j1V9S24a8hbmg76obxK8g90O6pfCRyS5AP9/mz/DjwA+Gj/EDdwvofZY7WSWCRUvRHYDfgZ3eqRn9J9UF0E3A5sDexZVecPp1rpry3yDf2zwLf73dPHL13zfLovAv/uprWajpI8BFilqi5NsgHd78Eb6FZvHwhsDHyzqvZJsiWwenn91qGwx2olMRCqnkB34eTXAF8HXk+3z8/z6Cb3/oDuorSGKo2ERTb/HANeDKyS5N39MMf3gFPovhSsM8RSpcn0ZGD9/pI0vwfmAKsB7wKeCjwLeHmSj1bVxYaq4XHy+kqkX0H1ZeDDVfXDfijwT8CbgQdW1VFDLVBajD5UvZBu2O8Sui1BPkG3pPy1SY7oJ+qe7x5rmq6q6vNJ7gv8JMlLq+q8JA8Ezu7nUj2AbnPcbwy3UtljNY0tugliVX2Xrvt4lyQbVNXNwFl02ys8N8m6bpyoUZNkG7rVf9sBX6Hb4PB5wAfo5lu9qd+b6g9DK1KaJAM7qm9Ht63IZ4Gj+xWylwFrJ/kY3WWbvlpVp/l3fLicYzVNLTKnalvgfsBpVXVjkg8C29BtALqgX211r6q6aYglS4uVZBO6rRXWpdtdfXe6lazXAZ8GFpYXktU0lmRrui/Ab+hHG95I93uwU3/KY4Abq+rMIZWoAQaraS7dBZX/ke7SHhsC76+qM5McSjfh9+lVtXCYNUrLIsl76Dax/XCSlwGvBf6xqi4fcmnSpEmyKfBB4LqqmjPQ/kbglcDOVXXBsOrT33KO1TTTj7NfX1W39iuonltVT+13UH8y3eTGqqo3J7kVWBMwWGkqOB94Vd/D+mLgdYYqrQRuB84DZifZvqr+F6CqDu83AF1nmMXpb9ljNU30Y+pjwInAfwKfoxs6uS/dipG9gBcCnwIeBrylqs4YTrXS8kuyFvAiuvfxMf1laqRpZWAV7JPo/qb/lm7Bxt501/87oapOH2KJWgonr08fqaoFdNf8242ue/ja/hv9w4H/qapbgO/RDQvadawppapuqKpj6S6x9HUn6Go66kPV84Bj6KZvnA08BTiZrudq7/64RpRDgdPEwPWf1gDuAxyTZI2q+hTwfeBj/eUOnkQXuhz+01R1B7ijuqafJKvQDe29iq53dj3gQuCcqromyZforpQxf2hFaqkcCpxGkrwEeCuwA91qkZcBHwOOp/vG81zgc1V10bBqlCTdvSRvBdYGng3s0e+2vjfd9jiXeSHl0WaP1fSyPnBWf0mPTyS5FpgLrFFVRwMuxZWkEZRkJt0WOO+iW1S0J/CsPlT9Pd2X5kuq6tdDLFPLwGA1vfwWmNnv+3NVVZ3YL0t/QZIvVtWfhlyfJKk3MFH9acDOwHZJFlTVwUkeAbwjye3ATOCt/SbPGnEOBU4jSdam2zjxcroLK69BNyT4uqq6bHiVSZLGLbKB89OBzwP7A48AHg98v6o+1F+GbF3gd1V19uDjNLoMVlPMkn6x+kt63J5kPbqJjw8EtgAOcPM4SRoN/fX9Hgl8u6ruSPJSYOOqen9/LcCZwPvptlX48BBL1QoyWE0hi3zLmQ0EuLOqTu7bxsPVKv1FOdesqhuHWbMk6S793+5fAVfSbf65Ld3O6s+tqt/0KwOPpZtndWJVfWFoxWqFuI/VFDIQqval269qS+CjSd7SH7+9/6UcT8te+0+SRkhVfRW4mm7F9k7AqXRTOD7cz6t6DN21MX8FbDykMjUBTl6fAhbpqbo3sAuwV1X9NMkJwDeS/LmqPja4DNexeEkaDYN/x6vquiRnAs8D/gJ8hW4E4rN0vVj7AI8Dnttfwul2/55PHQarKaTvqboY+CVwn37I7zdJ9gd2HW51kqQl6Vf/PQN4NPCtqjo6yZ/pLtF0Z1UdmuRj/elbAwcDL6qq24ZUslaQQ4EjLMmW8H+/kC+mW477c+Ba4A1015EC2BRYo78gpyRpRIxfeinJE+mG/54BvCXJK6vqOOBrwEuT7ALcAtwbeDLdnlY/H1LZmgAnr4+oJNsBR9F1B28EHAZcWlWv6Y8fQ7cM90a6uVYvd/WfJI2eJFsDhwBvqarzkuxKF57O73uudgMurKqf9eevVlV/GWLJmgCHAkdQkhl0XcH/CmxFt/z2DGB2khdU1X9X1T/134BWpdsM9PKhFSxJujvrAM+hu6zYecCJwJ30c6iq6mNw1zwsQ9XUZrAaQf3qvkuBf6G74Oyz6LqIb6bbRf2Oqjqlqn40zDolSUtXVaf20znem+R3VXVckhPpvhj/bOA8h5CmAYPV6DqPbruEG4C1q+r3Sb5M9y1nzyS3VtXpQ61QkrRMqurk/vI0/9YP9R0LHDfsutSec6xGxCJbKqwG3NHvynsA3RXO31FVP+mvA7gD8LWqmj/EkiVJyynJC4H30Q0NXj24RY6mB4PVCFgkVO1PN6/qBuCdVXVLkoOAJwLvq6ofJFm1qu4YYsmSpBWUZKyqFg67Dk0Og9UISfLPwEuA3YFzgG8CB1fVpUneDTwM2LuqbhlimZIkaQkMViMiyVrA4XQrAXcGdgQW0G218OqquiTJ+lV17RDLlCRJd8NgNUKSrA48AvhQVT2r31huIfAJumFBd+CVJGmEuSpwhFTVrUluAmYkeTTwYOB04BOGKkmSRp89ViOm77V6Pd2KkQcCO1fVhUMtSpIkLROD1Qjqr2b+ALoLc1417HokSdKyMVhJkiQ1ssqwC5AkSZouDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpkf8PwQ8MlHUQ3OMAAAAASUVORK5CYII=", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAJZCAYAAABoaLenAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZx0lEQVR4nO3dd5glZZn///eHIUnWBROCIKKAIAMiomJGZA1gQFFxlTVgWuMuij8UEXXFtGv265gwoCIYQEXAVRFFEIY0BFFYxFVRMIEgkmbu3x9VDWd6eronNVXV/X5d17m6znPqVN3ndLrPXU9IVSFJkiT13WpdByBJkiQtCxNXSZIkDYKJqyRJkgbBxFWSJEmDYOIqSZKkQTBxlSRJ0iCYuEqSJGm5JdkryS+SXJbk4Ake3zzJD5Ocm2RBkieu9Dmdx1WSJEnLI8kc4JfA44HfAmcBz6mqi0f2mQecW1UfT7IdcEJVbbEy57XiKkmSpOW1K3BZVV1eVTcDXwH2GbdPARu02xsCV67sSVdf2QNIkiRp1tkU+M3I/d8CDxm3z2HAyUleBawL7LGyJzVx7aFb/nR57/tv3Omej+g6hCmdd6+dug5hUlf9fd2uQ5jSGlnUdQhT+vfVruo6hCm9aM7mXYcwqSvn9P5PDldxc9chTOletWbXIUzprgvTdQhT+t3q/f55PPyKo3rxJk53rrDmJlu9FDhwpGleVc1bzsM8Bziyqt6f5KHAF5JsX1Ur/M/FxFWSJEmLaZPUyRLV3wGbjdy/V9s26kXAXu3xTk+yNrAxcPWKxmUfV0mSpKFZtHB6b1M7C9g6yZZJ1gSeDRw/bp//Ax4HkGRbYG3gjyvzsk1cJUmStFyq6lbg34CTgJ8DX62qi5IcnmTvdrd/B16S5Hzgy8ABtZLTWdlVQJIkaWhWvJvoqguh6gTghHFth45sXww8fFWe08RVkiRpaBZ1n7h2wa4CkiRJGgQrrpIkSQOzEjNKDZoVV0mSJA2CFVdJkqShsY+rJEmS1F9WXCVJkobGPq6SJElSf1lxlSRJGpplW5Z1xrHiKkmSpEGw4ipJkjQ09nHtryTXdx3DmKliSbJRklfcUfFIkiTNFr1JXNPoTTwrYSPAxFWSJE2fRYum99ZTnSaKSbZI8osknwcuBN6S5KwkC5K8bSnPOWiifZJ8M8nZSS5KcmDbNifJkUkuTHJBkte17VslObHd/8dJtpkkxi2TnN4+/x0j7esl+X6Sc9rH9mkfOgLYKsl5Sd47WcySJEladn3o47o18AJgA2BfYFcgwPFJHllVp47tmGTPdv+J9nlhVf0lyZ2As5J8DdgC2LSqtm+fv1F7qHnAy6rq0iQPAT4GPHYp8X0Q+HhVfT7JK0fabwSeVlV/S7IxcEaS44GDge2rau4yxCxJkrTcyj6unfl1VZ0B7NnezgXOAbahSfhGTbbPq5OcD5wBbNa2Xw7cJ8mHk+wF/C3JesDDgGOSnAd8ArjHJPE9HPhyu/2FkfYA/5lkAfA/wKbA3SZ4/rK8LpIcmGR+kvmf+vyXxz8sSZI06/Wh4vr39muAd1XVJybZd8J9kjwa2AN4aFXdkOQUYO2q+muSHYEnAC8DngW8FrhmrCK6jGqCtv2BTYAHVdUtSa4A1l7WmJc4QdU8mkowt/zp8onOJ0mS1OhxP9Tp1IeK65iTgBe2FVGSbJrkrsu4z4bAX9ukdRtgt/bxjYHVquprwJuBnavqb8Cvkjyz3Sdtcrs0pwHPbrf3H2nfELi6TVofA9y7bb8OWH85X5ckSZKm0IeKKwBVdXKSbYHTkwBcDzwPuHoZ9jkReFmSnwO/oOkuAM3l+8+OzFbwpvbr/sDHk7wZWAP4CnD+UkJ7DfClJG8EjhtpPwr4VpILgPnAJW2Mf05yWpILge9W1UFTvS5JkqTlMkv7uKbKq9J9M4SuAne65yO6DmFK591rp65DmNRVf1+36xCmtEb6/4fx31e7qusQpvSiOZt3HcKkrpzT+z85XMXNXYcwpXvVml2HMKW7LkzXIUzpd6v3++fx8CuO6sWbeNMvfzKtb9Ra99u9F69zvN5UXCVJkrSMFi3sOoJOmLi2khwCPHNc8zFV9c4u4pEkSVqqWdpVwMS11SaoJqmSJEk9ZeIqSZI0NE6HJUmSJPWXFVdJkqShmaV9XK24SpIkaRCsuEqSJA2NfVwlSZKk/rLiKkmSNDBVs3MBAiuukiRJGgQrrpIkSUPjrAKSJElSf1lxlSRJGhpnFZAkSZL6y4prD93pno/oOoQp/ePKH3cdwpQO2eWQrkOY1KVrXd91CFN6OBt2HcKUPr/Wel2HMKUP3HJT1yFMaoeFa3UdwpSecEt1HcIy6Pf3GeD0NdfuOoQpbXlLug5hGOzjKkmSJPWXFVdJkqShWeQ8rpIkSVJvWXGVJEkaGvu4SpIkSf1lxVWSJGloZuk8riaukiRJQ2NXAUmSJKm/rLhKkiQNzSztKmDFVZIkSYNgxVWSJGlorLhKkiRJ/WXFVZIkaWCqXPJVkiRJ6i0rrpIkSUNjH9fZJ8n103DMuUmeOHL/sCT/sarPI0mSNNtYcV315gK7ACd0HIckSZqpXDlrdktyUJKzkixI8ra2bYskP0/yySQXJTk5yZ3axx7c7ntekvcmuTDJmsDhwH5t+37t4bdLckqSy5O8uqOXKEmSNGgmrkCSPYGtgV1pKqYPSvLI9uGtgY9W1QOAa4BntO2fBV5aVXOBhQBVdTNwKHB0Vc2tqqPbfbcBntAe/61J1pju1yRJkmawRYum99ZTJq6NPdvbucA5NInm1u1jv6qq89rts4EtkmwErF9Vp7ftX5ri+N+pqpuq6k/A1cDdVmHskiRJs4J9XBsB3lVVn1isMdkCuGmkaSFwpxU4/vhjLPG+JzkQOBAgczZktdXWXYHTSJKkWcE+rrPaScALk6wHkGTTJHdd2s5VdQ1wXZKHtE3PHnn4OmD95Q2gquZV1S5VtYtJqyRJ0pKsuAJVdXKSbYHTkwBcDzyPtu/qUrwI+GSSRcCPgGvb9h8CByc5D3jXtAUtSZJmrx73Q51Oszpxrar1RrY/CHxwgt22H9nnfSPtF1XVAwGSHAzMb/f5C/DgSc65/dIekyRJ0tLN6sR1JT0pyZto3sNfAwd0G44kSZo1ZmkfVxPXFdROdXX0lDtKkiRplTBxlSRJGhr7uEqSJGkQZmni6nRYkiRJGgQrrpIkSUMzSwdnWXGVJEnSIFhxlSRJGhr7uEqSJEn9ZeIqSZI0NLVoem/LIMleSX6R5LJ2FdGJ9nlWkouTXJTkSyv7su0qIEmSpOWSZA7wUeDxwG+Bs5IcX1UXj+yzNfAm4OFV9dckd13Z85q4SpIkDU33fVx3BS6rqssBknwF2Ae4eGSflwAfraq/AlTV1St7UrsKSJIkaTFJDkwyf+R24LhdNgV+M3L/t23bqPsB90tyWpIzkuy1snFZcZUkSRqaaZ7HtarmAfNW8jCrA1sDjwbuBZyaZIequmZFD2jFVZIkScvrd8BmI/fv1baN+i1wfFXdUlW/An5Jk8iuMBNXSZKkoVm0aHpvUzsL2DrJlknWBJ4NHD9un2/SVFtJsjFN14HLV+Zl21Wgh867105dhzClQ3Y5pOsQpvTO+e/sOoRJfXOHt3QdwpT+PIC/EK+9sboOYUpPzFpdhzCphek6gqkdvfacrkOY0gb0P8bNbu06gqltWzd0HYKWQVXdmuTfgJOAOcBnquqiJIcD86vq+PaxPZNcDCwEDqqqP6/MeQfwb0mSJEmL6X5WAarqBOCEcW2HjmwX8Pr2tkrYVUCSJEmDYMVVkiRpaKr/3aSmgxVXSZIkDYIVV0mSpKHpQR/XLlhxlSRJ0iBYcZUkSRoaK66SJElSf1lxlSRJGpqanRVXE1dJkqShsauAJEmS1F9WXCVJkobGBQgkSZKk/rLiKkmSNDT2cZUkSZL6y8R1nCRbJLlwBZ7305HnP3fVRyZJktRatGh6bz1l4rqSkqwOUFUPa5u2AExcJUmSVrHBJa5tRfOSJEcl+XmSY5Osk+RxSc5NckGSzyRZq93/iiTvadvPTHLftv3IJPuOHPf6pZzrx0nOaW8Pa9sf3bYfD1w87vlHAI9Icl6S1yU5NcnckWP+JMmO0/X+SJKkWaAWTe+tpwaXuLbuD3ysqrYF/ga8HjgS2K+qdqAZdPbykf2vbds/AnxgOc5zNfD4qtoZ2A/40MhjOwOvqar7jXvOwcCPq2puVf038GngAIAk9wPWrqrzlyMGSZIkMdzE9TdVdVq7/UXgccCvquqXbdvngEeO7P/lka8PXY7zrAF8MskFwDHAdiOPnVlVv1qGYxwDPDnJGsALaRJsSZKkFVaLalpvfTXUxHX8O3rNcuw/tn0r7etPshqw5gTPex1wFbAjsMu4ff6+TIFW3QB8D9gHeBZw1ET7JTkwyfwk84/52/8ty6ElSZJmlaEmrpsnGaucPheYD2wx1n8V+BfgRyP77zfy9fR2+wrgQe323jTV1fE2BH5fVYvaY85ZhtiuA9Yf1/Ypmm4GZ1XVXyd6UlXNq6pdqmqXZ26w+TKcRpIkzVrOKjAovwBemeTnwJ2B/wb+FTimvay/CPh/I/vfOckC4DU0VVSATwKPSnI+TfeBiSqoHwNe0O6zzVL2GW8BsDDJ+UleB1BVZ9P0xf3s8r1MSZIkjRnqylm3VtXzxrV9H9hpKfu/t6reONpQVVcBu400vbFtvwLYvt2+FHjgBPucApwy7njrtV9vAR47+liSe9J8SDh50lclSZK0LHo88n86DbXiOhhJng/8DDik7XIgSZKkFTC4iutoRXQZ999i2oJZtvN/Hvh8lzFIkqQZpscj/6eTFVdJkiQNwuAqrpIkSbNej0f+TycrrpIkSRoEK66SJElDM0srriaukiRJQ1MOzpIkSZJ6y4qrJEnS0MzSrgJWXCVJkjQIVlwlSZKGxgUIJEmSpP6y4ipJkjQ0ZR9XSZIkqbesuEqSJA2NfVwlSZKk/rLi2kNX/X3drkOY0qVrXd91CFP65g5v6TqEST31grd3HcKU3v+gQ7sOYUo7585dhzClW3reFe2S1W7sOoQpbV5rdR3ClM6qa7sOYUq/Wb3/7+Oat6zTdQiT2q3rAFrlPK6SJElSf1lxlSRJGhr7uEqSJEn9ZcVVkiRpaJzHVZIkSeovK66SJElDYx9XSZIkqb+suEqSJA2N87hKkiRJ/WXFVZIkaWhmaR9XE1dJkqShcTosSZIkqb+suEqSJA3NLO0qYMVVkiRJg2DFVZIkaWDK6bD6I8lhSf6jb+dPcs8kx7bbj07y7XZ77yQHt9tPTbLdHRuxJEnSzGfFdTlU1ZXAvhO0Hw8c3959KvBt4OI7LjJJkjSr2Me1W0kOSfLLJD8B7t+2vSTJWUnOT/K1JOu07Ucm+VCSnya5PMm+I8d5Y5IL2ucc0bZtleTEJGcn+XGSbdr2pyT5WZJzk/xPkruNhLRjktOTXJrkJe3+WyS5cILYD0jykSQPA/YG3pvkvPa854zst/XofUmSJC27XlRckzwIeDYwlyamc4Czga9X1Sfbfd4BvAj4cPu0ewC7A9vQVDuPTfLPwD7AQ6rqhiR3afedB7ysqi5N8hDgY8BjgZ8Au1VVJXkx8Abg39vnPBDYDVgXODfJd6Z6HVX10yTHA9+uqrEuBdcmmVtV5wH/Cnx2Rd4jSZKk28zSimsvElfgEcA3quoGgDb5A9i+TVg3AtYDThp5zjerahFw8UildA/gs2PHqaq/JFkPeBhwTJKx567Vfr0XcHSSewBrAr8aOf5xVfUP4B9JfgjsCpy3Aq/tU8C/Jnk9sF97nCUkORA4EOC16z+IJ99pqxU4lSRJ0szVm64CS3Ek8G9VtQPwNmDtkcduGtkOS7cacE1VzR25bds+9mHgI+3xXzru+OM/yqzoR5uvAf8MPBk4u6r+PNFOVTWvqnapql1MWiVJ0qRq0fTeeqovieupwFOT3CnJ+sBT2vb1gd8nWQPYfxmO8z2a6uZYX9i7VNXfgF8leWbbliQ7tvtvCPyu3X7BuGPtk2TtJP8EPBo4axlfy3Vt3ABU1Y00leKPYzcBSZKkFdaLxLWqzgGOBs4HvsvtSeJbgJ8BpwGXLMNxTqTp7zo/yXnA2JRW+wMvSnI+cBFNP1iAw2i6EJwN/Gnc4RYAPwTOAN7eziiwLL4CHNQO+BornR4FLAJOXsZjSJIkLd2imt5bT/WljytV9U7gnRM89PEJ9j1g3P31RraPAI4Y9/ivgL0mOM5xwHETtB+2lBivALZvt08BTmm3j6Tp1kBVnQaMn8d1d5q+twsnOq4kSZKm1pvEdaZK8g1gK5pZDCRJklZa9bgqOp1MXKdZVT2t6xgkSZJmAhNXSZKkoZmlFddeDM6SJEmSpmLiKkmSNDSLFk3vbRkk2SvJL5JcluTgSfZ7RpJKssvKvmwTV0mSJC2XJHOAj9IssrQd8Jwk42dVop2f/zU005uuNBNXSZKkoel+Htddgcuq6vKquplmHvt9Jtjv7cC7gRtXxcs2cZUkSRqa7hPXTYHfjNz/bdt2myQ7A5tV1XdW1cs2cZUkSdJikhyYZP7I7cDlfP5qwH8B/74q43I6LEmSpIGpmt7psKpqHjBvkl1+B2w2cv9ebduY9WlWGz0lCcDdgeOT7F1V81c0LiuukiRJWl5nAVsn2TLJmsCzgePHHqyqa6tq46raoqq2AM4AVippBSuukiRJw9PxAgRVdWuSfwNOAuYAn6mqi5IcDsyvquMnP8KKMXGVJEnScquqE4ATxrUdupR9H70qzmniKkmSNDQu+SpJkiT1lxVXSZKkgalZWnE1ce2hNbJsawR36eFs2HUIU/pzz3+63/+gCbsB9cq/n3141yFM6SE7PL/rEKb0+LU2m3qnDj38lrW7DmFKp62xShbdmVbPvaX/fxdPXfOWrkOY0mVr9P9/oLrT83/tkiRJWsIsrbjax1WSJEmDYMVVkiRpaGZpjworrpIkSRoEK66SJEkDM1tnFbDiKkmSpEGw4ipJkjQ0VlwlSZKk/rLiKkmSNDTOKiBJkiT1lxVXSZKkgXFWAUmSJKnHrLhKkiQNzSzt42riKkmSNDB2FZAkSZJ6bFYlrklem2SdkfsnJNmow5AkSZKW36JpvvXUrEpcgdcCtyWuVfXEqrqms2gkSZK0zDpNXJN8M8nZSS5KcmDbtleSc5Kcn+T7bdtd2n0XJDkjyQPb9sOS/MfI8S5MskWSdZN8pz3GhUn2S/Jq4J7AD5P8sN3/iiQbt9vPb49/fpIvtG1HJvlQkp8muTzJviPnOijJWe1z3ta2LXHetv2IJBe3+77vjnhvJUnSzFWLpvfWV10PznphVf0lyZ2As5IcB3wSeGRV/SrJXdr93gacW1VPTfJY4PPA3EmOuxdwZVU9CSDJhlV1bZLXA4+pqj+N7pzkAcCbgYdV1Z9GzgtwD2B3YBvgeODYJHsCWwO7AgGOT/JIYJPx503yT8DTgG2qquyaIEmStGK67irw6iTnA2cAmwEHAqdW1a8Aquov7X67A19o234A/FOSDSY57gXA45O8O8kjquraKeJ4LHDMWEI7cl6Ab1bVoqq6GLhb27ZnezsXOIcmqd16Kee9FrgR+HSSpwM3TBRAkgOTzE8y//gbLp8iXEmSNKvZx/WOleTRwB7AQ6tqR5ok8LzlPMytLP4a1gaoql8CO9Mkku9IcuhKhHrTyHZGvr6rqua2t/tW1acnOm9V3UpTmT0WeDJw4kQnqap5VbVLVe2y9zr3WYlwJUmSZqYuK64bAn+tqhuSbAPsRpN4PjLJltD0bW33/TGwf9v2aOBPVfU34AqaRJEkOwNjz7sncENVfRF479g+wHXA+hPE8gPgme1lfcZ1FZjIScALk6zX7r9pkrtOdN52nw2r6gTgdcCOy/b2SJIkTcw+rne8E4GXJfk58Aua7gJ/pOku8PUkqwFXA48HDgM+k2QBzaX2F7TH+Brw/CQXAT8Dftm27wC8N8ki4Bbg5W37PODEJFdW1WPGAqmqi5K8E/hRkoU01d8DlhZ4VZ2cZFvg9CQA1wPPA+47wXnXB45LsjZNpfb1K/BeSZIkzXqdJa5VdRPwz0t5+Lvj9v0L8NQJjvEPmr6m411BUxUdv/+HgQ+P3N9iZPtzwOfG7X/AuPvrjWx/EPjguFP870TnpekqIEmStGr0uCo6nboenCVJkiQtk66nw5IkSdJy6nM/1OlkxVWSJEmDYMVVkiRpYKy4SpIkST1mxVWSJGlgrLhKkiRJPWbFVZIkaWgqU+8zA1lxlSRJ0iBYcZUkSRqY2drH1cRVkiRpYGqRXQUkSZKk3rLiKkmSNDCztauAFVdJkiQNghVXSZKkgSmnw5IkSZL6y4prD/37ald1HcKUPr/Wel2HMKXX3lhdhzCpnXPnrkOY0kN2eH7XIUzpZxd8vusQpvT1Hd7SdQiTunKNriOY2ke/8/KuQ5jSB5/42a5DmNITb5zTdQhTWrDW7KwkLi/7uEqSJEk9ZsVVkiRpYJzHVZIkSeoxK66SJEkDU/0exjFtrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQwziogSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqdlZcTVwlSZIGphZ1HUE37CqwCiTxA4AkSdI0m5WJa5LnJTkzyXlJPpFkTpLrk7wzyflJzkhyt3bfTZJ8LclZ7e3hbfthSb6Q5DTgC+1+30tyUZJPJfl1ko2THJ7ktSPnfmeS13TzyiVJ0kywqDKtt76adYlrkm2B/YCHV9VcYCGwP7AucEZV7QicCrykfcoHgf+uqgcDzwA+NXK47YA9quo5wFuBH1TVA4Bjgc3bfT4DPL8992rAs4EvTtsLlCRJmqFm4yXuxwEPAs5KAnAn4GrgZuDb7T5nA49vt/cAtmv3BdggyXrt9vFV9Y92e3fgaQBVdWKSv7bbVyT5c5KdgLsB51bVn6frxUmSpJnPwVmzR4DPVdWbFmtM/qPqtnUoFnL7e7MasFtV3Thuf4C/L+M5PwUcANydpgK7ZFDJgcCBAPfe8L5sss49lvHQkiRJs8Os6yoAfB/YN8ldAZLcJcm9J9n/ZOBVY3eSzF3KfqcBz2r32RO488hj3wD2Ah4MnDTRk6tqXlXtUlW7mLRKkqTJ1KJM662vZl3iWlUXA28GTk6yAPgeMFmm+GpglyQLklwMvGwp+70N2DPJhcAzgT8A17XnvBn4IfDVqlq4al6JJEnS7DIbuwpQVUcDR49rXm/k8WNpBlhRVX+iGcw1/hiHjWu6FnhCVd2a5KHAg6vqJrhtUNZuNAmtJEnSSrmtc+MsMysT12myOfDVNkm9mXZWgiTb0Qz6+kZVXdphfJIkSYNm4rqKtEnpThO0Xwzc546PSJIkzVR96IeaZC+aaUPnAJ+qqiPGPf564MXArcAfgRdW1a9X5pyzro+rJEmSVk6SOcBHgX+mmdf+Oe1V5lHnArtU1QNpumC+Z2XPa8VVkiRpYHqwutWuwGVVdTlAkq8A+wAXj+1QVT8c2f8M4Hkre1IrrpIkSVpemwK/Gbn/27ZtaV4EfHdlT2rFVZIkaWCme+Ws0YWRWvOqat4KHut5wC7Ao1Y2LhNXSZIkLaZNUidLVH8HbDZy/15t22KS7AEcAjxqbJrQlWHiKkmSNDA9mMf1LGDrJFvSJKzPBp47ukOSnYBPAHtV1dWr4qT2cZUkSdJyqapbgX+jWcr+5zSrg16U5PAke7e7vZdmgadjkpyX5PiVPa8VV0mSpIHpwawCVNUJwAnj2g4d2d5jVZ/TiqskSZIGwYqrJEnSwEz3rAJ9ZeIqSZI0MD0YnNUJuwpIkiRpEKy4SpIkDUwfBmd1wYqrJEmSBsGKaw+9aM7mXYcwpQ/cstKLX0y7J2atrkOY1C2Luo5gao9fa7Opd+rY13d4S9chTOnpF7y96xAm9dUHHjr1Th37ryd+tusQpvSP9L/T4W/WmNN1CFPaYAB/G/tgtg7OsuIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwPS/R/X0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGZrYuMGbFVZIkSYNgxVWSJGlgCvu4SpIkSb1lxVWSJGlgFs3SpbOsuEqSJGkQpkxck/x0RQ6c5KlJtluR506HJBslecUy7nv9dMcjSZK0ohaRab311ZSJa1U9bAWP/VRgwsQ1SRddFDYClilxlSRJUv8sS8X1+vbro5OckuTYJJckOSpJ2seOSHJxkgVJ3pfkYcDewHuTnJdkq/a5H0gyH3hNkiOT7LuU8/woyXFJLm+PvX+SM5NckGSrdr9NknwtyVnt7eFt+2FJPtOe7/Ikr25PcQSwVRvPe5Osl+T7Sc5pj7vPBK99stf8oDbOs5OclOQebfurR96Lr7Rtj2rPe16Sc5Osv4LfL0mSJIpM662vlrfyuRPwAOBK4DTg4Ul+DjwN2KaqKslGVXVNkuOBb1fVsQBtvrdmVe3S3j9ykvPsCGwL/AW4HPhUVe2a5DXAq4DXAh8E/ruqfpJkc+Ck9jkA2wCPAdYHfpHk48DBwPZVNbc9/+rA06rqb0k2Bs5IcnxVje/uPNFr/hnwYWCfqvpjkv2AdwIvbM+zZVXdlGSj9hj/Abyyqk5Lsh5w49RvtSRJ0sRm6wIEy5u4nllVvwVIch6wBXAGTSL26STfBr49yfOPXsbznFVVv2/P87/AyW37BTQJKcAewHZtQgywQZsUAnynqm4CbkpyNXC3Cc4R4D+TPJLm+79pu98fxu030Wu+Btge+F57/jnA79v9FwBHJfkm8M227TTgv5IcBXx97HiSJEladss7q8BNI9sLgdWr6lZgV+BY4MnAiZM8/+8j27eOnT/JasCaSznPopH7i7g92V4N2K2q5ra3Tavq+gmev5CJE/T9gU2AB7VV2KuAtSfYb6JjBbho5Nw7VNWe7T5PAj4K7AyclWT1qjoCeDFwJ+C0JNuMP0mSA5PMTzL/x9dfOkEYkiRJjdnaVWClp8Nqq5wbVtUJwOtoLvMDXEdzqX5prgAe1G7vDayxnKc+mabbwFgcc6fYf3w8GwJXV9UtSR4D3Hs5zv0LYJMkD23PvUaSB7QJ+GZV9UPgje051kuyVVVdUFXvBs6i6cqwmKqaV1W7VNUuj1hv6+UIRZIkaXZYFaP71weOS7I2TSXy9W37V4BPtoOj9p3geZ9sn3c+TZX27xPsM5lXAx9NsoDmdZwKvGxpO1fVn5OcluRC4LvAu4FvJbkAmA9csqwnrqqb24FlH0qyYXv+DwC/BL7YtgX4UNvf9+1tcrwIuKg9vyRJ0gqZrX1cs+RYJHXt/232vN5/U86dc9PUO3Vsu0VrdR3CpG7pOoBl8MfVFnYdwpR2vqn/66g8/YK3dx3CpL76wEO7DmFK/7e81+Q68I/0/k83d1/Y30vAY/r+V+dVv/liL97EE+/27Gn9gdvrqq/04nWO55KvkiRJAzNbK679L1VIkiRJWHGVJEkanD6P/J9OVlwlSZI0CFZcJUmSBmbR7Cy4WnGVJEnSMFhxlSRJGphF9nGVJEmS+suKqyRJ0sD0f7mL6WHFVZIkSYNgxVWSJGlgXDlLkiRJ6jErrpIkSQOzKM4qIEmSJPWWFVdJkqSBma2zCpi4SpIkDcxsHZxl4tpDV87p/+eoHRau1XUIU1rY8+4/l6x2Y9chTOnht6zddQhTunKNriOY2lcfeGjXIUzqWQsO7zqEKR2yyyFdhzClHW+e03UIU7pijf7/f7l73/94q1MmrpIkSQOzaJbm9w7OkiRJ0iBYcZUkSRqYRczOkqsVV0mSJA2CFVdJkqSB6f8wu+lhxVWSJEmDYMVVkiRpYJxVQJIkSeoxK66SJEkDM1tXzrLiKkmSpEGw4ipJkjQwziogSZIk9ZgVV0mSpIFxVgFJkiSpx6y4SpIkDYyzCswwSa5vv94zybFdxyNJkqSVM+MrrlV1JbBv13FIkiStKlZcZ6gkWyS5sN0+I8kDRh47JckuSdZN8pkkZyY5N8k+7eMHJPl6khOTXJrkPSPP3TPJ6UnOSXJMkvXa9iOSXJxkQZL3tW3PTHJhkvOTnHrHvgOSJEkzw4yvuI5zNPAs4K1J7gHco6rmJ/lP4AdV9cIkGwFnJvmf9jlzgZ2Am4BfJPkw8A/gzcAeVfX3JG8EXp/ko8DTgG2qqtpjARwKPKGqfjfSJkmStELKWQVmha9ye7eBZwFjfV/3BA5Och5wCrA2sHn72Per6tqquhG4GLg3sBuwHXBa+5wXtO3XAjcCn07ydOCG9hinAUcmeQkwZ6LAkhyYZH6S+edcd9mqebWSJGlGWjTNt76aVYlrVf0O+HOSBwL70VRgAQI8o6rmtrfNq+rn7WM3jRxiIU2VOsD3RvbfrqpeVFW3ArvSJMRPBk5sz/symgrtZsDZSf5pgtjmVdUuVbXLzuvfd5W/dkmSpKGbVYlr62jgDcCGVbWgbTsJeFWSACTZaYpjnAE8PMl92/3XTXK/tp/rhlV1AvA6YMf28a2q6mdVdSjwR5oEVpIkaYX0oeKaZK8kv0hyWZKDJ3h8rSRHt4//LMkWK/hybzMbE9djgWfTdBsY83ZgDWBBkova+0tVVX8EDgC+nGQBcDqwDbA+8O227SfA69unvDfJBe0gsZ8C56+6lyNJknTHSjIH+CjwzzTdJ5+TZLtxu70I+GtV3Rf4b+DdK3veGTs4q6rWa79eAWw/0n4V4153Vf0DeOkExzgSOHLk/pNHtn8APHiCU+86wXGevpzhS5IkLVV1HUCT71xWVZcDJPkKsA/NeKAx+wCHtdvHAh9Jkqpa4fBnY8VVkiRJkxgdNN7eDhy3y6bAb0bu/7Ztm3CfdhzQtcAS43yWx4ytuEqSJM1Ui6Z5OqyqmgfMm96zLD8rrpIkSVpev2Pxweb3atsm3CfJ6sCGwJ9X5qQmrpIkSQPTg1kFzgK2TrJlkjVpBr4fP26f42nmuodmHv0frEz/VrCrgCRJkpZTVd2a5N9ophSdA3ymqi5Kcjgwv6qOBz4NfCHJZcBfaJLblWLiKkmSNDB9WN2qnbf+hHFth45s3wg8c1We064CkiRJGgQrrpIkSQPTg3lcO2HFVZIkSYNgxVWSJGlgpnse176y4ipJkqRBsOIqSZI0MH2YVaALVlwlSZI0CFZcJUmSBsZZBSRJkqQes+IqSZI0MItmac3VxLWHruLmrkOY0hNu6f8vzNFrz+k6hEltXmt1HcKUTlvjxq5DmNJHv/PyrkOY0n898bNdhzCpQ3Y5pOsQpvTO+e/sOoQpHfGgt3QdwpTm3tT/IT2Xrdnvv9190f/v5PSwq4AkSZIGwYqrJEnSwPT/uuf0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwCxK1xF0w4qrJEmSBsGKqyRJ0sDM1gUIrLhKkiRpEKy4SpIkDczsrLdacZUkSdJAWHGVJEkaGOdxlSRJknrMiqskSdLAOKuAJEmS1GMzJnFNcv0qOs6jk3x7VRxLkiRpOtQ03/pqxiSukiRJmtlmXOKaxnuTXJjkgiT7te2LVVKTfCTJAe32XkkuSXIO8PSRfQ5L8pkkpyS5PMmrRx57XpIzk5yX5BNJ5rS3I0fO/bp231cnuTjJgiRfuaPeC0mSNDMtmuZbX83EwVlPB+YCOwIbA2clOXVpOydZG/gk8FjgMuDocbtsAzwGWB/4RZKPA/cF9gMeXlW3JPkYsD9wEbBpVW3fHnuj9hgHA1tW1U0jbZIkSVoOM67iCuwOfLmqFlbVVcCPgAdPsv82wK+q6tKqKuCL4x7/TlXdVFV/Aq4G7gY8DngQTVJ8Xnv/PsDlwH2SfDjJXsDf2mMsAI5K8jzg1omCSHJgkvlJ5v/8ustX4GVLkqTZYhE1rbe+momJ69LcyuKvd+1lfN5NI9sLaarUAT5XVXPb2/2r6rCq+itNpfcU4GXAp9rnPQn4KLAzTbK7RKW7quZV1S5Vtcu2699neV6XJEnSrDATE9cfA/u1/U03AR4JnAn8GtguyVrt5frHtftfAmyRZKv2/nOW4RzfB/ZNcleAJHdJcu8kGwOrVdXXgDcDOydZDdisqn4IvBHYEFhvlbxSSZI0K83WWQVmYh/XbwAPBc6nee/fUFV/AEjyVeBC4FfAuQBVdWOSA4HvJLmBJvFdf7ITVNXFSd4MnNwmprcArwT+AXy2bQN4EzAH+GKSDWkqtR+qqmtW4euVJEmzTJ8HUE2nGZO4VtV67dcCDmpv4/d5A/CGCdpPpOnrOr79sHH3tx/ZPpolB3JB0x1gvN0nj16SJElTmTGJqyRJ0mxRvb6gP31mYh9XSZIkzUBWXCVJkgZmtvZxteIqSZKkQbDiKkmSNDB9XiRgOllxlSRJ0iBYcZUkSRqY2VlvteIqSZKkgbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGpuzjKkmSJPWXFVdJkqSBsY+rJEmS1GNWXHvoXrVm1yEsg5u6DmBKGzCn6xAmdVZd23UIU3ruLRt2HcKUPvjEz3YdwpT+kX73Rdvx5n7/rgAc8aC3dB3ClA4+++1dhzClo3Y8tOsQprTebC0lLif7uEqSJEk9ZsVVkiRpYGZrYdrEVZIkaWAWlV0FJEmSpN6y4ipJkjQws7PeasVVkiRJA2HFVZIkaWAWzdKaqxVXSZIkDYIVV0mSpIFxAQJJkiSpx6y4SpIkDcxsXYDAiqskSZIGwYqrJEnSwDirgCRJktRjVlwlSZIGxlkFZpkkVyTZeIL2vZMc3EVMkiRJWrpZm7guTVUdX1VHdB2HJEnS0iya5tvKSHKXJN9Lcmn79c4T7DM3yelJLkqyIMl+y3LsXiSuSdZN8p0k5ye5MMl+bUX0PUkuSHJmkvu2+26S5GtJzmpvDx85xmfafc9Nsk/bPifJ+9rjLkjyqpFTvyrJOe05tmn3PyDJR9rtI5N8KMlPk1yeZN+RmA9qz78gyduW9jra9iOSXNzu+7475E2VJEnqxsHA96tqa+D77f3xbgCeX1UPAPYCPpBko6kO3Jc+rnsBV1bVkwCSbAi8G7i2qnZI8nzgA8CTgQ8C/11VP0myOXASsC1wCPCDqnph+8LPTPI/wPOBLYC5VXVrkruMnPdPVbVzklcA/wG8eILY7gHsDmwDHA8cm2RPYGtgVyDA8UkeCWwy/nUk+SfgacA2VVXL8k2RJEmaTFWv+7juAzy63f4ccArwxtEdquqXI9tXJrmaJo+6ZrID96LiClwAPD7Ju5M8oqqubdu/PPL1oe32HsBHkpxHk0hukGQ9YE/g4Lb9FGBtYPN2/09U1a0AVfWXkfN+vf16Nk1yO5FvVtWiqroYuFvbtmd7Oxc4hyap3Xopr+Na4Ebg00meTvMJYwlJDkwyP8n8+ddftvR3SpIkqd/uVlW/b7f/wO3504SS7AqsCfzvVAfuRcW1qn6ZZGfgicA7knx/7KHR3dqvqwG7VdWNo8dIEuAZVfWLce2Tnfqm9utClv5e3DSynZGv76qqT4zfefzrqKrD22/I44B9gX8DHjv+eVU1D5gH8PZ779/rj1GSJKlb0z2Pa5IDgQNHmua1ucrY4/8D3H2Cpx4yeqe92rzUYJPcA/gC8IKqmrJ7bS8qrknuCdxQVV8E3gvs3D6038jX09vtk4FXjTx3brt5Ek2f1bTtO7Xt3wNemmT1tn20q8CKOgl4YVvpJcmmSe460eto99mwqk4AXgfsuArOL0mSNG2qal5V7TJymzfu8T2qavsJbscBV7UJ6VhievVE50iyAfAd4JCqOmNZ4upFxRXYAXhvkkXALcDLgWOBOydZQFP1fE6776uBj7btqwOnAi8D3k7TD3ZBktWAX9H0if0UcL+2/Rbgk8BHVibYqjo5ybbA6W2efD3wPOC+E7yO9YHjkqxNU6l9/cqcW5IkaWVH/k+z44EXAEe0X48bv0OSNYFvAJ+vqmOX9cC9SFyr6iSaKuZt2oTwvVU1vjPvn7i9Ejva/g/gpRO030qTLL5+XPsWI9vzaTsRV9WRwJHt9gHjnrPeyPYHaQaKjfrf8a+jtesEbZIkSSuk5wsQHAF8NcmLgF8DzwJIsgvwsqp6cdv2SOCfkhzQPu+AqjpvsgP3InGVJEnSzFBVf6YZ2zO+fT7tDE5tt8ovLu+xe5u4jlZEJUmSdLvpHpzVV70YnCVJkiRNpbcVV0mSJE2s5wsQTBsrrpIkSRoEK66SJEkD0/PpsKaNFVdJkiQNghVXSZKkgen5PK7TxoqrJEmSBsGKqyRJ0sA4j6skSZLUY1ZcJUmSBsZ5XCVJkqQes+IqSZI0MPZxlSRJknrMimsP3XVhug5hSqevuXbXIUxps1u7jmByv1l9ra5DmNKpa97SdQhTeuKNc7oOYUq/WaPfMV6xRv8rN3Nv6v86QUfteGjXIUxp//MP7zqEKX19h7d0HcIgOI+rJEmS1GNWXCVJkgZmkbMKSJIkSf1lxVWSJGlgZme91cRVkiRpcJwOS5IkSeoxK66SJEkDY8VVkiRJ6jErrpIkSQNTToclSZIk9ZcVV0mSpIGxj6skSZLUY1ZcJUmSBqasuEqSJEn9ZcVVkiRpYJxVYJZJslGSV3QdhyRJkpbNrE1cgY0AE1dJkjQ4i6hpvfXVbE5cjwC2SnJekvcmOSjJWUkWJHkbQJItklyS5Mgkv0xyVJI9kpyW5NIku7b7HZbkC0lOb9tf0ranPfaFSS5Isl+Hr1eSJGnQZnMf14OB7atqbpI9gX2BXYEAxyd5JPB/wH2BZwIvBM4CngvsDuwN/H/AU9vjPRDYDVgXODfJd4CHAnOBHYGNgbOSnFpVv78jXqAkSZqZ7OM6u+3Z3s4FzgG2AbZuH/tVVV1QVYuAi4DvV/PTcgGwxcgxjquqf1TVn4Af0iTBuwNfrqqFVXUV8CPgwXfEC5IkSZppZnPFdVSAd1XVJxZrTLYAbhppWjRyfxGLv3/jP/os10ehJAcCBwLsv9GuPGLdrad4hiRJmq363A91Os3miut1wPrt9knAC5OsB5Bk0yR3Xc7j7ZNk7ST/BDyaplvBj4H9ksxJsgnwSODMiZ5cVfOqapeq2sWkVZIkaUmztuJaVX9uB1ldCHwX+BJwehKA64HnAQuX45ALaLoIbAy8vaquTPINmn6u59NUYN9QVX9YhS9DkiTNQrN15axZm7gCVNVzxzV9cILdth/Z/4CR7StGHwMWVNXzxx2/gIPamyRJklbCrE5cJUmShmjRLJ1VwMR1Faiqw7qOQZIkaaYzcZUkSRoY+7hKkiRpEGZrV4HZPB2WJEmSBsSKqyRJ0sDM1q4CVlwlSZI0CFZcJUmSBsY+rpIkSVKPWXGVJEkaGPu4SpIkST1mxVWSJGlg7OMqSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqUdchdMLEtYd+t3r/y/9b3pKuQ5jStnVD1yFMas1b1uk6hCldtkb//zAuWKv/P4sb9PxtvPvC/r+Hl605p+sQprRez7/PAF/f4S1dhzClp1/w9q5DUI+ZuEqSJA3MIvu4SpIkSf1lxVWSJGlgynlcJUmSpP6y4ipJkjQw9nGVJEmSesyKqyRJ0sDM1j6uJq6SJEkDs2iWJq52FZAkSdIgWHGVJEkamHJwliRJktRfVlwlSZIGZrYOzrLiKkmSpEEwcZUkSRqYRdS03lZGkrsk+V6SS9uvd55k3w2S/DbJR5bl2CaukiRJWpUOBr5fVVsD32/vL83bgVOX9cAmrpIkSQNTVdN6W0n7AJ9rtz8HPHWinZI8CLgbcPKyHniVJ65JNkryinb7nkmOXdXnmOL8uyT50DQc96lJtlvVx5UkSZph7lZVv2+3/0CTnC4myWrA+4H/WJ4DT8esAhsBrwA+VlVXAvtOwzmWqqrmA/On4dBPBb4NXLysT0iyelXdOg2xSJKkWWy6V85KciBw4EjTvKqaN/L4/wB3n+Cph4zeqapKMlGwrwBOqKrfJlnmuKYjcT0C2CrJecClwLZVtX2SA2iSv3WBrYH3AWsC/wLcBDyxqv6SZCvgo8AmwA3AS6rqkolOlOSZwFuBhcC1VfXIJI8G/qOqnpxkE+BLwD2B04HHAw8C1gO+C/wEeBjwO2CfqvpHkpfQfKPWBC5r45sL7A08KsmbgWcAn27PMz/JxsD8qtqifZ1Pb88xJ8kTgQ8D2wNrAIdV1XEr/O5KkiRNszZJnTfJ43ss7bEkVyW5R1X9Psk9gKsn2O2hwCPaq/TrAWsmub6qJusPOy19XA8G/req5gIHjXtse5qk7sHAO4EbqmonmqTy+e0+84BXVdWDaMrHH5vkXIcCT6iqHWkSy/HeCvygqh4AHAtsPvLY1sBH28euoUlGAb5eVQ9uj/lz4EVV9VPgeOCgqppbVf87xXuwM7BvVT2K5pPHD6pqV+AxwHuTrDvF8yVJkpaq531cjwde0G6/AFiiYFdV+1fV5lW1BU2+9/mpkla44wdn/bCqrquqPwLXAt9q2y8AtkiyHk0F9Ji2YvsJ4B6THO804Mi2Sjpngsd3B74CUFUnAn8deexXVXVeu302sEW7vX2SHye5ANgfeMByvcLG96rqL+32nsDB7es5BVibxRNooCnJJ5mfZP451122AqeUJEnqhSOAxye5FNijvT82DulTK3PgO3rlrJtGtheN3F/UxrIacE1brZ1SVb0syUOAJwFnt6PTViSWhcCd2u0jgadW1fntZf9HL+X5t3J74r/2uMf+PrId4BlV9YvJghktyR+6xf6zczkMSZK0TFZ2rtXpVFV/Bh43Qft84MUTtB9Jk39NaToqrtcB66/IE6vqb8Cv2r6rpLHj0vZPslVV/ayqDgX+CGw2bpfTgGe1++4JLHUC3BHrA79PsgZNxXXM+Nd1BU1/WZh8ANpJwKvS9jxOstMyxCBJkqRxVnni2mbZpyW5EHjvChxif+BFSc4HLqKZC2xp3pvkgvZcPwXOH/f424A928efSTMlw3VTnP8twM9okt7RQWFfAQ5Kcm47gOx9wMuTnAtsPMnx3k4zKGtBkova+5IkSSus531cp036HNzKSrIWsLCqbk3yUODjy9oNoUtD6Cqw5S3LPnVFV7atG7oOYVI/zzpdhzCly9ZY1HUIU1qn+v+zuMGifse4Tu//4sDfBrBcznr9/3Vhg4X9/2Y//YJ+13fW2Pg+vfiF3mDd+0zrN/Nvf7+8F69zvDu6j+sdbXPgq+0ktzcDL+k4HkmSpJU23fO49tUgEtckh9Bc6h91TFW9c7LnVdWlgH1KJUmSZoBBJK5tgjppkipJkjRbVI9nFZhOg0hcJUmSdLvZ2lVgAN3dJUmSJCuukiRJgzOTZ4WajBVXSZIkDYIVV0mSpIGZrYOzrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQws7PeasVVkiRJA5HZ2kdiNklyYFXN6zqOyRjjqmGMK6/v8YExrip9j7Hv8YEx6o5nxXV2OLDrAJaBMa4axrjy+h4fGOOq0vcY+x4fGKPuYCaukiRJGgQTV0mSJA2CievsMIS+Pca4ahjjyut7fGCMq0rfY+x7fGCMuoM5OEuSJEmDYMVVkiRJg2DiKkmSpEEwcZUkSdIgmLjOcEl2T/Kv7fYmSbbsOqZRSeYkuWeSzcduXcc0KskOXceg6ZfkVUnu3HUck0mybpLV2u37Jdk7yRpdx7U0Se6c5IFdxzGZJKsl2aDrOIYmyd2SPLm93bXreJYmyZ2S3L/rOLRqmbjOYEneCrwReFPbtAbwxe4iWlySVwFXAd8DvtPevt1pUEv6WJIzk7wiyYZdBzNekrOTvLLPSVeS9yTZIMkaSb6f5I9Jntd1XOPcDTgryVeT7JUkXQc0gVOBtZNsCpwM/AtwZKcRjZPklPZ7fRfgHOCTSf6r67hGJflSG+O6wIXAxUkO6jquMX3/fUnyLOBM4JnAs4CfJdm326iWlOQpwHnAie39uUmO7zQorRImrjPb04C9gb8DVNWVwPqdRrS41wD3r6oHVNUO7a1XFZqqegSwP7AZcHb7T+/xHYc1aj/gnjRJ11eSPKGHSdeeVfU34MnAFcB9gd4kCgBV9WZga+DTwAHApUn+M8lWnQa2uFTVDcDTgY9V1TOBB3Qc03gbtt/rpwOfr6qHAHt0HNN427UxPhX4LrAlzYeAvuj778shwIOr6gVV9XxgV+AtHcc0kcNoYrsGoKrOo/lea+BMXGe2m6uZ76ygudTYcTzj/Qa4tusgplJVlwJvpqlePwr4UJJLkjy928igqi6rqkOA+wFfAj4D/DrJ29qqVx+s3n59EnBMVfXye97+rvyhvd0K3Bk4Nsl7Og3sdknyUJoPUt9p2+Z0GM9EVk9yD5pKXN+unoxZo+1i8VTg+Kq6hfZvZE/0/fdltaq6euT+n+lnLnHLBO9dn77PWkGrT72LBuyrST4BbJTkJcALgU91HBNJXt9uXg6ckuQ7wE1jj1dVby4ttn30/pXmn8j3gKdU1TlJ7gmcDny9y/hgsRifCHwNOArYHfgBMLe7yG7z7SSXAP8AXp5kE+DGjmNaTJLXAM8H/kTzO3JQVd3S9im9FHhDl/G1XkvT7ecbVXVRkvsAP+w2pCUcDpwE/KSqzmpjvLTjmMb7BE0l83zg1CT3Bv7WaUSL6/vvy4lJTgK+3N7fDzihw3iW5qIkzwXmJNkaeDXw045j0irgAgQzXHtZe08gwElV9b2OQxrre7s0VVWH32HBTCHJj2gSmWOr6h/jHvuXqvpCN5HdFsPZNJfCPg18rapuGnns61XVeVUYoK3+XltVC5OsA2xQVX/oOq4xSd4GfKaqfj3BY9tW1c87CGup2oR6vfaSslZSktWr6tau4xgzgN+Xp9N8OAb4cVV9o8t4JtK+b4fQ/P+D5gPVO6qqTx8CtAJMXGewJO+uqjdO1daVJM+sqmOmautSktdW1QfGtb2mqj7YUUiLSXKfqrp8XNuWVfWrrmIaL8kzgROr6rokbwZ2pvkHck7Hod1mKd0qrmsvI/dCki8BLwMWAmcBGwAfrKr3dhrYiLZbxTtoqoUnAg8EXldVfRoU+hrgs8B1NB9KdwIOrqqTOw2sNZDfl7sDDwEWAWf1KamGZrYa4H+q6jFdx6JVr4/9UrTqTDSI6J/v8CiW7k3L2Nal50/QdsAdHcQkjl3Gti69pf0nvDvNQJ1PAx/vOKbxzgH+CPyS5tL2H4ErkpyT5EGdRna7vg8qgv4PLAJ4YRvjnjT9mP8FOKLbkBbT69+XJC+mmVXgacC+wBlJXthtVIurqoXAoj7OBKOVZx/XGSjJy4FXAPdJsmDkofWB07qJ6nZJ/pmmP+amST408tAGNINiOpfkOcBzgS3HTaGyPvCXbqK6XZJtaEaUbzhukNgGwNrdRLVUC9uvTwLmVdV3kryjy4Am8D2a7iAnASTZE3gGTWXuYzTVpa6NDir6SNsHt2+XzJYYWNS/SS4YC+iJwBfa/sJ9CrLvvy8HATtV1Z8BkvwTTd/Rz3Qa1ZKuBy5I8j3amXUAqurV3YWkVcHEdWb6Ek1F5l3AwSPt11VV50kXcCUwn2aqrrNH2q8DXtdJREv6KfB7YGPg/SPt1wELJnzGHev+NFWtjYCnjLRfB7yki4Am8bt2kODjgXcnWYv+Xe3Zrapue9+q6uQk76uql7bx9kHfBxVB/wcWQTOt3ck0Fes3JVmf5pJ3X/T99+XPNH9nxlzXtvXN1+nB4FmtevZxnQXSrGxyWxWuqv6vw3Buk2SNPvUhHKIkD62q07uOYzLtIIm9gAuq6tJ2uqQd+tKnEKBNZL4PfKVt2o8mcdiLpg/fzl3FNpm+DSqCJQYWrQus36c+kO3AtrnA5VV1TVsx3LSq+vCBtPe/L0k+D+wAHEczvdQ+NB/mF0C/ZoXRzGTFdQZrVw75L5oJ6q8G7g38nP5MWn7OBJc6r6Wpxr5j7FJUF5L8pKp2T3Idi8/9F5qZDzpdJjLJG6rqPcBz224Ni+nT5bCquiHJ1TSjkC+l6Q7StymSngu8Ffgmzff7tLZtDs2cpJ1LcjfgP4F7VtU/J9kOeChNH8heaJOuVwCbAwfS/O25P/2a07WA7WiuWBwOrEuPutcM4Pflf9vbmOPar31a3IYkv2KCeVur6j4dhKNVyIrrDJbkfOCxNKMrd0ryGOB5VfWijkMDbhuBvJCmawPAs4F1aCaA372qnrK05852SZ5SVd9K8oKJHq+qz93RMS1NO/3ZLjSrpN2vnQP3mKp6eMehAbeNQP58Ve3fdSyTSfJdmj63h1TVjklWB86tqh06Du02SY6m6f7z/Kravk1kf1pVc7uN7HZJPk7TNeCxVbVtmuWST66qB3ccGtD/35ehaCvpY9amWaL2LlV1aEchaRWx4jqz3VJVf06yWpLVquqHST7QdVAj9hh3CfaCJOdU1c7pwdrcbUJzUVVt03Us41XVt9qvvUlQJ/E0mimHzoFm6eG2X2EvtJe0751kzaq6uet4JrFxVX01yZsAqurWJAunetIdbKuq2m/sKkBbPezTwCeAh7R/Y84FqKq/Jlmz66BG9Pr3JckuNPOj3puRHKL6t1z3+Ct2H0gz77WJ68CZuM5s1yRZDzgVOKq9/PT3KZ5zR5qTZNeqOhMgyYO5fQnLzvvttQnNL5Js3pd+wWOSfItJli+sqr3vwHCmcnNV1Vi3kPRv6WFoVnE7rZ1BYnQEcp/66/29rSKNvY+70b8lk29Ociduj3ErRlbF64lb2g+lYzFuQr8GZ/X99+UompkFLqBf79tikowWRVajqWKb88wAfhNntn1oRvS+jmZ98w1p+nT1xYuBz7TJdWhGSL+4/UP9rk4ju92daZYOPJPFE5quE8P3dXz+5THR0sOf7Dim8cb67a1Gz/rqjXg9cDywVZLTgE1o5tHsk7fSLDywWZKjgIfTr3mPAT4EfAO4a5J30ryHb+42pMX0/fflj1V1/NS7dW50NphbgV/Rk/7qWjn2cVXnxiaJrqq+VY9I8qiJ2qvqR3d0LEOWHi49PJEk61TVDV3HsTRtv9b707yPv+jjrBxtVXg3mhjPqKo/dRzSEtp5kB9HE+P3e7ikb29/X5I8DngOzSwct1XTq6pXU09lAKsKasWYuM5AE4yEX0zXI+LHtPMTPgPYgsX7SvWpKtxLSb5aVc9KcgETz3rQq/5mfZdkbHT+elW1eZIdgZdW1Ss6Dm0xSR7Gkr8vn+8soAkk2ZQl+z+e2l1ES2q7CtyNxWPsVXegvkryRWAb4CJu7ypQVdWr1bPGxkuMazu7qvqyEp5WkF0FZqCqWh8gydtpJtH/Ak1Csz9wjw5DG+84mj56Z9O/fnDAbf0IPwxsC6xJ0wf37z1I/l/Tfn1yp1EsgzQre70buCvNz2EvphQb5wPAE2guxVNV5yd5ZKcRjZPkC8BWwHncvrpSAb1JXJO8m2YO3MWSGpp+9r2Q5FU0XRquonkfQxNjLz7sDeD35cFVdf+ug1iaDGtVQa0AE9eZbe+q2nHk/sfbKbL6MqryXlW1V9dBTOEjNNN0HUPTuf/5wP06jQioqt+3X3+d5O7ArjT/fM/q02TvrfcAT+nb5djxquo34wbA923E/i7AdtXvy2RPpZnGqZcfRFuvoYmxj6s9Qf9/X36aZLuqurjrQJZiSKsKagWYuM5sf0+yP81qQEXTL6lPswr8NMkOVXVB14FMpqouSzKnqhYCn22n0XlT13EBJHkxzQeRH9BUZj6c5PCq6tO64Vf1+J/wmN+0l+EryRo0yU3fYr4QuDvNVZS+uhxYg55eQWn9hv7NxjCq778vuwHntRP830TPuidV1XHAcRnAqoJaMSauM9tzgQ+2t9HVgPpid+CAvv4BbN3QzvF4Xrtgwu/p17rhBwE7jVWP2oExPwX6lLjObyem/yb9HczxMprfk02B3wEnA6/sNKIlbQxc3M5wMfo+dj3DxagbaH5Xxg/c6c1KbjTJ9SlJvsPiMfZl6rO+/770/SrZmHOTvJKm28Dokue96our5WfiOoNV1RU0U2JNKMmbqqrLaaf+ucNzL6t/oenX+m8004ptRjOgrC/+THMJbMx1bVufbECT0Ow50lZAX/4R04587/XKWcBhXQewDI5vb332f+1tzfbWN73+fWm7J+0ObF1Vn23nwV2v67gm8AXgEpq+64fT/H73uZKtZeSsArPYRKMuO4hhiT+ATlcytSSvbzfnAjvQDHQrmg8qC6rqgG4iG6b2Z+8lLDli3+rMcmoXINi8qn7RdSxa9YayJG2Sc6tZ6nxBVT2w7QL046rarevYtHKsuM5unS7FOPoHkGYN9jWAL9JMWt6pCaaZWkwPujOMTZI/NnH+mOM6iGVSST4HvKaqrmnv3xl4f8+SwuOAHwP/Q88GZU0yvV3fRpuT5Ck0i2OsCWyZZC5weB+6M/R9tbkkb6iq9yT5MBPE2aPuFr1eknbE2BzH1yTZHvgDzUwNGjgT19mt63J7n/8A9nqaqap6W9cxLIcHjiWtcNva8Dt1GM9E1qmqN3YdxETGprcbiMNoZrg4BaCqzktyny4DGjG22tzTaQa5fbG9/xyaqbG6NnYZe36nUUyt70vSjpnXfkh+C033lfXoz4w6WgkmrrNbpxVXevwHsKp+3XUMy6K9xP0GlhyA8NjOglrSaknuXFV/BUhyF/r3t+fbSZ5YVSd0HchUktyVxb/XfZo4/5aqunbctGK9WM9+bLW7JO+vql1GHvpWks6Txar6Vvv1c13HMoW+L0kLQFV9qt38EdCXD09aBfr2z0N3rGM6Pn/v/wCOu0y7Jk13hj4sQDDmKOBomgrxy4AXAH/sNKIlvR84PckxNB+W9gXe2W1IS3gN8KYkN9NcYuzjZfi9ad7LewJX06xO9XOaDy19cVGS5wJzkmwNvJpmlos+WXd0OdAkWwK9+dCc5H7Af7Bkf+u+fBjdBDgW+BtNN69DgT06jWgCrsw4czk4awZr/wB+HLhbVW2f5IE0ixK8o+PQbtPnNbnHS1NG2gfYraoO7joeuH0Jw7EBCG3bWVX14K5jG5VkO2DsH+8P+jZ5eZLVaEYdb1lVhyfZHLhHVf2s49Bu0y4e8ljgf9pBJ48BnldVL+o4tNskWQc4hNtHxJ8EvKOqbuwuqsUl2QuYRzMtVmg+ALy0qk7qNLBW+33+fzQrCt7W37qqzu4sqBFLWUr1tr8/fZHkRG5fmXH0fXx/Z0FplTBxncGS/Ihmns9PVNVObduFVbV9t5EN29ho1a7jAEhyRlXtluQk4EPAlcCxVbVVx6GRZIOq+lvbNWAJVfWXOzqmpUnycZpL2o+tqm3bvnEn9+kDQJL5VbVLm9jsVFWLkpw/bnW8TiXZuarO6TqOqbTVuG3au5f0aaWvsQ+jXccxXpKXA6+guew+OiB0feC0qnpeJ4Ethf/rZi67Csxs61TVmeP6m93aVTBjBjZKenSt69VoZkHoTfUIeEeSDYF/Bz5MMwfk67oN6TZfounCcDaLf7/H1obvU7+zh1TVzu2qaGMDyPo2x+c1SdYDTgWOSnI1/VoJD+D9aZYgPhY4uqou7Dqg8ZI8f1zTjkmoqs93ElBr5APet5K8AvgGiy9A0PUHvS8B3wXeBYxecbquB7FNZBArM2r5WXGdwZJ8l2bi/GPaf8r7Ai+qqiFM/N8LST47cvdW4Argk1V1dTcRaTok+RnwMOCs9ndlE5qKay8q63Db4MV/0HyA2h/YEPhi35KGNnF9FrAfzQepo3vWPenDI3fXBh4HnFNV+3YUEgBpVhAsJh40W1XVpw96vZfkYuC+QJ9XZtQKMHGdwdppaObR/EP+K80v8PPaFbU0AwykH/P3q+pxU7V1Kcn+NInWzsDnaAaQvbmquh7AeJsk7x4/ZddEbX2RZAeaGS/2q6q+Va9vk2Qj4CtVNZSlTLUMktx7ovahzBijpevTmutaxarq8qrag2YU6DZVtbtJ6/JJcp8k30ryxyRXJzmuR/NSQjMLw5toJ9uuqgXAszuNqJVk7fby58ZJ7pzkLu1tC2DTjsNbTFUdRZNkvQv4PfDUPiWtrcdP0NarqydJtk1yWJoFPD5MM6PAvToOayp/B7bsOogxSV7ZJtNj9+/cdh3Q8rlugtuVnUakVcI+rjNYktfQrEh1HfDJJDsDB1fVyd1GNihfAj5Ks1gCNEnhl4GHdBbR4nrZj7n1UuC1NNM3nc3tl0D/Bnyko5iWqqouoVnbvFdGB8UkWTDy0PrAad1EtVSfoZme7QlV1cskIYuvoDUH2Bb4ancRLeElVfXRsTttf+uXAB/rMKYhOgfYjOZqY4CNgD8kuYrmPe7FLA1afiauM9sLq+qDSZ4A/BPwL8AXABPXZbdOVX1h5P4XkxzUWTRL+lOSrWj/Ebf9mH/fbUiNqvog8MEkr6qqD0/5BC3NYAbFVNVDu45hGbxvZPtW4NdV9duugpnAnCSpth9fkjk0c0hr+XyPZoaVkwCS7Ekzr+tnaT4E9KX4oOVkV4GZbazC9UTg81V1ERN3/NfSfTfJwUm2SHLvJG8AThi77N11cMArgU8A2yT5HU2F8+WdRrSkP6RdyjfJm5N8va3+axlU1bVVdUVVPQf4LU23kALWa+eb7VySr7ZfL0iyYOR2wbgqcefaFbQuoalY3xm4uduIlnAicHSSxyV5HM0VnhM7jmmIdhudm7e90vjQqjoDWKu7sLSyHJw1g7Uj4jel6b+1I81lsVP6OEdgX7UjfZemNyN92xHnq1XVdV3HMt7Y5ORJdgfeAbwXOLSqrHgshyT/BhwGXMXty6j2YpR0kntU1e+HMCAmybNofgZPofkg/wjgoKo6tsu4xqRZDOOlNLMdQFM5/FRVLVz6szRekpOB7wNfaZv2o+knvhft7CFdxaaVY+I6g7V/AOcCl1fVNUn+Cdi0HcCjGSDJfwLvqapr2vt3Bv69qt7caWAjxhZsSPIu4IKq+lJ6tIjDUCS5jGa+2T93HcuQtQs4PH5sSrt26rP/6dlCDncCNq+qX3Qdy1Al2Rh4K7B723Qa8Daa1bQ2r6rLuopNK8fEdYZrE5mtaeYrBKCqTu0uomFJsgbNpfdHtk2n0KxEdktnQY2YKAHMBEsydinJt4Hf0VQ7dqaZi/TMPiUKQ5DkhzQJV18G391mYIuKXFBVO4zcXw04f7StS0n2pqkIr1lVWyaZCxxeVXt3G5nUDw7OmsGSvBh4Dc10NOcBuwGnc/ua8Zrax4E1uH1E77+0bS/uLKLFzUmy1tiSlW2lpm/9t55Fc3nufW3l/x40SxFr+VwOnJLkOyy+otJ/dRfSbTGs33UMy+HENEskf7m9vx9wQofxjPdWYFeaD8lU1XlJejNdV98l+UBVvXbc7BG38QPA8Jm4zmyvAR4MnFFVj0myDfCfHcc0NA8eVxn8QXupsS+OAr6f21f4+leaCfT7ZGNgPsDIYKLeTTs1AP/X3tbEUeYrrKoOSvIM4OFt07yq+kaXMY1zS1VdO26KOy+NLruxWWDeN+leGiwT15ntxqq6MQltVe6SJPfvOqiBWZhkq6r6X7htNbLeDJKoqne3o7bHBnK8fXQkbU98h9uXslybZrDgL4AHdBnU0FTV2wCSrFNVN3Qdz5BV1deAr3Udx1JclOS5NFdTtgZeTbOQg5bB2Pys7ewRwG1d5jZzfMfMYOI6s/22XYHlm8D3kvwV6M3o3oE4CPhhksvb+1vQVDV7o6q+SzPPZy+N7zvYToXlSkDLKclDgU8D6wGbJ9kReGlV+V4ugwH1w30VcAhNd5AvASfRzMah5ZDkFGBvmjznbODqJKdV1es7DUwrzcFZs0SSRwEbAidWVd/mLeytJGsD/05T0bwGOAv476q6scu4xiR5OvBu4K40/4D79k94QuMHyGhqSX4G7AscPzYgL8mFVbV9t5FpOlhZXzkjs5m8mKba+taxqfm6jk0rx4rrDNfOnbl1VX22nfZlU2CyuUm1uM/TLFH69vb+c2n6UD2zs4gW9x7gKVX1864DWZokoxWO1WhmFujlcqB9V1W/Gdf3sTfdVrRqJHkY8CmsrK+s1duBoM+iqWBrhjBxncGSvBXYBbg/zTJ3awBf5PZBCZra9lW13cj9Hya5uLNolnRVn5PW1uiI81tp+rz2tX9hn/2mTWqqnabtNUDfv/dafv8NPAE4HqCqzk/yyMmfogkcTtPN4idVdVY7PuHSjmPSKmDiOrM9DdgJOAegqq4cW3pTy+ycJLu1ywSS5CG0I+R7Yn6So2n6MY9OkfT1ziIaZ2RQ0Xrt/eu7jWiwXgZ8kOaqye+Ak2mW/NUMY2V95VXVMcAxI/cvB54xdj/Jm6rqXV3EppVj4jqz3VxVlaTgtmVBtXweBPw0yf+19zcHfpHkAvqx3OYGwA3AniNtBfQmcU2yPU33iru09/8EvKCqLuw0sIGpqj8B+3cdh6adlfU7xjMBE9cBMnGd2b6a5BPARkleArwQ+GTHMQ3NXl0HMJmq6tUMB0sxD3h9Vf0QIMmj27aHdRjT4LST0L+KZmaL2/52O6H6jDNaWb+S5nK3lfVVL1Pvoj5yVoEZLsnjaapxAU6qqu91HJJWoXbWgxfRzIk6uqzvCzsLapwk549f3nWiNk2uXfji08AFwKKx9tH5KiUtm74tja1lZ8V1hmsTVZPVmesLNKtQPYFmMML+9O+y4uVJ3sLtK9o8j2b5Ui2fG6vqQ10HoenVDiL6IM0S3UWzTPfr2j6aWnWsuA6UFdcZaEATbWsljcxVuKCqHtj2iftxVe3WdWxj2lVr3gbsTvNz+WPgbVX1104DG5h2NaWtaQZljQ7EO6ezoLTKJTkD+Cjw5bbp2cCrquoh3UU18yT5/6rKJdAHyMRVGrAkZ1bVrklOpVmN6g/AmVV1n45D0yqW5F3AvwD/y+1dBaqqHttdVFrVJpok3641yy/J/YCPA3erqu2TPBDYu6pchWzgVus6AE2vJLsn+dd2e+N2gIdmjnltRfPNNPM+XkyzklZvJPleu/Tw2P07Jzmpw5CG6pnAfarqUVX1mPZm0jrzfDfJwUm2SHLvJG8ATkhylyR36Tq4Afkk8CbgFoCqWkBTvdbA2cd1BptgAYI1cQGCGWHcalRjMwt8tP3at2nPNq6qa8buVNVfk9y1w3iG6kJgI+DqjuPQ9HpW+/Wl3N7lKzRJVwFeTVk261TVmePmw721q2C06pi4zmwuQDBzjX0f7w88mHaVHeApwJmdRLR0i5JsXlX/B5BkCybug63JbQRckuQsFu/j6nRYM8sbgROr6m/toMadgbfbl3m5/SnJVrR/a5LsC/y+25C0Kpi4zmwuQDBDjaxGdSqwc1Vd194/jGZJ1T45BPhJkh/RVI4eARzYbUiD9NauA9Ad4s1V9dUkuwOPBd5H01fTwVnL55U080Vvk+R3wK9oZjTRwJm4zlBpro982wUIZry7ATeP3L+5beuNqjoxyS40yeq5NMvT/qPToAbI+VpnjbHlXZ8EfLKqvpPEAUXLqZ0+bI+2YLPa2Id7DZ+J6wzVVlqfCbwe+BvNJeVDXYBgxvk8cGaSb7T3nwoc2Vk0E0jyYpplK+8FnEczP+XpNNUkLaNx09ytCawB/N3p7Wac37UFh8cD706yFg6kXm7tgNDn0640N9bXtape3V1UWhWcDmsGS/I54CNVdVbXsWj6JNmZ5vI7wKlVdW6X8YyX5AKafrhnVNXcJNsA/1lVT+84tMFqr6jsA+xWVQd3HY9WnSTr0Cw1fUFVXZrkHsAOVXVyx6ENSpKfAmew5Epzn+ssKK0SJq4zWJJLgPsCvwb+PtY+fo5AaTolOauqHpzkPOAhVXVTkouq6gFdxzZ0YwtQdB2H1Dcu6Tpz2VVgZntC1wFIwG/by3bfBL6X5K80H6a0HJKMVqhXo5nq7saOwpH67gvt2I5vs/gsHH/pLiStClZcJd1hkjwK2JBmup+bp9pft0vy2ZG7twJX0AzecV5XaZwkrwTeCVzD7X3Dy1UFh8/EVZJ6Lskc4NVV9d9dxyINQZLLgV2r6k9dx6JVy5GKktRzVbUQeE7XcUgDchlwQ9dBaNWzj6skDcNpST4CHM3igy1dUUla0t+B85L8kMX7uDod1sDZVUCSBqD9BzxeVZXz4UrjJHnBRO1OhzV8Jq6SNABJ7tOuBjRpmyTNZCaukjQAE81LmeTsqnpQVzFJfZPkq1X1rHbhk/EJTlXVjl3EpVXHPq6S1GPtSmMPADYcN5frBsDa3UQl9dZr2q8/Bw4aaQ/wnjs+HK1qJq6S1G/3B54MbAQ8ZaT9OuAlXQQk9VVV/b7dvG9VLbbQSfshUANnVwFJGoAkD62q07uOQ+qzJC8HXgHcB/jfkYfWB06rqud1EphWGRNXSRqAJO8B3gH8AzgReCDwuqr6YqeBST2SZEPgzsC7gINHHrrO5V5nBhNXSRqAJOdV1dwkT6PpOvB64FQHm0iaTVw5S5KGYY3265OAY6rq2i6DkaQuODhLkobhW0kuoekq8PIkmwA3dhyTJN2h7CogSQOR5C7AtVW1MMk6wAZV9Yeu45KkO4oVV0kajm2ALZKM/u3+fFfBSNIdzcRVkgYgyReArYDzgIVtc2HiKmkWsauAJA1Akp8D25V/tCXNYs4qIEnDcCFw966DkKQu2VVAkoZhY+DiJGcCN401VtXe3YUkSXcsE1dJGobDug5AkrpmH1dJkiQNghVXSeqxJD+pqt2TXEczi8BtDwFVVRt0FJok3eGsuEqSJGkQnFVAkiRJg2DiKkmSpEEwcZUkSdIgmLhKkiRpEExcJUmSNAj/Px/6v9Jq3TQTAAAAAElFTkSuQmCC", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "corrmat = df.corr()\n", + "f, ax = plt.subplots(figsize=(12, 9))\n", + "sns.heatmap(corrmat, vmax=.8, square=True);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGkCAYAAAB+TFE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dWH39m+q9Xuqvde3eTeG7bBdAwm9A6BBEJJvtASSggJCYQk1IQSCBBIqKaYjgvuvTfZktV71/Y+8/2x0tpCkrst28z7PPvM7MydmbNl7m/uveeeI0iSJCEjIyMjIzPAKAbaABkZGRkZGZAFSUZGRkbmJEEWJBkZGRmZkwJZkGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMC1UAbICNzuIiSiD8YwBf04Q368AX9+AKhZfd7b8CHL9j98qNRqjFpIzHrIkmOTMCkjUQQhIH+KDIyMvshC5LMgODyuWlyttLhttLpsdLhtuL0uXAHvLgDHjx+D+6AF4/fgyfg3U9sQgJztBg1EeREZzAsoZCihEFkWFJkgZKRGWAEOVKDzPGm1dXO7pa9lLZVUmtroNbWQIfb2qucVqVFr9KiV+nQqbXoVDr0Ki06lRaNSoNWqUGjVKNVadB0rytD6z22qfbbp9KgUajxBX3YvA7a3Vbq7Y3UWBvY3bqXOlsjAKmmJM7ImsD0zAmYdaYT/RXJyMggC5LMccDld7O1cReb6newq6WUFmcbEBKc1MhEUsyJpJqSSDTGEa23YNGbsehMaJTqE25ru6uTjfXbWVq5hpK2ctRKNWflTGVO4Wyi9OYTbo+MzI8ZWZBkjgl2r4PVNZtYX7eVHc17CIpBIjURDI7PZ1BcLoWxuWRaUlEoTl4/mlpbA/OLF7Csai1KhZI5hbO5uHA2GpVmoE2TkflRIAuSzBHjC/rZVL+dZZVr2dywg6AkkmSMZ0xKEWNThpMfk31SC1B/NDpaeG/7fFZVbyAhIpZbRl/FiKTBA22WjMxpjyxIMoeFJEkUt+xledU6VtdsxOV3E6UzMyVjLFMzxp9WzgE7mnbz+sb3qbM3MjtnGteNuBSt3FqSkTluyIIkc0jYvA6WVqxhYflyGuzNaFVaxqeOYFrGeIbGF5ySLaFDwR/08972+Xy+ZyHJkQn8cuJPyYxKHWizZGROS2RBkukXSZLY3bqXBWUrWFOziYAYoCA2h7NypjIudQQ6lXagTTxh7GjazQtr38Tpc/GzMdcyNXPcQJskI3PaIQuSTC9EUWRt3WY+Lf6Wio4aDGo90zLGc2bOFNItKQNt3oDR6bHxzKrXKG4p5by8GVw74lJUCuVAmyUjc9ogC5JMmIAYZFnlGj7b/R0N9maSjPFcWHgWUzLG/qhaQwciIAZ5Z+vHfFWymEFxufxq0q1Y5HlLMjLHBFmQZJAkic0NO3h7y8fU2RvJikrjkkHnMC5lxGk7NnS0rKhax8vr3yFSY+S+KT8jOzpjoE2SkTnlkQXpR06rs51XN/yXLY27SIqM57rhcxmdXHTaeModTyo6anh6xctYvXZuH3stUzLkcSUZmaNBFqQfKZIk8X3FKt7a/BEiElcOvZCzc6ejUsrhDQ8Hq8fG31f9i+KWvVxUeBZXD7tYblXKyBwhsiD9CPEEvLy07m1W12xkSHw+t4+9jnhj7ECbdcoSCAZ4c/OHfFe2jBGJg7l74s0YNREDbZaMzCmHLEg/MhrtzTy98hVqbQ1cNWwOFxWehUKQn+iPBQvLlvP6pveJM0Rz/5TbSTUnDbRJMjKnFLIg/YjY21bJn5a9CMAvJ95CUeKgAbbo9GN3y17+tvJVfEE/d064kbEpwwfaJBmZUwZZkH4k7GjazV9WvIxJa+ThM+4h0Rg30CadtrS62vnrilco76jmnLwzuHb43AGJZC4jc6ohC9KPgE31O/jbyldIjIznoel3Ea23DLRJpz2+oJ//bfuUr0oWk25O4c7xN5AZlTbQZsnInNTIgnSas6u5hCeWvUiqKZFHpt+DUSsPtp9INjfs4J/r3sbudXBR4Vn8ZPB5cjoLGZl+kAXpNKasvYrHv3+WaIOF38/8NSatcaBN+lHi8Dp5e+vHfF+xiviIGK4ZfgkTUkfJc71kZH6ALEinKY2OFh5a+Bd0Ki1/mHkv0QbLQJv0o2dH0x7e3Pwh1dY68mOyuXLYhQyJL5CFSUamC1mQTkOcPhcPL3waq9fOE2feT1Jk/ECbJNOFKIosqVzD+9vn0+GxkhudycWDzmZ08jCUcqBWmR85siCdZgTEIE8u+wc7W0p4ZPrdDI7PH2iTZPrAF/SzpGI183d/R7OzjWi9hZnZk5iZNZnYiOiBNk9GZkCQBek049+b3ueb0iXcPvY6ZmRPGmhzZA5CUAyysX47i8pXsKVhFwgwInEw0zLHMzZ5uOwAIfOjQhak04hllWt5ce2bnJ8/ixtG/mSgzZE5TFqcbSwqX8nSyjW0uTrQq3VMSB3F9MzxFMblyhE1ZE57ZEE6TajsqOXhRX8hNzqTR864Rx6POIURJZHilr0srVzDmppNeAJe4gzRTM0cx7SM8SSbEgfaRBmZ44IsSKcBDp+T33z3JD7Rz1OzfysnjDuN8AZ8rK/bwrLKtWxtKkaSJPKiM5maOZ7J6WOIlF35ZU4jZEE6xRElkaeWv8S2pmJ+P+P/yI/NHmiTZI4THW4rK6rWs6xyDVXWOtQKFVMzxnF+wSzSzMkDbZ6MzFEjC9Ipzkc7v+SDHV9w86grOCfvjIE2R+YEUdlRy4KyZSytXIMv6Gd44mAuLDiTYQmF8rwmmVMWWZBOYbY07OTPy/7BlIyx3Dn+Rrki+hFi9zpYULacb0qX0OmxURibw2VDL2CoPOFW5hREFqRTlGZnGw989ydi9VH88cz70cruwT9q/EE/i8tX8UnxN7S7OxkUl8tlQy5gaELBQJsmI3PIyIJ0CuIL+nl00V9pdLTw5FkPkihHYpDpwhf0s7h8JZ8Uf0OH28qQ+HyuGHoRhXE5A22ajMxBkQXpFOTl9e+wuHwl90/5OWPkBHAyfeAL+llYtpxPir/F6rExMmkIVwy9iOzo9IE2TUamX2RBOsVYXL6Kl9e/zSWDzuGqojkDbY7MSY4n4OWb0iV8tvs7nD4X41NHcsXQC+X06jInJbIgnUKUt1fxyKK/UhiXy0PT7kKhkGfuyxwaLp+bL0oW8sWeRXiDPqZmjOOyIeeTIGcOljmJkAXpFKHd1clvFj6JUlDy5OzfyLmNZI4Im9fBZ8Xf8s3epYhikJnZk7l08HlyehKZkwJZkE4BPAEvv1v8Nxrszfxx1n2kW1IG2iSZU5x2dycf7/qaReUrUQgKzs6ZxsWDzsakixxo02R+xMiCdJIjiiJ/X/0v1tdt5YEptzMqedhAmyRzGtHsaOWjnV+xtGoNWqWGM7OncF7BTGINcgoMmROPLEgnMZIk8eqG/7GofAU3jryM8/JnDrRJMqcpdbZG5u38ilU1GxGAieljuLDgTLKi0gbaNJkfEbIgnaRIksQ7Wz/m8z0LmTv4HK4cdnw86oJBkU6Hlzarh3abhw6bB5vLh9sTwOUN4PYG8PqCiKLUZReIXX8ZhSCgUSvQqJVdLwUaVWhd27Vdq1ai1SjD65qu99of7NOolSgVB48sIIoSgaCIPyASCIrh9e6XLxDE7xfx+oP4A0F8fhGfP4gvIPZ+7w92lQsd173PH+h5vD8QRBQP7ftUKEClVIReqtBSHV4Xwvu6P7tOq0Kn6VrXdK+r0He912qV6DUqIvRqjHo1Wo3yuEZgaHW281XJYhaWr8AT8DIsoYBz8mYwKmmoHEFe5rgjC9JJiCRJfLDjC+bt+oqzc6dz86grjroS8ngDVDbYqGiwUd/ioLbZQX2Lg8Z2V1hs9ketUqDXqtBrVWg1ShSCgCCA0L0ERJEeFXf3eiB4ZH8phUIgpEn7rkHX9QACAZFgH7YeLoIAalVINNUq5T5RVSm6titRh8U1tO1QxBJCYr2/WAYCUg/h3CegQTy+rpc3cMifS6UUwuJk1GuIMITWTREaok06oiK1RJl0REXqiDJpMUVoD9n2/XH6XCwsW8HXpd/T7u4kRh/FrJzJzMyeTLTectjnk5E5FGRBOskQJZE3N33IN3uXMDNrEreNveawE7OJokRVo40dZW2UVHdQVtdJXbOD7jpPo1aSEhdBcpyR5NgI4qIMxJh0oQqtqxJTq47cpTwoSqFWiD+I1xdqhXi71n1d6/vv6173B8Ww/RBqjUmEBBpCItnd2lB3tz66liqlIiwePxQUjSr0XqtWolYpUSmFky7Omz8g4vUF8PiC4VapZ7/3Trcfh9uPw+XD4fbve+/243T5sTq9uDyBXudVKASiIrXERxlIiDGQEG0gMTqChBgDybERRJt0B/wuujPaLihbxtbGYhSCgjEpRczMmszwxEFyq0nmmCIL0kmEL+jn5XVvs6J6PRcWnMm1w+ceUsUZFCUq6q3sKGtjR1kruyrasLv8AMSYdeSkWMhJNZOTYiYr2UysRY/iCJ6aZU5uPL4AnXYvHTYvHfZQ92uH3Uur1U1Tu4umdhdtnW72b4xF6NWkJ0SS1vVKT4wkPSGSGHNvoWq0N7OwfAXfl6/C7nNi1pmYkj6WaZnjybSknnQiL3PqIQvSSUKzs42/r3yV8o5qri66mDmFs/u9wYNBkbI6KzvKWtle1kZxRRvOrqfjpJgIhubEhF7ZscRHG07kx5A5yfEHRFo6XTS1uahvcVDVZKemyU51ox2b0xcuF6FTkZNqITvFTE6qhdxUM8mxRhQKgUAwwObGnSytXMPG+u0ExSBp5mSmZ45ncvpYYgxRA/gJZU5lZEE6CVhft5WX1r2NKIncOf6GXvHp/AGRvTWd7ChvZUdZG8WVbbi9QQBS4oxdAhTLsJwYYsz6gfgIB0QK+Am6bIg+N5Lfi+j3IPm6lx5EvxcpGABJBFFE+sESQFAoQaEILZXK0FJQIigUoFCiUGsR1FoUGl1o2fU+tK5DUGtCx8j0i9XhpbpLnCobbJTVdlLZYMMfCP0Geq2SrOSQQOWkmMlNtWA2w7r6zSyrXEdJWzkAeTFZjE8dyfjUEXIkCJnDQhakAaTd1cm/N7/PutotZFhS+fWkW0mMjMfl8bO7qoNdFW3sKm9nT3UHPn9IgNITIxmaHRKgodkxRJl0A2K7JEmIHicBa0voZWshYG0l6LKFxMdlI+gOrUs+z1FcqbuVeAycGdRaFFoDCl0ECm0ECp0h/F7Zva17v26/dW2onKDW/ui6pQJBkZomO2W1VspqOymrs1Jeb8XrC/0fNSoFWclmslPNxMYo6FRUU+raRpW1GoBMSyrjUkcwPHEwOVEZcrgrmQMiC9IAYPPY+aJkEd+ULiEgipybcS7p6qGUVHWys6KNijorogQKAbJTzAzOimFIduhlNmpPiI2SJCG6bPg7m7vEpuvV9d5vbUXyunocI6g0KCPMKPQmlIZIlAYTCoMJpcGEUh+JQqtHUOtCrReNLtRy0YRaMChVCIIi1ArqWiIowgIQai0FkcTuZTDUihKDSMEAUsC3r7Xl94aXkt+D6PeFlj43oseF6HEieruXToIeJ6LHBWJvp4AeKJQotPougdonVGFh2/8VFrKe5QXNgZ0ITgWCokRds53yOitldVb21nZSXmcNO1WolAIp8Qb0Ji92ZR2tVCAYbBh1OoYlFDI8YRDDEgcRZ4g+5b8LmWOLLEgnCEmS2NNcwVc717G2pByf3UBkMAWvw4DLHbqRNWolhRlRDM6KYXBWNAUZURh06uNjjxgkaG8nYGsjYG3Bb23eJzrWZgLWVqSAr8cxgtaA2hyHyhyHyhzftYwLb1MYTKdsBSNJElLAFxIs736C1f3yunq++trmdYe6HQ+EoAh1K2r0IbHqWu57b0Ch0XWJlx6FVhfa1lVW2P8Y9ckjbqIo0dju7NGSKqvtDDvXAOgjgohaG0FNJ4LegckE+alxDE7KJD8mi+zoDHSqE/PAJXNyIgvSMUSSJJxuP21WD21WD9XNneysqaOisZO2Dh8Bt5buLiiVUiAzOeT51t0nn51iRqU8ui4NSZKQfO5Q15nTSsDRTtDWRsDW2vUKrQcdnb0qT4XBhMoUh9oSFxab/YVHqYs4KttOd0LfvacPofqhgLlD42k+d3hd9LoQfZ7wtoMKGwBCl0CFBEyhCa0L3evdIvYD8eu9zYCg0YZapsf4+2jpdFNWa6Wy3kpNs4OaJju1zfaec9VUXgStG4XWQ0SERKxFR3KMiYz4WLLj48mMjSc2wiJ39/0IkAWJru4pKfSUFwyK4TkzP1x6fAEcbj82p5dOhwery4PN6cXqCLna2hwBAj/s9VEEUOjcWCwK8pJjGZOVQ0F6LGkJkaiUitAcGzGIFPQjBQKhZdDf1Q3lD73CFZerRwUmda13j9sEnVZElw0p6O/1GQWVBpUpBqUpFpUpBlVk19IUGxYchWZgxqNkehJurXldXb+9p8dvL4X/A/uWkq/7/+HpKhMSONHrOkRxIyRS+7XKBK0ehUoTcghR7XspfvBeUGtQqLTh9X371AgKJYJSCQpV17qKIAKtNj+1rW5qW11UNlmpbu6gpcONwyEhin20+pR+VJoAWp2EwaAkQq/AoFMTodNg1GswGbSY9AZMBi1GvQa9Roteo+5aatCp1aE5a11z2eRpDycnp6QgBQIBGhsbD1jG6vDywgdbcHr8BEWJYFBCEiWCkoQohl5BUULsen+4CIjoFD50gh+d4MOocBOpcGNUeDEpvZiVXqJUoaU6/OQpgtQ10VOSIBgAMcgRDdgLyq6nYy1KnRFBF4nSYAyN1eiMoTEcfSQKgxlVZBSCNuKk6d6ROXFIkgRBf2hczedG9HlDLTG/p2tczbOvZeb3dnk/uhG9XiS/e99DUdCHFPAjBvwQ8IMUPIZWCiAoQBnynHQKejoDeqyiDoeowhnU4BA1OEUNrqAGp6TBJWrwSWpEjrDVJIihCCDCfvde13r39q6gISgEAZPOiFJQ7BetZN+91L3avWV4fhxzz8g9qAmJiYmoVKojs/805ZQUpNraWmbNmjXQZsjIyMgcMYsWLSI1NXWgzTipOCUF6VBaSEdKY2Mj11xzDf/9739JTEw8Ltc4Xsi2Dwyy7QPDqWw7yC2kvjglvw2VSnXcnywSExNP2acX2faBQbZ9YDiVbZfpiey2IiMjIyNzUiALkoyMjIzMSYEsSDIyMjIyJwWyIP0Ak8nEnXfeiclkGmhTDhvZ9oFBtn1gOJVtl+mbU9LLTkZGRkbm9ENuIcnIyMjInBTIgiQjIyMjc1JwSgpSIBCgtraWQK/AcTIyMjKnDz+2uu6UFKTGxkZmzZp13KI1yMjIyJwM/NjquuMuSA6HgwsuuIDa2tpe+xYuXMicOXO46KKLuOOOO7BarcfbHBkZGRmZk5TjKkhbt27lqquuorKystc+h8PBY489xquvvsr8+fMpKCjghRdeOJ7myMjIyMicxBzXWHYffPABv/vd77j//vt77fP7/Tz22GMkJCQAUFBQwOeff96rnM1mw2az9dj2Y2m+ysjI/HiQ67rjLEhPPPFEv/uioqI488wzAfB4PLz66qtcd911vcq99dZbvPjii8fNRhkZGZmTAbmuOwmifdvtdu644w4KCwu55JJLeu2/4YYbem3vDjsvI/Njw+/3U1tbi8fjGWhTZA4BnU5HamoqarX6oGXlum6ABam5uZlbbrmFCRMm8Nvf/rbPMiaTSQ4NIiPTRW1tLZGRkWRmZsoZgE9yJEmira2N2tpasrKyDlperusG0O07GAzy85//nHPPPZeHHnpIvrlkZA4Bj8dDTEyMfL+cAgiCQExMjNyaPQxOeAvp1ltv5e6776axsZFdu3YRDAb59ttvARg6dOgBx51kZGSQxegUQv6tDo8TIkiLFy8Or//rX/8CYNiwYezevftEXF5GRkZG5hTglIzUICMjc+zYtm0bjz76KADbt2/n7rvvPuTyx6KcjEw3siDJyPzI2bt3L01NTUCo5+L5558/5PLHopyMTDcD7vYtIyNzfBBFkT/96U9s3boVp9OJJEn88Y9/5MMPP6Szs5OamhqGDx/OqlWrsNvt/OY3v+Hiiy/mD3/4A1988QUbNmzgySefRBRFAH72s59RVFTE888/Hy7/5z//uc9rNzQ09Cr3/vvv8/bbb6NQKIiNjeWRRx4hKyuLBx98EEEQKCsro729ncmTJ/Pwww8f0FU6GAzyl7/8hcWLFxMZGUlRURFlZWW8/fbb2O12nnjiCUpKSvD7/UycOJH7778flUrFsGHDuO2221i5ciXNzc1cf/313HjjjXz88cd89NFHuN1ujEYjb7/9Nh9++CHvvvsuoihisVh45JFHyMnJOS6/lUwX0ilITU2NlJ+fL9XU1Ay0KTIyJ5Rdu3YdctlNmzZJd911lxQMBiVJkqRXXnlF+tnPfiY98MAD0g033BAuN2/ePOm2226TJEmS1qxZI51//vmSJEnS9ddfL33xxReSJElScXGx9Nhjj/UqfyD2L7dq1SrpzDPPlNra2sL7zj33XEkURemBBx6QLr74YsnhcEher1e65pprpLfffvuA53733Xela665RvJ4PJLX65Vuvvlm6dprr5UkSZIefPBB6T//+Y8kSZIUCASke++9V3r11VclSZKk/Pz88Lm3b98uDR06VPJ4PNK8efOksWPHSna7XZIkSVq7dq109dVXSy6XS5IkSVq+fLl07rnnHvQz98Xh/GY/5MdW18ktJBmZ05SRI0diNpt57733qKmpYe3atURERGCxWBg9evRBjz/33HN5/PHHWbx4MZMmTeL//u//jtiW5cuXc9555xEdHQ3A3LlzeeKJJ8JBly+55BIiIiIAmDNnDosWLeLaa6/t93xLly5lzpw5aLVaAK644grefvttAJYsWcL27dv56KOPAHq5Xc+aNQuAIUOG4PP5cLlcQCh8mdFoDJ+jqqqKK6+8Mnyc1Wqls7MTi8VyxN+DzIGRBUlG5jRlyZIlPPHEE9x0003MmjWL7Oxs5s+fD4DBYDjo8VdeeSUzZsxg5cqVLF++nBdffDF8/OEiSVKf27rz/CiVyh7bFYoDD2+rVD2rrv3Li6LIc889F+5es9lsPdyvu0Wse1u3bft/J6IoMmfOHO67777w++bmZsxm80E+qczRIDs1yMicpqxcuZIZM2Zw9dVXM2zYMBYuXEgwGOxVTqlU9pkA7sorr6S4uJi5c+fyhz/8AZvNhtVq7bf8gc47ZcoUvvrqK9rb2wGYN28eFouFjIwMAL7++mt8Ph9er5dPPvmEGTNmHPDc06dPZ/78+fh8PgKBAJ988kl435QpU3jzzTeRJAmfz8ftt9/OO++8c1B792fy5Ml8+eWXNDc3A/Duu+9yww03HNY5ZA4fWZBkZE5TrrzyStavX8+FF17IFVdcQVpaGrW1tWEnhW5GjhxJeXk5v/jFL3psv/fee3n++ee5+OKLuf7667nzzjtJTU3tt/wP2b/c5MmTufHGG7nhhhs4//zz+fTTT3nllVfCLRudTsfVV1/NhRdeyJgxY7j00ksPeO65c+dSVFTExRdfzJVXXolarUav1wPw0EMP4XK5uPDCC7nwwgvJz8/npz/96WF9d1OnTuXWW2/l5ptv5sILL+SLL77gxRdflCe6HmcEqa+29ElObW0ts2bNYtGiRaSmpg60OTIyJ4zi4mIGDRo00GYcUx588EHy8vK45ZZbDvmYFStW0NbWxpw5cwD44x//iFarDXexnUwczW/2Y6vr5DEkGRmZI6K8vJxf/epXfe7Lysri2WefParzX3311Tidzj73/fOf/+T111/n9ddfJxgMUlhYyGOPPXZU15MZeGRBkpGROSKys7P57LPPjvo8Tz75ZJ/b//e//x3wuDfeeOOory1zciGPIcnIyMjInBTIgiQjIyMjc1IgC5KMjIyMzEmBLEgyMjIyMicFsiDJyMjIyJwUyIIkIyNzTHn++eeZNWuW7AUnc9jIbt8yMjLHlM8++4zXXnuNrKysgTZF5hRDFiQZmVOUxRuqWbCu+ric+6xx6cwck37AMoFAgMcee4zS0lJaW1vJysoiOTmZpqYmfvGLX/C3v/2Nm266iSFDhtDa2spHH33E66+/zvz581EqlUyePJn77ruPhoYGbr/9dtLS0qiqqiI5OZmnn34ai8XC999/z7PPPosoiqSlpfH4448TGxvLzJkzmTlzJhs2bADgT3/6E4MHDz4u34XMiUPuspORkTkiNm/ejFqt5v3332fBggV4vV4mT55MfHw8r776KoMGDaKjo4PbbruNzz77jFWrVrF48WI+/vhjPvnkE6qqqnjvvfcAKCkp4YYbbuDLL78kJyeHF198kba2Nh599FH+8Y9/8PnnnzNq1Cgef/zx8PUtFguffvopd999Nw888MBAfQ0yxxC5hSQjc4oyc8zBWzHHk7Fjx2KxWPjvf/9LeXk5lZWV4dxC+zN8+HAA1qxZw/nnn49OpwPg0ksv5dNPP2X69OlkZmYyfvx4AC6++GLuvfdeJk+eTFFRUTiG2xVXXMGrr74aPu/ll18OwMyZM3nwwQdpb28P51uSOTWRW0gyMjJHxKJFi7j33nvR6XTMnTuXsWPH9pn3qFuAfhhlHAinp9g/v5EkSSiVyl7l98+f9MNjRFHskVNJ5tREFiQZGZkjYvXq1Zx77rlceumlxMbGsn79+j7zLXUzYcIEvvzySzweD4FAgHnz5jFhwgQAKioqKC4uBkK5kqZNm8bw4cPZunVrOKvs+++/H25FAXz55ZcALFiwgJycHDl53mmA3GUnIyNzRFx22WXce++9fPPNN2g0GkaMGBEWj76YMWMGxcXFXHrppQQCAaZOncq1115LY2MjZrOZ559/nurqagoKCvjjH/+IwWDg8ccf584778Tv95OcnMwTTzwRPt+mTZv46KOP0Ov1/QZolTm1kAVJRkbmiCgoKODzzz/vtX3/lBR79uzpse+OO+7gjjvu6HWMXq/npZde6rW925uuL37961//KHIE/ZiQu+xkZGRkZE4K5BaSjIzMgJKamsrixYsP65jDLS9zaiC3kGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMCWZBkZGSOKU1NTdx6663H5FzPPfccixYtOibnkjn5kb3sZGRkjikJCQn861//Oibnuueee47JeWRODWRBkpGROSLWrl3LK6+8gk6no6ysjIKCAv7617/S3NzM9ddfz+LFi2lsbOTee+/FarWSn5/P+vXrWbZsGU6nk8cff5zS0lKCwSC33norF1xwQTgSeGdnJzNmzKC5uZlx48Yxd+5cnnnmGVavXo3VaiUqKooXXniBuLg4pkyZwtlnn83GjRtRKpU8++yzpKWl9bC1v3QVFRUVPProo3R2dmIwGHjooYcoKiriwQcfRBAESkpKcDgc3H777Vx88cUD8C3/uJAFSUbmFMW+bQn2rcdnPk7k8JlEFp1x0HKbN2/m66+/Jj4+nssvv5wVK1aQn58f3v/EE09w7rnncs0117BgwQK++OILAF566SWGDBnCU089hcPh4MorrwxHBW9qauKrr75CpVLx4IMPAlBVVUV5eTnvvfceCoWC+++/n88//5ybb76ZlpYWJk6cyCOPPMKTTz7Jf//73/Bx+9OdrmLx4sU88MADfP7559x3333cdtttzJ49my1btnDPPffw7bffhu147733aGtrY+7cuUyePJm4uLij/WqPiL6C1p6OyGNIMjIyR0xeXh6JiYkoFApycnKwWq099q9cuZI5c+YAcNZZZ2EymQBYtWoV7733HnPmzOGaa67B5XJRWloKwODBg3tE8gbIyMjggQce4MMPP+TJJ59ky5YtPVJdTJ06NWzPD23oZv90FU1NTTQ2NlJdXc3s2bMBGDFiBGazmfLycgDmzp2LWq0mMTGRUaNGsXHjxqP6ro6OH4cgyS0kGZlTlMiiMw6pFXM80Wq14XVBEHo9ySuVyj6f7kVR5Omnn2bIkCEAtLa2Yjab+fzzz8PpKvZnx44d/PrXv+bGG2/k7LPPRqFQ9Dhvtx192dDND9NVBIPBXmUlSQpHLN8/nYUoir1E8oQS8A/ctU8gcgtJRkbmuDFp0qRwANalS5dis9mAUCqKd999F4Dm5mYuuugiGhoa+j3P+vXrGTduHFdddRW5ubmsXLnygKku+uKH6SpSUlJIS0vju+++A2DLli20traSl5cHwNdff40kSdTV1bFt2zZGjx59eB/+GCIGfxyCJLeQZGRkjhu//e1veeCBB/jggw8oLCwMd9ndeeedPPbYY1xwwQUEg0Huu+8+0tPTw04HP+S8887jzjvv5MILL0StVlNQUHDAVBd90Ve6iqeffprHHnuMF154AbVazQsvvIBGowHA4/Fw6aWX4vP5ePzxx4mKijqKb+LocDl6Z+I9LZFOQWpqaqT8/HyppqZmoE2RkTmh7Nq1a6BNOCzeeustqbS0VJIkSdqxY4d0ySWXDIgdM2bMOKz64oEHHpDmzZt3TK59NL9Zd123esnSY2LLyc5xbyF1e9C8/PLLvXKXFBcX8/DDD+NwOBgzZgy///3vB7afVua0R5IkvAEvLr8HT8CDN+jHH/QTlLrHEwRUCiUqhRKNSoNepSNCrUer0iIIwkCbf8qRkZHB//3f/6FQKNBqtfzhD38YaJNOSaxW50CbcEI4rrX/1q1befjhh6msrOxz/3333ccf//hHRowYwW9/+1s++OADrr766uNpksxpjCRJWD02Gh2tNDtbaXW10+7qpNXdQYe7k06PDbvXSUAMHPa51QoVJl0k0XoLcYZo4o2xxEfEkhwZT4opEbPOdBw+0anP9OnTmT59+kCbcdjpKk62DLStVvtAm3BCOK6C9MEHH/C73/2O+++/v9e+uro6PB4PI0aMAEIuls8//3wvQbLZbOGB0G4aGxuPm80yJz+iKNLkbKXGWk+drZE6eyN11kbq7U24A54eZY2aCGIMUUTrzWRYUjFpI4nURBCh0aNTadEoNWiUahSCAoUgIAFBUSQg+vEGfbj9Xlx+Fzavg063jXZ3J+Ud1ayt3UxQEsPXMetMZEelkR2VQU50OnkxWSdUpCRJQpQkRDG0HnrtcxYWAEEIeaEpFAKKrqXMycOB6rqmDlmQjponnnii333Nzc09JpnFxcXR1NTUq9xbb73Fiy++eFzskzn56fTYqLHWU2Otp9paT1VnLTXWenz7eR1F6c2kmpKYnjmBpMh4kiLjiYuIIdYQjValOS52iaJIq7uDelsTtbYGqjprKe+oZkvjrrArcVJkPIPi8hgcl8fg+DxiDdFHdC2vP0hjm5Omdhcqb4DWTjeBoEgwKBEQQ0tRlA57pooggEohoFIqUKkUqLteGpUSjVopC9YJ5kB1XWOnp8/tpxsDNmAj9TFXoK8++htuuIFLLrmkx7bGxkauueaa42abzIlFlETa3Z002JuptzVRbw9V8tWddVi9+54MIzURZFhSOStnGmnmZNLNySSbEjCo9SfcZoVCQXxEDPERMYxIGhze7g34qOiopqStnF0te1lTs4nF5SsBSDTGMTShkCHxeQyJy8eiN4ePkySJDruX6kYb1U126pod1LU4qGt20GrdVxnde2kqnQ4vKoWAUhkSD6VGQKEUUO7X+uluDe1PqBXVNddG7HoFRQJBCY8viMPl79GiUqsV6DQq9BolOq0KjVqJzPHjQHVdu0Ps56jTiwETpISEBFpbW8PvW1paiI+P71XOZDKFXUVlTi0CwQBOvwunz4Xd58TudWD12On02OhwW2l1d9DiaKXJ2dqjxaNVaUmNTGRk8lDSzSlkWFJIMydj1kae9I4FWpWGwrhcCuNyuahwNqIkUt1Zz87mPWxv3sPK6vUsLFsOgEUdQ0QwgYDVQmu9DodVTUgKIEKnIiXeyNDcWFLijCTFRJAQYyDoaCQnxXxcvgdJkvAHRHz+IF5/EK8viNPtx+b0AaBWKYjQqYjQq9FrVSf9b3GqcaC6rsP943gYGDBBSklJQavVsnHjRkaPHs2nn37KtGnTBsocmX5w+z20uTpod3di9dixee04fC6cfhcuvxtPwIs34MXj9+IJeHEHPKGl34P/AM4DkZoIovUWEoxxDE8cTGJXV1tyZALRestpU9lZHT7amtS46tJQ1pvR1+fT6axHEdlGm6mdzsgSiAxAAUQpDKQaU8mPyyQ/PpF0SzKJxnhUin2VUXFx03H7bgRBQKMOddcZu7ZJkoQvIOL2BHB5/FidPjodPpQKgUiDmsgIDTqN7Bl7vHEGdDTZOkkwWQbalOPKCf8n3Xrrrdx9990MGzaMv/71rzz88MM4nU4GDx7M9ddff6LNkemi022lvKOGamsdtbYGGuzNNDpasHsdvcoKCOjVIXdonUqLTqVFq9Ji0kWiU2nRq3To1DoMah0GtZ4ItYFIbQSRWiMmrRGLzoRaqT7un0mSJFx+Nx0eKzaPHbvPidPnxhPw4Au7e4uAhEJQoFKo0Cg16FVaIjSGkK16MzH6qIOORYmiRGO7k/I6K+V1VirqbZTXWWm37etui4/Sk5VsZtqIcWQlm8hKNhNr0VFra6CkrYyS1grKOqr4unwBX5WFOs+UgoJEY3yXV18MI9T5OLzOLtd0FUqF8riKtyAIaNVKtGollkgtoijh8vixu/aJk06jxGzUEmlQh215/vnn+eyzz7j22mu56aabjsqGF154AYC77rrrqD/PgaitrQ1HKT9UZs6cyX/+8x/WrVvHunXrjqN3nsCCbdu4dsrp/dB+QgRp/x94/zwphYWFfPTRRyfCBJn9kCSJBnsTO5r3UNyyl5LWclpc7eH90XoLSZHxjE8ZQbwxllhDNNF6MxadCZM2EoNGj0LoHXVKCvrxNlXha64i0N5AwF6D6HYgBkJdPoJShag1YI0wozLForYkoo5NQR2dhKA4si4JURJpcbZRZ2uk3t5Mo6OZFmcbLc52WlzteAPeAx4vIIBw8GjKJq2RRGOoFZcYkYA2GIXfbqSpOUhFfUiA3N5Qi1CpEEiNN1KUF0tOioWcFDNZKWaM+r5FODMqlcyoVGbnhtyjfQEftbZGam0N1NoaqLc10eRspaS1jLz0VJqc+7q6BUClUIUFSqVQoVaqUCvUqJUhwTqWKBQCRoMGo0FDMCh2CZOXpnYXbVaBqEgdpggNn332Ga+99hpZWVnH9Po/Zlbu2SsLkszpQSAYYEfzHjbUbWNL406anW1AyEOtICaHc/NnkB2VQYYlhQiN4ZDPG3TZcBavxlmyHk/1TqQu8UGhQmW0oNBHIqhDk0pFr4tARyMBpxXJuy8UiqDSoEnMRpeSjy5tELr0wSj1xl7XcvicVHbUUNlZR3VnHTW2emqtDXiDvnAZg1pPQkQsyZEJFCUOIkYfRZTejKmrdWbQGDCodGhUGlQKZVhYQwP9wZCrd8CDw+ui02OnqrWZypYmaq0t1De3Utq0BUm1n8eTT48hMo68kWkMSchnTGYumUnmo3IA0Kg0ZEenkx2d3mvfzl27SDUlERCDLK9cy/LqdSEXb6Twcn8EBBSCIuTu3eXaLnDwFtWMrElMz5pwwDKSJPLXp/5ASUkJra1tJKem8+Cjf+b1l5+lsbGRX/ziF/ztb3/jpptuYsiQIbS2tvLRRx/x+uuvM3/+fJRKJZMnT+a+++7rEcgU4LXXXuODDz4gKioKk8lEUVERAO+88w6fffYZbrcbQRB49tlnycnJYebMmVx00UWsWLECt9vNU089xdChQykuLubRRx/F4/FgNpv561//SmJiIq+++ipff/01wWCQKVOmcN999wGhcEG/+tWvKC0txWQy8Y9//IOoqKh+r3uiMCq9NDRCVWctGZbUgx9wiiIL0mmMKInsbC5hedU61tdtxelzoVVpGRZfwEWFsylKHERCROxBu3yCotTlZizS3ZAINFfg2vgF7j1rQQygjk4icsSZ6NIHoU3IQmWJP2CrJ+hxEmhvwNdag7epEm9dKdYNX2FdOx9JUOBJzqI5KZ0mk4maoIvKzlpaukQUQvN+0s1JzMqeTJo5mRRTEsmmBCI1EYfdheUPiDS2OalttlPT5KCm2U5NU2jd5w8CWgQhlcToAoqSIkmO1hIR5SKg6aDRXc/e9kpKXSspbVjJgjYDQ+LyGZpQQFFCIUmRCce0S00hCGhVGrSAXq1Dreh9C4thgRJD65JEUNoXiFSBAoVCgVJQ9NnSPVQ2b96MWq3mgw8+QBRFrr/+esp3b+L/7nuIDevW8Ps/PUN2Tg4dHR3cdtttjB8/nqVLl7J48WI+/vhjVCoVd911F++9914Pr9nt27czb948PvnkEwRB4IorrqCoqAiHw8HChQt5++230el0PPfcc/zvf//jkUceAUL5jj766CPefvttXnnlFV544QXuvfde7r33XmbMmMH//vc/3nrrLSZOnMiOHTv46KOPEASB++67j/nz5zN69Gja29u56aabKCoq4u677+arr75izpw5B7zuiSBbZ2W3LZt5O7/h/yb/9IRd90QjC9JpSKurncXlK1lSsYZWVzt6tY4xyUVMTBtNUeIgxKBAU5uL6ioXGzsqaLN56LR76XR4sTt9ONx+XJ4AHl8Ary9IUNz31B2jsHORYSMjNNV4JDVrvbms9+fR5opF16xCu8mFXrsHg66MCJ2aCL2aSIOGSIMao0GDKWLfy2xMRR2dgjU1m+qcAio7qqlqKaPG3oRdtEPnToQOidggpOksTE8eQ172WLJjMg866VSURGweO+1uK50eG802Ky02G+1OJ1anC7vLg8Ptx+H243QHkYIKpKAKAipMWiNJ5mhmZSWSlxRHRpKJ9IRIdNr+b5dWZzu7WkrZ0byHnU17WFe3BYBYQ3RYnIYmFGI5hpNlp2dNOGgrphtREvEGQq2/bgcUCQmloCBCY8CoiUB3mOGRxo4di8Vi4b///S/l5eVUVVUR9HtJjTeiVAgEgiI1TaExyGFdLZw1a9Zw/vnnh1NMXHrppXz66ac9BGndunVMnz6diIgIAM455xxEUcRoNPK3v/2NL7/8ksrKSpYvX86gQYPCx+2fE+m7776jvb2dlpYWZsyYARCedP/UU0+xbds25s6dC4RaRcnJyYwePZr4+Phwayw3N5eOjo6DXvdEkK1ppdhbyKqSPZyXX0Zh3IlrnZ1IZEE6TZAkieKWvXxVupgNdduQJImhCYWclXY2OncKNY0uPtti5x/Ni3vMa4HQuIDFqMVi1GKK0BBj1mPQqdBrVWg1StQqJWqlRGL9chJrFiIpFDQkn0ljwmR0aBjf5Srs8QXx+AK4vQFcngBN7S7sbh8unwsPDgSNG4XOhaB1I+icoZfGQ3cdKIhKNKKZCDLJVsYRrzST57WR5CjDXLMH5e5SxJWLqIwZhDN+GPaofDokL62eFjp8LXT627EHOnGLdrw4QTjA3A1JAK0AWglVVM9uLg9QAVR4YUN9BAm2WFLqE0kzJ5MVlUZ2VDpGbUSPY2IjopkWMZ5pmeMBaHK0sLWxmG1Nxayv28qSitUApJqSGBSXS0FsDvmx2YfUQj0WKAQFerUOvVoH+tDEXlfAHXbJt3kdqJWqrkgWRpSKg7ecFi1axPPPP8/111/P3Llz6ejoQJKkcDSIlDgjWkNo3KzVFiBRFUQUe/8mgUBPb0xBEHqUU6lU+Hw+GhoauO6667j22muZNm0asbGxFBcXh8vtnxMJQK3uOWbn9Xppbm4mGAxyww03hJ0tbDYbSqWSjo6OHrE0u3MrHey6J4IsQqk5dO40Xtv4Ln8+64ET4hh0opEF6RRHlEQ21G3jk+JvKGuvQqfUk6Ecga8xlS2bAqwLdAAd6DRK0hIiGZYbS3KckeTYCBKiDcRFGbAYtQeclR+wt9P8yd/x1BQTUTiRmLNuIivCTKfXRqfbRqfHhtVjw+q1d63bET023B4rQbcVAl72T7mmVeowq6OIUMSjk8yo/WYErwm/S4fLHcTh9tPo8VPhDbDUG4kojUCpGEx6ZCWxhgZUUiVtnVU0uVT49rNb8msQfBGoRTNGIRWjMhKT1kS0wUy8yUJSlJnkKDMpcWZMhn2J5URJxB8M4Pa7cfhd2DwOOj1WWl3tNDlaaXS0sKN5D8uq1oaPSTTGkR+bzaDYXIbE55NgjOshLAnGOGbnxjE7dxqiKFLRWcP2pt0Ut5Syono9C7rmIkVqIsiMSiPdnEKaOYkUUyJJkUfW9Xg4KBQKjJoIjJoIREnE6QuFR2pzddDhtoa9IQ/kFLF69WrOPfdcLr30Upqamli/fj0TJ07c7xoCCTEh4Q4ERGqa7YwYNYY3Xv8XV1xxBSqVinnz5jFhQs9W3sSJE7nnnnu466670Gg0LFiwgOnTp7N9+3YyMjK48cYb8fl8vPzyy0RH9x/9IjIyksTERFauXMnkyZP57LPPWLduHeeddx7PP/88l19+OVqtll/84hdccskljBs3rs/zHO51jwcmyUp6QiR48qm2fsb/tn3GDSN/ckJtOBHIgnSKIkoiq6s38v62L2l0NaEKGPHXDcHdnIxdoSY3NYJzJ0WTl2YhN81CUkzEYYWCCYpBGh0tVFZtYe+aebQJIs4Rw7EpPbQvfrJPd3AIjWtYtCYsehOZljRGJg0lWm8hPiKGuK7IBsaDVLa+gI/KzlrK2qsoa6+ivKOaensTjZJIIxChtpCssTDeFyC+vZmEznbi/EHM8VkYcoZhyB2FOikbp9+D1WvH7nXi9Lvw+DtoCDZTUx+K7B1y9VaiVWkxqPVEaiOw6Ewkxcb3WRF3O1Xsba+itK2CrQ27WFYZEql9XXODKEochEm7zylDoVCQE51BTnQGFw86G1EUqbbWU9JWTnlHNZUdNXxXtgz/fpOD9SodsYaoUBw+QxTReksosGswEm/AF3bIOBaipRAURGqNRGqNeANeOj1dDxleOxatCbPO1GeL6bLLLuPee+/lm2++QaPRMGLEiH5zFKUlGGloc5E7eCzjJxZz6aWXEggEmDp1Ktdee22PsoMGDeKGG27gJz/5CSaTieTkZAAmT57Mu+++y3nnnYdGo6GoqCic9rw/uvMd/eUvfyEqKoq//OUvxMfHs3v3bi6//HKCwSBTp07lkksuoa6urs9zHMl1jwfTiuJ4Z0E5s0fP4MuSRRTEZjMhbdQJt+N4IkgH83c9CamtrWXWrFksWrSoV0qL0x1RFPlqxzo+2f0FdqkN0R1BoD6HTEMho/ITGJEfR0FGNNrD8PIKikGqOmspaatgb3slVR211NmbekTFjlDpiDfGEW0IVYxRejMWXcgV3KIzYdZFYtZGojnM2HEun5vKzhoqOmqo6FrW2RoRuwKXmnUmcqLSyezqKsuOTidGHxXu1mmwN1NZt4Pq6q3UtdfQ4nPQqVJgUykIHmFlLQgC0ToLCcZYkk2JpJuTybCkkGVJQ6fe19aTJIl6exM7mvawozn0cvpcCAhkRqWGxakgNgfNQbpXRFGk2dlKvb2JenvIdb3V1R6KWO4OzaOSkLgz5xpSstNCdnanylCqUCtUqJVqNEo1GqWmx2TaI8EX9NPh7sThc6EUlEQbLEfdahNFiaZ2Fw63H4tRQ6xFf9pMgD4QxcXFRzzm1F3XvTk3n/TbXuTnL27hytl5FCu/pKKzht+d8UvyY7OPscUDh9xCOkWwOrzMW72JRXXf4Nc3I3kMpElTmV0wifGXJhIVqTv4SbqQJIk6WyObGnawvWk3e1rL8HTN1+mOWj3EEI9x2wqS9FEMveQBzNHJR2W/w+ekwd5MXdf8mhprA9XWOtpcHeEyFp2JrKh0xqYUdUXNzghHbfAEvFR21LKudgsVHTVUd4Ym8O4fDcISYSIhLokCEYwOB4b2ZiJcdiKCIgatEVNiNsakPAzJ+Wjj0pAUCgLBAJ6u/Eh2376I3i2uNprsLayu2RgO9SMgkGZOJj8mi0FxeQyJzyfFlEiKKZGz86YjiiLlHdVsbdzFtqbdfLFnIZ/t/g61QkVe1zGFcTnkRWdh0PSMv6dQKEiMjCcxMp6+nnkDYpBOj5X68joSjLEExCBBMYhfDBAQAzh8rrCIA6GWn1KDTq1Dr9KhUaoPq/LXKNUkGOMwB7y0uTpocbZh9zqIi4g5qLj2h0IhkBhjoNXqptPuQ5IgLurHIUrHglh9kKE5MSzbVM9ffvkzHl78V55c/k8eOeMesqLSBtq8Y4IsSCc5e2s7mbdsJ+valqGIq0ap1TA+6kxunnQeUcZDDyoqSRKlbRWsqtnI+rqtYRfqFFMi0zLHUxibS2FsDjGGKHxNFdS//QgqcxzJVz2O0nBwzzBPV8XV6mqnxdlGs7ON5q44dU2OVhy+fQnGVAoVKaZEBsXmkmZOJjMqlSxLWjjYaCAYoNpax8b6bextq6KsvZJae2N48qpZG0lmVCrnJJxBmjmZ1C6X7x8GWZUkiUBHA+7KHXhqivFU7yKweyMuwK3SoEnMQpuUQ1RSDolJuaiTMnu5qkuSRIfbSkVnDWVdXXWrajaysHwFEIroPSyhkOGJgxkSn09uTCa5MZlcOuQ83H4PxS2lbG/aw66WEj4u/hppV1ckcGM8GVGpZJhDcfqSIxOIj4jpt4WpUiiJNUTTomzCqInos0xQDOIL+vAG/XgDPrwBL06/O3y8Qa0nQmNAr9IdsgjoVFqSIxOw+5y0uzqotTZ0tY5NRyQkgiAQaw6JUIfNiyDwo2kpHS2i18WM0Wm88MEWGpsDPDz9Lh77/hkeX/Isj0y/m+zojIE28aiRu+xOQiRJYntZKx8sLGFH+1Y0GXsQVH4mp0zi5rGX9PLwOhBNjha+r1jN8sq1tLjaUSlUFCUOYnTSMEYmD+mVEiHg6KDu3/eDoCDlxj+jigzt9/g9NDpaaXK20ORo3a9LKSRCTp+rx3mUgoLYrjGjBGMcica4rmR2ScRHxITHaERRpN7eFB4vKmuvpLKzNtzyMWmN5ERnkhOd3tVll0GU7siDiwZsrXjqSvDW7sFTvxdfY3l4Mq+g1qFJyESbmI02KQdtUjbqmJReIiWKIpWdtexsLmFH8x52tZTiDXhRCgryYrIoShxMUUIhOdEZPcaiXH43e9sqKW2roLyjmqrO2vAE5W4sOhMxhihi9FHhrtHwS2fGUW+lsLAQhUKxX86j0C0s0DvKdyAYwBXw4PK7cfndSJKESqEMhXHSGFEpD/2ZNCAGw7+1TqUlPiLmiD29JEkKt5RizTqiTIfewj+VkCSJ3bt3H5Muu6IbH4b0UVz/2DfMHp/Bz+YW0exo5fffP4Pd5+T/Jt3WI/L8qYgsSCcZu6va+c+XxeyoqcGQuwvR2EJOVCY/H3fNIc/QFkWRDfXb+HbvErY37UEQBIoSBjElfSxjU4f3m65BEoPU/Pd3VLdW4ppxOXWiJ5QEz95Ih9vao6xBrSfOEE1MRDSx+tDge6whmtiIKOIMMUTrLSh+MBDuCXiptYZyB1V21nZFXagNR1rQqrRkR6WTE51BbnQmudEZxEXEHNenZ0kM4m+tw9tYjrexDG9DOb6mCiR/qAtTUGtDApWShy6lAG1qASpjVI9zBIIB9rSVh7rqGoup6KhBQkKv0jEoLpfB8XkUxuaSFZXWqwL3+D3U2ZuotzXR7GylxdlOg72FVkcHNp8dr9jTRf/y1HMoTM5HZ4wAlCAqQFKAqETqWlcoQKlQoFKGch2pVUq0agUajQJf0Ivd58TldyMQSmBo0ZsPuRtOkiQcPhetrnYkJGIN0Uc8tiRJoTElu8tPcmwEEf2EVjpVkSSJtrY27Hb7EYdQ2l+Qhl71f0QWzeCp/6xn295W3vrd2aiUCtpdnfx5+T+osdbz09FXcmbO1GP8SU4ccpfdSUJLh5s3vtjJ8i21RKY2EzlyJwoFXDP8CmbnTjukGfWegJfF5Sv5qmQxzc42YgxRXD70QmZkTSTGENXnMaFupb3sailhR9laqlVWAsmRsOdrtCotaaYkihIGhWK4GeNJNMYSb4ztt9tIkiTsXgel7RXU25qoszdSa2ukztpAs7Mt/DSvV+nIsKQwM3syWVFp5ERnkBKZ2EvEDgdPwEurqz3sumzzOnD6XLj9HnxBH4GuaAUKQYFGoUan1mLURGDSGomKiyUuoyD01K9Q4m+r7xKoMrz1e7Gu/wrrmvkAqKOT0WUMQZ9VhD5zGCp9JEPi8xkSn8/VRRdj8zrY0bSbHU2h1tOmhh0AKBVKMswpZEalkRaZjE6KwufQ0dEGdS0KalsMNLSKuL2R+z6UIojBGMBkEdFFBNlQY0VHExatDoRQNIb9wwUJKFCgROgSK1Gkx8RmpSIU0VutEgjgoy5QiyRJ6FRaItSGQ/7+g6KI3eegNliNVqXBqIk4oqgP3XmgGmolok3aQ5r/dCqh0+mO2UOz2BVua8aYNFZsrWfT7mbGDUkk2mDh8Zm/5tnVr/Hqhv+xt62Sm0dfecRjfQOJLEgDTFCU+Hx5Ge98sxsJH7mTq6jzlzAoNpdfjLuBeGPsQc/hCXj5tnQp8/cswO51UBCbw7XD5zI2ZXif7sv19ibW125lU8N2SlrLCUoiKkFJitvDFH0cKYXnEqNORC+Y8AdCidzwA53Q5lBgUznwCy24JSsO0UqHt51mZyuNjmaaHK24usYtIDRelBQZT050BtOzJpBmTibDnEK8MfaIw9aEPPNqqbbWUd2VxrzB3kSnx9arbPeEUI1SjUro6iaUJHyiH08/KTLiDNGkmpPJtKSSM3g0uVMvJVkdgbepAk/1LjzVu3DsWol98wIQFOhSCzDkjyNi0ATU5nhMWiOT0scwKX0MAFWtLazcu4Pi5nIa2uqpaF2PpNwXf08SFSiJQJ8QSXKamRiDhURzDKmWGNJj4kg0R2PWmfr0nJMkCavHRrW1nsrOGva2VbGntYwOT6hFm25OYWzyCNK1hbQ0CWwva2VraT1ubxCzUcPUMbFIcWUsq1iJUqHkJ4PP4/yCWYfkpSeKIvP3LOD97e9i1pm4c/wNDE0oPLQfcT8a25zc8/clZCaZ+NMdU1DKmWr7RPSEBGlUQTymCA2LN9YwbkgiEJpu8cCUO/hg5+d8vOsbKjpquGfizSSbEgfS5MNG7rIbQOpbHPz93U3sqepg6BA1ttjVtHnauXzoBVxcePZBn1YDYpCFZcuZt+trrB4bwxMHc+ngcymMy+1VttnZxoqqdaysWk+NLTTr26KKI8KfjNgZxcVt3xMlOviz9SJcUtekUUFE0DlR6B0IekdoqXMi6FwIin0eXZIooAgY0EkmIlUW4gyxpEclUpiYzrD0NIx6bS97DhV/0E9FRw2lXS7p5e3VNDiaw/sj1HpSTUkkmRJINMYRHxFDjCGKKJ0Zky7yoAP43oAPm9dOm6uTVlcbjY5W6m2NVFnrqLc1dqWnCIlUYVxoEuzQ+ALiDFF46/fiKtuEq2QDvuZKAJRJ+XTEj2aXkEtpg4fyuk7abfsijsda9GQmR5IYr8Rg8aDUu/EKNto87bQ622lzd4ZdvPdHQMCsiyTGEEVcREzXmFwCqaYk0szJPdJjdHtRbm7Yyfq6LexuLQNgWEIB5+bNZFj8YLaWtLJwfTVrdzSgUCiYPiEKZ/RWtjbtIMOcwu3jrjvkQfLy9iqeW/NvGuzNnJ8/i6uGXXTY7v+LN1TzzLubue3iYVw49fRxYz5awl12lw8jf/oFxJx5IwCvfLyNb9dW8Z/HzukVRX5j/XZeXPsm/qCfa4fPPeQelpMBWZAGiO831vDPj7aiUiqYdZaapS1fYFDr+eWkWxgUl3fQ4zfV7+CtLR/SYG9mSHw+Vw67iILYnvGtAsEA6+q28vWepexpD03kU7qjcTfHI3YkIPn0REVqmWkqZ6p7EWszzqc5Lgar1ESrr5FWT3M4KKeAQIw+hhhdLFGaaIxKC1rJjDIQgd+lpdPuo7XTTVO7i5YOF/v1EoXzAOWkmMlJs5CfFoUlsm+Rsnkd7GktC71ayijrqA7Ph4rWW8iNziQ7Op1MSyoZltTjmszPF/RT2SWGe1rLKW4pDadUj4+IYXBsATHKNALWaNoqGzA0bGawVEKi0opHUlGsHERL8mQSM7PJSTWTlWTCaDh4Rd3t4h2KgmGlw22jw9NJu6uT1i4X7GZXG0Gx67cRBFJNSRTE5jA0Pp9hCYVE7jcxt9XZztLKNSwsW0Gbu4NUUxI/GXIeE9JG0drh4YNFJSxYV41Rr+asszSsbl+AzWvn0iHnc8mgsw8phYUn4OWdrR/z3d5lJEcmcMe46w9rfowkSfzu1dXsqe7glQfP7Pf/8WOju677z7XjyB45kbgL7gCgpLqDXz+3jDsvG8HZE3o/OLS7O3l53dtsadxFUcIgbh93Xb/d9icTsiCdYAJBkdc/28EXKysYnB3NsImdzC/9ioKYbH49+baw63N/tLk6+Pem91lft5WkyHiuH/ETRiUN7VEpO3xOPtq6kMUVy/BILkSvnmBLChGeLIamplGQEUVumgWLRWRP207WrnqXMp0KhxD6KxjUenKiM8iKSg+7JaeYEg7Zo8ofEGlqd4YiZzfZqWywUVFvpa7FEY4WHh9toCDDQkqKgMrUSXuwgZLWcursjUCoqy87Kp382GwKYrPJi84i2mA5/C/8GNE9AL+qZA+baoupdlbgVjchqAJIEqh8FuJUaQyKzWOiyUBCw3rce1ZDMEjE4ElETbkMTdyxmysSFIM0OVuptTZ0ddVVsqetHLffg4BAYVwOE9NGMyl9TDhqRFAMsrpmI5/s+oYaWwPZUencOPJyCuNyqGqw8cIHW9hT3cGZE5OQkrezqmYDhbE53D3x5l7emP2xrbGYl9a/Tburk3PyzuDKYReF4ucdAjVNdu786/ecNzGTn80tOuLv5nSiu65755ZppOcUkHDpvUDo/3j7U4uwROp48hdT+jxWkiQWlC3n7S3zUCqUXDnsIs7KmXrMc2QdS2RBOoG4PH6e+s8GNu1p5qKpWUgp21lYvoIpGeO4fey1B6zwJUliUflK3t4yj6AU5CdDzueC/Fk93HbbnFZeWfEpW9s3ICkCBK2xJElDmJ47krGDk8hIjKTJ0cKqmo2sq91CeUc1AKZAkKFJQxiWMZqCuBySIxOOSxO/3WFnZWkxW+tLqbJWYZWaQNU1lhJQEyHFk2XKZHT6IKYVDiFSN3CuwMGgSEW9jV0VbRRXtlNc2U5bV1BavVZJXloUBRkWTHEunKpGSjpKKWkrJygGEQSBTEsqeaYUUtrbiN6zmRi3B3PRGURNvxpV5PF5UhVFkbKOKjY37GBtzWZqbA2oFCompo3i/PxZ4fxKoiiyono97277jDZ3BzOzJ3Pt8EvQK/W8/XUx877fy5hBCUybAW9seQ+VQsWd429kVPLQQ7LD5Xfz7rbP+G7vMqL0Zm4Y+RMmpI46pJbsix9uYdH6Gl5/+CyiT1NX8MOhu6773+3nkBwfTdLVvwvve3/BHt75ZjevP3QW8dH95zBrtDfz6ob/saN5D2nmZG4aeTlDEwpOhPmHjSxIJwib08fv/rWa8jort186lGJxMatrNnLxoLO5aticA96sVo+Nl9a/w6b67QyNL+BnY68hwRi3b7/TyXPfz2OHbT2SIoDGmcaMtDOYM3YkcVF63H4PK6rW833FKva2VwKQF5PFmITBJH7/EZkJeSRd8dAx/bwev4fKzjoqOqop66iivL2aOltjeGwkOTKB/Jhskgyp4Iiivk6guKKd6iZ7qMWhFMhNtTAoK4aCjCgKM6KIMR/aRGBvwIfVa+/ysHPjFwOIktgVakcV8ijTGDBrI9GrQ2NMHXYPJVUd7KnuYE9VByXVHXh8oS6xuCg9gzKiGZwVzaCsGDKSTH0OvHsCXkpayylu2cvu1r3sbasMu7SrUZDg8REfEElPHUpG4WQSjPHERURj0kYel27Hqs5aFpWvZGnFGtwBDyMSB3PlsDlhYfIEvHy080u+2LMIi87EHeOupyhxEF+vquCf87YxqSiJ6y5O57k1r1PVWcvcwedw+ZALD9kTr6S1nNc2vktlZy1D4vO5YcRlZEYd+H6tb3Xw8ycXccWZBVxzzuE7SJxudNd1795zCQk6iZSbnwrva2xzcuufFnLTBUOYO6P3uPH+SJLEurot/GfzR7S42pmQNorrh19KbMSJDRJ7MGRBOgE43H4eemklNU127r9+NCs7v2Bt7WauHX4JFxXOPuCxxS2lPLvqdRw+J9cMv4Rz8s4It14CgSAvL/mWZY0LQO3B6EvnimEXMnv4EARBoN7exFcli1lWuRZPwEuaOZnpmROYlD6aWEM01nVf0LbgDZJv/DO6lPwj+mzdKcSrrfVUd9ZRZa2jqqOWRkdLWHzMOlMouGhUOnkxWeRGZ/Y7udfh8rGrop2d5aGWSWlNJ4FgyLEgxqwjJ8VCVrKJtEQjmkgXLtppcjVRb2+iydFKq7MtHJ3gUFBIKiSfnoBLj+iOQPBEkmRMYmhKJoMzYxmcFUNc1KFHxNifoBikztYYCqDaWUt1awU1bdVYhWCPcmqFiii9uWsirCW8HmOwEKMPOTFE6c1H5ZX4XdkyPt+9ALvPyRmZE7lm+MXhnFJl7VW8uPZN6myNXFR4FlcOm8MXyyt4ff5Orjt3EBefkcnrm97n+4pVDEso5J4JN2PSRR7kqiFEUWRh+Qre3z4fh8/FjKyJXD7sQqL1ln6Peexfq6lssPH6w7N/9B533XXd+/dfTYyvlbTbX+ix/5fPLEGpEPjbPdMP6Xy+gI/5exbwSfG3CMDFg87mooKzDtsJ5XghC9JxxusP8ugrqyip7uChm8ay1vYdSyvXcP2In3BBwawDHvtN6RLe2vwh8RGx/GrSrT2eLteVlvP8qv/g0zWh8Udz3fCfcPawkUDoyXjezq9ZW7sZpULJlPSxzM6dRk50RvhJXBKD1PzzTlSmGJKv/+MhfRarx0ZVZx011nqqrfXUWOupsTXgDezzIkuIiCXDkkpmVCqZllBA1Cj9kUdW8AeClNVZ2VJRw7b6Emqd1bgUrQgG2z5PP0lAGTCilUwYFJHoBCMaQY9S1CIGlXi94HIHsDq8uHxeUAYRlH4UGh9GcxCd0Y+kduAQO8NOHBqlumsMK4fC2BwK43L6nXt1OEiSRNv2JZQueYs2gviHTsYRHUeH20q7uzO83D8tO4REK9EYR4o5iQxzCjnRGeTFZB1WunmXz83Hxd/wZcki9CodN468jKkZ4xAEAV/Ax5tbPmJh2XIKYnP45cRbeH1eGau21fPMr6aTlWxmcflKXt/4HiZtJL+a9NPDclpw+Jx8vPNrvt67BJWg5IKCM7mo8Kw+x5eWba7l6Xc28uc7JjM05+DTHk5nuuu6Dx+5BXPrbjJ++e8e+z9cVMJ/vio+aLfdD2lxtvH21o9ZU7OJOEM014/8CeNSRgx4CCdZkI4jkiTxt/9uYunmWu6/bgxVwjrm7/6Oy4acz2VDL+j3OFEUeXPLh3xTuoRRycO4e/xN4WCcgaDI0199yib7YgQEzkg+k59NvQClUkmzo5X/bf+MVdUb0Kt1nJN7Bufmz+gzS6mrdCONH/yJ+Ln3Yhw0sdf+dlcne9srKWuvCkfj3n+eT6TWGHZ4SDMnk9710h3iAPbB6PTYwlG0dzWX0OhoAUJCkWVJJ06bhEGMQXKbcNu02BwBbE4fTo8ff0AkKEooBQGtRoleqyLSoCHarCPOoicpNoKUOCOp8UY0+0VFD4pBGuzNVHTUUNZeSWl7JeUd1aFxIQTSLSkMictjcHw+g+PzjkqgAvYOWj5/HnfFNoxFZxB77s9QdD2lSpKE2++h3d1Jq6udZmcbTY4W6u1N1FobaHK2AoSjio9MGsK4lJFkRaUdUoVSa2vglXXvsKetnAlpo/jZmGvCwraiaj2vbPgvepWWn4+6mb/9q5ysZBN//PlkACo6avj7yldpdbVz7fC5nJc/87AqsUZHC//b9ilrajZh0hq5dPB5nJUztcdYqMvj5+pHvubi6TnceMGQQz736Uh3XTfvj3cSUbaSrAff67G/odXJbX9eyK1zhnLRtMPPIruzuYQ3Nn1AtbWOYQkF3DjyctLMRxdI+WiQBek4Mn9ZGf/6bAfXnltIfHYbL61/m9k507hl9JX93sQBMciLa95gVc1Gzs+fxXXD54b77Fttdh747J/YNZWYxCQenv0zMmMS8AV8fFL8LfN3f4cgCJyfP4sLC888YIXZ+OGTeOtKSb/rFVAoQ0nomvaws7mE3a1ltLtDUbgVKIg3xJNmSiE7Oo3c2HQyo1IOmkL8cPEEvOxu2cu2xmK2Ne2m2hrKTWNQ6xkcl8eguDwGxeWSGZV21KkVDgdfwMfe9ip2tZSyq7mEPW3l+IN+BAQyLCkh2+LzKIjNOez05JIk0rHsAzpXfIg2JZ+EnzyAymg56HEuv5vy9iqKW/ayvWk3JW0ViJJIcmQCM7MnMTN78kHFct+k1vnEGqL5v8m3hSNGV3fW8fTKV2hzdTDGOIvvFwo8fddUCjND4w1On4t/rPsPG+q2MjZlOLePu+6wxXlvWyX/3fYJO5tLSDTGcXXRxYxPHRm+L+5/YTmSJPH03dMO67ynG9113cd/uQ/9jq/JeuA9BFVP56efP7mQpFgjv/vpoaWz/yFBMciCsuW8v+Nz3H4P5+RO57KhFxxW6/tYIQvScaKqwcYvn1nKqIJ4rro4gUcX/41Bcbn8dtqd/bpdBsQgz61+vc/xpd31tfx+0QsE1DbGRE3jvtlXoBAU7G4p46X1/6HB3syU9LFcO3zuQd2jg04r5c/fSvOIKawzWNjesgtHsCtWnV9LwBaF6LAgOixIrkiQ9tmrUgrERRlIiTOSlWyiID2KIdkxhzS/Zn+6UzVsayruSoFRTkAMoFaoKIjNoShxEEPjC8iOSj+qcELHGn/Qz972SnY2l7CzuYSStopwYr0EYxx50ZnkRGeQHZ1Ohjm1V5qJvnDuXkPzZ8+hjIwm6apHUEcd3ux6u9fButotLK1cw+7WMrRKDWflTuPiwtkHHespaS3nmVWvYfc5uGPc9eHoEg6vk2dW/4vtTXugOZvxMTP49dVjwsdJksSXJYv479ZPiNZbuGfiLYedl0eSJLY07uSdLR9TY2tgcFweN468nMyoVP716Xa+WVPFh386/7ASS55udNd1nz77CNpNn5Dxy3+jjOg5NeSf87by/YYa3v3jeaiUR36v2LwO3t8+n4VlKzBqI7h62BxmZE06ofefLEjHgaAocd/zy2jucPH0PZP406q/EpCC/GX2b3tMWNwfURJ5ce1brKhaxw0jfsL5+40vbaou4anl/0RC5OpBV3PxqAmIoshHu75k3q6viTVE87Mx11CUePCIwhUdNXy69B22OytxqBRIogLRGoPel0x6RBaZ0UnEWgyYIjTotSqUSgFRlPD4gjhcPtptHpraXdQ2O6husiOKEoIA+elRTByaxPRRqcRaelfCoiRSY63vipBdwq7mknCIoQxLKkUJhRQlDmJQbO5RD7D6gn46PTZsHjvugAdf0B/2stMo1ejVulBQUZ3pkOfI9EcgGKC8o5rdrXspaQ1Fk2h3d4b3xxqiSTMnkRSZQHJXPMD4iBhiDdE9uqk8dSU0vv8EglJD0rWPoYlJOSJ7Kjtq+WLPQpZXr0On0nLZkPM5N2/GAeeedHps/H3lq+xuLePyoRdy6eBzEQSBgBjkjU3vh9Ktdybw+vUPEKnv+duWtlXw3OrXaXV1cMXQC5kzaPZhO18ExSCLy1fx3o75OHxOzs6dTqx7BP/6eDevP3wW8VEn/kn9ZKG7rpv/0p9Rr/4vqT9/AU1Mzy61lVvrefI/6/nr3VMpyDh6r7mKjhre2PQ+u1vLyI5K56ZRl/eadH+8kAXpOPDtmipe/HALv75mNMWB71lSuZrHZ/76gD/qf7d+wme7v+PKYRcxd/C54e2b63bz5LJ/IPnV3D3uZ0wpLMDudfDs6tfZ3rSb6ZkTuHnUFQesWEVRZE3tJt7f8i0N7loUIuQ4g4i6s5hRMJrR+UmH7FK9P15/kJLqDraVtrJhdxN7azoRhFCsrQumZhAZ42ZPWzm7W/ZS3Lo3nKIiISKWoQmFDE0IheE50u6/7lTn3V5sddYGGh0t4WgKh4JBrSc+IoakyATSzElkWEK5mWIMUUc8wNvptlLeUUNVZ23Y8aPB3oRvvxTlAgIWvYlYQzRxhmhiI2KIFgWUaz4nNigw5KrH0cUceV9+ra2Bt7fMY3PDTrKj0rlrwk2kHCCumT/o55X1/2VZ1VpmZk/m1tFXoVQokSSJV5Z/xqL6b0mOSOH3Z97Va/K2y+fm1Q3/ZVXNRobGF3DnhBsP6EXXHw6vk/d2zGfB3uVEqI207cjnz9ddwuCsmMM+1+lCd133xevPolz6Gsk3PYUuuaeLd1O7i58+sYA7Li3i3ElHFlX8h0iSxMrqDbyz9WPa3Z1MyxjPNcMvIeogE/ePFlmQjjE+f5Db/ryQWIue6y6P44mlzzOncDbXDL+k32NWVK3n+TX/5sycqdw6+qpwRbintZzfLXyGgEfLXaN/zvRhuTQ5WvjT0hdpcbXz09FXMTN7Ur/nFSWRlVUbeHfb57S6WxE9BizOLO6xLSN+9AUknHX9MfnMoiTS5GhlQ9UeVpTupNJajajtRFDsS0ZXGJfLoK5YcHERR1bBePweilv3sqNpD8Ute6noqA7HmovURJBqTibJGNflJm3BpDViUOvRqjQoBAWiJOIP+nH5PTh8Tjrc1i6ngdau9A/7opGbtEZyozPJj82mMDaH3OjMo2q5iZJIh9tKk6OVJkcLLa5Q7LruNOWtro4eKeOVUmiuVmZMKHNuYWwOmZa0w+o+kSSJNbWbeG3je/gCPm4dczXTMscfsPz7O+bz8a5vGJcygnsm3oxaqcbl8XPNX99Al7edaIOJ30y7k1RzUq9jv69YzRub3kejVPOL8TcwKnnY4X9RdLW6Vr5Js7uZ4dGjuW/G9SeNW/KJpruu+/LtV1AseIHEqx7FkD28RxlJkrj6ka+ZPDyZOy8bcUyv7/F7+HT3t8zfvRCVQsllQy7g3PwZx20cV472fYxZtL6aNquHu68czr83vUSiMe6AHnV1tkZeWf8OhbE53DzqirAY1dub+OP3LxLwargo5WqmD8ul1tbA498/S0AM8ugZv6Qwrv8WV0lrOa9vei+Um8cVibptDDdMmcnEyHpaP/0ec+G4I/p8oiTS6GihoqOa8vZqyjuqqeioCXe/aZRq8tPSUXvzKNkN1uYIskfkcf3MoYed70aSJKo6a9ncsJMtjbvCkRBUChV5MZlcWHhWV96kzKNyLe/GE/BS3VnX5WUXyg67f+qInKgMBsXlMiguj4LY7MMa9FUIilDiPUMUg+N7xyoUJZFOt41mZys1NTso3TCf5mArOwJulletA0K5i0YkDmZS+mhGJA09aKUgCAIT00ZTEJvD86v/zYtr36TaWs/VRXP67FYTBIErh83BpI3kzc0f8pcVL3Hv5J9j0GlI0eZidKbQplvGw4ue5v4pt/f4HIIgMDN7EgWx2Ty7+nWeXP5PLsifxdXDLznsyisvJotfjb6Hez/8F1vZyMOLmrh/yu0n3STOE4lCE+oBEX+QCBNC331GkomapkPvGThUdGodVw6bwxlZk3hz0we8vXUeSyvX8NPRVx2w/jlSZEE6hkiSxBcrK8hNNdNEMQ32Zh6ceke/eUmCYpAX176JRqnml5N+Gr5xXT43Ty79J15fkBTHbK6ZNZJGRwuPf/8sAI/P/HWvJ9RuvAEf/9v2KV+Xfo+WCHxlRYyIH8Gvfj4Ks1FLy5ffoNAa0KYcPICrJEm0uToo6Yq0XdZeRWVHDe5AKISOWqEi3ZLCpPQx5EZnkB2VQZo5KTxe4Z4V4P0Fe/hkyV62lbXymxvGkptqOeA1nT4X25t2s6lhB1sadoZdzTMtqZyfP4uihEIKYnN6RLc+VuhUWvJjs3sMztu9DkraKkLdji17+aJkEZ/t/g4BgTRzMoWxORTE5pAXk0mCMe6IRVEhKIg2WIg2WCiMy2VyZBqNHz6JIX8sqgvuZ3drGVsbi9lUv50V1esx60zMzpnKufkzDurhFq238PAZ9/DGpveZv/s7Oj1Wbh97Xb/jSuflz0Sv0vHy+nd4cvk/eHDqL8hMMrOzIsBfrrifPy17kT8ufZ67J9zEhLRRPY5NMSXyxJn38/aWeXxRsojStgp+NfnWw+7CUylUBGoKuWTMeBY1f8ZvFjzJb6bdGY4y8WNDodEhApK370nfCdEGtpW2HLfrJxrjeGDqHayv28obmz/g0cV/ZWbWJK4efkk4VuKxQBakY0hZrZXqRjs/u3QQH+96jSHx+YxM6j/+15cliyhrr+KXE38avmElSeLlDe/Q5GzBWzqWO2+ZhNPv5ImlLxAUg/z+AGJUZ2vkbytfpdbWQLZ2BDtXxnLBxDx+evGw8Ix3d9UOdOlDeqXl7qbZ0cq2pt3saN7DnpYy2rrcv9UKFZmWVKZmjiM7KoPsqHRSzUkHfPrVa1XceMEQJgxN4qm3N/DAiyt44PoxjBu8bywjKAYpa69iW1MxWxt2UdJegSRJRKj1FCUOZmTSEIYnDj7ufdf9Eak1Mjp5GKO7up+8AR+lbRXsbt3L7pYyllWt5buyZUCoBZMTHcp4m2lJI8OSSkJE7BF5KRnyRhM963raF75JVFIuUybPZUrGOAJikK2Nu1hQtpwPd37JFyWL+Mng8zkv/8COCyqFkp+OvooovYUPdnyOKEncOf6Gfh0QZmRPQqVQ8eK6N3lq+T/JTTiLpZvdRKrM/GHmvTy14iWeWfUat465qleGUo1SzS2jr2RQXB4vrX+bB7/7M/dN+Tl5MYc+vuELhCYoF1gKmFl0P39a+iK/X/IMD0+/+7DOc7rQLUiiz9Pn/oRoA202D/6AiFp1fLziBEFgXOoIihIK+WjX13y5ZyEb67dz29hrGJsy/OAnOARkQTqGrNhah1IhEDTXYK2x8+uht/X7xNzpsfHRzq8YlTyMifs9Za6oWs+amk0omwYxKnUQOSlmnlj2PO2uDn4341f9itG2xmL+tvJV1EoVV+Vcz7/fbWbmmDRuu2RY2IaAvYNARyOm0WeHjwt1i9WxqmYD6+u2UmcLRduO0pkZFJ9HYWwOeTFZZJhTeniFHQ6FmdH8/ZfTePz1tfzpzTXceFkqisgOdjWXUNyyF3cgFKE6OyqdSwadw4jEIeTFZJ6UUYm1Kg1DEwrCwSmDYpBaW0NXvqYqytqr+LT4O8SusS21Uk1aV86iVFMSKaZEUk2JxB+CUJnHXYC3vpSOpe+iTx+ELm0QKoUyLJBVnbX8b9tnvL11HquqN3DPxJtJjIzv93yCIPCTIeehEATe2z4fo8bAzaOu6Lf81MxxSEi8uPZNnEYJyKShzUlWspmHp9/N31f9i1c3/A9f0M95+TN7HT8pfTSppkT+suIlHvv+GX458ZZDrrhc7tB4WoReTaoplj/MupfHvn+GPy19gT+eef8BHTRORwR1d5dd3y0ks1GLJIHT7T/uqTt0ah3XDr+EaRnj+Mfat3h6xctMyxzPzSOvOKRpDgdCFqRjyMbdzQzOjub7qoXkRmf2mSivm492fok/6OeGET8JC4bD6+TNLR+SpE+hvCqd83+axae7v2V70x5+Pva6fud5rKnZxHOrXyfFlMT9k2/n4Rc3kxIXwR0/Gd5DEL11ewDQpRbi8XtYUrmGRWUrqLLWoRAUDInP48zsKQxPGkxKZOIxCSNi8zrY21ZJSVs5pmFlaBPK+V95qLJJioxnSsbYUAUfX9CvS/yR4Al4aXa00ubuwOoJBVr1Bf1ISCgFZTjtdpTeTKwhihhD9BEN1CoVSjK6cjN1txR8QT811vpwmKUaaz3bGotZWrkmfJxaoSLVnESWJY3s6HRyozPJsKT2EGFBEIg77+d4G8po/vRZUm/9Owrdvu65DEsqv5n2C9bUbOKVDf/lwQVP9hrb6YtLBp2Dw+vki5JFpEQmcnZe/3HQpmWOx+V38+9N76POdFHXPI6sZDNalYb7Jv+MZ9e8zpubP0QhKDgn74xex6dbUvjTmQ/w5PJ/8reVr3Ln+BuZkjH2oN9rpyMUjsoUEeqajTFE8cgZ9/DbBU/y9IqXefKsB49ZVJBTAUGpAoUqnMb8h+g0of+NxxcATkwuqXRLCk+ceT/zdn3NJ8XfUNpawa8n30a65cimLIAsSMcMp9tPVaONM2caWGFv4s7xN/Zbtt3dyeLyVczInkzSfk+0H+36CofPSZ50Dk06D7GJAf628EsmpY1mRlbv8D4Amxt28Nzq18mJzuS30+5kU3E7Da1OfnvjOLTqnhWst6EMr1LJ5+17+Grtyzj9brKi0vjp6CuZkDb6qPuCXX43lR01lLWHInyXtVWGw9woBAUZ5hTOyJrImrVeJHs0j//yHMzGo795XD43e9sr9wt1VEuLs+2wzqFUKEmNTCSrSxwKYrNJMycfUUBTjVIdCib7g4yrTp+LOlsjtbZGam0NVHfWsb5uK4srVgGhMayihEGMSx3BmJQiDGo9Cq2B+Dn3UP/WQ7QtfJO4C37R63oT0kaRHZ3Bn5e9yBNLn+eh6XcxOL7/YLmCIHDt8LnU25t4c8uH5ERnkBuT2W/5c/LOoMXRyed8y5KaZUwZcRUAKqWKX078KX9f9S/+vel9jJqIPsXGpIvk0TPu4cnl/+SFtW+gU2kYc5CWUoc91DW1fwqK+IgYfjXpVh7//lne2foJPx1z1QHPcbqh0OqQ+umy02lDVbnbG+hz//FCpVRxxbALKUos5JlVr/HQwr9w+7jrmZQ++sjOd4zt+9FSXm9FksCqKkev0jEhdWS/ZReWLScoBrmo8KzwtnZ3Jwv2LuOMzIls+x6GZMfy9taP0Km0Pbzv9qfGWs/fV71GujmF306/E4Naz7LNdUSbdIwf0rNLQ5IkVjTt5LOMGOy7vmJMchEXDzr7sGfXd+P2e0KpJbrEp6Kjmgb7vtTisYZosqPTmZUzhfyYLLKjM9CpQuJzdpqVXz+3jH98tJXf3DD2sFpioiTSaG+mtCsh3Z7WMmqtDWF37SRjPHnRmczMmkRiZByxhmgsOhMRGgMapQYFAkFJxB3w4PA66fBYaXG202Bvoqqzlo3121lSsRoIjQkNTxzEqKRhDE8afNSCHaEx9HKakCSJFlc7e9sq2NFcwqb67ayr24JWqeHMnKnMKTwLS0o+lolz6Fz1Ccah09Bn9nanjo+I4fGZv+bRxX/jLyte5snZvyFxvxQlP0ShUHDnhBu579sneGHtGzw9+6EDulZfM+Iivtq4nW3ScopbxoSzGqsUSn458RaeWPoCL637D4nGuD7FTafW8eDUO/j9kmd5bvW/eeLM+w/4JN3a6UGjVvbyzBwSn885eWfwTekSZudOO6qn8VMNhcbQb5edXhOqyj3eYJ/7jzeD4vJ4avZv+fvKV3lu9es4fA5m5x5aBPL9kQXpGFHf4gQkKhyljE4p6vfmFkWRReUrGZE0uEeF8VXJ9wSkIBcVzOabD9eSPzjI6qbd3Djysj7Dv/gCPv6+8l/oVFoemHoHBnWo73ZXRRtjBiX0CLdi9zp4ad3bbBA6yFTo+M2sew74RPxDJEmi3t7E7pa97GkrZ29bZY/cRjGGKLKj0pmWMZ7s6HSyo9IPONk1O8XMdecW8sYXu1i5rZ4pw/uuVDwBL/W2RmqsDVRZQ7mV9ncx16t05MdmMTFtNPkxWeREZxySK7aK0FiQRWfqcz5Nk7OVPS1lbG/ezdaGXays3oBCUDA8cRBT0scxNqXomHUXCYJAfEQM8RExTEofgyiJlLZVsKBsOV+Xfs/i8pX8dPRVTJ5yGY7i1bR+/Sqpt/0doQ/PzUitkd9Mu5MHvn2CF9e8yeOzfn3AFp5RE8Ed467nD0ue49Pd33L50Av7LasQFOSI0ykLfs7za97g7+c8Gp6MrVGquXfybTz43Z95ZtW/ePqch8P/x/3RqXU8MOV27vvuTzy35t88ddZv+h2XbOl0EWfR9/mwctmQ81lSsZpPir/hnom39Gvz6YZCq0Psx8tO26PLbmCI0pt55Ix7+Pvq10Jz34J+Lig487DOIQvSMaLd6kaIsOLwOxl1AM+6nS0ldLit3DTy8vC2QDDA9+UrGZsyHK1kQhQlKoObiNKbe3kwdfPBzi+oszfy8PS7w7HrPL4AVoePlLh9T/K1tgaeWvZP2twdnN9i54LhM4k5BDFy+JxsadjJpoadbG/ajbXL/TpSE0FeTBaT0keHYrYdRHz6Y860HJZuruPV+ZuITvBi83fS7Gyl0dFKk6OZenszba6OcHm1QkW6eZ+LeW50JqmmpGMeZ0sQBBKNcSQa45ieNQFREilvr2Zd3RZWVK3nhbVvoFfrmJU9hXPyziD+CCf59odCUFDQ5Up+6eDzeHn927yw9g06hs/lzNm30Pj+E1jXf4Vlwpw+j4+PiOGGkZfxz3X/YVX1xoOO1wxLKGRS2mjm717A7NzpBwwQm5MUw65Nw2gvXMOHO77g+pE/Ce+L1Bq5Z+ItPLL4r7y3bT43j+7bWcKiN/OzMdfwlxUv8XXpEi4s7LvCau5wE99PHiqjNoIzsiayoGw5Lr+7T/E7HRE0+v5bSF1ddgMpSAAalYZ7J/+M59f8m/9smUdcRAzjD9Bb9ENkQTpGONx+dNGdABQl9J/pcn3dVtRKdQ938K1Nxdh9TmZmTcLtDSDoHDR4q7hq2Jw+5zDV25v4cs8iZmZN6hG/LhgMtVi63T6rO+v4/ZJnUSDw0PCr0H/4d7QHCEfjD/pZX7eNpZVr2Na4i6AkEqk1UpRQyJD4AgbH5ZIUmXBYXWxBMUirq51GRwtNjpZQpAJnK82OVjrSW/EEPTy29Ktw+UhNBInGOIbE5ZMUGR/ySjMnkWSMHxCvO4WgIDcmk9yYTK4cdhF7Wsv4bu8yvipZzNel33N+/ix+Mvjc4zLAnhQZz6Nn/JLn17zBO1s/Jn/mvZhzRtK5ch6Rw2ei1PcdOHVa5ng+2/0dX5YsOiQHgiuGXcTq2k18XfI9VxX1LXQAeekW/EvMTIgfzdd7l3Bu/oweUTfyY7M5K2cq35Ut47z8Gf16/I1JKaIoYRDzd3/HuXln9NlKam53kTOsb49SgPGpI/i69Ht2NpccM5fjkx2FSoMY8PW5T6ftmvs3QF12+6NSKLlz/I20Odt5cc2bpM5OOmSvSFmQjhG+gIjC2ElSZOIBIyzvbNrD4LjcHhM719duQa/WUZQwiKZ2D8qYhlCuo34cGebt/AqVQsWVP6g89FoVKqVAp91Lq6udPy59HrVCxWMzfkVkfSVNgMqS0Ot8br+Hb/cu5auSxXR6bMQYoji/YBbjU0eSE51xSAP7/qCfOlsj1dZ6am0N1NoaabA10ehsISjuu0nUSjXxhhjijbEUxOawu9TD3jIf910xjRHpGUftNno8UQiKrjQYeVwz/BI+2P4F83d/x9bGXTx6xj3H1EuwG6VCyR3jrmdXSylf7FnIXTOupe61e+lc/SkxM6/r184ZWRN5Z+sntLk6iDFEHfAaSZHxjEwaypLK1Vwx7MJ+f++C9FCkhDRGsVnaxNelS7h+xKU9ylw6+DwWl6/im71LuXHkZf1e89z8GTy1/J9sayruFWLI4w3ltjpQUNWc6EwEBKo6a380goRSjeTp28suPIY0wC2kbjRKNfdO+Tn/9/XveX3jezxyxj2H9CArC9IxQgBEnZWsqP6765w+F7W2xnCIfwiNWWxtKqYoYRAqpQqjXo0yqok4TUqfk0E73FZWVW/g7LwzenWvKBQC6QkmSmvbeWblF3gDPp44834SI+Ox2jcBoDLte6KVJIklFav537ZPsXrtDE8cxB3511OUMOiAXWGiKFJtraekrZy97ZWUt1dTZ2sIx5VTCgoSI+NJNiUwJqWIpK4o14nGOCx6U48Kz1rg5fanFvHxV82Mv7PgwF/ySUSsIZo7xoe8iZ5e8TJvb/2YO8YdXmxASZJweUKZbO0uH15/EFGUUCoUGHQqTBFaok1atCoNg+PyKO+oRpuQiXHIFGwbvsEy/qJeqQi6KYwNTTmo6Kg5qCABTE4bw6b67VR01PTyDuwmLkpPfLSB8kofI3OHsrJ6PdcNn9ujoonSmxmZNIQ1NZt6TGn4IcMSClEr1exo2tNLkFo6Q91S/XXZQWgMMFIbQbvbetDPdrogqNRI+wXo3Z/wGNJJ0ELqJkpv5qqiOby28T021m9nTErRQY+RBekYoVKLEHQfsGla0VGDhNTDoaDN3UGbq4M5XbmPRIUbhcGBWew7MOXyqrUEJZHZuX0nLivKi+WrvQtQtlfyq0k/DQ/aBx0dIChQGkIiZvM6+MfaN9ncsJOC2Bzun3r7AWfAt7ra2VS/nS2NxT1SR0RqjeREpTM6eRjplmQyzKkkRsYf8pwes1HLbZcU8bf/buSdr4u54fzBh3TcycKIpCHkx2ZT1lbZbxlJkmjpdFNWa6WiPhTNo67FQVO786BdLAqFQFJMBL6MWrRaJTVNduInX4pj5wqsG74ienrfrs/mrla6w+c8pM8xKD4kYHvbKvsVJIDhubGs2t7ALVOHsaF+Gw32JpJ/8J8fnjiY9XVbaXG2EW/sOwW5RqkmOTKBentTr32tXYIUd5C0EwpBgSiePBXw8UZQqqAfQdJ1tZBc3r73DxSzsqcwb9fXLChbLgvSiUTQecADUbr+n0ZrbQ0APVIEV3bUAJAdFYrRVdpeCYC7ve/B5bU1m8mJyiA5snfXG8CooWa+cZSRpstjYtq+uQBBtw2F3oigUNJgb+aPS5+n023l5lFXMDt3Wp/dNE6fi+VV61hetY7StgoA4iJimJA2isFxoSgOcRExRz2B9oxRqewoa+WjxaUkxhg4e0LmUZ3vRLKudgu7Wko5P29fpAKXx09JdQfFlR3sqWqntKYTmzPU9y8IkBgTSqE+LDeWWLMeS6QWU4QGrUaJQhAIBEVcngCdDi8tHS52teyhXNFER3ked6xcTFJMBLeaC2H911gmzUWh7j2XqzvVx6Hme4rRR6FSqGhxtR+w3Ij8OBasq0bpDbXMam2NvQSp+6GsydnaryBBKPWHJ+Dttb3NGhKkGPOBU6o4fC6Mx6Gb9GRFUKqRgn13ySkUAnqt6oTPQzoYSoWS6ZkT+Gz3dzh8zoPGXTyugvT555/z0ksv4ff7ufHGG7nmmmt67N+5cyePPvoofr+fpKQknn76aUymY5sa+0Sh1YWe1BTB/m+iFmcbaqWaKN2+bpb6rrk73Tdxd+rumkp6xaVy+Jzsba/i0iHn9XuNnfb1CAqRll0ZeM4JhCfMiR4nSl0EzY5WHvv+7+G4eH25f3e4rXy2+zsWla/EG/CSYU7hqmFzGJ864rCdGkRRxOl34faHEuV1p1hQCAq0Kg0GtZ4IjYGfXVJEa6ebFz/cSpvVwxVnFYTj752MBMUgnxR/y4c7vyA9Mo143whe/HALuyvbqW6yI0kh8UlLiGTc4ERy0yzkpJrJTDKFn2YPhZLWcr5ftpwUfSL/d8PNbC/tYPW2Bv5Xmc5dkcW8+/JbjDj/UoZk9/T229NaDoSiORwKgiCgVqh6pMDoi+F5cQgCVNSEhMTudfQqo1WGxkd9/TzNd+PyuYjpI4J3m7X3pNgf0uhoJiAGSD5AqKTTDUGpQgr0/50adCrcnpNLkACGxhfwafG3lLdXHzSJ6HETpKamJp555hk+/vhjNBoNV155JePHjyc3d184nSeeeIK7776b6dOn8+STT/L666/zq1/96niZdFyJMIY83Jy9788wnR4bFp2pR4Xe5upAr9KF58802luIVJto9gjsKm9jeP6+uUpl7VVISAzqJySRP+hncfkqBkcPYeN6Fe8t2MONFwwBQPJ58Ku1PLviJXxBP7+f8X+9JhUGxSCf71nIvJ1fERADTE4fy3n5M8g+QBcOhFKv11obqOysoc7WSIO9mRZnG+3uTmxeR3i+Un8IgoBFayI2M5r0SBUfbqtgZfk2fn7ONIZlnTwxyyRJorXTw5q9u5lf+SlWsRmhI4Xd6/PZLe4kQqeiICOayUXJFGREU5ARddgpN7oJBAPM37OAD3d8QWxEDL+ddidxERbS4iycNymL1s4RNPx7C+mdG3nwHwmMyIvjpguHkJ1iRpREFpavIMOccsDJsfvjC/hwBzwHfYI1G7XkplrYXtYEsfTp+ej0h1pnhgO0zgLBAA2OZob24ZHabvNg1KvRqPvv9t3RXAJwwjKZngyExpD6FxyDToXrJBSkzK6Holpbw8AJ0qpVq5gwYQIWiwWAs88+m2+++YY777wzXEYURZzOUB+32+3GbO49QGuz2bDZbD22NTY2Hi+zjxhTZOjmaW7t2y0TwOl3Y1T37Be3ee09vPI6PJ3EG6OxapQs31rXQ5CqO+sByLKk9Xn+7U27cficXDR+OtEdfj5ZspdxQxIZnBWDFPTzpT5IjbWe3067q5cYtbk6+Puqf1HaVsHYlOFcN3xuv267kiRR0VHD5oYd7GjeQ2lbRfhpWKVQkWCMJT4ilpzoDMw6E5HaCAxqPRqlGqVCiYBAUAriDfhw+d3YvA463Faana0EDE2o0620sIfH1yxBvzKGooQhXDJiKjlxJ25Wvs3po67ZQU2znaoGG5UNNsob2/FG70SZUAUBDVG2iQyLHUb+iGgKM6NIi4/sMSH5SAiIQVZVb+DDnV/S5GhhQtoobht9NUZtT6GItRhQTz2fiO/+zS9mRvGfNZ386pklXDAlm/i8Jmqs9fzyMCaNVnbWApDWT/De/RlVEM9H68rQxNKnw0StNdQ1nWTsv/VS0vWf6SunTofdS9QBWkcAK6s3kGSM77fr+lTkYHXdgbrsAAw6NU73yTWGBIQftp195HL6IcdNkJqbm4mL21eZxsfHs23bth5lHnzwQW666Sb+9Kc/odfr+eCDD3qd56233uLFF188XmYeMzTqrrk/jf03kfxBX695RW6/B4Nq383n8LqIMliYOCyJFVvq+OlFQ8Pdbk3OFiI0hl6VUzebG3aiVWkZllBA4RzYUdbGU/9Zz99/OZ0G0csKlZezc6czIqmn40CdrZE/LHkOl9/NLyfe0sMLcH9aXe0sKlvJ8qq1NDvbEBDItKQyK3sKeTFZZEWlkWiMO+r5Qjavg12NZXyzbRO720tY176UdYuXovHFkBcxgklpY8hIMBMXpcccoT0sEZAkCY8viM3pw+rw0m7z0NbppqXTTXOHm4Y2J42tThz73dhajZL4NAeqwRsJ4mBM/DhuGXspMcZj171s9dj4vmI135Yupc3dQYYlld9Ou5MRSUP6PcY4ZBptC99irK6SKb+5kv98XcyXW9ej8WygIKqgxxjiwVhXtxWFoGBw3MHzZA3Pj2Pezk5g39Pv/uxo3kN8REyvVOf7s6ZmE2qFiqKE3k/MnXYvUQeIWF3ZUUtxSynXFF1yTAIAnywcrK4TlKp+vewg1MVZ23zsk/QdLYIgdD2Eigcte9wEqa/M6Pv/eTweDw899BBvvfUWRUVFvPHGGzzwwAO8+uqrPY654YYbuOSSnum/Gxsbe41HDTTdn620phNJkvq8UURJ6uVOHRCDPSYGeoJetEoNsydksmRjLd9vquXciZkAdLptROv6v8n3tJaRH5OFWqlGrYSHbhrHfS8s4/evrSElyYUaemWvbXd18sclzxOURP4w694+xxxanG18sOMLVlStQ5QkihILuXTweYxKHnpEURoOhklrZELGcCZkDEcUJdaVVvJN8SpKA9vY6V/E9uJVBBbmEGxNQaFQYIrQEKFTo9cqUauUKBQCCkFAlCQCARFfIIjHF8TtCeBw+wkEe98YKqVAXJSBhGgDU0ekkBxnJDkuguRYAwtrv+Wr0qWkmBK5feztRxz/74cExSBbG4v5vmIVG+q2EpREhsTnc8voKxmVPPSg87+UhkgM2SNw7lpJ9MzrGDsBVgQ3I3oi2f59Gt+aqjin679zIDwBL9+Xr2RU8rBDmktVkB6FKqqFSCG2V3mX3822pt3Myprc7/Fuv4elVWsYnzqyT6eLdpuHQZn9Z4edt+sr9CodZ+ZMOaitpxKHVNf1Ua92E2fRs6Wkud/6Z6Bw+z1ISBgPMazXcSEhIYENGzaE3zc3NxMfv68JX1JSglarpago5Ap4xRVX8Nxzz/U6j8lkOiUcHZRdQmNzeahuspOR2NtmhSDg/0FlKAj0+JOJkoRSUDA4K5rcVDOfLNnL7PEZKBUCTr+r31htoihSa2vkvPwZ4W0ZSSYevH4cf3hrOc0pXiYGND0ChIqSyPNr/o3T7+Lxmb/uJUaiJPL57oV8sPMLBODs3OmcVzDrmIfLORAKhcCEgiwmFGQhSVezoW477237ghrtDmIKWhmingmeSJxuPx5fEH8gSFCUQuIvCBh0KixqLVqNEoNOTYROhdGgwRyhwWzUEmXSEmPWYzH2bml5Az7+uvJltjYWc07eGVw7fG6/2X8Ph0Z7M4srVrG0Yg0dHiuRWiPn5s1gZs5kUk0H7zLbn4jCCVjLNvLWqjf4qnY9OVEZ3DX2Nl7x7uEfH22lucPFdecOOmAF9Vnxd9h9Ti7umnpwMFrcLQjGTlT2Eb32rahahz/oZ2rmuH6P/3bvUtx+D+cXzOq1T5Ik2m2efrvsdrfsZW3tZi4bcv5hpZA/FTikuu4Av2OsRY/bG8Tp9mM0HPuMykdKd1ddhHoABWnSpEm88MILtLe3o9fr+e677/jDH/4Q3p+RkUFjYyPl5eVkZ2ezaNEihg3re+7NqYBW2dXFoAyyeU9zn4KkVmqwe3vOC1EqVAT2m0uhFBSIkoggCFw2K58/v7WepZtqmDkmHX8w0G/q7nZ3JwExQOIP+u1HFcZz4XkRfFMPGc0ebE5fOMfM9+Wr2NVSyu1jryMzque4lMfv4ZnVr7O5YQfjUkZw46jLiDX0/9R6IhAEgbGpRYxJGcbyqnW8vWUeqzwfcMOInzA7d9oxfSoUJZFnV7/Gtsbd/HzstczM7v+J/1DPt6l+B1+Xfs/2pt0IgsDIpKHcnDWR0UnDjij5oSRJlJgjeT0tmtba9ZyZM5UbR16GRqnm0ZvH89LH2/hwUSkA15/X9/yu/2fvvMOjKtM+fJ9pmZmUmfTeeyAJCaH3KoioKApi1/WzrH11i72srrruuq517b03RJDeWyChJJCekN57Mpk+5/tjkkBIIaEISO7r8pLMnHPmzWTmPO/7vM/z+xU1lvBTzhomB40Z9MpvRe56JEhpLPbAZhO7A7nNZmNl7kbCXO0WHn3RYdLzc846knxH9Nnv1NZhxmyx9VnybbFZeS/9K9zVriw8Rin/wkHE3oLfN56djcR1zfpzKiDVdlrQePRRUXk8Z3SF9MADD3DDDTdgNptZvHgxCQkJ3Hbbbdx7773Ex8fzj3/8g/vvvx9RFHF3d+f5558/U8M543QJPHp7yNlzuIbLp/WuhFPLVZSZK3s8ppQ5oLcc9ThRSOUYrfbCiPEjfQkP0PD56px+FbG7aO4UP+1L3cHkUIdSlOCr0/PXN7bx1B8m4KZ14LusVUS5h/WSKDJaTDy/9XXyGo7wh9FLmRN+em/2p4ogCEwNGcconzje2PMJ7+/7ipKWCv6QvPS0ia2uyd9CemUmtyQvOaVgZLPZ2FGaxg9Zv1LRVo27ypUlIxcyI3RityjuUBFFkey6fL49vJLDtXl4yBTcYVQzM2VZ9zFSqYQ/LrZL6ny7IR8vV3Wv9F2zoZWXd7yD1sGFm5OvZjBUt9ex5cguopwS2d8ho6HF0H0j3FmWRlV7LQ9OvK3fz8uP2atpN+lY0o+yeF2TfTbtoe2t0vBT9hpKWyp4ePId3VYmFxKiKA4Uj7rfs/pmPaF+/af2f2sqWu3Nz/7OJ66YPaN9SAsXLmThwp4fvHfffbf739OmTWPatKF7ZpyLOHcWGkSEqNm5tZ7mNmMvK2EXhSPtx62QnOTqHtUnKrmKDrM9QEkkAjcvGMFj/9vJ8q2FyCTSfvtEuoKaStZ7ZnmkuYwQuSMeylYamw089N+tLF6koaGjiZuTru5183h/31fk1Bdy/4Q/nLTR1m+Bi9KZv0y5ky8zlrM8Zy06Uwf3jL/5pJxfj8VsNfND1q/Ee0dz0Ul4unSRW1/Ie+lfUdJcTrDGn3vH38L4wOSTHp/VZmVPxQF+yd1AfsMRNEoXbk66mtHl5bSnrsBm1CNxOHojFwSBO69MpK5Jzzs/ZRIT4kaI71Gljr9v/i9txnaenvngoHX4PjnwPTKpnFlBM9nPYbtNhKsKi9XC15krCNb4MzZgVJ/n1uoaWJW3sdOmpO9WgupG+3fB261neqe4qZzvD69kYlDKhaNd1wfCQCsk7dEV0rlERVs1SplDn5Pl4zm92v0XMF2b+wF+CmwibD9Y0ecxeosB4zGKvS5KZ9pNHd1pO2cHxx7NholRnowb4cM36/OQIEdv7tsx0mqz7031dbOraa/HR+GCYOrgxbsmIJdL+WT7JhQSh146YhnV2Ww+sotFsfPO6WDUhUSQcG3iIq5LvIJdZem8uecTbIOo5hmI3PoiWoxtzIuccVIrQ6vNyucHf+SJDf+i3aTj3vG38OJFjzA5eMxJBaNmQys/ZP3K3b88zis736PV0MatyUt5Y8GzzI+agVPwSLBZMVbm9zpXKhF4cFkyjko5r39zAFEUqdU18OTGf1HVXsvDk+84YZ9ZF3srDpJWcZAr4+bj72pXYOhSoFhTsIUaXT3LEi/vtxjj84M/IgjCgIrilXX2z76fx9FKUrPVzOupH+Hk4MStyX3bWlwQdHVb94PWWYlUInRLL50rVLbW4O/sM6jv0nBAOk04KdTIJDJEuYFQPxc2ppX1OsZNpQWg4Rh5FjeVBhGRZoNdJFKrdKHJ0FMw8rbL47GJUFFlpK0fbbKuogrLcdpeFquFDrO+uwTX38nKv++bioO2BX2DC9+sy+9REfnd4ZV4qt1YPIAaxLnIpTFzWBp/KdtL9vB15opTulZFq733o799kIEwWky8sO1NluesZVbYJP497wkmB485KSv0goZi/rv7Q+5c8QhfZf6Mn4s3f558B69e/DQXRU7rNoF08LfblRsq8vq8jsbJgesvjiW3tInv9uzkb+teoFnfwqNT7z5ho2IXbcZ23k37gmCNP5dEz0bRqSBiNttoM7bz3eGVJHjH9rBVOZacugJ2laVzWczcAcVeS6vb8NAoUSuPFo98e3glpS0V3DnmujOiqH7+MHCDuVQi4K5VnZMrJD+XwfWLDWvZnSYkggR3lZb6jkZmjI7ngxWHKatpI9D7aNNrl3dMXUdjt/5X15ezXteEh9oNd5UrOlMHBouxO0/u7aZm6ZwovsjIQilvxSbaet3guo49Xhusq2FVpbKv4Cyt9Tj5u2GVtxOkDePLtblU1LZz39IkmoyN5NQXcm3CIuSnoZrst2ZR7DzqdI38mL2aUNdAxgcmn9R1zDb7ezbUijqrzcrLO/5HRk02t6dcy6yTKEsWRZF9VYf4KXsNufWFqGRK5oRPYV7EtF6acV1IlY7IXH0w1RT3e93JSd58lJ7Pt0dWE6Dx5aFJ/9fv9foa09t7P6PNpOORqXfbU8ed3ltSqcDXmSvQW4zceIxh3/Hnf37wR1yVmhMWIxSUNxPmr+3+uaixlJ9z1jE9dEKv1fwFh8iAKySwp+3qms6dgGQwG2joaBq0H9LwCuk04uXkTl17PdOTA5BIBDbsLe3xvHen0GRNe93Rcxztj3VVonQHLV1Dj3MXTY/ATaXFKlqpbm7ieJw7JV9ajcc1xnV+fgWVfWZpbqxCZ+rAJtqYkxzJjQvi2Hqggife2UV6eTbAoFR5z0UEQeDW5CVEuoXw1t5PqT3uPRwsLg72SUSXS+5g+T5rFQers7ht9LKTCkYZ1dn8dd0/eHHbmzR2NHFT0lW8fek/uCV5yQmDh8IrGFNtSZ/PHag6zF/WPY/FvRBbfRBPT3940MEIYFXeRvZWHOTahMu7qzHbOlN1HTSyrmgbcyOm9hANPpb9VYfJbShi8YgFAxYjtOpMlNe2Ex1sn6TZRBvvpn2Bi4NTL9+lC5OBq+wAPDSqcypl16XVOVhFjeGAdBrxcvSkWlePq4uSsXHebNhbhtlydD/DVaVBLpVT1XZsQHJHQKC63f6H69Ieqz4maAHIpBIun2APFB+vT+N4XDvTgY365h6PKzvL0Y0yGUhkmBoqutN6CqmcxTMjefi60eSWNPLN9n3IJLLzWo5FJpVx38Q/gAhv7fmkzwbtExHQebMubu69D9gf1W21/Ji9hinBY4fcsNmob+al7W/z9y3/RWfq4K6xN/Dqgme4OGrmoNW6Fe7+mJtrekjLlDSX84+tr/P81teRCAKXB1yL8UgcdY39y1sdz+HaPD49+ANj/BNZEHW0b6iqQQeIbK5Zg6NczdUjLun3Gj9mr8ZT7caMsIkDvlZGgf0zPzLcPinbXrKXwqYSrk+88oQaexcCNrMRQT5wObenq4qGFj0229A/92eCyjZ7+nvYMfYs4OvsSZuxHZ2pg4vGh7D7UDWph6u6S7YlggQfR48eKyS5VI6noxuVnaWRvp36cZWtNXBcpXdKWBif5kBqQQFZR1KICz3aoOogU6BxcKa2vb7HORKJBBcHJ5qN7cjd/TDXleEks6eiDJ3FFVOTAnBSKXh+wyFkZhk6gwWnkxQFPRfwcnTnusQreDf9C7YWpzItdPyQzg/U+KOQKjhQmUO4UywmsxWzxYbFasMmit0TValEQCaVIJdJ+LFgDQIC1yYsOuH1jyWt4iBvpH6M2WZhWcLlLIiaeVLpUpnWG2xWLG2N1EisfHd4FbtK01HLlVyfeCXzIqeRX9rKl2ynua235UNfVLXV8q8d7+Dr7MUfx93YY1O6oLwZtVcjeY0F3JK8pF85q6LGEnLrC7kp6aoTFnSkZ9fiqJITHeSK1Wblm0MrCHUNZFJw31JWFxqi2YjkBBMUd40Si1WkrcOExunsl8ZXtNYgCMKgRX6HA9JpxLdzZVHVVktSdDAeWhXrUkt79BD5OHt1B58u/F18Ke/cSHdUqNEqXbq9k47Fy9EduUSG3NXAG98d5NUHpyOTHl3k+rn4dG/IH4u3owfV7bU4eIegLz6Et1yNXCrvsZpKjvEipdyX9JoqXvx4L0/dNh6p9PxdQM8Kn8SmIzv5IvMnJgQmIyCjoUVPXZOe+hY9jS0GmtqMNLcZadHZHVvbOszo9Gb0BjOySBc2tu/j128HsYku2FAm7cHa7MUtT25F46TAzUWJl5saf08ngnxciArU4uvh2H1TF0WRn7LX8GXmcsJdg7l3wi3dk5GTQabxoFoh5ce0z9jTUIBCpuCy2LlcGjOne3Vh7Zw1D8bWo8XQyvNbX0cQBP4y5a7uPruusR/Ir0ERmoe7szezw6f0e50NRTtQSOVMD5nQ7zEAVquNPVnVjI7xQiqVkFq+n1pdAw+NWnxSBSG/R2wmA4Ji4IDUZdnR0GI4RwJSNd6OHoOeZA0HpNNIV6qrsq2GCPcQZo0J5Jv1edQ2deDV6X7p6+zNvqpDWG3WbhHSABcfMmtysNlsSCQSAjV+3YrJxyKVSAlw8cWmspGzqY2ftxZxxYyjDbhBGj+2FO/uVfQQqPFjb8VBFH7TaD+0FWtbI35OXpS39GzSjQvwZ1/DHg4UVfD5mpx+u/vPZdo6TBRX2tW5HZvjKbCt4Na3PqClxLeXDJiDQoqrswMaRwdcnZUEejvjpJSjUsootxk4oNvMLVeE4q52Qy6TIJVKkAgCgmCvwO3SyitoKeCXSgszw8fhEhpAc5uRhhYDJVVtpB6q7g4EWmcHkqI8mZYcQIF5D99nrWJy0BjuGHv9KUkSFTWW8m3RRtKD3HFoOsJlsXO5JGpWDxV5gJoGe4WmxwDW4GD33Xpuy2s06Zt5Yvr9vWa3RRUt1AsFKCQtXJOwpN+Vj81mY3f5flL8E1ErBn7N9NxaWnUmpo6yT962FKfiqtSQ4nd+7meeCUSzAcmJAlKnwkVjq4Ew/7PfHFvcXEaQZvAq/cMB6TTi7ejRYz9o9pggvl6Xx4a9ZVwzNxoAf2dvrDYrtbqG7hmxv4svFpuFWl09Ps5eBGn8WVe4tTtAHUuwawD7KjMZHTuZr9blMjMlsLsBN8w1iDUFW6hsq+mhiRbuFsLGIztpcbcHTENFLuFuwaSW7+/xGl2utaNHy/l+Yz4T4n2JDOy/RPdsI4oiFXXtZBTUc7iogdySJmoajzYZq1Uy5DGuSD3LWRI5HW83NZ5aFe5aJW4uPUuLj6e0WcOBNZtx8+tgaujAN8UjB1ORVkn4w+xpvTbtzRYb5bVt5JU2kVnQwN6sGraW7EYRdohIx3juGnsjMunJNcqWNJfzdeYK0iozUMuUzGrUsXDsUvwS+i7ZP1TUgJNKjo97//sx7UYdz219jfLWav48+Y4+5YR+3VWE3L+QEE0gY/1H9XutI81ltBnbSRlEddyvO4vROjswOtYbk9XMweosZoVOOm3KG78HbCZDn+7Ax3LsCuls027SUd1e10sJZiCGA9JpRCaV4a52pbpzH8fH3ZGECA82pZWxdE4UgiB0b+5VtFZ3B6SuTfTy1qrOgOSHyWqmRlffK40T5hrE5iO7uHJuAPtfq+PrdbncfoX9hhndefPIrSvsEZDivOyWArliB5FyJYaSw8THjWLjkZ3kNRzp9qSJ9ghHJVPi6tuES7Yv7y0/xAt/nHxOyQaJokhuSRNb9peTeri6u8TVzUVJbIgb8yaEEOanIdjXGTcXJSty5Xx28EcWTPdDOwRl8gAXXxykCo40lzGNgfegcuoKCHML7rOCTC6TEOqnIdRPw0XjQ8irO8KTm1YhN/iQsceXx0t38bcbx3brCw6GRn0zX2YsZ2txKiq5kiUjFzI3IIW61+/EsZ/NbKPZyu5D1YyJ8+43Zdesb+G5ra9T0VrNgxNv69P6oqnVwOaiVCQhepYkLBzws5FbXwhAnGfUgL9PWU0badk1XDM3GplUQnZdIWarmQSf3uZ9FzKiyYCgHvgz3GXb0dI+uH3CM0lho73qsy/Nwv4YDkinGW8njx6FBTNGB/Dq1wfIL2smKsi1R0DqKq8O6DRFK2upIsU/sds8r6S5vFdA6vrjdkjqmTM2iNW7S7hyZiQeWhW+zt5olC4crs3rUXbs5+yNl6M76VWHiQ+KRX8kg6RZ1yGXyNhRurc7IMmlciYGpbCtJJVFs8bw0U+FZBTUkxg5uA3JM4nRbGVdagkrthVRWa9DIZOQFO3FVbOiSIz0wNfdsc+bY1cpcnVb3ZACkkQiwcvRvVf5/fGYLCYKmkpYEDXzhNc0WUy8ufdjtEoXXrz0QfbENPHm9wd55M3tvHzf1BNam9tsNn7N38RXh1ZgtVlZGDOby2MvwknhiM2gow4QbX2rVKxPLUGnN3PRuL5vDmUtlbyw9Q1aje38ZcqdJPr0na79Yk0OeBfh6+hDcj9NsF2UtlTi7OB0Qs2+7zbmo5BLuXhiKAAlndWNg1WQuFCwmY1ITpD6lMukyKQCeuPZd449UJWFXCIbkqvv8Hr4NOPp6N7dUwR2gVSpRGBnhn2/pqtooaLtaPGBWq7CXe1KWWchQ6CLL4IgUNrSu+w4RBuATCIjr76Iq2dFYRNFlm+1z0QFQSDeO4aMmuwe8jmCIDAuIMn+eHAc5sZK5O0tjAtIYmtxKh2mo30LC6NnYbFZaVBmoHFS8Mv2otP7Bg0RURTZsLeU255bx/9+zMTZUcF9S5L49Ol5PHbLOOZPCMHPw6nfmbrebJ8pnswejVLmgMk6cIl0Vl0BVpuVEV4DrwLArjhQ2VbDnWOvx0XpzOyxQTx681hKqtv4bkNv2Z9jqW6v44mN/+LjA98R5xnBK/Of4LrEK7oLFrrK2/t6H3R6M1+tzyMu1I0RYb2tQ3aX7ePR9S9htll4auaD/Qaj/LIm1mWnIVG1c8WIi064cq7T1Z+wuqq4qpVN6WVcPDGkO/Vcq2tAIZXjOoD314WIaDIgnCBlB6BykJ31gGSz2dhTvp8RXlFDEsIdDkinGS9HD5oNrd0KCU5qBfERHuw+dLRIwc/Zu1elXaCLb3eRgUKmwM/Ju88+GLlUTphrEHn1RXi5qZmU4Me6PaUYTPYPYLLvCFqN7RQ0FPc4b2rIOKw2K+lK+02kIz+NS6Jno7cYWJW/8ejYXHy4KGIaG4q2kzhKQlp2DW0dg+9bOZ3o9Gae/SCV/3y1Hy83Nf+4axIv3zuV2WODBtz/6UIURTYf2YmTwpGgfpo2B6LVpDuhh0taxUEUUvkJ01LFTeWsyF3PjNCJPeR6Rsd4M26ED+v2lPbbM7W7bB9/WfM85a1V3DPuZv465Y94H3ejFztL+IU+7Ek+/OUwre1G/nDZyJ4mmWYD7+z9nH/vfJdAjR8vzPlbv+kVo9nKK1/uR+lfjouDM5P6cRU+lmZ964BBRRRF3v0pEyeVnKtnH33/Wg1taBycz6lU8bmAbRBFDXBuBKQD1VnUdTSesPfseIYD0mnGs9MzqKHjqJrCmDhvKup0VHdWOfk6e1PVWfjQRYDGj4q2GmydKZdgrT8lTb318ABiPMMpbCrFZDExf0IIOr2Z3Zn2gJfkOxKpRMru8v09zgnWBhDlHsa6in1IPAPR5ewmzC2Isf6jWJ6zjvpj9PWuib8UX2cvsmzrsMraST3Uu5T8TNNhMPPImzvYl1PLbZeP5KW7pzAy3GPQ59tEG58e+J4D1VlcGTd/yH5DTfoWatrr+nTQ7cJoMbGjLI0Uv4R+farAPlt8J+1znBRqrk+8otfzsSFuNLYaet1EbKKNrzNX8O+d7xLg4sPLFz3GlJCxfbsRG+yipBJlz4KF7QcrWLO7hEXTI3oUqByszuJPa/7OhqIdXBozl6dnPNhvak0URf73QwblTTXYnGqZHT55UO9n+wCGkgCb0svIKKjn+vmxOB/j39NhMaD+nZnvnSqiKCKajINaIUkkdrfks4VNtPH94ZW4qbSMGaDopS+GA9Jpxr3zS32sgOqozj2YjAJ7Ks/byYM2Y3sP5e4AF1/MVnN3ui/ENZC6jkba+xBTjfWMxGKzkN9YzIgwdzw0SrYfPJoSTPSOZVdpei/V60tj5lCjqycrOAxDWTaW1nq7JIso8vaez7qPV8qV/HnKnUgkoIpLY2t2zml6dwbPf77aT0l1K4/dMo5Lp4T3cnMdiIKGYh5f/09+ydvAvIjpzD/GRXewrM7fDMC4fqwUADYUbbc3QUcObFHxS94GChqLuSnp6j4bSHUGMxIBFPKj1XYWq4XXd3/E91mrmBE6kadn/mlAgzNLu30CJHXUdj9WVNHCq1/tJzrYlWvn2Vdlte31/GvHOzy35TVkgpSnZj7AdYmLBgwwK3ccYd2eUkaMbUciCMwZoO/oWI7VYzye+mY97/x0iNgQNy4aH9LjOZPFhIP03DGYOyewmADxhHtIYO83G0yv2Zlie8le8huLWRp/6ZDV7YcD0mmmS9G7SX9UBy3Q2xknlZzcEvtNw7PzxnLshrl/pxpuRZs9lRfcWdhQ2kfaLsYjHEEQOFybZ7f4HunL/rw6TGa7JNDUkHE06Js4VJPb47wU/wTCXINYYajEJED7oW14OXlwY9JiMmqy+ebQL93H+jl78/j0+5DJIUe+gu3FveWKzhQ5xY3syqxi2UUxpMQOTsbIYDawtTiVJzf+i0fWv0htRyN3j7uJm5OvHnJj5ZGmMn7JXc/EoJR+Nd9aDW18f3gVI7yiiPHobcbYhb00+2dS/BP7THOJokhadg2Rga7dTc4Gi5EXt7/J9tK9LI2/lDvGXHfCFYml2b7ilmk6pacadDz93m6c1Ar+duMYDNYOPjnwPff/+jT7qw5x9ciF/HPeY8R6Rg543V2Zlbz7UyYpI9ypFrMZGzBqQLXuY3+v/gKS1Sby7y/2YbXauP+apF6TDZPVhPwkHHR/z3SnZAchJWW1ikjOUrqzur2O9/d9RaRbCFNDxg35/OGAdJrp8kVqMR4NSIIgEBGgpaiiGQBPtX1juf6YtN6xKg9Ad6qopI+A5KhQE6YN4lCNfeWSFO2FyWztDnhj/BNxVjiytmBrj/MkgoQbkxbTYGhhY3AQbQc3Ioois8ImMzN0Ij9k/cqqvKP7SSGugdwQeRs2vSP/TX2ff25/u5fG3plgZ2YVMqmEhVMGttSu1TWwvnAbL2x7k1uX/5nXUz+iUd/CdYlX8OrFTzE1ZNyQ9yFKmyt4fuvrODs4cXPSVX0eYxNtvLX3UzosBm5JXtLva3SY9byy8z0cFWpuT1nW53F7s2s4UtnKnHH2HjCdqYPnNv+XjJoc7hhzPVfEzR/U72CqK0OQOyDTeFDb1MFjb+/EZLby15uS2Fy+ibtXPs7KvA1MDhrDqxc/zeIRF5+w0GNfTi0vfZpOVJArCWN16Mx6LjlGz24gjFYToij2qcX3+epsMgvruX1RAn4evZUwjFYTiuEVUg9spk7TTsWJU3YWq62HgstvRYdZz793vIMEgfsm/uGkFDYGNQ1ZtGgRy5Yt45JLLkGlOvGS8UJGLVchFSS0HmOyBxDk68zqXSXYbGJ3rv7YfSZnhSOOclV3U62rUoOTwpHS49QUuoj3iWFFzjo6zHriQu0rrqziBuIj7DIds8InszxnLdXtdT0qnWI9I5kTPoX1hdsI1zfhUXoYVfBI/pCyjHZzBx/t/5YmfQvXxF+GRCJh2ohI3vlmAuGjG8moPsD9q55iQmAyF0VMI7pzpXa6aWjR46FVonI4+vG02KyUt1SR33CE7PoCcuoKuve9PB3dmR02mXEBo4jxjDipL4JNtLH5yC4+3P8tarmSx6bf2z25OBZRFPki4yfSKzO5KemqfhWurTYr/9n5nr06bvr9fV6rpd3IW99nEOjtxMyUIJoNrTy35TXKW6t4YMIfhmSfYawqQOEVQlVDB4+/vZN2g4F5lwi8lP6SvTnVP5GlIxd2txSciLTsGp7/aA9B3s48eEM8j216jnjvmD4bZfui1WBXndc49FSL2La/gm835HPR+GBmjw3q81y92dA9QRvGTvcK6QRFDVabSHuHaUh9bacDg8XIP7a+QVlLJX+ecidejr2rOQfDoALS448/ztdff82rr77K3Llzueaaa4iMHHipf6EiCAKOCjXtx9iSA/h7OmEyW2lqM+DqrEFA6KElJwgC3k6e3cKrgiAQpPHrs/QbYJRPHD9lr+FQTS5jA0bh7+lIfunR682PnMHK3A38mLWaO8de3+Pc60ddSXZdPl/YRHz2LicxeCQyiZQHJvyBD/Z9zfKcteQ1HOGusdfj7eTJ6Bhfsg858O+HL2N1wSbWF25nR2kaHmo3UvwTSPCOIco9rJdUzckgiiJqZyuN1gp+ydlIZVsVR5rLKG2uwNxp365RuhDrEcGlMXMY4RVFQGeZ/Mlgs9k4UH2Ybw+tpLCphJFe0fxx3I19pqVsoo3PD/7Iitz1zI2YyvzIvvembDYbb+z5hAPVWfxfyrXdjcnHYjRb+cfHe2lpN/LITZNpMjTy9y3/pVHfzF8m38Uo38HLNtlMeoyVhYixc3jy9a1YXEpwHlHMryWtxHvHsDT+UiLdQwd9va37y3nly30E+7rw9G0T+Pzw1+jM+iFZQHTthR6775V9pJFXvtpHbIgbty/qX72h1diOywVtxNcbm9mIACcUV23vMGET+U117FqN7by8/W3yGoq4f8Kt/Zo0DoZBBaTk5GSSk5NpbW1lxYoV3HnnnXh5eXH99dczf/78k37x3ytquYoOc09Pki4tu7omPe4aFS5K517OsD5OnhQ2HfVQCtL6s/nIrj4N+aI8wlHLVaRXZjI2YBRh/lpyS44WUriqNMwJn8KvBZtZEDWzx8xYKXPgr1P+yCOrnuG/xhIeL8skJDAeqUTKH0ZfQ5R7GB/s+5oHf7VbIExMTmRXZhXZ+R1cn3QlV41YwO7y/aSW72dj0Y7uAgB3lSsBGh+8HT1xU2vRODjjqFCjkCq6Nzdtog2T1YzBYkRn6qDN1E6zvpUGfTP1ugZqdQ0YrSakUfDJwVQcFWpCtYFcFDmdMNcgItyC8XbyPKWVmdVmpaiplL0VB9lRspe6jkY81G7cNfYGpoaM63OF1W7S8WbqJ6RVZnBRxDRuTr66zzFYrBZe3/MxO0vTuCb+sj6tKDoMZp7/aA9ZRxp46NrRSBxbeXTDm1hsFp6Yfv+gVyHd1yvcj2iz8O/cZszhuYiKdnycw3gg4dZB9Ud1IXb2tH2w4jBxoe48dss4dpTvZHPxLq6Imz9gxeHxFDeXA/Z2BoDS6lae/WA3nloVj948Frms783uDpOeDrMej0HsU11IiF0B6QQrpC4vpC5NuzNNZWs1/+j077pv/K1MCBx9Stcb9M5ha2sry5cv57vvvsPZ2Zn58+ezfPlyNm3axEsvvXRKg/i9oZIpMZh7akl1SXo0ttofd1W60HycAZyXkwe7y/d3C68Ga/wxWIzU6hp6NRjKJFKSfEeQVpmBzWYj1M+FbQcq0OnNOHZaR1w54mK2lKTywb6veWLG/T1utF5OHjw26Q6e2fwqT+38H/dPtc/KBUFgWuh44r1j+CLjJ37OWYdcuglNrD+fbTMyIf4KlHIl00MnMD10AiarmYKGYgoaiylpLqeitZqCxhJ0x60Q+0NAwNnBETeVFm8nT+K9Y/B28mT99kZKim389dZZRAf3X102EFablWZDK3W6Bqrb6yhvraKosZSCxmIMFiMSQUKCdwzXJi5irP+oPgsHRFEkrTKD99K/pNXQxs1JVzMvcnqfwajdqONfO9/hcG0e1yYs4rLYub2OqarX8fxHeyitaeP+pcnIPWp4cuPHaByceXLG/T0knwaDzSayeevPbPJzo05diI+jF9cnXUeKX8KQgrbFauPtHzJYs7uESQl+PLAsmW2lO/lg/9ck+8UP6HfUF5k1uXg7eaJVaaiq1/H4/3Yhk0p4+v8mDDh7L2u1p6jPZ0+uM4HY2eB9oqKGslr7VkGA55lfYe4sTeN/aZ8jl8h4csYDQ55I9cWgAtKf/vQntm7dyvTp03nqqadISkoC4JprrmHixKE1Pl0IOMgUGI/r8O/qQm/pdNrUKF16OZL6OHlhE23UdzTi7eTZ7c5Z3FTWZ8f7uIAkdpSmcag2lxBf+4yyuKq1uxvf2cGJ6xOv4O29n7EqbyOXRM/ucX6IfxwPu8TyVvNhnt/6GvMiprM04VLUchVuai13j7+Jy+MuYmXuRrbYUml2LubWH/cwPjiBkV7RRLmH4u3kSZxXZK+0lMliotXYjs7cgdFiwipaERAQBAG5RI5S7oCTXI2jQt2ten4s430MPPzaNp58Zxd/vXEMo6K8MFnNtBrbaDPqaDO202psp91k/3ebUUebyf7/FmMbLYZWWoxtPZpNZRIZQRo/poWMJ9YzgnjvGJwHSA0VNpbwRcZPZNbkEKjx4y+T7+xXzqagoZhXdr5Lk6GVu8fd1KvCyK44Uca7yzORSgQeu3UMucZd/LxzHdHuYTw0+fY+95kGorShhhdWvUe9tgWlzYGbR13F3MjJfb6fA9HcZuTFT/dyqLCBxTMjWTw7lI8PfMX6ou0k+Y7ggQl/GJLIaauhjYyabOZHTKemsYNH396B2WLjH3dNGlDYFSC/4QgwLBt0PDazESknLmoor2lDIoCf55kzNDRYjHy8/zs2FG0nyj2M+ybc0u10faoMKiBFRkby6KOP4ubWc6Yqk8n48ssvT8tAfk8opAr0lp4rJKfOxr/2jq6A5NzL86gr6FS11eHt5Emgxg+pIKGoqbTPDe5k35Go5Sq2FO9mWexSAAormnvIw8wInci+ykN8fvBHQrSBjPSO7nGNiMlLuet/97IxOoY1BVvYUZbGZTFzmR02GbVCRYCLL7ePuZbrE6/g8S9/oqQjn93CfjYf2QXYV4MBLj74Onvj6eiOm0qLRumMk8IRtVyFUqawBx1BigDYELHZbJhtFpoMLVS116I3G+kw69GZOtCZO7oDTOD4ZnIranhu1wZk+y1YMff7njvKVTg5OOGicMRD7Uq4axBalQY3lRYvR3e8nDzwdvQ44c3aarOyv+oQq/I2cag2FyeFIzclXcXciGl99lRYrBZ+zF7N91m/4qbS8szMPxHhHtLjmNLqVv73YyYZBfWMCHPnhstD+CL7M/IaipgbPpUbkxYPyZTPYDbw3u7lbC3fikRmY3qTnmuveg6N++Bl/rvIKWnkhY/30tZh5v5rEhHcKnlwzdM061u5LGYuS+MvHXKAW12wGavNyki3JP725nb0Bgt/v2Miwb4nDrgHqrLwd/bpbp8Yxs7Rsu+Bi8ryy5sJ8HbuNyV6quyrPMT76V9S39HE5bEXcfXIhUPuNRqIQQWktLQ07rjjjh6PXX311XzzzTeEhw9eOO9CQS6V0WrsefNUyCTIpAI6vf1xrVJDi8E+g+9KrXQJqVa11TDKNw6FVE6Q1p/CxuI+X0chUzApKIXNxbu5cdRiXJ0dyC9r7nGMIAjcNfYGHtvwT17a/haPTbu3x9Ja7uqDe8Is5h3cyOxlf+GbI9v57OAPfHd4JRODUpgclEKMZyRqhYqnrrqSP726ldYKI/dcF4ZZ0ciRpjLKW6s4XJdHY2nzSVmG937/5LgonHBxcCI6wJO6OiuV1WaUUjVjo4MYGxWEm9oFJwdHnBWOOCkch3zTPBaL1UJOfSF7Kw6ysyydFkMrrioN1yYsYk7ElB7mdMeSVZvHe+lfUd5axeTgsdyavKSHMkFVvY6v1+eyKa0MlVLO7YviUfpW8sLulxEEgfsm3MKkoDGDHqfVZmVj4S4+2f8jRrEDrc6d2xtyCR17+ZCDkSiK/LytiI9+OYyrG1w818Z3le/QUNhEhFsIf5r4fyeVgqnTNbAiZz0JnvG8+lE+ZovI3++YSHiA9oTnthraOFyb22slPwzYTPaU3UB7SFabSG5xI1OSBr/XN1ia9S18uP9bdpWlE+Diy9MzHyTGs//+u5NlwIB07733cuTIEcrKyli4cGH34xaLZdinZADkEnl3RVgXgiCgcpDT0SkPo1W6YLFZaDfputNGWqULarmqh+trpFso20r29OmNBHBRxDTWFW5jbeE24kI9OVTY0CPIAagVKh6bdi9Pbvo3z25+lXvG38zYYxQIXKdcRXvmZjT7NvPYogcpbCxhdf5mdpSmsbFoB2q5ihFeUcR6RnDj1T6893UJr31SyAPXjObW0ZO6r2OxWe2pMkMb7SYdBosRg8WI2WrGeoxqhEwiRS6RI5fKUMocUMmVqOUqHDtTeH3J8GQdaeCjX7LYsLqR9B21zJ+gZs5YLRrl0NoQRFGkQd9EaXMlR5pKya0vJLu+EKPFiFwiI8lvJNNCxpPkO7LfmV9FazVfZi5nT/kBPNVu/GXKXYzu9Pyx2UQyC+tZueMIuw9VIZdKWDglnGnjtXyV/T2ZaTmM8IrirrE3DDrNIYoi+6oO8WH699R21GBr1zBGOYcl7auQanzRTl48pPegpd3Iy99sI7P+MK6jmtBJa1lTIjLCK4o/pFxDsu/IkyoasdisvJ76MaIIWTu8kYrwjz9OIthncKnIjUd2YhVtTAkeO+TX/r1zdA+p/3Lu0upWdAYLsSEnt+faFzbRxsaiHXx+8EdMVjNLRi7kspi5Q5biGiwDXvXPf/4zFRUVPP744zz++OPdj0ul0uGy7wGQS2WYrb3TS04qOR16e0A6KjHU3B2QBEEgwMW3RyovxjOctYVbKW4u6zOvHqT1J9kvnpV5G7gs4jZ2ZFRSWtPW6ybgptby7KyHeGnbW7y843/MjZjKsoTLUctVyJzd0Iy/jObt32JImU94YCx/HHcjt45eSkZ1NvuqDnG4Jpe9FQftFwsHqVXFy7t34ZflybioULyd3bpTdY4KFT5OnihlDsilcuQSGVKJtNdNThRFRFHEIlqx2uz/6c162oztWGwWLDZr9/+lzlZuXOJNXqmCnZkVfJ26nW/2bCfQx4m4EFfCAjQ4OUqx2uxVfCarCb3ZQIdZT5tRR5OhhcaOpu4qvi4CXHyZFjKOBO9YErxjUA6waVzeWsVPWWvYVroHhVTBkpELuSR6NgqpnMLyZnZkVLJlXzm1TXqc1XIWz4xkznh/tlVu5amta5FJZPxh9FJmh08ZdK9UVm0enx9cTn5jEaJBjUPDGO6ZMhG/fW9hMenxuuaxE5q2gb1p8XBtHpty9pNeeQjRUYfCEVxdfLk48GKmBI/F5xQs1G2ijXfTviC7Lh9KRuEsOPPsHyfiN8jNdYPFyMrcDcR7xwy6V+pCQrQYEWQKhAEyAXuz7CoviZGD13wciPKWKt5J+5yc+kJGeEVxW8qyM15sMmBACggIICAggDVr1gwr7w4BB6kCYx8ByVEtp11vvxm6q+xFCI36JkJcjy6xg7T+7CpN617ljPSy7/lk1OT0u9G7dOSl/GXt81RJ9yERHNmyr7xP+3Gt0oWnZj7IlxnLWZW3kdSy/SyKm8essMloJy6iLWMT9avfxf/WfyJIpChlDowNGNW9mmrWt1DUVEpxczllLVUcLi+j2lDMz7m5MIiPhyAICJ0Hiognn95Tg0PnVlgNUNMImxr7PrQr/adROuPt7EWCTxy+zl4EuPgSog04obW2TbRxqCaXVfmb2FeZiUIqZ0HkTCZ4T6G8ysTb3x1mf14tDS0GJAKMivLi+vmxjIv3YW/lPp7Z/iIN+iYmBaVww6jFuKoGZ6mQU1fIt4d+IbM2B8xKTOVxzAqfxHVTHWlb+R8sumZ8lj6Gg3dIn+dbbVbyG4rJqMkiozqHgsZibKIN0SpBYfHiougZzI0dc0pB6NjXejf9SzYd2Ym1MgJvInn2ngm4awa/el2evZYWYxtLRi488cEXIKLJeMKm2D1Z1UQGaof0vveFyWrmx6zV/JSzBpVMyV1jb2BayPjfJAYMGJCuueYavvzyS5KTk3sMputmuW/fvjM+wPMRpcyhV9k3gIujorvKritdU3ucAVyYaxDrC7dR3V6Hr7MXWpWGMNcg9lYc5PLYi/p8vRDXAOZGTGVtwVaiR8xlXWopS+dE9xDr7EIhlXNj0mImB4/hkwPf89H+b/nu8CqmBo8leeIlqFd/RMuelWjHX9rrXK1KQ7IqnuRjLKmPVLbw7vIMMksq0Whg/Cg34iI0CFILRqsJk9XUudKx2m+Ix/j2SAQBiSBBKkiRSqTIuv+TIZPIkEokR/8tSJFKJJ3H2/8vdJ5f26gnt7iZ3JImCsta0RsAmwS1QkmAj5ZAb2f8XZzwclbjrlWidXLAxVGBSt7/x7+ypY5NhbvZXpZKg6EBB4maUEkK1IXw6wEj3+p3A/ZVb2KkJymx3qTEeqNxUrC/6hBPbPqEkuZywlyDuG/CLYPKt4uiyKHaXH7I+tWuU2h1wFwRTbA8njuujMarYitNXy1H6qjB97qnUfr37DFqNrSyv/IQ+6oOkVmTQ4dZb3cpdvTHoTmK5kpn5o4cxa2LE05oBjhYWg1t/Hf3h2TUZGOpDCNUksJTd0/ood59IkqbK/gpZw2Tg8acltLh3yM2i2nAptj6Zj15pU0su+jUXHYP1+bxTtrnVLXVMjV4HDeMuvK0NLwPlgE/la+++ioAv/zyy0CHDXMcaoUaY+eN+Nh9CFdnB0qq7KXeWqULSplDt3ZdFzGd7orZdfndRQ7jA5P5IuMnatrrevngdHFtwuUcrM6iXraDZmMKq3Ye4fJp/d8Ew92CeXrmg+TUFbAqfxNrC7exymbBOcKHiMPLGaUWiA5IIFDjN2AFWKifhufumExGQT3fb8xnzfo6NmwyMDHBl9ljIkiI9EB6hnW1wt1gQuevarXaOFLVSkFZM0UVLZRUt7Izo6pPTyeJAA4KGXKZxC7ZL2vH4liNzaUSwcku62RtdcVal4C+0QejQkGQj5xJie5EBGiJDnYlyMcFqURAFEUya3L4JvUX8hqK8Hb04L4JtzAhcPQJ03M20UZaRQbLs9eQ31iM1KbCVBaDxhjBH6d4EWvJpv3nj2k26HAaORX3OTcjVbsgiiIVbdXsLT9IWsVB8juLX9xUWsYHJjPCM4acTIFfNlfg5uzAk9ckkRx96iuiLtIqMng37QtaDO2YikaS4JbEIzeNRekw+GBnMBt4ddf73dWMw/SNzWwYcIW0fm8pogjTk0+uoEFn6uDTgz+wsWgH3o4ePDbt3h6+Xb8VA35yDhw4MODJ/v7Dud6+cO508WwztvdI0XhoVTS1GjBbbMhlEgJcfHtJA/m7+OCq1HCgOouZYfaCgcnBY/gyczkbi3ZyTcJlfb6mUq7koUm38/iGl9EmHOCLDTImxvvh5Tawr0yMZwQxnhHoTB2kV2ayr3QfGeUH2J+9CrJXIREkeDt54OvkhZejBx6ObriptLiqNGgcnHF2sFe5JUZ6khjpSUlVK6t3F7MpvZyt+yvQOjkwMcGXiQl+jAhzP+Oij1KphIgALRHHVXW1d5iobdLT0KKnuc1IW4eZxo4WaozlNFjKaRDLMdIMgLPgRrBqIrGakQTEeuOhVeGpVaF1duhzH2xfZSbfZ/1KfsMR3FWu3DZ6GTPCJp6wHNZkNbO1eDcrctdT1VaLzOqEvDyMOL2SOYFmfExrsOyooFWQ4Bg9Fu3EK1H4hFLUVEpqwUb2lB+gslMdPtwtmCUjFzLaL55gbQCHihp446sDVNTpmDM2iFsuHYmTauiuuX1R3VbLpwd/YG/FQZwl7nRkjmNSVAwPLhuNXDb4v6/NZuP11I8pb6vm0an3/KYz8fMN0WxEoup7r9BmE1mXWsKoSM8T9nn1xd6Kg7yX9iUtxjYujZnLVSMWDOjvdSYZMCB9+umn/T4nCAJz5/buRB8GtCp7QUFzZ/lwF77ujthEuzVAoLczoa6BbC/d20MaSBAEkv3i2VG6F5PVjEIqt2vG+SWwrnAbi2Iv6nfjPUjrz8OT7+CFrW9CxE6e/ULOv25f0Gfq7ngcFWqmhoxjasg4Wg9sIHfN27SkzKbBy4/y1iqq22rJrivo1V/VxbGVcioXJfGzHejogMZmMxsqD7K2RIJCqiDQU0u4rzuR/h64OTmilDngIHOwV9vJlJ0/K06pjPt4DBYjjaZ66sRaysUqSiwVFOlKutOlCqmcWM8IRvnMZrRf/KD2VSw2K7vL0lmes46S5nI81W7cNnoZ00PH91hRilYzNkMHVoMOm7EDm0FHS3s9G6sPsbG5kDbRjIdBYF6DhfEdJSiFIpCBUKdAHhSLJnku6piJHDE1s6ZsH6lp71PX0YhEkDDCK5L5kTMY45/YLdjb0m7kv18fYP3eUrzd1Dx7+wRGRZ2eVVFNex3Ls9ey6chOZFI5kbLxZOxyYe7YUO5anDgkDx5RFHl/31fsqTjATUlXnZXZ+PmEaDYh0Wj7fO5gfh21TXpuWjBiSNdsMbTywb5v2FWWTrA2gL9M6b/x+7fipAPSMP3joT7qdxTaqbYAdFe+lVS3EujtTLRHOOsKt1HaXNGtygAwITCZDUXbSavIYGKQXRtqUew89la8yC95G1g8YkG/rz3SO5onZtzH85vfpFq2loe/aOTFa65FqRj87Ng5cSaBBem479nIlJuexyHevtEsiiJ6s4FGfTPNhhZajG20GtppM+nQmTroMNt1yPRmA+0mHXoM2JwMODrYy79FREqB0lrYVDvwGORSOapjgpRS3hmspAoUUjlyqRyZRNodyLuq9UxWMwazAZ25g1ZjO82G1l4yRt6OHoS6BjE3YirRHuGEuQYNujG1w6xnY9FOVuVtpL6jEV+llpu9kkgRVYhZ+6nfswmrrgWrvg2bob27XBegXi5lm1ZFurMKi0QgWmdkTKMZb7MaR3dfPEZOROkZiIN3CHKvIIpaKllXmsauLS/T0NGETCIjwTuGxSMWMMY/sYfZn9VqY01qCZ+uykZvtHDljAiWzo0+5b0iURTJqS/g1/zNpJbvRypImR0+BUNZKKu3VXPJpFBuuzx+SAaKNpuN9/d9xbrCbVwWM5eLo2ae0hgvBESzsV/ZoLWpJTir5YyP79u7qy8OVB3mjdSP0Zn1LI2/lEtj5p7WBteTZcBP63PPPcejjz7aqym2i7fffvuMDOp856jiQs+7brCvMzKphNySJiYn+nerJhyozuoRkEZ6ReOhdmNd4dbugBThHsL4gGR+yl7DlOCx/e4lAUR5hPHvBY/x9Jq3qTKmctu3+dw+4SomhSYOqlJGEAQ8F9xJ+XsPUfPjvwm45SUkSkcEQUCtUNkVHDRD01wTRRGzzUKHyUBeeR0ZRdVkldRRXNOIFQsSmRUvdzleHg64aWU4O0uwCRYMZgMGixGj1UiHqYNGSxMmqxmzzYLFZum2ahYEAZkgRSGVo5QrcZSr8HfxYaRXNO5qVzwd3fBx8sLf2XvA0u7+qGyqYNXB5WytzcIgWgk1WLm4sY2Yjlok5NEmkSJzckXq5IrMxR2FTyhSlTMSpSNFNgPLGwrIMdYgiAKyBk/UjaH4xMQTOyesh7V4aXMF20v3smPfR9TpGpBKpIzyieOa+MsY7RffpyX4gbxa3lt+iJLqNhIiPLh9UTxBg+z96Y9mQyvbS/awqWgnZa1VOMpVLIyezcVRM1m1uYqftuWxcEoYt102tJ4lo8XEG6kfs7t8H5fFzGVZwuWnNM4LBZvF2GdTbEu7kd2Hqrh4Uuig1BksVgufZ/zEyrwNBGr8eHz6fedUmf2AAWnChAkAXHRR39Vdw/SNo0KNm0pLyXH7Q3KZlJgQVzLy7dL8biqtvYKu/ECPCjqJRML8yBl8evB78uqLuiuPbkxazMGaLF5P/ZgnZzww4IzGTaXlP5f9hXe3rGFd6Rr+u/d/fJnpxYLYaUwMSkF7At00qcoZ78sfoPLTx6ld8Treix9GOAmfoS4EQUAhlaNQyRkb6czYSPvvZDBZyC1uIrOwnszCeg7tbsZitTfR+rq7ER3iSlyQK5GhWkL9NINKP54urGYje/b9zNriXWSJHQhAQruJGTJXIr2jUYwMRu4RgNzVB6mTtkePSE2jjuUZqWwv20q7pAbRIkesi2CkJplZk6MYE+fdvXpp0rewvWQvW4p3U9pSgUSQEO8dw1WdK6G+ghBAYXkzn6zKZl9uLV5uav56wxgmJpy8FYfO1GFXQC9NI7MmB5toI9IthDvGXMfEoBSUMgdWbi/i6/V5zB0XPORgVK9r5F873qGoqZQbRl05rMgwBPor+96UXobFKjJ37IlTbS2GVv69812y6wqYFzGd6xIXoThLe0X9MWBAmjnTvpRetGgRTU1NHDhwAJlMRmJiIi4upzYD+70T7hZMQadQ5LGMjvHm45VZ1DZ14OWq7q6gq2qr7a6qA5gTPpmfc9by2cEfeHrmnxAEAXe1K/+XsoxXd33AR/u+4dbRSwe8IQiCwP9Nn8eM8jH8Y/mP1Kjy+Wj/t3y8/zsi3EOI944hxiOCcLegPkVGlYExuM++kYZ1H9K8/Xtcp5z+KiilQkZilCeJUfYVn8lsJb+smZziRnJKGjmYV8fmdLuVgVQiEOjtTJi/hlA/DSG+zgT5uODaR7HBqdDUVMnqnZ+xpbmQRpkEJ6vIfLUfc6Jm4BuRguS43iWj2UpReSv5pU1klzaQUXuIDk02EnUbWFWEMIGLR0xlbIw/aqU9NWi1WUmrOMj6oh3srzqEKIpEuoVwS/ISJgQmDyi0WlzVyldrc9mRUYmTSs6tl47g4omhJxWsW43tpFVkkFq+n4yabKw2K56O7lwaM4epweN6rIT35dTyzk+ZjBvhw11XDk1NfF/lId7Y8zEWm4WHJ99Oin/ikMd6IWMv++5Z1CCKImtTS4gOdj2hTmBpcwX/2PYGbcZ27h1/C5ODBy9Z9VsyqATz5s2b+ctf/kJkZCQ2m43S0lJeeeUVxow5N3+pc4FYzwj2VhykoaOph9nbpAQ/Pl6ZxZZ95Vw1K4ppIeP5OvNn1hRs6VH2qpQrWRJ/Ke+kfc7mI7uYEWZXVZ8UNIYjTWX8nLMOR4WapfGXnvDGEBngzv9uv4UfNxfw3c50TE6VVNhaKGhYg8ivwFEvIx8nL7ydPPBQ26vptHHjcajMp2nrVyg8A3GMGX8G3q2jKORSRoS5dwvEiqJIfbOBgvIm8suaKaxoYX9uLRvTyrrPcVTJCfB0wtfTET93R7zd1Xi6qvHQqHDTKHEYxI3aJtrIrDzM6vTvONBRg1UQCJepuDpsElOSLkMQZDS2Gsgu76C6oY6qeh3lte2UVLdSWa/DZrMhdavGIbAQ0bcdrdSNeeFXc1nCFOTHyKy0GtpYX7SdtQVbadQ3o1W6cFnMXKaHjMfPZeA9gLzSJr7dkMfuQ9WoHGQsmRPF5dMihlw9V9tez96Kg+ypOEhOfQGiKOKpdmN+5AwmBCYT4RbS6zNV16Tn5c/TCPJx4U/Xjh50Kb/RYuKLjJ/4NX8TQRp/Hpx027C1xMlg7r1CyiluoqymnXuuHjXgqXn1Rfxj6+s4yBx4ZuZDhLn17dR7LjCogPTqq6/y2WefdcsFHT58mMcff5wffvjhjA7ufKZLYSGzJofpoRO6H/f1cGREmDtrU0u4YkYkrioNE4NS2FC0gyvi5vdwypwZNpFtJXv4aP+3xHhGdK+gliVcjs6k58fs1bSZdNySvOSEG5JymYSrZ0dx0fhglm8tZNXOYjqMejz8jASF2VA6d9BibCCvIRV9H0296nBvHPd+gPuRDbhpvNEqXdCqNLgqNbirtbir3XBXu6IYgmr1YBAEAU9XFZ6uKibEH7ULb24zUlLdSml1G2W1bVTWtXO4qIEt+8o5XgBCrZShcXTASS3HUSVH5SBDqZCikEsxCW3UkE+N5RAdgh6V1Ua8XgXWcbSYAviuxMT7KzbQ1mHqcV2JAN7ujgR6OxEea6TIlkq9sRZ/F18Wj1jK+ICkHtqDNe11rMhZz6biXZitZhK8Y7kleQnJfvED/u0sVhu7D1Xx89YisosbcVTJWTInisumhg+6+VQURY40lZFWeZC95Qe7U8mBLr5cETufsQGjCNEG9DuxEUWR177Zj9li4283julhLT8QOXUFvLX3U6raapkXOZ3rEq847Z+PCwex1wpp3Z4SVA5Spozqfw8op66Q57a+hlbpwuPT7ztpa/HfikF9sgRB6KFdN2LEiNOi6vx7Jkjrj5tKy96Kgz0CEsDCyWG88MledmZUMmWUP4vi5rG9dC8/Zq3mxqSjQpkSQcI9427iL2uf5+Xtb/PMrIdwVKiRCBJuS7kGZwdHfspeQ1lLJfeMuwkvpxNrWGmcHLjh4jiunhXFjoxKNqaVcWBbPTbRGXdNMImRHkSFOOHpBTKlkRZjG036Fhrb6qjJ201rXSmF5g5azHbx1ONxU2nxcfLEz8WHABcfgjR+BGkDTrsltdbZAa2zvffpWMwWK3XNemobO6hvNtDUZqCpzUhLu5H2DjM6vZm61jY6HEoxOZVic6wHEcL1JuJaRIraJlAiC0XpIMNJJSHAy5mRYQ5onR1w1yjxdFXj7abGy1VNaWsZnxz4jj11Bfg4eXJv0i1MDBzdIxDV6Rr49vBKthTvRipImRoyjkuiZp2wKKSmsYN1e0pYl1pKY6sBbzc1t102ktljg7rTfgNhsVrIqssnrTKje6UuCALR7mHcMOpKUvwT+/TY6ovdh6rYn1fH/10ePyhtug6zni8yfmJdwTY8HN14fPp9xHufmoLAMD3N+QxGC9sPVjA50b/fCUJ5SxUvbn8TN5WGp2Y8OGjZqrPJgAGpubkZgJEjR/L++++zdOlSJBIJP/zwA+PHn9nUzfmORJAwPiCJtYXbaDO299ijGR/vS6C3E5+vzmFCvC8BLr7MCJ3I6vxNzAid0KPqxcPRjQcm/oHntr7Oi9ve5JGpd6OUK5EIEpYlXE6Qxp9307/gT2v+zlUjLubiyJmDUuJVOsiYNSaIWWOCaG4zsjermvScWtKyatmUZt+zcVTJCffXEOoXRKjvCKaOGoNi3UtI2xrxu/7vWNRONOlbaOhooqGjibqORmra66hqq2VXWXqPcmtPtRsR7qFEuYcS7RFOiGvgGSkzlcuk+Hk44efR88ZpsBg5UHWYHaWZ7KvMxGyz4OPkSYrBkxEF2QREjMNz2V1IHAZuJAb75vB7+z5n05GdaByc+cPoa5gZNqnH76M3G/gxezW/5G5AAOZHzuDSmDkD+vy0683szKhkc3o5mYX1CAIkR3vxx8WJjI71PmGfT4dZz8HqLPZWZLCvMpMOsx65VE6idyxLRi4k2XfkkJtPRVHkq3V5+Hs6cfHEkBMeu7t8Hx/t+5ZmQyvzIqdzTfylJ1XVOExvjlX63plZhd5oZdaYvtNv7UYd/9j6OnKJjEen3nNeBCMAQRxgqRMTE4MgCH2uhgRBIDs7+4wOrj/Ky8uZNWsWGzZsICDg9Ht/nC5Kmyt4aM3fuS7xCi6NmdPjuT2Hq3n2g1RuWTiCRdMjaDW288CvT+OhduW5WX/uFVR2laXz6q4PCHcN4i9T/9hjxVGna+D9fV+zrzITT0d3roybz5TgsUMyfevCZhMpq20jp7iJgvJmCsqbKa1uw2S2AhAkredul3XopM6kBt6Am5cXvu5qvN3sezddBQaiKNJiaKW0pZLi5nIKGospaCimvsOuguogcyDWI5wRXtGM8Ioi1DXwtDbDgn2/5kB1FnsrDrK/6hAmqxmN0oUJgclMDkjGecsP6PP24Dp1CdrJV51wL04URTYf2cUnB77DYDGyIHoWV8TN7+WXtK/yEO+mfUGDvompweNYmnBpd2/a8TS3GdmTVc2uzCoO5NVisYr4eTgyMyWQGSmBeLkOHCCb9C2kV2ayt+IgmTU5WGwWnBWOjPZLYExAIgnesafUdV9S1crdL2/ijkXxLJjcv85cTXsd76d/xYHqLEK1gdyWsqyXUeEwQ6frXvfRFVHEX/dnnEZMAeCxt3dQ09jBO3+b3ad6yD+3v83+6sM8O/Oh8+rvMOBUOicn55QuvmLFCt566y3MZjM33XQT1157bY/ni4qKePLJJ2lpacHT05N///vfaDTnRyQfDEFaf2I8wllbsIUFUTN73HDHxHkzJs6bz1bnMHaED/6eTtyeci0v7/gfnx38gZuSr+5xrQmBo5EKUl7d/QGPrHuBhybd3t275Onozl+n3MWBqiy+ylzO23s/48uM5UwPncC0kPFD6hmSSASCfVwI9nHhIuylpFabSE2DjtKaNipq29lX6sGYis9JLv6EVw/MRicenQErZBI8XdX4ejji46bG290RH/eRJISOw2e0mg5bOzl1hWTV5XG4No/PM34E7M6zMZ4RxHpGEOkeSphrEKohzqxbDW0UNJaQU19AZnUORU2liIi4KjVMD53A+IBk4jwjEQSoXf4qurw9uM+9Bc2Y/huNu2jsaOatvZ9ysDqLGI9w/m/MtQS49HxfzVYznxz4njUFWwhw8eXvEx/uJRZqtdrIL29mf04t6Tm15JU1IYrg5aZm4ZRwJif6ERmoHTA41ukaSC0/QGr5fvLqixAR8XJ0Z17ENMYEJBLlHnbagvuhIruaxZi4vgsuLFYLv+Rt4NvDK5EKEm5KuoqLIqad9snFMCDI7HtITW0GMgrqWTonus/PyeYju0irzODGUYvPq2AEg9xDMplMbNmyBZ1OB4DVaqW0tJQHHnig33Nqamp45ZVX+OGHH1AoFCxdupRx48YREWFXwRRFkTvvvJNHH32UqVOn8vLLL/POO+/w8MMPn4Zf69xhYcwc/rn9bbaV7OmxlyQIAn9cnMjd/9zEy5+l8eLdUxgbMIr5kTNYlb+JQI0fs8In97jW2IBRPDXjAf614x0eXf8S1yRcxsVRM7vVCkb5xpHoE0tmTQ6r8zezInc9y3PWEujiy2j/BEb5xBHlHjZkcy2pRMDP0+mY/YNIOo6EIP/mBV6K3AVzH6LWIKemQUd1Ywc1jR3UNHSQfaQBnaGnUaGrswO+Ho74ekQzwWM02gjokFVTZSglr6GQ/VWH7O8PAl5OHvi7+OCldkercsFJoUYukSMCJqsJnamDJn0LNbp6yluqaNDbBVGlgoQItxCuGrmAJN+RhLoG9hA4bdz0GbrD23Gbce2ggtH+qkO8vvsjTFYztyQvYW7E1F6CqW3Gdv65/W1y6gtZEDWLZQmXIZfKMVusFFa0kFXUSGZhPVlHGugwWBAEiAzUsuyiGMbG+RDq5zJgEDJYjOwqTWdL8W6y6vIBCNL4c9XISxjrn0igxu+M2AM0tRoQBPB07W1pUNRYwlt7PqWkpYKxAaO4JWlJt4TRMKcfobOoIS2rBlGECfG9J5rtJh2fZfxItEf4eamAMag70wMPPEBZWRl1dXXExcVx8OBBxo4d2NVx586djB8/Hq1WC9iba1evXs3dd98N2Cv11Go1U6dOBeCOO+6gtbW113VaW1t7PV5dXd3ruHOV0X7xhLsG882hX5gYlNKjyshdo+L+pUn8/cM9vPV9BvcuGcX1o66ksq2Gd9O/xMnBkXEBST2uF+keyotz/8b/9n7OJwe+Z0dpGrcmL+2eCQmCQIJPLAk+sTTrW9hVto89FQf4OWcdP2WvQS6VE+kWQpRHGGGuQYS5BuHp6D7km5k6NBGfq/9G9bcvIFv9IqOWPYEstndKp73DRFWDjur6DqobdVTV66is17E/t5YNe8uOOdIZd814wrxkOLrrENStGKVNVLXUkV2b36+GnqNCjbejB7GeEYS4BhDhFkK4W0i/aar2nF007/wR56Q5aCYsGvB3FEWRH7NX81XmzwRr/Hmgn5LldpOOZza/SkVrNctiluFiDubDFTnklTZRWN7S3ejr7+nIlFH+jIryJCHCExfHE6fSDGYDq/I3sTJ3A20mHb5OXiyNv5SJgaNPi5fRiVArZYiifX+rq6rParPyU/Yavj28Eo2DMw9PvoMxw31Fp8yJ7nVdVXaph6vxdFUR0kfv0c8562g36rh12pLz0sNuUAEpOzubtWvX8tRTT3HzzTcjiiJPP/30gOfU1tbi6Xm0isfLy4uMjIzun0tLS/Hw8OAvf/kLWVlZREVF9XCl7eLjjz/m9ddfH+zvc84hESRcm3g5z2x+lRU567hyxMU9nh830pelc6L5al0uvh6OXD07ij9NvI2/b3mN/+x8j/sm3Mr4wOQe52iULjw8+Q52lO7l4wPf88j6F5kYOJrFIxf0SCNpVRrmR81gftQMdKYOsuryOVybR05dASty1nXbijvKVQRpA+wVcRp/grR+BGsDUMoGdiJVhSbge83jVH/9PBUfP4rvNY+h8Oy5yeqkVhCpVvSQx+lCb7RQWddOZb2Oyrp2Kjr/O3xAis7gDDgDQUgkAl5uDnh6yvB0dcDLVY2PqzMB7q74urvgrJYP6stnbq6l7pc3cfCLxGPurQOeY7PZeCf9CzYW7WBy0BjuGHMdCpkCURRp6zBT0xlcy2vb2Nj4Ha1CNZb8ZN7f3Qg04qCQEhGg5ZLJocSEuBEX4oary9BSkEWNJbyy631q2utI8h3J5bFzifGI+E1vNNHB9r2vtOwaZowOpNXQxqu73yezJpeJQSn8YfRSnBRDV5gepjcnutcJcgVGs5X9eXXMGRvU63OgM3WwpmAL4wOTe0iRnU8MKiB5eXkhk8kICQkhLy+P+fPno9frBzynv0KILiwWC3v27OGzzz4jPj6e//znP7zwwgu88MILPc658cYbWbSo50y2urq6137UucxI7xjGBybzQ9avTAhM7tUAec3caKobdXz6azZOajkXTwzlkal3849tb/DKzve4Kekq5kfN6HGOIAhMDh5Lsl88P+esZWXuRnaV7SPFP4EFUTOJ9Yzs8X47KtSM8U/snsmarGZKmysobi6jqKmM0uYKthandq9EBAT8XLwJdw0mwj2EGI9wgrT+vVJVysBYfK9/luovn6Xyk8fwXvxnVMEjB/W+qBxkhAdoCT/OKkIURVp1JirrdFTUtVPVoOsOXEVHWtAZepoaKuRS3DVK3DVKXJ2VaJwUuDg64NLZd6RWyVHJJKi2/BuJzYZl8v9R0WhAEIzYbCI2m4jZasNktmIwWekwmFlV9iMFusOEy1KwFCfybEYaDS0G6ps70But3a8t8ypFHlKJn2ECo5JGE+LrQpi/Bn8v5yGpXx9PZVsNT2/+D2q5iqdmPECcV9SJTzoDxIS4EeDlxLcb8ggPk/LPHW/RaGjhjjHXM7OzWXuY08OJ7nWC3IG80iZMZmufvlbbS/aiNxu47LgCqvOJQQUktVrNihUriImJ4ZtvviEsLKy7JLw/vL29SUtL6/65trYWL6+jb6KnpyfBwcHEx9vdRy+55BLuvffeXtdxcXH5XcgU3ZJ0NZnV2byR+jHPzHqox6avRCJw35IkOvQW3vo+A0EQmD8hhMem3curu97nw/3fUNZSyc3JV/eqnFPLVSyNv4yLo2axKm8Dawu2sbfiYHcp+ZTgMWj7KPlUSOVEuIf02PQURZH6jkZKmsspairjSFMpGTXZbC1JBcDZwYkE7xhG+9ldY7uqyxy8Q/C7+R9Uf/UcVV88i+fFt+OcePL5a0EQ0Dg5oHFyIDa0Z3WaKIq0683UNHRQ29RBXbOe+mY9DS0GGlsNFJY309Ju7LV3Nc0hmysc8/msfRJ7384c8PVlgbnIfY9gLo8kt9aLGucGXJ0dCPByYlSUJ16uqs6qQiUv7H0BP+dInpxx/WlduXxy4HukgpRnZv6p2134bCCVCNx66Uie+WwDj6xdidJBytMzHjzvNsvPB050r5PIHcgpse+TRgf3zjhsK9lDoMbvrFtInAqDCkhPPPEE33zzDQ8//DDfffcd1113HQ8++OCA50ycOJHXXnuNxsZGVCoVa9eu5dlnn+1+PikpicbGRnJycoiJiWHjxo2MGDE0P4/zCa1Kw20py/jPrvf55tAvvYz2ZFIJf70xhec/2sub3x1Eb7BwxYwIHpp0O18d+pmfstdQ1FTK/RNu7XPvwMXBiaXxl7Eodj47S9NYX7iNTw9+z2cZP5DgHcP4gGTGBozqU7OuC0EQ8HR0x9PRvVtrrCtIZdXmk1mTw8HqLHaUpiGXyhnjl8CMsInEe8cg13jhd+Pz1P7wMnW/vIGptgS3WTf0EBw9HQiCgLNagbNaQUSgtt/jLFYbbR0mOgwWdLWVSFd8hclzJLNTljDDBlZRBFG0q4RLJUilAgq5lIK2LL4rPMKUwInccukS1Mr+04E5dYU0G1q5Ofnq0xqMrDYrB6oOc3HkjLMajLqICXfCNeEgHWYr872Hy7nPFoLMgZziRnw9HNE49Uyn17TXkddQdN6rpw8qIIWEhPDnP/+Z1tZW/vOf/wzqwt7e3jzwwAPccMMNmM1mFi9eTEJCArfddhv33nsv8fHxvPHGGzz22GPo9Xp8fHx46aWXTuV3OeeZGJRCRnU2P2avJtI9lBT/hB7Py2VSHrlpLK98uY8PfzlMc7uRmxbEsSzhciLdQ3kz9WMeXvs8N41azMywSX3eBB1kCmaETWRG2EQqWqvZWpzKztI0/pf2Oe+mf8kIryjG+CcyNmDUgE2aXXQFqWmh7kwLHY9NtJHfcITtJXvZUZrGzrJ0/Jy9uThqJtNDJ+Cz9DEa1n1Ey55fMNYcwevyB5E5nfh1TjcyqQRXZyVaJ5Hq9V9jkEqIuOoeZC79q1k0G1p57dcVRLqHcuf4ZSds3O1yaw1zPb3aYHqzAZto66GBeDb5eP93mIR2ws3z+PqXCnydvJiZcu7qof1eEeQK8suaeqmTAByszgLoVQR1vjGogFRUVMQ999xDa2sr3333HTfddBOvv/464eHhA563cOFCFi5c2OOxd999t/vfiYmJfPfddycx7POXW5KXUNxczmu7P+S5OX/u1csil0n407WjcXFU8OPmAuqb9dy/NIkx/on8c95jvJH6Mf9L+5w9FQe4bfQyPBz7brgEux36NQmXsTT+Uo40lbG7fB+p5fv5YN/XfLjvGyLdQxkXkMSEoOR+GzePRyJIiPYIJ9ojnBtGXUlq+X5W5m7kvfQv+f7wKi6Lncvs2Tfg4BtO/a//o+L9h/C6/P5B7yudbnTZO9EXHcB97i0DBiOAbzJXYLAYuWvsDYNSkZB27qdZbdYTHDk0lHIlAgI688D7tL8F5S1VbCnezWUxc1kcdzHPvr+b/3y1H4lEwvTkc7cp/feIzizQ2GrsNvo8lqza/G7ZrvOZQUn2/v3vf+eRRx7B3d0db29vrrvuOp544okzPbbfJQqZgocm345CpuCFrW/QYuhd6i6VCNy+KJ6bFsSx7UAFj729k5Z2Ix5quy7YLclLyKrN50+rn2VN/hZsndVy/SEIAmFuQSxLuJxXL36af89/gqtGXoLJauLTg9/zxxWP8dTGf7OxaEef+nT9IZfKmRw8lufn/IUnpt+Pn4s3H+3/lvtWPkmqowzvG55DolBR9dlTNG7+AtFqOfFFTyNWfRsNa9/HwTccl9HzBjy2Sd/CpiM7mRU2Cf8TqG53Edwp8ZTXh83IqSCTSHFVaajTNZz44DPM9tI9SAQJC6Nn4yCX8tgt4xgZ5sErX6SzM6PybA/vwkGmoKre3gfal55gdl1BZ9P3+VfqfSyDCkjNzc1MmjSp++drr72W9vb2Mzao3zseajf+MvlOmg2tvLjtLYwWU69jBEHgypmR/PWGMRSWN/Pwf7dRUdeORJAwL3I6/5r3OBHuIby/7yue3vQKla2D780KcPFl8YiLeemiR/nvgme4auQlNBtaeXvvZ9z+81/5YN/X1LbXD/p6giAw0juaJ2c8wBPT78NNreWdtM/5276PKbnoGtTx02ne8T0VH/0NU23poK97qjSs+whrRxseC+464V7WluLdWEUbl0TNGvT1g7UBeDt6sK5w22kXG/ZUu3XLLJ1NipsrCHDx7dbAUypkPH7rOCKDXPnnZ+lkHTn7QfNCQJApqOwMSP6ePcvsWwytNBlaCD+Pixm6GLQFqNFo7I6+dXV12GwDz8qHGZgI9xDuHX8LhY0lvLrr/X7TPpMS/XjurknoDGYe/u9Wso/Yb1JeTh48Nu1e7hxzPaUtlTy89nlW5Kw/4WrpeHycPFk84mJemf8kz8x8iNF+Cawr3Ma9q57kjdSPhxSYwF7i/vdZD/PnyXcgl8r5795PeVnRTNmsqzC11lP+wcM0bf8O0Woe0nWHii5nN+2Zm9FOvAIH75ATHp9emUm4a/CQmk0FQeDSmLnkNxwhtXz/yQ+2D1yUzrQZdaf1mieDVJBgsfVc2aocZDxx63i8XFU8/9EeGlrOfmrx944gtSuhAPi49wxIpS32lWqgxq/XeecbgwpIy5Yt49Zbb6WhoYF//etfLFmyhGuuueZMj+13z9iAUdycfDVplRl8uO+bfmfZMcFuvHzvVJzUCh57ewd7s+yrIUEQmBE2kX/Pe4JEnzg+Pfg9z25+lSZ9y5DHIggCMZ7h3Dv+Zt5Y8HfmR85gZ1k69//6NJ8d/AFDHx5JA10rxT+Rl+Y+wr3jb8FsM/NGyRbeiA4mKyKW+i1fUv7un9AXD1x+fbKYm2uoW/UWCp/wQbnc2mw2ihpLiPWMGPJrzQybSLA2gA/3fUO76fQFEJlE1isQnA1iPSOobKshr76ox+Mujgoeu2UcBpOV1789OGxHc4YRZDKa242olbJezsAVndmRoWhWnqsMKiAtXryY++67j4ULF2KxWHj22WdZtmzZmR7bBcG8yOlcGjOXtYVb+TV/U7/H+Xo48s97phDk48xzH+5hx8Gj+XtXlYaHJ93OHWOuo6ChmL+u/QcFDcUnPSY3tZYbkxbz2sXPMDloDD/nrOOBX58hrSLjxCcfg0QiYXLwGF6Z9yT3jLsZBAmfWGt4OTaE9Qoz+V8+Tc33/8TcePr2ImxGPTXfvgiiiPeiBxAGodvXZGjBbLPgexJOplKJlDvHXE+rsY330r86mSH3icFiOCWV7tPFrLDJuKm0/HPH/yhqLOnxXKC3M9fPjyUtu4a07JqzNMILA0EipbXdhMaxt3pKi6ENAQGtw/nfrzmogNTe3s6+fft4+OGHue6669i8eTMdHR0nPnGYQbEs4TLG+CfyyYHvOVST2+9xGicHnrtzElFBrrz0WRq7D1V1PycIAjPDJvHc7D8jl8p4evN/yKw5NbV2N7WWu8bdwLOzHkKtUPHS9rd4ffdHQ14JSCQSpoSM5Z/zHuOvU+4iwC2QXx3hH2FevNuSy/pPHqZm5dtYWupOabw2k57qr5/DVFeG1+UPIHcb3IyxyyHXUdFbQHQwhLkFsXjEAnaWprGzNP2krnE89bpG3FVnv+xbJVfy+PT7kAlSHln/Eu+lf9kjjbtgUihebmp+2FxwFkf5+0eQymnRGXFx6j1JaTG04uzg2MMY8nxlUL/B3/72t25lBhcXuypxX7pzw5wcEkHC3eNuwsfJk9d2f0ibsf+CEbVSzlO3jSciQMNLn6Z17yl1EaT15++zHsbL0Z2Xtr9NcVP5KY8v2iOcF+f8jSvjLmZ76V4eXv1cd9/DUJAIEpL94nl8+v38e94TXBQ5nSKtCx/6uvBI837e+Pphdv/4AvqK/CFf29xUTeXHj2Eoz8Xr8vtRhw++H6Pri2w5hfLty2MvItw1mA/3fX3KqTuDxUhFWw1B2nNjT8DfxYd/znuU2WGT2VC4nXtWPcFL294irSIDQRCZPSaIQ4UNtLQPvkJzmKEhSGW09LdCMrahcRia8eK5yqD6kIqLi3nttdcAcHZ25pFHHuHSSy89owO70FDJldw/4Vb+tu4FPj3wA3eNu6HfY9VKOU/cOp6HX9vG8x/t4ZUHpuGhPTq716o0PDrtHv627gX+s+s9Xrro0R4q4yeDTCpjSfxCUvwTeD31I57b8hpzwqdwXeIVQ/YtAnu++6bkq7k2cRHplZlsK9xOak0OO0wluGz+JyNtDozxTyRx5FwcPQP7LWe16lpoSVtFy+6fEWQKfJY8MqRgBODcKQ460ERgIAxGC01tRub4XcLbh9/glQ3fEOcwGZ3BjN5gwWCyYrJYsVhtiCIIgr1xV6mQ4aSSo3FywNNVRaC3M/6eTuTUFWATbcR4RJ7UeM4ETgpH/pByDVfEzWdNwRY2HtlJWmUGrkoNI7SjQC5wpLKFUVFnXoH8QkSQymltMRLZhzpJq6ENjfL8T9fBIAOSxWKhvb0dJyd7/btOpxvexDwDhLgGsiB6Fity1nNJ9KweVubHo3Fy4PFbxvGnV7fw8ufpPHfnpB5inm4qLXeOuYHnt77GuoKtLIgefDnzQIS7BfPinL/x1aEVrMzdwP6qw9w6eimj/eJP6npyqZzxgcmMD0ymw6xnb/FeduVuJq29ip116cg3pBFphpFKDxJcg/Fy8gRRxKprxlh9BEN5DtisOMZOwH32zchchi6146RwxEHmQO1xfT8ms5XGVoNdJ6/FQEPrUc28xlYDTa0GGluN6I1Hiw/kYX5kWNPZc8AZiahA7SBDqZAil0uRSSVIBLCJdmkjg9FCu96M2XK0MlIuk6CNzUWqkqM0eSJ2yhudK7iptVyTcBlXjbyE/VWH2FC4nR1VW1Emwk9FzQQGXH3OKEz8rpBIadWZ+rQsaTG2ndf6dccyqIB0+eWXc9VVVzFv3jwEQWDdunVcccUVZ3psFySXx1zEmvwtrMrbyB1jrx/w2EBvZ25flMB/vtrPyu1FXDq1p3LGKN84oj3CWV+4/bQFJLA3994w6krGBYzinb2f8+K2N0nxS+CGUVeekkePWq5iWuRUpkVOxWQxcfBIKnsLdpLRWk6W2MA3jQ14VFuI7DARZRKJVnvjOm4hzgkzUHgMXjXAbLHS2GqkscVAY5s92ChsTuzOK6A4bVd3EGrr6N0fppBLcXNxwM1FSaifhtExSrTO9p+1zg60ieG8mfEGd93qybyoqYOyRe8wWKht6qC0uo2csjo2dqzDUu/Jw//dSYivC/MmhDBrTCBKxdCMFc8kMom0Wz1+Y0YOr2/+kVxpJvetOszS+Et7GEcOc+oYkWOxir007MBe1KC9kFJ2t99+OxEREezatQuZTMZDDz3EtGnTzvTYLkicHBwZF5hEavl+bktZdkIr6JkpgWw7UMFnq7OZPMoft+M8dyYEJvPR/m9p6Gg67TPXaI9wXpz7CCvzNvJ91ioe+PVpZodPYVHcvEHp5A2EQqZgTOQUxkROQRRFqtpq2F91mIyqLPbVF7DLakIqdBBFLaNqD5EkFQnWBmA0Walt6qC2SU9dpxp4V4Bp6lzZtHX07oFSREmRKVtQd5jwdlMTG+qGm4sSdxcl7hqV3d5Cq8JRKRswyIiiF1/nu5LTkM984cTfEUEQcFTJCVVpCPXTYHQpREw388ilV1Fb5sDaPaW8/UMGX63N5erZUcybEIJcdm7d6EtLrVjLRvD8spv5NvtHPjnwPVl1Bdw/4dZTThUPY0cn2gOR5riiBpPFhN5i6G5cPt8Z9JRrypQppKSkdKfqmpubu91ghzm9JHjHsrU4laq22hP2FgiCwP8tiuePL23k89U53HP1qB7PdzXLVbfXnZFUikwq47LYuUwLGce3h1eyvnAbG4t2MCtsMpfGzBlQa2+wCIKAn4sPfi4+LIiehdlqZl9ZLjuLD5LdkEt23XK+zFwOZgcsTZ5Ym7yxtbqBKEUiEXB1dsBdo8TXw5G4MHfcXZS4uijtAafTQ+nDzDqKm8t45cZTm2gJgkCoWxDlLUMvZbfarKzI3UC4WzDJAdEIgQLzJ4ZyuKiBz1fn8M5PmazccYT/WxTfpx/O2aCtw8Sa3SWMifUm1MOHhyffwaq8jXx84Dv+s+t9Hpr0f8MrpdNAh80eiFyOK2po7dz3vKCKGj7++GP+9a9/YTbbZ5Zdee3s7OwzOrgLlS6BxLqOhkE1u/l5ODF/YigrtxexaHo4AV5HP5xyiX2Gaj7DOnJd9hqXxszhh6zVrCvcytrCrUwMHM2C6FmnJGsiiiJV9ToO5NdxuKiB3JImaho7ACdgNBqtiMa3BZtzDS1e5Vi8ylFIFIz0imNKSAqj/UagHKDwQhRFKttqTnlV14WLgxMFJ6Fvt61kDzXtdVw/6fYeq7ARYe48d+dE0rJreHf5IZ58ZxeTE/34w2UjcdecXKn66UAURV7/9gB6o4Vr58UA9oDclR7++MB3bCrayazwyWdtjL8X2q327/HxK6QWY5v98QupqOHTTz/lyy+//F37FZ1LdKU5hhJErp4VxbrUEr5ck8vD16d0P95uss+gnBTq0zvIfvB28uTOsddz1YgFrMzbyMaiHWwv3Uu0RzjzI2cwNmDUoJS0bTaRnJJGdmRUsudwNdUN9r43NxclsSFuXDwxhHB/LSF+Lj3y6marmUO1ueytyGBP+X72VR9ALpWT6BNHil88CT6xPZTNbaKNX/M2UdJczi3JS07Le2Cz2U6Yaj0ek9XMN4d+Idw1uNvV91gEQWBMnA+jojz5YVMBX6/PIz2nhmvmxnDJ5LDfPI1ns4m8+1MmOzOquPmSOEL9eppAXhw1kx2laazIXT8ckE4DXQFJ69RzYtUlzqy5kFJ2np6ew8HoN6Sj03ZgKOXUWmcHFk4J47uN+SyeFdl9gyjvlBX5rWXpPRzduDFpMVeNXMCmop2szt/Mf3a9h6tKw9zwqcwOn9znrK6uSc/a1BI2ppVS26RHLpOQGOnJ5dMiSIryxNfDccA9HLlUTpLvSJJ8R/KH5KVk1xeQWr6fvRUHSas4CICrUoOPsycyiZTKtloaOppI9IllVtikfq87FOo7GnFT9nbpHYhf8zZR39HInWMHdp6Vy6QsmRPN1KQA3vkpkw9WHGb1rmJuWBDHhJG+SE7BNn2wtLQb+e/XB9iTVc3l08JZNL235JIgCEwOHsNH+7+lSd+Cax+uxcMMHp3FfqvWOh+3QjJ0rpAupJTdpEmT+OKLL5g1axYODkdno8N7SGeGms5O+MF6FHVxxfQIft1ZzAc/H+aZ2ycgCAL5DUfwdvTAycHxxBc4A6jlKhZEz2J+5Az2Vx9mdf4mvj60gu+zfmVSUAoXR80k1DWQrCMN/LSlkNRDVYhAYqQn186LZfxIH9TKk9sYl0gkjPCKYoRXFDcnXU1ZSyWHanM50lRGna4Bg8VEtHsYKQkJTAoac1rKq202G0eayxgfkDzoc5r1LfyQ9SvJfvHEe8cM6hxfD0eeuHUc6Tm1fLDiEC98vJcwPw1XzIhgUqIfMunpXzGZLTbW7y3ls1+z6TBYuH1RPAsmhfb7vjl19nfpLQZcGQ5Ip0KbRYqTSo5c1nPl3dy9QrqAUnbvvPMOJpOJZ555pvux4T2kM8eR5jIcpAq8HQc2lDseJ7WCay6K5t2fDrEjo5KJCb7k1BUw2i/hxCefYSQSCaP94hntF09FazW/5m9iS3EqW4p342DyorU4ALXJj0XTI5g/MRRvt9ObYhQEgSCt/4C9XaeDgsZidKYORngNvqn184yfMNnM3Dhq8ZBeSxAEUmK9SYr2Yuv+cr5el8vLn6fz/s+HmDUmiKlJ/oT4upxyoG1o0bMpvZxVO49Q16QnNsSNP16V2KdR3LEUNBYjk8iGPLEapjdtZila594l3436ZhzlqnNC9/B0MKiAlJExNFHNYU6N7LoCIt1DT0qbasHEUDallfHW9xk4uXXQZtIx0jv6DIzy5PFz9ibeYTqZZe6UmrMQfEtxiNqHt3MlIbFuuGt7f/HOF7aX7kUmkZHkOziH3Oy6fLYU7+by2IvwPckeLqlEYMboQKYlBZCWU8PqXcX8sLmA7zbl4uZrxC/QjMrZhEJpw1Elx1Xlgr+zDzGeEb1eUxRFmtuMFFa0kFPSyMG8OnJKmgAYGe7OXVcmMjrG64RBrrGjmS3Fuxnrnzhc+n0aaDcLuDr3TuE36Jtx+x01Ig8qIJlMJrZs2YJOZ9foslqtlJaW8sADD5zRwV2ItBhaKWkuZ2n8yUkzSaUSHlw2mgf/s4U3Vm8EF86ZgGSziew+VMXX6/MoqmjBx13NXbMWMSXZj7TK/SzPWcebez7h20O/cFnsXGaETkR+Ht3MOkx6thTvZlzAKBwHUURisVl5L/0rPNRuXBE3/5RfXyIRSIn1QuHaiCoqgwNVh9GLJgpFEJukiBY5AiDITSCxq0MorC64mMNQd4TS0SalvlmP3mjX9JMIEB6g5bp5MUwZ5d+nU2lftJt0vLT9LWyiyJKT/BwP05N2o0BoHyukpo7m01Ydei4wqID0wAMPUFZWRl1dHXFxcRw8eJCxY8ee6bFdkHQpdCd4x570NQK9nXlw2Whe3rEXpdUZpXB29o+6sFhtbDtQwXcb8ymtbsPXw5H7lyYxPTkAaedex+TgsUwKGsP+qsP8kPUr76V/xY9Za1gUN4+ZoRORDcJG4myzKn8TerOBhdGzB3X8L7nrKWup5M+T70ApO7VVoc1mY3vpXn7MWk1FWzVOCkemho4lyXcE4a4htLcKFFe1UVbbZm8cbq+lyVaBzqGMeuUBcDiIRhPAqPAERniOIMxfS7i/Zsj7d7n1hbye+jENHU08NOn2k171DdOTNpPQZ8quQd90xtPQvyWD+pZnZ2ezdu1annrqKW6++WZEUeTpp58+02O7IDlYnY2zwpEw16BTus6EeF+0eSaaa5346xvb+fP1KT36k34LWnUm1qWW8MuOI9Q36wnyceZP145myij/Hrp7XQiCQLLfSJJ8R5BZk8O3h37hvfQv+TlnLVePXMjkoDHnrMR+Y0czP+esZYx/4qB0xarbavn28ErGBowipY8y76GQXZfP++lfU9pSQbA2gHvG3cz4wKQeq0t3Rwj27buwoKa9jg1FO9hYtIMDxpWUNe9kkiYFpS6JcEXwCd9zq83Kodpcfs3fzL7KTDwd3Xl8+r3Eep474rDnOwYLvVRYOkx6mg2tv3kF7ZlkUAHJy8sLmUxGSEgIeXl5zJ8/H71+2Lb4dCOKIpk1OYzwjj7lG68oinRYW5kUM5K0jXru+/cWls6J4rKp4b0cJ08nVpvIocJ6NuwtZcfBSkwWG/HhHtx1ZQKjY7wHVZYsCAIJPrHEe8dwoPowX2X8zOupH/FzzjqWJVxGku/Ic0pwVBRF3k3/Aqto44ZRV57weJto439pnyOTSE+p98lgMfLZwR9YW7AVD7Ub90+4lfGByUNWRvB28mRZwuVcNWIBeysOsqU4lZW5G/g5Zx1quYpwtyACXPzwdHTDUa5GEAT0ZgMN+mbKWirIqS9EbzbgrHBkyciFXBw186QU4IcZGHdNz/e0vNXuh/Z7sC7vYlABSa1Ws2LFCmJiYvjmm28ICwvr9kca5vRR015Ho76ZkV6nvucjImIVbQR4arjxoRm89X0Gn6zKZuWOI1wyOYzZY4L6TAGcDGaLlcNFDaQermZXZhUNLQbUShmzxgRx8aRQQnxPriRVEASSfEeS6BPH7rJ9fJn5My9se5MRXlFcn3jFOaNwvKZgC+mVmdwwajHeg5itri/czuHaPG5Pufak8//lrVX8a8c7VLbWsCBqFkvjLz3lSiu5VM7EoBQmBqXQbtRxoDqLrLp8ihpL2HhkJ0ZLT78jmUSGn7M3k4LGkOgTS7LvyPNqz+984/iAVNopTxX4O7Au72JQAemJJ57g22+/5eGHH+b777/n+uuvHy5oOAPkdcrNxHiEn+DIEyMRJDg7OFHf0Yi7RsVjt4wjo6COr9fl8fHKLD79NZuECA+SoryIC3MjzE8zqJWTKIrUNesprmqloKyZ7OJGsosbMZqsKGQSkqK9uHVhAGNH+uBwmlZiEkHCxKAUxvqPYn3Rdr49vJK/rnuByUFjWJpwGV6OQ7ecOF1k1uTw8f5vSfYdycVRM054fE17HZ8d/IEE71hmnmQj7v6qQ7yy8z0cpAoen34vIwfZuzQUnBwcmRw8hsnBYwD7311n7qDDbABRxEGmwFnhdM6mUH+PHC8TVdJcjoPMAc+z+Pk/3QwYkK6/vmfX+A033IAoikRHR/Prr79yzTXXnPEBXkiUNJcjl8jwd/E5LdeL84xkX2UmJosJhUxBQoQnCRGelFS3sjm9nNTDVXz4y2HAXlHl4arGQ6NE4+SAykGGRBCwiSJGk5W2DhNNbQZqm/QYTfYqLEGAYB8X5owJIinGi4RwD5QOZ674QCaVMS9yOlNDxrE8ey0r8zawu3w/8yKmsShuHs4Og6sCO13k1BXw0va38XP25t7xt5wwVWaz2Xg99WMEQeCOsdedVNpxU9FO3k77jBBNAH+Zchduau1Jjn5oCIKAk8Kxu9l1mN8e9+P2kHLqC4lyD/ldidcOePe47rrrAFi3bh3t7e1ceeWVSKVSli9fjovL76Mz+FyiRlePl6PHkHXQ+mN+5HRSy/fzZebP3DDqyu4bYLCPCzcuiOPGBXE0tOjJK22iqKKVqnodDa16ymvbMZos2GwigkRAqZDipFIQ4OVMcrQ3fp6OBPu4EOrnctIqCqeCWq7imoTLmBsxla8PrWBl/kY2FO1gYcxsLo6aiVp+5gVH95Qf4LXdH+Km1vLY9PtQK078mt9lrSK3vpB7xt18Us2iq/M388G+r0n0ieVPE/9vQMHYYX5fKOVCj8leh0lPaXMFi0dcfBZHdfoZMCBddNFFALz//vt89dVX3cvz6dOns2TJ6RGiHOYobcZ2tKrTF+jjvKK4KGIaK/M20GHWc/2oK3rNcN01KibEq5gQf/5tjLqrXblr7A0sjJ7NV5k/882hX1iVt4kFUTOZFzl9UL1AQ8VsNfP1oRX8nLOOCLcQ/jzlTrSDkG3JqM7m+8OrmBoyjikhQ2+ZWFewjQ/2fU2KfyIPTLh1eK/mAkPr2PNWndtQiIhIjGdvHcHzmUHlV5qamjAajahU9lmgTqejpaXljA7sQsRitQxqpj0Ubk6+GkeFmh+yfmVXWTpTg8cxyncEYa5BaFUufS73bTYbbaZ2WgxtNBlaaNK30GxopVnfQrOxjTZjO+0mHQazEaPVhMVmVyWXSqQopArUciUuDk64KrV4OLrh6+RFgMYXfxefM9K1H6jx4+HJd1DYWMK3h1fy9aEV/JSzlpmhE5kbMfW0pEBFUWR/1WE+OfAdlW01zA6fwk2jFqMYRCFBra6BV3e9j7+LD38YPfQ0987SdN5L/5Jkv3genPCH86Ina5jTi1bd829+sCoLuURGpHvoWRrRmWFQn+xLLrmEq6++mjlz5iCKIqtXr+bqq68+02O74FDIFBjMxhMfOAQkgoSl8ZcyITCZ5Tnr2FK8m7WFWwF7lZSzgyMOUvtN1Wy1oLcY0JsNiIi9rqWSKdEonXFxcEar1KByVuIgVXTbSVhFGyaLCZ1ZT6uxjbKWKpr0Ld3XkgoSgjT+RHmEEecVyQivaFxO475PuFswf51yF8VNZfySu4G1hVv5NX8T0R7hTAkeQ4p/4pCr2vRmA6nl+/k1fxNHmsrwdfLikan3MMo3blDn60wdvLD1DWyijYdPogE2qzaP11M/ItojbDgYXcBonY7+3UVRJK0yg3jvmFNuqD7XGNSn+7777mPEiBHs3r0bgL/+9a/DFuZnAHeVK5m1OWfk2sHaAO4dfzMmi4nCphJKmiuo72ik3ajDaDUB9rJfpcwBJ4UaFwdnNEpntEoXXJUatEqXk9qzMFnN1LTXUdZSRXFzGYWNxWwu3s2agi0ICIS7BZPin8BY/1GDMiMcDCGugdw9/iauG3UFm4/sYmtxKu+lf8V76V8RqPEjxiOcUNcg/Jy9cVNpUMtVSCVSzDYLrYY2anX1lLZUkl2Xz+HafCw2C37O3twx5jqmBo8bdFAwWky8tP0tqtpreXTq3UNWLShvreKf29/G28mDP0+5c1CrsWF+n2jVRzMLZS2V1OoauDz2orM4ojPDoKdbs2fPZvbswUmiDHNyhLgGsrUklYaOpjNiNw72VVisZ+Rv1kWvkMoJ1PgRqPFjYtBowK7hVtRYQkZNNvsqD/FV5s98lfkzgS6+TA4ey5SQsadFIVqrdOHy2Iu4LGYuFa3VpFVmcKgml+2le1lXuO2E5we4+DIvYhpjA5KI9ggbUlWcwWLkn9vfIqeukHsn3Dzk0uxWYzsvbn0TmUTG36bePVzddoHjfExA2tvp63UuqPifbobX/+cQo3zi+ARILd/PxVEzz/ZwzhgyiZQojzCiPMJYPGIBjfpm9pQfYEdpGl9mLuerzJ9J8IlldvhkRvslDMphdiAEQSBA40uAxpfLYy/CJtqo1zVS1V5Lk74FvdmAVbQil8hxdnDCQ+1KgIvvSe/ntRnbeXHbW+Q3HuGusTcwKWjMkM43W828vP1tGvXNPDnjgbPaZzXMuYGz6uitOq0yg0i3kN+l6eFwQDqHCND4Eu4azJqCLcyLmH7BNB26qbTMi5zOvMjp1LTXsaV4N5uKdvGvHe/gqtIwJ3wKs8OnDKqabTBIBAleTh54OQ3Nb2owlDZX8M/OYPLAhD8wPnDwRn1g3x/4X9rn5NQXcv+EW4nyCDvtYxzm/EOttqdrG/XNFDaWnLQbwLnOhXHHO4+4LHYuVW21g0op/R7xdvLk6pELeeOSv/PnyXcSpPHnm0O/cNeKR3kj9WOKm8rO9hD7RBRF1hdu55H1L2KwmnhyxgNDDkYA3x1eydbiVK4eeQkTg1LOwEiHOR9xUtlTdukVmQCMOUVB3nOV4RXSOca4gCTivWP47OAPxHlF/q6EE4eCRCIhxT+BFP8EKttq+DVvE5uLd7OleDcjvKKYHzmDFL+Ec2IVWdlWwwfpX5NRk028dwz3jLsJ7UmkU9YX2mWRpodM4Mq431fD4zCnhrPKvkJKqzyIt6MHAS6/H/26Yzn73+ZheiAIAn8ceyMquZJ/bH2DWl3D2R7SWcfP2ZtbRy/l7YXPc13iFdS01/Pyjv9xz6on+Cl7DS2G1rMyrmZ9Cx/u+4Y/rX6W/IYj3Jq8lEen3XNSwWh32T7eTf+CJN8R/N+Ya88pNfNhzj5OjgoMZgOZNbmk+Cf+bj8fwyukcxA3tZa/Tb2bZza9wuMb/smfJ99J+DmibH02cVSouTRmDguiZrK34iBrCrbwRcZPfH1oBSl+CUwLGcconxFnvFfnSFMZawq2sK04FatoY0boRJbELzzpPa69FQd5ddf7RLqF8sDE2065iGOY3x9KBzkZNTlYbBZG+8Wf7eGcMYYD0jlKqGsgT8/8Ey9se5PHNvyTJSMXcknUrOHGSOyKEOMDkxkfmEx5axUbC3ewtSSV1PL9OMpVjPZLYLR/PPFeMTg5nHq5tCiKlLZUkF6Zya7SdEpaKpBL5UwLGc+lMXPwOQVX1J2laby2+0PCXIN4ZOrdv7tGx2FOD4JExr7KdFRy5e9OLuhYhu9u5zBBWn9enPs33kn7gi8yfmLTkZ0sjlvAxKDRp02A9XwnwMWXG5IWsyxxERnVWewsS2df5SG2lqQiIBCk8SPCPZRQ1wACXHzxcvJAq9T0uwoxWIzUdzRS3VZHaUsFRY2l5NYX0mJsAyDKPYxbkpcwOXjMKfcG/Zq3iY/2f0uMZzh/mXLXbyIKO8x5iiBhf9VhEr3jftcr6OGAdI7j7ODEnyb9H/sqD/H5wR94LfVDvsj8iRmhE5gQOJoAF98zmk82Wc006ptp7GimxdhKi6ENnakDvcWAyWrGZrMBdmsIlUyJs4MjWqULHmo3/Jy9T8sKZTDIJFKS/eJJ9ovHarNS2FhCRk0OOXUF7C5LZ0PR9h7HO8pVKOVKZBIZomjDbLPQYdJ3q1Z04ePkSYJPLCO8oknyHXFaej8sNisf7/+WNQVbSPFP5P7xtwyrMAwzIBW6WpoMLST7jTzbQzmjnNGAtGLFCt566y3MZjM33XQT1157bZ/Hbd68mWeeeYaNGzeeyeGc1yT7jWSUbxz7KjNZU7CF7w//yneHV+Hp6M4Irygi3UIJ1vrj6+yFk8JxUEHKJtpoN+po1LfQqG+ivqOROl0jdboG6nQN1OoaulcGxyOXyFDIFN3irGarGaPF1EsDT6t0IcwtmGj3MEZ4RRHuFnzGV3fSYxpvwZ5ya9A3UdlaQ62uniZ9C21GHQaLEYvNgiAIyCUy1HIVLkpn3FRafJw8T6k5tj/qOxp5ddcH5NYXckn0bK5LWHROVAoOc26TVV8IwCjfEWd5JGeWMxaQampqeOWVV/jhhx9QKBQsXbqUcePGERHRM/9ZX1/Piy++eKaG8btCIkhI8U8kxT+RJn0LeysOcKA6m/SKDDYf2dV9nIPMAa3SBSe5GgeZAqlEioCAxWbBZDWjNxtoN+loM+mwibYeryGVSPFQu+Hl6MZo/wQ81G54qF1xU2nRKl1wcXDCSeHY516WTbShM3XQpG+hVtdAVVstJS3lFDaUsK/S3j+hkitJ8h3JuIBRJPmO/E32TARB6Pw9Tl2O6GQRRZFtJXv4cN/XWEUb90+4dbjPaJhBk99QTJDG/7Q1h5+rnLGAtHPnTsaPH49WqwXs3kqrV6/m7rvv7nHcY489xt13382//vWvPq/T2tpKa2vPst7q6uozMubzCVeVhrkR05gbMQ1RFKnV1VPWUkl1ez0NHU00G1rQmTowHbNykUmkOCrUeKjd7AKqSic0Di64qjS4qexWEVoHl5OesXfZpjs7OBGk9e/xXKuxnazaPPZXHSa9MoOdpWk4yBwY5z+K6aHjifOK+l05Xx5LdVstH+7/hv1Vh4lyD+Pu8Tfh4+R5toc1zDnGQPe6Iy1lzAmbcTaG9ZtyxgJSbW0tnp5Hv3ReXl5kZGT0OOaTTz4hLi6OxMT+u44//vhjXn/99TM1zN8FgiDg7eSJ9zl8k3NxcOqujLPZbGTV5bO9dC+7ytLZWpKKl6M7s8ImMyN0wkn18ZyLtBnb+TF7DavzNyOTSLkp6aoLShJqmKEx0L3OaDER4/H7ra7r4owFJFHs7adz7L5GXl4ea9eu5aOPPhpwxXPjjTeyaNGiHo9VV1f3ux81zLmPRCJhpHc0I72juSXpavZUHGB94Xa+zFzON4dWMDYgibkRU4nzjDwvGwBbDK2sytvE6vzNGCxGpoWM55qEy36XYpjDnD5OdK+L8Qg/G8P6TTljAcnb25u0tLTun2tra/HyOtqvsXr1aurq6rjyyisxm83U1taybNkyvvjiix7XcXFxwcXl9503vZBRyBRMDh7L5OCxVLZWs65wO5uLd7GrLB0/Z29mhk1iasi4cz53LooihY0lrCvcxvaSPVhsVsYFJrE47uJe6cthhumLge51KrnqjFnSnEucsYA0ceJEXnvtNRobG1GpVKxdu5Znn322+/l7772Xe++9F4Dy8nJuuOGGXsFomAsLPxcfbkxazDXxl7KrbB/ri7bz2cEf+DLjJ0b5jmBK8FiS/eLPqebRmvY6dpXtY1vJHspaKnGQOTA9dAILombidxqs04cZBuzfjfMxWzBUzugK6YEHHuCGG27AbDazePFiEhISuO2227j33nuJj//9yl8Mc2ooZAqmhY5nWuh4ylur2HxkN9tKUkmvzEQhlZPoE8dovwRG+cYN2ZL8VDFZTOQ2FJFZk8O+ykOUtlQA9obZ20YvY1JQymkvFR9mGP9TUAM5nxDEvjZ7znHKy8uZNWsWGzZsICAg4GwPZ5jfAJvNRk59ATvL0kmryKBR3wyAv4sPsR4RRLiHEuYaRICLz2mTVzJbzVS21VDSXEFRUymFDcUUNpVisVmQChKiPcJJ8U9kbMCoYRO9Yc4IXfe6J95/jmsnLz7bwznjDCs1DHNeIJFIiPOKIs4riluTl1LaUsHB6mwO1+ayqyyd9Z1KDFJBgreTJz5Onnio3dCqNLg4OOKoUOMgdUAhlSMRBETo0ZelM3XQamynydBCQ0cjte0N1HY0dBfnyKVywrSBXBw1g7hOC3iVXHkW35FhLiR+60zA2WI4IA1z3iEIAsHa/2/vTmOjKhs2jl8DbdlKKYUuPKC8AbENYYuC7CU8ULpRdkNZLAqCgCyWSNjEQMSASFKIJGyi4UNRSkGwBAHZZGmDghrW+kLCIn0ZSi1SaEs7Mz3vBx4m1hateRznHvr/JU2Yc8+cueZOOdec6cw9rdQ6uJWGRMWowqqQ/X6+rv76s278+n/Ku29X/oMC/e8vV/WgvLjG+61jq6Mm9RurWYOmatvsf9Sn9Ut6pkkLPdvk0QoYrB8Ib2lav3a8Q5NCgs+rY6ujfwVF6F9BEer9bOUxp8up++XFKnaUqMxZLofLoYr/nPX41amrgLoBauBfT438G6phQIOn9sO58G215SMDFBKean51/dS0QZNa8x8aT6fashI8TwcBwHC14S3fEoUEADAEhQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMIJHCykrK0sJCQmKiYlRenp6lfGDBw9q6NChGjJkiKZPn6579+55Mg4AwGAeK6Tbt28rLS1NW7du1e7du7VtEpZtFQAADjxJREFU2zZduXLFPf7gwQMtWbJEGzdu1JdffqnIyEh99NFHnooDADCcn6d2nJ2drR49eig4OFiSFBsbq3379mnGjBmSJIfDoSVLlig8PFySFBkZqaysrCr7KSoqUlFRUaVtdrvdU7EBwCs41nmwkPLz8xUaGuq+HBYWprNnz7ovN23aVAMHDpQkPXz4UBs3btQrr7xSZT9btmzR2rVrPRUTAIzAsc6DhWRZVpVtNputyrb79+9r+vTpioqK0vDhw6uMT5gwocp2u92ucePG/X1hAcDLONZ5sJDCw8N1+vRp9+X8/HyFhYVVuk5+fr4mTZqkHj16aOHChdXuJygoSEFBQZ6KCQBG4FjnwTc19OrVSzk5OSosLFRpaakOHDig6Oho97jL5dLUqVMVHx+vRYsWVXv2BACoPTx6hpSamqqUlBQ5HA6NGjVKnTp10uTJkzVr1izZ7XZdvHhRLpdL+/fvlyR16NBB77//vqciAQAM5rFCkqSkpCQlJSVV2rZp0yZJUseOHZWbm+vJuwcA+BBWagAAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGMGjhZSVlaWEhATFxMQoPT29yvilS5c0cuRIxcbGatGiRXI6nZ6MAwAwmMcK6fbt20pLS9PWrVu1e/dubdu2TVeuXKl0nblz52rx4sXav3+/LMtSRkaGp+IAAAznsULKzs5Wjx49FBwcrIYNGyo2Nlb79u1zj+fl5enhw4fq0qWLJGnEiBGVxh8rKirSzZs3K/3Y7XZPxQYAr+BYJ/l5asf5+fkKDQ11Xw4LC9PZs2efOB4aGqrbt29X2c+WLVu0du1aT8UEACNwrPNgIVmWVWWbzWar8fhjEyZM0PDhwytts9vtGjdu3N+QEgDMwLHOg4UUHh6u06dPuy/n5+crLCys0nhBQYH78p07dyqNPxYUFKSgoCBPxQQAI3Cs8+DfkHr16qWcnBwVFhaqtLRUBw4cUHR0tHu8ZcuWqlevns6cOSNJ2rVrV6VxAEDt4rFCCg8PV2pqqlJSUjRs2DANHjxYnTp10uTJk3Xu3DlJ0qpVq7R8+XLFx8ertLRUKSkpnooDADCcx16yk6SkpCQlJSVV2rZp0yb3v6OiopSZmenJCAAAH8FKDQAAI1BIAAAjUEgAACN49G9InuJyuSSp1n2KGcDTIyIiQn5+PnkI9hifnI07d+5IUq36wBiAp8uhQ4fUqlUrb8cwis2qbskEwz18+FDnz59XaGio6tat+7fu+/Eno9PT0xUREfG37tvTyO4dZPcOX84u1ewMyel0ym6315qzKZ98hPXr11fXrl09eh8RERE+++yF7N5Bdu/w5ex/xs/P76l9bNXhTQ0AACNQSAAAI1BIAAAjUEi/ExQUpBkzZvjkqrtk9w6ye4cvZ0f1fPJddgCApw9nSAAAI1BIAAAjUEj/cebMGY0cOVJDhw7VhAkTlJeXJ0kqKirSlClTFB8fr3HjxrlXiTBNVlaWEhISFBMTo/T0dG/H+VNr165VYmKiEhMTtXLlSklSdna2kpKSNGjQIKWlpXk54Z/74IMPNH/+fEnSpUuXNHLkSMXGxmrRokVyOp1eTle9w4cPa8SIEYqLi9OyZcsk+c6879692/0788EHH0jynXlHDVmwLMuy+vfvb126dMmyLMvavn27NXXqVMuyLGvp0qXWhg0bLMuyrC+++MKaPXu2tyI+kd1ut/r372/dvXvXKi4utpKSkqzLly97O9YTnTx50ho9erRVVlZmlZeXWykpKVZWVpbVr18/68aNG5bD4bAmTpxoHT161NtRnyg7O9vq3r27NW/ePMuyLCsxMdH64YcfLMuyrAULFljp6eleTFe9GzduWH369LFu3bpllZeXW2PGjLGOHj3qE/NeUlJidevWzfrll18sh8NhjRo1yjp58qRPzDtqjjMkSeXl5Zo9e7aioqIkSZGRkbp165Yk6ejRo+4vGRw8eLCOHTsmh8PhtazVyc7OVo8ePRQcHKyGDRsqNjZW+/bt83asJwoNDdX8+fMVEBAgf39/tW3bVteuXVPr1q31zDPPyM/PT0lJScY+hl9//VVpaWmaOnWqJCkvL08PHz5Uly5dJEkjRowwMvvXX3+thIQERUREyN/fX2lpaWrQoIFPzLvL5VJFRYVKS0vldDrldDrl5+fnE/OOmqOQJAUEBGjo0KGSpIqKCq1du1YDBw6UJOXn5ys0NFTSo2U8AgMDVVhY6LWs1fltRkkKCwvT7du3vZjoj7Vr1859ELl27Zr27t0rm83mM4/h3XffVWpqqvvtxr+f/9DQUCOzX79+XS6XS5MmTdKQIUO0detWn/ndCQwM1OzZsxUfH6/o6Gi1bNlS/v7+PjHvqLlaV0hfffWVoqOjK/28+uqrkh6dKb399ttyOp164403nriPOnXMmjarmnfu22w2LyT5ay5fvqyJEydq3rx5evbZZ6uMm/gYtm/frhYtWqhnz57ubb4y/y6XSzk5Ofrwww+VkZGhc+fO6ebNm1WuZ2L23Nxc7dixQ0eOHNGJEydUp04dnTx5ssr1TMyOmvPJxVX/G/Hx8YqPj6+yvbi4WNOmTVNwcLDWrVsnf39/SY+eMRYUFCgiIkJOp1MPHjxQcHDwP5z6j4WHh+v06dPuy/n5+QoLC/Nioj935swZzZo1SwsXLlRiYqK+/fZbFRQUuMdNfQx79+7VnTt3NHToUN27d08lJSWy2WyVst+5c8fI7M2bN1fPnj0VEhIiSRowYID27dtXacV8U+f9xIkT6tmzp5o1aybp0ctzmzdv9ol5R82Z9VTfi+bOnavWrVtrzZo1CggIcG/v16+fdu3aJenRwahr167usjJFr169lJOTo8LCQpWWlurAgQOKjo72dqwnunXrlt58802tWrVKiYmJkqTOnTvr6tWr7peV9uzZY+Rj+PTTT7Vnzx7t3r1bs2bN0r///W8tX75c9erV05kzZyRJu3btMjJ7//79deLECRUVFcnlcun48eOKi4vziXmPiopSdna2SkpKZFmWDh8+rJdeeskn5h01V+vOkKpz8eJFHTp0SM8995yGDRsm6dGZ0aZNmzR79mzNnz9fiYmJaty4sVatWuXdsNUIDw9XamqqUlJS5HA4NGrUKHXq1MnbsZ5o8+bNKisr04oVK9zbkpOTtWLFCs2cOVNlZWXq16+f4uLivJjyr1m1apXeeecdFRcXq3379kpJSfF2pCo6d+6s119/XWPHjpXD4VDv3r01ZswYtWnTxvh579Onjy5evKgRI0bI399fHTt21JQpUxQTE2P8vKPmWDoIAGAEXrIDABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAp5g/vz52rx581+6zaFDh9yraB89elRr1qzxRDTgqcTnkIC/0YABAzRgwABJ0rlz53Tv3j0vJwJ8B4UEn3Pq1CmtXLlS4eHh+vnnn1W/fn2tWLFCYWFhWrp0qXJzc2Wz2dS3b1/NmTNHfn5+at++vSZMmKBTp06ppKREc+bM0aBBg7Rz507t379fGzZskKQqlx/LzMzUtm3b5HA4dO/ePU2ePFljx47Vzp07lZmZqdLSUgUGBmr48OHav3+/pk+frs8//1wul0uNGzfW2bNnFRcXp9GjR0uS1q1bp7t372rhwoX/+PwBpqKQ4JMuXryoBQsWqGvXrvrss880d+5ctWvXTsHBwcrKypLD4dC0adP0ySefaMqUKXK5XGrSpIl27typ3NxcjR8/Xl27dq3RfRUXF2v79u3auHGjmjZtqh9//FGvvfaaxo4dK0m6cuWKDh8+rMDAQO3cuVPSo1URkpOTdffuXaWmpurgwYNav369Ro8erYqKCm3fvl0ff/yxx+YH8EX8DQk+KSoqyl0oI0eO1KVLl7Rnzx6NHz9eNptNAQEBSk5O1rFjx9y3GT9+vPu2zz//vL777rsa3VejRo20fv16ffPNN1q9erXWr1+vkpIS93hkZKQCAwP/cB/9+/dXQUGBcnNzdfz4cbVq1Upt2rT5qw8beKpRSPBJv12hWnr0FRC/XwWroqKi0lda//Y2FRUVqlu3rmw2W6XbVffli3a7XcOGDVNeXp5efPFFvfXWW5XGGzZsWKO8ycnJyszM1I4dO5ScnPyntwFqGwoJPik3N1e5ubmSpG3btumFF15QfHy80tPTZVmWysvLlZGRoV69erlv83jV9gsXLujq1avq1q2bQkJCdPnyZZWVlcnpdOrIkSNV7uv8+fMKCQnR9OnT1bdvX/d1XC7XH2asW7dupUJ8+eWXdfDgQV24cEExMTH/7RQATx3+hgSf1Lx5c61evVp5eXkKCQnRypUr1ahRIy1btkxJSUlyOBzq27ev+2vGJen7779XRkaGKioqlJaWpiZNmqh3797q1q2b4uPjFRoaqu7du+unn36qdF+9e/dWZmam4uLi1KBBA3Xq1EkhISG6fv36H2bs2bOnZs6cKX9/fy1evFjNmjVThw4d1LZtW+O+wgQwAat9w+ecOnVK7733nvbs2VPj20RGRionJ8f95XTeUFhYqFGjRik9PV0tWrTwWg7AVLxkB/wDMjIylJCQoJSUFMoIeALOkAAARuAMCQBgBAoJAGAECgkAYAQKCQBgBAoJAGAECgkAYIT/B5VRJ992K6JTAAAAAElFTkSuQmCC", + "text/plain": [ + "
                      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set_theme(style=\"ticks\")\n", + "\n", + "# Show the joint distribution using kernel density estimation\n", + "g = sns.jointplot(\n", + " data=df,\n", + " x=\"popularity\", y=\"danceability\", hue=\"artist_top_genre\",\n", + " kind=\"kde\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "En général, les trois genres s'alignent en termes de popularité et de dansabilité. Un nuage de points avec les mêmes axes montre un schéma similaire de convergence. Essayez un nuage de points pour vérifier la distribution des données par genre.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFcCAYAAACwQwV1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABcRklEQVR4nO3deVxU5f4H8M9hZlgVAQGXNHPLLMXSVNxDVEQk1xKXcCkry+v90c2iTK/XpcXqmkm5lNfMSFFEDc1dSVNzqyS8erVMxRIQQUcRmO38/qAZZzlz5szMObN+369Xr3vnzPbMDJ7veZ7n+3wfhmVZFoQQQogfCnB3AwghhBB3oSBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4La8MghqNBlevXoVGo3F3UwghhHgxrwyCJSUlSExMRElJibubQgghxIt5ZRAkhBBCxEBBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL8ld3cDCCGepeBUMb7ccRblldWIjgxBenJ7PNGlububRYgkKAgSQgwKThUja+Np1Kq1AIDrldXI2ngaACgQEp9Ew6GEEIMvd5w1BEC9WrUWX+4466YWESItCoKEEIPyymq7jhPi7SgIEkIMoiND7DpOiLejIEgIMUhPbo8ghczkWJBChvTk9m5qESHSosQY4lcOXT6OdYVbceNuBRqGRmFs3DD0adHN3c3yGPrkF8oOJf6CgiDxG4cuH8eKE9lQaVUAgPK7FVhxIhsAKBAaeaJLcwp6xG9QECQeSYoe27rCrYYAqKfSqrCucCsFQUL8FAVBidCwm+Ok6rHduFth13FiH1pkT7wRJcZIQH8SL79bARb3TuKHLh93d9O8Al+PzRkNQ6PsOk6E0y+yv15ZDRb3FtkXnCp2d9MI4UVBUAJSncT9hVQ9trFxwxAoCzQ5FigLxNi4YU69LqFF9sR70XCoBDxl2O120UFUHsiGRnkD8vCGiEwYj/od+rq0DY5oGBqFco7vytkem34olYapxUeL7Im3oiAoAalO4va4XXQQ5duXg9XUAgA0ynKUb18OAB4fCMfGDTOZEwTE67H1adHN7UHPF+fOoiNDcJ0j4NEie+LpaDhUAp4w7FZ5INsQAPVYTS0qD2Q7/dqHLh/HS/mzMCZnGl7KnyX6XGefFt3wQtfxiA6NAgMgOjQKL3Qd7/bgJQZfnTujRfbEW1FPUAKeMOymUd6w67hQUq6184eMWr65M2/uDdIie+KtKAhKxN3DbvLwhtAoyzmPO0OqtXb+spDdl+fOaJE98UY0HOqjIhPGg5EHmRxj5EGITBjv1OtKlfTjCRm1Ug/zAlSgmhBPQ0HQR9Xv0BfRKS9CHh4NgIE8PBrRKS86nRQj1Vo7d2fUumptJ82dEeJZaDjUh9Xv0Ff0TFCpMjfdnVHrqpJqNHdGiGeRNAjm5+dj2bJlUKvVmDRpEsaPNx2K++677/DBBx8AAB588EHMmzcPYWFhUjaJOEmqpB8pl0UI4cqeqBRzZ7aSivwh6YgQR0gWBEtLS7F48WLk5eUhMDAQaWlp6N69O9q0aQMAUCqVyMzMxNq1a9GmTRt89tlnWLx4Md566y2pmkREIkXSj7szat3dE3WGraQif0k6IsQRks0JHjlyBPHx8YiIiEBoaCiSkpKwc+dOw/2XLl1C06ZNDUExISEBe/futXgdpVKJq1evmvxXUlIiVbOJG/Vp0Q2fpi5Ezphl+DR1oUtP0J6wttNRtpKKPCHpiBBPJVlPsKysDDExMYbbsbGxKCwsNNx+4IEHUFJSgnPnzuGhhx7Cjh07UF5umdK/Zs0aZGVlSdVMr+Ct5c+8ibt7os6wNZTr7qQjQjyZZEGQZVmLYwzDGP5/eHg43nvvPcyePRs6nQ5PP/00FAqFxXMmTpyIESNGmBwrKSmxmF/0Vd5c/sxeUsxbmZcoi++lxc93vud8D3ev7XSUraFcbx7qJURqkgXBRo0a4eTJk4bbZWVliI2NNdzWarVo3LgxNm7cCAA4c+YMmje3TBYIDw9HeHi4VM2UjFgndL7yZ74UBKWYt9KXKNNXaKlgfsOea2fAyLSivYcnsJVU5O6kI0I8mWRBsGfPnli6dCkqKioQEhKC3bt3Y/78+Yb7GYbBlClTsHHjRsTGxuI///kPhgwZIlVzJGGtEDLXCX3ZsbVYufkX3CqOtistXqryZ7aIVeSZ72LA+D6GCYCO1Zk8V+gSBWttNS9RJm9+3hAA7X0PT2ZrKNebh3oJkZqkPcGMjAykp6dDrVZj9OjRiIuLw9SpUzFjxgx07NgR8+bNw3PPPQeVSoUePXrg2Weflao5JsTopZn3MvSFkAFgw5+WiQgaVgNVVBHY4idMHmsrsDhT/szRz8n32ewJhHy9OwAm97FmAVDP1rwVX1vNS5ExgTUOvYc3sDWU661DvYRITdJ1gqmpqUhNTTU59tlnnxn+/xNPPIEnnnhCyiZYEGvYja8QclVb7pOq8UlYaNHkyITxJnOCgLDyZ858TmeKPAvt3en/vy225q342mq+vQ+rCgYTZBkIaW6MEP/ldxVjxKoMwlcIuZmVRARWFSzoNYzp5/3szQ515nM6WuTZPPA62rvTEzJvxdfWV8Z1NuklaoofhKLlGZMhUXvmxnxlwbkv7mdIiKP8LghyBSe+49bwbSLKlYjAagOgKX7Q4rFC8JU/s3ZiduZzOrpBKlfg5aLveXG1JYAJAMvqBAcZvraalyiLYlsjvskDVrND+Xj7gnP930n53QqwqhCombZg0dThoW5CfIXfBUFGHQJWYXnSZNT2VfFPT25v0ssA7hVC7tOi7mSiD05h8nAoL7WCtqKxxWOdwXdiDuAYitQfd+az8RHSwzPueXFlLNq7ea6ttnKXKEsW/Pp6rqotKhbji6N6gWG4q66Blq37jpjAaihaFgEAtBVNeYe6qddIfJ3fBcHay22haFkERnYvQLDaAKgut7XrdWwVQjZPRJDiZMJ3YuYKgACsHjfmaJFna+vR+Hp3zg4vuqogtTctODe/OLqtqrJ4DCPTQd78PLQVTQFwDyuLlSBFiCfzuyAYxbZGxe9/pcsH1oBVBUNT/CCi2NZ2v5Y9hZClKJrMd2KOthKQogUmgTjSXmvr0az17sTKWHTFZq7etOBc6LC0caIW11C3MwlSrkI9VeIsvwuCdcNnKtSebmo4FqSQIf0pcfdzc0USBd+J2R0LpH15PZoz36ery94J7Z3qE7WsDXU7miDlKtRTJWLwuyDoiuEzVyVR8J2YxQxIvpIV6QxHv093lL2zdnFkQieDpvhBxPD8/TuaIOUq3tBTJZ7P74Ig4PjwmdBg4KokCiGVQpx9P3sCursyKF0VpPm+T2vDcu4oe8d1cSQPkCFYFowqddW972gs/3fkaIKUq3h6T5V4B78Mgo6w5wTvyiQKqSuB2BPQ7Q3+YgQvT1i6wDcsd78byt6JNQrgqqQjR3l6T5V4BwqCAtlzgrc6HKUOwZP/2OpxJxPAekCyJ6Db81ixgpcnLF3gG5ab24C/7J0zFwJ8z/WmpCNHeXpPlXgHCoIC2XOCf7Reb+y5vd2kMol+GQYLz5vA5wtI9mRF2vNYsYKXrd/FFUOlfMNykcOtl71z5kLAE3rA7ubpPVXiHSgICmTPCf6HwzKomUcslmHo12QBnjWBzxeQ7MmKtOexYg0Z8/0u9gYKRwMm37AcX9m7dfmzHL4Q8IQesCfw5J4q8Q5+EQTF6A3Yc4Ivr6wGi6YmQY+Lvgfh7p3j+QKSPfNL9jzW3nV31n5Dvt/FnkDhTM/K1rCctbJ3zlwIeNPifUI8mc8HQbH29rPnBG+tZ8D1OE/YOd5WQLJnfknoY+25qBASoLh+l6wfVnO+N1egcKZnJXaFHSEL8L1p8T4hnszngyDXyc3Rvf2EnuC5egbm9D2FygMLLFLofwwGdhV+jVtn1rlkXZ6rFtab9+aeeCAeP14rcnrJibXfJUoRihvqu5zHzTnbsxKzwo6Q793Wc2ltJyHC+HwQtHYSc2RvP6G4egZdH4rFiXNlFj2Fiztv4Kd6QdjVsB5uygMQomWhCmCgDWAAuCbhwRWVXrh6cwWXfhBUMNveAGUIAPqamQxjuE+hYzGo/I7Fc9zRs3Lme+d7rjcmzVDQJu7i80GwXmAYZwFhaBQmN8VeYMvVM5jG8bjTMQ2RV5+B+q+gVy1nLB4jRcID10nn09SFor2+OWeGG+0JUCYBQB/8WBYAEKHRIenGHXS6Y1lXs3OTDtj920HO41JyZimDted6W9KMNwZt4jt8Pgj+df6zPA7TO9y1wHZ3dD2oOYbszAkZlhN6Ne2Ok44zw432DBtyFo9mGESotci8XLdAXR4ebfG8H68Vcb63teOu8vnJddh78XvoWB0CmAAMaNUbzz0+lvc53pY0421Bm/gWnw+Cd9QcvUAAjFxj+P/uXGBbISAAAraH5ewJbO446Tgz3GjPsKG1E/1NeQDebdEQSTdrMeiJ8YKfZ3zc1UN2n59cZ9I71bE6w+3nHh9rtT3eljTjbUGb+BafD4LWNtGFKhgM4PYFtkKKHQtJlrAnsLnjpOPscKPQYUOr3yfD4KZChs2x9RFbPxh9BD5PHzjc0Xvee/F7q8fbxbS22h537CDiDG8L2sS32N5m3MvVXm4LVmc6z8bqGKiLH8Q3Hw7Df94a5NbFtmPjhiFQFmhyTMbIUD8wrC5Ih0aJnjxi7eQi5UnHVcONXN+nMRWrxbrCrYKeZxw4+C4ypMK3MbKti54Xuo5HdGiUXX9D7mLruydESj7fE6wfFogamE8Msqgfxn2idPWQl1iZmUKupvWfjetxUp90HM7wdCJr0loPm+s9+7Tohv9d/81k/u2JB+INrydm71noZwtgAjgDYQATYLM9UhdWF5Mv70NJPJ/PB0FF8/Oo1ZgeYwLqjptzV5aarROWkN2zhawbM79fL9oFJx2HMzxh/++g/z5fyp9l13sWXPrBEHR0rA4Fl35Au5jWgubZpEhKGtCqN+cQ8oBWvfHjtSKfGkL0pqBNfIvPD4dWaZSCj7tjyMsW/TY91yurTYpvF5wqNnmcrSEwzqzJvx73aepC0U5Ahy4fx0v5szAmZxpeyp+FQ5ePA7BvyEus30HM9+R7LX1gK79bARb3Apv+sxecKsaUBbvx5D+2IuvQesGf7bnHx2JQ674IYIz+mWpl2PXrQZQr74CB6TA/DSESYj+f7wlau4JnmACMyZnm8LZBgGuGTu3ZPZvvatoVyTD2ljcbHtkOLb5ZhYvKRSY1U8VqqxhZpcbDi9Ze6yWeQtja8iYm1YN08mpYrgS1/v7PPT4Wzz0+FisP7MCea3U7kzAAIFdBp2MQLAuGiq2hIUQH0AJ9AvhBEOQaJgTuJR2U363AsuNfAnDtkJ1QYu2e7YoMPHvKm+lrpmo4aqaK2VZns0qN39Paa/EFUPOLGFYVDCaoxuKxtj7bvj/2gFGYXgwxASxUKgY5E5bxPldMvhI4aIE+0fP54VDzYULzISQA0Oi0+OLHDW4ZsrPF2iJ+IYv7jYcma9S1kAfITO4Xe/jMnh5c5YFsi5qprKYWlQey7c4WtDYEaw9nMhT5sm3NL1Y0xQ/CPNdFxshsvo9Ozn3RY+24OTG+I1vDvt7EE6c+iHv4fBAE6gLhp6kLkTNmmUWlGL3bqiq7UstdtdYuPbk9ghSmwUvI4n7zE9YddRVYFnYvvbCHPUsvNMobnI/VKG/Y9TuIdWIW8p6OzHdyX6yYXogxXOOjZgI03Bc91o4bO3T5OJYd/9LkO1p2/Eu7vyNfChy0QJ/o+fxwqL34hs+MszRDHgsBOBbhizG8aD7kNCipN344HGjXNj1cJywtq0WQPAirRnzgdBu5cA09yxk5bv/WCk/+Y6tJ2+XhDaFRllu8hjy8IQDhw5hiVr/he09Ht3PSJhebzAnKm58HE2B6IabRaW22N/G+gYY5QT1WK8OA+wba/Fxf/LgBGp3pUKp+9MOe78hagCi/W2Exv+7paIE+0aMgKJA+S1N/Mqu93BaKlmdMTkpiDC9ynWwP1u7EC8+MR58WgwS/jjuudPu06Ibq4nPIvXIENwOABlog/M8YnC+pq9VpvG1Vl4TxJvsoAgAjD0JkgmVJMz6u+pyObudkvqNIQKDlfCBfe40viILlwahVy8DKVAjQhGDAfQPxfEKyzbZzFpDnOW4NX3Uj41444Pnzat5WVYdIR9IgmJ+fj2XLlkGtVmPSpEkYP970BHfmzBnMmTMHarUaTZo0wfvvv4/w8HApm4T6VnaVqB8Yxvs88wQH/a7xQS0uAIpq0a6CxerZuONK93bRQbQ9vBOZRoFNxVZgfWB9nFK1AmCU2fpWXUCvPJANjfKGSXaoPVz1OZ0JtsY7iryUf9zh5KtatgaBQYF4oetktwQZa0lmxryl8DUt0Cd6kgXB0tJSLF68GHl5eQgMDERaWhq6d++ONm3aGB6zcOFCzJgxA/369cO7776LVatWISMjQ6omAQAmdX4ay45/aTI8JA+QYVLnp3mfx5WNqa1oiuqKpvjmQ/ckl/Bxx5UuV7JLIKPF0JCfDEEQuPdd1u/Q1+6gZ85Vm8uKFWzHxg3j/PuzN/nKns9QTxHGWUi+noL/ws+ceeCwskGLpFV0xEQL9AkgYWLMkSNHEB8fj4iICISGhiIpKQk7d+40eYxOp0NVVd0/zurqagQHB0vVHIM+LbphWrd0kwSIad3Sbf5jcCZL0x5i1fV0Vf1I42SRBZEsfqoXZPGYyADTE7CY3xnf5xQzm1HM+pbm23tZ2+5LrAuiyV2ehowxTa6SMTJM7sJ/4cfFOMksWqS/VV/KOiXeR7KeYFlZGWJiYgy3Y2NjUVhYaPKYzMxMTJ48GW+//TZCQkKwYcMGi9dRKpVQKk2ru5SUlDjVNkeuANOT25vMCQLSbMEkZg9O6itd8+G6mwoZ8mLDASjx2J17PcJK3b0ehxTfmSs2lxVr+Gxd4VZoWdMkFS3LnRgjVu9TqqE/sf5WaT9B4k6SBUGW4/KWMcoFr6mpwaxZs7BmzRrExcVh9erVeP3117Fy5UqT56xZswZZWVlSNVMw8wQHqbZg8qa5Cq6TlzqAwa6G9QxBUBegwHdsd7u3rRJjeEzspBkxLirsaZOnXxCJ9bdKyxWIO0kWBBs1aoSTJ08abpeVlSE2NtZw+/z58wgKCkJcXBwAYMyYMViyZInF60ycOBEjRowwOVZSUmKRZOMKxgkOUpKqByf2vAvfBrYAY0h2+UeHvviHne0Uo5qHJ6bB29MmqS6IxPw7EONv1RN/J+I/JAuCPXv2xNKlS1FRUYGQkBDs3r0b8+fPN9zfokULlJSU4OLFi2jVqhX27duHjh07WrxOeHi45Bmjnk6Mk5YUZaKsnbyiwxqi1azlDr0mIN7wmCemwdvbJrEviDyxXJgn/k7Ef0jaE8zIyEB6ejrUajVGjx6NuLg4TJ06FTNmzEDHjh3xzjvv4P/+7//AsiwaNmyIt99+W6rmCMYXcFyVwWa8KL9B83Jom/4MDVu3H5T5SUtom6SYd5Hq5OWOAtqu4u42eeL8m7u/E+LfGJZr8s7DXb16FYmJidi3bx+aNWsm2uty7bkXKAvEC13rhl6t3SfmP9aCU8XI2vst0OQcmL8WVnOV1dLvASi0TWNypnGmtDMAcsY4XoBZigsDa/sA6rd9Io4T++9AyF6XhHgyqhhjxFZtRFdcQa86tBtM80IwMssdxY3duFth11W9VPMuUsxf0vCYdMT8OzCvomRcEYgCIfEWFASNODIMJ3YGW3VUEQJsBECg7qRlq73GvbQwRRjkATKTRdruDizmvcjOTTrgx2tFuHG3AvUCwxAYoECVuspmD1OqYerbRQedrmjjaexZrG+Ltb0uP/z6R3y54yz1ColXoCBoxNZVsisy2KzVljSmD17rCrdabdOhy8ex4tiXUP21Ju2OugoyMKgfGIY7KtuBRWpcCRq7fztouP+2qgqBskBMj+cvESZVood+v0OWY79Dbw+EQhfr28K3pyX1Com38IsgKLSnYOsq2RVDdMGyENTouE4uDBiwFu231qavT+UYAqCeFiwCWdapOUBzjvbCuIZyzQkZbrY30UNoe/n2O/TmIGjPYn1boiNDcJ0nEBrqxFIQJB7M54PgocvHsezYWpPsymXH1gLg7ilYu0qWMoPN+MRs7aK8niIU/xlpugUSX5uWHv0PZ0bNDSs7BzgSzJzphQkdRrb1OHuGsO1pL99+h1KSOtFEzIXpXFWUzPH1FgnxBD4fBFef3GQIgHoaVoPVJzdZnPhsXSVLkQTClZHKpYqjADJgPTElQqPDTbPNePXHbbVBaDBzJt2eb1se88c58jpcz7OnvVz7Hf5ULwi7YsJxS6K981yRaCJmYoxxFSVrPUKxa+sSIjafD4J31ErzjbwNx803AhXzKtlWz0p/v5BAANh/kkq+yyC3Pgt1wL0Pr9CxSL7LWLSPYQKgY02Do5Bg5sz3JWRbHiHDzfZkktrT3kiz/Q5/qheEvNhww/cpxSJzrkQTTf1iLDu7H8t+FWe7LrEzb/VVlMwDOCBNnVhCxObzQVCnCkZAEEeyCWO5EWg9K3sN1rOy16C17EFbPSuhvT89GSNDraYWY3KmIUwRBoaBzeSWAT3HQ1ewCrsignBTHoAIjQ5JN2sx4IlnLd6fZbmzUW0FM2d6FVxDucbZoUJP+LaGqY2HF0MeCwEUlj0Wrvbq5/30v++umHCTCwpA/CUy5kOHsqg/oWhZBPavbGExAq9Uw/quqq1LiNh8PgiGVHRATeyPvOvu9CczlZW5Da7jfNmD637fxTvsJiQpJIAJAMvqEKYIQ422xhCcjfeF4zsp1u/QF4MAdD2QDY2y/K8g/Szqd+iLdfmzBAVgW8HM2V6FWMPL1l7HvHdSe7ktFC3PgJEJWybyc/1grHsgGjfuBoi6d5415okm8ubnLf5uxQi8UtWmdVVtXULE5PNB8Nk+g5C1VwPWRgWWG3cr6pJgOO6r1Vn2JPmyB2/Ecm/TqD9h2jpxGld9eSl/FueGqHp8J0Vrm9YKOXELCWauLHflSMKI+fCitqIpACCoxQVAwT+8KLS3LuYSGfNEE8bKchlX7q7w+cl12Hvxe+hYHQKYAAxo1RvPPT7WZe9PiNR8PgjWnSiH4MsdLf8aEvsOrJUhsbLKu5xDpzqV5Wa/fNmDDR9oxztMyJcUEm12YhZywrP3pGjt/fW9T3uCmSt253Y0YYQrM1Fb0RTVFU3xzYf8AV5Ib13sJTLmQ4oBmhCrf6uu8PnJdSZrN3WsznCbAiHxFT4fBAHTYZpDl5tYHcJbufkXi6FTVhuAkIoOFq/JlT2oP25rmNCemp9CsijtPSkKeX/9jvGeUNDYWmUSW2vQrK1jE5KxyHdhwQCSfSdC/1ZdYe/F760epyBIfIVfBEFjfEN42j5NTIZOWVUwcO0hPDtgkMXrmGcPAgAjD0Jkwnjcb2OY0J5hxLFxw5D1wxdgrcxKOXJStPX+QhJ7XFnx39paM1tr0LjWsQnNWLS6TZQLi3i7e3cF84xhruNUQJt4O78LgoD1ITzzoVO+f9Tm2YPmtSVtDRMKHUY8e/EGdDqAMZpmZNm6eU3zoVN78L2/rULirt6PztEenTMZi55SxJvvd5K6tmkAx9IZ/XGACmgT3+CXQZCPeYZb3bDgcs4rcWuJJ2La98ceMArTXiDDAIw6xKkeCV9vjm89nTv2o3OmR+doxqK7e2G2uKK26YBWvU3mBI2PA44PUxPiSSgI8vCEXbh18mquhFXo5I6Xo7JVSs7aUKB+XSUXsTMWjXs5rcIb4rVeg7H8dJjdPTpnhm5dlfTjSE/VFbVN9fN+1rJDHR2mJsSTUBDk4Qm7cFvLEAzQOF6OylYpOSHVXMw5krFoLUBx9XJi/rsRS4a/iPodLOdn+V7f3RcxfJwZTnRVbdPnHh9rNQnGmcQjQjwFBUEeriyjZk3ifQOx59p2kwXerFaGAfcNtLsNenyl5ADToUAhZd0cmSvjC1AtROrluOsiRmjvzpkyaXzZya7izDA1IZ6CgqAZ85qaXCXFWAAv5c8SHMic6ZE8n5AMHKibG9TJ69aODbhvYN1xB1krJWe8HlI/FDgmZ5rVainOLBXgC1CvitTLsfciRoysV3t6d86USePLTnYVKpVGfAEFQSNCa2oC9gUyZ3skzyck43lwBz1HTtxcpeSsrYeUaqkAX4ASq5djT21TsYZO7UkWcaZMmq3sZFehUmnE23HX9/JT1qqEBDDcX5PxsgE+jvRIXsqfhTE50/BS/iwcunzc6uNWnMhG+V/7EOpP3NYer/dsn0Fgi+Ogqw0Gy6Luf4vj8Gwfy/m2sXHDECgLNDkmxlIBa3OIDUOjEJkwHow8yOS4I70ce9pua1mIUPYki6Qnt0eQ0XZX9pZJq9+hL+7/2wq0mpWL+/+2wqs3+yXEXagnaMTayYZldWAAzmFBIfODUvVIHO1hClkPaTyv1aB5HOo1P48qjRINQ6PQuF4MPjm2Bkt/WO1wPcnOTTpwpt93btJBtF6OPcscxJr/tSdZxNPKpBHijygIGrEVrBzdNsiehdf2BDZnTtx8w1jm81o3i6MRVNII05/qhF/Z70WpJ/njtSLe42KtwRS6zEHIhYqQoWd7k0U8qUwaIf7IL4dDrQ038g2fOTMs2KdFN7zQdTyiQ6PAoG4+jatOKGBfYOMbUnQG37wWXz1Je4iZeSsGW7+v0KHnJ7o0x/SnOiEmMgQMgJjIELzWS41WRxbg4sLRuLL0BdwusuwBA/b9nRBCxOF3PUEhw418V/tSL7wOU4Rxbp0UprDc2Nfe0l7GPRm+zXn55rWCBdSTFMKZDXmlYOu3t6eHbty7q1vz+AU0Aiu7uGKBPiHkHr8LgrZOZuYnIVfspmAcnDgX8IF7D0QhhbD199ULDMNddQ20bF0Pj29zXr55rbs26kkKJWVtTkeXOvAFIEd7rq6o7GIve6rUUIFs4uv8LgjaczJzRcURy81buVfl3VFxb6xr7cRt/rq3rTxfz/hCgG9e61f2Bm89SaHsrc3JF9hMk3jKoW36s0lJODF+M0d7rq6q7CKUPesYqUA28Qd+FwTtOZm5ouKIkM1brbVPjNc1pr8Q4FsE/QT460nawzyAF5wqxpS1uw3BTPFXRmqYIgw12hpodHUnY+PApi1vYnKiro4qQoBZSTjj38zRXqKjPVdPqOxizJ51jFQgm/gDvwuC9pzMXJG8IeS1HBkmdKSNxoGWL3uUr56ko4x7HbKoP1ETW4RaTd2wK9ccqT6w1ZzuZ3Ki5ltr50zP3tFdJTyhsosxe9Yxilkg29V7UBIilN8FQXtOZq5I3rD2HgF/lWzjm+dzpO3WuHs+zrjXwVU5hcuNuxWoNjshs6pgMBwl4RqGRjnds3ckacVTKrvo2bOOUawC2Z5eyJz4N0mDYH5+PpYtWwa1Wo1JkyZh/Ph7V79nz55FZmam4XZFRQUaNGiAbdu2SdkkAJYnM2vJL67YWNXae3Clxtuz43u9wDDIGJkhEQYA5AEyBMuCUaWuQmBAIFQ6NViwCGAC8MQD8Q6dkMSajzPuXVjrzZlrGBqFGrMTtab4QShaFpkEUf1vlvXDas7XkXpZhiv2nRTKnnWMYhXI9oTdWAixRrIgWFpaisWLFyMvLw+BgYFIS0tD9+7d0aZNGwBA+/btsXVrXUmq6upqPPXUU5g7d65UzbHK2SUTzhLyHvrgxtWzs7bj+21VFeQBMtSTh6FKbboMQv+Z2b+ScHSsDgWXfkC7mNZ2fTbzxAlb83F8jHsd1npzxvSBTdu0CbL2fgs0OQcmsAasKhhsRTPUb3LTUOFG/7mtfYcME4AxOdP8YpjOnqLXYhXI9rQ1oYQYkywIHjlyBPHx8YiIiAAAJCUlYefOnZg+fbrFY1esWIGuXbvi8ccfl6o5Vtm7ZEIKfO9hmT1qydqO7xqdFsHBQfjPyA9Mjot1ZW6eOGFv7Utjxr0OTfGDULT6BUzAvUxZBgzqBYZarGs8hOMIbFlk6H0yQTWQx/6JyY8/Y9I7zvphNWfvGLi3xtH8Akis5QGfn1wnSiKRWOwpei1GgWxPWxNKiDHJgmBZWRliYmIMt2NjY1FYWGjxOKVSiQ0bNiA/P5/zdZRKJZRKpcmxkpIS0drp6VepQrI8G4ZG2fU5xPrM5gkSfPNxthj3OqyvlrS0rnAr5wbBQnrHDMeaR/3FgHnWqaPLAz4/uU6UMnPezBXTCoQ4SrIgyLKW690YjhXf+fn5GDBgABo25E4ZX7NmDbKyskRvn56nX6XaCkzyABlq1LVW9/yrF2hZacbez2wt2cU8cYJvPk4Ifa/jpfxZKL9r+olYsIa1jsY9Nr6Abqt3PCZnmtXnirU8gK/MnL8EQVdMKxDiKMmCYKNGjXDy5EnD7bKyMsTGxlo8bu/evXjhhResvs7EiRMxYsQIk2MlJSUmSTbO8PSrVL4sz/p/VYHhWkKgx3EtYtdn5pszNU+c0FY0hVwegPptLlrMx9lDSI9U32PjC+i2erx8z70q0vIAa+Xk7C0z5+2oHBzxVJIFwZ49e2Lp0qWoqKhASEgIdu/ejfnz55s8hmVZnDlzBo899pjV1wkPD0d4eLhUzfT4q9Thke2w5s4RqAPu9aIVOhYTm/fElsr/2awEU8URIO35zHzzh/pNdU3mzQYMkWwOydyNuxWYHj/ZakC3lgij7/HyXQysPn2Td3mA0PnCAJHKzAH+s9bOXz4n8QyS9gQzMjKQnp4OtVqN0aNHIy4uDlOnTsWMGTPQsWNHVFRUQKFQICgoyPYLSsiTr1If+ukwRupuY1fDergpD0CERoekG3fwUPlh3Ii1fSK1NsQp9DPb6k1JsbM4V3Di0jA0ymZA5+vx8j1Xm1xsdXkAZzmxvd/iy0uWPeABrXqLUmbOX9ba+cvnJJ6DYbkm7zzc1atXkZiYiH379qFZs2bubo6BFFewFxeOBnc9UQYfxLXj7TFZW29oj7r5OY5lBeoQVP/UT7KiyuY7XhiXTQP4P5vQ3TJssdbbm7Jgt0kvURb1J+dcqL59YmSHWvsdokOjDD1yX+Avn5N4Dr+rGCMVqa5g+WpP8vWYokUKwlzvwWplUF1uCxbSFVXmKmhgfIHRuUkHw9IHrjWQ+vbeUVchUBaI6fGT7f4urPVyzecFuSrcGC85EaPMnKdnMYvFXz4n8RwUBJ1gfGLmS7d3JhDx1Z683w2L+aEOgepyW2grmhoe44qiysZBke+CwxXVScyzYp1ZHymUp2cxi8VfPifxHH65s7wYDl0+jmXH1hp2GreW7WdP/U4u9Tv0RXTKi5CHRwNgIA+PRnTKiy4tw9WnRTd8mroQOWOWofqnfiYBUM+RosqO4gt0ruhJpCe3R5BCZrjNqoI5HyfmiXtsHP/O977CXz4n8RzUE3TQ6pObLBZpc3EkC9CctdqT7kgiEKuosi182Zd8gc4VPQnzcmIhFR1MaqYC4p+4PT2L2Rah8+Xe/jmJ9xEUBEeMGIFx48Zh6NChCAkR92TnDmKUw7qjVgoqayLlejB3FCZOT26PJTk/QaO9l6wjlzF2F1XmY2szV75A56p1n+bzha5I6/fkLGY+9l6seevnJN5JUBCcPXs2cnJysGTJEgwaNAhjx45F27ZtpW6bJMTaLVunCkaAjSLPQF2CilTclURgnk/saH6xtcBhq1pL5yYdOJcddG7SwW09CTpxW0e7SBBPJigIdu7cGZ07d4ZSqUR+fj6mTZuG2NhYPPPMM0hOTpa6jU4zPtlCHQJN/baAk4kdIRUdUBP7o0lWIMsCxpXh5AEySecyrPWIGqi1uLL0BUn2rftyx1lodaZRT6tj7f7++HoHtjZz/fFaEef9+uPeHJDEKtrtSSjjk3gywXOCSqUSW7duRW5uLurXr4/k5GRs3boVBw4cwKJFi6Rso1MsdmFQVEPRsu5kaZzgYW9ix7N9BiFrrwasfgsfjRyMTGMyRCrFCkzjk2RY2wZApNmJhGXxUFUtNMo7KN++HABEDYTlldWQRf1Ztyzgr62LNMUPopwjWYYPX+8gOrIf77yjr55UxRql8DSU8Uk8maCsjX/84x9ITExEYWEh5s6di82bN+OZZ55BVlYWCgoKJG6ic7hOtoxMB3nz8ybH7E3seKJLc0wfMAThV5JRe2IwZFDAPAdGy2oNuxmIQX+SvF5ZDRaAOvSa5YMYBufC6irwsJpaVB7IFu39AaBB83IoWhYhIKgGDAMEBNVA0bIIDZpbrmXkwxfIzLMvAdPNXK2dPPXHC04VY8qC3XjyH1sxZcFuFJwqtqtt7sI3DOzNKOOTeDJBPcG2bdti1qxZiIoyPfnI5XKsW7dOkoaJxdrJ1nhtlyO7ZQOmyRFP5+zkfIyzSySMCd2/76b8XjTWKG+I9v4AoGh+HrUa02QfRqaDwuyiwha+3oGtzVz5kl+8uTdlaxjYW1HGJ/FkgoLgyZMn8eKLL5oce/rpp7Fhwwa0bt1akoaJxdrJNkATAgYQbd6FUYeAVVierBi1eNm0QvfvizAKUvJw7i2qHFWlUdp13BpbWZx8NUn5TqpT1u4WZQskW/jm7hyd13PV8hN38OZ5WuLbeIPgjBkz8Pvvv6O4uBipqamG4xqNBgEB3rHO3lom4cCHuuK5CeINx9RebmtRP5LVBkB1WbwsWiH79yl0LJJu3AFwr7KMmMSa33G2d2DtpOqK3hRfbxOAwz1R862pAMdHKQghwvAGwddeew1//PEHZs+ejdmzZxuOy2Qyr1kiYSuTUCxRbGtU/A6LhJEoVryesq39+6IUoRhUfged7qggD4+WJDtUzHV49vQOhK7Dc0VvytbcnaM9UVvDwIQQ8fEGwWbNmqFZs2bYtWsX567w3sDanJyYc3WAPkCpUHv6XpZkkEKG9KfEu4rnPEmKsH+fPdwxv2PPYmtX9KYc6W0K7YlKsTUVIcQ63iA4duxYrFu3Dp07dzYJgizLgmEY/Pjjj5I30FlibmrKx1VX8Z5wknT1/I49i61d8TvY6m16+rwebVpLyD28QXDJkiUAgG3btrmkMVKwVrZMinJmnhCgfJG96wKl/h1s9TY9eV6PNq0lxBRvEPz55595n3zfffeJ2RZJRFtJ5JCynBkRl6ctthbS2/TUeT0qYUaIKd4guHbtWqv3MQyDQYMGid4gsbmqoDKRjif+hny9TU8eEfDVajuEOMrhIOgthCRy0ByJZ6PF1uLxtF41Ie7GGwQXLlyIWbNmWSyU11u+fLkkjRIbXyIHzZF4B1u/IQVIYTyxV02IO/EGwR49egAAkpKSXNIYd6A5Eu9GFzH2oV41IaZ4g2D//v0B1G2qW1lZiZ9//hlyuRydOnVCeHi4SxooNZojEZere2V0EWM/KmFGyD2CFssVFBRg8ODBWLVqFZYtW4YhQ4bgxIkTUrfNJWztSECE0/fKyu9WgMW9Xtmhy8c5Hy/Gbg90EUN8SWFhIebMmQMA+OWXXzBjxgzBjxfjcf5IUBBcsmQJvvrqK3z11Vf4+uuvsWLFCrzzzjtSt80laJsX8fD1ysyZbwulr7FpbyCkixjiS3799VeUlpYCADp27IiPP/5Y8OPFeJw/ErSLBMMwJrVCH3nkEbBS7BjrBlLNkfhjsoY9vTK++pv2LC+gRA/iDXQ6Hd5++22cPn0aVVVVYFkWCxYswMaNG3Hz5k0UFxejU6dOOHLkCG7fvo033ngDw4cPx/z587Ft2zacPHkS7777LnS6uiIfL7zwAuLi4vDxxx8bHm+tY3Lt2jWLx+Xk5GDt2rUICAhAdHQ0Zs+ejZYtWyIzMxMMw+C3335DRUUFevXqhbfeegsKhcLqZ9NqtVi0aBH279+P+vXrIy4uDr/99hvWrl2L27dvY+HChTh//jzUajV69OiB1157DXK5HB07dsTzzz+Pw4cPo6ysDOnp6Zg0aRLy8vKQm5uL6upq1KtXD2vXrsXGjRuxbt066HQ6REREYPbs2aLtYMQbBG/evAkA6NChA1atWoW0tDQEBAQgLy8P8fHxojTAE4g9R+ILyRqOBHF70u/F2u2BEj2INzh9+jTKysqQk5ODgIAArFy5Ep999hkiIiJQU1OD7du3AwDy8vKwa9cuvPPOOzh27Jjh+UuXLsXkyZORkpKCc+fOIScnB0lJSZgxY4bh8dY0adLE5HFHjx7F559/jpycHERFRSEvLw8vv/yyoQ3nzp3DV199BYVCgSlTpiAnJwcTJkyw+vobN27EmTNnsG3bNjAMg2nTphnue/vtt/HII4/g3XffhVarRWZmJlavXo2pU6dCpVIhMjIS69evR1FREcaOHYuxY8cCqOu57t+/H/Xq1cPx48exZcsWZGdnIyQkBN9//z3+9re/4dtvv3XqN9HjDYLx8fFgGMbQ63v//fcN9zEMg9dff12URvgab0/WsCeIGwfLeoFhkDEyaNl7PTxrvTIxd3ugRA/i6R577DE0aNAA69evR3FxMY4dO4awsDBERESgS5cuNp+fnJyMefPmYf/+/ejZsydeeeUVh9ty6NAhDBkyxLBJ+siRI7Fw4UJcvXoVQF0iZFhYGABg2LBh2LdvH28Q/O677zBs2DAEBQUBAMaMGWNYY15QUIBffvkFubm5AICaGtP9TxMTEwHUjS6qVCrcvXsXANCuXTvUq1fP8BqXL19GWlqa4Xm3bt3CzZs3ERER4fD3oMcbBM+dO+f0G/gjb0/WEBrEzYPlbVUV5AEy1JOHoUpdxdsro73ziD8pKCjAwoULMXnyZCQmJqJVq1b45ptvAAChoaE2n5+WloaEhAQcPnwYhw4dQlZWluH59uKaymJZFhqNBkDdVnnGx23tHSuXm4YR48frdDosWbLEMHSpVCpNNmPQB079MX3bjL8TnU6HYcOGYebMmYbbZWVlaNCggY1PKoygxBiVSoU9e/Zgy5Yt2LJlCzZt2oTFixeL0gBXECML0R7enqwhNIhzBUuNTotgRRByxizDp6kLrfbQnujSHNOf6oSYyBAwAGIiQzD9qU4eW26MEGccPnwYCQkJGDduHDp27Ii9e/dCq9VaPE4mkxmCkbG0tDScPXsWI0eOxPz586FUKnHr1i2rj+d73d69e+Pbb79FRUXdv+dNmzYhIiICLVq0AADs2LEDKpUKtbW12Lx5MxISEnhfu1+/fvjmm2+gUqmg0WiwefNmw329e/fGF198AZZloVKpMG3aNHz11Vc222usV69e2L59O8rKygAA69atw8SJE+16DT6CEmMyMjJQXFyM69ev4+GHH8bp06fRrZt3DD/x7QIu1QnX25M1hM7tOdvj9eQam4SIKS0tDa+++ipSU1Mhk8nw+OOPY/fu3WjWrJnJ4x577DF89NFHePnll5Genm44/uqrr+Ltt9/GRx99hICAAEyfPh3NmjWDTqczPP6TTz6x+v7Gr/vJJ59g0qRJmDhxInQ6HaKiorBixQpDDy44OBjjxo2DUqlEUlISRo0axfvZRo4cid9//x3Dhw9HaGgomjVrhpCQummNWbNmYeHChUhNTYVarUbPnj3x3HPP2fXd9enTB1OnTsWUKVPAMAzq1auHrKws0fa4ZVgBaZ79+/fH7t27MXfuXEyePBksy+Jf//qX22qLXr16FYmJidi3b5/FH5G5KQt2c849xUSG4D9vSVcA3JuzQ82HOYG6IP5C1/Emn+Gl/FlWd+j4NHWhS9pKCBFPZmYm2rZti2effVbwc77//nvcuHEDw4bVXeQvWLAAQUFBhuFLTyeoJxgbGwu5XI4HHngA58+fR3JyMqqrbWfx5efnY9myZVCr1Zg0aRLGjx9vcv/Fixfxz3/+E7du3UJMTAz+/e9/izbOqydWFqK9vDlZQ2jGpbf3eAnxFRcvXkRGRgbnfS1btsRHH33k1OuPGzcOVVVVnPd9+umnWLVqFVatWgWtVouHHnoIc+fOder9XElQEAwNDUV+fj4eeughbNiwAa1atTIsn7CmtLQUixcvRl5eHgIDA5GWlobu3bujTZs2AOomQKdNm4ZZs2ahb9+++OCDD7By5UrRrx7EzEL0Np+fXIe9F7+HjtUhgAnAgFa98dzjYwU9V0gQp+UJhHiGVq1aYetWy6IU9nr33Xc5j3/99de8z1u9erXT7+0ugoLgnDlzsGHDBsycORO5ubmYMGGCzRTdI0eOID4+3pDCmpSUhJ07d2L69OkAgDNnziA0NBR9+/YFALz44otQKpUWr6NUKi2Ol5SUCGk2gL+yEPd+CzQ5ByawBqwqGLj2ENIHDBH8Gt7o85PrsPu3g4bbOlZnuC00EArhzT1eQggRFAQfeOABvPbaa1AqlYK71WVlZYiJiTHcjo2NRWFhoeH2lStXEB0djddffx3//e9/8eCDD2L27NkWr7NmzRpkZWUJek8usuhrCGxZBA1blxnFBNVA3rIIsujHAPhuUsbei99bPS5mECSEEG8maInExYsXkZKSgpSUFJSWliI5ORm//fYb73O48m2Ms3k0Gg2OHz+OCRMmID8/H82bN+fsik+cOBH79u0z+S87O1tIswHUDdXpA6DhvVkNZz1LX6JjdXYdJ4QQfyQoCC5YsABvvvkmGjZsiEaNGmHChAk2K5I3atQI5eXlhttlZWWIjY013I6JiUGLFi3QsWNHAMDQoUNNeop64eHhaNasmcl/jRs3FvThAO9fuO6oAIb7p7V2nBBC/JGgM+LNmzfRq1cvw+3x48fjzp07vM/p2bMnjh49ioqKClRXV2P37t2G+T+gbt1KRUWFoSrN/v378cgjjzjyGXh5+8J1Rw1o1duu44QQ4o8Edwtqa2sNw5nXr183VDO3plGjRsjIyEB6ejqGDx+OoUOHIi4uDlOnTsUvv/yC4OBgfPLJJ3jrrbeQkpKCY8eOITMz07lPw8Fft0p67vGxGNS6r6HnF8AEYFDrvg7NB94uOogrS1/AxYWjcWXpC7hddND2kwghbvfxxx8jMTHRq7M3pSZosXxubi62bNmCK1euYNiwYdi+fTuee+45jBs3zhVttGDPYnnAuxeuu9vtooMo374crKbWcIyRByE65UXU79DX4vH0XbsHfe/eoeBUMb7ccRblldWIjgxBenJ7SasmJSYm4vPPP0fLli0lew9vJygIAsCJEydQUFAAnU6H3r17mwyPupq9QZA47srSF6BRllscl4dH4/6/rTA5JrTSDBEXfe/ewbyEI1BXNF6MmrkajQZz587FhQsXUF5ejpYtW6Jp06bIy8vD/fffjw8//BCTJ0/GI488gvLycuTm5mLVqlX45ptvIJPJ0KtXL8ycORPXrl3DtGnT0Lx5c1y+fBlNmzbF+++/j4iICBw4cAAfffQRdDodmjdvjnnz5iE6Ohr9+/dH//79cfLkSQB12yc9/PDDTn0eVxI0HHrnzh38+OOPmDlzJiZMmICCggLDlhfEt2mUNwQft2dneWe5uii6J3Pl904cx7eRtLN++uknKBQK5OTkYM+ePaitrUWvXr0QGxuLlStXon379qisrMTzzz+PrVu34siRI9i/fz/y8vKwefNmXL58GevXrwcAnD9/HhMnTsT27dvRunVrZGVl4caNG5gzZw4++eQT5Ofno3Pnzpg3b57h/SMiIrBlyxbMmDHD67bYExQE33jjDUOFmPDwcDAMw7mmj/geeXhDwcddlYmrv6K+XlkNFveKovtrIPTXDGhvI2UJx65du2LcuHHIzs7GwoULcenSJc6OSqdOnQAAP/zwA1JSUhAcHAy5XI5Ro0bh6NGjAOrWhXfv3h0AMHz4cPzwww8oLCxEXFycYeRtzJgx+OGHHwyv+/TTTwOoqzNdWlpq2KHCGwgKgpcuXTJE9/r16+PNN9/EhQsXJG0Y8QyRCePByINMjjHyIEQmjLd4rKsycaW8ovZG/poB7W2slWoUo4Tjvn378OqrryI4OBgjR45E165dOddqBwcHAwBnYqN+qyXj/QFZloVMJrN4vPH+g+bP0el0JnsSejpBQVCj0ZgsiaiqquL8gonvqd+hL6JTXoQ8PBoAA3l4tNWkmLFxwyBjTP/4ZYxM9ExcdxVF91TuzICmzGHh0pPbI0hh+u9DrI2kjx49iuTkZIwaNQrR0dE4ceIE536FevHx8di+fTtqamqg0WiwadMmxMfHAwB+//13nD1bd0G5adMm9O3bF506dcLp06cNu8/n5OQYeosAsH37dgDAnj170Lp1a9E3QpCSoLJpw4cPx1NPPYXBgweDYRjs2bMHI0eOlLptxEPU79CXM+hxYRgArNltkflzUXQu7ipkbp45rFGWo3z7cgAQ/PfiT/TJL1Jkhz711FN49dVXsXPnTgQGBuLRRx81BCwuCQkJOHv2LEaNGgWNRoM+ffpgwoQJKCkpQYMGDfDxxx/jypUraNeuHRYsWIDQ0FDMmzcP06dPh1qtRtOmTbFw4b3t0n788Ufk5uYiJCTEahFuTyU4O3Tfvn04evQo5HI5evTogX79+kndNqsoO9QzuWp/QSmz7Ihw9mQOE+9w9epVpKenY//+/YKf079/f3z55Zdeey4W1BME6nb3ffzxxw3DoDdv3jTsEEGk5S1rwFyVoGHritpbvi9vZ0/mMCGeSlAQXLNmDT788EOo1WoAdZOiDMMYxo2JdMzXgJXfrcCKE3UFxD3txN4wNIqzJyhFgsYTXZpz9vq86fvydvLwhlZ6gtwZxcTzNWvWzK5eIAC7H+9pBCXGrF27FuvWrcPZs2dx9uxZnDt3jgKgi3jTGjBPKFHnTd+Xt7Mnc5gQTyWoJxgTEyNJcWtimzetAfOEnea96fvydvU79MXZ329AfnoLGuAObqEeNA8PR0tKiiFeRFAQ7NWrF77++mskJiYiKOjelR/NCUrPlUOMYnD3TvPe9n15s4JTxcg6rECt+l6meNBhGaY3LaYEJeI1BA2Hrly5EvPmzUO/fv0QHx+P+Ph49OjRQ+q2EXjGEKM3oe/LdahoAfEFgnqCXJvdEtfwhCFGb2Lv90WZpI6jogWer7S0FG+99RY+++wzp19ryZIl6NChAxITE0VomecQtE5QpVLhu+++Q1VVFQBAq9XiypUryMjIkLyBXGidIBED7b7gnCkLdnMWLYiJDMF/3hrkhhYRYj9BPcGMjAwUFxfj+vXrePjhh3H69Gl060YnCeLd+DJJKQjalp7cnrNogRhlwHzV7aKDqDyQDY3yBuThDRGZMF6U6jrHjh3DihUrEBwcjN9++w3t2rXDBx98gLKyMsPi95KSErz66qu4desWHnzwQZw4cQIHDx5EVVUV5s2bhwsXLkCr1WLq1KkYOnSoYYeJmzdvIiEhAWVlZejWrRtGjhyJxYsX4+jRo7h16xYiIyOxdOlSxMTEoHfv3khKSsKpU6cgk8nw0UcfoXlz0/lha1sv/f7775gzZw5u3ryJ0NBQzJo1C3FxccjMzATDMDh//jzu3LmDadOmYfjw4U5/Z3qC5gTPnj2LvLw8JCYm4s0338T69etx+/Zt0RpBiDtQJqlznujSHNOf6oSYyBAwqOsBUtUe6/Rl5urWVrKGMnNi1Vv96aefMGfOHOzYsQN//vknvv/+e5P7Fy5ciOTkZOTn52Pw4MEoLS0FACxbtgyPPPII8vLykJ2djeXLl6O4uG5HltLSUmzevBmvvPKK4XUuX76MixcvYv369di1axfuv/9+5OfnAwCuX7+OHj16YMuWLejatSuys7M528q19dLMmTPxzDPPID8/H2+88Qb+/ve/Q6VSGdqxfv16rFmzBosWLcL169dF+c4AgT3B2NhYyOVyPPDAAzh//jySk5NRXU3j/v7KV+bR3JVJ6ivfH2C9aAGxVHkg21BnVY/V1KLyQLYovcG2bduicePGAIDWrVvj1q1bJvcfPnwY77zzDgBg4MCBCA8PBwAcOXIENTU12LRpEwDg7t27hl2CHn74YZMdIgCgRYsWeP3117Fx40b8/vvv+Pnnn3H//fcb7u/Tp4+hPfrenjnjrZcyMzNRUlKCK1euYNCgumH0Rx99FA0aNMDFixcBACNHjoRCoUDjxo3RuXNnnDp1CoMHD3bwmzIlKAiGhoYiPz8fDz30EDZs2IBWrVoZ9hck/sWXKrKMjRvGOScoZSapL31/xD5Sl5kzXr7GMIzFTj8ymYxz9x+dTof333/fsBa8vLwcDRo0QH5+vmHrJWNFRUX4xz/+gUmTJiEpKQkBAQEmr6tvB1cb9My3XtJqtRaPZVnWsBOG8dZMOp3OIjA7Q9Bw6Jw5c3Du3Dn07t0bMpkMzzzzDJ599lnRGkG8hy9VZOnTohte6Doe0aFRYFBX6FvqpBhf+v6IfezZoFoKPXv2NAxbfvfdd1AqlQDqtlVat24dAKCsrAxPPvkkrl27ZvV1Tpw4gW7dumHs2LFo06YNDh8+zLttExfzrZfuu+8+NG/eHLt37wYA/PzzzygvL0fbtm0BADt27ADLsvjjjz9QWFiILl262PfhefCG02eeeQaM0V446enpYFkW7dq1w44dOzB27FjRGuINXDWMVXCqWJLtVsTga/Norl7c72vfHxEuMmG8ydZTgGvLzL355pt4/fXXsWHDBjz00EOG4dDp06dj7ty5GDp0KLRaLWbOnIn777/f6lDmkCFDMH36dKSmpkKhUKBdu3a82zZx4dp66f3338fcuXOxdOlSKBQKLF26FIGBdWt+a2pqMGrUKKhUKsybNw+RkZFOfBOmeJdI7Nq1C0BdtL5z5w5GjRoFmUyGrVu3Ijw8HPPnzxetIfZwxxIJV6XTe/o2Qa7aLslX0ffn36TKDhXiyy+/RM+ePdGmTRucOXMGs2fPRl5enkve25i9Wy9lZmYaslKlwNsTTEpKAgCsWrUK69evR0BA3ejpE088gTFjxkjSIE/lqnR6viocnhAE3TGP5kvo+/Nv9mxQLbYWLVrglVdeQUBAAIKCgtzWifE0gmYXKysrUVtbi5CQup27q6qqLDKPfJ2rhrE8vQoHVbBxji9/f548jE+Afv36uXUzdD17t16Seqd6QUFw6NChePrppzFw4ECwLIudO3caUlz9havS6aMjQzircERHhoj6Ps5wd5Fsb+eL35/5MP71ympkbTwNABQIiUcTlB3697//HX//+9+hVCpx+/ZtZGZm4rnnnpO6bR7FVYWZ05PbI0ghMznmL1U4Dl0+jpfyZ2FMzjS8lD8Lhy4fd3eTiEBUTJt4K8GLLQYMGIABAwZI2RaP5qphLP1Vs78NK9H6Oe8m5jC+LxUTIJ5PvBWHfsBVw1j+WIWD6nh6N7GG8eliiLiaoOFQQqTmTOIRDaO6n1jD+FRMgLgaBUHiEawlGNlKPNL3HMrvVoDFvZ4DBULXEquYNhUTEN/HH3+MxMRErF692unXWrp0KZYuXSpCq/hdvXoV/fv3t+s5/fv3x9WrV5GXl4fMzEzBz5N0ODQ/Px/Lli2DWq3GpEmTMH68aWWErKwsbNq0yVC54Omnn7Z4DPEPjq6fo2FUzyHGML67ipq7ijvmO7du3YrPP/8cLVu2lPR9vJVkQbC0tBSLFy9GXl4eAgMDkZaWhu7du6NNmzaGxxQVFeHf//43HnvsMamaQbyEo4lH1HPwLb5cTEDK+U6NRoO5c+fiwoULKC8vR8uWLZGVlYW3334bpaWlePnll/Hhhx9i8uTJeOSRR1BeXo7c3FysWrUK33zzDWQyGXr16oWZM2eaFKsGgM8//xwbNmxAZGQkwsPDERcXBwD46quvsHXrVlRXV4NhGHz00Udo3bo1+vfvjyeffBLff/89qqur8d5776FDhw44e/Ys5syZg5qaGjRo0AAffPABGjdujJUrV2LHjh3QarXo3bs3Zs6cCaCuVFpGRgYuXLiA8PBwfPLJJ4iMjLT6vo6SbDj0yJEjiI+PR0REBEJDQ5GUlISdO3eaPKaoqAifffYZUlNTMW/ePNTW1lq8jlKpxNWrV03+KykpkarZxI36tOiGT1MXImfMMnyaulDQicHRYVTimdxR1NxVpJzv/Omnn6BQKJCTk4M9e/agtrYW3333HebNm4fY2FisXLkS7du3R2VlJZ5//nls3boVR44cwf79+w2b516+fBnr1683ed1ffvkFmzZtwubNm7F69WrDuffOnTvYu3cv1q5di23btmHAgAH4+uuvDc+LiIhAbm4u0tLSsGLFCgDAq6++ipdeegn5+fkYMmQI1qxZg4MHD6KoqAi5ubnYsmULSktL8c033wAAKioqMHnyZGzbtg3R0dH49ttvbb6vIyTrCZaVlSEmJsZwOzY2FoWFhYbbVVVVaN++PV5//XXcd999yMzMxKeffoqMjAyT11mzZg2ysrKkaibxcr7cc/BXvlhMAJB21KJr166IiIhAdnY2Ll68iEuXLuHu3bucj+3UqRMA4IcffkBKSophu6RRo0Zhy5YtJlNSx48fR79+/RAWFgYAGDx4MHQ6HerVq4cPP/wQ27dvx6VLl3Do0CG0b38vCcp4T8Hdu3ejoqIC169fR0JCAgBg3LhxAID33nsPhYWFhrqgNTU1aNq0Kbp06YLY2FhDr7NNmzaorKy0+b6OkCwIctXlNt6RIiwsDJ999pnh9pQpU/Dmm29aBMGJEydixIgRJsdKSkrcMndIZaE8jy+XISO+Rcr5zn379uHjjz9Geno6Ro4cicrKSqt7+emDnk6ns7hPo9GY3GYYxuRxcrkcKpUK165dwzPPPIMJEyagb9++iI6Oxtmz9wojGO8pCAAKhcLkdWtra1FWVgatVouJEydi8uTJAOpG/mQyGSorK032DNTvTWjrfR0h2XBoo0aNUF5ebrhdVlaG2NhYw+0///wTubm5htssy3JulBgeHo5mzZqZ/KffPdmV9GWhrldWg8W9slAFp4pd3hZiypFhVEJcTcqqU0ePHkVycjJGjRqF6OhonDhxwuYef/Hx8di+fTtqamqg0WiwadMmxMfHmzymR48eKCgowO3bt1FbW4s9e/YAqBsmbdGiBSZNmoROnTrh4MGDvO9Xv359NG7cGIcPHwZQl6yzZMkSxMfHY+vWraiqqoJGo8HLL79s2L2Ii73vK4RkPcGePXti6dKlqKioQEhICHbv3m1StTw4OBjvv/8+unfvjmbNmiE7OxsDBw6UqjlO85TdHaiaBiHeScpRi6eeegqvvvoqdu7cicDAQDz66KM29/hLSEjA2bNnMWrUKGg0GvTp0wcTJkwweUz79u0xceJEjB49GuHh4WjatCkAoFevXli3bh2GDBmCwMBAxMXF4cKFC7zvp98vcNGiRYiMjMSiRYsQGxuLc+fO4emnn4ZWq0WfPn0wYsQI/PHHH5yv4cj72sK7n6Cz8vPzsWLFCqjVaowePRpTp07F1KlTMWPGDHTs2BG7du3C0qVLoVar0blzZ/zrX/8ybKLIxx37CT75j63g+qIYAN986Jr5J1ftaUgIIf5C0nWCqampSE1NNTlmPA+YlJRk2LPQ03nC7g6+vibOnRuOAtTLJsQfUe1QG/QnxjttKxCsCoH6SltoK+qGBFy9u4Mvr4m7XXQQ5duXg9XULZPRKMtRvn05ALgkEFLNSkL8E5VN42FckgsAmMBqBLY6A1nUnw6XhXKGL6+JqzyQbQiAeqymFpUHsl3y/lSzkhD/RD1BHlwnRgRo0TTuKj5Nneby9vjymjiN8oZdx42JMYzpy71sQoh1FAR5eNqJ0ZVr4lw9PyYPbwiNspzzOB+xhjF9vWYlIYQbBUEennhidEU1DXfMj0UmjDeZEwQARh6EyAT+oghiJQv5ci+bEGIdzQnykHJxqydzx/xY/Q59EZ3yIuTh0QAYyMOjEZ3yos2kGLF6675cs5IQYh31BHn4a0kudw0D1+/Q1+5MUDF7675as5IQYh0FQRv88cToicPA1tAwJiHEGTQcSix40zAwDWMSQpxBPUFiwduGgf2xt04IEYdfBEEqh2U/CiyEEH/g80GQymERQgixxufnBKkcFiGEEGt8Pgh6WtUXQgghnsPng6AvF50mhBDiHJ8Pgt6U7k8IIcS1fD4xxtvS/QkhhLiOzwdBgNL9CSGEcPOLIEiINbSGlBD/RkGQ+C1aQ0oI8fnEGEKsoTWkhBAKgsRv0RpSQggNhxK3cfd8nDdtGUUIkQb1BIlb6Ofjyu9WgMW9+bhDl4+7rA20hpQQQkGQuIUnzMfRXoSEEBoOJW7hKfNxtIaUEP9GPUHiFlTTlRDiCSgIEreg+ThCiCeg4VDiFlTTlRDiCSgIEreh+ThCiLtJOhyan5+PIUOGYODAgcjOzrb6uIKCAvTv31/KphBCCCEWJOsJlpaWYvHixcjLy0NgYCDS0tLQvXt3tGnTxuRx5eXleO+996RqBiGEEGKVZD3BI0eOID4+HhEREQgNDUVSUhJ27txp8bi33noL06dPl6oZhBBCiFWS9QTLysoQExNjuB0bG4vCwkKTx3z55Zd4+OGH0alTJ6uvo1QqoVQqTY6VlJSI21hCCCF+SbIgyLKsxTGGYQz///z589i9eze++OIL3qC2Zs0aZGVlSdJGQggh/k2yINioUSOcPHnScLusrAyxsbGG2zt37sT169cxatQoqNVqlJWVYdy4cfj6669NXmfixIkYMWKEybGSkhKMHz9eqqYTQgjxEwzL1WUTQWlpKcaOHYvc3FyEhIQgLS0N8+fPR1xcnMVjr169ivT0dOzfv1/Qa1+9ehWJiYnYt28fmjVrJnbTCSGE+AnJEmMaNWqEjIwMpKenY/jw4Rg6dCji4uIwdepU/PLLL1K9LSGEECKYZD1BKVFPkBBCiBiodighhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiAhhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C1Jg2B+fj6GDBmCgQMHIjs72+L+PXv2IDU1FSkpKcjMzIRKpZKyOYQQQogJyYJgaWkpFi9ejK+//hpbt25FTk4Ofv31V8P9d+/exbx587B69Wps374dtbW12Lx5s1TNIYQQQixIFgSPHDmC+Ph4REREIDQ0FElJSdi5c6fh/tDQUOzfvx/R0dG4e/cubty4gfDwcKmaQwghhFiQS/XCZWVliImJMdyOjY1FYWGhyWMUCgW+++47vPbaa4iNjUXv3r0tXkepVEKpVJocKykpkabRhBBC/IpkQZBlWYtjDMNYHOvXrx+OHTuGf//735g7dy4+/PBDk/vXrFmDrKwsqZpJCCHEj0kWBBs1aoSTJ08abpeVlSE2NtZw++bNmygqKjL0/lJTU5GRkWHxOhMnTsSIESNMjpWUlGD8+PEStZwQQoi/kGxOsGfPnjh69CgqKipQXV2N3bt3o2/fvob7WZbFzJkz8eeffwIAduzYgc6dO1u8Tnh4OJo1a2byX+PGjaVqNiGEED8iaU8wIyMD6enpUKvVGD16NOLi4jB16lTMmDEDHTt2xPz58/HCCy+AYRi0adMG//rXv6RqDiGEEGKBYbkm7zzc1atXkZiYiH379qFZs2bubg4hhBAvRRVjCCGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8lmS1Qwkxd7voICoPZEOjvAF5eENEJoxH/Q59bT+REEIkQkGQuMTtooMo374crKYWAKBRlqN8+3IAoEBICHEbGg4lLlF5INsQAPVYTS0qD2S7qUWEEEJBkLiIRnnDruOEEOIKFASJS8jDG9p1nBBCXIGCIHGJyITxYORBJscYeRAiE8a7qUWEEEKJMcRF9MkvlB1KCPEkFASJy9Tv0JeCHiHEo9BwKCGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/JZXrhPUarUAgJKSEje3hBDirxo3bgy53CtPocSIV/6C169fBwCMH08ltwgh7rFv3z40a9bM3c0gTmJYlmXd3Qh71dTUoKioCDExMZDJZFYfV1JSgvHjxyM7OxuNGzd2YQupPY7ytDZRe2zztDa5qj3UE/QNXvkLBgcH4/HHHxf8+MaNG3vUFRu1xzZPaxO1xzZPa5OntYd4JkqMIYQQ4rcoCBJCCPFbFAQJIYT4LZ8OguHh4Zg+fTrCw8Pd3RQA1B4hPK1N1B7bPK1NntYe4tm8MjuUEEIIEYNP9wQJIYQQPhQECSGE+C2fDYL5+fkYMmQIBg4ciOzsbLe1486dOxg6dCiuXr0KADhy5AhSU1MxaNAgLF682KVtycrKQkpKClJSUrBo0SK3twcAlixZgiFDhiAlJQWrV6/2iDYBwHvvvYfMzEwAwNmzZzFq1CgkJSVh1qxZ0Gg0Lm1Leno6UlJSMGzYMAwbNgynT59269/3/v37MXLkSAwePBgLFiwA4L7fbOPGjYbvZdiwYejSpQvmzZvnEX9DxEuwPqikpIRNSEhgKysr2aqqKjY1NZW9cOGCy9vx888/s0OHDmUfeeQRtri4mK2urmb79evHXrlyhVWr1eyUKVPYgoICl7Tl8OHD7JgxY9ja2lpWpVKx6enpbH5+vtvaw7Ise+zYMTYtLY1Vq9VsdXU1m5CQwJ49e9atbWJZlj1y5AjbvXt39vXXX2dZlmVTUlLYn376iWVZln3jjTfY7Oxsl7VFp9OxvXr1YtVqteGYO/++r1y5wvbu3Zu9du0aq1Kp2LFjx7IFBQVu/81YlmXPnz/PDhw4kP3zzz89oj3EO/hkT/DIkSOIj49HREQEQkNDkZSUhJ07d7q8HRs2bMA///lPxMbGAgAKCwvRokULNG/eHHK5HKmpqS5rV0xMDDIzMxEYGAiFQoHWrVvj0qVLbmsPAHTr1g1ffvkl5HI5bty4Aa1WC6VS6dY23bx5E4sXL8aLL74IAPjjjz9QU1ODRx99FAAwcuRIl7bn4sWLYBgGU6dOxZNPPomvvvrKrX/fe/bswZAhQ9C4cWMoFAosXrwYISEhbv3N9ObOnYuMjAwUFxd7RHuId/DJIFhWVoaYmBjD7djYWJSWlrq8HQsXLjQp7+bOdrVt29ZwIr906RK+/fZbMAzj9u9JoVDg448/RkpKCnr06OH2327OnDnIyMgwpNebtycmJsal7VEqlejRowc++eQTfPHFF1i/fj3+/PNPt31Hly9fhlarxbPPPosnn3wSX3/9tdt/M6DuwrempgbJycke0R7iPXwyCLIcqz4YhnFDS0x5QrsuXLiAKVOm4PXXX8f999/v9vYAwIwZM3D06FFcu3YNly5dclubNm7ciCZNmqBHjx6GY+7+zR577DEsWrQIoaGhiIqKwujRo/Hxxx+7rU1arRZHjx7F+++/jw0bNuCXX34xzHe7oz1669evx+TJkwG4/zcj3sUrC2jb0qhRI5w8edJwu6yszDAk6U6NGjVCeXm54bar23Xq1CnMmDEDb775JlJSUnD8+HG3tue3336DSqVC+/btERISgkGDBmHnzp0mO4O4sk3ffvstrl+/jmHDhuHWrVu4e/cuGIYx+Y6uX7/u0u/o5MmTUKvVhsDMsizuu+8+t/1u0dHR6NGjB6KiogAAiYmJbv3NAEClUuHEiRN49913Abj/3xnxLj7ZE+zZsyeOHj2KiooKVFdXY/fu3ejbt6+7m4VOnTrh999/Nwwpbdu2zWXtunbtGl5++WV88MEHSElJcXt7AODq1at46623oFKpoFKpsG/fPqSlpbmtTatXr8a2bduwdetWzJgxA/3798c777yDoKAgnDp1CgCwZcsWl35Ht2/fxqJFi1BbW4s7d+5g8+bNeP/99932952QkIDvv/8eSqUSWq0Whw4dwuDBg936d/S///0PDzzwAEJDQwG4/++aeBef7QlmZGQgPT0darUao0ePRlxcnLubhaCgILz77rv429/+htraWvTr1w+DBw92yXuvWrUKtbW1hqtlAEhLS3NbewCgX79+OH36NIYPHw6ZTIZBgwYhJSUFUVFRbmsTlw8++ABvvfUWqqqq8PDDDyM9Pd1l752QkGD4jnQ6HcaNG4cuXbq47e+7U6dOeO655zBu3Dio1Wr06tULY8eORatWrdz2mxUXF5vsG+jOf2fE+1DZNEIIIX7LJ4dDCSGEECEoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiDxW5mZmVi1apVdz9m3b59h54SCggIsWbJEiqYRQlzEJ9cJEiKVxMREJCYmAgB++eUX3Lp1y80tIoQ4g4Ig8TjHjh3DokWL0KhRIxQXFyM4OBjvvvsuYmNj8a9//Qvnzp0DwzDo06cPXnnlFcjlcjz88MOYOHEijh07hrt37+KVV17BoEGDkJeXh127dmHFihUAYHFbLzc3Fzk5OVCr1bh16xamTp2KcePGIS8vD7m5uaiurka9evUwYsQI7Nq1Cy+99BLWr18PrVaL+vXro7CwEIMHD8aYMWMAAMuWLUNlZSXefPNNl39/hBDhKAgSj/Tf//4Xb7zxBh5//HGsW7cOM2fORNu2bREREYH8/Hyo1WpMmzYN//nPf/D8889Dq9WiQYMGyMvLw7lz5zBhwgSTHTz4VFVVYePGjVi5ciUiIyPx888/Y/LkyRg3bhwA4Ndff8X+/ftRr1495OXlAairnJKWlobKykpkZGRg7969WL58OcaMGQOdToeNGzfi888/l+z7IYSIg+YEiUd66KGHDEFs1KhROHv2LLZt24YJEyaAYRgEBgYiLS0NBw8eNDxnwoQJhuc++OCDOHHihKD3CgsLw/Lly/Hdd9/ho48+wvLly3H37l3D/e3atUO9evV4XyMhIQHl5eU4d+4cDh06hGbNmqFVq1b2fmxCiItRECQeyXhXAqBu9wTzCn86nQ4ajYbzOTqdDjKZDAzDmDxPrVZbvFdJSQmGDx+OP/74A126dMH//d//mdyvL8xsq71paWnIzc3Fpk2bkJaWZvM5hBD3oyBIPNK5c+dw7tw5AEBOTg46d+6M5ORkZGdng2VZqFQqbNiwAT179jQ8Z8uWLQCAM2fO4Pfff0fXrl0RFRWFCxcuoLa2FhqNBgcOHLB4r6KiIkRFReGll15Cnz59DI/RarW8bZTJZCZB+KmnnsLevXtx5swZDBw40NmvgBDiAjQnSDxSdHQ0PvroI/zxxx+IiorCokWLEBYWhgULFiA1NRVqtRp9+vTBiy++aHjOjz/+iA0bNkCn02Hx4sVo0KABevXqha5duyI5ORkxMTHo3r07/ve//5m8V69evZCbm4vBgwcjJCQEcXFxiIqKwuXLl3nb2KNHD/ztb3+DQqHA7Nmz0bBhQ3To0AGtW7eGQqGQ5HshhIiLdpEgHufYsWOYP38+tm3bJvg57dq1w9GjRw2bvbpDRUUFRo8ejezsbDRp0sRt7SCECEfDoYSIYMOGDRgyZAjS09MpABLiRagnSAghxG9RT5AQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/Nb/AzTNtGFHfP2fAAAAAElFTkSuQmCC", + "text/plain": [ + "
                      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.FacetGrid(df, hue=\"artist_top_genre\", size=5) \\\n", + " .map(plt.scatter, \"popularity\", \"danceability\") \\\n", + " .add_legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.9" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "c61deff2839902ac8cb4ed411eb10fee", + "translation_date": "2025-09-04T01:58:21+00:00", + "source_file": "5-Clustering/1-Visualize/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fr/5-Clustering/2-K-Means/README.md b/translations/fr/5-Clustering/2-K-Means/README.md new file mode 100644 index 000000000..5f7852071 --- /dev/null +++ b/translations/fr/5-Clustering/2-K-Means/README.md @@ -0,0 +1,261 @@ + +# Regroupement K-Means + +## [Quiz avant le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/) + +Dans cette leçon, vous apprendrez à créer des regroupements en utilisant Scikit-learn et le jeu de données sur la musique nigériane que vous avez importé précédemment. Nous couvrirons les bases du K-Means pour le regroupement. Gardez à l'esprit que, comme vous l'avez appris dans la leçon précédente, il existe de nombreuses façons de travailler avec des regroupements, et la méthode que vous utilisez dépend de vos données. Nous allons essayer le K-Means car c'est la technique de regroupement la plus courante. Commençons ! + +Termes que vous allez découvrir : + +- Score de silhouette +- Méthode du coude +- Inertie +- Variance + +## Introduction + +[Le regroupement K-Means](https://wikipedia.org/wiki/K-means_clustering) est une méthode issue du domaine du traitement du signal. Elle est utilisée pour diviser et partitionner des groupes de données en 'k' regroupements à l'aide d'une série d'observations. Chaque observation travaille à regrouper un point de données donné le plus proche de sa 'moyenne' ou du point central d'un regroupement. + +Les regroupements peuvent être visualisés sous forme de [diagrammes de Voronoï](https://wikipedia.org/wiki/Voronoi_diagram), qui incluent un point (ou 'graine') et sa région correspondante. + +![diagramme de voronoï](../../../../translated_images/voronoi.1dc1613fb0439b9564615eca8df47a4bcd1ce06217e7e72325d2406ef2180795.fr.png) + +> Infographie par [Jen Looper](https://twitter.com/jenlooper) + +Le processus de regroupement K-Means [s'exécute en trois étapes](https://scikit-learn.org/stable/modules/clustering.html#k-means) : + +1. L'algorithme sélectionne un nombre k de points centraux en échantillonnant à partir du jeu de données. Ensuite, il boucle : + 1. Il attribue chaque échantillon au centroïde le plus proche. + 2. Il crée de nouveaux centroïdes en prenant la valeur moyenne de tous les échantillons attribués aux centroïdes précédents. + 3. Puis, il calcule la différence entre les nouveaux et les anciens centroïdes et répète jusqu'à ce que les centroïdes se stabilisent. + +Un inconvénient du K-Means est que vous devez définir 'k', c'est-à-dire le nombre de centroïdes. Heureusement, la 'méthode du coude' aide à estimer une bonne valeur de départ pour 'k'. Vous allez l'essayer dans un instant. + +## Prérequis + +Vous travaillerez dans le fichier [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/notebook.ipynb) de cette leçon, qui inclut l'importation des données et le nettoyage préliminaire que vous avez effectué dans la leçon précédente. + +## Exercice - préparation + +Commencez par examiner à nouveau les données des chansons. + +1. Créez un boxplot en appelant `boxplot()` pour chaque colonne : + + ```python + plt.figure(figsize=(20,20), dpi=200) + + plt.subplot(4,3,1) + sns.boxplot(x = 'popularity', data = df) + + plt.subplot(4,3,2) + sns.boxplot(x = 'acousticness', data = df) + + plt.subplot(4,3,3) + sns.boxplot(x = 'energy', data = df) + + plt.subplot(4,3,4) + sns.boxplot(x = 'instrumentalness', data = df) + + plt.subplot(4,3,5) + sns.boxplot(x = 'liveness', data = df) + + plt.subplot(4,3,6) + sns.boxplot(x = 'loudness', data = df) + + plt.subplot(4,3,7) + sns.boxplot(x = 'speechiness', data = df) + + plt.subplot(4,3,8) + sns.boxplot(x = 'tempo', data = df) + + plt.subplot(4,3,9) + sns.boxplot(x = 'time_signature', data = df) + + plt.subplot(4,3,10) + sns.boxplot(x = 'danceability', data = df) + + plt.subplot(4,3,11) + sns.boxplot(x = 'length', data = df) + + plt.subplot(4,3,12) + sns.boxplot(x = 'release_date', data = df) + ``` + + Ces données sont un peu bruyantes : en observant chaque colonne sous forme de boxplot, vous pouvez voir des valeurs aberrantes. + + ![valeurs aberrantes](../../../../translated_images/boxplots.8228c29dabd0f29227dd38624231a175f411f1d8d4d7c012cb770e00e4fdf8b6.fr.png) + +Vous pourriez parcourir le jeu de données et supprimer ces valeurs aberrantes, mais cela rendrait les données assez minimales. + +1. Pour l'instant, choisissez les colonnes que vous utiliserez pour votre exercice de regroupement. Sélectionnez celles avec des plages similaires et encodez la colonne `artist_top_genre` en données numériques : + + ```python + from sklearn.preprocessing import LabelEncoder + le = LabelEncoder() + + X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')] + + y = df['artist_top_genre'] + + X['artist_top_genre'] = le.fit_transform(X['artist_top_genre']) + + y = le.transform(y) + ``` + +1. Maintenant, vous devez choisir combien de regroupements cibler. Vous savez qu'il y a 3 genres musicaux que nous avons extraits du jeu de données, alors essayons avec 3 : + + ```python + from sklearn.cluster import KMeans + + nclusters = 3 + seed = 0 + + km = KMeans(n_clusters=nclusters, random_state=seed) + km.fit(X) + + # Predict the cluster for each data point + + y_cluster_kmeans = km.predict(X) + y_cluster_kmeans + ``` + +Vous voyez un tableau imprimé avec des regroupements prédits (0, 1 ou 2) pour chaque ligne du dataframe. + +1. Utilisez ce tableau pour calculer un 'score de silhouette' : + + ```python + from sklearn import metrics + score = metrics.silhouette_score(X, y_cluster_kmeans) + score + ``` + +## Score de silhouette + +Cherchez un score de silhouette proche de 1. Ce score varie de -1 à 1, et si le score est 1, le regroupement est dense et bien séparé des autres regroupements. Une valeur proche de 0 représente des regroupements qui se chevauchent, avec des échantillons très proches de la frontière de décision des regroupements voisins. [(Source)](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam) + +Notre score est **0,53**, donc en plein milieu. Cela indique que nos données ne sont pas particulièrement adaptées à ce type de regroupement, mais continuons. + +### Exercice - construire un modèle + +1. Importez `KMeans` et commencez le processus de regroupement. + + ```python + from sklearn.cluster import KMeans + wcss = [] + + for i in range(1, 11): + kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) + kmeans.fit(X) + wcss.append(kmeans.inertia_) + + ``` + + Il y a quelques parties ici qui méritent une explication. + + > 🎓 range : Ce sont les itérations du processus de regroupement. + + > 🎓 random_state : "Détermine la génération de nombres aléatoires pour l'initialisation des centroïdes." [Source](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans) + + > 🎓 WCSS : "somme des carrés intra-regroupement" mesure la distance moyenne au carré de tous les points d'un regroupement par rapport au centroïde du regroupement. [Source](https://medium.com/@ODSC/unsupervised-learning-evaluating-clusters-bd47eed175ce). + + > 🎓 Inertie : Les algorithmes K-Means tentent de choisir des centroïdes pour minimiser l'inertie, "une mesure de la cohérence interne des regroupements." [Source](https://scikit-learn.org/stable/modules/clustering.html). La valeur est ajoutée à la variable wcss à chaque itération. + + > 🎓 k-means++ : Dans [Scikit-learn](https://scikit-learn.org/stable/modules/clustering.html#k-means), vous pouvez utiliser l'optimisation 'k-means++', qui "initialise les centroïdes pour qu'ils soient (généralement) éloignés les uns des autres, conduisant probablement à de meilleurs résultats que l'initialisation aléatoire." + +### Méthode du coude + +Précédemment, vous avez supposé que, parce que vous avez ciblé 3 genres musicaux, vous devriez choisir 3 regroupements. Mais est-ce le cas ? + +1. Utilisez la 'méthode du coude' pour en être sûr. + + ```python + plt.figure(figsize=(10,5)) + sns.lineplot(x=range(1, 11), y=wcss, marker='o', color='red') + plt.title('Elbow') + plt.xlabel('Number of clusters') + plt.ylabel('WCSS') + plt.show() + ``` + + Utilisez la variable `wcss` que vous avez construite à l'étape précédente pour créer un graphique montrant où se trouve le 'pli' dans le coude, ce qui indique le nombre optimal de regroupements. Peut-être que c'est **bien** 3 ! + + ![méthode du coude](../../../../translated_images/elbow.72676169eed744ff03677e71334a16c6b8f751e9e716e3d7f40dd7cdef674cca.fr.png) + +## Exercice - afficher les regroupements + +1. Essayez à nouveau le processus, cette fois en définissant trois regroupements, et affichez les regroupements sous forme de graphique de dispersion : + + ```python + from sklearn.cluster import KMeans + kmeans = KMeans(n_clusters = 3) + kmeans.fit(X) + labels = kmeans.predict(X) + plt.scatter(df['popularity'],df['danceability'],c = labels) + plt.xlabel('popularity') + plt.ylabel('danceability') + plt.show() + ``` + +1. Vérifiez la précision du modèle : + + ```python + labels = kmeans.labels_ + + correct_labels = sum(y == labels) + + print("Result: %d out of %d samples were correctly labeled." % (correct_labels, y.size)) + + print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size))) + ``` + + La précision de ce modèle n'est pas très bonne, et la forme des regroupements vous donne un indice sur la raison. + + ![regroupements](../../../../translated_images/clusters.b635354640d8e4fd4a49ef545495518e7be76172c97c13bd748f5b79f171f69a.fr.png) + + Ces données sont trop déséquilibrées, trop peu corrélées et il y a trop de variance entre les valeurs des colonnes pour bien regrouper. En fait, les regroupements qui se forment sont probablement fortement influencés ou biaisés par les trois catégories de genres que nous avons définies ci-dessus. C'était un processus d'apprentissage ! + + Dans la documentation de Scikit-learn, vous pouvez voir qu'un modèle comme celui-ci, avec des regroupements pas très bien délimités, a un problème de 'variance' : + + ![modèles problématiques](../../../../translated_images/problems.f7fb539ccd80608e1f35c319cf5e3ad1809faa3c08537aead8018c6b5ba2e33a.fr.png) + > Infographie de Scikit-learn + +## Variance + +La variance est définie comme "la moyenne des carrés des écarts par rapport à la moyenne" [(Source)](https://www.mathsisfun.com/data/standard-deviation.html). Dans le contexte de ce problème de regroupement, cela fait référence à des données où les nombres de notre jeu de données ont tendance à diverger un peu trop de la moyenne. + +✅ C'est un excellent moment pour réfléchir à toutes les façons dont vous pourriez corriger ce problème. Ajuster un peu plus les données ? Utiliser différentes colonnes ? Utiliser un autre algorithme ? Astuce : Essayez de [normaliser vos données](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/) pour les mettre à l'échelle et tester d'autres colonnes. + +> Essayez ce '[calculateur de variance](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)' pour mieux comprendre le concept. + +--- + +## 🚀Défi + +Passez du temps avec ce notebook en ajustant les paramètres. Pouvez-vous améliorer la précision du modèle en nettoyant davantage les données (en supprimant les valeurs aberrantes, par exemple) ? Vous pouvez utiliser des poids pour donner plus d'importance à certains échantillons de données. Que pouvez-vous faire d'autre pour créer de meilleurs regroupements ? + +Astuce : Essayez de mettre vos données à l'échelle. Il y a du code commenté dans le notebook qui ajoute une mise à l'échelle standard pour que les colonnes de données se ressemblent davantage en termes de plage. Vous constaterez que, bien que le score de silhouette diminue, le 'pli' dans le graphique du coude devient plus lisse. Cela est dû au fait que laisser les données non mises à l'échelle permet aux données avec moins de variance de peser davantage. Lisez un peu plus sur ce problème [ici](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226). + +## [Quiz après le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/) + +## Révision et étude personnelle + +Jetez un œil à un simulateur K-Means [comme celui-ci](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/). Vous pouvez utiliser cet outil pour visualiser des points de données d'échantillon et déterminer leurs centroïdes. Vous pouvez modifier l'aléatoire des données, le nombre de regroupements et le nombre de centroïdes. Cela vous aide-t-il à comprendre comment les données peuvent être regroupées ? + +Consultez également [ce document sur le K-Means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) de Stanford. + +## Devoir + +[Essayez différentes méthodes de regroupement](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/5-Clustering/2-K-Means/assignment.md b/translations/fr/5-Clustering/2-K-Means/assignment.md new file mode 100644 index 000000000..0bce0c3a9 --- /dev/null +++ b/translations/fr/5-Clustering/2-K-Means/assignment.md @@ -0,0 +1,25 @@ + +# Essayez différentes méthodes de regroupement + +## Instructions + +Dans cette leçon, vous avez appris le regroupement K-Means. Parfois, K-Means n'est pas adapté à vos données. Créez un notebook en utilisant des données provenant de ces leçons ou d'une autre source (créditez votre source) et montrez une méthode de regroupement différente qui n'utilise PAS K-Means. Qu'avez-vous appris ? + +## Grille d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | --------------------------------------------------------------- | -------------------------------------------------------------------- | ---------------------------- | +| | Un notebook est présenté avec un modèle de regroupement bien documenté | Un notebook est présenté sans bonne documentation et/ou incomplet | Un travail incomplet est soumis | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/5-Clustering/2-K-Means/notebook.ipynb b/translations/fr/5-Clustering/2-K-Means/notebook.ipynb new file mode 100644 index 000000000..2bada94ec --- /dev/null +++ b/translations/fr/5-Clustering/2-K-Means/notebook.ipynb @@ -0,0 +1,231 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "3e5c8ab363e8d88f566d4365efc7e0bd", + "translation_date": "2025-09-04T02:09:06+00:00", + "source_file": "5-Clustering/2-K-Means/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "Commencez là où nous avons terminé lors de la dernière leçon, avec les données importées et filtrées.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                      0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                      2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                      \n
                      " + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "Nous nous concentrerons uniquement sur 3 genres. Peut-être que nous pourrons créer 3 clusters !\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                      5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
                      6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
                      \n
                      " + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/5-Clustering/2-K-Means/solution/Julia/README.md b/translations/fr/5-Clustering/2-K-Means/solution/Julia/README.md new file mode 100644 index 000000000..22beb17e4 --- /dev/null +++ b/translations/fr/5-Clustering/2-K-Means/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb b/translations/fr/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb new file mode 100644 index 000000000..00db42ea5 --- /dev/null +++ b/translations/fr/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb @@ -0,0 +1,639 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "colab": { + "name": "lesson_14.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "coopTranslator": { + "original_hash": "ad65fb4aad0a156b42216e4929f490fc", + "translation_date": "2025-09-04T02:13:59+00:00", + "source_file": "5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb", + "language_code": "fr" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "GULATlQXLXyR" + }, + "source": [ + "## Explorer le clustering K-Means avec R et les principes des données Tidy\n", + "\n", + "### [**Quiz avant le cours**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/)\n", + "\n", + "Dans cette leçon, vous apprendrez à créer des clusters en utilisant le package Tidymodels et d'autres packages de l'écosystème R (que nous appellerons des amis 🧑‍🤝‍🧑), ainsi que le jeu de données sur la musique nigériane que vous avez importé précédemment. Nous couvrirons les bases du K-Means pour le clustering. Gardez à l'esprit que, comme vous l'avez appris dans la leçon précédente, il existe de nombreuses façons de travailler avec des clusters, et la méthode que vous utilisez dépend de vos données. Nous essayerons le K-Means car c'est la technique de clustering la plus courante. Allons-y !\n", + "\n", + "Termes que vous allez découvrir :\n", + "\n", + "- Scoring silhouette\n", + "\n", + "- Méthode du coude\n", + "\n", + "- Inertie\n", + "\n", + "- Variance\n", + "\n", + "### **Introduction**\n", + "\n", + "[Le clustering K-Means](https://wikipedia.org/wiki/K-means_clustering) est une méthode issue du domaine du traitement du signal. Elle est utilisée pour diviser et partitionner des groupes de données en `k clusters` en fonction des similarités de leurs caractéristiques.\n", + "\n", + "Les clusters peuvent être visualisés sous forme de [diagrammes de Voronoï](https://wikipedia.org/wiki/Voronoi_diagram), qui incluent un point (ou \"graine\") et sa région correspondante.\n", + "\n", + "

                      \n", + " \n", + "

                      Infographie par Jen Looper
                      \n", + "\n", + "Le clustering K-Means suit les étapes suivantes :\n", + "\n", + "1. Le data scientist commence par spécifier le nombre de clusters souhaités.\n", + "\n", + "2. Ensuite, l'algorithme sélectionne aléatoirement K observations du jeu de données pour servir de centres initiaux des clusters (c'est-à-dire des centroïdes).\n", + "\n", + "3. Chaque observation restante est ensuite assignée à son centroïde le plus proche.\n", + "\n", + "4. Les nouvelles moyennes de chaque cluster sont calculées, et le centroïde est déplacé vers cette moyenne.\n", + "\n", + "5. Maintenant que les centres ont été recalculés, chaque observation est à nouveau vérifiée pour voir si elle pourrait être plus proche d'un autre cluster. Tous les objets sont réassignés en utilisant les moyennes des clusters mises à jour. Les étapes d'assignation des clusters et de mise à jour des centroïdes sont répétées de manière itérative jusqu'à ce que les assignations de clusters cessent de changer (c'est-à-dire lorsque la convergence est atteinte). En général, l'algorithme s'arrête lorsque chaque nouvelle itération entraîne un déplacement négligeable des centroïdes et que les clusters deviennent statiques.\n", + "\n", + "
                      \n", + "\n", + "> Notez qu'en raison de la randomisation des k observations initiales utilisées comme centroïdes de départ, nous pouvons obtenir des résultats légèrement différents à chaque application de la procédure. Pour cette raison, la plupart des algorithmes utilisent plusieurs *démarrages aléatoires* et choisissent l'itération avec le WCSS le plus faible. Il est donc fortement recommandé d'exécuter K-Means avec plusieurs valeurs de *nstart* pour éviter un *optimum local indésirable.*\n", + "\n", + "
                      \n", + "\n", + "Cette courte animation utilisant les [illustrations](https://github.com/allisonhorst/stats-illustrations) d'Allison Horst explique le processus de clustering :\n", + "\n", + "

                      \n", + " \n", + "

                      Illustration par @allison_horst
                      \n", + "\n", + "Une question fondamentale qui se pose dans le clustering est la suivante : comment savoir en combien de clusters diviser vos données ? Un inconvénient du K-Means est que vous devez définir `k`, c'est-à-dire le nombre de `centroïdes`. Heureusement, la `méthode du coude` aide à estimer une bonne valeur de départ pour `k`. Vous allez l'essayer dans un instant.\n", + "\n", + "### \n", + "\n", + "**Prérequis**\n", + "\n", + "Nous reprendrons là où nous nous sommes arrêtés dans la [leçon précédente](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb), où nous avons analysé le jeu de données, réalisé de nombreuses visualisations et filtré le jeu de données pour des observations d'intérêt. Assurez-vous de la consulter !\n", + "\n", + "Nous aurons besoin de quelques packages pour compléter ce module. Vous pouvez les installer avec : `install.packages(c('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork'))`\n", + "\n", + "Alternativement, le script ci-dessous vérifie si vous avez les packages nécessaires pour compléter ce module et les installe pour vous si certains manquent.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ah_tBi58LXyi" + }, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork')\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7e--UCUTLXym" + }, + "source": [ + "Allons-y !\n", + "\n", + "## 1. Une danse avec les données : Réduire aux 3 genres musicaux les plus populaires\n", + "\n", + "Voici un récapitulatif de ce que nous avons fait dans la leçon précédente. Décortiquons un peu les données !\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Ycamx7GGLXyn" + }, + "source": [ + "# Load the core tidyverse and make it available in your current R session\n", + "library(tidyverse)\n", + "\n", + "# Import the data into a tibble\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\", show_col_types = FALSE)\n", + "\n", + "# Narrow down to top 3 popular genres\n", + "nigerian_songs <- df %>% \n", + " # Concentrate on top 3 genres\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \n", + " # Remove unclassified observations\n", + " filter(popularity != 0)\n", + "\n", + "\n", + "\n", + "# Visualize popular genres using bar plots\n", + "theme_set(theme_light())\n", + "nigerian_songs %>%\n", + " count(artist_top_genre) %>%\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\n", + " fill = artist_top_genre)) +\n", + " geom_col(alpha = 0.8) +\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\n", + " ggtitle(\"Top genres\") +\n", + " theme(plot.title = element_text(hjust = 0.5))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b5h5zmkPLXyp" + }, + "source": [ + "🤩 Ça s'est bien passé !\n", + "\n", + "## 2. Exploration supplémentaire des données.\n", + "\n", + "À quel point ces données sont-elles propres ? Vérifions la présence de valeurs aberrantes à l'aide de diagrammes en boîte. Nous allons nous concentrer sur les colonnes numériques avec moins de valeurs aberrantes (bien que vous puissiez nettoyer les valeurs aberrantes). Les diagrammes en boîte peuvent montrer l'étendue des données et aider à choisir les colonnes à utiliser. Notez que les diagrammes en boîte ne montrent pas la variance, un élément important pour des données bien adaptées au clustering. Veuillez consulter [cette discussion](https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot) pour en savoir plus.\n", + "\n", + "Les [diagrammes en boîte](https://en.wikipedia.org/wiki/Box_plot) sont utilisés pour représenter graphiquement la distribution des données `numériques`, alors commençons par *sélectionner* toutes les colonnes numériques ainsi que les genres musicaux populaires.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HhNreJKLLXyq" + }, + "source": [ + "# Select top genre column and all other numeric columns\n", + "df_numeric <- nigerian_songs %>% \n", + " select(artist_top_genre, where(is.numeric)) \n", + "\n", + "# Display the data\n", + "df_numeric %>% \n", + " slice_head(n = 5)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uYXrwJRaLXyq" + }, + "source": [ + "Voyez comme l'assistant de sélection `where` rend cela facile 💁 ? Découvrez d'autres fonctions similaires [ici](https://tidyselect.r-lib.org/).\n", + "\n", + "Puisque nous allons créer un boxplot pour chaque caractéristique numérique et que nous voulons éviter d'utiliser des boucles, reformons nos données dans un format *plus long* qui nous permettra de tirer parti des `facets` - des sous-graphiques affichant chacun un sous-ensemble des données.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "gd5bR3f8LXys" + }, + "source": [ + "# Pivot data from wide to long\n", + "df_numeric_long <- df_numeric %>% \n", + " pivot_longer(!artist_top_genre, names_to = \"feature_names\", values_to = \"values\") \n", + "\n", + "# Print out data\n", + "df_numeric_long %>% \n", + " slice_head(n = 15)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-7tE1swnLXyv" + }, + "source": [ + "Beaucoup plus long ! Maintenant, il est temps de passer à quelques `ggplots` ! Alors, quel `geom` allons-nous utiliser ?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "r88bIsyuLXyy" + }, + "source": [ + "# Make a box plot\n", + "df_numeric_long %>% \n", + " ggplot(mapping = aes(x = feature_names, y = values, fill = feature_names)) +\n", + " geom_boxplot() +\n", + " facet_wrap(~ feature_names, ncol = 4, scales = \"free\") +\n", + " theme(legend.position = \"none\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EYVyKIUELXyz" + }, + "source": [ + "Facile-gg !\n", + "\n", + "Nous pouvons maintenant constater que ces données sont un peu bruyantes : en observant chaque colonne sous forme de boîte à moustaches, on peut repérer des valeurs aberrantes. Vous pourriez parcourir l'ensemble de données et supprimer ces valeurs aberrantes, mais cela rendrait les données assez limitées.\n", + "\n", + "Pour l'instant, choisissons les colonnes que nous utiliserons pour notre exercice de regroupement. Prenons les colonnes numériques ayant des plages similaires. Nous pourrions encoder `artist_top_genre` en numérique, mais nous allons l'ignorer pour le moment.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-wkpINyZLXy0" + }, + "source": [ + "# Select variables with similar ranges\n", + "df_numeric_select <- df_numeric %>% \n", + " select(popularity, danceability, acousticness, loudness, energy) \n", + "\n", + "# Normalize data\n", + "# df_numeric_select <- scale(df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D7dLzgpqLXy1" + }, + "source": [ + "## 3. Calcul des clusters k-means dans R\n", + "\n", + "Nous pouvons calculer les k-means dans R avec la fonction intégrée `kmeans`, voir `help(\"kmeans()\")`. La fonction `kmeans()` accepte un tableau de données avec toutes les colonnes numériques comme argument principal.\n", + "\n", + "La première étape lors de l'utilisation du clustering k-means est de spécifier le nombre de clusters (k) qui seront générés dans la solution finale. Nous savons qu'il y a 3 genres musicaux que nous avons extraits du jeu de données, alors essayons avec 3 :\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "uC4EQ5w7LXy5" + }, + "source": [ + "set.seed(2056)\n", + "# Kmeans clustering for 3 clusters\n", + "kclust <- kmeans(\n", + " df_numeric_select,\n", + " # Specify the number of clusters\n", + " centers = 3,\n", + " # How many random initial configurations\n", + " nstart = 25\n", + ")\n", + "\n", + "# Display clustering object\n", + "kclust\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hzfhscWrLXy-" + }, + "source": [ + "L'objet kmeans contient plusieurs informations bien expliquées dans `help(\"kmeans()\")`. Pour l'instant, concentrons-nous sur quelques-unes. Nous voyons que les données ont été regroupées en 3 clusters de tailles 65, 110, 111. La sortie contient également les centres des clusters (moyennes) pour les 3 groupes sur les 5 variables.\n", + "\n", + "Le vecteur de clustering correspond à l'affectation de cluster pour chaque observation. Utilisons la fonction `augment` pour ajouter l'affectation de cluster au jeu de données original.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "0XwwpFGQLXy_" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "augment(kclust, df_numeric_select) %>% \n", + " relocate(.cluster) %>% \n", + " slice_head(n = 10)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NXIVXXACLXzA" + }, + "source": [ + "Parfait, nous venons de diviser notre ensemble de données en 3 groupes. Alors, à quel point notre regroupement est-il bon 🤷 ? Jetons un coup d'œil au `Silhouette score`.\n", + "\n", + "### **Score de silhouette**\n", + "\n", + "[L'analyse de silhouette](https://en.wikipedia.org/wiki/Silhouette_(clustering)) peut être utilisée pour étudier la distance de séparation entre les clusters obtenus. Ce score varie de -1 à 1, et si le score est proche de 1, cela signifie que le cluster est dense et bien séparé des autres clusters. Une valeur proche de 0 représente des clusters qui se chevauchent, avec des échantillons très proches de la frontière de décision des clusters voisins. [source](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam).\n", + "\n", + "La méthode de silhouette moyenne calcule la silhouette moyenne des observations pour différentes valeurs de *k*. Un score moyen de silhouette élevé indique un bon regroupement.\n", + "\n", + "La fonction `silhouette` du package cluster permet de calculer la largeur moyenne de silhouette.\n", + "\n", + "> La silhouette peut être calculée avec n'importe quelle [distance](https://en.wikipedia.org/wiki/Distance \"Distance\"), comme la [distance euclidienne](https://en.wikipedia.org/wiki/Euclidean_distance \"Euclidean distance\") ou la [distance de Manhattan](https://en.wikipedia.org/wiki/Manhattan_distance \"Manhattan distance\") que nous avons abordées dans la [leçon précédente](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb).\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Jn0McL28LXzB" + }, + "source": [ + "# Load cluster package\n", + "library(cluster)\n", + "\n", + "# Compute average silhouette score\n", + "ss <- silhouette(kclust$cluster,\n", + " # Compute euclidean distance\n", + " dist = dist(df_numeric_select))\n", + "mean(ss[, 3])\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QyQRn97nLXzC" + }, + "source": [ + "Notre score est **0,549**, ce qui le place en plein milieu. Cela indique que nos données ne sont pas particulièrement adaptées à ce type de regroupement. Voyons si nous pouvons confirmer cette intuition visuellement. Le [package factoextra](https://rpkgs.datanovia.com/factoextra/index.html) fournit des fonctions (`fviz_cluster()`) pour visualiser les regroupements.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "7a6Km1_FLXzD" + }, + "source": [ + "library(factoextra)\n", + "\n", + "# Visualize clustering results\n", + "fviz_cluster(kclust, df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IBwCWt-0LXzD" + }, + "source": [ + "Le chevauchement des clusters indique que nos données ne sont pas particulièrement adaptées à ce type de regroupement, mais poursuivons tout de même.\n", + "\n", + "## 4. Déterminer le nombre optimal de clusters\n", + "\n", + "Une question fondamentale qui se pose souvent dans le cadre du clustering K-Means est la suivante : sans étiquettes de classe connues, comment savoir en combien de clusters diviser vos données ?\n", + "\n", + "Une méthode pour tenter de le déterminer consiste à utiliser un échantillon de données pour `créer une série de modèles de clustering` avec un nombre croissant de clusters (par exemple de 1 à 10), et à évaluer des métriques de clustering telles que le **score de Silhouette.**\n", + "\n", + "Déterminons le nombre optimal de clusters en appliquant l'algorithme de clustering pour différentes valeurs de *k* et en évaluant la **somme des carrés intra-cluster** (WCSS). La somme totale des carrés intra-cluster (WCSS) mesure la compacité du regroupement, et nous souhaitons qu'elle soit aussi faible que possible, des valeurs plus basses signifiant que les points de données sont plus proches les uns des autres.\n", + "\n", + "Explorons l'effet de différents choix de `k`, de 1 à 10, sur ce regroupement.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "hSeIiylDLXzE" + }, + "source": [ + "# Create a series of clustering models\n", + "kclusts <- tibble(k = 1:10) %>% \n", + " # Perform kmeans clustering for 1,2,3 ... ,10 clusters\n", + " mutate(model = map(k, ~ kmeans(df_numeric_select, centers = .x, nstart = 25)),\n", + " # Farm out clustering metrics eg WCSS\n", + " glanced = map(model, ~ glance(.x))) %>% \n", + " unnest(cols = glanced)\n", + " \n", + "\n", + "# View clustering rsulsts\n", + "kclusts\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m7rS2U1eLXzE" + }, + "source": [ + "Maintenant que nous avons la somme totale des carrés intra-clusters (tot.withinss) pour chaque algorithme de regroupement avec un centre *k*, nous utilisons la [méthode du coude](https://fr.wikipedia.org/wiki/M%C3%A9thode_du_coude_(regroupement)) pour déterminer le nombre optimal de clusters. Cette méthode consiste à tracer la WCSS en fonction du nombre de clusters, puis à choisir le [coude de la courbe](https://fr.wikipedia.org/wiki/Coude_de_la_courbe \"Coude de la courbe\") comme le nombre de clusters à utiliser.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "o_DjHGItLXzF" + }, + "source": [ + "set.seed(2056)\n", + "# Use elbow method to determine optimum number of clusters\n", + "kclusts %>% \n", + " ggplot(mapping = aes(x = k, y = tot.withinss)) +\n", + " geom_line(size = 1.2, alpha = 0.8, color = \"#FF7F0EFF\") +\n", + " geom_point(size = 2, color = \"#FF7F0EFF\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pLYyt5XSLXzG" + }, + "source": [ + "Le graphique montre une grande réduction de WCSS (donc une *compacité* accrue) lorsque le nombre de clusters passe de un à deux, et une réduction encore notable de deux à trois clusters. Après cela, la réduction est moins marquée, ce qui crée un `coude` 💪 dans le graphique autour de trois clusters. Cela indique clairement qu'il y a deux à trois groupes de points de données raisonnablement bien séparés.\n", + "\n", + "Nous pouvons maintenant procéder à l'extraction du modèle de clustering où `k = 3` :\n", + "\n", + "> `pull()`: utilisé pour extraire une seule colonne\n", + ">\n", + "> `pluck()`: utilisé pour indexer des structures de données telles que des listes\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JP_JPKBILXzG" + }, + "source": [ + "# Extract k = 3 clustering\n", + "final_kmeans <- kclusts %>% \n", + " filter(k == 3) %>% \n", + " pull(model) %>% \n", + " pluck(1)\n", + "\n", + "\n", + "final_kmeans\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l_PDTu8tLXzI" + }, + "source": [ + "Super ! Visualisons les clusters obtenus. Envie d'un peu d'interactivité avec `plotly` ?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "dNcleFe-LXzJ" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "results <- augment(final_kmeans, df_numeric_select) %>% \n", + " bind_cols(df_numeric %>% select(artist_top_genre)) \n", + "\n", + "# Plot cluster assignments\n", + "clust_plt <- results %>% \n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = .cluster, shape = artist_top_genre)) +\n", + " geom_point(size = 2, alpha = 0.8) +\n", + " paletteer::scale_color_paletteer_d(\"ggthemes::Tableau_10\")\n", + "\n", + "ggplotly(clust_plt)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6JUM_51VLXzK" + }, + "source": [ + "Peut-être aurions-nous pu nous attendre à ce que chaque cluster (représenté par des couleurs différentes) ait des genres distincts (représentés par des formes différentes).\n", + "\n", + "Examinons la précision du modèle.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HdIMUGq7LXzL" + }, + "source": [ + "# Assign genres to predefined integers\n", + "label_count <- results %>% \n", + " group_by(artist_top_genre) %>% \n", + " mutate(id = cur_group_id()) %>% \n", + " ungroup() %>% \n", + " summarise(correct_labels = sum(.cluster == id))\n", + "\n", + "\n", + "# Print results \n", + "cat(\"Result:\", label_count$correct_labels, \"out of\", nrow(results), \"samples were correctly labeled.\")\n", + "\n", + "cat(\"\\nAccuracy score:\", label_count$correct_labels/nrow(results))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C50wvaAOLXzM" + }, + "source": [ + "La précision de ce modèle n'est pas mauvaise, mais elle n'est pas excellente non plus. Il se peut que les données ne se prêtent pas bien au clustering par K-Means. Ces données sont trop déséquilibrées, trop peu corrélées et il y a trop de variance entre les valeurs des colonnes pour permettre un bon regroupement. En fait, les clusters qui se forment sont probablement fortement influencés ou biaisés par les trois catégories de genres que nous avons définies plus haut.\n", + "\n", + "Néanmoins, ce fut un processus d'apprentissage très enrichissant !\n", + "\n", + "Dans la documentation de Scikit-learn, vous pouvez voir qu'un modèle comme celui-ci, avec des clusters peu bien délimités, présente un problème de \"variance\" :\n", + "\n", + "

                      \n", + " \n", + "

                      Infographie tirée de Scikit-learn
                      \n", + "\n", + "\n", + "\n", + "## **Variance**\n", + "\n", + "La variance est définie comme \"la moyenne des carrés des écarts par rapport à la moyenne\" [source](https://www.mathsisfun.com/data/standard-deviation.html). Dans le contexte de ce problème de clustering, cela fait référence au fait que les chiffres de notre jeu de données ont tendance à s'écarter un peu trop de la moyenne.\n", + "\n", + "✅ C'est un excellent moment pour réfléchir à toutes les façons dont vous pourriez corriger ce problème. Ajuster un peu plus les données ? Utiliser d'autres colonnes ? Employer un algorithme différent ? Indice : Essayez de [normaliser vos données](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/) pour les mettre à l'échelle et testez d'autres colonnes.\n", + "\n", + "> Essayez ce '[calculateur de variance](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)' pour mieux comprendre le concept.\n", + "\n", + "------------------------------------------------------------------------\n", + "\n", + "## **🚀Défi**\n", + "\n", + "Passez un peu de temps avec ce notebook en ajustant les paramètres. Pouvez-vous améliorer la précision du modèle en nettoyant davantage les données (en supprimant les valeurs aberrantes, par exemple) ? Vous pouvez utiliser des pondérations pour donner plus d'importance à certains échantillons de données. Que pouvez-vous faire d'autre pour créer de meilleurs clusters ?\n", + "\n", + "Indice : Essayez de mettre vos données à l'échelle. Il y a du code commenté dans le notebook qui ajoute une mise à l'échelle standard pour que les colonnes de données se ressemblent davantage en termes de plage. Vous constaterez que, bien que le score de silhouette diminue, le \"coude\" dans le graphique du coude devient plus lisse. Cela s'explique par le fait que laisser les données non mises à l'échelle permet aux données avec moins de variance d'avoir plus de poids. Lisez un peu plus sur ce problème [ici](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226).\n", + "\n", + "## [**Quiz post-cours**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/)\n", + "\n", + "## **Révision et auto-apprentissage**\n", + "\n", + "- Jetez un œil à un simulateur de K-Means [comme celui-ci](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/). Vous pouvez utiliser cet outil pour visualiser des points de données d'exemple et déterminer leurs centroïdes. Vous pouvez modifier l'aléatoire des données, le nombre de clusters et le nombre de centroïdes. Cela vous aide-t-il à mieux comprendre comment les données peuvent être regroupées ?\n", + "\n", + "- Consultez également [ce document sur K-Means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) de Stanford.\n", + "\n", + "Envie de tester vos nouvelles compétences en clustering sur des ensembles de données qui se prêtent bien au clustering par K-Means ? Consultez :\n", + "\n", + "- [Entraîner et évaluer des modèles de clustering](https://rpubs.com/eR_ic/clustering) en utilisant Tidymodels et ses outils associés\n", + "\n", + "- [Analyse de clusters K-Means](https://uc-r.github.io/kmeans_clustering), Guide de programmation R pour l'analyse commerciale de l'UC\n", + "\n", + "- [Clustering K-Means avec les principes des données tidy](https://www.tidymodels.org/learn/statistics/k-means/)\n", + "\n", + "## **Devoir**\n", + "\n", + "[Essayez différentes méthodes de clustering](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/assignment.md)\n", + "\n", + "## REMERCIEMENTS À :\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) pour avoir créé la version Python originale de ce module ♥️\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) pour ses illustrations incroyables qui rendent R plus accueillant et engageant. Retrouvez plus d'illustrations dans sa [galerie](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n", + "\n", + "Bon apprentissage,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Gold Microsoft Learn Student Ambassador.\n", + "\n", + "

                      \n", + " \n", + "

                      Illustration par @allison_horst
                      \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/5-Clustering/2-K-Means/solution/notebook.ipynb b/translations/fr/5-Clustering/2-K-Means/solution/notebook.ipynb new file mode 100644 index 000000000..307796c8c --- /dev/null +++ b/translations/fr/5-Clustering/2-K-Means/solution/notebook.ipynb @@ -0,0 +1,546 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "e867e87e3129c8875423a82945f4ad5e", + "translation_date": "2025-09-04T02:10:05+00:00", + "source_file": "5-Clustering/2-K-Means/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "Commencez là où nous avons terminé lors de la dernière leçon, avec les données importées et filtrées.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                      0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                      2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                      \n
                      " + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "Nous nous concentrerons uniquement sur 3 genres. Peut-être que nous pourrons créer 3 clusters !\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                      5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
                      6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
                      \n
                      " + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "df.head()" + ] + }, + { + "source": [ + "À quel point ces données sont-elles propres ? Vérifiez les valeurs aberrantes à l'aide de diagrammes en boîte. Nous nous concentrerons sur les colonnes avec moins de valeurs aberrantes (bien que vous puissiez éliminer les valeurs aberrantes). Les diagrammes en boîte peuvent montrer l'étendue des données et aider à choisir les colonnes à utiliser. Notez que les diagrammes en boîte ne montrent pas la variance, un élément important pour des données bien regroupables (https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot).\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADFQAAAxLCAYAAAAjUVg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdsU5bZxiA4R/XFalaEEsHS1xCOpbroL3Qluug3Zp7YGAzqdRIwe7QMBAlEBrsY/w+z2QfWfgbLMv/d/SKg/V6PQAAAAAAAAAAAAAAAEpmUw8AAAAAAAAAAAAAAACwbYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyJlv+w0PDg4Oxxg/fXh6Pca43fYMAAAA7Lxvxhg/fnj813q9fjflMPBc7EUAAAD4QnYj7B17EQAAAL7QVvciWw8qxn+H4z8meF8AAABepp/HGH9OPQQ8E3sRAAAAnspuhH1hLwIAAMBTbXwvMtvkHwcAAAAAAAAAAAAAANhFU/yHiuu7B5eXl2OxWEwwAgAAALvs6upqnJ2d3T29fui18MLYiwAAAPAouxH2lL0IAAAAj9r2XmSKoOL27sFisRinp6cTjAAAAMALcvv4S+DFsBcBAADgqexG2Bf2IgAAADzVxvcis02/AQAAAAAAAAAAAAAAwK4RVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5MynHgAKVqvVWC6XU49BwGq1Gjc3N/euHR0djdlMP8fmHB8f+4wBAMAn2AfwMed2do0zPQAAAAB8PfcDdoc9/PbYL7NPBBWwBcvlcpyfn089BsBGXFxcjJOTk6nHAACAnWMfAOw6Z3oAAAAA+HruB1Bkv8w+kQYBAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx4Aqv5+/etYzw+nHoN98/6f8cOb3+9devv6lzHmryYaiH1z8P7d+P7Nb1OPAQAAL5Z9QJxzOxNypgcAAACA7XE/YCL28Bthv8y+E1TARNbzw7H+9rupx2DPHHzq4vyVzxoAAMCOsA9oc24HAAAAAGhwP2Aa9vDA/zGbegAAAAAAAAAAAAAAAIBtE1QAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx5g16xWq7FcLu9dOz4+HrOZ9gQAAHj5nHmAh/iOAAAAdo1zCgCwLX53AAD7zG+dzxNUfGS5XI7z8/N71y4uLsbJyclEEwEAADwfZx7gIb4jAACAXeOcAgBsi98dAMA+81vn8yQlAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAwL/s3bFOXGcax+FvWMJqdtcYuYi3MJeQckpzEUlBJJB8AUikyAXkCtIQcQGRQApFvO7T2SVlcgVhG9NZFLMmxLNFtljHY3xsw5x3zv95JDdnBnhlffqY8838bAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAACiXF5e9j0CUJg9gq4qr5XKswEAQCWCCgAAAAAAAABiTKfT9vXXX7fpdNr3KEBB9gi6qrxWKs8GAADVCCoAAAAAAAAAiHF0dNR+/vnndnx83PcoQEH2CLqqvFYqzwYAANUIKgAAAAAAAACIcHZ21k5OTlprrZ2cnLSzs7OeJwIqsUfQVeW1Unk2AACoSFABAAAAAAAAwODNZrN2cHDQrq6uWmut/fbbb+3g4KDNZrOeJwMqsEfQVeW1Unk2AACoSlABAAAAAAAAwOA9ffq0nZ6evnbt9PS0PXv2rKeJgErsEXRVea1Ung0AAKoSVAAAAAAAAAAwaNPptB0eHs597PDwsE2n0wVPBFRij6Crymul8mwAAFCZoAIAAAAAAACAQTs6Omrn5+dzH3v+/Hk7Pj5e8ERAJfYIuqq8VirPBgAAlQkqAAAAAAAAABisX3/9tZ2cnFz7nB9++KGdnZ0taCKgEnsEXVVeK5VnAwCA6gQVAAAAAAAAAAzSbDZr3333Xbu6urr2eVdXV+3g4KDNZrMFTQZUYI+gq8prpfJsAACwDFb7HqCaV69evXHtxYsXPUzCkMxdQ25QgWU0Z+/yexJguczbt+fdBwGZnIvcLOcBQCnu6QFYUh97lvH06dN2enra6bmnp6ft2bNnbWtrq/P3B5abPYKuKq+VyrMtG+ejwIfyfgCD53x5EHxe5O1uPKgYjUYP3vGUf970z7xJFxcXb1x79OhRD5MweL+/bK39re8pAN7P7y/fuOT3JMDyu7i4aPfu3et7DBgE5yK8k/MAoC/u6QEYkK5nGdPptB0eHr7X9z48PGyTyaSNx+MPHQ9iLdu5iD2CriqvlcqzLSPno8CN8n4AQ+J8ebB8XuQPK7fwPc/e8adbEg0AAACwfJyLAAAAFHF0dNTOz8/f62ueP3/ejo+Pb2kiGLylOhexR9BV5bVSeTYAAFgWtxFUAAAAAAAAAEBvLi8v2+PHjz/oa3/88cd2eXl5wxMBldgj6KryWqk8GwAALJPbCCo23/Fncgs/EwAAAKAC5yIAAAAFrK2ttc8///yDvvaLL75oa2trNzwRRFiacxF7BF1VXiuVZwMAgGWyetPfcDab/fu6x0ej0U3/yBt1586dN659//337e7duz1Mw1C8ePGiPXr06PWLf/lrP8MAfIw5e5ffkwDLZd5r03n3QcCHcS7C/3MeAJTinh6AJfUxZxm7u7vtp59+aufn551/3v3799vOzs57zQj8YdnORewRdFV5rVSebRk5HwU+lPcDGDzny4Pg8yJvd+NBxbJbWXnzP+24e/du29jY6GEaBq3YYRFAJ3P2Lr8nAZbfvPsgIJNzkQVwHgD0xT09AAPS9SxjPB63vb299s0333T+3nt7e208Hn/oaMASsUfQVeW1Unm2ZeR8FLhR3g9gSJwvD5bPi/zB3wIAAAAAAAAAg7S1tdUmk0mn504mk/bw4cNbngioxB5BV5XXSuXZAABgGQgqAAAAAAAAABik0WjU9vf32+rq6rXPW11dbfv7+23kX5GFKPYIuqq8VirPBgAAy0BQAQAAAAAAAMBgbW5utu3t7Wuf8+WXX7bNzc0FTQRUYo+gq8prpfJsAABQnaACAAAAAAAAgEHb3d1tn3766dzH7t+/33Z2dhY8EVCJPYKuKq+VyrMBAEBlggoAAAAAAAAABm08Hre9vb25j+3t7bXxeLzgiYBK7BF0VXmtVJ4NAAAqE1QAAAAAAAAAMHhbW1ttMpm8dm0ymbSHDx/2NBFQiT2CriqvlcqzAQBAVYIKAAAAAAAAAAZvNBq1/f39trq62lpr7ZNPPmlfffVVG41GPU8GVGCPoKvKa6XybAAAUJWgAgAAAAAAAIAIm5ubbXt7u7XW2vb2dnvw4EHPEwGV2CPoqvJaqTwbAABUJKgAAAAAAAAAIMbu7m777LPP2s7OTt+jAAXZI+iq8lqpPBsAAFSz2vcAAAAAAAAAALAo4/G4ffvtt21tba3vUYCC7BF0VXmtVJ4NAACq8T9UAAAAAAAAABDFB0yB69gj6KryWqk8GwAAVCKoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAKrtqYAAACAASURBVAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDirfQ9Qzfr6envy5Mkb1wAAAIbAPQ9wHXsEAABQjfsUAGBRvO4AAIbMa523E1T8ycrKStvY2Oh7DAAAgFvhnge4jj0CAACoxn0KALAoXncAAEPmtc7brfQ9AAAAAAAAAAAAAAAAwKIJKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiLPa9wCQanT1su8RGKKr/8y9Nlr8JAyUvQsAAD6O19Th3LfTI/sPAAAAACyO87ieOIe/FdYzQyeogJ78/ZfHfY9AiH/88q++RwAAAOB/nAfwZ+7bAQAAAACGx/sBdTiHB95lpe8BAAAAAAAAAAAAAAAAFk1QAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcVb7HgASrK+vtydPnvQ9BgFevXrVLi4uXrt2586dtrKin+P2rK+v9z0CAACU5DyAP3PfTjXu6QEAAADg43k/oA7n8IvjfJkhEVTAAqysrLSNjY2+xyDEvXv3+h4BAACA5jyA+dy3AwAAAAAMi/cDanEOD7wvyRUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAwH/Zu+8w6YoyYeP3Qw4CgqCIqAQjgooCKyDyIqYFQWFFQFExYVhZw+oiqyzgmpVVVIwgQQwogih8JhAMyC6goIgiBkBQkIwE4SU83x9V7RyaDjPzdvf0TN+/6zpXn9OnzjnVXWd6uqrrqZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNnGXm4JpLt1auvPLKObi8JEmSJGnctdUXl+6WTpqHbBeRJEmSJPVl24gWKNtFJEmSJEl9jbpdJDJz2Ne49wUjNgPOGelFJUmSJEnz2eaZee5cZ0IaBNtFJEmSJEmzYNuIFgTbRSRJkiRJszD0dpGlhnlySZIkSZIkSZIkSZIkSZIkSZKkcTQXM1QsD2xSN68B7h7RpddmaqSDzYGrRnRdDZ5luXBYlguHZblwWJYLh2W5cFiWC4vlOX1LA2vV9Qsy8465zIw0KHPYLjITflZpEnnfa1J572sSed9rUnnvzz+2jWjBmSftIhos//9oUniva5J4v2tSeK9rkozj/T7SdpFlhnnyTuoLGvl0pBHR3LwqM68YdR40GJblwmFZLhyW5cJhWS4cluXCYVkuLJbnjF021xmQBm2u2kVmws8qTSLve00q731NIu97TSrv/XnLthEtKPOhXUSD5f8fTQrvdU0S73dNCu91TZIxvt9H1i6y1KguJEmSJEmSJEmSJEmSJEmSJEmSNC4MqJAkSZIkSZIkSZIkSZIkSZIkSRPHgApJkiRJkiRJkiRJkiRJkiRJkjRxDKiQJEmSJEmSJEmSJEmSJEmSJEkTx4AKSZIkSZIkSZIkSZIkSZIkSZI0cQyokCRJkiRJkiRJkiRJkiRJkiRJE8eACkmSJEmSJEmSJEmSJEmSJEmSNHEiM+c6D5IkSZIkSZIkSZIkSZIkSZIkSSPlDBWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJs5EBFRExMMj4pCIuCgibo2I6yPinIh4W0SsNNf5m2QR8cCIeG5EvCsivh0R10ZE1uWoWZzvnyPixIi4IiLuqI8nRsQ/DyH7aoiIzSLivyLie433/5aIuDgijoyIp87wfJblHIiIVSNij/qZ+cOI+H1E3BQRiyPi6og4IyL+IyIeMM3zbRURx0bEZRFxe0RcFRHfjYg9h/1a1FtEfKDxeZsRsWgax/h3OYfayqvXcsY0zmVZjpGIeFhEHBwR50bENfXz8vKI+HH9jrRxn+MtzzlQ/ydO9++y72et5Shp0EbVFuLnl8bNMO/9iFgpInaNiE/Vc94QEXdGxHURcVZEHBQRaw/qtUjTNarP/LZrrhQRf2x81710GNeRehnlvR8Rz4iIo6K0l94apc304og4PiJeFxH3G+T1pG5Gcd9HxHpR2o9/FhE31u8710fET6P8DvTAQVxHkjS/WN/WpLCOrUlivVqTwrq0FroYcD/saV5zzyh9ha+K0s/psij9RLccxvVGITJzrvMwVBGxE3AssGqXJBcDO2bm70eXK7VERK8b8OjM3Hua51kK+Czwyh7JDgdek5n3TD+Hmo6I+BGwzTSSHgO8OjMX9ziXZTmHIuIZwPenkfRaYK/M/G6Pcx0EHED34L1TgBdk5u0zzaeWTEQ8ETgHWKbx9HaZeUaX9P5djoE+/zObfpiZi7qcw7IcMxGxL/A+YOUeyQ7NzDd1ONbynENRgpe2ncEh9wAPy8w/t53HcpQ0cKNoC/HzS+NomPd+RDweOBPo98Pe34B9MvO4mV5Dmo25av+OiA8D/9546rLMXG+Q15B6GdW9HxGrA0cCz+uTdNPMPH9JriX1M6Lv+S8BPgOs2CPZ9cAemTmd3xIkSQuA9W1NCuvYmiTWqzUprEtrEgyqH/Y0r7UicDywQ5ck9wDvysyDB3XNUVnQM1RExKbAcZQPw1uAdwBbAdsDn6vJHgWcEhGrzEkm1fQn4HuzPPY9THXiOA/YE9iiPp5Xn38V8O4lyaC6Wqc+/gU4FHgB5f3fEngL0Oo4+FLgqD7nsizn3uWU4Jc3ArtSynFrYHfga8DdwJrANyPiCZ1OEBGvAQ6k/J/5A6VMtwCeD5xek+0IfH5or0IdNTq+LQNcPc3D/LscL58CNumxvLzHsZblGImIdwIfowRTXAy8DVgEbAo8o27/lFLZ6MTynFsvp/ff4iaU/50tp7UHU1SWo6SBGmFbiJ9fGisjuPdXZapzx5nA/sAzgScBz6b8WHJPTffFcJYWjcBctX/X674JuB24eVDnlaZrVPd+RKxGGXym1enjRODFwFOAzSltp4cCV8z2GtJ0jeK+j4itKb/hrEj5XnMkpU1/C8rvPt+qSdcAToqIDWZzHUnS/GJ9W5PCOrYmifVqTQrr0ppQS9IPezo+z1QwxelM3e+vpPQTXQo4KCL2GWIehiMzF+wC/AhI4E5gyw7731b3J3DQXOd3EhfgYOC5wIPq9nqNMjlqmud4VC3jpIy4vmLb/pXq86174RFz/boX2gKcDLwQWLrL/jWB3zbK9mmW5Xgu3cqwLc3zG2V5Qof9awA31v2XAWu2XwP4ZuMci+b6dU/SQmmMSeA3wHv7lYN/l+OzLOl3FstyvBZKBb1VpkcDy/ZIu5zlOT8X4AONct7LcnRxcRnFwgjaQvz8chnHZdj3PuVHluOAjXqkeR7lB5MEfk+dHdjFZVjLKD7zO5xzaeDces4DgEvr+qVz/X64TM4yqnufMuhMUjo27dwjXQDLzPX74rKwlxF9zz+5cY7Xd0lzSCPNJ+b6fXFxcXFxGf5ifdtlUhbr2C6TtFivdpmUxbq0y6QsDKAf9jSv8/TGeb9JW19TSj/hy+r+G4DV5/q9mcmyYGeoiIgtgG3q5hGZeVaHZIdQOpQCvDEilh1J5vQPmXlgZp6cmX9dgtO8iTLSOsC+mfn3tmvcBuxbN5cB3rwE11IHmfnczPxqZt7dZf+13Ht6whd0OZVlOce6lWFbmm9QAmRg6nO26VXAanV9v1r+7dd4PWWmCyhfTjUCEfEw4L/r5muBxdM4zL/LhcOyHBN1pphP1c1fAK/MzDu7pc/MTn+rlueYq+X84rp5C3BCh2SWo6SBGmFbiJ9fGiujuPcz86eZuXtm/rpHmpOY+p+/IWXmMWko5rD9+43AkyltQx8YwPmkGRnVvR8RTwVeUjffmZnf7JY2i7tmeg1pukb4mb9VfbwuMz/ZJc27GutbzuIakqR5xPq2JoV1bE0S69WaFNalNUkG1A97Ot5aH++iBBDdq69p7Se6X928P6Uf6byxYAMqKCOotxzZKUFm3kOJhIRSeNsNO1MarIgIpqYFuygz/7dTuvp8qwP48+pxGq3TG+sbtu+0LOed1lSTK3TY1/r8/RudO4+SmVcAp9bN7Qc5JaZ6OowyZe7RmfnDfon9u1w4LMux8yzgkXX9AzNtHLI8543tgYfU9eNr5+J/sBwlDcnQ20L8/NKYGqd2wJ7tH9IAjfy+j4iHM/Xj32u7BH9Lwzaqe/8N9fEm4BOzOF4apFHd98vVx0u6JcjMm4DWIErLdUsnSVowrG9rUljH1iSxXq1JYV1aGqDav3P7unlq7f/ZyQmUfqMAuww9YwO0kAMqnlofbwV+1iNds0Pp1sPLjoZkfWCdut6vc3Br/0MoU9potJZvrHeaBcGynCci4tHAE+vmRW37lgO2qJtn9an0t8pxeWCzgWZS9xERL6RM7XU9U9Gi/fh3uXBYluNlt/qYlOkfAYiINSLikRGxRp/jLc/54aWN9WM67LccJQ3DKNpC/PzSOBqndsB+7R/SoMzFff9JYGXgC5l5xhKeS5qtod/7tY2zFUD6/cy8vT6/dEQ8NCLWi4hOA81IwzKqz/xWQPT63RJExKrAmm3pJUkLl/VtTQrr2Jok1qs1KaxLS4O1OVMBQV1/I679RVsD8m0+oFm9RmIhB1Q8tj7+vs+ov83OwI/tmkrjaqPG+kVdU913v2U9ets21n/TYb9lOcYiYqXayfctlH+Iy9RdH21L+ihg6bpuOY6JiLg/cGjd3K9OrzUd/l2Op90i4tcRcVtE3BwRv4uIoyOiV6S8ZTlenlIfL83MmyPiRRFxAXAdcDFwXUT8NiLeGhHLdzje8hxzEXE/piLtLwPO6JDMcpQ0DKNoC/HzS+NonNoB+7V/SIMy0vs+IvYAdgBuAP59tueRBmAU9/4TmJqZ94KIWDUiPkoZSfBPlBEHb4qI70fEohmeW5qNUX3mf7o+PiAiXtslzQEd0kuSFi7r25oU1rE1SaxXa1JYl5YGaza/ES8DPHI42Rm8BRlQUSMYWxFd3aYVASAzb6BEoQE8dJj50lCs21jvWdbA5Y11y3qEImIp4O2Np77aIZllOWYiYu+IyIhIyufkxcAhwINqkvcDX2o7zHIcTx8E1gbOBI6YwXGW53jaiFKJWxG4H/AIykj4P4iIEyNitQ7HWJZjov5PfEzdvDYiDgW+CGzclvRRwIco5Xr/tn2W5/j7F8qoQgDHZmZ2SGM5ShqoEbaF+PmlsTJO7YAR8QRgx7p5QWbawUNDMer7PiJWZ2pQjbdn5jWzOY+0pEZ47zd/HFwKOBd4I9Csny8HPINSb99vhueXpm3En/mfZ2qWzcMi4nMRsVNEbBYRu0bEiUzNfvyezDx1FteQJM0T1rc1Kaxja5JYr9aksC4tDcWC/414QQZUAKs01m+ZRvrWB+L9hpAXDddMyvrWxrplPVpvBrao6ydkZqdptCzL+eN8YIvM3L9DB1HLccxExDbAq4C7gNd26dTbjeU5Xm4DvgK8GtgG2BR4FvAeyswGAM8HTuowXZplOT5WY+o7+CbAvwFXAnsBawArUUZZak1/txWlAt5keY6/lzbWj+mSxnKUNGijagvx80vjZizaAevMYoczNWvjOwZ5fqnNqO/7D1EG2DgL+NwszyENwqju/TUa6/tRRlH7DqWNewXggcDrgJuAAN4fEc+b4TWk6RrZZ35m3p2ZLwN2A35BaVf+JnAO8HVK2+PpwDMz850zPb8kad6xvq1JYR1bk8R6tSaFdWlp8Bb8b8QLNaBihcb64mmkv6M+rjiEvGi4ZlLWdzTWLesRiYhtKTMZAFxN+ULciWU5fr5B6ey7CaVSsydwIvBE4MsR8dwOx1iOYyQilgM+S6mAfiQzfzXDU1ie4+UhmblnZh6emT/JzPMz8/u1wvU44Lyablvu+1lrWY6PlRvrK1ACZbbLzC9m5g2Z+ffM/BHwdEplG2CXiPintuNaLM8xExHrAovq5v9m5sVdklqOkgZtVG0hfn5p3IxLO+AngM3q+tGZ+a0Bn19qGtl9HxFPA17B7AZqkAZtVPd+e939+8BzM/OczLwjM6/JzE8DzwXuqeneFxExw+tI0zHS7zoR8VjKQBGbdEmyJfDKiHjIbM4vSZpXrG9rUljH1iSxXq1JYV1aGrwF/xvxQg2ouL2xvtw00i9fH/8+hLxouGZS1ss31i3rEYiIx1E64C9DKavdMvPqLsktyzGTmTdm5q/qck5mfiUzd6V8AdyAMgr+3m2HWY7j5T+BxwB/Ag6exfGW5xjJzBt77Psr8ALgzvrUvm1JLMvxcXvb9uGZ+dv2RJn5d+49ytLuXc5heY6fvZiqZx3dI53lKGnQRtUW4ueXxs2ctwNGxP6UUaegjDr1r4M6t9TFSO77OhJsa6CGQzPzguXcewAAIABJREFUlzM5XhqCufi+A7BfZt7dnigzfwKcUDcfS/cfzaUlMbLvOnW247OAnYA/Ay8B1q7XfSjlO85twB7A2fU3IEnSwmV9W5PCOrYmifVqTQrr0tLgLfjfiBdqQMXNjfXpTBfSioqczvQ+Gi8zKetm9KtlPWQRsT7wPWB14G5gjzridjeW5TyRmV8Avkb5H/KJiGhO1Wc5jomIeAywf93cNzNv7ZW+C8tzHsnMP1JGdgB4RESs09htWY6Pm9u2v9cj7WmUEWoANu9yDstz/LykPt4BHNcjneUoadBG1Rbi55fGzZy2A0bEa4D31s2LgB1mWf+SZmJU9/07gEcDlwMHzvBYaRjm4vvONZl5XteU8N3G+uZdU0mzN5L7vnbw+zKwGnAV8JTMPDYz/5qZd2bmFZn5SeBplB/Q16H3QBKSpPnP+rYmhXVsTRLr1ZoU1qWlwVvwvxEvM9cZGIbMvD0irgMeAKzbK21ErM5U4V0+7Lxp4K5orPcsa0rEX4tlPUS1E++plC8BCbwiM0/qc5hlOb+cBLyQ8vn5HOBL9XnLcXy8mRIN+kdgpYjYo0OajRvrT4+Itev6t2qDpOU5//wa2KGuPwT4S123LMdEZt4REdcAa9Wnur7H9TvttZTRC9Zq7LI8x1REbAZsVDdPzswbeiS3HCUN1AjbQvz80liZy3bAiNgT+GTdvAx4ZmZeu6TnlfoZ4X2/X308FdgpIjqlaZ175Ubbw9WZ+YMZXkvqa4T3fjP9FV1T3TftWl1TSbM0wvv+OZT2RICPZ+ZVXfJzYUQcSxkt/MkR8YTM/MUMryVJmgesb2tSWMfWJLFerUlhXVoaivbfiM/tkXZe/ka8IAMqql8D21BGaF4mM+/qku4xjfXfDD9bGrBfN9Yf0zXVffdb1kMSEWtSRkjfoD61b2YeM41DLcv55ZrG+sMb6xdTZiRZGstxrrWmztqAEg3dzwGN9fWBW/Hvcj7KLs9bluPlQmBRXV+6T9rW/uZ3WctzfL20sd5vZAnLUdIwjKItxM8vjaORtwNGxM7AMZTZG68Ets/Mfj8OSoM0ivu+NW33y+vSy5pMtT/8ELCzh4ZlFPf+hY316dbb4d51d2mQRnHfP7ax/vM+aX9G6QTSuqadQCRp4bK+rUlhHVuTxHq1JoV1aWmwZvMb8V3A74aTncFbaq4zMEQ/qY8rA0/ukW7bxvqZw8uOhuQSpkbf3rZXQsrUSQB/Bi4dVoYmWUSsRpmKrTUy89sz87BpHm5Zzi8Paaz/Y1qmzFwMnF03t4yI5eiuVc530DtiUXPHv8v5Z6PG+l8a65blePlRY32DbokiYlVKgymU8mixPMdQRCwLtEYLugb4dp9DLEdJwzCKthA/vzSORtoOGBHbA1+lDFZzHWWkzD/M9nzSLNn+rUk19Hs/My8D/lQ314suQ8dWGzbW/9w1lbRkRvGZ3+xY0m9AvmW7HCdJWnisb2tSWMfWJLFerUlhXVoarHOAxXW962/Etb/oU1rHZOadw87YoCzkgIpvNNY7RvZGxFJMjSJ7I3D6sDOlwcrMBE6qm4+JiKd0Slefb0U9nVSP0wBFxErAKcCT6lPvycwPTPd4y3Le2a2xfkHbvtbn76rArp0Ojoh1gWfUzdMy8+bBZk+ZuXdmRq8FOLhxyHaNfZfWc/h3OY9ExPrAM+vmHzLzH40NluXY+XpjfZce6XYBWo1LP249aXmOrX9mahraL/UY4QKwHCUNzdDbQvz80pgaWTtgRGxF+RtYHrgJeHZmXtj7KGkoRvGZ37NdobYtXFaTX9Z4ftEMX4s0E6P6zG/V3VcFtu+Rrtn++ZOuqaQlM4r7/pLG+jZ90jZ/NL+kaypJ0kJgfVuTwjq2Jon1ak0K69LSANX+nafVzWfU/p+d7Er57Ac4cegZG6AFG1CRmWcz1fHslRGxZYdk/87UtDuHzqdIGN3LR4G76/rHI2LF5s66/fG6eVdNrwGqUWUnAlvXpw7NzHfO4lSW5RyLiL0jYoU+ad4M7FA3L6HRybc6nNLIBfD+iHhA2/FLA59katq+Dy1RpjVs/l2OgYjYKSK6RrNHxIMoDRKtWWE+2SGZZTkmMvOXTM1esGcdceleImJt4N11czFwZFsSy3P8vLSxfsw0j7EcJQ3UINpCImJRRGRdjupyKT+/NFZGde9HxBMpg0msDNwK7JiZPxvEa5BmaoSf+dJYGfH3ndvr+v/UWSTvJSL2AhbVzVMy8/LpvxJp+kZ0358G3FbXXxcRm3TKS0T8M1MDhPwZOH/6r0SSNN9Y39aksI6tSWK9WpPCurQ0M7XfaOt+P6hLsg/Xx2WAw2o/0OY51gRag7DfSOlHOm/0m2ZmvnsjZRqeFYHvRcR7KVFkKwJ7APvUdBcDh8xJDidcRDwVeETjqTUb64+IiL2b6TPzqPZzZObFEfEh4O3AZsCZEfEB4A+UacH2AzatyT+Umb8b2AtQy5eBZ9X1HwBHRMTGPdIvzsyL25+0LMfCQcAhEfF1SuT3H4BbgFWATYAXMxU4sxjYJzPvbp4gM6+PiP2ATwMPB/4vIt5DmcliHeBNwHY1+Zcz84xhviAtGf8ux8bHgWXr3+ZZwKXA3yn/NxcBr2Hqf+hPgMPaT2BZjp03AVsC9wdOjoiPAv+PUq5bAPsDrWjuA5ozjoDlOW4iYnXguXXzV5n58+kcZzlKGpKht4X4+aUxNdR7PyI2BL5L+f4G8E7gpj7tH1dn5tUzvZY0A7Z/a1KN4vvOnyLiv4APUtpFz67fd37J1My8r6vJ/wa8eXYvRZq2od73mXljRLwfeBfl94CfRsTHge8DNwAPAp4HvJqpAfvenpn3zPoVSZLmC+vbmhTWsTVJrFdrUliX1kQYRD/s6cjMH0TEVyh/PzsD36/9nf5C+ax/B/Cwmny/zLxhNteZK5GZc52HoYqInYBjmZpCpN3FlOj2348uV2qpkXsvm276OsVdp/MsBXwOeEWPw4+gdP72H9KARcRMP0guy8z1upzLspxDEXEpJQiinyuAV2Tm93uc62DgAKDj3y2l4/C/ZObtXfZryGo06YF1c7tuwS3+Xc69Gfxtfh14VWbe2OU8luUYqRWa4ymV6E4SeE9mHtDleMtzTETEa4FP1c3/yMxpz75kOUoahiVpC4mIRUxNaXx0Zu7d5Rp+fmnsDPPer43N7bOG9XNwZh40w2OkGRnFZ36f619Kqa92be+ThmFU935EvI8SLNqtjfNq4PmZedb0ci7N3rDv+4gI4H8oHU663fMAdwL/mZkf7pFGkrSAWN/WpLCOrUlivVqTwrq0JsEg+mG3fS/v+n07Ilak9HXaocvp7wH+ez5+X1+qf5L5LTO/BTwe+Ajlw+82ylQi51JHTDSYYv7LzHsy85XAjsBJlIinxfXxJGCHzHyVnTjGn2U5555Nmc7sBEpU+F+Bu4CbKaPNfh14OfDoXsEUAJl5IPBU4EvA5ZRyvJoShfuizNzRYIr5wb/LsfAySvDLdyjfZ66n/G3eSJn95TPAVpn5gm7BFGBZjpvM/AnwOOBg4BeUkTduBy6hVFKe3C2Yoh5veY6Pl9THu4EvzuRAy1HSMIyiLcTPL40j2wE1ibzvNalGde9n5v6UGXu/QJkx9A7gJuAcymAyj7LTh0Zl2Pd9Fm8GNqfMQP0rym8Dd1Pu+59ROolsbAcQSZos1js0KbzXNUmsV2tSWJeWBisz/56ZOwIvpvQDvZryG/HllH6iT52PwRQwATNUSJIkSZIkSZIkSZIkSZIkSZIktVvwM1RIkiRJkiRJkiRJkiRJkiRJkiS1M6BCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJGjMRcVREZERcOtd5AYiIvWt+MiLWm+v8SJIkSZKkyRARixptEovmOj+SJEmSJEmSJGnhMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEnSEhm3GTUkSZIkSdL4ioj1GrNO7D3X+ZEkSZIkSZIkSZNtmbnOgCRJGm+ZeRRw1BxnQ5IkSZIkTZjMPAOIuc6HJEmSJEmSJElauJyhQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSNKci4qCIyIjIun3/iDg4Ii6MiFsi4vqIOD0i9pzGudaLiI/UY2+OiNsi4ncR8ZmI2KTPsVmXg+r2MyLimxFxZUTcHhF/jIhPRMRDpvtaeqRb1Ljeon6vq8PxK0fE7hFxeEScHxE3RcSdEXFNRPwwIt4aEfeb4et9ekR8LSIur+e6tJF270b69dpfL/Cy+tTDG+n+sdS0Ozee22Mar/GQmvauiFhnpu+RJEmSJEnDFBEbR8Q7I+K7EXFFRNxR2zF+FxFHR8RTpnmerWv9/rcR8beIWFzPd3JE/GtE3L/HsTtFxPGN618XEWdFxNt7tQsMsv0iIp4cEUdExMURcWttQ7k8In4WEYfV9oBopE/gksYpjuzQlnDQTPLQSLtDRBxb23BaebkkIr5e2zZWakt/r/aOiFgqIvaJiJ9GxA31HL+MiHe0H9vl+ktHxMtq2f2lUSY/iYi3RMSKfY6f0XvZOG6FiPi3iDgjStvQnVHa034bEd+u116vX/4lSZIkSVqIImK72lbzxyh9SP4WERdExIe69UVobzupde+3RcTPo/RFuTkizo6IN0TEMtPIwwo17WkRcVVt/7k6Ik6NiFf2OkdEXFrzclTdfnJEHFXbPO7o1L4TEStFxAG1XePWRvvEK6Lo2N4SEY9vPP/2abyufRvpt+iXXpKkcdb3H7okSaMSEesD3wc2bDy9MrAIWBQRzwdenJl3dTj2pcBngeXbdj2iLq+MiAMy833TyMeBwEFtT68P/CuwV0TslJk/ntaLGo5TgG07PL8m8LS6vD4idsjMi/qdLCLeA/znYLN4H6cAVwIPBvYGvtIjP8sAe9XN72TmX4acN0mSJEmSpq3+0Hx6h13LMdUO8dKIeH9m7t/lHCsCRwCdBpB4SF12BNairY0iIlYAvgTs0nbcGsBT6rJvROyYmedP71XNXES8Gfgw9x24ad26PAl4PbAKcMsQ8/EA4Dhg+w6716vLrnX7qC6nWQn4XodzbFKXnSPi6Zl5a5c8PAz4JvCEtl1rAFvX5XW1TC7ucPys3suIeDBwKrBR23Gr1+VRwHOAdYC3dsq7JEmSJEkLUW0/ORLoNODjxnV5XUTsmZnf6nGeBwHfAZ7YtmvzujwrIp6fmfd0Of4JwEnAw9t2rUVph9geeE3th/LXPq/ptcDH6dHnMyLWBX4APLLx9EpMtU/sAnys07GZ+cuIOKe+rpcB7++VH+Dl9fHCzDy7T1pJksaaARWSpHFyHCVw4dPA8cBNwOOB/Sg/AL8Q+Avw5uZBEbEj5QfxoPyofAjlx+S7gK2A/SnBBu+NiBsz81M98rAjsBnwW+CDwC+B1YDdgFfX9ZMjYuPMvHyJX/HsLANcQPmh/lzKexKUCvgulPdpfeAbEfHEzLy9x7l2pXQMuAD4CPArYEXu2xjQyScp5fRu4Hk1H8/ulDAz764jJuwPPDMi1s3MK7qcd0fggXX989PIhyRJkiRJo7QMcCtl8IAfABcBf6PUZR8H/Buljv72iLg4M49sHhwRS1F+SH9mfep3lDr2ucBtlMEItqLU7zs5mqlgil9Q2kF+Q+m8vwdlIIN1gNMi4vGZ+ecle7n3FRGPZyoA4BLgE8D5wPWUTv+PBrajtBc0bVLz9t26/U7Ke9F09QzysRIluKU1M+nPKANu/Aq4A3goZeCJ3fuc6nOUQJSjga8CVwEPA/4D2BLYoub1PgEyNaDjJ/Vad9Rz/RC4FLgf8CzgjZRAm29HxJMy86bG8bN9L6F0omgFUxwLnEBpn7mbch9t1uU4SZIkSZIWrDrD4/GUvgcA36LU9/8I3EOp5/87pe5/fERsnZnndjndCZS698fqea6n1NUPAB4L7ETpS/KZDvl4BKWNYDVK29FhwNnA5cADgJ2B11ACGE6KiG0y884u+dicMjDl5ZR2hHMpbVTbNK63LKW9qhVMcQqlneIKyoAN+wDPpQRzdHN4vdZjImLLzDyrU6IaKLJp3bRfhyRp3ovMnrN6S5I0VBFxEHBg46kXZeaX29KsAvyYMsrfPcATMvNXdd+ylB+o16EEU2zTPvpiRDwcOIvyQ/JtwMMz89q2NM1/iD8Hts3MW9rSvAQ4pm5+LTNf2Lb/H68lM6PHa17E1EiW22XmGW37j6JE+1+Wmet1OP6Rmfm7Hud/BqVjwlLAqzLziA5pmq/3NGDHzLyjy/n2pozcALB+Zl46k/w20m1I6SQSwDsy871d0p1EaTi4BnhIjwYDSZIkSZJGLiLWBO7KzBu77F8OOJkSMHEZsGFm3t3Y/2/AoXXzRGDPTnXyGnjx4GZARB1U4uS6eRqwQ2Yubjvu1ZSgAoCvZububfsPYgnbLyLiXZSOA7fW19dxBMWIWA24uTlKY0SsRwkcAHh5Zh41mzzU/f/D1MAbhwH7ZocfPWqZrN7MZ1t7B8BLMvPYtuOWp3RQ2Bi4Dli7febUiPgi8CJKWW+XmZfQJiI2pbRtrQy8NzPf0dg3q/eyjrT5N2BZ4JDM7DoDRUSskZnXd9svSZIkSdJC0mgbuRPYOTO/0yHN6pS6+uOAMzPzqY19BzHVj+VO4Fkd2iTWAH4NPAj4ZWa2z1pJRJxJGTTjvHqOazukeQ4l8GEpYJ/M/Fzb/kuZmt3iAuBpPdqk3gh8tG5+NDPf3CHNx4E3NJ5qb/NZBbiS0obxuczcp8u1DqUMKnInpV/HNZ3SSZI0X7RPHy1J0lw6uT2YAiAzb6ZEykP53/Xaxu5dKMEUAO9uD6aox18GvK1ursTUtIPd7NMeTFHP8wXg263rRsTafc4zFL2CKer+UymzVwA8v8/p7qEEXXQMphikzPwDcEbd3LtTmjpd5g5181iDKSRJkiRJ4yYzr+32w3Xdv5ipdoiH05gFsgZJtPZdAby0W508M+/pMLvEv9bHOynBCIvb9lN/eD+1bu4aEQ/u85Jmo9UmcnG3AICal5uawRSDFBH3p4ziCGVmijd2Cqao+VjcK5/ACe3BFPW4OygzRkAZOXKj5v4aHNIKWHlDp2CKep7zKAEfcN82kdm+l2tQgikAftTtuHqswRSSJEmSpIlQZ6fYr25+rFMwBUBm3sBUG83WEfHITumAj7cHU9Tjr2dqoIZN6kAIzXxsQwmmAHhZp2CKep7vUGbTgC79KBr+tVebFFN9aa4A3t4lzX9QZrfsqPbP+Wrd3D0iVmxPUweueHHdPNlgCknSQmBAhSRpnBzZbUdmng1cWDef0djVWk96TyP4NeCmDse3uyAzf9Zjf+saywCLeqQbmYhYKyIeGREbtxbK7A5QZvXo5cz2GSeG7PD6+MiIeGqH/XtR3ltwWkhJkiRJ0jwQEctHxMMiYqNGvbw580Ozbv5EYN26/rlOAzr0uM4ywLZ183uZeXmP5K3RDIfVfnFlfdwoIrYYwvmn4+mUgTOgdJC4u1fiPr7YY1+znWiDtn07AktTZkT9Nr21gh7WiYiHNZ6f7Xt5HdAKqHlJvT8kSZIkSZp0GwEb1vXjeyXk3gMUbNklzXTaDAJYv23fzvXxt5l5wTTzsXmP+v3lmfnjbieIiIcAj6mbX+sxgMffKf1nemn161gV+JcO+3eiDDwB9uuQJC0QBlRIksbJOX32n10fH1Uj3gE2ro+X9Ip6ryM2ntd2zJLkAWCTPmmHJiK2jojjIuI64GrgYsr0jq3l1TXpmn1O9cvh5bKjE4Ab6nqnmUJaz52Tmb8aTZYkSZIkSZqZiFg5IvaPiF8AtwKXUQaCaNXLz2skb9bNN22sd/0RvIsNmAog+L8+aZv7e7WDzNaXKbNkLA+cGRHfiojX1oCS6HPsoCzJe9nuoh77mrM7rNK2b7P6uBJwV0RktwU4uXFcc9bTWb2XtWPEcXXzBcDvI+KDEbFDnb1DkiRJkqRJtFlj/aw+dfXmQBdr09mSthk8ulceaj5as2MuS5mRspN+fTua7T+9BhEFOLfXzsz8KfDrutmrX8eV9B9gQpKkecGACknSOLm6z/6/1scAVq/rrcpkv2MBrmo7Zkny0O88QxMRBwE/AV44jTzcZ/rFNjf02T9QmXk7cGzdfGFErNzaV0dhfFzddBQDSZIkSdJYioj1KEET7wUeT5mhoJdm3bwZXHFle8I+mm0A/dovrmqsD7z9IjMvAvaktCssAzwX+BTlfbk6Ir4QEdsM+rptluS9bHdbj333NNbby/qBs7xeKzBmSd/LNwDfqusPB94GnAJcFxHnRMTbImK1WeZRkiRJkqT5aInr6k2ZOWdtBm369e1YvbHedTDSae4HOKI+blfbwgCIiAcDz6mbxyzhjKGSJI0Np4CWJI2TnKNjh3GeoYiI7YED6+YfgQ9Tgiv+BNyamXfVdO8CDpjGKeeicns4sC9wP8oIikfX51ujGPydMjqjJEmSJEnj6AvA+pQ2hCOBrwC/ofwYvTgzMyKWYqrOPYwZG+a8/SIzvx4RpwK7A88GtgHWogQ67AXsFRFHA6/IzHu6n2lea3WWuBbYbgbHXdLcmO17mZl/A3aug1S8EFgEPLHma7O6vDUinp+ZZ8385UmSJEmSNO80Axt2Ai6d5nHTGcRzNvn4BaVuP11/7vL8qPt2HAO8D1gOeBlwcH3+pUy9NgfKlCQtGAZUSJLGyYOAy/vsh9JpoBV9f33bvl5aUzRe3yNNv/M097ef5x8/aEfEUj06C6zc5fnpeHV9vAF4SmZ2GzlgTmbPmI7M/GVEnANsTgmiODoiVgD2qElOyMyb5iyDkiRJkiR1ERGPAZ5aN9+bme/skrRbvfzaxvqDgYtmcPlmO0S/9ou1G+tDa7+o9ffP1oWIeCzwPMpACutQfnA/Dzi037lmof29vKRbwiG6rj6uAvxmSUZlXJL3MjPPBs6ux61CCazYG9iVMiLm1yNiw8z8+2zzJ0mSJEnSPHFdY/3GzPzVHOfjfiPKQ3MGi7X6pO23n8y8NiJOAnYDXhYR78rMpLQ3AJyZmRfPKqeSJI2hpeY6A5IkNWw+zf2/y8zFdb1V8Vw/IrpW+iJiWWDTtmOWJA+dznNzY311untUn2v08rj6eHqPYAooIxCOymxGxTy8Pj4tIjag/MB///qcoxhIkiRJksbV4xrrx/VI161e/vPG+tNmeO0/ArfV9X/qk3aLxvrI2i8y8zeZ+X7gKcCt9ekXtieb6Xm7WJL3clDOq4/LM+C2mGm+l52Ouzkzv5WZ/wJ8rD79YKYCgSRJkiRJWsjOa6xvPWe5mMrHBhGxds+Ug3FhY/3JfdJOtw2j1a9jfWBRRGwFPKY+Z78OSdKCYkCFJGmcvKzbjojYHNi4bp7a2NVaD8psB928AFitw/HtNomITXvsf0V9vBs4o21fcyTEXhXQPXrs66c1u1TXUSJr/vt1rBik2+vj8jM45suUzgBBGcGgVXaXAKcPLGeSJEmSJA1Wc9bnXjM4vLbL879ganbOV0XE/aZ74cy8C/hh3XxmRKzbI/mr6uNdzEH7RWZeDrRGKVyzbfftjfWZtCW0O52pQIN9I2LpJTjXbH2LqQCRNw3jAn3ey35Oa6zP9FhJkiRJkuajnwNX1PV9ImKFOcrHN+tjAG8c9sUy8wqm2g92i4iObS71/dhtmqc9Fbisrr+cqX4dtwBfnWVWJUkaSwZUSJLGyc4RcZ+R9mrngs/UzXsa6wDfAP5S198REZt0OP6hwIfr5m3AkX3y8dmIuE+niIh4EbBD67qZeWVbkp9SOioAvDkiosM53sa9R4mcqd/Vx6dGxCM6nH8t4AtLcP7ZaL0PD4yIVaZzQGbezFQF+zXA0+v6UXWaSEmSJEmSxtHvGut7d0oQEa8DntdpX2beA3yobq4LHBMRy3U5z1IRsU7b04fVx+WAI+qMnO3HvQJ4Vt08YRjtFxHx/Ii4f4/9D2VqxMJL2nZfB7RmHt2w2zn6ycwbmWojejLw0U6vpeZn2Yh44Gyv1SMPvwW+Vjf3iIi39EofEetHxJ5tz83qvYyIDSJi2z5ZfFZjvb0cJEmSJElacGrby3vr5gaUtpeuAzpExKoR8YYh5ON7wNl1822d+sK05WOTiNhpCS/baidZF3h/lzQfAtrbmzqq72VrJop/AXav61/LzFtmm0lJksbRMv2TSJI0MucCX6o/Bh8P/A14PLAf8Oia5rDM/GXrgMxcHBH7UEYEXBU4MyI+RBmB725gK+DtQOtH87dm5rV98rAZcG5EfAC4gDKzxQsoHf8Bbgbe2n5gZl4dEV8D9gSeDXwzIg4D/go8DHgJpZL505qv2TgG2IkyCuYPI+L9wM/qvq2AtwBrA2cBW87yGjP10/q4FPDpiPg48I/3ODN/3+W4wykjGLTK5h7gqCHlUZIkSZKkQTgP+BVlFs3XRMTqlIENrqT8WL0XpQ3hTGDrLuc4jFK3fyawC3BBRHyS0iZxG6Ve/xRK+8KXgINaB2bmKbXtYTdKZ/n/jYj/AS4CVqfMKtGaXfN6SjvBvQwiEvFtAAAgAElEQVSo/eJNwBcj4hTgB8BvgJtqHjYD9gVWrGk/3Xb9uyLinPr+vCIizgPOB+5s5Tszr+9y3XYHUN7HTYA3AFtGxGco7TmLKWWyTX2t72Q47Q6vo7zmDYBDIuJ5lPabC4E7gAcATwCeQxlQ4kTKzJ0ts30vHwacHhG/ruc8F/hz3fdQSieHVmeN84H/G8zLlSRJkiRp7H2aqXaX3YAn1faCsyl17lUpgxcsAnamzKb5iSHk40X1mmsAx0XEXsBxlAE77qb0ldiU0k70FOAQSt+X2foEpQ/GxsCb6iCdn6PM2LEusA+wY81TayCNfgNefh44EFip7TlJkhYUAyokSePkhZRAiNfXpd3X6dwR4JSIeDkl2n4V4F11abobOCAzP9UnD6fU5UA6z2TxN2DnzLy0y/FvpvzY/UjguXVp+golkODUPvnoKDOPj4gjKZXgdYCPtSW5u+ZhdUYXUPED4H8pFfwX1aWp4+iQmfnT+qP/RvWp0zLzT0PLpSRJkiRJSygzMyJeQqkLr05py2gfYfACyo/1f6GDzLwnIp4PHE0JvngU8NEZZOOllLb9XYAnAcd2SPMXYMfM/HOHfTCY9ouVKK9zty777wEOzMxvdNj3PkoHgQdQgkaaDqYRRNJLZt4WEU+ntBk9jTJTxWenc+ygZOb1EbE1ZSbObWo+ntbjkL91eG5J3suNmGpb6eQiYFdnBJUkSZIkTYrafrM7cCjwWsoMmR/sccjVQ8rHHyJiS0q7xcaUwIles1B0ajOYyfUWR8SOlHarDenc5vM94CPAt+v27X3OeUVEfBf45/rUxZn5kyXJpyRJ42ipuc6AJEktmXkJ5Yfv91JG47uNMjrAj4C9MvMFmXlXl2OPpowgcGg99lbg78AfKBH3m2bm+6aZj4MoowaeQhmdcTFwKfBJ4HGZ+cMex/4V+CfgA5RRBe6gjAjZeg17UoIeZi0zX0EZLfLHlNky7gAuo4yIuVVmHrok559Ffu6hjIr5buAXwC30H8Wgpdnpw1EMJEmSJEljLzPPB55IGe3wMsrMCtdTRvd7K7BFZl7Z5xy3ZeZulBkLvgBcQmnHWAxcTgk2eA1lZML2Y2/PzF0pIyieQAmeWAzcQJmFYH/g0TWf3a6/pO0Xe1JGNfwSZfaDq4C7KG0CFwKforTFvLvL9U8BtgdOqvm/s1O66cjMazNzW2BXyoynV9TXczvwR+BrwIu596wQA5WZV2Xm0yidFL5Yr3sb5XVdQ5nt4xBg29qu0zTb9/LHlJE03wecDvye0k50J6U963uUTiNPrG1ukiRJkiRNjMy8MzNfT5k18uOUATBuorR33ESpgx9BGezisUPMx8WUdqQXUQIr/sRUG9CVwBmUvhZPzsz2gUNnc70/UV7zgZRZVv8O3EgZJPP1lMCIFRqH3DSN036hsd5pYFJJkua9cFAiSdJcioiDKBU5MrPjTAYjykfrH+LBNaBCIxARX6Q0HNwAPDgz75jjLEmSJEmSJEmSJEmSJC1IEfFO4L8pAzqskpk9Z6mIiPcA/0kJRnlov4FEJEmaj5yhQpIkzYmIuD+wS938osEUkiRJkiRJkiRJkiRJwxERAexeN8+fRjDF0sBL6+a3DaaQJC1UBlRIkqS58m/AinX903OZEUmSJEmSJEmSJEmSpPksItaLiGV6JHkXsHFdP3oap3wxsG5dt1+HJGnB6vXPU5IkaWBqpX09YHlgO8qUkADfzMwL5ypfkiRJkiRJkiRJkiRJC8DewMsj4kvAmcBfgGWBxwIvAxbVdL8GPtfpBBHxiHrMZsBH6tO/AP7fsDItSdJcM6BCkiSNyrrA79qeuwl4yxzkRZIkSZIkSZIkSZIkaaF5GPD2HvsvAnbMzDu67G/v13En8LrMzEFkTpKkcWRAhSRJmgtXA2cB78jMP8x1ZiRJkiRJkiRJkiRJkua5IygDWz4LeASwFrAScD1llokTgc9n5uJpnOsG4OfAf2XmWcPJriRJ4yEMHJQkSZIkSZIkSZIkSZIkSZIkSZNmqbnOgCRJkiRJkiRJkiRJkiRJkiRJ0qgZUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZL+P3t3kNPWFQZQ+OK6IlUbxKQDpGQH6bCsg3Yj7KxlHbSzZg8ZZBIMlRopmA6aSIWQAk3ws32+b2SuLN4/ssV/dQQAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmq37gzs7O7hjjh/c/vh5jXK56BgAAANbeV2OM79+//uPq6urtlMPAl2IvAgAAwD3ZjbB17EUAAAC4p5XuRVYeVIx//jj+bYLnAgAAsJl+HGP8PvUQ8IXYiwAAAPBQdiNsC3sRAAAAHurR9yKzx/zlAAAAAAAAAAAAAAAA62iK/1Dx+sOL09PTcXBwMMEIAAAArLNXr16Nw8PDDz++/q/3woaxFwEAAOBOdiNsKXsRAAAA7rTqvcgUQcXlhxcHBwfj2bNnE4wAAADABrm8+y2wMexFAAAAeCi7EbaFvQgAAAAP9eh7kdljPwAAAAAAAAAAAAAAAGDdCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmUw+wbpbL5VgsFtfO9vb2xmymPQEAAADYNrftgqa2XC7H+fn5tbOnT5/aT30G+z0AAAAAAFjPe5FVK93DuB+B+xFU3LBYLMbR0dG1s5OTk7G/vz/RRAAAAAA8ltt2QWwf+z0AAAAAAHAvUuN+BO5HdgQAAAAAAAAAAAAAAOQIKm44Ozu71xkAAAAAAAAAAAAAALC5BBUAAAAAAAAAAAAAAEDOfOoBAAAAAGCd/Pni53E1351ugHd/je9e/nrt6OLFT2PMn0w00GbZefd2fPvyl6nHAAAAAACAjTD5vciqbek9jPsR+P8EFQAAAADwL1fz3XH19TeTPX/ntsP5k0lnAgAAAAAAttPU9yKr5h4GuGk29QAAAAAAAAAAAAAAAACrJqgAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMiZTz3Aulkulx+dvXnzZjx//nzMZvoTAAAAYHstl8uxWCyune3t7dmJAHwmn68AAAAA28W+B4BN47vr0wQVN1xcXHx0dnx8PE5OTsb+/v4EEwEAAACsxmKxGEdHR9fO7EQAPp/PVwAAAIDtYt8DwKbx3fVpkhIAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAPibvfuJjeuq/wZ87Lj5ya/SNEZq+6LWYovUIL1ITXYNKxYsQIioiaNEqhDQFJImFFg6RaLuFikhEW1ZISVK0qqoArGhK9JVky4imggQC6SGqmoiZJpatX6uY78bbDnj8Z07M/fM3Lnf55EQ9vjc8+/eOb33jD8xAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQEVJH330UfrHP/6RlpaW0sLCwvrrCwsLaWlpKS0tLa2/tvZ962vtbCy3VZnW8v0oe3y/7Qyr7rrJMdatrqvWtiLNM0TlfQ5EYb3Lx9wCADRT0X1eu591W77b9te+n5+f37L8Vsd02mevuu/dau1n0++xo4wzl17nzXx3VsUc1WWec/UjR70bPzMdRXU550A9WSMgJu/9wSrz+3WDOied2nFtAECzCVSU9MMf/jD94Ac/SN/97nfTgQMH0vz8fJqfn08HDhxIzz//fHrhhRfS4uJiWlxcTC+88EI6efLkfa/99Kc/TYuLi/fVuVb2hRdeSPPz823LtJbvVKZI2eP7bWdYdddNjrFurHOrr3O1DdSL9zkQhfUuH3MLANBMRfd57X7Wbflu21/7/p///Gfav39/+uijjzaVX9snbz1m4775IPrerdZ+ltnnH2Xtzgvl9XpNenbrrIo5qss85+pHjnrXPifdKixXd3U550A9WSMgJu/9wWrdD+j2ub/qvhS149oAgOYTqOjShx9+mD777LN06tSpNDs7mz777LP097//Pd28eTNduHAhnT9/Pt28eTP99a9/ve+1999/P124cOG+utbK3rx5M83OzrYt01q+U5kiZY/vt51h1V03Oca6sc6tvs7VNlAv3udAFNa7fMwtAEAzFd3ntftZt+W7bX/t+x/96EdpZWUlnThxYlP5tX3y1mM27psPou/dau1nmX3+UdbuvFBer9ekZ7fOqpijusxzrn7kqHftc9JTp05VVucg1eWcA/VkjYCYvPcHq3U/oNvn/qr7UtSOawMAmk+gokc3btxIN2/evO+1ixcvposXL2567dKlSymllC5fvpxu3bqVUkrp1q1b66+nlNbr2lhmo1u3bqXLly8XlilS9vh+26miD02QY6wb67x06dL69bPx68uXL6erV6+GmWeIKtJ6CsRmvcvH3AIANFPRfV67n3Vbvtv2N+5Vrv0rjnfu3El//OMf18tv3Ce/dOnSfT3bnlAAACAASURBVMes7Zu37oHm6Hu3Nrax1s9O+/yjrN14mzjOXHq9Jj27dVbFHNVlnnP1I0e9V69eXV8Lbty4ka5evdp3nYNUl3MO1JM1AmLy3h+s1v2Adr9fN6hz0qkd1wYAxCBQUaF79+6llZWVTa/du3cvpZTS559/ns6cOZNWVlbS6dOn11/faK3M6urq+murq6vpzJkzaXl5ecsyRcoe3287VfShCXKMtbXO5eXl9etn49eff/55mpubCzHPEFWk9RSIzXqXj7kFAGimovu8dj87ffp0On36dOnyne4Z2x2zca9yo1/+8pdpeXl50z758vJy22Na90Cr7nu3Wtto1bR77K3G27Rx5tLrNenZrbMq5qgu85yrHznqXVlZSXNzc/e9Njc3t+kz0rqqyzkH6skaATF57w/W6urqpv2A1t+vK3rur7ovRefetQEAcQhUDNi1a9fSq6++mt57773CMu+8887691euXEnXrl0rLFOk7PH9tlNFH5ogx1jb1bmVu3fvVto2UC+R1lMgNutdPuYWAKCZiu7z2v3svffe27RPXVS+0z1ju2Na9yrX3Lt3Lx0/frztPvlWx+Tse7fK7Nc26R67aLxNGmcuvV6Tnt06q2KO6jLPufqRo95XX31101p99+7d9Nprr/Vc5yDV5ZwD9WSNgJi89wfrypUrhb83l1Lxc3/VfSk6964NAIhDoKLF22+/nb2NN954o2OZc+fOpcXFxbS4uJjOnTtXWKZI2eP7baeKPjRBjrEW1VlW0+YZooq0ngKxWe/yMbcAAM1UdJ939uzZdPbs2dJ1FZXf6p6xlz3Mv/3tb12VL6OXvnerm7E24R67zHibMM5cen0G8+zWWRVzVJd5ztWPHPXOz89v+Tnn66+/nubn57uuc5Dqcs6BerJGQEze+4O1uLjY1R5FqyrPSadzPz8/79oAgEAEKlr8/ve/z95GmT95+/HHH6cLFy6k8+fPp9u3bxeWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd592+fTvduXOndF1F5be6Z6xiD7MKvfS9W92MtQn32GXG24Rx5tLrM5hnt86qmKO6zHOufuSod3Z2dsvPOVdWVtKpU6e6rnOQ6nLOgXqyRkBM3vuDdf78+a72KFpVeU46nfvZ2VnXBgAEIlCxwf79+4fdhftcvHgxXbp0qbDMpUuX0q1bt9r+7IMPPkiXL1/uePy7775bqtxW7RQp24de6q6bHGMtU2dZTZlniCrSegrEZr3Lx9wCADRTlXuIZbTeMw66/X70e7/by1hH+R67m/GO8jhz6fUZzLNbZ1XMUV3mOVc/ctT77rvvpps3bxaWuXHjRrp69WrpOgepLuccqCdrBMTkvT9YH3zwQcffgyujinNS5tx3uve9dOlS+vDDD/vqBwBQHwIV//Xpp5+mf//738Puxn3u3buX7t27V1hmeXk5nTlzJq2urt73+urqavrVr36VlpeXOx7/8ssvlyrXrp0i3fSh27rrJsdYy9ZZVhPmGaKKtJ4CsVnv8jG3AADNVPUeYhkb7xmH0X4/+rnf7XWso3qP3e14R3WcufT6DObZrbMq5qgu85yrHznqXVlZSS+//HKp9ufm5rb8KxbDUpdzDtSTNQJi8t4frNXV1XTmzJmOvwdXRr/npKq9jOXl5fSb3/ymrzoAgPqYGHYH6uKb3/zmsLvQs2vXrqV33nkn7du3b/21K1eupGvXrpU6/u7duz23U6SbPnRbd93kGGs3dZY16vMMUUVaT4HYrHf5mFugrHa/+PTJJ58MoSeD03Z8PiAdbW3OX9OvY+qv3TVYxS+b5thDLGPtnnF1dXUo7fej1/vdfuZ6FO+xexnvKI4zl16fwTy7dVbFHNVlnnP1I0e9r776aunPE+/evZtee+219Nxzz5UqPwh1OedAPVkjICbv/cG6cuVKeu+99yqrr59zUuVeyvXr1ze9Zh+SUeBzkQbz+Qgd5PqsogkqD1SMjY093qHI/626zX5V8efEhu3cuXNpz549aXJyMi0uLqZz585lb6dIL30oW3fd5BhrHc4hUA+R1lMgNutdPuYWBmsU90U2+vTTTze99swzzwyhJ0N2739TSv9n2L2gV/f+d9NLIa9jau/TTz9NX/jCF3o+PuceYhlnz54d2X+hs9v73SrmepTusfsZ7yiNM5den8G+8pWveHbroIrn27o8I+fqR4565+fn0xtvvNFVna+//no6ePBgmpqa6uq4HOpyziGKUdsXsUZATN77g7W4uJjOnj1beb29nJNB7KXYh2Rk+VykGXw+Qg/6/ayiKcYz1Hmrw/9q989VvfLKK8PuQt8+/vjjdOHChZRSSufPn0+3b9/O3k6RXvpQtu66yTHWOpxDoB4iradAbNa7fMwtDNzI7YsAMJpy7iGWcfv27XTnzp2htd+Pbu93q5jrUbrH7me8ozTOXHp9BpudnfXs1kEVz7d1eUbO1Y8c9c7Oznb9LxWurKykU6dOdXVMLnU55xDISO2LWCMgJu/9wTp//nyW/YNezsmw91IAgPrKEagYKX/+85+H3YXKvPnmm2lhYSH97ne/y97O0tLSlj9fWlrquQ+d6q6bHGPtp85+2wbqJdJ6CsRmvcvH3AIANNMg9hCbruz9bpVzPQr32FWMdxTGmUs/83fz5s2ejosy31U839blGTlXP3LUu7Cw0PO1eePGjbSwsNDTsVWpyzkH6skaATF57w/W0tJSevPNN7PV3805sZcCABTJEaiY7vC/PRna7NnXvva1YXehMvv37087duxI3/nOd7K3s3379i1/vn379p770Knuuskx1n7q7LdtoF4iradAbNa7fMwtDMVI7YsAMJoGsYfYdGXvd6uc61G4x65ivKMwzlz6mb8nnniip+OizHcVz7d1eUbO1Y8c9e7YsaPna3P37t1px44dPR1blbqccwhmZPZFrBEQk/f+YG3fvj3t378/W/3dnBN7KQBAkYmqK1xdXf1X0c/HxsaqbrJvzz33XHrllVeG3Y2+PProo+nw4cMppZSOHDmS3n777Sx/omxjO0V66UPZuusmx1jrcA6Beoi0ngKxWe/yMbcwWKO4L7LRgw8+uOm13/72t+mhhx4aQm8G45NPPknPPPPM/S9u+5/hdIZqtDl/Tb+Oqb92a027NbcbOfcQy3jkkUfS6upqunPnzlDa70e397tVzPUo3WP3M95RGmcuvT6Dzc3NpaNHj3p2K1DF821dnpFz9SNHvXNzc2n//v1pZWWldJ3j4+PppZdeKl0+p7qcc4hi1PZFrBEQk/f+YB05ciT96U9/qnz/oJdzMoi9FPuQjAKfizSYz0foIMdnFU1ReaBiFM3MzIx8oOLYsWNpcnIypZTS5ORkOnbsWPr5z3+etZ0ivfShbN11k2OsdTiHQD1EWk+B2Kx3+ZhboBvj45v/mOlDDz2Udu3aNYTeDFHNfsGDLrU5fyGvY2qv3ZrbjZx7iGUcP348ra6uDq39fnR7v1vFXI/SPXY/4x2lcebS6zPY1NSUZ7cOqni+rcszcq5+5Kh3amoqPf300+ny5cul6zxw4ECampoqXT6nupxzoJ6sERCT9/5gTU5OpuPHj1e+f9DLORnEXop9SEaWz0Wawecj9KDfzyqawiz81x/+8Idhd6Fne/bsSU899dR9r+3bty/t2VPur2Xu3Lmz53aKdNOHbuuumxxj7abOskZ9niGqSOspEJv1Lh9zCwDQTDn2EMtYu2ccVvv96PV+t5+xjuI9di/jHcVx5tLrM5hnt86qmKO6zHOufuSo9+jRo6U/T9y5c2d69tlnS5UdlLqcc6CerBEQk/f+YO3bty89+eSTldXXzzmpci/jq1/9aiX1AADDJ1DxXw8++GB6+OGHh92N+2zbti1t27atsMzExEQ6ceLEpj+NOTY2lk6cOJEmJor/CMnExESanZ0tVa5dO0W66UO3dddNjrGWrbOsJswzRBVpPQVis97lY24BAJqp6j3EMjbeMw6j/X70c7/b61hH9R672/GO6jhz6fUZzLNbZ1XMUV3mOVc/ctQ7Pj6eZmdnS7U/Oztbu3/ZsC7nHKgnawTE5L0/WGNjY+nkyZMdfw+ujH7PSVV7GRMTE+n73/9+X3UAAPVRr92sIXvjjTeG3YX7HDp0KM3MzBSWmZmZSdPT021/Nj09nQ4ePNjx+L1795Yqt1U7Rcr2oZe66ybHWMvUWVZT5hmiirSeArFZ7/IxtwAAzVTlHmIZrfeMg26/H/3e7/Yy1lG+x+5mvKM8zlx6fQbz7NZZFXNUl3nO1Y8c9e7duzc98cQThWV2796d9u7dW7rOQarLOQfqyRoBMXnvD9b09HTH34Mro4pzUubcd7r3nZmZSY899lhf/QAA6kOgosW3vvWt7G2U+VdZHn300XT48OF05MiR9MgjjxSWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd5z3yyCNd/XXmovJb3TNWsYdZhV763q1uxtqEe+wy423COHPp9RnMs1tnVcxRXeY5Vz9y1Ds3N7fl55zj4+PppZde6rrOQarLOQfqyRoBMXnvD9aRI0e62qNoVeU56XTu5+bmXBsAEIhARYuvf/3r2dt4+umnO5Y5duxYmpycTJOTk+nYsWOFZYqUPb7fdqroQxPkGGtRnWU1bZ4hqkjrKRCb9S4fcwsA0ExF93nHjx9Px48fL11XUfmt7hl72cP88pe/3FX5Mnrpe7e6GWsT7rHLjLcJ48yl12cwz26dVTFHdZnnXP3IUe/U1NSWn3MeOHAgTU1NdV3nINXlnAP1ZI2AmLz3B2tycrKrPYpWVZ6TTud+amrKtQEAgQhUDNiePXvS0aNH05NPPllY5qmnnlr/ft++fWnPnj2FZYqUPb7fdqroQxPkGGu7Oreyc+fOStsG6iXSegrEZr3Lx9wCADRT0X3eVj9r3afuVL7onrHdMa17lWu2bduWzp4923affKtjNnryyScr7Xu3yuzXNukeu2i8TRpnLr1ek57dOqtijuoyz7n6kaPeo0ePblqrd+7cmZ599tme6xykupxzoJ6sERCT9/5g7du3r/D35lIqfu6vui9F5961AQBxCFRUaNu2bZv+zO22bdvStm3bUkopPfDAA+nkyZNpfHw8nTx5cv31jdbKjI2Nrb82NjaWTpw4kSYmJrYsU6Ts8f22U0UfmiDHWFvrnJiYWL9+Nn79wAMPpFOnToWYZ4gq0noKxGa9y8fcAgA0U9F93lY/O3nyZFfli+4Z2x2zca9yo5/97GdpYmJi0z75xMRE22Na90B//OMfV9r3brW20app99hbjbdp48yl12vSs1tnVcxRXeY5Vz9y1Ds+Pp5mZ2fve+3FF1/c9BlpXdXlnAP1ZI2AmLz3B2tsbGzTfkDr79cVPfdX3Zeic+/aAIA4RmNnq4Z2796dnnjiifteO3ToUDp06NCm12ZmZlJKKR08eDA9/vjjKaWUpqen119PKa3XtbHMRtPT0+ngwYOFZYqUPb7fdqroQxPkGOvGOmdmZtavn41fHzx4MO3ZsyfMPENUkdZTIDbrXT7mFgCgmYru89r9rNvy3ba/ca9ycnIypZTSww8/nL7xjW+sl9+4Tz4zM3PfMWv75q17oDn63q2Nbaz1s9M+/yhrN94mjjOXXq9Jz26dVTFHdZnnXP3IUe/evXvX14Ldu3d3/BeG66Yu5xyoJ2sExOS9P1it+wHtfr9uUOekUzuuDQCIof0/n8SWHnvssTQ/P59eeumllFJKhw8fTtPT02liYiIdPnw4pZTS9evX08rKShofH19/7S9/+cv612uOHDmSrl+/nlJKaW5uLr344oubyrSWb1dPWWWP77edYdVdNznG2lrnVl9HmmeIyvsciMJ6l4+5BQBopqL7vHY/67Z8t+2vff+Tn/wkfe9730tnzpzZVH5tn7z1mF/84hf37Zvn7nu3WvvZ2t+m2eq8UE6v16Rnt86qmKO6zHOufuSod25uLh0+fHj9M9NRU5dzDtSTNQJi8t4frHb7Ad0891fdl6J2XBsA0Hxjq6urg21wbOzxlNKtlFK6detW7VKb77//fnr++ec3vf7rX/86TUxMpC996UtpaWkp7dixI6WU0sLCQtq+fXtKKa3//9LS0vpxG19b+3qjtbLbt2/fskxr+U5lqji+33aGVXfd5Bjrxjq3+jpX20C9eJ8DUVjv8qnz3P7rX/9K09PTa99Or66u/muY/YGq1H1f5D//+U/69re/fd9rb731Vtq1a9eQepRfuzEv/L9DafWBySH1KKWxzxfTjusX73tt2H0aJe3mr+nXMfU36PW16D6v3c+6Ld9t+2vfz8/Pp6mpqbblU0ptjynaA83R92619rPO99hViDLOXHqdN/PdWRVzVJd5ztWPHPUuLCysf2Y6iupyzrdib4Qmqvu+yEZ1XyOAPLz3B6t1P6Db5/6q+1LUTrufR9xPpxnq+LnIoDX1cxifj9DJKP23a9D7Iv5CRUlf/OIX1y+YjTdH7TYJ291cbXXDtfH1Mjd//d4glj0+541opAePHGPd6pppbSvSPENU3udAFNa7fMwtAEAzFd3ndbN/3elnZY9Z+75dmKJTnzrtoVfd92619rPp99hRxplLr/NmvjurYo7qMs+5+pGj3lEOU6RUn3MO1JM1AmLy3h+sMr/rNKhz0qkd1wYANNv4sDsAAAAAAAAAAAAAAAAwaAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOBPD7kDd7NixY9Nrp0+fTjt37hxCbwAAAAAGZ+fOnemtt97a9BoA/bG+AgAAADSL/R4ARo3/dm1NoKLF+PjmP9qxa9eutq8DAAAANMn4+HjatWvXsLsB0DjWVwAAAIBmsd8DwKjx366tSQkAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAWz1K/gAAIABJREFUAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFTw/9m783iJ7vl+/K93FhJLEEEsrRDVSqmqWBJClKpd7UuVaC21Vf3Kl1aRllpKS2upJYi9VAVBpaioWCKofYkgUYkgSBCSiHx+f5wzvZObmbvMnTtz753n8/E4jzln5nPO58ycz+fMOZ/zeZ8DAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALZ7d5rwAAAAAAbCV1/rnzXYHzzxn5Xs1+TbaluW8/AAAAAADYRhauXX2HXodZuO0IUySgAgAAAACGXPILb5v3KlzEpb5w1LxXAQAAAAAA2IG24nWRWXMdBhbbLvNeAQAAAAAAAAAAAAAAgFkTULHMZS5zmTW9BwAAAAAAAAAAAAAAbF8CKgAAAAAAAAAAAAAAgIWz27xXYKvZa6+98va3v/0i7wEAAACw84xqC5q3Cy64ID/5yU8u9N6lL33p7LKLe6NMSvseAAAAAABszesis7ZI12FcH4G1EVCxzC677JLLXvay814NAAAAAGZgq7YF7b333vNeBQAAAAAAYIfZqtdFZs11GGDYzgunAgAAAAAAAAAAAAAAWIWACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4ew2hzx3HYx85zvfmUP2AAAAbHXLzhd3HZcOtiHtIgAAAKxK2wg7lHYRAAAAVjXrdpFqrW12HhfOsOrAJCfMNFMAAAC2sxu11j4575WAadAuAgAAwAS0jbAjaBcBAABgApveLrLLZi4cAAAAAAAAAAAAAABgK5rHEyounuR6/eT3k/xypiuwNvtm6a4IN0py+hzXBaZFuWanUrbZiZRrdiLlmvXaNckV+vHPt9bOnefKwLSMaBe5QuwfWeL/kgFlgQFlgWHKAwPKAsOUh51L2wg7zgb6i9jXbS+21/ZhW20vttf2YnttH7bV9mJ7bS+21/axFbfVTNtFdtvMhY/Sf6Et/TjSqhqePL219u15rQtMi3LNTqVssxMp1+xEyjUTOmXeKwDTtrxdpKqGOw7YPy44/5cMKAsMKAsMUx4YUBYYpjzseNpG2FEm7S9iX7e92F7bh221vdhe24vttX3YVtuL7bW92F7bxxbeVjNrF9llVhkBAAAAAAAAAAAAAABsFQIqAAAAAAAAAAAAAACAhSOgAgAAAAAAAAAAAAAAWDgCKgAAAAAAAAAAAAAAgIUjoAIAAAAAAAAAAAAAAFg4AioAAAAAAAAAAAAAAICFI6ACAAAAAAAAAAAAAABYONVam/c6AAAAAAAAAAAAAAAAzJQnVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcHZ0QEVVXb2q/qGqvlJVZ1fVD6vqhKp6QlVdYor53L6qjqqqb1fVuf3rUVV1+2nlAQObWa6r6hJVdfeq+pd+mT+qql9U1Q+q6mNVdXhV7Tut7wIDs9pfL8vzElX1japq/XDyZuTD4pplua6q21TVkVV1Up/XWVV1YlW9taoeUVWXmmZ+LLZZlO2q2q+qnlNVn6qqM/vjkR9W1Uer6qlVdcVp5AMwTdogGNjk8/ZdquqAqjqsql7SL/fcofOaQ6f0NZgS7TgMbHJZuE5VPbqqXlNVn+7/G87p8/lGVb25qu5aVTWt78PGaAtjYJP3DYcNbe/VhsOm9JWY0Cz3C6UtEZiT6tp9H1NV/15VX6uqn/XHrd+uqrdX1X2rard1LO+6VfWyqvp6Vf28qr5fVR+uqj9dz3LWmNf9quo/q+r0fp1PqarXV9VB08xnK6mqS1XVLarq8VX1lqr65nqPJavq5HUcjwyG/SZc3yM3O4+tbErba791/IZHTmm9d+vr7If7Ovzzvk6/rKp+cxp5bDVT2la79Mt4ZlUd2++bzquqH1fVF6prN/ytKa2vurXB7bVsef675qi69tL1/i8dPmFeh252Hjtdv39b0284xTwP7uvJKX29Ob2qjqmq+00rj52qpnysv0I+6tYqyjXriVVrU9ufbClVdeckr0+y15gkJya5Y2vtpA3ksUuSlyf5kxWSHZHk4a21CybNBwY2s1z3J1MfSbJaQ/mPkzystfbm9eYBo8xifz0m3+cl+Yuht05pre03zTxYXLMq11V1uSSvTnLXVZLeoLX2mY3kBcnMjrH/KMnLkuy5QrIfJrlva+19k+YDME3aIBjY7LJQVQ9KcuQKSW7VWjt2kmUzfdpxGJjBvuH1Sf5wDUk/lOQerbUfTJIP06EtjIEZ7BsOS9dutBYPbq0dOUk+bJy2RGARVNXTkzw5yWpBvickuWdr7VurLO+hSV6U5GJjknwi3b7zjPWu67J89kzy1iR3GJPkgiR/21r7m43ksxVV1QeTHDrm4zUdS/adja++jmzPSrJva+2cdcwzyOvIJA9aY/JrtNZOXm8eW9mUttd+Sb65xixf01o7bI1px+W3T5L3JLnRmCTnJnl0a+2IjeSz1UxpW30rya+skuyCJM9L8qS2gc6B6tbGt9fQsvx3zVnfufpp65zt/q21N02Q16FJPrjG5H/TWjt8vXnsdFV1bJJbriVta23DN5Lpy8dTMv4m9e9Od5y67uOUnW7ax/qr5HVo1K2xXLPemKlGNm4VVXWDJG9O1wnrp0mela4S7ZnkvkkemuTaSd5dVQe21n4yYVZ/l6VC8T9J/j7J15Psn+T/JblBkock+X6Sv5owD0gyk3K9V5Yuwn8kybuSfDLJD5JcIcnd+zz2SvKGqvpxa+0/NvSlWHgz3F+PyvfPk5yT5BdJLj2N5UIyu3JdVZdJ8r4kN+zfOipdw8jXk/wyXSPaLZPcY+IvA0NmUbar6mbpOonukq4x7zVJ3pHktCS/mq7B9s5J9k7yjqq6bmvtGxv7ZgAbow2CgRmVheHG6F8k+XyS3ZNcbwOrzibQjsPAjPYN5yc5Pl1Z+HyS09P9H1wuyW8keXiS66Y7Rzy6qm6+3S5k7BTawhiYQ1n4/XTn1uN8e4PLZ0LaEoEFcuV057Rnp9sHfSDJ19Idn1wnyZ+l61R9oyTvr6rfaa39dNSCquoOSV6arh35u+naTI5P12780HTnQzdOclRVHdpa++UG1vtVWeqQ+sEk/5TuP/V66dpf9k9yeFV9p7X28g3ksxUNt0H8MN0558FZPbB/2G0zvuPwwG2SPL8ff8sUOimelu7YZyWnbjCPrWga22vYX6e7PjPOjyZcbpKkqnZNty8YBFO8Lckr0q37Tfr8r5jkZVV16g5r05jGtrpK/3pSkn9P1x5wWrpjyFsleVy6NoH/l+5YbxrtxerWBuqW/64t4yXpzoNWsmuS/07XrvrjJG+fQr5/nK4j+Tjfm0IeO9knkzx4MzOoqodnKdjm60mema6d9SpJHptu33rHdPXr/pu5LtvU1I7110ndGuKa9RS01nbckO5PraW7MHDQiM+f0H/ekhw+YR7X7pff0lXKPZd9fon+/cF6XGvev4thew+bXa7THfC/OckBK6S5a7rOjS3diVnN+3cxbO9hFvvrEcvcNd3BdksXWXxyP37yvH8Pw84YZlWuk7y2X8Y5Se6yQrpKstu8fxfD9h9mdIz9rqFlPHJMmn8YSvOief8uBoPBoA3CMOOycOMkj0ly0yR79O8dPrTcQ+f9OxhmUx6042yfYUb7hhXP+fq2kH8fymfsOaRh+5eHMdtfW9gWG2a0bzhsaBn7zfs7G+ZXFvrlaEs0GAxzHZI8J13nmkuP+XzX/hxnsM976ph0u6frrNPSPc1g/xFpXjy0nMM2sM6/O7ScdybZddnn+yQ5pf/8R0kuN+/fecrb7GFJ7pehdqbNOJZctt1vvoHlHLnIx7nT2F5J9ptG3VljXn88lNeLR3x+rb6Ot3QdMnfM8cmUttVH0wU3jGzrSdeh8XtDx5nX3MD6qlsb317+u7bRkOT2Q7/hERtYzqFDyzl03t9rOw5Jju1/v2M3OZ+9k5zZ53VKkn2Wfb5rX59sz/G/4VSO9deYl7o1/rdxzXqDw7jH02xbVXXjJIf0k69srX1sRLJ/SPLlfvyxVbX7BFn9eZae8PGY1trPhz9srf0s3QXu9OkeN0EekGQ25bq19tHW2n1aa19aIc070t0ZIOlOwG6wnjxg2Az318s9Nt1duL6a7oAOpmZW5bqqbp7kj/rJv26tvXNc2tY5f715wLAZ7rMP7l9/0Fp7yZg0fzs0ftAEeQBMjTYIBmZVFlprn2itvbC19vHmsdJblnYcBma4b1jxnK91dzV87tBbh4xLy+bRFsbAHMsCW4y2RGCRtNae2Fr7+zbmLqj9Mesjk5zXv3XPMYu6W5Jr9uPPaq19fUSaJ2Tp7vlPmHCVk+Tx/ev56W4AdKG7hbfWzkjyxH7ysunuwrpjtNZe3lp7U2vtpM3Ko3+C0l36yW+01o7brLx2ullsrykb1K8fZkQ97b/Hs/rJa6Wr+zvCNLZVa+3g1toxre+5OOLzr2fpetpuSf5g0rwW3ZTqlv+u7eWBQ+OvndtaMEsPSXKZfvyJfT35P0PHqYP6tJE6uiNN8VifCblmPR07LqAiFz4IfPWoBK17nPngD++y6R7Js2ZVVenu8JYkX2mtfXxMPh9Pd5EiSe7azweT2PRyvQ4fHBrff5PyYDHMvFxX1dWz1HDwp62181ZKDxOYVbl+dP96VpIXTTA/rNesyvbg0d/fHJegtXZWkkEjxmqPCgfYbNogGNhK5+3M31YqD9px5msrlYXhi1l7bFIerExbGANbad/AfGlLBBjSWvtBks/1k+POX4b3nUeOWc7Pkrylnzygqq693nWpqksnuXU/+f7W2rfHJH1bkh/34zumw/cM3TtL5yc6rS6Ivk5ep598S19nRzlyaFz9Wj9tQluH/65toqr2ytL1mG8m+fAcV4fZGdTRH2fpBkUX0ten9/eTt+7rG+uwxmN9Juea9RTsxICKm/evZyf51ArpPjQ0frN15nGNJFcZsZyV8rlqusfjwSRmUa7X6uJD478cmwpWN49y/ZIkl0zyutbasRtcFoyy6eW6qi6WpQPU9w3uTFxVu1bVr1TVflWlcwzTNqt99uCk6hrjEvQNWfssSw8wL9ogGNhK5+3M31YqD9px5msrlYX7Do1/ZZPyYGXawhjYSvsG5ktbIsBFDc5hxp2/DPadX22tnb7Ccjb6P3qjLN3QZ2x7TB+wOuhIdCNPlVq3wV3AW5LXzXNFmKmbD42vVL9OT3JiP+l4eP20CW0d/ru2j3sl2bMff924p8Cwc/TnzDfuJz+2ys1IBvXq4kkO3NQV27lWO9Zncq5ZT8FODKgYRDGftMojaYcvGl1nbKrRDhiznGnnAwOzKNdrdcuh8S+PTQWrm2m5rqr7JrlDusck/sWky4FVzKJcXz9Ld+v5fFXtVVUvSHfH/m+lu1PCWVX1vqo6dJ3LhnFmtc9+af96+ar60zFpnjIiPcC8aINgYCudtzN/W6k8aMeZr7mWharap6oOqqpXJnly//YZSd4wrTxYF21hDMxj3/Dqqjqtqs6rqjOq6uNV9YyquuoGl8vGaEsEGFJVV8zSfu4i5y9Vdakkv9JPbnYbySTtMbsl+bUJ8lpIVXWNLHXiOq619o0pLfryVfWhqvpBVZ1bVd+pqmOq6tFVdYkp5bEIHlNVJ1XVOVV1VlV9sapeWlW/M4VlT1K/fqWqLjmFvBfJtNuE1K0J+O/adh44ND7NJyf9XVWd0tedH1XV/1TV8yd5EsmC+o2qOr6qzuz/l75dVe+oqgdOISDo2kl27cddg9tEqx3rT0jdWuKa9RTsqICK/g4qg7vVjntsVZKktfajdNE4ydKBy1pdbWh8xXyS/O/Q+HrzgVmW67Wsy/WT3LGf/HxrzYV4JjLrcl1Vl0vygn7ySa2170+yHFjJDMv18AHqLkk+meSx6R7HNnCxJLdJ8l9V9cR1Lh8uZMb77FdlqXHqxVX1iqq6c1UdWFV3r6qjkjy+//zvWmvvH70YgM2nDYKBrXTezvxtpfKgHWe+5lUWqurYqmpV1ZJ8P8lHk/xxkkrXefZurbUzN5IH66ctjIE5/k8cmuTKSXZPcvkkN0kXaHVSVT18g8tmAtoSAUZ6QrqOnUnylhGfz7KNRHvM5ntguvOUZLqdVi+V5BZJ9k73H7dvktsmeWGSE6vq4CnmtZP9TpL9091Jeq90xxQPT/KpPrDi4ivNvIpJ6lctm48V9AEOf95PnpvkHVNYrLo1Gf9d20RV7ZfkkH7yI621r09x8Qcn+dV0deeySX47XR39clUdXlW10szkSumeInGZdP9LV01ylySvSfKZqtpIZ231ZnZWO9afhLoV16ynabfVk2wrlx4a/+ka0p+d7nHXl9rEfM4eGl9vPpDMrlyvqD8hPiJLUZlPXiE5rGbW5fq56Q6wP5bkFRMuA1Yzq3K999D4E9PdYe69SZ6a5HPpGjXvkeTZ6U4on11VX2mtTaOhjMU0s312a+2XSR5UVUcn+askD+mHYR9M8kzBFMAWoA2CgS1x3s6WsSXKg3acLWFLlIUh/5zk6a21MzZp+axMWxgDsy4L30jytnRlYXAh85rp2o7uma5d6aVV1VprL58wDyajLRFgSFXdJEudf7+d5F9GJJtlG4n2mM33R/3rzzOdTnUtyceTHJ3k00m+m+5/73pJ/iRdR8yrJvnPqjqktfY/U8hzJzozyVFJjk3ytSTnpAvMvW263/FS6QIrLp3kDyfMQ/3afM9J18E0SV7cWjttA8tStzbGf9f28UdZCvR7zZSW+Z105+THpTs/Pz9d3bxTusDC3ZM8LV1n8L+aUp47yQVJPpDkPUk+m+QH6cr576T7L7pOuoC/D1bVjVtr35ogD/VmBtZ4rL8e6taFuWY9JTstoGKPofHz1pD+3P51z03M59yh8fXmA8nsyvVqXpTkwH78Na21o6e8fBbLzMp1Vd0i3Z0Yz0/yp621tt5lwBrNqlwPP852jyTvS3KnviN60t2B9KVV9YUkH0p357lnVdU7lX8mNNNjkf4OEg9M1xA7ykFJ/qSqvtxaO3WSPACmRBsEA1vlvJ2tYauUB+048zevsvDgdOeNle6uXAcmeUSSRye5ZlU9pLX23Q3mwfppC2NglvuGo9L9BywvAyckeXNV3Sndxefdkzy/bzs6fYJ8mIy2RIBeVV0pyVvT9V9pSR7UWvvZiKSzbCPRHrOJ+jvZ799PvqO19uMpLPZxY57G97GqekWSZ6TrUHfJJEdU1YH+6y7itCRXHVH//ifJe6rqxUnen67D4v2r6s2ttXdOkI/6tYmq6g/TtQEkyZeT/PUGF6lubYz/ru3jAf3rOZlOoN8JSa7eWvvFsvc/neTtVfXyJP+ZLrD9Sf0+9bNTyHcnufuY/c+Hq+ol6W4i8qB0NxV5QZK7T5CHerPJ1nGsv1bq1kW5Zj0lu8x7BabsnKHxi60h/eARdD/fxHyGH3O33nwgmV25Hquq/jJLd4c+IcmjprVsFtZMynV/R86Xp+tE8E+ttc+tZ35Yp3kchyTJE4cugP6f1tpx6S6KJ11k/rjO6bCamR2LVNUh6e6aeeckp6a7E8i+fb6/ku4Y5GdJ7pvkE1X1m+vNA2CKtEEwMPfzdraUuZcH7ThbxlzKQmvtm621L7TWPt9a+3Br7flJfivdndzulOSEqrraykthE2gLY2Bm+4bW2lkrdWRqrb0ryd/2k5dId3dZZkdbIrAlVVWbwnDYOvK7dJJ3Jxkcoz6ptfZfY5LPso1kW7THzHp7TdEDh8anchfwMR0uB5+11tqT093lOunubH3wNPJdj62+vVpr563UwbG19rUsdThOksdMmNWWr19bfVutsN6HJnllP/nDJPdorW20nUHd2hj/XROYw/HITZNcu598R2vtrI1+h9ba2SM6fA9//oksBT/V0Pi2spnbapX9zy/StYF/tX/rblV11Qm+wo6pN2sxh7q1nmP9NVmUurVOrllPyU4LqPjJ0PhaHhMyuCvLWh5zMmk+w3d+WW8+kMyuXI9UVQ9P8sx+8itJ7tBaO3uFWWAtZlWun5zk19M9zv5p65wX1msexyHfX+WxqccMjd9onfnAwEzKdnUdf96U7k4Bpye5aWvt9a2177bWftFa+3Zr7SVJbpHuRO0qmd7jVgEmoQ2Cgbmet7PlaMdhYMvsG1pr56R7csXP0gUq//2082BV2sIY2DL7ht7L090dMEluuUl5MJq2RGDhVdUeSd6R5Ib9W89rra10rDrLNhLtMZukvxZw737yO+menjQrLxsad+wzgdbah5N8qZ+8eVVN0u9M/doEVXVgknem68D403RtQl+eUfbq1nj+u7aH4UC/184w339NMnhKk7qzTq2187MURJZM9huqN5tkgmP9aVq0uuWa9ZTsNu8VmKbW2jlV9YMkl89SVNNIVXW5LG20/11nVt8eGl/tbl6/MjS+3nxgluV61PLul+Ql/eQpSX6vtXbGRpcLMyzXT+xf35/kzlU1Ks1g2Zesqvv249/baEQsi2eG5Xo4/bfHprpo2iusMx9IMtOyfbskg7tGvLC1dvqY9fliVb0+3R0nblhV11+ARzQCW5A2CAbmed7O1qMdh4Gttm9orZ1RVR9J8ntJ7lpVu690Jy+mS1sYA1tw3/C9fn32ydI5OTOgLRHYwq4zhWV8Z7UEVbVbkrckuVX/1hGttSesMtupQ+Ob3UayvD3mk5uY10bMZHtN2Z2TXK4ff+OoJydtoi8Njc/j2Gc7bq9RvpTkgCR7pDuW+f46519ev1ZquxjUr5bVj2WmaVttq+qe6P7eJJdOcm6SP2itHT+r/KNurcR/12Rmtk2r6mJJ7tNPfjcXDjTfVK2186vqxCQHZvuek8+7/m10/7No1+C28rH+1OyQurVmrllPz44KqOh9KckhSa5VVbv1kWij/MbQ+Hojcod3xL8xNtXG84GBWZR7s5/AAAAgAElEQVTrC6mqu6SLut0l3R/hrVtrszxBZeebRbkePF7qwf2wkn3S3Rk9ST6UxEVkJjGLcv3FofFdV0k7/Pm4dYG1mEXZHj55//QqaT+VLqBikKeACmBetEEwMPPzdrY07TgMbLV9w6CTyyXStYNshY44i0RbGANbbd/QVk/CJtGWCGw5rbWvbHYe/R3tX5euY32SvDnJw1ebr7X2k6r633Sdcza7jWSS9pjzk3xtgrwmNovttQmG7wI+66dQz/W4Z5tur1E2+jsur1+fWSHtoH797yyfwLmdtlVV7Z/uSS+XT7cfuk9r7QMzXg11awz/XZOZ8Ta9U5K9+/E3zDjQL9nm5+RboP5t9Pc7Mckv050P7/hrcFv5WH8TbOu6NQHXrKdgkkevbXXH9a+XzNLjYkYZfpTLR9aZxzeTnDZiOaPcon89NcnJ68wHBmZRrv9PVd06XZTgbkl+kO6Ohl+fdHkwxkzLNczIppfr1topSb7VT+5XY2432dt/aPzUsalgdbPYZw+f0K0W+L37mPkAZk0bBAPObximHYeBrbZvGL4b17Z5zPYOstXKA/OzZcpCVV0hXXBNsnTMyexoSwQW1cuSDJ6UdXSSB7TWLljjvIN9569X1b4rpNvo/+gJSc4bsawL6e9qfdPBPJ4Ct7L+2ON2/eRnWmufn/EqHDA07thncoPf8dx07RDrddzQ+Er1a98k1+4nnRuNUFVXS/eEwisnuSDJg1pr75jDqqhbK/PftbUNB/q9dpYZ93fxH+zn1J3JbGj/01o7L8kn+smD+voxzqBenZuVnwCz6DZyrD8VC1q3XLOegp0YUPH2ofGRd2Dqo6AGf4ZnJvngejJorbUkgwPQ36iqm45K178/iLR5Rz8fTGLTy/XQcg5OV74vnuSsJL/fWvviynPBRGaxv67VhiSn9MlPGXr/0HV+FxiY1f763/vXvZLceoV0dx8aP25sKljdLMr2N4fGD1kl7fDJ2TfHpgLYfNogGJjZeTvbgnYcBrbMvqHvZHFQP3lKa+0nm5EPK9IWxsCW2TckeViSQQf7D21SHoynLRFYOFX1j1l6+vAHktxrhbunjjK87zxsTB6XSHLvfvJLrbUT17ue/fHy4A7vt+mPp0e5e7r9a5Ictd58FtD9snTDpFk/nSK58N2RHftMoKpuluQ3+8njJukg2dfJwZ2K793X2VEOGxpXv5apqiumC6bYr3/rT1trb5zT6qhbK/PftUVV1eWT3KGf/Gxr7bMzXoX7JLlMP67urFPfaf6Ph9767wkXNaije+XC58XDeV0tyW36yQ9oWx1tCsf607KIdcs16ynYcQEVrbVPJPlwP/knVXXQiGR/keQ6/fg/LY+0rKpDq6r1w5FjsnpBusf9JMkLq2rPZcvYM8kL+8nz+/QwkVmV66r67STvThepdnaSO7bWPjWN7wDLzXB/DTMz4+OQc/rxf6yqvZYnqKoHJDm0n3x3a+1/1/5N4MJmVLY/kORn/fgjqup6o9alqm6f5G795KlZ+VHQAJtKGwQDzm8Yph2HgVmUhaq6dlX97krrUVWXSfLGJIM7rM30bnt0/FcwMKN9w35VdYOV1qOq7pTkqf3kz5O8eh1fgynQlggsmqo6PMnj+smPJrlra+3cdS7mqCTf6Mf/sqr2H5HmuUkuNzQ+al0OG9p/Hj4mr+f1r7sleXFV7bpsGfskeU4/eWaSI9b2FRbaoAPX+enOUdakqg4f2l6Hjfj8plV15RXmr6p6RpY6Qn42nnhwEVX1B1Xjn2ZVVdfKhbfbS8akW3F79Qb1a+8kfz9iGfsn+ct+8qQseKfv5arqskmOSfLr/VuPa629YoLlqFuz4b9r6xoO9Ftze1l/zj3YFseO+PxyVXXoKsu4cZIX9ZMtyb+sNf9FUFW36vd14z7fPV35HZwvHz3qPHa1bdU7It3NipLk2dUF2gwvY9d0/3mD+jSyji66aRzrq1uTc816Onab9wpsksemO0DbM8l/VtUz00XT7JnucTIP69OdmOQfJsmgtXZiVT03yZOSHJjkI1X1nCRfT/dI3CcmGTRWP7e19rUJvwsMbGq57g/Yj0kyOBj56yRnVdV1V5jte6217603Lxiy6ftrmINZHId8q6qemq6B8XpJPtEfh3wuS1Hzj+iT/zhLJy2wEZtatltrZ1bVs5P8bZJLJ/loVb0wyfuS/CjJlZLcNclDsxQY/qRZPx4SYARtEAzM5PxmxMXN3x4av11V7Tc0fVJrzd2F50M7DgObvW+4SpIPVNVn092F6lNJTk93sWLfJDdL8if9eJJ8IcmzJ/omTIO2MAY2uyzsl+SDVfWxJEen69g0+A+4ZpJ79sOgw9zjW2unTpAPG6ctEVgIVfWYJE/rJ09N8v+SXGOFvttJ8tXlnXxaa7/ol3V0un3YR/rOvJ9I1xH1oUnu0Sc/LsnrJl3n1tp/VdW/ptsf3yXJ+6rqBUlOS7c/fXKSX+2TP7G19qNJ89qK+s7zN1/29qUGryPaJ97bWjt9heUdkOSGQ2mneX56uyRPqqr3prum8KV0HYUvnuS30t29+iZ92p8leeh2ulPuWkxpex2V5KSqelu6OvXtJOcmuXKS3093bjlY5ltaa2/bwCq/Jt12uVmSR1XVvkleke560I2TPCVdHb8gyZ/N6e7Wm2Kj26qqLp7uBhuDNsE3JHn/Km1CZ7fWJnniu7o1hbrlv2tLGw70e8MUl3uZdOfkn8tSe9130nVC/tUkd0ryR1m6+cnz3CjnIh6U5J1V9c4kxyb5arrz1UulO554WJID+rTfS3duPZHW2g+r6olJXprk6kmOr6q/S/L5dG2vf57kVn3yN7XWjp00r51qWsf6a6Burcw1641qre3IIcmd00WOtTHDV5Nca8y8hw6lO3KFPHZJ8soV8mjpIth2mffvYdgZw2aW63SPlVupLI8aDp/3b2LY/sMs9ter5H9yP//J8/4tDDtnmFW5TvKsdA2J4/L5bpKD5v17GHbOsNllO11HjuevUq5bkvPSdfaY+29iMBgMrWmDMMy8LKznvH3scgzbuzxEO862Gja5LBy6jjLwriRXmPfvsejDLP4rVsn/5GgL2xLDFtk3nJ3kYfP+LRZ9mNV+IdoSDQbDHId0HeHWew6z3wrLe2i6jt7j5j0+yT4rzH/YUNrDV0i3Z7qOy+Py+eVK82/nIes/7zx0leU9eyjtvda5LocPzXvYKp+vNJyS5Gbz/m236vZax7wvSXLxSbfXULp90nUoH5fPOUkeMu/fdqttq3TB0+vdnx47ybZSt6a7L4z/ri01JPmNod/k3eucd7geHrvK5ysN56frhF7z/j222pDkyDX+hp9LcsCk22pZ2r/JyufM706yx7x/m604ZErH+urWVLaFa9YbGHbqEyrSWju6qn4rXdTNHZNcLV3Hq5OS/FuSF7XWfrbBPC5I93iUf08XvXOjdAf8ZyQ5IcnLWmv/sZE8YNgsyjXMmnLNTjSrct1a+8s+Iv8RSQ5Jd4eYc9JFE78zyQtba2etsAhYl80u2607+3pcVb0+yUPS3fHl6kkukeSnfT4fSnecfeJGvgvANGmDYMD5DcOUBwY2uSx8JN2dQm+T7o5QV0v3dLdLpLtr2zeTfDzd3dM+spHvwXTYNzCwyWXhU0kekOSgdPuGK6c7dtwt3V1/v5jkA0mOaJ5eNHfaEgHWr7X2iv5JTH+W5Nbp7h58dpIvp7vD9BFtCne0b639PMkdq+r+6TqyXj/dkwK/m+TD6fbRH9toPjtdVe2S5A/7yTPT/e9M06vTBwamu2v+FZNcPl1nujOSfDrdneHf2Fo7Z8p57yR3Sfcb3iTdtZl9klwy3bnlN9KV+Ve11r4wjcxaa2dU1cHpOpnfP8l1+vxOS3es+k+ttS9OIy8mpm5Nkf+uLeePhsZfO+Vln5bkXunqzo2TXDXdPnWPdB2dv5quA/oRrbWTp5z3TvGcJJ9J9xsekOQKSfZOF5T03SSfTPLWJEe11n45jQxba0+rqmOSPCrdOfOV0h23fDbJq1trb5pGPmyIurUK16w3pvqIEQAAAAAAAAAAAAAAgIWxy7xXAAAAAAAAAAAAAAAAYNYEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFwDZVVYdVVeuH/ea9PrBcVZ3cl88j570uAAAAsJOs1C5UVUf27588l5UDAAAAmJKd1DemqvYb+i6HzXt9AIAlAioAAAAAAAAAAAAAAICFI6ACgKmrqsMHUfXzXheWVNWx/XY5dt7rAgAAAAAAAAAAADBvAioAtqnW2pGtteqHk+e9PgAAAADMX2vtsL69aL95rwsAAAAAAMBWJ6ACAAAAAAAAAAAAAABYOAIqAAAAAAAAAAAAAACAhSOgAmCbqqrDqqr1w37LPju2f//YfvqqVfWPVXVSVf28qn5QVcdU1e1XyWPXPp9jqur0qjqvqs6qqq9V1Qeq6q+q6oDl65TkaUPvtRHDfkOfL1/XX6uqF/V5/Gw4/Urfedl67zeU7rARnx/Zf3ZyP71vVT2vqk7s8zy1qt5SVb85Yrn/3Kf7eVV9t6reUFX7r/Q7Ds1/q6p6TVV9o8/nx1X1+ap6blVdZYX5Dh98n356j6p6QlV9uqp+0g+fqKpHV9Vu475vklv2b91yxDY5edk8l6yq+1TVEVX1mX67/6Kqvl9VH6qqx1fVpdbyvcd8p0OH8j60f+/efbn6fv/7frWq/r6q9l7jMv+gqv6tqr5VVedU1ZlV9cmqelpVXW6Vea9dVS+sqi/0v+d5VXVa/91f1f8WFx8x37rqCAAAAGy25e0eQ+8/dehc/NfWsJxj+rTfqapdx6SZ6Fx8RNvMZavqb6vqi1V1dr+c/66qP1zjd75MVf1lVX2kb1c4r1/vo6vqnlVVq8x/t6p6e1V9u6rO7dsGvlFVH66qp1fVjcfMd5WqenbfRjNoO/lu397zpr7NYK+1fAcAAABgMlV1hap6RlX9T9+mcE5VnVxVr6uqm68y76Ct5PBV0l2ob8uYNLtW1SOr6vjq+oOc1bcZPH5Uf4MR82svAYA5uUinSwB2lqq6WZK3J9ln6O09ktw2yW2r6gmtteeNmO9SSd6T5JBlH+2eZK8k10ryu0l+J8k9p7Sud03yhiSXnMby1pjn9ZO8N8m+Q2/vmeReSe5QVbdrrR1XVb+b5G1JLjOUbo8k909y+6o6pLX2xTF57JHk1UnuO+Lj6/bDI6rqfq21o1dZ3yv16/vbyz66UT/ctqr+oLV2wUrLWYN3ZykAY9g+SW7RD4+sqju01r6ywbx2qarXJXnAsvevneQJSe7W/76nj5q576Dx1nTlcdjFk9ywHx5ZVXdtrX18xPz3SvL6JBdb9tGV++H6SR6c5HpJvjA038zrCAAAAGzAG5P8TT9+/6Hxi+jbH27dT/5ra+2Xyz7f0Ln4smX9erq2jv2WfXRIkkOq6qDW2qNXmP/WSd6c5PLLPto3yZ364T1VdZ/W2k+XzbtrkjelawcadrEkl0pyjSQ3T3L7JAcum/eQJO9K1wYw7Ir9cN10bUFn9OkAAACAKauq2yb5t1z0/Pzq/fCAqnpxkj+bQj+KldZjXP+BG/TD/ZI8ZB3L014CADMkoAJgZ7tyumCKC5I8KclxSc5Ld2Lz1CSXTfKsqvqPEcEAh2fpRO9d6QIdvpXknHQnOTdId4LVhuZ5e5JPJnlkkkf0711vxHqdOuK9X03Xqf1nSZ6e5MNJfpkuSOCnI9JPwyWSHJXupO+vknyoz/N2/fQlk7yuqn4v3Xc7K93vdny6/9B7JPnzJJdL8sokN12eQR/R/9Ykd+zfOjrJW5J8I912uXGSv0j3/d9aVTdrrX1yhXV+W5IDkvxzv6wfJvn1JE9Jcp0kd07y0CQvG5rnyUmely6o48B02+jBy5Z73rLp3ZJ8Psk7+/SnJal0DQ53S3LvdCfJb6+q326tnbPCOq/m6UkOTvcbvzbJKUmulORR6X63ayV5froGhgvp7+Lw/nRBC79M1znkPUm+mS6w4RZJ/r90ZfY9VXWD1topQ/NfKd3vcrEk30vyoiQfT3fyvmef9y2T/MGI9T48668jAAAAMBettZOq6vgkN8kqARVJ7pNk8FSKNwx/sNFz8WUuka594/JJntEv96fpzqmfluRqSR5VVUe31o5ZPnN/I5H/6PP9bpIXJvlsunaMq/Tf4wFJ7pDkNenacoY9IkudA45LckSSryc5u1+n30rXTjR8g43Bb/Cv6ToH/CTJvyT5YLq2hYulazM5OF0bCgAAALAJquq307UrXCzJL9Jd739nuvP6G6TrJ3ONdH0Pzk7yxE1cnddnqf/AJ9L1cfhaur4Ph6Vrf3jZyDkvSnsJAMyYgAqAne3a6Tqn36y1NhzEcEJVnZDkv9P9FzwsyWOXzXvv/vWtrbXlUedJFwn/rKrae/BGa+3MJGdW1feG3vvCiHlHuUa6k7eDWmvfGnr/+DXOP4krpAsSuHFr7evDeVbVGelOtvdL8tEkp6f7Hb8/lO4jVXV+uqco3KTvIPA/y/J4SLqggF8kuUtr7b3LPv94/3SGDyf5zSQvSBfwMs6Nkty2tXbs0Hufrqpjknwp3cn4IzN0It5v+1Or6uz+rbPXsF0e3Fr72oj3j0/ylqp6ZZJj0gVz/GG6gJJJHZzkr1trfzf8ZlW9N105u22Se1bVny37/ZMuwOV3kpyZ5DattU8t+/y4qnpDko+lCzB6Zr++A3fM0hNRbj3id/loktdW1ag7O6y7jgAAAMCcvSFdQMW1q+rAFW7qcP/+9cQRaTZ6Lj7sCukuqB+07GYfn6qqY9Pd7GGPdG0dF+ogUFW7p+ussHu6c/B7tNZ+NpTk00neVVX/neTlSe5eVb/XWnvfUJrBuf3xSW7VWjt/2fq9P8k/jji3v1m6DghJcv/W2vI7Kn48yZuq6nHpOkEAAAAA0/fydO0Kv0xyp9bafw59dkJV/Vu6gIADkjy+ql474majG1ZVd0xy137yPUnuuqyN4T1V9dSsfHOLYdpLAGDGdpn3CgCw6R6zLJgiSdJaOy5LwQrLHzmYdI/5S7qO/mO11n64sdW7kCctC6aYhacsC6YYeFW6Jw0k3cnqqM78SRdRP3Ch37F/OsXgDgf/PCKYIknSWvtRuqCMJLlZVf3aCuv7wmXBFINl/DDdkxaS5HpVdZnladZjTDDF8OfvT3dnh2T00xvW41PpOlcsz6Ml+cd+crckBw1/3j8y81H95FNGdOAYLOeUdE/BSJJ7VdUlhz4elPMfrRRk0lr7eWvt58venkcdAQAAgI14c7pOBsmYIIeq2j9d0EVy0adTTONcfLmnjOrM0Fo7Kd3TLJPRN5+4b7obYZyT5IHLOgcML+cV6e4MmXR3hBw2OLf/6IjOAcPLWH5uv+/Q+H+vMN/5rbUfj/scAAAAmExV3TjdDSmT5BXLgimS/F9fjIf1k7ukC0DYDIPlnpvkoWPaGJ6RZK03JE20lwDATAmoANjZzkzy7hU+H1z0vuaIz77Tv96nqmYRGX5ekn+bQT7DWpK3jPyg6zw/CCr4UZZF9Q+l+2a6RxUmF/0dD0iyfz/+1lXWZfhk8qCxqZZ1ZFhmsD0r3RM/pqaqrlBVv1ZV1x0MSQYBJtff4OLf2AdPjDLcMWP573vLLD1Ccq2/7+5Jbjj0/qCcX66q7pr1mXUdAQAAgA1prX0vyeCOg/epqlHXCO4/NP7GZZ9N41z8Qqs0Io9hg3aBvavqsss+u0v/+qExN8EYtS7L21wG5/Z3rqp9VlnGqPmS5MHrmA8AAACYjtsMjb9yXKLW2keSfHnEPFNRVbsmObSf/M/W2mlj1uOCJK9Z42K1lwDAjAmoANjZvtaflI0ziBa/9IjPBidyByf5ZlW9qKruVlVXmOoaLvlaa+2c1ZNN1RmrPD3gzP71pBU6/A+nW/47Hjg0/rGqauOGJD8dSrtvxvvKCp8Nf5dR23RdqupmVfXmqvpBku8lOTHdoyMHw0P7pOs5gR5l0u80/Pt+Z5Xfd/hOD8O/7zuztP2Oqqr/qqrHVdUN+4aPlcy6jgAAAMA0DG7WcOUkvzvi80FAxfH9XQ+HTeNcfNgZrbUfrLCua2kX+P2V1qNfl8ePWY/Buf21kpxUVa+qqvtV1dVWWKckOS7JN/rxF1TVJ6rqL/u2lIutMi8AAACwcdftX89L8plV0h7fv/7aJpy3759kcAPGE1ZJ+4lVPh/QXgIAMyagAmBnG/noviGDYItR/wdPT/KqdJHvV0zyqCRvS/K9qvpCVf1NVV1pamvaPQVi1tb6+6w13fIO+Fdc9xp1xj7tYNzjGJetx6h1WZeqOjz/P3v3H2x5Xddx/PVZl18J62YqrNoPBc0SSlFBERVFsdA1QENNR9Py56gpTU6NYzWWTuOgVFKCWZZFKZktkZo/Mk2jxJ+TRDlqgGRIGMGCprHspz++3+teLvf3nnvP3X0/HjN37vn1PefDuXuH+/2c7/PzHXZ2z0xy5yUefsjevFYWeX/nBEETf3/HSYgnJflqhjN7PDrJG5N8Ksn1rbV3t9aeuMDzrPfvCAAAAEzCjuzZF3/G7Dtaa8cmud94db6zZE56rmO5cy7JZOYFbjOH0Xv/gySvS7Irw5k3npNhBcirW2tfaq29obV2uzO79t5vSbI9e1a4fMj4PB9PckNr7W9aaz+1jMUaAAAAgNWZOY7h+t77riUe+7Xxe0vy3Ws0jmRYqHIx1y7zOc2XAMA62zztAQCwMY07Oj/TWntDkqdnWLHwwUkOTHL/8eus1toze+8XTeAlb53Ac2w0s3cCtye5cpnbLbWTvaZaaycn+ZXx6r8nOTvDDu5XknxjZjKitfaaJK+eyiAHs9/fY5Pcsszt/mP2ld77x1prRyV5cpJTkzwyyT2TbElyepLTW2vvT3LG7KBlCr8jAAAAsNd67ze31i7KsC97RmvtRbPOGjpzdopbk7xzns0nsi8+ITNjeV+SV672SXrvr2qtvSVDXHJykodmCECOTHJWkpe21l7Wez9vznaXt9aOyTDnsz3DfMJRGQ5CePz4dVZr7dTe+1TnegAAAGA/1qc9gFk2wljMlwDAKggqAFhU7/3yDAfNv7q1dnCSEzN8uP6sJIcm+bPW2pG992vWYTizK/vFzrJ0x7UeyDLNPgXjDb33y6Y2kpV53vj9f5I8tPd+3QKPW+rMFWtt9vt7Xe991QdnjAeOXDB+pbV2ryRPSPLSJPfNsFP/2iSvmGfbjfQ7AgAAAMtxQYagYkuSJyZ5V2ttU5Knjfd/cIEPtSe2Lz4B/53k7kkO3Ns5l977VRlWTHxda+2ADCsonpnkBUkOTvK7rbVP9N4/O2e7WzOc8WNHkrTWtiX5sQxnsXzQ+HV+hgUbAAAAgMm5fvz+Pa21zUucpeKI8XvPcBzEbD3DmSsWOwYlWfg4lNnPd/gSz7HU/ZNgvgQAVmGpPwQA4Dt679/qvX+o9/7cJL8w3nxIhg/eb/PQNRrCTbMuL3Yaxvuu0euv1OydxodPbRR7LPfncv/x+98tElMkw9kYpmnN3t/e+xW993MzTAjMHBxy5jK2W+7vCAAAAEzT+5N8fbw8c1aKRyW5x3j5ggW220hzHTNjeXBr7cBJPWnv/Zbe+yW995dnz3vTkjxlGdte03t/W5KHJfnMePMTW2uHTGp8AAAAQJJkJhY4MMkDlnjsceP3L/be/2/OfTPHoSx4DEprrWU4y8J8vpzkf8fLD1liHEvdPwnmSwBgFQQVAKzW3866fJc5931r5kJr7aAJvuYVsy4vdjD/0yf4mnvjM9lzMP7zx7MXTNPMz2Wpn8nMGawWPNNHa+2BSY6fxKD2woeSfHO8/LJxEmOieu87k3xyvDr33/lSFvsdAQAAgKkZV228cLx6amtta/Z8GP7NjCsIzmPN98VX4K/G73dK8pw1eo1V7dv33m9J8tHx6uYkWyc5KAAAACAfmnX5uQs9qLX2sCQ/PM82M2aOQ1nsGJQfzwL79uMcy0fGq6eMZ2OYbxybkjx7kdeYFPMlALAKggoAbqe1dufW2vYlPhQ/ZdblK+bcd82sy0dObmS5LHtO2/iS+WKN1tqZSX5ygq+5ar333RlOf5gk907y9sUCk9baltbaS9ZwSDM/l3sv8bP94vj9xNba7VZZaK3dNckfT3pwK9V7vyHJuePVE5KcM05CzKu1dnhr7Wfn3Pb4hSY0xvvvlD2rVVwx6/a9/R0BAACAaZs5C8VBGWKKJ4/XL+q93zzfBpPYF5+gP0py9Xj57NbaIxd7cGvtxNbao+bc9szW2uaFtskC+/attUfMN2cy6/4DM5zxI0luTrLYGUABAACAFeq9X5rkU+PV57XWTp77mPHz/vPHq7uTvHmep5o5wP/41trtzsbZWjsiyZuWGM7M8x6U5PzW2h3mecwvJTlmieeZBPMlALAKi/2PD4C6tmSo1q9srb07ySeSXJVkV5JtSbYnmfkw/KtJ/nrO9pfMunxOa+21GQ7m7+NtV46V/or03ne11s7PsKN5dJIPt9Zen+QrSQ7PEFL89Pj6J6z0+dfIeUkel+T0DOM7dvxvuDTJjRne6/slOSnJkzKcReLceZ9p712SYQWCuyV5Y2vtT8YxJMktvferxstvz/AzvmOSj7bWfiPJp8f7TkhyVpIjkvxjhlMyTtMvZ9jhPp31x/UAACAASURBVD7JzyU5qbX2e0k+l+QbGU7Lef8kj82wasTnk7x11vZPT3Jxa+2DST6QPdHOYRn+jb0kyT3Gx543a7u9/R0BAACAqeq9X9JauyLJvZK8NntWBbxg4a2S7P2++KTG/+1xYY2PJDk0wzzROzKcXeOKDAtKbUvyoAzzMsckeWn2HCiRDAtGnD3u21+S5MsZ5mYOzzCf86LxcTfntu/LyUle3Vr7WJL3JPnnDAcBHJLkvklemOTY8bG/v5p5MAAAAGBJz8vwWf2BSd7bWntTkoszzE88MMkvZlj8MknO7r1fNs9zvCXJizMcR3lxa+01ST4+PufDMxwfcUCGhSnvM98geu8Xt9YuznCcwPYk/9BaO2fc5m4ZjmN5aoYAZLEzYew18yUAsDqCCgAW8wMZdg4Xck2Sn5i7amHv/UuttQuTnJmhTD9lznb3SnLlKsf060keneShGQ7u3zHn/o9kOAh+vh3hddd77621pyb5rQw7h0cmef0im/zXGg7nHRlilHsnefn4NeOqDD/v9N7f1Vp7W4b44u5JfnvO89ya5BUZDpCYalAxTgY8LskfJjkjyY9m8SBl5zy3HZDk1PFrIefl9u9DssrfEQAAANgg/jTJq7Inpvh6kvcvtsGE9sUnovf+T621k5JcmOR7kzxj/FrJWA7PcCDAi+a5LxkWo3ha7/3qObdvyhCWPOr2m3zHRRnmYgAAAIAJ671/rrW2PcmfZ1gU8efHr7l+Jwvsn/fe/6W19sokb8xwDMQ5cx5yfZLTkvxaFggqRs9I8r4MEcbxGY7PmO2zSV6QPYtZrhnzJQCwcoIKAOZzVZLjMhxgfkKS78+ws3RokhuSXJ6h6n9L732hD8WfmaGuf0qSH8yw4v+mvR1Y7/2brbXHZDig/2lJjkpyS5IvZDh14XkZdgg3jN77LUle3Fp7c4YVEk5K8n0Z3s+bM6wC8OkMO9drdiaD3vvNrbUTMuyYnpLh5/pdCzz2ua21Dyd5fpIHZFh94WtJ/j7Jub33S1trv7pWY12J3vtNSZ7cWjsxybOTPCJDCHJIhh3/L2c4I8h7MpyFYrZXJPlgksck+ZEMKzHcNUM0cnWGs3C8tff+8TnbTeJ3BAAAAKbtggxBxYwLl7M64F7ui0/UeJDAfTKs9rg9wwqUd0myO8MqiP+aYZXFv+i9f2HO5kcneUKSEzMsgnF4hrjkpiT/liEueXPv/do5252dYZXFx46vd/cMK04mw/zJpUne3nt/z8T+QwEAAIDb6b1/oLV2VIYFJU/NsMDkQUmuTfKxJOfN83n/3Oc4p7V2eYbjB47LcBzFfyZ5b5LX996/0lpbahw3jRHDC5M8K8kPJekZ5kjemeQ3kxyxyv/MFTNfAgAr03rv0x4DAAAAAAAAAAAAAADAutrrlcIBAAAAAAAAAAAAAAD2NYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5Wxe7xdsrR2U5Jjx6nVJbl3vMQAAALDh3SHJXcfLn++9f3uag4FJMS8CAADAMpkbYb9jXgQAAIBlWtd5kXUPKjLsHH9yCq8LAADAvukhST417UHAhJgXAQAAYKXMjbC/MC8CAADASq35vMimtXxyAAAAAAAAAAAAAACAjWgaZ6i4bubCpZdemm3btk1hCAAAAGxk11xzTY477riZq9ct9ljYx5gXAQAAYEnmRthPmRcBAABgSes9LzKNoOLWmQvbtm3LPe95zykMAQAAgH3IrUs/BPYZ5kUAAABYKXMj7C/MiwAAALBSaz4vsmmtXwAAAAAAAAAAAAAAAGCjEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmbpz0A9t7u3buzc+fOaQ9jw9i9e3duuumm29x22GGHZdMm/RCL27Jli38nAAAAwLLsS3Ny5sumy5wTAAAAAPOZb47RXBIArD9BxX5g586dOe2006Y9DNjn7dixI1u3bp32MAAAAIB9gDk5lsucEwAAAADzmW+O0VwSAKw/KSMAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAABgHd14443Lug0AWFuCCgAAAAAAAAAAAAAAoJzN0x4Aa+MbR5+RvvmgaQ9jOnZ9K4de9pe3uenmo09PNh88pQGxEbVd384dL3v3tIcBAAAA7Ec27Jyc+bJ1Y84JAAAAAABg3yKo2E/1zQelH3DItIcxFW2+GzcfXPb9AAAAAGB9bNQ5OfNlAAAAAAAAML9N0x4AAAAAAAAAAAAAAADAehNUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOZunPYCNZvfu3dm5c+dtbtuyZUs2bdKeAAAbh79ZAIBp8XcIADDD3wUAAACwert27VrWbQDA2hJUzLFz586cdtppt7ltx44d2bp165RGBABwe/5mAQCmxd8hAMAMfxcAAADA6l177bXz3nbkkUdOYTQAUJclggAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAA+H/27i7EqvPcA/g7H1WmWuNI1VOI0ptCYSyci4wpLfE2lEapSvxASS4KsaA4aAuFMqZQp4XeTJmJXhgopEFRE9R0YihpoRRDW/y4OFAHAr3TQIi22hjt4HScORfn7OBst9u9ZvaatfZ+fj8I4trr43nfvffqs177nwEAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAaHN3794tuoRZJicnS33+vOsrWruPr1q08WZlfoB63CMAgKJV+pFG+pKH95mcnAzVy1SPNa+xZzlv1hoivV8VRYw5y3eq2dednJxMt2/fznxcnsq2bgqUy5kzZ4ouAQAAIDcXL14suoRSEagAAGhjt2/fTtu2bcv8j5V5mZiYSD/84Q/TxMREKc+fd31Fa/fxVYs23qzMD1CPewQAULRKP3L79u0n9iUP9y4TExPpwIED6cCBAyF6meq+La8+Lst5s9YQsfcsYsxZvlPNvu6BAwfS3r1709atW9PHH3/c8HF51lm2dVOgXEZGRtJrr72WRkZGii4FAACg6cbGxtKPf/zjNDY2VnQppSFQAQDQxgYHB9O///3vdOjQoaJLSSmldPz48fS3v/0tnThxopTnz7u+orX7+KpFG29W5geoxz0CAChapR8ZHBx8Yl/ycO9y/PjxND4+nsbHx0P0MtV9W159XJbzZq0hYu9ZxJizfKeafd3x8fH097//PU1PT6f9+/c3fFyedZZt3RQol3Pnzs36EwAAoJ0MDw/P+hOBCgCAtnXp0qU0Pj6eUkrp6tWr6dKlS4XWc/369XT69OmUUkqnT59O169fL9X5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L6nTp1KJ0+e/Py1U6dOtXUvU923Xbp0KZc+Lkt/mLWXjNh7FjHmLN+pZl/31KlTs7bdvHkzvffee088Ls85Ktu6KVAuzz//fN2/AwAAtLKXXnqp7t+jEqgAAGhD09PTaWhoaNa2oaGhND09XUg9MzMzaXR0NE1NTaWUUvrPf/6TRkdH08zMTCnOn3d9RWv38VWLNt6szA9Qj3sEAFC06n6kolZfUr3v1NTUrLWPqampNDIy0pa9TK2+bWhoqOl9XJb+MGsvGbH3LGLMWb5Tzb7uyMhIevDgwSOvDQ8P19xeq95m11m2dVOgXG7dupXu378/a9v9+/fTrVu3CqoIAACgee7du5euXbs2a9u1a9fSvXv3CqqoPAQqAADa0LFjx9KdO3dmbbtz5056/fXXC6nnwoUL6fLly7O2Xb58OX3wwQelOH/e9RWt3cdXLdp4szI/QD3uEQBA0Wr1IxXVfUm9fSuuXLnSlr1MrbFXrwU1o4/L0h9m7SUj9p5FjDnLd6rZ171y5UrN1x48eJBeffXVxx6X5xyVbd0UKJctW7Zk2g4AANBKXnjhhZrbN27cuMCVlI9ABQBAm7l9+3Z6++23a7721ltvpdu3by9oPRMTE+no0aM1Xzt69GiamJgo9Px511e0dh9ftWjjzcr8APW4RwAARavXj1RU+pJG9q04cuRIW/UyWcY+nz4uS3+YtZeM2HsWMeYs36lmX/fIkSN19/nzn/+cPv7440eOy3OOyrZuCpTLyMjIvF4HAAAos7Gxscf+BtDp6ek0Nja2wBWVi0AFAECbGRwcfOyvqJ+enk6HDh1a0HqOHz+ebty4UfO1Tz75JJ04caLQ8+ddX9HafXzVoo03K/MD1OMeAQAUrV4/UlHpSxrZ4JWy9AAAIABJREFUt+LGjRtt1ctkGft8+rgs/WHWXjJi71nEmLN8p5p93Zs3bz5xv/379z9yXJ5zVLZ1U6Bczp07N6/XAQAAymx4eHher7c7gQoAgDZy8eLFND4+Xnefq1evpkuXLi1IPdeuXUunT5+uu8+pU6fS9evXCzl/3vUVrd3HVy3aeLMyP0A97hEAQNEa6UcqTp48mU6dOpXp/CdPnmyLXibLPFXMpY/L0h9m7SUj9p5FjDnLZ6WZ17527VrD38+bN2+m99577/Pj8pyjsq2bAuXy/PPPN3U/AACAMtm9e3dD+7300ks5V1JeAhUAAG1ieno6/fznP29o36Ghocf+NLZmmZmZSa+99lqampqqu9/U1FQaHR197K+Vy+v8eddXtHYfX7Vo483K/AD1uEcAAEVrtB+pePDgQXrw4EGmazx48CCNjIy0dC+TdZ4qsvZxWfrDkZGRNDo62nAvOT09Ha73LKLfzvpZada1Z2Zm0ujoaKbv5/DwcJqamsp1jsq2bgqUy61bt9L9+/cb2vf+/fvp1q1bOVcEAADQPPfu3UsfffRRQ/teu3Yt3bt3L+eKyqm76ALKptYC2aefflpAJY2rWV8bLDBDrmp8R8r+XQd4WK171htvvJHu3LnT0PF37txJr7/+evrBD37Q7NI+d+HChXT58uWG9r18+XL64IMP0oYNGxbs/HnXV7R2H1+1aOPNyvwA9WS9R/z1r399ZLvnKSKyJkdN1pwIptbney7/R+Qs/ch8XLlypaWfd+YzT1me9bJc58qVK5lqOHbsWLjn0yKeyefyWWnGtS9cuJDpM5HS/4Wd9u3blz788MOG9p9LnceOHSvVuilQLlu2bMm8/5/+9Kd8igEAAGiyF154IdP+GzduTH/84x9zqqa8mh6o6OjoePoJu/xXs6/ZTJ999tkj215++eUCKpmnB/dTSl8sugoorweP/pSRlvyuAzzk/PnzmfZ/66230vbt21Nvb2/Ta5mYmEhHjx7NdMzRo0dTf39/6unpyf38eddXtHYfX7Vo483K/MDCarV1kbncI379618/ss3zFPw/a3JYc4L02WefpRUrVjS8/1z6kfk4cuRISz7vNGOeGnnWy/v9ePvttzPt3+rPp0U8k8/nPZzPtScmJtKRI0fmdN1GwxQVWeq8fft25s9dnuum0O5abV1kZGRkzscNDAw0uRoAAIDmGhsbm9Nv+hwbG0ubNm3Kqapy6szhnNef8F/+P2IIACCgrD8Bcnp6Oh06dCiXWo4fP55u3LiR6ZhPPvkknThxYkHOn3d9RWv38VWLNt6szA8suJZaF5nLPeKf//xnTtUAABHNpR+Zjxs3brTk804z5qmRZ72834+s61et/nxaxDP5fN7D+Vz7+PHj6ebNm3M6NqssdQ4ODpZq3RQCaKl1kXPnzi3ocQAAAAtpeHh4QY9rZXkEKgAAaBFXr15Nd+/ebeo5Jycn09mzZ+d07JkzZ9Lk5GSu5797926u9RUt7/kvm2jjzcr8APXM5x4BANAMRfUjrfa808x5qjf2svaHrfZ+VRTxTN6M93Au1y7is9NInXfv3k3j4+NzOn8e66ZAuZw5c6bQ4wEAAPJ08eLFQo9vNXkEKtY84b/+HK4JAMAcrFu3Li1durSp51y0aFHasmXLnI7dunVrWrRoUa7nX7p0aa71FS3v+S+baOPNyvxAIVpmXWQ+9wgAgGYoqh9pteedZs5TvbGXtT9stferoohn8ma8h3O5dhGfnUbqXLp0aerr65vT+fNYN4UgWmZdZOvWrYUeDwAAkKdnn3220ONbTXezTzgzM/NRvdc7Ojqafcmm+tKXvvTItt/85jfpqaeeKqCaxnz66afp5Zdfnr2xa3ExxUCrqPEdKft3HeBhtf73v7OzM9Ovr+/s7EyHDx9udmkppZR2796d/vCHP6QbN240fMzq1avTrl27FuT8eddXtHYfX7Vo483K/MDCarV1kbncI7785S+nf/zjH7O2eZ4iImty1GTNiWBq3Qtr/TtLPXPpR+Zj1apVLfm804x5auRZL+/3I+v6Vas/nxbxTD6f93A+1969e3f6/e9/n27evDmn47PIUufQ0FDaunVradZNod212rrI5s2b07lz5+Z0HAAAQNkdPHgwDQ8Pz+m4aJoeqGh1nZ2P/tKOp556Ki1fvryAauahZAsRUDo1viMt+V0HeMjGjRvTb3/724b337ZtW+rt7c2llp6enrR3797005/+tOFj9u7dm3p6ehbk/HnXV7R2H1+1aOPNyvwA9czlHvH9738//fKXv5y1zfMU/D9rclhzgpr/zlLPXPqR+di3b19LPu80Y54aedbL+/148cUX0+nTpxvev9WfT4t4Jp/Pezifa/f09KR9+/bN6bpf//rX04cfftjw/lnq7O3tzfy5y3PdFCiXgYGBOQUqBgYGcqgGAACguTZt2pR+9atfpZmZmYaP6ezsTJs2bcqxqnLKtqoNAEBpvfzyy2nZsmUN7bts2bL0yiuv5FrPhg0bUn9/Y7+9u7+/Pz333HMLev686ytau4+vWrTxZmV+gHqy3iO++c1v5lwRABBNln5kPlr9eWc+85Rl7Fn7w2eeeabhfffs2RPu+bSIZ/K5fFaace0NGzY0/Hmo6OrqSkeOHMl1jvbs2VOqdVOgXM6ePZvr/gAAAEU6f/58pv3ffffdnCopN4EKAIA20dnZmQYHBxvad3BwMPNPjMyqo6Mj7d+/P3V31/+laN3d3Wn//v2Zf9X3fM+fd31Fa/fxVYs23qzMD1CPewQAULRG+5GKrq6u1NXVlekaXV1dLd/LZJ2niqx9XNb+cGBgoOF9Ozs7w/WeRfTbWT8rzbp2R0dHGhgYyPT9PHjw4OfXz2uOyrZuCpTLihUr0uLFixvad/HixWnFihU5VwQAANA8S5YsSWvXrm1o37Vr16YlS5bkXFE5WQ0CAGgj69evT319fXX3WbduXVq/fv2C1LNmzZq0ffv2uvvs2LEjrVmzppDz511f0dp9fNWijTcr8wPU4x4BABStkX6kYufOnWnHjh2Zzr9z58626GWyzFPFXPq4LP1h1l4yYu9ZxJizfFaaee01a9Y0/P1cuXJl+u53v/v5cXnOUdnWTYFyef/995u6HwAAQJm8+eabTd2vHQlUAAC0maGhocf+FLXOzs50+PDhBa1n9+7dadWqVTVfW716ddq1a1eh58+7vqK1+/iqRRtvVuYHqMc9AgAoWr1+pKLSlzSyb8WqVavaqpfJMvb59HFZ+sOsvWTE3rOIMWf5TjX7uitXrnzifqOjo48cl+cclW3dFCiXzZs3z+t1AACAMjt48OC8Xm93AhUAAG2mt7c3vfjiizVf27ZtW+rt7V3Qenp6etLevXtrvrZ3797U09NT6Pnzrq9o7T6+atHGm5X5AepxjwAAilavH6mo9CWN7Fuxb9++tuplsox9Pn1clv4way8ZsfcsYsxZvlPNvu6+ffvq7vPtb387feUrX3nkuDznqGzrpkC5DAwMzOt1AACAMtu0aVPq6Oio+VpnZ2fatGnTAldULgIVAABtaM+ePWnZsmWzti1btiy98sorhdSzYcOG1N/fP2tbf39/eu6550px/rzrK1q7j69atPFmZX6AetwjAICi1epHKqr7knr7Pu6YdlFr7NVrQc0Ye5b+MGsvGbH3LGLMWb5Tzb7uM888U/O1rq6u9LOf/eyxx+U5R2VbNwXK5ezZs5m2AwAAtJLz58/X3P7uu+8ucCXlI1ABANCGOjs70+Dg4Kxtr7766mN/pX3eOjo60v79+1N3d3dKKaUvfOELaWBg4LHJ54U+f971Fa3dx1ct2nizMj9APe4RAEDRqvuRilp9SfW+3d3ds9Y+uru727aXqdW3HTp0qOl9XJb+MGsvGbH3LGLMWb5Tzb7uwMBA6urqeuS1H/3oRzW316q32XWWbd0UKJcVK1akxYsXz9rW09OTVqxYUVBFAAAAzbNkyZK0du3aWdu++tWvpiVLlhRUUXlYGQIAaFPr169PfX19KaWU1q1b99ifCLdQ1qxZk7Zv355SSmn79u3p6aefLtX5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L47duxIO3fu/Py1HTt2tHUvU9239ff359LHZekPs/aSEXvPIsac5TvV7Ovu2LFj1raVK1em73znO088Ls85Ktu6KVAu77///qy//+53vyuoEgAAgOZ78803Z/39jTfeKKaQkhGoAABoY0NDQ+mLX/xiOnz4cNGlpJRS2r17d/rGN76Rdu3aVcrz511f0dp9fNWijTcr8wPU4x4BABSt0o8MDQ09sS95uHfZvXt36uvrS319fSF6meq+La8+Lst5s9YQsfcsYsxZvlPNvm5fX1/62te+ljo7O9Po6GjDx+VZZ9nWTYFy2bx586w/AQAA2snBgwdn/UlKHTMzMwt7wY6Op1NK11NK6fr166X7STP/+te/0ve+971Z29555520fPnygip6slo13/3vnWnmCz0FVVSsjv9MpKX/c3LWtsjzQW21Pidl/64DPCxLz3L37t20dOnShSrtiSYnJ9OiRYtKe/686ytau4+vWrTxZlXm+fnoo4/SmjVrKn9dMzMz81GR9UCzlH1d5GGPu0e04toJ5KGV1uSsly0ca05Ek3dfUOlHGnl2eXifycnJlFIq7fNOs1XPT17PelnOm7WGMj+f5qWIMWf5TjX7uimldO/evdTb25vpuDzrLNu6aTVrI7SjVloXOXPmTNq6dWvRZQDQ5v7yl7+kn/zkJ7O2/eIXv0jf+ta3CqoIgCguXryYnn322aLLeKyFXhfpzvPkAAAUr2z/KJj3P9bO9/zt/o/37T6+atHGm5X5AepxjwAAilbpRxrpSx7eJ1ofUz3evMaf5bxZa4j2nqVUzJizfKfKcN286yzbuilQLsIUAABAOytzmKIInUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHC6iy6gbJYtW5beeeedR7YBAJSJngUAKIo+BACo0BcAAADA3K1evbqhbQBAvgQqqnR2dqbly5cXXQYAQF16FgCgKPoQAKBCXwAAAABz19396P99s9Y2ACBfnUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAA/pe9Ow+X5yrrBP59fwkBEkgCBIkgEhYVUFSGRcMiQTaFAMoIMi4QhUEYZRTFCYhL1FEQhhFkGRAYAwoIKiEBRQhLkE0JOGyyLwECgSQsISwh25k/qi63c+nbd+v11ufzPPXc6ttVp6r7rVNVfareUwAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAINz8KJXgNmoS7+56FVYnEsvGvu/mv+asMQGXUcAAACAmVja9gbtZXOztNsAAAAAAAAAY0mo2KcOe9/LFr0KS+Vq7ztl0asAAAAAwD63Sm1y2ssAAAAAAAAgObDoFQAAAAAAAAAAAAAAAJg3CRUAAAAAAAAAAAAAc3TEEUds638AwGxJqAAAAAAAAAAAAAAAAAbn4EWvAHt3+OGH5+Uvf/miV2NpXH755bnwwguv8L+rX/3qOXBA/hCTHX744YteBQAAAGBFrFKbnPayxdLmBAAAAMA449oYtSUBwPxJqNgHDhw4kCOPPHLRq7FUrnnNay56FQAAAADYx1atTU57GQAAAAAsl1VrYwSA/UoXZAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAACdn8Y+AAAgAElEQVQAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBOXgByzxobeScc85ZwOIBAABYdht+Lx602XSwgrSLAAAAsCVtI+xT2kUAAADY0rzbRaq1NutlXHGBVbdOcuZcFwoAAMAqu01r7R2LXgmYBu0iAAAA7IK2EfYF7SIAAADswszbRQ7MsnAAAAAAAAAAAAAAAIBltIgnVFw5yS36l+cluWyuK8DQHZ31Hi9uk+RzC1wX2IrtlVVhW2WV2F5ZFbbV7pGN1+7H39ta++YiVwamRbvIyrAfHgZx3v/EeP8T4/1PjIdBnPc/Md4dbSPsOyvSLmKftdzEZ7mJz/ISm+UmPstLbJab+Cw38VleqxKbubaLHDzLwsfpP5DHkbIQVTX68nOttbMXtS6wFdsrq8K2yiqxvbIqbKvf8slFrwBMm3aR1WA/PAzivP+J8f4nxvufGA+DOO9/Yrwn2kbYV1ahXcQ+a7mJz3ITn+UlNstNfJaX2Cw38Vlu4rO8Viw2c2sXOTCvBQEAAAAAAAAAAAAAACwLCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHCqtbbodQAAAAAAAAAAAAAAAJgrT6gAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqWElVdYOqenJVfbCqvlZVX6yqM6vqt6vq0D2WfaCqbl5VJ1TVM/tyv1lVrR+Om9LHYCBmvL0eWlX3q6r/05f5paq6pKq+UFVvq6qTquroaX0W9rcZb6s3q6pfq6rnV9W/V9XZVXVRv5yPV9VLquq+VVXT+jzsX7PcVics89B+W107HzhrFsth/5nxvvWEkW1yq+GEKX0kgJVVVYdU1UOr6tVVdU7/W/+rVfWhqvqrqrrdNsv5yao6pT+n/Wb/95Sq+slZf4ahqqrvqKrjq+qPqupVVXX+yDHu5F2Ut+cYVtXBVfXwqnpTVZ1XVd+oqo9V1bOr6vt3uk5DN40YT7uNpC/vf/RlfbE/l/tgf253g11/2AGbdl3eUPaufrOJ83TNIsZVddeqOrmqPtrH54Kq+nBV/X1VPaKqrrbF/GI8RdOMcVUdU1V/VlXvrKov9/vsL1bVW6vq96vqO7ZZjhhPUVXduv/+XzNyrvTVvt79VVXdYYflOe8CpqKqDq+qB/b79zf25wYXVNXFVXVuVZ3RHw+uNcVl2odt07ziU1P63devz7ba1veyvstijvGZ6jWLIZznzSM21Z13bzcuE39TD63uTFLdb5nRz3zclMr9L9Wdi3+uuvspPllVf1NVx+6gjH1fd7YyzfhU1RFV9fPV/R56d19HL6nuuP6GqvqtqjpyG+WctZf6t19MOTYn7WC/tuVyquqo6to73lNVX+mH9/T/m9o55jKbVnyq6rhdHHvO2KSsQdWdvX5fu1ie486o1prBsFJDknsnuSBJ22T4UJKb7KH8B08ouyU5btHfgWF1hllur0l+MMmFW2yvrV/+zy76uzAs9zCHfevfbGNbbUnOSHKtRX8fhuUdZr2tTlju/9qwnLMW/V0Yln+Yw771hG3uW1uSExb9fRgMBsMihyQ3SPK+bewv/yJJbVLGgSTP3WL+5yQ5sOjPu9+GLb7zk3dQzlRimOSoJG+fUMZFSR666O9tlYa9xjhTbiNJcpMkH96inOMX/b2t2jCturxJ2Tv+zSbOyx3jJNdI8vJt1OsfFuPVi3GSX0zy9S3K+0KSu21RjhhPN77/so0615I8P8khW5TlvMtgMEx1SHLXbe6jzktyjz0uyz5sCeOTKf7uS3c9cjvr2xb93a5KfPrlnLDd7zVbXLPIQM7z5lR3jtlBXNaGV29S1qDqzoTv9IeTXLLhMx+3xzKvmuQfJ3ynlyX5g22UM4i6M6/4JPnJdMfrrbb5c5LceYuyztpm/Tlr0d/hKsSmL++kHezXJi4nyY/0cdxs/s8mue2iv8NViU+S43YQm7Xh2ZuUNai6s4Pv64w9LsdxZ8xwcGCFVNUtk7wkXYX+apLHJ3lD//qBSf5rku9N8o9VdevW2oW7WczI+CVJ3pvkSklusYdVZ4DmsL0enmStB7a3JHllkneku9B07ST365dxeJIXVtVXWmuv2tOHYl+a07710iT/lm5bfW+Sz6Vr+LlGkpsm+ZUkP5DkTkleUVV3aK1dvpfPxf4zp211s+X+RrrGkkuSXH0a5bK/LWB7vUe6hpzNnL3H8gFWVlVdKV2j4FrPj+9J8r/TJbZdPckdkvxWksOSPDLd/vQJY4r6kyQP6cf/X5InJvlYkhsn+R9JbpnkoenOc39nBh+FzqeSfDDJ3Xcx755jWFUHJTklyW36f70s3Y00X0x30eV3k3xHkmdX1Wf8Dt+V3cR4am0kVXX1dPuM7+n/9Zwkf5vkG0nunOSxfTkvqarbt9betYP1ZN1e6vIV7OY3mzjPxa5jXFVHJDk9ya36f52S5O/T7bMvS3L9dG1I/3lCGWI8e7uKcVXdPsnJ6W5WvTzdzfmnpjsH++50nV7dO8k1k5xaVT/QWvv4mHLEePqu2//9bJK/S/KmdHE+KMmx6c6Zr5fkQemum/3chLKcdwGz8Ol0bazv7MfPSXc8+a4kP5PuvP+oJKdV1W1ba+/e5XLsw3Zn1vGZxbXxdyT5pR2ux6qaV/1Zs+trFgM8z5t1bD6T7d3v9Nisn989f4tph1R3rqCqDiT5yyQHJzk33b58Gv5vknv2429I8tR0degW6Y41N05yUlWd01r7y03WbWh159vMID7XSnLldL9dT0/yz0neneTL6erozyf52SRHJ3nlNr/XU9OdB2zm4j2u81KaYd1Zs9V+7hObvVFV10/yinTnE5emu370yv7t45P8ZpLvTHcv061aa/vuuvsM4nNmtnfseXq6Nr5k62PP0OrO/0nyzAnvf22P5TvujLPojA6DYSdD1nvHuSTJsWPe/+2sZzedtMtl3DbdDRQ/muQq/f9OGin3uEV/D4bVGGa9vSa5XbobNW8+YZr7pjuxb0k+mk16WjUMe5jTvvXgLd4/KMk/jCznPov+XgzLN8xjWx1T5kHpGgVbkt/Levb7WYv+PgzLPcxp33rCSBnHLPozGwwGw7IO6S48ru0v35rkoDHT3CpdY2tL8qWN56/pkuDWeuY5M8lVN7x/aP//tX3/1J+YNeQhyR+mu3Bxnf71MSMxPXmbZUwlhkl+eWTZzxjz/k2y/oSqj2z1W8gwnRhnim0kSf5oZNm/vcmy1ralMxb93a3SMI26PKbMXf1mE+fljnGSF/TzXJQJbUTpOkcau58V4+WNcbqbEtbm+W+bTPPkkWmeLsZzi+8rkzwgY86X+/ePSpeUvPa9/9gm0znvMhgMUx822zdtmOanRvYbL9vlcuzDljQ+me7vvjOGdI4wx/pzwkgZx+xhfQdznjev2GxnPdIlXrQkX9m47xuZblB1Z5Pv4Df67+ADSf50JDbH7aHMHx8p57SN20W68/BPZr3t+hqblDOYujOv+KRLlnhWku+eMM0jR5bz+gnTnZU9tIGt+jCjunPSWjl7XLcXjKzP/ce8/4CR9/dl/GYRn20s88isPwHmIxOmG1TdGfnuT5rhMhx3NhkOBFZEVd02yR37l89rrb1tzGRPTrdjT5Jf73uh3JHW2ttba09rrf1ra+2iXa4uAzeP7bW19tbW2s+21t4/YZpT0/V4knSZg7fcyTLY/+a4b710i/cvS/KkkX/dcbNpGaZ5batj/Hq6Gyw/lOTPplAeA7DA7RWA8W43Mv74/tzzClpr78x6j0NHJrnZhkl+I/nWk14f2Vr7xob5v57uwkn66R6115VmXWvtD1prr2ytfX4PxUwrho/u/34xXYLkxnX9aLonUyXdDTI/vYd1Hoy9xnhabST9Odl/719+IN0527ctK8nz+pd3qqrbbJyG8aZUlzfa8W82cZ6dacS4qu6Q5Bf7l7/bWjttwvLauDYnMZ6dKdXjtXOzL7TWNutp749Gxo/d+KYYz0Zr7fjW2kvHnS/375+f7ikVa35mk6KcdwFTt9m+acM0L093Xpjs/jqTfdguzCM+ro3v3hzrz54N7TxviWJz16w/rezvN+776FTVdyf54/7lwzO93tDXjhmXpks6v8J20Z+Hn9i/PDLdU5I2rtug6s44s4hPa+0lrbWHt9Y+NWGap6Xr7CPpvtej9rrc/WaGdWfPqurodE8aSZJXt9b+buM0rbWXJnl1//IX+3n2jQXG52fTPQEmSf56Tsuk47izCQkVrJKfGhn/q3ETtNYuT5c1mHSV+c6zXinYxDJtr28YGb/xjJbB6lqmbfXCkfGrzGgZrK65b6tVdYOsX8B/eGttaX7Ys/SWad8KQHLIyPjHJ0z3sXHzVFWl6+EwST7YWvvXcTP3/1+7uHnffj6WwLRiWFXfm/Vkm5f2N9KMc/LI+ErfFLMPbdVGcuckR/Tjz+/P2cY5eWRcjBdkD7/ZxHm5/Vr/94IkT99lGWK83NbOsz6x2QSttQuSnL9h+lFivDgTj6XOu4AlsHatacfXmezD5mLX8dkB18Z3bx7x2YrzvPFmHZsHjYw/f0bL2A+ekeRq6bbNN06jwKq6epK79C9f21o7e5NJX5bu6SHJ+G1e3ZlBfHbgjP7vgSQ3nPOyV8EiY7OV+2T9Huqx1/V7J/d/D/Tz7CeLis/asadl/b4JZsxxZzIJFaySO/R/v5bknROmG92x3352qwMTLdP2euWR8S17OGBwlmlbfeDI+AdntAxW1yK21WcmOSzJX7fWzthjWQzLMu1bAVi/ySFJbjRhurWL7C3JR0b+f8Os99C2VWPy2vvXS3LMNteP2ZtWDO8wZrpv01r7XJIP9y8d45fLVm0k24pxul7n1m6KEuPF2e1vNnFeUlV1SNZvYjx97QnSVXVQVV2/qo6pqu3cQCTGy23t3GzTm0yq6vAka716fmjMJGK8OFsdS513AQtTVd+X5If7l7u5zmQfNkNTiM92uTa+C3OMz1ac520w69j0N1audRR2VpJ/mfYy9oOqekCS49M9eejRW0y+E7fJehL5pGPGxUnWEv1u0/cMPmrQdWeG8dkux55NLEFstrLdurMvr+svKj5VdeOsP8H0Ta21s+a1bBx3JpFQwSpZ68Xho+Me4z1i9AfEzTadCmZrmbbXO42Mf2BGy2B1LXRbraqjqurYqnpeksf1/z4/yQuntQz2jbluq1X1wCT3TPKlJL+123IYrEXsW/+qqj5bVRdX1flV9a9V9T+r6np7LBdgP3hx1ntRObGqDto4QVXdMsm9+pcvaq19ZeTtm4+Mb3XRUpvEcppWDHdTzvWr6rAtpmV+tmoj2VaM+3O8j/Yv1fUF2ONvNnFeXj+U9R5X31tVh1fVU9K1FX0q3RMNLqiq06vquAnliPFye1b/91pV9fBNpvm9MdOPEuPFmcqxdMz7zruAXamqQ6vqe6rqN9PdyHNw/9ZTdlGcfdiUTTk+27WTa+M3rap/q6ovV9VFVXV2VZ1aVQ8ac9PYvjPj+Oz2moXzvMy97vxMkkP78b9urbVtzDOoulNVRyZ5av/yxNba+ZOm36HdHDMOTvI9uylnP9adGcdnu9aOPZdk/fvdzI9V1buq6sKq+npVfaKqXlJVP7Xfnno9z9hU1Wuq6tz+uHNuVZ1RVY+pqmtsMeta3bmgT3Ydq7V2TtavM6k7e7ebJyMNpu707l9V7+8/64VV9ZGqen5V3XmP5TruTCChgpXQ9zq11hvRZo+ZSZK01r6UrjfgJLn+LNcLxlmm7bWqfijrNwW9t7UmoYJvWdS22v9waVXVkpyX5K1JfjlJpbtA/tOttS/vZRnsL/PeVvsf1WsNko9prZ23m3IYpgWeBxyX5DuTXCnJtZL8SLpEtY9W1a/ssWyAldY3Av9iuh5Qbp/kzP7i3o9W1V2r6g/SXZg8JMm/59tvzP2ukfGJ+/Yknx4Z1yaxPKYVw92UUxvmY0G22UayFquvbeN36VqMr11VV544JVM1hd9s4ry8Ri/EHUjXg9mvJzly5P+HJLlrktdX1YmblCPGy+3/JnlBP/6MqnpOVd27qm5dVferqlOy3ivin7TWXjumDDFegKo6kOQxI/966ZjJnHcBM1dVJ4xcZ/pauqc8PDnJdfpJnpDkRbso2j5sCmYYn+0se6fXxq+T5LZJjkjXu/j1ktwn3Y1976qqpb/pa6fmGJ/jsrtrFoM9z1tg3Rm9qfUFm051RUOrO09McnSStyR53pTLnvaxZ3B1J7ONz5aq6l5JfrB/+eoNnTWNc8N0HUpcLclV0z3p6gFJTknypn3WWd48Y3O3JNdOd9y5drokl8cn+XhV3XfCfGt1Z6v6l6zXnf1y7WchdadPfviF/uU3kvzdNmcdUt1JunbSm6X7rFdLcpN0x+zXV9UpVXXELst13Jng4K0ngaVw9ZHxr25j+q+le9z71WazOjDRUmyv/QHouUnWel993ITJGaal2FZH/EWSP15QjwEst3lvq09K1xD4tiTP2WUZDNe8t9ePJ3lZuu117YfojZL853S9Cl0lybOqqrXW/nKXywBYea2106rqVumSJR6Sb+/x5vPpekJ+Tmvt6xve28m+/Wsj49oklse0YmhbWFE7aCNZi/F2z+PWXC3JN3e3duzCXn+zifPyuubI+Inpfs/8c5LfT/KeJIen+63zhHQ37jyhqj7YWjt1QzlivMRaa5cleXBVvSLJ7yR5aD+MekOSP90kmSIR40V5VLob55LkZa21d46ZxnkXsEjvSvKw1tqZu5zfPmy29hqfiXZ4bfzyJK9L8k9J3p3kC+ni9p+S/Eq6m9dunuQNVXXb1tqnZrHOS2Za8dnrNQvned9uZnWnqr476z3rv7W1tlXP+oOrO1V1x3S/Vy5N8vBtPsFjJ6Z97BlU3ZlDfLZa/jWTPKN/eVm69ovNXJzktCSvSfK+JBek60Di2CSPSHez8u2TnF5Vx7bWLpjVes/DHGPz3iQvT/L2JJ9Nl1DxfUl+Psnd033H/1BV926tvWrM/LupOyt/zrbgunOHdOcGSXJKa+3CLaYfVN1J1zncaemOtx9Mt22uJQk9PF2i6k8lObWq7tZau2SH5TvuTCChglVxlZHxi7cx/Vqlu+oM1gW2sizb69OT3Loff35r7RVTLp/Vt6ht9ZfS3Txc6U5yb53uJPfXktyoqh7aWvv8HpfB/jK3bbWqfizdE1MW0ujCvjDPfesp6Y7xG7fTM5O8pKqOT3fh4kpJ/ryqTpv0qFKA/ayqDknXc8t9052HbnSddD3ifCJdQ+WonezbRxsBtUksj2nF0LawurbbRrIW452cxyViPDdT+s0mzsvrsJHxqyQ5Pcnx/Q34Sfek02dV1fvSPV3qQJLH97912oZ5EzFeWn2PtQ9KcotNJjk2yUOq6gOttc+MeV+M56yq7pQumSlJzk3XnjuO8y5gHl6e7klWSVfvb5yud9qfTvLiqvqN1tord1Gufdh0zCo+W9nJtfH7bdKT7puq6pnpErcfnK696ClJ7jfVNV2sWcZnGtcshnyet4i68wtZbyvdztMpBlV3+jblv0z3Hf15a+19M1jMtI89g6k7c4rPpOUflOSFSW7Q/+t/ttb+34RZbrtJ/Tmjqp6e5O/TJQDcLMkfJPnNaa7vPM0xNk9prZ005v//luQF/RORnpUu2fK5VXXj1tpFG6bdTd1Z2XqTLL7upHui/JrtHHsGU3d619vk855eVU9L8qokt0yXYPGIdJ0X74TjzgQHFr0CsE2jB7NDtjH92qNhvjGDdYGtLHx7rarHZr1XrzOT/Oq0ymZfWci22lr7RGvtfa2197bW3tRa+/N0j0D8pyTHJzmzqvbFY42Zmrlsq33vRWs/HJ/aWnvPTuaH3tz2ra21CybdQNY3rP9R//LQdD2yAwxOVR2W5LVJHpuu5+snpmtYvXK63q3vnuTN6S66v7yqNja27mTfPvqoWm0Sy2NaMbQtrKAdtpGsxXgn53GJGM/FFH+zifPy2nhR+8SRZIpvaa29Od2NWEl3TN94U74YL7G+F8S3Jbl3ks+ku5B+dLp4XT/dfvrrSR6Y5O1V9f1jihHjOepjcEq6jvouSnL/1tq5m0zuvAuYudbal/vrTO9rrZ3ZWvvb1tr90iXr3Shdb60n7KJo+7ApmGF8NrXTa+Ob3KS29t4lfVkf6v/101V1vWms5zKYZXymdM1isOd5i6g7Wb+p9ZtJXrKddZzw3n6sO7+T5KZJPpXkD2e0jGkfe4ZUd+YRn0memeQn+vFXJvnjSRNvUX8uTJdA9cX+Xw/rb3pfVXOJzaTvtH//2Ume17+8brqnJW20m7qzyvUmWWDdqaqrJLl///Kz6a7dTTSwurPV5/18uid+rT2V4pG7WITjzgQSKlgVo4/22c5jk9Z6strOI2Vg2ha6vfYZtn/av/xgknu21r42YRaGa2n2rX0W+C+lu1h6/XQ3ucGaeW2rj0v3+MdPp8tch91Ymn1r7y+TrF3AuNOkCQH2sZOS3LEff0hr7cTW2gdbaxe31r7SWjs9yZ2TvCHdTbpPqqofGpl/J/v20Z61tUksj2nF0LawYnbRRrIW452cxyViPC/T+s0mzstrdD973hY9O756ZPw2m5QjxkumT4x6cbqk1s8l+dHW2t+01j7fWruktXZ2a+2ZSX4s3YXZ6yZ5/piixHhOquqGSV6T5BpJLkvywNbav0yYxXkXsDCttb9O8nfp7oN5elVdc4dF2IfN0BTiM9Ysro231i7N+g2YyQDa1mcVnzG2umbhPG+DGdad26a7oTZJTtvqxuTt2E91p6pumq6DniR55AzvuZn2sWcQdWeO8dls+Y9P8rD+5ZuSPGBchxA70Vq7IMnf9i8Py/pTl1bKomMzxrNHxqd13FnJepMsRXzuk+TIfvyFe603yf6pO9vVWvt4uqf6JslNquq6OyzCcWeCgxe9ArAdrbWLquoLSa6VZGKv5VV1jaxXwk/Pet1go0Vur1X1X9JlQSfJJ5PcrbV2/l7LZX9atn1ra+38qnpLkrsluW9VXanvyYKBm+O2emL/97VJ7l1V46ZZK/uwqnpgP35ua+31O1wW+9QS7lvP7dfnqCSr3hMQwI5Vd0D/5f7lh1tr427IS2vt0qr6vXRPqjiQ5IQkj+rfPntk0q2epHb9kXFtEstjWjHcWM6k39tr5bQN8zEnu2wjOTvJj6Q73z9yi5sJ1mJ8XmvtmxOmY3qm9ZtNnJfX6H53q33n6LTX3vCeGC+vn8j6b9OntdY+N26i1tp/VNXfpOvh9lZV9UOttXePTCLGc9BflH9tusSWluSXW2unbjGb8y5g0U5N10vtYemOOy/awbz2YbO3l/h8mxlfG3//yPhQ2tanGp9xtnHNwnneeLOIzYNGxl8whfLW7Je686h0vW5/PMmhI20Mo35gZPzHq+rofvwVO7hJeeMx4x0Tpt3q2DOkujOv+HybqjoxyWP6l/+e5PjW2rR6XN8P9WdhsdnEVt/p2Umuk63P/ZL1urPK134WHR/Hnul4f5J79uPXS/e0j+1y3JlAQgWr5P3pepS8SVUd3Gc2j3PTkfEPzH61YKy5b69VdZ90JxsHkpyT5C6ttSE0vLE3y7ZvPa//e2i6hrRzZrgsVss8ttW1R9H9Uj9MclS6HhWT5I1JJFQwatn2rZs+YhtgAK6TZK3Xtkm9XCfJO0fGR/fR79/k/+Nok1hO04rhxnLetY1yPr0EvXANzh7aSN6f9Ue/3zTJv25S/sFJbty/VNfnZ1q/2cR5ef3HyPhBW0w7+v7G31xivLxuNjL+71tM+850CRVJF8fRhAoxnrGqOipdj4c36v/1yNbadm52cN4FLNp5I+M32OG89mGzt5f4XMEcro0PsV19avHZwqTv1nneeFONTVVdKcm3OiFI8s97LXPEfqk7V+7/3ijr7QuT/N7I+A2TbHefvptjz6VJPjKmnCHVnXnF5wqq6r8leUL/8gNJ7tFa+6RtGjwAACAASURBVMpuytrEfqg/C4nNBFt9p+9PcqskR1TV0Zt1/FBV35nk8P6lurMLVfUdSe7Rv/z31tr7dlvWGPuh7uzEXj6v484EBxa9ArADb+7/HpbuQLaZ0cczvWV2qwMTzXV7raq7JHlpukS5L6TrfeNjuy2PQVm2fetopvBSP+aLuVu2bRUmWZrttaqune5msmRnPRMA7BejN1hu1bHIlTaZ7xNZ34du9Zj6H+v/fibJWVutHHMzrRi+eWR803L6Hpu+t3/pnHTO9thGsq0Yp3ts+NqTEMR49YjzkmqtfTLJp/qXx9QmjyHp3Xhk/DMb3hPj5TWNc7NEjGeqqo5I8uokN+//9ZjW2jO2ObvzLmDR9nKdyT5s9qZyHXBO18ZvPjI+lLb1mV+n3cY1C+d54007NvdK96T1JHnRhI7BdmOIdWcvzkxycT8+6ZhxSJIfXZuntXbJhknUnRmrql9M8vT+5ceT3HWKT0Vao/5M31bf6XbrjvtQ9u7nst4WNM2nUyTDqzt7+byOOxNIqGCVvHxkfGwPZFV1IOuPBvpykjfMeqVgE3PbXqvqduke8XjlJBeky4D+j8lzwbcszb61qr4rybH9y0+21i6cxXJYWTPfVltrtdWQ7pHRSbeNrv3/uB1+Fva/pdm3JnlYkrWbkN44o2UALLMvJlnrIerYvieUzYw2+H1ibaS11tL95kqSm1bVj2aM/v9rvbWc2s/HEphWDFtrH856DzoPqKpDN1nkCSPjp+xqpdmVKbSRnNHPlyQPnnAz9wkj42I8J1P8zXZGxHmZ/UP/9/Akd5kw3f1Gxt+84b0zIsbL6hMj43fcYtqx52a9MyLGM9Gf3/xjkv/U/+tPWmt/tt35nXcBS+D+I+Pv3cmM9mFzsev4rJnHtfG+/eiXR/71L9Msf4ntOT7bsNU1izPiPG+cacfmQSPjz59CeUn2V91prZ2wjTaIPxyZ5c4j7521g+VcmOR1/cu79vdMjHO/rPeOP26bPyMDqjvzis+aqrpfkr9Kt/86O91TkaZ603af2L725JivJ3nHNMufl3nHZht+ZWR83HHntCSX9+OTnoh7Qv/38n6elbTg+Kwdey5J8qI9lvUt+6XubFdV3TDJ3fqXH2utbexoZiLHnckkVLAyWmtvT/Km/uVDqurYMZP9VtYfGf3UjZlRVXVcVbV+OHl2a8vQzWt7raofTndx47B0j9W6V2vtndP4DAzDPLbVqvreqvrxSevRn+C+KMkh/b+mnY3MinMewCqZ0771mKq65aT1qKrjk/x+//Ib6Rr6AAaltXZ5ut9MSXLdJI8bN11VXSPJ6I1ir9wwyVOSXNaPP62qrrph/qsmeVr/8tJ+epbLtGL4v/q/10zyxI1vVtWNkzy2f/nRrEAD8X4xjTaS1trFSf6if3mzJI8es5xjkzykf/nG1tqZu15pFkKcl95TklzUj//vqjp84wRV9QtJjutf/mNr7dOj74vxUntduovbSfKIqrrFuImq6ieT/HT/8jNJ3jX6vhjPRt/74ClJbt//66mttd/dRVHOu4Cpq6oTquoqW0zzqCT37F9+IutttGvvb+cagX3YLswrPtP43VdVd66qIye8f6Ukz816+/0rNp5vrpp5xGda1yyGdp43x33b6PTXTPeEiiR5b2vtXZOmH5lvcHVnGvoYr8XnpE0mWztmHJzkGVV10IYyjsp62/WX033PVzC0ujMt24lPVd09yYuTHJTk3HRPpjhrh8v5iY3nFBvev1q6Jy+tPTnmea21b+5kGfvNVrGpqltU1U22KONhSR7av/xcxpxvtdY+l+SF/ct7VNXPjCnn/knu0b/8636eQdvmvm10+u9Psnae8M+ttfO2uZxB1Z2qundN6Biuqq6TrjOatXvrnjlmGsedPdjqcbqwbH493aNfrprkNVX1p+l6871qukyzh/XTfTjJk3e7kKo6YcO/fnhk/Ceq6piR1x9trW3sAQuSGW+vfUPbq5Os/Wj93SQXVNUPTJjt3NbauTtdFvverPet103yuqp6d7pe29+Z7sfKpUmOTneB7iH9eJK8L8kTdvVJ2O/mch4AUzLr7fWYJG+oqrcleUWSd6drxEuSGyX5mX5Y6wng0TvtnQBgH/mjJPdNcmiSk6rqVul6Xvt4kquke2TtbyT57n7617XWXjNaQGvtw1X1pCSPSfd42rdU1Z8l+ViSGyc5MeuNwU9qrX1kth9pWKrqDklGL44cNTJ+k43tOK21kzeWMcUYPj9dT3u3T/KrVXV0kuck+VKS2yb5vXS99lye5L+31i7d/icdrr3GeMptJE9K8rNJvjfJE/sLc3+b7maPOyf5nXTt6t9It+9gm6ZRl6dInGdgSvvrT1XV76e78fAWSd7e76/fk27/er8kj+gn/0qSR22yOmI8A3uNcWvty1X1hHTnZ1dP8taqelqS09MdS6+T7rztv2a9U7jH9EmyG4nx9L04yd378dcned4Wx9KL+17Yr8B5FzAjJyV5clX9Q7qnU30syVfTHU9ukeTns54QdnGSh7XWLhtTzkT2Ybt2UmYcnyn+7ntwktOq6rR0Pet+KN155dWS3Cpd2/3N1+ZP19a/6k7K7OvPMZneNYshneedlDns2zZ4YNZvxNzJ0ymGWHfmorX2+qr623SxuU+S06vqKUk+m247eFzW265PbK19aZOihlR35qK6p1Kdkq7OXJKuDeJKWxx7zm6tfXnD/x6T5IVV9bJcsa4fkeR2SR6e9Rh/KN2+gcluleS5VfWGJK9K9/SeL6Tbxm+abv+59vv2snT7z69tUtbjkvxEkmsneXFV3TrrnW4dn66jxCQ5L935Bzv34JHxnRx7hlZ3npZuH/MPSd6W5Kx0++yj0nUu8ytZb4t7c5Jn7GYhjjsTtNYMhpUaktw73eNi2ibDh5LcZJN5jxuZ7uQJy9is7HHDpuUYDLPcXtM9Emkn22pLctKivxPDcg4z3laP28E2+sok117092FY3mEe5wFbLP+sfv6zFv1dGJZ/WJJ969fSNRAt/PswGAyGRQ5J7pqusXur/ebrklxjkzIOJHneFvM/N8mBRX/e/TYkOXknv30nlDOVGKZrsH77hDIuSvLQRX9vqzTsNcaZchtJupuFPzxh3guSHL/o723VhmnV5S2WcVa2+ZtNnJc7xkken+4Gw83m/3ySY8V49WKc7ia6P98ivi3dDWOPFuO5xnenx9KzJpTlvMtgMEx1GDnP22r4dJK7bVLGcSPTnTxhWfZhSxifTOl3X7Z/PvOeJDdf9He7QvE5bpvL2NY1iwzkPG8esRkz/b/2016a5OgdrOvg6s42vpOTRj73cZtMM7rvOmlCWVdN9wSezb7XyybNP1LOIOrOvOKzoYztDieMKeeMbc57RpLrLfq7W5HYnLDN7/T8JPfdxjr9SJJzJpRzTpIfWfR3tyrx2TDtgXRPH21JvpjkkB2sy6DqTrZ/XvD3SY7cS2ziuDN28IQKVk5r7RVV9YPpspnvleS70jWsfzTJ3yV5emvt6xOKgLmxvbIqZrytviXd4+/umq43n+9K19vcoel6rfhEuoabF7fW3rKXz8H+Z7/KKpnx9vrOJL+Q5Nh0+9bvTHeB7uB0vZz9R7qbgp/bPJ0KIK2111bVTdM9Ge0nk3x/uh4NL0339LQzk7woyWmtbwEcU8blSR7S9wzzsCS3SbfvPb+f/9mttVfN+rOwe9OKYWvt/Kq6Xbres38u3eOMD0vXe8/rkjy1tfYfs/kUzENr7aNVdcskv5rk/ukuChyS7gaGf0oX408ucBWZAnFebq21x/Y9nz4iyR3T/ea5KN0FutOSPK21dsEWZYjxEurPtR5VVX+T5KFJ7pDkBunaCr+a7jfzG9Mdl7/t6QcbyhLjJeW8C5iBe6RrY719uv39dZJcK11vp+cmeVe6TrteutdrBPZhuzK3+EzBn/Xrc2y63vSvneSaSb6ZLmn3HeluUjul7f1JAMtiHvGZ6jWLAZ3nzbXuVNX3pLtpOElOb619bgezD7HuzE1r7RtJ7lVVP5fuZtgfStd+/fkkb0p3TfFt2yhnKHVn1Tw6yV3S1Z/vS7d/PDLJ19OdF/xbuicGvmaz6xN8m39Kd73n2HRPD1vbf1a6m/bfneSf0yWafWWrwlpr/1ZVt0h3Xf+n0j15KenuZzo1yVNaa1+Y8mcYirsk+f/s3XmYJVV9N/DvD0FFBHFDUFRcYoxCVBQTNwSj0biCor4aE8HEXZNINJvhFZNoXhNMosHgLmiMcQUVNW4Rlxijxg2XuERARFQUcVA2gfP+caqdy+XeXmZ6pme6Pp/nuU/f6qo6dW518wz16/M954bD+ze21i5Zwblj+2/nsUnumf55b57+eXdLr5edmeTjSU5Yzr8HS/Hvzmy1Pn6PAAAAAAAAAAAAAAAAlm+Hte4AAAAAAAAAAAAAAADA1iZQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVADAGquqfaqqDa/DN6Odwyfa2WfVOggAAAAAAAAAjE5VHb0wDmGt+7I9qqqDJsZxHLTW/QEAZhOoAAAAAAAAAAAAAAAARkegAgAAAAAA1jGrWgIAAACT1ArYEqzIAcD2SqACANaJ1trxrbUaXqevdX8AAAAAAAAAgO1Xa+3ohXEIa92X7VFr7ZSJcRynrHV/AIDZBCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACgFVRVTesqv9XVZ+pqh9X1c+q6ntVdWpVvaGqDq+q3abOacPr6GH73lX1jqo6u6ouqqpvVtWxVXWjZfZh/6p6aVV9tap+UlU/Hd4fV1W32opt7FtV/zh89h8N9+K7VfWBqvqjqtprGW3cp6reOZx3cVWdNvRh70XOOXzinu4zY/8pw75Thu0bVdXfVdU3qurCqvphVb23qn5jmZ9zz6p6XlV9uqrOHfp5ZlW9qaruvcS5Vxn6+97hM14y/N58vao+WFV/VlW3mXPurYb7+8WqOn849ztV9bmqenVVPbKqrraczwAAAADrWVUdVFUtyWsmvn3aRP1g4XXQjHMPqao3V9W3hjrNeUMN4DlVde1Frnn80Obpw/aeVXVMVX2tqi6oqrOG2sFtp87bp6pePBx34VBXen1V3WKRax298BmG7d2r6rlV9aWhrnNuVX2oqh61zPu1T1X9/XD++UN/v15VL6uq/ZbTBgAAAGzLVlormH72ntHe6cP+44ft/Yfn+TOH5/tvDOMSrjd13l2n6g7/W1UvqKpdl/EZrlJVj62qk4exAhcP4x0+VlVHVtXOm3p/lrjuvaqPfzlt+GwXVNUZVfWJofZxrxnnHLRY/WXiuJtUHxNy2nA/vlNVJ1XVwcP+pX4O0+NvDhj6+u3h/pxVVa+rql9a4jPevKr+sPp4ldOHz3nh8DnfWFX3m3PePkPfPjTx7Q/N+L06fOKcK9SQFunTUmNhpn8H7zi0fdrw2efds80eHwTA+lGtzfz3AgCWrarukeTkJLstceiDWmsnT5y38I/Qc5O0JEfPOe/Hw7kfnXP9HZIck+QPktScNi5N8tTW2su3YBtXSfK3S7SRJCe01g6fOG+fJKcNm0ck+cUkfzLn3HOS3LO19pUZ1z88G4seN2utnT61/5Qk90zy4STPTnJSkisULSY8q7V2zLwPUFW/meRlSXaZd0ySVyV5Umvt0qlzr5nk3Unusci5SfLW1tphU+c+PMk/J7nqEufu11r74hLHAAAAwLo2/KH+Q0sdl+Tg1topwznXTvKWJFcaBDDh+0ke0lr7xIxrHp/ksUnOSPKQJP+WZM8Zbfw0yf1aax8bBhy8Lcm1Zhz3oyT3aK19aca1jk7ynGHz5knen2ReAONNSX5zuk4x0dZvJ3l5knmTNFyW5KjW2l/P2Q8AAADbvJXWCiafvVtrVxoHMQyGv2mSE5J8MMkrM/vv+V9LH+vw3ap6ZpK/yexxFZ8ZjvvJnP7fJMk7ktxukb5/I8kDWmtfW+SYFamqv08fC7KYH7bWpoMjB2Xj/f55/WXqmHsleXuSa85osyX58/R7utjPYXL8zfeTvCjJjjPauyDJb7TWPjKjjZsl+eaMc6b9c5IjJmssU+NeFnNEa+344ZzjM9SQWmv7zDthGWNhTs/G38FPJPnHTH32yXu2GuODAFh/Zv2jCQDLVn0lgH9ND1Ocn+S49IfB76c/0N0syV2THLpIMw9IcqckX01/aP5C+h/QH57k8cP7k6tq39bamTPO/8ckTxnefyTJ8ekPeRekP0T/QZLbJnlZVX23tfaOLdTGy5M8bnh/dpJjk3w8PRBy/SR3TnLYjPMmPT79fn04PbDwtSS7J/nt4XX9JK9Ocpcl2lnMXulhisvTgxsfS3JJkrsn+b/D9f66qt4zZ7DCI5K8Lv3B8pvD5/xyethjnyS/k+T+w9cNSY6cauLobAxTnJzk9Um+leSiJHskuUOSB6YXBiave4P0h+Srpv9+HZv+MPyDJDsnuWV6YOSQFd4PAAAAWK8+lWS/9GDDXw3fu2+S70wdd1ry8zrPB5Lsnx4g+Jf0SRFOS7JTkgPTn/P3SPLuqrpDa+2MOde+RpIT05/j/yy91nFZkvsN27skeV1V3Se9TvHj9LrEf6X/7eJh6fWYa6dP2vCrS3zWN6bXoV6aHgj5cZJfTvLHSW6V5BHD537G9IlV9YD0WlAl+UmSFw734dL0Os2fpk9K8fyqOq+1dtwSfQEAAIBt1YpqBStwuySPSg8zHJPk1CS7po+heEz6s/kxVfW29IkqFwa+fzX9mfv30scZ7J8eILjSJJRVdd308Q03TnJxklek1xtOTw8j/HqS308fO/Ceqtq/tfbjFX6OK6mqB2ZjmOIL6eNivpJee9g9fSzJvdPHhKy07ZunB0R2Sa9DHJdeJ9mQZN8kz0ryvPR6yXLcd+jHqemhilPTx1Mcmn5vrpFej/mF1tolU+deJX3syHvTJ634cpJzk1wn/ef31OGzPiZ9rMhzJs49K/336oD0MS1J/9l/auoa317m59gUBwx9OzP9d/DT6TWm6ck+V2N8EADrjBUqANgsQ1L+g8PmFVagmDpuxyTXaK1tmPje5D9CM2cZqKrfSvLaYfPNrbVHTO2/T5L3DZu/21p71YxrXz3Ju9JnVjwjyS2nkvKr0caD02cMSJL/THL/1tp5c+7FjSeDITOS+q9I8sQ29Y90Vb0iye8Om/u31j47tf/wLG+Figyf4W6ttbOmjrl7+gNjJXlxa+33p/ZfL70Acq30h+AnzprZsaqelz444vIkt2mtfXVi37fSCxxvaa09fPrcieOu01o7d2L7cekDKJJFVqCoYfnO1tqF89oGAACAMVmqZjBx3MLz/HlJ7t1a++8Zx9w0vfaxV5J/aa395tT+49NnF0z6JAi/2lr736ljnpo+UULSJ2g4L71Occ7UcX+TPnAgmV0LOTpX/OP9o1trb5g6ZtckH03/g/jlSW43WVOoqp3SB17cMD1McY/W2ucW+cwXJLlpa+0HAQAAgO3UCmoFR2d5K1QkfcLJ+7TWLpg65s3pk09elh5C+FCSR7bWLps45irpYYlfTfLDJHtOj0WoqtcneXT6eIeDW2tXCn1U1R3S6wC7JHl+a+3Zc27BslXVa5P81nDdfRdZPeMKYxyG7x2URVaoqKoTs3HSyENbaydN7b/GcP7PwxpLrFCR9MkxDp0OTFTVs7MxRPPQ1tqJU/t3SbJba+3sOZ+v0seJHJ6+8uiNpgMry1mRY+LY47O6K1QkPUBy4CLjdTZ7fBAA69MOa90BALZ7e068v9KSgAtaa5dOhilmeMKsh87W2uuSvGfYPLSq9pw6ZGFWgrfOetAZ2rgoydOGzZsmOXgLtnFBksPmPZwNbc1aZWPB2UmePh2mGBwz8X46Qb9ST58OUwx9+1g2zmww6xpPTg9TnJXkKYs8ND5nOGaH9JU1Ji38DD+6WAenCw0T5/1oXphiOO9CYQoAAABYmaq6ZvpMg0ly1KwwRZIMK1L85bD58OGP7fMcNR2mGLw6faXKpK/G+XvTYYrB5EoQS9VCTp4OUwz9PT/JE4bNHZI8aeqQQ9PDFEnyV9NhiqGNM7Ix2HGNJEcs0RcAAAAYm5Y+QP2CGfv+afh6lSRXTx8fctnkAcP2y4fN6ya5zeT+YaLKRw6bT5sVphja+WySlwybh6/oE8y3MFbhM/PCFMO1p8c4LKqqbpjkQcPmW6bDFEObF2RjXWM5LkpyxIzVJ5LkxekrUCQz6iyttZ/OC1MM+1uSP0wPxuySvirHtuapi43XyeqMDwJgHRKoAGBzTT5Mbeofk0+d90f6wcJygDsmOWjhm1W128T2Wxa7QGvtK+mzIibJXVa5jeumz5KQJG9srU0vhbkSb2mtXTzn+l9NnykxSW6+Gdc4Lz1NP8/Cz2LWNR48fD15Xj+THqBJn7kxmbhXg4XfmUcOsyks18J5166qh6zgPAAAAGBp90yfRCFZokaSjZNq7JTkjnOOaUneNHNHnwjh68Pmj5K8d85xpyU5f9hcqhbymnk7WmufTPKlYXP6j/0L2y0ba1CzvDl9Fs1ZbQAAAMDYfWEYUzHL5yfev3+R4MHkcdN1gAekBzIuyMZJOedZqFvcsKpussSxy7EwVuHAqrrFKrS34OD0z5Qkr5t3UGvt87nivVnM+1tr35/TzvnZWI9ZcsxJVe1UVXtX1S9V1b5VtW/6pBQ/HA653TL7tLWc2VqbO7HnaowPAmD9EqgAYHN9LMk3h/f/UFWfrKo/raq7VdVVl9nGp5bY/8mJ9/tNvL9DNv5b9oaqaou9klxvOHbPVW7j9kkWllRcdNWFZfifJfb/aPi662Zc4+uttcsX2b9QvLjCNYYlNm8/bD5xGffqsOHY6VVFThi+3jXJaVV1bFUdWlXXX6Lf70gPgyTJiVX171X1jKq649A3AAAAYNPdaeL92Us880+uHDn93L/gB0vMzLjwjP+NOSt1Th+3VC1kufWlW03VrPYdvp42Z5WMJMkws+Nnp84BAAAAuq8tsm9yxYDlHjddB1ioW1wjyaVL1C1OnjhvXt1iJV47fL1uki9W1b9W1RFVdcvNbHeyvrDYJKRJ8ulltrnUmJOZ40EWDCGKp1bVJ9In/DwzyZeTnDrx2mM4/Hqz2lhDX1hi/2qMDwJgnRKoAGCztNZ+lr4E4cJMAwckeX560OK8qvq3qnr0EgPeZ6bjJ3xv4v11Jt7vMX3gMk2uirAabUw+JM5d/nCZZi1/OWkhCLE5AYLlXmP6/xOuk75KyEpNr0Lxl+kzPrb0+//UJG9L8v2q+mJVPbeqbjDdSGvth+krZJyVHmA5OMnfpRcOzq2qt1XVAzehfwAAAMDq1EgmLbf+sFq1kOXWlyrJtSe+v1BrWur8JPnu1DkAAABAN/f5fmrCx8XqAJPHTdcBVrtusWyttQ8meVqSC5NcPckj08c8fL2qvl1VL62qTVmtYbI+MXeSh2XuX7DJdZaquk6S/0xybJJfSbLUJKo7L7NPW8uPlti/Zr9DAGz7NmVQJABcQWvty1W1X3qw4kFJDkxyy/SHp/sOryOr6v5zlhZcbBbCxUw+4D0xyceXed7kQ9RqtDEWk/fqlUletMzzLpncGEI4v1NVL0zyqCT3Sp9N4qpJbju8jqyqx7TW3j517keHWR4eluT+6b9reyfZLcmhSQ6tqvcmeWhrbalCAQAAALDR5HP//kl+tszzvr0F+rIpNrW+tFrnAwAAAFvOQt3iB+mTLy7Xaatx8dbaS6rqzUkeneQ+Se6W5FpJbpQ+1uQJVfX81tqfr8b11siLktxxeH9SemjkC+mTUFy0sMJoVX0ryY3TJ63Ylly2xH7jgwCYS6ACgFXRWrss/YHqpCSpqr2S3C999YE7Dq+XpQ96n3al1QgW2X/uxPsfTry/oLX2xRV2e7Xa+MHE+7024fztxeS9r028Vz/XWvtykqOSHFVVV09y9/Tiw28nuWb6Eou3aK2dPXXeRUleP7xSVTdL8oAkT09yq/QAz/OSPGNz+gcAAAAjM1kjOae1tq0EJZbrBknOXGJ/0oMTk38IP3dq/2L2nDoHAAAA2DoW6ha7JvnKMEZlqxomEP2HJP9QVTskuX36GJinJdk9ybOr6lPTE0cuYrI+cf0kZy1y7PU3ocvLVlW7pa+8kSSvb609ZpHDr73IvpVYWC1jhyWO22WVrrca44MAWKeW+scIADZJa+3s1tprktwlyWeGbz+wqmYt+XfAEs1N7p98oPlcNs4eeLdN6ujqtPHZiTYO3MQ2tnmttUuSfGnY3NR7Na/ti1prH2itPS7Js4Zv75zkgcs497TW2rHpvycLgz0esZr9AwAAgO3cclZf+OzE+1V97t9Klltf+vpQ41iwUGu6WVXNHZxQVTslucPUOQAAALC92t5WalyoW1wtyZ3WsiNJ0lq7vLX2mdbaUUl+bWLXSsYqfGni/R3nHtVt6c/8C0l2Gt6/cd5BVXXr9Aky51nJ79X5w9fdlzjuVitoczGrMT4IgHVKoAKALaq19rMkHx42d8zsB6H9quoOM76/4HHD18uSnDLR9jlJPjFsPnqxP3ov0r/VaOPcbFwK8BFVdcOVtrEdecfw9dZVdd8tdI0PTry/3nJPaq1tSPKplZ4HAAAAI3DRxPurzTnmA0kuGN7/XlXVlu3SqnvsvB1VdUCSfYfN9bePyQAAIABJREFUD0ztXtiuJEcs0v5hSa41pw0AAADY3iynVrAteWc2Dob/g7XsyLTW2meycbWJlYxVOCUbV2n4rXkHVdXtktxukzq3fDtOvF9sRYgnLdHOSn6vThu+7lpVvzjrgKq6apKHLdHOsqzG+CAA1i+BCgA2S1Xdo6puucj+qya557D5kyTnzDn05VV1pYeyqnp0kvsPmye11s6eOuSvhq+7JXlLVc1NrlfV1arqqVV19S3QxguGr9dI8uaqulbmqKq95+3bDrwo/eeYJK+pqtsudnBVPaCqfnli+zpV9aAlBmX8+sT7hQfoVNV9q2qvRa51rSR3nj4PAAAAyGQ95RazDmitnZfk2GHzrkn+vqrm/g2hqm5QVb+7el3cbA+uqivNAllV10zysmHz8on3C05K8p3h/bOrar8Zbdw4yTHD5gVJXrMqPQYAAIC1s2StYFvSWvtqkjcPm/+nqo5c7PiqullVPWo1rl1Vj6yqnRfZf6ck1x42lz1WobX27STvGjYPq6pDZrS9c5KXr6C7m+ob2RhYeeysMR1V9aAkT1uinZX8Xn144v0fzjnm75LcaIl2VmI1xgcBsA7tuPQhALCoX0tyVFV9NP1B7wvpoYmd05fde1KS/YdjX9Vau3RGG59OX57w01X1giSnps/4d1iSJw7HnJ/kmdMnttbeXVUvSvL7SQ5M8pWqemmSjyX5YXpy/pZJ7pHkoekPsSdsgTbeWVWvSvI76YMOvlxVxyb5jyQb0mchuFOSRyb5fJLDZ97NbVxr7XtV9dgkb0myV/rP7Pgk70ny7fQlIPdODzYcluTmSR6U/nuR9IfSdyQ5vareluS/kpyR5NKhvQclWRiMcVaSkycu/6gk76yq9yd5X5IvJjk3ya7ps0w+LRsfpF+6mp8bAAAAtnOfTZ8h8OpJ/rKqfpb+PL4wC+JZrbULk/zf9IkxfiW9TnJQVb0iyeeS/DS9JnLbJPdO8hvpNZxXbsXPsZhPJ/mXqrpnet1iQ5JfTvLHSRZmOXxJa+0Lkye11i6pqiekz3S5W5L/qKq/TV9B87L0Os+fJNljOOWZrbUfbOkPAwAAAFvYcmsF25Inp4+7uHmSF1bVQ5K8NsmXklyc5LrpKzncL8m9kpyY5A2rcN0XJHlpVb09yUeSfC29TnLdJHdP8vThuMuy8jrJkenjbhYm7zxu6PeG9HEQf5TkNkk+leSAzfsY87XWflhV707ygPT7976hL2ek10Qelj7O5ZtJdk8yc3WH1tq3qurb6eNGnjm8/2r6vUmS77XWzh+O/WxV/WeSuyR5/DBh6wlJfpzkF5I8If3n+PH0+sxqfM7NHh8EwPokUAHAatgh/Y/t91zkmLcn+dM5+941vJ6T2TP8bUjy4Nba6XPOf0b6wPqjkuyZ5OhF+vHTbHxQW+02npjkwiRPTXLDJM+fc/7nF2l7m9dae9tQmDg+yXXSQzPzlnW8PP1+TdsnvTAwz9lJHtJa+8nU93dKX7Hk/lc+5edemuTFi+wHAACAUWmtnV9VL07/I/z+6RMVTDo4ySmttYur6j7pz/wPTR+EcGzm27AFurupHpEegnjK8Jr21sypRbTW3lVVR6SvXrFrkr8YXpMuS3JUa+24VesxAAAArJHl1gq2dr8W01o7t6ruluRN6QPeDxxe86xm3WL3JI8dXrNcnORJrbVPr6TR1to3hpUpTkwfzP/0bAxoLHhu+ricA9JDMFvKk9ODBTdJn0zj3lP7v5XkkCTvXqKd5yf5pyQ3Sx8rNOmI9LrTgselr1SxR2bf32PSAzOrEqgYrMb4IADWmbnLdQPAMh2TnkQ/Lskn0h+gLhpep6c/yD6wtXbIYrMXtNaOTk+5vyvJ95JcMpz/T0lu21r78CLnttbaX6SviPE36TMSnpv+UHN+ki8neX36g9des/qxSm1c1lp7evqMCC/PxlkJfpbku+kFiCMzY6WN7U1r7Z3pD7/PTPLv6T+zn6UHSk5LX1niyCT7tNY+NHHqGemrVxydfj++muS89BUqfpA+m8Ozkty6tfbfU5d9RpLHJHl1+s/nrPTfkwvT7/UJSe7RWntya+3yAAAAAJP+JMnjk3w0G2seV9JaO7+19rD0gQmvTH92Pz/92f3c9BkRX5I+2cF9tny3l6e1dlqSO6b/0f4rSS5In9HwI0ke01o7bM7KqQvnn5Dk1kleNJz/0/Saw/8meUWSO7TW/nqLfggAAADYupZVK9iWtNa+21o7MMkD08dwfDO9BvCzJOekr2bwwiT3bK09bpUue3D6igZvTV+t85z0OsmG9JU+jklym9ba8ZvSeGvt/emrUbwsfUzFJeljMN6V5H7DeJrdhsN/vKkfYhn9ODM9XPO36WMwLh6u9/n0UMftW2tfXkY7x6WPI3pfku+n36t5x/7PcM2F1TAuSb+//5bkAa21Z23GR5p3zc0eHwTA+lOttbXuAwAjVVUL/wg9d3gABAAAAIBlqaqj01c8TWut1rY3AAAAAFtGVX0gya8l+Vhr7R5r3R8AWG+sUAEAAAAAAAAAAACwjamqGyY5cNj8xFr2BQDWK4EKAAAAAAAAAAAAgK2sqm65yL6dkxyfZKfhW6/dGn0CgLHZca07AAAAAAAAAAAAADBCr6yqXZK8Kcl/Jzk3ya5J7pTkKUkWAhevaq2dujZdBID1TaACAAAAAAAAAAAAWHeqao8ke2zCqZe01r622v2Z407Da54Tkzx9K/UFAEZHoAIAAAAAAAAAAABYj56S5DmbcN4ZSfZZ3a7MdGSSQ5PcK8neSa6fpJJ8P8knkpzQWnv3VugHAIxWtdbWug8AAAAAAAAAAAAAq6qqjs4mBipaa/usbm8AgG2RQAUAAAAAAAAAAAAAADA6O6x1BwAAAAAAAAAAAAAAALY2gQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGZ8etfcGqulqS/YbNc5JctrX7AAAAwDbvKkmuP7w/tbV28Vp2BlaLuggAAADLpDbCuqMuAgAAwDJt1brIVg9UpD8cf2oNrgsAAMD26YAkn17rTsAqURcBAABgpdRGWC/URQAAAFipLV4X2WFLNg4AAAAAAAAAAAAAALAtWosVKs5ZePPJT34ye+211xp0AQAAgG3Z2WefnTvf+c4Lm+csdixsZ9RFAAAAWJLaCOuUuggAAABL2tp1kbUIVFy28GavvfbK3nvvvQZdAAAAYDty2dKHwHZDXQQAAICVUhthvVAXAQAAYKW2eF1khy19AQAAAAAAAAAAAAAAgG2NQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKOz41p3AABgW3L55Zdnw4YNa92Ndevyyy/P+eeff4Xv7brrrtlhBznfzbXbbru5jwAArEvr/TnNc9Km8xwEAAAAAPOt99rqWlLX3brUgtnSBCoAACZs2LAhhxxyyFp3A1bspJNOyu67777W3QAAgFXnOY15PAcBAAAAwHxqq6wXasFsaeI6AAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjM6Oa90BAIBt3U/3fWjajldb626sD5delGt+8cQrfOsn+x6a7Hj1NerQ9qkuvTi7fPFta90NAABYM+vqOc1z0rJ4DgIAAACAzbeuaqtrSV13i1ELZi0IVAAALKHteLW0nXZe626sCzXrmzte3f0FAABWZD09p3lOAgAAAAC2lvVUW11L6rqwvuyw1h0AAAAAAAAAAAAAAADY2gQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdP4/e3fwG2XV7wH8tLdyU4OFcQE3Rv4CYGFi2cHfYCRQE0hYCSZNcOF20AV16YY3XYArE0gsROPeHaykGxPhH5DrAjYNhdiIvNO78L2R4kynffqcPuf09/kkbKYzh29Mf8/MOY9fRqECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIZ6rrAAAlGwwGaXV1dcNjMzMzaXJSHw0AqJPPNwC0zXsLAHg/BAAAumdfAgBsxmeF0RQqADaxurqaPvjggw2P/fDDD+ngwYMdJQIA2BmfbwBom/cWAPB+CAAAdM++BADYjM8Ko6mUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUbOLFixddR4DiNJ2L3PPU9vrmHwAAiC7HvqjUvVapuQAAgPFKvXcF1M01Iq/nz593HWHLaspao5pmraasAABsj0LFCGtra+mzzz5La2trXUeBYjSdi9zz1Pb65h8AAIgux76o1L1WqbkAAIDmzGtMAAAgAElEQVTxSr13BdTNNSKvlZWVdPbs2bSystJ1lLFqylqjmmatpqwAAGyfQsUIN2/eTL/88ku6detW11GgGE3nIvc8tb2++QcAAKLLsS8qda9Vai4AAGC8Uu9dAXVzjcir3++n33//PV25cqXrKGPVlLVGNc1aTVkBANg+hYohHj16lJaWllJKKS0tLaVHjx51nAi613Qucs9T2+u/vt5vv/2244wAAAA1ybGPK/WspdRcAADAeKXeuwLq5hqR1/3799PDhw9TSik9ePAg3b9/v+NEo9WUtUY1zVpNWQEAaEah4jXr6+vp2rVr6eXLlymllP7888907dq1tL6+3nEy6E7Tucg9T22vP2y9r7/+upWsAAAANcixjyv1rKXUXAAAwHil3rsC6uYakddgMEgLCwsbHltYWEiDwaCjRKPVlLVGNc1aTVkBAGhOoeI1d+/eTcvLyxseW15eTvfu3esoEXSv6Vzknqe21x+23s8//9w4HwAAQG1y7ONKPWspNRcAADBeqfeugLq5RuR1/fr1tLq6uuGx1dXVdOPGjY4SjVZT1hrVNGs1ZQUAoDmFilesra2lxcXFoT9bXFxMa2tru5wIutd0LnLPU9vrb7YeAABABDn2caWetZSaCwAAGK/Ue1dA3Vwj8lpZWUl37twZ+rPbt2+nlZWVXU40Wk1Za1TTrNWUFQCAnVGoeMXNmzfTkydPhv7s8ePH6datW7ucCLrXdC5yz1Pb62+2HgAAQAQ59nGlnrWUmgsAABiv1HtXQN1cI/Lq9/tpMBgM/dlgMEhXrlzZ5USj1ZS1RjXNWk1ZAQDYGYWK//j111/T0tLSps/59ttv06NHj3YpEXSv6Vzknqe219/KegAAAHtZjn1cqWctpeYCAADGK/XeFVA314i8fvrpp/Tw4cNNn/PgwYN0//79XUo0Wk1Za1TTrNWUFQCAnVOoSCmtr6+nf/3rX+nly5ebPu/ly5fp2rVraX19fZeSQXeazkXueWp7/a2uBwAAsFfl2MeVetZSai4AAGC8Uu9dAXVzjchrMBikL7/8ckvPXVhYGPnNELuhpqw1qmnWasoKAEA7proOUIK7d++m5eXlLT13eXk53bt3L506dSpzKuhW07nIPU9tr7+d9f7f06dPt/V8oC5DZ9whGKUZ8jvp/YmtGva74sYPxJZjH1fqWUupuWo37H3EZxPaZJ9GSsk+iOLZa0F+pd67AurmGpHX9evX0+rq6paeu7q6mm7cuJE++eSTzKmGqylrjWqatZqyvs45HfA6Z6tUyVlwNs4wR2u9UDExMfHumKf8T9t/506sra2lxcXFbb1mcXExzc7Opunp6UypoFtN5+L48eNZ56nteW2yXkopXbhwYduvASr37z9SSm92nQL+9u8//vGQ9yd24tmzZ+ntt9/uOgbsCc5Fyj1rKTXXXvDs2bN/POazCdnZp8VjH0SF7LWgPaXeuwI2ci7Cq1ZWVtKdO3e29Zrbt2+nubm51Ov1MqUarqasNapp1mrKOoxzOmBLnK1SOmfBu8oZ5l8mM6z5aMyf7f1T8JndvHkzPXnyZFuvefz4cbp161amRNC9pnPR7/ezzlPb89pkPQAAgDHCn4uUetZSai4AAGC8Uu9dAf8Q/lyEv/X7/W3/a7eDwSBduXIlU6LRaspao5pmraasAAC0J0ehohovXrxI33//faPXfvfdd+nFixctJ4Lu7WQuHj582Oh1W5mntud1J+sBAADsBTnORUo9ayk1FwAAMF6p966AujkryOv58+eNr8EPHjxIz58/bznRaDVlrVFNs1ZTVgAA2pWjUHFkzJ/ZDH9nI/v27Usffvhho9eePn067du3r+VE0L2dzMXRo0cbvW4r89T2vO5kPQAAgE2EPhcp9ayl1FwAAMB4pd67AoYKfS7C3/bv39/4Gnzs2LG0f//+lhONVlPWGtU0azVlBQCgXVNtL7i+vv6/m/18YmKi7b9yR86fP59+/PHHbX1d2+HDh9O5c+cypoJuNZ2LhYWFdOnSpWzz1Pa8NlkvpZRu3LiRDh06tK3XAPV4+vRpunDhwsYH/+u/uwkDowz5nfzmm2/SgQMHOghDbYZd5956662O0sDe41yk3LOWUnPtBcPeR3w2oU32aaSU7IMonr0W5FXqvStgI+civGphYSGdPn06DQaDLb9mcnIyXb16NWOq4WrKWqOaZq2mrMM4pwNe52yVKjkLzsYZ5mitFypqMz09nebn59MXX3yx5dfMz8+n6enpjKmgW03notfrZZ2ntue1yXoppXTo0KF08ODBbb0GqFxhB/ww7HfywIED3p9obHIyx5cXAjXIcS5S6llLqbn2gmHvIz6bkJ19Wjz2QVTIXgvaU+q9K6Buzgry6vV66cyZM2lpaWnLrzl79mzq9XoZUw1XU9Ya1TRrNWUdxjkdsCXOVimds+Bd5QzzL/4rpJROnTqVZme39s2Ss7Oz6eTJk5kTQfeazkXueWp7/e2sBwAAsBfl2MeVetZSai4AAGC8Uu9dAXVzjcjr0qVLaWZmZkvPnZmZSRcvXsycaLSastaoplmrKSsAAO1QqEh/fa3k5cuX09TU5l/YMTU1lS5fvlzc11BCDk3nIvc8tb3+VtcDAADYq3Ls40o9ayk1FwAAMF6p966AurlG5DU5OZn6/f6Wntvv9zv913FrylqjmmatpqwAALTDp/v/OHLkSJqbm9v0OR999FE6cuTILiWC7jWdi9zz1Pb6W1kPAABgL8uxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHN33OsWPH0okTJ3Yp0Wg1Za1RTbNWU1YAAHZOoeIV58+fT4cOHRr6s8OHD6dz587tciLoXtO5yD1Pba+/2XoAAAAR5NjHlXrWUmouAABgvFLvXQF1c43Ia2FhYeQ3OkxOTqarV6/ucqLRaspao5pmraasAADsjELFK6anp9P8/PzQn83Pz6fp6eldTgTdazoXueep7fU3Ww8AACCCHPu4Us9aSs0FAACMV+q9K6BurhF59Xq9dObMmaE/O3v2bOr1erucaLSastaoplmrKSsAADujUPGaU6dOpdnZ2Q2Pzc7OppMnT3aUCLrXdC5yz1Pb6w9b77333mucDwAAoDY59nGlnrWUmgsAABiv1HtXQN1cI/K6dOlSmpmZ2fDYzMxMunjxYkeJRqspa41qmrWasgIA0JxCxWsmJibS5cuX09TUVEoppTfeeCN9+umnaWJiouNk0J2mc5F7ntpef9h6H3/8cStZAQAAapBjH1fqWUupuQAAgPFKvXcF1M01Iq/JycnU7/c3PPb555+nycny/telmrLWqKZZqykrAADN+aQ/xJEjR9Lc3FxKKaW5ubn07rvvdpwIutd0LnLPU9vrv77eO++8s+OMAAAANcmxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHU0opHTt2LL3//vsdJxqtpqw1qmnWasoKAEAzChUjnD9/Ph0/fjydO3eu6yhQjKZzkXue2l7f/AMAANHl2BeVutcqNRcAADBeqfeugLq5RuS1sLCQ3nzzzXT16tWuo4xVU9Ya1TRrNWUFAGD7proOUKrp6en01VdfpX379nUdBYrRdC5yz1Pb67+63h9//NHKmgAAADXJsY8r9ayl1FwAAMB4pd67AurmGpFXr9dLt2/fTvv37+86ylg1Za1RTbNWU1YAALbPN1Rswodg+Kemc5F7ntpe3/wDAADR5dgXlbrXKjUXAAAwXqn3roC6uUbkVVNBoaasNapp1mrKCgDA9ihUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAADA/7F379HWnHV9wL+/NxcgJCFyUVpAwkVcICqsJkgQ4VVRqwsERClasa9KEVpslaqwrNrUeqOWBVphRbyQIF6gSCJFQaAYigISoBZSCBclUeSSIBJCQhJCpn/MnJz9npy9z97n7LNvz+ez1qx37/fMfp6Z+T3zPDOz5zcbAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgOScuewEAVtnpp5+eiy666Fb/BwCwrhzfADBvxhYAMB4CAADL57wEAJjEscJ4EioAJjhy5EjOOOOMZS8GAMDcOL4BYN6MLQBgPAQAAJbPeQkAMIljhfGOLHsBAAAAAAAAAAAAAAAAFk1CBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADTnxGUvAADAqqubblj2ImyOm67f9f9q8Uuy1rRJAABat1HHxM6TprJRMQcAAACAJXGdbU5c1z002ijLIKECAGAPt7/0lctehI126qUXLnsRAACANbPp52nOkwAAAACAw7Dp11aXyXVdWF9Hlr0AAAAAAAAAAAAAAAAAiyahAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDknLnsBAABWyemnn56LLrpo2YuxsW6++eZcc801x/3faaedliNH5Pke1Omnn77sRQAAgEOx6edpzpP2z3kQAAAAAIy36ddWl8l13cVyLZjDJqECAGDEkSNHcsYZZyx7MTbaHe94x2UvAgAAsEZaOE9zngQAAAAAzFsL11aXyXVd2BxSoQAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaM6JS6jzhK0XH/vYx5ZQPQAAAKtux/niCePmgzXkuggAAAB7cm2EDeW6CAAAAHta9HWR6rrusOs4vsKqs5JcstBKAQAAWGdnd133jmUvBMyD6yIAAADsg2sjbATXRQAAANiHQ78ucuQwCwcAAAAAAAAAAAAAAFhFy/iFitsk+crh7VVJvrDQBWjbXbP9tIezk3x8icvCfInt5hLbzSW2m0tsN5fYbi6xXU0nJLnL8Po9XdfdsMyFgXlxXWQsfTHjaBuMo20wjrbBONoG42gbjLPstuHaCBvHdZG1suw+kNmJ2foRs/UjZutHzNaPmK0fMVs/6xKzhV4XOfEwC9/NsEJ+jnQJqmr07ce7rvvIspaF+RLbzSW2m0tsN5fYbi6x3Vxiu9KuWHM3WBcAACAASURBVPYCwLy5LrI7fTHjaBuMo20wjrbBONoG42gbjLMibcO1ETaK6yLrY0X6QGYgZutHzNaPmK0fMVs/YrZ+xGz9rFnMFnZd5MiiKgIAAAAAAAAAAAAAAFgVEioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmlNd1y17GQAAAAAAAAAAAAAAABbKL1QAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQsWaqap7VtVzq+qyqrq2qj5VVZdU1Y9X1SkHLPv+VfWMqrqgqt5VVR+pquuHev6mql5WVY+tqprX+nC8w4zvhDpPGeLbDdPlh1FP6w553z02Er+9pmNzWiUGi9xvq+pRVXV+VX1oqOvqqvpAVb2iqp5eVafOs77WHVZsq+rMGfZZffMhWMR+O8T5OVX1zqr6dFV9fqjnLVX1M1X1xfOoh+MtKLb3qqrnVdWlVXXNUM8Hq+qFVfUV86gDYD+q6our6tFV9bNV9Zqq+uTIscT5+yjvW6vqwuHawA3DvxdW1bfOUMaJVfW0qnpzVV1VVZ+rqr+uql+fpc+sqjsP6/XuqvrMML17+L87zVDOA4e6/3pYlquGZXtaVZ04QzkH3jaLNI+2UXM+76z+WsRPDOP0p4bx9LJhHL/nDOs2l7G/qh5WVS+tqiuqvxb28ar606r67mnLGMr57qp63fD564fyXlpV58xSzqJU1VnDsenrRtrzZ6s/z3xxVT18xvL0G+PLWbd+48BtQ78xdTlr029U1elV9aRh+72p+utTV1fVjVV1ZVVdPMRoqn1slbbhpravRZlH26iqozP0GedOsUzGkzVQ/bWz0dgeneIzjjfGl7NR7QM2UW3gOVhVPaD6Y51XV9Xl1R+7XFdVH66qP6iqb5tlnSbUs5Tvwzc0ZpdPuR0vn2Xd9qhzYWPUpsWs+nsDZv1e+dgs6zhSV/P7WVXdpqoeWlU/XFW/U1Xvr6qbt9Z7H+u2yHtJFnosuIlxm/c6Tajn3Bn2taPzqHOodxNjNu12vHiWddujzoVdy9u0mFV/fWjWMe3oLOs4Upf9rOpLquopVfV7VfXeYTlurKqPVdVrq+qpVXW7GZZlY8e043RdZ1qTKcljklydpBszvT/JfQ9Q/ksnlD06XZzkTsveHps2HXZ8J9T733bUc/myt8WmTQvYd49Nue92SY4te3ts0rSo/TbJFyW5aIr4PmjZ22RTpsOMbZIzZ9hnt6Y/XfY22ZRpEfttkicnuW6PmP5Dkm9a9vbYpGlBsX1qkhsm1HFDkmcse1uYTKY2pz3GnfNnKOdIkt/co7zfSHJkj3LunOTtE8q4PslTplier0nysQnlfDTJQ6Yo51/v0Yf/ZZI7L2LbrGPbyBzPO5PcN8kHJnz+6iSPnmKZ5jL2Jzk3yRcmlPPqJLfdo4zbJfnjCWV8Icl/WnZb2LHM/3vKeF6Q5ORF7BvRbyy9XcyzbUS/sYn9xqOmjOdVSb5lXbbhJravdWwbSY5OWUaX5Nw9lsd4sgZTkgcl+fyOdTh62NtA+1h+7E2mVqds4DnYsKzTrNNrk5xxwO13bMq6uszp+/BNjNlQxuVTrtflc9iGCx2jNjFmSc6foe1vTefYz/YXsyQvnvT5GddtUfeSLPxYcBPjNs91mqKuc2fY146K2cRlmXY7XjyHbbjQa3mbGLP09xxPG7OtbXo3+9nsMUt/reGmKZblA0m+aop129gx7VbLcFgFm+YcqOTB2b4x75okP5nknCTfkORFOxrnafus4/wkb0vy3PQHyv88yT9LfzH8GUneM1LPWw6zYbY2LSK+E+q9KcnnknxmqOPyZW+PTZoWtO8eGynnm5M8cMJ0oItVpsXGdqjnDkneMVLeK5N8T/ovbM5K8vgkz0/yd5FQsRaxTXLSHvvp1vS7I3V9z7K3yyZMC+qTvzbbNz58IclvJ3lskrOTPCHJq0bquS7JvZe9XTZhWlBsnzRSzqeT/PQQ77PSn5B+cPjbzUmeuOxtYjKZ2ptG+qguyRVJ/nTk/fkzlPOLI59719D/nT38+66Rv/3ChDJOSPLmkXn/MP01hock+eEknxgZK791Qjn3SHLlMO/nkzwnydcN03OyfQPWJ5LcfUI53zYyPn98WIaHDMv0hyPL+eYkJxzmtlnXtpE5nXcmOW0Yj7fKetEwXp8zjN/XDP9/bSac32ROY3+SHxqZ90NJfmCI6WOTvHHkb7+3x/b5/ZF535jt478fGMrd+ttTl90eRpZ5a7n+Pv055ROGZX5okh9N8pEZ1l+/cYjbZl3bRvQbm9hvPCrJ36b/0u/fpb8m9dAkD0vyxCQvz/YXdTck+epV34ab2r7WsW3k+ISK78/kPuOLJyyL8WQF2sQUbeZItm8s/MTI8h89zG2gfaxH+zCZNnXKBp6DJXnDMM8/JPn1JN+d/hjo7PQPJ7psR1+27/tLsoTvwzcxZkM5lw/zXbTHdrzfHLbhQseoTYxZkrvtEacHpj8G2TqmeL/97EAxO39kvs+kv/n3liTaGdZrYfeALXo/29S4zXOdpqjr3JGy9tq/by9mE5dlq4wX7rEd7zWHbbjQa3mbGLMk95qizT9xpJ7X2c/2F7MkPzX8/Yb0xx8/lOQR6cen78zx3xNemcnXLjZ6TLvVMhxWwaY5B2o7g+nz2SWbOMmPjzSYc/dZx4l7/P2EHH8B79uXvV02ZVpEfMfEc+sm7Z/O9onz5cveHps0LWjfPTZSxpnLXudWpkXtt0leMpRx/aR+N0nt1Y+bViu2eyzDCekPsrdORm637O2yCdOC+uRXj5Txb8bM89yReX5t2dtlE6bDjm2SU7J9YfuaJA/cZZ7Tk7x7mOfjSU5d9nYxmUxtTUn+c5JHJ/mS4f2ZI33f+VOWcb9s3/xzyc5jkKE/vGSkz931aSPpLyBv1f2CXf5+32w/yeSD445jR46FuyTftcvfRy+s7rqO6ZNZ/3qY5+ok99llnheMlHPsMLfNGreNYyOfOfMAy/KzI+X8+C5/f9jIdr54QjkHHvuT3DF9kmSXPtHkzjv+fkKOT4Y9OqacbxiZ51XZcbNb+icRXjH8/R+TfNGy28SwXK8e9qFdb84blnv0JuNHjJlPv7Fh/cYc24Z+Y/P6jbE3847M87iRdXvlqm/DTWxfa9w2js5j3WI8WZnxZI84/ciwvO9L8gtT7POONxpqHybTpk7ZwHOw9E8qfmqS24yp45QcfzP59x1g+x0bKedMMTvQOHb5pDFqjttv4WPUpsZsivV++kg9P3WA7Wc/S/7FsB2+IkMSWEaeqD7Dei3qXpKlHAtuYtzmtU5T1nXurG1KzMau14H3oynrWfi1vE2N2RTr/ZyRdfreA5TT9H6WPoHjl5LcZcLyjt639NsT5tvoMe1Wy7GoBmM6QJD67OStRnfemHmOJHnvSMd80iEty0NHluWXl71tNmFaVnyTPHMo77IkJ0dCxdrGNhIqNjm2Dx+p58eWvd4tTKsy5ib5lmkOXE2rF9sknxo+/8kJ89xhZFneuexts+7TImKbPkt/q46fmzDfo0bme8ayt43JZGp7yv5umn/hyGceOmae0esCt/oicJhnq8/9hySnjJnn2SPl7HYT0l2z/WS1105Y5tcO83whyV13+fvozUzPHlPGKSNj+P87zG2zCtM+28axkc+cuc96T8r2jaLvzfifIj5vpK6zd/n7XMb+JD8xUs6TxpRz92w/UfuPx8zzJ9m+gLvrU3xy/C9d3eqG3VWd0ifibC33r46ZR7/RQL+xz7ah32iw3xiWfetJxFet8jbc1Pa1ytMebePoyPofPUAdxpMVH0+SfGm2f/3lkTn+qZG7xn5e20D7WP32YTK1PmXNzsGmXKcHjpTxqgNsm2Mj5Zy57Fitc8yyuISKlRyj1jFmU6zTW4fP35zkngfYNs3vZ2M+d/HW56acf2H3G6zqfraOcZvXOk1ZzrnzXrZWYzZSz7mHvG1W8lreOsZsj/KOZPtXHK7JmLFzyrLsZ3svy8lJPjqU8enscm00DY5pR8I6eNzI6xfvNkPXdTenfyJKkpyR5OsPaVmuGXl920OqozULj29V3TP907eS5Gld1914kPIYa5X2XeZrUbF9xvDv1Ul+bR+fZ3arst9+38jrCw6h/BYtKrYnD/9+eNwMXdddneSTO+Zn/xYR27NGXr9mwnwXp/9FoaRPwgBYG1VV6X+iOEku67rubbvNN/z/+4e3jx0+N1rO/ZLcf3j78q7rrhtT5fkjrx+/y9+/PbnlutWu/fuOco4Mn9lpdJw4f5e/Z1jGlw9vHzCswy3mtW3I16dPLE2SC4bxeTfnj7zerW3Ma+zfKuczSV45ppyPJHnD8PYbq+q00b8P779xePuGYf7dvHKoJ9l9nVbVn428vs/OP+o3mu43JraNOdJv9Nap30i2v0PY7fuDVdqGG9e+1sCktnFgxpO1GU9ekOTU9Pvdm/aa2fFGc+0DWrdu52B76rru0mx/H3KY5w7LsnExm4cVH6M2KmZV9WXpby5Mkjd1XXfFrGWsgYXEbI4W8p30Cq73TusWt2ks6nrYsmxizA5sxa/lbVrMvjHJ3YbXr5gwdq6zlYnZcL/wXwxv75DkTrvM1tyYJqFiPTx8+PfaJO+cMN/ohcevPaRledLI68sOqY7WLCO+L0xy+yS/03XdxQcsi/FWad9lvg49tlV1crYPFl7fdd31w/+fUFX3qKozq0pi2/wtfb8dTsi2DkovT//zaRzcomK7dfB+r3EzVNXp6X/Ob3R+9m8RsR09efzEuJm6rrsp/ZMDk+ScqjpxxnoAluleSf7p8HqvG5u2/n639L92MOrhu8x3K13XfTzJB4a3u/XLU5WTvfv3rXLeP9S5n3LmtW1aN21M35Fk60L5pJjue+wfzrceMrx96x4Pmtgq5zY5PskySc7OdoLspPZ+Y5KtC8BnV9VJE+pbJbcZef2FXf6u3xhfzqb3G3u1jXnRbwyfWZd+o6q+PMmDhreX7fjbqm3DTWxfK2tS25gj40lvZceTqnpi+qcxfirJj035Mccb48vZqPYBJFm/c7BpbR27Hea5w7JsaswOapXHqE2L2ehD+l4ydq71tqiYzcuivpNetfXead3iNo1FXQ9blk2M2Tys8rW8TYuZMW3xMdtreZob0yRUrIetrOUPDTdpjTN6Efr+Y+eaUVXduarOqarfSvIfh//+ZJLfnVcdjVtofKvqSUm+Lf1P7PyH/ZbDVJax7764qj5aVTdW1Ser6m1V9XNVdbe9P8oMFhHbr87209reU1WnV9Xz0/e/f5v+6fdXV9Xrq+rojGUz3lLH3MF3pv8596RPfOvmXH6rFhXb84Z/71RVTxszz0/vMj/7t4jYfnbk9R3GzTRkwJ8+vD05yX1nrAdgmR4w8nqvm9wm9an7KeceVXX7MeVcPekGo67rPpbtp/4ctyxVdWqSe8y4LLcqJ/PbNptiv+edU23HYTz/0PB2t204j7H/fklO2GtZpihnP23jxCRftse8q+KRI6/ft8vf9RvbWus39mobO+k3tm1cv1FVp1TVl1XVM9N/obWVWP78HbOu2jbcxPa1UmZoGzv9fFVdUVU3VNU/VtX/qarn7Xw6/y6MJ+PLWbqqOiPJrwxvn9V13ScnzT/C8ca2jW0fwC3W7RxsT1X14GxfM5/m3GEaq/R9+DrH7BFV9VdVdU1VXVdVH66ql1XV4+bwtN9VHqPWOWbHGeL0vcPb65K8YtrPTqHF/WxeFvWd9Kqt907rFrdpzHo9bE9V9bqqunLY166sqour6tlV9UXzKH9G6xyz76qq9w7j2TVV9cGquqCqZn5S/i5W+VreOsfsOMN58tYve1yR5OI5lm0/28WQ9HPO8PYTXdd9apfZmhvTJFSsuOHp41tPMB73k0FJkq7r/jF9NlCyfSFuv/VeXFVdVXVJrkryliQ/kKTS38z7+K7rPn2QOlh8fIeBYOvLimd3XXfVfsphb8vad5McTfJPkpyU/mnaX5M+EepDVfVDByybLDS2owcLR9I/De/fp/95rC0nJ3lUkjdW1bNmLJ8dlrjf7tRC1vVCLTi2v53tuL2gqn6jqh5TVWdV1XdU1YXZfgLfz3dd94Z91MFggbEdPZl95Ni5kgcnOXXk/ZfOWA/AMt195PXEPjXJ34283tmn7qec2vG50XL2KmO0nHksy2GWsymOZn/nnVvb8dopriltbce7VNUtT8iZ49ivbeyhqo4kefbIf718l9n0G9u0jcmORr8x73KWqqqOjXx/cG36J6o+N8mXDLP8UpLf2/GxVduGm9i+lm6fbWOnh6U/nz45/bXQByX5kSTvq6pzJ9zgZzwZX84q+K9J7prkL5L81gyfc7yxbZPbBzRvTc/BpvGTI6+nOXeYxtGswPfhGxCze6V/wN+pSW6X/gm/T0xyYZI3H/DG+ZUcozYgZjs9IttPZr6w67prZvjsXo6mvf3swBb8nfTKrPdO6xa3aezzetg0vinJXdLva3dJ/z30Lyb5m6p67Jzq2NMGxOwB6W+svl36ce2+6e+7eWNVXVhVYx+YOIWVXO8NiNlOT0iylVT40jk/eNZ+trunZnvM+h87/9jqmHbi3rOwZKeNvP7s2Lm2XZu+czl1rxn36VeT/JcZnhzDZIuO7y+n/+LirUl+Y59lMJ1Fx/ZvkrwyfWy3Bo57pz/g+M70v3RwXlV1Xde9aJ910FtUbO848vpZ6WP42iQ/k+Td6Z/m8oT0X0LeIckvVdVlXdf90Yz1sG3pY25VfWm2b9Z+S9d1H5o0P1NbWGy7rvtCkn9VVf8z/RcFTxmmUX+W5BckU8zFomL7miQ3pT9/emZVvWTn8fBwAvzzE5YPYNXN0qdeO/J6Z58673Km7d8XsSwHLWfdHfS8cz8xTfrteMOOMmYpZ7exX9vY248mecjw+pVd1+32c86rth31G4sxTdvYot9oq20kyV8leWrXdZfs8rdV24ab2L5W2aS2seVj6fuMP0/ff9yUPrHi0elvhDgpyX9Kn2jxk7t83ngyvpylqqqvS3997KYkT5vxxohV25baB3BY1vEcbKKq2jruT5J3ph/nD2LVvg9f15jdmORVSV6X5NIkV6dPYj0nydPT35j2tUleX1XndF139R717WZVx6h1jdk4ow/pu2CGz03S8n42D4u832CV1nundYvbNGa5HjaN9yS5KMnbk3w0/fnulyf5l0m+OX2//IdV9Ziu615zwLqmsa4xuy79mPa/0j+1/rPZvmH+aekTwh6X5I+q6pu6rvv8PupYxfVO1jdm4xzGg2ftZ2NU1b2zfW/LZ9MnmBxkWbaWZ+3HNAkVq++2I69vnGL+rQv5tztgvd+fvoFX+s7jrPQnT89Icu+qekrXdZ84YB0sML5V9Yj0vzKynwvWzG6R++6FSS7YJaaXJHlZVT06/UnvSUmeV1WvmvRT1OxpUbEd/TnP2yZ5fZJHDzdrJ/2vB51XVZcmeVP6X7H4xSG+9u/9WdaYO+p704+9iV+nmKeFxraq7p/+hO8rx8xyTpIfrKr3dV339/upg1ssJLZd1/1dVZ2X/lj4bkn+oqp+In1yzI3pn5Z5bpJvGd6fvJ96AJZslj71hpHXO/u6eZdzkP591dZpnc3jvHM/MU2O347zGvu1jQmq6pHpk/eT5Mr01wR3s2rbUb9xyGZoG4l+Y7dlmWc5y3ZR+l9TTfplu0/6p9k+PsnvV9WPdF336h2fWbVtuIntaxXsp20kfd9wz11ubnhXkouq6kXpb/q7Q5JnV9XLuq77vzvmNZ6ML2dpqurkJC9Kf83zeV3XXTpjEau2LbUPYO7W+BxsrOF7khcPbz+X5MkH/P5ypb4PX/OYPWTML7RdXFW/luQV6W8yvH/6ZNZn7lHfblZujFrzmN3K8NTorYSlv09/M/FBtb6fzcMiv5NepfW+xZrGbaIZr4dN4/ld1527y///ZZKXDL8Cc16SE5L8ZlXdp+u66w9Y51hrHrO7jRnTXl9V/z39QxMfnD7B4unpHyQ+q5Vb7zWP2a1U1d3T/zJSkryt67oPzKFY+9n4ZTkl/Xi+9cstP9x13UcPuCyjy7PWY9qReRfI3I3uqCePnWvb1s9Nf+4glXZd9+Gu6y7tuu49Xde9ueu65yX5qiR/kv5pQJcMnRkHs5D4Dj9DvnXB+le6rnv3LJ9nXxa273Zdd/WkC1DDF1Q/O7w9JckPzloHx1lUbHceqD1rJJniFl3X/Xm2n+hy/4y/gZu9LWXM3eHJw783JHnZHMtt3cJiOzxx761JHpP+AuaTk9x1qPceSf5t+iclPCnJ26vqK2atg+Mscr/9sfTHwklyv/Q3iVw9lPXW9MkU70jyWyOfmefPKwMctln61NuMvN7Zp867nIP076u2TmtrTued+4lpcvx2nNfYr22MMRyfXpj+QTzXJ/muruuuHDP7qm1H/cYhmrFt6Dd2X5Z5lrNUXdd9evj+4NKu6y7puu4Puq77jvQPF7h3+if/HdvxsVXbhpvYvpZun20jXdddO+lJkV3XvT39Qw7y/9u773BbqvLw498XEFGkgwo2lKIi/ARBIwH0Ioiggr0glgtGjYVEDRgbckGi0Whi7CJR7A0iFmyxXIrGCKgRjYoIFytVmvTy/v5Ya3vm7rvrOfucfc7e38/zzLP37JlZs2bWlD1rVqG853hZh9m8n3QPZ5xeCzwA+A1wzCyWX2z70uND0kgt8WewjiJiK0pe+gZAAodl5s8HWbabxfQ+fKmnWZeCp61p11Iqw/6p/vTCWjlyWIvqHrXU06yLJwIb1u8fz8zbB1yuK8+zkVjI95aLabuBJZ1uXQ2bHzaIXtfhOv0DzLxv3orSQ8y8WOpp1ueedgml4lkrr+HwWa5mUW33Uk+zLp7NTDn2kfS45HnWNS7rAJ8DHlx/el9mnjiCuDTjs6TvaVaoWPyahbAG6aKk1aL5IN2sDKXWwjqUUgjwXsBbR72OKbRQ6fs6SpdFv6W0IqD5t2jO3ep4SoYVlJq3mr2FStvmei7LzB/1mPfrje8PHXI9mjHW8zYiHkZ5uQjwxX5/8DWUBUnbWoHxU5Sa3BcDD8/Mj2fmJZl5S2b+LjPfCzyC8kCwFaPrgndaLdh5m5k3USrKvAD4MTP3VSitCPwTsBczvcwAXDnseiRpjIa5pjZ7U2u/po46nLlc3xfbNk26fs+ds0lTWH0/jure77HRQUTcl9L69ybAbcAzM/P0Hosstv3odWOezOLYGJTXjdmHsyhl5scoL+XWAt4dEZs2Ji+2fTiJx9ei1efYGNSngWvq917XDPB+siiOjYh4APCaOnp4Zl43i2AW2770+JA0MhPwDLaGeo//BrB1/enwzPx0v+VGZN7fh09imrXLzKsp/7taYe02bBgsonvUBKfZcxvfPzrgMqMwyefZKCxkeYPFtN1LPd06msf8sEF8oPHdc22WMvMC4L/q6La10uewFs12T3Cajavh2ak6zyIigBOBx9afPkvnBktmE5dmfJb0Pc0KFYtcrcRwRR3t2SNERGzCzAHz23mKz+XAd+voEyLiDvOxnmmxgOn7j/Xzm8CBEfHM9qER9vqN3x815HpULcJz99JGfO4xH+uYFguYts35fzfEvFsMuR5Vi+C8HVfG18RbwLTdn5lr7Lu6dXObmT8DPl5Hd42IB3eaT/0t9Hmbmbdn5gmZuQul4sx2lDTfMjNfX+OzXWOR/5vNeiRpTJr/Ofv1SHmvxvf2a+pswknW/M/bGh+kd8xWOO1x+f0s4tIpnFHtm4k2wHNnaz+uHxEb9wmutR8vq5UaW+sY1b1/nMd7p3DGrr5M+ial0m+rBdEv9FnM68YMj41Z8LqxtI+NHlrHx/qU5+SWxbYPJ/H4Wuy6HRsDycxbgfPqaK9rBng/WSzHxisoLQteANy5y7upHRvzP6oxrXW++H9jxqQdH9JUm5BnsNVExAbA14BWz9xHZeZ7+oQ/MvP9PnwS06yH5ruN2ezLRXGPmtQ0i4i7AfvV0XMyc8HeRU34eTZnC/zectFs91JPt07mMz9sQHO9Dvc0iWnWg/e0YlGmWUTsBuxQR7+cmQvZYOW0nWfvAQ6p378KPLtXD1fTek+zQsXS0Dp5t63drnTzgMb3OXWZ2Mdl9fPOwObzuJ5psRDp2+oK51BKy9mdhlZabt747Q1DrkerW2znbtfuGTW0hUjbnzW+r91n3ub0W4dcj1Y3lvO2VlB8Zh29lJLhrNFaiLR9YOP7D/vMe06XdWp4YzlvM/PazDw/M//QetCMiLWBnessF9TKyJK0VDQzDvvdm3pdU2cTzm87tFbbCmejiLh7twAiYktmurdfLS6ZeS0zmWkLvU2dwpkGvZ47B9qP9X6+TR3ttA9Hce8/j9IaUM+4DBDObI6NW4Ff9Zl3QUXE5pSWuu5Xfzo8Mwep5O11Y8ZEXjfmcGwMw+tG/3AW3XWjj8sa3+/T+L7Y9uEkHl+LXbdjYxhzvma0Tfd+Mr/uWD/vR/d3U09pzH9U4/dWw0H+35gxaceHNLUm6BnsLyLiTsCXgIfWn/4lM4/rE/Z8mJf34ZOYZn3MdT+O/R414Wl2CDPlAz4ywPyjNqnn2ags1HvLRbHdE5Ruf7FA+WH9zFv5rklMsz7GcU8baV7ehKdZs+HZhb6nTc15FhFvAV5cR08HnpKZtwwRn6m4p4EVKpaKM+vn+sCuPeZrdj3z3a5zzV2zRpbdws7d0d1e9wAAIABJREFUYktfjc6iSduI2IKZSjN/mI91TJl5T9vMvAj4TR3duna91c02je+/7zqXBjGu8/ZxwGb1+ydri3sarYVI22a69XqYAGj28mV6z82iud8CezNzLi9kd5SSNAoXMvOs0K9r20fUz98Dq9qmndn43jWcWvho+zra6bo8UDj0v763wrl/rwJPfcIZ1b6ZaAM8dw6aprsx05JNrzSd9b0/M28GflBHd4+IdemuFc5NwNlt084Cbu6wvtXU8B/eWmbAjOoFEREbAV9nphWoVw/RgqjXje7hLPnrxhyPjUHX4XWji8V83RhAx/cHi3AfTuLxtdjN6d1SfXHbug/M+prh/WTJ8f9G93A8PqQlaMKewVrz3QE4uRHW+zPzVX3iN3Lz9T58EtNsADs0vs9mX471HjUFadYqfHoLpSLqgpnw82xUFuq95di3e8LSDViY/LABzfU63NEkptkA5rovx5qXN8lp1tbw7GWUXhMW0lScZxHxeqD13/ws4PGZecOA8Zmae1qLFSqWhlMa3w/tNENErMXMn+argO/MR0Qi4p7A7nX0otqKiuZm3tM3M6PfAFxUZ7+o8fuyIbdFq1s05y7wQqBVIP+0eVrHNFmotD25fm4I7NNjvic3vp/ZdS4NYlzn7ThrXU+LhUjbCxvf9+ozb/Mh4MKuc2kQi+J+Wyu+raijtwAfHPU6JGk+ZWYCra5mHxARD+80X/291frHF+pyzXDOY6ZFkKdHxJ27rHJ54/vnO0z/ItDqarbj9b0tnNvrMu2a94nlHaZT4/j0Ovp/dRv+YlT7Zgr0e+5cCVxdvz+vR6Xx5Y3vnY6NUd37W+FsyOrPVM1w7gnsW0e/1Z4PVse/VUf3rfN38mRmWijutE1jUY/9U4GH1J/+KTPfMujyXjcm97ox12NjCF43lth1Y0BPa3w/t23aYtqHK5mw42sJ6HVsDOIZwEb1+xrXDO8ni+9+kpnLB3g3dUxjkb0b01bVMPy/UUzc8SFNowl8Bmv12vxJ4ID608eAl/TYjPk08vfhk5hm/dRCgK3Cjdczi0q847xHTXqaRcROwIPr6Fdy4XtKn9jzbIQW5L3luLd7AtNtIfPDBvGixnfPtVmKiPsCj66jv87MoRuoHWde3hSk2QHM9E45joZnJ/48i4i/B95YR88F9h8yP3Eq7mntkXFYAgOlq5WkFM7avcP0I+v0BFZ0mL6sMf3EDtO3Bx7VJw4bNeKRwLHj3i+TMsx3+g4Yh1V1+VXj3h+TNCzAubs1sEufODye0mJZUjI97jHu/TIJw0Kct8C9gRvqPD8BNuwwz7Mb4Xx53PtlEoaFviYDmzbO0Z+Me/sneViAa/LGwHV1+jXATl3icQBwW53vd8Ba4943S31YoGvyZsAdu0xbG3hPI4xjxr1PHBwcHOqzwlDPiZS8gVvrMmcBd2qbfqf6e+uau12XcA5rrPvdHaZvQynAmJRuj9fpEs5HG+E8tcP0pw1w/b4D8Os6z9XANh3maV7Dl8/nvlkMw7DHBiN87gSObaz7yA7Td6/7L4GVPdY3p3t/nWdTSuZuUvJENmubvjal8FsrnGVdwnlUY54vAGu3Td+c0ohFAlcCm4z7GKjxWpfSSlIr7u+YZTheNybsujGKY8PrxsReN5YD6/WZ5xWNbbugw7Ytqn04icfXUjw2gE36bQ/wsJqWSSmgvmuX+byfLJL7yRDHz4oBznn/b0zp8eHgMEkDE/gMRilU/aFGOCfR9r9swG1a1uu6yZjeh09omu3fvv626Xdp2+Z3zibNRrnd055mHZZ5WyPMJw+xTZ5nszzeKJXxE8ghlhnFM+KiPM8mNd1GuE3Le6UtsBOwbZ8wXtgI44/A+qZZx/kPpMd1E7gb8MPGNr9yNmlW51nwvLxJTLMOy5/U2L6HDLGc59lg/0MOpeShJfBL4G6zjM9E39PWiMd8BOowDwkFu1D+kCZwLfAaSjdBewMfaBxwvwQ26LB8z4OyMf3HlMzLA4GH1vUeABxXLx6tMM4F7jzu/TIpw3yn74BxWFWXXzXu/TFJwwKeu9+rYT+W0g39bpSWiz7buDkm8JJx75NJGRbqvGX1Px6/oPzh2bWu513M/Jm4er7+LEzbsNDXZEpLPa35/2Hc2z/Jw0KkLXBUY55rgTfV8HcGHgO8l5nCGAk8e9z7ZRKGBUrbpwIXA+8AnlSvxXsALwZ+1Fj+K8C6494nDg4O0zcAe1IyEVvDEY1r05lt05b3COfNjeV+SGkJeLf62cx8flOPMNau62zNe1K9Dz4MeBlwSf39NuCAHuHcC7iUmcyxf67buWf93rqnXgrcs0c4j2WmMuPFNQ4Pq3FqZtieQY8X/6PYN0vx2GCEz53ABpT7cWveD1Du1w+vYV9bf78e2LlHOHO69zfCeVFj3vMpz1u7AQcB325M+2SfffypxrzfrsvvVsM7vzHtheM+HhpxPrkRr29RXjLs2GPY3uvGdFw3RnFs4HVjUq8bq4ArgOMprY7tQWkZdU/Kc1HzHL4J2Hex78NJPb6W2rHBTGXP/6X0VnAQ5f3UQ4AnAicwU3Argbf2iIv3k0VwTAx5/KxoxH/ZfO4Dj4+ld3w4OEzSwAQ+gwFvbyx/LuXe3WubduwSzrJGOCf2mL6g78MnNM1WUv63fRB4HuXetTOlV/XXMFMYNCnvpTedTZqNcrunPc06hPeHuswVDPEuql+a4XnWCuPutOWV1nOhtWz7tI4FdhnBM2K/NBvXeTap6TaqbaJ/Qe/llDI+/wW8ktJ7wkMo14Xnsnph7FuBA02zrmm2Cvg98E7gYEqjGDtTevY8DrisEd4ZdG84sWeaNeZb0Ly8SUyztvA2AW6sy5475L7pmWZ4nkHJT2uWJ9y/T1x2pEulEib8nrZGHOYrYId5SKxSyeHqxoHRPvyy28Wo30HZNr3f8GVgi3Hvj0kb5jN9B1z/qrr8qnHvi0kbFsm5ex2L6AXspAwLdd7WPwy391jPJXSoBeqw+NO2zv99Zv6o333c2z7pw3ynLaVFpn/rc84mcDNwxLj3xyQNC5C2T+2TprcD/0GXzBgHBweH+R6AEwd8Nkgge4SzVr2e9Vr+BPr0sERpkecHPcK4EfibAbbrr1i9gYf24Y/AXw0QzgtYvSBe+/A/wOZ9whjJvllqxwYjfu4EtgXO6xHO1cDjBwhn1vf+tnCOofd/t1Pp3+r2nep83cK4jR4vY8Z0XAx8TNRh1XyfG3jdGPtxMapjA68bk3rdWDVguv4WePRS2YeTeHwttWOD1XvP6jXcChwNRJ/4eD9ZQgODV6jw/8YUHh8ODpM0DHivaw6reoS1KK6JDP4f4C9Dl3CWNeY5sc/0XsNI34dPaJqtHHBbVtKj94F+aTbq7Z7mNGsLa//Gcu8Zct/0TDM8z4bdD61heY+w5vSM2C/NxnWeTWq6jWqbGKyg9yDhXw48wTTrmWarBlz2JGDjHnHpmWaN+RY0L28S06wtvL9tzLtGr7F9lu2ZZniewZDvBeuwrEd8JvaetkYc5itgh3lKMLgP8K/1ILyO0k3QWcCr6NFjRL+DktK17H7AWym16M6rJ8EtlJrNZwPvBvYY9z6Y5GG+0nfAda/qd7F2WHxpS2lF7ZB6fn6f0mrEdZQM+IspNR5fC9x13PtgUoeFOm8ptak/ClxIyVi5ipL58npgo3Hvh0kcFiJtge0a83513Ns8LcMCpe2uwPsorTJdQ3npf1X9T/V2etQ2d1icaUvpFvQISg8UF9Twr63rej8DvCR3cHBwmM+BEVWoaIT3WOAUSgs/N9XPUxigtbRGGOtQWiU+g5IxeQPwa0rrxQ8aIpzNgTfW++q1dfhJ/W2zIcLZsa771zUul9e4/S09uoaej32zlI4N5uG5E1i/3p/Pqvfr6yitGf0rcJ8hwpnVvb9DOH8NfAL4Td2uS4BvAAcPua+fVZe7pIbzmxruoqsAP8wxwYD5RV435nffLKVjw+vGUPt7KV037k9p1e1kSk8CF1PeH1xDaYnvJMoLy4H242Lah5N6fC2VYwNYl9KIwdsp19gL6rI3U1qUPJPSuuTWQ8TJ+8kSGRiwQsUo94HHh4ODwzgGJvAZjIWrUDGW9+ETmma7Af9Y1/lzyn+tWyhlg35OyUN6DP0rsPZMs/nY7mlNs7ZwPtGI+1DvpDzPBkszRl9geNbPiIv1PJvUdBvVNtG/oPddgcMoPQWdTWl44HrKdeH3lPfQfwdsaJr1TbNHAm8Avko5x66g3NOupDyXvZ8B8ob6pVmH+RckL28S06wtvO/W+W4Fthpy33ie9UkzRlyhooZ5HybwntY+RI2AJEmSJEmSJEmSJEmSJEmSJEnS1Fhr3BGQJEmSJEmSJEmSJEmSJEmSJElaaFaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1rFAhSZIkSZIkSZIkSZIkSZIkSZKmjhUqJEmSJEmSJEmSJEmSJEmSJEnS1LFChSRJkiRJkiRJkiRJkiRJkiRJmjpWqJAkLZiIWB4RWYetxx2fSdbYzyvmEMayRjjLOkxf0ZreZfmVdfrK2cZBkiRJkiTNnXkynUXEiXWfrBp3XCRJkiRJ0poiYlV9dj9x3HGZVpb9kCRNAytUSJIkSZIkSZIkSZIkSZIkSZKkqWOFCkmSNBaj6EVDkiRJkiSpyd44JEmSJEmSlo6I2LqRl7N83PGRJE2ndcYdAUmStDhl5kog5rD8spFFRpIkSZIkSZIkSZIkSZIkacTsoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSdLIRMQmEfHPEfGLiLghIi6NiG9GxNMGWHbdiDgwIt4dEWdFxJURcUtEXBER/xMRKyJi8z5hrIqIjIgT6/j9I+KD9febIuKSiPh8RDx8wO3ZOiLeEhHn1HjcEhGXR8QZNT7367HsRhHxmoj4bkRcFhE3R8QfI+JLEfHUiIgey64fEc+IiBMi4scRcXVd92URcVpEHBERdxlkGxph7hsRX6xxuDEiLqj7+h49lllW92dGxLJh1leXX1mXXdn2+6qIyMZPRzfW0xpOrPP+Zx2/MiLW67O+dSLi4jr/V4aNryRJkiRJ0ywi1o6I50XElyPiDzUv5YqIODMiXhkRd+qx7Gp5ABFxj4j414g4v+YRXRERX4+IAwaMy3NrHsiVEfHniDg3It4QERvW6a38gxWNZZbV/IYPN4K6sEOew7Ie6904Io6NiJ9FxHURcVVEnB4RhwwSb0mSJEmSJl0tK5Gtd/61bMRREfGj+hydEbG8bZlZl58YIl7bRsS/1TyEq2t+xAURcWJE7NZn2S0j4iURcVJE/KrmCdwUEb+PiC/U8hs9y1lGxHoR8Xc1j+SyWsbjTxHxy4j4as1b2brH8rPOl5mriHh4RHyulre4MSIujIjjI+L+Ay4/6/1Xj6MLGz99uENezoouyz4kIt5f9/Gf63p/GRHvi4jth94RkqSpts64IyBJmgwR8UDgm8BWjZ/XA/YB9omIDwOn9wjieOB5HX7fFHhYHV4WEU/IzO8OEJ8nAR8H7tz4+a7AE4EDI+KQzPxMj+WPAN4E3KFt0mbAnnVYVof2ZfcBPlPnbbo78Pg6fCUinpGZf+6w+lOBR3b4fXPgEXV4SUQ8NjN/0W0bGvE5GljR9vN9gZcCz46IAzPzjH7hjMkJwJOAjSlp9+ke8z4WuFv9/qF5jpckSZIkSRMjIu4NfBF4cNukTYE96vDiiHhcZp7XJ6w9gFMo+Rgt6wH7AftFxJGZ+bYuy94B+BzwhLZJO9bh2RHx6MG2aji1kMDXgK3bJu0F7BURu2fmy+Zj3ZIkSZIkLUURsR3wDdZ8lm7OM9fyE4PEo1v5jvvW4bkRcVxmvqHDsmsDv6Nzw9RbAQfV4fkR8eROcYyILSnlZXZom7RJHbYH9q/hHdFh+ZHlywwrIl4BvI3Vt39r4AXAsyLi6X2Wn/P+m0Wc16pxfjnQXhln+zr8TUS8NDOPn+v6JEnTwQoVkqQ5i9I64NeZqUzxGeAjwKWUB5VXAodSXnx3sw5wAfB54AfAb4BbgfsA+wKHUR6wPx8RO2bmpT3C2gl4BvBH4O3A2ZSHqMcAr6a8xD8+Ir6dmZd12J6jgGPr6FXAe4HvAFdQCvY/BHgykB2W3QP4KuVB/RLgXcD/An+o++cZwLMphf8/Ajyly744l/LAfHZdNuq+eBLwdMpD/ykRsXNm3thjXzwO2A34JfBW4CfARsDTKA/AGwFfrvv0tz3CGaX9gHUp2wjwPso+brqyfn6N8vB9T8ox1KtCxaH183LKvpMkSZIkSX1ExGbAmcC9gJuADwKnAauAu1Ce4/8e2Bb4akQ8JDOv7hLclpTKFLdT8mDOBG6mNEzxBkq+ypsj4quZ+bMOy/87M5UpfkZ5Of5TYENKnsiLKflOnZxFyRN6AnBc/e0xlHyVpgtZ052BL1Hyno6jFIL4M7ALcDQlX+KlEfGlzPx6l/VLkiRJkjRtTgLuQSkX8UXKe/7tgItgZOUneoqIIyllIaCUh3gf8CtKWY/7Ay8DdgeOiojLM/Od7UHUz2/XuJ4LXAZsANyPUq5id+DRwHvo3FDou5ipTPFx4D/rNt5GySvZjTUbj2jFf5T5MkOpDZX+ax29GngLsLKOPwp4FfAJyv7oGkz9nO3+24lyLLTyW14PfKFtnvbyQe8CXlK/nw6cSClvdD2lUsrLgQcBH4iIizPT8iOSpL4ic42yoJIkDSUi/oWZWvSvzcw3t02/A/BlyoNey30zc1Vjnm2AC7LLjSkidgK+R3lgPC4zj+owzypKpQOAc4BHZeY1bfMcQnmABXhlZv5b2/RdKJUY1gLOA/bJzN91idO9mpUQ6naeR6mt/zXgKZl5fYflXkDpkQNgv8z8r7bp22Xmrzqts07fl/IwuRbwN5n5Hx3mae7HHwKPbK/pHxHPAT5aRz+XmU9vm76MUpEEYO/MXNk2fQWlUAGZuUYXnBGxktLTxmmZuaxHHI/JzBVrbOjMfMcCR1EKY9ynU3pExF0pFS/uAPx7Zr68W3iSJEmSJE2biFgOfLiOtufJfAJ4FqWww96ZuUaFg5pfcgawPvCmzHxd2/SVzPS2eRGwR2b+vm2ePSkvuQN4Z2b+fYd1nFOn/zclT+aGtnmeSunBomWNPIVe29phu05k5kX+1TXeP2ubZ1tKYYD1gC9mZscCEJIkSZIkTYNmOQHKO/wDMvMbHeYbVfmJVZRyIB/JzOVt03YAfkwpJ3AMJZ8g2+ZZi1JZ49mUxhPunZlXNqYHsE1mnt9jm4+hNBSRwP2b5TkiYj3gmhqHt2fmGj1QNObdNDP/1PbbnPNlZiMi1qU0OrEVJU9k98z8eds8OwLfpTR0AR3Kfsx1/9XpWzPTAMahmXlij7AeTekVBbqXl1kPOJVSKeQiYNvMvLVbmJIkQeeuliRJGlh9yHp+Hf0J8M/t82TmLXWeW7qFk5m/7laZok4/Fzihjj5xgKgd1l6ZovokMy0T7tVh+pGU+2MCz+xWmaLGqb1Hh2dSMgNuBJ7bKTOgLvdBSi8cAMs7TO9amaJO/yYzPTAMsi9e2KnbxMz8GKWFAIAnRcTdBwhrHD5ESY+16NzaA5TMjzs05pckSZIkSX3UF9bPqKMv6/TSHiAzf0RpRRA65GW0Oby9MkUN40zgf+popzyZFzLTquEL2itT1DBOovRuOh+O6tRrRi0QcEod3XOe1i1JkiRJ0lJ0YqfKFNVIyk/08Q+UcgJn06EyRQ3/duBwSu8PdwGe2jY9e1UGqI4FLqfkWxzUNm1TZsoqnN4rkA6VKbZm9Pkyg3oCpTIFwBvbK1PU9f4U+KdegYxg/w3r1fXz5E6VKWqcbqT0TAKlMs7ec1ynJGkKWKFCkjRXuwKb1O8f6VYpolZM6PYgvYaI2CQitomIB0XEjrXm+1V18g61NYNuzs3Mn3SJRwI/qqP3a1vnWsABdXRlfSgdRuvB77TM7NXlIcw8SO/eL9CI2CIitmvth7ovWuE/uM/i52bmOT2mtyofrAMs6xeXcagtSX6zji7vMtuh9fOcbmkvSZIkSZLW8DhgbeB6Zhpd6KaVl7FVRNy7yzxXUVoA7KaVR3G/DtP2rZ8/6lSxoeGjPabNVlIa4eimFe9NI2LjeVi/JEmSJElL0Sd6TJuX8hNtDqyfJ/dpwPMqSu+TfdcREWtFxFYRcf9G+YwHAq3GONvLaFwB3Fy/Pyci1hki/qPOlxlGKx8mKT14dPPhOs9AZrH/BhYRGzJTruWkXvPWCiKX19FhjytJ0hQa5gYuSVInOzW+n9Vn3h9QHgg7ioidgFdQKjX06i1hLUoljku7TP9Fn3i0av1v0Pb7fYHWS/Ez+oTRyW718zERMegDZcftjIg9gL+jPMRu2mP5zfuEP0iatOwEfLrP/ONyAvBoYNuI2Csz/5I+EbEbsGMdtXcKSZIkSZIG18rLuDNwa0T0mrfp7sBvOvz+q9ryYzcd82QiYj1g2zraq2EIKK1OjtrlmXlFj+nNFiQ3YKbRD0mSJEmSplmvxg5HVn6ik4i4D7BFHX1zRLx5tuuIkiFyCPB84K+AO/VYfrUyGpl5U0R8BngOpfeLh0bEZ4GVwPdqZY5uRp0vM4xWWZ8LM/PybjNl5mURsYpSnqajuey/Ie3CTAPin4qITw243MDHlSRpelmhQpI0V83C/t0qOLRc0m1CRDwfeD+D35t6PYB17CqyofVif+2235sPbn8cMB5Nd53FMmtsR0SsAI6e7fJthkmTXhU3xu0USusBm1N6o2hWeDmsft5I79YkJUmSJEnS6maTlwHlRX8ng+bJtPee3ez1oV+rlf2mz8ag8YY185MkSZIkSZpWV/aYNpLyEyMOH9ryNGojD/9JafhzEJ3i+DJK3saBwH2AI+twe0T8EPgscHxmXt223KjzZYbRKh/Sr0wJlHIlHStUjGj/DWqc+0uSNOGsUCFJGqWBu/lriogHMFOZ4lLgX4BvA6uAazPzljrfYcB/tBaba2TnQeuF+leBV80mgIjYh5nKFBcAbwPOpLQucF1m3lrnOxY4aoAgZ5Umi01m3hwRH6P0YPK0iDg8M6+rD+cH19k+36d1B0mSJEmStLpWXsblwN5DLHfhPMRFkiRJkiQtIZl5W4/Jcy4/0UezwYNjgc8NuNx1beOvY6YywGnAe4AfAhcDN7R64oyI04G96FBWJTOvAQ6KiIcBTweWATvXOO5WhyMi4omZ+d8dtmGc+TJzLVMy5/03hGaavwj43oDL9ar4I0kSYIUKSdLcNR887gac12Peu3X5fTnlnnQb8MjM/EWX+ea7B4VmN4ZbzmL5K4CtgHUz86ezjMML6ueVwMMzs1uri4Pui277vNP0Pw0Y5ricQKlQcRfgacCJwBOZacXyQ+OJliRJkiRJS9YV9XMD4Od9CkLMp2YDCVv0mbffdEmSJEmSNH6jKD/RL/yWW2azjogI4G/q6BnAo1oVADroW0YjM38A/KCGvQGlYsVy4MmU3hVOjohtMvOGtm0YR75Mq6xPvzIlXecZ9f4bQDPNr5+n40qSNKXau9WWJGlY5za+P7TPvN2mP6h+/m+PyhRQau3PpwuZeYH/iFks/6P6uVtErDvLOLT2xXd6VKaAwffFMGmyqB82M/P/gFZrDYfWz8Pq50XAtxY8UpIkSZIkLW2tvIw7Mv/5Ll1l5o3Ar+vorn1m7xfPieitU5IkSZKkJW4U5Sd6uQC4un7fY5ZhbArcvX7/XLfKABFxF+D+wwScmddm5pcy8ynAO+vPWwJ7NmYbZ75Mq6zPfSNis24zRcQWwNZdJo9q/w2al/PjxryzTXNJkjqyQoUkaa7OYabm+nNqDfQ1RMQ9gP26hNHqMWn9biuJiC2Bg2YbyUHUh7tT6+gjI2KXIYP4Yv3ciJkC/8MaZF/sAvzVgOHt1Gc7WhUSbgNWDhjmqNxYP+84xDIn1M+9ImJvYJ86fmJmWmBCkiRJkqThfImZF9EvH2dEmGkoYZeIeFCP+Z7bJ5wbG9+HyXOQJEmSJEmjM4ryE13V3hy+Ukf3i4gHziKYdRrfu5bRoPTCsE6P6f00G4fcvPF9nPky36yfQe+8luV1nk5Gtf8GysupjZJ+v44+q1b2kCRpJKxQIUmak8y8CfhwHd0ZOLJ9nohYB/gg0K3VgV/Vz+0i4q87LH9n4JPAneYc4f7eBtxOeSD8dETcs9uMHaZ9BPhtK5yI6NnLRUTsGRGPbPu5tS/2jIhtOyyzBfCxXuF2cHxErPHwGhHPAh5bR0/JzD8OGe5ctda3zRDLfAa4lpI+n6T8l0lmjkFJkiRJkjSgzPwl8Lk6+syIeGWv+SPivhFx8DxF53hmChF8MCLWyAeKiKcAT+oTTjN/Y5g8B0mSJEmSNDqjKD/Rz5spjUeuBZzUp3zH2hFxSNs8lwFX1e8HR8Qahfkj4qHAG3uEe78B4t1sfPTC1pcx58ucwkweylERsUYPEhGxA/C6HmHMef9VVwA31+/98nKOq58bUtJ8424zRsQdI+KlEbFenzAlSbJChSRpJI4Ffle/vyUiPhkR+0fEQyLimcD3gAOAs7ss36ogsBZwakS8NiIeEREPi4gXU7qQ5UZvAAAHxklEQVTtWwZ8d/42ocjMHwNH19HtgXMj4riI2Ccido6IZRHx8og4nbaKDbVyydOBm4C7AN+OiI9HxFMjYteIeGhEHBQRx0TET4AzgJ3aovDR+rk+cFpEHB4Rf12HI4D/BXYA/nvATTqb0jXk2RGxvMbjURHx3kb8rwWOGDC8Ufpe/TwoIl4UETtGxLZ1uGunBTLzOuDTdbTVdeS3M/Oi+Y6sJEmSJEkT6sXABfX72yPitIh4fkQ8PCJ2iYh9I+IfIuK/gPOBp8xHJDLzHEqDHAC7A2dFxPNqXsbeEfEuSkMLP2gu1iGoHzHTsuEbI+LREbF9I89hIRrskCRJkiRpqo2o/ES/dZzLTFmHHYCfRsRba3mVXSJi94g4OCLeSanc8XFg48bytwOfqKP/Dzizzr9bLSPyduB0Sj7DeV2icW9gZUT8rJYteWLdtodGxJMj4jPAS+u8Pwb+p235seTLZObNwOF1dBPg+xHx6rre3SPiNcyU6Ti/Sxij2H9k5q3AWXX0sBrGAxt5OZs25v0K8O919BHAzyPi6EaZnj1qftIJlAoj72ZuvYtIkqaENwtJ0pxl5tURsT+lS8C7AwfXoelE4DQ69CSQmWdFxNHAMZSH13/qsJq3Az8F9hhdzDvLzOMi4vZGfF5H51r3p3VY9vsRsQz4LHAv4JA6dHNN2/InRcSHKV1ebgW8s23+24BXUB5odx9gc06tw9F07sXhGuCgzFw1QFij9jbgqZQuG9/fNu0jlK4jOzkBeEFj/EMjj5kkSZIkSVMiM/8UEXtQ8jL2oryM7tVq5DU9ps3V4ZT8kMcDD6LkJzVdCDyLmRf5N7ZNJzOvrQUlXgU8BPhG2yx7AytHFmNJkiRJktTRXMtPDLiOd0TEdcA7gI2AI+vQyc2smZfwOko5lJ0pjVV+sm36nyiVGI6lNMrZzQ516OYXwJMzc7XGIcaZL5OZJ0fEkcBbKWVj3tw2y/WUSjFHAtt2CWZU++/NwJeAzTqEcQywojH+ihruUZQySivo7jpKORtJknqyhwpJ0khk5s8oL7rfCvyK0srA5cB3gGdl5qF9lj8WeBzlJfeVlAfZ3wH/CeyXmQvag0JmvonysPsOSkWOa4BbKV0Wnga8HnhOl2W/D2wH/C2lMsMfmHkw/y1lG18HPCAzP9ph+cNq2GdQeo+4CbiI0qPEX2fmv7cv02dbVgD717hcUuOyCngv8KDMXKNiyEKovYHsDnwK+A1lOwdZ7gfMtF5wFeUYkSRJkiRJs5SZF2fmIygVGT5BaRnxeuAWSl7I9yiNXTyy5lvMVzxuBg6iNDRxJnB1jcfPgTcBuwJXNBa5uktQr6Y0xnAG5QW7L84lSZIkSRqDuZafGHAdHwTuR2lo8ruUsiq3UgrTnwecXNd/j8w8v23ZqykVAo4Czq3x+jMlL+JtwIMz8/Qeqz8DWEapEPAdSiMQ11LyVC6p2/e3wM6ZeWGX+I8tXyYz3wbsSSl3cSkz5VM+BOyWmaf2WX6u+68VzqnAPsAXKMfILT3mzVrGaHtKGaWzmcn/uRb4P8p+fB6wZWbe0G/9kiRFW6VHSZKkRS0iNgQuBu4EvC8zXzLmKEmSJEmSpAUSEXtSCisA7JuZ3xpnfCRJkiRJkiRJ0tJmDxWSJGmpOZhSmQLgP8YZEUmSJEmStOAOrp+3AOeMMyKSJEmSJEmSJGnps0KFJElaMiJiHeCVdfTszLTghCRJkiRJEyIiNo+IjXtMfwzwojr6xcy8amFiJkmSJEmSJEmSJtU6446AJElSLxGxKbApsBnwD8D2ddKbxhYpSZIkSZI0H3YEvhARnwO+CfwauB24D3AQ8GxgbeAG4LXjiqQkSZIkSZIkSZockZnjjoMkSVJXEbECOLrt5y9n5oFjiI4kSZIkSZonEbEM+E6f2a4BnpaZ35j/GEmSJEmSJC0+EXFX4K6zWPTmzDxv1PGRJGmps4cKSZK0VNwKXAR8CnjzmOMiSZIkSZJG72xgObA/8GBgC2BjSiWK84GvAe/OzMvGFUFJkiRJkqRF4CWs2TDlIC4Cth5tVCRJWvrsoUKSJEmSJEmSJEmSJEmSJGkJiIgVzLJCRWZuPdrYSJK09FmhQpIkSZIkSZIkSZIkSZIkSZIkTZ21xh0BSZIkSZIkSZIkSZIkSZIkSZKkhWaFCkmSJEmSJEmSJEmSJEmSJEmSNHWsUCFJkiRJkiRJkiRJkiRJkiRJkqaOFSokSZIkSZIkSZIkSZIkSZIkSdLUsUKFJEmSJEmSJEmSJEmSJEmSJEmaOlaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1/j+aeOcrmpqnWAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(20,20), dpi=200)\n", + "\n", + "plt.subplot(4,3,1)\n", + "sns.boxplot(x = 'popularity', data = df)\n", + "\n", + "plt.subplot(4,3,2)\n", + "sns.boxplot(x = 'acousticness', data = df)\n", + "\n", + "plt.subplot(4,3,3)\n", + "sns.boxplot(x = 'energy', data = df)\n", + "\n", + "plt.subplot(4,3,4)\n", + "sns.boxplot(x = 'instrumentalness', data = df)\n", + "\n", + "plt.subplot(4,3,5)\n", + "sns.boxplot(x = 'liveness', data = df)\n", + "\n", + "plt.subplot(4,3,6)\n", + "sns.boxplot(x = 'loudness', data = df)\n", + "\n", + "plt.subplot(4,3,7)\n", + "sns.boxplot(x = 'speechiness', data = df)\n", + "\n", + "plt.subplot(4,3,8)\n", + "sns.boxplot(x = 'tempo', data = df)\n", + "\n", + "plt.subplot(4,3,9)\n", + "sns.boxplot(x = 'time_signature', data = df)\n", + "\n", + "plt.subplot(4,3,10)\n", + "sns.boxplot(x = 'danceability', data = df)\n", + "\n", + "plt.subplot(4,3,11)\n", + "sns.boxplot(x = 'length', data = df)\n", + "\n", + "plt.subplot(4,3,12)\n", + "sns.boxplot(x = 'release_date', data = df)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import LabelEncoder, StandardScaler\n", + "le = LabelEncoder()\n", + "\n", + "# scaler = StandardScaler()\n", + "\n", + "X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')]\n", + "\n", + "y = df['artist_top_genre']\n", + "\n", + "X['artist_top_genre'] = le.fit_transform(X['artist_top_genre'])\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "y = le.transform(y)\n", + "\n" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 1, 0, 0,\n", + " 0, 1, 0, 2, 0, 0, 2, 2, 1, 1, 0, 2, 2, 2, 2, 1, 1, 0, 2, 0, 2, 0,\n", + " 2, 0, 0, 1, 1, 2, 1, 0, 0, 2, 2, 2, 2, 1, 1, 0, 1, 2, 2, 1, 2, 2,\n", + " 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 0,\n", + " 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2,\n", + " 1, 2, 2, 2, 0, 2, 1, 1, 1, 2, 1, 0, 1, 2, 2, 1, 1, 1, 0, 1, 2, 2,\n", + " 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2,\n", + " 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 2, 0, 2, 2, 0, 2, 2, 1, 1, 0,\n", + " 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 2, 2, 2, 1, 1, 1, 1, 1, 0,\n", + " 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2,\n", + " 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 1, 2, 1, 2, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 1],\n", + " dtype=int32)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ], + "source": [ + "\n", + "from sklearn.cluster import KMeans\n", + "\n", + "nclusters = 3 \n", + "seed = 0\n", + "\n", + "km = KMeans(n_clusters=nclusters, random_state=seed)\n", + "km.fit(X)\n", + "\n", + "# Predict the cluster for each data point\n", + "\n", + "y_cluster_kmeans = km.predict(X)\n", + "y_cluster_kmeans" + ] + }, + { + "source": [ + "Ces chiffres ne signifient pas grand-chose pour nous, alors obtenons un 'score de silhouette' pour vérifier la précision. Notre score est moyen.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.5466747351275563" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ], + "source": [ + "from sklearn import metrics\n", + "score = metrics.silhouette_score(X, y_cluster_kmeans)\n", + "score" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.cluster import KMeans\n", + "wcss = []\n", + "\n", + "for i in range(1, 11):\n", + " kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)\n", + " kmeans.fit(X)\n", + " wcss.append(kmeans.inertia_)" + ] + }, + { + "source": [ + "Utilisez ce modèle pour déterminer, en utilisant la méthode du coude, le meilleur nombre de clusters à construire\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAFNCAYAAACAH1JNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5hdZX33//d3coIQgSQEUkJMQE4iVMABgyIp4SyHhD3wCLWK/VEpLSii9Kn2oG3110ptK1JbWypWeMoD8kNIEJCDnEU5hIMEpEIKBMIpkUA4J4R8f3+sNWYnmWRmktmz9t7zfl3XvvZa91p7z3c5l5kP973WfUdmIkmSpNbRUXUBkiRJ6h8DnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASdI6RMSnIuKndfsZETtWWZMkgQFOkoiIJyPizYh4re717arrkqR1McBJUuHozBxT9zq96oIkaV0McJLUPx+NiMcj4tcR8Y2I6ACIiI6I+IuIWBARiyLiwojYojx2QUR8odyeVA7FnlbuvycilnR/jyT1hf9gSFL/HAt0AnsDM4H/p2z/VPk6ENgBGAN0D8PeCvxOuT0deBw4oG7/9sxc2diyJbUTA5wkFWZHxMt1r0+v47yzM3NJZj4FnAOcWLZ/HPinzHw8M18DvgScEBHDKQLc/mUv2wHA3wMfLj83vTwuSX1mgJOkwqzM3LLu9R/rOO/puu0FwLbl9rblfv2x4cA2mfk/wOvAnsBHgKuAZyNiFwxwkjaAAU6S+mdy3fa7gWfL7WeBKWscWwG8UO7fChwHjMzMZ8r9k4CxwAONLFhS+zHASVL//ElEjI2IycAZwA/K9ouBMyNi+4gYA/wt8IPMXFEevxU4Hbit3L+l3P9pZr4zaNVLagvDqy5AkprEjyKiPkjdAMzp4bw5wL3AFsD3gfPL9u9RDKPeBmwCXAd8pu5ztwLvYlWA+ykwum5fkvosMrPqGiRJktQPDqFKkiS1GAOcJElSizHASZIktRgDnCRJUosxwEmSJLWYITeNyFZbbZVTp06tugxJkqRe3Xvvvb/OzAlrtg+5ADd16lTmzp1bdRmSJEm9iogFPbU7hCpJktRiDHCSJEktxgAnSZLUYgxwkiRJLcYAJ0mS1GIMcJIkSS3GACdJktRihtw8cA21ciUsWgTLlsGoUbD11tBhRpYkSQPLdDFQVq6EefNg2jSYOrV4nzevaJckSRpABriBsmgRzJwJC8oJkxcsKPYXLaq2LkmS1HYMcANl2bJV4a3bggVFuyRJ0gAywA2UUaNgypTV26ZMKdolSZIGkAFuoGy9NcyZsyrETZlS7G+9dbV1SZKktuNTqAOlowP22APuvBMefxzeeqvY9ylUSZI0wEwXA6mjAyZOhGuugUMPhSVLqq5IkiS1IQNcI9Rq8M47cOWVVVciSZLakAGuEfbaq5gL7vLLq65EkiS1IQNcI0QUvXA33ACvvFJ1NZIkqc0Y4BqlqwuWL4err666EkmS1GYMcI0ybVrxQIPDqJIkaYAZ4BqlowOOPbZ4IvWNN6quRpIktREDXCN1dRXh7frrq65EkiS1EQNcIx1wAIwbBz/8YdWVSJKkNmKAa6QRI2DmTPjRj4oHGiRJkgaAAa7RajVYuhRuuqnqSiRJUpswwDXawQfDu97l06iSJGnAGOAabZNN4MgjYfbsYnktSZKkjWSAGwy1GixeDD/9adWVSJKkNmCAGwxHHFH0xDmMKkmSBoABbjCMGQOHHVYEuJUrq65GkiS1OAPcYOnqgoULYe7cqiuRJEktzgA3WI46CoYPd1JfSZK00Qxwg2XsWDjooGIYNbPqaiRJUgszwA2mWg3mz4eHHqq6EkmS1MIMcINp5kyIcBhVkiRtFAPcYNpmG/jIR5xORJIkbRQD3GCr1WDePHjssaorkSRJLcoAN9hqteLdXjhJkrSBGhrgIuLMiHg4Ih6KiIsjYpOI2D4i7oqI+RHxg4gYWZ47qtyfXx6fWvc9XyrbfxURh9W1H162zY+ILzbyWgbM5Mmwzz7eBydJkjZYwwJcREwCPgt0ZubuwDDgBOBs4JuZuSPwEnBy+ZGTgZfK9m+W5xERu5Wfex9wOPCvETEsIoYB/wIcAewGnFie2/y6uuCee+Cpp6quRJIktaBGD6EOBzaNiOHAaOA5YAZwWXn8AmBWuT2z3Kc8flBERNl+SWYuy8wngPnAvuVrfmY+npnLgUvKc5vfsccW77NnV1uHJElqSQ0LcJn5DPAPwFMUwW0pcC/wcmauKE9bCEwqtycBT5efXVGeP76+fY3PrKu9+e28M+y+u8OokiRpgzRyCHUsRY/Y9sC2wGYUQ6CDLiJOiYi5ETF38eLFVZSwtq4uuP12eOGFqiuRJEktppFDqAcDT2Tm4sx8G7gc+DCwZTmkCrAd8Ey5/QwwGaA8vgXwYn37Gp9ZV/taMvO8zOzMzM4JEyYMxLVtvFqtWFJrzpyqK5EkSS2mkQHuKWBaRIwu72U7CPglcDNwXHnOSUB3grmy3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSMpHnS4soHXM7D22AN23NHpRCRJUr818h64uygeRrgPmFf+rPOAPwU+HxHzKe5xO7/8yPnA+LL988AXy+95GLiUIvxdC5yWme+U98mdDlwHPAJcWp7bGiKKXrgbb4SXXqq6GkmS1EKi6OQaOjo7O3Pu3LlVl1G4+2744AfhwgvhE5+ouhpJktRkIuLezOxcs92VGKrU2QnbbecwqiRJ6hcDXJU6Ooo54a69Fl57repqJElSizDAVa2rC956qwhxkiRJfWCAq9r++8OECU7qK0mS+swAV7Vhw2DWLLjqqqInTpIkqRcGuGZQqxX3wP3kJ1VXIkmSWoABrhnMmAFbbOHTqJIkqU8McM1g5Eg4+uhiWa0VK6quRpIkNTkDXLOo1WDJErj11qorkSRJTc4A1ywOOwxGj3YYVZIk9coA1yxGj4YjjoArroCVK6uuRpIkNTEDXDPp6oLnnoM776y6EkmS1MQMcM3kyCOLBxqc1FeSJK2HAa6ZbL45HHJIcR9cZtXVSJKkJmWAaza1Gjz5JDzwQNWVSJKkJmWAazbHHFMsr+UwqiRJWgcDXLPZaiuYPt3pRCRJ0joZ4JpRrQaPPFK8JEmS1mCAa0bHHlu82wsnSZJ6YIBrRttuC/vt531wkiSpRwa4ZtXVBfffD088UXUlkiSpyRjgmlX3MOoVV1RbhyRJajoGuGa1ww6w554Oo0qSpLUY4JpZVxf87GfF+qiSJEklA1wzq9WKd4dRJUlSHQNcM9ttN9h1V6cTkSRJqzHANbtaDW65BV58sepKJElSkzDANbuuLnjnHbjyyqorkSRJTcIA1+z22gumTHEYVZIk/YYBrtlFFMOo118Pr7xSdTWSJKkJGOBaQVcXLF8O11xTdSWSJKkJGOBawX77wcSJTuorSZIAA1xr6Ogolta65hp4882qq5EkSRUzwLWKWg3eeAOuu67qSiRJUsUMcK1i+nQYN86nUSVJkgGuZYwYAcccU8wHt3x51dVIkqQKGeBaSa0GS5fCzTdXXYkkSaqQAa6VHHIIjBnjMKokSUOcAa6VbLIJHHkkzJ5dLK8lSZKGJANcq+nqgkWL4I47qq5EkiRVxADXao44ouiJc1JfSZKGLANcqxkzBg47rLgPLrPqaiRJUgUMcK2oVoOFC+Gee6quRJIkVcAA14qOPhqGD/dpVEmShigDXCsaOxZmzCjug3MYVZKkIccA16pqNZg/Hx56qOpKJEnSIDPAtapZsyDCYVRJkoaghga4iNgyIi6LiP+OiEciYr+IGBcRN0TEY+X72PLciIhzI2J+RDwYEXvXfc9J5fmPRcRJde0fiIh55WfOjYho5PU0lW22gf33dzoRSZKGoEb3wH0LuDYzdwXeDzwCfBG4MTN3Am4s9wGOAHYqX6cA3wGIiHHAV4APAvsCX+kOfeU5n6773OENvp7m0tUF8+bBY49VXYkkSRpEDQtwEbEFcABwPkBmLs/Ml4GZwAXlaRcAs8rtmcCFWbgT2DIifgs4DLghM5dk5kvADcDh5bHNM/POzEzgwrrvGhqOPbZ4dxhVkqQhpZE9cNsDi4H/jIj7I+K7EbEZsE1mPlee8zywTbk9CXi67vMLy7b1tS/soX3oePe7YZ99DHCSJA0xjQxww4G9ge9k5l7A66waLgWg7Dlr+DwYEXFKRMyNiLmLFy9u9I8bXLUa3H03PP107+dKkqS20MgAtxBYmJl3lfuXUQS6F8rhT8r3ReXxZ4DJdZ/frmxbX/t2PbSvJTPPy8zOzOycMGHCRl1U06nVivcrrqi2DkmSNGgaFuAy83ng6YjYpWw6CPglcCXQ/STpScCccvtK4JPl06jTgKXlUOt1wKERMbZ8eOFQ4Lry2CsRMa18+vSTdd81dOy8M+y+u8OokiQNIcMb/P2fAS6KiJHA48DvU4TGSyPiZGAB8L/Kc68BPgrMB94ozyUzl0TEV4HuhT//JjOXlNt/DHwf2BT4cfkaemo1+NrXYNEi2HrrqquRJEkNFjnElmLq7OzMuXPnVl3GwHrwQXj/++G88+DTn666GkmSNEAi4t7M7Fyz3ZUY2sEee8B73uOkvpIkDREGuHYQUUzqe+ON8PLLVVcjSZIazADXLmo1WLECrrqq6kokSVKDGeDaxT77wKRJDqNKkjQEGODaRUdH0Qt37bXw+utVVyNJkhrIANdOajV46y348dCcTUWSpKHCANdOPvIRmDDBSX0lSWpzBrh2MmwYzJxZPMiwbFnV1UiSpAYxwLWbri549VX4yU+qrkSSJDWIAa7dzJgBm2/uMKokSW3MANduRo6Eo4+GOXOKeeEkSVLbMcC1o64uePFFuO22qiuRJEkNYIBrR4cdBqNHO6mvJEltygDXjkaPhiOOgCuugJUrq65GkiQNMANcu6rV4Lnn4M47q65EkiQNMANcuzrqqOKBBp9GlSSp7Rjg2tXmm8PBBxcBLrPqaiRJ0gAywLWzWg2eeAIeeKDqSiRJ0gAywLWzmTOho8NhVEmS2sx6A1xE7BMRE+v2PxkRcyLi3IgY1/jytFG22gqmT3c6EUmS2kxvPXD/DiwHiIgDgK8DFwJLgfMaW5oGRFcXPPJI8ZIkSW2htwA3LDOXlNsfA87LzB9m5l8COza2NA2IWbOKd4dRJUlqG70GuIgYXm4fBNxUd2x4D+er2UyaBPvtZ4CTJKmN9BbgLgZujYg5wJvA7QARsSPFMKpaQa0G990HTz5ZdSWSJGkArDfAZeb/C3wB+D6wf+ZvJhTrAD7T2NI0YGq14t1eOEmS2kJvT6GOBu7NzCsy8/WI2CUizgR2z8z7BqdEbbQddoA99zTASZLUJnobQr0WmAq/GTb9ObADcFpE/F1jS9OAqtXgZz8r1keVJEktrbcANzYzHyu3TwIuzszPAEcARzW0Mg2srq5iSa3Zs6uuRJIkbaTeAlz9IpozgBsAMnM5sLJRRakB3vte2GUXJ/WVJKkN9BbgHoyIfyjve9sRuB4gIrZseGUaWBFFL9wtt8CLL1ZdjSRJ2gi9BbhPA7+muA/u0Mx8o2zfDfiHBtalRqjV4J134Ec/qroSSZK0EXoLcGOAH2XmGZn5i7r2pRQPOKiV7L03TJniMKokSS2utwD3z8D4HtrHAd8a+HLUUBFFL9z118Orr1ZdjSRJ2kC9BbgdM/O2NRsz83bgtxtTkhqqVoPly+Hqq6uuRJIkbaDeAty71nNsxEAWokHyoQ/BxIlO6itJUgvrLcDNj4iPrtkYEUcAjzemJDVURwfMmgXXXANvvll1NZIkaQMM7+X454CrI+J/AfeWbZ3AfjiRb+vq6oJ/+7fiXriZM6uuRpIk9VNvPXBHAr8H3AFMKV+3Ar+dmY82uDY1yvTpMHasw6iSJLWo3nrgtgPOAd4LPEgR5BYBo4G3GluaGmbECDjmGJgzp3igYeTIqiuSJEn9sN4euMw8KzM/BGwDfAlYAvw+8FBE/HIQ6lOjdHXByy8XKzNIkqSW0tsQardNgc2BLcrXs8BdjSpKg+CQQ2DMGCf1lSSpBa03wEXEeRFxB/ADigcXfgYcn5mdmfn7g1GgGmSTTeDII2H27GJ5LUmS1DJ664F7NzAKeB54BlgIvNzoojRIajVYtAjuuKPqSiRJUj/0dg/c4cA+rFq4/gvAPRFxfUT8daOLU4N99KMwapRPo0qS1GJ6vQcuCw8B1wA/pngS9T3AGQ2uTY02ZgwcdlgR4DKrrkaSJPVRb/fAfTYiLomIpyjmfzsK+G+gRrGgvVpdrQZPPw1z51ZdiSRJ6qPe5oGbCvx/wJmZ+Vzjy9GgO/poGD686IXbZ5+qq5EkSX3Q2z1wn8/MH25MeIuIYRFxf0RcVe5vHxF3RcT8iPhBRIws20eV+/PL41PrvuNLZfuvIuKwuvbDy7b5EfHFDa1xSBs3Dg48sJhOxGFUSZJaQl/ngdsYZwCP1O2fDXwzM3cEXgJOLttPBl4q279ZnkdE7AacALwPOBz41zIUDgP+BTgC2A04sTxX/dXVBY89Bg8/XHUlkiSpDxoa4CJiO4r1VL9b7gcwA7isPOUCYFa5PbPcpzx+UHn+TOCSzFyWmU8A84F9y9f8zHw8M5cDl5Tnqr9mzoQIJ/WVJKlFNLoH7hzgfwMry/3xwMuZuaLcXwhMKrcnAU8DlMeXluf/pn2Nz6yrXf01cSLsv7/TiUiS1CIaFuAi4ihgUWbe26if0Y9aTomIuRExd/HixVWX05xqNXjwQZg/v+pKJElSLxrZA/dh4JiIeJJieHMG8C1gy4jofvp1O4oVHijfJwOUx7cAXqxvX+Mz62pfS2aeVy7/1TlhwoSNv7J2dOyxxbu9cJIkNb2GBbjM/FJmbpeZUykeQrgpMz8O3AwcV552EjCn3L6y3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSPLn3Flo66n7U2ZAp2dBjhJklrAYDyFuqY/BT4fEfMp7nE7v2w/Hxhftn8e+CJAZj4MXAr8ErgWOC0z3ynvkzsduI7iKddLy3O1oWo1uOsuWLiw6kokSdJ6RA6xub86OztzrqsO9OzRR2GXXeDcc+Ezn6m6GkmShryIuDczO9dsr6IHTs1q553hfe9zOhFJkpqcAU6r6+qC22+HRYuqrkSSJK2DAU6rq9Vg5Uq40udBJElqVgY4re63fxt22MFhVEmSmpgBTquLKIZRb7wRXn656mokSVIPDHBaW60Gb78NV11VdSWSJKkHBjitbd99YdIkJ/WVJKlJGeC0to6OYmmta6+F11+vuhpJkrQGA5x61tUFb75ZhDhJktRUDHDq2f77w1ZbOYwqSVITMsCpZ8OHw8yZxYMMy5ZVXY0kSapjgNO6dXXBK68UU4pIkqSmYYDTus2YAZtv7qS+kiQ1GQOc1m3UKDj6aJgzB1asqLoaSZJUMsBp/Wo1ePFFuO22qiuRJEklA5zW7/DDYdNNfRpVkqQmYoDT+o0eDUccAVdcAStXVl2NJEnCAKe+qNXg2WfhrruqrkSSJGGAU18cdRSMGOEwqiRJTcIAp95tsQUcfHAxnUhm1dVIkjTkGeDUN11d8MQT8ItfVF2JJElDngFOfXPMMdDR4aS+kiQ1AQOc+mbCBJg+3fvgJElqAsOrLkAt5NRTi4cZ5s+HMWNg662LXjlJkjSo/Ourvlm5EnbaCc48s3ifNg3mzXNuOEmSKmCAU98sWgTHHgsLFhT7CxbAzJlFuyRJGlQGOPXNsmWrwlu3BQuKdkmSNKgMcOqbUaNgypTV26ZMcV44SZIqYIBT32y9NcyZsyrETZkC3/senHyyT6ZKkjTIDHDqm44O2GMPuPNOePLJ4n3XXeHVV4tJfs86C95+u+oqJUkaEgxw6ruODpg4seh9mzgRtt0Wbr8dTjsN/vEfYcaMYtF7SZLUUAY4bZxRo+Db34aLLoL77oO99oKbb666KkmS2poBTgPjd38X7rkHxo0rFr7/u79zjjhJkhrEAKeBs9tucPfdcPzx8Gd/VswT99JLVVclSVLbMcBpYL3rXXDxxfDP/wzXXQcf+EAxtCpJkgaMAU4DLwJOPx1uuw1WrIAPfQjOO8854yRJGiAGODXOtGlF79v06fCHfwif+hS88UbVVUmS1PIMcGqsrbaCa66Br3wF/s//KULdo49WXZUkSS3NAKfGGzYM/uqv4Mc/LuaJ6+yEH/6w6qokSWpZBjgNnsMOK4ZUd9sNjjsOPv95V2+QJGkDGOA0uN797uLhhtNPh29+Ew48EJ55puqqJElqKQY4Db6RI4tpRi6+GB54APbeG266qeqqJElqGQY4VeeEE4rVG8aPh0MOgb/9W1dvkCSpDwxwqtZ731us3vCxj8Gf/zkccwwsWVJ1VZIkNTUDnKo3ZgxcdBF8+9tw/fXF6g1z51ZdlSRJTcsAp+YQAaedBrffDu+8Ax/+MPz7v7t6gyRJPTDAqbl88INw//0wYwaceiqcdBK8/nrVVUmS1FQaFuAiYnJE3BwRv4yIhyPijLJ9XETcEBGPle9jy/aIiHMjYn5EPBgRe9d910nl+Y9FxEl17R+IiHnlZ86NiGjU9WgQjR8PV18Nf/3X8F//Vaze8KtfVV2VJElNo5E9cCuAL2TmbsA04LSI2A34InBjZu4E3FjuAxwB7FS+TgG+A0XgA74CfBDYF/hKd+grz/l03ecOb+D1aDB1dMCXvwzXXgvPPQf77AOXXVZ1VZIkNYWGBbjMfC4z7yu3XwUeASYBM4ELytMuAGaV2zOBC7NwJ7BlRPwWcBhwQ2YuycyXgBuAw8tjm2fmnZmZwIV136V2ceihxZDq+94Hxx8PZ57p6g2SpCFvUO6Bi4ipwF7AXcA2mflceeh5YJtyexLwdN3HFpZt62tf2EN7Tz//lIiYGxFzFy9evFHXogpMngy33gqf/Syccw78zu/AwoW9fkySpHbV8AAXEWOAHwKfy8xX6o+VPWcNf8wwM8/LzM7M7JwwYUKjf5waYeRI+Na34JJL4MEHi9UbfvKTqquSJKkSDQ1wETGCIrxdlJmXl80vlMOflO+LyvZngMl1H9+ubFtf+3Y9tKudfexjxeoNEyYUw6tf+5qrN0iShpxGPoUawPnAI5n5T3WHrgS6nyQ9CZhT1/7J8mnUacDScqj1OuDQiBhbPrxwKHBdeeyViJhW/qxP1n2X2tmuu8Jdd8GJJ8Jf/iUcfbSrN0iShpRG9sB9GPgEMCMiHihfHwW+DhwSEY8BB5f7ANcAjwPzgf8A/hggM5cAXwXuKV9/U7ZRnvPd8jP/A/y4gdejZjJmTDHFyL/+azGUuvfert4gSRoyIofYTPednZ051z/07eWee+C44+D554uHHE49tVjZQZKkFhcR92Zm55rtrsSg1rfPPnDffXDQQfDHfwyf+ISrN0iS2poBTu1h/Hi46ir46lfh//7fYkkuV2+QJLUpA5zaR0cH/MVfwPXXwwsvQGcnXHpp1VVJkjTgDHBqPwcfXKzesMcexbQjZ5wBy5dXXZUkSQPGAKf2tN12cMstRXg791xXb5AktRUDnNrXyJHFU6mXXgrz5sFee8ENN1RdlSRJG80Ap/Z3/PHFHHHbbAOHHVY86ODqDZKkFmaA09Cwyy7F6g0f/zh8+ctw5JHw4otVVyVJ0gYxwGno2GwzuPBC+M534KabitUb7r676qokSeo3A5yGlohipYY77ii299+/WI5riK1IIklqbQY4DU2dncXqDYccAqedBr/3e/Daa1VXJUlSnxjgNHSNGwc/+hF87WtwySXF6g2PP16sqbpgQfHuww6SpCZkgNPQ1tEBf/7nxeoNkyfDk0/CtGkwdWrxPm+eIU6S1HSGV12A1BQOOgh22gkOOKDofYPifeZMuPHGItANG1ZpiZIkdTPASd0yV4W3bgsWFCs4vP/9sO++sN9+xWvaNNhqq2rqlCQNeQY4qduoUTBlyuohbsoUGD8ePvUp+PnP4eyz4Z13imM77bQq0O23H+y+u710kqRBETnEpk/o7OzMuXPnVl2GmtHKlcU9bzNnFiFuyhSYMwf22KO4Vw7g9deLVR1+/vNVr8WLi2ObbWYvnSRpQEXEvZnZuVa7AU6qs3IlLFoEy5YVPXJbb70qvPUkE554YvVA94tf2EsnSRoQBriSAU4NZy+dJGmArCvAeQ+cNNA22wymTy9e0HMvnffSSZI2gj1wUhXqe+nuvLN4X7SoOGYvnSSpZA+c1Ew2ppdu2rSil264//eVpKHKHjipWdlLJ0lDnj1wUqtpRC9df5+ylSQ1JXvgpFbWn166D30Inn56/fPcSZKaitOIlAxwamvrm5fu8svhzDPXXmnijjtg0qTqapYkrZNDqNJQEAE77FC8Pv7xoq27l27s2J7Xep0/v1jrdfvtV7122GHV9pQpMHLk4F+LJGmdDHBSu+u+l+7553te63XMGDjuOHj8cbj/fpg9G95+e9U5EUUP3ZrBrvu17bYOwUrSIDPASUPF1lsX97z1dA/cv/3bqvPeeQeefbYYin3iiSLYdW//5CfFsfpbL0aOhKlT1w523a9x44oQKEkaMN4DJw0lA/EU6rJlRQCsD3b1ryVLVj9/8817DnY77FAEv9GjB+zyJKndeA+cpCKsTZy4cd8xahTsvHPx6snSpT0Hu1/9Cq67Dt58c/Xzt9lm3fffTZ7shMWS1AP/ZZQ0sLbYAvbcs3itKRNeeGH1YNfdk/fzn8Oll66a1w6KNWEnT+453G2/fRH+6odnnedO0hBhgJM0eCKKHsCJE4u56db09tuwcOHa99498QRcfXUR/uptuumq++8OPBD23x9OOGHVPX6zZxf3+A0bNiiXJ0mDxQAnqXmMGLGqd23GjLWPv/EGPPlkz/ff7bzzqvAGxfusWXDOOXDqqcXDFP15bb65vXeSmpYBTlLrGD0adtuteK1pwYKe57mbOhWOOaZ4uGLJEnjqqWJy4yVL4LXX1v2zOjpgyy37H/zGjvW+PUkN578yktrDqFE9z3M3cSKcd17Pn1m+HF56aVW4W9/r17+GRx8ttl9+ef21bL75hgW/TTbp/Tq9z08SBlFgrMMAAApnSURBVDhJ7WJd89xtvfW6PzNyZPEgxDbb9O9nvfNOEeLWF/jqg+HTT6/arn9IY02jR68e6NYMeTvvXDzUcfzxq67x8suLkDpsWBHoNtmkeG/VufcMqFKfGOAktYeOjuKBhTvvbPwf/2HDYPz44tUfmfDqq33r8VuyZFWP34svFr2Fl1++KrxB8V6rwTe/WbzX6w5z9a+e2vpzvD/fsSHDyCtXwrx5PU82bYiTVuNEvpLU7DKL+fOeew523HHt4w89BLfdBm+9tfZr2bKe23s7vrGGDet/APyDP4ATT1x7GHz2bLjnnqLHdOTI4ju6t9fcX9exESOaIwTaw6h+ciJfSWpVEcXw6mab9Xyf3/jx8Ed/NHA/L7Po8duYANiX40uXrn78U5/q+UGUpUvhlFM2/rpGjOh/8Ovvues7tuWWxZPUtdqqHsYrrijmNxw2rOi17A6arToEDu0fUpvk+gxwktQqNuQ+vw0RUfxhGjVqYL+3N88/33NA3WGHYn7AZcuKYNn9qt9f37H+nLtsWdHbuXTp+j+3bNnqawL3xeWXw5lnrj4EfuyxPQ+BjxixKtDVb6/53te2RhzrqW2zzYr7P+tD6uzZxe+wo6M4b/jwIrC2YkhtomF+h1AlqZU0yX/9N0QT/XHskxUr+hcSp07teQqcBx8slpl7++3iO99+e/XtNd/7e6y38wcyB6wZUqH4PfYUUrsDXXfv48ZsD8R39GV7zz3hqKPWvr4779z4ZQrXwSFUSWoHA7GebbMazAdRBkL3H/fRo/t2/rp6GCdMgLPOakyNfbFy5cAFxV126XkYfMcd4e//vngKe8WK4jVQ28uXb9hn69/76pZber6+Zcs2+tfQXwY4SVLzaOeAOlhD4P3V0TFwQ+brC6l/8icb//2NkFmE2L4Ev2HDer6+wb7dAAOcJEmDo9V6GDdEs4bU9Ykogln3XIrrs3Jl01yfAU6SpMHSzj2M0P4htYmur+UDXEQcDnwLGAZ8NzO/XnFJkiQNXUMhpDbB9bV0JI6IYcC/AEcAuwEnRkQPj/hIkiS1j5YOcMC+wPzMfDwzlwOXADMrrkmSJKmhWj3ATQKerttfWLZJkiS1rVYPcH0SEadExNyImLt48eKqy5EkSdoorR7gngEm1+1vV7atJjPPy8zOzOycMGHCoBUnSZLUCK0e4O4BdoqI7SNiJHACcGXFNUmSJDVUS08jkpkrIuJ04DqKaUS+l5kPV1yWJElSQ7V0gAPIzGuAa6quQ5IkabBEZlZdw6CKiMXAgl5P1PpsBfy66iK0Ufwdtj5/h63N31/rG6zf4ZTMXOsG/iEX4LTxImJuZnZWXYc2nL/D1ufvsLX5+2t9Vf8OW/0hBkmSpCHHACdJktRiDHDaEOdVXYA2mr/D1ufvsLX5+2t9lf4OvQdOkiSpxdgDJ0mS1GIMcOqziJgcETdHxC8j4uGIOKPqmtR/ETEsIu6PiKuqrkX9FxFbRsRlEfHfEfFIROxXdU3qn4g4s/w39KGIuDgiNqm6Jq1fRHwvIhZFxEN1beMi4oaIeKx8HzuYNRng1B8rgC9k5m7ANOC0iNit4prUf2cAj1RdhDbYt4BrM3NX4P34u2wpETEJ+CzQmZm7U6widEK1VakPvg8cvkbbF4EbM3Mn4MZyf9AY4NRnmflcZt5Xbr9K8YdjUrVVqT8iYjvgSOC7Vdei/ouILYADgPMBMnN5Zr5cbVXaAMOBTSNiODAaeLbietSLzLwNWLJG80zggnL7AmDWYNZkgNMGiYipwF7AXdVWon46B/jfwMqqC9EG2R5YDPxnOQz+3YjYrOqi1HeZ+QzwD8BTwHPA0sy8vtqqtIG2ycznyu3ngW0G84cb4NRvETEG+CHwucx8pep61DcRcRSwKDPvrboWbbDhwN7AdzJzL+B1BnnYRhunvE9qJkUY3xbYLCJ+r9qqtLGymNJjUKf1MMCpXyJiBEV4uygzL6+6HvXLh4FjIuJJ4BJgRkT8V7UlqZ8WAgszs7vn+zKKQKfWcTDwRGYuzsy3gcuBD1VckzbMCxHxWwDl+6LB/OEGOPVZRATFvTePZOY/VV2P+iczv5SZ22XmVIqbpm/KTP/Lv4Vk5vPA0xGxS9l0EPDLCktS/z0FTIuI0eW/qQfhgyit6krgpHL7JGDOYP5wA5z648PAJyh6bh4oXx+tuihpiPkMcFFEPAjsCfxtxfWoH8re08uA+4B5FH+HXZWhyUXExcDPgV0iYmFEnAx8HTgkIh6j6Fn9+qDW5EoMkiRJrcUeOEmSpBZjgJMkSWoxBjhJkqQWY4CTJElqMQY4SZKkFmOAk9Q0IiIj4h/r9s+KiL8aoO/+fkQcNxDf1cvPOT4iHomImxtZV0RMjYjf7X+FktqBAU5SM1kG1CJiq6oLqVcuOt5XJwOfzswDG1VPaSrQrwDXz+uQ1MQMcJKayQqKSU3PXPPAmj1VEfFa+f47EXFrRMyJiMcj4usR8fGIuDsi5kXEe+q+5uCImBsRj5ZrwxIRwyLiGxFxT0Q8GBF/WPe9t0fElfSw2kFEnFh+/0MRcXbZ9mVgf+D8iPhGD5/50/Izv4iItSb9jIgnu8NrRHRGxC3l9vS6ybPvj4h3UUwa+pGy7cy+XkdEbBYRV5c1PBQRH+vLL0ZSc/G/xiQ1m38BHoyIv+/HZ94PvBdYAjwOfDcz942IMyhWLvhced5UYF/gPcDNEbEj8ElgaWbuExGjgDsi4vry/L2B3TPzifofFhHbAmcDHwBeAq6PiFmZ+TcRMQM4KzPnrvGZIygWMf9gZr4REeP6cX1nAadl5h0RMQZ4i2IR+7MyszuIntKX64iILuDZzDyy/NwW/ahDUpOwB05SU8nMV4ALgc/242P3ZOZzmbkM+B+gO7jMowht3S7NzJWZ+RhF0NsVOBT4ZEQ8ANwFjAd2Ks+/e83wVtoHuKVckHwFcBFwQC81Hgz8Z2a+UV7nkn5c3x3AP0XEZ4Ety5+5pr5exzyK5X/OjoiPZObSftQhqUkY4CQ1o3Mo7iXbrK5tBeW/WRHRAYysO7asbntl3f5KVh9pWHPtwAQC+Exm7lm+ts/M7gD4+kZdRf/95hqBTX5TZObXgT8ANqXoWdu1h8/26Toy81GKHrl5wNfKYV9JLcYAJ6nplL1Tl1KEuG5PUgxZAhwDjNiArz4+IjrK++J2AH4FXAf8UUSMAIiInSNis/V9CXA3MD0itoqIYcCJwK29fOYG4PcjYnT5c3oaQn2SVdfY1d0YEe/JzHmZeTZwD0XP4avAu+o+26frKId/38jM/wK+QRHmJLUY74GT1Kz+ETi9bv8/gDkR8QvgWjasd+wpivC1OXBqZr4VEd+lGGa9LyICWAzMWt+XZOZzEfFF4GaKnq+rM3NOL5+5NiL2BOZGxHLgGuDP1jjtrykegPgqcEtd++ci4kCKHsWHgR+X2++U/3t8H/hWH69jD+AbEbESeBv4o/XVLak5ReaaIwqSJElqZg6hSpIktRgDnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASZIktRgDnCRJUov5/wEEXUm8vjXJ1AAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(10,5))\n", + "sns.lineplot(range(1, 11), wcss,marker='o',color='red')\n", + "plt.title('Elbow')\n", + "plt.xlabel('Number of clusters')\n", + "plt.ylabel('WCSS')\n", + "plt.show()" + ] + }, + { + "source": [ + "Looks like 3 is a good number after all. Fit the model again and create a scatterplot of your clusters. They do group in bunches, but they are pretty close together." + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd3gUVduH7zOzNZWE0BKqVAHpAgpSFBTBil2wI2Lvfnasr72j2MWCBVGQpqgIAtKl914SSoD0bJ853x+zCdnsbFhCAop7X5eXZHZ2zskmOc85T/k9QkpJjBgxYsT476Ic7wnEiBEjRozjS8wQxIgRI8Z/nJghiBEjRoz/ODFDECNGjBj/cWKGIEaMGDH+48QMQYwYMWL8x6k2QyCE+FQIkS2EWB3hdSGEeFsIsVkIsVII0am65hIjRowYMSJTnSeCMcCACl4/F2ge/G84MLoa5xIjRowYMSJQbYZASjkbyKnglguBL6TBAqCGEKJedc0nRowYMWKYYzmOY2cAu8p8nRm8tqeiN6WlpcnGjRtX47RixIgR48Tj77//PiClrGX22vE0BFEjhBiO4T6iYcOGLFmy5DjPKEaMGDH+XQghdkR67XhmDWUBDcp8XT94LQwp5YdSyi5Syi61apkatBgxYsSIUUmOpyGYBFwbzB7qDuRLKSt0C8WIESNGjKqn2lxDQohvgD5AmhAiExgJWAGklO8D04CBwGbABdxQXXOJESNGjBiRqTZDIKW86jCvS+D26ho/RowYMWJER6yyOEaMGDH+48QMQYwYMWL8x4kZghgxYsT4jxMzBDFixIjxH+dfUVAWI0aM/xYysAu8vxtf2PsjLPWP74ROcGKGIEaMGP8o9OLPofBVQBoXCl9HJj6IEn/tcZ3XiUzMNRQjRox/DDKwM2gEvIAv+J8XCl8xTgkxqoWYIYgRI8Y/B+9vgG7ygg7eX4/1bP4zxFxDMWIcJQd25zD5velsWbGdFqc24/wRZ5NSO/l4T+tfijzeE/hPEjMEMU54pJRIKVGUqj8Ab125g3t7PYHf68fvDbBsxiomvDWVd+b/j/ot0qt8vBMee38ofMvkBcV4LUa1EHMNHWN25uex/sB+NN3s+BujKinOL+bl60cx0Hk1A2xXcn/fkezaYCpwW2neuvVDXAVu/N4AAD6Pn+I8F+/dM6ZKx/mvICyNIOEewI6xT7UY/064B2FpeETPklJH+jciAxHVl2MEEYbkz7+HLl26yH9jP4LMgnxumfIT2/JyUYXAplp49ewB9G180vGe2gmJlJI7uj3CtpU78PuMRVoIQXxyHGM2vk1yWtJRj6FpGufar0Lq4X9DVruFae5vjnqM/yoysB08wZiA42yEpfGRvd87D5n/AEgXSB3U+oiUdxGWJlU+138LQoi/pZRdzF6LnQiOAbqUXP3jODYcPIAnEKDY7yfX4+b2aZPZlpd7vKfHrvx83l44n2dnz2Tuzh382zYHZqxbuImd6zJLjQAYxsHn9fPLp39UyRiKomCxmntX7U57lYxRFUj57zt9CktjRMJw478jNQLaHmTuraAfMAwBHtC2IHOGIqW/Wub7bydmCI4Bi7IyyXW70cstsAFd5+tVK47TrAymbtzAOWPH8O7iBXy2fCkjpv7ELVN+qhbXVXF+MZuXb6Mwt6jKn12ezA27Ta/73D62rqwaV4EQgn5De2G1W0Ou2xxWBtx0ZpWMcTTorono2b2Q+1qhZ/dEd/1wvKd0TJCu8UCg/FXDKHjnHo8p/eOJBYuPAftdxabXA7pOVmHBMZ7NIVx+Pw/9/gueQCDk2rzMnUzfspmBzVtUyTi6rvPhg18yefR0LDYLAV+As4b24u73bka1qFUyRgl5+/NZ+vsq8g8UoJu4bOxxNpp3qjp33K1vXMfuLXtZv2gTqkVF82u069OGG569ssrGqAy66ycoeBLwBC9kQ8Ez6IASd8nxnFr1o+8FTHb+UjdOCTHCiBmCY0CnuukETHbYTouV3g0bH/sJBVmUlYlqkknj8vv5acPaKjMEP7w+hSkf/IbP48fnMf5A/xg7h6TUBIa9OLRKxgCY+M40PnzoKyw2FYEg4AugWo3FGUBRBPY4O+fc0LfKxnQmOHn1j6fYtnonmRt206hNAxq2yjC9t8TlJoSosvEjUvwmpUagFDcUvQUnuCEQttOQ7qkY/a7KooOt0/GY0j+emGvoGJCRlMRlrdvitBxyIdhVlXqJCVzY6uTjNi+LokRM27apVbdHGP/6ZLwub8g1r9vHpPemV1k8YsuK7Xz88Fj8Xj/uQg+uQje6piMAZ6IDq91Ct0GdeXfRiySmJFTJmGVp0rYhZ1zS3dQI7N2ezaPnPs8A25UMdF7NC0PfoiCnsMrnEIIWoeurvveEiAFViONssDTEyDwqwQmOAQhL0+M1q380sRPBMeLpPmfRqV4GX6xchsvnY2DzltzQoRMOi/Xwb64mumbUR1XCd6dOi5XLW7etsnEixQQ8xR50Ta8S99D0MTPxe8PdATaHjQc+u50zBnc76jEqg6vQzZ3dHqHgYCG6LtE1ndnjF7B15Q4+WP5qtdQ2AKDWB21n+HUl/dicSMohpRf0IlBSEKJ6959C2CD1W6TrS/BMBuyIuCHgvKhax/03EzMExwghBBe1OpmLjuMJoDw2VeWD8y7ipkk/AqAFC6+uansKPRs2qrJxWnRuypp5G8KuN2iVUWUxAneRxzQmIKXEU1zeRXLsmPHVbDwub8jcAr4A+7bvZ8WsNXQ885TqGTjhfsj/P0LdQw5IuK9Kh5FSgn8J0vMHiHiE84KQfH8pfciC58A9AZCgJCMTn0BxDqjSeZRHKHGIhFsg4ZZqHedEoVpNsxBigBBigxBisxDiYZPXGwkhZgghVgohZgkhYlqzx5iuGfVZcNMInjuzP4/27M3PQ67j8V59q3TXeOsb1+OIs6METx9CCOxxNu5456YqG+OMwd1xxIenbGoBjc7921XZOEfKttU78RR7w65rms6u9eaZTVWB4jwXkl8CtSGgGv9PfgEl7oIqG0NKicx/CJk7DFyfQPF7yAOD0F0TD92T/zi4J1IqIqfvh/yHkL5FVTaPGEdPtZ0IhBAq8C7QH8gEFgshJkkp15a57VXgCynl50KIM4EXgGuqa04nGlJKxq5awUdLl5DncXNqen0e7tmLZqk1j+g58TYbF7asvpNKy1Ob8c7CFxj7/A9sXrqVRm0aMOSxS6o0e6fLOe3pfHZ7/v51BZ5iL0KAzWnjuqevILVuSpWNEwktoFGYW0RiSkLIKadp+8Y44u1hxkBVFRq1rt59j+I8F5znVt8AvjmGSJx0By8EjP8KnkA6zgQkeKZhKIiWxYMsGo1I7Vp9c4txRFSna6grsFlKuRVACPEtcCFQ1hC0BkrOqjOBifzLkVJG3E3vys/npw3rKPL5OLPJSZyannFUO+8X587mq1XLcQfTP2du38rCrEymXX0tDZL/WaJnjds04LGv76m25yuKwlWPXMzmpdvwuo0UwabtG9NvaK9KPa+in+OcHxYw7tVJ5O8voMs57YlLdDJ59K/4fQFsDitDn7yMS+4ZhBCCM6/uyedPjcPn8aNrRuaY1WYho3k92vVuXblv9h+CdE8NFmyVQ1jA9xeozUBYQZY3BJjHL2IcN6rTEGQAZQXEM4HyEbsVwGDgLeBiIFEIUVNKebDsTUKI4cBwgIYNj0xv5FixKCuTZ/78g3UH9pNkt3NTx87c2qVbaXrmTxvW8cjvv6JJHb+u8+XK5XTLqE+yw8HO/Dy612/A9R06USsuPqrx8j0evli5DK+mlV6TgCfg5/2/F/H8mcdWoCtvfz5/TViE3xug23mdqNekzlE/c/nM1Ux4exp5+wvocVFXzrulP3GJzpAxJ749jaUzVpNat4ZxGiiTnbRh8Rbu7/sUn6x5I2qDu2XFdt654xPWzt+AI87OucPO4qYXhmALFo19+ez3fPfyT3iDO/wpH/wWIjHh9/r5/IlviUt0MHBYP5wJTkYtfIF37/qUxb8sQ7Wo9LmyByNevfa4BG2rFGEBBOapZxawNDBy98NQwNqheucW44ioNq0hIcSlwAAp5bDg19cA3aSUd5S5Jx0YBTQBZgOXAG2llHmRnlsVWkP5Hg/j1qxi2b49tKyZxlVt21E7vvIphWuy93H5+G9Ld+YATouFy9ucwsjeZ1Lg9dL9k/dDCrdKKPkzsikq8TYrk6+6hvTEw+vgLN+7h+smjqfQF77balUzjWlDrotq7gFd5+OlS/hq1XKKfX56NWrMQz3OICOKOZQwe/x8XrpuFIoQ6MF6iasfu4Qhjx1Zvrqr0M3fv61ECNi1Pouxz/9YmnZqc9qo3aAm7y15CWeCk4N7chnR8UGK812m2UIlOBMdPDvpYdr3bnPY8fft2M/Np9yHu+hQgNXmtNLl7A48PeEhivOLubzecHwekx1uOWo1SOPrHaOj+K7/vUjfEmTOTYA79AURh6g9HyGc6EXvQ/HoMu4jAcKJqPlDLJXzGFOR1lB1ngiygAZlvq4fvFaKlHI3xokAIUQCcElFRqBKJlVYwKCvv6DI60NH8uvmTXy4ZDHjL7+Kk2vVrtQz3160IGyRdwcCfLt6Jfd278G8XTuNnH0TSsywT9fQvDpvLPiLV/of3q+bnpiIr8xpoAQBnJSSGvXcH/j1Z6Zv2VR6spiycT1zd+7gt2uuJ9UZd9j3F+QU8tJ1o/C5QxfHb/73I90GdqJZx+hEvmaPn8/L149CtahIKXEXhmb6+Nw+sncdZOqHv3Ppfecz9rnxFOYUoQXCP4OySF2yd1t2VIZgwttTS1VED43rZ8n05ezZto+DWTlY7ZaoDEHu3iPTkFo+czVf/+9H9m7LpvXpLRn6xKXUb17viJ5xrBG2Lsj466H4U4zfPAWQiBqjEMI4uYn4W0BNRxaNNqp6bZ0g4U7wr0Z3jTdE4ByDEEp0J+EY1UN1Zg0tBpoLIZoIIWzAlcCksjcIIdLEoaTiR4BPq3E+APzfb9Mp8HrRg0uwDri1ALdPm1LpZ248eMD0cGxVVXYXFmAxydU3Q5OSOTui08GpHZ9A38YnYVdD0y8dFgsjuhwKwi3bs5sLv/2KZu+8TocPRvHmgr9Kq5x35efzy+aNYe6lAq+Hb1atjGoeC6csRVXDf438Xj8zvp4T1TMOZB3kpetG4XX5cBW4w4xACT63j/mTjdPg4p+XH9YIgOHrj9YYbVq6jYA//NRmtVvJ3LCb1HopISJ2FdHgZPPqYjP++HYuj5//AstmrGLP1n3M/GYut3V5iB3rMqN+xvFCSbwXkTYVkfgQIulJRO25CHtPpLYbGdhmSEFru0E/CLIQApmQOxxZMBJcnyALnkfuP8toUVkBUi9Gun9CFn+O9IenIsc4OqrNEEgpA8AdwHRgHTBOSrlGCPGMEKIkh60PsEEIsRGoAzxfXfMpYUGWed/T7fm5eE1cN9HQKi0Ns6Xer2lkJCbRo0GjqKs5kx2OqMd9/Zxzuahla+yqikVRqJ+UxHsDL6BtbcM/v+ngQYZO+J5V2fvQpaTA6+XDpUt4YubvAKzdn43fRPpCk5KZ27dGNQdN002/NymJaqEG+HPcfFMp5/IIASl1awCQWPPwrjy700a7Xm1o2r5xVPNo3qmJqZqo3+unfst00pvWpWWXplhsFR+k7U4bt7wSXaN1TdN47+7P8LoOnTJ0TcdT5GXM499G9YzjjbA0RMQPRcQNBj0X/cCFyP3nIA9cBPs7Q9EokHmADtqmMqqgAG6QeciCxyM+X/qWI/efgcwfiSx8BXnwMvT8h0/8CuljSLXWEUgpp0kpW0gpm0opnw9ee1JKOSn47/FSyubBe4ZJKcMTrquY8gqgZamsIbiz62k4LKGLg9Ni4aq27Ui023Farbw38AIcqorDYsGqKMZBulyw0GmxMKxj56jHdVisvNDvbFaMuJPFw27lz+uG0bvxod3v6CULQ3b7AJ5AgInr15LjdlHk90VsDGgWezCj28COpdkwZbE5bfS+7PSonuEp9kZlNGxOGxfdYbjNLr3v/LC6AdWqUDMjleS0JNLq1+TKhy/i6YkPRjUHgMF3D8LqKKck6rRx6oCOpcHvpyY8SPverbHarTgTHCSkxHPF/11Iiy5NSUiJp/XpLXh+6qN07t8+qjFz9+WHxCRKkFKy+q91Uc+99H2BzUjvQqRezRIWZmPLADJnCAQ2YNQNuIML/uF+l3TwLUKaZBdJqSHzbgVZhKEd5AM84P4ZvNOr+luocqS2Fz1/JPr+/ugHr0Z6Zh7vKZnyn6ssTrDZKDJZ5FQhiLfZKvXM1rVqM+aiS3jmz5msO7CfZLudG4NZQyXUS0ykZlw8+13FKEJgV1XqJyWTWViAVVHwaRpDTmnPpZWQdrCpKjY1vEJ37YH9pobPpqrsys+nht1hBHhN7qkZRXwAIKVODW598wZG3zsGLaChazo2h43+1/biQOZBJrw9jdant6Rll8iBwVPP7cA3L04I0yMSwpCIUK0qWkDnllevoW2PVgD0vbIH21fv5Ic3pmC1Wwn4AjTr2IRnJv0fSamJUc29PLUb1uLNOc8y6s5PWDPPyBoaOLwfNzx3Vek9SamJvDj9CXL35VGYW0xGs7pHVR0dnxwX8TSUcgT1D1I7gMwdDoHNpSmbMuEOlGNZWeubG1ywKyNhXhJjKId/FUgzV6Eb6RqHcFRvhfLRILV9yAMXBD+TAGg7kHlrkIn3osRff7ynF8J/zhDc2+10np/7Z8jiJ4Ahp7Q3VeKMxAGXi+/WrGTDgQO0q1OXy1q3ZfJV5rVwmq4z9Mfv2e8qDtmBZxYW8N7A87GrFlqmpUUVnD0STk6rxeacg2ELvVfTaJCcTIPkZCxBI1QWu6pyXouWUY9z3vD+dDyzLTO//Qu/x0+Tdo14546PmTF2DgGfhqIqdOp3CiPHP2C6aLbo3JRmnZqwZu76kOsd+rZlxOvXU5hTRItTm+KMP+Q2E0Jw4/NXc+n957N1xQ7SMlKrpEdwfHIcaRmpJNSIIy7R+LfFGj7nlDo1SKlT46jHc8Y7OPPqnsz89q+QgLs93s7Vj1xc+rXU9iILXwPvbBBOiBuCiL8BIYw/YZl3OwTWA4FDC2fxe0hLC4Sj6tRWK0TLjpAuejgsYO9V+r2EEgBTxysgK3eCP1bI4g8PGYFS3FD4BjLuitKA+j+B/5whuL5DJ3I8bj5eagQddQmXnNyax87oE/UzNh48wGXff4tPC+DVNH7ftoX3/17ExCuGUD8pvJBrfuYuiv3+MDeMX9OYtWM7T/WuniYmt3bpyq9bNoWktTosFi5o0arU6NzZtTvvLV5Yeo/DYqFRcg0Gnxy52ElKyboFG1k4bSlxiU76XtmDjGb1GPr4pUgpubH1PRQeLKSs/Vn6+yqmfvg7F9x2Ttjz9mzbx6YlW8Kur5m3gcTUBE5qZ657tG/HfsY+/wMr/1xDrQZpXPXwxXTqV3k5idx9edza5SGKc4vRdUnBwSI+e/xbdqzN5L4PR1T6uYfjrneH4ff6mfPDQiw2FalLhj55GX2u6AGA1POQBy8GPQ/QQOZC0TvIwDpEjdeRgUzwryWsGYt0I12fVbkhkHoe+DeAWi+0j7C1IxHlbEMQGMqgunF6UVIRSc+a32pth7kH24mI+4eLyHnnE94gBxAqBLaAteqEHY+W/2zPYpffT2ZBPnUTEkiyRx+gBbjs+29Yumd3yK+8KgRnNWnK++ddGHb/lI3refj3X3EFTNQxVZWArtM8tSaP9+pDjwZVJ/YGRtbQU3/+wersfSTa7VzXviN3dj0tJJ11zs7tfLliOXleDwObteCKNqfgtJqrokopeeWGd5kzfgEetxeL1YKiKjz02e30vvx0dm/Zy/D294cEP0to2qEx7y99Jez6uFd+4rMnviVQLiPH5rAy7MWhXHzXwLD37Nm2j1s7P4SnyIMWMHah9jg7t799A+feeNYRfUYljHnyW8a9MimsLsHqsPLF5lGkpRtpuWvmbWDCO9PI2ZNL9/O6MGh4P+KTKj7NSWmksVpsFmrVN5cAKcgpJGdPHvVOqh3S6lIv+gCK3iW8v4AdkTYNZAEy55rg7rMcanOUWlONOfhXGgJw/lUgEiDuGkTCbRF24ubfgyx8FVxfgLCB9IO1PSLlPYRiuOP03HvAO5NDtQV2YywZAArA0goSH0GgQWAjqI3BfkaFc5De2cjcOwEN8IGIA2tnRMoHUc/9eKDn3Gi4y8KwIWr9jlDrHtP5HK86gn8Ufk3DHQiQaLMhhCDOaqVFzbQjfk5A11m2d0/YvkeTktk7t5u+p1PddFMjAJS6ZTYcPMDNkyfy5cWX0rleaOphkc+HVVGwW478x9WxXjo/XVlx85czGjbmjCgb5Cz+ZTlzflhQWsFbsni/cuO7nHpuRwJ+LWLFbMBvHhAO+DVTP7muy4jv+eqZ8bgLPSGBaq/Lywf3f0H/a3pH7CUspWTt/I0cyMqhRZeTQiqgV81ZZy5lbbeybeUO0tJTmfrRb4y+93N8bi9SGtXLU97/ldF/v0R8snku/Nr5G3hhyFvkZucjdUmDVhk8Me4+MpqF1gkkpSaaxzd8Swg3Ahi76cA6sPfBfCduA4dx2pSBrUFjEVygZT4Uf4zU9yKS/2c67zA8E8H1FeCFkrwO/zJk/oOIlPeNKdV4DekaB+5vjHscgxDxNyIUkywve4+ohhX2XlDrV6R7MugHEfaeYDut2uWsjxYRfzPS9zehBXc2sHU95kbgcJzwhsCvabz412y+Wb2SgK6TFhfHYz37ALD2QDZNaqQwqHnLiDvg8ihCoEYIsJbP6S9ha14uFqEQOIz/1BMI8Mb8v/hq8OUALN2zm0dm/MrW3FwUAec0bc5zZ/YnyX78GqPPGDvHVE1Ttags/X0lPS7qSmJqQtg9NqeN/teY6/6cfuGpjH3+h7DMIUURnH6h6QaGFbPWmGYraZrO3m3ZpvGCg3tyefCsp9ifmYMiBAF/gL5X9eS+j0agKAoNW2Wweu76sOcGfAHqNK6Nx+Xl/fs+Dwlq+9w+DmTl8NN707n6kcFhY+buy+Phc54LyQzaunIH9/V6krE7Rkc0WCFYmoJvHuHtFzVQ6yOEDZn4BBQ8hZGtIwG7of0ffyNQ4q8OF3/DPQmZ+ABCOXwRoiz+lLAqYnzgnYvU8xFKMkKoiPirIP4qs0dUGqHWQSQMq9JnVjfCfhoy6TEofBGjZ7LfMGA1Xj/eUwvjhDcEI2fNYOL6dXg0Y+e6t6iIu36Zgk1V8WoacVYrL/01hx8vvzoqoTZFCAY2b8G0TZvw64cWLruqRsz4yfO4sVssBPyHT8ncmGPILO3Kz+eaCeNxB08SmoTpWzax/sB+GiQnE9B1Lm7VhvNbtDyiIPfRoloij6WoCkIIHvvmXh4Z8BxaQMPn8eNMcNDw5AwuutO8YrpxmwZcev/5/PDa5NKCLavNwlWPDg7ZNWdu2sOPb0xh+5pdYW6kEjS/RlKaedbQ81e9QdamvSEL/azv5nFyt+YMGt6fwfcM4rcvZ4cs9Fa7hZanNsMRb2fRz8tMTyh+r5854+ebGoJfv5gVZuCkLnEXe1n08zJOv+BU07mWRcQNQbq/MRaSQzMDtTnCasRylLjBSEsTZPFnRs9e2xmI+GsQSjCg7V+L4Vop/3A7BHaALYpqdD1S0b8SdEslG7n93llI93cgPQjH+eC8ACGOXwOmo0EGthlGWCSC/awjroBW4i5HOi8yPmMlBaEeuRfiWHBCG4ICr5cf163Fp5f7Q4TS/HqX348nEODhGdMZG9yJH46n+/RjW14em3MOIjBqEzrWTef+08yPul3SMwjo0RVXNUsx/Mefr1iKTwtd7Py6zubcHDbn5gCwZPduJm9cx8fnX1ytAmYuv5+J69eyKCsTxzn1UX9LQNsT6o+WuiwN1LY5vSVfbBnFjLFz2J+ZQ7szTqbbeZ1QI5yYAG545krOGNyNOeMXIISg9+Wn0eSUQ/GSNfM28PA5z+L3+tECuqlBsjqsdBvYydS9krsvj/ULN4ft9r0uLxNH/cyg4f1p0DKD56c8wmvDRrM/0zDI7fq0IXvHAW5oeRdSyogGyBWhGjp754HSPs1l8Xv9HMzKifh5lEVYGkDKp8j8R0ELVhvbe4e5dIStI8LW0fwhlpMNn3z51E7pBbWB6VvCsPcM9hYo97usJIBiGGxZ+CK4vqXk5CB9y4ymNKmfYyjT/zsw4iHPgWuccUFYgKcg5SOELfpaHwh2TLM2r/I5ViUntCHYX1xkWjlbHl1KFmVl4g0EovLDJ9ntTLj8albu28u2vFxa1kyrUKeobkIiN3ToxOcrlpfu8C2KgqbrIZ5dh8XCPd2NIqwV+/aiHSaQ7w74WZiVyfzMXZzeIHpV1vUH9vPrls1YFIWBzVvQuEbkfPVct5sLvv2KHLcbd8CPTVWRD7Yl/f31OHcUBbWB4Inv78cRd8hlVaNWMpfcc17UcwJo1qEJzTqYy0G8ccsHIe6mkgCxoirY42wEfBqnntOBh8bcbvp+T7EXRTU3lmXdNu37tOHzTe9QcLAQCdx08t0U5hRxuJyKSIa4bqNaptcDvsARyVAIW2dI+yVYoWtHKEeWaiwSbkZ6fiHUteMw+vgGd6lSSmMnX/QB6MXg6A2Jj6KoKcFn3GV0IpPFGIVdCmBDJD2LEAoysAtcX2O4p0pwQ2A1eGeBo3JB/OOC709wjaf0ewnGRGTuCKg97197wonECW0IFCGQUaWzAYgj2lULIWhftx7t60YnDPbg6WfQOT2Dr1Yup8jnY1DzlhT7fHy6/G9yPR6apqTyRK++dM0wmpWYCcqZ4fL7mb1je9SG4NV5c/h0+VL8moYiBKMWLeDhnr24tr35TvKthfPILmNQfZoGCgQe6MJNRRk4E5z0HNy10kVc0eBxedm1Psv0NavDyltzn6NGnRqk1I7s2qvbpDaJKQl4XaG7cIvNQs9y/YyFECSnJTFj7Bz83sBhjQBAk1PMP//c7ALT64qqkL3D6JsgpWTy6Ol8/cIE8vbl06h1fW557To6nRXaxlIIAaJyTXaEpRmkfo4seBoCa0HEg/NqROLdpffIvLtCq3U9P4FnOnqtuShqEk0NypcAACAASURBVEKth6z5FeQ9adQsqDUh4T5EyQLvW4hpqqd0Ib0zD933L0C6xhMeDwEIgG8p2I9PD+zq4oQ2BGayz2aoQtCzYUPT6tyqQgTTS89qElphe3vX7qZNUOKt0VU521SVFGd06a9r92fz6fKlpZ+LJiV+dF6Y+ydnN21G3YTwxXz6lk2mp6oDXjc9h/WhTkLl5bujxVqBto+qKCEupEgIIXjo8zt44oKX0PwBAn4Ne5yd5FqJpr59gANZOaZunfCHw3m3mPd/MAtog/E9lcQbvn1xAl//78fSE8/WlTt48oIXeXH647TtWXWd44StAyJtgunvmx7IiiDZ4IHC56DGy0htH+RcazShxwuaG/IfRirxCHtvUJJAKCYJTBaIIhj9j8KsmQ5g1EBE8TvxL+OfnX91lFgPE0S1KArxVht14hN48axDhU5+TePzFcs4/5svOe/rLxizfGnUO/TKYHYS6dO4ScQspLIoQhDQJW/M/4u/du2oUIhr2qaN+Ew0fYQQzNh2SGRu6Z7d3Dx5Av2//MxUjgOMQjx7FTWej4pK1Lvous5vX/zJnac9ys3t7mPt/A28Pe85LrzzXHpc1JVhLw7ho5Wvk1TT/DTTqlszrPbD75UsFpVNS7eZvnbGJd2xx4UbdV2XdB3YEb/PzzcvTAjLsvK6fXz2RKjonJRepG8Z0r8pKsE16d+AnncP+v4B6Ll3If2GdpHpydddQXNA75/G84pGgZ7PIdePDniQ+Y8hpQ723pjvLS0I55H1pjjeCOcFRgV3GDrYzDPZ/s2c0CeC+snJEfsnNUhKZsgp7WlcowZ9G5+ENbjoSikZNnkCS3ZnlVbbvjxvDr9t3cxXF192zLpKXdn2FMasWMpBl6t0R25TVQSUzlXTJbrUeXex0Q8hbrmVjnXr8ekFg0vvKYsiBMLkAykrgPf71s3c9ctUvIEAEvPiflUIOtdLp4ajakvkc/flsXDqUhCC7ud1okYtw9Xj84ZXZZegaTq7t+wlOS0xLI//zVs+ZOa3c0sX2a83/8isb+fx7pKXSjuOVUS7Xq1peWoz1i/chNcdOeMr4NeY++NCrvy/8ErXlqc2xRHvCCuwa9Q6g7T0VA5kHYx4atix9pAMte6eDAVPAgKkBmo6pHwQUtkr/auRxV+CtsdIOXX/gOHL10HbjvT+CamfIMwWMrUCl5N0oe8/G7S9mFbK6gWg70GoGZA6Bpl7c7BeQRhjJ72IsFRtoWS14zgXPJMNd5d0AVZAhaSXEeLIClD/DZzQhqDA60URwjToWuD1MHP7VlrXqk2X9IxSyYXFu7P4e8/uEFkGTyDAin17KwzKegMBpm3ayF+7dpCRlMTlbU45oi5f5UmyO5h85TW8t2Qhv23dTKLNELK7oEUrlu/bg1/TueeXqRxwH+oZ6/L7WbpnN+PWrGJIu/BWgOe1aMnHy5aglXOZ6VLS76SmSCl5cuaMEJdaySenCIFDtSAE1IqP580B4dW+R8PPn85g1B2foAR7G7xz+0fc+9EI+g3phTPeQUbzemRu2B32Pr/Pzy0dHkALaPQc3J37Px6B3Wkna/MeZoydHeLa8Xn87N2ezZ/j5tH/mt6HnZMQgv/9/BgT357GL5/+gdftI2dPrmkKaXIt81PF/ElLwpr2AOxav5utK3dQv2U6IkK/igYtjVoI6V8H+Y8RUlSmbUPmXg9pvyOEgu6eAvmPUrrw+xcSavF1wI0seBaR9lP4YI5LoOAZzAXjvKBtN51jcDJGzAEQ1jZQaw74VxgBVlvHals4pdQNgyPiqnyDJoQKNd4H3zzDgCo1EM4LDWN3jJHSjXRNBv8SsDRGOC9FqJVrohWJE9oQFPv9WBUVTQvfxeR7vSzMymRhViafL1/K95ddRcd66SzZnWUaW3D7/SzZnWVqCIp8Pi4Z9zVZhQW4/EZmzcdLl/DR+RcfUTZPeWrGxfFEr7480StUK+bU9Pqs3Z9tWq3sDgQYv26NqSFoUTONu7qexlsL5wHGQiel5Nm+/cj3eFiTvY8ct1mADOIsVp7qcybpiUl0zagfJqF9NOzdns2oOz4J88e/cfP7dOjblrT0VO4ZPZzHznsBv9doAq+oCrqmowd0PAFjx//XhIUAPDr2btbO2xgUuAt9pqfYy9+/rohoCApyCvnh9SnM+2kxiakJDL5nEJc/eCGXP2hIh9zc7j52rssK2cU74u1cfNcg0+ctn7XaVGYaYM1f6zmpXSMuvf98vn91ckj9gt1p47qnrwBAur4mXMpZBz3XqOy1ngIFIwmtPo5whgqsN40RKIodPfl1yL+PI1MPtRpFUsohAT4hVKMTWclM9ELwTEVq2QhbJ7CdflRVwVJKZPEnwRaYLlBqIBPuQ4m7rNLPNEMIAfYeiCgroKsDqecgD14CWg5G8NpmFAemfoGwVl5XqzwntCFolFyDRLsNj6vioLEO3PDTDywfcSdpcXE4LBZc/tAFxGGxUis+1PXg9vvJLi5m/LrV7MzPK61NKIkn3Dd9GvNuuqVKF80SKtoBVfTaiC5dGdi8Bb9v3YJFUWhXpw4P//4ruwryUYQIq7kooVZ8PINPPny7x8ow+/v56BGkmMc8/i2tujWnw5lteWfB//j+1UnsWLOLA1k55OwNLXDyefzM/XEhhblFRgMbk8/BYlOp1cC8qKc4v5hbOz9E7t680paVm5ZuZfN927j+6SsBeH7KIzw84Dn27zqIalHxe/0MefwSupxt3n8gLSMVm8MaZuRUi1raZOfakZfjKfLw06hf8PsCJKTGc8fbN9Ghb7BAUduH+eIsQM+BwKYIr5vhiPj7oTgHIu09kK7vjE5ingoa44jEoNZQK0SNVyPepvvWQM6VlMQVZLECluZQczxCVK5CXhZ/CkXvUJrVox+EgufQsSNsHYzCLaX6stiOJbLwneDPv2QN8xkS43kPIWr9UmXjnNCGQBGCV/qfy4ipPxHQNAIVBNgKfD6KfT4GNm/J83Nmhb2uCsGg5i0AQ1b6xbmzGbt6BYoQuE2URQGK/D625ebQNNVcZOxI8QYCjF6yiB/WrUGLUB/htFi44jA9DRom1+DGjp2RUtL3i0/ILCiosGGP02JhROfDV8BWloBfQ5r4yX0eP398M4dZ4/5C6pJzbzqLBz+7HSEEQ5vcZvos1aqSv7+Ajme1JT7ZiafYE6JjpFpUBt5snsY45YPfyMsuCOlb7Cn28v0rkxh81yCSaiZSu2EtPlnzJpuXbSP/QCEtT21KYkrkzKn+1/bh6+d/DLkmhJH22nWgsWte9sdqJr//G1rwM/C5fLx/7xja9WptCNTZ+wZTM8ud1qTPUPyUbiNuEA3iMJWxIgFh64BUalVgCASixpug1EVUUCglpYTc6witK9AhsAFZ8AoiOXJXsgqfWfw+4amdbih4CIkd0JCOsxHJz/+jpJ4rhfdXTOMyWiZSO4hQq2ZtOaGzhgB6NWrMlKuuYWi7jmGpm+XxBPwk2GyMHXw59ZOScFqsxFmtpCcm8uXgy0pVSt9ZtICvV6/AEwjgimAEwAjmOixVU3gipeTaieP5cOlisgoL2FtcZNQCYCzUFkXBabHSo0EjLomyuc2yvXs44HKZGgFFCBJsNhwWC8M6dalUw5xoOe2CLqgmmv8Afm8Ar8uHz+Nn+piZLJjyNwBterQqjSeEzFsR1GlcC1VVeW3m0zRu0wC704YzwUGNWkmM/OHBEKG5siz+ZbmpP99is7ChjEy2EILmnU6iy9ntKzQCAGnpqTw35RFS69XAkeDAHmcjo0U6r816GpvdipSS14a9h9flLXU3+Tx+CnOL+Hzkd8Z4cReDmgGU9bU7IX4YQk0zKo8tzYEosrjkwYgZR9K/Cbm/NzL3FiiMIAsNYDkFYT+jQiNgPG8DSPM6Cjw/HH6upniN3semGHEQ8IHnN2Tew5Uc459EpFOTNEQHq4hqPREIIQYAb2H8hn4spXyx3OsNgc+BGsF7HpZSTqvqeZyUksqTvQ0/e9O3X4u4cCcGF/q2tevw53XD2JKbg5TQLDW19DgtpeTTZX+HBJPNUISgaUoKGUmVDxiXZcmeLNbszw6JX/h1nTirlUtatSY9KYmu6fXpULde1IGzHLcrotuqe0YDHunZi0Y1UkioZOe2w5G5cTcrZq0hLskZMWBaFk+xl2kf/c5p53fh2qcuY8GUJXiKPKVuJUecnZv+dzVWm/EHkt60Lh+ueI2szXvwunw0alO/QpmLWg3TEIoIU0LVNZ2UOkYGk6ZpfPviRCa+M43ifDdtTm/BrW/cELFnAkD73m34ZtcH7FibidVmIaP5oZ9Rzt48cvflh71HC+gsmrYUwAi21vzeiBV4poOShIi7JqTPgEh5D5l7Y1CCQjWXpAZjx2/yM5dSN96vZ0f8PgziIGX0Ye4Jou+P/Fqlu9LaQUmLYp5e8M5A6rkIpXJFeFJ6ka4Jxq5cSUHEDTFiHMeSuCtMJMhVsHVGKFWztkA1GgJhCIu8C/QHMoHFQohJUsq1ZW57HKOp/WghRGtgGtC4uuYEMLB5C6Zu2hh2/ZTadUIKyoQQNDNx6fh1neIKxOPirFYEgkS7jfcGXVA1kwZW7ttHwMQd5PL7sVss3NK56xE/s0PddNP6CKfFwoBmzWlT23znfLRIKXnrtg/57YvZCGHoFEVVuAV4PcZnn9GsHu8ufokvnx7HqjnrSMuoyVWPXMxp54enRpaXe47ExXeey5zv54ekiiqqQr2T6tC0fWMA3hrxIX98M7c0HXT5zDXc0/NxPlj+KvVOivx5KYpCk7bhiQOOeHvEVpXxyYdkJIQSj0i4GRJuNr1XqHWg5hRDllo/gCz+Dny/hd9o624+Qf+yCMZDgNrU0COyd0fEXR29b9/awXi/2dZLqVw6qRACmfBAMJXWPAh/6GarET+ohCGQ0os8eAUEtmGcMgTS8xsy8X6U+OsqM/VKIeJvRPqXgXeeUayHACUNkRze1+NoqM4TQVdgs5RyK4AQ4lvgQqCsIZBAiVlLBsLzA6uY58/sz7oD+9mZn09A17EoCikOJ+8PCm8oY4ZNVWmQnMzO/PBdXKuaadzYsTO14xPo0aBhlaqCZiQmYVXUsIXbabHQMLlyLRPT4uK4pfOpfLz071INJLuqUi8xsdoCwwBzfljAjK/mmLphKsIRb+esq88o/bp+83o88tXdEe+XUjLzm7lMGj0dT7GXPlf04MI7BoS0vCxLi85Nuf+T23jr1g/RdYkW0DjplIaM/PFBhBDkZufz+1dzwnoW+Dx+xr3yE3ePHn5E3w9AfFIcXc7pwJLpy0ME7exxdi4yachTEUIICKqRyvxnzG/yrTG/LoswrxqRoNZDSf3giOYCoKiJ6PZzwVv+kC8guQLX0+GeG3cRUnEiC98EbXewSU4BpgYnWkG9ckjXhDJGgOCzPVD4KtI5+JgFo4WwIlLeR/rXg3+NUT9i61blvRiq0xBkALvKfJ0JlBfoeAr4VQhxJxAP9DN7kBBiODAcoGHDyqdjgpGfP33I9czeuZ11+/fTuEYK/U5qekTyEiN7n8nt0yaXumkEhmDcM3370SW9evKMz2xyEvE2K+6AP8Snb1EUEu12vl29klPTM0wD05qus7eoiES7PayXwb3de9Cudl0+X7mMfI+Hc5u1IMFmY8BXY8h2FdMstSaP9ux9VGmw5Zn64e+mPQ3MUC0qWkDDkeDg5O7NOWvIGYd/U5C3bvuQGV8d6p+wa0MWM7+ZyzsLX4hYUNb3yh6ccUk3tq/eRUJKPHUbH8rXztywG5vDGmYItIAWEkM4Uh4aczuPn/cCW1bswGJV8Xn99Bt6BuePOLvSz0TPNL8ud5umj2LtVE7mOohwHlWDeFHjNWRhBrg+B3yGSqnzCigciZ67A9S6kHAvitM8/Tbicx3nIByGGoAM7EQevChY+KWXzpuEeyqdmWQEaU1SqYUV/EuDVdTHDmFtBdZW1ff86mpVKYS4FBggpRwW/PoaoJuU8o4y99wXnMNrQojTgE+AtlJG7uBSVa0qD8fyvXuYtGE9Esn5LVrRqV5oo5M/tm3ludl/sK+4mPqJSTxzZn+6BQXjqov5u3YybPKE0viERQgcVitI0KShZDqoeUte6ndOqe9/2qYNPDlrBi6/YUD6NWnKS/3OIT6C33/M8qW8Mm9OWJ/jMRdeUiqId7Tce8YTrP5rfYX3WG0WajeqRd+relBwsJCu53bi1AEdUKI8Ze3Zuo9hbe8Nczk54u3cPXo4/YaaN8mpiAO7c7i26R1hhkBRFfpf04sHPjVXPo2W7Wt2sW97Nk07NCYt4+iyQfTsPqCbHLCV2ii1zdongl48FgpforQoTThBbYao+Y0hpXwUGOuMZhRo5d5BqFvHAUkjUeIqL0MhAzuQRW+DbxEotREJtyIcpvvKqNDz7gfPFMLL8OMRKZ9Glvv+B1NRq8rqzBrKAsqey+oHr5XlJmAcgJRyPkZaxHHv3PDyX7O5+sdxfLFyGV+sWMY1E77nf2VSSrfm5nD/rz+zt7gYdyBAZmEhd/08hT2FkbIZjh5vIMCt0yaFLNABKSny+Sjy+3AHAniC1c2TNhiL7N97snjwt1/IcbvxBAL4NI0Z27Zw1y9TTMfQdJ03F84LC4R7AgFemTenyr6XM4ecgT0ufKdmsVmIS3KSUCOec27oy6iFL3DdU1dw5zvD6DawU9RGAGD1X+tNexZ4ir0smb68UvNOS0/ltAu6YHOGLopWu5XLHozOtVgRjds0oNugzkdtBABIuJvQLCMAJyTcFfEtSvwQROqX4LwI7GciEkdWiREAw20lhAVZ+Arhvn0PFL0elX5SRLQd4F9pBKi1LYYmk4xOdNJ0vnFDCM/YESCSwGpeM/JvpjpdQ4uB5kKIJhgG4Erg6nL37ATOAsYIIU7G+M2tINWg+tmcc5AxK5aFZOe4AwG+WrWCwSe3oVVaLR774zcKvJ7SvYI74MenBXh+zixGDTy/WuY1ddMGCryHd6e4A36+Xr2Ci1qdzAdLFodVSXs1jXm7drK3qJC6CYn4NI13Fs3n61UrKPb5I7bT3BTsnFYVDLixL398PYcty7fjLvJgtVlQLApPfHcf3QZF3/Rj7YKNfPjAF2xaupXkWklc/uCFJNSI589x83AVutG18IXFYrVELCgDw300+r7PWTlrDc5EB+ffNoCrH7m4tKXk/31xJx899CU/f/IHPrePxqc05K53h9Ho5CM7LXlcXhZOXYq70E2n/u2oXcGcKoMSdzE6ASh6IxgwTYX4u1HiKm6+JGztEbZqXOgC282v6wcx6g2OXI5C+paHnjKkC1xfIvX9RnBc2MDex7xvcgSErRMy8X4ofDWYpilBJCFSP/3H90quDNVmCKSUASHEHcB0jNTQT6WUa4QQzwBLpJSTgPuBj4QQ92Kcwa6X1eCryi4u4vu1q8kqKKBb/Qac26xFxJjAH9u2mhZr+TWNGdu20iy1Jot3Z5k2r5+5fWvY+6qKP3dsj/reksV/Z0G+aaqsVVXZV1xM3YREbp36E39u345+mL4NjSoZkDbDarPy0m9P8sVT45g/eQk1aiVxw3NX0rZH9JLLm5dv46F+z5TKMuzfdZD37vkMRVXQSrSATGKfqlVl4DDzgrIDWQe5s/ujuArcSCnxun2Me2kimRt28+hYIyhts1u5/a0bue3NG9ACGharhaK8Yia8PZVtq3fRvGMTzhrai7jEyIVMq+eu47FBLyCRSF2iBXSufPgirh0ZXYe8aFHiLoO4y5DSB1iPmWBihah1jd17eUQikXPmK0YWjcL0lOGZiPROx3B86FBjFMIefYxJib8O6RxsxASCJ4ET0QhANdcRBGsCppW79mSZf68FqlXIY8nuLK6Z8D1+TUMHxq9dzdsL5/PTlUNN8+MjGQghBPag+qcSoXm9Ral6WeZV2fuYu3M72UXRuZ0cFgsXtTQW1K7pGWzNzQlLO/VrOk1TUtmWm8Os7dsO27rHYbFwb/fQH9OWFdtZ/PMyHAkOel92Gil1ojcUPq+fh/o9zZYVO/AUedhtU3n47Od4/Lv76H5edCeCL54ah88dekKSukQrK5ERlE+12a2oFhWLzcL/fXFnxDTPCW//jM/tC3FReN0+5k5YSPbO/dRueKjbmBACi9VC1uY93HXao3jdPrwuHzPj7Xz5zPeMWvSi6S7f5/Xz+Pkv4ioMDUSOe2USJ7VvTFp6Cg1aZRCfdGQdyCqiIteODGwH7wxAAcc5CDU94r1VgtrY3BAodStvqDRzCXAgqIIa/GfeHVDrryM7GSiJxzwwfDw4oSUmpJQMnzyhVAMIDL/6trxcHp0xnR4NGtG4RgpdM+qX/hKeVr+BaSOWgK5zWn0jJfScps34dcvmkPtsqsrgk1tXOB+338/M7Vtx+f30bNjItBHM6ux9rMneR/2kZCasX8u0zRvxa5ppYl8JJYYpzmqlWWpNrj7FEKMa0aUrkzaup8jrK93xOy0Wbul8Kgk2G9+t3hrRCAiMxa5uQgKP9uxNz4aNyCosoIbdwSf3fs6vn88i4NNQrSof/99XPPrNPVE1YgeY/tlMNi/bVpqLH/BpBNB48Zq3+X7fx6UFYRWxZfn2qFoUOOIdDHlsMF3O7kCTUxoGhejMWb9oE36TnsQ2u5UdazNDDEEJb474kMLc4tJaAE+xF5/Hz+h7xjDyhwfC7l/+x2pTX7jX5eWZS1/FmeAg4NO47MHzue6pK6p1F68XvR8sVtIBAYWvIxMfMpQt9SKjbqCq1Tb9y8yva5uRMoAQlViSLCcHC+kO9wuhGL0VjjBD6b/ACW0ItuXmkhfBrz5l00ZmbNuKIgTpiUl8c8nlpDrjWLJnN6qJdLWKYMmeTNrUrs2zffuxOSeHXQX5pal4LWumcUOHTvyxbSu14+NpU6t2yB/xoqxMbpo0obTZvSZ17ujandtPNQp8vIEAN0+eyN97jHi6LiU+TYuq0WaduHjibDb6NG7CLZ1PZfzaNazdn03rWrX5ZvAVfLR0MfMyd5LmjGN451M5v4WRhmapIPiakZjI79fehE1V+Wb1Srp89B5+TUPTdOLz9pHi9SM0I9ce4IUhbzFu78cRc/TL8sfYOWH6/GAY7o1LttLm9JaHfUaDlulk7zxw2PsURdCwVX2adTTvhVyWJqc0ZM28DYdcS0H8Xj/pzeqGzHPD4s3kZhewYtYa00rkRT8vNR2jfMZRWaQucRUYO9gfXp9CRrN6UcllVwbp3xQ0AuX+PgqfReI0BJEKNGTcdShJ4Qat8kQK4EqOTPX0ECLhDqR3DuatJcuPUdmK5hObE9oQZLuKK3y9JDtme14uj/3xG6MHXchBl8u0f4GG5IDL0P6v4XAy7eprWZSVyba8XFrUrMnPmzZyzldjsKkqmi5pkJzM5xddQu34hOAiPyGsIvm9xQs5rX5DOtVL570lC1m8OzPk9BIt+90uAsVFZBUWMGb5UmyqijsQwGmxEGe1MuGKIbyeFF6c1L9pM56ZPdPU2JzfohU2VeX3rZt5dvbMUGmLjqlofo1a47eXXlNUhWW/r+L0Cw9/KrCZdOwCYyG0OaLTTxn65GWsnru+woYxYFT0dhkQKsl9YHcOOXtyadAyHWfCIV/+4LsHMf2zmSGGwOaw0r5Pm9Lq5L3bs/m/s58ld28eiHA5ihJKgsvl6dC3jWk/g/J4ir2Me+Wn6jMEnulEXpTdhzbX7i+R9tOqTorZ3hc8vwBlPwMB1k6Vzk4S1laQ+gWy8CXwrwIRFyyQK2d0pQa26GME/yVOzMhHkBY1a1boUinBr+vM2LYVv6axsyAv4n078w69JoSgW/0GXNm2HVmFhXy9ehVeTaPQ58MV8LM55yC3T5sMwNxdO0zdGJ5AgO/XrgZg3JrVlTICQGkMwBMIoElZauDcgQC5Hg8jZ80wfV96YhIXt2qNWs79UMPhYHhQsuKdRQvCMo+kTaWwW210W+ivT7Rx/vOG98cRHx4YTEiJj2rnDtC2Ryue+P5+0pvWQVEEzgQH3c/vjM1hJS7JSVyik+S0RF6c/nhp8Zir0M1j5/2Pa5vdwYNnPc1ldYbx7UsTSp+Z3rQur8wYSbOOjVEUgdVupd/QXjw5/oHS7+/x815g79Z9uIs8uAvNd6BWuyVi4Vt8cjztelfsQiwhLzu8er3qiDInQ7oNWeoqQiT+X7B/cYkBdoBIRFRQaazrPvSDN6DvbYW+twX6vu7onlmhz7W1R6n5NUrdVYjaC4wOY6XKo4oxTuL9CDXcvRfjBD8RpDrj6Fa/AQsydx32Xl1KdCnJLop8isguNn/NEKErV20qJauz97G3qBCvSZ9gMP4U3cG+B9H2RLapKrXj4vFoAfI9HtN4Rll0KZmz0yQ4F+Tl/gPoULceY5Yvpcjno99JTbm72+kkOwwXT8TaCCnR4ywowZ7GAb/GytlrWT5rDb0u6U7bnq1M/dsBf4AeF3el34ze/DpmJkJRUFUFi03l2UkPH5FPvNvATnQb2Amfx4fFZkFRFNxFblbOXofdaeOUM04OiQm8fP0ols1Yhd8bwB8sNBv73A9kNKvHGZcYLrpWXZsz+u9X8Hn9WKxqSO3CjrWZ7Nu+37R3gqIqWO3GHBq2rs/NLw81nfOB3TmsnBVB5qHs8xRB+z7Vp/gqHOcgiz8idGceAXk4l8sRjKvWhbRfke5JEFgFluYI58UhjW3CODgoNMAscyBvOHrq9ygmqa5CCEh+BXwLjJOPcBrdxaqxMvffzgltCADeH3Qht02dxOLdmShCwa8ZvXjL/ikLoH2dutgtFlrXqsXcXeYL58m1zHcTkfL7VUWh0OujR4OG+E0avsRZrQxqbvjDzz6pGT+sXxOW4VMStC3pV/zewAvo3bgJGw8e4OLvxh7WEABYKkh5U4RgaLsODDXpaAbQvm49/ti2JWz/KAISa3EAq8OKpunoAY2J7/yM1HV++WQGfa7owX0fjShd2H//6k8+zyHhdgAAIABJREFUfngsOXtySa6VzDUjL+OD5a+ycvY6kmom0HVgp6j6CJthcxxyKTgTnHQbGK4QWZBTyKJpy0J6DYDhgvnu5YmlhqD0mSZzKc53oZgUqQHUb1GPwXcPolGbBrQ5vWVEg7Z23gYsNkuFInuqVcURZ+eG566MeM/RIqwtkAkjoGg0hjEQhLlSAHAinOeVfiWlBN8CoxWlmg6O/kes+S+UeET8VcBVh71X9601zzICoytb2kRjXtp+pOszQ5xNTUfE34Swn4awn3ZEc/uvcsIbgiS7na8GX0ZWYQH7i4tJttu56sdxFHp9uAN+HBYLNlXlxbMM3ZI7u57GJ8v+No0TTNu0kXFrV9Mtoz6P9Oxdqk7a/6SmfLZ8Wdhib1ctnJSSgqoojOx9Js/MnmkEXIMZPj0aNOSsk4weCfef3pM5O7eT5/Xg8vtxqBYsqsKzfc4is7CARJudQc1bUjPOSCtsHmWzG6uicl6LwwdfI3H/aT2Yt2tHSLWxTVW5rV0H0kY2R9d0xv7vBwLlmrnM+u4v+l/bm3a9WjPru794c8RHpTn/edn5fPjglwx/eSgX3FZ5HZsjoTCnCNWi4Dex2eU7nUWiWcfGpqcBm9PG2df1YdDw/od9Ro3ayaYuNEUR1G5UC0ecnVN6ncwVD11EnUbV68ZQEm5DOgaA5//ZO8/wKKo2DN9ntqZ3IEDoTXoTEFFRARVQUBAQ7KBi7+WzYu8FCypiwYKAgAoCIoh0lI50pNdACOnJtpnz/ZhkSbKzyZJkQ8t9XVyY2Z2Zs7iZd+YtzzMPhAmJGbLeRa8deIBQsLYFu95lI6UDefxW8GzVZaSFHTJfhbgJCHPJXh9lxrXM/2v5w2lSPYI8ds2JuoBnC9K5BBn5Mkpo+Se+zwXO+kBQQK2ISK+Z/J833c4v27awPvkwTeLiGdi8BdF2/a4mzGrll8HDuPXXaaTmG8MX3I0XFJ8X7NnNykMHmT3sFmpFRHJXh078tn0bxx26lINJCCwmE69f3tOrQDqkZWvaJ9Zk6pZNZLuc9GrQmIvq1vNqAsWHhjL3ptv4ddsW1iYfokF0LAObt/Re+IuT4XT49UQQgM1sRhGC+tExPFvM8/hkiAsJ9RafC9CkpFPrJnTpncTvX83HbDYVCQSgB4OXB72HxaYPXBX24wW9XfLbF38qdyBIO5LOjrW7ia8VS/1WRaWNVVVlxqd/MOPTP3DmOr0OYIVRTArtewTm/WoLsXHnWzfy8f1fFplajogN5+q7rwjoGC27NSMiJhxHjrNIodlis/Dy9Keo16JsapmBINVD+vCVcykosYiwEWDvjQjXVVMFIG0XI/OmgpaOsF0Gtkt0D2JA5ozTFTALOm9kDpCLTH8EEf9rcBZtMX5SBfThNEBmf5pvVlPwHSxQCn0ZGdIbUYEGLmcrQROdCxaVJToH+kRyam4u106e4JPDtygKQ1u14YVLLgP09NCkjf+yeN9eakVGckubdjSLL/mOzuFx88fOHRzKyqJ19RpcUDsp4Bz5T5s28OSffxi+Zsl/AmkUG8f5NWuVqxf9vlkzmLXD178hxm5n1R338OcPi/nwni/8GrSXhBAwy/Gj3w6bkpBS8vmj45n+6R9YbGZUj0adZrV4bfbTRCfoJjKv3vA+y2es9gYhk9mEqqrevKDJbCIkws5na94O+O77f1e9wrr5m/C4C0lGh1j5YMkrJRa6NU3zGtMIRfB8vzc5svcYJpOCUASPfDGSiwcGnsaQUtMN4XMnAW6w90OEDvTbeaPfNffNv2su+C7bwXoByHTAjAi9HuzX+J2e1VIuB9Wo3mZFJPwVtEKsdrSL7s1cnOgvUOyX+F+XCEXETUGYGwVlXWcaJYnOnTNPBCdDptPJO8sWM2P7Njyaavgo79Y0Zu/Yzv6MDNrUqMHQlm24o8P53BGgt++utOMMnjIRR75YnM1spll8At9fOzAge8ukqCi/r4VbrQxtdaKIpknJsdwcwq02Qi0nd3c0b7exvHKaw8HBrCy69O3AByNPXqseIDYxpkxBAGDe94uY+cU83E63tzd/1797efWGD3h73gvs23qQZdNXFfE8UD0qVruFWo0TkZqkdfcWDH6iX8A6P0f2pvDvws1FggDo08KT3v6VZyY8ZLjf+oWbeO2GD8jN1v2TE5LiGDX1MRCCvKw8GratF9AQXWFkxpO6VHJBIde9BemYBbHfGl7IZc6X+TLNhW9oHOD668R7MjeCYwEi5gM/Jy3ppjGIN5TxsyD1hkITxFaIeArFnt9aq8QZBwLpAVE2d7JzjapAUAxV0xg0ZSJ70tNK7eQ5lpPD/JxdLN2/l6/WruHnwUOpFx3YF++h32dyPC/P++uT63az6egRPl+9kgc7dzXcx6WqfLNuDZM3b0DVJBZFMSwWj2h/IujP3bmD5xbMI8Ohi+Rd1agJr17WM+CAYOSKVkCOy0nt+ASenfgIrwx5D0VRUD1qQG5jtlArt79WXIMwcKZ98JuPp4HqUdm0dBtpRzPYtmKHoaexy+Gmfuu6/O87/yqc/ji67xgWm8Xn80lNcvC/w4b7HDt0nGf7vl5krQe3H+LRS0cxYd9nZSqQS/c23bKyiL6OAzwbwbUIbN19d3L9g3ExuPCB88D5F9K9CWExMCYK6Qc54yg6lCXAXE+fRg4SihILCXPQNBeQi1Ksw0iEDUemP0HRgTILWDtVmLn72c5ZPUdQFhbu3cPBzIyA2jkLLpH6/ICTVxcvDOgcx3Jz2X481eceyqmqTNls3FoopWTE9J/54J9l7EpLY29GOkjpMyfRq0Ej7u6o+/+sSz7Mg3NmcjQnB6eq4lJVft+xnYfnzAxonQDVQsMMtwsgKV+IrkvfDny6+i26XdeZDr3aYPZjRF+Y869sV65hqazjxq28ikmQk5FLfO1YjDJiFpu5REvJkqjborbhZLDZaqL1xcaCeXO/XeA1pS9ASnA73F5P4pPG9Q+Gd+AyF+n0U1w11cbYgaw4Hl3T3wARdgeYG+sDWwCE6oqcUe8FcNzyoyhWnyAAeiss4SPRZxLCAZs+oBb9fqWs62zgnH0i8Ggax/NyibaHFBGa23IshTy3cRG2YPDKqKNIk5IlJfTrF0aW8Bjt77W1yYdZffhQ0QlfKQmzWBjRrgMJYeH0atiY+ELF5U9XrcBpIEO9cO8ejmRnUz28dPGt5y65lAdm/1bkMwv0yeOCp4q/Ji3lndvH6PIZmoaqaigmxecCWJgl0/7hiye/5863bip1DUbUbpLIkb2+iuWqW6Vmw+rUbFid6IQonLmuIuswmf2rj5ZGZGwE/e67iulj5njrDooisIfZGfiIsfz4sYPHDZ+QVI+qTyfnM+/7RfzwylRSDx2nYdt63PHWTTTv0sR4IUosCLOBAbwFXOvR0u4G68WI0P7e1k4RNgLpXELpMgwWvx6/QgmFuCngWoR0/asL1NmvQijGNwuViRJ+NzL0JvBsByUBYQ5e0f1s5Jx8Ivhm3Ro6jB1D9/Ff0u7zT3hn2RKvmmjdqChCDPLWYRYL93Xqwie9r8biR2XUaD8jEkLDaBAd43N/ZjOZuLap8dTpuuTDhrMIOW43uW4PQ1u1KRIEAPZmpBuGFavJRHIxNVOZP1AHsGz/PoZOnUy3r8fy2/atDG/XAatiQhECBejTuAlv9tC7ZDJTs3jntjG48lw481y4nZ78bhiJ2WIynCAuYOr7xgY5geCv5VMCGceyUBSFd/4aRbPOjbDYzNhCrFSrE89rs54pl/b/HW/eyL2jb6POebWIrhbFJYO7MmbVm37NZNp2b0lIuLH+UosL9QGnaR/O5IORYzmw/RB52Q42LtnKEz1eYtvKHcaLsPdAV3Yvjhs863U10aw3kMf6IzXdkF5Y20HU6/k58xDAguGvv1DA5r8NVggFYeuOEvGAXpw+DYJAAUIJR1jbVwWBMnDOPRFM27LJx4rx63WrsSgKD3bpSs8GjXh18QKvXAPoQ1cOj4exq1diVhRUTfURprOZTAxu0SrgdXxwZR8GT5mIS9XI87gJs1ioFx3D3eefsHXOcbmYsGE9v+/8j1y322++PsRs/L+xY2Itdh1PxVPsCcatajSIiQX0yebXlixk6pZNOD0e6kXHcDAr05saK5gstppMaJrEpphYsHcPO9OO0zyhGv/MXGPoBCYl9L6jBwMe7sstje83XJ+majjznNhCTl6HPi/LuEvJYjWTk5FLTLUoqiXFM3rJq6QdSceZ56J63QTdhP5IOmlHMqjVuIbhuXeu38OaeRuIiAmja//zWTFrLb9/NR9N0+h1y6X0uqU7Vw0P7Kmia7/zSWpWiz2b9nsL1/YwG136dqBB67p43B6+fWGyYXvtV8/+yJtznvM5phB2XVsnbWS+abvILwQXFm7LA/UQMnc8Ily30FRCeiPtV4B6EJRIcG9Fpj+Ibk1Jvg3jmKBf3KVnPzLnK91RzNIYETai1M4e6VyGzBmvdw/ZL0OE3lhpBvLnAudcIPhoxd8+/fd5Hg9frl3N/Z0vwGY2M2XQUJ6aN8crTWE1mXB4PEX2U6TEajJhNZlwqxoXJtXhIT9FXiOaxMWz+LY7mfnfNg5lZtK6Rg26163vnTvIc7u5dtIP7M/MxKmWbLnnz1Xs7o6dmLF9CznuE4b3IWYzw9t1JCLfxP6u334tIna3Oz2tyDEKQkjB605NxelSeXjOLObceCuapvlNZ5mtZmo2rFFimqjwVPDJ0Llve2Z+PtdHwM1kNvH1MxMIiQjhytsvo3H7+mz5+z8cuU4kks8eHs/K39dhsZnRVI1bXhzsTetIKXl3+BgWTF6G6tEwW0y8f9fnuqF8fnrnv9W7WDx1Oa/M+J+3LVdKydYVOziw/RD1WiTRuH2DIut5b+GL/Prx7/z5w2LMVjNXj+xFz1v0+kj60Qw8BtLXALvW7/H7+YWlOSQs1Ien3NshcxSQW+xdTnDMhvATXspCmMBcR//B1gWqLQPPJsAM5mZBN16R7u3I44Pz01oe8GxG5s2G2C8RVsPORrScryBrNN60VvZWZN4UiPv1pLwFqvDPORcIjuRkG27P87hxejyEWCzUiojku2uvx+nxsPVYCkOn/eRzqdOAdjUSual1O5rGxdEwwEnfwoRbrX6fIqZu2cTBrNKDAICRAKaUklqRkfwy5EbeXbaEvw/uJzYklDvbd2TAeXpHyM7jqaw6fLBMYnd7M9JJycmhU+/2aPd84fO61W6l+2BdsbL74K7Mn+BrmN6+Z+siMw471u5m4U/LEIpC90FdadC6rs8+BQx7ZgCLp/5Ddlo2Lodb7xCSEpfDzaIpfyOEyD+nxGKzIKXEkeNEUQSqR/MWfce/MInEBtW5sH8nlvy8goU/LS/kk6D/27sKBTFHjpN/F27m34WbadO9BTkZOTzZ6xX2bt6PEAJNkzQ9vyGvznwae74vsy3ExqDH+zHIwNc4Ms7/XW2N+iUXtYUQYGkOIgzpT8JZlHzXLIQJLIEN1FUEMuv1/EG0AlQgD5n5AiLet4lBatmQ9T5FO5WcoB5F5k7wDsOVaS3OJfowmnoIrB0Q4fchzPXKfLwzmXMuEDSLi2fdkWSf7SFmCzf+/BNxIaHc2rY9XZPqYDObcaoqJsW428KtqvRu7KegV07+3L3T7+RwYULMFno0ODHeP23LJt5ZvoTk7GwSwyN4rGu3Ij7KblVl8uaN/LxlE5lOZ5kNw6WUmBRBTLUo7vt4OB/f9yWaJtFUDYvVTN+RPTmvc2MAnhh/H2lHMlg7f4P3EaNZ58bc+tIQprw3g8i4CPZs2s/0T37XL9BCMO3937jhf9cy7NmBhuePqR7NFxve5bfP/mDNvA2YzCY2Lt3qTb9IKb0X+8L6QmqxqOnIcTLxjZ+5sH8n/vjmL5+WVCMcOU7WLdhIm+4t+OTBr9m1fk8RQ5stf//H2Ce+5eq7ehGVEElsDf8txVa7lWvuvYLpY/4okh6yhVq5+YXrS10LgDDXRZrrguc/imr6hyBCy1aMDxqu1cbbPTuR0okQxVJ17o2657BPYdwJzr+gjIFAy50KmS/hfcpwHEY6/4S4aQhzYAq4ZxNBDQRCiCuB0eiVrXFSyjeKvf4+UKB/EApUk1JWnDmuAU91u4Rbf51apPtGAE7Vw9pkvRd86f69PNzlQka070jLatUNPYztJhO9GjYO2jqrhYX7tcQsINRs4aK6dflt+1bGrVlFhM3GjG1bcBTk97OzeGb+XACubdYcTUqGT/+Z1YcPBhRkSiIpKorYEL04fdXtl9P20pYsnLwct9PNBdd0pFHbE79MJpOJt+Y+T9qRdA5sP0z1egmMe+p7Hr/8RVSPismkFPMV0P2CJ7z+M5cMvpDajRMN1xAZG8HQpwcw9OkBvDt8TJHhsZMh9bCeDlP9qMQWxxpiJSouEiklf01c6pPacTvdzBjzB/O+W4zH5aHtZS15ZsKDhEUVzb3n5ThwO9wMf30YZquZXz6cjcvpJjo+kjvfvZnzr2wX8GcQ0Z8ij9+UbwKfXysIHazLMZ9OKBGgGdV3LPl/ir8/BmPfBAFK2Yr+Unog63WKdlBpuuR29ofnZNtp0AKB0AVKPgF6AgeAlUKI6fk+xQBIKR8u9P77gcC/+WWkU63afH/t9byzbAlbU1Owm82k5uYWGczK83h4d/lSBrVoRaTNxjMXdfcWkCW6h29ieESR6d2K5sbWbZmxfWuRgKUIQUJoGJfVa4AqNRLDw/l8zSqvkJ3At7vc4fHw7vIl9G96Hkv27WVN8qESg4BAdy4TgNlkwuF2GyYdMhwONCm9WkmJ9asz5Mn+JX6mmOrRxFSPZv6ExSyfvsp7B+xvNZqqsXz6Kq5/1Lg1szBh0WGltqwaoZgU2l6qyz23urg5K39fV+o+UpPMGf8XUz/4zW9+H/D6Faybv4FXh47mtZlPA3qn1du3j2HVHP1cifWr8dhX93DLi4NxZDsIjQwtgyyIlp9ycaJ/CxRQDWQZTjWhN0H2GIoOw9kgZKBxfcLcRJ+B8Oyi6FS0HRF2S9nWoCaDNBqu08BVOfI1pxsBBQIhxGrgK2CClDKttPfn0wnYIaXclX+MiUA/YLOf998AvBDgsctF+8SaTBgwCIAhUyeRnO1bN7CaFDYcTebCpLoMbdWGZvEJjF+/hqM5OfRs0IjBLVoRZi1boTMQWlWrzsuX9uCFBX+iCIGqadSMiOTLa66lTlQ0blXl/C8+LRIo/D07HMrKotFH72H2M4ks0AviqpR0qZ3ECxdfSkJYOMdycxgydZLXma0wOW43R7KzSYwwzkE785ws/WUlacnpNO/alGadGnkvbrO/nB9QCkZRREDDaQBX3HYpv332R6mOZT5IyfWPXQPAvq0H/b7NFmpDMQk0VUNqkh1rSjBML4bb6WHd/I2kHk4jtkY0T/Z6mT0b93kL3fu3HeLJK17hy43vGfoiB/QxUgfnawYVoIFzOjK3LSLM2BvhVCDC7kCq+yHvVxA2kC6wdUdEPmX8fiEgZhwy7U7w7ANh0p3GIp7yW1wuFSUavz4MQZyQPp0J9IlgMHAb+l39KuBr4A9ZcoK5FlBYAOQA0NnojUKIukB9YH6A66kwEkJDDe+kPZokxn5CZ719Yk3aJ9as1LUNOK8FfRo3YePRo0TYbDSJjfNeTLccS0H10y1khAS/3gUSePLCi7m1bVEd/0ibjWh7iGEg0KQk3E8g3L1xH49d+gJulwe304PZYqJN9xa8+PMTJ4TfAuSiAYZfGR/qt6zD3R/cypgHv8FsNeFxqwGlikwWE4umLKd+yzqk+PFADo0M4daXBlO3RR2eu/p1wwGxgqcRIYwlecxWM+lHMzh2IJUD2w/5dDt5XB6mfzqHEa/rF+2czFzmfP0XGxZvIalpTfqO7OV3/kFzbwGZavwBsz+FcgQCKSW41+laPpbm5RZwE8KEiHoVGf6wrh1kStLNakrax5SIiJ+B9OwALR3MzfXhtrKuQQlH2q/Kt8wsfEMSgggbWer++myGPKvaVwPqFZNS7pBSPgM0ASagPx3sFUK8KISIrYB1DAGmSCkNrxBCiDuFEKuEEKtSUnynScvDLW3aYy/Wh28SgloREZxXinpoaTg9HlYcPMC65MMl5vpLwm620LFmLZrGxRdJF4RZLOXO8xfG3/ruaNfBZ07BajJxab363hbUwkgpeWngO2SmZpOX5cDj8ujF1b828tvnulpqr5u7eztqimMLtWEPtWG1W3jg0zv8DmoZ0eeOnkw6NJbHv76X/vdd6XeQqzBup4c/f1gMQMdebbCG+AY3j8vDpTd0w2ozY7EZ3zvF1ojm0iEXct4FTYq4ohUgpSSpaU2S96QUcT0rfI79Ww8BcDw5jeHNH+KrZ35kybR/mPLuDIa3eIhN859HS+mJduxaZN7PJwr9nv/8f0BZdrtLqaUhU/sh025DZr6APHYdWtpdSFm2WkxhhCkeYT2/1CBQZB9zI4S1Y7mCgPdYUS+DvSdg1SUzRJhuZWn3P0wn1UNoqcOQRzshj3ZGOzYQ6dlV7rWcDgRcIxBCtEZ/KugNTAV+ALqh38UbiYYfBAqP+NXO32bEEOBeP68hpRwLjAVdhjrQNQdCx5q1ePqi7ry2eAFmRcGjaSRFRvFlv+vKJd88d+cOHp07G9AvAmFWK+OuvpaW1cqmc1Mcm8nst+PHoiioUmISIiAHM5vJ5FeEbmDzluw4fpxv/12L1WTCpWp0SKzJWz2MfQQO7Uwm5YDv3akz18V3L/7E/AlLqNsiicYd6vPf2j04sh1Y7RYUReHRr+4hJz0HIQQXXNORmOon3zcQHh1Gt2s706JrU375aHZA+7idHqa+/xvV6iYQERtGZorm7QKyhVpp36M1rw0bjSPb6W0tLYwQcF6XJjw94SFSDqRyV9vHyM3M8xaf7aE2Rrw+FKvdSsO29fAYFKVtIVZadtMnjb9+9kfSj2Z693e7PLhdHt4duY5xi3QZE5kxClwbEFHPg6WD/w9nKvtTrMx4Gjw7KFLFcS5DZn+OiDAeEjxTEMKOiH4PqWXoBXZTbb8S3gBSuvT0m5aCtzPLswGZOgQS5p/x8wwB+RHk1wjSgS+BqVKe6OUSQkyTUl5nsI8Z2A5cjh4AVgJDpZSbir2vGfA7UL+UVBMQPD+CXLebjUePEG230yTu5LsRth5L4c0li1idfIhom53DWZk+WchIq5V/RtyNzc8k8MmwPvkww37+iVy3b5qiaVw8s4fdwiNzZjFj+1ZDbaTC2Ewmltx2p18THIC0vDy2px4jMSKCOlH+L9D7tx3kno5PllgDMJkVLDYLt782jOPJacQkRHHp0G7EVPMvrV0Wprw3g2+en4jb4UbTJEIRRcxgQL+ImyxmvThuMxMWFcYFV3dg7fyNRMaGgxDsWr/H+3mEIkBSJAjbQq28Ne8FrzZQyoFUfnx9GmvmbSC+ViyDn+hXpAPo5cHv8c9vq731DJNZITIugq+2jCY8OoyB1YeTkZLp83nMVo0JqzcTFVfwzbIiEuYhTDXQjl2bPxhW5NNB9NgTcs0ngZQO5JH2GJbylWoo1XznQs5mpGMOMuOpYjMQAKGIyKcRoYNOybpOhorwI7i+oOhb6KD1pZS7jYIAgJTSI4S4D5iD3j76lZRykxDiJWCVlHJ6/luHABMDCQLBJNRioVOt2mXad1facfpP/B5X/t13tsv40Tnb7eavPbu5slH5204bxcYZpnMsikK3Ovog1t0dOzPrv20+gnGgO5gJ9JTQWz2uLDEIAMSEhNC5dukaLrWb1CQyLqLEQKB6NFSPkz++mc+nq98u9ZhlZeAjV5PYsAY/vj4NR46TTr3bMXf8Apx5LjwuFU1V0VTp7fxxuzw4c10c3nWEr7eMZvvqnTxyyQtF+vtlfkAxm02YbRbMFhP3fzKiiEBcQu04HvjkDr/revqHB/np3RnM+GwOjhwnXfp04LZXbyA8Wm8vtYfaMEzoSLDYCv0/F1ZdpsFUAxH7HTLtHnCvzH/RAhHPlCkI6OcqIe3o09N/ZiK1THDMQHoO6FpMtsvQ718NUA/4+dy5SHVfQLqupzOBBoIpQHFH8ClACc+kIKWcBcwqtu35Yj+PCnANFcahrEy+WruadUeSaRIbx4j2Hb3aO2Vh1II/vUGgJDQp2Xg0uUICQZjVykOduzL6n2XeWoFZUYiw2bizvW6Ok+fRh7MKowjBRXXqcln9hlgUhR4NGpUaBE4GIQTPTHyYp654Gc2jldjFs3PdXn2OwCCnXhH88e0CRt/9BZpHRfVoJO8+yiWDLqBz7/akHkpj/AuTyMkoWgjXVI21f27E5XCxbv5GHxMa0INB/4evoveIHtRsWOOk128ymxjyZH+/7bZ9R/bi+5d/KpKGMps12l2cTWh44e+ZBoqeahRKOCLuW6R2HLQ0MNUpl0WjUMKR5obg2VZ89WAru/Xp6YJ0b9bnLqQHyEPmhYKpDsT+aKy1ZG6eP9hW7PsgQhGWlpWy5mBSYiDIT9u0AKKEEIXv/COB0itxpwlSSlYeOsjRnGyi7XbumTUDp8eDW9NYn3yYX7dtYXz/gXSsWatMx1916FDA7y1emC4Pd3Y4nwYxMYxds4qUnBwurluPezp2JiFM/yJ/tmoF7mIdOqqULD+wnzd7XOl9X0XTvEsTvt81hvkTlnDsYCq/jpmDw8DK0mw1G5rHBIoj18m87xaxfsFGqtdLoO9dvahRT2//y0rLZvTIL3A5TlxMnblOFv20nMuHXczFAy/g2xcn+zmyRNMkkXERWKxm1GIdPla7hep1qpHUtGzfl9K4/tGr2b56Z76gnwmpqSTWyeSxD/YVepcJlEQfeQihxOoy1QEitex8g3gT2Lp6ZasBRNTr+RdLN7owXQgoYYiIR8v1+U4HZPoj+T7HBRtywbMLmTMWEfGw7w7WLmBqlB8YC54MLKDUAFvZZM1PJ0q7KjUF+gLRQOGpnizA/7PvacSF1AToAAAgAElEQVThrCyG/TyZozk5CPRhscIpFVVK8jwenpk/lzk33lq2kwT4XGgSgjY1jKdky0qPBo3o0aBoS19ydhZ70tPZfvyY4WyBBAb+9CNhVitDWrRiaKs2mA06WcpDZFwE/e/Xp1oX/rScZINAEBJhL3NBPistm3vPf4q0I+k4cpyYrSZ+/eh3Xp7xFG0vbcmqOesxWZSic0vo8hALJi6h/eWtqNciiY1LtvocO7paFPZQGxcN6MyYh7/2eV0xKXQfErjA4MliMpt4fvKj7N92kB1r91C9XgLN2h6EzKf1C5ZUwdISET26XA0NWt5MyPif7m2gb4HoDxG2iwH0O934ObovsrpDN3sJGXDGF0alekRP9fjggrzpYBAIhBC64mvOJ5D3i/7/wN4HEfFguZ68ThdKDARSyl+BX4UQF0gpl1fSmiqU+2bPYH9GRqkF051px3F43AH5BRenY2Itluwv3ZRGk5J2NYI3i+BSVR6fO5s/du7AajL5rVW4VJX9mXoW+s2li1i8bw9fXH1t0NZl1EUEkHksq8ypoYlv/ELKgVRvft/jUvG4VN685SMm7P3MUBob9F9oU/6QWsp+47mBzOPZqB6VsKgwnpnwEC8OfMerV2S2mHjsq3uITqjYwrYRSU1rFXrqaIK0LQF1ry4XbSpf95lUD0LGU4CzyBCNTLsfqi1E5DuBCVO1M75DyJcSvm/C/2tCCUVEPA4RjwdhTaeWEm8DhRBP5P/nUCHEh8X/VML6ysWR7Gw2pxwtNQiAnl/3ZzhTGqO6X4bNVPq+ihAs2BO8vuP3li9l7q6d+daZroDsxPM8Hpbt38e/BkJ8FYXZz4VeMSllTg0tnvq3obxD1vFsDu86Qscr2qKpvv8C1hArPW7UC6iZqcZKtJpHw5HrRPWofPrIeNRCshWapjH28e9wGVhWVjSappGVlu1tIxXChDA38AYBKR1Ix19Ixx9eA5pAkXm/gZF4iAAcc8u58tMbYYrXLTd9Ln92CDEWOTzbKe23cEv+36uA1QZ/TmvyPO6AsjY2k4lrmzX3egGcLA1iYvl58DC6161PhNXq1yhGlZJ9GWUf8CmNCRvXF5GcCBRVSlYfDrzOcdL4SV+UI6uBzc9AmqZJbKE2QiNCeG7Sw9hCrNjD9AE1q93CgIf70KJrU0BXQDUirlYMoREhrJi9luPJaWieQoFAlWQdz2bpz8a+vhXF3O8WMqTWnQxKvIP+sbfy1bMTikxkS+cy5NELkBmPIjOeQh69AC13eglHLIbMwbA1VKr5JjdnNyL6A13QToQBFhAhYGmLCLv9VC/tlFBaamhG/t/jK2c5FUudqGgfd67CRFituFSNrklJPH9x+TohmsUn8FU/vZ5++6/TWLDXWItGKc/VrxSMZgoCwaIoVA9S4RjwKwSnqbpsdVlSQ/3uvZLPHh1fpLVTMSk0aluPuERd9rlznw5M2P8ZS39egSPHyflXteXvGau5PnEEWalZJDaogdVuwe3yeOcLbKFW7vtwOEII9m4+YChTkZftYM+m/T7bK4q/f1vN6LvHFvFFmPbBLKQqGf76MKSWhUy/G2Qx/+HMZ5DWtogC45kSELbuuuOXj4exAraLKuaDnMYIc13d2Mc5H9TDetHd0r5cNZczmdK6hmbgX8sMKeU1Fb6iCuRYbo6hhDRA9bAw3ul1FXUio0mKqth8b4uEaizcu9vnH86iKNSNDp7Kdutq1Q29FkpCF5wzc3n9hqW+t6y0uLAp6+Zv9NneoE3dMreO9r7jcjYt38aiycv0YwiIqRbFs5MeKfK+yNgIr63k18/+yNQPZnqDx4Hth7DaLbS9tCXJu49Qq3Eiw54dSMt8L+E6zWphDbH62GKGhNupe15wOoYAvh01yWeC2Znr5JePZ3Pzi4Mwq/NAGl2wVGTedETEfaWfxNIO7FeA84/8JwAB2CF0CMLcoLS9y4XUMpF5U/UZCHMTRMgghOnkjZ3KixBWsBtPyJ9rlNY19E6lrCJIHMjM9BvF0hwOLkzy74BVHga1aMW4tat8nL9CLBYuqxe8X7IXL+3BDVMn4fJ48EiJWQjMJhOtEqqzNTWFmJAQrmjYmN+2bSXd6UACtSIiGdP7mgqZdvbHPe/fyoPdnsPlcKG6VRSTomsJfTKizMdUFIUnv7mPG58dwLYVO4irFUuri84z1PEBvdW0cBAowOVwY7Ga+XbHJz77dO7TnuiEKFx5bm+e3mRWCIsOo9uALmVee2kk7zXW09JUjey0HKLDczDM76OCDKxWIISAqDfB1QeZNwOECWG/FmEL3ucCXa9Hpg4ALQe9pWseMmccxE5EWILn71FFyZSWGlpYWQsJBpEGomgFBFLcLStJUVF8cEUfHps7GyEEUkpCLVbGXXNtUC+4rapVZ+YNN/PFmpVsTjlKi2rVGdGuo89TyFMXXszu9DTMilKiXERFUb9VXcauf4cp781g28qdNGhdh+sfvYbaTcrfQVWrUSK1GpXeknvs4HEUP05zuzfsM9xuMpsYvexVPr7/S5b9uhKpSTr3bc/9Hw3Hagtey2DDNvUMn6CsIVYi4yNAXgxZb/ruKEIQ9sB72oUQYLsEYSvj9HEZkJmv6wNv3kDmBOlCZj6LiJtUaeuooiilpYYmSykHCSE2UDRFJAAppaw8s9MyUC86hjCLhRyD3PkVhdzFPJrGHzv/48/du4gPCWVwy1blmjQGuKJRY7rXq8/a5MPYTCba1EgMan2ggLrR0bxymX8FRdAvAOX9fCdLjXrVuO/D4ZV6zsLE1YzxW6uo28JXWiQvOw+z1UxMtSiem/SIV1uoMnLIt786lMcvH1UkPWQLtXHbKzdgMpmAOsjQWyD3O/S7aqkraFq7g6WMGv2VhWsRvk8zEtzrkdJVovBbFcGjRNE5IUSilPJwvl+AD1LK0pvnK5iTFZ2buX0bj86djSs/TaMIQbTNxqxht1AtLByXqjJs2mS2HEsh1+32plPe6nEFfZs0C9bHqOIUMPaJ75g+Zo6PN3BhwbhNy7bx/p2fcWD7IRRF4ZLBXXngkxGEhIf4O2xQ2Lx8G+Oe+oGd6/cQXyuWm18YxCWDig6xSdcKPdcu3Qj71frdvZHL12mEduR8P9LYFkT19f61fqooNyWJzgWkPpp/kBrormMSWCmlDF7jeQmURX10/ZFkxq1ZxYHMDC5MqsOtbTsQn6+v8+OG9byyeIGPtn+oxcKqO+4u04BZFSdPekoGnz78jd6WKQQXD+zCyHdvITKuZPMPj9vDkb0pRMVHekXb/KFpGhPf+Jkp784gKy2HOs1rc+8Ht9G+h/5ge+C/w9zd/vEignkWm4WW3Zrx1tzn/R22ipNAy3wDcn+gqCGMBexXoES/d6qWdU5Q7kAghBgBPI/uPSCAS4CXpJRfVeRCA6GiZaiHTZvM8gO+rYDhViuf9+nHBUmlt+JVUT7cLje3n/cQKftTvUVZs8VEjfrVGLfxfb+dRTO/mMsXT3yPmi8q1+26zjzyxUi/pjeFkVL6pHk+um8cM8fO8zGxt4VY+Wzt2xVS0zjXkdKBTLsLXOtODJKY6iFixyOU4E9rn8tUhAz140A7KXU/PCFEHLAM3ansjCbUYpyTlFIS4sespSxIKZm+fSvfrl9LjttN70ZNuL1dB792j+cSy35dRUZKZpELsMetkno4jX9mraHrNef77LNi9lo+ffibInn0pT//g5SSZyY8VOo5jXL9ezbt9wkCoIvjHd51pCoQVABC2BGx45HuzbqAm6k+WNqcs/37pwuBBoJUdKG5ArLyt53xDG3VmmX79+mSzYWIsNpoXT1wG73SGLVwPlM2b/SmoPampzFj+1Zm3HDjGZ9+klKyYvZaZo/7E6fDxeVDL+LSIReWOiOgqipH9x5j+6qd5BmI0jlzXezddMAwEEx4bZpPr73L4WbpzyvISssmIubkhdGaX9CELX9v9+oKFeB2uqnXsurJsCIRluZgaX6ql1FFPqV1DRVM5+wA/hFC/IpeI+gH/BvktVUK3evW56bWbRm/fg0mRUFBYDGZ+LLfdRXW5XMwM5PJmzYUmStwqiqHsrL4ddtWBrdoVSHnOVV8/th4Zo6d582tb1y8hXnfL+K1WU/77etfPO0fRt89FkeOE4/L4zV/L4wt1ErtpsZ34cf8CNmZLCYyUjLLFAj639+b3z6bi8etFpk0vmjgBSTUrvyBpyqqqCxKeyIoqNTtzP9TwK/BWU5wyHI6mfXfNpJzsmlXoybd6tT1XuSFEDzV7WJuatOWFQcOEGW3c1GdulgqcM5gTfIhzIriM2CW53GzcO/uMzoQHNqZzIxP/8DlOPFE5chxsmnZNlbNWU+nq9r57LNt1U7evPlDQ//fAkxmE5GxEVxwtbH3UYtuzUg5kOoTPBRFUL1eQpk+S1xiDB+veJ0vnvyetfM2EBIRQv/7ruT6x07rAfoqqig3pQ2UvVhZCwkWm1OOcsPUyaiaRq7HTajFQrO4eH64blCR4a5aEZFce15wHlUTQo27WcyKQq2IyKCcs7JY++cGhMFdvyPbwd+/rTIMBFPem4Erz3e2Q1EECD04d+nbgQfGjMBsMf6K3vzC9fw9YxWOHKc3GNhCbQx/fRgWa9lTbbUaJTJq6tknM1xFFSURUI1ACJEAPIHuVuZ1JpNSXlbKflcCo9EFwMdJKd8weM8gYBR6ymm9lHJooIsvDSkl98/+jSzXiVa1XLebzSkpfLl2Nfec37miTlUinWrVJtoe4mOKY1YUhrZqUylrCBbhMeEoJt8Umtli8tv6mbzrCEbdaiHhdl785QlaXdzcb0qpgFqNEhmz6k2+HfUTGxZvJqF2HDf87zq69C3RPbWKKqowINBi8Q/AJHS3spHALYCxIEo+QggT8AnQEzgArBRCTJdSbi70nsbA/4ALpZRpQohqJ/8R/HMwK5PD2Vk+2x2qh2lbN1VaIFCEYMJ1g7jrt1/Yk5GOSeh1iHd6XkX96JhKWYM/NE3jzWWLmbjxX1yqSrsaNXm755XUigzsSaVzn/aGF22T2cQVtxorura5tAU71+3BXcxPwO3y0KBNvVKDQAG1GiXyv+8fCOi9VVRRhX8CDQRxUsovhRAP5usPLRRCrCxln07ADinlLgAhxET0IvPmQu+5A/hESpkGIKU8enLLLxmBQNWM5yQCnKOrMJKiopg17Bb2pqeT63HTODauwu0hy8LAn34solj698H9XPrtlyy97Q4SwkovuNpDbbz++7M8d/UbuJ1uELo42uNf30tiA2MXrQEP9WX2l/PR0nNQ87X+7WE2rn2gd5mKvFVUUUX5CDQQFCR0Dwsh+gCHgNLEamoBhSe1DgDFb8GbAAghlqKnj0ZJKX8PcE2lUjMiAn8q2pUhtmZEMGWoT5atKSmGstUeTWPUwvl80juwIul5nRsz6dBYNi/fjtvppsWFTbGF+B/qiqkezWdr3ua7l35i1Zx1RMVHMPCRa7hsaLcyf5Yqqqii7AQaCF4RQkQBjwIfAZGAr8Nz2c7fGOgO1AYWCSFaSSnTC79JCHEncCdAnTqB93MfzMr0O6iyLyPdcPu5xG//+Rq3F/D3ASNzb/+YzCZaXXRewO9PqB3HI2NHntQ5qqiiiuAQUCCQUv6W/58ZQKBWXgeBpEI/187fVpgDwD9SSjewWwixHT0wFEk7SSnHAmNBl5gI8PwIhN9ZgMpQAj3dKempKDak7CJrUkp+/nAWk9+ZTlZqFk06NmTke7fStGPJ5jcZxzJZMWstCL32EBlbss5QFacHUkrQjoCwIZRTW/OqomwElKQWQjQRQvwphNiY/3NrIcSzpey2EmgshKgvdG3ZIUBxU9Vf0J8GEELEo6eKKszdvVZkpGF7pt1sZuB5LSrqNGcsA89r4bdO8XCXC8t83HFPfc9Xz/xI6sHjuBxuNi7ZymPdXyjR3vGPbxcwtM5IPrpvHB/dO46hSSP5a9LSMq/hZJBS4nK4DDuZqigZ6VqFPNYDmdITebQbWuqNSLVCS31VVAKBViu/QO/ucQNIKf9Fv7D7RUrpAe4D5gBbgMlSyk1CiJeEEAXJ5zlAqhBiM/AX8HiBnlFF8dFVfYmy2Qi1WFCEINRioXX1Gtzatn1FnuaMRFEUJg4Y7GPSc3vb9vRu3KRMx8zNyuOXj343cAJz8cMrUwz3ObovhdEjx+JyuMnLdpCX7cCZ5+Kd28aQejitTOsIlD8nLOaGpLu4OvxGrou/jUlv/1oVEAJEqoeQacNB3Y+uJuoG92rk8Zuq/g3PMAKtEYRKKVcUy7d7/L25ACnlLGBWsW3PF/pvCTyS/ycoNItPYOntdzF7x3aSs7NpXyORLrWTqkSu8mmfWJMt9z7Esv37SMnJpmeDRoSWQwgvefdRzFYTrmLSQZom+W+N8cPewsnLvZIORRCweOrf9L/vqjKvpySW/bqS9+/8zDvhnJ2Ww/cv/QRSMviJ/kE559mEzJ0IsvhlQNXTRO5VYPXViKri9CTQQHBMCNGQ/BYcIcRA4HDQVlXBhFosDKhKBZVI1wqS205IivMRbQNdcbjOeb5OYAAupxuPgeqn6lFxO3wnkCuKr5/70UfmwpHj5MfXf2bgo1fnu4FV4Rd1LycaCgsjQK1cuxIpXeD4A+n6B0y1ECHXIUwVOpZ0VhNoauhe4HOgmRDiIPAQcHfQVlXFGUtETDg9b7oYW2jRpwpriJVhzwww3Kdz7/aGgx2aR6NTn+Cl8JL3GM9EOnOdOAzUUKsohqUTYNBUID1gaVlpy5BaNjL1OmTGs5A3CbI/Rh7rhXRVnG/J2U5AgUBKuUtK2QNIAJpJKbtJKfcEdWVVBIRbVflz904mb9rA7vTg5tMD5f5PRtDv3iuxh9kQiqB2k0Re/PkJmp7fyPD9qYfTUAwkq01mhdRDwftMdZoZK5uGRYUSEnHiApednsP8CYuZ9/0iMlN9J9XPVURIf1BigMLaTnaw90CY61faOmTOV+DZC+Tmb3GBzEWmP1JVqwiQQLWGXgPeKujvF0LEAI9KKUvrHKoiiOw4nsoNUyfj9HhQpUSTGv2bNue1y3ue0hqI2WLmjjdvYvjrw/C4Vay2kkXgtq3Yger2TQ1pmmT7yh20vzw46qzDX7+R5695A2deMZP4V2/wylwsmrKcN2/5GJNJ/1n1qDz42Z30url7UNZ0JiGUMIifhsz+BBxzQdghdBgi9MbKXYhjJkWtL/PRMvT0lble5a7nDCTQ1NBVhYe88iUhegdnSVUEgpSSO2f8wvG8XLLdLvI8bpyqyoztW5m+3f+gWGWiKEqpQQD0uoI9zHcS2RZiJSEpPhhLA6D95a148ZcnaNimHla7hZqNavDI2Lvoc0dPANKOpPPmLR/jynN5u5lcDjejR47lyN4SpbbOGYQSixL5HEq1RSgJf6CE3YIuM1aZi/DX3KCV8FoVhQk0EJiEEN7fVCFECFC6MWwVQWPH8eMcycnxEdDI9bj5YcP6U7KmsnLJoK6YrWYKP8QIIbDYLXS7rlNQz92hZxs+W/s2M3MnMH77R1w29CLva4un/oPRc5WmSRZOXhbUdVVxEtj83JMqsQhTlb1oIAQaCH4A/hRCDBdCDAfmAuODt6wqSsOpevxORzs8weu0CQahESG8t/Al6raog8VmwWKz0KB1Xd5f9HKJmkXBxuVwoWmaz3bNo+J0+DfVAUhPyWDF7LXsWLu7Kk8dbNTDYBSytSx00YIqSiNQiYk3hRD/Apfnb3pZSjkneMuqojSaxSdgMSk+3Xt2s5lrmgSu+XO6UL9lHb74911SD6chBMTWOPVSBZ37tOfr5yb6bLfYLVzQt6PhPlJKvnpmAtM+mInFZkH1qNSoX5035jxLXOKp/0xnJe6lGIpLCi2/RmDcpFDFCQLWQZZSzpZSPpb/pyoInGLMisL7vXoTYjZjUfScbKjFQqPYOG5sfeaa3cQlxpwWQQAgqWktBjzUB1uo3v0khMAeauOq4ZfTqJ1xV8ziqX/zy0ezcTnc5GTk4shxsm/LAV4c8HYlr/4cQvHjJy09IE6P79LpTqBdQ9cBbwLV0J/BBPpg8Jnts3iGc0m9+sy58VYmb9rIkZxsLqpTlysaNq5Qv+WKYvvqnYx/YTK7/91LUrOa3PTCIFpe2OxUL6tUbn91KBdccz5//rAITZNcNuRCWpSw7qkfzMSRU7SDRVM1dq7bw9F9KVSrUzY/5bIgtRxk3m/g2QLmpoiQqxHK2ef3IMKGI9OfAPIKbbWAtTPC5CdIVFGEQCeL3wKullJuCeZiqjh5akdG8cgFZReIqww2Lt3KU1e8givPiZSQciCVTUu38cLUxzj/Sl9P49ON8zo35rzOjQN6b3ZatuF2k8VEdnou1SpmgLtUpHoYmToAtBz0C2QIMns0xE1BmI0nvM9UhP0KZPhuyB4DwgzSDZa2iOj3TvXSzhgCDQRHqoJAUaSUrEk+xJ70dJrExdOqmrEbV0Wfc+n+fUzdshGPJunXtBmX1W942ktqf/boeB8ROmeei08e/Jpvtp3+geBk6NrvfA7vPOJjw2kym6jbvPIuwDLzJdCOAwXF7jyQTmTmKETsuEpbR2WhhI9Eht4Inv9ASTjrgl2wCTQQrBJCTEKXjfb+RksppwVlVac5mU4Hw6b95J3klVLSqnoNvr7mOkIspffNl5VXFy/gx40byMvvCvprzy4uq9eA0Vf2Oa1F9Hat32O4/dCOw6geFZPBVPGZyvWPXcP8CUtIT8nEledCUfQ22Ic+u6tyP6dzESeCQAEauJYipTytvy9lRSjhYD27biwqi0ADQST6/HavQtskcE4Gguf/+pPtqcdwF2otXJ98mHeWL+G5iwP17Tk5dqUd54cN/+JUT9xp5rrd/Ll7F6sOH+T8mqfvHVBkfCSpB4/7bA+JCEExnXrf5ookMjaCsevfYebYeayas45qdeLp/0BvGrWtPMkFHRPGgnBnT9AtCSldyNzJ4JgBwo4IvQFsV5yVAbAiCLR99LZgL+RMQZOS2Tu2FwkCAE5VZeqWTUELBIv27sGoRS7P4+av3btO60Aw5Mn+jHvqhyLpIVuojese6ntW/mKGRYUx6PF+DHq836lbREgfyJtO0WBgAfvZfzGU0oM8fiO4t1FQQJaudRDyNyJq1Cld2+lKoF1DdmA40AKwF2yXUt4epHWdtmhSovoZEHKpvno5FUWY1YpJUaDYOSyKQrj19B7y7nfvlWQcy+Snd2agKAJN1eh7Zw9ufM5YjbSs5GTkMPHNX1j403Jsdit97+5F37t6npNy0iLif0j3Zr2PXqogTGCqjYh8vvSdz3Sc88CznaJdRHmQNxUZdhvCXLdchy8YEDybAmqgqaHvgK3AFcBLwDB017FzDrOi0L5GTVYfPljk/lxBcEndekE77xUNGzFqwXyf7SZFoV/T03uATAjBLaMGM+TJ/qQcOE5czRhCwuyl73gSuBwu7uvyNEf2pOB26nfBXzzxPRsXb+GZHx+u0HOdCQglEuJ+AdcKvYBqbqi3U4qzKxVnhHQuAZlr8IoCrpVQxkAgtePIjFF6oEEibRcjIl9EmGqUZ7mnBYF+KxpJKZ8DcqSU44E+QOfgLev05rXLexJhs2E363E0xGwmJsTOs0FKCwFE2ux83rcf4Var90+I2cw7Pa+kVuSZMc5hC7FRu3FihQcBgL8mLuXYgVRvEADdV2D59FXs23ow4OO4XW7mfb+Ilwa+w+h7xrLTT6H7TEAIgbB1RoTdiLBdcE4EASB/wMygaUMo+bLZJ4+UKjJ1SH4Q8AAqOBciUwci5ZnvXRHoE0HBb1e6EKIlkIw+XHZO0ig2jvk3385PmzayNfUYratXZ8B5LYm0BTdF061OXVaOuJvlB/ajahpdaicRVg5bybOJdX9t9BnkAhCKYMvf26nTrFapx3A53Tx6yfPs2bQfR44TxaQwd/xC7vt4OFfedlkwll1FEBAhA5E5X+NbLLeC7SKjXUrHuQi0FIo69Gogs8HxO4Sc2damgQaCsfkeBM8C04Fw4LnSdhJCXAmMRm9VGCelfKPY67cCbwMFt2wfSynPiCbn2JBQ7uoYXGVMI2xmM93rVXYHyulPjfrVsNjMPjaZQhHE14oN6Bhzxy9g98b93qK2pmo481x8fP9XXDKoa1CeZKqoeIQ5CaJHIzMeQ2+w0EBEI2I+R5RVllrdBdLA80DmIt3/IQyM2s4kSgwEQojCpvIFnUOf5P8dVsq+pvz39gQOACuFENOllJuLvXWSlPK+wJd8+uBWVTKdTqLtdr2QW8Upo/eIHkx5d0aRQKAogojYcNpeFpht4sKflvsMvoHulLZ52TY69DxzNZzONYT9UrD9De6NIGxgPq98xV1zI/04spgftwhFWJqWb7GnAaU9EUTk/90UOB/9aQDgamBFKft2AnZIKXcBCCEmAv2A4oHgjENKyUcr/uaLNStxaxp2k5kHu3TltrbB89etomQSasfx6syneeOmD8lMzUJTJQ1a1+G5yY8G3DUUHm18byOlLGJdWcWZgRCWihsws3YDpYbeheVND5lARIH9ioo5xymkxEAgpXwRQAixCGgvpczK/3kUMLOUY9cC9hf6+QDGBeYBQoiLge3Aw1LK/cXfIIS4E7gToE6dShJrKYHPV6/k89UryPPoXwiXqvLOssVEWK0MbF55pt1G7E1PZ9zaVWxKOUqLhGqMaNeRutHRp3RNlUXri5vzw55PSd59FIvdQnzNwFJCBfQd2YuVs9fiKPZUEB4VRrNOVVLG5zJCmCDuR2Tma3pNAA1slyEin6WQZ9cZS6D5jOpAYScOV/628jIDqCelbE0JZjdSyrFSyo5Syo4JCZWn3uhnLXxWKAgUkOfx8OGKv0/RqnQ2Hj1Cnx+/ZdLGf1mXfJhJG/+lz4/fsvHokVO6rspECEFig+onHQRAt64c/GQ/LHYLoREhhEaEEFM9mtdmP+P1MK7i3EUo0SjRb6HU+BelxkaUmKyH6lIAABJdSURBVA8RprOjZybQYvG3wAohxM/5P/cHvilln4NAUqGfa3OiKAyAlDK10I/j0FVOT2vcmkaW06BoBBzNMVaerCxeWPAnue4TnRIeKfG43Yxa8CdTBg09hSurHHIyc/np3RksnLQMW4iVq+/uxVUjLj+pi/iNz11Pnzt78u+iLUTEhNGme4tyawTl5TiY+t4M5v+4FLPFRJ87e9D3rl5nlcZSFWc2gUpMvCqEmA0U9F7dJqVcW8puK4HGQoj66AFgCFDkaiSESJRSHs7/8RpO0yE1l6rywd/L+GHDOnLcbsyK4iMxAXpb6alk/ZFkw+3r/Gw/m3A5XDxwwdMc3n0Ut0MPhp8+Mp5/F2/hf989cFLHioyPoF7LJMKjw8p9sfa4PTx80XPs33oQV/66vnjyB9bO38ioqY+X69hVVFFRBPpEgJRyDbDmJN7vEULcB8xBbx/9Skq5SQjxErBKSjkdeEAIcQ169eU4cOvJLL6yeHzu78zdtQNHfjpIM5CYsJvNPN3tkspeWhFCLRayXb5eumFBVEQtTF6OA03VCIsMrZTzFWbh5OUc3XfMGwRAHyhbMu0f9j97kKSmpc8RACz5+R/ev+tzXA43qkelWafGPDf5EWKqRZVpXUt/WcmhHcneIFCwrlVz1rFj3e5TIEZXRRW+BDXxKaWcJaVsIqVsKKV8NX/b8/lBACnl/6SULaSUbaSUl0optwZzPWUhOTuLP3b+5w0CBShCEGsPIdJmo0NiTb7pN4CuSae2kH1Dy9beaecC7GYzw1q1Dep5Uw+n8b8rX+Ha2FsZEH8793R8gt0b9gb1nMVZM3+D4UCZogg2L98e0DF2rNutdx0dy8KR7cDtcLN5+TaevurVMq/r30WbyMs2mDyVsCXAdVVRRbAJ+IngXGVPejpWkxlnMbE3TUrqREUxbfCwU7QyXx69oBuHs7KYu2sHVpMJl6rSs0FDHurSNWjnVFWVRy5+jiN7U1A9errsvzW7efiS5/l2x8dExkaUcoSKoXrdBCxWs48hjKIoxAVYOP7lw1lFnigAVLfK/m2H2PXvXhq0PnmNmoSkeKx2S5EnAtCNagJdVxVVBJuqVohSqBcdXcQDoACzEDRPOL06BqwmEx9e1Zf5Nw/nsz79mH/zcEZf2RdrENU31/65kbSjGd4gUIDH6eGP8QuCdt7i9B5xOSZL0c+pKIKw6FDaXR5YS2/ynhQ0zTftZ7aYSD3k66cQCL1uvsSnziCEwBZq4/yrgvukVkUVgVIVCEqhRngEVzRs5JNysZrNjGjf8RStqmQSIyK4IKkOiRHBvxs/vOsImse3cO7Mc3Fg22GDPYJDtaR4Xp7+FHE1Y7CH2bDaLTRoU493F7wY8EBZ+56tsdp9JQjcTjeNOzQo07pia8Tw2uxnSEiKxx5qwxpipV7LJN5b+CIWa+XUbqqoojTOidSQ0+Phrz27OZKTRbsaNWld/eRkY9/ueRXv/72UCRvWk+N206Z6DUZ1v5x60WVTMjybaNSuPkLxHd23h9k4r0tghu8VRdtLWzJh32cc2pGM1W6hWp2Tmzm5emQvpo+ZQ0ZKJp78FJM9zMY1915JdELZisUALS9sxg97xnBwRzIWq5nqdU/tLEwVVRRHSD8mK6crHTt2lKtWrQr4/bvSjjN4yiQcHjceTUMRgs61k/i8Tz8s56BhSUUjpeTxy19ky9/bvXlwk8VEfM1Yvtz8PraQM2vqMj0lg4lv/sLyX1cRERvGgIevpvvgrmeVCUkV5yZCiNVSSsM0xlkfCHr/MJ5tqceKmMiEmM081rUbt7XtUPELPAdxOVx8/8oU5nz9Fx6XyoXXduL2V28o1110FVVUUbGcs4HgUFYml3/7lU/HD0Dj2Djm3HhrBa+uiiqqqOL0pKRAcFYXiz2a5veR3mMwGfz/9u4/yKryvuP4+7PL7soiIhTGqFB3VaISlR9FA0karUqLP4KdmEZMmpBEy8SqI8ROitKxE1NnqjP1RyamDqYmnalKq8aUAadqiWmjbQQUURQRlE2BIGADQfm1LPvtH+esOSzrsqR7Oefe83nN3Ln3POe5dz/cs8v3nufc8xwzszKq6UIw6pghjGg+eGrhpvr6wl/n18zsSKnpQiCJ70y9lEENjR98/bO5oYFThg4r7Fc/rfqtemENN0y+halN0/mTj1zN/DueoNN7oFZgNX2MoMuvdu/ix2+sYuN7OzjnhJFcdPIpDPC0wlYB61b+DzdMuuWAK501NTdxyTUX8uf3fLWXZ5pVVm/HCEpxHsGwgc18bby/IWSV9/Dtj9O+58CJ//bu2suiec8w41ufZ9CQXq/wapaLUhQCq007fvUeC+9/muWLV/KRlhF8dtaltJ51+PMB9ae1y9uInqapaBzApnVbPNuoFZILgVWlbZu38/UJ3+T9be/TvmcfdfV1PDv/eebOn83kz+R3/KflzFFsXLOJ7kOuHe0dPqPYCssD5VaVHr79R+x4d8cHZzN37u9k7+527vqz+3M9MPvFuVfQOPDAOYSamhuZ8uXzGDz06JxSmfXOhcCq0s8XvkjHvoNPFNyzcw+/fCu/azSfOr6V2xfdQutZybUpmo8ZyBWzP8MN370mt0xmh+KhIatKRw9thraD2/d3dDJoyJG/QlrW2PM+xrwVf0dnZ6cvem9Vwb+lVpU+O+syjhp04IR2Axrq+dgnT/utLyvZ31wErFpU9DdV0lRJqyWtlTSnl35XSApJPsvL+uSiP/00l86cQsNRDQwaMpCm5iZazz6JuY/MyjuaWdWp2AllkuqBN4EpwAZgKXBVRLzerd9gYBHQCFwfEb2eLfbbnFBmtWvb5u2sXb6O4ScOy/2ro2ZFltekc+cCayPi7YhoB+YDl/fQ79vAHUAPV/g2693Q447lnKnjXQTM/h8qWQhOBNZnljekbR+QNAEYFRGLKpjDzMx6kdvRLEl1wF3ATX3oO1PSMknLtm7dWvlwZmYlUslCsBEYlVkembZ1GQycCfxUUhswCVjQ0wHjiJgXERMjYuKIET4708ysP1WyECwFRktqldQITAcWdK2MiF9HxPCIaImIFuDnwLRDHSw2M7P+VbFCEBEdwPXAU8Aq4F8i4jVJt0maVqmfa2Zmh6eiZxZHxJPAk93abv2QvudXMouZmfXMpz6amZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJVbQQSJoqabWktZLm9LD+65JelfSypOckjalkHjMzO1jFCoGkeuA+4GJgDHBVD//RPxwRZ0XEOOBO4K5K5TEzs55Vco/gXGBtRLwdEe3AfODybIeI2JFZHAREBfOYmVkPBlTwtU8E1meWNwAf795J0nXAN4BG4IIK5jEzsx7kfrA4Iu6LiFOAvwT+qqc+kmZKWiZp2datW49sQDOzGlfJQrARGJVZHpm2fZj5wB/3tCIi5kXExIiYOGLEiH6MaGZmlSwES4HRklolNQLTgQXZDpJGZxYvBdZUMI+ZmfWgYscIIqJD0vXAU0A98GBEvCbpNmBZRCwArpd0EbAP2AbMqFQeMzPrWSUPFhMRTwJPdmu7NfP4xkr+fDMzO7TcDxabmVm+XAjMzErOhcDMrOQqeozArD9FBGteeptfrn2H1rNP4qQzRuYdyawmuBBYVXh/+07m/NHf8IvX11NXV8f+jv2Mu+BM/vrxv6ChsSHveGZVzUNDVhXuvXYeb61oY8/Ovex6bzd7d7ez/Ccreejbj+UdzazquRBY4XXs6+C5J5bQ0d5xQHv77nYWPbA4p1RmtcOFwApvf8d+Ovd39rhu7+69RziNWe1xIbDCaxrYxMljTzqova5OnDN1fA6JzGqLC4FVhZseuJaBgwfS0JQcGG4c2MjgYYOZeeeXck5mVv38rSGrCqeOb+XBVfew8P6naVu5njMmjebiay7kmGGD845mVvVcCKxqDD9hGF+5bXreMcxqjoeGzMxKzoXAzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxKzoXAzKzkXAjMzEpOEZF3hsMiaSvwiz52Hw68W8E4/aVackL1ZHXO/lUtOaF6sh7pnCdFxIieVlRdITgckpZFxMS8cxxKteSE6snqnP2rWnJC9WQtUk4PDZmZlZwLgZlZydV6IZiXd4A+qpacUD1ZnbN/VUtOqJ6shclZ08cIzMzs0Gp9j8DMzA6hZguBpKmSVktaK2lO3nm6SHpQ0hZJKzNtwyQ9I2lNej80z4xpplGSnpX0uqTXJN1YxKySjpK0RNKKNOe30vZWSS+k2/+fJTXmmbOLpHpJyyUtTJeLmrNN0quSXpa0LG0r1LZPMx0r6TFJb0haJWly0XJKOi19H7tuOyTNKlLOmiwEkuqB+4CLgTHAVZLG5JvqAz8EpnZrmwMsjojRwOJ0OW8dwE0RMQaYBFyXvodFy7oXuCAixgLjgKmSJgF3AHdHxKnANuDqHDNm3QisyiwXNSfAH0TEuMxXHIu27QHuBf4tIk4HxpK8t4XKGRGr0/dxHPB7wC7gCYqUMyJq7gZMBp7KLN8M3Jx3rkyeFmBlZnk1cHz6+Hhgdd4Ze8j8r8CUImcFmoGXgI+TnKgzoKffhxzzjST5g78AWAioiDnTLG3A8G5thdr2wBBgHemxzqLm7JbtD4Hni5azJvcIgBOB9ZnlDWlbUR0XEZvSx+8Ax+UZpjtJLcB44AUKmDUdbnkZ2AI8A7wFbI+IjrRLUbb/PcA3gc50+XcoZk6AAJ6W9KKkmWlb0bZ9K7AV+EE63PZ9SYMoXs6s6cAj6ePC5KzVQlC1Ivl4UJivckk6GngcmBURO7LripI1IvZHsts9EjgXOD3nSAeRdBmwJSJezDtLH30qIiaQDK9eJ+nT2ZUF2fYDgAnA30fEeGAn3YZXCpITgPT4zzTg0e7r8s5Zq4VgIzAqszwybSuqzZKOB0jvt+ScBwBJDSRF4KGI+FHaXMisABGxHXiWZIjlWEkD0lVF2P6fBKZJagPmkwwP3UvxcgIQERvT+y0k49nnUrxtvwHYEBEvpMuPkRSGouXscjHwUkRsTpcLk7NWC8FSYHT6jYxGkt2xBTln6s0CYEb6eAbJeHyuJAn4B2BVRNyVWVWorJJGSDo2fTyQ5DjGKpKC8Lm0W+45I+LmiBgZES0kv48/iYgvUrCcAJIGSRrc9ZhkXHslBdv2EfEOsF7SaWnThcDrFCxnxlX8ZlgIipQz74MnFTwocwnwJsl48dy882RyPQJsAvaRfKK5mmSseDGwBvh3YFgBcn6KZFf1FeDl9HZJ0bICZwPL05wrgVvT9pOBJcBakl3xprzf00zm84GFRc2ZZlqR3l7r+vsp2rZPM40DlqXb/8fA0ILmHAT8LzAk01aYnD6z2Mys5Gp1aMjMzPrIhcDMrORcCMzMSs6FwMys5FwIzMxKzoXArJ9IasnOKnsYz/uvzPO/0P/JzHrnQmCWk64ziiPiE2lTC+BCYEecC4GVRvqJ+w1JD6Vz1z8mqVnShemkZa+m14toSvu3SbozbV8i6dS0/YeSPpd53fc/5Gf9TNJL6e0Tafv5afsCkrNgs8//W+D30znrZ0v6T0njMq/5nKSxFXuDrLRcCKxsTgO+FxFnADuAb5BcI+LKiDiLZCKzazP9f522f5dk9tC+2gJMiWTitiuB72TWTQBujIiPdnvOHOBnkcxdfzfJFB9fAZD0UeCoiFhxGBnM+sSFwMpmfUQ8nz7+J5L5adZFxJtp2z8C2Zk2H8ncTz6Mn9MAPCDpVZKpI7IXRloSEev68BqPApelk/99jaRgmfW7AYfuYlZTus+psp1kzpe+9O963EH6IUpSHdDT5SVnA5tJrppVB+zJrNvZp6ARuyQ9A1wOfJ7k6lZm/c57BFY2vyup65P9F0gmLGvpGv8HvgT8R6b/lZn7/04ft/Gb/5SnkXz6724IsCkiOtPXrO9DtveAwd3avk8yrLQ0Irb14TXMDpsLgZXNapILrawimanybuCrwKPpME4ncH+m/1BJr5Bca3h22vYAcJ6kFSTDRT19wv8eMCPtc/qH9OnuFWC/pBWSZgNEciGbHcAPDu+fadZ3nn3USiO95ObCiDizj/3bgIkR8W4FYx0qwwnAT4HT070Ls37nPQKzgpL0ZZLrRM91EbBK8h6BmVnJeY/AzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxK7v8A+me/ab3a2nMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "from sklearn.cluster import KMeans\n", + "kmeans = KMeans(n_clusters = 3)\n", + "kmeans.fit(X)\n", + "labels = kmeans.predict(X)\n", + "plt.scatter(df['popularity'],df['danceability'],c = labels)\n", + "plt.xlabel('popularity')\n", + "plt.ylabel('danceability')\n", + "plt.show()" + ] + }, + { + "source": [ + "La précision de ce modèle n'est pas mauvaise, mais pas excellente. Il se peut que les données ne se prêtent pas bien au regroupement par K-Means. Vous pourriez essayer une méthode différente.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 811, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Result: 109 out of 286 samples were correctly labeled.\nAccuracy score: 0.38\n" + ] + } + ], + "source": [ + "labels = kmeans.labels_\n", + "\n", + "correct_labels = sum(y == labels)\n", + "\n", + "print(\"Result: %d out of %d samples were correctly labeled.\" % (correct_labels, y.size))\n", + "\n", + "print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/5-Clustering/2-K-Means/solution/tester.ipynb b/translations/fr/5-Clustering/2-K-Means/solution/tester.ipynb new file mode 100644 index 000000000..cce3acbfe --- /dev/null +++ b/translations/fr/5-Clustering/2-K-Means/solution/tester.ipynb @@ -0,0 +1,343 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "6f92868513e59d321245137c1c4c5311", + "translation_date": "2025-09-04T02:12:02+00:00", + "source_file": "5-Clustering/2-K-Means/solution/tester.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "Commencez là où nous avons terminé lors de la dernière leçon, avec les données importées et filtrées.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                      0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                      2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                      \n
                      " + }, + "metadata": {}, + "execution_count": 105 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import numpy as np\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "Nous nous concentrerons uniquement sur 3 genres. Peut-être que nous pourrons créer 3 clusters !\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 106 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                      5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
                      6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
                      \n
                      " + }, + "metadata": {}, + "execution_count": 107 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "scaler = StandardScaler()\n", + "\n", + "# X = df.loc[:, ('danceability','energy')]\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "Unknown label type: 'continuous'", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;31m# we create an instance of SVM and fit out data. We do not scale our\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;31m# data since we want to plot the support vectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0mls30\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 30% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0mls50\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 50% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mls100\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 100% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/semi_supervised/_label_propagation.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 229\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mX_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 230\u001b[0;31m \u001b[0mcheck_classification_targets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[0;31m# actual graph construction (implementations should override this)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/utils/multiclass.py\u001b[0m in \u001b[0;36mcheck_classification_targets\u001b[0;34m(y)\u001b[0m\n\u001b[1;32m 181\u001b[0m if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',\n\u001b[1;32m 182\u001b[0m 'multilabel-indicator', 'multilabel-sequences']:\n\u001b[0;32m--> 183\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Unknown label type: %r\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0my_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 184\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unknown label type: 'continuous'" + ] + } + ], + "source": [ + "from sklearn.svm import SVC\n", + "from sklearn.semi_supervised import LabelSpreading\n", + "from sklearn.semi_supervised import SelfTrainingClassifier\n", + "from sklearn import datasets\n", + "\n", + "X = df[['danceability','acousticness']].values\n", + "y = df['energy'].values\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "# step size in the mesh\n", + "h = .02\n", + "\n", + "rng = np.random.RandomState(0)\n", + "y_rand = rng.rand(y.shape[0])\n", + "y_30 = np.copy(y)\n", + "y_30[y_rand < 0.3] = -1 # set random samples to be unlabeled\n", + "y_50 = np.copy(y)\n", + "y_50[y_rand < 0.5] = -1\n", + "# we create an instance of SVM and fit out data. We do not scale our\n", + "# data since we want to plot the support vectors\n", + "ls30 = (LabelSpreading().fit(X, y_30), y_30, 'Label Spreading 30% data')\n", + "ls50 = (LabelSpreading().fit(X, y_50), y_50, 'Label Spreading 50% data')\n", + "ls100 = (LabelSpreading().fit(X, y), y, 'Label Spreading 100% data')\n", + "\n", + "# the base classifier for self-training is identical to the SVC\n", + "base_classifier = SVC(kernel='rbf', gamma=.5, probability=True)\n", + "st30 = (SelfTrainingClassifier(base_classifier).fit(X, y_30),\n", + " y_30, 'Self-training 30% data')\n", + "st50 = (SelfTrainingClassifier(base_classifier).fit(X, y_50),\n", + " y_50, 'Self-training 50% data')\n", + "\n", + "rbf_svc = (SVC(kernel='rbf', gamma=.5).fit(X, y), y, 'SVC with rbf kernel')\n", + "\n", + "# create a mesh to plot in\n", + "x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n", + "y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n", + "xx, yy = np.meshgrid(np.arange(x_min, x_max, h),\n", + " np.arange(y_min, y_max, h))\n", + "\n", + "color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)}\n", + "\n", + "classifiers = (ls30, st30, ls50, st50, ls100, rbf_svc)\n", + "for i, (clf, y_train, title) in enumerate(classifiers):\n", + " # Plot the decision boundary. For that, we will assign a color to each\n", + " # point in the mesh [x_min, x_max]x[y_min, y_max].\n", + " plt.subplot(3, 2, i + 1)\n", + " Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n", + "\n", + " # Put the result into a color plot\n", + " Z = Z.reshape(xx.shape)\n", + " plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)\n", + " plt.axis('off')\n", + "\n", + " # Plot also the training points\n", + " colors = [color_map[y] for y in y_train]\n", + " plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black')\n", + "\n", + " plt.title(title)\n", + "\n", + "plt.suptitle(\"Unlabeled points are colored white\", y=0.1)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/5-Clustering/README.md b/translations/fr/5-Clustering/README.md new file mode 100644 index 000000000..e3d4982e7 --- /dev/null +++ b/translations/fr/5-Clustering/README.md @@ -0,0 +1,42 @@ + +# Modèles de clustering pour l'apprentissage automatique + +Le clustering est une tâche d'apprentissage automatique qui cherche à identifier des objets similaires et à les regrouper dans des groupes appelés clusters. Ce qui distingue le clustering des autres approches en apprentissage automatique, c'est que tout se fait automatiquement. En fait, on peut dire que c'est l'opposé de l'apprentissage supervisé. + +## Sujet régional : modèles de clustering pour les goûts musicaux d'un public nigérian 🎧 + +Le public diversifié du Nigeria a des goûts musicaux variés. En utilisant des données extraites de Spotify (inspiré par [cet article](https://towardsdatascience.com/country-wise-visual-analysis-of-music-taste-using-spotify-api-seaborn-in-python-77f5b749b421)), examinons certaines musiques populaires au Nigeria. Ce jeu de données inclut des informations sur le score de 'danseabilité', l'acoustique, le volume sonore, le caractère 'parlé', la popularité et l'énergie de diverses chansons. Il sera intéressant de découvrir des motifs dans ces données ! + +![Une platine vinyle](../../../translated_images/turntable.f2b86b13c53302dc106aa741de9dc96ac372864cf458dd6f879119857aab01da.fr.jpg) + +> Photo par Marcela Laskoski sur Unsplash + +Dans cette série de leçons, vous découvrirez de nouvelles façons d'analyser des données en utilisant des techniques de clustering. Le clustering est particulièrement utile lorsque votre jeu de données ne contient pas de labels. S'il contient des labels, alors des techniques de classification comme celles que vous avez apprises dans les leçons précédentes pourraient être plus adaptées. Mais dans les cas où vous cherchez à regrouper des données non étiquetées, le clustering est un excellent moyen de découvrir des motifs. + +> Il existe des outils low-code utiles qui peuvent vous aider à travailler avec des modèles de clustering. Essayez [Azure ML pour cette tâche](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +## Leçons + +1. [Introduction au clustering](1-Visualize/README.md) +2. [Clustering avec K-Means](2-K-Means/README.md) + +## Crédits + +Ces leçons ont été écrites avec 🎶 par [Jen Looper](https://www.twitter.com/jenlooper) avec des avis utiles de [Rishit Dagli](https://rishit_dagli) et [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan). + +Le jeu de données [Nigerian Songs](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify) a été obtenu sur Kaggle à partir de données extraites de Spotify. + +Des exemples utiles de K-Means qui ont aidé à créer cette leçon incluent cette [exploration des iris](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering), ce [notebook introductif](https://www.kaggle.com/prashant111/k-means-clustering-with-python), et cet [exemple hypothétique d'ONG](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering). + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/1-Introduction-to-NLP/README.md b/translations/fr/6-NLP/1-Introduction-to-NLP/README.md new file mode 100644 index 000000000..185f829d7 --- /dev/null +++ b/translations/fr/6-NLP/1-Introduction-to-NLP/README.md @@ -0,0 +1,179 @@ + +# Introduction au traitement automatique du langage naturel + +Cette leçon couvre une brève histoire et les concepts importants du *traitement automatique du langage naturel* (TALN), un sous-domaine de la *linguistique computationnelle*. + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/31/) + +## Introduction + +Le TALN, comme on l'appelle couramment, est l'un des domaines les plus connus où l'apprentissage automatique a été appliqué et utilisé dans des logiciels de production. + +✅ Pouvez-vous penser à un logiciel que vous utilisez tous les jours et qui intègre probablement du TALN ? Qu'en est-il de vos programmes de traitement de texte ou des applications mobiles que vous utilisez régulièrement ? + +Vous apprendrez : + +- **L'idée des langues**. Comment les langues se sont développées et quels ont été les principaux domaines d'étude. +- **Définitions et concepts**. Vous apprendrez également des définitions et des concepts sur la manière dont les ordinateurs traitent le texte, y compris l'analyse syntaxique, la grammaire, et l'identification des noms et des verbes. Cette leçon comprend des tâches de codage et introduit plusieurs concepts importants que vous apprendrez à coder dans les prochaines leçons. + +## Linguistique computationnelle + +La linguistique computationnelle est un domaine de recherche et de développement qui, depuis plusieurs décennies, étudie comment les ordinateurs peuvent travailler avec les langues, les comprendre, les traduire et même communiquer avec elles. Le traitement automatique du langage naturel (TALN) est un domaine connexe qui se concentre sur la manière dont les ordinateurs peuvent traiter les langues dites "naturelles", c'est-à-dire humaines. + +### Exemple - dictée sur téléphone + +Si vous avez déjà dicté un message à votre téléphone au lieu de le taper ou posé une question à un assistant virtuel, votre discours a été converti en texte, puis traité ou *analysé* dans la langue que vous avez utilisée. Les mots-clés détectés ont ensuite été transformés dans un format que le téléphone ou l'assistant pouvait comprendre et utiliser. + +![comprehension](../../../../translated_images/comprehension.619708fc5959b0f6a24ebffba2ad7b0625391a476141df65b43b59de24e45c6f.fr.png) +> Comprendre réellement une langue est difficile ! Image par [Jen Looper](https://twitter.com/jenlooper) + +### Comment cette technologie est-elle rendue possible ? + +Cela est possible parce que quelqu'un a écrit un programme informatique pour le faire. Il y a quelques décennies, certains auteurs de science-fiction prédisaient que les gens parleraient principalement à leurs ordinateurs, et que ces derniers comprendraient toujours exactement ce qu'ils voulaient dire. Malheureusement, il s'est avéré que c'était un problème plus complexe que prévu. Bien que ce soit aujourd'hui un problème mieux compris, il reste des défis importants pour atteindre un traitement "parfait" du langage naturel, notamment lorsqu'il s'agit de comprendre le sens d'une phrase. Cela est particulièrement difficile lorsqu'il s'agit de comprendre l'humour ou de détecter des émotions comme le sarcasme dans une phrase. + +À ce stade, vous vous souvenez peut-être des cours d'école où l'enseignant expliquait les parties de la grammaire dans une phrase. Dans certains pays, les élèves apprennent la grammaire et la linguistique comme une matière à part entière, mais dans beaucoup d'autres, ces sujets sont inclus dans l'apprentissage d'une langue : soit votre langue maternelle à l'école primaire (apprendre à lire et écrire), soit une langue étrangère au collège ou au lycée. Ne vous inquiétez pas si vous n'êtes pas un expert pour différencier les noms des verbes ou les adverbes des adjectifs ! + +Si vous avez du mal à faire la différence entre le *présent simple* et le *présent progressif*, vous n'êtes pas seul. C'est un défi pour beaucoup de gens, même pour les locuteurs natifs d'une langue. La bonne nouvelle, c'est que les ordinateurs sont très bons pour appliquer des règles formelles, et vous apprendrez à écrire du code capable d'*analyser* une phrase aussi bien qu'un humain. Le plus grand défi que vous examinerez plus tard sera de comprendre le *sens* et le *sentiment* d'une phrase. + +## Prérequis + +Pour cette leçon, le principal prérequis est de pouvoir lire et comprendre la langue de cette leçon. Il n'y a pas de problèmes mathématiques ou d'équations à résoudre. Bien que l'auteur original ait écrit cette leçon en anglais, elle est également traduite dans d'autres langues, donc vous pourriez lire une traduction. Il y a des exemples où plusieurs langues différentes sont utilisées (pour comparer les différentes règles grammaticales). Ces exemples ne sont *pas* traduits, mais le texte explicatif l'est, donc le sens devrait être clair. + +Pour les tâches de codage, vous utiliserez Python, et les exemples sont basés sur Python 3.8. + +Dans cette section, vous aurez besoin de : + +- **Compréhension de Python 3**. Compréhension du langage de programmation Python 3, cette leçon utilise des entrées, des boucles, la lecture de fichiers, et des tableaux. +- **Visual Studio Code + extension**. Nous utiliserons Visual Studio Code et son extension Python. Vous pouvez également utiliser un IDE Python de votre choix. +- **TextBlob**. [TextBlob](https://github.com/sloria/TextBlob) est une bibliothèque simplifiée de traitement de texte pour Python. Suivez les instructions sur le site de TextBlob pour l'installer sur votre système (installez également les corpus, comme indiqué ci-dessous) : + + ```bash + pip install -U textblob + python -m textblob.download_corpora + ``` + +> 💡 Astuce : Vous pouvez exécuter Python directement dans les environnements VS Code. Consultez la [documentation](https://code.visualstudio.com/docs/languages/python?WT.mc_id=academic-77952-leestott) pour plus d'informations. + +## Parler aux machines + +L'histoire de la tentative de faire comprendre les langues humaines aux ordinateurs remonte à plusieurs décennies, et l'un des premiers scientifiques à s'intéresser au traitement automatique du langage naturel fut *Alan Turing*. + +### Le 'test de Turing' + +Lorsque Turing faisait des recherches sur l'*intelligence artificielle* dans les années 1950, il s'est demandé si un test conversationnel pouvait être donné à un humain et à un ordinateur (via une correspondance écrite) où l'humain dans la conversation ne saurait pas s'il conversait avec un autre humain ou un ordinateur. + +Si, après une certaine durée de conversation, l'humain ne pouvait pas déterminer si les réponses provenaient d'un ordinateur ou non, alors pourrait-on dire que l'ordinateur *pensait* ? + +### L'inspiration - 'le jeu de l'imitation' + +L'idée de ce test vient d'un jeu de société appelé *Le Jeu de l'Imitation*, où un interrogateur est seul dans une pièce et doit déterminer lesquels des deux individus (dans une autre pièce) sont respectivement un homme et une femme. L'interrogateur peut envoyer des notes et doit essayer de poser des questions dont les réponses écrites révèlent le genre de la personne mystère. Bien sûr, les joueurs dans l'autre pièce essaient de tromper l'interrogateur en répondant de manière à le dérouter ou à le confondre, tout en donnant l'apparence de répondre honnêtement. + +### Développement d'Eliza + +Dans les années 1960, un scientifique du MIT nommé *Joseph Weizenbaum* a développé [*Eliza*](https://wikipedia.org/wiki/ELIZA), un "thérapeute" informatique qui posait des questions à l'humain et donnait l'impression de comprendre ses réponses. Cependant, bien qu'Eliza puisse analyser une phrase et identifier certaines constructions grammaticales et mots-clés pour donner une réponse raisonnable, on ne pouvait pas dire qu'elle *comprenait* la phrase. Si Eliza recevait une phrase au format "**Je suis** triste", elle pouvait réorganiser et substituer des mots dans la phrase pour former la réponse "Depuis combien de temps **êtes-vous** triste ?". + +Cela donnait l'impression qu'Eliza comprenait l'énoncé et posait une question de suivi, alors qu'en réalité, elle changeait simplement le temps et ajoutait quelques mots. Si Eliza ne pouvait pas identifier un mot-clé pour lequel elle avait une réponse, elle donnait une réponse aléatoire qui pouvait s'appliquer à de nombreuses déclarations différentes. Eliza pouvait être facilement trompée, par exemple si un utilisateur écrivait "**Vous êtes** une bicyclette", elle pouvait répondre "Depuis combien de temps **suis-je** une bicyclette ?", au lieu d'une réponse plus logique. + +[![Discussion avec Eliza](https://img.youtube.com/vi/RMK9AphfLco/0.jpg)](https://youtu.be/RMK9AphfLco "Discussion avec Eliza") + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo sur le programme original ELIZA + +> Note : Vous pouvez lire la description originale d'[Eliza](https://cacm.acm.org/magazines/1966/1/13317-elizaa-computer-program-for-the-study-of-natural-language-communication-between-man-and-machine/abstract) publiée en 1966 si vous avez un compte ACM. Sinon, lisez à propos d'Eliza sur [wikipedia](https://wikipedia.org/wiki/ELIZA). + +## Exercice - coder un bot conversationnel basique + +Un bot conversationnel, comme Eliza, est un programme qui sollicite les entrées de l'utilisateur et semble comprendre et répondre intelligemment. Contrairement à Eliza, notre bot n'aura pas plusieurs règles lui donnant l'apparence d'une conversation intelligente. Au lieu de cela, notre bot aura une seule capacité : maintenir la conversation avec des réponses aléatoires qui pourraient fonctionner dans presque toutes les conversations triviales. + +### Le plan + +Les étapes pour construire un bot conversationnel : + +1. Afficher des instructions conseillant à l'utilisateur comment interagir avec le bot +2. Démarrer une boucle + 1. Accepter l'entrée de l'utilisateur + 2. Si l'utilisateur demande à quitter, alors quitter + 3. Traiter l'entrée de l'utilisateur et déterminer une réponse (dans ce cas, la réponse est un choix aléatoire parmi une liste de réponses génériques possibles) + 4. Afficher la réponse +3. Revenir à l'étape 2 + +### Construire le bot + +Créons le bot. Nous commencerons par définir quelques phrases. + +1. Créez ce bot vous-même en Python avec les réponses aléatoires suivantes : + + ```python + random_responses = ["That is quite interesting, please tell me more.", + "I see. Do go on.", + "Why do you say that?", + "Funny weather we've been having, isn't it?", + "Let's change the subject.", + "Did you catch the game last night?"] + ``` + + Voici un exemple de sortie pour vous guider (les entrées utilisateur commencent par `>`): + + ```output + Hello, I am Marvin, the simple robot. + You can end this conversation at any time by typing 'bye' + After typing each answer, press 'enter' + How are you today? + > I am good thanks + That is quite interesting, please tell me more. + > today I went for a walk + Did you catch the game last night? + > I did, but my team lost + Funny weather we've been having, isn't it? + > yes but I hope next week is better + Let's change the subject. + > ok, lets talk about music + Why do you say that? + > because I like music! + Why do you say that? + > bye + It was nice talking to you, goodbye! + ``` + + Une solution possible à la tâche est [ici](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/1-Introduction-to-NLP/solution/bot.py) + + ✅ Arrêtez-vous et réfléchissez + + 1. Pensez-vous que les réponses aléatoires pourraient "tromper" quelqu'un en lui faisant croire que le bot comprenait réellement ? + 2. Quelles fonctionnalités le bot devrait-il avoir pour être plus efficace ? + 3. Si un bot pouvait vraiment "comprendre" le sens d'une phrase, devrait-il aussi "se souvenir" du sens des phrases précédentes dans une conversation ? + +--- + +## 🚀Défi + +Choisissez un des éléments "arrêtez-vous et réfléchissez" ci-dessus et essayez soit de l'implémenter en code, soit d'écrire une solution sur papier en pseudocode. + +Dans la prochaine leçon, vous apprendrez plusieurs autres approches pour analyser le langage naturel et l'apprentissage automatique. + +## [Quiz après la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/32/) + +## Révision & Auto-apprentissage + +Consultez les références ci-dessous pour approfondir vos connaissances. + +### Références + +1. Schubert, Lenhart, "Computational Linguistics", *The Stanford Encyclopedia of Philosophy* (Spring 2020 Edition), Edward N. Zalta (ed.), URL = . +2. Princeton University "About WordNet." [WordNet](https://wordnet.princeton.edu/). Princeton University. 2010. + +## Devoir + +[Recherchez un bot](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/1-Introduction-to-NLP/assignment.md b/translations/fr/6-NLP/1-Introduction-to-NLP/assignment.md new file mode 100644 index 000000000..9485741aa --- /dev/null +++ b/translations/fr/6-NLP/1-Introduction-to-NLP/assignment.md @@ -0,0 +1,25 @@ + +# Recherche d'un bot + +## Instructions + +Les bots sont partout. Votre mission : en trouver un et l'adopter ! Vous pouvez les repérer sur des sites web, dans des applications bancaires, ou au téléphone, par exemple lorsque vous appelez des entreprises de services financiers pour obtenir des conseils ou des informations sur votre compte. Analysez le bot et voyez si vous pouvez le déstabiliser. Si vous y parvenez, pourquoi pensez-vous que cela s'est produit ? Rédigez un court rapport sur votre expérience. + +## Grille d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ------------------------------------------------------------------------------------------------------------- | ------------------------------------------ | --------------------- | +| | Une page complète est rédigée, expliquant l'architecture supposée du bot et décrivant votre expérience avec lui | Le rapport est incomplet ou insuffisamment documenté | Aucun rapport n'est soumis | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/2-Tasks/README.md b/translations/fr/6-NLP/2-Tasks/README.md new file mode 100644 index 000000000..630a14804 --- /dev/null +++ b/translations/fr/6-NLP/2-Tasks/README.md @@ -0,0 +1,228 @@ + +# Tâches et techniques courantes en traitement du langage naturel + +Pour la plupart des tâches de *traitement du langage naturel*, le texte à traiter doit être décomposé, analysé, et les résultats doivent être stockés ou croisés avec des règles et des ensembles de données. Ces tâches permettent au programmeur de déduire le _sens_, l'_intention_ ou simplement la _fréquence_ des termes et des mots dans un texte. + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/33/) + +Découvrons les techniques courantes utilisées pour traiter le texte. Combinées avec l'apprentissage automatique, ces techniques vous aident à analyser efficacement de grandes quantités de texte. Avant d'appliquer l'IA à ces tâches, comprenons les problèmes rencontrés par un spécialiste du NLP. + +## Tâches courantes en NLP + +Il existe différentes façons d'analyser un texte sur lequel vous travaillez. Il y a des tâches que vous pouvez effectuer et, grâce à ces tâches, vous pouvez comprendre le texte et en tirer des conclusions. Ces tâches sont généralement effectuées dans un ordre précis. + +### Tokenisation + +La première étape que la plupart des algorithmes de NLP doivent effectuer est probablement de diviser le texte en tokens, ou mots. Bien que cela semble simple, tenir compte de la ponctuation et des délimiteurs de mots et de phrases propres à chaque langue peut rendre cette tâche complexe. Vous pourriez avoir besoin de différentes méthodes pour déterminer les délimitations. + +![tokenisation](../../../../translated_images/tokenization.1641a160c66cd2d93d4524e8114e93158a9ce0eba3ecf117bae318e8a6ad3487.fr.png) +> Tokenisation d'une phrase tirée de **Orgueil et Préjugés**. Infographie par [Jen Looper](https://twitter.com/jenlooper) + +### Embeddings + +[Les embeddings de mots](https://wikipedia.org/wiki/Word_embedding) sont une méthode pour convertir vos données textuelles en valeurs numériques. Les embeddings sont réalisés de manière à ce que les mots ayant un sens similaire ou utilisés ensemble se regroupent. + +![embeddings de mots](../../../../translated_images/embedding.2cf8953c4b3101d188c2f61a5de5b6f53caaa5ad4ed99236d42bc3b6bd6a1fe2.fr.png) +> "J'ai le plus grand respect pour vos nerfs, ce sont mes vieux amis." - Embeddings de mots pour une phrase tirée de **Orgueil et Préjugés**. Infographie par [Jen Looper](https://twitter.com/jenlooper) + +✅ Essayez [cet outil intéressant](https://projector.tensorflow.org/) pour expérimenter avec les embeddings de mots. En cliquant sur un mot, vous verrez des regroupements de mots similaires : 'jouet' se regroupe avec 'disney', 'lego', 'playstation' et 'console'. + +### Analyse syntaxique et étiquetage des parties du discours + +Chaque mot qui a été tokenisé peut être étiqueté comme une partie du discours - un nom, un verbe ou un adjectif. La phrase `le rapide renard rouge a sauté par-dessus le chien brun paresseux` pourrait être étiquetée comme renard = nom, sauté = verbe. + +![analyse syntaxique](../../../../translated_images/parse.d0c5bbe1106eae8fe7d60a183cd1736c8b6cec907f38000366535f84f3036101.fr.png) + +> Analyse syntaxique d'une phrase tirée de **Orgueil et Préjugés**. Infographie par [Jen Looper](https://twitter.com/jenlooper) + +L'analyse syntaxique consiste à reconnaître quels mots sont liés les uns aux autres dans une phrase - par exemple, `le rapide renard rouge a sauté` est une séquence adjectif-nom-verbe distincte de la séquence `chien brun paresseux`. + +### Fréquences des mots et des phrases + +Une procédure utile lors de l'analyse d'un grand corpus de texte est de construire un dictionnaire de chaque mot ou phrase d'intérêt et de la fréquence à laquelle il apparaît. La phrase `le rapide renard rouge a sauté par-dessus le chien brun paresseux` a une fréquence de 2 pour le mot "le". + +Prenons un exemple de texte où nous comptons la fréquence des mots. Le poème Les Vainqueurs de Rudyard Kipling contient le vers suivant : + +```output +What the moral? Who rides may read. +When the night is thick and the tracks are blind +A friend at a pinch is a friend, indeed, +But a fool to wait for the laggard behind. +Down to Gehenna or up to the Throne, +He travels the fastest who travels alone. +``` + +Comme les fréquences des phrases peuvent être sensibles ou non à la casse selon les besoins, la phrase `un ami` a une fréquence de 2, `le` a une fréquence de 6, et `voyages` a une fréquence de 2. + +### N-grams + +Un texte peut être divisé en séquences de mots d'une longueur définie : un seul mot (unigramme), deux mots (bigrammes), trois mots (trigrammes) ou tout autre nombre de mots (n-grams). + +Par exemple, `le rapide renard rouge a sauté par-dessus le chien brun paresseux` avec un score de n-gram de 2 produit les n-grams suivants : + +1. le rapide +2. rapide renard +3. renard rouge +4. rouge a +5. a sauté +6. sauté par-dessus +7. par-dessus le +8. le chien +9. chien brun + +Il peut être plus facile de le visualiser comme une fenêtre glissante sur la phrase. Voici un exemple pour des n-grams de 3 mots, le n-gram est en gras dans chaque phrase : + +1. **le rapide renard** a sauté par-dessus le chien brun paresseux +2. le **rapide renard rouge** a sauté par-dessus le chien brun paresseux +3. le rapide **renard rouge a** sauté par-dessus le chien brun paresseux +4. le rapide renard **rouge a sauté** par-dessus le chien brun paresseux +5. le rapide renard rouge **a sauté par-dessus** le chien brun paresseux +6. le rapide renard rouge a **sauté par-dessus le** chien brun paresseux +7. le rapide renard rouge a sauté **par-dessus le chien** brun paresseux +8. le rapide renard rouge a sauté par-dessus le **chien brun paresseux** + +![fenêtre glissante des n-grams](../../../../6-NLP/2-Tasks/images/n-grams.gif) + +> Valeur de n-gram de 3 : Infographie par [Jen Looper](https://twitter.com/jenlooper) + +### Extraction de syntagmes nominaux + +Dans la plupart des phrases, il y a un nom qui est le sujet ou l'objet de la phrase. En anglais, il est souvent identifiable par la présence de 'a', 'an' ou 'the' avant lui. Identifier le sujet ou l'objet d'une phrase en 'extrayant le syntagme nominal' est une tâche courante en NLP lorsqu'on tente de comprendre le sens d'une phrase. + +✅ Dans la phrase "Je ne peux pas fixer l'heure, ni l'endroit, ni le regard ni les mots, qui ont posé les bases. C'est trop ancien. J'étais au milieu avant de savoir que j'avais commencé.", pouvez-vous identifier les syntagmes nominaux ? + +Dans la phrase `le rapide renard rouge a sauté par-dessus le chien brun paresseux`, il y a 2 syntagmes nominaux : **rapide renard rouge** et **chien brun paresseux**. + +### Analyse de sentiment + +Une phrase ou un texte peut être analysé pour son sentiment, ou à quel point il est *positif* ou *négatif*. Le sentiment est mesuré en *polarité* et *objectivité/subjectivité*. La polarité est mesurée de -1.0 à 1.0 (négatif à positif) et de 0.0 à 1.0 (le plus objectif au plus subjectif). + +✅ Plus tard, vous apprendrez qu'il existe différentes façons de déterminer le sentiment en utilisant l'apprentissage automatique, mais une méthode consiste à avoir une liste de mots et de phrases catégorisés comme positifs ou négatifs par un expert humain et à appliquer ce modèle au texte pour calculer un score de polarité. Pouvez-vous voir comment cela fonctionnerait dans certains cas et moins bien dans d'autres ? + +### Inflection + +L'inflexion vous permet de prendre un mot et d'obtenir le singulier ou le pluriel de ce mot. + +### Lemmatisation + +Un *lemme* est la racine ou le mot principal d'un ensemble de mots, par exemple *volé*, *vole*, *volant* ont pour lemme le verbe *voler*. + +Il existe également des bases de données utiles pour les chercheurs en NLP, notamment : + +### WordNet + +[WordNet](https://wordnet.princeton.edu/) est une base de données de mots, synonymes, antonymes et de nombreux autres détails pour chaque mot dans de nombreuses langues différentes. Elle est incroyablement utile lorsqu'on tente de créer des traductions, des correcteurs orthographiques ou des outils linguistiques de tout type. + +## Bibliothèques NLP + +Heureusement, vous n'avez pas besoin de construire toutes ces techniques vous-même, car il existe d'excellentes bibliothèques Python qui les rendent beaucoup plus accessibles aux développeurs qui ne sont pas spécialisés en traitement du langage naturel ou en apprentissage automatique. Les prochaines leçons incluent plus d'exemples de ces bibliothèques, mais ici vous apprendrez quelques exemples utiles pour vous aider dans la prochaine tâche. + +### Exercice - utiliser la bibliothèque `TextBlob` + +Utilisons une bibliothèque appelée TextBlob, car elle contient des API utiles pour aborder ces types de tâches. TextBlob "s'appuie sur les épaules des géants [NLTK](https://nltk.org) et [pattern](https://github.com/clips/pattern), et fonctionne bien avec les deux." Elle intègre une quantité considérable d'IA dans son API. + +> Note : Un [guide de démarrage rapide](https://textblob.readthedocs.io/en/dev/quickstart.html#quickstart) est disponible pour TextBlob et est recommandé pour les développeurs Python expérimentés. + +Lorsqu'on tente d'identifier des *syntagmes nominaux*, TextBlob propose plusieurs options d'extracteurs pour trouver les syntagmes nominaux. + +1. Regardez `ConllExtractor`. + + ```python + from textblob import TextBlob + from textblob.np_extractors import ConllExtractor + # import and create a Conll extractor to use later + extractor = ConllExtractor() + + # later when you need a noun phrase extractor: + user_input = input("> ") + user_input_blob = TextBlob(user_input, np_extractor=extractor) # note non-default extractor specified + np = user_input_blob.noun_phrases + ``` + + > Que se passe-t-il ici ? [ConllExtractor](https://textblob.readthedocs.io/en/dev/api_reference.html?highlight=Conll#textblob.en.np_extractors.ConllExtractor) est "un extracteur de syntagmes nominaux qui utilise l'analyse par chunking entraînée avec le corpus d'entraînement ConLL-2000." ConLL-2000 fait référence à la Conférence de 2000 sur l'apprentissage automatique du langage naturel. Chaque année, la conférence organisait un atelier pour résoudre un problème complexe de NLP, et en 2000, il s'agissait du chunking nominal. Un modèle a été entraîné sur le Wall Street Journal, avec "les sections 15-18 comme données d'entraînement (211727 tokens) et la section 20 comme données de test (47377 tokens)". Vous pouvez consulter les procédures utilisées [ici](https://www.clips.uantwerpen.be/conll2000/chunking/) et les [résultats](https://ifarm.nl/erikt/research/np-chunking.html). + +### Défi - améliorer votre bot avec le NLP + +Dans la leçon précédente, vous avez construit un bot de questions-réponses très simple. Maintenant, vous allez rendre Marvin un peu plus sympathique en analysant votre entrée pour le sentiment et en imprimant une réponse adaptée au sentiment. Vous devrez également identifier un `syntagme nominal` et poser une question à ce sujet. + +Vos étapes pour construire un bot conversationnel amélioré : + +1. Imprimez des instructions conseillant à l'utilisateur comment interagir avec le bot +2. Démarrez une boucle + 1. Acceptez l'entrée utilisateur + 2. Si l'utilisateur demande à quitter, alors quittez + 3. Traitez l'entrée utilisateur et déterminez une réponse sentimentale appropriée + 4. Si un syntagme nominal est détecté dans le sentiment, mettez-le au pluriel et demandez plus d'informations à ce sujet + 5. Imprimez la réponse +3. Revenez à l'étape 2 + +Voici l'extrait de code pour déterminer le sentiment en utilisant TextBlob. Notez qu'il n'y a que quatre *gradients* de réponse sentimentale (vous pourriez en avoir plus si vous le souhaitez) : + +```python +if user_input_blob.polarity <= -0.5: + response = "Oh dear, that sounds bad. " +elif user_input_blob.polarity <= 0: + response = "Hmm, that's not great. " +elif user_input_blob.polarity <= 0.5: + response = "Well, that sounds positive. " +elif user_input_blob.polarity <= 1: + response = "Wow, that sounds great. " +``` + +Voici un exemple de sortie pour vous guider (l'entrée utilisateur est sur les lignes commençant par >) : + +```output +Hello, I am Marvin, the friendly robot. +You can end this conversation at any time by typing 'bye' +After typing each answer, press 'enter' +How are you today? +> I am ok +Well, that sounds positive. Can you tell me more? +> I went for a walk and saw a lovely cat +Well, that sounds positive. Can you tell me more about lovely cats? +> cats are the best. But I also have a cool dog +Wow, that sounds great. Can you tell me more about cool dogs? +> I have an old hounddog but he is sick +Hmm, that's not great. Can you tell me more about old hounddogs? +> bye +It was nice talking to you, goodbye! +``` + +Une solution possible à la tâche est [ici](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/2-Tasks/solution/bot.py) + +✅ Vérification des connaissances + +1. Pensez-vous que les réponses sympathiques pourraient 'tromper' quelqu'un en lui faisant croire que le bot le comprend réellement ? +2. Identifier le syntagme nominal rend-il le bot plus 'crédible' ? +3. Pourquoi l'extraction d'un 'syntagme nominal' d'une phrase serait-elle utile ? + +--- + +Implémentez le bot dans la vérification des connaissances précédente et testez-le sur un ami. Peut-il les tromper ? Pouvez-vous rendre votre bot plus 'crédible' ? + +## 🚀Défi + +Prenez une tâche dans la vérification des connaissances précédente et essayez de l'implémenter. Testez le bot sur un ami. Peut-il les tromper ? Pouvez-vous rendre votre bot plus 'crédible' ? + +## [Quiz après la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/34/) + +## Révision et étude personnelle + +Dans les prochaines leçons, vous en apprendrez davantage sur l'analyse de sentiment. Recherchez cette technique intéressante dans des articles tels que ceux sur [KDNuggets](https://www.kdnuggets.com/tag/nlp) + +## Devoir + +[Faire parler un bot](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/2-Tasks/assignment.md b/translations/fr/6-NLP/2-Tasks/assignment.md new file mode 100644 index 000000000..cf053711b --- /dev/null +++ b/translations/fr/6-NLP/2-Tasks/assignment.md @@ -0,0 +1,25 @@ + +# Faire parler un bot + +## Instructions + +Dans les leçons précédentes, vous avez programmé un bot basique avec lequel discuter. Ce bot donne des réponses aléatoires jusqu'à ce que vous disiez 'bye'. Pouvez-vous rendre les réponses un peu moins aléatoires et déclencher des réponses spécifiques si vous dites des choses comme 'pourquoi' ou 'comment' ? Réfléchissez à la manière dont l'apprentissage automatique pourrait rendre ce type de travail moins manuel en étendant votre bot. Vous pouvez utiliser les bibliothèques NLTK ou TextBlob pour faciliter vos tâches. + +## Critères d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | --------------------------------------------- | ------------------------------------------------ | ----------------------- | +| | Un nouveau fichier bot.py est présenté et documenté | Un nouveau fichier bot est présenté mais contient des bugs | Aucun fichier n'est présenté | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/3-Translation-Sentiment/README.md b/translations/fr/6-NLP/3-Translation-Sentiment/README.md new file mode 100644 index 000000000..3016d4ddf --- /dev/null +++ b/translations/fr/6-NLP/3-Translation-Sentiment/README.md @@ -0,0 +1,200 @@ + +# Traduction et analyse de sentiment avec ML + +Dans les leçons précédentes, vous avez appris à créer un bot basique en utilisant `TextBlob`, une bibliothèque qui intègre l'apprentissage automatique en coulisses pour effectuer des tâches NLP simples comme l'extraction de syntagmes nominaux. Un autre défi important en linguistique computationnelle est la _traduction_ précise d'une phrase d'une langue parlée ou écrite à une autre. + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/35/) + +La traduction est un problème très complexe, aggravé par le fait qu'il existe des milliers de langues, chacune ayant des règles grammaticales très différentes. Une approche consiste à convertir les règles grammaticales formelles d'une langue, comme l'anglais, en une structure indépendante de la langue, puis à les traduire en les convertissant dans une autre langue. Cette approche implique les étapes suivantes : + +1. **Identification**. Identifier ou étiqueter les mots dans la langue source comme noms, verbes, etc. +2. **Créer une traduction**. Produire une traduction directe de chaque mot dans le format de la langue cible. + +### Exemple de phrase, de l'anglais à l'irlandais + +En 'anglais', la phrase _I feel happy_ contient trois mots dans l'ordre suivant : + +- **sujet** (I) +- **verbe** (feel) +- **adjectif** (happy) + +Cependant, en 'irlandais', la même phrase a une structure grammaticale très différente - les émotions comme "*happy*" ou "*sad*" sont exprimées comme étant *sur* vous. + +La phrase anglaise `I feel happy` en irlandais serait `Tá athas orm`. Une traduction *littérale* serait `Happy is upon me`. + +Un locuteur irlandais traduisant en anglais dirait `I feel happy`, et non `Happy is upon me`, car il comprend le sens de la phrase, même si les mots et la structure de la phrase sont différents. + +L'ordre formel de la phrase en irlandais est : + +- **verbe** (Tá ou is) +- **adjectif** (athas, ou happy) +- **sujet** (orm, ou upon me) + +## Traduction + +Un programme de traduction naïf pourrait traduire uniquement les mots, en ignorant la structure de la phrase. + +✅ Si vous avez appris une deuxième (ou troisième ou plus) langue à l'âge adulte, vous avez peut-être commencé par penser dans votre langue maternelle, en traduisant un concept mot par mot dans votre tête vers la deuxième langue, puis en exprimant votre traduction. C'est similaire à ce que font les programmes de traduction naïfs. Il est important de dépasser cette phase pour atteindre la fluidité ! + +La traduction naïve conduit à des mauvaises (et parfois hilarantes) erreurs de traduction : `I feel happy` se traduit littéralement par `Mise bhraitheann athas` en irlandais. Cela signifie (littéralement) `me feel happy` et ce n'est pas une phrase valide en irlandais. Bien que l'anglais et l'irlandais soient des langues parlées sur deux îles voisines, ce sont des langues très différentes avec des structures grammaticales distinctes. + +> Vous pouvez regarder des vidéos sur les traditions linguistiques irlandaises comme [celle-ci](https://www.youtube.com/watch?v=mRIaLSdRMMs) + +### Approches par apprentissage automatique + +Jusqu'à présent, vous avez appris l'approche des règles formelles pour le traitement du langage naturel. Une autre approche consiste à ignorer le sens des mots et _à utiliser l'apprentissage automatique pour détecter des motifs_. Cela peut fonctionner en traduction si vous disposez de beaucoup de texte (un *corpus*) ou de textes (*corpora*) dans les langues source et cible. + +Par exemple, prenons le cas de *Orgueil et Préjugés*, un roman anglais bien connu écrit par Jane Austen en 1813. Si vous consultez le livre en anglais et une traduction humaine du livre en *français*, vous pourriez détecter des phrases dans l'un qui sont traduites _idiomatiquement_ dans l'autre. Vous allez le faire dans un instant. + +Par exemple, lorsqu'une phrase anglaise comme `I have no money` est traduite littéralement en français, elle pourrait devenir `Je n'ai pas de monnaie`. "Monnaie" est un faux ami français délicat, car 'money' et 'monnaie' ne sont pas synonymes. Une meilleure traduction qu'un humain pourrait faire serait `Je n'ai pas d'argent`, car elle transmet mieux l'idée que vous n'avez pas d'argent (plutôt que 'petite monnaie', qui est le sens de 'monnaie'). + +![monnaie](../../../../translated_images/monnaie.606c5fa8369d5c3b3031ef0713e2069485c87985dd475cd9056bdf4c76c1f4b8.fr.png) + +> Image par [Jen Looper](https://twitter.com/jenlooper) + +Si un modèle ML dispose de suffisamment de traductions humaines pour construire un modèle, il peut améliorer la précision des traductions en identifiant des motifs communs dans des textes qui ont été précédemment traduits par des experts humains parlant les deux langues. + +### Exercice - traduction + +Vous pouvez utiliser `TextBlob` pour traduire des phrases. Essayez la célèbre première phrase de **Orgueil et Préjugés** : + +```python +from textblob import TextBlob + +blob = TextBlob( + "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife!" +) +print(blob.translate(to="fr")) + +``` + +`TextBlob` fait un très bon travail de traduction : "C'est une vérité universellement reconnue, qu'un homme célibataire en possession d'une bonne fortune doit avoir besoin d'une femme!". + +On peut dire que la traduction de TextBlob est bien plus exacte, en fait, que la traduction française de 1932 du livre par V. Leconte et Ch. Pressoir : + +"C'est une vérité universelle qu'un célibataire pourvu d'une belle fortune doit avoir envie de se marier, et, si peu que l'on sache de son sentiment à cet égard, lorsqu'il arrive dans une nouvelle résidence, cette idée est si bien fixée dans l'esprit de ses voisins qu'ils le considèrent sur-le-champ comme la propriété légitime de l'une ou l'autre de leurs filles." + +Dans ce cas, la traduction informée par ML fait un meilleur travail que le traducteur humain qui ajoute inutilement des mots dans la bouche de l'auteur original pour plus de 'clarté'. + +> Pourquoi cela se produit-il ? Et pourquoi TextBlob est-il si bon en traduction ? Eh bien, en coulisses, il utilise Google Translate, une IA sophistiquée capable d'analyser des millions de phrases pour prédire les meilleures chaînes pour la tâche en cours. Il n'y a rien de manuel ici et vous avez besoin d'une connexion Internet pour utiliser `blob.translate`. + +✅ Essayez d'autres phrases. Quelle est la meilleure, la traduction ML ou humaine ? Dans quels cas ? + +## Analyse de sentiment + +Un autre domaine où l'apprentissage automatique peut très bien fonctionner est l'analyse de sentiment. Une approche non-ML pour le sentiment consiste à identifier les mots et phrases qui sont 'positifs' et 'négatifs'. Ensuite, étant donné un nouveau texte, calculer la valeur totale des mots positifs, négatifs et neutres pour identifier le sentiment global. + +Cette approche est facilement trompée, comme vous avez pu le voir dans la tâche Marvin - la phrase `Great, that was a wonderful waste of time, I'm glad we are lost on this dark road` est une phrase sarcastique, à sentiment négatif, mais l'algorithme simple détecte 'great', 'wonderful', 'glad' comme positifs et 'waste', 'lost' et 'dark' comme négatifs. Le sentiment global est influencé par ces mots contradictoires. + +✅ Arrêtez-vous un instant et réfléchissez à la façon dont nous transmettons le sarcasme en tant que locuteurs humains. L'inflexion du ton joue un rôle important. Essayez de dire la phrase "Well, that film was awesome" de différentes manières pour découvrir comment votre voix transmet le sens. + +### Approches ML + +L'approche ML consisterait à rassembler manuellement des corpus de textes négatifs et positifs - tweets, critiques de films, ou tout autre texte où l'humain a donné une note *et* une opinion écrite. Ensuite, des techniques NLP peuvent être appliquées aux opinions et aux notes, afin que des motifs émergent (par exemple, les critiques de films positives ont tendance à contenir la phrase 'Oscar worthy' plus que les critiques négatives, ou les critiques de restaurants positives disent 'gourmet' beaucoup plus que 'disgusting'). + +> ⚖️ **Exemple** : Si vous travailliez dans le bureau d'un politicien et qu'une nouvelle loi était débattue, les électeurs pourraient écrire au bureau avec des emails en faveur ou contre cette nouvelle loi. Disons que vous êtes chargé de lire les emails et de les trier en 2 piles, *pour* et *contre*. S'il y avait beaucoup d'emails, vous pourriez être submergé en essayant de tous les lire. Ne serait-il pas agréable qu'un bot puisse tous les lire pour vous, les comprendre et vous dire dans quelle pile chaque email appartient ? +> +> Une façon d'y parvenir est d'utiliser l'apprentissage automatique. Vous entraîneriez le modèle avec une partie des emails *contre* et une partie des emails *pour*. Le modèle aurait tendance à associer des phrases et des mots au côté contre et au côté pour, *mais il ne comprendrait aucun contenu*, seulement que certains mots et motifs étaient plus susceptibles d'apparaître dans un email *contre* ou *pour*. Vous pourriez le tester avec des emails que vous n'avez pas utilisés pour entraîner le modèle, et voir s'il arrive à la même conclusion que vous. Ensuite, une fois satisfait de la précision du modèle, vous pourriez traiter les emails futurs sans avoir à lire chacun d'eux. + +✅ Ce processus vous semble-t-il similaire à des processus que vous avez utilisés dans des leçons précédentes ? + +## Exercice - phrases sentimentales + +Le sentiment est mesuré avec une *polarité* de -1 à 1, où -1 est le sentiment le plus négatif et 1 le plus positif. Le sentiment est également mesuré avec un score de 0 à 1 pour l'objectivité (0) et la subjectivité (1). + +Reprenez *Orgueil et Préjugés* de Jane Austen. Le texte est disponible ici sur [Project Gutenberg](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm). L'exemple ci-dessous montre un court programme qui analyse le sentiment des premières et dernières phrases du livre et affiche sa polarité de sentiment et son score d'objectivité/subjectivité. + +Vous devez utiliser la bibliothèque `TextBlob` (décrite ci-dessus) pour déterminer le `sentiment` (vous n'avez pas besoin d'écrire votre propre calculateur de sentiment) dans la tâche suivante. + +```python +from textblob import TextBlob + +quote1 = """It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.""" + +quote2 = """Darcy, as well as Elizabeth, really loved them; and they were both ever sensible of the warmest gratitude towards the persons who, by bringing her into Derbyshire, had been the means of uniting them.""" + +sentiment1 = TextBlob(quote1).sentiment +sentiment2 = TextBlob(quote2).sentiment + +print(quote1 + " has a sentiment of " + str(sentiment1)) +print(quote2 + " has a sentiment of " + str(sentiment2)) +``` + +Vous voyez le résultat suivant : + +```output +It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want # of a wife. has a sentiment of Sentiment(polarity=0.20952380952380953, subjectivity=0.27142857142857146) + +Darcy, as well as Elizabeth, really loved them; and they were + both ever sensible of the warmest gratitude towards the persons + who, by bringing her into Derbyshire, had been the means of + uniting them. has a sentiment of Sentiment(polarity=0.7, subjectivity=0.8) +``` + +## Défi - vérifier la polarité du sentiment + +Votre tâche est de déterminer, en utilisant la polarité du sentiment, si *Orgueil et Préjugés* contient plus de phrases absolument positives que de phrases absolument négatives. Pour cette tâche, vous pouvez supposer qu'un score de polarité de 1 ou -1 est absolument positif ou négatif respectivement. + +**Étapes :** + +1. Téléchargez une [copie d'Orgueil et Préjugés](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) depuis Project Gutenberg en tant que fichier .txt. Supprimez les métadonnées au début et à la fin du fichier, en ne laissant que le texte original. +2. Ouvrez le fichier en Python et extrayez le contenu sous forme de chaîne. +3. Créez un TextBlob en utilisant la chaîne du livre. +4. Analysez chaque phrase du livre dans une boucle. + 1. Si la polarité est 1 ou -1, stockez la phrase dans un tableau ou une liste de messages positifs ou négatifs. +5. À la fin, affichez toutes les phrases positives et négatives (séparément) et leur nombre respectif. + +Voici une [solution exemple](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb). + +✅ Vérification des connaissances + +1. Le sentiment est basé sur les mots utilisés dans la phrase, mais le code *comprend-il* les mots ? +2. Pensez-vous que la polarité du sentiment est précise, ou en d'autres termes, êtes-vous *d'accord* avec les scores ? + 1. En particulier, êtes-vous d'accord ou en désaccord avec la polarité **positive** absolue des phrases suivantes ? + * “What an excellent father you have, girls!” said she, when the door was shut. + * “Your examination of Mr. Darcy is over, I presume,” said Miss Bingley; “and pray what is the result?” “I am perfectly convinced by it that Mr. Darcy has no defect. + * How wonderfully these sort of things occur! + * I have the greatest dislike in the world to that sort of thing. + * Charlotte is an excellent manager, I dare say. + * “This is delightful indeed! + * I am so happy! + * Your idea of the ponies is delightful. + 2. Les 3 phrases suivantes ont été évaluées avec une polarité positive absolue, mais à une lecture attentive, elles ne sont pas des phrases positives. Pourquoi l'analyse de sentiment a-t-elle pensé qu'elles étaient des phrases positives ? + * Happy shall I be, when his stay at Netherfield is over!” “I wish I could say anything to comfort you,” replied Elizabeth; “but it is wholly out of my power. + * If I could but see you as happy! + * Our distress, my dear Lizzy, is very great. + 3. Êtes-vous d'accord ou en désaccord avec la polarité **négative** absolue des phrases suivantes ? + - Everybody is disgusted with his pride. + - “I should like to know how he behaves among strangers.” “You shall hear then—but prepare yourself for something very dreadful. + - The pause was to Elizabeth’s feelings dreadful. + - It would be dreadful! + +✅ Tout amateur de Jane Austen comprendra qu'elle utilise souvent ses livres pour critiquer les aspects les plus ridicules de la société anglaise de la Régence. Elizabeth Bennett, le personnage principal de *Orgueil et Préjugés*, est une observatrice sociale perspicace (comme l'auteur) et son langage est souvent très nuancé. Même M. Darcy (l'intérêt amoureux dans l'histoire) note l'utilisation ludique et taquine du langage par Elizabeth : "J'ai eu le plaisir de faire votre connaissance assez longtemps pour savoir que vous trouvez beaucoup de plaisir à professer occasionnellement des opinions qui en fait ne sont pas les vôtres." + +--- + +## 🚀Défi + +Pouvez-vous rendre Marvin encore meilleur en extrayant d'autres caractéristiques des entrées utilisateur ? + +## [Quiz après la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/36/) + +## Révision et étude personnelle +Il existe de nombreuses façons d'extraire le sentiment d'un texte. Pensez aux applications commerciales qui pourraient utiliser cette technique. Réfléchissez à la manière dont cela peut mal tourner. Lisez davantage sur les systèmes sophistiqués prêts pour l'entreprise qui analysent les sentiments, tels que [Azure Text Analysis](https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/how-tos/text-analytics-how-to-sentiment-analysis?tabs=version-3-1?WT.mc_id=academic-77952-leestott). Testez certaines des phrases de "Orgueil et Préjugés" ci-dessus et voyez si elles peuvent détecter les nuances. + +## Devoir + +[Licence poétique](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/3-Translation-Sentiment/assignment.md b/translations/fr/6-NLP/3-Translation-Sentiment/assignment.md new file mode 100644 index 000000000..2d594be1b --- /dev/null +++ b/translations/fr/6-NLP/3-Translation-Sentiment/assignment.md @@ -0,0 +1,25 @@ + +# Licence poétique + +## Instructions + +Dans [ce notebook](https://www.kaggle.com/jenlooper/emily-dickinson-word-frequency), vous trouverez plus de 500 poèmes d'Emily Dickinson précédemment analysés pour leur sentiment à l'aide des outils d'analyse de texte d'Azure. En utilisant ce jeu de données, analysez-le en appliquant les techniques décrites dans la leçon. Le sentiment suggéré d'un poème correspond-il à la décision du service Azure, plus sophistiqué ? Pourquoi ou pourquoi pas, selon vous ? Y a-t-il quelque chose qui vous surprend ? + +## Grille d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | -------------------------------------------------------------------------- | ------------------------------------------------------- | ----------------------- | +| | Un notebook est présenté avec une analyse solide des résultats d'un auteur | Le notebook est incomplet ou n'effectue pas d'analyse | Aucun notebook n'est présenté | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/3-Translation-Sentiment/solution/Julia/README.md b/translations/fr/6-NLP/3-Translation-Sentiment/solution/Julia/README.md new file mode 100644 index 000000000..8d7b7460c --- /dev/null +++ b/translations/fr/6-NLP/3-Translation-Sentiment/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/3-Translation-Sentiment/solution/R/README.md b/translations/fr/6-NLP/3-Translation-Sentiment/solution/R/README.md new file mode 100644 index 000000000..5f59ea05c --- /dev/null +++ b/translations/fr/6-NLP/3-Translation-Sentiment/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb b/translations/fr/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb new file mode 100644 index 000000000..04fbdd7dc --- /dev/null +++ b/translations/fr/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb @@ -0,0 +1,100 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "27de2abc0235ebd22080fc8f1107454d", + "translation_date": "2025-09-04T03:09:36+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from textblob import TextBlob\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# You should download the book text, clean it, and import it here\n", + "with open(\"pride.txt\", encoding=\"utf8\") as f:\n", + " file_contents = f.read()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "book_pride = TextBlob(file_contents)\n", + "positive_sentiment_sentences = []\n", + "negative_sentiment_sentences = []" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for sentence in book_pride.sentences:\n", + " if sentence.sentiment.polarity == 1:\n", + " positive_sentiment_sentences.append(sentence)\n", + " if sentence.sentiment.polarity == -1:\n", + " negative_sentiment_sentences.append(sentence)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n", + "for sentence in positive_sentiment_sentences:\n", + " print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n", + "for sentence in negative_sentiment_sentences:\n", + " print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/6-NLP/4-Hotel-Reviews-1/README.md b/translations/fr/6-NLP/4-Hotel-Reviews-1/README.md new file mode 100644 index 000000000..143ab9c96 --- /dev/null +++ b/translations/fr/6-NLP/4-Hotel-Reviews-1/README.md @@ -0,0 +1,418 @@ + +# Analyse de sentiment avec des avis d'hôtels - traitement des données + +Dans cette section, vous utiliserez les techniques des leçons précédentes pour effectuer une analyse exploratoire des données sur un grand ensemble de données. Une fois que vous aurez une bonne compréhension de l'utilité des différentes colonnes, vous apprendrez : + +- comment supprimer les colonnes inutiles +- comment calculer de nouvelles données à partir des colonnes existantes +- comment sauvegarder l'ensemble de données résultant pour l'utiliser dans le défi final + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/37/) + +### Introduction + +Jusqu'à présent, vous avez appris que les données textuelles sont très différentes des données numériques. Si le texte a été écrit ou prononcé par un humain, il peut être analysé pour trouver des motifs, des fréquences, des sentiments et des significations. Cette leçon vous plonge dans un véritable ensemble de données avec un défi réel : **[515K Hotel Reviews Data in Europe](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)**, qui inclut une [licence CC0 : Domaine Public](https://creativecommons.org/publicdomain/zero/1.0/). Ces données ont été extraites de Booking.com à partir de sources publiques. Le créateur de l'ensemble de données est Jiashen Liu. + +### Préparation + +Vous aurez besoin de : + +* La capacité d'exécuter des notebooks .ipynb avec Python 3 +* pandas +* NLTK, [que vous devez installer localement](https://www.nltk.org/install.html) +* L'ensemble de données disponible sur Kaggle [515K Hotel Reviews Data in Europe](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe). Il pèse environ 230 Mo une fois décompressé. Téléchargez-le dans le dossier racine `/data` associé à ces leçons sur le traitement du langage naturel. + +## Analyse exploratoire des données + +Ce défi suppose que vous construisez un bot de recommandation d'hôtels en utilisant l'analyse de sentiment et les notes des avis des clients. L'ensemble de données que vous utiliserez comprend des avis sur 1493 hôtels différents dans 6 villes. + +En utilisant Python, un ensemble de données d'avis d'hôtels et l'analyse de sentiment de NLTK, vous pourriez découvrir : + +* Quels sont les mots et expressions les plus fréquemment utilisés dans les avis ? +* Les *tags* officiels décrivant un hôtel sont-ils corrélés avec les notes des avis (par exemple, y a-t-il plus d'avis négatifs pour un hôtel particulier pour *Famille avec jeunes enfants* que pour *Voyageur solo*, ce qui pourrait indiquer qu'il est plus adapté aux *Voyageurs solos*) ? +* Les scores de sentiment de NLTK "s'accordent-ils" avec les notes numériques des avis des clients ? + +#### Ensemble de données + +Explorons l'ensemble de données que vous avez téléchargé et sauvegardé localement. Ouvrez le fichier dans un éditeur comme VS Code ou même Excel. + +Les en-têtes de l'ensemble de données sont les suivants : + +*Hotel_Address, Additional_Number_of_Scoring, Review_Date, Average_Score, Hotel_Name, Reviewer_Nationality, Negative_Review, Review_Total_Negative_Word_Counts, Total_Number_of_Reviews, Positive_Review, Review_Total_Positive_Word_Counts, Total_Number_of_Reviews_Reviewer_Has_Given, Reviewer_Score, Tags, days_since_review, lat, lng* + +Voici une présentation regroupée pour faciliter l'examen : +##### Colonnes des hôtels + +* `Hotel_Name`, `Hotel_Address`, `lat` (latitude), `lng` (longitude) + * En utilisant *lat* et *lng*, vous pourriez tracer une carte avec Python montrant les emplacements des hôtels (peut-être codés par couleur pour les avis négatifs et positifs). + * Hotel_Address n'est pas évidemment utile pour nous, et nous remplacerons probablement cela par un pays pour faciliter le tri et la recherche. + +**Colonnes des méta-avis des hôtels** + +* `Average_Score` + * Selon le créateur de l'ensemble de données, cette colonne représente la *note moyenne de l'hôtel, calculée sur la base du dernier commentaire de l'année écoulée*. Cela semble être une manière inhabituelle de calculer la note, mais ce sont les données extraites, donc nous pouvons les prendre telles quelles pour l'instant. + + ✅ En vous basant sur les autres colonnes de cet ensemble de données, pouvez-vous penser à une autre manière de calculer la note moyenne ? + +* `Total_Number_of_Reviews` + * Le nombre total d'avis reçus par cet hôtel - il n'est pas clair (sans écrire du code) si cela se réfère aux avis dans l'ensemble de données. +* `Additional_Number_of_Scoring` + * Cela signifie qu'une note a été donnée, mais aucun avis positif ou négatif n'a été écrit par le client. + +**Colonnes des avis** + +- `Reviewer_Score` + - C'est une valeur numérique avec au maximum 1 chiffre après la virgule, comprise entre les valeurs minimales et maximales de 2.5 et 10. + - Il n'est pas expliqué pourquoi 2.5 est la note minimale possible. +- `Negative_Review` + - Si un client n'a rien écrit, ce champ contiendra "**No Negative**". + - Notez qu'un client peut écrire un avis positif dans la colonne des avis négatifs (par exemple, "il n'y a rien de mauvais dans cet hôtel"). +- `Review_Total_Negative_Word_Counts` + - Un nombre plus élevé de mots négatifs indique une note plus basse (sans vérifier la tonalité). +- `Positive_Review` + - Si un client n'a rien écrit, ce champ contiendra "**No Positive**". + - Notez qu'un client peut écrire un avis négatif dans la colonne des avis positifs (par exemple, "il n'y a rien de bien dans cet hôtel"). +- `Review_Total_Positive_Word_Counts` + - Un nombre plus élevé de mots positifs indique une note plus élevée (sans vérifier la tonalité). +- `Review_Date` et `days_since_review` + - Une mesure de fraîcheur ou d'ancienneté pourrait être appliquée à un avis (les avis plus anciens pourraient ne pas être aussi précis que les plus récents en raison de changements dans la gestion de l'hôtel, de rénovations, de l'ajout d'une piscine, etc.). +- `Tags` + - Ce sont de courtes descriptions qu'un client peut sélectionner pour décrire le type de client qu'il était (par exemple, solo ou en famille), le type de chambre qu'il avait, la durée du séjour et comment l'avis a été soumis. + - Malheureusement, l'utilisation de ces tags est problématique, consultez la section ci-dessous qui discute de leur utilité. + +**Colonnes des clients** + +- `Total_Number_of_Reviews_Reviewer_Has_Given` + - Cela pourrait être un facteur dans un modèle de recommandation, par exemple, si vous pouviez déterminer que les clients plus prolifiques avec des centaines d'avis étaient plus susceptibles d'être négatifs que positifs. Cependant, le client de tout avis particulier n'est pas identifié par un code unique, et ne peut donc pas être lié à un ensemble d'avis. Il y a 30 clients avec 100 avis ou plus, mais il est difficile de voir comment cela peut aider le modèle de recommandation. +- `Reviewer_Nationality` + - Certaines personnes pourraient penser que certaines nationalités sont plus susceptibles de donner un avis positif ou négatif en raison d'une inclination nationale. Soyez prudent en intégrant de telles vues anecdotiques dans vos modèles. Ce sont des stéréotypes nationaux (et parfois raciaux), et chaque client est un individu qui a écrit un avis basé sur son expérience. Cela peut avoir été filtré par de nombreux prismes tels que leurs séjours précédents, la distance parcourue et leur tempérament personnel. Penser que leur nationalité est la raison d'une note d'avis est difficile à justifier. + +##### Exemples + +| Average Score | Total Number Reviews | Reviewer Score | Negative
                      Review | Positive Review | Tags | +| -------------- | ---------------------- | ---------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------- | ----------------------------------------------------------------------------------------- | +| 7.8 | 1945 | 2.5 | Cet endroit n'est actuellement pas un hôtel mais un chantier de construction. J'ai été terrorisé dès le matin et toute la journée par des bruits de travaux inacceptables alors que je me reposais après un long voyage et travaillais dans la chambre. Les ouvriers travaillaient toute la journée, par exemple avec des marteaux-piqueurs dans les chambres adjacentes. J'ai demandé à changer de chambre, mais aucune chambre silencieuse n'était disponible. Pour aggraver les choses, j'ai été surfacturé. J'ai quitté l'hôtel le soir car je devais partir très tôt pour un vol et j'ai reçu une facture appropriée. Un jour plus tard, l'hôtel a effectué un autre prélèvement sans mon consentement, dépassant le prix réservé. C'est un endroit terrible. Ne vous infligez pas cela en réservant ici. | Rien. Endroit terrible. Fuyez. | Voyage d'affaires, Couple, Chambre double standard, Séjour de 2 nuits | + +Comme vous pouvez le voir, ce client n'a pas eu un séjour heureux dans cet hôtel. L'hôtel a une bonne note moyenne de 7.8 et 1945 avis, mais ce client lui a donné 2.5 et a écrit 115 mots sur la négativité de son séjour. S'il n'avait rien écrit dans la colonne Positive_Review, vous pourriez supposer qu'il n'y avait rien de positif, mais il a écrit 7 mots d'avertissement. Si nous comptions simplement les mots au lieu de leur signification ou de leur sentiment, nous pourrions avoir une vision biaisée de l'intention du client. Étrangement, leur note de 2.5 est déroutante, car si ce séjour à l'hôtel était si mauvais, pourquoi lui donner des points ? En examinant de près l'ensemble de données, vous verrez que la note minimale possible est de 2.5, pas 0. La note maximale possible est de 10. + +##### Tags + +Comme mentionné ci-dessus, à première vue, l'idée d'utiliser `Tags` pour catégoriser les données semble logique. Malheureusement, ces tags ne sont pas standardisés, ce qui signifie que dans un hôtel donné, les options pourraient être *Chambre simple*, *Chambre double*, et *Chambre twin*, mais dans un autre hôtel, elles sont *Chambre simple de luxe*, *Chambre classique avec lit queen*, et *Chambre exécutive avec lit king*. Cela pourrait désigner les mêmes choses, mais il y a tellement de variations que le choix devient : + +1. Tenter de convertir tous les termes en une norme unique, ce qui est très difficile, car il n'est pas clair quel serait le chemin de conversion dans chaque cas (par exemple, *Chambre simple classique* correspond à *Chambre simple*, mais *Chambre supérieure avec lit queen et vue sur cour ou ville* est beaucoup plus difficile à mapper). + +1. Nous pouvons adopter une approche NLP et mesurer la fréquence de certains termes comme *Solo*, *Voyageur d'affaires*, ou *Famille avec jeunes enfants* lorsqu'ils s'appliquent à chaque hôtel, et intégrer cela dans le modèle de recommandation. + +Les tags sont généralement (mais pas toujours) un champ unique contenant une liste de 5 à 6 valeurs séparées par des virgules correspondant à *Type de voyage*, *Type de clients*, *Type de chambre*, *Nombre de nuits*, et *Type d'appareil utilisé pour soumettre l'avis*. Cependant, comme certains clients ne remplissent pas chaque champ (ils peuvent en laisser un vide), les valeurs ne sont pas toujours dans le même ordre. + +Par exemple, prenez *Type de groupe*. Il y a 1025 possibilités uniques dans ce champ de la colonne `Tags`, et malheureusement, seules certaines d'entre elles se réfèrent à un groupe (certaines concernent le type de chambre, etc.). Si vous filtrez uniquement celles qui mentionnent famille, les résultats contiennent de nombreux types de chambres *Familiale*. Si vous incluez le terme *avec*, c'est-à-dire comptez les valeurs *Famille avec*, les résultats sont meilleurs, avec plus de 80 000 des 515 000 résultats contenant la phrase "Famille avec jeunes enfants" ou "Famille avec enfants plus âgés". + +Cela signifie que la colonne tags n'est pas complètement inutile pour nous, mais il faudra du travail pour la rendre utile. + +##### Note moyenne des hôtels + +Il y a un certain nombre d'étrangetés ou de divergences dans l'ensemble de données que je ne peux pas expliquer, mais elles sont illustrées ici pour que vous en soyez conscient lors de la construction de vos modèles. Si vous trouvez une explication, merci de nous en faire part dans la section de discussion ! + +L'ensemble de données contient les colonnes suivantes relatives à la note moyenne et au nombre d'avis : + +1. Hotel_Name +2. Additional_Number_of_Scoring +3. Average_Score +4. Total_Number_of_Reviews +5. Reviewer_Score + +L'hôtel unique avec le plus grand nombre d'avis dans cet ensemble de données est *Britannia International Hotel Canary Wharf* avec 4789 avis sur 515 000. Mais si nous regardons la valeur `Total_Number_of_Reviews` pour cet hôtel, elle est de 9086. Vous pourriez supposer qu'il y a beaucoup plus de notes sans avis, donc peut-être devrions-nous ajouter la valeur de la colonne `Additional_Number_of_Scoring`. Cette valeur est de 2682, et en l'ajoutant à 4789, nous obtenons 7471, ce qui est encore 1615 de moins que le `Total_Number_of_Reviews`. + +Si vous prenez la colonne `Average_Score`, vous pourriez supposer qu'il s'agit de la moyenne des avis dans l'ensemble de données, mais la description de Kaggle est "*Note moyenne de l'hôtel, calculée sur la base du dernier commentaire de l'année écoulée*". Cela ne semble pas très utile, mais nous pouvons calculer notre propre moyenne basée sur les notes des avis dans l'ensemble de données. En utilisant le même hôtel comme exemple, la note moyenne de l'hôtel est donnée comme 7.1, mais la note calculée (moyenne des notes des clients *dans* l'ensemble de données) est de 6.8. Cela est proche, mais pas identique, et nous pouvons seulement supposer que les notes données dans les avis `Additional_Number_of_Scoring` ont augmenté la moyenne à 7.1. Malheureusement, sans moyen de tester ou de prouver cette assertion, il est difficile d'utiliser ou de faire confiance à `Average_Score`, `Additional_Number_of_Scoring` et `Total_Number_of_Reviews` lorsqu'ils sont basés sur, ou se réfèrent à, des données que nous n'avons pas. + +Pour compliquer encore les choses, l'hôtel avec le deuxième plus grand nombre d'avis a une note moyenne calculée de 8.12 et la `Average_Score` de l'ensemble de données est de 8.1. Cette note correcte est-elle une coïncidence ou le premier hôtel est-il une anomalie ? +Sur la possibilité que cet hôtel soit une anomalie, et que peut-être la plupart des valeurs correspondent (mais que certaines ne le font pas pour une raison quelconque), nous allons écrire un petit programme pour explorer les valeurs du jeu de données et déterminer l'utilisation correcte (ou non-utilisation) des valeurs. + +> 🚨 Une note de prudence +> +> En travaillant avec ce jeu de données, vous écrirez du code qui calcule quelque chose à partir du texte sans avoir à lire ou analyser le texte vous-même. C'est l'essence du NLP : interpréter le sens ou le sentiment sans qu'un humain ait à le faire. Cependant, il est possible que vous lisiez certains des avis négatifs. Je vous encourage à ne pas le faire, car ce n'est pas nécessaire. Certains d'entre eux sont absurdes ou des critiques négatives sans rapport avec l'hôtel, comme "Le temps n'était pas génial", quelque chose qui échappe au contrôle de l'hôtel, ou de quiconque d'ailleurs. Mais il y a aussi un côté sombre à certains avis. Parfois, les avis négatifs sont racistes, sexistes ou âgistes. C'est regrettable mais attendu dans un jeu de données extrait d'un site web public. Certains auteurs laissent des avis que vous pourriez trouver de mauvais goût, inconfortables ou bouleversants. Il vaut mieux laisser le code mesurer le sentiment plutôt que de les lire vous-même et d'en être affecté. Cela dit, c'est une minorité qui écrit de telles choses, mais ils existent tout de même. + +## Exercice - Exploration des données +### Charger les données + +C'est suffisant pour examiner les données visuellement, maintenant vous allez écrire du code et obtenir des réponses ! Cette section utilise la bibliothèque pandas. Votre toute première tâche est de vous assurer que vous pouvez charger et lire les données CSV. La bibliothèque pandas dispose d'un chargeur CSV rapide, et le résultat est placé dans un dataframe, comme dans les leçons précédentes. Le fichier CSV que nous chargeons contient plus d'un demi-million de lignes, mais seulement 17 colonnes. Pandas vous offre de nombreuses façons puissantes d'interagir avec un dataframe, y compris la possibilité d'effectuer des opérations sur chaque ligne. + +À partir de maintenant dans cette leçon, il y aura des extraits de code, des explications sur le code et des discussions sur ce que signifient les résultats. Utilisez le fichier _notebook.ipynb_ inclus pour votre code. + +Commençons par charger le fichier de données que vous utiliserez : + +```python +# Load the hotel reviews from CSV +import pandas as pd +import time +# importing time so the start and end time can be used to calculate file loading time +print("Loading data file now, this could take a while depending on file size") +start = time.time() +# df is 'DataFrame' - make sure you downloaded the file to the data folder +df = pd.read_csv('../../data/Hotel_Reviews.csv') +end = time.time() +print("Loading took " + str(round(end - start, 2)) + " seconds") +``` + +Maintenant que les données sont chargées, nous pouvons effectuer certaines opérations dessus. Gardez ce code en haut de votre programme pour la prochaine partie. + +## Explorer les données + +Dans ce cas, les données sont déjà *propres*, ce qui signifie qu'elles sont prêtes à être utilisées et ne contiennent pas de caractères dans d'autres langues qui pourraient perturber les algorithmes s'attendant uniquement à des caractères anglais. + +✅ Vous pourriez avoir à travailler avec des données nécessitant un traitement initial pour les formater avant d'appliquer des techniques NLP, mais pas cette fois. Si vous deviez le faire, comment géreriez-vous les caractères non anglais ? + +Prenez un moment pour vous assurer qu'une fois les données chargées, vous pouvez les explorer avec du code. Il est très tentant de se concentrer sur les colonnes `Negative_Review` et `Positive_Review`. Elles sont remplies de texte naturel pour vos algorithmes NLP à traiter. Mais attendez ! Avant de vous lancer dans le NLP et l'analyse de sentiment, vous devriez suivre le code ci-dessous pour vérifier si les valeurs données dans le jeu de données correspondent aux valeurs que vous calculez avec pandas. + +## Opérations sur le dataframe + +La première tâche de cette leçon est de vérifier si les affirmations suivantes sont correctes en écrivant du code qui examine le dataframe (sans le modifier). + +> Comme pour de nombreuses tâches de programmation, il existe plusieurs façons de les accomplir, mais un bon conseil est de le faire de la manière la plus simple et la plus facile possible, surtout si cela sera plus compréhensible lorsque vous reviendrez à ce code à l'avenir. Avec les dataframes, il existe une API complète qui aura souvent un moyen efficace de faire ce que vous voulez. + +Traitez les questions suivantes comme des tâches de codage et essayez d'y répondre sans regarder la solution. + +1. Affichez la *forme* du dataframe que vous venez de charger (la forme correspond au nombre de lignes et de colonnes). +2. Calculez la fréquence des nationalités des auteurs d'avis : + 1. Combien de valeurs distinctes y a-t-il pour la colonne `Reviewer_Nationality` et quelles sont-elles ? + 2. Quelle nationalité d'auteur d'avis est la plus courante dans le jeu de données (imprimez le pays et le nombre d'avis) ? + 3. Quelles sont les 10 nationalités les plus fréquentes suivantes, et leur fréquence ? +3. Quel hôtel a été le plus fréquemment évalué pour chacune des 10 nationalités d'auteurs d'avis les plus fréquentes ? +4. Combien d'avis y a-t-il par hôtel (fréquence des hôtels) dans le jeu de données ? +5. Bien qu'il existe une colonne `Average_Score` pour chaque hôtel dans le jeu de données, vous pouvez également calculer un score moyen (en obtenant la moyenne de tous les scores des auteurs d'avis dans le jeu de données pour chaque hôtel). Ajoutez une nouvelle colonne à votre dataframe avec l'en-tête `Calc_Average_Score` contenant cette moyenne calculée. +6. Certains hôtels ont-ils le même `Average_Score` (arrondi à 1 décimale) que le `Calc_Average_Score` ? + 1. Essayez d'écrire une fonction Python qui prend une Series (ligne) comme argument et compare les valeurs, en imprimant un message lorsque les valeurs ne sont pas égales. Ensuite, utilisez la méthode `.apply()` pour traiter chaque ligne avec la fonction. +7. Calculez et affichez combien de lignes ont des valeurs "No Negative" dans la colonne `Negative_Review`. +8. Calculez et affichez combien de lignes ont des valeurs "No Positive" dans la colonne `Positive_Review`. +9. Calculez et affichez combien de lignes ont des valeurs "No Positive" dans la colonne `Positive_Review` **et** des valeurs "No Negative" dans la colonne `Negative_Review`. + +### Réponses en code + +1. Affichez la *forme* du dataframe que vous venez de charger (la forme correspond au nombre de lignes et de colonnes). + + ```python + print("The shape of the data (rows, cols) is " + str(df.shape)) + > The shape of the data (rows, cols) is (515738, 17) + ``` + +2. Calculez la fréquence des nationalités des auteurs d'avis : + + 1. Combien de valeurs distinctes y a-t-il pour la colonne `Reviewer_Nationality` et quelles sont-elles ? + 2. Quelle nationalité d'auteur d'avis est la plus courante dans le jeu de données (imprimez le pays et le nombre d'avis) ? + + ```python + # value_counts() creates a Series object that has index and values in this case, the country and the frequency they occur in reviewer nationality + nationality_freq = df["Reviewer_Nationality"].value_counts() + print("There are " + str(nationality_freq.size) + " different nationalities") + # print first and last rows of the Series. Change to nationality_freq.to_string() to print all of the data + print(nationality_freq) + + There are 227 different nationalities + United Kingdom 245246 + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + ... + Comoros 1 + Palau 1 + Northern Mariana Islands 1 + Cape Verde 1 + Guinea 1 + Name: Reviewer_Nationality, Length: 227, dtype: int64 + ``` + + 3. Quelles sont les 10 nationalités les plus fréquentes suivantes, et leur fréquence ? + + ```python + print("The highest frequency reviewer nationality is " + str(nationality_freq.index[0]).strip() + " with " + str(nationality_freq[0]) + " reviews.") + # Notice there is a leading space on the values, strip() removes that for printing + # What is the top 10 most common nationalities and their frequencies? + print("The next 10 highest frequency reviewer nationalities are:") + print(nationality_freq[1:11].to_string()) + + The highest frequency reviewer nationality is United Kingdom with 245246 reviews. + The next 10 highest frequency reviewer nationalities are: + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + Saudi Arabia 8951 + Netherlands 8772 + Switzerland 8678 + Germany 7941 + Canada 7894 + France 7296 + ``` + +3. Quel hôtel a été le plus fréquemment évalué pour chacune des 10 nationalités d'auteurs d'avis les plus fréquentes ? + + ```python + # What was the most frequently reviewed hotel for the top 10 nationalities + # Normally with pandas you will avoid an explicit loop, but wanted to show creating a new dataframe using criteria (don't do this with large amounts of data because it could be very slow) + for nat in nationality_freq[:10].index: + # First, extract all the rows that match the criteria into a new dataframe + nat_df = df[df["Reviewer_Nationality"] == nat] + # Now get the hotel freq + freq = nat_df["Hotel_Name"].value_counts() + print("The most reviewed hotel for " + str(nat).strip() + " was " + str(freq.index[0]) + " with " + str(freq[0]) + " reviews.") + + The most reviewed hotel for United Kingdom was Britannia International Hotel Canary Wharf with 3833 reviews. + The most reviewed hotel for United States of America was Hotel Esther a with 423 reviews. + The most reviewed hotel for Australia was Park Plaza Westminster Bridge London with 167 reviews. + The most reviewed hotel for Ireland was Copthorne Tara Hotel London Kensington with 239 reviews. + The most reviewed hotel for United Arab Emirates was Millennium Hotel London Knightsbridge with 129 reviews. + The most reviewed hotel for Saudi Arabia was The Cumberland A Guoman Hotel with 142 reviews. + The most reviewed hotel for Netherlands was Jaz Amsterdam with 97 reviews. + The most reviewed hotel for Switzerland was Hotel Da Vinci with 97 reviews. + The most reviewed hotel for Germany was Hotel Da Vinci with 86 reviews. + The most reviewed hotel for Canada was St James Court A Taj Hotel London with 61 reviews. + ``` + +4. Combien d'avis y a-t-il par hôtel (fréquence des hôtels) dans le jeu de données ? + + ```python + # First create a new dataframe based on the old one, removing the uneeded columns + hotel_freq_df = df.drop(["Hotel_Address", "Additional_Number_of_Scoring", "Review_Date", "Average_Score", "Reviewer_Nationality", "Negative_Review", "Review_Total_Negative_Word_Counts", "Positive_Review", "Review_Total_Positive_Word_Counts", "Total_Number_of_Reviews_Reviewer_Has_Given", "Reviewer_Score", "Tags", "days_since_review", "lat", "lng"], axis = 1) + + # Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found + hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count') + + # Get rid of all the duplicated rows + hotel_freq_df = hotel_freq_df.drop_duplicates(subset = ["Hotel_Name"]) + display(hotel_freq_df) + ``` + | Nom de l'hôtel | Nombre total d'avis | Avis trouvés | + | :--------------------------------------------: | :-----------------: | :----------: | + | Britannia International Hotel Canary Wharf | 9086 | 4789 | + | Park Plaza Westminster Bridge London | 12158 | 4169 | + | Copthorne Tara Hotel London Kensington | 7105 | 3578 | + | ... | ... | ... | + | Mercure Paris Porte d'Orleans | 110 | 10 | + | Hotel Wagner | 135 | 10 | + | Hotel Gallitzinberg | 173 | 8 | + + Vous remarquerez peut-être que les résultats *comptés dans le jeu de données* ne correspondent pas à la valeur dans `Total_Number_of_Reviews`. Il n'est pas clair si cette valeur dans le jeu de données représentait le nombre total d'avis que l'hôtel avait, mais que tous n'ont pas été extraits, ou un autre calcul. `Total_Number_of_Reviews` n'est pas utilisé dans le modèle en raison de ce manque de clarté. + +5. Bien qu'il existe une colonne `Average_Score` pour chaque hôtel dans le jeu de données, vous pouvez également calculer un score moyen (en obtenant la moyenne de tous les scores des auteurs d'avis dans le jeu de données pour chaque hôtel). Ajoutez une nouvelle colonne à votre dataframe avec l'en-tête `Calc_Average_Score` contenant cette moyenne calculée. Affichez les colonnes `Hotel_Name`, `Average_Score` et `Calc_Average_Score`. + + ```python + # define a function that takes a row and performs some calculation with it + def get_difference_review_avg(row): + return row["Average_Score"] - row["Calc_Average_Score"] + + # 'mean' is mathematical word for 'average' + df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + + # Add a new column with the difference between the two average scores + df["Average_Score_Difference"] = df.apply(get_difference_review_avg, axis = 1) + + # Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel) + review_scores_df = df.drop_duplicates(subset = ["Hotel_Name"]) + + # Sort the dataframe to find the lowest and highest average score difference + review_scores_df = review_scores_df.sort_values(by=["Average_Score_Difference"]) + + display(review_scores_df[["Average_Score_Difference", "Average_Score", "Calc_Average_Score", "Hotel_Name"]]) + ``` + + Vous pourriez également vous demander pourquoi la valeur `Average_Score` est parfois différente du score moyen calculé. Comme nous ne pouvons pas savoir pourquoi certaines valeurs correspondent, mais d'autres présentent une différence, il est plus sûr dans ce cas d'utiliser les scores des avis que nous avons pour calculer la moyenne nous-mêmes. Cela dit, les différences sont généralement très petites, voici les hôtels avec les plus grandes déviations entre la moyenne du jeu de données et la moyenne calculée : + + | Différence de score moyen | Score moyen | Score moyen calculé | Nom de l'hôtel | + | :------------------------: | :---------: | :-----------------: | -----------------------------------------------: | + | -0.8 | 7.7 | 8.5 | Best Western Hotel Astoria | + | -0.7 | 8.8 | 9.5 | Hotel Stendhal Place Vendôme Paris MGallery | + | -0.7 | 7.5 | 8.2 | Mercure Paris Porte d'Orleans | + | -0.7 | 7.9 | 8.6 | Renaissance Paris Vendôme Hotel | + | -0.5 | 7.0 | 7.5 | Hotel Royal Elysées | + | ... | ... | ... | ... | + | 0.7 | 7.5 | 6.8 | Mercure Paris Opéra Faubourg Montmartre | + | 0.8 | 7.1 | 6.3 | Holiday Inn Paris Montparnasse Pasteur | + | 0.9 | 6.8 | 5.9 | Villa Eugénie | + | 0.9 | 8.6 | 7.7 | MARQUIS Faubourg St Honoré Relais Châteaux | + | 1.3 | 7.2 | 5.9 | Kube Hotel Ice Bar | + + Avec seulement 1 hôtel ayant une différence de score supérieure à 1, cela signifie que nous pouvons probablement ignorer la différence et utiliser le score moyen calculé. + +6. Calculez et affichez combien de lignes ont des valeurs "No Negative" dans la colonne `Negative_Review`. + +7. Calculez et affichez combien de lignes ont des valeurs "No Positive" dans la colonne `Positive_Review`. + +8. Calculez et affichez combien de lignes ont des valeurs "No Positive" dans la colonne `Positive_Review` **et** des valeurs "No Negative" dans la colonne `Negative_Review`. + + ```python + # with lambdas: + start = time.time() + no_negative_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" else False , axis=1) + print("Number of No Negative reviews: " + str(len(no_negative_reviews[no_negative_reviews == True].index))) + + no_positive_reviews = df.apply(lambda x: True if x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of No Positive reviews: " + str(len(no_positive_reviews[no_positive_reviews == True].index))) + + both_no_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" and x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of both No Negative and No Positive reviews: " + str(len(both_no_reviews[both_no_reviews == True].index))) + end = time.time() + print("Lambdas took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Lambdas took 9.64 seconds + ``` + +## Une autre méthode + +Une autre façon de compter les éléments sans Lambdas, et d'utiliser sum pour compter les lignes : + + ```python + # without lambdas (using a mixture of notations to show you can use both) + start = time.time() + no_negative_reviews = sum(df.Negative_Review == "No Negative") + print("Number of No Negative reviews: " + str(no_negative_reviews)) + + no_positive_reviews = sum(df["Positive_Review"] == "No Positive") + print("Number of No Positive reviews: " + str(no_positive_reviews)) + + both_no_reviews = sum((df.Negative_Review == "No Negative") & (df.Positive_Review == "No Positive")) + print("Number of both No Negative and No Positive reviews: " + str(both_no_reviews)) + + end = time.time() + print("Sum took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Sum took 0.19 seconds + ``` + + Vous avez peut-être remarqué qu'il y a 127 lignes qui ont à la fois "No Negative" et "No Positive" comme valeurs pour les colonnes `Negative_Review` et `Positive_Review` respectivement. Cela signifie que l'auteur de l'avis a donné à l'hôtel une note numérique, mais a refusé d'écrire un avis positif ou négatif. Heureusement, cela représente une petite quantité de lignes (127 sur 515738, soit 0,02 %), donc cela ne devrait probablement pas biaiser notre modèle ou nos résultats dans une direction particulière, mais vous ne vous attendriez peut-être pas à ce qu'un jeu de données d'avis contienne des lignes sans avis, donc cela vaut la peine d'explorer les données pour découvrir de telles lignes. + +Maintenant que vous avez exploré le jeu de données, dans la prochaine leçon, vous filtrerez les données et ajouterez une analyse de sentiment. + +--- +## 🚀Défi + +Cette leçon démontre, comme nous l'avons vu dans les leçons précédentes, à quel point il est crucial de comprendre vos données et leurs particularités avant d'effectuer des opérations dessus. Les données textuelles, en particulier, nécessitent une attention minutieuse. Explorez divers jeux de données riches en texte et voyez si vous pouvez découvrir des zones susceptibles d'introduire des biais ou des sentiments biaisés dans un modèle. + +## [Quiz post-cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/38/) + +## Révision et auto-apprentissage + +Suivez [ce parcours d'apprentissage sur le NLP](https://docs.microsoft.com/learn/paths/explore-natural-language-processing/?WT.mc_id=academic-77952-leestott) pour découvrir des outils à essayer lors de la création de modèles riches en texte et en discours. + +## Devoir + +[NLTK](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/4-Hotel-Reviews-1/assignment.md b/translations/fr/6-NLP/4-Hotel-Reviews-1/assignment.md new file mode 100644 index 000000000..4fa182902 --- /dev/null +++ b/translations/fr/6-NLP/4-Hotel-Reviews-1/assignment.md @@ -0,0 +1,19 @@ + +# NLTK + +## Instructions + +NLTK est une bibliothèque bien connue utilisée en linguistique computationnelle et en traitement du langage naturel (NLP). Profitez de cette occasion pour parcourir le '[NLTK book](https://www.nltk.org/book/)' et essayer ses exercices. Dans ce devoir non noté, vous apprendrez à mieux connaître cette bibliothèque. + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/4-Hotel-Reviews-1/notebook.ipynb b/translations/fr/6-NLP/4-Hotel-Reviews-1/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/fr/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md b/translations/fr/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md new file mode 100644 index 000000000..b0a083ae1 --- /dev/null +++ b/translations/fr/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/4-Hotel-Reviews-1/solution/R/README.md b/translations/fr/6-NLP/4-Hotel-Reviews-1/solution/R/README.md new file mode 100644 index 000000000..363f1cb9b --- /dev/null +++ b/translations/fr/6-NLP/4-Hotel-Reviews-1/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb b/translations/fr/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb new file mode 100644 index 000000000..3c8e193cb --- /dev/null +++ b/translations/fr/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb @@ -0,0 +1,174 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2d05e7db439376aa824f4b387f8324ca", + "translation_date": "2025-09-04T03:09:18+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# EDA\n", + "import pandas as pd\n", + "import time" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_difference_review_avg(row):\n", + " return row[\"Average_Score\"] - row[\"Calc_Average_Score\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "print(\"Loading data file now, this could take a while depending on file size\")\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n", + "end = time.time()\n", + "print(\"Loading took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What shape is the data (rows, columns)?\n", + "print(\"The shape of the data (rows, cols) is \" + str(df.shape))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# value_counts() creates a Series object that has index and values\n", + "# in this case, the country and the frequency they occur in reviewer nationality\n", + "nationality_freq = df[\"Reviewer_Nationality\"].value_counts()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What reviewer nationality is the most common in the dataset?\n", + "print(\"The highest frequency reviewer nationality is \" + str(nationality_freq.index[0]).strip() + \" with \" + str(nationality_freq[0]) + \" reviews.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What is the top 10 most common nationalities and their frequencies?\n", + "print(\"The top 10 highest frequency reviewer nationalities are:\")\n", + "print(nationality_freq[0:10].to_string())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many unique nationalities are there?\n", + "print(\"There are \" + str(nationality_freq.index.size) + \" unique nationalities in the dataset\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What was the most frequently reviewed hotel for the top 10 nationalities - print the hotel and number of reviews\n", + "for nat in nationality_freq[:10].index:\n", + " # First, extract all the rows that match the criteria into a new dataframe\n", + " nat_df = df[df[\"Reviewer_Nationality\"] == nat] \n", + " # Now get the hotel freq\n", + " freq = nat_df[\"Hotel_Name\"].value_counts()\n", + " print(\"The most reviewed hotel for \" + str(nat).strip() + \" was \" + str(freq.index[0]) + \" with \" + str(freq[0]) + \" reviews.\") \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many reviews are there per hotel (frequency count of hotel) and do the results match the value in `Total_Number_of_Reviews`?\n", + "# First create a new dataframe based on the old one, removing the uneeded columns\n", + "hotel_freq_df = df.drop([\"Hotel_Address\", \"Additional_Number_of_Scoring\", \"Review_Date\", \"Average_Score\", \"Reviewer_Nationality\", \"Negative_Review\", \"Review_Total_Negative_Word_Counts\", \"Positive_Review\", \"Review_Total_Positive_Word_Counts\", \"Total_Number_of_Reviews_Reviewer_Has_Given\", \"Reviewer_Score\", \"Tags\", \"days_since_review\", \"lat\", \"lng\"], axis = 1)\n", + "# Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found\n", + "hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count')\n", + "# Get rid of all the duplicated rows\n", + "hotel_freq_df = hotel_freq_df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "print()\n", + "print(hotel_freq_df.to_string())\n", + "print(str(hotel_freq_df.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# While there is an `Average_Score` for each hotel according to the dataset, \n", + "# you can also calculate an average score (getting the average of all reviewer scores in the dataset for each hotel)\n", + "# Add a new column to your dataframe with the column header `Calc_Average_Score` that contains that calculated average. \n", + "df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n", + "# Add a new column with the difference between the two average scores\n", + "df[\"Average_Score_Difference\"] = df.apply(get_difference_review_avg, axis = 1)\n", + "# Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel)\n", + "review_scores_df = df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "# Sort the dataframe to find the lowest and highest average score difference\n", + "review_scores_df = review_scores_df.sort_values(by=[\"Average_Score_Difference\"])\n", + "print(review_scores_df[[\"Average_Score_Difference\", \"Average_Score\", \"Calc_Average_Score\", \"Hotel_Name\"]])\n", + "# Do any hotels have the same (rounded to 1 decimal place) `Average_Score` and `Calc_Average_Score`?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/6-NLP/5-Hotel-Reviews-2/README.md b/translations/fr/6-NLP/5-Hotel-Reviews-2/README.md new file mode 100644 index 000000000..16c3aca30 --- /dev/null +++ b/translations/fr/6-NLP/5-Hotel-Reviews-2/README.md @@ -0,0 +1,389 @@ + +# Analyse de sentiment avec les avis d'hôtels + +Maintenant que vous avez exploré le jeu de données en détail, il est temps de filtrer les colonnes et d'utiliser des techniques de NLP sur le jeu de données pour obtenir de nouvelles informations sur les hôtels. + +## [Quiz avant le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/39/) + +### Opérations de filtrage et d'analyse de sentiment + +Comme vous l'avez probablement remarqué, le jeu de données présente quelques problèmes. Certaines colonnes contiennent des informations inutiles, d'autres semblent incorrectes. Si elles sont correctes, il est difficile de comprendre comment elles ont été calculées, et les réponses ne peuvent pas être vérifiées indépendamment par vos propres calculs. + +## Exercice : un peu plus de traitement des données + +Nettoyez les données un peu plus. Ajoutez des colonnes qui seront utiles plus tard, modifiez les valeurs dans d'autres colonnes, et supprimez certaines colonnes complètement. + +1. Traitement initial des colonnes + + 1. Supprimez `lat` et `lng`. + + 2. Remplacez les valeurs de `Hotel_Address` par les valeurs suivantes (si l'adresse contient le nom de la ville et du pays, changez-la pour inclure uniquement la ville et le pays). + + Voici les seules villes et pays présents dans le jeu de données : + + Amsterdam, Pays-Bas + + Barcelone, Espagne + + Londres, Royaume-Uni + + Milan, Italie + + Paris, France + + Vienne, Autriche + + ```python + def replace_address(row): + if "Netherlands" in row["Hotel_Address"]: + return "Amsterdam, Netherlands" + elif "Barcelona" in row["Hotel_Address"]: + return "Barcelona, Spain" + elif "United Kingdom" in row["Hotel_Address"]: + return "London, United Kingdom" + elif "Milan" in row["Hotel_Address"]: + return "Milan, Italy" + elif "France" in row["Hotel_Address"]: + return "Paris, France" + elif "Vienna" in row["Hotel_Address"]: + return "Vienna, Austria" + + # Replace all the addresses with a shortened, more useful form + df["Hotel_Address"] = df.apply(replace_address, axis = 1) + # The sum of the value_counts() should add up to the total number of reviews + print(df["Hotel_Address"].value_counts()) + ``` + + Vous pouvez maintenant interroger les données au niveau des pays : + + ```python + display(df.groupby("Hotel_Address").agg({"Hotel_Name": "nunique"})) + ``` + + | Hotel_Address | Hotel_Name | + | :--------------------- | :--------: | + | Amsterdam, Pays-Bas | 105 | + | Barcelone, Espagne | 211 | + | Londres, Royaume-Uni | 400 | + | Milan, Italie | 162 | + | Paris, France | 458 | + | Vienne, Autriche | 158 | + +2. Traitez les colonnes de méta-avis des hôtels + + 1. Supprimez `Additional_Number_of_Scoring`. + + 2. Remplacez `Total_Number_of_Reviews` par le nombre total d'avis pour cet hôtel qui sont réellement présents dans le jeu de données. + + 3. Remplacez `Average_Score` par notre propre score calculé. + + ```python + # Drop `Additional_Number_of_Scoring` + df.drop(["Additional_Number_of_Scoring"], axis = 1, inplace=True) + # Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values + df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count') + df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + ``` + +3. Traitez les colonnes des avis + + 1. Supprimez `Review_Total_Negative_Word_Counts`, `Review_Total_Positive_Word_Counts`, `Review_Date` et `days_since_review`. + + 2. Conservez `Reviewer_Score`, `Negative_Review` et `Positive_Review` tels quels. + + 3. Conservez `Tags` pour l'instant. + + - Nous effectuerons des opérations de filtrage supplémentaires sur les tags dans la section suivante, puis les tags seront supprimés. + +4. Traitez les colonnes des évaluateurs + + 1. Supprimez `Total_Number_of_Reviews_Reviewer_Has_Given`. + + 2. Conservez `Reviewer_Nationality`. + +### Colonnes des tags + +La colonne `Tag` est problématique car elle contient une liste (sous forme de texte) stockée dans la colonne. Malheureusement, l'ordre et le nombre de sous-sections dans cette colonne ne sont pas toujours les mêmes. Il est difficile pour un humain d'identifier les phrases correctes à analyser, car il y a 515 000 lignes et 1427 hôtels, et chacun propose des options légèrement différentes que le critique pourrait choisir. C'est là que le NLP est utile. Vous pouvez analyser le texte et trouver les phrases les plus courantes, puis les compter. + +Malheureusement, nous ne sommes pas intéressés par les mots individuels, mais par les expressions multi-mots (par exemple, *Voyage d'affaires*). Exécuter un algorithme de distribution de fréquence pour les expressions multi-mots sur autant de données (6762646 mots) pourrait prendre un temps extraordinaire, mais sans examiner les données, il semblerait que ce soit une dépense nécessaire. C'est là que l'analyse exploratoire des données est utile, car vous avez vu un échantillon des tags tels que `[' Voyage d'affaires ', ' Voyageur solo ', ' Chambre simple ', ' Séjour de 5 nuits ', ' Soumis depuis un appareil mobile ']`, vous pouvez commencer à vous demander s'il est possible de réduire considérablement le traitement à effectuer. Heureusement, c'est possible - mais vous devez d'abord suivre quelques étapes pour identifier les tags d'intérêt. + +### Filtrage des tags + +Rappelez-vous que l'objectif du jeu de données est d'ajouter des sentiments et des colonnes qui vous aideront à choisir le meilleur hôtel (pour vous-même ou peut-être pour un client vous demandant de créer un bot de recommandation d'hôtel). Vous devez vous demander si les tags sont utiles ou non dans le jeu de données final. Voici une interprétation (si vous aviez besoin du jeu de données pour d'autres raisons, différents tags pourraient rester ou être exclus) : + +1. Le type de voyage est pertinent et doit rester. +2. Le type de groupe de voyageurs est important et doit rester. +3. Le type de chambre, suite ou studio dans lequel le client a séjourné est sans importance (tous les hôtels ont essentiellement les mêmes chambres). +4. L'appareil sur lequel l'avis a été soumis est sans importance. +5. Le nombre de nuits passées par le critique *pourrait* être pertinent si vous attribuez des séjours plus longs à une appréciation accrue de l'hôtel, mais c'est une hypothèse peu probable et probablement sans importance. + +En résumé, **conservez 2 types de tags et supprimez les autres**. + +Tout d'abord, vous ne voulez pas compter les tags tant qu'ils ne sont pas dans un format plus approprié, ce qui signifie supprimer les crochets et les guillemets. Vous pouvez le faire de plusieurs façons, mais vous voulez la méthode la plus rapide car cela pourrait prendre beaucoup de temps pour traiter autant de données. Heureusement, pandas propose une méthode simple pour effectuer chacune de ces étapes. + +```Python +# Remove opening and closing brackets +df.Tags = df.Tags.str.strip("[']") +# remove all quotes too +df.Tags = df.Tags.str.replace(" ', '", ",", regex = False) +``` + +Chaque tag devient quelque chose comme : `Voyage d'affaires, Voyageur solo, Chambre simple, Séjour de 5 nuits, Soumis depuis un appareil mobile`. + +Ensuite, nous rencontrons un problème. Certains avis, ou lignes, ont 5 colonnes, d'autres 3, d'autres encore 6. Cela résulte de la manière dont le jeu de données a été créé, et il est difficile de corriger cela. Vous voulez obtenir un décompte de fréquence de chaque expression, mais elles sont dans un ordre différent dans chaque avis, donc le décompte pourrait être incorrect, et un hôtel pourrait ne pas recevoir un tag qui lui était dû. + +Au lieu de cela, vous utiliserez l'ordre différent à votre avantage, car chaque tag est une expression multi-mots mais également séparée par une virgule ! La manière la plus simple de procéder est de créer 6 colonnes temporaires avec chaque tag inséré dans la colonne correspondant à son ordre dans le tag. Vous pouvez ensuite fusionner les 6 colonnes en une grande colonne et exécuter la méthode `value_counts()` sur la colonne résultante. En imprimant cela, vous verrez qu'il y avait 2428 tags uniques. Voici un petit échantillon : + +| Tag | Count | +| ------------------------------ | ------ | +| Voyage de loisirs | 417778 | +| Soumis depuis un appareil mobile | 307640 | +| Couple | 252294 | +| Séjour de 1 nuit | 193645 | +| Séjour de 2 nuits | 133937 | +| Voyageur solo | 108545 | +| Séjour de 3 nuits | 95821 | +| Voyage d'affaires | 82939 | +| Groupe | 65392 | +| Famille avec jeunes enfants | 61015 | +| Séjour de 4 nuits | 47817 | +| Chambre double | 35207 | +| Chambre double standard | 32248 | +| Chambre double supérieure | 31393 | +| Famille avec enfants plus âgés | 26349 | +| Chambre double deluxe | 24823 | +| Chambre double ou twin | 22393 | +| Séjour de 5 nuits | 20845 | +| Chambre double ou twin standard | 17483 | +| Chambre double classique | 16989 | +| Chambre double ou twin supérieure | 13570 | +| 2 chambres | 12393 | + +Certains tags courants comme `Soumis depuis un appareil mobile` ne nous sont d'aucune utilité, donc il pourrait être judicieux de les supprimer avant de compter les occurrences des expressions, mais c'est une opération si rapide que vous pouvez les laisser et les ignorer. + +### Suppression des tags liés à la durée du séjour + +Supprimer ces tags est la première étape, cela réduit légèrement le nombre total de tags à considérer. Notez que vous ne les supprimez pas du jeu de données, mais choisissez de les exclure de la considération comme valeurs à compter/conserver dans le jeu de données des avis. + +| Durée du séjour | Count | +| ---------------- | ------ | +| Séjour de 1 nuit | 193645 | +| Séjour de 2 nuits | 133937 | +| Séjour de 3 nuits | 95821 | +| Séjour de 4 nuits | 47817 | +| Séjour de 5 nuits | 20845 | +| Séjour de 6 nuits | 9776 | +| Séjour de 7 nuits | 7399 | +| Séjour de 8 nuits | 2502 | +| Séjour de 9 nuits | 1293 | +| ... | ... | + +Il existe une grande variété de chambres, suites, studios, appartements, etc. Ils signifient tous à peu près la même chose et ne sont pas pertinents pour vous, donc supprimez-les de la considération. + +| Type de chambre | Count | +| ----------------------------- | ----- | +| Chambre double | 35207 | +| Chambre double standard | 32248 | +| Chambre double supérieure | 31393 | +| Chambre double deluxe | 24823 | +| Chambre double ou twin | 22393 | +| Chambre double ou twin standard | 17483 | +| Chambre double classique | 16989 | +| Chambre double ou twin supérieure | 13570 | + +Enfin, et c'est une bonne nouvelle (car cela n'a pas nécessité beaucoup de traitement), vous serez laissé avec les tags *utiles* suivants : + +| Tag | Count | +| --------------------------------------------- | ------ | +| Voyage de loisirs | 417778 | +| Couple | 252294 | +| Voyageur solo | 108545 | +| Voyage d'affaires | 82939 | +| Groupe (combiné avec Voyageurs avec amis) | 67535 | +| Famille avec jeunes enfants | 61015 | +| Famille avec enfants plus âgés | 26349 | +| Avec un animal | 1405 | + +Vous pourriez argumenter que `Voyageurs avec amis` est similaire à `Groupe` plus ou moins, et il serait juste de combiner les deux comme ci-dessus. Le code pour identifier les tags corrects se trouve dans [le notebook des tags](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb). + +La dernière étape consiste à créer de nouvelles colonnes pour chacun de ces tags. Ensuite, pour chaque ligne d'avis, si la colonne `Tag` correspond à l'une des nouvelles colonnes, ajoutez un 1, sinon ajoutez un 0. Le résultat final sera un décompte du nombre de critiques ayant choisi cet hôtel (en agrégé) pour, par exemple, affaires vs loisirs, ou pour y amener un animal, et cela constitue une information utile pour recommander un hôtel. + +```python +# Process the Tags into new columns +# The file Hotel_Reviews_Tags.py, identifies the most important tags +# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, +# Family with young children, Family with older children, With a pet +df["Leisure_trip"] = df.Tags.apply(lambda tag: 1 if "Leisure trip" in tag else 0) +df["Couple"] = df.Tags.apply(lambda tag: 1 if "Couple" in tag else 0) +df["Solo_traveler"] = df.Tags.apply(lambda tag: 1 if "Solo traveler" in tag else 0) +df["Business_trip"] = df.Tags.apply(lambda tag: 1 if "Business trip" in tag else 0) +df["Group"] = df.Tags.apply(lambda tag: 1 if "Group" in tag or "Travelers with friends" in tag else 0) +df["Family_with_young_children"] = df.Tags.apply(lambda tag: 1 if "Family with young children" in tag else 0) +df["Family_with_older_children"] = df.Tags.apply(lambda tag: 1 if "Family with older children" in tag else 0) +df["With_a_pet"] = df.Tags.apply(lambda tag: 1 if "With a pet" in tag else 0) + +``` + +### Sauvegardez votre fichier + +Enfin, sauvegardez le jeu de données tel qu'il est maintenant avec un nouveau nom. + +```python +df.drop(["Review_Total_Negative_Word_Counts", "Review_Total_Positive_Word_Counts", "days_since_review", "Total_Number_of_Reviews_Reviewer_Has_Given"], axis = 1, inplace=True) + +# Saving new data file with calculated columns +print("Saving results to Hotel_Reviews_Filtered.csv") +df.to_csv(r'../data/Hotel_Reviews_Filtered.csv', index = False) +``` + +## Opérations d'analyse de sentiment + +Dans cette dernière section, vous appliquerez une analyse de sentiment aux colonnes des avis et enregistrerez les résultats dans un jeu de données. + +## Exercice : charger et sauvegarder les données filtrées + +Notez que vous chargez maintenant le jeu de données filtré qui a été sauvegardé dans la section précédente, **et non** le jeu de données original. + +```python +import time +import pandas as pd +import nltk as nltk +from nltk.corpus import stopwords +from nltk.sentiment.vader import SentimentIntensityAnalyzer +nltk.download('vader_lexicon') + +# Load the filtered hotel reviews from CSV +df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv') + +# You code will be added here + + +# Finally remember to save the hotel reviews with new NLP data added +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r'../data/Hotel_Reviews_NLP.csv', index = False) +``` + +### Suppression des mots vides + +Si vous deviez exécuter une analyse de sentiment sur les colonnes des avis négatifs et positifs, cela pourrait prendre beaucoup de temps. Testé sur un ordinateur portable puissant avec un processeur rapide, cela a pris 12 à 14 minutes selon la bibliothèque de sentiment utilisée. C'est un temps relativement long, donc cela vaut la peine d'examiner si cela peut être accéléré. + +La suppression des mots vides, ou des mots courants en anglais qui n'affectent pas le sentiment d'une phrase, est la première étape. En les supprimant, l'analyse de sentiment devrait être plus rapide, sans être moins précise (car les mots vides n'affectent pas le sentiment, mais ralentissent l'analyse). + +Le plus long avis négatif comptait 395 mots, mais après suppression des mots vides, il en compte 195. + +La suppression des mots vides est également une opération rapide. Supprimer les mots vides de 2 colonnes d'avis sur 515 000 lignes a pris 3,3 secondes sur l'appareil de test. Cela pourrait prendre légèrement plus ou moins de temps pour vous en fonction de la vitesse de votre processeur, de votre RAM, de la présence ou non d'un SSD, et d'autres facteurs. La relative rapidité de l'opération signifie que si elle améliore le temps d'analyse de sentiment, alors cela vaut la peine de le faire. + +```python +from nltk.corpus import stopwords + +# Load the hotel reviews from CSV +df = pd.read_csv("../../data/Hotel_Reviews_Filtered.csv") + +# Remove stop words - can be slow for a lot of text! +# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches +# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends +start = time.time() +cache = set(stopwords.words("english")) +def remove_stopwords(review): + text = " ".join([word for word in review.split() if word not in cache]) + return text + +# Remove the stop words from both columns +df.Negative_Review = df.Negative_Review.apply(remove_stopwords) +df.Positive_Review = df.Positive_Review.apply(remove_stopwords) +``` + +### Effectuer une analyse de sentiment +Maintenant, vous devez calculer l'analyse de sentiment pour les colonnes de critiques négatives et positives, et stocker le résultat dans 2 nouvelles colonnes. Le test du sentiment consistera à le comparer à la note donnée par le critique pour la même critique. Par exemple, si l'analyse de sentiment estime que la critique négative a un sentiment de 1 (sentiment extrêmement positif) et que la critique positive a également un sentiment de 1, mais que le critique a donné à l'hôtel la note la plus basse possible, alors soit le texte de la critique ne correspond pas à la note, soit l'analyseur de sentiment n'a pas réussi à reconnaître correctement le sentiment. Vous devez vous attendre à ce que certains scores de sentiment soient complètement erronés, et cela sera souvent explicable, par exemple la critique pourrait être extrêmement sarcastique : "Bien sûr, j'ai ADORÉ dormir dans une chambre sans chauffage", et l'analyseur de sentiment pense que c'est un sentiment positif, alors qu'un humain lisant cela saurait qu'il s'agit de sarcasme. + +NLTK propose différents analyseurs de sentiment à expérimenter, et vous pouvez les substituer pour voir si le sentiment est plus ou moins précis. L'analyse de sentiment VADER est utilisée ici. + +> Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, juin 2014. + +```python +from nltk.sentiment.vader import SentimentIntensityAnalyzer + +# Create the vader sentiment analyser (there are others in NLTK you can try too) +vader_sentiment = SentimentIntensityAnalyzer() +# Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. + +# There are 3 possibilities of input for a review: +# It could be "No Negative", in which case, return 0 +# It could be "No Positive", in which case, return 0 +# It could be a review, in which case calculate the sentiment +def calc_sentiment(review): + if review == "No Negative" or review == "No Positive": + return 0 + return vader_sentiment.polarity_scores(review)["compound"] +``` + +Plus tard dans votre programme, lorsque vous serez prêt à calculer le sentiment, vous pouvez l'appliquer à chaque critique comme suit : + +```python +# Add a negative sentiment and positive sentiment column +print("Calculating sentiment columns for both positive and negative reviews") +start = time.time() +df["Negative_Sentiment"] = df.Negative_Review.apply(calc_sentiment) +df["Positive_Sentiment"] = df.Positive_Review.apply(calc_sentiment) +end = time.time() +print("Calculating sentiment took " + str(round(end - start, 2)) + " seconds") +``` + +Cela prend environ 120 secondes sur mon ordinateur, mais cela variera selon chaque machine. Si vous souhaitez imprimer les résultats et vérifier si le sentiment correspond à la critique : + +```python +df = df.sort_values(by=["Negative_Sentiment"], ascending=True) +print(df[["Negative_Review", "Negative_Sentiment"]]) +df = df.sort_values(by=["Positive_Sentiment"], ascending=True) +print(df[["Positive_Review", "Positive_Sentiment"]]) +``` + +La toute dernière chose à faire avec le fichier avant de l'utiliser dans le défi est de le sauvegarder ! Vous devriez également envisager de réorganiser toutes vos nouvelles colonnes pour qu'elles soient faciles à manipuler (pour un humain, c'est un changement cosmétique). + +```python +# Reorder the columns (This is cosmetic, but to make it easier to explore the data later) +df = df.reindex(["Hotel_Name", "Hotel_Address", "Total_Number_of_Reviews", "Average_Score", "Reviewer_Score", "Negative_Sentiment", "Positive_Sentiment", "Reviewer_Nationality", "Leisure_trip", "Couple", "Solo_traveler", "Business_trip", "Group", "Family_with_young_children", "Family_with_older_children", "With_a_pet", "Negative_Review", "Positive_Review"], axis=1) + +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r"../data/Hotel_Reviews_NLP.csv", index = False) +``` + +Vous devez exécuter l'intégralité du code pour [le notebook d'analyse](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb) (après avoir exécuté [votre notebook de filtrage](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) pour générer le fichier Hotel_Reviews_Filtered.csv). + +Pour récapituler, les étapes sont : + +1. Le fichier de dataset original **Hotel_Reviews.csv** est exploré dans la leçon précédente avec [le notebook d'exploration](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb) +2. Hotel_Reviews.csv est filtré par [le notebook de filtrage](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb), ce qui donne **Hotel_Reviews_Filtered.csv** +3. Hotel_Reviews_Filtered.csv est traité par [le notebook d'analyse de sentiment](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb), ce qui donne **Hotel_Reviews_NLP.csv** +4. Utilisez Hotel_Reviews_NLP.csv dans le défi NLP ci-dessous + +### Conclusion + +Lorsque vous avez commencé, vous aviez un dataset avec des colonnes et des données, mais tout ne pouvait pas être vérifié ou utilisé. Vous avez exploré les données, filtré ce dont vous n'aviez pas besoin, converti des balises en quelque chose d'utile, calculé vos propres moyennes, ajouté des colonnes de sentiment et, espérons-le, appris des choses intéressantes sur le traitement du texte naturel. + +## [Quiz post-lecture](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/40/) + +## Défi + +Maintenant que vous avez analysé le sentiment de votre dataset, voyez si vous pouvez utiliser les stratégies que vous avez apprises dans ce programme (le clustering, peut-être ?) pour déterminer des motifs autour du sentiment. + +## Révision & Étude personnelle + +Suivez [ce module Learn](https://docs.microsoft.com/en-us/learn/modules/classify-user-feedback-with-the-text-analytics-api/?WT.mc_id=academic-77952-leestott) pour en apprendre davantage et utiliser différents outils pour explorer le sentiment dans le texte. + +## Devoir + +[Essayez un dataset différent](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/5-Hotel-Reviews-2/assignment.md b/translations/fr/6-NLP/5-Hotel-Reviews-2/assignment.md new file mode 100644 index 000000000..4be89bcba --- /dev/null +++ b/translations/fr/6-NLP/5-Hotel-Reviews-2/assignment.md @@ -0,0 +1,25 @@ + +# Essayez un autre jeu de données + +## Instructions + +Maintenant que vous avez appris à utiliser NLTK pour attribuer un sentiment à un texte, essayez un autre jeu de données. Vous devrez probablement effectuer un traitement des données, alors créez un notebook et documentez votre démarche. Quelles sont vos découvertes ? + +## Critères d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ----------------------------------------------------------------------------------------------------------------- | --------------------------------------- | ---------------------- | +| | Un notebook complet et un jeu de données sont présentés avec des cellules bien documentées expliquant comment le sentiment est attribué | Le notebook manque de bonnes explications | Le notebook est défaillant | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/5-Hotel-Reviews-2/notebook.ipynb b/translations/fr/6-NLP/5-Hotel-Reviews-2/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb b/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb new file mode 100644 index 000000000..5a17b4e20 --- /dev/null +++ b/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb @@ -0,0 +1,172 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "033cb89c85500224b3c63fd04f49b4aa", + "translation_date": "2025-09-04T03:09:54+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import time\n", + "import ast" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def replace_address(row):\n", + " if \"Netherlands\" in row[\"Hotel_Address\"]:\n", + " return \"Amsterdam, Netherlands\"\n", + " elif \"Barcelona\" in row[\"Hotel_Address\"]:\n", + " return \"Barcelona, Spain\"\n", + " elif \"United Kingdom\" in row[\"Hotel_Address\"]:\n", + " return \"London, United Kingdom\"\n", + " elif \"Milan\" in row[\"Hotel_Address\"]: \n", + " return \"Milan, Italy\"\n", + " elif \"France\" in row[\"Hotel_Address\"]:\n", + " return \"Paris, France\"\n", + " elif \"Vienna\" in row[\"Hotel_Address\"]:\n", + " return \"Vienna, Austria\" \n", + " else:\n", + " return row.Hotel_Address\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# dropping columns we will not use:\n", + "df.drop([\"lat\", \"lng\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Replace all the addresses with a shortened, more useful form\n", + "df[\"Hotel_Address\"] = df.apply(replace_address, axis = 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Drop `Additional_Number_of_Scoring`\n", + "df.drop([\"Additional_Number_of_Scoring\"], axis = 1, inplace=True)\n", + "# Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values\n", + "df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')\n", + "df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Process the Tags into new columns\n", + "# The file Hotel_Reviews_Tags.py, identifies the most important tags\n", + "# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, \n", + "# Family with young children, Family with older children, With a pet\n", + "df[\"Leisure_trip\"] = df.Tags.apply(lambda tag: 1 if \"Leisure trip\" in tag else 0)\n", + "df[\"Couple\"] = df.Tags.apply(lambda tag: 1 if \"Couple\" in tag else 0)\n", + "df[\"Solo_traveler\"] = df.Tags.apply(lambda tag: 1 if \"Solo traveler\" in tag else 0)\n", + "df[\"Business_trip\"] = df.Tags.apply(lambda tag: 1 if \"Business trip\" in tag else 0)\n", + "df[\"Group\"] = df.Tags.apply(lambda tag: 1 if \"Group\" in tag or \"Travelers with friends\" in tag else 0)\n", + "df[\"Family_with_young_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with young children\" in tag else 0)\n", + "df[\"Family_with_older_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with older children\" in tag else 0)\n", + "df[\"With_a_pet\"] = df.Tags.apply(lambda tag: 1 if \"With a pet\" in tag else 0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# No longer need any of these columns\n", + "df.drop([\"Review_Date\", \"Review_Total_Negative_Word_Counts\", \"Review_Total_Positive_Word_Counts\", \"days_since_review\", \"Total_Number_of_Reviews_Reviewer_Has_Given\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_Filtered.csv\n", + "Filtering took 23.74 seconds\n" + ] + } + ], + "source": [ + "# Saving new data file with calculated columns\n", + "print(\"Saving results to Hotel_Reviews_Filtered.csv\")\n", + "df.to_csv(r'../../data/Hotel_Reviews_Filtered.csv', index = False)\n", + "end = time.time()\n", + "print(\"Filtering took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb b/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb new file mode 100644 index 000000000..fdb4e9774 --- /dev/null +++ b/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb @@ -0,0 +1,137 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "341efc86325ec2a214f682f57a189dfd", + "translation_date": "2025-09-04T03:10:12+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV (you can )\n", + "import pandas as pd \n", + "\n", + "df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# We want to find the most useful tags to keep\n", + "# Remove opening and closing brackets\n", + "df.Tags = df.Tags.str.strip(\"[']\")\n", + "# remove all quotes too\n", + "df.Tags = df.Tags.str.replace(\" ', '\", \",\", regex = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# removing this to take advantage of the 'already a phrase' fact of the dataset \n", + "# Now split the strings into a list\n", + "tag_list_df = df.Tags.str.split(',', expand = True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove leading and trailing spaces\n", + "df[\"Tag_1\"] = tag_list_df[0].str.strip()\n", + "df[\"Tag_2\"] = tag_list_df[1].str.strip()\n", + "df[\"Tag_3\"] = tag_list_df[2].str.strip()\n", + "df[\"Tag_4\"] = tag_list_df[3].str.strip()\n", + "df[\"Tag_5\"] = tag_list_df[4].str.strip()\n", + "df[\"Tag_6\"] = tag_list_df[5].str.strip()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Merge the 6 columns into one with melt\n", + "df_tags = df.melt(value_vars=[\"Tag_1\", \"Tag_2\", \"Tag_3\", \"Tag_4\", \"Tag_5\", \"Tag_6\"])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The shape of the tags with no filtering: (2514684, 2)\n", + " index count\n", + "0 Leisure trip 338423\n", + "1 Couple 205305\n", + "2 Solo traveler 89779\n", + "3 Business trip 68176\n", + "4 Group 51593\n", + "5 Family with young children 49318\n", + "6 Family with older children 21509\n", + "7 Travelers with friends 1610\n", + "8 With a pet 1078\n" + ] + } + ], + "source": [ + "# Get the value counts\n", + "tag_vc = df_tags.value.value_counts()\n", + "# print(tag_vc)\n", + "print(\"The shape of the tags with no filtering:\", str(df_tags.shape))\n", + "# Drop rooms, suites, and length of stay, mobile device and anything with less count than a 1000\n", + "df_tags = df_tags[~df_tags.value.str.contains(\"Standard|room|Stayed|device|Beds|Suite|Studio|King|Superior|Double\", na=False, case=False)]\n", + "tag_vc = df_tags.value.value_counts().reset_index(name=\"count\").query(\"count > 1000\")\n", + "# Print the top 10 (there should only be 9 and we'll use these in the filtering section)\n", + "print(tag_vc[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb b/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb new file mode 100644 index 000000000..2b71302ab --- /dev/null +++ b/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb @@ -0,0 +1,260 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "705bf02633759f689abc37b19749a16d", + "translation_date": "2025-09-04T03:10:30+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "[nltk_data] Downloading package vader_lexicon to\n[nltk_data] /Users/jenlooper/nltk_data...\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import time\n", + "import pandas as pd\n", + "import nltk as nltk\n", + "from nltk.corpus import stopwords\n", + "from nltk.sentiment.vader import SentimentIntensityAnalyzer\n", + "nltk.download('vader_lexicon')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "vader_sentiment = SentimentIntensityAnalyzer()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# There are 3 possibilities of input for a review:\n", + "# It could be \"No Negative\", in which case, return 0\n", + "# It could be \"No Positive\", in which case, return 0\n", + "# It could be a review, in which case calculate the sentiment\n", + "def calc_sentiment(review): \n", + " if review == \"No Negative\" or review == \"No Positive\":\n", + " return 0\n", + " return vader_sentiment.polarity_scores(review)[\"compound\"] \n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "df = pd.read_csv(\"../../data/Hotel_Reviews_Filtered.csv\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove stop words - can be slow for a lot of text!\n", + "# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches\n", + "# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends\n", + "start = time.time()\n", + "cache = set(stopwords.words(\"english\"))\n", + "def remove_stopwords(review):\n", + " text = \" \".join([word for word in review.split() if word not in cache])\n", + " return text\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove the stop words from both columns\n", + "df.Negative_Review = df.Negative_Review.apply(remove_stopwords) \n", + "df.Positive_Review = df.Positive_Review.apply(remove_stopwords)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Removing stop words took 5.77 seconds\n" + ] + } + ], + "source": [ + "end = time.time()\n", + "print(\"Removing stop words took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Calculating sentiment columns for both positive and negative reviews\n", + "Calculating sentiment took 201.07 seconds\n" + ] + } + ], + "source": [ + "# Add a negative sentiment and positive sentiment column\n", + "print(\"Calculating sentiment columns for both positive and negative reviews\")\n", + "start = time.time()\n", + "df[\"Negative_Sentiment\"] = df.Negative_Review.apply(calc_sentiment)\n", + "df[\"Positive_Sentiment\"] = df.Positive_Review.apply(calc_sentiment)\n", + "end = time.time()\n", + "print(\"Calculating sentiment took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Negative_Review Negative_Sentiment\n", + "186584 So bad experience memories I hotel The first n... -0.9920\n", + "129503 First charged twice room booked booking second... -0.9896\n", + "307286 The staff Had bad experience even booking Janu... -0.9889\n", + "452092 No WLAN room Incredibly rude restaurant staff ... -0.9884\n", + "201293 We usually traveling Paris 2 3 times year busi... -0.9873\n", + "... ... ...\n", + "26899 I would say however one night expensive even d... 0.9933\n", + "138365 Wifi terribly slow I speed test network upload... 0.9938\n", + "79215 I find anything hotel first I walked past hote... 0.9938\n", + "278506 The property great location There bakery next ... 0.9945\n", + "339189 Guys I like hotel I wish return next year Howe... 0.9948\n", + "\n", + "[515738 rows x 2 columns]\n", + " Positive_Review Positive_Sentiment\n", + "137893 Bathroom Shower We going stay twice hotel 2 ni... -0.9820\n", + "5839 I completely disappointed mad since reception ... -0.9780\n", + "64158 get everything extra internet parking breakfas... -0.9751\n", + "124178 I didnt like anythig Room small Asked upgrade ... -0.9721\n", + "489137 Very rude manager abusive staff reception Dirt... -0.9703\n", + "... ... ...\n", + "331570 Everything This recently renovated hotel class... 0.9984\n", + "322920 From moment stepped doors Guesthouse Hotel sta... 0.9985\n", + "293710 This place surprise expected good actually gre... 0.9985\n", + "417442 We celebrated wedding night Langham I commend ... 0.9985\n", + "132492 We arrived super cute boutique hotel area expl... 0.9987\n", + "\n", + "[515738 rows x 2 columns]\n" + ] + } + ], + "source": [ + "df = df.sort_values(by=[\"Negative_Sentiment\"], ascending=True)\n", + "print(df[[\"Negative_Review\", \"Negative_Sentiment\"]])\n", + "df = df.sort_values(by=[\"Positive_Sentiment\"], ascending=True)\n", + "print(df[[\"Positive_Review\", \"Positive_Sentiment\"]])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Reorder the columns (This is cosmetic, but to make it easier to explore the data later)\n", + "df = df.reindex([\"Hotel_Name\", \"Hotel_Address\", \"Total_Number_of_Reviews\", \"Average_Score\", \"Reviewer_Score\", \"Negative_Sentiment\", \"Positive_Sentiment\", \"Reviewer_Nationality\", \"Leisure_trip\", \"Couple\", \"Solo_traveler\", \"Business_trip\", \"Group\", \"Family_with_young_children\", \"Family_with_older_children\", \"With_a_pet\", \"Negative_Review\", \"Positive_Review\"], axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_NLP.csv\n" + ] + } + ], + "source": [ + "print(\"Saving results to Hotel_Reviews_NLP.csv\")\n", + "df.to_csv(r\"../../data/Hotel_Reviews_NLP.csv\", index = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md b/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md new file mode 100644 index 000000000..5e5140a83 --- /dev/null +++ b/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/R/README.md b/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/R/README.md new file mode 100644 index 000000000..78edbefba --- /dev/null +++ b/translations/fr/6-NLP/5-Hotel-Reviews-2/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/README.md b/translations/fr/6-NLP/README.md new file mode 100644 index 000000000..f349b6250 --- /dev/null +++ b/translations/fr/6-NLP/README.md @@ -0,0 +1,38 @@ + +# Introduction au traitement du langage naturel + +Le traitement du langage naturel (NLP) est la capacité d'un programme informatique à comprendre le langage humain tel qu'il est parlé et écrit — appelé langage naturel. C'est une composante de l'intelligence artificielle (IA). Le NLP existe depuis plus de 50 ans et trouve ses racines dans le domaine de la linguistique. Tout le domaine est orienté vers l'aide aux machines pour comprendre et traiter le langage humain. Cela peut ensuite être utilisé pour effectuer des tâches comme la vérification orthographique ou la traduction automatique. Il possède une variété d'applications concrètes dans de nombreux domaines, notamment la recherche médicale, les moteurs de recherche et l'intelligence d'affaires. + +## Sujet régional : Langues et littérature européennes et hôtels romantiques d'Europe ❤️ + +Dans cette section du programme, vous serez initié à l'une des utilisations les plus répandues de l'apprentissage automatique : le traitement du langage naturel (NLP). Issu de la linguistique computationnelle, cette catégorie d'intelligence artificielle constitue le pont entre les humains et les machines via la communication vocale ou textuelle. + +Dans ces leçons, nous apprendrons les bases du NLP en construisant de petits bots conversationnels pour comprendre comment l'apprentissage automatique contribue à rendre ces conversations de plus en plus "intelligentes". Vous voyagerez dans le temps en discutant avec Elizabeth Bennett et Mr. Darcy du roman classique de Jane Austen, **Orgueil et Préjugés**, publié en 1813. Ensuite, vous approfondirez vos connaissances en apprenant l'analyse des sentiments à travers les avis sur les hôtels en Europe. + +![Livre Orgueil et Préjugés et thé](../../../translated_images/p&p.279f1c49ecd889419e4ce6206525e9aa30d32a976955cd24daa636c361c6391f.fr.jpg) +> Photo par Elaine Howlin sur Unsplash + +## Leçons + +1. [Introduction au traitement du langage naturel](1-Introduction-to-NLP/README.md) +2. [Tâches et techniques courantes du NLP](2-Tasks/README.md) +3. [Traduction et analyse des sentiments avec l'apprentissage automatique](3-Translation-Sentiment/README.md) +4. [Préparation de vos données](4-Hotel-Reviews-1/README.md) +5. [NLTK pour l'analyse des sentiments](5-Hotel-Reviews-2/README.md) + +## Crédits + +Ces leçons sur le traitement du langage naturel ont été écrites avec ☕ par [Stephen Howell](https://twitter.com/Howell_MSFT) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/6-NLP/data/README.md b/translations/fr/6-NLP/data/README.md new file mode 100644 index 000000000..dd283e3bc --- /dev/null +++ b/translations/fr/6-NLP/data/README.md @@ -0,0 +1,15 @@ + +Téléchargez les données des avis sur l'hôtel dans ce dossier. + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/1-Introduction/README.md b/translations/fr/7-TimeSeries/1-Introduction/README.md new file mode 100644 index 000000000..e49c45a94 --- /dev/null +++ b/translations/fr/7-TimeSeries/1-Introduction/README.md @@ -0,0 +1,199 @@ + +# Introduction à la prévision des séries temporelles + +![Résumé des séries temporelles dans un sketchnote](../../../../translated_images/ml-timeseries.fb98d25f1013fc0c59090030080b5d1911ff336427bec31dbaf1ad08193812e9.fr.png) + +> Sketchnote par [Tomomi Imura](https://www.twitter.com/girlie_mac) + +Dans cette leçon et la suivante, vous allez découvrir la prévision des séries temporelles, une partie intéressante et précieuse du répertoire d'un scientifique en apprentissage automatique, qui est un peu moins connue que d'autres sujets. La prévision des séries temporelles est une sorte de "boule de cristal" : en se basant sur les performances passées d'une variable comme le prix, vous pouvez prédire sa valeur potentielle future. + +[![Introduction à la prévision des séries temporelles](https://img.youtube.com/vi/cBojo1hsHiI/0.jpg)](https://youtu.be/cBojo1hsHiI "Introduction à la prévision des séries temporelles") + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo sur la prévision des séries temporelles + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/41/) + +C'est un domaine utile et intéressant avec une réelle valeur pour les entreprises, étant donné son application directe aux problèmes de tarification, d'inventaire et de chaîne d'approvisionnement. Bien que les techniques d'apprentissage profond aient commencé à être utilisées pour obtenir davantage d'informations afin de mieux prédire les performances futures, la prévision des séries temporelles reste un domaine largement influencé par les techniques classiques d'apprentissage automatique. + +> Le programme utile sur les séries temporelles de Penn State est disponible [ici](https://online.stat.psu.edu/stat510/lesson/1) + +## Introduction + +Supposons que vous gérez un ensemble de parcmètres intelligents qui fournissent des données sur leur fréquence d'utilisation et leur durée d'utilisation au fil du temps. + +> Et si vous pouviez prédire, en fonction des performances passées du parcmètre, sa valeur future selon les lois de l'offre et de la demande ? + +Prédire avec précision le moment où agir pour atteindre votre objectif est un défi qui pourrait être relevé grâce à la prévision des séries temporelles. Cela ne rendrait pas les gens heureux d'être facturés davantage pendant les périodes de forte affluence lorsqu'ils cherchent une place de parking, mais ce serait un moyen sûr de générer des revenus pour nettoyer les rues ! + +Explorons certains types d'algorithmes de séries temporelles et commençons un notebook pour nettoyer et préparer des données. Les données que vous allez analyser proviennent de la compétition de prévision GEFCom2014. Elles consistent en 3 années de valeurs horaires de charge électrique et de température entre 2012 et 2014. Étant donné les modèles historiques de charge électrique et de température, vous pouvez prédire les valeurs futures de charge électrique. + +Dans cet exemple, vous apprendrez à prévoir une étape temporelle à l'avance, en utilisant uniquement les données historiques de charge. Avant de commencer, cependant, il est utile de comprendre ce qui se passe en coulisses. + +## Quelques définitions + +Lorsque vous rencontrez le terme "séries temporelles", vous devez comprendre son utilisation dans plusieurs contextes différents. + +🎓 **Séries temporelles** + +En mathématiques, "une série temporelle est une série de points de données indexés (ou listés ou tracés) dans l'ordre temporel. Le plus souvent, une série temporelle est une séquence prise à des intervalles successifs équidistants dans le temps." Un exemple de série temporelle est la valeur de clôture quotidienne du [Dow Jones Industrial Average](https://wikipedia.org/wiki/Time_series). L'utilisation de graphiques de séries temporelles et de modélisation statistique est fréquemment rencontrée dans le traitement du signal, la prévision météorologique, la prédiction des tremblements de terre et d'autres domaines où des événements se produisent et des points de données peuvent être tracés dans le temps. + +🎓 **Analyse des séries temporelles** + +L'analyse des séries temporelles est l'analyse des données de séries temporelles mentionnées ci-dessus. Les données de séries temporelles peuvent prendre des formes distinctes, y compris les "séries temporelles interrompues" qui détectent des modèles dans l'évolution d'une série temporelle avant et après un événement perturbateur. Le type d'analyse nécessaire pour les séries temporelles dépend de la nature des données. Les données de séries temporelles elles-mêmes peuvent prendre la forme de séries de nombres ou de caractères. + +L'analyse à effectuer utilise une variété de méthodes, y compris le domaine fréquentiel et le domaine temporel, linéaire et non linéaire, et plus encore. [En savoir plus](https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm) sur les nombreuses façons d'analyser ce type de données. + +🎓 **Prévision des séries temporelles** + +La prévision des séries temporelles est l'utilisation d'un modèle pour prédire des valeurs futures en fonction des modèles affichés par les données précédemment collectées telles qu'elles se sont produites dans le passé. Bien qu'il soit possible d'utiliser des modèles de régression pour explorer les données de séries temporelles, avec des indices temporels comme variables x sur un graphique, ces données sont mieux analysées à l'aide de types de modèles spécifiques. + +Les données de séries temporelles sont une liste d'observations ordonnées, contrairement aux données qui peuvent être analysées par régression linéaire. Le modèle le plus courant est ARIMA, un acronyme qui signifie "Autoregressive Integrated Moving Average". + +[Les modèles ARIMA](https://online.stat.psu.edu/stat510/lesson/1/1.1) "relient la valeur actuelle d'une série aux valeurs passées et aux erreurs de prédiction passées." Ils sont les plus appropriés pour analyser les données du domaine temporel, où les données sont ordonnées dans le temps. + +> Il existe plusieurs types de modèles ARIMA, que vous pouvez découvrir [ici](https://people.duke.edu/~rnau/411arim.htm) et que vous aborderez dans la prochaine leçon. + +Dans la prochaine leçon, vous construirez un modèle ARIMA en utilisant [les séries temporelles univariées](https://itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm), qui se concentrent sur une variable qui change de valeur au fil du temps. Un exemple de ce type de données est [ce jeu de données](https://itl.nist.gov/div898/handbook/pmc/section4/pmc4411.htm) qui enregistre la concentration mensuelle de CO2 à l'observatoire de Mauna Loa : + +| CO2 | YearMonth | Year | Month | +| :----: | :-------: | :---: | :---: | +| 330.62 | 1975.04 | 1975 | 1 | +| 331.40 | 1975.13 | 1975 | 2 | +| 331.87 | 1975.21 | 1975 | 3 | +| 333.18 | 1975.29 | 1975 | 4 | +| 333.92 | 1975.38 | 1975 | 5 | +| 333.43 | 1975.46 | 1975 | 6 | +| 331.85 | 1975.54 | 1975 | 7 | +| 330.01 | 1975.63 | 1975 | 8 | +| 328.51 | 1975.71 | 1975 | 9 | +| 328.41 | 1975.79 | 1975 | 10 | +| 329.25 | 1975.88 | 1975 | 11 | +| 330.97 | 1975.96 | 1975 | 12 | + +✅ Identifiez la variable qui change au fil du temps dans ce jeu de données. + +## Caractéristiques des données de séries temporelles à prendre en compte + +Lorsque vous examinez des données de séries temporelles, vous pourriez remarquer qu'elles présentent [certaines caractéristiques](https://online.stat.psu.edu/stat510/lesson/1/1.1) que vous devez prendre en compte et atténuer pour mieux comprendre leurs modèles. Si vous considérez les données de séries temporelles comme fournissant potentiellement un "signal" que vous souhaitez analyser, ces caractéristiques peuvent être considérées comme du "bruit". Vous devrez souvent réduire ce "bruit" en compensant certaines de ces caractéristiques à l'aide de techniques statistiques. + +Voici quelques concepts que vous devriez connaître pour travailler avec les séries temporelles : + +🎓 **Tendances** + +Les tendances sont définies comme des augmentations et des diminutions mesurables au fil du temps. [En savoir plus](https://machinelearningmastery.com/time-series-trends-in-python). Dans le contexte des séries temporelles, il s'agit de savoir comment utiliser et, si nécessaire, supprimer les tendances de vos séries temporelles. + +🎓 **[Saisonnalité](https://machinelearningmastery.com/time-series-seasonality-with-python/)** + +La saisonnalité est définie comme des fluctuations périodiques, telles que les périodes de forte affluence pendant les vacances qui pourraient affecter les ventes, par exemple. [Découvrez](https://itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm) comment différents types de graphiques affichent la saisonnalité dans les données. + +🎓 **Valeurs aberrantes** + +Les valeurs aberrantes sont éloignées de la variance standard des données. + +🎓 **Cycle à long terme** + +Indépendamment de la saisonnalité, les données peuvent afficher un cycle à long terme, comme une récession économique qui dure plus d'un an. + +🎓 **Variance constante** + +Au fil du temps, certaines données affichent des fluctuations constantes, comme la consommation d'énergie par jour et par nuit. + +🎓 **Changements brusques** + +Les données peuvent afficher un changement brusque qui pourrait nécessiter une analyse approfondie. La fermeture soudaine des entreprises en raison de la COVID, par exemple, a provoqué des changements dans les données. + +✅ Voici un [exemple de graphique de séries temporelles](https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python) montrant les dépenses quotidiennes en monnaie virtuelle dans un jeu sur plusieurs années. Pouvez-vous identifier certaines des caractéristiques mentionnées ci-dessus dans ces données ? + +![Dépenses en monnaie virtuelle dans un jeu](../../../../translated_images/currency.e7429812bfc8c6087b2d4c410faaa4aaa11b2fcaabf6f09549b8249c9fbdb641.fr.png) + +## Exercice - démarrer avec les données de consommation d'énergie + +Commençons par créer un modèle de séries temporelles pour prédire la consommation d'énergie future en fonction de la consommation passée. + +> Les données de cet exemple proviennent de la compétition de prévision GEFCom2014. Elles consistent en 3 années de valeurs horaires de charge électrique et de température entre 2012 et 2014. +> +> Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli et Rob J. Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond", International Journal of Forecasting, vol.32, no.3, pp 896-913, juillet-septembre, 2016. + +1. Dans le dossier `working` de cette leçon, ouvrez le fichier _notebook.ipynb_. Commencez par ajouter des bibliothèques qui vous aideront à charger et visualiser les données : + + ```python + import os + import matplotlib.pyplot as plt + from common.utils import load_data + %matplotlib inline + ``` + + Notez que vous utilisez les fichiers du dossier `common` inclus, qui configurent votre environnement et gèrent le téléchargement des données. + +2. Ensuite, examinez les données sous forme de dataframe en appelant `load_data()` et `head()` : + + ```python + data_dir = './data' + energy = load_data(data_dir)[['load']] + energy.head() + ``` + + Vous pouvez voir qu'il y a deux colonnes représentant la date et la charge : + + | | load | + | :-----------------: | :----: | + | 2012-01-01 00:00:00 | 2698.0 | + | 2012-01-01 01:00:00 | 2558.0 | + | 2012-01-01 02:00:00 | 2444.0 | + | 2012-01-01 03:00:00 | 2402.0 | + | 2012-01-01 04:00:00 | 2403.0 | + +3. Maintenant, tracez les données en appelant `plot()` : + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![Graphique de consommation d'énergie](../../../../translated_images/energy-plot.5fdac3f397a910bc6070602e9e45bea8860d4c239354813fa8fc3c9d556f5bad.fr.png) + +4. Ensuite, tracez la première semaine de juillet 2014, en la fournissant comme entrée à `energy` dans le format `[date de début]:[date de fin]` : + + ```python + energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![Juillet](../../../../translated_images/july-2014.9e1f7c318ec6d5b30b0d7e1e20be3643501f64a53f3d426d7c7d7b62addb335e.fr.png) + + Un graphique magnifique ! Examinez ces graphiques et voyez si vous pouvez déterminer certaines des caractéristiques mentionnées ci-dessus. Que pouvons-nous déduire en visualisant les données ? + +Dans la prochaine leçon, vous créerez un modèle ARIMA pour effectuer des prévisions. + +--- + +## 🚀Défi + +Faites une liste de toutes les industries et domaines de recherche que vous pouvez imaginer qui bénéficieraient de la prévision des séries temporelles. Pouvez-vous penser à une application de ces techniques dans les arts ? En économétrie ? En écologie ? En commerce de détail ? En industrie ? En finance ? Où encore ? + +## [Quiz après la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/42/) + +## Révision et auto-apprentissage + +Bien que nous ne les couvrions pas ici, les réseaux neuronaux sont parfois utilisés pour améliorer les méthodes classiques de prévision des séries temporelles. Lisez-en plus [dans cet article](https://medium.com/microsoftazure/neural-networks-for-forecasting-financial-and-economic-time-series-6aca370ff412) + +## Devoir + +[Visualisez davantage de séries temporelles](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/1-Introduction/assignment.md b/translations/fr/7-TimeSeries/1-Introduction/assignment.md new file mode 100644 index 000000000..7b224d59a --- /dev/null +++ b/translations/fr/7-TimeSeries/1-Introduction/assignment.md @@ -0,0 +1,25 @@ + +# Visualiser d'autres séries temporelles + +## Instructions + +Vous avez commencé à apprendre la prévision des séries temporelles en examinant le type de données nécessitant ce modèle spécifique. Vous avez visualisé des données liées à l'énergie. Maintenant, cherchez d'autres types de données qui pourraient bénéficier de la prévision des séries temporelles. Trouvez trois exemples (essayez [Kaggle](https://kaggle.com) et [Azure Open Datasets](https://azure.microsoft.com/en-us/services/open-datasets/catalog/?WT.mc_id=academic-77952-leestott)) et créez un notebook pour les visualiser. Notez dans le notebook toute caractéristique particulière qu'elles présentent (saisonnalité, changements brusques ou autres tendances). + +## Rubrique + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ------------------------------------------------------- | --------------------------------------------------- | --------------------------------------------------------------------------------------- | +| | Trois ensembles de données sont tracés et expliqués dans un notebook | Deux ensembles de données sont tracés et expliqués dans un notebook | Peu d'ensembles de données sont tracés ou expliqués dans un notebook ou les données présentées sont insuffisantes | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction professionnelle humaine. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/1-Introduction/solution/Julia/README.md b/translations/fr/7-TimeSeries/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..8c7433c0d --- /dev/null +++ b/translations/fr/7-TimeSeries/1-Introduction/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction professionnelle humaine. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/1-Introduction/solution/R/README.md b/translations/fr/7-TimeSeries/1-Introduction/solution/R/README.md new file mode 100644 index 000000000..734166a13 --- /dev/null +++ b/translations/fr/7-TimeSeries/1-Introduction/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction professionnelle humaine. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/1-Introduction/solution/notebook.ipynb b/translations/fr/7-TimeSeries/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..4f496e83d --- /dev/null +++ b/translations/fr/7-TimeSeries/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,170 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Configuration des données\n", + "\n", + "Dans ce notebook, nous montrons comment :\n", + "- configurer des données de séries temporelles pour ce module\n", + "- visualiser les données\n", + "\n", + "Les données de cet exemple proviennent de la compétition de prévision GEFCom2014. Elles consistent en 3 années de charges électriques horaires et de valeurs de température entre 2012 et 2014.\n", + "\n", + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli et Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, juillet-septembre, 2016.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import matplotlib.pyplot as plt\n", + "from common.utils import load_data\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Charger les données du fichier CSV dans un dataframe Pandas\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ], + "text/html": "
                      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                      load
                      2012-01-01 00:00:002698.0
                      2012-01-01 01:00:002558.0
                      2012-01-01 02:00:002444.0
                      2012-01-01 03:00:002402.0
                      2012-01-01 04:00:002403.0
                      \n
                      " + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "data_dir = './data'\n", + "energy = load_data(data_dir)[['load']]\n", + "energy.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Tracer toutes les données de charge disponibles (janvier 2012 à décembre 2014)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhb5ZU/8O+r3bYkO7bl3YljZ3dCnJBASCCQFkqBgUDpBrRMZ6YLMJ2l26/TTjtDmelMp09nOtNOaUt31tKFtRToQAkpSUhIiJPY2Z14X+VFkiVL1vL+/pBkjHESL5Ku7r3fz/P4IbF07z1Gsa1z3/OeI6SUICIiIiIiIgIAg9IBEBERERERUfZgkkhEREREREQTmCQSERERERHRBCaJRERERERENIFJIhEREREREU1gkkhEREREREQTTEoHoITi4mJZU1OjdBhERERERESKOHDggFtK6ZruMV0miTU1Ndi/f7/SYRARERERESlCCNF2rsdYbkpEREREREQTmCQSERERERHRBCaJRERERERENEGXexKJiIiIiIgAIBwOo7OzE8FgUOlQ0sJms6Gqqgpms3nGxzBJJCIiIiIi3ers7ITD4UBNTQ2EEEqHk1JSSgwODqKzsxOLFy+e8XEsNyUiIiIiIt0KBoMoKirSXIIIAEIIFBUVzXqVlEkiERERERHpmhYTxKS5fG1MEomIiIiIiBRkt9tTcp57770X3/rWt+Z9HiaJRERERERENIFJIhERERERURaQUuILX/gCVq9ejTVr1uDxxx8HAIyOjuLd73431q9fjzVr1uDpp5+eOObrX/86li1bhssvvxwnTpxISRzsbkpERERERATga88242i3N6XnXFXhxD/fWD+j5z7xxBNobGzEoUOH4Ha7sXHjRmzduhUulwtPPvkknE4n3G43Nm3ahJtuuglvvvkmfvnLX6KxsRGRSATr16/HxRdfPO+YuZJIRERERESUBV577TXcdtttMBqNKC0txZVXXok33ngDUkp8+ctfxkUXXYSrr74aXV1d6Ovrw5/+9CfccsstyM3NhdPpxE033ZSSOLiSSEREREREBMx4xS/THnnkEQwMDODAgQMwm82oqamZ9ViL2eBKIhERERERURa44oor8PjjjyMajWJgYAA7d+7EJZdcAo/Hg5KSEpjNZrzyyitoa2sDAGzduhVPPfUUxsbG4PP58Oyzz6YkDq4kEmnQSGAcDpsZRoN2Z/4QERERac0tt9yCPXv2YO3atRBC4Jvf/CbKyspwxx134MYbb8SaNWuwYcMGrFixAgCwfv16fOhDH8LatWtRUlKCjRs3piQOIaVMyYnUZMOGDXL//v1Kh0GUFj2eMbznv3ZiZbkTP7pzA/JzzUqHRERERJS1jh07hpUrVyodRlpN9zUKIQ5IKTdM93yWmxJpzL///jhC0RgaO0bwgR/uRo9nTOmQiIiIiEhFMpYkCiF2CCGCQojRxMeJSY/dLoRoE0L4hRBPCSEKJz1WKIR4MvFYmxDi9innPeexRHrzRusQnjnUjbu21uLnf7ER3SNB3Hr/bpzq8ykdGhERERGpRKZXEj8tpbQnPpYDgBCiHsAPAXwUQCmAAID7Jx3zPQDjicfuAPD9xDEzOZZIN6IxiXufaUZ5vg13XVWHzUuK8finNiEck3j/D/Zgf+uQ0iESERERkQpkQ7npHQCelVLulFKOAvgqgPcJIRxCiDwAtwL4qpRyVEr5GoBnEE8Kz3usAl8HkaJ+tb8Dzd1efOn6lci1xHtS1Vfk44m7N6Mwz4I7frwXe1oGFY6SiIiIKPtouU/LXL62TCeJ/y6EcAshdgkhrkp8rh7AoeQTpJQtiK8cLkt8RKSUJyed41DimAsd+zZCiE8KIfYLIfYPDAyk8EsiUp5nLIxvvXgCl9QU4saLyt/2WHVhLn5z12UoyrPg/h2nFYqQiIiIKDvZbDYMDg5qMlGUUmJwcBA2m21Wx2VyBMYXARxFPIn7MIBnhRANAOwAPFOe6wHgABAF4D3HY7jAsW8jpXwAwANAvLvpnL8Koiz0nZdPYSgwjl/cuApCvHPsRZHdilsvrsL3XjmNfl8QJY7Z/aAgIiIi0qqqqip0dnZCqwtJNpsNVVVVszomY0milHLvpL/+QghxG4DrAYwCcE55uhOAD0DsPI/hAscS6cLpfh9+sbsVH964EKsr88/5vO0NFfjuH0/jd4d68JeXL85ghERERETZy2w2Y/FivjeaTMk9iRKAANAMYG3yk0KIWgBWACcTHyYhxNJJx61NHIMLHEukC//yu2PIsRjx+fe8o8r6bZaUOFBf4cTTh7ozFBkRERERqVFGkkQhRIEQ4lohhE0IYRJC3AFgK4AXADwC4EYhxBWJRjX3AXhCSumTUvoBPAHgPiFEnhBiC4DtAB5KnPqcx2bi6yJSWlOXB6+eHMCnty1Bkd16wedvb6jAoY4RnHX7MxAdEREREalRplYSzQD+FcAAADeAvwFws5TypJSyGcBdiCd8/YjvJ7xn0rH3AMhJPPYYgLsTx2AGxxJp2iN722AzG/DhSxbO6Pk3rq2AEMAzjVxNJCIiIqLpZWRPopRyAMDG8zz+KIBHz/HYEICb53IskZZ5g2E8dbAbN62tQH6OeUbHlOfn4NLFhXj6UBf+9t1Lpm1yQ0RERET6lg1zEoloDp58swtj4Sg+smnRrI7b3lCJMwN+NHVNbRxMRERERMQkkUiVpJR4+PU2XFSVj4uqCmZ17PWry2E2Cjzd2JWm6IiIiIhIzZgkEqnQvrNDONU/OutVRADIzzXjquUlePZwN6IxjgwlIiIiordjkkikQg+93ganzYQbL6qY0/HbGyrQ5w1h75nBFEdGRERERGrHJJFIZQZ8IbzY3Iv3X1yNHItxTue4emUp8ixGPM0up0REREQ0BZNEIpX51f4OhKMSd2ya2diL6djMRly7ugy/b+pBMBxNYXREREREpHZMEolUJBqTeHRvOzbXFaHOZZ/XuW5uqIQvGMGOEwMpio6IiIiItIBJIpGK7DjRj66RsTk1rJlqc10RFuSa8YejvSmIjIiIiIi0gkkikYo8/HobShxWXLOqdN7nMhkN2LykGLtPD0JKdjklIiIiojgmiUQqMRIYx46TA/jghmqYjan51t1SV4xebxBn3P6UnI+IiIiI1I9JIpFK7GkZhJTAthWulJ1zy5IiAMDu0+6UnZOIiIiI1I1JIpFK7GpxI89ixEVVBSk758LCXFQW5OA1JolERERElMAkkUgldp8exCWLC1NWagoAQghsWVKEPS2DiMa4L5GIiIiImCQSqUKPZwxn3H5sWVKc8nNvWVIMbzCC5m5Pys9NREREROrDJJFIBXafHgQAbK5LfZKYPOeuxDWIiIiISN+YJBKpwK4WNwrzLFhR5kj5uV0OK5aXOrC7hfsSiYiIiIhJIlHWk1Ji9+lBXFZbBINBpOUam5cUYd/ZIQTD0bScn4iIiIjUg0kizUgwHMWxHi9+d7gbD+xswcvH+uAeDSkdli6ccfvR6w1ic2JcRTpsqStGKBLDm+3DabsGEREREamDSekAKDtJKfHKiX48tq8DJ/t86BgKYLrml1ULcrC2ugAbFy3AbZcuhNVkzHywGre7Jb5XcEsa9iMmXVpbCKNBYPfpwbTseyQiIiIi9WCSSG8TjUk8d6QH979yGsd7fShz2nDxogXY3lCJJSV2LHHZUZ5vw6n+URzqGEFjxwga20fw3OEetA4GcO9N9Up/CZqz+7QbFfk2LCrKTds1HDYz1lblY1eLG5/H8rRdh4iIiIiyH5NEAhBPDn9zoAPf39GC1sEA6lx5+M8PrMVNDRXTzuW7ZHEhLllcOPH3e59pxs93t+JdK0qwdZkrk6FrWiwmsefMIK5eWQoh0rMfMWnLkmLcv6MF3mAYTps5rdciIiIiouzFPYmEPm8QH/nxXnzxt0fgsJnxg4+sx/995krcenHVjAe3/8N1K7CkxI7P//oQhv3jaY5YP472eDESCGNLGvcjJm2uK0Y0JrH3zFDar0VERERE2YtJos69enIA1//Pn9DYMYJvvv8iPPPpLXjv6vJZd9G0mY347w81YMg/jn986giknGYDI81acixFJvYJrl9UAJvZgF2nOQqDiIiISM+YJOpUOBrDN54/jj//6T4U26149m+24IMbqudV0ri6Mh+fuWYZfn+kF0+82ZXCaPVr1+lB1LnyUOq0pf1aVpMRG2sKOS+RiIiISOeYJOqQJxDGh364Bz94tQW3X7oQT396C5aUpGZI+11X1mFjzQL88zPN6BgKpOScejUeiWHf2SFsWZK5bqNblhTjZN8o+n3BjF2TiIiIiLILk0Qd+u4fT6GxYwTfuW0d/u2WNbCZUze2wmgQ+K8PNgAAPverQ4hONzeDZqSxYwRj4WhGR1Ikx2zsSYzdICIiIiL9YZKoM10jY3jw9Tbcur4KN62tSMs1qgtz8c83rsK+1iE8d6QnLdfQg90tbggBbKotvPCTU2RVhROFeRY8f6Q3Y9ckIiIiouzCJFFn/uelkwCAv79mWVqvc+v6KlQW5OA3BzrTeh0t2316EKsr8lGQa8nYNY0GgQ9cXIX/O9aHPi9LTomIiIj0iEmijpzq8+E3Bzpx56ZFqCzISeu1DAaBW9dX4rVTA+j1MNmYrWA4ioMdw9hcl/7RF1PdfulCRGMSj+1rz/i1iYiIiEh5TBJ15Ft/OIE8iwn3bFuSkeu9b30VYhJ48iA7nc7W8V4fwlGJdQsLMn7tRUV52LrMhV/u60AkGsv49YmIiIhIWUwSdeJg+zBebO7DJ7fWojAvM+WLNcV52FizAL850MG5ibN0pMsDAKivyFfk+h+5dCF6vUG8dKxfkesTERERkXKYJOqAlBL/8cJxFNst+MvLF2f02u+/uAotA340doxk9Lpq19TpQUGuGVUL0lsWfC7vWlGC8nwbHtnbpsj1iYiIiEg5TBJ1YOcpN14/M4S/eddS5FlNGb329WvKYTMb2MBmlpq6PVhTmQ8hhCLXNxkNuP2ShfjTKTfOuv2KxEBEREREymCSqHGxmMQ3XziO6sIc3HbJwoxf32Ez47rV5Xj2UDeC4WjGr69GoUgUJ/t8ipWaJn3okmqYDAKPvM7VRCIiIiI9YZKocS8296K524vPXrMMFpMyL/et66vgDUbw0rE+Ra6vNicSTWvWVCqbJJY4bLi2vgy/PtDJBJ+IiIhIR5gkapiUEv/7ymnUFufhprWVisVxWV0RKvJtLDmdoaYuLwAoniQCwB2bFsIzFsbvDvcoHQoRERERZQiTRA3bcXIAzd1e3HVVHYwGZfa2AfEB7e9bX4WdJwc4oH0GjnR54LSZUF2oTNOayS6rLUKdKw8Ps+SUiIiISDeYJGrY/a+cRmVBDm5Zp9wqYtKtF3Nm4kw1dXmwWsGmNZMJIfCRTYvQ2DGCpsRYDiIiIiLSNiaJGrX3zCDeaB3GJ7fWwmxU/mVeXJyHDYsW4DcHOjkz8TzGIzGc6PVlRalp0vvWV8FmNuCxfe1Kh0JEREREGaB89kBp8b0dLSi2W/ChjdVKhzLh/RdX4XT/KB7Z285E8RxO9vkwHo2hPouSxPwcM66tL8NzR3owHokpHQ4RERERpRmTRA063DmCnScH8FeX18JmNiodzoSbGiqwqbYQX3mqCZ986ADcoyGlQ8o6yZLObFpJBICbGyoxEgjj1ZMDSodC0+gcDuDh19vw6/0dCEeZyBMREdH8ZHayOmXE/a+0wGkz4SObMj8X8XxyLSY8+vFN+Omus/jmiydw7bd34uu3rMF7V5cpHVrWaOr2wGE1YVFhrtKhvM3lS4tRmGfBU41duGZVqdLh6F4kGsP+tmG8crwfr5zox8m+0YnHfvBqC7503Uq8e2VJVuxrJSIiIvXhSqLGnOrz4YXmXnxscw0cNrPS4byDwSDw8Stq8bu/uRxl+Tbc9fABfO5XhxCKcA4fABzp8mJVhRMGBbvRTsdsNODPLirHS0f74AuGlQ5H18YjMXzkJ3vx4Qdex093nYXLYcVXbliJlz57JX505wZICXz8wf247Uev40gnmw0RERHR7DFJ1Jjv72hBjtmIj21ZrHQo57Ws1IEn79mCe66qw2/f7MTTjd1Kh6S4cDSGYz3erCs1Tbp5XSVCkRheaOpVOhTdklLin55uwutnhvDPN67CwX96Dx75+CZ8/IpaLCmx45pVpXjxM1tx3/Z6nOwbxY3/+xq+8fxxpcMmIiIilWGSqCEdQwE8fagbd1y6EIV5FqXDuSCLyYAvXLscRXkW7GkZVDocxZ3uH8V4JIY1VdmZJK6rLsCiolwm9Ap6cE8bfvlGB/56Wx3+Ysti2K3v3DFgNhpw52U12PGFq7C9oQI/3NmCloHRac5GREREND0miRryfFMPojGJj22pUTqUGRNCYFNtEfa0DOq+4+mRRNOa+orsTBKFENi+tgK7Wtzo8waVDkd3dp12477fHcXVK0vxuWuWX/D5TpsZX/2zVbAYDXjg1TMZiJCIiIi0gkmihuw4MYDlpQ5ULciupicXsqmuCL3eIFoHA0qHoqjmLg/yLEbUFucpHco5bV9XCSmBZw9xNTGTWt1+3PPIm6hz5eG/P9ww4z2rxXYrPrihGk8c7ESvh4k9ERERzQyTRI0YDUXwRusQrlruUjqUWbustggAdF9yeqTLg/qK/KxrWjNZncuOi6ry8VRjl9Kh6IYvGMbHH9wPIYAf37lx2hLT8/nk1lrEJPDTXWfTFCERERFpDZNEjdh92o1wVOLKZepLEutceXA5rNhzRr9JYiQaw9EeL+ornUqHckHbGyrR1OXF6X6f0qFonpQSn/3VIZx1+3H/HeuxsGj2VQLVhbm4YU05Hnm9DZ4AO9MSERHRhTFJ1IhXTw4gz2LEhppCpUOZNSEELtP5vsQzbj+C4VjWdjad7Ma15TAI4KmDLDlNt5/tasX/He3Dl69fic11xXM+z11X1sE/HsXDe9tSGB0RERFpFZNEDZBSYseJAWxeUgyLSZ0v6WV1RXCPhnTbhTE5z04NSWKJw4YtS4rx9KEu3Sb1mXC4cwT//vwxXL2yFH85z2ZUqyqcuHKZCz/bdRbBMGeSEhER0fmpM6Ogt2kZGEXXyJgq9yMmTexLPDOkcCTKONLlQY7ZiFqXXelQZuTmhkp0DI3hzfZhpUPRJG8wjE8/ehAuuxXf+sBFEGL++1TvvqoO7tFx/PpAZwoiJCIiIi1jkqgBO04MAIAq9yMmLSrKRXm+Da/rtHlNc7cHqyqcMGZx05rJrl1dBpvZgGc4MzHlpJT40hNH0DUyhu/ctg4FuamZeXrp4kI0VBfgRzvPIBKNpeScREREpE1MEjXg1ZMDWFJiV93oi8mS+xJfP6O/fYmxmERztxerK7K/aU2S3WrClrpivHJiQHevV7o9tq8Dzx3uwefesyyle4yFELj7qjq0DwXwfFNvys5LRERE2sMkUeUC4xHsPTOEq1S8ipi0qa4Ig/5xnOzT177ErpExBMajWF6mniQRAK5aUYL2oQDOuP1Kh6IZx3q8+NqzzbhiaTHu2lqX8vNfs7IUda483L+jBbEYk3siIiKaHpNEldvTMojxaAxXLS9ROpR5e2teolvhSDKrdTCeZC0uzlM4ktlJ3ph45Xi/wpFox33PHoXDZsa3P9SQlnmZBoPAX29bgmM9XrzYzNVEIiIiml7Gk0QhxFIhRFAI8XDi71cJIWJCiNFJH38+6fmFQognhRB+IUSbEOL2Kee7PfF5vxDiKSGE+mZAzMOOEwPIMRuxcfECpUOZt+rCXFQtyNHdvMRWtzqTxOrCXCwtsU/siaX5cY+GsPfsIG6/pBrFdmvarrO9oRJ1rjx8+6WTiHI1kYiIiKahxEri9wC8MeVz3VJK+6SPX0x5/jiAUgB3APi+EKIeABL//SGAjyYeDwC4P91fQLaQUmLHyX5sriuC1WRUOpyUuKy2CHvPDumqFO6M248csxGlzvQlBuly1XIX9p0dgj8UUToU1XvpaB9iMt4UKJ2MBoG/v3oZTvaN4rkjPWm9FhEREalTRpNEIcSHAYwAeHmGz88DcCuAr0opR6WUrwF4BvGkEIgnjc9KKXdKKUcBfBXA+4QQjtRHn33Ouv3oGFL36IupLqsrwkggjGO9XqVDyZhWtx81xXkpGXOQaduWl2A8GsNunXalTaUXmntRXZiDVeXp35t6w5pyLC914L9fOslOp0RERPQOGUsShRBOAPcB+Ow0D5cIIfqEEGeFEN9OJIcAsAxAREp5ctJzDwGoT/y5PvF3AICUsgXxVcdlKf8CslCyzE8L+xGTLqtL7kvUT9LROhjA4mJ1dqbdUFOIPIsRr5zgvsT58AbD2HXajffWl2XkZoHBIPCZa5bizIAfT3OMCREREU2RyZXEfwHwEynl1EnOxwE0ACgH8C4AFwP4r8RjdgBTl5Q8AByTHvec5/EJQohPCiH2CyH2DwxoYw/VjpMDqHXlobpQnQnGdMrzc1BTlIvXdbIvMRyNoX0ogJoide1HTLKYDLh8aTF2HO/nKIx5eOV4P8JRifemudR0smvry1Bf4cR3/ngKYa4mEhER0SQZSRKFEA0Argbw7amPSSl7pZRHpZQxKeVZAP8P8RJTABgFMLX2ygnAN8PHJ1/nASnlBinlBpdL/eWZwXAUe88M4koNjL6Y6rK6+L5EPTTV6BweQzQmVde0ZrJty0vQ7QnqbnRJKr3Q1AuXw4p11ZlrQCWEwGeuXoa2wQCeeHPqvTsiIiLSs0ytJF4FoAZAuxCiF8DnAdwqhHhzmufKSXGdBGASQiyd9PhaAM2JPzcn/g4AEELUArAmjtO0vWeHEIpoY/TFVJtqi+ALRtDcPXWRWHvU2tl0suS/QZaczs3YeBQ7Tgzg2vrStIy9OJ93ryzB2qp8fOfl0xiPcDWRiIiI4jKVJD4AoA7xstIGAD8A8ByAa4UQ24QQi0RcNYBvAHgaAKSUfgBPALhPCJEnhNgCYDuAhxLnfQTAjUKIKxL7GO8D8ISU8h0riVpzsH0YQgAXL1L/6IupLqoqAACc0sHK1BkNJIll+TasLHdyXuIc7Tw1gLFwFO+tL8/4tYUQ+Mw1y9A1MobH93dk/PpERESUnTKSJEopA4my0l4pZS/iZaJBKeUAgHUAdgPwJ/57BMDfTjr8HgA5APoBPAbgbillc+K8zQDuQjxZ7Ed8L+I9mfialHa404OlJXbYrSalQ0m5YrsFADDoDykcSfq1uv1w2EwozLMoHcq8bFvuwv62YXiDYaVDUZ0Xm3qRn2PGpbXKjHi9cpkLGxYtwHdePgXPGF8/IiIiUmZOIqSU90opP5L4839JKSullLlSymop5d9OXgmUUg5JKW+WUuZJKRdKKR+dcq5HE5/Pk1Jul1IOZfrryTQpJQ51jGBtYsVNa+xWE6wmA9yj40qHknatg34sVun4i8m2rShBNCax65Rb6VBUZTwSw0vH+nD1ylKYjYr8OIYQAvfeVI8h/zi+8fwxRWIgIiKi7KLMuxKal87hMQz6x3FRtTaTRCEEiu1WuH3aX0k8M+BXdalp0rrqAjhtJu5LnKXXzwzCG4xktKvpdFZX5uPjly/GY/s6dDV+hoiIiKbHJFGFDnWOAAAaNLqSCMRLTgdGtZ0kBsNRdHvGVDv+YjKT0YArlrnwyokBjsKYhReae5FrMeKKpcVKh4K/v3oZFhbm4stPHkEwHFU6HCIiIlIQk0QVOtzpgcVkwPKyd4yD1IxiuxWDGi83bR8KQEp1N62ZbNvyEgz4QmjunjralKYTjUn8obkP25aXwGY2Kh0OcixG/Pv71uCs24/vvHxK6XCIiIhIQUwSVaixYwSryp2wmLT78hXbrXBrfCXxrAY6m06WnNn5R3Y5nZE324fhHg3hWoVLTSfbsqQYH7i4Cj/ceQZHmewTERHplvZaY2pcJBrDkU4PPrSxWulQ0qrYYcGgfxyxmMz47LhMSc5IrNFIkuhyWLGpthC/3NeOu6+qU6wRi1q80NQLi9GAbctdSofyNv94w0q8cqIf//DEYTxx92aY+DoSERGd15mBUfzxeD9CkRhCkRjC0RjGIzFYTAasKHNgVbkTi4vzVPU7lUmiypweGMVYOIq11flKh5JWRXlWRGMSnrEwFqh8PMS5nHX7UZhnQX6OWelQUuYTV9Tir36xH78/0oPtDZVKh5PVdp1249LaQjhs2fX6F+RacO9N9fj0owfxs12t+MTWWqVDIiIiykrjkRh+8GoL/vePpzEejU183mI0wGIyIBSJIhyN92qwJraKbawpxKe3Lcn697dMElXmcIcHADQ7/iKp2GEFALhHQ1n/TTRXZ93a6Gw62bblJahz5eGHr57BTWsrVD/aI11GQxGc6PPh2vrsKTWd7IY15fjVsk78cGcLPn7FYr6OREREUxxoG8I//PYITvWP4sa1FfjSdStQZLfAYjRM/N4MR2NoGRjFsR4vjnZ7cbTHi1/sbsVTB7vwTzeuyur3SupZ8yQAQGPnCBw2kyY6Yp5PsT2eGGq5w2nroF9zr6PBIPDJrbU42uPFrtMcpXAuhztHICXQsDA7b/YIIXDd6jK4R8cn9s4SERFR/EbvV546glu/vweB8Sh+9rGN+O5t61BRkAOryfi2pM9sNGBFmRO3rKvCP96wCo98fBOe/ZvLUVWYi7/7ZSM+9rM30DEUUPCrOTcmiSpzqGMEa6sKNLtPL6nYnlxJ1GaHU38ogj5vCIuLc5UOJeW2N1Si2G7FA386o3QoWauxI/vH2GysWQAA2N86rHAkRERE2ePeZ5rx6N52/OWWxfjDZ7Zi24qSWR2/styJJ+7ejH++cRXeaB3Ce769Ez/fdTZN0c4dk0QVCYajON7r0/x+ROCtJHFQoyuJrYPJzqZ2hSNJPZvZiL/YUoOdJwdwrIcdMqfT2D6CmqLcrC6lrnPZsSDXjP1tQ0qHQkRElBU6hwN46mAXPrZ5Mf7pxlXIs85t557RIPAXWxbj/z57JTbVFuLeZ4/iV290pDja+WGSqCLN3V5EYxIXZfHqQ6oU5JhhNAjNjsFodcdLC2o0uJIIAHdcuhC5FiN+xNXEd5BS4mDHCNYtXKB0KMnIF7IAACAASURBVOclhMDFixZwJZGIiCjhRzvPQAjgE1sXp+R8lQU5+NGdG3DF0mJ85akmHGzPnt+5TBJV5FCyRK1a+0miwSBQmGeB26fNctOz7lEA0NyexKSCXAs+uKEazzR2o8czpnQ4WaXbE8SAL6SK7+MNNYU44/Zr9mYNERHRTLlHQ/jlGx24ZV0lyvNzUnZek9GA7962DmX5Ntz18AH0e4MpO/d8MElUkUOdIyhz2lDqtCkdSkYU260Y9GvzzelZdwClTuucyxTU4K8uXwwJ4Oe7WpUOJas0tqvnZk9yX+KBtuy5s0lERKSEn+06i/FoDJ+6si7l5y7IteCBOy+GdyyCux4+gFAkmvJrzBaTRBU53OnRxX7EpGK7BQMabVyjxc6mU1UX5uL6NeV4dG87fMGw0uFkjYPtw7CYDFhZ7lQ6lAtaXZkPi8mA/a3cl0hERPrlC4bx4J42XLe6DHWu9PSTWFHmxH9+cC3ebB/Bvc8cTcs1ZoNJokqMBOKt6PWwHzGp2G6F26fVlUQ/al3aThIB4JNX1MIXiuDxLNuMraTGjhGsrnDCYsr+H79WkxFrq/LxBvclEhGRjj38ejt8wQjuuWpJWq9z/Zpy/PW2Ojy2rx2P7G1L67UuJPvfpRCA+CoioI4StVQptlsw6A9BSql0KCnlGQtjyD+u+ZVEAFhTlY/lpQ7sOu1WOpSsEI7GcKTLg4bq7G5aM9mGmkI0dXkwNq586QsREVGmBcNR/OS1s7hiaTFWV6a/ou+z1yzHtuUu3PtMM9oGlZtVzCRRJZJNa9ZU6anc1IpgOAa/xt6ctiaGk9cUaz9JBID6CieOchQGAOBErw+hSAwNC9Vzs2djzQJEYhKHOkeUDoWIiCjjfn2gE+7REO6+KvV7EadjNAj8x60XwWQw4JsvnMjINafDJFElDnV6UOfKg9NmVjqUjEnOStRayenZRJJYq5MkcWW5E33ekGZnXs5GsrX1OhVVBKxPjOrgvkQiItKbSDSGB3a2oKG6AJfVFmXsuiVOGz51ZS2eO9KjWPM4JokqIKVEY8cI1upoPyIAFNnjg8a11n7/rNsPIeKNXfRgVUW8QcuxHp/CkSjvYMcIiu0WVC1IXevsdCvItWBZqZ37EomISHd+d7gHHUNjuOeqOgghMnrtT26tRYnDin997qgiW6+YJKpAjycI92gIa1W0+pAKEyuJGutwetbtR0V+Dmxmo9KhZESyi+cxlpyisWMEDdUFGf9FM18bagrxZvswojFt7Q8mIiI6l3A0hv9+6SRWlDlw9crSjF8/12LC59+zHAfbR/D7I70Zvz6TRBVINq25SEf7EQHA5UgmidpaSWwd1Edn06TCPAvKnDbdJ4meQBhnBvxYt1A9TWuSNtYsgC8Ywck+rgYTEZE+/Gp/B1oHA/jCtcthMChzc/fWi6uwosyB/3jheMZnJzJJVIFTiTdmy0odCkeSWYV52is3lVLirFv7MxKnWlnu0H3zmsZE4xc1dijesKgQAPclEhGRPoyNR/E/L53ChkUL8K4VJYrFYTQIfPn6lWgfCuChPZkdicEkUQVO9o+iakEO8qwmpUPJKLPRgIJcMwY1VG46HAjDF4xgUZE+9iMmrSx34nT/aMbvgmWTxvYRCKHOioCqBTkodVqxX6HN80RERJn0892t6PeF8MXrVii+RWTrMhe2LnPhu388jZFA5t4TM0lUgVN9PiwtsSsdhiKK7VZNrSR2DAUAAAt10rQmaVWFE5GYxKm+UaVDUUxjxzCWltjhUGGHYiEENtQUYj+b1xARkcZ5AmF8f8dpvGtFCTbWFCodDgDgy9evgC8Yxnf/eDpj12SSmOUi0RjODPh1V2qaVJRn0VaSOBxPEvXS2TRJ781rkh2K1VhqmrRx0QJ0jYyhe2RM6VCIiIjS5vuvtsAXiuAL1y5XOpQJK8qc+OCGavxidyt2t7gzck0miVmufSiA8WgMS/S6kuiwaqq7afuQPpPEmqI85JiNuh2D0TYYwHAgjIZq9TWtSdqQuJvKklMiItKqXk8QP9t1Fjc3VE7c4M4WX7p+JRYX5+Guhw7gdH/6K7OYJGa5U4l/BEt1upLo0ly56RgW5Jph19n+UqNBYHmZA0d7PEqHoojGDvU2rUlaUeZAnsXI5jVERKRZ3/njKcSkxGevWaZ0KO+Qn2PGTz+2ERaTAX/x830YTPP7YyaJWS7Z2VS3K4l2C3zBCIJhbTQ86RwO6G4VMWlluRPHenyKDIRVWmPHCHItRiwrVe/3sclowPpFC7DrtBsxzkskIiKNOTMwisff6MAdly7K2vdq1YW5+PGfb0S/N4RPPLg/re+PmSRmuVP9o6gsyNHdylNSkT0+K3HQr42S046hAKoXZOcPnnRbVeGEZyyMbk9Q6VAyrrFjBKsr82EyqvtH7vaGSrQM+PHs4W6lQyEiIkqpH/3pLCxGA/562xKlQzmvhuoC/PeHGnCwYwSf+/WhtN24Vfc7Fh042TeKpSpefZiv4mSSqIGS02hMomtkDFWFOUqHoohV5fGS6WPd+mpeE4nGcKzHizWV6ht9MdX71lWivsKJ/3j+uGZW94mIiCLRGF5s7sU1q0rhcliVDueCrltTji9dtwLPHe7Bt/5wIi3XYJKYxaIxiZaBUd2OvwDi5aYANLEvsc8bRDgqdbuSuLzMCSH01+G0ZcCPUCSG1ZXZtQF+LgwGga/csArdniB+8tpZpcMhIiJKiX2tQxjyj+O61WVKhzJjn7iiFu+/uArff7UFQ2mouGOSmMXahwIYj8R027QGeGsl0e1Tf7lph047mybZrSYsKszFUZ0lic3d8WY9qyvUv5IIAJfVFeE9q0px/yun0e/TX+kwERFpz/NHemEzG3DlcpfSocyYEAI3N1RCyvTcgGeSmMWSTWv0vZIYTxIHNLCS2DEcny9XvUCf5aZAfF+i3lYSm7q8sJkNqHVp5/v4S9evxHg0hv/6w0mlQyEiIpqXWEziheZebFteglyLunqArExu5WGSqC96H38BADkWI/IsRgxqYFZix1AAQgCVOk4SV5Y50ToYwGgoonQoGdPU7cGqcieMBqF0KCmzuDgPd15Wg8f3d+CozvaYEhGRthxoH8aAL4T3qqjUNKnIbkWJw5qWKi0miVnsVJ8PFfk23XY2TSrSyKzEjuEASh02WE1GpUNRTHIw7YlefSQWsZjE0W4vVmugac1Uf/uupcjPMeNfnzuqy7EmRESkDc8f6YXFZMC7VpQoHcqcrKpwpuWGLZPELHaqfxRLdLyKmFRst2giSewcGkO1TjubJq2qiCeJR3t8CkeSGW1D8VVTrexHnCw/14y/f/dS7G4ZxMvH+pUOh4iIaNaklHihqQdblxbDYTMrHc6crCx3omVgFOORWErPyyQxS0VjEqf7R7FMx/sRk4rtVm2Umw7rd0ZiUnm+Dfk5Zt2UKDZ1xZvW1Gugs+l07ti0CLWuvLS13yYiIkqnQ50edHuCeO/qcqVDmbNV5U6EoxKn+lN7A55JYpbqHA4gFInpekZiUrFD/eWmoUgUvd4gqnTa2TRJCIFV5fppXtPU7YHZKLC0RJsVAWajAe+/uArHe30YCaj/Rg4REenL8009MBkErllZqnQoc5bcynMsxVVaTBKz1Kk+Nq1JKs6zYCgwjkg0tcvomdQ9EoSU+u5smrSy3InjvV5EY9rfx3a024vlZQ5YTNr9Ubu2qgAAcLjTo3AkREREMyelxPNHerF5STHyc9VZagrEm8nZzIaUV2lp952Lyp1MLBkvYbkpih1WSAkMqXilQu8zEidbWe5AMBxD66Bf6VDSSkqJpi6PJvcjTpZsynO4c0ThSIiIiGbuaI8X7UMBXK/CrqaTGQ0Cy8tSX6XFJDFLne4bRXm+DU6VbqJNpeSsRDXvS+wYZpKYlGxeo/WS025PEMOBMOo12Nl0svwcM2pdeWjs4EoiERGpxwtNvTAI4JpV6i01TVpV7sCxXm9Ku40zScxSJ/t9XEVMKMqzAICq9yV2DI3BbBQoc9qUDkVxS0rsMBmE5pvXJJvWrK7QZtOaydZWFeBQ5whHYRARkWr8/kgPNtUWoSixGKFmq8qdGAmE0eMJpuycTBKzUCzZ2ZT7EQHEy00BlSeJwwFUFORoaqD6XFlNRiwszEVbogRXq5q7PDAaxMSGci1bW5WPAV8Ivd7U/XIiIiJKl1N9PrQM+HGdyktNk95qXpO6G/BMErNQ5/AYguEYlnIlEYA2yk07hzj+YrISpxX9Gk8omrq9WOKyw2Y2Kh1K2l1UHW9ec4glp0REpAIvNPVCCODaem0kiSsSSWIqq7SYJGah5JwTjr+Ic9pMsBgNGFD1SuIYqgvZ2TSp1GlDn1e9r+dMNHV5NDsfcapV5U6YDAKH2LyGiIhUYF/rEFaWOVGikW1AdqsJi4pycayXSaKmneqPj79YotHZarMlhECR3QK3T50rif5QBEP+cTatmaTUaUO/L6jZPWz9viD6fSHNdzZNspmNWFHuYIdTIiLKerGYRGPHCBoWFigdSkqtKndyJVHrTvb5UOq0Ij+HnU2Tiu1W1e5JnOhsynLTCSUOK4LhGLzBiNKhpEVz4od0vQ6a1iStrSrA4Q4PYjqYf0lEROp1xu2HLxhBQ7W2ksSV5U60DQXgD6XmvRWTxCzEpjXvVGy3YNCv0iRxaAwAx19Mlizv0Oq+xOZEZ9NVOksSfaEIzmp8/iUREalbY0e86mWdBpNEKYHjvb6UnI9JYpaJxSRO9Y1y/MUURXarastNO4aSK4nck5hUmuhYq9V9iU1dXiwuzoNDR3NO1yZ+2bLklIiIslljxzAcVhPqXNp6r528MX00RR1OmSRmma6RMYyFo1xJnKLYbsWgP6TKPWwdwwHkWowoTMx7pPieRCC+d0+Lmro9uio1BeLzL3MtRnY4JSKirNbYMYKLqvNh0NhYsop8G5w2U8rGYDBJzDKnJ5rWaOvuxnwV2y0IRyW8Y+rbw9YxNIbqBbkQQls/jOajxKndlcSRwDg6h8ewulIfTWuSjAaB1RX57HBKRERZKxiO4niPT3P7EYF4o8dVFalrXsMkMcu0J0oTa4ryFI4kuyRnJapxDEbncIDjL6bItZjgsJrQp8E9icmmNXrpbDrZ2up8NHd7MR6JKR0KERHROzR1eRCJSTRUL1A6lLRYWe7EiV4foiloIsckMct0DgdgNRlQbGdp4mTJJFFtHU6llOgYCqCKnU3focRp1WS5aXN3vNxSb+WmAHBRVQHGIzGc7EvNpnkiIqJUSjat0eJKIhAfgzEWjqItBU3kmCRmma6RMVQuyGFp4hTFjnjSrLYkcTgQhn88ys6m0yh12jRZbtrU5UVlQQ4W6HAPavKXbvKXMBERUTY52DGCyoIcuBIN9LRmZXnqmtcwScwyncNjXHWahiu5kuhTV1LBzqbnVuq0aXIl8WSfDyvK9Nl4qmpBDhbkmtnhlIiIslJj+wgaFmpzFREAlpbaYTKIlDSvYZKYZbqGx1BZwIRiqgW5FhgNQnV7EjuGE0kiVxLfocRhRZ9XnR1rzyUWk2gd9GNxsT73FAshsLa6gB1OiYgo6wz4QugaGdPcfMTJrCYjlpTYU9K8JuNJohBiqRAiKIR4eNLnbhdCtAkh/EKIp4QQhZMeKxRCPJl4rE0IcfuU853zWLUJjEcw6B9HFVed3sFgECi2WzCgupXEMQBMEqdT4rRhPBKDZyysdCgp0+sNIhiOYbFLn0kiEN+XeKrfB39IfZ2IiYhIu7S+HzFpZbkTx3rm3xtAiZXE7wF4I/kXIUQ9gB8C+CiAUgABAPdPef544rE7AHw/ccxMjlWV7pF4QsEkcXouh1V9SeJwAAtyzbBbTUqHknVKNTgGo9Ud3yi+WMfdiRuq8xGT8Q5yRERE2aKxYxgmg9D8iKrlZQ70eoPwBud3Ez6jSaIQ4sMARgC8POnTdwB4Vkq5U0o5CuCrAN4nhHAIIfIA3Argq1LKUSnlawCeQTwpPO+xmfqaUqljmEni+bjsVvWVmw4FuIp4DqVOGwBoal/i2UQ3sRqdlpsC8ZVEADjcySSRiIiyR2PHCFaUO2AzG5UOJa3K8+Pvr+a7sJKxJFEI4QRwH4DPTnmoHsCh5F+klC2IrxwuS3xEpJQnJz3/UOKYCx2rOl2JJLGygEnFdFS5kjgUQDUbEU2rxKG9lcSzA37YzAaUJRJgPSq2W1FZkINGNq8hIqIsEYtJHO7waL7UFHir2aNqkkQA/wLgJ1LKzimftwOYesvZA8CReGzqzsvkYxc69m2EEJ8UQuwXQuwfGBiYQ/jp1zk8BrNRTLx5prdzOaxwj44jloIBoZkQjUl0jYyhqpArw9MpccQTqT6vdlYSWwf9qCnKg8Gg7xE2a6vzcYQriURElCVaBkbhC0XQUL1A6VDSLjneQxVJohCiAcDVAL49zcOjAKZOnXYC8F3gsQsd+zZSygeklBuklBtcLtfsvoAM6RoZQ0VBju7fYJ5Lsd2KaExiODCudCgzMjgaQjgq2a32HHIsRjhtJvRrKEk8444niXq3qCgPPZ4x1dzQISIibTuok6Y1QOqSxEx107gKQA2A9sSQeDsAoxBiFYAXAKxNPlEIUQvACuAkgBgAkxBiqZTyVOIpawE0J/7cfJ5jVadzOMD9iOcx8Y9+NIQie/avtvYnvjmTK2b0TvFZidooN41EY+gYCuDa+jKlQ1FcqcOKcDR+Q0cN36tERKRtjR0jcNhMqNVBz4D8HDPMxvmPjctUuekDAOoANCQ+fgDgOQDXAngEwI1CiCsSjWruA/CElNInpfQDeALAfUKIPCHEFgDbATyUOO85j83Q15VSnJF4fqmqsc6UZEOWEiffJJ9LidOqmXLT7pEgwlGp686mScmmRL0aeW2JiEjdGttH0FBdoItqPSFEvNmjGspNpZQBKWVv8gPxMtGglHJAStkM4C7EE75+xPcT3jPp8HsA5CQeewzA3YljMINjVSMYjqLfF0IVm5ycU3Il0a2SDqf93uRKIpPEcyl12DTTuOaMexQAdD0jMak00VmtXyOvLRERqdfYeBQn+ny6KDVNSkWzR0WGt0kp753y90cBPHqO5w4BuPk85zrnsWrS44nfcedK4rmlqsY6U5JllC4miedU4rSh3xeElBKJUnTVSs5I5J7Et1YStbJKTERE6nWky4NoTOouSewemd/v4IzOSaRz6xwOAOCMxPOxW02wmQ0qShKDKMg1w2rS9jye+Sh1JveuzW/gazZoHQzAbjWh2G5ROhTFJUvDtbJKTERE6tXYMQxAH01rklyO+c8WZ5KYJToTMxKrOHj9nIQQqpqV2O8NTbxZpuklV5yS+zfV7Izbj8XFeapfEU0Fi8mAojwL+jTwuhIRkbod6vSgakGOrhqpuexWDI6GEJ1Hl3EmiVmia3gMRoNAKUsTz8tln/+dkUwZGA2xac0FJPdramHFqdXtR40OuqbNVInTpqnxJkREpE5Hu71YXZGvdBgZ5XJYEZPAkH/uY+OYJGaJzuEAyvNtMBn5kpyP2lYSOf7i/LSyd208EkPncACLi1gJkFTqtLK7KRERKcoXDOOs24/VlVPHqmtbKvp4MCPJEl0jHH8xE2pJEqWUGPCF2Nn0ApI/xNS+4tQ+FEBMsrPpZFrqXEtEROp0tNsLAKjX4UoigHlV3zFJzBKdw2McfzEDLrsNw4EwxiMxpUM5L89YGOPRGDubXoDNbERBrnmiE6xasbPpO5Xm2+AeDSESze7vVSIi0q7mZJKot5VEe7xSiyuJKjceiaHPG0QlO5teUDLpGvRnd1KRTHpKnCw3vZASh1X15aZnE0niYu5JnFDqtEJKwD069/0QRERE89HU7UGJw6q77T/FjnindSaJKtfrCSImOf5iJtQyKzE5RJzlphdW6lR/WeLZQT8W5JpRkMvxF0mlDm3sNyUiIvU62u1FfYW+VhEBINdigt1qYpKodp0jiRmJ3JN4QapJEhOt/5kkXliJQ/1dMNnZ9J200pSIiIjUKRiO4lT/KFZX6ms/YtJ8ZyUyScwCEzMSuSfxgtSTJLLcdKZKnVb0+0KIzWOWj9LOuv1YzP2Ib1OaGP/Sl+Xfq0REpE3He32IxqQuVxKBxNi4ecwrZpKYBbqGxyAEUJbPhOJCiu3zr7HOhH5vCLkWI+xWk9KhZL0ShxWRmMRwQJ1718bGo+jxBLkfcYoiuxVGg0CfhyuJRESUec3dHgD662yaNN+JAEwSs0Dn8BjKnDZYTHw5LsRqMiI/xzyv5fNM6PcFWWo6Q2+VJWb3a3ourYOJzqZMEt/GaBBw2dXflIiIiNSpqcuL/Byzbnt+MEnUgK6RAGckzoIaZiX2+0K666Q1V8mS3L55lEQoqZWdTc+p1GlluSkRESniaLcH9RVOCCGUDkURLocV3mAEwXB0TsczScwC8RmJTBJnKl5jnd1vPAd8IbicXEmcieTeNbU2rznLlcRzKnGqvykRERGpTzgaw7Fen26b1gDx98sA4J5j9R2TRIVFojH0ejgjcTZcDuuc/8FnSr+X5aYzlWxG1K/SctOzA364HFbuP51GqZPlpkRElHmn+0cxHonptmkNMP9mj0wSFdbnCyESk+xsOgvZXm7qD0XgH4+y3HSGrCYjFuSa1VtuOuhnqek5lDpsGA6EEYrMrdSFiIhoLpq7vQD027QGYJKoel0T4y+4kjhTLocV/vEo/KGI0qFMK/nNyJXEmSt12lTbuIbjL84t2ZRIravERESkTk1dHuSYjbq+iTuRJLLcVJ06hwMAwMY1szDfGut0e2tGIpPEmVLr3jVfMAz36Dj3I55D8nuAJadERJRJR7u9WFXhhNGgz6Y1AFCYZ4EQXElUreRKYgWTxBmb7/J5uvUnyiZdXEmcsVKHdSK5VpNWd/wmj57vVJ5PcvarWleJiYhIfWIxieZuD1breD8iAJiNBhTmWpgkqlXn8BhcDitsZqPSoahGsT3Lk0RvstyUexJnqsQZTxJjMal0KLNyxj0KgEniuZQ6kkkiVxKJiCgzWgf98I9Hdb0fMWk+fTyYJCqsa4TjL2ZrvjXW6dbvC8FsFFiQa1Y6FNUoddoQjUkM+seVDmVWkiuJi4rYeGo6BblmWIwG1TYlIiIi9ZloWlOp75VEIJEkck+iOnUOB7gfcZYK8ywwzKPGOt36fUG47FbdDm+dixKVrji1DvpRWZDDSoBzEELEV4lZbkpERBnS1O2B2SiwtMShdCiKm89scSaJCorFJLpHghx/MUtGg0DRPP7Rp9uALwSXk6Wms1GaaHDSr7IVp9ZBP1cRLyDeuVZdrysREanX0W4vlpc5YDExzUmWm0o5++08/L+noIHREMajMVSy3HTW5nNnJN36vSGOv5ilEpWOSujzBCeas9D0Sp1WJokAxiMx/Pvvj+GKb/4RX3riMHafdiOqsj24RJQddre48b77d+Hzvz6kdChZR0qJpi4PVnM/IoB4khiKxOCbw9g4UxrioRnq5IzEOZtPjXW69fuC2FCzQOkwVCU51kRNXTBjMYl+XwhlXDU+rxKHDTtPupUOQ1EdQwF8+rGDONQxgksWF+Lpxm48tq8DLocVN6wpx63rq7Cmim9oiOj8Tvf78I3nj+OlY/3IsxjxZvsIrl5ZiveuLlM6tKzR7QliOBBGvc47myZNngjgtM2uVwaTRAV1jcSTRO5JnD2Xw4qTfT6lw3iH8UgMw4EwO5vOksVkQFGeRVUNTtz+ECIxyZXECyjLt2E0FMFoKAK7VX+/cp4/0oP/99vDgATuv2M9rl9TjrHxKF450Y9nD3Xj0X3teHBPK35792asW8ibS0T0ToOjIXz7pZN4bF8Hcs1GfPG9K/DRyxbh/d/fjXufacaWJUVwzDIB0KrmLg8AoL6SN96At27CD/hCqHPZZ3XseX9jCyEeAnDBehgp5Z2zuioBiJeqAeCbzDlwOaxwj8ZHJhiyaFBqcnUzOUScZq7EaUO/isoS+zzx17qUK4nnNbHf1BuEfZa/oNQsFIni688dw4N72rC2ugD/e9s6VBfG96/mWIy4fk05rl9TjmH/ON77Pzvxlaea8MynL9f14GcieicpJT72szdwtMeLOy5diL9791IUJd74f+PWi3DL/bvwrRdP4GvbVyscaXZo6vbCIICVZVxJBOY3W/xCexJPA2hJfHgA3AzACKAzcex2ACOzvioBiHdyzDEb4dDh3fX5ctmtCEclPGNhpUN5m2SSwz2Js1fiiM9KVIvexGvNctPze2tWonpe21S4/5UWPLinDZ+4YjF+/anLJhLEqRbkWfDVP1uF5m4vHn69LcNRElG2e7N9BEe6PLj3pnrct331RIIIAA3VBbhz0yI8+HobDrYPKxhl9jjd78OiojzkWNh1HEhjkiil/FryA8AyADdIKe+QUn5ZSvkRADcAWD77kAkA+nwhlDo5KmEusnVWYjLJYbnp7KmtwclEkshKgPOaaEqkolLi+RqPxPDI3na8e0UJ/vGGVRfssHfDmnJcsbQY33rxhK7+PxHRhT2ytw12qwm3rKuc9vHPX7scpQ4bvvTEEYSjsQxHl33ahwJYeI6bcnqUn2OG2Sjm9H55Nt1NNwF4fcrn9gK4bNZXJQDxlcQSrkLMSTJJdGfZytNEkshy01krddow4AuppuNjnycIo0Gg2M7X+nyS5aZqugEwX8839cA9GsKdm2tm9HwhBL52Uz1CkRj+7blj6Q2OiFRjJDCO3x3uwc3rKs65p9thM+Nr2+txvNeHH//pbIYjzD7tg0wSJxNCzHkiwGySxIMA/k0IkZO4aA6ArwNonPVVCUC8NJGlanOTrSuJA94ghACK8ixKh6I6JU4bYjK+QV8Ner1BuOxW7iG7ALvVhFyLEb0edbyuqfDQnjbUFOXiiiXFMz6m1mXHXVfW4qnGbuxu0Xc3WCKK+82BToxHYrj9kkXnfd619WV4z6pS/M/LJ9E+AeO7GwAAIABJREFUGMhQdNnHEwjDG4xwfvEUyVmJszWbJPFjALYA8Agh+hDfo3g5ADatmQMpJfq8oYm77DQ786mxTqeB0RCK8qwwGTmCdLZKHeoag9HnDaKUpaYXJIRAqdOmqs6189Hc7cH+tmF8ZNOiWTfVumfbElQX5uCrTzVhPMKyMSI9k1Li0b3tWL+wAKtmMM7ha9vrYTIY8Fe/eAMH2vS5P7FtyA8A59wDrldpTxKllK1Sys0AlgC4CcASKeVmKWXrrK9K8IUiGAtH2RlxjhxWE6wmQ9Ylif3eEJvWzJHa9q71eoIo402eGSl1WlXVuXY+HtrThhyzER+4uHrWx9rMRtx302q0DPjx49fOpCE6IlKLPWcGccbtxx2Xnn8VMak8Pwffu2M9fMEIbv3+bnzxN4cx5B9Pc5TZpX0ovorKctO3m+ts8Vkvd0gp2wHsA9AphDAIIbhkMgcTXTCZJM6JEGLOd0bSqd8X4n7EOXpr71p2vabn0sty8RkrddpU87rOhycQxlONXbh5XQXyc+c2s2zbihJcW1+K77x8SjeJNRG90yN721GQa8YNF5XP+Jgrl7nw8ueuxKe21uK3b3biXf+5A7/c146YSvb6zxeTxOm57FYMjs6+58OMEzwhRIUQ4kkhxCCACIDwpA+apeQbplKuOs3ZXO+MpFO/LzgxuJRmp9huhRDqaHASGI/AF4yw3HSG4kliEFJq+43Krw90IBiO4aObauZ1ni9fvxLjkRh+9CeuJhLp0YAvhBebevH+9VWwmWc3yiHPasKXrl+J5/72CiwrceAfnjiCL/72cJoizS7tgwEU2y3I42i5t3E5rIhJzHpleTargD8EMA7g3QBGAawH8AyAu2Z1RQIQL1UDOIh7PubarSldojEJ9+g4VxLnyGw0oCjPqopy0+T3L1cSZ6bEYUUoEoN3LKJ0KGkTi0k89HobNtYsmNH+ofNZVJSH7Q2VePj1dt2VixER8Kv9HYjEJG67dOGcz7G8zIHHP7UJt1+6EE8e7NLFz5L2oQD3I05jrn08ZpMkbgbwl1LKRgBSSnkIwF8B+NysrkgAMNHEgQnF3GVbuemQfxzRmOSMxHkocVjRr4KyxIkZiUwSZyR5M0zLzWtePTWAtsEA7rysJiXnu+eqOgQjUfz0Nba0J9KTaEzisX3t2FxXhDqXfV7nEkLgo5sWIRKT+N3h7hRFmL3ahwJYxCTxHeY6EWA2SWIU8TJTABgRQrgA+AFMP92TzqvfG4LDZkKuhUvic+VyWDEUGM+a4bHJFTA2rpm7UqdVFYlEsiSW5aYzk0wSkyuwWvTg7la4HFZcW1+WkvMtLXXgutVl+MXuVnjGuKuDSC92nhpA5/DYjBvWXMjKcidWlDnwxJtdKTlfthqPxNA9Msb9iNNw2eO/g9O5krgXwPWJP78I4HEATwDYP6srEoBE+3yuQsyLy2GFnEONdbr0J775uDo8d2ppcJKc+cfv4Zl5qymRNpPEtkE/dpwcwO2XLITFlLpebn+9bQl8oQge3N2asnMSUXZ75PU2FNutuGZVacrO+b71lWjsGMGZgdGUnTPbdI+MISY5/mI6xY747O50JokfBfBq4s9/D+AVAE0Abp/VFQlAMklkMjEfyQYx2VJyOpBIblhuOnclThvcoyFEsmR1+Fz6vEHYrSbYuTl+Rkonxptkx/dqqv3ucA+kBG6fx/6h6dRX5OPdK0rwk11n4Q9pdz8nEcV1DAXw8vF+fHhjdUpvOG1vqIRBAE8d1O5qYrKz6aKiPIUjyT65lvj7lbQliVLKESnlUOLPY1LKf5FS/n/27jy8zbPKG//31m7ttmXZlvclq90szdq00JbSBei0tEBLYYBSBjoF5jcsA7zDDMsLww868w4wzFtm2AtlK2UoOwUKbWmzJ03TJI0d77skW7K1Wvv9/iHJMSGJJevZZJ3PdeW6Umt57lSW9JznnPucj3DOZ4pcK0G2uyllIUqz2o24YsmXm9ZRuemqOXPZYZ9CssOXQhd5imPQqmGr0q7ZTOLZmSBaaqpE+Ux/zyu6sRBN4nuHxwR/bkKIsnz30BhUjOHNe4W94FRvNeDqbgcef2FqzXaZHqPxF5e1mokAxYzA0DLG/jdjbIQxFmOMDef+W1f0Sisc5xzeEJWblqohtx9sOrAo80qyvKE4rAZN0e2qyXlLDU4UHky4g7Gl3z9SmHqrXvGv62r1uUPY2FBaR9NLubK1Gtd0O/DVP40glkyLcgxCiPwWE2n88OgEbulpQKOtSvDnv2N7Eyb8izg2Ni/4cyvBhD8KnUZFfSEuITsRoLjv4GJy2f8K4JUA7gewFdnRF68A8GBRRySYjyaRTHOakViieosBOo0K476o3EsBkG1G5KTAvyTn964pIzt8KZ4AXeQpVrnsNy1WLJnG8GwYmxosoh3jva/oxlw4jkePToh2DEKIvH72whQCi0m89SphGtZc6OaeBlRp1fjJ85OiPL/cxn1RtFRXQaVici9FkVYzEaCYIPENAG7jnP+Oc97POf8dgDsA3FXUEcn5zoh0klkSlYqhtcaIUV9E7qUAyJab0hWs0pRDJjGT4fCG4jT+okhOi0HRr+tqDXrDyHBgY6M4mUQA2NNRg13t1fjvZ4Yom0jIGsQ5x8MHRrGxwYLdHTWiHMOk1+CW3gb88sWZNfk5MuaP0n7EyxA7SLxUaE4he5HyM9Yo61S69lojxpSSSQzFKUgsUa1JB8YAr4KDiblIHKkMp3LTIjXY9PCG4khn1tZ+mLMzQQDARhEziYwxfODGDZgJxPC53/SJdhxCiDyOjs6jzx3CvfvawZh4p9V3bG9CKJbCH/u8oh1DDpxzTPijtB/xMuosegRjqaIuEBQTJD4G4BeMsZsZY5sYY7cA+Gnu56QI3qVMIgUUpWqtMWHcH5V9IzbnHLMhKjctlUatgsOsV3QXTA+Nv1iVBqsB6QyHr8iN80rX5w7BoFWJfgX7qq5a3LuvHQ8fGMWzA7OiHosQIq1vHxiFrUqL27eJO3r86m4HnBb9mpuZOB9NIhxP0fiLy8gnMYqp6CkmSPwwgCcBPATgOID/RHYMxoeKeA6C8/utqAtm6dpqjYgm0kV3bBJaMJZCPJWhTKIAlN7gJF8JQOWmxWnINWKYCSj3tV2NPncQG+otUEuwD+Z/vWoj1jnN+IfHTmIhquwOwISQwswEFvHEGTfu3tWCKp24je/UKobbt7nwdL9XMTOmhTCW23bURkHiJTXZs9/BUwuFN3u8bJDIGHtF/g+AawA8DeBdAP4K2QY2T+V+TorgCcZQY9JBr6EumKVqq81+IMhdcuqhEmLB1FuU3eBkKUikctOi5INqt4IvAKxGv4idTS9k0Krxhbu3wR9J4J8eP11QBUUmw/HQU4PY+///Afd89RA+95s+PHF6BjMK6QpNSKX7/uFxZDjHW/aK07DmQndsb0Yqw/HLF6clOZ4U8jMSW2spSLyUxlyQOLNQ+HfwSpOgv3GJn+e/mVju750FH5HAE6S9a0LJl3iN+aLY1S7OZu9CuAOUXRKK02rAyckFuZdxSZ5ADGoVg8NM7+Fi5INq9xrKJM6G4pgLJ7BBxP2IF+ptsuH9N67Hvz7RjxtOOHHnlc2XvO9CNIEP/Ogk/tjnxVWdtYgkUvjGc8NIprNf4V11JvzwXVdRVQshMomn0vjBkXHcsNEpWankZpcV6+vNeOK0G2+9ql2SY4ptIhcktlRTkHgpjfmxcUVkEi8bJHLOO0pbErkYmpEonCZ7FdQqhnGZO5x6qARRME6LHr5IAsl0Blp1MRXx0nAHY6gz6yUpL1xLak06aNVsTWUS+9y5pjWN0gWJAHD/y7vwdN8sPvGzM9jdUYPmi5wYvTi5gHd/73l4gjF86vYevGVvGxhjiCXTODsTxPGxeXzm12fxyMFRfOCmDZKunxCS9asXZzAXTuBt+9olPW6Py4YjI35JjymmMV8UTote9HLdcmbQqlFr0mG6iAu1K2USiQg8wRg2SVSetNbpNCq47AaMKqbclK7Il6reagDnwFw4LspA4VJ5gjHUU6lp0VQqBqfFsKYyiX0zIQCQrNw0T61i+Pe7tuJV//Es3vO953HH9iZUm3SoNelRbdLi+bF5fPqXZ1Fn0eOxv92HbS32pccatGpsb63G9tZqHBr24buHx/Hu67th0NLJFSFSymQ4vv7sCDrrTLim2yHpsV12A9zBGNIZviYueI5TZ9OCNNoNwmUSifDSmWwXTOpsKpz2WhPG/PIGie5gDHajlk60BJB/b3iCygwS3YEYOutoFtNqNNjWVpB41h1EvVWPGpNO8mO31Bjx2TuvwAcfO4mTv3jpL26/bkMdvnDXNlRfZm33Xd2BJ88exs9emMLdu1rFXC4h5AI/fn4SL80E8cW7t4k69uJimuxGpDMcnmAMLrvyvmeLNeGPYm9nrdzLUDyXraqo2eIUJEpsLhxHhlODEyG11hjxq1Mzsq7BHaDh6kLJl2IrtcOpOxjDvi76MlqNBpsBL00H5V6GYPpmpGtaczF/tdWFV1/RiIVoAvPRBPyRJPyRBNQqhhs2OqFaIUNwVVctNjZY8M3nRnHXzhbJT1QJqVTheAr/9tt+bG+14/ZtLsmP77Kf359W7kFiPJXGTDBGTWsK4LJX4eCQr+D7K2/DzxrnWZqRSAGFUNprTViIJhGIJmVbA+0zFU6+qZNXgUFiNJFCKJaictNVarBmM4lyzzUVQjKdwaA3LPl+xAupVQy1Zj26nRbs7qjBLb0NuHFz/YoBIgAwxnDfNR3o94Swf7DwEwdCSGm+/NQgZkNxfPzWzbJcnFnNOASlmpxfBOegctMCuOwGhOIpBGOFnS9TkCixfGt/KjcVTv7q0ZhfvuY17kCMXlOB1Jr1UDHAG1LeGAzqYluaRpsBi8k0gospuZdSstG5CBLpTNnvL79tqwsOsw7f3D8i91IIqQgT/ii+/twI7tjehO2t1bKswbWGgsSl8RcUJK4ov4Wn0DEYFCRKjDKJwpN7VmIqncFcmMpNhaJWMdRZ9IosN3XT+7ck9WtoVuJZd7ZpjZTjL8Rg0Krx5j1t+GOfF0OzYbmXQ8ia99nfnIWaMXz4Fvm6Cpv0GtiN2qKamCjVuI+CxEItLzMuBAWJEvMGY1CxbDt4Ioz8B8O4TM1r5sIJZDioBFFA9VbDUtZdSbxLlQD0Wq9Gfk7TWggS+2aC0KgYuurMci+lZH+9tw06tQoP7x+VeymErGmHhn349Sk3/vbaLtkbs7lsVZiaXwNBoj8Kg1ZF814LkM8gTwcUFiQyxr7LGJthjAUZY+cYY3+T+3k7Y4wzxsLL/nxs2eP0jLFv5h7nZox94ILnvYEx1scYizLGnmKMtUn1b1oNTzAOh1kPjQLnv5Uro04Dp0WP0Tl5yk2XsksWChyE4lR4JrGBLgisylImscAvKCXrc4fQ7TRDpyn/z/I6ix63bXPhx8cnsRBNyL0cQtakdIbj0798CS6bAe96eafcy0FTdRWmCyw7VLL8+AtqvLUyp8UAtYopstz0swDaOedWALcB+BfG2I5lt9s55+bcn08v+/knAawD0AbgegAfZozdAgCMMQeAnwD4GIAaAMcAPCr6v6QEHmpwIgo5x2As7VOjwEEwTqsBswrdk2jWa2DWU2Po1TgfJCrvtS1W30wQG8u81HS5+67uwGIyjR8enZB7KYSsST8+PoEz00F85FUbFTH0vcletWbKTanUtDBqFUODtfBZiZIFiZzzM5zz/JkBz/3pKuChbwPwac75POf8LICvAbg3d9udAM5wzh/jnMeQDSi3MsY2Crp4AXmCcQoSRdBaa8RYEbNfhET7TIVXbzHAF0kgkcrIvZQ/4wlSg6JS6DQqOMw6uIPlfWISiCYxHYhhY2N5N61ZbrPLiqs6a/HtA6NIppX1viOknKUzHF9+ehD//NPT2NlWjdu2Sj/y4mKa7FUIxVMILMrXGb5UnPNcJpFmFxeq0WZQXrkpADDGvswYiwLoAzAD4NfLbh5jjE0yxr6VyxCCMVYNoBHAyWX3OwmgJ/f3nuW3cc4jAIaW3b782O9ijB1jjB2bnZ0V8p9VFC+dZIqivdYITzCOxURa8mN7gjFoVIz2mQoo/x6ZDSsr4+QOxihjXKIGm2Ep+16u+tzZWY9rKZMIAO96eSdmAjE8cnBM7qUQsiaMzkVw11cO4l+f6MeNm+vxtbfuVExZ5NL+tDLOJs6FE1hMptFaU96zHqXUaC+8zFjSIJFz/m4AFgAvQ7ZMNA5gDsAuZMtJd+Ru/17uIfmOAIFlTxPI3Sd/+/LbLrx9+bG/yjnfyTnfWVdXV/o/ZhXiqTR8kQRlnETQWpu9iiRH8xp3MAanRV/QXDJSmPx7RGn7Ej0BKhcvVYPVgJmyDxKznU03raFMIgBct6EO166vwxd+fw7eUHm/RoTIiXOO7x4aw6v+41kMeEL4jzduw0NvuhLVCrqYnO90Wc7Na8Zzo8/yo9DIylz27IXaTGblecWS77jnnKc5588BaAbwAOc8zDk/xjlPcc49AN4L4CbGmAVAvh/38m9iK4BQ7u/hC2678HZFye+xokyi8NqXxmBIX3LqCcaos6nA8l3KvArqcJrJcHhDNOqkVA02g+KC/2L1uUOwG7VwrrFueowxfPK2HsRTGXzu131yL4eQssM5x9P9Xrzxq4fwzz89jR1t1fjt+1+O27c1KSaDmNdUXVynSyU6PyORyk0L5bJVIZHOwBdZuUmZnG3ZNLj4nsR8aKvinM8jW5a6ddntWwGcyf39zPLbGGOm3HOegQLlW/o76SRTcG25Dwg5ZiV6ghQ4CC2frVNSNmMuEkcqw6nctEQNVgPmo0nEktKXhgulz51tWqO0kz4hdDhMeNfLO/GTE1M4POyTezmElIV4Ko0fHZvALV98Fvd+6yhG5iL49Gt78Z37dss+6uJSHCY9dGoVpsq43HTcl117c7Uy/x8rUTFlxpIEiYwxJ2PsjYwxM2NMzRi7GcA9AP7AGNvDGNvAGFMxxmoBfAnA05zzfBnpdwD8M2OsOteQ5p0AHs7d9jiAXsbY6xhjBgAfB/Ai51yRl0C9NCpBNDajFnajFmN+GTKJVIIouFqTDmoVU1TGyROgGYlCaMidMCnptS1GJsPR7w5hY8PaKjVd7j3Xd6PJXoVP/PwMUtTEhpBL4pzj2wdGcc2DT+HDP34RjAH//oateO4jr8Bb9rYpehuKSsXgshvKutx0Yj6KeqseBq383WLLRX5e8UwBGWSpMokcwAMAJgHMA/g/AN7HOf85gE4ATyBbInoa2X2K9yx77CeQbUYzBuAZAP/GOX8CADjnswBeB+AzuefdA+CNEvx7VuV8F8y1VaKkFG01RskziZF4CqF4igIHgalULDcrUTnlpkszEum1Lkn+/1+57kucmI8imkhjU+PaalqzXJVOjY/duhl97hC+Q01sCLmodIbjYz87jU/8/AzWOc145B278Zu/fxlet6O5bOanusp8DIY7EFNsplap8pnEqQKa10gy7CsXzF17idt+AOAHl3lsHMB9uT8Xu/1JAIodebGcJxSHVs1QbVTOxuW1pLXWhJMTC5Ie8/xwdQr8hZYNEpUTSJx/rSlILEX+vaKk17YYZ2eyW97XciYRAG7uqV9qYnPr1kY4qQKGkCWxZBrv++ELeOKMG/df24mP3LxR0VnDS3HZq/DcwJzcy1g1dzCG7jrzynckS6qNWhi0KswopdyUZHmCMTgthrL8ICkH7bVGTC0sSjrji2YkisdpNSw1e1ICTyAGtYrBYaYLAqXIl5uWaybxnCcbJK6rX9snJtTEhpCLC0STeOs3juCJM2587NbN+MdXbSrb87omexU8oZjiZhIXyhOgsVTFYozBZasqqGERBYkS8gbjcFKpqWhaa4xIZ7ik9fUUJIqn3qq8TGKdWQ91mZ4MKIVZr4FZrynbWYmjvggabQYYdZIU4siqw2HCO1/egZ+cmMKgV5FNwwmR1ExgEXd95SBOTMzjS/dsxzuu6ZB7SSVpsleB8/Ks7AjTdp9VcxU4K5GCRAm5gzHazySidkeuw6mEsxLduWYm9LoKr96S7YIZTymjCyaNOhFOg81QtkHimC+KtgqayfWmPW0AgGfOlW9JGiFCWEyk8eavHcbUwiIefvtu3LbVJfeSSpbfnzZZhs1r8t8htN2neI02g6Ia1xDkTjIpmBBNW430sxI9wRgseg1M+rWfVZBaPuuulFmJnmAM9WtsLp5cGqyGpT2e5WbMF0F7beXM5GqyV6HDYcKBQQoSSWX7wpPnMDwXwVfesgNXdzvkXo4glmYllmHzGqrkWr1GexW8ofiKZcYUJEokmkghFEtRuamI6ix6VGnVknY4peySeJxLsxKVEiTGae+DQMo1kxiOpzAXTqCtgoJEALi6uxaHhn2S7vcmRElOTizg688O457drWsmQATOj0MoxyBxKZNIQWLRmuyGgsqMKUiUSD4bQjMSxcMYQ1utUdJMojsYo5EmIsm/V7wKyDjFkmkEFpN0xVIgDVYDZsPxspvBl/9saa+gclMAuLrLgUgiLXn3aEKUIJHK4MM/fhFOiwH/+OqyaKZfMINWDYdZj6lyDBKp4/iq5ceGrHRxgIJEiVBaXBrZIFG6TKI3GKfXVCT54FsJG+rzF3mcVG4qiAabAekMx1w4IfdSipL/bKm0TOJVXbVgDNg/6JN7KYRI7qGnBtHvCeEzd/TCatDKvRzBNdkNZRkkeoIxWAyaimgiJrT8XtSVuoxTkCgRT65kjrJO4mqrNWHcH0Umw0U/VibD4aFmRKKpNuqgUbGl946cPCG6yCOk/Hum3PYljuYyiZXUuAYA7EYdrmiyYT/tSyQVps8dxENPDeL2bS7csKle7uWIItvpsvyCRHeAzr9Wy2XPlRmv0LyGgkSJ5EvmnPQLLarWGiPiqczSSb2YfJEEUhlOpQ4iUakYnBa9IvauUSWAsPLvGSW8tsUYm4uizqKvyEZV+7oceH58HpF4Su6lECKJVDpbZmqr0uITf9Uj93JE02SvwtTCIjgX/+K6kDxBmpG4WkadBrYqLZWbKoUnGINBq4LVUHknF1LKdx2UouQ0Hzg4aZ+paDrqTBiek26P6aV4glQJIKTzQWJ5Xb0e9UUqbj9i3jXdDqQyHEdG/XIvhRBJfHP/CF6cDOCTt/WgxqSTezmicdmrEEtmMB9Nyr2UorhpYkBJXPYqzKwwK5GCRIl4cnvXGKNB3GLqrMsGiX0zQdGP5aFN06LrrjNjyBuW/QqnNxiDTqOCrWrt7UeRQ41RB51aBbdCxpsUKjsjsbL2I+btbK+GTqPC/gEqOSVrXybD8V9PD+G6DXW4dUuj3MsRVX4MxlQZzUpMpTOYDcWp3LQELtvKe1EpSJSIOxijzqYScNmr0FxdhYPD4jdYWOqsRR9Soul2mhGOp2Tfu+bJdbGlizzCUKkYnFZ9WWUSFxNpuIOxis0kGrRq7GyrxnO0L5FUgLPuIOajSdy21bXmP/ebck1Myql5zVw4gQwHjSArgcteRY1rlMJL8/Qkc3WXAweHfEiL3LzGE4hBxQCHee2Wocit22kBAAx6w7KuwxOM00UegTXaDLIH/8UY91dmZ9Plru52oM8dwly4vDLAhBTr4FD2QvNVXbUyr0R8+U6X5dS8hi7Sl67RbkBg8fIlxhQkSoBznjvJpP1MUtjXXYtgLIUz0wFRj+MJxuEw66FR09tILN1OMwBgwCNzkBiivQ9Cq7cayqpxzejSjMTKDhIB4MAQjcIga9vBIR86HaaleXJrWbVRiyqtuqwyifnvDgoSV89VwO82nd1KIBRPYTGZppNMieSv/Ik908tNnbVE5zDrYKvSYnBW3iDRG4zDSU1rBJXPJMq937RQY7kgsbVCy00B4IomGywGDe1LJGtaKp3B4RE/9lZAFhEAGGNw2Q1llUlc6jhuo+/l1cpnkC+HgkQJnB9/Qb/MUnBaDFhfb8aBIXFPZDzUWUt0jDGsc5plLTcNx1MIx1P0Wgus3mpALJlZsdxFKUZ9UdSYdBXdvEitYriqsxbPDc6VTXBfaYKxJE6Mz+OxYxP4/O/6MeEXv9P3WnNqKoBwPIV9FRIkAuU3K9EdjEGjYnCY6Lx6tRoLSHLQPAYJnG+fTyeZUtnX5cAPj44jnkpDr1GLcgx3MIad7dWiPDc5r9tpxu9e8sh2fO/SjET6MhJSvozLHYzBblT+vt4xXwRtFZxFzLtmnQO/e8mDcX/ldnpVmlgyjQ/9+EUcHvbBG/rz/aJP9c/ifx7YB52GcgKFypdT7+2snCCxuboKv5egK7xQPIEYnBY9VKq13VRITA02A1bqyUSfGhKgQdzS29dVi1gygxPjC6I8fyyZxkI0SfXwEuh2muGPJOCPJGQ5/tJFHmpcI6iGXJnQSt3VlGJ0LlrR+xHz8vsSqcupcjxycAy/ODmNvZ21+MgtG/G1t+7EHz94LR5605U4NRXAl/4wIPcSy8rBIR82NljgMFfOhUGXrQpz4QRiybTcSymIm5pBlkyrVsG5Qq8UChIlkD/JXOnFIMLZ01kLFQMOiHQi46XssGTyzWvkKjn1hvLl4vRaCyn/3vGUQZAYT6UxHVikTCKATocJDVYDDoi855sUJhhL4qGnB/GydQ586Z7teOC6Lty4uR6ddWa8ZksjXr+jGV9+ehDHx/xyL7UsxFNpHBvzV0RX0+XysxLLpeTUHYzRRXoBrNSYiYJECXiCMVj0Gpj0VN0rFVuVFlc027FfpC58bsoOS2apw6k3JMvxPVRuKgqnJVvqUg6ZxAn/Ijiv7M6meYwxXN3twP6hOWREHjNEVvaVZ4awEE3iI7dsvOjtn/irzXDZq/D+R08iHE9JvLry88L4AmLJDPZ1OeReiqTOj8FQ/ucxkL24SOdfpWtaoXkNBYkS8ARj1LRGBld31eLkxIIoX4z5wIG6m4rPZathi8JhAAAgAElEQVRClVYtWybRE4zDqFPDTBd5BKXTqFBr0i+9l5Qs39mUMolZV3fXYiGaRL9Hngs3JMsbjOEbz43gtq0u9DbZLnofi0GLL9y9DZPzUXzqF2ckXmH5OTDkg4oBuztq5F6KpJrKaFZiKJZEJJGm8y8BrNS8hs56JOChUQmy2NflwJefHsLRET+u3+gU9Llpn6l0VCqGbhk7nOa72LKVdniTojXaDGWRSRz1ZTtEUiYxq8eVDUj63SFsarTKvBp59LmDeNs3j8AX/vO90nqNCp9+bS/uvLJZ9DV88Q8DSKU5PnjT+sveb1d7DR64rgsPPTWEV2x04pbeRtHXVq4ODvnQ22SruC7G+SYmk2UQJC5dpKfzr5KtNAaDgkQJeIJx7Kmwq1JKsLO9GjqNCvsH5wQPEt2BGKq0algN9BaSQrfTjEPD8uyB8gbjtJ9YJPVWAybnld+if8wXgdWggd1YWSeOl9LhMEGjYjhXoZnExUQaf/f9E0hngPuv7fyz2w4O+fDhH7+IOoseL1tXJ9oahmfDePToBN68p7WgLrN/f8N6PHNuFv/4k1Mw6TXoddlQbVJ+V2EpLSbSODExj/uu6ZB7KZLTqlWot5THrER3gHpCCOWW3obL3k5nuCLjnMMbilHTCxkYtGrsaK0WZV+iOxhDvVVP2SWJdDvNePzEFMLxlORln55QDFub7ZIes1K47AYcHvGBc67o99KoL4p2h0nRa5SSTqNCu8OEARnnl8rp0796CQPeMB55x+6/CASDsSTu+u+DeOC7z+NH91+FzS5xMq3//rtz0GtU+LtXrCvo/jqNCl+8ezte+9B+vOUbRwBkM/mbGq3ocVlx77521FZQN8+LOTbmRzLNK24/Yl5TdXnMSnTTdh/BrJRJpD2JIpuPJpFMc2p6IZN9XbU4OxOELxxf+c5F8AbjdBVLQvnmNUMSn5RyznPlpvT+FUNrjRGhWArz0aTcS7ms7IxEKjVdbp3TjIEKzCT+5tQMvn94HPdf23nRTKHVoMW33r4LZr0Gb3/4iCgn3ScnFvCrUzP4m5d1oq6IKodupxnPfeR6PPKO3fjHV23Eno4aTM5H8dBTg/jgYyfBeWU3Ijow5INGxbCrQucfu+xVmCqDIJHKTaVDQaLIaO+avPblZnodGha2/beb9plK6nyHU2mDxGAshVgyQ+9fkXQ4soHXyFxE5pVcWjKdweT8ItpqqGnNcuvqLRjzR8tmrpoQphYW8ZH/eRFbm2344I0bLnm/RlsVvvX2XYjG07j3W0cQWBTuIgjnHA8+0Ycakw7vfFnxZZF2ow4vW1eH+6/twhffuB2/e/+1+OirN+Hp/ln84axXsHWWowNDPmxrscOoq8wiO5fdgJmFmOK7FrsDMVgNGlTp1HIvZc2jIFFk1D5fXlubbTDrNdg/JNy8RM45zeiRWFuNEVo1k7x5jTdIMxLFlA8SRxUcJE7NLyKd4dTZ9ALr683gXL75pVJLpTN43w9PIMOBL92zHTrN5U+fNjVa8d9v2YHh2Qj+9pHjiKeECaafHZjDgSEf3nt9NywGYfbIvm1fO7qdZnzqly9VVNC/XDCWxKnJBeyrsPmIyzXbq5BIZzAncOWV0OgivXQoSBRZfui600K/0HLQqFXY01GDA4PCBYmz4TgSKcouSUmjVqHDYZL8hNSTe//WU+MaUbTUGKFWMUVnEkdz4y/aHVRuutz6egsA+eaXSu0//ziIo6Pz+JfX9hZcenx1twP/+votODjsw+d/f67kNWQy2Sxic3UV3ry3teTny9OqVfjkX/Vg3B/F158dFux5y8mRYT8yHLiqQvcjAuf3pym95DTfcZyIj4JEkbmXMhF0kimXq7pqMeqLCvbBd3x0HgCwteXic6mIOLqdZgzNSh0kUrm4mLRqFZqrqzDiU26QOJYbf0GZxD/XXpvtcDrgWfuZxAl/FP/5xwHceWUTXru9qajH3nllM964qwVf+9MwXphYKGkdvzw1gzPTQXzgxvXQa4QttbtmnQOv6m3AQ08NlUXzEqEdHPZBr1Fhe2vlNilzLc1KVPZYIneAKrmkQkGiyDzBGKqNWsE/0EnhrlmXvTL4TP+sIM93eMSPKq0aVzRV7peJHLqdFoz5IpKWQ3lCdJFHbO21JkWXm475ojDq1Kir8M6PF9Jpstn9cxUQJD4/Po8MB975ss6V73wRH33NJtRbDfjQYydX/fmVSGXw77/rx8YGC27fVlygWqh/es0mcHB85tdnRXl+JTs45MPO9moYtJV7rtZUnc8kKncsUSpXDkvlptKgIFFkHuqCKbsN9RZ0OEz4+ckpQZ7v0LAPO9qqV9yTQoTV7TQjw8+X/0nBG4zDYtBUbCMDKXQ4skGiUjsr5jub0viLv7Su3lwR5aZnpoPQaVRLDbSKZTVo8dk7r8CAN4wv/WFgVc/xw6PjGPNF8ZFbNkKtEud3sbnaiAeu7cavXpwRdIuG0iXTGZzzhLClwkcdWQ1aWPQaRWcSZ8NxZDiNv5AKneWKzBui2mm5McZw+zYXDo/4MRMorYxmIZpAvyeEPR01Aq2OFKq7LnuCJuW+RNr7IL4OhwmRRBqzIWU2Sxj1RdBOpaYXtc5pwbg/isXE2m52cmoygE2NVmjVqz9lum6DE3ftbMZ/PzOEk0WWnUbiKXzpDwPY3VGD6zb85dgNId1/bSeaq6vwyV+cQTKdEfVYSjHujyKV4UvfMZWsqVrZYzDcARp/ISUKEkVGM9aU4bXbmsA58PMXpkt6nsMjfnAO7K3gDmhy6awzQcUg6R4oev+Kr13BYzDSGY4J/yLNSLyE9fUWcA7J9wpLiXOO09MB9LqsJT/XP71mM+osenzoxyeL6nb6jedGMBdO4H+9aqPoGW2DVo2P3boZ5zxh/OT5SVGPpRT5C49dq8wUryUuexWm5pUbJFKfAGlRkCiidIZjNkTlpkrQ7jBha4sdj58oreT08LAfeo0KW5qpaY3UDFo1WmqMGJTwhNQTjKOeOhOLqiMXgElZRlyomcAiEukMZRIvYX19fn7p2i05HfdHEYql0NtU+me+rSpbdnrOE8b//eNgQY/xheP46p+GcXNPPa5slWbI+02b69FoM2D/oE+S48ltKUiso4tBLrsB0yVWXIlpKZNI5aaSoCBRRL5c7TTNWFOGO7a50OcOod+9+hOawyM+XNlaTY2IZNJdZ8aQROWmnHN4QzF6/4rMZTdAq2YYmVNes4TznU3p5PFi2h0maNVsTTevOT0VBABcIUCQCACv2FiP113ZjC8/PYQ/nPWseP+HnhpCNJHCh27eIMjxC8EYw/ZWO05MzEt2TDkNzYbRYDUINneynDXZjViIJhGJp+ReykW5g3Fo1Qw1Rp3cS6kIFCSKiGasKcutW11Qqxh++sLqsomBxSRemgliTyftR5RLd70Zw7MRpCTYKzMfTSKZ5lRuKjKNWoXWGqMiO5yen5FImcSL0ebmlw541m4m8fR0AFo1w7p64UoRP37rZqxzmvGObx/DRx8/ddET8mAsiQef6MN3Do7iDTta0O20CHb8QmxvqcaEf1Gxe4WFNOQNo8tJF4KA7EU7AIodg+IJxuC0GKASqXkT+XMUJIqIaqeVxWHW45puB37+wjQymeI7KR7N70fspP2IcumuMyORzmBCgj0T9P6VTofDpMg9icOzERi0Kio5vox1TssazyQGsKHBImj1iM2oxU/fczXuf3knfnBkHK/6j2dxbNQPINtp85GDo7ju357Gfz09hNu2uvDRV28S7NiFys8LLHW2o9JxzjE0G6GmNTnNS2MwlBkkugMxKjWVEAWJInLTSabi3LG9CVMLizia+0IuxuERH3QaFba1VHabbDnlW9BL0eH0fJBImUSxtdeaMOqLrOrijZgGvGF0O8101foy1tWbMTG/Njuccs5xeiqAXpfwe9ANWjX+8dWb8Oi7rgIHx11fOYiPPn4KN3/xT/jYz85gfb0Zv3jvNfj83dtgM0pfBtnbZINGxXBifG2XnHqCcYTjqVWPN1lrXHZlB4meYIw6m0qIgkQReYMxMAY4zFQ7rRQ3bq5HlVaNn66iy+nhET+2tdgretiu3PJf5FI0yvDmysWdlEUSXbvDhHgqs3RhTSmGvGHKMKxgLXc4nVpYxHw0iR6B9iNezO6OGvzm71+Ou3e14PuHxwEAX3/rTvzgnXtxhYwN0gxaNTa7rDgxvrYzieeb1tD7HMh+32lUTJHlppxzuGkslaQqMkiMJaW54ukJxuEw66EpYbYSEZZJr8FNPfX49akZJFKF72sLxZI4PRWgUlOZWQxaNNoMOFdC86FC5TOJTsokiq4jNwZDSfsSI/EUphYWKcOwgnyH03NrcF+i0E1rLsWs1+Czd27BU/9wHX77vpfjlZvrRR91UYjtLXacnFxAWmEZfiHlL27Q+zxLrWJosBkwvaCsC3YAEIqnEE2k0WCj72SpVGT0MuANYz6SEP04nhClxZXotdubEFhM4ul+b8GPOTY6jwwH9nZQ0xq5XdlWnZtXKe6JiycUQ7VRS51sJZAPEocVFCSeP3mUtmFIuWmrXbsdTs9MB6BWMWxskOZ3oMNhglZBF5W3t1YjmkivyQsAeYPeMCx6DeqoweASpc5K9ARoC5fUlPNpJLHnJaiz9wTjtJ9JgV7W7UCtSVdUl9NDIz5o1QzbJZpTRS5tX1ctZgIx0RudZN+/9GUkhQarAXqNSlGZxHwZGmUYLk+rVqHTYV6THU5PTQWwzmmu2C0G+eY1a7nkdNAbRpfTrIjMrVI02asUuScxvx2Bki/SqcggkQE4NiZ+kOgN0ow1JdKoVbh1SyOePOtFMJYs6DGHh/3Y2mxHla4yTxaU5OouBwBg/5C4g57p/SsdlYotNa9RikFvGBoVQ1stjb9YSXe9Geck2CcspaWmNSKXmipZa40RNSbdmm5eMzQbpgtBF2iyV8EdjEkyaqoY7lwmkbqbSqcig0SDVo3jo+J+6CVSGfgiCWqdrlCv3d6ERCqDx59fOZsYiadwivYjKkZbrRFN9iocGJwT9TieYJxmnEqo3WFU1BiMAW9YceV/SrXeacHk/CKiCWUO4F4NbyiOuXACvS6r3EuRDWMM21vsa3YMRjCWhDcUp6Y1F3DZq5DOcHgVNiOTxlJJryK//Ux6DU5OLhTVuKRYs+Hsm4vKTZVpW4sduztq8J9/HED4IoOMlzs2No90hmNPJ+1HVALGGPZ11eLgsE+0kQnpDMdsmMpNpdThMGPcH1XM1eshL2UYCrW+3pztcOpVTpBfqlOTAQCQtcOoEmxrsWPAG0ZgsbCqm3JCJeUX15Sblai0DqfuYAx2o7Ziy7/lUJFBolGnRjyVwZnpgGjHcNMGW0VjjOGjr96EuXACX/3T8GXve3jYB42KYUcb7UdUin3dtViIJvHSTFCU5/dF4khnOF3kkVCHw4hkmiuiq148lcaoL0InjwVaV59t7LKWGpycng5AxYBNjZWbSQSwtA//xcm1l00coiDxoprs2fNWpe1LnFmgZpBSq8gg0aTTAACOi7gv0Uvt8xVvW4sdr9nSiK/9aXjp9bqYwyN+bGm2wZj7vSHy25fbl3hgSJyS06UZifSFJJn22myH0xEF7EscnYsiw+nksVDttUbo1Ko1tS/x9FQAXXXmiv/c39JiA2Nrs3nN4GwYOrUKLbnMGcly2bP/P5QWJE4HYktrI9KoyCBRo2ZoqakSNUik2uny8OGbNyCVyeALTw5c9PZxXxQvTi5gD+1HVJR6qwHdTjP2D4rTvIbev9JT0qxEKkMrjkatQmedCQNraAzG6algRTetybMatFjnNK/J5jVD3gjaHUaaZX0Bo06DaqNWceWmM4FFNFLTGklV7DtjZ1sNjo3NizZrzROKQ6NiqDHqRHl+Ioy2WhP+em8bHj06/hct3EfmIrjrKwdh1mvwhh3NMq2QXMq+rlocHfWLsrfYE6Q9xVKrs+hh0qkV0bxmwBsCY6CGFkXodpoxsEYyibOhONzBGHoquGnNcttbqnFiYkH02bRSo86ml6a0WYnRRAoL0SRlEiVWsUHilW3VmA3FMSnSm8ATjMFp0UOlotk7Svd3r1gHk06DB5/oW/rZoDeMu79yEMl0Bj9411500smi4uzrciCaSOOkCHtlPMEYGAMcZgoSpcIYQ7vDpIggcdAbRku1kRokFGF9vQUT/rXR4fR0rl/BFZRJBJCdl7gQTWLUF5V7KYKJp9IY80XoQtAlNNmrFLE/PC+/FpedMolSqtggcWeuCcmxMb8oz+8NxlFPafGyUGPS4YHru/DkWS8ODftwzhPCG796EBkO/PBde7Gxga4mK9FVnbVQMWC/CKMwvKEYak16Gn8gsXaHMmYlDlJn06Ktr8/+/8qX6pazM1PZIHEzZRIBnG9es5ZKTsd8tO/4clz2KkwtLComezwTyCZ0Gm2USZRSxZ4Bra+3wKLX4JhI8xI9wRjNSCwj913dgUabAR//2Wm88auHoFYxPHr/3qWufUR5bEYteptsODAk/L5ETzBOpaYy6Kg1YXJ+EUkZx2CkMxzDc9TZtFj5jMzwrPxBfqlOTQXQ6TDBYtDKvRRF6HaaYdZr1lTzmvzFDMokXlyTvQrheArBmDIqA2bymUQKEiVVsUGiWsWwrdUuWvMaTzBGJ5llxKBV44M3bcA5TxgGjQqPvusq+vIoA1d11eLE+LzgJW6jcxHa+yCDdocJ6QzHhF++srYJfxSJVIaCxCK11hqhYsCwAsqFS3V6KogeKjVdolYxbG2x4cTE2skk5oPEzjqTzCtRJqXNSpwOLIIxoN5G59VSqtggEcg2r+n3hBCMCTskdjGRRjCWovb5ZeaO7U34l9f24kd/exXaHfTFUQ6u7nIgmeY4KmBFgDcUw/BcZKkknUgn3+FUzn2J1Nl0dfQaNZqrjRieLe9y0/lIAlMLi+ilUtM/s72lGmdnQlhMpOVeiiCGZsNosldV/IiTS1kag6GQ5jUzCzE4zHroNbRPXEoVHSTuaKsG58LP/6H2+eVJrWL4671taK42yr0UUqBd7TXQqVU4IOC+xCMj2X3KNPZEekoIEgcoSFy1zjpT2Zeb5l//jY0UJC63vdWOdIbjVG6/Zrkb9IbRRe/xS8o3iJkOKCNInA4swkV9PiRX0UHitlY7VAyCl5yeDxIpLU6ImKp0amxvtQu6L/HQsA8mnZoyCTKoNmphNWhkbV4z6A2j3qqHlfajFa3TYcbIXASZjDKaXaxG/nevvZYuFi63rcUOAHhhDZScZjI8O/6CtpRcksOkh06jwpRSyk0XFqlpjQwkCxIZY99ljM0wxoKMsXOMsb9ZdtsNjLE+xliUMfYUY6xt2W16xtg3c49zM8Y+cMHzXvKxKzHrNdjUaMVxgTuczgQok0iIVPZ1OXB6OoCFaEKQ5zs07MfO9hoasCwDxhg6HCaMzsm3J3HQG6Is4ip11pmwmEzDHVRO6/xijfui0KgYmmhP8p+pNetRZ9FjwFPe5cRANisVS9K+48tRqRhcNoMiyk0555gJxKhPgAykPAv6LIB2zrkVwG0A/oUxtoMx5gDwEwAfA1AD4BiAR5c97pMA1gFoA3A9gA8zxm4BgAIeu6IdbdU4Mb6AlIDd9I6N+WHSqZdKpwgh4rm6uxacZzOApZoLxzHoDWMvlZrKpt1hkm1fG+ccQ7MRyjCsUr4JSDmXnI76ImiqrqKLRBfRVWfCUJnvOQWWdzalc7TLaaquUkTjmuBiCtFEmmYkykCyT0HO+RnOeTz/n7k/XQDuBHCGc/4Y5zyGbFC4lTG2MXfftwH4NOd8nnN+FsDXANybu22lx65oR1s1ook0+tyh0v6ByxwY9GFPZy3NWCNEAltb7DDp1Hh2oPR9iYeHs1UFeztrSn4usjqbG62YDsTgDUmfjXIHYwjHU+im0Ter0unIjcGYK99AYtwfRVstBQ8X01VnxtBsRDGz81aLmlMVxmWrUkS5aX4NVG4qPUmjGMbYlxljUQB9AGYA/BpAD4CT+ftwziMAhgD0MMaqATQuvz33957c3y/52ELXtLM9ezIo1L7EqYVFDM9FsK+LMhGESEGrVuH6jU788sUZxJKldd47NOyDUadGL7W/l00+i5sP2KWUL6WjTOLq1Fv1MOnU5Z1JnIugrYb2I15MV50ZgcUkfBFhSvvlMjQbQbVRi1oz9Y24HJe9Ct5QHImUfHNrAWAm1zynkTKJkpM0SOScvxuABcDLkC0TjQMwA7iwXVYgdz/zsv++8Das8Ng/wxh7F2PsGGPs2Ozs7NLPXTYDGqwGHBMoSNyf67J4zTqHIM9HCFnZm3a3IrCYxK9PzZT0PIdHfNjZXkNVADLqcVlh1msEKR8uFmUYSsMYQ0edqWxnJS5EEwjGUmijpjUXtRbKiQFgyBumOcgFaKquAufnmzHKZTrX58NFmUTJSX4mxDlPc86fA9AM4AEAYQAXthG0AgjlbsMFt+dvwwqPvfC4X+Wc7+Sc76yrq1v6OWMMO9qr8bxAQeKBwTk4zDpsoHIlQiRzVVctOhwmfP/w+KqfYy4cxzlPmEpNZaZRq7CzvRqHR6TPJA7OhmE3auEw6yQ/9lrR6TCX7azEUV+2YRKVm15cPrAq932Jw3MUJBYi37xpUubmNTMLi9CoGOoslPmVmpyXyzXI7kk8A2Br/oeMMVP+55zzeWTLUrcue9zW3GNwuccWs5BdbdWYWlgs+YOPc479Qz7s63KAMVbScxFCCscYwz27W3BsbB7nPKvbX7w0H7GDSsXltrezFoPeMGZD8ZXvLKBBT7YtPn1+r15nnQlTC4sll37LYSw3/oIyiRfXZK+CXqPCkLd8g8RwPIW5cAJtDnqNV5IPEuVuXjO9sIh6qwFqFX0uS02SIJEx5mSMvZExZmaMqRljNwO4B8AfADwOoJcx9jrGmAHAxwG8yDnvyz38OwD+mTFWnWtI804AD+duW+mxBXn1lkaoVQw/OjZR0r9zIHdSc003lZoSIrXX72iBTq1adTbx8LAPVVo1tjTTfkS57enIZnMPj0hbcjo4G6ZS0xJ11pnBOWSddbla47lMYivtSbwolYqhs85c1pnEpQsBNZQtXklDbni97EFiIEadTWUiVSaRI1taOglgHsD/AfA+zvnPOeezAF4H4DO52/YAeOOyx34C2WY0YwCeAfBvnPMnAKCAxxbEaTHgho1O/M/xSSRLGIXxXK674tW0H5EQydWYdLi5twH/8/wkFhPFZzGy8xGraT+iAvQ22WDSqSVtXuMLx+GPJChILFGno3z3rY36omiwGmDQquVeimJlx2CU32ubN75UUkwXAlZi0KrhMOtl73A6E1ikzqYykeRsiHM+yzm/lnNu55xbOedXcM6/tuz2JznnGznnVZzz6zjno8tui3PO78s9rp5z/vkLnvuSjy3G3btaMBdO4A9nvav9Z2L/4Bzaa400hJcQmbxpdytCsRR++eJ0UY/zRxLo94RoPqJCaNUq7GyvkbR5DTWtEUbHUpBYftmmcX+EgocVdNaZMTkfLctyYgAY8+eyxfQ6F6SpWt4xGJkMhzsQg4vOq2VBl8xzrl1fh3qrftUlp8l0BodH/LiaSk0Jkc3ezhp01pnw/SPFlZweyZU1UtMa5djTWYMBbxhzYWn2JQ7OUpAoBJNegwaroWwziRQkXl5XnQkZDozlMnLlZswXRbVRC6tBK/dSykJ7rVHWPahz4TiSaU7lpjKhIDFHo1bhDTta8HS/d2kmSzFenFxAOJ6i/YiEyIgxhjftbsWJ8QWcnQkW/LhDw35UadW4osku4upIMfJZ3SMSdTk9NRmA1aChNusC6CzDMRjRRAqzoTh1Nl1BuXc4HfdH0EqvccF6XTZMB2LwyzQbMz/+gspN5UFB4jJ37WxBhgM/PjZZ9GOfG/CBsWwrfkKIfF53ZTN0muIa2Bwa9mFHWzV0GvpIVIormmww6tSSlZweGfVjZ3sNVNRBr2SddSYMz4bBOZd7KQUbo71qBcnPSizXDqdjvijaqDFRwXpc2SlzZ6YvHEkujZlcqWujjTKJcqAzomVaa43Y11WLR49NIJMp7stt/9Acel022I00X4sQOVWbdHh1bwN+emIK0URqxfvPRxLoc4eo1FRhtGoVdrRVSxIkzoXjGJ6NYHcH/Q4IodNhRjCWgk+m7MNqLAWJ1PXysow6DZrsVWWZSUykMpheWEQ7XQgoWI8r2+379FThlTlCymcSaU+iPChIvMDdu1owOb+Ig0WcmETiKZwYn6f9iIQoxJv2tCEUT+EXJ1duYJMf2k5Na5Rnb2ctznnC8Im8L/Fo7ndgVzsFiULIZ5vKaV9ifjQCNTRZWTmWEwPA1MIiMhxUbloEm1GLlpoqnJYxk2jQqlBtpD2kcqAg8QI39zTAVqXFD48W3sDmyKgfyTTH1d10kkmIEuxqr8bGBgsefKJ/xSveh4Z9MGhV2NJM+xGVRqp9iUdG/TBoVbiiiWZkCqHTkd23Vk4dTsf82YYmtio6GV1JV50ZQ97yKicGls1IpAsBRelptOGlabkyiYtw2arAGG0DkAMFiRcwaNW4Y3sTfnvajfkCS2UODM5Bp1HRVWhCFIIxhv/66x1gAN7y9cOXbEZ1bNSPn74whV3tNbQfUYG2NNtQpRV/X+LRUT+2tdjpd0AgTdVV0GlUZZVtGvNFqGlNgbrqTIgk0vAEpek8LJRxf76kmILEYvQ2WTEyF0EolpT82NMLMTRSZ1PZ0DfiRdy9qwWJdAaPn5gq6P7PDfqws62aBvASoiAdDhO+fd9uhGIpvOUbR/7ios9PT0zhTV87jGqjDp+6vVemVZLLyc5LrF4qCRZDKJbES9NB7O6gShChqFUM7bXG8sok0viLgpVrh9MxXxRVWjXqLHq5l1JW8vsS5cgmzgQWqbOpjChIvIhNjVZsbbbh0aMTK5ZTzIXjODsTpP2IhChQb5MNX3vbToz7o2+OHqYAACAASURBVLj34aOIxFPgnOPzv+vH+x59Adtb7Xj83fuWBoAT5dnbWYs+d0i0FuzHx+aR4cBuqgQRVKfDXDaZxHxDE8owFabLWb5BYmuNkUoXi9TTlO9wKm2QmExn4A3FqWmNjChIvIQ372lDvyeEb+0fvez9fvJ8dlzGPhp9QYgi7e2sxUNvuhKnpwL42+8ex//3wxfwpT8O4g07mvHIO/ZQR2KF25PrOHpkRJyS06OjfqhVDNtbaU+qkDrrTBj3RZFMZ+Reyoom56PIcFC5aYGcFj3Mek1ZNSYC8jMS6UJAsZwWA5wWveTNa9yBGDgHXDT+QjYUJF7C63c046bN9fjMr8/iwNDcRe/zVL8Xn/tNH27Y6MS2FjrBIESpbtxcjwdftwXPDszhFyen8ZFbNuJfX7+F9qCVgS3Ndhi0KhwaFqfk9OjIPHpdVpj0GlGev1J11pmRynBM5PaBKdmYn2YkFoMxhq46U1llEjnnGPfTjMTV6nFZJS83ncmNv2ikTKJs6AzpElQqhs/fvQ2dDhPe873n/+KL7qXpIN77veexqdGKL92zncoXCFG41+9oxn+9+Up8577deOC6LnrPlgmdRoWdbTWiNK+Jp9J4YXKB5iOKIF/CXQ7ZprG5fNdLyiQWqjPX4bRceENxxJIZuhCwSr1NNgx4w4gl05IdM99wjjKJ8qEg8TLMeg2++tadSGU47n/kOBYT2TeHJxjDO759FBaDFt942y66Ak1ImXjVFY14+fo6uZdBinTt+jr0uUPocwt7JfvFyQASqQx1phZBV35W4pzyA4kxfxRGnRoOM5WeF6qrzoTpQAyReErupRRkdC4/B5MuBKxGj8uKdIajzx2S7JjTC5RJlBsFiSvocJjwpXu246w7iI/8z4uIxFO47+GjCC4m8c17d6GBrnAQQoioXr+jGXqNCt8+MCbo8+bnL1KQKDy7UYcak648Mom+KNpqTVRdUIR8h9ORMmlONEbjL0qS73B6RsJ9idMLi7AaNDBTIkY2FCQW4PoNTvzDTRvw85PTeNV/PIuzM0H83zddic0uq9xLI4SQNa/apMPt21z46YkpBKLCzeo6MuLHOqcZ1SbKIImh02EqkyAxQsFDkcqtw+m4Lwq1iqGpmrJSq9FcXQVblRanp6TblzgTWKTOpjKjILFA776uC6++ogHj/ij+9209uH6jU+4lEUJIxXjrVe1YTKbx2PEJQZ4vneF4fmye9iOKqLPOpPgxGOkMx4R/kfaqFamt1ggVA4bK4CIAkM0kuuwGaNV02rsajLFc8xopM4kxNFK1nqzo3VIgxhi+cPc2/Py9V+MtV7XLvRxCCKkovU027GyrxncOjiGdufz82kKcnQkiFE9RkCiizjoz5sJxBGPCZX+F5g7GkEhnqGlNkfQaNVpqjGWUSYygnV7jkvQ22XDWHZJsrM1MYJH2I8qMgsQi6DVqbGmmUReEECKHt+1rx7g/iqf7vSU/F+1HFF9nrsPpoIK7YJ7vbEqZxGJ1lVGH0zF/FK1UUlySHpcViVRGkvfzYiKN+WgSTRQkyoqCREIIIWXhlt4GOC16fPtg6Q1sjo760WSvoj0vItrUmN23L/V8tWLQjMTV66ozYWQugowAmX0xBRaTWIgm6TUu0fnmNeK/n6dz4y+o3FReFCQSQggpC1q1Cm/e04Y/nZstqcyNc46jo37soVJTUeWbXUhxUrlao74ItGqGRhtdLChWV50Z8VQGUwuLci/lssZ92QsBrTVUblqKDocJRp0ap6fE35c4kx9/Qe9LWVGQSAghpGzcs6cFWjXDIyVkE0fmIpgLJ7CLgkRR5ZtdSNk2v1jjvihaqo1Qq2j8RbHKpcPpmJ9KioWgVjFsapTm/ZzPJLrslEmUEwWJhBBCyobTYsBrrmjEj49PIrzKQd77B+cA0H5EKfS4rOiTsNlFsUZ9UQoeVik/K1HJe06B7BxMALQnUQC9Litemg6KXmKczyTSLHJ5UZBICCGkrLx1XzvC8RR+8vxk0Y89NRnA537Th94mK7rqqPxMbD0uGxKpjCKzTZxzjPsi1Nl0lWpMOjjMevS5Q3Iv5bLGfVE4zHqYaCh7yXpcNkQSaYz6xB19MrWQfc30GrWoxyGXR0EiIYSQsrK9xY4tzTZ8a/8oYsl0wY8b80Xw9oePwG7U4Rtv2wXGqMRQbL1N2eY1Ug7hLpQvkkAkkaZMYgl6m6yS7FErxZg/Qq+xQHpy72ex9xmfngpiQ4NZ1GOQlVGQSAghpKwwxvD+G9djZC6Cj//sNDhfufRpNhTHW795BOkMx3fesRv1VipjkkKHw4wqrVqR+xJHcuMvaH7e6vW6bBjwhou6WCO1cV8UbVRqKoh1Tgt0ahVOi/h+DsdT6HMHsaONtgPIjYJEQgghZef6DU689/pu/OjYJH5wZOKy9w3HU7jv4aPwBGP4xr27lvZSEfFlm11YFNnhNF8mub7BIvNKyldvkxXpDEe/QktO46k0ZoIxtFImURA6jQrrG8yiZo9PjM8jw4GdbdWiHYMUhoJEQgghZen9N67Hy9fX4RM/P40T4/MXvU8ilcED3z2Ol2aC+PKbr8SVrXTiIbUel02SZhfFOucOwaLXwEXNMVYtPztPzMxSKSb8i+CcOpsKaXd7LY6OziOaWF3jsJUcG52HigHbW+2iPD8pHAWJhBBCypJaxfClN25Dg82AB777PGZD8aXbOOd4qs+L2x/aj2cH5vDZO6/AKzbWy7jaytXjsiIcT2E8N7heKfo9IaxvsNDe1BLkZ2Eqcc8pAIznxl/QjEThvHKzE4lUBs8OzIny/MfH5rGhwQqLQSvK85PCUZBICCGkbNmNOvzXm3dgPprA3/3geaTSGRwb9ePurxzC2x8+ikg8hYfedCXu2tki91IrVm9TNtukpJJTzrMlkuvrqdS0FIwxXNFkU2zzmvz4C8okCmdXew2sBg2efMkj+HOn0hmcGJ+nUlOFoCCREEJIWettsuGzd16BQ8N+3PTFP+H1/30QI74IPv3aXjz5gWvxmi2Nci+xoq2rN0OjYooqSfSG4ggsJrGR9iOWrKfJin53CImU8mZhjvmiMOs1qDXp5F7KmqFVq3D9Rif+2OdFWuAS8j53CJFEGjvbKUhUAgoSCSGElL07r2zG31zTAV84gQ/fsgHPfOg6vGVvG3Qa+pqTm16jxrp6ZTWvyTdaoUxi6XpdNiTSGQx4lde8ZswXQWuNkUqKBfbKTfXwRRJ4YeLie8FX6/hY9vl2UCZREejbkxBCyJrwz7duxomP3Yh3X9cNo44GZytJr8uKM1OBgsaVSCEfJG6gTGLJlsqJFbgvccwfpVJTEVy7oQ4aFcPvX/IK+rzHxubRYDWgyV4l6POS1aEgkRBCyJqhUlHGQIl6XFb4Igl4gvGV7yyBfk8IdRY9aqgMsWRtNUaY9RpFlRMD2c7G474oOhzUtEZoVoMWeztr8eRZYfclHh/1Y0d7NWV+FYKCREIIIYSIqmepeY0yAol+dwgbqNRUECoVw2aXVXHNa0Z9EaQynEqKRfLKTU4MesMYmYsI8nzTC4uYDsSoaY2CUJBICCGEEFFtarSCMWV0OE1nOAa8ISo1FVCvy4aXZoKCNzIpxTkP7TsV0w2bsiOF/iBQNvFYbj/izrYaQZ6PlI6CREIIIYSIyqzXoKPWpIhs04Q/ilgyQ5lEAV3RbEUsmcHwbFjupSw55w5BxYDOOio3FUNLjREbGyz4vUCjMI6P+mHUqbGpkd6XSkFBIiGEEEJE19NkU0QmsS/f2ZQyiYLpdWXLiZW0L/GcJ4z2WhMMWrXcS1mzbtxcj6OjfsxHEiU/17GxeWxrsUOjptBEKeiVIIQQQojoelxWTC0sYiFa+gllKc6XIZplXcda0llnhkGrwqlJ+S8C5J3zhqjUVGSv3FSPDAee6i+ty2k4nsLZmSDtR1QYChIJIYQQIroelxWA/PsS+z0htNYYaUyKgNQqhs2NVsVkEmPJNEbnInQhQGRXNNngtOhL7nL6wvgCMhzY0U77EZWEgkRCCCGEiK7HpYwOp/1ualojht4mG16aDiKjgOY1w7MRZDiwjjKJolKpGG7YVI9n+mcRT6VX/TzHxvxgDNjeahdwdaRUFCQSQgghRHQ1Jh1cNoOsmcR4Ko2RuQg1rRFBr8uGcDyFMX9U7qVgwJstKaaLAeK7cbMTkUQah4b9q36O42Pz2FBvgdWgFXBlpFQUJBJCCCFEEptdNlk7nA7PRpDOcGpaI4Kepmw5sRI62Pa7Q9CoGNprqbOp2PZ1OVClVePJVXY5TWc4TowvYGc77UdUGgoSCSGEECKJ3iYrhuciiCZSshy/P9fZdCMFiYJbX2+BTq1SxL7Ec54wOutM0GnoNFdsBq0a12+sw09fmMJcOF704/vcQYTjKZqPqED07iGEEEKIJHpdNnAOnJqUJ5Do94SgVTN0OCjDJDStWoWNjRacmZK/w+k5T4j2I0roAzeux2IijQd/01f0Y4+PzQMAdlBnU8WhIJEQQgghktjdWQONiuGZc7OyHL/fHUJXnRlamsUmih6XDaenA+BcvuY1i4k0JuajWO+kIFEq3U4L3nFNBx47PrkU9BWCc45fn5pBg9WA5uoqEVdIVoM+JQkhhBAiCatBix1t1XiqX74gkWbniae3yYqFaBKT84uyrWHQGwbnwIYGGn8hpb+7YR0arAZ8/GenkS6ww+33j4zj0LAf73lFNxhjIq+QFIuCREIIIYRI5vqNTpydCcIdiEl63FAsiamFRep4KaJeBYw56fdk951Suam0zHoN/uk1m3BmOojvHx5b8f4T/ig+86uzuKbbgb/e0yrBCkmxKEgkhBBCiGSu3+AEADxzzivpcc95wgBA4y9EtKHBAq2a4fnxBdnWMOAJQadWoa3GKNsaKtWtWxqxr6sW//bbfvgu08Qmk+H4h8dOQsUYHnz9FsoiKhQFiYQQQgiRzPp6M1w2A57qk7bk9JyHZueJzaBVY29nLZ58ySPbvsR+TwhdTjM0tO9UcowxfOr2HkQTaTz4xKWb2Hz74CgOj/jxsVs3oclOexGVit5BhBBCCJEMYwzXbXTiucE5JFIZyY7b7w7BqFPTSanIbuppwPBcBIPesCzHH/CEsb6e9iPKJd/E5kfHLt7EZmQuggef6MP1G+pw184WGVZICkVBIiGEEEIkdf0GJ8LxFI6N+SU7Zr5pjUpFpW1iumlzPQDgd6scrl6K/L5Tak4kr3wTm3u/eQT3P3IMjxwcxfBsGOlcmalOrcLnXkdlpkqnkXsBhBBCCKks+7pqoVOr8HT/LPZ1OSQ55jlPCK/cVC/JsSpZvdWAbS12/PaMG++5vlvSYw/kspcUJMrLrNfgm/fuwncOjuLZgTn89kz2gkG1UYv5aBJfuHsr6q0GeRdJVkRBIiGEEEIkZdJrsLujBk/1efHRV28S/Xhz4Th8kQTtR5TIzT0NePCJPkwvLMIlYXnvQG7fKZWbym+zy4rPvW4LOOcY90fx3OAc9g/OocFahddua5J7eaQAVG5KCCGEEMldt6EOA94wJvxR0Y91bDS7N6rHZRX9WAS4qSebsf29xCWn5zxhGLQqtFRTZ1OlYIyhrdaEN+9p+3/t3XmU3VWV6PHvTmUkEwkZCIGEKQMQmiGAIE8IIDg1zVOUp9KIz25A1O7WFlkuZwXn7nZoWxREBARFUZ8KikpAUEAlqCEMSRiSAGYmY2WqpGq/P+6viktIVZLKrXtvVX0/a9VK1W84v31z1q/q7nvObx++fv50Pnb24U4z7SZMEiVJUtWdNrW0FMZv53d9ldOZjy9j6MC+HDtxRJdfS3DI6CEcOmYIv3p0aVWvO3/ZeiaN8blTqRJMEiVJUtUdPGowE0buxT3zuna9xJaW5O55y5kxZQz9XBahal51xFj+uGAVqzc0Ve2a85etZ5JTTaWKqMpvy4gYEBHXRsSiiFgfEX+NiNcU+w6MiIyIxrKvj2537rcjYl1ELI2If9+u7TMiYm5EbIyIuyNiYjVekyRJ6ryI4LQpo7nvyefZvLW5y64z+7k1rGxs4pWHjemya+ilzjp8X5pbkrvmdu2HAK3WbtzKsnVbmGLRGqkiqvWRWl/gWeBUYDjwEeAHEXFg2TF7Z+aQ4uuKsu2fACYBE4HTgMsj4tUAETEK+DHwUWAkMAu4pUtfiSRJqogZU8ewaWszf1rQdUthzHx8OQ19glMnj+6ya+il/m7/4YwbPrBqU07nL28tWmOSKFVCVZLEzNyQmZ/IzIWZ2ZKZtwELgOm7cPqFwBWZuTozHweuAd5e7HsD8Ghm/jAzN1NKKI+KiKmVfxWSJKmSTjp4Hwb07cPdXTjl9M7HlzF94gj23qt/l11DLxURnHX4WO59YgWbmrpupLjV/KKyqdNNpcqoyeT8iBgLTAYeLdu8KCKei4jrihFCImIEMA6YXXbcbOCI4vsjyvdl5gbgqbL9kiSpTg3s18BJh+zDb+d1TfGa51ZvZO7S9U41rZGzjtiXzVtbuPeJri9ONH/pegb3b2B8FZfckHqyqieJEdEPuAm4PjPnAiuB4ylNJ50ODC32A7R+HLS2rIm1xTGt+8v3bb+//LoXR8SsiJi1YkXX/7KSJEk7d9qUMSxYuYEni+mCldT6PNwZh42teNvauRMOGsnwQf2qMuV0/rJGJo0d6vIKUoVUNUmMiD7AjUAT8B6AzGzMzFmZuS0zlxXbz4qIoUBjcWr5wkbDgNa/JI3b7dt+f5vMvDozj8vM40aP9rkESZLqwWuO3JdB/Rr48p1PVLztmY8v56BRgzlktFMQa6FfQx/OmDqGmY8vZ2tzS5ddZ1tzC48tWWfRGqmCqpYkRumjnWuBscC5mbm1nUOz+LdPZq4GlgBHle0/ihemqT5avi8iBgOH8OJprJIkqU6NGTqQi085mNseXsKfn1ldsXY3bNnGA089z+lTnWpaS2cdsS9rN23lwS4sTvSnBatYu2krM6Y4CCBVSjVHEq8CDgPOzsxNrRsj4mURMSUi+kTEPsBXgd9mZus00huAj0TEiKIgzUXAd4p9PwGmRcS5ETEQ+BjwcDGNVZIkdQMXn3Iwo4cO4NO3P05m7vyEXfC7J1bS1NzCGT6PWFOnTh7NoH4N3Prn57rsGrfPWcKgfg3MmGJfS5VSrXUSJwKXAEcDS8vWQzwfOBi4g9IU0UeALcBbyk7/OKViNIuAe4AvZuYdAJm5AjgX+DSwGngZ8OZqvCZJklQZgwf05f1nTuahRau545HKPL828/FlDB3Yl+MPHFmR9tQ5g/o38JYTJvDTvy7m2VUbK95+c0vyq0eXcvrUMQzq31Dx9qXeqlpLYCzKzMjMgWVrIQ7JzJsy83uZeVBmDs7McZn5tsxcWnbulsx8R2YOy8yxmflf27V9Z2ZOzcxBmTkjMxdW4zVJkqTKedNxBzBl7FA+d8dcmrbt2fNrLS3J3fOWM2PKGPo11KSQu8pcdMpB9Am4+t6nK972Hxc8z8rGJl575LiKty31Zv7mlCRJNdfQJ/jQ6w5j0fMbufEPi/aordnPrWFlYxNn+DxiXRg3fBBvnL4/t8x6luXrNle07V/MWcLAfn04barPI0qVZJIoSZLqwqmTR/OKSaP46swnWLOxqdPtzHx8OQ19wkImdeSSUw5hW3ML1/5+QcXabG5J7nhkGadPHcNe/ftWrF1JJomSJKmOfOi1h7Fu81a+dteTnW7jzseXMX3iCPbeq38FI9OeOHDUYM4+aj+++4dFe/QBQLk/LVjFysYtTjWVuoBJoiRJqhuHjRvGm6bvz/UPLOSJZS9Z9ninnl7RyNyl63mlVU3rzrtmHMqGpma+c//CirT3y0dKU01d5kSqPJNESZJUVy47awrDBvbjkhsfYt3m9pZVfqltzS184NaHGTqgL/9w1PgujFCdMWXfoZx5+Fiuu28hjVu27VFbzS3JLx9ZymlTnGoqdQWTREmSVFfGDBvI188/lmdWbeS93/8rLS27tnbi1+5+kocWrebK109j3+EDuzhKdca7ZhzC2k1bufmPe1acaNbCVaxY71RTqauYJEqSpLrzsoP34WNnH85dc5fzpTvn7/T4hxat4qszn+D1x4znnKMdRaxXx0wYwcmH7sM1v1vA5q3NnW7nF3OWMKCvU02lrmKSKEmS6tIFJ07kvOP257/vepI7HlnS7nHrN2/lvbf8lfEjBvGpc46oYoTqjHefdigr1m/p9LOJLcVU0xlTRjN4gFNNpa5gkihJkupSRPCpc6Zx9AF78+8/mM28pTsuZPPxnz7K4jWb+fL/OZqhA/tVOUrtrpMO3oczDx/LF+6Yy52PLdvt82ctWs1yp5pKXcokUZIk1a2B/Rr4xj9OZ/CAvlx0wyyuv38h9z25kmXrNpOZ/PSvf+PHf/kb/3L6oUyfOLLW4WoXRARfefPRTBs/nH/53l+Y/eya3Tr/F3OW0L9vH844bGwXRSgpMnftYfCe5LjjjstZs2bVOgxJkrSLHlq0mktunMXKxhfW2Bs6oC9NzS1MGz+cWy4+kb4NfvbdnaxYv4U3XHUfm5qa+fGlJzNhn706PH7Dlm3c8MAivnbXE5x86CiufttxVYpU6pki4qHM3OGNZJIoSZK6hcxk+fotPLW8kSdXNPLU8kaWrdvCh193GAeM7DjBUH16akUj5151PyP36s+PLn05Iwb3f8kxG5u2ceMDi/jmvU+zakMTp04ezRXnTNtpUimpYyaJ2zFJlCRJqg+zFq7ird/6I0eOH84V50xjzcYmVm1sYvWGJhav3cwPZz3LysYmXjFpFO995WSmTxxR65ClHsEkcTsmiZIkSfXjF3OW8O6b/8yO3paWksNJPnMqVVhHSaJ1gyVJklRTrz1yHLe+8+UsW7eZkYP7M3Jwf0bs1Z8Re/XzWVOpBkwSJUmSVHNOI5Xqhx/NSJIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2kRm1jqGqouI9cC8WsehLjUcWFvrINRl7N+ezf7t2ezfns8+7tns355jSmYO3dGOvtWOpE7My8zjah2Euk5EXJ2ZF9c6DnUN+7dns397Nvu357OPezb7t+eIiFnt7XO6qXqqn9c6AHUp+7dns397Nvu357OPezb7txfordNNZzmSKEmSJKm36ign6q0jiVfXOgBJkiRJqqF2c6JeOZIoSZIkSdqx3jqSKEmSJEnaAZNEdWsRMTIifhIRGyJiUUS8tdj+uoj4fUSsiYilEfGtiNhhiV/Vrw7697SImFP07/PFMeNrHa92T3v9u90x346IjIhDaxGj9kwH9/CMiGiJiMayrwtrHa92T0f3cESMjoibI2JtRKyOiJtqGat2Xwf374e2u3c3FffzqFrHrMrprUtgqOf4H6AJGAscDdweEbMpreFzJXAvMAC4Gfgi8M4axanOaa9/HwNelZmLI2IAcAVwFfAPNYtUnbHD/s3MRwEi4n8Bh9QwPu259u5hgMWZuX/NIlMldHQP/xh4EJgAbASm1SxKdVZ7/fsZ4DOtB0XEJ4BTMnNlTaJUl/CZRHVbETEYWA1My8z5xbYbgb9l5ge3O/YNwCcz88jqR6rO2NX+LZLETwDnZObhtYhVu29n/RsRfSm9wbwQmA1MyswnaxawdltHfQzcAXzXJLH72kn/3kWpIMYhmdlcuyjVWbvxNziApyi9x7q+JsGqS9TddNOIGF7rGNRtTAa2tf7yKswGjtjBsacAj1YlKlVKh/0bERMiYg2wCbgM+EL1Q9Qe2Nn9+z7g3sx8uOqRqVJ21sdjImJZRCyIiC8Vb0rVfXTUvycC84Dri0cCHoyIU2sRpDptV99jvQIYA/yoWoGpOuomSYyIQRFxLfB0REyodTzqFoYA67bbthZ40bOHEXEmpdGIj1UpLlVGh/2bmc9k5t7AKOAjwNzqhqc91G7/RsQBwCV4z3Z3Hd3DcylNXxsHnA5MB/6rqtFpT3XUv/sDZwF3A/sC/wn81GfWupVdeo9F6f3VrZnZWJWoVDV1kSRGxBBKzxONApZTer5I2plGYNh224YB61t/iIgTKT2P+MbtPg1T/dtp/wJk5irgekpvQHzOuvvoqH+/DHwqM9dWPSpVUrt9nJlLM/OxzGzJzAXA5cC5VY9Qe6Kje3gTsDAzr83MrZn5feBZ4OQqx6jO25X3WHsBb6L0N1g9TE2TxIgYFRH9ik8ffgJ8GDgHuCAiXl7L2NQtzAf6RsSksm1HUUwrjYhjgJ8B78jMmTWIT3umw/7dTl9K0122/4Om+tVR/54BfLGoTLy02PfAjqqfqq7tzj2c1MkH19plHfXvw5T6tJxFMLqXXbl/Xw+sAn5bxbhUJTUpXBMRBwKtpZDXAR8E5mXm5mL/NcBRmXlC1YNTtxIR36f0h+efKU1d+gXwciCAmcC/ZuYttYtQe6KD/p1C6Q/VE8A+lCqwHZqZx9YoVHVCB/27ghcnDEuAk4DZmbmp2nGq8zro4zHA08AzlKYm3kBp5On/1ihUdUIH/buEUjGT9wLfpZRMXA1MtgJm99Fe/5ZVoP418IfM9NGAHqjqn9pFxCDgW8BDwBsoDWd/AnhL2WHvBo4oXzMpIvyEUTvyLmAQpWnK3wMuLX55vR8YDVxbto6PhWu6n/b6dzyl6ojrgTlAC6U3Iepedti/mbm8mI64NDNbRxJXmiB2S+3dw8cA9wMbin/nAP9aqyDVae3dw6soLUl0GaXn2D5IqQK1CWL30t79S7E28emUPuBRD1T1kcRi2Po64J8zc25EDAP+DTgNuLi1xHlEvA+4PDPHFT8Pzcz1ERHpuh2SJEmS1CVqMToXlBZUXQuQmesoLbi6GLgUSqOGQZwyKgAACatJREFUmfklYFVE/CwiNgKfLY43QZQkSZKkLlL1JLGoMDmHF5c2n0tpusmBEXFwZrZExBhKCeWxwPsz8z3VjlWSJEmSeptaPef3OeD1ETEZIDObgceASbywJsts4M+ZuX9mXlWbMCVJkiSpd6nVmmJ3Fl83ACcW2x4p/h0OrAQmuTCnJEmSJFVXTZbAgLYFOGdTWofld8AFwCzgosxs6uC8ccBFwN2Z+TsL2UiSJElS5dRqJJHM3BgRZ1Na++o1wLeKYjU7szdwMhARMcuS6JIkSZJUOTUbSXxRELs4Gth6XERcCpwBfCczb+v6CCVJkiSpd6iLBep3J0EsfrwFaATOjIh9W/d3YYiSJEmS1CvURZJYrr1krxhBnBwRZ2TmKuBnwIHAq1v3Vy9KSZIkSeqZ6i5JLJLB9uI6D7g9IvoDPwEWAqdExOHgaKIkSZIk7am6SxIj4tXAlRGxX/HzKa37MvNKYDHw0WLk8BZgBKXCN44mSpIkSdIeqrskEWgAzgJOjojXAddExKll+/8N+EBETMjM+yktm3FsRJxWg1glSZIkqUepuyQxM28H/gS8EmihNK30PWX7f17s/2yx6fvAaGB6RDRUN1pJkiRJ6lnqKkkse6bwK8BhwETgAWDviHhb2aH3AG8uitg8BVyWmf+Rmc3VjViSJEmSepa6ShKLojWRmfOAX1NaC3Fr8f3FETG8OHQt8CBwcnHewwAdFLyRJEmSJO2CqNdaLxExFPgxcBfwG+AKYBylQjWzgLdn5vraRShJkiRJPU/fWgewIxHRJzPXR8QNwNspjRqeB/w90JyZP9ju2JbaRCpJkiRJPUvdjiS2iojvA88Dn8zM5WXbG3wGUZIkSZIqq26f4SsrYvPfwHTgwPLtJoiSJEmSVHl1myQWRWz6ZOZ9lOJ8Vev2nZ0bEQdHxLDi+9jZ8ZIkSZKkkrpNEgEysyUi9gI2AfN25ZyIeDfwCHBW0UZ9z6eVJEmSpDpS10li4X8Df6FU6XRXHAWsBk6IiEldFpUkSZIk9UDdoXBN7OIU04bMbI6ID1BaKmM68B3g5szc0sVhSpIkSVKPUPcjie0liBExoPi3oTiutZDNScB1wG3AOcBBVQhTkiRJknqEuk8StxcRIyLi28A34IXkMCJaX8uzwAHAtcBA4C0RcWVE/F0t4pUkSZKk7qRbJYkRcSTwE+B4YHJEvKHY3iczW4rDjgHmZeYqYCvwYeBI4OkahCxJkiRJ3Uq3ShKB/sCNwNuBmcBFEdG/qILavzjmj8AnI2IOMAz4PbAQGFz9cCVJkiSpe6nrJDEipkbEqRExptg0B7g1Mx8CfgUk8B6AzGwqppyOA44AvpyZpwKfB0ZWP3pJkiRJ6n7qsrppUYzmG8B5wEOUEr/LM/PnZccMAf4JOBe4IDMXFdsPApZl5saqBy5JkiRJ3Vy9jiQeARwKHAKcRWkpi69ExCmtB2RmI6Upp4uB95Wd+2xmbmwtZBMRUa2gJUmSJKm7q5skMSKGl1UoPRGYmJkrgZbM/DylZw0vjIiDy06bD3wPmBYRn4mI+4AzAFoL2ezKGouSJEmSpJKaJ4kRMSkifgXcBPwoIiYCjwHPRMTRZVVLPwscBbQtZZGZTUAzpaTyQuCazPxVVV+AJEmSJPUgNU0SI+KfgLuAvwCXUyow81GgL7CM0lRTADLzYUqFay4ozm2IiDOBW4GvZ+b4zPxOVV+AJEmSJPUwNS1cExFXAosy85ri5/2BucBkSsngscA3M/OuYv/ZwOeA44vnDscDGzJzTU1egCRJkiT1MH1rfP1vAFsAImIAsBF4ChgE/JBS4Zr3RsRTRfXS44Fft1Yuzcy/1SRqSZIkSeqhapokZuZzUKpAmplbIuJwSlNgny3WPfwqcCVwe0SsAaYA59cuYkmSJEnq2Wo9kgi8qALpDGBeUZCGzHwkIs4FjgGOyMzraxSiJEmSJPUKdZEkRkRDZjYDJwB3FNsupTRy+OnMnAXMqmGIkiRJktQr1EWSmJnNEdGXUnXTMRFxL3Ag8I7MXFHT4CRJkiSpF6lpddNyEXEkMJvS0hf/mZn/UeOQJEmSJKnXqacksT/wHkprHm6udTySJEmS1BvVTZIoSZIkSaq9PrUOQJIkSZJUP0wSJUmSJEltTBIlSZIkSW1MEiVJkiRJbUwSJUmSJEltTBIlSQIiYkJENEZEQ61jkSSplkwSJUm9VkQsjIhXAmTmM5k5JDObq3j9GRHxXLWuJ0nSrjBJlCRJkiS1MUmUJPVKEXEjMAH4eTHN9PKIyIjoW+z/bURcGRH3F/t/HhH7RMRNEbEuIh6MiAPL2psaEb+JiFURMS8izivb99qIeCwi1kfE3yLisogYDPwS2K9ovzEi9ouIEyLigYhYExFLIuJrEdG/rK2MiHdFxBNFe1dExCFFnOsi4getx7eOVEbEhyJiZTFyen51/oclSd2VSaIkqVfKzAuAZ4CzM3MI8IMdHPZm4AJgPHAI8ABwHTASeBz4OECR8P0GuBkYU5z39Yg4vGjnWuCSzBwKTAPuyswNwGuAxcU01yGZuRhoBt4HjAJOAs4A3rVdXK8CpgMnApcDVwP/CBxQtP+WsmP3LdoaD1wIXB0RU3brP0uS1KuYJEqS1L7rMvOpzFxLadTvqcy8MzO3AT8EjimO+3tgYWZel5nbMvMvwI+ANxX7twKHR8SwzFydmX9u74KZ+VBm/qFoZyHwTeDU7Q77Qmauy8xHgUeAX2fm02VxHrPd8R/NzC2ZeQ9wO3AekiS1wyRRkqT2LSv7ftMOfh5SfD8ReFkxRXRNRKwBzqc0igdwLvBaYFFE3BMRJ7V3wYiYHBG3RcTSiFgHfIbSSGBn4gJYXYxatloE7Nfe9SVJMkmUJPVmWaF2ngXuycy9y76GZOalAJn5YGaeQ2kq6v/jhamtO7r+VcBcYFJmDgM+BMQexDaimA7bagKweA/akyT1cCaJkqTebBlwcAXauQ2YHBEXRES/4uv4iDgsIvpHxPkRMTwztwLrgJay6+8TEcPL2hpaHNMYEVOBSysQ3yeLOF5BaWrsDyvQpiSphzJJlCT1Zp8FPlJMD31jZxvJzPXAWZQK1iwGlgKfBwYUh1wALCymj76T0lRUMnMu8D3g6WKa6n7AZcBbgfXANcAtnY2rsBRYXcR1E/DO4rqSJO1QZFZqpo0kSaonETED+G5m7l/rWCRJ3YcjiZIkSZKkNiaJkiRJkqQ2TjeVJEmSJLVxJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTGJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTm/wOL0q2viKFO9gAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "dddca9ad9e34435494e0933c218e1579", + "translation_date": "2025-09-04T01:50:27+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/1-Introduction/working/notebook.ipynb b/translations/fr/7-TimeSeries/1-Introduction/working/notebook.ipynb new file mode 100644 index 000000000..ed97e43ba --- /dev/null +++ b/translations/fr/7-TimeSeries/1-Introduction/working/notebook.ipynb @@ -0,0 +1,63 @@ +{ + "cells": [ + { + "source": [ + "# Configuration des données\n", + "\n", + "Dans ce notebook, nous montrons comment :\n", + "\n", + "configurer des données de séries temporelles pour ce module \n", + "visualiser les données \n", + "Les données de cet exemple proviennent de la compétition de prévision GEFCom2014. Elles comprennent 3 années de données horaires sur la charge électrique et les températures, couvrant la période de 2012 à 2014.\n", + "\n", + "1Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli et Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, juillet-septembre, 2016.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5e2bbe594906dce3aaaa736d6dac6683", + "translation_date": "2025-09-04T01:51:35+00:00", + "source_file": "7-TimeSeries/1-Introduction/working/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/2-ARIMA/README.md b/translations/fr/7-TimeSeries/2-ARIMA/README.md new file mode 100644 index 000000000..a16dc4663 --- /dev/null +++ b/translations/fr/7-TimeSeries/2-ARIMA/README.md @@ -0,0 +1,406 @@ + +# Prévision des séries temporelles avec ARIMA + +Dans la leçon précédente, vous avez appris les bases de la prévision des séries temporelles et chargé un jeu de données montrant les fluctuations de la charge électrique sur une période donnée. + +[![Introduction à ARIMA](https://img.youtube.com/vi/IUSk-YDau10/0.jpg)](https://youtu.be/IUSk-YDau10 "Introduction à ARIMA") + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo : Une brève introduction aux modèles ARIMA. L'exemple est réalisé en R, mais les concepts sont universels. + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/43/) + +## Introduction + +Dans cette leçon, vous allez découvrir une méthode spécifique pour construire des modèles avec [ARIMA : *A*uto*R*egressive *I*ntegrated *M*oving *A*verage](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average). Les modèles ARIMA sont particulièrement adaptés pour ajuster des données présentant une [non-stationnarité](https://wikipedia.org/wiki/Stationary_process). + +## Concepts généraux + +Pour travailler avec ARIMA, il y a quelques concepts que vous devez connaître : + +- 🎓 **Stationnarité**. Dans un contexte statistique, la stationnarité fait référence à des données dont la distribution ne change pas lorsqu'elles sont décalées dans le temps. Les données non stationnaires, quant à elles, présentent des fluctuations dues à des tendances qui doivent être transformées pour être analysées. La saisonnalité, par exemple, peut introduire des fluctuations dans les données et peut être éliminée par un processus de "différenciation saisonnière". + +- 🎓 **[Différenciation](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average#Differencing)**. La différenciation des données, toujours dans un contexte statistique, fait référence au processus de transformation des données non stationnaires pour les rendre stationnaires en supprimant leur tendance non constante. "La différenciation élimine les variations dans le niveau d'une série temporelle, supprimant ainsi la tendance et la saisonnalité, et stabilisant par conséquent la moyenne de la série temporelle." [Article de Shixiong et al](https://arxiv.org/abs/1904.07632) + +## ARIMA dans le contexte des séries temporelles + +Décomposons les parties d'ARIMA pour mieux comprendre comment il nous aide à modéliser les séries temporelles et à faire des prédictions. + +- **AR - pour AutoRégressif**. Les modèles autorégressifs, comme leur nom l'indique, regardent "en arrière" dans le temps pour analyser les valeurs précédentes de vos données et en tirer des hypothèses. Ces valeurs précédentes sont appelées "retards" (lags). Par exemple, des données montrant les ventes mensuelles de crayons. Le total des ventes de chaque mois serait considéré comme une "variable évolutive" dans le jeu de données. Ce modèle est construit comme suit : "la variable évolutive d'intérêt est régressée sur ses propres valeurs retardées (c'est-à-dire, antérieures)." [wikipedia](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average) + +- **I - pour Intégré**. Contrairement aux modèles similaires 'ARMA', le 'I' dans ARIMA fait référence à son aspect *[intégré](https://wikipedia.org/wiki/Order_of_integration)*. Les données sont "intégrées" lorsque des étapes de différenciation sont appliquées pour éliminer la non-stationnarité. + +- **MA - pour Moyenne Mobile**. L'aspect [moyenne mobile](https://wikipedia.org/wiki/Moving-average_model) de ce modèle fait référence à la variable de sortie qui est déterminée en observant les valeurs actuelles et passées des retards. + +En résumé : ARIMA est utilisé pour ajuster un modèle aux formes particulières des données de séries temporelles aussi précisément que possible. + +## Exercice - Construire un modèle ARIMA + +Ouvrez le dossier [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/working) dans cette leçon et trouvez le fichier [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/2-ARIMA/working/notebook.ipynb). + +1. Exécutez le notebook pour charger la bibliothèque Python `statsmodels` ; vous en aurez besoin pour les modèles ARIMA. + +1. Chargez les bibliothèques nécessaires. + +1. Ensuite, chargez plusieurs autres bibliothèques utiles pour tracer les données : + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from pandas.plotting import autocorrelation_plot + from statsmodels.tsa.statespace.sarimax import SARIMAX + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + from IPython.display import Image + + %matplotlib inline + pd.options.display.float_format = '{:,.2f}'.format + np.set_printoptions(precision=2) + warnings.filterwarnings("ignore") # specify to ignore warning messages + ``` + +1. Chargez les données du fichier `/data/energy.csv` dans un dataframe Pandas et examinez-les : + + ```python + energy = load_data('./data')[['load']] + energy.head(10) + ``` + +1. Tracez toutes les données énergétiques disponibles de janvier 2012 à décembre 2014. Il ne devrait pas y avoir de surprises, car nous avons vu ces données dans la leçon précédente : + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + Maintenant, construisons un modèle ! + +### Créer des ensembles d'entraînement et de test + +Maintenant que vos données sont chargées, vous pouvez les séparer en ensembles d'entraînement et de test. Vous entraînerez votre modèle sur l'ensemble d'entraînement. Comme d'habitude, après que le modèle a terminé son entraînement, vous évaluerez sa précision en utilisant l'ensemble de test. Vous devez vous assurer que l'ensemble de test couvre une période ultérieure à celle de l'ensemble d'entraînement pour garantir que le modèle ne tire pas d'informations des périodes futures. + +1. Allouez une période de deux mois, du 1er septembre au 31 octobre 2014, à l'ensemble d'entraînement. L'ensemble de test inclura la période de deux mois du 1er novembre au 31 décembre 2014 : + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + + Étant donné que ces données reflètent la consommation quotidienne d'énergie, il existe un fort schéma saisonnier, mais la consommation est plus similaire à celle des jours récents. + +1. Visualisez les différences : + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![données d'entraînement et de test](../../../../translated_images/train-test.8928d14e5b91fc942f0ca9201b2d36c890ea7e98f7619fd94f75de3a4c2bacb9.fr.png) + + Par conséquent, utiliser une fenêtre de temps relativement petite pour entraîner les données devrait suffire. + + > Note : Étant donné que la fonction que nous utilisons pour ajuster le modèle ARIMA utilise une validation interne pendant l'ajustement, nous omettrons les données de validation. + +### Préparer les données pour l'entraînement + +Maintenant, vous devez préparer les données pour l'entraînement en effectuant un filtrage et une mise à l'échelle de vos données. Filtrez votre jeu de données pour n'inclure que les périodes et colonnes nécessaires, et mettez à l'échelle pour vous assurer que les données sont projetées dans l'intervalle 0,1. + +1. Filtrez le jeu de données original pour n'inclure que les périodes mentionnées par ensemble et uniquement la colonne 'load' nécessaire ainsi que la date : + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + Vous pouvez voir la forme des données : + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +1. Mettez les données à l'échelle pour qu'elles soient dans la plage (0, 1). + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + train.head(10) + ``` + +1. Visualisez les données originales par rapport aux données mises à l'échelle : + + ```python + energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12) + train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12) + plt.show() + ``` + + ![original](../../../../translated_images/original.b2b15efe0ce92b8745918f071dceec2231661bf49c8db6918e3ff4b3b0b183c2.fr.png) + + > Les données originales + + ![scaled](../../../../translated_images/scaled.e35258ca5cd3d43f86d5175e584ba96b38d51501f234abf52e11f4fe2631e45f.fr.png) + + > Les données mises à l'échelle + +1. Maintenant que vous avez calibré les données mises à l'échelle, vous pouvez mettre à l'échelle les données de test : + + ```python + test['load'] = scaler.transform(test) + test.head() + ``` + +### Implémenter ARIMA + +Il est temps d'implémenter ARIMA ! Vous allez maintenant utiliser la bibliothèque `statsmodels` que vous avez installée précédemment. + +Vous devez suivre plusieurs étapes : + + 1. Définissez le modèle en appelant `SARIMAX()` et en passant les paramètres du modèle : les paramètres p, d, et q, ainsi que les paramètres P, D, et Q. + 2. Préparez le modèle pour les données d'entraînement en appelant la fonction `fit()`. + 3. Faites des prédictions en appelant la fonction `forecast()` et en spécifiant le nombre d'étapes (l'`horizon`) à prévoir. + +> 🎓 À quoi servent tous ces paramètres ? Dans un modèle ARIMA, il y a 3 paramètres utilisés pour modéliser les principaux aspects d'une série temporelle : saisonnalité, tendance et bruit. Ces paramètres sont : + +`p` : le paramètre associé à l'aspect autorégressif du modèle, qui intègre les valeurs *passées*. +`d` : le paramètre associé à la partie intégrée du modèle, qui affecte la quantité de *différenciation* (🎓 souvenez-vous de la différenciation 👆 ?) à appliquer à une série temporelle. +`q` : le paramètre associé à la partie moyenne mobile du modèle. + +> Note : Si vos données ont un aspect saisonnier - ce qui est le cas ici -, nous utilisons un modèle ARIMA saisonnier (SARIMA). Dans ce cas, vous devez utiliser un autre ensemble de paramètres : `P`, `D`, et `Q` qui décrivent les mêmes associations que `p`, `d`, et `q`, mais correspondent aux composantes saisonnières du modèle. + +1. Commencez par définir votre valeur d'horizon préférée. Essayons 3 heures : + + ```python + # Specify the number of steps to forecast ahead + HORIZON = 3 + print('Forecasting horizon:', HORIZON, 'hours') + ``` + + Sélectionner les meilleures valeurs pour les paramètres d'un modèle ARIMA peut être difficile car c'est en partie subjectif et chronophage. Vous pourriez envisager d'utiliser une fonction `auto_arima()` de la [bibliothèque `pyramid`](https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html). + +1. Pour l'instant, essayez quelques sélections manuelles pour trouver un bon modèle. + + ```python + order = (4, 1, 0) + seasonal_order = (1, 1, 0, 24) + + model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order) + results = model.fit() + + print(results.summary()) + ``` + + Un tableau de résultats est affiché. + +Vous avez construit votre premier modèle ! Maintenant, nous devons trouver un moyen de l'évaluer. + +### Évaluer votre modèle + +Pour évaluer votre modèle, vous pouvez effectuer une validation dite `walk forward`. En pratique, les modèles de séries temporelles sont réentraînés chaque fois qu'une nouvelle donnée devient disponible. Cela permet au modèle de faire la meilleure prévision à chaque étape temporelle. + +En utilisant cette technique, commencez au début de la série temporelle, entraînez le modèle sur l'ensemble d'entraînement. Ensuite, faites une prédiction pour l'étape temporelle suivante. La prédiction est évaluée par rapport à la valeur connue. L'ensemble d'entraînement est ensuite étendu pour inclure la valeur connue et le processus est répété. + +> Note : Vous devriez garder la fenêtre de l'ensemble d'entraînement fixe pour un entraînement plus efficace, de sorte qu'à chaque fois que vous ajoutez une nouvelle observation à l'ensemble d'entraînement, vous supprimez l'observation du début de l'ensemble. + +Ce processus fournit une estimation plus robuste de la performance du modèle en pratique. Cependant, cela a un coût computationnel, car il faut créer de nombreux modèles. Cela est acceptable si les données sont petites ou si le modèle est simple, mais peut poser problème à grande échelle. + +La validation `walk forward` est la norme d'or pour l'évaluation des modèles de séries temporelles et est recommandée pour vos propres projets. + +1. Tout d'abord, créez un point de données de test pour chaque étape de l'HORIZON. + + ```python + test_shifted = test.copy() + + for t in range(1, HORIZON+1): + test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H') + + test_shifted = test_shifted.dropna(how='any') + test_shifted.head(5) + ``` + + | | | load | load+1 | load+2 | + | ---------- | -------- | ---- | ------ | ------ | + | 2014-12-30 | 00:00:00 | 0.33 | 0.29 | 0.27 | + | 2014-12-30 | 01:00:00 | 0.29 | 0.27 | 0.27 | + | 2014-12-30 | 02:00:00 | 0.27 | 0.27 | 0.30 | + | 2014-12-30 | 03:00:00 | 0.27 | 0.30 | 0.41 | + | 2014-12-30 | 04:00:00 | 0.30 | 0.41 | 0.57 | + + Les données sont décalées horizontalement selon leur point d'horizon. + +1. Faites des prédictions sur vos données de test en utilisant cette approche de fenêtre glissante dans une boucle de la taille de la longueur des données de test : + + ```python + %%time + training_window = 720 # dedicate 30 days (720 hours) for training + + train_ts = train['load'] + test_ts = test_shifted + + history = [x for x in train_ts] + history = history[(-training_window):] + + predictions = list() + + order = (2, 1, 0) + seasonal_order = (1, 1, 0, 24) + + for t in range(test_ts.shape[0]): + model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order) + model_fit = model.fit() + yhat = model_fit.forecast(steps = HORIZON) + predictions.append(yhat) + obs = list(test_ts.iloc[t]) + # move the training window + history.append(obs[0]) + history.pop(0) + print(test_ts.index[t]) + print(t+1, ': predicted =', yhat, 'expected =', obs) + ``` + + Vous pouvez observer l'entraînement en cours : + + ```output + 2014-12-30 00:00:00 + 1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323] + + 2014-12-30 01:00:00 + 2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126] + + 2014-12-30 02:00:00 + 3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795] + ``` + +1. Comparez les prédictions à la charge réelle : + + ```python + eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)]) + eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1] + eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h') + eval_df['actual'] = np.array(np.transpose(test_ts)).ravel() + eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']]) + eval_df.head() + ``` + + Résultat + | | | timestamp | h | prediction | actual | + | --- | ---------- | --------- | --- | ---------- | -------- | + | 0 | 2014-12-30 | 00:00:00 | t+1 | 3,008.74 | 3,023.00 | + | 1 | 2014-12-30 | 01:00:00 | t+1 | 2,955.53 | 2,935.00 | + | 2 | 2014-12-30 | 02:00:00 | t+1 | 2,900.17 | 2,899.00 | + | 3 | 2014-12-30 | 03:00:00 | t+1 | 2,917.69 | 2,886.00 | + | 4 | 2014-12-30 | 04:00:00 | t+1 | 2,946.99 | 2,963.00 | + + Observez la prédiction des données horaires par rapport à la charge réelle. Quelle est la précision de cette prédiction ? + +### Vérifiez la précision du modèle + +Vérifiez la précision de votre modèle en testant son erreur de pourcentage absolue moyenne (MAPE) sur toutes les prédictions. +> **🧮 Montrez-moi les calculs** +> +> ![MAPE](../../../../translated_images/mape.fd87bbaf4d346846df6af88b26bf6f0926bf9a5027816d5e23e1200866e3e8a4.fr.png) +> +> [MAPE](https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/) est utilisé pour montrer la précision des prédictions sous forme de ratio défini par la formule ci-dessus. La différence entre la valeur réelle et la valeur prédite est divisée par la valeur réelle. +> "La valeur absolue dans ce calcul est sommée pour chaque point prédit dans le temps, puis divisée par le nombre total de points ajustés n." [wikipedia](https://wikipedia.org/wiki/Mean_absolute_percentage_error) +1. Exprimer l'équation en code : + + ```python + if(HORIZON > 1): + eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual'] + print(eval_df.groupby('h')['APE'].mean()) + ``` + +1. Calculer le MAPE d'une étape : + + ```python + print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%') + ``` + + MAPE de prévision à une étape : 0,5570581332313952 % + +1. Afficher le MAPE de prévision multi-étapes : + + ```python + print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%') + ``` + + ```output + Multi-step forecast MAPE: 1.1460048657704118 % + ``` + + Un chiffre bas est préférable : considérez qu'une prévision avec un MAPE de 10 est erronée de 10 %. + +1. Mais comme toujours, il est plus facile de visualiser ce type de mesure de précision, alors traçons-le : + + ```python + if(HORIZON == 1): + ## Plotting single step forecast + eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8)) + + else: + ## Plotting multi step forecast + plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']] + for t in range(1, HORIZON+1): + plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values + + fig = plt.figure(figsize=(15, 8)) + ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0) + ax = fig.add_subplot(111) + for t in range(1, HORIZON+1): + x = plot_df['timestamp'][(t-1):] + y = plot_df['t+'+str(t)][0:len(x)] + ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t)) + + ax.legend(loc='best') + + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![un modèle de série temporelle](../../../../translated_images/accuracy.2c47fe1bf15f44b3656651c84d5e2ba9b37cd929cd2aa8ab6cc3073f50570f4e.fr.png) + +🏆 Un très beau graphique, montrant un modèle avec une bonne précision. Bien joué ! + +--- + +## 🚀Défi + +Explorez les différentes façons de tester la précision d'un modèle de série temporelle. Nous abordons le MAPE dans cette leçon, mais existe-t-il d'autres méthodes que vous pourriez utiliser ? Faites des recherches et annotez-les. Un document utile peut être trouvé [ici](https://otexts.com/fpp2/accuracy.html) + +## [Quiz post-cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/44/) + +## Révision et auto-apprentissage + +Cette leçon aborde uniquement les bases de la prévision de séries temporelles avec ARIMA. Prenez le temps d'approfondir vos connaissances en explorant [ce dépôt](https://microsoft.github.io/forecasting/) et ses différents types de modèles pour découvrir d'autres façons de construire des modèles de séries temporelles. + +## Devoir + +[Un nouveau modèle ARIMA](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction professionnelle humaine. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/2-ARIMA/assignment.md b/translations/fr/7-TimeSeries/2-ARIMA/assignment.md new file mode 100644 index 000000000..02a97eecd --- /dev/null +++ b/translations/fr/7-TimeSeries/2-ARIMA/assignment.md @@ -0,0 +1,25 @@ + +# Un nouveau modèle ARIMA + +## Instructions + +Maintenant que vous avez construit un modèle ARIMA, créez-en un nouveau avec des données fraîches (essayez l'un de [ces ensembles de données de Duke](http://www2.stat.duke.edu/~mw/ts_data_sets.html)). Annotez votre travail dans un notebook, visualisez les données et votre modèle, et testez sa précision en utilisant le MAPE. + +## Grille d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------- | ----------------------------------- | +| | Un notebook est présenté avec un nouveau modèle ARIMA construit, testé et expliqué avec des visualisations et une précision indiquée. | Le notebook présenté n'est pas annoté ou contient des erreurs | Un notebook incomplet est présenté | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/2-ARIMA/solution/Julia/README.md b/translations/fr/7-TimeSeries/2-ARIMA/solution/Julia/README.md new file mode 100644 index 000000000..348654d66 --- /dev/null +++ b/translations/fr/7-TimeSeries/2-ARIMA/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle effectuée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/2-ARIMA/solution/R/README.md b/translations/fr/7-TimeSeries/2-ARIMA/solution/R/README.md new file mode 100644 index 000000000..8973d268b --- /dev/null +++ b/translations/fr/7-TimeSeries/2-ARIMA/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction professionnelle humaine. Nous ne sommes pas responsables des malentendus ou des interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/2-ARIMA/solution/notebook.ipynb b/translations/fr/7-TimeSeries/2-ARIMA/solution/notebook.ipynb new file mode 100644 index 000000000..b4231f0af --- /dev/null +++ b/translations/fr/7-TimeSeries/2-ARIMA/solution/notebook.ipynb @@ -0,0 +1,1138 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Prévision de séries temporelles avec ARIMA\n", + "\n", + "Dans ce notebook, nous montrons comment :\n", + "- préparer des données de séries temporelles pour entraîner un modèle de prévision ARIMA\n", + "- implémenter un modèle ARIMA simple pour prévoir les HORIZON étapes suivantes (du temps *t+1* au temps *t+HORIZON*) dans la série temporelle\n", + "- évaluer le modèle\n", + "\n", + "Les données de cet exemple proviennent de la compétition de prévision GEFCom2014. Elles consistent en 3 années de charges électriques horaires et de valeurs de température entre 2012 et 2014. La tâche consiste à prévoir les valeurs futures de la charge électrique. Dans cet exemple, nous montrons comment prévoir une étape temporelle à l'avance, en utilisant uniquement les données historiques de charge.\n", + "\n", + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli et Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, juillet-septembre, 2016.\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Installer les dépendances\n", + "Commencez par installer certaines des dépendances nécessaires. Ces bibliothèques, avec leurs versions correspondantes, sont connues pour fonctionner avec cette solution :\n", + "\n", + "* `statsmodels == 0.12.2`\n", + "* `matplotlib == 3.4.2`\n", + "* `scikit-learn == 0.24.2`\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "source": [ + "!pip install statsmodels" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "/bin/sh: pip: command not found\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from pandas.plotting import autocorrelation_plot\n", + "from statsmodels.tsa.statespace.sarimax import SARIMAX\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape\n", + "from IPython.display import Image\n", + "\n", + "%matplotlib inline\n", + "pd.options.display.float_format = '{:,.2f}'.format\n", + "np.set_printoptions(precision=2)\n", + "warnings.filterwarnings(\"ignore\") # specify to ignore warning messages\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 18, + "source": [ + "energy = load_data('./data')[['load']]\n", + "energy.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      load
                      2012-01-01 00:00:002,698.00
                      2012-01-01 01:00:002,558.00
                      2012-01-01 02:00:002,444.00
                      2012-01-01 03:00:002,402.00
                      2012-01-01 04:00:002,403.00
                      2012-01-01 05:00:002,453.00
                      2012-01-01 06:00:002,560.00
                      2012-01-01 07:00:002,719.00
                      2012-01-01 08:00:002,916.00
                      2012-01-01 09:00:003,105.00
                      \n", + "
                      " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2,698.00\n", + "2012-01-01 01:00:00 2,558.00\n", + "2012-01-01 02:00:00 2,444.00\n", + "2012-01-01 03:00:00 2,402.00\n", + "2012-01-01 04:00:00 2,403.00\n", + "2012-01-01 05:00:00 2,453.00\n", + "2012-01-01 06:00:00 2,560.00\n", + "2012-01-01 07:00:00 2,719.00\n", + "2012-01-01 08:00:00 2,916.00\n", + "2012-01-01 09:00:00 3,105.00" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Tracez toutes les données de charge disponibles (janvier 2012 à décembre 2014)\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Créer des ensembles de données d'entraînement et de test\n", + "\n", + "### Introduction\n", + "Dans cette section, nous allons apprendre à diviser un ensemble de données en deux parties : un ensemble d'entraînement et un ensemble de test. Cette étape est essentielle pour évaluer les performances de votre modèle.\n", + "\n", + "### Pourquoi diviser les données ?\n", + "La division des données permet de :\n", + "- Former le modèle sur un sous-ensemble des données (ensemble d'entraînement).\n", + "- Tester le modèle sur des données qu'il n'a jamais vues auparavant (ensemble de test), afin d'évaluer sa capacité à généraliser.\n", + "\n", + "### Étapes pour créer les ensembles\n", + "1. **Charger les données** : Assurez-vous que vos données sont prêtes et correctement formatées.\n", + "2. **Diviser les données** : Utilisez une méthode appropriée pour séparer les données en deux ensembles.\n", + "3. **Vérifier les proportions** : Confirmez que les ensembles d'entraînement et de test sont représentatifs de l'ensemble de données initial.\n", + "\n", + "### Exemple de code\n", + "Voici un exemple simple pour diviser un ensemble de données en Python :\n", + "\n", + "```python\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "# Charger les données\n", + "X, y = charger_donnees()\n", + "\n", + "# Diviser les données\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "\n", + "print(\"Taille de l'ensemble d'entraînement :\", len(X_train))\n", + "print(\"Taille de l'ensemble de test :\", len(X_test))\n", + "```\n", + "\n", + "### Bonnes pratiques\n", + "- **Fixer une graine aléatoire** : Utilisez `random_state` pour garantir la reproductibilité.\n", + "- **Choisir une proportion appropriée** : Une division courante est 80 % pour l'entraînement et 20 % pour le test.\n", + "- **Éviter les fuites de données** : Assurez-vous que les données de test ne contiennent aucune information utilisée pendant l'entraînement.\n", + "\n", + "[!TIP] Si votre ensemble de données est déséquilibré, envisagez d'utiliser une division stratifiée pour préserver la distribution des classes.\n", + "\n", + "### Conclusion\n", + "Diviser vos données est une étape cruciale dans le processus de création d'un modèle. Cela garantit que vous pouvez évaluer les performances de votre modèle de manière fiable et éviter les biais.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00' " + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e5wtV1Xv+5tVtR792u8kEoMkIGAUJEjwwEE9IHh5eHzCiYr40XPPJSjnw8XrkQN6RRHPOXJ8AKLyFHzw1vBSQQnEhMBNQtgJeZNkJ+wk+5Gd/eze/V6rqub9Y9aomlVdtXqO2btXr+4e388nn97pXnNVrVr1mGOO3/gNpbWGIAiCIAiCIAiCIABAsNE7IAiCIAiCIAiCIIwOEiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDkSJAqCIAiCIAiCIAg5EiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDnRRu/ARrBv3z598cUXb/RuCIIgCIIgCIIgbAi33HLLSa31eXV/25ZB4sUXX4z9+/dv9G4IgiAIgiAIgiBsCEqph5v+JnJTQRAEQRAEQRAEIUeCREEQBEEQBEEQBCFHgkRBEARBEARBEAQhZ1vWJAqCIAiCIAiCsL3p9/s4fPgwlpaWNnpX1pVut4uLLroIrVbLeYwEiYIgCIIgCIIgbDsOHz6MqakpXHzxxVBKbfTurAtaa5w6dQqHDx/GJZdc4jxO5KaCIAiCIAiCIGw7lpaWsHfv3i0bIAKAUgp79+5lZ0slSBQEQRAEQRAEYVuylQNEwuczSpAoCIIgCIIgCIIwZKanp/Hud7+bPe5lL3sZpqen12GPCiRIFARBEARBEARBGDJNQWIcxwPHfeELX8CuXbvWa7cAiHGNIAiCIAiCIAjC0HnTm96EBx98EJdddhlarRa63S52796Ne++9F/fffz9++qd/GocOHcLS0hJe//rX48orrwQAXHzxxdi/fz/m5ubw0pe+FD/0Qz+EG264Ad/5nd+Jz33ucxgbG1vzvkmQKAiCIAiCIAjCtub3/+lu3HP07Dl9z++9cAd+7ye+r/Hvb3vb23DXXXfhtttuw3XXXYcf//Efx1133ZW7kH7oQx/Cnj17sLi4iGc/+9l4+ctfjr1795be48CBA/j4xz+OD3zgA7jiiivwqU99Cq961avWvO8SJAqCIAiCIAiCIGwwP/iDP1hqU/Gud70Ln/nMZwAAhw4dwoEDB1YEiZdccgkuu+wyAMCznvUsPPTQQ+dkXyRIFARBEARBEARhWzMo4zcsJiYm8n9fd911+PKXv4wbb7wR4+PjeP7zn1/bxqLT6eT/DsMQi4uL52RfxLhGEARBEARBEARhyExNTWF2drb2bzMzM9i9ezfGx8dx77334qabbhrqvkkmURAEQRAEQRAEYcjs3bsXz3ve8/C0pz0NY2NjuOCCC/K/veQlL8F73/teXHrppXjqU5+K5zznOUPdN6W1HuoGR4HLL79c79+/f6N3QxAEQRAEQRCEDeJb3/oWLr300o3ejaFQ91mVUrdorS+ve73ITQVBEARBEARBEIQcCRIFQRAEQdi2/Je/+Qae/pYvbvRuCIIgjBRDDxKVUk9WSi0ppT6S/f/zlVKpUmrO+u+XrdfvUUp9Rik1r5R6WCn1ysr7vTL7/bxS6rNKqT3D/kyCIAiCIGxOrrn3OGaX4o3eDUEQhJFiIzKJfwngG5XfHdVaT1r//W3l9T0AFwD4RQDvUUp9HwBkP98H4Jeyvy8AePd6fwBBEARBELYW29GjQRAEoYmhBolKqZ8HMA3gGsfXTwB4OYA3a63ntNZfA/CPMEEhYILGf9JaX6+1ngPwZgA/q5SaOvd7LwiCIAjCVmWpn270LgiCIIwMQwsSlVI7ALwVwG/U/Pl8pdRjSqmDSql3ZMEhADwFQKy1vt967e0AqNvl92X/DwDQWj8Ik3V8Ss32r1RK7VdK7T9x4sQ5+ESCIAiCIGwVphd7G70LgiAII8MwM4l/AOCDWuvDld/fC+AyAI8D8KMAngXg7dnfJgGcrbx+BsCU9feZAX/P0Vq/X2t9udb68vPOO8/7QwiCIAiCsPU4M9/f6F0QBGGbMT09jXe/269S7p3vfCcWFhbO8R4VDCVIVEpdBuBFAN5R/ZvW+pjW+h6tdaq1Pgjgv8NITAFgDsCOypAdAGYd/y4IgiAIgrAqkkkUBGHYjHKQGK3bO5d5PoCLATyilAJMBjBUSn2v1voHKq/VKILX+wFESqkna60PZL97BoC7s3/fnf0/AEAp9UQAnWycIAiCIAjCQAIFpBqYWZBMoiAIw+VNb3oTHnzwQVx22WX4sR/7MZx//vn4+7//eywvL+NnfuZn8Pu///uYn5/HFVdcgcOHDyNJErz5zW/GY489hqNHj+IFL3gB9u3bh2uvvfac79uwgsT3A/iE9f+/CRM0/ppS6gUAvg3gEQAXAXgbgM8BgNZ6Xin1aQBvVUr9XzCy1J8C8O+z9/kogBuVUj8M4FaYmsdPa60lkygIgiAIwqpMtCPMLseYXpQgURC2Nf/yJuDYnef2Pb/j6cBL39b457e97W246667cNttt+Hqq6/GVVddhZtvvhlaa/zkT/4krr/+epw4cQIXXnghPv/5zwMAZmZmsHPnTrz97W/Htddei3379p3bfc4YitxUa72QyUqPaa2PwchEl7TWJwA8E8ANAOazn3cC+L+t4a8FMAbgOICPA/g1rfXd2fveDeBXYYLF4zC1iK8dxmcSBEEQBGHzE4UKALDUTzZ4TwRB2M5cffXVuPrqq/HMZz4TP/ADP4B7770XBw4cwNOf/nR86Utfwhvf+EZ89atfxc6dO4eyP8PKJJbQWr/F+vfbURjV1L32NICfHvD3jwH42LncP0EQBEEQtgdZGQx6sbTAEIRtzYCM3zDQWuO3fuu38JrXvGbF32699VZ84QtfwO/8zu/ghS98IX73d3933fdnqH0SBUEQBEEQRonAxIhYliBREIQhMzU1hdlZUyX34he/GB/60IcwNzcHADhy5AiOHz+Oo0ePYnx8HK961avwhje8AbfeeuuKsevBhmQSBUEQBEEQRoFUm5+SSRQEYdjs3bsXz3ve8/C0pz0NL33pS/HKV74Sz33ucwEAk5OT+MhHPoIHHngAb3jDGxAEAVqtFt7znvcAAK688kq85CUvwYUXXripjWsEQRAEQRBGjn5igsNeIkGiIAjD52MfK1fNvf71ry/9/5Oe9CS8+MUvXjHuda97HV73utet236J3FQQBEEQhG1LHiRKJlEQBCFHgkRBEARBELYtcWL0plKTKAiCUCBBoiAIgiAI2xKtNeKsKFEyiYIgCAUSJAqCIAiCsC3pZ1lEAFiOpU+iIGxHtNarv2iT4/MZJUgUBEEQBGFb0rfMaiSTKAjbj263i1OnTm3pQFFrjVOnTqHb7bLGibupIAiCIAjbktjKJIq7qSBsPy666CIcPnwYJ06c2Ohd4bF0FujPA1OPc3p5t9vFRRddxNqEBImCIAiCIGxL+qlkEgVhO9NqtXDJJZds9G7wectO8/P3pgGl1mUTIjcVBEEQBGFbInJTQRA2Ncuz6/bWEiQKgiAIgrAtEbmpIAibmvn1k8lKkCgIgiAIwrakJ5lEQRA2I91d5ufCqXXbhASJgiAIgiBsSyiTGAUKyxIkCoKwWRjLgsT5k+u2CQkSBUEQBEHYllBN4ng7lEyiIAibh7Hd5ueCBImCIAiCIAjnFAoSJzuRZBIFQdg8UJAomURBEARBEIRzS5wauel4J0IvTlhjj04vYn45Xo/dEgRBGEzYNj/7i+u2CQkSBUEQBEHYllBN4ng7ZLub/vu3/Rt+4QM3rcduCYIgDCbNFrXipXXbhASJgiAIgiBsS1JtgsRu5FeTeMfhmXO9S4IgCKujKUhcXrdNSJAoCIIgCMK2JMnkpp1WgFQDaapXGVEeJwiCsCGkmdRdMomCIAiCIAjnliTLJHaiEADQT92yieKEKgjChkL3KskkCoIgCIIgnFtSK5MIFDWKq7HU55ncCIIg1LHUT3DVLYehNVOdMIRMYrRu7ywIgiAIgjDC5HLTiBkkMp1QBUEQ6nj3dQ/iXdccwHg7xMue/jj3gVKTKAiCIAiCsD6knnLT5b7ITQVBWDvLmSrh4Ml53kCpSRQEQRAEoY5/vesYzsz3Nno3NjXU9UIyiYIgbAT7JjsAgJNzzIxg6plJnH4EWDjt9FIJEgVBEARhk3F2qY9f/cgt+JW/vnmjd2VTkxvXZDWJfcdeiUuSSRQE4Rywa7wFADg5x1zw8+2T+M6nA+/8fqeXSpAoCIIgCJsMynjdeUT69K2F3Lgmk5vGjq0tlsW4RhCEc8jJWWZGkGoSEw81SW/W6WUSJAqCIAjCJiPOMl7Srq+gn6S4/zG3yQ+x0rjGMZMoLTAEQTgHUF00X24qNYmCIAiCIFToOQYz24m3f+l+/B/vuJ5lAFENEvvSAkMQhCFCt/JF7j3FtyaRgQSJgiAIgrDJcDVY2U7cc/QsAODgyTnnMVST2G2R3NTR3VQyiYIgnAPoHpRwZSG+NYkMJEgUBEEQhE2GazCzndgz0QYAnJ7vO4+RTKIgCBsJ1UW71kPnSJ9EQRAEQRCq9OJiQsFegd6i7B43QeL0gruRQ94nkTKJjjJe27gmleMvCIIndP/mZxKlJlEQBEEQhAp2JnFZevYBAHZnVvKnGb0jVxjXOE7U7BYYUh8qCIIv6VrlpkkPWCdliQSJgiAIgrDJsPv5LUvPPgBAKwv0zjAyiTQxo5pE1z6JdmAux18QBF+8M4naWhxMHCWnzGBSgkRBEARB2GTYtXOSyTLQJIuTSczlpnkLDLeJWi+WTK4gCGuHjGvYdeapdd9xlZym7vXagASJgiAIgrDpsDNePXHaBFDUBi4xMnt0GAu5qdtYW5bK2Z4gCIJN6l2TmADRmPl34hj8ub4uQ4JEQRAEQdhk2BkvyWQZKHBzlYwCdiaR5KZuEzV7QtcXp1lBEDyh25WXcU2LgkRH9QSZ3TgiQaIgCIIgbDJsian07DNQwMfJrObGNS3/TKL0rBQEwReSm6aa6ZSsE6A1bv7t2gZDgkRBEARB2NrYgckw5KZxkmKxN9oZSwr4lhiZVRrTDnl9EkuZRKkJFQTBEzswZNWXlzKJjjJSO0jUq9/rJEgUBEEQhE1Gf8iZxNd/4jZc+rv/uu7bWQu0Is+pEUy1hlJAm2lcYweJ7CbYgiAIGbFPkEiKB67c1A4mHbKKEiQKgiAIwiZj2MY1n7/zUQDAqTlHWdMGQCvynBrNJNUIlUIUKAC+clPJJAqC4EeqPVQhFOCxaxKtINFBoipBoiAIgiBsMvpDlpueP9UBANz/2Ny6b8uX2MfdVGsEgULElpsW23AdI9Rz6PQCrr33+EbvhiBsCLYqwfleTj0S2UGi3Vtx9TESJAqCsClZ7CV455fvF2dHYVtiZ7yGITd94nkTAIADx2fXfVu+FC0w3O8JaZZJbIVZJtExK1jKJIq76Zr4lb++Gf/5b77B+t6Gzen5Hv7y2gf4DpSCsApeQWKeScyMa3zkppJJFARhq/I3NzyEd375AP72hoc2elcEYejYk4lesv6T670TJpN4cs69Uf2woZpETtAcpxphoBAFQf7/LqTibnrOoMzvPY+e3eA9aeZPrr4Pf/zF+/Clex7b6F0Rthi23NTZBCutZBJjD7lpIkGiIAhbFDKaODq9tMF7IgjDJ/ZZfV7T9sw2RjnbQ/OrXpw6W8mnWZBImUTXSVos7qbnjEsftwMAcOfhmQ3ek2a6WR/Nh0/Nb/CeCFsNO5PovMBVDRJ9+iQ6BJYSJAqCsCnZN9kGAJxgGmn8fw+cxB/88z3rsUuCMDTiIbubUrZslNtgpB6TrUSbIFEphTBQ4m66AZyX1bsenV5kjbv67mO4+eDp9dilFVy4qwsAOMLcR0FYjZJxjeuCU16TSHJTx3lQYgWJkkkUBGGrQn3NTszygsRf/Kuv44NfOzjSGRFBWI3esPskZoHQ4ghfN3EpSHTbzyQFAmWyiFGgWJlEbvZRqKdwpeUdxys/fAuueN+N67FLKyD32yNnJEgUzi1rq0nk9km0axIlkygIwhaF6o9OMoPEnWMtAMDhITzse3GKV37gJtz6yJl135awvRh6JnETyE3tFXlXh1MjNzX/boUBqyaRJIhiZrI2fGpJhw2dF6fmeTW5n7rlMH77M3euxy4JWwR7jYlfk8g0rrHlpunqgaUEiYIgbEpoYnaSKTd93E4jGzp0ZuGc71OVgyfnccODp/DGq+5Y920J24t+kqLbMo/wYUyuqc3DKAeJiU8mURt3UwBQqhxoDiJONTotEySKcc3aSPJM4uieW3T+a8fzg/hv/3A7Pvb1R9Zjl4QtglefxGoLDAenUgAVuakEiYIgbFFoYsHtUZYHiafXP0ikDEXCnFgIwmr0E412GKAdBkORmyabQG6aeGYSg0xKGAbK2fAmSXUepPelBcaaiD3lpsOEMve+SeNRXlwRNhY/uWk1k+gqN43r/92ABImCIGxK6MbKlXrtHjeGN4/OrL8rKu2a68RTEFzpJylaYYB2NJwgkSbJXOOaWx4+jW+fmFuPXVqBfZ25TsrJuAYAQqWcg4A4TdGVTOI5Ia9J9AykuNk9H/qezxuCq3gZJp++9TAuftPnMb+8etAgnHvsxa2+6/lFQWLUzd7E8fyyJaYSJAqCsFUhiQa3kTWtWg/jgUiTd8kkCueaONFohQE6UTAUmV4hN+Vdby9/z4340T/9ynrs0gpinyAxteWmyvlaTVOgk7XhEeOatUH3cN9M4jCy27RI4uw+mUELEMeZtfPD5P3XfxsA8JC099gQ0lQX95L1Nq6xXydyU0EQtio0IeQu7CZ5kLj+EwuavIsaTTjX9NM06+8XDCVIoetmlGVzdibRVYaealtu6p6VKmUSmTehmQXHCd02gU7fZeYCBDE9hONJ3zE3a7973BilcV24fZhZ7OMFf3Id7j7K6zdJZm5yXm4MiRUkOi96U01i1AFUwDCuse7fkkkUBGGr4ivhpAn1Qm/9M4m0Mi7uh8K5hprAR6F7b7+1QHV3m6Um0TVwtjOJgVLO16pdkxgzgvTbD03jGW+9Gp+/41HnMVudJM8kup9bdjA/s7j+wQ2dT9wgcVdW3jCMTOI3Dp7GwZPz+JMv3scaRyUY00M4jsJKUq3zBaee672cArwgAsK2u3FNSW4qmURBELYovoFXLjcdQlPwZZGbCutEolFkEoewCEGBKCdIHHYtbpLqvH+qqywwSZFnEgNWTaJGJ2uBwTHPuvfYWQDAtfcddx6z1aHDx5Gb2vf/YQSJdP5zpd0TbXOODKO8YaobAQBml3jb2pVlO08z23sI54Yk1ei0uHLT7HUqBMKOp9xUMomCIGxRfJMnvjWJj5xawPGzPLMbWnUehrGCsL1ItUaggFaoWJksX2gbHLnp0pBbGpgVeV6dYKqLPolB4B7YJqlGFCiEgWLVRbczWdkwzIY2C4lHTaIdmA+zTyj3e6MFCF8pLYdWdm5xg8Qdmdx0lM11tjKJRt5z1flekmcSQyBsefZJlCBREIQtSmLdTDlZRZrscoPEH/nja/GD/+sa1hiRmwrrRZpqBEohCoZTkxjnNYmpcyA1jLpfmzgpZFs+clPjbsoIEkOFKODJfVuhn9nNLQ+fxus+/s0t6ZScZ+kYCxB2ptjXFZUDBaVc45rcuXUICyb0nJld8susSpC4MaR2JtH1XkI1iUFo5KbO7qZ2kChyU0EQtij2s5qzukuT3YUhyE17EiQK60SS1SS2QsWSOx6fXcJv/sPt7FYWJedQxwkvdxtrxa7t8TGuCZRyViiY4x9kxkHuxz/KtsXNSL3mw7fgn24/uiUn8hSYczKC9vHjBm4+0OJiP9GsQL2f8D+bL7TwwM0k0riZRWmBsREkJek6N5MYAWHk1ydR3E0FQdiq2Cv+rCBxqMY1mbupxIjCOcbITRWiMGDJHd/xpQO46pbD+OxtR1jbsycvrtfbQn+4k85Sg3sf45rAPZMYpxqhgjEOYhz/nmdGigxQTm3BurE45QdSPucjMbccs0sA7EUSzncXe5jy+JJnEpkqGcrk9oYsDxcMiS6k6+5BYvZdqdAEiqnjdyfupoIgbAdsiddy4v5wW2sLDE5NFtWhSCZRONeUMomx+/k1lmXa5pjZhiTVGM9MOJyDxCFnEhONIpPouI9xdhwBIFC8msQwCDK5r/vxp2PHzSztGhteK4Vh4yPJ9A0Spxd6eNrvfRHvuuYB9x1E5XnjoVwZRk2ir8uxb72lcG5IrXu583dIwV4QmUBRuwaJUpMoCMI2IPHMJPYtl0af4O3RGXfzGlpxFndT4VyTaJP5Mu6m7uf/JDkgemQbKEh0nSTbctNhmDel6epy05mFfqkeOS0FicyaxHxix5dJsvvtTZhMIjdIvPngadz07VOsMcOGAql+op3vyXaQyAna5rLv/sM3PczYw7KhCE+5Mny5KX+c3z7e8vAZfO3ASa9tCgWJzoLEIHDPUuc1iYF/JlHkpoIgbFXsFX/OQ9uehPhITh9jOJzS6vFWNJsQNhatM7kj0zhlqmOCRG4msZ+mGG+bsa6TUTuTOJS6sdTuN7Zye8txgme89Wr8n3/zjfx3NEEDqE+i+7bCMOtTybi+SdLn25Sd22/vivfdiJ9//02sMcPGvie7ZhN7sd/9n9YATs/zjqO96MCSmybDl5v6juMGiS9/zw141Qe/7rVNoYBMyFpRwMgkZvdvFRrzGtcgUYvcVBCEbUApk8h4aNtZFx9jDc6YXiaDjVP3FXJBcCGhiUXIczfNyu8wt+zugJimGlqjkJs6B4nFJGSpt/5BYppqdKPmmsQv3fMYAODrB0+XxgTkbhoo54xnkqYIPdxle7kBCu94kCvq8VleG57NQClIdJRlluSmnPt/9lru7dg3k9j3DMB88O2XSsdE5KYbA0neI5+axCACVMCUmyrr34ORIFEQhE1Jcg4yiT7ZDU4zcXvCM4yVZGH7kKS6kJsyzmOarM4x5Ka0sDLGrEm0F1SG0TMx0UVbirpjctZyb6TG4eVMors03J7YcRaAcrkp895Dn4ebAd4M+NyTfeWmnKxveXtre95waxJnFvus+ncAJdkzR71SSGLlGbURFPXljPpmuwUGV24aROY/kZsKgrBV8Q0S40R729ADPOOaci8vWaUVzh2pNq6cfLkj3yafJpETTLmpvaAyjHYYaSm7uvKY2L1V7zl6Nvsd8kyicTd131YUGHdZH+MaV2MdYpi1bcPGDsxdzy373sqrSfc7fnHit+DX95SbPuP3r8YV77uRNWbtDqx+x2YY9cZbGbqXm3ZGHpnEIHTKCppxcTamJX0SBUHYungHiWmaZ0RcJ3f2Q9A3kziMTIqwfbBXnzk1iTR55ARtNPkcYxrX2Nfo0DKJmZlM3T3Bvt7vPjoDwDRip7YZgVLOGRiqSWwxW2Ask9yUmdGi13OzS5sBe+HO9Z7cL7mNMs5laxwnuIlTv8XFtQT3dxyeYb2+5MDKWJSk69tXbroVFy6GSele7novyVtgBEx308QElWHLKfsoQaIgCJuSUh0Ly0igcGl0XbWzJyRLjIevPXnhjBOE1SjcTRUra5BnsjzMN7gtMOxrdBiZxDgxEtx2VC/Bpf2Z6ka451GTSVzqJ3lbkJDpbhoq09vMR27KzWhR5nHJc0I+yvVmqS4Mh1ydYu1MLHeRkOD1ZeS3gLG3N4zjX/5s/MDZN9ibZzolC2XS7F4ehUHJkGnwoOyYk3TUNbjUWZAYhCI3FQRh6+LbAiNOde7S6Dq5th++nJX8cnC59TIAwsZRuJsGrBYMNHnsMbKPlGko3E0dAynPa9SXQrZVHyTS5/j+i3bi3kdnARhlAAUoSrk7RFJmybcmkS03JUmg533Ex8l5WBhXWjMd9alJ9GmBBPDuyXGSYiJzBmYtSg7RuMa3l2MuifU8tzj1zcJKzIIT0OaoEko1iUGz3HTuBHD7JwtbX5GbCoKwHfBtgREnKbvhtu/EoiS3kyBROIeQu2nEacAMv0xW3zOTaF+jw5gkk2wrCtXAmsQnnTeJQ2cWoLXGUr+Qnxt309W3Q58rDAIEilcTSseSU8dov943kzg/hEyuL2mq0Ykok+h2XEo1iUwlCcFRd5jFRX4mnc6nYZjCeGcSSW7qWa/JqW8WVkImZBHHhMzOJA6Sm978fuAzVwI3vTsbl5jXhy1xNxUEYfTRWuNPr74Pdx3h1V/41iT27Ye9aybReh1r9Tn1m5AI24s/+eJ9+B//fA9rDE0s2iGjATP8gsQkzyTyZNqx5zXqS6oLx9e6Y0L78117xrHQS3B6vmcyiVFRk+jibkrvE2V9EjlOkra7Ka8mbm3ZnlGWBMapRqfV3LqkDgqax1ohq/6u760KSTFJmUTnxUU/aauvEYxvWQSdz/3Er1XTKJ9bm4GScY2z3JRqEsndtOE76M2Zn49kJkh5JjEEEgkSBUEYcZbjFH/+bw/gP72X5+SWpBqtMDMSYE541zLZ5RjX2PVNYlwjNPEX1z6Av/raQZzJ2jK44O1uSpksD4ketwXGRmQSoyxwrvt8JvsKPH7POADg2yfnAQDd7HMZd9PVjyVNpAOl2JlE+17FykDGfNmiHWyM8kTe9LfkmYnRvXuiE3lnElmtMxKrTMFxnP39cgJZ3566vu2dYk/pLiFy07VRaoHBNa6h+sImE5o50xsWi9PFuCAUuakgCJsDWs3lSl0Sy+zA9cGmtVkpHcvH8SYkAH+FtpNlKXwzAML24dZHzji/NpdWBkEma3OU6eWZLPeJKE0+qQWGa01WqSYxGYbczm6BUZ9JjIIAF+0eAwA8cNysslOAEii3/nKU1aOaRFezG6B8r2JJfj0yiXaQMr88uvefONWW4zTPFGm8HbLLDQieKiTFRIf3vKFtTbRDLMeJ8zXq28ux1KaD85zydIolJEhcG7YCwvmeUO2TqBvGzR03PxdOF+PI3VSMawRBGHU4mTmbcrDHW9nlTkjshygrk5jq3OxA5KZCE1mbPtY5Qo547Yhkem4Ty+U1yE3JXMQ1Czl0uWm+Il+f3TZb/koAACAASURBVIuTFGGg8LidJkh8iDKJJXdTl+2Yn2Fg3E05NaF29spZWobiHsSpSbSP+ShP5BPLuMbVuMM3SLRbj3BNyMbyTKLbuNzwqRMh1e7BX6m/LqcnY+oX7NnZK86CKyH19muDnJJbnPryUk3iIOMayiSeKcbljqjSAkMQhBGHrPG5dRip9qkt9KutKtWWeK4+y4NUaIL6r3Emdmnubkr95dzOZZ+aRMqU5Zl7x7FDl5vqQrZVN9mNU40oVNg11kKggCPTiwCAsbaZCinl5lRKk+oo9G+BAfDUEz4OlH3PrJkvWmvcd2yWPS7RhdzUVd1RLFyEzHYP1jFhnJNpqjHOPP/pecOtZbQDBU4GOPG83nwkuL01SlSFgsJwi1FfXqpJHCA3na0JEvM6RskkCoIw4vhmEuOkkJu6TpxolXqsxast8TUESFNLoicPUqGBKMgkyYxzpHA3zTIwTFdIn0wiN3OfpEWWdDjGNWZ7g/okRoFCECjsHm/jaBYkUoASBnCSjtLCVrcVGrkvR25q7ZePw6xvJtH3PsvhM988ghe/83pce+9x5zFUApD3SXTMJNL3NNYKvdo9AHwTMlKguEo5i7pJ5nPK2sc5hnOor1FOkupckeAacNvnljzb1kaqTX1zOwwYmUSSm2ZZwTp30zQBlmeAqAvEi0B/MatJjERuKgjC5oAe1Ipmk46k2kyS21HgXCPlm0m0Jy6cyZbJJJLcVDKJQj2UDeScI2lKdSxZJtFxcl1kEt3rGCkIakUBAuV+3aS6kIQPYyKpS30Sa+SmqUaYBeR7Jto4Or0EwDKuUW71hTSR7rZCBMxMov1aTpBIUsUk1c59Me1jvjiEFhgHshrPex496zyGDgfX3dSWQPOCbc92RtrUlyvF6a9bqeV1XZS0a0kZ/S1LGcF1d271M8kRVmIyieY54FWTqMJ6uWmSGaFNfYf5uThdMa4Rd1NBEEacxZ65KXLlpiTR6DRIy+qo1iS6mnfQA7EVKubEoghIpSbR8PCpeQmYK4QhyU0Zq/9WQATw5aZmjNv5n/cFVM1SzjriNC2Mm4bkbhoo1TjZShKdB+S7J9o4djYLEsm4xjHgo3vWWCtExAwS7Yk8K0i0gxsPSeAwMom0IMA1hAEKKbPrOZlYEmiO0YuvuQvVu7YZ5z/15eTLTf2ydLGv3NRy/HaWm9qyackkrolE230SGTWJKjDSiSAsCqVLb5wFiZMXmJ+LpwvjmqAhsKwgQaIgCBuKt9yUHtoRb9IKFJMZd+Makg1FvCAxTdEKA7TDQFpgwEy0/sMfX4fXfPiWjd6VkSKvSWTZ5Jughsa6ypRKxinMrA1db64TySQFojBgXaNrgcx8muoE6Z4BAHsn2vnvx6xMosta1VKeSQxMb0VmJrGQ4PrJVF3vQcOuSSTzGU7Wkua2RQsMXr1rJ2JI9FANpHiZRO75TxP+8TxIdP3e/DKCcZJighnsme2leZDoLFuXIPGckWbGNa5ydzMoMRlEoDngIzlpHiSeKYxrRlVuqpR6slJqSSn1Eet3r1RKPayUmldKfVYptcf62x6l1Geyvz2slHpl5f0axwqCMPr4Bomp9ggSK/3euC6NE21eT64kNRPrTiuQ7BmKie5X7j+xwXsyWtC8gG1cE4CdSbRf5xwk6qIvYLvBpn16oZe3lMj3MZv8dMLAy1qfg873McsI1ky2kjRFlGVt91hBIgU3oYJTfSEFQV6ZxDRlL1IBJgDgZmV7Q5ab5plEjpFMnknk1dbSoetEIdMAiF9frrWGzurGOpG7uUhhXMN14fYzN4pTzQ5IgbJTuLMiQYxrzhm0ABFyFpx0VlsImGCxriZxRSbxjGVcM7py078E8A36H6XU9wF4H4BfAnABgAUA7668vpf97RcBvCcb4zJWEIQRZ4ncTZnjyDa6zXho0ypdO+TVltgGBJwHYpKmCJVCtxWK3BRicNAELUJwjk+ayU0p6HGV3PnUEtktH5oWZa78u1vword/pfQ3mvx0WuufSaSPHygz2arrd2hnEi/ZN5H/vuiT6FaTSAtbVJPIkjt6TMgBE3BMMuubh21c08k+F8lxXbBdSgFOdjvNthk412gCfn0S7Ux6JwqdM/5Jbq7j727K6ndoyUa57VW4x9/XpVcoYy9ABEH9fasWqi0EmttZ1AaJqdUCY8SCRKXUzwOYBnCN9etfBPBPWuvrtdZzAN4M4GeVUlNKqQkALwfwZq31nNb6awD+ESYoHDh2WJ9JEIS14Z1JzLJ0vBqR4mHfYthNF4Y3ETNI1AhDhW4rYMmGtiqbZcX50OkFPP0tX1yRGVsv6LzkSZk1VBYQ2e+xGmlmwAG4139RZsPYtNcHRd8+aY7VNx85U9rHIDCLMuu9QJBamcSwIZMYJxqtzLjmPz3r8ZjqRHjy+ZO4aLfpm2gmaatva8kKEqPALbC094HbSoReO9nNgg3HwGHYQSKdi5xM4ooenIyaRLqPO9dxoTCFiQLlvJ90LuWLJEyZ9rinKyrAbWWRoh3yzKUAY3pVmLm5LjZJJvFcYM9JQlV/36qlFCQ2tMDI5abnm5+53DQEwmi05KZKqR0A3grgNyp/+j4At9P/aK0fhMkcPiX7L9Za32+9/vZszGpjBUHYBPjXJKZsuWk+kcwMb1xXW/0ziZncLgqlJhH+9v/D5ot3H8PsUoyPfv3hoWwv74HH7NsWZu0cAPcgMU5Sttw61ZWJTM22Ln+CqfT4xkOn89+ZlhMBOi3edeMD7aNSymQEazZnZxJ3jrdw3Ruejy+8/ofzNiKBGlwTdHR6EX/wz/fkjenH2iHCQLEyWYmd7WHW0o0x20T41DGuBZrgLjGkrf6ZROSZdK5sNwp46g463CS37rkGlxWjNFcJqG/dZD/RiMLAGKC4thJJTSYrb0EictOhYi9AhA0LcLWQbBRolpvGy+bn2C4jL12wjWtaI9cn8Q8AfFBrfbjy+0kAM5XfzQCYyv5W9VKmv602toRS6kql1H6l1P4TJ6QeRhBGBaqV0ZrncJpkJhW8lV3zM1QKrYZeanXQ6jO7JlHrbEISiNwU5cnELKP/17CZyjI2w9pHmkyy3U2DIpPoms1KUs02CbGvm6Z6P5oIn5zrlfYxUGBl+32hXQoyA4i6QNauSQSAvZOdvKYTQKPhDfHaj96KD37tIG552GRLu1Gw6pgqdr891yCdeglyW/fQMVdqODWJeUacaQgDFCUArkFKqk2WuhUEbLlvFJrWMa7bKibyYC1KJvlzg2cmY58X3PKGKFBoBcq5tjN3/GZmt0t9Ekd4wW/UsRcgmmTyOUduBW77uPm3XZPYmEnM7sVhBxjfUzauGSW5qVLqMgAvAvCOmj/PAdhR+d0OALOr/G21sSW01u/XWl+utb78vPPO430AQRDWDXuFm51JUTwpWyHtMO0sfNxN+4l2rhtIEmNt3Y3CdTfu2AyU2y+M7sRistMCAMwurb7Sula01kVNIqtPIgVEzEyiFaRwZXNBgIH1fgBwZsEKEhPbEZJ3/p+YXWYtGjnJTa1MYh1KKQw6jLcdmgZgMoqACYyjhm01kaQpO2tGGccJZisF+t6mOtFQ5Ka0PU5ASsFMECi0gsC5LRGpNFphgCR1vyf3kxStwGTbONsCkPfl5dbAj7eZ7qZraGURhbwFUNrHDlPuW5LEygKoN/YCRNN9K+cDLwA++6vm3yQbBVZ3Nw1bwNjuirtpBCQjEiQCeD6AiwE8opQ6BuA3AbxcKXUrgLsBPINeqJR6IoAOgPuz/yKl1JOt93pGNgarjBUEAcCdh2fYPQiHiT154fXXMo2xfVZ2wyDg9XuruKI6T67zTKIY1wCbxzad4ohhZBLtua1r/zuAMonI2yk4q5S0ZvekK8lNm9pLZNfEmYUisDaZRJ4jJGBqQp/9P7+M91//becxtnFN0BDIGvlrc5AYDjCuse+hD59aAGAMb1x7KxK2bNS9Kbt53Rjze6PAfbITse8/X7rnMRyfXWKNKWpreQZMAPXgZGT3UuotZ75PV3llnJhAqsmlt3YfS8Y1/OfNGLMmsdwnkRdwR4FCFLjXadI+diKe3NSupRPjGn+SpFiAoBY8qy54mBetLjfNM4ltK0hMTX/FEZObvh/AkwBclv33XgCfB/BiAB8F8BNKqR/OjGreCuDTWutZrfU8gE8DeKtSakIp9TwAPwXgw9n7No4d0ucShJHmhgdO4if+4mv42xse2uhdaaRsyc/IHKRmksx6aNuyoTBwlskULTD4GZggl5tKJrGXJNa/R3diQSv5wwgS7foyTiaRMimUGXOVm5oghdc2I58QUgDWkKUDTCsMIs0yG9w+iYfOmCDs2vuOO48pahL9M4mDahKnreD30ZkltKMg71PJChIT7R3s+daSTnZ5/V37SYpX/91+/ML7b3IeA/gZMNGhC/Nm4u6fzRjXZEEiw4QpCgNPuSmzT2jubsqUm9oOxMyFo4AbbGu/mlA6J8dboXONprAS+9yiBaxVlQn9hUomMQJ0ihVNXmuDRKtP4qjITbXWC1rrY/QfjEx0SWt9Qmt9N4BfhQn4jsPUE77WGv5aAGPZ3z4O4NeyMXAYKwjbmqMzZiX4jsPV0t3RwW4o7WrIAJSbG7Nlc5nhQeK82lpeyeesJEeBQqcVSpAIv0buGwFNwochN7UDDNdJpM4DIp67adWkghtsDGxUn32fp+fLNYnUpoblbuohfEita3twJrF52jMoK3h8drn0/3QvCDKJqqtaI7FrEpmZLG7rjNiSqXLkpvT+D56Ydx4DFOcgp0aQxihlen72HcfG2b2Vakpdg6J+otHKA1LHTLotN2UoUGjcONu4xs/dVFuOr67fAT0D2e6y1sLFKKtCRh06jtFqJmR2zeHybGFAAxQ/q3WJJblpVpNItYyBm9w0Yn2ac4TW+i2V//8YgI81vPY0gJ8e8F6NYwVhu9NmNl/eCEqZREZvpzSTm4bKPWizZXOuPdEA+4FobpnuTZHNym43ErkpsHnkpjRJOzuUTCI/SLSlXjSxcKnJ8jWpKGUSA4W6eWSRSeyXxgVMiZ4vhdy0CNxW7GOSIuw0T3tI7lVHVXo5s2g+Z2RN7GxTnCbiNGUHiXRsua0zKCMx2Ylw5Myi0xiAdx+u2x4ns2rfk1uhcl+4yO6t5EzrnElMKJPIWFystsBYd7mpX01ikmp0IrMAyv1s3pnEdjjSqpBRp7oAZ/+uxOyx4t9LZ4uMIGDko0AmObXub6VM4i7jbjp1QeZuGo2U3FQQhDXywj+9Du+65gBrTCcPEkc3i2WvmrrWlZhxmXGNT03iANlc07aAYkWYs5JM7qaj/B0Mi81iXEOGFq4T1rVgZ7Nd5aYl23RXiRKKyUeX2YKh3MurPiClie3ccpx/zySJbUchLyPi/MqCct1kfaASpzqXJ9YxyKn0+FmTSXzXLzwTAPLG9hSku2Ru0lQj1cjdZbkZKTIX4d7vuq2Qdb35TvppeyyXauuezMqAZdLhVkByU8dMIkmgmfWP9j46t5cgU5goRKA4clNPCbouDICcXWLpHIm4EnTzuu4Q2ttsZexza6AqZO6x4t/LsyZrqCy5KbBSPmoHieN7gHgRWJ4bPbmpIAhr58ET83j7l3ieTO1w9DOJJbkpoyaRshQst7ncpbFZNte0LYCfgaEaKDGuMdjHbZTPSQoOOa6VvvhkEm3b9IAhN61mErkOiIOuG/t304u9/Hdcsw/AL0gp9UlsqEmk/WlCDahJJLnpC7/nfNzwph/FVb/2XADlTOJqFFmbTCLpev/R1e+Nd98yQaL7uey7gEPb41w39rnFzYAFypabussrI7bcFPk+NvXgrN1W9jpzDbg7XNvnBeda0NosnLYi9xYYeQuSiFknm1iZxBG+l486SWVOAqD+/Fo8U/x7ecYEiXYLDGB1uSkALJzMjGuyFhirXKsSJArCFoYewCM9IfdssJ7qwgLdNeNjZ2CaZHODxo1xM4lajGuI47NLeOT0Qv7/nEnrsKHsNkc250viMSG0DZgo5nGZl6+sP3LNGpiflIGvCwLs7MqZeTM5IXMRbk0iyfIUVpdvEqU+iQPadAyqSRzkbnpybhljrRATnQgX7hrD93yH6b7FyeRWG8e7Zntyd2V2w/kiS8QJNtYcJHLkptaCRxS414mnWcBPEl9+cMmXZJo2Be6fzx7XablfA3RejLVCVnuJhCS4Ab9OP8qMU7jn1ng7kiBxDdjuvmGuSqg5nqUgkWoSs3sZBYtVh9OqcQ0RRMbdFFg1m7ghNYmCIAwHmogPK0j85DceQT/ReNVznuA8piQ35TSqz2RDYcOktWkMQBNJtzouoJhcjzObItvmCnGq83qY7ciL33F9qT3CKE8s6LpxlSOvBbu9AXeCxu2TWM1IcV2Bg6yXV924JNW59Jt6JcapRrelsl6m7osk9FrlHiM69UlcLZPYVMsIAGfme9gz0V7x+/z4OwQ3lCGiMgDXTGIuE/YMEsfaoXNACvhfm7Q9zgJQecGDUSeusxpByiS6SkDTwtxlftmt5rh6vbk+b2zDmxYjc1n0xeTJtFOSm4bumUQ7S9piuMvaC6dSk+hPXX157fllB4krahKbMokVuSlBfRKBItvYwPacrQjCJsO3zyE9OIc1IX/jp+7E73z2LtYY2ySBNbnIVk2b5G9aa9x88HTp2Ln0e6vdlsfkmpwkA6XyzA2nD95Www4QgRGvSbRq6tabYkU+dM6Ia11MPnO5qcM9wrffXt4nbsAkOU40zpvsACjaYJC5SKfFk5v6LGoVxjVFv7HqfTNO04F9Ege5m55e6GHv5Mog0dm2HkWGqBUGCBRDIukpd7eDy1S7n8/eNYmagkTeYh9gudIyArBAIV9048grw4AXtK0wPGOWKVB7g8S1l2P2uolOxFpcoWNiFiX5WdJWqNhS5vE2L5AVypSk/MpVblqtScxCuYFyUzuTGDbXMVaQIFEQNgH2M8n1AQUUN/JRNk3pJWmxss6ZXGQP+yCon1h8+tYjuOJ9N+Ifbz9ajHGQzdVuK3v45sYRDvtJ7x1lNYkAz4RgK1EntR3lIJEmWKle//20nSvZbqOlOhaG3NHTXTMKgsZJcpym2DdlgkRaEEh01gImNFI718UuryAx2yfqkwisDIqSZPU+iUD9otzp+R52j68MEgfa1lfIj2OY1cS5TuQ9jWuqmUtncxdPKXiRSeTV0QHFuez6eDMBf8CXm6aF3NSnTygnk5hYizlhoJwzx3kmsR3x3E01SXCD3Hxr1THZORgGASuTaEugOV4CQhl7TjJwwWnhNNAaB6CApWkgXgYic791k5tWMomOclMJEgVhE2CvCp5l9G7L5aYjbJoSp2ku43TtkQUU0rGo4eF7Ys4YTdxp9YgsisTNpMR10koGNO3QPZNoF6STm+F2zSQePrOw4nejvPpsT5LXez9tSWA/0U7nZGKvPrMyWVSj5tenj66bpkb1lEkkuWmSIjeXMttzDBI9FlNKNYkNxyROB7epGOQueHq+h701clOWcY0VbLcCvrlIKwwQetSNcWWqa61JdD2P7TEmk8io96Nzi5lJTK1MIru/LilQuBn4PJPIG8fN0qVUbxlwnFvNz9xd1ssUaXTv5aNOseBnLTjVfQeLZ4DxfUB3pwkYe3NAe9L8LZebVt1NKZNYlZuGIjcVhK2EfeOuyvYGjzM375GekMca41n/QU7LAbLXb5KW7R43K2VnKn3bgCIjwnloh9ZklxMkRoFCK8oK0rfpw/S+Y3MrfjfKEwv7+11vwyHbJRBwC6RSa2LHcTeljHtuwOTRJ85cNytfEycak50Q3VaAM/MUJKYIlXF25GzPT25aBLJBg2yLFnuayHtO1hzK0/M97K4JEn3cZSNPd2WqwfNxNwXcg3Tf1i9rMWEKVLMqpA4T7BVBOqedBTcgKpmLcBQoFaM0tpstN0hMC8dXbrAXBibD7dO7M041S+EkFKSlbLP5XWNN4vhuE+wtngZ680B7wvyt0d20B0CZv7fGgKhrfq9EbioIWwr74cKZtFJmrjfCctN+UjSXdq2jAIpMYpO0jAJPqo8CKiYJDHdTckXMg8Rk5fH8i387gN/69B24+eDpyrYUwoBpVJFqPHB8ZWC1WbnuvuPY0S37pI2ycY19HnImaV89cAKv/8Q3WduqTuQ5UuYwKKSVLvPWYmKXZfYcm6bb2Z6m2ipjJBVg93i7kJtWFldcM4R0zDnGQS6TrThJB7qb5sFlZdxSP8FCL6k1rqHMpMu1TRmCoiaOL3dshfXGQYPGceWm9jno0/PQbMv1Xmd+hllNlrNxTRbsUU0iJysYBp5yU2Zwn1avG+eg1PzstkJWVj3VyB1f2e1tlFmAcD+OabaP2bnFeHYLBSXjmkELTr05oD1lZKML1SCR5KaV7yDpmSwiOYCR5LQkN5VMoiBseuybBmfSSquro9xuoJekrCwKQe0lmqVl5rOftoJE+6HNcjfNahIHZRL/5Or78fGbD+GK992IfpKWJoQcSRoA/OW1D+BFb/8K7j121un1o843HjqN5z5pb+l3o5xJtIMnzqLML33wZnzutqOsjDGdp/k14GiKBBQSPYAnd+TKFlOHSXI/MaYwO7otzC5RCwyUM/CumcTsmHMWEkp9EhuCvSTVA41rKLisjiP5bL27aZC/92rQd21qEhlyUzuTGPGCS/u+5VOTyHre2EEio00QULibOgdg2f2fKzfNyxQYQbptLsLJdpaDy4C1SBgoE9xzTISSVENlxjXceldauHA9jnYmEeD1OBYK6koHas+veAmI2sD4XiuTSHJTunHVyE1D657VGjM/o7YxswGARDKJgrDpsSednJVFegAMw8rflzjR7P5fQDHha5KW0UR/ukZuynY3zbIkrSxrsFowe9O3T1UyiSSJctve/oeNk9mjM0tOrx915pYT7J3s4KcuuzD/3ShnEvul642/nwse1yjHudJe/We5myaWBJqTSbHkdkGDuQi1pJnsRpjLWgvEaZo1EqdMIk9uypkg0z4FypabVoLELLBoomkl/9ScCRLrjGsG1TFWia37T8QJGnR5Is9pXRIFQR5IubdgKN5/scdz16x7j9X2EciC+6DB2bFuXJ5JpHuy6/aKWkZ32a75mctNnWWjxbiIE1za/UUZ95+idzC/3jVgZiATK5AFRnvRb5SxnaOjQfOEuGfkouN7gPlTWWaxkkmsk5uGloJn/qT5ufe7RW4qCFsJezLBWdmlh+AIx4joW5lE1web1tr0hBrgCEYrqTOLVpBYmVy7PrTjrNYjbMhQAMDFe8fxI085DwBwx+GZFfbngHsmMWdI35tp17F+G1vqJxhrhXjnz12Gg3/4MgBwdt9bK4fPLLAmukDZQInjDEyqnoVl9zFxNUhk1Lty3U2LYCNgGXcUxjUmA9+cSQww2YkwtxRn4zIZGzeTmB1z7gQZKDelru5nqgf3XiwykOXfUyaxrgUGp0+lHaRHoXKW18drkKkGAdiBlP06TqBuP6e45xZ9b5wsHfUEBNxNz9JUI1TwkpsGWZlCqt1kuFXDJ86iQJDV8nKNa9hZ0pKUOXA+jlSCwZX7CmXq5Ka110CyXLiUnj0MQAOdLJMYNBjX2L0UAWA5M/E7/3utIFHkpoKw6Vmr3NS10J745zuO4rl/eI230QqrcXOS5vWDPi0AmhzBSO5kZ15dZHP120tzswl7+6XtJRr7Jts4f6qDgyfnV9imA7yay2HyxN/+Al79d7esy3trrbGYBYlKKSiqfRlSJvGH/ve1+JW/vpk1pl8yrnHfT1pEWOi5NekGyu6mgNtEPq2RKLn1SSyClDazcTZtp6mXIGX2J7sRZrNMopH2oTCucfzOKTjkmXaYn0o1N6XW2eS7CUoyVgPu0/MDMoke7qZhEBhXZm62R5HclKGAyBYEAEZNonXcfSS/Zlt8SSanLVGRNeO1T1qL3DQsLRQ6bMvKAHP6JOb9RaOA5SeQpOb8bwX8fod5nSaj3tUYKbmpa7YD/STFc/7XNfjCnY86j6m2SQEa7iXU8mLc6ndImURyN622wKgGia3s9XueaMlNJUgUzhHfevQs2+lvqZ/g7/cfWtcsxXbAfpj5GNckzEzR737ubjw6s8RyUrVhrT4nujCu8XBbJEf7Ort7oNx2ouo2594nsZy1qbuJx2mKVhDg4r0TePjUPMqZRPe6pY3iy996bF3et59oJGnxHQO8Vfy1QOf81zMzIVdKclPGJI2CkwVG5nJFJtHFuKbG3dStT2Ka72crDBjGNUUA3GQu0k81wlBhysokmuCyMHxyPZYUHLIaieeTrWJfq3NyrYtAsI6mmiAKEge2wHAK0ouaRE5GkD4HjeP1BISH3NRzUdJDblrIhHmN6qmdScQMgPM2EZnc1KnlTGlxsfw7m8NnFvCK99yAB0/MlV6T90lkyFvDQKHTCljHX5PjaxiwgmaAn6WOE53J1vk9jrcqZxf7OHZ2Cb/9mTudx9jGTU2LWwBMkBi2gZ3fVfyuXckkVo1rdFoEkADw6muAV3zIBIjSJ3HzsBwnePuX7mdLoobJ3HKMl/7ZV/Hrn7iNNe7PrjmA/37VHfji3eszAd0u+GYS7ZVLzkofTVg5Aan9sOXIxPpJionc3ZS/+tkUuNFEyg6Qy8Y1ylmGm2S1VQODxMRMWp6wdxwPnVqoZDvB+nz5e45wUOkK3dfI4AAAy3xjLfgev36q88DGL5PIWf2vGtes3GetNQ48Npufx7ZtfRHYrL6tUk1ixHNApHO4KQOfpBotkptWMokUpLjeu3K5KWuCbH4OcjdNtYZCc5SoGuo7z8z3EChg51hrxZh8YueQJbLb4nCUDBRcGgdKnkwyCoO1yU2ZLRi44+zWJWFDvWvTtuxyA86zw86AObnSljL3zQt+f/gv92L/w2fwtzc8lO8jUDiOskx5FNAJTZDo3HOyEgC7jin20V1umqQpwlCxs9TbAc68yXaqF4ndvAAAIABJREFUHliWkiybmsS93138Ls8kknFN5TtIkyKABIDzLwWe9nLz7yaJagUJEkeAq245jHddcwB//m8HNnpXGqFVomvvO84aR/2yaCVW8KNck8jIUlgPCk52j2ytZ5fcZXM+9Shaa8Spxpiv3NSSllVX/+Oa1fCytKn+Znzw5Dw+d9uR8ntVTHLqVvr6SYpWGOBxu8ZwYnY5f2iuJZM4DEnmemf5F7MH5ljLziQOR27qO3HpxymmOuac5FxvFLDNM+SmeYP7vHfhyu296VN34sfecT2uu+8EgKpxjXmNk9yxaoDC7C0HoNbdUWudT76nui0s9BIkqc7HdVru/UWB4l7iU5NY7pNY2U+4ZRKrl8Sp+R52j7drTW+Kid3q+1gyrmFMyNdiXBMo/kTetybRq0+ifS9vuCfXjssk0JxMOo0LAl4GMneqXqWX3R2HpwEY4zLA+r4V0900+2wdhroAoMxxJhtlupuyHb+1zg2wAKDnqErYytCx5CwsVheu7fcpEfeM3HTvE4vfVYPEWrlpiFpEbrp5oMnT0enFDd6TZmhVitvkmGu9LdRTCnhYWTr+yi5Q1EdRRsBtW5ZEz3Efaf/GmDba9PwzRhr1N1Z7f/LMRvYSCi7rbsav+quv4/WfuK20GkgP7UEmIfkkOQsuzmZtAErupswgkROg+OKbbZtfjnHF+27Etx4d3KYjDxLbxeOmHQ0pSPScuPSTFJNZX0fO9UYxBEcVssLdtGafb88mn7dkrrd0bnZbYeMiyaBtsWsS08IVtM7dkc6hVuZuCphrLk3LbQpcnx/0/pwaXrsFRl3GX2sNrYtsYR1NAffMYr82iwjAurY5mcQArUAxJIHIximWAUpSkQS6Zpd6npnEtbTACAKemViSOtRx1W0vLdcyuhyTUplCw/NmOU5w5IyZwx3LXKntzxaxauCLmkTA/TvQuliU1NrtmNgLEFzH79A6t0a13n6Y+DxL6/wVagP13LjGrklcTW6alOWmNtIncfOwO6tzODXC2TbfGwDdQEbZ7n4z4Nvc2x7HChKzCSv1O3PBnpC7Bjc0Se22AijFr0kcZCZjP/wLt0VL2tQwIaHj+/Cphfx3caLzZs9A/cOgnxYtAIDCVTUKbHdTt89H81jOiqQv3IUf4u6jZ3HzwdN406fuGPg6CpjsTGLEmOiuBV/HvX6qMbmWTCJjcYWOw/gA4xp637uOGnc6krOOt0OvFgx5TaJzc+/CuKZuIlm4bwb5IsnccpxnG7iTXXp/15oxs4/mZylwsMbSP93cTcvbTFKdP8uqcIKUkrogZAR7ltw0DNzr9ijbljuAOh5/+16+3sY1tikMJ0hMMylzfv473k5IFdJmSHBL2Z6Gifyh0wtINXDJvgmcXYoRJ2lu5gR4uJta1w1ncSVQQCsa/NkOnV7I72vV+mZnx++kGmzLHM+nV2StcU31O0gTkxWMOub/f+6jwFNfZuSjgCU3rWYSk7JxjU1T24zqy5w+hbCu0DPr5NwIB4mezlV5kCg3kDVhT0BYxjWemUSqH+NkEu3veLWH2kIvxs0HT+cPllYYoBUEzm0RYsuAo2mSFtdmEldfNf2uPabhLJkPAMUkOQgUVIMkJ07SvCYLKIJE++bPvY6GkUnk9N20oaDmW8dmB75usb+yJpFjGrQW7IkLx1ihH6f598iqScy+50WPPondAS0w6Ly568gMtNZ5kDjWDlnupoldk8iobYutya6ZSFb/TtexlUlcik3rmMBqgcEMEgH3YEPnk616uSn9a7C7ab3hDX2OQWOcatusTG4UcMxFzM/8vsVoE2Fne5zdTS3Jc538uQkf4xp6Gd0n2XLTvBzLPbhky01pUTJsnsgfPGkWFZ/5+F0AgOnFfqkvJ8/d1ARtbWaQSMFlK2j+bEv9BD/8R9fijVeZxT27vQc7kxgWfSpFbuqXTKk6rgM1C07xsvlJQeKl/xH4hY8DnSnz/6ohk1itSbSh/okiNx19aOXm5NzyBu9JM76rRNzJwUZxz9GzI+3O5es2l5QykO4Pe8r6nGXUJPYZQeJrPnwLrnjfjTiSSaxbkTFXcP0OckewAatv9v5QbWVV2lG3avr4PeMAgG9bQaI9SQ5rbNrT1PRttDOJ05kzbGQ9SLk1ib5ZPt9tuE60gOK+tdq1vVRTkxgFakXLkvXAPgc4Tr2JZyaRAob5NfRJrLvX0uTj5FwPj51dxmLfnM/j7YjnbupZ20YmIWZs3YJM8b6TeSaxn0v7OIEsUH5/14nXaplE2/20iab9tDNCTWNcMp55C5KQmUmsyB2dM4nVINFxnO/iYppqlksvjQGKHoSua0d0TjY50jaRZK0zBjYur46xMolN19vcsrm/XLzP1IlNL/Ty8x/gZRITMq7JWse4LuSRc2shW1z5Glr8/OxtR/MxtH+cxTvqk9iWTGKOj3u5XafcqApJstgg7NS/SVNNok6Kv1URuenmga6tUyMcJPpKw0jSMcqZxIdOzuNl7/oq3vYv9270rjRSdjf1M67hBByUJZrzDBIHTSzSVOOrB04CAG7NaqxaAbNJtOUI1vTQtidEttsiUPS7qrup00Pv2NmlYnt2TVbNw76fZ1IKuZ2dSeTY5AOFNI5TD+eLfV6wDFcc7wmLVtaL4PRDWwv2+XSWIZ1OtXE3DZSf5JfTJ5HO2+6AyXWcaly022S47zoyU5ab5pPk1bdl18RxHGYp2ADqs8BF8BPkiySzS3Ge7eEaN9nv796mw7xOWZlEe3t2zWIT9KcVJljW56/S1G5j0D5GQYAo4PQ7LGSqfplEntzUvn9zyxu6TJOicgDsfo90MROr3V46WIFSR7Vur2579KzdO2nKh84s9PNWFgBYNYmU7cxl2kyDqaa2UADwwPG50v/bvVPDNSxASE2i3zzZNiFrziRmKsNoZQseM7gpkxg3y03JuEbkpqMPnRBDKNHxxneViO5Rrg+njYAmXBS4jCK+NYl2oMQJ1EmKw6lJLE8smm88C9aqKBlxtMIgc2RzfEBZNVCNmURrf+hzVFtn1Pc7NL+zHXmrtSXVB6n9vhNZkEjOvu0wGGibXvv5stcNRW5qbYMjL3adTNS5m3LqqtaCLYGioN0Fkol1opD1HdA1xmqBkZ23FEQ3yU2fduFOACYTYAfeTWYrdRSr1mDb5OeZxJqJZN7/L1ClRRKtzXa4xk2px31LW5MtOib2LcGlJrGp3iwdkElsCizrKGoSefLDct2YW0BqxvnVjfnWsqfp4Ix47RirJrFp4a4OWrjjupumWS9BTgbSPv5N2R56n32TJttzer6Xt7IAzLPKuU9itriSy00dF6pSvXoAbAeJcZKuqLd0D9LTkimSyE09axJtdVNDTbRzJnG1Fhg29HuRm44+rjKJKtfddxyv/rv953hv6ilnpDg1ceakXRrCZNcXuhFzMg2AWdG/4n03smoEfbGPP2d7sWN2rwrduDgtMFxrEhesQOTmrMl5txWixWkAXJNJrHNc3D1uVstOZfW+qdZQymQTlFppdQ8U56wdJNqZBDORqY4pVmNJbndk2mQid4y1WNImwK9PnC/2BMS35ckgqV1dTWK0ATWJZxlBIsnEuq2AlUmka9PnWutGNLleeVz6SYpd4y20QoXpxX5Rk9gK83PZ5TlS1L8ErJrENK0Y1zRkUaKgkFsfzc7/yU5UZNIZNZAEtyl7U20P7bJTTWJ1IT/rkzp4zOrHn2TIE50ok9fzguYwZJqLeMpN7UPOWVyM0zRv5cI5twBzT2bJTXVFyswMnBXjeysZnjXVwKflIHF6oVfKwLMyido8Z3K5qcP9pAj2it6ddZ/txGyhWDs13ysFKWqVBYhvPXoW33zELOyuyFKPsFpsWPhkU0t1ymHDuZzXJHbr32SQ3LTRuMZNbtowWhgmvlLO//w334DWZmJiT8DWA/sG0E80Oo5nDhmRLDBqdIYN3Ug5k0gAeMs/3o39D5/BnUdm8OyL9ziPO3R6AbNLMb73wh3OY8p9EjkPbWtF3mPcepjkULYqChSOZlbh5+/oIAoVQ35VrH7SBLR6f+4lKXZPtLEcp3g0247d762uthAoJrzVTGIrk1EFNRkACm5bYYCpfJJs6i13jrXYNu30HQ8nk1h8FlYT4NJEXqMd1U+i6T3H2xXjmiFkEu37FjeTGDIziVrr/FhyJkx0/6EWIb2a7cWpcc7dOdbKP0fLamS9WgbmzHzPuAdbExJWn0RdTI4DZSbyWut8om3X2tEiCZ3/U90IIaNxOVA9t3gZKXuSXFeTOCCR2LjglKQ6X0yswpH70ne3c6xlMrmOk8pyvz1eU3bTOD4LEhk1qJ3INHJnLXhoq5UL814+qHdt0zgaY7bNk3IWGUGHbdXJTWuyzQCwN3Orn8mMa2yZNieTrhTy/qIu9yA7IzuoKbt9jz8xu1x211xlAeKlf/ZVAMBDb/vxXO4r7qYFSWW+1XTPsKm2gAFqgs08SGyQm+ZBYk0msakFhvRJ3Dz4yq7oYTzNMGTwxZ68s1wCs9dyap2GDV3Y8wyJGFBkRjg90QDgh//oWrzsXV9ljbFXmzh1ar6ZRBrHkra6ZhKz4/WcJ+7Nf3fBVBetwL1Gim6sUWBL2VYGbu0wwHfs7OKxrL7Qdpvjyk1JMlqXBbMnyRN5JtFMknd0rUyia5CYfcfDqEm0Jw0+GTBg8CSmriaRIytbC3YQxDFhSlMzaeJkEntJmmdBfBqQU9ag7hyJkxRREGDHWAszC30s9pKSfHeQ4cRiL8Ez/+BL+Pn331S0Ugh4fRKNSYj5d90k2V60mWib858WZqa6LVabjurruPcEZUkC+e6m5fci4lQ3juPIfWcW+2iFCmOtkGXelE/kA54zMEkyI2a2J9F6oPy5eXtp/lx0DUjt3rUcuSM5eapcgsuQcioF6mjC6S9K/XXrxtF1S5n0hV5SMnziyYtpkcq9vjOpCTbqzknbefnUfG+Fu6bLeZykusgkZvvo64C/lXBVQDw6s4g3XnUHTs0tl6XMTRng1eSmJB2tbYHRZFwjLTA2Db6TpTxIXFz/1hmlGgWfIHGEM4m+x58ehkORm2bHf7zNq5GKU42JtrtkxR5nxjAyibFbQEo95J77pCJIPH9HJ5ObOsqo8prEZmlNPzHZl8ft7OLRGROw2W5zTe6mdKzPLPTzB6jJQCIft1JummUSgwCtMEC3FWBmsQ+lTCYlz2w4ThJ85ab7HzqNf9h/iDVmuVRL6hskNo/L5aZRuSZxOJnEYhssuanlLuh6DdjHwDUjDhTHkVbkmxYuoqDIJC70Yoy3CznHIMOJq+85BgC499jsykwioyWFLTcFqpmbIkgMMsk1XXM7uhG7JjHROpexudY62XLSukC2CCKb36NpkjbI3XSQtI948MQc/vBfvoX3fuVB7BxrQSkTuLnKP9P8ewvY5iKRR5BYcill3RP4NYnaDoCVapSuL8dJ6W8lVQgzcA6DQm7KMa4ZlIGk92lHATpRgMVesuK6YfVJtGpJ3eSm5udAAxQAi/00L8M4aWUSBzl+m/cvfn90ehFxYtxNWyNuTviV+0/gtR+9ZSjbsucvg87/6+47gU/uP4TXfvTW0gJQY3Z7NeOaphYYA+WmFCRKJnHk8a3NGWYmMS5lEt33ly4UTt+wYeMr9yUXt2F8NjrmY+2QffzHs/OE1e8q+944E4RyTeIA45oss/SsJ+xGGCjsHm+h2wozuSlXWtb80O4nKVphgAt2dPHY2eX8NeXawma5aZLqvE41tjKJZlx5Y7ZkCgCecoHpXzTVMQEiO5PoKTd9xXtvxBuuGtzcfuW21p5JHLRQsthP0ImCUp+5oQWJ1ufhBIk0uWNlEu0g0aMBOU22miTQURhgVx4kJiX5bhis7F0IAP9272N4/SduW7Ffud29ax2XZVxT10uQtk1/M0FiVpPYjQbK32q3l+p8Ec69BYYlN61xvKT50yB308aaxKS4/pvGDHqMv/pv9+N9X/m2eS8r4HNV5ayQm3ICIlX0zeN83+0ogFLcrHjhbspxzgWK9hJ158hDJ+fxg//zGvzyX38jb01Uctxl1GnSuDzbzMwkUgayTpJMrxlvh5jvxaXrJgrcg/siSHR/bhQOrM2tXABgqZfgot2mzdOp+eWycc0AhccpS1lz8OR8lqXGwJ6Mo8Avf+hmfOHOY0NdzAcGXzekUpq2FqJNltr8fcV5EmdO69yaxDQWuelWwD4hOFLOiaHKTYv94gQptAo8yn0S15pJ9JUEcmTGtI9jrZBVHB0nRSbRpyaRJzd1yyxRTeLeiTaefP4kLthhbnxRGDCMFezVz/Lviv0xze3Pn+ri+OwStNYlt7kgm1hXV67tc52uLdvdMKzNJGYTv+yh/qwn7AaAPNuzWk3ib3zyNnz06w/n/0/Hz6f9Ahf7/OVmqYtxzfu51EtKUlOAt/K/FnxrEknKxskk2tczZ8JELyXZVt19oZ+maGU1iYfPLOCf73g0zzIAJjtWd2792TUPlP7/WLZYEgVmsus6sS4b12T7XVfvl11bk90onwhNdfk1uXaQyDWuKfXOs4bqPNvZ/B5Bw34OzCQ6yE3tY0WLFT7GNZRtY7mbZgsC5hxhZI6VkSRzF45INu3TAqNp8eiT+w9hZrGP6+8/gZf+2Vdxer63MkjkyE0DW9rnMCY//s0OlPbnGG9Hudw0v244fTHTausYhtxUDXZ8XYoT7J1soxMFODnXK7fAGLB4R8oAwGQSE51lEkdcbkrJFK7nhA/VOv0mjmflL3GaluYy9H2vOE+SLEBfTW5avZ8PdDelTOLgMgwJEkcA+wHCWbUjg4wZptz0riMzuPfYWdaYkgGKh9x0VFeZAP8gkWQ1vpnEBY4pTPaQ6LZCZ0MAwHxvY1mg4pMl8qljXG0c9ZCb6ET47Zddije8+KkATE9N9zoWa2LR8NCOM7np7vEW+onGfFX+05A1sM+HIpOYWpPklavWFLjTxP3fXWKMjKjXYuPNP+PT3zyC//czd+X/P8zr5pzITQcEs4v9cv0cMMQWGNnxCxS3T6IZ02FkEn3v43QutcP6bE+aamhtjtnOsRbOZAsX9z02m7+m7pwEgGdctLP0/4dOLwAoZHPOQZu2g8RsP637UCH1ND8nLWezqW5k6gQ5hisluaN79gUwgWp9IGt+DjauMT+rC0eJ1rn5zsoxq2ekOlGAx+8ZK+1HKwycgwY7+xgGjGDb+t4irtwxMC0YuPcEqnd1fU7Zmawmx2m6vzzniXuwHKe4/dB05Zx0y4prba4l2hbt86r76GBcU7RlUhhrh0Zuqv36JCa63MrCRb5ebWVh3mfluMVMhbBvsoOTc8srAuCmXTx+tnBFnVnsW865oy03naz0LV5PSjWJA66b45nD7NxyXDauqblvmV9QkNiqf8O8BUZdTeJq7qYSJI48pZ5QjBsyGQRwT/7/+Odfw0veyTNOKWUSGZksGjfKmUT78wyy8q9CshpfGcM8oyddbpPfClnZ5lTrXJbGqklM+JlE+8Y2KPuS28C3I/zIU87DCy+9AEAmv2KsdAPZ6ltY/9Amuenu8ay58XyvMrFA/bi0yL6eXYzz15QnJCsDUvMZzGue9937Sn93zaQcs1xY6TP4wBlnf1fr8X0v9GqCROU+YV0LNLnaMdZiZfwpk2Iyibxz0myXH2xHDRO7vrUAsXO8qEn59Rc9Of93U8BH991PXPkcAMBDp+bz1wcDAnWtNZb6CU7OkUzb7pOIFftZbVS/Y6yYzNBiJqcmK041W7ZY7pNYY1xjTcaaaDLYsevfqrjUJJ6a6+HyJ5QdsM3xYEppA14WPl7lvtVEcf67O+Ca/TTncTvimJAh378mx+lUa+wca+GPX/EMAMaVczlO0c2yWIFiykaDASYhteOyfbSMa5rMy0huWhjX0OcziwIucwytTQ183qjeJUi0FmryGuCacYv9BN0oNPXNC/1KANz8jJpdLuaZ04t9JNQnccTlphMd8+wZSpDoWJOYB4lLcVnK3JQBpuCvKSvY5G6qk+JvVYLA/E3kpqNP1TbXFbLXHe2aRH6wMWzs5zRn4kqyGt9MIqdxeV6T2ApZN+M4KYJEbr8rwL9GzcW4ZrxTvuG1IkZzb1vH3zCx6yfG/GJXVqQ/vdBHkhSTpqY+WXGSYs9kYWMOIJPWNE+2cuOa7KE+1W3hZ5/5nXjjS74HQBEA1F07dtBvT8oBdxv5Kpxm7v6ZRLdxdS16ht0CY7ITsXq1kk1+txVg2fH6tu8jPsY1ZOe/olG9tQDxuJ1FTcqvv+gp+b+bDCfmlmM8cd8ELnv8LgQKuPvoWShl7iNNE/K7jszgkt/6Ar7nzf+Ky//Hl/N9oIzBoB6EFEa94Knn5X+j+yTH3THVhWxxLXLTsnFNto8DahKLe0L599Q4vI4mRQKRpBpnFnq4aLfJJP7c5Y8HALQC0/LHJWiw73dqgLlLFVvuGAXumcskLRxwOc8A6kPL6cFZ1CQ2Z8Tp+O/N7suPnF6A1oWT6GoB8D/sP2T6FtYpUBiZxCBAY30tffYgMEFi1bgmb9Xk8BXQokyxAOogN01rPltdTWI/Qbcd5iZY1QC4aQGCFkyVMs/SOCmkzIEaYblp1zz/h5NJdKtJpF6V870kv74GZanzbF9TVrCxJnFAJhEw2UTJJI4+9rXlI/fiBBs2HPmVffJzgpQ8kziiq0yA/2ejuQZnQm7DySTGudzU3QEUKNf2cDMpAK9GzX4gDTqP53sJ2lFQqqkCaNLkOCG0JDLNzY2zTGLWt+pMNkmwHfGq+w2Yh92eLGND10iSWK0zarI2VeMaAHj7z12GX3v+k/L9bKoJsq8NamafZxI9F1c4bVl826TYX9VqxjUrahIZRhNrwQ4SOec/NepmZRKtz8Ptk6gUCklmzfkImJrdJ+wdr32Ppkzi/HKMiU6EbivExfsmABRmSk0T8ruPzpT+f6mfYCkuAv26zJntLAoAL3/WRbjs8bvww08uMurcTCLXJdMONmqNayjbOeA9Gt1NrcWlKvTrpvN5eqGHVJsa7IN/+DL871d8PwDzfdr7PYi4EgC4LrD4ZhJNf0WzEM0KEtPClZNjQkbnv2qotyQZ63g7wng7xMEsIz6VBQCDsqsPHJ/DG666A//t728vOYCqmnOkibpsz8rnTbGQON6OsNAvG9c0tWoCjJHJV+4/seLz0vu5LDrZmfJBypWlfoqxVhEklrLUA2o7Z7Nn4eN3j2Nm0dSERtbC0TBqzH2YzBajh5FMca1JnLXm3o/NLqEVmqx9Y3Y7d91qqi9saoERN2cfARNASpA4+pTkph4BmK/c8aGT84xtuZ38K8eNvtzUviB9zF18g3ROWxDa1lg7dG7ADGQudaGxqeadW1kmyzNoWC2TONFeeePiGDnYxfZ1E0J6TRCo3O77zEIvzxABzdKyOE2xd9IUiJ+tySTWrbZWjWvqaKoJsoMXenjQ+/tKeDjZ7bLhkPs410xitacfwDNxWAt0Hk51I7aUljKJrvdXX0WILWWsM+Ao6l0VLt47UfseTe6m88tJLrd6aua4uzO7Hpom5NWs77GZJSz2iiCx7rqxJ5qA6Q362f/6PHz4v/y7/DWsmqxU543EnWvbaibJ57JPYtO1nWcfGz4buULuneyUspgc4xSSLfrUdtL3FTHlraFS/CBRm/PDtFdx/66Lhbv6oM02Dto72c7nLlRvNsi45vAZU4d777FZK5NoHX+Hj1c2Sqv/vu2eiGPtEAvLSSWT2xy4vfajt+CXP3Rznu3S2XGkhQSX761kXNMQbGit8xrxnWOtTDZqBcADgr3ZpRidKMD5Ux2cmaeaxCA/LsOoMfdhw2oSBzy7l/opdmRZ8Eenl7Cj28qv7er7ALDkpg0h26AWGE2BJQCEkchNNwOJZ5BCF7evA+JjViHyatjZBk5N3GYwrrEDE+6qKcDLCNqwahKzfey2QvQdH75AxUjA49zykR+GgVrV3ZRkQjatMHAOgJNVJoRA8aDdlWUFpxf6pZrEoGGSEKcaU5ltf55JTMu1jHWBJX2GJpomd/axml2Kc6MSwP+6IXMgF3yDG1d308V+uiLw4PR6WwsUAE92Il5WPDWTLU4m0ZYAsmoStbVwUVfvak1Qv2NHvQW6qpGpAtm1lk2SSO441aHsS/2EvLpQc3RmEctxmgf6dQ6geU3igDxdyJI7WplE5+NvfpZqEq3N2S0ymhjkbtqUSVwt2Ds1lwWJE+UeZ6ohIK2jdN8aYC5SJU7T3HCHW5NYGNcwFo60aYvQbqhlPDK9iFe85wbcdaTIVqcapYW7erlpEYDtm+zg7qPGeM+WmzYdx4dPmSBxoVfUfwVWKwuX478UJ1lLkGZTmFImsWVqEqvmOvS6KofPGOdQkiHSceS0TqrPdpZf0090pi4KsGuc5KZWAKwUtK73Zji71MdUt4Vd4ya4NPeWYuFoGIt+Pvh6d/hQqklsuG9RoL5vyixEH51Zyuu2m0pn/OWmqchNtwK+kzRqF+CbSfSdELq2KQCKVeBRziQmjpPdKnRMvOWmjIk8bavLbIFBK7DcFWEK1nhBovk53hrcNmB2qZ9PVG1YEqXK6iew8qFNMqZdY0UmsbRqXWPAASBvErxjrJXXYZRlW8GqxjV1NNUE2d/L3HJckS36PXhZctNUZ/LfwcF9FTsoGVS3t1QnNx2SPCmXm3Zb7ExiGBh3U9dJMn2eDqO2Fihne+rqBPN618D0mvyjl38/Pvdfn1d6TdPxnO/Feauk86e6+WvzbdWcj3R/+dirTRbw6PRSKRtcV+9EbzMgSWcyiYya47X0SRzobjooSMz+uMJcUOvcoXjlmPL2q5yaNxN/UicQTUqGOlZbpGqCMntAlklkZGXzFhiMBQ+ti/5+dZPk+46dxf6Hz+An/+JrpW3RMVQNQUpqZXL3ThTHcYc1uW7aTTJrml2K8wXuMODJTRetvqRNE3n7O5roRHlQavdJBFB7DVA/Wj7xAAAgAElEQVTd/PHZwrgsUGpgLXsVbZ3fTXJTUph0WyF2jLXQi1Ms9OKS3L1uHACcXYqxoxth51gbMws98xzP5L7DqjH3gfaKSjnWk8ShJpGeQ/uy+8HR6cXc6IuO/4ognYK/1eSm1XFp3Jx9BDK5qWQSRx5fuSmdkEueARinuXrfYYWkdlz22jjVIytH8K0lWqsDJUemmmRyI5+MYOgRJPq0wKDjONYOB46bXarPJHImMXUuddWHlNbIiv8DTHUj07i2krWpG2dcURV2dKPCuMaepKmVE8KqcU0dzZnE4jqcXeqXF428M4m8msQoyLJmDFWCcyaxl2CsVT4uISNgWAv9JEWgsoULj5rEFqOOznYg5sq07ex2o3FNNkm+4tmPxzMev6v0mtVqEgHgvGzlms63Jtkc3esfnzXcfuzsUqmutP66KTI0TXBqElNttcBwDmyQ78Mgd9NBxjWN7qaJbvxsTdlHgjKJeyqZRJ67piVJHrDAshwn+Mw3D+P+rD2KLdMMQ2Ym0VNuOqgmkXY71cU9syw3ba73o9e85Se/N//9ZIeClObjSJnEONWYph6VAc+4Zn45yTNSjXWr1jNirB1isZ9ktZ10/JvbIO3MggRqM0HjBmUfq7g8EymhMJYZ1wDA6fl+yZQNqA+cZ5diTI21sG+yjRNzy1jqp5jqrJ7J3WiKns9+i/k+2wKaF3jpOUT345nFfk0msTIol5uukkms1iSuKjdtAYlkEkceX7kpnYTcTCKt2nFkiyW5qUcLDGB0zWt8J+VrDRJZRjLZSjan1xWQyY3oYc90RQXM8XAN7ul14+3BEr3ZbEWySothm17n5NbkNgcAu8fbKzKJTXUbVJC/d7JTyH/SsrtpNZitM66p0lSTVZWblnqS+hrXMO4JJJMy5winJtExSKzrk9jgrHmu6SUpojBgZQSpl5pZWQ+gtaMDYnYIui338xgoZ1JqjWuyN44GLEAMcjedXBEkZtmUplrebN+N4U2AmcU+FvtJXiNYd93YAVoTUejublpqgeF4DZT7JK68J1TNdepokoAOqklsyj4Sp+Z7UAp5bXSxLV5NXEmS2XA+/uNtR/H/fPJ2/PKHbobWujSO426apshko9wFj2wxs+F5Y2//geNzKz9bg3TXDrYu2l2YN+Vy0wFmPpRJBICT2f28VKbQcEg+dcth/M5n78RiL8FiPy4WSRom8kZ9QO7WEfqJxtxSXMrk0uetkgeJWSaRFqlUlk10KfGptrKgfbLJg8SWHSQu5+dwMOCcPPv/s/feQbdlV33g74R775df6he6X7ekDpJaCSGU0BiQhMCWisIYCxFcDBhmbMAe12AzpgjWmMwUEpjgGRMNA7YZwxQYDLKEJIJQtpAsulupWy11fvm9L990zp4/9ll773POWjvc773PUs1bVV3f63vvvmffE/Zea/1+67f2Z9hYKnH3yTXje1Jwk1JvfNhGa85hsNnawjX88WhvPr1uSwc2CJGVWAmLtsCo5wG66U0k8fPCWrStJOGIxYJEos1MUmoLIzIk7LjPgyBx0ZpEWoBTFx9yRFID0jxPC6T0OJ1BHhZptSWxUs7dOQIaSfEGiRNLU3GNJOGjjtXaEP1IIqAdtKt7Wu67K1zDoYJlnuPs0WU8cW0fSilM57Vx0jlHnp6PgUe4JhcCfPe6bI3dupn0BAS1xQnRTX/yv3wcb3vgHAAKinOMynwhBVwgrG661KGbanpS9KEWtnmlMMi1clxqv0O3B2dUJl85SGLis+3Wm3WHuiJNknFO8ryqMZ7VBgGhIJGulYSAmeMVGdaXdC+1qVOTyDnJtIf5qJyxSCLV5I4S1U25PolsL0fPd8SgRF2jl6Wkx+WdCY6tDHtBvkR356ybpJLGvO/hywCApzbHuO+JTUyaWjqaZzSS2ARlet9ITHjkMpLoHv89D10C0PQEbH6bGKQL6rIGgRHOSVUrPHZlz4g2kYiQDsD6cyJ7+8fO43t+96P4d+9/FL/+3s80SCLV5PLjtAKu/vfZo7r+95Ere+bzPnVT8snObVJS0iYRSo/I19XdKV7z03+OX3jng61epRySDlhfZVDkZj14anPcojIDEpKoEa+7T62Z1wzdNKC4+6o3/Rl+5V0Pi+/fSDOsqEPYcNoCj/zxaP2986QVIaP7OGvuy766KdFNJeEaX03iTXXTz3tbFEmk7FIykpgvfiwgtQXGwVGRG20L000N2paWQaMFfBEFxJTeWnpcbaT8F+15GOsk0MIWQhJ3xhbdcG1Q5NGiSK4AgYQI1koZh/DoyhDX9qa6Po4QkYCU+W1Hl/HU5j7GsxrzWpk5c0puNG+pbkm/xyMpbSTR0k1Te2ICmo4M+OmmO5M5fukvHsZ3/NZf6bnXtaUkJ/XSDD83Va0D7JVB+3qXh0RPIpRiaVBgPKvietJFJCCkYwHAUpl23driFn3HLqbeVSOJ7dfoviJEjmpgjjVCTlJARPfAINc07YtN704TJDJOMv0rWJOYGGwDB+uT2KabNu/7SnQYwRvA3ycxF5JNZFd2pz2qqZ5HAt20I1wjiYv81SNXce8ZHRA9dGGnhSRrJDF+fdXCTWlrAil8Dgu+LpfWjJPrI/zqX37G/DbTJiKi3s81QwEV0NUnr+1jVim86Gmank19aNtIYn/c+x++jOVBgXvPrOPdD15qahLteeTGuXWrdxzXaOe1vZl5zYckUqKQyhu0KirM8aQyjIcv7eDTF3fx02//lEnatOr0pQRQnuFpzRw/c2m3pa4szVG3zihxTytIDPepnFU1Pnt5Dz/+lo+z799oW6R0ZvFjOcl14XjUr/fE6tCwCzacpDmLiofoplILDBXok1gMcFPd9PPA3DU4JWtn6aZpNz8tWklN2Z2bNqVP3zziobme9rsfegzv/fSlpDGLCtcsgiQqpczmkkzjaTK09P8xRoIrwwQkxR2XMk8T3AwLUchEKaVrG7iaRMGx8B3LrS3p3s59JHGKHadGS1Q3rTSydvbYMmaVwsOXNC3KrRvoZnZdBUrJJCTFvS47k3nrPKYkBACLZPrUTf/68WvtubtoW0rdXkSQaGtg+jWJKSrJixrR1EZljlrFIYIuLdGqC4bnqkxwky5c4zrJonCNj26aMcFl5548vjrET3ztC/Cr3/oSMwZgAqLKouIbSwNDgVvuCHe06aaq9R5nseqmdP+PygVbYLh00+Q5tucA0JotP9tBuunOtKds6o6LozL3++11hyml8OS1fbzoacfMcV0kOb1PYhMkprbAyBvhGhZJ1K+95t5TOLc1xu5krtkdvd/GBWD2/P/I1zwP955ZbymHcr+NVEO/4PYmSGzopkVLAbc/7uruFCfWhjh7dBmb+zPsTudGuIbuke69TGwfwNbzAu1AihsH2D2AFM9deq1GEvlr4Pb+u9KgpNL9T3ME9N53ZmPJIMU9uq8wx9Egx5HlAU41KGQLSRQegD2n1VfKXna9jM73YfifMTWJxPJZHhRGzMplVnEJP6tuugDdVEIfgZtI4ueLLdqnb1G6aarzD7SdwKQ+fbUyi+thPKT//P/9a/y9X/lA0phF1WUXqUmsatveIClD22waRFmKdULrejF103llr1uquuPyoBR/G6FyLN20yOJbYDgOcC5QZDT1Sf/76MoQ13Zn2JvOHaeJHzevtXDN7Q1liEQgXGeL6z9F70km1iQ2gdmxlQG2HbrpqCQkJX5jpeP7xjzwhJaPp0xyVSsURYM2L5A48ql57js1MK6lyPgfxAiBp3MZkyhx6b6LIImjQYGqVkkiIV7hGof+KRlHQaTvcZ3rv/fyp5maLhFJdxQg15dKI6axVMrCNUZZ0fM7Y1U56dkqc0Kk0pBEiW4XczkyJnComPPomqGbCge4tDsxKK5rPpGQrrntFaTjXd2bYVYp3H1yFVmm200AMH0yfbTFrtFzkyx41tSBDwSBNUpAUDuWpzbHLdRMqtN06xYB4Fte8Qy89bu/zPy/tJ5s7uvA6a6G2nexERGidg/03V27sqfRX2o4vz+tsDJqi4t0n1NNCSbUfmjWvCMd5UrfHkCK5/o8hmtJ3SDxsaYfpIuScnX6QBMk5xluP66vg2UJyPfkZF6ZxM0zT2s00Q2ApWTHjpOwvNSc/8M0OgcpSfKDHgvwJU7166NBjqtNYP+Ku0+Y93Mv3VQKEov258jqyk83LW62wPi8sEWFU8ihPpQWGI4TmIYkuip18cd76MIO3v6x89GfP4i1H+y036bH3Hj6raGbNo5ibDBFiGAqbWhe2wx07DxbwjUCIkXN4qU+iUqlOZJ5npmNuer8Pv01hCQOsT2ZY3N/ZpFExkmoa4sa3NYEiZ88t9OaMxfsuVQ3yWQkUT+/t6yNNN2Ugu1hGt1OGwWJ8pjzWxoZoqnOGucmtScaCa4MPXWylDXt9kksE5QWD2JUI0WiK75WHWQu3TSpT9mCNMkW3Y4J9mi99SUguJqgELotoQazWmFQaNEMjSQ2QaKpyeo7kpbKeXAk0Z231EqBM1uTeAAFViZIpPlIvy2kUirSTQUklzO3rleiqRLie+bIEo4sD0yQ6NLkk9RNF6Cgq0ZwZSCMo+MTHfPc5tiItAC2TpMVE/PSrfnzT/TNs0eXUeYZSzflLtvV3SmOrQxxZEXX5O5O51jpBlIckthMMcsynN7QiYEjDaXQ1/KEKIgGSaxVS/BGYl1cc3r/PXZlzxzHR9t1fwMhnsea+9OHbk/mtalvveekDhKJJukT1NtzVNx3JnP81SNX8HPveJD97I2ww6SbRtUkzu2e+K++4QvxPV/5LLzszuPmfZ5u2nxXiG7KBZch4ZqbdNPPfXNviJQAzCCJiTc/LQCpQYNRm0us21teAEn8ip/5C/yD3/xQ9OcPYouqSdYLLD5ucJfWg1A1TlO64h8JEKQGpRZJjA9IAX9N4nazYXDqpoSUxNxf9JEW3bT36NhN+8Sa3gTPb01MZp1z7uj6DIoctx3V6mOEJK45waWUofX4MSjznG37QNflxNpQI4kVBRvpzxs5wj4qJ9GSKAtdNfVW2iFPS5KUee5Fe1zJdddCQgfXyyyS2ASJEfcyPdd5o25K3xMep/8ulWnXrXaQRFaAxrknJePQbat2yI8Tm4I3wk0AsLFsn9Nen8QWShdz/8epm7rnf1DGK3K6dcrcmmCRRvk7OHXHEJJo0cf+e7OqxrW9mVl/+GOFf9/eZN6qv3PnRUaI76n1JRxdHhiq5epITm5J1uqTuEALjJGwJtC1JCTxyc39FmrGJSBoXCi4534bBYlHVwY4e2wZn720az7vQ4AvN4H90WWdXNwez7Ey6vRJZBgobk06JRUJSfS1SjFIYkPNdGtQy0JuDbW5Z5E5ChLz3K/cDdhnn2ijRIeW1gQSbyNGxkvvPI71UYlb1ofmt0lJErfV1950jtf/m/fhX73jUwurwqeaaYFxCMermvp+QPavxw7d9MuedRL/5DXPbL2vUfFukBhJN3VrEpXS9FNfC4z8JpL4eWEu/zypTtBpVJ/Sg3ARjvasUqZwOwVtq9RiSOJhWrtPZboCaBKS6JzzRfodpqgt0ueIbhob7Cml9PUepQWJdB6HZS46g9TQlqtJHCTUytL3a+Ga9vHNfJTd0J9/9oh5nZwmztlyRULWlwbYWCrxyXPtIJHLyJv/9TigoZrEW9ZG2BnPzX21yHNjKNCe+4MU/rYakRxSDhwUeTKVPM918CIFlxLdtMjjaHYHNepBmEI3tagwDogkRgY3qtMnUUASk9VNjUPIj5GClFll2z24tPAeJY0JEn0PQAySNa/qFr22zOORLHPdcn5NcGtNJeOo6/Y8BoJ05rcRneyEh24aI1yz6zRzlxx5QnxPrY9wZGWIJxr6obtuxfephBWzWqAFhrQm0PU/e1QjWE9dG7eSJNI9WddyCxJADlI292co8gxroxJ33bKKB5u2G0UuB3uAgyQ2SZI95vz36aZttJlExI4uNwGYpwaSGBw7Bkm08xsUHrpp02MvyyyVs5UkCSCJpHAaQjtp3aRk21e94FZ86I1fYXxCXwsSV0Rtb1qZdYzaS91oWySZDwDX9qYmyRBr81rZJKGwJ7pIImdcyYGmkWZyhivL9PtuTWJI7AYAips1iZ8XVrk31oKiMAsJriQFpFYCPUVwYl4frCbxMAqdF0US6TQk0XYXpBYTJY3QhJhjkpR8nqcJENAUVxLpppT95PoIkhm66YivSQTingGXkiY5TW7/uefdtmE+t9qlzblBonFQ9Xk+e2zF0rZcJbcercOiGJIVApLSChKntk9iarAB2IDChzQTkqiU7n01rxUGRdODM5HJUOY5BiUvUgG0i/RdK/K8qc+9sc831aVaJDGCbsrdWxHnpTbXLQ1JrOra9klknK0Y4Zos6zONavM7EpHEujbHWndUiJe6qsAu3bT5G0YS+fOolMI3/vL78Dd/9l0tJHF4ULopK1wjf4cVobHjQkgifSfn/FNCxidcE4Pu7TtBihRIXW6olCfWhji6PMBWk5CjcWXzzMVY7dBN57WKSkKb859n4ppAa9vysMCxlQEu7oxbSRJJlEeXTXiCdCFIubY3w5HlAbIsw90nrSpnkecO3bQ9bjyrsDutcHx1gKMr9rqtDNsCNH1RmLYCLu0hR1fCNYlUp0aCY93eqT7hmuOrQ6wNS2w1e6ur7tsLEjv7FCGJNGtJzI18FVpHM6fOm8ZJy10bSawMtfVcU/Zwo82CImllWV/4I2/HC3/4T5LGVLXCsNT3VqgmkdbTrmlWSOfFOkAbBTSa6NYkGvQxIFxzk256uPYb7/kMPv7UVtKYWinTEyopAHMcl5S6xMVoksrU9aQKtSxCNyU7jGLjlnBQkpNcN2Pi5zhtIYlp14xqdIA0ZCNVuIau72qqcE2Npm5SRqR2PEgibaoxzwAttMuDQnS26trSmAZFbihOXSTR3ettKwuq2Vg27/laYFj0KRAkMpdt4khiU+AGOEHiAkkI3/1xeWdinIire1NTt1omiIQAbQq09AzsNetSt0+izapHH24hM3TTZu2KUYJu1bua5y1+HF23FFVgF0nsNel2kDXJOIpSCEmUUIN5Zeu/nnvbhnmdxFcKxpFUkUkS6b585PIe3v/wFTx8cddQ0ss8S+oL66qX+hRYQ2gngNY1oGvvqwnNBHXHyzueIDEJSZwb4RQpAJgZR74wgQngrHcJSGKlFIrM9l2N2eNcuq+EANOeWeYZTqyNcGl72gqIDAWUoUl6bv/mueGRRKJ7un3pWkhiZ5pUF7i+NDAIG6DFaOj3AQySqNr3CCGJlCDzXW+rblrZ30t0U0/y7lrz+9aWSoN6ucmtHgW9hvkMYGsRbd0z/ZYOkmjEVnj0y9fSyFXa3pvMcbwJvM9vHk6QaGoSD6lPYpHnorov4NTplwKSmDHodj33C9AA+n0XSQyJ3QAN3fRmkHio9kP/+WN43c/9ZdKYeaXMguKjifXGNVkLwELYMUY3YBq1tcaAbv7IOSqlFf6WE4UcXAs1Bb8e5i7AaUpu+u8iYjeLHMutSYwJpFy56xQBAhqXiiQSauPb1Hx005RngGiMozJ3nNb2OIU2O4PEI2wLDP06Ry0jh/yL77KqY2tOcNl1tmJQCglJtDWJ2gm/2tQKHoRuKo1RSuHy7hR33qIdJq2mamsSY51IOlaRZxjknppEEUlsz/dGWUXCNUQ3jUimuQqAC6mbJtYktlsA9B07E+wFArDuFC0iym/z5LR2/ZFZpcw68+pnn8LL7zyO/+lL7sQzmnuGcySNroJnjj4k0UUbnmhq6WxT9kj0y0nUcI68pZvK30HT59RNve1tsowVQLm8a9E9bow7b5/tTysjnOKr2wP0eb71SD+5FVsTCjjCNUVCLW8zHQpSOPTRZYDcsjbEpZ1Jq72HTzk0hCRKdNONJkg8sWopv26ZgtQmoiwynG3Ey77iOafxd150Vr8uUNDdejTAqsq664n+XH/+lCicVrUuH1L2OvtUaccNwrw2Kk1y0UUSe3NU7XvZ+BNOgO+eg+78aG3rWu5JQOw4LTB2pxWOrerrcf6QkMTDFK6pGmV0X+I0SDfNOLppoLYQ0EiiW5MYSzet/HTTAH5501IspS7QNaLp+VSsOJtXNdZGJa7Mp9H9zZRyWjAkqptSjUjsHOl0HARJ3J9VOJY8Ks1iGqD6xpHcvc+JIHMdxzTnv27ukfjMrus0DIsiiTYK2OsWi+YSalM2NRTKESQgI0rMOkM3NcI1EcebzCosDXK9kTYf725SSrWdVsrm0+LMbYjGIWzee81zTuFH/uhjACxti6sZoP/t/l7XJEoU1QRSxvtaI0ZAdJRFhJGkZ3Q8qzGZ13ja8RU8dGEHW+OZqUFLebYBq5yrqWX82ie2wEhAUQ5ipBKYVFvYQkTiKdD0WyhxF1//5ReucZFNyTKG7ti9l7tmUJsukljX5lnM8wz/zz/84tZ9bZ8be6/QsX2iMIWnKbhbt0SCK2UApe6aOwcOEYypSeTqxmKCxDzj93+LJPZrEqXzz9mu09/VCge1P1PVuv1Enmf4wjuYGuwEOjk9N6ZXZVSQ2D7/HLJKtO0yz3DL2gj3P7GJ46tDhm7KBYnysYs8A5dP3tqf4UiDXNH6CujgyDJJ5KTMs06v4wM/8BqcWh/1xHW4pIx7j/zw334+TqyN8CXPvKUZZz/Xtcms1n1q5zX2pvMWulp6knCzusbaoMTaUolPX9T1lnnmC7bbqPgLmlr913/R2dbr3fPfrUnsWiHc/4BFZgFgfzo3pSYXdw6nJvEwW2CQwJJPzI1qFYdSwM0K18TQTTtIYkjsBkBMn8SbQeJ1tBTRB9cslTCN7jWrFY4STTWxvxyQTjctC4LR4zYaK8DRIFILIImLtveYV7WhL4aMejsplU6lJZtVNYoQHQBdumkitS/LMCwbZzfiGrhIQgrd1G1lkTJPyj6XxkHriw0QYsC1wDB004h7eX9WtWg8nJNcK9Uilh1rnAWqi+Q2xK5D/vQTq3jT130BPvLYNadvVd8BUlFOMl9bQsEWnROiDaUi8FSDCsj3B53/W49o5VbqyzgcFCgTnm2gSVxk/nVrX1A3TQnaDmJW8Cke3TOoWJ6mbkpfTahlrEPuyvtzAhxRgiuZD0nkx8nqpu12A93Eh2k54wZg5rPiFL1I4q5DSXu8EVzRqswybatr7nniaIsxgawvceRvwSDQTXcnrQRQd0z3WJK1hVOaeTHBDc3xRU+zqVVSqE1pO0M18Cl00y7dl1vG20jiCJd2prj7ZB9J5GrpSg+SmGVC8DWvjd6Dew2OrQzlY3Wem9MbS6336Tbw9UkEdCuSn/jaF5j/l4Rr6lphWtW47cgSntwcY2cyN/s9oGv1petGz+raqOwhufxva8/ljuMr+Oz/8VW9OfaQxFkgSPQ8224LjN1pZZ7nw0D2AOtPLHq8WVV768Fdc3156XjTqmpdo64VTMmBppsG5tCjmzb/vkk3/dyxFAfLNaISpjtpyhFJiF/8yVKFawaJgaylLaYhUq7tLxgk7iWMI+GOIs+SAzey2HPZFq5JudZo9QSMUwCljCgM3TQG7aZxy4k1iYSI+BRYt8dzrA4LdoEcJgjX7E+rFjrF0Y1ItIfsNc85DcD2eOI2RPoKd3ZveMkdrc2eq3+JQimEjZTonkTBpdYUS6ZPYmxSJnw/En2bHJ/t8cwignkenWzS80YwuSX1SUwR7TiI1UbwKYE2aihZbjAb8bw140ZlfLLDzDECSfTxFDgkKxQkyuqmfqeIQ0SiahILWYBjn0ESc2IlJKBfepwObLvnhP7lVzfto0ShfpP0nRwofqVRyeRQYK4mumsXtsbY3Ju1BOAy4bq5SNbpjSX84jd/Ef7kn36ZSVoUCcI1tN8Mk5BE+7sk9WKaY5ZlOLk+ws5kjsu7U9teyIMk+ntw8nRT95wc7dQXSkH6oskVLinKjuscj9bq4w0leW9aGeEgGic9A7MmGe6Wb2SZ3BbKlqDwc5TOiaWb8gGHhBwDOjBcHhTIMh0w0l6xqL+cavRTFg0SUxRO68aX97FrNJ3ftwYxgo2qiqCbZgLd1DOuGATppjeDxOtoKVQt1zQnn6SO42mjrihMStaabCG6qadnj3SsReimVAsRIzTBWUotY9Vk43zFxuy4Bc4lff/SILX/lKbblJ5A6r9+9gq+8Ef+xEhLm82uyE0AliJ4s7yIAEeWeVtZbI9nLIoIICoAJkl5t7k0gKbvXvuzdYMQk732+WfwwR98DV7e1BlaJbd+kJjakyu6JpE5/RSkkRNIaF8qkuiuHdIzSojNmQ2LJM4rXUdRJDa4rxpa4tBTNzYWW2Dwju71NnISbYuh8PFcRCSlJpF+yyhRqdpFDbhEQmwCoudYO8JV0hj3c2TzSGe3jcDrvwsjiQ7aQHV8tCYnt8Bwz2Uykth8lkUSPYGzgGRd2pkawZPeGAERJDu/NcbLfuKd+Mf/4cMA0Go3ADC1q1UbyXrt82/Fs06vm//3NTzvGu03wyJ+D6Dfn2Uear0TtFEf2o89uWWCHKlO00XbOZOO5waJLSTRobh2T3+3bq9rnCgSHSsmAdG93rS+U6uMncnc9KkE4BWCm1U1hkVugmyad1Hw62ut/PeydG9NQ3RTz7M9q2qMBjlWBgX2ppX5rpSE5EGMjhOr0tu1a04vypARK81Hk5/Oa+PfcpZzIlj/HemmN4PE62iLqicZSlRCzYCRyS/TxC0WQb8ATaUdFPlCSOLSAsI1lGlZlG66lxIkKpfum4bkkkU78s33rw7LJHVTQzf10OYeeGIT1/ZmuP+Jzdb8ykTaHK3dqQhw1yHnjrUzmbd6r7kWcsh/5u2fwot+9O148Pw2xrOqpQ7GZd+6NYmAbjTdOx5LN+V/I43rB4nNPIJIYv9ckgNEgRSJ+ywlCtfMI+5Hei5OboyQZcBWQzfVSGIik0GRmq1HyW1WwVXlJTs0ukjtVbgAACAASURBVKmyAij6eDF0UxskpvQltTWJaUrVLkrCBXsxwU3G0k318SUERkJzZ1XtDYh8CPyi6qZ0Xw7LHFd3Z2beKftN9zx1BSAsJTwtALbKj+lI1pXdKStaQ/MD5PXudz/0GADg3Q9dAoB+n0QmAAjN0efIP+eNb8XvNMe05Q3xSKJygisuAae/17aJeO6tuh5uWtUmcWhowh6UlDNJ3dRtSr/iJBUHRe5VUqXfwR5LQnJVOJBlxzX/T7TgvUllBLdoHiLdtEnouHtq4SCJ3ectqHgsIolNkCi0bciFIB2wzITlYdmim6a0WzqIue2LFvHRSUguxqiWd1jkorbCrKrFekRASHjUVVjdtNsCQ0UI1+TlTbrpYdridFPbAy/aIazaKF20mIzzsWQkkTbtSMeOFqRF+iQOSLV1gdYeQDszHTLjJKe2AHCpu5G/jZzUlVGRtGCRA+ALpKj/3YMXtlvHcoU7YhqYd5HE1CDR1+9wezxvZT1d84mZKKXw8+98EADw0IUdXZPYQxL7TpOfotc/ly6KJBkfJMagFHwvKeoBRud7Z9KpSYw9/875lp5RkiNfG5VYG5bYHs8MZUlT+1KQ9NrU+0n3//60bqhG7RNzWMI1um7SBqVpdNPMqb+LGNdBEpNQmwgkMYSAcc29gTCS2I2b50E6FIckhpF0H5JIQeKZjSWTudeCW2lBYpbZILB7Lm0gK38H1wMyRriGC9IB3W7mOCNa436f1Cv0yU6LgJUAJXPe6dPXNY0k8ufywfN6Tf2pt35Sf3eTuDDMlRi6tZNcKZjzqOdog7a7T66aZ6VLN+XElLzqvpzYB9oofW8NCtQkBp+bzuHmVZgS6zveRhPo7UzmqGs7Py1cIwSJDXrcRRIpx8PVPwLy/ibdW1a4RqabSmv5rFHvXx0V2JvOzXfd6AQhmXsPLlLytJVAN43xJadzP52f9DFaFkM37dYkEkLoG3eTbnq4ltLPzDW3B148kki0RRKuiRvnPjBJIjnkSObxCqzdmsSkILF5iFJqEtuLQRpKtwjd1L1W8ZTA5pwMyuQgPRQkXmqCxIcuaJUztyeSGZfQFHyUGiQ2yQ6fAI0vi+aTCH/0yp7597mtsVCT2B6jEBL7aD7njIt5jLj6C4NSeMLSMudl4YnuTPRZ6pVl6aZxz/asRTf1I4nLgwLrS6URrikbhzCpBU9zT/oc+fG8YilKkkDC9TYSk7BU5vhgzyclz1lX3TSFcUHH0VSj9vsK4cQF3yex9o6TBVDSkcS4HoS5B0mcI8uAk+sjk7k3SOI8Pth2f2uRdemm+m/oPALtNSFE26Vjcc/2tf0ZjjKiNe6xpGfgwtYY955Zx0ufcQzroxLPOt2tpW5/PoS2+RApYp+c3tABLSUuBikMFDq/DpLIBUR0Hssix11NfbhFEgUKaA1DoUz5bbXnnEhBuvv8cyahnXUASfTRVAGYVh27RDdtHkEtXCOjUoMiM2MB4Jb1obi+hlFS+i3t18mf8u3dfiQxM/uNRRIPh266aInVImPcGni5JjGAJHL3ckyfxF4LjGbeQbqpPwi+qW56HW2RPoCApUSUCTWJBklMpHIuXJNY6+xymUDJdDPrWZYG9S9Sk9j+bfHOJ9US+DJ20jh6oGOPR9dtZVTgwnYaaun2/+IbN+taHgoS3SbQKU3B3UzqsMzjhWsc2jTA00mqWolZNJ9E+Hs/fdn8+9zWGPuzGsdX7eKXZby6qQ814APuSIe8cxpjUIqQuqmhmzYo+GiQHmyQyXRT/d2roxLrS4O+cM0C6LZvQ5wLG2JKrd9BrK71fWXu/4jfR9fSvZdj+stZddN4xxqwlFg6ptReJVTvJDmfUn2h5LROK4WlQToior9THBaoSaywOixxZHlgEoNFlmFQpiCJaKFN3VY1sQJAQPu3hWi7NI5Fsiq5vtO3lgPAhe0JTm8s4de+9SWolXXQpR6jXVXarvlqEj/21BYAm9Aln6TwrOVds+JFcisFYk2QHW965hGKJiUuqgCSmOe8cJCLXALA97/uXiNgk3uCbUB+brKMV9Oe134kUaKu0/9vNIHy3nRu9nvAL1xDdNMzjgLridWRTNsNMGVuhLopAQzHVoa4ujc1fmBKQvIgNq+1wON4Vi9EN01jfFkxN2mc24eWM7kFRihI7KqbNn5b5qudGQDVzSDx0OwgNYnUkysVNSB102gFuBaSmIIa6OxyiiS5zVrlGHooaZzRhpiCJLq/LUm5tcluDhMcEkAvuMuDAjuTeUJNaEM3Hcb3LQR0ADb0NI4HbE+uBy/sGGEjwC+Jzc7RoduNElpnuCq9AI++6AXbv0H1VUoVfuqtn8Dzz27g6u4M5zbHmHTophzdRSl4OXqckxbjkHPKfXHjeEoaCcAMmhYzO+M23TSaylyFn21CEleGBTaWS2ztzzW9MM9RFnp+dcDZMcerLQVdCr6kDfGwgsRK2d8GxDkmFklAkpNs1E0TEWBdx4LmmH1HPpbK3EdfQogIv5bMq4Cwgpdu6r//pftkfzbH8rBoqTSmC9e0haq6iL+l7YYDYE6UxxekSHRTX52aJJxCdr5BErutnHyIlB9ty0UmCZVnkOiZTq7YtTxl32jRTbtBSieQJTEeQzf1/bZAkM4F265yMAB8xyvvbo1x503WbSzPGUdvDYnrhOitJKyzPZm36ulDwjVlnuPWo/1aey6QDSaOBP8ihm4q3SPTud4DjiwP8PjVfStcc4hI4sqwxHg2xWQBjYvYHuR0rDzT/uuOUPI0CdBN2SBRRQjX5DnfAsOLJN5sgXGotmhNImXkh2V8Jp8eyOUD9ElMUZcyDbdT0E4XkUqotwSscE3KQ91CUhIDsKLIvDUb0vFSRXnoHlkZlknno5vZ5TZEqkncHs9xcXvSokmlCIW4dQvU4DfGSKWXqGrcvezbSKXAYVYpXN2b4W899wzOHl3GU5vjpk+iXb66NYluVlsyLuCOUillFvG4ZuJ+JBHQ9HHaXG6IcM3EBom3rI1wcWeij19YcZfYfq8kuDIoc7Gdy7ShGnXNdx9fT3NZAgBQxbSOMeJFaU5yV900ZU2m81HknCKh/huqSZQEOFKft7kH/QJ4uiP91FAgK51GjSQWBlECGrqpp5F41+q6TTftHi+ml6lBidw1oY5bSzgk0YcuSWgPAPzOf30M57cmvR59dCxunE7ayC5dWchIIq3xF0gZu6GbGlXgGMEnJ5i2wUb7M11kj5BLSvjJTeADVFqB7ujWJHaN2qR06aYhBVCa5yJ0X/f73XGA9gnyzAqX0efLPBODe6IuUt9b1zjk3iSORQo6vy5PA3RTqU8ooNfBYZEZJJF8oEMTrqmVTbguEJhOEtk1IcEtrUjrv09Y4ZpgC4wu3TQSSQzYzSBRsKpW+Nd/+iAuNRS+GHOdYqkYXToWiYtE90RrPreUmLV2KaApWfx5XeuMfMIcTSa7CYAXqklMUCltifIkIonUFDyVpmr6VCaIuwB6c5xV8ZLM5AD5EJire1PcdXIVgEYT6R5JbgreQhLjEc8Y4RqqY+NMkggnZ3tQ5rj92DIev7LXBIlFa6z702KRve7xYpzdrEFt3Gc8RjlRajDtBs7LgwI7jZOwPEylkrs1iSEkscTpjSWc3xyDFAd9NGH+eCooLjITsqY+RPx6Wkzvzt4Yx5FKSa7Qs0WOVAq7Q2rbAMBATYsgG/SdnEl0x1ld99Cr1jiGEhiHJMrrz950juVhaRQegQZJLOPr9CfzuqW+mHeCPWVe96Pk3eDSBunpdFNSO2THeBIlb7n/KQDAq559KnrcQWoSaY3fm1bYbZq5U5AOIKmWPctgkHGONuomILoK2qK4S6jej6FpA/2gtDeOCS7tvikOQ54LaGfgGdWfa79ukrlFhtVGTAxwgkRPrThRjF3VbjNH5rdZ9e7AmsAkINw5cb9NWstJ3fTYygCb+zMjRniYdNNFdDHIUntnG8VvwZcM1SR2fRkADd00EK6JdNNATWLAbgaJgv3Fpy7gzX/yKfzUWz8RPcYNTFJUlGzdTHzW1LTAWLAmcVSm1d9RdjmFktmtbUt52GitXVRtNLXfYZGn1b/QOHP+Ixc8+n6zaCVc7zKXaTyAvkbPuXUDgK5LtBnRxZzdPKOaxEThmlxGUnyOjCQRTottmWd4+olVPLk5xrW9WadPYjoiyG2IJBISQ0lrj/Mfi+bPXrfa1umsDAvsTrvCNenIvZT535vOMWpoy6c3lrA9mWNzf6bFXYq04MbUMnoo6FJjdkmi/Xqb2bQDwjUfefQqvud3PorN/VkrwZDUOkbZtVUfazHhmkVqEjMmAREKEr3qpgHURo/rB2BeJNGDNkwrTad3pfyPrw6TFL+n87pVM9UNimLWBKAveBPDSpBaANC6LR3H/X7Xnry2j7/53NN48dOPRY87iLqpW3d+rVFzdJHEFOEmX3lDN2gjpJR+k6Wbtr87CkmUgvRAcCkj8H7xJg7t9CHwRnFUQvfyDCujwiCJ9CxxawKgr7+uSbRlKM8/u2HneAAkUWLKSOfSV+86m+vzcnRlCKVsovKw6Kb1AkGi+2yliiCGkMSQuimbcIqhm/ZaYETQTSOQxJs1iYI9fHEXgOXMx5jrgIxnlQkgQkZ1MwXihVrmnWAjOvuvKNtdYH8a3yaCnL20Xo42Ozgs0+im9FGJxsaPcR/sBYLEBeimhlqWrPiq76tpVUfdJ7T4+JDEea1w25ElrC+VeOjCDl5wu+5D1R4XQRtqPmJrEtOEawpvTaKsnCg5CBTwDMscJ9etnPwtjrR8F0mx9M80+o8VoIkZZ1/rKitylgsbqYskuvdCKkvAZRf4+iTSmnHmCCkZ6my1TSTE0/sGg9yb3CLBq65J6ofX2/rPDT/Pb/jl92M6r/G655/BqpHjT+vn2A0SUxSnWz3RJCqz5zs42lxIlVMWCWmLi/THMUmSWLRTRERqDPIMx1dsT8Fb1kdJLTAm87pVM9VtSm0RQf/3dGu5TJAeCDZ6WhMOk4YdIyBLSik8fnUfX3LPyaRxMUhirfiaY3e/pBYkhSP4FMVAcZKLUiuFbrnBd77ybozKAl/34tubsWDHBRHBnG8v5PZJZMdljJKqCYjEYb17C7DUdskkKiet22WeYXVU4lqj7kuJLZZdALu+UELnw2/8yp7it9gDUghmJbTTJqr43yYhuYD2cdYHJY6ttgOSw2iBQYH0cmKQ6E4tBdxQSu8bvvKqWVWbPYYztp1LPV+gBQbRonx0U76Ha+trg5/4/6k91kjuc1xvyVzKYVLrhtoiMLHBRg9JTHDsAO3IpDyklBFNQTtdJDG5B2Hze1LGtEV5EummeZ4kt67nqJIdeUIcUzNbJEnu6y9Hzt09p9bw4IXt1vlPQhKdTTIFSTRCJrmMSPkcGUndlK7loMjx9BOr5vWvf8kd5t9ZL/tPr8vzZWurIlCDjHFkahWmsRUMRQloO0CuGA9RmVPovjROSuS4ySu33olaYNB8Yqz13FSKRUSkrGnpuY+vpxkpfw8FGrBJniu7U5s1z9KSK1bdNNyW6ONPbeHTF6lVjdMnkUGkYhIXktMKhIOUPnKp/A4yc+1iAjBWkKExYqrcfmzZvLY+Ks29FWOTTruVrlJsDCWcGxfHSuADG0AO0qX17ureDHvTCmedcxEzzodauvPgAo5pK0i0LUgskhhfk5h7GC9dddOlQYHvetXdjnJrf1xdKyglo1h6nET3DScu+mgbJbcDlEDmuQkdS3+/hNLpfoeXd3WJE63/Ek3YBJfNw3p8ddjuHczMMYQkSvdWSARLQnIBqknMcXSlHZAcBpJIP8P0fI72r+3nkuimjr6IiCQ2rAnJWFZClLpppyaRAsabdNMbY49f3QcQzjq65t4UKUW5VkpeFoDoWrcFRiqSmBwkVprWkJLZbdUkJqqb0ti05t7296T2trF94tIWhGSRCoMAl0nzpODK10uQ6Eb3nFzDQxd2WzSWJJVGZ0MYlXm0uhcVbfvaDcSo/fWcLSfT+pxb1/FNL7sDf/CP/waOrAxaY91hMY61FOy577HzZDb7rrIiZ2XO1wFXDk1sxdnkyzxP6t1pkSwZSXSD9FMOKusG9ynHKzKYInxuPZHqL/JcHnM9jX5v1gR80nNK6+il3UmLWnUgJNFzHn/g9+/DD/3hA3qODtohOZ+APyHM1bEsKlxTK+Xt98nd/1GBbDNHLpkwq3Uy4fZjK+a1rKkTr2rFPjddm8zaNYkagbHvx8yR3u+yBGg+vjGp9V9W3bQ97tzmGICcoJZUoMNIokydnsxrHF/VTjwFia2a3MQWGDF9EjnjEhAmaZlYkwuEKbh86xj7neLxmOetDgSyUoLX1vvp9Z9UyimZJ4nykK/CMTWAprxBYBcEKehdNkPtHychuYCmmw6KvLXfAIeDJPaYW4kJVyCdlZZnmTe5NQuqR/dLAKDqCLqpVJPoc2ZuCtcsbIQEpgQbLrycXBPXZLvjkUT9uUV7qQ0b4ZpYgR29iWdehTTpWLbfXkrgpv8uSjdNRRIpkE26bpVFElPquIBFkEQ0TYqbYzOLOG1Szzy9hks7E7PZtBGReGdXO8nxAkfufQzwdZqVR7hGyrTSczUsc4zKAj/5d78AL7zjaOszedYP2gA/RY8TT4kVoHGPoceFE0pi3ZJzTlp0oUQE3g1SpA3KDUiOu3Rdp01E9L1cWSQR4O/lmdC7Tao/vd5Gzw3gr5uh6315Z2quUZb43Nh67/CacHlnahKRLtrBZeQNKu45Nkc3DUn5S+0GiDIlGSv4ZJ4bzziBTg5YAY4zncBoUBICHH4GJvO285VnfJ1yKO/bXUtikdzu7woiiZJwUPNblwb8RfCq0nppwu15uTaZV7hlrQkS96dmfoRSpQieuS0wkmmjzLgQRRJomCQ9BF61nn/peH20rS2iw49j9uCALxVucN8gid0gUUASibkmI9VM4iICEWTnGAjUSybYNvOsagzKHLceWe68fnhB4nJHIClk7jOSCjiYfVsYp9k1oQRENwMx92cJAb34LtICI2A3g0TB6CKlBCnuTZ+SJaEMoG4vkRZs2BYYceMoQzFKGFc1dI8yzxtKrDxmazzDL7zzQcyquqWIlSpcQw/34nTTlPNfW0psCt3UQRJTxUXShWvqlnBNb2Nz6o/uObUGAPjk+W39WpEmQOBSUnRSID4B0VZS7Y+j5r+ciZlWgySGFMEcx45eT6wRMZSpACICtLN9KqImsSxkmXY6J0tskBj5bDcf81FdXAU+6stFczPCNQnXu8z995YoXJMQfB3E9O/V/5bqqZVS2Gvqs1t009wRYUpA4Ak59bEStsYzPHlt3/QzpVPEZeRJTCk1SKE1ItTMvS9SEZkk4ZIrPgRSoLIBlobYRZ1T0O1ppyax61xHI4l51gq4o+imOVMTGhmkc5RMPX+53QAg1ZKGrxt3/qfzGres6aSRSzdNa51kjyOqlAaQPY4pE6JIAn2KMGDXw9C4/nm070nGismouH3DJybjtsZadoJEqUwB0KrfnPFUWv3XF1gCMpLoQ8UlgGPa1BsfW+nUJB4C3ZT2stSew66a70LqpqXc3zWobspRd2PopnmBG9EC46ZwjWDkmCUhUgsiieRIDfJ4ahl9zsjkJyhQApYSVdUKId0UOpZWN/XP8f/804fwS+96GGePLeNMU/NU5jlGnuai7DwXCBIPKlyTSjed1ypdpGJB+gOhDfLma7Ot95xcBwB88tyWfq0J7oG4GjB3Q/DJpvfGKdUkEij7zwdEqUiirUkMOclpyIbP2fU5hDSN1JpEnwLiSnN93GbiFCRGq8sSkjUoxKDGbS7tXoelQWEEEKJb3Kh2704OFZw2WeSuHWaQaJDEgq/5nla1cSgv7UxadLMiQbiD7p1BAJFVSmGrUVG9tjdrobtcbVVU4iLzBBsSapD3HXKaXwwC746zSRl5nK+eeu700/zNb38ZTjSoVqiW1LXJvMKxVVv31BeuCa8JQB/NpdMaouBy7A7AhyTqv93TEaQJC4nCeV1jNPAIYnie00krSCQGinutY2oS7drpS/j5gi+uBCBEkaT3RJXS4L7Rfm0ehSTyvXK9+4ZwTtyyEFfQxEUSpQQcYBMp3PH64kb6BTHY8yCJ4fPBv0f+rZt4kn7T9Ta6bVdGiUGic41S1E0pweZtCyUkTsnYcxmlbtqlm96sSbyhRjdTShZh1goSU5AsjSQMCj9K1x0DILkFAy0SKQiYyVgVOrPuG0PzeuLqfotrny5ckx4kLipcQ9mfZLpprRxqWVpw3+0PFTXHPFzXUOYZzh5bRpFneOSyFl9qSZnHICKdmqyUvpgU2EjH8jV8lgIHV7hGMq2caP/fMC1ikMQWJU3/9TmEXCY/piaxyPvZfzo+OYRuM/EizzBcqCYxx6yuWSr5XKB/Pu34SnILDFMnKyAb9F1c/YVvzPU0Eq4B9PrFOSbjqT2/l3cskpiqbtoNmqUxO5O5uc+e3NxvNYHnsv9RCQ8GbQjJ1kvqpgrhgLQ7LkRjA2QHFCCGgZ7Qlz3rJJ53m1ZmtvdkHN3UJ1xjnu3Ac5p1nDQVcf67YwC0mDScyW0iGkc+GNz3g41QIAXwz9xkXmNjucSgyLC5b/v0+RJ+XWu1wBBq513WhG+O7nWrDJMkhOz1j0XvyeN44SZ3LtI8OQVQH7XVd04AHcyujaxDvzzMzfyVYujklR3HGYtuB4I9Trmb/t+PyMqJtHmlDG2c7DX3nkpSkl/U+khiXMDX0rdI8UEbP21Q5KgVf04mMS0wehcgQt201wLj+iCJN4NEwcgxSwkaXGpqCpQ+qxwkK5Z+6CycpQfq75pV4IuvNaDvLpu6JZ8TSV/32NW9Ftc+WbiG6L5JaqP23ynHIgpk6Le5RjSxJVMTGu9Y55k9/ymZrfbmK2Ujdc+kU+sjPNHUPNG9xY2T5gjAKO5G1yQ2m6RVyWSEazyOjBQA07n1LaxZtniNVFvcwmbDJeMRyDCSWOR8HbBbp7PhUkDztN6dtfNsK2GDkhT4nnFixVy3WDSdKNCSSiZAWdP+8XzUt+tp7v1WCHRTV4l6azxrBTyp6qZFpkVyfGvy1tgyKs5tjjXa2tzbnHCNqUkM3JNd359+q/i8CdctlPDIsoyp9wvP0RekzBpKWtd8ipxd67bA6KNL4aBBj+N/WyjhJAcboZY/aQiYNC6kbupF/Jtzt7E0wFVG3TR135CoxV11U3GOzrBQsK3fY+i35vzLc+aYMvOYoJQJwOoAAm/6JPaum00KuC3X6F4uhWtA40rhB/KKx/5gzyC53Xu59q8JRZ57eqDa9e3X//5L8eY3vBBHlgdJ4o6LGs1pkb7UZLHCfXQ8N1HO7d0huinL3qrrOLop1wLjZk3ijTFy3lNpo/bf8Q/AvK4xMFLyaTexCdwS6Y60AMXM0zrpDdrmcZgubGtltocv7rbQrcOoSVxUuIYy+WkiIfqvre2MRRI1kkaLROyiRXOUHK0uRenWI7pROoAOuhFPGypyTbdL6ZtXZA76wiKJck2KlGk1SYpABtrdtOlf/hoRO2/zG4yzm5ZtjUISBeEOt05no0M3TUG3Y/r0SUH6HcdXkpQMgWbfCiCJErXmMFtgWOEafu2iesSjKwNsj+ctJJ2uWay6Kd1TvjV5q0FqAOCRy3vYHs+NsiQvXBOJiCQjibzzGZPwKPN2/Tz9K7WWkUy6L/OEe3Iyq1rOV5feHRPs0fttUarm/Hv75snsDilI8fUS1ONkhEiPa78eRBI99zK1D1lfKrHpqJsaVkjU/a//Zpk/APYjgs3nmISfN7hk6+9inhtOpZSut38ch8B79w0hMUbHK/MMawzdVFKCNn6ZZz/lflscktg/l8EgXbhH3D3g1feewte9+PamldqNDxJpuT9QTeJCvmQmjp0J7BoytlWQim2BkUg3LW7STRc2urgptW1uXWAKlE49onzqe/0x1nEeBCigrtHNN0xBEp2MlUY75TEXtnWPnyt709Zmt2iQmHIe3QcrGUlssj/JPekMbTc2SK+b2s7FkETJ0erWUbhKYm6j9LiMsP5LEuixaA9liX0CKF4kkbKYnQWSnsUQj59TN/UhglxwE4ckghkXh1AAUnZdj1136aYZ3ZOR95YJEuWsKaG9ZF/xnNMAtENiRFoSkUQfjVDqk5hCfz6IuUI9A0E4iJDEU+sjbI9nLecyzzO23i94LM+a7AaJ9z+xCQCmHozLIhvn23Nsrt41hMBI6poxCY+8UzuZ8txwp3JWKRYRCSUT/vNHn8SzfvC/YGcyx7Rq003zrF3vF1uTqM+lO86+LlnG1ag57A7OgvTDQDKNRxL94l7u97vznDW929aXBlbdNE9D0pWy95tMpY1UN3XG2edRPjb9tpbgUOA86nH+0g3J+H6mcTWJEnJZ5JmpnQOs3oQUuHX7JHYtyxg/IVATKq0JlUPb50xq0wHoZ7vLJhkkJJ8PYpXj72ZZvL/lzi1Nld/2SQT6WiFVrRodkMQgMZpu6gaJES0wbiKJi5tFEv3OwcXtCX7t3Z+BUqqDJKYFKYMiT2pU36oTTKBJWiQxoSaxRW31t8642ASJ1/ZmrSAxpQckYBe31Ob2ZCnZH1tLtwAim9gCg6jFyUFi1an/CjgWbo+tk+ujYJ0U9115nlZgbvj4zbG4Z8dHiQqpm3qFa3K+t5lvgeSy3TFIIufIhEQLAOsschlvgyQu28xenkg3Var9bHP3JKG9ZL/0P74Yn/yx1wIIC650rWqQRE7tlYxzEAAZabjeFkM3HTdB4umNJdQK2G7ooHQ9u6iZ71hWJEdekx94csv8+z4TJGokkastpP8NKSd2T2UIkaLXu2u5Uv6aXKDvFNqkTBil4GsSeVpyaN363373o5hWNR69vKf7JEapm4pT1O93qIRRCSemJi6MJLa/vztOOpeZeXbar8ciiVISblQW2FguDd20yNKQ9G5yBeAYLwF1U2YPiEX2uIBD1gAAIABJREFU3Dm4cw6dEy5odr+TPR7zvNUqXLeaBRD/FpLYrONSgtcmT+XnO1VcJxfurdpZ29hxZg/on0suKAqp5F8vc6/lsMgxSWwVBySKICrLSgP6PpDRVyj9z0DvcYtRN+3VJEbQTW+qmy5u9ACGVEP/yW9/GO9/+Ape+ayTrSAoiW5a1aZIPB61IeQojabqZlaAuAy5Kxziqs0NmRv9yq7OQl7bm5px9NtSHEJa4JOCvQWRRFdwJfk8FjpDFZNppWMNitzQDaZVZCF1k8njUCygX390+zGLJK6PSpNhjrne3WbivsX8rx65gloBL33GcYN2Sr216lq3Ugln1oWFNVTs3UH26HV5TH9js+0G5HG8I+MPLPU4/Ze7dnROXOEaAEnCNabeeCCLfXQdSZ14aGpfkltgNEii8Lvou1i6qamRjTrUwlYre52l53tvqp/Bk02zZ1e4g/76ar5//p0P4hV3n2i1QdHtjPgxP/uOTwEAVocFHrywAwC4pTn2wsI1jPNpgkRhoHWs26+HEBEAvR5sLtXQN0Z/lrlPhB5/oZo4cuAu7050TaLTW1BSNw11Suyrm9L59yNS3T3frRNnxyxck9jMi2GTxARg3XNJNVejMsf6aGDpprlF0mMcehdxlRVYA8EGsweYfJ/n2C4rhJzaqOCS8UtikESOXRDTBol7vt1gdtWpSSQkUWyVEtgXOXZBKJEg3VtBwRsHgcydK0X0/u4cBwn72kGsy2aLrS9cuE9ijU6Q2B5rwB0P4s8hwFHqpou0wLiJJC5uFByGgpSHL+4C0Nlo15FIyZLMak037aIhXdufVnjksj7ezEH3knqpdZDEGIdw7mxavoJcpRS2xzOsDAvUCrjaSGlTL7UUMR/apA+jJpEWTuLJSyhpa0xlN6BBnkery87rukNHiEVt9Bw50Qh6H7COxZ0n18x7blPw1D6JRQBFef2/eR/e8IvvA9Cvm5QWyFCNTi9IdFBzyYpeHVHznVHIhn0tBUlsOzJ+0QJ9vBgkcdAcQ7+XVidLz7aPbio7MilKhoCljklOjGZX8NQaGnOjKUdVbXsQSnWC+1Oim2r0nYJEozia95UMyR66sIOfefun8L/+9kdajpSUXNmdzLE1nuO7XnU3XnrncfP6yYZuSntAq742JkhhKEqxtW19umlEm4h8gefNQ0ueNzT8rsXS5EkAyKduShYMgLOuuql93TdGqhMXW5AI5yNINxWCbWKbiHMUxpHE/7CpSaR1w63lja3JBfT5ldcEv3AKN8fY8w+02Qyh80/jpOcmtSYxJlGY5577pEM3XSrbdFMpuJRbrPT9yVh10/49GXi2BWG8mcACSmEoHcTc+vJRWUSDDvQ7dJlUfAsM2m+kmkTXb5SsL7gFHfAF6aYFjyR6axJvBokLm0ESAzfV1lg7FFv7s9Zn02oStXCNlMUBgMev7uFVb/4zvPJNf254zQA1wY7nd9ODmSZc09QkuvVmnAM0rVArLacP6J5jgEWkUpQMDd104SAx/li0cA6NKmdEIOUUm2tqWeT5b1oQUJAYS3/o9rfroVGdrPWdJ1Zb71tnK164Js+zpo6LH+P2vdwa235vA+E8hjLrkvNDCZvrXZPIobJxjbN5RyacRW6Ox2z2tMmSChvVlKbQtGtnYwP4Z7SqZQn6FAVcOp7bXkVSpeWU3KQx19uq1nPDO7v7hm6qAzViQ9D9poNE/hl42wPnAAC3H1tpOVJSQPrUphb2evbpdbz5DS80r5uaRIbupRAObKgFgxtcVrVGBCXHVUJ7FNIRkdg2HTSvrkmtWaTESve1J65pJWefumkMJZbm2aWS63GeMZxDHpkUk8eFEMj263PPsw3INZCExo7KvKWuvDIghoF8/7vmMlAkcZ1gL0Hmt7ktacRxTMIjlCSh46UG6fSdbCJHnqL5zkpAnLvCNd1+tt093/avFu4Tpt5y0URCsN5SYgEJe3dZ+MuWrpe5dNNRgi4Grd0rwyKZbupTNzVBa+Bc9msSK/8DAGiksXZ6kd9sgXHjjDLgQBhqHjfw9eb+rOXMxTdJV6iVXohdyL5rr37zn+P8ViMKszttt6UIUAK7xwPSWmAQHWt1VFi6KbNpkCDD0080QeJ205SXkMSEIJE+mxLsuRt7knBN1aZJxvWOtNnWlF6CtJGPClltq6oVfvSPPoaHGioavUb3h+4J5d/Yzjp0UyBNKKSNJMrX7b7HN1v/pjnKmU+6Z0OZ9fbrIalvgDZE+//GafVs2xwqG4fa0DHaxws58nKW1tLEbjuyjG99xdPxG9/2UgBIElOir/XVG1e1HAD4kB7OKLgN0YS5622TFlGHWthq57kZCGwGqkkkuun5LR3IUVafzew2RomwQZmZmlx9LB4BfmpTBzO3HlnCLWsjvOufvxo/9XVf4IhU6M91A7CYoA1oC7VUyi9kIt2PsYgIJ1wTajivv7/vgLp9Ettz1H99zcQBmHY/XXXTVrBHifUgksjXKYfUZXs96YLBHs1LSPiJNYn8uGBNoiCcRU4wIYlk7v2fpm6aiddaiyKF11Y2AeHrXcusQTFBIsfectEn3/H4eteI5IqnBvVuhwFkxkj7aaBWnws2QgI0Pgp0FALZDWQlumkCs+kg5l7LFPFEOtcrgyLJl1TN/S0h6eae9Lbz6tc3Q9VhJDEv2lC6uSkP1gLjZk0iYy5EHAtPbzZIIhXLR6uUOs595txYg851dYOQi9uT1riD1CTGjKPgb2Np4G2UToIPT29QrIsOksgVUUvmbn5JSKKD7iXJFiurbqqPGbEhNl9P41KQ3FYLDGYBuv+JTfzauz+Dt3/sPN71va+GUjqR4FLZpADMraP6qdd/AZ5z60br9ZgAwN1cfQjw5d2J+ffjV/dMcbso9d381LC0ezfY8G+GgN7c3ADA1LFEBG5dlVL9fZ4xzO+LcazJWeRqYOic5HmGH/6a55v3hmVCTaKhm8r3sU8C3Vczxhk1qhdpwp6aGTvmxkaJ7rmVxGRoLaU2FOcatI+QFB/ddKdZ867tzXDrEeuAScciJJGQ4qedWMHTmqQawF8DfW/5f6dNXNiaIC2k4xnjQQ2Cz43oJHvGBGhznJS/D0l099jHru4BQI9u2nq2QXMMBMALoKScKm2oT5/kWNMzUUjOv3DdQuqm0rmcO468q65MqFYsC8iiNvK1VoF7mWVpNH9D59+dAxAb7DHBdqC/KM3Tfbxj0GYax4m7AHrNWB31XXJpP7VJV0ndlBfl8VIdBZTaV6YA8PX9gLx3u4y0rq97Pc20CsyQ1KvbBImj0iQCY8eRKrx7/O73epViGQRYB4kBTK8rXBNTkxjRAuNmkMiY61z5HLSJw1W+1gSJK4MC25N5PP3QQUnovgj5aBe2x478cSZSmzhzudbu//uMgr+N5YFTt8QgiQ319nm36cDkU+e39RwJ7Yydo4o7/71xzfcvJWZ/yJG0ojzxSGKRparL1i26KTfPDz1yFQDw6JU9jGeVOeduIBHqkwgAX//SO8y/TQ+8qIywdYp8NYnuebq4PcF4XmNpkIeRRE/mkxtngo0AKsIHe2GHMLVxNk839Tvkeo76L0fDldDVlASQVTeVe3e6iHRvfgsgiW4LDDG45+imAmp8Pa2rUljmOfbm897n6PdSkPjktX2MSkut1wERP9HdqQ0SXQdM13H1x5xvgsTTR0bs93HXQEUkIFw1SdrUJTEY37HoeDGoeGqbiJB6sa8FBk9RtRN49LIOEl0krN/KIhzs0Tj3cDF9KrOMo5tS4i5VuEb/9dWaAVxwGYkkSjV4Wdbq00qN3Ys8TvPApZvSp/s9PyPRZobdEVNf3kquRCCJHEvAUgJ98+wq4Oq/qUlJoI8cv+OffRmeuDZujQG4gKP9Pnesri8Zqkmk+XPBpW9cKZSYuIw311xG2jJuXJToUsyHZR4NHtDavTIsosVuAPsMWg0IgW7qS94xwX1UkNgVromhm95EEhcz13H3CYvsTuwFISRxeaiDxFj6oStAQzd0dxHpBhJtJDEPiou45gZS7vG7n/kPH3wUUAp/+okLeOWzTgLQG7BPuMbSTVdx9ugyHm8oQPqh0UFwKJPlzlGan2R0/pYG8cgeHc99sOOypvqvRtvihYOoBQb9x6mbPvCEpXF+4DNX8MV3HTfHor8+hTTOUmrAqtZvk+st3Wfj0s4U+9MKy4NClPoO0X+CtBom2CDrOmmxDmEX4Y5Tkuxv2rVSwbYBco9Lq27atRSpcDpvpPAo0k0Tzz9nrlKtNI6OP2SSAhKKcj3NZRYAcp0gnd+TayNkma6tpoCR5ir5FtsGSZy2aKHSsSbz2ogocMadlxi1UbpfVecZWIQiFnUvd7LdsQqs+rPt1300dJ/AkevwPdkE3yQ+BDQZeSbYCCP+3TUBzTh5TJ5xdNPm+4SB0npQdVgh4jjmPPoVOfnn1GXFuDWJqw3dVCOJ4f3UDTbpke+hZoF72QbA7pj2e5xlTOAcou3SuH5wr5H0oHANizbHoNT94wH2et9zah33nFo374cDDuk+4emOMWtC715W/mDbtmXh/ZJuYtgkrQ+hTy6QXvJE45YH8WI3AIyatpQQsyi1r3SGYd2pKgJJFIRrDtgC42ZNImOuc+W7QXYd4Y7N/Rmmc2WEJ+Jl660jIy3iVCPzL77qOQA0jdNkaAq9IHNiN5zRQ7I0kJHEjzx6FW/8T/fjjX/wAP7skxdNsLe+VJqHnQuKDOK4VOIFZ4+Y13W9XzyS1QoSk1pZ6L/DQnasdyZz/NAfPoBv+/UP4uGLO+Z4ZZ4nISkuvTNFOEhTiXMzTw5J3JtWeNrxFQzLHO956JJDmWiCRG+xvRxsAJE1iU4mVTtM/P1Fz8b6qMT5rTH2ZxWWKfvMzDGkxkbBZXeDmlayE0nWfQaiRSo6m3ZUbRWTkVcIoy/SM+BDEjUCv2hNYv+aEUWUsxS6qZsRlcb56KYmQLmBUGJXpVBK5riJs+MrOjikdZzmKp0T2gN2pxXGs9qi/Vw2GIs1E48J2jg0l5SUJeMCSyDuXu7RTc13hlEiKQnEqpsWPIrijnONxIeAxajk9D7bpy+AZIn1R8GkTPv1UHCTm+u2WADQd+TtXnZsxSZHCEmMZSq5wZyPbupHm+lzaQkIi0Da17rPPz+Or+307TX0ndzzHaxJzPnjAfLeLQYcEckEtrYwgjbavSe1crk4jD3/dDxujpZuemPLDej5J+2IVD95dVTq8rEEf77I5SA4BkksmMQFVO0P9oC+cE1UC4ybdNOFzHXcfbTFnU6QOK9rs7BG1yQ6ClUK+t/dxf9C06D+7lNrWBuVuLg9MbUD1F4iliJmHCJSN2V2X1KKI3vkyh5GZY5RWXjpP0Q3XV8a4M6TVl1zWORiAMzOccHaQoukFOL5f/eDl/Ab7/0sAOBLn3kRd51cA4l5+NT3pGNZtC3u/FPdKkABQH/crKqxvlRiWK7gsSt7vYWF7e0UqKOQJKo5q53NlWgh3f5HNE8AuM1BjZcbhNov9R1QKRV+m0/dtOvIW6dVHNIcr0sbbV4P0EGAft1YTEAKdKmEyuvcaWXBuHur2wJDQhLFeySBAupeS2nczHNPWpGu8LEWNZf+BkB0ElwU/uT6CJd3p61+Zb4MtLsHnNsamwBdCixDzcQ5hdkY+ieHLlV1gGon3I+x9NZUtFNucSMLU0koCmDXhfWl0iQoT21YJHERKjnNk6u39A3LBIfc/Q294xhkVRgn9kkUgu1AcCPWijvPiYugU6IkuibROOQAaj6w0cI18nf4+iR6gxQmcWd+VyC4587/ouq+UckVie4r7DmSyFcMUt1DH4NJquZzzHWLoTKLVPJukNj8f2zrsEXNUI4zQhIjg71m3iQoNq1qr3CeOV7DJvFRwoGQD8T4aUpF0k3djDcpdX2eIIlZlv27LMueyrJsK8uyT2VZ9j83rz8jyzKVZdmO898bnXGjLMv+bTPuXJZl/6zzva/JsuwTWZbtZVn2Z1mWPf2gcyW1r7VR6UUEXSRxZzw3dFMgHkl0e8BJiz8FqktlgSPLutlt1WSJSUkplrZlkUQ9z64cMwDj8P/iN38RAODtHztvaj2kOgrAIonrSyVuPbLUfF7XP5qFLmKetTPHlJpE6yTnYubn4rbl+lPwTT26pNoqzlyqR5JwUK1M4MUVsQN6QRoUOW49soQnr+23aDxAAEmU2hsYZyt+s6c+ie73u2aDxCU8ekXXBJFjUWT93xbTpLhg6Dizqm6JIXDWLdKPqWMB+ghAjCMpoj0hJJERruFqSdtj4ikyvR6oAmoWEg6KeUZbDAhBNdGXITciRTfQSeiKBBQC4l85dEdSOHX7leUM2kC2M56b831ha2xVSjNGoQ7xSGLb2Q3fx1wtUTD7zwRtMQER0H++Q6qVNIY+65pJAvmSCdz605xgah+yNMhbLQS6SKJVyfRbF4GJqonjaIsBOmCIli/WJBpkyb7m0r8lM+MEJLfIM5xwgkS3BUxan0QXSWx/RiGANjN+QgyVk1uTQ8E2fSe3boWRxP4zqr/PO4zd821S3F+72l27bDKXPxaxgFpjlD8AJsVvDqWOovuKaHq/BQbA+5/X07p005R6e8CKl8UrjOtyDokBESNcw9JN6xi6aUe45jrVJB4m3fQnATxDKbUB4G8D+LEsy17svH9UKbXW/Pejzus/BOCZAJ4O4NUAvjfLstcCQJZltwD4PQBvBHAcwIcA/MeDTpSc39WRn49MWeSVYYGdyRyzucKw0DU6sciSW9ibMwsk4KqPZTi6MtCopdNXShcoxx2P6F3GkRSQxGMrA5w9alX3Lu3YdhYAv2mPZxWyTH83qfe5dXT6+OF5upTYWsWhX+6chqVco3lhe4I8A85sLOFCQ+Otaz9Fhp2js7GmCAdRuw0ayznk80rfR2ePLuPJzbFzjzjjehQlP/XE/raE2pI88waXhBSdObJsGpAvexQhQ/QYfUyGtljXXhQR0Ituux5L/w06u4Ijme5cR2SfSbjGeQbmAUemSKhJpOlQTSK3dvmEC6S+eZzNnXtEcv7tBt0fb+jPNzBINDRtem48FFBAX1eqaXORREmEBtB7ACXELmxPzP2fZXywHXJAOZGKWqlgZMPVEvmoxXqO/SCF/pWaXIlBO6X11Ye4+dZk2qdvWdOBzXJHJrEX7DV/Y4LZ9vm33ydZl5Gg5xxe73y0/BAC6V5rqfardSzBv6ic4O7Ict9p1HXR4X3DPU+SSE4IcaZz7A5TEeefu09iHHKuTcS8DusmLJJIoHmmIomicE0guMwYRKqq/b00AZ4qHwouxQSQUG/sa6V2Pc29txepSSS12RRV1MJBEjkkF/DTTbkWZ4sJ1yj7umSfS0iiUuoBpRRpyarmv7sjhn4rgB9VSl1VSn0cwK8A+PvNe38XwANKqd9VSo2hA8oXZll270HmSjfE6qj01sSRcM2ZjSXsjOcaAWpQs1hkyV3cuV5XQLtp6pHlAa7tz1rUEqn+xXe80aBo/b9rT1zdx9ljyzi+Nuy9JwWyAFrCJRZJzMzv08eL2Gw6aGfsuWwjiUKQuDXBibURbj261EYS80ThGocSWwo90TibOwEPV8QO6N9bFhluPbKMi9sT09ybKMZsk9zAhliYRSv+t7XEfJjzSYg7oS+ApWdwTlM8ktgJEucqGCR2M7sxjgW9z9Uy+rxyjtpX13Gqie1jRCCJKfWuHbop9wxQQoSzlPvfnbc0zt5HHiQxMrm1iHUbF0uoLKGrWZaZmrZWvz0m4QFox3BnMsdtR3VCbF6rVpJEorb60B6pV24sldk9ZBWJ7rECHN5RfSe5VvEKrAvVrnLnsrm/CUm84/hK6/28E+xZR947zV6AH5M44uu/9F+vmAyD9oTWcl9PwNRAyv3/ssjY4MhHed+dzPGrf/kwZlXdaoEhifLo+0ScoqU7Jt6TXAAcovvSexzaFkQSBSpz6vPmzlPWE5DAg3Bw2QUP5gFEUH8ff0/G1bv2x7nvk6VoJBzE2gKDKTWJeiD5M5OIIJFalbnJdY5urecTr9SuvzwiSOwK10TVJBYIrfaHKlyTZdn/lWXZHoBPAHgKwFuctx/JsuzxLMt+vUEIkWXZMQC3Avio87mPAnhe8+/nue8ppXYBfNp53z32P8yy7ENZln3o4sWL3nnSpqXppvJNRXTT0xtLGkmsagyLDMMiXu3ScrZzdoHU89H/30YSLUe627PHezwHpXOP79r2eIajy0Mj4gAA3/HKuwD40Yb9WWWcpDNNkHiqcbqSHFC1WJBoahLLQnSsL2yPcWp9hNPrSzi/NW71IExRXHSRlEGgBca8qs294tLNuCJ2QP/eQZHj1qP6HD54QQvskPLcQtnnPOO57o198tw2fvYdn2pq5GCOU3oyfnqeGY6v2GxUy0kWaGV+JJHbRP0CHADntMY5hBIFxe8Qto8BAArhzZerN7PXTXYQYhNAtgWGzBKgwnrOkoRrnPtfZkDIWdPUdhsp9kd//SSe8X1/jKt7bfaDP3DTn3n2Ga0qSP0MgbbytGvjWY1a2Z6HALA0dJB0Dkms/A4oRwkMKUICwj2p/LW1dDw2uRI4YB9JDM9Rql31oWB+JgPV8Ov/f+kzjnfm2KffAnHqpnx7g0CwJzAnUhHIeKVq+5pCeL2TnrlQgOmjvH//792HH/vjj+O9n77MJxc740KMCx8FOqZO3L1uLookGYe2hSjhNM9uTS4QkVzh9sXaf+2knrJuvR07jilDikH8WVRc+dcEju4OyIlhK4B4OEhikTesnMj9xijllylBov5L9Y9A37/27Ylk3RY8+ssj6KZd4RpTkxjqzeVHEw81SFRK/SMA6wC+FJomOgFwCcBLoemkL27e//fNkLXm76bzNZvNZ+h9973u++6xf1kp9RKl1EtOnjzpnadBEoclplUtUjmJbnrmyBK2xzPj3Kdk/y1KKAunuMIdR5YHuLbXRhJT1E2NcI0HSSRKwrKj8Pf9r9PKqr5gb39Wme89sTrE97722fi/v+1lzRzjkSz6vUtGyj/tt4XopqfWRzi1McL5rXEr05UirlM7i5+PjgYAb/yDB/C8f/k2fODhy5jOa5NF44rYAWBaaeSMlOYeaXqAERXI2yfRQyUpPYvkV//rd+Nn3/EgLu9OWwIEXrrXXN/vxxixAw7djpkjF1xSEO+zRRBBM082uExzZKKQFOYZuJ41iW6SBOApMj66qa/eWDpWq09igvOZkjRKtTe97ZMAgPubVjJG3VSghbsUUOrx+tlLu+b9XLgG1CPRVdQ0wk0cZQhhB9TQ9Dr3cujeyphrEKKIAXxtYYxxzcRj2mYAXBLUllz05udJXNA1+dovOovveOVd+Kdf+aze2K4CMRDjJEv1zb4xHLtD//Wudxy1z0G2OaOXuTYdiyCJLitGGic9p39831MAdGLZfd4l4Y5ahYK2vsJ1Sk2iG3MsvN9EBIl9lJpe9w4TkMTae72l5EoIKe3OEQgL0NDxeghwreBjqUrPqb0GfJ/EG1luADh1mw0FOr50Sf8lfyaGblo560TofISEa1i6aVDdtCtcE4EkAsG6xENXN1VKVQDenWXZNwP4LqXUz0PXEgLA+SzL/hcAT2VZtg5gp3l9A8DY+fd28++d5v9dc99fyCamJlGfnlmlMCz7T0gXSZzOKUhMQBJrCgDl2h6X131keYgtqkksbIY8mm5akSMpSxDPa1vL8tUvvA0vv9NmaKXFHwAmMyvck2UZ/tGr7jHvLULlXPKoNPrG+eimu5M51k+u4ejyoNXP0s1+xsT3rkx5WWTYn8m/66OPXQMAvPWBc9ibVlgbWQVQ1pGsagxLjRoDMKIwG8u2vYQso+3fELnzX9fKLIKPXdlr0Z0GntoxSoocdRBnQlJ8GdMQ3Y5zYkIZ2i5tKHbTzvNObzmqYws4MjQve7wwksIJ14RrSXV/0RDdR3+v/jss5WumxUzSnBHOXFGOMN20fzwSSLgRQSI1P/7Ueb0N0O8S21I4dcJ33qLzkq96tk0kSkk4WpdOrPWDRBFJbESyJOPW15jsP4cu1cpfj0Xj+Ocm5Ei2z0kcQtFHewB7DwyY8yJl5AHbHmljaWCSmN3jsZTAYDDL91wNBWDSvu1v+cCvkzHiRlxw76dyCv5Fh+Hx3u/78tZz4uvVOmioqJe2J0bZPc/tGeb6JIasn7jTf31XjUuuRFFwGZqw6//Ic+wG6c2xQsFlztXqhymx+nNSwCEFiTzdMaqXI/OMhmpr6ftdk1BxSze9sUiiuwf5kuS9cc3nLN2038+6ay67xqxb0jVLXEvi6KYd4Rqim4aCywCS+N+zBUYJvibRJPyUUlezLHsKwAsBvL15/YUAHmj+/QB0zSIAIMuy1eY76f2FbDzVJ5ec8llVt2pUyHamcwzLHMdWBqiVVvccFDkGeXxNoi1uz9mNXh+fNtEcR1cGmFY1ticz86Bx9RBkv/yuT+OeU2v48ntPA9AbV5ZZR5KTIHYXhF/4phe13vMFUhpJFGhzCS0YumhnfNGw/jss5RrBWRNcbywPoJRt26Gd3eZ7Ijay2ln8BoUfSbzQKKre9/gmdidzk3yQCqlnlUYbCTl87EobSeSCvZgMldSqg2h5APDY1f3W5uOrSZxWCsMyx1FH7MBVN5VrL9KcJoUwStelDcU7u1JTZM8YJkuokUTvoQyS4l6DmJpEgHre+Rf7rrop2wLDhyQm1AmapsAOapDaAkAKpA5iu5M5rjT384cf0ckZWkdKX+BGrIw8wwd/4DWtpuJlnntr4taXSvNMLreQ9P78wkgiFwDEoNT02fa9HLone89NBG2R5tlF0mNEO4D++uptleJjMjSvcQlcM0eOEhhKrPcCAHrdnzjq9ZbzJEnssbiEn79NinXI7WuGWRaFJPrnSTW27jhpf1sblRjPpri0M8Xtx2w9uphMjrlPeucyHOzxbYnC55+9brXyKqLSd3bvfyBMNy3G0Ln8AAAgAElEQVRYPYE6GDToz3XGBX6fxMoJJ04ZJDEQXMrqprxwjWmBcUjqpiRcE824a87bcoIPGkO3DokUAdROR69XmYbVmzdShWsiWmAAnxt00yzLTmVZ9o1Zlq1lWVZkWfa3AHwTgHdmWfbyLMuenWVZnmXZCQA/D+DPlVJEI/1NAP8iy7JjjSDNPwDwG817vw/g+VmWvT7LsiUA/zuAv1ZKfeIg8x03WYONRihEukGm8xpLZY61pj3Elb0phmWGgacFQ9dMAJhnIq/bpaQea9Clt9x3LogkKqXwE2/5BL79Nz6ET57TWfV5rTDIcxNgcs2sfVkjXyBFwjX8uHg1QxskpikgWuEO3qmj7y7zzFxbEoUp8zS6qZsh8/VJ3J9WRhn2/ic3cXVvamTaJbrprKGbUlD4aCdI5JICMaIwOovZv97UugTQASk5l5lTk8g5CboGN281YPapm8Zk1rnWAbH1ThxFKbkmq/nrDRJNJr87x7Dz484NCNdp+vqSds0g6R6adlWF1U3j7n+7JknOZ1BMKWHTjrW3PXAO03mN244s4X0PXwZgs8FFnrPJjq6YzKmNJRNYAvoeYoNEBwGjZ3ppYB1lrkzBpbZyxgnXqAgkXUa3Y5BExtmNQAV7NO1IJLFfTiEL15h9iqObemiqZo4LJo64YMOP0vWvt9QjrnUsJnERQrKMn9Bat8LBvbR3h2ogyyITnXl6/eL2pFUDKAvXxPTT7NJNYb5XMs4pjxEO4nQBopDEznND538x4ZrwHIH+dQshpRxzIn5NaL8WUkqWwANpfzMtMG4Ak8S1bluW1NINt09i7Jgiy8S91FK7w+JlZmiMAA3QF665TnTTw6pJVAC+C8DjAK4CeDOA71ZK/SGAuwC8FZoiej90neI3OWP/JbQYzSMA/gLAm5RSbwUApdRFAK8H8OPN974cwDcedLL7U6KxWCSRM0IYyUFQSl/8Ms+8TUI/+JkrpubFbCSFiyTym2iZ5/jK554xr/salwM2AAKAX3/PZwDYAFCCw93PcCYt/kC7JrFrKQ7oosI1FkkpMK8V66Tpnoi56fvoilv46l+kOdI46Xc9cU0HeK97/hkjdOEiiVKfxGGZtYLEMs86ARifsfNlTaX6NjdIfKLpy2h6y3mCFE2vznBs1RGuMXRTX32CLyPM1LFEKofyPdEiHMKWIxnOWnNOWgzaw6HpoXNC5z8m49pXNxWQRE/Q1p2fZO3Nt318c6wQkpjFb9qx9sCTW1geFPg5hwFB7SyK3FODnejIA+11mdBb3zMKhNVNubp0TeUMIYl9J82nZEvWdVpjpfw5xctYJDElwWXQd5ZxEX52WEqmd5Z9dCkmuOQSfjEURE6kIoRkcb3sYgIpae8OBRss/a0x2psv7Uxac5Ap6JFruXvdzPw8YxiUOkY4iEfbYltg2P+PTUBwTJmqrr3Ho/WCqxME/P00u5ctBvHn9uAg3VRgoUj7m08Q73qaEeEL+Gldo99h6Kaz+BYwWSbvpTHCNb1zGStA0xOuoZsyhCT6CaWHEiQqpS4qpV6plDqqlNpQSr1AKfUrzXu/rZS6Uym1qpS6VSn1LUqpc87YiVLq25txp5VSP9P57ncope5VSi0rpV6llPrsInO8vDPBM77vj/GnnziP8Yzopg2SKAWJc4UytwEHoLOhg0JGEt9y31P4+l96H17903+OT53fNg+Jr5k7bYbDIsfx1SG+5gtvA6Az3gBfowYA57cm5t8ff2oLAEx/RZ9DWCnZafKNG898SKKMSPWOb5DEVLppc55KOUtFgj90ba/tOXTTlEDWyZBJQTqg6ZsA8IaX3G5ec4NEnsama/2WBoX5LUeWByYI4dRso9pLCJs9UW4BTdernE3SRwuhmkRqzQHA1KX46KZe+hUTOMcoh3briOifIYdEog3FZK3TFSj791eoTnOQkHGlS+ulm3o2e6m5N9lkXuE/feQJjGdV634Tnc+Ak8wp2R7UZlWNpUFumAIAsDJykEQxcPM7aSzd0VGdHpog0VWcXiAg5YK9GCSdcdJi6KZdpzX2cvQc+Ui0H+gjzn51U5nxQvf3UPC4ZOGaUDDbCcAigpSMpY3Sb/AnxTgkK6oFQyLaac6lsC77xLOk57QVJDrnySLi7c/HrOXdgNsc2oeSMmuQGyBIljHBfQQojiJD7/4HImjazL4Yut6S6F9MP00ucRETpPfqhpU/2WHoppEJIKN1cKPppiaZT0nyNF/S0E1j+oQ610NMkgT2e4Ch7kYHiQUdpPn7+YUkfs7bx5og6hf/4mHsz+LoprOqxqDMsDayJ3lQZl56xrsfugRAL0Rvvf+cCTbKPBN53S61CwBONkIJp9ZtewnOITnfNIu/++QqzjX/ruoahROQSs3cRcfOM248q1qKqK6ZvjExohgmSJSdXc5c4RpAQA0qHdjTtXWRRE5+XpyjiyQKQTqge04CwHNvPWJeW2+CRKmWdNbMEYBBqd1ehJyQRkwAVuQ8LXbbCRL3plWjZEZIohykUJAIAB/8gdfgF77pRWa+PgXWEG0lVREP6DtbsYjIIs4WVzscg/bwlCi/g7ZIcsXUG3N9EgNZcqnhPAD84O/fj+/+j/8Nv/W+R/i61e49GaDbSa0lDmKzpjXQmpO4ozpZuSbR32C66xC64wD9jJB4zbJTk7uYumn/eseg1HxNVjqSSJFUOk01QhBDUDd16/K54wD9YANw90WZbtoNtoEFkKzmn6F6v+6tFYtkcUGb7x6xc7T/H6UAKp7/ULAhl7PQGnNpZ2r8pGGZ2/pmBkkMRWBZ1hYTUxE1idya7AYI4jjmOY1PSnL3iHcYmxgLKY5K180tC+GME+WJXUu44MarbhpAqbvPtiljudHCNQ5KzpXASNYNEqOEaxyfMNTbMoq6a5DEBLqp+3lVA8giMuU3g8QoI0SpqhUmswpZ1lY35WzaOMnkGAM6q+lrrn7f45v4G/ecwAvOHsF7HrrkKJc6dNPO0C6thhwSOm6W8cEXBYkvvOOorhmoFWa1DkDomeV8tDoCSQz1SeyN89S2dc0EiUbdNM6R7DvJTPa5URck9JeuewtdZU7KY1f28IO/fx++//fuw7yqe06yhCQ+fnUfgyLDqfWRcVZDSOK0ST4AljL83V9h5d05IQ2336ZknGoZAGw1dNNT6yPsTyu4amu+mkQSrgE0qv3VL7zNvOdTYPU6ydwGFRFILFpb1b0GKmIcTb9Lbw1mn5n7K6RuavrERTwDrpR9mfPiWS6VmDMfKv7hR68C0HV/7rWUas1CfcpSakRibVYpDDtrsqWb6mvNNZheCEl0kne3NqwOSppIa0JIlITrVakQI0DDJS5UsCa36zgtiojoJEn4WO4xyHyIm01AcEhiOAnhrlsxzzYg15v5fp9E0fPNT4/r003jauI6NZAmuJfHSPtbSOBFah3j7ssXtyfYawT/lgeFvJdGJtNSa0lNCYAb3EegNmz9XQRNuys4ZESRIpIynLqsv0ykr4oNhNfyrJMkaSYa9Zx2z0mYbtpffwAPkmjoptd3/e9az0+LRBLpXKe0wHADUqmdXYxwTY/RRkhisAUGZWYoSIzorQgEkUQvGTXLst+CZWmIppT6lvBMPrftyWsa8alqhfG8xlJZeIMNen1Y9Ommw0KWjP70xR1840ufhiu7E3zksWstypLE66bjE0TffeC4hQfQCzcAvODsEfzeh5/ApZ2Jaebso1b66mZ8gdT+VK5JXESAI7UmsVuTJWX/XbopBWGt3k7MuH/7ns/g33/gUQDAd77yrh7dTlp7Hr+6h9uOLiPPM6wMS+xNK6yO3FrS/ph5c18BwPe97l4oBbz2+bYWNc899V++PolMHRFgaxLPHFnC3nTeoo75rttsXvupXlwWGYEAjEOXVIQAjVjHEs4Iu9cgBoHk6JU3GkmMem5q66hwjp1SSqNLgSCdSwBVtcLjV/Qa+dePb5pnsoUkdp3PCITiegvXzCudBFp1GA0rToN7oI8cBtUkJeEaIzqW48wRHSRe3rHrCbcmhBxCjpIZV5Oo/3bRvfD93x8DRKANeR9ti3GQARlJ5OZq15/+97n9g9nj5W2VwDR2gf3/GCTRJybmrUlkardj1DX7DAj7umTS+Q/RFos8F2vnAc1yubg9wfntsU6SF7bVAJfwiwtSuHvSM4ZB0mNQmyyTETrvHDsJ15hAFtB78HjeT6bF1Ptx7RRC43h1U/8cNejAXbe0IF3/P58EPawWGG6iMk24Rv9NKXlikUQh4e1N5nfBoli6KYckhgJL4MA1iQ9Bi8Z8GrpJ/d8BUEAL0OQAvgbAtfAsPveNgsSre9Mm2MlNkDgR6aaqhyTqPoky93kyr7EyLLAyKrE7qVqUGZHXXemFlW4e+ku0SgmRmsx1k9bbj60AAM5tjk3W3FuTWCuRouGvSayDwjUxDylt/sl005qCRJ5uR/SYMs96wjVlIT/YQHuRuLY3i27S+vjVfZxtJMUpOLTqpjw9o1bW8fnOV96N73pVu1MMJ3gTVZMo0Ia29jWaenJthL1p1dp8fAJHMwfx7FqW9bORMVLmEpIY49gxifUIatniSnqp9V/c/RVy0Og+iHluamW/Z1D02Qz0FeFemv3Xz2+NMa1qPP/sBqZVjccbGjUJdXV/F2DXsUVqnRY1er5dCqKL3LvzItOBmx9tYGn5jgP05feeAgDcc3qteY1HwEPUVo5aFuu00mftuDhqWRs1o9fDx+srqfrHcAqsgL92zI8kkiqqfH/psao5rn49qgdk4m/TtdTt1+rA/a+PxQeXPicS8NBNA3N0P2vGhoLETFj/mz2RWmY8dmXPURLuJ9Lo2CExsUwMgOUxnF9i9ugQ3bRzPhTikiTtREL4/AN8YiwU7PkEh0LjFg3SObQ5JgERK0pl/IobXJPo3tsp+00XqJBigPYY/df11RcSrqGAm85ldG1hE4eQeE19CEiiUuqH6d9Zlr0NwFcppf7See1LALwxPIvPfXtqU1Mzn7o2NrRJA4l7kMRBkRknBNAbVlnk2J32Ocx1rVDVOrBcHRbYncxbMtkSr3vWKHKSfcNL78AnntrCd75SBw8s+gJLo6LaRU051Zl2n0hF5dmk5GywwrSqg8I1UaIwPSQxLfsjCdfQ/xZ5bnpOUnLAp8gG6ACY7Ore1Fn8ci/d9OL2BC+78zgAK+oy9AT3brsTyfhmt2F1U0m4Zns8x+qwwNpSif1Z1cpsSmIHNFe39qt9LD6LSfOXjGs2HJP97NK9XPVNn4l9Er3H6t8nSvnPvTSucu4jdn4eJ7lrleMAcEFiiNqq58ivCY9c1iq9X/rMk7j/iS18+qJWZ85z2fm01BoBSbwhQWLdQ5YoaSQGs3VI3ZRHUuYOC+QVd5/EB3/wNTi1rhFFqY5rXiusRMmft++tcPa/k31GpEMo3P+hqLQv+BR2/iW6qe++9CUX7Vop1CQ6Ca6ySHPk+6I84fVHcpBTHfm4msQuJdl+n2RBJFGkhUvCTfr8nz26hI8+plW43T65QD8ho7AIlbm5boF9o3u82FrGXpAYkxToJHgNkhhD706ku4uCQypcOrBITWLBJHjj6ab8HtAdm5L8PIi1Vejl1mi9cc3nfCKIXXOBAxFJrCPuya5YnVmTY4VrHCQx1CMRuK41iV8M4P2d1z4A4BUJ3/E5a0S5m1Y1zm2OtbJkc7G8wjWFRRwBfVMN8oyF0d0altWRdshJSXVU5mKQMm/qbMjWRiXe9IYX4tiq7k8nIUREoyJHfnc6x8xFicRx8qYozZEKe91z4Ron/y8ZOTqL0k0lmnA3AHv68RV8pmlFUuY5K/5ANm7qVAFgc3/WylK6VKauXdmd4nhznf6Hu08AgFED5YI9ovBINE6ADy5jC6K5zN3OZIa1pRIrQ41u1871p+vNXYPJvO+Qm2MJWUwgJArDBZdx9X5dxxqIcAjzrkPSvB7hkPSofREOAtBBEiP7JMYkSlxnlqX7UmlD4B7hnlGqb37FXfoefvjiTjO/3Js4AnzOp5xcWdS4IDHr3MucSqCfAso7M13hFAoQATlxFw5IGUQkAkmkr0wNLnvzdLLh4XHOMBXn/AN96qivJi7PM5b+BrT7VHJWdp7TyPi31zogLknFOOQxQSJzn8wDzdW5cZZq7h8D+Oqk5PMo1c4DwK1HNJL46JW9Vlsud16ADr5UTJDC3FtAXADcVpwOj+u2O6FxQeS+s3bFJiW7CDDN2V+nrP+yYjKBdlLdyxaH+HMIsJ82LYouCloJPq2D62mxjK+u0ed8IojSGLdOX1KkjemT2KtJjKab1vZvFJJ4/VpgfATAT2RZtgwAzd8fB/DfEr7jc9ZI0RQAHrmyi9EgpiZR9RySMqcWGFzmrQliityIKVxsalhWR6UTpLTHUZ2NZJJjR84PqWluj+eoKmVqGyWRinktH09CDUIbtk8lkzs+sFifxDyzc+A4/IB1Hu44vmLahLQpuP3vHs+q/4+9d421LcvKw7611t7nnHvuvdX16mr65Wrc3XQDbTcCxLOJTUMEthTkOIEIS8QojuNECkqIHVsxWIqFJVs4TqQosWKTOH+sOAgpOCFxlETmkcSY4E4cFAgY6AYaupuuoqpuVd17z2PvvVZ+zDVfY445xzf3PdWpNndKV/uevffcc+6155pzjPF94xtBnOKVBwJJrDjbD6/3uNgd8Mwd5yT+e3/og/jvv+cj+MJnb4cxC9qokWcD1Bww99iut1RXUz3ZjDg/mXBxvc8kuZs5iYd6TqJm/MTDvjpF9bstsA9tmaS/ENfDj6fmvzR2xmiQx+d6kJS8lte6jmqGbkcJjMy51xCKYIy356jtCS+tubsfeudbMA6OWuY/yzI+6zS2m0cS9/PS2IPWeR7KeVpiMq2cRFVwpYEkWk4DgCLfiUG/AC0nsd2vRBLzz6v3k44sQ9Fb31usE/fYFqDRrn8UfVPnKIICy9JWgwzzLL4bVzZgXnLqOhW4G0qaaioc1h6vL7hVQ3ssWuxYuf7ennn7mo+7LMjUzeVewjrp0klhEOBacAWwaKr69egVrmG3sWks1/++EZR3fco9wfez1tYxqRuanXCYDXVTC0kUnb0NyrLEjm1xP3M2aK1+tmz+PUwJqlcf7vAPP/5SUTsbUJztBFyotaLuMF0CQwjXzAcb2gZuFEn8bgBfD+DVYRg+C5ej+BEAn/eiNYBzAp5djfnffPkCt7ZjWCAW3TRtT98+cSUwlAjJPkGyfO2uF193Efpb20mNBgNORdJSrdTWcKC2rk7ig6t9ZqTURCrmxiFVjQYbBuFGHNitFvngbSRXNk+TjPQMQbcLKrHu9eefOQ+vuRs7fo5sl/sD3rYehvcudsWGoG0iXsTimRVJ3EwjPvTOWApDM8hjnk07sbkYjzBkaonbPgfm/GTCw90BF7sDznzZgIrD7ea6VJHjNpLYjkjq9B/rYCsNZIBAN45AEjXkjHFkVSSRVTel7pv4OVpuYUAMWihpZU94+cEVpnHAk7e2ePr2aRJcGU3jsy6I8cbQTWv0w7os+WzQvep0fkB38GvfzRTJURERzrBz743POefGRqR6c9tiv/S+4fYfoLz+Qbim5qRUHO7rhO7bHG9930w4275fNyK7vi4RSMBCYPTr0QoK+/Hkb+0/r9Zqe4lFi62tf38uP/fEWdhnz1MnUaBm/hModdNOB1gLsIf/N4bTEGAG7SxtLntvBfQzf56NEjyV382xV/rOUhYV1wJ+luAZgCLgUctJ/FyVwEgDlRtlj6z2W21JP+3W+fvtf+On8Z0/9DP47TVlbRxi6lgBVISATNueB5Iz4FFKYFB005Pmy7STuCzLry/L8nUA3gfg2wC8b1mWrzu2eP2brT28PuD5Z26Hv8+2UzDUa0mr1wrd7v1vu6PmAwGRnpGK3bzw2hXOTyaMYz0nbq84o2mrqu+tDuH5yYRhAO5f7bMDqCZS0aK7jBVHyhJOiflYTAkM93hMCYyUDy77xXIj7nUv6OOfqyWIA0659fbJBnfPNrj3cBeKO3tqgbaHeOXUp2+fli9CN8j9wduu23bc5m8ZrrdOJiwLcO/hdaANWTmJrehzgQiS0e6StkXWNlOcRMsslOqmPQIQUvCGyX8EajmJbUOXOUwPczTUa6qJ6WfWxqsFPJ46P8E4Dnj2zkmouzoNQzVwZKsmvjHCNX6vTINAbrxKbg9hpNWCK4B+4Nf2BLZOogxcMIqEgAyUMEGS/tw2oNyDFrIPoF1/99grcLRf95+aQS+DAkz9O0ARTpkZsY/1vZlzQyp5Kk4blZM49/1utfPNFK4ZK+kz63NnmzGccalwXU05l0G3ex3gsXL93Xjta3KcuEt5r1lj+dfV37uTSgt4dM84S5XvxqLiaVsWq9zGOqdKAEiurVbw+SZbWHMN+1prh9ld92Hwgjf6+fvgao9f/qxLvfj7v/iCG2sYIk2+Yie3AL4iNYsugeGFa3pLYNwc3dSNuyyfBPCzAH5rGIZxGJhZvPnbxe6QGRW3kpzEmpPi1B3zr//80+eOHmPQTb2IyQuvX4X/t6icbUW8Sk2uVelvGAbcOdngvkASR2URe5l8C0lki6b61rMp+M/yBw7LW/e0MY8kyN9AUvve9kR03qxNxCm3jnjq/AT3Hl4Hx8IjkFof7yR6uqlsLSSxNyfxGGqZb16W/3y93i/dvy7KBlQRyEZOYg1Zak1Tp5vy6qbeMGCorW68440tiaQwBqHsx0Tx0/e12rK0841T9LvWtDxZwNFNPSL+1rvxvrlztlENNMBO0tei+I/a9klO4v/yvX8Av/QD3xpeq0nJM3QvXbgmDzrlffQ9waS2VmijjGEHlDlg3cJN/v/EWi7FXYw5Vilp9RIYfqz6/tP63fKgwLzYwSZAc1IYJz13SF0/G8mtU/v6+nH53kYwp3H9WzmJJ5sx7AklkqjN0Q549OYWquwOMigptyCW3q1/t3Y/FUlc+gNH7m9rL9dyEpk8ZeUeNfaSGr2ytrYi3fRzhCQOfU5iqjFQ238AhNqgAPCx33h5fb/7W6PJz8a9BiT2RTfd1AvX7GM/qgTGDdFNh2F4xzAMPzoMw0sA9gB2yb/P+3Z5fcCTt05CuYKzEy4n0RvzT527C72ZRmw3o+pYpnRTX8frxdevYt08xUDw428NeFrjWacO4Z2zDe5fOjVV/1na5s8iGzXhlJuo9+bfc+ukk266UiKiYS2Ea8QcU6GJFEms0U3PthOevn2Clx5cZxGympMekMRz3UnUkthjbmebbiovozOACNSsZrhOQwhWvPzgOjjoMSex/A2c4pk+lra2KNrQWFJWqO8m6EaMsp02T8rYCusknSNnEAI1JLEWXOFzEtODXFuTLJKo002vQ7Dj2TvRSXzmzoktXFNzgCt1Ox+lpdT8k82YIRveadACXBYFVM+Jy4NOaasqThPlNtyc4nPHrH///27hGvF5bD9mjtY6aZ0dteBWUwBCBAWYexQ4PicRyOmmziBv9xuGslYuhyRKcRd7v/MfWdsXmsI1yhrxJTBOpjGk6vgzxH+e5rRRjpQIdlj9amJiQPs3kL81QAYl5foPomDNbmrwzl7HtfumTZNXz4Ajg8mHuU2b1ujufs7jUPb1SNsbXQJDq13IgA5poGYzDkUeu2/XyUb9mYRu6h/rpco6fm+2BIYUrrmhEhg9KODfAHAN4JsA3Afw5QD+OwD/esdnvCnbsix4uDvg1kksivzFX3A30Jba6qbuPT/xZ/4gfvbPfxMAYDsOqmOZ5pv5PMEX70cksUrbUgRy0lYXSYh0wNunm5VumtfAq9FGW7L1gBJpIlUaa0bhJ168Hw4DP6fTTrqpj8jVUEs/R3+DPpcgIq1kY8AFEc62E567e4oXXrvKKFK13E5PU67WjlSS2P1aa9KLtYNtsRVAa7klTvF2DHmyv3P/KtBN/TWpBT1qm52kcQJ8tLuQTSe+m6R7MUqebi79AhD+Ky+iH4skpuMxlMz0fa2WOgXammSENLToM5Cr9HqD8GQz4u7ppm7ELPl3KMfiixuzbX+YcVKp3VnNyTIct7GGJDYCOjWU1HRIVTo/g9K5x2MQyGMpgb05iVVhNuPMmcZRdVIsg1cGBTyzxmrSAViM3C83lnvsFfPRauXOhJNYQ9taww3DUNBUAZ+T3nYA9HSDdf1vRrz1Tkk31XI7AZgCX4UoT/J8dY5KACJek05Hambp1vFvH5Sk6isqQZK2kIkevD4sRsBPAQ8oUR7FTnC2VaNPJQDRqvm5XYVk3ogW2AN+b+lEEtMczBaSeJUIXr74usvT97a9RpNna3dm8wxIokU3lSUwFjIn8ebopl8H4F9ZluX/BrAsy/JzAP4EgD/d8RlvyrY7uPqFt7ZT2L6+4vmnA5W0LVzj3vPk+QmeW9UvN9NY4fB7o2II6OFhXgKqWKNttdRGXb9SWc31S5DEU083jZ+lRTospbN6raV2Ll3L2P0nv/06PvrXfgr/2U99ws1hfU93CYw1+uM3JRml2ok5PpMgIre2U3UzBoDLvaObPvfEKV54/TKjSGmOjZtPW5TkJoVrFnComXb9Q6mUdXObl0gbapUumRuH1DSU65GJJGs5IsvS3lTdZ+bzpOk/0kieiah1xSBhkcT0NziIPFnZgmND3ANp7lSLJdAyeGuo+MPrfVgfb1v3OZ+zUau5yqz/G6ebNoySqMKaX0vLcashKVZ9v2qeuFEDFSgdAFY4pcxJtI1d3bBudlPQHo7GBihOkXHm1CL5acCz1g+I95tVV843GWCZl+PUZemcxE76odaPCW75fqWzYYiSVM6N64MzRrfTiPc+dweAU/72rUbJNAMeRwQu9FxeIihZcaSsH1wikPT1H/TrzwiZaA6HmTpQ9AHx3fop0LV819Y9upn0XNdHbf/x3/8VvPfP/z3sDnMI5qcgACue6N+/mer1FT2S+OR5ROP8/zVVYEq4Rq7lYDhZRpCPXvfmJHTY2G4AACAASURBVN4ckniAo5kCwL1hGN4K4AGAd3Z8xpuy+fIXt042+Ev//Ifw7V/xLnzle56KdRI7SmAAWNVNtchbiSQCMfJQu9GuD/XcLyDJExRDHhIaw92zCpJYQxsMZKNMUI4Rm2Y/5bq8dN9FYH7s5z6dzeF0M2IYOkpgrIddrQaPpPal3/FD73yLkZN4wK3thOfunuGVhztc7qJxL/PhfGPEfGoGk6UkpuV/UQaJZriuEXZfvxGIUubB4TaQatlUZ+/I4sY96o6Bxr8+323sJvO3xjp0GoTaYW/WSezI5U0PNu2gD2qjRkReWyPpvvFFb7sLIC8bVKMotcZ7I4RrNDEx3yKbIX9+P89tx61iJIegnyZcUwncmeqmyh7Ul5MYn6PW5Fj2ST+vNV56SWYK7dfPDubMUYNbhjMlgwLzbCOCvp9EiXgnPT7H7FuDZsgTAaeauinlgCnOhrUml0VjvazrfxrwbR9+B4B8nzoGEfTj5d/NPfbSTSlWiHpOEdfRjyeDku1uhZowsOZEE8EOLTDfdNzEdQT4POUi5cOYo8aSAaJtobVaaZtHbX/nZz8JAPjHn7wX9ppxqOdNai11it3+o9ugV6sd+K6nboXnnlrTizTmVgzU1seW9V2juqm1KIVwzQ2VwGjjjHn7PwD8YQA/CuB/AvDDAC4AfKzjM96U7WJNPr21nfDBL3gCf/XbPwwAGAf3IzF007SdVJHEWHz5C544w+9962184sUHAVWsHqKHGdvmDeoeZdQmRRJvn2zw2dcusRnHYPhrIhUWbbTmyD5KTuJrly728JlXL7LPHscB22msOumyRSTRoy/5WP76p9/t3/zG9+EdT95ykaZKxG5ZFlcWYjuFBP3APx9zGkOKpIacrAa6WuYMrK8ZTopmWDCbv44kLjjdjrh7FreDIidR+Q0OjYNDQztn4tCu1YBkapsB8d6hjd3CILGNLS3/iDEIN8ohJcWUyj4dOYkJTaqFJFo5iTUEzM//S97xRPF6Lf+lNZ5bjzcbSd7PdSXoGEnuQxLrjnOdPZEG7tKXzTqJfg8Sxq6NUmMdL3cuGYM8DcKxNpsU5qGQxAYikr6uzVFDnNO6oFpTkUTGSRTnYs/+04sAa/cAQ68fhlIkZ32l2U+jwLHqmodlwZh8vl83p5sR7376HH/ru78SH3pHWuIpD0Cw7I4SpfP97Dl27+VJMGcI+/qC0TCu43jumgSH1LDJ1bqMhJMO6MI1TVZIsiaDIjfa1wOolGUxUPjavX1oBOBqVQAetX3pO96Cz7x6iZ/++O+E4LlXKQX4gKu/ZjUhSiACSO9+6hw//6nXAEQkUQtupUI6tTbKeT6KcM3nGEn8LgA/tf7/3wbwEwB+HsAf6/iMN2WLSGJ+OTxEzdBN07YZR8xLecOkdNNhGPAdX/luAMC9h077p3aj7Q+2uimg0718v+eeOMWn711mZQs0ZCnC4Zazlz9vilQ0jN17Dx1F5ZX1OoRk42FYHW7OcvFqXzX0SxNI+DPf8gH8sa/+PQAUmH9t14cZy4KQkwg4hza9jum8W+OlTXWIZvZgKw3yXtTMN5+TmDqJQd20gWS1jOuWuqn13Uon0TaaJN2LcUjdPI/IY/EOqejHXH8gv5Yscs8cps64Wec41nNC24ZFJZcuydvzwjVf9u4n4zwVR8pCSd8IJHHX2CvrEXmbtqgKdzS+n5aj5v9mDMKyTmK1C4C4XqWYBoNI5XPkgyulkmd7jrVIvhVgrCEOFt1UGtdpEKXVxkHmGx+n3MpekwLtgW3IS5pkRM3seWqKiy0kfaqkHMjUiI9+8G0h5cbPUat3SOXtdSOCKObIBiXTMXw/Zv0D8cxnlVtV4Roj2FGj81t5gpO2J5CBI42Cy6D2qjJ/7b6e6s7XozQ/3AuvX2WBoVoJJK1lwjUNgTWPJL7n2Vg+L9VzqFcBIAIe0km0lEqLOomHz21O4rIs95ZleXn9/8WyLD+wLMufW5blM+xnvFnbw2vned/alhdrUugBgDs4WnRToDTsZHmDb/7i5wAAv/Dp18JY7rPzz9vNdQoV0MoTjDfIh975Fty/2uNXX7wfNv1JMSStvCWJ2Mh+x+QkeucQcNc1NZy3U91Jl83LFtcKtbaKX6dzlBudp5aebka8Y1W//eTLDzNqH4CComE5AFoSO+OkqGUiFk5dU9vsPAUuo5sW6qalYTEvfQ5A+LPlJA7l+vfPt5pEuOmotZhnV1Hwol+7o3bYSwq0bNuKgaa1VN1UE8Sw6J+AgSQm983Hvv+b8V/9ya8W/cr5APXfTtt/HrXVAneAEqFdm+W4jaNOt9uHoJ9ONwV0o4lSN5VIYrXHOl4V3W73kygdH1wp8/aYPkB5dljqmu4eVZgMhsEr9y6Xw9WcopunuAcYIRONbsqgq8Og7K2EIS+de8aRAnRU1kISa2eAlT8vz7fF2A/CHAe5JrngYvpe+f9qP8WeOYbeHc5tazzVcWhT0AE9UHIw9hLpyPp59geO7IBTQC0Ve7IFHOxumEkCAK+vzLQHV3vMczyXayWQtJaWF9k0BHZ8Xu6XvD2ya8J4CnPrkCCbtVbYF91I4hz7MSUwbgpJHIZhOwzDXxyG4deGYbgchuET69+6vv/nUbsMSGJ5QZ1BXhehOdmUl3BbQV9SuikAvPetd/BHv/yd+I/+JU9vde9TkUQmYqo4bj5f5ve909FAliVu+qNiSFpR3ZZCmpuLlQ9UXst7FzHZ/XI3Z1L9PZQEH/2pXf8gWV+ZY01d1q+Ps+2Ed67c89965SIgKnGDrDjOjfE0Jc/0M9V+FQeMiSKrAhzr+jpPlOluecXdmmGdoL21sYp9laCA6hRcPifRXxc2sl4UBacMO2+Q9/UDysP+ptVN0zyKOt20/hkaAunGz+XWn71zmsvda5Fu40CcKsb/o7SWErRG9wUIx63i3BzmGcOg/3a1ckbHIIlcTlz8/NCPdNw0cREmULLPxiIM68b1N4WDlPVvCneIe4cVrnGKx8k4DJJYQW04JLHPIAcaNHmL7qg5AEs738x/N7kHRSXuyvlWoM3ukQl4qOyORs9aoDydvzqWGvA7ht5tn21+npqd1kJy/eeqojDNgGsZOGJR8QI8IFFLDaiol3e6eSYJALx+5UCH+5d7h4CGM7GNJP7FH/sFfOff/Bk8vN4HwMH1q8/T3wNfmCCJvk2TztRridb48fx7AYAvgSGEa9gSGDeYk/iDAL4KwJ8C8BsAngfwFwA8AeB7Oz7nTdcurt0PfUspVVCjusQoWnnH+U1TIlkp3RRwG9F/+B1fFl6v1ekzI0YSnl6bL5IOOIc0fqd6ncTooLWj3d3Uyoaxe+9BRBJfu9xlvO3tNIYEeat5lbYp0E0lkthWYK2py/qN4GQz4omzLZ442+C1yz3e8eRZ9t2q5UQqm7KWxE4hiSpFicuJ05FEhxKlhkJEEnWlWDPfUo2Qu0dLSKAUVuAQQeAI+k+BpNiHqO8no89MP/n9bHVT/fprzUVN4zi1HME2/arcR4DjZPIZ1b6bTkmp5YkDjYCH9d0SNDc9InaNfnpx78WmSCr9epCsYk0SqsAS/XKf1+6XOrPjOFDqyr7fMeqa6r61tGlbMijACtekdC/vjL1hOaEKvZtDsvIgVRROYZzLviB0Lbgi7RnZtDIpfg7tOeasnJ46ifl9wwVc3Rj5eGxQIJ43+fOt8bTgnRW8qPZrOvfxfb5xiL8muGXkJFaYE20kkWeJ9bT7K5LohBpTRLAeSACA//If/DoA4Kd/9aWcbjo2hGtW27AGMKlIopm36u+39Qm6BIYQrlkWjm46tt3AHifx2wF8eFmWl9a//8kwDP8XgJ/D57mT6CFjDRXUogFAm2rhkUIpuGLRM+KGpSEp9fnXoP79PON0pdCebEY8sxaCj0hivU5iuyaOVoPNlrsHdAP0lYcRSXztYpc5IF100/XG9je3NKwjksgbdunfvt+7njrH//uZ1/D2tzhUsS7/7GgkdSSl3FSjAmjtW9aRxGPyIdw8yyCEz8+dxmGlRNWUYmsOtx6xBtqRZM2IXGBTOTdiY/UfYZmEg3BUmOsIeOMu78ciiel1odWEK4fUqw93eO1yh3c/fZ7ljUzjUAhuMZS0WuBoMQzyWuDIUnFjlObY5qnqNlNA7gvtotStfla5jfRns+6ZtN8hW1sLJVsPlI4D49zI/EfX7L3EzdMJd/BBkvKcYoQ7aqV7mJzEfuGadV6LFyXhnG03pxyRsoaT+4+cQ32OuiqziVwqZ4BF25180Lt2LrbophqSSDhEaYA97FsMAt9JnQ6OlKRkNmeopDfMtiML6E66C6YR16T3d1OvCecA9zr3LUHD2ne7dTKFVJ6bbIFu6hHBdfiacJls96/2WYCnhSR6J/FkGvE/f+8/k/0etTPRCghE5F4aM73CNQd7QQLA1CaD9gjX1EYjZvHmbruG81BDEq8FdTRtXom05qRUOfwVuqOjP9TnX1e/yg/FUN8syUmsJ9YaSKLhSBV9KpQVIN7UwIokJlTGbrrpOITvV6V/Gk66doimr7/n2XMAUcCj1s8SxKgpeQIW/1+nqTLRfzXgoeRE3DmNFATtHrDoxVqEnHJSKtfE/G5iY2XKbQClo84oCwJaMWuunxSOOBiBi23Ib9YPqW/8az+Jb/jBn3CfNYuDrYYkGgGgWuCoWbuzSoeyjP+bMxIsZKNW85OlgKqFohtIuuwT7pmWSIgSTFvAI3uHDIEhkQ1BmwYxnkRu5gWUQaIHGO11Ug1uGXtJOkfGQAN0VgKL5KZLhEUgtTJIvarMrJqzljs8N9Yx0KYSpq9r/TRng3HANOXWZnBRsZ0Y6rQmFthD7/bdWCddzS082Ai3Rks+GL9bELNKr8lsB45KKvP6PHOvidu0Fcg5P9kEPZCbbN6evH8pSr41KMnpc8FJTBDIWrqHdxJPtyO+6G138b7nImNvGsv6rhb66/sBiV2ysHRTKVxD5iQadNMeJ/FHAPzYMAzfMgzDFw/D8K0A/u76/Od1awoQVNCXWCNLcSwD3TTvd92gqALReNOQFIZXbylLPXPHRQzONlF9qZc26vvVnYbad3O5jLUb1NMbX7vYh/eMo5dJ1m9Q2fzhWsstDDmhlTnWi4L7a+J+oG/7sCsNemdVA9USxAGsdSrbv1u1TmIzKKAYFgQlrRqRT2jJ7183uY+879msXzW/rTKkjnauh7aREye/m3PcyI3VCwl4QbBOdHUh+gAlIsjksfh5zprj0LhvAF2E4TAveHktXr0/zBmaqdJ2CUra0YpslTXSjD6PJW36UZp3OOtMDT0nxQzm+PtbCfr1lPyh9laFNkrVNlPODhY1mMU69s+3x8vXJRtcqSHVTce5yoBooxsyKGDl3vmmiZKw118GnKjAXRHMYejF/ahZbTxauKYSdGrtXVnQIszddrilKJLVT0sViY6bfW9nCDyREyrvb4bK719flnw8i8oPVBDg2UASgyOb39/U2lLYBa0p+utf1Io+1PfW2ycTHl4f1NeObZe7Q7Cz718dcnXThgjcvYTN9sDXEyeQRM/WOZ0Uuuk4VlLH2te/qOcb1E07hWvYnMS3f1nz5R666Z8F8P0A/lMA7wDwKQD/NYAf6PiMN2Vr5apV87g8AqAhiT76L6LkJt1UoQwB9qHRokmmC/JT91wdwq/6wqcA6A6wvxYWjaFwpAy5e/9arSj707dP8Kl7F3j1QuQkbvqRxJqzHZHEPoNESvl/y5e+Df/5v/yV+Jr3PhP6AHnEzn0vI9emgggCBNp2RB6L9rv5efo1+8N/6msxIOfYa+pekRKsr2WZ6wR0IIkKAsny+P367VE3zQ7Emc9JlMIdTD+5n/g1WzNKWnkUv/LC6+H/L7x+VSbbF8Em1yxWQomYtYMrQD0Hsu0Q1fNDfGuplZbvre/JQFk3zzcrIl9HEucm1Q5AJSDQUiSMc/LNIVLVLq6fQvfinJsKamPtJeLMsSTy034aImsjzuU6MUsAiKAAiyRKh69H7TL/3WznfqjcNwy9OC93Qv5uyrW0frtWkARo6RCUVEc3d3uOGUpKpGBo678rt1CyQohzw4/hHvPPq7XUudwkjCcGXdKCroxwU2/gSMvTB2x2E2DboGk7P9ngky8/bE+msz24ciji2XYM6qZ+bq2z9JXCSUSCJNbLsF3tnZN7ulVS1UbleixtfRFAuZasuumxJTCe/9rmy00ncRiGj4qnfnL9NyDaHB8B8OP2TN68LaKCek6injTvD/zy87xRI50bnm7a5wDU6vvJ/JyPfuA5fOLFX8NH3v/Wde66shpgR7ur1JNOtMHP2zuJmXDNOOCkIyfxsLhrUdSZWduOiORrCqASARiGAd/8JW9LvpcfXzE+O68Hg4Clkvx5kVz7oLHqjT19u+SnyxwR3wfgDQSAow3pYj68uuksDm3G2JX5KLQAR6dBDpSBGba4uva73U9o2p++d5FdJ00UhglA1GijgH1v66qhrT5j00n81L0LfP1f+XH84L/4+0NN2VaLJYYqyEbYX9N8p4UuS6EJg2lMEiAJHCmGfJMlUDV2+5ANPza1/gWS7uZooA0Cue+hcmoId1OAZhpCPbK0sXTTkJNoII9hjgLNZdCXWKcyPkc56cr9Brpf1mWdR7NbgRIBbbQHKANwvvn7qHZNS+Vcfo56PyJQXjhE3DqWlGvauUwCCW6O7X5pwMkb39Y+6fv10uR1xV37HpCBCyq4WwmktfKAz98AJNGjiM/cPsWn7l3gOsk3lznKaXs5EU+8f3XIAlCttIjrJCdRNu18c6yt9nco6aa9JTASdVNDlIZp1if8F5Xnw560/v/3PvJM/n9s+0MdSdQUioC4iWk3TohYi+jDrjEOUHf2rENKM0j856Q36J/7Qx/Ev/EH34s7p5vQr4YkWhGqmgPQUjPcVIzC/bzgmTW/77WLXYh2DUNfTqITrtENJve3/26tOZY88nBNDOOzV1q/Ke5CGJJeNML3Y6LdOnW6LsABOGS8pBfP2Vy0ORbrOJlHrenOJU//8fPkcxKVEgC2HYlJoKvM9dfGs2pk1ZQFgZgPAQCffvVS5CRquU7u0RSuWeS+ZQdXXL/8uTSKq/dpI4mfePE+AODv/uNPUU7i3kISA90omeM6PEMB1Sj21p5QrC3YzjYgjd1++htAUsskkh6iK81uRc7lPNtov59ngSQaTspYOYMt+qhGCWRA6ZBfGOimNpW2VricctrkfUOgPcNQQ+n6nQ3LmdIEUACYgivSTogqpcaaHGr9Gn2UfZJB4CN7Kz7H5CRKJD06Uu3xJJXZfwblJCr2nRXwk2OxgaNuuqlyHV3f+pq8fbrpchL3hxk//LHfxHd85burQIs/A95ya4tP3bvA65f7eCZWQBgAIW0DKOmmm2nAZUVh/3rv1LS1fUhXeOdTB8Kex5bAkMI184HLSTRa00lcluULH3mEz4MWECbNSaygX60Dv4YkhtqKhnCK5oA1o89VJDE3QLfTGJwxAIXUdPoZvYIrj4ok3tqOmMbB1UlMok+bacQDciOJdFP9Olr0GECnQ9momX79TdU+jVq5PrLIsZfkZwzCVgmMY/LN/Gu1OVZz4ozDphS8IYw0EZhhHKIwTzEem5MoxUXYnMQeJLEV/fRUFwD4zZcfZhFwzahgKGkaAhl/65ZwTemUUutKoT8f26ycYw0RYYNiQHl/t4Irmropg4iEvGiBJLLrv5tadgRqkI2XOGAaE0c2dX1ZSGJr32rMU+Yk0mindIAZRGp9uTv/S3XauNy2fYaIu0fr22m0cItuXaNp9wqz9cxRXkf/fKvJ/WQhgivht+5khUS6qe/DOcAa64hZl7UzuL2/5nPz82Xy+yUiDlgMlDintLXSNxySyAvX/J+/8Qq+70d/Hs8/fRsfef+z6nv8GfDkuRNjefVil9iS9bPU01S304D716VwTS2YebWfm/b8Mfe2P2fDGcCWwJB003kPbE7r7ydbj3DNP7XNI4naIVdDv9K8uaJPRZGQzUnUI4u2EaM5RVauzbHCNaUhaect1erNeGPr1nbCxe6QbX4n04DdnkMSvSS0pcbWuiaac0OXKZDXnzCSl0UWZbcjwlowgc01qCG5bSOhnpNYV3fUcwsBxkkpHWfG2AXyPCJrLN8vPxDf2JxEec9ZlKFhGAqRCt9SCt7HX7if3TcabZQJQGgIJJOTeJwR0y6B0es/BrqpUsoI0CPJzH5Xy2Vp0SQ1Y5BVdywcN/Drvzcnbhzz8ybuP+3x5JljyfGHeSrry14n9TOYKwIf85SpOoniuzlno91HDwqQqI0SFGaCAvnvls+j2U853xj7oqiVayHAo+4kHsXuAHcP5Oq+XOH4dIzwf6ufcIp6HOC0n/9/S7gJ0APzVn1RtSwLOJRau/7tc6N/j7x9usHusBSlmmrt4c45P69e7Krv8WfyU+cubea1xEmsMb6A1Lk8UYRr6jmJ1/u5ft7UUHuLbip/N5puKuokzvsbQRIfO4lIaUrlYm7lcQH6phwKYCvCNcNQdzYGsfH4Ns9o7j41NU+T7qhtPI3vFfoplEAp7qL3ayNZZ9sxOonrd9pOIy2TP6+f03LagDYltuU416J9tc3nMM+cIIaIYqafqfZTDcL+wvFxnkcUSicc55I2zTnAx0jCTyJKyDikbi79hrWfZ5rbxkQIY784nnWP+j46kujGf+eTt/CrL95fjdIh9KmWwDAoSlV131ZwRUMoDISoRuX37WI1ClhnMdJi+RI3LAMCUPaThrqpLq2fv1ZrMi+3J7dK5h9R1D5l/zHRBvH9LGpxNp6yvtrCNTpFbF5IVc5OJHEQ+zmL7Pk5+UYhiSpzwv7daoY8FShU9gULyU3H8I25v1VKrGXrrsHT2M892qUbtMAp+bulJgbxu8k9oSe9wY3HBwp9v1I/wmYqAWVZFoZKmwWuCZ0Ez4CQoouHuV5y43wVx2PRRB8UvX9VdxK9s/eWFUm89zA6iTVHNu331Pk2OIkcknjA6UZ3xKr3GrGOgeS86c5JTOok3kBO4mMnEVGFVEP4pDHoW6CbNpBE2W13aFNyagIJgJ3Hlc7JN8b41zZ+oF+4hjEkN+OgRmS8BPTZdsLl7pBFyHpKYPhDq+a0McIRGh3KQiBj5Lns159/RMxRiVovTNRacTYY4Y7NWIoHWTWy9LzV9TXDSSxpklz9Kfdeb9hxh7bMZZkJ1MCPJwueU0iiuHesMilAHXG7XJ2oD73zCfzqC/ezA0jNCSWi3ZpwE+tI9dZJ1FD7tHnjYQF3/0emhj6mVifRqlMJ1PfllhFaQ/sBDhHJBW/61UYBvgSDhnayCExwwAyHIfSr0B3bTkopJc/0k0ahhTzKfiGQT0T//cd25ySO5XnD/m6LsraYoEDBsKGFa/rtCxWRMgIQ41BB4Jn7RgZO211UxJ/Zy2MOng+S5M/XxyvPfEvd1/cr6m6b+yuKsdjv1muTaP0Ad+bU5nj7xDkwbDqRT69I62rL5q/Rk7eck/jC65e4fRJLvgFlsA8Arn2/85MoXOPP0qkuXNNi60ndAoClm4rzhi2B4esdHlYn+oaEax47iWjnqmmCDEAbSZE0F9+sw6ZNN63302gFgKPRvhG5hY9iSNYO+82UOInJ4bOdRpqO4KPZ0TgQry/MHOvOZc2RktST7Hu1rqMSxYxR02o3tVA3E7X29FYZxQSOoxL61/Q5NkR5GnN0yEb+3AICJQ33XDQI0+etfqmSIZ9bmCCJjYhp2U8YCJaTWEHcPJL4nmdu4+H1wSXpr0u0WYPTiv7XAkCdCDyDULRyEh9c9Snf+WtUr5NYGruxwH3juw1lP6DtpNTQfqCfbsesfy1vkkXAtDnawjW5E8zUaQUawYTO/Yfpp9VJfMNyEpVAIbcn95e8cnPU6abWt9NQkXmxnT1AT9+w7YRkjusj4+wdQ1OVTgqL5AIKAt+eYsIU8H04R1YGsC3bIu2nIYkM3TrSphcuT3MsUzD8860m6b6Ap8Tq7/dlti46kcSmkzh7RNDRTefF0VoBDkl88lZEEkMuYwNJbNW4nAY9sMgG/MJ5QyOJq5M4eyfxMd30xprPSdQ2vI2BJOp003Lj8X+3IXv3qBlbx6qbmuUe5IHN1DtsGJIW/aeWEzetOYmXuznPSdz0lMDwSGL8O20MbaVWx8vPX2vaQZN+r+pYrbwlA20DNJpktYvrJxwiP8f0M7W2mfpzEv1Bs4jDF7Bz4rTakUxkHcgRQT+PVpPGdU9uYRrZdYY81y9dJxYl2ffR7hsfWX3mjjsQX3pwHagvrZzQ1vfTnD2KSn4EQjEqyHbaLq576aZczndvTmJNuMaX3Gn1yRFBzpIfh+MQwWI8sl8uwLSeaywikjhg7H1TqOBatMVRj+QzdEcgDxyxaCcg2QWcs9G7J2voC6uKKnPN0nlU+yl7Cc14UYKn7eufG8lMuoGfY06R9P2a3VSl3l6nDSDVTUU9U9oBFmhWPH/b/TZKKTZTXVZ8N97ZRoHIAhzdV6Ob1tVN3VnFBgMZJNGzzjzd1I0T1fz9nIp+a8D1Lbe2LuUp2dtr6R5Aew/Scql7yhmFvZxVNw1Iolc33XN1Eo322EmEUzfdjHpBaw3mB2IESXOKQsT6IDd/m9ctb1Dfr9dpANoS7X7uNbppb2SXzfer5Xc6uumIi+tD5hRvRr4ExmGNZteuIyulreUW+vnXvpf/Htr3qo6lUsTy12pzBPrzLyaNbhfQlz7n3ioMruVDYD20TSddi74RimzpvBhqcdovFbw5JreQiVr7fhLJMpHEmpO4izWhAODF169CdLZWbxKwiyLXFI97qetMcKtFN33g6aadTmLN6fZ7U47k2uqm1aBf4/7WWAKskSavJbX+BbLh/m+j2yXd1D1aK7kQrqEdsHJfZpwUje11MNBLeW+3nPp8jtqe0O4T97u+Pbkm1NVbJoKmO2pnvuns1e0Lk12gOhvNKSp54ms/LBHg8QAAIABJREFU4gyQAVdGyAcQlMyZDwqkKF36fHU8cS0ju8lGErVALVMCxnc7Nm+VpqBra7nhRJ1tfU4i6yTaOYmSbgog0E1rAo9A1Au5c7ZxNui8BMZWC0lsiTdpudQM46KwJ1l1U08tPazlPB7TTW+uebqj1lpUF0CnCWtRXf83E2kqE9nbh1Rt8T+KIElr869RHwC0ndKxrEEIuBt0Gle66f6QCUL05CS6yGYyVhVJMebYiyQqB43vx0Roe2sStahsrab1s5w9P88aklgX81nfJ5DE3hxBYHXAyAK0h2AQ2sEOQDu0qTKJBVWSUST085FOup2TWCK5gDs0p3HAU7fjgXhr6/Mvyv2AcQC0g83nbFsBJ20veRS6qTceLvecEeH3iVrAoxUkYZBErVZotU6oxhKAfW+7vkoAwhT7cI9HCadojix937i/LaXF0K9y5ljrREMS0/1e77cKyPmyOInhZ80RiHsqdx3do9yTGSdd3gKUKuego22MfdEbzKyVDnBOSnuOcj365805KvcNgwrKGqhmsEMN5vA5iTGQAG6OYz4eiyRqdqGZ8y3W5Eze2zUxK8YB1sTLav1ON3qpuLT9xksP8IufeQ1AdBKbSOIcVUp980hiTaUacDmJ22kMZTlSBHQa6zZoiy2m5VKzecrZPFm66bR+5/lxTuKNt91hrgrK1PLoWsI1tURv5rAZVPqJ4dgoUWRGkERyz91nEE5KE0lsOUW6sRuRxAkX10K4ZjPgmkQS93PMwdRKALAO2DH5d0AZIT/MRk6oFsUkHdl0XgCfkyjH81RrqwSApFxb10TPkeKLUhcOGPvd1s08rmPWKXV/L4Rh58eTzgaDpMj1xamblmsL8MpqI+6cRifRK8ZNwxB+W98YSpq233GOFEoEcjEoqmOZI5s2L1xz/4rLWdmTdFM1J5FAUspc5brzptMP89dqrUCJiPUvHSLfzzY+S0aCm4PdD0gMUMNg9a0qXGMwJ9RArUE3HcUc2XvUT6WHShsUUZNpcs6GgjZQwTT93GAMUGnvtiiBQAwgaikmfUgit7acA3yMc1kGXFnnvlQFbs9RnsE9cwSSYGag8tsK173BFQ0RBzhnOx2qh+4rTeUWclarJ+7bZ169wB/4qz+J7/yhnwEAXK1Cba3zwO9/5ydTKE1xZ3USR2X/9213cPUOz082mBcXmMzVTfU5tvZYvQYqwfiSZwftJCp008c5iTfTWgpFrTw6oF42A9A2f4620pvsKg/D9P9tlVJ9ju4zjUO7OGg42pYG9Xta7K3thKv9nOU6nExjYezWWnq4apsqY6RpqpxR2IiX1vf9qE1cOUhbv7eGVDMKfBpyaTl7/jUZSbNyEtU5osNp60REpAM8E98LKI0E5joCa+1IYZBTVLYjkEStTiXgIqvOSYzRQo8kagEghpKmBVes9Q/ozmWrkDKgBwTS9nDNVXlI5qywJTDynFD7u9WKibfzUcqxjkV7loVBROKc0vF6xT7ifO1+6fvd3mtMEp462mfs1s5gq+xGoBd3UmL9e4JyZUeQSuZgc05b33kPaGweLiimiWlYdXKPEW4Cyu/Ws7Yy55IIXPt5yvqidHAxvd+InEQpVNTjAKfjMWryQC0Nwz6307l1OdvavsWo0nbYvJaT+I9+/RUArowFAFyuSOJrTXXTmHJwtjqJUrhGC0ruDzO2qw0KAA+u9mHdb6Z6TmIbSez/zdJ59pfA8HUSHwvX3HjbzzM2DUU8LScxblyKk1jh8FNRhFGTxOaQxPTGZgvHlxzy9bXmePpBk85F7TfWcxK34xhyElOa5nYaMS86RUD7HN9Poz4wRppWpiM4UjWRloqxy9B9Zb9HE67hNh8NSWnmJCpJ857+VRuzVtybMX6AHJWiEEhxTQLdtNe5JK4jsEbyJZJI9JOBEjYnUQuuXO1mnG4m3D1LnMQVSaypGAJ2AKKKJFp1EpXxmkaMQv9Mm89JfECq33lj42RTD/gBOdrG1ncFdCSlZ/0z9zZQ5h8xwRUtD9s5KfZYyxLntoTnm93K+20mgySFc0PkxNXODWt9KXsClzcp9wTG+I9z8o0SqRComevH0oTz3zqde3U8bV8w2Ax1zYM63RooA97RtmhOUUEg3SOnyimvf3us4+uL+vcu2SPrlPr3h3OUOAPU60/sWyFPv8ORlUEqgAxuKTZXbY7eSbyuUDl/7cUHAIAnVxGagCRe1nMSrwMzagy/xTlZAmOz0k3dGPvw/lZOopWXfhRQJM+bUALDcPiGwTmKvgTG4zqJN9dc/cJ6RLiVk6jdAHUkkUva7s1l1MbjkERdbAKw8pZ06sM4tDc7DbZfliUYCbfWnMR5iQa3FW1algX/z2+9GuYQ6KZKxDoYaY1vpxkxFpU23tT586z6nrYhtzaSqmw3e0CpSGILSWmom9Y2SOWaLMT613O57INN5huEII6JJObXZF7YnMSYb7AsizMkSZRin13/maqTqCOJB5xucyTxPBWuKe5t99hkJSgHGyPuUsuZsUSK/Pu0drEK87AlcPw8a6hgpEDHz2P2ybC2OoJAtdxagDOSS9pcu4/vVzopdh8gpc2RjqwSXKHopqPCQiH2ydoZbAUlgTwnkQoAiUDVstjCQVoJDNZJ1wxJzk7I+wCcIa+qcDf6afVF3d/2nqCKIpkBj1ysis3lLRxnQiREO0upmsPi3Ajfrd2tzIFf1xhzBhSqwJZwU3G2+etor+VFWVvMtexRNw05iZX9/dd+5z6AeE2ZnMR9kpfuh5V0Uw1J9HRTH2R9cB3pprU0KaAdKKkhiWw5r2DyBiSROATGrUASHzuJN9L2hzqSWC3k27hxak7iwhwayiZuRRa1aBgrSHIMkqjllVhKZ36eNZQuy0nMkET3WMtL/KH/7RP45/6T/x0f+/WXM0OlLVxTn6PuABuomeLY+O/GCGJodRK5nMS0H5/vpyGJN52TqNVyZIw0PZervx9D6wDK6OIC+zD0/fbCQGBzstJDyqIk+7H0nERHN72t0E115VD7sK/RAQE74KTtJYwRX6Ob+sgxq26826/zNJR68/Vvi/LUhGtaCFg0PuNzXWiPMNKYPFkNXeqladOOrKTNEYi466cjshbiXKWbtvZXsQfxSOL6+SmSaDG91MAdh2TNS05TpZDEUeat5nOvNS3gdDCQxJjLJc+AdvkeKYpE57sK+4JFEvX7xh4LyM9Sd/3b/UJt6nBu8A6YG8+9P+w/FAIsrv9iCTeVZyLTxkEi4n7uVj/dKardoxFJrDiJLz0EEJ3DqG5q10ncTCPe88xtADm7xr1HdxJTuikQbZg2kli3M7QSTz3odvgN2BIYADBtk5zEx0jijbXd3K9u2sp5qi1GKrJ7BEStHlCzvSFrDilLSes96AGjlMI04HTNSUwN54AkVqJNP/Kx3wIAvC4KoEqlM/fdEF6rNS3STddJlN/t0F8nkbn+miPFHGxa8KJVIzTtV3XujZzEPNeDN1plRNjygGV5gwOLvhTOpW1YuPHioX0gjZ/QL/m9D429J52jpu7onMSYoA8At05i/kUNSTxW3dfMP9L2LUP9ENAju0A0HuYFVF6yV7Y7aVhO8vuxDrA2z1bwonVv24hIiUAya1ITCmHQFyAGqlhHVjNAjxF88p9hB6n0QG3LuB6GIb9PDeQxnSOQ5nJ1CKAUezKHGkjkxpqlDAj0UJn1s7vep1YCZm8E/aRSsv8fcwb00kbd54rrT4ylqQL3pG6E+4YsQVIyXvLPq85T2DORgdUWJkzHAnlvSxuURRK1VCkXuNff7wGAWhDQ00qjk7jmqF8fqudBULgeB3z9+54J7weU65H1m1d10+hUpXUSD/NSoKRAm/KraXCw6SxZYJ4tgQE4pzBFEhnH0prLI3/CPwVtb6ib1gr5+te1PoBOG+UihPlzVj8tGjY35pf2qyGJlpNYyMGTiEirvERIGr6OfPBIN9UNyV95wVESQn3FcGPrRp353SqRbqCONtSQYxNJVJ09e0PW1hdXAFhxEhkkUc1JXK9JZcxaLUeGDgWU6BJ72Kd0Uy63MD/sGYPQ9/OOsx+TFa7JcuLmBeeUsl35vFc3TVsQrhlirllUXuQCEPU6iQ3na+g/EGvS+r75OpCAcxhrbA/fgsBO432bMS/DQ6mbNu5vE0lUjC0r4iEdKcbZAHIEZlkWirkinVkt91Vrkk7LKKkCOgulRUkDfJBEcRLnNgIM5AEuC3lM5+jnBfC0Uf9e3zgn3T0elgUjosPIlCBR0R4KbSv3ciYnsaz7TJTYUoIklgc8KAjkMQGIvhz4tB9BGxXOJa0cKs63iHzZzqWWg9rD1OhRKQXi2cEiueOIwpFq3dvb9eyqpRPskvN1d5iz8+DB1QFvOS/XbBSuGfE9H30/zjYT/siXvRNA3S53c3AlMDzqCCBjpfl5yN+ppeDt9p78uzEUaMAHXdc/WOEaYEUSH5fAuPHWUjd1qFn5fDAMG3TTclNleN2ac2MUwFbUTWdiP1bppiwlrdgM2knUgB4RTiWgb5+6G/T1y30YvxVtSj/r9ctdFinWhGtYURjNGPTz15qG5AJrlMmoGyn7cWhPPi+A23w0Bywigi0joeTkW0GIWr4lEyEHSuPaOtiOVzJE1s8VUja7ZVFCJiCj9fPzpPJRNCRxNwcU0Y9dJOmL6w9YdOvSQd+RaHNx31j7loEkXiX1ET2VtNX8PFsiTJICRDnANSexQV889vq714+rwZnmYbNOg3SIepwNQNxvpCHfTTetlmBoC6cAOb3YQh59k/mFPXXzSifFDgrr/aw5lg4pwOXEaYg/JbDWGRgu0c74fHOOYg9iWDL+c8t+/WfiQvxuJd3UP9+eo2QltOxIOc8UrIjpHu0+6XuDk0iglmm/GLhudlMDQK2Ax4kBAKQ239V+DogiALxWEa9JBRvPthO+55veHxw/DUxJx9puonANEK9fKy2iZfdOCuBzIJlKWdB16aCbjluHIAKPcxJvsjm6aV3GVi3keySSyGwimnNjIXtyPMYhGgcNtYyvNeeoGExUUXCxIfhru52GkGD8yoPrYOidNAqufubVi/D/1y8F3VQxRhYct9FZaEPNSbQcgJoCKNA+7DU11S6UrhdJVO4BqyxCTRCAUXEDlO9mCkes8+o1COWBCHssP8+9OOhZA1TmhHIIfPn8bl4C0v7WO6cAgLNtXcmNUeBr1Qm18mtLVoJRAqNx+AJ5rsrVwS6DEahGBpKo527zEXnfGCTxWLSnl7bo+3WjBoHumBuELAKTIfdUUKaCJBpMBqC/BIPrOyZ5kyTav74lzUk0g1vrkpMlMKzh/PzTS8I6N3oAwnZKy7SIdoC3JdxkBo4Um8S8JkOZb8kiiTK4SCOJvddfOHsMA8jPEcjTIgBbuEYyzKL92WZ3pGOxiGC0J5E99tJU/di1r2aJEmZO4u6Ay108A2p5iZFuWl6XFpLohGvynMSUbuq/i2wt8SaNhcgylbL7m1U3BYBpVTedZwAL18doj51EeLpp5bBXjB8gRiM0wzAgiYXRRG7iWjSmZWxpqI3/PAOR0qKKgEFJq6BttrGrU7bca9FJ/O3XLsP/W3TT33w5dxJTpFajxLK5BnXhDqtOYv685QBoUWTmsK+hFOzB1puTKCl66WdUi4n7DVmI8hwzRxeNbHYLv02gv5FGqzSSWUMyRcXDIdrZz43HqZtqSGLa9613nZPogysy1wwgRanC76YEEpq11Eoj0lK8bB2+gENK/aVhFE4jksij4v66HoOktNAzNbd2ad8zad+i3iHDNDpiTcrvxpwbab8UTT9GuAlw66Z2/qZzUUUxCCTRrwuWEisdAIuOmfXJnA0iuLW+3Isc1/LGjglCz8uRdOsGkg6sAddsju7RuibDIMqykEh6mcvIMbeAfuZKzZGigyvrPH2w1bpP5bkRg1v2HHsRQf8dJFPGDDiNuSqq79tyoqZxqO7t1/s5OG0eSfSgQU3hNK2TqI3n3lOeN/uDE148V+imMo80bS02g8ZCtO61tG90Ev3iYpHEXUQTHzuJN9NadFOphudblNgv+9Q2VVZIoEcgwc2hjJAwN7Ymk78Qm52Wf2TllQC6UmyKZN1Z673NC3DnbBueB3Qj8TdfeRj+H5HEdY7Kd6OcFKWfn2PtWh6rbqrVtwyHfWvzr1Kb6n3cPBUnkUESlWKysV/NcXaPvcZPzIeIzzGRZKncyioZankbVG7VmOc6ARwlaiPQdBpJVPaglO71de91SfqnG48kuveoSGJrLAUB4yiZY3kgzjZqmX6+bFf7OQSLapSktO0PM4bBMniR5yQSdRKrdW8bgQhpRLr/e0PeMlw145pYy0PqJHJOg1bKws3BHguIgbEDwRLwnyt/bkvgq41ktcfbTHnuMOPISirhTIwj+wDreUOqosoAby8iGAJABCJVBjPbgaqacc3k3GviOqwDlgYuGPRlGI5QN1XORHfeWGMhnyMRgEvHi0JR9vnrPzcPLi7h+VafdIweRDDvx+5bus3b6redhiqSeH2Yg014tZ9xvZ/x9PkJAOD+lU433TXsGS0gk461FUrhPthYC1L556paFUOJJLLCeCqS2JOT6Cmqj+mmN9N281yNPtcMtKZwzSNEPjVqmWUk606De7Roo7VagqYCovLdjjF2I5KY13vz/w81mpQb+9WHbqO4e7rB/atdZqho321eFtPW0tXf3CFa+w2q6qZGBLqdt0QEBToNC208LidRpxenn1nMsWL8sEWK82tCRNan/Joc2ARxMU/WkExpi9a1SJs8FKmcRIXGE/qu3/vf/ZYP4O/8ya/B73vXWwBUrn/P2uqmZPYHxSwk8Xo/4+4aLKKQxHmpCpD5Jmt+xvVvG8kqklLdE+J7fItISruVOd8ddRKDAJOfB2kQCnVT27l0j5Fu2kGJ1RBZBhGRTgrhmG7GMaje9lBigXgNmYBT7JPvW+yenNNUSRX0zgAQUC9n1LouNZqelZM4FXmT7rGb7jizStUoHGc2J/dYEbhe4RoZvGP2Vt8v1yCw+0madi8FvdcB1lJ15kVn2/m2ncZqCYzdYcHd4CQesJ9nPHXbOYktJNHVSCzHHIZB1fxwYzm6aYokPnErKoUDDSexdgaMZXkbxgcAxLUMJTCIm2DcOBQxIImPncQbaQ5q1n+Amvx26+ZuIYm2kyI3OvvGVqNhhEVSQ9uMblUFVmsNa7lt3mDejINwEqNKI6DfoH5zeebOiaObJjes6twvXBRTV387wog0jJ9jEeBq3h4bNe10AKRhDQCHQ5umV8uTpaPIhdHEGbuxdiFvWAN5ZJczJOM1iUgi4VwKVNZCUXyf6gG19t1MI752RRPd/MpAAqtu6vol4xi/tR9Po5v2qvT6tiwLrvaHYCRc72e88uA6y0OWbbefm6I1fkzNAT6ObopqFFkPHHHrRO5dh5mLPjsxkz6DUBqtbCkF+dtZNdvCHBUWCq2uKaPyREBnmyKJDac+Hy/Oy4/D0hZLRIpzUlJK4OKiacYcRU6i+Dy2nx+bQhIVe8ZKp9ByElmULkXAjglAUMwVlc3DM1dmcd/QTmkSlPRzb44nWFhMLmOp0svd2zJVhN9LBlXdtPXdTqaxKkp4mBfcXW3Cq92Mw7zgqXMXNKw6iXO7Xnet7rkvgTEMQ1h/PkDZyp3fN+4djabK2yXJ2dFTAsMjid5JZPoY7bGTCLdAakiKVhATSCI5jYiF7qT0GTEMIqg5G+E1g46wLGX00+o3Kd+NidpNYz23bRoj3RQA7pzmN6j23bza1VO3T3D/ap9FfDVjhM1JLGg1hIobUG4i+8Nslg0A8lxG6veuIMfHIYmcAyClnAMFt+YkanMk0AbNuF7AU5SC0WocTrGfe+xXaUzQxw4kcTOO3UiipBr51jqgtIPN/7f19TSaalrLtDVHTZWZCa5o++t+XhztfDUSrg8zvv+//Xl87V/+cfzDj7+kft5+rguQ+SbTB1ImgzXPku7YzkdJPx/oo3vJXF5qTSp00977LawRYiwgN0BZdVMteEo56fL6EwjfZhqDc8nuCX7P9nseM44ugNJfODuiNna/3uCin6eco3V21IIklkEu2Ty0I6s5N0yQZJBOac+ZGJ+zhAKBhF4c5rg+b8xRXkveSdQZQD0IMM8uQNaP3be0c2o2AlzbaVSVq/0ZmdJNd4cFT523kURny7dsZR1w2B2Wgk34xJmNJM6NPeXYgDcAfOMHnsOXvOMJ90evuunhOqKPN4AkPq6TCDsaoMHT1s2toS9sTqKakN7s49+bj5W+prV08fsbi3VKj8m3nBSHO43k310dQyBuDq28pav9ASebEXfPtnj5wRWWJfLIa5RYykA7EknsNZL10iXl96yO14vSKddyR+RkaXm5Vi7FsdLu6sY625LkMm/mQG7GGt2UE6AZgxHpvyJjJKfIBrCuLaJGli6/Xf+OmrPNOA5aACLsdYYhqSGJDGqpsgT2uZFwvZ/xy7/9OgDgb/6vH89Q09DnUE8bCGOOOd2uB0nsKd2gKhAHxLk5RUzjkFGwaBGm5DcIRmtn4IgpgST7sTUZ5Rx9o9U1RUSecQI2SdCPZwnkwQsmcKSzQniHyHfrcaS0AARTF1NNNzCYJOl7076Wk6JRYhkbKH1/+lyrTWMugsKdN/ncAK7kRumA9d03vcrY8vdm+sX7BtlcewMXPfnNZapU+97ZbvScRP+ctwmv9gcc5gW3TydsxqGak7hXnL201VI3rvfx7PBL4YlbAkmsBDNNJ1EEypl98q/8C78//hEcPhJJnPd9fYz2GEmEd5JqOYnO2ZMwulVzJqX+pH2YaIwaIWxtxhVkyX9etV8l0gHYwinld+tHSdM5b6YRZ9s4qKebykLgabvezzjdjLh7usFnX7sCEOvE1TYsJtJ3Y5Hu2cjJanw3K5fUfX4+x16DMP1/K/qm0R0tmqr23RbwyIbMpTMPqPX1XGyCNwh7VRrdWkYYCyDrKybIBuDQKEb+XFVka/RVkUT/eQwFVNlLLDS9l12wCWOVr3mWQBSumcP1/Qe/+pIauPP5KK2mqcsCBuI55Iadb609r3UdzZSDsQwUskhiKclv9JHr36utG+Ol8vUsGiLn6JuFpvuzL70H2DFTejfLEvDfLRWmsmvLIbzXNy4ojDA33yd9vtpvzPOd6NIlwnHjWAL5e30zfzfBVIqOrD1HQKQAEHtr6ZTa61izL3rSG2QuLyPel47HnL+As0PnuW/9x0BtHszszdOkHeABhZ1s5Q2fTCOuVCfRfY4PEl7uZnfeTSPunG0adNP2eVqrVrA7zDjZ5P2e8HTTRjCzqd6q2uXcWs5ajwiNpJs+zkm8mdZaWMGQEevDiuRIFUP/GYwhn47FUMRauW1MJF+TyW/NsuZIWZu/hkilkfz02hR004oheboZcfdsgxdfv1r7eQSyjPxTzsZY5ltaOTM14Rorct3KJWURYN96op9pP0ul1PUrAyWeNmw6KUciidmaBHfYTwlKdFh4o9WNFw0ZjpI2ZDS2dO5Wv90hXktG3VTW9vOtlRPXqsFJra3OvWQadeOfGUurQ+sRgVS4xhsG14cZv/PgqujTUqlOx9TXP2NsKUZy7fqrTjpvbKW/N6scmn431iCURjKLGqSiGD1062rOdytIpZxv7Jie3h1olcw9OuXrksll1EpgMOe9XFts3pgcj6cSDrqz0egn99a0b0+uPp3v6h3uZE1SKLVCpTXPm0qA3RrPvyzRNisAVEMS7QB77qQzZ44MJtOI4JEOsEo3NRx1RzetI4nennPCNa5Uzt2zDe5X6aZtJLF2lu6U1CBGuIZBEmcRzGf2yawF4RoCFXxcAuONaa1cqZohYx1SGmpG5SgMpfHvnmc2g7JfUxVVyT9iDBm9liODZI1KTqIeyQ9000p5CcAZjidTrop6fhpv7BLZIIq5D4ox2BA2Sufei6RIWgfQhwB3J9sr4zE5iVqgxEISR6UP46TXSjewkeRcbMLuI6XreZGQuL56cxKBeF2onEQluOL61oNbtTqVAJqGjJoTSkSSa3TT1v3WyqW+2ruDMQjXHGa8drHD88+cAwA+fe+y6MPQTSXlnTG2NCfF961dE/+0FvDrFRdhlUNTFgotNiEMybBEzIBfzNtjv1eYo7AJLYRPy11lAzOe3h3QcGKO/veOpTNs51JDpLjzfljfi+yR3ic7EUh5n7J7l1uT+XP7Rk5u+pky39L6BUq6o/29APeeR1X8Do6sMVaNgm7NM1JA3cVkgrRAiQAzv1v1+hMOKZCyC7i1paYhGefwyUYXrolBwihc40Xe7pxu8VpD3dRSqlZz4BXdiSfObF2MVqBE8x0YdLto8wHAEPOTWm3aAofH6qY33hjaVlkDrG04TaNWI4WIxoz9Cel6UXai37E0VS1iNDMHVElZ2QtE6sPvfhKAVhRcdxJPt1NAGwDg9klURT2mTqK20Zk5icHRyJ+3nBuJYvk+ACkuIn5vGklMJsrkJOqbnRuvXhYkvi+fox2NBDQE0t5Y0yg5L1wjo6asuEXukKZzb/Zb17U/GJlC3bW86HYU0z1m9wDp7Ml+zJ6gGf8s3VRTQJd008vdAQ+uD/jA2+4CAD5zr1Q53R/sEhjSAduF/YdR1xRO4lJX9Gzd24zjcAxFKaVW0oiU2EtYtGcb1vGSoCH2HMdBcbaX/iAcm8vltAFSSqw9R596konymPUOEd7rm0tvIK+/MOSZcyodz18aezxHAQ37JLH/A/7MV5BEQ8wKiHsri6RrYkrU/i+DK4yTPupOOk/JjGMx/YrceTLYIc8A5syJ5737AVgKelWUx7wmeX1j17d9nm6nUa2BWyKJjm66nVYksVYn0QjoawJrgLv/ZKqCzEnUA7X1AFeNldPrI2Le84jguHFIoldEfewk3kxrRQpDVLHYIN1jK4ogjR9K3GWoOYn2ZtCtinq0k6KgdFRtodHMbfuh7/oKfNfXPI8v/z1PZc9XhWtioWzSAAAgAElEQVRWjrpv5ycRSVTpn53X343djk75/E0tb5X53dLNhzHSdNluvraTWiidoHtJwRVOuTVfk+wcpZAAs7FmjhtxPdx47rFf3TQaWwGlIKzk7ZT/5gyS6Iry6gdUFUl8hABQ2c82LqaxRPut+83Po003dffzyw+uAQAf/ALnJH5KcRJ3hxnbTftaVnMSiTqJqnCNZSAo15+hXEtqJbO2Uuey39iV/dpjeUdqP8/9dFNh7C4LmoESTbgm5E5axvXk6N1Mbr8cz9dXtFSqAf33XhY7+C+vfz8CLJx7Y7wY0FyyR2sP2ij2jLV3yb2VzXeNZ4D7my0bUOo5dNTl7bz+o/xu5L0d6j4n+z/AOekZkk78bjJ4zez/ab8yJ7HZrUCpGeXc7TSodRL9cx4AuNofAtp397Sek7gz2CSa7Qrkwdpv+/A7ACSpSw0btBUoqacFdXqJy4F39oqcxMd00xtpTdqWYjQB8Sat3Tha5I3btPpVy2pCJoCdWwgIuimx2Unuv5+n9d00lcZAt1hvtOeeOMMP/JEP4Wwr6iQqUP/1fl7VTeMNdHsVvNHpb4BFJNE2ERpJLJxSi+6rOencZizHmwlH6vicxNKZdcp29bFG9bvZUTSd7shtrNMUAwOskyjHsxT7fNsk904PkpLT9BYK8dQCHkAbhdQDR/Y8WzRVaw/S8pQ5kZzyNU839Qf179x3TuK7nj7HZhzw0uo0pm1nBC78mHt1/dv3d9ovRPJr54Ya7LADQL5vavzT6388gm4q9gTWkAyO1GHpQtIlU0bu/2ofZX8NjqlllK/XkkUefR8gEa4hrn9dzZl00iUCTJxTwPEIZOmkGPfNVNoz+7l9f8vfjc+Jc4+p42ZdD6A8u4/JSaQDOYEm3Hf9i5xEMsAiz1O/NpuaB5O+ttg9IaKk+Ryqc6zYrlZO4rWWk7iWxciFa1xQwiGJjTqJRsCvphTu7/v/4Ns/jH/0fd8crkNLuKY/UHiEcM184Osdjl7d9HGdxBttLUNNRn5881zr2iGgIYnMpjWOudHEcOT9/i7RF8BApBRDnss/0vLvOLrjYRYCKCEnrm3sSpQOcNEmr27q2+31/zqtgKOfaLlHveqmTPStJm5xnAKobZBoEXmmUPpW0K+AVSSks7bcshD5KEpQgFGlBfJoay/dNKOWkcau78dSjQCdpmciiWM/kthSPG4ZXDWaqr1vlXvJwZD7buUbX+1yJPGl+06o5omzDU43umHBqJtKQ5Kh26nfzYjkt/LEKXERaaCRdOteZ68qd2+Mlaqb9iDpVSn/Rt+NQN/Zfq6vy3k6Jm8430vafVQ1Z8K5LJy99Xk64HfIfzfeAVidjXAdjX4Km4E9FwNtdH2+N1C4EIFTAEXeHnP9I93Uz5EM5BzpAMtyIoy6suun36fNnFAR3GIp6P7l3nxXp2ZbBiVba6u2l18Huqlzci52Lmi4mVzJs2adRMMu0WzX1F442Yx4693TrA9QcRKX3jOYC15nbe5BEjcrknhzdRIfO4loG5S1BWJRgNxizBc/e2hoyF7T2TiWIhYOtvhcNCTrTat1xURbNSdlbxhpcTMuX7vazaFOom+3E7ppMUdCAEJDRNiIqSZ33zLIa5TAYymZxziXjAR6LSexaVhrRjJFSfbXMj63gDSSEwf/sHDUMumUss5lpKEvtMEK5DQ95tr7z9WEolpzbeUptyhpR69JxblflrZxPQWDqWUkuHvbI4dPnG1xUjEsLKqRH1Nd/50siIAeW+dGJ5Lr+0oDjcmlSwOMbFkWmTsZDXl7TY6D2797kHRppO1nO0g1jWWQiqWPbtc8zWPyhn0dVEZdVmNbcCUw8v1u6aRkFnRHC4GUzg2LJFaCp8y5EdFO7jeQ59u8kDmJIjDcc/27adqj7OeDK33rxNs1jHhZOh5z5kjwoBftjKVLOOdS2lyH2e63UVKQgJiTeLaZsJ0GPFiRw2kccPu0rm7q6iS2HefCljeupWZvAZEqX01VUwAmtk5iPtDe5q2HyZ4Ah+vHTuJNt5bDt1E2f8A2Jp1RkT/HbloqRYwwyDUk0UIEAZ1uauUtHZPvNyrX0sqJa6qbHkq66flpIlxzTE6ogtosREDAfZe8j5tHeyw/r3SOPG00Psd+N9evNJIZdVNp3FFR5CXfIO0Dyj0erW6a1DazqGjZPBMEhis3EA3XA3GP+pZS2R4FSTQPtqP3BH1Nsvd2T9RUo8n75n/HW6sQ1b2H1+Hv080U6Khp2x3q9W59K3MS3XczqVRjRRW18v1agSMmmCONQVq4o5d+KAKFbL09YEXp5rkr30+mKjB5aloQlKWPulJUfbUcJXLp9hI2uNUXXPHT6aUJF2gbuN9N0slZJHEzlrVarfztkkoLbo6F49ZObfDNObLxb4buW+btkcGV4Eghe7R+N6lu2oskytIZbRu0FGBi5igDpz17iVZOzbKdtJx07ySebEacbqbgJG6nwQUJ13QN2Zxd0ihXpgQ7zJrPyZmt9evTBbBZCUXryUncnAH7KzzOSbzhNs8MktW5QSpIIpujoCJSnbRRZrN7FOEarbD0MXRH9karqptuRrzlVkQSz7c+J7Hsw8xRF7xpb5B+6qoiZGuDVIzkLkRQjPcowjWMEyyLWfd+t2NyEn1OVq+R3Es39b8XrSSZrGV/WPUU6t4dEiSxU5ET4A82DX1pzfLYumG6c2ncN4pKr2/++51tRwwDQg7KyWZsIoknRmRgHMqcRCuPESgDYxZ9MRr/8TlNQl0dayydBmYtp85ldNyMPoW6afwsq21Xx6En30+mKgQkkUGkFCeRFa5h3w+kecPrXmIECYHj9zuN7g70lzOiUSJxVrE5iTXV7540jF6ULr0HmJzEYVD2LaOP/9plbqHRT1xHxk4DSiTR2sd9Cw5fhyqqfynSTf3zZOBI1FdkrokU3LL6aWcbEJ3E7TTidDOG/X8a3d+Arja6M2rlyiAhEOds1nwu2HPtPUVShH2ffrrpns8t3JwB+4vHTuJNt1a9n1pOomUka5E3ZzS151LSTbkbtOi3PlISyXM5Xq/gSlcJhmSe+xBJa+ckahvJ1X7GyWYKtdOASOfT6KYLuENb9vNoQ60Ng6NedTvpng6S0RF6Cs7n41lbj4okrmu0VTqglhPULkAe3+fbgg7jRxitzL6aHjgHcjOWh70V/An9wmE/B8Owi8o2dyCJCkXGOthU4RT/GhFwKvJdmzOsOJfGWo41I8t723/Odhpxtpnw2oU79E43zki4UnMSbYdvI4J3h3mm6cWZA+CdjsoX1PdWNPukfWVuIau4WyJSnHPTi2QBbq/dHzqRRBHJ78lJ1JxEKwd160tgGPdL2qZxwDC4e5sVDhrXPunaYvsBCSXQP2+dARXaqNlP5Jeze5CkWzM01VIUhpyjRLeJPr5ftpcw1786x75+jEMEJI7DIf/d7NzaeN7k49X7SbukVzgopftaYwGlw8dcy1SRPG3X+7j/n25GPLw+rH8PSV6/cgbM7ZQDKa7j+rR/g5oNagIcSnCdCbgWrScncXPmOOv7Vf37Md300ZuX6a0vED1qYeVk1fKIeiF7+gYV9EoWEQRQOJf0AdUZIZEbJFDWSZTNVDedRgzDgD/9z34RvuH9z2b9JCLIonRFTcyFy0nppu1Wrz9n2EkDtNcBc/+fMQwG4qnkjpmKr5qTwtAWJdVFPN9qKcI9k0hiQYkygj++hQLrc4pqmN2CE+OQRI5q5JQFOw+2CrIBGHvCUP5uzL2tq6JaRdLdo1rcOLk25ycTXr1wdbG2UwNJnGdsN4xKYxqkskuQACUzxFLlHAbnNGjqpkxZhJBbO3OGHZAHE3qRjaIfgdxspwG7eaFLG/j3qOqmTUQkN5DTfuZeuf7efr2ckFwvb7z20FSnYSjORKuXTBVhkUR5v9G/tzg7/DVlHABNFbh1Ocs5+v7WGYxsjgxLxs+xoLtbgjziDO69b0Le3twWMpT9CiSxs5+/pi3UzPc7Nie0V5SnqPFN3DsacwtI6aYDTrdTgiQOkY2zV84No06ihlweWBtUAYrcZ+qLLNgInTZQ0eYDZ1wAwPbMPV4/cI834CQ++id8njc2t6eXblqjZDI5Cr2y9YBbQ6pB0qRJ5gayH68naXtld64Jue05TlPpcNNJwxUk8XTrPvN7vun9Rb/eum2un04r4JzLvt+tJjhkb8Yo+lFIrjLejjCSt+KA8p/BCNf00A+B8vfuQTZOphG71RhkaR3yQDwYjo3st0uQFI5uGqOLj4IkmgebukbW1wgKaDqcC640p1jQ2PxnULnUyr2dXptbJ1MQrjlpIIm7wxzWaq1pOYmWcBBQ7idUMetBGq0w+4SxApLe4aQo/exzQwRlvEFIBjz2mXKo3aeubmrXSdTORQs53o6ObhqcRCOIEMeU3429/vFvJigpgzk82uweYzCN+71rtQuZvOjDoe93q+kJ0GsyPQOI/b9wUshzG8jTG4AOFe71+rG1TIdhyBkv/joSiDiQOpe8cy8DQN3odge6mm7lzHibSUcSJd304fWakziOWFabU6uvaImXOdHF/LkoIMc7e0CaF10fK/189xlcwCNr874PSQSAq/vrJB4jiY/crEMgRnDK/MI2+qJTxCi6o+JsMKplmkHSiyQ6ONyeYzo3wFM5+6KYgB2RlzljabvaH6qRYZ2ix0Vai34zF+nrpVrotdQ6In2dDphMZPf/N5EshTZhIYm1pG12bRWS/MTG6hPaXX+S/iaQy8PM9dsqtNGeHMj9vJjKvr616ovWDjYVESRQqUdV3O35vVtU8hQpvbWNeRUnDSRxb+SjACik/FkkUd7fjPMgVaCZnFAgp0QFlLoTSaEd0sJIBjVHYDXwMnVT4n4bnSG5LPn3a6vgKvsPe++slNirXicxqKKu86avf64AzeaElkii0a+gSWLt1+cU0WyGccxz2Qn67qNSOcNwpGGt2UD29YjvTce0GS/uMTrbfK5ZCiCw+bxhrxQlT5hcWUlJZtdWN9106M8btnISN9OI0+2EB1eH8P6TJK9fNrNO4lAGJa1gbU24Jjr4hnNZgDDV6emtR7hme8s9Xq9OIhPtM9pjJ9Ew8FJamexn1ajRnBQmiqMpEjJQfzdqcCxtsWpItucYFbrSnCB/g+pLcRCbcdq8cI3WRoXGwNWp1G9s07kpqEZ+/u01ApSGtX1AVfp1ilQAq2S0lcelSjmTNbKWvrVVO7SZ83e71kTz82PUTeV3Y9XH8jpx9mEo+6WKi5ZjM44DliVfk+zBJnNCAY4C3au4e0zAoyYIkM57M444P4lO4nZVu9PVTZkSGEKA5kAKHNUQMOP+npXrT4lnrW/uUc5NnVI6/0usE7ZOHOAc9usUSSevo5uf+5sRb9LWJBuY2ayU2G4ncXQOMFOiI8xzkCkf/U4b66TIa8KcbWm/AskynUThADDF3MUc/bFvBwrXMZK1zBjW0uGgcqk11BL2/ebz/dJgB7P+gTwvmhau8Xl4QRV1nT9hT5aBhPb85D3Ks9kqyvyNfptxrArQAI4JcLoZg7rpZhqw3bgPrAYKm6yEsQB8QqCkcmG0/QewzwBZp9L3OaoERo9wDQBc3HOP3ml8hPbYSbSMLZEwHPvZXGvpJFJOioDsefqJfoMykfxctpiXuy/7cdGwtB+bW6U5fL4ERq1fIVxDOOnH5ltKp5Shex1TNgDQKbgUSqoY5Yd5Jur0lTRhhyQyogXxuR4HuDSaSKN17w/RPnXTrHA2MVaaW8hGyF2/OB6rbqqppFkIgKQRAsdToBeDNVHrdzB+bxpJPCmRRJ1uuphOoqQ30eqmoxSuyb9DrU++l/OO20Gsf4oCnTilMZeRdFK8U0oan0BEEnvW/yQCVQzlWt6jAIdkAatwzWEO+8Ipm5M4jTmSyOwlU44kHiPmRqubivuNOdu08WjKuzDmqfqWco7r8zQFNHMSiSDJMCA98hfY95rMHQ6OlDlajvjPC3fPADmSOJPXX7KAekpnRFEk7j4NKOkRKLWWcmOlZWn7f+qsZ07iOGYBWtlcoLA+XlpLNoxl7OXa/gPYe5Bmp7H3aTHBXrrpxcv534/QHjuJBlWmlpNoITc1umkvZM9KmZdUC3tDqNWks6mtWj+C7qg43AfjsKkZkofZqc7VjMJRGHVujsfWe7M343HIKbHMYaOjNnykT6rg9kZNAY5uF2v75QhwW7TAPcoN8tjILrOtbjcjrhM6DifjH5E9P98uuulh6TSs4wHHGmjammSjmDdTToeRktcDHhbSJvv45n+PzTjg/CQekCdrjooeRW4bCEBu2LmxOXVTSSVkaHpDbS8njC1pxNNIinA27LWVz409b9xnr8qhxhmaj5fvecx11PYt1kj2jrpHnn0Ou9UckpjkJDLXv2CTdOTErd3YoJiWt8esERmEYyiBwOpsKE66RbeWc2RaISbGdcM49Ad3AWSqqD1IukTuWds/zYtmkcQ0Bx5IgjlEPz9G79oqcxKb3Yr1z+wLTiCq3MvT8+10M+HBdaSbeptPy0ncz+1AoaZVYZXhqQrXGGi65lyyTKWszXtuQwaicM3FK+vfj44kPhau8YZaZYFotf3832aEREWy2vORtFHWsBgqCGSrV41uSkc/xTxtGknZb2fklmg0NoDJJQW0OpU0StdJt5O/d1QyZIzk+BxFyRzX6Gf6u6EDJU2dRIJupxtpBpKoIFkLeKPpGHXTY5BEjW5KIYJBhCkxkimaanQu2XwgWUg5/b+Vy1vQr9h7tPN3kzmQTH3L2r2dznuaYk7idhowjkMTSdxYSOL4CDmJWRCIuL8lu6ODblcINxFzTJWZg/pnJwLM5kgBq7rpYaFQVWu81m+g1tclcxL9/XaxGpknE0fb8ohzT76xDEwygVP/sUWZAmOssnQJX0sWSJBEMpjgcnnLNJGmcy/m6DdzRik8HYNVqi50AWbS2Utowj3MlXGI7++hm6aorHfue2tMs2JRKbpH00aDkw7Rz7ZLNBv0mJzENHiRBna20xDmsZMKNHBOdCt9QwYJ07HMlLOKDWqVwHjkOok9OYmb1Sl8TDe9uWYiiTUn0aBg6UgiRyNZskXlHm0qYYnaAH05A3683kgT26/G0QYaSGItimP024yjev2tVqv31q9u6h7bRrJ/b27IU6iBGrU2+lSRREMh8Ig6ifp15GjT7r3CaCKuyclmiJFWgiIJpLTRePgyh32s1RTpdpRTOpbOpYn2aFRO42DT1GUZqktNuObY+paW+qccyze/1rbjGOimPkLschJzJ3FZFlcCwzRAxyK308oJdf0EkkKgx5LdwQY80nu7RzhlMw5ZTq41P6Dcy7vW8pTXIKTUTQsk0R5vbJwbjHANgIBEdKmbzkuXky5rcB4TOI3ndm8/m0mS9vNONh1MGPPSUIyTXs33Y50U74CRe7KWE8ecG6kyfI+adnp/s3ME1nWSXP+eYKakqTKpCr200ZoCLqXMr96j7flpOYnp2ZjqTqRIoipcY6QcbMQaAewyPHXhmlVh1nAuU1VgNpiTtaNyElckcfPYSXzkxvKKCz6yUY9FSq0DfJ04FZGyDhvFabD6HVuCoZq3dKSTkr5W7VO5sVtGstx7GCNZR0k5Woe8Hm4ejT6V68/StmRxb2vz8cn2krZl11oqVVH389w0QPVAQj+StXQYySmSyPzWQHL4BuOa66cJ1/SUwNgdFhNFD3OsILnpa7LFdRyf6wkk9AYu5O/NFJfWKKq+pU6AF67xBr6jmx6K9y9LnX7umxMykfU+iZzEKpJS71MTcrCWiRcqWpalywHbbhTVxE4kMSogsk7pknwvu49/T0ApiHn6e1SjO7JUeS+h3ydcEwM5zL2dIlKAp9dzQZnSSekMyhB9gBIVsUrphH5Tvv4ZOnMZgHDP29ckH4MJQANlUCb9LKufpLZyzmW8vx9F3bQruCic+z7hml4nvS9QK9lUXMrTWIiyATlT7HSTCJdNYzxDK2WQrPzmqkpp5RyoC9e4x54a38fXSWTVTRMncRiBads5WNl+1zuJe5JXrCKJLSNZ2bBYARRJWQGIjXXUk4Z7848cJY2LPvc6N5pK5mF2N3VtzEIO2/czDGypxuY+o6O4rjDIe517351SdxQOaW8eBdDhFAkpcyaSqdEdrcNNDyR0yG8fgSSm6qaODm738d9tl0WE+X5pCQDKsE5oqmztNi+xrSOJtYNtfZ9Yk0wpHff58TkKARb9GASmRuUH4r68GSPd9GSKTqJEEiP91lY3ldfxqBIYRCS/QBJZByC5d3pEYeT69/NujiV+gx5EZLuWl2BRS6BUuGaQRI2BwuZy+aCBl9DnS2CMGd2UEq4Z5Z7cIdQlHalOJ9EXc7earN3G1oGU9kzP7xaonHQtx+O/27wkBe7ZgGtydi+E3ZTOM6VN00hiInDk9h97TUo9h1CnlbBn5Hej82QLdNvup9eKtgNARU3xOfYtkMSNnpO4LMtaAqNRJ3GoI4m1bjWgyKpVqQW3WPsua/MBGI9AEje3OMPJaL/rnUQrIqbVlgNsnrxWJJRZINMYb2agb2M9CKcB4IRT8vwjDrUEBEpE8P/rKpktZ9s9ak460OaDS/SRddLTz/f9KNl6dYOs95HKanGs5lBhvF4EGHCHisztYQopu/fmSEqT+x+ib/E5KrdNiZADJJK4yXMSGcMuFjdOnUvOIAcEkkhFhFen9LAEg75W69O3Zn1RI4qZ560ypSxQjMUhkHk/im5aYQm4z5kxDG4debqpf7+vh5nuk7H4sh3w6Nl/Qj+xnzMI31QJ+LF7kFPXPNJJZI1/iSwRNWF9OyZvr8iJC+u4swQGXSfRve7VEa17LfRbkcQeloBcW/PC0TiBxJHyTooxlkQpWOOzyG0jfztZq5XpJ/cS1gEu1yRfpiYdh70maYCd2bd8S39vCzTI5imQRMa3rOck2usrOtvuOZbNE68jZ4NK9pZf0xaY4t4r7Lskz/ksqZO7GdM6ibqz10o50NLAoghWRQRROUvTOVupUlK4phtJXDqcRJ+DePFKRBUfsf2udxJZuqMmf9vm44/FomIM+QKRCje2HX3O819s40LPP+o35H0/67uptDnDSakiuRaSIqJabo4dggCCNsQUu9WELbp/t4WkugwCpUN/HgXA0e2OQRL9S71RtKjc6vtwBxTgjGQfXbSUNdPma6LF6CznNABYjeR87tYcAeecs0iiVgLDUnfUhWt4GlupuEtGnwvaHNFHQxIThM/TTf13Od04ilJqJIS6WqZwjesbjeQ2PSn205HE1vUchjzg10Pb8u/3Q7J5sh6BZeYH6AgwLaS30rsjtbjfSaEQqQS19401kj1V7fXLHYAeJPE44Zru+roiL50NisXc7aQ/GVwESieRCRRm15/op4lZAf3F3FkHTF7LnmsiHSLm5JjGmFvIiusA+V5yMJCvdCwAxf3N0MmlY2mLICIbgw1uSfZWDJ7W+2i1s93YHqUDbiclkDZTvQRGYJ90qptatNGWeCWAagkxeZYyYm5qOyYncTncSD4i8NhJNHMiWk5KW5ShdCwZI03SOugozqgr6TGR/NIgtMeS/ag5DuWGYEXyNbTN9wPaOVmFuiz6k7b9/81C9YOk7frn7ahpyVlnDsQy34ntJ+m+Jvqi0B33BuKmoUSM0TSs1zmlDLkX7O92uulXNwU8ApPkf/UiiST1B8hpQ96htQzXgG4nRtreyCXS8iEY2pZKEyYQyFKkIp9Hu0/5Wvr73Tl1eRWyIHpKNwolM8y1nO9BjLov4JzL1Chh0OMqu6PjN4jOnjlFR/9c0UcW3Q7BHH+/GedaPp5zpPz36kESo7FL1NvTgosEAgkAd05dLs/LD52TeNqVk9gnXKMF/BhVcqAvuALo5xSbbgBoSGI/Tdvqp9FGASLgKgMX5F4+yL2LuP7AGnANhvz6HF0Cxjtg3PoH3DXz/fbk/RaCi/J3Y4LX8vqT6LY8gxm7MEP7Z9+v794GIggzDAPOT2M+3mYckrz+/ODwueYte0ZDEtmawwVQZPwGcq/rCfhlrScnMa2L+BhJvJlmJQDXKFEzgSTqOYnt+UyjKAjLRnEqzmWr27ElGOqF0jkDLVNJm2c7j2hQKAJGLuk4RPEH37pyRI5AV9Xr3x6uQDxZikw5Xn8eBfDG5SRqKHXf2ooHvfu8ZjcAOd3OISJkZHfNEenJP/L1FVPhDuZ380bq1S7JSSTKNgASSeSCW0W9w06qF0AGt8Qco4HQ6OMj1grddHeIuTrP3DkBENEgjw5d7aJ4zXWgm5KoeBKRZ9RN3RrRnPSbz0mMueJcXo9vIXAxz2YQoRgrQW14BH7MxF2Y203mpTP13oJjs+T7luvXHs87ia88uAbQQzd1yq1WMDJtKY0QIM97sd+xzCEtd5tikoi9nBVAkQEP5voXewJpy/iXszXZEYBIHW7mmuhlIrg9IeQIEgHQ0G8csrq87NoCYlCFRRLTHDxW7EkGGHtyGeW5AbTXlqZT4f6O/e6cTtn7fZCwyEsn9jzVljTu8WoJDAKoAFJKOL9PZq0nJ3F7K6KON1D+AnjsJJo320bcnGm/NpJSLnwmt20cdMjeRLLGiuBNy0hT8o84ldKyH+PcxANK5LYRhkxBETA2vBol9hgqLY0AC0TWzb3ZTclbInMLiw2ZNRLGwtlgcxIP8nczInaARFc7FHDDxuqeZ3MS5wXBcO2hm+4SRKRXFZWlvgEI+RWXuwPt2IzK9T9GFZhCBKsUdK5fzO2xr4lX29XopmmR+2dXJ9G/TUbVgWggsKh4qhJIqZuOQ0ZvDQaCkZcrWRqAvb7SoEBPvmtag5NWySyclL7gSorAc+IuEhGxa4WqebIkAnZ7NTBfenCNzTh0fbdMuOYNYnfIcg+9lOSI3Nu2Rd5PlEohcnm7kUTpyJKMC3l2sOh2sZaPCLgqW1G1pTmJc8d5kwYT6Jzo9T27Q/y9/Wc1+02l4jEjQJO+nwOUT14AACAASURBVN23pAPGnIs1JDGlvZ+f5EjiSZVu6tkkDeGasUxDOjrlzLie2j0KHEE37clJHAbg/Gn3/8d005tpbEReyubOc3uzk8Y4QKo7jtLZ4BaWFLwBkZOo002Xbtnu0M/4brWiyEwh3zJpmMzJEhRc+vAVjhTj3EiHCGCcy37Uxo9XIolmNxe8ELTF45FE20CQjnOvslpPjkikgLpcLj5HZBTOHtHHU17mfnGRaRxwuT8EJNGiwMX7Jj5n7VuqcE1HIOfYAFCvYZFSttK2n5fg9Dxz+zTvsz5/nUSSd6TDvRV0UyZI4j83R+Bt56bK7jDGStWje5yUWPNzphA6ORbAozaAQ9P383HqpjInsV1OSqe7W/2AHElk8xH957o8Zfc3m5MohWts5H59r7gH2H0ypUlSSK7YS3pKKfTmJJbOBufYlMIp/PUH8jxNZiXngit995t3THrSG/KcxJnqJ1M+WHXfNH2ph6IKRCSwL+Up/s0EPDTbAvB2ofvOt1MkcUxyEgWS6BXKW4FCKcAEwBTBqgrXdAIVPUHorPXkJALA+bPu8THd9GaaFe2wONO1ppdg4KIxalH2Zq8GktVyEiuUQBbt2Rf9uM2ncDbMOn1lzUNe3TE+55CUPicF4KiLko4TkVyinxiLPdhymjAXbS1LYMxmXo8WKHE5iY35KUgi891knprvzSKJgHMeXN1IswuANdp66DPIPd00q6VGGglnmxGXO74EhpbLa+Vk1ZB0Jkjl39vVTxitvGFR0nj8vAOSeDd3Ek8UJHFH0D8BnW7HUtl2WQ4kYSSP8h5dnyfRvVS4hqJAJ7maPeqHfiz3yBsx241DEtl1nI7XU6rDv5SfG+1C1r7d9jmJvU6iL4HREzgahwJJp/e7zvumQNsIhzQbzwdJWERKoKSW/D+QOMBrN1Y4xU8lpa4zW+sk+jHpDX6esgRJPwJ5pLrpwlGZN0fcN/71VCWW6ROuvwj4MSw4oESOrbSsdCzfUvbK7QRJnMZYAqNQN/VIYuMMSOtGhn7GPLUgbdqviiRWgiSkmRBbT04iAJw/4x4fI4k302i6qcJHbtZ/eYScxNxoYjfWfsEb3SDsr9HkP4M92GRE2DLshqHcROz6lu6xRLLIOXaie8OQO7JLx2EvkePjqE38gShpQ6bYh1K6xEIS/RzldWQPmmA0zXY00rcTjzCtRnKXummCCFLUvk2C2qxfkR3vbDtldFNW3TTP5TWCW8Fpi8+xQSoARQCC3RNkkfRedV/f0n0hVbcDEhQ3ddpmfy3b420TtA1wxjKHJOp14tqlGyrqpibdDuvcli7D4iShmzI0TqD8vdmadIDLDb1K1jEjClMgiYRz78vUzOr155zE68NM5yP6z83zLYk9eShpizzdtK+fPKcWMrgokZtDMKzt8TKU1CtCMikHYi8/hk3CnolAitywzmV/wXkgCjf5MWkkccqRRLYGpx8HSJgTHYJDrAiTXJO0LVMECvPP01oNSUyv5+1EuOb8ZApIoayTGAKFrTWpnDf+e9b2IC3dA4jrky2f1xOAyAfa83RTINJNHyOJN9NYuqm2sCzhDt1J5JyN5YhDQ8t/aXXTkUReybA3/0ItgUFsrqXjnN7Yel9dOIXPEZFztDdIiZrln9caT1ICOdrokB2G7rPsfjJ4kZYaqPaZyk2SymUcynxLa44yT62HopGqXvYd2o4215NbmOaILKTx75tzEudAl7EokrVcXjf3yvpXaGzM9Q/R4CJI0u4ngzJ+WIbuqDmJ6e8nHU1NAn1HRJHT+aS0LQ5JHIsgCWDkJA5lkMQ/32rpHsRSxIAK3ZSlOyZoA3vf3NpOuNzPuFwFhE63tiGzEShwuOcINknupHD36p3EwOxBEk83I672fTVQ0wAcuyfX6PWWxyfPKfZ309a/m7t9/Y+hW6djsXuCtC/Y7+a/Q2o7UeqmiX3B1hL08wwCWAuH9rt+Y+ZcUkiiKDq/P7i93PzdMrppfK7VJHjA5jdr9S2tfhLZ9i1l6p0nQcKnb58UgT7f/JpsnadyHbt+9j2u0VT3xveTudT+kfIRf+l/AH7grcBnfwFY5j4k8daT7vHsLXyfRvucOYnDMPztYRg+MwzDa8Mw/PIwDP9q8to3DcPwS8MwPByG4SeGYXg+ee10GIa/tfb77WEY/h3xudW+TLMO4VpOonVzSzU8gETpQhRn7RMWYrNbVUmvV354QQ/akEcWbbShpBbsDnYkX4v+sMnGpbpjcyjVkbUCAn68XiRX70cebMNxEaq0H8A76YAQCpltCq6kEnY5wOKAYvqluQpd6qajo8315hYCyGiqLJJ4uh1dTuLBFYxnhYM0uldXTi6x/9TopsfmkvYzJ1yTwYu//Se+Gv/jv/UNAJBIoKf7iO20pa/799M5ieOAvHQPIbhSYXdYo6W/d08JhpSGRYuEiN+tpyj42dYFnB5cOSeRQeqqxdwpxLkUbmLunVur89rjJN462eBid+h20gsUhb633d80JVka5J1oW5Tl566jDC4y16XuNLTnWDjA5F6uUd6ZpZyKwPn60gwrxwcXAazCNfZYgNtLUpXSnnxjT6ncEarwbo5DEZCh9wRvg3YGt7LanWj/3lUkMdFKSAM9w+DEp9yZfYS66VimLjFleGS+MZAgiZUfXqoyM2JuccAtcLgGdpdrTmKHq3bvk+7x+Y/wfVpTuZFP4dpfBvCeZVmeAPBtAP7SMAxfMQzDswD+GwB/AcDTAD4G4IeTfv8+gPcDeB7ANwL4s8MwfCsAEH3NZkWENQPN92vy8RXHpkc5VNJPmAR4WQDez6Pep2YQtueo5ZsxCOQxpRT8eHX5YSMnq9PYredy2RvkMYJDcp0sC1fMWqORMGeUdEqdk04Kp2TCBbZzX6Ck4A7EtJ/vTdFNJZJIGrtelKQHSZxGV7+zF4EEEpre3lHgWCpnj3BEDUk3HRQtAMQEt8R9Qwtu1eimh1zQ4SPvfxZf/PYnAJQGk/u/+wxbuEYIQBx4ddPuYuLjceqm6bVk6t36tg3odlyT1r1dGNYdSKJX6n31Yi1NsuVzEkOdShIRdGIf8e/gcBBz9XS1J29tzff6dms74eL6kDjbxL6l7cmmQ+QeexFImSfF/m7yXDxGACWdbx+S6GyE7r2E3MvleAvIPM0hZeW45zjHLUESO+6bdC/Zz3wJHv9+wO1bW/L3Ds42ybaQa5JX3F37iQBvOyexPNv8Z/jfM62T6Nt2GjPhMoATL5tEsC8d21rLVVVUEknsCeYHquj+oj8n8QN/2D2+96N8n0b7nDmJy7L8wrIsV/7P9d97AfxRAL+wLMuPLMtyCecUfngYhg+u7/3jAH5gWZZXlmX5RQA/BOC719esvmazIHEtH8v3s+BpuRgZlEgWhH2U3Darn17vsGMTT1EiYo41Kf9j6iTGnMTKWCJCDpA5carjTCIiYqx0Hq1+x+Qkpk5pD9qglsAgqF5Av3M/FY4zi3aWyfY96N7F9QHzwhfOntaoZC8iuJ1GXB/mLgQScAjM5W7G1X7uEvvQ65S1g1sHsSZZylBJ027PUVNbTJ+vNY3+A7RpoP53TnNSGGQvfT0VgODoXmOBpFvjFeyOgFK0x8qcxGBomVPMaLiRRtjuIwN+88IHOwon8YicRDYnbhxzJJFx0n3zddbe9dS5+V7fbp2MDknsCRwN6HY2SmpfX78oQMPS5EWeFOukT7k9w9CttcBRjwJuioD10E39NNmcxFSVszfguk++G7v/5zmJfSUwYnCLRBLHMaPEAv10016afHF2t+zkSp3EtBTPuUJjl0EjIGEXGCkAwiyn1rI2nhUoKXMSOVvedV5FZ3YX/TmJX/WvAd/3WeDOW/k+jfY5zUkchuGvD8PwEMAvAfgMgL8H4EsB/Jx/z7IsDwB8HMCXDsPwFIC3p6+v///S9f/VvuycaERKOokGBcLD2lK4gHE2/Hvdo3ueSTaW0X8AzXIWo4j8ABwiqKEUPTmJ0tlgKEPyBrWSjVVHlrn+quNsH241J93aD2T9qXnhDqjNlCrpuec4Kmf+uzE5WV444pj6loW6KTXH+Hv35AR5h+v1yz0ADtkAVgGCw9J1HYGVgnhYYq4Ha1xvnHDNjhTT0PYgc9+q3qPcWGWQpC/6z1LLak7iYV6qEeG0HmCcI+c0bGVEfrbVlf3nashlW0mvn93h5liqlDKIiEY3pRCYZO86kPcogEDj9E5iz1ouirkzdfo6giRpe+uqjvuup3i1v1vbCYd5weXOVvH0bUoomTTdWhjWNCVZnFOs4FD1+hP3tyqc1UU3JRG6QOX3VE72+rvHlPLLpmAUOfBkUCb9vXl10zHbJ9l7FIjXfTcvzVIPvqVgxbEUdDblSQbmmf1O1k31LQ0M+HX0x7/2+dhvOhIRHHObMB3bWstarXSgIXgz5J/fVSdxmzqJnUjiMNyYaA0AdIz86O3/Y+9dY23LsvKwb67H3udx3/fWs6u6u6qrmqYbKN79wNAQwGDAsUgHuR0S4SQGYhsbh6AkljAgISRH+EcUJYpC4jwcxxa2ZAs7kZFCTKxEUaTwAz+IiSPLEBv6XVX3cR57r1d+zDXWHGuudfb6xrr3nLvPuXtIpXtqnz3PmnvtueYcY3zf+EbTNH/COfenAHwcwLcCWAG4BuAL0VvvA7je/k7+P/4dJsb2zDn3IwB+BADe+973dq9PZVzPgsOnKBDaaZIMhZfln9iMB3xw8tBIhs3VAU64Zm4vtbmqqH2Vuuk+Qc7FPSAN6o5RADadocVgXEV8b2MCNPrvnX296HuDgSJjzPQB/QMK4JGUWDiCCS7jwJlBcoH20I6ykcxBupfFyAaXfcvafm8Mhao3LvV9sqzS1nt5goerwtNNLUjiCJJ1JpKeeDqs+Rk9I0liQb9kjH79LItp2mIMkjjWkmJ675Lsrk3dVNf26PFTSIqeI+ts6SDYEuz16KaGtawFpixNwTWSuMimadOAyq5X/eebQxKHSRJmru+5tY//C+/g7rXl5HvF9lvZ/Uergpof4B1Qs9hH9LyFRBV5Tql90oRIKSTdOaJ20vWdcopKOPhsXClFTK1kklvAMHltSkrGQToZuGlGwnJCWVksS+yqqKHlUjuO6G8MjNckMnuyf7//fxbdPitRuOkZHdOAAIb7/2//+e8djBvUCBIUe/F/tGI3s5ZH+ytOnMGxKrPFT+sFiU1l65P4hO3C1U2bpqmapvnfAbwC4I8DeATgRvS2GwAetr9D9Hv5HSbGxtf9xaZpvr5pmq9/7rkAw07K37bf52CBTFAgzqJkTq0P+b3m1fvXpzfxWCQE2Lz5n1l/t3mKZ8rkT+1Zj4UkDh7QzTSlmHoC2D5bfC+tAdHcmiwLRWYOjUFTogCPOjA1WXniejWJjJjPeC9HYo6JGxw0DJVWVNDeOV4D4OmmcpBaawvz1KGoG7rWRkzUTdcVGSSOJDyY+pKxtTXJEohqov04QwIoYkAw4+JaD2Bz8BaLz/j3N73fnWUhkApICutcx31C5fWzLHFnKU5PzFEFwayDBgQksawaOkgH0BOYstRW7S/89e6fFCZqNzCibjpxzfj+W4Lgj73u+4Y9f90QJLYB8KNWlIet9wuBjX+NDfbmthuwCg4l8f03JAk1M4pF0mVuci1LD9rCWO8X70FMwhvos7C6721yVL8tjk3dNLAS2M8mST/xewqivzEwrJsE+ER5UIkVX2Z6jv79oMeN9QAGOBCmioCbABycfb0YhAHYtTxkvDB13z65YvfTkOmaRCPd9AnbhSKJI9f+AIDfhK87BAA45w7l9aZp3nHOfQbAWwD+5/Ytb7VjsGksO4mpheWcaymB8SKegtGHjp0JpTMuLBc55My4sfo7Zo5jaBuD0o3dk6JqsJfbAilgmlow1ifR4uxaaXpxQMQ6d3HDbbonlHJA2aw1EFAzMRZJGUMSp4N7RHRTFu2ch5JKkPiuBIkk3VQOUmttoa/3sInkAKpPYvkYdNOm/7sxS2IkF8QzOpemGo2z1VIPXy83ZMrlnvXWMUk3zSLhGktNolW4Y0y4yb8+cS3lJE9lq/vjJACuJ5kW2uI+cXRtrULuLQkZQNckNt0cNs4xWsviXDOJmT/8Da/i1TsH+MQH7lJzBEIA/KilrrMsjTpa/3RSMgpSWFXUnriLAUmsjYGbRnx0Td2mdTkWyFI1iR2SXndzpertR6i7zFJOXDhnLAqUupWFRd10kSVdPfW6qnFtj3PDs8QnJYFWuIYSvEl6a8TPezq5C/T3ciYJKn829ks2InRn1CROa34kQySx+3ybkMTh3+/2cmN/RabuO07AATOQxLp6qkHihSCJzrnnnXOfds5dc86lzrnvAvBHAPwvAP4mgK9wzn3KObcH4KcB/IOmaX6rHf6XAPyUc+52K0jzwwD+2/Z3U2MnjXEMx+Rv/SI7+++e1UqBcZoAKCeZW1hjDjmwuSbxLIeQpZZZVVHPEkChatsiJHFqAzq7bnLzHJPo/svfsN5/3kmO7iNZf9FHEiff3lmWDhERTl2tf9g0ROZ0KFzDNXzWznVAGqbH7XdIotRIkXTTNOkpQtJIYuZbZxRVPamqqU2Ea9YlN268JnFa8CNWZDPtPzOTW1X0vVH9XUeRxLPXZTZCN2UP4Fi4xiOJXEa+GG3BsFlJLxZuAqadrUUW5mhxWnu1jAaHJN5L6NrahQ4SuWctnAE2ddO4drU0JGacc/imN+7RSD8QkMSjVUnND/AsDY3QMePG2jYA08HloN6PYHbo+eiaRCZJMkAgKWpfHGxwaFuX7FD3kvmuh6J/hqRk9L3R6qa1DREE2h6cba0rewb464UzuGRbYCSut9cBXEIG0IggeR8HdF//uhVM8WM3+1w+URH3SZz+fGPACMMKGdXFIM4ALRzEsPs6y2PhmqeH510U3bSBp5b+CwDvAPgLAP5M0zR/q2maLwD4FICfb3/3UQCfVmN/Bl6M5ncA/D0Av9A0za8AADF20pjDPhuBtqc25bniLrFCFCuBfhbdcdN6HKPE1o2lbkkHN0S95ciGMFvddOLBHgtkKWc3yn524xgnZsQhZK5nDdJlnFZxY64FtAGRMUgH+kgi3aMsHanTZD7bzEP7oK0jeufIRjcV2pAp0wdPiyqqmq4tFFtmKVZtn0RmXDbynFLqmgOUevrZdm6sltHQFse6b7mhAAGwOXgb65M4JSIQj9UULApJTBI0zUi9zcQZMIduHRS1azrYBoJwU6+WkXy2ZQ/xCbHpOQIKSTw2IIlxMoFEBOMgsSJq2R/HQk2iBInTY3SwHXrSTSdAASX20b5uPYPNiKCRyhkjkMz+M9YnkfnKpJarMgZggYWF7rpsUlILN8lrU6b9QgsCv8xSrBSSyJ4dOuArKpYB0WcJODe9JuVjaESQ+d7O6otpBVPk/6fqvYfAzbTC9WjpBjMumRmUuv59lNcmTeimxTGA5qnWJF5IeNoGc5/c8PtfBTDatqJtm/Fvtf+ZxjLGKD6N1cTVE5vyGIzOOGlnNSSd5IMPqE1ox00HsjECZnUI/bjpjTWWBPY/E/32RrI4U07a46KkVgTSubj+iPzekmEtKdsnca3qGvTcN5lX5OwjIiySUg6ut3lcTAlhJdDH2nswn21Qk0jSTYU2JM8cL1zjUVnLQQ94uumq4IPLsbYUVVdHwR1QAFeTCJyVuGCd1jBG5rDJxp5toM2UnzF4VLiG2MeBPpLSNA3vJHdiGjXSJO2uvTn7HLM7pu8joBDB0pa40HTTDhWf8byxtVWC3FvWf3f/jTWh8Zqsak5MZq7FSCJ7/+MkCatcGVAb7rmJEUGmRnxsnDUA68ZVdoecRTuBfi0djWQN1E35zybPs2yX7J5QGO8j4JOX69KzBFiFa8AnXTskkWSvZG0is5vjTESQE5wb910ZJDEO+Mop/zoZAgdyHDBtWUbbGU1dr3+5kIjb1DojDeU9LHAAwDuO2T6wPmoHXX0kcWuNRhLjBTkDSaRaMIzIOOu/d/a4WEnSgCTqbDdzrblUzvb3dpXMvrMLTNckjvZ7g6EmVNNNiSzhGLUPzPUi54duOD8jaw2M0E0rviZRrifB6VRNRJoM22awh3atDl+Ac7aWWQLnAt2UpcDlrZNgobbK31+VFVZFTSMpgO/btq5qPFqVs3rLARYk0ZbIAYa1jHXD0N/8v/Y+icNnG9hck9gJYM1CEhVKRyLiY9cUVGRKGCyuiWb8yFwFpOE+MuNC8FzVHGrg/3YI1C31tXsqCcMjiX3J+7rhmQwDJJEtApthQbjGQDdNxpQkp6+VuGF5CStu1GvmTlIyExcHbgbKe9xzb2L9yzUA8X+47yxPk44p4IO96TEDddOaD26GzJXp62n651RLNG2SUFmVNV2XLtfr0YTJFhjWOQ5pwqzgHLrrAJwPNAYcyNjNa2tYkyi+BhOU1nX/7JjaK8daYHBI4rCdF816z/eA1YP2D13xmsRttuBgn/2ecWh7OtOh/z7AZcSGvWa4hTXI/hMZaHkmhs3cJ641irYxyq1DESCqJtENaxKn6sfOqgllkcRS3X+2Jit2CAGutiS+jxz/f0jt40QBkq62qq4b1M20IiTgD+2uR1O7602hB7EiIS1AMJZZJ8Y553CQp0G4xqJuqhQh2dql/TzFSVFhZUQSbx4sAACfe3BKBbJBAa5/sE3R9MYo6NRhHyU8wKz/aN+qiX1VxsUOAuA/31lJiNAPcFiTOOXM62CP7dGn/26/lmvzh4vZHWxGPg729PU32UL1SbQEexrxrGoDkqiaXNPtZjqGTVsnRUr5P05N4hwT4ZoHp20LDMKR19+3RQSrP05e2zzGP/vhPtY1x0AB2uBGKIEVF4DF/gxTEx37MiwlFhDF6YCAsbWFQFynOX2tRKFEloRrqtg1bAIOCOfSuqpRVA1ysnVGnjoUZXhuqOSKQjvZ9jZScqDVTdl1LO8HAvjAJBJGNT+MSGLoVMAnLuRak6UzI+cU2zoj9uXZdYL8ADh+2/+8OOTGnIPtgkRGSj4ZiitMLaxEOSNijJMW01RlNKOSOSpcs2GYZBUH44hr+ffOQ8B6SCLRgiEZeUCnkIMxARpmIx/2Wuq/vmlc3G5Dz+Msi1uXmHo7xQ45gzaowI1VhIyvV3RI4kSQmA4DYO6QUtlIsrZNbH+RBSTRTDedzgxq21ukOCls2WAAuLWfAwC++GiNO4f55Pt1n1UxBoEfBinNRiErsWEt43R/s7OEa6ZbAAwTQPJ3zqxJjCTy9XWng8SAZFmQxIDc8HVSY+wOCqFQNZc25WIZV5uQDY1QsGgnEPokAtMJo3iOge7I1RbGfdFYKuFck8/2zpHfS3RAfJbpXmqW4D5VzwB73sv1CvW8sfdD7+VMssOP6SM+LJPBj0H3L0837SOJFnXTXr0rmXDtAiLDGTDod0gux2W7lrqSA1JgLU+DKmpJtsDINdppuv/9di6mIDHySzYNDcn8YfeAqbU1QBIn2GVjc/TXJvfyqCyCuV6aDNvi0EFitgccfdH/LEI2T8F2QWL7xW3OWgyh7amFFSNZgkhNBmARakDXKLjIIWn/pQQBjI7MeMNtLkseiwBtqj3ScxzQTScOqTEBmjnKrSFbNDUuphb7f5mM8BwkcZQiwzhbbQN4PY6uSZQeTaUfNxUkxpQQVrhAI1lWCujBIsX9EyPdtM1aWxw7ADjIU5ysS6xKG9301kEIDG8fLibfn0Z7AtA618yzHa1J5nxK3JhwjS1x1KlyTowbywgDm1UXg3DNsCZxMkhU8vqlYf3HQTCTyR8+22SfuF6fRP7Z1ghrRSINQITaGIKNZZZ0yRFrn8R+kGILpAAeSZlrIoL1diuCtUcknBJ1tlmUkudS0np0RwtKl+h6PxbJ9f/qlg/+9U0Ouf+3Rzclt8k8jXoJkglowH+m2nAmjvVJZEXgdJDIJmWWHd3Ui5exSOIiS/rCNSQDoqp9/bUlsRInoZlRMUrHrJG4RlmsnEgejbalI5E9PUd/relEyZhwTUX45nrfslCZAfjA8PhL7c8H5KAnb898kMgUnyZRAABMZ7eGfPz2b00hie1iDUGKf53JyMdKesz1BoI3DNoWcc/lelQAEAWlVd1M0r3GoP6pwvkxSixFG40CYJaCOEbtY8ZpqoufI38fB4GsMfvJiG/o61lrEuMAoCYP0t4BZaBtAUG8BrDVSZVVY1K2A7xwx0lRYV1WdEAKALf2Q2B454AIEkeQe8a5Tly8JlkBiGHiwqq2aEHg4wSc/J2pZ1sLMLFqnkGAxooktoFpF9xM18QNBYDYJt1KpZRIYopJwLZukUQWEc/TvrgFu/6dc7h3za9fvidpvybRUqcc16CyTvkcO1z65/lLRysAQcl1k+lErY1uOkyuMIh/lgbBFUsAoOuraOEg8UtiJHHD54uZSkxtv5hPXEhwwwd7fo62M7FX398Fl8QckxDIsqJsgA4SPZK4JDOgi9QL3gB+/2GEa3K1300FXtpidgGbXAS0cI28viFoO6tP4sR3Hu8HAKe6Psbw41kh/deEBTFV8hEDPnQrHh0k7uimT884ZaMzkMSJxSHvA3gaSZexq/qHxnSwF94LGIRTRrLdU0u4cwi1k0Y6oHHgUNYN8ilnNwHqGOqfcArj/lN+jtNIohwOwxqRaWd30O6BGJeqQzTMcd7BxiqyWXt5ASK/3Q8upyiWA+Ea8iDVNahWdG9/RpCYZ66rDwFCnzrmWidrewsMjSTeYZDEkYOtZpIrSbwm2ebSseKuvb9rcJKnx431SdzEMHDOYRG1cmHbsnRBSlV3a9PiJAtSxATpMd2arVvKFFJqyT53QWJZ0wkZoP9sW2mcz11fAuBR+wEtmcjiy7hecrE5XyRxmaV+jVUNFlnCJbfU921BEnt0Uzk36CBFBdsWJFEl4eYgiawwkv7ebHNsSwAMSRItnGKqLXSuu+8WNe0s9bXzdc2rJAPhXDpeVQCmGTlin+LqEQAAIABJREFUiyzBylqTmISEU0X2YPbj+v6FKUhv+s/AHHVTXz959rXivVXmCUwEl9Ec/bWng+cxJJETXRzWG9P71uIQOH3X/7xDEp+eMZtCvECY7FZMN+WlrWMk0RDsRagBQAreGOv2OkUq9YzSohgxBZGoSYw/m1zPz2Uz2lD30FXuPgJDha5puqm9T2U3rkcjZIVr5om7aEls+R6mEMF4nnRN4kgCwipSYUX3ekgiUUcEeJRgXdY4LfyhzTq8+4puahOumRckWpHEOPvZgEQ2krhOlhBgiujdbE3i2LMNEHR+JeLg58itE40kioNtQxJbxK3ihGuswllACPZ6NYmMk5b44HlV1ibaqKaxWRARIIgwvecWVzMzphI7W7jmHINEIKCJeyyVdqwEwFg6cBF0Rx2UlgRt3Y+RmsSAODPPjU6eNiQiCASULiQJp8foPchSy54kI+e9oQa4aqmcPN3Ur6uHrSgSe3YssoAkFmQLDK2U7BMC1KV65SVsQmZQqkMkeM9SN91Uk+7/Zj9JqP8GJVzT87mIYG+EzVYzZ7AL99GSlAQAHNwLP++CxKdnTPHp0Nn1/05J3wLDIHHaaWrnFWUfJhEwN8xa63mcOS4ZEbcwom1Sb8kgYGmCqCZxmls/JlwzWZM4QomllFvP+N4YJHFsjVAI5Fzabucg9Oe+yfK0n332f4uoSVT9frogceJwi4vLaUlyFdxYFcE0lZNFEkWk4uGpl7tnD21RN10baxKvL0PPI6omcSTbyhxsmuoFGBI58V5CiFLFIhWypKfnOI4kTjWL1mq7AOiATwuniMPFfN9jtXST1NYkTsBxjqQWoLGKKS2yBKuiNiEbfUTKQIdC6CP4xvPXqPcnSV+V00J37Dl2pCrq49i1Pf+c7pHJJp3wsPRc1UkZps5JbC7dcYBAGtZkr1WKNeFXc/sP0KpwGxWn9TNqqWXXa0v+5a6nUTo73fRh++ywSOIy08I1fE1iN0fDGolLPizCNRZg5CwksZoIaMdqEikkcSThyiQ8PCLYf41RWPb3Eb1r0vvWtefDz4tdkPjUjNmU4wCAyW4NVErJoCHO2FmQxLE+fZNI4sCR4cYAY/WWHJJldXZ1k+Ju3FSfxAjZADh1x1iAIwTp53j/jfcDGBeuoaTMVbDHUvTkPV1NYitcM0U3jZMrrCS5puAyMtra3nPbIxrO8bQOObRF8IZVKt1fpKgb30vNgiQ65/DyzT0AwEvtv5tsLPvJF9tHiCBdkxj+nwnu5VYPe2QR1zoTSTz78+Wp6xwm//6aor9puqmMZ747GRdq9+rp5FbSF+liEFkAbZ2Ln2Nl2FsBv5ZXZWVyWrVqogVtANC1m3n9Ob5mZqAKadx/AAkuz9d9OVzYg8SmaemHliDFBQfUUssYlw7QoiRp/+xggo0gqKeCe5LxUqkAmO+T6BEYi2OtS0wsSG7qhoENcz2N0lnuv+w3j4xJyV5NIpkkkdYtot5tQZt1IoFCjSPfyRK0jYnCTAE3cU2iBUm09+rul84AfMmHbvej5zBph8+Fn3dI4tMzpvh0KOU/vfjnqpTGGTu6lcJI1lrPY9M8e4I3BGowJ2Ok56kDvoJSN03OLFI+66Aac6w93WVifmd8tqlzdPb9j8bxDW/taCcgjeO9IIBkoWnhiPZ6oU+i7Xtjs91jdFPWcZXgi0W2geAEPjixtc4QWfx3jwtTCwwA+Ls/+a341Z/4Frx0c5qmF69J+ZlB6eI1SdUkJmPqppvHxCIVMlWKbloPX/fCDJuchKQnXMNmyUeRRANty4okameEbRPknEOeJFi3zynA1agBLdpQ1rDI3eda8dhYk/inv/1NADySCPSfb0bdGvBrua9mu3l9PAm73iKJTPsLQKnS1rUpSElc2OcsNdi5SrjWDU/l9BS4sI4t7VV0cEmjpIpxZFVgrSbOeW2hxKShqI5hXEASLT2HNUpXN5ZEjl9Pj1okkT07NN20rOuuFdAmC/tdbarjjWtJbS1I/P8z4EHcEkdsCr0cq0lkFK5j31V+tpZuyPUoJLEdZy2d6SGJTzFIzKbfcrWNOUxjBT5m4zpLpZQNwEIjWUxeS8b1+/T5f6eWo26kLONYalnsELJUKl003zTT9/+sxqnJBuRgXLiGUxsFRgIwYo2M3v+p4NINBW/YGpE5joVkFqs6NBNnMsn6O5hTk2ihJGsKrlXd9D237ZupyNtL42wLkggAJ0VFB5bhmineeP469d6zsp8cRSZKkrDZ/znjlGNBC9e4IW0ImHZC88z1+iSytMUk8cFsWTWdCISFbirX5FpgJOb9R0xaAFiCDcDX4a5Kn/jkg0QlXEMGDWJ/6Kvfgz/01e+h3w/0e+CxwWyeDhkX5ylcAwCHS0ESjT0gFU3SGkhZHEmP9ug2EdQ0+1RCtt5skCSpu7Nk8lrqnKIp0K3ibldbSCYyAf+cWfuLxklJ5hHQAQ5L5QdCEnJWTWIVUCkr3bQ0IInxPWETyQAG95ISeIxRwYl1GdPP9XWZ6+kjh0USx1puWMZ1wjXsg3q4o5tuhTH9xsZoc8BExiJSKWXph6FxNnrjJp2tBBFq0M5jKuCL0Aaql2AUgI01wz57nn35bYDot5cOof4pul0cyAJcvd8gY0rWRCSufx94evGwJQiHyA5FQrg+ieFgC/QM5rBPBuqmzPfWCX0YAtnHUTd98YZHEr/2vbeo9wMaSfSZXVbwRovksA2R51iM0gGBAbHJ4rXFOjIxus0Kruj6wrnqymJTQXCuBJgAXqURCA7oquSFinKVXJH5TQtuxUwGa01WbVLJBALd1CLsItcC7Oqmc0yfARWJJGqRFsDvQcy+9TgmQSK7H3TUPiMCNpYUYxN+c4RrdH9FlrY41qieRYADK4pHO/OWShsCjekx8qfN6qZpP3EN2BOulgB4bk2ippvahWuaVjGURxLntKmR9wOczxv7kmJltXk9xywNfd0pmmp8PV6ErP8a8+zErAn5W5TtkMTtsKqerl0a1PYQ2d0YSWwMrRSAsKBoummU/WeD0li4hkF7Ou559JDy2U9bADCGJPpDcfN1gKFwzVRN4ln1lhytYHj/p/bWGIG0UDsGTWspummorbJw5HWh+LrigvuxDC172KxKW7Ah9uGXb+CPf+sH8EMffz/1fiAgBdaaRF2rZKlJnGNxLS9zQI2qaxJVcTG6zTaBj0Uq5LWNc0yCSm93vY5hsKkmMYnoh7yTtt+ibXOEawJyM013lGy3p/m6traTmqL/fO19APj1L5S0LEnogHSh+yQaKIFzTTt47Pem1RYBv/7P+5m7vrTVJMZKkgCPgMWUNBZdnSNcEwcAXE1uPwCYEpYK10IvccSuSa+CXpmTi0Bf3ZSum1RKnuz1ArugNqmbzq5J7NFNbS0wKmPdZJYkHbrH1jfHvhMTcAuzY4wpNoUIjvqEbrP/Gphi/bNjupZ9KLDGIKxa3XRKkX9gz32Zmvj5JaGnbBck1jVV77cu+4sK2AwbD1RKWSSxo0xEzpYhcEsS19UfWSXoTeqaTezIc+O0/DbABelx1qicyP6Mcc8bYo4DKX+SNpc4L1rQOYQkAhmjDexhP7dPos72sfcf6IskFGQtlzSpB2ziRlrd1NICAPCf7z/47g9R7xWTRtkPTgs4x7UEAfq1SuftsMa1vMyBH4/xdEfuWvFzQ41zwz1h+hAdOgjM/pqlfeECC/3Qty6puj2dUaaVhIhWF2QcBMDf99TxNYn+er7Fh3xG1q9Ytr3UlpkFSdRIiiHTPdN0PZFFuEZ/30Xd4MBYB2w1QRL3SbqppoVbgg3NQrHQ6+egPYDcf1sNaowSlRVJN1V7gklMKfEBsGX/13O0qZvqhuf+Naq+P2Ll8Oqm/ZpE9rzpBYlVQ91/6UEtSrGWPonzkUQJitrXJ5l6Z/Qhn0QSh2I3k2JuUd2knydXujG4HnFfsjQkvM3CNTnXVui8bRckkgukhxIRG3msUiqj2Xq/GG1jauKANlsHxyvpDdAGy7gwRs9hk8XKdsA8JHGKFhXqE/rfGxM0+7mF6wCccJAf52sF5tJN6V6Cbl4dS9fvrQo1iVMKXcAZNYkTwjU9JJEMtgGMq5ueo+O6VMI1izSh68Zu7Id+h5YWGHNMI/CAYd/Sz00DOLLfWEydpvsrKoRI5jA15szakg1jBWnTY2gkcdG2LjGom8r3K04aE5Rqheu0RUz5INE7TuuqQpo4yiH08/SfzTv/3Jg8TbrEj58rNWy2aaeQRhLTpF+DWtWdA3xe9tz1JQDgtBhRVhoxzdKwCde4QVKSQhJVEs6CZGmNBWsAoL83ShU16VPQaUpsmwSyMEm0DoFJJVbP0XBOSYnBuqxNVFpJLnbMFQOSuGr3rIIUbuoFzjMTCRafxF8L3TUBu8I7c80zkcSJWym/12PZmsSY8UKLx0VAkSkJ9+m/Avzeb/DvPwfbBYkk1GytSTxTpZR4YPT76Yy8gvoz8FnruHE2P244RytKIYc+pW46QBs217KMZYwYZ1f+pLW9R3z/bXRT7ewa2hR02ef+HDZZkMQOjgyjkqaVSi01iZ0zYqTxxDTV8yw/6oRrTgoTIqjbV1xEkKgpMlQWM2JAVE1DftdDmqqVXcA6yWMJoIJAuAVpE7M4QHuqvyXA0Yvl+12VPJI4pgLN+gdZ2+JjVdR0M3eZ57sna1Owl6euC7it6qZzLKYlLwg6Z5721z8r3PE49lXvuQkA+Cefe0i9v6v3NgrX9Pe79jUmuEmdasli65OomUqWRunyfDPCTTJOn1PsPp6lSU8l1qxuarn/qT1xDYQ94Xhd0nME/HmzSBN8/sEKAF/esExFuZgT/AOU4m7bTmdOIoHvZRojidP0T2C8ncXUNcdqEqfYZX5cvwxM5jsbSTSAABahwM4+9L3+v6doO+EaYpMcZPGJjSs4CH0+MotkhU0Lk9fS16sVujdHyZBteK7HsfWWQJ+CGDZkW789GbuxBUn7Jwd9EiemGIuEWOim/npyrf7rZ9k4krj5WoBkaP3PFmqNVuCz1yT699tqEkP/NcCQWZ9RbznXOuGa05ISMRG7d23Z/Xz+NYn9Q5E6ENNhT1Ir3RfgaxL7IhVsAmjYJ3GqByogSFsUJJJrZD9PcKqCREaZdhEhiSUhnKLl5wEekQUEJao9dZSsiZN5iiNp6ZMowYbQ5c/TJAAGbEiWPoNZdc3Hsa98xQeJuvZ1k/UTcP41XrjG/xxqGaevN5duGusCcPt/y4wSdd+aEw7SfoIlAZG3c5yjbmrvkziC9hDXk3PjZF21158cAsD7GLcOcnz+YRskGpBEADgt/PUY4Zo+ksiJRAFDFhBLf/bv9/9P17JHCSDmmqmqmRTj1Eb9v3Pq+2MRbrq/YswKPOf99UnbM48kMn2CBrU9xMYVqEb+/2U4A737cfGmNTXO/6trgpi16Ole4f9t42IYnRmn6hosNYnRQT2VyYwznwBXkyhjzbVVI/cfIISDRsRFrE2KLQFYL7NoyGxphdmuT+IUkpiM1XpMXqqXWbdkhOeaHPaPViVuKgrplOk5ve8u30x8jo3V4Flp2jxtKEqu1KA46Fqkgk1AxEg6oDOuZ6+vLE1w1DpnQHs/2FrSha9JXJmQRL9GViUf3ARkw/+/BUmUFh+rsjKh1FKTaKL2RYm780zIAH2VRhbJyltkSaysm3Onm17fy/Effeor8darnFKyzEcrRzPBnmbl2IRrNN2Udz6z1HUUWr51DLr3A54FxNAd9b5lqYnL2t6dlgRoKLmxBXvZyHnPzFMYKLIPsc8bANw+WOD/aRFqWt0067dqYvaFWM3cIm6kz+A5aHNV8/d/rE/iRiQxHUESCcXvWHPCz7OZTBSOljwRlOtUJ7ytwjVbYs98kMh80XFhLbNxDfsdcojIoJk7GQDE1Kam4eifiRu2bmAd+XjxcxtCgpOq6s11+v6PIIlTnPUR4RoLImJtCj68/9z3liYx3ZTL5EuQ3qisKUc3DYeGOF20cIQ4CKXQTfnvzaRSN0JbPE90Q9P55tJGv8bQcmOOZUnsJNdY5pu37zQ6fC0qdfHzRmfkjXvCKJJYTx+mImwhNtUSR9t+nuLd48KkbhqQRL93MU5yYIUEIQdLTWJR1TgtamOQmGJV1HTwBfiA1IrsPY4tI5XGOcI1Pvt//kSoP/wN76Xfq/UETHRHN9wnWeSmRzclb8ciTbp2P94ZZ9RN+zQ9X3vPjSsVm8Qk3FTbEEG51XXdmJDcNEnQNPZxkjiy0k0B4OZBSEZeW3JuuCSzpJaRUd2V701QWZ7u67CSRMJEOwqxmG5qEkEc8e+mQIAhu8xQlqWRxLrB/pR/N0ZvZeimKpg1C9dsiT3zdFPmi47FFZiN6yyVUosACqACUpKmKgFHw0L90WdjaxL7FA3/GltLp7nueu5njhnJGk05QUl0/2WedL2fESWN73+4J9Pj9Gdj+73lap1YhGvk0CiquqNrMHVqWhK7qGo4x2zIiUIS+URC6vpiB/5vnT+SCNhpo7//wy/g5n6OG3s8AjnH8plIog6kmPproEW3Iwo0xxLQAhxhDpPXGskIA9N0U00DrMg5AqomcY5wTVV3/06NizPr3kkm55gJ2lnRLRgAT51dVzXFkBETaitgC2Tn2jJLux6VTL9PICSpJPnm+8Rtl7M1xtJglarn9EnM0z6Vk+9BGJ4d7/9Mj4nLYIqK+97y1HXaAxa6qZzB1tpOIIi0+Nemr6UTpyxzCwhI4rEgiYbn5rYKEm8fLqgxi6zfz3efCRJVWxbb/e+f3VSNbEQ3ZZOSZ6mbTvVJLAYU1eme52MMM0qELGITAiS99YJ9mfOwHZJIfNFjtC1g85ets4qArd8eMIIkssFll8m313+ZxqmHRg5uZunrOrWAGNih/qneNmNIorQFmbJRKX/j5mMRvOkVUZMbeZ6JQ9KYHQugrUk0IpDy/nXVICdUQPX3xt5HQNBt//OFqJs+BpL4X/wbX4fo7DgXy6IaPKZP1iAB1LCZ9b7gjalPYpcU4xoHx0i6HzuNJA7ot0SNpth+nuLUSDeVgFCy654GutlJGyT8DCjdwSLFZ+4XuFbakMRFmmDV1lte3+OO9zxNUDfonPLzVjddZEmHvljUTQFBsBytrnmRNh5sGJFEwz6pnWtLo3TdSqEikcQYJSrrpguSNs4x1UiigRKbJLOCbcDvV7NUUWubKqo8/0dtKwuL83/7wAeGeepwuOCSQLIHCZK4T4zTGgRsbaGM0/vWXs7ff90Cg+4TOnIGTPVJFPRXrsHWCMrf711rqnVGMl7yRMUOkXDNZQsSd0gi8UXHi5jZuFK1YQG8SmOXjVHjKIpexLVm61/iz1Y3DVd/pIVrojlsnKeiDbHwu2S1miZ2CqeRxP5nY+smh5LkLN00zhpNIomDmkRbbeG6V7fBZ1t13Qw7Tt5fVDXlWMsYTYmlhVMGCOTksNmWpUkXPFuRROecqRZlrmWJ67UAYA58aaPQjWmmJcKB8cSRVcyKCfTk92M0HmDzulykSYfqyRhagn4R1E0XGdfyJEscnFNIIhG8jbFCWCftYJnhpKiwKmqTmNIy9zWJpwWPQEpwI075eSOJiyx8dzWR7NBzDNQtTjjlIq3H0jAEN/0+lXxwqXvFWVCiRVu3CvgaW2bPi1Eilt6t9y2WkSBzlCb1AL//+DnagkTtc1mCdK2KDXACWGK32iDx1sGCLqXoahIlSLTQTbsEEI/kalEk0320CtdEZ0DTNJMBpvg/MQuLqRH0c7QhiVpcqhtHCeWomlyDD7RNtl277FMwFjKOlfSAzYs4pmewTnIc3FQ1n/0H+kgWsxTTyCEEGaT4AMD/bBGu0RkqVrgmUHfDa1N9wOIgHWiRROKuaMc1IIKbxwzvP/991014P0tJW0SOHXMtQG2uVR0EaEgnoVDCNZRogXoGTCp1ri/RLq+dp4lS6XmrlM61PE2GNXhETVwVHaJz1E3Z2hLNLpDxk/1dR2g8DMMgRhJZcQXAO1cnhadyLknYzDnXicIAaBvWTwSJI/XlNJKYpzhel36OBudzmaUo6wbHaz5IXCiapEXwZq4tsyTUO5FIVp70ncKy5oRTLtJkPn26I4kIVvZgr+slWDcm5dylCtLXpDBSjBL5IJ07b7rPZlj/Urdqae+kz2BrAhTwiWdLkL5Uqth+znwy54Ub/ryJEbRNJrXz7xyv/f8b6aZs2xIgYnwZgQrNFOMT0Jq5EuawaYxcQ4wtHfPX0OPqSdGzLD0D7ZzyXUfaq1w24Zrt9Igu0CiIOh0qgAIckmhVadT0AKB10Kjsv8wNahzjEAb1PZkn5xCGzyTXtFLS2GbusQAEMJ390QEKwGWnxHo1IuT3Ft9/9p7IGurolSzdNHLsmDkC/fsijgLblFfoHUXFyc+n2mnq5jg5bLQm9LwpGs/f8D0PLQf9RVqs5sYITmikAeDX1kDdtCF7oPaQRE4UKUbSgaCeO1WTGNNv2eBmL09xWtQ0iiKmVTlXxfTYGP2yBAD7ixTH68osXCPoxjvHa7q/ou7vdyHqpipIYQV2QvlGENM47xYYVhsTrqEQQV1bSCaF/bgERdWYmCRAvyZxXXHrKz5P2T6VuibRom66zDwFWmpXTeqmtf3+A96/qBv+Pi4j+idDvxX74AvXAQBvH63pMaK8/dn7p/T1ulpqUTwm778WamEEYYBxn5cFDuL2NvrvnTVGv1eux5w3eo7y85zaeYamqhNAcj8vgnn0JG27dtmnYEw2wDsyfYcE2BzcDLLIVgEahaRYePVaOMUatMk4ZgnH9RAA50iOKV5OCadkyfDBnnIKx+4HQKKyM9TmzqKbTiOQ6K7TNHxGuAsSS5siW6aCS7aVBdB3Elak45pHVBfAXu8a1tb5bqwvtpndA7I+5KItT/pCLWxN4kDsZo6YFelc6HY6tHBNhKTLPIHNyYtcBWwAT1sEQi3Pg5PCFCQu8yC4YqlJ1NR1mm66CMI1lj6Jh61S4sPTkkYS+wmn83didLDNBvd5x5zw97Ko63NvgWG1vnCNf40V/OgFUqwCZYvAWFAzINz/pmnoREm8lguyT2WmAlLL2urq/QyiMMF3stWy65pEiwDWMkvgXAgSLQnGN1+4Rr9XTCiqn33gg0SmJlG37rEguX0/bVoQBtBIrv9/C910tMWcAYQB+NIxIOqTSJyLWeQny7Wn8iQ9KnmzQxIvpTGO05gCJTCBJKb9RczWtg1oqqSy1NwsTpwhYdVNE4U2sCItfp7JjJrE4YM91Rg23A///7UZyZJx/l+rKq2Mm6xlVEkBCyIrwjXrqjY1YNbCNeuulYWhBUBV45RUXByl8ViDdAP68jgmh+mHX75x7teaY3P6JMY1iTXpkM8Vs0p77ALu+46RdICrScwjZJXpkSUmtTz3Twq7KExZo2yDKZZu2lMJZOmmC08bfbQqTXPUcvossiF7glBpzxtJlLpJgEcS+43qfTLtIlpgWKzXk85QS50lSV/cyCDuYm23AQThmrK9j1R9ebSW2e8tj5xkliEsa/dkzYvCyFs03Ze7/xLcNKY2HUJB72oSDc/pc215A9uDExgiiUxNYhDcqkwKuDpRaKGN+vfbhIriunSGdRQj2wCJJEbJDj/f6XG65Vh/HMHmEX/XmMzZFnvm1U1ZKfl4UQEcHB7qUTA5Rv9e17GYetT0KKDzsjiz20RQAdgwcGb6JALoWjDI2E33sjswoto2rgdh+EyhtnDzmLNrEifGqSxm4vhAtleTaHASJBhaKyQxJw43OZBO1hWNJMby2+wc+0Xz5++0AsAXHq4AAB968fq5X2uOxc3jy4kkCTBEBC0Jp1jMyko3ZRNAmUqmxXvf5prEqAVGzaubClr89tHaiCT64EYCnKlawVF1U3It7y/80fzOcWFCKA4WOki0IYnyuc7bh1mkaaSuyZ9vZdV03/vWqZsq4RomkSyWpqHeuyLPe0B6CdpEcgAfOJR1g9PC7ydMzWuc9C5JNeFevaUhAAs9CFu6KTHOOS8uVTfBmbck2CXgtjjxyyxVSCK/lzjn8H/8h/8SbuzzrZNutW0zPmMIEmVOq7I2KeD2lcltpSwdm4Qtb4jPqc6/3qQ5kfTeC/DsGpmbvh4reFM36BIdfu/aOCxS9+UT5dtk25WKewpG0U3PyHRs+rKTOPNGIlkxTXWuuilANjKNkUTSIdS91CxUQt1/h+GeA0A6omQ1lcl0zvkAOApkuZqsJ0c3ZZHjqrHVUcztySWHxmlRdRQnJpMsTutJ2zrAhCTWDUUhEVtkAW220K8ex/7s93wIH3/9Lj72+t3zv9gMi5vHs8mtfh0vX5OrD1GWAt0XruGSJEm03wFcgJm3FL1GJYHYoOFO25fst794ZOpvKTQ9tnXGMOHHq/RKIMuoqGo7XIbnklc3FdSm6v3/eVncgoFFpIC+KvNVEa7Jo4SrRYGyt7fSwaX/fh+1rRss5QYyT1q8TNckGgLgZdyDkL0n7dldGc7SrPe92Zz4vTwJQaKBFg4AL9/a7yH/09dKscgSfK6lm+5RdNNQkzi3TyLL0oiFa9izO1PsMj9e/JlNY4ZIIpNgGfrJvACNnhvgz7ipRIk+p2SuO7rpJTNWxnaMM80gicMaNRuSyG5aAySRHKfbDQC+nQUVXPYCMP8aKyUv90I2BlbddKBkRXxvRbdhta/R6o79z0Z/b0pd1o+buNZIsT0zxzHhGuZAFMdxVdaKbjo9rkMSiwqnBaeI11M3JYMGGdfVsRiyn49jX/XKLfzVH/lYD4nZJovppgWhVBfXJLIqpboBMMBT12PhmjRxRJLE/xtndoHNSFEsgW5BKSRIPFpX3c+MieKi1CVOOYXxnmBx0nRtLBvsAX26KRtcCitBggZrr1CribpmXTeUsiCgpPyrWp0b2+W+zBeuSXqUtNnCNeQ2Kd+v9PdbEEh1nPRm+1TmiUJSGh7tlDk+PJU5ct+1nN0WxW/92SxtOgD14AvOAAAgAElEQVT/bM5BEufarf28+w72iO8tSxOkicOqrFGUvCJwD0k00EYBVeJD7slnI4lnj9WlLHoc60vGNYlTe8lYMpMJSnV/V4ty7jbZdu2yT8H4jPwQSWQW8aD/0cRD45xD4vp0U4uyl7UmMW6BMadxNkutlHGx2hOrSBWrmzLfm2wigW5KzNENEUgrImIOLmvbwdb1SSxV1tqAJK6KqssGM8G9OK1elp9DNzQlxJJZz9LQF9PSW+4qW5YmXcIDaCXoJzYGfR8BI/0n2hM4mnak0mjKPutDm1C361q5hM/GZmh1YGgLEr1wjbRvMPdJNASymkpmQxLtdFOh9j089c7uebeB0fXNc5BEeQ62D0lsE3dGCqhG/C1tUkS4h1ED1raIAjBLwk/ORbZPpU5usX1a/ZykvUS7Jkl0W85um+K3/9t1G1za6KahvvZCgsSWcpomjl7/fo4VrSUgf1/ThJlnNG6TwiYFvLhLX6VU/72zxgB9n7Ak9tdRRJD0JYF+MpMp+YjrlC8bigjsgkTqAUiSIP/vx0z395Ngb9Dvjdy0NJXTwquXZ6Zu7LWFYdzksJ7gTYckkj0IYyrnlHDKmJIVmzWKg3QrR56tmxzefy4oTdTmY6ENLbKwSYYifSJIbGk8py2SyIjWAEFJTZBEqkdT0t8g2TnmapyFonSVbZH2KTkFkcmP+4uyQUriXK8tTkPuCTrhZN+3hnTTTc+3OEjSSoFRthObGyQKTVKuyaqbauo0jyQqRNAgrX84oyZRnNsHhqDhcUzXSbHIWZqEpEC3PrasBYZuX2Wpwe4FUoYgRT6/JC3YfVICLgtKJ3MqVIKX7ZOoWSF0TWIuc7S1lxDROYu6aYwA2+im8xD/uXZr3+9X+3lKK35LIMtqCQBxP2uj4I1KSlLnxhlIorVPYk2dicLAsgV7nZ+me/MSiVDtA1nu4zbZdu2yT8EYxynOIlhUOeOaRI4C2q9J5II99K7TgKwtTFxPWbAxBJe1uhZgQBIV111e22RxvzGA5ZEHqovl0Nbqjiy6N7j/VnXHGiba0Nw+iZ0kdlG3SCIZJGrhGhpJDJlFi5CACOmIKM9lUwM7D8uSfk1iWdWTrWMCm8GGUmhxKYCvSdRy32zQNiYkwKmbBvohYHOuNSXTSjcVZwuYdq41QtHNkRauCQ7ngakFhnZauWe7awp+cjFIouwdx+sSTcPVcskZUNRBcGvbsvK6vZBFpEK3k7IwJ7r7WLQKoOS4QU0i8X2LkufK2Keyl6g17OVyTt0/kbpJ7hmQxLxFTE+Xs9QGBVAAvZrmi0ASX7jp+/laAtJlluK0mIEk9r437lq9ceSePGDqEc/OWbTRSbXRNPgk+nqT6vXtr2Mkcbp1RjinLG2atsl2QSKxkGMlJdYp13V7srZoJNH4oHW1baomjms3EGVjZtUfCWo2E6Uj7iMQoQ0Ej7yv0PW4c7Rx1nm6qf9XC9dQYgc9uqlca3JYR1NZlRXWVUM7hIFuakcSi0rPkTs09Lgd3VTopmFN1s00Aq+RDeDx6KbM2tJy36xDOPZsMwyDsZpE1gHVe4AVSVzpmsRJuikGc2Qd0OevL7uf33P7gJ5jT92UVEUNSKK939scm0N3zDWSSLI7Ltp0sNEhWayTXNkSOUBA245WNnEXuf+PjMjxIku6BAmDvgD9ekubumm7JjtRGL4msW6MLZdUMs2SyAGA22r/sArXzLGXb+31/mVsmSc4WlVoGj64jH0gtv43LtU5v5rEfrmBjJvaEuJWLjJu0gdN+zGA/xmT9dS6v6ul3nibbBckUkGi/1cXbQNEcONcz0EAOEc+UYFb1dhqe/qNm4lrDeim3EJOkkCtZIM9eU+HyJIU0LlKVj2n1Ug/ib/rqT2yc3YHiq+bx/WEawzB9qhwDX0ApzhtkUS21mNPCddYkcSysvWt0igRW5N71S1PgyPJtgAY1kXzQg5D4RrOISyMyN7Yoc3VJPrfifjSuuKagou91GbkLUHifp52SDrABIktkqgz8uQz+vKt/e7n997hg0R9z1iHcK9DEi+GbrqIAgAL3dE78oIkbtfGMNonkUncpZpxxNcW7mWhThzgkcQuSDcgiYDU5NZtzR8XpOepw7ryTJKaTFwDAQV/eGoThYnVTU2JqnaOFubKnYOLRRJfafcFiyrzMkvM4jraT7ME91kSekyzCV6NpAMc6ytT+0E3jkASk8SXgQW/kPvO464D/mcCSYyEay4j3XQ7pfwu0Dh1034Wga0B62VjjGpnGklkEaLeHEnaRCxcU9UsvdX1HEI9h83jkq6+k0XpxnricNmfId2XCTg0lZae4xlIIt0Cw3iwhQyV6snFOhe5L2RnZcyBgCR6J7misqZCGy1rRYk1BcD2GpGralomXNb01HeXR9nPiqQNDZFENnHhejVLrLqynqP+edPzvYiQREvCAwD+1o/9Pvzl//N38I2v3aHH7C88bWvd9UmcqEmMAmAL2qnf98rt/Q3vPNtouukASTxvumkrlGNQU+2Ea6qmqyfaOuGaqE+ic+Rzo5xk9rwHQnDf9RI8ZyRR1H2DcBDzvSkn2UBbDMI1dnVTEaABbMyVsmq67401jSReBJXw1oG/HvtsA/5eds82jST2/TT2e/Ogg18fjYW5opOShD9ztgDN9BxF0A0IfiGtsN/E1+PGSenMjm56CY2pnYlbMLDIWRzsAZyTnEQIpEklsAnXm9U423C9mMpp6UlU1k2HjMxFEqfGxYevzHvKelRaMnATZyDQfY3BfZvFlOtPWa9PoiEAAwKSaBGuERqbp5vW2CMO7UUU7AG2NSKfbRckhsbZQKjDm06u9LOtNEtArX+pJWW+gTztP2/MgZhGz42fL+8kFB262tBrGQCeu77Ev/udHzS1PDlYpDhukyTAjD6JzTz580NDLzUAuNs6ruy19i64JnGOcEqnZltvbwsMjVJUBtRYzuDGqK6pazvl+ozJ/X+0stGLRSWTbV0FROiqhW6aR2izQd1UAlKAZGFFiVoTkqiCRFZI5nHszReuAQC++yteoscssiTQdlkkMULFpxC6blzSF65hfaBYpRTY7M/ELBm5HqW4qwLZAHBMI5AABi03LHoalnKDbbJnHklkHKckcrZYmqQO9roAgKRkzuF1A4FWyfQRBPoNsAFb3VJA29rXSAfUj+Gbi2oBFDGmJkLLOFsomX0qLRfIjqmbUm0DRummk8NCTWJl77+z7CGJNrTB0ji4l0UzBOla7t5So3OVTSsgirpmPnHg6wx50zQ2UaouSPSv0bShGfWPwFlI4nRNYhckGhIec21/keGkqHBSSJ9EW5DI1Mxo+zs//s34zP0T8zz/qx/6evz0L/8m3nj+GvX+ziG/oJpECUrvH6/p6+m1LMmSbatJBFSrGkNCII8ccp6S6e+b1CRa6aYW4Rp537pVpAVIxotGVw2iMLoFRpY4Wsl2jrppv58vfx8B4PYBT1d/EvahF2/g13/qO3Dv2nL6za0ts6RDZC01iYDU11qRRFtSLE3cIPiSv3WWZWewy9jrFRErZ9qXbK/RxEHpFMARSmfYViLbZs98kMg0hc2iAIClV+pgrzIEALGyFBcktnPTSCKZyY9bYJjRNsOhobnk3Tjy/sdFykwj07gmlHVcA5W2P4ezx7Tz6gkHTV6qhyRa5tihdKVdAVRqSyzCNUnisJ+neLdz7AiqkeqH1hgyu72N1VgjclVN6jaaJrQAyCfXZP+g169NjdMteABuLWu6Kc2AkL3VrG4qCYgQOOfZ+a6T/S644bLyMZJrzSR/+Us38OUv3TDP82veext/+0/9Pvr9UtsmNYnnjSSKAuvbRzy60WegCN10u5BEAL3evDySGEQ4LEkxoRx2NYnk7RgguYZE4aqsu8Qrc/8zRROuyTNRrgUAp0XdlTowliR9dVPW3wJaNo+RbmqpaX5SZgkQgfk1iYBdzKcnFkgixxp9BECVpowhiayYUq4YfvKsTpeOSVBqU0XVCSC2BGPb7JkPEpmFHDdzZx2uONhjxsh7NBw+S7iG5D+P0U2ZjbzfONv22fx1AiJipW3JzwyPfKA2aqTSskji2P23IInmmsRMo3S27OcyS3BaeNqQpY7rYJHi7aM2SCQykl3dWNV0dEULlXbd1vbsYsTosCH7xGkFUMvaci48L5bnRrfAYPetQOUPrwU67aYgMUISjTWJc0ycVXkGpqiqoU9lOAO2Ud0uTx2cAx6uLqYmUeiz77QJJ4puqhAptkzhaZj0BUwSR88vPNu2hN8yiwWHuGBqoC5L166mnm4q6AuB5GZqL69qnhKu16BlPYrGgqVOv0OlKhvdFwA+8rJP4rz1yk16zEXbMks7f8aKJEr9NUs3HZRKPY666Yb1Fc6NcHAwfQvleoEVyLXTOavkiUcSLy8r6pkPEplgaow2BHA1QbEACkt/ENCsMkD28RzZgEite54mpnsJGkRhMnUgFiWXER7rk8jQaTUiaEFE9PfGUmsG9UeGDdK/n++tCAzVTS3lOV64xgdglkbd1/YyfPHRCoAt+19Udfc5OSqtzj5fzo31SVumAu4gHMGuybpjQbAsAU13p+eYKHVTsh4liRJwAFQQfPYfEId4XdZgW4I8rknvwi91QeKEcE3EgLA6oBdl0gOvQ0gNe8Ick/v2joFuqvcE6dV3EWqSVhO0bZkldHIrVoG2KoDeN9aSSp/QLx35vZxGEvMER6uSpugBge0g4jrsHJ1zXQ2wBdmWBK+pL3L75610X8ALyfzWz313t+9to+nnmRcpikWRuGvpUgVfcjM95qw+iRSSWGmfcFpttLteTDc1stlEFXWyx7rq71peUrrp9u2yF2xVxdAW+wEAU1gLjCOJVOCmkMSarGOJhWv4LE74XFK3ZO1tM6cnUVU3WFcVUiLjOlfdNE9H0E7SSdabgZ73WTa8/2xWC924Ob0E15L9NCGJQje11XHdPljgs/dPAXAZyV4ga8nsKpEKi9N0la2r71TNxOk+iT2nafpamm5qaW+Tq7rJquJEBOJaXgCUeqI4O1JbO/X+J2ES3Hzp0RrO8XRTjSRuq3DBXp4GJclzvo8SpHSsBErdNOwlp63jamkoflG2l3sF3NpAk88U4m9JinW1nUYqoVAkf+9dv5ezipeLtE83pURC2s92tLKvrVv7vs2DpUZ2Tp9EXd/GKnJq28tTXDe0pLho0+uCfWZkjNRfs/uWBjj4XrnJaE2iXd10unRJxsq47uyY6rkdXY9XRVVI4hbv/5tsFyQSSOKgUTpZSxdnVfTf2mSaJkn3G2vf0zS2cUmv/qj/t6bGyftZZBXQ1F0vZc4cGmNQf0kgpWnSb+4t854yzVm3iuv0BYcmL9Wnm9a8I++cw6KlNllrnZZZglUr5W8LEnP8XhskXlvydNOimtfeY13uWmCI5QpJZNUFY4QC4PskNo3fSyzfm68BVkiiMUkixnw+yY6fFnUQ8jlnIZMuSDxaYT9P6fY2VvrV07Aeve+cgy+h6UqQyCBFISlQ47RVl93fwiBRkEQLbTTv1omt/muu4NDBIsVenuDtozXy1OGQrPlbtgwUoSBOCWcB4ZkURMqC/kq7ByvddE4NNhB0Aa7aeaNp8XRbnK7e1X9vLALWAzjIRIkuUwDCWbDpexinf7JIYoJC/DuCtQKouuEYdJhCIDsGxOUVrnnmg0Qm2Ih7pNCBgwvcZ6sCqM5YsI6dvg4dXLqhuA6zjrMer1sCsOlxPSSx5Pr0jambMhL7XuxDEFn/GkXlzPpNwQGuJyYQIbmGA0oX27OHVJ46FGVtpmTu5R5JLIwNyLWS2/PX9ybfr+mmXW2bgUrbOU2XcGN90qbvJYuc6ZpEi3CQfkYtGfk88apxTSP1F5NDBgk4AFTNmTjEq7JCQTa3f1yTLPyXHq0pMY1RddMtXcsaYThvJHGRJVikCd4lBYCAML9V6Vvw6Ne2yTok0RBs6GROXXPnKKBrEm00Yecc7h568ZPbBwu6dcMyS7Eu6+7+M0G6JI6PWnEdS1LyVtuo3nJGiQp0l/A2sHKquqbLey6T3VXiOny7k5Zu2iLA7FqOAQ5WTbuvi9H+rQ2+4Ri7jFX01y0wuppElpUT9waf+Hw95eJLmoB45oNEJtgY1pb4hTIpeJO4LmirDYGUD1ICBXSOuqlFgn6gZMjWMqp2D/K3pkzD9uuqxsIif65osX5DmKYIDPsdTl4Oeeo6dIKl28XOrqW2U8aZg8Qs6QQBLAjFwSLFo1VJI7lit1SQ+Nz1aYW1Mbopm4AApN/Y1Tu055iWkpfnYMrh0skVC5I4V3FXDlppb8OIHcSUTAAo6qYVU9kUJLbIUlGr5urnTTeVWq51V5+4yXJFNQJ45einYXI/nbuYJvUHy7SriWOQS612eVoI3XT73JcOSTQkBGKBKau6qZVuCgTKqUWd09NNqw7JZe6/nPfHK1tNIhCSkpbPtWzPxE7d1JC4llZBW9hZ5bHsnjqraSSx68EpNYkkkhj12GXupQYcgBC4WZFEujevYph1ZwcLAgz8yWmgws+zRRIv4eLavl32Aq0LNkjaUMiQ+NeZ4DJA77yztZgjJR+pa7JKSj1qmaVuL+lnyPlx4UBclzUWBiRRO1sAp0hVxHRTChEJSGJJOteD+iMya9S1ADBSZAAvXe/rX2x009uHC7x7vKaRXLE7h6Hu4i7hXOSabmr4bDq4LMg1ctVNS8kLcmYptq8MCaBe6wzDOC0wVZMOwqgAQVVPUtcDssQjq49rgh7ePylwkE9rvmkFYkD28vOb3+OY3M9FmlxIU/DDRdYhUlTJQZogSxxWZehTuc1IokUAJU7msOP8dwXcN6qbAiE4tPT5E7rpqeH+y/kiSKIlSLx5YK9JXGYpVkVt9EnUfndJ0Z5Npltm8EhiGyQWtiAxTsyzScm6waA0a9M1w7mhg0sSSVT0Vl4pvB+Udm1upnxQ1arpsrbA2NIj62KsCzbYjHxHJazhHEdBLKPMA0u3CyqB89RNmeA3HmcJZHNVf2RCEtX1WLpjLHcv12WyOHPEdfIsBJcskhgQQXTjLPejVPefDfj2FylOCjuSeOdggaJq8KWjlenQ1kgi09x4ob436/r34wRtfqa3KQDBuSqququnYNVNy7rpUH8b/co2rod2ssI1ktzSSGI1nXHVwjVdTeI5rxNNr6OQxGjfYus0n4bJ/bwoxdBDVdPMt2BIWiRx+9VNLXL3uuenpXRAVGlDTSJ/P+5em4ckarrpHhFwSFBi7ckIBOEay3PtA9nKVksd1yRu6TM61+5dC9+xiEZNmaD7Qje1IImdWGNNJhcH/rV/fdOZM4okks+O9BwGgkgaW5P4uMI121pusMm2b5e9QLMEGwB6srmss6WRJYB3ktdKXXOuuqkpuGyCQ8hkkvP2wADCfbHUOxVVTQun6KABCJz1SVXU1HWbgBXJErSGHSf+sG4LYm9l0c6blkBvs9akkqqYOAZF1ZhU2V64MV2HqK3LopV1aO9hQqTqFm1+prcpAMG5sqgLamTPqm4K9BFIU3ubdpy1RlmsrKf3hT7dVBCp8z2AtYPF1CRqBWKAb4vzNEwQpYtC57SYBvt8+1rqCquiwjK7GMTTarInSxsMxrQDak347eVpdw5bkmkffsn39ztuET7Ghkji9PX2FfpunaOsSTmLqTmqIB2w0eu7+v4tXFePYxpJZO//gG5qQMV7as4UmyQKwIjSrPFzY0ZNYkc3JWsSB3PkkMSy9onTXZB4yYxVCQyZPiMFVHGfHydIMQmgKMie4WcHmqriWRPrOE/noaSySa0rXjhFNxvW/zJ00zjzQ80xTXrBZeKmA+e5dF8dJFqEgwB/SAe6KTcG6GePr+/xrVK/9cueww983Sv48W9/k3p/aNvQUNlBsYBItZTkLUQMLtqWPXolV4MXpN1tTlNPkr/btzhKIOCzszTdPcoiA2hRyKnDN0GauL7a4jknE27u591nYkQ7nHNeXEohidvqJLz+3DUAwHvvHFzI9XpIosFxlZpEBsl9GqbnyAbcWpTKimQd5Pb7CADf9qHnAaBD4RmTpuwSWDKf77BNBtxve2JaEn7f+NodvPXqLfzrH3ufaY6+JtT/P/O8yd66bhO1lrP0MpjoB7z16i16zNwWGGnk81rZVDLOv372F6HPKMD7W03DAxVyhnYJV0PP4f4cJ2IHBTBts7r1JuM9xCtooZHm5l1BBzYA16MPkJq4IAcMcE7yIus3gbeKTQCcaqsfh26cVaSim6NhnDhXp2ufbWUcO/l+1kZ0L0uSbsMSH5TZ6zzdNwSXln5vQTiIrD/NAtoQxI1IummbtV5XNrTtdi9I5JHEPE3wCz/wFv3+XpuODkkkrqNquVhxo6tuC/UMhBo87mCz1oSGQzuI5FCCTwqBLOsGBxa6qcoIF1VD7QveIb+4PolJ4nD7IMcXH3HCNTKnsqpNPWifhr1+7xAAcEjS0R7XhLq+MCCCosqcOI7q+DRs2c7RgiT26N1GJOvGvm9LlCaOKgEQe/3eIX7++78C3/Lmc/QY8YPuG9RUBXF/59iOJL716i388p/8Jvr9QGjvFDQIpsfsKVGkq1iTuJen+Gs/+nF86KXr9BgJnKW/JY0kakX/hlM37RKFyucCNp85WRy0kfRPwO/JEvyypRuZOkv9dbmka48VVdW4ZkjKb4tdvhk/QaOzAVGQwgdgDidFvxiXUdvSNYksj3kUyTK1zmhMlEAJpHQvNeYB7YLEtgm2DUlsev9OB4m6BYkNyRXqz+MIB7EBKeCpLpY6CkAaYBdYFbVNtEDVFt44500ra9t0dC0YDM2Ny2pHNxUTh2xVVrRst65jnFOjY+2v2GV3K7twTUw3ZVTghFq2Ljlk9UnYncMFvki2wADCPmm5j0/Dnrvh0YbX2mDxvO3Flrq+ZwgaFm1SwGE7lU0BP69VUeG0qHqU2k2WKeaEtU3KrU7cxXY/nHP4wY/yCB0Qzu63j3zAxyCJ8py8O4NuOseEEls3DRzBAAKCKJKwcrYV7X8c+8bX7pjeL+vp0comOJSlDqsyBFJTqqFAPykJcKVZYz1oAV6/QxBEvnRjnBI7KR6n6o29n7ad+9Yme6aDRLYmUb5YjWSxUrtxD0KKbqeRLDKzNSbRy84RaNU1TZTM8JBaHlA5WE7WPgBgDlIdSMlc9dzPsrEWGFQArJAslkc+tyfaWE0i60h6JLHGqqxMh++da/PopnNMEh4WJ1kLOXgk8eod2lbrI4m25FZRhSCdc5rCs20TsxJ6Md8CYDRIJOimgFDLApJ4EetEqNpsAODry2tTbefTsE+++Rx+/vu/At//Ne+5kOu90AalN/Z5JoMgiQ7bqWwKBLrjaVHjziHvWAOCJNpa/tzat7eJmGs39v2a//yDUwAc5fogppued5DY0U3ttZ2nbTsdhjl01W0Zocbs86ZbYJRVQ6HbY76Tfn3MOiTRKDAo7+mEayoy2IuCUlb1PlP1luvKlszfFnu2g8QZzhYgtSUclSqu22MDh7WiqVrl5wH/8FiFayyBrEYNLOPkYDkpKt+njzg0dG0boGjCFJIodFN+jote4Gbsd9j6urOEa4w1ics8wcnaJpIA9AU4LHTTOZanSVuTaBGukXqDHZIoFtQ8627fmnp2OiSxtNWEaiTXtCfE9RfG/UesqDgauqAGF0U3BYKQwwee4xC3vEXSRWxrW5UTk8SOLD2OiQgWi8gCoQYb4HorPg3by/3ZfVJUtEMYzrcaZV2b+vTdmtEmYq7dbAP6zz9cIU0c9bzt5b5NR4cknvMz6tkFPEspHrcuq0uJ9jxpk/X0wNiDsx+AcS22huqm075yjCSyQRvQBw8EKLL0HAYCM5AVjyuquhPcumx2+Wb8BC1AxmRNoiCJZKY7VcIpFuGIQZ9E4tAIgU0ISi1007puTI5MR8HVKBGDJC5CQTTbp08EIMoqpo5OPdiJKqL2r1lbMJR1TQpw+H+twjUdQmSsGwN8wL0q2yBxptN0/kiid5Itmb4ekrgTrgEQDm1dk8gKbulnlFIpVQewLbgPB6KVph2r1DF00722J9pFBon/9POPAAAfe/0u9X5B0mtDkupZMFFc3CcRWUB64FU4XVcmmupFmnau2dYeuUq4sm0DxHRt53mbBImfe3BK33/nHA7yFO8ceSTxvJ/RZZaiqBocr20OuSCJu5ZL3vLUIXF2JHGR9XtMW/QcykFN4tnPgXNu1L/mkEQ1RxIoGiCJFXee6uSu99Mu39q6fDN+gsYiUsM+fXyWvFvEVuEURW21BG0huPQtIJg5Ai2SaKBEdXWCygFiHtCuCXYh2T422zpscD81T6/A2g8sGSbJHGd3KFxD0k0VtdVC9wX8vTxZV4+VoboQJLGqTTLtogi2KneHtthCHTZdkDiV3IoQcWBebSHA0uRVcMmyLYTuHiGJjHMhPdGkxcRFBIn/8ae/Bt/85j288fw16v156jySbqw3vur28q19AMB3feQFesyetGAoeeXQizaplbx/Upgca8AngNhSFjFBEnWS5bzsxl5AEi33/2CZ4UHbJ/G8kRRxwh+cliZ0dZknOC2rS1s39qTN9+BMu++NrQHut0bjEuyabq3/nTpzdB/yziekhBCDX84mGAeBLAlULNIEiYNqi7Od+9Yme6bpphVZk6gdNIAXk0kTZ4LQxTJVk8iqnaWJz/yEILHmxqlMvsWR7KNt/Gfr6KYtTZKln3gpebmX8r1NP9hB3dRG9wVsh3aMiLC1pLresjEGift5itO2BcD8IPECkMSWj+8cl0hIEofrexnePV6jqhss0su3sT5pC3XRVfe8TaHwY+1VrOqmYmyTYiDQVCnhmu65Ca+VVUMxDKTdgCTULoKW/J0ffgHf+WE+sJGEn4VJ8izYa/cO8b/9+9+GV27v02OWWdqJi2yrcI04gWXdmFp7AOiawJuEa1p0T2i452mCJN4/KfCeW/z3pinF51+T2AaJBk8rL7QAACAASURBVCQXCKyEXVIy2DJPgpItGdx4JDEEbsw+Ln5c186C1I/Q/Q4tZRFjweV0TWJ/jqxYo3MO+5LMN2pHbItdvhk/QQv9xiaCxIjKWRqEayq18Fm1rUXqsG7FJixqZ7qW0dLLEfB9Ek291KSOorI5QHmrJHbSIYn8Z5MAWNQMp5pnZ2mCsu4rsLJ9EoFWuMYoHKT7VFoccu/I9//WlO3lXoX10cqWNQWAv/LHPoo/+NbLuH7OkvfiJEttISt3f3M/xxcergBcDJVq262HJJacIptO5FiEm+YK12glNy/4NP29xTRtf10SSYyEa/ItFDgS+pWVSv4s2Kt3Duj9AAhI4oOTskO1ts32F2HdsmibppLX5Hkj9lIbrH2ppXOep2mRIUsApkWeLkK4BgAenBamxGnHStjVwHe2zJKuJtGCJK7KQOVkhGt0CxgZp18/y3SwZ1HYzxR4wKub9msS5V/mPN1fpDhalygqPnG0TfaMI4kkZDxQN60NUrtK7ZLc/LsahVbtjD1IF2mCQskPc2in/7dPNyUCKS2vbw5uFP+f3JCzVD3YNflgd1Q2vq8NEN1/sj4qCNfYvm/pJbiubHRfIDgh941ZUwD4xBv38Ik37pnGzDEJ7lfG2sJbByFIZLKRV930HiSo7DSS6LoxtSHTqgVo5JG2IPBl7RV3mTUZZ2gBH2Tu5Qx1PcHbR3XnlGyjc+d75dqC9J2NmyCJp0XdoVrbZncPl93PbC/HRVy3ZEj4ffMb9/Cvft0rePnmnm2iM2wvT7HIPJ3Q0qeyhyRegHAN4JFEVoEY8N/VaauTsEtKevNJuFX3MzcmJPOLuqZaYAQRmr4oDIckBqFGZgwQwAOAB4qGLTfCHKZsf5Hi3WMbIrtN9kwHiWxN4pDKySGJWeK6BV83PNUoVwGYR6SoYcjVA8rSVjRN0tQTTfd2MjSuBdpauqJCUXIqhkAfSWRli0Mz8RpS8mSR8l+XNV1/GhBZKaTm6h/lerpNgaUmEYBZ3fQizdeFivwzP8eb+zn++dsnAC5G3n3bLWv3IC+vX2E/TyeTRyEBEdqrWBBBLdpkYReUVYPToqYk8hOVpBIra25fOFhkOFqXOFr7upmLagRvMWF3CHN3J1wz3w4WKd49KdA02Nog8UUVrLGJO003ZZMrYkni8Bd+4C3bJB/DhOFhuf8SJDp3/ki6rkm8rfoBT9lenuDzDwuUNae4/iyY3k95JNF1ZTpNMw3AAEMkka9JVK3ijEiiIIFsz+G45YaMY87F/VwHiZdvbV2+GT9BY2sSAZ/ts1I5NRxeN40haFABmAmBDKqodW2jVpb1vEDKI4nemWQRz/2FlzK38P+llYJcU899ao79AJi4Vg8l5e9/4oJAkaW2JM/svQSBfp+qbc1QZW0hu5XGc2t/saObKnPOdXuQRbgjVpdllpZWcqsNLAFdA3laVJRjIc9Wj25Kqkdf28twtCpxtCqRJm4rD+BFlvgazS3vk3gZ7N61ZXdGiWDLtpm09gBAK4DKuj1e+7ZQFpTuou3F9vO9RraAAYKSraXcYK7NUZeVcQ87cZ3tvf8XaVqvwFKTuK5qFXxZkERe3RSIaxJ5X14z/Niewx3goEAAgPt8+3natYDZqZteMmMRKSBSbTIEibXKjrDBxkIFYDWpbgqIAmjIdHDtBkQ4xRhI9UQxbBny/TzFccvR5pHE0AKj46xPKlIF2ty8mkRbTWgsVMQGe4sWJQ2yynzdntg2OshAKy4iQaIFSTzIcdKKMeyCRG/SAuBkzaF0QEhAWFRKs5Hnhmqd0e5bpy0Czzi7cSNloFU3Jfbka8sMD09LHK0qHC6mkdWnYXkrQrYTrnl8u3c9IEM3thRJvLGn0RdSubtVQHxwYlOSfBomgjWv3+ODRBEn2jf0xJxruuWAJdjbyxM8OG17Oe7OGwD9tcz6F3nqdRLEV+b6JPq/HVNHp/ygUXVT0ueNW1lM+aGh5UYfgWT28708xf1jXzN8GRMQz/TTEHq3MSIJM5BEpwprDcGeDsBYkRwgiCQ0ja9lpFpnSK2TbsFgqj9qTCgp4B8aORDZzIpugVGQWaoO7azrWeqmgu4xDqv8bS1URNOL0wTrssGq9EER61zcPgxO07ZmqA4XGU7WpT1IVE7gTt3UWx9J5A9taw9OXaRv6+8a6oEAbh13NO0e3ZTrr3VtmWFV1rh/UuDaFlJNgcDu2AnXPL49dy2gdNtKN9WJCiuSdd/YuPxpmNBpLfdfAsvzVtIG+nuOtU+i7Fu7INGbtMdapAntu8q9O1l7X+ax+iROnDm5amVh2V99cBmCPZYGnUXMQHltyg4WKd45vrxraztP1gsya/ZB9y7k1E2TzslqjEED4NE9GyXTtaiB/39b4/KAPFJog4zr2kTYNuTPPzwFAFpdM9fSypWom04IDvVaWfjXOOGatiaxDdItgkOSQWPVTYEQ3IsAB+tc3FFB4jaKdgC+ruFoZaMWA0HaHbicG+t52DJr+8StebqpoNQmddOulrdBlhja2yyCkBLAISJxPQogqnjT15Oamc89OMXBlgaJWVuTuOuT+Pj23PUgCrOtQSLg23v8sy8emVDjRRaQrG3tAQkAf+Y73oRzwPd91cv0GOmJeX15/t/ZjX07+gX4ey5b0HJLz9KLNgnqLckO8UOOJEi09OruqJzcWdVTNzUIs+WtmFjTNJ7NRvquWeJCTaKB9bW/SDtW1DYngM6yyzfjJ2gCHTOQuK5J5Nsi9HnWlho1ADgpKlR1Q0PUIu5SWmotew23Zd4GtK2t97P4Pjf2cvzuu16U5BqZXfQPtgjXsEiiQgQ7J5m4lupdaAn2tLJXRdaE+uu5fpBIbiR3DjSSuJ2OxeHSyz+baxIPdkFibIs2SDxphWsY6xJHFnXTNNB/LDRtmdPbrRw/sybl7/bVTWvq4L6ugsRtFK0BQpC+o5s+vt27Fva7WwZRkou2H/u2NwDA1Kaj325gO/dywN/3n/mDHzFRR1+9cwAA+K6PvHhe0+pM33MLtU+fudvKyrlo64JEw32Us/q4FRMzIYlSX0i3D0u6oK0LEpn+uu3z5Vs1caUNMs8YSWTmORfd3hbbzpP1gqwwZAO0umZdN9RGosdYggapSXy08g+aRdxlXQWxCVMz9yr0JmOmuVCBlKVuDwDuHi5wWvhJstlF3QKjCxINrUssTrIWDvL93ngkUa8RWpVW2kQUFZzjUcHrM2oGLtoOFhmOV3ZpcY0U7FpgeFu0SPVpUdFBkawtE91UqQIv64QeJ4fhO239BePsxv1FAdAUb7kHn3+w6qlKbpN54SBbe6GdjZtWq3zxxnZ+3wDwqa97BV/93lumur1+4/Lt3Mvn2mv3DvF3/71P4v13+fsx155IL8cdkggg0E0bVQowZeI7nRiQxEGfRJK9pWmjFiRRnq/TsjKVc2VtvaXMUeYwZboFzGWsSXymg0RLTeIi7QvXHDBjMl8gW7X99ixBAwAcSZBIDly0lFiLHLBca102WGYWtCFkfywoKdCvpaORxDTBw8Lfj1BsvPmauv9UbUBE+sqttiCx66VpQY7b4F5aWbACHJqOsa2OxeEixbqqcbQucffacnpAazf3FUq6pZ/tom2Z+15eJ0WNO4cGtbmyMa3/UJPY0G2CgPA9idw3o+4Y9xcFWiSR2PNk73i4KnFo6Il2keZFEuzKxTsbWpI4/OpPfBJ3DhcXIoLyOPaB566Z3r9Ik05dc5uRxLn2uvF+zLXDRdppA1jOjduHO+ZKbJKEFp+GMfFVj9sgkUnwxnTTiiw3yFKnhBrt59SqqOmzRuY5CEoZuqlGEi8hSn35ZvwEzVSTmHlHHhCl0um/L1mDdRukWGsSBUlkF1aetSIJhsaiuQ72jDWaAFrk0hYk3lEbMlvMLs4WEJDEqYe7QxJ1ewnTZ/MBMFtvuVB1k7VV3XRGI2Vt25qhklqxd4+L2XTTba4/uki7sZfh0ar0fRJJJ1mQRAHqmKWs5b7ZxsaAF+3Yz1MTkpi0/R8l8QOAzu5eW4a/v610U0kcWVqJ7Oxse+P5a71a7KtiyywIp1xGR3JbzDnX+RSWYFuj1Lsg0ZsgiVJmxVge0U2pPolpP0hk9/9MCwUafFfxlVZlRde/A77kSc4pCZwZn2b/ktNNL9+Mn6BZahKXaYJ1qz7pW2BwiqhAK5zyGEEi61xLL8GgDsVfS8vkm4JLo7gL0N+QWbpprummkjWaQhKj2kKA3ETygECWRlXaTgHXVIMqNYmVeRP5o594P4AgM75tJo78O8dr02fTgeGLN7fzs1203djLcf+k8EEi6UgKA4KlaAPo6gErTVOle6CmuH9sq63K0qRTLAZEuIZRNw1r5HC5nUmSvM127/ok7myTLfMED1e7Pn1PwoRVYDlvLoMI3EXbay09+Ac/+j56zABJNJQ3hHYWNbX/Z6q8xwL4aP+uqGsaBEiVmqqAAUxC4bqqk7XUKW+LbWf69YLMUpO4yJJOoagmMx2B7liZ0DZZxFZJZlFgDUW8hEMojeONlLRecGkIpADgrhIgYJHETAVg0i9xStxCI4mdKI9BgON0XdHfNeBrSddKAdeiivrotMSqqM1Z5J/9lz+Cn/yuL9vaFgBS63G8rmzqpgpJ3NbPdtF2Yz/Hg5MSZV3TAVieOayKGqu2BphqcJ+GQ9vauqGPJJL7lsrQAr5lDZO4047dNiOJvgcqH6Tv7NkzHZhsc5/Ey2ASHFqCbX3ebKsI3EXbV75yE//wZ39/L8iZsmXWDxKZYC+N+iSWFedz5anrtC0sNd+yLk4LjySymgdZEvorsmw2AHjpVqiffmGLa6nPsmd6N7LUJOYqACjqmlNRUjVxVcM7WpIJe6drwMkGiVFPLmO7B2EVmFpgtFlyU03igd25045k94BO3Jd+Cww/lonbxAE/LaoWNSaDxKwvXGNDIJvZdNNtDqI0wmPJ0LLqnc+S3dzP8eCkwMnaom6adCg1wKF7knwpjXRTwCe43pmBJEoQVdUNmobbk3VLhDcuqObJalKXLk7TZaQb7ez8TQcmV7Em8SJNHHlLwnWHJI6bJUAEHk+4plQoHRN8ZYk6NwyAj0YSTwu+nZTugx2CxOnrSQsY4HJSmS/fjJ+gWSBqHQCsy5rqpRMLp7CMTFFDEmfL2gLDQm3SLTBC3Z59nIVu+ppSfTOhpF0LDK5IeVTdlKxJTBOH07JCVdez+iRWDX9PFi2V+bSw00233XqqcYbPxor3PEt2Yz/Dum2VQiOJbQJCMq7M+grNjW2JI6Af3O/R+5brKORse5vYPvb6XdP7L8rCXs63BdnZs2f6udwFiY9n3/LBewCAb3ztDj1mV5P4ZEzu3VHXAsMiXBMa3DP7fz4iXMMhiUG4RsQCGctUG7a1AUl8z63LXS6zvRDEBVhlyAboAICV89cFsrUhkDrsxD68Y2ELpBoVEDEIaQj2GgNkn8VBogFJvHWw6BoOs5alQRQmqJtu/nxagMZCNwW8MuPJut1EWNpcmnSKtFXNoy8HixTH68rk/F8WO5wZJALAp7/hVbz5wvUnPaVLa7pOk10niwhJZBJOOrNr6S8KREGi4bkpyn5tCUsB+k//ta/Br/yjz3a92LbN9hdBuAnYIYk7Gze9N+7WyOPZn/u+D+OnvvfDprNUv1czFHZmM9m3O7opI1wT1ySSdFNP/2yZWw3PCpTvelVWXgdiDpJYcj4oANwzqLpvoz3TQaIVSVyrLAIVJOYBybLQFoWiJ02pbX0Sa/W5uDEAeuIKTE1iT5THGCQCwN/58W/uJL8ZW2ZaOKiGc9PfWywcBHB0U8ALcJy26B6LiCyUAm7d8C1Pru/leHhazhKu2XbTtR7WIPHPf+qrnvR0LrXpone2dYwwIFZljcRxwZdWHLX0FwXQU11lD98sdcpBsNXufd9XvYzv+6qXqfc+DTuIekdeted7Z0/G9Blz1RKFF21zhX9++U9+E24fLHZq2o9hcsaLuumcFhhlzbWl0L2zLT6vLgM7LWqTLoZmvKSJo/zeNHH46Gt38G0fep66zrbZLkiEvU/iuqwp3rpQUldl7SmqpIOwSBNkiTNnnxepayli9p6Aum6PFa7JEoeTojK19xDby1PTYbjMEqzKEKQzm0hPuKZukDiexrjMfE+606KmERGhjQI24ZrrbWuD43WF569frUfyxZt7cA5oml2tx+Oadl5eILPdyyzByVqozCm9/rPU19JZ9kig7+CytbJ5MqSSs0jitpsk/Lq9fBcA7GzEXroZBC2Y/qI7e/L21qu3nvYULr3F6qYUK01q4BVTjC0LElVsC3tOC9esyhrPsaUbieuSmL6/In9G/dKPfpx+77bZM70bdcI1xJfdQxJZumneDxJZJMU5h4NFOgtJLKrGBL075zrBG0ubCMBTy07W85BEqy3zFKvSU2LLqqGklbVwTW0U19nLE6wKW2Gz5shbhGskk/X20frKyZ/naQLpk37v2tXrb3aRputmWJW0a0ufgLDQpgFPASqrUMvL0k3lWZGm1tS1ehlhqUm8GkfT/kwRsp09WyYtjNLEXZm1v7NnzzokcdW2wGDUTaM+iUXNtUDKkhEk0cCCW5U1VgYdiMUMoOIq2LPxKc8wWWCcCqivm6nb7LqlJnFd1jRFVexwmXWOBd0nsQ1ku89FXi5vUYPaKFKxt0hxYlQAnWt7undhxfXR6dp7tGI+FjGUvTzF8bo01QlqcSOLcI3QCL/4aHWlGyl/7ftuP+0pXGp7/71Qd8cGidf3chyvKxyteNo00B7AuucqnTjy65elwwJ9UaqSFKW6LDYUIbu6z/fO5tsrt/2zvVsfO7vMJuUGD079fjdH3bSsaq6/otKpENEbquuA8iUt/p0veQpI4rPCjHo2PuUZVta+TodBfARJFDSRCfh0n0SWoip2sEi7B4ClKIm4joU22htnrNvzaFtlRunmmKYIrEmJ5B6SaFRg3c9T3D+xSfn31E0NgbMgiUXVXEkn4YMv+PYEH3rxxlOeyeU2LUfOorKytr50ZEtAeLqpfS+RBveWtixxrQfAZaAvg4mQz7sdkni1mAI7ezL2cttLbaesubPLbNfb/V/o9QybTc6WTt20amh1U2GerA1lCp1wTWFTlF/oILHkfNCrYFerAMpoZd3QtTZC5ZSm1FRNopLatdBNgb6TxQaXgrZJ0TArIy+ZfEubCKClmxaVuQXGHIuRRE6RNtRb1oY+lf56KX7v3ZPetaevFyjJdWOhm6pGvlfQifyrP/wxfPHR+twTCc+SsZS0G20d4xcerkwJiKxVcrPuCXfb4NVygOpaj9JQAnAZTLfAcKRw0M6ePXv1zgG+4f238ae//c2nPZWd7Wy27eW+fZgk2DmV0qhPYl3jWj4dmvg+iX3BM5NfXtam3tSLLO38u6KqkWfPxl7+TAeJVc1lLICwsKT/iwVJFARyYQgA5vSXEyU9UQ1lingBL3jT769oCxJLEtl7HNtTSGJJfm/OOc8jr3xgaa1JfNeIJC413dQoXCN2aEBgLovdvbbE3UsuA70t9jf+xCe65AVjsra++GhFU1QBH+StFLuAXct326bUknFlTNckdn0S2SLILTfZx989KrDMkl3/z52NWp4m+Ov/ziee9jR2trPHMuccDhdpVyrF+GlJ4uBcEJ9hWViipQHo/ro8w2xV+BYYNmHCXU3iM2VFZWmU7t/3qO2Dx2UsAqxtpZuKKp7/O9w44YN3wQ0reJP1+yuy1LJlnnrlxLLqMubnZUKVOy1qn8WhA2D/YHvuOX//l3naUcRMSGIrrlM3fJ9EHSS+cGMXTO3sbPva9942tXyQtWVFEkW4KQjXcGv5ThskrgxBolapK6+YuqnsyQ9X5ZVkCexsZzvbmTapgwd4RkmWOFVywDH8dOukwlDL7pzDMktwvK7aEh9ec2K1q0k8H3POLZ1zf9E59zvOuYfOud9wzv2B9nfvd841zrlH6r8/F439r51zD5xzn3XO/UT0t7/dOfdbzrlj59yvOefeNzWff/yZB3hwWvi2FIYsAqCCREq4pg9rW+imdw9DsMAuxtC4ua1/sdTSqYbzLOC2n/s2ESfrCnvnHCQKkrgqq1Z+mOeRS584y/3fz9Pufuwb7mPdhA2LTUDcUqqVLxrQnp3tbMpEFKlubFTmZZZiVVZegMmAwAvd1BwkdnTTq6VuqpNnV7HeeGc729nOtOlSKXbPE2FIAHQ5UZYkqOoGTdOYa9n3F2knJsaCAL4Nmw9+iwtgz22LXRS3LQPwzwF8EsD/B+B7APw159xXqvfcappmrLv6zwJ4E8D7ALwI4Necc/930zS/4py7B+BvAPhjAP42gJ8D8EsAPrZpMmXd4HRdmfjIopR5ZAgSO7ppWWNdVlgYsuNvtmIfAJ/F35/ZuDlLHAoleGOhm362qHGyruhAaq4J5fO0qOnCZiAgiWvDd+2vF+4dG2zL931aSo8g7lq3VcP5F27ugsSdPTnTKLUVSTwtarNy8Z02uSX9QhnTUuZdn8QrUr+ap0nXGucqKxfvbGc72xnQV7ame+X2EoVcCwwJJIvKt0VLHO+73tzP8fmHpwD4czFWN70qbJcpu5BTq2mao6ZpfrZpmt9umqZumuZ/BPDPAHwdMfyHAPxc0zTvNE3zjwH8lwD+aPu7fwXAbzZN89ebpjmFDyjfcs59aOqPHndBog1JPDLQTbPEIXFtn0RjC4wPvnAdAHDDICUfgkRbLZ2gbdInkQ1K9/IEJ0WFk+L8g8RAN62wJltgAEGRalXyKlZAHz1kWwfIpnFaeAeZvY+6TslSN7aznU2ZFkVi9wN572lRmVWBhW7Krn3gjBYYVyhLK47Sjm66s53t7Kqb7Hf7eWrz07QoDNkCA/Dsk6K21Qje3M/x+QcrADY/eV35cqJ1uatJPFdzzr0A4IMAflO9/DvOuX/hnPtvWoQQzrnbAF4C8PfV+/4+gI+0P39E/65pmiMA/1T9Xl/zR5xzv+6c+3UAOCkqrIqKDtzkfSIKw4xzzmE/T3G8rszqpl/2og8Sf+DrX6XHdDWJRiRx0dJNOySRdAr32z6JJ0XVXfu8LNBNa6yKuuvHNjmuRUSsdNOb+9q5tq2R03Xbs8fgXH/guUMAwPPXdzWJO3tydnM/77KrliTJMktwWlaoapsq8I29DD/6ydfxl//tj9JjerUlHd306mRpdz3wdraznT0rJkHidQPA4RlfolTKMcWk/rCoGnNLih6SaCg5axqPdBZG0Ocy24VLKTrncgD/A4D/rmma33LOXQPwDQB+A8BdAP9Z+/vvAiCcy/vqT9wHcL39+RqAL0SX0L/vrGmaXwTwiwCwfOnN5qSobI3SYySRXCDX93K8e7JG3QCLlA+kXrixh1/7yW/Fe+8cTL+5tQ5JPLI1bl6KSEVXk8giiSmOVyVOC/4+zrU9hSQeFyWev84hbofLDEfr0oQaA/0gkQ2AZY2cFEI35R3dX/rRj+OffPbhM5Od2tnFWJo4vHB9id+7f2qqG97L03ZPaOgaZcAnxv7sH/hy0xz79ShCN706z8H77x3iH/7u/V2QuLOd7ezK26wgUSGJvsSBoZu2SGJVo6xt9M+b+3lg3BmEawBfPrarSTwnc84lAP57AGsAPwYATdM8AvDr7Vs+55z7MQCfcc5dB/Coff0GgFP188P250ft/2vTvz/TTta2RpqyIES4hh13Yz/DFx95ZM+aeXjt3qHp/bonF8DX0u1lvnF8oJty19vPUxy1Klbnrm6qWmAcG2ogDxcZjlYlqga4pQK/KbuhkURyE5FAWdqksME2ANy7tsS9N3Yo4s6evEmS432GhNNenrZIoq0mcY7laVC2K6urhyS+/66/77s+oTvb2c6uut3YlyCR97cWOlFIBnxyRgiyZylR0CAAjST2gsRdTeITN+cLr/4igBcAfKppmuKMt7Z4FpKmad4B8BkAb6nfv4VAU/1N/Tvn3CGAD6BPYx21E6lJNIqSPFr5oIhFBa/v5fjSo1Xvb5yXiTN439gCY9lSMq10U40enr9wTVCKPV3z9NaDhaf7WqjFQEw3tQWJxys7kriznZ2XiRz5G89fm3hnsGXW7glGddM55psit/Uo9dVqgQEAb7b15ayIw852trOdXVZ76eY+gKBUzVieuYAkki0whG1SVC2yZzintH+n1eU3mfiPojGyQxKfvP3nAL4cwHc0TdN1g3bOfRTAuwD+XwC3AfwnAP7XpmmEYvqXAPxUW0v4AoAfBvBvtr/7mwB+wTn3KQD/E4CfBvAPmqb5ranJCN3UjiT6AIwNOG7sZfjdd05MY+bavkIS08TRmZW9Vu5+XdamcT1K5rkL1ygkseD7MgrdNE8TE91Lbxz3rnGbiNx/QZst4h0729l5maxHS5Do6aYVquoCgsQ0qJt2SOIVopt+z1e8iOd/5GOdGNnOdraznV1Ve+W2DxLfPT4LBxqablTPonQdklh5JDGfCQI8d41jcEk5kSCJuz6JT9Da3oU/CuCrAXxW9UP8QQCvA/gVeIroPwKwAvBH1PCfgRej+R0Afw/ALzRN8ysA0DTNFwB8CsDPA3gHwEcBfJqZk0cSebqpBHhHgiQaahK/dOSRxOU5L6p91Sbi/2/vzoMkuasDj39fX3P03DPSwOhcSUggtCABkkBrc6wEmCtYEAiEECAsc8hgBwEGggUB5jCLN/AuYQ6DZS0IcZrDBmyFIYwIbwBhZHMYeWVAIHGIEbpmpkfTPdPH2z8yK7vU9MxU9XRVdlV9PxEV012VWfW6pjt/9fK9/P3amqRidLic3GW2rV/8bU1/XJ1eJ7F5zcl2ltxYOzbMvv2z7J9ubwmM5oNI68n2fVuSW1nYVeq0v3j+wzn/gUdXE6i0YtXoEFMzc0zNzHb8euPR4aFqwpr52U37529nZHiIR560tZr5VZL6VWOc2TPZepLYWKsbGktgtDe7aVF9bH3M2NS07NhRLU4W2ChUs0uoiQAAGwxJREFUHJidbXuinF7WlUpiZt4KHOp/8BOH2Hc/8OLyttjjXwUOu+TFQsXspq0nDo3kqTG7aavtUOtXj1Rrf3W6kjg6PFSsOTaX7c9k2KistrGWV3OFreOVxJHiZ9szNc3+mbmW200blcSIWHK7aasWtvs6UYVWgvNO2cZ5p2xra5/VI8McKE/ItHpN7lI11hGE+dlNB2UAlqR+ckxZSZzYv9iy54sbGxliYmqGzGR2rtV20/nZTdtt/zx+y/x8H+1OXlm1m470z4nMQxnYiySKdtPZtpc3mJhqbw3C5glQujFl7tqxYfZMzbS9Jtr+6caC820kiU1nYDo9cU1EsKFpbZuW203HRpianmM4Ztr62dpZn7KhkSjvLicO6nQFRuqUxsmi3ZPTLR8jl2pkaIjZuSQz5yuJVuElqedsXDPKxeccx9MesqPlfVaNDHH37Fy1FFIrx/+qkjibzLSZJJ6+Y+F8l63FCEW76dR050+erhQDmyQWk5m0XklsVA7vLCeh2dDizE3N0wB3o4d5y/gYe6baS4hWjxal/n0HZttqybxPu2kXEqINq0e4fU8xyW3Ls5uuasw4OttWlXRkeIg/euJp/FYbFZjGe7DLSqJ6XGMA3D05fZ8TXZ3QOLZOl9eWQOst3pKkleVPnvmQtrYfLa9JnL/c4PDH/0ZL6vRckVy2uwRGu5onrunG2uArxUAmiUMRbbdXNhKAnbunWDs23MbENd2tJG5bt4pb7trXVrLX2HZiarqtGJurbd2YuW/DmlF2NpLEsdZeb23Tdu1eE/r7jzulre0bvyON9Xfa+T+QVpLG7/LuyemWr9lYqvtcW9KHs5tKkg6usU7i/OUGhz/+N2Y3nZlNDsy0twQGwNWXnc3aNoob1QoHUzNkDk6n2EAmiRHF5CIHZltvr2xMOnDvgVnuv7G1hdwBdmya37adxUWXqlHda6dq1mgna7cCGRE86qStbFgzwqnbW585cak2rB7lJ3fcC7TRbrpqfrtWlztZqsaZpV3VOpVWQ9SbGseBXfumuzJxDcD0TPbl7KaSpIMbLddJbOdyg/nZTYuTi+1eFvG4045ua/tqTJxs75KzXjeQSeJQBLvbrPasHh1m3aoR9u6faatUfXzTAtYnbet8IrVtfZHMttMv3Vw1aPdavE+85JFtbX8kNqwZqWYObX1206ZKYocruY3ZTfdU61QOxkFE/adxTJic7vzspvMzF89WE9h4TaIkDYZGJXGmjcsNmme8n56d63gRZrzslru7XK2g09fqrxSD8VMuMBzBHeW1he0kDlvL2TzbuUanedr5jWs7e20PzFcS2zkR33gPdk+2127abc2tu632g29tmoG100niyPAQY8ND89ckDshBRP2nuQK/usN/N42ugH0HZpmZm2MoXGNUkgZFY53E6TYuN2h8BpycLk4udrr7pHFJ1V17i06xTs/ov1IM5KfY4aGoJkBp54P81rLldFMbSWK3S9KNM/CntbFwcyPGPZPTK/o6uubkvNVrIJsrud1IgFePDlWLyDpxjXrV+qYTMp0+hjUG230HZov1rpy0RpIGRqOSeGBmrvr+cBrjxuSB2WJx+w4vSdE4mdkoMA1KkjiQ7abDQ8GvdhdJYjstgVvGiypduzMjveMZZ7B1vLOTPzT8t7OO4Ve7p3jt77S+dGSjbL6/zSUwuq25Ffbko1pr3d3atID10etbv5Z0qVaPDvPrif3V11Iv2rhm/m+t020182eEZ5iezWr9K0lS/2tUEqskcfjwn50aSdrUzCwzs3MdrySOj923kjgon+8GMkkcGY7ql3HzeOsJXyPhaDdJvOTcE9ra/kgcu3kt73jGf25rn+bqYacndzkSxzVVBVttN42Y/8B59n/asuwxLdQc10pOuKVD6WYlsXHdcKPddNS/G0kaGKPDQ8xl0ToKrVUSV481VxKzrXUSl2JoKFg7Nlwtg2eS2MeGm85Ut1Phu+D07fzs7n089aGtLxLaC5orBd1Yy3GpnnD6/QA4adt4W/td9Ihj+emd93ZlmY7mFoSV3LorHUrzJACdTxLnB/tBWqRYkjSfFN5bTkzYTrvp1HTRbtqNZZPGV400VRJX7mfl5TTwSeK2NtYAe/zp23n86ds7EVKt7jMD6Ar+xV8zNsw/vOrRbVdy3/2sh3Yoot/UHJuVRPWq+57s6Fa7aXtr10qSel8jKZyYKpLEltZJHB5iZCiYnJ5lZi6rJTE6ad2qEX5+9z6g9W62XjeQSeJIBLPl183XrA2qLePdmwH0SJ3axoQ8ddi8tngvx4aHnKFRPau5TbtblcR9B2bZPz1nJVGSBshYmeA1Komtfg5dPTrM5IE5pmfmOt5uCsWs3zPlDKyDMk6t7IygQ4aHu/cBqBdsalqaYyUvgdELNpcJ90pPtqVWdXN206mZWSuJkjRAGpfmTEwVM8O3MnENlEli2YHSjc+u401dd4NSSRzI0bi5vVLFH+h4+QvvdXRHZks5EZLJtvrFeIcHw6rd9MCMlURJGjCNMWD3ZOvXJBb7DTExNc2B2TnWdeFzffO8FoMyTg3kJ9mRoeCZDzuGi885ru5QVozx8pffCtiRabSbHpidqzkS6chc8KDi+utHn3pUR19nbHiI4aEo2k2tJErSQGl0k+yaLCaFaTlJHB3m7nuLfdZ2YWLCdat7Y/6O5TSwJbX3XHRm3SGsKFn+240ZQPtZI0mcPDB7mC2lle39lzyMucyOt5tGBGtHh4t20+k5towPxuArSZq/Ln33vrLdtI0ksTHbaKc7XgCO2bQGKD4nD0pBxYxAANxRLgD/8BM21xxJb2tUZI9vWtNR6kXdbJleMzbMZFVJHIw2HklSc7tp45rE1ieu+eWuSaA7lcRTjl4HFB13zZO79bPBSIV1WI1f/tPvv6HmSHrb2Sdu5oIHHc1HXnxO3aFIPWN81Qj3HphhanpuYM7QSpLmk8RdbSaJa8aGubOLlcTG5+RBmrneSqIA+NRLHsnE1MxA/fJ3wtZ1q/jLF55ddxhST9mweoQ9UzPsn5lzxmlJGiBrR4tUpKokttFuWj1HFyauaSSJr378qR1/rZXCJFFAkdxsXbeq7jAkDaANa0bZPTldtJtaSZSkgVFVEtu8JrF5+bbxVZ0/ubh2bIRb3vWUjr/OSuJoLEmq1cY1o+yZnGb/9JzL8EjSAGkkiXsmpxkeCoZb7GhrTBQILm3XKSaJkqRabVwzyj37DnBgdo7VAzK1uCRpvm30wOxcy9cjAmwZn08Su1FJHESOxpKkWm1cM1q1GllJlKTBMTwUVYtpO7NqW0nsPJNESVKtNq6Zv7bEaxIlabA01kpsJ0ncsq45SfTkYic4GkuSatWcJDq7qSQNlrXlcb+tdtOmSuJoG/updb6rkqRaWUmUpMG1egmVxEa76fYNzszfKTbxSpJqdXTTIH//jatrjESS1G1bx8f4yR33tnWS8NjNa3jlfz2Fix5xXAcjG2wmiZKkWp20bV319QnbxmuMRJLUbffbuAa4h/u1cZJwaCh49RNO61xQst1UklSvzU1Tmd9/g5VESRokO8rk8NjNa2qORM1MEiVJK8ZQiwspS5L6Q2MJi3WrRg+zpbrJdlNJUu0+d8V5TE3P1h2GJKkm7Uxco84zSZQk1e5hx2+uOwRJUg0ufdQJ/PD2CS4778S6Q1ETk0RJkiRJtdgyPsb7LnlY3WFoAeu6kiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKkSmVl3DF0XERPAfyxh143A7hW+nzHWu18vxLjU/Yyx3v16Ical7tcLMS51v23AnV16raXu1wvv41L364UYl7qfMda7Xy/EuNT9eiHGpe5njPd1WmauX/SRzBy4G3DDEvf70Erfzxj92Qb5Z+uFGP3ZejPGI/jZVvx40wvvoz+bMa60/XohRn82Y2xhn4OOUbabtueLPbCfMda7Xy/EuNT9jLHe/XohxqXu1wsxHsl+3Xwt3//6Xqvb+xljvfv1QoxL3a8XYlzqfsbYokFtN70hMx9RdxySpP7meCNJWqkONUYNaiXxQ3UHIEkaCI43kqSV6qBj1EBWEiVJkiRJixvUSmJHRMSWiPh8RNwbEbdGxPPK+x8XEf8WEbsi4q5ym2PqjrffRMQrIuKGiNgfEf9nwWPnR8RNEbEvIr4WESfUFGbfOtj7HxGXRMTeptu+iMiIeHiN4faViFgVEVeVx52JiPhuRDxpke2uLN/7C+qIU+qUg42/5WOvjIifRsSe8hj1W3XG2o8Ocfw/sTzmNI8Bb6ox1L50qDEgIh4ZEV+JiLsj4o6I+ExE3L/umPvJ4cbgiLg8In5c/v5fFxE76oy3VSaJy+t9wAFgO3AJ8IGIeDDw78ATM3MTsAP4EfCB2qLsX7cBbwf+qvnOiNgGfA54E7AFuAH4VNej63+Lvv+ZeW1mrmvcgCuAnwD/WkOM/WoE+DnwGIopsN8IfDoiTmxsEBEnA88GflVDfFKnLTr+RsS5wLuAZ1H8bVwFfD4ihmuLtD8tevxvsqlpHHhbF+MaFIcaAzZTtBSeCJwATABX1xFkHzvo+x8RjwXeCTyd4jPoT4FP1BRnW2w3XSYRMQ7cA5yRmT8s77sG+GVmvr5pu1XAW4CnZ+bpdcTa7yLi7cCxmfmi8vuXAC/KzPPK78cp1i07KzNvqi3QPrXw/V/k8a8B12fmW7sa2ICJiO8Db83Mz5bfXwe8F3g/cHlmfrXO+KTlcqjxF/gO8OrMPKdp273Ajsz0hMkyW2T8PZHiQ/FoZs7UF9ngWTgGNN3/MODrebC18bQsGu8/8ChgTWb+fnn/Dopj0ymZeXONIR6WlcTlcyow0xigSt8DHgwQEcdHxC5gEngN8O7uhziwHkzxfwFAZt4L3Fzery4q23wfDXy07lj6WURspzgm3Vh+/2xgf2b+Xa2BSZ1xqPH374HhiDi3rB6+GPgusLP7YQ60WyPiFxFxddndow5aOAYs8OiD3K9lssj7H80Pl/+e0dWglmCk7gD6yDpgz4L7dgPrATLzZ8CmiNgC/B5gBat71gF3LLiv+r9RV70A+KfM/GndgfSriBgFrgU+kpk3RcR6ilaXx9cbmdQxhxp/J4DPAv+X4sPZLuBJaRtVt9wJnE2RmG+laAu+FnhinUH1s4VjwILHHgJcSdH6qA5YZAy+DvhkRHyQ4nKzK4EE1tYYZkusJC6fvcCGBfdtoBigKpl5N/AR4G8iwiS9O1r6v1FXvIDi918dEBFDwDUU12a9orz7LcA1mXlLTWFJnXaoY/zvApdRVBXHgOcDX+qViSN6XWbuzcwbMnMmM2+nOC49oTx5pWV2kDGg8dgpFJX1P8zMf6ohvL632PtfXtrxZoqTVbeUtwngF7UE2QaTxOXzQ2AkIh7QdN9DWbykPwIczW8OauqMGyn+L4DqmpSTsd2iqyLiv1BM3PTXdcfSjyIiKCbl2A5cmJnT5UPnA38QETsjYidwHMUF9a+rKVRpuR1q/D0T+FJm/jAz5zLzOorJm86rIU4VFRTw8+eyO8QY0LjU46vA2zLzmppC7GuHev8z832Z+YDM3E6RLI4AP6gn0tb5R7pMyuvcPgf8cUSMlx+Inw5cExHPjIjTImIoIo4C3gN8p6wqaplExEhErAaGKa5BWV1Waz8PnBERF5aPXwl830lrltch3v+GFwKfzUwruJ3xAeBBwNMyc7Lp/vMprn04s7zdBryUou1L6nmHGn+BbwNPiYiTovB4imuFVvwHtF5ysON/eS1o4/PPVorJs67PzN31RtyXFh0Dolhy7R+BP8/MD9YV3AA42Pu/OiLOKI8/x1PMNPu/M/OeugJtlUni8roCWAP8mmJ625dn5o3AMcB1FOXlfwPmgGfUFWQfeyPFxECvp2gpmgTemJl3ABcC76CYAe9c4Ll1BdnHFn3/oThIAhdhq2lHlGeJX0qRBO6M+fXILsnMuzJzZ+MGzAL3ZObeWoOWltfBxt+PAp8Erqe4bvG9wEs9SbjsDnb8P4n5zz8/APYDF9cUY9861BgAXE7x//CWpvs9/i+jw7z/q4GPU7TF/zPwTYol2VY8l8CQJEmSJFWsJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpEpfJYkRcUtE/Doixpvuuzwirq8xLElSnynHm8mImIiIXRHxjYh4WUT01bgqSRpM/TiYDQN/WHcQkqS+97TMXA+cALwLeB1wVb0hSZJ05PoxSfxT4DURsWnhAxFxXkR8OyJ2l/+eV97/nIi4YcG2r4qIv+1SzJKkHpWZuzPzb4HnAC+MiDMiYlVE/M+I+FlE3B4RH4yINY19IuLpEfHdiNgTETdHxO/U9xNIknRf/Zgk3gBcD7ym+c6I2AJ8GXgvsBV4D/DliNgKfBE4LSIe0LTL84CPdyNgSVLvy8x/Bn4B/DZFZfFU4EzgFOAY4EqAiDgH+CjwR8Am4NHALd2PWJKkxfVjkgjFQPzKiDiq6b6nAD/KzGsycyYzPwHcRNEutA/4G+BigDJZfCBgJVGS1I7bgC3AS4BXZebdmTkBvBN4brnN7wJ/lZlfycy5zPxlZt5UU7ySJP2GvkwSM/MHwJeA1zfdvQO4dcGmt1Kc3YWianhx+fXzgC+UyaMkSa06BhgB1gL/Uk5qswu4DmicuDwOuLmm+CRJOqy+TBJLbwZ+j/kk8DaKyQWaHQ/8svz6K8BREXEmRbJoq6kkqWURcTbFmPMFYBJ4cGZuKm8bM3NduenPgZPrilOSpMPp2yQxM38MfAr4g/KuvwNOjYjnRcRIRDwHOJ2i4khmTgOfoZj4ZgtF0ihJ0iFFxIaIeCrwSeBjmfk94MPAn0XE0eU2x0TEE8tdrgIui4jzI2KofOyB9UQvSdJv6tsksfTHwDhAZt4FPBV4NXAX8FrgqZl5Z9P2HwcuAD6TmTNdjlWS1Fu+GBETFJXB/04xIdpl5WOvA34MfCsi9gBfBU6DaoKby4A/A3YDX+c3O10kSapNZGbdMUiSJEmSVoh+ryRKkiRJktpgkihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSp0tNJYkSsioirIuLWiJiIiO9GxJOaHj8/Im6KiH0R8bWIOKHpsYsi4hvlY9cf4jVeEBEZEZd3+MeRJEmSpNr1dJIIjFCsT/UYYCPwRuDTEXFiRGwDPge8CdgC3AB8qmnfu4H/BbzrYE8eEZuBNwA3diR6SZIkSVph+m6dxIj4PvBWYCvwosw8r7x/HLgTOCszb2ra/nLg+Zn52EWe64PA94GLgI9l5l92/ieQJEmSpPr0eiXxPiJiO3AqReXvwcD3Go9l5r3AzeX9rTzXOcAjgA8uf6SSJEmStDL1TZIYEaPAtcBHykrhOmD3gs12A+tbeK5h4P3AKzJzbrljlSRJkqSVqi+SxIgYAq4BDgCvKO/eC2xYsOkGYKKFp7wC+H5mfmvZgpQkSZKkHjBSdwBHKiICuArYDjw5M6fLh24EXti03ThwMq1NQnM+8JiIeHL5/RbgrIg4MzNfcYj9JEmSJKmn9XySCHwAeBBwQWZONt3/eeBPI+JC4MvAlRTVwZugaikdpXgPhiJiNTBbJpkvAlY3PdfngL+mSEYlSZIkqW/1dLtpue7hS4EzgZ0Rsbe8XZKZdwAXAu8A7gHOBZ7btPulwCRFkvnb5dcfBsjMXZm5s3GjaGPdk5kLr3GUJEmSpL7Sd0tgSJIkSZKWrqcriZIkSZKk5WWSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIERMTx5Vq7w3XHIklSnUwSJUkDKyJuiYgLADLzZ5m5LjNnu/j6j42IX3Tr9SRJaoVJoiRJkiSpYpIoSRpIEXENcDzwxbLN9LURkRExUj5+fUS8PSK+UT7+xYjYGhHXRsSeiPh2RJzY9HwPjIivRMTdEfEfEXFR02NPjoh/j4iJiPhlRLwmIsaBvwd2lM+/NyJ2RMQ5EfHNiNgVEb+KiD+PiLGm58qIuCIiflQ+39si4uQyzj0R8enG9o1KZUS8ISLuLCunl3TnHZYk9SqTREnSQMrMS4GfAU/LzHXApxfZ7LnApcAxwMnAN4GrgS3A/wPeDFAmfF8BPg4cXe73/og4vXyeq4CXZuZ64AzgHzPzXuBJwG1lm+u6zLwNmAVeBWwDHgWcD1yxIK4nAg8HHgm8FvgQ8HzguPL5L27a9n7lcx0DvBD4UESc1tabJUkaKCaJkiQd3NWZeXNm7qao+t2cmV/NzBngM8BZ5XZPBW7JzKszcyYzvwN8Fnh2+fg0cHpEbMjMezLzXw/2gpn5L5n5rfJ5bgH+AnjMgs3enZl7MvNG4AfAP2TmT5riPGvB9m/KzP2Z+XXgy8BFSJJ0ECaJkiQd3O1NX08u8v268usTgHPLFtFdEbELuISiigdwIfBk4NaI+HpEPOpgLxgRp0bElyJiZ0TsAd5JUQlcSlwA95RVy4ZbgR0He31JkkwSJUmDLJfpeX4OfD0zNzXd1mXmywEy89uZ+XSKVtQvMN/autjrfwC4CXhAZm4A3gDEEcS2uWyHbTgeuO0Ink+S1OdMEiVJg+x24KRleJ4vAadGxKURMVrezo6IB0XEWERcEhEbM3Ma2APMNb3+1ojY2PRc68tt9kbEA4GXL0N8by3j+G2K1tjPLMNzSpL6lEmiJGmQ/QnwxrI99FlLfZLMnACeQDFhzW3ATuB/AKvKTS4FbinbR19G0YpKZt4EfAL4SdmmugN4DfA8YAL4MPCppcZV2gncU8Z1LfCy8nUlSVpUZC5Xp40kSVpJIuKxwMcy89i6Y5Ek9Q4riZIkSZKkikmiJEmSJKliu6kkSZIkqWIlUZIkSZJUMUmUJEmSJFVMEiVJkiRJFZNESZIkSVLFJFGSJEmSVDFJlCRJkiRV/j9YJ750IxgAtQAAAABJRU5ErkJggg==", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      load
                      2014-11-01 00:00:000.10
                      2014-11-01 01:00:000.07
                      2014-11-01 02:00:000.05
                      2014-11-01 03:00:000.04
                      2014-11-01 04:00:000.06
                      2014-11-01 05:00:000.10
                      2014-11-01 06:00:000.19
                      2014-11-01 07:00:000.31
                      2014-11-01 08:00:000.40
                      2014-11-01 09:00:000.48
                      \n", + "
                      " + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.10\n", + "2014-11-01 01:00:00 0.07\n", + "2014-11-01 02:00:00 0.05\n", + "2014-11-01 03:00:00 0.04\n", + "2014-11-01 04:00:00 0.06\n", + "2014-11-01 05:00:00 0.10\n", + "2014-11-01 06:00:00 0.19\n", + "2014-11-01 07:00:00 0.31\n", + "2014-11-01 08:00:00 0.40\n", + "2014-11-01 09:00:00 0.48" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Données originales vs données mises à l'échelle :\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 24, + "source": [ + "energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)\n", + "train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAZ+klEQVR4nO3df5BV5Z3n8fdHoOjwKyq0ZFYGOroRGBEDNNHEgJg4cUdXolIzi8YVzRiyZq1UyspkslZQRl3N7jBOyk00YWOUKJgfikw07tRIIok6M2rjChFtpSxFWX8UkAnQ/Ea/+8c5rZdL3+5z6T739u3zeVWdou95zjn3e56+fb8853nOcxQRmJlZMR1V7wDMzKx+nATMzArMScDMrMCcBMzMCsxJwMyswAbXO4BqjBkzJlpaWuodhplZQ1m7du3WiGjuqqyhkkBLSwttbW31DsPMrKFI2lSpzJeDzMwKzEnAzKzAnATMzAqsofoEzKz/OnDgAJs3b2bv3r31DqWwmpqaGDduHEOGDMm8j5OAmfWJzZs3M3LkSFpaWpBU73AKJyLYtm0bmzdv5qMf/Wjm/Xw5yMz6xN69exk9erQTQJ1IYvTo0VW3xJwEzKzPOAHU15HUv5OAmVmBuU/AzHLR8s1f9unxXvv2eX12rHPPPZcVK1Zw9NFHV9zmuuuuY/bs2Zx99tlVH3/NmjUsWbKEhx9+ONP6IzFnzhyWLFlCa2trr47jJGBWAKVfyH35ZdpoIoKI4JFHHulx2xtuuKEGEdWfLweZ2YBx6623MmXKFKZMmcJ3vvMdAF577TUmTpzIZZddxpQpU3jjjTdoaWlh69atANx4441MnDiRT3/601x88cUsWbIEgMsvv5z7778fSKasuf7665k+fTqnnHIK7e3tADz99NN88pOfZNq0aXzqU5/ipZdeyhzr73//ey644AKmTp3K6aefzvr167s95p49e5g/fz6TJ0/mwgsvZM+ePX1SZzVpCUj6GPA74P6IuDRddwlwCzAGeBT4YkT8vhbxmNnAs3btWu666y6eeuopIoLTTjuNM888k2OOOYaNGzeybNkyTj/99EP2eeaZZ3jggQdYt24dBw4cYPr06cyYMaPL448ZM4Znn32W22+/nSVLlvDDH/6QSZMm8fjjjzN48GBWr17NtddeywMPPJAp3uuvv55p06axatUqfv3rX3PZZZfx3HPPVTzmHXfcwbBhw3jxxRdZv34906dP73WdQe0uB30PeKbzhaSTgR8A5wHPAkuB24H5NYrHzAaYJ554ggsvvJDhw4cDcNFFF/H4448zd+5cJkyYcFgCAHjyySf5/Oc/T1NTE01NTZx//vkVj3/RRRcBMGPGDFauXAnA9u3bWbBgARs3bkQSBw4cqCrezoTxmc98hm3btrFjx46Kx/ztb3/LV7/6VQCmTp3K1KlTM79Xd3K/HCRpPvAH4Fclq78APBQRv42IDmARcJGkkXnHY2bF05kYemPo0KEADBo0iIMHDwKwaNEizjrrLJ5//nkeeuihPrlbOo9jdifXJCBpFHADcE1Z0cnAus4XEfEKsB84qYtjLJTUJqlty5YteYZrVjgt3/zl+0ujmzVrFqtWrWL37t3s2rWLBx98kFmzZnW7zxlnnPH+F21HR0fVo3a2b9/O8ccfD8Ddd99ddbzLly8HklFDY8aMYdSoURWPOXv2bFasWAHA888//34fQm/lfTnoRuDOiNhcdhPDCGB72bbbgcNaAhGxlORyEa2trZFTnGbWx2o9Cmn69OlcfvnlfOITnwDgyiuvZNq0abz22msV95k5cyZz585l6tSpjB07llNOOYUPf/jDmd/zG9/4BgsWLOCmm27ivPOqO9/FixfzxS9+kalTpzJs2DCWLVvW7TGvuuoqrrjiCiZPnszkyZMr9l1USxH5fK9K+jiwHJgWEfslLQb+fURcKukfgCcj4n+WbL8TmBMRaysds7W1NfxQGbPqVRoi2pdDR1988UUmT57cq2PUQ0dHByNGjGD37t3Mnj2bpUuX9lmnaz109XuQtDYiuryhIM+WwBygBXg9bQWMAAZJ+hPgH4FTSwI8ARgKvJxjPGZmh1m4cCEvvPACe/fuZcGCBQ2dAI5EnklgKfCTktdfJ0kKVwHHAf8iaRbJ6KAbgJURsTPHeMzMDtN5nb2ocksCEbEb2N35WlIHsDcitgBbJP0XkstFo4HVwBV5xWJmtRERnkSujo7k8n7Npo2IiMVlr1cAxU7BZgNIU1MT27Zt83TSddL5PIGmpqaq9vPcQWbWJ8aNG8fmzZvxUO766XyyWDWcBMysTwwZMqSqJ1pZ/+AJ5MzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMcweZ9QN9+YQvs2q4JWBmVmC5JgFJ90p6S9IOSS9LujJd3yIpJHWULIvyjMXMzA6X9+WgW4C/jIh9kiYBayT9X2BbWn50RBzMOQYzM6sg15ZARGyIiH2dL9PlxDzf08zMssu9T0DS7ZJ2A+3AW8AjJcWbJG2WdJekMRX2XyipTVKbn1hkZta3ck8CEfEVYCQwC1gJ7AO2AjOBCcCMtHx5hf2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrIqIjItoi4mBEvANcDXxO0shaxGNmZolaDxEdTNd9ApH+6yGrZmY1lNuXrqTjJM2XNELSIEnnABcDv5J0mqSJko6SNBq4DVgTEdvzisfMzA6X5xDRAK4Cvk+SbDYBX4uIX0i6GLgZOA7YATxKkiDMrB8ovYMZfBfzQJZbEoiILcCZFcruA+7L673NzCwbX4M3MyswJwEzswJzEjAzKzBPJW1mPfJU1wOXWwJmZgXmJGBmVmBOAmZmBeYkYGZWYO4YNsuZO1WtP3NLwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCizXJCDpXklvSdoh6WVJV5aUfVZSu6Tdkh6TNCHPWMzM7HB5twRuAVoiYhQwF7hJ0gxJY4CVwCLgWKAN+GnOsZiZWZlcbxaLiA2lL9PlRGAGsCEifg4gaTGwVdKkiGjPMyYzM/tA7n0Ckm6XtBtoB94CHgFOBtZ1bhMRu4BX0vXl+y+U1CapbcuWLXmHa2ZWKLkngYj4CjASmEVyCWgfMALYXrbp9nS78v2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrgA5gVNlmo4CdtYjHzMwStR4iOpikT2ADcGrnSknDS9abmVmN5JYEJB0nab6kEZIGSToHuBj4FfAgMEXSPElNwHXAencKm5nVVp6jg4Lk0s/3SZLNJuBrEfELAEnzgO8C9wJPAfNzjMWsX8h7WmlPW23Vyi0JRMQW4MxuylcDk/J6fzMz65mnjTAzKzAnATOzAnMSMDMrMD9j2Kyfceeu1ZJbAmZmBeYkYGZWYE4CZmYF5iRgZlZg7hg2s6q443pgcUvAzKzAnATMzArMScDMrMAyJQFJp+QdiJmZ1V7WjuHbJQ0F7gaWR0T5oyHNLAfuhLW8ZWoJRMQs4AvAHwNrJa2Q9Ke5RmZmZrnL3CcQERuBbwF/TfKcgNsktUu6qKvtJQ2VdKekTZJ2SnpO0p+lZS2SQlJHybKoL07IzMyyy3Q5SNJU4ArgPOBR4PyIeFbSvwP+BVhZ4dhvkCSM14FzgZ+V9S8cHREHexG/mZn1QtY+gf8F/BC4NiL2dK6MiDclfaurHSJiF7C4ZNXDkl4FZgBrjyxcMzPrS1mTwHnAnoh4F0DSUUBTROyOiHuyHEDSWOAkYEPJ6k2SgqR18VcRsTV76GZm1ltZk8Bq4GygI309DPgn4FNZdpY0BFgOLIuIdkkjgJnAc8Bo4Htp+Tld7LsQWAgwfvz4jOEWi0eQFFvp778321d7HBsYsnYMN0VEZwIg/XlYlh3TVsM9wH7g6s79I6ItIg5GxDvp+s9JGlm+f0QsjYjWiGhtbm7OGK6ZmWWRNQnskjS984WkGcCebrbv3E7AncBYYF5EHKiwaVQZj5mZ9YGsl4O+Bvxc0puAgI8A/ynDfncAk4GzSzuUJZ0G/AHYCBwD3Aas8U1oZma1lSkJRMQzkiYBE9NVL3Xzv3oAJE0AvgzsA95OGgWQrnsPuBk4DthB0jF8cdXRm5lZr1TzPIGZQEu6z3RJRMSPK20cEZtIWg2V3FfFe5sNOHl3xLqj17LIerPYPcCJJKN53k1XB1AxCZiZWf+XtSXQCvxJRESPW5qZWcPIOhrneZLOYDMzG0CytgTGAC9IepqkoxeAiJibS1RmZlYTWZPA4jyDKCrf6ds4/LuygSrrENHfpEM+PxYRqyUNAwblG5qZmeUt6+MlvwTcD/wgXXU8sCqvoMzMrDaydgz/V+AMkhu7Oh8wc1xeQZmZWW1kTQL7ImJ/5wtJg/lgvh8zM2tQWTuGfyPpWuBD6bOFvwI8lF9Y1hfcmVk/vlvXGkXWlsA3gS3A70jm/nmE5HnDZmbWwLKODnoP+N/pYmZmA0TWuYNepYs+gIg4oc8jMjOzmqlm7qBOTcCfA8f2fThmZlZLWS8HbStb9R1Ja4Hr+j4ks77Xl53k7nDvmuulMWW9HDS95OVRJC2Dap5FYGZm/VDWL/K/K/n5IPAa8Bfd7SBpKHA7cDbJpaNXgP8WEf8nLf8s8D1gPPAUcHn6IBozM6uRrJeDzjrCY78BnAm8DpwL/EzSKUAHsBK4kuR+gxuBnwKnH8H7mJnZEcp6Oeia7soj4tYu1u3i0NlHH05HGc0ARgMbIuLn6fEXA1slTYqI9myhm5lZb1UzOmgm8Iv09fnA08DGrG8kaSxwErABuApY11kWEbskvQKcDLSX7bcQWAgwfvz4rG9nNVL0zsCin781vqxJYBwwPSJ2wvv/c/9lRFyaZWdJQ4DlwLKIaJc0guQO5FLbgZHl+0bEUmApQGtrq+crMjPrQ1mnjRgL7C95vT9d1yNJRwH3pPtcna7uAEaVbToK2JkxHjMz6wNZWwI/Bp6W9GD6+gJgWU87SRJwJ0nCODciDqRFG4AFJdsNB05M15uZWY1kaglExH8HrgD+LV2uiIibM+x6BzAZOD8i9pSsfxCYImmepCaSm87Wu1PYzKy2qrnhaxiwIyLuktQs6aMR8WqljdPHUX6Z5MH0byeNAgC+HBHLJc0DvgvcS3KfwPwjOgMzqxtPmd34sg4RvZ5khNBE4C5gCMmX9xmV9klv/FI35auBSdUEa2ZmfStrx/CFwFxgF0BEvEkXI3nMzKyxZE0C+yMiSKeTTjtyzcyswWVNAj+T9APgaElfAlbjB8yYmTW8rHMHLUmfLbyDpF/guoh4NNfIrKH5Ttq+5zq1PPSYBCQNAlank8j5i9/MbADp8XJQRLwLvCfpwzWIx8zMaijrfQIdwO8kPUo6QgggIr6aS1RmZlYTWZPAynQxM7MBpNskIGl8RLweET3OE2S9404/q4bv1LW+0lOfwKrOHyQ9kHMsZmZWYz0lgdJpH07IMxAzM6u9npJAVPjZzMwGgJ46hk+VtIOkRfCh9GfS1xER5Q+GMTOzBtJtEoiIQbUKxGqrUsdiaad0lm36s952nla7vztrrRFlnTvIzMwGoFyTgKSrJbVJ2ifp7pL1LZJCUkfJsijPWMzM7HDVPFnsSLwJ3AScA3yoi/KjI+JgzjGYmVkFuSaBiFgJIKkVGJfne5mZWfXybgn0ZJOkIJmd9K8iYmv5BpIWAgsBxo8fX+Pw6iNLB2OjdM5aMVV7B7zvmK+fenUMbwVmAhOAGSSPqlze1YYRsTQiWiOitbm5uYYhmpkNfHVpCUREB9CWvnxH0tXAW5JGRsTOesRkZlZE/WWIaOfdyP0lHjOzQsi1JSBpcPoeg4BBkpqAgySXgP4AbASOAW4D1kTE9jzjMTOzQ+V9OehbwPUlry8F/gZ4CbgZOI7kucWPAhfnHEvduNPrA64L61RpAIQ7lWsr7yGii4HFFYrvy/O9zcysZ74Gb2ZWYE4CZmYF5iRgZlZg9b5j2I5Qlk61RuWOQbPacUvAzKzAnATMzArMScDMrMCcBMzMCswdw0egUkfkQOuUbcRjZnmv7jqSB8Lv0KwabgmYmRWYk4CZWYE5CZiZFZiTgJlZgbljuJfckfiB3tSF67EY+uoz4jvD+45bAmZmBZZrEpB0taQ2Sfsk3V1W9llJ7ZJ2S3pM0oQ8YzEzs8Pl3RJ4E7gJ+FHpSkljgJXAIuBYkofO/zTnWMzMrEzeTxZbCSCpFRhXUnQRsCEifp6WLwa2SpoUEe15xmRmZh+oV8fwycC6zhcRsUvSK+n6Q5KApIXAQoDx48fXMkbrZxrlbmbrO/795K9eHcMjgO1l67YDI8s3jIilEdEaEa3Nzc01Cc7MrCjqlQQ6gFFl60YBO+sQi5lZYdUrCWwATu18IWk4cGK63szMaiTvIaKDJTUBg4BBkpokDQYeBKZImpeWXwesd6ewmVlt5d0x/C3g+pLXlwJ/ExGLJc0DvgvcCzwFzM85ll5p9A6qRo/fzPKR9xDRxcDiCmWrgUl5vr+ZmXXP00aYmRWYk4CZWYE5CZiZFZinku6G71DNl+uiGPrD77lSDJ6S2i0BM7NCcxIwMyswJwEzswJzEjAzKzB3DJfpD51Y9gH/Pqwr/lz0HbcEzMwKzEnAzKzAnATMzArMScDMrMAK2zFc2rHkuwar404566/8d109twTMzAqsrklA0hpJeyV1pMtL9YzHzKxo+kNL4OqIGJEuE+sdjJlZkfSHJGBmZnXSH5LALZK2SnpS0px6B2NmViT1TgJ/DZwAHA8sBR6SdGLpBpIWSmqT1LZly5Z6xGhmNmDVNQlExFMRsTMi9kXEMuBJ4NyybZZGRGtEtDY3N9cnUDOzAareLYFyAajeQZiZFUXdkoCkoyWdI6lJ0mBJXwBmA/9Yr5jMzIqmnncMDwFuAiYB7wLtwAUR8XIdYzIzK5S6JYGI2ALMrNf7m9nAlmV6E08z0f/6BMzMrIacBMzMCsxJwMyswJwEzMwKrLDPEzAzq6RIHcZuCZiZFZiTgJlZgTkJmJkVmJOAmVmBFapj2A9IN7PeyPod0kidyW4JmJkVmJOAmVmBOQmYmRWYk4CZWYEVqmPYzKySSp2+RzKgpNo7jittX4s7l90SMDMrsLomAUnHSnpQ0i5JmyRdUs94zMyKpt6Xg74H7AfGAh8HfilpXURsqG9YZmbFUM8HzQ8H5gGLIqIjIp4AfgH853rFZGZWNIqI+ryxNA14MiKGlaz7OnBmRJxfsm4hsDB9ORF4qaaB9t4YYGu9g+hHXB+Hcn0cyvVxqL6qjwkR0dxVQT0vB40AdpSt2w6MLF0REUuBpbUKqq9JaouI1nrH0V+4Pg7l+jiU6+NQtaiPenYMdwCjytaNAnbWIRYzs0KqZxJ4GRgs6WMl604F3ClsZlYjdUsCEbELWAncIGm4pDOAzwP31CumnDTspaycuD4O5fo4lOvjULnXR906hiG5TwD4EfCnwDbgmxGxom4BmZkVTF2TgJmZ1ZenjTAzKzAnATOzAnMSyEDSUEl3pvMb7ZT0nKQ/S8taJIWkjpJlUdm+P5K0Q9Lbkq4pO/ZnJbVL2i3pMUkTan1+R0LSvZLeSs/rZUlXlpRVPKeBWh9QuU6K+hkBkPQxSXsl3Vuy7pL0b2mXpFVp32BnWbfziXW3b6MorxNJcyS9V/b5WFCyfb51EhFeeliA4cBioIUkcf5HkvsZWtIlgMEV9r0FeBw4BpgMvA38h7RsDMkNcn8ONAF/C/xrvc83Y52cDAxNf56UnteMns5poNZHD3VSyM9IGv8/ped2b0kd7QRmk9wwugL4Scn29wE/Tcs+nZ77yVn2bZSlizqZA2zuZvtc66TuFdKoC7CeZO6jnv7A3wQ+V/L6xs5fEsl0GP9cUjYc2ANMqvf5VVkXE4G3gL/o6ZyKUB9d1EkhPyPAfOBnJP+B6vzCuxlYUbLNiSSTSI5Mz20/cFJJ+T3At3vat97n2ss6qZgEalEnvhx0BCSNBU7i0BvbNknaLOkuSWPS7Y4B/ghYV7LdOpLsTfrv+2WR3DvxSkl5vybpdkm7gXaSL7xH6OacBnp9QMU66VSYz4ikUcANwDVlReXn8wrpl1y6HIyIl0u2764uSvft97qpE4DjJL0j6VVJf69kgk2oQZ04CVRJ0hBgObAsItpJJneaCUwgafqPTMshaZ5B0nyj5OeRJeWlZeXl/VpEfIUk1lkkN/7to/tzGtD1ARXrpIifkRuBOyNic9n6nj4f3c0n1qh10alSnbSTTKX/R8BnSD4jt6ZludeJk0AVJB1F0hTbD1wNEMk02G0RcTAi3knXf07SSJL5keDQOZJK50dq+PmTIuLdSKYBHwdcRffnNODrAw6vk6J9RiR9HDgb+Psuinv6fHR3rg1XF526q5OIeDsiXoiI9yLiVeAbJJeaoQZ14iSQkSQBd5I8AGdeRByosGnn3XdHRcS/kVwSOLWkvHR+pA2lZWkT8EQac/6kwXwQe5fnVLD6gA/qpNxA/4zMIekHeV3S28DXgXmSnuXw8zkBGEoyl1hP84l1t29/N4fKdVIu+OC7Of86qXdHSaMswPeBfwVGlK0/jaQT8ChgNEkv/mMl5d8GfkMy8mMSyR9858iPZpKm2zySkR//gwYY+QEcR9LBNQIYBJwD7ALm9nROA7E+MtRJoT4jwDDgIyXLEuD+9FxOJrm8MYuk0/NeDh0d9BOS0TDDgTM4fCRMxX3789JDnZxFcqlQwB8DjwF31apO6l45jbCkv6AA9pI0vzqXLwAXA6+mf/BvAT8GPlKy71CS+ZF2AO8A15Qd+2ySa4J7gDVAS73PN0N9NKdfWn9Iz+t3wJeynNNArI+e6qSIn5Gy+BeTjoRJX18CvJ7Wxz8Ax5aUHQusSsteBy4pO1bFfRtp4dDRQdcA/w/YDbwB3EbJ6J6868RzB5mZFZj7BMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswP4/zu7dqmtpqTMAAAAASUVORK5CYII=", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAaCklEQVR4nO3de5RV5Znn8e+PSyjlIhEK1GBZagJeQBQL7ehSM9EWO2omhjjRqOOltaIOsTNZzdLJ0oTYtunOmpl0JEokbTAg2iRpcKKxXYKXVmNPQsE0ERQ0LsHQogIJSCF3n/ljn9JjUUXtU5x9Tp3av89aZ8m+nf285+B5ePfz7ncrIjAzs3zqU+0AzMysepwEzMxyzEnAzCzHnATMzHLMScDMLMf6VTuAUgwfPjwaGxurHYaZWU1ZsmTJhoio72hbTSWBxsZGWlpaqh2GmVlNkbSms22+HGRmlmNOAmZmOeYkYGaWYzVVEzCz2rJr1y7Wrl3L9u3bqx1KLtTV1TFq1Cj69++f+hgnATPLzNq1axk8eDCNjY1IqnY4vVpEsHHjRtauXcuRRx6Z+jhfDjKzzGzfvp1hw4Y5AVSAJIYNG1Zyr8tJwMwy5QRQOd35rJ0EzMxyzDUBM6uYxlt+Vdb3W/1355f1/To8x+rVXHDBBSxfvjz1MVdddRUXXHABX/rSl1Ktr0RMnXESMMuB4h/fSvxwWu3w5SAz67W2bt3K+eefz/jx4xk7dizz5s0DYPHixZx22mmMHz+eU045hS1btrB69WrOOOMMJkyYwIQJE3jhhRf2er89e/YwdepUJk6cyAknnMC9994LJCNzpkyZwpgxYzjnnHN45513uoztySef5KSTTmLcuHFcc8017NixA4Dbb7+diRMnMnbsWJqbm2l7+uOSJUsYP34848eP5+677y7XR1SZJCDpU5K2S3qgaN1XJK2RtFXSw5IOrkQsZpYfjz/+OIcddhjLli1j+fLlnHfeeezcuZMvf/nL/OAHP2DZsmUsWrSIAw44gBEjRrBw4UKWLl3KvHnzuOmmm/Z6v/vuu4+DDjqIxYsXs3jxYn784x/z+uuvs2DBAlatWsVLL73E7NmzO0wgxbZv385VV13FvHnzePHFF9m9ezczZswAYMqUKSxevJjly5ezbds2Hn30UQCuvvpqpk+fzrJly8r6GVWqJ3A3sLhtQdLxwL3AFcBI4D3gngrFYmY5MW7cOBYuXMjNN9/Mc889x0EHHcSqVas49NBDmThxIgBDhgyhX79+7Nq1i+uuu45x48Zx8cUX89JLL+31fk888QSzZ8/mxBNP5NRTT2Xjxo28+uqrPPvss1x66aX07duXww47jM9+9rP7jGvVqlUceeSRjB49GoArr7ySZ599FoCnn36aU089lXHjxvHUU0+xYsUKNm3axKZNmzjzzDMBuOKKK8r2GWVeE5B0CbAJeAH4ZGH1ZcAjEfFsYZ/bgJclDY6ILVnHZGb5MHr0aJYuXcpjjz3Grbfeytlnn81FF13U4b7f//73GTlyJMuWLeP999+nrq5ur30igunTpzNp0qSPrH/sscfKEu/27du58cYbaWlp4fDDD2fatGmZ322daU9A0hDgduAb7TYdD3zQp4mI14CdwOgO3qNZUouklvXr12cZrlnuNN7yqw9evdGbb77JgQceyOWXX87UqVNZunQpY8aMYd26dSxenFyc2LJlC7t372bz5s0ceuih9OnThzlz5rBnz5693m/SpEnMmDGDXbt2AfDKK6+wdetWzjzzTObNm8eePXtYt24dTz/99D7jGjNmDKtXr+b3v/89AHPmzOGss8764Ad/+PDhtLa28otf/AKAoUOHMnToUJ5//nkA5s6dW54PiOx7An8D3BcRa9vdxDAI2Nxu383A4PZvEBEzgZkATU1NkVGcZlYBlR6Z9OKLLzJ16lT69OlD//79mTFjBh/72MeYN28eX/va19i2bRsHHHAAixYt4sYbb2Ty5MnMnj2b8847j4EDB+71ftdeey2rV69mwoQJRAT19fU8/PDDXHTRRTz11FMcd9xxNDQ08OlPf3qfcdXV1TFr1iwuvvhidu/ezcSJE7n++usZMGAA1113HWPHjuWQQw754JIVwKxZs7jmmmuQxLnnnlu2z0htledyk3QiMBc4KSJ2SpoGfDIiLpf0f4BfR8T3ivbfAnwmIpZ09p5NTU3hh8qYla6zIaJZDx19+eWXOfbYY8v+vta5jj5zSUsioqmj/bPsCXwGaATeKPQCBgF9JR0HPA6MLwrwKGAA8EqG8ZiZWTtZJoGZwD8VLf81SVK4ARgB/JukM4ClJHWD+S4Km5lVVmZJICLeIxn6CYCkVmB7RKwH1ku6nuRy0TBgEXB1VrGYWfVEhCeRq5DuXN6v2LQRETGt3fKDwIOVOr+ZVV5dXR0bN270dNIV0PY8gY6Gtu6L5w4ys8yMGjWKtWvX4uHdldH2ZLFSOAmYWWb69+9f0lOurPI8gZyZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOee4gsx4g6yd8mXXGPQEzsxzLNAlIekDSOknvSnpF0rWF9Y2SQlJr0eu2LGMxM7O9ZX056LvAX0bEDknHAM9I+n/AxsL2oRGxO+MYzMysE5n2BCJiRUTsaFssvI7O8pxmZpZe5jUBSfdIeg9YCawDHivavEbSWkmzJA3v5PhmSS2SWvx0IjOz8so8CUTEjcBg4AxgPrAD2ABMBI4ATi5sn9vJ8TMjoikimurr67MO18wsVyoyOigi9kTE88Ao4IaIaI2IlojYHRFvA1OAcyUNrkQ8ZmaWqPQQ0X50XBOIwn89ZNXMrIIy+9GVNELSJZIGSeoraRJwKfCkpFMljZHUR9Iw4C7gmYjYnFU8Zma2tyyHiAZwA/AjkmSzBvh6RPxS0qXAncAI4F1gIUmCMLMeoPgOZvBdzL1ZZkkgItYDZ3Wy7SHgoazObWZm6fgavJlZjjkJmJnlmJOAmVmOeSppM+uSp7ruvdwTMDPLMScBM7MccxIwM8sxJwEzsxxzYdgsYy6qWk/mnoCZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeVYpklA0gOS1kl6V9Irkq4t2na2pJWS3pP0tKQjsozFzMz2lnVP4LtAY0QMAT4P3CHpZEnDgfnAbcDBQAswL+NYzMysnUxvFouIFcWLhdfRwMnAioj4OYCkacAGScdExMosYzIzsw9lXhOQdI+k94CVwDrgMeB4YFnbPhGxFXitsL798c2SWiS1rF+/PutwzcxyJfMkEBE3AoOBM0guAe0ABgGb2+26ubBf++NnRkRTRDTV19dnHa6ZWa5UZHRQROyJiOeBUcANQCswpN1uQ4AtlYjHzMwSlR4i2o+kJrACGN+2UtLAovVmZlYhmSUBSSMkXSJpkKS+kiYBlwJPAguAsZImS6oDvgX8zkVhM7PKynJ0UJBc+vkRSbJZA3w9In4JIGky8EPgAeA3wCUZxmLWI2Q9rbSnrbZSZZYEImI9cNY+ti8Cjsnq/GZm1jVPG2FmlmNOAmZmOeYkYGaWY37GsFkP4+KuVZJ7AmZmOeYkYGaWY04CZmY55iRgZpZjLgybWUlcuO5d3BMwM8sxJwEzsxxzEjAzy7FUSUDSuKwDMTOzyktbGL5H0gDgfmBuRLR/NKSZZcBFWMtaqp5ARJwBXAYcDiyR9KCkP880MjMzy1zqmkBEvArcCtxM8pyAuyStlPTFjvaXNEDSfZLWSNoi6d8l/UVhW6OkkNRa9LqtHA0yM7P0Ul0OknQCcDVwPrAQuDAilko6DPg3YH4n7/0HkoTxBvA54Gft6gtDI2L3fsRvZmb7IW1NYDrwj8A3I2Jb28qIeFPSrR0dEBFbgWlFqx6V9DpwMrCke+GamVk5pU0C5wPbImIPgKQ+QF1EvBcRc9K8gaSRwGhgRdHqNZKCpHcxNSI2pA/dzMz2V9oksAg4B2gtLB8IPAGcluZgSf2BucBPI2KlpEHARODfgWHA3YXtkzo4thloBmhoaEgZbr54BEm+FX//+7N/qe9jvUPawnBdRLQlAAp/PjDNgYVewxxgJzCl7fiIaImI3RHxdmH9uZIGtz8+ImZGRFNENNXX16cM18zM0kibBLZKmtC2IOlkYNs+9m/bT8B9wEhgckTs6mTXKDEeMzMrg7SXg74O/FzSm4CAQ4AvpzhuBnAscE5xQVnSqcAm4FXg48BdwDO+Cc3MrLJSJYGIWCzpGGBMYdWqffyrHgBJRwBfBXYAbyWdAiisex+4ExgBvEtSGL605OjNzGy/lPI8gYlAY+GYCZKIiNmd7RwRa0h6DZ15qIRzm/U6WRdiXei1NNLeLDYHOJpkNM+ewuoAOk0CZmbW86XtCTQBx0VEdLmnmZnVjLSjcZaTFIPNzKwXSdsTGA68JOm3JIVeACLi85lEZWZmFZE2CUzLMoi88p2+tcPflfVWaYeI/mthyOenImKRpAOBvtmGZmZmWUv7eMnrgF8A9xZWfQJ4OKugzMysMtIWhv8bcDrJjV1tD5gZkVVQZmZWGWmTwI6I2Nm2IKkfH873Y2ZmNSptYfhfJX0TOKDwbOEbgUeyC8vKwcXM6vHdulYr0vYEbgHWAy+SzP3zGMnzhs3MrIalHR30PvDjwsvMzHqJtHMHvU4HNYCIOKrsEZmZWcWUMndQmzrgYuDg8odjZmaVlPZy0MZ2q/5B0hLgW+UPyaz8ylkkd8G9Y/5calPay0ETihb7kPQMSnkWgZmZ9UBpf8j/V9GfdwOrgf+yrwMkDQDuAc4huXT0GvA/IuJfCtvPBu4GGoDfAFcVHkRjZmYVkvZy0H/q5nv/ATgLeAP4HPAzSeOAVmA+cC3J/QZ/A8wD/qwb5zEzs25KeznoG/vaHhH/u4N1W/no7KOPFkYZnQwMA1ZExM8L7z8N2CDpmIhYmS50MzPbX6WMDpoI/LKwfCHwW+DVtCeSNBIYDawAbgCWtW2LiK2SXgOOB1a2O64ZaAZoaGhIezqrkLwXA/Pefqt9aZPAKGBCRGyBD/7l/quIuDzNwZL6A3OBn0bESkmDSO5ALrYZGNz+2IiYCcwEaGpq8nxFZmZllHbaiJHAzqLlnYV1XZLUB5hTOGZKYXUrMKTdrkOALSnjMTOzMkjbE5gN/FbSgsLyF4CfdnWQJAH3kSSMz0XErsKmFcCVRfsNBI4urDczswpJ1ROIiL8Frgb+VHhdHRF3pjh0BnAscGFEbCtavwAYK2mypDqSm85+56KwmVlllXLD14HAuxExS1K9pCMj4vXOdi48jvKrJA+mfyvpFADw1YiYK2ky8EPgAZL7BC7pVgvMrGo8ZXbtSztE9NskI4TGALOA/iQ/3qd3dkzhxi/tY/si4JhSgjUzs/JKWxi+CPg8sBUgIt6kg5E8ZmZWW9ImgZ0RERSmky4Ucs3MrMalTQI/k3QvMFTSdcAi/IAZM7Oal3buoP9ZeLbwuyR1gW9FxMJMI7Oa5jtpy8+fqWWhyyQgqS+wqDCJnH/4zcx6kS4vB0XEHuB9SQdVIB4zM6ugtPcJtAIvSlpIYYQQQETclElUZmZWEWmTwPzCy8zMepF9JgFJDRHxRkR0OU+Q7R8X/awUvlPXyqWrmsDDbX+Q9M8Zx2JmZhXWVRIonvbhqCwDMTOzyusqCUQnfzYzs16gq8LweEnvkvQIDij8mcJyRET7B8OYmVkN2WcSiIi+lQrEKquzwmJxUTrNPj3Z/hZPSz3exVqrRWnnDjIzs14o0yQgaYqkFkk7JN1ftL5RUkhqLXrdlmUsZma2t1KeLNYdbwJ3AJOAAzrYPjQidmccg5mZdSLTJBAR8wEkNQGjsjyXmZmVLuueQFfWSAqS2UmnRsSG9jtIagaaARoaGiocXnWkKTDWSnHW8qnUO+B9x3z1VKswvAGYCBwBnEzyqMq5He0YETMjoikimurr6ysYoplZ71eVnkBEtAIthcW3JU0B1kkaHBFbqhGTmVke9ZQhom13I/eUeMzMciHTnoCkfoVz9AX6SqoDdpNcAtoEvAp8HLgLeCYiNmcZj5mZfVTWl4NuBb5dtHw58B1gFXAnMILkucULgUszjqVqXPT6kD8La9PZAAgXlSsr6yGi04BpnWx+KMtzm5lZ13wN3swsx5wEzMxyzEnAzCzHqn3HsHVTmqJarXJh0Kxy3BMwM8sxJwEzsxxzEjAzyzEnATOzHHNhuBs6K0T2tqJsLb5nmnPtq5DcG75Ds1K4J2BmlmNOAmZmOeYkYGaWY04CZmY55sLwfnIh8UP781n4c8yHcv0d8Z3h5eOegJlZjmWaBCRNkdQiaYek+9ttO1vSSknvSXpa0hFZxmJmZnvLuifwJnAH8JPilZKGA/OB24CDSR46Py/jWMzMrJ2snyw2H0BSEzCqaNMXgRUR8fPC9mnABknHRMTKLGMyM7MPVaswfDywrG0hIrZKeq2w/iNJQFIz0AzQ0NBQyRith6mVu5mtfPz9ZK9aheFBwOZ26zYDg9vvGBEzI6IpIprq6+srEpyZWV5UKwm0AkParRsCbKlCLGZmuVWtJLACGN+2IGkgcHRhvZmZVUjWQ0T7SaoD+gJ9JdVJ6gcsAMZKmlzY/i3gdy4Km5lVVtaF4VuBbxctXw58JyKmSZoM/BB4APgNcEnGseyXWi9Q1Xr8ZpaNrIeITgOmdbJtEXBMluc3M7N987QRZmY55iRgZpZjTgJmZjnmqaT3wXeoZsufRT70hO+5sxg8JbV7AmZmueYkYGaWY04CZmY55iRgZpZjLgy30xOKWPYhfx/WEf+9KB/3BMzMcsxJwMwsx5wEzMxyzEnAzCzHclsYLi4s+a7B0rgoZz2V/78unXsCZmY5VtUkIOkZSdsltRZeq6oZj5lZ3vSEnsCUiBhUeI2pdjBmZnnSE5KAmZlVSU9IAt+VtEHSryV9ptrBmJnlSbWTwM3AUcAngJnAI5KOLt5BUrOkFkkt69evr0aMZma9VlWTQET8JiK2RMSOiPgp8Gvgc+32mRkRTRHRVF9fX51Azcx6qWr3BNoLQNUOwswsL6qWBCQNlTRJUp2kfpIuA84EHq9WTGZmeVPNO4b7A3cAxwB7gJXAFyLilSrGZGaWK1VLAhGxHphYrfObWe+WZnoTTzPR82oCZmZWQU4CZmY55iRgZpZjTgJmZjmW2+cJmJl1Jk8FY/cEzMxyzEnAzCzHnATMzHLMScDMLMdyVRj2A9LNbH+k/Q2ppWKyewJmZjnmJGBmlmNOAmZmOeYkYGaWY7kqDJuZdaazom93BpSUesdxZ/tX4s5l9wTMzHKsqklA0sGSFkjaKmmNpK9UMx4zs7yp9uWgu4GdwEjgROBXkpZFxIrqhmVmlg/VfND8QGAycFtEtEbE88AvgSuqFZOZWd4oIqpzYukk4NcRcWDRur8GzoqIC4vWNQPNhcUxwKr9OO1wYMN+HF9r8tZecJvzwm0uzRERUd/RhmpeDhoEvNtu3WZgcPGKiJgJzCzHCSW1RERTOd6rFuStveA254XbXD7VLAy3AkParRsCbKlCLGZmuVTNJPAK0E/Sp4rWjQdcFDYzq5CqJYGI2ArMB26XNFDS6cB/BuZkeNqyXFaqIXlrL7jNeeE2l0nVCsOQ3CcA/AT4c2AjcEtEPFi1gMzMcqaqScDMzKrL00aYmeWYk4CZWY71qiSQdi4iJf5e0sbC6+8lqdLxlkMJbZ4qabmkLZJelzS10rGWS6lzTkn6mKSXJa2tVIzlVEp7JU2Q9KykVklvS/qrSsZaLiX8vR4g6UeFtv5R0iOSPlHpeMtB0hRJLZJ2SLq/i33/u6S3JL0r6SeSBnT3vL0qCfDRuYguA2ZIOr6D/ZqBL5AMST0BuBD4aqWCLLO0bRbwX4GPA+cBUyRdUrEoyyttm9tMBdZXIrCMpGqvpOHA48C9wDDgk8ATFYyznNJ+x38FfJrk/+PDgD8B0ysVZJm9CdxBMlimU5ImAbcAZwNHAEcB3+n2WSOiV7yAgSR/aUYXrZsD/F0H+74ANBct/yXwf6vdhizb3MGxdwHTq92GrNsMHAm8DPwFsLba8WfZXuBOYE61Y65wm2cA3ytaPh9YVe027Gf77wDu38f2B4E7i5bPBt7q7vl6U09gNLA7Il4pWrcM6OhfD8cXtnW1X09XSps/ULj0dQa1eWNeqW2eDnwT2JZ1YBkppb1/BvxR0guS3ilcGmmoSJTlVUqb7wNOl3SYpANJeg3/UoEYq6mj36+RkoZ15816UxJINRdR0b6b2+03qAbrAqW0udg0ku9+VgYxZS11myVdBPSNiAWVCCwjpXzHo4ArSS6RNACvAw9lGl02Smnzq8AfgP8oHHMscHum0VVfR79f0PX/9x3qTUmglLmI2u87BGiNQt+qhpQ8/5KkKSS1gfMjYkeGsWUlVZsLU5V/D7ipQnFlpZTveBuwICIWR8R2kuvEp0k6KOMYy62UNt8NDCCpgQwkmYWgt/cEOvr9gm7Ou9abkkApcxGtKGzrar+erqT5lyRdQ6GgFBE1OVKG9G3+FNAIPCfpLZIfh0MLIyoaKxBnuZTyHf8OKP6HTK39o6ZNKW0+keT6+R8L/6iZDpxSKJL3Vh39fr0dERu79W7VLoKUuaDyTyTd34HA6STdpOM72O96kmLhJ0hGFKwArq92/Bm3+TLgLeDYasdciTaTTJN+SNHriySjLw4huURU9XZk8B1/lmR0zIlAf+D7wHPVjj/jNs8C/hk4qNDmbwL/Ue34u9nmfkAd8F2SQngd0K+D/c4r/L98HDAUeIoUg0E6PW+1G17mD/Fg4GFgK/AG8JXC+jNILve07SeSSwV/LLy+R2EKjVp7ldDm14FdJF3JttePqh1/lm1ud8xnqMHRQaW2F7iB5Pr4n4BHgMOrHX+WbSa5DDQXeAfYBDwPnFLt+LvZ5mkkvbfi1zSS+k4r0FC07zeAt0nqILOAAd09r+cOMjPLsd5UEzAzsxI5CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5dj/BywbGaIaCXKXAAAAAElFTkSuQmCC", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Mettons également à l'échelle les données de test\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 25, + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      load
                      2014-12-30 00:00:000.33
                      2014-12-30 01:00:000.29
                      2014-12-30 02:00:000.27
                      2014-12-30 03:00:000.27
                      2014-12-30 04:00:000.30
                      \n", + "
                      " + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.33\n", + "2014-12-30 01:00:00 0.29\n", + "2014-12-30 02:00:00 0.27\n", + "2014-12-30 03:00:00 0.27\n", + "2014-12-30 04:00:00 0.30" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "source": [ + "# Specify the number of steps to forecast ahead\n", + "HORIZON = 3\n", + "print('Forecasting horizon:', HORIZON, 'hours')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Forecasting horizon: 3 hours\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 27, + "source": [ + "order = (4, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)\n", + "results = model.fit()\n", + "\n", + "print(results.summary())\n" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " SARIMAX Results \n", + "==========================================================================================\n", + "Dep. Variable: load No. Observations: 1416\n", + "Model: SARIMAX(4, 1, 0)x(1, 1, 0, 24) Log Likelihood 3477.239\n", + "Date: Thu, 30 Sep 2021 AIC -6942.477\n", + "Time: 14:36:28 BIC -6911.050\n", + "Sample: 11-01-2014 HQIC -6930.725\n", + " - 12-29-2014 \n", + "Covariance Type: opg \n", + "==============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "ar.L1 0.8403 0.016 52.226 0.000 0.809 0.872\n", + "ar.L2 -0.5220 0.034 -15.388 0.000 -0.588 -0.456\n", + "ar.L3 0.1536 0.044 3.470 0.001 0.067 0.240\n", + "ar.L4 -0.0778 0.036 -2.158 0.031 -0.148 -0.007\n", + "ar.S.L24 -0.2327 0.024 -9.718 0.000 -0.280 -0.186\n", + "sigma2 0.0004 8.32e-06 47.358 0.000 0.000 0.000\n", + "===================================================================================\n", + "Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 1464.60\n", + "Prob(Q): 0.83 Prob(JB): 0.00\n", + "Heteroskedasticity (H): 0.84 Skew: 0.14\n", + "Prob(H) (two-sided): 0.07 Kurtosis: 8.02\n", + "===================================================================================\n", + "\n", + "Warnings:\n", + "[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## Évaluer le modèle\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Créez un point de données de test pour chaque étape HORIZON.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 28, + "source": [ + "test_shifted = test.copy()\n", + "\n", + "for t in range(1, HORIZON):\n", + " test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')\n", + " \n", + "test_shifted = test_shifted.dropna(how='any')\n", + "test_shifted.head(5)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      loadload+1load+2
                      2014-12-30 00:00:000.330.290.27
                      2014-12-30 01:00:000.290.270.27
                      2014-12-30 02:00:000.270.270.30
                      2014-12-30 03:00:000.270.300.41
                      2014-12-30 04:00:000.300.410.57
                      \n", + "
                      " + ], + "text/plain": [ + " load load+1 load+2\n", + "2014-12-30 00:00:00 0.33 0.29 0.27\n", + "2014-12-30 01:00:00 0.29 0.27 0.27\n", + "2014-12-30 02:00:00 0.27 0.27 0.30\n", + "2014-12-30 03:00:00 0.27 0.30 0.41\n", + "2014-12-30 04:00:00 0.30 0.41 0.57" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Faire des prédictions sur les données de test\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 29, + "source": [ + "%%time\n", + "training_window = 720 # dedicate 30 days (720 hours) for training\n", + "\n", + "train_ts = train['load']\n", + "test_ts = test_shifted\n", + "\n", + "history = [x for x in train_ts]\n", + "history = history[(-training_window):]\n", + "\n", + "predictions = list()\n", + "\n", + "# let's user simpler model for demonstration\n", + "order = (2, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "for t in range(test_ts.shape[0]):\n", + " model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order)\n", + " model_fit = model.fit()\n", + " yhat = model_fit.forecast(steps = HORIZON)\n", + " predictions.append(yhat)\n", + " obs = list(test_ts.iloc[t])\n", + " # move the training window\n", + " history.append(obs[0])\n", + " history.pop(0)\n", + " print(test_ts.index[t])\n", + " print(t+1, ': predicted =', yhat, 'expected =', obs)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2014-12-30 00:00:00\n", + "1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323]\n", + "2014-12-30 01:00:00\n", + "2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126]\n", + "2014-12-30 02:00:00\n", + "3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795]\n", + "2014-12-30 03:00:00\n", + "4 : predicted = [0.28 0.32 0.42] expected = [0.26812891674127126, 0.3025962399283795, 0.40823634735899716]\n", + "2014-12-30 04:00:00\n", + "5 : predicted = [0.3 0.39 0.54] expected = [0.3025962399283795, 0.40823634735899716, 0.5689346463742166]\n", + "2014-12-30 05:00:00\n", + "6 : predicted = [0.4 0.55 0.66] expected = [0.40823634735899716, 0.5689346463742166, 0.6799462846911368]\n", + "2014-12-30 06:00:00\n", + "7 : predicted = [0.57 0.68 0.75] expected = [0.5689346463742166, 0.6799462846911368, 0.7309758281110115]\n", + "2014-12-30 07:00:00\n", + "8 : predicted = [0.68 0.75 0.8 ] expected = [0.6799462846911368, 0.7309758281110115, 0.7511190689346463]\n", + "2014-12-30 08:00:00\n", + "9 : predicted = [0.75 0.8 0.82] expected = [0.7309758281110115, 0.7511190689346463, 0.7636526410026856]\n", + "2014-12-30 09:00:00\n", + "10 : predicted = [0.77 0.78 0.78] expected = [0.7511190689346463, 0.7636526410026856, 0.7381378692927483]\n", + "2014-12-30 10:00:00\n", + "11 : predicted = [0.76 0.75 0.74] expected = [0.7636526410026856, 0.7381378692927483, 0.7188898836168307]\n", + "2014-12-30 11:00:00\n", + "12 : predicted = [0.77 0.76 0.75] expected = [0.7381378692927483, 0.7188898836168307, 0.7090420769919425]\n", + "2014-12-30 12:00:00\n", + "13 : predicted = [0.7 0.68 0.69] expected = [0.7188898836168307, 0.7090420769919425, 0.7081468218442255]\n", + "2014-12-30 13:00:00\n", + "14 : predicted = [0.72 0.73 0.76] expected = [0.7090420769919425, 0.7081468218442255, 0.7385854968666068]\n", + "2014-12-30 14:00:00\n", + "15 : predicted = [0.71 0.73 0.86] expected = [0.7081468218442255, 0.7385854968666068, 0.8478066248880931]\n", + "2014-12-30 15:00:00\n", + "16 : predicted = [0.73 0.85 0.97] expected = [0.7385854968666068, 0.8478066248880931, 0.9516562220232765]\n", + "2014-12-30 16:00:00\n", + "17 : predicted = [0.87 0.99 0.97] expected = [0.8478066248880931, 0.9516562220232765, 0.934198746642793]\n", + "2014-12-30 17:00:00\n", + "18 : predicted = [0.94 0.92 0.86] expected = [0.9516562220232765, 0.934198746642793, 0.8876454789615038]\n", + "2014-12-30 18:00:00\n", + "19 : predicted = [0.94 0.89 0.82] expected = [0.934198746642793, 0.8876454789615038, 0.8294538943598924]\n", + "2014-12-30 19:00:00\n", + "20 : predicted = [0.88 0.82 0.71] expected = [0.8876454789615038, 0.8294538943598924, 0.7197851387645477]\n", + "2014-12-30 20:00:00\n", + "21 : predicted = [0.83 0.72 0.58] expected = [0.8294538943598924, 0.7197851387645477, 0.5747538048343777]\n", + "2014-12-30 21:00:00\n", + "22 : predicted = [0.72 0.58 0.47] expected = [0.7197851387645477, 0.5747538048343777, 0.4592658907788718]\n", + "2014-12-30 22:00:00\n", + "23 : predicted = [0.58 0.47 0.39] expected = [0.5747538048343777, 0.4592658907788718, 0.3858549686660697]\n", + "2014-12-30 23:00:00\n", + "24 : predicted = [0.46 0.38 0.34] expected = [0.4592658907788718, 0.3858549686660697, 0.34377797672336596]\n", + "2014-12-31 00:00:00\n", + "25 : predicted = [0.38 0.34 0.33] expected = [0.3858549686660697, 0.34377797672336596, 0.32542524619516544]\n", + "2014-12-31 01:00:00\n", + "26 : predicted = [0.36 0.34 0.34] expected = [0.34377797672336596, 0.32542524619516544, 0.33034914950760963]\n", + "2014-12-31 02:00:00\n", + "27 : predicted = [0.32 0.32 0.35] expected = [0.32542524619516544, 0.33034914950760963, 0.3706356311548791]\n", + "2014-12-31 03:00:00\n", + "28 : predicted = [0.32 0.36 0.47] expected = [0.33034914950760963, 0.3706356311548791, 0.470008952551477]\n", + "2014-12-31 04:00:00\n", + "29 : predicted = [0.37 0.48 0.65] expected = [0.3706356311548791, 0.470008952551477, 0.6145926589077886]\n", + "2014-12-31 05:00:00\n", + "30 : predicted = [0.48 0.64 0.75] expected = [0.470008952551477, 0.6145926589077886, 0.7247090420769919]\n", + "2014-12-31 06:00:00\n", + "31 : predicted = [0.63 0.73 0.79] expected = [0.6145926589077886, 0.7247090420769919, 0.786034019695613]\n", + "2014-12-31 07:00:00\n", + "32 : predicted = [0.71 0.76 0.79] expected = [0.7247090420769919, 0.786034019695613, 0.8012533572068039]\n", + "2014-12-31 08:00:00\n", + "33 : predicted = [0.79 0.82 0.83] expected = [0.786034019695613, 0.8012533572068039, 0.7994628469113696]\n", + "2014-12-31 09:00:00\n", + "34 : predicted = [0.82 0.83 0.81] expected = [0.8012533572068039, 0.7994628469113696, 0.780214861235452]\n", + "2014-12-31 10:00:00\n", + "35 : predicted = [0.8 0.78 0.76] expected = [0.7994628469113696, 0.780214861235452, 0.7587287376902416]\n", + "2014-12-31 11:00:00\n", + "36 : predicted = [0.77 0.75 0.74] expected = [0.780214861235452, 0.7587287376902416, 0.7367949865711727]\n", + "2014-12-31 12:00:00\n", + "37 : predicted = [0.77 0.76 0.76] expected = [0.7587287376902416, 0.7367949865711727, 0.7188898836168307]\n", + "2014-12-31 13:00:00\n", + "38 : predicted = [0.75 0.75 0.78] expected = [0.7367949865711727, 0.7188898836168307, 0.7273948075201431]\n", + "2014-12-31 14:00:00\n", + "39 : predicted = [0.73 0.75 0.87] expected = [0.7188898836168307, 0.7273948075201431, 0.8299015219337511]\n", + "2014-12-31 15:00:00\n", + "40 : predicted = [0.74 0.85 0.96] expected = [0.7273948075201431, 0.8299015219337511, 0.909579230080573]\n", + "2014-12-31 16:00:00\n", + "41 : predicted = [0.83 0.94 0.93] expected = [0.8299015219337511, 0.909579230080573, 0.855863921217547]\n", + "2014-12-31 17:00:00\n", + "42 : predicted = [0.94 0.93 0.88] expected = [0.909579230080573, 0.855863921217547, 0.7721575649059982]\n", + "2014-12-31 18:00:00\n", + "43 : predicted = [0.87 0.82 0.77] expected = [0.855863921217547, 0.7721575649059982, 0.7023276633840643]\n", + "2014-12-31 19:00:00\n", + "44 : predicted = [0.79 0.73 0.63] expected = [0.7721575649059982, 0.7023276633840643, 0.6195165622202325]\n", + "2014-12-31 20:00:00\n", + "45 : predicted = [0.7 0.59 0.46] expected = [0.7023276633840643, 0.6195165622202325, 0.5425246195165621]\n", + "2014-12-31 21:00:00\n", + "46 : predicted = [0.6 0.47 0.36] expected = [0.6195165622202325, 0.5425246195165621, 0.4735899731423454]\n", + "CPU times: user 12min 15s, sys: 2min 39s, total: 14min 54s\n", + "Wall time: 2min 36s\n" + ] + } + ], + "metadata": { + "scrolled": true + } + }, + { + "cell_type": "markdown", + "source": [ + "Comparer les prévisions à la charge réelle\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 30, + "source": [ + "eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])\n", + "eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]\n", + "eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')\n", + "eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()\n", + "eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])\n", + "eval_df.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      timestamphpredictionactual
                      02014-12-30 00:00:00t+13,008.743,023.00
                      12014-12-30 01:00:00t+12,955.532,935.00
                      22014-12-30 02:00:00t+12,900.172,899.00
                      32014-12-30 03:00:00t+12,917.692,886.00
                      42014-12-30 04:00:00t+12,946.992,963.00
                      \n", + "
                      " + ], + "text/plain": [ + " timestamp h prediction actual\n", + "0 2014-12-30 00:00:00 t+1 3,008.74 3,023.00\n", + "1 2014-12-30 01:00:00 t+1 2,955.53 2,935.00\n", + "2 2014-12-30 02:00:00 t+1 2,900.17 2,899.00\n", + "3 2014-12-30 03:00:00 t+1 2,917.69 2,886.00\n", + "4 2014-12-30 04:00:00 t+1 2,946.99 2,963.00" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Calculez **l'erreur absolue moyenne en pourcentage (MAPE)** pour toutes les prédictions\n", + "\n", + "$$MAPE = \\frac{1}{n} \\sum_{t=1}^{n}|\\frac{actual_t - predicted_t}{actual_t}|$$\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 31, + "source": [ + "if(HORIZON > 1):\n", + " eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']\n", + " print(eval_df.groupby('h')['APE'].mean())" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "h\n", + "t+1 0.01\n", + "t+2 0.01\n", + "t+3 0.02\n", + "Name: APE, dtype: float64\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 32, + "source": [ + "print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "One step forecast MAPE: 0.5570581332313952 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 33, + "source": [ + "print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Multi-step forecast MAPE: 1.1460048657704118 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Tracez les prédictions par rapport aux valeurs réelles pour la première semaine de l'ensemble de test\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 34, + "source": [ + "if(HORIZON == 1):\n", + " ## Plotting single step forecast\n", + " eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8))\n", + "\n", + "else:\n", + " ## Plotting multi step forecast\n", + " plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']]\n", + " for t in range(1, HORIZON+1):\n", + " plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values\n", + "\n", + " fig = plt.figure(figsize=(15, 8))\n", + " ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)\n", + " ax = fig.add_subplot(111)\n", + " for t in range(1, HORIZON+1):\n", + " x = plot_df['timestamp'][(t-1):]\n", + " y = plot_df['t+'+str(t)][0:len(x)]\n", + " ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t))\n", + " \n", + " ax.legend(loc='best')\n", + " \n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "No handles with labels found to put in legend.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHjCAYAAAB7INHwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xV9f348de592bvhDBkhhEggCICIqCCgoJ7K462Wm1rtV+7tFpb/XVpq6211tFaR93WPVBQQXAwFBXUMMLeSHZyM26Se+/5/fG+J+ecDJYhN+P9fDx45JxzRz6xac59fz7vz/ttmKaJUkoppZRSSqnuxxPtASillFJKKaWUig4NCJVSSimllFKqm9KAUCmllFJKKaW6KQ0IlVJKKaWUUqqb0oBQKaWUUkoppbopDQiVUkoppZRSqpvyRXsAh1uPHj3MQYMGRXsYSimllFJKKRUVn3/+ebFpmtktPdblA8JBgwbx2WefRXsYSimllFJKKRUVhmFsa+0xTRlVSimllFJKqW5KA0KllFJKKaWU6qY0IFRKKaWUUkqpbqrL7yFUSimllFJKqa6ioaGBnTt3EggEmj0WHx9Pv379iImJOeD304BQKaWUUkoppTqJnTt3kpKSwqBBgzAMo/G6aZqUlJSwc+dOcnJyDvj9NGVUKaWUUkoppTqJQCBAVlaWKxgEMAyDrKysFlcO90UDQqWUUkoppZTqRJoGg/u7vi8aECqllFJKKaVUN6UBoVJKKaWUUkp1UxoQKqWUUkoppVQnYprmQV3fFw0IlVJKKaWUUqqTiI+Pp6SkpFnwZ1UZjY+PP6j307YTSimllFJKKdVJ9OvXj507d1JUVNTsMasP4cHQgFAppZRSSimlOomYmJiD6jO4P5oyqpRSSimllFLdlAaESimllFJKKdVNaUColFJKKaWUUt2U7iFUSqluYv16+O9/ITsbfvxjiIuL9oiUUkopFW26QqiUUt3Es8/Cjh3wxRfw5pvRHo1SSimlOgINCJVSqhsIBGDzZvt84UKor4/eeJRSSinVMWhAqJRS3cCmTeDsX1tVBUuWRG88SimllOoYNCBUSqluoKCg+bX5891BolJKKaW6Hw0IlVKqG1i/vvm13bvhq6/afyxKKaWU6jg0IFRKqS4uFIKNG+1zj+Mv//z57T8epZRSSnUcGhAqpVQXt3071NXZ52efbR/n58POne0/JqWUUkp1DBoQKqVUF+dMF83IgDPPhLQ0+5quEiqllFLdlwaESinVxTkDwtxciImBk0+2ry1ZAhUV7T8upZRSSkWfL9oDUEopdfiYZvOAEGDGDHjjDQgGoaEB3n4bZs2C2lr7XyDg/mr9a2iAkSNh6tTo/ExKKaWUajsaECqlVBdWVATl5XIcDMp+wscfl8CuulqCxXAY1q2Dr78Gr/fA3nf7dhg8GI444vCNXSmllFKHn6aMKqVUF+ZcHSwpgS1bYPNm2LNHgrlQSFYR6+oOvrjMunVtO1allFJKtT9dIVRKqS7MCghNE3w+d8uJlBTo1UsCRa8X9u6Fk06ChAT7X3y8+7iiAl59VV5fUCDPV0op1T3V1Ei16pwcyM6O9mjUodKAUCmlujArIKythaQkOc7MhCuvlCCvoADuvtt+/vjxMHp06+8XCsG8ebKvcPdu8PslsFRKKdX9vPqqZIv4fHJfGTAg2iNSh0JTRpVSqouqqoJdu+TY74esLDkePhzS0yEuDsaMgb597dfMm7fv9/R6Ydgw+9yZkqqUUqr7qK6WSUWQPepPPy371lXnowGhUkp1URs22MdVVdKDEOxKowCGIdVFLV99JSt/++J8vQaESinVPa1dK9sRLLW18OSTMgGpOhcNCJVSqouyZm5DIUnn8fmkB+GgQe7nTZ7sTvvcX6P63FwJJAE2bpSZYaWUUt1Lfr59bO1PLy+Hp56SQmWq89CAUCmluihr9c7vl32DADk9/PjMBtfzYmOlL6Hl44/3PcObmAj9+slxfT1s29aGg1ZKKdXh1dRI1WqQycbvfU/uJSBVrJ97TiYjVeegAaFSSnVBDQ32zbqyMhIQLlxI7vWnyAbCX//aFfWdfLLc1K3Xvv/+vt9/+HD72FqJVEop1T2sWyc9bAGGDpUqoxdfbK8UbtoEr73mTilVHVe7BoSGYXgNw1hpGMbcJtfvMwyjynEeZxjG/wzD2GgYxieGYQxyPHZL5HqBYRintt/olVKq89iyRVI5TTNSUIZiWLaUYWaBTO3eeadUh3n0UQiFSEuT1FHLe+/tOxW0aUCoN32llOo+1qyxj0eNkq+5uXD22fb1VatgwYL2HZc6NO29QngDsNZ5wTCM8UBGk+d9HygzTXMo8HfgL5Hn5gGXAKOAWcCDhmF4D/eglVKqs7FW7QIBSeOJ37aeLErIpMx+0t69cPXV0mti8WJXcZmKCli2rPX379ULUlPluLRUehkqpZTq+gIB2T8OUnnaOUE4bpy7P+2HH8Knn7bv+NTBa7eA0DCMfsDpwCOOa17gbuCmJk8/G3gicvwScLJhGEbk+vOmadaZprkF2AhMPNxjV0qpzsbaP1hZGWk3sWEDubRSEnTVKpg+nf43nMeo3nZkN39+6yt/hqFpo0op1R0VFNj7A4cMkZ62TtOmyTyjZe5cqUiqOq72XCG8Fwn8wo5r1wNvmKa5p8lz+wI7AEzTDAIVQJbzesTOyDWllFIRpmm3nPD7ITOpDnbsYBiOPhRxcc1f+OqrzL73VPjic6ivZ/v2fd/Ene0nNCBUSqnuYfVq+zgvr/njhgFnnmlPGpomvPACbN/ePuNTB69dAkLDMM4ACk3T/Nxx7QjgQuCfh+H7/cAwjM8Mw/isSDtkKqW6md27pWFwKCRfs/xb8NHAQLayl55sy51JaO16mDOn2WuPDH5OnzUL4fXXYP165r/Vepm4IUPsQjTbtkkakVJKqa6rvt6ecPR4YOTIlp/n8cBFF9kVqa3G9cXF7TNOdXDaa4VwCnCWYRhbgeeBk4DVwFBgY+R6omEYkYxkdgH9AQzD8AFpQInzekS/yDUX0zQfNk1zvGma47Ozsw/LD6SUUh2VtVrn90vfweQdaxnMZh7lak7nLc6vfIwpcwZwcehZbr58Jw/n3MF7zGATg2kghlnMlyZSn37Cyj+9zZ7nFrf4fWJiYPBgOQ6H7T0lSimluqb16+2CY4MGSRui1sTGwuWX222PamvhiSegqqr116joaJeA0DTNW0zT7Gea5iCkKMz7pmlmmKbZ2zTNQZHrNZEiMgBvAN+NHF8Qeb4ZuX5JpAppDjAM0K2qSinl4No/mBHG2LSJNCp4jKvkgbR0gkEpC75gbV8ezryZW3Ke5+KYV5nKx/yT6/maMRSQy+6KRJ64dB51s8+ROuNN6D5CpZTqPpzpoqNHS7XR226DJ5+Eb75p/vykJPjud+UrSOP6J5/UxvUdjS/aA2jFo8BTkRXDUiSIxDTN1YZhvACsAYLAdaZpattLpZRysNpA+P3QJ6MYArWsZCwmBnh9kJzU5BUGZGZBejrhvXvZ8Y0PfziF8khCxpccyQvztzPgnQIGH7WHnIsnMvXUJI4+2r2PcMMG+b6G0X4/q1JKqfbR0GBPOBqG9B88+WTZMpCQIMVjJkyAmTPhqKPse0FmJlxxhXQ5amiQxvXPPy+rh17tFdAhtHtjetM0F5umeUYL15MdxwHTNC80TXOoaZoTTdPc7HjsT6ZpDjFNc7hpmvPaa9xKKdUZlJXJHo1AQG68WWUbSaSGBcyUJ6Slkp5uMHOmew8gAB4v9DkCRo8mJcOHgZQYNfFQSSo7zb58uCqFJ36znmvOLuSDxSbp6dKCAmS/4q5mSfxKKaW6gg0bZA8hwMCBsHChBIMg6aAbNsBXX8Hf/ga//CXMmyf3BYC+fd2N6zduhNdf1x62HUVHXSFUSil1CJzpoh4PpO/Ip5BsaonUBU9L59JL4apI9mgoBDt3SiP7zZutr7FsSRpI0pY6qooDEAxSSSppVGBYL9qxnb/9qJzjvsolN1daGoKsTlpFBJRSSnUdTauL3nef+/EdO2TVMD4eCgvh2WfhpZdgyhRZNRw+HM46C157TZ6/cqX0s50xo/1+BtUyDQiVUqoLsQJCvx8yEmoxi4v4nKmNj8dlp3LeefbzvV6Z6R04UHpHWcJhWLEijtt+G0vVthKqtpSS3VBENcmNweXugkqevXMb0783kI8+ktcVFEgKkVJKqa4jGHTvEx8yBD7/3D7PzJRJyNJSOOII+3p9PSxaJP9GjJDA8IQTpGE9wAcfQFqapJqq6Gn3lFGllFKHj9UwuLoasgK72M4Aqolk5CencMY5PtLT9/8+Hg8ceyycOM1g8MQeHHlBLhOmp/JswtXE0ND4vMfuLibRV9/YmHjPHlmdVEop1XVs2mQXgunfH774AkpK7MeTkyElBWpq4PrrYdKk5vsD162Df/4T3nhDAkzr/d58s8WaZaodaUColFJdRCAgjX/9ftmXkVm8gU0MadwLSFoal112cO85e3bkwOtla98pVP/1IebwXOPjNdUm//7OEoYNs19jrVIqpZTqGpzpoqNGSSqoJSHBDv4aGmDpUrjuOrj3XjjvPFkBdCovl3vV8uWyylhaKo3rd+w4/D+HapkGhEop1UVs3GhXFyUcomF3EWVkND5+wowYBgw4uPccOxZ697bP59WdxFUXVpFBWeO11xelELdna+O5tp9QSqmuIxRyr+ANGACfOpq+JSXZbSUAXn5ZCpylp8O550pgeN11uCYOPR7Zb15SImmjCxbAPffICqNqfxoQKqVUF7F+vQSElZWQGi5nnZlLPAF5MDaOy67PPOj3NAw49VT7fOVKqP7dX/lRqr1KaJrwxu9XysZDJLXIalyslFKqc9uyRaqIguwPXLcOiork3DBgzBjpNWgJBOCZZ+xzn09SSG+7Df7wB9lD6PPJquLgwdLAvqwM3n8fXnyx/X4uZdOAUCmluoiCArvdRELFXnbRFx/SqnVETh3jjjm0BoHHH2/P/pomvLMik3P+czpD2NT4nFUl/Ql8JFPGDQ2wdeu3+lGUUkp1EE3TRd94w24/kZAgAd5FF8keQssLL7S8n3zQILjmGqlQevHF0rZo4EAJLMNhWSlcu/aw/jiqBRoQKqVUFxAKScqo3w9gUlYUJM5aHQQuu8JzyA3j4+Jg+nT7/MMPoe6M8/n5SV+6nrf8oyChvcWAFghQSqmuIBx2B2h9+sCKFfZ5cjJMnSpfL7nEvl5TA8/ZiSTNpKTAGWdImuikSZCdLde/+UYCTk0dbV8aECqlVBewfbvM2FZWQqg6wJ5gVmO6aE9vCTN/Oupbvf/MmXbRgLo6KSF+7HM/5fj4zxqfU0kya19aDeFwY/qqUkqpzmvbNru5fO/esjWhsFDOPR7o0QOOPFLO58yBxET7tc89B1VV+35/jwcmTpT3jo+XVNSKCnjrrbb/WVTrNCBUSqkuwNluorZMAsE4JKfnkrEF+JLivtX7Z2ZKGwrLu+9CKKsnP73rCLyRtFQfQb4q60dgyeeUldl7TJRSSnVO+fn2cV6e7POrqJDzxEQ47jjZDwjSZP6ii+znV1VJ6uj+jB0rgWH//rIiWVQEX30Fa9a03c+h9k0DQqWU6gLWr5d00XAY/H6DOOoxMEmglnOuzNj/GxyAWbPs49JS+M9/oP+Pz+TCUZJPZAAGYb74sApKSrT9hFJKdWKm6Q7KsrKksJglORmmTHG/5rLLZJuB5Zln9p/+mZ4OOTmyV71nT0kbBelPqKmj7UMDQqWU6uRM0w4IqypCmKFQ4/7Bs3md1PNntsn3ycmRggKWJUvgkUcNrnllNqk+uWvHE2CtmUvZa4spWBtuk++rlFKq/W3fbqd8ZmfDhg125ofXKymekye7X5ORAeefb59XVLh7Frbm6KPla69esvXBNOV7a+po+9CAUCmlOrmiImn0W1kJ5SUhvASJpw4DkzlHrnE3EvyWrr1WigpYPvoIXvqoF9dcIxVrrDTVT/f0Z/vLKxpLlSullOpcnKuDeXkyCWgFhElJMHx4pBhMkw3j3/mOtJKwPP20VMDel3Hj5KvHIyuRVoVSTR1tHxoQKqVUJ2e1m6ishPq6MLHU4yXIdBbR97xj9/8GByEtDW65xR1jLl4M1eOmMqCXBKFx1LGDfmxbsJ6Ni3a06fdXSil1+Jmmu91EcrJkojQ0yHlSEkyZbMKNN8qy4IwZ0mUeKTRzzjn2a0tL4dVX9/39BgyQverWe2c4djpo1dHDTwNCpZTq5Kx00fIyE1+4nngCGMDlPC11vdtYRoYEhT172tc++MAg76IxmB5vY3XTT0LHsOaXjzU2rFdKKdU57NplF4/JzJS2RtbqoM8n+wQnBz+Av/5VnrhwIfzoR42v/+537WIzAE8+afcubIlhSHEZSzBo32OqqzV19HDTgFAppTo5qwx4dVU4ki4aYDT5jOlVZG/MaGOZmfDrX8tMsGVbWSqZw3sSRx0A5aTz2tphhB/692EZg1JKqcPDuTo4ciQsX+5OF01JgSPfu8f9opdekka1yF7AM8+0HyoqkpW+fbHSRkH2L06fTmP/XE0dPbw0IFRKqU7M74cdO2DPHiAUIoYG4qjncp7GOON02ZBxmGRlwa23yldLUu4R+BN6EYPkFS3nONbe+Jg0s1JKKdXhNU0XjY2VSUdrxTA5GSaN9uOd38Ky3U9/Kj2QgO99z30L+u9/7ZTTluTlufceFhXB8cfb55o6evhoQKiUUp3Yhg2yP6Oy0oRQiARqOILdTGfRYUkXbapHD1kptPZ7pKQYpOb0oAG5qweI45+1V8E112ineqWU6gS++QbKyuQ4LQ02bbJXB2Nj5d+UyvktbwdYuRKeeAKAvn3htNPc7/v2261/35gYGD3a/VbTp2vqaHvQgFAppTqx9eth82YwwyY+giQQYA7P4Y31ySb/dtCzpwSF6elynjs6loakdALEAzCfWWx/bx08+mi7jEcppdShc64OjhgBn33mThcFk8kf39X6G/z6141lQq+6yr1K+PjjjQuILXLucsjPl5jzvPM0dfRw04BQKaU6sfz8SBPfkLSbyKSUs3kdpk2TvJ520ru3FJpJS5PZ49wj46nzJFJHPHXEcRc3wi9+ATt3ttuYlFJKHZym6aKGIStzxcVynpQEIzIKydrymf2k2FhpSmjZuxfuvBOQ6qEzHa1wd+6Ed95p/fs7C8s0NMhY+vbV1NHDTQNCpZTqpOrrYdGiyJ6MUIg46riQF0mipl3SRZs64ggJClNSICfHICE1htpIQLiQk1lRmQs/+IGmjiqlVAdVWGgHfykpkoFSXi73mbg4Seuc4p/vftE558Avf+m+ds898mLg+993P/TYPopPp6fD4MH2+cqV8rVp6ujcuYfww6lWaUColFKd1KZNUgocTDDDJFPFHJ6XB08/PSpj6ttXgsLUVMgd4QVfLLUkUEYm9/BzwvPmS/1xpZRSHY4zHXPoUAnICgvlPDkZCAWZsuoB94uuugp+9SuZFbTU18NNNwES4J10kv3Q1q3SpaI1zrTRlStlDtHnk9RRK/306681dbQtaUColFKd1BtvyEyppIuGmcECerNXaoQ7p1jbWf/+cPPNUjEuIcULhodKUlnBMbzBWVKFbvfuqI1PKaVUy5zpouGwrAw69w+m1u5ldJ0jXbR/f9mvnpzcmCba6OWX4YMPALj6avdDjz7a+iqhMyAsL5cAEmTCcepU+zFNHW07GhAqpVQn9corkc35Iek/eC0PyQNRSBdtauBA+M1vYMgQA2JjMYFisvkDv6G6vB6uvVZTR5VSqgMpLpbtfyDB3+bNEAhIfZiEBPB6YVLle3hw/O2+8kp5AODyy2HCBPebRtpQ5ObCCSfYlzdubGxZ2MyAAe52RlbaKGjq6OGiAaFSSnVCBQVSYRRMCIcYxFbG8pU82AECQoCcHNlWkp7hAV8MIbxsJYdbuEOmdp97LtpDVEopFeFcHczJkXNnMRlqa5m65wX3i6680j72eODee92Pr1olDQhpvkr4yCMtzwsahru4jDMg1NTRw0MDQqWU6oQefBCCQSI5NyYXEblJp6fD5MnRHJrL9OkwezZ443yEjBhM4Dnm8DLnwk9+Yk9HK6WUiipnQFhfL7eXwkIJ0JKSgOJiJrHcftLJJ8OgQe43mTwZLrnEfS3ShiIvD447zr68bh0sXdryWJxpo1u32n0RQVNHDwcNCJVSqpMpLJSy3Va6aBx1fJ9H5MFZs2QKtYPIzpZGwxMmGBAbh4lBGC+383s+Ks2DW2+N9hCVUqrbKyuDPXvkOCFB0kXDYVkhTEgAjxEmr3wpmTgis6blQy1/+Yu7DUVhIdxxB3Dgq4R5edLNwuJcJQRNHW1rGhAqpVQn8+KLUFUVuYmGQwxlI72I7PrvIOmiFsOA3FyYNAmye3kIxyUCsIc+3M2N7H5svuS/KqWUihrn6mC/frLHr7xcMlGSk4HycqbUv28/KT0dzj235TcbMABuvNF97e9/h82bOeooGD/evvz117BiRfO3iImRyURL04BQU0fblgaESinVidTWSuG26mrADOM1g8zkXQyQO+OsWVEeYXMjRsjNe+pUSMqIw4jcwfMZxVxzNvz2t1EeoVJKdW/OgDAQkK+FhXJbSUgAiouZwhL7SZdd5l4FbKqlNhSRILGlVcKWjBvnHl99vftxTR1tOxoQKqVUJ/Lmm1BaajWjD5NKBdOQst5MnuwuzdZBDBoks705OdCzl0FKD0lprSCdF7iI8hffhS++iO4glVKqm6qogJ075Tguzm7zUFQEiYngCdaTVrmDPBxLcK2li1qSkuDPf3Zfe+UVWLyYY46Bo46yL3/xRcu3AGdhmYYGyM9v/pymqaPz5u17WKplGhAqpVQnEQ7Ds8/KDGgoBEY4SBalHM9H8oQoNaPfH59PGhwbBhx7LMRlJGN45fazljzmcroUHVBKKdXunKmW2dmwY4esEvr9kXTRkmIms9RuN3H00e6qL6257DKYONF97ac/xQiHDmiVMC0Nhgyxz1etav6cllJHm64kqv3TgFAppTqJDz+UWdzqagCT5HAluRSQSCS/p4PtH3TKzZWvPXvC6NEGyT3iAAgQz7/5IYF3FsPixVEbn1JKdVfOdNHaWvlaVCTtBePjTSguYTKOcqD7Wx20tNSG4ssv4fHHmTRJCsdYPv1UgrmmnHHnypUtF6Dp29cudhoK2Suc6sBpQKiUUp3EM8/I15oaIBwmgzKO4ku5OHAgjBoVtbHtjxUQWsc9+iU0VkNdxwhe5Ry45RZtVq+UUu3I74ft2+U4JsadLpqUBEaVH6M+wHEskwfi4uDSSw/8Gxx3HMyZ4752660Y/soDWiV0po2Wl7ce7A0dah9v3Hjgw1NCA0KllOoE1qyR2dFQCOrqINGoJZY6O130jDMkJ7ODSk2FPn3k2OuF8883SMyUggRhvPydnxNa/qlsklRKKdUu1q615+HS06GkxG43YfUeHMVq0qmQJ513HmRkHNw3+ctfIpVpIgoL4U9/4vjj3ZOFS5bA+vXulw4Y4N4a37TaqEUDwm9HA0KllOoEnKuDpmmSHiwmjnomEKnX3UH3DzoNH24fjxkDg0fEyZQ0sIkhPMsc6UsYCkVphEop1b04C7VYFTqtJvBxviCUlbmrix5ouqhT//7N21Dcey/G5k3N3q5pP0HDcK8StlZ/rHfvSACLrG5WVBz8MLszDQiVUqqDC4fh44/luKoKYr1hEkOV5LCFZGqkDNz06dEd5AFwBoRbt0qGaFy6PWt8NzcRyl8Nzz3X/oNTSqluprraTsH0+WDbNjluTBctKwXTtAPCQYMO/V5z002y2c8SaUMxfbp7BXD+/OZzgs59hNu2SaXtpgxDVwm/DQ0IlVKqg9u2zSokIzO4SR6Zxj2ayFTpjBn77gfVQfTta8/g7t0rFUePOTYGYmMB2EVfHuYHcNttWiZOKaUOM2e6aGKiTDiCZHQmJwPFxWRQxgjWyQNXXmmX8zxYLbWhePVVPB8scrXPLS2VAjNOeXmyddHSUrVR0IDw29CAUCmlOjgrpcfaPxhfX4mBY9a2A1cXdTIM936RDRvgjjsgJtVeJfwHP6VmyzetdypWSinVJpzVRa1Jx9pauc/EBmugpsZuN2EY8L3vfbtveOmlMhPo9LOfcdqp7iXBpr0EY2Jg9Gj7vLW0UWeLik2bJLtGHRgNCJVSqoOzAsLqatk/GF9XQTLVjLKaBJ92WvQGd5CcAWFBgewlnDnL1zj9W0Q293ID/P739icUpZRSbaqmBjZvlmPDsBvTFxXZvQcBe+Jx5kyp8PJttNKGIvfjxxg82L60aJHd/sLiTBtdvVqC1qZSUmQvIcjr9+z5dsPtTjQgVEqpDs4KCKuqIIYGvATpy06yKJG7pHNfRgc3dKidcbR5s5QRv/NOiHWsEj7K99mz14D77ovSKJVSqmtbt85eQYuNtQOswkJISgxDSQkewkxiuTxwKMVkWjJpkjSsdzB+cyuzT6xpPK+thQ8+cL/MWVgmGHSvbjpp2uih0YBQKaU6sEBAUitNU2Z048IybXoMn2NAp0kXtcTH2zfsYBBeeEHaUZx7gbdxH2QF6dzFjXDXXXa5O6WUUm3GGVBZewfDYbnPxFSVQyjEaPJJxS9VX84+u+2++Z13uttQFBUxa/XfXE95+233S9LS3Cmh2n6ibbVrQGgYhtcwjJWGYcyNnD9jGEaBYRj5hmE8ZhhGTOS6YRjGfYZhbDQM4yvDMMY53uO7hmFsiPz7bnuOXyml2ps1i9vQAA31JvH1fmJpYJxVUKYTtJto6rTTGuvIsGMHLFwIv/sdJGYmgGFgYvA6Z7OqfKAEhUoppdpMba3ssQOZbNy9W45LSyPZ+8WSLjqVSHnryy93V3X5tvr3l6qjDn0e+QPjhtq9IpYvb15N1Jk2unKlXRDHacAAqZgKsH17y6mlqrn2XiG8AVjrOH8GGAGMARKAqyPXZwPDIv9+ADwEYBhGJnA7cCwwEbjdMIyD7I6plFKdhzWLW1MD4VCYeGpIoZLhrIfsbJgwIboDPARZWXDWWfb5Rx9Jz6iLLvE0rhL6SeUubiR87326EUQppdrQujTM7GEAACAASURBVHV2awePxw6sioshKaYO/JUATGapPHDVVW0/iJtugn797POGBmZveajxNByGd991v8QZEFZUwJYtzd82Jka6Y1jv0dJzVHPtFhAahtEPOB1oLB1nmubbZgTwKWD9ZpwNPBl5aDmQbhhGH+BU4D3TNEtN0ywD3gNmoZRSXZRz/6ARChFHPT0opj87ZHXwUEuAR9lRR7lv7i+9BNdeCxl94sEwCONhBRN4K3AS/PGP0RuoUkp1Mc50Ub/fPg4EwFtWAkAWJeSyHsaPhyOPbPtBJCY2a0Nx8qd3EFNb2XjeNG20f393z0JNG2077flJ4l7gJqBZEdhIqugVwPzIpb7ADsdTdkautXa96fv9wDCMzwzD+KyoqKhtRq+UUlGQny+znIEAxIYDeAkxji+kDHgn2z/Y1BlnyCInSEHRjz6CCy70QEIiAJWk8U+up+bfT9n5TUoppQ5ZIGAHScGgFJEByUKprzcbq4s2tptoq2IyLbn0UikyE5GKn+NDixvP16yRPrwWw2ieNtoSDQgPXrsEhIZhnAEUmqb5eStPeRD40DTNj9ri+5mm+bBpmuNN0xyfbX3aUEqpTqa0VLIl6+ogWB8m3qwhGT95rJW8mJkzoz3EbyU2Fi66yN7vsXmztKHoOzgWPB6C+NjOAP4buhxuvz26g1VKqS7AmS5qmnaSSWkpJIX8UF8PRNpNxMfDJZccvsEYRrNVwtmbH4BQsPG8aU9CZ0C4bVvzfYYAPXtKCwqAkhKtTXYg2muFcApwlmEYW4HngZMMw3gawDCM24Fs4OeO5+8C+jvO+0WutXZdKaW6HGf/wVBDiHgCpFJJHmvghBMgNTW6A2wDvXu72ygWFMCUqR68SVKBroI0nuJydj+zCL7+OkqjVEqprsGZLlppZ2dKcFgqWXUewhzLJ3DBBZCefngHdMIJOJsQTmlYREpNYeP522+7i8eMHOmub7NqVfO3NAz3KqEmmOxfuwSEpmneYppmP9M0BwGXAO+bpnm5YRhXI/sC55im6UwlfQP4TqTa6CSgwjTNPcA7wCmGYWREismcErmmlFJdTn6+3Airq4FQmDgC9KCYwWzu9OmiTuPHw6hRcmyacrMfNDwOvF7qiaOSVO7jJ3DrrdEdqFJKdWJ1ddLGCGQhsLxcjsNhKC0KNl44ii9JoerwpotaDAO+853G01gamFk3t/F89273XGBMjGSSWL74ouW31bTRgxPtagT/AnoBywzDWGUYxm2R628Dm4GNwH+AHwOYplkK/AFYEfn3+8g1pZTqcvLz5abdUG/iMRtIo4JRrMFHqEsFhIYB55xjT0QnJ0NWD4O4VJkGriCNBcxg5Zs7YOnSKI5UKaU6L2e6qGGA1yvHFRXgqyxpXIqbzFJp+nfiie0zsCuucJ3O3vYQ1AUaz5sWl3E2qV+9uuXWEs6ehZs2SdCrWtfuAaFpmotN0zwjcuwzTXOIaZpjI/9+H7lumqZ5XeSxMaZpfuZ4/WOmaQ6N/Hu8vcevlFLtIRyWG10gAA11drroSNZCbq57+rMLiI+Hiy+W/SyGAT16QN/B8eD1UUsi9cTwN35B+OZft9x8Siml1D4500UDdryF12PiiRSTgcj+wSuvlD/G7WHwYJg6tfH0KL6kT71dTebdd6UXr2XsWHtowaD757IkJUGfPnIcCMAu3WC2T9FeIVRKKdWCbdskVbSmBsLBMHHU2QHh7NnRHt5h0a+fXSenf38wMUjpIR3sK0hjHSOY+1EqvKM7BZRS6mA400VDISm2YinbWSXd6oFsihhmbILvfa99B+hIG/VgMrvkGUAm/yorYdky+6lpaa5th5o22gY0IFRKqQ4oP19mPuvqTAiFSKKadMpl/+Csrtt+dcoUGDZMUplyciApKwHTF0M1yQTx8gDXUXPz7zX/RymlDkJBgdxTwE4VBYkD/dvtMpyTWYoxexb0bdbV7fC68EJXtZhZJU9DVXXjedO0UWe10VWrWk4c0YDwwGlAqJRSHVB+vqS5BOvCgElPCsllA774mPbb1xEFhgHnny8lw3NypIBASo84whhUkkoJWTz+5dHSyV4ppdQBcaZVOvfcxXiCeMvt5cIpLIGrrmrHkUWkp8PZZzeeDmYLw0P2oD/8EKqq7KePG2cfV1RI26KmBgyQewjAzp3uNFnlpgGhUkp1QM79gz6CZFEi6aInnggJCdEe3mGVlCTVzuPj5YaemB6HGROLn1TCGDzDZey+5Z/2dLdSSqlW1dfD+vVybJp2M3qAmk17GivNeAkxsccWOPPMKIwSV9oowGm7HoFIE4L6enj/ffuxfv0gK8s+b6n9hM8nE4sgSSUtBY1KaEColFIdTF2dpPcEAhAOmSRQSzJVEhB24XRRp8GDJfYdOlRmeJOz4gjixU8K9cTyj81nwH//G+1hKqVUh+dMF42JsSuNhkKwe72dljmWVSR/5zyIjY3CKIFTTpGu8tZp7Wt4Ksobz51po4bhThtdubLlt9S00QOjAaFSSnUw69ZJMZlggwnhEGmUk0Cgy+8fbGr6dMjLk0pxaVmxmDHxVJCGCSzkZL649eXGQghKqY7LNOHLL2H+fPD7oz2a7seZLupMrIitq8R05GFGLV3UEhMDc+Y0nmZTzISgXU3m889h71776c6AcNs2d6EciwaEB0YDQqWU6mAa9w8G5M7dkyKGsQHfwH4wfHiUR9d+PB646CIYPVpmgzN6xVJLAtUkAfC3wssJ3/9glEeplNqXDRvg97+HO++Ef/0L7r5bO8e0J2e6KLgDKrNJhDTlqGoYNaqdRtaKpmmjO/4NQek5YZruItMjR7rq0LSYNtqjB6SmynFZGZRq9/IWaUColFIdzNdfR/YP1ocxgD7sIY81sjrYXn2hOojUVLjmGtkrkpzuIybORzFZmEABw5n7h5VSk1wp1aF88w3cd58Eg/n5kvmwaRPMmwdvvhnt0XUfGzbYPfwSEhxJFeEw3xTYfzt7UsjgH3eADJSjj3YFpdPDC4irLGo8d6aNxsTAmDH2eUtpo4ahq4QHQgNCpZTqYD77TNJ6wkGTBGpIINCt9g82NWKEVB4F6NE3lhqSqSYRgPv936Hmwf9Gb3BKKRe/H556Cm6+GVaskH1qW7fa+9YCAVktnD9f60K1h/x8+9j63wAgruwbiuuSG8+nxnyCccnF7TiyVhiGa5UwkVqm1cxrPN+40e6nCO600dWr3RVULRoQ7p8GhEop1YGUlsL27RCqDwFhMignlnpyvDvgpJOiPbyo+dGPoHdviEv0kZIYZi+9MYFSMln47N79vl4pdXjV18PcufCLX8C770rwYZqwY0fzVZqqKgkaH3pI2gGow6OhwZ0u6qwuam7bjjPf5MTpXju3Mtouu8yVDXPa3sdc+8Xn2fEhY8faTw0G3QGwZcgQ+zmbN7sDYyU0IFRKqQ7E2j/YENk/mE0huazHN3VSx7lZR0FMDFx/vTRUzuwTS4B4SskEYOnqNHeDKqVUuzFNWLIEbroJ/vc/d52nigopCjVjhqT2zZwJGRnyWEEB7NoFDz8M772nq4WHw4YNEqiD3D7KrYKdpsnOLfWNz0vBz8SrRrf/AFvTt6/80kQcyydkVNszB/PnSxsJkJ9ryBD7pS2ljSYmwhFHyHFdnU5CtEQDQqWU6kA+/VRmdYMNJgYmvdjbrdNFnU47TWrq+BJiiTMaKCWTAHEsD08gtGBRtIenVLezejX89rdSLMZZ4dHjgaOOkq1gw4fLRM6MGXDDDTBokPwLhSR9zzSl6biuFrY952qZFUABUFlJcW1i4+k0z0fEzJ5Bh+JIG/UR4pSy5wGpRlRYKBVHLc600VWrWi5apGmj+6YBoVJKdSBLl0I4bBIOhYmlodv1H9wXqyJ5VhYkJpg0EEspmVSSwurnvor28JTqNnbtgr/+Ff78Zyn373TMMfCb30jAFxMj10aMgOOPh4EDYfJkSE+Xa6WlkhEB8iH/4Ycl3VRXC7+9hgZZhQVJlywuth8zdu10pYvOOKa042WgnHsuJCU1np5W+TxU2j1LnGmjzoCwosK9x9CiAeG+aUColFIdRDgsM+7BWvk0lEY5cdQzuFeNTLcrZsyAnBxIz/RiArUk0EAMSxYGtJa9UodJfb3sbS4pgUcfhVtukb6CTkOGSCD4k5/A4sV2FndmphSFsvZwXXAB+Hzyr29fCQ6TI7VNTBM++ggefFBXC7+tjRvtdNGMDKn6atm92c7rTcHPxEuHtfPoDkBSkvyyROSxhgEBe0PkwoV2AZl+/aBXL/ulK1Y0f7v+/SE2Vo537dIWtk1pQKiUcgmHpcrlCy/Ali3RHk33smGDVOgL1ln7B4sYTgHeWTO7XbuJ1iQnw7Rp0HtwIh7C1BFHgHiWluTqtK9Sh8HGjXD22TB9uqzEPPmkuyhHdjZcdx3cfrukh777rgSPYK/qx8fbz+/RQ/YSWtavl8/9Rx5pXysqktXCd97R1cJD5WxG71Tvr6Os3D6fxmJizj6tfQZ1sBxpowYwe+/jEJZfvupqmTwAuT1OnGi/7NNPm88Per0weLAcm6YUl1E2DQiVUo2sDf6vvy698J54Qv9otqcFC+RGFWww8RImkzJNF23B7NmQmuElMSaIiYGfZNYyktJXFkd7aEp1Kdu3ww9/KIU6ysvlQ3h+vqwA7t4tgdxdd8GkSfKhPD9f0t4tZ50l1YGbOussKfQBMgk5dy5ceCFceql7tfDjj2W1cMeOw/6jdinBoPR9tDibsRvf7HGli87M2SRpFx3RtGmytBcxu/516S4f4exJ6AwIS0ul52VTzrTRltJKuzMNCJVSBALSKPjf/5ag0BIKwbPPwp490Rtbd7JsGYSDIcImeAmRTjkjWeeeTlf07CkZtEnJ8rGmlkRMDJa/vGs/r1RKHai9e+HHP5ZJQauxOUjgFxcnH7r/+U9pH1FdLXsAX33Vft7EidISoCXJyXDmmfb5Z5/JB/SRI+H//s+dIV9UBP/5j6wWOsehWrdxo51OmZ3t3ue5d7NdkTkFPxMuGNjOozsIHg9cfnnjaT92cWTdZ43nS5bYlVMHDpSf1dJS2mjTfYS6y8CmAaFS3Zhpyj6Qe+91p1gkJMi+D5CbypNPuibl1GEQDsvserBWPvEkUkUqleRMzJYqKspl4kTo0UcqVtQTSx0xLFmZaFeoUEodstJSuPZaWSH0R+p4xMTIql7fvnJ/8Hrlw/gDD0gF4Ouvh8pKeW6/frKSvy+nnGLfZwCef17uQQkJsvJ42WW6WnionOmiPp99b6+pClNRYufgTmcRMeec3s6jO0hXXOE6nb3nscbNkaGQZNbAgaWNZmbKnlWQ4jPOyrjdnQaESnVThYXw2GPw0ksyu2sZN05Kg191lV10rKpK0kedz1Nta9MmmQkP1oXwYJJJObmsxzv7lGgPrUMaNw4yjkggzmjAxKCKFJYFxxP+8ONoD02pTq2yUvYEbtsmgaFpSjGO6dNlf+DFF9vVQ8FuPv/RR9KHcNUqCfZ8vn1/n9hYKTZjWb/e3UNuxAhZLXSuMhYXy2phS83HlQgGYe1a+9w5mWsWF+MJ2wHhjLTP4Nhj23F0h2DkSJgwofF0Ju/iLbNLpraWNlpc3LwOgmFotdHWaECoVDdTXy9NgB94ALZuta/36gVXX21Xek5Lg+9+V2ZrQWbSnnrKrlqm2tbChdJuIhh0povq/sHW9OkDQ4YYJMZLc60qkqkklTXProryyJTqvGpqJAjbsEGqMNbWSmA3caLU9xg5En79a9lnPmeOpI5WV9sVG4NBua9cdpnsLXRWtmzJ1Kmy4mj53//cBWsSEiRovOwySEmRa6Ypew6tlEjltmmT/d+mVy930FO82W7bkEolE87sLUu9HZ2juEw6FUypeRerJ+FXX9lbXXJy3Ak1n37a/K00IGyZBoRKdSNr18J990kTYKtJbWysxBzXXis5+E49e0r6vjXTu2sXPPec+4at2sayZRCuayCMgccKCFN3u2ZGldsJJ0BKunyYCZBACIOl7+kytlKHor4efv5zWX0zTZkE9HrlT9CIEe6tzD17wi9+IROLOTn2imFKigSJ9fVSqfqcc+APf2g9zdPjkRVHy+7dcn9qasQIaWdhtRZwVphUbs500fh4u0qr3w/+YjulvkNXF23qkktcS86zS5+R2YsIqydh07TRFSuap40OHmwX7d6yRT/PWDQgVKobKCuDZ56RAjEVFfb1UaMkPXTKlNYnCQcMkBu29Qd040Z47TXdjN2Wysrkv2swEMTAxEuIbArJOTW3c8zeRsn48ZDVPwEPYUJ4qCaJJbsHaQMzpQ5SMAi/+pUUdwG5T4TD0mQ+I8M9MWjx+6XQy/jx8nn99NPhiCOav+/rr8sq329/23LV6rFjJeCzvPJKy6t/CQnufYnOgiJKhELudFHn/T5UUYW33m6+N8O7WHJ7O4MePeQXLOIEPiSxwq529/bb9mcSZ0BYWOguqAPye9SvnxzX1+ueVIsGhEp1YcEgfPCBVIJzlqDOzJQMjEsusfcJ7suIEdKHyrJqlewlUW2joMDeP+glTCp+8liL97RToz20Dm3oUOjdN4ZEnxTi8ZPKGvIof21xdAemVCcSDsNtt9krbsGgBBJHHy2fw8eNgzG+tbJn4IUX4J13CC1Zzv/u3UPVHj/U19Ont8n998Nbb0nKqbNYjPU95s2Diy6SLBXnhKJhyL3IUl4O8+e3PNYhQ6TXoTXO995ru/8OXcGmTXZdrT59ZF+mpWSLHR2mUsnEExMO7ANAR+FIG42jnhnlL4EpqU7bt9uB8JAh7t+//aWNavsJoQGhUl3U5s2SzrNggV2q2+uVwgDXXw/Dhh3c+x1zDJx8sn3+8cfuflPq0H3+OfgrwgTDjnRR1sKpGhDui8cDxx8PiUmyfF1ttZ94Ydt+XqmUAgnM7rjDPcFXVgZjxkh6pq+8iMvmXQ55efKB/OKLYdYs3p36O7bd9gj8415i7vojc27sR3zfLBJHD+Y7fz+aNwMzuYm76LnnS/m0vmuXbCgsLeHJx4Pcf797HEOGuFd25s61q5s2deqp8v99kP1jmhBgc6aLJifbWZWVlVBdZK8OTmMxvrM7eHXRpk4/XZarI2bVvAIVlY3nVnEZw3DvtGip2qjuI2xOA0KlupjqanjxRXj8camyZRk6VPZgnHSSu0LcwTjxRPcf2nnz5IasDl1dnaRphevqCOPBS4g0yskbYcoUr9qnE06AtCz5hW4gljpiWfppjL1xRinVItOEv/9dtgBYAgEYNAj6xhXD++9z+txr6fneM67X5TOKpUxuPD+LN+gd3i0lSbdsgVWriPtoARd9/ite3z2e3xT9H/2+WQG7dsrjX+fzxD3FPP6Y+1P6hRfaGfKBgHtcTtnZze9DuoWhebpold1ukEBVAzE1dn7tDBa4G0F2BnFxrg2n4/mM7Cq7jOg779h/9p2TC3v3Nk8L7ddP3g6kz7JWUNeAUKkuJRSCO++ERx6RVJFgUDb5X3yxTO5+23Z2hgFnnCGTxZZXXpE0FXVoNm6UG1awNoiXMAbQi0IGnTkm2kPrFMaMgeyBCcQiy+CVpLKs7mjCy1vIE1JKNfrPf2RfucU0YXB6KQM2LIT588jYnc+ZvOl6TRE9eJVzG88nsIKxfNnq94ghyDm8zsuczxU8JRdDUor0gRvW88K9uxuf27u3ZLBYFi6UPWAtmT5dCqaALEA6V8a6qy1b7Gqvffq4t4mUb2uSLppXLdWAOhtH2qgHk1nFTzdGgWVldnrosGF2v0Fonjbq8ciqNMjvfUt7W7sbDQiV6kJeeQXefFMqta1dC19/Lfv/hg+3i8J8Wx6PzOQOGiTnoZB8qNi9e58vU60oKIDCQpNgfRgvIXwEOYbPdf/gAYqNhaPHeUiKl1JxVSRTRgbrnv0iyiNTquN65hl4+GHHhSo/UwtfIW3JW7BH/pjP4TnisPsM1Y07jueOvJP6QcOhzxH061nPadmf2Ust++AlzP9xHxfwkut73vXzPbx92TONVWTOOccO9EIhyXZpSVKSZKxYnKtD3ZWzN2NGht1/sLISaorsipzTWIzvzNl0SpMmufI9Z4fehLLSxnNNGz10GhAq1UXs3Qv332+3kxgwQG4KL74o5cEXLWq78so+n/SFskqA19fDk09KxpA6cOFwpKDMrgaCePEQIo0K8uK3wOTJ+38DBcje1sQUKYHY2H5iXsV+XqVU9/Tqq5IqCkCVH9YXcE7Bn6nbubfxObmsZxLL5WTyZMz57/DajUsoOutquPxyEn/yfS5Z/wd8hbslvzMQkJvQ+vWSA79wocxQPv443Hsv/O53GNdey03x/2Q28+zBmCb/79lhLBr2A/jgA9LS4DRHJ4Tly5s3F7dMmmRvKSsvl9Y93VXTdNFae7sg/sowsVUljeczea/zpYtaDMO1SjiMDQyptvetLFpk75t0po3u2dN80rppQNjd0441IFSqC7AKA1gBWWqqO12irAweewxuukkKwVhB47cRHy9/l9PS5Ly6Gp54wr1vQe3brl1ykwr46wEDD6YUlJmaJUtf6oBMngzpfeLxECaMQRXJLN16hHsTrVKKd9+FO+4wwV8ps1EFBZzpf5a+7KKaZAAMTL7Dk9RPOYndz3/Ilw98zOu1p5C/WtJMDEOqhVp/+wFZJezZU3L1jjlGNqufey5873vS2+i22+DBB/Gs/prbZy7jRD5ofGkYD7/e8SM+mXYTXHUVsyeWuN77+edb/rDu87nrbn3wQffdC7Z1qx0INU0X9e+pwgjLbHAqlUzI2iLRdGd1+eWNhwZwWslTUCelVevqYPFieSw31/07+skn7rfJyLCrkVZWSqXv7kwDQqW6gHfflZshSErntGkSII4b535eYSE89BDceqtUtvy2M2KpqfDd70pfH5CA9KmnWu4hpZpzt5uQG3Y2hQw69+goj6xzSUuD4aNjSfDa7SfyGUXl64uiPDKlOo4PPzD57Q0VmOsKZCWvys9JLORcXuF1zqaIHuykH77eWfzvB+/zx2kLeCj/eF562eDzz+33Oflke//VQRs8GN87b3HnU/2ZmGDnODYQwy/4G18+/jnxY0dwbvJ7gNyg1qxxp0M65eXBwIFyXFcH779/iOPq5Jz/fXr1khUxkECnttiOkqezCN/pp3bu/rY5OVJNLGIW86HEXgG10kY9HumRadlf+4nunjaqAaFSnZzfD3/9q50O2r+/VBMdMAB+9jO4/XZpQO+0c2djFg/5+d8uMMzOhiuusCuX7t4Nzz3XdumpXdm6dVC4J0gwaOKJBIQTWIF3didpFtyBTJ0KSYlyXEMSITwsf35rVMekVIdgmiy55xN+fvo6/Ot2UlllUEoGyVSRQC03cB+bGMKupOFUDhtPjytOx99zSIsbz0ePdn0WPzSGQezlF/HXDWczJtfeoxggnhv4BwXFmUz7yyx6f/iiRDS0vkpoGO5m9StWtF6IpqsKhyVotlh9CEGyg+L8drA0gwVSGa6zc6SN9qKQY/wfYE0gfPqpnRziTBu1MnKcNCC0aUCoVCd3113S3gkgMRF++EOp1mYZOhRuvhluucX9xw+kOuhf/iKVSb9Nc9b+/aWSqdUbatMm2T7S3XPy96W8XLbcFG2tJoQXD2HiCTCh7zeds/pblJ16KiRmSJptEB8B4li6zGib/GilOimzNsC/xj7EnF/0YVd1GmVk4CeFdCo4jmXsYADFSQNh8BDIGcyICSmNNWKSk6V42PjxMGsWXHmlpIq2VYGyxL4Z/GPFZIadPLCxkkwVyVzP/eygPxdtv1saEn79Ndu3hlrte9u3Lxx1VOTnNVtvat9VOdNFe/d2N6OvKg5g1EuEmEolE3yrukZ/2wsusKsPAadV/a9xv0o4LFtYQQrqpaTYL2u6Sjh4sP25ZevW7l2YSANCpTqx5cvlfglyk5482b0h3ykvT7Zx/PznEsA5rV0Lv/893HOPlPA+FMOHw9ln2+dffSWV31TLCgrk5lNUZGIgeyHSKWfEjH7RHlqnlJMD/YdJ+wkTqCSNpdVHEl6ljTJV9/XOd57hz1/NpgFf47VsipnJuxg5g1iTdyHxIweT1ieJ0aPl/vDDH8q2gl/9Cr7/ffm7PmWKfHhuq2DQkpoKD7yQzYBT8+CIvmAYlJHBj3mQvuxkaLgAvlwFc9/ixXt30dDQ8vvMnCl7CkEmN7/NBGdn40wX7d/fbqFQWQmBEntT/3QW4Zs2Vf6jd3ZpaVKSNmI6i/CV2kvD1mcPr3ffaaNxcfbnoYaGQ//80xVoQKhUJxUIwB//aM9o9e4tKaL72hpgGHD00fCnP8F117lXEgFWrpQPAg88YO9BOBjjxsGMGfb5kiXdu/LbvqxbByUlJg2BcGO6aDZFDLpwwn5eqVpiGDDhWA+JcXb7iVIy2fDsiiiPTKno2L6yhPte6UsdsuQXSz2D2czd4//H9/83i+G3z2Ho0SmMGCETKr/9rdSD6dfPtfhy2GVmwoP/8tBrbB/Z35CSSiE9uY4HOZXIJ/vKCkpeep/3zvxHi+Ws09Ikbdwyf373SA5omi7qDJiLiyGhugumi1ocaaOp+Dmu3P4f/auvJAMH3GmjO3bYGVUWTRsVGhAq1Undfz9s2ybHcXFw1VWyb/BAGIYUGfvzn+Hqq5s3rF++XGaHn3vu4G+qJ5wAxx5rn7/zzqEFl11ZXZ2UUi/aXEXQ9DQWlBnr/RrvSSfu59WqNSefDEkpMiNSTyz1xLBkblmUR6VU+6uuhmdu+IR14VwA4gkwyLeb199J5NQVfyJj+lgWL7ZX/CZOlCySaOndWwqeZfaJh9xhkJPDDl8Of+dnjMSOeN54J47qEce02KDw+OMlzRVkH6GzEE5XtW2bXVm1Vy/3yqi/PIhR7Qci6aKs6LztJloyc6bd+wo4pWGu7MWIeO89+TpypP17Ac1XCTUgFBoQKtUJrV0rm+wtxxwD559/FZMnqQAAIABJREFU8O/j9Upz37vvlkrOzkwS05RqXffdJ30GD5RhSNrq8OFybjUXbi3VpzvatEn+uxRu8mNiRFJGTU4YXWaXbFUH7fjjIb1PHB5MwnioJoll67Ok8pJS3UQ4DC88UsmXS6upJR4fITIo45zTG+hxipSefvZZO7skNhbmzInigCMGDJDslJQUAzKzYNRoNvU4lpWMIxT5uFpNEm8WHSubGa+4AirsfqOxsRIjWBYu7PoVr53pooMH270IKyuhvqxJddG84fKkrsJqiBxxIh8QW2b30nz3Xfnq9cpnJEvTgPCII+wV8T17um/rLA0IlepkQiGpHGrd6LKypPG8VeXzUMTEyD7zv/0NLrxQitNYPv9cis4czGdqj0daUCUlyXlRkT1bp2T/IMA39r2LZPyMPUP3D34bMTFw5Ph4Ejzyfw4/KXxpjsH/1odRHplS7WfRItj0/KesCQ3HADIoxevzctFfJXdu9WrpHW854wzo0SM6Y21q2DCZhExIQD7wDxzEluGz2JUwjHDkI+s7nEoJmfD003DkkXbPJWDsWHsrRHU1fNiF/6/fNF00HLYzevbuhcSAnVrbqZvR74sjbTSRWqZWvNU4+7xmjVRUB3fa6LZt7kq0Ho+7jcqmTYdzwB2XBoRKdTKPPWbPAsbEyCRpbm7bvHd8PJx1lqSSOtNPN26UFhV797b+2qaSkiQotCxb1r3TMSymKQFhrb+B8trYxnTRHhQz8JLjojy6zm/KFHtCo5Z4Gojh02f1F091DwUFsPitaopWbKOIHqRRTiwNTJ1i0ndoAqGQ9Iq19OgBp58evfG2ZMwYmZxsnORMTqFi2HhWZc8kbHgJ4uNhfkAt8VIFZPp0uOkmqKvD43G3oVi61JVF2KWsX2+vZvXs6Q5kqvxhPJXyg6dSyXg+61r7By1HHSWTAhGnmPNde0ytiehRo+wJapD2JE6aNqoBoVKdyrZt8Mgj9vmoUa6MiTaTkQG/+Y30nLLs3StB4cHMng0f7q7w9cordnns7mrXLpm5LlpdiIkHT6R30pjELXhHjYjy6Dq/GTMgOUM+SYbxUUMCSz8KaQ8U1eWVl8PLLwPLlrE6lEsiNSRSA74YLv7dSAAWLJC/QZZLL5VUy45m4kSZmLRaAvhiPNQm9+TLwedhpmWwhjz+xK2UkS7/3777btm8np/P4MEwIvKnNBi0Uwe7gvJyWfV84AF45hn7em6uFFKBSLpoZaCxGfBJvI8vKx2O66ITjo5Vwql8TEKZ/QtuBYRerxS9s3zyifstmgaE3fF2oQGhUp2EacL/+392QJWaCjfeePiqwSUkwC9/KfuyLH4/3HEHfPHFgb/P7NlSRc56/RtvdM8/tpZ16+Rr4YYKwtg13KeMD7R9TfduaMAAyMmT9hNhDKpIZln5CMz13agOvep2gkEpAlZbXE3tinx20o90KjCAgXlJTDw+Hr9fJuUseXnuCbuO5sQTZRLS+rOYng6lNfHkDzwNc0Qe2xjI77id3fSRJ3z5pWwWu+ceTp0Zbgwmv/5aqkt2Vn6/ZNg8/LCsnL73nrtSptcrQb2113/PHkiss1fJZrBANvbvqwR5Z3bppY0zB/HUcXz1fKiVD0rr10t/QXCnjW7ZYjevB/ndstKmq6oOLhuqq2jXgNAwDK9hGCsNw5gbOc8xDOMTwzA2GobxP8MwYiPX4yLnGyOPD3K8xy2R6wWGYXSB7ppKHZiXXrL3fXg8sqfekSlxWHi9cM017tTP+nq4916ZaW5NeTk8/risMn79texLtG7Oq1fLfbu7svYP7t5jB38+gky/uFcrr1AHwzBgwiQfibFSMaOaRL6hFxuf0v4nqut6+23YvRtYtowNoUGRYNCEmBguvnEAHo8U97ImFD0e2W7Q0eegZs+Gm2+WY49H9geWlHqYV3gM72VcxKveC5jBAn7Iv7iLG3m0/nJe+cXH5M/6JT1jSqmslC1lb73VuSYia2tl//7jj8vi59tvNw9qk5IkyPnRj9zVRSsrwRdJF02jQtJFu+L+QUufPnDKKY2np/CuFC6IsFaIR49210fQaqNuvv0/pU3dAKwFrFqGfwH+bprm84Zh/Av4PvBQ5GuZaZpDDcO4JPK8iw3DyAMuAUYBRwALDMPINU0z1M4/h1LtqqQE/vEP+3zYMGkY3B4MA847T4rXPPaYbFo3TXjiCZlhu/hi+0PFrl2SxvL663bRmw8+kFnpadPg/ffl2ty5MHCgpKZ2JxUVMrNrlpVTWJ+GB6kAkEkpgy6ZFOXRdR3Tp8PT93soL4EQMQRIYNmbxQz7Y7RHplTbW7UqsiequprQii8oZjI+ZEIkcUAPzjgv9v+zd97xUZVZH//eKZlk0nsBkpDQQXoXpSPoKlZ0UbGtrmVddXd1d33fXVdd17K6vupr3dXXCtjQdW10QUGa9JIQCC0kJCG9TcrMff84M3NnIDQNmZTn+/nkw9yZO5MTIPe55zm/8zvs2wfffGO8Z8oUmTfYHrjiCqnavPCCJIUJCbImVlXZaIxIobomko8briCeIkJxZ7ybwLXlIIWRwbhsdiwWqaCmpclalp4um6rJyQH90fxoaBB/gG3bJCFxNnNnGxwsld1zzhHDUJNJztu0SV6vrISmugaodwBud1GL5pcwdUhuukmGTwJjWU1oyUFqUrqAxcKiRbKxbbHIHOZVq+Qt69ZJ4dRDjx4ycgvk7993rmVnoNUqhJqmdQUuAv7lPtaAScBH7lPeAi51P57pPsb9+mT3+TOB+bqu1+u6vg/YA/gUgRWKjslf/mK4a9vtIhX1navjS02N6ON9XbRagvHjxc3UV6L6xRfw0kvSu/DHP0ol8YMP/K2+6+pkZ3r8eOMGpL5eel06w+BgXzzVwcodh2jC6hWM9oktxhwTGbC4OhqDB0NyWhAaOk5M1GBn1Y4ocDgCHZpC0aIUFooMH4DvVxPqrKAe90XaauXimxMICYG33zYqZOHhssnXnrjhBpm1C7IBGRvr3lDUTBAWjh4aTpGWRCXG7CSTq4nwsgNQXkZTo4u9e0Wh8u23Yqxz9dWBX4eamsQN8/33pWfyo49knfBNBq1WSQBnz5b5wJddJsmLR3WTnW2YyxQUQGij4aIzlcWy+EZ28PXlssu8NxhBNDLBtQyOSpVw/36j4ucrG927VzYWPKSnG5vbhw51vvuT1pSM/g/wAOD5K44FynVdd0/CIQ/o4n7cBTgE4H69wn2+9/lm3qNQdEgWLzZctTVNlB++g989NDTIInfxxXDXXbLzNWeOSE48GvrToqhINCpz5kgm56OzGThQZKCetaW4WOSjM2bI5tyJLqAffyyynSuvNJzjDhyA7747g7g6AN7+wd3lOH36B0cOUyKHliQyEnoPsWPX6tHRqCGUTc4B1CxaFejQFIoWo75eql6NjUBNNWk/fEIOPrq3pCSuvs7K6tX+ErirrvJ3XGwv3HEHPPusFIMuu0wcsUeNkk1Ss90GkZGUWBIpJQbPqhVKDRZHNRQX46yr95sxV1srI5Xuussttz0DamqMgfA/hupq+PRTSQLnzZN5gr6zes1mMca56iqRzM6aJQPWLc3o+n74wXhcVgbWqjKgk8hFPVitcPfd3sNpLJJ7GV1uSjzmMuec47+p7es2arMZI0saGvxUp52CVpGMapr2M6BI1/UfNE2b0Arf7zbgNoBUX+98haKdUV0tC5YnJ0tNhV/9yv8cl0v6C15++fhG6J075evFF2X3a+JE+erb95jeEV0X67JXXjGyN5AM8xe/kA9wW9GlpIhZ2aOP+l8wCwrkYmqxyO5taqohY6mogK++gksvlUT13/+W55ctk53OlJQW+etq0zQ0QG4u4HRy+IgJfBLCqXPakG6pgzBunMai+To1NdBAELXYWf/uD0y4ZHKgQ1MofjK6LlJ8T4UjdP0KBjeu5RXcZTSrlTEXxRIUJEPoPaSlScGoPaJpYnLma3QGkkw99xzU1Jipr4+gIesoPbJWM871DRVEsYu+rHaNwVEaQr2Wgi0mkfpGox6yfr1UC+++WzYtTScplRw4IMoYj0vlpElSbQ0PP/2fIzsbPvnk+IRS06B7d9l47dfPPYvxFOi6kRBWVoKryQnVMjR4Essw4+qY4yaa49ZbxYWotpaRrCOisYTKsjKIiWXRItlQsFrFbXT1annLunUwfbrxEV27yr0MSJUwsRO19rdWD+G5wCWapl0IBCM9hM8BUZqmWdxVwK6Axyv2MNANyNM0zQJEAiU+z3vwfY8XXddfA14DGD58eDtqI1Yo/Hn8cSPpCg4WyWZUlBzrulzUXnjh9Bqg9++XauH//Z/0YEyYABOHVzF065uYX3vZGG54LP/6F+TkUPPWRyxYGce8ebLxFhIiMXlUeI2N4ob2hz+IvKe0VHZwPVXDuXNh5kwxgcvOlmqZ0ykSGc+FuiOzd69bBpR3iFJXpDcdDDU5GDKrhQZJKryMGAFxCSaK94ELE7XYWb2ikQmBDkyhaAFWrzaGkms11Vy9/ne8zSzjhKQkJl9g4bHHJFHwMGfOyROe9siAAaJcefppKC/XsA/N5GjGHLI3wL1H/kAIdbzBzewnHUrgHHsFey/7HR+vSvJ+Rl0dPPWUmKX9+c/+/ZW6Ln/Xn38uyacvS5ZIT9rMmXDBBc1X8Dw0NsLChcePPEhNlcrVgAEnbgU5Efv3G5sCBQVgb6ryvjaFJbL76zt1vSMTHQ033ggvvYSVJiaxjE8LkyAmhrw8jV27JNEeMcJICHNypKrq8TPo1s2oGh461LZdeFuaVrks6Lr+R13Xu+q6no6YwizTdf1aYDlwpfu0GwB33YDP3Me4X1+m67rufv4atwtpd6AncIxPkELRMVi3ThYgD5MmSRIHsjjdfjvcc8/xyaDFIjuWkyadeCRF0b4aPnhqP3dMyWHaff14eNdVrOQ86jl+IFUxcTy/YiAX9tnLc0/UeXsTzWapCIaGyliJYcOkcrh2rSR7SUkSg4fcXPmZNE0qhR7JUnFxx5oTdSI8ctGmnH2UEuN9PjO+ArO1g92htQEyMsRu30ojLszSR1jUA/1gO/afVyiQKpXvNXPK4beIqj/CQtzG61Yrsb3iWLTIfyj7RRfJvLqOSFoaPPSQj9okKopdE+/i0VGfU0osM/hKXFeB7YciuPnlEbw87j1Skv1rBhs3wjXXSE9fY6OYjPzpTyLtPDYZ9FBXB/PnwwMPyBrXnJtpYaEIcHyTwYQEuPNOKWyNHn3mySD4y0VLSiCoRsZNdCq5qC/33ON9OI1FoguullKsRzY6cKDIQz34yka7+ZSc8vLOZqBtj9Z2GT2W3wPzNU37K7AJeN39/OvAO5qm7QFKkSQSXdd3aJr2AbATaALuUg6jio5IQ4Msbp7qWlKSGMnk5Yl680QjH6ZPlwXGsyjW18uCtnw5rFzupPJAqWRgPtPhK4jkP1zMf7iYEOoYw/dMTNlNGgf4MH8sXzGDJizgALJ2yZ12ZBSaJgnfdddJgvrFF8b3fOYZMQCYPds/1rlzpecjNFR6QN59VxbPFStkrmJUlNzAeL4qKiTBvfhi6NKOu4V1XeYhAZTsLqHR59I7dGgb931vp4SEwKDhQXy/qJKKRiv1BJNHF/a9t5qMP14d6PAUih9FdbUkK561oU9SOec9fT9vcjUN7g29+rgUnJipMopFXHSRyCI7MnFxkrz9z/+4DbzMZvJ6TuLhLpu5f82VDM7fzCaGoKPxVeNkbnjuOuZPfp//nf4uH3xtmNHU1srn/PWv4uh9bL9lVJRUA0tKpO3B829RXCyKnZ49Ze3r0UOu/WvWSALf1GR8xsiRsl7/VGWMZxRVRQW4nDpapbjPeeWinS0h7NVLJLKff84wfiCGUkoLCyEsjMWL4de/lu6XIUMMR9H16w0T1thYWTvq6kQJ5XCcvVnPbY1WTwh1Xf8G+Mb9OJdmXEJ1XXcAV53g/Y8Bj529CBWKwPPss8bulNUqydUbb0h7X3NW1CNHyoWuTx//5202GB+3g/Elr+Dc9C4bq3qwnIl8wwSKSDjuc+qiUliWcDvLwsNl9arM9fYjAOByEbRnJz+b7uS6V8aRmibJzMCBshh7nOxcLlGaXnKJyGE88tDPPxcpjsUiC9iWLbLb7XJJ4ti7d/OSm7174ckn26/U6fBhtwtcVRVlpS50jAHBE2Z3ggbKADF6NMyLgIoSj2w0lNWfFJLxx0BHplCcOS6XuDh7Er3oaLg8+3Fcjno+cout6i2hFLvi6B9nvG/mTBnd0NZnDrYEYWHixPnKK8acuTJ7Vx6dupJfHPkr2xc20oiVvWTyCZdx7tJVPLA5g8kPfsyflownO9vdi+dO8goLJcdIT5dNyQsvhHPPNdapqVOlOujplweRIT78sCQdwcFGTxqIAc5llx2/Vv8YjhyRtcXz2K7Vem8QprJYpDujO+E4o3vvhc8/x4yLySzlw/IYaKjnyBEb27bJ/cqIEUZCmJ0tG9BRUfI70rWrMdfx8OHOo7gNdIVQoVAcw86dssCALEoRETLaoa7u+HN795ZE8DjXUc9ch1deEY9twAyMYAMj2MD9/J1d9GU5E1kechH7owdLRmf1kYxarNCrJxw8CEePEkEls/iAWXxAzNdl8Jcb5fPd2ospU2T9efFFqXCC2KFXVPib3cybB/37y+OwMEl46+tFnpOXJ9KfY29cjhyR5HHIkB/1VxpwNm50P8jN5SjGnZrZojHx0g5uBx5AevWC7j0tHCrRcWKWPsItdq5rajp5s49C0QZZuhT27ZPHFgv8fHIRIWNeYBnjKSSRemwcsaXTNVnzVp4uv1wSkM6E1Srma++9Jz17AHXOIF5KeoRhN22kaO5SqHewiSFsYggJJUXU/vYL4noGURg+kvJyY8PO6ZS/87g4Ud+kpfl/r5QU+M1vZJzF3LmyXIIkle+8I2t4ZqZci/r0kcT8TAxomsPhkITFd65kURHE1olcNIpyhvEDXDi7c17nJk2Spsxt25jKYj7kKvkL6tqNRYskIRw0SCqFDQ2yib1hg9zDgMhGPQnhwYOdJyFsp/vtCkXHxOWS5vjGRkmk8vNFlnJsMpiSInKWd945JhlsaJAXunaFa6/1JoPHomka/Wakc9dn0/mochofrUrhrnuD6Nfv2BNNpIxJ4/4bivlCu5jbeZUYxNKaN9+EyZP9Bh4OHQoPPui/4CUl+Usu8vIME1OzWSqIngSwslIW4O7dJfmLjTXe59H/tzeqqnwSwr17KcSwLesSW/+j+kYUp0dqKqSdE0EI9bgwUYeNDQ3nULti/anfrFC0IbKyxAjaw89+BslvPwl1dcznGhzYOKKl4LIFk54u58ya1fmSQQ+aJu0Ms2cbzzmdsKZ+KM5f3AapqZQTxQaG809u5V2uY1eOmcQ93zGyTwV2u1TzkpPlKy8Pfv5zSTKbG6/Uv784b994o5iU5OaKyMblkj7/7GxJNOz2M/9ZqqtlDZk3T1pJfvlLMcDxVEArKiSp0So6uVzUg6ZJlRAYzGbiKYbio+BysmSJ/JvYbDKv1oPqI1QVQoWiTfHPf8LmzZIENjZKMuXb/BwZCbfcItbYQcf6v6xfL9rSE3W+A8THywfcdptkXW7S02W20003STVvxQpZxIYPh8mTNczmGTD7E7nDcC86gNirjRwppcCBAwHZTXvoIfjHPyShNZmk7XD3btmsNJvl5/jZz0SiERUlVdEffpCfKThY5kJFR0s++9pr8q22bRPpTfJpTmjQdZF77NghefKUKadn493SfP+9W8XjctF130qOcq73tYFDzCd+o+InY7HA8BEmvnrPRW0tuDBTQSQb3vqO8yePCXR4CsVpUVYmgg8PQ4fCsC5H4OWXyaEHqxnLERLRQ0KJjdUIC5Pk5cILAxdzW2HGDFlLXn1VEjSTCQ5VRBJzyfVs/+IQpfvKvTMLHQRzuCaIzO+X8fg1QRwaMIMFn5i8JjENDdLOsXSprHHHVguLi8Ws+5xzZK3JyZFqZWqqJIJvvikbmz//uSyXJ5LwlpcbTtzZ2eJ2eTIKCiDcVg/1Yvk9hSVy8bvggh/999bumT0b/vhHTEVFTGUxc12z4ehRjpoS2bxZfodGjDCS6l27ZEM6IsLfr+DQIXey3Qnk1iohVCjaCA6HFPeOHpVju92wQrbZpOA3Z04zTmR1dbI6PfPMiSfDjx8vtqSXX95MJulPYqLkfccxbZqI7i++2N/a9MABGDtWtk5nzvR+xt/+JqMnQkNlIb3oIpGGglxkZ8ww1Cz9+8simJcn53z0keSto0aJDMczTHjJErj++pOGT1ERbN0qX2VlxvMVFbJj3Jo4HMaCQ34+5roqnJ7LrqZx7iWxJ3yvomXo0we6dXFRnIMhG13u4PxAB6ZQnAZNTVIZ8oz3SUpyj5X7/VNQV8cL/EqSQc0MwTbS0uQa6THJUEgbXWSkmM14/NRKy010PTeNpJ6hlHy7i4q6ILqQRwa5hOgOsueBOaOUn193MUvWR/kKYdi6VZK622+XNUXTxD104UL597JY5Lpz6aWSZHz/veE8eviwjMcYMEBylq5dZQM4K8tIAI8cOb2fq1s3aRs5fBj0I2In65WLnj9BfujOSnCwzLN6+GFJCJkNhUWQkMDChRpDh0qF0GqVzXePbHTSJEnm4+Mlwa+rk3+fuLhTf8v2jpKMKhRthKeeMpJBk0kqYWazSH4+/VT6F45LBr/7TsTwf//78clgZKQ0GO7YIc0G11xzymTwlPTpIyvf5GOGe9fUSKBPPOFd+cxmuaja7VIFvOgi4/SiInE+9WAywVVXGeEdPCg/WlAQTJxonLdypXFj5EtZmbz2v/8rLm8rVvgngyALbWvLP9atM5Lg9JIf2EF/72smq5kJk1WF8GyTmQkZA8Ox0oQLM3WE8F1eGnpRcaBDUyhOyddfG6YkNpskItYSqQ6uZjTvcw06JgixExKi8cADKhlsjr59Zb5gTIz/8/G947j3neEsve5NHuIRMsn1vubM3U/Z3//FoJDd9Owp13LfauHzz8tG7TPPiMu2x0XUbpdk79prJSd55BH5/r5s3w7/9V8yJeG++6SCuWLFiZNBk0muZRdeKD2LL78sm64jR7rnTFZIQtjp5aK+3HEHBAUxgO0kUwAN9VBezrJlotoJDpbbJw/ezVs6p2xUJYQKRRtA10VO4sFuF7XH++/LohEff8wbqqsl2Tv/fKP72ZcbbpAmhuee4/jGwJ9ITAx89ZVkqMf+EH/8o5Qxm8narrnG/3jevOM/dsYM43jpUpGcTppkyDUcDkkUQXrzvv9eFtJ//EOkOL7mNSA5cWqqcXyicR1ng8ZGic/DeQfeZSNDvcfhkRo9erRePJ2V5GRI7xuC3dKACw0XJnLJ4OC8VYEOTaE4KQ0N/nPmrrjCndA89RSbHH34A0/KSCBNg2Ab118vrpeK5unSBf7yF0mi+vWTzol//AMuvCKEsHdeZtCHf+L2qPe5hdfpyy6ZW1hXh2XB+/TY/QVjRjTS1CT7n7ou69G334qMdNMmSTIyM8XQxjcBTE+XpfG++6TC60HXj9+49OCpMs6cKa6pr74qsf/859Jf79kcXrIEcDZBlchopuBe5FRCKFKl2bPRcLuuAhQWUVZmjOsYMcI4fdcuw8HXNyE8lWS3o6AkowpFG+CTT/x3BkeOFFlJs7r1JUtkku3+/ce/1rWrNN35ZlZnA6tV7ET795fE1HcWxrvviqT0k0/8Vr+MDBlc70mStm6VXdIBA4y3Dhtm9E64XCIdveMOeX7DBtmBfecdqSDu39/8AODQUPnMgQPlol5bK4t+Q4OMr9i/H6/pwtlk82ZD6poUXk3G1gXs5Vnv6737B7XbMRrtCU2T/w+J0Y1UFHtko6Gs+qiAtHtO/X6FIlDs3WtUnbp3dycZBQVseHEtL3APubj7wENCSE7W+MMfAhZquyE6Gu6++wQvXnkl2qhRpM+ZQ/o38yghhu8Zw0aG0rhxI4kHDnLhJZex8XASO3b4L3sbN4q88Nprm3cR1TTpWxs4UGYXfvKJsT6AVH979pQksHdvSSxPNaNQ191ma5WVgG7IRfv06TzWmKfi3nvhzTeZxiLeZo6M0aqtZdEiO6NGSXJtsRgGQD/8ABMmyK2Uh86SEKrbEYWiDfDkk0ZyExQkkpDjksGKCkkEp05tPhn85S9FHnq2k0Ff7rxTJu56mh09rFkjW2++w5nwd3wD6Q/0RdOk78IzCLi4WIqRaWli/b1jhyy869b5J4PBwbLY3ngjPPCA9Nh43EtDQ/1HMS1Z0nwi2ZK4XP4Gr+fp37KJIdThdrUxmxk1vpNMu20DZGZCjz4WNHRc7j7CVRtsJ+65VSjaAFlZxmNPxWntffN5oeE2CkimDjtoGvHdbMya1blbxlqMbt1kkXj8cWItlfyML7ifvzONRUSU5GJ56w1GOr/nogt177JntYqKp6JCjNmef95oFTgWi0UkvU8/LX3y114rlb9XX5VK4MyZks+dzsD6rCxR0VCu5KInZNAgmDiR3mTTDXdmV1jIsmWi4gkJ8frhAYZsNCHBaGEpLDRGaXVkVEKoUASY9evFZdND9+7+fXOATHTv31+mvR9LRoZsOb7yilhktTaTJklfYe/e/s/n5cG4caJ7dTN6tJ+5KUuW+E2tACSB87VKX79eqoMul5HI5ebKgulpzP/97+U9mZnND68fN85waz1wQHbezyY7dhhSoOhoGLDzA5ZgaLlMQRbGjTu7MSgMMjOh26AYQnDgxEQTZlY7BuNYtzXQoSkUzeJyiVrCQ58+sPqzo7z4YQIuTBwgHQ2dhAQICzMdJ8lX/ATMZvjDH2D1aujZkxAcnMd3/IZ/cJVrPilL3yZhyXtcOrmKSy8VZaIngXO54O23Rdq5efOJv0VoqFSipk+X65P5DNvJGxulyoiue52/lVz0BNx3HxowjUVyXFZKVWkDa9fK4ciRxqlgtL07AAAgAElEQVQ7d0rl1mQy3EZdLnfi3cFRCaFCEWCeeMKQBZlMonDwJjUlJWIZd/HFYiXmi2fWztatzWSQrUzPnlIVPNbmurZWmgcvuwzy8tA0WSg9uFzwwQfHf1zv3v7afk2TRVPTJOcNCpLd1auvlp3zU83eDQmBc41pDyxdevaqhLruPy9snGUNpg/msxZjYGRwmMVvV1JxdomOhm7pZqLtDeho6GhUEMkPb6qEUNE2OXxYetVAqhXbt8Mrf9iH7nJRTRglxJJgKSW0SxSDB8vgc0ULM2KESFJuuQUAMy4Gso3beYU79j3A3e+N5uWx7/DeOy769PF/68GDIuh56inD2fSnouuySfD00yIEWrAAqKkGp9OQi8bESG+GwuCii6BHDyMh1HUoLmaR+3DIECMhdzqNucGdrY9QJYQKRQA5eNDfbTMmRpIcQBro+vWTnrxj6d1b3FWefdbQVwaaqCipZN7TTGPWp59K5vb881x4gdOvkLlggfReHMv06SIV1TSpKt5+u6zPGRnGjMIzYexYYw5hXp7/7ntLsmeP0Q8aeng3Q+6fgu5wkIX7jkHTSOoWRELC2fn+iubp0QO6p8rOi1c2uqiF7tQUihbGVy7qcMA/n69FzxYDsUN0I4FC7ClRoJmMNUPR8oSFiTLno4+8rREakEIByWU7Yc4cet10Lm/9aj133+1v5K3rsuF59dV4q1E/htJSmer085+LxHT+fK9KFMqlOjiVxSIX9Z3npBBMJrjnHjLJJcPjIltczDfLnDQ0iInfOecYp3tko53NaVQlhApFAHnqKUObrmkifwypLJTJ81dddbye0iNl2bxZMpy2hsUiw55ee+34JojqarjnHoInjOaKkcZ2W2UlfPnl8R/lqQI+/DDcfLNU+CZNMl5fseLMdP02G5x3nnF8tqqE3urgnj2MffdOrA01HKQbR3HPHLTbGTpcXXpbm8xM6DEsEgtNODHRSBDL96W5DRkUiraFJyE8cMA9x277DnA5AR0XGnarE+LiSEgIvECkU3DFFbBli+g8j2XNGsxjR3HDyluY93yx3ygDkLEhd90l4ydO93LT0CBr1L33yubos8/6j//1UlHOUDbyC9ztJEou2jw33giRkUaVsKmJ2rxSVrnNpn1lo9u3S1XX11jm4MGz7z0QaNRdiUIRIKqqpHDmcSoLDobf9P5CqoIff3z8GwYOlG3Gxx+Xk9syt94qjX+jRh3/2oYNXPX3kZgPH3Tf4MgIiub8PTTN31zHd/xhdbX/WIfTYdQoo6B65Ij0+p0OxcUiI1m9Wiq6X30l/Rvz58Nbb4khwHPPwYMPSv/Iso9LWfZ+EXMbr+AX/JO7eFFmhdntmEKClaInAGRkQExaBOHmOlyY0YE99ODQB2f4n0ihOMuUlcleYEOD9DTZtVrYnUMQDQxiCyZ0SE4CzcQVV6iCUKvhMZx54onjZ/rqOrzxBmmTe/DPPs9w/31NXkWKh88+g1mzZDOzOXRd1qQnn5Qk8Pe/FyFQc2tjXBzMmVHMB45LeI1fEkup/Ec4tm1DIYSFwa23GgkhQGERixdJltecbDQszPDLq67u+HuHKiFUKALE88/7X2DGn1NC4m0zRR/ii9UqZbL162X+Qnth4EBYtQpeeuk4s5sE1xGmHHlHVr+KcvbvlxbEU5GU5D9IdvHiM9u1CwqC8eON42XLTm00uW0b3H+/7NC+/DK88Ya4oy5YIMOIlyyRRXvDBqkOlh6opHLXYYL1WmoIox4b5USBPRSCQwgORvUPBgC7XUwCusXVoQM6Jmqxs3r+wUCHplD44akOFhbKBpa2cwdmVwO/4++s5lywBkFcHFarvwGXohUwmyVT27lTLEGPpbIS0wO/4+pHB/D+L5f5VZ4Ajh6F3/5WNg89xmNFRbKxeNVVMkL4ww+bTz6CgsSh9PnnZe35dcy7ZLDPOOG886R1Q9E8d99NqjmfXuyWY0cdK/9TTl2dJH/9+xunNicb7eh9hCohVCgCgGeenqc6GGTV+fXh3/sPNgIYPlwG4/z5z8fvSLYHzGYZJLhrl6x2PsxmrmyB79kDuXuZ96/qE3yIP76Dlw8cgJycMwtpxAgjPy0uloTvRNTUiPr12H+W5nA4oCKvAg4cQMNFPMUAVBDJwejBEByMpsmO47EGBIrWITMTeve3oAFOTDiwsXxtSMfXAinaFZ6EMD8fIoPqYHcO/dlBGTEcJNVbHZw61T2oXtH6ZGaKxGfhQv8p9B6ys0m5fjIvHvgZf7ol3ztI3sOiRdIZcuedMibphReanyYFsoH44IPyrf72Nxg7Rse8c5s0Fvqi5KInJzUVrriCC1jofcpx6KjXj8A3ed+2Te7TOtM8QpUQKhQB4N13ZffXU53qGVnE+L1v+J/0+OOiifTtdm6vpKRId/1//iMXZaA/OxmI2+WxrIzv38oh95F3T5l9DRwoNt8eFi8+s1AsFv82kGXLTvwt33vPp3kfSeaSkmSwfZ8+Uq0cORLOPx+S6/bS6+Ay+rGTy/mEG3mLCCrYmzyOiJRwUlLkR+/fX6pVitYnMxO6DEkkBJGNgsaq6kHUbz/DXQWF4izhcEhi0NQkG1ZhB6V3cDgbeJ+rvdVBQI2aaAtMmya9hc8+2+wgSO3LL5h5TzofnvMI54/2b3qvqJBKVHMqlcRE6Z1fsEBUKZeff5Twz+dJL1yXLrIQ/vCD/5tUQnhq7r2XqfjcNFRWsHh+CeCv3Glqkt9DVSFUKBRnDV0X6aFn1ITF7OKGo89IX4iH2bPFPKajNYf87Gcitfnd78BsliqhB5eT+Q/tFPeYrSceB6BpMGWKcbx+vSG9OV2GDjWUNaWlzc+L2rzZ38l0wgSR6vz97/Doo/Bf/yU/xt13w6zgz4j+ci799O30Iptz2Mr/cC9r064mJCWG4GAxtbFYZHCxIjCkpYEtzEpiaBVO929cOZFsfH1ToENTKABRPLhcsmFot9Rj3rMbDZ1EjrCasd7q4IAB0m6uaANYreL+kpMj/fO+je8AjY3E/+9DPPNRGn+buJioqOYVCcHBcOGF0mXxnwWN3DlgJamv/bfIWhIS5L7grbfEpeZY+vYVK2XFyRkzhpRRqfTHMBBY9WU5NTWy4Rsba5yakwPJycZtWH6+cd/WEVEJoULRyixbJhcaT1UqyVTM5Q6f0RLh4ZJ1dFRCQ+Xn27CBicOrSaTQ+9Ln/IyKtbskY/v9741BXMdw/vmGgtbp9B/dcTqYzf6OpcuX+1/oa2pkV9ZDbKysxc3y0UesuvGfuHSoIpz1jOBxHuRo2nCIi/ee1q+frOXTpp1ZrIqWw2qVKm2PNM/4CRN1hPDtV1UBjkyhEDxy0YICiKjMA5eT3mTzNTPQrTZvdVCNmmiDxMdLj8GGDf6Db91ohUeY9vQ0PiyfxgXnGJPOhw6VrpBFr+7jkeSXGfm3SzHFx0rD+2OPyeedTNYeFCRaUsXpcd99frLRhqIKVvxHmjZ79jRO27NH7hVSUuTY6TRGSnVEVEKoULQyTz8tO8C6DiacTKn6mBR8dvwefti4AnVkBg/GvGYVV18XJHOCgAaCWMDlcuV96ikYMAC+/vq4t9rtMG6ccbxsWfM7d9XVstv65z9LE361T5vioEHeeysqKvzVN++95191vOUWjnOMA+CDD6i9+ibWuoaxmcF8xBXkkwJp6d4Pt9vhgQfgzTebbzVRtC6ZmdBrRJR7/IQZHRMLczKbH4apULQiTifs3i3rw5EjEFF2AIABbOPfzBQdoWYiJsZfJaFoYwwdKvKS994TeecxRP+whMfe7MJ/Mu5h4d2f81rQr7jktz2xD8iQpsJ//1tsyE+G3S4D159/XnaYL730LP0wHZDLL2dK8k7jWHex6AUZTOybEObkyH1aZ5GNqoRQoWhFdu6UzT6pDupENR3lKj7EKzAZMAB+9avABdjamM1c+uJUQob192o4P2AWjbg1Gvv3y6DdsWPhmWcgN9f7Vl9zGU8vhi/r18su+htvyJzDhx6S6txvfysN/Q6Hf5Xwm2+gsVHaQXylouPHn6CNc/58mD2bt12z+YBZbGAYVpoISu/iTQanTJEJIrNmeXNeRYDJzISQrrHEmCpxuZfAvXo6+Z/8hMnRCkULcPCgXJeKiyHI7CToqGwUlhJDDaEQJT1qV1xx/JhXRRvDM1g4K0v6C2y2405J/vB5Ym+8GF588QRDBo9h8GBRzixbJr0On38uPQvuvnzFaWK1knDvbAZj9IqsWW+msqTRLyEsK5O/5s5iLKNuURSKVuSJJyQZdDpBczYxrGkNQ3wuSrz4Yqdb6SMi4OIrbZDZAzJ7UGztwlIm+5/0/ffSsJeZKQODHn2UrhU76NfXkNF4zGUcDlGk3nGH9OH40tAgM6AefFASynfflWSyqUmqhytXwuuvG+fHxJxAKjp3LuWz7+TPzj/xKH+SsRJAWNcoiI0jJUU2bp94QlREirZDSgoEh2ikJ9TgcvcR1hLKpn+r8ROKwOLrLhrRVAq6i3T28RUXSkJhC8ZshssvD2ycijMgLAz++lfZDT7TGSEJCXDddTLctqAANm2SRWXixGYTTMUZcOutTAsyBkI2NbpY/thqUlP9Dd1zclSFUKFQtDBFRTKzzukE3eUitLGc6SwkGreN5fXXS3NcJ8TrlhcVBQP6M7fvo+jaCS5PmzeLBnTAAKa+eqUskiVH2bNH56uvJIF7//1Tf8/6eli6VL7ee08qhA8/LP9OHm655XhHUP2dd/nsug+4XP+ID5jlrTIFxUZgT4nm5pvFUHXs2DP+a1C0AiaTDKnv1Ufq8k7MODGzal0HM3BStCt0XRJCl8vdP1iVB0AU5eSSARFSHZw8WW0ytUsyMsQydPHiE7sBWa3iXvb44zIZvaBA5lNdf73YWytajuhoplyXhAnD4nXRu0WYTTrduxun5eTIpnV4uByXl/u3nnQkVEKoULQSTz8tSYjTCVpjIwPZwgjWy4sREdIz10lJTfXpCTSZ2WkfwbZ520+ZIA85+CmxO1bg+moh2e9v5o6rSzi4owp8HFtHjBAzl9/8RhS5xxIcLOqeXbtEZrpwoZicduly/Lqd+/QCbpvj4BH9v6kggmrcw6WiohkxIYx586QFJDj4x/9dKM4+mZmQ2DeWIBq8Cf36Q0nN+78rFK1AcbHI00pKJDkMKZL+wd30khMiZXiqGjXRzpkyRTY1n3sOeveWReZXv4LPPpP/AMuXi8P4kCGqz+AsE/P7WxmGYR6wvjiNsq/XHmcso2mdo0qotkQVilagvh4+/FAWemejE5urlqFsNKyPH3200+8Azp4N331nHL+3sS8DV6yQxppPP5Xd1W+/9btpN+OiL7v4NzOpbIxAa9SJrsrBbDFhiwnj1zdVcdVD/TCF2OjfX75Hfr5UahcuhOxsudiHhsLRo/KZ9fVyzqJFkiBOnixr+PoX1vD2u11wIv0adYTgxExwXARTLg3h1VfV+t1eyMgALSaGaO0gRXoc0MgeZ3cc2/cQPLBXoMNTdEJ83UUjg2rRqquIopy1jJKLVHg4ffp0jLG0nR6rFX79a/lSBI5evZg69EPWb5RDFyaWPbKCni+O9p5y4IC0mnTrJqpfgLy8jmkQpxJChaIVeOklqKwEp1OHhkZ6k80QNmOnTqah3nlnoEMMOCNGSOVm7145Xr5cbo6SU1ONxbOoSHZSFyzAtXgpbzf9nH9xC1WInkNHo4pwxjWt4pGiP5P65CF4OUIyuuhoCA4mxWZjTnAwc3rbOJgaz+L9PXl59UBoigZdQwfsWgOmmiYqak0seFdjwSs1cMi4XOpANeH06mtl5EVhzJ6tksH2RGwsREZpJIbXUlip4UKjjmB2/XsHQ1RCqAgA2dmyYVhQAMkO8bbXkZtUwsLAZGbWrONH3CkUih/PpD+P48lLnTgxA7BwTRRPW/YD6YAouvbtUxVChULRArhcxky7JkcjVhoYwQYGsUWefPHFjjeA/kfgMWV79FE5drmkF++ee3xOSkiAX/yCg9N+wV8ebGDr6iooKyO0vIZqwtBwkc5+XuNWgnDPoaislOpiM6QCIziHb7ifGBLYQX+cmGkqduEqLvTrL/AljhKGTI4leUw8ERGS0yvaD5ommw+pKU1srZSb7kaC2LCsgiF/CnR0is5GTY3cZJaXi0IhrEQMjg6QJidERBIc7O+srFAofjpRl5zPqNi5rC7pDcAmBlP/8hskJDzi9RPIyYELLpBNX5cLDh+WPzvaJnAH+3EUirbHggUiQXQ1OXE1NNGNgyRxhN5kww03+A/U6+RMn+6dPgHAJ59Aba1xrOsivZ09G7ZmBUFMLGT2IKJfV8Ljgzm360GSraVsYfBpfb9aQnidWwBIpIi+ZHEDbzGTTxnD96SQ73d+EA3cob3KzFsTSR4jnefnnivDaxXti8xMSO8Tgobu3R1evS0iwFEpOiOe6mB+PkSEuTAVFWChSWaaAkRGMGHCCWahKhSKH4+mMXV2gvdQR2PpW3n07ObwPpeTIypfT1dPQ4O/+VxHQSWECsVZ5vnn5U9nbT1mnIxiLf3ZgSUyDJ58MrDBtTFsNrjySuO4ulpGLYGMkPjVr+SvzGFcqzGZ4Jd3mJlzeygRE4bBVVey+Mb34LbbpKJ4EuYym1JivMe/4+8E0UgspSRSyHvM5m3mcBP/x3W8yweWa5n0yiwKEiXhDAmB4cNb7MdXtCIZGRCcnkQYxviJzSVd0R31gQ5N0cnwlYtGOEuhqQkdZD6txQohIUyfHuAgFYoOyoQ/nYfVR6S1qG4cPXO+9B7v2SO/nx19HqHSqSkUZ5G1a2HHDtAbGnA26SRQTAr5MhD1r3+FxMRAh9jmuPJKePNNmQ0IMv89NFRmCx5r99ytm4yKGDgQVq+Gl18GTGZ2NfXi0COv0u2ll+QfISdHtFj19ZJN1tez7WAkK1aNdQ+GdHFe7E6mp0VRnBPG7opEGp1NfBt8Gxfav6GfY7kMJXz4X7yVZ8xIHD3af2aRov0QFgbx3cOIs+RT1RSGjkYx8RQt30HijKGBDk/RSWhqkstTVZVIR9ObZNyEVy4aGUFkpMbo0Sf5EIVC8aMJjw9mzPBGVq6RGdBbGcgdnz4KEy8FzURlpbgAd+sG69bJew4dEt+DjoRKCBWKs8gTTwDo6DV1gIWRrCOSStIHRcHttwc4urZJXBxMmwZfujfoDh6Ehx46/rxZs+Duuw0Z1ciRMHeuDJoHcRK96SazDAQ8ZihgbS3864+A+74/Ohque2I02G9mcj7sflmeX2eew7n3QaSMACM/H/Z8I4+tVtRNWjsnLQ1Soh3sK5Y+wnpsbP38IFNVQqhoJXJzobFRri12O1h259GIlUoipEIYEcnUqarNXKE4m0z7dR9Wrs2VUiCwMz+S4OI8HAniKp6TA336GOd3xAqhkowqFGeJ/fth1SrA4aBJ1winkh7sZSBb0V5+Sa3wJ2H27BO/lpAgPjwPPODfU2OxwKRJxvF338mOe3PMny8jnzzcfLMxgD4lxbCUdjplYL2Hb781Hg8ffvzQekX7Ij0d0t1DiF2YcWHiu2/VLEJF6+EZN5GfD5HB9VBWhhMzXjPRiAglF1UozjLnz4zGFm/0kC9hKhmHjQU/J0dEQp41/+hRqKtr7SjPLiohVCjOEo8/LjMH9dpaXJgZzgZMuBh0TT8YMybQ4bVp+vSBoc0UaS68EN5/H0aNav59EycaBi8NDbBy5fHnbNsmIy08nHceDD7Gg2byZMPefeNGY2D0DvfYSJNJzGQU7Zu0NEjqHYmVRpzu5XDd3rgAR6XoLOi69A/W1IgZckRtPi40DuFuVrKHktTVolyMFYqzjN0O46YYO8y76EtM1ippM6H5AfV5ea0d5dlFJYQKxVmgshK++AKorcWFiWDq6M8OEkOqSHr+wUCH1y647TbD1jk6WnoIH3kEwsNP/J7oaH9d/5IlXgUIIDt6r79uHEdFwbXXHv85iYkwYIA8drkkgfzuO+OzBg0yZKSK9ktUFET1TiKacnRkHuHu2hQai8oCHZqiE1BQIGtFfr4YatmK8qghjEakl4nICK/dvUKhOLtMvbGL/CK6KXVGwIH9gLSuOBwd21hGXWYUirPAM89AXWUDNDTgxMIAthNEI4PuGAvx8YEOr10wfLiYyzz8MHz8sVT/TgffWV1FRbBli3E8b55U+jzcfLMY1jTHpElGlXDLFti0yXhNTQrpOKT1spEQXAVIH2ENoeR8tivAUSk6Ax65aEEBREboaEcKaMDqIxeNZMaMQEWnUHQuxp6rYY2P9h7vphfszQVkMzg3t2MPqFcJoULRwjidMPc9HWpq0QETToaxES0piYH/dXGgw2tX9OsHF10EEWcwHq5nT5ECeli8WP7cvt1fKjpuHAwZcuLPiYszpKS6Lv+uIP2Fp5hmoWhHpKdDt0SRBXkG1K//sjiwQSk6BVlZolooLYUIVznO+iYKSJYXzWYyB9rp0SOwMSoUnQW7HUZMNm42djCA2JJsqBSnupwc6NLF2CjOy/NXILV3VEKoULQwr78Opfl14HLixEwP9hBKDem3TCYyRk0wP9tomn+VcOtW2LcP/vUv47moKLjuulN/1sSJx8u1zjuvZeJUtA3S0iCjlwUNMZYB+O6H4MAGpejwVFZKZfDIETHECi3Lo4xoNNx3mOERTJ+hbtEUitZkwiURECZ9KS5MODF7q4Q5ORAcbIi8HA4xl+koqKuNQtHCvPpCvdd+SkNnFGth8BAGXZYR4Mg6D2PGyJw5D088cfpSUV+io2HYMOM4Pd1fMqJo/8THQ2yfBOzU4HLfjm/OT+hYW7+KNoevu2h4OGgF+TiwYfIkhO7+QYVC0Xqcfz4QF+s9LiIe9uWC7mLvXlkWOqqxjEoIFYoW5MsvYf/uBgB0IJkjxAbXYZk2kf79AxtbZyIoCMaPN45ra43H5557cqnosUyaBMnJIlu96KKWi1HRNtA0SBuRQBwyh8SFmYKmeEq3HQ5wZIqOTFaWGBgePQoRIY00FJdTRKL39UGjQ0hJCWCACkUnJC4OBoyN9EqDcsnAWeuAI4VUV0tFv6P2EaqEUKFoQZ797xKZdwCAJtXBSRPpPSSUYKVCa1WmTDG0/h4iI09PKupLWBjceSfcfz8kJbVcfIq2Q1qGmZTIagCcngH1C/YEOCpFR6WhQQwqCgvlOKK2gGLiseGQJ4KDmX5F2Ik/QKFQnDXGT7FClJjLuDBRTRjk7gVENtpRnUZVQqhQtBBb1tWzaYvxKxVDCV2TnSIXHRTAwDopcXHHzzK8+WZ/KalCAdJHmN61CZAbABcmVi3pYFOHFW2GPXvEpCo/X65H5iP51BLilYuaIiOYMiXAQSoUnZQJE/DKRjXAQTAcPASNjezZI20GnukUhYU+NYB2TqskhJqmBWuatk7TtC2apu3QNO1h9/OTNU3bqGnaZk3TvtM0rYf7eZumae9rmrZH07S1mqal+3zWH93PZ2uaphT2ijbD47/Yg+5yuY90BrMFbcYMQkJN9OwZ0NA6LTNninwUxCCmuWH3CkVyMqT2DcVCEy73bfnaXWdgbatQnAFZWdDUJGNxIiJ0HIdLKMOwux89Sic6+iQfoFAozhrp6ZDaLxyscvNQRCK6swkOHmD3blGTduki5+o6HO4g3QWtVSGsBybpuj4IGAxM1zRtNPAycK2u64OBucB/u8+/BSjTdb0H8CzwJICmaf2Aa4D+wHTgJU3TlG2jIuDUHSxmxTajETmKCnoNtkNKCgMGiIucovXp3h0eewwefBBuuinQ0SjaKmYzpI9KIgqxF3dhYldZAq6GpgBHpuhouFyQnS29SC4XRFBJfl0kdtyNzprG9BuVNl2hCBSaBuMnaBAr93SNWCknCvbmkp8vngQdsY+wVRJCXah2H1rdX7r7y7MNGwnkux/PBN5yP/4ImKxpmuZ+fr6u6/W6ru8D9gAjW+FHUChOypKnN9OAFZD/1P2sOZgnTwBQctEAk5QkswOP7SdUKHxJGxpLgtljLGOiSg8nd/HeAEel6Gjk5ckNZUEBhISA7Wg+1YRhRtQltshgJlxgC3CUCkXnZvx4vAmhjXoxfCoqRK+qZu9elRD+JDRNM2uathkoAhbrur4W+AXwpaZpecD1wBPu07sAhwB0XW8CKoBY3+fd5LmfUygCyldfuvyOuw2KhhA7UVGQmhqgoBQKxWmT3l2jW5xUaVyYacTKuk87iBZI0WbIypL+wcJCcS6uPlRGHXbv6+OH12C3n+QDFArFWWfgQIhODobQUEy4qCBSXsjNJSfn+ISwI0wparWEUNd1p1sa2hUYqWnaAOA+4EJd17sC/wf8oyW+l6Zpt2matkHTtA3FxcUt8ZEKxYlxOlmzz5D42Kklpr/sUwwapCpTCkV7oGtX6JEpq7qnj/DbVeqXV9GyZGVBcbH0EEaENXG42IqdGu/r0+ckBDA6hUIB0id43nl4q4T1BFFNKOTmsidHx26HmBg5t6YGyssDF2tL0eouo7qulwPLgRnAIHelEOB9YKz78WGgG4CmaRZETlri+7ybru7njv0er+m6PlzX9eHx8fFn5edQKDwULtrCYZckhDoQaypH6yIDpAYODGBgCoXitLFaoddw6eXSkaRwy4GYQIel6ECUlkoymJ8v/9/slUVU6BFYcAIQYatnzNVpAY5SoVCA2200JgY0DRv1FJII1VXsWVV43ID6jiAbbS2X0XhN06Lcj0OAqcAuIFLTtF7u0zzPAXwG3OB+fCWwTNd13f38NW4X0u5AT2Bda/wMCsWJWPSvAzQhrjEuTKQmOMBkIjkZEtRmr0LRbkg7L5U4SgD5XT5YG0t1Yc0p3qVQnB5ZWWIkc+SIyEXL95fh8rkNm3JOEdYgVZVWKNoCo0ZBcKgFoqII9iSEQN2ufRw+7J8Q5uUFKMgWpLUqhMnAck3TtgLrkR7Cz4FbgY81TduC9BDe7z7/dSBW0zgyv20AACAASURBVLQ9wG+APwDour4D+ADYCXwN3KXrurOVfgaFolkWrjQaPlyY6XWOGAIoMxmFon2Rfk44ScFlgCSE9djY9klOgKNSdBSysqCkROaWRURAfr7mLxedpUadKBRtBZsNRo8GYmOx0EgVEdRjgwMHyNleryqEPwZd17fquj5E1/WBuq4P0HX9Effzn+i6fo6u64N0XZ+g63qu+3mHrutX6breQ9f1kZ7n3a89put6pq7rvXVd/6o14lcoToSrrIIfjoprjA6EUo29TxqapuSiCkV7IzUVuifXA7K548TEt/+pCHBUio5AXR0cOCByUZMJwrQayupDsCKjTRIoZvAtwwIcpUKh8GX8eCAiEs1idbuNJkBjIzkfbSEx0RgpVlAgfcHtmVbvIVQoOhI731rvHSjsxEyyrRwiI8nIgPDwAAenUCjOiJAQGDIYzLjcc5E01mwJDnRYig5ATo64ixYUQFgYlO4txYQhcJrePRtTTFQAI1QoFMdy3nlgMmsQG4MNh1c2umfpAcxmY0C953e7PaMSQoXiJ7D0wxIa3fMHnZjJ6NYAKLmoQtFeyRiTSCRiGefCzM7CuA5hKa4ILFlZUFYGDgdERkL+IRehvnLRS4ICGJ1CoWiOqCgYPBiIjcVGPUeJpQkzBfvrqc4p6FCyUZUQKhQ/Fl1n6SZxIfTcL2YODkfTZBC6QqFof6RP7E4CMq7IiYnyplDyNh8NcFSK9ozTCbt3i1wUINTuorTKipVGADLIpefsEQGMUKFQnIjx44EQO7ZgMy5MHCUe0Nnz4kK6djXOUwmhQtFJqd68h+11GQDomIiigqDMVJKSIFipzBSKdklaLxvdIisBMZZpwMraD/YHNihFu+bAAakMFhSA3Q5l+ysJ0uvw+IlOD/0ObdjQgMaoUCiaZ/x4+dMUF0MQDYZs9OMtdOtqyEdUQqhQdFLWvbGdOsRh1ImJLhFVYLXSvXuAA1MoFD+aiAgY3KMakB5CHY1vlzUGOCpFeyYrCyorZYB1RAQc3t+AnVrv6xdMcYLZHMAIFQrFiejaFTIygNgYgt3GMjoaOXnBROT8QITbHLiiAqqqAhrqT0IlhArFj2Tlwloa3P2DLkz0yJCdovT0AAalUCh+MoPH2AmhDpDf7U27wwIckaK9ouuwa5chF7XboazCjA1xsx3IVrpcNjKAESoUilMxYQJgsWILtdCIlVJi2Esmzv97u8P0EaqEUKH4EeiOepbvTQU0dMCMk25D49A0lRAqFO2dtPHpxHoH1JvZVxGDo045yyjOnKIiKC+XhDAoCMqLGwlpqjTkonwN06YFNEaFQnFyJkyQP21xYh9fSAL12Mibu5JuSYaCRCWECkUn49CnP3DIlQKIrCzaVIk1OZ7ERLGuVygU7Ze089NIMomxjAsTdXoQO75uxyu9ImBkZUF1tUjJIiIgP9fhHUZvwsWU/kcgOTnAUSoUipPRpw/Ex4MlJgKz5vL2EeaUx9Ft91LveSohVCg6GWvm7cOBZH5OzHSNrQNNU9VBhaIDEBtvok9iGQAuNFyYWPlxcYCjUrRHsrMNuWhwMFSU6wTjAGAUa4m5aEwAo1MoFKeDyQTnnw+ayYTNbqYOO5WEs4ceJH/+T28LcH6+uAq3R1RCqFD8CL5drdGAzI3SMdGjj/QSqoRQoWj/aBqcN6wWEy5ANn2+X6ud4l0KhT/V1ZCXJ+6iZjNUVOiENFV45aIz+AqmTw9ojAqF4vTwyEaDo8VMsJBEcuiJ9avPSAoVN5nGRigsDFCAPxGVECoUZ0hjXiGrjvZ2OxBCEA0kDkoCVEKoUHQUep6bSCTG+IkdhyMDHJGivZGdDbW1MpA+PBwKDjQQ6pT/U0E0MMG+Hs49N8BRKhSK02HYMDGFskXawGSmkESKSKCyKYRue5Z7z8vLC2CQPwGVECoUZ8jWNzZQQRTg7h8MqiUoyk5CAoSGBjg4hULRIqRf0Jt4igBJCI/WhVGU1xDgqBTtiexsqQ4CWCxQXe4kxC0XHc8K7JPHiNOMQqFo8wQFyf5NUJCGFhxEJZE4CGYPPei28j3vee21j1AlhArFGbLmP8U4kMnzLsx0S5abRFUdVCg6DomDkugefASQhLARC2vePxDgqBTtibw8o3+wqgpCnFVuXYnbXfSCCwIYnUKhOFMmTJB+wqAwGyCy0d30olvWIrEURiWECkXnwOVi1dZw6pGLgYZOWl8pC6qB9ApFx8FkgnE9Crz9Xi5MrPiyOqAxKdoPtbVw9CiUlIDVCoUFLkLrSwGIoJKxrFb9gwpFO2PsWOkHttnNYLFSSCJ76EEU5YTu2gDI73xtbYAD/RFYTvaipmnvAKccvqTr+pwWi0ihaMOUrtzO1oZe3v5Bm1ZPXN94QFUIFYqOxvAxNoK211OPDRdmNu4IDnRIinZCUREcOSKD6V0uqKtqJB65S5zMUqyZaZCZGeAoFQrFmRAeLr2Ey5YBNhslTbFk0xsnZrpt/YKs86aDyUReHvTqFehoz4xTVQj3AHvdXxXApYAZyHO/dyZQfjYDVCjaEuve2uUdN6GjEWVvJCTUTFwchIUFODiFQtGidJ9oDKh3YmJvSSSNjSd/j0IBkhB65KLV1RDiqsWk5KIKRbtnwgQZIUOQFR2NfJI5SCpdK7ZDbi7QPmWjJ00IdV1/2PMF9AIu0nX9Wl3XH9R1/TrgIqB3awSqULQFvl/u8OsfTO0mC7yqDioUHY8u088hBbmrd2GipslK1vqqAEelaA/k50Oxe3RlRQXYG0QumkARQ9ik5KIKRTtl/HgxiTJbTBBko5AkMZbhEGzdCnTAhPAYRgNrjnluLaCmqio6BXpVNd8fSMbh7h+0Uk9KX3EbVf2DCkXHwxIdzvCYfd5jJxZWzD0cwIgU7YWsLLdUtA6a6p2ENMq4iQtYiMlqgYkTAxyhQqH4MSQmQp8+7iqhzUYx8eyiD104jJadBQ4HeXkiF29PnElCuAn4m6ZpIQDuPx8DNp+NwBSKtsaeuesoIAndLfwJNjuJ6x4OqAqhQtFRmTS4zDug3oWJ1d85AxyRoq2j67BnjzyuqgKLqx4z8v9mOl/DuHGqx0ChaMeMHw82G2C10GQKYjXnYqOBBGc+7NxJfb2hEGgvnElCeCNwLlChaVoh0lM4DlCGMopOwfcf5vn1D0ZEQEgIxMRARESAg1MoFGeFPuMTCUdkoi7M7NhnD3BEirZOdTUUFkpiWFsLNmctGpDOfnqxW/UPKhTtHG9CiAY2G7vpSRlR7Vo2etoJoa7r+3VdHwv0AC4Beui6PlbX9f1nKziFoi2xZoPZ2z+oA93SzWiaqg4qFB2Z1Av6kuAzoL6gKoyysgAHpWjTFBZCeTnU1ICu69jqRS46na9ljInqH1Qo2jU9e8q9n6YBQTaKSCSbXpIQ5h2C0tKOmxB60HX9ILAOyNM0zaRpmpplqOjwOLL2s6miu7d/0I6DhF7RgOofVCg6Mrah/elnygZkI6hRN7PmP+1MC6RoVQ4fhspKkYuaXE6CdAfglosmJcHAgQGOUKFQ/BQ0TdqAg4IAsxmHJYyVnC8JIcDWreTlBTTEM+a0kzlN01I0TftE07QSoAlo9PlSKDo0G1/fRA2huDCjA0E2jdgkK6ASQoWiQ2O1Mik91zug3omZbz4pDWhIirZNVhY0NYlcVHM2YKOeAWynK4dh2jR3WUGhULRnxo93G8sA2GysYDxxHCWGUnrv+pSBA1ztyljmpIPpj+FVoBaYDKwAzgf+AnzZ8mEpFG2LNV+X+8hFNcIiLYSFQVQUREYGODiFQnFWGTNWw5rbQANBuDCxcbO6oVecmOxsqK+XHkJrkxjKTGORvKjkogpFh2DIEPGQqKgAgoLYWTOAJizcx/8g42svBW1CYIM8A85E7jkWuFnX9c2Aruv6FuAW4LdnJTKFoq3Q2Mj3WVHehNBCEykZQWiaqg4qFJ2B7pMyiEGqgi5M7M6PwOUKcFCKNomuw7594HDIgc1VgwYMZrNUBqdODXSICoWiBTCbYdIk94FmojIoljWMNk54662AxPVjOZOE0IlIRQHKNU2LB2qALi0elULRhij88gdym7p5HUZDTQ7i0sVWVBnKKBQdn7Dxw8hA5hHqaFQ1WMnJUuMnFMdTXg4lJVIhNOlNBFOPhSZ6sAeGD4e4uECHqFAoWojp02VIPQA2G59xsfHiRx+Js1Q74UwSwrXAhe7HC4H3gQXAhpYOSqFoS6x5by9NWHBiBsBqDyIuXiRjqkKoUHQCundndLAxcteJmeXzjwQwIEVbJT9fJGQOB2jOJoKopxe7CaJRjZtQKDoYo0dDaKj7wGpllXWi8WJ1NSxYEJC4fgxnkhBej/QOAtwLLAe2A7NbOiiFoi3x/+zdd3Rc13nu/++eMw0DYNDZAHawiKJEioJIVavLkmwV21KsuMf2spO4XFtOu7lxHKfd6zT/YieOb/yLEjtOcZMsWbZkFauQkigWQSQBNoAESJAEARKVKDOYmbPvH2c4pLooETiYmeez1izOOVPwgLYIvHP2++7n1qdzy0VdDLGqMPG4t/dgZaXP4URk8hnD9ef3nLZBvcNzj4/5HEqmo5YWSKUgnbYEMikiTLCCnd6DKghFCkosBqtWnTwy7AstZ4DTBksUYkForR201vZn749ba//MWvv71truyYsn4i+39zibjs7NFYQljDFjQWmuf1DD4kSKw6qrqinFW/6TIcCOPRGfE8l0tHu3t1wU1+KQwiHtFYQVFd7lBBEpKKd/zpMOlfCLwK1w++1w333wgx/4F+wMncm2EyFjzFeNMR3GmIQxZn/2ODyZAUX8tPO7mxkmfqp/MJyhZo73i6CWi4oUj8orVzGHI4DXR9g1WMbIiM+hZNppa8sOlHEzlJDAgFcQXnvtac1GIlIo3vteCJysppwgP3/Pd7xi8PbbsxsV5oczWTL6V8B1wKeBVcBvAtcAX5uEXCLTwsafHiWNQzq7Q0uoLEpNjfeYBsqIFA+z9iIuoDl3PJEJsPGphI+JZLrJZODQIe8KobEuERJESbCQDrj8cr/jicgkmDED5s49dbx5W8T7UCjPnElBeCdwq7X2EWvtHmvtI8B7gF+bnGgiPrOW516M5paLBsgQqoxRWQnl5d7+MyJSJGprua5uW26DepcAT/7omK+RZHrp7YWBgexAGdebMLqMPTi4sG6d3/FEZJJccsmp+6OjsGmTf1neqjMpCF+rW0pdVFKQRjbvYsfY4lxBWMYoNXNLCQS8q4PqHxQpLldekiJICvAGy2x9XltPyCk7dsDEBGQyloB1iTDBubR6G5ZdcIHf8URkktx006n7ExPw2GP+ZXmrzqQg/BHwM2PMO40x5xhjbgR+mj0vUnA2/2sLLoFcQRgrDVBT5/0no/5BkeJTf9VSaugDvInDuw6WYK3PoWTaaGk5OVDGxck2G6xgJ5x/PpSU+B1PRCbJlVee2n7CWq8gdF1/M52pMykIfw94DPhHYCvwTbytJ353EnKJ+O65x0bIECCF1xTsVMRyewqrf1Ck+Jh1a1nGntzx0HiEAwd8DCTTyt69JwfKuERPHyij5aIiBa28HBobTx339norBvLJ6xaExphrTt6Ay4EngU8Bt+ANl3kie16koNjRMTbun5G7OhhhHFNWTlWV9ynQycJQRIrIBRdwBc/kDtM2wK/uP+FjIJlOOjpOXSGMMk4ZIzRwCNau9TuaiEyySy89dT+ZhCef9C3KW/JGM5D/5TXOn1wkY7L3F521RCLTQNdPNnHEnZUrCOPBBFWzIjiO+gdFilZJCTcvbecv97q4BHAJ8MzPB/j4/yj3O5n4LJGAnh5IJCzGzRAlyQp2EsDqCqFIEbjqKrjnHq8YPFkQfv7z+fP74usWhNZadUpJUdr4gwPAubmCMBoPU1Pr/Vet/kGR4nX+lVXE9o4xQhkuAba1nEnnhRSqHTu8otDNWAK4REhyDru8tWTLlvkdT0Qm2dKl3hYUXV3eFjT790NnZ/78zqifZCKvYuNGi0uACcIYLE5FufYfFBGcS9Yyn1ONg53Hy7xlglLUtm071T/o7Vyb9iaMNjV5U0ZFpKA1NHi3kzIZaG/3L8+ZUkEo8jKp/V1s6V9EgghgiDNEqiROdTXEYt4nQCJSpNaupYktucOJlOH5jRo1Wux27z69f3BCA2VEikwgABdf7BWFa9bA5z4H11/vd6o3b0oKQmNM1BizyRizzRjTaoz5ava8Mcb8hTFmrzFmlzHm86ed/4Yxpt0Ys90Ys+a09/qoMaYte/voVOSX4rLj37YyRiy3XLS8xKWi2iEUUv+gSNFbvpwbw0++ZIP6J+4b8DORTAP79p0qCCOMU8UAM+nRQBmRIrJ8ubfLzKxZcPCg32nOzBsNlTlbksA11toRY0wI2GCMeQg4B5gLLLfWusaYk9debgKWZG/rgH8C1hljqoGvAE14w2y2GmMesNbqp7GcNc892Ac0nJowWhXTclER8TgO11x0guAzaVIEcQmw6alxv1OJjzIZOHQIkgkL1iXGOCvY6X1ooCuEIkVjyZJT97u6vGXk0ah/ec7ElFwhtJ6R7GEoe7PAbwF/aq11s8/rzT7nNuB72ddtBCqNMbOBdwKPWmv7s0Xgo8CNU/E9SJHIZHiutRwXwwQRQqSw8QrtPygiOfHLz6eOHsD7QbZzf578xJdJsX8/DA97A2UMligJr3+wvh7mzPE7nohMkcZGqKz0Wofvuiu/NqefqiuEGGMcvA3tG4F/tNY+b4xZDLzfGPMe4BjweWttG1APdJ328kPZc691XuSsGHj8BXZPLCJJBIuh2gySCM6kutr7lGfmTL8Tiojv1q7lXHZyJPvjp380zJEj+t2/WG3bdmq5qEOGIGlvwqiWi4oUldJS+MY38rO1aMqGylhrM9ba1UADsNYYsxKIAAlrbRPwHeCes/G1jDGfMsZsMcZsOXbs2Nl4SykSz39vD0BuuWhppUN5uSES8a4OBjSGSUTWruUqnswdZjLw+C/T/uURX7W0nJowGskOlDmXVi0XFSlC+VgMgg9TRq21g8ATeEs9DwH3Zh+6Dzg/e/8wXm/hSQ3Zc691/uVf45+ttU3W2qa6urqz+w1IQXvuqQngVEEYqSnXclERean6et5dt4kA3nogF4f1Pxv0OZT4Ze/elw6UmUkP1QzoCqGI5I2pmjJaZ4ypzN4vAa4HdgM/Ba7OPu1KYG/2/gPAR7LTRi8Ghqy13cAvgRuMMVXGmCrghuw5kbfNDgyy8VADFkgSpYwRJkqrcgNl8mVzURGZZMaw5NIZlDIKZCecbc2jZhE5azIZb5pgMmEBlxIS3nYTxniNRCIieWCqeghnA9/N9hEGgB9aax80xmwA/sMY80VgBPhk9vm/AG4G2oEx4DcArLX9xpg/AzZnn/en1tr+KfoepMC1/8fz9FGT6x+siYyScCPU1EAk4o0RFhEBMOvWsuj+/WxjFQCdPSWkUhAK+RxMptSRI9DXBzY7PaKEMa8gXLECyst9Tici8uZMSUFord0OXPAq5weBd73KeQt85jXe6x7OUq+hyOk2/uQwUJNbLhqriZKOQUkJzJ+v/kEROc3atazj+VxBODERYMMGuPrqN3idFJSdO2F0FHBdAriESXn9g1ouKiJ5RL/iigBYy3NbvI/2E5QQIEOwRttNiMhraGridu7DYAHIWPj5fUmfQ8lU27HjVP9gODtQZjm7NVBGRPKKCkIRILF9Ly+OLM72D0aoNoOMRyrVPygir66igsuWDVCCtym9xfD0IwmfQ8lU270bkkkLrkuUBHPpIs4JXSEUkbyiglAEeOHftjFBmAnCuASoLk8znnSoqYFwGGbP9juhiEw34YvXsJj23HH7gZB3tUiKQiYD+/bBRNJCdkP6Fez0+gxWrvQ7nojIm6aCUATY+PAQcGq7idiMUqJRiMVg3jxwHD/Tici0dPXVXMvjucOJJPxSc6+LRnd3dqBM5mUDZdas0XQhEckrKghFkkk2tlUDXv9ghCTU1FBT400OV/+giLyqa6/lPfwUhwygPsJis38/DA0Bros5/QqhlouKSJ5RQShFb/TZbezPzMcCCSLUBocYpTQ3UEb9gyLyqhoaWL0smduPEOCZX6kgLBY7d8L4OOC6hEgRxGUZezRQRkTyjgpCKXrtj3UCkCKEi0N5HMbGDDU13qqf+np/84nI9BW+/kpW0Jo77joaZGDAx0AyZXbuzG5Ib10iJFlAJzHGdYVQRPKOCkIpem3P9wOn+geD8RjhMJSVwdy56h8Ukddx3XXcxEO5w1TK8POf+5hHpoTrwp49MDHhbTsSJeHtP1hbqz4DEck7Kgil6O3d7fX/nCwITXlprn9Qy0VF5HVddRXv5DHCpACw1vLzH4/5HEomW3c39PbiVYZACeNe/+C6dd4PDxGRPKKCUIpbKkV7d1m2fzBKlASJUDy3/6A+6BWR11VRwbnryihnOHdq87NprPUxk0y6jg4NlBGRwqGCUIqau3M3be4i0gTJEKQ8MMZYKkxNDQSD0NDgd0IRme6C11/NBTTnjnsGQhw65GMgmXT79sHICOC6BEkTJcES2jRQRkTykgpCKWpHntjDOCW55aLhUgfHgYoKrxgMBn0OKCLT33XX8W5+hsG7LJhJW+7/qS4RFrJduyAx7g2UCZNiKW3esuGLLvI7mojIGVNBKEVt74Ye4LSBMrGo+gdF5MxcfDGXRV8kQgIAC/ziRyf8zSSTxnWhpQVSE17/YIQE57ALGhuhutrndCIiZ04FoRS19u3jACSzBaEtKVH/oIicmUiEc66aSRWDuVM7dhgyGR8zyaTp7oaeHl4yUOZcWrVcVETylgpCKV7WsvdABBdDiiCGDJlIjMpKb6uJuXP9Digi+cK5/houZmPueOBEkN27fQwkk6azEwYHyQ2UiWigjIjkORWEUrw6OmibmEeKMGAoYQIbChOPe/2DoZDfAUUkb1x3HTfwCA7eZcFMxnLvj3SJsBB1dMDwMOC6OGQoY5RF7NcVQhHJWyoIpWiNPredw9QzQRiAcNQQjRqiUS0XFZEztHIla6v3U8J47tSj9434GEgmS1sbjI24gCVImhXsxAk5sGqV39FERN4SFYRStPY92QWQKwidaIh43HtMA2VE5IwEAiy/YR61HM+d2rsvwJj2qC8orgs7dkA67U2RjZBkJa1eMRiN+pxOROStUUEoRWvvVm8K4ARhLGAjESoqIBBQ/6CInLnA9dfyDp7KHQ+PB9m61cdActYdPQpHjpAbKBNl3JswquWiIpLHVBBK0Wpr98bDTxDGJUCoNEI8DvX1EA77nU5E8s511/EONhBmAgDrWn78n0mfQ8nZ1NEBAwOcNlAm6U0Y1UAZEcljKgilOPX00HZiFhmCuAQIksYp8a4Qqn9QRN6SefNomn+cGKO5U+sfTfgYSM62zk4YHrK5gTIVDDOXLl0hFJG8poJQipK7tZl2GnP9g6EgBBxDWZkKQhF565bc1MhMenLHXUcCHDvmYyA5q/bvh5ETJwfKZDiPHQQq4rBkid/RRETeMhWEUpS617czRoxktn/QCQcpL4dgEObP9zudiOSrwPXXchVPEsAbOjKaCPLMMz6HkrPC2uxAmZT3v22QFKvYDhdd5DWfi4jkKf0LJkVp78Z+4LT+wRKHigqYPRsiEZ/DiUj+uvpq1pmtRPCWilpr+cn3NWq0EHR3w+HDnDZQJts/qOWiIpLnVBBKUWrbmQJOFYThWJCKCm03ISJvU1UVTeclKePUHoSbn02drCEkj3V2Qn8/pw2USXgTRjVQRkTynApCKT4nTtDWG8fFkCaExRAujxKPq39QRN6+xe9azmyO5I57+xz27/cxkJwVHR0wNOiC9QbKVNPPbLpVEIpI3lNBKMVn2zbaWJLbfzAYsBAIUFmp/kERefu8/QjXEyQDQGLC4bHHrM+p5O3q6ICRYe9Sr0OGc2nFzJsHs2b5nExE5O1RQShFZ+z5HRyiIVsQBgiHLCUlXjEYjfqdTkTy3iWXcFFoOyV4vYMWy4M/GH2DF8l09sqBMhnW8IKuDopIQVBBKEWnfX034PUPZggQjgaIx9U/KCJnSTRK0zrnJX2EO3dkSGhLwrx19Kg3VMZmvCuEISa8CaMaKCMiBUAFoRSdtm3ep/YnB8pEsgNl1D8oImfLwltWMo8DueP+IYft230MJG9LRwf09QGuzQ2UWcFOXSEUkYKgglCKy8QEbQcjWCBJGBeHcHmYigr1D4rI2WOuv45LeJ4ISQCS6QC//EXG51TyVnV2wkB/BvAGytRxnNrAAKxZ43c0EZG3TQWhFJfWVva6i0kTxMXBwcUJB2lshJISv8OJSMFYtYoLy/YS49QehI/dP/I6L5DprL0dRoZODZQ5h12wciWUlfmcTETk7VNBKEXF3dpMO43Z/kGHSMjFceD88/1OJiIFJRCg6cpSyjmRO7V/f3bZoeSVkwNlMmmvIAySYRXbtFxURAqGCkIpKt3P7GeM2KkN6SMQj8OiRX4nE5FCM/+21czlIAG8QuLEaIDnnvM5lJyxnh7vZjPehFGHNOt4XgNlRKRgqCCUotK2ZQiAJBFcHCIljgbKiMikMNdfxzo2U4I3XjSZcXjk5xM+p5Iz1dEBA/0Wmx0oE2aC89mhK4QiUjBUEErxcF3a2ry7CaJYIFweZv58iMV8TSYihWjBAi6ceZjYadtPbHh0HNf1MZOcsc5O6D+eBiwOGWbSQzyWgRUr/I4mInJWqCCU4tHeTltyLi4BJghjgHBJkJUr/Q4mIoWq6doK4gznjo8e9XoJJX+0tcHI8MnlohmW0gZNTRAM+pxMROTsUEEoxaO5mTaWnOofdDJgDE1NfgcTkUI19/YLmcshgqQBGBsP8OST/maSN89a2L4d3NMGypzHdi0XFZGCooJQisbYphYO0ZDdfzBAJOwtFT3nHL+TiUihMtdczUVszW0/kXQd1IPfdQAAIABJREFUnnho3OdU8madHCjjZgfKBMhwEZs1UEZECooKQika+zYew2Ky/YOGcEmA+nooLfU7mYgUrJoaLlw8SNlp20+8sHGCZNLHTPKmdXbCwMCpgTLBkxNGdYVQRAqICkIpDtbS1uL9BjaOtwN9pDTIsmV+hhKRYtD0zhrKOYHJHg8MWF54wddI8iZ1dMBAbwqL1z84ix7KZ5bB3Ll+RxMROWumpCA0xkSNMZuMMduMMa3GmK++7PFvGGNGTjuOGGN+YIxpN8Y8b4xZcNpj/zN7fo8x5p1TkV8KQHc3bcMzsHhbTgCEy8KsWuVvLBEpfHNuX0sDRwhnt58YTwR44lfW51TyZuzZA6MnTg2UWUy7t1zUmDd4pYhI/piqK4RJ4Bpr7SpgNXCjMeZiAGNME1D1sud/Ahiw1jYCXwe+ln3uCuAu4FzgRuBbxhhnar4FyWvNzexlKROEyOAQDFgcx2jVj4hMOnP5ZTQ5L1LKKAATNsiGR8Z8TiVvJDdQJnNqoMy5tGq5qIgUnCkpCK3n5BXAUPZms8XcXwO/97KX3AZ8N3v/x8C1xhiTPf/f1tqktbYDaAf0L7O8IfuCN2F0nBIshkjIUlYGCxf6nUxECl5JCReuTFJ+Wh/h3p1p+vt9zCRvKDdQJjthNECGNbyggTIiUnCmrIfQGOMYY14EeoFHrbXPA58FHrDWdr/s6fVAF4C1Ng0MATWnn886lD338q/1KWPMFmPMlmPHjp39b0byTvdznYwRYxxvB/pw1LBggVb9iMjUaHrXTEoZJ0AGgJETrrafmOY6O2GwP4O1vHSgjPYqEpECM2UFobU2Y61dDTQAa40x7wDuBL45CV/rn621Tdbaprq6urP99pKH2pq9C9TjRAGIxBxtNyEiU2b2ey+hnsOUnOwjTDqsf8r1OZW8no4OGDyewsXgkKGW48xYWg2VlX5HExE5q6Z8yqi1dhB4ArgaaATajTGdQMwY05592mFgLoAxJghUAH2nn89qyJ4TeW2Dg+w9Wo4FJk4bKLNmjb+xRKSIrF5NU0krZXgfTk0QZNOTo1jNlpm2du2CsZFTA2UW0oG5WMtFRaTwTNWU0TpjTGX2fglwPbDVWjvLWrvAWrsAGMsOkQF4APho9v4dwK+stTZ7/q7sFNKFwBJg01R8D5LHXnyRNpbkBsoYYygrD7B8ud/BRKRoOA5NayzlDOe2nzhyMMPevb6mkteQGyiTPjVQ5hx2aaCMiBSkqbpCOBt4whizHdiM10P44Os8/1+AmuwVw7uBPwCw1rYCPwR2Ag8Dn7HWZiY1ueS/5mbaaWQUbwf6cNClvBwaGnzOJSJFpem2esKkCJICYGzU5fHHfQ4lr6q31xsoY08bKLOKbRooIyIFaaqmjG631l5grT3fWrvSWvunr/KcstPuJ6y1d1prG621a621+0977C+stYuttcustQ9NRX7Jb+ObW+hibm6gTCQC8+ZBNOpzMBEpKjPeeznz6CKGt+XEeMph44a0z6nk1ZzqH/QGyoSZYE1wB5x/vt/RRETOuinvIRSZavs29+NiSGQHyoRLHM491+dQIlJ8Fi2iqXJfro8wRYjtz4+RTPqcS16howOG+tJYAtmBMn3MWT0TwmG/o4mInHUqCKWwjY+zd79DBocUIQBKK4MsW+ZzLhEpPsZw4bogZYxg8IaVDB5Ps3Gjz7nkFVpaIDHm5iaMzqabskvO8zuWiMikUEEoha2lhXZ3EUkiuDiAoaYuyLx5fgcTkWLU9L75BMkQwbssOD5mtR/hNJPJwLZtYNPeiAKHDEvZg1mngTIiUphUEEpha25mL0sZI4YFgo63hZQKQhHxQ+17rmA+ByhlFIDxdJDNz2jN6HRy8CD09lrcjHcVN0ia89ihCaMiUrBUEEpBsy80s5clpwbKhC11dVBT43MwESlOtbU0zT5COScAr49w/84Ex475nEtydu2CoWMTuBgCuERIsrLsIDQ2vvGLRUTykApCKWjdm7oYJp7rHyyJGRobwZg3eKGIyCS58LIoJYzj4C1JHBtK8atf+RxKcnbuhKH+DJYAQdLUcpzZa2brB4eIFCwVhFK4MhnaW5NMECGDA0BFraPloiLiq6b3LyaApYRxAMbGYP16n0MJAK4LmzZBKukNlAmSpo5jzLhsid/RREQmjQpCKVx797J3Yj5JwtmC0FA7M6SCUER8VX3zxSwKdOa2nxh3w2x7fhxrfQ4mHDjg9RDaVBqbLQiX0EbJZWv8jiYiMmlUEErham6mjSUkKMHFYAKGuhlGBaGI+CsWo2lBH6XZ7SfSBDnWlaC11e9gsmsX9Pa4uK7N9Q9eQLMGyohIQVNBKIWruZlWVjCBt5FwNOQSjUJDg8+5RKToXXhVOREmCJEGYPxEmscf9zmUsGXLS/sHGzhE/UwX6ur8jiYiMmlUEErBGt/SSgcLyWT/b15ebpkzB8Jhn4OJSNG78APLMEDs5PYT47DxOdffUEXOdWHDBmBiItc/OJ+DzFijTxFFpLCpIJTCZC37XhgiQTQ3UKaqNqDloiIyLVRetZrG0AHKsttPjNsIu5oTHD/uc7Ai1tUFXV02WxAGCJGmgS5m3qLloiJS2FQQSmHq6qJteMZLJozWzI6qIBSR6cFxaFo2QhmjOGRIEyTRP8ZPfuJ3sOK1bRsc78lgXe9K7Sy6qQiMMuuuq/wNJiIyyVQQSmFqbmYHK0nj4OJgjKG6RgNlRGT6uPDaShxcSk8uGz2R4dFHfQ5VxB55BNzEBBmc3HLRhefGcKrifkcTEZlUKgilMDU38yKryeBggUh2oIwKQhGZLi786EoMlgoGMVjGkgHa9rh0dPidrPhY6+0/yEQKNztQZh4Habyx0e9oIiKTTgWhFCT7QjN7WZpbLhovcykrg8pKn4OJiGTFVy9iSewIpYzhkCZBFHf4BPfe63ey4tPZCYcOZrCZNBkcKhmkgkEWf/hSv6OJiEw6FYRSkI5uPcwQFa8YKGOMz8FERE4yhqZVEzi4lDFKGofEsRF+9SvIZPwOV1weeQSSIyksBgMsYj9VDeXUrJztdzQRkUmnglAKT18f247UkCZIBgeDpWpWiZaLisi0c83nVgJQzjABLMPjQQ7tS7B9u8/Bisxjj5GdLuoQJMU8DrL4ijn6EFFEioIKQik8zc08zzoAMjgEDMQrteWEiEw/q+46h3lVI5QyRpAUI5SRPjbA/ff7nax4WAsvvpCBVIoMAaIkmEUPjXes9juaiMiUUEEohae5me2cj0sAi8EJQlmZBsqIyPRjDNxyRzg7bXQEF8PoQIpn16cZG/M7XXFobob+3jQWcHGYx0GcyjiL3rnE72giIlNCBaEUnuZm2llyaqBMaYZQCOrrfc4lIvIq3vXlCwkEA5QzgkOGYVtGz55Bb+qlTLr77iM3XdRgaaSdOWtmESvVelERKQ4qCKXgHN+8n2PU5X64V1Y5zJ4NwaDfyUREXmnG3AgXr0oQY4wgacaJkjw2zM8esH5HKwpPPelCaiK73USKuRyi8ealfscSEZkyKgilsIyOsqF9FpZs/yAu8RkRLRcVkWnttrsX55aNGmB4IsK2pwfp7fU7WWEbG4O9rSmwlgwOMzhGJBqg8bZz/Y4mIjJlVBBKYdmxg81cBHgFoWMs8aqgCkIRmdauuGMm8doIZYzikOYE5fS2D/Pss34nK2wPPgipsZP9gwEWsY/w8oXMXaglJSJSPFQQSmFpbqaFc7EY7wphMEB5uQbKiMj0Fg7Dze+NZKeNpkkTZHQozUM/GcV1/U5XuB78mYXURHZFiWUZe1j4jnk4jt/JRESmjgpCKShjm1vpYl62fxCiEYhEVBCKyPR3691LCETClDLq7UlIOe3P9NDe7neywuS6sGl9ElwXlwBlnKDCGWPxrVouKiLFRQWhFJSO53vppzr7aW+GeAVUZG8iItPZ0mWGZSuDuWWjo5Ry9GCK59an/Y5WkFpaoP9YBvBaDOZyCBYtpPH8mM/JRESmlgpCKRypFM17S0kSzg2UKa/VQBkRyR+3fmYeMTNOiDQWw4lMCU/8+yHGx/1OVngefBAyyRQuBothCXuJr1pIba3fyUREppYKQikcu3ezNX0ekB0og0u8OqSCUETyxo3vjRGpqyDGmLcnIeV0beujpcXvZIXnkZ8lIJPBxSFImkV00HjzMoy2HxSRIqOCUArG+PPb2UcjAC4OJuhooIyI5JWKCrjy3WWUMopDhiQRDg2W8uxPuv2OVlC6u2H/nhQAGQLM4BiB+jk0NlX6nExEZOqpIJSC0bn+IH3UZAfKuARCDmVlKghFJL/c+okZxEoNQdLenoRUsOW+gxw75neywvH005AYyWS3m3CYzwHMsqUsXux3MhGRqaeCUApG5wsD9OUGyriUlXmj3GfP9juZiMibd/HFMGtJnBjjuT0JD7UnefGZUb+jFYxf3J8kk8rgZn8NWsZuZl++mJjmyYhIEVJBKIXBWva2G4aJZ/sHM8Srg9TXo/2kRCSvBALwrt+YQamTIEiGDAEOuPVs/M4O7Ul4FoyOwqanEoC3GX0pI9RUQ+Pls3xOJiLiDxWEUhASuzvZnZiP9RaLYoDy6rCWi4pIXrrldodYXSkBMtk9CSvYu6GX/fus39Hy3saNMDpwsn/QYTbdmGXLaGz0OZiIiE9UEEpB6Hy0jT5qcscm6BCvMCoIRSQvzZsHa66uyC0bHSNGx3AVzd/XuNG366lfZUiM22z/YIBF7Ce0Yglz5/qdTETEHyoIpSB0PtdNPzVYDBbACWrCqIjktVvvKqW03BDEG37SyQKa/3sviYTfyfKX68ITDwyRIYCLQ5gJ5pUcZ+EVDQSDfqcTEfGHCkIpCJ07TtCfHSjjYAlHDZGICkIRyV/XXQc188qzpUuGYeIc3DtOy+M9fkfLWzt2QE/Xqe0m4gwTXzqLxUv065CIFC/9Cyh5L5GAw50p+qnObTkRr3SoqoKyMr/TiYi8NbEYvPPOOCXBFA4ZUoTYw1Kav/Wc39Hy1tNPWRIn0oC33UQDh9Q/KCJFTwWh5L2DLxxndNSSJIzBegNlakK6Oigiee+WWw2lNREcMhjgIPPY+8Qhjh9O+h0tLz11/yAJN4SLweCyIHCI8vMXUlfndzIREf+oIJS8t+/xTvqoBsj2DzrEKwIqCEUk761eDUvXxAkADmlGKKNrvIYX/3GD39HyzqFD0NaSIIODS4AYY9QtKKXxnBDG+J1ORMQ/U1IQGmOixphNxphtxphWY8xXs+f/wxizxxjTYoy5xxgTyp43xphvGGPajTHbjTFrTnuvjxpj2rK3j05Ffpm+rIXW54bpz04YtQQgqIEyIlIYjIHb7whSUhbAwdtIfScraP7P3dqT8Aw9/TSMD3pXVjM4VDBEfEWDlouKSNGbqiuESeAaa+0qYDVwozHmYuA/gOXAeUAJ8Mns828ClmRvnwL+CcAYUw18BVgHrAW+YoypmqLvQaahw4dhqHOAfqpOzhfFBB3KylQQikhhePe7oXxmCQFcAlgO0UDvgVE6fr7T72h5Zf3Ph0lMeD8pLAHm0YVZuoTFi/1OJiLirykpCK1nJHsYyt6stfYX2ccssAloyD7nNuB72Yc2ApXGmNnAO4FHrbX91toB4FHgxqn4HmR6am0Feo7STw1B0higrNwQjcKsWX6nExF5+2bMgKtuiBIIBnFIM04J7Syh+e+f8jta3hgZga3rx0gQxSVAlHFm1FlmL45RWup3OhERf01ZD6ExxjHGvAj04hV1z5/2WAj4MPBw9lQ90HXayw9lz73WeSlC1kLLpjHS/UMMEcfgrZ8qrw7R0AABdciKSIF4z3sgVhEiSAaAVlaw86njJI8O+JwsPzz7LCT7R8gQxCVAKaPULq3RclEREaawILTWZqy1q/GuAq41xqw87eFvAU9ba9efja9ljPmUMWaLMWbLsWPHzsZbyjR05AgMNncwQBUOLhmCEHCIVzpaLioiBeXKK6FufhRjDA4u3cxmOB2l5a9+4Xe0vLD+kXESo14xfbJ/sGLVfBWEIiL4MGXUWjsIPEF2qacx5itAHXD3aU87DMw97bghe+61zr/8a/yztbbJWttUp1nSBau1FWhvZ4BqShgnRRjCIQ2UEZGCEw7D+94XwJREcEiTJsgOzqP5+61ouszry2TgmV8MkSCKBUKkmVU6QnhmtX5WiIgwdVNG64wxldn7JcD1wG5jzCfx+gJ/3Vp7+k+0B4CPZKeNXgwMWWu7gV8CNxhjqrLDZG7InpMiYy207HBhXzt9VBMmSZoghMLE4zB37hu/h4hIPnnf+yBWeWpPwt2cw4FjJfT/5Am/o01r27bB0JFRxrP9gzFGqZ1fxvz5EAz6nU5ExH9TdYVwNvCEMWY7sBmvh/BB4NvATOA5Y8yLxpg/zj7/F8B+oB34DvDbANbafuDPsu+xGfjT7DkpMt3dMNDaDWNjjFLmzRc1hnAsSCSiK4QiUniWLYNzVjqYcBiHNMeoZYg4zX/3K7+jTWtPP54iPTxKhiAZHMoYpfbcmVouKiKSNSWfjVlrtwMXvMr5V/362amjn3mNx+4B7jmrASXvnFwumsHhBOXectFQiHiFobYWYjG/E4qInH0f+hBsfT6KMzFCmiAvsIZ5Gx/gmv0dmEUL/Y43LT19Xx8JGwEggKU0mKRiyQwVhCIiWZrDKHnHWmhpAdrb6WY2ATJMZAvC6mpdHRSRwnXLLVBWGSQQMASwtLGEIeJ0fO2Hfkeblg4ehINtyex2E4Yo49TODFIeN8yY4Xc6EZHpQQWh5J2eHujvGoHuIxyjjhCpbEEYZsYMFYQiUrgqK+Ed7zCYkigOaYaJc4TZNP/nLkgk/I437Tz9pIsdGMztP1jKKDWLK2lsBGP8TiciMj2oIJS8410d3IcFjlMDwIRTQjQWIB5XQSgihe3jHwcTCeNk915t5gJaR+aR/P6PfE42/Tx97zHSGUuaIBZDzCSpXVGn5aIiIqdRQSh5xdpT/YNDVDBGjBQhbDjCyR1GVBCKSCG74gqYMTNAIOoVhR0sJEGE1q8/4ne0aWV4GF7cNJHbbiLCBKGKEiqqgyxe7Hc6EZHpQwWh5JXeXjjek4F9+zj+KstFo1HUFyIiBc1x4N3vBiLestEEUdpppHlnGDZt8jvetPHMM+AODJGgBEuAEsaoqY8yZw6UlfmdTkRk+lBBKHmlpQU4dAgmkgxSgQEmAiUEwg41NdDQoL4QESl8n/oUmKCDEwxggG2sopMFDPzdv/odbdpYf38/NpEgQZQMAUoZo3ZpjZaLioi8jApCySvectE2JgjTzWwsMB6ppKbGEAxquaiIFIfGRliyhOxwmQxHmMMYMTb/5CDs3Ol3PN+l0/Dso6OkCZImSJgJgqURaueEVRCKiLyMCkLJG729cOwY0NZOP1U4ZEgQZcIpyfUPrlrla0QRkSlzxx1AKIRjMqQJ0soKnk1fRO/7fgvGx/2O56vmZhjpHc31D0ZJEqwsp6ZGHxyKiLycCkLJG62twNAgHD/GKGUYYJBKCIWYMQPmzIELLvA7pYjI1PjEJyAUMjixEhwytLKSNA73716KvftLfsfz1fqHTsDISG67iRij1MwvY+FCCIX8TiciMr2oIJS8cXIzeovhIHNJEiERLKesPEAs5g1ZUP+giBSLykq48EIgEiYcgkEq6GUGB5nH5m9vgXvv9TuiL6yFp+/rByBBCQEyRKIBahpKtFxURORVqCCUvHDsmLdklLZ2RokxTgmDVOSuDtbUwCWX+J1SRGRqfeADAAZTVkrAeMNlLIZHuIHhj38BDh70O+KU6+yEQx2pXP9gCQmIx6mtRQWhiMirUEEoeaG1FUiloLOTJBFShBgjBuEwdXVw000QDPqdUkRkat15J5SXAyaAUxajg4X8khsYpJIHhy7HfuCD3oSVIvL0o0kYHmacKC6GSLZ/sKEBZs70O52IyPSjglDyQksLcPAApFMcYQ7DVIBxCEYc5s6Fq67yO6GIyNQLh+Haa737JhTEjZXRxTzu5T08yvXsfKYf/uzP/A05xZ764VGwLgmiAMSCaaobSryprGorEBF5BRWEMu0dPw49PUBbO2DpYAEjlEE4RF2d4cYbIRLxO6WIiD+++EVYtMi7b6MxJoIxxojxMO/kD/jfnPjTr8NTT/kbcoo8+yxsf9ECkCBKjDFMRTm1tUbLRUVEXoMKQpn2WlvxpgS0t+PiMEwFFgPhMHPmwPXX+51QRMQ/K1fC7/wOXHQRRCIGyspImBgAW2jiFu7n4Pt/F/r6fE46uVIp+JuvZWBokDRBUoSIMQbxcmprYfFivxOKiExPKghl2mttxftFZnCAw8zmBOXeA6Eg73sflJX5Gk9ExHe/9mvwrnfB5ZdD3YwAxEoYpwSAPSzjfT3/wM9v/kesa31OOnn+67/g4LNdkE6TIEoVA0QDKZzyMpYty/ZaiojIK6gglGmtvx+6u4H2diIk2cjFWAIQClFVFfA2ZhYRKXLGwKc/DStWeFcKz10Vxg2XkMRbT3+UWfzxppv58k1bGB31Oewk6O2F7/xFj9djACQJM4fDUFVJTa1h6VKfA4qITGMqCGVaa2nJ3mlvI0CaPmq941CISy/1tpsQERFvwMwXvwh1dV5P4RXXhHGdMCnCpAlygnIefjTAB9415K28KCDf+KNextsO544XcIB0NA4zZ1FTo+WiIiKvRwWhTGutrUAyCQe72M4qXBzvgXCYT37S12giItNORYXXTxiLQXVtgEuvCBAkQ4YgI5STsg6HN3bx8Y9l+O53wXX9Tvz2NW8Y5eHv9YL1vplyhqkzfYzOXQ4Bh5kzYcECfzOKiExnKghl2hoYgCNHgI4Oou4Im7jIeyDgMGOWwxVX+BpPRGRaqq+Hz38eHAdqGkppXBaggkECZBikEptMkOno4pvfhM9+NrfKMi+5Gctff7AZkoncuXfxC5Kr1mIjJTgOrFoFoZCPIUVEpjkVhDJtnb5cdJgKhqjyjkMhbrpJ+0mJiLyWc8+F3/gN737D6jpKq6PM4ijlnGCMUug7Dv19bNoEd90FGzb4m/et+smnHmbvwWjueBXbKL/0PE5UzQOguhqWLfMrnYhIflBBKNPWye0mbFs7m2nKnY+WOdx6q3+5RETywZVXwi23eFfHZl84h2Q4Th3HWMh+Mjhw4AAkEwwOwhe+AH/7tzAx4XfqN2/w8a3807+eKgYNlvcv2MSzCz/IiRPeudpatP+giMgbUEEo09LgIBw+DPT0MDgaoouG3GO1c8KsXetfNhGRfHHnnbBuHdTMCFK6vIHjzCCAy238lCr3OOzvyPXe/dd/wcc+BocO+Zv5Tenv51t3PM6wPbWXxLtDj/DQVf+HRCpIIgHBICxfDrNm+ZhTRCQPqCCUaenkclHb1s5RZjKAN040HDFcdnmAWMzHcCIiecIY+NSnYMkSmLu0FDNnFgeYzy7O4U/4KpeOPQqHj+Sev3ev9/zubh9DvxHXZfd7/5D7Bq/OnSpnmLK73k3vRBV9fd65VavgvPPUXiAi8kZUEMq0dHIket/uXo4wB4v3E72yymiYjIjIGQiH4e67Yd48mLmiBsrj7GQF/8mv87/5A+7u+T2Co4O55/f2wm//NrnCarqx/+dr/NVTa3M/FwAuv2iCh46sYudO6OmBuXO9m5aLioi8MRWEMu0MDWWXLI2N0dETY4RSAEKkiNWVqiAUETlD5eXwpS/BggWG6OJ6CIbYwOV8j4/wAf6Lf+t9F9Wlydzzu7q8onB42MfQr+bJJ3noj55hO+djgQnCBEpL+HnqBnp6IJ2G0lLv6mBVFZxzjt+BRUSmPxWEMu2cXC461NLFGCUcZwYAFeFxFiwJ09DwOi8WEZFXNWeOt3H9gsYQZt5cXBz+hU+ymQtZ3v8s/5D+TcrLbe75+/bB5z4HY2M+hj7d0aOMvv/jfN1+PvuzoY5jzCC9oJFU2vt1JhCAm27yeic/9zmIRt/gPUVERAWhTD8nl4u27UgQJE2SCA5pyqpCXH65v9lERPLZihXeHoU188pgxgyShPkDvsYgcZY++2/8/ep/o6Tk1PNbW70iMpl87fecEuk0w3d+gt/r/RK7WMEAVUwQoqKhjJSJYAxUVnrf2x//MaxZo70HRUTeLBWEMq0MDXlLlUZHXLp7A4xml4tWMIyprFRBKCLyNl1xhTc4JlRfB7FSeqnjbv6ONA7n/8On+NuP7XhJMbV1K/z+70Mq9frvay2Mjp7drSushYMH4Yd3/og/2nADP+V2Mid/dSktI1RZxsyZ3tLQm2/29l7UEBkRkTMT9DuAyOl27vT+bNs8SDzTzyEaCOBSHhglVlfK6tX+5hMRKQR33QW7dgW4b2wutLWzxW3i63yB30n/LWs/cxFfu+tb/E7Lx3CzxdeGDd6Vty99Cfr7vYEzx497t5P3+/ogkfCWaX7sY3DZZW89XzoNO3bAxo1w5Kk27E/beZYbcbODZIIRh/pzy1nc6C0TLSuD3/xN776IiJwZFYQyrbS0eL9QHGxLMpsxhqikkkEClXEuudRoCZCIyFlgDHz5y7B7d5hd4/XYgwf4MXcwnwOcm9yJ/e53eWd8hH+PfIJUKEY6bfjOd+Chh7ytHF5PIgHf/rY37fM97zmzK3ajo14RuGlTtndxaBDuv58DzOcI9ZQwTqmThIVLWNxocgXgJz/pDZEREZEzp4JQpo3hYW9p0P79YIaHGKcEgyXOMFTM03JREZGzKBSCv/97uPPOCobG6hg7fox7+Dh1HPeeMAzz2UxLaA3ESsFx6OryNnx/M9M777vPKwo/+ck37uc7ccK7Crl582lLU9Np+Mm9hBODtHMpMzmKg8vw7BUsmh/KFYPXXAMXXviW/xpERIqeCkKZNnbu9H4R6NgzQTzRw3HqKOcEDhmIx9/W8iMREXml2bO9K4V/+D9nMRGJ0H00QDCTpoIhAljm0UU6FWL30HKIlkDknzh1AAAeyklEQVRJlI6OAGVl8I53QE0N1Nae+hPgnnu8Ag/g2We95aRf+IK39cXLDQ7C+vVen2Im87Jsz93LJUe+yUbWkSKMg8vErLmEK2LU1XnPqa+HD35w8v5+RESKgQpCmTZaWqCzE1KDJ4gzzB6WM4tuKC1lxfkhqqv9TigiUnhuuAE2bzbce281qXgFB3urKOs7wEL2s5IWbuEBnuVSHkncQDBjCM6dzchIJcuXGz7wgVe+37x58Dd/A93d3vHevfAnf+L1H86Z453r64Onn4YXXwTXfenrlyyBK4d/xryn3k83s/l3PgKAjVfQ78xg3TLvecEgfOYzEA5Pzt+LiEixUEEo08KJE9DR4e17FTgxTIogURKESEPFDG1GLyIySYzxNqF3HOjrc4hE6gkcC8LDbYx1ldLDLO7gx9RynJ+m3gP790E8zt/95TxKS6PcdttL32/GDPjKV+Ab3zg1KKy3F776VfjQh+DoUW9gjLUvfd0558CVV0L9yB5o8irN/48vMEEYwmH6KxZRP9sQi3nP//Vfh7lzJ/kvR0SkCGgel19++ctXro8pYjt3ev2DiXGXipHD9FFHBYPegxUV6h8UEZlE1dVw993e9NH584GZM+EjH4Hbbqe3dBG/5EYmiDCfTsaJYoeHYWcrf/6bXTxy//gr3q+0FH73d70CD7wBMa2t8NnPwoMPnioGjfGG1Hz2s/CBD0B9/ATccQeMjLCJi/gV14AxjNUvIeU6LF7svW71arj++qn5uxERKXS6QjjVJia8XX6/9S34wz+Ev/gLvxNNCzt2QFsbMDZKhdvPAAuIMAGhEDVzYyxb5ndCEZHCFolAU5N3O3YMmpsNzeXnMbJ0KTz9NHbTJpbb3XQzh4PMo8SOETvax5fvPE7sjwa4/MtXv2SkaDDoLUfdtQseeeTU13nhBRgdTPHrl3RwZelWare+CN/f5T1x/35wXdI4/DW/C0C6fh7HR0pYtcq7illR4e2jqP0GRUTODhWEU+nwYe+Tz40bveO//EtYtw5uvdXfXD4bGfEGD4yOestFHTLY7F5TxCu47DKjvaVERKZQXZ1XzF13HbS1RWhecz27n14Fv3iYqw48yWNcRxcNjFBGOJXit77i8O0H/geX/ftvYZefQ2cnPPmEZf+OUWLHj3NR+Tgv7C3HTSSpTvUQaOniyAMbiPN/gVfueP8D3k8HC7GV1Ry3tVRWwqxZ3mOf/vSrD6gREZG3RgXhVAoEvKkpp/vwh2HLFq+Lvkjt3OkNHQCIjx4hRJooSe+ElouKiPgmEIBly7zb2K0z2PahD9P8/2/l2h89x8MjQY4yiwlCHKeWD2y9m8+f+49UrF7Igd4Sb7xoMgHAfNJcxiGeZy3jeE2Am1hLHzV8ka9TwXDua/ZRzf/l0xCJMlw9n8SQ4aKLvMduvvmN90EUEZEzo+suU2n2bPjhD2kPLOUBbvHODQ/D+97nXR4rUg8/DENDwESSyvGjwMlJA4ZgdTkXX+xjOBERASAWg0suNfz2PU18/oXf4H/d2sIsenOPTxDmm/a3aW524fAhSCYIM8EVrOdL/C2f4B7+kv9FPYdzr9nHYv6EP+EQ9blz34z/EWNV9SQXLGFgyGHBAigrgwUL4M47p/AbFhEpEsa+fMzXZHwRY6LA00AE76rkj621XzHGLAT+G6gBtgIfttZOGGMiwPeAC4E+4P3W2s7se/1P4BNABvi8tfaXr/e1m5qa7JYtWybnG3sLRkbgw5e207VjkFt5gN/na16v3Ic+BN/7XtE1RYyOwrvf7X2QHOg/xjVHvsezXEaGIJSXs/ZDy/jWt/xOKSIir+b4M3v44K3D7O2vIUkUC0RIUkM/MznKLI4SJEMAF4PFYMkQoIXz6QvPgnAYEwkTLAlxwfkutQvLeXpjGNeFI0e8K5RXXukVo3/+597nqiIicuaMMVuttU2v9thULRlNAtdYa0eMMSFggzHmIeBu4OvW2v82xnwbr9D7p+yfA9baRmPMXcDXgPcbY1YAdwHnAnOAx4wxS621eTGu01pvL6au8GKo2s8DA7eyh2X8Fb9H/fe/Dxdf7G2qVCSOHIFvf9srBgHiYz0sopP1ZMfSabmoiMi0VnvZMr6/y/LJdx3h4Iv9jKcdwFvn0ctMes1sKIlCNJrb2J5oFBuOkOgPeBvYW2AMjmyEmjaIx6G/H1IpOP98bzjNRz6iYlBEZLJMyZJR6xnJHoayNwtcA/w4e/67wO3Z+7dlj8k+fq0xxmTP/7e1Nmmt7QDagbVT8C2cFem0t+wFjLf2JRplD8v4EN9nA5d500efe87nlJMvnYbHHoN/+Ad49NHsSddlyfAW+jht93kVhCIi017dDMM/3V/PrKuXUza/lrKGagKNjV6z35oL4JwVsHCRV9FVVkG0BBMIUFPjbXdxur4+b5/CEyegshLq62HtWnjHO/z53kRE/l97dx4fVXX3cfzzS0ISthAggIRNQZbiBhoUrVallipVoGqBFtEWWpG61/Vxq6I+VlyxWoUqKGKtqBSx6qtUBOqDUAERlUU2o+w7BBQISc7zx7nDTDBRIMnMJPf7fr3mlZkz95577v0lDL85554TBnGbVMbMUvHDQo8GngJWANudc0XBJqth/00ELYBVAM65IjPbgR9W2gKYHVNt7D5Jr1Ytv1jv8cfDQw+lsq9dO1i8mJ0l9bmOx/ntvme5/KJfkDJ/nl8DqgZauxYmTvQf+B9+6IfQpqVBy1obGVTyPH/if/yG6Rm07pBJ69aJba+IiHy/3FwY9Wwajz7ahLVr/YiYkhL/M/IoKfHbxpY3bQrbt/t1aCPlRUXQsCGccALk5MDgwaG7m0JEJK7ilhAGwzq7mFk28A+gU1Udy8wuBy4HaJ1kGYUZXHghdOoEt9xSm3W7j4KVKwB4lt/y2bpjue+iIWRPn+QzpRqiuBimT4f//Md/6C9aBBs2+A/9Fi3gzDXv0YwNbKGx36FBA04/Xf8DEBGpLlq3hscfP7x98/Ph0Udh27ZomRkMG+YXuRcRkaoT91lGnXPbgWnAqUC2mUWynpawf+qxNUArgOD9BvjJZfaXl7FP7DFGO+fynHN5TZo0qZLzqKjOnWH8eDi1V0NodsT+8tl0Z+DMYSwc+kQCW1e51q6Fp5/2CWFJCaxeDV984UfNtmkD7Y92DP7iTmYSMz5Uw0VFRELjyCP9Pfax3+H27euXuxARkaoVl4TQzJoEPYOYWW3gJ8BifGJ4cbDZZcAbwfPJwWuC999zfjrUycAAM8sIZihtD3wYj3OoCg0awMiRcPkfm2P16+0v30AzfjvmVF6/aRZxmAS2yhQXw9SpMGqU7w0Ev7xEfr7vIc3O9pMHXPvTJaSvXsn/RRJCS6FOs3p07ZqwpouISJw1agR33eWX573iCvj5zxPdIhGRcIjXmMTmwAvBfYQpwATn3D/NbBHwdzO7D5gPPBds/xzwopktB7biZxbFObfQzCYAi4Ai4MrqMsNoeVJS4PJhqRzbqil3XLSFgsIMAPZRiwceTWHBN5u57ZEcMjMT3NBDtG5d9F7BiNRUf69Iy5bR19deC40nvclWGrKQY/wbWfXpfloqtWrFv90iIpI4GRnQs2eiWyEiEi5xSQidc58A3+rvcc6tpIxZQp1ze4Ayl591zt0P3F/ZbUy0085vxPhXM7il7+csdsEYmZIS3h6znqUbGjDi0VrVYoKV4mKYMcM/IhMIgB8i+/nnlOrxvPRS6NABeOstZvLD6BsaLioiIiIiEhdxv4dQypfbO4/nHivgQiZGC/fsYfl7XzFokGPGjMS17WCsW+fXFZw2LZoM1qkD/fv7WeNWrIhue/bZ0KMHvstw5szocFGABg344Q8REREREZEqpoQwyaRfcwW3XbKKP3IP6RT6wm3b+HrlRm64Af78Z98Ll0yKi+G993wyGDtE9Jhj4Jpr/ALDU6ZEyzt08L2DAEyZQlGxn0wHgMxMOnfJoHHjuDVfRERERCS0lBAmGzMYNYoLjvuS5/k1LSKTqK5eDbt28sILcOWVPslKBuX1Cvbr53sG16+HsWOj2zds6JPE/StqvP02H9OFrwnmFddwURERERGRuFFCmIzq1IGJE+nQYCMvMogzeB9wsGIl7Ctk7lwYOBA++SRxTXQO5szxM4iW1St43HF+RtGRI/1wUfBJ4HXX+dlVAZg9GyZM4H3OiFbQIFsJoYiIiIhInCghTFZHHw3jxpHFTh7hBn7PX0gp2gsrV4IrYdMm+N3vYMIE4r40RVERvPEGTJ4cHb4a2ytYt67fZuTI0osMDxkCbdsGL5YuhfPPh927o/cPpqbRqHVdOnWK6+mIiIiIiISWEsJk1rs33HYbKTgGM5YnuYrsXathtR9GWlwMI0bAvfdCYWF8mrRjBzz7LMybFy1r1w6uvtr3Cpr5BPX552H58ug2555LtOdv/XpfsGULq2nBl7Tx5S1bcvoZKaTot1JEREREJC70X+9kN3w4nHMOACczh5cYyLEbp8K26E2EkyfD5ZfDxo1V25T8fHj6aVizJlr2ox/5CWLq1YuWTZ1KqRlRO3eGAQOCFzt3ws9+Bl98QQnGG/Tx5c2bQ06OhouKiIiIiMSREsJkl5oKL79MZBHCZmzkr/yOi1aNhD2792/22WcwaFDV3FfoHHzwgZ8c5uuvfVl6uk/yfvITSvXoLVkC48dHX+fkwFVX+dNg3z64+GIKPlrGOAbRhzcYy2+gcWPIzSUtDU45pfLbLyIiIiIiZYvLwvRSQTk58NprfsxlYSG1KOJ/9g2n47atjMh9jCLnw7hli+8pvPVW6Nu3/OoKC2HzZv8oKfFDPuvXL3vbfftg0qTSiWbjxvCrX0HTpqW33bIFnngiel9hejr84Q9B3c6xrN/tvDKlG+9wF3vJ8BtlZUGbNoBxyin+/kMREREREYkPJYTVRbdufhHCoUP3F1249knatdjDTRmPs3WPz6SKivwo0w8/hAsv9Pf8RZK/TZv8zx07vl19mzZ+aGfnztCxI9Su7SeE+dvfSs8i2rEjXHwxZGaW3r+wEB57zI8IjRg6FHJz/RqFf79hDh993K/0TnXq+GzUUsjLg1tuqehFEhERERGRQ2Eu3lNUxlleXp6bO3duoptROZyDIUMoHDuezeSwiSZsJofl1p4xjW9mVUprilza/h66Ro2ga1fIyDi0w6Sk+KUhNm/2HXiNGvkhnz16wFln+YljDmzW00/DrFnRsh49/HavvgobPt0Iq74qvVNGBhnHd+S83un07w/t2x/y1RARERERkYNgZvOcc3llvacewurEDJ56iikz6vPKyph4Ojh68yz22C5Wp7eDOrXBUti6FWbOhJNOiln7L0Zqqv8ZSSDBJ3fr1sH8+dHlLGrV8olgQYGfObRt2+i+AO+8E00GCwpgzx4YPdoPN2X7tm8lg83Tt/CLe7vQd2g6WVkVvioiIiIiInKYlBBWN7Vrk/PY7TB4HmzZvL84hRKOdwvI2rudxXuPwdWujWVmUlycwoIF/p7CHj2gSRN/S2KTJpCd7Yd6Ll0KCxf6+wTffx+2b48eLjMTjjrKDzd97bVoWceOfnhp3brRYaX5+bBrlx8mmpIC7Nrp100M5DGXARmT+NH04aR0bxaf6yUiIiIiIuVSQlgNNTmmKZx7Lmlr8slZ8B4525aSw2Zy2EwTNrGOIxi5+1q+3puFNW8OjZswc2YqRx7p14KP7d3LyPDrBzZv7petOO00PznMpk2+h7BevdLbg+8BnD8fpk/3w0pXrfJlKSm+npQU/Ayoy5eT6XbTi7fpzyu0S/0SXn8Dup8cx6slIiIiIiLl0T2E1VBRkZ+8JTsbrLgIxo2Du+/2mVlgLc25kYdZSgdIqwW5fp2/k09J4YEHSg8hXbLE9/7t3etfm/nlJE4/3Q8BXbwYPv3UDz9dtswnjFu3lh5qCtCsmZ8nhn2F5C6bQb/dL9CbyWQRzDTz3HMweHCVXhsRERERESntu+4hVEJYU+zdC6NGwX33+e49YA8ZDOcuptDTb5OeAbm55B7biEceNY4+GqZN84+I2rWhf38/THT5cpg71z/mzfNrEBYVwe7dvkdw925KTWDToAGc3GUvA6ZdwekrXyCFmN+t4cPhzjvjdDFERERERCRCCWEYEsKIXbtg5Eh46CHYsQMHvMgg/szVOILpQTMzSW/dnDP6NiI93Zc559cNbNXK9wjOm1f28hSxnPMJYu3a/h7Ffn320vbK80pnmOAXR3zmmW9PTyoiIiIiIlVOCWGYEsKIrVthxAi/Uvzu3XzAqdzO/ezEr0C/jWy+ScumU+cUCus1ZNcuIy3t4HK29HQ4/njIy/OPY46BWqklcMkl8PLLpTe+4AKYOBHSdLuqiIiIiEgiKCEMY0IYsW6dH0Y6ejSrio7gBh5hJW0pJoVNNKGEVLKsgLq1werW8UtW1Knju/0sBfCTyhx7rE/+unXzyWB6+gHHuekmePjh0mXdu8PUqcGNhSIiIiIikghKCMOcEEasXAn33MM3417jLu5hOmdRSC0cRgaFpTZNoYQf2BLyjlhD3gn7OOHMbOqcchyccIK/WfBAjz8O119fuqxDBz8LTU5OFZ6UiIiIiIh8HyWESgijFi6k5I67GDOpIaMYisMwHO1ZRjfmkMdcujKfenxd9v6tW0PXrtCli/+5aZO/RzD296hZM79S/VFHxeecRERERESkXEoIlRB+25w55N/xLOtn59O5YFZ0aYiKqlcPZsyAE0+snPpERERERKRCvish1EwfYdWtG0f+qxtHOgerV/uV5j/+OPozP//Q60xLg9dfVzIoIiIiIlJNKCEMOzO/1kSrVtC7d7R82zZYsKB0krhokV9nojxjxkDPnlXfZhERERERqRRKCKVsDRvCWWf5R8SePT4pjE0SFyyAWrXgwQdh0KBEtVZERERERA6DEkI5eJmZfjiohoSKiIiIiNQIKYlugIiIiIiIiCSGEkIREREREZGQUkIoIiIiIiISUkoIRUREREREQkoJoYiIiIiISEgpIRQREREREQkpJYQiIiIiIiIhpYRQREREREQkpJQQioiIiIiIhJQSQhERERERkZBSQigiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERERERCSklBCKiIiIiIiElDnnEt2GKmVmm4AvE92OMuQAmxPdCPkWxSX5KCbJSXFJPopJclJcko9ikpwUl6rVxjnXpKw3anxCmKzMbK5zLi/R7ZDSFJfko5gkJ8Ul+SgmyUlxST6KSXJSXBJHQ0ZFRERERERCSgmhiIiIiIhISCkhTJzRiW6AlElxST6KSXJSXJKPYpKcFJfko5gkJ8UlQXQPoYiIiIiISEiph1BERERERCSklBAeBDMbY2YbzeyzA8ofMrMlZvaJmf3DzLLL2f/eYJuPzWyKmeUG5WZmT5jZ8uD9E8vZ/1wz+zzY7taY8qPM7L9B+Stmll6Z553skjguZmb3m9lSM1tsZtdU5nknsySISYWOXxMlcUy6mNnsoN65ZnZyZZ1zdVCFcelkZrPMbK+Z3fgdxz/JzD4N4veEmVlQ3sjM/m1my4KfDSvzvJNZssYkeO/qoA0LzWxEZZ1zdZAEcbnfzFaZ2a4Dyv9gZouCuqeaWZvKON/qIIlj0trMppnZ/KD+XpVxvqHgnNPjex7Aj4ATgc8OKO8JpAXPHwQeLGf/rJjn1wDPBM97Ae8ABnQH/lvGvqnACqAtkA4sADoH700ABgTPnwGGJfpaKS4O4DfAOCAleN000dcqDDGpjOPXxEcSx2QKcF5MXdMTfa1qSFyaAt2A+4Ebv+P4HwZxsyCOkViMAG4Nnt+qv5WkiMnZwLtARqS+RF+rkMWlO9Ac2HVA+dlAneD5MOCVRF8rxYTRBP8XBjoD+Ym+VtXloR7Cg+Cc+w+wtYzyKc65ouDlbKBlOfsXxLysC0Ru3OwDjHPebCDbzJofsPvJwHLn3ErnXCHwd6BP8M1hD+C1YLsXgL6HfnbVVzLGJXhvGDDcOVcSHGfjoZ9d9ZTgmFT4+DVRssYkqCcreN4AWHsQp1NjVFVcnHMbnXNzgH3lHTuIU5ZzbrZzzuG/wIp8fvTBf55AyD5Xkjgmw4A/Oef2Ruo7pBOr5hIZl2C72c65dWWUT3POffN9x6+JkjUmhPxzpSLSEt2AGmQw8Ep5b5rZ/cClwA78t0oALYBVMZutDspif8nL2uYUoDGwPeYPL7KvlBbvuAC0A/qb2c+BTcA1zrllFTiHmqaqYlIpxw+pRMTkOuBfZvYw/vaF0w6xzWFwOHE5GC3w8YqI/fxoFvMfrfVAs0OoNwwSEZMOwBlB3XvwPSdzDqXRIVBVcTlYQ/C9uhKViJjcDUwxs6vxieY5lVRvjacewkpgZrcDRcBL5W3jnLvdOdcq2OaqeLUtzBIYlwxgj3MuD/grMKaS6q32Ev23cjDHD5sExmQYcH1Q7/XAc5VUb42Q6L+VoH5HtEc49BIYkzSgEX6Y3E3AhNj7C8Mu0X8rZnYJkAc8VJn1VmcJjMkvgeedcy3xtyK8aGbKdQ6CLlIFmdmvgfOBgcGHJ2Y2NrhR9u0ydnkJuCh4vgZoFfNey6AsVnnbbMEP0Ur7jn1DK4FxAf/N7sTg+T+A4w/zNGqUOMTkkI8fdgmOyWVE/05exQ/DFiocl4OxhtJDuWJjtyEy9Df4GarhieVJcExWAxOD4dkfAiVAziGeQo0Uh7h83/HPAW4HekeG9IZdgmMyBD+/Bs65WUAm+ls5KEoIK8DMzgVuxv9DEBlHjnPuN865Ls65XsF27WN26wMsCZ5PBi41rzuwo4wx0XOA9uZnFE0HBgCTgz+yacDFwXaXAW9U8ilWS4mMS/DeJKLDH84Ellbi6VVLcYrJIR8/zBIdE/y9HWcGz3sAGlZNpcTlewVxKjCz7kFP06VEPz8m4z9PQJ8rQFLEZP9nipl1wE9ktrkCp1QjxCMu33P8rsCo4Pj64oTExwT4CvhxcIwf4BPCTZVUd83mkmBmm2R/AC/j74vZh/+mbkhQvhx/D83HweOZcvZ/HfgM+AR4E2gR+dIEeAo/W+WnQF45+/fCJxUrgNtjytviZyVbjv+GPSPR10pxcQDZwFvBvrOAExJ9rUIUkwodvyY+kjgmpwPz8DP0/hc4KdHXqobE5YigvgJge/A8q4z984L9VwBPAhaUNwam4hP0d4FGib5WignpwPjgvY+AHom+ViGLy4jgvZLg591B+bvAhpjjT070tVJM6AzMxH+ufAz0TPS1qi6PyD82IiIiIiIiEjIaMioiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERELHzFqb2S4zS010W0RERBJJCaGIiISCmeWb2TkAzrmvnHP1nHPFcTz+WWa2Ol7HExERORhKCEVEREREREJKCaGIiNR4ZvYi0Bp4MxgqerOZOTNLC96fbmb3mdkHwftvmlljM3vJzArMbI6ZHRlTXycz+7eZbTWzz82sX8x7vcxskZntNLM1ZnajmdUF3gFyg/p3mVmumZ1sZrPMbLuZrTOzJ80sPaYuZ2a/N7NlQX33mlm7oJ0FZjYhsn2kB9LMbjOzzUGP6MD4XGEREamulBCKiEiN55wbBHwFXOCcqwdMKGOzAcAgoAXQDpgFjAUaAYuBPwIEyd2/gb8BTYP9/mJmnYN6ngOGOufqA8cC7znnvgbOA9YGQ1XrOefWAsXA9UAOcCrwY+D3B7Trp8BJQHfgZmA0cAnQKqj/lzHbHhHU1QK4DBhtZh0P6WKJiEioKCEUERHxxjrnVjjnduB781Y45951zhUBrwJdg+3OB/Kdc2Odc0XOufnA68Avgvf3AZ3NLMs5t80591F5B3TOzXPOzQ7qyQdGAWcesNkI51yBc24h8BkwxTm3MqadXQ/Y/k7n3F7n3AzgLaAfIiIi5VBCKCIi4m2Ieb67jNf1gudtgFOCYZ7bzWw7MBDfOwdwEdAL+NLMZpjZqeUd0Mw6mNk/zWy9mRUA/4vv4TucdgFsC3ojI74Ecss7voiIiBJCEREJC1dJ9awCZjjnsmMe9ZxzwwCcc3Occ33ww0knER2eWtbxnwaWAO2dc1nAbYBVoG0NgyGtEa2BtRWoT0REajglhCIiEhYbgLaVUM8/gQ5mNsjMagWPbmb2AzNLN7OBZtbAObcPKABKYo7f2MwaxNRVP9hml5l1AoZVQvvuCdpxBn5466uVUKeIiNRQSghFRCQsHgDuCIZ4Xny4lTjndgI98ZPJrAXWAw8CGcEmg4D8YAjoFfjhpDjnlgAvAyuDoaa5wI3Ar4CdwF+BVw63XYH1wLagXS8BVwTHFRERKZM5V1kjaERERCRRzOwsYLxzrmWi2yIiItWHeghFRERERERCSgmhiIiIiIhISGnIqIiIiIiISEiph1BERERERCSklBCKiIiIiIiElBJCERERERGRkFJCKCIiIiIiElJKCEVEREREREJKCaGIiIiIiEhI/T/TYeQPsPM8oAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "c193140200b9684da27e3890211391b6", + "translation_date": "2025-09-04T01:46:40+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/2-ARIMA/working/notebook.ipynb b/translations/fr/7-TimeSeries/2-ARIMA/working/notebook.ipynb new file mode 100644 index 000000000..e52097bac --- /dev/null +++ b/translations/fr/7-TimeSeries/2-ARIMA/working/notebook.ipynb @@ -0,0 +1,59 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "523ec472196307b3c4235337353c9ceb", + "translation_date": "2025-09-04T01:49:38+00:00", + "source_file": "7-TimeSeries/2-ARIMA/working/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Prévision de séries temporelles avec ARIMA\n", + "\n", + "Dans ce notebook, nous montrons comment :\n", + "- préparer des données de séries temporelles pour entraîner un modèle de prévision ARIMA\n", + "- implémenter un modèle ARIMA simple pour prévoir les HORIZON étapes suivantes (du temps *t+1* au temps *t+HORIZON*) dans la série temporelle\n", + "- évaluer le modèle\n", + "\n", + "Les données utilisées dans cet exemple proviennent de la compétition de prévision GEFCom2014. Elles consistent en 3 années de charges électriques horaires et de valeurs de température entre 2012 et 2014. La tâche consiste à prévoir les valeurs futures de la charge électrique. Dans cet exemple, nous montrons comment prévoir une étape temporelle à l'avance, en utilisant uniquement les données historiques de charge.\n", + "\n", + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli et Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, juillet-septembre, 2016.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pip install statsmodels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/3-SVR/README.md b/translations/fr/7-TimeSeries/3-SVR/README.md new file mode 100644 index 000000000..42c8eadd4 --- /dev/null +++ b/translations/fr/7-TimeSeries/3-SVR/README.md @@ -0,0 +1,393 @@ + +# Prévision des séries temporelles avec le Support Vector Regressor + +Dans la leçon précédente, vous avez appris à utiliser le modèle ARIMA pour effectuer des prédictions sur des séries temporelles. Maintenant, vous allez découvrir le modèle Support Vector Regressor, un modèle de régression utilisé pour prédire des données continues. + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/51/) + +## Introduction + +Dans cette leçon, vous allez découvrir une méthode spécifique pour construire des modèles avec [**SVM** : **S**upport **V**ector **M**achine](https://en.wikipedia.org/wiki/Support-vector_machine) pour la régression, ou **SVR : Support Vector Regressor**. + +### SVR dans le contexte des séries temporelles [^1] + +Avant de comprendre l'importance du SVR dans la prévision des séries temporelles, voici quelques concepts importants que vous devez connaître : + +- **Régression :** Technique d'apprentissage supervisé pour prédire des valeurs continues à partir d'un ensemble d'entrées donné. L'idée est d'ajuster une courbe (ou une ligne) dans l'espace des caractéristiques qui contient le maximum de points de données. [Cliquez ici](https://en.wikipedia.org/wiki/Regression_analysis) pour plus d'informations. +- **Support Vector Machine (SVM) :** Un type de modèle d'apprentissage supervisé utilisé pour la classification, la régression et la détection des anomalies. Le modèle est un hyperplan dans l'espace des caractéristiques, qui agit comme une frontière dans le cas de la classification, et comme une ligne de meilleur ajustement dans le cas de la régression. Dans le SVM, une fonction de noyau est généralement utilisée pour transformer le jeu de données dans un espace de dimensions supérieures, afin qu'ils soient facilement séparables. [Cliquez ici](https://en.wikipedia.org/wiki/Support-vector_machine) pour plus d'informations sur les SVM. +- **Support Vector Regressor (SVR) :** Un type de SVM, utilisé pour trouver la ligne de meilleur ajustement (qui, dans le cas du SVM, est un hyperplan) contenant le maximum de points de données. + +### Pourquoi utiliser le SVR ? [^1] + +Dans la dernière leçon, vous avez appris à utiliser ARIMA, une méthode statistique linéaire très efficace pour prévoir les données de séries temporelles. Cependant, dans de nombreux cas, les données de séries temporelles présentent une *non-linéarité*, qui ne peut pas être modélisée par des modèles linéaires. Dans de tels cas, la capacité du SVM à prendre en compte la non-linéarité des données pour les tâches de régression rend le SVR efficace pour la prévision des séries temporelles. + +## Exercice - Construire un modèle SVR + +Les premières étapes de préparation des données sont les mêmes que celles de la leçon précédente sur [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA). + +Ouvrez le dossier [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/3-SVR/working) dans cette leçon et trouvez le fichier [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/3-SVR/working/notebook.ipynb). [^2] + +1. Exécutez le notebook et importez les bibliothèques nécessaires : [^2] + + ```python + import sys + sys.path.append('../../') + ``` + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from sklearn.svm import SVR + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + ``` + +2. Chargez les données du fichier `/data/energy.csv` dans un dataframe Pandas et examinez-les : [^2] + + ```python + energy = load_data('../../data')[['load']] + ``` + +3. Tracez toutes les données énergétiques disponibles de janvier 2012 à décembre 2014 : [^2] + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![données complètes](../../../../translated_images/full-data.a82ec9957e580e976f651a4fc38f280b9229c6efdbe3cfe7c60abaa9486d2cbe.fr.png) + + Maintenant, construisons notre modèle SVR. + +### Créer des ensembles de données d'entraînement et de test + +Maintenant que vos données sont chargées, vous pouvez les séparer en ensembles d'entraînement et de test. Ensuite, vous allez remodeler les données pour créer un ensemble de données basé sur des étapes temporelles, ce qui sera nécessaire pour le SVR. Vous entraînerez votre modèle sur l'ensemble d'entraînement. Une fois l'entraînement terminé, vous évaluerez sa précision sur l'ensemble d'entraînement, l'ensemble de test, puis sur l'ensemble complet pour voir les performances globales. Vous devez vous assurer que l'ensemble de test couvre une période ultérieure à celle de l'ensemble d'entraînement afin que le modèle ne tire pas d'informations des périodes futures [^2] (une situation connue sous le nom de *surapprentissage*). + +1. Allouez une période de deux mois du 1er septembre au 31 octobre 2014 à l'ensemble d'entraînement. L'ensemble de test inclura la période de deux mois du 1er novembre au 31 décembre 2014 : [^2] + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + +2. Visualisez les différences : [^2] + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![données d'entraînement et de test](../../../../translated_images/train-test.ead0cecbfc341921d4875eccf25fed5eefbb860cdbb69cabcc2276c49e4b33e5.fr.png) + +### Préparer les données pour l'entraînement + +Maintenant, vous devez préparer les données pour l'entraînement en effectuant un filtrage et une mise à l'échelle de vos données. Filtrez votre ensemble de données pour inclure uniquement les périodes et colonnes nécessaires, et mettez à l'échelle pour garantir que les données sont projetées dans l'intervalle 0,1. + +1. Filtrez l'ensemble de données original pour inclure uniquement les périodes mentionnées par ensemble et uniquement la colonne nécessaire 'load' ainsi que la date : [^2] + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +2. Mettez à l'échelle les données d'entraînement pour qu'elles soient dans la plage (0, 1) : [^2] + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + ``` + +4. Maintenant, mettez à l'échelle les données de test : [^2] + + ```python + test['load'] = scaler.transform(test) + ``` + +### Créer des données avec des étapes temporelles [^1] + +Pour le SVR, vous transformez les données d'entrée pour qu'elles soient sous la forme `[batch, timesteps]`. Ainsi, vous remodelez les `train_data` et `test_data` existants de manière à ce qu'il y ait une nouvelle dimension qui se réfère aux étapes temporelles. + +```python +# Converting to numpy arrays +train_data = train.values +test_data = test.values +``` + +Pour cet exemple, nous prenons `timesteps = 5`. Ainsi, les entrées du modèle sont les données des 4 premières étapes temporelles, et la sortie sera les données de la 5ème étape temporelle. + +```python +timesteps=5 +``` + +Conversion des données d'entraînement en tenseur 2D à l'aide de la compréhension de liste imbriquée : + +```python +train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0] +train_data_timesteps.shape +``` + +```output +(1412, 5) +``` + +Conversion des données de test en tenseur 2D : + +```python +test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0] +test_data_timesteps.shape +``` + +```output +(44, 5) +``` + +Sélection des entrées et sorties des données d'entraînement et de test : + +```python +x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]] +x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]] + +print(x_train.shape, y_train.shape) +print(x_test.shape, y_test.shape) +``` + +```output +(1412, 4) (1412, 1) +(44, 4) (44, 1) +``` + +### Implémenter le SVR [^1] + +Maintenant, il est temps d'implémenter le SVR. Pour en savoir plus sur cette implémentation, vous pouvez consulter [cette documentation](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html). Pour notre implémentation, nous suivons ces étapes : + + 1. Définir le modèle en appelant `SVR()` et en passant les hyperparamètres du modèle : kernel, gamma, c et epsilon + 2. Préparer le modèle pour les données d'entraînement en appelant la fonction `fit()` + 3. Faire des prédictions en appelant la fonction `predict()` + +Maintenant, nous créons un modèle SVR. Ici, nous utilisons le [noyau RBF](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel), et définissons les hyperparamètres gamma, C et epsilon à 0.5, 10 et 0.05 respectivement. + +```python +model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05) +``` + +#### Ajuster le modèle sur les données d'entraînement [^1] + +```python +model.fit(x_train, y_train[:,0]) +``` + +```output +SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5, + kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) +``` + +#### Faire des prédictions avec le modèle [^1] + +```python +y_train_pred = model.predict(x_train).reshape(-1,1) +y_test_pred = model.predict(x_test).reshape(-1,1) + +print(y_train_pred.shape, y_test_pred.shape) +``` + +```output +(1412, 1) (44, 1) +``` + +Vous avez construit votre SVR ! Maintenant, nous devons l'évaluer. + +### Évaluer votre modèle [^1] + +Pour l'évaluation, nous allons d'abord remettre les données à leur échelle originale. Ensuite, pour vérifier les performances, nous tracerons le graphique des séries temporelles originales et prédites, et nous imprimerons également le résultat du MAPE. + +Remettre à l'échelle les sorties prédites et originales : + +```python +# Scaling the predictions +y_train_pred = scaler.inverse_transform(y_train_pred) +y_test_pred = scaler.inverse_transform(y_test_pred) + +print(len(y_train_pred), len(y_test_pred)) +``` + +```python +# Scaling the original values +y_train = scaler.inverse_transform(y_train) +y_test = scaler.inverse_transform(y_test) + +print(len(y_train), len(y_test)) +``` + +#### Vérifier les performances du modèle sur les données d'entraînement et de test [^1] + +Nous extrayons les horodatages de l'ensemble de données pour les afficher sur l'axe x de notre graphique. Notez que nous utilisons les ```timesteps-1``` premières valeurs comme entrée pour la première sortie, donc les horodatages pour la sortie commenceront après cela. + +```python +train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:] +test_timestamps = energy[test_start_dt:].index[timesteps-1:] + +print(len(train_timestamps), len(test_timestamps)) +``` + +```output +1412 44 +``` + +Tracer les prédictions pour les données d'entraînement : + +```python +plt.figure(figsize=(25,6)) +plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.title("Training data prediction") +plt.show() +``` + +![prédictions des données d'entraînement](../../../../translated_images/train-data-predict.3c4ef4e78553104ffdd53d47a4c06414007947ea328e9261ddf48d3eafdefbbf.fr.png) + +Imprimer le MAPE pour les données d'entraînement + +```python +print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%') +``` + +```output +MAPE for training data: 1.7195710200875551 % +``` + +Tracer les prédictions pour les données de test + +```python +plt.figure(figsize=(10,3)) +plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![prédictions des données de test](../../../../translated_images/test-data-predict.8afc47ee7e52874f514ebdda4a798647e9ecf44a97cc927c535246fcf7a28aa9.fr.png) + +Imprimer le MAPE pour les données de test + +```python +print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%') +``` + +```output +MAPE for testing data: 1.2623790187854018 % +``` + +🏆 Vous avez obtenu un très bon résultat sur l'ensemble de test ! + +### Vérifier les performances du modèle sur l'ensemble complet [^1] + +```python +# Extracting load values as numpy array +data = energy.copy().values + +# Scaling +data = scaler.transform(data) + +# Transforming to 2D tensor as per model input requirement +data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0] +print("Tensor shape: ", data_timesteps.shape) + +# Selecting inputs and outputs from data +X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]] +print("X shape: ", X.shape,"\nY shape: ", Y.shape) +``` + +```output +Tensor shape: (26300, 5) +X shape: (26300, 4) +Y shape: (26300, 1) +``` + +```python +# Make model predictions +Y_pred = model.predict(X).reshape(-1,1) + +# Inverse scale and reshape +Y_pred = scaler.inverse_transform(Y_pred) +Y = scaler.inverse_transform(Y) +``` + +```python +plt.figure(figsize=(30,8)) +plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(Y_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![prédictions des données complètes](../../../../translated_images/full-data-predict.4f0fed16a131c8f3bcc57a3060039dc7f2f714a05b07b68c513e0fe7fb3d8964.fr.png) + +```python +print('MAPE: ', mape(Y_pred, Y)*100, '%') +``` + +```output +MAPE: 2.0572089029888656 % +``` + +🏆 Très beaux graphiques, montrant un modèle avec une bonne précision. Bien joué ! + +--- + +## 🚀Défi + +- Essayez de modifier les hyperparamètres (gamma, C, epsilon) lors de la création du modèle et évaluez les données pour voir quel ensemble d'hyperparamètres donne les meilleurs résultats sur les données de test. Pour en savoir plus sur ces hyperparamètres, vous pouvez consulter le document [ici](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel). +- Essayez d'utiliser différentes fonctions de noyau pour le modèle et analysez leurs performances sur l'ensemble de données. Un document utile peut être trouvé [ici](https://scikit-learn.org/stable/modules/svm.html#kernel-functions). +- Essayez d'utiliser différentes valeurs pour `timesteps` pour que le modèle puisse regarder en arrière pour faire des prédictions. + +## [Quiz après la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/52/) + +## Révision et auto-apprentissage + +Cette leçon avait pour but d'introduire l'application du SVR pour la prévision des séries temporelles. Pour en savoir plus sur le SVR, vous pouvez consulter [ce blog](https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/). Cette [documentation sur scikit-learn](https://scikit-learn.org/stable/modules/svm.html) fournit une explication plus complète sur les SVM en général, les [SVR](https://scikit-learn.org/stable/modules/svm.html#regression) et également d'autres détails d'implémentation tels que les différentes [fonctions de noyau](https://scikit-learn.org/stable/modules/svm.html#kernel-functions) qui peuvent être utilisées, ainsi que leurs paramètres. + +## Devoir + +[Un nouveau modèle SVR](assignment.md) + +## Crédits + +[^1] : Le texte, le code et les résultats de cette section ont été contribué par [@AnirbanMukherjeeXD](https://github.com/AnirbanMukherjeeXD) +[^2] : Le texte, le code et les résultats de cette section ont été tirés de [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/3-SVR/assignment.md b/translations/fr/7-TimeSeries/3-SVR/assignment.md new file mode 100644 index 000000000..4d612e92a --- /dev/null +++ b/translations/fr/7-TimeSeries/3-SVR/assignment.md @@ -0,0 +1,27 @@ + +# Un nouveau modèle SVR + +## Instructions [^1] + +Maintenant que vous avez construit un modèle SVR, créez-en un nouveau avec des données fraîches (essayez l'un de [ces ensembles de données de Duke](http://www2.stat.duke.edu/~mw/ts_data_sets.html)). Annotez votre travail dans un notebook, visualisez les données et votre modèle, et testez sa précision en utilisant des graphiques appropriés et le MAPE. Essayez également de modifier les différents hyperparamètres et d'utiliser différentes valeurs pour les pas de temps. + +## Rubrique [^1] + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ------------------------------------------------------------ | --------------------------------------------------------- | ----------------------------------- | +| | Un notebook est présenté avec un modèle SVR construit, testé et expliqué avec des visualisations et une précision indiquée. | Le notebook présenté n'est pas annoté ou contient des erreurs. | Un notebook incomplet est présenté | + +[^1]: Le texte de cette section est basé sur [l'exercice d'ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/3-SVR/solution/notebook.ipynb b/translations/fr/7-TimeSeries/3-SVR/solution/notebook.ipynb new file mode 100644 index 000000000..e7e82f3d7 --- /dev/null +++ b/translations/fr/7-TimeSeries/3-SVR/solution/notebook.ipynb @@ -0,0 +1,1021 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dans ce notebook, nous montrons comment :\n", + "\n", + "- préparer des données de séries temporelles 2D pour entraîner un modèle de régression SVM \n", + "- implémenter un SVR en utilisant le noyau RBF \n", + "- évaluer le modèle à l'aide de graphiques et de la MAPE \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importation des modules\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### Charger les données\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      load
                      2012-01-01 00:00:002698.0
                      2012-01-01 01:00:002558.0
                      2012-01-01 02:00:002444.0
                      2012-01-01 03:00:002402.0
                      2012-01-01 04:00:002403.0
                      \n", + "
                      " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAH1CAYAAABbUbvGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC4S0lEQVR4nOzdd7wU1d0G8OfcQu9dQUA6goI0RQXFimL3jb3FrjHRmNg19hJrYo29d8WKFQQFC0WlSu8gvVzqBe695/1jd/bOzk7vs/t88/GTy+7M7NnZmTOn/o6QUoKIiIiIiIgIAIqiTgARERERERHFByuJRERERERElMFKIhEREREREWWwkkhEREREREQZrCQSERERERFRBiuJRERERERElFESdQKi0KxZM9m+ffuok0FERERERBSJX375Za2UsrneewVZSWzfvj0mTZoUdTKIiIiIiIgiIYRYbPQeh5sSERERERFRBiuJRERERERElMFKIhEREREREWUU5JxEIiIiIiIiANi1axeWLVuG8vLyqJMSiFq1aqFNmzYoLS21vQ8riUREREREVLCWLVuG+vXro3379hBCRJ0cX0kpsW7dOixbtgx77rmn7f043JSIiIiIiApWeXk5mjZtmncVRAAQQqBp06aOe0lZSSQiIiIiooKWjxVEhZvvxkoiERERERFRhOrVq+fLcW6//XY89NBDno/DSiIRERERERFlsJJIREREREQUA1JKXHvttejZsyf23ntvvPPOOwCALVu24LDDDkOfPn2w99574+OPP87sc88996BLly446KCDMHv2bF/SweimREREREREAO74dAZ+/2OTr8fca/cGuO24Hra2HT58OCZPnowpU6Zg7dq16N+/PwYPHozmzZvjww8/RIMGDbB27Vrsv//+OP744/Hrr7/i7bffxuTJk1FRUYE+ffqgb9++ntPMnkQiIiIiIqIYGDduHM444wwUFxejZcuWOPjggzFx4kRIKXHTTTdhn332weGHH47ly5dj1apVGDt2LE466STUqVMHDRo0wPHHH+9LOtiTSEREREREBNju8QvbG2+8gTVr1uCXX35BaWkp2rdv73hZCyfYk0hERERERBQDgwYNwjvvvIPKykqsWbMG33//PQYMGICysjK0aNECpaWlGD16NBYvXgwAGDx4MD766CNs374dmzdvxqeffupLOtiTSEREREREFAMnnXQSfvrpJ/Tq1QtCCDzwwANo1aoVzjrrLBx33HHYe++90a9fP3Tr1g0A0KdPH5x22mno1asXWrRogf79+/uSDiGl9OVASdKvXz85adKkqJNBREREREQRmzlzJrp37x51MgKl9x2FEL9IKfvpbc/hpkRERERERJTBSiIREVECvPbTIrS/YQQ2le+KOilERJTnWEkkIiJKgOfHLQQArNuyM+KUEBFRvmMlkYiIKAF2VVQBAEqLRcQpISLKP/kcp8XNd2MlkYiIKAF2VaUe8qXFfHQTEfmpVq1aWLduXV5WFKWUWLduHWrVquVoPy6BQURElAAVlameRMGORCIiX7Vp0wbLli3DmjVrok5KIGrVqoU2bdo42oeVRCIioiTJv4ZuIqJIlZaWYs8994w6GbHCSiIREVHMtb9hROZv1hGJiChonNhARESUIHk4ZYaIiGKGPYlEREQxtbOiCss3bs96TbIvkYiIAsZKIhERUUzdOHwaPvh1WdZr7EkkIqKgcbgpERFRTH0/NzfSHuuIREQUNFYSiYiIYqqqKrdKmI/reBERUbywkkhERBRTlToVQtYRiYgoaKwkEhERxVRlJWuEREQUPlYSiYiIYoo9iUREFAVWEomIiGKqUm9OIkPXEBFRwFhJJCIiiqkqdhsSEVEEWEkkIiKKKZ2ORA43JSKiwLGSSERElCCsIxIRUdBYSSQiIkoQrpNIRERBYyWRiIgopoTOa6wiEhFR0FhJJCIiShB2JBIRUdBYSSQiIoopodeVyL5EIjKws6IKOyuqok4G5QFWEomIiGJK6Aw4ZU8iERnpe9c36Hn7V1Eng/JAaJVEIcQYIUS5EGJL+r/ZqvfOFEIsFkJsFUJ8JIRoonqviRDiw/R7i4UQZ2qOa7gvERFRvmEdkYiMbN5RwZ5E8kXYPYlXSinrpf/rCgBCiB4AngFwDoCWALYBeEq1z5MAdqbfOwvA0+l97OxLRESUV9iTSEREQSuJOgFIVfw+lVJ+DwBCiFsBzBRC1AdQBeAUAD2llFsAjBNCfIJUpfAGs32llJsj+C5ERET+0ZmTKNmXSEREAQu7J/E+IcRaIcQPQohD0q/1ADBF2UBKOR+pnsMu6f8qpJRzVMeYkt7Hal8iIqJE041bQ0REFLAwexKvB/A7UpW40wF8KoToDaAegDLNtmUA6gOoBLDJ4D1Y7JtFCHEJgEsAoG3btm6/AxERUaQ43JSIiIIWWk+ilHK8lHKzlHKHlPIVAD8AOAbAFgANNJs3ALDZ4j3YeF/9+c9KKftJKfs1b97c25chIiIKgd4SGKwkEhFR0KJcAkMiNZJmBoBeyotCiA4AagKYk/6vRAjRWbVfr/Q+sNiXiIgo0XSXwOCcRCIiClgolUQhRCMhxFFCiFpCiBIhxFkABgP4EsAbAI4TQgwSQtQFcCeA4elex60AhgO4UwhRVwhxIIATALyWPrThvmF8LyIiorCxJ5GIiIIW1pzEUgB3A+iG1DzDWQBOVALSCCEuQ6rC1xTASAB/Vu17BYAXAawGsA7A5VLKGQAgpZxhsS8RERERERE5EEolUUq5BkB/k/ffBPCmwXvrAZzoZl8iIqIk45xEIiKKQpRzEomIiMiE3hIYnJNIREGZt3ozpi/XLhxAhSjMJTCIiIjIAaHTlcieRCIKyuGPfA8AWHT/sIhTQlFjTyIREVGCsI5IRERBYyWRiIiIiIiIMlhJJPLJ4nVb8cmUPxzvd9JTP2DIQ2P8TxARJZ7enEQiIqKgsZJI5JNj/jsWf3vrN8f7/bZkIxau3RpAiogo7qSUeHHcQqzfujPqpBAREWWwkkjkk607K6NOAhElzIw/NuHOz37H1e9M1t+AXYlERBQBVhKJiIgi8vuKTQCA7+essb2PZHhTIiIKGCuJRD5jAY6I7KpToxgA0KJ+Tf0NmJ1Q2kWvTMTDX8+OOhlEVCBYSSTy2UWvTIo6CUSUEPVqppYr7tqqfsQpobgbOXM1Hv92XtTJIKICwUoikc9GzVoddRKIKF9wTiIREUWAlUQiIqKAfDx5OS54eaLh+0JY1AI53JSIiCJQEnUCiIiI8tVVb08GAJRt24WGdUp9OSbrjUREFDT2JBIREQWs911fR50EIiIi21hJpIK2bssOLF2/LepkEFGeMwp6bDnlkHMSiYgoAqwkUkEb+t+xGPTA6KiTQUQFznDlHI4tJSKiCLCSSAVtzeYdUSeBiMgRLsVKRHomLlofdRIoj7CSSEREFBGr4KYcbkpEdt328Yyc16SUeHzUXKwsK48gRZRkrCQSERFFTBqNK2WvYd56b9JSrN3C0SwUrFkrN+Phb+bgyjd/jToplDCsJBIBWLaBwWuIiCgcK8vKce37U3Hxq5OiTgrlkcqq3FYl5bVtOyvDTg4lHCuJRAAO+jeD1xBR+ATHkxakXZVVAIDVm9iTSP6p5IRl8hEriVSwynexVY2I4sGwbKdbh2RBkIhyVen0JCqYa5BTrCRSwXp05Jyok0BEZI4lOyKyyawnkWMWyKmSqBNAFJW1m3f6cpzv56xBw9qlvhyLiAqLZXRTykv83SkIVRxuSj5iJZEKlmE0QYfOfXGCL8chosLFsl1hkvzhiSimONyUChafzUQUe+xxyksi3ZXIxxD5SS8QVlH6WlP3Mj4/dgG63vJFaOmiZGIlkQpWWC24H/22HJvLd+m+t2jt1lDSQETxpBTpnKyTGOcGrvJdlfjHu1OwehMX7jbDuj8FQW8Yc1G6pK+uJN49YiZ2VFSFlCpKKlYSqWCFUc6avrwMV78zGTcMn6b7/v/976cQUkFEFI6vZqzEB78uw90jZkadlERwU+HfsNWf+fRUGKp7EnPf43BnMsNKIhWsMPLG7ellNlaV6beqbzLoYSQiSjIG0DDnJXDNlW/96l9CKK/oXVaZ0Qo69yRvUzLDSiIVLL/zRr2HfvVQMoN9fE4DESVMOhPIt8La4nXbok5CIrgJoLZq0w7sqqxC+xtG4D9cyok8YGMOmWElkQqW35mjWYWPQzqIqBDMX70FADBteVnEKYk3vQAjdkkpM6NUnh+70K8kUZ4yK33oDUElUrCSSIXL58xRqLoSf/9jU/o1849i3ZGInAo623hy9Dy0v2GEq333bdcYANBj9wZ+JilvuX0GmA0hpMIlbI5jVjZjTyKZYSWRCpZf6yTqOeaxsem/zDNsvQy6bPsuXPTKRKzdsiOAlBFRnCg9SnEqqj341WzX+yo5XpO6NfxJDOWQqA5GYve6WbJuG76cvjKwNFE82O2fVq6fu0f8HlxiKPFYSaSC5XcDWpHenMT0a78t2aifBp3X3hy/BCNnrsZz3y/wLW1ERE556aWy26NB7giHc1mP+s/3uOz1X4JLEMWW3jWilFde/3lJuImhRGElkcgnenNM1K+Up+eQqOkVwooshqgSUWGbuWJTKJ9T6WLCEvMte6ymIpiS6j/tHWG7zvOHiMgMK4lUsMJu6NYbWqpXBsvMFeCM8oJVUVnlqoBOySOsQiDr+NfHMwJJi5arSzC9D/sRzXk9P5lhyswmSI03HvmIlUQqWF6iyxkcMPclVU3U7sM8jnOUKDyPfjMHnW7+AvvfNyrqpFAI4limY1CL8Lg5xRIeeyIpb+nlJ3q9zb6XfygvsZJIhSv4OmLWa3Yf5k7nmlB++e+ouQCANZsZuIiiUZzOhNibHU/qaQp25o2+/8uyIJNDMTV69uqok0AJx0oiUYDUQ1rtBoFQeh/Zik9UOIKMtuyUl14q5Xswbo25f3+ZiiDr9jw5eTx8O2uVuw+hxFGPXvrzSxMjTAnlA1YSqWD5XYYp0nnaq4d02G2UZ9mKqHDEp2qYy1N0Ux/TkY8++DXVu+d2uGnmbxv7c2ghEbnBSiIVLL9DtPt1uEx0U/YkElEEvMyLZrbljJvnhvoc2zrdrCMWNCf35KpN5cElhBKHlUQin6ifw8qD300BoHq4qfc0EVEyxKlytbOyyvW+yvfgOonhqKyS2OXh96L8YvuuM9jwtpAiJyv63zMS170/JdTPJPtYSaSCFWQRRikouSn4Vc8HilGpkYgCFZe7/ZfFGzJ/e6m4soqY6/1fluHH+Wt9OZb6+fD82IWm2/K3KBxmbTPz12zFjgrz9TLDjoWwZvMOvDuJgZXiipVEKlh+N3RbtpzbnZMouP4VUaGI233+q6qS6KbmGrOvEyv/fG8KznxuvOfjaBsQN27b6fmYlL/UeczwX5ebbssRTKTGSiIVLL9bV/06nnIcZtZEFLYKjxmPMpeao02D47RhgUN/SWE9NNnZ8iqU31hJJAqLzed09fOcGTRRofhl8QZUxGBuWWVVdRo45J0oWawi2RYXmb/PxmlSYyWRClboras2M98iDjclKhjqitiIaSsiTEku5kHxJKWzCKfqJ907E5cEkSSKCb1ijTqPKU5vYFT6Ufce8v4nVhKpYMV1AE71cFPm0Em0s6IKm8t3RZ0MSqBdldHf814bz6q/QVxz2MKj/kmv/2BadAmhyBVZ9CRKg7+pMLGSSBQz6gf6hq070fGmz32LiEfBO+3Zn7D37V9HnQxKiM3lFZm/LcpvoVDnP14KiZwGRxQ/xRY3ZtTDTacvL8MZz/6M8l3mUVgpHKwkEsXMD/PWZf7+fcUmVFZJPPHtvAhTRE78tmQjAGDUzFXRJoQS4dLXfsn8fc278VovzE3gCg6ACJ/V78T6emFYvnE7Zq3cnPO6+vKwmpOYPdw0/Jv55o+m46cF6zBzxabQP5tysZJIhcuHJ+fcVbkZshG7QSA+mfJHansJ1CpN3aI/zl/HSGMJc+Erk6JOAiXcHxu3Y/OOCusNfVTkuQswHd3Ue1LIhJOnAaObFoY5OhVELcvhpg7mugaJpZ14CL2SKIToLIQoF0K8nv73IUKIKiHEFtV/56m2byKE+FAIsVUIsVgIcabmeGemX98qhPhICNEk7O9EyWQVBcyOYY+N8yElxkqKqm/Ruau3BPpZRBS9h7+enfl74qL1oX++OlfkcNPgrdm8A1tMGgKqqiQe/no21m7ZEWKqKF9lAtcY3J9Rx0JgtmHfmNmrA4+IHUVP4pMAJmpe+0NKWU/13yua7XcCaAngLABPCyF6AED6/58BcE76/W0Angr6CxApdgZ4g0pkt+pbr29EREn3eIyGlrspL3LAg75/fzkr8/eOiuz5Vp9M/sNwv58WrMPj385Dv7tHGm7z3NiFqDKZTMaCd2GwM1rJat5z1PevMhdx47ad0SYk5sbOXYPzX5oY+PMi1EqiEOJ0ABsBjLK5fV0ApwC4VUq5RUo5DsAnSFUKgVSl8VMp5fdSyi0AbgVwshCivp3jj1+wDi+OW+jwW1C+CH0FDIvMd+zcNVn/fv+XZY72JyLyymu+qGRTfozUyCdPj5mf+fus58ZnvWdWuK+0GUlEHQApB3+KglDlcztyFGUOZU7lKz8uxtotO2KxdmwcrdmcGlmweN3WQD8ntEqiEKIBgDsBXKPzdgshxCohxEIhxKPpyiEAdAFQIaWco9p2CoAe6b97pP8NAJBSzkeq17GLnTSd9uzPuPOz3x1+E8oXcXtuXmQxhy3qYSBElP/UlTt15eWn+euwZN22KJKUdyYt3pD1b7Os3ajSrp2jbnfOu9rMFZtQto3L9eQLP0oIRTGJVLJ+6070u3skbvloetRJiaWwOjnCvBzuAvCClHKZ5vVZAHoD2A3AoQD6Angk/V49ANoQR2UA6qveLzN5P0MIcYkQYpIQYtKaNWu0bxMFzk0Grn7wRx2amojynzCYlHjGcz9j8IOjQ09PoQuyR/bo/47FKf/7MbDjU7j8aEiOywgAZXrNiKkrIk5JYQulkiiE6A3gcACPat+TUq6UUv4upaySUi4EcB1SQ0wBYAuABppdGgDYbPN99ec8K6XsJ6Xs17x5c6zjJPCCF0ZLjJPW3R0VVbhV02qmzvPZk0hUWOJyy1/99m+2t1XSzMA19ml/5q07KnDxq5Owsqzc9nk07Y00KfjPY0C0vGEUAV3v5bhUBo0oS3VUxiUTjKmgz05JwMdXHAKgPYAl6VDM9QAUCyH2klL20WwrUV15nQOgRAjRWUo5N/1aLwAz0n/PSP8bACCE6ACgZno/Uzd9OM3VF6H84XcmaXWz6mXgQmRn4K/9vNjwmFwCg4iCpl4uQclxPjIJrGJ8HJ8SVAg0eftnU//AN7+vQuM6pTixd+uIEkVJY2e0kdUm6vvWzRBmvzEb0RdWJT+s4abPAuiI1LDS3gD+B2AEgKOEEEOEEO1Eyh4A7gfwMQBIKbcCGA7gTiFEXSHEgQBOAPBa+rhvADhOCDEoPY/xTgDDpZSWi8WU7+JkWAqenzcyh5sSUdCyRpu6iW4ag4Jl0hidMSlhWEr28yyzATI/+DLcNMTWHSX4ihmu8Wku6Fs3lEqilHJbeljpSinlSqSGiZZLKdcA2BfAjwC2pv9/GoC/qXa/AkBtAKsBvAXgcinljPRxZwC4DKnK4mqk5iJeYSdNvO7Ib3qXlLrA5GpOIh/eBWX15vKok0AxEkWFy3N0U2W4KfsAbNMuX6GcOwn759HLlaKNpE3JZNSQrJePxKEMPPA+44UOWPQxF9bvF9Zw0yxSyttVfz+C6kA1etuuB3CiyftvAnjTaRpicH9QwlRUVuHmD6fj0oM7oEPzer4cU8D84Z493NSXj6QYu+uzmVEngWIkiopWdtwa55lOZg8+ZN1TnTu9de2276rMfdGDiYvW40/99vD1mBQ+vxuVrQ737qSlqKySOGNAW1fHr7AxPIrZiLmgi4UxCXYbPjtd2Lsqq3DfFzNRtp0hovOR05aYacvL8M6kpfj7O5MDSY8edSZt5wGwdssOrN7E3qikYs8xqUXR2p81J9HD5cjCnX1mw031yirrt+YuNO4l72C2kx/srqnpl+ven4obhwcT34OXZDwUbiXRxjafTP4Dz3y3AL3u+JqFtzzk9CdV8t8ivabdAD4vvVfmr5ttrBfU7+6RGHCv8RAOireiOIwBotiI4nrwPtyUz0q11ZvL0f6GEabbaE+Z8hOY9eRKhlUgDaNbL4m3pKwet04RKtxKoo0Lr6KqOhdesp6LCBc6JdMKM89SZ+4MVZ7/WEekqBksk+j8OLyYAQA/zV9nuY32PKvPndFp/HJG9vpxCawHUATiXmFsUb8mAKD3Ho2iTUhCBN0oV7CVRDtFffV8kLjfWBQ8Zfx8SZH+bWO1no/+5HHz65CXHVH+mr/GvOEnkrVRs4abMgeK0ufTVujOSQSAbTuz5yU6qZKPmb3afaIocdZtzY0iGtcmnCFdWwAA9mhSB0B80xk1PxrhKqskllp0gBVsJdHW+c1aL4YKnTLev9jgqa19aPuBZbTCwuGmheWwh7+LOgk5eAX6y05hTlsZV/Yo31WFFWX+zzH/x7tTsGQdR0cVigtenhR1EmxTbhdtxF/S5+Us/XfUXAx6YLTpNgVbSSRySmbmJLo9gJvPZEZZSNwU0KWU2LgtN5AFJdf4Bevw9oQlkXx21mLarvKs9HH8SU5BUv8GO3xY01lbT5UABj84OuvfZuav2YLut35p2etA5BfWEc35kb/+NH+t5TYFW0nkA4zcCrPe5uSjrIauUfwN/225433eGL8Eve/8BvNWbw4gRRSF0579GTcMnxbJSIKbP7QOkGVGGVbPTvGUiQvXe9rfaMixk2tDu63Txsd3Jy3F9l2V+GzqCuuNKW9E2UZdnY8wIwmKnSWWCreSaOO6y5rAzx6dvJOEvMfJZXfuCxOCS0iBWrZhG35eYB14wg9uK3ljZq8BACxYs9XP5FAMWK1T+Pd3JuO0Z34KKTXOJCB7DcVrPy92vI/62WRUSI6iROJm3UwiNzIjEpiRmPMUXcx6k8KtJPIRVvDCrvfrfZzVVejkobyrkjHR/Tb4gdE4/dmfDd/fsHUnDn5wNOau8t6Lt7PC2wXJ4lv+scqjPvxtOcZ77Kny8vl+7UPZ7JRPnDRc6w039cPOiqrQ1+Yjb5LSQ8erypwfP5+dQxRsJdEO9U1UJYFHvpmDdVtyo0RRYYh5nhr79CWRVfln1KzVWLxuG57+br7nzzL6/Rau3YoFmqHEUkpsLt9luh+RV256jqp7APL7whw3dy3m+NA4BJj3NtqtDDr5pTZu25X17/d/WYZtOyscHCGlyy1f4JJXkxMUheJj8TqLkS9sbbJl4dpgRxAVbCXR6fPrg1+X4bFRc3HD8GnBJIhiZdHarfjvyLm+DjPWHmre6s2ZZTX8wMiYEQrweTbkoTE4VBMF85UfF2Hv279mIIk8l+RyUr7nRme/MB5HPvq9L8darIk0mhU8yJdPsLZms3EDuNKzqXc9jprF5TTyVZDDi697f6rFZ6fkez7ilnJP/r5iE1ZvdhcB2U6RkZVEm54ek+opKN/l/zIHFD8XvzoJj46cg+Ubtwf2GfeMmGm9kSaPvvDliZi4SH94GSuJ4YvqjH/9+yoAwBJWEhNl9SZnD/NI1klUSXIlNV8Y5THa38ZrXmT2W/PRkj/iEn3Y6HJT0lcoIxL8sGn7LuuNXCrYSqIdepdm1A9tCsf2dGNAlc40P7eXgLZVrkPzejb2yTZq1mpc/vqvutsyL02mnRVV+G3JBle/n/paZNbkr/Vbd7oagmfG6UiUqH9SN58fdZrzgbpg7PV8bi7fhfd/WebxKJQE+VQGYJCkeGAl0UQ+3XDkTlaUOb+P7XI/o4YK9iQG58o39Svmfrh7xO846akfMX917twCOwsK81cPRp+7vvFtOKGioIJL8cIM1akGUW4XrXU+2mDgfaNw84fmDRoVhXQtJ4TfDYWBNjwaHFspxlRlehRZWQzC6s3l+HmBddAzVhIB/DjPekFJBa/XwhDE7xx0pEDWEYNjtT6Y2c/065IN+HXJBsP3Z/yxCQCwYdvOnPfu/3KW6efurKzMDD0l/y3bENxwc1sift54KqDxWelaVlZucB61PS3zDZbAcfNcWFFWjjfGL9FPT9oRPjegEAE6w6hZsAnE9OVltrYr2EqiOsT0mc+Pt70fK4nkhNn1UlRkI8y5TgnBqODGnsTw2TnlJz/1I05+6kfjY5js+87EpabHvuBlRhbMZ1FPb+DjLhp2zntYl0ZllcRTY3KjNwcdVZGcS1IRwO5wUvYkplz19m+49r0pvh3P7jKABVtJtHOB6t1wHCdNflwD4+auxQQb65vp5Y9Gn56g5wOpmD3Y+YDML05/zsok//7MkALl95VhdLytPs/LpeA4yi5s3J+u5iTbXbLFYLNZ6WVlkpz1BeHjyX/gPT/nFtvMnwu2kmiH3Zo25a9Vm8pxxCPfYUWZu2FnRqHMz35hPCYv3Wi5v14+aZR5JqkVMR8NfmA07v7sd8f77apM/aC6v7XBPvq/NZ+qcee0ZzDqdco9FdR4OTqiLlyrb+84NUw/+NVsXOxiXcQZf5RhU3lwERjJviCvpslLN2LPGz/HKU8bj5wxS0f5rkpM0ZSL4nP1x8sTo+eF8jkFW0l0WwFk60ZhUB7Yb09cirmrt+DtCebD/oyP4086zLw9YQmG/7qMw019UlFZhR0V9pa6GTN7DYDU77Rk/TY8P26ho89qf8MI08aCzeXeW/F/XrAOX0wzn1NJ4dq6owIPfz3bcjunPcnTl5f5vHam8wyMuZA7Tp8Vdrf3+7HwjYs50MMeG4dzXpjgb0IoR9RFgO/npJ6Hvyw2noOv0MvbWL62b+aKTaF8Tkkon5JHeA0XBt2FXDUZcKXDZn43Qwf1exKrXy3fVZkJq9+lpfWSGmTtlKd/xJRlZVh0/zDLbT+Z8kcIKfLm9Gd/BgBb34eCpdy6j307F898t8ByezvRbdWOfXwcAPe/tR/DmwvhGTnCIpCVG07P2xfT7aXBy4ioMbNXo0+7xq73V9P2EFH+aVK3hm/HUnrQN27bhV2VVSgtLtg+rUDYzRV41k3otsoUwhOQbHlz/OLgP0RvTqLqtb+/MznzN3sS3Zm+vCyrcDxlmb2oX75jM2reUwo+uyrs/daJHm6ax9nRXwJYEsdoKLLRbzDVZj7l5bFwz4iZ7nemxHPaaNSpRaqheq/dGlgfW/c1/c/7/Y9wes0Kid2osawkqjz89Ww8GdI4X0oGs/toqcPw+K6WwLBolRg3t3r5FoaKdm7k76tw7OPj8N6k6Beb9lofYB0z/pTfyEZg49T2wSVF//M0H+jl84f/utxTWgpN1Pev7vA/l8cq274LW3cw4E2cBVFaUBqq69YsttxWNyif6jV1D3iiA3jFFHsSXXj823l48CvzeSJxmkROwVHyJCWjkjrv2RkKFkTBX/2SehkNVhGdW7QuFcZ9djqi2uJ17sK6M1cgO5TrxM7yNwCj2xYSo7KF17Y/z/u72KfXHV9j/3tHeftgsuXzaStQtj38oEB6gYiUa83tCIiscpbqX06H3ZM1u/lC4VYSTU7Q6k3l+GLaCuyoqMp5j8/swpDzwPaxldUJvbxRXXAsVhU2iwr3brZUtm0XHvl6ds48UqX3VRnqFcQwMqIMpfHJbk+iy0xm2rIyvDvJXbAtPz6f/OP1N3AyJ1FKiW0el7xYsi4VOGkzexIDt2TdNlzxxq+4+u3fbO/jpOHJbMur3rL/mXaPnZU21Z+sI0aHgWt0nP7cz1iwRr9HgddqYbCTj0ZVgFJ/bFYlkcNNDd3x2QwM/3U59tq9IYb2bJV5XTl9ym/p92/65vgltrdlgTz/KY1PdgvubkeuHPdEKoDNqf32cLSf9tMKceTMzwvWoXZpMXrt0SjqpADwXuaw3SAB4JUfF+H2T6uX8XHTkz34wdGO9yF3lCjcTqe+AN6np/wwf52n/S0b3lXJcxokkKzZfQax70HHsvXGNxyH/+QPO3nkqs3lAIAvpq/E4nXZoeXtFKC8Xi9W+wuDvylb+a7Uw7SiKnt0gHLOlJ5E9TUxdu4a28c3+pmeH2sdwdINvQyeOVP8ZYaxB9yTGKWk50OnP/szTnjyh6iTEYnPp68M9Phz0sP6yR/akTBh2qkz0k659+2Ue/R7EvU3iOL7xVX7G0bgl8XrPR+Hw029MDl5DA6SP+zkO6s37QAAzF29BTeml5pwsr+X7QEbGakKr01jmbmlmnOnnDPtHFQAvqzrFfWjbf6aLZm/35m4BO1vGIE1m3dEmKLClpmTaPNW9bsBvbJKmhbgtO/5lWcl0bsTvQ/XdcLoXHsfbhot9TV15KPfM6CNj5SRRFHM2atR4q36oHtd6482ZSVR45vfVxu+V7bNXtAoBq4JyC+LN6CiMrcFhfKLkiUN6twMAHDGAGfDtrTHcZ0O3cA1+ke1W/AsSOlz8+Toefh5QfUwmcxwU2UYoMtz+NvSDV5Sl0pDAA/CP780MfP3u+kIrm6D8xSqXT7m98pvbHeoj5+Fo9Wby9Hxps/R/56Rtvcp5LLZXSN+t94oIOp8yE2eJKXER78tx/adlf4lyid6sR7IHeX5FVQd0ez+b1yn1NuxdcoxRmWbfB1uumzDNrz0w0Jfj9nrzq9x8INjMGfVZl8aulhJdGHiIv0C4QUvT8TR/x0bcmooCJnMMZ0Jq+f7KW85LcC5m9+jk5HmZ34ZKOXXm7Vyc2ZxeUA9XCd7O6eWmgxRV3w+zf8FuNX0rot8fbiG6ZYPp/t2LKc9iX5auj41XH7tlp2G2/BqUYnwZHjN439esB5XvzMZd0dY0QWqg9hQMErSC8wr0yncNnLO+CO15mbZtl34fk7uNIu3JizB+AXZcxC9xkCwWgJDLV97Es95YQLu+PR3rN9qnCe7sXbLDhz56Pe47oOpno/FSqIOq0vfqLD/7azVmLmCi37mBzvzDUNIhcUSGBxhaq3LzV/gs6n6FTTl/GV68Xw+oerewWvenezbcfWSWSUlFqzZkikwGKbJt1QUhtGzjYf2OKVcDjsr7f0Kfg4jc3MoNw1b+ZIlqb95ZZWMZJkBAK6GZ25OL0+walO5p/mvdn99ox6Ls18Yz0bNACk/rZLnuz3XF7ycGnGy0GCUyY3Dp+E0VeOq+rMBYK6Luaa6kdvVf6u+TFWedj4recrHk52tKetLQDHOSQyQx99n5opNmLeaE7gTweS3ttO6lRXRuYDn90Rpp8lwQe1cxSALuOW7vD3pnvvePAjO7JWbcejD3+HKN72FJqdsxT52+yn3s93AA352BNta11Wa/9sOo4Jekt37+Uz0uuPr0ObTqSt2d4+Y6WL/cEOajZy5Svd1zj8Mll93V7FRAByTD1BfYyc99WP6tdS/Z610V741yi8q8yQf0VLO4B2f/o5py8oCmVu6elO5wWczuqlrVmPmJyzyFlno6P+OxeGPfO/pGBQuiznWgbniDZ11+/Izv4xEdU9i9r/1+BH0ZYyqV2re6i1Z71n9rPd8bl5YfGL0PADAD/PWukob6fO1iJ2+0OxWPP1cgiKKbCPJZTt1gfWTKX8AALZYVHoWrNmC92K0PqXT47i91jmiJRrKNZqZHePydyguVhpL7V8w6s/Srq25bWclVm/Wr5xk9td5zaiOlK/TJtTn8LgnxuGpMfPs7ejgdAy4d5SzRGkUbCXRS572n5FzfUsHRccsQ/VvnUT/Mzd1wdHJQsmUS3v2rM6mk6AfQO6vP2VpWebvwx/5ztGxAOCf701xtR+QP8MAw/ZHWblvc0aqpzrbDVzjy8emj2UnLL33D1R/syQX7bKG9SuvWXyhYY+Nw7XvT0VVlcS7k5ZGFuQuk16Px1mwZis2bvM2zFabBm1FZM3mHbju/SmWw+TJH3rXcLEmyrcd6vKT3m6bLIZn6ze8V786alZ1g2q+zknUmvGHvelqTs/GpvJdmLpsY9ZrXAIjYIMe+FZ3gi8lh62KoOn+TgPX+MNLfjlh4XrL1vBCNn9NdJE/7eTZ7/+yLKcHkoL3x0bni1XrUe7dIrtPXpOb/YNfljn8cPVh7WUihTzcVJ30zIgDi1x8e7qi8+6kpbju/al4YZy7yIVee+a8RkdVG+NhTu66rTstowPfPeJ3vDtpGb6YHmxgr7zm022mbZQyu96zgvnpBk1zkQDVcRaonsV52pEIt023z1pMPdG68OWJOP6JH7IarbgERsCWrt+Ouz6LNnIYBUf7YNVb5DWq8o/bj924bSdOfeYn/EVvCGvMbSrfhdd/XhxYoVNCYsrSjZEFpwjDpMWpqMwJLrdHxu9zdnj3lvY+1+S9f7w3xdFnqgtaRsO3zCKfupHkBim9AvI2m0tKbEj3vjnpgfbzGssJyGUvBQ5ete/tCUtsbcdRMc75nS9pe+xeNGnk0P+1ql+1GiKqt3+hPZr8GqZt1QOprMjgprLNSqIHhXZBFyKzFhs7Q7OyA9dEe8UoAVyUcNdJctPwabjlo+n4JV3RscvJEKalG/wP154bB4C5RhL5NdxJ+f1Li8N/9Kq/g1Fh4cD7v836t9n1+v4vy9D+hhFYu8V4nu4kg+WikkDvJz/s4dyh3qN0grb8OD81L9jtVeOl52T7zkps2VHp+Th+2WURyZeNVt45OYXf/J66XvXKI9qXHvvWeI6csKjhWOWZusNNDXaJuuwUFO0ZdPs1r3p7sq3t3JQ/WEkkcimqB7A6w3TSElXkYt5BXCgt8k4jhB7/xDhb24n0/4KWxHNP/jUIhh3KfUVZ9TBZ9XewW+k12+ytdA/RorXZQ7TVd1GSoxJmz0k0zhv+Oyo3RsHYualK4uZy+z2p6t/k6THzbe+nddC/v8Xf3vrN9f5aej+h+roCzM+PtmDa925n87rJmpNK1Aid9XqXbdju+DhBBCtiI6p7QURGBVhJjJRRaFqKI3c3oM4oVc/cHifB5TXXD6Q5q8zn772dXt8raQ8npRCqh5EGvdMWlqIKnLBhm7fhnwPvq+4ZVH+HIL9Osu4kEzpzEnU3s1GRtmPQA6Mzf7tdb3nrjgqsUw1xdTTY1EEvzvkvTrS9rRXmV965uefUPYEV6QqGk3qG5XribuYz503mYY+f1/75L+vfk2puzm/BVhL9mCvhtQv89Od+tt6IYiFOmZfbtCgVIT6Uq01eutHxPk7u+ygqn1bJy9ehO0Hy65wpR7F7D77+s/1KhuVnZw039f597JyTfMlqwvgefkTQvert7B5EKaXttBtdk3q/8sbt+mnVC9RjnR9ZJIwsuauQZe80fXmZz0vuOD9WoV0K2h54L+c/qECaBVlJ3FVZhTGzo49MunS9/3OgyD7zglryijeW2Utmg+R9N0WQlS67Bffpyzeh/Q0j8OsS6/lWS9dnD8sqtIdgvvBrJI9SMBs1033ESPefXf237eGmAOasyl4Y+5UfF5lWELOWcU9wi1TSRhcAwLTl0c439zIHNcGXSuT8uFa/nL7SUT5ntakfFVdyxur82Q28pVaQlcSdFbkTQ+K+WGdFZRV6/OtLvO807DkZcpIfZQWgUXrknO7n0yXm9mHqtBcjTuIU+W50OiT8yN9zA1ZYMitch/TDqD+nz13f4IQnfwjlc5NE+zP5Pd/j21nhVxLVX8HJ3MgjH/0+69+3fTLDdLizWnzuWueyl8CwP+fOi1+XbPBUUI5TPqmw+21YP3DO9agigx29jzDwNlrB65qcSWMaRd+F58aaL43R565vVJ9tL68oyEqinns/n+l4n/lrtqL7rV/mvB7EorBbd1Ri685K3PnpDN+PTdbcFASs1odyS8pUJn/HpzOwoqx6XqvdOQLxK0Yki3Ie3eTnFSaVjShaUddv3YkpLobcFhr/ehL9OY67z/ZvuGlFVVWmkKE9Ur6U9Z2cox0VlWh/wwjPn3nyUz/i48l/uN4/kGAiOqdh1SbjiLZ29idnKqsk+tz1DdrfMALbdXqDnJ5jve2FgK83r9NDjZu7FrVKi/1LQAL4fbsGMUKFlcS0r39f6Wq/7ToVwnNeGO81OYaY34bDjxaeN8cv0RT8/fv11mzegZd+WJT1mtXRlUJPEnsSFUEWOJyeFjdpeWrMfMNeqQmL1js/oI4k/75x5VdvUZRDGLN6Ej3eSEJU91mZHaperRJPnxMXVoFrynzsAVmwxjzYlhkvIfWNtn35x0Vuk+MI8y1jM/4oy8xZXaUT8NDp3ay3vYD3fMHLkl9Tlm309NlJlITh+KwkBmDiog3YXG790GALW7JZ3d/aHmU/h5gVFznPXDKVxAT2JQadl0pp/zMmLfZWmTN6EH8+zV1DFQXPr7w62jxf3ZNob48dJqNiitJ5kNlUjfoxriSe/uxPePZ746UmnBTgrvRxyYnFPsYqcNooofeVl3hMj1UaWAxyRr2sTObcOu5J1O9KtJM/zVq5yVY8DaejL1I9pIV9NcTx27OSGJC9b/8a60wWGaZk8ePmvffzWT4cJUUvAw4iJDXlUuZjue0V4s8Qf9rfyK8lMOLy29tt5T/tWeMI3Eo7lfZY6n/HOc/5ecF60zzZSU/IhIX+jAIA4HG4afZT4Id563Dow9/Z2vfcFye4/lyKmMNGVC89iUP/MzZruRbDz3B470e1zBCZK8xKos4NtarM/wrd2i3eQ1pnJK/zJ6+4DRgURLYnhH4Bxm60sQSMcDAU1GPE1TlxHTTA3X52uYlgRub8jm4ajeqL3PP3kUBR+qaJecw3X7hdJzFJ1PPbnfKyvNKnU1KV4nw5j0FQj/7RPcU+zUn0ei+rd3caDFKC14CRHRX+P9Pt3quFWUnUsTOgICNmvNwPqzeVBxIgp5C4jhIag4zMukKYuwVb6oylTo2zCyLO53PMbHdDmx/5Zo6rtSPzndvfWrseb6RVRNXl7ce1W1GZOsbaAhgxk5Qh+ss3brfeKABm58fupZbkxsugqc9NaXF1sd3/R5B/BzzD4TrgcX6eBmHasrKc+9XoFFzx+q+2junkDNo93QVZSYwiL9pRUelPtMv0Dzvg3lG45LVfvB+vgJndJGbXyKTFG2z9lqkeP+fpCsLGbTs9DWOiXK7Dj4dQVZjucr20x0bNxYlcEiO3kcXlT/aSdnHxCPMDdZ5WWSXx6ZQ/bE2JaFG/pu7rSqCl+75wHhk8acKuwOzesFa4H5gAqzeX44lv5xb8WnpFevEIHF6f67fuxKZyTQNW1Kc16s8P2fiF62xvOyqCJZMUBVlJDItSGPx1yQZ0veVLHP3fsabbX/TKJAy8b5Tue3oPqe/nrPGcRnJn644Ky9blIDNdp8f+61u/4dGRc4JJTIjOC3DeTFgFwcgfxuSYf9FNo6Oer7Z6czn++tZvuOx164bGFg1yK4nq8+FTfToxtOujBvF9T9y3dQBHtRZEj6lflbqr356Mh76eg2kuG8DyhW50bIeneLTOSBMlrJ1tesnw8FNXSeNctnCemeF9UbvlnfiGHssjJz/1IwBg3mrz0NYjZ7pYnJsiISXwzqSlUSfDkDZa5x+qYQ2Fk+Ea+993xlEN7YrzaTTtJeewrtDkLqUTj6tmy47UVAWrZxKgfy0p+wPxvg/8ov4ZL3p1UvCfl0f3qF+X/Nb0XGunc93ygdH1oD0Tdiv5ur+JlJFedzHJGhPNzwBaClYSffDl9JUY2rNV1MkgH1lllmXbrZc4ESLaddHUZNbf8UiTE36vJ/Ts9wsy60655Xq4acSnP+rPLyRxWgdLnZLvZqdGoWxwub7f31RLPuzfoamXZCVC2L9j0u5RP05PnO6VODO7Nuw+2/W2M9pzktH6vT7/XIUWuCbq693up4c+3FQI0VkIUS6EeF312plCiMVCiK1CiI+EEE1U7zURQnyYfm+xEOJMzfEM9zXi93VoZ8iObjoK6Y7IMxURt2ZaPQx+nL8Oxz0+DjsrcudOJiUIQ5C0996KsnLHZ8VtZTuMCfpe5zBUVklURBDMKy6C+oXiErjGz/0O794i+4UEP9aWbdBf/y3sZ3VS60t2071w7VYAyFlvr7JK+hO7Ic+oLz8/nh96hzA67DXvTjE4iN4xjNO2futOHPrwGMxfoz96odAC1+hRTsE3v69C+xtGYOM2H1dIcCmKOYlPApio/EMI0QPAMwDOAdASwDYAT2m235l+7ywAT6f3sbNvpPy85hesSWWqvI3iwfaQF81m/e7+xtZCtF5d/8FUTFtehhVl23PSkbSexN53fh34/Ntx89Zie0jRgiWAH+evDfQzJi/daHiN2inIHfHId+h08xc+p6rwaM91XApCPVs3AAC0b1rHctuYJDkUhz9ib01BNTb2VtOtfOhsp0Rf1i67cc4L49GZ+Y6prFFBmhNue7ip7mv617FfedZXM1ZiwZqtePa7Bfpp4m2U+QWe/T41HWb2ys3RJSYt1EqiEOJ0ABsBqKOznAXgUynl91LKLQBuBXCyEKK+EKIugFMA3Cql3CKlHAfgE6Qqhab7hvSVAvHl9BU5rzHiYLyMmOouUujaLTttLURrxSpDVR4eykNjQbrlNok2uhwS55TTJWXcDzeVuPuz6CJCSplKQ5nJeU3y9RIEt791nHrt1RVW5fvUqRHsjJOkFfzKd1X3YqmTzuGm5r6YvtLwPbNeK+1p/XF+KuLjNe9O9ill+UF9Ds0aJWw3AOsc48nR3ufpm1Eqm0p0Vu33kFImrgHbC70cRWT+P32OADw+am5YSdIVWiVRCNEAwJ0ArtG81QNApj9bSjkfqZ7DLun/KqSU6rCMU9L7WO2bWJfZXBOFgmNVuHvs23m2jhFVlqfMmYxi/U8ypxSEtMIsh743aRl63fl1eB+YMH4V0nMD1/hzXDfUeZqT3oGkDn1MsiQWlX//Y5Pu63oF/6pMI2Y19d/Df13uY8qSQ0qJqcs2mm6jN0BkZ2WVo/VKja4vr0N9za5bJd16K3hY7VuoVm0qx8PfRBuVPsyexLsAvCClXKZ5vR4AbUzjMgD10+9pcx7lPat9swghLhFCTBJCTCrbGE4I5SAKBNrWl0KeNxSUHRWVWLmp3HpDC0G2ilkV8pRIcB/9VpgPWyt6Z+/6D6aF8tmXGqxvWhRiafy7uVw+JwzaXzRuPUR2kuM0zfnSGyCl90Kzl89Omh0V9kdizF21BUvWbcPERRsyr5llf1VVMpknxaGXf1yE45/4AePmZk9HyL6npM5fwKK1Wz2PXAgycqxSdlWec9re+QL4eR2LwzkJpZIohOgN4HAAj+q8vQVAA81rDQBstnjPat8sUspnpZT9pJT9GjZq6Cj9dmjXTgKsW2Dd/P7aG8uPUP6UbcTU3OG+bjlp3bNLADjo3/aGrEYdYCdoOyoqM+tGrSjbjvY3jLA13y+sIaxO+P2A5lwp/1z4irtlD/SWwIgqhL9e5W3mik0FuaSAXW/8vDjqJCSKXplHLxt6Z9JSDH5wNP795Sxbx+1w0+eYsiz/10ecm16SZuE64+H+Rtm6H/fxrkpvxzB75CjpU3oStc+nKiljUSkK2sqycoyyudxdHEZxhNWTeAiA9gCWCCFWAvgngFOEEL8CmAGgl7KhEKIDgJoA5qT/KxFCdFYdq1d6H1jsG6q/vzPZ8T5+3BCrN/tfCSkURjdghceMMnN8CFz19mRfjqXmJHX5XFHYVVmFrrd8iXs+T83vU9YIemtCfNevVMQh89dyeq38sngDbvt4el5fY17ptezHIXqj+hfTi4Cs5uVaTUKv4rotO/DjvLW6QSK2hRTMSisJ500reSmOn+L0zValqfBlzUk02NdJHVF7fKvX/ZAZbmow3lTCOG9M4v1g5OSnfrBudAyhfGA3Xw9rncRnAbyt+vc/kao0Xg6gBYCfhBCDAPyK1LzF4VLKzQAghBgO4E4hxEUAegM4AcAB6eO8YbZvmNxewj/MW4sDOzUzfH/Zhm245aPpLo9OZozKtkH3vg3Ys0kgi57qimFlxC870oXbF8YtxEn7ts68zkpLypxV1gule3HK0z8CAG4/vofFlskTVKEkqCtTSuksuIoqIRVVVQCKTY7tPl1JcNOH0/DVDP2WfTvffVYQEQgjOuc/LdCfL+2F3YbszeUVvn920giDXjY19VQTt0tjuG0HX1nmfhqO9XBTieOfyP8AjX+kz2FSstVQehKllNuklCuV/5AaJloupVwjpZwB4DKkKnyrkZpPeIVq9ysA1E6/9xaAy9P7wMa+kfrWxlplE40WKk178KvZGDOb84fCVFkVbEu/0cRtu+zs3muPRgCA/u0slw1NLPV5GO1xXcB8dMxjYx1tn++VgTgI6hzbOW52b0T1P/wf5uzr4QK3fZd1fh92W1vCTqGptyYssbXdjcPDmRMeZ0oFSvv7Zy97ob+vk0rivZ+7i6598IPm01zMGte0wYpyo5u6SlKifD3DOApwXEWxTiKklLdLKc9W/ftNKWVbKWVdKeUJUsr1qvfWSylPTL/XVkr5puZYhvtG7cGvZltuM8MgIhhFJ+iexKAO/9uSjZm/pyzdaLhdvsgK6R9dMhLH7fDBdVt24KYPp+UEqCiEh7tbOXMSY9hDaVVJjOPQaKfem7QU7W8YoTu01nRJgYgubo6GqA66NlnzLAt7OZIoaG9JadB7qF7X00ljj9G2VhXNHRX6S8TYYTnctAAuebsjyLbvjGaYu55IKomRC/FifHeS+fyob35f5WmOSiHcWGHLp0AOepl+vlwz6vleUlYXHsL6etrCS1K4/f3v+2IW3hy/BJ9O8S+wU1y5PUc7KipN8w8ZUJBGp5UK9eZW+Z2X9MYhr6mqkrj2/akAqpcGsiuq9I/iyAhcnY7z8M5Eez2R+SDTk6jtZVP9bTRCxI9rVe8Qduvkn08zfy5k1kk0OKBZBTUO+Ygf1F/9rs9+N9xu2vJUkCanazcHoTAriSH6dEr2ouvrdKJdOhkmQMELvJIY4s9dKFdWFBPbk1pJ1LN43VbLM6jkU+zlMNb1li/xt7d/M3w/qHlXdn4Ro+AXXkdOXPv+1KyAF3G7OoarlgFymk9E9V0WrDGObhlXeoF//KCtVCj/mrpso+2hrElRPScx+3U7eW7Y5UhtVe+KN37Fui07DbdXklfI6yQ67QXfYRFUzBt7aSnMSmKEoxUuf/1XR9vn/8CK+Al+uGl42WE+l+ezhpuqvueIqSssIzYWMr3n1BnP/my9H6zny5D5Ejrbd1Vixh/+h/J3vJahg4AXVuWanRVVWLZhu7MEhGjjNuOCK5DfeWSYgppTqK0krihLXWvHP/FD3s1jzCwPoclV7VyjfjRuO7kX9DY1q9Qo6Xvlx0WOP7sARhjrCvZr2/uxC7OSGOFwnxWbch+mnobzsIjmmlHG41cY6ELN2KIgkZ2hrglgfcp8oZffbNtVaZmHFdL1HOQ6mr+v8H8euvMesurtreJ02Xk+1SjRL0q8+MNCJ8mKhNm5YwXSGa+Luesp1nQ9XeawoT1JlAqxtghip0jiR+Oz12Ns32k8UkI59laD+Xbmc4M9JSs2rO4O7bracfjahVlJDIDRhW9nzb0+d33jd3LIBm3Gs3pTORau9W+Yj1HGFocbPx9MVS+unBMpLd5nOdEVrnifWl8c8eh3Oa/5dU1FdWmqP1Zd6Hx+3ALPxy4t1r+gP578h+7rcWL2e7ARNnqJziud8jTctHoeZ1Q2mQynt6roxu1OW7R2q/9LlVlcy1OWlWHVpuplRoJ9VnC4aSzYWXdom04Fc/ivy2wdP+Zl4UQZcO8oDHlojGH0Lb9wDqo/Tn3mp8zfOUMgeYoNCQEsW78t53WrU2Z0V8S9Qu6G3txBv+YqR3W+3hi/WDcNr/60WG9zR9TfKNaXQ5zTRrqMAp3ko+oh/dkXqp2sx5fhph73b1DL/dLrcSsXHfLQmKwyhh/s9LSvUa0runuj2r5+vhusJMbUNe9OwdRlG6NOBnkQ12dbvLJif8Ts+RJrK8rKMWWZ+3lx2gLMywZzTEhfEI1Qdq5/9Xq76iH1bRpHXxAJklWwCNOeROW9mOblhUA73DSfGQausfHUNqpkOWmUirLBj8/wlGMfH5f5++JXJwX2OWc8Zx2HAGAlMda27sjtYdyyI5joeBSeOGWG23dW4sVxC32bhxmVpA0LC2Lujl1/e0s/+qbVdakuwPy2ZEPm9btHuFuYuVDFodCr/qkvGdzB+/EScvutKCvPeW3WSuM5ojLnDwpbXBtbg5AJXONioXlflsDweAwvu+fLLbZk3TaUbd+Fj35bjvY3jMC/v5yVeS9O17Ld4H6sJMbYVzNWWm6TLzdWnAR9I8dp6YSHvp6NOz/7HZ9PT/bad6l1ErP/HWdJq9SqCQGMnLkq6mSEzq9fLIr2GG2hU52Glg1qeT++6uyMivG1ccKTP+S8tsEsSFHcM5ICUBynknXAjALX6NHe034MN/U65NOssVn9K+r1WMZtuKlbgx8cjWGPjc3MD316zPxoE+QRK4kxxmFcpMfpWjtmlMWl9ebFJknusgz58cAJk9U5Uz/DR89aY7yhjrcnLMEXFostF4wACkPLNmzH4Y/kBttRaMtu6kLapa/94j0BquPn00LwVTIVcXCBjwHN8loA9bkCqiNmTp+dCtNFr9gbiugku/FazzTbXf07rtyU26NvtnPS6o9xXhLIKVYSY06vQrCjorpA/+b4/FpMNkxGD5+4T5TPx0AhXmlPyRGPfh9NQmJm+cZgHlZOl3G4Yfg0XP5G/oaudyKInsRXflyEeau3GL7vV9CdpNi+sxIPfz0bOyuqPNVbhAA+mxL/CK35LMqh+WFTynu50U1zt9U2xsThDh+/wF400IH3fZvzWpwadjeVB7MEUhKvZFYSQ+ZH+f41TTS6VXqtMmTJ6LdI4o3s1S+LNlhvFGPPj80O4293vD1VY9uDOTfnR6+R77ZPZviQGme0PRN+D+2K26Xz5Oh5ePzbeXhz/GLrjU1MSni+mHTvTFxSWD2JypxEF/v60XjsNcjNlzamSBkfz/Wuvrv2vSm+Hm/qso147efFibyWWUmMue/m5A7r2qEpAMfp5qJkemfS0qiT4ElFlcSCNckZEpbk1vEkpz1fWRU+7v9iVta//X5mxO0ZVL4rNdpmZ6W3xqKfFqzD7Z/+7keSCoPP18H1H0wrqNxGGC2U6EGUt+bslZszf1s9N+w0XC1etxVnPvez4wCOs1ZuwtcOKrArN+3IeW1XZRV63/k1Pp683NFnA8DxT/yAWz+a7ni/OGAlMSaMWnDWb91pvW/s2nGTza/WnrFz1/pzIMqxUidK4SPfzIkgJe4k5Z79Q2e4anlFsuevFiLt/PZ8H32axBZ7MlBAP6YS3fSxb+dlvW7neTF6tve5wE7qpnZiIxz1H/vTPuzkSQ9+NRs/zl+Hbx3Oex76n7G4xOPc643bdmHjtl246zP3jUZPjk5eEBtWEkNmdBM+/V3yLp585VdPiV4vsB/8DFyjNW/1Frw1wd95rs98Nx8/zPO3wuzk4RNH05c7m9MXtI3bdmGXTq/LIQ+NAQBMXLQec9Nz3v71cfjDJePAacW+orIqtKVlnHY8JCmS4KbyXbju/Sm+Lv9UaHM0QxNE4Br/DxlbXh7tn09zP9RT4SSP8zs2gpNlPqJYRUgpF63dsjPxS4Y5wUpiTLw9IdnD/fJJvjVc/roke16NWWZ87ONjcePwab5+/n1fzMJZz4/39ZhKVFbyj17jgDK380//+ylWS7ckQaebv8A9n4ezhuRrPzube6ct4D3w5SxPlbAge8af/W4B3p20DC//sNDW9l9OX4Hnxppv+6f//ehH0igE+fY8NhNEA3A+BbpTGreiCC6oHqn0kYshp3ExZvZqHPrwGNvblwSXFApKPt30FDyzqIfbNUtflO9KVQqqqiSKYrDoN4VH+e1JXz5nu0+NmR/bsO1OK6CXvV4dRVe7fqri1yUbPaaKwlJIc6CN6j5h5T1Bfo5Vvc7sfSVZSiUx6itio9naqjF3y0fTHeX17ElMIDvhkcmaUaYU5HDOsAmR26iwdssOvJ3uNRoR4tp1c1dttt6IIsN8pHDo/da6a5fFAK/LwjZ12caokxCaFRujvQeDvNUWWqw16mS4adhlNO1oLMXKsnK8m/Cgf1ZYSQxZUOuWkXOFUPiQUn9C+A0WQ0q9nJrPp63A8F+X5bx+p4cJ3xSd+76wHjI5f41xbzXFj9797WWenp95aWWVxJnP/Zwzj1lbMPx5wTosXb/Nvw+mWNKuB5jP9mxW1/djOrk19e7jpev9KbN++Fv2EM1ZK+03Gi9Zvw0/zluLr39fBSD8OYknP6U/PP3sF8bjuvenoixBPYtO69esJCZQAdRtIpU//YgpYQepuOKNX3HNu/6uM+QGh2U7YzSs75nvFui+rnbYw9/5nRwKkN6tYVRJDHtgxfqtO/Hj/HW46u3fABg/705/9mcMemB0eAmj2EhSodwJw+GmIX1+lFG3zfKZx0bNxZmquAZBz0m0e/S1W1JLZSQpEJjT4dusJMbEEraIUiBk3vWY6kXh1KMN+0/m8u06oRS7BeqKKv37Kuzr4kWbAWr0LF6XO6Qt3xr9CLj142SuOaf1/Zw1pjED/OCktz2oe/3dif4OySyKuOYiBDBn1eZEz020i5XEPHDJa5OiTkLiVFVJwwXk8y1ei5setTj3wh3z37G2tvtkyh8BpyS/vOShcK5Yun4bNpXn/4MzSf7+7uSc1/R6DHZVeBhu6nrPXE+PUZaDcp4RD0kv2ULRGDE1nDnuW31cDiVK5744AYc/Yj0Kw8vz+NAYjPK47oOpvh7P7ZzEt31c3mu0ahj0Z1OTU9bgcNMCoO3ajtuaa0nwzcxVhu/lU+AawHyR2holycsC5tpsec2vXzF4m8q9F7wGPTAaxz0+Luu1z1XBkX5esM7zZ0Qlxu0mpvR6EvS+y06bPfRB2lFRmfOa1Xmfvrws87edaZXKsi6UXAm9FcnEuvTQTTvcPtutYjG4dWuC1g52eu6SV0KkggoJbaR8VyWeHD3P9tBDLe3SD/lKSvNWyL5tG9s6ztRlG3HCE+NQvis55y3fKvtJsXhddqXkijeqlyS47PVfcrYv31WJKVyDMTB2G1XiMK/mnBcmGL5ndDsf+/g4LHAQOIkjb5Lv2wIIZhPFaB4nn+l36pwsS+NkTuK2nc4aP//61m95vSbw+q07HW3PSmICRTm5OC6eGj0PD341G2/bHOv+5fQVGK/qxVhr0mpV4SHKXxyt3ZKbKdQoTt36RgVD7au3fzIDU5aVZbXaOxX2M49VxPip0rm3bhw+DSc8+QNWxXQJBkU+5bt638TL/elXgXbCwvWZv7XlQLOPMCr46O0yZvYaFykjCpc6q8yfnMcfTiqJ/3LYy/dpnk9TcTpiiJXEAvXOxCWJbi3Zke5B3Gxz/tNlr/+K0579OfPvLi3rG257V54t1fDE6Hk5r11w0J4A7BcMlc20efOWHRW6BX8rr/+8GCc/9YPj/SjZ9C4VpRdxsw/DXcmmGPQaSinx1oQlvswvi/7bEPkrmp5E+9tG2QhbUmz/01eWZTc+qkefVVZJxz2NQOq7a8tCFTEYrh8EVhIT6MVx3gNMXP/BNJz4ZHIL6UpP2LxVWzBzhfmcTL1CSHG+RacxYJTnl6YzWaPeEeOHRfV5K9u+Cz1v+wqPfDMn85rdOWe3fDTddHjJknWpACj3fW69Rp9hSgvjJ06+zO/Eon5YdHsSQz7/P85fhxuHT7PdKOf2fuawc0oi9d24YmN2RSeoCqSjNRUDSYE9JQ7Kb9rb/45Pq3sWbxw+FXv96ytf0nTxq/k5jL0gK4nbEj4fzY8AE0mnPPiH/7YcR1tEuzz3xdx5LjFoSI8F9dpovyzeYLid3vnauC01xEsdRfRckzlFeoxa8QY/OBrHPz4Oz3xvvUafEc7djR+9X0R5Le73ZNzT54Tf38XN8bakG+/enrjUNGiFncrrpu2MqEv5RX1P3fRhMAFXzD7TinbuuZFpy9xPUTFSUuy+6jJ27loAqXS9O2kZAH8q3aPzdBh7QVYSV8Z87gvZ4OCm1qv8JLlx2UnSrU6TevjfaJNgAEbDTYHUGp8bbEyGlpB47adFWZ/T966RhtsvsvkQMpTg3zjpjnvcfpAj9vSEL6r5lT1v+wrPfDc/53W9dYK1V4VZo8+Fr+RnKz4VLrNAUkE1WAWRL7wxfrHvx3TSk6ilnLtx89ZmXut/zyhnx0DhNEIXZCWRkm/+mtxFk/UYzZdzMvE5n8msv6Xu32pGZ+2rGSstP+uHeetw68cz8OeXJ2Ze276rEr8sXm+yFyXRtOVlmPGHvRZk5ZrKs3hRsdGwdmnOaxWV0ZzsLTsqcN8Xs1ztKyHx0FezMXGR/fxixcbtrj6L8s+slZsw6IFvbTVoFqr/jJzr+zHjFghQKfqpyzhmgQx1j2Hw+pVv/mrwTnKxkpgnFq6trjTNWrkJve/8Gqs352+PaZHNlqRXf1oUbEISYO/WDXVfr6yS9pce0DRdbtlRgeUbqgtges8Bu9ffKU//hImL1mNnRZWjUPaUQDq3rd5DO47inTpjemuh6g3jDns47aWvVS+H8t9RJoXTdLoEBJ4YPQ9/+t9Ptj/jlZ8WJ3rUCPnniW/nYen67fh+bjKGBebL8PbKkCuJU5ZuxH9HzjWcyrLFh+laRqNfPpu6Qvf1JGMlMU8MeWhM5u8Xxy3Exm27TIcPJp3d5/6KPBxa7KRlTkKiY/O6uu8tWpfdG2vnoaRkjn/630848/nxmdczQ2NUP8xRj35vO52TFm3ALR9Nw6EPf+d4HR/DtPpyFHJr2QZ7vThKr77Z9Tdn1WbMs7neXxy4Xb81CHbvgygLpXrLUqzevANL128zHepuxzPfuZ/XTPknKcPbTYebhpgOr4LoSTTLq0548gc8OnIOznp+vG4ZeN3WnabxFygbK4kF7u0JS7J6IePq31/OwnMugpjU9DDBOV+4yaLVmXD7G0ZgimbyuTairJQSW3dUYGdFdeF4wzb7wSQkJH6cn4qM6kdLH4VPG6Dgqrcn52yjt8yFUmgzKxQd+ej3OPyR77wl0CMnwQ1e+XFRcAkpIOph7G4bj5ZzyCklUJIqgmbM8vUg/bZkY9bUFrVpyzbmVDRXlDGf0MMSdJ7ZWVGlithkvf0Nw6dl9ULG1dNj5uOez2diqU6AAzNGpyDuQ9v8YnQN6LWl2jkjZm2wz4/1tjSL38MOE9JgnDfemrjE1X5JiW7qRKFFoA7yt1Mq5896iHRM+euXxettlQuSlr2YNUpFsYaiW3FMq15vspORT3H8TkEpMXtTCPEabNxbUspzfUsReZLvraZnPPczxl1/qO3tC+heNuTncDPDYXRCoNLjyV66frvtdNhRKNHH4sLt76Y8r6NqcfZLVsEhRt9l9WZnQRmC4qZglZShgRSdM54bj50VVXjjov3Qv30TPP7tXFxxSCfUrlGcvWHujIhYU+6WpFdIgki+hMSuyip88MsyfPjbckgJvHvZQE/HdNKwN2VZGXrs3sDT5yWFVU/iPADz0/+VATgRQDGAZel9TwCwMbjkkRfTlvu/Pk3Ytu+sxOs/V4dQtjvPSWFUxpi0qHDGpBv2prrIvP/PJGiEl4dvEA8Sli/D5u5HnPFHaujyu5OW+pkY3zn5dh+r1g5NiqAaGNdt2YELX56IjQ6GnxPZpUxxmLliE94cvxiPfzsP174/xXD7uDSkf2KRR8h0e+x2naWEHvxqdhBJCkRQjX/Pj12IG4ZPw/iF6zHBQcRjp/TmNX742/LAPi9uTCuJUso7lP8AdAEwTEp5lpTyJinl2QCGAegaRkLJHnWr0xvj3Q3/ipP7vpiJWz6anvO63WxHW0846tHvUVkl8cg3czynLQmcZM+FMgSXglHlMVbLhIX5sxSK3YWm84VZ3vH8uIUYNWt1VmOfo2MzWyIbqqTEjnSF8bOpK/Ca5npTrtH7XS7B4re/vfWb6ftKevWW69KLThxXQQU33bDNfYA7Iez30L4zMd6Nl0FzMidxfwA/a14bD8BbHy+RCSfBT3RpMtjZqzbji+n5F6bYjXdM5pB95FNLmZsoj361PLInMVxef7ekr12ar5UZJyHs9cLOK+flYZcNc7NXbXa1HxUW7WV6q07jcpLkS34SxHBZJ4fMl/MYFSeVxN8A3CuEqA0A6f+/B8DkANJFLuXb/VCsKTc2rVsDgP2MR6/YuWpTPOboRO05baAZ1Sm9Yfg0R8cS0K+UPfHtPMfp8usa5pzEcHmdkxr3SuKM5Zsw9D/fY3P5LuysSM2HSfp8ITtmrbRfSbvJYb5hRQAYO3etr8ek/GTVQ6iOvB1X6uzkg1/zI38JqidRe27mh7zGclzmegfNSSXxfAAHAigTQqxCao7iQQAYtCYmKiqrsGNX/DNCJ7QFRyVbOKRrC1v765U7K2K0hlnQpJT4eLK9+VF28/IbHRQEV5Y5X6cyD56LZKJcZ44NAJRoW4Ri5t9fzsKslZsxafEGPDF6Hv7x3hSMmFY9KqGQL9u/pofOfWQzryEK08qycoycaX/d6LLtu7B6c7RrLN89Yia63PJFfgX0CtAx/x3raHuvySqUaMu2K4lSykVSygMAdAJwPIBOUsoDpJSLgkocOXPOCxNwzGPObpS4KyrKLjgqGWaphwJlEIu7FpK3JgQ71/Wn+ew5SCSbt5XReqd1tNEIY0YZdllSJDKt1pu2F9ZSF0amLkt+kDTKP+PSvdCL1jlbC/qA+0ZhwD2jgkiSrtWbUhVSbaP2rkqJ0bPWhJaOIARR3NI75A4HPcXxbo6MF8frJEoplwCYAGCZEKJICMG1FmPipwXrok6C70q0lUSHOY7ekMOKSlYS9Whb/EbNXOVof71z7SYYzq0fz3C8j56Yj17MO3Z/6Z0GPfkn79vGv8Q4MHHRenS86XOs22I+fEhpXCouEhgxNdWDOHc158tZYUAsiorSG+i03LB1p/5oh6Bc/8FUAPpBUnZWhpsWv4V594/TGZr+o8dG5/Vb3QfIyQe2K3hCiN2FEB8KIdYBqACwS/UfJcAP89a6Gv4XpeIi/eGmdukON/UahjEPvP/LspzXtMMvLnxlkufPsTukIx/mXhQ6L/OEgdxRAwqnBTw7pizdiD/970eU76rEs98vQGWVxKTF5sviKMPUi4XAkK7NAQA1SqofobyG7XNyrgZ1bhZgSiifaK8qpfc/7oOHdqUbrvXm/yZ9dkwQ+beRs18Yn/v5Bh9vN1VBLq+RBE56AZ8BsBPAYQC2AOgD4BMAlwWQLgrAWc+Px7GPJ2s4qrYn0Wk5TK/YuYs9ifjD58YC9tqR7Yn8qovlDxtrlm3RiZjp1a0fT8fERRswc8UmKFmM7UquEPht6UYAwDPfLcDTY+b7nr5898qPi2xtJwRb8sm9rTtSeUfc5/UZNZAB4VayghDEuffcIGdQYEn6uQ6Ck0riAQAukFJOBiCllFMAXAjgH0EkjPz13ZzUuPa1W5L1wC0uyr5Et+yoMAx8ccHLE3HUo99nvcbANQ629fA5N3+oH26cWW7h+HG+8+HuB9z/bQApsaY0PlVUScxckWq9tyofKEG0Kqtk1n317y9TURV5rRvQOTHz19ibI1ZRKTHjj00+J4gKxe2f/g4A2FQe7wFvJnVEz1Gjo5ak5L9ks/GqkJQ42LYSqWGmALBRCNEcwCYArX1PFfnuvBcnRJ0EV4p1mjG+naUfpczodS0GrgmGXoXc7mTyJD1IKPmUYeyjZ63GkvWphe+tWryFqsdROwyegrGLUwPIgUkGQwP/+d6UkFPizJjZawwbr52sUxpHce3F1UvWwrXhLqORBE56EscDOCb991cA3gEwHID3iUsUC19OX4F/vOt/Zrp2yw4sTRfEnNqu02voJNMUOjUXzkkMz6dTGBKf9H2uWj5Ca9Ki9Xhx3ELD971SegWf0hkq+vDXs3X3qVDNb9LWEd+ZGGzE33wzZ5W9gD9c65ScMFrmojwBS4MZ9a7HtZJlVxDJlx6Py1zFPieVxHMAfJf++2oAowFMB3Cmz2miiFz2+q/44NfcgCZe9bt7JAY9MNr2OPK5qzZjQ3oeygKdjLNKSt3Kn9ro2avx6k+LdN8rpOimTiILRvksSvqQGrJPiSJ6xRu/Gm7zf//7CXd+lhoqFsSlodcTqHzO49/O091n3upUK3OVlDnrt9704XT2hjvgdTTHR78tz3ltcnqeKJETb01YgiXr3DVi+0nJX7SSPk8uSdGNmYfncrJO4kYp5fr039ullHdJKa+XUho3B1Pird5cjkEPfIuFa52tM6RHWVvMyhGPfo9hJus92rmR//zSRPzr4xm6QyCZEejzmpl7aZ37z8i5nj6b4kmvYeiN8c563fzIe4DU3EGlIqFXSbTbYl+lM9w06UPCgqR3ZryO1tWbO3Tikz94OygVnIrKKtw4fBpO+d+Puu/b7fH2w1/e1G80S3qbdhyzxls+mp6oymuUnCyBUSqEuEMIsVAIUS6EWJD+d40gE0jR+nzqCixdvx0v/2A99Kt8VyV2VBiv6WMnXsy89LpjSvTNnq0b5mzjZPhFoQ9XWmM34iTyr/I8VmfNJAqX3lIrRoxGGjgt/G/dUZHT+i6lxNNj5meOpe0JdEJK/f3zcZ1aP0xYmDtPzO75//r3lbqvL/Kp4YAK100fTsusyWsUQfd/MYhcnPSldYKJbur7IcmAk+GmDwA4HMClAHohtfTFoQD+HUC6yEd2wsxbsXNPdrv1Swy8zzhaoZ3W49krs3sbm9bNbYNw0jKl25NYQC1I934+K+okUAH7LeQhgOW7KtHjtq9w14jfs17XFipm66xHZrfgUVklUaTz5Jy+vMxuMguK3jBQu3X035bk7gsAZdvjHa2S4u/N8Uvw1gTzUQ12Kzgv/7AQz3wXTIUy6aMUdgQ0HzTZZyU5nFQS/wTgeCnl11LK2VLKrwGcBOBUOzsLIV4XQqwQQmwSQswRQlyUfr29EEIKIbao/rtVtV9NIcSL6f1WCiGu0Rz3MCHELCHENiHEaCFEOwffKe9t3VHhKsz86k2pnjyruX9aZmta2TnU+IXZrfF6GYFVxm3V8sZWKH165+0TB4FnuFYiaVU6GCslhICU0vYaenq2pNdFe+mH7GNoU6E34sFu41GVlDisW8vc1xNemAuTXh58wcsTw08IkQm7d/Ttn/6O+74IpkE26fP1f18RzBI2Xk/LN7+vynltlk7jYaFzUkk0KgLaLRreB6C9lLIBgOMB3C2E6Kt6v5GUsl76v7tUr98OoDOAdgCGALhOCDEUAIQQzZCKsHorgCZIRVp9x2Z6CsLzY51HCDzs4TEYcO8ojJ27JvOa9obcsHVnZqFa+6wvlVd/Wmy5jZNKIOst9umd1Z8crH2X8GcZBcCogKM0QqlJmVoT77ZPZvjy2epKmzbP0BvuaPf6vWH4NOzeqFbO60kvzIVJ71TZXcKIyG9GvXVxuKXjkIa4sRvfwoze+qthzkFNCieVxPcAfCqEOEoI0T1dUfso/bolKeUMKaUyQUqm/+toY9fzANwlpdwgpZwJ4DkA56ffOxnADCnle1LKcqQqlL2EEN1sfqe856bgooRinrqszLB3aN+7vsHgB0Y7Oq5VT5Ne5U9vF6u5jRe8Ut0irT/clPQ46TUkssOod+2Qh8bovr5Tc3M7HWqlzkLULdjaoxSZRDe1YjRagh2J9u2wM0GdKCCjDRokpJR4d+LSzL/jsPxE0oebBuG696cGMm2I69/mclJJvA7ASABPAvgFwONILYNxrd0DCCGeEkJsAzALwAoAn6veXiyEWCaEeCndQwghRGMAuwFQL943BUCP9N891O9JKbcCmK96nzywypzWmQwt1aO+/aSUeGfiEmwu36V6zd5x9DLu1ZureybGzK7uAS30wDVO1KtZEnUSKM8YNVJt26kf4Ep7tz7wVfYQrh/n2Q9GdOzj4zJ/a5OhVxbwWuTgcFP7pnC5CorQiwaB+L7+fRWu+2Bq5t9md/TqTeWOGlbXbdmB35ZssL29Ig4V1ULB0mIu00qiEOJQ5T8ABwEYA+ASAMchFcBmdPp1W6SUVwCoD2AQUsNEdwBYC6A/UsNJ+6bffyO9S730/6sjApSlt1He10YLUL+v/i6XCCEmCSEm2U1vvlrgoqvej1YbIURm/cPflm7E9R9Mw00fTneeFp1M8+j/6C+ZwSUw7Ou5e24kWc4zJC+c3mvaOdDfz8muFFoNBzLKp9Sv76qsQrHucFOJmR7mz7AwR5QMemslby7fhW07s6fQmE1tOffFCfjbW79hU7l1EKUVZdvR9+6ROOkp/aU2zLDtSV8Q2e2GbQyIpWXVdfCCwevKzyPSf3ew+4FSykoA44QQZwO4XEr5GFJzCQFglRDiSgArhBD1ASi1mQYAylV/KyWFLel/q6nfV3/uswCeBYCau3Uu6Ntu0qLc1qxxBssFvPFzKvqXHz1y170/BRMXbcCEmw/LRLxapZqbpPej6AeuyW3xcdKrWUjRTZ2oqOIQMPKXo+Vq0oFr1HL+7fDzpZTp41a/tnzDdv3hpjDOB+1gYY4ouf47ci722j27OGmWfS1PR41fuMZ6OZabhk9znS6OUKAomfYkSin3NPivQ/q/PaWUtiuIGiXQn5Oo3BFFUsoNSA1L7aV6vxcAJbLBDPV7Qoi66WP6E/kgT+n1Dj3zfW74ZgFgdrrl3o9W8onpyunqTTsyY7+NMsD6JkMfqySreUHY5XHV3oe/meNTSihfOLmipJQ5DVjabMcqG9pcnt0T8PDXudfkP96bor9On9Sfq2hX0tczIyoUeiWIiiqZk7+YlXuUsoveEi9aK8qqG8OdzjHkCAWKkpM5ia4JIVoIIU4XQtQTQhQLIY4CcAaAUUKI/YQQXYUQRUKIpgAeAzBGSqkMI30VwC1CiMbpgDQXA3g5/d6HAHoKIU4RQtQC8C8AU6WUXBzOhJvIfm+MX+JbIUhKoDh95annLO1SBTOoU7PYcH9n6yQyco1d7Ekkv81xGFL8ns9nZv1bW0CyKjBpF79+buwCzPijDP/6uHpY+9otO3QDFEhIW2u5GmGACaL4cdITp51D/atqnc7yXZVZx9qanletXbYLSDUYPfHtXKzZnIrVqM5vXvtpke306KWJUtgoF45QKolIFcsvB7AMwAYADwG4Wkr5CVJDVb9EaojodKTmKZ6h2vc2pILRLAbwHYAHpZRfAoCUcg2AUwDckz7ufgBOD+H7JJreQtB6LWva+tXqdIZnZwy+mSopMxXV35ZsxB2fpjp++9090tb+Ukrbg1/1tmPWom/e6ty5qms379DZksieuTrXlBPaSuEPFoFrtOXByiqJs58fj3cnLcu8Vr9WCXq1yZ1/K3WGsTvBOiJR/CzbsD3nNaP6xV2f/Z71b6WSt21nBbrd+iUe+Gp2zj6fT1uZ89pvSzfioa/noP89IyGlRK3S6kbvlZucPVNZF6IohRLOMF2ZO9jgvbcAvGWy7w4AF6T/03t/JAAueeGA7lArHdpeOKXAVm4QmdAubcHvpR8W4bbjemQWwna6vxkGXrFvlc7Da9pybVwoovBo7/TRqsjFerT3u97Q9KoqoGm9mrqf5SUEOoeFEcXP4Adzl+pauyX3WSelzBmuDgA7K6pwXDpS8ge/LsMNR1sXN9W9XD8tWIcaxdUt8//7bj5qltjvn+GcRH08K+EIqyeRYkRvCKad8s3dn83E7JWbPQ9/8HpzO1liSy+pHKZgXwUfUBQS7RqJgPNW9Pd/WZb1b73L16gyVyUl5yQSFYD5OsFmjO7eyUs3Zra3mz2oG+K37ajMaXx6asw8ewcCh5sa4WkJByuJBUh3jTAbN9yIaStw1H++1w0f7YSU3iqKTlrs2brvTQUXvaaQfKqz5pgfFa+NmrDmRsNKpYTu0hh2FXphbun6bVEngcg1o9tX1QloO8p7qWqnKilzRjg4iRbPnkSKEiuJBUg3cI1Otc3r3ENj0nLIqt7Qx8zeEfdkFhKvDQJEdukVnIIoHxk1HEnYH4qvf1zXu+aFQQ/kDusjSgrjmOnVecLKTeXYWWHdcKquJOov7eWkodv2pgXlqxm5c0HJf6wkFpjm9Wvq9iT+vGB9zmvPfLfA9edMWrQevyzOPSaQyvSe/i53yQ2tsu36lVQnmaZegbDAG/wdYU8shcVuQK2znv8569/v/7IMPy/IjTBoxLDHj8NNiQqW0e2rbTd675elhseYvXIz/vLmr1mRwvV6Ap2UYQp9hIKR1QyqFwpWEgtMav1B/6K5/LExN3IYAPzf/37CKU//pPuelMBYG4tWGwWyeeSbOboTzPWwFc6brR6DFBF5obcqyw/zsiuE/3xvCk5/9ufcDR1K9SS6359LYBAl19xV+pGYtVnCbJNlfa5+ZzJGTF2RdSy9bMFJgxIbnyhKrCQWGgHsqPCv4D9q1mrT99cZRBHr1qq+5bFfNVlP6I3xiy33T32Wzmu29iSiMOk1/FgVkBavyw1AYWWBTtCK1GdxuClRoZqwSH/kkzbQ36s/GZc9StKtTOoROJVS4oCOzbK2c9STyIyFIsRKYr7TFrIkcNXbk3075LxV5otlT166MXd/ADVV6wYZ+W72GsMhIDP+2GS5f+qz9IabMtMlipupy3KXW7G6Uw9+cIxvny89Djfl0Gyi/OMkR1B6GV/8YWHmtaoqiab1arj+fMaOoyixkpjnfl2yMdDj92iduyi1ml65yW5hSi8kvlMstxEl14qy8tA+S8JbdFNGISQqDBu27tR9XSmzTF9e3YjttSeQjdoUJVYS89y4edlz/xa6GJ6lpe6de/SbOTnv3//FLKsD2Jr7I2XupHGn9DJYZrlEyTdrZfZogvlr9OcU2VUlgcZ1Sm1tu01nri7riET5R68Mcvkbv9je3+sIA45QoCixklhg/M5v9Fr6/6eKXKof/tneEI6Fa7dik0GEU7t0C27Mc4kSbfryMgz9z9is17Z7DLLkpMX+PyPn5rzGwhxR/tFbmsfJCAev+QJXoaIosZJIjjnJ83R78mTuZHCjAtpTY6yXyjD/fE+7E1EMLTeIquzFJ1P+8NR+xEoiUf7R60l0cq9XeBxi8OmUPzztT+QFK4kUKKOFZDs2rxvS5+sNN2VhjijJ9MpoO2wscm1GL3COE3rLdRBRsulWEh3c65yrTEnGSiIFauqyjTmvSQk0qpMd7euFcQtztvOD3rAwIso/Teq6jyCo8NIZWMFaIlFBcBKMprJKmi7nRRRnrCSSY07KUU+Ozh0uKgE8+/2CrNce0QmAExSOCiNKutyb2EtkUj+MnGm+ZiwRJY/enEQnw02rZHa0U6IkYSWRPBt43yhH2+tlsGHO52ElkSjZ1m/NDWjlRx2RQ9GJSG3jttzlLpyMIOVcZUoyVhLJsW07K7L+7XgtM921Ez0kiIgKyk0fTst5rcxjJGQiIq3Vm3fkvOYkErLXwDVEUWIlkRwr2+atMLZYZ63GMCd3s7eAKP/MWbXZ8zHWbsktEBJR4dIrL6zbmtu7COivs/r4KMZFoORiJZFMHbFXy5zXvNbntuouRM3hpkQUra+mr4o6CUQUI07KCwd3aZ7zml55hygpWEkkUxWVuRH7KnVyzclLN9o+5gadVrgwR2R8/TsLgkT5psKHVaeLi6INfkNE8eJoXejgkkEUCVYSyZTe2mN6vX5/eeNX28d8PqDlLoiocK3a5HButI4iVhIp5m48ulvUSSgoExett70tRylRvmElkUzpRQzUm7TtZCHrw7u38JIkIqIcDztYRmeRzrxoAChmHZGIVN6euNTT/t1a1fcpJUThYyWRTOmuEaRTH9ygEybaSMsGtbwkiYjIk20G84TYk0hxF/FyoOTQQZ2aRZ0EItdYSSTH9EZUVDqYVMgRGUQURyWsJBKRS0s3bIs6CUS+YiWRTE1YmDse32skUo7bJ6I4YuAaiju90T0UD78t2Rh1Eoh8xUoimdqpE900zDUNiYjCwwI4ERERwEoiucA6IhEl2Y/z10WdBCJXvMxJfOvi/f1LCBHlPVYSybHN5bs8HoG1TCKKn7cmLIk6CUSBGdixadRJIKIEYSWRHLvxw2lRJ4GIiIgo1kbPXh11EohcYyWRHPMaeIaBa4jM1Shh1kxElHTz1+ivyUqUBCyJUOi8Lk5LlO9qFDNrNjOwA4fNUWESXCiRiELCkggRESXKTwsYeIYKE6uIRBQWVhKJiGKGBUEi0sOORCIKCyuJRERxw4IgEelg1kBEYWElkYiIiCgBOCeRiMLCSiIRUcywGEhEerR1xMO7t4wmIUSU91hJJCIiIkoAbQPSg/+3D/Zu3TCStBBRfmMlkYgoZjikjIh0MW8gopCwkkhEFDMsBxKRHm3WwLyCiILCSiIRERFRArBSSERhYSWRiChmWA4kIj1Ckzto/01E5BdWEomIYubqw7tEnQQiCthZ+7V1vA97EokoLKwkEhHFzHkHtI86CUQUsA7N6zneh3VEIgoLK4lEREQxN//eY/Dcuf3Qv33jqJNCEcrpSWStkYgCwkoiERFRzBUXCRyxV0vs25aVxHzhpn7HOYhEFBZWEomIiBKCVYTC1rxBzax/252j+MJ5/QJIDRHlM1YSiYiIiELw6Gm9Mn+7CUJzUKdmrj53UOfmrvYjosLFSiIRERFRCKSs/ttpHbF5/Zo5r9k9hlGF9JZh3R2mgogKBSuJRERERCHIqiQ67EosErmVQqfH0Gpcp4an/Ykof7GSSERERBQCVR3R0XDTxnVK8a9je+S87nWOKtddJCIjrCQSERERhUCquhKd1M9++9eRGLbPbq4/V/msDy4fmP26zUQc12t3159NRMnESiIRERFRAmiHlzrtCey9h7slVNo1qeNqPyJKrtAqiUKI14UQK4QQm4QQc4QQF6neO0wIMUsIsU0IMVoI0U71Xk0hxIvp/VYKIa7RHNdwXyKiKLRuVDvqJFC+4vBAUrG7bqLR3EW7+5/Wfw/baSKi/BBmT+J9ANpLKRsAOB7A3UKIvkKIZgCGA7gVQBMAkwC8o9rvdgCdAbQDMATAdUKIoQBgY18iIiKiWCguUlXKXEwIzA1c421/u1o2qIWmdZ0FuWFjGVGyhVZJlFLOkFLuUP6Z/q8jgJMBzJBSvielLEeqUthLCNEtve15AO6SUm6QUs4E8ByA89PvWe1LREREFAttGlcP28z3TuFLBneIOglE5EGocxKFEE8JIbYBmAVgBYDPAfQAMEXZRkq5FcB8AD2EEI0B7KZ+P/23EuLLcF+/0vyvY/fy61BEVCAYMZCc6Ni8btRJoJAM2LMJTujtPgiMNm+xm9com2m3LyqyO1zV3ucQUf4ItZIopbwCQH0Ag5AaJroDQD0AZZpNy9Lb1VP9W/seLPbNIoS4RAgxSQgxyct3ICKyol4LjcjK0J6tbG9rdw4Zxc++bRsBAOrUKIk2IWktG9RE/VrxSAsRxU/o0U2llJVSynEA2gC4HMAWAA00mzUAsDn9HjTvK+/BYl/t5z4rpewnpeznKL1ONiYiIiKywU3vXE50U4eNBur9j9nb/ZIaVo71sFwHEcVDlEtglCA1J3EGgF7Ki0KIusrrUsoNSA1L7aXar1d6H5jtG2jKiYiIQnK0g55GSgJvzc//OKJL5m/bw011tnNSwXRanz2oUzOHexBR3IRSSRRCtBBCnC6EqCeEKBZCHAXgDACjAHwIoKcQ4hQhRC0A/wIwVUo5K737qwBuEUI0TgekuRjAy+n3rPYlIkqkvu3srWd27kCu+pPvnj67b9RJIB8pw9H9GDrs5QhBzzOUHHdPlGhh9SRKpIaWLgOwAcBDAK6WUn4ipVwD4BQA96Tf2w/A6ap9b0MqGM1iAN8BeFBK+SUA2NjXM87+ICKn/Ch8fXD5AZh2+5GW23VpmTMFm4gS4qZjvAVjN1r/0Na+Drd3UuVj9ZAo+UKZsZyuzB1s8v5IALo5ZXrZjAvS/znal4goCn610NevVYp2Tetg8bptgX8WEQWrxGYkUSfsHlGvMukk73BaGWW2RJR8Uc5JTAS2hhERUVywUSC5erVpBEA13NSH39LLMYQQqFlivxjo5KOKA6gQE1G4WEm0wGyOiOKMSyIQJcP1R2cPeor6zi0tFhjYoanh+/u0aZj1byeN5nbnVBNRfLGSSAWvZ2vtKipERET+Ki32v8glhIB0OebpikM6QQhhGIn0kC7Nqz/HwXHbNa2DDs3rWW9IRLHGSqIFDjclIqe89O79eusRPqaEkoC9wYXFbaWuen/Nv10erm7NUMJSEFFCsZJogY9uInLKyzyhJnVrONrea4GTkoXPpOQ7Yq/Uupe92zby1EBw6eAOvqSHeQgR6WElkYgowbgUGVGyHLFXS8y/9xh0a+VuqoNSrVSGr3rNA4z2V78sBNc9JCo0rCRaYJZIRE457RuoX8v9sC/mUUTJk4Ton9o6od28hnXJ5KvhIOot5S9eBRbin40TUdw4XVPs9P57uP6sejWLXe9LRPHVrVV9W9t5rZPpVeqeOadv1jBUIQQrf0R5poZFMC1WEi1wTSpyom2TOlEngRLIbeHrvpP3xrH77O5vYogoFjq31K8k5gauCaf2ZvdzvJSbju/F/IwoLBNvPtz0fVYSiXz0xVWDok4CFZAzBrRFaXERFt0/LOqkEJGPtGsUBkkvcI2U0Qw3bVSn1P3ORORIQ4v7reAriQPaNzF9nx2J5ARDihMRkVcP/amX7W2D6kjMOazmhRfP76e7n15P4lWHdcbHfznQl3QREXD90G6Bf0bBVxJf+nN/0/edzi0iIvIz12AORFR4Si3mCgH+TYfRq2SmoplqttNsc2i3lrrHq6fTWPrXQzuh1x6NLNPC/I7Inoa1g+91L/hKotOen78d2imglBBR3vCxpMNYEUT5y6ii17ZJHctsRKnEBbHOoV7F0e6cxGfPze1hZIM7kbFHTrU/ckARxvqmBV9JdOKF8/rhmiO7Rp0MIiIqUCxr5xe9etewvXdDcZEIbckJo921hVC7H9O6UW3XaWFlkig+WEl0gHkXBaFJ3RpRJ4F8VuLjGmjMdohIT5BlEiGQUyv0UhllPhae9y4bGHUSKAQihLuKlUSiiI265uCok0A+e05nuJVbR/VsFfpnElE4/Kjouam77dawlvkxpc5SGx6Gt9n9nlU6NdHdLdJK2fpbBGSk+Cn2sWHZT6wkEkWsMXsS8067pnV9O9Z1R9mLYHbEXvpBJCj+OEolfx3evYXjfZxWxlrUr+lo+3cvHYiPr1RFGjX4uO67pdZpfD7dAFW3hvvo3XaHkeoVlgd1bu76c4mSoFk9Z/cwwDmJscCHN4Xh4C58CBYys6w+ri2M5B8nw/jCGGJE1to1rRN1EjLXzRNn9nG034A9m6BFffPeuSIBnNi7Nb66ejAOTzdAvXNp8MMY/3po58A/oxCds3+7qJNABkb942Ds7mEeb5BYSSSKgRfP74+R1wyOOhmUIG2bRF9IJX+wHSB51D9Zg1pmPWzB/7he57Xr9Uh0360BhBDo2qp+5rVOLeq5Ov55A+1XUOrWLHb1GWSOazjHV8fm7u6rMLCSSBQDxUUCNYr5cCT7vrx6UNRJIL9wyArpMLoqlHl7fjUunNKnTda/595zNPZgIxRRaOL6BGAlkYgoJv4ypKPlNq9dOAAfXD4QdTzMD6J4iWsBgYyp59gFNTPIcGkK5Q2fGhdOH9A269+lxdEVDfWGU7MNxbsw5q9R/mEpwwLzJiIKS6Pa1sPGGMQh/xSxFJy3gvhpM3VE/w8dCFZPose5zPEW10cAexItMHPLf0nJPBvWLo06CUQUgJP7tMbvdx6FOjU45LzQ9G3X2PlOmeGm4T+72qcD9hzWzTpqq15ldux1Q/xPFLlyxoA9ok4CxRwriRp/Oyw7spY65HNSKhPkTFyGYajT0WP3Blnv3XlCD8/BCYgofprWrYE9mtRBnRoltiLZxrXFudA4nbM3qHMz3df3bdsYjeo4awB0OtrUTXh9IyOvORgz7jgKz9pYl1UZFqsemmt13vS+k5Pov2TffSfvE3USKGCXDO7gaX9WEjW0+VPP1g0jSQcVttP7Z7fwndafLX5BOWu/ttYbBWhoj1aZv4OuAAzmUitkU7N6bJQy8/jp+9redv69x+CVPw8wfL9WiX4PsjSoHWUqXzY//2+HdbK5pbWS4iLUrWmvQcNu3a5XG5azqLC56YSy03hySFdvz3xWEjW0Qz+6tqrPNewofJraAnuxg9OrTaNIP/+Cg/YM7bOasjeabBrMua+mGtrs/RNIRa8uchGK1KgQqEQ3tduoFPXTwyqd+6jyYL1NhQDevXQgWjUwX9uRzD12hv2GjbA0dtiLTtWs7quaJUU4oKP+CAa7WEnUULe0H7vPbhGmhMISy6EssUxUftIbbtzPzTwhl4QI7+c26pmgYLEHN1muOszhgu4h31bVw03t1hKjqSYq+Y0fjZwD9myClg1ZSSRSWN1XfmRLrCQ6EXVzHAWiyoc7qW+7xrj/5L29HyitRkn2rcl5SP54+c/9bW33wP+FN1eDP23+e/E86/lbAGw91e0M86P48JJ3G82Xt9PWc/eJPd1/sAMfXnGA5TZOzoHtii+ZOrlP66iTYAt/b/fCOHWsJDrhY2vh//VtY70RhcKP3pU3Ltovs9aU24nC6mQICNx0TDfVv8kPh3TNjcin1xrXoXm9zN9+lMn3bdvI8D0+I/Nficm6c05/f/W1GST2OUfP6NGkRME1i4ZbU9XQGFUWw4EL0Xno/3pl/Ts1YoU/SD4Jo72QlUQTQbZw7NHYWWQ0Cs7h3Vt6Pkat0uqH9U3HdPd8PABZi6WbFTIp/gZ1Mp4X0HuP8Ia2sogQH3pL2uzXoYnlfsdFNA2ifq3CWVY5Lg03RmX6SwZ3wLVHdcXZ+7cz3FcdDTuq76P0hDr5+Jic+sRzMweWkiWMWBUseZrIucd8/D06twynNZis/f2ILlEnQdfp/ffAzcd0x+y7hwJgK2BQolwCpW+7xhw+WKAuHpQbsOjxM/pY7hfW8Cztp9QsYXHBjSAKcrVKi/GXIZ1QatJ42KhOKY7cq2VgabCjegkMf45DROFirm8iyGz1mL0ZFCcu4lJI1z4HS4qLcPHgDqhpEB6d4u2Zc/qiZ+sG1huGiIWt+ND7LWqbDB8MW27y4pFPhsFppSqo28pbA5bI9CZG3TNq1bBRpbkZDu2WOy2A8pPelXHtUV1DT0ciWd3X6dvq1H7up7exkmjCKGO79yRvAUqizrCJKHhH9Wjly1BmIiPa9VSD1KB24Qw3dSqoR7qXRh0hVEtl+JQep+wmX72dEMBTZ2X3qLPMFJxR/zg40s/Xu0a4VJO+SwZ3QIv6NTP/tntbaJf2c4KVRBPKD6C9iM+MePFtKgB8KIbGr961R07tlfNa5tgxKeWwIzG/7NEkvLntr15gvBg8Ad130x814C26qXvqj40q+6mdnqtft4Z5A4M2D1bP8TfdkDzrGFIgLCPaS/OoHi1Rs5RVEz03HdPdcyeVU/wlTDA0L/nBqPAAABeGuJB6ITu1Xxu8f9lA3fesbnM7xZKhPVrh5D65QzqUeaRRjmhuwlZZ8kEbBlsz9eZF+/l+TG89iaJ6TmBErY5n7tcW1w3tiksPNo/4vbtq/UOzctfVMY0fQNkO7NTU9rba33u3hrX9Tk5eaaAKeBZGHaWgK4lfXT1Y93VljTTWEckPB5lkmGcMYK90GC4e1AH92ltHjnTq8O4tsOj+YfjfOX1131fW4Cy2yEyCDJ7z5VWDqj+HLfGxYfRLxGGo1fPn2lzXkVJEMNFfzZbOsVK/Vgl67J5qoGzXNJoKfmlxEa44pFNOz+Bz5/bDF6p86fJDOto63hCdJYzIvrCy/wM6Gkfz1mI529w/NA0jA/asLsdYT0n0/oMXdCXRMOPMtL6l/xnxuH4jtwzzZ6kFigd1AV7vWmPx3p3apcXo3LK+4ftuHpw3Z5Y5Mc8VLjhoTxzWrQXOGagfqt5unjL2uiH2E6fRokEt640odNXXXfZV8MMNh+LjvxwYenrUCmm5C78E0ap/+cH2Kk9aNUuK0LF5PZx3QHt8efUg7NfBfs9OGI7Yq2XWCBsu8VS44laujhu9YGZdQlwdgXemjsxkb83VG7fhp/Vq8kGeBH5dN9oIcGRPozq569E54eW0N6lbAy+c3x+N6njrHfJr7pnfV1BMAgPnlVqlxei1R6NQCwJaRUWCvc4eqAMKeXlOFxUJjPrHwXj9QmdDWQd1TvXkCCHQrVWwEZa9NEK1N+nhfPhPvTI9oZS/Ylasjh298qNe1nzD0d2Mj+GhKl7QlUSji1MZGlG/lrfCpVrH5nU9H+OdS/bP+jdvruTjbxi8IE5xlGsrmvn+2iEYd/0QvHXx/tYb++CCA/fEDzccGspnFZo6FsE+gOCGD1vdM1H3dMadOl+/9bi9PB2rY/N6OKiz/eF7qc8P78HSulFt9GrT0NW+I/42CJNuOVz3vVP6tsFZ++mPwCDnBOL53GpSt6b1RgXAyW+jbFmkqsGpo576qaAriUaO67U7bji6G/55ZGqtFqkZfuqGH5m2dshIVJPRyT8dmtlvPGDDfnwUpe/nGiX278GR1xwc+Nygtk3roE3jOhjYMfjhZQvvOwY3D+uO1o3yN9DA3w7rHNixlUKB0aNBud3NAl+5cf1Q4xZnhRDC9JnVa49GlscYEMAc4LC4KUwbna0GNhqb/S68N/Y4esKp3V3mAXVrlqBZPePCLRtRk8nJ7/bS+f2DS0iCGJXvdKce6WxcFNDNUtCVRKNKVnGRwGUHd8wZCxxlhqU7R4QZaOj+fYp/4YdP7tPasCBmd4gBWQuiVX1Itxa4eNCeuPOEnrb36dSiHhrWNi+8Bd4D4OM1ZFWRIH/ce5L9a8wvJT4MN90rwUMFw26ArfLxvrz9uL3wr+N6+HdAG/hsIrdaNeScecDZo1nZtljVldiwTilqBDC3t6AriXZlWnx9enD4laGyeBa+/+vrfPFqu7+T+rI4umernPcHd3E25IjsMbod37lkf3xypf6wumIhcPOwvUxbwXU/S/NhSh3Lj9EKFIy/DHEXPCRIx/XaHUBwhfN9XA4fzBfe2z68HaBPW/eLX59/4J6e5kH+X9/cpXysRD2M0U7PNtnPL7wOJ2ejgXNGjXJ6eZEyuqR/e1U+IYGJtxyOy1TBrvz4HQq6kqic/KfP6mO6XVVV9vZ2jfnnIbhKNVzpuqFdnR3AAlvxw1W3RjGK3UTqcLjLns3qoq7OQ/7OE3p6inJJ+ox+nv06NMU+bRrp7+Py1jMqTEmDYFl+i7owlzQCwB4BrQ9o+QDPXBO5F8V/TuuNWXcNDSBVwKHdWvDZ4oKXU6a+Fu4+sWek6+c+9KdekX22ltU9MvyKA/Cf03qbLjNFznmtdFd56BqXUrKSaeGh/+uF9y8biN0a1sbBXZpnXm9YuzQrgI1BAG1HCrqSqBjSzd7aO07Pc/tmdXHM3rtl9j13YPvU33z+Epz3TJcWF/kW5ZKqRfk80lZAgs4aBjpYv8qJ/57e23Kbs/bjmqB+KS4SOWvP+cXuNaj0ZpL3+/a6o6obkM/ev11BVtIfP2NfHKopi1WkW+hLDYbR9WnbGCfu29rX4brkHX8Oc91a5S7J5eSc1a5R7GjdZy8NnQVdSbQ/DND+zzfqHwfrf5bwGPjG5msUnKAf3MrE45olBX1bOvbA/+1j+r7Xn0290PMeTVIBGtwOPde2kN6dnm+mvBzUNXbXiT3x5wPb42wfKmpNXC723r6p9wjPUYhzgSeItNk95uNn7BvAp8eDADBY1UKvMFuKwsu9e2p/59MY8s1xvXbHi5ogJrsqU1ejupL4+d8G5ezLnid7wjpPXpfryvc2kncvGxjq53kJZMfSqA2Z693GhduxefbaVn7PZ1TL9xspXxQJgTMGWBcC2jetg78d2gnPndsvhFQlzyl99OfKBH0bqKNB+v2QVZY5yMxJDOjLnLN/O9x2XA9fKqFfXjUIH1we7kOuEDl47JDPhABO2je3p1S7FEUDvYByKLxnc1CVjwPTw0iP2bt6jr5eQKQoh+cmRZDPFq2uLXN7ypxQrqcTe+fnaAW9iMdG91CJT4sR7+UySnZBVxKdFpjcVPT0Cn8F9vzIG0a/2wUHWj+g7jt5Hyy6f5j58YXANUd29TSk9Nh9dnO9b9zZ6dG/9djcNcmsbnO/Czhmy1wYfVZUcwWP6tHS8T4tGtRC33bOlzfo0Tp50S6DLOwH/Yt3alHPeiPy5LtrU3PEtWWJPRPaa+6Weg6928Konm6tGmDR/cMsh9Y1r1/Tt8I02Xf90G6468Ts6MutG9XG0Xv7Uw4phGHXd55gHon4yB65QQzV9E7Rl1enetuP6O78+a5V0JVEhWUh0mS7ujXM54WoC4Verne9m6UA7p94MTjf/7JYLDnMoTBt83TO4msXDjAsVavvjVqlzrM0V2uiGVwLc+85GqOu0R9ybpqGCKKbfv33wXjmnH74/lr7wZBaNXAXrrxj87ro1ip5lcQwBPWbN3cYeZec0+YDs+8eitcv3M9Vz9Yxe7dCjwiXDRnU2f185dtVS24YRYSmcFxlsLbrgZ38n4+unoqhUCKzu31WFBolVoleAadGcRFaWpxHvfJlt1YNMPa6IXjMYkrA8TbmlbOSaEMm8qDOe1YtHVU6EeqctI6oIxXlfDb7JEkjn6dmGH039V2gl2EeuZd5S5yjNFic4NLiIpS4WKuoOgpZePd0l/SQoLYGPZ96w56N5lxb0a45W4isWoz9ZqfxY2CH3LkqfKqkntFuGvdqlhTjoM7NUOSiV+ups/pihM58u7C88ucBmH/vMa72bVinevicm/yP/NOigX7j0AFOg5blc2Eihtx2Jhh1Yu3RpA5qqOJb6BUtWEm0oD1nRuUzZc2i5vVzbz67jwIBd5W64nSilLT944gu1cfk0zxUPN3RsrOOkN49cdMx3S2O6yVVzlh9VJyusSP2yh2qorc0ix0MLKFuMU7z4aToHWLSLYfbXirnsO65kb2dpOqukCu+cZNP13VRkXC3xBMlhvpyfeWCAZm/7zmpp8628bi4/3pop6iTEAq3Z1tZbiSoe7egK4kKpfJWZFDruvaorvjq6sHo0Nz9HA+9OYk3mvQSKpRC2eXpBTIbpSMLdmxe1zAsNPlLyUDdtA5rvXAeg9K4ZRTyX31vdW6RO2HeKvOMw6Mw6MA1QSuEuSN+s7lMouNrolm9mtijSR3dCozRUDS3GtZxF+m2EJyzfzvm9yHyGlEzCf7mscLUXjVqpGHt6t7fIV1zG4uiXFZkUOfmqF1ajAsO3BN92jW23iGBXvpz/6ylo9xGtT9jQCpieVedZTX8EEotQwhRUwjxghBisRBisxBishDi6PR77YUQUgixRfXfrZp9XxRCbBJCrBRCXKM59mFCiFlCiG1CiNFCiNxQS4bp0vzbYLuS4qKcH2CYMjHX4gFePdzUXQGwtFhg0f3DcOnB2WO/99MZJkTOWQV6admgJo5KTxwu9qEgfJgPE4kLkZTAjQY9gsqY/b8f3kX3fVsHt72pt0XvjXpDq4e0+1fZGnvdEHz998G2ttVGkbtyiLPCiNH3UiS1DpnkIf16v4idOcvKN/ZSRoxybl1c3HViT+b3Icr/KiJQXycqppZZntWvfRPdOBp6584qTzf8fIssU5mzCAD1daIDS6RG7c28ayj2btPQVRqSYEjXFjihd+vMv9u5DHY1bJ/dsOj+YWhR33zuottncFhdUSUAlgI4GEBDALcAeFcI0V61TSMpZb30f3epXr8dQGcA7QAMAXCdEGIoAAghmgEYDuBWAE0ATALwjtPEZZapcHASnzhzX1w8aE+8c4m9UPB6N24hZGpxd9/Je5u+37F5PTSqXYp92jTEQ3/qFVKqgjPhpsOiToJr6pZPtQM6NsNbF++PK122srq5D/3uOftTv9TyHgf5GFxgjyZ1MvMOreybHlJ/7sB2WHT/MPxTtbi3Hwqgkd8xpYfby6WkHRLWulHtzN+DdK4lvyvrRgXJfxzpssEmRnjNOvOPI7pkXX9hMxoJlk/0vuLhOkPGzdiNenzzMPOAfH6wOyy+UDj9Lb2yk8WFUkmUUm6VUt4upVwkpaySUn4GYCGAvjZ2Pw/AXVLKDVLKmQCeA3B++r2TAcyQUr4npSxHqkLZSwhhPY4T1QW96mE99jMZIQRuHraX7po9amZDhrw+hPI/Swye2W9+zv7t8PRZfVFSXIRPrjwIQ7qlbuBbhpnPcYuzFnkWcUxpiRzYsSmKi4Tr1k+7gjp633ZNsOj+YYZBZCg6QV1SyggFo/D+btbY/eyvB2X+/ouN3mCzqNmF/HwpgPqG7/56WGf8cMOhkX3+x3850PEIiHxQsySYoGAXHrSn5bJdeqzK0er8tJ7OHPecvdlY4wu3z7FIJrUJIVoC6AJghurlxUKIZUKIl9I9hBBCNAawG4Apqu2mAFBmy/dQvyel3Apgvup9W2qWFGFoj1Z46fz+jr8LoB8F8E99Uz0DmeGmqveUe0i9QCwAnLRva/xlSG5IYYrGXSf2zIralgSF1vp9Wr89HO+jHVrp5py5LUN6/X2Caqn3WrkutOvOq26t6qP7bg3w5dWD8LDBCAVlkeo9mtj/zRvXrZ4jaGcOtf4W6cZTG5+XpLmoHZoHt3ZhHE7Dp1cehBfPL4w5kBcP2jNnFFDP1g3x9yOS34NtJqp8ttcejXw7lnr0g5J/PHpaL9X7hSvI3zcxlUQhRCmANwC8IqWcBWAtgP5IDSftC6B++n0AUPrFy1SHKEtvo7yvfk/7vvpzLxFCTBJCTNJ5D/87p6/rdWS0UQAX3T8MD6Yf/O3T44zPO6B99eelH8LtmtZFE9VD/dHTeuPao7I7QY0ewjF4JuWFfDiPb128f+ZvdQZ8u2b9xu4+LnIcV3bywYdP7Z29T4hPXjfrpynGXT8En18VTIh8JUiB2yFb6qAR56vyuqTzu/DftG52oJdurRoYBmQ6rX9bLLp/GBrFODhMmPeOZw6SmsS5qHu3aYhDuxXGHMibh+2VCdhBwfru2kPw5kX7Zf7d0aKxpXpOs9H8+9xth+1tshRD8m5FU+qoskkQaiVRCFEE4DUAOwFcCQBSyi1SyklSygop5ar060cKIeoD2JLeVV26bQBgc/rvLZr3tO9nSCmflVL2k1IG0tR2+SEd8YbqRlI0rlsDi+4fhpP7tNHdz8tDNkGP54KmzSz1llLxYmBHVRAj1UdpC5/vX2Zv/iwZ81omPrW/855PRZvGdQznZTpRotPDVOUxIM+ezaoLDt13y50HmaS6hNrhPgceefVCfwsIrnrBLX5js/fvO3lvy3ncQDwrWXeekBvm34zRqb3x6G544szUItWV6R+gEObDJUFB/go+fGmzcmi7pnWzlj76+MqDDLd1mh692ybnXkros8NIP5NorWZftVk9b+VGt6cxtEqiSHWJvQCgJYBTpJS7DDZVvkuRlHIDgBUA1ONxeqF6mOoM9XtCiLoAOiJ7GGsorh/azVVPZJRhhim4YUIjrzGOKnmtz0FB7HK7xl2+0f7kdm7Bz/56ED658sDqYyS4NDL6n4fgNU1lRRnR0EozZ9Vug8a+bRujWzoCdFBzZMJWJGA55zyJslryHV7HZwxom9genIM6+xMU6tKDO+LYfVI9H41ql2Lfto3w6Gm9fTk2eVOIxamz9gv3ftSbR6imNBAZ1TvVLysj5azWOi4UetFeAeCl8/vj078eqPueF3Y6qcLsSXwaQHcAx0kptysvCiH2E0J0FUIUCSGaAngMwBgppTKM9FUAtwghGqcD0lwM4OX0ex8C6CmEOEUIUQvAvwBMTQ9jTYTO6UhTI/6m3zpjGDIf2YVd7dBCCo76JzGKeNqkrr+9hXZlZ8CRJCFSblr07fTG9GzdEPu0aRSbBYa92KNJHQzq3DzrtZP2bY3/nt47Zzjso5qhuWY+vOJAfPbXg3QfdIV4LcaR3WWfgvisuOlr0qIvBHBgJ+tlpkqKi/DhFQfi4C7NLbel4BUJoG6NYtx1gqOwFIl2QEdnjR9un2ATbjoM319rHY1Uue/dfk7OKISY5yNOmeWLRqMdhnRrgd0aeotH4HbUYljrJLYDcCmA3gBWqtZDPAtABwBfIjVEdDqAHQDOUO1+G1LBaBYD+A7Ag1LKLwFASrkGwCkA7gGwAcB+AE4P4zt5orpInj+vH16/cD/02F1/PZjcrndleAtQW7XejR8LvRcir8OiDunqvnAQRCGqqsC7ps2Gchhx8jsc3yvVg2BnvaokEULghN6tUVLs/pFQu0YxerZuaBjJOVHz1xBMUJbK9P1ZUuzPsYM4o6cYTI3QU7dGfo5O6NS8HnZrWDvTiEvJIITAjDuH4pyB7Q23MRvlE3du42aoKVMLnK773KJBLc/Rt4dfcYBuo6w6JTlF2WQ9NiyZlTn9mE5ixO0ItlByeCnlYpi3B7xlsu8OABek/9N7fyQAW0texFGjOjVMh8Fo72OlDiAgslovE1b+yntRVdnV0Q3jOC8oaEVFAod0bY4xs9cYbuOl7H/D0d3x18M6Ww65KWRVVfqvVyasAUOp1PrZe6wM51UaG+JoaM9WOa/pRfAGgMNCXtcrLIeng9El64oltc/+ehCOfXxc1msjrxmMTi3srR0bR3vt3gCtG9XG8o3brTc2oOTPes/BejVLMP2Oo1wfG1AFrjG4eU7vvwdGzlxluH++d3g4Kn/4eCoOczm/PpIlMAqVcnG0d9Aak1tJrO5JFEKwpdMjNxWGRh6Xxdg9PWygY3Nvv13/9o0x/qbDsl67ZHAHT8eMKyeFNacNJk62Ly4SaJBnvYh+KzZ4yHsJ2LR7w/xY37NFg1r4/c6jcPEgf+7TP/VtgxY+B8LSM7iLfkOmECIzFzVf1GcDUF7o2Tp3dFYSKoin9tPvyf/Xsf5MKVIed+qyj1JxdFu2ee+ygTlLuhk9tQ/fy7yykvP0yO86o7mAW6nsHJ6VxBDVLCnG8+f2wxsX7W+9cZq2N6h/euFlbauAm8rOuQPbOd+JsoZjGZ12s9/joM7N8M4l++NSjxW6ejVL0FITaKRUPVywkDNXB9o24QL2RipdDFE4uEtz/PPI3PXKhBC4yMMSIGHza7jp13/PHt5Wp0aJb8feo0kdTLj5cF+OVYieT/eQZjXcqn4a9RDpmiUsLlHwtM90hdFSOU7t0TjVSK1u7FQa8P55pL0hiY+e1gsn92md+Xf/9k2wV3qJLSVrO6pH7ogE4/KS0P0bQKK78/U6hJIWCZlNZiGzakXRUs87BFKtYwvuPcaXLnn2QrpTVCTQuE4pNmwzCtBrbb8O1kERrKgzU6/pKSTah1DHFvXQoVldLFi7FX8+sD1O7N3aYM/Cc2DHpjhvYDv8ZUgn2z2BRUUCVx7aGQ99PSfg1CWDUc+qn64f2g1bd1RYbicgsobP2i1/5evQ9T3Ta75lFVINth39z0OCTxCRAbO6xah/HIzDHv4OgM6cPo2HTu2F8QvWYw9V42jtGsVYdP8w22k5ad82OGnf7B5PbXviHcf3wBvjl2S9Zqdx7NBu+TOEvYZOw1LC6oisJMZRn7aN0LddY+zeqDaO0BlHnO9jtsmem4d1z/z95dWDsXT9tuwNEtwC54Wbr92iQU0sWLsVR3RviV57NPI7SYlVUlyEOxyuL2fmgE5N8fy4hb4dj1IuP6Sjre3q1CjOKszlWwAmJ4TB32rqvGT3Rt6iC1J8Jb2RtWPzeph6+5F49Js5OHFf80bOBrVKcYTDzgonlAYlJ0HQ1PffgD2bGL+ZEOcObIdXf1qs22uYtK/D8RMxNPyKA3HzsL3w5wP3ZIUwYG5bdarH9esfIIxAQuo5jS0b1EK/9k1MtiYjwvAf5LdDu7XEftpCgA1BRBq1q4aHiK9AvC4pbeHwZJMCpZf1FLX7x1UmjVnrtMXpF6MwXHlo56iT4FmDWqW47bgevg1LdcrO7e7qztIc+MyQ14V06oFT9sHp/Y3T6Ch/CTgrspNHs5JI5EK7pqlhSkah7KtiUELKhzX9FEG3lcTg58o7XVpWN2KoT+8rFwzI2daqIhZlud2qZd5KXOagdGpRD0KIzDy7Kw7piKIigZYNrIcRx+Mb+E85F+rv9w/1fFrmCwUhyuV56tawV6lTrtGYZCc5TunbBrs1rIXT+u9huE1c0+6nU/vvkVX2Gn7FAfjf2X0y/05avw8riVTQ3M61een8/nju3H6GkS5ZtvCX0zWdnKruUEhYDh5jH/3lQN3X9Vq67zt5b9NjNa0XfARPI6XFRdijifuhhnEtGCnpOmd/6wBm+d67pv5+56rW2Lvq8OT3MFG8/XzTYXjyzD7WG6bFtUGzdaPa+OnGw7LmOtqVb9mL8hsJIdCnbWMM7blb5r2k5aWsJCacl/wiYcuWxUqTujVMx/XHYVH7uD5M3FAePEbrtak5bRUuLSnClUM6AUAmQht5V8fBQutWz83nzunrMTXO+fUoj7LhQT2012j9sisP7aw7hEs9GsLNN4iyd8YundGmWU5gEKu85KRSFrT6tUrR2OOyWklhNapCL4Kwen3dL68e5HuaghT/6qB1Hs1KYsLdMqw7Wjao6ar1Jt/Wt3JDybP2bFY36/X/nt7b03Eb1alhvVHA4l9Es2f3hrUy17ffE+4fOGUftG5UG4O7NMei+4ehYYE8rOPGqj7RwiAsfBLUqhHdY/a1C/fDhJsPQ8Papbjh6G4A9HvN7z0ptydXvTRMwhq/M1pZXDdKRTip34/c6dk6Xo2B+fKsNnNI1+bosXvqvH9w+QG44/gemfeEELh+aDd8cuVBOfvtld7nrP3aolurBq4rXrcM646R1wy23tCl64Z2xTuX2F/ezsjTZ/XBn/rqr5UZBVYSE+6Qri0w/qbDUVMzp6dj87oGe1TbrWFtLLp/WM6C7IXoq6sHY9ZdQ3HGgFSLeo/dcxfidaJGSRGuH9rNj6Tl+OyvB+GnGw91vf9/TuvtX2JC4LTCfc+J5kMXFbVLi3GqyfyJoOzTJnVt2RnmR9FRVxzcdoo1rlOKFvWjq+DWKClCi/q1MOW2IzNr61YPhTLf9+9HVM/NczNEKkkFXw4zLyyVmpE+UXd66/Xad9eManHTkNG3XWMPqfJuSNfmmb9f/vOATD7St11jnHdA+6xtLz+kI7rqdFzs3ihVTr0n3ZDl9qe6aFAH1K2pP7pljIPlbYbqrP944UF74opDOmWWNtPLY/WWw9Bz9N674Y4Telhv6AM78+VZScwT2oL0gZ2a2d7XaPHWQqDcIjVKilCrtBi3HbcX3r10IDr5sIak0hLfvql1hd2Jnq0bYreGxnOkzkoPHTN68LWwEagiydrqLGCrddeJPfHpX3NbLcMw/PIDMOfuo3HXif4tLZFv3vahRTYO4jhcUQmqYFU8KPUY1TXqgrcVIeKfRgqGWYH9FtXSUmHRuw4Nl2VxcNG+d+lAdwnyyUt/zg1SFqXdGtZGqSbY4LC9d0P7ZvbLaPu2bZT175l3DsWtx+6V9Vq7ZqkyyKUHVy9N9PnfDordM79hbeuRU6wk5om9dm+AeqpWknoGLSZkrlZpce46PS4ds3crvHvpQJwecm/V3Sf2xLx7jg71M5PmnP3b+dIQ4EZJcZHtVsWke/yMfV3tt3+6RRaIblh83vcuBTnGUsQruvL9BoGRlFNQWpLnvzVladO4Dv53dt9MhSHqa1Xdk9gw3eBvtF6vm5R2sDGyrFBccNCeWf9+1GBk1XfXHqL7uvb819aJTtugVikW3T8Mx/faPfNapxb1bY8eCuPZ89gZ+2Z6Ps2wJpFH9m3bCGPnrgUA/O2wznhqzPyIUxQfJ+3bGh/+tjzn9SAjTQkhfKtwOv3ckmKR9eA7yWMYfyI3tHN9rTSsXYqH/tQr67Uvrw5uHompPK03mHVEnNzHp3wiPvVDAMDgLqlhb69dOADnvDAh83rXlvVx6eAOOHv/dhDC+5qYFC992zXGL4s36L43tGcrjLv+UCxcuxVTl20MN2Ea6tuldaPa+OyvB6FLy/p4a8KSzOtKxcFJ73dRkcCrFwzIzOuLygEdrSsjYdlNM3LOqMG2nWYE2PArDsCkRevzJuCjugJrhjlinvK6oOqlB3fwKSXB+vvhXaw3Ilw3tGvUSXCNQSWSS2khtyp7K7/xPm0a+h6cKEqNYhgIySii56L7h+GRU3s7P55BoSmOQzkHdW6e9W8hBG48pjv2aFIHbRrXSXSAJMp18SDzckzLBrWwf4emWdeqMk/rSE0+dGeQ88Q090rP1g0NKy9O12Ae3KU5mkW4hNC024/Eyz4OO/VaHFAvcaM2/IoDTONz9GnbGJcM7hjLfC1IrCRSjssP6YhaJd4qmXFzyWD9h0U+1z8KITMzqkAWJ23F2jxVP72OaI/dsgNB9dHM64jjtWq0BqoTVxzSyYeU+CykiJ5R/6R+Be14/cL9YrVkAvlvSLcWmb+VR0dNTUO7NtiNn2xV/NLpivq+cqp+rdJYTa8oKhK6C9r3advYVnwO9TIduzcMplEpTg3j8fnlKFJ7t04V4jq3qIfrh3ZLXEZkRRsprBDE7Tfs1cZbxFgnfrrBffRX8s+ezerivcsG5kRrG37FgXjzov0cHevvh3fBX4Z0tFzWwA+n9dsD719WHfThvpP3dpWHxKlwpFDKul4D01iJsuJ/3dCu+ODyA3w51kGdm2HYPrtZb0ix1tlkDnqXlvXx4vn9sE+bhpnAZ600Ad6cBDdxyuheeeWC6h64gZrImUBuY1uhUpctTlZNrRnStTk6taiXs6SEcgof+L99HH/W2ap5hR/95UDH+ydN/J5gFAnlZklaD4yTCeeP6QTRiFOLTb5r61OUVztrEXHYWHz0b99Ed/j7AaoIzCXF1jfiVYd3xrVHuVtWpqRI4A0HldJ//98+WYXCQZ2b44urkrWQs5FLDu6AMwa0xZ8PbB/ch4jgWtnt4NxCUjtir5b45pqDTbc5tFtLfHLlQRjStQX+e3pv/POo7Ckafdo2zkQO95u6FKMugim94TVKilRrYVdv/ebF+REF2it1T7DafSfvg5HXHIwHNfPclYq2m1gNNUqKAh++q6QvqOL4Ww6uG+akBKB6KEXSKolO2J2omy+chMoOwlNnWQ/ROrx7S/z1UGdD8rpHPAmf/PPoab3QqE5pJhpzUIGkhHC2LJBddWoUY6RF4TNuGtQqxX0n7406NYKNW3f5IR2tNwqY2eVkZ40wSraKqioAzhoNhBA4oXdr1FRNuenVpqGt5QLcUvcINqtfXQFRrlB1saxLy+poz15jTySRXqnGaHRJK4uGKr0coEGt6nwxqoA7lemyW1B51EAH34uVRAIAdG1VH0f3bIWHT021uNSM4TApv117VNdAo5tGzWlkST+df0D7rDldtx67Fy4etGfOdoM6N0OL+s5a5epzeZe8cdK+bTD5X0dmHoZB3Y1BhRT/8YZDc5ZS+eDyaNcmi4uSAHrz2ttYAxWoHubbMz2NorZOYZqVxPynVOzUFSsnBmqWCPDa7HpUD/2gXE3r1cTsu4fipfP7o0/b3Lm06vzr6bP7ekxFsmnbvls1qIXTdJYZa26jXKGXB4y97lD8kJ6u4mfAHSeK0+lSpoFFKf9rAjr8CEiQb0qLi/D02X3RrVWql+bCg3IL9FGK49yeuNNG8jOinRumXWzWjd6aNZ4uPGhP7NOmke62VrT5uBACNxzdLfM3JZ8ybDywgQwmx92/g/1laq7VDEFrlF7TTK1vu/CXvUmq58/thwkmEQW1zjGITKh1ev/UsMBHTu2F9y4biMZ1c3+nIj5S8t6gzs3x6gUDcKXD0SqK64/OHt7udXBOh+bZDUrqXquaJcU5wyarZG6+GGSPZjJk/wg/3HAohBB4WDWk9JMrD7Q1PUCv+NCwTilaN6oNwKzcmU5DQM+r2jWK8f5lA/Hcef18Pa7TBnmgQCuJ7ZrWwZy782+x8RN6OxtfbTafr1ZpMerqLBIalYPSQ8Ue1owtP7onAwqYUYZhmD3cDtAMw/NjPs+JqrH+lkM2LCp6eb+oOaF5vdR1ql7Py8/8x68rSJ2+OK39FRS3EUL72dxvr90b5Mwf1vbMKt68eD/8+YD2lsds3ah2pnBXv1Yp+rfXr7SzJ7EwDO7S3LdpNEfspT/3za2PrzzI9H1lOOnNw/by9XOTTFuW0ftt92nTyHTeoLI0kdtGZmUNRb0RCn7p176J7x1a3/7zEEy65XBH+xRkJRHIz56p/+vbBtPvOAq/3XpE1Enx3X0n743zBrbDoC7ZFZqureqjfi3z4YePnFpdsSyEYbReHbuPs7mbn/3V/EGn9o8jste1FAKGNdibj+nuKB2UXHu3aYjhVxyQte7pN9ccjDcvdhYBVXGQpuFDKQv08DifdZDquBfpDJ9Wq5cHw6LfuGg//OrweXJQp2aZpU/cMGqkOqBjMxTpFAjd5hMchUBOHdrN3zVcraaElBYXYdH9w3BmQAFzkshquRA7nb0f/+VAPHCK88imiufO7YeXzu/vKZ+LQr2aJY6D7rDEnGfq1SzRHVqjx8mckTaNa7tNki9aNqiFO07oiRIbY4Q+ufLArNZodYvxb//Kvwq03+45qaejhoaeDsbN//Wwzln/FkIYZurKkgNmZTkW8/JHn7aNs/Kk3RvVxgEd3QWb6dA8u/Cl9EZfdrC3YColxUU4pGvuMO6R1wzO+vd/T++NEX+z33gSV7VKi9HE4nly9N6tbB/PbpCq/57eGz1bW1foG9QqwcUGa+BayeMYbUR5y6gR20mwl3ZN6+JUnXmMdjWpW8Mwomq+YSUxj1mNyW7uoEXh1QsG5MzHiQ1NLWOfNo1w94k9LXezOyQq31hFRCspLrLd0KBHKUQrw5nN8uxiIXQ7Ev/Utw3qmfQQx3HxdYov5Rr047LRu5x3b5TdiHZC79aZIUn57m+HdrbeyKETerfGoV2tC2Fe1kK84/ge1hsR2XDvSXtHnYSCMbiLfqyFqkyE/jBTk/94OvOYdvHnq1S9OEf3bOVoyG2H5vXwlyHuJn8rtAuamnlcZ01DILuAdmN6UrlVwU9dSVHPb9uvQ/7PKaoOCFL9vXu7DCCj5/lzcydW/y8dfU0Zr9+mkXFEwgM6NtVdquPaodUNEqbtguwNIB3aS0pkXmfrgt+KigSuPaqr71GHq2z8VEbzF+0olEo8Bc9oGssNmsA3dqPzknOH79USuzWshYsHuRtZYOTdSwfi87/lxxq5brCSWEDCmIJx23F74VODydjaBU2NXDmkE0ptNAcpPWLqgl/bJsyE1ZSClnpoVVGRwK3HOp8IP0RnmN2h6SEX6uHIyu/St11j/Oe03rjdoMW+daPaaN+sru7coBb1a5kW6JWIlAcbtCpS4WpUp9RyfSzy11+GdMKTFuuitmxQE5cM7oCvrh5sOje8ab3UKAazwGpAqkdBL++oWWr+7GjftA7OHdjOdBsiQDX/zaLwNGwf/QB6dTUNJ6f22wNvX2J/IXOyr1m9mvjpxsPQ2eVyJ0YG7NkkK2BZoWElsYA0chk6+dlz7K/L8+cD98TebarnqC26fxgePa1XzpwdM5cd0hFG/YNZvYI6Q8jeT69RZrSMQ6HFKlCGYGgLUxcc2N7Rcb75+2C8eH7/rNf2aFI7E0hiuM6wLyEETty3NWobRKlUkqS3xhFQ3fup1+O9b9vGWHDvMa7nrFFyWQUueOz0fXGpZp6acv3r7ao0SHnJGxiB1/r8jb/pcNSvVYqureqjQfpZpBeZ8L+np0aRFKsO2LpR7px4ozmFL5zXX/+NtDHXDsGdJ1hPRyDKDGG0uLaLiwR6aZZ9ApCT4QghsL8PI5jG33QYxl43xPNxkur241KN3COvOTjilOQ/VhILxC3DuuPs/Z21niq9UAd1dlcQP65XaoLxSfu2QacW9lp3SosF6tUsycpbXzpf/6FfPYSs+rUW9VM9CHoL0hai24/vgSZ1a2RCPiuEEHjyzD44y2bUNCFS+3x1dXVlX10w1oaxd6JWabFuIXDv1g1x+SEdM4VGLb1Ih2ov/7k/PrnyQNfponjSDkM8vHtuxEFtUC6jK+XSwR3w0J964YcbDsWkm52FBqdsTkby3nbcXmhat0YmKM47qt4V5bVLVUGG9AqD6iH06nlKVhEjiexqn76WrMpORiOf1K/bfdba0bJBLexRwKOmzj9wTyy6f5in4eZkT/JjdJMtF7kYp6202LtpJZ9+x1Go5WG5CXV5wyyASWrb3NKJEALH9dodn075w3Ua8sFxvXbPVNa1hu2zm+EwGSNdW/k3lMNqiYCiIoHrh3Yz3cbMITYCX1DytG5UC2u37Mj8u2ndGqhfswSbd1QY75QZdZCdV9zo0zIrhTZCwakLD8peLuTYfXbPilKoNz+8bs0S1Cgpws6Kqqzze+ngDnjm+wU4qkd148AL5/VD55u/8D/hVNCa1auJRfcPM93mSpNYDW2b1MEhXZtjzOw1jhvpieKAPYlkSClOuSkA1atZ4miJDYVSITVqlc7qRUgnrD0DEPjmUFVY5w4WLfJeC8YvqHqIrYYQEile0IwsOKx7C4z6p/mwo4dtzoe+ZHAH1DUYHq1Q8iAOMc1mlh/cMsy/NU9vPKY7fr/zKJzWv7pnxs4cdqIgGE2nULz85wH4/c6jsgIJPnJqL9x/MiOiUvwxZy1Qdgr4FxyYav0N8gGsjcBq1OKvqFuzWLspXr/I3YLblOuF86qjlV5zZBeTLd178fx+ePuS/bOGmNpZ24gIQM5iwEf2aIUW9Wthvz2bZL0+/IoDsrYBgGP2Nu85v+mY7phx51DTbZQGDfVw51qlxbjqsM749h+FO0dGeU5oh7YD7heulwZrn9WpwUFQFI3rhmYvBabtJVdrnQ7opr1eT+7TBqcP8G/4KVFQWEkkQzcc3Q0L7ztGN7gAkBpm8fFfvM35+uKqQVnrFerNM1SrWVKMM9KZq1Ju0BYaFXq9UyXp73K8wRDMQmdcmMt9XfvKjzccip9uPNTyMw7t1jJn8v4rFwzAX4Z4W+icCpuSTykVCr15yTVLirF364Y5rztRmQlmkX0H/P2ILujQvHDnyOy3ZxPcfEx33OtjD4mylq/RM4gobFccUj28tKRIVK87rClv9GnbiMusUOKxkkimzFqAD+veQj+il4lDdJZReOWCAarPS/2/+eBDe0MTa6RbttWLx5cUF2HR/cPwmME6jIWqY3Orh1nuOb9JM59r90a1sVvD3AA0dnRqUQ/XHuV+/iHRnSf0xOHdW6Bfe/OgVUrj0WHd3M1ZzVQSWXHJIoTAxYM7oEEtd1G09bx72UD857TePNeUOC09BHMjiguO2ShQUU0Bu+6obhgze03Wa+q1hJR5Pt1NAqRIm3OC/nXsXtitYS3d6IeU7b3LDsCidVuzXquoNL9IlCF8RHHQqUU9PG+x/AFQPafw70e4G069355NMH7heuzGtRgD16ZxHbRpXLhRHCm5jtiL5Q5KPvYk5rmz92+rO4zP7RQwo+Uo7LJaIFlJV+eW9dHDYAHTiwZ1QJvGtXFkD/NMuHHdGrhuaDe2QtvQpG6NnOF5Q3uyEkj5x2iem11XHd4F3117SCY8PhEVpscNRiTNvHMoTu7TJuTUEPmPPYl57u4T9eeHuA0koLewuRNWPZhPntUn87d6mKhapxb1MO767LlvU28/ErLKU9JIo1ZpMTo2r4v5a7Zab0wUgZzAVxoHd2mek2cpeVCRy6ysuEhwrlEAztyvrWVEZTN/PrC94fx0oiAcrQqEpRRtPvrLgZYRT4mSgpXEAhVVNEmrSuIQ1dp2ytwfO2n1cx4MVevUoh7mr9mK2owmSDH0zqX7m76vnu+sqPLYk0j2PXduP3w8ebmtbe89yVvAm9uO6+FpfyIv+rRtjKnLytC0bo2ok0LkGw43LVAn92nt27GchH2vWZq65Pq0bWS5SG1FVaprsLSYhbmoPHxqb7x6wYCs5SoAoFYpsw6KnpvGIWURd/Y6Be+IvVriiTP7WG9IlHA3D+uOr64ejD2acA4t5Q92DxSY58/th84t6/k6XMpJ2PcuLevjoT/1whE2gskM7NAU05dvQov6DBARlXo1SzC4S3ZE2gk3HYaaJRxOQ8n010M74cJBe6JeTT7+iMgfpcVF6GoScI8oifiULDCH+xhxq62qxWzfto0ya1pZ+b++9iZ0Xz+0G84d2B6tGEUwVlowtDdF7L+n90b5rkpX+xYVCVYQiYiILPBJSa4M2LMJmqoqhR9ecaDvn1FSXMShG0SU44Te/g2XJyIiolycWESulHBZCSIiIipAnJdPhYA9ieSKVZRSIiIionwz886hrteaJkoSVhLJEa9rjBk5e/+2KGauS0RERDHGdRCpULCSSI4EtcbY3Sd6WyOLiIiIiIj8wUHV5IhSSRTs9SMiIiIiykusJJIj3Vo1AACc2s/eMhZERERERJQsHG5KjrRqWAuL7h8WdTKIiIiIiCgg7EkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIsoIpZIohKgphHhBCLFYCLFZCDFZCHG06v3DhBCzhBDbhBCjhRDtNPu+KITYJIRYKYS4RnNsw32JiIiIiIjImbB6EksALAVwMICGAG4B8K4Qor0QohmA4QBuBdAEwCQA76j2vR1AZwDtAAwBcJ0QYigA2NiXiIiIiIiIHAgluqmUcitSlT3FZ0KIhQD6AmgKYIaU8j0AEELcDmCtEKKblHIWgPMAnC+l3ABggxDiOQDnA/gSwMkW+xIREREREZEDkcxJFEK0BNAFwAwAPQBMUd5LVyjnA+ghhGgMYDf1++m/e6T/NtxX5zMvEUJMEkJMWrNmjb9fiIiIiIiIKE+EXkkUQpQCeAPAK+nevnoAyjSblQGon34PmveV92CxbxYp5bNSyn5Syn7Nmzf39iWIiIiIiIjyVKiVRCFEEYDXAOwEcGX65S0AGmg2bQBgc/o9aN5X3rPal4iIiIiIiBwKrZIohBAAXgDQEsApUspd6bdmAOil2q4ugI5IzTXcAGCF+v303zOs9g3oaxBRgC4d3AEvnd8/6mQQERERFbQwexKfBtAdwHFSyu2q1z8E0FMIcYoQohaAfwGYqgo88yqAW4QQjYUQ3QBcDOBlm/sSUYLceEx3DOnWIupkEBERERW0sNZJbAfgUgC9AawUQmxJ/3eWlHINgFMA3ANgA4D9AJyu2v02pILRLAbwHYAHpZRfAoCNfYmIiIiIiMgBIaWMOg2h69evn5w0aVLUySAiIiIiIoqEEOIXKWU/vfciWQKDiIiIiIiI4omVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDCGljDoNoRNCbAYwO8CPaAigLEHHDeP4PHb+HZ/H1tcMwNoAjx9E+pN6HSY13UEfO+jjJ/XYQR8/yXlLEu/RpB476OMz7eEfO+jjB3nsrlLK+rrvSCkL7j8AkwI+/rNJOm4Yx+ex8+/4PLbh8ROXvyT1Okxqupl2nheXxw8sb0niPZrUYzPt+XfsJKfdLF/hcNNgfJqw44ZxfB47/47PY0cjiPQn9TpMarqDPnbQx0/qsYM+fpLzliTeo0k9dtDHZ9rDP3bQx48kbynU4aaTpJT9ok4HEeUf5i9EFATmLUTkN7N8pVB7Ep+NOgFElLeYvxBREJi3EJHfDPOVguxJJHJLCPEygGVSyluiTgsR5Q/mLUQUBOYt5Fah9iQSZRFCjBFCXBR1OogovzBvIaIgMG+hoLGSSERERERERBl5WUlk6wq5JYQ4XwgxTvOaFEJ0iipNFC/MX8gN5i1khXkLucG8hYKSl5VEIiIiIiIicievK4lCiMZCiM+EEGuEEBvSf7dRvT9GCHGXEOIHIcRmIcTXQohmUaaZiJKB+QsRBYF5CxHFQV5XEpH6fi8BaAegLYDtAJ7QbHMmgD8DaAGgBoB/hplAIkos5i9EFATmLUQUuZKoExAkKeU6AB8o/xZC3ANgtGazl6SUc9Lvvwvg+PBSSDG0FUAd5R9CiFYRpoVijPkLOcS8hWxh3kIOMW+hQOR1T6IQoo4Q4hkhxGIhxCYA3wNoJIQoVm22UvX3NgD1Qk0kxc0UAD2EEL2FELUA3B5xeiimmL+QQ8xbyBbmLeQQ8xYKRF5XEgH8A0BXAPtJKRsAGJx+XUSXJIoxmW6ZvRPASABzAYwz34UKGPMXsot5CznBvIXsYt5Cgcnr4aYA6iM1ln+jEKIJgNsiTg/FVwMA6wBASnkPgHtU772u/CGlPD/cZFGMMX8hO5i3kFPMW8gO5i0UqHzuSZQA/gOgNoC1AH4G8GWUCaJ4EkL0ANAdwG9Rp4USg/kLWWLeQi4wbyFLzFsoDEJKGXUafCeE+BXAnVLKj6JOC8WbEOLfAM4G8G8p5WNRp4fij/kL2cG8hZxi3kJ2MG+hsORdJTHdujIJQDcp5eKo00NE+YP5CxEFgXkLEcVNXg03TbeufA3gemayROQn5i9EFATmLUQUR3nXk0hERERERETu5VVPIhEREREREXnDSiIRERERERFlJLqSKISoKYR4QQixWAixWQgxWQhxtOr9w4QQs4QQ24QQo4UQ7VTvnSqE+DH93hjNcbsIIT4WQqwRQqwXQnwlhOga4lcjoogFmL80E0L8IIRYJ4TYKIT4SQhxYIhfjYgiElS+ovmMc4UQUghxUcBfh4jyWKIriQBKACwFcDCAhgBuAfCuEKK9EKIZgOEAbgXQBKmoYe+o9l2P1FpE9+sctxGATwB0BdASwAQAHwfyDYgoroLKX7YAuABAcwCNAfwbwKdCiJJgvgYRxUhQ+QoAQAjRGMBNAGYEkXgiKhx5F7hGCDEVwB0AmgI4X0p5QPr1ukgtTLuvlHKWavuLAJwtpTzE5JhNAKwD0ExKuS7A5BNRjPmdvwghigAMQ6pRqqWUcnWw34CI4sbPfEUI8T8AUwGcCuB1KeXzwX8DIspHSe9JzCKEaAmgC1ItaD0ATFHek1JuBTA//bpTgwGsZAWRqHD5nb+kC4blSFUQn2cFkajw+JmvCCEGAOgH4H/+p5SICk3eDG8SQpQCeAPAK1LKWUKIegDWaDYrA1Df4XHbAHgSwDW+JJSIEieI/EVKuY8QohaAkwDU8C2xRJQIfuYrQohiAE8BuFJKWSWE8D29RFRY8qKSmB6y9RqAnQCuTL+8BUADzaYNAGx2cNzmSC1w+5SU8i0fkkpECRNU/gIAUspyAG8JIWYKISZLKadY7kREiRdAvnIFgKlSyp99SyQRFbTEDzcVqeayF5AKMHOKlHJX+q0ZAHqptqsLoCNsTuZOT/7+GsAnUsp7fE00ESVCUPmLjlIAHTwklYgSIqB85TAAJwkhVgohVgI4AMDDQognfE08ERWMxFcSATwNoDuA46SU21WvfwigpxDilPSQrn8h1co2C0gNzUi/XgKgSAhRKz30A0KIBgC+AvCDlPKGML8MEcVKEPnL/kKIg4QQNYQQtYUQ1yNVWBwf5hcjosj4nq8AOD99zN7p/yYhFQzn5uC/DhHlo0RXEtPrB12KVIa4UgixJf3fWVLKNQBOAXAPgA0A9gNwumr3cwBsRyqzHpT++7n0eycB6A/gz6pjbhFCtA3jexFR9ALMX2oiNc95HYDlAI4BMExK+UfgX4qIIhVUviKl3CilXKn8h9Qw1k1SyrKQvhoR5Zm8WwKDiIiIiIiI3Et0TyIRERERERH5i5VEIiIiIiIiymAlkYiIiIiIiDJYSSQiIiIiIqIMVhKJiIiIiIgog5VEIiIiIiIiymAlkYiICIAQom16zbriqNNCREQUJVYSiYioYAkhFgkhDgcAKeUSKWU9KWVliJ9/iBBiWVifR0REZAcriURERERERJTBSiIRERUkIcRrANoC+DQ9zPQ6IYQUQpSk3x8jhLhbCPFj+v1PhRBNhRBvCCE2CSEmCiHaq47XTQjxjRBivRBithDiVNV7xwghfhdCbBZCLBdC/FMIURfAFwB2Tx9/ixBidyHEACHET0KIjUKIFUKIJ4QQNVTHkkKIK4QQc9PHu0sI0TGdzk1CiHeV7ZWeSiHETUKIteme07NCOsVERJRQrCQSEVFBklKeA2AJgOOklPUAvKuz2ekAzgHQGkBHAD8BeAlAEwAzAdwGAOkK3zcA3gTQIr3fU0KIvdLHeQHApVLK+gB6AvhWSrkVwNEA/kgPc60npfwDQCWAvwNoBmAggMMAXKFJ11EA+gLYH8B1AJ4FcDaAPdLHP0O1bav0sVoDOA/As0KIro5OFhERFRRWEomIiIy9JKWcL6UsQ6rXb76UcqSUsgLAewD2TW93LIBFUsqXpJQVUsrfAHwA4E/p93cB2EsI0UBKuUFK+avRB0opf5FS/pw+ziIAzwA4WLPZA1LKTVLKGQCmA/haSrlAlc59NdvfKqXc8f/t3LFqVGEQhuH3K9QmGsUuiIJg0AsQsRCsLGwsFAtD+qS3EhsbxSuwsFVEbCziBWztDaQSgxA2VUIiWAiOxflz3GK32Syo2feBA2fhMDPtMB9bVQPgE/AQSZImcEmUJGmynZH3H2N+L7T3S8CNFhHdS7IHrNBd8QDuA3eBrSSDJDcnNUyynGQjyTDJPvCc7hI4zVwAu+1qeWgLWJrUX5Ikl0RJ0jyrGdX5Bgyq6uzIs1BV6wBV9bmq7tFFUT/yJ9o6rv8rYBO4UlVngCdAjjDbuRaHPXQR2D5CPUnSMeeSKEmaZzvA5RnU2QCWk6wmOdGe60muJTmZZCXJYlX9BPaBXyP9zydZHKl1un3zPclVYH0G8z1rc9yii8Z+mEFNSdIx5ZIoSZpnL4CnLR76YNoiVXUA3KH7w5ptYAi8BE61T1aBry0+ukYXRaWqNoF3wJcWU10CHgOPgAPgNfB+2rmaIbDb5noLrLW+kiSNlapZJW0kSdK/JMlt4E1VXfjLo0iS/iNeEiVJkiRJPZdESZIkSVLPuKkkSZIkqeclUZIkSZLUc0mUJEmSJPVcEiVJkiRJPZdESZIkSVLPJVGSJEmS1HNJlCRJkiT1fgOD879bTFUuuQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7gkyVUmjL+RmVV1bdvpHitpRiOLJCQhCdCHkxAsEny4FQiz2mXNhzD74yfWsAgjFrMLfBghBAtIeCuMkLBCFllkRjNyYzTe9vS073v7+qrKjO+PyBMZmRURGSdv3+rb3fE+Tz/3dt2Kyqw0kXHO+573CCklIiIiIiIiIiIiIiIiIiIAILnQOxARERERERERERERERGxexCDxIiIiIiIiIiIiIiIiAiNGCRGREREREREREREREREaMQgMSIiIiIiIiIiIiIiIkIjBokRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNDILvQOXAhcccUV8vrrr7/QuxEREREREREREREREXFBcMstt5ySUh6y/e2yDBKvv/563HzzzRd6NyIiIiIiIiIiIiIiIi4IhBAPuf4W5aYRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNCIQWJERERERERERERERESExmVZkxgRERERERERERERcXljNBrhyJEj2NzcvNC7sqOYmZnBddddh16vFzwmBokREREREREREREREZcdjhw5gsXFRVx//fUQQlzo3dkRSClx+vRpHDlyBDfccEPwuCg3jYiIiIiIiIiIiIi47LC5uYmDBw9esgEiAAghcPDgQTZbGoPEiIiIiIiIiIiIiIjLEpdygEjo8h1jkBgRERERERERERERETFlLC0t4Td+4zfY4772a78WS0tL53+HDMQgMSIiIiIiIiIiIiIiYspwBYnj8dg77u1vfzv27du3Q3ulEI1rIiIiIiIiIiIiIiIipozXvOY1uO+++/Cc5zwHvV4PMzMz2L9/P+68807cfffd+KZv+iY88sgj2NzcxKtf/Wq86lWvAgBcf/31uPnmm7G6uoqXvexl+NIv/VJ85CMfwbXXXou//du/xezs7Lb3LQaJERERERERERERERGXNX7q72/HHUfPndfP/Lxr9uB/fv0znH//+Z//edx222349Kc/jfe///34uq/7Otx2223ahfT3fu/3cODAAWxsbOAFL3gBXv7yl+PgwYO1z7jnnnvw5je/Gb/927+NV7ziFfjrv/5rvPKVr9z2vscgMSIiIiIiIiIiIiIi4gLjC7/wC2ttKt7whjfgbW97GwDgkUcewT333DMRJN5www14znOeAwB43vOehwcffPC87EsMEiMiIiIiIiIiIiIiLmv4GL9pYX5+Xv/+/ve/H+95z3vw0Y9+FHNzc3jRi15kbWMxGAz072maYmNj47zsSzSuiYiIiIiIiIiIiIiImDIWFxexsrJi/dvy8jL279+Pubk53HnnnfjYxz421X2LTGJERERERERERERERMSUcfDgQXzJl3wJnvnMZ2J2dhZXXnml/ttLX/pS/NZv/Rae/vSn46lPfSq++Iu/eKr7JqSUU93gbsDzn/98efPNN1/o3YiIiIiIiIiIiIiIuED43Oc+h6c//ekXejemAtt3FULcIqV8vu39UW4aERERERERERERERERoRGDxIiIiIiIiIjLFv/pDz6BZ/3kOy/0bkRERETsKkw9SBRCPFkIsSmE+JPy/y8SQhRCiFXj33cZ7z8ghHibEGJNCPGQEOI7G5/3neXra0KIvxFCHJj2d4qIiIiIiIi4OPHeO09gZXN8oXcjIiIiYlfhQjCJ/wfAJxqvHZVSLhj//rDx/iGAKwH8GwC/KYR4BgCUP98I4N+Wf18H8Bs7/QUiIiIiIiIiLi1cjh4NERERES5MNUgUQnw7gCUA7w18/zyAlwN4rZRyVUr5YQB/BxUUAipo/Hsp5QellKsAXgvgXwshFs/7zkdERERERERcstgcFRd6FyIiIiJ2DaYWJAoh9gD4aQD/1fLnw0KI40KIB4QQv1IGhwDwFABjKeXdxns/A4C6XT6j/D8AQEp5HxTr+BTL9l8lhLhZCHHzyZMnz8M3ioiIiIiIiLhUsLQxvNC7EBEREbFrME0m8WcA/K6U8kjj9TsBPAfA1QC+EsDzALyu/NsCgHON9y8DWDT+vuz5u4aU8k1SyudLKZ9/6NChrt8hIiIiIiIi4hLE2bXRhd6FiIiIywxLS0v4jd/oVin3+te/Huvr6+d5jypMJUgUQjwHwFcB+JXm36SUx6SUd0gpCynlAwD+B5TEFABWAexpDNkDYCXw7xERERERERERrYhMYkRExLSxm4PEbMc+uY4XAbgewMNCCEAxgKkQ4vOklF/QeK9EFbzeDSATQjxZSnlP+dqzAdxe/n57+X8AgBDiiQAG5biIiIiIiIiICC8SARQSWF6PTGJERMR08ZrXvAb33XcfnvOc5+Crv/qrcfjwYfzlX/4ltra28M3f/M34qZ/6KaytreEVr3gFjhw5gjzP8drXvhbHjx/H0aNH8eIXvxhXXHEF3ve+9533fZtWkPgmAH9u/P+/QwWN3yeEeDGA+wE8DOA6AD8P4G8BQEq5JoR4K4CfFkL8P1Cy1G8E8H+Vn/OnAD4qhPgyAJ+Eqnl8q5QyMokRERERERERrZjvZ1jZGmNpIwaJERGXNf7pNcCxW8/vZ171LOBlP+/888///M/jtttuw6c//Wm8613vwlve8hbcdNNNkFLiG77hG/DBD34QJ0+exDXXXIN//Md/BAAsLy9j7969eN3rXof3ve99uOKKK87vPpeYitxUSrleykqPSSmPQclEN6WUJwE8F8BHAKyVP28F8P83hn8/gFkAJwC8GcD3SSlvLz/3dgDfCxUsnoCqRfz+aXyniIiIiIiIiIsfWSoAAJuj/ALvSURExOWMd73rXXjXu96F5z73ufiCL/gC3HnnnbjnnnvwrGc9C+9+97vxwz/8w/jQhz6EvXv3TmV/psUk1iCl/Enj99ehMqqxvfcMgG/y/P3PAPzZedy9iIiIiIiIiMsEZRkMhuPYAiMi4rKGh/GbBqSU+JEf+RF8z/d8z8TfPvnJT+Ltb387fvzHfxwveclL8BM/8RM7vj9T7ZMYEREREREREbGbkKgYEVsxSIyIiJgyFhcXsbKiquS+5mu+Br/3e7+H1dVVAMCjjz6KEydO4OjRo5ibm8MrX/lK/NAP/RA++clPTozdCVwQJjEiIiIiIiIiYjegkOpnZBIjIiKmjYMHD+JLvuRL8MxnPhMve9nL8J3f+Z144QtfCABYWFjAn/zJn+Dee+/FD/3QDyFJEvR6Pfzmb/4mAOBVr3oVXvrSl+Kaa665qI1rIiIiIiIiIiJ2HUa5Cg6HeQwSIyIipo8/+7N61dyrX/3q2v9vvPFGfM3XfM3EuB/4gR/AD/zAD+zYfkW5aURERERERMRlCx0kRiYxIiIiQiMGiRERERERERGXLca50pvGmsSIiIiICjFIjIiIiIiIiLgsIaXEuCxKjExiRERERIUYJEZERERERERclhiVLCIAbI1jn8SIiMsRUsr2N13k6PIdY5AYERERERERcVliZJjVRCYxIuLyw8zMDE6fPn1JB4pSSpw+fRozMzOscdHdNCIiIiIiIuKyxNhgEqO7aUTE5YfrrrsOR44cwcmTJy/0rvCweQ4YrQGLVwe9fWZmBtdddx1rEzFIjIiIiIiIiLgsMSoikxgRcTmj1+vhhhtuuNC7wcdP7lU//+cSIMSObCLKTSMiIiIiIiIuS0S5aURExEWNrZUd++gYJEZERERERERclohy04iIiIsaazsnk41BYkRERERERMRliWFkEiMiIi5GzOxTP9dP79gmYpAYERERERERcVmCmMQsEdiKQWJERMTFgtl96ufaqR3bRAwSIyIiIiIiIi5LUE3iXD+NTGJERMTFg9n96ud6DBIjIiIiIiIiIs4rKEhcGGSRSYyIiLh4QEFiZBIjIiIiIiIiIs4vxoWSm84NMgzHOWvs0aUNrG2Nd2K3IiIiIvxI++rnaGPHNhGDxIiIiIiIiIjLElSTONdP2e6m/9fP/zO+47c/thO7FREREeFHUSa1xps7tokYJEZERERERERcliikChJnsm41iZ89sny+dykiIiKiHZKCxK0d20QMEiMiIiIiIiIuS+Sl3HTQS1BIoChky4j6uIiIiIgLgqKUukcmMSIiIiIiIiLi/CIvmcRBlgIARkUYmxidUCMiIi4oaK6KTGJERERERERExPlFYTCJQFWj2IbNEc/kJiIiIsKGzVGOt9xyBFIy1QlTYBKzHfvkiIiIiIiIiIhdDC03zZhBItMJNSIiIsKG33j/fXjDe+/BXD/F1z7r6vCBsSYxIiIiIiIiImJnUHSUm26Notw0IiJi+9gqVQkPnFrjDYw1iRERERERERE2vOO2Yzi7NrzQu3FRg7peRCYxIiLiQuCKhQEA4NQqkxEsOjKJSw8D62eC3hqDxIiIiIiIiIsM5zZH+N4/uQX//vdvutC7clFDG9eUNYmjwF6Jm5FJjIiIOA/YN9cDAJxaZSb8uvZJfP2zgNd/ftBbY5AYERERERFxkYEYr1sfjX36tgNtXFPKTceBrS22onFNRETEecSpFSYjSDWJeQc1yXAl6G0xSIyIiIiIiLjIMC4Zr9iur8IoL3D38bDFD2HSuCaQSYwtMCIiIs4DqC6aLzeNNYkRERERERERDQwDg5nLCa979934V7/yQZYBRDNIHMUWGBEREVMETeUb3Dmla00iAzFIjIiIiIiIuMgQarByOeGOo+cAAA+cWg0eQzWJMz2Smwa6m0YmMSIi4jyA5qCcKwvpWpPIQAwSIyIiIiIiLjKEBjOXEw7M9wEAZ9ZGwWMikxgREXEhQXXRofXQGrFPYkREREREREQTw3G1oGBnoC9R7J9TQeLSeriRg+6TSExioIzXNK4p4vGPiIjoCJq/+UxirEmMiIiIiIiIaMBkErdizz4AwP7SSv4Mo3fkhHFN4ELNbIER60MjIiK6otiu3DQfAjukLIlBYkRERERExEUGs5/fVuzZBwDolYHeWQaTSAszqkkM7ZNoBubx+EdERHRFZyZRGsnBPFByygwmY5AYERERERFxkcGsnYtMlgItsjhMopab6hYYYQu14TgyuREREdsHGdew68wLY94JlZwW4fXaQAwSIyIiIiIiLjqYjNcwOm0CqGoDNxnMHh3GSm4aNtaUpXK2FxEREWGi6FyTmAPZrPo9Dwz+Qt9XIgaJERERERERFxlMxisyWQoUuIVKRgGTSSS5adhCzVzQjaLTbEREREfQdNXJuKZHQWKgeoLMbgIRg8SIiIiIiIiLDKbENPbsU6CAj8OsauOaXncmMfasjIiI6AqSmxaS6ZQsc6A3p34PbYMRg8SIiIiIiIhLG2ZgMg256TgvsDHc3YwlBXybDGaVxvRTXp/EGpMYa0IjIiI6wgwMWfXlNSYxUEZqBomyfa6LQWJERERERMRFhtGUmcRX//mn8fSfeMeOb2c7oIw8p0awkBJCAH2mcY0ZJLKbYEdERESUGHcJEknxwJWbmsFkAKsYg8SIiIiIiIiLDNM2rvnHWx8DAJxeDZQ1XQBQRp5To5kXEqkQyBIBoKvcNDKJERER3VDIDqoQCvDYNYlGkBggUY1BYkRERERExEWG0ZTlpocXBwCAu4+v7vi2umLcxd1USiSJQMaWm1bbCB0TYccjZ9bxvjtPXOjdiIi4IDBVCcFzOfVIZAeJZm/F9jExSIyIiLgosTHM8fr33B2dHSMuS5iM1zTkpk88NA8AuOfEyo5vqyuqFhjhc0JRMom9tGQSA1nBGpMY3U23hX//+zfhP/zBJ1jnbdo4szbE/3nfvXwHyoiIFnQKEjWTWBrXdJGbRiYxIiLiUsUffORBvP499+APP/Lghd6ViIipw1xMDPOdX1wfnFdM4qnV8Eb10wbVJHKC5nEhkSYCWZLo/4egiO6m5w3E/N7x2LkLvCdu/NK77sIvvvMuvPuO4xd6VyIuMZhy02ATrKLBJI47yE3zGCRGRERcoiCjiaNLmxd4TyIipo9xl+zztrantrGb2R5aXw3HRbCVfFEGicQkhi7SxtHd9Lzh6VfvAQDcemT5Au+JGzNlH82HTq9d4D2JuNRgMonBCa5mkNilT2JAYBmDxIiIiIsSVyz0AQAnmUYa/3LvKfzMP9yxE7sUETE1jKfsbkps2W5ug1F0WGzlUgWJQgikiYjuphcAh8p616NLG6xx77r9GG564MxO7NIErtk3AwB4lLmPERFtqBnXhCacdE0iyU0D10G5ESRGJjEiIuJSBfU1O7nCCxL/ze98HL/74Qd2NSMSEdGG4bT7JJaB0MYuvm/GtSAxbD/zAkiEYhGzRLCYRC77GGFH5UrLO46v+uNb8Io3fnQndmkC5H776NkYJEacX2yvJpHbJ9GsSYxMYkRExCUKqj86xQwS9872AABHpvCwH44LfOdvfwyffPjsjm8r4vLC1JnEi0BuambkQx1OldxU/d5LE1ZNIkkQo5nJ9tCllnTaoOvi9BqvJvevbzmCH33brTuxSxGXCMwcE78mkWlcY8pNi/bAMgaJERERFyVoYXaKKTe9eq+SDT1ydv2871MTD5xaw0fuO40ffstnd3xbEZcXRnmBmZ56hE9jcU1tHnZzkJh3YRKlcjcFACHqgaYP40Ji0FNBYjSu2R5yzSTu3muLrn8ZeH0Q/ttffQZ/9vGHd2KXIi4RdOqT2GyBEeBUCqAhN41BYkRExCUKWlhwe5TpIPHMzgeJxFDkzIVFREQbRrlEP03QT5OpyE3zi0BumndkEpNSSpgmItjwJi+kDtJHsQXGtjDuKDedJoi570oa7+bkSsSFRTe5aZNJDJWbju2/OxCDxIiIiIsSNLFypV7755ThzWPLO++KSrsWuvCMiAjFKC/QSxP0s+kEibRI5hrX3PLQGdx/cnUndmkC5n0Wuign4xoASIUIDgLGRYGZyCSeF+iaxI6BFJfd64JRx+cNgat4mSbe+skjuP41/4i1rfagIeL8w0xujUKvLwoSs5nyQwKvL1NiGoPEiIiISxUk0eA2sqas9TQeiLR4j0xixPnGOJfopQkGWTIVmV4lN+Xdby//zY/iK3/5AzuxSxMYdwkSC1NuKoLv1aIABmUbnmhcsz3QHN6VSZwGu01JkmD3yRKUgDjBrJ2fJt70wfsBAA/G9h4XBEUhq7lkp41rzPdFuWlERMSlCloQchO7uQ4Sd35hQYv3qEaLON8YFUXZ3y+ZSpBC981uls2ZTGKoDL2Qptw0nJWqMYnMSWh5PXBBd5mALt8tZgKCsDSF40nnmMva759TRmlcF+4uWN4Y4cW/9H7cfpTXb5LM3OJ1eWGQG0FicNKbahKzASAShnGNMX9HJjEiIuJSRVcJJy2o14c7zyRSZjy6H0acb1AT+CwN7+23HVDd3cVSkxgaOJtMYiJE8L1q1iSOGUH6Zx5ZwrN/+l34x88+FjzmUkeumcTwa8sM5pc3dj64oeuJGyTuK8sbpsEkfuKBM3jg1Bp+6Z13scZRCcbSFI5jxCQKKXXCaRg6l1OAl2RA2g83rqnJTSOTGBERcYmia+Cl5aZTaAq+FeWmETuEXKJiEqeQhKBAlBMkTrsWNy+k7p8aKgvMC2gmMWHVJEoMyhYYHPOsO4+dAwC8764TwWMuddDh48hNzfl/GkEiXf9cafd8X10j0yhvWJzJAAArm7xt7SvZzjPM9h4R5wd5ITHoceWm5ftECqSDjnLTyCRGRERcouhKnnStSXz49DpOnOOZ3VDWeRrGChGXFwopkQiglwoWk9UVtA2O3HRzyi0NVEaeVydYyKpPYpKEB7Z5IZElAmkiWHXR/VJWNg2zoYsFeYeaRDMwn2afUO55owREVyktB73y2uIGiXtKueluNte5lJFL6J6rwXOJZhJTIO117JMYg8SIiIhLFLkxmXJYRVrscoPEL//F9+ELf/a9rDFRbhqxUygKiUQIZMl0ahLHuiaxCA6kplH3a2KcV7KtLnJT5W7KCBJTgSzhyX17aTezm1seOoMfePOnLkmnZM3SMRIQJlPc1RWVAwpKucY12rl1CgkTes6sbHZjVmOQeGFQmExi6FxCNYlJquSmwe6mZpAY5aYRERGXKMxnNSe7S4vd9SnITYcxSIzYIeRlTWIvFSy544mVTfz3v/oMu5VFzTk0cMHL3cZ2Ydb2dDGuSYQIViio45+UxkHhxz8rt8VlpL7nj2/B33/m6CW5kKfAnMMImsePG7h1ASUXR7lkBeqjnP/duoISD1wmkcYtb8QWGBcCeU26zmUSMyDNuvVJjO6mERERlyrMjD8rSJyqcU3pbhpjxIjzDCU3FcjShCV3/JV334O33HIEf/PpR1nbMxcvoffb+mi6i85ag/suxjVJOJM4LiRSAWUcxDj+w46MFBmgnL4E68bGBT+Q6nI9Ela3xuwSADNJwjl34w6mPF2hmUSmSoaY3OGU5eERCrmspOvhQWJ5rkSqAsUi8NxFd9OIiIjLAabEaysPf7httwUGpyaL6lAikxhxvlFjEsfh19dsybStMtmGvJCYK004goPEKTOJuUTFJAbu47g8jgCQCF5NYpokpdw3/PjTseMyS/tmp9dKYdroIsnsGiQurQ/xzP/5TrzhvfeG7yAaz5sOypVp1CR2dTnuWm8ZcX5QGHN58DmkYC/JVKAoQ4PEWJMYERFxGSDvyCSODJfGLsHbY8vh5jWUcY7uphHnG7lUzJdyNw2//hfIAbED20BBYugi2ZSbTsO8qSja5abL66NaPXJRCxKZNYl6YceXSbL77c0rJpEbJN70wBl87P7TrDHTBgVSo1wGz8lmkMgJ2lbLc//HH3uIsYd1QxGecmX6clP+uG77eMtDZ/Hhe0512mZEhVyWQWKShLPUuiYx6c4kRrlpRETEpQoz4895aJuLkC6S0+MMh1PKHl+KZhMRFxZSlnJHpnHK4kAFiVwmcVQUmOursaGLUZNJnErdWGH2G5vc3tY4x7N/+l34j3/wCf0aLdAA6pMYvq00LftUMu5vkvR1bcrO7bf3ijd+FN/+po+xxkwb5pwcyiYOx93mf8oBnFnjHUcz6cCSm+bTl5t2HccNEl/+mx/BK3/34522GVGBTMh6WcJgEsv5W6TKvCY0SJRRbhoREXEZoMYkMh7aJuvSxViDM2ZYymDHRXiGPCIiBDktLFKeu2lZfofVrXAHxKKQkBKV3DQ4SKwWIZvDnQ8Si0JiJnPXJL77juMAgI8/cKY2JiF300QEM555USDt4C471AYovONBrqgnVnhteC4G1ILEQFlmTW7Kmf/L93Kn465M4qhjANYFXful0jGJctMLA5K8Z11qEpMMEAlTbiqM3/2IQWJERMRFifw8MIld2A1OM3FzwTONTHLE5YO8kJXclHEd02J1lSE3pcTKLLMm0UyoTKNnYi6rthS2Y3LOcG+kxuF1JjFcGm4u7DgJIC03Zc499H24DPDFgC5zcle5KYf1rW9ve88bbk3i8saIVf8OoCZ75qhXKklsfEZdCFT15Yz6ZrMFBldummTqX5SbRkREXKroGiSOc9nZhh7gGdfUe3nFLG3E+UMhlSsnX+7It8mnReQ8U25qJlSm0Q6jqLGrk8fE7K16x9Fz5WvQTKJyNw3fVpYod9kuxjWhxjqEada2TRtmYB56bZlzK68mvdvxG+fdEn6jjnLTZ//Uu/CKN36UNWb7Dqzdjs006o0vZdBcrtoZdWASkzSIFVTjxuWYXuyTGBERcemic5BYFJoRCV3cmQ/BrkziNJiUiMsHZvaZU5NIi0dO0EaLz1mmcY15j06NSSzNZGxzgnm/3350GYBqxE5tMxIhghkYqknsMVtgbJHclMlo0fu57NLFADNxFzonj2puo4xr2RjHCW7GRbfk4naC+88eWWa9v+bAykhK0v3dVW56KSYuponaXB46l+gWGAnT3TRXQWXaC2IfY5AYERFxUaJWx8IyEqhcGkOzduaCZJPx8DUXL5xxERFtqNxNBYs10ExWB/MNbgsM8x6dBpM4zpUEt5/ZJbi0P4szGe54TDGJm6NctwVJme6mqVC9zbrITbmMFjGPmx0X5Lu53qyQleFQqFOsycRyk4QEXl9GfgsYc3vTOP7178YPnLsGe2tMp+SIOopyLs/SpGbI5B9UHnOSjoYGl7IMEpM0yk0jIiIuXXRtgTEupHZpDF1cmw9fTia/HlxeegxAxIVD5W6asFow0OJxyGAfiWmo3E0DA6mO92hXVLIte5BI3+Pzr9uLOx9bAaCUARSgCBHuEEnMUteaRLbclCSBHeeRLk7O04JypVXL0S41iV1aIAG8OXmcF5gvnYFZSckpGtd07eWoJbEdry1OfXPEJFTCCehzVAm1msTELTddPQl85i8qW98oN42IiLgc0LUFxjgv2A23uy4sanK7GCRGnEeQu2nGacCMbkzWqCOTaN6j01gkk2wrS4W3JvHGQwt45Ow6pJTYHFXyc+Vu2r4d+l5pkiARvJpQOpacOkbz/V2ZxLUpMLldURQSg4yYxLDjUqtJZCpJCBx1h0ou8pl0up6mYQrTmUkkuWnHek1OfXPEJMiELOOYkJlMok9uetObgLe9CvjYb5TjcvX+tBfdTSMiInY/pJT45Xfdhdse5dVfdK1JHJkP+1Am0XgfK/tcdFuQRFxe+KV33oX/9Q93sMbQwqKfMhowo1uQmGsmkSfTHne8R7uikJXjq+2Y0P48/sAc1oc5zqwNFZOYVTWJIe6m9DlZ2SeR4yRpupvyauK2x/bsZknguJAY9NytS2ygoHm2l7Lq70adVSEFFohJDE4udpO2djWC6VoWQdfzKO/Wqmk3X1sXA2rGNcFyU6pJJHdTxzkYrqqfD5cmSJpJTIE8BokRERG7HFvjAr/2z/fiW3+L5+SWFxK9tDQSYC54t7PY5RjXmPVN0bgmwoVff9+9+J0PP4CzZVuGEHR2NyUmq4NEj9sC40IwiVkZONu+n2JfgccdmAMA3H9qDQAwU34v5W7afixpIZ0IwWYSzbmKxUCO+bJFM9jYzQt51d+SZyZGc/f8IOvMJLJaZ+RGmULgOPP8cgLZrj11u7Z3GneU7hKi3HR7qLXA4BrXUH2hy4RmVfWGxcZSNS5Jo9w0IiLi4gBlc7lSl9wwOwh9sEmpMqWzehxvQQLwM7SDkqXoygBEXD745MNng9+rpZVJUsraAmV6mskKX4jS4pNaYITWZNVqEvNpyO3MFhh2JjFLEly3fxYAcO8JlWWnACURYf3liNWjmsRQsxugPlexJL8dmEQzSFnb2r3zz7iQhuM0zxRprp+yyw0IPFVIgfkB73lD25rvp9ga58H3aNdejrU2HZznVEenWEIMErcHUwERPCc0+yRKx7jVE+rn+plqHLmbRuOaiIiI3Q4OM2eiHuzxMrvcBYn5EGUxiYXUZgdRbhrhQtmmj3WNkCNePyOZXtjCcmsbclMyFwllIacuN9UZeTu7N84LpInA1XtVkPggMYk1d9OQ7aifaaLcTTk1oSZ7FSwtQzUHcWoSzWO+mxfyuWFcE2rc0TVINFuPcE3IZjWTGDZOGz4NMhQyPPir9dfl9GQsugV7JnvFSbgSYr399kBOyT1OfXmtJtFnXENM4tlqnHZEjS0wIiIidjnIGp9bh1HILrWF3WqrarUlHbPP8UEa4QL1X+Ms7Artbkr95cKu5S41icSUaeY+cOzU5aaykm3ZFrvjQiJLBfbN9pAI4NGlDQDAbF8thYQIcyqlRXWWdm+BAfDUE10cKEcdWbOukFLirmMr7HG5rOSmoeqOKnGRMts9GMeEcU0WhcQc8/qn5w23ltEMFDgMcN7xfusiwR1uU6IaUaEy3GLUl9dqEj1y0xVLkKjrGCOTGBERscvRlUkc55XcNHThRFnq2R6vtqSrIUBRGBK9+CCNcCBLSkky4xqp3E1LBobpCtmFSeQy93lRsaTTMa5R2/P1ScwSgSQR2D/Xx9EySKQAJU0QJB2lxNZML1VyX47c1NivLg6zXZnErvMsB2/71KP4mtd/EO+780TwGCoB0H0SA5lEOk+zvbRTuweAb0JGCpRQKWdVN8l8Thn7uMpwDu1qlJMXUisSQgNu89qKz7btoZCqvrmfJgwmkeSmJStoczctcmBrGchmgPEGMNooaxKzKDeNiIi4OEAPakGryUAUUi2S+1kSXCPVlUk0Fy6cxZZiEkluGpnECDuIDeRcI0VBdSwlkxi4uK6YxPA6RgqCelmCRITfN4WsJOHTWEjKWp9Ei9y0kEjLgPzAfB9HlzYBGMY1Iqy+kBbSM70UCZNJNN/LCRJJqpgXMrgvpnnMN6bQAuOessbzjsfOBY+hw8F1NzUl0Lxgu2M7I6nqy4Xg9Ndt1PKGJiXNWlJGf8saI7jjzq3dTHIiJqGYRPUc6FSTKFK73DQvjdAWr1I/N5YaxjXR3TQiImKXY2OoJkWu3JQkGgOHtMyGZk1iqHkHPRB7qWAuLKqANNYkKjx0ei0GzA2kKclNGdl/IyAC+HJTNSbs+td9AYVbymnDuCgq46YpuZsmQjgXW3kudUC+f76PY+fKIJGMawIDPpqzZnspMmaQaC7kWUGiGdx0kAROg0mkhADXEAaopMyh12RuSKA5Ri9dzV2o3rXPuP6pLydfbtqNpRt3lZsajt/BclNTNh2ZxG0hl2afREZNokiUdCJJq0Lp2geXQeLClernxpnKuCZxBJYNxCAxIiLigqKz3JQe2hlv0QpUi5lw4xqSDWW8ILEo0EsT9NMktsCAWmh9xS++H9/zx7dc6F3ZVdA1iSybfBXU0NhQmVLNOIXJ2tD9FrqQzAsgSxPWPbodkJmPq06Q5gwAODjf16/PGkxiSK5qUzOJieqtyGQSKwluN5lq6Bw07ZpEMp/hsJa0tq1aYPDqXQcZQ6KHZiDFYxK51z8t+Od0kBh63roxguO8wDwz2FPbK3SQGCxbj0HieUNRGteEyt3VoFwxiIA74CM5qQ4Sz1bGNbtVbiqEeLIQYlMI8SfGa98phHhICLEmhPgbIcQB428HhBBvK//2kBDiOxuf5xwbERGx+9E1SCxkhyCx0e+N69I43+f15MoLtbAe9JLInqFa6H7g7pMXeE92F2hdwDauScBmEs33BQeJsuoL2HfYtC+tD3VLCb2P5eJnkCadrPU5kHofS0bQstjKiwJZydoeMIJECm5SgaD6QgqCOjGJRcFOUgEqAOCyssMpy001k8gxktFMIq+2lg7dIEuZBkD8+nIpJWRZNzbIws1FKuMargt3N3OjcSHZASlQdwoPViRE45rzBkpApJyEkyxrCwEVLNpqEieYxLOGcc3ulZv+HwCfoP8IIZ4B4I0A/i2AKwGsA/iNxvuH5d/+DYDfLMeEjI2IiNjl2CR3U+Y4so3uMx7alKXrp7zaEtOAgPNAzIsCqRCY6aVRbopocOACJSE4x6co5aYU9IRK7rrUEpktH1xJmVf90S34qtd9oPY3WvwMejvPJNLXT4RabNn6HZpM4g1XzOvXqz6JYTWJlNiimkSW3LHDghxQAccCs7552sY1g/J7kRw3BKZLKcBht4tym0lwjSbQrU+iyaQPsjSY8c+1uU53d1NWv0NDNsptr8I9/l1deiPqMBMQSWKft6yg2kLA3c7CGiQWRguMXRYkCiG+HcASgPcaL/8bAH8vpfyglHIVwGsB/GshxKIQYh7AywG8Vkq5KqX8MIC/gwoKvWOn9JUiIiK2ic5MYsnS8WpEqod9j2E3XRneZMwgUSJNBWZ6CUs2dKniYsk4P3JmHc/6yXdOMGM7BboueVJmCVEGROZntKEoDTiA8PovYjaUTbs9KLr/lDpWn3r4bG0fk0QlZXY6QVAYTGLqYBLHuUSvNK751uc9DouDDE8+vIDr9qu+iWqR1r6tTSNIzJKwwNLcB24rEXrvwkwZbAQGDtMOEula5DCJEz04GTWJNI8H13GhMoXJEhG8n3Qt6SQJU6Y919EVFeC2sijQT3nmUoAyvarM3EKTTZFJPB8w1ySpsM9bVtSCREcLDC03Pax+arlpCqTZ7pKbCiH2APhpAP+18adnAPgM/UdKeR8Uc/iU8t9YSnm38f7PlGPaxkZERFwE6F6TWLDlpnohWRrehGZbuzOJpdwuS2NNIrrb/08b77z9GFY2x/jTjz80le3pHnjMvm1p2c4BCA8Sx3nBllsXsrGQsWzr+U9QlR6fePCMfk21nEgw6PHumy6gfRRCKEbQsjmTSdw718P7f+hFePurv0y3EUmEvybo6NIGfuYf7tCN6Wf7KdJEsJis3GR7mLV0s8w2EV3qGLcDWuBuMqSt3ZlEaCadK9vNEp66gw43ya2HocFlwygtVALatW5ylEtkaaIMUEJbiRSKydItSKLcdKowExCpIwFnBclGAbfcdLylfs7uU/LSddO4prfr+iT+DIDflVIeaby+AGC58doygMXyb00vZfpb29gahBCvEkLcLIS4+eTJWA8TEbFbQLUyUvIcTvPSpIKX2VU/UyHQc/RSs4Gyz+yaRCnLBUkS5aaoLyZWGP2/po3FkrGZ1j7SYpLtbppUTGIom5UXkm0SYt43rno/WgifWh3W9jERYLH9XUG7lJQGELZA1qxJBICDCwNd0wnAaXhD+P4//SR+98MP4JaHFFs6kyWtY5ow++2FBunUS5DbuoeOuRDTqUnUjDjTEAaoSgBCg5RCKpa6lyRsuW+WqtYxoduqFvJgJSVz/dzgmcmY1wW3vCFLBHqJCK7t1I7fTHa71idxFyf8djvMBIRLJq/x6CeBT79Z/W7WJDqZxHIuTgfA3IG6cc1ukpsKIZ4D4KsA/Irlz6sA9jRe2wNgpeVvbWNrkFK+SUr5fCnl8w8dOsTa/4iIiJ2DmeFmMymCJ2WrpB2qnUUXd9NRLoPrBvJcWVvPZOmOG3dcDKi3X9i9C4uFQQ8AsLLZnmndLqSUVU0iq08iBURMJtEIUriyuSSBt94PAM6uG0FibjpC8q7/kytbrKRRkNzUYBJtEELAdxg//cgSAMUoAiowzhzbciEvCjZrRozjPLOVAp23xUE2FbkpbY8TkFIwkyQCvSQJbktEKo1emiAvwufkUV6glyi2jbMtALovL7cGfq7PdDfdRiuLLOUlQGkfB0y5b00SGxOgnWEmIFzzlsZvvxj4m+9Vv5NsFGh3N017wOz+hrtpBuS7JEgE8CIA1wN4WAhxDMB/B/ByIcQnAdwO4Nn0RiHEEwEMANxd/suEEE82PuvZ5Ri0jI2IiABw65Fldg/CacJcvPD6a6nG2F0yu2mS8Pq9NVxRgxfXmkmMxjXAxWObTnHENJhEc20b2v8OICYRup1CsEpJSnZPuprc1NVeorwnzq5XgbViEnmOkICqCX3B/34P3vTB+4PHmMY1iSOQVfJXd5CYeoxrzDn0odPrAJThTWhvRYIpGw1vyq7eN8s8bxS4Lwwy9vzz7juO48TKJmtMVVvLM2ACqAcng90rqLecOp+h8spxrgIpl0uvdR9rxjX8580ssyax3ieRF3BniUCWhNdp0j4OMp7c1Kyli8Y13ZFTkqSct6REe8JDvaldbqqZxL4RJBaqv+Iuk5u+CcCNAJ5T/vstAP8I4GsA/CmArxdCfFlpVPPTAN4qpVyRUq4BeCuAnxZCzAshvgTANwL44/JznWOn9L0iInY1PnLvKXz9r38Yf/iRBy/0rjhRt+RnMAeFWiSzHtqmbChNgmUyVQsMPgOTaLlpZBKHeW78vnsXFpTJn0aQaNaXcZhEYlKIGQuVm6oghdc2Qy8IKQBzsHSAaoVBKEpmg9sn8ZGzKgh7310ngsdUNYndmURfTeKSEfw+tryJfpboPpWsIDGXnYO9rrWkCzO8/q6jvMB3/9HN+I43fSx4DNDNgIkOXaqbiYd/N2VcUwaJDBOmLE06yk2ZfUK1uylTbmo6EDMTRwk32JbdakLpmpzrpcE1mhGTMK8tSmC1KhNG6w0mMQNkgYkmr9Yg0eiTuFvkplLKdSnlMfoHJRPdlFKelFLeDuB7oQK+E1D1hN9vDP9+ALPl394M4PvKMQgYGxFxWePossoEf/ZIs3R398BsKB1qyADUmxuzZXOl4UEenG2tZ/I5meQsERj00hgkolsj9wsBWoRPQ25qBhihi0ipAyKeu2nTpIIbbHgb1Zfn88xavSaR2tSw3E07CB8K4972M4nuZY+PFTyxslX7P80FSSlRDVVr5GZNIpPJ4rbOGBsyVY7clD7/vpNrwWOA6hrk1AjSGCFUz89R4NhxObdSTWloUDTKJXo6IA1k0k25KUOBQuPm2MY1JpMYft9Iw/E19BzQM5DtLmskLnazKmS3g45j1mZCZtYcbq1UBjRA9bNZl1iTm5Y1iVTLmITJTTPWtzlPkFL+ZOP/fwbgzxzvPQPgmzyf5RwbEXG5o89svnwhUGMSGb2dilJumorwoM2UzYX2RAPMB6KaMsObIqvM7kwW5abAxSM3pUXauakwifwg0ZR60cIipCarq0lFjUlMBGzryIpJHNXGJUyJXldUctMqcJvYx7xAOnAve0juZUNTerm8ob5nZizsTFMcF8ZFwQ4S6dhyW2cQI7EwyPDo2Y2gMQBvHrZtj8OsmnNyLxXhiYtybiVn2mAmMScmkZFcbLbA2HG5abeaxLyQGGQqAcr9bp2ZxH66q1Uhux3NBJz5Wg0rx6rfN89VjCCg5KNAKTk15rcak7hPuZsuXlm6m2a7Sm4aERGxTbzkl9+PN7z3HtaYgQ4Sdy+LZWZNQ+tK1LjSuKZLTaJHNufaFlBlhDmZZHI33c3nYFq4WIxryNAidMG6HZhsdqjctGabHipRQrX4mGG2YKj38rIHpLSwXd0a6/NMkth+lvIYkeB3VqjXTdoDlXEhtTzRBp9T6Ylzikl8w3c8FwB0Y3sK0kOYm6KQKCS0uyyXkSJzEe58N9NLWfdb10U/bY/lUm3MySwGrJQO9xKSmwYyiSSBZtY/mvsY3F6CTGGyFIngyE07StBlZQAU7BJL10jGlaCr981Mob3NpQzz2vKqQlaPV79vrSjWUBhyU2BSPmoGiXMHgPEGsLW6++SmERER28d9J9fwunfzPJn66e5nEmtyU0ZNIrEULLc57dLols25tgXwGRiqgYrGNQrmcdvN1yQFhxzXyq7owiSatukJQ27aZBK5Doi++8Z8bWljqF/jmn0A3YKUWp9ER00i7Y8LwlOTSHLTlzztMD7ymq/EW77vhQDqTGIbKtamlEiGzj+yed5485YKEsOv5a4JHNoe574xry0uA5YIU24aLq/M2HJT6H109eC0bqt8n7oHwh2uzeuCcy9IqRKnvSy8BYZuQZIx62Rzg0ncxXP5bkfeWJMAsF9fG2er37eWVZBotsAA2uWmALB+qjSuKVtgtNyrMUiMiLiEQQ/gXb0g79hgvZCVBXoo42MyMC7ZnG/cLJdJlNG4hnBiZRMPn1nX/+csWqcNYrc5srmuyDssCE0DJop5Qtblk/VHoayB+kkMvC0IMNmVs2tqcULmItyaRJLlCbTLNwm1PomeNh2+mkSfu+mp1S3M9lLMDzJcs28WT7tqjxrDYHKbjeND2R7trsxuOF+xRJxgY9tBIkduaiQ8siS8TrwoA36S+PKDS74kU7UpCP9+5rhBL/weoOtitpey2kvkJMFN+HX6WWmcwr225vpZDBK3AdPdN9WqBMvxrAWJVJNYzmUULDYdTpvGNYQkU+6mQCubeEFqEiMiIqYDWohPK0j8i088jFEu8covfkLwmJrclNOovpQNpY5Fq2sMQAvJsDouoFpczzGbIpvmCuNC6nqYyxFf8ysfrLVH2M0LC7pvQuXI24HZ3oC7QOP2SWwyUlxX4KTs5WUblxdSS7+pV+K4kJjpibKXaXiShN4rwmPEoD6JbUyiq5YRAM6uDXFgvj/xuj7+AcENMURUBhDKJGqZcMcgcbafBgekQPd7k7bHSQDVEx6MOnFZ1ggSkxgqAS0qc5e1rbCa4+b9Fvq8MQ1vegzmsuqLyZNpFyQ3TcOZRJMl7THcZc3EaaxJ7A5bfbn1+jKDxImaRBeT2JCbEqhPIlCxjQ5cnquViIiLDF37HNKDc1oL8h/+61vx439zG2uMaZLAWlyUWVOX/E1KiZseOFM7diH93qzb6rC4JifJRAjN3HD64F1qMANEYJfXJBo1dTuNKiOfBjPiUlaLTy03DZgjuvbb033iPIvkcS5xaGEAoGqDQeYigx5PbtolqVUZ11T9xprz5rgovH0Sfe6mZ9aHOLgwGSQG29ajYoh6aYJEMCSSHeXuZnBZyPDruXNNoqQgkZfsAwxXWkYAlgjopBtHXpkmvKBtwvCMWaZA7Q3y0F6O5fvmBxkruULHRCUl+SxpLxVsKfNcnxfIRtRRk/KLULlpsyaxDOW8clOTSUzddYwNxCAxIuIigPlMCn1AAdVEvptNU4Z5UWXWOYuL8mGfJPaFxVs/+She8caP4u8+c7QaEyCbs26rfPhq44iA/aTPzsqaRIBnQnApwSa13c1BIi2wCrnz+2k6V7LdRmt1LAy5Y0d3zSxJnIvkcVHgikUVJFJCIJdlC5hUSe1Ck12dgsRyn6hPIjAZFOV5e59EwJ6UO7M2xP65ySDRa1vfgD6OaVkTF7qQ72hc02Qug81dOkrBKyaRV0cHVNdy6ONNBfwJX25aVHLTLn1COUxibiRz0kQEM8eaSexnPHdTSRLcRJtvtY4pr8E0SVhMoimB5ngJRNRhrkm8Caf1M0BvDoAANpeA8RaQqfk2TG7aYBID5aYxSIyIuAhgZgXPMXq3abnpLjZNGReFlnGG9sgCKulY5nj4nlxVRhO3Gj0iqyJxtSgJXbSSAU0/DWcSzYJ0cjO8XJnEI2fXJ17bzdlnc5G80/tpSgJHuQy6JnMz+8xissogMWMa1zTuG1ejemISSW6aF9DmUmp7gUFih2RKrSbRcUzGhb9Nhc9d8MzaEActclOWcY0RbPcSvrlIL02Qdqgb48pUt1uTGHodm2MUk8io96Nri8kkFgaTyO6vSwoULgOvmUTeOC5LV1C9ZcJxblU/tbtsJ1Ok3TuX73ZUCT8j4WQ7BxtngbkrgJm9KmAcrgL9BfU3LTdtupsSk9iUm6ZRbhoRcSnBnLibsj3/ODV57+oF+Vhiruw/yGk5QPb6LmnZ/jmVKTvb6NsGVIwI56GdGotdTpCYJQK9rCxIv0wfpncdW514bTcvLMzzu9OGQ6ZLIBAWSBXGwo7jbkqMuzZg6tAnTt03k+8Z5xILgxQzvQRn1yhILJAK5ezI2V43uWkVyCYO2RYle1zQPScth/LM2hD7LUFiF3fZrKO7MtXgdXE3BcKD9K6tX7ZjwpQItyrEBhXsVUE6p50FNyCqmYtwFCgNozS2my03SCwqx1dusJcmiuHu0rtzXEiWwimiQlFjm9VrzprEuf0q2Ns4AwzXgP68+pvT3XQIQKi/92aBbEa9LqLcNCLikoL5cOEsWomZG+5iuekor5pLh9ZRABWT6JKWUeBJ9VFAwySB4W5Krog6SMwnj+ev//M9+JG3fhY3PXCmsS2BNGEaVRQS956YDKwuVrz/rhPYM1P3SdvNxjXmdchZpH3onpN49Z9/irWt5kKeI2VOk0paGbJurRZ2JbMX2DTdZHtctVXKSCrB/rl+JTdtJFdCGUI65hzjoJDF1jgvvO6mOrhsjNsc5Vgf5lbjGmImQ+5tYgiqmji+3LGX2o2DfOO4clPzGuzS81BtK3SuUz/TsiYr2LimDPaoJpHDCqZJR7kpM7gvmvdNcFCqfs70UharXkhox1d2exuhEhDhx7Eo97G8thjP7ogKNeMaX8JpuAr0F5VsdL0ZJJLctHEO8qFiEckBjCSnNblpZBIjIi56mJMGZ9FK2dXd3G5gmBcsFoVA7SXc0jL13c8YQaL50Ga5m5Y1iT4m8ZfedTfefNMjeMUbP4pRXtQWhBxJGgD8n/fdi6963Qdw57FzQe/f7fjEg2fwwhsP1l7bzUyiGTxxkjL/9ndvwt9++iiLMabrVN8DgaZIQCXRA3hyR65ssQhYJI9yZQqzZ6aHlU1qgYE6Ax/KJJbHnJNIqPVJdAR7eSG9xjUUXDbHkXzW7m6a6M9uA51rVZPIkJuaTGLGCy7NeatLTSLreWMGiYw2QUDlbhocgJXzP1duqssUGEG6aS7CYTvrwWXCShImQgX3HBOhvJAQpXENt96VEhehx9FkEgFej+OICrbSAev1Nd4Esj4wd9BgEkluShOXRW6aGnNWb1b9zPrKzAYA8sgkRkRc9DAXnZzMIj0ApmHl3xXjXLL7fwHVgs8lLaOF/pJFbsp2Ny1Zkl7JGrQFsx+7/3SDSSRJVNj2bn7oLADgseXNoPfvdqxu5Ti4MMA3Puca/dpuZhJHtfuNv5/rHe5RjnOlmf1nuZvmhgSaw6QYcrvEYS5CLWkWZjKslq0FxkVRNhInJpEnN+UskGmfEmHKTRtBYhlYuODK5J9eVUGizbjGV8fYxNiYfzJO0CDrC3lO65IsSXQgFd6Cofr8jSHPXdP2GW37CJTBfeJwdrSN00wizcmh26tqGcNlu+qnlpsGy0arcRknuDT7izLmn6p3ML/eNWEykLkRyAK7O+m3m2E6R2e+dcJ4qOSicweAtdMls9hgEm1y09RQ8KydUj8PPinKTSMiLiWYiwlOZpcegrs4RsTIYBJDH2xSStUTyuMIRpnU5Q0jSGwsrkMf2uOy1iN1MBQAcP3BOXz5Uw4BAD57ZHnC/hwIZxI1pnTeVLuOndvY5ijHbC/F67/tOXjg574WAILd97aLI2fXWQtdoG6gxHEGJlXP+lb4mHEzSGTUu3LdTatgI2EZd1TGNYqBdzOJCRYGGVY3x+W4UsbGZRLLY85dIAP1ptTN/Sykv/dixUDWXycm0dYCg9On0gzSs1QEy+vH25CpJgnYgZT5Pk6gbj6nuNcWnTcOS0c9AYFw07OikEgFOslNk7JMoZBhMtym4RMnKZCUtbxc4xo2S1qTMifBx5FKMLhy34g6bHJT6z2Qb1UupeeOAJDAoGQSE4dxjdlLEQC2ShO/w59nBIlRbhoRcdFju3LT0EJ7wj989ihe+HPv7Wy0wmrcnBe6frBLCwCXIxjJnUzmNUQ2Z99eoc0mzO3XtpdLXLHQx+HFAR44tTZhmw7wai6niSf+6Nvx3X90y458tpQSG2WQKISAoNqXKTGJX/r/vg///vdvYo0Z1YxrwveTkgjrw7Am3UDd3RQIW8gXFolSWJ/EKkjpMxtn03ZcvQSJ2V+YybBSMolK2ofKuCbwnFNwyDPtUD+FcDelluXi2wUiGZsB95k1D5PYwd00TRLlysxlewTJTRkKiDIhADBqEo3j3kXyq7bFl2Ry2hJVrBmvfdJ25KZpLVEYsC2DAeb0SdT9RbOE5SeQF+r67yX8foe6TpNR76qMlMLUNZcDRnmBL/7Z9+Lttz4WPKbZJgVwzCXU8mLO6HdITCK5mzZbYDSDxF75/gNPNOSmMUiMOE/43GPn2E5/m6Mcf3nzIzvKUlwOMB9mXYxrciZT9BN/ezseW95kOamaYGWfc1kZ13RwWyRHe5vdPVBvO9F0mwvvk1hnbWyT+Lgo0EsSXH9wHg+dXkOdSQyvW7pQeM/nju/I545yibyozjHAy+JvB3TNf7w0EwpFTW7KWKRRcLLOYC4nmMQQ4xqLu2lYn8RC72cvTRjGNVUA7DIXGRUSaSqwaDCJKrisDJ9CjyUFh6xG4nqxVe1rc00uZRUI2uCqCaIg0dsCIyhIr2oSOYwgfQ8ax+sJiA5y045JyQ5y00omzGtUT+1MMmYArNtElHLToJYzteRi/TUTR86u41t+8yO47+Rq7T26TyJD3pomAoNewjr+khxf04QVNAN8lnqcy1K2zu9xfKni3MYIx85t4kffdmvwGNO4yZXcAqCCxLQP7H189Vq/wSQ2jWtkUQWQAPDd7wW+5fdUgBj7JF482BrneN2772ZLoqaJ1a0xXvarH8IP/vmnWeN+9b334H+85bN45+07swC9XNCVSTQzl5xMHy1YOQGp+bDlyMRGeYF57W7Kz366AjdaSJkBct24RgTLcPOytsobJOZq0fKEg3N48PR6g+0E6/vpz9zFQWUoaF4jgwMALPON7aDr8RsVUgc23ZhETva/aVwzuc9SStxzfEVfx6ZtfRXYtG+rVpOY8RwQ6Rp2MfB5IdEjuWmDSaQgJXTu0nJT1gJZ/fS5mxZSQsAdJQpHfefZtSESAeyd7U2M0Qu7AJbIbIvDUTJQcKkcKHkyySxNtic3ZbZg4I4zW5ekjnpX17bMcgPOs8NkwIJcaWvMvTvh93P/dCdufugs/vAjD+p9BCrHUZYpjwAGqQoSg3tONgLg0DHVPobLTfOiQJoKNkt9OYCzbjKdqr1lKfmWqkk8+KTqNc0kknFN4xwUeRVAAsDhpwPPfLn63SVRbSAGibsAb7nlCN7w3nvwa/98z4XeFScoS/S+u06wxlG/LMrERnRDvSaRwVIYDwoOu0e21iub4bK5LvUoUkqMC4nZrnJTQ1rWzP6PLdnwurTJPhk/cGoNf/vpR+uf1TDJsWX6RnmBXprg6n2zOLmypR+a22ESpyHJ3GmWf6N8YM72TCZxOnLTrguX0bjA4kBdk5z7jQK2NYbcVDe4170LJ7f3mr++FV/9Kx/E++86CaBpXKPeEyR3bBqgMHvLAbC6O0op9eJ7caaH9WGOvJB63KAX3l8UqOaSLjWJ9T6Jjf1EGJPYvCVOrw2xf65vNb2pFnbt+1gzrmEsyLdjXJMI/kK+a01ipz6J5lzumJOt40oJNIdJp3FJwmMgtVN1Sy+7zx5ZAqCMywDjfAumu2n53QYMdQFAzHEpG2W6m7Idv6XUBlgAMAxUJVzKoGPJSSw2E9fm59QwHiq56cEnVq81g0Sr3DSFFVFuevGAFk9HlzYu8J64QVkpbpNjrvV2hB21gIfF0vEzu0BVH0WMQNi2DIle4D7S/s0ybbTp+aeMNOwTq7k/mtko30LBpW0yfuXvfByv/vNP17KB9ND2mYToRXIZXJwr2wDU3E2ZQSInQOmKrmzb2tYYr3jjR/G5x/xtOnSQ2K8eN/1sSkFix4XLKC+wUPZ15NxvFENwVCET7qaWff5Mufi8pXS9pWtzppc6kyS+bbFrEovKFdTm7kjXUK90NwXUPVcU9TYFoc8P+nxODa/ZAsPG+EspIWXFFtrgCriXN0ZWFhGAcW9zmMQEvUQwJIEoxwmWAUrekASGskvDjkzidlpgJAnPTCwvAuq4bNsr6rWMIcekVqbgeN5sjXM8elat4Y6VrtTmd8tYNfBVTSIQfg6krJKSUoYdEzMBwXX8To1ra7fW208TXZ6lNn8Fa6CujWvMmsQ2uWlel5uaiH0SLx7sL+scTu9itq3rBEATyG62u78Y0LW5tzmOFSSWC1bqdxYCc0EeGtzQInWml0AIfk2iz0zGfPhXbouGtMmxIKHj+9Dpdf3aOJe62TNgfxiMiqoFAFC5qmaJ6W4a9v1oHcvJSHYFN/FDuP3oOdz0wBm85q8/630fBUwmk5gxFrrbQVfHvVEhsbAdJpGRXKHjMOcxrqHPve2ocqcjOetcP+3UgkHXJAY3966Ma2wLycp9M9FJktWtsWYbuItd+vzQmjG1j+pnLXAwxtKvYe6m9W3mhdTPsiY4QUpNXZAygj1Dbpom4XV7xLZpB9DA42/O5TttXGOawnCCxKKUMuvrP3A6IVVInyHBrbE9joX8I2fWUUjghivmcW5zjHFeaDMnoIO7qXHfcJIriQB6mf+7PXJmXc9rzfrmYMfvvBlsxzVel16RVuOa5jkocsUKZgP1/2/7U+CpX6vko4AhN20yiXnduMaEq21G821B3yJiR0HPrFOruzhI7OhcpYPEOIFsC+YChGVc05FJpPoxDpNonuO2h9r6cIybHjijHyy9NEEvSYLbIowNAw7XIm1sZRLbs6aPP6AazpL5AFAtkpNEQDgkOeO80DVZQBUkmpM/9z6aBpPI6btpgoKazx1b8b5vYzRZk8gxDdoOzIULx1hhNC70eWTVJJbneaNDn8QZTwsMum5ue3QZUkodJM72U5a7aW7WJDJq28bGYlctJJt/p/vYYBI3x6p1TGK0wGAGiUB4sCH1YssuN6Xf/O6mdsMb+h6+MUG1bQaTmyUccxH1U89bjDYRJtsT7G5qSJ5t8mcXuhjX0NtonmTLTXU5VnhwyZabUlIydS/kHzilkorPfdw+AMDSxqjWl5PnbqqCtj4zSKTgspe4v9vmKMeX/cL78MNvUck9s70Hm0lMqz6VUW7ajUxpOq4DloTTeEv9pCDx6f838B1vBgaL6v/CwSQ2axJNUP/EKDfd/aDMzanVrQu8J250zRJxFwcXCnccPber3bm6us3lNQYy/GFPrM85Rk3iiBEkfs8f34JXvPGjeLSUWPcyZa4Qeg60I5gn+2buD9VWNqUdtqzp4w7MAQDuN4JEc5GcWmzai0L1bTSZxKXSGTYzHqTcmsSuLF/XbYQutIBq3mq7tzctNYlZIiZaluwEzGuA49Sbd2QSKWBY20afRNtcS4uPU6tDHD+3hY2Rup7n+hnP3bRjbRuZhKixtoRM9bkLmkkcaWkfJ5AF6p8fuvBqYxJN91MXXPtpMkKuMSGMp25BkjKZxIbcMZhJbAaJgeO6JheLQrJcemkMUPUgDM0d0TXpcqR1IS9bZ3gblzfHGEyi635b3VLzy/VXqDqxpfWhvv4BHpOYk3FN2TomNJFHzq2VbHHyPZT8/JtPH9VjaP84yTvqk9iPTKJGF/dys07ZqQrJy9ggHdg/xFWTKPPqb01EuenFA7q3Tu/iILGrNIwkHbuZSXzw1Bq+9g0fws//050XelecqLubdjOu4QQcxBKtdgwSfQuLopD40D2nAACfLGusegmzSbThCOZ6aJsLItNtEaj6XdkmdXroHTu3WW3PrMmyPOxHmkmp5HYmk8ixyQcqaRynHq4rzOuCZbgSOCdsGKwXgdMPbTswr6dzDOl0IZW7aSK6SX45fRLpup3xLK7HhcR1+xXDfdujy3W5qV4kt2/LrInjOMxSsAHYWeAq+El0kmRlc6zZHq5xk/n54W061PuEwSSa2zNrFl2gP02YYBnfvwlXuw3fPmZJgizh9DusZKrdmESe3NScv7nlDTNMk6J6ABw+R4aYiVm3V/gVKDY06/Zs26Nn7cEFVT50dn2kW1kAYNUkEtupZdpMgylXWygAuPfEau3/Zu/UdBsJiFiT2G2dbJqQuZnEUmWYTbbgUYNdTOLYLTcl45ooN939oAtiCiU6ndE1S0RzVOjD6UKAFlwUuOxGdK1JNAMlTqBOUhxOTWJ9YeGeeNaNrCgZcfTSpHRkC3xAGTVQTibR2B/6Hs3WGfZ+h+o105G3WVvSfJCanztfBonk7NtPE69tuvX7le+bitzU2AZHXhy6mLC5m3LqqrYDUwJFQXsISCY2yFLWOaB7jNUCo7xuKYh2yU2fec1eAIoJMANvl9mKDVXWGmybfM0kWhaSuv9fImpJEinVdrjGTUWHeUsaiy06JuaUEFKT6Ko3KzxMoiuwtKGqSeTJD+t1Y2EBqRrXrW6say17UfgZcesYoybRlbizgRJ3XHfTouwlyGEgzePvYnvoc65YUGzPmbWhbmUBqGdVcJ/EMrmi5aaBiapCtgfAZpA4zouJesvwIL2omSJFuWnHmkRT3eSoiQ5mEttaYJig16PcdPcjVCbRxPvvOoHv/qObz/Pe2FFnpDg1ceqi3ZzCYrcraCLmMA2Ayui/4o0fZdUIdoV5/DnbGweye03QxMVpgRFak7huBCI3lU3OZ3opepwGwBYm0ea4uH9OZctOl/W+hZQQQrEJQkxa3QPVNWsGiSaToBYyzTFVNpbkdo8uKSZyz2yPJW0CuvWJ6wpzAdK15YlPamerScwuQE3iOUaQSDKxmV7CYhLp3uxyr81ktLiePC6jvMC+uR56qcDSxqiqSeyl+loOeY5U9S8JqyaxKBrGNQ4WJUsqufXR8vpfGGQVk86ogSRwm7K7antol4NqEpuJ/LJPqn9M+/EnGfL8ICvl9bygOU2Z5iId5abmIeckF8dFoVu5cK4tQM3JLLmpbEiZmYGzYJy3muGZqwa+qAeJS+vDGgPPYhKles5ouWnAfFIFe1XvTtt3O7lSKdZOrw1rQYpoSUB87rFz+NTDKrE7wVLvYrXYtNCFTa3VKaeOa1nXJM7YP8QnN3Ua14TJTR2jI6aJrlLO//AHn4CUamFiLsB2AuYEMMolBoFXDhmRrDNqdKYNmkg5i0gA+Mm/ux03P3QWtz66jBdcfyB43CNn1rGyOcbnXbMneEy9TyLnoW1k5DuM2wmTHGKrskTgaGkVfnjPAFkqGPKrKvtJC9Dm/DzMC+yf72NrXOCxcjtmvzdbbSFQLXibTGKvlFElFgaAgttemmBRL5JVveXe2R7bpp3O8XSYxOq7sJoA1xbyEv3Mvoimz5zrN4xrpsAkmvMWl0lMmUyilFIfS86CieYfahEytGxvXCjn3L2zPf09ekYj6zYG5uzaULkHGwsSVp9EWS2OE6EW8lJKvdA2a+0oSULX/+JMhpTRuBxoXls8RspcJNtqEj1EojPhlBdSJxOb4Mh96dztne0pJjdwUVnvt8dryq4ax5dBIqMGdZCpRu6shIc0Wrkw53Jf71rXOBqjth0ecNdbJwVsyyY3tbDNAHCwdKtfLo1rTJk2h0kXArq/aMgcZDKyvqbs5hx/cmWr7q7ZkoB42a9+CADw4M9/nZb7RnfTCnljveWaM0w0W8AAlmBTB4kOuakOEi1MoqsFRuyTePGgq+yKHsZLDEOGrjAX7yyXwPK9nFqnaYNu7DWGRAyomBFOTzQA+LJfeB++9g0fYo0xs02cOrWuTCKNY0lbQ5nE8nh98RMP6teuXJxBLwmvkaKJNUtMKdtk4NZPE1y1dwbHy/pC022OKzclyaiNBTMXyfOaSVSL5D0zBpMYGiSW53gaNYnmoqELAwb4FzG2mkSOrGw7MIMgjglTUahFE4dJHOaFZkG6NCAn1sB2jYzzAlmSYM9sD8vrI2wM85p812c4sTHM8dyfeTe+/U0fq1opJLw+icokRP1uWySbSZv5vrr+KTGzONNjtelovo87JwhDEsh3N61/FmFcSOc4jtx3eWOEXiow20tZ5k16IZ/wnIFJkpkx2Z5cSq/82b29Qj8XQwNSs3ctR+5ITp5CS3AZUk4hQB1NOP1Fqb+ubRzdt8Skrw/zmuETT15MSarw+s7cEmzYrknTefn02nDCXTPkOs4LWTGJ5T52dcC/lBCqgHhseQM//JbP4vTqVl3K7GKA2+SmJB21tsBwGdfEFhgXDboulnSQuLHzrTNqNQpdgsRdzCR2Pf70MJyK3LQ8/nN9Xo3UuJCY74dLVsxxagyDSRyHBaTUQ+6FN1ZB4uE9g1JuGiij0jWJbmnNKFfsy9V7Z/DYsgrYTLc5l7spHeuz6yP9AFUMJPS4SblpySQmCXppgpleguWNEYRQTIpmNgIXCV3lpjc/eAZ/dfMjrDFbtVrSrkGie5yWm2b1msTpMInVNlhyU8NdMPQeMI9BKCMOVMeRMvKuxEWWVEzi+nCMuX4l5/AZTrzrjmMAgDuPrUwyiYyWFKbcFGgyN1WQmJSSa7rn9sxk7JrEXEotYwutdTLlpLZAtgoi3Z/hWqT53E190j7CfSdX8XP/9Dn81gfuw97ZHoRQgVuo/LPQ5y1hm4tkHYLEmkspa07g1yRKMwAWwild3xrntb/VVCHMwDlNKrkpx7jGx0DS5/SzBIMswcYwn7hvWH0SjVrSMLmp+uk1QAGwMSp0GcYpg0n0OX6rz69eP7q0gXGu3E17u9yc8AN3n8T3/+ktU9mWuX7xXf/vv+sk/uLmR/D9f/rJWgLIyW63Gde4WmB45aYUJEYmcdeja23ONJnEcY1JDN9fulE4fcOmja5yX3Jxm8Z3o2M+20/Zx3+uvE5Y/a7K88ZZINRrEj3GNSWz9Lwn7EeaCOyf62Gml5ZyU660zP3QHuUFemmCK/fM4Pi5Lf2eem2hW26aF1LXqY4NJlGNq2/MlEwBwFOuVP2LFgcqQGQziR3lpt/yWx/FD73F39x+clvbZxJ9iZKNUY5BltT6zE0tSDS+DydIpMUdi0k0g8QODchpseWSQGdpgn06SMxr8t00mexdCAD/fOdxvPrPPz2xX9ruPrSOyzCusfUSpG3T31SQWNYkzmRe+Zt1e4XUSbjwFhiG3NTieEnrJ5+7qbMmMa/uf9cY32P8u//wZrzxA/erzzICvlBVzoTclBMQiapvHud897MEQnBZ8crdlOOcC1TtJWzXyIOn1vCF//u9+K7f/4RuTVRz3GXUadI4zTYzmURiIG2SZHrPXD/F2nBcu2+yJDy4r4LE8OdG5cDqbuUCAJvDHNftV22eTq9t1Y1rPAqP04ay5oFTayVLDW9Pxt2A7/q9m/D2W49NNZkP+O8bUiktGYloxVKrv09cJ+PSaZ1bk1iMo9z0UoB5QXCknPNTlZtW+8UJUigLvJv7JG6XSewqCeTIjGkfZ3spqzh6nFdMYpeaRJ7cNIxZoprEg/N9PPnwAq7coya+LE0Yxgpm9rP+WrU/qrn94cUZnFjZhJSy5jaXlAvrZubavNbp3jLdDVMrk1gu/MqH+vOesB8ANNvTVpP4X//i0/jTjz+k/0/Hr0v7BS7M65fLUlfj3Pu5OcxrUlOAl/nfDrrWJJKUjcMkmvczZ8FEbyXZlm1eGBUFemVN4pGz6/iHzz6mWQZAsWO2a+tX33tv7f/HymRJlqjFbujCum5cU+63rd6vvLcWZjK9EFqc4dfkmkEi17im1jvPGCo12+n+jMSxn14mMUBuah4rSlZ0Ma4hto3lblomBNQ1wmCOhZIkcxNHJJvu0gLDlTz6i5sfwfLGCB+8+yRe9qsfwpm14WSQyJGbJqa0L2CMPv5uB0rze8z1My031fcNpy9m0Wwdw5CbCr/j6+Y4x8GFPgZZglOrw3oLDE/yjpQBgGISc1kyibtcbkpkCtdzoguadfounCjLX8ZFUVvL0PmeuE7yMkBvk5s253Ovuykxif4yjBgk7gKYDxBO1o4MMpaZctPbHl3GncfOscbUDFA6yE13a5YJ6B4kkqymK5O4zjGFKR8SM7002BAAUOdttgxUurBEXeoY28ZRD7n5QYYf/dqn44e+5qkAVE/N8DoWY2HheGiPS7np/rkeRrnEWlP+42ANzOuhYhILY5E8mbWmwJ0W7l90gzIyol6Lzsm/xFs/9Sh+7G236f9P8745L3JTTzC7MarXzwFTbIFRHr9EcPskqjEDBpPYdR6na6mf2tmeopCQUh2zvbM9nC0TF3cdX9HvsV2TAPDs6/bW/v/ImXUAlWwuOGiTZpBY7qcxD1VST/VzwXA2W5zJVJ0gx3ClJncMZ18AFajaA1n1029co342E0e5lNp8Z3JMOyM1yBI87sBsbT96aRIcNJjsY5owgm3jvGVcuWOiWjBw5wSqdw19TplMlstxmuaXL37iAWyNC3zmkaXGNRnGikup7iXaFu1z6z4GGNdUbZkEZvupkpvKbn0Sc1lvZREiX2+2slCfMzluo1QhXLEwwKnVrYkA2LWLJ85VrqjLGyPDOXd3y00XGn2LdxK1mkTPfXOidJhd3RrXjWss85Z6gYLEnv0DdQsMW01im7tpDBJ3PWo9oRgTMhkEcC/+//vXPoyXvp5nnFJjEhlMFo3bzUyi+X18Vv5NkKymq4xhjdGTTtvk91IW21xIqWVprJrEnM8kmhObj33RNvD9DF/+lEN4ydOvBFDKrxiZbqDMvqX2hzbJTffPlc2N14aNhQXs44qKfT23MdbvqS9IJgNS9R3Ue77kSVfU/h7KpBwzXFjpO3QBZ5x5rnbifK8PLUGiCF+wbge0uNoz22Mx/sSkKCaRd02q7fKD7cyxsBsZCYi9c1VNyg9+1ZP1766Aj+bdP3/VFwMAHjy9pt+feAJ1KSU2RzlOrZJM2+yTiIn9bDaq3zNbLWYomcmpyRoXki1brPdJtBjXGIsxF1wGO2b9WxMhNYmnV4d4/hPqDtjqeDCltAmPhR+3zFsuVNd/uAOu2k91HfczjgkZ9P65HKcLKbF3todf/JZnA1CunFvjAjMli5UIpmw08ZiEWMeV+2gY17jMy0huWhnX0PdTSYGQNYaUqgZeN6oPCRKNRI2uAbaM2xjlmMlSVd+8PmoEwO5n1MpWtc5c2hghpz6Ju1xuOj9Qz56pBImBNYk6SNwc16XMLgaYgj8XK+hyN5V59bcmkkT9LcpNdz+atrmhIHvd3V2TyA82pg3zOc1ZuJKspiuTyGlcrmsSeylrMh7nVZDI7XcFdK9RCzGumRvUJ7xexmjuber4HQu7Ua7ML/aVRfpL6yPkebVocvXJGucFDixUNuYASmmNe7GljWvKh/riTA//+rnX4odf+jQAVQBgu3fMoN9clAPhNvJNcJq5d2cSw8bZWvRMuwXGwiBj9Wolm/yZXoKtwPvbnEe6GNeQnf9Eo3ojAXH13qom5Qe/6in6d5fhxOrWGE+8Yh7Pedw+JAK4/eg5CKHmEdeC/LZHl3HDj7wdT3vtO/D8//UevQ/EGPh6EFIY9eKnHtJ/o3mS4+5YyEq2uB25ad24ptxHT01iNSfUX6fG4Ta4FAmEvJA4uz7EdfsVk/htz38cAKCXqJY/IUGDOd8Jj7lLE6bcMUvCmcu8qBxwOc8A6kPL6cFZ1SS6GXE6/gfLefnhM+uQsnISbQuA/+rmR1TfQpsChcEkJgmc9bX03ZNEBYlN4xrdqingFFBSpkqABshNC8t3s9UkjnLM9FNtgtUMgF0JCEqYCqGepeO8kjInYhfLTWfU8386TGJYTSL1qlwb5vr+8rHUmu1zsYLOmkQPkwgoNjEyibsf5r3VRe7FCTZMcORX5sXPCVI0k7hLs0xA9+9Gaw3OgtwEh0kca7lpuAMoUK/t4TIpAK9GzXwg+a7jtWGOfpbUaqoAWjQFLggNiYy7uXHJJJZ9q86WiwTTEa+534B62B0oGRu6R/LcaJ1hYW2axjUA8Lpvew6+70U36v101QSZ9wY1s9dMYsfkCqctS9c2KeapajOumahJZBhNbAdmkMi5/qlRN4tJNL4Pt0+iEKgkmZbrEVA1u084OGf9DBeTuLY1xvwgw0wvxfVXzAOozJRcC/Lbjy7X/r85yrE5rgJ9G3NmOosCwMufdx2e87h9+LInV4w6l0nkumSawYbVuIbYTs9nON1NjeRSE/Sy63peWh+ikKoG+4Gf+1r8v9/y+QDU+TT324dxIwAITbB0ZRJVf0WViGYFiUXlyskxIaPrXzjqLUnGOtfPMNdP8UDJiC+WAYCPXb33xCp+6C2fxX/7y8/UHECF5Rpxwcb2TD5vqkTiXD/D+qhuXONq1QQoI5MP3H1y4vvS54UknUym3Kdc2RwVmO1VQWKNpfbUdq6Uz8LH7Z/D8oaqCc2MxNE0asy7YKFMRk+DTAmtSVwx1t7HVzbRSxVr72S3teuWq77Q1QJj7GYfARVAxiBx96MmN+0QgHWVOz54ao2xrbCLf3Lc7pebmjdkF3OXrkE6py0IbWu2nwY3YAZKl7pU2VTzrq2SyeoYNLQxifP9yYmLY+RgFtvbFoT0niQR2u777PpQM0SAW1o2LgocXFAF4ucsTKIt29o0rrHBVRNkBi/08KDP7yrh4bDbdcOh8HGhTGKzpx/AM3HYDug6XJzJ2FJaYhJD59euihBTymgz4KjqXQWuPzhv/QyXu+naVq7lVk8tHXf3lveDa0HeZH2PLW9iY1gFibb7xlxoAqo36N/85y/BH/+nL9LvYdVkFVI3Eg+ubbMsks9nn0TXva3ZR8d3I1fIgwuDGovJMU4h2WKX2k46XxlT3poKwQ8Spbo+VHuV8HNdJe7sQZtpHHRwoa/XLlRv5jOuOXJW1eHeeWzFYBKN4x/w9epGafbzbfZEnO2nWN/KG0yuO3D7/j+9Bd/1ezdptkuWx5ESCSHnrWZc4wg2pJS6RnzvbK+UjRoBsCfYW9kcY5AlOLw4wNk1qklM9HGZRo15F1ywmkTPs3tzVGBPyYI/trSJPTM9fW83PweAITd1hGy+FhiuwBIA0izKTS8G5B2DFLq5uzogHjcKkdtgsg2cmriLwbjGDEy4WVOAxwiaYNUklvs400sxCnz4Ag0jgQ7XVhf5YZqIVndTkgmZ6KVJcACctywIgepBu69kBZfWR7WaxMSxSBgXEoulbb9mEot6LaMtsKTv4IJrcWceq5XNsTYqAbrfN2QOFIKuwU2ou+nGqJgIPDi93rYDCoAXBhmPFS/UYovDJJoSQFZNojQSF7Z6V2OBetUeuwW6sMhUgfJeKxdJJHdcHBD7Yl+QNxM1R5c3sDUudKBvcwDVNYkeni5lyR0NJjH4+KuftZpEY3NmiwwXfO6mLiaxLdg7vVoGifP1HmfCEZDaUJu3POYiTYyLQhvucGsSK+MaRuJIqrYIfUct46NLG/iW3/wIbnu0YqsLiVrizi43rQKwKxYGuP2oMt4z5aau4/jQaRUkrg+r+q/EaGURcvw3x3nZEsRtClNjEnuqJrFprkPva+LIWeUcSjJEOo6c1kl2trP+nlEuS3VRgn1zJDc1AmAhIKXdm+Hc5giLMz3sm1PBpZpbqsTRNJJ+XdDVu6MLajWJjnmLAvUrFlUi+ujypq7bdpXOdJebFlFueimg6yKN2gV0ZRK7LghD2xQAVRZ4NzOJeeBitwk6Jp3lpoyFPG1rhtkCgzKw3IwwBWu8IFH9nOv52wasbI70QtUES6LUyH4Ckw9tkjHtm62YxFrW2mLAAUA3Cd4z29N1GHXZVtJqXGODqybIPC+rW+OGbLHbg5clNy1kKf/1B/dNmEGJr25v0yY3nZI8SctNZ3psJjFNlLtp6CKZvs+AUVsL1NkeW52grndNVK/JX3j55+Nv//OX1N7jOp5rw7FulXR4cUa/V2/Lcj3S/PJn361YwKNLmzU22FbvRB/jIekUk8ioOd5On0Svu6kvSCz/OGEuKKV2KJ4cU99+E6fX1MKf1AkEl5LBhrYklQvE7AElk8hgZXULDEbCQ8qqv59tkXzXsXO4+aGz+IZf/3BtW3QMhSNIKQwm9+B8dRz3GItr126SWdPK5lgnuNOEJzfdMPqSuhby5jmaH2Q6KDX7JAKw3gNUN39ipTIuS4Tw1rI3IY3r2yU3JYXJTC/FntkehuMC68NxTe5uGwcA5zbH2DOTYe9sH8vrQ/UcL+W+06ox7wLaKyrl2EnkATWJ9By6opwPji5taKMvOv4TQToFf21y0+a4YuxmH4FSbhqZxF2PrnJTuiA3OwZgnObqo4AMiXVc+d5xIXetHKFrLdF2HSg5MtW8lBt1YQTTDkFilxYYdBxn+6l33MqmnUnkLGJsLnXNh5SUKIv/EyzOZKpxbYO1sY1TrqgCe2ayyrjGXKSJyQVh07jGBjeTWN2HK5ujetKoM5PIq0nMkpI1Y6gSgpnEYY7ZXv24pIyAYTsY5QUSUSYuOtQk9hh1dKYDMVembbLbTuOacpH8ihc8Ds9+3L7ae9pqEgHgUJm5puvNJZujuf5xZcPt4+c2a3Wl9vumYmhc4NQkFtJogREc2EDvg8/d1Gdc43Q3zaXzu7nYRwIxiQcaTCLPXdOQJHsSLFvjHG/71BHcXbZHMWWaacpkEjvKTX01ibTbhazmzLrc1F3vR+/5yW/4PP36woCCFPdxJCZxXEgsUY/KhGdcs7aVa0bKWbdqPCNm+yk2RnlZ20nH390GaW8ZJFCbCRrnYx+bCHkmEqEwWxrXAMCZtVHNlA2wB84rm2MszvZwxUIfJ1e3sDkqsDhoZ3IvNKqez92S+V22BbgTvPQcovl4eWNkYRIbg7TctIVJbNYktspNe0AemcRdj65yU7oIuUwiZe04ssWa3LRDCwxg95rXdF2UbzdIZBnJlJlsTq8roJQb0cOe6YoKqOMRGtzT++b6foneSpmRbKLHsE23Obm53OYAYP9cf4JJdNVtUEH+wYVBJf8p6u6mzWDWZlzThKsmqyk3rfUk7Wpcw5gTSCalrhFOTWJgkGjrk+hw1jzfGOYFsjRhMYLUS01l1hNIGeiAWB6CmV74dQzUmRSrcU35wZknAeFzN12YCBJLNsVVy1vuuzK8SbC8McLGKNc1grb7xgzQXMjScHfTWguMwHug3idxck5omuvY4JKA+moSXewj4fTaEEJA10ZX2+LVxNUkmY7r8e8+fRT/5S8+g+/6vZsgpayN47ibFgVK2Sg34VEmMx3PG3P7955YnfxuDumuGWxdt78yb9JyU4+ZDzGJAHCqnM9rZQqOQ/LXtxzBj//NrdgY5tgYjaskiWMhr9QH5G6dYZRLrG6Oa0wufd8mdJBYMomUpBIlmxhS4tNsZUH7ZEIHiT0zSNzS13DiuSbPbYywZybDjYcW9NqTghtOvfG0QXPONNRsdeMa+/bo2XzlYlU6sIcYWZcqoWsLjGLcIjeNTOJFgZpsi2Uc0S1IJNnMFqe2MCBDYh13EQSJXWsSaQLmTj60EOEGpEnCC6TUOJVB7qe82pJQK+fmPgKKSfEGiVuVTMUEWcIHbav2QPQziYBaoJ1dV3bfTeMaGyuYJQmu3TeLR5c2IKXEcFzoRbptIU/3R89jXJM4AnzzvJzbNOtm+AkIaovTJjf9uX/6HN55+zEAFBQnGGRJJwdcoN3ddKYhN1XypOBNdcY4l+glyjmO2+/Q7MEZlMmXBpPIvLfNerPmUNOkyQXbInmcF9gcFZoBoSCRzpWLAdPbSwUWZ1QvtaFRk2hbJNMzzCflDGUSqSZ3wHQ3tfVJtPZy9HxGCEvUBL3sSnqcXt3C/rn+RJDvkrvb0ExSucZ89P7TAIDHljdx66PL2Cpr6Wg/g5nEMihTzw1mwiNxM4nm9v/l3lMAyp6A5XdzBukOd1nNwDiOSV5IPHJmXZs2kYmQCsAm94nw7juO47/91WfwJx97GL//kQdKJpFqcu3jlAOu+v3afar+96Ez6/r9PndTWpMdW6akZJVEyDwmX2fXhnjJL78fv/bee2q9Sm1MOlCtVXppoueDx5Y3a1JmwMUkKsbrxsML+jUtN21x3H3RL74Pv/3B+51/30loVdQUHjh1g0f79mj+veFQZUJG17Eor8tJd1OSm7qMa3w1idHd9KJHVyaRsktsJjHpvi2A2wJj+6zITqOz3FSzbbwMGk3gXRwQOb211LhCW/l37XkYukigia2NSVzdrNgNE700CTZFMg0IXIxgIaVeEO6b62Npfajq44gRabEyv2bfLB5b3sDmqMC4kHqfbU5utN+uuiX1NzuTUmcSK7kptycmoOTIgF9uuro1xhs/cD++549vUfteFJUkmdVLs/2+yQsVYM/16uc7m5I8iViKmV6KzVEe1pMuIAHh2hYAzGS881Y3t5hc2IXUuyomsf4aXVfEyFENzP7SyMkVENE10EuUTPtk2btTB4mWRTL91lqTyAy2ge31SazLTcu/+0p0LIY3gL9PYuJINhHOrA0npKZqPxhy04Zxjctc5JaHzuJpV6mA6N4TqzUmWTGJ4fOrMm7izQnk8NlP7XW5NGccWhzgdz70gP5uuk1EQL2fCS0BdbCrR5c2MMolnvv4fQCqPrR1JnFy3MfuP43ZXoqnXbWID99zqqxJrI6jbZxZt/q4A4rtXFof6dd8TCIlCqm8QbmiQm/PVYZx/6lV3HdyDb/87rt10qZWp+9KACUCjy/38YFTazV3Zdc+qtYZGZ5UCxLb+1SO8gIPnl7H/37756x/32l0KZ3pvi0jue7YHvXrPTjf1+qCPUbS3MqKt8lNXS0wZEufxLSH6G56EcCcgzlZu0puyrv4adJiNWU3LlpOn75xwE1zPvFXNz+Cj9x3ijWmq3FNFyZRSqkfLmwZT5mhpf+HgAxX+gwmxRzH2U8d3PRTp5GJlFLVNthqEh0LC9+2zNqS5uU8ySQOsWrUaDndTXPFrF27fxajXOL+U0oWZdYNNDO7pgOlCy4mxTwvq1vj2nHkJASAisn0uZt+9shSfd9Nto1TtxcQJFY1MJM1iRyX5K4gmdogS1DIMEbQlCVW7oLt+yp1cMM3rjEXyU7jGp/cVFiCy8Y1eWC+j5/95mfhd77r+XoMYAmI8ooV3zPT0xK42YZxR11uKmt/syHU3ZSu/0HWsQWGKTdl72N9HwCas933dqvcdHU44WxqjguTMk/222sOk1Li6NIGnvv4/Xq7JpPM75NYBoncFhhJaVxjZRLVay952mEcO7eJta2xUndMfDdbAFYd/5/+xmfgaVct1pxDbd+NXEM//7p9ACq5aVpzwJ0cd3ZtiIMLfVy7bxbLGyOsDcfauIaukea1TGofoKrnBeqBlG0cUD0DyPHclNcqJtF+Dszef2dKltR1/dM+AurZd9WeGc0UT8h9Hfs46CXYO9vD4ZKFrDGJjhtg3Wj1xXmWnS/Q8Z7G+jOkJpFUPrO9VJtZmcoqW8KvcjftIDd1sY9AZBIvFnTt09dVbspd/AP1RSCrT18h9eQ6jZv0h97yWXznb3+cNaaru2yXmsS8qNobsDK05UODJEuhi9Ci6OZuOs6r88Z1d5ztZc7vRqycVW6aivAWGMYCOHFIZJT0Sf2+b66PpbUR1odjY9FkHzculHHNdaVkiEwgzMWWrf8U/c0FZ01iGZjtn+thxZCbDjJiUsIfrLR935jbH1X28ZRJzguJNC3Z5g6JI5+b54ZRA2OCY+O/HRADT8cyJFFiyn27MImDXoq8kCyTEK9xjSH/dMEmQaTPMRfX3/lFj9c1XU4m3XCAXJzJtJnGTOY2rtHOip7vGerKSfdWlhAjxWMSXXK7kNMhLIFDbjmOJrTc1LGBU2tbmsU14TMJacJsr+Da3tn1EUa5xI2H5iGEajcBQPfJ9MkWm6D7hm14VtaB9xwGa5SAoHYsjy1v1lgzV52mWbcIAP/uhdfjHT/45fr/rvlkeUMFTk8spX0nSxMhavdAn93EmXXF/lLD+Y1hjrlB3VykeZ8qSTCx9n095+1tOFf6ngHkeK6OY3stqRkkPlL2gzRZUludPlAGyYnAdQfUeahUAu5rcmuc68TNk69UbKIZALuSHatGwvJUefynCToGnCT5drcF+BKn6vVBL8HZMrB/4Y0H9d8Tr9zUFSSm9fcRitwvN01jC4yLAl2NU2hBPZUWGMYikMckmi514du798Qq3n3H8eD3bwf1G5v33dSYnZffarlpuVAMDaaIEeTKhsZFlYEO3c+acY2DkaJm8a4+iVLyFpJJIvSDOW98P/UxxCT2sbI1xvLGqGISLYuEoqhYg2vKIPGuY6u1fbYFe6bUzQU3k6ju3ysWBkpuSsF2nye3U6Ag0T3m+DnFDNGujsrFDbcnGhmu9D11spQ1bfZJzBhOi9sB1UiR6YqvVQfBlJuy+pR1lEnW5HaWYI/mW18CwlYT1MZuu1iDUSHRS5VphmISyyBR12RNLiQrKef2mURzv12tFGyoahK34cBqCRJpf1zfrc2l1Ck3dTC5Nph1vS6ZKjG+V+2dwd7Zng4STZk8y920gwRdloYrPcc42j7JMY8tb2qTFqCq07SaiXnl1vbjT/LNa/fNIkuEVW5qO21n14bYP9fH3jlVk7s2HGOuGUjZmMRyF4UQuHKPSgzsLSWFvpYnJEHUTGIha4Y3LtXFktH775Ez63o7Ptmu+R2I8dxfXp8+dntrXOj61icdUkEiySR9hnrrhov76tYYtzx0Br/6nnus790JTFNuGlSTOK6eib/ybc/Bf/vqp+ALbzig/26Xm5af1SY3tQWXbcY1UW66+2FeEJwATDOJzIufJgBu0KDd5ph1e7MdmMSvet0H8N1/dHPw+7eDrm6SRYfJxwzueD0IZblo4jv+kQEBNyitmMTwgBTw1ySulA8Mm7spMSUh1xe9pSY3nbh1qof2wQX1EDx+bktn1m2LOzo/vTTBNfuU+xgxiQtGcOnK0HrWMciSxNr2gc7LwYW+YhJzCjb49xsthH1STpIlURY6L+ut1IKclyTJksTL9piW6ybajA7OFyomsQwSA65luq+T0t2UPqd9nPo5k/HOW2EwiVYDGuOadMHGblduh/ZxzqbgpXETAOyZre7TiT6JNZYu5PoPczc1j38vC3fkNOuUbXNCxTS6P8Pm7tjGJFbs4+TfRnmBpfWRnn/s22r/futb41r9nblfBGJ8Dy/OYN9sT0st5wfu5JYLtT6JHVpgDBxzAp1LYhKPLm/UWDNbAoLGtQX3tu9GQeK+uR6u3T+LB0+t6ff7GODTZWC/b1YlF1c2x5gbNPokWhQoZk06JRWJSfS1StFMYinNNGtQs9TdGmp5vWLmKEhMEr9zN1Dd+yQbJTm0a04g8zZSZLzghgNYHGS4YrGvv5srSWK2+lofjvHy3/wofuU9d3d2hedCt8CYwvbysr4fcK+vNw256Zc/5RB+4CVPrv1dseLNIDFQbmrWJEqp5Ke+FhhJZBIvCpj6c1adoNGontODsItGe5RLXbjNYdty2Y1JnCbqfSr5DqAsJtE45l36HXLcFul9JDcNDfaklOp8D3hBIh3HfpY4F4PU0NZWk9hj1MrS5yvjmvr29f7I6oH+zGv36tdp0WRbbJkmIYszPeyZyXDXsXqQaMvI6/96FqBtNYlXLAywujnW11WX+0ZLoD3XBzn8nStNcsg5sJcmbCl5kqjgxRVcuuSmaRIms9suqAchR25ascLYJpMYGNzIRp9EB5PIdjfVC0L7GFeQMsqrdg+mLHxCkmYJEn03QAiTNc6Lmrw2S8KZLH3eEvucYNaaumCTrlfHsSVIt3w3kpMd9MhNQ4xr1oxm7q6FPDG+hxcH2DvXx6Ol/NCct8L7VKIys+rQAsM1J9D5v3afYrAeW9qsJUlc12RRuFuQAO4gZXljhDQRWBhkeOIV87inbLuRJu5gDzCYxDJJsm45/pNy0zrbTCZi+2bLAMxTA0kKjlXNJFb710s9ctOyx54QlZSzliRpYRLJ4bSN7aR5k5JtX/esq3Hza79Krwl9LUhME7X1Ya7nMWovtdPokswHgKX1oU4yhGJcyCpJ6HgmmkyiDbaSAyUjFe4MlxDq72ZNYpvZDQCksSbxokBuXlgdTWE6Ga6wAtLKAp1jODEutleTOI1C565MIh0Glmy3o7SYJGnEJoRsk6zkk4RnQEC7OMeUm1L209ZHkKDlpgN7TSIQdg+YkjTXosnsP/eMa/bo9803ZXNmkKgXqOo4X7t/rpJtmU5uE7KOisVwIXUwKbUgcVj1SeQGG0AVUPiYZmISpVS9r8aFRC8te3AylQxZkqCX2U0qgHqRvok0Scr63J29v6kutWISA+Smtmsr4LgU+rzxmMS8KKo+iZbFVohxjRCTSqNCfw8mk1gUeluLhgvxTNMV2JSblj/bmUT7cZRS4tvf9FH8q9d/sMYk9rcrN7Ua17g/ozKhqca1MYn0mbbFPyVkfMY1IezehhGkuAKp06WU8uBCH/tmezhXJuRoXFbecyEoDLnpuJBBSWh9/BPhnBNobpvtp9g/18PJ1c1aksRlyqPKJjxBuiNIWVofYe9sD0II3HiocuVMk8SQm9bHbY5yrA1zHJjvYd9cdd7mjJp0wGYKU3fApWfIvrn2mkSqUyPDsWbvVJ9xzYH5Phb6Gc6Vz1bT3XciSGw8p4hJpL12mbnRWoXmUWHUedM413RXZxJzLW09VpY97DQqUoRXlvWcn343nv1T72KNyQuJfqaurbaaRJpPm1CqkMaLRYtsFFBsolmTqNnHFuOaKDedLv7gXx7A5x47xxpTSKl7QrECMGPhwqlL7CaTlLquh2vU0kVuSphGsXHNOIi1SC7KMeH7OKwxibxzRjU6AI/Z4BrX0Pmd5xrXFCjrJt2M1KqHSaSHasg9QBPtbC91LraKopIx9dJES5yaTKL5rK9aWVDNxqz+m68FRsU+tQSJltO2ZVhiU+AGGEFihySE7/o4vbqlFxFn14e6bjVjmIQAdQm06x5YL+elZp/EKqsevLlO0HLTcu4KcYKu1bvq+y18HJ03jiuwySRONOk2mDUXbBKlNibRxRqM86r+6/Ou2aNfJ/OV1LKQlIFJEtd1+dDpdXzs/jO4/+SalqRniWD1hTXdS30OrG1sJ4DaOaBz76sJFQ53x9OrniCRxSSOtXGKKwAY6YV8qgMTwJjvGExiLiVSUfVdDXnGmXJfFwNMz8wsETi4MMCplWEtINISUItM0nP5l/eNnUkkuafZl67GJDZ2k+oCF2d6mmEDlBkNfT/AwiTK+jVCTCIlyHznu3I3zavvS3JTT/Juqfx+CzOZZr3M5NaEBL2Afg9Q1SJWdc/0XRpMojZbsbNfvpZGptP2+tYYB8rA+/jydIJEXZM4pT6JaZI43X0Bo04/czCJwsJuF2O/AQ2g/m4yiW1mN0ApN41B4lTxk39/B172qx9ijRnnUk8oPpnYxLgyawFUFHYI6ALkSVsL9OjiD9xHKZXD3yzTyMFEW1Pw8wFzAuY5uamfXcxuumzLrEkMCaRMu2uOAQGN4zKJxNr4Hmo+uSnnHiAZ4yBLjEVrfZxEXZ1B5hFVCwz1uk1aRgvyL35i5Tq2YASXzcVWCEvhYhKrmkS1CD9b1gpuR27qGiOlxOm1IW64Qi2YlJtqVZMYuoikbaWJQC/x1CQ6mcT6/u4UcjKuIblpQDLNdADs5G7KrEmstwCYXNjpYK8lAGvuYsWI2h/ztGhtrkdGudTzzIufehhfdMMB/KcvvQHXl9eMbSGpfRU8++hjEk224dGylq5qyh7IfhmJGttCvpKbuj+Ddt/mbuptbyOE1QDl9FrF7tnGmPvtw8Yw18Ypvro9QB3nq/dOJrdCa0IBw7gmZdTylrtDQYqNfTQVIFcs9HFqdavW3sPnHNrGJLrkpnvKIPHgfCX5NcsUXG0islTg2tK87KuefiW+6bnXqtcdEnSzHg2oXGXN+US9b3L/KVE4zAtVPiSr8+xzpd0sGeaFQaaTiyaTOLGPsn4t6/WEEeCbx6C5fzS3NZF4EhCrRguMtWGO/fPqfByfEpM4TeOavHRG9yVOW+WmwiY3baktBBSTaNYkhspNc7/ctIW/jOCAUxdogmR6PhcrG8Z5gYVBhjPjYXB/MymNFgxMd1OqEQndRzoc22ESN0Y59rNH8RDSANU3juzufYsIgrlw5C3+i/IaCc/smouGfpqyZKNAdd5C2VxibbKyhkIahgQEksQsWuSm2rgmYHtboxwzvUQ9SMu3Nx9SUtYXrZTNp8nZ9kDUC8Lyby95+mH89D/cAaCSbdlqBui/ze9rwiWJoppAyngvlWYEJEfpYozkukc3RwW2xgUef2AO955YxbnNka5B49zbQOWcq6Rl9rnP2QKDwaJsB+QSyKotrDEi4RJo+i6UuAuv//Ib15jMpgvCIndsXstNaNamySQWhb4Xk0Tgz1/1xbXrurpvqmuFtu0zhUk9TcHNuiUyXMlaWOomzH2wMYIhNYm2urGQIDER9ud/xSRO1iS6jr8Na0Z/18o4qP6evFDtJ5JE4DmP26tfrzGJjNZJpuFTUHlD4/jbmFWSbWeJwBULA9z26DIOzPctclNbkOjedpoI2PLJ5zZG2FsyVzS/Aio4qpQk7qTMU65cxMd/9CU4vDiYMNexJWXMa+SnvuGZOLgwwJc++YpyXPW+JrZGhepTOy6wPhzX2NXMk4QbFQUWehkWZjLcd1LVWybCF2zXWfFnlbX6L/+Ca2uvN49/syaxidRx/QMVMwsAG8OxLjU5uTqdmsRptsAggyWfmRvVKvZdAbfVuCZEbtpgEtvMbgCE9EmMQeJ5BMf0wUQlJeTJvUaFxD6SqTL7ywF8uWmWEo0e9qCpDDhKRqoDk9i1vcc4L7R8sQ3U20lKvpSWMMoLpG1yADTlpkxpnxDoZ+ViN+AcmEwCR25qtrLg7CdlnzO9QJs0GyDGwNYCQ8tNA67ljVFek/HYFsmFlDVh2f5ysUB1kbYHYnNB/oSD8/jFb/l8fOqRJaNv1eQCSAYtku21JRRs0TEh2RCXgacaVMB9fdDxv3qvcm6lvoz9XoqMcW8DZeJC+OetDYe7KSdo2w4qw6dwdk+zYgnP3ZQ+mljL0AW5ae9vM+AIMlwRPibRPs7tblpvN9BMfOiWM2YApt/r3EUvk7hmSNKOlIYrypXZLdtqwjxONtliSCDrSxz5WzA45KZrW7UEUHNMc1su1I1Tyv2yBDe0j899fJVaJYdaTtsZqoHnyE2bcl/bNF5nEgc4tTrEjYcmmURbLV3mYRKFcARf40L7PZjnYP9c372txn1z5Z6Z2t/pMvD1SQRUK5Kf/eZn6f+7jGuKQmKYF7hm7wyOLm9idWusn/eAqtV3nTe6VxcG2QSTa/9u9X153IE5PPjzXzexjxNM4qglSPTc22YLjLVhru/naTB7QLWe6Lq9UV5468FNmGt51/aGeV47R02klpIDJTdt2YcJuWn5e5Sb7h5wFlgmSErIX6RJwyQhfPIncI1resxAtpIt8hgpExsdg8R1xjgy7kgTwQ7cCKHHsm5cwznXqPUEDHMApYwotNw0hO2mcbPMmkRiRHwOrCubY8z3U+sE2WcY12wM8xo7ZZMbkWkP4SVPvxJA1ePJ9kCkjzD37luf/7jaw95W/xLEUjgepCT3JAkutaaY0X0SQ5My7dcjybdp4bOyOaoYwSQJTjap/UZrcsvVJ5Fj2rEdFNrwiSEb1ZIsM5gNuN/KcYMsPNmh9zGASfTpFGxMVluQ6HY39S+KbIxIUE1i6jbg2LAwiQmpEhjslxqnAtvmMaHf/O6mkyxRW79J+kwbKX6mdMm0scC2mugmTpzbxPL6qGYAJxznzWSyrtwzg9965RfgXf/ly3XSImUY19Dzps9iEqvv5XIvpn0UQuDQ4gCrW2OcXhtW7YU8TKK/B6ddbmoek32N+kJXkN41uWJLilrHNbZHc/WBUpK8Psy1cRCNc90DozIZbpZvCOFuC1WVoNj30XVMKrmpPeBwMceACgxneymEUAEjPSu6rpe5oK/SNUjkOJwW5Vrep65Rcn7fHGQxbJR5gNxUOOSmnnFpr1VuGoPE8wiOVMuE0uST1XG4bNQ0heFkrQmd5Kaenj2ubXWRm1ItRIjRhA2cWsa8zMb5io2t4zocS/r8mR63/5SS22SeQOoTD57Bc376XdpaWj/s0kQHYBzDm9kuBhxCeFtZrGyOrCwigKAAmCzlzebSAMq+e/X3FiVDTHjpM6/CTT/2EnxRWWdYOblNBoncnlzBNYmWw09BGi0Cie3jMonm3OG6R4mxuWpPxSSOc1VHkTIb3OelLLHvqRvbdLbAsC90zzdokVi1GGrfnsmIcGoS6bsMmE7VJmtgSySEJiAmFtaGcZVrjPk+wjhwsVtn4NXPzkyiwTZQHR/NyewWGOaxZDOJ5XutTKIncHYwWadWh9rwZGKMgxEkHD+3iS/82ffiP//ZJwGg1m4AsNSu5nUm66XPvBpPuXJR/9/X8LwJet700/BnAH1/ITzSeiNooz60dxw9p4McV52mybbb4NqeGSTWmERD4to8/M26vSZspki0rZAERPN80/xOrTJWt8a6TyUArxHcKC/QTxMdZNN+p6l9fi2k/1p2XVvDNrmp594e5QUGvQRzvRTrw1x/FichuR3QdkJdeptYMnpRtoFUaT6Z/HBc6PWtDYnNBOsCyk1jkHge0dU9SUuiGDUD2iY/45lbdGG/ACWl7aVJJyZxpoNxDWVauspN1zlBojTlvjwmlxC8kC8/f76fsdxNtdzUI5u7/dFlLK2PcNujy7X9y5iyOZq7uQxwc0Fu29bq1rjWe81E24L8de++G8/9mXfjnuMr2BzlNXcwW/atWZMIqEbTE9uzyk3t35HGTQaJ5X60MomTx5IWQBRIkbnPDNO4ZhxwPdJ9cWjPAEIA50q5qWISmUoGSW62Hie3UQ7TlZcwNbmprAxQ1PZC5KZVkMjpS1rVJPKcqk2WxBbshQQ3wio3Vdt3MTAuNneUF96AyMfAd3U3peuynyU4uzbS+8153jSPU9MAopKE8wLgyvmRz2SdWRtaTWto/wD3fPdXNz8CAPjwvacAYLJPoiUAaNtH30L+6a99B/6y3GZV3hDOJEojuLIl4NTnVm0iPu/qveqz80InDrVM2MOS2uByNzWb0s8ZScVemnidVOl7WLflYnJleyBrHVf+n2TB61u5Ntyi/XDKTcuEjvlMTQ0msXm/tToeO5nEMkh0tG1IHEE6UCkTZvtZTW7Kabe0HZjti7qs0clILgRUy9tPE6e3wigvnPWIgCPhUeTt7qbNFhgywLgmyaLcdJroLjeteuAFLwjzOksXbCZjvI3NJNJDO3BhRxNSlz6JPXJt7dDaA6hnptugF8ncFgCmdDfwu9EidW6QsiYsWgD4Ainqf3fPiZXatkzjjpAG5k0mkRsk+vodrmyOa1lPEz4zEykl3vDeewAA955YVTWJE0zi5KLJL9GbPJYmi+SCPUgMYSnsvaSoBxgd79WtRk1i6PE3jrfrHiU78oVBhoV+hpXNkZYsKWkfh0kvdL2f6/rfGBal1Kh+YKZlXKPqJquglCc3FUb9XcC4BpPIYm0CmMQ2BszW3BtoZxKbcfO4VQ5lYxLpvnHvo49JpCDxqj0zOnOvDLd4QaIQVRDYPJZVIOv+DFsPyBDjGluQDqh2MwcspjXm57l6hR5ttAiYa5Fkjht9+ppQTKL9WN5zXM2pv/COu9Rnl4kLrVwJkVsbyZXUchzVPlZB242H5vW90pSb2syUvO6+NrMP1Fn6iTmopSax9b5pbG6ct0tifdvbUwZ6q1tjFEW1f8q4xhEkluxxk0mkHI+t/hFwP99c11ZlXOOWm7rm8lHp3j8/SLE+HOvP2ukEIcG8BruUPJ1jyE1D1pLDsV/OT/4YNYTITZs1icQQ+sZFuel0welnZsLsgRfOJJJskYxrwsaZNwzLJIcWkkm4A2uzJpEVJJY3EacmsT4Z8Fi6LnJT81yFSwLLY9LL2EF6W5B4qgwS7z2hXM7Mnkh6HKMp+IAbJJbJDp8BjS+L5rMIf/jMuv792LlNR01ifYxEm9lH+T5jXMhtZKu/0CyFJyzNErstPMmdST5LvbIquWnYvT2qyU39TOJsL8XiTKaNa7JyQchqwVNek76F/OY4t0qUXAYJ5xtkJlFJmcODPZ+VvA1Nd1OO4oK2o6RG9b9LtCcu7H0SC+84twEKn0kM60GYeJjEMYQADi0OdOZeM4nj8GDb/K6paMpN1c+24wjU54Q22S5ty3ZvL22MsM9iWmNuy3UPnDi3iaddtYgXXL8fi4MMT7myWUtdf38b2+ZjpEh9cuUeFdBS4qLHUaDQ8TWYRFtARMcxSxM8sawPr5hEhwS0gJZQcr5b4TkmriDdvP9tcLGdRQuT6JOpAtCtOtZIblregsq4xs1K9VKhxwLAFYt95/zazpLSd6m/Tusp37PbzyQK/bypmMTpyE27llh1GWPWwLtrEluYRNu1HNIncaIFRrnfrXJTfxAc3U3PI7r0AQQqSUTGqEnUTCJTytm5JrFQ2eWMIck0M+tC8Kj+LjWJ9e8WvvikWgJfxs41jm7o0O3ReZsbpDixwmMtzf5f9sbNqpaHgkSzCTSnKbiZSe1nSbhxjSGbBuxykryQziyazyL8I/ed1r8fO7eJjVGBA/PV5CeE3d3UxxrYA+7ABXnjMIawFG3uplpuWrLggx4/2CC45abqs+cHGRZnepPGNR3Ybd8Dcex4IHJq/baDolDXlb7+A74fnUvzWg7pL1e5m4YvrIFKEkvbdLVXaat3ci0+XfWFrkXrMJeY6fEZEfWZzmEtNYk55vsZ9s72dGIwFQK9jMMkosY2NVvVhBoAAfXv1ibbpXFWJit313f65nIAOLGyhSv3zOB3v+v5KGS1QHf1GG260jbhq0m847FzAKqELq1JUs9c3kRlXuRupUCqCcKBsmcesWiuxEXewiQmid04yGQuAeBHXvY0bWCTeIJtwH3fCGF30x4XfibRJV2n/+8pA+X14Vg/7wG/cQ3JTa8yHFgPzg/cst0WpcxOuJsSwbB/ro+z60O9DuQkJLeDcaEMHjdHRSe5KU/xVZm5ucaZfWhtcLfAaAsSm+6m5bpN+GpnekAeg8SpYTs1idSTi8sakLtpsANcjUnksAYqu8yxJK+yVgn6HkmaDfRA5DCJ5ndjObeW2c0+Y0ECqAl3tpdidWvMqAkt5ab98L6FgArA+p7G8UDVk+ueE6va2AjwW2Jb99GQ2w0YrTNMl17Azr6oCdv/gJp0KZX4hXfciWdeuwdn10Y4tryJrYbc1CZ3kRJejZ5tkRayILc594WNs0vSyACmV7aYWd2sy02Dpcx5+71NTOJcP8We2QznNsZKXpgkyFK1f0XLYkdvr6gk6K7gy/VAnFaQmMvquwFhC5OKSQBrkazdTZkMsKpjQbnNyYV8qJR5kn1pY0Tsc8k4bzFW8MpN/de/6zrZGI0x209rLo1845q6UVWT8a9ku+0BsM2UxxekuOSmvjo1l3EK4XjJJDZbOfkYKT/bljiVJFSeQaZnKrlSzeWc50ZNbtoMUhqBLJnxaLmp77u1BOm2YNt0DgaA7/mKG2tjzP0mNBvL22CTt7aZ67TJW8lYZ2VrXKunbzOuyZIEV++brLW3BbKtiSPH+iJEbuq6RoZj9QzYO9vDkbMblXHNFJnEuX6GzdEQWx08LkJ7kNO2EqHWr6uOkqetFrmpNUiUAcY1SWJvgeFlEmMLjKmia00iZeT7WXgmn27I2W30SeS4S+mG2xy202SkGPWWQGVcw7mpa0wKMwBLU+Gt2XBtj2vKQ9fIXD9jHY9mZtf2QKSaxJXNMU6ubNVkUhyjELNugRr8hoBcekmqZruWfQ9SV+AwyiXOro/wNZ93Fa7dN4vHljfLPonV9NWsSTSz2i7YAu4gl1LLJB7WTNzPJAJKPk4Plx0xrtmqgsQrFgY4ubqltp9W5i6h/V7JcKWXJc52LsNSatSE7zo+nzBVAgCQh7SO0eZFvEVy092UMyfT8UgTmyOh+tlWk+gy4ODeb2MP+wXY5Y70VdsCWddhVExiqhkloJSbehqJN1EUdblpc3shvUw1S2TOCUXYXGJjEn3skovtAYC//MQjOH5ua6JHH23LNk4lbdxLuix1M4k0x58gZ+xSbqpdgUMMn4xgugo26u9pMnvEXFLCz90EvkVK65A7mjWJTVCblKbctM0BlPazi9zX/HxzHKDWBImojMvo/VkinME9SRep760JG3OvE8dOCbp9Xh62yE1dfUIBNQ/2U6GZRFoDTc24ppBVwrVDYLrFVNe0GW4pR1r/dWI1rmltgdGUmwYyiS2IQaIDeSHx6/98D06VEr4QmItiVzG6a1tkLhLcE6183wwza21KQDlZ/HFRqIw8Yx91JrsMgDvVJDJcSmumPEwmkZqCc2Wquk8lw9wFUA/HUR5uyUwLIB8Dc3Z9iCcemgeg2ES6RthNwWtMYjjjGWJcQ3VsNrgswmmx3csSXLd/FkfOrJdBYloba361UGavub2Qxa4oWRvzHg9xTnQ1mDYD59leitVykTDb50rJzZrENiYxw5V7ZnB8eRPkOOiTCdu3J1vNRUaOrKmPET+fCOndOTHGWEhxkit0b9FCiqPucLVtAKCppi7MBn2mDS6546goJtir2jiLJDCMSXTPP+vDMWb7mXZ4BEomMQuv098aFzX3xaQR7En9up8lbwaXVZDOl5uS26F1jCdR8vbbHgMAvOiph4PHbacmkeb49WGOtbKZOwXpAFi17EJAM+M22aiZgGg6aDvNXdrq/SwybWAyKJ0YZwkuq+emcxiSxMF2ttyj6n3113UyNxWYL83EACNI9NSKk8TYdO3W+2j5bpV7d8ucYElAmPtk+26uuZzcTffP9bC8MdJmhNOUm3bxxSBwe2drx2/HWrKtJrG5lgFQyk1bwjWn3LSlJrEFMUh04AN3n8Avvetu/MI77gweYwYmHBelqm4mPGuqW2B0rEkcZLz6O8oucySZzdo2zs1Gc21Xt1Fuv8M04dW/0Dh9/AMnPPp8PWkxzneWuGU8gDpHT796DwBVl1hlRLstdhNBNYlM45rEzaT4FjIui3CabLNE4AkH53F0eRNL66NGn0Q+I2h7IJJJSIgkrT7Ovy3af+t5K6o6nbl+irVh07iGz9y7Mv/rwzEGpWz5yj0zWNkaY3ljpMxdUl5wo2sZPRJ0V2N2l0X7+YZ+aLcY13zq4bP4b3/5GSxvjGoJBlbrGFnNrWpb3YxrutQkCksCoi1I9LqbtrA2atxkAOZlEj1swzBXcnrTyv/AfJ/l+D0cF7WaqWZQFDInAJOGNyGqBFcLAJq3XdsxP9/E0aUN/KvPuxLPe8L+4HHbcTc1686XSjdHk0nkGDf5yhuaQRsxpfSdKrlp/bODmERXkN4SXLoZeL95k43t9DHw2nHUxe4lAnODVDOJdC/Z5gRAnX9Vk1iVoTzz2j3VPm6DSXQpZVzH0lfvOhqr47Jvrg8pq0TltOSmRYcg0by3uCaIbUxim7upNeEUIjedaIERIDcNYBJjTaID959cA1Bp5kNgLkA2R7kOINpAdTMpwo1axo1gIzj7LynbnWJjGN4mghZ7vF6OVXawn/HkpvRWl4zNPsa8sTsEiR3kplpaxnZ8VdfVMC+CrhOafHxM4riQuGbvDBZnMtx7YhXPum4vADTGBciGyrdUNYk845rUW5Podk50LRAo4OlnCQ4tVnbyVxjW8k0mpZJ/8uQ/lQFNyLjqtaazog2J40FqMonmtcBVCZjqAl+fRJozrtpLToYqW10lEsLlfb1e4k1ukeFVEy73w/ONyfvGvp/f9qaPYTgu8LJnXoV5bcfP6+fYDBI5jtO1nmguKbPnM2yyuTZXTrdJSN1cZHKcJUkSynY6GZECvUTgwFzVU/CKxQGrBcbWuKjVTDWbUleMoP9zmrVcOkhvCTYmvCYMJY11jINZklLiyNkNfOmTDrHGhTCJhbTXHJvPS2pBkhqGT0EKFCO56Gql0Cw3+N6vuBGDLMW3PO+6ciys41oZwcTeXsjsk2gdJyxOqjogcg6buLaAStrugkvKSfN2lgjMDzIsle6+lNiyqgtQzS+U0Pnka796wvHb2QPSEcy62M4qUWX/bi4mF1BrnMVehv3z9YBkGi0wKJCeZQaJ5q5xyA0p1XPDV141ygv9jLHB2s6lGHdogUGyKJ/c1N7Dtfaxre+4TPFIablv03q7YEoOWa0bioqBCQ02JphExsIOUAsZzk1KGVEO22kyiewehOX34Yypm/Iw5aZJwrJbV/so2Qt5Yhy5mS2yJPf1l6PF3ZMOL+CeEyu1489iEo2HJIdJ1EYmiZuR8i1kXO6mdC57aYInHJzXr7/i+Y/Tv4uJ7D+97t5fa21VAGsgLAuZQrbL2FKLRAmoL4BMMx6SMnPkvjTOlcgxk1dmvRO1wKD9CUHtvsmllRFxZU0zz3V8PqGt/D0SaKBK8pxZG1ZZc8FLrlTupu1tiT732Dncd5Ja1Rh9Ei2MVEjiwrVoBdqDlEnmUvoXyJZzFxKAWQ0ZSpBS5br9s/q1xUGmr60QbDXarTSdYkMk4bZxYaoEe2ADuIN013x3dn2E9WGOa41jETLOx1qa+2ELOIa1ILFqQVIxieE1iYlH8dJ0N53ppfi+F91oOLdOjisKCSndLJYa55L7ticuJtk2Sm63SAIt903bttTnu1g61e/w9JoqcaL53yUT1sFlebMemO/Xewdb9rGNSXRdW20mWC4mF6CaxAT75uoByTSYRPoauudz8Pq6eh9Lbmr4iziZxFI14YJVlRDkbtqoSaSAMcpNdwZHzm4AaM86mjAvCk5RbmUl7zaAaKLZAoPLJLKDxFzJGjiZ3VpNItPdlMbymntX34fb26bqE8ebENgmFZoBzlj7ScGVr5cgyY2edGgB955Yq8lYWC6NxgNhkCXB7l5UtO1rNxDi9jex2DIyrU+/ehHf8YWPw9/+5y/B3rlebaw5LGRh7Qr2zL9Z99PysG86K9qQJfY64NyQic0ZD/ksSVi9Oysmy80kmkH6YYOVNYN7zvZSAV2Eb5tPXPUXSeIecz5B31eUAZ/rPqV59NTaVk1atS0m0XMcf/Rtt+In/+52tY8G2+FafAL+hLCtjqWrcU0hpbffp+36Dwpky320JRNGhUomXLd/Tr8myjrxvJDW+6aJrVG9JlExMNXfQ/aR/t5UCdD++MZw678qd9P6uGPLmwDcCWqXC3Q7k+iWTm+NCxyYV4t4ChJrNbnMFhghfRJtsCUgdNKSWZMLtEtw7a1jqs90bs9yvxUtgawrwVvV+6n5n1zKKZnnMuWhtYpNqQGU5Q0OdUGrBL2pZij841xMLqDkpr00qT1vgOkwiRPKLWbCFeCr0hIhvMmtUat79GQJAGQRIDd11ST6FjPRuKYziAnkBBsmvcyuiSuz3eFMonpf115q/dK4JtRgRz3EhdchzbWtqt8eJ3BTP7vKTblMIgWyrPOWV0wip44L6MIkomxSXG7bMonTQ+rJVy7g1OqWftjUGZHwxa5aJIcbHJnXMWCv08w9xjWuTCvdV/0swSBL8XP/+vPx7Mftq70nEZNBG+CX6NnMU0INaMxtqHHtCSVn3ZJxTGpyISYDbwYprgeUGZAcMOW6RpuI4Gs5r5hEwH4tjxy921z1p+cbdN8A/roZOt+nV4f6HAnmfVPVe7fPCadXhzoRabIdtoy8ZsU927bJTdus/F3tBkgy5YLV8EnfN55xDjk5UBlwXNUIjHoZMcDt98DWuL74SoS9Trkt79ucS0KZ3Ob3amUSXcZB5Xed6dlPgteV1isTru+Xia1xjisWyiBxY6j3j1gqjuGZ2QKDLRu1jGuTSAKlkmSCgZe1+9+1vUm2rW6iYx9neQa3rKXaG9yXTGIzSHQwiaRcczPVlsRFACNo3ceWQD2zBNt6P/MCvSzB1XtnG69PL0icbRgktcG8R7iEg35uO8YpdU1bAqKZgRj7s4SAmny7tMBoQQwSHaCTxAlSzIuekyWhDKBqL8ELNqoWGGHjKEMxYIzLS7lHliSlJNY95tzmCL/23nswyouaIxbXuIZu7u5yU87xLypJLEduajCJXHMRvnFNUTOumXiwGfVHTzq8AAC46/iKei3lGRCYkhSVFAhPQNSdVCfHUfNfG5yZVs0ktjmCGQs7ep1ZI6IlUy2MCFDP9smAmsQsddu00zGZsQaJgfd2+Taf1MV04KO+XLRv2riGcb6zxH9tOY1rGMHXdqC+r/rdVU8tpcR6WZ9dk5smhgkTg4En5tSnSji3OcLRpQ3dz5QOkS0jT2ZK3CCF5oi2Zu6TJhWBSRJbcsXHQDqkbEAlQ2yyzhx2e9ioSWwuroOZxETUAu4guWliqQkNDNJtkky1/+52A4CrlrT9vNmO/3Bc4IoFlTQy5aa81knVdpwupS3Mnk0p0yaRBCYlwkA1H7aNmzyO1d9csJrJyLDnhs9MxmyNNWsEia4yBUC5fttgl9Kqn77AEnAziT5W3EVwDMt64/1zjZrEKchN6VnG7Tlsuvl2cjfN3P1dW91NbdLdELlpkmInWmBE4xoHaGHGYqQ6Mom0kOol4dIyep+2yWc4UAKVJCovJNp8U2hbyt3Uv4//55/vxRs/eD+u3T+Lq8qapyxJMPA0F7XuZ4cgcbvGNVy56biQfJOKjvIHYhvcD98q2/qkQ4sAgLuOnVOvlcE9EFYDZj4QfLbpE+OkLBMJlP23B0RcJrGqSWxbJPOYDd9i17cgpN3g1iT6HBDnyvNjNhOnIDHYXZaYrF7qDGrM5tLmeZjppdoAIbjFjaz37rSxgsMyi9zENINEzSSm9prvYV7oBeWp1a2a3CxlGHfQtdNrYWSllDhXuqgurY9q7K6ttioocSE8wYaLNUgmF+S0fyEMvDmuSsq4x/nqqcdGP80/+o9fiIMlq9VWS2pia5xj/3xV9zRpXNM+JwCTbC4d1jYJrk3dAfiYRPWzeThaZcKOROG4KDDoeQwxPPfpVi1IJAWKea5DahKrudOX8PMFX7YSgDaJJP3N6VLa+tyovzYOYhLtvXK9zw3HMTHLQkxDE5NJdCXggCqRYtvepLmResEZ7HmYxPbjYf8brW/NxJPrO51v0GU7N2AGicY54ribUoLN2xbKkTglWI9lkLtpU24aaxJ3FHQxcbIIo1qQyGGyFJPQS/0sXXMMAHYLBpokOAyYzlilKrPuG0P79ejZjZrWnm9cww8SuxrXUPaHLTctpCEt4wX3zf5QQfuYtNc1ZInAtftnkSYCD51W5ks1K/MQRqRRk8Xpi0mBjWtbvobPrsDBNK5xQTknVv/XSosQJrEmSVM/fQtCWyY/pCYxTSaz/7R9WhCazcTTRKDfqSYxwagorFLysUP++fgDc+wWGLpO1sFs0GfZ6i98Y84nyLgGUPOXbWGyOayO7+nViknkups2g2bXmNWtsb7Oji5v1JrA27L/QQkPC9vQZlvvcjeVaA9Im+PaZGyAewEKkMJA7dCXP+UQnnHNXgAwrskwuanPuEbf2y33qWgs0mTA8W+OAVBT0tjgbhNRLuRbg/vJYKMtkALs99zWuMCe2Qy9VGB5o+rT50v4NVFrgeGonTdVE759NM9brpUkbcze5Lbob+5xduMmc19c+2lzAPVJW33HBFDB7MKgWtDP9hO9/1Ja5OR5Nc4GK7vdEuzZnLvp/35G1p1IG+dSy8YJL3naYZaTfFdMMolhAV/N34KzBi3Xab00QSHtx2QrpAXGxAkIcDedaIFxfpjEGCQ6QAszTtBgSlM5VPooN5isUPmhMXFmHqq/icqBL7zWgD47K+uWfItI+rhHzq7XtPZs4xqS+7LcRqvfOdsiCWTbdzNBMrEZXRMavrBORHX8OZmt+sPXlY1UPZMOLw7waFnzRNeWbZxrHwFox93gmsTyIVm5ZFqMazwLGVcATMfWN7EK0b1Gqm5uUWXDXbAzkO1MYprY64DNOp09pgQ04fXuLIx7WzoeUC4HvusPzunzFsqmkwTa5ZIJUNZ0cns+6dv5hHm9pQ65qelEfW5zVAt4uO6mqVAmOb45+dxmpag4tryp2Nby2rYZ1+iaxJZrsrn2p+/qvN8c560t4SGEsNT7te+jL0gZlZK0JnyOnE00W2BMskvtQYMaZ/9ubQknd7DR1vKHx4C5xrW5m3oZ//LY7Znp4azF3ZT73HBJi5vups59NIa1Bdvqbxb5rT7+7n22KWXGIUGpJQArWhh43Sdx4rxVSQGz5Rpdy5njHNC4zPEF7Y7H/mBPM7nNa7nwzwlpknh6oFbz2+//+xfgl7712dg722OZO3YF7VOXvtSEUOM+2p6ZKLc9u9vkplb1VlGEyU1tLTBiTeLOgBbvXNlo9Xv4DTAuCvS0lTzvItaBG1PuSBNQyH5Wi/SSbfMsmE6sKGe2+0+u1ditadQkdjWuoUw+zyRE/axqO0OZRMWk0SQROmnRProWWk2J0tV7VaN0AA12I1w2lCZKbsfpm5cKg32xMonumhRXplUnKVoy0OZDm37z14hU+62/g17s8rKtQUyiw7jDrNPZ05CbctjtkD59riD9cQfmWE6GQPncamESXdKaabbAqIxr7HMX1SPum+thZXNcY9LpnIW6m9I15ZuTz5VMDQA8dHodK5tj7SxpN64JZETYTKJ98RmS8MiSev08/catZSS4rsuEcU1ujfLa4qsp7w4J9ujvdVOq8vh7++a51R2uIMXXS1CNczNEalz99VYm0XMtU/uQxZkMy4a7qVaFBF3/6qcQ/gDYzwiW77Mk/LzBpbX+LuS+sbmU0vn2j7Mx8N7nhiMxRtvLEoEFi9zU5QSt12We56ntu4UxiZPHsjVId1wj5jPgxU87jG953nVlK7WdDxJput9WTWKntaRwjh051DUEa6sgGdoCgyk3TaPctDPo5HJq28y6QA6VTj2ifO57k2OqhXOvRQJqgi6+PodJNDJWiu10jzmxonr8nFkf1h52XYNEznE0byw2k1hmf9g96bRsNzRIL8razm5Momuh1ayjMJ3EzEbpYRlh9ZMs0EPZHsoS+wxQvEwiZTEbEyTdi206fpu7qY8RtAU3YUwiLOPCGArAlV1XYxdNuamgazLw2tJBojtrSmwv4auefiUAtSDRJi1MJtEnI3T1SeTIn7cD06in5zAOIibx8OIAK5uj2uIySYS13q91W5452QwSb3t0GQB0PZgti6wX355t2+pd2xgYl7tmSMIjadROcu4b26Ec5dLKiLQlE/7+M0fxlB/7J6xujTHM63LTRNTr/UJrEtWxNMdVr7sgbDVqhrrDhlb5YUsyzc4k+s29zM8393NU9m5bnOlV7qYJj0mXsrre3FLaQHdTY1x1P7q3Td+tZjjUchzVOH/phgv2fqZhNYku5jJNhK6dAyq/CVfg1uyT2IQQlnVCS02oa07IDdm+Da42HYC6t5tqkh4j+bwd5MZ6V4jw9Za5bzxX/qpPIjDpFZIXsvQBYQaJwXJTM0gMaIERmcTuqJhE/+Lg5MoWfvfDD0BK2WASeUFKL01YjeprdYIMmWTFJDJqEmvSVn/rjJNlkLi0PqoFiZwekEA1uXGb2xM42Z+qlq4DI8tsgUHSYnaQmDfqv1oWFmaPrUOLg9Y6KdtnJQmvwFzr8ctt2e4dnySqzd3Ua1yT2Hub+SZIW7Y7hEm0LWTaTAuAarFoy3hrJnG2yuwlTLmplPV723ZNEttLeOO/fR7u+l8vBdBuuNJEXjKJNrdXgm2BALiZhvONELnpZhkkXrlnBoUEVko5KJ3PJmvm21ZlkuOek28/ek7/fqsOEhWTaKstpP+2OSc2D2UbI0WvN+dyKf01ucDkorBKyrSzFPaaRLssuW3e+u9/9RkM8wIPn15XfRKD3E2du6j+3pASBiWcLDVx7Uxi/fOb41zHUuh7p/56KJPoSsINshR7ZjMtN00Fj0lvJlcAm+Klxd3U8gwIZfbMfTD3ue2Y2IJm8zOt27Pcb4Vsr1sVLYx/jUks53FXgrdKnrrvb665TuK4tgpjbrOO08+AyWNpC4raXPLPF8xz2U8TbDFbxQFME0RZqdKAyTWQ9lfI/PfAxO0W4m46UZMYIDeN7qbdQTdgm2voD7z5k/jY/WfwFU85VAuCWHLTvNBF4uGsDTFHPJmqmVkBwjLkpnGI6TbXt1zoZ9ZUFnJpfajH0XfjLAhpgmcFex2ZRNNwhX0cU5WhCsm00rZ6aaLlBsM8sJC6zOTZWCxgsv7ouv0Vk7g4yHSGOeR8N5uJ+ybzWx46g0ICL7j+gGY7Xb21ikK1UmnPrDsm1rZi7wazR6+7x0w+2Kp2A+5x9oWMP7BU49RP27mjY2Ia1wBgGdfoeuOe2+yjuZBUiYey9oXdAqNkEh3fiz7LKjfVNbJBm+qMQlbn2XV/rw/VPXiobPZsGnfQT1/N9xveew9eeOPBWhsU1c7IPub177kbADDfT3HPiVUAwBXltjsb11gWnzpIdAysFtb119sYEQATPdhMqaFvjHqv5Tpx9Phrq4mjBdzptS1Vk2j0FnS5m7Z1Spx0N6Xj72ekms98s07cOqZzTWK5XxY1SUgA1jyWVHM1yBIsDnqV3DSpmPSQBb3JuLodWFuCDcszQOf7PNs2VSG0qA0KLi3rkhAm0aYuCGmDZLu/zWB23qhJJCbR2Sql5bloUxe0JRJc11ar4Y3BQCbGmSJ5f3Mfe4zn2nbQVLOF1hd27pNYoBEk1sdqcsfD+NsY4CB30y4tMCKT2B0UHLYFKfefXAOgstHmQoKTJRkVSm7aZEOa2BjmeOi02t7IYPdYvdQaTGLIgnBsPLR8BblSSqxsjjDXT1FI4GxppU291DhmPvSQnkZNIk2cpJN3saS1MXn1AOolSbC77LgoGnKEUNZG7aPNNIL+DlQLixsOLei/mU3BuX0S0xYW5eW/+VF86299FMBk3aRrgmyr0ZkIEg3W3IV0oo6o/MwgZqN6jcMk1hcyftMCtb0QJrFXbkP9jVcnS/e2T27qXshwnAyBSjrmWsQodYVdWkNjdlpylBdVD0JXneDGkOSmin2nIFE7jiaTToaEe0+s4nXvvhuvfvOnagspV3JlbWuMc5tjfN+LbsQLbjigXz9Uyk3pGVCrrw0JUiwSpdDatkm5aUCbiKTD/eaRJY9LGX4ToTJ5MgDyuZsSWgNg0XQ3rV73jXHViTtbkDiOR6vc1BFsk9rEuY+OcWTx3y9rEmneMGt5Q2tyAXV83XOC3zjFto+hxx+oqxnajj+Nc9033JrEkERhkniuk4bcdCary01dwaW7xcrkejLU3XTymmy5tx3GeCOHCoijUNoOzPryQZYGkw70PVSZVHgLDHreuGoSzXWjC5OGW1ABX6vcNLUzid6axBgkdoZmElsuqnObakFxbmNUey+vJlEZ17iyOABw5Ow6XvRL78NX/OL7ta4ZoCbY4fpuujF5xjVlTaJZb2ZbAA1zFFLZ6QOq5xhQMVIcJ0MtN+0cJIZviybOvnblDAikjGJzJS0LPP5lCwIKEkPlD83+dhNsVCNrfcPB+drfq8VWuHFNkoiyjss+xux7eW6z6vfWcxzHtsy6a/FDCZvzXZNoY2XDGmfbFzLtWeRye5aHPT1kyYWNako5Mu3CeLAB9ns0L9wW9BwHXNqe2V7F5Uprc3JzjTnfyGv3jX2xu6HlpipQIzUEXW8qSLTfA++8/RgA4Lr9c7WFlCsgfWxZGXs99cpF/NK3Plu/rmsSLXIvifbAhlowmMFlXihG0LVwdbE9EnxGJLRNB+1XE67WLK7ESvO1R5eUk7PP3TREEkv72ZSSq3GeMbYFeWBSzD2ujYGsvz723NuAuwaS2NhBltTcled6pDBwX/8mTAWKy1yntZeg5buZLWmc4ywJj7YkCW2PG6TTZ1oTOe5d1J+ZOxjnpnFNs59t85lf9a92XCeWesuuiYTWekuXCsjx7M5Sf9nS+YIpNx0wfDFo7p7rp2y5qc/dVAetLcdysiYx998AgGIaC6MXeWyBsXOgDDjQTjVvlvT18saotpgLb5IuUUg1EZuUfRMv/qX34/i50hRmbVhvS9EiCWxuD+C1wCA51vwgreSmlocGGTI84WAZJK6UTXmJSWQEifReTrBnPthZxjV5XSYZ1juyyrZyegnSg3yQut228kLiZ/7hDtxbStHoNbo+VE8o/4PtWkNuCvCMQupMovu83XpkufY77aM780nXbFtmvf56m9U3QA/E6v960ep5bNtY2TDWhrZR317bQt6dpa1kYtfsncV3vfAJ+IP/8AIAYJkp0cf66o3zwh0A+JgeGyi4bZMJ2853lbQI2lRnFMZ903OoGagmkeSmx8+pQI6y+tbMbglKhPUyoWty1bbsDPBjyyqYuXrvDK5YGOCDP/Ri/MK3fL5hUqHe1wzAQoI2oG7Ukku/kYnregxlRGzGNW0N59XnTy5AzT6J9X1UP33NxAHodj9Nd9NasEeJ9VYm0V6n3OYuO9GTrjXYo/1yJPycNYn2ca01iQ7jLFoEE5NIMK9/nrupcJ5rZYrUPrdaExC+3rWWOSgkSLSpt0z2ybc9e71rQHLFU4N6o6EA0mNcz9OWWn1bsNFmQOOTQAcxkM1A1iU3ZSibtgPzXHLME+lYz/VS1lpSlte3i0nX16S3nddkfTNk0c4kJmmdStcX5fZaYMSaRAtMijiUnl4umUQqlg92KTUW98K4sHqN82oGISdXtmrjtlOTGDKOgr89Mz1vo3QyfHhCyWKdNJhEWxG1C+bDj8UkGuwey7ZYVu6mapsBD8Ty42kch8mttcCwTEC3PbqM3/3wA3j3Hcfxwf/xYkipEgmmlM0VgJl1VL/w8s/H06/eU3s9JAAwH64+Bvj02pb+/cjZdV3c7rT6Lr9qu7V7M9jwPwwB9XAzAwBdxxIQuDVdStXnecZYvl/IwpoWi7YaGDomSSLwU9/4TP23fsaoSdRyU/d17LNA99WM2UCN6p0yYU/NTDVmZ6NE89i6zGRoLqU2FMdKto+YFJ/cdLWc85bWR7h6b7UAc22LmERiih9/cA6PL5NqgP0cqGvL/z2rxEVVE6SMdDxjPKxB633jXCR7xrTI5mxW/j4m0XzGPnJ2HQAm5Ka1exu0jy0BcAeW1OZK29anz7WwpnsidS3+Heetzd3UdSzHxkLedFcmVitUBVSxNu5zLVuuZatKo/zZdvzNfQBCgz1LsN3SX5T207y9Q9hmGmczdwHUnDE/mFySu56nVdLV5W5qN+XxSh0dLLWvTAGw1/cD7me3qUhrrnXPJ3SrQAFWr24dJA4ynQgMHUeu8Ob2m5/rdYq1MMAqSGzh9JrGNSE1iQEtMGKQaIG5uPIt0LYMrfJSGSTO9VKsbI3D5YcGS0LXRdsa7cTKpmF/LJzSJhtMrbX5fx8o+Nsz2zPqlixMYim9fcY1KjC5+/iK2kdiO0P3UYYd/4lx5efPMLM/tJCsTHnCmcRUcN1li5rc1LafNz90FgDw8Jl1bI5yfczNQKKtTyIAvOIFj9O/6x54QRnhalHkq0k0j9PJlS1sjgvM9JJ2JtGT+bSN08FGCytiD/baF4Tcxtl2ual/Qa72Uf20yXBd7ConAVS5m7p7d5qM9MT+dWASzRYYzuDeJjd1sMbnE02XwixJsD4eT7yPvi8FiUeXNjDIKmm9CojsO7o2rIJEcwGm6rgmxxwvg8Qr9w6sn2c7BzIgAWG6SdJD3WUG49sWbS+EFee2iWhzL/a1wLBLVKsdePi0ChJNJmyylUV7sEfjzM2F9KkUwiY3pcQd17hG/fTVmgG24DKQSXTV4AlR69NKjd3TJMzzwJSb0rsne34Gss0WdUdIfXktuRLAJNpUApUk0LefTQdc9ZOblAQmmeP3/Ncvx6NLm7UxgC3gqP/dtq3mWrKtJpH23xZc+sZljhITU/FmwlSkzWLnokRTYt7PkmDygObuuX4abHYDVPdg5QHhkJv6kneW4D4oSGwa14TITSOT2A3mwt1nLLK2VZ0QYhJn+ypIDJUfmgY0dEE3J5FmIFFnEpNWcxETZiBlbr/5nj+76WFASvzznSfwFU85BEA9gH3GNZXcdB7X7pvFkVICpG4aFQS3ZbLMfXTtnwt0/GZ64cwebc+8scOypuqnYtvCjYOoBQb9s7mb3l7a4gPAxx84gy9+4gG9Lfrpc0izgVMDlte+m7ve0rw3Tq0OsTHMMdtLnVbfbfKfVlmNJdggNBdpoQvCJsMd5iQ5+dAupGxtG+DucVm5mzbBsQqn40YOj065KfP422A61brG0fb7lqSAi0U5nzCVBYC7TpCO76GFAYRQtdUUMNK+utYWK5pJHNZkoa5tbY0LbaJgg+24hLiN0vUqG/dAF4lY0LXcyHaHOrCq99Zf98nQfQZH5oLvaBl8k/kQUGbkLcFGO+PfnBNQjnOPSYRNblp+nmOgaz7IG6oQ5zjLcfQ7ctrvU1MVY9YkzpdyU8Uktj9PzWCTbvkJ1qzlWq4CYHNM/W82CEvg3CbbpXGTwb1i0luNa6xscwhLPbk9oDrfTzq8iCcdXtR/bw84XNeJXe4YMidMXMvSH2xXbVns65JmYlgnrafQJxfglzzRuNleuNkNAO2m7UqIVSy1r3TGorqTeQCT6DCu2WYLjFiTaIG5uPJdIGuGccfyxgjDsdTGE+G29dVCxjWJU43Mj3/d0wEoGafO0KRqQraZ3dhAN8lMz80kfurhs3jt39yG1/7t7XjfXSd1sLc4k+mb3RYUacZxJsOzrt2rX1f1fuFMVi1IZLWyUD/7qXthvbo1xk/+3e34D79/E+4/uaq3lyUJi0kx5Z0c4yAlJU70ftqYxPVhjscfmEM/S/Av954yJBNlkOgttncHG0BgTaKRSVULJvv1RffG4iDD8XOb2BjlmKXss2Uf29zYKLhsPqCGuXsRSWjeA8EmFY2HdlBtlSUjL9HOvrjuAR+TqBj4rjWJk+eMJKI2cOSmZkbUNc4nN9UByg5SiU2XQlcyx0ycHZhTwSHN47SvrmNCz4C1YY7NUVGx/bZsMLo1Ew8J2mxsLjkpu2ALLIGwa3lCbqo/s50lciWBrO6mqZ1FMceZIPMhoJuUnP5u7dPXwmQ5649akzL119uCm0Sft24BwORCvnqW7Z+rkiPEJIYqlcxgzic39bPN9D5eAqJiIKvXmve/fZy9ttP3rKHPtN3frTWJiX17gPvZ7Qw4ApIJ1trCANlo85pUzuXOYdbjT9uz7WMlN93ZcgO6/8k7grtOnh9kqnyMsZ5PE3cQHMIkppbEBWThD/aASeOaoBYYUW7aCebC3SdbXG0EieOi0BNrcE2i4VAloX5vTv4nygb1Nx5ewMIgw8mVLV07QO0lQiViekFE7qaWpy85xREeOrOOQZZgkKVe+Q/JTRdnerjhUOWu2U8TZwBs3ceOtYUVk5I6j/+H7zmFP/jIgwCAL3vySTzx0ALIzMPnvufaVsW2hR1/qlsFKACYHDfKCyzOZOhnc3jkzPrExGLt7dRSR+GyqLahMB6uJAtp9j+i/QSAawzWeLZkqP1W3y0upY7v5nM3bS7kq0Wrc0i5vaZstHy9RQ4CTNaNhQSkQFNKKL2LO+UsGHZtNVtguJhE5zXCkICa59I1buS5JiuTrvZtdYUpfwPgXCSYLPyhxQFOrw1r/cp8GWjzGXDs3KYO0F2BZVszcZvDbIj808Yu5UWL1M5xPYbKW7lsp7vFTfUMnNhHB4sCVPPC4kymE5SH91RMYhcpOe2nrd7SN0w4FuTmd5jYjmZWHeOcfRIdwXZLcOOsFTfuE5NBp0RJcE2iXpADKOyBjTKucX+Gr0+iN0ixJO7092oJ7m3Hv6u7b1ByxSX3dTxzXCZfIUz1BPvYmqQq32c5byFSZqeUvBkklv8PbR3WFVpyLIhJDAz2yv0mQ7FhXniN8/T2SjWJTxIOtK2BLOs0KQPlpmbGu/z9YmmBIYT4EyHEY0KIc0KIu4UQ/0/5+vVCCCmEWDX+vdYYNxBC/F457pgQ4r82PvclQog7hRDrQoj3CSGesN19JbevhUHmZQRNJnF1c6zlpkA4k2j2gHNN/hSozmQp9s6qZrd5mSUmJ6VQ2VbFJKr9bNoxA9AL/t965RcAAN59x3Fd6+GqowAqJnFxJsPVe2fK96v6Rz3RBexnYewjpyaxWiQnzszPyZVK60/BN/XoctVW2WBKPVjGQYXUgZetiB1QE1IvTXD13hkcXdqoyXiAFibR1d5AL7bCH/bUJ9H8fBNVkDiDh8+omiBaWKRi8ruFNClOLXKcUV7UzBBsaBbph9SxAJMMQMhC0sn2tDGJFuMaWy1pfUy4RGaiB6qDNWszDgq5R2sKCIdroi9Drk2KdnCR0DQJSB2Mf27IHcnh1OxXlljYBsLq5lgf7xPnNiuXUmFxqEM4k1hf7LZfx7ZaotbsvyVoCwmIgMn7u821ksbQe03oJJAvmWCbf8oDTO1DZnpJrYVAk0msXDL9aDIwQTVxNtliixywTZbvrEnUzFL1min/dkGPczC5aSJw0AgSzRYwvD6JJpNYf49EC9tsWSeESDltc3JbsE2faZu32pnEyXtUfZ53mPWZXyXF/bWrzbmrSubat0UqoNoY6Q+AyfHbxlIHyX2dbPpkCwzAvv48n2jKTTn19kBlXhbuMK7KOVwKiBDjGqvctAiRmzaMa85TTeI05aY/B+B6KeUeAN8A4H8JIZ5n/H2flHKh/Pczxus/CeDJAJ4A4MUA/ocQ4qUAIIS4AsBbAbwWwAEANwP4i+3uKC1+5wd+PTJlkef6KVa3xhiNJfqpqtEJZZbMwt7EMkECpvuYwL65nmItjb5SqkA5bHsk79ILSQeTuH+uh2v3Va57p1ardhaA/aG9OcohhPpscu8z6+jU9tv305TEFjKM/TL3qZ+5azRPrGwhEcBVe2ZwopTxFoVfImPdR+PByjEOonYbNNa2IB/n6jq6dt8sji5vGteIMW5CouSXnlTfjVFbkghvcElM0VV7Z3UD8lmPI2SbPEZt0yJbLAoviwioSbdej6V+ti52HQtJ/uI6IPtMxjXGPTBuWcikjJpE2h2qSbTNXT7jAlffPBvGxjXiWvxXD+jJ8Vr+vINBopZp033jkYAC6rxSTZvJJLpMaAD1DKCE2ImVLX39C2EPttsWoDaTikLK1sjGVkvkkxarfZwMUug3bnIlhO10za8+xs03J9Nz+ooFFdjMNmwSJ4K98mdIMFs//tXnudBUJKh9bp/vfLL8NgbSPNeu2q/athzri9wI7vbOTi4aVV10+3PDPE4uk5w2xpmOsTlMBhx/23USsiC3tYkYF+2+CV0SCbSfXCbRaVzTElwKCyOVF/5emoBdKt8WXDoTQI56Y18rtfMJ89ruUpNIbrMcV9TUYBJtTC7gl5vaWpx1M66R1esu7CYmUUp5u5SSvGRl+e/GgKHfBeBnpJRnpZSfA/DbAP59+bd/DeB2KeVfSSk3oQLKZwshnradfaULYn6QeWviyLjmqj0zWN0cKwaoZM1CmSVzcrf1ugLqTVP3zvawtDGqSUtc9S++7Q16ae3/Jh49u4Fr98/iwEJ/4m+uQBZAzbikYhKF/n5qewEPmwbbGXos60yiI0g8t4WDCwNcvW+mziQmTOMaQxKbOXqi2TA2Ah5bETugvm+WCly9dxYnV7Z0c2+SGFub5LY8EFM9aYV/t5qZj+V4EuNO7AtQyTNsi6ZwJrERJI5la5DYzOyGLCzo77ZaRt+q3CbtK4ow18T6NgKYRE69a0NuarsHKCFiA+f6N/fbNa66jjxMYmByqwuajYtdrCyxq0IIXdNW67dnSXgAamG4ujXGNftUQmxcyFqSxCVt9bE9rl65oVJmc5N5ILtnNeDwjppcJBcy3IG1U+2q7ViW1zcxiY87MFf7e9II9qqFvHc3JwL8kMSRvf5L/fSayVjYnra53NcTkBtImf/PUmENjnyS97WtMX7nQ/djlBe1FhguUx51nTh3sZI7Mq9JWwDcJvelv9nYtlYm0SFl5t5v5n66/QRc5EF7cNkkD8YtjKD6PPs1GVbvOjnO/DuB45GwHdQNBjk1iWogrWe2AoJEalVmJtdtcmu1P+FO7erDA4LEpnFNUE1iirbZfqrGNUKI3xBCrAO4E8BjAN5u/PkhIcQRIcTvlwwhhBD7AVwN4DPG+z4D4Bnl788w/yalXANwn/F3c9uvEkLcLIS4+eTJk979pIeWkpu6LyqSm165Z0YxiXmBfirQT8PdLivNdmKdINX+qP/XmcRKI93s2ePdnsHSmds3sbI5wr7ZvjZxAIDv+YonAvCzDRujXC+SriqDxMPloou1AJXdgkRdk5ilzoX1iZVNHF4c4MrFGRw/t1nrQchxXDSZlF5LC4xxXuhrxZSb2YrYAfV9e2mCq/epY3jPCWWwQ85znbLPibBr3UvcdWwFr3/P3WWNHPR2Mk/GT+2nwIG5KhtVWyQ7ZGV+JtH2EPUbcAC2RWvYgtAlQfEvCOvbAACJ9oevrd6sOm/uBUJoAqhqgeFWCVBhvQ0s4xrj+ncrINxZU267DQ7+4bNHcf1r/hFn1+vqB3/gpt7z1KuUqyD1MwTqztMmNkcFCln1PASAmb7BpNuYxNy/ALVJAtscIQHHNSn9tbW0PWtypWWDk0xi+z66ald9LJhfyUA1/Or/L7j+QGMfJ+W3QJi7qb29QUuw51BOcBnIcKfq6jWJ9vnOdc+1BZg+yfuPvPVW/K9//Bw+ct9pe3KxMa5NceGTQIfUiZvnzWSRXLCxbW2ScNrPZk0uEJBcsT0XC/+5c/WUNevtrOMsZUghjL+VFZf+OcEmdwfcieHKAHE6TGKalKqcwOeNdsrPOEGi+kn1j8Dk+tr3TCQ0W/CoDw+QmzaNa3RNYltvLj+bONUgUUr5/QAWAXwZlEx0C8ApAC+AkpM+r/z7n5ZDFsqfy8bHLJfvob+bf2v+3dz2m6SUz5dSPv/QoUPe/dRMYj/DMC+cUk6Sm161dwYrmyO9uOdk/yuW0G2cYhp37J3tYWm9ziRy3E21cY2HSSRJwqzh8PcjL1POqr5gb2OU6889ON/H/3jpU/GH/+ELy30MZ7Lo+85oK3/ed2uTmx5eHODwngGOn9usZbo45jqFMfn55GgA8Nq/vR3P+J/vxMfvP43huNBZNFsROwAMc8WckdPcQ2UPMJICefskeqQkmWeS/Ppf/zBe/557cHptWDMg8Mq9xup6328xO7Cx2yH7aAsuKYj3oQsjqPfTGlzyFjJBTIrlHjifNYlmkgSwS2R8clNfvbFrW7U+iYzFJydpxMUvvvMuAMBtZSsZ7W7qkIWbElDq8frgqTX998RxDqhHoumoqY2bbJIhtC9AtUyvcS23XVvCcg7aJGKAvbYwBLZm4iFtMwBbErQquZjYP0/igs7JN3/Btfier3gi/stXP2VibNOBGAhZJLvqm31jbOoO9dM739mkfQazbQO9bGvT0YVJNFUxrnGu+/Qfb30MgEosm/e7y7ijkG1B26TDNacm0Yw5Oj9vAoLESZaaXvcOczCJhfd8u5IrbUxpcx+BdgMa2t4EA1xI+FSqrvu0Ogf2Pok7WW4AGHWbpQQ6vHRJ/aT1TIjcNDfmibbj0WZcY5WbtrqbNo1rAphEoLUuceruplLKHMCHhRCvBPB9Uso3QNUSAsBxIcT/D8BjQohFAKvl63sAbBq/r5S/r5b/N2H+vRO2dE2iOjyjXKKfTd4hTSZxOKYgkcEkFhQAumt7TF333tk+zlFNYlplyIPlpjktJN0WxOOiqmX5+mdfgy+6ocrQuiZ/ANgaVcY9Qgh8/4uepP/WRco543Fp9I3zyU3XtsZYPLSAfbO9Wj9LM/sZEt+bNuVZKrAxcn+vzzyyBAB4x+3HsD7MsTCoHECtC8m8QD9TrDEAbQqzZ7ZqL+G20fY/EG3HvyikngQfObNekzv1PLVjlBTZZzDOxKT4MqZtcjvbIqYtQ9uUDYU+tJOk0VuO6thaFjK0X9X22pkUm3FNey2p6i/aJvdRn6t+9jP3OVNmJrzFiA2mKUe73HRye2SQsBNBIjU/vvu4egzQ93K2pTDqhG+4QuUlX/TUKpHoSsLRvHRwYTJIdDKJpUmWC7b5NST7b2OXCumvx6Jx9vumbSFZPyZhDMUk2wNU10DPclxcGXmgao+0Z6ank5jN7Vklga3BrL3nalsA5npu+1s+2OfJEHMjW3Dvl3I61hcNhcdHXvOVtfvE16u1V0pRT61saWf3JKmOsK1PYhsmE3fqp++s2ZIrQRJci0zYXP+497EZpJfbagsuE1utfrskVr3PFXC4gkS73DGol6PlHm2rraXPN+FixSu56c4yieYzyJcknxhXvq+Sm072s27CVNfoect1zphzSZjctGFcQ3LTtuCyhUm8kC0wMthrEnXCT0p5VgjxGIBnA3h3+fqzAdxe/n47VM0iAEAIMV9+Jv29EzaH6uDSonyUF7UaFcLqcIx+lmD/XA+FVO6evTRBLwmvSayK2xPrg15tnx6iCfbN9TDMC6xsjfSNZquHILzpg/fhSYcX8JVPuxKAenAJUS0kbRbE5oTwa9/x3NrffIGUYhIdsjlGC4Ym2xleNKx+9jN3jeCoDK73zPYgZdW2Qy12y88JeJAVxuTXS/1M4onSUfXWI8tY2xrr5IOrkHqUK7aRmMNHztSZRFuwF5KhcrXqIFkeADxydqP28PHVJA5ziX6WYJ9hdmC6m7prL3iLJol2lq4pGwpf7LqaInvGWLKEikn0bkozKeY5CKlJBKjnnX+yb7qbWltg+JhERp2gbgpssAbcFgCuQGo7WNsa40x5PX/yoSUA1TyS+QI3UmUkAjf96EtqTcWzJPHWxC3OZPqenK0x6ZP7184k2gKAEJaa3lu/ltuuyYn7JkC2SPvZZNJDTDuAyfnV2yrFp2QoX7MlcPU+2iSBbYn1iQCAXvcnjiZ6y3mSJNW2bAk/f5uUakFevaaVZUFMon8/qcbWHOd6vi0MMmyOhji1OsR1+6t6dGcyOeQ6mTiW7cGevS1R+/G3nrdCeh1R6TOb1z/QLjdNrX4CRWvQoN7XGNfy/VyqnPbEqYVJbAku3e6mduMa3QJjSu6mZFwTrLgrj9ssYw0aIrduMykCqJ2Omq+EotXLP3CNa2hS2F6QOBW5qRDisBDi24UQC0KIVAjxNQC+A8B7hRBfJIR4qhAiEUIcBPAGAO+XUi6Xw/8IwI8LIfaXhjTfDeAPyr+9DcAzhRAvF0LMAPgJAJ+VUt65nf3dLLMGe0qjENcFMhwXmMkSLJTtIc6sD9HPBHqeFgxN6AAwEU5dtylJ3V+yS2+/9VgrkyilxM++/U78xz+4GXcdU1n1cSHRSxIdYNqaWfuyRr5Aioxr7OPC3QyrIJHngFgZd9gXdfTZWSL0uSVTmCzhyU3NDJmvT+LGMNfOsLcdXcbZ9aG2aXfJTUel3JSCwocbQaItKRBiCqOymJPnm1qXACogpcWlMGoSbYsEVYOb1Bow+9xNQzLrttYBofVONokSuyar/OkNEnUmv7mP7Ysfc9+A9jpNX1/SJjST7pFp53m7u2nY9V/NSa7FZ6uZEuOhHYp33n4Mw3GBa/bO4KP3nwZQZYPTJLEmO5pmMof3zOjAElDXkDVINBgwuqdnetVC2VamYEpbbbAZ18gAJt3NbocwiZbFbgArOCHTDmQSJ8sp3MY1+jllk5t6ZKp6HzsmjmzBhp+lmzzfrh5xtW1ZEhdtTJZeJ9Tmrfbg3vXsbquBzFLhXMzT6ydXtmo1gG7jmpB+mk25KfTnumBblIcYB9l8AYKYxMZ9Q8e/m3FN+z4Ck+etjSm1KSfC54T6a21OyS7ywPV80y0wdkBJYqLZloVbumH2SQwdkwrhfJZW0u528zI9NMSABpg0rjlPctNp1SRKAN8H4AiAswB+CcAPSin/DsATAbwDSiJ6G1Sd4ncYY/8nlBnNQwA+AOAXpZTvAAAp5UkALwfwv8vP/SIA377dnd0YkoylYhJtIIaRFghSqpOfJcLbJPSmB87omhf9IElNJtH+EM2SBF/9eVfp132Ny4EqAAKA3/+XBwBUAaCLDjffY4Nr8gfqNYlNcBagXY1rKiYlxbiQ1kWa6omY6L6PprmFr/7FtY80zvW9Hl1SAd7LnnmVNrowmURXn8R+JmpBYpaIRgBmz9j5sqau+jYzSHy07Muoe8t5ghQlrxbYP28Y12i5qa8+wZcRttSxBDqH2nuiBSwIawvJ9qy1bZEWwvbY2PS2Y0LHPyTjOulu6mASPUFbc/9cqD9869vX22pjEkX4QzsUtx89h9leil81FBDUziJNPDXYzIU8UJ+Xib313aNAu7uprS5dSTnbmMTJRZrPyZbQXLSGWvnbHC9DmUROgkuz71bFRfu9Y5Vkevdykl0KCS5tCb8QCaLNpKKNybL1sgsJpFzP7rZgwyp/K0HP5lOrW7V9cEvQA+dy87zp/fOMsbDUIcZBdrYttAVG9f/QBIRNKZMXhXd7NF/Y6gQBfz/N5mkLYfxtz+BWualDheJ6vvkM8c4ntAlfyzqtCfoeWm46CmES1U8h3M/SEOOaiWMZakAzYVxDF2Ubk+gXlE4lSJRSnpRSfoWUcp+Uco+U8llSyt8u//ZmKeUNUsp5KeXVUsp/J6U8ZozdklL+x3LclVLK1zU++z1SyqdJKWellC+SUj7YZR9Pr27h+tf8I/75zuPYHJHctGQSXUHiWCJLqoADUNnQXupmEt9+62N4xRs/ihf/8vtx9/EVfZP4mrnTw7CfJjgw38c3PucaACrjDdhr1ADg+Lkt/fvnHjsHALq/om9BmEv3osk3bnPkYxLdjNTE9jWTyJWblscpc2epyPCHzu3SuiE35QSyRobMFaQDSr4JAN/6/Ov0a2aQaJexqVq/mV6qv8ve2Z4OQmxutkHtJRwPe5LcAkqulxsPSZ8shGoSqTUHAF2X4pObeuVXlsA5xDm0WUdEv7YtSFyyoZCsNd+BcvL6aqvT7DEyrnRqvXJTz8Pe1dybsDXO8TefehSbo7x2vTkXny2LZJuT7XYxygvM9BKtFACAuYHBJDoDN/8izSp3NFyn+zpINB2nOwSktmAvhEm3LNJC5KbNRWvo6ZhYyAey/cAk4+x3N3UrXuj67jtWXG7jmrZgthGABQQpwiobpe/gT4rZmKygFgxMtlMfS8e87DPPct2ntSDROE4VI15/f8hc3gy49aZ9LKllDjIDBBeEJbgPIMWRCkxc/0CATNvyXGw73y7Tv5B+mrbERUiQPlE3LP3JDi03DUwAaa+DnZab6mQ+Jcl5a0ktNw3pE2qcD2eSpOV5D1iku8FBYkobKX9eXEzirscdZRD1Wx+4HxujMLnpKC/QywQWBtVB7mXCK8/48L2nAKiJ6B23HdPBRpYIp67blHYBwKHSKOHwYtVewrYgOV42i7/x0DyOlb/nRYHUCEhdzdydCzvPuM1RXnNENaH7xoSYYugg0b3YtcE0rgEcrEGuAns6tyaTaLOfd+6jySQ6gnRA9ZwEgM+7eq9+bbEMEl21pKNyHwFoltrsRWgz0ggJwNLELotdMYLE9WFeOpkRk+gOUihIBICbfvQl+LXveK7eX58Da5tsheuIB0wutkIZkS6LLVvtcAjbY5dE+RdoXZIrut7Y1iexJUvuajgPAD/2ttvwg3/xafzxRx+y1602r8kWuZ2rtcR2MCpbAy0YiTuqk3XXJPobTDcXhOY4QN0jZF4za9TkdnM3nTzfISy1vSaLzyRSJMWXqQYYYjjcTc26fNt2gMlgAzCfi265aTPYBjowWeWvbfV+zUsrlMmyBW2+a6Tax+r/QQ6gzuPfFmy4y1lojjm1OtTrpH6WVPXNFiaxLQITom4mJgNqEm1zshkgOMdZ7tPwpKTtGvEOsybG2hxHXefNLAuxwWbKEzqX2IIbr7tpC0vdvLd1GctOG9cYLLmtBMaFZpAYZFxjrAnbelsGSXc1k8iQm5rvlwUAEZApj0FiEIhRyguJrVEOIerupjYMy0UyLYwBldX0NVe/9cgyvuRJB/Gsa/fiX+49ZTiXGnLTxtCmrIYWJLRdIezBFwWJz37cPlUzUEiMChWA0D1rW6MVAUxiW5/EiXGe2rYmdJCo3U3DFpKTi2RL9rl0FyT2l857jV21HJRHzqzjx952K37krbdinBcTi2QXk3jk7AZ6qcDhxYFerLYxicMy+QBUkuEf/KrK3t1mpGH223TB5loGAOdKuenhxQE2hjlMtzVfTSIZ1wCK1f76Z1+j/+ZzYPUukm0PqIBAomttVfMcyIBxtPtNeWtr9tlyfbW5m+o+cQH3gGllnyV28yxTSmyDjxX/5MNnAai6P/NcumrN2vqUcWpEQjHKJfqNObmSm6pzbWsw3YlJNJJ3V5eqDkqauOaENlMSW69KiRADGlviQrbW5DYXTl0ZEZUkad+WuQ2Cj3GrEhA2JrE9CWHOWyH3NuCuN/N9P5dEz7d/atyk3DSsJq5RA6mDe/cY1/OtzeDF1TrGfC6fXNnCemn4N9tL3c/SwGQat5ZUlwCYwX0Aa2OtvwuQaTcNh7QpUkBSxuYu6y8TmXTFBtrnctFIkpQ7GnSfNo9Ju9x0cv4BPEyilpue3/m/iYl1WiCTSMea0wLDDEhd7exCjGsmFG3EJLa2wKDMDAWJAb0VgVYm0StGFUL8MSqVhhNSyn/Xvie7G0eXFOOTFxKb4wIzWeoNNuj1fjopN+2nbsvo+06u4ttf8HicWdvCpx5ZqkmWXLpu2j5R9M0bzjbxAGriBoBnXbsXb/3kozi1uqWbOfuklb66GV8gtTF01yR2MeDg1iQ2a7Jc2X9TbkpBWK23k2Xc7/3LA/jTjz8MAPjer3jihNzONfccObuOa/bNIkkE5voZ1oc55gdmLenkmHF5XQHAa172NEgJvPSZVS1qknjqv3x9Ei11REBVk3jV3hmsD8c16ZjvvI3GhV/qZcsioyUAs7FLMsCAxlnH0p4RNs9BCANpk1fuNJMYdN8U1ULFtrCTUip2qSVItyWA8kLiyBk1R372yLK+J2tMYnPxGcBQnG/jmnGukkDzhqJhzmhwD0wyh61uki7jGm06luCqvSpIPL1azSe2OaFtQWiTZIbVJKqfTXav/fqfHAMEsA3JJNsWskAG3EyibV+r+Wfy88z+wdbtJXWXQJ66oPp/CJPoMxPz1iRaardD3DUnFRDV6y64jn+bbDFNEmftPKBULidXtnB8ZVMlydOq1YAt4RcWpNiuSc8YC5MewtoI4WbovPvYSLiGBLKAegZvjieTaSH1frZ2Cm3j7O6m/n1UpIPtvPGCdPV/exJ0Wi0wzEQlz7hG/eSUPFmZREfC25vMb5JFoXJTG5PYFlgC265JvBfKNOY+qCb13wQghTKgSQB8I4Cl9r3Y/aAg8ez6sAx2Eh0kbjnlpnKCSVR9Et3a561xgbl+irlBhrWtvCaZceq6czWx0sVDP0lW6WKktsaqSet1++cAAMeWN3XW3FuTWEinRMNfk1i0GteE3KT08GfLTQsKEu1yO5LHZImYMK7JUveNDdQniaX1UXCT1iNnN3BtaSlOwWHlbmqXZxSyWvh871fciO97Ub1TjM3wJqgm0SEbOreh2NRDCwOsD/Paw8dncDQyGM8mhJjMRoZYmbuYxJCFnSWxHiAt6+6kx63/sl1fbQs0ug5C7ptCVp/TSyfVDPQR7b00J18/fm4Tw7zAM6/dg2Fe4Egpoyajrub3Aqp5rEutU1fQ/W1KEE3m3twvggrc/GyDVZZvLIC+8mmHAQBPunKhfM3OgLdJW23SstBFK723GhcmLauzZvR6+/YmnVT9Y2wOrIC/dszPJJIrqvv6UmNluV31elAPSOZ3U7XU9deKlutfbcseXPoWkYBHbtqyj+Z79di2IFE45v/ymUgtMx45s244CU8m0mjbbWZiwhkAu8fY1iX6Gd0mN20cD4mwJEk9kdB+/AF7Yqwt2PMZDrWN6xqk29jmkAREqCmVXlfscE2ieW1znjdNosIVA9THqJ/mWr2TcQ0F3HQsg2sLyziEzGuKKTCJUsqfot+FEO8E8HVSyg8Zr30pgNe278Xux2PLSpr52NKmlk1qStzDJPZSoRchgHpgZWmCteGkhrkoJPJCBZbz/RRrW+OaTbZL1z0qHTkJ3/aCx+HOx87he79CBQ9W9gWVjIpqF5XkVGXafSYVuech5c4GSwzzotW4JsgUZoJJ5GV/XMY19N80SXTPSUoO+BzZABUAE86uD43JL/HKTU+ubOELbzgAoDJ16XuCe7PdiQv2Zrft7qYu45qVzTHm+ykWZjJsjPJaZtNldkD7atZ+1bdlz2LS/rtgazYckv1syr1M900fnH0SvduavE6k9B9717jcuI6s++dZJDeRGwsAW5DYJm1V+2ifEx46rVx6v+zJh3Dbo+dw30nlzpwk7sVnJa1xMIk7EiQWE8wSJY2cwWzR5m5qZ1LGhgrkhTcewk0/9hIcXlSMoquOa1xIzAXZn9evrfbsfyP7jMAFoeP6b4tKJw2f2hf/Lrmp77r0JRerudJRk2gkuLKUt5CfNOVpn39cC2TuQj6sJrEpSa4+z4VWJtEpC3cZN6njf+2+GXzmEeXCbfbJBSYTMhJdpMzleWt5bjS3F1rLOBEkhiQFGglezSSGyLuZcnen4ZBsLx3oUpOYWhK84XJT+zOgOZaT/NwO6i707tZoE+PK9/lMEJswiQMnk1gEXJNNszo9J4ca1xhMYluPROC81iR+MYCPNV77OIAXMj5j14Ikd8O8wLHlTeUsWZ4sr3FNWjGOgLqoeomw0uhmDcv8QC3IyUl1kCXOIGVc1tkQFgYZfvFbn43986o/nYshIhkVLeTXhmOMTJbIOc79UHTtIxX2msfChM3+3wVa6HSVm7pkws0A7AkH5vBA2YokSxKr+QNhs6xTBYDljVEtS2lKmZo4szbEgfI8/V83HgQA7QZqC/ZIwuOScQL24DK0INqWuVvdGmFhJsNcX7HbhXH+6XzbzsHWeHJBrrflyGICbaYwtuAyrN6vubAGAhaESXNBUr4esCCZkPYFLBCABpMY2CcxJFFiLmatcl8qbWi5Rmz3KNU3v/CJ6hq+/+RquX+JN3EE+Baf7uRKV9iCRNG4lm0ugX4JqH0x0zROoQARcCfu2gNSCyMSwCTSR3KDy4n9NLLh7eOMYTJs8Q9MSkd9NXFJIqzyN6Dep9KGrHGfBsa/E60DwpJUlgV5SJBouU7GLc3VbeMqqbl/DOCrk3IfR1ftPABcvVcxiQ+fWa+15TL3C1DBlwwJUizXFhAWANcdp9vHNdud0LhW5r4xd4UmJZsMMO2zv05Z/bSaybS0k2qetjDG38YA+2XTTtNFh1eCz+vgfCJU8dUEvc9ngugaY9bpuxxpQ/okTtQkBstNi+pnEJN4/lpgfArAzwohZgGg/Pm/AXya8Rm7FuRoCgAPnVnDoBdSkygnFiRZQi0wbJm3MohJE22mcLKsYZkfZEaQUh9HdTYuuBZ2tPghN82Vzf+PvT+NtmTbzsLALyL23qfLzJuZt3vvvr650tN7T3pCEtJTh1os0ckGWbRFQRmQjI1MW1AYYfCQGaYQrqrhYVcVyOAqFwUlMwYYsA1VBgRlG1OgKiMjGdGo19Nr7715sztnNxFRP1bMWE2s5ptxmnsyc88xcpyT++y1Y+1o1ppzft/85g5t24+1jSmRil2XPl4KNSht2DmVzNjxgXl9EuvKziHG4Qes8/Cuu8djmxCfgjv97LNtO4pTvPEoQBITwfbjzQ6n2xbP3zBB4h/8JR/Cf/ndX4P3vXAyHnNCGy3U2QCpAMz8zPdbSquprhY1jlcNTjc7T5I7W5PYpmsSY86P3eyTU4x+tx7lTTss0u+J8yHHi9a/ZFZG65Db1zRIit/La7iPUo6uogWGF9zHEIrRGc/PMbYmvDbU7n70Hc+hrgy1TD6r5HymaWwXjyTuuj6zBg3zbKfzLInJ5GoSo4IrGSSxFDQAmNQ7MegXEKtJzI+bIon+56XHhYEsQ9Eb3ju5T8zPvABN7Pxb0bfoHIOkQN/n1SDHeU6+G9c2oOt96jqVuKumNFVXOCx/PF1yK4X2lGixdeL8iz/z9qEet+/hqZuHawkbpIdBCoMAp5IrQImmGj8fWuEadhlr6un9v8sk5c2Y6Zog40r31pzSjZif0HYFddMSkhgMFh+UZYnNNbueGR801T87NHkP04Lqzcdb/A8//tqkdzYQCbYdcCFlk77DdAuMQLima8vQNnChSOJvBvDVAN6squrTMDWKXwPgiRetAUwQ8MLgzP/s66c4WtbjDVKim7p292RlWmBEMiQ7B8mS3l2ffWAy9EfLJpoNBoyKZEm1MnYPj9TWIUh8tN55TkpKpKLLbFLJbHDBIVwEG3bOLB88j+SGJjRJS88I6HajSqz5+3uePx7/Zh5s+zmhne1avDxshvdOt5MFIbaIiIjF8wOSuGhqfPQdz3nHDI9l62zyhc2T4xGOTKpwW2pgjlcNHm9bnG5bHErbgETAbebaJ5HjPJKYz0jG6T+ljW3qIAMEujEDSYwhZ0wgG0USWXVT6rmxnxOrLRwRgxxKmlgTXn+0RlNXuH20xN2TAye5Uhedz7QgxuXQTVP0w7QseVege6Xp/EA8wE99t6JIThQR4Rw78177mgluyoiUtrbNjnOfG279AabnfxSuSQUpiYB749B9s8cb3tcRwbaMUyOyw99DBBIoITDx85FLCsvxwmstn5ey1FpSosWm7n/Zl1+6dTius8dukBigZvIJlLqpMgCOJdjH3zOHiyHADNo59bnKaysQ3/O7rtCCJ3HdDHtFt5eyqHgs4VcSPAMwSXikahKvqgWGm6hcRNbI5LjBl5Rp5/bf7/hTfw+/7vv/Pj41lKzVlS0dmwAVY0Im788Dzh5wnhYYFN10lf0zHST2ff9Tfd9/FYAPAvg2AB/s+/6r5javv272eNPiPc+fjP8/XDajo54qWt1E6HavvnwjWg8EWHqGK3bzmftrHK8a1HW6Jm4XCUZdS6rvDQHh8apBVQEP1ztvA0qJVOToLnUikCoJp9h6LKYFhvk5pwWGywcPx9l2I+bvIugjr6UKxAGj3HqyWuDm4QL3Hm/H5s5CLYitIaKcevfkYPpHxB1y2XjzfdvmLf4lx/Vo1aDvgXuPNyNtqFSTmMs+TxBBMts9pW2Rvc0iQWLJLQzVTTUCEKHgDVP/CKRqEvOOLrOZtp111FOqie5npo6XSnjcOV6hriu8cGM19l1tqiqZOCqrJl6OcI2slW4SyBwvUdtDOGmp5AoQ3/BTawLbJzFMXDCKhECYKGGSJPraNmC6BvXkGCB2/s1PrcDRblh/Ug59mBRg+t8BEeGUjhH7GN7rBTekkmckaKNqEjvddUvtb0XhmjpRPjO8drioxz3OFa5LKecy6LY2AK4T598cL39O5om7TJ+10rHk79HrraTSAoLuFfbSyHdjUXHX+r7UbmOYUyIBFN5bueTzRdp4z2X865i1nTnvVSWCN/H999F6h3/2aVN68bf+yWfMsarK0uQTfnIO4JuUZtEtMES4RtsC4+Lopua4ff8zAP4BgJ+rqqquKmYW199Ot63nVBw5NYmpIMWoO/pf/z13jw09pkA3FRGTzzxYj7/nqJx5RbxET65B6a+qKtxYLfAwQBLryE0sMvklJJFtmiqmWRTks2TDYXnrQhsTJCG8BiG17+VbNngrLSJGubXGneMV7j3ejIGFIJCxMRIkCt00tBySqK1JnEMtExNZ/uPhfL/2cDNpG5BEIDM1iSlkKTfNON2UVzcVx4ChtprjzXe2QiSFcQjDcUwW331fzvo+X2/sot8pi9XJAoZuKoj4izftc3PjcBF10IBykX4si39e2zk1if/N7/46/Nj3fuv4t5SUPEP3igvX+Eknf0x8TShSWxO0UcaxA6Y1YGrhJvmduJen4i6FOSYpaekWGHKs9PqTu25+UqDry8kmIBakMEG6H5CacWUkN03t043j6r0LyZzM+c/VJK4W9bgmTJHE2BzLCQ9tbWGU3UEmJcMliKV3x79bflwUSez1iSPz/9JaHqtJZOqUI89oYS1J0StT95alm14RkljpgkRXYyC1/gAYe4MCwA/99OvD+83/YzT5rvCsAY5/oaabinDNzo6jWmBcEN20qqpXqqr6y1VVvQZgB2Dr/Hvi7WzT4vbRamxXcLjiahLFmb9zbE70oqmxXNTRwNKlm0ofr88+WNu+eREHQY6/LMDTMZ61GxDeOFzg4ZlRU5XPii3+LLKREk65iH5v8p6jlZJuOlAirGMdCNcEc3SFJlwkMUU3PVw2uHuywmuPNl6GLBWkj0jicTxIjBWx29rOPN00PI3GASJQs5Tj2lRjsuL1R5sxQLc1idNrYBTP4seK3VsUbaieUlao7xbQjRhlu9g8KWdrvE/cOXIOIZBCElPJFb4m0d3IY/ckiyTG6aabMdnxwg0bJD5/Y1UWrkkFwIm+necxl5q/WtQesiFBQyzBVaKAxmvi/KSTa0nFaaLdhpmTfW3O/S+/q4Vrgs9jxzFzLN0nub0jldzKCkAESQHmGQXm1yQCPt3UOOT5cVU17ZXLIYmhuEt5vZOPTK0LWeGayD0iLTBWTT2W6sgeIp8XC9qoQCpIdpTGpcTEgPw1CK81QCYlw/t/FAXLDosm78r3ceq5ydPko3vAzGRy2+Vp0zG6u8y5rqZjBWm77BYYsd6FDOjgJmoWdTWpYxfbOAv1Jx26qfxMtypTXG+2BUYoXHNBLTA0KOCfArAB8E0AHgL4EgB/FcC/rviMa2l93+PxtsXRyjZF/oK33RxpS3l1U/OeH/x9X49/8G9/EwBgWVfRwNKtN5M6wc8+tEhikrYVEchxLS2SYOmAJweLgW7q98BL0UZzsvVAJNNEqjSmnMKf+OzDcTOQOR0o6aaSkUuhljJHeUBfchCRXLExYJIIh8sGL908wGfurz2KVKq2U2jKyd6RkSJ2udey9OLYxtaXFUBTtSVG8bYe62Q/93A90k3lnKSSHqnFLqRxAny2eyKbTny3kO7FKHmauegFIOQr98E4Fkl0j8dQMt335cwNCmL3JCOkEcs+A75KrziEq0WNmweLtBPT+99heiy+uTFru7bDKtG7M1mTVQjc6hSSmEnopFDSYkAapfMzKJ35OQeBnEsJ1NYkJoXZCntOU9fRIKXk8IZJAWHWlCwMAPpC7Zc5lvmpFfOJ9crtiCAxhbblDldV1YSmCkhNej4AiJcbDPf/osaLN6Z001htJ4CiwNdElMd5PTnHSALCnhNlINWxdGv7f0lKUv0VI0mSvJBJPHnd9oWEXwQ8oER5In6C8a0yYxIJiFzPz+UgJHMZNrIHZG1RIoluDWYOSVw7gpeffWDq9MW3j9Hk2d6d3jxHJLFENw1bYPRkTeLF0U2/CsC/1vf9PwLQ933/wwB+C4Dfq/iMa2nb1vQvPFo24/L1pe+5O1JJ88I15j23j1d4aVC/XDR1gsMvTkU1oodt14+oYoq2lVMbNeOmympmnIMkHgjd1H5WLNNRUjpL91rK19LlnN1/+qkH+Mb/4O/i//x3f8LMYXiPugXGkP2RRSnMUm2DOT7vICJHyya5GAPA2c7QTV+6dYDPPDjzKFKxwMbMJy9KcpHCNT041Cx2/sdWKcPi1vWWNpRrXdJlNqmmmt6PTCY5ViPS9/lF1XymP0+a/hM6yR2RtU44JCyS6F6DNqiTDW0MbIhnwK2dyrEEcg5vChV/vNmN98fLwzonNRupnqvM/X/hdNOMU2JVWP1zWQrcUkhKqb9fsk680AMVmAYArHDKtCax7OzGHevssAjaw9HYgEhQVNhzUpl8N+GZGgfY563UV04sTLB0/Tx1WbomUUk/jI1jklsybhpsFERJEvvGpjXO6LKp8YGXbgAwyt9iKUpmMeExI3ERr+UlkpKJQKp0wUMEkj7/Vfz8M0ImsYCjWDowGQPiu+kp0Kl619wzumjita7ntf/wb/1zfODf/q+xbbsxme+CAKx4orx/0aT7KwqSePvYonHye0wVmBKuCe/l0XEqOUGSvdbWJF4cktjC0EwB4F5VVS8CeATgHYrPuJYm7S+OVgv8e7/yo/iOL30nvuy9d2yfREULDACDumks8zZFEgGbeUg9aJs2XfsFOHWCwSFbh8Zw8zCBJKbQhgKyMS1Qthmb7LjIeXntocnA/LUf/nlvDgeLGlWlaIExbHapHjwhtc/9jh99x3OFmsQWR8sGL908xBuPtzjbWuc+rIcTY8R8Ug5TSUksVv9FOSQxx3XIsEv/RsBKmY8BdwGpDi0a7M1sbqxRdxxp/MPramfXmX/pWK3SIYxt9sU+iYpaXndji230o9poISMfu0fcdePzXr4JwG8blKIo5Y53GcI1MTExMctm8F/fdV0+cEs4yWPSLyZck0jcFdVNI2uQribRvkbdk/V0jPt5ueO5p6Sj0P743sHsOdHkViGYCpMCXVdGBGVciBLxQbp9jVm3qpgjTyScUuqmVAAWCTZK92Tfx1gvw/3fVPi2j70CwF+n5iCCcjz/u5mfWropxQqJ7lPEeZTjhUnJ/LCJmjAw1EQTyY5YYj4buAXnEeDrlCclH4U5xlgygPUtYpZqbXNe+wv/4GcAAP/jz9wb15q6StdNxswNis36E/dB14Mf+M47R+Nrd4byohhzyyZq08cO+7taddPSTRkI11xQC4w8zujb/wfALwXwlwH8PwH8AIBTAD+k+IxraadD8enRssGH3nYL3/cdHwMA1JW5SAzd1LVVEkm0zZffdusQ73/xBD/x2UcjqpjcRNsOy+wDan6GWRsXSTxZLfDp+2dY1PXo+MdEKkq00VQge56axPtnJvfwyTdPvc+u6wrLpk4G6aFZJFHQF/9Ycv7d7/Y7vuGDeOX2kck0JTJ2fd+bthDLZizQH/nntU9jcJHUsSYrg65OawaGvxWClJhjwSz+cSSxx8Gyxs1DuxxMahIj16DNbBwxtFP+W6INzXOahjkN55N2dicOSdnZitUfMQ7hIrJJhWJK0zGKmkSHJpVDEks1iSkETOb/4VduTf6eqn/JHc/cjxebSd51aSVom0nWIYnpwDnNnnATd+6fi30SZQ0KnN0ySo3heH5wyTjkbhKO9dlCYR4KScwgIu7fY3OMIc5uX9CYRZFEJkgM9kXN+qNFgGPPAEOvryoEcxzTYtlxMQocq67Z9j1q5/PlvjlY1HjX3WP82d/8ZfjoK8/ZcUECgmV3TFE6GVeeo3otd5I51biu96gLzrU9njknY0Ba8MmjfRmJIB2IC9dkWSHOPTkqciN/PoBEW5YCCp96tttMAi7VBeC89pFXnsMn3zzD3/vxz43Jc1EpBfiEq5yzlBAlYAGkd905xo984j4AiyTGkluukE7K6nCe5xGuuWIk8TcC+LvD778LwA8C+BEAv17xGdfSLJLonw6BqBm6qWuLukbXTx8Yl25aVRV+9Ze9CwBw77HR/kk9aLu2rG4KxOleMu6lWwf4+XtnXtuCGLJk4fBSsOe/XhSpyDi79x4bisobw3kYi42ragi4Oc9F1L5S6FdMIOH3fcvn49d/xbsBRGD+wTZth77HWJMImIDWPY/uvHPHcy0aEHXsxjZ1yLWomZjUJLpB4qhumkGycs51Tt209N2mQWLZaQrpXkxAauY5o45FAtJgHHP+Af9cssg9s5ka52aYY52uCc07FolaOqduT4Rrvvhdt+08I4FUCSW9DCRxm1kr0xn5Mm0xKtyR+X6xGjX5P+MQTvskJocAsPdrKKbBIFL+HPnkylTJMz/HVCa/lGBMIQ4lumnoXLtJlJzVVVhvPE+5lT0nE7QHZUc+pEla1Kw8z5jiYg5JbxIlB2FpxDd+6OWx5EbmGOt3SNXtqRFBTObIJiXdY8g45v4H7J7PKrdGhWsKyY4Unb9UJ9jE1gQycRSj4DKofVSZP/VcN+ng6zwmh/vMg7WXGEq1QIqZJ1yTEVgTJPG9L9j2ea6eQ7oLAJHwCIPEklLppE9ie7U1iX3f3+v7/vXh99O+77+37/s/0Pf9J9nPuK72eGMi76Pl9GQ1EXoAYDaOHN0UmDp2YXuDb/6ClwAAP/rz98djmc/2P2/bpSlUQK5O0D4gH33Hc3i43uFffPbhuOg3EUeyVLcUIjbhuDk1iRIcAua8uo7zskkH6aGJbHGqUWuu+bU7x3ChE2rpwaLGK4P67c+8/tij9gGYUDRKAUCsiJ0JUqJtInpOXTO22AkFzqObTtRNp45F1+sCgPG/uSCxmt7/8nrOQoSbzloH81Q1BZ+Myw+MbfYhBTq0ZcJBi5mrbhoTxCjRP4ECkug8Nz/0Pd+MP//bviIYN50PkL52sfXnvJZK3AGRDO1gpcCtruN0u92Y9IvTTYG400Spm4ZIYnLEcLwkup0fF6J0fHJlWrfHjAGme0dJXdM8oxEmQ8HhDdcuU8OVnaKZZ/AMMEImMbopg65WVWRtJRz5MLhnAikgjsqWkMTUHlCqnw/3t76wHoxzrMJ7kksuuu8Nf0+Oi/gzc+jd475dOl40cMhT0IF4oqQtrCVhICvz1CeOygmnEbWM+JM54GB7wUwSAHgwMNMerXfoOrsvp1ogxcxtL7LICOxIXe6H327ZNePxIsyt1kE2UzbxL9RIYmfHMS0wLgpJrKpqWVXVv1tV1U9WVXVWVdVPDP+P6/s/QXY2IonTE2oc8rQIzWoxPYXLBPri0k0B4AMv3sCv+pJ34H//az4GIJ4NA/K8biCPZEm9zBe+4zkAZjORz6ojjmQpq5tTSDNzKdUDTc/lvVNb7H627Typfg0lQbI/qfM/StYn5phSl5X743DZ4B0D9/zn3jgdERW7QCYC58zxYkqe7mdGxyUCMCaLHBXgGO6vY0eZ7kgUd1OOtYP2po41WVcJCmicgsvXJMp5YTPrk6bglGMnDrluHDDd7C9a3dSto0jTTdOfEUMgzfF9ufUXbhz4cvexTHdhQ2wSzv95LKcEHaP7AkTglghu2q5DVcWvXaqd0RwkkauJs58/jiMDt5i4CJMo2XnHIhzrzPkvCgdF7v+icEfw7LDCNUbx2DkOgyQmUBsOSdQ55ECGJl+iO8YCgD5fbybfLVyDrBJ3Yn+boM3mJ5PwiLI7MiNTiXJ3/tFjRRN+c+jd5b1N5hnz03JIrnxuVBQmm3CdJo5YVHwCHpCoZQyoSLd3ungmCQA8WBvQ4eHZziCg456YRxL/3b/2o/h1f/rv4/FmNwIOZlx6nvIMvM9BEsWaJs7Uy4nWyPHkvQDAt8AIhGvYFhgXWJP4JwB8OYDvAvDTAN4D4A8DuAXgdys+59rZ6cZc6KNIq4IU1cVm0aZPnCyaIZLl0k0BsxD97371F49/T/XpK2aMQnh6MGmSDpiA1H6ndJ9EG6Dls91qamXG2b33yCKJ98+2Hm972dRjgXzJRKWtGemmIZKYV2BNqcvKQrBa1Lh1uMStwwXun+3wyu1D77sl24kkFuVYETuFJEYpSlxNXBxJNCiR6yhYJDGuFFust4xmyM3PkpDAVFiBQwSBGfSfCZJS3kRlXJh9ZsaF36+sbho//zEzWVN7nFSNYJ5+NV1HgHky+Yxq30WXpKTqxIFMwqP03Rw0190itplx8ebefZkiGRmnQbIm9yShChyiX+bz8uPcYLauK0pdWcbNUdeMrlt9nrYVJgVY4RqX7iXB2KXVhEbo3RyS5SeprHAKE1zqktCp5Eroz4QWa5Mic8jP0WflaPok+s8Nl3A1x/CPxyYF7H7jv547Xix5V0peJMdlg3v7PjEO8Y8JbhVqEhPMiTySyLPENPZwQBKNUKOLCKYTCQDwn/73PwUA+Hv/4jWfblpnhGsG3zAFMEWRxGLdqjxvwwt0C4xAuKbvObppnQ8DNUHidwD4WN/3rw3//6dVVf3/APwwnvAgUSDjGCoYywYAeaqFIIWh4EqJnmEXrBiSkp5/CurfdR0OBgrtalHj+aERvEUS030S8z1xYj3YynL3QNwBfeOxRRLvn269AERFNx0ebHm4Q8faIom8Y+f+X8a9884x/udP3sfbnzOoYlr+2dBI0kjKdFG1CqCpb5lGEufUQ5h5TpMQUp/b1NVAiUopxaYC7njGGshnkmNOZI8ylXMRLKzyESWXsAoCFeY8AuLc+eNYJNE9L7SacGKTevPxFvfPtnjX3WOvbqSpq4ngFkNJSyWO+oJDnkoclVTcGKU51oSqXmYKhOtCvil1blyp3YZ72UrPjDuu9e6tnpKtB6aBAxPchPWPxspriZmnEe7gkyTTfYoR7ki17mFqEvXCNcO8ehEl4YJtMycfkSodLlx/wjmk5xhXZS4il5E9oETbbSTpndoXc3TTGJJIBERugn1ctxgEXkmdHgOpkJKZnWGkvKErB7JAPEg3yTTinGivW/SccAGwNrjPCRqmvtvRqhlLeS7SRrqpIILD4VPCZaE9XO+8BE8OSZQgcdXU+H/97l/kXY/UnlhKCFjkPnRmtMI1bfmGBIAmTwbVCNekjkbM4nrbNhM8pJDETUAddU2USFNBSpLDn6A7GvpDev5p9St/Uxz7mzk1ienC2gKSWAikJmMSlBXAPtTAgCQ6VEY13bSuxu+XpH8WgvTYJur+/b0vHAOwAh6pcSVBjJSSJ1Di/8dpqkz2P5rwiNRE3DiwFITYM1CiF8cy5FSQkjgnxe8WLKxMuw1gGqgzyoJArJk1Ny4UjmgLiYvlWN8c36S+4T/4O/jaP/GD5rO6YGNLIYmFBFAqcZTt3ZmkQ5Wc/4tzEkrIRqrnJ0sBjTaKziDp4ZjxmcmJhESSaT14ZK/1EBgS2Qho0yCOFyI3XQ/KIYknGMv3STK5VVhL3DkyDhoQZyWwSK57i7AIZKwNklaVmVVzjtUOd5n7GMhTCd2/x8bFgg0mAIspt2aTixHfiaFOx8QCNfRuGcYG6dHawraMcMdoyW3huo1iVu456cqJoymVeXidedaCxzSXyDleLUY9kIs08ScfngUt3zKUZPe1MUh0EMhUuYcEiQfLGp/38k188CXL2GvqaX/XEvor4wDHL+lZumkoXEPWJBboppog8S8C+GtVVX1LVVVfUFXVtwL4L4bXn2jLChAk0BfbIysSWI50U3/cJkNRBazzFkNSGF59SVnq+RsmY3C4sOpLWtqojEsHDanvZmoZUw+o0Bvvn+7G99S1yCTHH9DQZHNN1RaONaGJOaabgss5MRfo2z5mWoPeGNRAYwXiAIY+lfnrluyTmE0KRBwLgpKWzMg7tORXh0Xuaz74gjcuWd+WOGQc7Rw27UJNXPjdTOBGLqwiJCCCYEp0tSfGAFNEkKljkXl2scAh89wAcRGGtuvx+tC8etd2HpoZpe0SlLTZimyJeySbfa6ntOnzmAScaaZGvCalmMyR5zuS9NO0/KHW1ghtlOptFtk7WNSgC+5jeT1/PP++ZJMrKaQ6GzgnGRB5dCNMCpRq78RioiTs+Q8TTlTibpLMYejFetQsdTxauCaRdMqtXV7SYpx7OeAORZFK42KlIjZwKz/bHgJP1ISGzzdD5Ze/971/vBKVH0ggwF0BSRwDWf/5pu6tCLsgN0U5/5Ne0W16bT1ZNXi8aaN/m2tn23b0sx+uW1/dNCMCd89hsz2SfuIEkihsnYMmQjet60TpWP78T/r5juqmSuEatibx7V+cn0/5E0b7/QC+B8B/DOAVAJ8A8P8A8L2Kz7iWlqtVS9ZxCQIQQxIl+x9kyYt00whlCChvGjmapHtDfuKe6UP45e+7AyAeAMu5KNEYJoFUQe5e/pZqyn73ZIVP3DvFm6dBTeJCjySmgm2LJOocklDK/1s+8jL+k//ll+HjH3h+HAP4GTvzvQq1NglEECDQthl1LLHrJvOUe/YHvusrUcHn2MfUvSwlOH4vh7VOgAJJjCCQLI9f7l+Nuqm3IXZ8TWIo3MGMC9cTuWdTTkmujuKff+bB+PtnHqynxfaTZJOxEithipjlkytAugYyHxCl60PEcmql0/em12Rg2jdPrJSRTyOJXZZqByCREMgpEto5iRlEKjnEjIvQvbjgJoHalNaSYM8pSeS742KIbBlxnt4nxRYAQVKARRLDgE+jdulft3JwXyWeG4Ze7Lc7Ia9b5FyWrl0uSQLkdAimVEcz9/IcPZSUKMGI3f+q2sKQFULsG3IM89P/vJS5weXCYTwx6FIs6coIN2kTR7E6faDMbgLKPqhrx6sFfub1x/nJKO3R2qCIh8t6VDeVueX20jcmQSIcJDHdhm29M0HuwTJSqlZHzkef1xcBIueSVTed2wLjPV+Z/XM2SKyq6huDl/7O8K+C9Tm+BsDfLs/k+ppFBeM1ifGiednwp58nTk0Y3PB0U10AkOrvF9bnfOPnv4Sf+OxP4mtefXGYe1xZDShnu5PUEyXaIPOWINETrqkrrBQ1iW1vzsWkz8xgWyKTH1MADRGAqqrwzR9+2flecvyI86k8HwwC5kry+01yyxtNqd/Y3ZMpPz2sEZExAO8gABxtKC7mw6ubdsGmzTi7YT0KLcChdMiBaWKGba4eu24PHZr2z9879c5TTBSGSUCkaKNA+dmOq4bmxtTZIPET907x1X/8b+NP/KtfNPaUzZltMZRANsb11a136um2FDFhsBiTBHASRxFHPssSSDq7OmRDjk3d/wGSbuZYQBsC5F5D5Ywh3FkBmqYa+5G5xtJNx5rEAvI4zjFAcxn0xfaptK9RQXrkeQM9zhsyzCM7bIISAXm0B5gm4MTkOUqd06lyLj/H+DgiUT4JiLj7OKRc08Glk0gwc8yPcxNO4nyX1kkZp6XJxxV3y89AmLigkruJRFquDvj4EpBEQRGfPznAJ+6dYuPUm4c1yq697ognPly3XgIqVxaxcWoSQ4vtb4a1lf8OU7qptgWGo25aEKVhrPQJfybx+rgmDb+//9wzeQtt16aRxJhCEWAXsdiDM2asg+zDNnMcIB3slTapmEMin+M+oH/gl3wIv/3rP4AbB4txXApJLGWoUgFATs1wkXAKd12P54f6vvun2zHbVVW6mkQjXBN3mMz/5bvl5jjlkY/npOB8aqX1s+IuhCMpohEyjsl2x6nTaQEOwCDjU3px580lNsfJfezMI2Xx4JKn/8g8+ZrESAuAsh+JJkBXmfMfO16pR1ZKWRCw9RAA8PNvngU1ibFaJ/OzKFzTh+tWOblixvmvuVnc+Jg8kvgTn30IAPgv/sdPUEHiroQkjnQjZ47D4RkKaIxiX1oTJvcWysE2EDq7evobQFLLQiR9zK5kh01qLruujPbLPCdIYiFIqRN7cIk+GqMEMqD0WF840k3LVNpU43IqaAufGwLtqaoUSqcPNkrBVEwABUBRcCX0E6xKaeGerFLjMmMi6ySDwFv2ln2NqUkMkXQbSOWPF1KZ5TOoIDHi35USfuGx2MSRmm4aOY9mbPqePDlYqILEXdvhB37oZ/Grv+xdSaBF9oDnjpb4xL1TPDjb2T0xAcIAGMs2gCnddNFUOEso7G92Rk07tg7FFd750oFxzWNbYITCNV3L1SQWLBsk9n3/vnMf4QmwEWGKBYkJ9Cu34aeQxLG3YkE4JRaAZbPPSSTRd0CXTT0GYwAmUtPuZ2gFV86LJB4tazR1ZfokOtmnRVPjEbmQWLpp/DyW6DFAnA5VRs3i57+o2hejVg4/WeRYJPkZhzDXAmNOvZn8LTXHZE1cYbOZCt4QTlqQmGEConGewfHYmsRQXIStSdQgibnsp1BdAOBnX3/sZcBjTgVDSYshkPZa54RrpkEpdV9F6M9zrVRzHENE2KQYMH2+c8mVmLopg4iMddEBksje/2pq2QzUwDueE4DFmDihRe+vEpKYW7cy8wxrEmm0MwyAGURq+LO6/isatHG1bTsPETc/S98uRgsv0a1TNG2tMJtmjuF5lNdzFq4nPZFcGa+1khVi6aYyhguAY6wj5r5M7cH59dWfm8yXqe8PEXGgxECxc3ItV75hkEReuOb/+9Nv4A/95R/Be+6e4GtefSH6HtkDbh8bMZY3T7eOL5neS4WmumwqPNxMhWtSycz1rsv683Oebdlnxz2AbYER0k27HbA4SL+fNI1wzVNrgiTGNrkU+uXWzU3GJBQJ2ZrEeGax7MTEgqJSrc1c4ZqpI1muW0r1mxFn62jZ4HTbeovfqqmw3XFIokhCl9TYcuckFtzQbQrC8084yX0fNmUvZ4RjyQS21iCF5OadhHRNYlrdMV5bCDBByjRwZpxdwK8jKh1Lxvkb4uXWJIbPXIkyVFXVRKRCzKXg/fhnHnrPTYw2yiQgYggkU5M4z4nJt8DQxo8j3TTSygiIZ5KZ9S5Vy5KjScacQVbdcRK4gb//tTVxde3vN3b9yR8v3HNKcvzjPCP3V/k+Se/BXBN4W6dM9UkMvpsJNvJj4kkBErWJJIWZpIB/3fx5ZMdF9jfGv5j0yi0hwHU8SJzF7gD3DPjqvlzjePcY4++lcUFQpAmA3XHye064CYgn5kv9RaNtWcCh1LHzn9839GvkycEC27aftGpK2eOtCX7ePN0m3yN78p1jUzZz3wkSU4wvwA0uVxHhmnRN4mbXpfebFGpfopuG142mmwZ9ErvdhSCJ+yARLk1pejPn6riA+KI8NsCOCNdUVTrYqIKFR6zrkF19UmqeRbpjbOHJfK9xXIQSGIq7xMflkazDZW2DxOE7LZualsnvhs/JBW1AnhKbC5xT2b7U4tN2HSeIEWQx3c+Mjos6hPrG8XaeMxqlE4HzlDbNBcBzJOGbIEvIBKRmLnrHWubp1rYxGUI7zh6v9IzKmDiSaI7/jttH+BeffTg4pdU4JtkCo0BRSqr75pIrMYSigBClqPxip4NTwAaLlhbLt7hhGRBAZD3JqJvGpfX9v6UsrMvV1FaF9UcUtS+y/hTRhuD7lajF3vEi91deuCZOEet6UpVTiSRWwXrOInsyJzEKSYwyJ8rXLeXIU4nCyLpQQnLdY4gxz3eUElvydYfkqR1nfpZbN8QSp+R1c10M4rqFa4KmvMEcj08UyripfkSZqQRM27IwVFovcU3oJAgDIhRdbLt0y43jQRyPRRMlKfpwnQ4SJdh7bkAS7z22QWIqkHXH3TlejkEihyS2OFjEA7Hks0bcx4Cz36hrEp0+iRdQk7gPEmFVSGMIX+gMio100wySGA7btnlKTkogASjXcblzEmOc/9jCD+iFaxhHclFX0YyMSEAfLhucbVsvQ6ZpgSGbVipoY4QjYnSoEgJpM8/Tcfr6I2KOkax1z2StI8EGI9yxqKfiQaUeWfG61eFvhSBxSpPk+k+Z94pjx23aYS1LR6AGcryw4TmFJAbPTqlNCpBG3M6GIOqj77iFf/GZh94GFK0JJbLdMeEmNpDS9kmMofauifPQg3v+LVMjfsxYn8RSn0ogvS7nnNAU2g9wiIgveKNXGwX4FgwxtJNFYMYArBAwjOMSdMd8kDKVkmfGhU5hCXkMx42JfCL7Lx+rrkmsp/sNe936yL3FJAUmDBtauEbvX0QRqUICoq4SCDzz3ISJ0/yQKOLPrOW2Bk+SJP7r6eNN9/ySuq+Mm/TdLq6vmByL/W5anyQ2DjB7TmqOJysTwLDlRFJe4fbVDk3O0e0jEyR+5sEZTla25RswTfYBwEbGHa+scI3spU1auCbH1gt1CwCWbhrsN2wLDOl32A5B9AUJ1+yDRORr1WKCDEAeSQlpLmKlzSZPN02Pi9EKAEOjvYzawvM4kqnNftE4QaKz+SybmqYjSDbbOgfB33tmjungMhVIhdQT73vlzmMki2mzpslh0UbdTNZa6K1hFhOYRyWUv8XnmBHlyczRIBv+az0IlHR85qxD6L5eGucqGfK1hQ6SmMmYTscFDkIpSEwgboIkvvf5EzzetKZIf7hFsz04S9n/VAJIicAzCEWuJvHRWqd8J+co3Sdx6uzaBveZ71ZNxwH5ICWF9gN6uh1z/8fqJlkELDbHsnCNHwQzfVqBTDJBuf4w42J9Ei+tJjGSKOTWZH3LKzPHON209O1iqEjXl4M9IF6+UfYTnDkOP5lgbw5NNQxSWCQXiCDw+Sk6TAEZwwWyYQK75Fu442JIIkO3trTpnqvTrKclGPJ6zkK6LyCU2Pj7pc3WqRJJzAaJnSCChm7a9YbWCnBI4u0jiySOtYwZJDHX47Kp4olFNuE37jc0kjgEiZ0EiXu66YWZ1CTGFrxFAUmM002nC4/8Pw/Zm58xZ2uuummx3UO4YTP9DjOOZIn+k6qJa4aaxLNt59ckLjQtMARJtP93jaGtpPp4yfxjFtto3O+VPFaubqmAtgExmmRyiBkXBEQyR/czY7Zo9DWJstH0weYLlGviYr0jmcw64COCMo+chc61prbQzewaR54b594nJUqyjIk9N5JZff6G2RBfe7QZqS+5mtDc94sFexSVfAZCUUeQbddON1q6KVfzra1JTAnXSMud3BgfEeQ8+bqahwhOjkeO8wWYhn2NRUScAIx9biYquCXaYh3P5DN0R8BPHLFoJxCyC7hgUa45QgAA3VBJREFUQ7smx9AXVhU1rDVz55EcF1lLaMZLJHmaP/++k8yUG8gcfYqkjMsOiyr1aoM2gFQ3DfqZ0gFwgGbZ/Tc/bhFpxVZUlw2+Gx9sY4LIAhzdN0Y3Taubmr2KTQYySKKwzoRuao5j1fxlTpNxQ8L1uaOlKXly1vZUuQeQX4NitdSadkbjWs6qm45Ioqib7rg+iQXbB4kw6qaLOt7QOgbzAzaDFAuKxox1Gy7+ZV53+IDKOG3QAOQl2mXuKbqpNrPL1vul6jsN3bTG6ab1guJFzbfAaIdsduo8slLasdpCmX/qe8n3iH2v5LGiFDH/b6k5Avr6iyZGtxvRF11wX2oMHquHwLBpF4P0WPaNUGRz58VQi91xruDNnNpCJmst40Ikq4gkpoLEre0JBQCffbAes7OpfpNAuSlySvFYS11nkls5uukjoZsqg8RU0C1rk4/kltVNk0m/zPMdYwmwTlp4Lqn7P0A2zO9ldHtKNzU/S3fyRLiGDsCm6zITpMTYXm0BvQyf7VxQ788xtibkx9j1Trcmp4S6tG0iaLpjbM8vBntp/6LILogGG9kpRurEh3HEHhAmXBkhHyCgZHZ8UsBF6dzXk8cLzqVlN5WRxFiilmkBI8Pm1q3SFPTYvZwJog6XUpPIBonlmsSQbgpgpJumBB4Bqxdy43BhfNCuHxlbOSQxJ94Uq6VmGBcTf5JVNxVqaTu089jTTS/OhO4YsxzVBYjThGNZXfk/k2maFrLnN6nUzX8eQZLc4p+iPgDIB6X1tAchYB7Qph7oprvWE4TQ1CSazKZzrCSSUpijFkmMbDQyjsnQansS5ahsOYuNKwV7Ms8UkpgW8xneFyCJ2hpBYAjAyAa07egQlpMdQGzTptokTqiSjCKhzCcM0ss1iVMkFzCbZlNXuHNiN8SjpdRfTNcDJgCIbWxSs11KOMXWkvPQTcV5ONtxToSsE6mERy5JwiCJsV6hyT6hMZYAys+2GRtJQBTFPszPWcIpsUCWfm7M/0tKi+O4xJ5Tuk9iSKK73sfHDQJy0hbHcfxKcwTsmsqdR/MzXJOZID18BChVziqOtjH+hTaZmWodYIKU/BzD+1FeL84x8twwqGDYA7WY7Igmc/iaRJtIADfH2j8eiyTG/MJizXdwT3bks50Ss2IC4Jh4WWrcwSLeKs61n37tEf7JJ+8DsEFiFknsrEqpmCCJKZVqwNQkLpt6bMvhIqBNnfZBc2yxWC01W6fszZOlmzbDd+72NYkXbtu2SwrKpOrocsI1qUJvZrOpovSTQmATySIzgiQh99x8BhGkZJHEXFAUd3YtktjgdBMI1ywqbEgkcdfZGsxYCwA2AJtTfwdMM+RtV6gJjWUxyUDWnRfA1ySGxxOqdakFQEi5Lp2TeI0U35R6EoCx321YzO19zAal5v894djJ8cJgg0FSwvuLUzed3luAKKvVuHFgg0RRjGuqary2YgwlLbbecYEUpghkX6Co1tMaWddEuObhmqtZ2ZF002hNIoGkTGuV08FbnH7o/y1lE5SIuP/DgEjGlZ3PKSPBzKE8DnAc0ILDKpYUrikwJ6KJ2gLdtA7myD6jMhUNlXZURHWmyQUbEbSBSqbF9w3GAQ393RwlELAJxFiJiQ5J5O4tEwDPCS6nCVc2uJ+qAufnGO7BmjkCTjJzpPKXFa61yZUYIg5wwbZ7KA3dN3SVc8hZqp+42CffPMXXfd/fwa/7/r8PAFgPQm25/UDWv+NVM7amuDEEiXVk/Rfbtqbf4fFqga43iUlf3TQ+x9waG++BSjC+wr2DDhIjdNN9TeLFWE6hKFdHB6TbZgCxxZ+jrWiLXcPN0P09r1Ian6P5zMKmPdloONpWDOoXWuzRssF613m1Dqumnji7KXM319iiyjhpMVVOK2zES+vLOGoRj2ykuesdQ6oZBb4YclkK9uRvYSatVJMYnSMUQZsSEQkD4I74XsDUSWDOIzD0jgwccorKNgNJjPWpBExm1QSJNlsoSGIsAcRQ0mLJldL9D8SDy1wjZSCeEHDt8VCr8pisWWFbYPg1oeXvlmomnq9HmR5rLtrT9wwiYufkHk8r9mHnWx7nvt+svYVJQqijOmc3tQeX2m6M9GIlJVbeMypXKpJUYQ02F7Tp9nsgxubhkmIxMY1Sn9w5wk3A9Ltp7i0vuCQS1zLPsL8onVx0nzeiJjEUKtIEwO7xGDV5IFWGUd633bmpgu3YusWo0ip83lKQ+A9/6g0Apo0FAJwNSOL9rLqpLTk4HILEULgmlpTctR2Wgw8KAI/Wu/G+XzTpmsQ8kqi/Zu489S0wpE/iXrjmwm3XdVhkFPFiNYl24YoEiQkOP5VFqGOS2ByS6D7YbOP4KYd8+Fv2ePGNxp1LdFydrklc1vVYk+jSNJdNja6PUwRinyPjYtQHxkmLtekYA6mUSEvC2WXovuG48wnXcItPDEnJ1iRGiuaF/pU6Zqq5N+P8AD4qRSGQwTkZ6aba4JI4j8CQyQ+RRGJcmChhaxJjyZX1tsPBosHNQydIHJDElIohUE5AJJHEUp/EyPGyTkyE/uma1CQ+ItXvxNlYLdIJP8BH29j+rkAcSdHc/8yzDUzrj5jkSqwO2wQp5WP1vZ1bP76eHTZ93joySTIJboiauNS+Ubq/ImsCVzcZrgmM82/nJEaJVASomRnH0oT9a+3OPXm82LpQYDOkNQ/SdGtgmvC2vkV2ihEE0vzkVDnD858/1vz+ovLe3vvJBqXy/nEfJfaA6Pkn1q2xTl8RyIZJKoBMbkV8rtQcJUjcJKicP/nZRwCA24MIzYgknqVrEjcjM6oer8Ux2QJjMdBNzTF24/tzNYmluvRZQFG434wtMAoBX1WZQFFaYOz7JF6cmf6F6YxwriYx9gCkkUSuaFtbyxg7HockxsUmgFLdUpz6UFf5xS4G2/d9PzoJR0NNYtdbh7uUber7Hv/4594c5zDSTSMZ69FJy3y7mBNTotLah9p/nVXfiy3IuYUkKdvNblBRJDGHpGTUTVMLZOSc9MT9H6/lKm9sYb3BmMQpIon+Oel6tibR1hv0fW8cSRKl2Hnnv6P6JMaRxBYHSx9JPHaFaybPtvmZZSVENjZG3CVVM1MSKZL3xex0EOZhW+DIPFOooKVA289j1snx3lIkgVK1tQDnJE9pc/kxMm4apJTHAC5tjgxkI8kVim5aR1goxDqZ2oNLSUnAr0mkEkBBoqrvy8JBsRYYbJAecyQ5P8EfA3COfFSFOzMu1l/U/L+8JkRFkYoJD1+siq3lnQTOhEhIbC+leg4H+8b43fLDpjXwwz3G7AETVeCScNNkb5PzWL6X+8i9xZxLjbrpWJOYWN9/8nMPAdhzytQk7py6dDlsSDeNIYlCN5Uk66ONpZumyqSAfKIkhSSy7bxGl3dEEolNoF4GSOI+SLwQ27VpJDHZyDfz4KSCxJ7ZNCKLeCmzGMuGsYIkc5DEWF1JSelM5plC6byaRA9JND9TdYnf/9/+BH7Ff/Tf4Yd+6nXPUckL16TnGA+AC6hZJLCR78YIYsT6JHI1ie44vt4vhiRedE1irJcj46TFa7n04xhaBzDNLvYob4Yybhc4CGxNlrtJlSjJcqx4TaKhm55E6KZx5dDyZp+iAwLlhFNsLWGc+BTdVDLHrLrxdjfMs6DU69//ZVGelHBNDgGzzqd9TYX2BE4aUycbQ5e0NG06kA1pcwQibsbFEdkS4pykm+bW12AN4pHE4fNdJLHE9Iom7jgkq+t9miqFJNZh3ao/95TFEk5tAUm0tVzhHpBv3xOKItH1roF/wSKJ8eemfCzA30vN+c+PG3tTj/sGH4CZ45n3j+sPhQAH578vCTdN90TG6ipExGXupXHxoCj1jFokMREkvvYYgA0OrbppuU/ioqnx3udPAPjsGvOeeJDo0k0B68PkkcS0nxFr8aRBt8drwLbAAIBm6dQk7pHEC7Ntp1c3zdU8pW5GKrM7A6KOblBdeUGOBaQsJU270QOFVgpNhYOhJtF1nEckMZFt+os/9HMAgAdBA9RQ6cx8N4x/S1ks0033SQy/W6vvk8ic/1ggxWxsseRFrkeoOy4Z3BdqEv1aD95pDTPCpQg4bG/QsujLJLgsOxbmeHbTbknnZxznXO82s/a4c4ypO5og0RboA8DRytZfpJDEueq+xfqj2LpVUD8E4pldwDoPXQ+qLlmU7VYZzyn8fmwAHJtnLnmRe7bLiMgUgWTuyZhQCIO+ADZRxQayMQd0juCTfEY5SRVP1Oac66qq/Oe0gDy6cwTcWi6FAMpkTeZQgxC5Kc0yTAhoqMzxvTs9JtUCZldI+oVKyfIbswdoaaPmc4PzTxwrpgqsKd0YnxuyBcmU8eJ/XnKegT9jGVh5YUL3WCCf7dAHZZHEWKmUSdzH3y8AQCoJKLRSGyQONeqbNrkfjArXdYWv/uDz4/uByPnwxnWDuqkNqtw+iW3XT1BSIE/5jWlwsOUsXmKebYEBmKDQRRKZwLI0l3N/wlNgu4K6aaqRr/w9NgaI00a5DKH/WmlcLBvWZebnjkshiaUgcSIHTyIiufYSY9HwxvLBLd007kj+888YSsLYX3F8sONOXfG7JTLdQBptSCHHRSQxGuyVF+TY/cU1AI4EiQySGK1JHM5J4pipXo4MHQqYokvsZu/STbnaQn+zZxxCGSeBsxyTFa7xauK6HseUst30dVE3dW0UrqlsrZlVXuQSEOk+iZngq9JviClpfTHpAwmYgDHF9hAbBXYy71vUfhseSt0083wXkcSIs1XKeISBFBNsAD4C0/c9xVwJg9lY7WvMQjoto6QKxFkoOUoaIEmSSJDY5RFgwE9wlZBHd44yL4Cnjcp7xbgg3fxs+x41bMDItCCJoj0U2jZdy5maxGnfZ6LFViRJUoqAqwgCOScBoauBd8cRtNEguKSVQ4P9zSJf5eAyVoOqYWpoVEoBu3ewSG5dYxJI5Z7t5bB3pcoJts7+um07bz94tG7x3PH0nrXCNTW++xtfxeGiwb/yxe8AkPbLzRxMCwxBHQF4rDSZR3idcgreZu3xvxtDgQYk6Tr8hxWuAQYkcd8C48Itp25qULPp66NjmKGbThdVhtcdC24KDbAj6qYdsR5H6aYsJW2yGOSLqIF4RtiVgD45MA/og7PdePxctsn9rAdnWy9THBOuYUVhYs6gzD9mMSQXGLJMhb6R4TgO7fHnBXCLTywAs4hgzkmYcvJLSYhUvSWTIQemznVpY5uvZAhvnGmkXBzmZQmZhExsnMyTqkeJIYnbbkQR5diTIv3g/AMluvU0QN+SaPPkuSmtWwUkce30RxQqac5knjkRppACRAXAqSAxQ1+ce/7N3+f14HTrsNmgIQyINMEGEDxvpCOvppsmWzDkhVMAn15cQh7FwvpCTd+8aZBSTgrHx5XmOA1IAa4mLob4UwJrysTwFO20r2fnGKxBDEtGPnc6Tr8n9sR1m9JN5fX8HENWQs6PDOfpghW23CM/xn3vGCQSqKU7ziaus8OiCaBcwmNVAABcn2+960ZEEQDuJ8RrXMHGw2WD7/6mV8fALwamuMdaLqxwDWDPX64sIuf3NhHApyWZSl7StVfQTeulQRCBfU3iRZqhm6ZlbKONfGciicwiEgtuSsheeDwmIKqrGGpp/5adY8RhopqCBwuCnNtlU40Fxm882oyO3irTcPWTb56Ovz84C+imEWekx7yFroQ2pILEUgCQUgAF8pt9TE1VhdJpkcTIM1Bqi5ASBGBU3IDIdysKRwzz0jqE4YaI8rFknrtgo2cd0LAmlEPgp69vu35E2l+8cQAAOFymldwYBb5cn9BSfe2UlVBogZHZfAG/VmXdlttgjFSjApIYr93mM/JiDJI4F+3R0hZlnBo1GOmOvkPIIjAeck8lZRJIYoHJAOhbMJixtVM3SaL9w1vcmsRicmu45cIWGKXDyfzdU8IGN/EERDkonZZF5BO8OeGmYuIo4pMUz0k1rbdkkcQwuUgjidrzHwR7DANI5gj4ZRFAWbgmZJhZ/zPP7nCPxSKC1p+E91NLU5Vjp75aSZTQCxK3Lc62dg9I1SVauun0vOSQRCNc49ckunRT+S6h5cSbYixElqnkPd+suikANIO6adcB6LkxBdsHiRC6aWKzjzg/gM1GxBzDEUmcOE3kIh7LxuScrRhqI59XQKRiWUWgQElLoG1lZzdO2TJ/s0Hip+6fjb/n6KY/+7ofJLpIbYwSy9YapIU7Sn0S/ddLAUAsi8xs9imUgt3YtDWJIUXP/YxkM3FZkANRnjlzNNnI7LDx2oz0N9JpDZ1k1pF0UfFxE1WOM8fj1E1jSKI79sWbJkiU5EpYawaQolTjdYskErK91KZOZEnxMrf5AgYplVPDKJxaJJFHxeW8zkFScuhZtLa2zz8z7thJv0OGaTTjngy/G7NvuONcNH2OcBNg7pvU/uvOJSqKQSCJcl+wlNgwACjRMb0xXrBBJLeGP2uR41Td2JwkdNfPpFtnkHRgSLh6czQ/S+ekqoK2LCSSPq1l5JhbgJ65kgqk6OTKME9Jtpae03DfsMmt8hy1iKB8h5ApU0w41b4qqozNBVFNXSXX9s2uG4M2QRIFNEgpnLp9EmPHM++Z7je71ggvHkfopmEdqWs5NkOMhVh61tyxNkiUm4tFErcWTdwHiRdjObppqIYnZiX2p2NSiyorJKARSDBzmGZImAc7JpPfE4tdrP6oVFcCxJViXSTrxtDvreuBG4fL8XUg7iT+7BuPx98tkjjMMfLdqCAlMk7mmDqXc9VNY/0tx80+t/gnqU3pMWaekSCRQRIjzWTtuFTgbH5qnR9bD2FfYzLJoXIrq2QYq9ugaqtqv9YJ4ChRiwBNp5HEyBrk0r2+6gOmSP9gIUiieU8UScwdK4KAcZTMerohdmXU0v380Na7bkwWpShJru3aDlVVcnjh1yQSfRKTfW8ziYjQiTS/iyNfclxjzjVxL1dukMgFDbFWFmYO5WMBNjHWEiwB+dzwcpcEvvJIVv54i8avHWYC2ZBK2BHHCccAw35DqqKGCV4tIjgmgAhEaprMzCeqUs41U3MfE9dhAzA3ccGgL1U1Q900siea/aZ0LPhzJBJw7vGsUFR5/5XP9ZOL/fh6box7DA0i6I9j1624z5sbt2yqJJK4abvRJ1zvOmx2He4erwAAD9dxuuk248/EEjLusZaBUrgkG1NJKnktqVVRTZFEVhgviiRqahKForqnm16MbbsumX1OOWhZ4ZpzZD5j1LKSkxwPGszPEm001UuwqIAY+W5znF2LJPr93uT3sUdT5MF+87FZKG4eLPBwvfUcldh36/q+6GvF1d/MJpq6Bkl100IGOl+3RCQFlI5F7HhcTWKcXux+5mSOCeeHbVLsnxMis97456RlC8SDebKOpEtbLJ0L18JNkapJjNB4xrHD9/5ff8vn4y/8to/jC9/5HIDE+dfcW2pKpj4pVkISN7sON4dkEYUkdn1SgEws7Plp7/+ykxxFUpJrgn2PmEVS8jat+Vb0SRwFmGQepEMYqJuWg0vz09JNFZTYGCLLICJhkEIEpou6HlVvNZRYwJ5DJuFkx/jrFrsm+zRVUgVdmQAC0u2McuclRdMr1SQ2k7pJ81NNd+xYpWpMAme2JneuCJxWuCZM3jFrq4zzNQjK40KatpaCrg2AY6U6XR9n24ktmzrZAmPb9rg5Boktdl2HOycmSMwhiaZH4vSYVVVFNT/MsQzd1EUSbx1ZpXAgEySm9oB62t6GiQGA4FyOLTCIh6BeGBRxRBL3QeKFmIGa4xcgJb+de7hzSGI5SAkXuvKDHc2GER5JCm0rDEsqsJbu4VhtmzjMi7oKgkSr0gjEH1BZXJ6/sTJ0U+eBjQb3PZfFjKu/zXAiC87PXAQ4WbfHZk2VAUDoWANA2+Zpeqk6WTqLPHGaOGfX9i7kHWvAz+xyjqQ9JxZJJILLAJUtoSgyJrlBDWMXTY2vHNBEM79pIoFVNzXjnOMUrrUcL0Y31ar0ivV9j/WuHZ2Eza7DG482Xh1yaNtdlxWtkWPGAuB5dFMks8jxxBF3n4RrV9tx2WcjZqJzCEOnlW2lEF67Us+2cY4RFgqtrhlm5YmEztJFEjNBvX88Oy85DktbnCJSXJDiUgJ7k00rzDGoSQw+jx0nx6aQxIg/UyqniNUksiidi4DNSUBQzJUom4dnrnTBc0MHpU5SUuaePV7AwmJqGacqvdyzHZaK8GtJFVU3zX23VVMnRQnbrsfNwSdcbzu0XY87xyZpmAwSu3y/7lTfc2mBUVXVeP9JgjJXO7/LPDsxmirvlzh7h6YFhiCJEiQyYwq2DxJhbpAUkhJriAk4mZxMxiIepOicGAYRjAUb498KdIS+n2Y/S+OayHdjsnZNna5ta2pLNwWAGwf+Axr7bqJ2dedkhYfrnZfxjTkjbE3ihFZDqLgB00Vk13bFtgGAX8tIXe8EcjwPSeQCgFDKeaTgpoLE2BwJtCHmXPfgKUqj01rYnOw481Ov0uigjwokcVHXaiQxpBqJ5Tao2MYmv+a+Xoym6vYyzc0xpsrMJFdi6+uu6w3tfHASNm2H7/krP4Kv/Pf/Nv6HH38t+nm7Li1AJhaWD7hMhtI8p3THfD2K+/mAju4V1vJS92SEbqp93sZ7hDgW4DugrLppLHlKBenh+ScQvkVTj8EluybImi1rHnOcuACKvnG2RW3K47TJRZlnOMfS3pFKkpQc8pDNQweyseCGSZJUYVCq2RPtayWhQMChF49zHF4vzDE8l3yQGGcAaRBgnl0Abxy7bsX2qa6Q4Fo2dVS5WvZIl266bXvcOc4jicaXz/nKccBh2/YTNuGtwzKS2GXWlLkJbwD4hs9/CR9+5Zb5j1bdtN1Y9PECkMR9n0SUswExeLr0cMfQF7YmMVqQnh0j7/WP5f4tZu7NLw8WG5TOqbdsIgG3m8m/OQSGgF0ccnVL612L1aLGzcMlXn+0Rt9bHnmKEks5aDORRK2THG9dMv2eyeNpUbrIudwSNVmxutxSLcVcaffowtqVJcnDupmWXIxjdFNOgKYenUj5ioyT7CIbwHBvET2y4vLb6e8YC7aZwCGWgBjXuoIjGUMSGdQyyhLY+U7CZtfhn33qAQDgT/+/f9xDTccxbbpsYDxm7dPtNEiipnVDVIF4RJyzU0RTVx4FixZhcq7B6LQqE0dMC6RwHNuTMZyjGK2uGWTkmSBg4ST9eJaAn7xgEkdxVggfEMkwTSAVS0AwfTGj5QYFJon7XndsKUiJUWIZH8h9v/tazpraF0Hh9ht/bgDXcmMagOmeG60ydni9mXH2uYE3V23iQlPfPC2Vyj87y0W8JlFeE59wvWvRdj1ODhos6ipZk7iLBHuupUo3Nju7d8itcOsoQBITycxikBgkypl18o9/+xfZ/4wBH4kkdjvdmILtkURIkJSqSTTBXgijl3rOuNQfdwyTjYlmCHOLcQJZks9LjktkOoCycMr0u+lRUnfOi6bG4dIeVOimYSNw1za7DgeLGjcPFvj0/TUA2ycutWAxmb4Ly3R3hZqszHcr1ZKaz/fnqHUI3d9z2bcY3bFEU419tx48shHW0hU3qOHvvtgE7xBqVRrNvYzxWADZX9FBNgCDRjHy51FFtszYKJIon8dQQCNrSQlN17ILFuOxpn8TloAVrunG8/vf/4vXook7qUfJWUxdFiggnpXv2Inl1rzceSyWHNTTRCGLJE4l+Qtjwvtf1NYLx3Pl61k0JJyjWAlNl73PfQbYY7r0bpYlIN/NFaYq95bD+F4xLimMcW4yxn09Oa72653o1iVB4MaxBPz3ihWvW8BUsoFseY5AUAJArK3ToLR8H8f8C015Q1jLy4j3ucdj9l/A+KFdp7v/baLWT2Zq6zTpALjCxE8u1Q2vmhrraJBoPkeShGfbzux3TY0bh4sM3TS/n6a6FWzbDquFP+6W0E0zycysemvUL+fuZc80IjQh3XRfk3gxlruxRkcmuD9KmZxQxVA+g3Hk3WMxFLFcbRuTyY/J5OdmmQqkSot/DJFyM/nuuZnQTROO5MGixs3DBT77YD2MEwRymvmngo16Wm9ZqplJCdeUMte5WlIWARbTZD/dcSWVUjNumigR2nAxSJmJJHr3JLjNvnFQorbnnVZzPOvIcJS0yqOxuXMvjdu29lwy6qZhbz+xXE1crgcndW8p15Kmjjv/zLFifWgFEXCFa8Qx2LQdPvdoPRmTU6l2jxm//xlnK+Ikp85/NEjnnS33erPKoe53Yx3C0ElmUQNXFENDt07WfOeSVJH9jT2m0LtHWiXzjDb+fcnUMsZaYDD7fXhvsXVj4fF4KmEVDzYy48K11R2rqdWn610l4HbuSQqljlBpi/tNIsFeOp78OUTbSgmgFJJYTrD7QTqz54TJZBoRnBkAR+mmhUDd0E3TSKL4c0a4xrTKuXm4wMMk3TSPJKb20m2kNIgRrmGQxC5I5jPrpGejcA2BCu5bYFyO5WqlUo5MaZOKoWZUjUI1df7N68xiMB2XVUWN1B8xjky8lyODZNWRmsR4Jn+kmybaSwDGcVw1virq8YF9sKfIBtHMvYo4gxlhI3fuWiQlpHUAOgRYXWwfOR5TkxhLlJSQxDoyhgnSU60b2EyyLzZRHhNK1/MiIfb+0tYkAva8UDWJkeSKGZtObqX6VALIOjLRmlAik5yim+aet1wt9XpnNsZRuKbtcP90i/c8fwwA+Pl7Z5MxDN00pLwzzlYsSJGxqXMiL8cSflpxEVY51GWh0GITgSM53iLFhJ+t22O/1zjHwCcsIXyx2lU2MSP07hENJ+Yo19u2zigHlzFEitvvq+G98H7S66QSgQyfU3btMvek/9ouU5PrfmZYb1m6AlO6Y/l7AeY951X8HgPZwrFSFPTSPC0F1JxMJkkLTBFg5rolzz8RkAIuu4C7t6JlSIV9eLWIC9fYJKEVrhGRtxsHS9zPqJuWlKqjNfAR3Ylbh2VdjFyiJBY7MOj2xLoWQGXrk3LWLIF2r2564cbQtqY9wPKOU1PHeqQQ2ZhaX5Aeb8pOjJtLU41ljDpmg5pSVnYBIvWxd90GEGsKHg8SD5bNiDYAwMnKqqLO6ZMYW+iKNYljoOG/XgpuQhRLxgCkuEhwvWkk0ZkoU5MYX+zM8dJtQez7/DmWs5FADIEsL6xulpwXrgmzpqy4hR+QunPPjhvua9kYmUbdqbrofBbT/PSeATLYC8cxa0LM+WfppjEF9JBuerZt8WjT4vNfvgkA+OS9qcrpri23wAgDsO24/jDqmkGQ2KcVPXPPNhM4zKEoudRKGpEK1hIW7VmO93HvoCHlOdZVJNju9Uk4tpbLaAO4lNjyHKX0xBPlKfY7xPheMVPeQJ7/wJFn9in3eHJqysczFNBxnSTWf0D2/AiSWBCzAuzayiLpMTElav0PkytMkF7Hg3SekmmPxYyb1M6TyY5wD2D2HLvfmwvAUtCTojzFc+L3NzZj8/vpsqmjPXCnSKKhmy6bAUlM9UksJPRjAmuAef7CUoWwJjGeqE0nuFKsHG2MiG7HI4L1wiCJooi6DxIvxnKZwjGrOFkgzc9cFiF0fihxlyoVJJYXA7Uq6uwgJYLSUb2F6mJt2/f/xi/Fb/z4e/Al777jvZ4Urhk46mLHK4skRumfyvNvjp3PTkn9Zqxulblu7uLDOGlx2W6+t1O0UTpB9woFVzjlVv+eZOcYCgkwC6sXuBHnwxzP/NSrm1pna0QpCC952fjXnEESTVPe+AaVRBLPkQCajis7F009RftLz5vMI083Nc/z6482AIAPvc0EiZ+IBInbtsNykT+XyZpEok9iVLim5CBEzj9DuQ6plcy95QaXemc3HJc/lgRSu67T000DZ7fvkU2UxIRrxtrJknPdGHo3U9sfHk/6K5ZUqoH49e77cvI/PP96BDgI7gvHswnN3vtZWoMWEX+mtHaFaytb72r3APN/tm3AVM9B0ZdXef7r8LuRz/bY99lZ/wEuSPeQdOK6hclrZv13x01rErPDJig1o5y7bKpon0R5TQCA9a4d0b6bB+maxG2BTRLzXQE/WfttH3sFgFO6lPFBc4mSdFmQMkrsWz7Ym9Qk7ummF2JZ2lbEaQLsQ5p6cGKZN27R0quWpYRMgHJtIRDQTYnFLuT+yzxL3y2m0jjSLYYH7aVbh/jef+WjOFwGfRIjUP9m1w3qpvYBOhkEb+L0N6BEJIktIjSSOAlKS3TfWJDOLcbh8ToikJpfkzgNZo2yXfpYdfS7lbNocbojt7A2jU0MsEFieLySYp/Ywnl2NEiKT9PrKcQzlvAA8ihkPHFUnmeOplpag2J1ypxIzvRvQjeVjfpzD02Q+M67x1jUFV4bgkbXtoXEhRxzF73/y8+3O27M5Kf2jWiyo5wAkrGu80/f//UMummwJrCO5BhItb0KSQ+ZMuH6Hx0TWV/HwLTklA/nkkUeZQzgCNcQ5z+t5kwG6SECTOxTwHwEchqkFJ6bZurP7Lr88x1eN74mzvx0A7fS+QCme/ecmkQ6kTPShHXnf1KTSCZYwv1U7s2s5kETv7fYNcGipP4cknNM+K6lmsRNrCZxaIvhC9eYpIRBEjN9EgsJv5RSuDz3f/I7PoZ/+Ie+eTwPOeEafaJwhnBN1/L9DmtRN933SbxQyzlqYeZHTLjWqU0ghiQyi1Zd+04Tw5GX9T1EX4ACIhVx5Ln6o1j9HUd3bLtAAGWsics7uyFKB5hsk6ibip0Mv8dpBRz9JFZ7pFU3ZbJvKXGLeQqgZYcklpFnGqUvA/oVMIiEKHvL9T1RjxJJCjCqtICfbdXSTT1qGensyjiWagTEaXpFJLHWI4k5xeOcw5WiqZbXrela0hbkvnP1xuutjyS+9tAI1dw6XOBgEXcsGHXT0JFk6HbR71bI5OfqxClxkdBBI+nW2mAvKXdfOJarbqpB0pNS/pmxiwB9Z8eZsabmaU7dsL+W5MdE1ZyJ4HIS7A2v0wm/1r9ufAAwBBvjeSyMi7AZ2H1xpI0Or2sThT2ROAUwqdtjzr+lm8ocyUTOzAA4bCfCqCubcfHnNFsTGiS3WAq6/Flb72rUbKdJydy9lVrLNyPd1AQ5p1uTNFw0puVZtk9iwS+J+a6uv7Ba1Hjx5oE3BkgEib12D+aS1551GiRxMSCJF9cncR8kIu9Qpm6QEgXI3Iz+zc9uGjFkLxtszKWIjRubfc06kmmL9bpisq2xIGVXcNLsYjz923rbjX0SxU4cuulkjoQARAwRYTOmMbn7nEOeogTOpWTOCS4ZCfRUTWLWsY45yRQlWc6lfa0H6SQ7AX7bc9SyMChlg0tLQ+9phxXwaXrMuZfPjQlF5eaaq1POUdJm35OR4L7v8851MzpMOSfBPNuCHN46XGKVcCxKVCM5ZvT+V7IgRvS4tG8okVwZGzpoTC2dm2Bk27KEtZPWkS/fk3Vl1m8Nkh46abuunKRq6mmSiqWPLoc6zTl1w9IHlVGXjbEtuBYY/nrXKymZE7pjCYEMgxsWSUwkT5l9w6Kd3DUI97euJ2sSg8Sw5vyradp1OE6SK7r7RPwaRrzMPR6z54TggRbttK1LuOAy9LnarjxuESlBAmxN4uGiwbKp8GhADpu6wslBWt3U9EnMB84TX75wLmP+FmCp8slStQjAxPZJ9A+0K/PWx8mugHazDxIv2nIB3yKy+ANlZ9I4Ff5r7KIVpYgRDnkMSSwhgkCcblqqW5pT71dHzmWpJi6rbtpO6abHB45wzZya0Ahq0xMJAfNd/DFmHvljybzcOfK0Ufsa+93MuKmTzKibhs4dlUXu/QWyvEGZn7PVTZ3eZiUqmjdPB4Hh2g1Yx7UlnlExl8p2HiSxuLHNXhPi9yT7bGuypjGavJhcx6NBiOre4834/4NFM9JRXdu26X63YtOaRPPdilSqOqGKmvh+ucQRk8wJnUFauENLPwwShWy/PWBA6bpOVe8XliowdWqxJChLHzWtqHS9HEPk0qwlbHJLl1yR6WhpwhO0Ddx1C+nkLJK4qKe9Wkv121MqLbg5TgK3fGmDmAlk7f8Zuu+0bo9MroyBFLyfpesWqptqkcSwdUbeB50KMDFzDBOnmrUk1k6t5DvFatIlSFwtahwsmjFIXDaVSRIO5RqhGb8k064skuwo9nx29uzYOJ0uQJmVMDFNTeLiENitsa9JvGDrOgbJUi6QESSRrVGIIlJK2iiz2J1HuCbWWHoO3ZF90JLqposazx1ZJPF4KTWJ0zHMHOOCN/kFUqYeVYTMLZARJ1mFCAbHO49wDRMEh82std9tTk2i1GRpnWQt3VSuF60k6dzLsllpGnVvWwdJVCpyAvzGFkNfcrOc2zcsHlwWnpuISq+YfL/DZY2qwliDslrUWSRxVcgM1NW0JrFUxwhME2Ml+qJ1/u1rMQn16LHqadDA3MtucGkDt8KYibqp/aySLYfAQVPvF5YqjEgig0hFgkRWuIZ9P+DWDQ9rSSFJCMxf72J0d0DfzohGiYK9iq1JTKl+a8owtCid+wwwNYlVFVm3CmPka09rCwvjgvPI+GnAFEksreNiY8CnUEWVP1m6qbxOJo6C/orMOQkFt0rjYnsbYIPEZVPjYFGP639Tm/8DcbXRbaFXbpgkBOyciz2fJ+y5/JoSUoRljJ5uuuNrCxeHwO50HyRetOX6/aRqEktOcizzZpym/FymdFPuAZ2MG35SEsnd9HhawRVVCwZnnrsxk5avSYwtJOtdh9WiGXunAZbOF6Ob9uA27XCcoA0pqypDvVIH6UIH8egImobz/vFKS08USRzu0VzrgFRNUL4BuX2fWA+F8xM4rcy66m44LbkYh5t9Kfkzjhs3+250DFVUtk6BJEYoMqWNLSqcIn8jEk6TetfsDBPBZeFetj0jp8+2fM6yqXG4aHD/1Gx6BwvjJKyjNYnlgG8RJO/arqPpxV4AIEFH4gvG11Zkx7hjw9pCVnF3ikhxwY0WyQLMWrtrlUhikMnX1CTGgsRSDepSWmAUnhfXmrpCVZlnmxUOqocx7r3FjgMcSqC8XtoDErTR4rigvpxdg0K6NUNTnYrCkHMM0W1ijIzz1hLm/CfnqBvHBESAEzi0/nUr19ba/cY/Xnpc6JdohYNcum/pWMA04GPOpatI7tpmZ9f/g0WNx5t2+H/l1PVH9oAuX3IQiuuYMflrkPJBiwBHJLnOJFwnpqlJXBwazvpuUP/e003PbyLTm75B4lmLUk1Wqo5IC9nTD2hAr2QRQQCT4JLeoJQZknCBBKZ9EkMrqps2Naqqwu/9xZ+Hr331BW9ciAiyKN2kJ2bP1aSoabvJ8885dqEDqg3AzO8dqqqAeEZqx4qKr7EghaEthlSX4PWcuQh3RyKJE0pUIfkjNjZY71xUozhsDGIMkshRjYyyoHJjSyAbQGFNqKbXjXm246qopSbp5me0ubFzbo5XDd48NX2xlk0GSew6LBeMSqObpCq3IAGmzJCSKmdVmaAhpm7KtEUYa2s7zrED/GSCFtmYjCOQm2VTYdv1dGsDeU9U3TSLiPgOsjuuuFYO11vulxXJ9RLnVUNTbapqsieWRoWlIiySGD5v9PUO9g45p0wAEFMFzp3O6RxlfGkPhjdHhiUjc5zQ3UuCPMEerH1uxrq9Li9kGI6bIInKcXJOc6iZjJtbE6oV5Zn0+CaenRhzC3DpphUOlo2DJFaWjbOL7BuFPokx5LJlfdAIUGQ+M36TjT6C0geaWNdyzgUALA/Nz80j8/MCgsTzf8ITbmxtj5ZumqJkMjUKWtl6wNxDUYckS5P0HWQ5nqZoe2B3DgW5+Tk2zTTgpouGE0jiwdJ85nd/06uTcdq+bWZcnFbABZe665YSHCovxpiMo5DcyPG2hJO8DDYo+QxGuEZDPwSm11uDbKyaGtvBGWRpHeGG2BYCm3Dc1kFSOLqpzS6eB0ksbmzRe2T4G0EBdQ9nkivZKU5obPIZVC115Nl2z83RqhmFa1YZJHHbduO9mrJYTWJJOAiYridUM+sqdFpRHDMea0TSFUFKZFx53wiSMuIQkgmPnaccWh6TVjct90mM7Ysl5HhZG7rpGCQWkgj2mOF3Y8+//T+TlAyTOTzabH7aZBp3vVO9C5m66LbVXbeUngB9T7p7ALH+T4IUct8G/PIGQKHCPZw/tpdpVVU+40XOI4GIA25wyQf3YQJIjW4r0FV3KWeOt2jiSGJIN328GWoS6xr94HPG+iuWxMuM6KL/mhWQ44M9wK2LTh/L/XzzGVzCw7Nup0MSAWD9cJjEHkk8t5U2AZvBmdYX5tGXOEWMojtGgg1GtSzmkGiRRAOHl+fozg0QKqcuiwmUM/JhzZhr612bzAzHKXpcpnUyruMyfVqqRbyXmiLTpwzAwkJ2+b2IZEVoEyUkMVW0zd5bE0l+YmGVgnYznqS/Bchl23HjlhHaqKYGctf1RWVfsVx/0dTGFkUECVTqvIq7muudo5K7SOnR0tZVrDJI4q5QjwJgIuXPIonh880ED6EKNFMTCviUqBGlViIpdEA6cZJBzREYHDxP3ZR43mrjSPa9//3yKriR9Yd9dgZK7FobJI6qqMO86fPvK0CzNaFTJLEwbkKTxDBOFxTRbIa69mvZCfrueamc4+FIxzrmA5XPh32ve8wy48X8tME2X2vmAghsPe+4VgYtT5ha2ZCSzN5barpppa8bLtUkLpoaB8sGj9bt+P6VU9cfWrFPYjVNSpaStSnhGhvgF4LLCQiTnF7cNMI1yyPzczMEiUy2r2D7ILHg4Lm0snBcqUdNLEhhsjgxRUIG6lejBnNpi0lHMj9Hq9Dl1gTJAxq/FatgMXZNhGtiVkdoDFyfyviDXQxuJlQjmX/+HgGmjnV5g0qMU4pUAINkdKmOKyrlTPbI6nX3VmrTZvbf5dATTebHqJuG341VH/P7xJU3w3Ccq7hYCmzqukLf+/cku7GFNaEAR4HWKu7OSXikBAHceS/qGscrGyQuB7W7uLop0wIjEKBpSYGjFAJWeL67yPmnxLOGN2uUc92glK7/Cu4Ttk8cYAL2jYukk+fRzM/8nxFvit2TbGJmMVBi1UFibQJgpkXHOM8qLPnQB21skBKeE2Zvc8dNkKxikBgEAEwz92COsu2XE4XDMZx7mXGsw4CDqqWOoZYoP29S7+cmO5j7H/DromnhGqnDG1VRh/kT/uQ0kZCfX/iM8my2hDJ/ZtyirpMCNIBhAhws6lHddNFUWC7MByYThVlWQj0BfMZESeLExNYfoLwHhH0qZcysFhga4RoAOL1nfkrQeA7bB4klZysoGLbjylzrMEikgpQAsufpJ/EHlMnk+7LFvNz9dByXDXPHsbVVsYBPWmCkxk2Ea4ggfW69ZRiUMnSvOW0DgDgFl0JJI05523VEn74pTdggiYxogX1NEwBPnSbSad3JJqpTN/UaZxPHcmsL2Qy5GWePx6qbxlTSSghASCME5lOg+wJrIjWuLVxvGklcTZHEON20LwaJIb2JVjetQ+Ea/zukxvhrOR+4tcH9T1GgnaDU1jKSQYoEpaTzCVgkUXP/N0GiiqFch88owCFZwCBc03bjunDA1iQ2tY8kMmtJ4yOJc8TcaHXT4Hlj9rbY8WjKe+DMU/0twzkOr9MUUC9IJJIkVQV3y+9RftbC2uExkCoezUf8u557ZgAfSezI8x+ygDStM6woEvecjijpDJQ6VnJTKsuKrf9usO4FiXXtJWhDM4nC9PHcXrLjsQpreWz9AcprUMxPY5/TyQS1dNPT1/3/n8P2QWKBKpOqSSwhNym6qRayZ6XMp1SL8oKQ6klXprbGxhF0x0jA3RY2m5Qj2XZGdS7lFNaBU2fmOLffW3kxriufEstsNnHUhs/0hSq42qwpwNHtbG8/HwHOixaYn+ECOTezyyyry0WNjUPH4WT8LbIn81XRTdte6VjbDY510GL3JJvFvJh2OoyUfDzhUULawjFicj0WdYXjld0gV0ONSjyLnHcQAN+xM8fm1E1DKiFD06tSaznhbIVOPI2kBMFG+d7y58buN+azB+XQwh7qH89f85jzGFu3WCdZAnVBnqWGvWQGSXRqEpnzP2GTKGrihmFsUixWt8fcI2ESjqEEAkOwEQnSS3TrcI6MTcTEuGGoK31yF4CniqpB0kPknvX93bpoFkl0a+ABJ5lDjJNjaO+taU1idtjk/mfWBSMQNV3L3f3tYNHg0cbSTcXni9Uk7rp8ojCmVVFqw5MUrimg6bHgkmUqedbtuAUZsMI1p28M/z8/krgXrhFHLXGDxHr7yf+LGZIokpWfT0gbZR2LKoFA5kal6KZ09jOYZ5lGMh23LdSWxGhsAFNLCsT6VNIonZJuF15vq2TIOMn2NYqSWQ/ZT/e6QYGSukEiQbeLO2kFJDGCZPXgnaY56qZzkMQY3ZRCBEcRJsdJpmiqNrhk64HCRsru76Va3gn9in1GldctrIFk+lumnm133k1jaxKXTYW6rrJI4qKEJNbnqEn0kkDE8x2yOxR0u4lwEzFHV5l5VP9UIsBsjRQwqJu2PYWqlo6XuwbR/rpkTaI8b6eDk7lqONqWIM6aeuMwMckkTuVjJ20KCseati7he8kCDpJIJhNMLe+0TCQb3AdzlMWcUQp3j8EqVU90AToy2HNowhrmSl3Z92vopi4qK8G9tsc0Kxblons0bXQM0hGMK/slMR90Tk2im7xwEzvLphrnsQ0VaGCC6Fz5RpgkdI9VLDlL+KClFhjn7pOoqUlcDEHhnm56cVZEElNBYoGCFUcSORpJ791U5meZSjhFbQBdzYAcT5tpYselONpABklMZXEK4xZ1HT3/JUv1e9Orm5qfeSdZ3us78hRqEM1aF8YkkcSCQuCMPonx88jRps17A6eJOCerRWUzrQRFEnBpo3bzZTZ726vJ0u2ooLSeBpdFtCdG5SxsbDF1WYbqkhKumdvfsqT+GR5LTO61ZV2PdFPJEJuaRD9I7PvetMAoOqD1pLazVBNqxgVICoEeh+wONuHhPtsa4ZRFXXk1uaX5AdO1XHUvN34PQkrddIIklo9XZ/YNRrgGwIhEqNRNu14VpIc9OOckTu2+rR1XZpK44yTIppMJtd8aignSk/V+bJAiARi5Jsdq4ph9w1WG16hpu883O0dguE+c869JZoY0VaZUQUsbTSngUsr80Wc0P79YTaK7N7q6Ey6SGBWuKZQcLIJ7BCi34UkL1wwKs4Xg0lUFZpM5ns2qSXxj+P8+SDy3sbziCR+50I8llFoH+D5xUUSqtNlEgobSuLktGJJ1SzODFPdvyTGJBzvnJIdrD+Mkx1FSjtYRng8zj8yYxPlnaVthc+/S4iPF9iFtq9xraaqKuuu6rAMaTyTokaxe4SS7SCJzrQFn8x2da25cTLhG0wJj2/ZFFH2cYwLJdf8Wmr2P7WuaRII2cRFeb6a5dIyiKuYGASJcIw6+oZu2k/f3fZp+LmaETMJ+n0RNYhJJSY9JCTmUbhMRKur7XhWALRcR1UQlkmgVENmgtHe+V3mMvGdEKYh5yjMaozuyVHmR0NcJ19hEDvNsu4gUIPR6LikzDVKUSRliDDBFRUqtdMZxjX//M3TmaQLCvF4+J/4xmAQ0ME3KuJ9VGhdSW7ng0j7f51E3VSUXg+BeJ1yjDdJ1idqQTcWVPNUTUTbAZ4odLBzhsqa2e2iiDVKpvjmpUprYB9LCNeanpsf3/D6JrLqpEyRWNdAslQeb2jMfJO5IXnEUScw5yZEFixVACSkrALGw1vGiYW39kaGkcdlnbXATU8lsO/NQp445kcOWcQUHO1RjM5+haK4bOOTa4F6GU+qOQUCqraMAFEFRIGXOZDJjdMfS5hZPJCjkt2cgia66qaGDl8fId9t6GWF+nNsCgHKsHZoq27tNJLbjSGJqYxveF9yTTCsd8/n2NQoBDsYxCEyKyg/YdXlRW7rpqrFBYogkWvptWd00PI+zWmAQmfwJksgGAM6zoxGFCe9/mXf2WME10CAiy6G9BItaAlOFawZJjDFQ2FouSRqIhD7fAqP26KaUcE0drskKoa4wkFIGidLMvWRh7za2D2Toz2iu20jlpHs5zv9uXe80uGcTrs7e3RN+kztPlzZNI4mOwJFZf8r3ZKjnMPZpJfyZ8LvRdbITdLs8Lt4rupwAmvQU7+zYCZK4iNck9n0/tMDI9Ems0khialgKKCr1qowlt1j/zrOuBeoZSOLiiHOcCvbMB4mljFistxxQ5snHmoQyN0hT24cZ0C2sbRA0AJxwil9/xKGWQIASEfz/tEpmLtg2P2NBOpDng4foIxuku58v4yjZ+ugCmR4TKqvZY2UPNR5PiwADZlMJa3uYRsrmvT6SkuX+j9k3+xpV2xbJkAMkkrjwaxIZx842N3aDS84hBwIkkcoID0Fp248OfarXp1i2v2ghi+nXrTKtLDA5FodA+uMoummCJWA+p0NVmftI6KbyfumH6a6TtvlyOeGhWX/GccF6ziB8TSLhx65BRl1zZpDIOv8hskT0hBWbU7c3qYkb72NlCwy6T6L5u6gjlp61cdyAJGpYAuG91fUcjRNwAikJUgrHClEK1vmc1LaR1y7s1cqMC9cSNgCe3pN8mxr3OOw5cRPszLol5l7vEmjgzTNAEpnYMl2TWL6/bLBtXmPZPPY8cj5oyN6Se7oEppj3Bv6dU+d86PTJXdRun8R4sJcrOYiVgVkRrIQIYmQvdedcKpUKhWvUSGKvCBKlBvH0DYsqntOe+SCRpTvG5G/zfPx6clMxjvwEkRof7HL22a9/KTsX8fojvSMv40rfLUqbKwQpSSS3hKQEWS0zR4UgQEAbYprdxoQt1NetJ6kuVYDSQV9HAXB0uzlIovxJm0Wzyq0yhtugAOMkS3axpKzpmvREs9lZLmgAMDjJ/txLcwRMcM4iibEWGCV1x7hwDU9jmyruktnnCW2OGBNDEh2ET+im8l0OFoai5DoJY1+tonCNGWud5Dw9yY6LI4m581lVfsJPQ9uS98sh2TpZQWCZ+QFxBJgW0hvo3ZZarA9SKETKQe3FWCdZqGoPzrYANEjiPOEadX/doC6dTYrZ2m1nPJlcBKZBIpMo9M4/MS4mZgXom7mzAVh4LjXnJAyImJ2jqW1tISuuA/hrSVtAvtxjAZg83wydPAwsyyKI8I7BJrdC9pZNnqbHxHpnm2MLSgecOC2QFk26BcbIPlGqm5ZooznxSgDJFmLhXsqIuUVtTk1i315IPSKwDxKLNRG5ICUvyjANLBknLaR10FmcOq6kx2Typw5h+VjhOGqO1XRBKGXyY2ibjAPyNVkTdVnoi7bl92Kj+iqk7crr5azplLPObIjTeid2XEj3LaIvEbrjroC4xVAixmmqhvPsUobMH8rf7WChVzcFBIFx6r+0SCJJ/QF82pAEtCXHdUS3HSdtV6glitVDMLStKE2YQCCnIhX+PPJjpn9zr9+NA1NXETZEd+lGY8uM4r3sr0GMui9ggkvXKWHQ4yS7Q3ENbLBXnKKhfw7oI4tuj8kced4K+5p/PBNIyffSIInW2SX67cWSiwQCCQA3Dkwtz+uPTZB4oKpJ1AnXxBJ+jCo5oEuuAPF9ii03AGJIop6mXRoXo40CRMI1TFyQa3kVrl3E+QeGhOvoyA+v0S1gJADj7n/AnDMZtyOftzG5GF43Jnkdnn8S3Q73YMYv9ND+Tsbpnm3AgjBVVeH4wNbjLerKqev3Nw6pNc/5MzEkke05PAGKCtcgXOs0CT/PNDWJbl/EPZJ4MVYqAE5RojoCSYzXJObn09RBQ1g2i5MILnPD5rZgSDdK5xw0TyWt68p1RFWEIlCoJa0rK/4gpqoRmYGuRs9//nATxJOlyEyPp6+jAC6vJjGGUuvuLbvRm8/LDgPg0+0MIkJmdocaEU39kfRXdIU7mOsmTup669QkEm0bgBBJ5JJbk36HSqoXQCa3gjlaByEzRjLWEbrptrW1Os/fWAGwaJCgQ+utFa/ZjHRTEhV3MvKMuqm5R2JB+sXXJNpaca6uR2xMXHRdMYkwOZaD2vAIfO2JuzCPW1iXzvR7GwOb3l+3zLj88SRIfOPRBoCGbmqUW0vJSNdcGiFA7vfBescyh2K12xSTJFjLWQGUMOHBnP/JmkD6MvJn755UJCDcgJs5J/E2EdyaMNYIEgnQcVxdeX152XsLsEkVFkl0a/BYsacwwaipZQz3DSB/b8V0Ksz/7bgbB433fkkSTurSiTUv6ksWnvFkCwwCqABcSji/TnqmqUlcHlnU8QLaXwD7ILH4sC2Ch9Mdl0dSpjc+U9tWV3HIvohk1QnBm5yTFqk/4lRKp+OY4MZuUEFtG+HITCgChQUvRYmdQ6WlEeAAkTVzzw6L1C2RtYWTBZl1EupJsMHWJLbhdStk7IAQXVUo4I4Lq3mdrUnseoyOq4ZuunUQEa0qKkt9AzDWV5xtWzqwqSPnf44qMIUIJino3Dhb21M+J6K2G6Obuk3uXxiCRHlbmFUHrIPAouKuSiClblpXHr11dBAKdbkhSwMo319uUkBT7+r24KRVMidBii654iLwnLhLiIiUe4VG62RJBOxkcDBfe7TBoq5U380TrrkkdkfY7kFLSbbIfdm38McFrVKIWl41khgGsiTjItw7WHR7ci/PSLhGlqKkuTWJnWK/cZMJdE308J5ta6+3fFZ2XDNVPGYEaNz3s+tWGIAx+2IKSXRp78crH0lcJemmwibJCNfU0zKk2SVnhfMZe0aBGXRTTU1iVQHHd83ve7rpxRibkQ9lc7suv9iFzjhAqjvWYbDB3Vih4A2ImsQ43bRXy3aP4wrfLdUUmWnkOy0aJmuyAgouvfkGgRQT3IQBEcAEl3rURo43RRKLw0zyIqAtzkcSyw5CGDhrldU0NSKWAmpqufgakToI9ogxQnnp9OIiTV3hbNeOSGKJAmefG/taad2KCtcoEjlzE0Bax8KlbLm26/ox6Hn+5MAfM7y+cTLJWzLgXgZ0UyZJIp/rI/Dl4CbJ7igcy1WP1gQptudnRyF04bEAHrUBDJq+6+apm4Y1ifl2UnG6e2kc4COJbD2ifK6pUzb/Z2sSQ+GaMnI/vDd4Bth10qVJUkhusJZoWiloaxKnwQYX2EyFU/jzD/h1msyd7Auu6J43CUw05Q1+TWJHjQtLPlh1X7d8SUNRBSwSqCt5sv9nEh4x3wIQv9B85xMXSaydmsQASRSF8lyiMBRgAlAUwUoK1yiBCk0S2jNNTSIAHL9gfu7pphdjpWxHiTOdsngLBi4bE23Knh2VQbJyQWKCEsiiPbvJOG7xmQQbxT59056HvLqjfc0gKbogBeCoiyEdxyK5xLjgWOzG5tOEuWzrtAVGV6zriSVKTE1iZn4RJJH5bmGdmoxmkUTABA+mb2RxCIAh29rqHHKhm3q91Egn4XBR42zLt8CI1fKWarJSSDqTpJL3qsYFTivvWExpPDLvEUm86QeJqwiSuCXon0CcbsdS2bZeDSThJNfhMzq8TqJ7rnANRYF2ajU16odyLPOTd2KWC4MksvexezxNqw75k79v5BtZi51ITaI2SJQWGJrEUV1NkHR6vVM+NxO0jQhIveNJkoRFpAKUtCT/DzgB8DCMFU6RqbjUdWZpbYJxTHmDzDNsQaJHIGeqm/YclXkx47mRv7sqscyY8fwHCT+GBQdMkeNSWZZ7LDGXvXLiIIlNbVtgTNRNBUnM7AFu38hxXGGesSStOy6JJCaSJKSbYE1TkwgAx8+bn3sk8WKMpptG+MjZ/i/nqEn0nSZ2YdUL3sQdQn2PJvkMdmMLM8Ilx66qpotIub+l+TlFssg5KtG9qvID2V6x2YfI8TxqE78hhrShothHpHVJCUmUOYbnkd1oRqepK2cjxVaCMA1Oskrd1EEEKWrfwkFthq/IHu9w2Xh0U1bd1K/lLSS3xqDNvsYmqQBMEhDsmhA2Sdeq+4q564Krbgc4KK4btHVyLvPHWzpoG2CcZQ5JjPeJy7duSKibFul2GObWqxyLlUM3ZWicwPR6sz3pAFMbunbuY0YUZoIkEsG9tKnpouefCxI3bUfXI8rn+vWWxJpcTWmLPN1UNy7cp3oyuRgiN+3oWJeP56GkogjJlBwEa/kcNgm7JwIucsMGl/qG84AVbpJj0khi4yOJbA9OOQ7gMCcUgkOsCFN4T9K+zCRR6H9ezFJIons+TxzhmuNVMyKFYZ/EMVGYuycj+418z9QaFCv3AOz9ybbP0yQg/APteLopYOmmeyTxYoylm8ZurJJwRzxI5IKNfsamEat/yQ2LI4m8kqG2/iLaAoNYXKeBs/tgx8fGhVP4GpFwjuUFMkTN/M/LHS+kBHK00crbDM1nlceFyQu31UByTDNdJKlaxmpab1maY1inpqFouKqXuk3b0OY0tYVujUhPOv9iJkjsRrpMiSKZquU1c0/c/xEaG3P+x2zwJEmSHxcmZeSwDN0xFiS61y8MNGMS6Fsii+zOx6VtcUhiPUmSAIWaxGqaJJHXc+auQSxFDEjQTVm6o4M2sM/N0bLB2a7D2SAgdLAsOzKLAAUenzmCTeIHKdyzesNxMDVI4sGixnqn64HqJuDYNTlFry9FfOE+xV632P1v5l4+/3Po1u6x2DUh9C/Y7ybfwfWdKHVTx79gewnKPEcBrJ5D+8242gsuKSQxaDq/a81aXrxuHt3UvpazEDxg65tj/S1L40JkW8xl6h07ScK7J6tJok9M7sncfhrex2Zc+RmP0VR3he8X1lLLTypG/LH/CvjeF4FP/yjQdzok8ei2+Xn4HD8mY1cWJFZV9eeqqvpkVVX3q6r6Z1VV/Vbnb99UVdWPVVX1uKqqH6yq6j3O3w6qqvqzw7hPVVX1e4LPTY5lrLQJp2oSSw93qIYHkCjdmMUZxow3YnZYUklPKz/cQ4M2+JnFMtowpRZs23ImP5b9YYuNp+qO2UNFA9lSQkCOp0Vy4+PIja2al6FyxwF8kA4EQiFdmYIbUglVAXCwQTHj3FoFlbppbWhz2tpCAB5NlUUSD5a1qUlsTcN4VjgoRvdS1eQS60+Kbjq3llTPnDAWJi/+3G/5Cvz13/m1AOBIoLvrSDloc/8u76drEusKfuseQnAlwe4oHc293poWDC4NixYJCa6bpin44dIknB6tTZDIIHXJZu4U4jwVbmKenaMheNUEiUerBU63rTpIn6Ao9LNt/k9TkkOHXIm2WVl+7jyGyUXmvKSDhvwcJwEwuZbHKO/MreyKwEl/aYaVI8lFAINwTflYgFlLXJVSTb2xUCq3hCq8mWM1ScjQa4L4oMrklte7E/nrnUQSHa0EN9FTVUZ8yuzZM9RN62npEtOGJ6w3BhwkMXHhQ1VmRszNHnAJtBtgezbUJCpCtXs/Y36+52v4MbmpXMincPbvA3hv3/e3AHwbgH+vqqovrarqBQB/CcAfBnAXwA8B+AFn3B8F8CqA9wD4BgC/v6qqbwUAYmzRShnhmIMm47J8/Ehgo1EODeknTAF82ABe5pEek3II83OM1ZsxCOScVgpyvLT8cKEmS+nspmu5ygvkHMGh8D7pe66ZdYxGwuxRYVBqgnRSOMUTLigH9xOUFNyG6I6T0RTdNEQSSWdXREk0SGJTm/6dWgQScGh6O0OBY6mcGuGIFJJeDFBiCSAmuRU8N7TgVopu2vqCDl/z6gv4grffAjB1mMzv5jPKwjWBAETLq5uqm4nX89RN3XPJ9LsVW47otr0nS8/2xLFWIImi1Pvm6dCaZMnXJI59KklE0Ih92P+PAQcxV6Gr3T5aFt8rdrRscLppnWCbWLdia3IxIDI/tQhkWCfFXrdwX5wjgOLOV4ckGh9BvZaQa3l4vB5knWblsnLMa1zg5iCJiufGXUt2Hd+CR94PmHVrSV7vMdgm2RbhPckr7g7jggRvviZxurfJZ8j1dPskii2b2hMuAzjxsiZI9rnHLt3LSVVUEknUJPNHqujuVF+T+Pm/1Pz8wDfyYzJ2ZUFi3/c/2vf9Wv47/PsAgF8F4Ef7vv+Lfd+fwQSFH6uq6kPDe38TgO/t+/6Nvu//CYDvB/Cbh7+VxhatBInH6rFkXAmeDm9GBiUKG8Kep7atNC7e71CxiLsoETHHlJT/nD6JtiYxcawgQw6QNXHRwJlERIJjufPIjZtTk+gGpRq0IdoCg6B6AfrgvpkEzizaOS2216B7p5sWXc83zm6GrKQWEVw2NTZtp0IgAYPAnG07rHedSuwj3qcsn9xqg3uSpQxNadr5OcbUFt3XUxaj/wB5GqhcZ7cmhUH23L+7AhAc3aueIOml403YHSNKkT+WFySOjlZxih4N19II82PChF/X88mOSZA4oyaRrYmrax9JZIJ0Memz9s47x8X3ih2taoMkahJHFdTBxpTapxtnBWhYmnxQJ8UG6Y3vzzB061jiSKOA6yJgGrqpTJOtSXRVObUJ153z3dj1369J1LXAsMktEkmsa48SC+jpplqa/GTvzvnJiT6Jbiue4wiNPUwaAQ67oFACELjl1L0cO14pUTKtSeR8eTN4EJ3ZnuprEr/8O4E/9Gngxov8mIxdaU1iVVX/x6qqHgP4MQCfBPBfA/gIgB+W9/R9/wjAjwP4SFVVdwC83f378PtHht+TY9k50YhUGCQWKBACa4fCBUywIe81P83rTLFxmP0HkG1nUQeZH4BDBGMohaYmMQw2GMpQ+ICWio2jgSxz/qOBc3lzSwXppfUg7D/V9dwGtWhcJT3zGkfl9K8bU5MlwhFz+ltO1E2pOdrrrakJkoDrwdkOAIdsAIMAQdurziMwUBDb3tZ6sM71wgjXbEkxjdgaVFy3ks8od6xpkkSX/WepZakgse36ZEbY7Qdo58gFDcswI9+V1ZXlc2PIZV5JT8/uMHOcqpQyiEiMbkohMM7a1ZLPKICRxilBouZenjRzZ/r0KZIkrr04qOO+8w6v9ne0bNB2Pc62ZRVPscahZNJ068CxpinJwT7FCg4lzz/xfEeFs1R0UxKhG6n8QuVkz7/56VJ+2RKMSQ08mZRxrzevblp76yT7jAL2vG+7PtvqQcwFK+ZS0NmSpzAxz6x3Yd9UMTcxIPfRb/rK99hxzUxEsPZ9QvfYpXs51isdyAjeVP7nq/okLt0gUYkkVtWFidYAgOLI57e+7/+Nqqq+G8BXAvh6AGsANwB8NnjrmwBuDn+T/4d/Q2GsZ1VVfSeA7wSAd7/73ePrpYxrCg4vUSBcp0kyFEaWv7AYT/jg5KZRT5urA5xwzdxeanNVUX2VunKfoKoKe0Aq1B2DAKycocVkXEtct5gAjft56eMF1w0Kiowy0wf4GxTAIymhcAQTXIaBM4PkAsOmHWQjmY30cBEiG1z2bTH0e2MoVN64xvTJ0kpbHy5rPFhvDd1UgyRGkKwkkl4bOqz6GU0kSTTol4xxX09ZSNMWY5DEWEuK8tol2V2duqlb2+OOLyEp7hxZZ8sNgjXBnkc3VdzLrsCUpim4iySuFmXaNOBk11v/+eaQxGmShJnrO24f4R/iDTx/46D4XrGjQXb/4XpLzQ8wDqha7CN43myiitynnHVShUg5SHpVEbWTle+UU1TCyXfjSilCaiWT3AKmyWtVUjIM0snAzWUkHBSUlcUWtV4V1bZcGsYR/Y2BeE0isyab95v/s+h2KlGYe0ZjGhDAdP3/qT/+yybjJjWCBMVe/B9XsZu5l6P9FQt7cKjKrPHTvCCxb3V9Ei/YrlzdtO/7tu/7/w7AOwH8dgAPAdwK3nYLwIPhbwj+Ln9DYWx43D/d9/2X9X3/ZS++aGHYovztcD0nN0iBApGiZJbuD/m7y6s3r5cX8VAkBMgv/sn6u/wUkzL5pTXrXEji5AHN05RC6gmg+27hudQGRHNrsjQUmTk0BpcSBRjUganJWtaVV5PIiPnEezkSc6yryUbDUGlFBe2NxxsAPN1UNlJtbeGyqbDterrWRkzUTTctGSRGEh5MfUns3iqyBIKaaDNOkQAKGBDMuLDWA8gHb6H4jHl/7/0tZTaQskgK61yHfULl9ZTVVUpxujBHJwhmHTTAIom7tqeDdACewJSmtupoZY735ulWRe0GIuqmhWOG518TBH/8/aZv2Es3FUHiEAA/HER52Ho/G9iY19hgb267Aa3gUB2ef0WS0GVGsUi6zE2OpelBu1XW+4VrEJPwBnwWlmVglc1ti6NTN7WsBPa7SdJP/J4t0d8YmNZNAnyi3KrEii9TnqN5P+hxsR7AAAfCtAFwY4GD9PFCEAZg7+Up44Wp+zbJFb2fhoVbk6ikm16wXSmSGDn2BwD8KEzdIQCgqqoTeb3v+zeqqvokgI8B+G+Gt3xsGIPcWHYSpRurqqqBEhjexCUYferYqVA65Y1VBQ45My5Wf8fMMYa2zaGkAWYjOFzqAimgTC2I9UnUOLtaml4YELHOXdhwm+4J5TigbNYasKiZGIukxJDEcnCPgG7Kop3zUFIJEu9JkEjSTWUj1dYWmnoPnUgO4PRJ3J2Dbtr7f4tZHSK5IJ7RuTTVYJyulnr6+i6TKZdz5t3HJN10EQjXaGoStcIdMeEm83rhWI6TXMpW++MkAO6KTAvXwj5xdG2tg9xrEjKAW5PYj3PIzjG4l8W5ZhIzv+YXvgvvunuMr/rA89QcARsAPxyo6yxLowvufzopGQQprCqqJ+6iQBI7ZeDmIj5uTV3uvowFslRN4oikd+NcqXr7CHWXuZXryu4zGgVKt5WFRt10tajHeupN2+HGIeeGL2qTlAQG4RpK8Kb27hEz73JyF/DXciYJKh8b+iVZhC5Rk1jW/KinSOL4/XJI4vTzx7Vc2V+RqfsOE3DADCSxa9/SIPFKkMSqql6qqurXVlV1o6qqpqqqbwHw6wD8LQB/GcBHq6r69qqqDgH8OwD+p77vf2wY/p8B+J6qqu4MgjS/DcD/ZfhbaWzRGMcwJn9rbrL056ZaKTBOEwDHSeZurJhDDuRrElMOIUst06qipgRQqNq2AEksLUDpusn8HOvg/MtnaM8/7yQH55Gsv/CRxOLbR1s0U0SEU1fzN5ueyJxOhWu4hs+uc22RhvK4oxFJlBopkm7a1J4iJI0kLkzrjG3bFVU1XRPhms2OGxevSSwLfoSKbKr1Z2Zyqw2uG9XfNYokpu/LRYRuym7AoXCNQRK5jPw22oIhr6QXCjcBZWdrtbBz1DitXi2jwiEJ1xK6tnblBoncs2b3AJ26aVi7ulMkZqqqwld/8AUa6QcskvhovaPmBxiWhovQMeNibRuAcnA5qfcjmB3ufNyaRCZJMkEgKWpfGGxwaNuY7HDOJXOtp6J/iqRkcN1oddNOhwgCQw/OodaV3QPM8ewevGNbYNSVt9YBXEIGcBFB8jxO6L7mdS2YYsbmfS6TqAj7JJa/XwwYYVghUV0MYg9whYMYdt9oy1C45q3D866KbtrDUEt/DsAbAP4kgN/V9/1f7fv+swC+HcAfG/72FQB+rTP2j8CI0fw0gL8L4Pv6vv8bAECMLRqz2S8i0HZpUZ4r7hIqRLES6Cm6Y+5+jFFiu15Tt+QGN0S9ZWRBmK1uWniwY4Es5ewG2c9xHOPERBxC5njaIF3GuSpuzLGAISBSBumAjyTSPcqaSJ0m891mbtrHQx3RG490dFOhDakyfTC0qG3b0bWFYgeLBuuhTyIzbhF5Til1zQlKXX62qypWy6hoi6Ndt6qpAAGQD95ifRJLIgLhWJeCRSGJdY2+j9TbFPaAOXRrq6jd0cE2YIWbvFpG8tmWNcQkxMpzBBwk8bECSQyTCSQiGAaJLVHLfh6zNYkSJJbHuMG27UlXToACjtjH8Lp2D1YjgkoqZ4hAMutPrE8ic8mklqtVBmCWhYXxuGxS0hVuktdK5vqFGgT+YNFg7SCJ7N7hBnzblmVA+CyBqirfk/I1XESQuW6pvphaMEX+X6r3ngI3ZYXraOkGM66eGZRW/nmU14omdNPtYwD9W1qTeCXh6RDMfV3m738TQLRtxdA2418b/qnGMsYoPsVq4rrCohyD0RknLdWQtMgHn1CbMIwrB7IhAqZ1CM248sIaSgKb34l+e5EsTslJOy9KqkUgqyqsPyKvWz2tJWX7JG6cugZ37jkzipw+IsIiKbvJ8fLjQkoIK4Eea+/BfLdJTSJJNxXakDxzvHCNQWU1Gz1g6KbrLR9cxtpStGMdBbdBAVxNIpBKXLBOqx0jc8hZ7NkGhkx5YnBUuIZYxwEfSen7nneSRzGNDk3djMfOZ59Ddkf5PAIOIrjTJS5cuumIis943tjaKkHuNff/eP6VNaHhPdl2nJjMXAuRRPb8h0kSVrnSojbccxMigkyNeGycNgAbx7V6h5xFOwG/lo5Gsibqpvx3k+dZlkt2TdgqzyNgkpebnWEJsArXgEm6jkgiyV5ZDInMcY4zEUFOcC7uuzJIYhjw7Ur+dT0FDmQ7YNqyRNsZlY7nH84m4nKtMxpb3sMCBwCM47g4AjaPhkFPP5J4bY1GEsMbcgaSSLVgiMg4u5+XHhcqSSqQRDfbzRxrLpVz+LteJdN3doFyTWK03xsUNaEu3ZTIEsaofWCOFzg/dMP5GVlrIEI3bfmaRDmeBKelmoimnrbNYDftztl8Ac7ZOljUqCpLN2UpcMvBSdBQW+Xz17sW621HIymA6du2aTs8XO9m9ZYDNEiiLpEDTGsZu56hv5mf+j6J02cbyNckjgJYs5BEB6UjEfHYMQUVKQmDhTXRjB+5dAJSex6ZcTZ4bjsONTCfbQN1TX3toZOE4ZFEX/K+63kmwwRJZIvAZpgVrlHQTeuYkmT5WHU1LS9hxY28Zu4kJbOuwsBNQXkPe+4V7n85BiD+D3fNlk09MgVMsFceM1E37fjgZspcKR/PpX+WWqK5JgmV9a6j69LleB5NmGyBoZ3jlCbMCs5hPA7A+UAx4EDG5u+taU2i+BpMUNp1/t5RWitjLTA4JHHazotmvS8PgfX94YOe8prE62zWwU6/Jw5tlzMd7ucDXEZs2muGu7Em2X8iAy3PxLSZe+FYUbSNUW6digBRNYnVtCaxVD+WqgllkcSdc/7ZmqzQIQS42pLwPHL8/ym1jxMFqMfaqq7r0fVlRUjAbNpjj6Zh1SuhB6EiIS1AEMusE+OqqsLxsrHCNRp1U0cRkq1dOlo2ON22WCuRxOeOVwCAT98/owJZqwDnb2wlml6Mgk5t9kHCA8z9H6xbHbGuyrjQQQDM90slIWw/wGlNYsmZd4M9tkef+7l+LVf+y4XsDjYjHwZ77vFztnL6JGqCPRfxbDsFkug0uabbzYwMm6FOipTyP09N4hwT4Zr7Z0MLDMKRd6+3RgTLHyev5ceYZ9+ex67jGCjAENwIJbDlArDQn2FqokNfhqXEAqI4bREwtrYQCOs0y8eqHZRIk3BtHHYNm4AD7L60aTts2x5LsnXGsqmw3dnnhkquOGgn295GSg5cdVP2Ppb3AxZ8YBIJUc0PJZJoOxXwiQs5VrF0JrJPsa0zQl+evU+wPAYev25+X51wYy7B9kEiIyVfT8UVSjdW7TgjYoyTFtJUZTSjkhkVrskMk6ziZBxxLPPeeQiYhyQSLRjqyANaQg5iAjTMQj7tteS/nhsXtttw55GysHWJqrdT6JAzaIMTuLGKkOHxtiOSWAgSm2kAzG1STjaSrG0TO1otLJKoppuWM4OuHa4anG512WAAuH20BAB87uEGd0+Wxfe7fVbFGAR+GqT0WSErsWktY7m/WUq4ptwCYJoAks9J1iQGEvnucctBokWyNEiiRW74OqkYu4NCKJyaS51ysYzrVMiGi1CwaCdg+yQC5YRROEdLd+RqC8O+aCyVcK7Jd3vjkVlL3IA4ZW4vNU1w3zjPALvfy/G2zvPGng93LWeSHWaMj/iwTAYzBuNPnm7qI4kadVOv3pVMuI4BkWIPmPQ7JG/Hg+FeGksOSIG1ZWNVUXdkC4yli3aqzr/fzkUVJAZ+SW6oTeZPuweU7q0Jklhgl8XmaI5NruVBWQRzvKaetsWhg8TFIfDoc+Z3EbJ5C2wfJA4XLp+1mELbpRsrRLIEkSoGYAFqQNcoVIFDMvykBAGUjky84TaXJQ9FgHK1R+4cJ3TTwiYVE6CZo9xqs0WlcSG12PxkMsJzkMQoRYZxtoYG8O44uiZRejTtzLhSkBhSQljhAhfJ0lJAj1cN3jxV0k2HrLXGsQOA42WD080O652Obnr72AaGd05Wxfc3wZoADM4182wH9ySzP9VVTLhGlzgaVTkL42IZYSCvumiFa6Y1icUg0ZHX3ynu/zAIZjL502eb7BPn9Unkn20XYW1JpAEIUBtFsHGwqMfkiLZPoh+k6AIpgEdS5pqIYL0+iGAdEgmn2tnbNErJcylpHt1Rg9LVbr0fi+San27LB/N6ziE3Pz26KblMLpuglyCZgAbMd+oUe2KsTyIrAucGiWxS5mCkmxrxMhZJXC1qX7iGZEC0nam/1iRWwiQ0MypE6Zh7JKxRFtsVkkfRtnQksufO0RyrnCiJCde0hG/urlsaKjMAExg+fm34/ZgcdPH2zAeJTPFpHQQAQDm7NeXjD59VQhKHm9UGKeZ1JiMfKukxx5sI3jBoW8A9l+NRAUAQlLZdX6R7xaD+UuF8jBJL0UaDAJilIMaofcw4l+pi5sifx0kgq8x+MuIb7vG0NYlhANCRG6m3QSloW4AVrwF0dVK7tlcp2wFGuON022Kza+mAFABuH9nA8O4xESRGkHvGua6r8J5kBSCmiQut2qIGgQ8TcPI5pWfbFWBi1TytAI0WSRwC0zG4KdfETQWA2CbdjkopkcQUk4BtMyCJLCK+bHxxC/b+r6oKL9ww9y/fk9SvSdTUKYc1qKxTPsdODszz/NqjNQCr5JozN1Gro5tOkysM4r9orOCKJgBw66to4SDxS0IkMfP9QqYSU9svZhIXEtzwwZ6Zo25P9Or7x+CSmGNtA1lWlA1wg0SDJB6QGdBVYwRvALP+MMI1S2e9KwVeroXsAja5CLjCNfJ6JmhL9UksXPNwPQA41fUYw49nhfivCQuiVPIRAj50Kx43SNzTTd8645SNEkhi4eaQ9wE8jWTM2LX+plEO9ux7AYVwSiTbXbqFR4fQddJIBzQMHHZdj2XJ2a2BLoT6C05h2H/KzLGMJMrmMK0RKTu7k3YPxLjG2UTtHOdtbKwim7aXFyDy235wWaJYToRryI3UrUHVontHM4LE5aIa60MA26eOOdbpRt8Cw0US7zJIYmRj65jkSh3ek2xz6VBxV9/f1TrJ5XGxPok5hkFVVVgFrVzYtixjkNJ2472pcZIFKWKC9JBuzdYtLRykVJN9HoPEXUcnZAD/2dbSOF+8eQCAR+0ntGQiiy/jvORif7lI4sGiMfdY22O1qLnklnO9NUiiRzeVfYMOUpxgW4MkOkm4OUgiK4zkXjfdHIcSAEWSxBVOUdUWVtV43jVq2ovG1M53Ha+SDNh96fG6BVBm5IitFjXW2prE2iacWrIHsxnn+xeqIL33n4E56qamfjJ9rHBtlXkCheAymKM5djl4jiGJnOjitN6YXrdWJ8DZPfP7Hkl864xZFMIbhMluhXRTXto6RBIVwV6AGgCk4I2ybm9UpHKeUVoUI6QgEjWJ4XeT45m55NGGzkNXufMITBW6ynRTfZ/KcZxHI2SFa+aJu7iS2HIdSohgOE+6JjGSgNCKVGjRPQ9JJOqIAIMSbHYdzrZm02Yd3iOHbqoTrpkXJGqRxDD72YNENuqwTpYQYAro3WxNYuzZBgg6vyPiYObI3ScukigOtg5JHBC3lhOu0QpnATbY82oSGSetNsHzetepaKMujU2DiABWhOkdt7mamZhK7GzhmksMEgGLJh6yVNpYCYCydOAq6I5uULojaOtmjNQkWsSZeW7c5GlPIoKARelskrA8xl2DNLXsdR3Z7xU1wO1A5eTppua+ejCIIrF7x2phkcQt2QLDVUo2CQHqUF55CZuQmZTqEAnelLppribdfKafJHQ/gxKu8XwuItiLsNk6Zg+u7HnUJCUBAMcv2N/3QeJbZ0zx6dTZNT9L0rfANEgsO03DvILsQxEBq6ZZa3ceyXF1RNxCibZJvSWDgDU1gprEMrc+JlxTrEmMUGIp5dbEdWOQxNg9QiGQc2m7o4Pgzz1ny8bPPpvPImoSnX4/Y5BY2NzC4nJaktwJbrSKYC6Vk0USRaTiwZmRu2c3bVE33ShrEm8e2J5HVE1iJNvKbGwu1QtQJHLCtYQQpQpFKuSWLs8xjiSWmkW7arsA6IDPFU4Rh4u53rFauiK1tQ4TcJwj6QrQaMWUVosa622nQjZ8REpBh4LtI/jBl25Q769rX5VTQ3f0HDtSFfU8duPQPKeHZLLJTXhoeq66SRmmzklsLt1xgkAq7kmvVYo24ddx6w8wqHArFafdZ1RTy+7eW/KTO56L0unppg+GZ4dFEg8WrnANX5M4zlFxj4QlHxrhGg0wkkIS20JAG6tJpJDESMKVSXgYRNB/jVFYNucR3jHpdevGS/b31T5IfMuMWZTDAIDJbk1USsmgIczYaZDEWJ++IpI4cWS4MUCs3pJDsrTOrtukeBxX6pMYIBsAp+4YCnDYIP0Sz7/yfABx4RpKytwJ9liKnrxnrEkchGtKdNMwucJKkrsUXEZG27V33DGIRlXxtA7ZtEXwhlUqPVo16HrTS02DJFZVhVeeOwQAvH34mbNY9pMvtg8QQbom0f6fCe7lVE97ZBHHSiKJ6e+3bKrRYTLv7yj6m0s3lfHMtZNxtnavKye3al+ki0FkAQx1LmaOrWJtBcy9vN61KqfVVU3UoA0AxnYz73+Rr5mZqEIq1x9AgsvLdV9OVvogse8H+qEmSKmsA6qpZQxLB2hRksbfO5hgwwrqOcE9yXhpnQCY75NoEBiNY+2WmGiQ3KaaBjbM8VyUTnP+Zb15qExKejWJZJJEWreIercGbXYTCRRqHPhOmqAtJgpTAm7CmkQNkqjv1e2XzgB8yYfb7sedQ9FOXrS/75HEt86Y4tOplH/55p+rUhpm7OhWCpGstTuP3Dw9wRsCNZiTMXLn6QZ8W0rdtE4WKac2qphjbeguhfklvltpH519/oNxfMNbPdoJSON4IwggWWhaOGI4nu2TqLtubLY7RjdlHVcJvlhkG7BO4P1TXesMkcW/93iraoEBAH/79309/ubv+UV4+3Nlml54T8rvDEoX3pNUTWIdUzfNjwlFKmSqFN20m75uhBlyTkLtCdewWfIokqigbWmRRNcZYdsEVVWFZV1jMzynAFejBgxow66DRu5+6SoeK2sS/61vehUAjyQC/vPNqFsD5l721Wzz98dF2M0BSWTaXwCOKm3XqYKUurLrnKYGe+kkXLuep3IaCpy9jzXtVdzgkkZJHcaRVoG1LezzrtkSk56iOtpxFknU9Bx2Ubqu1yRyzP30cEAS2b3DpZvuum5sBZQzu951qjresJZU14LE/J8BD8KWOGIl9DJWk8goXIe+q/yuLd2Q41FI4jBOWzrjIYlvYZC4KL/l6TZmMw0V+JiFK6VSygZgtpEsiseScX6fPvOzdDu6jZRlHEstCx1ClkrlFs33ffn8pxqn1hnkIC5cw6mNApEAjLhHoue/FFxWU8EbtkZkjmMhmcW2s83EmUyyew3m1CRqKMkuBVerbvqOO/rFVOTtpXG2BkkEgNNtSweW9pgNPvjSTeq9qewnR5EJkiRs9n/OOMexoIVrqiltCCg7octF5fVJZGmLdW2C2V3bjyIQGrqpHJNrgVGr1x8xaQGgCTYAU4e73pnEJx8kOsI1ZNAg9i9/8TvwL3/xO+j3A34PPDaYXTZTxsVlCtcAwMmBIInKHpAOTVIbSGkcSYP2uG0iqGn6VEK23mySJOnGvaR4LGefoinQg+LuWFtIJjIB85xp+4uGSUnmEXADHJbKD9gk5KyaxNaiUlq66U6BJIbnhE0kA5icS0rgMUQFC/dlSD93j8scz91yWCQx1nJDM24UrmEf1JM93fRaGNNvLEabAwoZi0CllKUf2sbZ8MYVna0aAWowzKMU8AVoA9VLMAjAYs2w0/P05bcBot9eM4X6S3S7MJAFuHq/ScaUrImoK/888PTiaUsQDpGdioRwfRLtxmbpGcxmX0/UTZnrNgp9KALZ86ibvu2WQRK/5N23qfcDLpJoMrus4I0rksM2RJ5jIUoHWAZEzsJ7i3VkQnSbFVxx6wvnqiuLlYLgpSPABPAqjYB1QNc7Xqho6SRXZH5lwa2QyaCtyepUKpmApZtqhF3kWIBe3XSOuXtASyKJrkgLYNYgZt06j0mQyK4HI7VPiYDFkmJswm+OcI3bX5GlLcYa1bMIsGVF8WjncqDS2kCjPEY+Wq1u2viJa0CfcNUEwHNrEl26qV64ph8UQ3kkcU6bGnk/wPm8oS8ptmvz93PI0nCPW6KphsfjRcj815hnJ2RNyGdRtkcSr4e1Xbl2aVLbQ2R3QySxV7RSAOwNRdNNg+w/G5SGwjUM2jNyz4OHlM9+6gKAGJJoNsX8cYCpcE2pJjFVb8nRCqbnv7S2hgikhtoxaVpL0U1tbZWGI+8Wim9aLriPZWjZzWa90wUbYh9+5RZ++9d/AL/pK99LvR+wSIG2JtGtVdLUJM6xsJaX2aCi6ppEVVyIbrNN4EORCnktO8faqvSOxxsZBrmaxDqgH/JO2tGAts0RrrHITZnuKNluQ/OthtpOaorm+w3nAeDvf6GkLeqaDkhXbp9EBSVwrrkOHnvdXLVFwNz/l/3M3TzQ1SSGSpIAj4CFlDQWXZ0jXBMGAFxNrh8AlISl7LHgJY7Ye9KooLfq5CLgq5vSdZOOkid7PMsu6FTqprNrEj26qa4FRqusm1zU9YjusfXNoe/EBNzC7IgxxUqIYNQnrPL+q2WK+XtHuZZ9KrDGIKyuumlJkX9iL36+M/HLS0KXbB8kdh1V77fZ+TcVkIeNJyqlLJI4UiYCZ0sRuNV1NdYfaSXoVeqafejIc+Nc+W2AC9LDrNGukP2Jcc97Yo4TKX+SNldXRrRgdAhJBDJEG9jNfm6fRDfbx55/wBdJ2JK1XNKkHtCJG7nqppoWAID5fn/gWz9EvVdMGmXfP9uiqriWIIBfq3TZDmtYy8ts+OEYQ3fkjhU+N9S4aromlDfRqYPArK+Lxhcu0NAPTeuSdlzTGWVaSYi46oKMgwCY895UfE2iOZ5p8SHfkfUrDoZeagcLDZLoIimKTPdMc+uJNMI17vXedj2OlXXAWhMk8Yikm7q0cE2w4bJQNPT6OWgPIOdfV4MaokS7lqSbOmuCSkypNgGwZv1356hTN3UbnpvXqPr+gJXDq5v6NYnsfuMFiW1PnX/pQS1KsZo+ifORRAmKhteLTL1EH/IikjgVuymKuQV1k2aeXOnG5HjEeVk0NuGtFq5Zcm2FLtv2QSJ5g3goEbGQhyqlMpqt9wvRNqYmDhiydah4Jb0J2qAZZ8e4c8hZqGwHzEMSS7QoW5/gXzcmaDZzs8cBOOEgM87UCsylm9K9BKt5dSxjv7fW1iSWFLqARE1iQbjGQxLJYBtAXN30Eh3XA0e4ZtXUdN3YrSPb71DTAmOOuQg8oFi33OemByqy31hInab7KzoIkcyhNCZZW5IZK0ibO4ZGEldD6xKFuqlcX3HSmKDUVbhuBsSUDxKN47RpWzR1RTmEZp7muxnnnxuzbOox8WPmSg2bba5TSCOJTe3XoLbd6ABflr148wAAcLaNKCtFzGVp6IRrqklSkkISnSScBslyNRa0AYB73ShV1NqnoNOU2CEJpGGSuDoEKpVYd46KfUpKDDa7TkWlleTiyFxRIInrYc3aksJNXuA8M5Gg8UnMsTAeE9ArvDPHTCKJhVMpf3fHsjWJIeOFFo8LgCJVEu7X/nng5/8R//5LsH2QSELN2prEpEop8cC476cz8g7UvwCftQ4bZ/PjpnPUohSy6VPqphO0IV/LEssYMc6ufKS2vUd4/nV0U9fZVbQpGLPP/hxyZiWxrSPDqKS5SqWamsTRGVHSeEKa6mWWH43CNadbFSLotq+4iiDRpchQWcyAAdH2PXmtpzRVLbuAdZJjCaAtgXAL0iamcYAOnf6WAEcvluu73vFIYkwFmvUPFkOLj/W2o5u5yzzvnW5Uwd6yqcaAW6tuOsdCWvKKoHMuG//+Z4U7zmNf9I7nAAD/7NMPqPeP9d5K4Rp/vRteY4KbpnJasuj6JLpMJU2jdHm+GeEmGefuU+w6vmhqTyVWrW6qOf+NPnEN2DXh8WZHzxEw+82qqfGZ+2sAfHnDQSPKxZzgH+Ao7g7tdOYkEvhepiGSWKZ/AvF2FqVjxmoSS+wyM84vA5P5zkYSFSCARihwtA/9MvPvLbS9cA2xSE6y+MTCZR0En4/MIll20ULxWO7xOgfdm6NkyDY8d8ex9ZaAT0G0C7Ku356MzbYgGT5y0iexMMVQJERDNzXHk2P5r6csjiTmjwVIhtb8rqHWuAp8+ppE835dTaLtvwYoMusz6i3n2ihcc7ajREzEXrhxMP5++TWJ/qZIbYjNtCeplu4L8DWJvkgFmwCa9kks9UAFBGkLgkTyHjla1jhzgkRGmXYVIIk7QjjFlZ8HeEQWEJSoM9RRsiZO5imOpKZPogQbQpe/TJMAGNAhWe4ezKprnse+8J0mSHRrX3PmJ+DMa7xwjfnd1jKWjzeXbhrqAnDr/8CMEnXfjhMOcv0ETQJiOcxxjrqpvk9iBO0hjif7xummHY5fHALA+Bi3j5f4zIMhSFQgiQBwtjXHY4RrfCSRE4kCpiwglv5s3m/+T9eyBwkg5piNUzMpxqmNmp9z6vtDEW66v2LICrzk9fWi7ZlHEpk+QZPaHmLhslQj838ZzkDvZly4aJXGmZ9uTRBzLxq6l/2/blwIozPjnLoGTU1isFGXMplh5hPgahJlrLq2KnL+AUI4KCIuom1SrAnAvMyiIrPlKsyOfRJLSGIdq/UoHsrLrGsywnNNNvuH6x2ecyikJXPn9J7n+WbicyxWg6elafO0oSC50oHioLsiFWwCIkTSATfjmr6/Fk2NR4NzBgzng60lXZmaxLUKSTT3yHrHBzcW2TD/1yCJ0uJjvWtVKLXUJKqofUHi7jITMoCv0sgiWcsBWRLbdf2l001vHi7xv/32L8TH3nWber/Mx1WOZoI9l5WjE65x6aa887loqpFCy7eOwfh+wLCAGLqju25pauIWQ+9OTQLUltzogr1FZL9n5ikMFFmH2OcNAO4cr/BPB4SaVjdd+K2amHUhVDPXiBu5e/ActLnt+PMf65OYRRKbCJJIKH6HmhNmnn0xURgteSIo142b8NYK11wTe+aDROZCh4W1zMI17XfIISKTZu5kABBSm/qeo3/W1bR1A+vIhzc/tyDUOG1bb67l8x9BEkuc9YhwjQYR0TYFn55/7ro1dUg35TL5EqT3TtaUo5vaTUOcLlo4QhyEndBN+eumUqmL0BYvE91w6XxzaaO/QNFyY44t6tBJ7nCwzC/fTbD5alTqwueNzsgr14QoktiVN1MRthArtcRx7WjZ4N7jrUrd1CKJZu1inGTLCrFCDpqaxG3b4WzbKYPEButtRwdfgAlItcjeeewgUGmcI1xjsv+XT4T6Nb/w3fR7XT0BFd2xmq6TLHLj0U3J07Fq6rHdj3HGGXVTn6Znau+5cTuHTaISbup0iKCc6q7rVUhuU9foe/04SRxp6aYA8NyxTUbeOODccElmSS0jo7or101QWZ7uW2EtiYRCOwqxkG6qEkGM+HclEGDKLlOUZblIYtfjqOTfxeitDN3UCWbVwjXXxJ55uilzoUNxBWbhSqmUagRQACcgJWmqEnD0LNQffDe2JtGnaJjX2Fo6l+vuzj05JpI1KjlBdXD+ZZ50vZ8SJQ3Pvz0n5XHud2P7vS2d+0QjXCObxrbtRroGU6fmSmJv2w5VxSzItYMk8omEpvLFDsxnXT6SCOhpo//Sh1/Gc0dL3DrkEcg5tpyJJLqBFFN/DQzodkCB5lgCrgCHnUPxWJGMMFCmm7o0wJacI+DUJM4Rrmm78WdpXJhZN04yOceFoJ0t3YIBMNTZTdtRDBkxobYCukB2rh0smrFHJdPvE7BJKkm+mT5x18vZirE0WKXqOX0Sl41P5eR7ENpnx/g/5TFhGcy25a7bsqlG7QEN3VT2YG1tJ2BFWsxr5WO5iVOWuQVYJPGxIImK5+aOEyTeOVlRY1YLv5/vERMkOm1ZdOff37upGtmAbsomJVPqpqU+idsJRbXc8zzGMKNEyAI2IUDSW6/Yl7kM2yOJxIWO0baA/MV2s4qArt8eEEES2eByzOTr679U45yHRjZu5tZ369QsYqCH+ku9bWJIorQFKVlUyl+5+GgEb7wianIhXy7EIenVjgUw1CQqEUh5/6btsSRUQN3rxp5HQNBt8/uVqJueA0n8U7/xSxHsHZdii6AGj+mTNUkA9Wxm3Re8UfVJHJNiXOPgEEk3Y8tI4oR+S9Roih0tG5wp6aYSEEp23dBA807aJOGnQOmOVw0++eYWN3Y6JHHV1FgP9ZY3D7ntfdnU6HqMTvllq5uuFvWIvmjUTQFBsCpaXfMqLR5sKJFExTrpOteaRuluK4WWRBJDlGjX9WOQlJ1j4yKJCkpsXc8KtgGzXs1SRe10qqjy/D8aWllonP87xyYwXDYVTlZcEkjWIEESj4hxrgYBW1so49x163DJn3+3BQbdJzSyB5T6JAr6K8dgawTl871jlVpn1PGSJyp2CIRrnrQgcY8kEhc6vImZhatxFiyAV2kcszHOOIqiF3Ct2fqX8Lt1fc/VH7nCNcEcsvN0aEMs/C5Zrb4PncIykuh/N7ZucipJztJNw6xREUmc1CTqags3Xt0Gn21162bYcfL+bdtRjrWMcSmxtHDKBIEsDptti6Yeg2ctklhVlaoWZa4t6sprAcBs+NJGYRzTlyXCgXjiSCtmxQR68vcYjQfI35erph5RPRlDS9CvrLrpasG1PFnUFarKQRKJ4C3GCmGdtOODBU63LdbbTiWmdLA0NYlnWx6BlOBGnPLLRhJXC3vtOiLZ4c7RUrc44ZSrNI+loQhu/D6VfHDp9orToESroW4VMDW2zJoXokQsvdtdt1hGgsxRmtQD/Ppj5qgLEl2fSxOku6rYACeAJXZ7CBJvH6/oUoqxJlGCRA3ddEwA8UiuK4qkOo9a4ZpgD+j7vhhgiv8TsrCYGkEzRx2S6IpLjeMooRynJlfhA10nu16r7FtgLGQcKukB+Zs4pGewTnIY3LQdn/0HfCSLuRWbwCEEGaSYAMD8rhGucTNUrHCNpe7a10p9wMIgHRiQROKsuI6rRQTzY6bnn7/eXW/fz1LSVoFjxxwLcBbXtrMCNKSTsHWEayjRAucZUKnUVb5Eu7x2mSZKpZetUjrXlk09rcEjauLaYBOdo27K1pa47AIZX+zvGqHxMAyDEElkxRUA41ydbg2V84CEzaqqGkVhAAwN6wtBYqS+nEYSlw0eb3Zmjgrn82DRYNf1eLzhg8SVQ5PUCN7MtYNFbeudSCRrWftO4a7jhFOu0mQ+Pt2RRARbfbA39hLsepVy7oETpG9IYaQQJTJBOrffjN9Ncf9L3aqmvZO7B2sToIBJPGuC9ANHFdvMmU/mvHzL7DchgpYzqZ1/4/HG/F9JN2XblgAB40sJVLhMMT4B7TJX7BxyY+QYYmzpmDmGO64rip4tmgTaWfJdI+1VnjThmuvpEV2hURB1M1UABTgkUavS6NIDgMFBo7L/Mjc44xiH0KrvyTw5h9B+JzmmlpLGNnMPBSCAcvbHDVAALjsl5tWIkNctPP/sOZF7aKRXsnTTwLFj5gj450UcBbYpr9A7ti0nP9+4TtM4x+KwaE3oZVM0Xrpleh5qNvqrtFDNjRGccJEGgL+3JuqmPdkD1UMSOVGkEEkHrHpuqSYxpN+ywc3hssHZtqNRFDFXlXO9LY8N0S9NAHC0avB406qFawTdeOPxhu6v6Pb3uxJ1UydIYQV2bPmGFdO47BYYWosJ11CIoFtbSCaFzbga27ZXMUkAvyZx03L3V7ifsn0q3ZpEjbrpwcJQoKV2VaVu2unPP2D8i67nz+NBQP9k6Ldin/fyTQDA64829BhR3v7Um2f08cZaalE8Js+/K9TCCMIAcZ+XBQ7C9jbu56XGuO+V4zH7jTtH+X1O7TxDU3UTQHI+r4J5dJF2vVbZt8CYbIBxZHyHBMgHN5MsslaAxkFSNLx6VzhFG7TJOOYWDushAM6RjCleloRTFvX0wS45hbHzAZCo7Ay1uRTdtIxAYjxO3/MZ4TFI3OkU2RZOcMm2sgB8J2FNOq7LgOoC6Otd7b11uQvr24bM7jFZH3LVtqx9oRa2JnEidjNHzIp0Ltx2OrRwTYCkyzyBfPJi6QRsAE9bBGwtz/3TrSpIPFhawRVNTaJLXafppisrXKPpk3gyKCU+ONvRSKKfcLp8J8YNttngfjkyJ8y53HbdpbfA0JovXGNeYwU/vECKVaAcEBgNagbY89/3PZ0oCe/lLdmncuEEpJp7a6z3U4jCWN9JV8vu1iRqBLAOFjWqygaJmgTjqy/foN8rJhTVT903QSJTk+i27tEgub6fVhaEAVwk1/xfQzeNtphTgDAAXzoGBH0SiX1xEfjJcuxSnsSjkvd7JPGJNMZxiilQAgUksfFvYra2bUJTJZWl5mZxwgwJq25aO2gDK9Ji5lnPqEmcPtilxrD2fJj/d2okS8aZn1pVWhlXrGV0kgIaRFaEazZtp2rA7ArXbMZWFooWAG2HM1JxMUrj0QbpCvTlPCab6YdfuXXpx5pjc/okhjWJHemQzxWzajx2AXe9QyQd4GoSlwGyyvTIEpNanjdPt3pRmF2H3RBMsXRTTyWQpZuuDG304XqnmqMrp88iG7ImCJX2spFEqZsEeCTRb1RvkmlX0QJDY15POkUt9aKufXEjhbiLtt0GYIVrdsN5pOrLg3uZvW7LwElmGcJy755ueFEYeYtL9+XOvwQ3vapNh1DQx5pExXP64lDewPbgBKZIIlOTaAW3WpUCrpso1NBGzft1QkVhXTrDOgqRbYBEEoNkh5lveZzbcswfR7B5xN9VJnOuiz3z6qaslHx4UwEcHG7rUVAc4/7drWNR9ajxKKDzsjiz20RQAdg0cGb6JAIYWzDI2Ny5HDeMoLaN60Fov5OtLcyPSdckFsY5Wcy64gNZryZR4SRIMLRxkMQlsbnJhnS6aWkkMZTfZufoF81fvtMKAJ99sAYAfOhtNy/9WHMsbB6/KyRJgCkiqEk4hWJWWropmwBaOMm0cO3L1yQGLTA6Xt1U0OLXH22USKIJbiTAKdUKRtVNyXv5aGW25jceb1UIxfHKDRJ1SKJ8r8v2YVZNE6hr8vvbru3H637t1E0d4RomkSzWNLbeuyX3e0B6CepEcgATOOy6Hmdbs54wNa9h0ntHqgl79ZaKAMz2IBzopsS4qjLiUl1vnXlNgl0Cbo0Tf7BoHCSRX0uqqsLf+998I24d8a2Tbg9tMz6pCBJlTutdp1LA9ZXJdaUsI5uELW8I96nRv85pTtTeewGeXSNzc4/HCt50PcZEh1m7ssMCdV8+UX6d7Hql4t4Co+imiUxH7mLXYeaNRLJCmupcdVOAbGQaIomkQ+j2UtNQCd3+Owz3HACaiJJVKZNZVZUJgINAlqvJuji6KYsct72ujmJuTy7ZNM627UhxYjLJ4rSeDq0DVEhi11MUErHVwqLNGvrVeewP/tIP4Svf/zw+/v7nL/9gMyxsHs8mt/w6Xr4m191EWQq0L1zDJUnqYL0DuABzOVD0eicJxAYNd4e+ZD/1uUeq/pZC02NbZ0wTfrxKrwSyjIqqaycH9rnk1U0FtWm9/1+WhS0YWEQK8FWZnxbhmmWQcNUoUHprKx1cmuv7cGjdoCk3kHnS4mVuTaIiAD4IexCy52TYu1vFXrrwrpvOiT9c1jZIVNDCAeCV20ce8l8+VoPVosanB7rpIUU3tTWJc/sksiyNULiG3bsXDrvMjBd/JjdmiiQyCZapn8wL0LhzA8weV0qUuPuUzHVPN33CjJWxjXGmGSRxWqOmQxLZRWuCJJLj3HYDgGlnQQWXXgBmXmOl5OVcyMLAqptOlKyI67YdF6zhNVrd0f9u9HVz1GXNuMKxIsX2zBxjwjXMhiiO43rXOXTT8rgRSdy2ONtyinieuikZNMi4sY5Fkf08j33RO2/jL3znxz0k5jpZSDfdEkp1YU0iq1LqNgAGeOp6KFzT1BWRJDE/w8wukEeKQgl0DUohQeKjTTv+zpgoLkpdYskpDNcEjZPm1saywR7g003Z4FJYCRI0aHuFak3UNbuup5QFAUfKv+2cfeN6uS/zhWtqj5I2W7iGXCbl+kp/vxWBVIdJb7ZP5bJ2kJSeRztljg/OZI7ctZa9W6P47X43TZsOwDybc5DEuXb7aDleg0Piui2aGk1dYb3rsN3xisAekqigjQJOiQ+5JqeRxPRYt5TFHcf6kmFNYmktiSUzmaDU7e+qUc69Tna9Vtm3wPiM/BRJZG7iSf+jwkNTVRXqyqebapS9tDWJYQuMOY2zWWqljAvVnlhFqlDdlLlusohYuikxx2qKQGoREXVw2ek2trFP4s7JWiuQxPW2HbPBTHAvTquR5efQDZcSosmsLxrbF1PTW+5ptkVTjwkPYJCgLywM7nkElPSfYE3gaNqBSqMq++xu2oS63djKxX43NkPrBoa6INEI10j7BnWfREUg61LJdEiinm4q1L4HZ8bZvew2MG598xwkUZ6D64ckDok7JQXURfw1bVJEuIdRA3ZtFQRgmoSf7Itsn0o3ucX2aTVzkvYSwz1Jotuyd+sUv81nd0NwqaOb2vraKwkSB8ppU1f0/W/m2NJaAvL5Lk2YeUbDNilsUsCIu/gqpe7npcYAvk+4I9bXKCJI+pKAn8xkSj7COuUnDUUE9kEi9QDUtZX/N2PK/f0k2Jv0eyMXLZfKqeHVyzPT9fraQjuuOMwTvBmRRLIHYUjlLAmnxJSs2KxRGKRrOfJs3eT0/HNBae0sPhra0GphF0lbpE8EiQON52xAEhnRGsAqqQmSSPVoqv0Fkp3j0hmnoSg9zbZqfErOlsjkh/1F2SClriqvLU5Prgluwkm/bk3pprnnWxwkaaXAKNuJzQ0ShSYpx2TVTV3qNI8kOoigQlr/ZEZNoji39xVBw3nMrZNikbOmtkmB8f64Zi0w3PZVmhpsL5BSBCny/SVpwa6TEnBpUDqZ09ZJ8LJ9El1WCF2TuJQ56tpLiOicRt00RIB1dNN5iP9cu31k1qujZUMrfksgy2oJAGE/a6XgjZOUpPaNBJKo7ZPYUXuiMLB0wd7op7m9eYlEqOsDac7jdbLrtcq+BcY4TmEWQaPKGdYkchRQvyaRC/bgHacHWVtYV56yYK8ILjvnWIACSXS47vJazsJ+YwDLI7dUF82m7ao7suje5Pxr1R07qGhDc/skjpLY225AEskg0RWuoZFEm1nUCAmIkI6I8jxpamCXYYvar0nctV2xdYxlM+hQCldcCuBrEl25bzZoiwkJcOqmln4I6Jxrl5KppZuKswWUnWsXoRjnSAvXWIfzWNUCw3VauWd7bAp+ejVIoqwdjzc79D1XyyV7wLazglvXLSvvthfSiFS47aQ0zInxPG4HBVBy3KQmkbjeouS5Vvap9BK1irVc9qk3T6VuknsGJDGvEdNzy1k6hQIoAK+m+SqQxJefM/18NQHpwaLB2XYGkuhdN+5Y3jhyTZ4w9YhnJ0UbLaqNNtYncY9XVK8f/hwiieXWGXaf0rRpuk62DxKJGzlUUmKdcrduT+4tGklUPmhjbZtTE8e1GwiyMbPqjwQ1m4nSEecRCNAGgkfuK3Sdd446zjpPNzU/XeEaSuzAo5vKsYrDRprKetdi0/a0Q2jppnokcdu6c+Q2DXfcnm4qdFN7T3Z9GYF3kQ3gfHRT5t5y5b5ZhzD2bDMMg1hNIuuAumuAFklcuzWJRbopJnNkHdCXbh6Mv7/jzjE9R0/dlFRFtUiivt/bHJtDd1y6SCLJ7rhqc4ONEclineRWl8gBLNr2aK0Td5Hz/1CJHK8W9ZggYdAXwK+31KmbDvfkKArD1yR2vbLlkpNM0yRyAOCOs35ohWvm2Cu3D72fjB0sazxat+h7PrgMfSC2/jcs1bm8mkS/3EDGlZaEsJWLjCv6oI0fA5jfUayndvu7auqNr5Ptg0QqSDQ/3aJtgAhuqspzEADOka+dwK3tdbU9fuNm4lgTuil3I9e1pVaywZ68Z0RkSQroXCUrz2lV0k/Ca11aI0dnd6L4mh/nCdcogu2ocA29ATc4G5BEttbj0BGu0SKJu1bXt8pFidia3Kfdlo11JNkWANO6aF7IYSpcwzmEWyWyF9u0uZpE8zcRX9q0XFNwsbcPGXlNkHi0bEYkHWCCxAFJdDPy5DP6yu2j8fd33+WDRPecsQ7h4YgkXg3ddBUEABq6o3HkBUm8XgtDtE8ik7hrXMYRX1t4uLB14gCPJI5BugJJBKQmtxtq/rggfdlU2LSGSdKRiWvAouAPznSiMKG6qSpRNcxRw1y5e3y1SOI7h3VBo8p8sKjV4jqun6YJ7he17THNJnhdJB3gWF8LZz0YxxFIYl2bMjDrF3LXPOw6YH4nkMRAuOZJpJteTym/KzRO3dTPIrA1YF42Rql25iKJLELkzZGkTYTCNW3H0lsrzyF055AfV4/1nSxKF+uJw2V/pnRfJuBwqbT0HBNIIt0CQ7mx2QyV05OLdS6WppCdlTEHLJJonOSWypoKbXTXOZRYVQCsrxF5Ws2VCZd7unTtlkH2syVpQ1MkkU1cVF7NEquu7M7R/T33fK8CJFGT8ACAv/o7vgZ/7u//NL78fXfpMUcrQ9vajH0SCzWJQQCsQTvd973zzlHmnWmj6aYTJPGy6aaDUI5CTXUUrmn7sZ7o2gnXBH0Sq4p8bhwnmd3vARvcj70ELxlJFHVfKxzEXDfHSVbQFq1wjV7dVARoAB1zZdf243VjzUUSr4JKePvYHI99tgFzLsdnm0YSfT+NvW4GdDD3R69hrrhJScKfSQvQlOcogm6A9Qtphf0+PB43Tkpn9nTTJ9CY2pmwBQOLnIXBHsA5yXWAQKpUAnt7vFmNsxXHC6mcmp5Eu64fkZG5SGJpXLj5yrxL5lFpycBNnAFL91UG90MWU45fMq9PoiIAAyySqBGuERqboZt2OCQ27VUQ7AG6e0S+2z5ItI2zAVuHV06u+NlWmiXg3P9SS8pcgWXjP2/MhtgEz42ZL+8kbEd0tafvZQB48eYBfvcv/jxVy5PjVYPHQ5IEmNEnsZ8nf36i6KUGAM8Pjit7rMMrrkmcI5wyqtl217cFhotStArUWPbgXqmu6dZ2yvEZk/P/cK2jF4tKJtu6CgjQVQ3ddBmgzQp1UwlIAZKFFSRqVUiiEySyQjLnsVdfvgEA+NaPvp0es1rUlrbLIokBKl5C6MZxtS9cw/pAoUopkPdnQpaMHI9S3HUCWQtwlBFIAJOWGxo9DU25wXWyZx5JZBynOnC2WJqkG+yNAQBJyZzD6wYsrZLpIwj4DbABXd2SRduG10gH1Izhm4u6AihiTE2EK+OsoWT6VFoukI2pm1JtA6J00+IwW5PY6vvvHHhIog5t0DQO9rJoiiDdlbvX1Og8zeYqIIq65rKw4bsZ8r7vdaJUY5BoXqNpQzPqH4EUkliuSRyDREXCY64drRY43bY43UqfRF2QyNTMuPbXf+fX4pNvnqrn+Z/8pi/Dv/NXfhQffOkG9f7RIb+imkQJSt98vKGP597Lkiy5bjWJgNOqRpEQWAYOOU/JNOdNahK1dFONcI28bzMo0gIk48VFVxWiMG4LjEVd0Uq2c9RN/X6+/HkEgDvHPF39IuxDb7uFH/qeb8YLNw7Kbx7sYFGPiKymJhGQ+lotkqhLijV1NQm+5LNStkiwy9jjbQNWTtmXHI7Rh0FpCeCwpTNsK5HrZs98kMg0hV0EAQBLr3SDvVYRAITKUlyQOMzNRRLJTH7YAkONtik2DZdLPo4jz39YpMw0Mg1rQlnH1VJp/Tmkxwzz8oSDiofykETNHEeUbqdXAJXaEo1wTV1XOFo2uDc6dgTVyOmH1isyu97CqqwReVpN6jb63rYAWBbvSX+jd18rjXNb8ADcvezSTWkGhKytanVTSUDYwHm5uNz75GgMbrisfIjkajPJX/D2W/iCt99Sz/MXvPsO/tp3fw39fqltk5rEy0YSRYH19Uc8uuEzUIRuer2QRABeb14eSbQiHJqkmFAOx5pE8nRMkFxFonC968bEK3P+Fw5NuCP3RDkWAJxtu7HUgbG69tVNWX8LGNg8Srqppqb5okwTIALzaxIBvZiPJxZIIscu+giAKk2JIYmsmNLSYfjJs1ouHZOgVKeK6iaA2BKM62bPfJDI3MhhM3fW4QqDPWaMvMeFw2cJ15D85xjdlFnI/cbZuu9mjmMRES1tS35neOQTtVEllZZFEmPnX4MkqmsSFy5Kp8t+HixqnG0NbUhTx3W8avD6oyFIJDKSY91Y2490RQ2VdjPU9uxjxGCzIfvEuQqgmnurquzzonlu3BYY7Lplqfz2NUunzQWJAZKorEmcY+KsyjNQoqraPpV2D7iO6nbLpkJVAQ/WV1OTKPTZN4aEE0U3dRAptkzhrTDpC1jXFT0/+2zrEn4Hi1BwiAumJuqydO1qY+imgr4QSO7CWcvbjqeEu/eg5n4UjQVNnf6ISrU6ui8AfOQVk8T52Dufo8dctR0smtGf0SKJUn/N0k0npVLnUTfN3F9237AbB9O3UI5nWYFcO51UyROPJD65rKhnPkhkgqkYbQjgaoJCARSW/iCgWauA7MM5sgGRc9/zNDG3l6BCFGbhbIjbHZcRjvVJZOi0LiKoQUTc68ZSayb1R4oF0ryf760ITNVNNeU5RrjGBGCaRt03Dhf43MM1AF32f9t24/fkqLRu9vnJXFgv2hZOwG2FI9h7shtZECxLwKW703OsHXVTsh6lDhJwAJwgOP0B4hBvdh3YliDnNeld+NoYJBaEawIGhNYBvSqTHngjQqpYE+aYnLc3FHRTd02QXn1XoSapNUHbDhY1ndwKVaC1CqBvKmtJpU/oa4/MWk4jicsaj9Y7mqIHWLaDiOuwc6yqaqwB1iDbkuBV9UUePl5L9wWMkMyPfe+3juvedTT3eeZFikJRJO5YbqmCKbkpj0n1SaSQxNb1Cctqo+PxQrqpks0mqqjFHutOf9fdE0o3vX6r7BVb2zK0RT8AYAprgTiSSAVuDpLYkXUsoXANn8Wx30vqlrS9beb0JGq7Hpu2RUNkXOeqmy6bCNpJOsnuYuDOO2XT889mtTCOm9NLcCPZTxWSKHRTXR3XneMVPvXmGQAuI+kFsprMriNSoXGanmYb6zudZuJ0n0TPaSofy6WbatrbLJ26ybblRATCWl4AlHqiODtSW1t6/0WYBDevPdygqni6qYskXlfhgsNlY5UkL/k8SpAyshIodVO7lpwNjqumofhV2eHSKOB2Cpr8wkH8NUmxsbZTSSUUiuTP3zNrOat4uWp8uiklEjJ8t0dr/b11+8i0edDUyM7pk+jWt7GKnK4dLhvcVLSkuGpz7wv2mZExUn/NrlsuwMH3yq2jNYl6ddNy6ZKMlXHj3lHquR0cj1dFdZDEa7z+52wfJBJI4qRROllLF2ZV3M/KmUuTpPuNDe/pe9242qs/8j+rNE7ezyKrgEvdNVLmzKYRg/p3BFLa1H5zb5l3yVzOulZcxxccKh7Kp5t2vCNfVRVWA7VJW+t0sKixHqT8dUHiEj8/BIk3Dni66bad195js9u3wBBbOkgiqy4YIhQA3yex781aorlupgbYQRKVSRIx5vtJdvxs21khn0sWMhmDxEdrHC0bur2Nln71VphH77vk4EtouhIkMkiRTQp0OBvUZY+uYZAoSKKGNroc7xNd/ddcwaHjVYPDZY3XH22wbCqckDV/BwMDRSiIJeEswD6Tgkhp0F9p96Clm86pwQasLsDTtt+4tHi6Lc5Y72quG4uAeQAHmShxyxQAuxfkrkOc/skiiTW24t8RrBXAqRsOQYcSAjkyIJ5c4ZpnPkhkgo2wRwodOFSW+6xVAHUzFqxj5x6HDi6rqbgOcx8vPF63BGDlcR6SuOP69MXUTRmJfSP2IYiseY2ici78puAA1xMTCJBcxQblFtuzm9SyqbDddWpK5uHSIIlbZQNyV8ntpZuHxfe7dNOxtk1BpR2dpidwYb1oc88li5y5NYka4SD3GdVk5Je1UY3re6m/KA6ZJOAAUDVn4hCvdy22ZHP785pk4V97uKHENKLqptf0XnYRhstGEleLGqumxj1SAAiw81vvTAse97XrZCOSqAg23GRO13H7KODWJOpowlVV4fkTI35y53hFt244WDTY7Lrx/DNBuiSOHw3iOpqk5O2hUb1mjxIV6DHhrWDltF1Hl/c8Sfa8I67DtzsZ6KYDAszeyyHAwapp+7oYw2dlfMMYu4xV9HdbYIw1iSwrJ+wNXvh+nnLxE5qAeOaDRCbYmNaWmBulKHhTV2PQ1ikCKROkWAroHHVTjQT9RMmQrWV02j3IZ5XMhe03bYeVRv7cocWaBaFMEZj2OyweDsumGtEJlm4XOrua2k4Zpw4SF/UoCKBBKI5XDR6udzSSK3bbCRJfvFlWWIvRTdkEBCD9xp6+TXuOuVLy8hyUHC43uaJBEucq7spGK+1tGLGDkJIJANuuH8RUckHigCxtO6e5+mXTTaWWazPWJ+Zs6VCNAF45+q0wOZ9VdTVN6o8PmrEmjkEuXbXLs63QTa+f+zIiiYqEQCgwpVU31dJNAUs51ahzGrppOyK5zPmX/f7xWleTCNikpOZ7HQx74qhuqkhcS6uga9hZ5Vz2grNX00ji2INTahJJJDHoscucSxdwAGzgpkUS6d68DsNs3DtYEGDiT5aBCjPPAUl8Am+u67fKXqGNwQZJG7IZEvM6E1xa6J13tlZzpOQDdU1WScmjlmnq9mo/Q86PsxviZtdhpUASXWcL4BSptiHdlEJELJK4I53rSf0RmTUaWwAoKTKAka439S86uumdkxXuPd7QSK7Y3RNbd/E84VwsXbqp4ru5weWWvEeednOl5AU50xTbt4oEkNc6QzHOFZjqSAchKkDQdkXqukWWeGT1vCbo4ZunWxwvy5pvrgIxIGv55c3vPCbnc9XUV9IU/GS1GBEpquSgqbGoK6x3tk/ldUYSNQIoYTKHHWeuFfCmUt0UsMGhps+f0E3PFOdf9hdBEjVB4nPH+prEg0WD9bZT+iTOeveEoj05c1tm8EjiECRudUFimJhnk5Jdj0lpVu6Ydt9wg0sSSXTorbxSuB+Ujm1uSj6o06rpSW2BcU23rKuxMdhgM/IjlbBDVXEUxF2QeWDpdlYlcJ66KRP8huM0gezSqT9SIYnO8Vi6Yyh3L8dlsjhzxHWWCxtcskiiRQQxjtOcj51z/tmA72jV4HSrRxLvHq+wbXu89mit2rRdJJFpbrxyrpv2/jfjBG1+ppcpANa52rbdWE/Bqpvuun5E/XX0K904D+1khWskueUiiW054+oK14w1iZd8n7j0OgpJDNYttk7zrTA5n1elGHri1DTzLRjqAUm8/uqmGrl7t+enpnRAVGltTSJ/Pp6/MQ9JdOmmh0TAIUGJticjYIVrNM+1CWRbXS11WJN4TZ/RufbCDXuNRTSqZILuC91UgySOYo0dmVyc+Nfm9dyeE0USyWdHeg4DViSNrUk8r3DNdS03yNn1W2Wv0DTBBgBPNpd1tlxkCeCd5I2jrjlX3VQVXPbWIWQyycthwwDsedHUO23bjhZOcYMGwHLWi6qoTTUuAlokS9Aadpz4w25bEH0ri2HetAT6kLUmlVTFxDHYtr1Kle3lW+U6RNfGLNqus+09VIhUN6DNz/QyBcA6Vxp1QRfZ06qbAj4CqWpvM4zT1iiL7bryuuDTTQWRutwN2HWwmJpEV4EY4NvivBUmiNJVoXOumAb7fJta6hbrbYuDxdUgnlqTNVnaYDDmOqDahN/hshn3YU0y7cNvN/39Hg8IH2NTJLF8vCMHfdfOUe5J2YupOTpBOqCj14/1/dfwvjqPuUgie/4ndFMFKu6pOVNskiAAI0qz4vvGjJrEkW5K1iRO5sghibvOJE73QeITZqxKoM30KSmgDvf5PEGKSgDFgewZfralqTo8a+I+XjbzUFJZpDYtL5ziNht2fzJ00zDzQ82xqb3gsq7KgfNcuq8bJGqEgwCzSVu6KTcG8LPHNw/5Vqlf//kv4ju+9J34nd/0KvV+27ahp7KDYhaRGijJ1xAxuGo78OiVXA2elXbXOU2eJP+4bnGUQMBkZ2m6e5BFBjCgkKXNt0ZTV77a4iUnE547Wo7fiRHtqKrKiEs5SOJ1dRLe/+INAMC77x5fyfE8JFHhuEpNIoPkvhXmzpENuF1RKi2SdbzUn0cA+IYPvQQAIwrPmDRll8CS+X4nQzLgzaEnpibh9+Xvu4uPves2/hcff49qjqYm1Pyfed5kbd0MiVrNXvokmOgHfOxdt+kxc1tgNIHPq2VTyTjzevpCuHsUYPytvueBCtlDx4SrouewP8dC7OAATNdZ3TpnvIf4FJptpJlfFdzABuB69AFSE2flgAHOSV4t/CbwWrEJgFNtNeMwjtOKVIxzVIwT5+psY7KtjGMn12ejRPcWdT0uWOKDMmudofva4FLT780KB5H1pwuLNlhxI5JuOmStN60ObbvjBYk8krhsanzfd3yMfr/XpmNEEonjOLVcrLjR024r5xmwNXjcxqatCbWbthXJoQSfHARy1/U41tBNnYzwtu2pdcE45FfXJ7GuK9w5XuJzDznhGpnTru1UPWjfCnv/CycAgBOSjnZeE+r6SoEIiipzXXFUx7fCDoY5apBEj96tRLJuHZm2RE1dUSUAYu9/4QR/7Fd+FL/o1RfpMeIHvalQUxXE/Y3HeiTxY++6jb/yb341/X7AtneyGgTlMYeOKNLTWJN4uGzwn3/XV+JDb79Jj5HAWfpb0kiiq+jfc+qmY6LQ8bmA/J6zCIM2kv4JmDVZgl+2dGPh7KXmuFzS1WNFtR1uKJLy18WevBlfoNHZgCBI4QOwCqdbvxiXUdtyaxJZHnMUyVK1zuhVlEAJpNxeaswDOgaJQxNsHZLYez/LQaLbgkSH5Ar15zzCQWxAChiqi6aOApAG2Fust51OtMCpLbx1yYvWYmjTMbZgUDQ33rV7uqmYOGTrXUvLdrt1jHNqdLT9FcfsbqsXrgnppowKnFDLNjsOWb0Iu3uywufIFhiAXSc15/GtsBdvGbThfUOweNn2toG6fqgIGlZDUqDC9VQ2Bcy81tsWZ9vWo9TmbOEwJ7RtUm6P4i6681FVFX7DV/AIHWD37tcfmYCPQRLlObk3g246x4QS2/U9KoIBBFhRJGHlXFe0/zz25e+7q3q/3E8P1zrBoUVTYb2zgVRJNRTwk5IAV5oV60EL8PodgiDypRtxSmxRPM6pNzZ+2vVct3L2TAeJbE2iXFgXyWKldsMehBTdzkWyyMxWTKKXnSMwqGuqKJn2IdU8oLKxnG5MAMBspG4gJXN1556yWAsMKgB2kCyWRz63J1qsJpF1JA2S2GG9a1Wb790b8+imc0wSHhon2RVyMEji07dpa81HEnXJrW1rg3TOabLPtk7MSujFfAuAaJBI0E0BoZZZJPEq7hOharMBgKkv71S1nW+Ffd2rL+KP/cqP4lf+gndcyfFeHoLSW0c8k0GQxArXU9kUsHTHs22Huye8Yw0Ikqhr+XP7SN8mYq7dOjL3/GfunwHgKNfHId30soPEkW6qr+08G9rpMMyhp90OAtSYfd7cFhi7tqfQ7Zjv5L4esxFJVAoMyntG4ZqWDPaCoJRVvV849ZabVpfMvy72bAeJM5wtQGpLOCpVWLfHBg4bh6aqlZ8HzMOjFa7RBLIuaqAZJxvL6bY1ffqITcOtbQMcmjCFJArdlJ/jygvclP0OB193lnCNsibxYFnjdKMTSQB8AQ4N3XSOLZt6qEnUCNdIvcEeSRSzap7duG6Vnp0RSdzpakJdJFe1JoT1F8r1R2zbcjR0QQ2uim4KWCGHD7zIIW7LAUkXsa3rqpxY13pk6TwmIlgsIgvYGmyA6634Vtjh0uzdp9uWdgjt/tZh13WqPn23Z7SJmGvPDQH9Zx6s0dQV9bwdLk2bjhFJvORn1LALeJZSOG6za59ItOeiTe6n+8oenH4AxrXYmqqbln3lEElkgzbABw8EKNL0HAYsM5AVj9u23Si49aTZkzfjCzQLGZM1iYIkkpnuxhFO0QhHTPokEpuGDWxsUKqhm3Zdr3JkRgquixIxSOLKFkSzffpEAGLXhtTR0oNdO0XU5jVtC4Zd15ECHOanVrhmRIiUdWOACbjXuyFInOk0XT6SaJxkTabPQxL3wjUA7Kbt1iSyglvuM0qplDobsC64txuilqYdqtQxdNPDoSfaVQaJP/6ZhwCAj7//eer9gqR3iiTVs2CiuHhEIrKA9MBrcbZpVTTVqzTXuWZbeyydhCvbNkDMre28bJMg8dP3z+jzX1UVjpcN3nhkkMTLfkYPFg22bY/HG51DLkjivuWSsWVToa70SOJq4feY1ug57CY1iennoKqqqH/NIYnOHEmgaIIkttx+6iZ3jZ/25N1bT96ML9BYRGrap4/Pko83sVY4xaG2aoI2G1yaFhDMHIEBSVRQosY6QccBYh7QsQn2VrJ9bLZ12uC+NE+jwOoHlgyTZI6zOxWuIemmDrVVQ/cFzLk83bTnylBdCZLYdiqZdlEEW+/2m7bYytlsxiCxlNwKEHFgXm0hwNLkneCSZVsI3T1AEhnnQnqiSYuJqwgS/w+/9hfga199AR986Qb1/mVTGSRdWW/8tNsrt48AAN/ykZfpMYfSgmHHK4detUmt5JunW5VjDZgEEFvKIiZIoptkuSy7dWiRRM35Pz5Y4P7QJ/GykRRxwu+f7VTo6sGyxtmufWLrxi7aTA/OZrxubA2w3xqNS7C7dGv3Z2nPcfuQjz4hJYRo/XI2wTgJZEmgYtXUqCs4bXGu57qVs2eabtqSNYmugwbwYjJNXakgdLGFU5PIqp01tcn82CCx48Y5mXyNI+mjbfx3G+mmA02SpZ8YKXk5l3Ldyg+2VTfV0X0B3aYdIiJsLalbb9krg8SjZYOzoQXA/CDxCpDEgY9fVVwioa4r3Dxc4N7jDdqux6p58hbWizZbF92Oz1sJhY+1V9Gqm4qxTYoBS1OlhGvG58a+tmt7imEg7QYkoXYVtORf/OGX8Ys/zAc2kvDTMEmeBXvfCyf4b3//N+Cdd47oMQeLZhQXua7CNeIE7rpe1doDwNgEXiVcM6B7QsO9TBMk8c3TLd5xm79uLqX48msShyBRgeQClpWwT0paO1jWVsmWDG4MkmgDN2YdFz9ubGdB6ke4/Q41ZRGx4LJck+jPkRVrrKoKR5LMV2pHXBd78mZ8gWb7jRWCxIDKuVMI17TOjc+qba2aCptBbEKjdubWMmp6OQKmT6Kql5rUUbQ6B2g5KImdjkgi/90kABY1w1Lz7EVTY9f5Cqxsn0RgEK5RCge5fSo1Drlx5P3PKtnh0qiwPlzrsqYA8Od/61fgV3zsFdy8ZMl7cZKltpCVu3/uaInPPlgDuBoq1XU3D0nccYpsbiJHI9w0V7jGVXIzgk/l6xbStM1xSSQxEK5ZXkOBI6Ffaankz4K96+4xvR4AFkm8f7obUa3rZkcre9+yaJtLJe/I/Ubs7UOw9tpA57xMc0WGNAGYK/J0FcI1AHD/bKtKnI6shH0N/GgHi3qsSdQgieudpXIywjVuCxgZ576eMjfY0yjsLxzwgFc39WsS5Seznx6tGjza7LBt+cTRdbJnHEkkIeOJummnkNp11C7JxX+sURjUztiNdNXU2DrywxzaaX76dFMikHLl9dXBjcP/JxfkReM82B35YI9UNr6vDRCcf7I+ygrX6K639BLctDq6L2CdkDeVWVMA+KoPvoCv+uALqjFzTIL7tbK28PaxDRKZbOTTbu4aJKhsGUmsxjGdItPqCtDII61B4HedUdxl7skwQwuYIPNwyVDXa7z+qBudkuvo3JleubogfW9xEyTxbNuNqNZ1s+dPDsbf2V6Oq7BuSZHw+9oPvoB/9UvfiVeeO9RNdIYdLhusFoZOqOlT6SGJVyBcAxgkkVUgBsy1Oht0EvZJSWMmCbcef+fG2GT+tuuoFhhWhMYXheGQRCvUyIwBLHgA8EDRtOWGnUPJjlYN7j3WIbLXyZ7pIJGtSZxSOTkkcVFX4w3f9TzVaOkEYAaRooZh6TygLG3FpUmqeqK5vZ0UjWuBoZZu22K741QMAR9JZGWLbTPxDlLypJHy3+w6uv7UIrJSSM3VP8rx3DYFmppEAGp106s0Uxcq8s/8HJ87WuJnXz8FcDXy7tfdFsMaZOT1Wxwtm2LyyCYgbHsVDSLoijZp2AW7tsfZtqMk8msnSSW267h14Xi1wKPNDo82pm7mqhrBa0zYHcLc3QvXzLfjVYN7p1v0Pa5tkPg2J1hjE3cu3ZRNrojVdYU/+R0f003yHCYMD835lyCxqi4fSXdrEu84/YBLdris8ZkHW+w6TnH9WTB3PeWRxGos0+n7MgADTJFEvibRaRWnRBIFCWR7DoctN2Qcsy8eLd0g8cm7t568GV+gsTWJgMn2aamcLhze9b0iaHACMBUCaVVRu05Hrdx18wIpgyQaZ5JFPI9WRspcw/+XVgpyTHfupTn6ATBxLA8l5c9/XVmBIk1tyXKh7yUI+H2qrmuGajEUsmtpPLePVnu6qWNVVY1rkEa4I1SXZW4tV8mtU7AE3BrIs21LORbybHl0U1I9+sbhAo/WOzxa79DU1bXcgFeL2tRoXvM+iU+CvXDjYNyjRLDlupm09gBAK4DKfft4Y9pCaVC6q7a3Dd/vfWQLGMAq2WrKDebaHHVZGfdgFNe5vuf/Ks3VK9DUJG7azgm+NEgir24KhDWJvC/vMvzYnsMj4OCAAAD3/Y6WzdgCZq9u+oQZi0gBgWqTIkjsnOwIG2ysnACsI9VNAVEAtZkOrt2ACKcoAylPFEOXIT9aNng8cLR5JNG2wBg560VFKkubm1eTqKsJDYWK2GBvNaCkVlaZr9sTu44OMjCIi0iQqEESj5c4HcQY9kGiMWkBcLrhUDrAJiA0KqWLyHNDtc4Y1q2zAYFnnN2wkTIwqJsSa/KNgwUenO3waN3iZFVGVt8KWw4iZHvhmvPbCzctMnTrmiKJtw5d9IVU7h4UEO+f6pQk3woTwZr3v8AHiSJOdKToiTnX3JYDmmDvcFnj/tnQy3G/3wDw72XWv1g2RidBfGWuT6L57JA6WvKDouqmpM8btrIo+aG25YaPQDLr+eGywZuPTc3wk5iAeKafBtu7jRFJmIEkVk5hrSLYcwMwViQHsCIJfW9qGanWGVLr5LZgUNUf9SqUFDAPjWyIbGbFbYGxJbNUI9rZdbPUTQXdYxxW+WxXqIimFzc1Nrse650Jiljn4s6JdZqua4bqZLXA6WanDxIdJ3CvbmrMRxL5TVvbg9Mt0tf1d7X1QAB3H480bY9uyvXXunGwwHrX4c3TLW5cQ6opYNkde+Ga89uLNyxKd13ppm6iQotkvalsXP5WmNBpNedfAsvLVtIG/DVH2ydR1q19kGhM2mOtmpr2XeXcnW6ML3OuPomFPWfptLLQrK8muLTBHkuDXgTMQHmtZMerBm88fnLvreu5s16RabMPbu9CTt20Hp2sXhk0AAbd01EyqwE1MP/XNS63yCOFNsi4sU2EbkH+zIMzAKDVNZeutHIr6qYFwSGvlYV5jROuGWoShyBdIzgkGTRW3RSwwb0IcLDOxV0nSLyOoh2AqWt4tNZRiwEr7Q48mQvrZdjBYugTt+HppoJSq9RNx1reHota0d5mZYWUAA4RCetRAFHFKx9PamY+ff8Mx9c0SFwMNYn7PonntxdvWlGY6xokAqa9x09+7pEKNV4tLJJ1XXtAAsDv+uZXUVXAL/+iV+gx0hPz5sHlX7NbR3r0CzDnXJagg2u6l161SVCvSXaIH/JIgkRNr+6RysntVZ66qUKYbTmIifV9b9hspO+6qCtbk6hgfR2tmpEVdZ0TQCl78mZ8gSbQMQOJuzWJfFsEn2etqVEDgNNti7braYhaxF12mlpLr+G2zFuBtg31fhrf59bhEp+4Z0RJbpDZRfNgi3ANiyQ6iODoJBPHcnoXaoI9V9mrJWtCzfEqP0gkF5K7xy6SeD0di5MDI/+srkk83geJoa2GIPF0EK5hbEwcadRNG0v/0dC0ZU6vD3L8zD0pn+urm3bUxn3TCRKvo2gNYIP0Pd30/PbCDbve3VaIkly1/Y5v+CAAqNp0+O0GrudaDpjz/kd+xUdU1NF33T0GAHzLR952WdMazT3nGmqfu+deV1bOVdsYJCrOo+zVjwcxMRWSKPWFdPuwegzaxiCR6a87PF+mVRNX2iDzDJFEZp5z0e3rYtdzZ70i2yqyAa66Ztf11ELijtEEDVKT+HBtHjSNuMumtWITqmbure1Nxkxz5QRSmro9AHj+ZIWzrZkkm110W2CMQaKidYnGSXaFg0y/Nx5JdO8RWpVW2kRsW1QVjwrenFEzcNV2vFrg8VovLe4iBfsWGMZWA1J9tm3poEjuLRXd1FEFPuhqepxshm8M9ReMsxv2FwVAU7zlHHzm/tpTlbxOZoSDdO2F9hY3V63ybbeu5/UGgG//0nfii999W1W35zcuv55r+Vx73wsn+Nu/9+vw3uf58zHXLqSX4x5JBGDppr1TClAy8Z1OFUjipE8iyd5yaaMaJFGer7NdqyrnWgz1ljJHmUPJ3BYwT2JN4jMdJGpqEleNL1xzzIxZmALZdui3pwkaAOCRBInkwNVAidXIAcuxNrseBwsN2mCzPxqUFPBr6WgksanxYGvOhy02zh/T7T/VKRARX7lVFySOvTQ1yPEQ3EsrC1aAw6VjXFfH4mTVYNN2eLTZ4fkbB+UBgz135KCk1/S7XbUdLE0vr9Nth7snCrW5Xa+6/21NYk+3CQLsdRK5b0bdMewvCgxIIrHmydrxYL3DiaIn2lWaEUnQKxfvbWp1XeFv/p6vw92T1ZWIoJzHPvDiDdX7V009qmteZyRxrr1feT7m2smqGbUBNPvGnZM9cyU0SUKLT8OY+KqPhyCRSfCGdNOWLDdYNJUj1Kjfp9bbjt5rZJ6ToJShm7pI4hOIUj95M75AU9UkLowjD4hSafnzJWuwGYIUbU2iIInsjbVcDCIJisaiSzfYU9ZoAhiQS12QeNdZkNlidnG2AIsklh7uEUl020uovpsJgNl6y5VTN9lp1U1nNFJ27bpmqKRW7N7j7Wy66XWuP7pKu3W4wMP1zvRJJJ1kQRIFqGNuZVfum21sDBjRjqNlo0IS66H/oyR+ANDZ3RsH9vOvK91UEkeaViJ7S9sHX7rh1WI/LXawsMIpT6IjeV2sqqrRp9AE2y5KvQ8SjQmSKGVWjC0DuinVJ7Hxg0R2/V+4QoEK31V8pfWupevfAVPyJPuUBM6MT3P0hNNNn7wZX6BpahIPmhqbQX3StMDgFFGBQTjlHEEi61xLL0GrDsUfy5XJVwWXSnEXwF+QWbrp0qWbStaohCQGtYUAuYgsLQK5U6rSjgq4qhpUqUls1YvIb/6q9wKwMuPXzcSRf+PxRvXd3MDwbc9dz+921XbrcIk3T7cmSCQdSWFAsBRtAGM9YOvSVOkeqA3efKyrrVo09ahYDIhwDaNuau+Rk4PrmSRZDtnufZ/EveXsYFnjwXrfp+8iTFgFmv3mSRCBu2p730AP/g1f8R56zARJVJQ32HYWHbX+L5zyHg3g4/p3266jQYDGUVMVMIBJKNx06mQ1dcrXxa5n+vWKTFOTuFrUo0JRR2Y6LN2xVaFtchNrJZlFgdUW8RIOoTSOV1LSvOBSEUgBwPOOAAGLJC6cAEz6JZbELVwkcRTlUQhwnG1a+loDppZ04yjgalRRH57tsN526izyH/22j+D3fcvnX9sWAFLr8XjT6tRNHSTxun63q7ZbR0vcP91h13V0ALZcVFhvO6yHGmCqwX1jN21t6wYfSSTXLSdDC5iWNUziznXsrjOSaHqg8kH63p49cwOT69wn8UkwCQ41wba731xXEbirti9853P4x3/0X/KCnJIdLPwgkQn2mqBP4q7lfK5lU43aFpqab7kvzrYGSWQ1Dxa17a/IstkA4O23bf30y9e4ljplz/RqpKlJXDoBwLbrOBUlpyau7XlHSzJhb4wNONkgMejJpWz3IKwCVQuMIUuuqkk81jt3riM5PqCF8+K3wDBjmbhNHPCzbTugxmSQuPCFa3QIZD+bbnqdgygX4dFkaFn1zmfJnjta4v7pFqcbjbppPaLUAIfuSfJlp6SbAibB9cYMJFGCqLbr0ffcmuy2RPjgFdU8aU3q0sVpehLpRnu7fHMDk6exJvEqTRx5TcJ1jyTGTRMgAucTrtk5KB0TfC1qZ99QAD4ukni25dtJuX2wbZBYPp60gAGeTCrzkzfjCzQNRO0GAJtdR/XSCYVTWEamqCGJs6VtgaGhNrktMGzdnn6chm76Pkf1TYWSji0wuCLlqLopWZPY1BXOdi3arpvVJ7Ht+XOyGqjMZ1s93fS6m6cap/hurHjPs2S3jhbYDK1SaCRxSEBIxpW5v2xzY13iCPCD+0N63apGCjnb3ia0j7//edX7r8rsWs63Bdnbs2fuc7kPEs9nv+jzXgAAfPn77tJj9jWJF2Ny7h6NLTA0wjW2wT2z/i8jwjUckmiFa0QskLGF04Zto0AS33H7yS6Xub4QxBVYq8gGuAEAK+fvFsh2ikDqZBT7MI6FLpDqnYCIQUhtsNcrIPtFGCQqkMTbx6ux4TBri8aKwlh10/z3cwVoNHRTwCgznm6GRYSlzTX1qEjbdjz6crxq8HjTqpz/J8VOZgaJAPBrf+G78OrLNy96Sk+suXWa7H2yCpBEJuHkZnY1/UWBIEhUPDfbnV9bwlKA/qNf/wvwN37kU2MvtutmRysr3ATskcS9xc1dG/f3yPnsD//yD+N7ftmHVXup+16XobA3ncm6PdJNGeGasCaRpJsa+ufA3Op5VqBc6/WuNToQc5DEHeeDAsALClX362jPdJCoRRI3ThaBChKXFsnS0BaFoidNqXV9Ejvne3FjAHjiCkxNoifKowwSAeCv/86vHSW/GTtYuMJBHaqqfN1C4SCAo5sCRoDjbED3WERk5Sjgdj3f8uTm4RIPznazhGuuu7m1Htog8Y9/+xdd9HSeaHOL3tnWMcKAWO861BUXfLmKo5r+ogA81VV28100leMg6Gr3fvkXvYJf/kWvUO99K+w46B35tD3fe7sYc/eYpy1ReNU2V/jnr/ybX407x6u9mvY5TPZ4UTed0wJj13FtKdze2Rqf1y0DO9t2Kl0Ml/HS1BXl9zZ1ha943118w4deoo5z3WwfJELfJ3Gz6yjeulBS17vOUFRJB2HV1FjUlTr7vGqqgSKm7wno1u2xwjWLusLptlW19xA7XDaqzfBgUWO9s0E6s4h4wjVdj7riaYwHC9OT7mzb0YiI0EYBnXDNzaG1weNNi5duPl2P5NueO0RVAX2/r/U4r7nOy8tktvtgUeN0I1Tmhr7/F42ppdOskYDv4LK1sst6SiVnkcTrbpLwG9fyfQCwt4i9/TkraMH0F93bxdvH3nX7rZ7CE2+huinFSpMaeIcpxpYFiSq2hj3nCtesdx1eZEs36mpMYpr+ivwe9QPf9ZX0e6+bPdOr0ShcQ1xsD0lk6aZLP0hkkZSqqnC8amYhidu2V0HvVVWNgjeaNhGAoZadbuYhiVo7WDZY7wwldtf2lLSyK1zTKcV1Dpc11ltdYbPLkdcI10gm6/VHm6dO/nzZ1JA+6S/cePr6m12luXUzrErajQOTgNDQpgFDAdq1tpaXpZvKsyJNraljeRlhqUl8Oramo5kiZHt7tkxaGDV19dTc+3t79mxEEtdDCwxG3TTok7jtuBZIizqCJCpYcOtdh7VCB2I1A6h4GuzZ+JYJkxuMUwE1dTPdkF3X1CRudh1NURU7OViMjgXdJ3EIZMfvRR5uOaAGnVKk4nDV4FSpADrXDt3ehS3XR2ds7zGI+WjEUA6XDR5vdqo6QVfcSCNcIzTCzz1cP9WNlL/kPXfe6ik80fbeF2zdHRsk3jxc4vGmxaM1T5sGhg3Y7blKJ47M/cvSYQFflGpHilI9KTYVIXt6n++9zbd33jHP9v7+2NuTbFJucP/MrHdz1E13bcf1V3R0KkT0huo64PiSGv/OlDxZJPFZYUY9G98yYbvO1OkwiI8giYImMgGf2yeRpaiKHa+a8QFgKUoirqOhjXrjlHV7Bm1r1SjdHHMpAhtSItlDEpUKrEfLBm+e6qT8PXVTReAsSOK27Z9KJ+HzXjbtCT70tltv8UyebHPlyFlUVu6t1x7pEhCGbqpfS6TBvaYtS1jrAXAZ6CfBRMjn3ogkPl1Mgb1djL0y9FLbK2vu7Um2m8P6L/R6hs0me8uobtr2tLqpME82ijKFUbhmq1OUX7lB4o7zQZ8Ge7oKoJS263q61kaonNKUmqpJdKR2NXRTwHey2OBS0DYpGmZl5CWTr2kTAQx0022rboExx0IkkVOktfWWnaJPpTleg5+/d+odu3w8S0nueg3d1Gnk+xQ6kX/ht30cn3u4ufREwrNkLCXt1lDH+NkHa1UCYjEouWnXhOeH4FWzgbq1HjtFCcCTYG4LjIoUDtrbs2fvunuMX/jeO/i3vunVt3oqe9vbbDtcmvZhkmDnVEqDPoldhxvLcmhi+iT6gmcqv3zXqXpTrxbN6N9t2w7LxbOxlj/TQWLbcRkLwN5Y0v9FgyQKArlSBABz+suJkp6ohjJFvIARvPH7K+qCxB2J7J3HDh0kcUdet6qqDI+8NYGltibxnhJJPHDppkrhGrETBQLzpNjzNw7w/BMuA31d7C/9G181Ji8Yk3vrcw/XNEUVMEHe2mEXsPfy80NTasm4MubWJI59EtkiyGtuso7fe7TFwaLe9//cW9SWTY2/+K9/1Vs9jb3t7VxWVRVOVs1YKsX4aXVdoaqs+AzLwhItDcDtr8szzNZb0wJDJ0y4r0l8pmzbahqlm/c9HPrgcRkLC2tr6aaiimc+hxsnfPAxuGEFbxZ+f0WWWnawbIxy4q4dM+aXZUKVO9t2JotDB8DmwTbcc/78HyybkSKmQhIHcZ2u5/skukHiy7f2wdTe0vYl776javkg95YWSRThJitcw93Ld4cgca0IEl2Vut1Tpm4qa/KD9e6pZAnsbW9725trUgcP8IySRV05JQccw89tnbRV1LJXVYWDRY3Hm3Yo8eE1J9b7msTLsaqqDqqq+jNVVf10VVUPqqr6R1VV/ZLhb++tqqqvquqh8+8PB2P/bFVV96uq+lRVVb8n+Oxvqqrqx6qqelxV1Q9WVfWe0nz+ySfv4/7Z1rSlUGQRACdIpIRrfFhbQzd9/sQGC+zNaBs3D/Uvmlo6p+E8C7gdLU2biNNNi8NLDhIFSVzv2kF+mOeRS584zfk/Wjbj+ThSnMeutwsWm4C47ahWvk2B9uxtbyUTUaSu11GZDxYN1rvWCDApEHihm6qDxJFu+nSpm7rJs6ex3nhve9vb3lxzS6XYNU+EIQHQ5USLukbb9ej7Xl3LfrRqRjExFgQwbdhM8Lu9AvbcdbGr4rYtAPwsgK8D8DMAfimA/7yqqi903nO77/tYd/U/CuBVAO8B8DYAP1hV1f/c9/3fqKrqBQB/CcBvBfDXAHwvgB8A8PHcZHZdj7NNq+Iji1LmI0WQONJNdx02uxYrRXb81UHsA+Cz+EczGzcv6gpbR/BGQzf91LbD6aalA6m5JpTPs21HFzYDFkncKK61OZ49d2ywLdf7bCc9grhj3XEazr/83D5I3NvFmYtSa5HEs22nVi6+OyS3pF8oY66U+dgn8SmpX1029dga52lWLt7b3va2N8BXtqZ75XqJQq4FhgSS29a0Rasr3nd97miJzzw4A8Dvi6G66dPCdinZlexafd8/6vv+j/Z9/1N933d93/+XAH4SwJcSw38TgO/t+/6Nvu//CYDvB/Cbh7/9KgA/2vf9X+z7/gwmoPxYVVUfKn3o4zFI1CGJjxR000Vdoa6GPonKFhif9/JNAMAthZS8DRJ1tXSCtkmfRDYoPVzWON22ON1efpBo6aYtNmQLDMAqUq13vIoV4KOHbOsAWTTOtsZBZs+jW6ekqRvb295K5ooiseuBvPds26pVgYVuyt77QKIFxlOUpRVHaU833dve9va0m6x3R8tG56e5ojBkCwzAsE+2na5G8LmjJT5zfw1A5ydvWlNOtNntaxIv1aqqehnA5wH4Uefln66q6ueqqvpPB4QQVVXdAfB2AD/svO+HAXxk+P0j7t/6vn8E4Medv7vH/M6qqn6oqqofAoDTbYv1tqUDN3mfiMIw46qqwtGyweNNq1Y3/fy3mSDxO77sXfSYsSZRiSSuBrrpiCSSTuHR0CfxdNuOx74ss3TTDuttN/ZjK44bEBEt3fS5I9e51t0jZ5uhZ4/Cuf7AiycAgJdu7msS93Zx9tzRcsyuapIkB4saZ7sWbadTBb51uMB3fd378ed+y1fQY7zakpFu+vRkafc98Pa2t709KyZB4k0FwGEYX6JUyjHFpP5w2/bqlhQekqgoOet7g3RulaDPk2xXLqVYVdUSwP8dwP+17/sfq6rqBoBfCOAfAXgewH88/P1bAAjn8k3nI94EcHP4/QaAzwaHcP8+Wt/3fxrAnwaAg7e/2p9uW12j9BBJJG+Qm4dL3DvdoOuBVcMHUi/fOsQP/r6vx7vvHpffPNiIJD7SNW4+EJGKsSaRRRIbPF7vcLblz+NcO3SQxMfbHV66ySFuJwcLPNrsVKgx4AeJbAAs98jpVuimvKP7A9/1lfhnn3rwzGSn9nY11tQVXr55gJ9/80xVN3y4bIY1oadrlAGTGPuDv+QLVHP061GEbvr0PAfvfeEE//gTb+6DxL3tbW9Pvc0KEh0k0ZQ4MHTTAUlsO+w6Hf3zuaOlZdwphGsAUz62r0m8JKuqqgbwfwOwAfA7AKDv+4cAfmh4y6erqvodAD5ZVdVNAA+H128BOHN+fzD8/nD4v2vu35N2utE10pQbQoRr2HG3jhb43EOD7GkzD+974UT1frcnF8DX0h0uTON4Szfljne0bPBoULG6dHVTpwXGY0UN5MlqgUfrHdoeuO0EfiW75SKJ5CIigbK0SWGDbQB44cYBXvjgHkXc28WbJDneo0g4HS6bAUnU1STOsWVjle127dOHJL73eXPe931C97a3vT3tdutIgkTe31q5iUIy4JM9QpA9TYmCCwLQSKIXJO5rEi/cKlN49WcAvAzg2/u+3ybeOuBZqPu+fwPAJwF8zPn7x2Bpqj/q/q2qqhMAH4BPY43aqdQkKkVJHq5NUMSigjcPl3jt4dr7jMsycQbfVLbAOBgomVq6qYseXr5wjVWKPdvw9NbjlaH7aqjFQEg31QWJj9d6JHFve7ssEznyD750o/BOaweLYU1QqpvOMdMUeahH6Z6uFhgA8OpQX86KOOxtb3vb25Nqb3/uCIBVqmZsuagskki2wBC2ybYdkD3FPuX6d666fM7EfxSNkT2SePH2fwLwBQC+ue/7sRt0VVVfAeAegH8O4A6A/xDA3+n7Xiim/xmA7xlqCV8G8NsA/K+Gv/1lAN9XVdW3A/ivAPw7AP6nvu9/rDQZoZvqkUQTgLEBx63DBT7xxqlqzFw7cpDEpq7ozMrhIHe/2XWqcR4l89KFaxwkccv3ZRS66bKpVXQvd+F44Qa3iMj5F7RZI96xt71dlsn9qAkSDd20RdteQZDYWHXTEUl8iuimv/Sjb8NL3/nxUYxsb3vb296eVnvnHRMk3nucwoGm5jaqZ1G6EUlsDZK4nAkCvHiDY3BJOZEgifs+iRdoQ+/C7wLwxQA+5fRD/A0A3g/gb8BQRH8EwBrAr3OG/xEYMZqfBvB3AXxf3/d/A///9u48SLKrOtD4d2rprVq9S4LWOpKQQGhAAiSBxmYZCTBbMCAQCCFAWGaRwQ4CDAQDAsxiBk/gGcIsBssaEGI1iw3YCkMYEZ4AwshmMfLIgEBiES20dXepu7q7ljN/vKVSRS+Z1ZX5KjO/X0RFV2W+l3kqO+vdPO+cdy+QmXcAFwLvAO4BzgWe205MRSWx/XbTKsHbVVUSO7gm8a5dRSVxZZffVKtblonoaJKK8dFycpfZjt74W1r+uLq9TmLrmpOdLLmxZsUou/fOsne6syUwWg8i7Sfb921JbmdhV6nb/uL5D+f8Bx5VT6DSjpXjI+yZmWPPzGzXrzceHx2pJ6yZn910cP52xkZHeORJm+uZXyVpUFXjzM6p9pPEaq1uqJbA6Gx206L62P6YsaFl2bEj25wssCpU7Jud7XiinH7Wk0piZt4KHOx/8BMH2Xcv8OLya3/3fxU45JIXCxWzm7afOFTJUzW7abvtUEesGqvX/up2JXF8dKRYc2wuO5/JsKqsdrCWV2uFreuVxLHid9u5Z5q9M3Ntt5tWlcSIWHS7absWtvs6UYWWg/NO2cJ5p2zpaJ9VY6PsK0/ItHtN7mJV6wjC/OymwzIAS9IgOaasJE7u3d+y5/u3YmyEyT0zZCazc+22m87Pbtpp++fxm+bn++h08sq63XRscE5kHszQXiRRtJvOdry8weSeztYgbJ0ApRdT5q5ZMcrOPTMdr4m2d7pacL6DJLHlDEy3J66JCNa1rG3TdrvpijH2TM8xGjMd/W6drE9ZqRLlHeXEQd2uwEjdUp0s2jE13fYxcrHGRkaYnUsyc76SaBVekvrO+tXjXHzOcTztIVvb3mfl2Ah3z87VSyG1c/yvK4mzyUyHSeLpWxfOd9lejFC0m+6Z7v7J0+ViaJPEYjKT9iuJVeXwznISmnVtztzUOg1wL3qYN02sYOeezhKiVeNFqX/3vtmOWjLv027ag4Ro3aoxbt9ZTHLb9uymK6sZR2c7qpKOjY7wR088jd/qoAJTvQbbrSSqz1UD4I6p6fuc6OqG6tg6XV5bAu23eEuSlpc/eeZDOtp+vLwmcf5yg0Mf/6uW1Om5IrnsdAmMTrVOXNOLtcGXi6FMEkciOm6vrBKAbTv2sGbFaAcT1/S2krhl7UpuuWt3R8lete3knumOYmyttvVi5r51q8fZViWJK9p7vjUt23V6TejvP+6Ujrav3iPV+jud/B9Iy0n1Xt4xNd32NRuLdZ9rSwZwdlNJ0oFV6yTOX25w6ON/NbvpzGyyb6azJTAArr7sbNZ0UNyoVzjYM0Pm8HSKDWWSGFFMLrJvtv32ymrSgV37Zrn/+vYWcgfYumF+204WF12sqrrXSdWsaifrtAIZETzqpM2sWz3GqUe3P3PiYq1bNc5P7tgFdNBuunJ+u3aXO1ms6szS9nqdSqsh6k/VcWD77umeTFwDMD2TAzm7qSTpwMbLdRI7udxgfnbT4uRip5dFPO60ozravh4Tpzq75KzfDWWSOBLBjg6rPavGR1m7cox79850VKo+vmUB65O2dD+R2nJEkcx20i/dWjXo9Fq8T7zkkR1tfzjWrR6rZw5tf3bTlkpilyu51eymO+t1KofjIKLBUx0Tpqa7P7vp/MzFs/UENl6TKEnDoaokznRwuUHrjPfTs3NdL8JMlN1yd5erFXT7Wv3lYjh+ywVGI7ijvLawk8RhczmbZyfX6LROO79+TXev7YH5SmInJ+Kr12DHVGftpr3W2rrbbj/45pYZWLudJI6NjrBidGT+msQhOYho8LRW4Fd1+e+m6grYvW+Wmbk5RsI1RiVpWFTrJE53cLlB9Rlwaro4udjt7pPqkqq77i06xbo9o/9yMZSfYkdHop4ApZMP8pvLltMNHSSJvS5JV2fgT+tg4eYqxp1T08v6OrrW5LzdayBbK7m9SIBXjY/Ui8g6cY361REtJ2S6fQyrBtvd+2aL9a6ctEaShkZVSdw3M1f/fCjVuDG1b7ZY3L7LS1JUJzOrAtOwJIlD2W46OhL8akeRJHbSErhpoqjSdToz0juecQabJ7o7+UPlv511DL/asYfX/k77S0dWZfO9HS6B0WutrbAnH9le6+7mlgWsjzqi/WtJF2vV+Ci/ntxbfy/1o/Wr5//Wut1WM39GeIbp2azXv5IkDb6qklgniaOH/uxUJWl7ZmaZmZ3reiVxYsV9K4nD8vluKJPEsdGo34wbJ9pP+KqEo9Mk8ZJzT+ho+8Nx7MY1vOMZ/7mjfVqrh92e3OVwHNdSFWy33TRi/gPn2f9p05LHtFBrXMs54ZYOppeVxOq64arddNy/G0kaGuOjI8xl0ToK7VUSV61orSRmR+skLsbISLBmxWi9DJ5J4gAbbTlT3UmF74LTj+Znd+/mqQ9tf5HQftBaKejFWo6L9YTT7wfASVsmOtrvokccy0/v3NWTZTpaWxCWc+uudDCtkwB0P0mcH+yHaZFiSdJ8UrirnJiwk3bTPdNFu2kvlk2aWDnWUklcvp+Vl9LQJ4lbOlgD7PGnH83jTz+6GyE16j4zgC7jN/7qFaP8w6se3XEl993PemiXIvpNrbFZSVS/uu/Jjl61m3a2dq0kqf9VSeHkniJJbGudxNERxkaCqelZZuayXhKjm9auHOPnd+8G2u9m63dDmSSORTBbft96zdqw2jTRuxlAD9epHUzI04SNa4rXcsXoiDM0qm+1tmn3qpK4e98se6fnrCRK0hBZUSZ4VSWx3c+hq8ZHmdo3x/TMXNfbTaGY9XumnIF1WMap5Z0RdMnoaO8+APWDDS1LcyznJTD6wcYy4V7uybbUrl7ObrpnZtZKoiQNkerSnMk9xczw7UxcA2WSWHag9OKz60RL192wVBKHcjRuba9U8Qc6Ub7hvY7u8GwqJ0Iy2dagmOjyYFi3m+6bsZIoSUOmGgN2TLV/TWKx3wiTe6bZNzvH2h58rm+d12JYxqmh/CQ7NhI882HHcPE5xzUdyrIxUb75rYAdnqrddN/sXMORSIfnggcV118/+tQju/o8K0ZHGB2Jot3USqIkDZWqm2T7VDEpTNtJ4vgod+8q9lnTg4kJ167qj/k7ltLQltTec9GZTYewrGT5by9mAB1kVZI4tW/2EFtKy9v7L3kYc5ldbzeNCNaMjxbtptNzbJoYjsFXkjR/XfqO3WW7aQdJYjXbaLc7XgCO2bAaKD4nD0tBxYxAANxRLgD/8BM2NhxJf6sqsse3rOko9aNetkyvXjHKVF1JHI42HklSa7tpdU1i+xPX/HL7FNCbSuIpR60Fio671sndBtlwpMI6pOrNf/r91zUcSX87+8SNXPCgo/jIi89pOhSpb0ysHGPXvhn2TM8NzRlaSdJ8kri9wyRx9YpR7uxhJbH6nDxMM9dbSRQAn3rJI5ncMzNUb/5u2Lx2JX/5wrObDkPqK+tWjbFzzwx7Z+accVqShsia8SIVqSuJHbSb1o/Rg4lrqiTx1Y8/tevPtVyYJAookpvNa1c2HYakIbRu9Tg7pqaLdlMriZI0NOpKYofXJLYu3zaxsvsnF9esGOOWdz2l68+znDgaS5IatX71ODunptk7PecyPJI0RKokcefUNKMjwWibHW3VRIHg0nbdYpIoSWrU+tXj3LN7H/tm51g1JFOLS5Lm20b3zc61fT0iwKaJ+SSxF5XEYeRoLElq1PrV43WrkZVESRoeoyNRt5h2Mqu2lcTuM0mUJDVq/er5a0u8JlGShku1VmInSeKmta1JoicXu8HRWJLUqNYk0dlNJWm4rCmP+x21m7ZUEsc72E/t81WVJDXKSqIkDa9Vi6gkVu2mR69zZv5usYlXktSoo1oG+fuvX9VgJJKkXts8sYKf3LGro5OEx25czSv/6ylc9IjjuhjZcDNJlCQ16qQta+vvT9gy0WAkkqReu9/61cA93K+Dk4QjI8Grn3Ba94KS7aaSpGZtbJnK/P7rrCRK0jDZWiaHx25c3XAkamWSKElaNkbaXEhZkjQYqiUs1q4cP8SW6iXbTSVJjfvcFeexZ3q26TAkSQ3pZOIadZ9JoiSpcQ87fmPTIUiSGnDpo07gh7dPctl5JzYdilqYJEqSJElqxKaJFbzvkoc1HYYWsK4rSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmomiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqJomSJEmSpJpJoiRJkiSpZpIoSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmqRmU3H0HMRMQn8xyJ2XQ/sWOb7GWOz+/VDjIvdzxib3a8fYlzsfv0Q42L32wLc2aPnWux+/fA6Lna/fohxsfsZY7P79UOMi92vH2Jc7H7GeF+nZeYR+70nM4fuC7hhkft9aLnvZ4z+bsP8u/VDjP5u/RnjYfxuy3686YfX0d/NGJfbfv0Qo7+bMbaxzwHHKNtNO/PFPtjPGJvdrx9iXOx+xtjsfv0Q42L364cYD2e/Xj6Xr39zz9Xr/Yyx2f36IcbF7tcPMS52P2Ns07C2m96QmY9oOg5J0mBzvJEkLVcHG6OGtZL4oaYDkCQNBccbSdJydcAxaigriZIkSZKk/RvWSmJXRMSmiPh8ROyKiFsj4nnl7Y+LiH+LiO0RcVe5zTFNxztoIuIVEXFDROyNiP+z4L7zI+KmiNgdEV+LiBMaCnNgHej1j4hLIuLelq/dEZER8fAGwx0oEbEyIq4qjzuTEfHdiHjSfra7snztL2giTqlbDjT+lve9MiJ+GhE7y2PUbzUZ6yA6yPH/xPKY0zoGvKnBUAfSwcaAiHhkRHwlIu6OiDsi4jMRcf+mYx4khxqDI+LyiPhx+f6/LiK2Nhlvu0wSl9b7gH3A0cAlwAci4sHAvwNPzMwNwFbgR8AHmgpygN0GvB34q9YbI2IL8DngTcAm4AbgUz2PbvDt9/XPzGszc231BVwB/AT41wZiHFRjwM+Bx1BMgf1G4NMRcWK1QUScDDwb+FUTAUpdtt/xNyLOBd4FPIvib+Mq4PMRMdpYpINpv8f/FhtaxoG39TCuYXGwMWAjRUvhicAJwCRwdSNRDq4Dvv4R8VjgncDTKT6D/hT4RDNhdsZ20yUSERPAPcAZmfnD8rZrgF9m5utbtlsJvAV4emae3kSsgy4i3g4cm5kvKn9+CfCizDyv/HmCYt2yszLzpsYCHVALX//93P814PrMfGtPAxsyEfF94K2Z+dny5+uA9wLvBy7PzK82GZ+0VA42/gLfAV6dmee0bHsvsDUzPWGyxPYz/p5I8aF4PDNnGgxt6CwcA1pufxjw9TzQ2nhaEtXrDzwKWJ2Zv1/evpXi2HRKZt7cYIiHZCVx6ZwKzFQDVOl7wIMBIuL4iNgOTAGvAd7d8wiH14Mp/i8AyMxdwM3l7eqhss330cBHm45lkEXE0RTHpBvLn58N7M3Mv2s0MKk7Djb+/j0wGhHnltXDFwPfBbb1PMrhdmtE/CIiri67e9RFC8eABR59gNu1RPbz+kfr3eW/Z/Q0qEUYazqAAbIW2Lngth3AEQCZ+TNgQ0RsAn4PsILVO2uBOxbcVv/fqKdeAPxTZv606UAGVUSMA9cCH8nMmyLiCIpWl8c3G5nUNQcbfyeBzwL/l+LD2XbgSWkbVa/cCZxNkZhvpmgLvhZ4YoMxDbSFY8CC+x4CXEnR+qgu2M8YfB3wyYj4IMXlZlcCCaxpMMy2WElcOvcC6xbcto5igKpl5t3AR4C/iQiT9N5o6/9GPfECive/uiAiRoBrKK7NekV581uAazLzlobCkrrtYMf43wUuo6gqrgCeD3ypXyaO6HeZeW9m3pCZM5l5O8Vx6QnlySstsQOMAdV9p1BU1v8wM/+pgfAG3v5e//LSjjdTnKy6pfyaBH7RSJAdMElcOj8ExiLiAS23PZT9l/THgKP4zUFN3XEjxf8FUF+TcjK2W/RURPwXiomb/rrpWAZRRATFpBxHAxdm5nR51/nAH0TEtojYBhxHcUH96xoKVVpqBxt/zwS+lJk/zMy5zLyOYvKm83ofpigqKODnzyV3kDGgutTjq8DbMvOahkIcaAd7/TPzfZn5gMw8miJZHAN+0Eyk7fOPdImU17l9DvjjiJgoPxA/HbgmIp4ZEadFxEhEHAm8B/hOWVXUEomIsYhYBYxSXIOyqqzWfh44IyIuLO+/Evi+k9YsrYO8/pUXAp/NTCu43fEB4EHA0zJzquX28ymufTiz/LoNeClF25fU9w42/gLfBp4SESdF4fEU1wot+w9o/eRAx//yWtDq889mismzrs/MHc1GPJD2OwZEseTaPwJ/npkfbCq4IXCg139VRJxRHn+Op5hp9n9n5j1NBdouk8SldQWwGvg1xfS2L8/MG4FjgOsoysv/BswBz2gqyAH2RoqJgV5P0VI0BbwxM+8ALgTeQTED3rnAc5sKcoDt9/WH4iAJXIStpl1RniV+KUUSuC3m1yO7JDPvysxt1RcwC9yTmfc2GbO0xA40/n4U+CRwPcV1i+8FXupJwiV3oOP/Scx//vkBsBe4uKEYB9bBxgDgcor/h7e03O7xfwkd4vVfBXycoi3+n4FvUizJtuy5BIYkSZIkqWYlUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1UwSJUmSJEk1k0RJkiRJUs0kUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1QYqSYyIWyLi1xEx0XLb5RFxfYNhSZIGTDneTEXEZERsj4hvRMTLImKgxlVJ0nAaxMFsFPjDpoOQJA28p2XmEcAJwLuA1wFXNRuSJEmHbxCTxD8FXhMRGxbeERHnRcS3I2JH+e955e3PiYgbFmz7qoj4296ELEnqV5m5IzP/FngO8MKIOCMiVkbE/4yIn0XE7RHxwYhYXe0TEU+PiO9GxM6IuDkifqe530CSpPsaxCTxBuB64DWtN0bEJuDLwHuBzcB7gC9HxGbgi8BpEfGAll2eB3y8FwFLkvpfZv4z8Avgtykqi6cCZwKnAMcAVwJExDnAR4E/AjYAjwZu6XW8kiQdyCAmiVAMxK+MiCNbbnsK8KPMvCYzZzLzE8BNFO1Cu4G/AS4GKJPFBwJWEiVJnbgN2AS8BHhVZt6dmZPAO4Hnltv8LvBXmfmVzJzLzF9m5k0NxStJ0m8YyCQxM38AfAl4fcvNW4FbF2x6K8XZXSiqhheX3z8P+EKZPEqS1K5jgDFgDfAv5aQ224HrgOrE5XHAzc2EJ0nSoQ1kklh6M/B7zCeBt1FMLtDqeOCX5fdfAY6MiDMpkkVbTSVJbYuIsynGnC8AU8CDM3ND+bU+M9eWm/4cOLmhMCVJOqSBTRIz88fAp4A/KG/6O+DUiHheRIxFxHOA0ykqjmTmNPAZiolvNlEkjZIkHVRErIuIpwKfBD6Wmd8DPgz8WUQcVW5zTEQ8sdzlKuCyiDg/IkbK+x7YTPSSJP2mgU0SS38MTABk5l3AU4FXA3cBrwWempl3tmz/ceAC4DOZOdPjWCVJ/eWLETFJURn87xQTol1W3vc64MfAtyJiJ/BV4DSoJ7i5DPgzYAfwdX6z00WSpMZEZjYdgyRJkiRpmRj0SqIkSZIkqQMmiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqfZ0kRsTKiLgqIm6NiMmI+G5EPKnl/vMj4qaI2B0RX4uIE1ruuygivlHed/1BnuMFEZERcXmXfx1JkiRJalxfJ4nAGMX6VI8B1gNvBD4dESdGxBbgc8CbgE3ADcCnWva9G/hfwLsO9OARsRF4A3BjN4KXJEmSpOVm4NZJjIjvA28FNgMvyszzytsngDuBszLzppbtLween5mP3c9jfRD4PnAR8LHM/Mvu/waSJEmS1Jx+ryTeR0QcDZxKUfl7MPC96r7M3AXcXN7ezmOdAzwC+ODSRypJkiRJy9PAJIkRMQ5cC3ykrBSuBXYs2GwHcEQbjzUKvB94RWbOLXWskiRJkrRcDUSSGBEjwDXAPuAV5c33AusWbLoOmGzjIa8Avp+Z31qyICVJkiSpD4w1HcDhiogArgKOBp6cmdPlXTcCL2zZbgI4mfYmoTkfeExEPLn8eRNwVkScmZmvOMh+kiRJktTX+j5JBD4APAi4IDOnWm7/PPCnEXEh8GXgSorq4E1Qt5SOU7wGIxGxCpgtk8wXAataHutzwF9TJKOSJEmSNLD6ut20XPfwpcCZwLaIuLf8uiQz7wAuBN4B3AOcCzy3ZfdLgSmKJPO3y+8/DJCZ2zNzW/VF0ca6MzMXXuMoSZIkSQNl4JbAkCRJkiQtXl9XEiVJkiRJS8skUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCQJiIjjy7V2R5uORZKkJpkkSpKGVkTcEhEXAGTmzzJzbWbO9vD5HxsRv+jV80mS1A6TREmSJElSzSRRkjSUIuIa4Hjgi2Wb6WsjIiNirLz/+oh4e0R8o7z/ixGxOSKujYidEfHtiDix5fEeGBFfiYi7I+I/IuKilvueHBH/HhGTEfHLiHhNREwAfw9sLR//3ojYGhHnRMQ3I2J7RPwqIv48Ila0PFZGxBUR8aPy8d4WESeXce6MiE9X21eVyoh4Q0TcWVZOL+nRSyxJ6lMmiZKkoZSZlwI/A56WmWuBT+9ns+cClwLHACcD3wSuBjYB/w94M0CZ8H0F+DhwVLnf+yPi9PJxrgJemplHAGcA/5iZu4AnAbeVba5rM/M2YBZ4FbAFeBRwPnDFgrieCDwceCTwWuBDwPOB48rHv7hl2/uVj3UM8ELgQxFxWkcvliRpqJgkSpJ0YFdn5s2ZuYOi6ndzZn41M2eAzwBnlds9FbglM6/OzJnM/A7wWeDZ5f3TwOkRsS4z78nMfz3QE2bmv2Tmt8rHuQX4C+AxCzZ7d2buzMwbgR8A/5CZP2mJ86wF278pM/dm5teBLwMXIUnSAZgkSpJ0YLe3fD+1n5/Xlt+fAJxbtohuj4jtwCUUVTyAC4EnA7dGxNcj4lEHesKIODUivhQR2yJiJ/BOikrgYuICuKesWlZuBbYe6PklSTJJlCQNs1yix/k58PXM3NDytTYzXw6Qmd/OzKdTtKJ+gfnW1v09/weAm4AHZOY64A1AHEZsG8t22MrxwG2H8XiSpAFnkihJGma3AyctweN8CTg1Ii6NiPHy6+yIeFBErIiISyJifWZOAzuBuZbn3xwR61se64hym3sj4oHAy5cgvreWcfw2RWvsZ5bgMSVJA8okUZI0zP4EeGPZHvqsxT5IZk4CT6CYsOY2YBvwP4CV5SaXAreU7aMvo2hFJTNvAj4B/KRsU90KvAZ4HjAJfBj41GLjKm0D7injuhZ4Wfm8kiTtV2QuVaeNJElaTiLiscDHMvPYhkORJPURK4mSJEmSpJpJoiRJkiSpZrupJEmSJKlmJVGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1f4/WCe+dKm1/scAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Maintenant, vous devez préparer les données pour l'entraînement en effectuant le filtrage et la mise à l'échelle de vos données.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mettez les données à l'échelle pour qu'elles soient dans la plage (0, 1).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      load
                      2014-11-01 00:00:000.101611
                      2014-11-01 01:00:000.065801
                      2014-11-01 02:00:000.046106
                      2014-11-01 03:00:000.042525
                      2014-11-01 04:00:000.059087
                      \n", + "
                      " + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.101611\n", + "2014-11-01 01:00:00 0.065801\n", + "2014-11-01 02:00:00 0.046106\n", + "2014-11-01 03:00:00 0.042525\n", + "2014-11-01 04:00:00 0.059087" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      load
                      2014-12-30 00:00:000.329454
                      2014-12-30 01:00:000.290063
                      2014-12-30 02:00:000.273948
                      2014-12-30 03:00:000.268129
                      2014-12-30 04:00:000.302596
                      \n", + "
                      " + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.329454\n", + "2014-12-30 01:00:00 0.290063\n", + "2014-12-30 02:00:00 0.273948\n", + "2014-12-30 03:00:00 0.268129\n", + "2014-12-30 04:00:00 0.302596" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [ + "### Création de données avec des pas de temps\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "Pour notre SVR, nous transformons les données d'entrée pour qu'elles soient de la forme `[batch, timesteps]`. Ainsi, nous remodelons les `train_data` et `test_data` existants de manière à ajouter une nouvelle dimension qui correspond aux timesteps. Pour notre exemple, nous prenons `timesteps = 5`. Ainsi, les entrées du modèle sont les données des 4 premiers timesteps, et la sortie sera les données du 5ème timestep.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=5" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1412, 5)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0]\n", + "train_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(44, 5)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0]\n", + "test_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 4) (1412, 1)\n", + "(44, 4) (44, 1)\n" + ] + } + ], + "source": [ + "x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]]\n", + "x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]]\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5,\n", + " kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Fit model on training data\n", + "\n", + "model.fit(x_train, y_train[:,0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "### Faire une prédiction de modèle\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 1) (44, 1)\n" + ] + } + ], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = model.predict(x_train).reshape(-1,1)\n", + "y_test_pred = model.predict(x_test).reshape(-1,1)\n", + "\n", + "print(y_train_pred.shape, y_test_pred.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)\n", + "\n", + "print(len(y_train_pred), len(y_test_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)\n", + "\n", + "print(len(y_train), len(y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:]\n", + "test_timestamps = energy[test_start_dt:].index[timesteps-1:]\n", + "\n", + "print(len(train_timestamps), len(test_timestamps))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABasAAAGDCAYAAAAlN0y0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9eZxtV13m/aw9n7GmOyY3E4QhITIHERkUacjbIrZt+wrd7dCKgratre3Urd2grSD42ohoMwiKAxAwKCAaDGMSEkJIIGRO7s2dx5rrjHtYe6/3j7X2ObvqVtU5dc+vbt3K/X0/n3xy65xTq/Y5Z++113rWs56fUEqBYRiGYRiGYRiGYRiGYRiGYbYSa6sPgGEYhmEYhmEYhmEYhmEYhmFYrGYYhmEYhmEYhmEYhmEYhmG2HBarGYZhGIZhGIZhGIZhGIZhmC2HxWqGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhthwWqxmGYRiGYZgLGiHEzUKIn6B+7agIIZQQ4urz8bc2m+J7EUK8TwjxP8+xnZYQ4im0R8cwDMMwDMNcLAil1FYfA8MwDMMwDPMkQwjRKvxYBhABSM3Pb1JKfeT8HxUtQggF4GlKqQMDXnclgEMAXKWUPB/HtlGGfS8rfucrAP5WKfXBTTswhmEYhmEY5qLC2eoDYBiGYRiGYZ58KKWq+b+FEIcBvFEp9YWVrxNCOBeqgLtd4c+UYRiGYRiG2a5wDAjDMAzDMAxz3hBCfI8Q4rgQ4jeEEKcB/KUQYkII8VkhxIwQYsH8e1/hd74ihHij+fdPCiG+KoT4/8xrDwkh/p9zfO1VQojbhBBNIcQXhBB/JoT423WO/deEEKeEECeFED+14rnvF0J8SwjREEIcE0K8tfD0beb/iyYm47uEEE8VQnxJCDEnhJgVQnxECDG+zt9WQohfFEIcNK//QyGEVXifdwgh3iWEmAPwViGEb973USHEGRPtURryvXxYCPF7hZ9/UAhxn3lvTwghbhBC/D6AlwH4U/Oe/rRwnHmcyJgQ4q/N93pECPHbK455ze+GYRiGYRiGuThhsZphGIZhGIY53+wBMAngCgA/Cz0m/Uvz8+UAugD+dJ3f/04AjwHYAeCdAD4khBDn8NqPArgbwBSAtwL4sbX+oBDiBgC/CuBfAXgagFeteEkbwI8DGAfw/QB+Tgjxb8xzLzf/H1dKVZVSXwMgALwdwCUArgFwmTmG9fghAC8E8HwAPwigKDJ/J4CDAHYD+H0AfwDg6QCeC+BqAJcC+F9Dvpfi+34RgL8G8Gvmvb0cwGGl1G8BuB3AL5j39Aur/Pp7AIwBeAqAV0B/Pv9pxTEP+z0yDMMwDMMwFwEsVjMMwzAMwzDnmwzAW5RSkVKqq5SaU0p9UinVUUo1ocXWV6zz+0eUUn+ulEoB/BWAvdAi7dCvFUJcDuB6AP9LKRUrpb4K4DPr/M3/F8BfKqUeVEq1sUJYVkp9RSn1gFIqU0rdD+Bj670HpdQBpdTnzWcwA+D/DHjPAPAOpdS8UuoogD8G8IbCcyeVUu8x8R8h9CLAL5vXNwG8DcDrh3kvK/hpAH9hjjVTSp1QSj064DghhLDN3/vvSqmmUuowgD/C8gWBjXyPDMMwDMMwzEUAZ1YzDMMwDMMw55sZpVSY/yCEKAN4F4AbAEyYh2tCCNsImSs5nf9DKdUxZtzqKq9b77U7AMwrpTqF1x6DdjivxiUA7i38fKT4pBDiO6HdzNcB8AD4AP5ujbYghNgN4N3QURo1aBPJwlqvLxxf8e9fssZzO6GLWt5bMCoLAPYw72UFlwH45wHHtRo7ALgr2j4C7fDO2cj3yDAMwzAMw1wEsLOaYRiGYRiGOd+oFT//NwDPAPCdSqk6+rEZmxkJcQrApBHKc9YSqvPXF5+/fMXzH4V2Zl+mlBoD8D70j3/l+wW001kB+A7znv8jBr/flX//ZOHn4t+YhY5SeZZSatz8N1YoejnovRQ5BuCpazy32vsqHkMCHe1S/Dsn1vkdhmEYhmEY5iKHxWqGYRiGYRhmq6lBi6uLQohJAG/Z7D+olDoC4B7oYoSeEOK7APzAOr/yCQA/KYS41gjcK4+xBu3UDk3O878vPDcDHX3ylBWvbwFYEkJcCp0JPYhfM8UoLwPwSwA+vsZ7ywD8OYB3CSF2AYAQ4lIhxGuGfC9FPgTgPwkhvk8IYZl2nmmeO7PiPRWPITV/5/eFEDUhxBUAfgXAmgUsGYZhGIZhGIbFaoZhGIZhGGar+WMAJWg37l0APnee/u5/APBdAOYA/B60+But9kKl1M3Qx/klAAfM/4v8PIDfFUI0oQsZfqLwux3oHO47hBCLQogXA/gd6EKJSwD+CcDfD3G8n4aO77jP/M6H1nntb5jjvEsI0QDwBWj3+jDvpYdS6m7ooojvMsd6K/pu6XcD+HdCiAUhxJ+s8uv/Bbrw5EEAX4V2n//F4LfJMAzDMAzDXKwIpdbbvccwDMMwDMMwFwdCiI8DeFQptenO7o0ihFAAnqaUOrDVx8IwDMMwDMMwmwU7qxmGYRiGYZiLEiHE9UKIp5p4ixsA/CCAT23xYTEMwzAMwzDMRYuz1QfAMAzDMAzDMFvEHuj4jSkAxwH8nFLqW1t7SAzDMAzDMAxz8cIxIAzDMAzDMAzDMAzDMAzDMMyWwzEgDMMwDMMwDMMwDMMwDMMwzJbDYjXDMAzDMAzDMAzDMAzDMAyz5VzQmdU7duxQV1555VYfBsMwDMMwDMMwDMMwDMMwDLMO995776xSaucobVzQYvWVV16Je+65Z6sPg2EYhmEYhmEYhmEYhmEYhlkHIcSRUdvgGBCGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhtpwLOrN6NZIkwfHjxxGG4VYfyrYmCALs27cPrutu9aEwDMMwDMMwDMMwDMMwDMNsP7H6+PHjqNVquPLKKyGE2OrD2ZYopTA3N4fjx4/jqquu2urDYRiGYRiGYRiGYRiGYRiG2X4xIGEYYmpqioXqERBCYGpqit3pDMMwDMMwDMMwDMMwDMNcMGw7sRoAC9UE8GfIMAzDMAzDMAzDMAzDMMyFxLYUqy8UPvWpT0EIgUcffXTd1/3xH/8xOp3OOf+dD3/4w/iFX/iFc/59hmEYhmEYhmEYhmEYhmGYCx0Wq0fgYx/7GF760pfiYx/72LqvG1WsZhiGYRiGYRiGYRiGYRiGebLDYvU50mq18NWvfhUf+tCHcOONNwIA0jTFr/7qr+K6667Ds5/9bLznPe/Bn/zJn+DkyZP43u/9Xnzv934vAKBarfbauemmm/CTP/mTAIB//Md/xHd+53fiec97Hl71qlfhzJkz5/19MQzDMAzDMAzDMAzDMAzDbAXOVh/ASLzpTZvT7vvfP/Aln/70p3HDDTfg6U9/OqampnDvvffi7rvvxuHDh3HffffBcRzMz89jcnIS/+f//B98+ctfxo4dO9Zt86UvfSnuuusuCCHwwQ9+EO985zvxR3/0R1TvimEYhmEYhmEYhmEYhmEY5oJle4vVW8jHPvYx/NIv/RIA4PWvfz0+9rGP4dChQ3jzm98Mx9Ef6+Tk5IbaPH78OH70R38Up06dQhzHuOqqq8iPm2EYhmEYhmEY5pyQErj9duA7vgMYYMRhGIZhGIY5F4YWq4UQNoB7AJxQSr1WCPFhAK8AsGRe8pNKqfuEEALAuwH8awAd8/g3TRs/AeC3zet/Tyn1VyMd/RAO6M1gfn4eX/rSl/DAAw9ACIE0TSGEwPXXXz/U7+uPSBOGYe/f/+W//Bf8yq/8Cl73utfhK1/5Ct761rdSHzrDMAzDMAzDMMy5cfvtwI03Ap/8JPCnf7rVR8MwDMMwzJOQjWRW/xKAR1Y89mtKqeea/+4zj/0/AJ5m/vtZAO8FACHEJIC3APhOAC8C8BYhxMQIx75l3HTTTfixH/sxHDlyBIcPH8axY8dw1VVX4TnPeQ7e//73Q0oJQIvaAFCr1dBsNnu/v3v3bjzyyCPIsgz/8A//0Ht8aWkJl156KQDgr/5qNB2fYRiGYRiGYRiGlNOn9f+TZGuPg2EYhmGYJy1DidVCiH0Avh/AB4d4+Q8C+GuluQvAuBBiL4DXAPi8UmpeKbUA4PMAbjjH495SPvaxj+GHfuiHlj32wz/8wzh16hQuv/xyPPvZz8ZznvMcfPSjHwUA/OzP/ixuuOGGXoHFP/iDP8BrX/tavOQlL8HevXt7bbz1rW/Fj/zIj+AFL3jBwHxrhmEYhmEYhmGY88rYWP/fWbZ1x8EwDMMwzJMWoZQa/CIhbgLwdgA1AL9aiAH5LgARgC8C+E2lVCSE+CyAP1BKfdX87hcB/AaA7wEQKKV+zzz+PwF0lVL/34q/9bPQjmxcfvnlLzhy5MiyY3nkkUdwzTXXnPMbZvrwZ8kwDMMwDMMwzNDcfDMe//CdeNrYNMTbfp9zqxmGYRiGWYYQ4l6l1AtHaWOgs1oI8VoA00qpe1c89d8BPBPA9QAmoQXpkVFKfUAp9UKl1At37txJ0STDMAzDMAzDMAwzKlGEN93+H/FEYydw5sxWHw3DMAzDME9ChokB+W4ArxNCHAZwI4BXCiH+Vil1ykR9RAD+EjqHGgBOALis8Pv7zGNrPc4wDMMwDMMwDMNc6EQR4szGA/OXsljNMAzDMMymMFCsVkr9d6XUPqXUlQBeD+BLSqn/aHKoIYQQAP4NgAfNr3wGwI8LzYsBLCmlTgH4FwCvFkJMmMKKrzaPMQzDMAzDMAzDMBc6UYQkF6tnZ7f6aBiGYRiGeRLijPC7HxFC7AQgANwH4M3m8X8G8K8BHADQAfCfAEApNS+E+N8AvmFe97tKqfkR/j7DMAzDMAzDMAxzvohjJJmN++cvBToPbPXRMAzDMAzzJGRDYrVS6isAvmL+/co1XqMA/Oc1nvsLAH+xoSNkGIZhGIZhGIZhtp4oAgAcbOwEut0tPhiGYRiGYZ6MDJNZzTAMwzAMwzAMw1zsRBEEACEUi9UMwzAMw2wKLFafA7Zt47nPfS6uu+46/MiP/Ag6nc45t/WTP/mTuOmmmwAAb3zjG/Hwww+v+dqvfOUruPPOOzf8N6688krMcqYcwzAMwzAMwzCjEEUQQsERGWQ72uqjYRiGYRjmSQiL1edAqVTCfffdhwcffBCe5+F973vfsuellOfU7gc/+EFce+21az5/rmI1wzAMwzAMwzDMyJgYkLITo91It/hgGIZhGIZ5MsJi9Yi87GUvw4EDB/CVr3wFL3vZy/C6170O1157LdI0xa/92q/h+uuvx7Of/Wy8//3vBwAopfALv/ALeMYznoFXvepVmJ6e7rX1Pd/zPbjnnnsAAJ/73Ofw/Oc/H895znPwfd/3fTh8+DDe97734V3vehee+9zn4vbbb8fMzAx++Id/GNdffz2uv/563HHHHQCAubk5vPrVr8aznvUsvPGNb4SOEWcYhmEYhmEYhhmBOAYAVNwInSaL1QzDMAzD0LOhAovMcqSUuPnmm3HDDTcAAL75zW/iwQcfxFVXXYUPfOADGBsbwze+8Q1EUYTv/u7vxqtf/Wp861vfwmOPPYaHH34YZ86cwbXXXouf+qmfWtbuzMwMfuZnfga33XYbrrrqKszPz2NychJvfvObUa1W8au/+qsAgH//7/89fvmXfxkvfelLcfToUbzmNa/BI488gt/5nd/BS1/6Uvyv//W/8E//9E/40Ic+dN4/G4ZhGIZhGIZhnmSEIQDjrG6xIYZhGIZhGHq2vVh9ww0AZRzzjh3A5z63/mu63S6e+9znAtDO6p/+6Z/GnXfeiRe96EW46qqrAAC33HIL7r///l4e9dLSEvbv34/bbrsNb3jDG2DbNi655BK88pWvPKv9u+66Cy9/+ct7bU1OTq56HF/4wheWZVw3Gg20Wi3cdttt+Pu//3sAwPd///djYmJiQ58BwzAMwzAMwzDMWeTOaidGJ7SAJAFcd4sPimEYhmGYJxPbXqweJCxvBnlm9UoqlUrv30opvOc978FrXvOaZa/553/+Z7LjyLIMd911F4IgIGuTYRiGYRiGYRjmLLJMi9MAyiWFtvSBbpfFaoZhGIZhSOHM6k3iNa95Dd773vciMQO6xx9/HO12Gy9/+cvx8Y9/HGma4tSpU/jyl7981u+++MUvxm233YZDhw4BAObn5wEAtVoNzWaz97pXv/rVeM973tP7ORfQX/7yl+OjH/0oAODmm2/GwsLCprxHhmEYhmEYhmEuEoyrGsJCpZyhIz0tVjMMwzAMwxDCYvUm8cY3vhHXXnstnv/85+O6667Dm970Jkgp8UM/9EN42tOehmuvvRY//uM/ju/6ru8663d37tyJD3zgA/i3//bf4jnPeQ5+9Ed/FADwAz/wA/iHf/iHXoHFP/mTP8E999yDZz/72bj22mvxvve9DwDwlre8Bbfddhue9axn4e///u9x+eWXn9f3zjAMwzAMwzDMk4woglKAEgLlEtBOWKxmGIZhmFtv3eojePIhlLpwC2O88IUvVPfcc8+yxx555BFcc801W3RETy74s2QYhmEYhmEYZiimpyF/6y14yT/9Fn7kBQdxWecxvP5PXwrwfIJhGIa5iLn6auDAga0+igsHIcS9SqkXjtIGO6sZhmEYhmEYhmGY9YkiJJkN11EoV9DPrCbgiSeAN72JpCmGYRiGOW8oBZw4of/P0MFiNcMwDMMwDMMwAzl5Evi939vqo2C2jDjWYrWrUKlapJnVi/c+gf13nNFFHBmGYRhmm9DpAGHYqz/MEMFiNcMwDMMwDMMwA5mZAW6/fauPgtkykqTvrK5aaBOK1fFHb8LpEylw990k7TEMwzDM+WBuTv8/DLf2OJ5sbEux+kLO2d4u8GfIMAzDMAzDbAQpgTNntvoomC1DSi1W2wqVmnFWxzFJ03Fq41RnDFhaImmPYRiGYc4HuVjN9YZp2XZidRAEmJubY7F1BJRSmJubQxAEW30oDMMwDMMwzDaBxeqLnDQtZFYLtBMfiCKSpqPMwWJcQZjYJO0xDMMwzPlg7owEwM5qapytPoCNsm/fPhw/fhwzMzNbfSjbmiAIsG/fvq0+DIZhGIZhGGabIKWOAskywNp2lpeLDyl1hmapRNRgHgPiFpzVFGJ1liFO9bT09LyHK0dvkWEYhmE2n6NHMfdHtwB4I4vVxGw7sdp1XVx11VVbfRgMwzAMwzAMc1GRJECa6i2vO3du9dEwg7j5ZuBrXwPe9jaiBnvOavQzqyliQLpdxJkRq88IFqsZhmGY7cHtt2OuW4ZAhjDkVXxK+NNkGIZhGIZhGGYg8r4HAQBnjtJEPzCbSxQBjz9O2KCUkJkFx1GojNl0mdXtNuLURtUNcer06M0xDMMwzHlh927MRRXsLjURtuRWH82TCharGYZhGIZhGIYZiLzlSwCAM5/75hYfCTMMaQrs30/YYF5g0QHKdRdt6ZOJ1VHm4IrqHE5Pc2Y1wzAMs01wHMyHFVxaWUR4dHqrj+ZJBYvVDMMwDMMwDMMMRGYWSnaM6YPtrT4UZgjSMzM4sD8DWV36XKx2gUrdpiuw2G4jTh1cUZ3H6dltl1LJMAzDXKxIibmogn2VBYRHuAI1JSxWMwzDMAzDMAwzEKksXFpZwJmT6VYfCjME6T/8IzpdC6cfmqNpsCBWl+oubQxI5mAqaKHVFqO3xzAMwzDnAykxF1a1s3q2tdVH86SCxWqGYRiGYRiGYQaSZDYurSzizPTFKyjeeSfw0ENbfRTDkSoLjkix/6tEbq+8wKIL2CUPmRI0YnWngyh1UHdDhF0qGzjDMAzDbDJSopkE2Bk00W1nW300TypYrGYYhmEYhmEYZiASLnYGLSx2faDb3erD2RJuvx34xje2+iiGI1UWrqrP4uDDIU2DBWc1fF8/RhED0mohzmzUvRAh1+5kGIZhtgtSQioLNS9E2GGxmhIWqxmGYRhmizh6FLj55q0+CoZhmCHIMkgJTAUtLMUlYHFxq49oS5AS6HS2+iiGQCnIzMLOoInFU0QLC7lY7QHwPAih6GJAUgc1NyTRvhmGYRjmvJCmkJmFqhOxWE0Mi9UMwzAMs0Xcc8/FLVa320BIZPhjGGaTiWNIZWPKb6ORBBetszpJtslbzzKkysKk30FjmtpZLQDP049RqMudDuLM0c7qxNYrAgxDxPw8cOONW30UzLC0WsD09FYfBcMMSZIgVRbKTswxVsSwWM0wDMMwW8TMzDYRPTaJP/9znkAyzLYhjpFkNnbkzuoLvPNSCvj85+nb3TbOaimRKgsTfhuNxQzICBxfRWd1HgMSx/rDHoUwNJnVXUSpu00+YGa7cPTo9hlrSAn84R9u9VFsLbfcAvzZn231UTDMkKS64HTgJCxWE8NiNcMwDMNsERe7WB2GwNzcVh8FwzBDEYaQmc5l7EjvghcUowh49auB97+ftt0kueDfusaI1eNeF42YyAkvJaSy4bgCsG0IAWSp6k3WR2m3l1mdOhf3jfEiJ4qA7/5u2jaTZPs4dcMQeOc7R1//2c5ICSwtbfVRMMyQSAkBoGSzWE0Ni9UMwzAMs0Vc7GJ1kgALC1t9FAzDDEUcQyoLrmWEyQu880oS4OlPV/jMZ2jb3V7OaoEJv4Nm4uvcpVFJU+OsFgCAwEkRpc7oudVJgjh1UPeMs5oiB5vZlnz0o8Cdd46+/lFESj3e2g4kCTA7C5w5Q9vu4uI26bfAYjWzzTCxVYGdIIzEFh/MkwsWqxmGYRhmi5iZoc9s3k5Rn1LqLEmGYbYBUQSZ2XCEiZO40MXqL38VU41DaJyhPc5tk1ktJdLMwoTfQSMu0YjVvRgQPYUM3BRdSSAuS2liQIyzmsXqi5YbbwSe9jSdW0yFlNvHWZ2P4e6/n7bdD3wA+Nu/pW1zs0hTFquZbUQuVjsJwtiiidxiALBYzTAMwzBbxmY4q3/914GPfIS2zc2CndUMs42IIsjMgmNlEACy9oWt2MqbPoUxt4POEVqVans5q01mdRIQi9X6x8DLEKbu6EUWkwRx5qBcsyEzm8Xqi5hOW+HyyxWpWJ0kQKNBUwt0s8nF6gceoG03joGHH6Ztc7NgsZrZVvSc1VIv3nLleDJYrGYYhmGYrWB2FnPHOuRidbMJ/M7vbA+HdZKws5phtg1RhCSz4YgUVTdEayHZ6iNal2TPZXCFyRIgnDxut8zqmhuhTRUDkovVvg0AKPmpFqspYkAyG17VqOAsVl+cnDoFeeAQxjunyJ3VwPaIAkkW27hib4QHHqDNvpWSxer/8B+4TgqzCeQFFu1E3w+3xdar7QGL1QzDMAyzFbzzncDsLOJFAgGhQD4pO3yYtNlNgZ3VDLONiGNIZcO1Uox5XSzNE4bKbgJJUOvnaz/xBFm7281ZbeexLRQH3XNWm8zq3FlNlFnt1Xz9M4vVFycPPIA0ExifP4jWHJ0NOjHrattBrJY3/QMuV0dx5gH6HSHbRazerMzqI0eAb32Lvl3mIqeYWc1iNSksVjMMwzDMFqAWlyCEonG7FUgaXeyYSNFskja7KXBmNcNsI/IYkGqgxeqFCzuXMQlTOJY+RtWg6xC3k7NaZlqsJrvX5AUWfSNW+0pvex41X0FKRJkWq4VQ2yOvgaGnVEKmLNS9EM27HyFrVsa6H9gOudXywccwFbSwdILQWg493jp1anvEa2yWs1pK4JvfpG+XuchZJlY7HANCCIvVDMMwDLMFNJIAdTekdZAtLEDe9yAmpx/ZFmI1O6sZZhsRRZDKglMvY8wLsbRIu02dGhmlcK0UJTtBtECnLku5TYxTxlndE+ybBOJXkiwrsFjyFamz2h8L9M/srL44kRIKQM0N0Tq+SNZs8k+3YMpvYWY/XZsAoDahC0x2XYqqEyFKnb4lnAApgac+FXjsMbImN43NFKvZWc2QY/qtUt3V90MWq8lgsZphGIZhtoDZZBw7ghaUzOhmPDMzSDIbk24TzTMXuPVPKSQP70dzKePC2QyzHcgzq+tl7awmFBP+/M/po4uSKINrpah7XTSm6SaP2zEGJLATRA0Ct3LurA70FDIIQFhg0e7HgBA6q9/yFuDb3yZrblORshd/enFixNmqG6G1RPdByEPHcEllEdP3HCVrEwB+8RfpxU/plvrxRVSdolKQ334Qe5yZbbGbLU31ehW15pdl20OsZ7YZubN6zOcYEGJYrGYYhmGYLaBbmkTZMe6xxUWaRpWCVBYm/A4aj52iaXOz6HQgz8xiwmuhsXRhOzQZhoGJAbHh1ksY87poNAVZ03fdBdx/P1lzAIAkSuFYKWpuhMYsnVN3O8WApErAtpT+DOYIXJomWsTxdIHFwM90DMgoCqtSOgYkdeCNlfRDEd33deQI8NWvkjUHQL/dP/gD2jYB4E//FPjEJ+jb3TYY0afqhmg16cYFUtnYW17CzCxdnwUArRZw4ABpk8vii8i2yLVaSE7OYqJzAs35C7swLtCvvULtrhZC/8cwpEgJAcAfCxBKFqspYbGaYRiGYbYAmSg4VqrzOakmJHGMJLMx4XXQfOICD2fsdpFkNnaXGpg/vh2UH4a5yIljLVSOV7WzumVTNo0TJ8iaAwDIWPWd1RRCbd5uO0QSbQP7q5RIMwt2taQ/g3lJ0qbOrDbO6jwGZBSxOk3NQqsNu+zDs1LEHYJjNcQxcM89ZM0B0FrE7/1eX1Sjot0GTp6kbXNbkSQQAKpORBpllmQ2pvw2+cK4lMDx46RNQsYZHCuFIzIkTSJrcZJAZsbIcITWWv3KV5I2B0B3CZZFLFa328DcLBwZkl+3zEWOuf85YxWkyuIYEEJYrGYYhmGYLSBJANdKYYsMskm0Ch/HkJmNyaCN5gzdYEkp4Kd+CvjlXyZrsidW7yo1sXCSxWqGueAJQ51ZPVbRzseuBaoMnyShF6t7MSBuSCPUAjoK5dGDcFvbIGw/jwGpllB3QzSXCL6rFWJ1L7N6FPXH/K4QAsL34NsJojadmpQkwL33kjXXa7PdBh54gL7dM2do29xW5JnVXohWm84Cmwu11LU8pASOHSNu02Ttj/sdLE0TxeEkid5153XQPEZrV370UfromjRJMTmpaMXqL3wBaLdRmT1MXdecuchRiblfVSpQABcIJoTFaoZhGIbZAmSi4FoZSk6C7iLdhCTJbEz6HRphwhDHehs16cS800GS2dgZNLF4ml0IDHPBY3ZuOCUHpQDoSo9sUkYuViuFJMrgiAx1L0Rjkag/XFrSgr1IoeQF7q7OxepaWX8GDZo2dWZ1HgOiEKbOaGpVXkROCMDzENgSYYfo+1IK8fEzWJhJSKNbcm3+zjvp2gT0RzF9gW+K2lTyzGonohOrs8yMi9potmmlj80Qq/N+a8zrYnGOqI8pGhlOERRaLRBFdEl2Oemtd2AymSaNb8r7qKoToUX4ERw7Bvzu79K1x2w/0kTvhkClAgFwgWBCWKxmGIZhmC0gSQBHpAjsBGGDaGATx5DKwqTfRqMJssKNcQzs2AHSAT46HcjMxpjXRWeOxWqGueBJU8jMhuPZKJWgs4qJxGryGBCTrayd1V0aoRYAmk0kmY2yEyNZoBV9yMkzq8u+/gzaBLEtvQKLfbG6K73RxOpc+RUAfF8Xg6RyVj/6KOITM7hCHcHMDE2TgL5/79sHfP3rdG3m7V7UYnUvszpCs2PTjGGiqDcuanZtUtfjpjqrvS6W5oiuAzM2nPA6pLvuAP0ZzM2RNgk538Ck38bSfsKLoV4HYIp3nqbru6engc9+lqw5ZhsiY73AhEpFP8AxIGSwWM0wDMMw5xulejEgJTtBd4lQrM4dRJFHVgUsmV1COV5AEhPmPZoYkLoborPILgSGueCRElJZcH0LQQAd/0DkICJ3VhsXuOsJ1P0QjRZRZEmjYRbZQnRmLvC95Lmzuuyj5kVodJzRPwOzeycXq0sljB4DssJZ7VM6q1stxKmDcb9D6qxOEuDyyxSpAA7oj/GijgHJndVuhFZCtHMjinQtD7+DZhyQ2oCThDhjXCmTWZ1h3OtgcYFozGXGhhN+B03CeBVAn7Ozs4QNKoXULC4snSYsVFc8t56gu8jiGHjoIbJELGYbktcg6sWAsLOaDBarGYZhGOZ8k6Y911/JidFtEBX/ygss5pMyosC/5G9uhDt9AlgkzGk1MSB1j8VqhtkW9JzVFkplgW5K56xOWhG6VAIl0BNVHVegXlVoxD5IgkobDSSZjZobojt3gWftSwmZ2bA9G/WyRCMJRp9Er+Kspo8BSRCFRCKdbSM2O3jI4rYAJLfeicmTD6A5QyimgZ3VkBICQM0N0UoCmms2DCEzGyVH9wno0n1nUupCgAlV/VYTs+OIVBexXaQUq01ud4euMC6g3zupszpNkSqBqaCFpTOEDlXT91XdCK3DdOp6kmhfyOHDZE0y2wmlIBMFWyigXIZrpUg6dAWdL3ZYrGYYhmGY800+IbEyBLakE6vNjKnudbUwQSVWP3YQniVBWp3IOKvHvC46DS7NzjAXPCZaw/FtLVZLj8ZBND2N5ImjGO+cpCt8ZcQZ1xOojwk04hJNjlGjAQUteHTmaYVKcpIEqRJwPAv1Sqo/g1G2J2cZkGWIMweer92ZQZ5dTuCsVrDondVhqJ3VXhedM3T3r+Sz/4K620X3xDxZm0BfrCZK8Np+mAKL2lnt0+wOC0O9wGKZBRVKsTrJcOmlim6BIYoglW0KLHaxuETkgs5jQPyO3nU3yvW6AnJndRwjzSxM+p1NEqtDtGbp2s1vgQ89RNYks53IMshMwLEyoFRCxYnRblzg9Sy2ESxWMwzDMMz5Ji9SZZzVYYsul1ABqLkRmpRi9diO/kSPim4XUlna8dZksXo78MEPAkeObPVRbC0/8RNbfQTDc//9oxlezyJfZMud1VSZ1SdOIM5sXBrMY/oMnZMwyWy4ro4qbcQBjUhlwq9LTozOPJ1Td1NIUx0D4tmoV1J9Txji+/rCF9bQsszJ1E4DVKp9sTpMXXJnNVnkp1kUrbm0sS1S6Z1RlKIfoD+Kchl0GevbjUJUQzMJyMRqmemiqEIoOrG61YJ87CB2tI9SDbX6RWzzGJAGkVTTiwFp032u0OtXShE7q5MEUuk4u6VZQodqLlY7EVpLdDfGJAGuvhp48EGyJpnthJRIMwuOnQG+j4oTod26WFcb6WGxmmEYhmHON3n2a55ZTSXWmsF4pazQkR5ZNmNSn4JrpXBEhuQMkZOsFwPSRafJLoTtwF130ReT2m7cfvtWH8Hw/Nf/CnziE4QNpqnutwIbQcXWIiWFWG3bSDIbO4IWlo4sjt4esDyzug6904RQrC47MTrzF3gRJTOJtl0L9ZrSgv0QKvDbfzfGmQ/+I3D69FntAUAn9VAu64dKZTF6DIiUSDMB21aA78O3JaIukbPafOdlJyaNbUnqhQVcKhu0UkgefAz7qosXb261Oce8soModWhE1YJbGQBUh0isfuIJSAlMdk+gsUh0vpodIY4rdAxIiyiywzirx72udqwTCfb5Wg25s1oJLVYvKbrrKx8fuzFaTToxMf7Gt7EvO4LZ02y6uChJU0hlwzH3r7ITo9NmsZoKFqsZhmEY5nzTiwFJUXISdFtEYq0ZjItdO6GUoBOrQ12dvupGaO8nqiZkJqF6YMeVabYDUcRFzjsdspjmTUdK4I/+iLZBmdn9GBCqAovdLpQSGPc6WDpIZNGLYz2B9CzUxu3RIzByGg0I6H6rvUCbtf+qV5E2Z2JAtLO6VlVasB908jabkAeOoPnlbwB/93fLnzPKVFv6qFT0Q0EAhHJ0Z3WS2fActSnOasDcZ2YJxWq/CkdkEABdwb5GA8ncEi7BCUyfvvDvifPzwMGDtG2qWDtpxVhdu6AJY0AcK6O9bj0P0hQCbBwhqucRRXpBsOphzOtiseXQtGuc1YGt+wSqvCUpdZFVUmd1HgMStLEUDbcbZNh2AR0D0iYUE5Pb78J4No/OwdODX8w8+cjj0YxYXXHZWU0Ji9UMwzAMM4D3vIdsbK8xk3PXSvXEnMpFlm+nnpzU/yfa6tkXqwmz/ooiQoe2Oj2zOcQxi9WSOLp9M5FSz/MzKt3LOKsd30ap5uisYgohwfQFY14XjaOLo7cHFJzV0JnVyXCu4oEYZ3XNjdBapHXSHThA2lw/BsS1+rndgz6Dxx6DzMxrH3xQK5I5RqyOUheepx8KypZetBglDkNKRJkDz83oCyx2uxBC6UVhygKL5p7oWCniI6doGjXn7KTfRmuWNg99M5zaX/kK8Cd/QttmlugdXBgb0w9QDLyiqFfQuuaGaM4TRUtEEaT5vhoHiEKr8xiQkouKl6AT2zRRM4V4EQBkY0PZTbB7IsbsNG1x3FSZzOq4RBdZEsawhNIxIC26MWdewLVDZTphthdmp6xj68XWihOjzXMaMlisZhiGYZgBfPKTwDe/Sdhg7lC0FEpOjC6VyyOOtdOrVtM/EymLcaR6zmoysbrorA7FRVxRavsQRdvHVbxZbDexenyc8HjTVAsevo2g6pA6qwGg7oVYOkFQBBEoiNUWahOOzmml6A/Nh1lzQzQJc08BrctRfJw9pESqhM6szgX7QRewcWA2kwDHW+PAHXf0nzOLocLS8dKAdlVSZFaH0kXgqX6BxZjonlBcFF2iy79Noqwvfs7QLeAmma2LQRLmawPADTeQNgdA9y/79xO3GaWwrQyoVvXuMIoLouCsrrshmgu0NULG/S6ds9pcf65voVy1dJwbRWSHiQFxRKrHiFQxIJ/+J+yRxzH3KFWFSRSKQbb1ohmVsB5KOCLT41hCMbF3zdJt3GC2E/l8zgYQBHr3BovVZLBYzTAMwzADiCLgW98ibNCIPm7J0ZnVHSKhNndW1+vwbImoRTM51y6yTDtS5onUlKKIkHhkExJm8+AYkO0lVqcpMDVFWKytEANilzxkSpA7q5fm6SKRZGbB8SzYZV8fK4VAUywAt0S7wCYl/Q6eXgzImIXmMJnVxiXWKO/Biz/9m1C3f7Vvzc/7aKs/fQxKgkSs7kgP5SAFhEDgZYhSt38/GwXznZfsmO4+i76zuuZGaM4R3RONqDrmddGmWhQ2zMzQrwen6SaI1XGmndXVKhwrRdIm+GzzaI2xMmoe4SKT6fvqbheNWaJzoNdv2SjXHS1WU4yN8naNs1q1iGJAvn6vPl8pi82aGJDA1n0RqVidmy46dBJYnDraWd1lgfKiJI8BMTFWFTfS5wIbcEhgsZphGIZhBhCGxGJ1HgNSdvX25C5tARnU69gRtDA7RzN4zl1kVTdCc4HInZaL1RWzjZxUpWE2gzhmZ7WUQIvI/Hs+GBsDlpaIGssLw5YcwPO0Q486BqRNNDXJndW+pe2/wOgrLUr1hNuaG6JJfB6Qn1tSarHad+BWdL7ucM5qC3MTV+NEewKHj9nAww/r5/KDs/pF34KyhS5BZrUWq/Vn63uZLtpIEX9gvvOyE5OKSTJK+85qKrE6d1b7HXQWaDvaMKRfaJQSOHSI5mvqtZlkcKwUKJdRcyO0GwTCcu6sHqvoxQWqRSYz3qp7IRpNonMrj+vwLFRqxllN8cXFse4L6hWdqUskLsugCtcybm0q8mMVxJElRWd1OGJ0Ua9RiThzMO51WKy+WCkWWLQsVPwU7cSjWWxlWKxmGIZhmHVRCipO8OADhJl8+Up82TOTaItmFd5sS0W9jp1BCzMLBMV5lEISF2JAFmmLQZZ3lPWEjMXqCx52VmtNjtpZff/9wKc+RdsmlILqdFEvJXRidZoiUwKW5wC+rx+jdlZTFRTLFwQDS1cBBEY/eQviRs0N0aIS1g1JQixWp2nPXY4g0LEKgz6DJIFUNo7M6yip++Yu09nVQO/gVNFZXba0s3oU4acnVut7YOApXbSR0lntJOiGRGKSUkgSwLEy2gzkMITMndXExTuThHCHhSFN9dd++DBhm1Hac1ZX3RCtBsG4y2RLO+MV1NwQjUWisVxPrO7SidVRBKlMDEjurCaKAQEAMTGuz1miKBQZaAc8qYd0s8TqKDXO6hAt6dN8rlHU2w3BtVcuUpIEMrNgmzXccpChLX12dhDBYjXDMAzDrMdDD8GePgl5mrDcuZQ911+1nKFN6J4BANRq2Bk0MbPkjd6mlEhSqy9WU2yhVaonbrBYvX242J3V+WlLLVYfOADcfTdtm3j0UWBmBmN3fx6NaaIVhlyQtG3A97VAQZRZLYRC3etiqU0kVvccijZQKsEWGWRrxM8hF0+F0IJP1yHd6kvurC7EgAy9uGAm3odnqxirpVqsfuwx/VyrhSSz4Hp9Ucb1LSSZPZqzWkp0Uw/lUu6sVogyGme16nShlOjXRqAgd+1bqY6VoCq0aZzVY14XnUVasVpKerFaSr1zgzIKRCZKZ1ZXKnonV4Pg+gpDXWBxooa616Xrv3sxICEaHXvAi4ck77fyugDEYjXGtVjdmKNZYJFeWS8uAHR9YRzrrH2hd/TFS0T52qHU49iyQishEqu7XcSpjYobQyaKox8uRvLC02boUillek5zMQ+WCWGxmmEYhmHW42tfAwC4cWuk+fgypNTuGReoVoFWEpDmqaJex85SC7NL7uhtGueIZ0ntSGkSDMZ7H6RAMB6wWL1NuNid1Xl0L7VYnSRk9a76LOiCX3W3i6U7Hxq9PaX6161tA55ZCCNyVisltLO6Q9BnAb0iXa6vXcV1L0RzaURHpRFPlRCoVhSaiU92QeQf72bFgCAIYAmFrDOEszqzcWS2jFd8j8C35q8ATp7USmerhY70UCn37wHCsXt/65zJndUmrSXwjbOaQKxOuzEcK9WFjCMiQdHcE3uZ1VSxEgWxmiT+osBmLLKlKXDVVcDx43RtFjOrq05Ecz3kAnAeA9KiW7QATAxI16OJlcizpX0bokwUX2TaBWDE6ogst1sKF46VDte3DIspMulYmb4nzBG5wI1rv7KjpMfcFI5tEzHjWRJQ2SbcyJkLHimRZhbyW2GlrHQMCIvVJLBYzWwJr33tVh8BwzBPRrJs82LCAlvSjUONs9pxhRGraVweWZTo7MBqFTuCFmaawehOj3xi7ig9eaQQq/NJnRCw6lW9PZ1QpZmZIWuKKRDHF7dYnZ+21KKPlJswx01TCKF0DvQMwaRJ5a4xoQvs+T4EABUSZ1ZHXn9VYBQKu1cQBNr9OOr2fxODIoRArS50wUKiLy5fB6COAUmzvrO6NkysQpJAKguHp8t43vMtHEt268cPHgRaLbQTH+VKQezL7WQjOqu1WG1iQHzjrB71Zp5liLsSnpVqZ3Vs05xbRWe1S7AIkhOGkMrSzuoWvVi9GTEg1Sph36UUpFT9zGovpLke8qz98Qqqbog2VVxDLla7XSwlJZoF9xWLbAA2QawO0SSKQkkivbhQshN0Ty2StNmLAXH1tbA0SzCoV0ofq5X1d/NROaszB65lrtftUn2ZocOYj/JbYbkMjgEhhMVqZkt4/HGa8SLDMEyRW24Bfv/3iRsVemJTcmK6SVmep+oJVOuWFqsJJiRpmOhBs+9jZ7WLmW519G36+cS86ukYkDZBlevednoAlYr+N6Gz+tWvJmuKKRBFF/f4e1uJ1eYaG/O6NJnVvQUm87PnwbcTRJ3RRbWsG8EywvpSXKIRZ4pidamkc2VHFetMRIbrZKjVhc49JcpTzbvETYsBCQL9GQwSqYyz88Ssj6kpwA0cxKmt3dW5s7pamD7mQZ2jiNVhqMVqI4L7Pmic1cap7LkK5bKg25odRfo8yMVqqv7AnPcVJybdaJRl+j/yfutr30B15hDCLtGETkrtqLUVEAR0zurcHDBWQdmJ0e4SjGGA5c7qOKAZw5ixoePb/cKwmxADQrXAIkMJx8r0rrsTRMURkkTHgIzX9D1hgeBY0xQy1TnzVr2qI6wondW27P3MXGTkNYjyGJCq0NGOF/NgmRAWq5ktIYq4SCrDbBc+/GHg535ueywwdTrA9DRxo2ZSU7IThB3KSZnO/qzUbRpntVJI4ky7kjwPO8djzITV0QfPUYQ4s+H6NqoVk/U36iBfSmPSFJsiVs/OcnTgZsDOav3/7SJWKyW0kEJR/KuwGwIA4Pu6aF179D4xaUVwrRSlAHSCYppq4csVQBCg5kZojPq9GYemYynUxiw0qeKb0P94SdOQ0lSLPj1ndYSlxoBzwQjcWSYwOQk85coMB5s7emJ1W/oo1wrTx3yGPoqwbETw8phuKwhA46yOY8SpA8/NUKpYOv+XSKxOMhtOVbvVyWIlzLlEWnQZ/XUEcmf1gUOoxvPonqYUKS0tVnt6cbxJkQVtRHC37KLspejENBEziCIoJRDYiS4ySqGsm37L9cTmOas9unM2L1pYcWK0zxDdGHNnNaVYnUeLONDWV4BMrI7NLgulBFSHY0AuOvLMapNgVqkozqwmhMVqZktgsZph6FFqE4p0QYu/n/gEcNtt9G1TkyTA/Dxtm7LRgS0y7ayeo3HRIU1N8S8L1TGbpjJ5PiGzM0AI7ByXmOnWRp/o5M5qXx9rM/FHn5TlrkdbF1ISQpGqNFHE0YHkfP7ziNrJRT3+TvXudFr3K3S/Rb4IUHRWNwmG+0bxUiiI1XaCbmdEQU0pxB1d+EpMTujHiPL7lzmr3S4ag4RaAP/4j+vc6/I+1slQrjtoUxXpQl87Iz23smxZgcWKE6E7KF4iSVB2tLA1MQE841kOHl/cvcxZXa4VimDato5xGsVZ3ROrdQ46mbM6jhFnDjxHoVwxzmqKCy2PxqqVtPDXJhKWe87qCO3EJTu38vkW+SKbslF1I4RNogKTZhHftgH4vt7J1SHou3JndeDoPFmqLfpGABaeUakoxjC5S9Prx4BkbWpnNV1utwylzoF2I7TniYqC5sLyeBX1YaKLhm7TuF8pHev57g0rhWdLJM2LeDX/YiXfEdKLARF6bEBRfJoZXqwWQthCiG8JIT5rfr5KCPF1IcQBIcTHhRCeedw3Px8wz19ZaOO/m8cfE0K8hvzdMNsGFqsZhh4pgZe/XLtKqdvds4deoNkMkqRXV4yMaClEYEstzFCJ1YUYkMqYQ+OszosIGSPSzgmJmZBQrPYExsaF3qY/qiPF5KK6juo5q1WLTqzejGJSFzVLS8BNNyFuS7rdBdsQKbWAty2c1b0t6l0stZ0BLx6CnnDYF6sDO0E4agxIFCFJLXhOBpTLunUKQdEsCLq+zteueyEabXugqPjo/TEevm+NSWYuetmAVS3rreQXslhtBGTh2IDrInAShPGAqV+SoObqz39yEnj68yp4fGk3cOYMsLSEduKhMrZcrLaEQpqM0C/kYvWED0BrdGHqjj5RSBLEqa2d1VUb3dQlc6kmmQ237KBWStGMicTPorNaemQnQ35ukTurlUDNDdGlEqvNuMAxYnXNDWnEauN8dH0L5TLQkS6Zwx6AvikAZGJ1bmRAqYSSEyNsEkyY41gvKo2N6d0ARAssMtY50FUnQmuR6DyIY70jZKKm3fUU99sk6ecK+7qfIam3EIaIU51ZXXZidBYu4tX8i5VeDIgeG1Uq0DEgFLs3mA05q38JwCOFn98B4F1KqasBLAD4afP4TwNYMI+/y7wOQohrAbwewLMA3ADg/wohiMoyM9sNFqsZhh4p9bX1F39B3261uj12NElJ76yOFrvw7QSBk6A7T6Qo5QV/fAtuLYDM7NFFjzxP1daiQS8Le9QvLneR+RbGxkCTKdsTfRRQrcK3JaIlOkeKlNtjcWXbYBYnMgiEs9vjg73vPuDAAdo2pQQmxlI0KYqMrmiXXKyWsl9gsUsgVufCZz5z8Dy926Q94mdhMj9dR/Ucb6pLk1ktM0tnvzoO6qUYjchff/CZZZD/8kU0bvyn1fu4PL6pcKyUmdUenT6pyTItUFkWYNsIbIkwGuCojGM4VobAz7RY/SwXj0VX6JO00zEOaLf/ettGyYkRxSM4NY1YXRo3YnVJIEqd0Sf7SdJzVlvlAJkSpDEgrmfpQpuJTyNUmk6g4kvt/iVaFduU+KIsQ5pZqLgRwhals9qG46i+szocvMA0kDwHOnBQqRJml+fOyclJAEQL7vnYMNA582UnRqdJUGwzP1bfR62S6XOW4KYjoxSOSFFxY7QblGK1BXu8buqk0LQpMwuui96uIJJFgG4XcWbDs6T+rhbZTXvRYQos2svEap/FaiKGEquFEPsAfD+AD5qfBYBXArjJvOSvAPwb8+8fND/DPP995vU/COBGpVSklDoE4ACAFxG8B2aboZSeA/DuCIahRUrg6quBW2+lbTdJtFi9HbJqyWNAlELYiPvO6gWiD2GFewYASQxIkk/0AIgSUd5hQawen7S0WE10rLmzmnqQz2I1Md0ulAJ8SyKa2x4f7C23AF/5Cm2b8p77MDF/EM3Dc7Ttbqaz2g2xFBJMnFY6q11X94nRiM7HYl8QBLpoY4NASCoWWARQL0ndd60nUnW7SDoJGqEP3Hzzmm06jurnnhI6qycmNsdZDVsL9oGdIBwkKpvvuV7VYvU11wCPZM/oPd2p7UZlRWZ1YCcbv80sLOh7k1J9Z/WUvhf6PqGzOrN7AhUAshgQqWy4gY36mKDLLjfH5u2e0GI9obO6ViN2VhunatWJ0KUSq82Cu2MDsCxUA4lmHIzed+X59b6NchlkW/SzKNERZhMTqDgxOvN0hWEdVwClkh4bjSoCK9XvCxwH9ZrSn+uoC21KQUYpXCvV0TUNAlEd6IvV9You3EiRWx7H2rXvAAgCVNyIJl4kX2wNbP1dLbET70Lna18DPvpRwgbzhXFX31tLZUETY8UAGN5Z/ccAfh1AflVPAVhUSuXfwnEAl5p/XwrgGACY55fM63uPr/I7zEWElPq+yc5qhqFFSmB8nF702G7OatIYkDBEFAG+nehiYsRidZ6nCmCoL+7b315nwpmmepujbVxIVMV5CpnV5TGXJqc1SUy+thGrbdpBfpJwDAgp3S6kslB1Q4SL2yMMXEpgcZG4zX++BRN+G80TtPvpk2TzCizW3FCLaQRFUQH0tGo4ju4T4xGFhNz96mZAEOg2F+nF6mopHex2MoJGM/GBu+5atU2p+i5wAaI8WfTv39RitRBquVg9aHEhX+SoKYyP63t/x64jfdPPA69/Pdrf9wM9nR5Az7G9oUWLY8eA3/5t4L3v1Sd+lqGjSijX9LkUlC1dYJEiszp14HmKvFhdYsRP7awOaNo1bYhdO/XPhM5q8vgiKZEqgaoboduiKzydKqvnUKyWM5rdYblbueSgXLXQSWmc1Wk3hmulwMQE6l4XjXkCcaogrPfE6lGd1UoBSunauJZFVxw2TbVIZ2XaAd0g2nGU50uPV3W8SEiwMyjPwTYLV1WHTqyOUwfeZJVmYYHZdI4eBe65h7DBvMCiOU39QOjFVharSRg4shBCvBbAtFLq3vNwPBBC/KwQ4h4hxD0zMzPn408y55l8fMBiNcPQIiVQr5PtSu6x3ZzVi4tARhWr22wiTF3jrI4RNojcv/l2V1NERwg11MThAx8AvvnNNZ7sxYBsjljtlWyIMrULHHpC5sZ6F/UoRboMSm0vZ/V737sNri0zIRvzutti0QrQfcHSEm2bsj6Jkp0gTgkmz8V25SacA2aiZFtKxx+MGlOQX5vCqNW2bZy6I2af5vn9xvEWUG3PNgKV42sBtOyn6Ep3/T7GHEsjLukbycovpZBZjVJJu/6IclqTToJxr00joOTkN8Jlzur1p35ZLCEA/M2fNnqT76uvBp6oPgf43u9FR/p5mYFe2yUnHhwvUuDRP/4cfvOOH8Cxe84Ac3qXQgflngjuB8aZRuKsduC56N8PKWNAAlsLfzGtWI0dO/T/idTlJNFJFeTO6swUWOwSnbN5ZrXZHVarKjKxOlMClufoLfoUbSKPwMiAeh11N0RjkeBzyOt5+FY/BmTUqKUk0V20uUR7YvWo94Qo0t9X7qxuEYnVSaIXLaol1LwIzWhAvz0MvTGnADwPVTdCu0nwfZkCi+5EVbvrKSJbmE1FSuLaTkmCtOCstjxHj7lYrCZhmGXw7wbwOiHEYQA3Qsd/vBvAuBAiH63vA3DC/PsEgMsAwDw/BmCu+Pgqv9NDKfUBpdQLlVIv3Llz54bfEHPhw2L15nDHHeuIWMxFgZTapEt9bcn9h1BdOrEtRKok0boJmUjVaiFKnb6zukH04eYCTaDdM66VIm4NFsLXdWCagmL5RA++D0soZB2iGJCAPrLEdRQgBMYrCU3hRvT1me0iVn/848CJs0ZDFxjdLqLUQd0LEY7qpD1P5AtXlKS1cTiWOcEIFlZyNiMGJAtj2FZhMk7grM6UgJXPHIRAyZVaAB5ldXBFDEjJTtClEKuLBRYBlPxMZ9Wud4M07rtGbITN06eXP58vCLraWV1zIzQXaCak8ubPY3zhMFr7T5G0B6B/jprMat+WA8XqNJJwrBQvfnH/sec+V2fAA1rfWuasHlIE77G4iI98+RKc7tbxP+95HfDQQwCALoK+WF22aZzV5j7reYo2BiTfbVRy4FR8pMoavd18lRXoF+yjigE5ehITzSNoThN2MsYFXXUjdKkMErmr2KgL1SrQkjRiNQDAceBVPR2xQiFWh/paQa2mndUUiwH5OM7XmdUVJ0ZnVOd6miJTArZlFgHGLJrM6tytLDKdWU1VIzuPAQlcVCt0Cxa6CB6AINBOcIrLK18QGy/T5Yszm0qaEovV+a5WI1bDcbQBiYUuEgaOLJRS/10ptU8pdSV0gcQvKaX+A4AvA/h35mU/AeDT5t+fMT/DPP8lpZQyj79eCOELIa4C8DQAd5O9E2bbwGL15nDXXcCXvrTVR/HkJE3pq6hvBlKiN8gnI4qQHDiC6tGHEXZpi4ptBlJq4x9ZbnUU9Z3VToxuh8hBVBRSSiXt8lgaPDE3Na7WfFIqSzsUgZ5LMWqN7k7Tx6onT5ZQo299z9t09Tk1WZOYjyokk/P83rJdxOokAaant/ooBtDtIs4c1NwQsRyhkNp5RMpNcFanQosTANQZui9tM8TqnusvV5dHFavzLd92/z5QciW66YhV702usGcE4JITo9skEICLC4IAyiWlxeoBMSBJZqORBDjeGkd2coVYXdwRUi6jRuislvfch3Gvg9YM4YlQFKuHFJV7543bL6L4nOf0xepOB6vHgAy7iHX0KGbCKn7+2lvx+NJunLlDV0HtZKVeu7ZnI80sGmd1asPzAAQBHJEhaRPsjsrPLU/QObazDCoz9td6XT9GFQPysb/DZDaLxv7Tg188LGbhpuqG2lU/ahFEYLmgCC1WN5OAVKwWvqeFpFEzq7MMMlF68bJS0bUBGgT3RrPrLh8blp1Yd92jfL4mvsjJxepJlyYaKo/rcIXeZdImGhsUnPBarA5G/77yz8BBv3gnkVidZDa8CVN7hSoSh9k0pARIwxtWZFb3OjBCQ8PFzChVUX4DwK8IIQ5AZ1J/yDz+IQBT5vFfAfCbAKCUegjAJwA8DOBzAP6zUoq/xYuQfMzBBRZpSZJt4M47D2yGqHzrrcDv/i59u9QksYKTxQAIRWUzGK26EV0EhuEd7yBtDoC+DqamCHOrw9A4q6WekFPpCPngxhRYHDY/b11n9YoCi3BdBE6CcFSBXUrEqdObPNXcEI2F0bdkyqwvrE+NScyFldG3paI/L90umdVxvA3E6sJ1kGUgzNnZPDbDWS1DCUfofM72E3TCz2ZkVssohS0yYGxMZyu3RndW6y3fBbHaGyJaYxDFhSvfR2BLhBRide7SDHQnUw4ydNPBMSAy01vkf/HO1+Obd54dA9LLpjSLjE2inFaZWah5oT5GKooxILat7wfJ+qKyjDO9ION5vceuvRZ45BFtgv7MZ/TPPSxLi+DSHk5QO3oUM90adu5QeN7UMRx8QPf5nczvi+C5UE7grI4zB54nAN9H2Ylpdkfl96/ApnNs59EHlgJqNbhWimSJxrIsWyEqToxYjlgMdVmjxlntRLoPoHAg9epu6B/LVUu3PYpYXXSsOw7g+1BKjC6A50KtDSAIUPdCNJpUYrWJL3IclD2JTmyPdi3kbZqFxtK4rxfuSGJAbDhlDxUnRrtDJFYXCsNuirPa97W4TuastuGOs1i9XSB3VufjAq8vViuOASFjQ3ctpdRXlFKvNf8+qJR6kVLqaqXUjyilIvN4aH6+2jx/sPD7v6+UeqpS6hlKqVXKbDMXA9vNWf2e99C7szYDKVmsBoBXvIK+zdWiKy9E5L98Ee7D99GGVhunWdWNEDVoP4Q/+zP6c1ZKYNcuWmd1lDkIAoWSHdMJSkmCRPVjQKpDViYf6KzOt9MDfSfdqF9bz1mtxeoxr4ulhREH5KbN3IAwOaG0s5pQrKZ2VifJ5ri1t5Oz2rfMh7sNOsRNEaujFI6VYtJvY/4I3WqIlHrRgnINID9WjI2h4kbozI/4na1cDAMQeNnohYRWZFbrHSw0Ls1lzupguBiQxMSAnOqM4dj+1TOrXSNW19yQTKxOMlsXa6NCqWWiT+6AjpL1M8b1ebPcWX355boo1V/+JfC2twFPeUrhF0wcTDjsosXRo5gJa9j5wy/Hnj3Aqc4YAKAj/V7KFNk26jjWrn3jrC47Mbotgs84vxZMzQkAUF2a68u1M6Bc1uLfELuthmraCeBYKUj3xBix2rV0xATJPSFNkSrRK7DoVxxE6YhitTknFYTedpcvwlCI1Xm+tu/rGJA2QUSWlEiU3c/aD1Ldb41yvLmYZsRqstojuWBfclHxJdox3aKFAADH6bvrSZzVxv2aF1jsECzerHRWE9cMYujZHGe1yUMH+s7q7SJ0XeAQLrEyzHBsN7H65pvphYQkAb7+dfo2WawGDh+m33nTbG6P81V+5atwRAY1T2UrRm9AXnVDcme1lMDdxGFQSaLFajJndRwjlC78sqMzq7t02xxlpqvT6/y8EK3mYNFjOGd1vwCab8nR41uKok8QYNzvYGmRqE2jh0xOgkys3qwYkFtuAf7wD2nbBC5wZ3WS4Ja/b+F3b3waotSBZ28fsXpTYkCMs3rSb2NumjazWhDpPTlpbETHsTEtqs6PeBNLU0SpC9/tK+okzuq8L/AA+L7OrCYUFHOxulSCFn0GOauVhUZaweluHceOrFg9yCelruiL1URrFjKz6MXqHKGFusBN9eLCWp9Bluk4sWJ8DLTWDQD33gu88IVn/9rAdoscPYq29FB57tOw9/WvwOnrfwB4+cshy7W+Pk7prE4deIEWKUtUzsf83DJF8EpOjM7SiNdXbyEk67nAqVya0tERKKRBbrlTNc/Fp1jJ74k++kfhe1oIH0WoXFkYliq2xRSYdGxosdoNacRqE7fUW2Tz0sHxRYPIP9c8wimvkDqqsmrqmTiehWpNaAc0xXlQdFbn7ZI4q82YM48BoRCr852HkzWUHcLcbmbTSFM91SDfKWsWmOC6EEJBJeyspoDFaua8k0/GtoP4B+h7OfWx3n038Na30rYpJXD8OG2b24041k466oiZbSNWw4FjZXBVQne8ubPaiRBRFL0qkCTAN75B2iTk/kPY2T6MxQWiaVkYamd1xUbJienEpFxY9u1eZfJWd/BEZ11ndZ4pW3RWO5vkrB5CrP7iF4GvfW3tNqUqiNU7LMxHZRKFWUod+UkdAxJF9E5dYPOc1V/+MvC+943WRvvPPoxv/+EteOShDHGmC7QB2BZi9WbFgNhWhqmgjfkZWrG6WqWNAullD9dq2kW2NHp0T1e6KPv9dkp+pjOrR4wBiVMHnhERAjuhqY+QZ/iXTAzIhjKrSzjVGcPR0ysE2HyR0YXOrPZCNFs0C5gys7SgqIgWRI1NXxX8tD0n/FrflxHrHVP4tsiVVwKHDunF4JUEbqrjSwYJaq2WXkkWFsTuXdh7icAp61I88Oz/ADiF+BMqZ1oxBsTztADcJnTtG7G65oZoLo5+ffWc1b6v2yQ6txLL74vKVOSxJcK0S3FPWJFZ3fvHiEItUDidPU9HrHRGX1zoRWsEAca8LhodGmf1svgiPx28yDaIXr0B811RFcrO3eWeQKVmoS09mp2daaoXVhwHbsmBVBZdDIi5z1SGHHMPJL8OJuqoOBFdFAqzaeTdCVkUiIkvsgtGIc9KkUQcCUMBi9XMeWe7Oas7HXrx88476fMpkwQ4eXJbRIluGvmNh6DI9zK2jVg9sROOldJuRTPVvqtuhLBNu0pcLtOL1cnBo6g1jiOcJ/oAokg7q6uudvxFRLfN4mTXdVFxYrTCAdUxswzJ4ePo7l9jVaq4nR4w274TXfxoFIqFyoxYvdgY/Dncdx/wrW+t8WQu1puCJJM7bcyHFZKJjpTAxAS9s1rKzcnE3yyx+m1vAx588Nx//+8/FuFVb/8+PLawC0eWxrWr1pJa+tomYjW1szqN+s5qsqgh6GOt14nF6jx7uFbTi2GjitWpFk3K/irOaooYEJMrrHewjHaoAHqij+3rDrFUArpDxIDIzIbMLOwst3GsObF8v3Cv3wLguqh5pt8myKZc5lKlYKWjFEPEtpj376yi4TzjGcB1163+a4GXDhcDcuwYZGbB8h1ACOzZo8etL3kJMDdXeB2ps9rcZz1P38MpImaKC7hBgBpFdnnv/q1jJXaWmphe9Ab/3hBI4cKxUl0cOSYaxxWc1UIoMketVHZ/3SKPgyEQq3vXgREqO02CuhvKuJV9X2dWdwjy5osRM9DxRa0kIOlje9e16+pio+GIn0HeX3g2qnVLO6ApJh/5e7ULmfAUYrWy4bh6zF11Td896qQ5jqEAiGoFVS9GK7Qv7on4NiBN9QYLMrG6WIMI6EUwUus8FyssVjPnHRarN0esllKP70lzmLYZueBz0TqrgyockWmxeppIqevFgESI2rT5Kjt2EGZLG5IY+lhbRF9YnlldNTEghGK1zGzt+hNCi0mxt/4g99AhJLMNdO59ePXM0VUmeoEtEYWEMSClEsa9Lpaagz+HJOmLu+997wp9c0UMyNRuB3NRhcxZvRlidZpuTtFGy6Lvt48f18XQRpk3/s5bUizGJTwwfynmwwriVGe/KmBbiNVS6nOQPgfaiNULdA4qKYFajV6sto2zuuaGQ2Xir9+gREd6KBXE6sBXo2dW92JAcrGaLrMaAIRZvbM8R0cKDIgBSTIbk9UY1181h+PtceB0oZCmETxcV8dqVCtK56kSfHHkmdXmfRbPUv19OWt/BisKsRW57jrg+utX/7XSsDEgR49iLqxgalL/uHevHg9XKn0TLQAtUgJQMUVmtQPPLzirKdax83O25PRd0EujX1+9gn2+jz2lBs4sBQQHq/sCNzcynKHKrZHLndVUYnVmLYsyyx8/Z3p9k2nTnAftJtH35SjAtlH3IzSiEeM68naVBbesB0fVQKKdjNhuPjYsFN+ueQQRRnlmtWehOu7ovpDIWS2A5WL1qBO7NO0vNAqBajlDS/okWdgA9A7JcoY2RWQJs6lIqe89ZONu0xf2xOq8uD3FDjGGxWrm/BNFelBKLShuFu027bEqBTzxBH2R2CTR2zQv5iiQXKy+aJ3ViYJjGbH60BmaRgsFFsMOrVtgnRpP54bJ26w6EcIW0QWWO6vrent6Nya6bZqtg5ZnxOog0a6U9SZlSkEqS28JXc0y2tui3i/yMUyBRaWAD3xg/WNd6axeag3ePhlHGRpL+kt+17v0FvKz2jTVsyd2ezqzmkL0SYDx8c1xVm+GWD0+Tpixblhc1EXQznXeGIZAJW3gZXsO4Fh7AmNeF80kgF9xtDuvc+GL1UkCTE3RuuFlnMERKSaDNuYWCbYQ5+1KhWpFka4B6GPNgHodVTca/dzNndVBwVkdqNEzq3tRDehnVocECwFFdx4wXKSAWZydqiV4yuVSO7FXiNXFHSG1KpFYnWWQqYAjjPs1Ihhw5Ks0hY8y8JV2QK/nrFb2cuHY8IY3AL/1W6v/WuBnw8WAmOKKuy7R38muXcBjjwFvfjPwe79XeJ3rwiNcaPUC46x2EnQJI2byAosk2eU9Z3UGeB52lxo43SiTrLblWfsVJ0LrNNGN0YxhHLPAMnKBSaAvgBcKlalBC0xDtAmgfx2YQpsj54HnfYENQAjUqxkacYlE/OxFxAGollItqo6cWW31i2+7Lk3MjBHBXRcoj3t6bEqcWQ3f1+cASca41eu7qxWlheVRb7r55NB1USkrmnxtZlNJU2DPHlqxeqWzukRR3J4BwGI1swVEkXYQUYt/d9wB/P7v07YJ0DurpezHhVEiJXDJJYTbWrYh+Y3nonVWRykcYdwzc0QWvV4MSIioe4FvbQtDJJmNihsj6hA51HJn9ZguzkTmrM5db8b1V/WlHuQO2KKeZLYWUA4fPvv5XoFF8/OQMSBpCrz73eu8IJ/wl3S+9pgfYqk7IENRKSRf+ioan70V8vffgUMHMxw7trzN4sTBr7qIU4fkQpOzi5hoHkVznrYjSNPNiQHZDPJYiXMt9tO4dz/q8Ry+c+9RPO2pGS6rzuOJxk54VQ++JRE1L/zVZin17g2yKJA07S0ITvltzDcIxeqHHkdt+gl0m0SLbEr1CyxWq3rnxhAFXNc/SIlu6i4Xq4cVKddjRQzIMAtsA1GqL/IVxOqBkQKmj52sJ9hzmY5OkCcKC7+56GMW2Wp1QeMm7HR6kQqBnSBaJBR8ijEgg5zwuaDjnH2uCIFVRWwACNxs6BiQmbCKnZfpQbDjADt3As99LvD61xdely+0jrpAHseIC2K1dlbTLIT0FnB9nya7vFdgEYAQ2F3v4ky3TjKgzXeEVN0I7WmiCnDmWrCFgm9LxE0Cga7nrDY/UzqrRd9ZXXFitFsj9odpavLd9Y/1aoZGEowuVK4cG5YzPTYcVaxW1rIYkJobotkecTzbE+kERKWsHxu1L8wyQCm9g8vS161nS8St0RcBpLJ0DAi0WN1KRnRWK7VMrK5WoRcWWKy+oJGS2NDS29W6MaMQMxwsVjPnnc0Sq2+9FThxgrZNgF6sjqL+riZKkoR+G/F2Y3paj20uWmd1nPWd1QtEH0KhwOLI2ccFlKnfJOiaBMLQRJaEdGJ1GJrMag8llyCfNSdvw8x0qoHUg9z1JmVRBJnZ2r1y5MiqbUrVF1J6BRYHfG9JMmDQliSI84m52freGuRIiSIkSx00Ih9HHmxAphaO3nt29mvxWHsHMyLy7/4B9eZxdI7QZmtslrM6h3KnQV5k8lznjY2vPYQxr4t/9R934/U/7uOK6jz2L+2CXzPbGxsXvlidJFqsJiuyGEWQZtv7pN/GfJMmTxYAksUW6lYL3aNE52yaQmZCF9Qql3UMSHtwZ3vmDPDOd67d5urO6tELLJ6VWT2qs7rophQr+phBzurMxmQ9xd4rfewtL+HkocK9dKWzui7QTPzRB16djhZSrFRfXxQ1F1Zx5A4lVhcEuGEp+QOysAH93MwMZsI6dl5R7j28Zw/wnOeseK3ratF+1GFMXryz56yOyVz7PbE6z6weVfgoZlYD2D0eabGaYECbhNrIUHFitGeI6nkUCiwGdoLuEsE9Ic8VzscFtq0XjKLRxGqlsCyzmqTQZpLovOZcrK4p7aweRaFShcU0I9T3oiU2MO787GdXdMl50caCs7pOIVb3BHvRd2GNKlavXGQzMTsjx1ilqf4Mcmc1hbCcLyyY+0y1Chq3NrOppClxQet8kXdlZjXFvYZhsZo5/0SR7iSoxb977qG/PyhFL1bHMfR2V2LyzMuL+R45Pa1zqLaLs/oDH6AVv5Io6xdYXCI64GJmdUJ3401TwBEpFKVCZ5zVNTdCeI5i9dwc8Pa3Fx6I435mdVnoCTnFCZafUAWxeuCEJIqMs9oFjh49+/kVQgpsG74lEcbrf29SDhare/mc0AV/2kMUKksyG80kwP6l3bh24iSO3lrIAVkpVrsuBNH29+TUrM5+Jc5a2pTMaqWAOILnZuQ7eMbGzn3euHSmi7rXxeUv3IWf+29lXHlNCY+lV8OreNox0rzwV++SxTZ2lNp0zmqzWOSUXEwGHcy1fZpAbCMk1NwQ3RbRIlteXNAGEAQ6BmQIsXp6WmcIr9VmR3oolfp9NmVmdZ4rXHJiHbc0ymdrjkcVpzkmUkAl6xyr6eue94wOrnlegMsqCzh2VC17vpeBDPSLihGI1XlmdWAnCJdoXKqZEssWhAdmVueCzgY3DfTOg/UWLWZngSzDjLUbO/f0/8CHPqQj7JbhOPBtOXrmZ5IgSp3erqCyE6MTEkx9i9FYeQxIa3SXarGOw56JCKc7BGJ1lvWMDBUnQmuBqO/OnapWqqN7KHaFrJJZPXLdjXwRP89h9zxUnGj0aOXesep2yzVbj4sIxE+g7+ToZStvoI/99V9f4Wfo5Wv3x1s1L0SzM+LuoLy/8CxdMR0YvS8sCsAA4Ps0BYKNoJiPOStVsytmlElzPgY2B1upWeys3gbIKEWtJOnE6nzRxu/v4tJGIaL2L3JYrGbOO2G4fcTqONbzpW3hrI4y1GvqondW79tHP05oNDZHrH7nO5fHYY6KTFS/iE6DSKgzomPFjRBJuirXyR13wzl+CE5riU5TzGNAnAjROU5yH3wQ+NSnCg/kmdUVB6WKpYViihNMSr3N0cxMq6V0cAyIcXZ2Uk+r6isxEwe3WGBxSGf1unERxWJSACpBOlhYN+dNQ9Vx4JU/g++79FEcO5Iuq7DbkV5vfgPX1YUbh8jCHoTMLNpCZXm7m+CsVvd9G+LMaVTnj51zZMdq5HFT59pvNWZi1N1QV6oUAs/46Zfi/oXL4JcsncV3oYvVSQJ58Ah2PPF1LC4QLYhFkc5o9W2MjyksxSUaa45x1da8EN15yvgms+3biNWtznBFUddcuOo5q/ufZylQJDEgcWrD9S1ACAQ+dKTEKAOvlTm1QE8AjbvrF1iUysJ/ff1pPP8VNVxencex025/24OUaMQB6jX9c23cpsmsbre16GNcquEiwWA2TZEqAdvqf1++j/UXF7JszQKL6xF42cDs8uzkaZxoj2uxemf/8Re+cJUdVoTO6rb0UakJwHVRdmJ0KXaIFe+JQYC61x1d+OuJ1fqz3zWRYDqsjT7eMIYDx0pRcQkKC+YkCdLMgh2YBUyK3TZGWLbdvkPRt0csVNbLljZtmMzq9qhidV5s1TirRUCQrbxKdE9vJ9swfaxSyB5+FAcPquU1QlYWWHQcvRuA4JzVcW4AymXYIoNsjtgXrlIQs+pEaDYoYlvsnvu1XCUYz68Qq6s1cdFmVn/4w8A73rHVRzEc6W1fRfWbt9LFruU7F87KrGZnNQUsVjPnlyxDtP8oqkFCKgBPTwPBiAukq5GvvJM6q7/xbfj7H4RIYrpt31mG5FsPonbf7Re1WD0zo8Vqamd1u00vVs/O6kKblGMamSg4wsSANInEOiN6eJZ2aVFdZPJTn4VjZSg1z9Cds8b5WHWjc87XfuIJLM9WDkNEmQO/4sAvWXqiTyRWA+hv9cyL6AyIAUkzM8BerSKfcXstz02TCAfkbCeJfktrzoVWOKsrpUxHkQzhrG4kAfYfK+GVz53H0caErqYFaNEnCVCvm9e7ro5WaGxw//kqyMzSheWIyTOrKTcDJPd8G66VohIvkIvVrnvux9qYlxjzujrYD8B11+n7rFeyaRfDNotuF0lmY0fQwtJJomDCKOrlc1YnXC1SUnxpnY7ut5yIxlEL9IufOeg5P1tDCBNJArSb6ervS+qCg+V+ggNKJZAUWEwyI1bnbabeaDfyVUQfOI4WKzvrXBSm33LLLuB5uGyqg2ONsf4qlZRYiku9fqs24dCI1csyqyXNeZBlWkwsdP9DidXK3rhYHQx2Vj92bwu/cMfrMZNNLROrVyV3Vo863IhjtBIftTHtrC7ZCTqhPXonnosTgRarK06MdmiN1m4xsxqAV3GRZPbo440w1IvYVoqqG+rrmwJTDNGpBjq6h2JXSJoiXZFZHYx6HuTfVcFZrQttjh41tCxf2/d1Jv4o39cqi2zlkkJ7GGe1UsDf/i1Ove0vEUUCh/YXXt/Lojc/e57eDdAlEKuV3YsBqbkRmvMjTpZMH6IKMSAlJ0HYHvH8WlEEL6g6o4/nV4jVXtXTtVcuQrH6+HFdJPfBB7f6SAYj2xFqboTuLG1+/zJntZ0M3NXKDAeL1cz55ZvfRHTHPagee5RU/JudBa64YnuI1dFHboKXdhEsnqY73m5Xb2tJ5um2EW9DOh1tBKQeJ9g2vVh99936/2THqtTyzGpSsdqGnYt/RMqyLNfhWqmZNJA02XNWV93onK+tJ57Qua29a944q4O6BxH4vcdGRko9H8ljQIYpohNFcK1UD7DD8OzvIt+W6ha30CYD41vkKZ2T255b40Nb6awuK73ddRhndRzg8GHg+d87jvmo3BerkwRLcQljY+b1uVjddNdqcWiksnVhOWKk1PMoyvtM4pS0WO1G5GK1I86xD0gSLDUt1H2T2QUdrzQxAfgVLfh1Wtuj2OqOoIXFo0R2eLOzwfEsWJWSdtFRfGntNpLMRt0L0V0kuiHkW/QdaGeaG6EZugN3xiRf+wbaB04B/+N/nL0gZmJAyoUYEC1WD+gLhjjWYiRQqSy0AD7gQssy4Jd/ee02AawqVq+7/T93pJd0P3TZpRmOtSaA+fleu8V+qzLh6V0mo2YKmPO1FwNC4VJNU50pXHBWO76NNLMGxIBs3FldGiIOJjo1r53V8dhgsZrQWd1MAlTHbMC2UfYSdJN1YlCGpXhPtCxdaHTU3QD5ok1+C/S1U1eNupc8DHsLuBUnRnvUQqs5uQu6XtHnbJumlkfR/dobw4wYA1LMAofj0BTL7hXs64uqAIjE6n6/Zbm2NooM6GNn7z2CxpfuwRONnbi6fgYHv1iwVhezpYF+gcXuiOOtvL8wMSB1r4vm4ujX1jLyorsbKLaaJMA//MPZD+b3bwAQnqvv4aNM7pLkrDz0kRcsCtx9N2ERwE1GSuDSS/X86UInzSwdu0bprF6xIyRwEnQpIqcYFquZ88z0NKLUQc3uIInp7Gl5ccHtIFbHmXaMlNChE+mMMFRzQ5rto9sUKXVsGrWz2qZLv+hx993AJZcQnrP5oFGktGKS+TB7Y2eikzYpj/W3PFN9BkZMqrohoujc+pcnngCe8Qzg5Ml+mx3poVR3+5ORUU8wU0RnWQxIINFKgoECsBD6fd03uw9q/mwxSarlRQsDOxnsrP7YTQCA1nv/Zo0XmEJKgT7WSikb7PSJY8SZjUbk49QpYO+1E7CFQnxmoXesjYJDEa6LyYBGrE5S69yF2nXI9Q3KKJDYCuBZKapOhNYinVtZfvFWOF/5AoQ8h3N1YUFHHYxbvQtfCO2u9sraWd1uXOCLosZNuCNoYfEkUUGxPLPas4FKRT9GJFZLZWHC76C5QBff1Cv+lRdFlYMLPyWPPIFW4qPVVJj77NeWP9np6L6w1t/94HgWpFpH/ByGPAc6MI638nA7WJIE+NKX1nhSSiSZBdcu3AeNSLVuYbU4XtbXXXa5wNHWZF+4NztCxib0sVqVkhaSRr0v5iKd0GI1lUtVKksX2cyxbX0PWavvVsqIWucYA7LOQEnON7RY3SkP76weNbIjSdBKfC1WAygF0LuCRr2Hm/u35Zk6DiU1ersrMqvh+6i40ej1R0yti15mNZX4lY8L6hVtOqAwSKxccM/HMCOK1R3poeynvTZLdoJuQhGBYS9zVo8cA7LaIlt+QgwQq//yT5r45KHn46C6Eq+69FEcOlD4PlYeq+MYsXrEnWx5H+OKXiHf5tLohRABQBQE4I2K1fffD/zWb61yrCuiGop/75zIF5jyxb38HCCa1Pzf/ws8/DBJU5tOXrTwgq+bZeJgyMXqfKcNUNjVys5qClisZs4vExOIUgdVN0TSouvR4njzxGohiJ3VIoBnS5REROoolcqsFFI5s7YhUmoNgfL7ynd1Um79B4BTp4CnPY3QWZ1v88ud1aNWOs9Z+WFSOauDar8wz3rbsjdC7qx2onP+XA8dzPDyF7T7USBRhNmoih17XRrnDKBPpvyEsvRtuFrFYGd1oYN7w5feiIXDKyrH5dmMK1xJ4YBJWTKthZjWI8dWf4E5JuEWnNVDZla3Y09HUuyawPN2HMW9D5rPMHdWj/edPpN+B/Pt0QP9pdIORQHa61ZK/XU1GnRtJu3YOKtjtM/QWWiSbz0IJ4tXzzYfxOIiGkkJ9Ynl58111wF+HgMy6hbqzcYsXO0IWliaJupkTQyIXRSrR67ShV4ExI6gRZevbe4HtrMiS3OQWB3phaibDj4fN/zadyDuFK7xRkOLPhOFa9Rx9A6RESf8UerAL5sYkNxZPeBGLuU6b8cIVBWvcPy2PnfXvYXlLjtTBfuSKz2c7Iyd5ayuj5nzv1TS4u+o50G+jdjKdJ2BFsEkuhcDUjinBgk0vQKLGzsPXRcDFy2SKMPp7hjmG25/kXKdBkeOfwC0WC191Cb6ovLIETOmXQC9z7McZHqHwSjXQb5g4a4Q6UZ12YdhbyGkSrmDJz9n6+UNi4lrkoufhTGMjoMZ4X6Ti9VBX6zWW/SJ8poLYrUlFNLO6GK1KuaAmKi4QedWcvwMFqMSnpj6Trzy0kdx+Ezp7GPNF0LyAouRRxJdkzura25EJlb3PgLP21ix1UcewV2//VkcO5otf2urjI/XXbgbhnyh1TXvmWqOgH4z1OarzULKbSJWJwlSJVB1I3Spaq+YXUzLM6vjgXMvZjhYrGbOL1IiyhxU3QjJzNLg1w9JkuhOkjr+odMBxsaIxeryBHxLouQkdIKicU7U3BDdpe1xZzt+fEU28KhkGeRiExWrS3oehKHOQ6cmivS5RSpWmyI620KsNkXwSk6M7gyRSFeMATmXLZ5RhPj4NK7efzOO3X1Ku8SSBHNhFVN73J6AMfKXZia6ouCeCQIMLlRmvgsFgcPNKZw5uGLWaSYkRWe1b0uE8fqfhbzkcgDQ0R4r9/BlGZCm2i1iJk2eLxClzlBitetk+mObmMDL9+zH7Y/s6B1rz70LAK6LKb+FuRaBWG1EH99Ozjm7fDXSVEc4Uzqrk5aOdqk4EdrTdDkguTjhJF0knQ0OyBcX0YgDjO30lj38i78IvOw7Y92/XOjbG82MadzvYHGWaEISRf0t6pUKbCuDbBCI1aa43pTfwhLVsKiXJap/rNWFzlYeMJOMwwztxMNCXEEjdHHjHxZu0s0mutJFeaogguRCygYn/MtuI6YIXrVqYkCqtu4LBxyrlOt0xVKinfgoF8VqU2BvUAxI/lpAL7LJzD47BmS8Lygu+71zpRDbEtgSYYco/1ctz6zunRADCyxu7E85rtD5ygPE6kxZWGxaZxdUXEke/zBq5meSoBkHqIzr77NUAjqjxnUA2lmtRO88KfmmjsOIwtcyZ3UQILAlotaI/VceAxI4tHFTJrPaHqvqAq4UwzjjUMwX2fq7w0YTq9vSQyUXq4VAyZUDdwIMdazKhuMtX1yImqNl7WuBdXl8EQCoeJ3zIAwhGx0syCoOxZfimp1zOi837+xyoTb/XC0LNT9BMx5QJ2WI4+25lUsl7awedXyU6vo4oiBWb2gH5nveg7sO7EBJdZbfT1dkVg/rWC/y7W8DP/dzhbnryogZ34dtZaMtWBQIw+0Tf71txGqz66zmhuieww7kMAR+/udXPLhaZrXDmdVUXOCzDeZJR5oiSl3U3AjJPN2MP471nIHa/dpua3GCNAbECuDZRqSbI9qebAajdS+kceScBz7xCeAznyFs8O67Ic/Mo3zrzaTfV7OpXfvURBFQrxMORPJt375D63zMoydKRqCgigGJMhMDIhHOEPUF5jqoutE5TXI7n/48KlkLl1UXcOz2Q70LX8K4nahcE6ts9RSOrSe/AzKrlRLoqDLC1MPpIyuOY6VzJJ/oJQNiQKQ+jlYS6ByUtY41j4RwBwgeQE+snqzE2LsXwNgYXn7pE7jt8GX696TEUlLqbafvxYB0hl8ZOnkS+LM/W/Fglulzy0q1UL9AV3FWSnqxOm7F8CyJihuhdYZQrK5N9HdZHJ3d2C8vLmr36M7lCwfPfCawa4+1bZzVADDmdekE4DRFqkRvy3PdDdGcJejAOx1IZWEqaGOxSTQsl1Ifq7lUh3ZWxwptGWDh0uvwA1fcj298frH33KGjto4BmSpUWBwkfq5CGALPec7yY20lPip1E9VQsbRLdUA/O5Sz2i8cl9n+v+65mw8e8oXJyUk4Vgo5u9hrtxGXMDZpJqWuCwEgi0ccd+WiR9nVjqw2wSJblmkx0V7FWb1uDMjGndWOJ7Sov55YbaL/JieGaDt31I7qTDP3Ia+8Iq5jlJzaLNOTDYHezqiyn+p2R3RWF7Pb4ft6wXXULGiz89Kt+qg4MVoduj5GZjaceln3sy0CF2FetLFYd8MZMbs81d9NJTDXVFGsHtUJny3PgS458fAO4NUwu0wCt3BcZhwXh+v0CWahY1HWMD1rYc8VPlwrRXLsdP9Yi659ALVyikYSjHYtFDOri2L1iG7tZbn55hwYZLoAoLe9pSkeXLgE/+qSh3D8YGEyuEoeulJiQ+fA3/0dcPvtwH33mQeSBF3pouSZ7yYItPGAKCaNndWbQNFZfQ67QWZngfe+F3jggcKDUiJMXXil/rggsCW6o+7eYACwWM2cb6TsxYDEbboeODl6Cu7RAwBo1epOR4sTlMX1olDBtxO9HfXEPFGjkSnQ1KXLYNpkTp8mLlpoQoZ9FZKuRDcfOopq8xSoz61crCa7secxIGUXZTdBJxoxRzQnHymNjelJeZvIWR1KHQPixOhO0xVASzIbJSdGLDcupi3un8G438FVtVk89qgCjh8/q3iKJRTSLoUrC8vMM0O5PMyJXSoDAhlOH1txAUmptyT6yyd6gyb8MtR/s514hbDufpsAIIqjhWGO1YgEO+oR9u0DYFm4Yl+KE+1xYHERaLe1szoXRC1Lx4CE5aHdTrffDnz2syse7Hb1xDwvVEYoVqepLjK4GTEgVSdCe5ZQWE8UHCtFxYnRmd9gJ9NqoZEEqE+tkh/uujpHdbs4q70uFjseTVxH7iJzBVCpoOaGaMwR3MSM1XHc62Cp7dCsuq/IKPWrrs6BHrDYmET62jtduhLfc8l+3PdETZ/4SuGVH/1ptKSP8s5K/xfOIffzyBFg/369u0r/0UQ7H2sms7rq6GMdMQakLf1+Ti3QiwFZV6xeEQOCiQnsDFqYPW7+UKeDtvRQHjfPuy6qbohWe3QHsMxsOGVP99lEkQpnOasHOeFz8WmDUbauM0QMSKwgkGHnjiEatG14luwtpG6EhQXgb/4G+j4ipV5szx3QZaEXQkYshAgsjxUuBWrwzqgh2j1brJaji9W5kaHiayGtS9R3G9HHrpUx7nWw2Box/xjon39+McpsxDiYJNG7LIL+NRV4me5jRo5tWZmvPeKxpila0kc1KNxXHGewc90cy0JcwcICMHHVOHaVmph+dL7XrsysvmsfWqxujipWm7/renqXQS1I0IxHvL5W9lvmc42GafKBB6AUYAmFK6tzOHZnYWdQvvMw6LtfLaGQRsNfXwsn2njetRFOmzUAxDFaiY9ayXyGvq+/qwbNjr7t5qyuVLaBWF10Vp/DkHtxUdeb+vM/LzwoJeajCiZ3mT7QshA4EuGouzcYACxWM+cbKRGmjnZWR3QXcPyxm+AdfIy8bG4uVpM6q8MUXp7Vu0DUq5tiUjU3QpfCkXMeIBerJycBAL4tEXfpin9F7/0LBNNHgRad6xEAolNzGFOLpM7qxBT/qtWAZhzQCDQFsdq3E8RNmgOWsXZWl+yEeIeBDUdkfffTBliaiTHmdfGCZ4W4Z+YKyBtv0gPRcj+PrmQnoy8I5Q6qFYWv8ufWJIoghEK57uK6yZM4fWjF55ZnM1YKYrUtEQ3KrDZ9cUv6Z4vV5iJVq2xLHUasnqonuPRS89jkpG5lehpYXEQ39RDsndDPCYHJaoz5qDx0x3DvvehPGnJMpELPtU9YcFZKLVaTO6ttqTOrF+huNDJRcIRxVi9s8JrtdLR7dEUMCADA0Ts32uEF7hgxM6Yxr4uluATMzIzeZjH3s1xG3euiOU9wEzP9dO9YKQYc5ljz7fSiZHYsDCpaaNyvJ2Z8XL43QSvxkE7PQXW6ONEex7HOFMpjBcXD9FsqGb5PPPRQB4Gf4WtfTXvH2k58VOt6SuKWXR0pMcgFnqwfA7IspxboxYB018u/XemsnpjQos9JvRtE2/QFxKTptxw9nm22RhSr83Or7JkYECqxWpzlrLaEQhqvMUbKsl4cyUZwPGtwDEgC7C0vDS6uCGix2pZ60XmD9/H3vAd4xzuAY/cv4O4zV+hzNHdAVwRJIUQAy9TqckAQAyIl4tTuLzb7PnxLImyPOJ7NBeCKFtLaVAuNUiJTFqxaBeN+F4tdf3RhppdZbe4ved2NATvlokiPB9Zqsy19VMr986jkZ0TOanu5C9xORnNW532hv0KsHlQY0yx2LcZlZBlgX7Ibe0oNnNnf6B9rUVgHUCvJ0cXqFUULa1Wl5x6j7MDMxeq833LdoQqFAwDm5xGmLkp2gn3VBRx7uOAsyD+DgrN6Q074dhsLtz+Ea458DmdOZ702m0mAasmcR76vjQdEzurtJlZvH2e13oHbPYcdgouLwA/+IPDVr5oHzFxzKS7sFAVQ8lKEqUMsdFycsFjNrEu7Taz/Soko1U6UJKJzqiaZLqhF3atvhlgdhVpQLTlEFd+BXjGpqhvSTHJWQB2vAmyCWG0mDp4lEc3RnbR5trJICM+tgwcRHZtG/d4vEWdW23A9LagtxOVNEKvl6MV+DDJK++5XquiaMIQQSidWmJ83wtKcxJjXhf3D/wav2LsfX/pagOmwhl27zQs8TzvBCcRqqax+BXFAFyoTav3t5LmzetzDd+09gtPT9nLl1Gx37YnVeQyIHCxWC2Q6BmQNZ/UyG5kpTLNuhmIcI84cTI1J7awGgIkJfQ499ET/PRdsf1qsrmxIrD5LOO529aKNlen3vkR33aaxxHg1oc2szgssOhFaLbqOViYKrsmv37AI3m6vGgMCoJ/7G13gYrW5Vhwr0/EEVGK1MrmflQpqboTGIsH91jir616oxWqK2Z6peF8s/gVg/baV6l16x08KjF1SwdPHprH/niUsnWghyRzsX9qFciEFBI6jt5sPaz44dQqH3vNZvO7Sb+LOvz+lHzNF8Cpj+mBF4Ot9TEM6q1cdn+Rb/1c4q0tOsv6ugLy/yz+4ceNQnBG9c0gVxE94HupeF43WiNOp/P5d2WA+63r0CiwWHsuzoNfK8s+ycyuwOGQMyNVjM9h7yRACgWXBs1PE6cZ2GnS7wE1/p2AhxU1/ehofOfAi9KvKmYiZIVz767JKEbxSCSTiZzMJUKv2828DJ0E0an55Hg9W1rtiWiHR7o3cYe46GK8kWIzLNNntRQE4r7sxQKjcvx9429v0v9/7XuD971/eZkd6KJcKYrWXju6E7y1erhhvjXLt5pFI/vIYkGGc1UlmYzE2cX0TE9hdauD0if6C4LLPFUCtkmlhedTPQPWzems1aAF8lLlHvshmFWJAhigUDgBotbBoRMPLKgs4fqgwlsw/g0Ku8IYKvB84gIW4jGvGTuL0Y0YETxK0Eh/VgqGlQpXfjm0WA7LUQtVqk4vr7343bXv5LmTPknptbYMLbAt3PIyd930eOzCDU6fQvx8I0RsWAGb3xqj3BAYAi9XMAP7mb4C//mvCBvMYECdCEhM6q1MHni3JOwVysVopxJGCZ0mU7BjdUR0TOWZ0VLITdEdZ1V+F+Xng1a8mbRIAcOoUsVidJFAwzuo5OjVJC18p7VaeVgtR6qDuhvQxIJ6NiQlo0Y8iX7ogVo9cPKaAzhXOyBdtlNKDcQVs7P1nGZbmU4x5XeDZz8Z/fPlRfPixl2CmW8POfUboyZ3Vo4rrSYIodeE6hXPKdXVkw3oFP8wosFyx8F3XNXG6UwcOHuw/LyU60kW5WtxCmyBM1p+cyki/72/P7cM7vvyi5Z9bkiDNlg/C4Lp6e/J6k2jjrH7V8xfwgheYx6amMBW0sHDr/frnFfa9yZouZjlMx6CUzo4bG1txaXY6+joQeiEkatCNnOWtd6D28N10RWyVQtJJdAwIZeErAFKqfmb1Rp3V7baeME+tkh/eE6sv8OHjyo6VQqw2DkXb1QUW614XzUWCvstM7B1Li4sks708s7ogpABYf4xkrlkAOHlSYPzyOp42No1DD3Uwc0Qf41y30itfAKDnThs44ZcSuPFGHHvLB3Fofgz/7in34lv3mXPIbNPPxephawPkGsuq3UWSoJ14y7b+w3F0tES8zrHmnYnV70N3TSSY7laBgwd1VHGx+qDrou6GaLRHXLzJBcWKbwQvgnHcSoci0BPU1vy+egUWN5hZnRdYXGecJBOFG/Y91BMVB+E5CnHmbGhc/+m3P4zXuTfjGZ378MnP+jjSnIJX6vdVQdkaPQZklQVc27ORKmvkGJBmEqBeM5+958G3BtxnhyFfuPIdVAJdQJVk8C2lHme5LsZrKZbiYPS+q9jHAkMX2kyWOph/5DTwvvfh7i828b9/N8NsXqrB9AWV0ioxIBv4vtIUuOWWFceq7LPytUcadpv4omppedZ+1Y3Wjxoy4/+Tzbrun8fGsKfc6NfLlhJxVigGCcAtOTq6Z8hzodEAbr11xYPFaCwYZ3UyorNaSqTFIq+9QuFDLHI1m9rhusvXtWeOF8YpqxTBKznx8Ie6fz8WojKeOX4apw8YNdostNbKBWe1S2c82DbO6iiCvPd+VO+4hdxZ/fa3E5sm41jn4luZ7r82eMCL9z6BCSzgFfYduPUTZwp9yPLzM/AVuumIu20YACxWMwOYnSXuKNMUUaZvvAnhamHPWd2rpEwDuVhtimfkzupOk0gAzR2XToIusYhw443AoUOkTQLYBGe1acyzJaJ5OtWnf24RitW2jTB1UffC0fMIc+K4t82vFwNCceLGsRaAN8FZ3cusphKrVw46NuLuaDaxFAUYq2aAbeNFP/YMHGzuwEMLl2DXU0yFTd/X2wZHjdpZrfiXbaPqhmivM8jNwhiWUPhvvxjjVa8CTnfryy/O3EGUi9VCIHDNVrR1RIQkVpjwO/jSmWvxvkdeDnWqkK1h3F71oPC9O47OvlxvQG6Er3//6llcc4157MUvxqTfxtwZqau9rxCrg5JANOS2ufkv3YedncOYrESYL0b/t9vaoWilOvuV6HwFgDSSqHkhumeIKvZFEeLUgmec1e1Rc29zsgxSCjhCO6s7SxvsaM11I6qVs58zMSCdmCCfdDPJBy6XXAIAUDMbLDK5Gkb8czwLKJd1/EODYMCR99O5+EUx21uRWb2R6B7fTjA/D9Qun8DOoInpg03M/M3n4Nv6PAqKaxi2Pdwi+YMPAl/+Mr7/k/8Jnzz0fDxv6hiWlpRedUoSxJkNr+IOf6yFp/OP633vAz79afNkvsskWL4g6FjZ+t3LSrEawK5dwHS3Dhw4YOIECq93HNS9EM3O6GJ1HtWgxWqCvmC1zGrHgbeeEz7LjAC3sT/lemL9zOosQyIFPDvtF6EagOdkiNP13dor+euP+/iJp38Nzxw/ja9PX4X9jV2o1vqfpRWYeJcRxeo4teEVF5vzGK8RndWNOEC9bn7OF4VHnYPlWb2eQLUm0JaDC60ORX4hOQ7G6xkWozJJ8em04NTtLbhH618P8jP/jIXpBPjWt3DgjtP4lSv/Hh/4H4f1k/kui8LtrBQovWixge/r3e8G3vzmwgMmY3x5QesRM6tzZ3Ww3FldcQaI1Wax6/DiGHbsAFCrYU95Cadn+vFy7cTHslt63s8OeS3ccYd2ra/8u0UBuFbJaKJFlH12DMgwxepaLSxGZYzvLeGKySYOz9V6O5dWusB739ewBq/9+5FkNi6rLuD0KXPtJwmacYBqHjETBDoGhGgKum2c1VHUK24fEhmacqQEHn6YsMEkgVQWbGG+w41csGmKhVMhxr0OXrz7EO7+WtozYXrO8r4k8BXHgBDBYjWzLvPzxB2lEWurbkSbA53pAbinIrp+IcvQueNbGF88THesUaQHuZYczo00LKazHfqGvgE+/vGzDJAjkyR6IYT03JISAoBvScQtwuxXZZkMZELXfhwjUwJlJ0a0RLQMnRdo8m2IYIgt38OSf0n1uj6/mjQXmEwyEwNCkMmYkx+r6+o17o24OxYXtSNj3GS8Xv9C/MyLH8TbH/wB7LrCWAl9X1d4HlWs7m1RX8U9s46DIOlKOCLDK77PxSXfMYXZsLo8tHmlWK0PeaCDKIkyjHtdPDy3G7NhFU/cV9iZYNxetRUFfypOvP6A3JzjdqmQe3zJJZjcV8HjS7vxO/e+FrX6it9xXe10GKITb33qC6jLBew59S2cOVX4PsygWceASLLzFQBkZqPqROiu537fCO12bzGs4sZod4jE6tylaWWoOBE6jQ0uiOVf7LK8B0PPWX2Bi9V537dvn15gOrUwepvFbd+VCupuF40mwXeWX5tGTVEhjbN62RZ1W+e4y/V2tJnonomgi1oNsHbvxM5SEzP3n8bMmQzfMXkCZU8uSwTqb30f8DksLgLQO34OtXbgsr0SdiYhT04vixPIjzV/DwPeIgD9VaepdmD1JrXGoVh0U8LW19q6zebild0fR+3aa2O6WwMOHND3iLHC611XF9qkEKuVBbcWaHcmUQyILpZYGGfaeqfYmudBz1m9sT9luTYyJdYW//I6DY5aHim1Dp67QWd1luH0goenjU3jmonT+I7JE5ju1lAbL/RVeRb5KBOFfOu/t/yeCGDkSIVGUkLNrI3D87RBYNTdkoWs3nLNRjshEqvNmBuui7G60jEgQ4jV/+7f9bqDdY8VQCGzen25QjY6WIj0/aqZBHjTM27Fxz/l6VMnL7ZajAHxMy0kbUCs/su/1LfEniFqlRiQkh0PFNbXxeRrV1f0W1U3QquzzmdgBLhMWVqsrtexu9TEmfl+Mey29FGtFs6lYQplF3j44VW+t17GuD62sVqGxWjEugtmV1CvC87d9XIIySp3Vu9wMP6USR2rdeJEr90odeEFyzOrh5omZBlw9CgAoOpGej0/y3rO6mqlH91TcWO02jTy2rZxVpvzr+JECKlqcRmk1GvdZMSxdu5b5yBWnzyJxa6Pcb+DHUELC3PaJDkXVjBVWn4i9RbE2Fk9MixWM+syN0e8KJSmiFIHNTckbTeBq4UvK6YTJ44eRefwNMYf+zrikM4BHWXaWV12YrpiiIV8zjRbZ8JwDrTbWOZIoGB6Wm/f3xxndYqI6vtC31ltZSndx2q+r8BO6ArAxbGJARH9bdQEqwG9wln1us5oXaJZYEkiZQosEi7ayP6xKmBjzuqlJSzGZYxN9l0XP/bx1yKtj2PnLjP5yDOrR71u8y3qxVxC112/iI5SkKHULn/Pg3XJHiSZjcaRggi3ilitV/fXyU1TCjLOMO53kGYWfvxpd+GWLxSGBkmi3V6lFWK1O9hZDaAvDhimXvQU3HrqafiD+16D+viKIUi+yDCMWI0qqm6I3eUGTn+zkLOdu53yPHSqhRClkCqhndVU/XangyTTBbWqbohWl2ih0UwcnDyzeoPFfpJGV0cfrdbx587qAdEyW04+AdmxQxcunCc4D4rbvstl1LxQF9Yb9XMoiNUlJ6bJWTf52nmBxd73tt5Ci3FWj5cijI8D2L0bu4Imprs1zIRVPG/qGMrlFe/VcfSOrkF9+OIi0kxgT6mB//v2Bvxrn4pLKws4+aVH++8/F09MP5Al639nycFjAIDoyGn882/ehslsBjPTqvf+V+bUwnHgiBQyWeNYlep/lwVBddcVJUx3a1BnpnGsNbGsiFIvs7qzQSvySvIFpmqgF9lGEbxyejEghcccRy9arPUZnGOBxd4fWWsHj+mX3Q18TJ6TIR6Qg72MkychVAbs2IEXvesN+H+feg8m/A6qE4U/mi+IjiimtaR/1gJu/tywHDiwouvIndXjfaeub0tEo0bCFIrgWSV/4xFp67QLALBt1OsYOm9/ZgZYWGvtcEXBvn4ExPpyRRIrzEcVtH7pt1B9xj5UqgLPqh/Ho/e2gUZDmwMm+mORIMCGhKQ0TuFnXezcoXSN1fxYVwrrDlFm9YrCsFqsXt9ZLTMbFS/uO6tLSzi9VNLXZJrqdiuFNjYw3gKARx5ZQ6wu5EBPjme6Xs4o11eaLs/adxz9uSb24Httq6XF6ikX2L0bjpUiOWkiwKREM/FRm3B67epdQUMc0+IiVKp3XWJsTOcMLiyY72t5znzZiUnKBQF6qrgtxGpz/lXdCCGVAavfNB56iLDBUZzVR45gMS5jwuvoceWiAqTEfFTBVGX5ieS6Wj9gsXp0WKxm1oXcWd0rsBghkYLmIlYKsdRh+YEtaRxUho70UPdCxHONwS8ehijq5WsPfZMcst2cc8lgWo/N0CNOnQIuu4xYrDbnkmdJxITFO6URq13EdMdrvi/flmQZ0HmBJsezAd/Xg7T2iG0rhTTJtHBVq2HC72Bxicb9KeNCZjWhWC2EAup1WEIha5+Ds3qqP0v3Agsf+YjAy19uHsgzq6liQIoTEttGxY21+LUaSYIkteDYmd6ivns3fut5N+PnP/l9/UmjlOiudFZ7SkdrrNXXGpFkPAhhWQo/cMX9eOKQWPZ8IymhviJDsTyEsxrAWWL15GVV3GtdDyUsjF1aW/47rqu/v2HE6khnfO8uNXHmUGFmkDsUqcXqfDDuROeUWZ6mqxSKCUPEqQO34mmn+nqF3zZCvstCZIMFylUOdL7hYDLorMh7MAiBip9qd96FXDgmvydOTuKS8hL2nyRYcTV5qo5n6azikkQjGjH/1rQLAKhWMeZ1sThLMC5axfVXGZSLXhCrx8YA7N2LnVMZZsIaZro1PPcN16BUW6E25u60Qc7qhQU9oXtKHW/+jTHghS/ElbU5HP7M/XqQUSxaaNoc5CiV934bABD+6QfxV5+s4Nef/mlMHzJvsNvVfWy1cFyOo2NA5BrHqpTOpAaWi9X/+oWYzqbwwPyleNlnfg31qcJn4OjaE43uiGJ1fs1WAxN7YI0++Mqys2NAbL3jQkZrx3Usi48Zlvy7W6tPyMVqb/jxg+cqXWBxyH4mfPQwAjsBrroKVz+7jN/85Rh7d0hUdxVC1vP70SgKkBGoqsHyeyKADfWJP/zDK0SYJEEjCVAfM5+RiT8YlNc8zPEmea5wEOhYNwoFrCBW2yVPO+uHaFfKdTJo88xqb0UMyCBndawLRD96tIyrnyaAffuwr7KAUw/M4vN31dCWHsq7qr3Xl/xMF1gc8vuav+lLmGocxCXp0X4NanPN9s7pPFZilIUmI1b3CvYBgK134647LDLX185aqMVqx8HuHSnOdEwMhpRoS29ZJE5v5WiYic3Jk3jkznl02iv6pBXRGhPjakNFslclj9ty+guHgTtEsTqlTIHFMsZ3ecCuXbi8Oo+jD7d6x9pMguVi9bDRmXNzZqeOAnbv1uPfQ9NAHKOZ+Kjmp5bZebbROM5mE/ipnzr78TDcJjEgRgDWYjXtAY+PEzurk8RkVqd6UXwj88RTp7AQlTH+1CktVi8JoNXCXFjBZHX5Oe96gsVqIlisZtZlfp5eUFTQgmKibJrVfSmRpH1xIlogWtI0A7yqGyKepROro9SBb+nMajKxeqU4Tdbw5jAzA1x66eY4q32bVqxOhAfH0pEVSUhXCBAAfDtB1CL6EPICi74F+D4m/A4WZkevIi8zC66dAaUSJvw2FhoE7k+lIBPVFxSp1lak1BOxWk0XJtrICv/SEpbikh7kFnjJS4Ddu80Pvk9z3ebbUldUfPftZO0s0Xyyn+f4eR5+9EWH8PD8HvQqCUmJMHXhV/pKQ29r/VqD/DiGVFqguvLSBJdV5jE9XZjQJAmaiY96uTDgyotBrtfVriVWTwL3PVHHD/+IjfGpFeeSmTz13Pzr0G5mqLoRdpcaOHN8lYrvgUsrVpuiLFU3QngOGevz88Cv/Mry1JZcHHTLDipegna8sYJPa5L3BabAYnsjYnWng7moiqlKuOZ2/XKQoSOJinRtEirPUZicxBuf+VW8567rR280n5jnxaTqQtcGGDWgsuCsHid0gadquVhdduKzxYYi5nycKMfaWS0Edl27wzira7jmJRN46lNX/M6QOa3TxyKc7Ixj925zPNddhysmmjgyW9H59W5BHc1jhgbE4shQf26nF3wcaU3hVZc+gpnj5kBaLS1QjS0XlteNAcldxfby62XnVVVM15+Gx596A37yX53AT/1yIQfE1bUnmqE7mricLy6UHJQCE1FAsAhylrPaddePAckXZM7VWT0gBmQjWdgbjQFpHJhG3QuBK67QD7z+9djzgktRqxemuhuMPlgV49BcJlabmJ1BY8S/+zvgC1/Qp8qBA8Btt61styBWmxiQaNTxbH5ueRZ61VGJnNUK0N/9kEVRoRRks4PmyTWKoEupd5+W+s7qwEkQJQOc1eZWdM+DAa6+GsC+fbiksoSTjzXxho++Fs04QGV3X6x2fUsLSUOeWzOfugM7gxb2Nh7DqRPm2smvlQ3maxeZnQUef7zwwGrxRfki23qFYc29qSdWA6jv8LTbvdHoO7arZ4vVKh6ioPUf/R+0p9twuyvqdaxwwgcVW5sjRnRWyxX9lu+pwQUxu11dKD2r6R2Su3bhqtocDj2e6AsuTdGVHkrVYmb1kPOP2VksRGVMjGfA7t3YW17CqUeXgDjWC1f5qZXfZ6ONzZNuuQW4+eazH9+WzmrC6D1A14zoFUulwCwy2ULp738jdW1aLSzGJUw8fSfqbhdLLRuYm9Nj5h3Lr/teH8Ni9ciwWM2sy2Y4qwFo4S8jEqtNzqJnG+FrgUioNYPrihMjphIUo6h3rCV7A1WIh2h3GdTleImJY6Ba3TxnNeXNXWZ6IcS1UiSEDnsAepJ/Di7NVckLLBpn9YTXwcL86JMcHamgtFjtdbDQJBCr80G+SGkXbQoxIL69QbF6fh5LcYCxvavk9Ob4Pk1sSb5FPVgxIRHrTEjyLad24fk9e2AJhfTE6V67AJYLP4NEBCNQ7am18eLrM+wqNTG9UPh9KdGIS/1q5+ZYK4OKyKwVAzKltb3f/E3gf//vFb/j6jinpDv4mmi10Beri5nVeQxI2dNbRztEkR0mZqfqRuieQ5tzc9p8d+ONhQeTRN8PPIFq3UIrCWjuifkuC5Gi7oVoraELrEq7rfP3amvf+Hti9QU8CJfdREfmjI/jxXsO4+DiJNqjFjQ2EzLbCMD1OtBICMTq/NqsVOgiS1ZzVg8SgHNndSXp5TLveNFTMBtWMd2tYddeG1/+8orfMTnQg+7lv/OPz8NH9r8Iuy4x/ZHr4sprSrh39gocbk6hVCocl23rCX93gFht3MH3ZM/Hd+06iEm/jfkZ89k1m7qPnfD7v+A4Wqhd67TNhRdr+XnieUAoHTwx+SK88icvxwtfVJg6WRZqXoRGHKxbxHYg+Y4Q30ZQtrWLcNSBTJqa6I0VmdXrZZcrpfsOarG6FwMyvJDX20Y9pKC4dHgBY263V1QVAPbuRV9IMsc5TMTMuuTO6hW7jYapQ3PoEPDEE3rRcudO4PbbC0+ayK3aWDECI0E0aiRMfm55AiiV9O4l4hiQXKwemLf/6KNITs6i+e6/0LkSq7TZkR4qtWJmtUQ4QKzOz+e77/N6YvXe8hIevuU45roVHGtPorKnv5NL5KHsw9zDlpZ0/1dqapHy3pO9310WtWTE6o24aj/6Ue2w7x1Gu62d1ePLF+8cK4Ucwlm9oxb3xGoxVtfftRGr24l/lrPatdLeot96zM1m2Bk0z47Wy+cIfr9fB0ATA1KYavTi7Nb7vlotPLywFwtqTC+27tyJq2qzugZ5fq4KQFj976vkxOgOc33NzWlH7bjoO7Yf6wKLi2glPmq7zC60cyxA/Y//qIcRxa7ORGJvG2d1qnScXdimGxeq4UscDE8cI1X9AuTdjTjBWy19Hjx9F2xLIZMpMDuL+aiMyV3Lv3N2VtPBYjWzLpvhrAa0WB2nDlkBuDxXOHASmrxHoDfAqzgRhlh4Ho7cWe0YkY6i4jvQ/xzNQPxCd1ZLqQuVUBfvVDDOaqp2lUKSAI4wYnWD6HMtOqupbuzFyuS+j8mgPbpYbUQv18mAINBu7bY32qQc6F2zjie0+Eux5Rnoj/RqNVMMcgMnwtycjgHZV1v7NZ439HXbaAAf+cgaT5otmZUVearugMJX2lldGM3u3q0LoD02r3/O37+zfKKT/81VMd/F3rEOPvJxHf8w1/T7rzcFFuuVFWK1G6O9npi0jrMaAK66Sm/vW4b5DJLOgA43y9DqCFScCHvKDZyZKQxlcpGu4sO3JMIukVhttg7W3BDd9dypazA3B7z61Vgu9hW2xns1n24B1zir3aqPca+DxdYGFpg6HcxFFUzV1+6XgpLQW6gvYGd10kl0YdwgAEol7Co10JoZ8bNNUz3JMVvUx8cUFqPhioqtS8FZPeZ1sbhA0BeulVk9YDdEktmYqCa9a9P9nu9GMjaFmb3Pxs6dq/zOoH7LEHUyfOnkM7FrX188vub5Jdx06Pn4n/e8brmIMsxiGPpi9fQlz8XYDS/Wk8cw7m0Hbyc+KpMrxGqRrX3aKmXGkme/l127gDvuwNnOcgD1ss4aHrVoXy76BCWhhZlRz6ssOztuqid8rbMouhnOarNNfEOZ1a5CnG5ArD7W0M7q9cRq46Ycya1sXKq10vIYr2Hq0EgJtJoZ9t94L37gukN46H7ZH07lu4JK5kPyPH0PGxCBMZCi+7Vc1tcAxVh2hVhd80K0FgeMZxsNSGWhlfhofvyf8aY3rRj6GbG6XOu7lX3b5BWvQ37pfeNbjharn/lM7C0v4WvTTwEAPNHahXJ9+SK+UkNGUT74IGbCKnYGRqx+zJhWpERXuihVCi5wO0G4gdiWb39bRyL+1V+ZB5aWdFzHZGHcNGhHiDkWmdn42VcewItfbB6r6wrWaqnRy1nvLQIAPbE67gz+DObDCnYELQSqu3zanpsoAvPZmvHeMG7tnCgCvud7gHvu6b8XvSOk/zkGXrZ+nB0AtFr4z199A74xfYVebN21S4vVJwq7wMTy+0zJTtAdJn7NiNUTO2xg925cXp3HkccjYG5O77LYa6qFWxbKboJO4m5onnTffcB3f7eu55STd//bwllt3MpVJyL1ymUZNn4vGkTurLYyvVjR2MB9u9XSUTJX7dALM5kCjh/HXFjF1CX+spf2xOoLOS5vm8BiNbMmSm2Cs9pctJ5N7ay2TWY1YcE6s2JcdmLECZGobJzVfk0XautQidX53Wx8HAqA6tCK1ZY1uj5ZREq9G3FTnNW2HD3jL8cU1HKtFK5IETeJRg25WG0RFM/JMYNV17cAz9Mu6MURP4d8Am0DsCxM1CQWosroi0x5MUjXQlC29JZnihFOfkLVatpZvZHtXblYffnY2q/xfd3HDMhSBYCTJ4FPfnLt41zVWb3eVs88S9Ra7qzeW1rCqf39TL68rWK7y55bSeG7gOPA3r1DZ0+e7LuHGvEqYrUTob1edfp1xOrJyd48ajmuC2+YuJ1uV7uEjLP69FxBAckXWCrGWU3VFZqdC1U3Oqfb1tx0imfsXsRCUYjMF1o9XbBvw0VB1yIvsFgrYdzvYrG1gYiCdhvzYQVT42t/B8LbQNblFpF0TTHSIADKZS3Uzo0uVhe3PE/W5ej5nCjE3lQqOld6VAc40F+08ftCir5mh3BWV2XPWQ3LQlap49RiqefYW0ZetHA9vSPUBbW/OXsZdu/rX6vXvGwH7njdO/HQwiWojC3vs4ZxVuf9xMySh/rush5UZBlUqw20WrqPnSzkrueiz1qndi7U2md//i94AfAv/7KGWF1JtcN+lPMgFyp9G0HFphGrc+EvWMVZvVkFFikzq70NxIA0m2gsKYyV42WroK95DfCKVyw/zpITIxxld9RqucJG+Fo3Zgf6FGk9cgwHPvUgnr7wdbwsuAf/8umw/6RpC4DOrHaS0cWqYq5wqYSqG6E9T5tZDV8vjA7cFWLGG80kwG1f9/DhDyt88YvLj7Wd+H2xOo8ZStY/IWWiYIsUDz8q9DW6axcu+e2fwjemr4QtUhxpTCyvF7yRjPEHHsB0t45dlwe4pLyEk8f6NULaRQE4LwQ4jLO63Qb++q/x4D8fwXuvfQ8+9D4zXlpaQisJUNlRyFkftMgG9O75L7lmod9Pj4+j5oZoHpkHUl1noroiEsez5VDxhotqDONeF+NuBwszhc5+ZRSK56HuhmguDX8Pe8cvn8Z1e2bxX39J9dpcllkN9BfwBojVSWbjzqP79P2rXMZTdrdxcGFCuwUAmIoEGpNZPVRsy+wsFuIyJnZ7wNVX44r6Ao4elMCZM7rA4r7+vKHsy43FpEUR7LCFS/ZkOHWq/3AYArXaNhGrTR9TdSO6+bdudnmMFQV5ZrUj9GLFBsVqABC1as95ox56GDNhFVP7SsteymI1HSxWM2vSbAKV0edhy8md1SWHVKzuOattSZeXlMeAuLRidZQ68OrBORVhWK9dAMD4uBZ7WnR3NyHMdkzC82AzxOosSmCLDL4l9fdF4dTtxWCYzOpRCxYa0m4MSygzsCU6t4q5hHlm9ahidZ5Z7eiB50Q9xUJUHv26LbisSlVbV2UnEOmUTHsFFjeUB64UsLCAZhKgetnE2q/LM6uH+M6kXEd/NxOHSnkVZ/U6IoJ2VhcmAXv24JLKEk4djvR7WDnZBYaOAemJCE/RTiR14An9c6eDRhKgNrZ8kO8N2sGwhli9Y8fqgk/+WtdKEXcHi9Uts6V1R9DCbNPvX+8FZ3Vgy6EWFoYiSZBmxll9DouMczd9GZc/8jm0ZwvXThwjTm14gaDNEi1EoYyXYyyGGxDS2m2dvzexzmRz0ALIBYCMdZ8N1wUqFS0kLYzugNZRS/q+PT6msBCXR7uRKQWZ6t1mKJdpCriaY80nZACGE4DN+fh9z57Bb/xG/+FqVQt+1mrDlbxg31r9FgAsLiLJbChY2LW78PevuAKXVhZxYGnn8m3vpthsO1x/lpq7uWcWHb34NTWFmhuidXS+L1ZPrRB9rAxyrQKLeR+7irP6BS/Q6x75zpAi9bLU2eWjitXKgltyUKpYWuwYdQG3J1avdFavEwNyrgUWhxWr/Y0UWATiYSf7p05hKS6hPukuc08+97nA85+//DgpiuA1kwDV0vLPtTxEDIiMM7QePIwDjV24uj6Nn3vKv+C9f7Con8zHQOVyr03fkgPzmgeSL7K5elG04kSDHdBDtisA/d0HwXC7QsyYupkE+OKJa/B7L/4n/Pmfxcuel8qCGyx3Vq/7GSiFRAI7ghYmJoAJM4Tb+6xJdFMPz548gUxZvY81b1cINfjckhJ4+GEdA/LSp2tn9RnRe65VjNawbZSGKAYJALjxRiS3fw1SAlc0H8Qlrcdx/7d1ZEc78VDduVq/tX5m9bI4DgC4+mpM+h3M33cUSJK1ndWDxlsAFsMA434H434Hi48X7L/5faYgVk/6bczPD/4IAADHj+PWTy/id/y3wV88o38vL7JZdFb7Spta1htzhCGkstCJ3d561RXXVnCkNQU8+qhu01q+cKdjW4boC+bnMR9WMLnXByoVXPHsMRxpTOjM6jRAdXd/JaQcqA3FpKlbPg/MzWHv8W8sE6ujSJs6tksMiMxsVNxI74KgmH9Df4TkzmpjPLHrFT2fa26gL8y3e1UqwNVX64XPRoxvzFyJ571khVi9wRgrZm1YrH4S8fa307Y3Pw/s2bM5mdVWraJdZFTO6lSLJ4FNGwPSd1YTXSphiDiz4Y8FelJKJFarMNJb2sbG9LYW4mq85GL1Q4+hdORRJOtNcDfaZpzBsTJ4dopIEhQnAvpibZ5ZTSRWR20J39L/ka1CF90zuVjdGPH8KjqrYba9xyUSsTqvTl+qOehKd/Q2s6wv+lSrG1u4WlrSxYIsG1bgrf26PLM6HBxbkiTraA15ZvWKGBBHpOtnVmcW3ILbBHv26MnTMQk0m8gyQNhiuRVhGGe1srQjHwCuvhrjfgdLDxzVP8/PoxkHqO8826G4bsGfNcTqeh34/OfX+J283UGZ1e02WlLnOjr1MtJM6O8Q6J9bFd9s916/qaEpVDsfanJTZH4ec08sYspvA8VdLz23YaHwFZWz2jiAx+sZFuMNRFXklc13rNN3uK6+31zIzupYwbFSff4bZ3V3cXSnatFZ7fg20swavZhUvmMiCLTTiyK6Jne8ef3s14o7XGZ1rQbs29d/eN8+4Ed/dI3fGRQrAQBRhCSzETgJdu0qPF6pwPFt7AhaqEwt71+GyqyOU3hWgul5B7UagKkp7AxamHmi0SuwWNlZUKjyPnYdsVoqe1Vn9QtfCFx99er5mbVKtmFn9WOP6ZzS/pvpO6srNQtt6ZHFgCxzVg/6vrLs3GJA8pWMtbbgmfG06w0/JvE86LjAYSb7J0+ikQQY2x2s/7q8CN4o6wBJcrazesic9WR2Ca0mcCi+FFf91PfiusmTOH5K55qmSy1YltJ2SqBfYHHU+UdRyCyX9e6NRYK+e4WzuuzEg3eFmILOzUufia8uXIufueoLOPJo4Z63MsrMZOLLbJ3PNcsgUwu7Sk1cfXX/dZUKUPMjvHj3QVgi69WAzNsfKgbk4EEgijBj78bO5+3DvsoCjs3qHRx5nFvPrdyLARni+3riCTy+uBvPeEEVCAK8oLYfj307RLLQ0qLyroINvGdkWKe9PPorKIz9nvEMTAVtzO+fA+bndQTleEFQc114lhwsVicJFjo+xr0uJrwOFk+u8315HiaDNuYXhzxnjx/HfFTGVNDGU50jOLBfrVoYdqjManOeA+jtDAqe8wwdH/Ltb+v4hqBwr85z5ocphtjpYDasYsclejx7+fc+FUdaU/jogevRzKrLYqzKvl4kHFakDO9/HIGdYG/3IE4f7ndMYajHy9vCWW3Gx4Gt58xUB70pYnWSIFMC1lhNf//DFkxP0/6u9XIZeOYzMeZ1cbpTR1e6mHra8pVszqymg8XqJwlSAn/2Z7Rt5mI15Xy0t901H4xRiNVmIqSd1QldwTozeQjsBJkCTYcTxz1ntXZo0uxvSeNUT8zrdS2CE4nVSgHIMj1pINS/5R1fR+nY40gadOFWMkrhiAy+nWg3DkWsRM9ZnertcpRitS3NRITSWd3PrB73OlhojHh+5S4XI5BOTIDGWR3HPadPqeagkxI4q/PvylZAubwxZ3VuA7EHjIosCyU/0+L6gP5gXWd1kujto6s5q9dq1rj+lgkp9Tr2jnVwcrEEHD+OMHVQ8leIEEM6q3ui1tVXY1fQxPSD07oDWFxEIwlQ37Nc9BlYVG21SBJDL2JgJXmBxSFiQFpJoF1CU1MAgGx2vvd3pbLg1gJ9P6Aa6McxUmWh5MRIUmtj94OvfQ3zUQVTQRtQhe/PfPaeL8w5KxEtEtwTexEQNsbqZoFpI2J1VMHU7nWuhfw7vVDF6ixDklraIWtZ/RiQxRH77+LuFaC/EDPK2CBv0876i2HnkIl+FnmRTa8vpJSdGJ318jnzXRbB8vvGX/818NKXrvE7JlZi0Bb1JLPxhuc8giuvXPHc296GK59dR2WisKhl2zqypDugqFqUoeLGmJmztbN6xw6d4X9gCQhDdKS/3FltWUb4WmOxcbXdK4YrrwRuuWX146iWMzQ3KFa/+93AO95ReCBfZAsceFVPT3KpYkBKy92Eg2NA7H5hzmHZlBiQjTurxy6prP+6XFDc4I6bU6cKebK5o7ay/P5dchJ0BjmrFxpoJT4W7Km+uJFIqMUltKSP/5+9946XZDurQ1fl6nj65Mkzd8LNSVlXCIEEKBAkFDEPMGCEn8A8kgFjwGCDwAEeGQuEJWEZkBA85CeCJYEkJF3JQlfh5jgzd/LMOXNip8pV74+9d1V1n67au6pr0J37zvf7zW9mOuzeXb1rh/Wtb612zU+Af0WBofiEqTiteWdIE9K1GjFa7VbA9hsDq2uKxwd+KKjaDRoIGjPoGFZiYB9FyfdMXQNFiuAHOeOGjq2l+oDoVadi32ENL371LOoNaTTRpJB9PdO9zwwqh7YaLWHpIAGRh54GrK3F42DEDFL1uGaQke3gvseauGTP4eCdc8DyMubNAdbP9vG69387vrR2aISpy02yAZOZ1bUa5pZVrFl1nN9sIoIMqZPafInutwYDbDk1zBpDIit2JbWxZWufkmZWD4XB6v6ZNTRUsi4fMy/i1Je7iWa1mnxf1VBI4ooDVgPA/tlBIvly++1oaA76j5wl2tLmmCmqCGksIoakV+0WFveTdWruZbfjkc19+I6PvxUXBp0RTkZsQC24HgzkFhqqS4gn96/EjztXNtFuBNcRs1qGKtGxVAXpAglYrfGPXOJBL6jUbonNWSwGA9iBhpoekqz1TTdhRrfw4Qu34Z7jaxjNhgGyrhJS5i6zeurYBaufJdHtApub1ba5sQEsL1cMUnoRYT62WiSrXaHBom7IZKNQsQyIKtOJpqK+ujS7XVNcWG4FYHUUwXPC+LoSY7lqrkHwufugXjwDbXutWmZ1KKOmevAEXKiF23RDAirLAcmkVwhWx8xqHuNTMJxhAEPxCDjlVmQumC5RpyyXqS8BO0BTsLozJxOWZhUyICFxp2/PKqSEeto2498qBGo1cm2HgpsEBlar/PuxZkYErOYACblgNWNWp8tSRTSrIwWaknpekrD3kIbLwxngscd2tknbjTs0KRhAxZjVe/ZgacbG1dWInM43N9F1a2jtTblU8SRLAAR+BEUKM7QDMoIdnhzOwXw4JKWybRmYm8O82cfG09vx9/RDBWqTgtVV+QIwtrJE+1YESDp3Dut2A/NGH2rgJnOp58EN1RhEaGk2ehsVTLSULa/qMrS6Br9I8q7fJ2Yxe3Kc0DQNshQhdJ+hjJEYAKbjk4HV21NeW2ompWh0TGsaVBFDUE6b3hizuhJ/ZFZKrSVgNRcAzgCr9ZxiE5G5gM3Nv/LNn2W5pSTabRw+ru8wwaurLgYOR6fWDdFUHVxdl2IZkOVaDytPdXGuP4s1t416I3X/SxJUlew/Jh4gGatYnvxddvSdhmxo4mZtILfivfcSXC6WUmXrt6kmh95pF/CYWb3TGyEvKXqtDBZHkqICQQwWxZnV224N7f05Bsm0n2Xk197zHpK0AQB0u+j7Blqzo9I1RAYkvx1vgzBnt4IWZo4RceEZuYfuWbLOtpup7ypJMI2IbyzHi7QJXr2Opuagvz0lgBKGQBQRMEaWE4k0noQRnQvOrTcwv5esMbo/JN4t7HeWpKSEQVGgSgGpnsraJ1Mz2RfuPY/v/M7Rp37iJ2W84K13odEY+70VRWyuvXoVALBqt4jB7N69JCnx5AUKVptozozra+fvI52zV/DWT30Xtmp70ZmVgKUlLJh9rD/dxdPdOZzqLo0awzKppbwhwPYnxuhnzx1o4MPnb8cPf/bbAE0dLQ1RFOiyABg6HGLLraOjD4lh8yp9QxSNJiwAQNOIDMi22Nn2yYdd3DhDANrj7VWc+sJmSr4oGUuSJiA9Rp/7x7f/ffI19+3DDXNdPLm9hE2ngdZMql9Ms5rHhLcsIIqw5s1gYYm8VmrUMT/j42v3PkGA6VTUaxEh4Ajes4N1G03NwZ7aNi5fCuPPtH/td9G+8sT1waymCQZZovdoxWC1WcERMY6Ut1FddTHoC56/+31qrEt/15kZzByawV+v34OXve3Wna/nrYm7IRy7YPWzJLa3ydxQJbA8GBAmZZUgpW1FMBQfcdqzilmYGixqs7T0f1Ads5oBlQAqA6udMMWs5piGCAUr95Wj5FDereYa+H/+QahSCH31QrVJi4jKq0zjyD7eJmVWEzaOWpn2qx/JUKVqNasJWE2Z1YFazU3GQDpTBXRqLjctUMfaZBWZDZOY71XArCYHVwlq04QfyZWA1T5jVtdqdC4Q2yS8+09N9FwjAWxzolYDLAHzK89LXvLgg8CpU6N9HXj6DsMfEc3q8RL1fbd2cGnQAT76UWJMNE4sEzJYTIEIkoSlQzX86ckX4sInTxEZEM8cBQE0jcumdD2JzJ1lwGoRZrVvkEMiA6hOUy05Boo0zYTlVIU7rOsiiCQoUkh0OousXZcuEbayOUBH7mJ7Kxrpq2bIgGmirdnoblXQ15QMSAx8FWVW781BKEXlWr5SwdZuqrVfGVgd63MmYPWcMcTmxnRmbSQJFVKw2q3mUMb6WoZZXSuwLxEEUvKAyiNHsGMubGhOfl+jCJ4boanZ6HalmFm9v7GJi6dsfOfHvw9fd/zsDnMmVcsxPcphVueGphH9W8F1/OGHgRfc5eA1XzNIJJEY+7WmFr9nsyKTWR3A93I0qyMZak6uamIoCiQQ34iJkZ7rBEM3JHGDxUuX0HVrmDmS4zlB+2kqfuHt/LlzwOOP0/90CTu6uTAqXSNimu5vE8DDlQzoLQPodLBodnH1gUvouiZazdHXGwam3yOmq+5qNZK0mtbENQgQRSnskxIkuHMX3W88eamJPQc1oNPBwdoaLnz5KuD7FI8eTTApCkjClZMIOTa/hVe/evSpt76VyBg1JuyLhPwBKJ2+75kkoXbLLTjaWsPTHzudkA7aatymqXhcEpJ/4Qo2nAY2jT1EX3t5GfNGH2tnB/BCBYoUjJIO6L4od45NJ7tSMXe4if+9chTn+3OQxjNQbB3nkQMGA2y5tUSzeo12JN5XpZILTLO6K7aGPPGkhJs7V4AXvhDH2ldx8okA8H2S3O+kvjDTGBdhVi+l7hVJwg2HAnzLh/8V3vHoy9CaS01sTLOaRxqjg3rNbZOEBY0PvKuHn/vae9Fsjc5pMbNaEKzur9loqA5hVq/SvmxtwQlUzGgWnKowjWsZdH6K54OKkGV/4EAdbMHUw0ogGADJXNpuo63b6PUE3zcYUPmnZB6aecFN+IezR/GiV0yo6NkFqyuLXbD6WRJMrpP9XUXYPQ9tw6kUpHRcCYbsJwYiFYHVXqhAn20QJl0V5kTATrC6Qn1to21AVSKiwzYtkJI+mJsmWro9PWuChqfVoTJWcYVJCy9UUFNceBWC1UyjVGk3iI5o5czqcDoGXSqcYQBD9iFLlJlSUV/9UCblu6YpbCL00ENEP3NisAMm23dWZQIXl6gryVwwbSaeMhQ1NSRgvSLOnnr/38/jVHdxRHcuK8yaBNvXuJnBNLP6T/+UMLPi8DxyyEmzfaiWaK6eaiiPMqsBHHjzPTjVW8Sfn34ufuJzb0K9ObasixospkCE5311HQ9v7sP/+B8Aej0iA3KgPdJX3pzg+RSsLmLlTTUUuWD1cEjKbzsaMDeH5VoXK+foWsLuA1OFaYr9VkLBAGC5ILPacYCrV4lp4VyEjjbA1lm6UNNEq15TAF1HW7fQ3a6+ygJAIWZ13zPQ2pNTTi+aVPhKRQwA02vZIEY6wyJGOpOC6UsbdEKkLLL1jenM2mIWOCulr6IaYFyyhALAuaaFZcFqKUAWRsn6MomxzeKrvxq4447UAyLMaqYhr5N7mzGrDzS2cOGqgb5n4Lfe8pkdb9M0kOToJCCBAbUlwOookoTnmY2/+yIWH/4Env/Ie/HgfU7MUIyZkaZZTeUhA6vHgC9iiJnxHmawqBU8HspyvhY2nT8LgdW6oEFVrwf0+9gOmmjva+a/lsmAFGRWj4DV29vEYHFpVBqrrroY5mnCex68vou+bwIaTQZSVu3aw1fQ9Wpoz4y+vxKwmjGrY83qAmzCnDaDKGVYZxgk0Tbk3DuehwjAU5fq2LtXAo4excHmJs59aQ0IArihCl0Z/b1VXUYQZVRDAEmiR5v8nZpN4G1vG3uQaZdz5GB+/38dxunuAqCpBIh77nNxtH0VT39hHbBton2rq6NtckhI3sVVrNtNbCoLBKymY+DKWRtzxgDvestHR7dNVLIkVwaEgYXa6GfPH5vFl9YO4lx/FpK+E6zWFZ9PGhoOseXU0dEtdHQLWxv0N/Z9BOGYvApbE7sC2a4owslzOk7MrAK33YZj7as4dckEggAbTgNzM6mxpGnxZ2aG75M0xxgof/NthEX/xbXDaC3uTDBZHCY8O5tcdVpYWEgevu0bD+Oe//Z9OHbz6Het1SAOVvs+Bts+GpqDeXOATcZId13YgYa2bsGtUC7zmsX4d62IWR387UegnHsatavnqmNWs3W61SLVjH3BtaBPqmLS8k8zM+TP/v0TXn8dGJFfL7ELVj9LgoHUW1vVtWn9yV+i9dkPV3ogdRwQZnW9TlgIvQradhy4gQptrkk2CrzNkmgw7dNrwayuq0lt7bSAPQP+KKO0pTnodity4tVqUOWwWrA6imIZkFx364LhuyEp0a9SD50eIGMZkIruBccKyX3ADqVV9DWtWcfAWgHzxr//e+DjH89ukwDg9P+1GiQA4aA6GRAGgEeDKTc3rE0lSjbMA0NIYsV3AlwadhKjnJyoNWRhZjWbMs6eBT6Txk0GAwIizKZKPXnMaiYXMAZWK3sWcefRAX7uvtfhMyvHUG+OUwkFZUBSQNJrvm8fPvD1f4i/+9Ic/t+n78S54cIoCM7T146iBKye5EiWFbRd1+bLgPQ9E82OmoDVF+kERUEszVRgNhRiylPR3B1EMhQpJAkm0Xn7yhUgitCNWmgfmcOsMcDm6c24r/G113XCrO5O39UYGKqpNHFVwMeg3wcASOMUv3Q805nV4/cKM1icdr+RNrEFAE0jBlabU4DLDEhSUzIgJcDqzU3gN35jvK8TNKvzfDKmYlbz9VSz9Iq//uuBV75ytM0Gr6+OAz9U0DTIfd9qAdizB/v3A0/3Foh828GDO95GZEAyAFCW8FQK7ktEgJRUrH/pLOb0AY7XL+Hkg4P4fU6okWtkGJCkCKFVkcFibdQI8JoYLDItbJdjsFgQrBbSrL58GQDQVTqY6XDuHQYoipjgpWJlBcnczJjVY7rCuhzAzdsnOw78UEbPr0GSaT+Xl7Fo9rHyyBr+ywOvxNe+YDDyFsOUyBo2zQY8XdlQr6Op2WyaLx8UrI4lc3SdJNo4BpPwPDRUF92Bij17ABw8iEPNDZx7tB8zlRv66HdVVZpg4knMZCRYJAn4yZ8ce5ABlXka42GIL5yexQPrBxLG8sICjh708R/+8VX4rS+/LOlg3KYH2+cwqzd7sAIdl4cz6HQALC1h3hzg8a09WDT7+O7XrI6+QVXJvcVJCAJI5iIaczfMwA01BJE8arRK29V5RtlAwqxeNjBnDLC2Qa9zEMAONNS11O+l6yQZwvEbAECIEJaGmXYEHDiAlu6gPyS/87rTwPxs6guLAH80ETI+eX3bd6j461f/Lh7e2IfWcirBpChkzLqcyY6ez9xIG5clRr2+8/yk6AqpQBVZD7pdYgSsumhqDnpDOf5MJ1DR1mw4vetAtNrzyFmWRVXM6ocfhyqFMHur14RZ3dJs9AaCa0G/j55rotlMvufMDPDCF2Ycc3aZ1ZXFLlj9LAkGVlepW233fbQ1G26/OsEkAlZ7QKNBSrfXKtBsZszqdg0Nw0fProhJx8A/plFakayEE6gwmlp1pZ4M8FAiWkpuodutRqfVV00iraH41THs6eFck4NKJ/FYD71NGaBVrGxsE8wA+6qY1QysZk5zFYHVac1Lwh7iT/G+j2yAjCZC0szqtm6huzElSMXkVTQp1lAcTGt+lgaoZBl7mn2sDNtCG0bPDnF5OINmh88GqdUAy9cLaVafO0cOu/F5s9cjBovzoywPVQrh5QHAoRKbXabjNa8Kocohtt0a6jNj30GAWT3CwASATgfLr34O+p6BX3vwG3DvD/zpqJoH09fOAqhYX+WwFFjNPTxZFga+juasBszPk/LJy/RzWMmzoRAWfFVgNRuzlFkdWYJtXrxI/tY0SIsLhJl0kQISbO2qyZRZXaAkMS/SppmGQUp31wXn2l6PHDqaOWC1qLb4VyriihA6jmo1AtROa1zIJLfYvcL0OQXNpCZG2hiWGSyW8LI4exaJpARt1w9lKHqip9pQXQzyAGDfJ8xGs8D3iVl/Oa8pKgERM6vzgXU/lNHQyQe32+R9B37q/8Dnt05g/2EVeO1rdzbNZECymNUTEoLcoDIgUS5SmcTGBjBvDnC4uY4zTyfyISFkMl0zhn13eo31oa+hnvKYjIGvPM1qtjYXCTYOsubudGJOMHRDEtKs/sTfDLFuN7AdzcTbv8wQZFZHEfD5zyf/DkNgaYn46mF7myRL96TmSF4SAIjXkKtWMy5Sw223YdHs4W/O3YGG6uLNrx3dVximJMystm3g7W+fkJ9npAtTSQwWhzka0CLBNPEZWE2BWq5ZneehpZO1c+9exGD1+dNeUgkwBlYrmpytMw8kxKIi0jUUqMzdGmxtwQ8kPDg4hoXF5Hsdu1HBo5t78cT2ctwW+1uEWc0SOqev1Amz+sABzB+fxRPbe7F88yzwpjeNviEmB+QnBKNI2gHUzs1LUOUAL1k+PaqDnWpXiFnt1tE50sGeehcrm/RCT/q9dB26LHhetCxYvoZai5AOAEAKfESejw27gbnOaJKN6wvAxsfYQJBvOIwbWutwAnW0YkzTiBSjzxmzA7pfE5W0U1VxD4OtLQw8YrYuSxEiP6ncswMNLd2GW9G585pG6rtKAMJ+RZrVrVmockATYZU0mcylzSYBq4eCa9JwSJjVqWn/4EHg5S/PeP0uWF1Z7ILVz5LY3iYC9FUyq+1AQ0uz4VUtA0KZ1cu1LlbWK9Bsdl1iUlVTsW/WImZjVciL0AkmxloqNFjU6wRQlOhjUwVjlKoRBRNtdKsAPMCY1RXLgDAwSQ6ShbmKZp2AAEmMWV2htEalBotRlFQYzMwQHbaqwGoGCBgGdZHnT/GelyMfxICUFLN6RrfQ25zyOrB2qYZiRx9ia2161mMaoFpuW7hizQjdX74b4NJwBs25PCcxErWmIsSsToPVlgW8+MXAAw/QJ/t9sslfHHN8zyvPZgzMCUDK679/Ae/+mv+OG2dWUJ/ZWeopAdlmeEyndRxI+tZvxS980xfwJ694F/Y/d3lHm7lzQlntV1GwmjKwak2iWX1Dew2nL9fI4ZslmAwFRkMlv1VVzOqQMKsL6dezDLJKgPWOMcTmJStu0w1UaLQaoqXZ6PYr2JaxiggqKTBSupsXYZgczHaIfKbiOmBWx2siAOg6Aat5rL9UTEz8p6UaAMqs7mN9a4qkOwOSlIiwE1UPVkHWJ0AA0BG2JJsvGLBODeBy2crsvs1gQE8MWabgZz6QMklPNTOoGeQwj/HmuvAjBU3Th64nuf/O8QVctmZx6CUHsYMGByoDkmOwOKJ1LhpMU1bEMDoMsd5VMWcMoCsBvIGHiCH9bLNpmkSypQJd4R0yIIwJn8usVqCoxcHq3GqbEprViibnM2ppvO+vmvjc6g3YDhpx/j+vnyIGi54H/Mt/Sf69vU38e26+GXj4oShhVu9N+TjQJEDAAau9UMHqsEUYtQBw111YXJbw9xdvxlftOYkRnQGQc50TioHVa2vAv/t3wC//MnDmTOqJ9P0ny2jUQgw8fsI9Nxizmq3xqiqWaPM8GLIPVY1iZvWJmRU89rQJeB7x8tBHB5GqSUQGJGtwMYmuIgkWVYWpevnM6l4Pfqjggc1DWFpKHn7pV0X4+Df/Oq5aLQJIyckcayoebF/NTQSwJO+piwYBqzUN2i/8DLS6hqXnThDYpvesF/BlQHYwq+eAG24AbvjqA6OVALRdXfbFmNUOAauXa12sbJvk+/k+rEBDTUv9LrpOAGBP4LdwXfL+GggLxDDQUGwMN2ysOw3MdVL9ot8rysuKZsiAoNOB8R1vwoFlD61OanyyOSvvugKAZcENFPFkSBH5h60tQlxZpJN0GJBrS5nVpuJfH2AnG3+1GkzFq0y6xG/NEma1ypfsEW+U/i7NJlq6je5QcF9i24l2PY3Xvhb4kR/JeP0uWF1Z7ILVz5LY3gYOHaoQrA5D2IGKpubAy9t8FYy0ZvVyLZWhnSYYO62uYt+cjYuDTjVg9XhZS5VM3bpeObOayYC0dQvdXjW3NmNWCwFIosHYaVJIFuaKwveIZjWaTcJyGlYoraHL1cmAuC5h12shUK9XKgMSl6hrGkyVupJzNNF9L0L3S0/hj3/u8ZgEGgdLhLBDQK2GtmZje3P6Q7TPQJF6XRxMywumU0sBqj0dGytWiw9WWxb8QMJle47ISnCi1pAJs5rTLjNYdF1A0yLceCLE6dP0SQpW1xZShwe6cc7TrM5iVjcOL+BFR1Zx08wK6gs7DySKFCJwM8ZuEIxctzjqdXzTu9+EQ7/7b4DXv370OZ7hD+3ruPYkN0TBatdFFEmQdA2o13Fsfhunt2bJHM1YVjUVjZZMtAMrWg+YDEgh1mO3Sw46hgTMz2NWH2Jr1Y3bjGUXKLO6ErCascANhTCr9aHY/WVZ8AKJSFLkaY0/05nVbN5OgdUi5mcs1teJNMWkdv0oxVamBouiZlJZfSWyC1FSmu7mgx2TYnMzyTOwdoMxFnjcdlaUAavjA3/OazL0VPPaJMzqnP2h48ALFTRr/gibVpKIfuThw5PfpupyvmZ1ODkhmBv0fnCHYmXfG3YD820PkGUsqetYPe/AC1PAn2GgWYUJHpMBSYPVqko0xrMk2JgUSgmDRVXOMd0tAVaLHvb9vo0zvQVYoQHTzH1pYrDISQj5PuIql3MPbOLQ4DF8R+tD+I1f8/EPF47Dk7RRuRyWbOaZ4IUELI/BalnGwre8BE/3FnHXW24Gjh4deYtRk4WZ1ZYFvOpVBLT+9V9PPcGqzmiSrdGU0PeN6XRlx5nViiLErA4dD7IUoVUPCLN6Zga3HujhkbUl4MknqZfH6HsUVco3WOTIDE0MNm/lnW9puw+sLI8Y60nLS7i5cwUXhx0Y9dT3lSRiBMepBoiZ1QysprGwgBFQPA5ZJvdsKGevC75PiC9jQO3yMvDz/17BgTvnduaf2bzFy7sPh2Q/tziD2ZkQG3adDDaWDBsDqwmzWuC3cBxYvo5aQyYT99wc0W8/N8SG08D83KgxrKH4+XsOJgMyae/y8pfj6M1GzGVibapyAC/Iua70+6/ZTSzMCO75ioDVvR5JfM3pJDMVRUQS0bZhBxpMxZuuAuKfKth3bbcJsNythuXoyzpUmey57dUqNPKQ3Jv0PNuzNbFrbNvktxLwNgKQjINdsHrq2AWrnyWxtUUc1SuTAXEc2L6GmuoBQUUH0igaZVbXu1jZ5DMZuUFNqrS6hr1zDi4NxdiU3GCTL939VgJ+0n5Jhh5rVkfOlH2NS+CYDIiN7qACeRUQBpIqB0SLr18RxZ5pbMshpKom8SgiYLUUAo0GmppTjckkA0AbenVgteMQsNqIEsPCyljgCtSaRjbNTAKBB6pudNE9vYa/+FMH73vv2GYs1gKk/2eAWm9KmRkKgqsagFoNs8YQm1tTtjkGUC13HFwRmQvW1+GFCi55i2g0+X2ImdUCBotBADz9Px/AwY0HceDB/4UL5+mGqN9HBECeSe2cmVFZXnl2Xon629+Om954O+qdsTmVlSdnaYmGIQFKJrGSJIlQyia4yKtSPrDulmFWaxphG/LA6jSLSJKwZzkiFTW93ogMSKOtoO8ZlTGrI5BLUlNd2D3Bg8v2NrbdGjozAObm0DEsbF714+/hpQ0WNas6sDpUYkmgjmFha1NgM97roeeaaNU4h6zrwGBxxBg2ZlaLXdtuF7j/fuyUZEmNLdburDHAZneK9ZZpSysAJAk1E0Lzy3jsYFaPs5lFWGQlwWoRzWoAO1h/maGqaGguhnnl9FQGpFkLdkg/HDiQA1arOaZ9cUVIcbBalwO4lsD90O1i3W5gfq8OzM3hePsqTn5xG5tOA3M1Ok8xZnV3yvtrErM6BlU5Ek5FxgBAxpeUb7BYVAZEFKz2+jYe39qDWktgfAlqVqfB6rN/8GEc9E7jno2/wd7+SfzOwy/HX33Hn+1oNzcJAMTEmo7pjICUi887BAC443uet0M2q4hmtWUBe71z+DHpN3HhTGoO9/0RI8BmExh404PVxGCR/j9OhnH0mh1SpdhsRASsliQot9+COWOAJ//481i1W6i3RtsgBotSrmb1DikzXigKFCniy7aEMk5vzI6CyIuLaGs2Lg1m0GyP9lU3JDiBJgRW2448UgkwP0/A5R0hSbQiJAewz2BWaxrwnd9J5Ap2KHsphFDAXWpY24YBudMmBJvt7Xh+qempPsXMaoHfgjGr63TMz81h3hhg/ZKDdbvJlEFIMPmeQc5cwFlnjh7FKFgtE4+b3CQAEIPVi7OC8zHdL+eywFk4DtGsbkrAzAxamo3+pW7MrDYU//oAqz2PJEvabfI7bVcjH0sqpgPiu3J5q5I243Gi62jVA/Q8Q2y/RcHq1ozgPMPWr12DxaljF6x+lsT2NgGrK2NWU72kmuJWx34NQ9i+ClMlxnLLtR5Wtng0CIFIMavNukw07iqSAZGkCGg2yeJbhckBmxA1LdEVnjYDyQBFFQSs1gtoMHHCd4KEWd2ryN0gZlZXqFkdH/gjWvY+xOZGBQs8A0AbRnXgjOfBCVUYOgDTrJQFni77NmsSbF9ArmKzj65bw7pVxwffN/Ybx4kQupnUNAKoTZsMYUwfTabM6uH0c5fvEwYrxTc67RBbbo2/CdnchB/KuGx1cmV6WRgmva48thfdnzz+7s/icG0VB/qP48IpJ6FcS9JomTpjVmeBSTnMagBAo4FvfnMN99wz9jgFJwIvD6wux0rK7GtsVHbtZEAAxIcSqd2CLEUItvvJfFjTINcMcrCqqCoGQKIn2xPcgHa72HLrmJmVgYUFzBoDbLHKBFplwQx320VKEjl9TTOr25qVLfWTjn4fPc9Eq86Z59jv9AxmVsemhUAMVnP1VGn0eqQg5XOfG3siCODSvQYAQFVhyP502w02F9Ima3VJqHJjPDY3J4DVoQKFmY7FJl0CYHVB9qsqcUBwdu+IuvYxZrWbAz66LvxIRrMWjgIQAI4dA06cmPw2zZCzQZ8wTPYRRUJVoSu+2P5ge5uUuC+pwMICbmit4cxjRHN5rkHnKcMgusKD/Ka4MYlZzZKXPGZ1CbA6l1nM5mVRKRjaJutTZvR68JwIH798M47dJLAvYaAXB6z2POrlsbWFx0/ruLlzBQDw+zf/Jv6fV/4B9h8ce78Is5rOy7N1O2FWA1hcJGN2fBwDgGYqJLkiAFYPrw5Qu3Iae3tP4uKp1J6SdUpJMas9oyIZkBSzWvG4YLXnhFDlAN/6ymHyfb/6q/Hipafxoj96G/7g0ZehMea7Iav0ns2RAfFKyICoeckVIF5HAIwwq7G0BEkiSa9GZ2dfI/rerGD7m2YjHMFVM5nV4CTZ0p+XMce+4AXAK16xs1EhiUfGWNY0oN0mbOS1bSID4uuop2VbqA60m5e8ZOE4BOxu0HtpdpYwq+0GAXBbqXtM06ArPuxhzp6Dcw1+8ieBl7xk9DFVk/LHFgAMhzjdW8CeRXGw2lB8seSl4xDNagpWd3QLWxf6MQZz3TCr2SCamYGpeBh2qwFofTdMZEDWpnWFpcHuIUVBqxGi55licyFjVrcLgtW7zOqpYxesfpbE9jZhklQNVptVMqt9n4B0WgAYBpEB6db47+MF0/1kOtBShNCuAFhmk2+rhRndwvZ6BZMvO4DqelKavD2lGDTTKlZJu23DQdfWK5kgfZcYt+myX5kGVQwkyGGsMTt1xIA9MamaNSoAP4GEodekYLVTlQyIBkOPYuOvwWY1lQB+mDDpDINqHXKyut5mH13PxNDX0Q428Mgj6SfHDgGahhm9AvYnSy4wzWrDwtb29MzqgW+gYZLvKxmUYcwDfWg5+aVeUwisllSxbDk7kJzensf+xhYONDZx4ckh0OvhdHcBgaSOsqh4DEVaoq5p2RvXF7wAO8FqhZjE5jGr/RRYJhSMWZtlTFNWs1qwLDWuRqHVKWi1cKCxiYunUjIgphJXxVQlAwIAaDZJubMoWM2Y1Qsq0OlgqdbH5Q2TzM+eh223hpk5yqzWrcQNfsq+xgxgwyBA7UDgtxgOKVjNee11IgMSAwGaRvWaxa5tvw/s2wfce+/YE8zHgs0Buj69n0MQwA5UmJSdZtak0szqcRmQga+jwZh/DEzLA5WDgFR8KMWZ1bl6qkWZ1YpCNKs9Pfug7jjwQwWNerSDWf2Hfwjceefkt6kacg0WcxOCWaFp0CRxZvWG08DcXgOYnyeGZeccUvbeGGNWTwtWBwHsQINRS4372GCRkxQtWvQoy/n3wrViVm9uwo9kPLqxF8ePC4zbAsxqxwG8k2fx6OZe3PocA/j2b0/W7Jtu2tEuMVjMb9QLFXTq7ghYvbwMvOMdk98i6fSeEWFWf/4h1BSPVCel/QTY9aOLfKcVYMutT7f3ZjIgDKxmBos8c0FKgPntt/eS7c+JE3jjXSfxxhu+jEc29+2oDovn21yDxXIVIUEeE54mbhQ5HAWR6UZx3hygOT92owiU/vtOgJriYnZmdP08cSK/IiRXv53JVmbMscePA294w85GRcwQA8eHLEWk7ZkZLNV6uHrOSrxDjFSfVBW6EsARkCCE6yYyIACwuIh5c4B1m1xfaf++5LUCsi2Rl6FZTeOWW7BjrVB1OXs9YO0OLfz6g9+A73uDYOk6NQge9gX2R7ZNzi0tGZibw4xuYevcGLM6vI7A6lYL88YAGxvVNBu4QSK9J7rn5jaazIetFsTBaschBoszgmuYohASTZYE424Ixy5Y/SyJawNWU3H/qpjVQUBAOi1KwOpeBWA1Y5GZGqDrWDT7uHqlgj4HAVn8m03C/BQpo+ZFGqxmIELBCTgMgZ//+dQZLs2sliS0myG6nlkJm9B3w8RcsCpmdcpgEUClRoiqAgJW6xXISqTbbZoERLOrGQNOoMZg9ZwxwKaAuWAUAT/90/l9DSIZskE2q4quIMwrnWRv6w6x7ZL78Odu/HP8u58ZLR/1QwWqnoDVbd3G9mBK9iczQNMlKgMywGZvyjYpONOs0e+r61ClkG+ER4G9K926EFgNRSEVF7zr+o9fBACs2i10jhHA+sK5EGG3j1f+7Y/gtbecHH0Dc3znsJVVueAY5MmAlGHSxcAXJoNJ15hZ7dkBdMVPDiWtFo6113DqySApCa5pCXO9IhkQ9lk11YXVF1hjogj/8eMvwvn+LDqLGqCqOHHIwVPbi4QK67rYcuvozDMGtI3usAIfh3hNVAHTJCCCiDmN4xCwuiEIVj9TZUCYJv64DIgjNsf0+8A3fzPwoQ+NYca+T/YEbNxR2Rp3GrCastNqBrnmZkMhlRslmNWDQep29H0Cii6kmdUcBnQUke+Xp1c+Hmx+CaRsYLkos1qSUDcCDPycpDuVAZlpBXxTvVSoeaZ9TLO6KFit69BFmXTb23ADFcZ8E1hYwHKtiyuXIvJbNehvXhWzOgggIQX2AXwGNAOri7BU43ZzwCRq+FmUtS/R92YGBYBlKcTx42JtmqoYWA0Avfsex+Nbe3DzC9vA134t8Ku/Cvyn/wR84zeOvkFViaxE3nbedeGHCmYbo2C1LAPf8A0Z79EKgNXn11BXyRjSAyuZQsYYp4uzPtbs5nRyiROZ1S4sT0wGZARUlSQ876tM/NRdH8HJ7iLqs2PGqGzPxWNWF5EBUdX8fRFt1w8V7O8MRsFqSQK+53uwsN9Ec7E++h6B0n/PA5brXczOjN4rv/VbwI03Tn4PVwaEwyqeGILMantIwEIGVi/XSIINQQDL11BPy4BIEgxTghuqQkQRK9BQa9E+HztGmdVNQFYwcpOwvubsOTyHnFeLXANN4yQBADx5Rse82ceJmwTHVxGw2nHQ9wySVN6zBx1jiO3z26Oa1eCfN77ikdKsXqr1sLJeQYUgEsKcqXiw+xWB1WwfpyjFqkwsixgsCngbAUgqUJ+ppI7rKHbB6mdJbG9HOLwwwGYVgCowWoJSJbM6oMxqXScLXn/c8aFEMPMegwDA+xubuHSpGgkIAIkBXLcC8JPpOlGwuqZ4sApOwO9+N/BLv5TS04xN8Mh/2zMSum6tEtM+slBQsLpfJVhNDBYjoLISfVL2jVijdXO7gumNMfTqGjQlhOdjev0pz6Oa1aBg9VAoC+37BDzJfQFSJlaCJh9e1yJgtarhq5aewuqZIdbWkr4OfB11llPSNGLgOa1UQfpwUauR+6uvTFfu5vuknM6k8xWdY1avcOYvOnb8QBYDqwVNM7wV8qNeXbgF7RfchJpKNluP3u/iBYtn8Ivf+qXRNzCzlxwtUT8qaXyVx6wuo1EqSeR+CDN+M9amWhKs5hyehpZEDuXsYjBm9fkwke6hQK0qB/AHFTCr2cGr2aTztliJ58fPH8cDW4cJexpA49A8Br6B6Nz5+P5qzJJKm5Zmo2tXAFazecskIHhNdWGJyJPaNnqewQerReVavlKRTuACpIpJ8TDklKiz6PeJxufrXw/80R/RB0NaCSQhYVcy0N6bYm9AD/w1nVxz4YqQsdjYIJqn8ZkrCNB1a2jPJeuBCLMaAEHPREOSoMmkOiPP/AuAOLMaRPvVDXIqgxwHfqTgyB4H73mPeHc1PafsO06ylZABEb0fmB7PzAywsIA99W1cWZWJDEgzDVY7GEwhKQxgpNw5jrRsy6Tfi/oN6EYJzeq8uZtd26oNFimgeKjTEwOrVULCsXmgKh0e3U8/QAC1m4iuNFotjAhOp9rN9ZxgfY1kdOrexCYmRgGwetgLiM8QgH3qVVy6EMbzlgTE9/VMi0qkTcus3qFZzWdWMxmQHXPBkSM41NxAEClozI/JQ/L2XPRMUXRscZMLdB2948Am9u8fe+6ee7Bw88JOnxOBfbfvhlgye+h0xOcZVZO4MiASYz8LN0rki1zO+mUNI9TYfqvdxp5aF1cu+IlmtTG6X9BNagrKW8NcF2EkQTFpn48cwbzRx7n+HBr1aLTykJl651S3svNqEbBa1WWiWZ3ze1k9H3PGIPEY4gWt5BI6glPN6uaMTMBq3cLWhQFgWWRfQJNPlfhwXctIMauXaxX5kSH5TWsqR6+8UKNJYkeqFai+pPvj5qy498Yzep98HcUuWP0sie0zmzjy3l/E5vmKNH1cF7ZPweqqmNUxWE3A2qbmYOjyXVjDEDh5MucFYzrQ++rbuHixQmC5XicGcN3pM4W+7UORQtJXXafl5MWu73vfC7zylcDly6xRf8QEr9VCpcxqVQoJe6wKzW4gxRClG5wKzQU1jcmADLDVraicnupA6wbdLE67aXBdUpprImZWbwjoa3seJ/+QyhYDEAOrPQ++7ePSsIPWHsIQefmex/HpTyfPr9lNLM7T30rTKPuzAmY109dWVXQaHrac+nRyDUwGpJaA1Uu1HlZXOe+jwBYwwYBmUtDryzNP8alG9Eq0jPbxJUDTIHsOPvkxHy/dc2rnh/EM0Ma0bYVDkPFWSO8RZArLLJ+cllnNOUNbw4gwfZgMCK1+2V4j+n5WoMOsSYmG/1Y1WvMAKLPaE5PV6HbhhQoe6x9AZ5Ze36NHsWT2cPX+i6OJVqZZbVewyU9LApkmAdcFD04910SryZmPnukyIGz8pYxh66qLoSvIrN7y0Vo/g2/cdz/u+3wUtxmx8/MOsHqKvvo+rEBHzUz0tQEIrTOf/3xSab2xQQD2mI07ZqoWzwN5ZlJhSPY8RcBq0BL1ML9EPa88O6vR3AoW6lWimQoWFgo0mwf6RFGS9C4SikJAH4e/jgdbPVJS32oRGRBaYbjhNDDfoX0yTTQ0F4NpJYEsixAC0iCLJEHVcn6vMh4GQJIU5TG2qwar6f73x1/+Zdx+u1ibpuJxwWoGMDyyuReH2ls7ZT8mtKvKYX4Om/b1+N4+DhwQ6CtQjFk9CInPEICD9TWcf5joCgehBDlVkSUbGtkrTglWB2kZEEmiYHX+mY6dKSaB1abqY299C/WFDLZyzvxSilktBfkyIFRS7AM/9GliBjkWi4sT9owiMiBehEPNDRw9UgCsFpABGfl8kWAJJg6YZlkYZVbXu1i5HMZrV90Y7ZNhAK6Izjrb77MKOE3DgtnHl9cPYnlmbMNC55e8Jsswq+P1gKMxrslBsjbzgnouDAcCv69tE5LNjAYsLxMZkCs2YNs4P5jFgcYWkZKwriOwut7FyraR/3rBiDWrFcE9Ny+iCBEjYMoykY4FxGVAPAPNOXE5s12wuprYBaufJeGu99AxLFgr3WoaHGFWVw1Wh4AsQ9I1spHmLGinTxNjhMxg76c60HPGAJuC0lK5wb53rUZkQHpT3i5BgIGroqm5ZPPFGG8iDL1U9PvArbcCV67QBzxvhHHZaCukrKUCZrXnRlBlarBoVVeC40fEYFECEFkVMavHZUCmlZUAEoaiIScu39Pq38bMagKmzRkDbGzyx5bncczbx9lrIk7EdJNv+TrmDjYBWcbX6P8bn/qYF7933W5ifjYBq2d0C11rSvYnSy7Qg+vsTIhNpz7dmPV9DDx9BKyuqQIMWM+DBGp4IwhWG4oPx8rfOPlOiLrqYHVDxcyCBtx0E/bUt/Hu99fw0j0nd4rnyaTawMsCk5hmddESdQHN6hFgTzByy1Jpm3rRvlINRS5YbYEwq9mhpN0muufrVFNYkgieaBiErbxVwSY3LQOiuLCGYixKP1Tw2OaepKL16FHc1FnBE1/oAq6b6EzSBG7fqQCs9jwiCaSrdJ3xMLQEwCfbJjIgE4y+RoKBtM/UTTjba7DzkqqirlEghaejCaD36fvR/NKncOCTf0J05gFqrkj0OOOItdunSI4z3c9URQgAIbD6Z34m2QdsbxOd7X4fZP4YM1WDJEFVpXzAI0wd4goEAVIEStSLTDK89YvKgKhGMbNfWVeJPFZekq3EvKXJgRBY3e0CM7pFAGSq0bpmNwmz+iCtNNR1wqy2cxILE+Kznx0z2WQbhvoo+KcqFPjK0+0uZbCYz6wOIykx/BRsEwAinw9W//N7nkJDpFCTGSzymNWXSJb7/sEJHH/d7XxWJZOV4DGrQxk//8ZH8cIXCvQVKAxW11UXWFjAgcYWLjw1TJJhaqpjdI6JvR/KRBBQM1L6f0lCzQiJ3j6HVbxDBgQADhHm+pHW+g7Nai5YzXwqihrDyiHfYJF5P0yIhQXsHHMiMiAuAavf8wfi11/LSzABCL2AJMEKJgR1OYCb5T1Cw7Kwk1m9KqfWrtFrGJ+VeFWo7CyVAoHn3/J1+PjFm/Ca7xzLQIrIgDBQucA1UDQZQdZcyNr1AE0OxeWxVJX4UYmA1ZRZ3ZhRgaUldAzqj9Xv4+neAo601oiueP+ZDVaHLtULb7WwXOthtWvy3iIUvhclMiAiUna8YOuQHI2a3BeRAZkTBOJFDUx3gxu7YPWzISjF1lA8OFIFGtDAqMFiWJFeEjNY1IsxiFx31DjoHe8AHnhg7AUAWaB0XQhIEu1vFElEBsSwsDUt+Om6ZKIzklLPWsls4d69KWZ1XPJMDhcS02yoQgbEi6BKAQGQqtInjTWrKQjer6BEnxn2aVIiA9Kvppzepwe3hZYzvc4fkGhWm0Svec4cYGObvwnKZVaH4U5WHDsM8EpoIxkNzcH8sgrccgvuWTyJez9mx8+v2U0szEdxm23dxrY1JaBGNasZE2ZuNsK63ZgerPYNUj4IEB1RWUBH1PPQ1sn3FZUBISXa+Yd5z43Q1BysrisEl77jDvz8c/8GP3z7x3HH/o2dtuSSJAQAl2H9KXmHMmqwWBSciN3pM0AfN1BLGyyKyIDUVHcHs3prg34e+yqmibZmo7ddzXrAPqupORj0BTbO/T78SMYTa/OJru4NN+DmzhW89xOHcK7XIZtmWabszABukAP6FeyrpFGwWnFhOQK/L9OsbnNeyzbhz1Rmte/DDVUYRsL600xFjO0FoH/VQlNzSGUG87+gB/O6lnq/ppE5pgIZkHqKWS1JkdDhyfcpOPnUUwhXr2Km7pL/hyTppSnBSCk1t+R5CrA6t0S9DOuPVxnEkt5F2JS03UzGNjObvYYyIIN+hIbqkLmr1YK8MIcokgiz+jjVhpAkNGoh+qLGTyCX6Z/9MwJYswj6FgGwxoBWVZNy15kgkouBygBlkeUzq6NIKja2KAAeeBxd4ahA0oIyq7lGgE89DQB4wj+OffsF7u/YuDLnNa5LkohagQRLERkQi7CbsX8/9jc2cfFpL5EZ0lIdo3JuU62LQYAgkhJmNUDA6jydeTAZkHAnS9UwgF/5FRx56cGd0hpszFTJrOZVnAFJ1WpGu8vL2KmXL8isVuUJ7PKc4MmAeG5EGOuFwWoxcsAOzep1FRgMyNrVHL0+uiGRtZYHVrvJWZjFwqufD1mR8brvnRt9raZxNcY9Jyx8DWLZxLwx65JzsHC7RZL5jkPOLR3iadKZV7Dl1ICLF9F1TcyYLgzFhzt4ZiOegRsQCZZ6nWhW95uV4EYMg6ipnhhBhNsg8XZSWKWJYUCRQr5UYBQBto2+Z6C1IAhWKwo06Rm8T76OYhesfjbEo49CAggrbwry6x//cYp0lDJYlKQI0VQOQjSYwaKeTBLss/LC80bB6s99jrCtR14AxDrQVYHVoeunZEAG04OfnkdKSAz6IzHGm4gJA43hkJw7xsHq2KwOSA4mVcmAUFBZyDxIqFHKgoi1sCsAqxmzmmpWzxoDbA2q035VDQXLsy5WrVYlYLUV6ITsxDSrpwWr2aYwrfFWgFk9Xxtibg7A856HhubiBuMyPv95JGA1IzmoKtqaNb1UwdjhYn4uwrrT4FDHR+PDH8ZoBUVADLnSYLWh+HCGfLC6pniQ5agAWO1y9UR9L0JTdbC6JhGw+gUvwAtfouK7v82B/NM/hUl1wLmgD2O8lWD9qVKO6z0DwYvKgOj55fTTMBR565hlS8nhCQBaLXSMIba6ErwwZfpkmoRZvV0NIwMAUK+jqTnoDQS2TzTZ5fpKwqxuNPC655yD5Wt41+MvRcek87QkQTINwvGfdo5Jmy3RdcayBforClZfJ8xqPe3hVUALut+L0NRsyFKE0PHjNgeejoY+ClZXway2Aq2UDIjnUe+KX/s1YGihcfEpslfyfWw6Dcyao3sAWVMQXitmdQ7rL5ZMKqinCiC3r37J5F2UxawuO8cqCklaCNy2wyGtCtF1sl7ffDMUOcSl4Qzmbk5c3Br1CANPFwarP/hB8pXOnEkes3o++axxZrUaZSct6BgYMWUUCaqFnXkvsLFV0LyTy1hPVb+JtmmqHmyfA1ZTZvWT20sTJSB2hIgmPEsi6gXuA02DBCC0OYMrCMi6qHrA3r1YrvWwcilI5hd9FKxeMPtYW59u3gpYNSMNXUc+SBkQmTNNCSbPMfPzeO2bdJw4Mfa4CLOaeTSIBjPEzAOrPQ8RkEgpjcX3fR/wPd+T0dc8drlXEPwEJ8FEP06Vg2L3F6sI4WlWs3FFweo99S6ubOrAYEASuDOj3yMGgEXB6lTiYnYW+J3fIf4LI8HTxAe5rhNZ+3khojHug7RbgFldBKzuexSsBjBzaAb3rhzHvVeOkc+cmYEuB3D6z2ywOpb30XUsz3lYsdrVYBBeBKViZrUfyVAZkcYwyH5+kzNWfR/veezFODeYQ71d0GDxmbpPvo5iF6x+NgSt+5MkCJW4TooPfxj4ru9KmfY5Dixfh6l45GYbVFCC4nkEANeTSSKKJO6hbFz+4MqVxKMmfgEQl1Ibig/Hnh6sjsvVmAHctOCn6xKw2kzA9boqWE5OY+W8iz3+eezF5Qma1XTDYdLymyoWCj9KDBYrZ1ZXCFYzlpWGRAZkWJ32q2YqWOq4WKkCrPY8wnSpS4lmdY8/tjyPbJom7qnogxFSm05VJRljm6NZHSqYr9tkc/ic5wCKgh878kH81q+RD1yzm1hYTDRa27qNrjOlHhndMLADZq0hww40YQ3Fv/1b4M1vBj7xidHvMvAMNOtJOb1Q4opq07frvrAMSENz0O/nbPAjcghqajaGQ4mwbxoNomf0trch6/SrMRAhi/VXQltaRLO6sJYoOC7qTF+7BENRkwO4bv53HNryqAxIq0VNOjUC0tXo3Mc0q/N+K9Fg37PRIHIdA4E2KesPGDW2P3BzE//ips/gwY396NRS83QBoDI3xsDquurCckTBagOtGc5racn7M3YTzmRAzFGDJpH9BgD0B0BTJeuSGVkkSRgEhAE1CazOA6h4EQSw/FHNakUK4Q/5/WTMai+UocoBmvYa+n3gIx+O8Ndn78BcbSyjxg7bWfNsSbA6ngsy9p+BQ706CuqpAshlgZMkfaGu5gNftM3CAHgBGRBiVpbS2z90CAtmH6e6izj2goRN2GgAA98QBqvvv5+siTFY7XlkntS8HeANkYPJABXZbygVHNMyISBkYj5lzDsVhcgU5F3XoqxaWYapBgSszjkvMTbcE+frYmA1M67kyIAAENe+BQBVJVWzvLFlWQQ4bEjA/Dxhv64gmV+01HjXdSyafVxdnwICoDIgafwuBuGzLgJjwedgfv/sn6E4WF2WWS0FXI3xWKZrQhjGCCl4tK9Z1yCK4PlSMfATqTk2o90YqC1y36pE1oorA2LTSjZVBZpNLDf6WOnVgc1NkghpjV0fjTMOaISWQ04sqYsoy8AP/MDkvmpymMtSjWVACibEAOQzqz0Ukxdh/jM5LPA4bJsk1lvkGtzwvDnIiPDWT/5zHGxsAu02uf+vA7BaodUCnZmIGLhWgEEEbgBVCinhopp9fBCOMqvbusX3tbFtvOeJl2Bvsyc+vAQSLLshFrtg9bMgvL5DDgIApKgcSPvbvw3ccQfR0wNAndblaqUaXJcwq9kBkm3YCjKrV1ZS/aTtxu3pOpnYq5BBZgtfvU5KzKcFP2Owmk6KrDy7CFj94S9juX8Kez70Tly5Qt/neURLk633tRoB6barYFZH1GBRzDxIKJgEhFTh2EpLoTAZkKFZSO9xYvg+vIhsghfnAly1q2FWx4cKplnd548ttuBNZFczxo40ClabPLCWMasbFgGr63Xg1lvx4qXTeOTLTlwN0GjJcZtt3ULXNaa7tuNagGwTKLiqf/azwFveAjzySOrBICB9ZYAzkwHhJa7oZ7bqgZjmpaKgqToYWDnLJzX/ahkuJGmCrmFGqLqczVYuq6fKNKvzZEBKgOC5faVtlmdW5ycCLEdOmD5Aolnt1rDp1DFbT4x7WpqNbq9CsLpeR1Oz0RcxP6Mmd8AoWI29e3GouYEH1w9gtpGaT3SdHN6qAqs1LdZP5JW9A0gMFjuc3fgznVkdBFSzOtU/0URAFKE/kNGi0kAH9BVcPB8CQYChr6ORZijqemlmddoI0fJHmdVCWvugYHUvwmObe3HTzAqaUQ/9XoQ/+3MZf3zyRZirje0BBNjKhaUaAKhKlMv6i/dSVTLeYlmkgteeIwNSmlmt8BmKwBizGgBe+ELsmXXxfd+8AklO3t9sRBj4uvCB37aBW25JgdXDIc705rGv3d8BYBGWZnZSlH2nQsE0gHNkQAq3K2JcSQFF2RAfW6YekuR4nlSDG6KlEfk/UWa1wmNWpyULRUNVadKdMyaHQwIcNmRgbi6RamDzyyRm9caUYHUoQ03fKzygNt6nF/wsIWa1XIxZLaJZzT6vjHxRrr42vQYFgGVFV/Ln2ICcqcowq3nrV1zJRqtBZpZNYoh+/jw5y8yOIfaC+3l7SBizQskbTSPJII4MSFHNapG+el5BLWxNI5XugsxqCYBUIySzoy87gL95ze+ioTm4YXYTaDaJDMiwIs+oaxQxs1pVIdVMso+oQorUR6JZLSJlJ9Ag0dpPwOqWZqPX5ZwTbRteqODj3/ke8c/aBasri12w+lkQg20fDY0ezksCSFeuAHfeOQpWs9DloBq9pLRWLyBs8jEOVucyqw0DhuzDsfnX4eLFfJw8zayeNYbYHE7HJv2Pv1nDpWEHzRrdbLBDaYH5/MqpAfbUuthb38blp2nnfR/bbg0zraT0va3Z/EyhQDBttUqZ1YxdIYcETKxibDHwU5MARcFs3SG6X7wyNKF2ySZYrWkIQrkiGRDKrDZNzJlDbAxNblUED6wm8gepNigjxx7wNavnGg6RAQGAO++EJAFzShfr22RzFjNmJAmaoXDds7nBmLcMrKYgXeiIjQXLAp7//DGwOtasRtymCLOaSRztmfe5HkoAiAyI5uZrVjsO/FBGU/fQboufSXLZylOUvauygMFiQc3qWAYkQ7PaLykDois+YapmrWVM41f3ElBNVdFeMrFNwepOjd6jVAZESLKDF2mwWnXQtwQOhQGpHpltOKPalnv34kBjE0/35tHZmyrRr4pZndYIVlXijSACVjODRR5YTQ+5uQf9r2QwfwwjNaaZFjTv2g6H6LkGmi0Z6HSwv7aJi4916fyio26k7k06Xl1fEd57Pfgg8P3fDywu0q4wAzQ29+g6+b0EweremoMvXD2M5y+eRUOxMVjp44v3y/jcytEkaZPqb/zGCREF5YDKXPATJUEEEWZ1yUqTzHaZaVwJZrUu+0LghGWPgdX1On7h/30u3vYHzx15XasZoeeawglc2wZuugk4e5Y+MBzik5dvxMuOXpzU3VyDRQCFExbxwTwL+AqCUU8NwTa58irpKhLBMI1ICKyeNUhlwr59Yn1VpRB5XpA8pu7EoIaQ3DONZcHyddRbBKyeNwdY76rJ/JJmVjOwerNgQiIdrNLEHJ0Po0jKZUCX2heIMKujbCPEiSFoiClJUWEAGEA+uzyUCxtaS6pCJMIyZNf8UC7OrJakxCcj5/wxTg6QFqhGx9mzhLXfyQCrOWcEqx8QxvYOevqEEJQBUYsmRYWY1RLRGL9GMiAAkmtA5QG/8/g/4raXLwGGQWRABtcBWM3W+FqN3Fv9KQlzUUTAaomME9vNrt4S76hPtPZTzOqG6mLY5TOrvVCBVi82dz+jSR3XUeyC1c+CGHSDuGQ1CorfFOyM1emkQOAUiqvJAbxhBYCi5xGwukaHnWGQAy9H2N73CRvFdYlMydWrKVA9COgBi4CUMAzoSsAvmQPwn//zqBnNju4yw4p6neih2tOB1R/+BwOPbu5NwGrDIIy3AjpMK+ccLNe6hI17iaKWnocNp465WTqJmyZhv25MubixklgpqNZMiwJZcbuCEjO///s5ksZjut21hkxcyStgKMagahUO6rSvlq8TBowkYa7tY8NpcBlUbJM28Rr4PracOjq11L2kKDAVP1/nizJd3vriR/DSl9LHjh8HANzVOo0HLsyTzXp688f+Pc21ZQkLVrapaZjRLWxvio0xyyLJtZMnUw9SMClmMVNmNe+QFzg+VCnEJ/7gSbFztKIQg0UOs9qPZDRNf6cBT04IaVYXVSPiyYCEISmLK2ioRXRq8zWrC8uASBK0PONGIK5MqOmjY0VdmkMQyYRZzdjKhkFka6oGqzUHfUcAHKE37UtvXh9l1+/dC1P1sVTroXM0ZSSk69VrVssyahoxB+Ru9B0HG04DnQXOdxM0wvynih398P3RKi5AfP7udtH3DTRnNWBxEfsbW7j41JCAM56BhpEal5IETctJ2kyIX/gF4DWvAV72Mqq5zwzQ0mC16gqB1Z4H9K/08cW1w3je4lk0NQcrj22gphKQZa4z1gYHRChVSg6+wWIMVj9DNKsz251Ca19XBDWrLXnUHBbAkSM7PBAx0wqx7dUKgdWzShdDZthtWfjU5RP4mptXdnaX6d9mAPYASsmA5IJ/ZUBwKgOSe9hPV5EIBmFWq7n3rOeEmDMGqJkh8ZwQ6KsqhwjymNWlZUAECDjDIVkXmyowNwdZihD5QcKsNkbB6sVaD1c3pzCNDwKi4W+m1pTriVnNNKs5yQUA1YKf7ExR4hpIWe2yKpOihtbU1DvXHDeKYLkKakpKdm1+nsx3fVolOmeOvkcUrB6ECWObFwJgdWG5DtougPzE1bXSrPZ92I4EQ/WTPlMdlB/9xTl8z6/eHleLP9OZ1YGXMrc0TbQ0B/2N6fexfkgS0mZDheVr07O1Gf6Q8rWpqy7fMJ2ezxkDXih2Nasri12w+lkQg26QYlYXBxRXV4HlhQDtVpSAwKldty5XVILCmNUMrNZ1YnTSy9+MM2b1Bz8I/PAPE+OFGFSnoJfGFmkmAyJQLsJA8LzPHdGstsVkJVZXJz++3ZVwureQaOoaBmFQieow+T6uXAywp96FJBFGaBSRjm46DczO0L7VamhrNrpbU4LLzLRQDgm7vgLZcgCJvrQuF0qE/OVfElZ9dpvJBlAyqR76tJpZdHOtmQSs7hhDbK1PeS8wGZAW2fi0ZyR0PVMYrM5iVm86dcymwWrKyOGB1X6o4PlHN7C4SB/buxeo13Fn4xQ+9dAsOro1ulkvINnhuiTJsCMY87amxm3Om32sr3ObBEDuW3aAjLvh+wRMaiXziyEgX+PZxMW60RbfiDY0J59ZTbPwTdMXO+jS0DRkgwhMo7UMWC2F8HMMFtnrioSs5TB9aIlwYdAHSA5PWQcdZhhljM1v1JFn002B1YxZPZyCQcaCfc9ajYDVtsZfD+h7PvSz/ziK/dC68kPNDXROLCSPC0pjcWOMbVgzQpK84xweI8vGmd48Dh4RY1Y/Uzbhr3kNsLGRemCSZrWuE6NRi7OQ9XpErmtOB+bncaCxiQun3UQGxBi9hppJK00EF8izZ4Fv/VZgYYH22SeJhB3M6gF//fZ9oL86xP3rB3D3/AU0VAf3fgZ47uEN3Dp7GbP7Ro31eCCCF8jFNT9Bwc8c48ZYBqRMeXbVzOq8dpm0QQm2tohRGaIIQ0sizGrORN5uhth2a8Ljyl7rw/z934TZXYVlAdFgiHP9WRzZv3Odjpnwk64Bm9NKyIDE+u2T5sVpZEDyLgFjvxYYW4omI8gzGgVJ3MwZQ+xdDMRwe6ZZHeZUBZXoK1QVhuzzt7KWRUDpFgGLUK9DiiKEG1vUYDE1n+g69XiYDqwe+jrqabCajukoyyE5bYReJNiYyUq2jsvKCbapSgGCvCWxBGtfiFkdlbsGmfstRiySi5/5dC0ipphZ+/lYRiaVxJyfx5LZw6rVImvX3FimTRSsHtfvzwuezBCmXGfymNVMY1y0XdHKM8fBlltPPFZY3H03pG/4eiILxZjVPKP4r2SERP5IlUMCttdqhNCzOT2xi90rjbZCPBymBat9H0EkQ2HoJ/V0Gfb5RA4AiSeYSMTVRqV6uhup2AWrnwUx6EdoqGRSKKNZfebzqzhy6bNon30oAattO7ZqKwIo/uzPjkl0pMN1SWluilltKh63vMXzyJ8rV4APfQi48UaMgOpuoEJTEwDYkH2hs34QcMDqlM6iqsvZIFIqogh45SuT9v/n/ySeaqdPA9s9Gae7iyMGcEQGRPBgdPEiVoZNLNfIl59Tu+Sw63kEqJylr6MAzYiud5lgoDIzQhQxixBtN1SgtmqFxhYzkwLIdY7NQIFkE6wnYwtAJaCPHypQTZW4HNe6WFmZUjfL8xJtQQBSvSak78X2kl/8Iin3vffe0X5uuvXRsm9WPiqgWT1iridJwLFjuGv+PP7qzO2Yrw2RINmI3elFmITr68Dv/u6EJ1IJCwCArmPeGGB9Q+zaWhZQWz2LN36jhTe/mZ4NJzCrRRhJvhMUY/0pChqqi4GdczByXfihgmYtKARWq4ylmceeKXHIUaQQftZtVpZJl7fJL9tXcORFAGIcNi7HAMRjdNNpYHaRfjBlVvcsberywdAPybhXVTRrRB+dCyRlHXYNA/jX/xqHnreIzkJq3FE5nKmrN8Y+1zAAh8MkBICTV5o4MbPKZ48wZvUzZBP+1FNjSWLfhxsqo9XFug5d8fnltP0++p6JxrwJzM8TZvX5MJYZGh93qi4ToFYgeWfbxERV/uy9RP5pA4RZzWShaD9rqisGVts++p/+MixfR/O2w2hqDv72S3vxDdaHcNvsJcwdbo2+QYBZrcpBcYNFlaNZPY2WKIdZXVS+SGTeKpwQVFXCAOaBE0EAy1dR13wuaGvWZdg+P8EEAIgi2E+egwkbN2un8chDIbZXHSyYg52UbXCSC2WMEAFAkqDKdBxMmmuDoLgeOjNY5MiARJFUmE3J28P4XohZY4C9y4IgkSQl1UZZa01aslA0CjCrrUBDfYa2vbhICABPrpNKPmMUVObKq4zF6urY12IyILVRZrWep6/refCjctVh7DMnRhkpMwHwsxRYrSiQpQihm51sL1shByDHI0RJSFsFIt5v5Uis7CAHzM9jT72LK9YMLgw62HdsbI4RNFgkYHV1MiCEYFbSyDeHWR4T1wowq1VZQLPacUZl6yaFqFH8VzKYfFaKrdzUHPS3pid2EXlPYLYTYcOpV8Sslkc0q+uqi+FAjFktNFZZxMzqcl3djSR2wepnQQz6UcKsDqPCstVnPvhlHGlcxcz5hxKg2U2Yabmbj7G47z5gbS3jSdel8gd0QyHC/ESyv7t0iTCRbtrfH2FW9z0DTSMprzMEyzF5zOq4JFbThLVEgwAxO/SDHwTe8x4C3n/uc8B2X8HTvXk0G8kkWVNcDG3B2/DqVWzYDczdeQCQZRw1L+P0kz7g+0QGhFWTqyotfZ+STUhZt6pOdAO9qgwWGVDJwGpLbGx5HgGogwD49m8nf0b6mmZZGYaYPqnAh/qRDLWmUbC6h5XVKcHqMWZ1nKkVZFafOgU897kkCRLf675PQLrGGFitCjCrI5mA8em49VbcPX8Bd81dwJ7lMSYQY8+4fHCm2yXa8DuCGqDpNSVuc94cYGNT7NoOrw5Qf8/v4d9K/wmWFRHXe9+HHWgw6wkArgskrnwnIIwA0dODqvJlQByHGCzWg0IyIFzN6qgkszrPSGgKQ60okvK1X4vKgIBcAzcPWGXriDnW9sICGqqLi4MOZm+ljliShFY9IJULU84FgRcSI2NFQbMRoe9PAVYDwI034ugdTSykiNUMUJ1Kxz8Md/ymkibGdLr36X146Z6T/A15zKwu382qIgjIHLO+TuZEAAmzupa6R9mhjwdWd7uIACgzTQpWb+LiZZlWbuijGq1I6fkLgIpPPgncpJwE/sf/wNylh8lewffJeE6D1YonZLzsDV2sWi1y4P+Wb0HT8NDQHHzToYfwb+/+MF72jc3RN/DAalbuXNRgUZRZXaacnmuwWKir+e0ytnaJNnXZ5zOrmYSRyQce4nElIgPS7cIeBDAVDy9ZPoXPfLiHq5d9LJo9Ypo8FrkyIGU1qwGoKpFRmQjWlmVWXwPNahE2pe8BR1rr+PbXixMeYi3wHOAPQDnNal43mAxIm7a9sEDIFU91qQzIKLNaV8SrJft94EUvGpNNDAJCDkiD1cwfIWvuiiUwymlWR1maHey+1QuMWSZbkyfbUnJsqVKORwg7V1UphcI8YOTi+y1di/L3W0y2MD1+5uawp76NC4MO/FCBPjvmIK6qQh40lgUiA1IArM6TGYrZ5QUTYgC4iRBVicQJHWx/xJu6bZswqxt8sNq1nsHMaibXkQKrG5qDwdaUOnGMBa3KUJsmqYapAKwOIjlZhgyDXykLlJu7dw0WK4tdsPpZEP0+Yma1JnmFS3PPnFdwpLVOpCO2yXtDyyFgX6tVGFBMmyGOhOuSzU2TDjsRTV0kc8TFTzyJQ8113Hjmo+h2o7jNnmeiNQZWO+6UMiBRBM+nZS2SJAxW+z6wtUX+/cADwFvfCtxzDzlIdwcKVqyZBKzWddRVF5YreBuur6PnmWgfbAOLizjavopP/k0fv/ShuwhQOUe/s6YRzer+lLd3SgdOU0K4fgXmBrRdL1SgtuuFEiGeR8b6+94HLC2BAJQjfVVGmNVVyYBEkUTAHsPAUq2H1bVi17XbBX7gB1IPMDmcJl30ajVIUoRoKMasvnRqiLvuItLSMbuayYA0UquiqpL7K+8SpGVO0nHXXZClCO/6mvfiv7zt9OhzmkY2+ZYYWL21lTDi05/rjoPVRh/rm2LX1rpEdFlx5QqOtDaIqRTdxcbAnKgMiEO11oowqzUOs5oZLDai6pjV7EBSouxdlQMEOTIghY2vAD7oE8rQtBKHJ53KgHDKUuvjgE+ng44+xNO9eczecSB+uN0M0ROQ2cmNKELgU9YpA6unYVbTePvbga//+tQDuk4qg6Yx02GfKUnJ4UpAlxEA7r+8B89bOMsvdYyZ1RW4s08Zly+Tr3XhAvDOd9IHg2CnZrWmiV3bXo+sHa0WMD+PffVtXLyq0/3LGJMQKCSL9Mhnt3Fb+BAAYH77dCwDYgUa6o0UWK2KgdW+G+Lp3gKWblsCbrwRx9/yXPz8c/8GuhLgps4KOreOOcNxxsFIKW+BiMHPayADkikpMK3BYh6zuoRmtSYHcHn7TpaoHk+0ZbQJQAystm2SqFU8fNWeU/jsp3ysrQRYMPuTwWpWDZBxDQCUAqs1Jco02oyBxoJAksZjVqfNZAu0CyC/9N+NMKsP8a++Xzwjl+vjAEzHrBYAqy1fR22GnlUWFwm54sltAmI3UtedMqtFQZTf/32CJ545k3qQafjXR5nVpuplSxYwQLEoj4ZWhwVexvmD7Y2KgNWKQjWrBTTGC44tVQ6yweqUDm+h4Gjt+6E8HbM6F6zWRskBCwt47sI5/Nmp5+OG9trO8cw0/O38/lgWCsqA5AB/7CyjFrwGvKQoJVcVWhNEwWrKrJ5t5ryQkW6eycxqRkBjYHWtRkzIeaaFvGAV05qUVAhVIANCpIjGmNU5xEX2PgCF5+5nyj75eo9dsPpZEIMB0KAGi7ocwO0VkD6wLJy8YOKG1hpmdAvdVXKgdwY+TMUD2m3SpmBWjwtWpzVlRZnVFHy/eCHCj97+MbzywKOJzrXnEbC6RicSwyAbOx7DBRywmpVqqRSs1jQC6HBWHyZVEQTAww8Dt99OpFTPn0e8kWgu0CyyaZJDqcO/DVdWgLWne+h6JtoHZoC9e3FDax2/954a/uqhw9h2a5iZTa5rW7PRHU6hRwckZiiaRHU55enBXyApw2nXocmhsAwIA6t/+7eBn//5sT0b6+uYDEhkTykDwjQGKbu+oTr8cqGxeOc7gXe9K7XGMgBcT8DquupiuJnf1xis/uRJdDZO43WvAz71KfokA6ubqYOVopD7a5gvAxKEMmR9bKxQ/V9JAswTB0ef0zQyJwgkGZhUyw52Nfvx2MJPmdXrWwKnGMvCcMslup8ADrtPxWA1k2lgbYokrgrLgFBmdd/Oub8chxgsNqJiBotMbihTl7CkwaKUU+4ahsXLs2m7khRxDH8K9hWAZshCMiA7qtuPHUNnUcXTynHMLieHn1YL6Lq1qcFqP5ShSIRdY9QV2IHGlxnigNW6PnbZKTDBWxOFPhOpcS+iIRkEsDwVTd3lH86fQQaL586RW/eRR0hybDhEzKzWzQnMap72I9vANBrA3BxqqkeGTrdLNKs7YzegYMkzAJx8yMKJGaJXMmcOsXE1SAwWGbOaGS/zwGrXhe9FON1bwNINBJC84bteiv/r3m8DvvZrgW/+5p1JB87B3PdBqgdKgNWZjFqUZFarKhQpROhxgK+i2xwGgk9iaZadY1WVMFUFmNUTq0ImhaYROQEOOxEA4DiwA7KfvrlzBY8/pWBtDdlgdY4pKDEsRzlmtRLBjyavX4VNygA+m5I1DJQz78yVASk+ZhVVygTrAUwFVgtpVgcazHYCVt/QWsPJMyqsQEe9kwIENY2AiYLz98oK8PKXE739OGLN6tRYpqziwM1nQBdOBjHzyiywms47klIMrFalID9/yyRmCv5eqhTCd7LHAJEsEW8SgBizugRYresgmtV5YHUwNmfNz+NrDp/FB888B7d0JhgJUZ31XIA1imDZEjFuFAGrY+Av4/n4zM5vaiR4iSt6bQutCQU0qzedOjqtnEHISDf2M5hZPcG0sKk56Hcr8M2KErDaVDxYm1NiEOOa1apKzt88HMb3iWZ8wcTVM2WffL3HLlh9vUcUYWBJaGoO0GoRc8FuAYDu0iU8vLEPt81eQlu3sb1CJgI7DVYrfmXM6hH5AwamceYeb41oflwazuC1Rx7AcxbOJ5qeE8FqD44AWzkIcvrKFj4lYUEDfC1Rtt53u4SFcHi/j/kZH6dPA8cWiYh0c5mW5qoqAas9lctY/rM/A/78Y3MEpNk3C+zbh6OtqzhzycDl7TrCSIJsJMAf0WmdUgaEmRZqEvSaQkrFptWApu2GkQyl3SATueAi7PsE/PR9Yk4lSanLNs5WMAzC8OhPuUqkDxe6LpRcGY/3vQ9485uBhx6iDzCaENugMcM2jnOyd3kNuuzh8nAGnS9+DCfmN/DUU/TJGKxO3acsGcRhVgOpkuN0/NzPAW98I6n/TAc96IjMCUw3/S//Evid30k9wW4UtlHUNKKvuC0wZvt9AkTJpI3DwWlyiHJdsplg11Ulr3G8/Lkg1mktwKxuag6XWe2FCu440sNrXyvWLMAxLWQAcAlGTq4MSFmNUo72aynJEggYLLruzsMTfePNb7gNmJ3DkSPJw+0ZCT3PmA6sDgIEkRQfBiXTiPuSG0XLiFnJN0+flPOZUQREUkGwmo5ZzVT45a6yTBKNQUXVNlPEuXPAbbeR5DCAWBJokgyIiFl0zOTVdWBuDpAkKKGH4OoGBr6O+uxYybKgmRQADDZdtDQyDuf0PtbPDyfKF5mKzycQnTmDMJJwureIpb2p8SVJRCPrW75l53s48gdBAFJlUrUMiFeCWc3mrSzQhwLLhdiUrN0sQC2eY4s1yeQquAwqtgeuCdzfuk7MYbsCr3UcUkmg+JClCHNaDyfPKLlgdZYMSGwmVoZZzWRAJoyDWPe1ILM6d+2iDRc2LRRgVvteWEweDOS65hk3xtJpZZjVPNY+3cvJJt3/LCzgxcun8b9Xj5JkWCc1b9FkIze5QsOygJtv3glWD3wDjfoYWJ3HKk5LKhQJ5ruR0y6AcmMr7/jBfseCCRY1D6iMz1UlK9ly9lulZEAMSUAGZIxZLUmY/fHvxa2dy7j1zgn3nQizmiVpdV/sd2OJq6wjXcyY5Tc13ldZirKTojEIXoxZrUoCnh7MYLGV88KYWf3MMLOeGONs5VqNSGtUAVazNb5ex4LZx/rKlDrYQTAq9cXA6rzzHO0Le71wiDLsd4Mbu2D19R6um+go1mpkU9MTL1sL1rdgByoamou2ZqG7Rt5rD0KYih/LgIgyq103H6y2AupWDcQlY1xm9aWrUKQAFwcddHQr+SAAv/qOJnqegVY9YVcYsg/H5w/tXGZ17Fodxe3qcgC3LwZWX/mP74HZvwr5p38Kc+//rzh9OsKJDhHzbu6nVEtJQq0GWL4uJi+yTn4DaXEBeNGLcLS9hhvaazjU2iSZcbYBVlXyWw5LIEXpSJXgaDWVHEKmLcEBkotUrxcCqz0PWH16gJriAE8+idnZCJubqb5GKaNAKrEy7E2ZjU6zdhgAXgBIYprSX/3VwJe+RB9kvzX7vWo1cijdzF+E3YeewIxu4fKwjY5h4dh978fJk1Hcz013rJysAFg98fB08CBxCx0HrthBR5BZfegQ8F//K/CZz6SeYBvuFAu6pgiajdIvJO3fB9RqOKxewNmnHETbFBlvUVMxRSGMBA6A4NllDBYdDBwOszpUcGS/h2/6JrFmWdsAqjX/ogyiTCwtishhv4RmNYB8pk8Zg0WDU5bq+xj62iQMBj/zM8QfIDabBdBoSuhPq1lNmSMxG0NQFmpHUoYXdMwWKfl88kkigRGH5yFIl2QCfEkFAHAcuKGSSPPkhSQlSYWv8E78/HngOc9JkoFXroCA1WGGZjWHWe3ZAQzFJ/OBqgKLi1iqdbHyhfOkMmx+jK1cAKy2ex4hAQCYMwfYuGzH908sX6RpqCkuLF5uZXsbTc2B7WtYWuJ+9Ghfc2VASmpWZzFKwxCeL0NTCrbLYyiyhFgJg8VMQC2WLyrWZAzOCDGrJ89dk9ps6xa2twT2GzRRKy2TgXCktoL7Hq5jsdYn6/h407qc+XuVApWTLme3y0DwMsAfh1ldmP0qBFaD3AsFFjHCLM8GqwPHLyY5BlCwWkCzetxocnERd85dxAPrB8i5azY1b+k6NQQV9AgZErD63Ln0lwnI2XMcrOaAyn4ZzWpZJgmmHCkz9jrhYAB4zv4wcsslQlSZp1ldznsEQH7VXVEJDFByQEY1BIDEYHG8ku3mm/ETvzyLl/3cyyY2ymVW+z4hX2mCZzSaZMxMCJYBlVPtZv5eZfayMUjJTzBxmdWsWnwaAsO1jnGPGl0nMiA8HWhejMmALJh9rK1MeaYPAgRhSrNaVdFQXQwczrpUpoKHMat3ZUCmjl2w+noPy6K6YREBq2W/ELP65CNOXJY6o1vobvjEWZyatTAZEC/rwDAWucxqxuI0EuajIfPL27zLRKJk4JuYee3XAABkz0UYAr/yznlsOg206kkG3FB8OD5/ZeGB1SMlRcz4igPQsfns8/cBN8lPAYMB5gfn8PTpCHv1NdRVB80Dnfj1tboES6Cc3PdSwOz8PLBnD+afcwhffP0v44h5hSQWUsBfW7fRtSoAq6MxsLoKGZBxsFpQY90bODj//3wes6tPAP/3/41lbTPRrWaZXcayUhQCfg6mz+wCiJnVIuM1Hf0+0GwSQ8QYrGZtMsDLMMjCznFO9gYu2rqNFXsGnVaA5qkHMNgm7xn0QsKsbqfuU2awWBaszgrmJC+QwOp2gVtvJTIg588njztWSACh1JgVzkCzL1SrAQcP4nBzA+eecuBsWaRNBlYzRhKPWe1SzeoC7NeG5vLB6kjeqQXOizzTwrIardSZPPPAPy2zOlOzusTBAYCmc2RAWCl9Xew6yIZG2OpTgtUEAKbzCbt3OfN2DA4XkJgxBKo3oogYDgPAH/8x8Ed/lHqSeQ2kS4LZpjkvMWjbk/XrM4KrdflPFOfOkfn11CmCy125Ajh2RJjV9dR3YWA1JxEwHEREYoiN70OHcKCxhYuPEu3XxsLYqb0IWN2nYLVpYt4YYGPVj2Wh4nZoxZXNK0v1vJilLQxWC8iAlGFWa3qOZjXbSxUxqKJ9FWJplij7VuUQnjMZrCbM6uKsR00OiK9HXjCDxXHgZ1JoGtmTdwVey+ahvXsBRcER4zK+cH4JC/UhcODAjpfHTPjrgVkt5TOr4zm2SoPFKEr6W5BZnadZ7bthsSou2ldTYB+zA0yZm4NqqujoFs7351CbSw06tocrwKw+fBhYXR39vIFvjCZe2D2bWw1RVgYkfy4AUGxsyTJlVmdfg3hvWBCgUvP0tZlnT4mKEAD5VXfTMKuzNt/MYHHCnPV//J8tHDg+wd+CJe/yzgiMsW2Ig9W5wB8Dq0sZkOecQ6kfUqF2RUFKz8OWWxs9t41HLAPyDNesTmvRszPScEqIkZLQVF2mYPUAa1enBO1ZZUOKiEhkQDjrRxmz1V2wurLgjiRJkkxJkj4vSdIDkiQ9IknSf6CP/5EkSU9LknQ//XM3fVySJOm3JUk6KUnSg5IkPTfV1ndLkvQU/fPd1+xbPcvjne8E/uRP6H8cB33PQKMBwDDIAsFh/6bj/gdl3DV3Adi/n8iAbEekLNVTYGp+DCi6gkwvzyMAcBgCf/EXY0+Oyx+IgGkAvK6Fjm6hWQ+hfsPLAQAtqYfLlyJs9VSc7c2hVU82K4biwwmUhNaaEUFA+hpFwJveBGxvj/aVLHxJplDEnMnbIkj9Ixv7cOhWAprNGQNsbcuYibawaPZHwWojxNDXIF1fVwABAABJREFUuQddr2dj0zbJZow5J995J2aNIQ43NzBnDkjJMpAYLE4LVjPTQk2CXlfhhtXJgAAA6nVafiNzfysA8C0P5/qzmNVJhmGPtJKA1QxYZxtAtgAV1JfeEWzMqiopzxYYr+lYXSVAwp13AvfdR75mLCXD7gNNQ0u30R9wGMCWj7ZmIwhldG4jxlkteYhuF3jjvzmGj1y4bXTToygEXM/7yUpqKOqCjPhuF7jlFgImpRNDfUdDU7MngNViJc8AiB7rwYPYV9/CpQsRBlse0e5PMatFZEA8xqAS0c0DqOO9C8vjy4Co9YLChAJs5bKb8cxy17KGWlymT4mSTBDgy81j7FKmj1ApPZCM7WkYwFRnX2GHQcOALEUIrPy1NvQCogEseiFYspXDonnqKeBHfoT8+/LlsaoFthkfY1bXFA9WP//wWAisfoYwq69eJay/KALuvhv4yEeA7/3jr4M7zqxmGvacazsYgIDVbD44fBjH26v48c+9GZ++chz1xcboGwoY4dn9AKbqATffjDljgPW1KHGfbdB2FYVoVguA1bocQFVCLC5yPzpuW87RgY4NFgtWWciqTOQPJknCxCBCScZb1ppAE2KKXjAhmKcnSkuEyxgs6iKHUiYD0hA4vGoaZnQb212B17J9imnGWsVPbS9j4Uhz4tyjGXKmDIjry9CLMqBpqCoymcXlmdU5iVYAgRsUZkBzTdXY+iUXMx6OkwBZ2u12UFhahKwJXv4+DiCeHWkWsCQB+/bhpXtO4qMXbkFtITVvseo4gQpUgIDV9Trdv7Jbg2pWN9LToQCzupSXBTNDzJkLAJRIhAQI8si/blhKvkjJm7eYGV3FxrClkgBIJZ3zmNW+BrNWoL+MKJK31jL5K12wzzz9+imY1VpegqUMCC4wbwGImdU8sFqXn+HMajam2W2ikfNdvwqwOpShaHLCrF6fEvilkn5pZnVddTF08yelyBvzRBKJXbC6shAZSQ6AV0RRdBeAuwG8WpKkF9PnfjKKorvpn/vpY68BcIL++ZcA3gEAkiTNAfgFAC8C8EIAvyBJUqpYdzdE4uRJIiUbszQti+iGNSXANMkCUUCn96mnVdzUWQFuuIEAnH1iojfwDdT0MNF5FMzqMWb1vfcS2cRPfCL15DhYrSgwFQ6YBmLOM6Nb6MyEBIgyTbSVAR79EkENz/bn0WrQ/kkSDD2CE2i5JX5Awqy+7z5y2P/P/3n0i4wsUIyVxQGr/ZNnAACP+cex71V3AC9/OVQ5RFuz0NZs/J+3fhq1ZjIpEhkQgb4OXawM29DTJa/HjwMAjrTWSdk7ozhoGlqag65T1MFjLFgJji5Dq2vVM6tVFQda2zg/mBNipXlOiPP9OczeRGhky+FlUvId91UZZVaLmFTR+PjHgfe+F3jiCYwymdJsFZawKIDXr6wAy8vkDHn0KPDoo4Brh0mZOQCoKpqqg96AA6o6IdpUBqdzG2FLHW+t4ORJ4NJVDRcHs5idSd2nDADOw9PKgNW6Tg46AnNCrwe87GVEr1pJnY17loqW5oxoVhdmVhsGcPAgFDlCYDm43G1guTkcua5EBiR/ExIfSArIgKhyiCDPRZ7KgKi1gsgy1/G9HCOHHPQynp/CYBFAtfraAHSTw6xm5aMNwf6KSnbkBTVlSZc5NlQHw22O4a4TFAP/NI2w6ByONJaXzFOXLxO95rR+vxOo0NMlwapK5sO8ShPfhxuo0A2x3+yZwqy2rETp4O67iT7+xkAn3yUtaUI17Hnz1nBIwWo2Hxw6hB+/8+/x3q99D37p+R/CDbeNaTgUMFi0hyEM2QdOnMCMbmGrqyRgdTPlZaF4sDiHp9AhJepN0y8kA5KpAx1F8ANqsFiEAQ1ibJaptc+SbCV0anlsyggEKC/cbhagFkXl5i02tgTAaivQxKpCNI3IufUFvh/blBgGsLyMI611AMDCTfOTuyvCrC44BmiXrwGzOv+wX9ggmbabOV5pZ0c8UAQjVw4HJfYaQCKpwPHhibwxGRAA2L8frzzwKC4NZ0fBal0nhqAFwOoaLCwuRAm7OggwmARW50lghCGR6yvJrM5kK5fWlg7hB9lkmZgJX5C1n8suZ2dLo/i8JSHDGJZJVcglDBZNWcBgcYIMSF7Q5J2bt4+h+5SaIdhnVhGTw6wmSYAC/WTtisiAFJkLYjNIERmQBjozOdeJMaun2L5e82AyeePSGvb0YHUQjcmAbEzZpu/DCTTENk2U2DZw8gdO4BYkngCjYLUAIW83soP7q0ck6G4aGv2Td9VfB+C99H2fA9CRJGkvgFcB+LsoijaiKNoE8HcAXj1d9///F7//+8CP/Rg5oAKgwLKOZktKZEAKaFYPuj4pJT1yBBozMrFtbDk1zDbdBKQtCFa/733AH/wB8B/+Q+rJca3e2GAxf0L33RAdY0gmdEkClpawaPZx36cIcHe2P4dWMxmSsUkZ5/DIwOq/+Auiqfu3fzv6RUipiBT32VA8rt6lf5qIuj26sQf79oGUZQKYN/uY0S3825d8cuQMoOoywoxDw0i7QxfnB7NoN1Kvo+WdN7TWML+QupWZZrU9ZgRVNNIGiw2tOs3qlF7x4bkezvbmhLRfPQ8415/D7K17AUnCsnseK5eCpK+hDNVQ4rbrqpst8zIWDz4IfOxjwC/9Ekm0xDFusKh6sB3+puX3fg947DHKrJ4PgCjC618PvOMdwFpXH2XuUcM+Xhbac0K0adl3567DAIBj8tM4dQpQIx/fdvQ+tPakTg4i2f2yMiCKL8ysXtY2cI/yeezbF5F5KwzRd3ViCssOrozpwzMRAhAxMVfTBPbsAQAsK2v4zJVjOLGUKo9g7I68A1kQUDZhAQZVzFTOB6u9UIFWrxCsZqBPUY1Wjut9GESQpWIMMgCJDnLG4cmPSrDAQVh/uYxdJgMiClZrGjmMWBUyq3VdyO28cBkxZdE5vGojjySCADLH3HNPysDV97HhNDDXSGXV2HzYzweri4yvGKz+CjOrLQuYlzZQ1z085+Aarl4FejaZW2MdaECYWR2D1exQcvgwVBW4ob2Otxz7IvTFmdE3iDKrowi2FRJm9YkTJMnmBckPmZIvqql8sDpwfGhygFatAFjNAWqDkJTGFwYqReatqrVEw4SgUCgomDSx7JseugvPsZIETQlJYjTvUMqY1U2BuYvKgGz3xMBqCSB7ikYDR1rEH2Xha2+f+HLVUDLlKqaRASGa1dntFtZDF9jDeG5ExmyVzGoKKBatDMr7/nFfSwAeInJmDptb0m3Pz+PFy6fR1OxRzWoqAyIKogzXh6j/8s/iTvkhPPAAfTAIiATlDrA6P8FUquKKx1Yuw6yWCLsylwlfcmzlVoSkKlYLRV7yLoroebVYkwA5g+YmnZkMiKDsGmmU6qwLMavFweprKgMySRaqbLsFZEB6noF2O+c1VIK0iqJmFmEI/N3fVdfeDnNLTSP7Y6vEgJzUrpFiVm9N3+a2W8NMIyHNNVQHQy+/3djbqMhNJhM5Pi8nIbYbYiE0s0uSpEiSdD+AVRDA+R/pU79MpT5+Q5IkhoztB5BSJ8UF+ljW4+Of9S8lSfqCJElfuHr1arFv8ywPzwM++lHgrW9Fwii1bbJhaEpUBiSAOxA/PA57IRqaAxw5AoACD7aNLbeOTsMHdJ0cnARBPwZWf/azwHd/N/n/xgZ5zrc8kplKy4AIGId4boSObmGGnRGXlvCchfP40Ic1zLY8nO3Nj4DVse4rh63MZEA+9Sng1a8mc1D8Fpb9ZocWlt3kaVYPyJd5eqU+BlYPSP+/67tG3yBg9AIAnuWNMsgBsjE7ehSv2Pc43v7LqUWRykqIMqv7fSKDsvNDE3ZJY0ZFzzOqlQFRVRye7+NMf54PVl+6BD+Use40Mbe/Buzdi2VzGysnu3FfvVDZAVaLYuuXLhHW8wMPpORgwpCytyjrVNcJ61EAUH3kEVIFsfqlC1j6xPuBH/9xvOHu0/C9CD/9qW9EbQysbmm2ILPahmFEMI/tB3QdB5RLOHfShRx4eP/X/zfIy6l68Lxy57jR8jIgIgaL3c0ArT/6HeBd78LB5hbRrfZ99DwTLSP1mzMAXICk6fTcWPcVy8sAgBtbV/C352/H8X2piYrJgOQxq8scSlWVMJXzwGrmOG0UYPrQtgHkalaX24xnH/g9Nypens3azTJAC0N4ZWVADP7haejrqImYlAGArqOl2+h1p9gsxprViQxIU3XQ3+YkL72IADSi11bQx8H3E2a175P5+8/+jD7peVi3d4LVNcXLrzTxPGKweB0yq2sf+O9Y1Ldx55f/O9ptwPaSdSAOUbDakkaZ1bUacOxY8oJxuSBVJZIwDuc6DIewPRVmXQHZHABa6GA4CIkWuknBJEUhMkMcsNqzA6hSiMUZF/OTCbQ7I09TlrIeVaU4O0/IGLZouzyjsjAkAG2JeStzXSyrgy1J0LWISKXl7eVook1cBsTCtgizmu2fDAO49Vbsr29hrm7BuO34xJerusxnVpeUAcliVvtBORmQ3NJ/kH1RYRBBVcnYyfqtKFGjaNJC0eRcg0XfR/FrwM5JnH3nYCgRGbT0BmF2Fpoc4p+f+BzmF1Lvl4lkhJsn/8DC82CfW0UtGuJ5/ufxxS/Q+zEIYAVj8hACCabSOvN5OtAlpcxUhVSrZYHVMWu/jMFiLlgtl6qQy7y2NJleeI4FIKn8xI0VaOLkACBea3OPdQysNgT3Zew8k7XvjpOi4t0caTfr92LX9hqB1X3PJGTDrChR0cuLwQD4qZ+qrr1JOtBNzeabFvKCkQY1GajXsWD2cXWrOAPmscdSt3gQYNutodNKzM/rqouhp2XOA0BqnSl4AMvzcdgN8RCafaIoCqIouhvAAQAvlCTpdgD/FsDNAF4AYA7Av6miQ1EUvTOKoudHUfT8RWEhvv9/xBNPAHfcASwsAFtb9MHhkJRitRUqA8Jn/8YRRRgwM6HlZaBWg4wIweo6ttwacajVdXJwEgT9XJeAn6pK9mOvehUB2GlX0RgD6UyFz1T1PGL+2OnQ1y0t4QWLZ/CPj7Rw1w1dwqxupd4gCAD7PjDY9uE6IWo1cgliDeRYs5r+n7pnc5nVboiGaiOKJHIePXAAkCTM1WzMvO3biXhvOgTNmXyLlAu1W2NP/Kt/BeWnfxJz99yUPKYohCUfimXz1teB+++f9KGJtlqtrcEOtMplQPbPWbg46PDB6rU1Mk4BInmyfz/21rdx+ZyX6usoWF1TPGFm9eXLBFx+7LHUvcWAXEkif3SdaAcKgNW+T67rygNXsGx2geEQ9U/8DX7ih2w8sr4HNT21AVZVMWa1G6GtWyMVBgcaW3jgCy4WdIpcLSwkb2Asl6rBasaC5kgVAEDv9GosXXJQOh+D1X3PQNNIJdViGRD+tR1ue2QsmCaRvmm3cePMCv7+4i04fnAUoItlQLLuA+bMXoT1F2sdcsDqEmXE10Rag8MEL82kY0DCpMMTM1ichlmdc3iKACimoMyRppFk0PYUBjU0+aCwS2QYQszqwkCKoGa17xNCbkCr9V/3OuCv/5peMsqsnm+m5lRFIUnnPBkQdtgTLE/mMuD/icIeBKidewJ/8op345B3Er/wb2wgikh1VRoUYtVRnPl7aE0Afb7ma7LfwEp+eZUmtg07UGG2ddJ2u42jrTU8srGPSK4xhjBjVnOYPr7tQ5UDfOK/fEEc+2KashlAbazTWzRoiXrVzGoemzICSs1budcgkoszq0G2tdzkDTNYbAr8YMwou89/rT90CRHEMIDnPx/Kj/5feOe7sydfwqzO0JZmch1lZEB0kHbHr0EUwQtkaEVZ+2ztyrmkhQ2SabvXQgYkBv6ymNVl2OUU+LPzPDLAwGp39Do8//nAiRP4vV+zRraGAJV/yDPWY7G1hTCSIEsRnrdwFl/6LN1j0e8opQWoeTIgZTXheQBwWbBaBYIcYpPnodTYymWXTyEDkmlIH2uBl5i7eTJWBb0sAMSEltx9jOfBDtTYgokbPEmgKRMhecmFwsxqdvbKI7QAgOcRybZ6TqcZUa7CbZbnAWtr1bVHZPKkEWZ1Q3XRt6f0zWLnKGqw2NGH2B4UZ8C84Q0EP2Ntbrs1zDSTyqy6yfcOK8WsBqBp0TOC1HG9R6HZMoqiLQCfAPDqKIouU6kPB8B7QHSoAeAigIOptx2gj2U9vhuCsb1NPPRG9nqDAfqeicacQcBqARPAOIZDDF0N9QZhjaLTIWZlj25hy6mj0yabX1P1hMFqzyMs1VmqRv6KVxDmMu3qDvkDEVmFGKyeo8N1eRl3zl2AKgW4a+Ys7EAfBat5Tt80/KGL4anLwMWLwP/+3zh0CARMox9KmNX0/xSo5IPVAebNAWQ5IqW59Trw9rdj/oXH0J6Z8D0FwWrPIs+3xyqQ0WyOsr4AMkAK6GhubRGwdgeeR0tiVUNJWF8VgdURQA75Ji1H5YHVnkfkakDH1sICDjQ2ceGiFD8/SQbE4kjMsLh0CbjrLvJzpcHqKEJywxkG0VjnaAfSt2JjPcLqORtLNVrm/cgjODB4Ak91l4i8eAqcaGk2+haHSeeEVLudPrC4iAONTXzpfhlL6nr8WBwMmLgWMiCyoAzIuhdLl+y3T+PSJQBBQJjV5iizmjAR+B9v9XzUGLMaAJaXcWNnBUPfwPEbUn2SJBhaCCdQszPmzJizKLNaDuHngdVU+7TMgQRAvolOKRmQ7HHg+yh+gGbtZpVPUtCnjGa1oiv50khFx6ymoa3Zo1r0RSMIiERCSrO6ztOABmVWFznsMukaDqDKZEDW1sgtbxjAi15E/Bfg+1i3G5hvpe4vplmdt46zQ5koWP1MYFZHEcK1dchShK/acwqaHOLHg18FAtqndI061X7lJdmGtjzKrAYI6PPd3w389E/vfAMDq7PKiFm4LmGS1en1XVjAjZ0V3L9+EDUz9V7mt8ABpxjrr90pcN/mlenTe1YpCVZngn+MWV3CtJAkW/8JZUCm0drXonztVyAhQYjIQzGj7CEfJLIH1LhT18n1uO02vPHbsuccVc82WPRCeQpmtQQ/msAii3XLS7DrOXuYuDKoYHUYgFxfhMpN8JBiVheUQollQHLIJwNLJlWy6eug68BP/ATwmtfseL1qKIQFzgOrbUK+AYDjM1fx1BMJs5r1L2lUhSrlECSY78Y1SFwBKAVW58m2xJVRVcuARCWZ1Zy5u4zBIpfcRceHpBe7v7jM6iCA7RdgVstkXsqUVGASTqXWmXDyegDE+6JCvxdLLAR8k2RJikblysaDyYAIkKREw3WnA6vf8Y4xKIBhBWpypm1qDgZOBTIgKc3qtm6jOyzW5uoq8PjjxJSctUnA6mS8G6ZEyHh5YHWZCh4AWk610W6IB/fukyRpUZKkDv13DcA3AHic6lBDkiQJwLcCeJi+5UMA/rlE4sUAtqMougzgIwBeKUnSLDVWfCV9bDcEo9sF2nUf2N6GaVL54H4fXc9Ea8FIDBZFwWrLIvp5LbpYdTo43NrAuSeGRAZkJqLMak8Y9AvDCGcf7WPBuwScPInFxQT8GwxANlMjMiAc8C8M4fnAUq2HpWXah8OHYao+7l44j7vlBwEArZlUG4pCXLE5h+igb2HbNdFUbOC//3cc1Fdw7hx9MmZWJJq6hsI3Z/KdEAtmH8vzfjKnLSzg+39Qwx13THiDquYzPFi7FBgc+Z55IaqjCZIEGQ4T6czkQ1M6VHRs2d0KXB5SzGroOhqag/4WZ8y6LkzFhyyFMVg9ZwywsSknfY3kBGih7DRRZvXmJvDSl5I/sQwIM3dgh3dNI+WYHO1A9hU3zvaw0jWxvEcCvuqrgCiC+b73oK66qDVSG3yqWd3jgdVuhLZmo8NsaZeWsL+xhceeNrGsbxHwlpl00WtADEnyGi2rWS1osNiX4yRDZ3AR26tOilmd6lgMVvOv7bAXEDCJUTL27MGNM6vo6APM7R2laeg64IQqnzVS1OlbosY8WUFlIwqbf+Ul2sKQtKmVkOuQw+qZ1XkgHTOlKbNXFWD6jLyOF7pOmNXTyIDQyo34XE7lsYYiYHWRDa6gNBZjVl++HMu244UvBL74RfLkutPEXCs197PEVRbbC4jnO0UXG1/PCGb1+fNUB6QGvO1tBKi7cCE5zKaz2KoKXQngcJawiWC1JAEveQlwww0738CSdwJgtRuoyRo1P4+bZlbwJydfiNsOjGrtE4NFvoaiKhfQQwfyS8nDcDQhUySuqWY1B6AqCqrmlX2zipASzGpNA2GqcsBqSYp2Sslk9NOQfSEfB7vvE2ksQZqioiuTZUCiCF6gTG+wON7utFIwOQzFUiACBT9DL98ErwygCCDTINkLZZK8LHJtZRmGGpCkOw+sHmdW50QMPgqA1XFXpAgHW5t4/HFkg9UcZrWXBrVEgxks+tlSDaSDxX4vRZXyZVvcchIzuRWNVLO6DJEhk10+DbNaIHEz8jrBNnWedIXvwwnVmHPCDUmCpmFyMgwonxTNk4UCynnF8IB1FiJ7WSoD4gpUnYqG55HbWvR8PB7veheReo1jgmZ1Q3XQnxasZiC4TsDqlmajV5Ct/elPA8ePA08+mbS55VDlABpxsiAPrGZJ0cJg9a4MSBUhMlvuBfAJSZIeBHAfiGb1XwP4E0mSHgLwEIAFAG+nr/9bAKcBnATwhwB+EACiKNoA8Eu0jfsA/CJ9bDcEY3sbmHnks8C/+3fYu+ASs7J+H5avoTZfB0wTuuLDFWA8AgAcB0NfJ3rXANDp4FBzA2dP+eRm7kSJZrUjtrDWNQ9nTodYWHsC+NVfRevx+2JGGymvLSgDQpkoX33wDH711+jr9u4F3vY2fPybfh03d4h4d+toilEqKgNiueh7BpZaFhBFODh4PGFWMwaMnmQKDVmgPNuLsGD2sW9pdNJ7+csTtvlI0PLZ0OXIgNg+WpqF9qzgwUzTSFmuAJDAkgmXLo1/aIppZxhYMntYvVrBgpne5Oo6Djc3cPZM/nWNHHLIa5o+uY7z82S/H/hkL+B5sH0NRiOR1qirLiwBM0QW//pfEx2vNLOabH7CuE1SjslfrHwf2DizjRWrjaW79wHf8i1kQ2LbONjYHC0DZjIgeWYUASl/m6sNk6TN0hKamoO27hD29sLC6CEo3oRlNxu5JLNflJVEzBA5rwuJxqAiR8CePWhrFrZX7Vizummmxryui2m8AbD6AWpqill9++042NjAD9z6KUhjOjm6IREAIbfctyCoKhMTsiDKMSeieqqSUvxAIklRJugDAJJc8B6k/fXDyUZCpbREaV/zylLLyoDECbysucvzCNOrALO6pdvo9qaYu4IAQSQll8gwiDxWngY0CPu1ELOasuh41Ua+T/6c+ccV7L30ReD978fznxfhC18AlQGpY34mdX/xQATWKCB8XblyLf8UwTYXR48Cz3kO0R0DYS960EfBCyYDwrm2A1sZNVjkBZsPLc6+i06YkkH3PwsLuKmzgk9evglveFFq8ZVlsufytdyDbjy2ioLVWeOAmqKq8jXSrFbLAZWZABXTrK5SBmSKJJtuSPxD6bjJeF6wpLAAP8AeBIXA6szDeVlQmYaqSZPlRaYBqyWODAhLCBa8DxQpypVqKLV+cSujqCZ8wUSAqdMKsZz9/MBWiHxRgXkriiT+/O04IwmWf3HL5/Cud2EyWM2TwGDVYaWY1VEmoBgEBEgvuodRVSDIkMMhiRuJzLEFddZVKX/eKitXoUn5+61S5AAeWO15ZJ4tCFYbCqeKiZ7ZhJnVANQ84I/NMWUNFnOY1YW9YiQJmorcRAiA5H7OS16qKnQ1gONla6sXDbamlGVXd7vA3/996gG2d2DXSNMICU3QNyszKAiuaArRwTZ99FyjEEHi3nuB7/3eFFjNmNXt1O8tQO5znSnB6l0ZkKmCu8uLoujBKIqeE0XRnVEU3R5F0S/Sx18RRdEd9LHvjKKoTx+Poij6V1EUHaPPfyHV1rujKDpO/7zn2n2tZ2d0rzpob58HHAd7lau4fBnYWPEwawwJo5LJgAwFJzTHwSDtTN7p4HBzHWfPyYRZ3ZFizWre4RkAwiBCS+rjqt3G4iyVrfjYB9HdCok+9lAalQGhLLJcZjUDjQ15dL9w991otSXMGQMAQPOWlMIMz+mbRuS4qKsulu4k1LSD9lMTZECkuE0RVpbvhjjY2MSbXj3IfyELWp5tDzgGi06ARbOP1pw4QAMQMJIX29vk5Zcvjz2RLler1bBc62J1rbhD/I5Ib36oiVB3i8NQtH1ocoBmLYiZ1QAwq/awuUm+5xWrTVjMtO2a4mJo5fe31wN+71eHqIUDzD76Gez3zyZgte/D8jWYWrIpNxWPGPZxtMA9D1i/YKPrmmjdfYxkKu6+GwBwqLmBeju14DGDRTtnEXQceKGCA50BPvCBBKwGgAP1DSzVujtZf6wkM++gVwbwoKyJzM0di+1tABHQbgPz8+R33ghiZnWrNsr81OQArgizuh+OMqvvvhvKD/xL/MoPXtihCS+rMgE+c1gjhQ8OkkSMlLIOOcBUeqoSMJnxxcZcifJsRUGuRmlhtheQz9adopw+TrRVyKxuazZ6/enAattPOddTGZAhZ5r3PBDwr6gMiACzGgCe/OPPY+/gKeATn8Dt3c/i4YdBDRabmJ9J3V8M9BEBqwXHl8bAua8ks5rpmtRq5G/qNNjSbMjj7D2WcOZc24nM6rxgVSECzGoAyf7nxAncOLOCA40N3HNXiuIkSagZIaxAyz3oxuZfBefuTNZfFFF2VAl2HpvnJh2myxpfMeCLV/pfdN6iIPjEYRtFoxVaBUJIBqRIQogmcEUYdQSs9oXB6kyAKgaVy7HAtCzAfhoZEB6zugzjLU8OB0gqK6tkVjOgtkQyyDDALVMnMiDFkmwAxJnVN94ISBK+ufEJ/N1HI/h9m+wb2NxL28yVwGAmriV9N7IAYN+LSlWHqVoOs5oxoNWCeyOWGM4z7CspMZPHrCZJgBJgpiizuoRUYK50BTNYrIlfByKpkPF7MX3jsprVnGqAotU2qsaXSfNtn3gN5HVakmAYEklWiWQuBYLd8uvr5d4vScA//EPqgXFmtapS36wpyW2+T6qbdRmQJMh1k5yrRHVpQXCNr/96IgPiOEjA6lbq99Y0buKulNwUUnJ5u8zqqaIC5Gk3/qli++kNzFCzsn24hAsXgCfPGrhpZoVoMzIZEB7Dh4Vtw/J1mE06w8zN4VBzA+c2W8RgcU5OmNUiOr2Pn0JH6QMAFv7Z1wGHD6Nhr2OwYaO3FWDVaqGhe8mGgjGr89qmIN0OcweqyzxnDtBQbcgzo+W+shQhcHOuw/Y2pMBHXfOxeMsCYBg4FDyNc6fpLD5ugqGqhJXFkWz2vQgdY4if/qF+/gtZKAop+eWVk1N5kfa8YKZSVaFIIQJHTLP6xInJzGqflUKaJpZqPayuT+nuCyDyg7iPzDyCpwXuWQSsbjGwenYWkCQcMK7ix380xJ88eAc2nAbmluhYZg6/dv64vXgR+KGfqmNf93Hgve/FzAf+EFtbdDPoebg07GD/DEWkJAmGHpFDAyfD7XsRrl6NoEgRpFtuJg8eOQIAONjcQG0m9TsyZrUAWK0ZclI2t2cPuQbNTSzfsUxcJNLBNs15eo9lSmgZsMwDZ9hOaH4emJlBW7exvRnGmtVNM/WbUwNTj2dIAsAahKgxg0UWz30u8P3fv7N8gadfHzt9FwNoFFVCkKerXFJDMde0MAjIhqpom6DajBmHslgGpHJmdTmjMt7hybP8Ykw6ZrAoCFb/zd8ADzww9mAQwAp01Jl0DVsXLX6lTaH7i60zAprVAPDk1VnsrRMJCe1/fQi6HmHYD4lm9Uzqt9a0/AM0APh+IQaVZihfebCaASlsLpibAwC0NGcnbkelvLgGi45SDKwuoFkNIAGrb7oJbd3GY2/595C9UQS9ZoSEWc3RUCzDKM08mI+biBaJPIPFaTSr80AElhCsUgaEMatLJNk0XYIb5lTxAMWqQmhSWAistiLCrBaRFwGypZZisLqcZJLKZBUy2i0sUxCbA2e/pLAvAGtXCuE7ORVXJUFVAPkGySVY67H3Rs7YGjhqMWa1pgnJJfp9m7CW221g3z5okg8dDrauekTWsd1OXswDasuyimWZaFbn+W5IYbWa1SxhUfTIw0uyUd3uUt4jOZrVZGwV7CvAB6snMegF2uRqVlOwWthgEWTayvy9pmBWa3kmrozQUnAuiCWR8u7ZAdAc15mfEIYpkURoRWD1tMzqRoNs++KtH/0tdTam2feJIi6xi0UUYaevDEvssKQhS4wVAKu7XeDQIeDpp4GbbiJtxjK3LAQSd54TQlf8EgaLAsbLu8GNXbD6OoruuS20KVj9Mv1z+OhHIjx5oY4bZ1YSZrXCl6qIg1KMJJOuFvPzONxax9n+HDFYnFdIubPqCsmAuGtdNDUHshRiYVEGDh2CJBFw8t3/LcRvPPR1aKQBKmawKMis3hGdDjq6hbY+hiArCmFQWTmbwl4PUSShUQuwtEcGDh/G3vo2rpylszgzXtPlkTa5PoBOQWdyEeMrEBbVUq2H1qKgwBdje1n8CXJ7G7j1Vg6z2jCwVOthZXNKd18Q1micTRY0rmRg9du/5yRZr1QV6HRwsLGJP3mfhEdWiQxMXN6qaVS+hg/6HGhu4fY5gtTPhJvYXvfjJy8MZnFgNkk8mEYEm6dLCcDvWXhkfQ/2ztpAp0MepGD1oeYG6rOpQyVlVguB1emkTbsN/MAP4GVvWsKJH/lG4g6ZDmYklSOt4bsU8BA95NJ2dYWvpRmtrRMAY34eaLUwo1uEbM2Y1fVRME1I4w0ErK6Pg9VZwauyYEyfgpt8Sc05lNJ2AVRuWliqTeSXu/qBVNpgMROsZpvMa1CWag2jwszXtm6j2xf7fp/9LPCRcTeNIMDQ11FjzGq2LlocuY5SmtV8QJVdmqe6S9jzspvIHLO1hRv3D/HkWR3rTgNzM6NrbS6TkDYaAdeVDEjQt8gcw+YCmqxqaTYMYyezWlc44F8YYuhphKEoej+oKkm0CYDVI5JLqgq02+SwyoTHaRCwWucyq8vJgOSYdJXVPc0zWJxGs1oO4eeU0wMoPcdmMRSjSCruNQCyhPI0qwM3gCJaaaFp0BVfyHTYHoaFZEAyD+dlGdA0MllkLClclPkpSYk/xCSCQBjCCyTCBC9oWqjKAYIs804GUBnFE7gAspnVUblraxjgy4A46k6DxbwQlAGxul6y36J72P2tLp68UCOPp30BWAVPHrM6LCipELebLa3h+eX2MIomZzOrWeKqRIJFkaLsy1o2IcaSopn7rZKya5w9clydW1SzmreP8X3YgVqIWR2zlfPWmYLEk9jbh2OwWLTaRgSs7veBpupwz1+6KcMJtMrB6jLMap/itTfcAJw5Qx8MAnKma6S04/OqrSbEffcB3/EdOz8sJswBQK1G9nsFwOpejxyVf+M3yDbZsSPCrJ5JvUjTyJ7AvobM6l2weqrYBauvo9hesWJm9UtmHsF9n/PxyMUObuwkYLUu+3ALgNWSFCUb3IUFLNd6uDycgRVoMNs6AVO1AJbHB+i8oQdd8VE3AiwuAvFsEAS4uhLgi2uHUTdSEzcty7XzDOsYSFebsFB+7/dC3b+M7/vnY/1ipdR5ACidret6QNQUDh0i4Gbfj58fWaCYIze3PDsqZnrEzJTymNVRBM+L8FN3fQSveI34YUSTA3hDMc3qW27JYVZrEmCaRAZkq0AaPCNigJSC1brMN+vzLB+qFOJNX7eZPHjwIA40NrFv3sFja4swFD+57jGzmm9a+OoDD+MXnvfXwNGjhA0wTIPVHRyYS0q0VY0yajklPV7fxqrVxuGDqe91kEjVvP7I/fimV43eB03NQc/O2bBkVRjcdRf+7a8v4dixCe/hMQZATLrKlJLreRpvNNyVTZKJjpnVFtEN9n30PAPNWuoayETmJ8jQVU7HcBChpnhiYDWPNVJWT1WgXQDVMqvDkMzXpZnVEzZMUQQvkMsZauUZ00wjAyIAVtdUr7jB4lDsug2HwIMPjj0YBMQbwkjA6rrqYshLMhZl/SkKDF61EZJL88TWMva+8CCYe+9NjQt44oyJLbeO2ZnUGIrLswVkQESZ1WZ5ZvVv/uaYQU/JsPv+aJVFGqw2x8aeppEkdh5Y7XnEdNosUPodV5pw9l3jzGoA+PmfB97yFuAVrxjtqsABJ15Hi8qASBkHc2rg+swyWMzxXCgrA8KuwaR2p0gIxprVOb9ZnGgTBavlAK6AobM9DGGqJZjV4xchiqbTrNblyczHsoxtSUrWrgz2a9xukXEgpFldojJIiFldrEmAgtV5rP0ooszqAjIgPCNjGlbXS/ZbrDpQX8W9Zw/hUGtrpwzItWBWx4mryU/HvhslmNWZ+3kGAJfR2hcA7EvLVeQaLJa4b5lkZEb5wsh5TTTYGSFvaPk+nKIyIHkAcLyXF+8mAL4uPjX5KwNWZ7LAafQGMklWc66tUZMrZVZ79HYuw6xm4O/x48DJk/RB6kPUqo9Ka4j6ZgHEF/vTnx67XEzahYHVmgZFCoVwDRbDIZmiXv960ucLVw24oQKjlvo9mcdV7xoYLO4yqyuJXbD6OopuV0Jbs4E9eyBLEb71RVfwt6duxHPmz4/KgIiC1bZNMuvsoDc/D1mK0NIc9DyTMK4lCbW6RFg+nInSG7jQ5AANwyeSwpRRKgUB1ld89D0TjdaoARxhVufs3hhoPA7SAcD+/cC///f4pXcsjD5OD/y5zGqPGMvVDQpW0/LheKYclwFRFH6mGIDvRlClYkw6Uk6e8xrXhR/KODzbRaMtbrCoyQE8AbPN7W3gzjuBU6fGnmA6VKaSyIBsVwBWexTQpwaLIjIgE/U5b7sNL9/3BH73jf+Af1w5jL217eS6s8WHUxHg9hxosk/ugf37yYNeCqzuz+LAfOrH4YGUrL9DF/NGH0eOpj7fMIA77sDRQz5uetly8jiVw7G8nN/WceCGCvRagZOOplFWUg6zOv1biIagweLw6oAczGdmgHabaJh5YWpjM/qbS7qWb6xHw7IhzqzmyYCwg0OJUk9euwBKm39lgUml2gQrd+UYX5UBfbIYKVMaLALIHAeWBXJ4LsCsbmoO+kOxH9myJoPVBMRMJIxqigfLyW+zDLOaC6iCzId11cGKNYO9LzgA3H47AOCm6HE8cb6GIJShmKnrw0CEvARTURkQBlaX2IR/8YvAlSuF37YjrG2XjAUGmNC/W7oNQx/7rrEMSM794/sJWC0agjIgkTMBrG61gK/7up3XXGCd8d2wpGZ1Bls5ngvLa1ZPBDzixFXBNvM0Wmm7En1doWC/VwZYXcprAKTSwOWAE8NhgbmL7uFEfBxsG9VoVseJhSkNFrPkRUrooatqlO0PwQgVRQGqPO121m4kV8usZuzyEoCiaUSEWZ0j1dD3DCKzWCDJJiIDQgyt6X5r714AwMHgDD568Vbcsmdz9PN41zUMy1VcKQqRAclo1/NLGCEitS/KYu2HClS5bEVIxvNhCC+aQgYkR7NaHfdpEGxXk4NMSRzHjggRqIxUoACzegQ05ISmRpNlhoCp9NAzSRe0n9dKs7o/kAhYzWNW15RKNatdl9zKZZjV3S7Ztpw4QXSgAcTSjq1mMWmNdFy+TPbeDz2UenC8wl3X0dYt9LYK6D9HIaRP/gOwtoaDB4HzV02Ce6XnCro3tHP83jwP5cDqXWZ1JbELVl9HsT1QCbP6zjsBAL/4VR/BQ2/6RexbcMmNx8BqDvs3DvZCtsGl0govXHoaEqKYpVRryMTsh9OwZ/nQpAANMyRgNWVW65KLyxdDaLKPxsyosZzG06l1HAJ6TGJWZwVjQeeB9lQ7sFXzSQUuBavVyMOlS8CXn2pi260lcmwMROCWZxdkVjMG8CAfRPDSpTAiwQ5kAmD11hbwnOeQkp6RdSU2AiGa1YtmD6u9WkYr4uG7YVK+zGRA8hILyGAA3347buqs4FvU/wUJEdFuZQsQlVcZcsAkr2uRdptNYJkCyIzK5ftEBmQhNe55ICVrd+hhud7F4VvGpDl+8AeB//gfRw+VqgpJArnnssK2s5M2WRGbE+X005egSQX1imMtzfyXWUPKgNb1RNcwCIDhEFetFqm+SEcW22u8XQviJc9CMiAlDk/XQuePtpvHVi7VJnI0q9khp+iBjPYjT7O68JzFgjF9Mmg5wyGKyYCwhBhn7mZhWWQuHDkXBAGsQEONOdfTeTs3GRaG8AJ6bUXBL7Z2cZjV3noXc8YALd1GY84Ajh4FANwUPIoHT9Oy7PSgVtV8thdQmFmtGgoZUyWY1efOFarkzAyrN8aspsBJS3NgaGNjnYHVeeCf52HgG6jXCtwPggaL7tAnh34R9isvyYaU5FgpGZAMwGMKZrUqhZNlFaZhvOVUBoVBBLmETm1uOf0UCcFYGirnUDq0pILMaj9XxotFrFktClZnrbXstyphAgjky4CUZWyrSrbfQmlwPW+8ApRZXb0MSGnNap7Boudh4OujMou8EASTrJ5P9nGGEcsVHVQv49OXj+OWg2PePKyCJweoLZXEpnvZrOkw9oYomHAnyZVspm6p5J0IYB+WM1jMS7L5kVwqGcRLtjp2BEMuCFbHc1fOa5h5XoF7jC8DUlJiRg7h5RhiltnLCsmADGUxzepatTIgnkfA6jLM6m6XHOdGwGoq7dhspK6hYOUGi8uXgde8Bvj4x1MPUla7oitxm23NRndLcA4NQ2B1FXjf+4Df+i0c3Bfg/BrFMMb2xzy8pDSzehesriR2werrJYIAXUtD23CA224jjz38MPm72SR/UxkQx4GQqH0wsIl+XnqDa1l40dLT6OgWqZkABat9LTEzyghv6EGTA3Sao8zqljLE0+cUvGDxDOpjxnKqFCLIA6vzmNVZwYDlPGkJuuL/t+/6JBHdp8D8vN7HBz4A/OHHj2Fl2Mae5Shpk6d3CcqsLsikq6kurGE+sF64DKkgs7rTAV7ykrHS7PSG3TSJ5rCtCxsmZIXvg1wjRUlKXTkl1J4d7NRWXlggf2wbR1rr2NvqJ5tVynwc5rH2AXg9G7ockMoEClbroUPuIaZZvZgCq0V0/qIIvu1jyezh8F2d0efSWl4s2AEn77rmyeFkBQOo8jSrfRQvn1RV6ErGpjkVw0FKWzgGq0Og2yWaYUtjB2u2ucnbkEURbFsiJc9VyICUPUSLMqtLSGuoObqEAMoxq9mhLNNQqwQ4kcdIoYmusgaLeYcnywYBKAswq0WSK3H7FlHVYMsrgBSzOoz7WFM9DN2c+9H3i5cRM0CVU/rvr21h1hhiT4euye020G7jmHEB/+/n9+ANN3x59Pqww36W/i+QgBaCa5ek0bmwBFh9/jx3OyEUVj/YKQl0/Dhamg19YWb0xYpCx0GOLn5aBkQ0qD4nTxbJHgTiJni8JBtYeXZxsDovGeaHCpQpEldZxo1lja8yy95Bhp0ql6gIYVrQFcuAxHuDHHDCsgrMXXSddQV8HGxHKmawmAVUTsGABug6k2OwWI5ZnW+qRtjKxQFFJc+8k1VWViwD4kflEsOGKeUzq30fA89AwygAiKgqJAChm/+eYS9IKtmaTaDRwIHmJtxQwy037PQLEpIBKTEX5DKrAzk5UxRpNk+zuiwAzOYtHmBfhlnNkwEp6RGSJ8VYllmtKxwJo4LJcUBQBqQUWJ0jNzWtZnUes9pS0NRsvgxIXancYLEsWJ2WAUmD1T3PGJGvj0knghvvy5eBH/5h4L3vJfgya3ekwoX6z/S6gqaNT59JSJarqzjUfRinVxo7DeVZJYCVA1YXNUun8Uzwdnk2xC5Yfb1Ev4+uZ6I9qxDdMEVJqEmNBvlbUWDoEdncCtwYVj/YWU5fr+OepdO4YbEfb9gJWK3zmdUUrP7of7mf7JkpWN2W+7iwquPr9z+OhT1jbC85X6agFEjH2Gl5bF1qdhQzpylYvaht4gtfAC5tmrhitbG8lDDpRNh5sSt1Uc1qO19Hc6QURiQKGiy228ArXwl87GOpJxiz2iAA60zDR9c1p1swoyhhVqtqwnrkSNfEMiDjhzGqoXekScFqFgxA4JTQej07YVZT1khH7uJ97wMC28NVu4mFTuoaisiAdLvwfeBfv+BTuP3FzdzPH2kz7xKUBKt5lQvEmKYgO02kxA8pfc4Us1qJPPjbAwCA1Bq7NiKZ+DCEE6gwVUGAXVHyD2TMVKxqZnXZEnUOmASgWhkQpstYBqymDKJMpk+oQClTlqqqMBQv8/A0tOTCBosibGUWlgW8+c3AX/5l6sEggOXrqJlJ8rKmuLDykmFMRqnIEKCSQLk+DgD89W3MGkPsXUyNv4MHYao+Xnf4fvzQbZ/ASOkCj+2FlIRDgUQrAG6VyXgEAdEnrAysVr1R3dQf/VG0vu0bYcw1Rl8sSTD0iGi/5jAUh75ejFktKItUCKxmJfp5BotlZUCygBSmWV0GqOQk2cqDCDk6tWyvVXSOlWUKAis7y/+nAasVhSurUIhZLUnQNL5pI6IItivDVAsASllr7ZRgdXwwz2JWlwarqzfBU5ks2aSgmtWVGyyWvAbEYDGHWe37hFldK5Fk45wRrEFI5ljTJImhPXtwsLGJlmZh34Gx+4RXwVNWrkImYHQms7oM6QLI96CZcmwFAYepW4JZnTkfTjG2citNQI79huKVkwHh+EOw1wo3m8eEpyzcayED4kdycbDayEmE0OhbipDBolrTyLxaIbN6bg4YDIq/lzGrl5dToDKVARlnVov6ZgEErL71VuD7vx/4wAeSdoMxsLpVgFntbA7JnovGwf5jeOTSLNq6NTruBMh9notdg8WvYOyC1ddL9HpEh3KGGCkyKRAAMWAHkAycE/BZ0AAw6FKwOs2s/r7vw4Hn78H7/yFxp9fqGpl0OWC1O/ShKz7ml+kk0GwCsoy21IeCAP/h+X+Fl3916oZl2XIBZrVqlgGr80ueo0hKJp5WC5BlLCqb+MJ9ES5t1rFmN7G4PGawmAfQRRFlDRcz1OJqVjOWRxF2uWBpMkD0lbUPfgDHDjg4dy79BHPiJZ/baMnoe+Z0KEO8AaSMKCYDwjNYdDIO5ocPAwBeuuckblu+mjzO5BQ4OArRrKZg9eIiMZLU1vGzPxPiH77QRBRJkI1RhiIPRECvhyCS8c3Pu4x6Q2DjFI8VAWZ1vYQ+aZ5mdRljGioDwmVWD1MssnodUBS01SE2zvUJCybOFCXtSkD+os507sb1aHP6mgd8TmN2AyCXWV1K+/QaaVYrqjR540wNtcqW/pOy1Ml9jQDIajmGoi4HmQksy5aKaVazhBinKiZu3yKed3/1VylCI2NW1xKwuq66AszqguAfreBx8vTrkciA7N2Xur7UwPUvvuGd6BgWcODASLt5LFUgNccWWLsAFAarV1bIYSm9jEQR8Hd/V6gZAGN6qiw0Da397YmKCDFDMWvyomB1ozH56YnBOeyzIGC1oAwIvbZZUjikq1Fxg0UGeGQYuJbS70+3mwGklAIqOcCXH0jk+5cxQ1QjuJOSFmXlmwChRLZlS4USbbpJdbDzFlu6Jpp6ARmELGZ1QEB8XSvJrDaUfIPFkmA1l01ZojJKlQMEWfNhGYIIbRfgaLeXWGtlXUWYV9HneYRZXUQGhFUccfbe1iBETUnNsXv2YF9jC9994+cgzezcw/H0mv2opFRDVpKNmkSrUvEqi1hjPS+5UGZs5RnDRlHpscU1tC7NrPYzq1tLM6uZhFFWVQj7MQsMBjFmdZl1JsyWW2IgeMHEVa5kCQ3CrObLgEiGTvCKCpnVnQ45oxWN7maA1pWnIG2kBK+pDMg4s1pX/Fy2cjquXiVH8L17CYGOtTtusNjWbXS7Yn3trTloaQ5w7BgA4ODgcfyvRw/huQvndxjD8vASz5emkwEpUYG4G0nsgtXXS/R65G82G9xzT/Lcq18d/5NoG6lCgpDDXoC6MnbQO3EC+LEfG2Vlsed5zGqmK8xOibIMtNto6zbmDcp6nUmV5rINYyjArC4C0rFy3zxpCTbps4OjLAOzs1gw+3jiSQlrfYMsUDVtpM3c8mw6sWpqAWdyxtDjgNUjE7Zgu6IyIFi7CnzsY1j61F9gZSX1+FgJjlwzCAA3JVjtRynTEl0XlgHJY1b/4G2fxItuTq1gDJzJS4QA8PopsFqSgEOH8O6veS/+8GfP4od+6zi+4cBjoxsJulDlgQjxolRAt5w0WrEMiERY05kGMmyTX1TrjzJyeJI4I9rCkgTMzmJGs3DygQGWaj2M7mwgpqHoebB9DaYueIBgwGeWgecUQAqAa2KwmFVOHwVTMKuzGERTaIkm+toTnptCXzseXxlzgmVLhOlVWAZEnFk9N7ezzNHytYRZzZKMeaAyS/YVZFbrss81VfMtD4ebG7j9ttQ1SiWtUaslpsFAAiLkgdVsji3KrC7IGDl3jhSxpNc8xwF+4icKNQOAACmTzFZbrcnyvSIMxbLMai5YzXSFBZnVOqcs1Wea1aLSD0AKSMmW7plGszqr3bKSCjxmdRmdWgCUsTxZFglAqTZFZECGtkwSbYL3mG4IsLJ8n6yJWjG5IfbekWDEiLLM6iwWWQymFW9X0wA/ypEBicpVRuXJSpT2XFAUyFKE0KvWYDGutMhlVhto1EtUhHDApBFmNQDccgs0OcTvfNX7d0qxsQqerOE6BatYyQGr4+qwgvetrOQwq8tqVvMMFqdgAOdXspXQwabtankyIA6Ka1bLMnQ1JIm2SWcPIBnLBfaImZUbQAqsLsmszvq9fB8RUp4Eos3qSn6CCUDfVtESkAGJ13hhQ7L88DwCxZRiVj90Bu0n7gN+5mcAROTYygwW00c6ti8SqO4GyDBRFLJ3i8FotodmiQJdR1uzhMHq7rpHWNT79wOtFvbgCv7LC/8Cv/KCD8aV1CN9zcJLogiuJ+2UDxEIzZDhRbvM6mljF6y+XqJPwV42G9xxB/CqVwH/4l/EEhYAcY11Q0VoUhv2QzQ0h2/Kwp7naVZb/k5Acf9+tDQb8wpNlaXBalWFIkXw88BqplldkFEqYrAoSdHoItHpYLHWg2mEmDVt8jzb1ItoVlON0kIbZ0WBqXr5l7aM2QtzkhfJatJJdOHxe7G2Fo087qU/l21MpwGrY0CfbmBiGZD8t3lZB/NDh5IN6pvfnDwemwtywOqBC132EymdI0cgSxFesedRXFgz8dab792h/arzkgClweqc15TRTZMkvoFMJBMzpYJgtSYHcDnGTzEDlv1mc3No6zaeOiVhudZNtPZZaBq5BJyDuROqMA3BAwTPbLXsYZejKRsGEZQy5l+x2cvOp8qWugI55ZNlD2Ssr1KGMc0U+trQNBg5ycahXVAGJGZWi/XFtsmSd+utwBNP0AepwWIMYmoa8RrwcvrA5s8iY0tEGgvEUOrFS6fxcz+akj66/fbk3+HYPR3r12e36TkhdMUvNG9xq0wmxLlzJCeeXkZcF9jcLNQMgJSJ6xho8oIXAN/7vTtfb5hSPlPVdeGWqGLSRcDqYUjAakG94prqwhpkHPRpFVdhpk8e8zGKiHRPaWZ1MFlWoWxCkGOw6AdSORkQALoWZYKq7LMLh4DOeDx3Cf5mqqHwWVm+DzsokMAFsvVEyyYWaKh6Ruk7k5sqwfwUkQEpx37N0ayexgiQYzRalv0KgG+wWEQGhPnFcJjVMemAnQOf//yksveGG0ZfzNNrpnNMaYPFSZ4L6WrNghEDkHmGmCUSIWpeVWcYIoyk4lVnedc2vr/KyYBkaviDyYAUBKvBEoL5Ouvs84W7qmVUCALl5y5eNQD7rKIDgVd5FkXoO6oQsxq6TvZaFTKrm81y2HfvyhBtnWzeGmGPkA58H26gQq+l1s0CUqS+n1yudjvhZiZSpGOa1b2JzeyI7maAtmaTyt7DhyFLEX7g1k9BadVHz5+8SnR2/lZROCGWm2DZDeHYBauvk3DWeuQgycBqWQbe8AbgRS8aed3MDLDl1IUAxWF/MitpR5gmYYzwmNWWT4CvdHvf/u1oN0PMmxnMaukaMKvp4sMzk4oiaRT8XF7GgtnH4YUhlhs9zBmDZBFhoFce4MEY0EUyuzE7kWOwGMlQjGJuzCIyIIHjQ5HIZ6tyiGCY+o19H056AaK/a2RPkd1lbG22pmkakQHhrMGZ+pymCfzIjwA/+qMgTpk0GDgjAFbHzGoglhUxL57CI7/1MZyYWd3BrDYUD/aQb95ZRLccAKI8ZjU78BfciGlqxGUilHE71+UAHo9ZbY2VPM/PY0a38OTWMpZrvYkyIACEWGRFZEB0OacUrWzpoKLkGm3G5l9lmdUT5gPPLw/OZB74KzBYnDgOpjQq03MSDJYjk7LkoprVPt+ojIUkkekkDVYP05rVikJkQDw1t8zVL+pOH8sXCXgjyGPJO01LAOs77hh9A8/4CoDrRMWYI6qA2eyEOHOGXNv0FsXzgK2tQs0AoGD1uGY1SP7+Oc/Z+XpdR75RGd0XSHqx/YaQZrUVEWNYQRkQM2+dSSdCCiYaMwFgpg9ZBkyLK0IqZlbnmar5U8iAaFQGZILBIIDS8xaAfINFp1iiTdIE18QSYLUxqXqFHcqLgok0rokMSB5ANVUiJJ9ZXVaqIdMbgCbGCxnusuDtjZjBYkFmta743DNCbArKznWSBPzgDwJvfztwyy072hSRASlzXTMlI2OTzXJ7GADZGshl/DwUhZCwssgc01bdTRpbUQSvLLOarV9ZMiCuVAqs1vV8g8HQ9YnsXxEZkDz9Xza2yjDWpSBbBqQEA3zk9VnrQRCg7xpoGh5/LLA9Q4Wa1bperoCIAMCkLK4jdQnJYFLiQVWhSWJg9fo6sLBA/t1u72RWK/qYZnVPrOPdDZ8A6/U6cPRo8sTy8ugL2Zk2ay6kFUd6keolGjFYvSsDMlXsgtXXSXRXbczo1s7S+bFYnnWxYrWFboxBP0Jd9cSZ1UVlQABgcRHtl9yOeYPWm4yB1QqPRea6RPvULFbqmuv0DUwGFO+5B4tmH4e1i9hX38KeWjdZJBSFgKo8sLroYS82PMoHq4HUwUWwXRGwenBuHQ11FKBO67S6gQqjQT9X12EqHpz+FJNuXBo/LgOS/7ZMzWqAbJizNs1B/hTnDogpaMysptpWOHkSh4yVuI/pdk3Fhz24RszqLOCrpNM1j4lQSpOvCLM6LdcwP4+2buGp7hKRARlnVouA1Z5XmFmtyhlMJ6C84Q8HmCht/pVjWui50XTM6knjoKzjPZACqyc8Nw1DkTG+Ju3LwxBDV0Vd88TbVhRSkhqohdgN42C15esJJirLqKk+MR7OA6uLsvYZmJiXwAUZCxP1ir//+0kS+9u+bXK7HGa1JhWTASnDrD51imDpaRkQ1yVsmkK4dxRRZrVAwp0G0azWsvdHvj9aUSUSbK3lLIuEWS2oWU33BYGbcW1ZYrxERUgmADxNlYUsZ+t+lly7eNVR8RxbVgYkj1ld0mAx7lhGDB0iH1RYaidvcAUBAatF10TarjnJ2HtKsFpSlcnVUWVNNsESrXmmaiVMQekZIZPQwqQayt5fGZrwXlFZKBYCYLUVaOM5O26bIsxqy8LO6hVJIlKR4/deXMHDMRcsc12zCEjsusrl9jCsXzuC+XmUYVbnVTFNAVarcsYcy/byZe5bBtRlVAbZTjmwOp5jM+YuooVdzLhR0WQEvCqLEusMkQHhaGsXHQi85CXVeW7UBPZPFYPVrltMPSwd3c0ALcqs7qh9QjKYBOgX8M3qdoF2tAW8971oXXgsAauDgOA/uhq32dJs9AZi905vOyQyK7XaKHshLXML8PGSNLO6YGimsmuwWEHsgtXXSXTXXFLOwAGrzbqcbyCUih3lXVlBn48sjgwIAxTHZsHWHUcwf+sSOUSnJ3yagQ7CHMYb+x5FdRnlIBugAil/3HEoPXECt9wc4a3H/wH7lBUs17sjMiA6D6BjbKeCzGrC8Mh5TQkjCtGFov/0VVKGRGPWsJJybHbt2QKk62jrNrbXp5h0Y0ZYAlZzjSvBwJkC+pwM9OOA1bF0DQOrZ2dJ1tVxgM98hjxG2dYAYsabY1XIrJYkQJbJeMzSd2MbsYKO1DwDmfLMar4G8HDcTGpuDnfOXcTfXbiF3FsTwGoJQOhwSp59DYYpeI9pGgHpshJXZXVaOUCd55XUU81hzxA2bUmwWpfJgT8DRCgFUMUsqskHSAClGYoTWX8A4HmwAh21ImZiEDDWSwVrdhKzul5PXsd1+WbmMEWAFCatEuSzwGOgblKlyateNbFqIbc8G/QAU1AGRJFC+E4xsPrkSUIAH5cBASCsRcjeNPR11AzxCgYRg0UA1wastiGuWZ1nhEj76UdTAMAZRoiFk+0j7WZrYZcGq3NAHz+UyZ6gjAyIPrlEPfRDwvYrOW/l6goDsFylkAxIprZ0OjyPGiwWSDqrKmoKlZ9LzzPsUF4SyMgE7KdlVnP2MFqJ9ZvHrC6rWZ3LrE5L4BXsLwCupEIM6gi2madVDIAkBB1KOuCdE2mbZH7JWJuZDEiJKotcZnVUnlkdRdLkfTdLhFStWT0NWJ01H05rsKj4mTgokQEpBioDRG8/TwbEsSOSvC3Sbl5yoWT1afJ7ZRssAigvA5I1EFyXJhkF2tLLGSx+8YvEKHw8PMohEiw0HInudkSwKACzSpeA1ZOuUQEZkG4XaK2eBj7zGbT/9PfR2/LjjkaRlFzLrIqgvL7qFgGr9+1Lnhj/LVlfs/ZbUyRxY2b1Llg9VeyC1ddJbG8EhFmdPi1PCl0nBM1xLboJMbQkwqrlsZIMgwCKHEata4dE/3esvRe9WMJrf/wEOUSnQ5IgKxJhYuSAdACKHUg45aMAENjezsO+JGHueTfgzUe/hAONLeyrb0+QAcnpB9OWLgJWxxsQPrO61AGax6y+sIkm03QCsFzrJiaL7NqzzzUMtDUb3c0ptJeCgGjr6QkATxjrfLB6osFiVjBwJsxxo6bt6spYuzffPNLOiHEZBdJsq/rfC0D2glZyIxZrFWeVzZUpn1RV6EoAjyNVEJc8pzSr33jDl3D3/AUcWrB2btapezRPD9wONFEiZTIXZAFqU2xwAWT+Xn5AS9SLAimaRsDKCSyX2I26YmZ1aUOtPBmQaTSraTJkYgJr3OhQMIyaDGdS2f+kiCLgz/8c7VNfxtYW8IlPINasTjPXuCX6ZcA/SUqYhFlrIgDfj7IrTSYFrzwbqWSzaIcVBQ3VxcAq9htvbpJzw7gMCHtOOByHjIUCbEKuBjB7vKAOtC5na36yKGSwyECvrHmLlqWqRQ9Peaw/qtNbSrOarbc5jNLKDRa98pUmWSXq0/gCxHJeWWK1UUSY1UoBsJpJ7fCY1X5BZrUsw1TJXDqyJsSH8nKa1ZlswmnAahW5MiClEix5RqOpdksngzLug9LJIAGWZhRJ5eatvDNCEGDo6ajrvtg9weatrC0cIweUNBec+PXLki5ou6xfk9otVXUWX4NsGRBJiorPMUwirOpEo5pvEOy4UnGDRfDNYePkbUGwOpMkQtevsgmmTBmQsntZjlQgq8QWWhfpJuf/Y+/Pg23Z7rtO8Jtz5h7OcMc3T9KTLdmSLEtGtrEtY4XBZUDF4HZB0w4bUy6qu6MKKNu0HQW0C6q6mKEg6KKhKLo6gDDNFBDuCgzYBhuwMMaWZcuy9aSn4Q333fkMe++cM/uPtVbu3JlrZe71W3n87kPnF/Hi3XvuuXny5s5cudZ3fX+fb73SS0T8kR8BfviH+18nO6vrGucrNMzqI5zg4UPhki921zsazurzkxLL4gEAYOGlOBcaQ1eD4GvEfTX7szMwYV1MEr/ne5gZ7Vu+Zfcb93VWE8TqfYI2L2u8LsXqt0idnVtsgBgbYTiAfnUy/mBsNthvxzwIWNjPaviYzWK3c7y3vQ34+q9X/KU9RDoAei8KdyTpG0CRlnBsiTONB4Z85zt+Gv/nd/2r7fXmrOK0GDgP4aSb2llNET+bncLhidbqzgZzNwPe8Q4AwE3vQSNWV3kJ26p3nNWHfozTE8KkUFRRYJWHWITbtiHfLoeDK6tqu4jcdyVtWbAcu/n7qspziejT5r0+/ngvYHGQJcoOyv5PEatVi5GqQlnbcDRxFZ43vNCjOqsZBmTMWe3ssoWvXoVlAf/8N/9FfO1XbJTHHdyJ5xz1vcVqgT8YWpQS21IBtTBBFj3EeCBZ7BYlXax2PO6sljBaSSgYYD8MiImzWjYh5W7aWah3vrbv7u9MOT0F/sW/AP7qX8Uf+oM1/vP/HFJnNVx3OBCU6PrzfL6xMDC5bZjVGi7o0YDFrIavI1a7LuZeivVm/zEpTdkrNQzlzmotbnWSaLe+NxsMUzqrRZjxyIarlrN6SPzl50nCF405qylIhfZxp3RWi7FbJvrUNXdWE7pXwJ3VVd/113SvEAMWBzdGxRgSaJzzvjkOOhu4vCKf/b2dY5cl0srdPxOiWyrxzwQDMhQSLY6re8+6I7k24lkgiKrKtUfTxaR3SADjOBhZYPxYCeFnyKWY52xDMNjzfdt08KiFWjIGRDiru+YTgWwhzmGGxE/Sudo2XLtmWUyytUdVsbkIcW6omm+RMSAja7A0t/tC5B7l+ZZ0jBXVbN5qbrAoBWBTDIhqc4FimGt//8AG097dG4eHWHgp1vfi8e9t1cc+xv77gR8AfuZntl8XzmpvgIgmrbMznKUBDg7ZxtiRdYqTewXO1zYzvcmc1UPmI17nr55i6bIJoW3V23WVwLK1NIh98kGa467AMCBi4v6BDwB//I8DN27sfmMjrKtRMGQ81j7dUZc1Wpdi9VukTs9t5qweE5Y9DzejM7xxd/yjjVOLiUlji6cwROTkiM8HBp26VmJABmsPkQ6A3ot9jzCpIimYs7p7rhzCHzgFouuLXWa1XSAtRpzVNQUDMiwiXKSzerVmO5miReaGdRd37vA/29hsoBefke/jwI9xdqq/kPnX/5rPMTmnaxltOWD7ONabF4VmmBSAwZdElll9sfrLvxz48IfZrzsBpoL1OCkGBNgrjAPAVoDfs1xvwN1ADZCxbfgO45kPbQRsMnfXWX31KnDzJtzHr8P6P/2e/l8Qos9QWyp3Vu+NARFYBdVz0Ag0+x2uqRGmbBOGSHTPSJnVOZGDDeYolQqgzYKMIE7wz0slfAGgiT5Dbal5zgRKTWf1XqIPgHyTw12dNL//vR+5j6MjtnGXlS68sPXv2ePdRdkIadreVeda18gLG64OX9rzRp3VWQaas1pDrP7c54Dnn0gQru/3mNWAplidprsc8X3K8wZRDc28QPNdGzjFuFidsnnF3mL1EL6ocWXtf5oAtq4/xTNbtsOPdWoIt2QasCg7V8GTtYnMat9CVvY378j4JmDUoci4wlys3vtE+f06pChQAhYBhF7FxOr2sYtC/5lql2qcNcAU7BWwSBConKGsGB42arsUVMMQE57YxSRc+/kwBkR/jVCNi9Wlv//7dqyDR3TzaeLsYFlwbLZB1ROr+caVNgoGGHdWU7sBnBpFrd5g2fnZ+9aQa108XwYBiyoEQhOwqPmQ7eWs1uH3A/thQHTvrWYjBPIuXKqzegQViCzb/3wPD3Hkb3ByeyTcqVOf/SyLCfubfxPbjmlsndWz2W52yGg9eICzLMLy8QVwdITjYIOHr8dcK0h3P0sxjx9h4gPA+asnTGsQVbJ7phGtxXGH8mxkx13ZjK899kIbe3e3NQjd2nPtcVnDRWkauaw3oc7WDktg3cNZ/Vh0hjduH+DFoe+rKqSFg0M/GR+EubN6MFSuZFgAz9Xc3d9TpNPGgNglykI9SJZZKQ+ounJla/v6nb9zu2hxHCbQDYnVwlmt04Y0tCATRWxN3sdZvV6BoWCuXwdcFzftu7j9Wg7Aw+nGY7wn8XODAIcaYvXpKfv/YgF85CPAK68A86LAeR5isdi+hAInH3bp8pe69kSs/ZJQbPLkOeAFnfvAsoBv/3YmWF+50jtm4BQ7rkDpQQGaWD3WYaA5wW0ctVM6q9Fpo5aNSWWJOHcRea32UccBfuiH2PWViQHinh3aiS8KJOUMYbS/M82zSxQqJnpVIa88eJ4m2kaEw6al9CXaYEB0J7iexxywMmd1QRdS/FDBTeP3wILYPupaJTYyHcUEA8InpFIMSJ4zd2J0MWL15tYpIru1IHjpJRwcXMNqw/4dVlvJcxzGt1UJSZx5GWg+X7Zro1SJM/znNe+Zfe+FsfZstFBLGs7qmZthnew/Jr386QovfPbHEf3ZH0WS/EWAXcHmEmqJ1VmGB+kch4vT/f+OGJMVn1m8rtgCWtNZ7TvFKMoqSSzG/twXA2JVKFS5G032g/47UTnfaFrJCZivkS4LIwyIilNb2bRQNQw4q/Naf7Oidb6D7y8+du3tUgU0nNXu/u9EXqFfMgxIR6xOdDqXujXgrC4qAlYD487qgjKHaQwtij/nopWlu3MzlJdjsjEsNsfzSr5op6wRPA++vR4WqwV2a9971mabqI2o3H0/8Q0x7U0AMAG4zPh7sT2vMMndEMcZYlZTNlhcbDnr3ZveAAPCxm7JPWnwfAkcjCqDpnFW62JA/JGAxRT6eJEhJzwP49M19DAnfIW8dJT3rPjZWrWHtrE3tuTwEEfBKzi5V+CpPX/8yQmLLnn3u4GPfpRdb1F5DnjIMJv52Gz6ESfKWq+xKQ4QHYdAbuPI3+DV2ynOa4eJzc7x9ns9D55d7eesfn3VEavZ38nSDl7E8/ZCromKY2B2mI2L1WOd6E2WwwXkDVzWXnXprH6L1OnKYc7qfcTq2Rlu3xsZWDnnLvAlg3O3goA5q1cDg06aXgj7lY4BqQfRGkVawpEtSiwL+K//a+C7v5u1jLTOk2FAxpzVRAzIELNaXBtNxzpbPI5gQNYWc1b7PnDlCo6DDU5usZfG2cZlvKeWWH3gJTjdMwTrL/0lRhf5n/4nxiJdrdA4qxfRVqz27XIYr5JlNH7gHi+JPAfjrMsmTFev9p8Nx2Fc5SHHOtEJb4E5OKVFbB20PYehCpTOEVrgD2vxGwiNEKJiF9dgDwhsrgvPGher09Ld31ntjgcp0ZmXame1CQZE6awu6YFiXmDLw26oIULAdoI35Kw2wYDkkpbfPKc5//ZsxYsfxIjclm3jU5/C0RFwcs6vefva78GoLWp9N+EoC1uHdSiq2RRV/50s5wGLOhgQN8Um2f8zvvtqipuzM4ROgWS9HRsyjvHVYlZnGf7dnefw/ucf7P93PG+QI5lsKtaarDN22zaCPTpN0szSw4DYFQrVe0YsdCnj1qAATA/pGnKUkuaGgq+tDFUjtv5D7fprNmyIHSFj3MtN4elttO3DrBbOah1mNYDIL/sYEFNntUqgoTqgcUHOan5vqXQkE07tsLPahkd5vvhGSBarkQIAtOecvlMMG1p0N4ctazQQEyAIigAcV527UdQOLbhyD6cuWaweuGdJGJChjJC6Rq7b1ds6WSVaoa65WJ3rY0BCZzBg8SKc1QBIc07Pw+g9q/1OGEKWAHrYksUCR0HCDGB7ip6f/CTwZV8GfMd3AL/n9+yK1dmnPgv/r/0VzOo11joYbH4QKwwaZ/XJ3Qznsct0hI6zem9m9Z2YYW45jtStCxQFsElsRG1UjOcx0+CeYnWSWizEcyzrbczcZ4CxuhSrp6lLsfotUmcbhz3M+2JAxsTqokBauQj3cRSGIWZuhs16YMKSJOQFCYDpndUjoYVFWqqZn297G8M/tEU112UYkHLMWa15DfZgiVI5mmwiOvxt69jeitXLJWNS32cnc5YwRvUuBiTB2fl+/77zc+CP/lHGywoC9ntwZ3WDAdkzuJKUUL+PWC1ERd3gxoFNgCbcVNNZ7VgVynTCTRtg+PlqnNV6hwTUAVVNZZk2T3avQI48Z63qwZ4nLRylqnZ6EyFlgIXdYEAIE1yVuG4S/qVMpDYJWBSu9aIvKldFxTyzFLHasjhmRuKmEwxNXTFlzwljfJIydM1iwb7w8Y/j8KDGyVmrO6B1zNDJ1R1HwvFFQMwMnqsI19Pp4BH31UAoak7BgHh6AYsPXk9w7G9YgGZLeMky1tyj46y++0aJmZthfqDxjI2wXxuxWtdF5tVIy4EAz7pGllv7bwbsMW4x4YvA6lXNN/jGFTlgcYxZrTvGWtb2nu1uWlHDgXn5gXyz1YhZvUcrcazrrPY82FaNKtuDWa3trK4RdzEgkiBZrVLNN0zF6gEhifQciM6ogU1sADSxWnVcA/Fz6/yT3ztlWrB8Gc3uS98u98CA6GG3GqFWEeoNgBYS7dQoZfeBwTx2PGCRiAEZ6gYwvbeU3G4CYx3gmxaKrpiyZOYQVx+3NIoBEULiVNk+FZ9zUjB5LpTYliovaXPZkVwbFMX+JizLwuGywkkWbVuWR+rsDDg+Br76q5mcseOsvn8O384xL06wkcQHKStNmbM9CIDjYxz5Gzy8V+HBysdxsJEHLI50dwPA+VnNnNXPPgsAWLobnJ8Dceaw+XhLrGb5IHt8FnmOJLcRenvcYwMmIQBAWSKr3Eux+k2sS7H6LVKnG39vZ/XN6Ay37488VUXBnNUj2jcAwGcD0cPzgYlQmiIrXfghbUAfZVZrsopZeIr6W8pUwaweOE9HhGbIuFbAbnv2vtWwRAf+fSYYkJEdyNXGZhgQzwMWCyZGPyyBusZZzMI6ewGL5/tNBjYb4P3vB/7H/5GF765WAMqSOatn/HP1PIYBKS8YA6I6dG73mdVDNZT2zqvKCrlrf+RcXbtUi9VlSWsdHOpc4MnslMm472PQNUHCNQinz5BYresgGttcoDoUXR7iKrsP6ppjQAg8VTHBkzmrCyJaBC2xWhawSFyQCReVbEFiJPoA8P0aqSycJ8+xKf1Ro0SvNMTqyMmBF19kqeGrFY7qhzhZ8b/fEatZ8PAQs5omKAIYZB2y9lHCpugIBkQ7YNFNsU73f3ge3M5xJVyzx6L178tzlnmjI1b/y48G+KYnflWv42iEAZxsKvb5a65KggDDnSa6i/6xcYuKFLAsuE6FQhb+VddsI9AACSQ1CJiI1SqHouiIIWJAVJ0m2iicdgnn40ArMfmdOIbGKggBi0GFpIsB4ZkQJhgQi5/TTpkELPoDKDPqhuCQAxowFBQVm9giI4QYYMruA/ncKEsqdYegqoYctaKE015HrBZCrUKsJrmKMSAommxcXaSzWpU7QcWANOOh6hrQAxaVAcHC1EbAHzi+IieFFxOrJ3RWG6DnXFdtvmlMIkTGuBQJBGzHrj3XtUdHNU7SGU5eXe31/avV1nMRBB1nNc8Xm9UbLbG6TlL2/AqxOohxclLjM3cP8LaDu7vzJh1n9YZjRG7eBAAs7TXOTqpt7pGYM/k+R9bscc3imL0X5+74nGusE/3SWf2m16VY/RYpJhzuIVb7PkuNjUceTh1nteviWrjCvbOBny3CAi4KA0JgVg8GLAoMyL4vSotNsKz2OfUOWrDWVF1m9UUGLI7saq7azurFgonRJ4wJdpaHOAjS7UAfBFh6Cc5W+/371mvWffO938s2TIWzekes5knUaeGqNwGoSbxjok9db53VGgKNa5VqliiAPCn1BHB+XMeqB510AKblphkwq73A3gsDouXQcoeDXgAARcGwJhruT+Z0GnAo6qJ7WseVYkB4+BeJL+2qA1dNnNV24LHrpgq+okzCwNPEJSJ4kdfkcwWAwKuZmNQVFQ2c1dJ/f6fi0wyRm7OBi2Ogjjav4+HK200lBwDH4TiLAbGaiJjB0LnyTVFv3+4CfsyxTdEsl4TNjhxz7qVazOoHd0tcCfjqqDUmZRlbp+iI1V94zcWLh3e0xWpAHVSWxLU+sxrsFNIuUqFdfL4V+JpBZUPO6prArLYsuA7k4h/fvKS685QM4KpCDZA5tdJzNXh3AS3XX3fcKkAOsd3LWV1qYkA4o1OJfwAY0k8ndJhX6Fd9DEjJONbRjHAPAOqx61HDgDQuVcWfU8Vq2x5kwpOd1UJYVrigs7jUD8HjrOIxDEhc6t0PgwHBBs5qp82B7hyTfF1HAxZpm3eOo3bq1qUBrsKtBzvkSGO34ADL5gZFgbT09n9vtWoMZ5Zk9rRitUGot+fWyu6NPAfNJLIHFkonEPLo2Mar62P8J99xba/vX62A+Zz9uitW5ykzJsyqcy2xOjnPGSaPi9XXwhVu33fx0u0lXjy8zdIcRe2pQQBcrPYT4LHHAAAHOMf5Sck2d/18u44Sm7dD5j5RWcY2Xmd7XN9GrB7KNnK0pprtYwO4FKsN61KsfitUXeM02dNZ3UxARo6p46wWYvVqwG7RTBqnDb4iteA4DhP+hjons4q9gHRGnz1FBO32bGu4PZuKAdnHWb2OmeAA12XOai/GGReVz7IIB2HrRvJ9FrQ5FC7Yqs1m+7JcLDoYkPl2whZ4FWuhVonVdc1Tuff7uU2Jz2sgAK1Z6OwrKg4tynkVSaFGzAycK9uFH8HhUJ3VA+FEFKeP5w+3+ImWZy0HrFiQxXs4q3U3F1QTJpPF7hCbsiZyoB0HnlhEt5+HukZeEtEigHqcFc8AUfRpxOquQ1FgUIhidYNVkDmrCx/RXH8TwEIL0aMoJlZnbODiLYlH1QO88cDvO249b9g5Q2UA74EBKWrCe8YumaNWVnXNQnd0HESOg7lmwOKD+zWOAw5JLHbF6uvX9ZjVaczdhJQsh3iAo0lxVvs1w9YMfGZai37hhB/sCKF1xbgDog8prI4fVDnfoKDcxGFVwldzrtNiQKZxVg8xq2kbuJnCUSuOW9UWbF/vnKNQggERTlqqWK0yCFDd9cC2e2cA1UDtjFJ2XxqYA5wRZrURBkQhfDFnteZ9K/ivI87qjeY8bmxzgeQqBuA6kAcPiw7BqZ3V4rgm6BqFU5c6N3JVbGU+56Q8X7AseE7Fulu7RiyREUMQq8eQW02GA0WsVnSKAqBfV4ULvJkXERnjyg1n8Q7f8zM7uubgFx88idVqv89i2FnN3nOz4lyLWX12UrFu6zAEjo+x8FLE6wqffPAYXrx5LndW7yFWn8Uull4KHB0x3Ki7wdntmL0v24ZK32fvw33Eap0uobGuqLJETpxvjT0Hl7VfXYrVb4UqCpxlIQ6iYnzAFA/z2HOhE8oixOr1wCxbTEYJ7Djx92WVF5Z+Cw5f6JUDzOoyK/VT38eQJZxBpe+sVjgxeFVpznh0FGf1GAYkdrBwO87qMzYZOs0iHEStA/hMsEnS/V6uwlkNAMtlJ2Bxtn2B267NXI9jorLuvSWu10A7vfZu6RhLFJyHruPa58d1rAqFqt1XCJdTMqu5A5iSTu/4DqqBFj9kmfYiZy/GWZ6zzSsdsXosYJGImHGsCkWqcuQ48Jw9ula6xVs9ewJw+xnQdWvz8wXQ/7zqmp4iD9GibcsdigbOat+rkSkwIGVtwws1V/zckTEo+gCIz3ImSs9mwJUrAIDD6iFu3fOYiL1cbr9ZbFjI7gGALk7ssSmaV87+3HZ+zMFN0apCVjF25d6fGQED8vAEUmd1ngMvvAB89rN7HwppUjE3oaazOnDUTtUkrvU5muDOatn9Kkp30b/HuGUW/iV35xWVDcejhaIqu9lMOLUjrf9UDIgfWn0MSBvfRAyGZYLiCLNaA6nAXI8jrdRFwQRAzZshDOo+BoS7/bTGlnY5Diyr7gdFXxQGxMhZPYBFMglYHGBWU8XPMTGl2bgjrBEGxeo81wu0xsVhQBxXwS5v5rHahwQchzHhZSYRwzFWKqyDuKYVx3UUoio/V0e30wZgGSFuJd8QEu8tzfBWAKOh1klqsfe35jrJtmp5R6PJe2ZgQ6zpEiRhQCrkqvmhLgbkqotffPAEkmS/7x8SqxnyrcA8fzicRdap89MKB17CJjxHRwCAdx98Ab9w/ynceKLzOeo4q2OPYUDCEDg4YB3ct9bcWd26f/j7MCv2ZFaX7n5ZDuJcVSK4wWbraIf3Ze1Vl2L1W6GyDKdZhMPFHjf7PrvlQOsltMfP52L1/c0ezmqqi0zxIJNa38VCb8RZ7ei6X8cGHYqI4A4k3ovDJgRhfU+xep3yFF/OrA6cgjmn8xxnWYjDqPWG832ETo443e+zaDurl8uOs7ql+YxeV2rL75joUxTISnfvNiwAWyf8wEZIznlguo4/x6oH+WYASBMmKUOSH5PqztvH/ZlVDrxQ71nw7Gp0YV4DmozxAYeiEQZE4aoV9yuVp+rxNv2OiEB2PQKjzmrSQg8th70KA0JkVgd+LcfM5Dlb7Oqu+F0ekDvk2gcQnxcMAxJFLJ0GwFFxDy+9sWQi68HBzjFdu1SL1eLa6n5mLk+RH3jPFLoBi7bN295teQcLBbXkMp6gFrP61Nk6qzsYkKtX2amdn+93rCytWWDhXpOY7Tn7A/cB2VkdQI6tEVWWyHQ2RvcJWKxt0kbjkLOazKxub4ZIwhDF90x5roz/S3NWe77d3wxrukwIWQP8ZAfnXPzdZQeaqIaBzRVxXPG9OsWc1f7uNeDCt0VKq4OatU5FIgHbc1F2hxEE4OY8FX9uyKyWDt2GGJChMMQsrfUxIAIxM8R/5feG5e9/3DFnNQDyxpXSWU0NiR7rkLuAUNAir9lGPmGMUXY08k0ACmoJYLeN9P3VbLISDjqyRqBiQLyBTdGaf49uea4CjYXW5gLRWa3cvCxLlLUNx9/vfI+u2vjkyeNIMw2x+tZLwA/8AIL//R9txeqybJBvMyvB5sGerdJgzuqll7AJz8EBYNv46psv49nlfVjHR7vfzOdao8ZJAOeptz3ucomr4Qr3XokZNqsnVu+JAeGbw1pi9UDAokkQvQUMhyRf1mhditVvhdJxKYqHeWyA4Jy7fZ3VV8M17q0HTqARq6cVFEkOPeFSHcOATO2sFmFtOsKXENaH1iJpqd+aOrZTyGuVugwDwsVqywKsuuTM6ggHs9aJBQFCN0ey58uy7axeLDoBi/PWfTImfF4QYkZsLmiJ1U3A4jAP3dVlVgtxYsClCYA0YaqBEWa13iEBjF9bvlums8jZx1ndYBy0MCDjDkXKYtex6uF2X6KwLA0tbCZLNHFG2YpGHbd5qRZPeW7AfgVr05cygClIJGAr+myGJ4yb8xKRwzEg8zngeTiyTvDTrz6Fdx3f2lpV+DFdVcgmwJyaNcGNsScGRGsjaCisjv+svHLgexr3l+Ng7mXYZPu/l/IM8Gz2M6yqaHTNLGMf6dd+LfDTP73fsdIECHQxINxZnSby+50qVrP7dThwVttZPTSHaYQUAlZB3AcyZzVVrLbZeFeUkuBGw+ArZcCiwRjrh3Z/3BKdccSxcJ+Axbq2tFENjFW8BxpLc6wNQyDpClRlSdsMFKW6BuI9Q3Gm7ZO7QdhsdqxKbXYzEasHmNXkELwRl2IaV2zjTnONEDjFsPhF2BxunNWyRSg1KByKeRFgxq8Xa0XZO1yMMZQxdkCwJwf2QWzeya8B9boCrJNN6azWyVroniw/Rq/qGklus3wIzXvWtSr5c2CEAVFvLpDnsq4LzxpGSwDYe2Pw8NhBXrlI9wkXBLA6LbD4lz8CPHyI4PXPbuc8mw2b6zklZm6Gzd39OSBn59YWA2LbwOEhPvT4S/jamy83TuummjFr5KBVhTj3MPP4vOvgAE/MTnHrFY4gCnbFaoYB2eOacXrAvobMQb3E5P01xi6/rL3qUqx+K1TKElitcI+nTjzMYwMaXzztxfMRGJB4rv6esmRtxLqC4hgGhPKiEOFnKvdrzRys2oLimIjAXR5ak5umHVH9dxq+9kVgQBKPYUC4WA0AKKsWeqZ1gCBgGJBsv2GjaBk9Gmc1D2zZ2e3cQ6xmDuC9fuz+xxVitaabcJAlipYTXnMS5liKwD4AdUGciI0w3sjp9O5IYJ248TTd5WOBP3la6TmIRCveIAZEE93THFdxH4jrSuSpel7dR2sUBe0Z2B60Oc5OmQhUaC3KVM5q4oF9H4wBLAlYBKAvpnjefs7qVbkNWLQs4MoVHPoxPnt+HV92o5927toDGBDxPiCMW5ZVD+KLCkKr/mB7dlkiKzXHAoEByTQ+i9a/KUDauH3ynH3mH/oQ8D3fA/wv/8v4obKsZtgSHWf1yH0QxyAFLAahJcfWiBJBVfu2049hQKiufbTuAxWzmooEUuFFjJnVFxCwGPKA4I5Qa8LvH51z5Tl7rrVD8Epkis0VAGRndRiCYUA6gj0A8iajMjDcpI16hCtM2my1bbgOe/dLA9MNmNVsviH5M822/50aEauzpGIbd5r31j5itfjevQ8r0GAK9BwAuqCo2mSrbH0zCz8P11YgIw26zhpRWeHUpaKGlKKqQfcKMIBdE85qzfBWdrK8Q0yBg0kKD6Gr3zXt2SVyGS6xqlgXKfE9o8KAkLEt/FyV73DNsfboKvu+JN/v+1evnGBhM+Ra4BRIhVFjs0FWsXObuRnW9+K9jgcAZ2fAgRdv51zHx3jX8S385V//wwNi9chzyUOwrDBgc+7lEo/PTnHrVs3F6tZn4jhwHKCsJZvi3crz/TuZxCbrmLOa8v7aB295WaN1KVa/FUowPfYRfjyPpaWOidUiQXyfdZ7j4NCPcZKG6hA8A4eiOB9ZkTEglmTCLIqLCI4Nbcf20LkyJ52mWO2OByzmKXeBazrI2E7h8LetMw9zL2uY1QBgVSWqrMCDdI6j+S6zOnRyxJnGS/vOHeCHfgiLT3+MidViN7mtuu2xCUCaNLou45ulw2K1H06MmBFCnebCwbUqJQakKms4lFCWvZjVeofcOe6YWE1hKKra5gAk65ItyrSc1aW63Ve0kBLbiFXsPBMhxXUlDiLBEjXFgKic1ZQ2TwBeYEsxICxBXXPDplVBACWzmv1gAgZkwFErKl5XmLnZtiXk+BhHPpvMv+uZ1e4374uYmToYloKbwkh7diP66J3n3ONitWpe0KqqAux6+3mGVoaYr5My/gr61m8F/vJfBj760fEfnyZA4OTTOqszizGrNT+0IABzVg9gQLSc1WMBi4auP5VDsahsOA4tXM9za+VxAVwABsTAWT1z+8zqsmQCiqeY343VRTirxQbuPs5qXQzIzGIYkM6mKIV/3ZRKoLhAZzUJ4wVs+b+K8RCAPqpBPLdKZzWRWS1a6gcwIDRndY40H5hTivtB11mtyjOZYuNK6azWPuQwY5yv58icdcU1KEp6+LQq0Jp8v4rj+pY8ILgs9YKB26WacwKNYzv0NQ0dQgCWOOHJhh5w9J7KCS/Wc0R+/Zizet9n4fAqu57H0X7YjtXrZwzxCS5Wr/nPW6/ZutcumNngfjKq+4o6X4E5q8Wc6+rV7R92xWqhQYx1+QvHgnBOHhzgidkJXr/tsIDF9j1itbo8xg6ss9EmznUg04WaubDFwVw6q03qUqx+K1SWsQnDPouyfdNSxctiH2e1xVhYgxxNaoAKZ+qqeD4N30vTWe3YAwJwnnPH27QucDMMyICz2gADkg1NRKsKq9xnYrXjNGL10t1gdVrilfUxnrqy2X6/7yNy8713dgEAf+7PAbduYflvf7QJWBTn1z5XAGrh0wADMpjGLLjK2hiQYWc1FQPiDLg0GQ6H0IommNVDvEcDDtekzuo9dqDTpNZzPop7YKCd3qSNWMouN2xR93yLORQ7rr+iJjwDogaY1QUla6B1rnJmdaU/brfK9yHFKpQJIWwWAByHBeuNBSxuaoaBEGL1lSs48jdwrRIvPtvpZxzDgAin6sQ5DgID4mqGTA65vZrOKB3MjGVh7hdYF/64ywXA2WmNQ3f7PonsBEnM7meBAXFd4Ou+br+gxSwDfEI2wFDQZpJYZAyIlLEuir9r/EDTWT2EAalpY7fvKwQPA+EPGBCWDdqzHVexwdKE2NLGQ8d3+mJSUSAufUQ+Uazeg1kNQJ8r7KhFSoDNNxzdTi60MCCta1DnBEG9XSoGsEHA4j4YEMpmq+Oox8OqrGkuTcHUVYjVJuaAQQxIUrOxUNdZbReDYrU2dg0YDcQEYMZrVvHrifeWEhNn4qxWdYSAaMBqH1cmgtc1e24NnNXSd4LAV2k0LzXleUy3kD0MRYGkIIjgLssJkQl/JqHeQ11nxszqicRqbxHgWniOq1G8jzcAq5O8JVbnSDf85202bN3LndV/5u8/j7/wF/Y6BZytHBz48VZY/oZv2P5hO88FGHcri0pT1qUrbrKDAzw+O8Xr94K+sxpg9xWA0WA2nfetONcLCli8dFab16VY/RaoOuE7T/ssykTb4JBICWxfFhptqQCbzEqrqpBThC/BjlPgD/KC70LrTG6E61GFARFBQrrv9X1wFbqLPdvmAYuK4CsYYkCGNi14UJcfWOz6RhFg2zhw1ji9z7EDbSHX91kAY+7u5aRDngEnJwCApZ82AYvi/Joa2wQwCO90rQpFMiGzeowlCpa0THZWK+7ZogDNjcFxHbUMik4ValvHVV2IKsnYhIKwwTI0uUkEp3bf4wrnzIjo43j619W1K5QKZrUJX1rqfBTOakraOz9fcRzZuVK1CS+wpZP8IqdzGQGBVegfN9lUiNyMhAHx7XFndRLXWwwIAFy9igM/wVfd+By848XuNwtBUfHuIl9b3hGiDGThm61azGoMu72oYtI8LLHOA/U7sVUPXk9YuGIYNl06yRlbcAhnNcByLR8+HP/ZaWYxJJCus3rgPkhSi3R/BaGCsS5KFwOyj2uf+NwqhXUe+GRgqpUigcxZomoXOHVDsOns6orVhYfIH7+X5Sc7sigVGBDtd2I1uMmWJjWpGyCaWYgLf2fRX2SVEb5JGYB2Uc7qZtyidBjwwD6Z+9XQTanMsiA6dcfmRlnG3JNan5voMhlYK+ZxoT2XbeYvkpMtS7DNZkoInmJj3CgkWpgOBgIWycxqFQO5sOiiqmojwGCMBbizWoUBqVwEEeG43NAiXdvnOcvMIjqrlWI1MSdlDANCMl7sgZZgP3zPGzcM8Ve/7m8jsPNRnRYAVrGLhZcAV68idAqk8VaszisH/tzD+669gv/q634er7++3ymcrR0svXQrLL/jHcCv//VsvvzCC7vfvCeKtIpTtlYUx1wusfRTrDY24sLHLOx81p43jKAUlefsuPuMXWN6CTdzXGJA3ry6FKvfApVvcjZh2NNZ7duFup1BlAiT2ZfV6rpY+glWJ0NcYcKLne+UqsRqkqNUTBhV10CwRHWZsnuIqtpIgbHgKzAMCEX8bAZflbDMmU7NfWVZwMEBDv0Yn//kBsfBZvdFatuwPQdVbY224NQ10PR4A1i4CVbnbFOiN1l1R9JyuXOCem8NOavzytETfYYWI7yo4Z3KoBewxRMJA8KPK722ZcndeQRRdSQYNVmXTPTRdD2yyc0ABiSu9RLExT0wIPoAgOVMyKw2bFH3PO5Q7LSoZ6VmAF67VJuNJu1tYIsnJQaE4PYTxZjV/cXTZl0zTMdFYEDqGnFisYDFKGJfe8c74NoV/s1H/jQD73eO6VoD44voXNCd4Aq318i4pY0BUTlf+blS2K/zoMC6CNTvxFY9fCNl75TZDAhDhE6B+IRtxOf57mvIVmjq7cpywKcGLKbyP04ymwl/mveXFzpyZ5oowf7c16HmjgTDGvBvVc8W6poszgADbkITDIhnMUFR4aakaqrSzbuyRFx6u23HOjXiziI5oN3xHIdkU+m9E3mFc6cXsBjHYO9tKrNaOB+708OqYrk7FFbDGAaEKig66vGQ7NIU/37ZPWBwrqwjRJ1FlKU1Gwt1xi3bRuAyPJGqM6Z53+o4qwNneqQCxMb4QNgqpUOQz+Ok+D2DzQXHVYufDQaEItirMCAXFbAo8FUUZzXvYpLypXn43V6d3Z1jqjjQjUloYgwI2Vk91tmri8QJQ/zOF34egZ0p5y/tWqUe5m4GXLnCnNUip4OL1e6zT+JquMb/8YWP4v79/U7hbOPsMqsB4Du+g3VQHx7ufnODIh0e79KzlL2/Ws5qAEBZYl34mEWd6zeEl2mXDjKw0UsUn/EUzuoxh/llDdalWP0WqHSVs13zfd4YTVrquLMa6LCDR4575G9wcn9iDIjrwrFqtUhHaZkSwt9A0ndRO9DVp+A4wzt6xDbawfZsEMVP24bnKCYgomQ7j8fHOPASfOxnMjy/vLd1GIoKAjYpGtnaTVMgKLYpw0svwfmDAus1WKBjBwPiOwWyeOjeIrj2xYJfFYBGZVYP8dAhnPD6YrVrqzsMyqKmLZ5GnD5kt65oxVJciHhdIdJtp2+caepvoWBABp3wYpFG2gRQjFuGLepSAVi0qAdEIcXz4MscKUJQJYrVUpGuro0S7wEWgJZWfQZwvKnZfaUjUAKNWJ0NceOqCnHuIvJaDjXuFrEs9O/1xlk9wqymbrKpxq0sQ1nb+wXHtA87FLDYdANoitVRxTAgezirNw/TLQ88ihC5GTYnW2d1+x586ing1VeHj5dm9v7zIlEjmxZMrNbHgFge7zRRrUiEQ003YFF1WQ14qsxFJ3coToIB6aJ7iprsphwKFDNl+NfdTfeyZG3HoSkGRIFqiCuS+3UMA5IkIInV0dzuOauZWK1/rKZsmwk0ZcckYeL83MtZrX/YxiQyJVd4QEwzcgCPYUBEl4nmwQO/HmTtN+9bXWa14j1D7hCEouMMaCGRtA/JO1sVgZgGnYdeYKsFezE3IqBQmu4o1YagkbN6AANCDFhU8vaLAklJY1a7ViU9JjkIEcPoGvZ50RCM0o279oH59+1VXNkPrHxcrK5rlBU3+h0f73aTrdm63Hr2GQDAtex13Lu733v0PHYZs7o95xLugm7tKdIm5znbIBU7F9wUcujHeGNziFl3zTOy9myKJFYPM6t1lx07x750VhvVpVj9Fqh0XbDW9z0DFvcSq3VbUER7n2oBTd2FFjvbKmd1SWjBEW7tAVh+WVskZ7Vt1ajyIWc1QaxWTUB45VlN4hU3bXM6IXjHxzj0Y3zsF208v7zPerLb5ftskTfyttycFZgXp+w3N29i4aU4Py1x78TFlWDdE6sDe0CsprY8C/erame7KFhrj46zekxEAB0DMuisLi0ys1q5u0/pBGidr21VyvDKzYoH1Wm6Hlk4rPpbtDEge7BfAdAcVJYiRd4UreFLuIRNizrdWe3ZZb+dXCyg9+2wkZ1r1Wn9b4QkTXxTq4KZw9yfnU2xzUbf6QWgWTilQ9k0ec6clWHrM23/nK6zemx8MWBWqxZkALYbzb6mWD30niFuWnged+nu4axOVzlzLUcREIZYuCnWJ+y+yTpDxfPPj3Ors9wiOauHgsoasZpwfwEYdVbvvTHaBLWpndVUl6Yf2sMBi0TUkMr1Z+J4U4aCGmJAmhu9N8b65s5qxfsrWZf6GyFi3B7YwE0SsA1cXWf1wkVSejtjLFX4bsqy4MpMEibBjXsELFIcb45roVShGnLQWv/F2C0bBsQG0wW485qARV18USDPhhAVr/WxW0POahMEhnI9Y8gCV5o5RJ4H4fNSOqBhgJVAy9ikCrGlOqsDxbUtS1S1DccnmA5Uc06gwWKFgeb4PYBUaPKtTDZCpnRWT8ysFmJuaKVIxjIWswwWeLbLfL67QS/+8sEBcHCAq94Z7t/Zb4P2LPYYs3ofg4AwoY04q5NzPi8Ux+QO7cdnp3jp9AaiWefvj821eBVJwe6HfQYG24bnMJSttMvk0ln9ptelWP0WqHRT7s9m9Dw4dj2OFM5zvSCVMZcqdfE0FHCBVju5prN6zE1ZUNKjx9p6iG1+g+3ZaO3ETy1WZxlzg7Unoleu4KnFQ/zoJ59hzuorVzoHlSzyJLW+vcLMSVlC8LPPMldjXOLzdyI8t7wvdVY3bUrdom6EeN6w6JNlqGoLTqAxy22C9RR/XtdkxrhrK8RP8IkY0emjRAo0zhG9QwIAHEfu1OW1Wdf67Nd9Fuappbcwb0QfxZ9T0+mHRHCBGbKJzGpfIiaVJWub1J3ct85XOnEuCuS1Jre9fdjAQd4NgxQtnh7RoQjAjxzm9OncDPEGNGb1PhiQPGdiVdfJ8Sf+BPDhDwPf+q29Yw6iGgyc1YPvmYzz4DVtHo6rDn2iuv6azqw9xOrkLNuGV4YhFl7aYMXyrIafnDVuzGefBb7wheHjpbmtz6wW94Fsr7Wuyc7qfcTqurZg+7qbbMNOH4pA4weWHAMisjyozGqPB8N2xWoDfv24m5I+HlpWvXvfliXbEDToXmGLUvlnlia1vvvV5Rk0+zirNa9vtOAYkLazOrGYk5bMVwFcp+477CnhkqL2CFgkYUBcsPt1yhC8xlkt+TMDdI/YbFViQHKLBSwSnNXJAGs/jqF9P9iuzTYBFM5qEwyIepONGD495IQX72/Co6AMg6zZs0F1Vg9dA5OARc9XvBNkGUN7H1TRzcePm1Ac20MYEKqoDIVBpHVc16JtXO3FrN73uFzMDaxsNHulmeCEITCb8bkv/zMx3vs+R4QU2/DFoSoKnKUhlv6emKjm3z8iVot5oRCruZnh6x77NP7dnecxuz7vHXewi00cV+Cx9nznDG0woSzZ/M0lrJN4t1FeKoTwy9qrLsXqt0AxDEi+326W47CXYF0PPxi6zmrPg2tXcv4U0OKG7Xe4plwXjj3sKKVjQIaZ1Y49MVaCOHEeSo4GiO5yjAy+wHawby/2j4/xX3zpT+E73/FR/Lobn+s7q8e43bzW9xPGy5rNtoJ3UeKzt2d9sZoLn8oXppGzehgDAkB78Tjo1OXIEtfW5McNYSXQYihSW9FkE0bhpqS400R7siL4Kd4Q2MKiK2RgctOESelgQOxhJBAAMgtcusipa3o6PQAv4ONBFwNSdFy/WgflrvWuWC2EdaqzWmBAOu30SekipPK1AfgzlwXWdVTFZvGs24/HWcVDoo+4xj2O4o0bwLd/O3p/0Liy1JtsJEFROLYHxq3eJuMeZfsDoahEZvUYu75dyTnHmQlntZdifcr+XvaZL8D7638F+MEfBF57DYsFsNkMHy8rbOYmpDCrMzlTNi74JovueDC2iSucpfuO33sFLNIwICxgUS5WFwQWuigVBqQRqwkiQuP4kzqrJ2BWd8bYjSzQad8aYVancaXXFQQ0nQBj3UYUznq4cPsYkIQHjBqI1Q1+rnNtAdDEtH0wIATH21AIHhlXweeceReDAhh3sg0iZlIesKh7D4TDzurNBtrzOGl4KbZfomJAGrSG0llNC+90Ve5XEwyIyigkNix01568GK5Ccs+K3xM72ZTOah2UQreEs1Y25zJgVqvWM0aboqrrWtfGzmrl1IhvYO891loWEASMP30+krAo3NNBsBWrxVS6LVYfHbFf72E2QJriLA8ZUnqf+0yMWSP5acmqYKKyuBksC7h2Db/3S/4troRrzB476B0XwOick4nV+4+JY2I1APpmkCt5J16WVl2K1W+B0nJWW9Z+D7PujumeGBDSwtxSs3pNAhaV469wEOmKdGMiAmc+Op7eY6VsdeXFdnb1J3hjzuoqzRlLsoMBcewa//1X/WO8eHinL1ZzR1IvqK1Tm5OMTXKjCLh6FQBglQVeurVgYnX7Z3KRciyobHKHorguOmLHmFO3KNiChMDXdqxKHvQCoCgNFk8Daedkp48QlhXols0GJGZ1MOAeAoA41WzTF8/sQJeFBZAXpVInvFiQkJnVEg50WZoxq10XniVxrRcFW+wTndVSsbookBQeIn9cwFRVMHfZIrqHAQENA+I4DAMyRC+SYUCGSvDrB9o8SW3EQ90Q/DzF92nVRbBfhUN1H7FaLEo4s3rhpVidsXPJ7q+YM/DhQ+Cv/BWETt7O55VWLriyU4nVeU7vXtjDWS1+/r7HG+0O0wnIbpUX2HI+aaEZut2pZh6jwoBQAsUCe0BYJ4aqAYDn9ZnVprkAI9zLxlmt+U70nT0wIARntTvz2efVxoCkFlvgUwMWAbgirKx90iYOzdGARdo967g8vFOJaiDMt2wW3F7IXHQm862ReyvLeNisrrM6AMuGGHJW62SE8HMFMIzAoKAaZB1ngFnuxpizurJJc6PGAS1zVtcGc0PFGFuV9FwAYJhZzb6BJlZ7qq4Qo4BFOWPcZFNU2cEjjCcUpJ1AAin0ySov9TawASAIEDoFkrNhsTo7T9l8KgyBKIJt1ajFeNQ2qXGx2qmL8SlcmuI8C7Gc7/l+HONA80pWBeuWbZsxr15F5Ob4Nx/503j2yxa947oDCMrmuHGttVZUdkMARiHRAOB9yfPIf9NvMXqvfrHXpVj9FqjGkbHvC0NwhQd2cRqxcd+Hh+9oDguKBPbpkEMRQF7arAVH5wUkzrVSt9AWVLF6SETgrVi2o/dSczxbHXyFCTAgivugYaF3xOqdkjirA6dAthnBgJxkmHspE6u5s/rdN27jRz7+DJ5b3ttNDt53I4QaVDYm+mjjOgZEhKKgLaKHghABFNRJ/tC1NUg7b1r8FJ0WjbNas0U/dHOkA2L1amNj4aX7L8oa0Uc9FtQAmVk9tMihi9W2tI06LjxEEemQagyIEFQNMCC9cxXIEgNndbRwEHd4qoBw/tEDFqUipSi+gNr7Go88s4JRSkJj2QP4IjFxnlispo6xymN2ijGr2xiQBKsz9m/JNzkTWwDg/n1ED18bFqvrGqhrtn7UFqtzufiX56wjQHcBDciduu3SdVE1HSHq7jAyBiSUBLjyY5aVDdsjOqt9+TwmLyx4unM4Xo3o0z3XhotPOtXtPdO+EQQGhNq90jir0XfVQn/xDKDVbaT+FiYwE9AdkmsQp7a5s9rjXN2pxGr+d2pZe1RZoqxtkgYwhN8zwlW4tRSHI+YapFZyx2Eu1dyW3lsNEonKrFYFLMbQvx8G3gmkTlleF8KsviAzh+M7qGQGpKabkTY3UmFATHjNAHsnZJJAa2Nntcq1zg0NNLFaPu9uQlEJg4HjO2zjShHkS/q8RjIMipywiRuGbB67Gnborh5kWHhJ46wGsJ03Zhmbi3heI1ZfiWI8fDjys9OUrRdn+2+4s/ehfMwSxbIcit3OxWvXAABvP7wL6/q13b8wYpRqjjsxBgQAXax+5gnk73yP0Xv1i70uxeq3QDUp4vu+MMT3DdgxirTUC+QQ/N8BDAhpwiBYvTJndV1vg+V0djUFUmEgYLGoHP1xZ49ALfF9OmW5AyIC9RpggG/Gq9nR7DCrd0q0CYlyXeZ62wwv6DanBRMrWxiQD177DH7pzg08u3iwK1YPtHYBMA4qm9ShKO6BgXuLTW70xepBZzW1fVII9hflrFZgQCjto8JZnWSOcnKzTh3M3VQbAzKU8gyAhgFRbVoY8lSlAk1R6Ll+uzXErDYJWFRgQOLS0096bx935vUFDwCbxNa/r4Cto3bMWV34+19jzxtGNVA7QkSnycBxSd0AQ+5fMW4RApKVx+xUs3iIIuasdlOszpjonMUFW7j9ht8AAAjvvTYcIiTuC8/Tey/yBbR006LZrKBhkQYT6nUxCGMtxMR8DIDz4If4pNQFmSpgUbRRU5zVoaTLBOBjrAEGxPfh2BXKuCNW62xWdcuyeEiTI0XwkZ3VdoFsYJONGrCoFKtNmdWuxCShu1nTriEkDr/OFmHXomGsK0RVegieGgFB5grbDNeWl3Lhpwmb1XVWh9ZwwKJgmOvcswPvBGqXKDA2FhBNF2JjWMEYLyqHFjir2hhuNtkMnNUysdpgcwVovRM6F6JKc3owqhi7ZM7qPEdaEZjVngfXkgvAJs5qy3XYsynZXCB/XmNidVax89W5tmG4FwZk9TBnGE7urAawI1YD2BGrr4Ur3L8/8rOFyL2vOcC2mQteFVrIK17zeWH7uLwbm51cR6wWeJkxsTqu+/rGQA12ohsGmHreJQHEtC7F6rdApSm0hWXLqgefjiTmE2fdxdOQs5oyYXBdJiyr2K9iF1pnQWozN3ZZSbhxQCtIiMisHhOrCcIXAKVYzcRP/UAOpSuJV7op+87qw0Pg5s3+uYniYnWyHmFWnxbsZdlyVn/1/OO4EqxwEKQsibh1zNHgShNntUr0obgGBLZmADHDFtGEe8suURZDzGqCa4Cf79BknNo+6dsDzGpK+6htI/Aq1paquMCr2NVzVgtsy8DmgvjZWiVa0WQYEBOnD7hDsdvqWZYMrWHIrJZhQIraJnNqncDtL56Ea8anByxKnY8A4oTg9AKa+3XcWe3qOavHAhapocMj4yGpG+AiMCCOYpEnqWRdssVDO2BxBeD8HFluw1/4wLvfDQCI7n5h2Fnd5i7qlNi0kHVvCAyI7gIaaHAoVTbCrNbCgJSDrH2qQNO4yCTOau225FapGMAmIoLj2ahk95do0adiQIKAsaDb5gtTZjWG3VkNV1iXWT3SEcJCQfWFyqbtuocBMROrPZ87ljuudbLoNbT2MBARWEejOgiQLKp6Cse2qeCh4p5WFef364vrzFmtVlIaxIzmBosKDdXMY4kYEGm2zwR4FdVGiGXVsByaEx6AfNyqGSqGUm7gSJGRJpsAABBEttRh33SDUF40wtCicFZrBQ6LEgKw5JgmAYvKz0vMi4jO6qEu3Dyr9Z3gYcgwIKthc0DTxSYRq/OkZNephQG56p3i3r2Rny3LuBqpMRQp0LrH2sdt/7prv+ddvXuJ1TrO6iFzn6mz+lKsNq5LsfotUFmiiQFxXbaAHBgg0rjSm5SKttQhVAMRA+LapdxRKlqTdV8UljUcWigcbyRn9a+xWF2WTPwkBHKMvSjSTdl/SVgW8H3fB7zjHcBHPiI918jJkcQjzuqzYsus5onE7z56Ff+Xd/0rYLncvUaC7TXmrKaIPkOBmFSxep/2bN2d+GbTRv7HRQE4ZGf1xTCrfadQfmaNA1ZTTAr8enDxtE4cJlbr7O47TNiQ7u6bBizKbi0RpHQRzuoZLUCncTl0WZp8zGlCkTTL8vmz02VWlx6d/QqoxerUoQUscvbr4IQxz1HWNuxAM7xTtmEB0J8vMR4OsLAB0N8zisk4la+tPGankg2fx+yI1TVw/z7yyoF/7QB429sA20Z471UkQwn14r7YJ3S6XY7DnEm5pHsjz9kmC5FZPbR5R8kIYffWcAcPVaDZOSdRuqHb3cP6NnOqdh4yk+ArJV6FmpEiKgj6rcRlqddZIalGrJbM5Vg4sL7wFzoF0lz9rJtgQCwAddpyVmcO22Q2YVYLZ3Fr7C6Sgs1fqM5q1aaggVvZdSFv/YchW9mFUlS2LM3g7Vb5PuT89qJgLlW/1ja02IGnDt0F22DRdu0PvBNMMCCNUCsbCwxMFyqnrhGnVnUNxLkSndVKDEgBIwxIENnMJNK5EPG60nfWixJzLpkJuCjYfUcwHajWM829Rfy8LKuedlNUdDMq5pykLAfhrB7BgGTrnBkc+dobAFCxf8N6VTNEZ0usvmY/HHVWV0nGuOhTi9WyDbF3vIP9v+2wFiWuq0ovEMeNa61N3MFzLUt2v16K1W9aXQJU3gKlnfTsSQSETiVxrZdMLtpvhgRFIp/TUbmVDbiEjtsKouj+G/m5OlMHLFInoyMBMtQ2pO3ERt4ylKxLBE7Vv68ODoDv/V75QTlXOF4PvyjiVckckDPuoL5yBe7mVfyJr/onwNEzvWMyd4PiXqTyVD0Prp2pHwMqs3rEqcu6ASg8dMWmDVptqSRmda58vkyY1Z4dqzEgicU+f12GomhLzXPILK6r1MP8SAMDgpbjr5CE1Aqkgu4kpJk0S/6s4cnSZiduKHErcyGFJKTx2nFmCZHPsPVf2sUjmNW+wexMfE4dbscmtfEYBQPCxcTBCSNFULRK5QaTyTvRVT2z/LjUexbA8HuGEJC8d8BiXG2d1WnKxOr7NnD/PrIqgnf9iC2uDg8R3UkRn+UAFP9GqrPashD42La+t+8jHrAZzggLfsFET2rIMJxlVrCFnpY5YAADQs0I4ccGoBarp3ZWG2BAms9HIfqYYECazIWai3ymG4JojbGSDy5JLZKzmm2uDIjVmU0KWITvY+49wGZdY86/1DCrSZMCfsq+haLcFWvZcXPA1XxeAf4sqOcwAMihakPOajJbWQRMTu2sVm2EFAWy0oXvTR8Mm2S2nlGqfcyhTQDCWNBsqKtQDURmtRK3ZPJ5jWJAaBv5ju9ITVimGBAn9FgHS1espjDLRfF1nZRGSmXYc7e2DOuX53TXftMhpuKha+6Ji2M2zGZJNZxxzYDFwC6QrofnW9k6Z/dDEABzPrpX7J5ZbWws3BTwDhqx+ggPcfKwBjCQF3RSYOklWnMu34ccOdaqBmPVHmNu3gT+2B/rY0iBcWOAOK7YxNVlVitMgwAuxeo3sS6d1W+B0har+S5hE6KoOKbWjvmYq5jK5xxqpxduL8KLfdBZXVUoKc5qgQEZaPsGML2zurLhuYRrIMMJtCrdlPoMxT2d1cmG78gLwbHNwu6+gPYIFGOhhfuf5va4EwcsjjmrG8cXwVk90DJWlsS21BHeI5lXzNmvUh4dgJjIFh4M/KlrrFJPDwPCTlX5HFQFfYPJtUs5/YDji6hCitRZLXiqBkKK71V9IUU408gnKxGTeBikibAuxPS26w9oiR4UsVqGQWmX7njgecMBi1Se6lBrMj/uhWFAqM7qfQIWk3obpCMCFjdCrHbgX+c5BlGEyM0QrwbeeWITQ9dZDcD3amWYVFa68EKaM8sfYPinuuYAMdcYeM+Qw9ou1FndH2dNMCBDDkUT1BJsG75bIitb52sasIgRZzUFA2LbCJwSaSHnYAP6i/KmfB8HXoKz1fZzWWcee2+bOKu9vrO6cc8RRS/l2sPArex4tlxUhllYW/Pvl9yz7AcbMuFl41blUoZC9WYQryS19J3VAx08jaiq6QAHoB4LeJCx9ruLH1P5Dqd2MAGDWAmSmYWX7TlSJ3ye07E1AJQGt3hT053Vnsd5+5I/E+eve1zbhueU/Q5BAHlp0zdFLwgDMpQ7QXVWh26OZDN8PiywutxiQCwLdVUDVYX1Gtvu1DAEfB9hnYwK4GcnFROrNT6z/Z3VEh3iySe3Qnu7xFx+TKzWRBg1eLRLZvUjWZdi9VugmmAWjYWOY1Uo0+EBQnfxNMYVLmtbf/EkgspUzs/KJrmKWYufgqVJDecZEv74ccX36R4XwMC52iQMSNOir5qIUnhk7n4BizthWsBuO087XJEfc5RZTWynHxJ9mnR5nc9rLGCxwYDonWrDwh50VtOZ1arJOLl9cg8MCGWSG4ZAUnrycNiiwLrwMQ/1FjtDG1cmwZWOVcsfLY7u8ShOJ7TaXbscaJPwLwCeUyOT8KUB0MUJWZt+46w2w4BEbrbbwVHX2KQuE1MI7aOeXSKTsYpF6YrVYiwYcL8C0F+Y75uNQHVWqzAgxMwJ8ffHKkm5AzQImFjtpljFNnB+zjAgVxbsG2czxmUcWpBRndUY2BDjXGkSEkc4YBP5M58lFWvL3fe+tdh4P4QvqmuLtnhSCVSGY4HrD7WoE4UUFdKOuoHdKt+tmetL3Et8jA0i+rJonFmt/04M/Fraoi8qyWwmKOp+bp6HpZfgbM2ROHWNW6slHp+dGjGrGVt4l1ndBPURW/SVcxjxHBBFZSkGxCDUXBxXFoJHfh/w8r0aWSl3VqelSxkKR53VaaYQkojHLCqbvAkwtMlGRiI17lfJnwlMFNWpy8+te0yTgEXVNTDBqwDYfr5d7NqmppkD+DGVBoGiYB5ewjjjOpB2ROQm7nLRIaZwwlMxIK4ld4EDzFmtHbDoshB61TxDVLYpthgQywJmM9bBfrrGamMzDIgIp44ilkN1Pqymnp1UOPD1nNV7idW6GCtuDNjJm5BUnFhaAYvNvE8xPyZ1M/K6FKvN61KsfguU9iSXA+jzeARqrzPB9Ty4imADAM2kUTuMQoh0Q0FlFLFahHEo+Zy2/rgjJs0qDAh1MroPBoSydlDxHnmlccU2QXRmuRwDkoy8LJuWb6GuPfvs9g+7ipt4qQ/cW2Vt6zuAR5zwZV7pT5yF+DuIASFMbvgGkzJotORMOorwpUo7N2RWe0PO6ozIrB5Kp89zrPIQi0gvuO9C2n0FtqVEn31rgC8CWqn3HQ50RQmkaR/Xk7Soi+A3U2e1TKyW8RD2Ld/H3M2wXrWurXA++oTPS0xwVc8toN+aKsYX1WvWQFRWPrMAqpxPnC/AWU3JnAAw2MUlKsms7ftmNmMYkI0DxDFzNC+4NXA2Q+RkiAfE6jLOGAN3SrGa0mkjaqTTRNtwYFmsI0QW1AaYOX1U8wLTVtdAPucywoAMsV+pCCtennDYCzWFL0i1OyF2jjkgVmcWKQixCcEbQDVoC4oA4Dg4CFKcpQH77MsSr68P8eTijCyoAhwDUkvEaipeRCBxZPNuA/erMrBPCIpEsdrzFfMNMU+gPl8q4SfPWWdKYOBWVm2EiA3GKZjVdY28tMnXdZQDTWVW26U8G8DEWa3axBUZRNRgWMVx87ymmVlEKTYwGwwIUawO7KJLctv9OYR5p3SMbTaY6GK1NChabOJTPq9mI0R+rzdueJ3PzPcb3NhQZZuCOatFu8V8zv7eww3WMceAiLlTGDKxeiS08ey0xoEfX4hYrXWPibXnXhgQPUMmAOm5lnkF26Bz4VKsNq9LsfotUGlmkVzQQ2mpzTG10ukvxu2lFOnEi50gVjfM6iG3MolZPdD2TZ2MjjneqG1InjcYtNmI1ReCAeFtz0KY/uqvBp56iv26LVwD423vfMJA2lwY+LyyjBD8NOZ4a8I7afdWWSrE6oqHbBI2QobSzk2Y1f7A5lXjgNV1kYmgF5kdI8uwLnwsZnrPQoMBmTJIybLgOrX8PhDccqKQ0jCrOwIw1YkiynP7k/xG+KQeV7bYLQokpWscsDhzM6w3rfs9z7EpfNpxBecuUz8/dZaza6HzThwJWARA5Myrx8OypG+wNAeQHJSKARmcF7SqYet6HrBcInJzxKkNJAkb3+d8dyOK2IbowDsmXfE2V5JYzZ2qEtGnri2yoDa0iEwTTQwI+CbbwBzGsurJHYoAjJzVcsfbBMFXUzOr0XKqCjWFGvrVqmZxLvnMksxmphNdsdqv1WgsAElu0zAgAA6iDGd5xN63aYrXN0d44kqifZx2NQ77qZzVnqcOnDV4DpSb2GJeROQKKzEgJuInBjZCOLM6CCcUgHklua2/RhDdEKqwOkfPbDB6riamC5s5vfPSkpoOAJhhJRQdIVQMiOq4Rc7NLNSxy/fZZ9aZd29i/txSjut523d859qWKd0koRKr88qBZ7oRomSMEz4vm2FJ8rL/7weIGBDPY8LymFgdl+zYwjGyWDRiNXNWt9ZmQqweCrQGcH5W40CTWa0KBG1XIyprzLv3woDo4rGGWPsmIdG4FKunqMuAxbdApZmFA82ARd8pBsXqBmq/78MnFtADzGo6+1XtrKYm8TYtfgr+UElxVvO2b6UDWPBfJw5YLCqblEujXOjx2mJAFlrHDJ0ccTw8IUgSIFy0nNWWBfzgDwIvvwy8/e29Y7p2PMisrmoLtkdwKFpq0Yc0WbCsXRGh+1lT28aaTRvJnzUCOI2b5lrqABnSdQW24p/CSbjJHNY+qOusjmz1wrwosMoDzCNNsVrVlgsDDAjYbVPk/D5o30MNt1z7kAAAbxGw+6ttSRFCigFLlIkzu9eWcYSJIgKw/XzbixzeTm/urE6xXre+xgPwZhFh4SDcGIqwG4AFzupObscCFgGQXOBDuKlcLExtfW43gOFNUV2xWswLkgJjZ5MKUc33gSiCbdWoywpYr5mjdcbfFVGEyMkRx+pjZZtCvyuIlx/YvecAwPb3RK7u0HhI4RUPjVvkuQY/VwC/dszqwqBFfcRZbSJWz8MS6yLYjrOGYj0w7qxe6obVQaCx1CFVSeaQedAHUY7zPGDjd1HgQTqTZlrpVOOwbz1fDaqE+Gx5qnm3gQCsZFaL8FKiWN04yycOWPQDi3UCSDbZjDEgSsQM4d7iSIU6L3bj2gR+kYA03DlXyXWtaovG77cseG69ddi3/52GAYuW4lzzyoE/NQYkJ6xlZMeVBiwSMSCWhdAvt2NX6xhpXJHHLNcFisTePddm3UU0SKiCosUmvkdQGsW9VUvuLYiARU1ndbMpPvxteVLAt6uts3o2Yy73+yusc577I35uEDBzwHpYrD47g3bA4t4YkLk+OSBLh+eqaQrMdXQzcT0kYyFJK2iV5zFN5LLodemsfgtUmukHLI4xfdIUzJm078uCh0nlU/Oahxbm3FFLwoAokunFueaUtrERrMRFBSySd3bHeHSiNVnXWT3iegNaoQlt5IfrAu94R//6jDmrjUQf9edFfQGx9mx1eCedhz6waUOd5A91A5g4fYT4J2MAlyXi3MPMy7WP3WBAZM7qPMe6CDCb6Z1qs7kwJQYEgOsBpcKZZRL+ZUcBS2Zvq3WGQhIgF1Li1EBEAORidVkiLnyzgEXfx9xLsY5bn0ue4zwPtZ31ALgbQ92SCTA+Iyl0eAAJBIA2bg28Z4q8pnE/BbKjUL8TSQHJdqneaBRV10hyZ7sZ4DjAfM42YO7fZ/8XuxuzGRen1IdLVzljMhJSxVQYkDLO4Ng0tEiziJS1PAPI0hq+rrNaYECmDvwZYFZT+b+AWly/KAyIUcAigEVUYSWEWmCaMXbAWZ0KDA7JWa3AgFQVksJF4NLeYctZibOMO6v5+6bZNCLWoLOauhGkYt8aPAfKLAsRkGyg+0mDEKcI6VJiQIjOas9jJgkZYqWutxuMms5qX/ZOMHGpAmoxyaTLBK3PSxWIacBArjLVJtu0zuo843MCg3mc2GBoF3tuCRkhvKKgRlz4vfl8Y5SaylnddCAbXtcpmdUY6LIA0a3LMSBjwmcWV/CdFgZEOKvvr7DKw93cnzDkGSHD/8azc4sxqzXGgia0cMBWvNNxt08NbV62ir1v9VjYAC6d1Y9oXTqr3wKVZhaCSM9ZPcb0yTJNp49wkQ24igGQhFrHqpWs3rxyEBFeFI6n4NHxcyW9gBwHnp2jUIV0XYRYzYXKiLJj7CrCiXg1rkpdZrUTj74s0xS7AYtDJRzrYw5F4kaI6rh5DiZ4OHoW0MH2bLG5oDuyCme1wgFNDRodvAaGgofvKCYMAtcQ6p8vc1YrFuZZhqq24AR6F1fJpkTLpUppI3awdU20y4ShCGyfmY6zGoCZ68+3kK93RYQkAW/P1hf9APDJcNY716QMEEZ07mnDrE54C6VlAXmOu/ES1w8UiuBQCTTWgLM6Xld6oaAN71Lx5waBu0PMahZYR+WsVyizsj/xM8CADHZcicpzFl4XWttF0sEB+/+dO+z/4RYDYlmQY5Z4pZuSYTUoGJDQkmJAms+fIlYPhUnBwFk9hgEhupVtfh+078yqqGCbiD6hK12YNwu9ifnapNDlVi1n5Y5Y3ThBL8hZnWQ2whkBAyI2cGUDQp4jKV22MUhofz+YlThbhUCW4fxugqWH/eZsA+UFNtJuwKLotJrYWV0VFfkzU7aoNwYRorM6kM836tJQrFa5FEXAIpFZHfAw215/ZVWxe8vTfHbFuzatsTOSNggMovt1gAMNgMxZ99waRSp32AMgi9Xint2ZWYm5oamzunOujemC3M7nMTFzU6K9GopTm+6sBhCFNe6e+r2xizmr9Tfu+Kn2n4OpNkIUXRbUsHTPrZWbl6SARY4BUW2Ki2oQl+Jzm89ZAPS9c6xzH4tl63yCAKFzNhxoDSZWH2o6qy3PlQeNtirONLn4rgvf3iBLh5/LLLcQeHomTwDDGws27fn67b99cDp7WXvUpbP6LVCpYN1pOauLQWd1lkHP6dNwNEeY1dSgMpmj1GC31PFsedI3sOVb6b5/R5jVzWKPKlYrnDNkl8dYi1+iv4BuMCDJwMSw7aLbx/nWOKvViBkApHBBb0BMIjGrsYezurL1JzeOA2cgaJTaYQDHYS6XixCr7QKZ7LhZxnANmg5oALBDn7mKZaqP+CA1H9whd4NJirrjqpmXRq4/Idq1nNVVRk9PF+UHkDreqA4XAEAQ9FmHPGCRslnRlGVhHhRYt52PfBNkPiccz7bZ/Vo6ylljvK5Y0IvWBu5AwCJ1sduMW4qOECpWQYjrMmG5LFGDEC7Hu1fGktmFWL2zgbFcAuB7EcBWJOMDRz0wu8/WORkDohL/NuclibMPgIk+qjApXAAGhAdaU93Kss67JOFhWgYBcD1xXTjTHKJY7XmwrRpld24ggq8C+hJmMa9wnofNRlueVmat9Bhue04p/F/wTgAZ/gFgG4OFR+5iOZiXDbP61qsFnpidGIvVbtBxVtf11j1HvF89xRyGtdLT7i0/ULjguUGEKiiq5humqAY/tJENBSyGtOcrdHKksWSsFRuMuvvY3Anf21wwmcfy40rNNyZsafD5fD3grJ7ynjWdGyoENWa6MAtYDOyidx/EiUV/JwKIggpJ6fWd1QnoGBAP/ffiBBgQW+GEZ58XfSNEJVaTjDIjHVyistxi+o449myGx6IzvPr5EqsiYM5qUYJZPdItHcfA3Eu1zW0WMIwByR3W0ajFrC6RjTmrc5u5y6cUq4nP13IJHB6S/upl8boUq98CleaaAYvC5TPkrM41F08CA6JqzaUunlwXjj3iKCW82G3PYTt6Ct4jWay21KKqieMNULRnU13gAOB50tYuUWwBrekkcxy1o1YUD1jb2+3DRZ+he0v8bK3iTsIh9itJrB5xVhe1rY/sEMgS2UfFN21I70nhcpF1A0wwGZcG1glnNWXN63LOusJFBkBfrPYVbErwgEUis9p1Id8QE+MW1fUnxOpW+0LTqWDUom4z5mWbJSqSuA3aR22rRpV2AxY9M2c1GFN2024hFedNcb5a1lacUEyc4xgEZ3WlRosYbuCqWNgNZ53o2Ja+v6i8XnfPgMUsQ1q6u/fEwQEiJ8df+cQ3snu7hQEBMOqs9qnOakX3RryujMRqtoBSnO/UzmoTN6GYH3b42pvEZv9+KrM6cPrBsEXB5y/EcxUOxS5SQOQ4+PQlzHJe7zirNxsY/fuBlltXgpZIC4eGARE5DrJxS2wCEfMBDhYVzjLmrH7tlRpPzE9hFjYABJGzG5Jc14gLDxEBCwag2XDPin6YsQlixvMtufhr0skGqNntOchzDWAkYJGKAXEHgmHznLYR4jhyfr+p+1UlJhl2namua2M+Mhm3ZII9MYcJgNxZXdd8TmCw0eZ5jFvc6Zhlzmq6WB2GQCwTq2MCgrI5Vck8TqyTDZzV0hBXk/U3+AauAkdKGrsEBmQgKBwA8rxmXcPi+i4W+PrHP42f/PgR1nmARdR1Vo+L1QxlpiH+AqOGOUBw8XUxtwWyoZDJumbOap01k+MoO9FNmdWXZV6XYvWjXnWNNHe0mdWiDUtVWWbpOaublufpMSCuVaEs5AtotqtJc5TunFe7TJjVtiIEDwb8W47B6LmH+LmSg4TE7n6iEKsz6L0k+DGVgX2ixAJq30nuCFuaLPrwDRbVuZLFasESHbi3tIVK4ayWGRRNFk9i0qwIbgRggAEp5MfNc8RUsVqIT7IDiwmv5oPreWr2K9tgIorVKi6+cP1RFyQSsZoF3dBdjwDgCbG2jQERSdwGwTzNokw8p2VJb0tuVROAxs83W2VGra6NOKHqNNlQnNXl9MxqsTGsGLfI96wQlmV86bJkDhiqC3wPsTqvHLhB6z5bLvHCwV18bnUV//Rb/9IOBgTAoFidxSXZWR1FPLCus4DerGv2+ZOZ1TlSxSKy2RjWEasFvkj2AqtrOqeVO6t7YnXqMLGW6lCc82DYTtiqyWJ/O4fpjLFFwTAgBmL1YoEdZ3Uzxk6cCwCgGRMDr9IWv1SMdQDGYbYHy7q5Br/8KRcvHt42dlbPFvYup5YH40Y+0fXIg8oG3cqE97cXOkpntYmo2mBAuudqkI+xc74SZ3VSeDRntegIkTmriwJp5erfW42RofP1plOWjgGRul9Ng2EV8/nGyEAZD1VidVnSMm1axwWwew/UNdLSQegV5HurcVZ3BMA4tfU28DsVRWBjQWfsMnFWN/P5TsAi1dgGoNXdK99gITOrVTx0ENEtohNiRKxm+k7r2PM5vv6xl/CTn7rJQupnrX9PGEo3KvrHrPUNAqp8DFHtLmwN46RyTStKrEEcjXmyOFfJIjzLDXI3LmuSuhSrH/WqKqSloxegwtNSBzEgucVaJHQxICpHLTXkgot0UgFYBMtRxod9xGoCs1oZBgmGFCA73lTuNCoDGdguShU7kElikZzVzpCwDOgvoMSC9KIcigNitU91Vg9iQAj3Ft8MUuFwSmr75EALrWmADGMAW31RKc+ZWBsRbloxYZCccBaX+jv7GBZ9jDAgglktCfwhbViIaocW8mtrFFDFy+u2Z6PlnKEe17Lguezf2/Qm8qA2yzOLxJjPKqzzrehx73aJ69E5WUxpnNWKWW5zjTXSw4c2w4zGLXvEWW2wKToYtkrNBRgLWOSfoRW03jUHB/j//Ib/N/7sV/8DFpopfnYjVqvHuzSu6AGLkc1ak7sYkJWBs9rzWEiRIqG+2RTSEatdKINhUZbMBUTkQMvMDOvEMXNWRx4TETr8+rjwEPkjmBhVCdxU13jBRXAjZ/WCO6v5+W5iy0isB1pjbHeMaXebaRbD1ihyHASzmihWLxd146z+F//+AB9+4lfMxeqlzTpixDXggbvkewBQitUmbmUlKtAg2B3ANmBSimqgi9V+aCOTbVoUBZtvhbSNq0FnNWUjRGCGumtFEVxpunHVPa64zgZitXQjxGRzwXXhWXJn9SQYkE73SlJ4CF368yVE0K671og1DyFWS961YqylYEB8SfdK46ymY0Ckc6MG60g7bLN5qcKA6OoF4nkdE6uFuNoSq69HK5xtXDxI51jMd8XqwB4PbUxTMM1IUy8AoBarOTIw9DXGcI4ZGjJjNt0mOtNDrm2UqRwD4huM3ZdlXpdX/lGvPEeqyw3bx1mdazqrPe/C+JyuPcDqpb4oBvhDRs7qAawEmZ83xBKlip/8uIGKRwce3KlzD4hzHbgGALbtg/tOcpu294ld+0NoDRgwq0eCr0gICBE0KnNp1jV98TS0C20iVlsWfA9s8dS9wEQH9M7fkfTTr08LLDQDPgDenj6EASFOQlzPQllb6oBF3bA6UVZLhOIzyDgG47oZCCl+YDFm85TOaoAFTbZFqrKkuz5bNY/qHWf1nVslboTn5DZ19u9XtNMDiDc1u8YaG7iuXaKoLAZe7lQTqEUQgD27hIwKBRgE1g1tihqE2O7rrK5ra/fZ5cxqALsCGceAuCjUY3dSkQMWG8G8M8bEm5otoCnOat9H5GRKsfo09nDoxwRntXzcqkuzgEXf7odBbjJDZ/XMZwvz9qq36bKiuynVDkUzDMhiaTFXsdgMO/VwNVhPI1ZL3K/a83heduCxHAeFWJ2aOKsPLZzlIYpVgs+8FuHFwzsTOKudXXyTMC9QndUAfK9mCKuuAGyAAWk2U6UYEIPW/0COAWnETwNmdVpJxGoiHg3AVvxSOKuTwtPHiziOPGy2Ca7UP01xrqqxQPxcSnkepPPDPKPz0JUdjaYYEP4Z19muWB2XvtHz1QQsdljIcWYjcgwwIJElZVafbxwsvYTmrJblAhjiOhoUZffzMjGLQb3JBhDHA99H4ORIsvFwwR19h8+13nP8Kv7dned7YnXo5khGQxsJ5rYhHQagbbYKE94+zmqd7KgGL9J/jkyZ1ZdlXpdi9aNeec7aB3UmDGLnaYRZ7euIFILPqRogqMKX6zJntWxhbuJwGHJWmzCrB8RPcnu2OK5SrKZjQJSuCQBJZjFxRvPl49oKXIUoEcwS7d8JMNjWI4QgqutPcVzqC4gF6ymc1dRJE0cKSK8rb5+kitUsCFEyfhhO8n0fcheZyeLJ85ioJfnQVmcV5gQ3xlBQWcP/JTqzpMc1QfeIEq3iLbHa3FntyJ3Vjmnre717XEOnk6j5rMa68BsR/O6dGtejFVlM8QJ7EAOi7ay2LLgDY0GZV3As/bb/LWtf/sdFZdM6eIY2RQ2Z1aPOahlvvJ04016t8M83stN2xuhOpZuSuXwo6p8vF6s3G01mebs48zPObOnGxcnGx5G/oWFAFPcWmX/L54fdz2yTmInVzjxkTlWZs5oYADjkpiy6WBnNWiytHWb13VMfN6Jzo3HLjxyl+zUtXQQ+zXSgzHHgjm0SrxjAwc0IZ1mEj/9Cjfc9c48NVcbO6r5YbeSuR0v06VwDk4BF5RrBlFmtCFhsnJQUBjKAaGYhKSQO+8IgfNnzmKFFJlTlOVIKC1uFARHBlVRBUWwOd99fvJOL7KxWzA+NnNUDYrWRs9r3GTaz7f4UXRsGz1fjrG67a+saceaaOatnFmNWdy7Eam1h4aVksbrX0VgU7N6iGkSazvF+NkJuYDyRhg7zYkYZzXkc7+BKR8TqPMdu5zyfa33F1Vfwq6eP7YaUhyHvChsTwLm7eEoMCKV7Q+gFqowrftyscvTet1wvkYrV1FDzy5qsLq/8o15ikquzJhMYkIEQvCy39VrqxWCucL+SXWRcqFU5q8nt9EPtJ1Rn9QhWosGAUB1vivZs8uSGc8hUDvs0s5k7TedCjLmgASDPUQOwfR2H4gW49m0WdFhUElQF6K6cJrxT5aymCJUCrzJx0ChsG55TIS/74URGzmqw20bmdjJyVvOJUC3ZNl+twCa4EwYsmridGmb11BgQoOesNg5CBOCFfQxIk8RtclwhJLSc1aSw3U7NlzbWeQCs1wCAO3eAG9EZ3VkdKlr0ecUJ2MJM4/5qeJdDiBmSqKwObiQLNCPvGfE9+uc68j4AgCxjglt7ofPEE9tftwUy/uvQSpWtqVla67t8RCm4+E3AHmXcsixEfiXlcwLA6YY7qzXOt+ngUdxbLtXpw+eHfWe1yzYDic+tFfJJalesLn1EF+CsrgFYZJsmsDxydpjVd058XA/PjcatYGbvhguKEqYTwt7KoDstzxkijCjaLx5f4jwPceuVAk8fnLEvGgYszg5ctskonoOiYMzqkChSorUhOqGzekisNmJWh470ncCeWSIDGYAbutObA4ShRSZWFwWq2oITaM4NVBgQge6hTjUakap/XJNOLhVnnox1BIad1QaIGfg+M+C0EZ9lyTpZTZzVvo/Q7WxaiOc2MNtg2eHX8zqPXbKzWroZZOiAHsKAGDGrxblKxWrC2kNsLuUjwnJh953Vto33XXsFANuobSoI4Nt7oEVEzhklYHFKsVo4oGUGLFFcN9PKzVFkeQCG75nLmqQuxepHvcTu9tQYEDGY7fvwed6gUEt2+ghmtWxhLgI5iAgMcYxemQYsDjqrDViiKmd1TThXoHFQqZzVaWbpJzILYXloE1/XWTnEVQbooioP5lG50xiHioBA2IOHri1Ucoei0lldE4NGLWs7GZeIqgDoDEUfDCuhWjxRhCQR3Cjh7a/PK8zdVPu4tuco26jz0qYHLPo2c3ioMCBEzh2A7flwa2nj+jXBgIRyZ7UpBsQTbN2pndVHHhM9NhsAwN17Fq6HK7KYwpzVAxiQRN9l3jhnZIJiXtPuLdvmGBD5JptRNoItSbwHfk0wIAB23zVXr/b/nB8TjoPIyRCfK8KBk1rf5SNK4ayOY9AxIADCoJaysAHgNA70MSCBM/juoo5bUudjVWGTe5h5Gd09FCjE6sK7ELGa7CbltTiwd53V5yFzVhuMhY4K2SFQGBFB9BnIcTASKgHYV45QA7h/u8C14Jx90dRZfeD2MSCGYhpDjg0ELFLEtCFnNXXODXVHhEkYJNDClqjmW1Rnta0Qq/Oc5lhWiUllaRaCpxCAy7wyGgtUQdlGjHHVmsZ0bsgF+533LR9bTDoX4LKgzSRtIc1EUDp17EbLWd15164S18hZnXc3g/KctqYXxTfyZRiQoraNnNVSDEhVoSht/fFAZGMUw++oHrPasoDDQ7z3KhOru85qywJQD3/OTc6ZZie20+0EaBfvitjb2MaP6TvlsFhdlsh0O5kuMSCPdF2K1Y96UTAgvPVf6ayua6S5rRewOOL2ativRGeWVKQzcZTuE7Co+wIaCVhs0qMpbOWBgEVyKIngkKkwILnNUng1d0qHwr8A6C+gxDGnDirDsPORnPA7tFssNlh0J022zXE4Ev5t05aqeUxeKudIVfBJPhUDogisK+IctlWT2+kDp0C67l/bxllNWDyxE5s2YDHwa6QyBjIfXxzP4PXawYCcbHwc+DQniigvdJhYKxYOPIk7csxCxVxxf/EVb11MxKw+8rDKQ/bBA7hz32HOR6KYYvuuEjEDAElKcFZfBGLGsti4JdsIgUFLIp+MS+cFJrkAlkIAb1Wd8nuuvdBpC0z37u3+hSBgbcln8l7PJAHbaCWK1RaAKu04qxNL+/NvVxTWLEyq66qta5wIsVrjfB13YCPEMPyrx5QtS2wKHzNP9RLeoxRidVJ6dP1zLFTNYIxZHrtYFUEzxt458VmAq4mzWLERQjKdiBpxVgMg37M4PgYA3Ltb46rPndWGYvX8yOtjQC7QWU12v6quq5hzUzEgArfVec+Y5GMAUG5a5EnJxoKpndXUe0uEb8vE6tqA16zYGE2Tmq1jiHMjpbN6CgzI1AGLvs/MQkkXA+IhpCCGRFkWQr9kXSHiOhQFNoVv9NyGc4eha7oYkI3NnNWE9zfrXOh8Xty1b4wBUTirycxqVcAi1QneYB0H7sm6ZmbEbqDz4SEO/QRf99hL8KLW18VLSYIva1eac4Ojplg9iKSljDGKzI3ucdNK01nNjVKDGJBLsfpNq0ux+lEvEcyizawecFZXFbLKge9qtPeIiYIM1wED14AIllPgD8jt9BcRsCjaqIcwICbOapkI3rQkap4r0OyWSwf1ukaaOyRntfLzEqXr9GgCxRSfc0UXVVkrtVxMIr+ARjZCipoQsMgFKmk6vWHroIotbcR7hBoDEq8rukNROH0kGyzrNQ0DohwLarYAdm1am2MQWkys7ll9WIu67dAxIJZtM4ceF1I+c/cALxzcNXNAd53VNRPXQs+MxeZ1xOo0rowWj6KuPebiXrJoMCBfuBPgmcUDupg05FAEd1ZrYiD2QjWYbLIp0DUkV62KJQoYYUDYIm/ElbPO5U5osVDqfia+j8jNlc5qxnCnjzEzN8Nm1WE2x7aZszqENEwKRYHTLMLRLNMaZ5rNlYlZ+02bfo7tAlWI1b6BWN0WasVxubM6NGVWdx/ZCbo35lcC5qwWnRtnPgtw5QGfpFJlLgh3McVZLf6NCma1+LmkOjrC3M3whTshrjqn7GuGYnV06DOxWiigRcEcmgail69wKBqxRAed1USDCKAMdDYSPwHA86Ts8s2aB8NSnoVGrJb8WwVegzDf8p0SeXc9IzAgVDyacL92DB1pahY+reqQI2Md+bkOBiwaOKubjIjW2M1CbA3EagCBV+8Ky3mOszzE4YL+TghntrTb6DzmzmrCu9ZVBCzGhcGGmKprmmpsE4f1FJkmvFvWczVd654HywLqIWGZC+G+W+/ON46OAAA/9ZE/K88LkXTxtSvLLX2DgJhzDojVNaA3xggckMI4CQAoCuas1tHNfJ9hQC6Z1Y9kjV55y7JCy7J+xrKsX7As6xOWZf13/OvPW5b17yzL+rRlWX/Xsiyffz3gv/80//PnWsf6Qf71X7Us6zdd2L/qP6YiBiwqF6VA8yDrJqUOuV+LgtjyzBnIZQm5o5S6Ez8WsEgJY9gnYNGIWa3CgBDbkPikUcWjS0uXtWbqnC8PAtwLA6LjrLYq5IrrWuUlbOKkcchZfSFitQE7Temk462DJrv70hZaw8WTylkdnxf0xZPvK9PpVyuQMCDKz0s4qGxam2MjVktEcBPHOtC6b4VYff8Ibzu4a+asjtxeEGJSeohM3JRoidX8uHFiGaNFAODa4x7utsTql2/P8cLBPbqY4nlsYqwSqwUSRQfVoFqMoBWoRRy3lCnyBpuiPUctr7pgGyxUvnYx4qxON6W8i+e3/3b2/2/6pt2vBwEiN0N8Kp/ExInFxhhiwOLcS/tidWLTmdVgt2UscZEhz3GaRTicaz5nAyizpkWd8ozZrKsuK1v3bVliXQSYBQat5LYNvpKezlWrEqvFeRuMh+7Rgm0Oi86Ns8gowBWAekNMtKkHhHctF8Br2QTJBAEBAIsFrkVrfOr+FVyt7rKvGYrV3iJg4l+WsfMrywmc1XxjvLvhbpA5ocy1MTGIoIXrUAUsmkzkJMc1Yu03YrVkfUG9txxn6/5sr+moXYeiLAueW/WcqklqGW2Oq9YIDWppSmY1d5eTmdWOA8/hxh5xDZqARQNmNYDQr5izusWaP8tCHMzo7wQ79JnpoocBcchitedLskfynG22hsRrwA1jMtyUCV7EC+wRZ7Xmul6cyNDtUxTMjNi9tFysBgC87W3bX+/jrBZubQKzWsWBBkB3VjsjzOqSdQlo3V7iuPFAN+Ols/pNq31mTimAb6rr+r0AvgLAt1iW9dUA/hSAv1DX9dsBPATw+/j3/z4AD/nX/wL/PliW9S4AvwvAlwH4FgD/T8uyLj/5sSoK9nLTCVAZw4DwwUyX58MERUXoE7Udz7LgOjWbLHR39vjk5sIwIBRmtaXe0SMHqAgRXNGeTW5Dct3BpO+k9PTX+lycKPdxVuuGdyrvLTqfc8j5SN4tHXNWEyc3jmuhlLkpuahKfU823LRu+6iBmAawwLpMctzNumZ8Zaqz2smlzmpygviAs5pthhHF6gBsci/5vAAY7cKHQc1Yf0KsfmAuVvszh4nrHbE6NGASAsCNoxy3NweNky6JzdpyRdkHC+ZS5GJ1nDoM02DqrFYxq1POrNbGgEwcsMhPVTpu1TXyyqZxWpvg5f7n3WROEDFeyrwBXsm6ZO637pjwjd8I/Lf/LfBt37b79SBgbMaV6rMyQHb4PmZOhs16d4xpBHDiyjSMLLmzOstwQhGrB0KiTTcaPbfe7YrhLd9GzmoAsPj5dF21VP3T8+DJOOsTYECwWLD/c7H6/ibE1WBl7KyWuV+NHNB8EZ3Hks/G1FltWbh2mONXTx7D1foeu5/EdaGWZaG2+eeyWm1d5QZ0FRWqgaE16B0GAKbPnFDMN4q82uXI6pZiI8TcWa1eI9S1pX9vcVE564p0RWHGrAbgOXVvLpskYPMNasCiwrVvgohrxOrummaC8G3X4XMDcQ1EwKKps9rvO6ur2tYP2GyXIsz4PPHMMCDtfz/QbIqSh+5mDdr5uhgLqMxqxbjVYEt0jXj8WbTqSi0uczNi77FtD8DPP9/7ujXkrC5LJoB7mni/AQ40ANqGmBDAh8TqPKc7qyU6zKVY/ebX6Chcs1rx33r8vxrANwH4+/zr/xuA38Z//Z/y34P/+Ycty7L413+4ruu0ruvPAvg0gF83xT/iP+riD7Pl6+08MWaY4s+Fs1pz12lQUDRACjiOYmHetONpH3LQlURu7dkjYJEkIoxgQMgTZ44BUU1E09JFEBGRJSpkBxiz2LEqTWb10EaIgUNRlhwNMNGn5Nz2ycVqGy5hctMgSySLp5L6HKC1uz+lKwlskp9JMBgNBoTIrA6dAkkswYBsLMwpbgyV6CM2gmzaJH8IA7Lzcwn12NUMb2wOm4DF2+dzPBadGfFUD48dnOXhVkwTrZOGjpznHk/xudXV5rirDXeomk7sZjPmdDjZ4PQUOPDZtTARqy1A7azOuBiu46z27ZGARSIGRMXCFl0Wdq3/nhHzAsn7IM9qMr9fynrsVLwqEch4h5YFPPNM/+cGwWDAItu4ICI7fJ9hQDpi9SZ16GgRcGe1AgNSVA68kJiNoELBmGw0dsNxBQbExFkNADa/J8U14JviZLHaZuzNrNw1M+RZTXeWi2qL1XmOqgLLGTBJxlU5qwVSgRqCp8geKRODfAhe166U+NzqKq6Ga+C552jdCt0SYvXZ2STM6gZl1hWrDQVFAOqOK6r7VSFW5znRzNI6rmtVKNLd8zVyVnPsWpL1r1+VFezeItyzvithjJclssqlc4XB2OVFJyQ6STmewCRgUYJteSQDFgG4bkew58+XqVgdhth1Vpvy8Pnftax6951Y11ilHh0DErr99Qx/f5HHmKa7We6sJq+9xEaIYozRFqttG7BtZqxWictFgUzmKm6fQ3sOLb6xrlFXivPJMqYZhYSclCFmtRgfCGiRfECDaJBDBJNnJunqzQr7Uqx+k2uvO8+yLMeyrI8BuAPgnwP4DICTuq7Fm+hVAE/yXz8J4BUA4H9+CuBq++uSv9P+Wf+FZVk/a1nWz969e1f7H/QfXZm0SQxhQAgtEq5dKfEPzeKJyBWWOkpNdqEHXEkmAYvS3VdeRUlszW1Y2HJnNdmN4Hms3Vd2H/BFpLbuIybMAwYs1vKt0S40wqxmzmrai0Ip+oiJs0PgFQ/dWwIxQ7hnHQcoZYxSk00bqJ0jRpNxqDEgm1VFF5KEs1qGAdnYWLgGzGqFg4q6KA0iG2npSe+tnZ9LqCdvFHhtfQRsNijyGnZdstvUwPV35ZqN+8mi76yeQqw+v9a4KV+/H+DJ+YmxsxqLBW5GZ3jjtoXPfAZ42wEP4aMqX0PsVwBxRmBW+7Y6YNGAealkVjdhq4R7Vjg0p3SO7BmwGG9qvY2mIEDo5kjWkglHXSPOHda9QUQNzdxMoIqb2mSOGbM6spgzTeKstqx6uk02mIe1NeJfywE9iVjdCYZthBQKq5mXJxG+GLPcsHvD95kLOC9QPzxhLtLZjJRfsD1ZPnZIAhYB0N2vihyHKfIBrj2/BAAWAPolX0I+zk45/L7kzuq48BHNDO4B32JO3R7KjBjsDgCuC9uqUWade76uUdQGIXhKsRpwLTNndejmiDe798F6Y5kzq7P+Z6NEN+1zqm7NjAzt99cEbGXXtXZRZjDHgDRmjl9LZ7WJu9zFrmAv5nEGnQuA3FnNfuAEm3ft8bAocJ6FWEYF6dr2cHb8XDeFb+Ssdu1Kim0xwYAozQwmIvhI9ooQanvTjW/+ZuDpp4Hv/u7dr3MB3LPL3kZY+5hpqRlYCGzzMRTzwyLO2RyZErBY2Gp3OR93LB2Wk9BLusiSukZeWiyw0mRucFlGtddIUdd1Wdf1VwB4CswN/aUXdUJ1Xf+1uq4/UNf1B65fv35RP+atU5Q2P97um0kmIOKYUqbRUI0gMEyEL8bqVe0+El8UfPJay9R16guocRVL/qxmO/6uRRM/mbNa8meGIZPKFr8sY24X3QWEQJYMrGmTjeYCymbc4LzjnhJV5DVZ9Bna2Sa1YQH7OasJn1ezaSOZ2Jgwq/1ghPdIbSUPHekCMt7UdKePYFZL7tnVxp4WAyLCbhwiBiSymbO6ex9M0KL+5FNgYvX5OV55KcHTIljQAC1ydM3FaRb1ndUGjjcAeO6pAp87v9oIX688mLHzNXUhzOd4YnaKW3ddJlYv77CvGzCrAQyI1a42vqZZjMi4wgYt6sqOEB7MQxKreTCNbPOS7AJvOq6Gv61pVd/32vo+IidHvJK/v+PCR+QTupiAbcBiR6yOU8eMWT23mbNawismtdMPhERPkTeQVe5WrC5LbAoP89BMrK67GBAxxpgIlRKxOkkto1A1UZFfISk9vP5LD3BzdmbMaxbdG1XWb/sGYOaslmzgNnMtA0Hp6q97O64Ea+ainUistoRYfX7ewk0ZMKsvKGDRG+DUGovVnXdCmlnanTs75XmInLzXdbaJDfBFnofQyZHm/evXoJsozmqv7odvlyVjK0+Bg2m9xNLcNsrIUOVOGHWvcPEvLzuCGjWAvVW+V+129E2EAekGBKfrggl0hhuCvcDZLMMqD7CY087XC52eu15siM3m9PBOJQaktuH6xDWSilktnL+US+v7gx2CyHOm73SF5cND4I/8EeCDH5QeM3RyJOfqY5KugzBOKpjVpDHGsnhnmCQvqHW+4ufvXcJZ3Z0fC3OjQ+hmvKzJSuvOq+v6BMBPAPgaAEeWZYk74SkAr/FfvwbgaQDgf34I4H7765K/c1mqIjJ9AqeQTkAAMFep7i7ZHu5X6qTRdWu1o5Qo/MFx4FhV3zXBj1vVFmv51DwmcxVLzqdpHSQIX6oWJH6uRU1MjxaOHBnbiS+gbV9f+HOsahADQllAKRmtYF9yiKKP7/UZdwAuTqw2CVj0FMKXeA7Izmo5BsSYWR05bMLQebtvNtz1ZtCWKhOr14lthgFRdW5QndVBp21SlIkwwevJpx28tjkCzs7wiz+X491XXjMWUnphNxM5q599qmRiNT/uK/fneHr+cBJn9eOzU7x6L8Tf+Ts1PnD8GfZ16mp3yFld10hyW5uD3Cx0JcdsOkIo45ai7b2ZOFPGLeFykfzzTTAgrq14d7WqEav3vbZhyBZPMmd1UTABlMpalzmr6xqb3GVho8T7VsWsTlc5W/RP1RECs042oOVU3RGrDQKqRHXF6jxnCCviYh9gTsILcVYDePJ4jc+eX8OP/4sK3/j4p8x41QDfbO13BlVpzgQGimtfmA4kzmo21zITlK49GeDqYx7wW38r8KXT+JCYuGwje8Cc1TWgP9dslaqLyzRgUY1qIAa78+MC6J1rktlGuAohLHed1Y1YbeSs7v9REtcM3USYxzXz7vb7S4S6m2xaSMTqi3JW56VNx7ZY1naTreMuN2EgA8A8YGN1Lyjb0HQQiEwTjp47vV+wbgvD3QXbqlGlu2K1SbeNG3l9ZzV/f5FPlZvxZGI1oOnQbZXj2WzOrTBLaeWGtc4VAGoV51Uwq3XCfHnXhiojRFwYLRwtsOVLD4nVhLWi76O/GdYu/s7RNnnKhPVGKzCcG12WUY3ezZZlXbcs64j/OgLwzQA+CSZai1Sc7wTwj/mv/wn/Pfif/3hd1zX/+u+yLCuwLOt5AC8C+JmJ/h3/8RalFUe1Q9Q6JslZbatFyqblmfBidxz5zrZAKlBdxa5docwlA4xw7xJcZEpXsWgdJLZnKxf8wlVLvAYMA6IQqwH9xRMP1CoHxOo0rrQn5UonIcza6ZmDTO2s9ikvoH0CFonM6lLJbjfgpimY1UauJDCxOq8dqVhtxFBUOatj1wwD0l2V8utKXZQ6occmoioMiImz+oUAr66O8Tf/1Qv4uf9Q431XXwHmc/LxAPTDbiZgiQLA4sjdWTy9ci/C04uHZoscAPA8PL5c4Qc/+hG868UCv+mJX2TX1DSgSoHviQsPoaf3PAw5q002cH1fHd5ZVHwRrVsDzuo8J4o+ouNqJGCR5KyWtLyLkzW6b4WzOm6N0VmGB+kcx7OU7J6JFg7iwu+NM6cPKxz5sf64NYoBMQzHLbvOanOx2hLM6hZeBICR81fprJ5ArP7Ql9zGv7r1In7s30b48JO/Momz2rfLHqOTuigHsBUUlWK1mbP62jXg6hMh8Ft+y2TOsdkM2BQ+fvcffyd++dN8k9Tgs2ryMdrPQlUhF2OhibNaJlYbYNekm0xVhbRwmIuQ2h3leYjcrCHsiNoktnknm4RZ3SBmKBgQjzPxe85qM1xFE2gsE6uNnNX9eXdRmofY9sRq4ag1cFbPwgrrItjpkEsMUUsAEM4dttnKd3FP7uY49GKzMVE4djet8ZCftxXQcFvezOuvZ/h6lrwh1u7ubTvhTcPSVd1RZcmwGh6tQy5wcqQrxaRLrG11Li/fCFOK1VSMldCiVGI18f2lDK4URVmDNUSCztdNDCKXNVnt8wQ+DuAnLMv6OIB/D+Cf13X9IwD+bwD+G8uyPg3GpP4b/Pv/BoCr/Ov/DYAfAIC6rj8B4P8L4JcB/FMA/9e6rg0BeV8EdVHO6krfWe3aJXIFJ4i1EdNbnssBRykVA+JaFYpsQKwmsaUV7vJGRKA5dYcCFsmTG/FSk90HVB6ZuK5Dzuq41ndW+4oNC5g7FKXtQjzd+EIwIMQ2P8dVXANTZ7WKyVeAPbNUR0rkSp3VcQw6+1UsniQL83XiYO4RHESKRHIjHjygnoiKXX0TZ/XbI/yz196F3/ePfyt+5J8H+MprX5jI9VdsFw6moTSigoCJoGt2fV95MMfT8wfmwg+AJ66m8O0CP/T7b7EvhCFdUPE81m2TyKzFOUNLaJ4yY1YrOkIMNnCV41YjpFCd1QVyyfy+yGvawnxfDIhw/2kwqyM3Q7yWvL8FA9fUWZ20/q15jvvJAlcPRlT3gfIil22MdsbD0wclc6gRNoYBTL4RArScqi2xel0E5s5q22LTw65YbSJUShamccr58oYYkA+9+wF+5PPvwc9+aon3XZ1gjFUgO+JVqc3D3zmmglmdGAiKoh5/HHjiCfJfl9ZsbmGdB/jYywf4+KdCY/e3FAPSON6IBxXs066QYjLnBuScXiEoegbPl+sidArEye55GTmrHYfdr4XTQ/AlcW2OAekyqwvPKL/T8yXO6twxC1gMnP6Gc10zHro1gVjduWeL2tZzvXZqHlXMHNAyHSSGjnUACJberrNavLdMPjDfZ+/x9qaz+OyI2RBe5LLPq4MBsQD6OGhZ8JyqnxNC1QpEDYS4ZpVLc1aLNdJaLSxLMSBDNSZWUzedHUedmwWhFeh3bzQmtF8LDIh4z1ADdy9rkhr9JOu6/jiA90m+/jIYv7r79QTA/0FxrP8BwP+gf5pfvFVlhEGYT5izQvFCpMDyLQuug+1LvTMIFCU96MRxeJiUzPlo4Cp2VGI1dbe04TVbTLBviyYmSIEGLyL5MzG5McCAnKdR/3zznPZyH3HYA3y3lNBOr3RWC2Y1RfRRvdRMgjNEG1ZRoncVBAaE0PbMNm3kTt1JAhbzeOfreVoZJRyHc4cxWrvO6tjSxik0JUSqpP+MrRIXCy/Rd+yqWMXc5bKYWKxu7gsDIeXxt8/x0ukSH7zxMl569Rk887UPgOjp8b84VL6Pq+EKD849PAEARYE78RLXD2RQe42KIjwxP8Hrtyw8B+DW2QyPTcF/BfAbv+IO3h/9RXh3fgf7gmFLqsddj70zE25dzVO2fRfVAL6IuoEbBJCPW8070YRZ3R+7GyQQEQOSqzbGeW1iSw/bEAQInaLHZxUnS/msmmrE6tb4lOcMDRbQBTXLZ7zinlh9UuNgYmd1M98ycFaftZnVImDRUKx2XTDsx5RitVsjT2XOajqnVtS73lHg5+49g7/wn/wzOHY9kVjdR3bE60qbh9+U67IW7aT/R3EMJtQZiNXPPAP88A+T/7q0Zgsbd5MlPntvgZ/4uUM8t3zd6B7wQxt5ZQNF612V50YByUpntWFGCPuMy57zk4nVBv4s7qyOd6dx2KQO5pSOMwCwLIYzEwzkljB5IRiQypRZbSHPO2J1Zk+PAanr7XqOuDnejFs9DIgNN6CPW7Owwvq8K1ZP4KxeeEhKAJs1AOD0pGJitck8zvMQOonEWe2SxWoVBqQGjN4HrltvUZTdjWKqs3pQrHbgU/YBhBlR5awuCmSVDz/UxIA4hRy7BvB7zSflBQ11+VOd1Y2ZYyBkEgABA1L2u3pNkKGXNVnRt/cu69ek8rTSDzngA4TSWc2ZRrrJrqPuVyKqQemsFiIdkVnt2qUcAyKc4brnallwHRak2AsCFI43qlgtSyLmxyW7PGwbvluxdrzO+dZpps90EueqcpfzouyWDjKrDRbmfiBpHwWMmdWuNYyYaQKGdA476Kw2CFiM5EGIjWOdeOBg7rJFjspZTVk82TYOwgxnWdCbiKwSjgHRdXqI0KtU4qyuDdiUCrGaNGZ3KpzZuBat8P/6+r+N7/qmL7D1kikGxHFwNdzg/iZk95jgJxq4fAAAyyVuRme4fZv9tiy5SDuBWO09cZ0J35/4BPvC0ZHBwTiTLpZMyLmYoH3KQ6iG0iY7s3wfSEtvWma1bTOXi+R90CCBCGK1lrN63zEhCBA5GWKZWC2c1dSOAN/H3Nt1Vtepmdtr5+92xq3z0woHXjJpwGJe0F37AAuHTSQYENMuizCometvSrHa7/OKG2e1IQbEWi7wyW//v+N33fhx9oUJMCAyjFW8qekbuCJ7ROKsPl/ZOPAT4+tgmoXbrdnSwX+4+wxevPoAP/GxIzy/vG90bb3A7s9hGsOBoVjdDVg06egEtqFyPWe1a5YPwZ3VSgwIdR7XFqvbx92AfM82THwZBsRE+/QtFHWrI6SqkJYOQrcgi8rSgMWiMOOWYwQDYsDwn8/qXWY1z6AyEcABIFj6OxgQtslKMIfsHDToOauLTQbHqsjvWif0WBB9ZzMIgNE46Lry7g0A5hgQScAiw4AQjilc0BvFWCKY1TooSnFMlVhNdVaLObdCrI7XFek9Ln0ftIuCAfF9Jqx3M75M3zOXNUlditWPeKVxxXa3dR463tqVKZAdKApSsuuQ+9WEoej4jtJZTU7MFS5oBQcaADEMEvK2byEokgMW1RgQk0COwK/ZRLQrqMUFfLsktSY7doWimhYD4vpyVAVgthHih7Y8iEFwvSgvIIFtGULMUO4t35Yzq7kbw3GJDg8Vs1qEqhEneFbIReOuszq1ETlEDAiAg1mJsyxCd8W/Tl22KCM4q0NZQJVwwVPbfRViUpyYMRRF/dPv+Dt479VX8ed+y79kXzB1/VkWrswSPEjmrFVwUxg565s6OMDN6By379o4uVdg6Sbs/jcR/kTduMH+/7GPsf+b9KuLgMFEMiHPMlSUwFkxxnUXI3XNN9lMxi05a58F+Wofkh1XETjbYEB07wXbZmNhZfU3cFulzVUNAuYmjSV/ludMWKWKHo7DnNW515zz6qTAwiO6E0XJ2v8BnK+ApZeQ3rU1MLCBS2dWLxbAeRbuCB6loeMPAK4f5biXLCAUtSYEysRVKzace5xac2c1Dg9xFMTbe3cKZ7VEWI7XlXmOg6Qj4nTlMPejyX17ATU/dPEzd5/DR972Cbz0+gLPL++xm45Y0jkMF/5MMCAXwqyWdXIVBZLCMMzY89gGXrr7zG9Sh35vAQhCSxoUvd5YzLFNwYAI52NHqE0KD2FIdwA364Q2r1lkTVAd0KGjFpUN9oBUAYtlbcPx6NLLLKoZs7rlrAYAi/wgsFoeu1jlQUushnnAYhQhcnLEq+01WJ/ydy11fij+Xut90HQzGuKmemHZU2FAZBjK0qURVnyfvWM2amFZm999UcxqEbB4ARgQ2TxWVJnksK1a73yFua/oo2CM3jOXNUlditWPeKVJrd/mZ1ncmaVISyW+3JowKckAwficNOHD9fhuubLl2QADohCAARicq5qvTWdWD2NAqIJa4FXS+yBelbQJrutyZrV66EgSaLflNa79iRfmQxiQrHTpPHR7Yh46WHJ0j5kG8PBO+j2gYlZnuWUkVjeTxo6ovIkNAn8AHC5KnHbF6rpGVYG1ahOc1aErcSIUhVm774BYrYU8UNT7v5S1YzaWZVMhBcDVeYL76QJIU9y6BTw+OzU+TywWzFn9wMO/+YkMX3PzZeaimyKs6+ZN9n/xzjERqwUGQxb2kufMDTcVqqGumTPLpi2ig2CIWU1vffd8OV4kF8gS3XHLsraOJBnDn1ecao4Jvs8WuRL0gXAlBVTRw7Iwi3bdafdul7genpuJfpJFNACcn4EmhLsubKvud4TAnFm9PLCwKoJGVJ4iFBYAblwtcSdeNsfNUsL8tVNel68NIM4ctiFqOnY93UErTcWs7jirN+uazqwWbd8SWtPZysaB9+iJ1bOjAD9560V8y42fR+AWeG5536gziGFA+q7H1MStLJzVRWccMTHJAIDvw7Gr3eeWIzBIjFpRYh6TdpjVQqymOqtDS9oht16DZYRMhQERaxmDDbFmLBDnKhAYBpsAzbpWxpY2cVaLkMmOWF3XlpGwPJ8D67azWpy34dh99TEP99P5lll9Zk0iVs+9FOvV9jqenfBOIwOx2rLqHR2iQRoaOaslOFID8xGAQQxIWrm0SyDeBypmNaWbib+3htza4vu0ynGGMSAEYxsg1vUKfQtAllQkhFHD2pduil46q9/MuhSrH/FK4woBQfhgzEsF04fYmskERYmYBrPFE2vzlLuVawC2R3gJj6Aa6toycFYrUA01HSshdXjw41a1RbsGAIJAMvgC2Kwq2uKJo1DKWu2ka8RqirN6KGCRyqwewoCYhHdO7doXGyGSIMDShFkdudJd6DTjoip1kqsQZ1iLNj306WBe4iwLd8XqogDAd8oJAYuhI2F+ilZP6jpfIVYnqTVJizoOD9n/33iD/X8Ksfogx/2ELUhee7XGU/OHZosRAPA8PHYY4431Aj/14zm+4fFPTYIAAbB1Vot6/HH6sUSASiIZt8SzQQ3BUwUhEkVlP+BuN8l7hpyNAMAXYXXdLovCJrvsPbdWbjSK0nb/hSEiN0ccSwRpfu4WqYeWVVesvnunxvXo/GIwIOfcWU1poZUFwMEMMQMAy0N7x1ldZQUTAAwFj+vXatxNlo3gEW9qI54sAHiB0xOrk9whh7/t1JNP7l5DE8wQwFqJHf6Ztboa4xhmzGqnL1ICwNnGZYKS6XWYuGZLB6f5HB+6+St47vDE3FkdOv15nKlQKTptpBgQejcjfB+uVe128EzmrM77zurMNXNWBxw51V0jJDaZhc0wIG5PAAZgNMZ4XWc1vwcCg+BKN3D67y9TIwPU3G4ARtdgPu9gQAo+dhuOAQfXA2YSEc7qc9ucWR0EOA5iPDx3m/Xi3Ts1roUr+rvW83qYnc2qMtqwARSd46Z4kTFnNTFgcQwDAkDvnMV7S4bIg0GHFOdA99AavJKEJlZ7gS1f1/PK0pqhGDWfM9YR0u/gSQrPbKPxsozrUqx+xKtxVmsOEvs4q3WP6fr2gPuV6MyC2NnvT5aMeFEXhWoQgqLUBU5nVksdHoAxM8v3Lel90LzcKWK12IFWOOmSBNoLScaikzOry9IAA6LgNRuL1XaJIpX8+w2c1V4omTQD24kzkXPXtDl2ni/TYBrG+Cp7O/ymbamHy6rvrBZKM6VvjjM/e5M7nshtIlbbVo0y270PGAZkghb142P2f/Fvn0CsvnJU4UE6B9ZrvPZqjSfnJ5Mc9+a1Erc3B/g3P23j19/8zCTHZAe+uft7U7HaKZCncrHasurpuMImWCi0Ntkk70STDRbPlzu285y+2TyEBxOl7f4TCzIJ+qC5JgZuUiZWb+ccd98ocT1cGQd42laFMumI1SsLS5/GrA6cAmncuYe4a9+1K3L3wvLQxnm+3RC8/8DC1WBtLlZft5izmgse8aY22xAF4AlXbdtZndrGx2UH93Y/l3e+0+x4to3AKZEWu1z4OKbzf1mwXl+kBIDTtcu4so+Ys3q5BH7fB34Brl3hh977j5izegoMSEf4iwsPYWDmrJYxSo0wIILjn1Xbe0Dwmk32hR2Hj4m7eMdGrJ7aWR3bmHt0DIiS/2u0ccW7D9sYEENnteVJcEsCEUcN7wR7JGXXwHRTcDa3sc5bGJAJrisA2IsZE4H52P35uzMc+Ruzd6Jl4eo8YXNOPo+9c9fCDZONYYlJJk4sY7G64aF3hMq6tujHVTGrRcCiTghic6KefF4giqLvCFyHzMgBIItLhg0lzGGkHGheScy1As3j2r4akQYIk6e+biY1eRYF4tLDfHYpVr+ZdSlWP+KVpmDtDLoPnYJDBoAsVjueAgPS8DnpLc9SYd1kJ9514Vj1xbhflc5qGy7FWS3YeTKx2rANKQhqaXiKCUOxcSIoeFENT3JKZjWVh+7ZyvBOMrNaoFAmvrcaTq2CWe0SnT5u6PavbVUhKXgwDbXFzfex9BKcn+9+Oc64MEVlVh9aOMs7zmrxa8rE2fel7bNioUMOFVMEX00V/oW3vW339xMIwNevVribLIDVCq++bjNn9QQu6Js3anxudRXppmQM2Kmc1WEIPP88+/WVK1u3OaUEBkQ2IRcLnwnF6rxyaFgoDDCrTR3bsgU0zLpXGOtRvtEoapNpbmCJYCaJQDeFk2wW1WzB33VWm9y3vs8C0DqbYquNhSWF0SkWpV3WvgiAc+hi9eLI3RGrb9+1cTM6M8eAPGaz8YULHkkCOv6CV89ZXdfMWT2FWA1sx5TlchLOfuBVvbm3Ueiw6yJyMoWz2sHBI+is/i//S+CP/rZfBAD8rrf/LJu/mWBAIge5REhiQiXx/W1Z8JySdXW2uwSFOYCKq+DdhzsGgQlwFbAsREGFuPS3Y21VYZN7mHn0ZyGYOex+7Yzf69jGnHjPss3WPgcagNEz64qxoOUqTksXYWAgJMk6BCc4bhMMK3NWGzyv8zmYs7rDrDYeC8W7b7PB//q/ss//a26+bNx5d+WgYGI177a5e89iyC1DsbpOs2bThoWBGjqrJRiQMivh2JW5WC0xIKWlZ4YBGWBW7/zsfcr3Wc7ZgFhN6fCH6zLHttJZDaYVEI4LYNhZTcGACGxo5z2zKXzMQoOx+7KM61KsfsTLxFmtbJMgisBN262MqSsW5hSxWuzsq5zVRLHat4t+ix+AqqjIu9uuCzmuoiy314BwUGkqOWAc8BD4kLKdNuua3Jbq+I6SXQ6wNaVua0+DmFExq6ktz67LdsYl91Zm6qwe4qETxWpph0ETiEq7ByzPZeEj7eNOEEwD38eBH/fE6k3mGAkUjbO6tXjIzhLm/KQ4q1UBi0WBhBpyAmwnjZ3jJimmcVa/+OLu7w8OzI4HRtW4Ey+Zs/q2O5mz+rHHLfzYa1+KDz79OvvCVGI1AHzf9wHf+73sPxMOtmj7ljirq6xgzwiVWa3IMKBy7hqmpcqxTUUCifbsHgbEImNAlJkTrdqkmu6/IGDCr0ysnsBZvZxXbEOsLVaHK2OxOnIzxOvd++t8ZdMwIIrNMFMUDAAsjxyc58FWrL7n4ObszFj0vP6Eh7ttZ7XAX5g43gTGqiVWx4WHyMvpG63t+r2/l22I/YE/YH4siFBrrydWRw7xncg3W6XO6o3HWvXJL7GLqfkc8K51NhZNnNUzrxeyabzZbFnwHHkInlHwMjgaqbY7uArXmLgVBRWS9lopz3GWh1hGBfndGIQWksKTO6uJAYsXhgEJJAGLppsA4t8ncVOGvjqHYfRcfUkI3AQu6NnC3mFWV7l5uCA78Ixxi89z/IN/APyZb/z/wXfK6cXqBw6uRwYYENvG0k+xyvzmem42MMeA+P0Q16YzyBADUhdyZzU1YDF0ciSxYtyjoEuGEHlgDGi6s3oAA5JaJAyI9JltVZqC6WYkDEhnfswDvWfRpbP6zaxLsfoRr+ahI7QzKDEgVA7TAH/JZPEURLYclm/yYucCsIz32PC1CZM75qxWhOBVxNZB31czq00xIIECA7KhO32aTYtBZ7XeC8j2HOaAHgpYJG5aAFA6q0lcQsGsnjhgsUGWSFv/DRZPsnT6KSb5vo+ll+J8tXte68xjjhwTZ3UWoQ2ZXp/k7JiUibPnMeGry6wWAU1U94zrInDyXvBVnNjThH9F0fYaXrkCPPOM2fEA3Hzcxu34AFiv8enXIrxwcG8SYXlxPYJt1fiGm7/KvjClWO26wDveAVy7ZnYcjgGRhb0kq4KNWVMxq8uSByHSW9TFcXaqSSYnOqtl7dloYUBMNnBVYnVd63NVgwCRkyHO+udT5+butMODegc1dPc+d3sZO6v7i8jzjUNmVkuD9Qzd9QAQHvhISm9XrI7OzZ3VT3q4Ey/x+TfYKrzBX5iI1WHHWT2FS7VdL7wA/MAP9MMWiRX4VQ+rsEksdh0o70QRNioRq89izyys7CJLYKwAdu8bnGNvwwLY3gcm7len6ovV3BzghQYOYLeWOIDNuaehXyEuWs7qosDDdIbjhXwuvk81zurOvHOdOCxgkfC5+YHEVTyBWB3MbDZudTcBpnBWy8wcBp+Xylld15YZs/rA2WFWNyF1Ezirr4Yr3Lnv4LXXajwb3m6+blJXjiqWkyIwIPcd3IjOjMaDK1HMBHD+mTUBzgbvGd/vIyDY+8ugM8h14VgVyrQ/P0xLF35AWNONYUB4iKfWOfO5cW9jnFcWl4wBTXFWCwxI3T82WawW3z8QsOgTAjeb4MZOl8Wm8CcjG14WrS7F6ke8yGJ1ZMuFL4AuAqt2sxpeM53PKXVWm7Q3CT6pxK1ssjBXspUbcYIwufE8uAMBiyaTG9WmhQkGRCp+tipJLXbPahxb6SQ0RMwMiUlmzOpq8s2FZhNAxqw2SVF3Od+rs1uclNxZTa0gYBiQdevfWpZY5z7mPt315i0C9oy1FqZ3bxVMTDJwVqswIGTjiHBWd8XqzGHCxBQt6t/1XcDb3w78oT9k5irmdfUxD/eTBbBe4/N3IzyzeDCNsLxc4rHoDF+/+Hn2+0dxZicwIJINzHhV0tpIVeOL2Lyk3gJDIjh1UxQimKazgK5rhgGxaBuCQ10xAFireuEj8jSQQ0GAyM2R5P3vz+OCvb8NnNWLYw+rPATWawDAZ14N8bzpxo0QFTddsdrAWS3rCOGblx51IwSAFQbMjSfE6vsuHotOzZ3VTwX493efw2/4W98NQPD7J3ZWc1ZxZPLuusAKJHkxcWLTRQ/H4c9Cv6PvLPaZs/pRF6sNXNUA4M89tp7piAimQqXnSZzVPHiZmhECAK7DQ2d3HMAuwsjsHR6FNRNrW85qUxa2Gzgo2xxoXuvEYc5qiljto4e0m2KT8fiKjZN2190U4Wee1+885BshEZWHjpYLvHXcupiAWb2wsS62zOokrqcJm3UcXIkS/ItXvxTv/4qycUIbO6uP611n9YnHuphMxOoZ52Dz+2ATW8YdPGGI3a4FTNAZxIXl3pyzKFDWxDFG0dHZPjYAvXvM8xBchLPasuC7FROAJRlXCaELG8AoBoQRCfSP2+CLOhtMl87qN78uxepHvJqHTpcv7audquRJg2o3iwu1HtVZrWCmGfG9RPuJxEXXtDxTmNUu1Mxqk4BFp0ZRWVIHMAA6s1qwy7vO6tgyCvwBoBarKcF9Kge0aZjUiFhNmi/tgwExcYGrnNXUxZPsuRVCraEjZeklON+0/q15jlUeYDEzc2wD2Fk83Xq9xmOzM9rE2WFs7iR3emzKpDC4BqJNvyNWGwdXtuv97we+//sZv2OCspdzVLWF9CSGbxWwrXoaYfngAP/8N/9FPGZN48a5kPI8hgGRDFvxumLolkmd1Qbu16HgxpqOAZG5h5qNO4eWCzAasEhpo/R9uHaFouyP+fG6Ml6Y2gdcPOMMo8/dDvHc4r7ZfRsEjI2/3n2HnccuFkRmtW+XUme1KQYEvs82MLsYEEPR8+qTIT51egNvrA9QlxVi4Sg2cbzN3F230xTvrgus5hlrB4AJ5x9lvmVZCEMwVnFn8DpNAhaw+CiK1VeubH9twKsGAHfm74q/AN+08I20NN+t+7hELiTZvsEGi+Df7jiAze/ZMGAInB6v2CRg0/eZgNp1VqcuC1gk3Fte6LDr2prP51nNBC8Dofb4ioWH6WzasUDReRgbHtcP+yiULAPJ8dmu+aHLnNV87Gbc32nmm1eXGf7J59+Lr//KDTtv2zY+7pUrwIN0thWrTz268UQcc57uOKs3sXnAYhhxHI7MWW3ArPbtsu+CNukaFx1c3U5RXnWW62d6eB58R66XACyw0Cdkp/HT7QvAvJLUJgUsjmFAmudMFwMSqp3V0czcLHRZ9LoUqx/xogYsDgmKeVIysZaKAZlSqMUws5qcxCtaviUuujyrjfic0oW5WEDSN2D7fDN+XMuqjTAgPQYTgI0I/KEscvYVq3VeQGPizNQOxYrt9lIxIJ5KrBbPBkVYV11XIXxRxWpXwqwWriQDJh98H0u/I1ZnGdsEiAxcxWIS25qN3bpV4/HZKW2Ca1kI/bLnmhALSGNm9UU6q6eu+Ry2VeNXP+PixSv32NemEJaffpohRUQ9omI1c1b3N1KSTUVzPorv787yDdFYQ/gik3ettD27KIzQIspuI1F5jrj0tMVqAKgr7G4wgYvVhqF9WC6ZWLtaIc8Bu67g2LXZfTubIXJybM77YjXdWa3AgBjcAwC2m35dDIjhxpXj2bgWrfHM4gHO7iS4fRqylm+TgMXQYSF44n3AhSQT1+NFlizUOk648494HaKQi5Ttcaausc495n41eRYuqtoBwa+9ZnQoK+CbKz1mtRkH2nMlGBC+7mi6/QjVoJG6YrUps7rjrK4zItKxXYp55zp1yTg3GW5qClzFlevOjqO2CUI0ua6yd7ipkQFAENq9cSBNzK9BdBwysboVYjtV2OyV4xo/9vqX4oNPvMJ/WGTc0Xd81WafGR+/754GZsxqCLF6u2nBQs3NBPsowm7XAlrjtpGzOu/rECZInCZ4Wf7+K9KSdcnpvBN8f5RZrdstvT10Lce8gn1uFxGwSM56CyREgjxHVdtwiJlRlzVNXYrVj3iluU166IYe5iytzI4pw4AYuMiaNk+Js5rcMjUA9m+c1RRmtQhhkAn2JtdAFsbBjwuAjgGJbKWz+sIwIJmt35Y2wEM3QcyMYkAMmNW5RKyuiooJw1M6q3lbKvllqXJWGzL5GmZ17Gx5ZHmuz0vrVhjCsSoUm5az+g2bidXEVUno1z3XROPKobbmKpiycTYRs/oiaj7HlWCNf/PJY7zr+A32tSmE5eee273nH1EMiG8XyLriHzgGxICd14gGogSqgfoYqMZDwaymjFvgGBCJWF1UNh3L6FnM9agSq7mgoMVntKztxlRnI8A49AgAlksAQH2+wqc/Dbz96gP2dZNnIYpwHGzw8MzZ4TOuE5exX6nM6qxz3fgGLnVzAQBzrlsV8ph9ZrcfuLgZnU3y3P7Y7/4b+MprX8Ctz6V45eECT88fmgWKHXo7jNZGSJqKWT1xNSJV68XQbGBSxWohpLSfBf4us3xvEkTU5OV5wFd9Ffv1299udixJt1WDaqAGLIIFIfbWHmKOYCD+NQJNywGdFAZzDV5hiB1nNfm9tXuy7P/tuVFdc7GathHih33RJ0ktY1zF8TXnQpzVPUyeaXgn5CasBpFocG85B6w7TiCsXn8Qso3GCeabVx7zYaHGl9S/wr5gursCIDgImGEqjvH93w+sEoddAxOxepnjQdLCgCTmzOowstgY295gSQ07g4SzWoLyAmAgVudIFc5qEhbGdRmzWjI3BjgGhKIZAfC9PhKoOVeKsY2fLwA1szoDSVz3Q7tv7jPp8L+syepSrH7Ei8qsHgLQZ0lNa+kYwoAYuIobB0NHpGsSdE0CFmUYEENmtVKsrhy4xDmj53ecGKIMMSDN5LbLrDYUq+vaUovVucN2SzUDHgAonNU2XHvidnpDZrVnl8gl91ZRgPG1KZ/XyPPleIYYEAmz2oj15zhYBhnO0nB7n4qfYbh4OvATnJ1uz+3WHcdQrK56rokmYJG6gHScvphU1+z+f1Sd1YsFbkTn+NFPPI0vP2y5Z0zL83bH6S//cvNjTl2+v91c6IS9rFZgLc+6963vM+dM3HkfCO4pdX472Gliw6UGLAaSTdGiwLoIMAsUYvPYqYoN3AFnNdBi8u99shKBClysNhD+AACLBeNL39/gk58E3nnlDvu6ybPgOLg2j1mYVGvVV9c1w+0QmdUyV5axszoIsPQTrM7ZMd54GODGBM5qAHj3c+d4bHaGN17JmVi9eGg0Fh4c2SxwV1zTR91ZHXGxWjBfAWxSh21gEgWaMLL6zmrx60cRASLqO78T+B2/A/iO7zA7ju8zE4BErDYRgD3hgO44qy3K89qq5azEeR7uOoArF0FoJlbP5tbOxs3DeyWOg800zurOtV0XAeYhbS7rzbxeO33TJWwwFhxdc/Gw46w2dqzLxPqiYBgQg+M2RiGZs9rk8xJIHS5W/8rrB3jn0a1pMCBPhvjA9c/DfvnT7AtTzA35MdYPM/z5Pw/EKf/8DdBAV5b5LgZkIrE67mJAEmIAoCgVs9oEA6IKjOdF4mz7PmNWKzAgWVrTmNUQGBC5szrJiFkOwiSSy+ecaWYxjUsbAyJxVk+BWros47oUqx/xSjP9sDoAg0yfZuCZCgPShD4RF08KkS5PKzrjjLvoZHqqCbO6Cc1QOICp3G7PuxhntRe5fdYfgE3K3Z8X4azOHf0X/ICTsDBpp3ccWFaNKlMwqylpzI1Y3T+nIqcjZoac1ZZV09tShXOk10Jr3pa6jAqc58H22DnnpZksoIMAh16Ms5OtGHHrnkfHgAAI/LovVpsuIEUAWlusrirEhY/ILR5Nt9tshpvRGX785WfxTdd/sfnaJPWN38j+/1VfBRwcTHPMKctxsAhyrDK/9w47PweWRK5w6BRI4n6AjglbWowfvcm4GA9dA2e1hNH6MJ3heC4fz0ePORawSJ3sS3BAAOt+NuJIAsByiUM/xt/9qSfw/d8PfPjpT7GvGy7Orx7muJcsdoRKq65ox+ahR2m3O0wgZkzWTmHIumJWQLIu4Vv5dPz62QyPz05x65Ucr5wu8fT8gdFC7/Cai9Ms2t4HE/F/L6qCuctEqtY9EOcO3RwAIJpZiDvO6jrh4r0B+/XCy/OA3/SbgJs3zY7jSzAgE7iVpc7qojAKNQeAo0XJ7tmWA7iqLdie2Qb2/MBh4Xr83nr4oMZxsDYTUmTz+SzDuvDJeqI/64SigjurDYVaJ/KZq3hHrHbNHgFZwKLoPDSYH4eRxFmdmTuru2L1J28d4p3Hb0wiVr/4ngj/6bO/ALz8MvuC6XMLAFEEy6rxqc96+LZvA/7I1/4Y+7pB6OqVg2IHB3OeeFh4yTTO6i4GxNhZLXEsU0IQRQlntUJYZpv5mvOjEWY104wMmNUqZzXF2AY0ZsQiUYjVRJOnHzl9Z3Wes3fPpbP6Ta1LsfoRLyZWE1x6wv0qdVbzlg7dYw6IabnBAlp1XKPgCMdhg29u9Vx0jbOaGCYl5XPWtZE44QaOVKxu3OVEZ3Uzi+u8LTexbcSslgWyAACqCmnBAu20zlnFaOV8TvLcToSqdTm1ZYmsJDKrxYtSggEpCjBe2MTOagD0CW6HTyp+BmNWm7nTlrMS59nWQVQlGZv4G2JADvwEp6fbL92675k5qwOJWM0XkBYViC7EpLZYXRSIi0fX9Sec1d/85C9jYa3ZPTWVY+A3/2bgu78b+K7vmuZ4F1CLqMQqD3rj4fnawoEXk5zVoZMj3ijcrx4dMePLNsSEUEkNWAzt/nsmZy6l47lipTJS+zqrKWK1ZdWoO6uyeFMbCX8AgMUCh36Mn/jkY/hTfwr49denEauvHRa4n853hMq6JIrVglmd2btzmKJAUdvwqPcWANg2Fnzs/pWf2+BLr9xlXzcMwgMARBETq1+vcetsYTRuA8Dyit9zqT5I5zgibq5cdPkzF2npbe+BskSce4h8erhcNLN6GJD4NKPP4d5q1Xa/imeBb7ibuJX9oM9WJgfQt+pwUeIkjfpBiIaCBxOr/a1Yfb+azlndEatNske8uc9En9b9miQw7zgT90GryyI1vAeUzOrSM8vbjeweViJN+Xre5PPyfQBcsM9z/MobR/jSo2nE6vd/0yH+wLt/fPuFxx4zPibCEId+jH//K0u8973Ad73wU+zrHMVFqSuH5Q6z+tbZnL1nTJjVc4lYnRoi/fg7vCcCG2JAQqdAmsrveZJuIhB5qoDFFPCdC3BW50QMiMifUTC21wltc7gJWGzdA8374NJZ/abWpVj9iFeaW7SAxSFmtUhKpYZJyVzFJgxFxXGNGGeWBd+tpGB/E2e15fNdeBVbmWp+VTCry6Kmi5+AupU6M2ibGnJWc7xEGELPWaraCOH3lmsTxT/HYUGbkslCDdCcLp4H15Yzq/PcDANiAajS/jUAQJ8wBQFsq0YVtwS6qZzVi3pHSIjPcvMFtO8z9uvp9ho+OPNwJViTXWRhiH7Aoul1bWNAOgvoR5WnCt/Hb3zbZ/CH3/uj7PcTBOg0FQTABz/4SDsQlrMSqyLojYfnKxtLnxCC53mI3KzvrG7cr3TEjO8UfdYh37wjd6UqmNUP0xmuLGhi9T4BiwD074sgYB0sq92NhdOVjQNDFxWWSxz4MX7p1lU88wyasCpjZ/VxxZzV/HhlycIbAei7li0LgVcxd14nb8AEOSZqOWdj9yd+LsWXHb1GO0dZzWZ4LDrFG7dqVFXN1uMGx7WjgDmbWgLVeRbiYPFojrHBwkNWOtt7Ks9xmkU4mNEwOwAQzmzEbW43gNMHJXsOvhjEasuCJd5TLQGYPIfj5Xl9cSKJCc7ETh0tS5xks50NFgDmYvWhyzZbeZfBw3sljv2N2XPr+7CtGmWyK1aLP6OUHXYc0GDGK+MgwDBk57pJ2ZxL3AO+wXUV3Zdlve1k5agho4DFmSNlVoemzmrLguVY7PpuNnj9ZIYnZifTjN3Xru2e2xRidRThy49fx9/+t8/hHW8r2b1r20bvWiZWb53Vt84XxmJ1OHN6awTj4EbBgu7mTkzArE4UYjUJA+J58vPklaU1eZPFDyx5wGJdI8ldmiGRs8B7JjRem9RhvH1dDEjksvlxa9zKk5JGIrisSetSrH7EK81sGgaEu197wU9gAw8JVaBCNQg+J3VhrhDWTVOOfa/u84fQEquJLwp2EEXIJFWsDmwprsOIgQyondUpD/whOqsByMVqKkNO5aw23AQQbVi9HViTyQJ3VuddDhmAojS4t/jEpuemNG1LDUN2vvFuiFBausat1AeLakesXj3MGfvXpC8zCHAjOsPtB60xr66Ypkp1VodgbrcOBoQchgkAto3AZdzrZpHDWYeRXw7/3TerLAvv+3UePnjjc+z3j2IQ4gXWotMJIOp8bTEMCOE9GzpF31nduF+JJ+q6jCHYHWMM3zOMyafAgCzpzOqhgMUyyWndFkGA0MmRnO++Z85WNg59ggu+XcslDv0Ev3z/Bp5+omT3QzvUkVjXrta438KArB7mWLgxe78RzlcqVue5WScbr+USTKz+pRpftvwC++IUzuo5c7l95mXuSosi+vwFAIKAvf/4HCaLS/aOfUQXj8HC28WAZBnuJQtcWyrSq/aoaG4zIaU1bj28V7IN3C8GsRpALcTqCQXgBuvXuq6bxMbcVKw+rHYxIBOJ1d4yRFnbW7FaOKtNNtlEh9imNWcx5aH7Puu+bDurJwgXhOviKIxxmvDuqLI0RrbAsuA7Fdtgagdilh6imYFrX/KuTXOLlkHVqVlQIS48rO5sENkpmxtPMZdzHOCd79z+/vHHzY955Qr+s7f9LH7y00/iHU8ydAkWCyOTxJUrYGI1fye8vlriCWOxuu+EZ8G4hs5qyTyuzCs4VkUXq7sdna0ioUv4MSVyEYAJmNUyxKno7g1q/XuBr5V782Ne68Rhoda6GJCZ29tg2mxgzEO/LPO6FKsf8Upzm/ZyE6iCtC+axDGR+ei6bFc7lTmrDQRFhfjZMM6oYrWi/cTEWT0oVhu0Z3si+Kp7rlnNXMXUyZhYfPeY1a5RwCI7OZWzmiCCDgQhGt1bfAd26jYszy7l//zMwAnPW7HSeFdYz7PabHEuHIpx0XcAG6bTHy1Lls7OJ43r04LtaBvB/li6+Z0TtlA6PwdbPALkCXnjrO60egIwWuj0xCTOOjRJkb/wev757a+Pjt6003gzajGrmbO6hwFxsPRozurQyfthNwIzRNVTRUeIZJOtMHBse6EEN1UUeJjNcLwgMqtlbu1WxauS9q7xfURujvhs97xOzx0mVhu2vh9GGaraws3ghH1tgi6Dq1ex46w+eSPBkR+Tjx34dS+kS4zdpqih5YGFVR7goz/n4SsPP8PeWVPwj4+O8MziAX7hM3M8u3hgxCYF0Ntw//wXLDy7vP9oBtiCi9XtgEW+ueCFBu+ZmdPbbH1wr8KV8ItHrMavkVi93vDwcYP76/AAOOkwq402xkWJedUOs3oCsdqZWKzubDABLVexoehzZZ4xoXKzQZEUjLVv6lj3c8YCb4nVaenSMm142UE/iD7NbHN3OYDHj2K8tj7CP/vRGt/0+K+wL05lPPiqr9r++sYN8+PduIGvufkyvuzK63j7jTP2NcN3wuKKz0wHnNt9lgZs/mYiVs+dXvdKnDnMpWwQsOg7ZU9YThNibhg/Zujm/SwLXiQ2fMOsVjirM5CZ1Z5vMR2ma0Rrd2HrljChdYPNea2Fs5ogVneDYTer6lKsfgTqUqx+xCvNbVKqqRDpdiYgvOLEoj18IrSw23ohmNWGzupumJTp5MbzIEVrmDCrh8VqE2e105s0A2w+Tj5XAPB9OHa12+IHYJ26bDAnitXdSVhT/AWkzZBTBYqVJUpDZ/VgGrOBs1rFrDZx7QcSgWoTW8ytTJ3gWhY8p94NvJkopOrKcc0WDlytW58WWHiGYjUPAbz9kC2UPv1p4O1H95o/o1QYAkkn6VugYEwmIYFf74rVIkX+UcWAALti9dd93Zt3Hm9CLRe13Fm94WK17uKcC6q9lsyiwKbwMY+I94F4f3cXD1Vl9K5VBSyeZRGWc9q5zmbApvDVYvWaONkPQ6mz+nTtmjurARwe1Hhq/hD2nTfYFwwRIABweMVhjkouJt1+JcNjs1PyuMXGF6/3eSWla4xwevG5HP/gs18JpBkem51NhwQ6OsLST/HJ7/xT+J+//m+bu7X54jyJWZv+Z19x8fzy/iO7eAyWPvvMWhgQAEaishX0AwYf3K9wJdh80YjVlt0Rq00xXlA4q2Pi+qhVR0fYdVZPFdIVRWzuLcTqh2BitSEGJHDynf3bOuXZIwbOagC7YvVEQu3xImcGifUar9128dT8ofEx50HOWODiWeWObXKoOSBdK07iLgfw4uMrvHR2A//kn/r4yNM/z4431Tjwvvcxkfqd75xm8zIMYR8s8Au/449jdo938BjwqgHAmvP7PY6ZAUeYcw2eLyZUtvSCuubOajMMSODkPbMUw2oQ7wPugk4yuSZAdVb7dsEyviSVZgbM6sCSmxmKAnHh03jzfA2udFanHlsza56vE/koK3v3fXDprH4k6lKsfpSrqpCWDm1Q41wjGYB+E1v6TCNgu4CO+26vxCRUTIh/2e7fn8RZLWNWl/bFiNWGGBCVsG7ErA4CRE6O+Hz3GpylPg4ojFZg1FmdVw7cgHK/SnZKi4Ixqw02QqTBEYbOateSO6sZtoX4eQkXeOcFPIXTx/d4m6OwgIq0c0NndXAQsIkIX5ivTkvmgjZRUpZL3IjOcfskAOoaL70EvHjABSWi8CFL+p5isRsEYGJ1axMgLvxHN2ARAN72Nvb5HB0BH/jAm302v6a1WEDurI5dI2d1K0+PFRerZxFxM0gschQYEKpO64QeE006WAkT7ud8DuZKU4jVm3MDZ7WTI17tvhPONi793dWqwxs+nlk8AD7xCf6FQ6PjAYC9mLHry2+IN17J8Vh0RhbCm/Gl66wuzPMGvu03nuHjD57Et73rl9kXpkCAAE23hnf+AId+Yn5cy8JBkOEsZ+LfZz9v4/nlvUd28bi84uEsC5t7IDnPWfaKyf0qyR55cB9fVBgQy7ZQVtbOuxaA0byo6Whst31PIFYfHlk4aQXAlXk5iQO4eej5PO7l1wM8Fp1O7qxOznO29poQA5Jm0wi1xwesEwibDT73mofnJti4WgQFVp0QV8uqzc5Vsk5indKGAYsA3vF0jF85eQw/9wkfH7j+ebZZMWX2yH/33wF/8A9OczwAuHEDjl0DL7/Mfm/abSM2ZzYbnJ+ULG/Eto2ugeV3srPKkoWlewX9uI7DNJPC2aICwbEaJmK1UyDNB8Rq3VBIwaxWHDMRx6SgzEKrj2AEgDxHVjk0sVoVQM6LmfFoc04AO+uDOIZ5oPdlGdelWP0ol0g69olMH5mwDBYaQJqMiUCxbuiTaVibGHw759rsxBNf7L5XM4GuhwExc7+yg0yLAXHHnNXUSZPvY+Zm2Kxa17aqcJ6FWPpEty53a/eCAIHmumg7EsRu8UbW9m6IAbkgZ7XsRZkXllHAYuDkvedrkxiEYW4PveusFg54U+OEECK4WL0+K80xIL6Pm4cJ7myYY/ull4AXZ6+zP6M6qyVidZmVdG4cryAAa9NvhX9N4Vi/0JrPgT/2x4A/8kce2Vb6iyrB6e2Os2cblxywGMrCbsqSidUzuljNnNWdr4v3jGk+RAcDAoA8GXcCl4U9qcTqdU2b7AcBFl6K89Pdd8LpxjPHgAA4eGKBp+cPgZ/9WfaFJ54wOh6AZnyq12w8fOO1krmWjZzVfWb1FGOMc3yA//1b/jK++/mf2Dl34+qihSYQwQ+jlDlVkwQvf46L1Y8ob//JZ128tjlqxOq7b5S4Hp5PL1Y/tL6oxOpFUOyM3U0XnombMnTYGqHLrPb0W8jbdXRsMQwIH2fTuDZayzQVRaxTcp3g1VeBT78+Z2LlBMzqNspqfVaya2CAAQGYQ1uU6XpO1NXDEnfjJROrX3WZWG24czcPCqzzvrPa6FwlaEN2DSZwVj+X4e+//H6894m7bBNk6rHQJGNAVjdvsv9/5jPs/4bOasxmiNwM8UmK1z+X4fHo1NwF3l3bFwXi0tB4wkOSuzpEmoLWMc/PM3RyJJn87yapxTZHde5d32fM6kKBFsls/WPyimYW4m53GEDXCoDtul5ixkRdY525tDWz5D176ax+NOpSrH6Ui4egBT5hUSLwBypnNcXpoRDTjJEC3P3aMbsZDZBAK4W2F7B4Mc7q3IRZLViinQHdOGDR99lLfd26D7IMWeXAjxzajrHrwrUqKQ+dLHyIVl+ZWH0RzGqT0ELBrJa82E0xIDJndRP4Y+IgcrlY3XJW12BcPaOazWABqM4ZO259XjEMiOHE8cYN4E58AJyd4VO/WuHF6FV2rxIXZUys3h0L0qQ2XjiEEceLtBw5celNQRS42Lp61XzB8BasxZJxensYkMRlAYu6963D2kSTwt1xzjTOaiq7XDCru5lsYjykitVexz0ElnbuWpVRq2v3mO1qmH8Esfo42ODhg91r2IjVhk6Xd38gxO984eeA01P2hSnE6ihim8Mn7P564w3gZmQgVquc1RPkDWC5xFOLE4QnvGvlosRqUxcdgINZydzKmw1eu+3g6cXDSbAtF1HB8WyHWX33To3r4erixOopWvXfAvXU8RqvrY+aa5CnFZ37ykvKrE4ccwzIFZttrvBFTRMWP4GzeuZm2JwV+Ft/C/j9X/NxNoU3eRZ8v2cWun+vxrFvgJjxfczdTCCFAQBJPg0G5EufjfHJk8eB9Zo7q+8ZjwWLqGQdVy2hEoCxs7oGLsRZ/eILFT565wV8+OmX2Bem6oq5qLp+nf3/dW46MX0nRBGuBBs8uFfh1udSPDE/Nb8G3Y38PGfOasMuSd/juROt+ZExBsQpkBYKZ3Vq63O2XZcxqxXHTDKOZKVgQGYuQ891F+F5ztbgxO5uT7auBxqjyDws9fUNmVgtOm0undVval2K1Y9y8ZAH0lxUhLVJxGqys1oIf91jtlNdKcWF9a4I3jCrjTAgMmf1BQQsGooIjVjdGX0bDIhBwOLMzbBZt66tOHeysu7BtUsUiUScEMcmtN+Eio0QUyeh7/RZXI0rh/ICEtiaAtvAwu3p0rEt4jnoCFRTLJ48Hz1mNQBzZ+18jkM/xuk99rmvzmvmyDF0ugRX5khLF//V9wf4yZ8E3n5416jVMYjsnrOa8QPNFg6zmYW49Hec1VNMcC/rYipaOIyv3BOrPYYB0X3ZWhbCoEbc3rAAWs5q4omKFHmJs9pkU7T5i60DnzyscRRsLk6sFs5q3eMHAa4Eazw82X3mzxIPB565s/r5D1zFb3vuF7ZfmEisfmF5Dz/1i0cAgNt3YOasFp0bMma1affGwcHu7ycQlQGwd2r73zuFs6WmeKMAAGnCSURBVHpRMvFvvcbd+w5zKj+iYjWiiC2kV+wZu3u7wvXI8HzFPKUtVp/aX1QBi09djfHq+ri5BlMIwLJ5d9PJZrKJfRSysDa+YZHG1SSOWkQR5m6K1XmNz30OeOfxBLz9KGJOzfXWfPLq6zbbEDJwVi+8BOer7didZjYT6AzH7fd+SYxfuP8UsNngs7dCPLe4b7zRNg9LrPNdsdoyxbZ0xc+6RlK47D4wDfJ9eobjYI3fMPt37AuPaJdJU089tft703fNfI4rwRoPHgCvfi7Hk/OHk2Qj7GQxCeOJ4Vw+8OteTkiaWUYBiwwDIh9LSJxt32e4TKVY7ZDHWsv3enkLAOhaAdBoUVIMSJ5jnQdMrNYt34drl8jj7Wc1BRbqsszrUqx+lEuI1QbO6jTp/9EmsWn8IbED3w1tLEvEhW+GAbH7qIYkpw+QAEuhlbmVL4xZXTn00ODARlHbveMWeW2GAeFidbyRiNUGrglnwFltAbR7yy5YiFK7OAaEPMfnzLDuvZVuSkTUF5BlwRVOZclGiGvkrO4LVMxZbRCwiBa/veWsBmD+Ap7N2KTxLjveeg1zZjUALJfIKgcf/Q8e/rPfGjO3tsFkNJw7fbE6NndWRzOLiZ+tTYCUEjB6Wb8mZYVcjO4yqxOfFrAIIArKPg9dOKsNxGrfKXsbV2I8JJs8JM6RhycWc9FdtFhNdFY/6IjVpxufOatNRbrHH9/9/UQYkD/5wX+IP/z3PoA8B9644xgxZZmzus/an8RZffPm7mfytreZHa9dbXf1FGL1QY2znDmrH5y5zFH8qAo0UYSn5id47R7LXLh7u2TOakP3q23VO0HZD06dL6qAxSevJTvO6iSuWeelybwocnrdl5vUMXfSiXuTW4vjxHxjHAAQhlh4KdZnJV59FXgquLv784jneujHODvbfum1Nxw8OT8xWiMsvRSrjd0YOh7EIQuDNBTsn37GxhdWx8Bmg8/cnuP5A3Mk0DyqWO4Cvw+qfIL5sefBQssYU5ZsPe9VxmK19cTj+Eff/D/jWc8Mj/drVi++uPtvfuEFs+NFEVt3PLTwmU/XeGF5bxKxGsCuWF34iKjdcbx8r+51R2UZ2HhAxFCGDu/mq/vnlqScL61zbMGsLhz5McVG04QZV6aGMWkWFf856yKghZv7Pq6FK9w72T73U2A4L8u8LsXqR7mKAmll4KxWYEDIzmqRGq1gVpMHdYWj1DQ92g8stqMpCS00ZVbXWUesLgrGVvZpj5QXudKAxSKvmfhJHSh5SJUIpgfYuZMEZVGuC9dWiNVU1zbHgPQY6/wZILvIhADc2TFerS1aAMP2sPLPqwA8g4BFqbM6NXdWL2YV4z22mNXGTD5g63C4V6GqgPWqZsKyqVh9cIDjYIPv+PAt/Mk/dJt9zWBCHs4dhutoXdw0hXFbajSzmKu2JVbXACz3i4sF/ZYpiVgLAHlpsbRzwss29CXOau7KIQuKjiNPZ69rlLUN26NvXta1tStWPwRzaBqI1bZVo8zkThYy88/3mbP6dPffukq9acaYMATe9z7262vX+k5jSi2XeHx2hndffwOf+hTwxn0PN02d1SpmteE/H74PvPOd29+/612GB2zV8fH21xOI1QcHaJzVZVGzsK5H1VntOHj64BSvnB8BWYa7d4Br4cpMUOKdZ233ayPaf5GI1U9dz3ac1XFs7qyeL22sO502m9Qxxq5hPmfOXC5Wv3YvwBOz00mY1XM3w3pV4403gMfsO83XTY55FMQ4Od8KVa++4eKpuYGz2raxDFKcZ34zdt1aLfH47NRYrLbmMxwHG7z6hQppZrEQV1MMyKzcwYNNMTdscIEJf2aF+cyboOvu8cfxoSde2v7+URero2hXBH3mGbPjzWa4Eq7x4NTBZz5r420HdycRq22r3oqoRTFJl2Tg12xDrI0BycGc1ZT7y7KURjyAOau1A31tG64DFJWzNTK1qkH4UMYv32d6Q2fOnawKZhgz6G5Wi9U+Way+Hq5w92R7Tpdi9aNRl2L1o1zi5UZx6fE24p4zC8Amc2nMat8fxoBQF+airaV9rnXNBl0TsVqGAalrxg0zCDdwrApl2nlJmGJAFGJ1ntVmPFHhrI63X9qc5mbOEc+Da1VScaIR8Sd0Vhu59h2Hsbg6L7XVCkzwoLr2vQFntUV37fsO3y1uTew2qWvclvrE1Yy5ki7AWX01XOP+feBP/2ngT//4+80DFgFgucTveO7n8W3v/2wT3mjkrF64zP3auhGS1HyxO5tbu1iJqa7rZV1MycTqooCFmj2zhGcsDOq+s5oHNJHCY4Bt5kRXrOb3l+XQMwwA7GJATi0zBrTr9lFTrYpj0BYlgll93rmGdcVMWlOwen//7wf+6B8Fvu/7jN1uABrB+z2HX8DHP84clTM3p4vVoSVlVqelyzInTOvFF7e/FlzRKeo979n+egK8yOGRhbMsYsGVNZ9/PsICzdPHK7zC3Z9371kMW2IoVkcdsfrhuYcjE67wW6yeupH1MCCRqVi9sHbxDwDWKTGcq12LBVyrQn7GJt4vvbHEi4d3JnFWz90U6zVQVTWclM+NTMRa28bRLMNpujUzvHrXNxOrASzDAucZD8Ssa9xaHbAuE1MUymyGD1z/PP7Y3/0yfMPTn2u+ZlLzqGabFnw+n8S1PkqhWyLjSaxrRUeMP4FYHUW73SuP8FjY1Fd/Nfv/V36l+bt2NmPM6jMXL7/i4YWDaZzVO2a8ifJnfL+fO5GmFnwDJI4V+HK0BjgGhDAuWgF/1rtd43WN1KTL3Zcfd31Wsk1ByjEFYzuVzDmLAnnlwAsJ44zv43p0jrun23HvEgPyaNSlWP0ol2gpp6zJxGJX8jDHmU0TK4WorHBWk/Up12Uviaz1AhPH9AiQfF6Ns7rDe4xLH5FPPG53t7x1vkXlwA1oEzE3kDOrGwyIibPa3XVWnz0scWAiTnCuk8xZnW0K1t5EDVjsYmvKkm2EGLj2G4diSwBexzYWXmLkrC4qCbalNOCh2zZ8hydHt8LaNqmDuWcmVj95I8frm8MLYVaLdryf+AnAQcWY1aZC0nKJP/SeH8MT/r3GnWQyIfcXPtu4at1gSWrOUIwWDku6bjGrAVxObB7VCgLmAo5b46wYc4OA9E6IIkgxIADozxd3Vu+8E4HtuGCAhQLQSzsnLxoAwHWZgLKRX7vGWU0Qq68Eazw4a51XVbFx3LKmEeksi/E0205gk+LC7HuWn8XP/1y9/byoGBAhVnfmMMBE3Rsf+hDwwQ8C3/M904j13eMul31eKaGuXbfw915+P37hlxwsXD6GP8ICzdM3Evzgz/x2/D/+pIV//UuHeM/V14wxIN2g7KriDvMvFrH6sQKvtjEgqWXurD5wpM5qY3EiinAlXOP+CZvLvXT7gInVpvMtx8E8KHB3M2fdhmLeYWgOODoocZJFjTHg1bsBw4AYoFCWYc66+bhY/UZ8gMfnZ/SweFHzOf7we/8Z/vHHnsE3P/nL7Gumzup5jZU4V7Rc+yafl8v41I0BZ0pnNbCLsXrUAxYB4Hf/buDbvx34zu80P5bj4MoixYNkhrUwHpm+DzwPoVNskZl5zjAghmJ1EKDvrM5AN8wBfR56q+LcpW20SAJBAexmZBA1E9m5rs/5WpGIFgmdHEl3ftz+OZTjCmf12Xb9eh6z+e1lwOKbW5di9aNcfGdvFhJeboJB1HVW1zV3VlMxIGqxOqA6qzksf+dcJ9iF9kO7x6Mzbu3h7Sd52neXX4izOgdcewJndbplx509LMl8VgAMA6JgVifrknGACfdWKLtfBTeMigGxLPhuyYTKVnuTKQbE9W2ps7oo+OdFnIQEXtXbhZ8CA/LkzQKvrY8bsbbIKjO8jCjOrL536uL2beDHftdfx9c99ulJnNUAgLOzrVhtMCGXsYqbgCaDBclsYbMgJb7IqXPObDddlF7WxZTvY+GmWJ9vx+864fcEcYNFFbAIwCjE1ndKpbOavOAXY37rOTB2jrgua01XidXU4wtn9Wo7Ru98VlOKq1OV6wKzGd5z/Ar+2l8HPvT859nXie7iILJZwKJsI2SKDbEgAL77u4EPfMD8WO2yLHbcP/NntmO5QX3rN6zwbS/8B/z5f/gcrkcr9sVHFQMC4EPvfog//zV/D3/nH4a4Md8w4c8YA1LsZI/UVd382RdD3bhe43Z8sBuwaMisXhy5OyIlAGxyz1ystm08c3iGL5wfA3HMxerbk3xWi1mFXz25iaeup2xOH4bGAvDhssZJOmvE6jcehnhsdmrmrJ6VW/RcniMpJkAXAcBshhvROX769/9v+PDNX2q+ZlLzWY117jfj7BThnRfqrAaAp5/e/voR3rhrKgyBD3/YfG3A68pBiS+srmDu8LbhCZzVodMyTBWFGd6UV+DXvQ3nNLcZdo46dgm0RhcDUtdICgehW+iPCao8Ln4dyPetyLiKd4+7OqvoJgnPYwaJWHL9xDUhitU3onPcOd/OLR6sA1w1weRd1iR1KVY/ylUUyEoX///23jxOsusu737OrbvW1vsy+6qRZrTLkmxJ3mQJy6uIwME2tvEbDMbBBpPYway2QgIkL2sSIASIX3jBsYHYscEYG294xbKFF0kjaSTNPtMzvXdX176d/HHuraW7ZyTdc1pd3f18P5/+VNXtrtu3q8+995znPOf5uX7M/NvVAugbDZTqDpJOjItZVDF2uVu7XkdTCiTi5mgmEkoEr3c4SnUvkFDO6hWCom6FX9e9tFjdTMTOrE4ELpqdlYhDtPOSEgkETg3Fqt0SOpbm68g65fidBsdRzurqys+wXJKxndVe4lLOar1OrmuH1Zg7xeqiZSYGpPP/JaVegUWoYhwrCv5U9WNAdmxrqhiQsOfcKi5oILN6yC/gSyf34MgR4MrUObXsXbdDGi1xnJszEgPSEiI7xeqqpT3YDTJ2V4HFQl4qtwA7Nr2J6yLtVJDPta9dpcWqWjYZc2Du+2vjrPYStZVidXR/1BCrbavRVagtdqZ0hG0j5VzGWR2J1c/2842KKOXb7yvNl9W+TESArBWZDLYnF7B9tI6fu+ULrW1xuJyzekNcYwxNKFiZFF69+2F84ZERjHhhJbgeFqvHd7t43f5v47+880m8/54H1EYDzurIpVkqAZ4VnsO9fC4YxEoFKm8/zLRTzmq9PoybcpSRIRooNZso1hy1kk1TAN49VMCZ/CBQKOD0XBp70nNGRMVUCji2OIadWXPnQX8/sFBNtj7beiOsvWJIrJbFksrwNnHOhtfSQ4njsKtFdY3R7G+mM0C+o8BiK2JGM7O6y9wVOavjGm+W833fB9x5p6q7cMMNZva5gRjsb+KrFw9gfzosMqorVnteuy6AlO04CU/vOuB6YkUcabUm4hdYBNou6OUCT8vcFaOIZ1gQdIVYrTvR5DhqVVC+29xWWGqq1c1x7l+OmlAsllf538StmwWEzuolTOfbGetzRbXCj87q9YVidS8TLfeMk3sZOrNWc6oW41a4XS1buuM4Y194hYDnhPEH0b6i+AcNsdrxLHWTWOGsduPv93IxIDJ+gcVVZzWlRKESLkHRydX1ZZeglpurI6NTlMR1kRDy8s7qGJnVqzqrw8kVzXHeCgG4UBJKrI4bA7JagQspUW8KOImYBRax+ix8oepot4Ht29GVWV0pNfWdIwDgujg8OInFioc3v6HejtnQFavHx9XjxYvA0pJ6rjPQ83010O0ssFjVH+wujwHJ5aAmguis7k08Dxmn3GpSAJCbralYpJiiT5AUK8TqZrWuBucak4yu1UClZnUXJtIVKsO6E521AYw5q0urX/OKJcQTq5NJ9b8qt49rcaamN9H6XJDNQgjgkU+cwFjzQmtbHLzAQmWVPHQAG0OsNkUqhX2ZWcwXPYw4C2pbL7sJ+/oAAHcdPI3rBs6qbTrHG66QK+TVeXvsGHDlYCjSGMgE3xCkUrCtBmqLavJ6ctFXKwQ1zgPhLut3Nxoo1FwkvdWLxT4b9oyWcDo/CJkvtFfcmRCrR5J4aG4n9ljnwg36ERD9AwKLVR8oFjE3B6SdUATTEGjSyWaraOHCZAX9bsmMWD04qPpXuVCs933tSbFUqju7vFQWysigc41dXjcqMt6YmlvKZoE3vAF4xzt6+1q4RmwfraPatPHeI59SG3TPg0QCgddAuW6rcUxULD1u3ZEQz5Mr7uHVmohfYBG4dAxIrabMeG6M69fTOavjTrKEUaSdq4KAMAYkTr8wPNaUU0WhYnf3j6HqZonwZ541QmAkXcJ0Od3qa88VfSVWb6X+Vg9CsbqXCS+WcQPo/UQN5cqym3iYw5QMYlx4ohiQVQTF6HfGxXOa3ctd63U1m6cbA7LclVSr6S3tuVQMSKOBmkZmdevC2jlTGrk83JqWyyPwJUqNdlTB0kJDDfjjOnJs+7LOaj+Oszp015dr3XnNrRuljrPahZoI6Wi4+ZKtZnXjOqtdgbq0VkyE1JsJ6ESJrnBWh20g6dS0OuR9QzYWq0HbWW0gAgMAIAQO7Sjgc6/+XbzqjkX1v0sk9G/s6bTqfJbLwGOPqW2jo/H353kQQqJZ6nBWVzTdDQC8tKMmFzrFarfEjk2vEjqrO8Xq2akGBr34hcr8QKgYkI5rgXbxL8tS8UWNlddDAFqxUFm3hKVC+37SEqs1CiyqJZmXEqut2GK1EB1xBwAmztTV8vReFqtD55+VW1ARRkLEjwG5nLN6K02IJZOwhMTVI9MYsRfUtl5uA9HKoMXFlltVS1BKpTDkFTA7r86xRx8FjvSdV9/bQmL1iJ/HzFQTUgJ/8I0b8ZYrvqF3r11ecDY08xgRq7dVcXppCB/7RAK3jx5XG02I1eMZPDi9F3eLz6sN0cS+Bv0DQsWAlEr43OeAu/afDH9ZfAEwk5atzOoLZw1ety2ruxisic80Y7WEdaDDta/prPbtcAwuZaswrucaclZvcXbs93D0X/57XJcJ26qBduB74Sq5YlHpL1JoO2pdV3Qb8QBUagKupWGUiVzQy2NAIt0kzml2qczqUDPx48a8hvEqK8TqvEZ9I8tCyq2pegON7mt1OV+Pp0GEjGQrmC5lWteC2WISg4wBWXcoVvcyOgPTaOlFZdm/OOqMxczB9hK1VaNFYh9niOdBzT52dBrNZFav5qzWiAGJnNXVlVEojaaFhKspVi871kLdQ9Ktr/6eZ0gyCJ3V4WebW5TIajqrbdFEo7byMywVY4rVQsB3myuX04duBC1ndZRd3iFWF0qW+czqcNmYbcfvjK5wVjcaKNZdpLy6llgdZTbLknI+X5xzMeznzdyAoyXuk5Pq0cSARIj2ICza75498ffneeh3S1hYbH+GJgYkrSzs6Nyis7q3CXOQF3Lt++LsdBNDfj5+ZnXkrF5WtFA3usezmysK82iL1YkE+twyFotOSwQvlQ04q53LOKvLMcVqz1PCRFO2/u6jjwpcPXCht6MPIhf1xIR6TKfjr7RJ2WoSv+PeJWsbKAbEFKFodk3/WQz7S0ZyeteU0FmNxcV2jJVOJyaZxEiwhJkF5SR77DHgcCp0bG+E4momCLOKp6eVWD/oF3Gwb1pbUASwUqyOY+ZZxu7tdZxcGsav/eEgfvmGv1Xt1URm9Y4+HMhO4YgXCuCdhfZi0j+UUDEghQI+8xngnt2hQUBbrPZaYvW25KK56J6xsfZzA/tM99so1L3WxFKpLBAk9HPLvYQSqNFsqhiQJsVqY3RmdgNGroO+D2U8KBZRL9WQ0KkXFeL5Qt3DO8XqqmZmteMo801lmbDcaChndcyV8wBWjRZpFViMg+siSNS6VvMBQH4J8Z3VAJJ+s0vXiGgVboz5fxvpq2K63BarcxVPjem2Un+rB+nh3h6RVY3sHdtGkKitFKujZSJx7u/hEuJKVay+NFlnYO5B3dSjGIHWkqn4N3Y3SFw6szqus/pSmdWNhlr2rVEwAUD3hbdeRyESKjUIkqHzLxzwLuWkWj6pm1m9SgxIPg8VMRKjzfpeKNQu+wzKDVvPWR1lhnUEYudLCb0YkNUyq6OMM02jT9cES6OBQk1/wgLpNPq9Iuan1X4eP5/B4YGLZm7A0cDh1Cn1aMrx1ukY6utrCwBx8DyVRTbf/nvLtYR+FMqyLOzcQlPv3CJri6smaWZy7Q7y7HQTQ14hfgxIIFQUTGfOvG60BtThlBuOWVetEMgGVbXKIrzOatdFiJzV5dWPKbZYLQSQTMJN1FFdUILf0ccTuHpgorfPr2jy7vz57tcxsAJPubs67om1SlMtId5Kg6dQiHjHFV/Ai8ef7Om8agDte9XCQlus1nH+OQ6GU2VMF1NAtYpHH2niSOaMagO9PHFjklQKI/4SpmYTOHYMuHE0nAzScT6G1yRZaYvVSzUfaV+zvwVgxw7g8+evwh1XTGE8mVP/fwMZ7vtu6MOPX/XV9q62b9feZ3LAQ6HuopEv4ZvfBG7JHlPf0BGrM8BSVWVWP/6EhYPZaXPX7U6x2oSzelD9/VEx76WSrcYHmqaDroLpjYZyvZrKrN7qrIVYHYiWs3pmVmDEX9K+z7qeUCu8l9UhStka7ctxVMRMYdl1Klw5H1esFujQnTr2WW448WqnhfsN7GprgVFEoQD1GcQUq1NBsyu6p7XfKF4k5n0hnYa6FoR9LimlutZupf5WD0KxuoepFOrw4uT/AuEFYnWxulh34/X1w2zpFctSI2e1xo3d9a2u5fRGRMrIUbtKZnXssU4UA7LcWa3rLl+lAFzk8kj5eksSW87q5VEFcT/c0FldrzZW5EXlC0DajicCe55c1VndlBYsV6OITpBAuUOsB4B8xdGLAfFWcVZHEyxO/P+X50F1bCJxInRWx1oJ0Uk6jRuHzuLBJ9Ug+vGJLK7qNyRWR86exx9v/S4jdIrVOq5qQInVQR7Tix3F2qoGxOqooxVNBC029VYtkLUlCJRYvdD+n8/OQlX7jhsDkrRWOKtLJQPO6miVxbL7l+7S1L6g1hUJZESsdi4tVpeqMcVqQDlK/TwmT6uJxqNPOjiyUZzVZ892v47DaoVhowinrTR4CgLAsnDr6CnsTC/0/vU1igGZnzdWx2FkoK4cX4UCTp1sYm96Vgk0hopY9jyhs3pq3sGJE8D+9JTarnn/TnYKKY0G5iopDGWWLx999th9KYwnF/GuFzyoNhjKFb7+pQN43+1faW8w4KwWKXVsX/xWGi+8QyJRyqtvaPTlMgO2igHJ5/HZrydx947H1sbIYOBakBpwVQxIOLF0YSFQTnBdV+0ysTpf95AKNPvyRLFzZ/v56KjWpHBEELRjQCanLYwF+mK1qjuxrA5RRfWZtMTqRB2V4rKxpk5spuvCTdRRK62MFpFSxB+Dh87qFTEgBagJIR2xuu6uFKvzUqs/Kzy3bRBoNiEQHjdXy64rFKt7GDVDFPNkdl0EidVjQJpSIOHFO5E9D93VswHUq03YQm+5jOcLJSwvd1brFFgM7JWZ1VEMSFxn9WViQADEv6B53XEC0T4LNU87P69VBC7skeeWgIxTid9xtCzYNlBvWCtuFEt5S8NZjRWij4mImXSqW6wHgEI5oTX76ngW6qYjZqCE9eWTNrmaj4xfu/wbn450Gi/a9iS+clwNbB6/2IfD/RfM3IAjZ8+x0I0zNKS/TwC4/vq20HP4sN6+wirPM0tea4Ll4lJKOZ50PoOO8/bECWBuXuhNBJG1JRKrO53Vc8CQFz8GJEhZajLMsLPa91deD5u1BiydFTwA+pK1bmd1JYHARIHFSzmrK2qVV6xrbTKJA9lpnHhC3V/PTTrYmZrv7fMrcv0tLKhHTbFaAl2rgkolqOJfW2nwZFnAlVe2X+/evX7H8kyI/uedReA0Y0uGhyRmyilU5wuwZBMJS26dCBAASKWUWL3g4sRxiX3eRGt7bFwXKbuKfDH839RqaEoByzFwbqXT+NZ9v45DeEK9NlUETwjgla9sv9ap5RERCr7//xd34a1vrKjYCs/Tun9lRnzkax5qc0s4NeHiQHba3CTTvn3t58sdtjGw+1JoSKstVudSRsTq1j28VALqdcxXkuhP67v2CbonUl72MiOTdi3jQbGIyZkExoKcGWf1MtNcvuIoU5dGgUUvUVvprA7rnMW6ftk23Eu4tQHEN0hEBRaXO6uLIn5mNVbGm7b2m5dKN9M4XgBAtYryUq1tGN0qk8I9yhayZmw8tJYz2DYCp45SLRRru6rHOrEvwK4n2tnSYSexXJLagycvsLCwwlmtl1UsHFsN9JYVWCzpFOyLnNU1KNEruoBFjjddZ3XHoDTKrNZ2Vve76qKeV26J4xdSeMuBWa2OY8IOCwxWuidT8kVLw1mNVZ2E6hfGb1uptEC+7nU7q6uOVgzIpTKrSw0H2zRiW9wggWpTdk3azFVSGExrOn1SKdwxdhz/9ZGXAc0mTkxnsPfmWTOiz3JnjymxemwM+PVfBy5cUGtqdbBtjKSKahl1XXU+zub6cN+OOQNidROyXMH73gfYp0fw8uQTve/826oEAYa8PGbyfuv6PTtv4Sa/ALj9sXbpp8LJwM7Mal23MtSpuTwWqVSUesIyQrG60OGsriSMFFg8W7mEWF1NxHdWp1I4kJ3GU09ehZsLQMqtqVtuLzurly/L1xGro+tzp7M6KmK8lZzVAHDDDe1iu7fdtq6H8rTYNjA8DMzMqNcGhMqRoSamSxk89VgNV+wKR/5bpbgiAFgWRrNlPH5mHCefrGP/tkl1TdGJAXEcFWFUVNGGtXIDtqmInZERtWLnrIqWMCZWA8Ddd6taHkNDZiatwgKmj53L4PlHQle15kRIZjyFpZqP7zxs4+YD8+q6bapftH078IEPKFFdt28IhP+bapdYvX14QT8GJGmhUreBQgGyVoeAGpcSQ7zznSp+8CUvMbK7dFYgN+sDhQImZzJKrNYssOglE93O6mYThZqLlKOx8s5x4CfqK3KglQ5hx7t+hTGv1dJKt7YQUqsYpKqf1i32FopCK7M6lZSrxoAUC1J9tgbE6vkLZQx6BY7negA6q3uYQl6qmac4J50QK7KKAWjPkq0mKLYGTxo39lZWVCTSRVVtdfK9LlG0UEsEFwKOLVfkFcu6ZhRKZ2Z1FK1Rr6NYd7SXjY1uS+Bisa8lVh+7mMWV/ZNaQqXtCDSaVnfbArBUCJ3VMdpXqw0sc1ZLQKttpbNhpe+obUlpLgZktYgZDWd1a8lYx3nQaFqwXc1LtWVhZKiJXDXA4sUS0GzCtppmBlBjY92zzqbEakD9f3btMlJMayRTVsuowzZ7dqkPu9Lz2suIvUQdlVIT09PAt08PIeuU2LnpVSwLw9kqZkqpVjuYnU9oFVi0U566FnRMNLac1dr3xGVidcXSE5YB9KUbK5zVRgosVlZ/f7Fqa8WAHMxO4fgJpVMe3tHhVO1VMplugdpEDEhH29qSMSAAcNNN6vPYtq3bZd2rdLo/Bwe1dzc8amG6nMFjjwFHdunHNGxERocamC6nMXmhoYQkXWe5ZSHtVVGouUCjgcmLUi39NyEAL3c8mxSrLQt4y1uAV73KzP76+tDnlvCvrv82RMGMWJ0eS2GxGuDYCQdXb5tXG01et7dvV1EQJhyP0f8mFKsncmkzMSBJW/XnCwVMTwMjBmIlSAfXXQfce6+xYrujI1BjhGIRk1MCY8mcdl9exZF2GJtqNeRrHtJBI37bdRzlrF4lBgRAvDYWRousEKt1ndWOo2JASt1/a75k6WVWp6CKoq4SA6LrrLaERKNUxdyFihKrTV67SSwoVvcwxXxTa+YpSIaFnzrdutGJHfOG2RKrOwbQ5YrQHjylM0IJipH4GcWA6PRtXBcCWKVgn55j23FWitXVilTLRTQG/BCiVTU6OtZCzdPOKx7c5mGukgSWVCX1Ib+olpJritV1mVixBCdfSsR2VvuBWOmsNhEDkrXUDGxH2yrUPFW4MmZn4VKZ1doxIElbLRnrOFYAZjq46TRetv1x/OzPCbx0x1Nqm4mbsON058eZFKsNMtJXxXQprT5bKTFXTqqOiKazOmlXUSo0MTMDPDndrzKre1lM2+IMDzQwU0m3YpFmF22tAosi8NV9plOsNuCs9nyxIsO/WIKK1NCJAVkuVlcNiNV2BYXK6tf8aj0Bx2poxYA8dcrB0aNoix697KwGgJGR9vPOa+OzxfeREE3Ui8v7Wxp9jY1KNgvcfz/w3vdujCW5+/e3n197rfbu/H4flYaNR49ZOLxtQW3cSjEgUO7yi8U+iHq4wsLA359y62rsUa3iwgUYESkBqH5Qp4jWy4LHyAjec+1n8SO7vtgqMqg7EWIN9CFhNfHY2TQODIbX7V6dxE8m4VgNVJdU33CqkMSov2TGVdtUYvXZ003sTs/17mdAMDomMFXKdMSALGlfY5QBqaMfV62iUHeRSuoZ8bxEHZXysrGmjgvaceBaq4jVOgI4ALgu/MTK+mmFUkI5oGP25VIpqBXjy8XqKF5EQ6xOO2UUFmqYm6xh0Cv29rV7i0CxuodpVUuNedIFKQulZVm9rQtPzH22ihZ2itXlcACt0cHL9gG5sHI0AKDRQLWZgONpNNFLFC1sSgHLi98JWc1ZXS5DLc/WEb6EUKbq6LONYkA0ndUik1YdsYUivvUt4NbxM+obumJ10+qeCAGwVErEdlZ7HlY4CWVNPwYknbW6Y0DqdeTrHtIa8SqOn1B//3JndSNmJeaQ1pKx8HOtFBtqEsSE0yedxn37vos/+vMkXr/3AbXNVMe5M1O6V8Xq/lrLWR21K+HYesJHWDykWJCYmwOkFMg4FKt7mf4BgflKsuWims3ZWgUW4ftq9UfHfaYlVus4q5PWyhgQA1nYfVm5TKy2tcXqpF1FsbrK+xsNABIiYcX7LJJJ7M3M4vSFUKwen1Xbe/386utrPz9yJP5+PA8ZpxItigIAlCvQXsm2YRkc3Dhu4k5n9fXX6+8vFE0eO+7hyGgYL7JRPgtDjIwKfO78VXjhwUm1wYCIkPIbyqFXqeDipMC4KbE6keietOplwSOdxiuveArp+gIwNdXapkU2i32ZGXz2iT042B+21169bjsORpIFTOWTQLWKZkOqTHjN/5mfCou7Fwo4c1ZgV2qeYnUPMzputcXqWdvI6g0n5XavvKtWka/5SKf0xGo/UUO5uFoMSMwC3I4Dd7WijSac1XYN5arVXjUOVTcq7ZRj97udwF5RPw2IdDON/mwQIONUsDRbxexkHQMUq3sCitU9TKEANfOk46yudzur66WaVjHE1ZzVpbLQzqzO9lvI1fyu+IOmFBC2geJny3KgAWh1Rh0bK1y1pbK+u9xOSJUDHR1vrYai7gwsAGQy2JOew+kzAn/918BdO8NCeDpitWupY13urC6Gzuo4BRZXiQGpVZpwrYZeZnU20R0DEi3DSsafBLBdCzW5MrO63LC1xGo35XQVWJydkRj288bE6uePnsTb75vGLQNPqX3GFeiW07ksu6fF6jRQLmN+oqQ6IboDB99H4NRRLEgMDTZhiaZyVnNA0rNYqUB16EOxulBKqEnhuG7dVe4z2tEa6Lgedjqry5Z+ZnW22TUxXKtbcCyNAsm2rZaPNroHIwDa13LXjTcplEzCTTRQqQg88ABwZCgUqXpV9Ii4917lpv2lX9KbDPM8ZJwylpbam8oG+hrkOWDXLuWqP3wYGB/X318qBcdq4KHjKhon2raV8Ps8fOKeP8DvvvbzaoMBsT6dVBmyKJVw4aIw56wGuqNAelnwEKItrJ86pR5121Ymg6v6J/HtqR3YH1xQ23q4XzSWKWGylEV9eh62aKh7lm4MSNppO6snEnRW9zijOxxMlTP4L5+6Al88ts2IWC0Cv7tIcuSs1tlt2OeqlLrHsLIWOqvjjBfDuI7lOdj1cl1LM4JlIXAbKNXtrvHyUtlWWkHcFY3uKjGvUM5qrai8dBppp4z8bAXfeySBqwcmeM72ABSrexhdZ7WftlUMSIfjq1WgKW5mdZSp2+kqjmJAdMTqPgtLtfYAulIKRUqdzsIqjjfUakqo0DhWxxVKrF4m2Osuz245tjscwIW6q9/HTadxIDuNj39rB86cAe4afVht1ymw6Fiodx5ryFLJVs7qGCLoam2rVIK2OJPqd5DvaFuo1VS2tE4UTGBfMrNaR0fJDiTUeRB2bGZmoPJ0DcWAWELif/z4g0o/SSbNLac+eFA9Dg/3rJA0OAjMVVRW8dkTNeVy0T1Wy0IyLXCxmMVofxW7M/PMrO51wv+NLIZFymRTr2if76uVK4X2tSBXCgu46sSABNaKybtSWSBp6wmVfVl0OatbAnPczn1Yx6HaSKgYq050XTnhiO59r3wI3/sesCO5QWJAtm0D3vUuJVjqEInV+fZ1ulwJzQEUq3sb2wZ++ZeBn/kZY7m6ezOz+JV/8R04uXCFQX+//n43EqkUXr7zMYiLF1qvDexSOauLRVyYssyK1Z3F/3pZrAZWitW6EwGWhSvHF7EjuQB/4aLa1qN9QwAY6ytjspTF5LEFFf9g4P/lpZ22s/qCQ7G6xxna5mK2nMKHHzyI//HaTyqjkG47iP7fXc5qT+/SFRZYXC5Wl/P1+BPZrqtWyOWX7bPYVP0NjUicwGuqVf4d4+XZQqC3onG1mmSICjdq9L2z2Zaz+sv/nMKLxp/ccpPCvQjF6h5GN3snSCfUBaLD8bW02ERGY5+tYgFdmdXQzlDMDtrIVYPWsZ46m8C+zIx2niwAozEowCViQCr67vKWYzv6bBsNbVEVQEusfv9nX4j/9OsSohp+HhoDftu1VAzGMrE6rzFb6qcSK5yEJiZCEkkPTSm6XPsSelW51yqzemDIUvnia+SsBtBe5mly8OT7wG/8BvALv2Bun4ZJBG6rKOiJJxvYk541MnAIMg7O5AcxnCzizQe/oTpgPTwo2/IEAdJOBYW5CnI5wBHhORz3fPA8DPt5zMy1u1PTSz5GfL1CXa0lxB332mJFPwu7rw9YrHWI1ZHArNEhd12g2uh2zgAAqlWV5x13QBJes9549UN46CFAFMM81V4Xfkzheci4oVgdTiqUq9bWzKze6qRS+PBdf4IfOPI4MD2tti0v4rfZ2b5dPV4IxWoTMSApqJV3xSIuRs5qU4Liy18OXHON6g/v3Wtmn2vF8LB6vBgKywYEmqt2F3Cwb0q5LoCeFmrHBquYLGXx2c8C1wyeN9K2skMOlmo+GktF/OMjQ7h+6FxPfwZbHbs/jXozgUpV4FU7HzaTix+NBTrE6oa04AQa9++wwOJyF7Qyd8UUlm0bgV2LFhy2KBca8Cy9/kbgN9Uq/07dqJ5Qx2pYrC6WLZVIoOWsrmBuqo75nIWx5BLP2R6Avd0eRs0QacSApEPxr0NQnJsXGPAK8WNAlhcLAFCuWNqCYrrfxlJHEbzjZxwcyF7QG5B5HgSK5mNAXIFa+RLOap39RoUbO+IqJADL0RQq02ncMHQWb77yQdxy3Y1qm+dpuX0Gs3XMzKRXOqvLjnJWxxGrowKLXRmt+nno8H21NKrDWQ1Ab8LicpnVGve1/mEbC9Vk21k9J1TxN5Ni9WS4lN70DTibNbs/03ieqvJcrOALX3Fw37YnjXwGyX4HZ6cGMDy4gP9w89+otm+oOjlZA5JJjAU5XJxo4pPfA9545CG1Pa6TzPcx4p/HzHwCoZSC6UISo2NLejEgSUstIe6KAUkgSOiJ1Zk+S8WAVKvqfiibqr1qTLC4bkc0Vse1v1Gqqmtv3AFJ5BxdWMDu3eqxa/tmx7aRdmtYqrgq/9u2jUzgkg3I4KAqjD052Rb/OjORtwKdRSsBI4JqOmth9pwHlEqYnLYwumsJSB3Q3i8AdXw/9VNqQrDX+wTLJz50CsOGXH9VFf9l5i/bG3p4En9ssI6Hz47gbz8yji/f+d+BpP7fPzhmY66Swke/vg0vOXBeGRkofPUu/f2oNWew3V1Aq1CEKbE6LOitxreuXgSj48Cz6suH3ygVmvHHy66LpJ1Hsdh9jpZLUvU3dJzVPlBqdDirpWyv6Iv7OYTvk5XQEBFSKFlIuRoFFjMZpJ1JfPXRIdy4e05t2yrmiB6mx++eW5tCydKKAXHTrnJBd4i18wtCZbXqxoB0OasNuF9TPpodec1PnfVwsG9aW6QEAFluX9Gb1brq8OuIypGrtuNOUa5aapbQRBZ2R4FF9Q29itRIJnHL2Bn88R1/2r4Ba3aYDu0q4cnc6MrM6ooT21ntpewVy95NONbheSr6Jfx/yaq+WG17iZXO6jAGROejbbnAI2f1rFDOat02ALQFnnPn1ONWW9rk+xgJljBzoYavPujhjvHjZpzV/b5yVsvp1u8hPUwyicMDF3D08QT+/M+BH73ya2q7hlg97OcxvdA+R6cKSYwEes5qN2mvnLwz4Kx2kk47wqkQOpVTKa3JS9eFKry8zFldytXU8cYdkAwMqEdVvXTridUAMkG9KyJNOasZA7Ll2LFDCZ4TE+qakEptvUH0jh3dfSETmdVZSxllikVMzyUwGiyZ7xv1ulANADfc0P06inbTwD60H9cOTrQ39HCfc2ykiY+evBEvv+IU+tyykXNrcNzDbDmFrx0bxr1XhrWCKFb3Lp6HoVQZh7KT6n6rOYkPoP3+SC+I+nM6YzrHgW/XUCl3O6vLxWb8voHjIGlXW5p61z41tY3Al8pZHYrVzWodAqEOE/fa6DiqVkqpuyBkoWypRALNGJDvnhnEoeFQrO7h69ZWYQPcQbcuhZKlVWBR+CtjMOYXBAY1xGo3ubICqwmhdnlkx/FzLg5kNcXqsLptrdJsLXVuzRKaEKs7JgFKBtzltoPuHGgDLnAASoRY7qrV7Igd2lvFEwtj3c5qKVGuJ+Al6rHabCsGpHMSoKKfBd6atCip/1dxqaFXLRhhpMTyApP1OkoNB0FSI59y2ZKxmammcmOYGJRGS2ijz3erdZr7+rAtWMRXv+li13BZtVMDwnIwGCixunI+3LDFPteNRhDgmoEJ/MO3BjA8LJGthfmvcTukoVg9k2tf86YLSYxoZs0L11GTbF0xIPqFGzudPvXFAhKiqS36uJ5Q/YJlYnUxV9cTqzMZde0vFID5eeUuTibNTN5tEDLJRlcdA4rVWxTH6S7UuNUiQADV5nfvbr820C/aNtbERKEfKJXC6MXq1hQnstm2c/2668wI7IcPt58fOtTTfaOxbRYeX9iGFw8dVRsMtK2hHT7mKilM51yMuWG9hR7+DAgw2l/Fob6OcbJuvYEggEBHjZTOotNxsW14Vr1r0TjQUZNMQ6wulrr/3kpZ31ntB0LVTwv/9sXpKvrckra7PGlXUcgtE6tLCTW+1yyweHRyCHsyoVjNc3bdoVjdwxTKCS1n9YqsJABziwkVAxLXWZ1MrBIDYqA6/bJjfeqsp8RqnQ6DEPDsZpcAWio0tQv2OX5ihbO6VLHUfnUyqx2BqVLGvFgNtCMajh9Xj4ODWrvbsa2Jc4WBbrE6vBEJ14l1g/eynso97ZwEKBtoW56nZmCL6vNcmGui340/YQN0TAR19hYaDdSaCTiuRucmjKpoltTnOjMDDHkGinwAwNhY9/9lq7my+vownszhb782iNuuNNcJGdiZxPdmd2LECkVPOqt7myDAtYPn8aGv7MJttzTUddbVWJbpuhgJ8pjOB+1J0bqtP4EbHU+ns7oa5vzpTN6l0xBCorGYR2mmoMRkTXHGccWqmdXFXB3JhIZYLUTbRR0V/tpCrmqgQ6wO77Un5gewMz1PsXor0inUbkWxGgDuvLP93ICovHePxKn8EFAsGsnv39C84x3A3XcDb36zmf11ttebbzazzzVibH8KAk280H9QbTDQBjJjSeRqPqZyAUYTYf+QwldPs2O0hiMD5gq4wvO6Chc2SlW1uls3BiSxSgxIUcaPAXEcBKuI1crgp5dZnU6HdQHC8fLsxZqKt9QplO26SNmV1uLAiEJk6NAQqzNOBScXB7EnWIP6TiQWFKt7mEJZ86RbRayezyUw4BbjZ1YnE2ppcqegWE3oZyh6HhKiiXpJieATMx62Jxe0b+x9QRWLHYUbWxdzzbziFTEgtYT2Bd1xgRf/7XsxcV4t7WlU9CNLWmzbph6Phq4BTbHa8l1YQqJe7HAWR59HzBuQCHxIoKttlStCX5zxPKSdcisBZXG+iX4v/jkAYNVzKxJqdAo3wveRdcrI5dTL7zyRxNWDE2Zulq4LDA21X2+1G3B/P7YlF/HZR8Zx7Q5zYvXbfiqFF28/rmKLDO2TrCFBgIN9UyhVE7jturCnq+MsFgLDmQpmyun29SDK49O5brmuynvuyPkr1pSbRGu/mQxG/DxmJhsozpaMiNUqBmQVZ3W+qdeHAdpRICdOqMetJlanml0DvS+d3Y8Xjz9JsXorsmdP+/mOHet3HOvJLbcA//JfKvfvvn3auxvbYWOymEUtV4IdFdvdqmJ1X5/6bPv6zOzPsoA3vEEJ1bffbmafa8TAvn785JEvqZhMwEj/WKSSAATmSx76q6Hwxf5hT/Off+xJvGz74+qFieuA7yPjtIskF3INFZWp6az2E7UVYnW5JONHdlzCWV024KweGLJULaaweuPsVANDfl5bsE91TAJEFMq2nsnTspDOCEhY2NM8qbZttbFyD8Lebg9TqNgqeyfuSeetEgOylMAhP76z2u0L1KC0I9houhDgKn9SO6oh685jaQnwS4CfqCkTqOaNfSBVwXwliV2Rs7oE7fyllli9LAYkSGg6q12BYt3D3KzEdgDFglQXXZNideRO0xSr4fvYl5nB6QkHrVI0kQMw7mzp8kIUAEomikn5PtJOBYW8xBBU7GmfW9YTUIIAQNN48U74Pga8AuYWExCLQK0KDJuKAQFUFEhUnGmr3YD7+jCeXMTEYhrXbZsCJmFk4OD5Ah/64b8DLoRuDA5GeptUCo7VxEv3n8Xzr7KAz0M7BmMkW8HMCVVwtmIFcK3wWqApVgNoi9X1Oop1F4Hb0Fuamk5je/IcJi4I9M+VkbQT2n9/wrNVLNLyyuxLDb0YEKAtVp8MBw5bTazOoOWsnp0FXKuGjFthgcWtyB13qA7M0FDPi39ryt13qy8DKEERmJ4Ghj1DRdVImzvv7HbD9yhiZBi/98Lfa28w0Y+zLMC2IWt1WJWSuf2SNcMdH0SrYp+JMZJlIe3VsFT1MF6pIJ9rKl3HgLO6XO32m5ZKiG/Gc10lVpe791kshoYxJ34fsW/IxkIlCRRUFM7sVF05q03EgKxwVtsqykljfJ/ps+BaNYzXz6m2sNXGyj0IndU9zHzRUy7ouCf0sqxeAJjLOVrOajvtq0FpOEMGAJNLKYwnc9pRDRmnglwOeOIJtIPtNS8SA6ka5ivJdgxIdDE3HANiIrf74M4KXjB6olVDqlCAdrZyi0isjtAVq10XezKzOH2xLUzX8hXYohm/vQaBymjtclYbyEP3faTsqnJWS4mFBaliQExkrJsWqz0PA14R80sJfP7zwF1XGi6G2FnhfavdgPv7MR7k0OeVsCtpOIusc0l2lA1OepNwdcGnf+CP0G+FSxgyGa1dDvfXMV3OAOUyZiYbKq/asvRyP51lmdVhJn7Sa1z+fU9HOo1tyUVcmEpg+kIdGaeifX0R3srIEoBitQnSaagCcJUKvvJliZeMP6G+QbF66+F5wA/8APCSl2yp3PY1JQgwlszh6MkkRrzwfkCxeusxPNz92lAb8Dtr2CQSXBHT63SuPjW0wiAT1FqrowpLTX1ntePAT9RQrnSbFlTMaS3evsO4klK5e5+5vIWsU9Jqt16fr0yOoW40NyNVLSadGBDHQSo0oXVSqoaJBBpxjOl+G7vS82plO8D7QQ/Aq2YPM1NMYtjPa8WAOFYDtUIV0aVrPu9gYEgjrzcSuDrcrxfzaYwFOQPO6jJySwKPHW3i8JCZJVP96Trmq8l2DEgJYWZ1fKHOCSJndVuwL9VsZG09AfT9/+osGo8WMT+v8qWnZhPq/2+ic7NcQNMVqz0PQ14BcwvtG0J+voa0U4l/AwoCSKjJleh2aSRixrKQ9uvIV12gWMTCglAxIDqDPd8HUFqRWQ1A71htGwN+GfNFHw/8UxMv23UaaMCcsHz33eo45+aAm24ys8+NQjqN7alFXNN/HqIQOqjWQqw+eNDMPsnaMDQECAExPwcsLqptms7i4cGmigGpVDB1roIRf0n/nF2eWR06q7XF6kxGidWzLj7xd+N4/YFPAukrzR5rSKlgIAYkEhGi6+sWE6szGWCpqpzVRx9u4rqhc6pPoFv4iRACJJPYmz6Fbx4fwmhUBG+rTeQTdY/q70fLLWSoDQwOClQqHf1NXrd7myNH1AoWxwFe8Qoju+wskpxfksac1ZVV86VjitWRs7rSPX5dKlrI6K5Ejs6lKAZkRmJQ11ntuioGZNlnIJtSicwaQnhm3xD2pEND0+goV0P0AHRW9zDlegK+XdeKAQkSNZTy7cHtfN7Ru0gsu+gAwMVCRt9ZbVnIpurIVX089r0qDvebWVI/kG1gvpIy66wOnG5ntZQo1cKCWjodEc9Dv1vEwqLax/HzvioyaUKsHhnpdvl1zh7HwfMw6BUwl2vf2E6fktidntOKARnyC5ifb28qVw0UWASQjnI/CwUsLAr0u3ozxatlVsuamYKYg6kK5qtJnDzexP5UR1VqE6RSypn1Yz+29WaLLQv7d9Xwkbv+GJgynB/YKaAZyNEka4htK7eulMCZM2qbpljd3ycxX0li4kwd//4/JjAamBGrHavRquOAeh2luovAl5d/3zPY7/ZsHo/PjeLBJzK4Z+dR/WtBdM1f7qwuSH1n9fJJtauuir+vDUhmwFYD3UIBjx9t4Kr+ixTTCDFFEGBvZhYPnBrFiL2g+skUJ7YmneMiQ/3jwdGwPwCwXW0EbBv4kR8B3vjG9qouTTLJplodVS6jkJfK1GXAWV2pLnNWR2a8OGNw10WQqK2IAckVbGSdst64doVY3VTOap1+TBQDUuz4DKQEZJhhreGsPvDC7fjlm/5OvaD5qCegWN2rNBqAhBI/4zo1fR+BXe0Sq+fyjiogEfemGUU1dDir8zVXXXw1l6VmswK5qo8Hv9XEdX2nW79PByVWt2NAphddjAQabnUATmB3i9WNBsoNB77b1BarB7wiFnLqtDx+ITAnVtu2mi2O0HWneR6G/AJmc+3P8YknBQ71TWo5q7cnFzAx076JzxQC1V4121Y6FVYjzuexmBPoc0vanQUAKvojdPzVKg24VkP7/zWQqWO+klLiv3tRbaQ4YQTR34ed6QXgYvi5anRouhgfbz83tU+ydoyMqMcoWkJTrBaB+p9/858TSLp1vO2qr+kPdqNcwlIoTjcaZpzVALaN1PHh47fglXseU7cs3WONrqXLKv4UCzL+stSITKYtWN94IzA2Fn9fG5DMsKfE6lwOTz4FXJGd4v2AEFMkk3jtnofwmRNXqLFBMkn361blllvUvfDmm7uLmWowtM1ri9VbzSBCAKgiyUtV5axeWBRmCizatZWZ1UWpzHg6zurqMmd1KYGMo+msTqVUbMmCMnedO29hPFjUOx9cFym7gkKns7rRULXNNeN2vCMH8NLtYdyaoesA0YNidY9SK9bgWA110YnbcfJ95awutKul1moCbqIRXwROJiGERCMfitXNZltU18nnBJDtEzhf7MfkJLDPm1AbdcXqfuV4ixywp2dSyv2r46xOOt0FFut1lOqOKnylQxCg3ytifjESq1PmxGpAVeV+0YuA175W+38VOatnc+2b4hMnbCVWa2Ssb08uYmKuLfadnB/AvsyMtlidygg8Mr8DzVweC/NNlVmtI1B1tvcoYqYYRcxoitXDCcxVkqiWGvCqYSeX4oQZovgbGQqAppwuV18NvPWtwAc+YGZ/ZG2JxOrT4aRoNqu3P9/HgFfEd486uOfWeVzRZ0BQdF3VwS+G9+9aTd1ndJ3VALaPNXC+MIC7+x9UGzTF+suJ1cm4Tp9O3vQmtSLkrW/V288GJDOWRK7mQy7mUClJtdqO9wNCzBAEODJ4Eb9w46dxZGCCguJW5s47gd/+beDHf9zYuGtwdxojuwNg927g1a82sk+ysUinpJpwLpXwDw+P4yXbn9CPAbHqKNe6x/HlCrRjQEpVuz0+ApArOsi6+s7qfreEhVklJj/4eAo3Dp/V68fYqpBisdNZHWkyuv3NVKodP3fkiN6+iBEoVvcosxdrGNLJqwYA34dvd8eAaC+RCALsSs3j3JS6GJbmSvDtmtqfphvhRdcv4v0P3otX3jzdvugYEKsXqm1n9em5NPakZzVjQFY6q0sNA2J1Oq0u6Dn1OT510bBYbdvAm98MvOY1+vtKpTDkFzC31OGsPuXiUL+Gs9pxsD2dw0Qu3SpWeGqxX4nVmp/BG140ga9cPIj/83dumFld0h+URO29Mw9dN18bwP79wIPTe1SuWRS3wwGUGQ4d6n5tSqwWArj9dhZX3ChEYnWErnsilcKu9By+9GAS+4YNuaiiIjqdzuqGi6TfvPz7ngHj2wSSdgW3jR5XG3SXu14qBqRoSKxOp4F77tmSy6iDkTTKdQdPHrewYzjsc1CsJsQMiQSwcyc+8LxP4vmjp7ZcJj5ZW66+1sK177gD+MVfBK67br0Ph6wDmaxa2VsvVPCPx7bhZduP6ceA2DWUa91jzVJZxF/JJgSSgUSx4Xb145ZKthFndb9XxMK8xEMPAVdvX4BtNfX6yL4fOqvbMmajUFZ51SZWt77vfcp81FmPiKwbFKt7lJnJBkZ0xeogaDurpUS1CiRkKKjGPZldF/v7ZnB8bgCo1zF5poLxIGdkEHnb82r4/Ts+jB+99RE1s+d52g7ggQF0O6vnMtiT0RSrlzurGw2U62EMiA7pNAa8IuZz6thmljy9AptrSTKpnNUFrzUL++QZDwez0/FvwkJge38R5wv9rYmAqWJaLaHTFIB37QJ+/oZP4wsPpLCQs/Sd1cBKZ3XJjLP6ppuAf5rcj339C0q0t+3ebAMbkcOH289HRjgw3ars2tV+7jj6kwyDg9idnsM3Hs1ib5+hIl2uC9+uoVIOxeqowGKg76z2+gP842t+C14izNk3EAslpVjprC5CP7N6q5PN4vt2PoZ3fvgOvOQ6FoAjxDhXdhSYpaBIDHLffWb8QWTjkslaWKr5+NLXHbxw7zkl1GpnVtdRWeasLpUtNQaNue9kSqBY7xarc2XXmLN6fk7iYx8DXntNGL+nI1YHwYrM6sJ8FSm7YkaszmZpPuohKFb3KNMXG0qo1Mw1Gk/n8aePvwCNcg1PHJO4IhNmtcYVl4XAgeEcTiwNA6USJs/XMZ5cNON46uvDffu+i32N43rH2EH/oNUlVk8sprE9uah14bWTbrezul5XzmpPX6zud4tYKDgoFSXcREOZd005q01i2xjM1jFXVq51KTtmdTVcdDsGS5go9gOlEppNAFKqz0BTrEY6jVtHTuIbR9M4M5NUOdiaYrVlCTSaYqWzWvP/ZY0M4e4dj2OvFxYZpTBhjs5s6bvuYjblVmV5kT7d68vwMHan51BvCGwPQkHRQA60Z3VkVkdxUybMxX19uGW0IwJF9x4T9VNWOKuFGWf1ViabxQ/s+zaemu7Du15zSm3jPYEQc3TeD268cf2OgxCy6ciM+Fiq+fjwZwbwxmseURt1tJ1EAl6ihnLdVlGsIaWKgJ+ox953kFwpVi+VQ2e1Th8uqcbcU/MOPv5x4L6rHmttj00QIOVUVhGr2d/cjFCs7lFmppsYCZa0HZX3v+SLeCo3gmMPVXD0oQauHphQA1ONwen+0TyO50aAYhHf+67EvsysmZmsyN11UVNQ72Bg3MN8NQkUCgCApoSa1dT4XAdHbUwU+7rE6nLDge9pOt5cF/2pGhbKPr78hRpu3xvmdusKKWtEss9BoeYBhQJmZ4GRrH5e1Pbhqvpsy2VcvCCxLVhU3zAgVvt2HRm3ihtHz6tKxJpikuPILod9qSxUJI6u8DM0hHdd/UW8dujr6jUjQMwhBPDud6vc9pe8ZL2PhqwXiURboLj+ev39hc7qXX052BV1rzHlrI4W8KBeR0NaSLgG7gedjpEox10Hz4NtNdAoLROrSxSrtclk8PzRU3j4h/4jgjprGBBinEOHgG3blFA9NLTeR0MI2URkxpKYqyTxzWN9uGPbCbVRR6wWAr4HlBtOKzITAMoVC0EivrPa8l00l62Qy5VcZN2Stljd7xbxZw/fhFe+QiKo5dR2nbGt5yHl1FCsJFqC/fSFutLNWOR+0/G0YrUQYpcQ4otCiEeFEEeFEO8Ot98vhDgvhPhu+PWqjvf8vBDiKSHEMSHEPR3bXxFue0oI8XNr8ydtDqanoO+sBmCnPBzITGN+stoWqzVF4APbSziRG0FjqYj/8eEM/tWVXzPmrAYAzM6qRwMDMn84jUrDBnI55HJAxg4LQ2pcePcf9jBXSWFyLhS8Gw0s1Xykk5rOaiGQGXSQq/n4zN818Ir9T6rtPZrTKdLhjSafxxNPAIfGQmFZ47MdH65jotAPlEo4eayq8qo9T98BG7qoP/jDn8PvvPCjapumCJxN1rvy0EtlYSSzGkNDuGX0NG7tO6ZeMzPLLEeOqHWZukVGycbmJ34CuPdeVXhWl6Eh7E7PYV9qujUxasJZ7dt1FQNSr7cHJSZW2nSK1bp51QDgunCtBqqFWtfmUoVitTaeB3ge0qJgtG9ECAnxPOD++4F3vGO9j4QQsslIj6XwxYkr8YIdZ2HVwwl9TW3HD4TSNjrE6lI1ET+zOjwmAbSd1VJiqeIibVf0+nCWhf5UDZ84fT3e+vqymVpMQiCZBAp1Vy1rBnDuHLAztUCxehPyTEbrdQDvkVIeAfACAO8UQkTlMX9HSnlD+PUpAAi/9wYAVwN4BYA/EEIkhBAJAL8P4JUAjgB4Y8d+yDJmpqXKrNYd5Pk+Bv0C5qdqeOQRiWsGz2uLn3u2VXFscQx/9+kEbr86h2G/YEZQXe5oMLHPTEY9Li3h0aMdMSg6F0nHwVuueAAffvxGNaPXaGCmnMZwuvz0730arEwKDWnhi19O4MWjj6uNutnKa0X4GcpCUYnVI+Hyd42bsJdxUW0mIEtlHP1uDVf2T5oZmIfHuj+4AK8ciuqan+vukRLO5gdazup80ULaqeiLSQMD3ULq/v16+yOErCSZBF796vY9Qod0GlcOz+GDL/r/gJmZ9v51EAK+L5R7pliErK2RWJ3N6u/P8+Am6qiWuosMF8sWM6tNELXRaNUZxWpCCCGk58ns7MPJpRHcMXysLdRqCqpeYKm+YeSClhKlagJ+Qk+sBtAWq+t1NKVQq/k0zT39fRLXDJzH4R25tqFDsx+TylhqdXcoVp+fAHak5mmO2IQ8beuTUl6QUn47fL4E4DEAOy7zlu8H8BEpZUVKeRLAUwBuDb+eklKekFJWAXwk/FmyCrdcsaCEZd1BSRBgwC1ifqaBU6eFiuzQFIG9rIebhs7gp39tDD/5mjOt36NNNgscONB+3ZkvG5dMBiN+Hk+dcfE3/6eBV+98SEWA6MSrCIFbdkzg0fltSqis19FoWrBdA07NdBq5qo87b84hKIfirwkxYS1IpZBxy8hPl5RYPTSntuvcKHwf25OLmDjbwAPfFHj+6EkzbSsSpmdm1ASD52mLPnvGKjiTH2zdKCfmA2xPLug7qxOJ7kKA+/bp7Y8QsrYIATEyjD2ZOWXvAIzE93iRWF0oYGFeot8tmYmF6rz/LcuZjoXnwbEaqBbrXZuL5YQq+MPBgx7RqjOK1YQQQsiGIbNDjeFvzzyihFrb1jZJWIGnIjuinLhGA+W6jcBtxO8jui4k0O4TRo8G+m83HSnj/ud9EpieNuOshhKri53O6gsJOqs3Kc9KXRNC7AVwI4AHwk3vEkI8JIT4oBAiWku6A8DZjredC7ddajtZhVdeP4ED2RkzYrVXxNxME7IhYQmpfyInk3jv9Z/FrYcWcXgsFChNXRxuuaX9/O679feXyeAnDn8Zv/XV5+Mz/wDcs+uokYHezqESzhX6gUoFzVoDQkgzjrdMBu++5gv4lTc/qS7oltW7A9NUCtuTC3jqSanE6r5JtV2nLQQBjgxcwKOPCXzvkQSuHzpnJrM5GuzPhxMABtzqu7fVlFgdzmyfm09hZ3peO2ceAHDbbe3ne/bo748QsrYMD6vHyOliIsYqaDurp6YFRoOcmesLAIyNqccrr9TfVxgDUistE6urCcaAmCD6X0WDvF7tExBCCCGkRbovgdHkEg5mp9SGwUH9aEvfV5EdoVCLahWlhmYB7tBZLSuhSB0J4QZWxu2/ysV9+74LnD+vokt0TYMAkpkECvW2s/rcRZvO6k3KMxarhRBpAB8F8DNSyhyA/w7gAIAbAFwA8FsmDkgI8XYhxINCiAenp6dN7HJjYmjmKRKrz01YSPn11jYtBgZwZOAC/urdX2tfKE3lKt92myp49aY3mcnS9Dy89orH0WgAP/zKBSTtmhHxc3S4iclSFigWMTcrMeQVzDje0mm8+9ovIJ0LiyumUvo3tbUilcJPHP4KfuWDO/Doo8AeJzxmHSd4Xx+ODFzAA99x4SYa8BJ1M20rlerej4E2sHt7HafzQ+0lSAsp7DDhrAaAG25QItKLXsRZYkI2Anv3dr82MCHmpxIoN2wgn8fUbAKjwZK5grvvfS/w9rcDz3++/r5cF65VR7XcXbehWLUpVpvg2mu7X1OsJoQQQnqeRAL46js+1B7Kmyhq7fvKBR0JytUqSnUHQVJDL/A8ZTooKLG6UaoiYTXN9N+i2ksnT6pHA32YVJ/dlVl9ftqls3qT8ozEaiGEAyVUf0hK+TEAkFJOSikbUsomgD+GivkAgPMAdnW8fWe47VLbu5BS/pGU8mYp5c0jIyPP9u/ZPJhy0AQBBr0Cjp10MdYXOr50T+QoW3pmpn2hNCVW+z7wkz8JvPjFZvYHwO5L4Y9e/Bd4z2vCgnUGLpJWJgUpBVAoYHJKYCzImXFWRwLHhQvq0USe6lqRSuGl25/Ajmwe738/YBfCLGidY+7rw5GBCfz2J/bj3tsNZb8CSvDvLFRowlm9RyhndZi/dW4hrZzVJtqB4wD/9t8Cb36z/r4IIWvPwYPt52NjRq7dgwMSs+U0UCgoZ7W/ZOb6AqhJxec9z0yh0dUyq6Vsi9XMrNbj8OHu/xPFakIIIWRDcMXhjn7b8vpccYg0lw6xutxw4Cc1+nOui5RTQSGn+nFLczVknLIZsTrS8556Sj0aMIy5GQ+1ZqIlVk8vOBg2UeuN9BxP26qFEALA/wTwmJTytzu2b+v4sfsAPBI+/xsAbxBCeEKIfQCuAPBNAN8CcIUQYp8QwoUqwvg3Zv6MTYhBsXrAK+Kx0wHG+wy5oKML7eyseWf1WhCJBpNhTIWJgV4yiaRdRWGmhIsTTYwlDS3PjuIqTp9Wjz0uVgPA773hq3jD6yWwtKS2a4rV1w+ew2/e+xW87wfDm5qpttU5+WXAtb9zn6OiYPJ5AMBkPqnEJFPOR0LIxqEzW/6aa4ysiNm1vaGKuBaLmJpLqPuMKbHaJK6rMqs7xepaDdWGDcfTL86z5QkCNbEAqLiZqJ9ACCGEkN7miivaz02I1ZHpsEOsrjZsOL7G+NN1kXXKWFpYA7E6ijKLdILOIt9xibSBUIeSTUNRt6TneCajnjsAvAXAw0KI74bbfgHAG4UQNwCQAE4B+AkAkFIeFUL8FYBHAdQBvFNK2QAAIcS7AHwGQALAB6WUR439JZuNqFqqoRiQExeTGMucb23TIsrmnJ1tC5O9fHGIYikisdpEBnIqhZ2peZw/JTB5UWI8yJkRwXeEMe65nHrcAGI1CoVWoUl4np6Lrr8fvl3Hjx75BlC+QW0z5SLrdFZ3FjCMiTOYQaVhIz9TRhqqbmPCkuYyZQkhGwfPU9eVxx5T8T0G2LVT4mxhAChcwNS0hRv9JSDoN7Jvo4TLR7tiQKLsbrqqzfC2twE/9EPqvssJUUIIIWRjcNVV7eeGYkAAdGVWAzaEp9Hfcl1k3RJyixIAMD/TUEW9TfThIt0owkQtpg6xem4O6PNC4b6X9SgSi6cVq6WUXwWwmkXoU5d5z68C+NVVtn/qcu8jHRh1VhfQlBbGU8oBqn0i9/WpwVIu1xZVe9lZHUU+XLyoHk2In2kV+XDu7AAmJ6FiQJL60RLYsUM58qS6WfS0WN1ZtNCEq7pznwsL5otJdbrRjhzR3186jX93/afwjr++C3/87wBfhEUpuESbkK3J29+uJu8MRZjt3JPAucIAkH8SUzMCo8klM5OtpgljQGqVtlhdnK8gYF61OYTQqwdBCCGEkOeeTrOUiT5cEEAAaJYqsBAVRbT1hGXPQ9YpI7eoVsJdvAhsSy6a6cO5LrB/P3DihHq9e7f+PjvE6ocfBq4bCwtYUqzedHBtZq9isMBikKjBs+sYc2bVNt0Bj2W1ZwbPnWv9np4lOlaTYnUyiZ2pBZw9JzA5LdTybBP7dd32chnASLbymtGZXR6J1bptK5tVg/J8vhWvYaxtRQXQkkkznYVMBm++4gE8NdOHRx9pYmdyVh17L58LhJC1I5k0JlQDQHrYR77m4fx54PhEoAos9uI9wbaVs7oKtcQEwMXzDbXiiGI1IYQQQrYqQgD/+l8DL3uZionTxffhJ2qo5NQKtuJiDSmnotffcl1k3TIWc8qfevEiMJ402Ie7/fb2cxNidShKy2IJDz0EXDsYpgf0Yh+ZaEGxuleJYkB0BdBkEkIAA0EZ440Jta1zhi8ukVBZr6vHXp7J2rmz+7WhGJAjAxN45HiAY6cDHMhOmxMpd3XUIe1lJ1U6rW5ipVJ7IkDXWW1Zah9Smp1cAJRY/Z73AB/4gJn9BQEgBF40+gTe+54mXr7z0dY2QgjRJpWCJSTe8IcvhSeqyuXSi85qIeC6EtWmHS5HVWK1MVcOIYQQQshG5YYbgNe/3kwND9+Hl6ijkq8BAGampSouqO2sLrUWzF+csjAeGOzD3XorMD6uxHoT4/ogUJ/BUlU5q7On1HaK1ZsOitW9iqkIhPFxAMCAk8d4JSzaZ0Ks7iwmlUj0dsGfTvEXMHORTKVw68gpfOOJQRy/mMT+zIw5UfWGG9Tj/v3A9deb2edaIEQ7h+rkSfVoQlyP2lIkVpt0Kh86BPT3m9mXZQGpFO7a8Ti+/o0EfnDfdxgBQggxRyqFsSAHS9bxiTf+JQK71rMdcccRqDYSrYI/FyakcuUws5oQQgghxAyhs7q8ZFCsDp3VuaXQWT2dMNuH8zzg/vuBn/opM/tLpZCyK/jmYxl85zvA1UEYMdKjfWQSnx4sK0/QaKjiREKYyZdOpXDn+OMYE1NqfyZO5KuvBv7+79Xzq67qbffU0JD6u6OquYac1f1eCXN5B4fGFpSZ1pRQefPNwHXXbYxB/vAwcP58O4fKRMb24CBw9my7QFcvC8CZDF687Qn8zk+fxMBSEUiZiwAghGxx0mnsSp3Gke0n27FIveisBuAGCeWszueB/n5cvCDprCaEEEIIMUkQKLG60ACg0jhHdMXqdBpZt4QLOVUz6+KsjW3bFs2unDe58ri/H++57mP406++CC+/p4HUfAGwNXO7SU9CZ3Uv0umq1j2xhQB27MDvv/DD8O26ytM0cbHYv7/93ESxurWk0wEMqCKGuoSCwa3bz+GOXWfUNpMO4I1ysY0+1/NhVpQJZ/UVV3S/7mWxOp1G0q7hJ+/4nnrdy8dKCNlYDAzgZ2/8LH50z+eBxUW1rVfF6mQCtWaiVb/gwqSFcYrVhBBCCCHm8H34dg3lvIpinZmBclbrCMvptCqwGGVWz7mqD9erekR/P16x6yg++OI/xa++L8wuSacZxbkJoVjdi5gqrhjRmdlsIgIEUNEf992nhMU77jCzz7Xk5S9XIvW/+TfAwID+/sL/zc/e9Hn8yJEH1batKFR2TgIAwLXX6u/z6qvbz5NJc7Eda0G0SmFyUj32qJBECNmAWBYO7G0g45RVfYgeLuDqplxUmwlEgYcXpyzlrO7VgQ4hhBBCyEbD9+FZdVQKhsXqjhiQxYKNrFPuXcNBKqWc1OWy+gAARoBsUhgD0oukUsAP/ZC5Qd6ePe3ny4sN6vCKV6ivjcDzn6++TBGKkof9k4AVXhy3olh97bXAX/6ler5790rxOg7btrWf33OPuhn1KsvF6q3YBggha8fQEDA7q56nUj3rGnFTDqpTdkusPnHOxc7rFoDklet7YIQQQgghm4XIWV1sAgBm5hO4ws/rmRnSafS5JeQKCUBKyKZU3c1eFauFUGa2mRng3Dm1jWL1pqSHVaAtTDoN3HWXuf3dfDNQKinx+5ZbzO13K+O66qtaBebn1batKFSOjKhiCR/9KPCDP2hmn0IAP/MzwPHjwPd9n5l9rhWDg+pxYkI9bsU2QAhZO4aG2s97eOWGk3JRbdp44MEEGimgWpEYDZZ4TSSEEEIIMUUQwE/U22L1QgLD/ZpiteMgm2pgseJh/kJZFfQGelesBtRKeYrVmx6K1VsB2wbuvHO9j2JzIQQwNqYKAUave/mCvpZcc436Msnhw+qr1+l0gQM9LSYRQjYgnWJ1D3fE3YyHUjOBX/urg/jH/wTc/9pT6hu8JhJCCCGEmMH34SVqqBQbgJSYXnAwMr6kXQwxO2gjVw3w8z8PvPO276iNvRzlFsWEUqze1DCzmpC4dAqVQdCzy7PJGrJcrKaLkBBikg3irHYzHgo1F6enA/yv/wX8yPOOqm/wmkgIIYQQYgbHge9KlKsWUK3i/FwS48mcdk2TzKCDM/lBfOd7Am88+K1wY8bAAa8RFKu3BBSrCYlLp1DJAfnWZGQEsDouo2wHhBCTjI+3n3cWn+0x3KyPL104hNu2n8GrXw0MiTn1jR4W2AkhhBBCNhp+0kKp4aK5kEOlJlRsh6az2u1P4nR+EHffsgiRW1Qb+/oMHO0aMTCgHuuq0CT7m5sTxoAQEpdOESHKLiZbi0RCzeSGRcU4q0sIMcq+fcBb36omR/ftW++juSRONsDnJ67Cl1/6hwCeBxSL6hucwCOEEEIIMYaXsvGjn/kRnPytPPZlwyLcms5qZDLIumW87Mgk8HhBmbF6eVy7f3/361271uc4yJpCZzUhcel0Vr/iFet3HGR9ufJK9Tg+Dhw8uL7HQgjZXAgB3H57TwvVAPC8Fwb4+Mv/O25NPQpICRQK6ht0uhBCCCGEGOP7bpjGb77gf+O3/qQP1/SfVxs1ndVIp3EwO4XbBx9Xr7PZ3o443bu3+zXH4JsSOqsJicv4OHDzzWqJTA8vzyZrzA/+oCoGeeut3ZEghBCyRdi938buq88CuSawsNB2VlOsJoQQQggxxtWHajgy9TX82rHX4ZrsGbXRgLP6q/f+BsTkAfW6lyNAACWk33038LnPqcdeFtZJbChWExIXIYAf//H1Pgqy3gwMAHfcsd5HQQgh68vIiIpEmpwESiW1TXfwRAghhBBC2mSzEAL45dc9ihcuPQHYtvrSYWRE6b3Hj6vXvS5WA8B99wEHDgDXXbfeR0LWCNoACSGEEEKIHiMj6vHMGRUFEgRcbUIIIYQQYpJMBgDw9hsfxLZkzowxoDPeFAD6+/X3udbYNnDTTfpCPelZOIoghBBCCCF6RGL16dPqkcUVCSGEEELMEorVmJxUj7p51QAwOgokEu3XG8FZTTY9FKsJIYQQQogekVh96pR6ZF41IYQQQohZIrF6ako9mnBWJxLA2Fj7NcVq0gNQrCaEEEIIIXqMjqrHmRn1SGc1IYQQQohZsln1WKmoRxPOaqDbZHDokJl9EqIBxWpCCCGEEKLH2Fh3NfZIvCaEEEIIIWYYHOx+baqY9e23q37cm97U7bImZJ1gGjkhhBBCCNEjmQQOHgSefFK9vvba9T0eQgghhJDNRhAA27cDExPq9d69ZvZ7++3AzTcDrmtmf4RoQmc1IYQQQgjR5+qr28+vumr9joMQQgghZLNy8GD7+eHD5vZLoZr0EBSrCSGEEEKIPnfcAQwNAXfeyQEPIYQQQshasH17+/mePet3HISsIYwBIYQQQggh+mSzwK/92nofBSGEEELI5uXWW4GvfQ248UbAov+UbE4oVhNCCCGEEEIIIYQQ0uukUsAv/dJ6HwUhawqnYQghhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsO0JKud7HcEmEENMATq/3cTyHDAOYWe+DIJsSti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7TJ5fe6SUIzo76GmxeqshhHhQSnnzeh8H2XywbZG1gm2LrBVsW4TwPCBrB9sWWSvYtshawbZFyNrRa+cXY0AIIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSre4s/Wu8DIJsWti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7eur8YmY1IYQQQgghhBBCCCGEkHWHzmpCCCGEEEIIIYQQQggh6w7F6ssghNglhPiiEOJRIcRRIcS7w+2DQojPCiGeDB8Hwu1XCSH+SQhREUK8d5X9JYQQ3xFCfPIyv/PTQoiF5T8jhHiXEOIpIYQUQgxf5v37hBAPhD/7l0IIN9z+YiHEt4UQdSHE6+J+JsQMm6xt7Q7/lu8IIR4SQrwq7udC9NmgbWvVnxNCvFQIsSiE+G749f44nwkxwwZtWx8SQhwTQjwihPigEMIJt78pvF49LIT4uhDi+rifC9la9Nh5sGr7XuX9l7p/s2/YQ2yytsW+YQ+xQdsW+4YbgA3attg3JBsCk+eXEOJU2La/K4R48DK/8xXh+fGUEOLnOrY/53okxerLUwfwHinlEQAvAPBOIcQRAD8H4PNSyisAfD58DQBzAH4awG9eYn/vBvDY0/zO3wDwllW2fw3A3QBOP837/zOA35FSHgQwD+Bt4fYzAP4fAP/rad5Pnhs2U9v6JQB/JaW8EcAbAPzB0+yHrC0bsW1d7ue+IqW8Ifz6lafZD1lbNmLb+hCAqwBcCyAA8GPh9pMAXiKlvBbAf0CPZbSRnqaXzoNLte/lsG+4MdhMbYt9w95iI7Yt9g03BhuxbbFvSDYKps+vO8Pr5s2rfVMIkQDw+wBeCeAIgDeGvw9YBz2SYvVlkFJekFJ+O3y+BHXh3AHg+wH8WfhjfwbgX4Q/MyWl/BaA2vJ9CSF2Ang1gD95mt/5eQBLq2z/jpTy1OXeK4QQAF4G4H+vcmynpJQPAWhebh/kuWEztS0AEkA2fN4HYOJy+yJry0ZrW8/m58j6skHb1qdkCIBvAtgZbv+6lHI+/LFvRNsJeTp67DxYtX0v+x3sG24QNlPbAvuGPcVGa1vhz7FvuAHYoG2LfUOyITB5fj1DbgXwlJTyhJSyCuAj4e9aFz2SYvUzRAixF8CNAB4AMCalvBB+6yKAsWewi98F8LNY2wHBEIAFKWU9fH0OqjGTHmYTtK37AbxZCHEOwKcA/NQaHgd5FmyQtvV03CaE+J4Q4u+FEFev43GQDjZa2wqXeL4FwKdX+fbbAPz9c3EcZHPRK+fB07Rv9g03IJugbd0P9g17kg3Stp4O9g17kI3Wttg3JBsJA+eXBPAPQoh/FkK8/RI/swPA2Y7Xz7bPaLTPSbH6GSCESAP4KICfkVLmOr8XzsjJp3n/awBMSSn/ee2OkmxENknbeiOAP5VS7gTwKgB/LoTgtWWd2SRt69sA9kgprwfw3wB8fB2PhYRs0Lb1BwC+LKX8yrJjuRNqQPK+5/BYyCagx86DVds32ZhskrbFvmEPsknaFvuGPcgGbVvsG5INge75FfJCKeVNUBEf7xRCvNj8kZqFnYanIZxx+yiAD0kpPxZunhRCbAu/vw3A1NPs5g4A9wohTkFZ6V8mhPgLIcTzRbs4xL0xj+8z4fv/BMAsgH4hhB1+eyeA83H2S9aeTdS23gbgrwBASvlPAHwAlwzdJ2vPBmtbl0RKmZNS5sPnnwLgXK6gA1l7NmLbEkJ8AMAIgH+77Gevg1pq+v1Sytk4v49sTXrpPFitfbNvuHHZRG2LfcMeY4O1rUvCvmHvsRHbFvuGZKNg6PyClPJ8+DgF4P8AuFWoAo7R+fUOqHv4ro63PW2fcS37nPbT/8jWRQghAPxPAI9JKX+741t/A+CtAP5T+PiJy+1HSvnzAH4+3OdLAbxXSvnm8Ns36ByjlPKeZcf8RQCvg7rIP+2xkfVhk7WtMwDuAvCnQojDUAOSaZ3fTeKzEdvWpRBCjAOYlFJKIcStUBOs7DiuExuxbQkhfgzAPQDuklI2O7bvBvAxAG+RUj6h8zvJ1qKXzoNLtW/2DTcmm6xtsW/YQ2zEtnWZ97Nv2ENsxLbFviHZKJg6v4QQKQCWlHIpfP5yAL8ipTyLjvMrFJmvEELsgxKZ3wDghy+37zXtc0op+XWJLwAvhLLUPwTgu+HXq6CyWD4P4EkAnwMwGP78OFQuSw7AQvg8u2yfLwXwycv8zq9AdeZK4fvvCbf/dPi6DlWk5E8u8f79UIUCngLw1wC8cPst4fsLUDf0o+v9+W7lr03Wto5AVYf9Xvh3vHy9P9+t/LVB29aqPwfgXQCOhm3rGwBuX+/Pdyt/bdC2VQdwvON43x9u/xOoCtXR9gfX+/Pl18b46rHzYNX2vcr72TfcAF+brG2xb9hDXxu0bbFvuAG+NmjbYt+QXxviy9T5BXWv/l74dRTAL17md74KwBPhOfKLHdufcz1ShG8khBBCCCGEEEIIIYQQQtYNZlYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYQQQgghhBBCCFl3KFYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYSQLY8QYkgI8d3w66IQ4nz4PC+E+IM1/L0vFULcvlb7J4QQQgghZCNhr/cBEEIIIYQQst5IKWcB3AAAQoj7AeSllL/5HPzqlwLIA/j6c/C7CCGEEEII6WnorCaEEEIIIeQShM7nT4bP7xdC/JkQ4itCiNNCiB8QQvy/QoiHhRCfFkI44c89TwjxJSHEPwshPiOE2BZu/2khxKNCiIeEEB8RQuwF8A4A/yZ0cb9ICPFaIcQDQojvCCE+J4QYe5a/+1TH9m8KIQ6uywdHCCGEEEJIDChWE0IIIYQQ8sw5AOBlAO4F8BcAviilvBZACcCrQ9H4vwF4nZTyeQA+COBXw/f+HIAbpZTXAXiHlPIUgD8E8DtSyhuklF8B8FUAL5BS3gjgIwB+9pn+7o6fWwy3/x6A3zX89xNCCCGEELJmMAaEEEIIIYSQZ87fSylrQoiHASQAfDrc/jCAvQCuBHANgM8KIRD+zIXwZx4C8CEhxMcBfPwS+98J4C9DN7YL4OSz+N0RH+54/J1n/RcSQgghhBCyTtBZTQghhBBCyDOnAgBSyiaAmpRShtubUEYQAeBo6JS+QUp5rZTy5eHPvBrA7wO4CcC3hBCrGUf+G4DfC53RPwHAfxa/O0Je4jkhhBBCCCE9DcVqQgghhBBCzHEMwIgQ4jYAEEI4QoirhRAWgF1Syi8CeB+APgBpAEsAMh3v7wNwPnz+1pjH8PqOx3+KuQ9CCCGEEEKecxgDQgghhBBCiCGklFUhxOsA/FchRB9Uf/t3ATwB4C/CbQLAf5VSLggh/hbA/xZCfD+AnwJwP4C/FkLMA/gCgH0xDmNACPEQlBP7jbp/EyGEEEIIIc8Vor16kBBCCCGEELKREUKcAnCzlHJmvY+FEEIIIYSQZwtjQAghhBBCCCGEEEIIIYSsO3RWE0IIIYQQQgghhBBCCFl36KwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLuUKwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLu/F9cCxj9aYoWTAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(25,6))\n", + "plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for training data: 1.7195710200875551 %\n" + ] + } + ], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAADSCAYAAAAL37fDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABSYklEQVR4nO3dd3hU1dbA4d9Kofei0qSJ9B6KKIiIgKCoIIoFbAjYr+Varvez92vFhogNRJCqgCC9inRCB+kSpPciqfv7Y53AgAmkn0my3ueZh5kzM2f2HJKTdfZee21xzmGMMcYYY/wV4ncDjDHGGGOMBWXGGGOMMUHBgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwRSHJSJSKiILBOR8d7jb0Vki4hEercG3nYRkX4islFEVohIo4B93CUiG7zbXRn+bYwxxhhjsqmwVLz2MWAtUCRg27+dcyPPet21QDXv1gz4HGgmIiWAF4EIwAFLRGSsc+5gWhtvjDHGGJNTpCgoE5HyQCfgdeCJ87z8BmCQ06q080WkmIiUAVoDU5xzB7x9TgE6AEOT21GpUqVcpUqVUtJEY4wxxhhfLVmyZJ9zrnRa35/SnrIPgaeBwmdtf11EXgCmAc8656KBcsD2gNdEeduS256sSpUqsXjx4hQ20RhjjDHGPyKyLT3vP29OmYhcB+xxzi0566nngBpAE6AE8Ex6GhLweb1FZLGILN67d29G7NIYY4wxJuilJNH/cqCziGwFhgFtROR759xOp6KBb4Cm3ut3ABUC3l/e25bc9jM45wY45yKccxGlS6e5B9AYY4wxJls5b1DmnHvOOVfeOVcJ6A5Md87d6eWJISIC3Ais8t4yFujpzcJsDhx2zu0EJgHtRKS4iBQH2nnbjDHGGGNyvdTMvjzbEBEpDQgQCfT1tk8AOgIbgRPAPQDOuQMi8iqwyHvdK4lJ/6kRGxtLVFQUJ0+eTEfTTb58+Shfvjzh4eF+N8UYY4wxgOgkyeAUERHhzk7037JlC4ULF6ZkyZJoJ51JLecc+/fv5+jRo1SuXNnv5piz7NsH4eFQtKjfLTHGGJMaIrLEOReR1vdnu4r+J0+etIAsnUSEkiVLWm9jEFq7Flq2hCfOV3jGGGNMjpPtgjLAArIMYMcw+MybB7ffDqNGwcaNsH693y0yxhiTlbJlUBYsfvrpJ0SEdevWnfN1H374ISdOnEjz53z77bc8/PDDaX6/8dnBg7B6NcTEJPuSsWPhX/+CceOgVi145RV44YWsa6Ixxhj/WVCWDkOHDuWKK65g6NBkFyUA0h+UmWwsPh7eew/69YMnn4QBA2DJEoiOPvWSL7+EDz+ESZOgfHndduWVcPgwREb60mpjjDE+sKAsjY4dO8bcuXP56quvGDZsGADx8fE89dRT1KlTh3r16vHxxx/Tr18//vrrL6666iquuuoqAAoVKnRqPyNHjuTuu+8GYNy4cTRr1oyGDRvStm1bdu/eneXfy2SwefNg717N3I+J0YBswAB48klc/y94pc8Ofp0Qz4QJULz4mW999VX473/9abYxxpisl56SGP7r0ydz9vvFF+d9yc8//0yHDh249NJLKVmyJEuWLGHhwoVs3bqVyMhIwsLCOHDgACVKlOD9999nxowZlCpV6pz7vOKKK5g/fz4iwsCBA3nnnXd47733MupbmawWFwcTJuj9u++GypVh2TJYsoT4jVt4qF8NQmUDw698i9BvakHjxlCvHuTLB0CTJpAnj8Z1LVr49zWMMcZkjewdlPlo6NChPPbYYwB0796doUOHsmXLFvr27UtYmB7WEiVKpGqfUVFR3HrrrezcuZOYmBgrV5HdzZ0LBw5A2bIacIlA27b8fXlbbu8WQ0Tz7fyn+ihkc4yOU0ZGQlgY1K4NrVpBnTq8+io8+ihMnapvN8YYk3Nl76AsBT1ameHAgQNMnz6dlStXIiLEx8cjIjRp0iRF7w+c+RhYluKRRx7hiSeeoHPnzsycOZOXXnopo5tuskpsLEycqPc7dz4VUR04AF26QM+eebj33qrA03Do0KkeNDZuhOXL9XbTTdRu356yZYWpU+Gaa3z7NsYYY7KA5ZSlwciRI+nRowfbtm1j69atbN++ncqVK1O/fn2++OIL4uLiAA3eAAoXLszRo0dPvf/CCy9k7dq1JCQkMGbMmFPbDx8+TLly5QD47rvvsvAbmQw3Z44GWxUqQIMGAGzfDh06wL//DffeG/DaYsXgqqvgqafg7bfhuus0iBszBoYO5aUXEnjpJQjiOs/GGGMygAVlaTB06FBuuummM7Z17dqVnTt3cvHFF1OvXj3q16/PDz/8AEDv3r3p0KHDqUT/t956i+uuu44WLVpQpkyZU/t46aWX6NatG40bNz5v/pkJYjExp3vJrr8eRFi1Su/26wedOp3jvUWL6gt799ahzFmzqDr5c+rVjufnn7Ok9cYYY3yS7ZZZWrt2LTVr1vSpRTmLHctMMmUKjBwJFSvCc8+xcZPQrRsMGwbVq6diPxs3wmefwfHj7ChehxsnP8j8RaGEhmZay40xxqRDrltmyZigFh2tBcfgVC7ZoEHw3HOpDMgALrkEnnkGSpak3MFVXJlnHsO+OJzhTTbG5C779uk8pIEDYcUKv1tjAmXvRH9jgs2MGXD0KFSpArVr4xyMH6+xVZpceCE8+yx88gnPnhzDNS9V5pY2+wivUTVDm22MyQEmToTffoOePYmveilbt8K6dXpbu1b/PXYMSpWCmjXh4ou1pvWUKX433CSyoMyYjHLyJEyerPe9XrIVy6FaNShYMB37LVIEnnySUgMG0HlVJF/3PUqfD45Aw4YZ0mxjTA6wcSNHR/xKn9l3sH5Aflzpk1SukY+aNaFGDV0lpHp1KFz4zLdNnKiTkCpU8KfZ5kwWlBmTUaZNg+PHNQqrUQOAH3+EW27JgH3nzQsPPcQTeUfQ6rkr6PnpO+S/o4vO2jTG5G4xMfDdd0z8szblS59k0FVvEJY/HB57DKqeu1f9zjthyBDtkDf+s5wyYzLCiROnxwC8XjLn9Cq0Y8cM+oyQEIrefwt33niMz1e30pkDI0darQxjcruff4Y9exi7pzndP7qMsMuaaH5rv36wZcs533rzzXYaCSYpDspEJFRElonIeO/xEBFZLyKrRORrEQn3trcWkcMiEundXgjYRwfvPRtFxOJyk3NMmwZ//609ZJdeCmg92Jo1IX/+DPwcER76uCbf7evI0bj8GggOHKjFao0xuc+mTTBtGnGEsTK2Bg2bhOuybk2aaErFhx/C1q3Jvr1IEZ1TtGxZVjXYnEtqesoeA9YGPB4C1ADqAvmBXgHPzXHONfBur4AGdcCnwLVALeA2EamVnsb7JTQ0lAYNGlCnTh26devGiRMn0ryvu+++m5EjRwLQq1cv1qxZk+xrZ86cybx581L9GZUqVWLfvn1pbqM5j+PHdR0k0F4yz48/wq23ZvzHFSgAfR4vyIcFn9d1Mhcvhk8/1bU2jTG5R2wsfPcdOMdvFbrTonUeXTwkJEQrVDdurIHZRx/Bn38mu5uePWHQoKxrtkleioIyESkPdAIGJm5zzk1wHmAhUP48u2kKbHTObXbOxQDDgBvS1mx/5c+fn8jISFatWkWePHno37//Gc/HpfGP48CBA6lVK/k4Na1BmclkU6boia927VP5G85pZYz27TPnI3v1gtFzSrO/1zN6qbt2LXzzjY1BGJObjB0Lu3dDmTKMO3A5118f8FxICNx3n04IOnECPvhAM/qT0K4dTJ9uHe7BIKU9ZR8CTwMJZz/hDVv2AH4N2HyZiCwXkYkiUtvbVg4I/ImI8rZlay1btmTjxo3MnDmTli1b0rlzZ2rVqkV8fDz//ve/adKkCfXq1eMLb51O5xwPP/ww1atXp23btuzZs+fUvlq3bk1isdxff/2VRo0aUb9+fa6++mq2bt1K//79+eCDD2jQoAFz5sxh7969dO3alSZNmtCkSRN+++03APbv30+7du2oXbs2vXr1IpgLBGd7R4/q2QwIPCMuWgR162pHVmbIkwcefxze+b6srlie2GP2448WmBmTG2zerBeEInD33UyfGUKbNme9JjRUr+Dq1z8dmO3Y8Y9dhYXB1Vefnjxu/HPeoExErgP2OOeWJPOSz4DZzrk53uOlQEXnXH3gY+Cn1DRIRHqLyGIRWbx3797UvDXLxcXFMXHiROrWrQvA0qVL+eijj/jjjz/46quvKFq0KIsWLWLRokV8+eWXbNmyhTFjxrB+/XrWrFnDoEGDkuz52rt3L/fffz+jRo1i+fLljBgxgkqVKtG3b18ef/xxIiMjadmyJY899hiPP/44ixYtYtSoUfTqpSPIL7/8MldccQWrV6/mpptu4s9zdFubdJo8WRNq69aFypVPbR4+PHOGLgPdcYemsu0MqwAPPqhn1hkzTi/xZIzJmQKGLWnXjvXRlahYMZmLwLAwXbatbl1NtfjgA/jrr3+8rEcPGDw485tuzi0lJTEuBzqLSEcgH1BERL53zt0pIi8CpYE+iS92zh0JuD9BRD4TkVLADiCwEkp5b9sZnHMDgAGgyyydr3EdOmh14oxSqhT8+uu5X/P333/TwFtkumXLltx3333MmzePpk2bUtn7wzx58mRWrFhxKl/s8OHDbNiwgdmzZ3PbbbcRGhpK2bJlafOPSxuYP38+rVq1OrWvEiVKJNmOqVOnnpGDduTIEY4dO8bs2bMZPXo0AJ06daJ48eKpOgYmhY4c0SAIzsglS0jQC9jXX8/cjw8N1ZUCXn8dPvmkug5VDBigM7GKFIErrsjcBhhj/DFuHOzaBRddBNdfz9gPzzgF/VNYGPTpA59/DqtXw/vva9XYgLWXGzbUOQOHD+sSvMYf5w3KnHPPAc+BzqwEnvICsl5Ae+Bq59ypYU0RuQjY7ZxzItIU7Y3bDxwCqolIZTQY6w7cnt4vcL4AKjMk5pSdrWBAhVDnHB9//DHtz0oqmjBhQoa1IyEhgfnz55Mvs8bIzLn9+qtesTZooKWxPQsWQKNGWloss3XpAu+9p+fZ2o0awe23a9Gh77+HQoW0bcaYnGPrVu2hF4G77oLwcMaPhxEjzvO+8HB44AGdFLR2rQZmTz2lq4agu0ssj3HffZn+LUwy0lOnrD9wIfD7WaUvbgZWichyoB/Q3ZsPEAc8DExCZ3EOd86tTsfnB7X27dvz+eefE+tlTv7xxx8cP36cVq1a8eOPPxIfH8/OnTuZkdjTEqB58+bMnj2bLV59mQMHDgBQuHBhjh49eup17dq14+OPPz71ODFQbNWqFT/88AMAEydO5ODBg5nyHXO1Q4dg1iy9f0Z2rQ5dZkjB2BQQ0YoYPXrA3r1Aq1baHufgyy9hw4asaYgxJvPFxsK33+rv9zXXQJUq7NunvfMXXJCC94eHa6pDjRra0//eexCQ13zHHXpNZ/yTqqDMOTfTOXeddz/MOVf17NIXzrlPnHO1nXP1nXPNnXPzAt4/wTl3qfe+TB7c8VevXr2oVasWjRo1ok6dOvTp04e4uDhuuukmqlWrRq1atejZsyeXXXbZP95bunRpBgwYQJcuXahfvz63eslJ119/PWPGjDmV6N+vXz8WL15MvXr1qFWr1qlZoC+++CKzZ8+mdu3ajB49mosDenFMBpk4UUtQNG4M5U9PPE5I0Dyvq6/OuqbUqgVvvqmBYHQ00KmTBmdxcXpVHBWVdY0xxmSeX36BnTu1d8sbr5wwIZUFqvPk0cDs0kt1rPL993USAHoqCws7Z1kzk8kkmGfmRUREuMTZiInWrl1LzZo1fWpRzmLHMo0OHID/+z+Ij4cXXoCyZU89NXeuXsgOHJj82zPLp5/qrM9vvgFxCdpTtnSpJog8/bQmTBpjsqetW+Gtt/T+009DlSoAdOsGL72kFXlSJTpaA7KtW6FlS11vCZ0/sH07/Pe/GdXw3EVEljjnItL6fltmyZjUSuwla9LkjIAMMnCtyzR46CFNI3v7bU7XKKpeXa+GP/pIy3cYY7KfuLjTsy3btj0VkEVHa4bCOcpbJi9vXq38HxoKc+acSnXo0gVGj7bKOn6xoMyY1Dh4EObN02SuTp3OeCo+XtPMkphQm2U+/FDbMHo0Og7x4INQoYLmjXz8sRa5NcZkL7/8omUsLrwQbjhdc33WLGjdWk9HaVKmDFx7rd4fPBji4ihcWIO8hQvT3WqTBhaUGZMaU6acziW76KIznpozBy67TGMhv4SF6Trlb74JS5aghYsefRRKl4Zt26B/f1uOyZjsZNs2nekdMNsy0dix5ymFkRLXXqvB3u7dp2oc9uxpNcv8ki2DsmDOg8su7BimwZEjMHu23k+8ugyQlbMuz6VoUR1Gve8+r3h3kSLw2GOnl2NKnL1ljAluicOWCQnaBe8t4wb6KzxnjqaDpUtYmE7fBg3Kdu7k6qv1VBcTk859m1TLdkFZvnz52L9/vwUV6eCcY//+/VbfLLWmTtUp6fXrnzHjEvTcOXcuXHmlT207S5Uq8MknmgR8/DjaU5a4HNOiRbowpzEmuE2dqldWpUvDjTee8dSKFTrMGNBxlnbVqmmx6fh4GDKE0BBH+/a2OIgffBxoSZvy5csTFRVFsC/BFOzy5ctH+bMCC3MOx4/DzJl6P4n557Nm6TnNz6HLs11xBfTtqyMew4dDSIUKcP/9mls2aZImo1hgbkxwOnHi9MXTHXdoKYsAY8f+o0Ri+nTtqpHehg0wdy49erTklVfOSGEzWSCI/oSkTHh4+Knlh4zJMtOn61SnWrWgUqV/PD18uBbTDzY9e8K6dVrB4/XX0XnzVavqeiqzZ0O7dn430RiTlKlTNTC79FIt9nqWiRM1/z/DFCigC/Z++SWMGkW9l+uxfXtRDh4EW6kv62S74UtjstzJkxqUQZK9ZLGx8PvvwbvU5GuvaWA2aBBnzhqdMkUbb4wJLseOaVAGOmx51vTKv/7STu4MD5YaN4Y6deDvv2H4cG65RS84TdaxoMyY85k5U69Yq1XT21lmzNCRwNDQLG9ZioSEaEDWv7/mvVGrFlSsqBMX5s71u3nGmLNNmqQ983XqnJHcn+iXXzJ46DKRiHb558kDixdze8O1tuxSFrOgzJhziY7WHiX4R12yRH4WjE2pggV1weKHH4bNW+T07NFJk6xEhjHB5PBhvdKDZOtdZHg+WaCSJU8lkpWZMogC+RLYtCmTPsv8Q7bLKTMmS82dq0MJlSolmdcRE6OTGb/8MuubllrlysHXX0P37jBrZgPyly2r4yALFsDll/vdPJPdOafrMq5cyfqZO4ncVJgLi0VzQdFoLigRR4mi8YTkDdfpguHh2hsTeL9KFf09S3Ml1Bxi4kRNK2jYUHu0z3LihP7aXnJJJrahTRs9L/z5Jz1qLGLw4Ga89FImfp45xYIyY5ITGwuTJ+v9Tp2S/GORuPh4SDbpc27USEsSvfqa8MaN18JXX+kfgcsuyz5fwgSP6GhNWFy5ElatgoMHWbG/HD1n3sOtVRaz8GRpdv9dhD1/F+ZAdEESCxmVyHucC/Mf5YL8R7kg/xEuyr+bJqXnUKt6PHJZc2jWLHeu1XrggBYfE0m2K2zqVF1pKVOFhOiJ4o03uPH4EK6Y1pAXX8yT6+PlrGBBmTHJ+f13OHRIa5LVrZvkS378Efr0ydpmpdeDD2o9tZW3RlC39FjYuxcWL4amTf1umgl2zsGuXbB6tQZiGzZobSvPmphL6LnwPkZ8+RfVIiL0wiYmRv+N3Q+xsSScjOHgAceefSHs3leQPfsK89fui3llcQPWTi9Fg+HbuabcWK6+/CRl29fV5PMCBXz80llowoTT6+qWK5fkS8aN0yUrM93FF8PVV1Nw6lTq513LvLl1ubylXbhlNgvKjElKfLwubQI64zKJS8ToaFi2DJo3z+K2pVNoKHz2GTz4UAgzX7+W0CGD9I9BkyY2dGSSFhWlPTgrV8L+/ae3i+iwY926/FGgAbf/qwxDJwnVapZIdlchQEnvVjNg+78SEkhYvZbIEbuZMrUEd317KQe/KMgVZefT9oporryjPIWb1gyuYoAZac8e+O23c/aSJSToqGL//lnUps6dYdkyepadxuC3SnB5ywpZ9MG5Vw796TYmnRYs0D8+F12kuR1JmDwZrrkme8Yx9eppGln/yOY8VHyc5gJFRib7XU0uFhUF77yjVyEAhQppvbu6dXUmb8GCbN4Mt3TRWb41a557d8kKCSGkbm0a1a1No/+c5JmlS/l7zlR+m5PA1N9q8NrIguQN30ab5ifo2KMkTTqXyZ6/fMn55ReNulq00LUok7BokaYgZNlM77x54fbbab3vE/41OoSTUfvIVz4XDitnoRT3RYpIqIgsE5Hx3uPKIrJARDaKyI8iksfbntd7vNF7vlLAPp7ztq8XkfYZ/m2MyQgJCafXF7n22mRzrYJlrcu0euEFGPhNKDsaeVflEybYmpjmTAcP6goQ0dG6vNhzz8H//gf33qs9qwUL8uefWgz+66812M8Q+fJBixbkf+ZR2g6+i7feFuY/OJhRV39KrcPzeOmR/Txx+QJip87SOoLZ3c6deiEYGgrXXZfsy8aNy4AFyFOrTh1CmkbQqcIKfnlhgZ0jMllqBogfA9YGPH4b+MA5dwlwELjP234fcNDb/oH3OkSkFtAdqA10AD4TkSCt7GRytSVLdCihVKlk86xOntSRnCZNsrhtGahAAXj7bXjkh8ugcGH4809Ys8bvZplgcfKkLqB66JDW5+vdW2dHBlyk7NihtU3799cenExRvDi0bw8vvECp1x6nW+8SjO/2HWUSdtCu50X89eBr8P33+vObXY0bp8FOy5ZakiIZkyf7tAjHLbfQo+5yBk0vp/mnJtOkKCgTkfJAJ2Cg91iANsBI7yXfATd692/wHuM9f7X3+huAYc65aOfcFmAjYJnFJrg4pz1GAB06JNtL9uuv+nciu4+etGsHBQuH8FPBO3TDL7/YlbDR3uIvv9ShywsugAce+Ecu1+7dWs6qXz+dLJnpRKBCBejWDXn7Lf79SUVevCGSjmP7MOvHXbqO2Jtval5W4lBrdrB9u14Ihoefrh+YhK1bNV4rVCjrmnZKkSLU6n0Fe/4uwr6vx2oPqskUKe0p+xB4GkjwHpcEDjnnEqtORgGJU0XKAdsBvOcPe68/tT2J95hgEh+vZ4B583RmXjLi4vTidN48nYU4dmzWNTHTLF+uRYCKF9cyEckYPlyXicsJ3n8fXhxTnyOhxXVNzA0b/G6S8ZNzMGyYlrgoVAgeeUSrDwfYt09z0d95x6flxcLCICKC1p/fyoSpeXlpc0/+t6YTbstWTWx75hn9Dn/95UPjUinxxHnllVCsWLIvGzcuEwvGpsTll3N36618uqgpDBhwxqxbk3HOm+gvItcBe5xzS0SkdWY3SER6A70BLr744sz+OAN6Vbl5M2zcqLfNmyEmht0nCrPp6AVElWnC9gsaE3WkCNu365BFdLSeF8uW1YoRFSro8pCxsZpfki0F9pK1b5/sLK+oKC3NlFNy4kuXhsefCOH5UX34uOxbegwuvdTvZhm/TJsGs2bpz/+DD2pPWYADBzTt6dVXtcao38o2uIDJkfDMvzvRNfJyvrlqEEX/WqdV8WfM0KHXVq10fDXYZm5u3gwrVmhCfYcO53zpuHFaVtA3ItzzeVOa1zzMA6tnccGYMXDzzT42KGdKyU/o5UBnEekI5AOKAB8BxUQkzOsNKw/s8F6/A6gARIlIGFAU2B+wPVHge05xzg0ABgBERETYOEpmOHr0dAC2YYN2nydoJ+j+kwUZsbk5w7a3QMLDqZV3ExV27qdCoZFENChFhX9FUDaiLPny/XO3ffroSbp27SSL3we/NWtg2zbNr0rm8v/wYQ06P/00+w9dBrrrLvj+u4tZcKg6zdau1Z7SSpX8bpbJasuWwUgvK+Wee/6x7uLhw5po/vzzet0SLMLD4f0PQxkxoiRt3nqcb97cRb290zR5fsMGvQ0frr/X58nbylKJvWRt2uh5JxlHjuixr+BzRYo8JQrx7PPHePXLTnycf5gGvPXr+9uoHEZcKvJHvJ6yp5xz14nICGCUc26YiPQHVjjnPhORh4C6zrm+ItId6OKcu0VEagM/oHlkZYFpQDXnXLJ9oBEREW6xJRWmn3N6RTZ/Pqxfr8kgAU7E52XcsasYsrEZe2OK0u22UG7tmU9rF+7fr+sj/vbb6TUS69TR2l1JLJS7YgXcd59eoPqS+5BWzumssk2bNOpKIps2JkZ7CPr2hS5dfGhjJvvjD+hx3QHmXvk84Q3rai+JyT22boV339Xu7htv/Ed+09Gj+vP/6KPB3Ru+bp0Wo3/0UejR7SQsXKg9f1FR+gIRLefRurWW9PDr6uqPP+C99yB/fnjjjXMWyB0xQkeTX345C9uXjIQEuKLuIQbX+x9VLzqhEXpuXH0hGSKyxDkXkeb3pyMoqwIMA0oAy4A7nXPRIpIPGAw0BA4A3Z1zm733Pw/cC8QB/3LOTTzX51lQlk6HDumV4m+/nRmIhYcTV7Eq005cxpClNVixtQjXdw7h9tvPUWPo0CFdmHv2bI1OAKpX1+CsevUzTmzff69d7cOGZaPepMQTZMGCeoI8qyvQOa2i3agRPPaYP03MCq/9XzTh0ybyTN2J8H//p2PTJufbtw/eeksjr8sv16gm4Jf3+HHtIevVC267zcd2ptCxY3D//Zqi9eGHkDePd2E6c6Ym1SfmQ5UurUObl1/+j7y5TOWcBsAbN+qB7dTpnC/v0UPPOxFp/lOfsaZPc3z5zEaGNn5X1+d8+ungGxr2SZYGZVnNgrI0iIvT7qp58/TSKvH/t0gRXLPmLAptzpAZZZgxM4Qrr4Tbb9eK9CkOno4e1eSx6dNP1weqUkWvquvWPbWjRx7RzY8/nvFfMVN88IFeYidzgvy//9M/TO+/70PbslBMDFxe8wDDmr5H1TaV9C+bydlOnNCM/Z079arskUfOqE66fr0GBf/6l54vsgvntKLHsGHwww8Ba3sfPQpz5+oF5oEDui0sTOvbtG6dNcP2q1frtNVkLgIDxcXpxWBkZHAtT3ttu3heK/c5jfOshKuugu7d/W5SULCgzKioKA3EFizQy0TQ3+D69aFFCw6UrUO3W0MoUwbuuEMXtA0PT8fnnTihV51Tp2q0Atqr0rIlREQQk6cQ7drBK6/ohWjQSkjQk/PQoXpifPPNfwwjDByoJTCGDw+uk2JmmffrEV7uHcWv1/ZDXnk52eriJgeIi9PgYP16nbXz9NM6nOb58UetZff119CggX/NTI958zSgrFQJevbUXLjwcPR3f9UqPY+tXn36DRUrnp4YkBlrbjqn55lt25JNlQg0ezYMGQJffJHxTUmPyEh4+pG/mVTnSSQhXi/ggqUrz0cWlOVmJ05ovsRvv51ZOLFcOV2qo1kzKFyY7ds1B+qll87bS5560dG6Jt7kyZqJChq51K3LX1Vb0vHpOkyYKJQtm8GfmxE2bNC/Otu9Si033KDDsQEmTtQ/ShMnnvG3Ksd74Oo/uNzN5c67QnUWgMl5nNPyEfPmQZEiWq2/hK5ZGR0NTz2lnWdffQVFi/rc1nRyToOIQYN0cunVV+uP9alAc88ePY/99tvpi8zQUO05bNJEL24z6gSwfLkuPlukiNZWy5PnnC9/6intiMrwc3cG6NEDetSNpN2mz/Wi9j//yfUXcRaU5VY7dmiyxJEj+rhAAa0+36IFXHzxqWHE1au1Z6x//0xeODs2VmduzZ+vsxi9n6tZB+ry4qpuTB51lDw1qwZHktn+/TB69OnK1MWL6xVrRMQZ7Vu6VC/+Jk8OnslaWeXQxn1c2ewk067/kFLvPZf7DkBuMGEC/PyzBgVPPXVqfG/bNj1n3Hyz5jEFw69sRoqN1Z7vQYP0u956q37fiy7ynly8+PSkqMS/j2FhOq08IkLXkjrHcGOy4uI0t/err/T83b27RlvnsG2bXicuXhycF4Vbt0L37o55d39JyLIlOlry7LPpHIbJ3iwoy422bYOPPtIrukqVdCyyQYN//CLMmwcPPaT5FGleJDgtjhzRHrz582H7dt5f0ZZtx0rwUefpGhk2a/aP2kdZIjpaz8ZTpujJNzxcxzLat//H1eq2bdpxNmpUkpNMc4WRD07nl2n5+ObFrdkrmcic35IlWgBURKv1e2UNJkzQzo7PPtPru5zuwAHtLP/hB+246tlTf+/z5UNzz5Yu1Yhow4bTAVp4uObPRkToTPS8ec/c6cmTsGuXdjMm3nbt0kLcifsoXhxee+2cyfEjRmhH2qef6jyEYPX449Ckfgy3b3pVexyvuEK70HIpC8pym82bNQfk77/1iq137ySvSsaO1d/50aN9nkD311+43+fT/fmq3FBuEbdfski3V6miJ7WKFbWBabnyTCnnNEgcPVpnkYIOSXTtqifHsxw8qGken36a7NKXuYL7ayc3ttjNY/Vn0ea7u85ZbdxkI3Fx8N//6g96t27Qti1xcfDiixqDDB6cOyscrF+v333cOL12vPde/f0XQVMzli6FRYu0bE6iPHn0PFykyOkALPEcczYRne1ZpozWFkmmOPrx45oDd+SI5pEF+6/dvn3aL7BgVBR5339Tf77uuSeTh2aClwVluckff+h0ouhoTUK9774kr7S++krLUowenWTM4YujhxNoc0U0X98yibp7p/9zbbrSpU8vDZD4b/Hi6R872bpVL4U3b9bHFSvqeEUy3V/R0Tpc8NhjOhEzt9v+xmBu+ehyfv96bXAmtZjU++03HbsrUwZefJFdu4U779Tc9uefP2PiZa6UkKB1Fr/+WgO17t214+dUqtTBg9rTuHgxbNnyzx2EhelY6EUX6TFOvF1wwXnLRixfrqf1Bx7QoDC7DB2//rrWpXys8VyNbPPk0S7XMmX8blqWs6Ast1izRscUYmN1+O/uu/8xFdA5nV29aJFOJgy2HIR16zR3Y9qEaIptjdQNUVG6Pl1iYdpABQqcGaiVKKF/MUJD9buffT9w28mTMH68DqGCXsnedJOuZ5nMmS4hAe68U3vfrW6qZ/VqulwXwyvt5lKn/8PZ56+ESVpCgnaJ7dkD997LrJPNePRRLdHXtq3fjQs+hw5pSY3Bg/W68d57tfrPqcGJ/ft1BkF8/OkgrGTJVE/Tdg4+/liHUb/9NvutiHL8uA53z57lKDrmWz3vlimjk0fOHt7N4Swoyw1WrNB+7Lg4TS64885//NLHx2uXd3S0xm7BWsdv1Ci9SB8zJuArxMdrAuz27Rqkbd+ut8TSHukRFgbXXKPryp1niPTZZ/Xk+Pbb6f/YHCMhgVE3fc/iP0vz5ugaULmy3y0y6bFoEQwciCtZineKvMrEX0MYMkQnbJtzW7kSvvlGqwC1b68BWkbk6u7dq/u65BKt35tdY5gBA/S0/ep/o7Xkx86dOoR599256mLOgrKcbulS+PJLvcJt3Vr70s/6AY+O1u71GjV0GY5g//l/+mnNk/jPf87xIuc0jyMxSIuK0iSLhAQN4hL/Tep+4q16dc0bO0eCjHM6EWrIEL3gHTIkd9QiS42TQ0bR7NGmLOs3l5A7skE5d5M053QV8R07mF7zIT6eVY/hw3P1RLk0iYmBX37R4c2DB7W0RocO2pmf2nPv1Kk68fWNN/5RjSfbiYvTQZzx46EMO/VLxcTo7IlgnqmQwdIblAVpf4oBtBDsN9/oybRdOy02dtZv/ZEjGnd06aJ5CNnBG2/oEEChQnqFHhZ2+hYamnhfCA0tRlhYMcIuqkNoOS1+XaKE1kxKbeCUkKCl3NasOX1bt07nS5QrBw0b6rCBBWT/lK9VU5qU3sbcn/fT6ta44O2GNee2YoVegRQrxvtT6vDGmxaQpUWePJoJcdNN2hk0eLCmO0RF6ZriderorW5dvSWVqB8bq6uELFumNRBzQupVWJjmJL7yCnz+uVel/JtvtOp27drBP2MhSFhPWbD67Tf9bXdOE6yvv/4fAdmmTTqS+eSTWlMoO9m7V39fY2O1gysuTm+B9wMfx8ZqrdwDBzTPwzk9HGFhOh+gRIkzb8WK6Sz0NWs0WTc2VnP8a9U6fatePXMKduc4zjHznu8YuqAKXwwreqp8gslGnNOxsa1bWdvsbv7142VMmuR3o3KeI0d0kYCVK/W2apX2ppUrdzpIK19eJ7/ecIOeu3PShaBzOmFk4ECofqmDzz/X2Qv162uvQbAP42QA6ynLiWbO1Ex9gBtv1G4lz549Wr/mxx81kf+dd3Rlo+ymdGkdxkyv2Fg96R04oLfE+wcPavpTp05QrVrmVtzI8URo1b0sj42rTPTsieS1oCz7WbdOZyIXKsQHvzXliSf8blDOVKSIJrwH1nhzTucyJQZqs2bpUrtNmvjXzswiojMxn38eRo4UrW+4fr0GZsuWadUAc04WlAWbKVNg5Ei9f8stcPXVHDkCP/2kcdrRo7p5+HCvAnUuFx6uM839qEWbm4Q0b0qHCguYOMFx430nrIsxu5kwAYA9ER2J/CCULwb63J5cRER7ysqV09yznK5VK/jf/3QCZvPmxTS35ocf9A9YjRp27jiPHNRxmgNMnXoqIDt5852MOXI13bpBmzaa6/7JJzB3Ljz6qAVkJosVK8Yd7fby/fqI08tTmexh0yatcZg/P5+tapVbRpGMj958UydyOYdGaVWr6tju6NF+Ny3oWVAWLI4exf30M1OjanDvjldo9lRLFizQZNBFi7Q7OLcu92OCQ70ul7DtWEkOzVjmd1NMani9ZH+3uJox48NtxSyT6erU0RzeiRPRK4AePTQBeM4cvUAwybKgLFhMn86YP2rz7uYu3PvshSxbpnm59erZVa0JEg0bcvMlyxk1vbjO1DDBb/t2zTbPk4fBu67hlluybx0sk728/DK89JJXF7xMmdO50YMHazKwSdJ5gzIRySciC0VkuYisFpGXve1zRCTSu/0lIj9521uLyOGA514I2FcHEVkvIhtF5NlM+1bZzcmTMGMGn69pxSefaEX5nDQjx+QQefNyW5doftjYVMu1mOA3cSIACVe04ovv8tG3r8/tMbnGxRdr/nOfPt4wZocOULaszlb75Re/mxe0UvKnPxpo45yrDzQAOohIc+dcS+dcA+dcA+B3IHCweE7ic865VwBEJBT4FLgWqAXcJiK1MvC7ZF+zZrF+ZxHCCuXnkqsr+t0aY5J1cae6OCBq8hrvTGuC1q5dWnw6LIwJ7lqaN9cVgIzJKk8+qXUln30WHb7s0UOHfiZN0sJu5h/OG5Q5lbjeTbh3O3U2FpEiQBvgp/Psqimw0Tm32TkXAwwDbkhLo3OU2FiYMoX+a1rR96FcvhKwCX7Vq3Nb3dUMXVj19CLvJjj9+qsGzi1a8OHAQjz+uN8NMrmNCLz7rl4fvPsuUKWKrkyTkKDDmAkJfjcx6KRokExEQkUkEtgDTHHOBY5d3AhMc84dCdh2mTfcOVFEanvbygHbA14T5W3L3X77jRMHTzJ9X1069a3gd2uMObeQEG6+LZwRmxudXuzdBJ/9+3WIOSSEpRd1pHBhXVvRmKwWEqLFZOfM0VVTuPFGrfi9dSvMmOFv44JQioIy51y8N0xZHmgqInUCnr4NGBrweClQ0Rvu/Jjz96CdQUR6i8hiEVm8N6cnE8fHw6RJ/LipCTffGE9YuGX0m+BXvG1jyhc8xMpfd3hZvCboTJqkvRBNm/Le18V58km/G2Rys/BwGDYMvvsOfp6Uj1NTgH/+WS8gzCmpSid3zh0CZgAdAESkFDos+UvAa44kDnc65yYA4d7rdgCBXUHlvW1nf8YA51yEcy6idOnSqfs22c3ChXDgAAM3XUWv/8sBi5+Z3KFcOe5svpEhK+tpiXITXA4f1mXagO11O7JtW65aD9oEqfz5YcwYrWE262A9iIiA6GgYMsTyUwOkZPZlaREp5t3PD1wDrPOevhkY75w7GfD6i0S0iIOINPU+Yz+wCKgmIpVFJA/QHRibgd8le0lIgIkTWbL3YspWK0iZstZLZrKPjj1KMnF7bRLm2RBm0JkyRXswGzak348X8uijVlbHBIdixTQwe/xxWFbjNq3uv3q1FuM0QMp6ysoAM0RkBRpYTXHOjfee686ZQ5eggdoqEVkO9AO6e5MF4oCHgUnAWmC4c251RnyJbCkyEnbv5vPN7XjguWJ+t8aYVMl3eWOaXrCNOVNOwvHjfjfHJDp+HGbPBuDIFR2ZMkVXuTEmWJQpo+s33/NIITY2v1M3/vgjHDt27jfmEimZfbnCOdfQOVfPOVcnscSF91xr59yvZ73+E+dcbedcfedcc+fcvIDnJjjnLnXOVXXOvZ6xXyUbcQ4mTuRQdH6WnajBVW1t1qXJZooW5Y62uxmyPsKucoPJtGk6JFS7Nl9NuZi77tJKBMYEk6pVNb/slrcbsbNsYw3IRozwu1lBwUqU+mHNGvjzTwZtb02PPgVsaMFkS63uqMD8PZWJ/s3WwgwKXhFqgLh2Hfn2W7jvPn+bZExy6teHjz4Sbvz5Hg7GF9HZ3GvW+N0s31lQ5oeJE3EOBm2/irvutV4ykz2FNGrAtZXWMWFWQdi92+/mmJkz4cQJqFaNUcsvoV07KFLE70YZk7yWLeG/L4dz08LnOBEXrkn/0dF+N8tXFpRltY0bYcMGZh2oS73LClK8uN8NMiaN8uThjptOMMSWXfJfTAxMnQqAu7Yj/frBo4/63CZjUuD66+HeJ4px69xHid1zAH76ye8m+cqCsqzmrUX3+a6beOBhS/Yw2Vu9my9l27GSHJoZadPa/fT773D0KFSsyNz9NalUCSpYLWqTTfS8O4SrbilNr9l34aZNh3Xrzv+mHMqCsqy0fTusWsWu2JJsj72IJk38bpAx6VS9OjfXWsuoJZW0F9j4Y543n6ptW957X6xYrMl2nni1OAnlyjN2W32dBfD33343yRcWlGWlX3Wi6ld/38Z9vS2XzOQAItx+h/CDDWH6Z9cuXbImXz42FGzA0aPQqJHfjTIm9d4dUpYXV3blxJ6jMHy4383xhQVlWWX3bliyhHgJY/jKWnTv7neDjMkYFa6rjwO2z9gIsbF+Nyf3SVyDtHFjPvg0jy08brKtC8uE0Ovh/Ly+/Hrt/Y2M9LtJWc6CsqwyaRI4x4QCN9P66lAKFvS7QcZkkDJluL3pJoauqgsrVvjdmtzFuVM9lPurt2DBAujY0ec2GZMODzxThOknmvPHoQvg++81VzIXsaAsKxw4oIm4IvRf2YK+ff1ukDEZ6+a7CzFyS6PTvTYma2zYoOeXEiX4fHJV+vSBEDurm2wsNBQ++KoIjy6/D3fkKAwenKsmEdmvb1aYMgUSEthSsTXRLi81a/rdIGMyVrE2jahQ6BArZx3IdVe2vvr9dwBiIy5j+AihRw+f22NMBmh+mVCh6UWMjGoOy5fnqos9C8oy29GjMGcOAF9EdaRPH5/bY0xmKFyYO9rsZMgfTWCxVfjPEjExsHQpAOMOt6J9e8if3+c2GZNB3nw/H69tuIWjMXlh2DDYv9/vJmUJC8oy27RpEBtLdM0GTJxbhBtv9LtBxmSOjvdcyMTttUmYl3uuan21fLkurVSpEgOGF+P++/1ukDEZp1QpeOipArwSda/+nH/3Xa4YxrSgLDP9/feptehG0YXOnSE83Oc2GZNJ8jWtR9My25kzPxyiovxuTs7nDV1uqdia2Fi49FKf22NMBut1v/D7sTqsjr4E1q+H6dP9blKms6AsM82erRF+9eoM+OlCevf2u0HGZKLwcO7oclJrlk2Z4ndrcrYjR3Tx5pAQBi5rbL1kJkcKCYGPPgnjkTV9tZNszBity5eDWVCWmRYuBGBlxesoWtSWPTE5X8uH6vH7nirEz18EBw/63Zyca+FCcI7YWvUZNykPN93kd4OMyRyNG0PNJoX5Qe7QOohffw3x8X43K9NYUJZZdu/WIZz8+ek/9RIeeMDvBhmT+UIvLMVltY8y968qmk9pMoc3dDkuuh3t20PevD63x5hM9Npr8M7vV3C4QBnYtu3UGtI50XmDMhHJJyILRWS5iKwWkZe97d+KyBYRifRuDbztIiL9RGSjiKwQkUYB+7pLRDZ4t7sy7VsFA29W1NFLGzNvfgjt2vncHmOySNf7SzByS2OddZxL16/LVFFReitQgAFTKtnQpcnxiheHJ54M4YX9j+mGX37R4CwHSklPWTTQxjlXH2gAdBCR5t5z/3bONfBukd62a4Fq3q038DmAiJQAXgSaAU2BF0WkeEZ9kaCzZAkAQ/66ittus4KOJve4qvuFzDpQh4S/ozWv0mQsr4L/louvJDYuxBL8Ta7Qowcs/7M4kVW7QkICfPNNjlzW7byhglPHvIfh3u1c81JvAAZ575sPFBORMkB7YIpz7oBz7iAwBeiQvuYHqb17Yft2XN58fDO5LPfc43eDjMk64eHQuFkYC/ZU1iHMuDi/m5RzJCScCsoGbrjSeslMrhESAv36waPj2pJwYRnYuRN++snvZmW4FPXfiEioiEQCe9DAaoH31OveEOUHIpKY1VAO2B7w9ihvW3Lbcx5v6HJFyauoWCmE0qV9bo8xWazrvcUYtbcVHD58asKLyQDr1sHhw8SWuJBxc4tZgr/JVerVg8YRIXxb+GGN0qZOhbVr/W5WhkpRUOaci3fONQDKA01FpA7wHFADaAKUAJ7JiAaJSG8RWSwii/fu3ZsRu8x63tDl0K2XcdttPrfFGB9c006YureeTmOfPDlXFH3MEt5yM+NDOtOunViCv8l1Xn4ZPvq+FAdad9ENAwfmqJneqcp0cs4dAmYAHZxzO70hymjgGzRPDGAHEFj8oby3LbntZ3/GAOdchHMuonR27GLavx+2bcPlycuvSy/g2mv9bpAxWS9vXqjVOD/LYmrrMMOqVX43Kfs7eRKWLQNgwPx6VvfQ5EpFisCzz8LzM9pC7dpw7BgMGJBj0iRSMvuytIgU8+7nB64B1nl5YoiIADcCiWfdsUBPbxZmc+Cwc24nMAloJyLFvQT/dt62nMUbuvy94NU0bCTky+dze4zxSdebQxgVc50+mJTzftWz3LJlEBPDlhKNiSGPJfibXKt7d9i4SVhUv5dOzdy8GUaP9rtZGSIlPWVlgBkisgJYhOaUjQeGiMhKYCVQCnjNe/0EYDOwEfgSeBDAOXcAeNXbxyLgFW9bzmJDl8YA0KEDTFxbCZc3H2zYAFu3+t2k7M0buhy4o4Ml+JtcTUST/vs+UYCdNz4AoaE6qcj7+5udpWT25QrnXEPnXD3nXB3n3Cve9jbOubretjsTZ2h6Q5oPOeeqes8vDtjX1865S7zbN5n3tXxy4ABs2UJcWD5mrS5FmzZ+N8gY/xQsCFWqhrC6yvW6wXrL0u7gQVi/nljJw7il5S3B3+R6NWvCBx/AdQ9VZEfrO3Tjd99p4fZszKpnZSQv32Nm+DW0bBVCWJjP7THGZ127wqjdl+uV7LJlsGeP303KnhYsAOcYL9fTrkOIJfgbA7RqpT1m17/Vgu1VroToaOjfX//Npiwoy0iJQ5dbmtnQpTFAp07wy7T80KyZzsCcOtXvJmU/zp0auhywsrkl+BsT4PLL4bPPhM5Du7M1b3X46y/44YdsO+PbgrKMcugQbNpEdEh+Fm8pSYsWfjfIGP8VKQIXXggbLvGmIc+bB0eP+tuo7ObPP2HnTrYkVCQmT2FL8DfmLM2bw4AvQ7hp+iNs/ruMXsTMnet3s9LEgrKM4g1d/koH2ncIsWWVjPF07Qqj5lwAdevqsigzZ/rdpOzF6yX7av8N9LpffG6MMcGpSRP4alA4Xeb/m42HS8OwYdlyfUwLHTJK4tDlxiY2dGlMgM6dYexYoH173TBjBsTE+NqmbCM+HhYtIjYhhLFrq9Gli98NMiZ4NWoE340oyM2/P8H6fSXhiy/gxAm/m5UqFpRlhCNHYONGjrsC/LGvOA0a+N0gY4JHiRJQuDBsDbsEKlWC48d1GNOc3+rVcPQo449cSbuO4Zbgb8x51K8Pg38qwq2zH2LtxnBduDwb5ZdZUJYRli4F5xgbdy2dbwhBbITBmDN07Qqjx8jp3rIpU3RxbXNuiQn+m6+mdx87sRiTEnUbhvHDqLzcNqM3q2buy1bleCwoywheFf+hGyJs6NKYJNx4I/z0E9CgAZQuDfv2ncrDNMk4cQKWL2frsVLEFChmCf7GpEKtFsUY9tVx7pxxLyu+WgR//OF3k1LEgrL0OnoU/viDA7GF2RNdlOrV/W6QMcHnggsgLAz+2hUCbdvqRluo/NyWLIG4OAbu6UyvvuF+t8aYbKdG50sZ8co6es64m2Wv/QKHD/vdpPOyoCy9IiPBOUb/fS1du4X63RpjgtZNN8GYMUCLFlCokC67tGGD380KXvPna4L/ljqW4G9MGlXrezWjek/m3gldWfzC2KBPm7CgLL28WZc/bmzMrbf63BZjgliXLt6awXnywFVX6cZslOuRpfbsgY0bGb+jEe2uy2sJ/sakVUgIVZ/txpiuQ4jbvhO2bPG7RedkQVl6HDsG69ez62QxYvIW5uKL/W6QMcGrXDld/WTvXqB1awgPh1WrtAK3OdP48QAMiLqW+x+w9dqMSZciRaj09C00f/dmqFrV79ackwVl6bF8OSQkMPxYR265zYYujTmfUwn/hQrp+iiguWXmtKgoWLiQrcdLE1PsQstTNSYjVK0KVar43YrzsqAsPbyhyxEbG9Ctm89tMSYb6NrVG8IETfgX0bIPllt22s8/g3MMOHY7vR6wBH9jchMLytLq+HFYu5Ytx0pT8IKCXHCB3w0yJvhVrqzLxB48iJbG6NBBZ2B+9VW2q7ydKTZuhBUrWHakKtN3VKdrV78bZIzJShaUpZU3dDns8LV0v8NyPoxJqeuvh3HjAh5UrqxR2uDBubtEhnMwejTHYvNy/+LefPd9KHny+N0oY0xWOm9QJiL5RGShiCwXkdUi8rK3fYiIrBeRVSLytYiEe9tbi8hhEYn0bi8E7KuD956NIvJs5n2tLOAVjB2zqS433uhvU4zJTrp2hVGjvAehodCrF+TLp79TuXn5pZUrYdMmHll4J488U8ByyYzJhVLSUxYNtHHO1QcaAB1EpDkwBKgB1AXyA70C3jPHOdfAu70CICKhwKfAtUAt4DYRqZVh3yQr/f03rFnDmkNlKXdJfooV87tBxmQf1avrhMujR70NpUrB7bfr/WHDYNcu39rmm4QEGDOGHzY2IfaiCvS8z7rIjMmNzhuUOXXMexju3ZxzboL3nAMWAuXPs6umwEbn3GbnXAwwDLghHW33z/LlEB/P0APtua2HJeIak1odO8IvvwRsaNZMbzExMHAgxMX51jZfLFrEpnUxvLv6Wj4fUdrWzzUml0pRTpmIhIpIJLAHmOKcWxDwXDjQA/g14C2XecOdE0WktretHLA94DVR3rbsZ+lSnIPxW2tz3XV+N8aY7OfmmwOGMBPdfrv2mm3f7pX+zyXi4ogZPZ6eM+5hwBv7KVzcclSNya1SFJQ55+Kdcw3Q3rCmIlIn4OnPgNnOuTne46VARW+482Pgp9Q0SER6i8hiEVm8d+/e1Lw1a5w8CatXs3hfJWo3ykuBAn43yJjsp04d2LTprAmX+fJpfllICEydCqtX+9a+LDVnDs//2pIu9TYRcXed87/eGJNjpWr2pXPuEDAD6AAgIi8CpYEnAl5zJHG40zk3AQgXkVLADqBCwO7Ke9vO/owBzrkI51xE6dKlU/dtssLKlRAXx7D919C9h+V9GJMWItC+fRKrLFWuDJ076/1vvw1IPMuhTp7k1082suZgGR5/+yINSI0xuVZKZl+WFpFi3v38wDXAOhHpBbQHbnPOJQS8/iIRzYgQkabeZ+wHFgHVRKSyiOQBugNjM/j7ZL4lS0hwwtSoGrRr53djjMm+zpiFGah9e7j0UjhyRAOzHFwmY9fIuTw7qwPf3DWTkAb1/G6OMcZnKbksKwPMEJEVaGA1xTk3HugPXAj8flbpi5uBVSKyHOgHdPfmA8QBDwOTgLXAcOdc9hqfiI6GVauYs/MSmrUMtxpCxqRD48ba8RwdfdYTISFw771QoICujTl9ui/ty2wJh49y9/PleLfZSC7o2QHL7jfGnDej1Dm3AmiYxPYk3+uc+wT4JJnnJgATUtnG4LFsGcTGMnRvW257Iq/frTEmWxPRlZZGjIA77zzryeLFoWdP6N9f12WqXh3Kn2+Cd/byvwe30LDEDtp2CINq1fxujjEmCFgCQ0olJMDEicQmhDBvXzVatfK7QcZkf88/D59+ChOSulRr2BBatdLyGF9+qeUycogFkw/zy4wCvBIxFqs+bYxJZEFZSi1ZArt2MeVwM9p0yk9oqN8NMib7K1FC65W99tpZdcsSdesGZcpoQdkRI7K8fZnh8GHoe38c3135NeHNI6BChfO/yRiTK1hQlhIJCTB+PABDj3TkttvtsBmTUUqU0F+v118/9Wt2Wp48WiYjLAxmz9YUgmzMOejT82+eu3Q0lYsdPD3T1BhjsKAsZbxessUx9fjzRGmaNvW7QcbkLImB2RtvJBGYlS8PXbro/UGDdPHybOrrr6Hw/i3cUmWxDs0GY9kfY4xvLCg7H6+XLCY+lAcX9GTAl2KTpIzJBIlDmW++CePGnfVkmzZacfbECejXD/bs8aWN6bF8OfT/6CQfVf9MewA7dfK7ScaYIGNB2fksXgy7dvH6uq50u6sg1av73SBjcq7ixbWn7K23YGxgFUMRuPtuuOgiXc38zTe1XEY2cPgwPP009O3rGNRhKAXCYnXaaZEifjfNGBNkLCg7F6+XbPn+8kw70oQnnrLDZUxmSwzM3n4bfv454InCheG556BBA+0x++QTnbYZpMVl4+NhwAAdpaxRA+Z+sYaah+dDwYJY5WljTFIsyjiXxYuJ3bmXvvPv4ovvC9qMS2OySPHiOpT5zjtnBWb58kHfvnDDDfr455+1ltnJk760MzkzZkCLFrBlC8ydC/feepzQn7zlCzp0gPz5/W2gMSYonbd4bK7l9ZK9E9me6zo6ateziMyYrFSsmAZm112njxPjMESgY0ctJfHVVxAZqcOZDz4IF17oU2vVpk3w739DaCgMG6ZLebJ1K3zxBRw4ACVLwlVX+dpGY0zwsqAsOYsXs3ptCON3NmL2nHJ+t8aYXKlYMR3KvO46HaU8o85q3brwn//A559rntkbb+jyTPXrZ3k7jxzRWmuzZ+uw65VXog2eMVPrq8XHa4R2//0QHp7l7TPGZA82fJmUhATixk6gz5w76f/afsLzWS+ZMX5J7DF77z0YM+asJy+4AJ59Fho10iHMzz7TqZtZlGcWH6+LDbRsqStB/fabF5CdPKlPDBumL2rTBp56SnvKjDEmGeKCNEkWICIiwi1evDjrP3jBAv73WBTHwovz8swrsWQyY/x3+DB07aqrLtWpox1l9erp/cKFHEyerFGbc/rEPffoouaZ0I7ISFi6FH78UUcjn3suYDJlVJQOV+7ZozlwPXvq6uvGmBxPRJY45yLS+n4bvjxbQgLrv5vPiM2dmTt8pwVkxgSJokVh6lStHbtqFaxcqbVkV66EY8eEiy9uT90yjakbNYF6Bzdz6V9vE/ZQHyhbNs2fuWePLiKwdKn+u2GDTgJt2FBvw4fDxRcHvGHePPjhB4iN1aK3vXv7nudmjMk+rKfsLPHzFnD1zcV4t8M0Ir7sY0GZMdmAc/DnnxqgrZx/nJVjt/DHzsI4CaFQ6XwUvLAQBUvmo1AhoWBBKFSIM/5NvB8fDytWaBC2bZuOjjZqpAFYo0ZwySUQklTSR0wMDB2qQRnA5ZfDbbdZ/pgxuUx6e8osKAuUkMBH1/7Krj3Cm58U0ROrMSb7iYmB778n/veFnIjLw/G4vBwvXp5j1RpyvEodjoWX4PhxOH4cjh3j1H3Qkc+GDbUHLEWrd+zercOVO3ZoEHbHHXDZZZn69YwxwcmGLzPQpjErGLy0NnPv/Rqav+B3c4wxaZUnD9xzD6EtW1J44UIKL1kCx9fAqjWwCqhYEZo0gdYRWhQtrRYv1jHU6GgdpuzTB8rZbG1jTNqct6dMRPIBs4G8aBA30jn3oohUBoYBJYElQA/nXIyI5AUGAY2B/cCtzrmt3r6eA+4D4oFHnXOTzvXZWdlTlhCXQLtLt/BqvZFc9nRLrfxojMkZ4uNh7VpYtEiTw6KjdbuIjkk2barjk4UKnX5PQgIcPar1Lg4f1n8Tb4cPa3Lbpk362ogI6NFDE/uNMblWVvSURQNtnHPHRCQcmCsiE4EngA+cc8NEpD8abH3u/XvQOXeJiHQH3gZuFZFaQHegNlAWmCoilzrn4tPa+Iz0xX+2Ub/QZi6rfQSaNfO7OcaYjBQaqtM069SBO+/U5LOFC/XfDRv0NnQoVKqkQ5+HD+u45vnSO0JD4ZZbtA5GisY6jTEmeecNypx2pR3zHoZ7Nwe0AW73tn8HvIQGZTd49wFGAp+IiHjbhznnooEtIrIRaAr8nhFfJD22bUngy8F5mdvxZ+h0uyX3G5OThYdrr1hibbPISA3Q1q6FzZtPv05Ep1oWKaK3okXP/LdIEShTRh8bY0wGSFFOmYiEokOUlwCfApuAQ865OO8lUUBiIkU5YDuAcy5ORA6jQ5zlgPkBuw18j2+cgz63H+HDJj9Q4KKi1ktmTG6SLx80b663o0e1xlihQhpwFS6czFRLY4zJHCkKyrwhxgYiUgwYA9TIrAaJSG+gN8DFZxQAyhxfD0ygWvw6WpXZAJ3usl4yY3KrwoWhZk2/W2GMycVSdRnonDsEzAAuA4qJSGJQVx7Y4d3fAVQA8J4viib8n9qexHsCP2OAcy7CORdRunTp1DQvTeqGrObNOj9AqVLWS2aMMcYY35w3KBOR0l4PGSKSH7gGWIsGZzd7L7sL+Nm7P9Z7jPf8dC8vbSzQXUTyejM3qwELM+h7pE1CAk23DqdQeDR06mS9ZMYYY4zxTUqGL8sA33l5ZSHAcOfceBFZAwwTkdeAZcBX3uu/AgZ7ifwH0BmXOOdWi8hwYA0QBzzk+8zLyEhdR6V0ac0pMcYYY4zxSe6u6J+QAEuWaKHJ+vUz73OMMcYYk+NZRf/0CAnRqt7GGGOMMT6z+d7GGGOMMUHAgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwSCuiSGiOwFtvndjnQqBezzuxFByo5N8uzYJM+OTfLs2CTNjkvy7NgkLy3HpqJzLs3LEQV1UJYTiMji9NQsycns2CTPjk3y7Ngkz45N0uy4JM+OTfL8ODY2fGmMMcYYEwQsKDPGGGOMCQIWlGW+AX43IIjZsUmeHZvk2bFJnh2bpNlxSZ4dm+Rl+bGxnDJjjDHGmCBgPWXGGGOMMUHAgrIAIvK1iOwRkVVnbf+fiKwTkRUiMkZEiiXz/le910SKyGQRKettFxHpJyIbvecbJfP+DiKy3nvdswHbRUReF5E/RGStiDyagV87RYLg2KTr8zNTEB+bBiIy39vvYhFpmkFfOUUy8bjUEJHfRSRaRJ46x+c3FpGV3vHrJyLibS8hIlNEZIP3b/EM/NopEqzHxnvuEa8Nq0XknQz6yikWBMfmdRHZLiLHztr+hIis8fY9TUQqZsDXTZUgPjYXi8gMEVnm7b9jBnzdVJHk/34+7G1zIlLqHO+vLCILvNf+KCJ5vO2tRGSpiMSJyM1p+Pwk95ss55zdvBvQCmgErDprezsgzLv/NvB2Mu8vEnD/UaC/d78jMBEQoDmwIIn3hgKbgCpAHmA5UMt77h5gEBDiPb4gNx2bjPj8XHpsJgPXBuxrZg45LhcATYDXgafO8fkLveMm3nFMPBbvAM9695/NYT8z6T02VwFTgbyJ+8uFx6Y5UAY4dtb2q4AC3v0HgB/t2JzaPgB4wLtfC9iaxcflXH8/GwKVgK1AqXPsYzjQ3bvfP+D7VALqoX+Db07D5ye53+Ru1lMWwDk3GziQxPbJzrk47+F8oHwy7z8S8LAgkJiwdwMwyKn5QDERKXPW25sCG51zm51zMcAw732gJ4BXnHMJ3ufsSf23Sx+fj026Pz8zBeux8fZTxLtfFPgrBV8nw2TWcXHO7XHOLQJik/ts7zgVcc7Nd3o2HATc6D19A/Cdd/+7gO1ZJoiPzQPAW8656MT9peZ7ZQQ/j433uvnOuZ1JbJ/hnDtxvs/PTMF6bPD5XMM5/n4655Y557ae681eT3EbYKS36dR5wTm31Tm3AkhI7eefa7/JCTvXkyZJ9wI/JvekiLwO9AQOo1dWAOWA7QEvi/K2Bf5wJ/WaZt79qsCtInITsBd41Dm3IR3fIbNk1rHJkM/3mR/H5l/AJBF5F01VaJG6JmeJtByXlCiHHq9EiccO4MKAPyy7gAtTsd+s5MexuRRo6e37JNprsig1jc4imXVsUuo+tIcxGPlxbF4CJovII2iw1zaD9ptS5/r7mRIlgUMBgW3g70R6Pj/V+7WeslQQkeeBOGBIcq9xzj3vnKvgvebhDProvMBJp5WFvwS+zqD9Zhgfj02KP98vPh6bB4DHvf0+DnyVQfvNEH7/zHj7d5zumQwaPh6bMKAEOkz1b2B4YL5ZMPD750ZE7gQigP9l5H4zgo/H5jbgW+dceTRVYrCIWHyRBnbQUkhE7gauA+7wTuSIyDdewuSEJN4yBOjq3d8BVAh4rry3LdC5XhMFjPbuj0HHt4NGFhybVH9+sPD52NzF6Z+bEWgXe1BI53FJiR2cOYQTeOx2Jw4De/9m+RDdufh8bKKA0d6Q+UJ0yCbZ5OislgXH5nyf3xZ4HuicOMQbLHw+NvehuVM4534H8pG1PzepPleKyCTv2AwE9qPpIYmjh6k91yb3+anerwVlKSAiHYCn0V/ExJwCnHP3OOcaOOc6eq+rFvC2G4B13v2xQE9RzYHDSYzLLwKqeTM18gDdvfcB/MTpbuYrgT8y7tulTxYdm1R/fjDw+9igeR1XevfbAEEx5J0Bx+W8vON0RESaez09PYGfvafHogEr3r8/J7ELXwTBsfkJ71wjIpeiSctBsVh1Vhyb83x+Q+AL7/ODLZD39dgAfwJXe59REw3K9mbQvlPiXH8/k+Sca+8dm15eEDsDSJxdmdrzQpKfn6b9uiyePRLMN2Aomq8Ti14x3udt34iOF0d6t/7JvH8UsApYAYwDyiVesACforMzVgIRyby/IxpwbQKeD9heDPjFe+/vQP1ceGzS9fm59NhcASxBZwItABrnkONykbe/I8Ah736RJN4f4b1/E/AJp4tllwSmoUHqVKBEDvqZSe+xyQN87z23FGiTC4/NO95zCd6/L3nbpwK7Az5/rB2bU8emFvAbeq6JBNr5cGyS+/v5qNfWOPRCdWAy76+CzkreiI4sJM5AbuK9/zja87U6lZ+f5H6Tu1lFf2OMMcaYIGDDl8YYY4wxQcCCMmOMMcaYIGBBmTHGGGNMELCgzBhjjDEmCFhQZowxxhgTBCwoM8YEBREp6RVzjBSRXSKyw7t/TEQ+y8TPbS0iwbgElTEml7G1L40xQcE5tx9oACAiLwHHnHPvZsFHtwaOAfOy4LOMMSZZ1lNmjAlqXk/WeO/+SyLynYjMEZFtItJFRN4RkZUi8quIhHuvaywis0RkibecSuKySo+KyBoRWSEiw0SkEtAXeNzrlWspIteLyAIRWSYiU0XkwlR+9taA7QtF5BJfDpwxJtuxoMwYk91URZeN6oxWn5/hnKsL/A108oKjj4GbnXONga+B1733Pgs0dM7VA/o657YC/YEPnC65MgeYCzR3zjUEhqHL16ToswNed9jb/gnwYQZ/f2NMDmXDl8aY7Gaicy5WRFYCocCv3vaVQCWgOlAHmKJLOxKKLk0DurzMEBH5CV3nMSnlgR+93rU8wJZUfHaioQH/fpDqb2iMyZWsp8wYk91EAzjnEoBYd3qtuAT0QlPQ9ekaeLe6zrl23ms6oeuJNgIWiUhSF6YfA594PV190MWVU/rZiVwy940xJlkWlBljcpr1QGkRuQxARMJFpLaIhAAVnHMzgGeAokAh4ChQOOD9RYEd3v270tiGWwP+/T2N+zDG5DI2fGmMyVGcczEicjPQT0SKoue5D4E/gO+9bQL0c84dEpFxwEgRuQF4BHgJGCEiB4HpQOU0NKO4iKxAe9ZuS+93MsbkDnK6990YY0x6ichWIMI5t8/vthhjshcbvjTGGGOMCQLWU2aMMcYYEwSsp8wYY4wxJghYUGaMMcYYEwQsKDPGGGOMCQIWlBljjDHGBAELyowxxhhjgoAFZcYYY4wxQeD/AfLJXGzTpAfQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,3))\n", + "plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for testing data: 1.2623790187854018 %\n" + ] + } + ], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "## Prédiction de l'ensemble des données\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor shape: (26300, 5)\n", + "X shape: (26300, 4) \n", + "Y shape: (26300, 1)\n" + ] + } + ], + "source": [ + "# Extracting load values as numpy array\n", + "data = energy.copy().values\n", + "\n", + "# Scaling\n", + "data = scaler.transform(data)\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0]\n", + "print(\"Tensor shape: \", data_timesteps.shape)\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]]\n", + "print(\"X shape: \", X.shape,\"\\nY shape: \", Y.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "Y_pred = model.predict(X).reshape(-1,1)\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = scaler.inverse_transform(Y_pred)\n", + "Y = scaler.inverse_transform(Y)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrgAAAHgCAYAAAD+LG2qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5jcxN3Hv7pzBVNsmumYEjoYQkvoEFog1FDCGwiEmkACISSU0EIvCYRuG0wHUwwGA8bYuIMx7r33frbvznfnO1/Z1bx/bNNqVUbS7Eq7+/08zz23K41mZlVmRr+qCSFACCGEEEIIIYQQQgghhBBCSLFQEXYHCCGEEEIIIYQQQgghhBBCCPECFVyEEEIIIYQQQgghhBBCCCGkqKCCixBCCCGEEEIIIYQQQgghhBQVVHARQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiop2YXfAie23317stddeYXeDEEIIIYQQQgghhBBCCCGEFJhJkyZtEELsYLUv0gquvfbaCxMnTgy7G4QQQgghhBBCCCGEEEIIIaTAaJq2zG4fQxQSQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiopI5+AihBBCCCGEEEIIIYQQQgiJKm1tbVi5ciWam5vD7kpR06lTJ+y2225o37699DFUcBFCCCGEEEIIIYQQQgghhPhg5cqV2GqrrbDXXntB07Swu1OUCCFQXV2NlStXokePHtLHMUQhIYQQQgghhBBCCCGEEEKID5qbm7HddttRuRUATdOw3XbbefaCo4KLEEIIIYQQQgghhBBCCCHEJ1RuBcfPOaSCixBCCCGEEEIIIYQQQgghpMj5/PPPoWka5s6d61juf//7H5qamny389Zbb+HWW2/1fbwqqOAihBBCCCGEEEIIIYQQQggpcvr164cTTjgB/fr1cywXVMEVFajgIoQQQgghhBBCCCGEEEIIKWI2bdqE77//Hn379sWHH34IAIjH47jzzjtxyCGH4LDDDsOLL76IF154AatXr8app56KU089FQDQpUuXdD39+/fHNddcAwD48ssvceyxx+KII47Ar371K1RVVRX8dznRLuwOEEIIIYQQQgghhBBCCCGEFD033ZSfenv3di3yxRdf4Oyzz8bPfvYzbLfddpg0aRLGjx+PpUuXYurUqWjXrh1qamrQrVs3PPvssxgxYgS23357xzpPOOEEjBs3Dpqm4fXXX8fTTz+N//73v6p+VWCo4CKEEEIIIYQQQgghhBBCCCli+vXrh9tuuw0AcMUVV6Bfv35YsmQJbr75ZrRrl1AFdevWzVOdK1euxOWXX441a9agtbUVPXr0UN7vIFDBRQghhBBCCCGEEEIIIYQQEhQJT6t8UFNTg+HDh2PGjBnQNA3xeByapuHoo4+WOl7TtPTn5ubm9Oe//OUvuOOOO3D++edj5MiReOihh1R3PRDMwUUIIYQQQgghhBBCCCGEEFKk9O/fH1dddRWWLVuGpUuXYsWKFejRowcOP/xw9O7dG7FYDEBCEQYAW221FRoaGtLH77TTTpgzZw50XceAAQPS2+vq6rDrrrsCAN5+++0C/iI5qOAihBBCCCGEEEIIIYQQQggpUvr164eLLrooa9sll1yCNWvWYI899sBhhx2Gww8/HB988AEA4MYbb8TZZ5+NU089FQDw5JNP4rzzzsMvf/lL7Lzzzuk6HnroIVx66aX4+c9/7pqvKww0IUTYfbDlqKOOEhMnTgy7G4QQQgghhBBCCCGEEEIIITnMmTMHBx54YNjdKAmszqWmaZOEEEdZlacHFyGEEEIIIYSUK1VVQH192L0ghBBCCCGEEM+0C7sDhBBCCCGEEEJCoKEBeOCBxOeQkmETQgghhBBCiF/owUUIIYQQQggh5ci6dWH3gBBCCCGEEEJ8QwUXIYQQQgghhJQjsVjYPSCEEEIIIYQQ31DBRQghhBBCCCHliK6H3QNCCCGEEEII8Q0VXIQQQgghhBBSjlDBRQghhBBCCCliqOAihBBCCCGEkHKithZYuRKIx8PuCSGEEEIIIUQBlZWV6NmzJw455BBceumlaGpq8l3XNddcg/79+wMArr/+esyePdu27MiRIzF27FjPbey1117YsGGD7z6moIKLEEIIIYQQQsqJu+8GHnkE2Lgx7J4QQgghhBBCFNC5c2dMnToVM2fORIcOHdCrV6+s/TGf+Xdff/11HHTQQbb7/Sq4VEEFFyGEEEIIIYSUI599FnYPCCGEEEIIIYo58cQTsXDhQowcORInnngizj//fBx00EGIx+P4xz/+gaOPPhqHHXYYevfuDQAQQuDWW2/F/vvvj1/96ldYt25duq5TTjkFEydOBAAMHjwYRx55JA4//HCcfvrpWLp0KXr16oXnnnsOPXv2xJgxY7B+/XpccsklOProo3H00Ufjhx9+AABUV1fjzDPPxMEHH4zrr78eQgglv7WdkloIIYQQQgghhESX2lpg8mTghBMy2zZvDq8/hBBCCCGEEOXEYjF88803OPvsswEAkydPxsyZM9GjRw/06dMH22yzDSZMmICWlhYcf/zxOPPMMzFlyhTMmzcPs2fPRlVVFQ466CD88Y9/zKp3/fr1uOGGGzB69Gj06NEDNTU16NatG26++WZ06dIFd955JwDgyiuvxN/+9jeccMIJWL58Oc466yzMmTMH//73v3HCCSfggQcewNdff42+ffsq+b1UcBFCCCGEEEJIqfPMM0B1NfDxx2H3hBBCCCGEkJJG09TX6ebwtHnzZvTs2RNAwoPruuuuw9ixY3HMMcegR48eAIAhQ4Zg+vTp6fxadXV1WLBgAUaPHo3f/e53qKysxC677ILTTjstp/5x48bhpJNOStfVrVs3y3589913WTm76uvrsWnTJowePRqfJSNInHvuuejataun328HFVyEEEIIIYQQUupUV4fdA0IIIYQQQsoCRdH3PJHKwWVmyy23TH8WQuDFF1/EWWedlVVm0KBByvqh6zrGjRuHTp06KavTCebgIoQQQgghhBBCCCGEEEIIKWHOOussvPrqq2hrawMAzJ8/H42NjTjppJPw0UcfIR6PY82aNRgxYkTOsccddxxGjx6NJUuWAABqamoAAFtttRUaGhrS5c4880y8+OKL6e8ppdtJJ52EDz74AADwzTffoLa2VslvooKLEEIIIYQQQgghhBBCCCGkhLn++utx0EEH4cgjj8QhhxyCm266CbFYDBdddBH2228/HHTQQbj66qvxi1/8IufYHXbYAX369MHFF1+Mww8/HJdffjkA4De/+Q0GDBiAnj17YsyYMXjhhRcwceJEHHbYYTjooIPQq1cvAMCDDz6I0aNH4+CDD8Znn32GPfbYQ8lv0kQY/nKSHHXUUWLixIlhd4MQQgghhBBCipubbnLe37t3YfpBCCGEEEJIiTFnzhwceOCBYXejJLA6l5qmTRJCHGVVnh5chBBCCCGEEFLuRNjwkRBCCCGEEEKsoIKLEEIIIYQQQgghhBBCCCGEFBVUcBFCCCGEEEJIuaPrYfeAEEIIIYQQQjxBBRchhBBCCCGElDsMUUgIIYQQQohvBNfTgfFzDqngIoQQQgghhBBCCCGEEEII8UGnTp1QXV1NJVcAhBCorq5Gp06dPB3XLk/9IYQQQgghhBBSLPBlnBBCCCGEEF/stttuWLlyJdavXx92V4qaTp06YbfddvN0DBVchBBCCCGEEEIIIYQQQgghPmjfvj169OgRdjfKEoYoJIQQQgghhJByhx5chBBCCCGEkCKDCi5CCCGEEEIIKXeo4CKEEELCYeVKYNmysHtBCCFFCUMUEkIIIYQQQgghhBBCSBg88kji/8svA+0oqiWEEC9IeXBpmrZU07QZmqZN1TRtYnJbN03ThmqatiD5v2tyu6Zp2guapi3UNG26pmlHGur5Q7L8Ak3T/pCfn0QIIYQQQgghxBP04CKEEELCJRYLuweEEFJ0eAlReKoQoqcQ4qjk97sBDBNC7AdgWPI7AJwDYL/k340AXgUSCjEADwI4FsAxAB5MKcUIIYQQQgghhBBCCCGkbKGxCSGEeCZIDq4LALyd/Pw2gAsN298RCcYB2FbTtJ0BnAVgqBCiRghRC2AogLMDtE8IIYQQQgghRAW6HnYPCCGEkPKGCi5CCPGMrIJLABiiadokTdNuTG7bSQixJvl5LYCdkp93BbDCcOzK5Da77YQQQgghhBBCCCGEEFJeGJVaVHARQohnZDMXniCEWKVp2o4AhmqaNte4UwghNE1TMgonFWg3AsAee+yhokpCCCGEEEIIIU5QqEYIIYSEC72pCSHEM1IeXEKIVcn/6wAMQCKHVlUy9CCS/9cli68CsLvh8N2S2+y2m9vqI4Q4Sghx1A477ODt1xBCCCGEEEIIIYQQQkgxQAMTQggJhKuCS9O0LTVN2yr1GcCZAGYCGAjgD8lifwDwRfLzQABXawmOA1CXDGX4LYAzNU3rqmla12Q93yr9NYQQQgghhBBCvEMBGyGEEFJ4jF5bnIsJIcQzMiEKdwIwQNO0VPkPhBCDNU2bAOBjTdOuA7AMwGXJ8oMA/BrAQgBNAK4FACFEjaZpjwCYkCz3sBCiRtkvIYQQQgghhBDiDwrVCCGEEEIIIUWGq4JLCLEYwOEW26sBnG6xXQC4xaauNwC84b2bhBBCCCGEEEIIIYQQUkIYDUxobEIIIZ6RysFFCCGEEEIIIaSEoVCNEEIIKTxUcBFCSCCo4CKEEEIIIYQQQgghhJBCE5ZSa8oU4OOPs3OAEUJIESKTg4sQQgghhBBCSClDq3FCCCGk8ITlwdWrV+L/nnsCxx5buHYJIUQx9OAihBBCCCGEkHKHCi5CCCGk8IQ9/1ZXh9s+IYQEhAouQgghhWXNGqCpKexeEEIIIcRI2AI2QgghpBxhDi5CCAkEFVyEEEISbN4MvPwyMHVq/tqoqgIeegi45578tUEIIYQQQgghhBQDVHARQkggqOAihBCSYMgQYPp04NVX89fG/PmJ/83N+WuDEEIIKWUWLwaefTbhEa0SCtUIIYSQwsP5lxBCAkEFFyGEkASbN+e/DV3PfxuEEEJIKfPUU8C8eZnk8KqggI0QQggpPGF7cHH+J4QUOVRwEUIISaBpYfeAEEIIIbKsXRt2Dwgh+aa5mQZihJQ6VDARQkggqOAihBCSwKjgamzMTxtcvBNCCCHRhHM0IdGiuRm47TbgwQfD7gkhpFDQg4sQQjxDBRchhJAERgXXHXcA69eH1xdCCCGEOLP//mH3gBCST1asSPxfty7cfhBC8kvYIQoJIaTIoYKLEEKINVOnqq+TC3ZCCCEkMR/GYsHrUAnnaEKiBcOHE1IecP4lhJBAUMFFCCEkQYVpSggqeCOEEEKINU8/DdxyC9DSEnZPMlDARki0oIKLEFIIOP8TQoocKrgIIYQkML9E86WaEEIIyQ+LFyf+v/VWIs+OH+jBRUhpw7U4IeUH52JCCPEMFVyEEEISFELBxQU7IYQQkmHyZOD998PuBSGEEEIIIYQUJVRwEUJI2EyeDMyZE3YvCmMlSgUXIYQQko3fNQA9uAgpbejBRUj5EcZczPmfEFLktAu7A4QQUtY0NwO9eyc+v/IKUFkZXl8YopAQQggpHqjgIqS04VqckPKgtTXzmXMxIYR4hh5chBASJm1t1p/DgC/RhBBCSOGhMIsQYgXX5oSUPvX1wP33h9sHrkMIIUUOFVyEEBImup75HI+H1w+AHlyEEEJIGERFsBSVfhBCCCHlwtSp2d/t5uIFC4DHHgNWrMh7lwghpNiggosQQsLEqOAyfg6DQii4KDwjhBBCsvE7N3JOJSQabNoEvPwyMHt22D0hhBQbsu/c//kPsHw58Oqr6vvA9QQhpMihgosQQsLEqNR6912gpSW8vhBCCCEk/0RVkBTVfhESdb74Apg+HXj++bB7Qggpdtzm4uZm9W2GbWhLCCEBoYKLEELCxBiWcNo04JtvwuuLGYYoJIQQQtRjFiT5FSwpUkhpfXpjSf12VHAR4pfNm8PuASGkVAhjLub8TwgpcqjgIoSQsGhpAfr2zd5WWxtOX4DCLGy5eCaEEFLuqLKU9jinPj7lHNww+veW+zY0d+EcTYhfKivD7gEhpFjxOvdyriaEkByo4CKEkLAYNQpYujR7W6l7TXFBTgghpNwxem8DBZv7X551Ml6feyK0Pr1z9lVonJ8J8U2pr98JIYXD7X2Z4QQJISQHKrgIISQsmppytxXyBbmqCnjhhVwlW4oKThGEEEKIclQpuBQajVDBRQghhBQBNBglhJAcKL0khJAoUUgFV//+wKxZwBNPFK5NLsgJIYSUO2br6wh4f1RqtAgnhBBCQieIB9fGjUAsprQ7hBBSDFDBRQghUaKQQq716533R0DgRgghhJQcZg+uCKDRg0sOGuoQQghRiXlecZtn7PZXVwN33QU8/LCafhFCSBFBBRchhISF1eK0kIITvwmxN2wAXnsNWLnS23Hz5gGffeavTUIIIaRUMM/1IYQo/NOYK/HdygOU1VcW6Drw2GPAO++E3RMSNWgURggpFHYeXAsWJP5XVRWuL4QQEhGo4CKEkChRDMKlvn2BiROBp5/2dtyzz+anP4QQQkgxE4KCq9eck/Ha3BN9H1+WLFsGrFgB/PBD2D0h5UifPkBLS9i9IISoxqsHl52Ci4p2QkgZQwUXIYREiSgpuCpspoiamsR/vmQTQggh3gljrndpUwgtWmuQKELhIQmTSZOA777L3rZyJdDQEE5/CCHRgnM4IaSMaRd2BwghpGyxWoQ6JY3NN7KLYjvFFyGEEEK8E4IHFwB8vPgojHp3v0RVoPLGE0JQ4UUKj1GZtW4d8Mgjic+9e4fTH0KIevzO7UHkCFSOEUKKHEopCSGEeIMCHUIIIcQ/qnJwKaBq8zahta2EhobCebAYr1PKm50QoHDPcDye+bxmTWHaJIQUFjdlE9/FCSEkByq4CCEkSoRpPWVu+/33gfnzw+kHrcgIIYSUCyF5cBU9QgB33pn4K/S5oICRhE1lZdg9IISoQNX8ZayHqQQIIWUGFVyEEELs+e9/c7flU4gkBPDMM8Czz+avDUIIIaQUUD0fF7PCjAouQoLT3JwIdzh9etg9IaR88TufGY/761+BtjbXQ2J6BVrjVJYTQoofKrgIISQsrBavxSBcMvZx2jS1dcfjwKJFCc+xYjgXhBBCSDHgMqcW5ZRr7HQsVti2qeAipcjQodBuvgmj/jUk7J4QQuywm3/ME/nata5V/d/w67D3h48p6BQhhIQLFVyEEFKuqJBmvfJK8DrsKLSwihBCCCkCnpx6Fir6vOr5OCedjIAGDBgQoFchoOuZz1wzkDJkSf122NjSWV2FjY0AgOk1u6mrkxDiDRUeXED2HGnDpA17YFVjV3/tEUJIhKCCixBCokQxmFDnO0RhColFOSGksCya04q+z9UDs2Yxvj8hfgk4j07esAcEKtTPx3PnAuvWqa0znxh/f6HXTxV8jSbhs/eHj+P/hl8XdjcIIUFIzl+//uZWPDHlbP/zmfndWaKeCq0IZA+EECIBV+aEEBIWYSuzzKbcYfcHyF6YR6E/hJAsnrxiKq6/Y2sse+y9/HpwElJORGm+KybFdaEVXFG6TiRaaBoW129f2FskuY6vbd1CTX31SeMVQkhhSQ4c36w4FP0WHe0+18iGKJRAA+c1QkhpQAUXIYSERdiCkrDbtyJMa2xCiDutCeH3Xv2ewIKfakLuDCElgsf5Li3a8nycRPmZMz3VGSqF9vo2tkcPLmJE17HPh4/h25UHh90T/9x/f9qDkytwQgqIYf6K6RXAf/+b8Ki2Q6GCS8mxhBASAbgyJ4SQKFEMi8tChSgshnNBSBnTHG8XdhcIKVqmVe+GNU1b+zo2rajyMk+6lE3vnTLFV59CgR5cJAp8/jkwdiwAoKGtY37byuM9WL2xEv8af0He6ieE2GB4ruMiKaLt0ydQPZbfLWCIQkJIqUAFFyGEhMyMml1Q39op8aUYhCdUcBFCCCGB6Pnp/bjsuxt9Hav5FEjZ2HwDAITQUh981R0KRq+tQntwFdN5Ivnlm2/SH+N68YpXhqw8CI9P/XXY3SCk/DDMX2kFlx8vYR8KLoYoJISUCsW7AiOEkGInueg8rP+DuOuni0PuTESg8IgQQkipk5zfWnx6QaYtrj16cEkpxo4/3lefQoEeXCRi6I5qZAUYQ5PZhSlTQGNbR1RV5a16QogRq7nFyWhDVYjCXr3yOYwUjro6oKEh7F4QQkKGCi5CCIkAzfH2YXfBmi0sElfTg4sQQggJjJ6y1Pabg8ujZMrJUlukat1yS091hoYQwIwZ2d8L0SYhDqQ9IRVy8ZCbce/4C50Lvf460NKirM17J1yE7t2VVUcIcUKVB7IXDy4hgClTit+DKx4H/vlP4M47w+4JISRkqOAihJAIUKElF7ZhCk+EwNyNO+W9mf9MOwOt8UrbPlh+JoQQQkqF5PxW6FlOSh9WLHPv1KnAm29mvhciRCEpb1pagCeeAIYNsy2i50HBNWDpEXh/4TG5O5IP9I9V+0C74Xpg+HDlbRNCCouUkrytDfj4Y6uD5RuKxQA4hy4uCpqbM5+LZf1CCMkLVHARQkhYGBZhHyw8Bl3feja09lMc+PHD2NjS2bFM0MXjP376LeZulDAL5SKVEEJICePX2yOvFtfFMvfOm5f9nR5cJN/88AOwdKm1YDlJvkIULt+0Hfb78GHne7CpKVAbvLsJCQk/c4uDol2K1lYA/nN6Roakog5AwpuLEFK2+Av8TgghRCnN8Q5ojncIV3iStARt1V2mBgV9lFpMU5BESOQoektPQiJE3vP1mJBSjBXL3GsWZBXag6tYzhNRh43wVAhgScP2eW9+Yb1LlAXek4QUPYGeYrObttOYUCrKoLa2zGd6chNS1tCDixBCwiIP3lGB2k9+jxstyvPUnwq75TtDFBJSNOQj1wgh5cS06t2x1ZvP+5/vqqqAgQPlygrhqE4ruinXLJwruh9ASoVvVhyCfT58DEB5zIvV1cDq1WH3gpASx2OOTctjnObFpDKo6HNwJT3RAHAdQEiZQwUXIYSQLOK6y9SgYPFYUezhEAiJADU1wLp1YfeCEBKETW2dPB+T5QX99ddK+pFWfxWLgMgYlggojOV2sZwbUjC++w6YvGGPsLsBAHh31B5BoxTmYuHlcdppwK67Km6HEJKNCgWXE8n5zE8zkYIeXISQJFRwEUJIuWLrwZX/qUHThLugyLxI3biRwiVCDJx4bCt22qkEXk4JKTds5t98U1Lhgc0KLubgIvnGYrI94wzg/okXhNAZ5PTn6peOwTffKG5jxYqcTTSsIUQxYcwtpTKfyUR/EYLKL0LKACq4CCEkLKIWojC1GRpWbOqK3w//o6fjvDUtIZE3tjN7NnDXXcBHHwVum5CSIB7H6uVt7uUUsvPOwNvzjytom4QQEytX5m6rrZU6tOhDERmhsIqEwMK6HRDXNQgBHH987n7nQKBy1NQYHKc8rrkL+Rqxfn3h2iKkZInFgAUL8lO304CQ8uBKrQuKVeFl7LfduuDFF4G//S07nCEhpOSggosQQkgWQgDfrToQ7y881lEJd+e4S7CxpbO/NqwEAG1twDvvWB8weHDi/4gRvtojpOQwv8StXZv3JteuBVr19nlvh5Cyw4tg6ZFHcrfdfTewaJHzcU1Nct6epSDkKkQbxXqeSCD2++hRvDHveOg6MHZsftrYbruEPDYSONznO+5YwH4QUqq8/z4wb56aurzMS2kFV5Ejo+CaNQtobgaWLi1Ilwgh4UAFFyGElCNjxyaS01sgoElZef93+pkYs3Y/X80LgdxF+OTJwIwZme/GRWplZebzZ5/5apOQksZOOUwIKTksBVKff+4s3PrnPx3ndqprCJGjavPWtvv6Lz4SL78U/GlatSpwFWqwGFMYFpkQhSQ15Vqf3gCcvUD7LTw6XS4wpWik4fabSvE3E0LSSCu4NE2r1DRtiqZpXyW/v6Vp2hJN06Ym/3omt2uapr2gadpCTdOma5p2pKGOP2iatiD59wflv4YQQoqdQi283n7bvgseqtFlQg1atmFxnDmov/FctGuX+fztt77aJKSksUgETwgpTSxzac2fD0yd6rvORyafiz9//7viFQAVImRhsZ4bEhwhgMZGAIm1r52SZ9CKQ3HrXzT/90qyjbSGy6keapoIKV0snu+5G7s7HyMEZtbskvXdqWyimRKa19zWAZzDiZnx44Hvvgu7F0QRXjy4bgMwx7TtH0KInsm/qclt5wDYL/l3I4BXAUDTtG4AHgRwLIBjADyoaVrXAH0nhJDiJuwcXDZtC6E5L3YNfYwLf47AAsgVyPNFnRBCSDkQcK63nS1HjfJ3HICvlx+GV2efUjwCoDDWDAxRWL689RYwaFD6q+vl37jRXztDhybqnzULeO457/fZlCn+2rXhvc+7KK2PEOKM0yPfvsL07mxR+ND+D2Jpw3bulZVKiEIjbgquOWZxNil7+vYFPvnE/5xNIoWUZFLTtN0AnAvgdYniFwB4RyQYB2BbTdN2BnAWgKFCiBohRC2AoQDO9tlv4sLLLwOnHtMI3HcfY80SQixZv7mLZZiD8wbfiocnnZf44vJi7duDS2jA3/+eSKxrx3PPZSxZmUyekJLhqquAjz4KuxeERAiPQmzbUINOcyokLbWLVXFTrP0mxcG4cemPTiHE0rg8i7YY17tz5wLLl9uXtVLyjh/vr10brvq7c6Kt004DPv5YaZOEEBsqNbn34ZZ4O/dCpfJu7cXwJJXTu6EB+PHHRP5vQgCgpSXsHhAFyJre/w/APwGYR8HHkmEIn9M0rWNy264AVhjKrExus9tO8kD//sDICVsC69cntF2EkOKggAKaplgHy+3z6rpjccMO9gcq8eDSEguJNWty9n29/BBMWLcnUFsLfPllTpuW3wkhRcN77wFvvBF2LwgJEc5hwZH14Fq6NDHg1NcHb5PXjaQYMcJ5v9+wwcacs4Dne64gd2hba/rjiBHAgAGFaJSQMsNijstRcNm8Hw9deSAGrziYIQrtePHFhFfuF1/ktTukiOD6riRwlUxqmnYegHVCiEmmXfcAOADA0QC6AbhLRYc0TbtR07SJmqZNXL9+vYoqiV8LMkJIftE0NLZZK5kKQYdKibEhT2EUszy/TPWdN/gvuHL4dYkvTU3JA0rEyowQVQiR/e4bwsJ87eat4XepxvcIQgx49eCyE0i5KH1sPb+KEfNvtTqHDQ3AE08AP/1EKTwJxIpNXdNRD4asPBD//VeNmordnv0CTpZCIirDd98BsU3NBegNIeVJ2kPUYj6vkFRG/WXs73DON391aSgVorCE1gWy4+WyZYn/M2bkry+kKHhx5qnFnX+WZCFjen88gPM1TVsK4EMAp2ma9p4QYk0yDGELgDeRyKsFAKsA7G44frfkNrvtWQgh+gghjhJCHLXDDg4eBMSZdesyn/mwEhJJ2mIaurz5YvbGAj6vlVoq55b3YxfW7eD7WMBgYdrcDNx9N9CvX1ZlMZG0YE1ZwJobosKLkNA5a9DtOPZYNXWtWcM0fITIknpU3l9wjKPBSM5xMs9Ysb43WPX7zjsznzdtUtLGmDX7oq61U/GeJ+KL5Zu6pT+PrdoXd42/xPkAmfvjgw+Ae+5xDo0UgftMCGDgwMT4ccYZwPrmrcPuEiFlSY6CK8j4YM7BFYGxxhfGfnuVD/j1tCUlwwszTy2u/LPEEVcFlxDiHiHEbkKIvQBcAWC4EOL3ybxa0DRNA3AhgJnJQwYCuFpLcByAOiHEGgDfAjhT07SumqZ1BXBmchvJA9pGg1WZz4f1sMPotUtIPpGK4Z/P9pNDQ5temb3BheUNXbHfR48GbDv526dOTST1HDkya39MT05PdgtVLkJIuRORZ8CvB5dZ0F6jyBiekHIg5cH1+xHXYXXjNpkdbgquUrLUTg4iM2p2weL67d3HRBUadCFw0pf/wKOTzw1eFyGjRiXCcU+fntmWvE9jemUij86SJZ6qlPHCssPOM1QIYN48f3XW1tJJghCvNMXaW273rOAqhxCFXnJwEWIiZfBN4+nSwF/ylATva5o2A8AMANsDSEk7BwFYDGAhgNcA/BkAhBA1AB4BMCH593ByG8kju7//hG/DhBkzgCFD1PaHEJLBcg0WwsIsreCSpDWeKe9XSZc+zphrwOjB5aZ04yKEkEjg24uT76CEeMdscQ3TPOyq4JJvo1g4rP+DOO5zi0j55nWCwt9VXGeIBEFF6jZX2toyn5MKrudnno5ubz8LTJhgf1wRuD3/+c8Jo1k7hABOP71w/SEk6izftB22fOMly30V5hxcZrzkrC4FD66mJuCrrzLfKR8gHkk/U8V4/5McPCm4hBAjhRDnJT+fJoQ4VAhxiBDi90KITcntQghxixBin+T+iYbj3xBC7Jv8e1PtTyFWrGzshljc/+J3wgTgoYfU9YcQUiCEcJ2oU0KxtHAsT/m2LNtOVVthPQ3F3SxQuQghpLA0Niqtbvly4MknlVZJSPHgRQhlJCm8MXpiCQAT1++ZyA9kV08pzpkG4X5zvH3ubzQqDQA1gq9SPI/EkW22AX79a+Bhr157Cu6VpljHwHWoIMhPaXZJ1xWLAcOH+6+fkJLFKgeX2bwiYIjCVY3bYnPc2lvMb50F5aOPgLlz/bfPOb3sqSx2D0aSRRAPLlIGTJgA/PvfYfeCkNIkb2sqXU9Ijvv0cW4/VdxjOBNNZIREfn+CpeeX4YTEBUMUEhIWq1cDL5mNR01hRM0MGpSINirLvHmJ1COEEA+kFFyGF3IhNCyo2zFrvx1FH4rISEUFbh97GYDkmsK8LjCHsOC6gfjkm2+AISsPDrsbAIC1Gzvl5VZuaAA2xzqor9gBXWcKHEK8kBOi0IyXwUEI7Pb+U5hWvXuwTqUYOhT45z+BDRvU1CeDOYQrPbiIR9IeXCF4RC9dyqWpaqjgItY0NeVsmjYN+OyzooiGQEhRkLcQhWvXJmbMyZNd2k95cHlr2m8Oj+emn479Pnw4q027N9uYW9jEWMxXH7LYsCERh9Vs5U2IQhQ7PtmjcIX82mvAX/7i7ZhzzwUefhhYvFhZNwgpH2Sf3+ScaQ5RmDZUUeHBVSxv25qG52cmYptJradUe3AVy3kikeXDhUdhyzdeyN7o8qK9819+iw8+UN+X3XcHrh99teW+fN3qt9wC7LSTe7lVq4ApU4BHHslPPwgpFpTm4FIdxrd//0RM1y++CFaPD/b78GH8bwZjnRLvpKfcENZ0PXoAX35Z8GZLGiq4iDXDhmV/13X07AlcckkovSGkJAlbNpLyotKFw1TgFubQg/fXyDU/w8L6nbKPMyqqDG3pTmETAeDvfwcWLJBu25IXXwQ+/RQYMCBYPYTYMHUq0KVLniov9AAiYd3y3HPAPvsUoC+ElCsWShohXEING47za6ASScwhjt3CPiocM2nrVyb88IP/YyXutx/X7e0ehrBj7v71M9YkPljMy35z49bV2e/L13Jj4sRMjjOnNnbbDTjySOCBB/LTD0KKBc8KLify9WAX8v0k2dbC+p0wbNUBvo8nJCwaGsLuQWlBBRexxuxVsWhROP0gpIQReuFyXlm2L6z/u/XHr4Ds6+WHpj+7hUVMN+t0Pj780Fc/0qxdm/i/cGGwegixYf36AjaWx7FD14HPf5QwsyaE+MNrDi4t2yAkPae6hPUtqSgMbj8mHwouCsPKixA8EcwsWr9V7sbRYwrfkYBoGrBpk/1+PlqEuJMOp2aHF8/lUlBwGWSWUvKJvfbKX18IIaFDBRexxmwVyXi2hBSGQiq4Uh5c0DwFAc5Obm+R98KGuMiEHUxbmNoIqBpjnaD16Z2p26qcijCFhOSRoMLk++7LWDd7RdfVTd3z5gEXPfpzy32NjcF/Z2MjLdhImeFnrt+8GXj9dQCmEIVGgxGXEIVSAqBikTQb3lUENPdwSwp/l1BcH4koQSY3D/fHwhcGJeLwWbS574eP+e+DIsTUaf6PNZwGp5DNfJwIMWEefxYtQoV5DlfpwVWMD6Fh3tc04f4bevTI/l6Mv5mUBqkUGQXLZVAeUMFFrHEL+0EICYzfMCKuGIU8Ds9uxklKA554AqLOpyRdcnz400Ej058vHPInXD3imuzFuxBoirWXr1tVZuqSMmknpcRjjwHff+/v2OOPB847T21/8sUppwC/+EXYvSAk4nz1FTBnDoBcQ5P0d1cFlwTFsuY3KrisvMLNCi+FObjiOl+hS52aGmDqul0K0tZ+Hz2KaXe+6/3AQj2rH32kpBqn7hbLsENIPpC6/59+OjdEYZCKS+GhM6wDnNY3G1s6Y1H99rk7SuEckOJk0KDEfybhUgpX5yVKtmWnjwqo4CIk7+TtsXJLgp7clhIIpRVttbVS1WsiIyQSAtJCo207bE5/3tC8FT5Z/HOgogIPTTwPVU1bAUJgyzdecqyjTa/IhGLiuEQijnkq9YPtbe5y/48bB4wa5b29p57yd5xfNC2RhyMNPcZJOeBn/jIkyTHZhmSEXql6N2wAHnkEmDIla7vmVTgWVVpbgeXL018L7VEVd8pdSkqCv/4VOOKt23wf/9ubunkq39zsELEgZERLq+djUjZoTj8naxwbWcCFByERQ9botTIZovCiITdjbdPWwXJP5suDq5Dv55Lj5Z+/vzLhDUvZATERWm7aVIoMenAphatzQggJCdmcV55x82wytZFSGEnn4PKZ4Na8gEi1++/Jv8EXy3o69lUI4I25v8TWbz6PO8f91lO7lrz1lv9jCZFEhZyq0Pqeu+8GRowwbSxkHs7vvitcW4REBZn5zFAmx4MrNS+nBozhw4GVK4FevdLbn59xGiZv2NN732pro6d4fuklYPHi9FdL4WA+BFkpDy4quEqe+AY5oy87Ph20haKehI/XiBPz5gHt2nls5OOPPR5ASOkg+w6eMmb5fOkR+LFqb/d5rtQ9uCRpaOtkvaOMzgGJFq2610mSyMDVeRmgJAxa1F5sCSkB8ramMj6vVs9ucltqbAjcDcnxwRxWQUADhgxJfBawPiHJbfXNHXDd6D+gOd4B49ftlbXPFz/+6P9YQmRZswZAQtHVr5+/Kvx6cCnlnXcK19bs2YVri5AixWhoImCI3JAaF8we2ULg+ZmnyVVuHFtmzUpovV97zW9X88O8eVlfLdcQybXJ8k1dccIX/1AzZibriDFEYcnTfvHcgrZnGWbTVz1KqgnEunWJ/6efDowZI3fMZ4t7YsaM/PWJkCijS8rrjO/SMStDCy9eWfmS74XkweXkyW3boygMmCQaFPBe+PproOM//XuIE3u4OieEkCihUADjxIcLj8LLs04BAOjJBbKsMlzLWkxq8h5cJgWXLkz1WHmeJetujVemN9WnrLC4KCURYuFCoKkpe5vW74P051mzfFQIQIyVVMZaPA9F+YgUZacJKQBZHlzGzYYcXCmBVceOOcf6MngbPTrxf/Jk78cWGhvB3vh1PfBD1b5Km4qJCo5VJU5lWOE8vbh+F+gedB07bCJHDB8OVFcb6nHo7hXDbsCf/+yjc4QUObrQsMQqP5QFRgVXXA84D5kVXMU4pxllEg5GArb7ivE3k7yw6zGFybkJAEuXFqypsoMKrjJAybhtrmTTJl/VHHooUFWloD+ElAB5W1MZXzRtGrntx8vxn+ln5rcfRtracl6PjS/MutCAWCz3uJS3maGPbXpS2eW34/mKOU7Kmv32A+65x36/59ssmXxWnzzVd5+8EIsB++9fkKac8XiiYjFgwoQ89YWQAnHL6Muwfr18+dwQhakvNnl8hPA31VnNyxHE0tgmlXdMZX4Frhciz4Rek/DEFdOica1WrXLcHb1sWw44uVdNm+arSothyh1DaFJCSoFPFv8c+3/8SO4OyxCFGaVUTFTm7M/ByUur2CM0DRyYcReFN6NbUj5cey0wZ457udVV7XItVUnRQQVXiRI4ibSL9djQJyf50nHNnAnMLWzEB0Iii6+cEUOGAE88ATQ325cxLlht6mtfkVGCpcIi+MkJJj3S3HprbohC88GSgrS0FVaqAq8LdCq4SJ6oq8v+niWE9nCbtbQA01bvACDb0/G997JlOyoFt5s3A/PnK6rMaLJtxvAyaonH57FfP+CYYzwdQkj4mO7zV2aenJv7zkxybV7dvGWWYEs3enDZPT9+5zm3nJ4RwdI6m3N7WfL008C9Hx2eyEEXNqkceAVESWoCc50C0ObPsy8Q96cI95WndNkyX20RElU2tnSWLlthWPfHgnpw5Wt+L9Tc+/XX0kUZorB8eestYMAAycLvv5/PrpACQAVXGTBq9X7BhVYmYfqZj52MF1/0VxXnEUIS+HoWPv004df8/ff2ZdwUXEJkKbi8xv3PqdLth2zeDCBXGC8MU5CABrRvb9uY8YVdGPf16wfcdhtQXy/T9QSlEJKBFJxhw9zLqMrl/MILQM+nfgcgOy7/VVcBDz8sX09otLTY73NxU5m/bltpA7rTTwfuustDvwiJMGKe3GJ9+3eexUuzTs0cB0PYIjsPLi+GIMbBqkgUXAAsjVfu/ukivDrnZOVtqMqXRPKI0zwkgRIDksbG4HVY4LSeGLn6Z/jsM8XteVSa+VJcgctxQtzIycHlZrTp5aEq0gewtmULAM5Gt+kxTMsY9U5Yt2fR/mbiDenLPM/BkCNPBHZMIVlQwVUG/PqrP+Pyy7O3tbQAXbt6qMTCs4LzASHBELq18kmKtjb7fRIeXB0qMs90ykNE+gVWMt51mqSAzOzBZUQXGtDZwoLNQliX7qcQwMiRQGsrMG6cez/s4GBGXGhqAn71K/dyZhmyUcgj4vIC5qROOHGc6RlLt1GI+1ZRG62thi8ukq/9n74O996b+Lxxo3O9w4cDa9YE6hopR4QAxo+P3s0zapTzfptn54WZp+HS725KfLF7ZuNx+Tm+COdEy+Tyuo6npp2NYasOVNiQsP5MokcUwm/5uUcktUNCAOfdlJszpM/ck3DJJR7bzJMizozb6Vi1Cnj88YJ0hZDoYzHfaOYcXF7q8LKvSKhr7YRubz8HwFsOrs+X9sQxn99bEueAuBOF5UAWxWQ8VmRQwVWm1Ne7C47yhV+rLkKIAacHyWOIwrTQSzKufY6QzG1xKJEHQwDWk33aWtqiOYnfacfqxm0wdOWB0Pr09nQcIV7IClE49kfp4yocVme2i/R8vKQ55dxw4PTLumXZxXTsCHz7bfKLxCKgoSHxv2tXJuIleWDRIqBvX+Chh8LuSRauj7DNs7NiU7fMl9QAoWnY0Lxl1nZfXkcVFfhu5QGRlwFJhXxW+CPyEQaOBEfTgGGrD0h8iYAAydKQzQ3JF2VdB74e2cV7/VasXeu4u1DP/7JlwL/+ld82Zs/2aORLSJ6xfeSND56u44Jv/4SLhvw5vSkmKqXfwaVQ9aAXcMHQGm/nq+3qli3dC5GSwe62+P57IC5CUIkMHlz4NssEKrjKhfo61yK/+x1QW5tQfp12d/4SWkT9JZmQQhHoWVCo4Ep7cEn2J0vZ5EHIY9XlIz/9V7JOTdq8JrBgSQicMPAfOHPQ7envhDjhpHAy4mgo2SCfuDLL8ws2Hlwy6AEFfDU1vg4b/kOnHIPw5cv9daFAhuWknKiqCrsHlvid23bqbAjRa/B63uGdZ/HdyqSw36/5qqbhjEF/w8L6Hf0dXyCEQF4VWuY6uWpQz+bNwIYNweupjZDgsmgUoZWV7mXygcwzqjiX2pQp4Rn5EmJFpWY9P2c9HkJg6MqDsvbHrDy4QswzHdMrMHXDbgVrD8j2aHMOUZhN2vuNMoCywM7Y5MQTgRk1hb1nAWSl1nhq6lm4+mreh6qggqtEyfGUMGe+t+DDD4GpUxOGrSOmb2eqsEgW6IQUEZZrKtmFlouC64kpZ2NR/fYOIQotPLgk8fvCbuXBNaV6j0ydkh5ci+p3THheBViU1rcawiFycUtckJ0CzbdS9otXMGWwXRuWpEKYxgIquCIX04EQBUTAs8PqQXZ9tG0GhpjR+tRU74bmpIdHPC6vlLHoW5sekgBcEgGJXCQq2xMa1w6KueYaYIcdwu5FBiV5McK8R7y07WLF4/Vn2K1hBgwwpRBeIWH5smqVt8YJKTLaVVivSXSj17XFejxulYMrRN6ZfxyO+Oz+0Prk5T1LLxbjAxKM5PyhjxsvVdyX17UPjDKx6TW74913uaZUBRVcZUJgC7KIKbgWLOAYQIofqZA6rpWI3Bx5uo57J1yEXrNtEqsLkR2iUCT+amStXrNycDmUmzABeO45YPp0ABI5uKwqc2qgqcmtp7ZkCS44mJQ9jzwCbLONezmVkUCccFRwpV5ynRpTpZjKh4JLYj0R9Dw2Nwc7npQ4xaq4tXl2Plh4bOaLIUQhYBDi6Lq/d4Gk4LsopskCenC9vzB/kS7KFb9evlEmX8+NgOZet5fGXeZlVb/j1luBq64yNCtjbGDuW8RkEoQEpdLm/dis4DKXiukShh1O6x3Fc2ZjrKNzAV0HhgwBqqsDtWOHbRjmn37K2detY1PqoLz0hUSECRMAAGL9eqnioXpdR8H4rgSggqtMcVobWu6L2GLyZz8Dvvgi7F4QEgwlIQr79AFuuSXbSzO5mG3TK20XtlkhCqHhrfm/xK7vP51TrrGtQ26/sz47WJy8/jowdy7wzjuJLjvYj+tCA0aOzN2R8uDSXKYrtxhypiReWX3h4rbsGTcuK1qALUEUXF7uMsvbORm7SZ8+y3vjMuT5OUhVv2Rl+7y209QEdO7sXo6UMVEY8608uPzkyJKoF0DCgyvAzy5Ka+c8Xue4iLZHG0EknnNfwjLJd27XnxdRRb7UZVmxIvNZtQwiJeiM6Pkh5UeFTYjCrFvUwkglFrF5yDWX0WuvAZ9+Ctx7r7I2jesmy6GlrQ14442cfbtvWZOqQFlfSATRUmk4LOYRC0WrrmIdTkKFCi6ShYoxvrY2eB0ybJJPZ0JI6TJ5cvZ/IP0g24YUMnlwPT7lHPxx1B8si65q3Db3cMPU4Ulo7+bBZYXLoKQLDc2xds4vwC0twP33A/37+2qDlCarVgE77ZT4LCs/sZKH6LrB4KK1xf5YD0lsK9auzt04f36inpbWxHeJ+3ZzvIP0b9M++lC2e75pagL2PmOf/FTe0AAgE52REFsiaiVpKQzfuBF46ilg0iS5gco0LqRf6r38ZmMdTsKBlhbg8cfTXtqhU0APLpI/ImZTGQiv4Y7mzgV2uOwURY2ru1cLbtU+c2b+6h44MPE/K1YiIeHRzk7BZZx3LZ5nSw8uM46Wd2rns3iqv3b1GmUVisiRH7h4sDU2J2QjqXnm+u+ukMnkQoqVpMWo8T5Ztiwpr07NBUa4xit6qOAiclg87FOmAO+9l1u0Wzdg8OAC9ImQIsfyxVfhxNqmV1rXN2hQloLr0yVH2taxyS3cgCTLN3VFtUMIRDfrcLvTcu/4C9H5jZftJSJNTcD//pew2Bw6NF1ZKQlQiD/mzwfWrfN2jNV9uGgRcOGFic+tk2dhzZrMPr+3mfbj2Nw206HC8nTz/vhj7jaF45Fmk2ZPGV99lW6HkGLE8nEbOBBYvDjhra1pifyTMpWkQhSmxgu/3gopBZfVaNa7d0JS8PLL/uoOQHOsHeZv3NG5UAFzcpEIYLawDHi9VUwlXhVDU6YAG+pyIydY1j1nrnMBm2e+uhr4xS88dStSHHD1MaipcS4zYYLEWkAyZBUh+abSRsEV100hCk1DmqUha5B5L+CY6cWQTwUxvQLN8UxUCEtj2eRvSuUjzTqnAPrO/gWmvD87f50k4ZJ6dzbMxXvtBVx6qXVxLhOLHyq4iG/698+Oo23Eac0Yi+WmDCKkHPFjEbm2aWs8P+M0i8psksKbt69bBwwebMrB5a0fxn7LJlrf84Mn8eTUc2z32y6KXYRyM2p2TXywC1HYr19COGiCIQpJpeG90FUQkoxfKBpyXYfbGyLufbb0SOyyi3UV3tJhZAr/bvgNOOUUmU76p60N2BzLb+jAvJN03aKCixQrlmsC44JZ5ua2y9Gn61jd1FWyI1YeXBblOqoxgPHDE1PPwf4fP5K90UvuEb8Irh0Kga9TmzJiKmJk56/X5p6A/7uw0bmQzUmcPTsRltkLbtfDtzGPQ2QHO+at2MJqWZ9m6lSmMSDFhV2EEzcPro2tWxQuObAE8QKHd/v98D9ir35PpL/bpU2ob+2E2bU7A7AWF+iDaJkfJVpb7YPueMZmUq2pgXt6i0LDNaUSInZViSpcp5fRoxP/582Tq9DlgauvT0QqkeGMM4rbcowQVVg+Vi7P2r8mXIDbf7zc+ThjiEJzfc3NALJzcDm1aDWW5GP+dYt5bCX4i+sGNZXdImW2tVVW1eZtDJVzQVGOtGsnX1a88SYAQO/7Zs6+9pJ6odQ9PHJkItF6r172Zc13+6hRsFykG7e0xf0v6f7wB2Cnd5/xfXwkSD7HVHCRUuOJKWcnQvH6ID13+nWfdPLg2n57f3UqoL61U+5GC8v1Si2PbqN9+uSv7jLH17IsgoO/198h+xPmbtwZ/Zf83HN/amsTUU+9kq/fIVWBRWVO/TniCOCxx5JfnJTcXPuTiNCuwl8OrriMkWkBPbjieoWSemSZtGGPrO+WBru6jpO+vBOteuJlLSU5yBKbFGOO0RLm229zPaySaai9k17DWmAhO3K7F+bOBfr2td7X2AisXeuxf0Q5VHCVK198nvj/8cdKqttmG+Dqq+XLT5wYvE2uS0mxYzmJutzYb8w7Qbp+SwVXcrVstBZzUi5Z6uA0Yw4uOQ8uN/zk4Gr3ei9MTi1u7d6mrRLyMGwRQbYHlysLFgAA9Lm5RiHarBm527RcT+bUXXbqqYmIXv/7n4f2U5U60OGR+20X3W7MmJGdW6+YiaCMk0QNTcOqxm3DTSZtMe/YzUT3TrgIU6t393Vzp+sMGKKwKBJvWyq4dPv9AdtoWUZJRqSI4ODv7vlU2PVnz57A+edbdcT53P17/Nn4ZsUhSvvSowcwcf2eruU2Nwe4rqNG+T+WEJXMnQu8+aalRbhdiELduC63GEzSCqUoMGqUu6Jo662VvnKbhy3LqoXAwrodco4x9rUo1jdlTF0dsMMO7uVkyBJ9e/TgisWAhx8Grr8+8f3ZZ4F33snsv+46YOedA3SO8iglRGhUJKGQeuFNBbOuqoLWvNlXVQsXZj4X4vmsrQVWr85/O4TkjSAPisSLvGVs7rSCK7OYjgeImb2pTU2IIjcFl92pSnti2ZwPEdfx+dLDcdXwa/H+gmOsy3hMAk6Kn/p6oHH6IgDAb89vcc97nA7TlX2fjRgBfPnINMtDzFZcL8w8HdtIOg5aCr3MnhQWFcyYWt7xf//7X+CKKxKf+Z5AnNjt/afw1rxohROwtD5OzYHQpOb9HJsWP/O7VYhCK8GVuT8tLcB//pNwU80zUroMIVDpIwSaW50pThp4JweaPKHEgytoDi4F907BPZ9cGl++3F9Vz089BcNXHyB/QDJahBNLlwJtuo1navJErFsHbHFirqea9HldtEiyICF55rnnErFBLRLV2ym6zTm4zMREhbvRZqG8GD/4IGM8a1fvIYeg4rXemFUTRAuQwXzenHJwpY+xcvKigivSWNkq++XyZBAku1vU6ZFo3z6R+SLF3/8O3Hln5rsxB7cvuJ5UAhVcZYLt85IKWfJmMuzS++8Db73loYLwuO02YNddw+4FIf5R8VjN27gT/jjyasvKWvXK3IVtspzRgysu7F1Z3EIU/n2cTZZOAK/OPgk9P70PG1s625ZJodtZfcmeJBupQLPoiIuG/BnvLTwOfecdb90EQxOUFTfeCOy2G3D6jfsAAD79sqO0sYT5Xrn4YuDm739vXdbi1k2m8rLdn8LqdtaOPsq9fz+Ndy3jCYVzfyGipLzxBvDVV8HqIOVDbesWobZfYbLadvLq1oU/BVf6u98HwikHF4AmY+6+sWMT3q5GCUCesBQIWvx48zlWyfj1PfKT56tc2VgrVeyHH4CqKosdHrVD8+YBDQ2Z7/feC9x3n6cqXInCPNTcnG2EWhA++sh2l5dz0miTZsy2jlq5eyhVySOP2OcTJyQveIgRag5RaM7VZWnAEmTQ8Xts8jg7T7Q0yTG6avPW/toxV2fuhlVUGSFMucNTZU3HkciiwvBDCC3rgVI1N7e0AIMGJT576acKAxpiDRVc5U7q6TZOtj6DnEZhEU9IMeEnB9cNB4zJ+v7pkiPx5vzjE2/8QOLlLjXTWpHy4AoQFkV2ITho+aGYVr07ur79P/c63XJwuXVXYgBKt2Eqq8c5eJUTr72WLdRy49NPgUcm/RpA7m3mtJjNd97nufMtlnCb/Xlg54sNG4BHHw1Wh+x5iuta1vUQcQqeiQ3JGyXIPKikGx7al7UwzjHeDiq4cfLgqqjAlm+8hNFr9kt8j4XsQWphua48ap0X63jiCa22Jv3Zadw/4YREHsvcCrxd7AMOAG6/PfF5jz2AJ54AHn/cUxWu3Dvu/PTy3C1XtXIha/IkPv44sN9+aqs2M379Xrjppsx3rUpN+E7Pz6/HMeid11vw3ntqPQQIsWLFpq7Y84PHLe9Ru2c/K0ShrluvWfL9siFDdTUAw5rGrs3kA61EuC8E5tV1z9ok48GV2Zyr9CLRYtSoxNisbB33xRfZ363yO3qch+vrgXPPTXz2GPEwF96ISqCCq0xJPbpvTTsCAwYAj4w5JczuEFKW+JnHOlRkL4zTdaRcUJ57Ltu01UYYU2mT0Danj1YbFYeBAfzl4JIhy2rLa9uEAHjoIeDxKecAyF34ui26nQTYxlt7/PiEIk3quOT/A4/uguqWLu6Vh8gXXwD335+nyk2/sd0fr8asWYbdAz7PU8OkVDBbQxeaHOtjh+7IhijUTYYcqkIUOs2Ta5qcQwVbsnAhfndpDD/95L17iabkrl3elZhUcDnSqxfwyis+Dhw92nG35bPiQwqW8qpesSK73uXLbcJ8e+T56afixRcTnzt1CsGTCon8JflmUf2O6NNHXX3PfbanJ0MkO4569AIMH26zU4i0gW+HDsHbIsSJmTW7YPmm7Tytz83zrqVHchQUXMmkxq5rqjwbF1kay0rM0YENgUheOOUUU86soJgnAwUKLqvqvv/edxVEAVRwlTnXfnkxLr4YeGDU6flvzGKCveWWhGCPkHJExZqzvi0Z/u/4ZPg9c9wWm3hFsotLK+FYPtbKcVGButZOuTuM+Ud8oGsZAYVd7iLKp0gai5vBuP71ogxdtw72Cihk34bXXQf89rfGNv09ZHaekJqWrUCz2p9v1q3zJ9wbNw7WOdLMSc5MiNFjHPcTUqGJhPdzGJOAEDnPuZ2XFAC0xNt5U3DZfJftWxqnNv0OHLNmAc88gw/7t8MnTy32V4cVFuudLGMeFYsXt3wnJIs//SnxrucVMeibwG1XHHaw72P33BN4e/4vA/cByL5FamrsywGFmYvTRMzj28gdfQ7Ad9/5ONB0Aict2wHffmtd9K73D0Nty5Y+GiHEO2nlj8V6wy2TSKKQ8GeU45RsyLyO9jufJX+T5paDK+3B5a8ZM2fuNivru2WrQlh6axnXW74MgUj+WDA//TEWU+AZheT1bpfJ+ej5Vp8/371MkhNPdPfYtoTrSSXwaSY5SMW194OFJuuVV4C337Y/pK4OWLIkeNOEFA0uz5pZAPb0tLMSHzpZKIes6hMC8zbuhNVN2/rujtDUTx1vz/8Ftn3refsO+FwNG8M72An/qeAqD2bOBB5/zGUumzPHcbcXD64zzwTO/9ZesuckQ3a624XQfIUCmzrV8yGBMf7G++8HjjxS7jjj+bjhBuDkk10qt9pNi0xiR8qKWBPAO+8AP/4YSjfM+Sos7+jkm31TrIPUPW2r4FLoDW2LpqGxrQPiuktZwzirL8yjgssupJPiNoh6VISYFULLuVxLlyLb07fA8iS39pQquNwa++ILNDYmzkkhWb4cOOggubJ250NsbrbcfvUtuUZFDQvXWhrXPD3wAEcjJEJU4qT8sX0/NYlqLRVcpvqEbirz8cfWwvlJkzJJa53o1w+46SbnuU42/UFyPeMlPLMtQqCdaQ2liwpLuYdbRghGcokYQ4amPwoRcF405pGV0JTZrnXNBuQWCSKN/cxSTstCBZcSqOAickg8cK6Dzxhv1tSaBmy/PbD33p4OI6RosJpEXSMNmL63r3ARdFtUeMDHD+PblXKWrX766Ie1m7ex6YCQa9OmQJaCy+ZQV2EcKQleegn4130u19piRZqV18lDDi4veK7nGxfrdovnoU+fRO6SYkAIAM3N2d89QrkzcSMtZFm1qvCNC+GekB0w5MCSew5EPJ41jgVW9CYFAk65LdIhCgF0efNFPDDxfOc6x40zV6EGC8GWZUgnlVAgkR9cBvAfxui44ALv1ZxyCnDIIf675QdPt0hTU976kUN1Nf76V6BHj8I1mcLFlsgV8fEnltvf/TjX2O/Vz7rnPQcZIW6kZ1AvIQqN45eFB5d0Ta++mrvNKo6aVd9Gjkz8f+89+/pTCq5U/2bPBqZMyS1nNC5SgNT5kMnRraQ3JB+IhYvUVZZjTWqxrrV7ITd4fwGwvK+8KLgoecofVHCVKEqSNxpYvKpj8EpMA8a++7ofYmmk7svnk5DoYbXm8mpFdMtBIxMfbM0cg40FUglb8y3gEcJ3EgFLDy5ziEJaboXOgAH5D82jIsTBru8/hYcfznwP0ufUbbj77sD06R4P9uGOtW4d0snuC4JdXCAZGhqAT6wFWISoIr1WNr+4FohKs3DGai4yhBEzW3NboYsK4N//Nnz34cFlZWHuUK45njx/tbUAgIX1OzrXb0iu41cBJ3uU8nmFHlwFwdaDa948AMDadRUYONC0zyqfhulytbU57w8b7dP+hWtM111DJkaWVN7hAjJmDNCtW8GbJSVC2qDGMkShjQeXOQeXhCpGekzzOndNm2a/Lx7HFd9djxdmnpbZ1qtXbrlUiEII5/okMXuCCaG5yiisQhTaedCR8NHH/ACtbmPii4XXlCvJe25R/Q4YujRj6WD3nDwy7lfWObRM64s9922fvb+tjR5cEYEKrjLFzjW477zj8ers3FhA+1z2c0/1jxoFfPihc5lFSYW852f56689HkBINPGj4DIvwnLe581S/DyEJSpo6C9dB955B2JtlXtZq8PNHlzJ87Fth8wiifKp8Jk9O/9tSCm4XCyymuMdspyRgwhP9Vhi9btyZe4+p/Adq5u2wRdz97fcZ5dnzpVNNtncA4wfQXKoNE+dgyUTq50LuZx8p65feGEw/RspcpL3TjrvwoIFPt9Gg2H2LrKcWysNeSQlwrZtaO6SCKWS/I3xoLklzOfKiPEhGzMGGJoIKxPT5dv0a2AiFU5diCyB4IjFe/pqyxEuIArLihWeihsvz7Bhmcd83pzEjuWz6vHWW9nHXHFFgP5ZYLwtXadUlR5cycbspsqaxo55G/ZUhCBzCk2VDzmgW50//pjW4RPimfS9bBmi0PoYc4SRnDWDhELHFq9zV/v29vt0HR8tPhqLG3ZwriN5EpZt2g4tL/YJ9iBb5DHVrdZQQtjIMgzHUcEVWQQA9O6d+PyWQ14bFz5beiTO/PSm7I0WE8yT40/H7bcnHBY1zT6E7/Iqk/PHoEFZX0N4pSBJqOAqU+wE1B8sPBa95lglu3AgudoThknqjTeA3/3Od/ek2iOkFPG6yEq/RKbCCOmA1qd3pkBAbyvLHFzmbXm2OBE/jMXXyw/1dWy2gkszJMI1lKF8qizwq4wyH6fqdhe19l6JTn2dsL4HLvzgMjWdSOHTQ9INv+fqw0XHYO8Xbs9b2198AXz0UaDqSQmQnm8XL07cFAVGamxJh+nVpOaq9ZuTOWVGjw7WuRTG/AU2feu53cqs8EWfLZVMtof8G8xUVmRO2qp6Bfl26MFVEJTNs4Z6fvWrTBqNAw5KrA0nztsa116bfUw+54aC5uByqXu7e27El18WoOE8kI9xwzVEfMoSy+BVS4gsTh5cduR4cMnk4DIVOX/wn20saj3OXb/4hf0+2bqS48yVw6/H0QPuCaYFELmjgF3UmayfP2YMMHdudhEGjIssQmhpj119gcJwhQ737KRJwFVXJT7L5qjsfOm5GDEi813UbvTdNRIMKrhKkIJrjFMKJ58eFp4pskU4IV5w9eAyfTdbL7XFXYZ1j1IDS2uoQiIElm3aDn8Z66Ixt/ldQjOFKNT1HKtuz/KpZcuATz8FWls9HkjsKIRXvpQHl8XN4DTlaHGXHHg+UZKAOWQaYx3DfUQY6oG4kHWHjB0bVjekEJBTcG3XKTuEi6/HQIhEKIb33zfkALMfCM1tHLfjYuf6t946bYij1HLaxYMrL1baVHA54veVzfZ+81hhFC6P0zOYkxJE5dxfAnOg0lf+tEebz/MyJykUN+QQJESW9H1nGQJYIkShdA6u7K1fLj/cukNWAsNNm3I2/fn73+Hnn93r6sElg9HodEbNbsoHaJm0CkIAeO65rIg49OCKFsZ58JXZJ+PMQbcBUKuIFKvXSE0w6dvHpWxzW7vs1Dp9+/roVPHP2VGACq4SpF07YMjKg7O2mQcEpY/PwoWJ/xT2EuKJQCEKNS37mUuHETIdb148evbgKkyIwp232Gi7L8jCM6evKQWXIcyD5/X1448DQ4YwxplKUmGH8mihIaPg0o48IifNo+OatslHPPAk+VjGph/vCCySd3v/Kdx6q5q6GhuBnXbydozbOBWBU0RCRggNrfFKnP7V38JoPDd/hNU9u/vuqeLQ4+43rXm+9B229IMPEl5gybHZ8ujk5Gnu9xHbL3eu25DzzNdjOG2a9bhs8Ruz5nq7tYQQCTNdc4Imu7JGpkxxP4ZIIaXc8ZhMM+oKLuO+q0Zci8em/Dr/HSoBfI0bVvGgjXW6eXD5aZOQJOnZxzIHlzX+PLgkcmfb9ANz5sCc3HDYqgMweYNLeF9TXV8uOwzNsdzcpuaQi0EHaPP50K1CNpra+O13N2FzrH3WuoUKrmhhvDZTq/fAT+v2TmzXCz8K+31XPK3P5Xj00QI1RrKggosEpq4xnOTcslxwATBypPfjhgzJ1dnNnAkce6ySbhHiKQ63JX/9a444bGNrZ+djPC4mpXJwRWFCtumDcdEqbMr5zlGyfr2/40gO2uRJiQ8TJ+atjYrNcsooYw7bt9+2j9738stAc9zBotEFJwWMXwtjHVrJRs9Zt05tfVEYtkhIGAxCNjR3wfDVB0TihrDsQSr8sKQH17Tq3bCmaWvnOl07kps0yCkJu2fhkC6hdLJDCOCVV+z3mTAKwGx/w6hRwBNPAH36eOsLkCMMJGqwfRzNmk03pcV3w9R0KAANDYmQR4DzMLOofkdMchMk54n11WpFQr69pAw8+ijwpz9Z73Maj2xxG0CjoA0lJUuFgweXHTk5uKxm9Ndf97d+sbvfTbnuLZVqLnWd/+0t+GjxUTnFchRcgUMUmhVc1rlCje9bQ1YejJWNXbOLhB2thkgRxnXyOy3MqNkN/fur7QuRgwquMqFNr8zyqPe1MLRh24tPkytoYwYfj3vMqesxXsHAgcANN3jPCXbWWcDHH2dvGzUKGD/eWz2E2OHLg8tojW1c3CWfi08Xm3JfBMzBZdUf2Sq8tORkWR3kNVlUVGa3kVyprG/OCABlrOIt4cuwepqb81a19uMPno+55hpgkSnkd+r+v/VWoK51C9/9cQxb5LPOV2efgi22ACq3lu9XlUt04WeeAe6dcKHPHoWHqzV2+PoMEhbJi69DS8+pYViGmnGyvJbNwfXb727GlcOuT3/XRUWwmz3pbWUpWEidx2S/F9TtmO4rvvnGvl3DdkuBlBPJY42eWU4YhXO25+/HHxP/p0+Xbt+9UhIIu3vH/A64Zo1jNfrn4Ssghw4FjkrKemtrgY0bkzuWLPFvYCWDh+d+x8N3zl8/fDJlSo6sXQl2MhAx6Bu54wLGTdR1YMaMQFWQIsQpB5fdPWlelpjnPSE0YNUqYMECwzaLiqzereLx7JzdNvhRcAFAdXNuzsscfZbi+TMu671m2tzQ1klpP0ieUPjiJgClIQqt4PIwHKjgKhPmbtzZMTdkmPTpA2y5ZX7bWLgQ+PBD78eZPbgoECP5JqibvKt3ldcQhYF6I09Mr3Qv5ITdAtZwPgQ0y9WG7ncq5ICgHp5TJehmK0kHundPxsK34dFHgc+XHqGiWwWFCi7ixquzT8YpX94BIBovok7WqfeMv0haCTe2au/sDUOGeOtIWxuOGXA3rh5xTTrvhuXzklK+QYMQwM8+eiT5HcDnn9srjLbbLlOFt56lJWSVMkI3U86SvIQh8hgyj8ghnYMr5pwHM2rD/HnnAT//efLL6tV4cZakkahPFiwANq2ozWsbkcHNQMpl0hdjf3Ter8h74PPPgcMOU1IVKSL85eAyzC8WObjSjB6dVc7M8zNOw5CBpudDctFTKWNMYlFXbUuuoV1O1wKGpTd7itp6cLmkW/jz9x6t4Eko+DJEs1FMyY7nQd4VPd/efDFVAlflpUaID8a8up1w1lnB61m2DDjgAA8H1OZv4S4Tjp8Qv/jx4EqTnLA3xTpmVRbTTcN6UAVXgXJwtdkpuKTdxdxDFCY26DllvQo259R2R49+j3Ehkg/yeE5l79r5812NwpVg9Rxdn3S8UJpovlzh80nsSN4bi+p3xML6RHK3giu4hNxMeuHDCeXy4oYdpKtu1dunLbOFAPDZZ5l8uTLU1GDC+h4YtuqAtBe07uLBZbl2SbuqmNh1V0MVHtcTLS14ceapmFGzi21/jBhDOilRcJnboIJLinwZWdY3FF9oqcWLkx8KMEf97GdA38+6uhcsBT74INjxBVozeIpaQ0oPD4uNrJB+FgquxlhHzN+4I1BdnSlmMVff/uPl+Me17mH1jeGNU1Rtzt2Wg8WzYxWm1DIvdgDMv1SHRQ4uieeaObiihd07sN2qOT2nJhk9Wt1wTg+u4oOr8lJj7FjXIiNGAO8tUJ9IqinW0dlIVHJgmDoVmDdPvt0HH+sgX9gjUQhZQ8oL9xCFGZpi7bGsYbus/XttVW06oAAhCq3qlBTepbBVcEFSAGbnwRWLG4rYeHB5WNgKAQxffQCWNmxPAXpA2tospoUInNNf/AL4dQHyvFvdd3375r/dYmbiREjnGHMbgUSbteX/0qWuTgGk2LEYZ6LwIprTrQ0b8MWPO2X2+1iT6kgqn1atkj/IoLRJ9cnOMjqxT0NMZObwxfU74IWZp0qGKPQoNKiqwl/HXoGBy3o6l1u0CHjllayQTkIA+OknoFevHAs2rU9vLK7f3r19Krh8YQyTL4PsUmCbs47Dhg1O9URYcBkw1F2UCeWXzZ4d6HBpr2/TdXvuuYTsghAn0sYWHvJvm+dHs4JrwNIjsP/HjwBHeI+y0BbLfUp3ee8ZTFi3Z9a2dT4VXMfvtMiioIkgCy8hLDy4rA1xrE6vMWf5o0eHH8qWZPAiQZo7F9hnn+xtJ58MLFmSMFjVzjrT/mCZEIWN/i0S4i32L5M0ZM0fXJWXGvPnO+8XAjfeCNwx7rLC9CfJTz8Bv3n9AtdyCxdKvIObBqOH/5uH+IZJDZv2/WiXgoSoRXqtJwSuHnEtBq04NPE1KfjaeYu6nHL+Gkge7vc11aOiIuaQhyCIx5he15D5LCwsu+DtlHzwAXDrD8lQBiUsnCgERiVCVm65CNDYaL9PmVWYlaVhksjcWhG5HimOPhp49lnJwnYncfXqxP/Jky139+gBvPSS976RIsJqHojAK1HOXPfGG9n7fTyO94y/GId88oA3RUyyoZZ4+/QmJ0WUDi3Le3zoqoNw29grpBRcnuf3Dg5Gbcb2nnsOAHJDFL7xRiK5z6RJmbLJsWK9Rc4QVyIzWJcWXu6LtNGDxbUIIym9NPm+dyI2f6vE8rq6nc/k+bDyLDHu99QmgDvuAJ56yrlpIHA0NhJlqqtd75/U7SniFjm4bEMUmhRcdkJx470vEbIfAOpbOlqWa4xZb1eB0hCFdoa0c+Zkf9+wAXGRbUT7yORf47Lvbkp/36KdKScJiSRWt7ad0aOu53p2GVnW0A039znSvkCqzU8/A+DT8LGm2r1MVmOlO2cXkvDf5oha3BZ3M2cWph8mPv8c+Gr23q7l9tsPuOWW/PfHle+/T/xfvsJyt6Yl3o8JCYKfEIVpa9RPPkl4EZnqyjk+4GQpgITbZ9Y2iTY8ths40baxvaoq4N57gR9+gNg1k1tIAJYhCuMe8hWlZOMAKNjKB1zcAYiWZVfUbvOWFrlyZm+XxkagoQEJsz6L/UaqPb6TkCIjCh5clnk4TDQ0ZO/3OSzM2bgLsPvu8gckhU7VLV3S873l2iR50oTQrOdwu5MaxINL8kKJ1jbcP+H8rNVKVlvmJLvw6S0etQEyYng5PVJFLSqMgvelLyoD5p51g+spT1gpHrL2O+yTuc/btQPq6tzLkSJi3DjgppsS75wuyd47VCQk5LVN8gqkXA8um3vUwuvaDTulmq/3cb9jTeAQhdnttsbboe6r0dlWihZGMV8tz06Cx6EyOkybBqxq3NZyn5frJATQ0eFRa4x1Qu+h7rJpUVOLpUuB9r88Wr7xJJ7f5XkjKoEKrlLDbYW1cmVh+qGYX/0qei8wASMhEGKJlxCFWZ9TCi435ZOfHFymRbtUFTYhAeywDH8En2FCv/02IaF+5x3reN8+c3Bt3myy4KFgSwktLZn7vs9Xu+Qt96GXhWYh1pjrNm8NrcL6HrK1MFbBpk3yZYWAs1gnupif/VNOAQ4+GHLx+CO23iD5J5LX3OR1Vf/jLP91eRnULE6GkyfM2/N/gR/W7pO7w846O8uDy2PfPFh8PzrlXDTGMsItXWgYtXo/vDjz1OyCQebynXf2f2xZ4G/+CHi7+qqnkJx2Gko6vGW+jXRWNm7rKeqqDNL3SoDxornZ96Ekgog33sTYtXsnPJhHjnQsm1rXt7TlPvd2t55bDi5D5Vnl7Duc2ZeTs1vicCONjS5NWawZzOVjrQEVXKbzsaKxG7Z96/ns9xwLQ4LaluzoT5H29C0zevYE/vT9/1nu83KdhFAjprn0uxt95xDlfRUOpbuyKlck3fOLjWHDDO+0Fr/xwAMZUogUH5aOTx4mQ6MyzDFPRtZB3haTljm4zH3s1cs5plsAdKHJDVvG39U5E1c76xzBJgeX5FS49dYJI700JSycKCRbbgk8OOl8AMBNzx+EGTPy0w71kUnK0D1J0xL5u1YYnLKdhhWGEipxouDBhVzhTI4HkWnQ+vmAf/lvzMsPNCqg7LzDDTsHrTgUvx78V8d6sjbrxvqt52WZvuUwdWrGq8xKuAbgXxMuxF/HXpG9w4snjbn9gw6SP7bciMcL8t4pJWRdsCDv/fDCiBHgoiQA/zf8ehx+uGljnmUgKvK58ZKXFgvqdsTxA+9C+9dfxfTqXaWO8bK+NM+7trePlisPcGvczoB0ty617h1raUGXLsB7z613L2vA3Lf2e8mdM7vKbM+H8SQXqeyTBEOVgqsp1hFr1wavhxQOSudIXqmpkS87Zozzfqf5ae5cYOhQ+bacGDkS0K6/Tk1lhHhENkSh1qc3plbvkdm+bDnQ2Jh1/JQNFiGJPC70hq46CHWtnWz3/2aPacDy5cCXXwZqxw6/1i9an94YV9UjqxtCwFrBFZfra078Zb6pKsH8smcROargLFyYUGhaUfTvSh4Cie9/w4moqyvO+9ztMjkJq4zDxJo1wLp1avpEIoLFQ+wlVG2+cJvvzFbH3ir36SWVHC88hxIEbBVXxs26jeGJVN9MvNJ/x0TIKFgr5nRdQ/uK5PHG85FUcEmtN4p+AiggmzZJe/IsXJgdGsvWe99jiMJ0LcOHS/WjoOQ5RKHWddu81m/FnrvHsWFDYdqqlZDDe8Ht0U6PDxb3YCyWiI5OyosWvV36c9Vmm5eGJKk1p1UIQLv1qPmetA1RaLgnf/u/45064dhHq75c87OxuYWGDQMALO/3g209a5ucz4cKbKNdZCV5lvjNivpD8kvJL79K/gcWBiq4Sg03jwIhoG1uKkxfAGy3XeK/jBz4pJOCtaVqTJjlEAGG4w5RiZ8cXLZ1zV8A3HVX1vGrm7qits40Jni8iZ+b8StcP+rq7CoMQqDtOyXDAJhyhQAOyXA9IIQPoVPy86zaXbKFW6IiWaEpRKFfq0x6cOUFpxCFa9YUTohgcUsXjPBF7Qnmr+oSdhdySD++eVQwGwWm++wDHHts3poiYWDlwSVp6KCKWQs6YEPzVlnbEhFB89QPL0okQ9nLe5+W2ORnnrT5LcauCKF5NGm3/x23/HBlTlbxZZsyuUp14aLg8nHqy/W9YPFiYK+9XAq1a2e7q1ev7Mu+337AuHWZfBieohk43NpXjfgj3nwT0TRIKsE15PKVlXjjDWD02v0K33jAa/zilBMwerTNTpcUD598AnTv7t6GppXvmFGKvDr7ZOmyqTHNyphGdryrlAhR+PUUa6+oGTW7ZQ2Wdvehea5vV2ExP2/cmN2sRWXXjromZ5vqe1/Kg0sCFd6ZJP94WRf84x/Af5/MU84DEmlKb2VFnBEC2BSi1K4IcFwf19fLlSPEJ+45uKz3d+z7CuItsZzju/28h6kC76vL/kt+bluFgJbwFLOQMKjII6Tr/hVQFZqAqDeNd1YeXH4XthwECs7++wNHHRVuHwohnMhn/gptX4tcOUVE+vy7XAi7F9ZYm8NxqVCrS5ekN23ejIJZpJPwKGiIwrY2HHLuntb78jXAeM3OneSzpUcmNvlRu0t4cAmHcpa4Ca6SCeWt+pul4DLiZS73mcOz1JgyBVi2LHHqvv3WppDDef3Tn4DVq+3rn13THeutol9Z1Dl3rr3+YfCKQ/Daa859CY0SVHABwF13AXeOuzTv7XgeKl0OuGvMefiXXRTYKVPw0KTfeGwwl+OOA26+OXA1JCKs2NRNumzq9rPy4HI7JvXFNgeX7MNgDFFoM6ebt6fX0sY2kmOX07vKEdstl+vTwoVy5cwIYd++h0gVJEJ4yRHtwpdfAl8Obq+sPlI8lObKqpyJ4gJeNXn6jam0JI7vG4MG5aVtUp748eByWsI2xTokwv2Y2bzZuVEXurQ3ZUU21PFj1d448rP7ch8cp4W4B+qaO8oJ1rJNwtP/RENmsWQnSIvLKLhoclk4HASYDQ3A+vXZuZRS3Hqrcy7GfCc9J4VF22Vnx/1240b70060PygVxsqUr6UcllZlhZUHVyEteOfOtdwskEfzfg+amMbNuQthlR5cxiFeFxWZDTNnAq+/DrS02Nfp9jtSObj2zfUgEQIZBZcxLnpSse1LiVemawPjz545U339x3/2d1x+uVzZCy4ATj/dfr8QiKYyKYp9KjIMdqfuRGAiX7wYaEoF0mkqXEQdkh+Mo7+sgapl/m07vZVpTrI1HE1VMH26Yx+s8muambRhD/z0U+a75e9KKbgc3vOv3T83tKFlmwHyI9q27zEHl990CCTB7NmKKnKJO1vyy62S/4GFgSsrUjJYjgmrVkkfv/32idBYEVj/kjImiJCtRW+XEBaZSSbDi8eBb8d5j4l98V5Tsr4bF4Lz6pIxOSxe1FU8SiNW7Ov9nCQHg9rWLbCycdvMZkOuj0O6ZsYGy3NmZsYMb30g/nExJGhpAfbYI3f7yy8Dzz+fpz4VmHzPQ+XqdUAIgPAVXDaC7RwjDJUvux7qWlW7BXbsnC05tjw/bgOVVw+uF18EJkxwzpckOXiJrbfJPVRoGcMbg8vP4pptAQCXfnejRMXZ55GCsfzhRf5vtOOyJIovd1RwBUIIYJvcx9z5ABWoupe++05NPSQ0jJEC2nS5nHpWc4atN5XJg8vVUO+zz5z3Syh+rhl5LY47zrma1DOQ7nWQNZXHcIJphMPs6zlEob8ukAQHHww0N7uXc2PA4M6O+9+fd5Q6ZVoU4Y2oBK6syo1ye3DmzfNUXNez3zei+D5EShvHBaHL89tr9smOllY/fl6Fs+88NEj3Et2wWlJWVOC11wyPnBD2yXA90L4iLrdItjg3d467FGcNuj27iK4DQmC3LhkrIV1mKnSVnhCv2N7ONt4N5US+vc3KIXqHiuXOxImJ/1wLlBgWN4eXsEGBsVNwCZMHl8o1uwettoZcQZqld7jPNo2bdaHllnPSbLj9jtQ5swlHXN/WKfHlrLMSMfbmzcM+zyRihq1p2ta5bmP9JFLoOjBr+VaW+4QAB/FyII/XeMZS63srEOWwECtxjLNBS9w+56Cx7KTVztEH7FsAtu1g8y4qMb/v1LkOF1yRUSDIGmekyxmfr7SCy34+tFTk6R7c16T6ZreD83Sh8XvKR47MRIe/+MbtHcv+edTluOcef+2Q8oEKrnJDxvojorgNnC0twV1khXBeHxfnmSNRxWqh53ifC+GYCPWbFQc736PvvC3dNycs+1hRgRtvBJ58MrNJxatmlw6t3gWPNicxvdg259AwntM2+YSktY0dvPWL5B2n50dFTjgAGDUq/7IyVX21w6/BZBSQfYlS4Vlx9NHyZdescT6vzz4LXHll4C6RPFFQDy4bjF7GiQ3heHBpeu6NbOXp7FqlTYHsn5j5zY1tHbBu81b2CZUA98ErFaLQouljd1uFDhVJoXJlJfD44xD/fda5PhcoRyswNpPvqlXAIX851fNxocKbpzgQAof99ZTM9yjeSyQUjOvM7ls4x8tMvb//X/+LsHixuR7nY9w74j6WVG3eBgO/yeQkcj3E7JJjPCCl4NIs9iWRXlPJGN/YvJvbRmDJ1zqKKOfUU4FnnpEvn3M5izQkCaeR/CEtNdQ0rVLTtCmapn2V/N5D07SfNE1bqGnaR5qmdUhu75j8vjC5fy9DHfckt8/TNO0s5b+GRBYVD7Hb/DR0aMJF1q3hRYvsIxcKwYgRJFzcFoROgu+YXmm92EtO/hX5VNFqubHFVeTg6tKuWUrBta7WkEjUTsFlOLfGz+lzPmlSIpHT6NE5x7a25tY3fNZOrv0iDhTporQU4PueR4T7vbrLLsCrr9rv79sX6NdPYZ+IfywegJdmnYoRI0Loi4G0l3EKlWOkFw8ui/vdcszwubjP+okGpd7/Db8OO737H6C9Q2Jwt8HLkIPTTIfKODqkcnAlF/uBFeEcTO2RPTeFyEVEaVLpo+AaazELQbpNkrmWFuAPVyiIy0WKFuO7ZKdKZwNJ41xj1tfYKbKy5ifFc43r3Dd/vv0+KQ8ui21WHlwua5NB/xyJe475Dli92lSZsG/d49qpFEMNT58OPPVU2L2wZ8aMzJDtJbxhzmPw2aeJ/9OmKelXqHA9qQQvovzbAMwxfH8KwHNCiH0B1AK4Lrn9OgC1ye3PJctB07SDAFwB4GAAZwN4RdM0uWC1hPjFNFBoGrDvvsAJJ1jPfUIAWL++MH0jZY/VgsotRKHTEsw2/vfGjQD8K5yMSrWffkok/7ZDjJ+Q/KAmROEN316CqdW7uffRuMy19eCyJn3O330XA5b0hP7eBzllRk72nruMOCM+/Eh5nRs3Ap9/rrzaglLQ9e3y5QVsrLCc/83NeFuN0yq0Frm3L7vlw6RJnpxDSb6xeMj+M/1M/POf4bUPJNcE+QpR6MWDS+iobu6Stc0qRKFfoZDRCcsYovCLZT0TGw85xFe9iU7ZK7gAoENl0oNL0zB34074ernHsM0UQKhn4EDLzap0UpG9ZJHtWJEicT5/+1ug79wT7AtszihbdT05b9tYxa5eDbzzUSevvSQRZ8IEoHdv78fJ5uACPEQikB0i/BjDBBl/kgYiTka3Vko7yzWDS9+feW9nPDn1HFhZINl6uHlcR5XiSPzcc8Ddd4fdC3uM+spAU+HcZG6MMWOweXMi8nRUKNaoacWOlIJL07TdAJwL4PXkdw3AaQD6J4u8DeDC5OcLkt+R3H96svwFAD4UQrQIIZYAWAjgGAW/gZQJKt8Dli5NRCexbGPQIKk6aAxI8kGQHFw6NOsiHyQUNpVBFE5JF6ZRo2z2//BD4r8hprwKD67Ztbvg3QVu2W6BdhXuvy0tPDSdpLSHmBC4eOifMLs2Nz56xYZ1ch0ucu65p4ApsMaOVV5ldTVw0UXKqy04+Z5e0o+A7QMdXZ56Cth7b/dy46r2xvvvB2jIh8DAbl1w1FHAggUB+kLUYuvlW+B+mNvP2RBeiMKYyF4kW4YodBupJEIUDlzWM+dZO+rGI6X66dimxfMrdJHxZNc0XDfqapz/7S3+24KNRTrxRr11aC+VXoOEAMCnnwLDVx9gX8Bwz/35z8BOOyH3nrOIWEFKh3vvBW6+Wa6s8RZ4bMqvncsaCuuN2bm0CupBlLTEcr1/rQRlKczPhGyIQqtGXdbaaVmChWe3qhxc0qEgiTI6dvR3nO2l1XXccw+w115+e6Qeu+f6hReASev3KHBvygdZD67/AfgngNQItB2AjUKIlCRzJYBdk593BbACAJL765Ll09stjiGq4MI/G8kJLlWsuhrYHGdeHVIYrAQj7h5c9vf0MTssxe+GX5+7o6YGcx/+GIsbdvDTzWTHdOM/W95Z8Iv0Z1WjUatL4l4gswDWdaBqo/WqKcugy7A9dc5bGhNTWsfK3MTPFVMmOVdo4txzgQsucOl0BHnySSjzenHDbuFntz3o9FYss6MQ+bf6EmvW5rX+fBKPA0uWyJUNJIAyeBXQCo8UAiGyPbiUKk+8KGwtykoLq2SqN9dlqmfSvGzvMU9tpjy4bEb8tLBMCPv8HRL1lzvG09CvH3DTTdbljFfhgguAMWOsCuV3dhYi/22QCKA4H8LEiUBtbW69Hw/bLki1aZau28JzPST/aI2bpMsaFSOLG7Z3LmscDU2x4+ymFWnFl5d56Ztv5A5JKrgs17/pEIUOXbLy+rZq02VtMq8umQ6gnUkW4JSXnCEKSxbb+zYeR3V1Qbvim9tuA/rMPSl3B9eXSnBd2Wuadh6AdUIIC+meejRNu1HTtImapk1cz1BxxEAhnvk99wRu/eF3Dn3ITID932nEf/6T/z6R8sJWwaXrCe2DA9+tOgBNMQvljq7jwAcvwxXDbgjQMfvE7QCg9emdXVZRiEIAaJFQcKU61vflZnS/9bfWRZIL2BWrKlDf2jm9PXXOU7+to0UcdStvNKchadAg4Kuv3LtNCkcxKSnyLovzE3+ljHhj3vHY4lJna1wrKEMtEmylSQXKCygZonDuum6F6Y8Elvk0fA6pObKn2lp/FTlUbqccTM3lIhZH3GK9VV8np0BLf6VgDJMmAX36uJcbOBD47DOLHXYDZ31doH6liKzMKLIdK1+0OsNY1NCQ3Jh9fz76diJsupfLJ9pyDed+ee/JnvtH8k/FimSMs2R4fyfO2T2Tn83V9sLwuTUuF84wq0qnBrwodIwxgp2w8eCaORPQLjgfgPN7lVtO8UxB576vauya+NC5c84+q9DJ5jpf/7SrXD9KjGKaXvz09frrgTrTEqHo38GK6aJFGBnTteMBnK9p2lIAHyIRmvB5ANtqmpaSOu4GIBWgeBWA3QEguX8bANXG7RbHpBFC9BFCHCWEOGqHHQJ4GxBrwnhwZs1SVpUQQGOLhLDbR71e+WzwlvjHP5R3hZQ5tgvCRYuweWkVYg4Wx3E/1sgS1LZkrAxFnXUomSyWLIFbvjBP7be6WzmmhFnrvxpnW2ZR/Y6AENijZzeMW5eJcWZeIMf13PNoqeBiSINAKJ2OWlqyvmpaIoFtMVKIaVo0yFuoFjNO51IAaGoybUy+HdW2bInNMe/e3EX/clUu2N0Yy1dYby8Q/5pwYdb3WSu3UVe5h4HFyovZ0ttJ0psqp664abtVaPDp0z3VKYNR6XXwX07FhPU9cspssy0fYmUEncxUmmNzcC57vh2dKyDPwZAsU9TUJD6YFgp+bmvxQb+cbWtqO+Onn7zXRfJLOq9USsHpwK5bbkx/9vLW+9KsU7O+20a0kH3PdPFcziKZSsD1Pq6wliksXZr57DSsqvLgsu2PkweXoaEbHt7duoxbv0gg3ngDeOUV+/1Z944Hp5bUterbF5gyxV/fSGnjKg0VQtwjhNhNCLEXgCsADBdC/B+AEQBSZvJ/APBF8vPA5Hck9w8XQojk9is0TeuoaVoPAPsBGK/sl5DoMmCAkmr22gvo0QPocuOVSuojJGysFn+2Cq54HNu+9RzeNYQAlD42IAOX9cwsnocNdz8guQhVkYMLAJa6hH3Ianpjjef6U4K7zm+8DABYvinXar6dlmvxlq/zTeQYOdKg1zKbcSFaiWajRrm8zLW2AvPmWe/7cNEx2HLL/Pfhlcc3Kq1PCHkDXGKD0wMQy1XuFBRD35R6nXrJwWXRrtV859uDyyVEIQBguMRaw4rUWsWiyufHH5f22pqzcmtf1WsXZsceZg4ub/zvf8A2WycFmlVVif8SyqdFixJ/fhRVDFFIAODsP+7iqXxaeJ4z4drfS6efnmNvlajrB+ucs+NNkrBYDFi40EMniXLS85+E4sX4Hr9th8225aZOTeSUTtHQ1slUjwQSE67UnOzi5exWuWUbQXJwNTZ664cMqWsnm6qEnti+sTvFf/4zcItFitOffrI4ZvJkf4YDpmM4zRNAPgeXFXcBuEPTtIVI5Njqm9zeF8B2ye13ALgbAIQQswB8DGA2gMEAbhFC8BU9BAr+7CuSpK1fnz+BpZhmbSlaTCGtSGlgu8iKxdCq5yZYNZJXhUvyObYNB2CkQ8LzQVWIQhlSw0ylm1LNZhE+eXLm+yNTzs0p061T7gKcgq1g2Obakhx3Tz0VeOcd+/0eQ7BHhkLk4CoXDdeYMcABDvnkZZF9abIqN27A6uAdMHDvvSiIYq4cEUD4Ci4DQsuPV7ZruxbDg6WCy209YDPOxHVrwdfle0/IfG9tda7bDgfh3YC5B2Ftk0KvOOLIF19VWq4Z6xuS9/Wbbyb+SwywBx2U+PNFg0TkAVL0qBZS262SZi7ewnaaGD48IcA1ernE48DRA+6xLG++9V97DdhvP89dJQr5aV2uZ68dxnnx1oNH2JY74gjgpjG/T3+XXYHL3tMff7s19LjI9Y62QssOy2/fuE0o5dVrMlUZfonZEHRja67HpGWVk5yz4HSqtF8L2P6E1AsgXSTzTuqamq+t2eFu0ybg+++B445L/Nc2ZzxjX5h1Gk44wVt7OW1qWvEruMrk3TzfeHpzEkKMFEKcl/y8WAhxjBBiXyHEpUKIluT25uT3fZP7FxuOf0wIsY8QYn8hxDdqfwoBEEnVdSweTp9qaoD9/mDv7ZJFr1757QwhFlgJYGyVVBJCN7uE6deNuspTvyxJW25JPM9CKA1RKEWyf5U+lGpxUYF6g/wjZhGiEFuUtkR52bLoTB9e7hynx4KWXfZwDe2NIArH9g3evUqdmDTJ2kKcyNPn2z0tt0+v3k2Je5wQwJo1LgUsOLH7gvw9nB7qlVVw+cWyrngcndsZ8l/a5kmTM2KxKyZlpOOBY/5+otL6osCgQe6PgcztdOHvOtuuSwFkctxITM6trYm/pmbvSl9RU+teKAw4EatFwfm0nOst6v36K2Hb3MknA4cdlvn+r38BU6v3kGpfIu0TyTM1LV2kyxrnsutHX4ULL5Q7zhwK3+7dWvaWvvyFE7Dy5S/kDPtS463PEMOWiRQtyv53+pkSnXHPR/b3w76z3uEYgzy5zy6Eg7m4VCnixrBhmdvLrOB65hngxORyKRYD8P776X0t8fYYa+3kmkNVFdAvGfFVCGBzLGP8zfd8AgTz4CLFSAiL6fb/vg+PP17wZrFkCbBwlXvuHoCuySQ6pBbLmzcDzz5r2CEh0bQT3LwxT9IsRgIpIVdynFEVolAK2TYtQiHoqMjK9xHTcxfbYptt7ZosCZYsyXwu1AJR9vSNGwfceKNNHRLvN8VGQXJwiUSqiXlr/IXpIiZqkwJUg9n21KkJxbHqcbBY7+socVOvIyy3x0SlkhM8YgSwi7doWACA7lvUYcKkzKvZVh2aA/cljZffZVHWMp+GmxezXQ4u8zpip50AXc+eE/y64NqZEyfp3tnem+dXu8723NyMZaU3hp57bmLeTbHffsAXX9iXLyRbnnqM52OE0CIp+XrmTffw207eCyQb9R5c9vWJWNxxSG02DN3zpstbpHB+D5+9t0rmA5K4GMa5rDnewXqctHjvbF8hZ0hjvgedetQwZip+XL6rVL2AvAdXOidZyvPLw3N22WXAr3/t3OaCuh0d60hFg/l+5rbS7abXD8UayqOIMC655s9PfP7Zz3Jv+xyDVIvUAjJMmQJcmcxWs24d8KfvM6lrIjjNkxCggouULCoGuYa2TtiwIXg9hFjhZCU9dizw978bdkhYlZstwpTiJYFtckFZyBCfmRCFLovZmTNzNulCQ8vgTGiJmIXFsaW3nUtTXGip4e23E2FbvGJ8vnbcEXhj3i/VdSqf+Fz0e0IIvPQScMBdF7iXJdjYuoWtkhUA8PXXAABt+rT0piOOAM45B6hQPA5SAJZnFJzgmlWbfdX1yeKjcMzpW6W/b9UuHAWXdIhCn6cqp66ePRMKLuP2gAouO+Xbjp0bbA+1Mm4hiZxAOSnRli8PpS9+iOqQ+c/ndnYt06myzbUMSVLARbemO7+TZXVl0ya5cuD8HgX26JL0upfJeSXzTpwygDJwyd6Ts75L1ePSn3snXIhT3r/BvZ6UosqrgUpaDmDYZOi3VW2ffAJ88w3gJExrc5l3Uy2ceOexjuWy8KjgkopOU0RoWuLdOfW5qcm5vGoWLChMO1deCUyv2T3xJaVdK2Y4ASiBCi5Scsyb5318sJvk/z7uUnTvbihHTy+SZ1KCn5z3NBlLsnzenxYLW8eyQoTiweWHuNDw78nnGb5bTI2SFu2lQCwGNNjIAJub1elfVLxQOF1243vN+vXAmqZtA7dXCETfNzIWk/lqA/bXuOxocxcg6qLCWclq8xI9Zw7QZ+5JPjtmDd9/8oyKE/zJJ4n/U6cG60pYc4xdwnhFN5/l46LYg8vu3Dn9hJFr9k98cIwvWfykTu38+cCECdZl6upcwqUNHqy6WznoQsOKFYnPQXQXWtAKQqRU15l+2dJK6e83X58FxrPtNFZowtmDK4sK+WsoFi5KfFD4m4g30u+uEnOQZVQTifjoZsMn24i8rj3IMLV6dw+l5T24zHyz/JD05/Tvd6lM9O6T+G8hb4vt6OzubmssKxPCQ/IhLfVxNp92kx5Pdf6Ix4t1ms8Q+kksDajgIiXHAQcA48erq09BOgZCpLFVcPldaKvCSw6ulAdXARVcqTWBpXJKgo0tmWS4Vp5wVovyUl2HPPMMsLVN1KWrrwa23bag3XFE1xMKuV0P385yX1FSAMt4oRetvE89EycGryN5MmW8VmVzNNhRquNOFNi2Q6OSEyw2Jz24JPM/5LByZbIihRc7qAeXVYhCN6GQbIhCAIjHs/I1TZpiM5e7/Y7UwG9TTmqN8Pnn7mWKkBdfTEQGqEwazJ9xBnCMTcS/c89NONYVBJvJaML6HthDLnWRIxwyS5xBgwConxtT45H220ty9rktn7JvafvSOR5cqSgTP/3k3kGSF1Ih8byGKMxsNL18WIxvxrlz40Zgft1OlvV7MQRcvin3PciSVHIknzm4vq/aN1NErkW0rd9oW6Xbujnr9KXWRg79A+C6Dih3mprCt+PJR5SfSL7X8h4sOFRwkZJk82Zvg1ypW26QaGI155329h+wcqU/Dy6/yh0pku27KdE6VrZlPLgKKVaQ7J8dxvOdDk9hxEJb4nZJ4nGgutpXd5Tz6KPAzTfb75ddfy1apKY/gLpxt6UFWL3WIm9aka4pCzIfCRHNF4EwMFqx+L1pNBvDBAuC5rIp1vs6Mji4pWzRrjU0pVIWScmDykvda/RB0mWtum0laHMNcWTB2rXAqIUWeUJ0PWv+PmrAvzzXneiUc4hCqXWShFdnFionRh+0tQE1FssWM3/9aya3669+5W5LsWxZ5nOOIL7A702B5ytOeCWB5WUMQVLrdjtl7XcomxuiMLmB1rWh4cmDy+rimo773+tb5hQxzk433aDjqWlnW9afNc4qXvx59eDSfnMeBg8GZtdmPK50SbmD3pBIyLSpuV3OPlcFl3H/wIGmLto8XEL+GqaLm36vn4hQfpg/Pyt9b14wjzM33eQvT6wVqXP0wAOZ4AWEhAkVXOVGGUlGZN5lzjkHmDbNvRwhhWTCBECrSWpGUpmKJRZpec3BlcRNqCEE0n0taIjCJH7yFZgXyGfsNie3jE8Prr339tydvPDii0Dv3onPCxda5jzOIWzrLhmEsB/ry2i688zYdftg1aqwexENBv3YlfdKGbHpmVdt97WviCsZOH5a18O5gE/L6SD8qV+wUJm+QhRalL/tNuDW/qdYNKDniLlSjnBudVo2bbNWkTKCmTVLqo00IUt17rsP2E7SeD/FsGFy5YIq5FVB/RSxJfnOoVLp+tBDwOqmbWz3a8L5nUzWg8vMg5POT3yooIguLNK5nKUip1hcJ5Ny8m8P5t5HxvfO+okFzh2UysHlwwP7nHNci1iypGF7NDUBB9x9Yc4+N1mBcf8RD18oF6XJaw4u5K5vDjgAOOoo4KqrpKrwzf77A8d6SC/mRkuLxcZ167K+5uP9/rnngBEj7PcXYg4v+nUCX0aVwNmzhBACaGzJtYwwFypk2LCoM3hwIjd8Y6xj2F0hZYjdPBabMQfa228lvqSslfxakqki2b6bcMi4SAwjRGH3LeqdC0qsfuJWluo+f0q9S3fCYL/9gDvvdC+3yy72VuEqFpEq1nGlqOASev5t43/zzS3o1SvPjRQJ5/7zYM/y7Bw8hCgMSuq+1jSm6fBD68p1zgUUxDbdodOmYBV4CQmcB6wMOixDFPq43SvX2UhWdD1HWNinj/f63fJB9J13gvdK3fDq8aUYo6cVkPAcv+MONXUHDakaGYpU8hXWGBBVLOdYhdc29d7y738DNS1dHEoK+fHPgwcXCZ+0QkXiAlsWkVhDGFf5Wtx+/siq36U/O3WWTLQke9PJ/P7U7xDCUWE2o2ZX+2nSpR3jMz+1apcs4wzbNhWFKJw8GXjvvUBVSNHWpkbptHw50KmTxY6UhWse8HOKBw4E+i85Um1Hfv5zoMUiR2PYFKswooihgquEGDgQ6HLtpY5lJizsmt8wZkXIww8D3d56VqosxyhSCMToMRnrwNWrE//DzsGVxE303qa3w73/7ZZY7BbyxVw2RKHVyk/TsrzfLD3hfIQojAo//3mO8VaO4s3ut5hfSArxm1vi7dKOi24UbZ4tF6Zs8JYsmgSjWJ5lILuvlh4uxJE2PTecaRYKboaOlbHEB7/a95BvyHk1O+RsMyqfGhqAFSuAqjorSYoB0+9YtgzQl6+0LWeev/1E6VKyDtoyN6SUIyFrms23y8iRCWvqUoKKAOJGIYdNDYD4ZrD9ftn71a7TvOFDIx1eX1GIQitk71Uv5m5e5z4Vz4tsmy1xewN8x35YhFNPl1eYg0sky771FjBlitQhSqmtVRMy0DYCt09r2+Zm93WYn/vof/8DXph5uq8+2bLrrtAmTFBbp0Luugs47TQAmwIawBFXqOkoIVZavDOaOeauU7HAJpFlKeFk1W/G0pWXkALgtCbIcdn3m+xWFWmLcveiT/TZPn/9sCH1EuB6DiqtczXdeOCY9HcrIwCr310sypXJkzOfHdLPeKZPH2DUKGDqVH/H2724/fqbv+Dgg+XrKTU5gICGZ6afFXY3yorAL/rpHFz5lbAtWpStdC61e78QFELBFdiTLw8ht7xwVv8bcrYZQxRecw2wxx7APv+42FO9e+0FfLT4aNv95rNmOce6XJ/UGiDQZfR6cMj5cgoh2M/XWNPUBLz1/b55bV9AK9rBsr6tc9hdiBQNETkf2uYm4MexsqXtdxkHOeODXKT3aymgefDgMnsdb9uh0bMHl3M5eaQN2GVDFEr8ju/XJsduiXNld0t3ahezP8ii3qxHxu44jyEKdVEBCIFrrwXuvlvqkFBYvBgYM0bt8PC3vwFvv229r3PnRL4uR71RnYvnYAEtDwoRRcMvgwYlQzguXGhfqJisLSMMFVwlBNdCGaZNyxbqFjuy3gykNNA0kZvkNmwPrpSCS1bgtnJlKMI5t3PwxGc/s9y+ZbuMpjtm9ZJgseiwXYbU1jr24ccfgfXrHYt4ZvZsIObwjpCia1d1bd50E3DKKcARR6irEwBiohKLF8uVdVoLFus6UTDuXMFRpazO94i3776J8SPdHtd9nmnV7S2JNQ1qFFxuik63NpIKkyiNYcauVFXJdWz+mq0kK095cGXPvZN/8j4Wpg23gzyN225rvb2hwXp7AS6UrtvLkcK4TyzblEnuaeLrr4Fr+7qHjQwy1hUiPy0Jl1WrgJHLC5f0Vvt8gPN+4/0qG6LQmFyIk3s4CIv3bwfM75wCWvZxNsYPxuHTMo+XD5QruFLpBhyKDFpxqFSTTm1NXbOT/Rym6znnWGa9Xr+pQr4wkj81SgsuC2bPTuRAOylYOtUsvvwy4U3Vq5e9o0TfvsAxx9jXIV5+xbkRGeGECiI4Zi5r6Iabbk58TttXO/Uz4vdgscAVXwkRwec6NP72N+CPfwy7F+ro3Llw8wOJBhXmJLdSFmF5HNLTCi5JCq1hllTA3fvuQTnb/jf9VLwy++T0dythiFW9tiEYXay5f/lL4PbbHYt45uCD7S2wgpDPtZaKqh37VywudiaYc6N4OPJI4IorgJ73nONemESC1gJ4cFXYjG4//ggsWSLRRiyGTz8FTvlKIlligUhZOAOAWL5C6phVNR68LYTIEWT1699B/vgkSjy4Tj7ZevsXX1hvL4BQ4uWX7fVu5uZDk5FE1BpvY2tnviSXOH/+M3Dmh8Ff/GXvEq3VOfxL9u0m6cG1dq1k6ySfpK+WhGdujvJFmBRcqTzaJozrfCfDzKz3AUnv5SjipD+68rPfYqydM6QQaF+RfR3i1RvT++zel1as65guI9c/Q060iJ7Ggw8G5s9XW+f55yf+jxsH7O4SGV/TgKoqix1uIcTKWGnTqrdHn9dMMqWo3mAlBBVcJQSflzwSgcH5/fcTExApHYSN/F0ILSMgSy2wQwyBs/82a9O5XqQtzTStoI9Nqi0/C/xxVXtjek1mZScbojDI78uHwrqpyf+xERjilCOGfhd2F3wRVliyckaYhltZpkwBPvoImLY8uGvkhg3e13Fc93mnICEKba7LL38JXHaZRBu6jvFjo2XVtLAuk5dLtNplizfh8VyqmIaUCPna2Xj52SW9K8AEKhOG/r77EgIoO0ezIFTPXZflYGJJHs9DuYYoJHIovbwSxlGa5pxn2OjF69Q3baFBYs0QhZEgbWAqMZ6Z1+s5Ci4bzY3xOMcUVB7eBzx7cLn9PF3H8uXAovrcnJw5uFS2Y6cGiGXLbfc/8YR9HzpUZK+FxPffu7fpMURhXFQUrVGkEencbj6n6urqXPlFlN5Z8x0mPggc0gsHFVzElU6VDJeEmhr7fQVyrbrmGuCWWwrSFAkZAS0TIiECCq55dd2xxV47AvCwKCq0xsQmSb0fckJOCOC1abn++bY/USZuex7W0eW4eBJLl9qf7hX2L1NRphSVjVFH14Hp04F2F/1G+hirmPR3j/eWkyhFfT0wd27m+9y5wEsv+aqKuNDqkOwcgBoPLs1lgHdp45y7D4c+anTgfqjkvYXHpT//WLWP1DFeT6WUAY2bFXvy1TaQ0MWuDZvtIp5/wViFw6lJdeuxx4Du3fMTweLdwTvi2GPV1yt1j+g6gqg/OaeWOJqmdv2bEqA7Nemyv6FBw5VXuhfWjNEuSkDAXvQIw8zhI0RhXFRkv6/X11set7JxW0Md9oN7jneuw80kreCSqCvFsccCI9fs76leK7p2bIJ4403b/XPm2OywSg+QPOfHnbU1vljW0/owXT7MJADEI+z9pgJVU+DZZ8P7OkAInHQS8Mar0fTwLjgyizkSCCq4iCtR0syHhsOAc+ElFZg2LWHVUOCmSZFjd211oaWtUNKCk4jcCLrseKDrBR070h5ceWgzFgNemfKL3DbdOmP3HWr0lZdfDjz0UPB6gLByeAS/VmLCJNsXyGKFc27hEcIm9IYDTjHpvXLSScCJJyY+//OfwG9/C/zlL+7HlaNSOyiOObgg1HhwOeyTyfUweOL2iLdGT9i5ZLHwdM9lCf+c3IpsDFTO3n0mHnnESw8VhSj0eLCTDO3bbxO584JSDDKR4aNcvCP9MnFiIGNCzqkljmoF16xZ7k1KiIz79cuUloIeXJEg9f6tHX0U9JjzPGyes2J6pZRS5Z7xF2PRIus6/OK1Htd5QwhPaRUdcyJDg15rk0QSQLzRRvlhIUtIff9pUnv7BnVvspOYXhnKRDpqZEQmb0lWrMjNQOH6C4TAmDHAmppO+epWmqIYNTm25x0quEoIPi/5x+ol6YuBFejZE7j55jy1WVxzH1GAcZGaVoRE4UbQdXmlhK4rsxjyghKliek5t1NG3fzBybjqqtztw8eYFt1tmXBOqXFaVsF1112JsENWfPxxfvJuGcnXvFJVBczZuLNc4XXrbHcJAeC119R0ipQ1Uvd6i3PeDekyJhYvznx+5hkp+RrxSXNBPLiEbV2bN8u1sX5zl8D9UM2atQEEaAMGuBY2n5XBKw7BAw+Y0phEMA+JU5vDhiEtyPTL6acD771nvz8Ky0MAOP23wUO1WrJxY6DD1zRti2Xrt1DTFxI9hDfFuyuSlUkrTmX7RgVXJDDm0Gz57GvHsjkRP4BsBddOO9keu+++AGIxR8NM4z02e0F7VDdvaVvWa4hCV4SAkJlcZEI5ChdFSOMm6+0WsgSp+S6VL1TSuzpmyL1dWwt89pnUYYE55dTsa3HZZcC0aXLHLlsmH46YuZ3Dh0N64aCCq4Tgg5NHJGbT1jxFcozKiytRj5MHV4oQIxPmMm6c/AtdSKE28iHcim+0X0FaCZ1yhDwWAm+xbr1U208/DTz1lFRRPPYYcMopcmX79QO6dTNsmD5d6ji/49EbbwBDhmS+X3QRcPKXd0odq82d7dynJUustxfpgn7d5q3C7kL5sXSpo4dEmm+/dS2yse+nrmXmzMmOfMx5vnA8MeUc5wJ5DlE4e7ZcG8aQgFFBxmvBSNbP9KH4TXHBBbapTHJIG27nw5bX5ro5rdOCLIV0PWG/MXw4sDwZcddK1yNWrPDfiE9cz6/ED5e+mxQ8k2c+elLgOkhECWEC9SZzsS9845ir0jZwH/2wq98GiCqEyMrjo//wo3Nxtxxc22zj3N6IEY7vKsY7++DzemBq9R62ZaVzZKeUP25juBDK0hIIaC6/Mzc1QCwGfPJpBT5f2tOxrCXJa5AOVehWHJnrNn48cMklUocp55NPgM8/lyu7117ATTdlbws8FPrwlHZ91y6gPCjKObhST/OgMdbv+Cd0X8CXQUVQwVVC5Gst1BJ3cAEuF4TA1KnAKkPMZDNO51/XgTp7z2y3pkmZYVwIxmP2luAFp7FRvhvxeEEVDPkMURh/uVfACnKlX2L1GunDHcM+GPatXQuMGiVfZ22t4fuw4dL98cN11wF/+lPme1OTmnrfXXAc7vjxUjWVRYT9Pno07C6UHx98ILeGkvAkqJ8wz7XMQQclnokUURjey4XL9pnoXCBfIQqN9RZprhVt5Ajfx26usLc8B+B63ueOtvfkNaIkRKFHnC5nkH6sWwfceGP2tq5dgRkzTG1syFOM9CB8951rESE0T9b4QYjpVBiULELIGahIICsg1eBB+O9CczI62xX/y4RCX1vTAQDQ2AjsuaeadogEQmQ8sAHE23V0LJ7rwVXhaX7/7b8PxcT19hc4n+/RbvdvY5OP0Jp2ReDNAPXpp4H27YHLrtkC36/dL6cuWfS4XOkg53m9nL2qNF7kucb3eCekDX5kLYmS3HcfsN07zzqW0bYsnPd0pGf51asBAOf+yVpJvU2HzXwZVAQVXCUEjX3yyxFHAM/OOMPXsb17A9tu61xG04ANG6TS95ASYXmttRWH8ZKndCORuA8qKjzl4AoDaQs2B8ynOr5idbAKLc5FGGGU/KDyvsuHN+LM2l3Re87J6ismZYcqAZns2KdCyRuJeaHI6NLOxZNIwdxVYSUkXbYs89kQtraY0KZM8lTeeH9ucf2VruW7tLe/Nt1G9M+t1IK0giuIqMOuDTsPLgflSZBntNImpZVZqBVJb+UpU9TVpWKgi1Q4BKIUXS+4DMSTp4APB4edf30Err4auOOOjPcmKQzGy6VXOIc0tnyXM1xQNw+iT3/ojs3xDl66FxzJ8bTLyT9HY6MaJZcQmuOcbJ7DZs50rku2P8MWymmHheEYL4wfD+y4o+fDlOF33LP9qV6SriGhD6MjhBxa3Nk7LpLruCKFCi5CCoBRruHE3nsn4u8aoQCrNHnnHeC3b/zacp8uKtILwUi9k1dWyk/A8XhBc3ClnpN8PC/xoIsOi7fXDc1d8OCDcoe7LWCLxRmgWPpJyhNlCi7JQcj4XHOeLxxOQhYNUOTBZVGHcQAsUgWXZ2TPZbJc50r787LLFnJhEELJwWW4tOvWAUuXZr7nQ8FVKkgrIYXwHB4zp4qWPMWRJ6Gz38NXYfBgNXXF9QosXO8SVg4ePQWqnL1P7caId98F+vRxr37evEARYMuOmhrnSGzGEMPpKCo2WBp9GhVcAZcTazdvnbd3p7yE8bVBF5rj3PyLnRbb7rOqSxZP59/HxTKGGldFPpT1OT+taq1kweIi6DqBlAZUcJUQ9OAqfhoagNGjs7cV+VxTFPzrX8DXznlkPTN0aDKZvA3jx9vvEyJz3edt2A6xWETug4oK6YWl20tBvlARotCsxIvpclKmzZuT+VXMWGgpx6/vgYcf9tO7bJYtKx4hWKEVXIV8eSPFj6c11LBh9vUIuRtdhYLLy3GqBIClTIWmK8rBZVFHe4OVa6QsV+TxOqKmTuVXX0mWd9hnTALvhJIQhR4PNnpwnXkm0KOHXFXTpwPPP2+/307pnhPpQebKRGIRmc3Gls5oHP6Te0FaxxAHFm7YFg32qXI9MXLN/tjvgd+5lvMkSHXJURB0OjjgAOCZZ4LVUU5st51DbmORPZr6MpgwXNCg7yF3jrsUffsGqsKStjZg7Oq91FSWzullP0fHRCVa4vbecMfumJ1L2WGJLXVOv5i8GwBgi0o5za8w506TJB9TUzyeCVvqFelpXiLcutL2iOtd69eLkORCBRchinASjgUZrzjW5Z/HHweefFJtnWeeCbzxhv1+x7xKhmnwuHf+jP/9z+WAQlFRIb1Yn7xsu8K6WyfPj4oQhWbiknU++ihw8MEWOwKugAtx6QtxdxWpTJeUAZ6fsYEDbXd9uqgnUO2eE6fQHlznnFM+jkNOOJ1qTYPSi5FVlXEALNLB0Kt1bOr3u6ZjMlr12BATcpYca+q2yGpbKTaVGvN8pMIHbtqU3Ocw/T/5JHD77Qq6JVNonntuQOVtunDEZ/fjuj7HSjQWvDUavBCVaJq6eyq+aGngOurrnffrOtC9e+BmSoYNG+z3ZeXgcjHWtHzPNQz6KhQg+fAS6tcP+MtoRfmLhYB2nPM4/quv/4a9P3zcdv/fx12aNcy3OjjcyswG933SE3PnAttvIRcLXEBzDqtbQBnMv/8NdO4sV7atDZg/372c9FgVEW+JLu19aviKGK5R1EEFVwkRkTGJKCYKeo1ywClcQT7qdLquuilWdXU1sL7eOdFtQdDkxVtusYZVk8+FgWyIQlsL0gJbHzt5DnrloYeAt99WU5fxNBR0XFuxooCNkWLkbz9ehn//W6KgxI37tx8vA9bahP9QzMEHA7fc4l4u1e18zHPFhpPhhQZ3RYsXsqy/jQNgkXqkeH3PSM3Lk3+S06w6XZuvlh2aKuRYxwNfHZPVtiqqqoALXj3bcp/V5dwqmWLV0Zgpue+TT4A5c3LDmcumApMyJpJdGDhJfpPMnAksqd9erj4FfPL9ztKe9HbwXYqoRINQZhim93ldUU32xOOJMazsSVr5bFFvv0Yzvum6TdVu84yKkLmVG6qUG944KZDC4mRDOmUtZt9BITSp87F2LSBaPVh1paxSJNC0hGxG5rK4KZ+D8N13wP77q69X14Gn78tjx13YZYuNvo6jLJwAVHCVFHyo84jEDFZfDwwfnr1t2jTpw4M0TRSwerWaeoRIePIAzsJEfZV9g+YF8TPPAN2vP09F9wIj65WlLV9WWGuUVIgEBc+Lud+L6ncIVqHDG1I+PCq22ML7MXbXtXdvKAmlCBR+jkrfC6tWFbZhUnT8ULWvu5eJEbeBxmNCL+FT4bFiBTBypHu5VPX04CpMDq5UDVmXtcgVXFfu+5PvU1O5bo1UOadr03vOSZJ1KMDih44bBwyc0cOicHaIwlzlk3szl10GHHQQcMIJ/rpn18TPfpbotxszZhi+SMTDOvRQ4L6JF1rumz9fSkfmicuePkrag88OWkeTqKI3e9c26Lq/aaTsZQqjRgEA2k+dYL3fdIJ8OVsb6hC6gpDH348GFsvnqHJDF5ra+0BRZWPGZD5rLfYePLrQHCxKsxFxuYfENTycxb7f/z4j72lszC0Sjyfm1m22SXjMqZIz+aGutbMX/R3q6oC7Hts6fx1yoVW3D2dZqsgqbok7VHCVEFRw5RGJAWf4cOD00zPfa2qAnj3z0/Rf/0pLLNUsX574v88+Uu/3trS2Avffn/jstDDuPXAX2326KRBQZKIZCRFKAncZUs9JPoQYp331d7nG7XB4C+3QITfa2fz5wLXXZr5rVvlcCoiquSW0dRsnRxJB0rdlWxtETGKQD+AVRg+uDE7jUIXmU2pow4TF22W+JOs9uOuqolRwCaF5znGZEu5pzcHdik/dZV6qI85tqsjBZVmv/T477+Tnnwcm2MhRreo0K6BFo4fwShYsWGAQGjrMg4cdZviSirHok/33TyjsCCllVK7L/bxXnXIKcNZZHtrQs/+XLY2Nnoq7vX9bzguGjcremRW6XAldRF6OXunwfMm+58c3NkiX9ZNSYfDgjAFJly650U4++igzt155JbDrrp6b8IzddT20/4M49VRjOeffG/b9sbTBn4e41zDakSPsE18iUMFFiATazt4DVxsFSao9uF58MTenQXMzMGuW/3bKFtMJXrwY+PZb/9WpCMNW1bQ1jvv8Hv+dyBe6Lr1Y1DR14TsKjfG6KQn3l7wp7O6HJdm5dfH558BbbwGHHpo4IBbTsOWWCvpRbARc6KXvVY/eNIQUlFhMblwdMsRys4z+Vt+YCDWi1zonuy8HHD24lCnzExUd/9AZGQfSpKRM95nMPGz6LToGfedKuhglSZ3rCs0tzlMiNKTTiP+bPadLtZkSKAYxdnn5812xcKF8eaMHl5HbbwfGj7c/zjzFme8/8eZb8p1QhYKHwKMMuSAUNCcsKXlU3k1xUZEbn9SFMWPSzkgA3JfLqf2RMZiMKkKgU7uMpYGvEIVGDy5Vd4ri0MlR9OAyUllhf+Jdva2S6K/JWysLAA2N1u+KGuQMn8yPsNU8mDW9qnZ1BoDRo213eVnTyFKq+pgt26nPAeZmFFGipzIUKPUpIWikHh3Gjwe+/lqu7OTJwOP2eTdtJw/z9X76aeCQQ+TaJAYM2oXUOf3mG//VGV8e9GX2uX+6drSXAMyv28l/B/KJrktbo4U1HKleIPzhDwoqcVFwmUmVmzkzcxab5Ay584JxrLELtzF3bqLf9fUK5yIhsO++wLsLjgtUjZ3wkZC8IfEQpIpMm67l3TNWvJ540dffVJRQr4hxGoZVWX8ahVrpNUGRhygEgNfmnujrOBXnNabLvbKquIK3vvAzPPecfHnj8ys7z59yioQxlaRESkp5IzEm6TqwsUUyu32wpggpajQIqefulFOA0Wv2cyyjC82Xh7aX5yw1LhXp1FNQjNfVSSF44YUCD0+2SB+g2INL9XutritWTORBy3HgtvZhjXVRIdVmXFRId21zrAO2vuLXlvuEpLjc/Dy6PmuvvSZVryfG2Cu4/IwXTvz0k9qc3ypQ5Vnr5EHol6L3LisiqOAiJA/87nfAH/+Y+e40Ufz3v8C//mW/XyywfsE1OyV4ia1bbmyzjUMeAouL49fCbcSIhHdduuqJk2zLtjkkzI5qGEBPi9jOnQtqMZsvK6KlS533X7HPeOkQhVG2dJK2MlxjHUT8wAOBoUOBdetkG5Q4GbqORYuATW2dJCvNZe1aoN1xR/k+nhAjQ2d2x7RpwLtzj3Yu6OFNsudxnRCXyS8TwBPxd71PAeBsdOHEl18mBHWlTj5mrPRQl5oHoCHeVh5SRpH88bttuVGmsOOa4ebvf58u51xN4UMUxn0ouEaNyk0+n+PBJdkXpya9nIeXXgK6PveA/AGElCmyU/yoUUB1SxfHMjr85V7xIrBOCds/+8xzMyVJi12OH5MnsZOS4osv3C+AihxcqimGfIS/2nWu7T4hIPW86EKT/q1OMplMo854VnDlw4NLgpNPBsav3ytwPccd5+yhHgaq7uzGWAdFNcnDHFzqoIKrhKDFXHTwkmTatS6DxiQWA6Yno7TwestTX++QB6FD7iQWj/kTPp12GnDvvZnvdoqqeBy4ej/7zN9e81wUDF2Xtj/R9HDiYKhQqnlZ/HfrKOFalQpN1WZ9TnKEWgrWN17rcCqf1T+HFbvRkuvMMy0KxA1xW1evsijgoVOS1DEiG1HImf85Cz17AlcPvcq5oAcPrqDY1fPgg8CwYYnPA5YeAcC/8cQ332SHQypmXOcIBeOOsQqzgksXGtpdfkngNooBkZwuju+eh9g4NqgIUei9zczrdJDbJ3ctoC5/yCV/38u1zAp/+m9Cyg4NQtkYE5f0Ts3pgw+PjP/7v0RKg3Lnyann2O7L8uDyEwHC8J6kxINLsbFoMYQodPJ2EZAL89ylfYt011RcJ8/v8l6M1iR/iMy9Mno00BTraL2ziIWLKm9DKaNDL5itmSygaksdVHCVEmvt3XlJ4dC03Jw6dqxenZtU2oxxspo+HTj88Ew72eU8dLIMGTMGeP11ix0WCq6OaFHSpt2CqV07YHXTNp6PCx0hsgQ5TuhxeWWYCna/7WI88EA+hFpyv+L554Fp0+yqSNQhPukv12IJPMtDhxq+pBZ2hjiLUr8xcA6uol6rkxJnzhzghhvyV//DDydCFxuJS47fZkopB6DrHKF4ALZScJUbsr9YxZlPne9CzqMy11Qm2qDsfOXFgyvFZ8Ps15yEkPDwa9QYjwMDBiQ+jx4N3H+/fVnjmHHddb6aK3piMaDv0D1cyxnXCHo82ESiJkShYgWX4hCFWmf/UTZykOiYAKRC7XSsdBGwZdWpXsGlNByorYAhm6C/4+d/+QXmzQtURXgIEd0wgGPHRtV0vSShgquU+GZw2D0gFnz6KTJJxk3suivwySfOx9stjvxGKxo7VnqeLCk++cRGmGixmLrhgO+VtOm0sF3VuK3tPr9CyLzjIXbjy9NPLHhS70ceUVNPVgJbmbcAIXD77Q65XZPnTYyyj41tqs6SF15wD5noVocftE3ulkdWfP01cPPNSJuLtsYrMWKEh3Y7Bg8RQAUXCYWqKtciixbZGF3Y4eNmNh/ywszTPNcBAO3b+zoskjh7q6rPwZUmOQ/EVFuGRpgLXvwV3nvPXch32T17K2szdQWrm4LlkvJiRNZnzomu5fbbzz2cT26IQuvzdsstwE03uZcjGVQ924Sopq7Vfaxavz53W1sbcPHFic/jxwOPPmp/vFHYvmCBxw6WCHPnAte/fIRzISGy5qtY3GZsdZgQup5wUKaYgrFZebhdaJEMnQggE/HE4bzpQpOSRzwx5Rwl5//q/X70dRGUXrepUwNXIfMKMXnhNhg7tjgNbSPdZwltp/AZqpbkElEpKvFDZLXWZc5vfwt89JH/4+0mZ7uX786dgZUr7es7/nib8GHlisVk0rmdvNWPE49MOde+WbfFWxSJx6XHmeUNXfPcGWuUvwjIvARI5uCyu66ygrTbbgNefdW9O16ZMQOYvXFn2/1a0vOqRcKx0dj3Pn2A3r2R/oEbW7fEaf7k64QUFdpJJ7oXUtWWw3Rh3vfq7JPy25kiwGnuzYdRRmpM3P+SQwAAMZ/hqIqVXr2AdhXOL/efDNsOI39ojw8XHeNa3/g5Lvlsktfw2OevlO9kQJ6dcUb6s9NywC0hu+xaYN68xPyaKafmvi1l2UqhDa5I6aPqeTnu83tcy+y4Y7A2xA9j05/dIseUKrLXy1jszbm/sC7koGDZ2JDJ76UrELWqFnzrOiDG/qisPqUkf6dT2E4hqeBq0dv5uuZmtmovF9NT1oNr9epkQJOITrjFahgaWaUtIO/OF9F7otgor7esEifsAamL5ARQzjz/lPdzZDfU2V3v5uaEZXi509bmPwyaKgWTLiowYwZw8MFW+5wUXBEdmj14cFU3d0F1S+HjWt0x7jK1FbrcQ1JLkeTCRnbZIp0Py2cdZg47DLhz3KUObSYq69QJmFa9u3S9lZrK+AyEEBmamzPjhGaSA/i1Zi2ldy7Xn6IiB5fhcyoc0PzliTA+rsnMS4wffgC2bOduHXHjnVtJ1XfsLUc77heq84t4RGr+Xr3aen9jg682J67f03efPLNhg2uRsN9HCck3iWBYxXOji48z4WLK9fk0joMX7zXZskz1BoGphvec03eZY11ZLGa93dymFr33eSEAsWx52N2wJrlg7b6FfeQQHXIKrpheIf2Mzq/bybmAxCSao+CqWmdZbtddk9FNXNh7b+nbDACwaRNQ3xo8XKTU+BDRl4LIjm0yHlw0wlFG9EZd4ht6cEWf2+/uJOUFYcRuwHMbxNeujfBAXwA6dADuu0+ioMUk/YRD8lmvHHYYMHt27tzmpOCK6pM8Ye5WWNko55k1pXoPDFzWM78dyhNCKHYTTym4ZBcvra22u9KhSRsbA3Yqwc72jlueMY83FevWWu8oEEJoZT0GkvLAfI8bE8h/800i52MK38Yb1dWJ/x6MHEqVn37yVl6sWJk1ncTKTMEFyClWFyyzSXruEV2Rgsvv3CHV9tix1ttNc7+scK6+LVg4Rk9s3Fi4thTCEIVENUrvqDwJjP/xD+C114AhKzNh88p1XWw8xZ8tPRK3355b5qa/dsDkDRmDAWNEl3ffNdQhqXlQk4NLLbqIsMQwucbsUGF/fmU9uLwYC8/faK/g8qPIvv9+YOh79qHK161zf+SXLDF4fUuMDyeeCJz+9R0eemmNVqSR8qJucMA1SOGggosoozVefi/tfvAsHLELUVi30fE4pzCF5cLjjwNY7mKlpGoWFwK/2Mnedc6ss5habZ/oNqpWHMf88xSMXLN/2N0oKG63h9S1cglRmFPnkKG2+9Ivpi6xjoQAli0D7v2Ls0X42rXu/fH7KlSxeZPtvkLd4+X6Ik9KhBUr0h+HTO9uWcT8fDqNWb49uMZPSHywE8x75J57gEmTlFTlGaexx/gC+vzzwK23Zu9fvRo47jj3vhvbEL16Z6Vkay1HBVcB3+sFFCd3LyA5z7LEMS3N7qWUnn/ZRKARY/mm7cLuAikhhIjuu5qR//wHuPFG4IphmSTUKtbF69cDDf4cTkNj4cLs788/n1umpSX75Jw56HZcey1w6KHA1VcbDIgk4zxG0YMr4VUe0Xs3HfHEvn9rN28tpeDae+v10nOfU84vWYzP1aOPAt+sONSxrMx63MuzOm+efNnAbUZRAyZEpJ093E5rVv53EojojbqkaGnVSygLeR6p8PjU2Y11Wv9PbMtVVdlGQCk/vvoq62uszXRCVU0mLostB6ecHFQstIh/PAuB3e6h5L0hnU8vZn8veQlR+OGHwBMvyYV9UoXxVFTSWomQYNTVpT8OnWnjbrm5Sbq6wNbE9fZhY7zw5JOJ3ExBeeopYMwYb8fI5uC6/Xbg5Zez96cUJ2ecAUeMbejQMHduZl9DIb1tIsLvht/gXkgRQuTH0VA6l0eAac+P4LlTZ+eDlBt5SGgPaVhCiDfGzZAP6T5zZrC2VDyfO+4InHde8HoKSd++7mWExQD+1lsW51zypV6JB5diZVSkZejp92V7vl5+mNQkf8wOS30ZdbU3eY/Jni6vz5Wn61Dgi+baXAStiCJ9X3NRVFCo4Coh6PpYHFR6NN61FYq3mUKZGC7/5ZcDF1zgtWelycgFu2Z9z/F8k5gRGxqAqVNdCrlYjngJTakqBxgJQPq+cL4/pEbdZF3SObgcFuTpNVIBV3Ke1mUGV4V0F8MKUQiGKCRFjsxLpGkscPTgcsr9qEt4mCt8oFRUdffdSU9tD7gOnQ4FUn328m7/zfJD8NBD8uVJMHShKZG9+A9R6H7/2N1jud6Yap43lcuFleslQ0ly8iUlTHO8PRpjasKqAkBTs7tILqVTef+9aMh7ytGQNq1XWbNGqryKuUh16LVEiMKIjs+yJ0xCwdWmV/rKfW057xoLrLPOreVlytM0uZ8axjSqbawtfKOKiKwsXGIRFlmvyiKECi5CCkyFx8HXrjTfHR0wTCSn/i9b06fpcduydjzwAHDEES6FXFYqaQWXMUGKXVWc5CKD24JDCA3fDXO5XimLNJu6zBbnUknqXe7bRPgU527lhZdeMvYihA4QUkIY5hU7AwovITmcvINHjkyE37MiH8KQoGsYu/GtXTvgiSccjnP7LRIKCre+G6u4Y9xlGD3auTyR45rfu4eFqtBEqKnixGb3NZ4d5ttKxXO3fDkwblzgatLs/vuT5QpG2pyakGCcO/hWnPzlncrq69DOXdqdzist8R7phNYS7Ph0PUX2qipSuUSdysgF5AAGDHAumAzlqmIMX7Gpq9LxdG1dZ9S1RtSTXDZntaSCSxZhEImb18k5fXn1Vcs6vCq4VK6rBw92PyVCAJgxw7UubcBn7g1GcH4XemTVtgkjeBf5L0MUqoMKrhIisg81yaJyU517IQN2k3xMr0BTk7FckF6VGA45AnLOk8WJ+799s83Y7d4lNmwwyB9158CCrVVJi5gvv3QolSDuITEqUY8QMNwXzg/W8sZuOOOcdlL12iku//pXoLshvY6UB1cBkRWg2/YtLA8uUXwv4IRkoTgMiNM6wcnLOB/ri6DP5scfW2+Px4Hx4+2PC/JTjH1WFK2ReODt991Dod9y8qy8RM9xegaeObZ/plw8WqF7XnoJOOEEubJ8jyBEjuZ4B6X1dWznLrAfMiSh5Hry+YDKibVy3kdueE25EDoSXlczZzv/qLQSYc89nSuaPRuAGoPVXnMkjQokOeKhC/DQpN8orVMZLiH900iEiIyJCl9eMa7zoI2i1MuadsIE4Iz+N7mWk63znHPcT0k8DmDiRIk2uRBQjqzVFRdhSii2qYmQoqdi6WLH/Tn5eGwm+Uu/uxG77+6vD5oGrF3r79iiwCn5q3mSsZhMzAJ9uwXGDjsYcnTouuOioOXtDxMfNmyw71u6S5TKFwsxXW4abWkB1m7exna/xG0BwFsOrjDIGq9sQhT+6lfA3I3dUQio4CJFjeEGtlU0e0grKRyW/U7HLajfMac/YWOOElNfn+me07tkkPk1Vf/GjcA22wAPPmjTBk3OQmOLDjHoLe6eXp4xe/8b6Nwu2Z7LxOv2+JjXkMUq69Dq6yI1VhASdTqM/961zLRpwGOPBW9L1ZNZbI+4zNy/fIWkguvQQ90aM/4jsshapzS5555NhCj0oeAyrZOb4+3xt39kDFmFHvyirl8PjF61j3tfhPmDf+JxSD20mkxzmzYF7o9qhPAW0aKgyIQo5HuDMqjgIqTAVA7+2nG/eQy0GxPjohI1Ne7lrKiqAna2yVefL267DTj//MK2acVxv+6avcHixJknGaf1QDoGuYsHV8uqpAZDwuTNuSYSJaQWJELgjjuAgz95SLJOezRR+NhLqu/GYcOAmPCYjJCQMsduHsrN26O+7c+XusXo9U5Q4Vgqn+ngwQmj1IaGzL5AIeqcFmG12bkJHn44kZ9z8+YA7RHlxEe5C4vdyBGUfOW8dk8h9fzJ5uAq1rXghvVh94CQoqKQeW9UeWgUnQeXBVdd5a289NoiOcYrSzlQLpqydEh/l3KxmGtVbXqlktO2oG5H/O8lg4LLpk5t5YrgjeURiVOWwbigtmLYsEB9KTvyEVaA2FICUxNJEVmtNcmiQvM2yOXzBXf48IQRRiHyFbzwglR0Pk80NgJ/+pPFjkp74fnEaaawEhYrlfcXHpv13UkQlz7cZfJq1du59i0Fc3CFi4CWvrCTpzmHH5S6VkJg1SoP7TvUWfHj2HSdLk0qex/y/TJcLi9khBQCm+dpyqKts5yW/T52UscpNNkOWlU7w9A8fLh7+ZUrgcMPBx6adJ5r2X7vG+Zzw9wu+n2YU/aII3KFZBz5wkMIQB/4VfCKZs3K/u4Q3spoZR0kxLB5P9eChJBCMGWK92O0NvcwcVEibjGevvce8PbbCY8aqTpWJK1a3QTWKQ8uVTKccnmfkghR2LVjo3OkniRecnA5IZHZAgCg/aQw2aW5LQXXPxaDpAeXAHr1ciyjt4WY6NSGSD8iuu4qpxdCi/iPKB6o4Cohis1VvFypcBngckMU5o/TTwe22grYbrs8NpJHZs2ymYMllEhpPEwmVh7ZsgquRfU7JD4kTd7aV9ib0jAHV/EgK4BSpmyqrXEvpJgZNbtJzS85ZVIPTEgLNgGN8yIpC6qqPBS2eR7tHtPLLjN8CcFk+/rrgR9+yN1uVHDlOF1ZhJDp0QOYPh1Y37y1a5v/figxn1doeraCa/ESy/LLl5vap2IiVJSsodZlP1RSs5gQyq79xx8D/5l+ppK6Ck0Yd3+HijyEpSSkQKjOe7NiBfAbmzRL5udz2TLgyCMTnxsbgZkznetePimhDdICempedpnHtUtAYjYKj2uuAV57Ta6O+FvvJj5IvtcoiGbnqb2iR2GuIr8hCnOaMtVh997/6ZIjcO21gZvLbV8Aq2q3UFKPDJoGiKp1jmXeGb1X4P4oR4jovvO7RHkiaqEUlZACU+GyiM2NjpP/IbGuLnfb3LnR9qitqlLUPyGw3zbOK+zUhDljhuXhCVw68++U1XhSQOikGKFwLFy8vEbILp69vJs4WoBL9k6lB5cXrJpsnu2cdzCfRHaxS4gEk2Z3Tj/HWmuL1DGqPbg++cTwReED9e67UnnC0bcv8M47uduNdiw5fV+4MKe8THiWVr0SG2oq0gOZEMgSuNjN2xMm2OfjIoVF6CI0z6fp04Sll4Asxvn9rruAl2adqqJbBaeutTO+X7JrQdvssVV1QdsjJMqMGgV8JenIatQpPPSQe3qphjUJ4zWniDS1tYl8YR99lMiPacUnnwDjDE4v990HvPhi8HcXXbeuY8v29muojz+Wqzu+KRmP2K2TqRCFuqK5KMoCGZWkPbjs0SD3gquLCiXvwWaZjN07+tiqffHWW1D68h2PA59+Cuz2zysD16XrQEubu+hfg3CVNGxsbB+4P6qJtA5Y4vmNcveLDSq4SgiGKCwOKt1CFJpc/vMhQJfhwAOBzz93LlNVJZXn0xMPPADsv79zmdWrge7dHeYLT9oE97JOMr2RI+XqueeIbxIfkgquOHMQlQSyIQq93JJOdabuxVMu6mpbJmp0PvGosLtASFFy1O8PwPz5yS8O1tLG8cVprLn5wFGZ8KuTgfvv99ghhR5cmzYBX3zhGPkNf/xj4n9rKzBiRPa+yok/pT+3tZki1rQ0++rT/Lru2OHkg7BiTWJ+FqjIkv45rccefhhS5Uj+UaHgmrR+T+myqet9+M/boTHWyb5gyprM4SF1856wo3tnC0u1kJhZuytO7PV/BW2Tb8CkmDmsv1oLCad1gNlbzOiB7JZ6B8gsA6bX7G7rgfX11wmF1RVXJIxZ7PuS+fzYY8Bf/wqMHu3eBye6dQPuvDN3+95bbbA9Zto0ubrTywEXgXXKi5whCr0hYqkcXC7nTVLhJ3v+nTyAZUMUpkkv2oOz7bY2qTh80ukG96RzMt6kUbwdBbTil4VH8cQWIVRwlRCq3dtJfnA1gG7OFsyEOdZZheQz0r17RgClimHD3NcGqYTugwYl/j/yiCldguKTpunZpt9z5mSu44QJyY0ui632FclVsUT4xCAWwEQR0uEnCnutUou3UT92cCxnFaKr0FDIS0hwZCK27LFH4n9bW84SIotuHRvTY9vLLwOPPprxoip0Di4gEaLokENytz/6KLDzzsCbbya+v/cecNpp2WXazZ6e/vzAA4kQhKpoasr8zqNPzCgswh9ViQwqQhQubtg+67sKz3rtw36O++fXdU97T0g9aoaHtrIiuIU/ZSuElAZeHH5OTTqKrl0LtEg4ihvtXB54wL19J7sYq3FOIr2SI3V1wMSJudvP2G1OsIphWI+5DJZzlm8JQOE7YmOjmnoizpwFidjTrvmzJG7w6TW74sQP5LRD3bewcTOEhQeX2zwZ9AY2scFeL5s33Nc7EVwsCBFdWfhOO7kWYQ4udVDBRUgIrFolLycKy4NLts6VK73VqcLLPnXuHnss8f+BB0y5uNw6vi47trCbxYeWjKGgVSdWGRbRjwBdd6xFTwlcJCzgmYMrXLwsMvITotAe2cWb+HqQfIMligBDFJLiJ3UPy9zKV18N7LWX/X4duWNbx47AvfdmQuwNHizRmQAsWpT9vcYireDo0QlhWwqr8IJOAn2VyvWJUzKCFlklB99Rw2Pxhq0xv85dmOCGa7QFA9KXO+nBtWD1lq5FpR61n35yL1Mm0KCGECSSb8HFg8tmxNp5ZyRCrCGRk8ouQssB52SsSazGqblz092wLeOEivnTqk3XeiUajqdCDrqUFUlhhzJjQxnNYwkgYnHMmAHc8oN9SD4NkBImrWrcVrpdJ7mL+Qq6Ki2LfAGowX0+FRGMmCkE8MHCY8LuhjVdu7rKb4r7rokW7dyLEEJUIoRzSJ6c8h7qVY2MMsqrwirVz7q6hADLLRyhFa6LZbdODRyYyFwvSUVrwiS+esZq4Lztrdt3aTO9IJJQcIWVP4IkeHbGGai8N4an/+teNh8hCp2EqNJ3xpAhED3OlW9UAbqencQ5Cos1KrhIsePlHnYLs2McW4z1PvFE5vM55zisJwI+UIsWAfvu615OZrxs50EBQcqHu774JYBfBq7HnC9XlQJl1izgkDvOcy0n9aitWAHguET5SMy44cF1MyFA85padNp9dxcFlzs33gjssgtwruE1YtYsYNIkU10WlR14oHsZmX1e+e4751dxobm8f7e1AXCOjpGu3zUHV7K8qnGpTHJwaULHqFESBSUWiV68rh3zohuemLo6YMb63aXrLUY+WHgMBq84OOxueEcILN+0Xdi9sKbIlZ7FBt0ESggu7UsD8xgoPUFnxehTg8x66scfvdX54ouJMIS33AIccIC/frkuiN0mEmPMJ2EjtjDUkRIcnHfvYZg3z0ZHpVDBRQ+u8Hnm2XZy1nwFvlayQizXF7k8cPHFQM9P70t/r27uUvA+EFJqZDy4gsfF14OGwJDMwTVvnvX2VHhhFXjxsFGFtMcuV+RFj/l5cxSASa7TNU0+b61XwW+533EqQkgSUuz8u3d3AGr0IZ1M6QTvvRf4wx+yt8mMU3fcYR9C2JenlQ1nnAGcdZb9fqFAyJx+53M7wUJxDq5yUXDpcTz5pES5iy50LaN7OPdO88fE9XulP999N3Di5393q0y63SgyYOkR6DvvBMcyKp4l1USwS54QFhE2iD8oRS0hyt16r1hwW+ysb94aY8bIl0+Xq1rnXsgjytZThor+9rfEAsEuv5fMYjmwB1cq6YgDd91lbC/zbNXWZrd/yj7J7LxC5Fj8ZnUptXiSysHFoblYkBKqePXgcnjmpYVeIbguxeNAXGTu7+GrfWqwFUGBFykF/vCHROJ1GVwVXB6FLRs3mjZoGl55Bfilg4PMpk32xit2/TMPVzLjpYqcQ4TYsWzT9jjGEO1GlSW+UvmF4cEJnHuiuto98W6E4RswIUBtfWIN7jTO/FC1r1SaILM9i1Wdr77qXk9TE7B0qf3+trZE3k2VWCvOXMZwXUf7Cot4yAbSObJdF1uJ9Qk9uLyh6RJJZyXxcu5lc5875bhNUw5KijL4iaqhRKJwUIpKSAi4zX0nnSRf1hMSip28YFqYBZW9Wx2ftU0IdKx0WL0bY1nbJKV8+hmD4MCwva0te9HfqTWTmLR7Z/skpWnBoowHl86hORJIPHyyC2jZd5PmZufkutIeXFx8AmCIQlL8/PQT8Oab7uWWLpXx4PI2t4wYnl2hdtKJuP9+Z89tq3xZXpFScIWQTFp2XOXwWxpMmJD4v3Spcz4PWUO0Sk2Xvodk5q7Rs7eXq0yCd/86AXMGL1VWHyGk8KTeSdzGmY8+cq/LPAZ9+aXPTjkQjydCF99/v9p6R45M9N+os3cdp4VA147OLrZCUsGV2q0qBVe5KLgqoLvOfdK5qD2FKKTcxQt3fnhU2F3IIdJyD8UhNYkzzMFFSIHxOv5+ufwwZW2vmFgFQD52sDLhsGlgF8LZmitFPG7t8CQTorBjRQwt8faWux8afBweutO9/XR7hqt28slAO8PIqUsudtOLJwkF17y67vKdI/lD1+FmB+LVI8KNLl2AePxXtvudvASN7Pv+Q6gOSZ8dKVasgJcxj5AosmkT8PjUXzuWsQsBZMQYolBmfm+3aSOArlnbamrcj7NDWkEkUc5bXkP5so71SAjIoGl8US0xEs/WJYHr6TX7JDT8J3A1aU5+8JT056BRPK7+4OyAvQkXhgUlBIjrcgqudLhgh/ecfBqIpTIFXHyxVWoG62Pq6hI5zL2kN9h118RxTvWm0d0NEGTf+VMKKRVrgRO7L8hOrVDCVAj339nY1lGqLi8zouy7fKSVKKT44Q2mBKqrSwhaqpcejzwC3DnuUtdyP/0EVG3e2rXcstXWCh9fbNggX9ZkeTRxIjBtmvMhsVi2IsmI6/jvUqDP+MOzvrsJBozPlhDICu1g9OBxqsVLDi4SEYTAVu2dk8ZIrUU8hCh0e4fZ2NoZM2e617Nu89bl8j7kiPbSi2F3gZDIIABPL1DtNO+DiFP1Kt/dnATaZqFSwYyfZeI+kaKgQ4X8tZS9r9+cfzz691dYIUmjLBQYIUVMymPIbQi58cbkB4fILvmUK/Xqlfgfj+fOz2LWbMtj/vxn4MADvel66g2BVVyV4LruWmZd81ZS7WY8uIKfRAGUjQeXttk9SeXmeAepurwYPcheJ07N4WMXRjTS18YmWlRWkWQ5EhxXSaumaZ00TRuvado0TdNmaZr27+T2tzRNW6Jp2tTkX8/kdk3TtBc0TVuoadp0TdOONNT1B03TFiT//mDTJCEljRdrnqFD5coddxzQf8nPrXcaFkWVFXID54ABif+Oi9uqKrnOAb4G7NQC1nxodTWwetp61/acWlzTILdATVHhkMw+vYASwvHaesnBRSKCEK4LZJmwBgdecwyGDJFozxg604ZHJp+HQw+VqIvQopsQE17DsMiuGYyk5uw//hE5wnzZpcD337uX8ZRfQZGyX3Tt5lwgqeDi2FP8pK7h+PEhND7bWsDrhKzQr1Sh1yQpVs7bY7qyuvSkB5e0PsRhUvaj4Pr2W7lyjiKE777L2fTAA8CkSYnP553nvV+AhEePy3s8AFw7Uk58qdLAUAitbBRcFUMGK1OselkjKjWQoJKCkFCRedNtAXCaEOJwAD0BnK1p2nHJff8QQvRM/k1NbjsHwH7JvxsBvAoAmqZ1A/AggGMBHAPgQU3TsuOekEAEDU9BCkdB575hw9If7TyizIz7MdnBRkUJp30szNLWT6ZDzzgD+MX5OzgeO2t+ezS0dZZuyDXes8M+6RxMqXJ0tSweJDyvZB7lucu3lGtPQsFF5Bmx+mdo1RmJmZAUxkTaUiEKAzw+b74JvP66fPnRozOfZRyhvCiRAgubUtK47i7hg8PKc0ryxrHHhtDorFkQHpPZrZOI4lDK8A2YFCsqhesrqxKRWqTlDA7v5xXw/u4uk34AcA51bNX3Rx4B5s1LfB482N+rtKsSXNddx5H0O4V0iEK5vjkhgLIJUdi+Iq5MTOItB5dCDy4quPKK3XUVyhLe5QEhXOX0NNJRh6uCSyRISbnbJ/+crtAFAN5JHjcOwLaapu0M4CwAQ4UQNUKIWgBDARR3wG9CfFBwy965c9MfZZ2Htli3BACgDRxoX8hLqD0fk/30pEGbeU23aJH7sYdcsr90O7MWdMC6zc4eXU6TknSIQoOnFykSVq509XhQavVF5adSPlx0DD5ZbOPZSki5kpyDZKaidpX+PbiA3DWHU5v/z95Zh8lRpH/8WzOz7prsJht3d3dPiId4QgTiOZwASZCgh7veoXf84LAD7rA73B0O9wQICZIQ192Z/v3RPT3dPS3VMrrv53nyZLu7uqpmprvkVbtW2XZCFbs2fn75ZbFKqw20pOCiaT71sbNWj8m6fudO7+tMY7YesPCuJIgkxctcvi+8nYc//vBGwcUE+xMn7zbmppuMr8VKTsKTQ9OqDK8xeW6mPQMFMwTUHw8uxrxbP9l5r7iisbQHPvvMTY+IWJLU626OzlGIQu/gklAzxvyMsY8A/AZRSfW2dOliKQzhNYyxcMa/RgB+Uty+VTpndJ4g6hfdu8d3/FJoiHitsXP3SyEAzcyoDVaxR44AS5bwdk6n2t27AESsZrUKLq8NpDtNaYkdRjG1pR/KbMHOG/LJbmgoIgnYtctyK0O/a3LjJIcQQaQrSgtBs3XI3o++BwD4X3nRVv333AOcfnrk2I6Cy64Dq2kOLkAlEArWuhQOSYsAq7Xb79u9E2oRiaUuxB9OOiQwLuMrbhijMJcEUU/w2nI/GPRIweXALzKZ00xbfiehkGUZv0UeHbmtoPi9vr+1AVd5S+qJBxcA/PSTdRkegiH+hzHI8Q5++SXwwQcclZGSIjEkcRSczvO74Js9lYnuRr2B680XBCEoCEI3AI0B9GGMdQJwNoB2AHoDKAVwphcdYowtZ4y9xxh77/ffLfLsECqsktcRyYGdeS+8QHIDO+Vk3Hef+DevB1d2QBTSHP/KIhw0yvdpsIrduhW4+271uWAd/4d+7TN15NKtW9XX4+rk8r0o5DPPwQXxR+XNwUWkDn6/pZDJ01GXPLg8x0fzIkFEcfQo8OOPxtevvl60hqnbbE/ScNll6vl/61bg8sv5+2QHszlVm7Mi+MST9ip3yI5fRSEUKSfqF3/7pi9atfKwQloLEES9wev9oS0vGDMF1zdfO2rbS+6+G8jjifLOoQAym5fbF2/j8uBqXfQbR2fEr/Wbb4A1/xzFVd6M+pSDS+jjXUxgOx5cR0MZnrVLxBajoU34zH7u0njx6fe52HbQPDMT7Ru8w5adhSAIuwG8CGCcIAjbpTCERwDcBTGvFgD8DKBGcVtj6ZzReW0btwuC0EsQhF4VFeZ5dgg19FqkITZj8Bvxdtjn8kk+IY9yHbXIKJ+qchWrCIM4dGh00U2XmCwcdu827UubNupjIyWd3UX1rl0chQ4csCwSEhjXwpoUXClIZqbl7+bl73r2+fU7SXwsoAUjQUQIbwyzsoD//tesoFhy2L9PNylkeJvMhx8CZ55pfN02Ci2YpQeXYl4OvfCSq2Y/3FJi2SYAoK4O334rKjyI+sOuI5x5NnlhjPIxEEQ9wcsQhYBof3riibyNmyi4/m2SpsDoHs6P0rZ8h+E15TLh7rthbGirZPt2yyJmy4/irENAKGS5p5vd8j2pMot8OiHBKxFOlEd6OvPOTxZ5Tm2QKLlLOA8eEWe8euESCXn/eYKlgosxVsEYK5b+zgEwGsCXUl4tMMYYgKkAPpVueQLAcUykH4A9giBsB/AsgDGMsRLGWAmAMdI5wiOcuJIT8WfiNSN0lUB6CB4taMILztDWKJ2yLsFQZFHw8MMGzlqKkzffJODDD8W/f9Zp4utvTYaaPXvkP0dxGDp5Ff6glCdcf4a4SDELQxcSfLIgzUz4JS+0aPJKHXw+SyGTlyEK/3wVKbgIgogdt30xFG+8ab3p50nWvHat+ri6WmXrol+vy+mPZWXi1Vet69LmrAi6HKf/2M85NtfWYtMm4KOdTVy1R6QWsVjV0UqRIOoH7/7WzNP6bBl8mhho/uuHrvLfFraoMlx7awBtC3/hKielv7SGQzhgtp8TBIYnnrE2agyHslt0eUfTcp7ro+qJgmvGlQM8q8vtus8pNRM6J6Td+oKRrE2oS+0wnoLgYQK6eg7Pm18F4EXG2McA3oWYg+vfAO5jjH0C4BMA5QAukso/BeB7AN8C+AuA1QAgCMIfAC6U6ngXwAXSOYKoV2zZUZCwMLG8wvgqQa2l0h1vFSvoNTe2x6ZNZu2aNKao/PnnrftmFi7QczJFoZZZbGZuDy7yJEk9QiHrHFz0uyY1tFYkCDVXXMMRq5jjxXnsMfUxhwG1J+/j11LUJFMPLm2IQpfLhrDQyzIBfZ1J3lIibfHaUnz3wUzyPiaIesLe2hxP67NlCGqiOLn4wwny3716mSXt3GujQZEPfq02vObIe5VDq2c2pn67twJTFhXjQF22aR3hvE73Pmfcf0A0EvIqXKPAKWcg1Px2qDDRXSAIIgEErAoIgvAxgO4650cYlBcArDG4dieAO232keCEQranI9Y/Ks+aJ7zY5RUuCbv3WBfSrKDNFtSmhkc2rZLY4UMAPA4HY4T0hZklKg2ByRl9zb5eLz19iDgRDMY1RCHhPSQkJAg1PFMujweXkzXnypX27zHCbOx9YVs7ILRXUdbd/Btuq90F88wLBoMkh6qHeL2+Kzlukqf1EQRB6MK5B//uO5MJ/4kngAULAJivC66/PhI60ZP8uHv3AoWSEoPLg8v42o7DBVxN8noFfbG9GF24SloT0nikEwQRTarv98ke1ztI4koQKU7AUk2tCFHIOfhzbdY1q1htbixlfo+QmcDHroIrnlOAtBquzNlnWCSksBQ3szoz8wIjkpRQCILFNEkKLoIgUgkeQxeBo9DWrfbb/uAD+/c4RqFpcjv/BoOceTsFAc8956opIgUhwQRBEClHKGS5Bz/lFOtq2MIFuPde6e/33zMs94Qipdf8Vu8YluMWVPOEfQGAw4ft1WsC757vwqd6uG5L3TApuAgCMJFRepXDJEFQiELvSO0ngSDSHK/HOVPFlaIxvQXcunXAAw/olweAQ4eAb7+NHI8Zo2zXpFMefcjrrwf27/ekKplwerCcgHHYITkUksXnkL97mrxSB44NRapbDPFQnHkg0V1wDL1tBKGGS07C+eLsM7b9iDmWY68qRKG77Q537mpB4FIOEukFGboQBJEscE9Bb75pGQbm2mv5qvrsM+mPt982LKNMz5AXMM7VMPlZ3UBQ0fz2W+Rvs4WNtJn3YmZ+5ZfWcphkM7xcBggCw1fbKdweQZgh+DjCrycxtHPwDlJwpRFx9WwhUoqws5XpgkuxUNTbrF9xhfjPiCefBFq31r9mKlCzswoUBFOh1ldf8VfFw8dfZISbNeTDnU0AQUCncY3x+A/dDMuRACQF4ZAE14ff1UzBm+w4iuVPEGnMk89Yu33zhCgEYmOvEdrrjaXKVTdm4eBBqU6XhghHa/mMQ1koSDYs9ZD6YOhCEESKwDsJ/fabZ5N4WM5wJGS8vlDq0rxIqyEok2uafY5QCIcOAYtfWuK6zf9s7YjZszn65uE64EBdpnV4ZIKo51TcckGiu+AKWkd6Bym40gjmRTxjIql44/0sT+rhClFYGxFiGwntnS5I3ebguvlm6Q+LFWOvXvx94oI3JIAg4LNvMs2rEni0jERSwZFMpT4ouAiCqF/c91I1mje3Lse7Jjh6lL/tw3c/YF0I1lPp6efn4403xL/denBt25nNN3XT/F4voXUAQRDJgvDFl1zlXvuiTOVV5QUrXl1geE3pCe3FmBkKKuZbs/26IODnn103ZwtBYJ4o8QD+vF8EQaQuggDaQ3gEjZgEUQ9g+8Vk63uP5pgUiqzEjBRhysVaOHyfFaEQ8OSzGeYFLHjwQfH/3X+EsOtIHl/DXiBIubWsrCo4JiQSgKQeZ97Q2LJMfbC4SWUvqPrw+xCE12z5NRdbtliX4xXgZGUBH33EV7Z280+etKmk7YMX2r9JwUl/64Vnn+UoSHky6iU0zxAEkSwc2X2Iq9zgDUNw54P5luVOPtm6rvC8bLZHDyu4gkFg874y60rDLtgGLPnbiMhBMIge5T/oFxSEuMuNvWyPIjQRRPojgHJweQUpuAiiHsAOi4vdSWZxrZUKLgNrIaVgqdmQGq62X3nFogCHQOjll8X/L/0zV5P81JqHXmO8wiqeUHYkAEk5Lr+vkWWZ+qC4TOXlVn34fQgiUYTXBMr8m0Yo02WYwatQ51Eq3HYbX5s87NzJUSgBgjQi8dA8QxBEstBielfusjzbXMt9vIK8wGHDa+GgGHfcAdz51SDryt57z/Tyc19FjBBvvDsfH+xoql/Q40l51y5PqyMIgkhpY+JkgxRcaQS9FoQR4WfjSNDEk0oBT4jC3Xv5kjkOH25RwMbCM2QdMc4eVqtU2YPLAi4PLhpu05H6INhKZet0snwkiNizeLF1GV7PKy9lURbyMVsowysZwQTy4KqPkGCCIIhk4dARvv05wDcv8+SfDHNOj6cMr9XVivPjH39wVmbRue17I95nV99RaFzQY8OTHwwcxVRNetdcSu/BCILgg6QV3kES1zSCBHmEEX/s8eOtt8zL3PdoJHyh1zm4TJFWnVx1ey082rbN9DITBGzfDvzjO4vkXnZCFJJ5d1pRLxRc9MgSBGECjwDsjjv46nr86/bmBfbtA8C3GfRyzcKRkhEIhWi8rIeQhz5BEKmIz8exf+XYejMG/O9/wFnvTDcsU2ceNCUaG5o10z5yTd7e4uU6oD7sM4nY0yiPXA+TmZBAIQq9ghRcBFEP+Otj5ejf37zMaRdErJ+MFlNvv23D8oqTYC2/0spz42iL7Lo7d/tx6aXAG7+2Mq+HY0I6GvJTeo40pD5Y1qXyZ0zlvhNEqsAjh/rHP/jqWvLMbPMCQQ5XKom4K7hoc1ovIQEkQRCpCM/I9b//8dVlFcb3629tih1tTOBWCq5UzsFFHsKEF9DyNLkheYV3kIIrjYiJdw2RUFoX/Rq3tn793S+npDKzRv37371t98AB/knX88nZbx7GYcoZbXDDDRz1cHTs+k9H4owzOPtFpAz1QbC143BBortAEEQSEp76fCyO1htCuG3rsbeuDti925tmX3ie4zOSFUtakZ9hnE9GCQkgCYJIRXzMOw8uHt55B9j6E+dm3oZgy3QbnhAPLu+8Mb7fV+FJPUT9Zl9tdqK7QJhA60jvIAUXQSQx8ba2CC9izfJF8eShsENdXQKtSrKyvKmHU6j14YfeNEckD14puPpVfu9JPQRBEPHGt3NH/BqzsWD48UegpMSbZp9+hmPL5HGuDyKxNMjZy1WOQhQSBJGKeGkczVNX377ATTdzFKyrs9U5Mx3WZ1/6sWcPd1WeIAAQ/vPf+DZKECbsq82xLkQkDAEgNzuPIAUXQSQp558P/Li/NK5thsdVM6G9HQXX1q3WZR5+rthTD67fvt7NVxngnVUX5wcQBP6yRGpgpgy2A+OwoiQIgkg2vvwSeP6TSk/qsmMpnpThPMiDK63gtaitD57cBEGkHzbSXJnCmMeRhL78kqvC/fvF/0Mh47LfbA7guuu86hgnAhB67Y04N0oQRKoigHJweUUg0R0gvINxpdwmUoVNmwAgI65tRjy4jBeKv/3GX19NjXWZzT9ncsuEeMb9Bm2L+SoD4q7gItKPQ8FMT+oJhsjehCCI1EIQgNde866+a6/lKBQK4fBh4L9b23vXsEe0XTUi0V0gPIR3ZUehZQiCSEW8lB15uRXetiMTS86yFiIUFIjtmjVde1SIexqP7/4owc7DefFtlCCIlIVEid5BErU0gjwACLfweHBddZW3bWYEQjY8uDx+xj1ScB0+wFePIACf/5jvSZtEekEhjmIDzYoEEUM8Dsl3zz08bYbw4IPAvd/0965hgtDh5wPFXOXqBPN8rgRBEMmIVx5cgLeprlpPaIX/vF3EXT504JDhtWBdYnYCH+7ksPIlCIIA0KbIhgcBYQopuAiCkAl7UsUz9E+XFgc8DVFoC48SiuV0aM5VThCAjn8iC28iGvLgIggi1RBq6zyNyvfxx9Zl9uxh2MuXGokgXHE0FN8oCnZokr8z0V0gCCLF8dKDy8sc3QcP2dsTmYaJDYXi7sEFeBfCnqjflGfvS3QXiDjw5Iw7gYqKRHcjLaAQhQRByCQifURl8dHEpa3w0tyMg1deiWtzRApBHlyxgb5VgogdQ3vtxw97SuLa5imX0AaQIDJ9HkqTPSbLX4sjweRVDhIEIbLozIae1MMO7kdtbWIilIjKK+O2hWBihAyUm5HwAgqBXE847jigRYtE9yItIAVXGkHDH+GWYBD4z3+As96ZHr9GOUMcffYZsGu3x095nBVcBGHEnqM5ie5CWkIhCgkidny0Jb7KLbtkBoI4Wkfh44j0I56RFuxCuSQIon7BDuxHgwbJGYI/FIx/Di4AOBIkMSvhHppOCcIeNPKmEWOeOjnRXSDSgK++inODO3dyeXB16gQAmZ42feOjVZ7WRxBO2bKvPNFdIAiCSCv8QhAAKbiI9IO8AwiCSCZy4myn17HkZ3y2q5FlOSEYQtu2ceiQhvXvTot/o0TaQXM9QdiDgsMSBJFQhPfeT5i1559uSMCKlyAIgiCImMMY2b4SRLxJ5txlBEF4D0P8PTe5vVhDIbTL3hLTvhBErEhmb22CSEZIwUUQhEyiFE2JaDfTVxv/RgmCIAiCiAsH67IS3QWCiAkk9CIIIlk4eNiHH36Ib5uf76rmKicEQxCeeTbGvSGI2EA5uAjCHqTgIghCBU+c6mee8a49AYwrRCFBEIRdgiFa5hAEQRDpBYU1JggiWbjy3kpMnpzoXugjhATKY0SkLPTsEoQ9SPJDEISMEOKbRseP97hdmr0JgogBG9+bmuguEARBEARBOCbAgtj8/h+J7gZBpBw1+bsS3QWCcAx5axOEPUjBRRBEhARomp7YPwLr1sW9WVowEGlPjv9oortAEARBEARBuIAxAc2akjUgQdil9JOXKcwbQRBEPSGQ6A4QBJE8CMEQ4q33vual7sBLcW0SAMU0JtIfEoUQBEEQBEGkD9W5u7DtYEnM2ynLOYCdh/Ji3g5BxJKgwFAb8ie6GwThiP212YnuAkGkFOTBRRBEhFCIKwdXOhAkBReR5pCXIkEQBEEQRHpQVwdMa/ZR1Pnzp/3P03buvkvA1yuu9rROgkgEPR/diAUvHp/obhAEQRBxgBRcBEHIiB5c9QOBhj8izaHcdgRBEARBEOmBX8cRxcdCOG/6JwCATF+tJ+0EMhgy/PVnT0gQBEEQROpDEl6CICKEaDNDEARBmNO/9e+J7gJBEB7hZ0HdvwmCSCKkEBtm3vk3DnwAX8w613VTRUVA5tIFrushCIIgCMKC+hJCKw6QgosgiAi//ELjK0GkCSGBpngiNrxx3n8S3QWCIDyiUd5u+W8/I0Mngkg2GARDAZggQHbZ9zH3wak3n34TjjkGyOrQEj9+ssdlbQRBEARBEPGBpF8EQcgIt9ya6C4QBOERdQIlVSZiR+O8P1CevS/R3SAIwgXC1degOpeE2ASR0kjKLx9zH5u6WckeWZdWU+O6OoIgCIIgiLhACi6CICKEQintwVWYcSjRXSAIgqgXfP3hQTw6mowiCCJdWNvxxUR3gSAIC7QqLOW+jUEAKy+La38IgiAIgiCSAVJwEQQh4z6wRWLZW5uT6C4QBEHUC3JaN0amvy7R3SCSnExfbaK7QHByw+AHE90FgiCM4LBA9MKDy26bBEEQBEEQyUAg0R0gCCJ56PDQ+ah9LNG9IAiCIAgiHTgaykh0Fwhexo0Dbk90JwiCsIOg0GmJObg8VnIRBEEQBBE7yJjEM0jBRRCEzK4jecCRRPeCIAiCSAVoOU4QBEEQsUUp+xIEnZnXJwbl8bFQ7BomCIIgCIJIYihEYbpQSyFgCIIgCIIgCIJwAAmzCSJ5MXg/GYtcy/bX0WtMEARBEES9hBRc6UJtLY5t/n6ie0EQBEEQRD2BQiERBEEQRPzQzrqCACAkem5l+2tpXiYIgiAIol5CCi6CIAiCIIgUZduCMxLdBYIgUhhZHE6uHwSRvJi9n8OGAQDyB3aNX5sEQRAEQRBJBCm40gVBIHstgiAIgqhnVOXujX+jUlZ7kn0RROoTFGg7SBBeUJBxKDENFxfj9dcEDN4whOZlgiAIgiDqJbSjIQiCIAiCIAiCqG8IAmpDfvFvH20LCcIph49fg/4Nvo9J3UeCGfLfgqDWYIUVWgMGMu+VW6QtIwiCIAgiRaCdTLogCFELXrc0yNmD1R1e8rROgiAIgiDSA8r1QRApDmOoC9F2kCDcEvP50EDZJAjqa677IdC8ThAEQRBE6kE7mnRBECDAWwVXr4ofcNOg+z2tkyAIgiAID+nePf5tklU3QaQN+2uzEt0Fgkg5dv71n+oTVVWeG5uGyfLXyn97vd8nCIIgCIJIB0jBRRhCy2eCIAiCSHJat45bU2Mbf4bgspVAhhguiTGy9CaIVOOa/g9iY/cn5ePSrIPICxwGQMJzguCltKA26lwsZsRs/1HcOug+7vKe2p/EyZjlzSl/xpSmH8WlLYIgCIJIKshw1DNIwZUuCILni2ofC3lcI0EQBEEQnhLHRbGPheBjQmK8xgiC8IRRjb7Ayg6voFnBDgDA8xOvwZZ56xPcK4JIbfw+AUJNE8/rvXHgA1jc9s2kFIDdN+KvnqQzaF30m7i2IAiCIIj6BoUG9gxScKURXodFSL5lNEEQ8WL7gjNwepf/JLobBEFYEUehFwOA886TvcZonUAQqQeDgEadS7F57gage3eUZB1EefYBIBCgvHoEwYtm7vUxAUJuvvfNaN5J3TfUoxxc387ZoP5cFuuLea3eRbviXxy3F8bPQjTyEARBEAThikCiO0B4RAw8uBhZaRNEvaUg4zCy/HWJ7gZBEEkEYwJQWZnobhAE4ZaTTgJ++AFo0waoqwO+/RZo25ZCFBIELz61nXCsbE1kzyazBpQKLhf9aFm4A0Ce6lzzgt+xeV+F80o5CPhCMctfRhAEQRBJTRJ6aKcq5MGVLui4NY5q9LmrKn0Q6GUjiHoK5dYhCEILAzyzFCcIwh39Kr/HrBbv2b6PMQDZ2UDbtuLBqFHAypW05icIOwSi7YRjEWVIXo/7/VIbFu+p205IOTalxvH+9Etwi0kOMC9CC/pZCKE4Krh+WXA6RlR/Gbf2CIIgCIKIPaTgSiO0C97/HnOdq/pIwE0Q9RsKB0wQRBQkBCeIpGB2y/dwbo9/276PFNME4QGdO6uPBSEm6+aavF3iHzoKNT1cv98LF6oOS7IOoix7v2FxL3J2+1kIoTh6jzbI3UdyDoIgCIJIM0jBlS4IgudhRUiERRD1F3r/CSK1yPTVxrwNreCMdF0EkTg8F6bTC00Q/DRrpj5mzPN38tDSNRjR6CtgwQJDBZcXHlQy55wDNGwYdVpvZHhv2sVAx45ixBeX+FkIQSF2YqkMn3HIdWH5ipi1SxB26d/gu0R3gSAIImUhBVca4fU+19MFM0EQulTl7k7KzRUrLEh0FwiC4EESSucE4qDg0qwLPt9VFfM2CYIwxolOijwXCMIDdF4+rVOXU4ozD+CcCe8jOyApZgYPlq8dCaoVXVGhg30eKqpNBpieExoAJ5zgibzAxwRkmSih2hT9gq9nn+O4/qMnrIGfBfUvcnrGEUQ8eGPK5YnuAkEQRMpCCi7CEAphQhCxJ2nfsxh4hRIEETuaF+yIeRvaEWH7wSIAQHXurpi3TRCEGs/naPLgIgjnMIZrrwV+3XiD66r6Vm7BBZPe1b3292/7qY6jQgS6cSPTjgFS3i9dhgwBcnM9UXAxBlw74EGc3e1p3euFmYfRuug3V21ox0s5tcO0aa7qJQiCIAgiOSAFV7ogCNFJZydMcFWlnoXnwaVrXdVJEERqwCAkq+qNIAgNvx93Kk7p/HzM22FMUAnAxtV8BgDYMm895rZ8J+btEwShxomRTG3IRGhNEIQp1bm7cOyxiFYGMQa/H8gKGHsi2WLIEPH/3r1Ni0V1w83q3Y6CS8KTiC9VVWhWsBOX9HlMvw0IQLt27tshCIIgiCTh+Lav4ZvZGxPdjbSCFFzpguC9MFpvwRqPEEgEUe/o2zfRPYiCCe6TRhMEEQd8PpRnH4Dfg0TvVmj9O8qyxMTzfiagzkb+jPbF25IyNCtBpBIMApCVZfu+w3UZMegNQdQPJjT5FA89ZHydeZWIq1Ur4MorgeOPV52e3uwDdXuxNEdjDJg40bSNKA8yJ6xaZXrZ7wsBRUW2qy3MOIR+ld9HX+jUSXX43DHX4MROsTcSIghLGjdOdA8IgogThZmH0arodyBEcjevIAUXYQgFKiGI2EMRgQiCcEVxcdya0gq5wiF/fEwgrxCCiDMBn7MNcXXeHo97QhD1B18c4hvI3tIFBVEbhRaF6nDEPo1ntef7ikmTVIcntHsVj46+JdK+y++juKAOaNDAtIzTNs7u/jTenHoZMHSo+oLmSxrZ6Es0yt3tqA2C8JQePRLdA4Ig4oS8r/bKMIawVnAxxrIZY+8wxv7HGPuMMbZJOt+cMfY2Y+xbxtg/GGOZ0vks6fhb6XozRV1nS+e/YoyNjdmnqo/EIF+OJxZZBEGkJOTBRRApQk4OsHGjblhhr9GGKKwLRZaRpOAiiPjiZyHb3hvC8hVolLdb/yJj0eHOCYJQYRiST5obY51bV1s/g0bB5WWIQh16lP+Iac0/ko/thCgslby+lex6+RPxj/HjDe9zGgYxP3BE/EPnc8k1kmCRSCYSYPn68Khb494mQRAKaB7yDB4PriMARgiC0BVANwDjGGP9AFwG4BpBEFoB2AUg7D9/PIBd0vlrpHJgjHUAMAdARwDjANzMGCNpiIdEbUpdTpC0xSWI+gtjOmMKQRDJB2NATU18mtIcl2fvR/8G3wGwp+DSLk+mNP3IXccIop5Rk/cHBkjvHkEQ8WFOy3cwr1Uk3+RnM8/HX4fcG9c+6KT+SgxSSCVe5dO/xt6If429ybjA1KnAuHG6l5yEYP7k2E1Y0eEVICMD6NYtSn4YCu9xcnMBwHNDYYJIFWa0+DDRXSCIeolsnJpBocO9wlLBJYiEzW0ypH8CgBEAHpbO3wNgqvT3FOkY0vWRjDEmnX9AEIQjgiBsBvAtgD5efAgC+jm43Cq48vOiT44Z46pOgiBSgwAL0maPIAgVWi+x7EAd3phyOQCbCi7FiuXi3o/h4dG3edNBgqgn/Dj/bHQr3+p5vfHwBCWIVOX+kXdgcNW38nGHku1oVrBTPAjvu+Nsia0N3+dq+89xc5avTvxD+py8yqfcwFFk+oPmhQIB3dNOPLg6lW5Dhi8EXHcdkBct0wiF84aWlwOLFtmunyDShjiGOicIQkOrVkCHDonuRdrAlYOLMeZnjH0E4DcA/wXwHYDdgiBIKxxsBdBI+rsRgJ8AQLq+B0CZ8rzOPYRbYrCY9nXpZF2IIAj3JGMirjht0DN9tehVsSUubREEETvchCgM+EL4bs4GD3tDEPWAtWvl5cOqDi9hfqu3XVdJntsEYcGaNZG/zzsvslyWXkYvls/asINKMsMKJol4pBRQdiU7UCv+kZMjtc//gZ1+N64+o19cm6i+TkFAUFAoJAcMiENmNYJIUvqQzwFBJIwzzpDnKcI9XAouQRCCgiB0A9AYotdVu1h1iDG2nDH2HmPsvd9//z1WzaQlXm5Kx9V8imUruB4PgiBcEOtY/U54Y8plcVO69WuwGS9OvDoubREE4Y7N+8oNr5kpuMY2/gwbuj8lHzMAGDYMgOgtCgAtCnd40UWCqB906AB07iwfrmj/KtoU/equzmQ0tiGIZMLnA7p0iRxXV0dFOzgajK2g6sxuz+L1yZfJx4wB8czBBUCcv5s2BeA8P5YMh9bLdRuM6YQoVMs5nMpRijIPojp3l9OeEYSaRMzDNPcTBJEm2NJgCIKwG8CLAPoDKGaMhf3IGwP4Wfr7ZwA1ACBdLwKwU3le5x5lG7cLgtBLEIReFRUVdrpXv9ELUeiC6/r/A/37e1ghQRDGJNnCsn+D73U3g7GAQUhKJR9BpAxxDIf03u/NDK91Ld2K3HBCdw3dy3/Enzq+IB8zFrFOD/hib31OEGlH+L2nxNQEITOh5hPsXnxS7BrQWa/LuZykayXZh3Bpn0e5q5zW7EMw8M+D+ceOw4CG30e6lIg19Ny58ufNM5j3tXCFPzUYz5zk4AIArFpleCmoUWjxhGXvXbEZWf5a1bmN3Z/C+9MvcdY/gkgGfGTUThCJwE9hwT3HcjRjjFUwxoqlv3MAjAbwBURF17FSsUUAHpf+fkI6hnT9BUEQBOn8HMZYFmOsOYDWACJZWgnvcSE0N7w1yQTxBJEW1GMBFY0oBJEGZGTglsH/h98Wnm5YxGj5kOGzyMlBEIQhYeG2LSF39+4GldGMTKQ2Gb4gijIPx7VNrWLE7xNwVrdnue9/dMytqMlXewAxwPh9nDABaNFCPmxVqI54E+scXNoSYxp/jo+P3cRVfbviXzCrxXu2u+XIg6thQ6BbN8PLWg8uHt6Z9meUZe1XnfOzEBnqEakNKbgIIiFkawwmCPfwjGZVAF5kjH0M4F0A/xUE4d8AzgRwKmPsW4g5tu6Qyt8BoEw6fyqAswBAEITPADwI4HMAzwBYIwgCSTW8QhC4LI94oYUaQcSXWS3eQ1HmwUR3I0KcBF2U0J4gXCJtTGOROyc/w0JQOGqU+P/IkfAxAZn+OvPyEso1RsAXBM47D2jf3mk3CYLgpXt34PjjDS/TnEykMrF8fv8z4VouD65w+F07OJ2/n51wLZ6feI13IQodwBjQuXSbdTkABZlH8I9Rf7HdhmMPLrlxBkEj9ory4HKcH4zGTCLFIeMWgkgIpODyHksFlyAIHwuC0F0QhC6CIHQSBOEC6fz3giD0EQShlSAIMwVBOCKdPywdt5Kuf6+o62JBEFoKgtBWEISnY/ex6iGC4Klwiza4BBFf/jHqLxha9XWiuxE3BjT4Vv7baLwp1VhJEgQRe5rk78S3tz2PPYtPwqCGkfc0238UT467QV14xgxgwwZgyhRg7FhTMxul0E25l87wBYHqamDePI8+AUHUP7jX7c2bAxkZhpdjoSgniHgRy6d3dOMvdM/Lb154YhswAPjTn1y1pQzja0ZR5iHkZ2hCBMY4KkSBleGLAVyKN4O+O1IiWXwPsmLSzvd1zDFRp/wsRPoBwjs8epiE5Svi3iZBxIqXJl6J+0b81ZO6CjMOyX9PbvoRdp+buFzwWZyGoQQ/5I+aRni5nLWa5rqW/WRt2U0QROqyerWpV2iGz92E/PqUKwAYjzWDG36DAQ2+N7hKEISMxxvTbH8tWlYdRKEmzNOWuesxocmn6sI+H9Ckifj/9OnwtWllu73ybHeKbFubeIJIM0guRRARfCykCt/nOYFA1KkopTBj4rxoA603kW2UHlwxDFG4ee56HNPkExcN6GChYFrf7Slc0vsx7uoCLIjgspWWYde0IQq5IuEwphOSkvKIEikOhSgkkhBlONhGebtRlHnIpDQfT467Ac8dc4187GNCQpVMAQrT7zk0mqULHltrGVpZSQvf7mU/Yd+Sk1ReGPGmOneXdSGCSHKU26SksZzeuBFo1cpUaX5ipxewfcEZtqu+uPdjYpgXCcb0t5SvTL4STfN32q6fIAh3GFlK81hQM5/+GMag9jAJrzG+nn0OJjX52H4nCYJQ4cnqgbRlRIpjmrvKC1q3jjqlu4q12QfdfFAcdXi+bzBoMzxnNyvY6e7r9ftt37Kg9dtoX/ILfxO+kLheUbal7bQgRJSKkgzFqSTFzwQgP9/h3QShIRHzMGPo3+C7+LfrMb8sMM4DTKQW70y9BDNbvC8f+wzkRXbJ9NWpcj8netXrp6hpnkMKrjRC14LMIVa3+qRY2GEvjHhzSufn8L9jL0xI2wThOR06JLoHcaNn+Q+qMC9mIUu8zCtIEAQfRu8kl4KL85UNF2td9Bv8PlrcEwRBEO4xC9VZknUAgxt+47zyXr2AJUuiTru2MW3dOsqDy/bqV+GBEfc82gbhGFe2fxkjGynW+wzA2WcD5eW2qrebNsEX/vwDByoriSoX5cHFoyxkLKqcj4XAMqI9+wgiZfD58OqkK/DYmJsT3RNXNMjdl+guEB7RtOAP1UzmZyFP5jbG1NOBgMTadrnOL0lEQQqudEEQPA5RaO7BlQwJVUn0TaQNbdqIXlPJAsdM7+n717697unEjzIEkQJ4vDJnTL9Ot/M+q662LHN2t6dx/4i/4LOZ57tqiyDqC+H1etyF2gSRhPhM3oM/dXwRr0y+0nnlxxwD5OVFnR5c9S1O6vQ8EHQYaqikBEE9D65kZf589XGnTsDYsVHFNvZ4Cu2KNJ5XNTXAwoW2mpN/U05Not8XAtasAYYPNy3nOixkuD3OfGkEEVemTuUvyxj8PoGE7URSoTQm8Er27NN5xkMJjKCUDDL1dCOFVlOEKYIQ7e3gyoPL/GUz20DEC9rME2lFTU2iexBBGjusrBmdvIPascVAlg4gsQsOgkgZvFZwQdCNx+9jIeCUU5xXrBBOMabThiDgkj6PYU6r99ChZLvzdgiiHvHLwULvKiMhLZHiMBNlg5M16/UDHrDMOV2SdRDXDnhQrYCx+S7pKrgcvo+xzMGFqipgyBC+qpzs03WUWIwBWCHm2nxv2sXoVbHFtAo/CwHNm1t+FtmDSw5RyPfFaXvoZyHbbnwfH7sJNXl/2LqHqF/4mcvcPHaeSWk9btdbMhXJDRyR/17c5g1c1ueRBPaGMIJBQEgxJvtZyJMlKkP03JTB6tAkf6f7d84meYHD6G0xnxH2IQVXOuNGwWVxPdHaZlJuEelIMoTkK8vaH1Mhl1ZpZraYTpqcZASRAng1fvgUAkLlXOvzMaBdO8f1Rs3b2lwcTuM8DR3q7D6CSAPalfwKgHRTBAF4H93jT51eRJbPIgF9OApBr17OGmEsyqCLd58rgAHnn++s3RgTbdBm8Jks5n4fCwE9egCMoWfFj5bfjU9PyakzQDry4NKpx0norM6l20iSQejDGOpOWIn13Z82LLKs3at4dfLlnrZZX2hWEMnvPaz6K8xv/U4Ce0MYwZgQ5cHlSYhCnToCfgE/zFvvum677Fx0GrqX/xT3dtMdUnClC4IQLQzWscDmxWoASYZFWT2ai4l0J0ke5rO6PY2vZp/L3R9WWmK7jbqwxeSiRWIdRgUrK5NC4UcQSY/J+/rpsefbrw4CkJ0ddd5N6BI/CyHTr0nqG9DkrHCq4EqS8ZMgEkHAJ76Xnhh+0bvEzd+G35noLhA6mHpwxerxXrVK9G4ePdpxY65CFFZVqQ5djQWG351get1o/lYWL8064KxLNsvzrlVO7/JfnNzpOfmYawmi8/nDYzBBeILPB7/PfAdclHkI7Yt/MSkBIGTjufT5LEN6pgP/m3EBVrZ/RT7W8+YhkgMG9bzoVfhMMQeXEH2SSBtIwZVGRA3PjGHz3PV4b9rFmNL0I1t1Gb7n0gV5wOnd21a9XkGCbyIdSfQSqzDjMMqy+TagTheEdSE/MGUKUFkJAPh+XzmtKwiCE4YQfllwOnf5jqUOQ/317Al07ao6xeW5bfAy+1kI2f5aRTGBy4OrOJNvPFrT4UW0LvqVqyxBJBMvTbwSp3X5j+P7Ex1Rob6yoPXbie4CoYNZCH0GAWjc2Hadco1Gi9WsLNG72YVhqZchuRMisNULLajoy4Gla9FxQXf5WlXubu6q5c/D+f0GWIhLYLm200u4ZsBD8rET2cLK9i9jbOPPuPYxNwy4HwtbvykeDB1KsgzCMVzCfrtGY3PmpP0TWZR5KGrNVB/CMqYqQa0Hlwe/FYMAZjCXxHtMJuVqbCAFV7qgN4n5fGhWsBM9K37EY2NvsVWd2Qs3oeYTTGv2kdxGomA50RbmBJHKJDrnlKy4lt7rWEz0tSE/MGGCPGZ9s6eBYVma9glCDWNAg9x90Sc9xMcEICMDWL06+rxD/L4QAn5FDi4IQH6+6T2hZStQlbuHq/4bBz2ALqVbHfePIBLF0OpvcHHvx/HFrHMd3R9ehnslpKF5l0hlzDy4AAAFBbbrjIfQy58VsC4UDzxcTzAI8rohd9xQ0bhNYtuCM9GnYjNXPT4r7zEFl/V5BK9P0QndZnavnIOLD+XzsKH7UyjOOsR139pOL0XCozHm2GmdSE/O6PIsHh9zE5diims9bseDq55AyqzUgZWWyHKpO4bcg9KsA2mngKXnMTaQgitd0AtR6CYHl8kL9+T4GzGhyafiQVmZ4zYIglATchOixANkBVduLgDrNbaTIaY2pPbaMNvgJlrhRxApgccKLqaoU1mzKwVXVC4OAAMHAn37ysnjtesJ7o9FLqBEipPlr0PT/D8c3Rt2hKS3AGiQw6cQJ9IX5fwVdc3hHBYPRcRH//Ph8Yl/kY/dCL5i2l8bIQoZUxjM6hi06HZTpx7ZW0Vq22yv1Ln0Z7Qo3GF4XRdpEK3T7E900Xx+xgCccw53U8FQpO/kwUUoGdTwW0xu9jHXCxwUfGBFheaFBAF5gcO2+pDyHiVDhti+hd7C5IT5ffJ4ubTdG55t9ZgmlxcDoiOKxAkGABs3JqTtdIYUXGlE1JSUkeE4ITzXGDJxIjBggKP63cIgkEyLSAuUm9hELyuDAgPWrOGycHX6/rULxwwPb1TBDBfUUUp7gqjnaN8Vn0cxyVVtGAjW3Ci4AiwYfdLvB5YuFZPHA2KYp8suA664AmjRQuqL4yYJIqVwKlgKvyMNc/fwCUzNhGeMpaywR1i+AoMbfpvobhAJxtKDK34d4S87ZgxatQLalvwWuZ3zVr3X2ZXixGMPLrO+8LbkD+e4ysgAYG78Jndf+zm0x8ovThJuXvnxaFii8bxieblA48bc43edEBGk0h6H0KWBcWSTMFzPmyBg1+JTcFKn5z3oVIpgEVmKIXrMTHmlXprCWHRuylj8VgIAtG/veb08sHZtgZqahLSdzpCCK10QDBaRp5ziyMvKMLavcoE4aVJCQxQSRNogvVf/2drR02qXtn3NlgA8GPIBXbpwl7e70BCWr0D38p9U58w2qmTdSBDmXNL7MXn80JVbz5hhu07DFJwuNhZhAdVNA/9PrMtICFlcDBQWyjn6uEgGYSZBuMTpY5yZIWBxmzdQlGnPUtsIEvUQqYzZa+ToFcvOjqxFPQ8HHEKjRpG8YE7mWD3Dk4R4cOkVLcjHgbpMk6qkjmo6LCxfgXE1n8rHsgf4mDFAWZnptyR/hwb9DLAgDh+/RjwYMUI0pmnVCgBQG7IfJtLWI+HzoS5EchPCgiZNgJUrDS+/NPFKrO/+tPWzl5eHDF+IFDgW0BYieanTKrg8+K2UuSFlxowBjjkm7mFj6d2MDTTL1gdOPx2oqrJ1S4ZPx9oa0DF7SNysQIMCQZhzx9C/oSiTLzY8EG0pE1MFE2PoXvYjRjf6wjjiSexaJ4iUZ1m7V3Fmt2fleTmk9746mKOVyielNxdvVf834q/RdUr/r+74surYE4IG6xWCSAXKy13d7vMBdw27h/+GJJHmVGTvxRV9H050N4g0g8EbD66K7L14ZdIVQJs2MfO0mVDzKbZujdTtpNu6Cq4YrN0rsvebFzAIUTi/1TtY0f5l3VvMeqkM5Scb3ZaVARdeyBe+PKBRVinWNFn+OvHc7NnAmWfaNtZ1/P36/ZF9FiMpBqFG9f537274fAxs+B0KeQxamjYFJk605dmdJMsD53B8AGUReguTFwZBNQ9g1CjP6lUfQ/Ti7d/fcZ0ndnoeJ7R71X5fUv19S1JIwZUu6OXgClNaCowfb6s6QwVXmzbi/1L4IIIgPCBJZrhXfmkd1/Y+mHEx/tz3n4bXKXwHQajRfSPCCi69vBROFFxuNnyMYW6rd6NOv/1bc+d1WtG1KwAaL4gUpVDMo+H4vbMbSSHeJqoGNM7bjdO7/jfR3SDSDLMQhXbesaLMQxhcJYa8jNUbE5VDx8G76bkHl8F3N7Dhd/hj0Smma4rL+jyC9sXbVFUNq/4atw7+PwMFmF58RfGc0uBOFVWGMdMcXIwJYm5PKZyhSUHz65z3hQ+5cqb5/eTBRbgmPI4ZyurkggyYNIlUOAoYhGhb/ZLihPSFMIcxRBS5kyYBxx7LPYczmEcvUg7jgt5Jm/y5zz/RpfRn2/clifgv7aBZNl0QBNsT2KhGn6NTif7LGPAZDAwFBcC11wJnnCEeJ9KDiwYFgrDEzob+3d+aqY7Ncu7EIw8eLcoJggNpt+aV3NoXgxwm81q9Ey2I57G05BkFysvFdQlBpColJc7v9fJdZQxBITHJtr2A1gyE2fxl51WRyzoNxW/R2PDqL7HqsmbqW5SJ7zlzXuqFIY+FggsASrIOGt8nCFjX7T/IDdRad0Q67wt/XuV3LLUfVBisaNMm6Hqrh28HxNyehteNQxhe1Osxw/ss6+PB71eF3KIw7IQunGNObkateQF5b8DxnCVIqJbps/gMcYC8uJITBgG3DLoPm+euB/LzxRyxLnJBy/Uynd/c5fMf8AVxNJS6a+d0gxRc9ZiHR9+ma2kNmFiFMAbk5CRF7i2akIh0INHPcfOC33Fx78cAAOf1/LfqWkz7ptj4GrVDHhkEocbM4tlM6GOrDbEhZzdrwwIBeHnSlZjU9GPVusFyk1Jrc9Obk2OvPEEkC4wBF1wAluvwGfZyPU6WY/xkZSW6B4QODPDknZCVL0Y5ri07Yn7PTQPvtxtcRRefzvrZJyQgbG9YmK44pfoKQqGovxe1eRPTm32g/r2kv3MUijK/xujWLESh4b5FDlGo1zmR3MBRw3oN27PzaFRVqTzTksSZlkgSGAQxTFpRkXk56ZkzM0J11Yc44vf6M1i8kLqX6UVMWgoyj6BZwU71/MGB9nfO8NUZlvUpwhoLDlUjfibgSNDCa5iIG4nXUhDeYBai0IAMX9BwkegzSPzqllM7/xePjr7F0zoJgnBOadZBrO/+NAD7C1tHsrDzzhP/5xhbzIQKtw3+Oz6feZ6DDkT4/bhTMbuFvpKfIJIRBgGYODFyomVLMSE1vFMIq/Ju2b25Q4eoU70qtohrCqWCy2qsmTDBbssyKw3yfRBE0pKZKeaXcYLHHlzxIhYipbgaxUybFr+2CG4YBKCwECvav6zyDtjY/UnRk5gT2TNq6NC4yT+9ysFVnnsQ70272IMeKQh3rrKS/xajt1wSVi5r/xoeGXObuI7R8Lfhd+KNKZcB0AjBGePLwWXZOechCvXGGbOwiTInnIA6svInDGBMABYvti4HThmdrHROXg8uPQ/UeMIY2fUkK6rfRdo/8v5U2rlnUpOPcWbXZ+Rrut7SLh4EHxNwQrvXcOdQG/lwiZhBCq40wu76O8MXRFHmIXs3aV9+m4NB59Kf0aP8R3ttcnaFIAj7KIXZ5Zok0mZeFo7cxEeNAqqrxb85rHG0m9jwQvjXhafjhHavqSw8nVCefSDKMpSovwjLV6BPxWbTMp1Lt8apNyYoJ7916+SFf3gTe2jpGjTI2RNdlrd6hTWbapPAU9ewYWLidlV9Enas6hs3Bq65xtHG/JbB/4dNPZ/AvFZv87dHEAmG18CkffE2/G/GBZETXnpwxTE6g+fW5y1bUsivNEGevxzAmACMG4dbxz2OTH/Ek+mCXk+IluCc+JgAnH8+0LFjTJ4rvTW0cgzQ88zSQ/c9Ki9HzwqHe22jef6cc4AhQ4C5c/Wv6+bYUhwo1/xKD5Urr5TzEAIA/KICqDz7ANoXbxdPaUMUmnlwGV3Srml0CnItlzSfM1xfMCPb+t6SElXfabwi3PLz/HW65xvl7ZLn8/d3NIlnl2zh+TrA4iXWjiVA4iPpEPqofhfJsMLpb1WSdVDO+a6de716Bitz9mFJ2zc8qYtwBym40gUHIRT8TMCqDi+LsU1N6k1G8jKOJLoLBOEd0oJserMP4t502BJx24IzsKz9a6prvBtsbpQLT4W1utF6VBvPuEPxdgjLV6AyZ19MQjMQhNlT9ftxp+L2wX+PW1/0MNu7hQUn2YE6V4ITwxwmPNIfnw/o1cuyGFfv/H7HS5Bzez6JxW3edHYzQSQxjAFdyn5Wn5BQvi/ti7fhpE7P26s8jgouBojhmFIVsrKLGZ/PPB8PjbrN0b0+JojCsE2bVMoExqBWpPDUU1wMIDaegVY18q5xdcstWWLbI7Qsaz9mtnjPuECjRsD8+WIubhOU35WhgUyTJsCiRcCZZ0bXN2IE0KyZ6pRWKG22vuEWgLrwwFSFYQwruOYuML3nlyffj7qXwrATSri9UxiASy8FAFTn6RsDzGz+vvz3m79Ge0ga4ZXStTJnL1c5z98Ai3lZLwULTeXJCWMANmwQ55327SPneO5V/L2h+1M4s9uz0XVLKEMUOkYnPD+ROEjBlS44kAL5mICAL2Ru0ebxqC/AmwSBuYGjZHFBpB2eW/ONGsVdY1Xu3qiNstXr7+odLC8HTj8duDg6jMqQqq8BAD3KfwKDsYcVjQFEPCnIOIJADDz+svy1OKvb0/w3GLyYX+5uKP/tNITPk+NuwP0j/qrIV6F4xxxqm7TvqZ8F0an0Z4PSasjCmagv2F5uh5VRCqWUMg/flf0ewdK2rzurMw4wJgB5ea7rqcrdjS9mnSuGDjMos6bDi67bIeJDaNkKlGYfRLbfvof+9GYfYFm7iKFWlALhoou469JVHNmZA516T5u1r4NuiK+yMmDVKltt3zXsHjw46i+e7vsZA5AteTa1bau+OGAA0KJF9E25ucDZZwOIzP/aLpl7cHF8b5dcAlRVRd/Ls6fQdIb5xONgZXR9ShqUiTlgSKlFGKF9/jJ1lDEAgDZtgNJSw3f13B7/xjUDHpKvdyrhW297xTPjr8M/OdOReCETBIDjWr+JncedYjl+BYy+UyI5adJE9By2MS+VZB1Ah5Jt8vEJ7V5D66Lf5GMGqOZyMphOP0jBlUaYLpo0i/KyrP0GBTUToXazG0czh0Z5u3BVv4d0r2X7jZMFEkQqoXylPJ9iXb6vnsS5V6IVDrRuLSq6FP1kCOHlSVcBjOHsbk+j9oTV8ga+jifGve0u0WaT4CPA+DZGOf6jaCiFWPpx3ll4cNRtWN3hJcPyQxp+g0v7PMZVd6avzvC9fmRzd/lv+d21KbDuW7kZjfN361/s3l3/PC+SRfm+JSfhxn825rqF6/2UkwOry3o+fhFELJDmRdsGG+FxQDEeBEM+TRGbdfp8OKPLsyjJOmDvvgTCIKBd8a+GuXEA4MZBD6gEHt40TONLLHDztV7e7xF0L/9JPlYqfJGfD2RlcdflZyHF3CLhYVQTq/fdcjyQ+mIYacHii2xd9CuKMg/Kx/J86fQH6Nw5ugsQgAsvFI3Z2rSxXWVQ731mDOf0eApzWvLnUwvfJ/YJhuui49q8hbuG3m1ej0HEnLIyoF1ra9mE8l4SqxJmnNL5Obw6+XLjApZWqFJ0mOYfetgrc35beBrG1nyObM4UAl4pF3IDR1GafdByz6PrwUVvYlKi97vw/FZ/LDrV1HmDQVC9Ol7k4HK8NqB1ZEwgBVe6IAi2hucdi04zvPbJTHVs/7enXmrsauzIQo2PSU0+xqldntO9lu2vpTGBIDxALx51GKsxxat3UHfB4vOBMcDvExBcJlqiHg2SCziROHxM4FpcHzz+T+hQIuaOqMnfhZktPkBHj4Srmb6g4YtXqwjp6VS5I1s36rWxcCFfJXr3hnNzDRyInPPPRKAtR8gUxtQCSr0iCBl+H/H2/upW9iPO7/mvuLZJuOeZ8ddhcZvExM3/cta5XPkodQkLcpQGIm4fecZweb9HcW6PJ11WxNGUF2FhCMIEN/oopeBVnkucvqs6WEUBthT8hhVcDgXEX88+F1ObfSQfuzYI6dQJOE0tW2AQxLCQrVs7qjJkYNS2pO0buLDXE7rXrD6FmdK/JOsgFrfVD208t+U72L/kTzrtifXl5ABfvKkfLk6J/D0LAv44km9Znqg/aMeEvIyj6FbmIu+vXi5di7JudfgVOcYG9HroKZxcYeXBpZeDizx4khL9OZLvtzIzjtTWy4wa4+QfI28Hgg6f4yRNBZTqkIIrjYiJJ4Lfjz6VWxxbiNnhwl6P474Rf7Usd1GvxzC75Xs0KBBph9b62jUc72fAFzSMqX9ej3/jvWnRIQQBMYdfLJC7rNP3IyG1giscGsQNNIrUb8Y0/gxtin6xLCcsXwHGbCyuo47tP6vNCnaIiaIV+JixQufsbs/IfxsJhqww3WxmcyRR14E1qQHmzBHHmeOOA2pqOG9kltO8ygpP863He4lwUqcXsKL9K/FtlHBNx5JtKE2Qx1Lb4l9lobnt5XQ45n/Ys7JFi+hcNXb3BXEMUQjAWwWXSYhCALhr6D04rwcpoNOB4dVf4qd5Z0adVz1NjKnnXZvPmnLfK88ldiYVB++S8gnmWWuc0+PfaGqWZsAC5fjg2oMLAFq18nRNbeY1b/T9WAnz8x3m8M701yEv4ygAYNeRSGhVu2Gr5e/ZQ2Upkb648i6S3uVEhGDjGUXennopOnlk/Me7N9O+r+S9lby4+W2Uz7yVJ5gc5tfh3Der5fvWhYi4QgqudMGpJGfgQPPr0gJdrt3lZtTHQoYDVuui39AsP7JQN/pEazu9iJKsgzQpEemD9F71rtwSg6rN35OALwSMHat7rSDziOyJEnUfZ7g2FQbjlO67nJurOpzR/H3MaqFYRJxxhv32CULDP8fcgr6Vmz2pa0LNJ/hj0SkA7AmWGROABg2izm+euwG9K7aozvmYsddDA4WntZXnkx4lWQeQE857ogznA+DK1d/brk+Fw7WDlWJQJYTUlI23BxdZgaYm/hjk1bMFp6BzfM0n6hOjRkkXxov5dv70J5WnKIN+KC1Twmt+xaN859B78PwxV9urhwPP306TEIUA0KdyS1xDNRGxI8MXROP83fjg3MfQVmGgolpLap8Hm/tkpphrT+r0gv08boEARjf6HCOqv9SvX2/dq8wLwhGi8IJe/0KG0fjFMecqW5DXDAHvIiW41V+XZh/Ez/PXAYMHu2+TMcxo/j5O7/Jf40Lr1hnWq+f5AZhHwdBDHpPJSJfQYFuuZbWnlvYVybo27eOhzEN+oy3eKz1lH/mRJwcndnoehRmHTMtw/VZt25oqdbXvmWe/vxNPZYpiEBNIwZUu2AxRKLNwobmSq6TEaY908WninirRxkQ1Ilwky1+H2wf/zbO+EUTCkB78c3o8hQ+m8yfB9oIAC5lamhotuHnDtang3dCVlwOLFqlOPTz6dlzd/yGgqAi44AKgVSt7bevRtKn7OoiUxs8EQ8GFHkZT1MOjbsX9I/+Kkiwxp4X2Sbd8Vxo14m/fIOwIcy7LAyDGLTeag0+bYyNJtTYJuwtjFCtFITNS+FVWJsQEhuXmJKBVwg2WguRYY5GDa3LTj/DutEvw1PgbIyf//GegStXMAAAApaxJREFUpRTmMxAAunUDcnMxq+X7CC5bqa2aH521AIOA8mx7YYd48EroZub1Has2idhjppwNzwvdm/6h+k21j4ATQ48wSgHZ5f0exY2DHpDzSHLBGP7zTjHOUnhWqy/rCFoV3Y2l4v2xMTcD0Hpw+YD27YGMDFd1K383V4aol14KnHIKqtctAGbOjLps+5dlDA+Pvh1ndP2PcZmWLYGRI3UvyYqszEz1eZ9aqWrWPuCdwTCRfuiPCQ7foUsuAfJET0OuNU4insfGjT1bfcljjYPNDxnMJwfXDXgQOYGj8rFuiEKe3yovL7rc1Knyn4eCGdh+sEjRjke//8knA4358kvLkKFDTCAFVxrhyFqZMTFwtJaw98TYseLGWVneBVqNeoeSbeYJNHUID1qMAcvav+aqP06ItwKCSG+iLUk8nOx4QxTGa2HLMZEzCMCZZwKVlfoFLrtMYZXmRZdok1mf8bMQrhnwID6beT4wfLh54fXrDS/V5O9CYeZhR30wewJ1n08DhfTUZh/hibE3AVCEKHTykvTrZ/+eGGE1YmT5dZK6l5QAp5ziOEyjU3yanEKdS7di+wLyNE12EhG+R4WFB1fT/D/Qq+IH9UmNh7OS8OfRfTeskKM2iM/x8navYFSjL+zXw4HbvAdh/Cwkhj+dM8fWPqhZwQ5MavI/5w2TgDo28AqICgqAyZOj18wLFsh/usrBpaz3oouAjRtN3ztdqqttrehtrf/txO/VMKWZ+Nwr35eQwEQBnZvnWhNW2NUrUloKtGsHdOkCZGVFN2XwXdnJN6SL4gNU50ZCRAd8IaBDB2DgQNw++G9yuFO7IQrXdnwJZ3R5Vvx8BKFA76k0fYUmTDC+plDG21njeBX5gPc99GoPzhiAqiqgb19n9xJJhxt5WJ1i/8cyAmKkg06dAABHghmq6CjyXM/xIHQq+RnC8hXRFwYMEI3NGjZ03GfCO0jBlS44WcV37Kh/b1YWcNJJkb81nhQqGEOP8h/Qo/wH4zIKtF4fZVkHMKjhd1JVOh4hOl4aiZ6Iupf/lNgOEOmHl0nibWLlwWWEn4U866utenQKfz9nPW4d9HdvOkOkPWd3exovTbwSgPgcF2UeFkNxanN2KJk6FWja1Fqowhiwdq39TaLBS1Ab8gMAXpx4FQB1Di6t1VmWvw6Tmn4MQG25PrTqK/Rv8B1/X5YsUXTLwdpC68HldJxgzDLxfX4gkk9D7unkyUBpadwN48QcbZHjDF8QDXP3Gt9AJAUJV3DF6EHNDRzVH4fM2tO8rLcNuQ+N83d72zG5Kfefe1qzD3Fej3+L1uo6YV7N6FSyDU+Muxl+J+GWAbK8jRUGHjRKGBPE37ykJNpjSBHOTjAQc8xq8Z5lG6pwwBUV/LkjNRgZWujObIpnKh5bgU6lEc9sq7mWF+XnTYRnBNd4zqHg+s+Ea/HomFvl0wFfUJSNZGZiWfvXMK35RwA0IQo5FjtDrpiEy9ftiISYJQgJ7vclPE4MHQqceGJ0PUx7nLxzlaceXOefr5sreG3HF/HtnA0etUTEC10PLs5p6tweT2JF+5d1r4UEhuxAnZzH0877oVt26lRg/nzuOjQVOruPMIUUXGmErb1Wu3ZizH49Tj4ZaNaMu6r3p1+CGwc+wFXWz0Kuwx/IyQBd1kMQyYinG0Kfz7S+pvk7MLXZR6bvkt7cu7zdKziuzVvc3eha9hP2Lj6Ra5AKCn7uCT/82QoyDzuzVifqJW2KfkWnUjFXjepRKy+3vNcwxG74/M03A50727dK1FT89PjrAQBHQmI+jGHVX0cVM/f8ivz90qSr0b5YP5desmOmKOxVsQWX931EbzdveW+iOHqCwbqLSBh+Fkrss6KMksALxxzZKG+3faG1Qb2xEJB5sda5ot/DWNruDflYW+Owqq9U1rbKT3egTgw1Vrdstet+EB7i8wHXXce3p9UYQaieU5N35B+j/mLdDYUxiRuMPode7iZbzblVsA4fjjO7PotaaU4Kh1d2BVO/1bGU3RnVbZgTi9eQT/pecwJHVeGr/ZoxMPz12/6MbduKwlCSYRAaHIVk4/AEjPvqxiKPX17gMB4fI0ab8MxjjBm/kH4WQqbP2JCFQhQmlm5lP+I7TgUk72/Vs+JHrOn4ku618JohbLxl5wnUNaBo3Vr1zD886laUZ+/jq5AMpWICKbjSBcFmMumePSOLKzsvlwchCpWDkyp2Om8Xwn+0aeOqL47p0SMx7RLpCzPYoHtQr9m48NbUy8Qwn336iBO0Tpx7PdZ3fxo1+busC4a7AQEFmUesC2rhsOR1SzIKwYnYkumvUwt+160DxowRrSGNsJgnGQSga9doIcqECfZjcgMYV/MZAOBIUL1RZBCsBTXdukVZjcc7XJ8KFwt4M0Xhhu5PYWGbt+VjuaQ0nnplkc6LONqar2kyYphXhXCGjwlxf1ZkxowBJk3iK6sMvWOxFheWrzCeoznW8amy5VaFltEJd2S2ngomckwkzNGxwo9Ceo6DKo8h7/DKs9MoD5heaDvlOGTZuo0QhUvavK6+Nm0aMGMGGBP78cuC0zG+5lOrFrnwLAeXGVdcYfjxDX835bqJM0Sh8rMENJ6etscPstQnAFze9xH8U8qBZwlXYnrrMj3Kf+Sux/Ubm5cHbNpk2q3irEOY3EyMNhGPNAEMAmryd+GrWedEX3OST5zwlCx/HVoU7og679Xvoq1HO3bbmet58tnNaPEhd31EbKDVfbogCOaThNlCWBBQk/eH8XXGjDcNOoK2woxDmNfqbZ3CBoOIZH2S7a/lEjLIA9X8+XI81VgwruZT/GPk7TGrnyBklAqueDYLAZg3T1R2n356dMiMRo3075PeY88WhUYr4VmzRGtHq9thLsgCxLjJBAEAVbl71HNNy5bAjBmWVoeASd4HJgCrI54AcqmmTcXcHU5o1AgV2fs17cMwRKES+UrHjkDHjqrPW5hxiLsL8rrChXDG8TjBOO802JjHW3nNmKD6mnwsFAkFTSQtDAlUcHXrZjnuyO+5wXxshtN3IB4KcQa4tl7lHpaqqqQ2FcJrt785CaxjCu+zq/Lg8lBQ6ZWCy+g50/M0Ohr081esk5dKj0Z5u3DnsHvVJ7t3V3kQNcjd59njHBeD9MJC1An635VXHlyaP+HXKCR1FVw2w703yd+Jhjl7bN1DpDbl2fvRrvgX3WtR49dll4FlZbpuc3TjL/TzBsWC4cMto2EoQ7p7tfbimc/bFP/m6D4ithiN2fohCm2EE9Q516rwV1VoXrGcuTsuQ6R/lusCadLgNoCgdWRMIAUXAQD4cf7ZaGyi5DJ8ncMJqRUFVnd8CX8d8jf94iyksXAWxHCJEDX4UQOCzkpZHgtyc0WhZAx4fMxNeGT0rZjV8v2Y1E8QRnhqScSYaX2MwdxrZf16sMqK6PvsdsNmeRV5eZG/+/TR1Mv3Xc1u8S4+mnGh7jWy26pf7Fp0MoZXf21oVW31TNn2sNQmZjKq06DMvcPvwvYFZwAAzuz6DM7u/nREwWXSprxp9PuBE0+U59ZjmnyMnMBR486sXas6dLT59HDBHhZyvjxJzJk2r9XbCC5bydV+3HNwaRrVhjRSbpKI5GBJm9eRE+AzrkooTZpwGXtocfQOrFiBoNYTykE18UArmNB+XLnfHToAZ5+tutaldGtM+0bEB8N3123EERjPy3YwUtTpCfW0HtumLFokRjI5/XTTYqZrGg6jHruovJ5i6LFs9LsbCiD9CoWYhQfXxb0fQ8/yH9Gj/Ec5lFpA83uF9Ix/fD5k+03WVxq+mnUuHhsb7c1D+YLqJ1H7i6IisDatrW6KXYdcYCp7kP/wTuJRF5YfOvg+yIMrsSjnCSsPYCdPu/KR+GbOuWiiiW5gFt7ytsF/x+/HReZYQwOKMCHxOveegkIUxgRScKULgiAPAw1y9uDeYXfKLxkA8wFfulYnJbM3ymehey2s4FINSMbounZKdWb7a1EbsrZei8dENLnZx8gN1OpfpMGI8BClRwYuuMDjyl0ufAMBoKQkulrpHeSt3vYbo6x49mzRC+KUU4Djj9fUK5azWnBoPStUdSS7YJPwlOIs0XvJ6Hd36vGgvUtbv+ViVxDwztRLok7nZxxBw9y9AIA/9/0nVnV4RaHgMnizMjIgQL3ZC7f/73E3Gfdh2TKgc2d1v12ItvMzDiu7YB+Fom5I1Tfy6SgBlkEDcffg0oQoDGhi/iepHKJec+ewexHwhVw9567gfSg2bJCF0YJgcp/GW1T3HbBaw/boER8PLg88ZGSFgM8Hq5DMytzCP847C9cOeNBd47QXSCyS8YgqRKHZ62Txe63q8BJWd3hJPvbOg0v/vN66VRnKuyrXwrOnQQPgtNPE8OJ6cOz7cdFFaiMyD1CufWI55xlZyLsOUcgY1nd/GjmBWvh9ghxKLUcjE9Bt3+/HrkWn4Iq+D5v2PUx2oC5KcQYALXXCdRHpASlT1AoFr9YawRBnPV26qA59JvIBIj4o50Ivl1VR75rBD200Z7wz9RIsafs68gKRedly3SpFJaMQ2ImFvv00Iryx61z6s5iXQjlKmI0YYQFYeGOoMwCYWYqLbWvL67ennUiU9Wb56yIWGCYwJkRZYlpxXo9/2SpPEAmhQQOwfHebzRcnXoVTO/+XqyzPQltvPeDVxp+L4mLgxBNlT08l4QWEn5mLJ2ntSmjxSpEVOW/+TpgtdsP39q78Qe3lY7TrkkMUas4ffzxQUwNMnRp1i9M3VtdK2YpAAB8fuwkPehDiV6so1FVMGoQFeuu35q7btwNjUH1PfhZSHTMIlqFbiMTQsWR7orvgDTU1qrlS+d5PafoRnj/maq5qHviul6tubJO8Ts0IvxmmIdItEEz2LSqCQVWxvMCRmHqXEO4xm7OUv7ZhiEKL+VNL74ofcEGvJ+Rjn5WlNidGq1O9dXST/D8QWrYC383ZgPN7/ttdwzxzdkkJ0Lu3u3Y0xGt3oPUyDeM6RKFOuanNPsSUph9p2tepLxBAdqAOfSq3cHtsJ733MOE5xvsIvXP23yhtvrhEYKYIkMc+n8+z5z/I48HVo0eUoayPcnAlHHnMrqxUKTx1QxS6+a0MZOFGT0zvyh+i8ib7mGAeen7SJGD4cP7nmrSrMYEUXOmCXlJUzYvcseRn/dwb4US9JtYPgqasTEYGkKmOD8xgbA2hKxiXCucGjqr6YGRhz0pLI5aYHANDt7IfcX4v/o3C+9Mv4i5LEJ6gFYK6YECD73BFv0ewf8mfYjZxhheuyve5JOsAhlR9HVX2lM7P4eLej8ekH1V5omeLNjY+QVhRXXIIz4y/zrP6tK+ads588Pue5hVIHteCclmmDKkzfbp1J/r0ET04SkpwQa/HcVGvx+RLKit365oi3XJiheb3o3PpNlTm7LN/r4YXJl4te7at7vASlrV/NbqQViAlhyiMvweXclOjXe/4mACMGRPXPhF8rO7wEn6Yd1ZiO+GV6apiMFK+A/kZRzCi0VdcVWw7UBw5OPtsy3WJNu9uleR1at5Nsc4f55+tu3bgQTvOat95WcimCcXmydKIPLhiCk9EDwAagZjJbxKeJwxyV2k9cH0moYPtYDQPGRmKMQa0KNyBLH+d67YBg/le+bk8fo5VxkMxfEeMZBZcHlxmoRl1FFz/HHMrOpaqjSB0BZiZmcDKlRhS9Q1Cy1fh6Amr0KX0J+O2YKAoo3VC2mLXc9mJTCBDEz0Aa9ZwNOTRutkqhDoUn8nDEIVmRoTymDB+PJCd7VGLhFfIv0+TJoaGC04IT3PyUzZunPj/qFGqucnKaDtUFcl/64Ngng83JweYM4ffg4vWkTGBFFzpgiBEvyOaRdqnMy9Ax9Jt0fdKCiozDy7TGOdXX809IWo3EIwJgCDg9cmXoWPJtuiksYKAq/uJYUTC1nR29xt2rEMYQuhRbr4YJQjP8VDB5WMCfExAXsZRbdU6zXK0pZcHT/pfaSlZnbsbL0+6Kqrs6V3+gwlNPg03aNlcTd4f3C952ALbb2GBxUyu09Ii8ZRn70PnOOdDYQX5GFvzubgYtXMf5xOj9RD7aX+pSZ0Rnhp3PZ4ad714UKHIf1dSInpmTZ1qHaKQMZzT4yls6PG0vA5QzoN2nnlH74fUZnh8cTymMYb2Jb+gd+UPAICbBt2P4dU6gnA5F6h6DTOx6cem1bco+J27KzxlGRNUgoWAxoOrb+VmstZLUhgDSjIPJrobuvgUwiAZnvBjUAt9ZI+UkLVByLdzNuKvQ+4Fhg1ThfbTcna3p/HFrHNx34g7LeuM6qYHsy/X3qN1a1mwIYdXVrZtZo1r3riz+wguDtZlWhdizL5ATCcagFiV+vdsnLeL3+vHBCNvcV2hWgyeKeXnKs/eh6rc3eoCHOOBHeL1WhgJEA09uJRjpt9Eear8zRcsMCxWnr1f/0L37vKfGb6QpaCTJ3INkdy8OPEqvDAxev9rhNHc55W6J0qW1qUL0LWrJ3XzwpWDKzfXsxCFdSZG+owJwAkniLlMNfx3a3vy4Eow8v5UEGIbHrt1a+C664CZM1WntblcteRm1uHZCdcC4I9gxB0yk4gJ9O2nEeFFtPyiFhYqLpq8kH36ADBXYpkOOBkZ2uKmoR30JpIBDb8HY/ohB07p8jxennQl/j78TsP7zfA8DwdjGNjgW7QrTpOQNkRSYVf++c3sjcjyR2LDqzZ3jNlLWq3XHyH6XWYQgNWrVRO9UbflMpWVovWUCc8dcw0+mbmJu2/hui1zcHHXSCSCFgU78PGxF8a30VWrxATtp52mOm1lEGEY9chE2QSoc0iZMb7JZxjf5DOgRQtgzpzIhaZNxfdH8Q5xKag5rCnNcBQ+xCsljkU98lUDa+yWheZKqe/mbjS8VpJ1QPW3WVllf4qzD0NYvgKA5FkqfYY3p/wZL0y8GgiF8PbUSzGt2YeW9RH1AI53RZ5DHSi4lF4w8lkOgXZx1iEc3+51y+Y6l/6MdsW/WtZniEtpuHZ9r1vb6acDBQWqU6qx0+V41SBnj6v7CX0sBV1yfkmb3slDhgCTJ5tViW/nbMC1/R/0ZC4zmkO9CoFoiMYQ5s99HsX3czZg89wN6s8V9DacWbxyX7Yo3IGuZdEGqYYCSMZEy/3hw809uJQ5yQYPBlav1i3WqXQbtnOEYjVVcDVooC8IJUOYlKI48yAKpZyzbtANyWb1KNgxSrfbuAvMEgcwJoh7mnnzPAlRuL7bU1jd8WXD6z4IhqFYj4b8unIOIn7Ic7ggeJoPV3dfHvbgq6yMlFPMGVW5u3VDfI5p/AUA/nmb+3PQWB8TSMGVRoQtGQUwcQGvsCLSllFRVQVccQVemXQl3pp6qe6GM6ixjLbCX1Gme54xtTBaW1udQUiKIVXfoGn+TukemwouG5Mnb0z+16ZcgYdGuc8vQhAAXHlwtSpSC3G1r+ieo7mG9/ocWi2x4iKga1f4fRpvTL02wucvvBAoKjKtNy9wBEWZh/knfEGAsHwF5dJIccLPyOI2b6BZAV9y7XuG3YWFrd901mBmppir5rTTxP8VON1saZ9/7bxTrbWa1tKjh/p48WJRKHvllcA554gJ5SOVW3UmquxNg+7H21MvBYqLbW0f3AirwnfGdP0+d25UmOQwTfJ3ycomO5ze5T/4Y9Gp8jHvOKkdu/0sJAvSyrP3i7HcQyH0qdyCnMBR2/1S8tGMOCuE6wEJ2WfaUXDxEvZIqqxEqUJRK49RHgu0naL85E7DIlVk7wPOMg4tqX0nddcpGRnoV/m9rrDclFAIvy08DRu6P23vPoILXt2nUpDElYPL5wP69Ys6nacYkxvm7EV2wJsQgUYKDt15xak3oRWFhTiz27MoyDwihj5UGqaahVtyAHdoJpeUZB3ERzOiUwqYCiBnzlQbDukxcqTo8bJ8uXist7447jgAQMPcvZZjuJlnCdav1xeEktAzpWCMf61sVoo3LKsVbvJk630Os3X0l7PO1T1v9lkYBODUU4HSUk8UGhf3eRz9G3wvVR5dn/b7EFRzBpFInhp3Pe4adrd4kJdn6fnEvSc9/3z5T93h9MQTxRzvALJ8kbn+uzkb8aCJfJcBXIsTbk80igQQE0jBlS5oX5BZs3TfaMPXqLAQXcp+Rt/KLQYKLv4BRxuGUItPm3hV0c+jSmtTk/jk+gf68EyejaUk11aeIHKb55xDLs1ETHCyr7HyHjHCae6q8GKRZxFtx0o1ZFORrhyrTA3adfICDq3iy0VCxJ7wWH/XsHtEgSUHx7V5CzV5u5w1eKGxcsDSg8swtIjRDQrDE8MiAtCrF7BhQ+Rk+NkuKAAaN7bXJgB06iQq7yRP7sqcfehTuQXo2TPqE0xv9oFheBXH1pWLFzu7zwYCIIZQk2B6ni4GzGrxHnc7TsbJIVVfY1aL94GMDPyx6JSIIYL0e7gVZHQti29ITyJx2BZWDR8OrFwJrFuHLoMKcWipmH9DFqh7GJLMzTpYucZ3UouwfAUqcvYDzZvbbzv8R5MmwOTJeHPqZbisz6O266nI2R+d74TwBMu9m07+aO71s6bg5zPPw/TZGfLz7EZArMUohKJuG4sXi8oVr2nZMvL3jBlqY7Nhw0SZwQUXeNLUln3lntTjFNehobKyxJxFPaW8qXrj5cCB3NVFhYtTkp0NIaCjQNN5kE/p/Bz+MZIMa5MRu/Og0Th1WCfiipM5VveeGAnS2xp4cBsZrAPqsS8e8v1oBVeEloW/kzwvgQyp+gZN8neJThnHHONa4dmqUHoeq6rMC1ZUAPPm4dwe/8bycG5nnw85gVpTo2kv1wZE7CAFVxoRfuV0B2o7ySO1sw1jlkKuqFtMJotc/xFF1YLqZr9q0mNA//7mfeXYzSg180b8NP9sAJqBq7paP/cAY6LA0WbuFoIwxGUOLqfLAR7PBL3+KF+7a/o/aHE/P7Ii3YGCy7QPOguSlyZdLVVB9luJJlMxRtux/tWW7VL6E16ZdIX5TS1ayFZbejiN/619T7RPHNeTqowPz5H7w3SsWLtWVJhp3yUd743WRb/p57aCCwVX//6RfDdevGJLlkT+lnKoaAXL5/Z4EjcOvJ+rOjthlJVeMOZ1RtYzL0+6Cse1eQvIyEBJlpTb6dJLZU88x8pZot6h+6yavVQ+nygsKCgAVq5E9ogB0i0OPLis8v25pU4c+72ah+3kAwYgjpHSfMCV80lJOPefvbsITnjnYkMPLi0mIT7b9yuC74Slcng6L593o8+hKyjLyxND4g0eDCxa5K5ho887Zoy6XCAgei0pvcRd8MWsc3FBr8c9qcsUg5xC8nzrFRaRJ3T3IUuXisYs552HXuU/mObw1LU30Bnfu5f9iGnN3Yc2jnlozHqIjwncihozAbne/OVk/ezI6MJjr0HevVw8Qppqv/OwEvz96RfhnB5PUojCBCL/NitXArm5lgYKZs9VRfZefDMn4lHIE8Z/U69/RQwQ9ULXbtggj/Ezmr+PRW0cRo4xgrx1YwIpuNIFQZAFUbqThfRycs2/OslXrQTPvBNUSdYBZPqDandnxarg2Obv45NjN0lNCcCgQeJC0SGvT74MT46/gbu87MHVty+wfj3AGGpPWKVblsYkwguUeVoA/udqUMNv8PiYm8wLxciDS7n5P7nz8wCA/bVZumV5rV0YQmhWsFM6iEHs4m7ddE/HK18AYUymYjNmGs5F4qlx1wOIXugWZBzB4KpvzW+2eGYME9YLYWUN3/MsaLwR9TauU5p+ZNwvt8ntGdP/rOXlUU+8/A7o7NA9SfjrxkRz+XIx0XvfvsD06cApp8iX8jRh/rqX/4Q1HV/SrWZD96dw5PjVuKrfQ+ha9hMm1HwKANi24Ax0LPnZtAtDq/SVf1q0BjsAItb45eVAaanoVTdrFv7c91HsWXwSV71EjJk3L3Ft84QotEiAbUp2tiwIfuNXyYvDQ5Np7fzerexHbiUzA4ChQ8UuedQfbT3ab0wVNnX4cPFA2vMcCmbAFpq8XoS3mBlXKOdhw3J25tCwIleqyscEy5yxvNjy4Ap3YsECYMAAdw0rP5Pb9YQN2hX/ivE1n8W+oSVLgH798Mz46zCpyf8AKLw6vaRxY2DZMmCjdR5Omb59gSuuAKqr8cDIv+DL2fph3AB+h1q/z30wt0+O3YRFTkN7E4YwCNx7SbNIQV7kzirL2o+BDb+LLsc577teHkj9yTUJw62N+uQpuiEK1d95+E3qUf4TGNOJLEV4xosG0UHCaOdBq1HuaNB+9AvDZ0z7sEtrQfl0u3ai4al04uHRt4uGi0TSQwqudEHQTK7aAZ5nxpo8WYxLrrQil+qyM+kyJuhOML8tPE0MgagsC40Hl09Ap9JtAKRBz+eTBUROBNEdSrajKnevqCjTYWjVV/j9uEiuDT8LiUK0RYvkGOVRrqqk2SI8RLvY5V3s5QWOYnKzj80L6XkgKvDCgyvMEZ3QCoC0sJSEWIYIAkLLV6Emf5dxA7qdi5QzG+LojU1uMv11QEkJAD6rv/FNPosqe/vgv5nGzebFSqFj9CxpH9kuZVuR449s8PTm0MfG3mLckI6hiYysbDMuEsXGjcDUqcDAgcZvvY5nh5sE0J4oj3v2FK3ZGQPGjhU3HNLnDxhZqep8MX4WQqY/iFO7PIePZlyEhW3eBgBxfWBy+yfHbsJNnAJ7ANHSqi5dgNNPV4efHDkSGb4QCjOdJSWvUuRzK83yWJhX3zjnHHl+SniYGkHA34ffEXU6ajnv8L36cneVaKE6YoStPpmhXR+Pq/lMVDJzCOcFQAwjc/XVUdfmtXobj442GR9dwrKzIrl4JOF/JWd4XJnSUmDhQo97lp4cXLrW9j2jG3+Oac1MPFbCIQoVc7bKAMVsDjVCacgydar9+3UwskiP63iTa5yLNxZwhft3S04OMHgwxtZ8jsbhvUOs6NUrKl8rL36fIObfNEAI6TwHOgpJM4UBIHovWNGi8HduIy2CHztrcR8zTuOhJ9y3K3Lasei0SD4qDooyD6Ig45BpHwCgUd4uZPv5c8d2LduKn+ev070WEiIGeJ6FfJs71/CS9hNp93mMAaFl9vP1EtYMM4gOEkY1VzBmuQe3o+a3LGmg4IrCJOoLkZyQgiuNCAuizBbNZpbaOOYY0SJKZza19uDSnhCiklLKVlXatg0sy2ThuwvLM3ngNNikZ/nrUJ6tTMINcWPuZGNEEA7wM2ceXJablI0bgepqDGxg7NHCtbDUeXfkMUa6dmzz9zG75ftiWE9tGxCsLeS1QuFYeHDF4n7CEzJ9QaB3bwDmcdu1KL29upZtRXXeHtd9cWojq513bxn0f/hj0SlyyCOlUPqMLs/i1cmXK+5VMHiwqBThWFB3K/uJv4M1NaJFutncpqPgcrP1dKMc4yFgJESz+V6bGRnkBI7C7xOPh1nk7fvlYJFuiGe0bu2ZgPHqfg9i6/yzAADbF5yBP3V80ZN66y0ZNr12Ysz81u9EndN6tWrXDLa4/nrRm5AXaUwwWm8EmHrMkMP8VVbytxEIRCntWhTswLTmH/HXIWGl/NPdH0lj4qjGX+Lw8WvsNWhgPEeoyQnU2r6nZeEOPDrmVstyNw/8P5zV7WkAmtBcjOHuYXdhdYeXom/Svj+aNSiP8Rcv4TXFG1MuQyNFaNq4Lj/HjgU6dxZzS8WBbmUc4aI9JNZrDVNc7leMPLiaK8IafjD9Ikxu+rGhfOe6AQ/g05nWOdR8ebmu838S0YgeXHyYff+OIia4DOk/q8X72LvkZNHbGwYK+VGjsHX+Wbiy3yO2uma0JxMEJsv2eN/ci3s/hpGNvtC/WFkZycer68Gl8RLSjhdCdJ5uIj7EI6cVtzGJUc7shQvtrWkhelISiYMUXOmCIkShLpmZUjFnI3jQLEmqBjstMABo2lRxInK3WVJIvfJ62B04lVYlhsQ6JwFRr3DqwWW6AV+6VBRoM4bXplyB+0b8NapIcNlKZPqdJUeX3yvpXXho9O24uv9DkaTMemXNUC68mzXTj4OsR6dO4v/t25sKtvwspL+490V/i+XZ+3DDAGuPjePbvhafPANpTpfSnzCn5bvyZscwRKAOSsttq6cs238UW+aebR2i0CJEotH7qRUABxbNR/bw/vL8lheI5J7sWrYVg/RCiABiaKI1ayz7KSxf4SxUAmPRIQrDXdeRtITs5sVTYCefmi0EAWd0eRZdyrZy32I2rmq9UJS/pTxCjBqFFydFe5oo+W5vRbQHvMcwFhlTG+bupU25V5x3XmLa5fgBtWsEV94RvMZbYQV769amxeTuz5mDhjl70Kv8B+6uhBRhXJX7l8v6PIKVHV7hq+TEE1WH2j2OkWJO9bUrDrL81jl7ieRiabs3sLrDywDU4Y7BGBa1eQuTm/5PPjZEmvs8zRspEV5T9G/wvTondOPG3jWih/Qh/CwE5OeLeTnDIXNjDGMQw0WPGhXbhqTFiyehlJ3i0iBWd+/StCm+mHW+nOO4+9x2ouePwXPpZwJXbi0GAeNrPjM1fCTsw5jALV978sdOuvNSw5w96FJqvaY9qdPz3mvHw4Z1iOG6XUEIEVnbP0b9BQ+M/IvlPas7vGTfy1pCu2biCYVPxAfV3owj+pjZe6a9PVx3VCSuMHr5FYcMid4tlpUBF1wghvvmnNO+nH0uXlMYshLxhd7wNCK8SBIUE4dM9+5Au3aRl9bm5PiXIffinmF3GbetGHBMk1sOGhQ9YA0eDMyfD1x4IbAu4s4sC8YzM4G2bQ0HtaVtX8PYxvrxvrWCeC3y2fHjsbL9y+ImiVPBRRBe0LroN0ceXE/91Fn8o0cP9WRcXi7GfwciSdB13h3+3FgmHlxadBYjtq1zzjqL/0tYvFgMM7RsmamCP9NIaKXT34rsfVjb6SXLpntXbMH8VtHW9oQ9/jPhOsxq+b5uuCErlMow+RmfMkW3rI8JaFrwh+Wz5T7LgcSgQaKySmpvQ4+n8Omx58t9SRjMRNXjcYhCwxCCHnB5v0eRa+QVoPMbm/3sdwy5Fxf3fkw+fvj7HvLfcp7CwkLLPh3b4n1gxQqgY0fLsvIY7RSpPwm1XE8Hwg9GdTVYzx7mZWONgYW11vvF9vjhZM16zjmi8qhPH/Oqw6NJTg62L1wnh/7k6pZB/1Z3fBmN8nZbVzB/vuW7ZvTJjRRcRGqgncXCx6b7T7PfOfzuhUMUemjAqHxfHxt7Mx6efK94cNJJnrVhhqGnc6yZM0f0HIsDdgyjkg3tHD5t1F6gc2dk9esOf9tW4sljjzWtg/d5ZQyY2+pdvDYlft519QGfjRxci9vo50DbvnAdWhX9rntNybUDHrTVNysEQNyrSIalumtKD/N2Dq36Cuf3/Jc8Hrcu+s0yOgIgKhEv6v24o9DF2vdjb22OuoCHn4+wh960nOGrE6OA6RhdVuUaR2oxGgcNjcKaNwcmTQJOPjlybv58fXkzY8Dq1cDMmQBEI1OzEPHl2QdQknXQ8DoRW0jBlS5oPbi0I0YgAJxySlTiey4YwwntXhetxQ1DFGrV5jrlmjcXJ9EGDdTnfT5gyBDR/bNFC1FABI1ySpFYXtvOHUP/JgqWdJAFAxyT1y2D/w+X9HmM+7thvtRdUBPJwSOjb8Xdw+5RnbO9sdY+28pjDxNLM0USVvkV4XhXuD6PchFjZ2zKzRUTxUth4IwIW/UKy1eoQyoJ0VZ3ZgKSHuU/4E8dXwAA/HrIWuBNWKMyZACngmv9egDqcIYNcqT8Ay6taa3yHBg9nlZPbW6gFh1LtwNQfGYL7whDXG7GtPny5Pk7Jyeq7MhGX6J98TZH7eRZfJeO4R0jFGsN3XFICmnSrXwrJjaJ5DNsV/yrmOsL9kJVlWfvBwoKgBkzrAsvWSIaHjll1Spg1ixScKU6ymdZ573+YPpFOK3Lf1Xn/HYVXE7Gi/x8UXkkRyzQhzEBuOIKR0oiv8Kq1ml0CS1WnzTcTS8VGF71neBHa8gZNkzRE2QZCZ5Xtn8Z/SqlXDXSGjRc1kud56KlftmSu3PpNgz9q5S3jcNowgv8PhchTd3QqFHc2k2IB9f8+er/rTBYm4ZyIvuX1R1ewqP/LRS/txNOQKib2ujCLIIAzzdNkWdiA2NA26JfMIDDM85qj8GFk729IOCCXo+jUJFvSzytfnLM9mC6nk8VFQCA3hWb8fKkKy3f+U09/4VFJvJEIxiAFoUGoYttRnMa1PBb9b6GFFxJhZlzQvuSX6JS4BgRvt3Qg4sxYOJEoH17J910FhI7qhJ69mIBKbjSBSFiPWKegyu2PD3+eqzt+KL+5JuVJQ4ma9bIyVr9JolXtYkHdQeScFgrM3fjcBgzM2wq/AjCC5oX7EB+xhHVOd7H65we/xb/MArgDniaS04pVJPHGEkpEbnA8MO8szCq0efyKS5rc96QhCaYLTSUHlyq3tj0OGtZ+DuuH/gPAECn0m20WfQAOVTHiBFAx454YuzN1uEq8vKAm27CrJbvYX6rtyEsX4HmhTvFawbPvPxbWbxgx7V+C/kZh+18BHX9RjRrJv/pYyHg5puBadMAOAg5ZvbOc3A4qM47JACioljKg6bkkj6P4fNZmxy107xgB1bp5T9xi9HmvmtXcSyRlFM4/XRuJaJyUz+8OmJNyustc2DpWrQs3CEeSLkMTGFMXBPZRB6y6uqAkSO5rYYJA5J8Pde9/KcoDy5TLxUTYhGWqjDjsGNBvXLcU75lXs6r2lBQ4fcnKhThtdd61ibhEZrwk4YMHiwbu3C/zj4fbhn8f3h50pV4a+qlEQVXDJZ0mYvmYuBxLeXjuI3Z0pfhZT4xJ+3Hg4R4cA0ZAtx4I5/HNmCs4Dpmkvy3duzjXeoxQNdAKapcck93KQuDgNLsg3idwzPOx6mMlLEalBjDjObvY1zNp5ZVndPjKWT51euJqPB9ZgouvWuDBwMAKrL3Y0jVN5Z9sGMgq7rPZh4lJdp1/KSmH0f2NfPmkZIh0axdK/7PGHpXbMaQht/Ix3YwKm2o4DKA9w01fWxW8CnhaFCODaTgSiPClrxcL6adF4rDUiT8ko+r+QzFWYfkhVyGMt54uM0GDYDjjgMAZPsNQgxZXJPhEeCvXWv9eZX1cFrGxFu43aLA2nWdSC1shf9TsH3BGTinx5PigXaGVT7r4RCFLjbU4f4o47vLTRx/fCTxppS4vkn+LtVigktAPHcuUF0NrFzpuJ9mC40MX1AuoPouGjaMKmvWX+VGoHvZj/Y7SUQhC1+ys4ETT0TXsq0YWvW1YflMnzQvBAIY0/gL/H3EnZoKLcZvi7ngzG7P4sWJxrmWjJ4zyyn11FPFZxzSIlwx59hWcOmEEuSGsSgPLgBiOCEPPT4BINMfxM2DrPPZ2cboy161Crj++oigp7BQDgUoC7qHD9etR2mZqszZZxXmOIwqXGJZmai8XLaM48M4pFZsL5VDMyUFybS5tOqLIKBFwe8YzyHI0qs32yikJ08VOuuSH+edJebZkfqmoqAAT467AWd3e1q3vn+NvRF3D7tbPvZK6K+1RtcK95sX7sBV/R6K/qo5hMOECwxCB+sSfpY6dgSmTtUtonoeFyxAXXa+ZXXqCsQHINMfRN/KLVEeXJ7CGFBaKh96YM9ls3khMeNcPNqUc7cmSJyVkWFdJpzP0CDnWqi0XP5b+5V17qw4GDnSJIKAwLV3ZEKCwlWmOUa5HnXLeiE70nh+Pzz6dhzf9nWuW7VjXLQRiM5DJkVJUUbN0PZFDkke3kf066fbvixLsJmawUhJISxfYduDS2bgQGDoUOvGidgRCKgGujenXIanx18vHjidQzSTrKu8tXpoI5Hp0aOH5bjw9exzPOoQoYUUXOmCVYjCcLHwxBZrjyUp9M/2BeuwvttTOh0RX3pHCi6dEGxmnmBgzNo6w0iwp3dfAjYKP847C8vavxr3don4w7P4bZi7Fxk6z/zBpWvVz7KVAnj0aO5+KReI8t+NGom5866/HjjvPPm6UljMpeCqrBTvdxGyS5k7qUn+TsxtGcmPpUw8Lr/SbdoAs2dH5QkqzTpg2EbYi21eq7dRnbcnqWSjqYqPCbY8AHIDR43H4PXrrcdnp2E19RSkVvcoycoSw/Qi+p2wnVNH4Q3mhPtH3iHGwLdDMj3shlIeFj3myTlVJAYNEsetzp1lpTygFpApfw95HWLXG3bcOKBXL3v32EHqe0JCM6UpCXnEmfW6Xcl3czfi3J5P2m7m0dG34PoB/7B9nxk1+bv0L4wfD3TpgglNPsWI6i91i/Rr8D2qcqWwsoyphGp2hIVarO7M8IVwapfnHNcfpip3t6LNJBobE8CZXZ/BY2NuTmgfdENnAWL4zDDK90vrZSsZnwgsRuOpou2SEmDr1tg0o9cmQ4IUXPHwipCiSHQs2R4553J95DkbNwIXXKBScipRiTQ0gthRoxTXZ80CmjbFkjbRigzen5cx8EW1IWxh5+0yXe/ref/r/bjKh0ZWzlugHA9M+hNWBrw77RJ8PvM8PDL6VnHQWrFCf5yVZA5yrr9wJIjjjhPDv2m7AajPn3aaVc8BAJk+g1zaAIeCy0LBQR5cSYPfJ8Dvk34PKcoJL6qIMIg863Y9uCwdLPr2BUaPjqz9HEYxaF30m6NIHoQ1tDNOI3g2WfIY7rGCK6rtoUOBk09GWfaBSLxhnXqa5v9hWKfW2lR3/pGETgtavY0nx92gutRc4/EkLF+BAk3sYZk2bSJ/K/tZpzOhykH847hhyM5GrZ7lDJF2WOV2m99Kk8SdMTncTk6gVq3gMntG58zhyxUjobSAiRLmZ2WJG02p7WOafIpGebv0y8YIZZjSmwf9Hzb2iCjWlQtjITztzZoF5OWpEnA/O+Fa/MMkPF74O7hvxJ3RIY4IRzAmAJdeqj5n8sx0LjXJB9W0qUk70h8uw/t58TRrN1u2rctatRLzUl52mf3GGcPslu9hdst37d+bLNjxNJMVXAIwcqSo3DrnHDFU8rBhojAekdAr81q9jQlNPgEEAbsXnyR6pE+dKluw/rHoFLw08UpvPofTTfXpp8sWhLQvd4lyPEj0l8nhweWUac0/QgelENhrlH2bOlV+R3lzFqbSY/yXIfdiy9z1ie5G0tC66DeMbKSvyIwXhvsjI8FTRgawYYPo9Tt2LDB7NoAYDgHhHB9SvppGjWLUjg4Js01RGJDEjMaNge7dcXa3p3H0hFWicuvkk2Pfrh0KCkwt/qVHAj4WQp+KLeZ1MYY7h90bddrHQly/s88HMapNjx6WZes7V/Z7CENMokko0e5Z5EgTOoghCg0GmnPPjT6nNyh17Rp1ytLYKayI0gj7tV7O1Xl7AAC9Kn5A+5JfML35h2IfevRQjbO3Dvo7XpkUyb8Z8IWAK68UIxgAonyuSZPojwMAkyJhOdGmDVBUZN53AP7iAuOLFoZChmFaw3uJRK/90hkrhbpO1CEAolGAzXGKQRANCiRjUrlam0ZToxp9gYdG3Wb8XGRmAscei9xiKU1HOJJRVH8syMiQ1x6Et5CCK10IhWQPrpgKlA2Eg/0qv8eZXZ+JnGBMtogLGXiNbV9wBi7o9UR0ZdKAkqONE+yLdmsOK7iyA3WY0EQdtuX7uRvV/TFi3TqgZUv9ax06qA7HNP5M/lvPkqVhzh7jdlzAhJC+aziR0ug9llbvb1RINkHAB9Mvxlezzomu1Oy5r67m2/lK76MqB5fFbSd3fh5vTrmMq6xXKD24GICdhyOJm5sX7pDDujGoxxGl92fzgp0ozT5o2IbW24tycLnHB4E7Zs9V/R6KhC4wwmqj0ratZTtOPAi47gmHvdM8N6YeyEa0axcJfeMS3ZAk0YWcN+BSqRiFnUElvJ4I1IpKbcYi/wIBOQRWaZb43t834k45l1ZRppSLTfJIQYMGKMk6iN6VW/TbuvhiJ5/GPoq8YqE4eI+MafwZdh53SszbqffMnGl+PYFCGMtXTjsWWdygnTtVHlyAvZB2yno074PhN6bXPxMDCSV+JiDT7yJMbBrRNH8H+lV+H7sGOJ/5diW/4txwXlptFUZjZJMmQLduwPTpsgFDKFZikQYNgEsuUUU6iCvx1HJdeilw9tmi10esYQxYuRKMid6Z6NQp5cKNDhkC7P3kBwSXrcL81u+YFzZ4H5jJtejCLOW+o0SwtuNLkVxAFmgF6GYGkDVGht0DB0aUQ2bMmiVHSQIgv9shq3V8vhjGVZvDUzs0jGz0Jf5YpL/eqxMicqg2xb+KIYrDkZRYiCv/bFBHdsY1PNlY/7Qv3qbKOWpZvySvJNzRsvC36JOqOKsWKBVcTscoxX1OowFk+oM4tsUHlg/OW+8G8K1JalvLd/Kssww9ewl3kIIrjRBkBResQxQ6zbUhhQPQUpB5BH/u+0/1SXnS9amOwzTM3Wu4SZzb8p0ohZXsCaYkKyti/uSUli2NB7HJk+WNdrOCHXh2wvXyYKSn4Nq+cJ0675iHkAdX/SD8KK7t+CKWt3vF+oZQCC0Kd6BN8W/qCrwirODymXhwhVGE8Yq3KE5pvcYg4Pt9ovXo3sUnYm7Ld+X497KiThtWAdYKq94VP3jZZQIGSl6DR7g48yDyMkxCFJq1A0FUVIwbZ/teJUbKIDchSjyPD24GU6wTJLhCbLnJz+W1YN7m7//M+OuwssPLpmU6lGwXQ7yG0fY5N1e0KDSiVy9XFusV2XuxrJ39MMTxCFGY7a81VfynNIrfOeEhCtu3B665xrhsMlsZt2snCt7WrROPLcYL1RjI1DOvLzMATJjgyMuAS1lvxEknqZTHhDVb5m1Ax9Ltjo19nOYW1v7KWYEgNvWyCLvL8YKXNM6LjpLgFWVlfDmbvMIgJFnMKS1NvjCBSU5BPudvZGAsZBq+TUkyhZpOMNqoP1rsrMsZE1Q51owUXMLyFajK3av/M/DO7+3b60ZqUQnTL7ww+r7p04G2baMUXHrh+0qyNOs9qQ11rlpBdS3gC3I9XzExytIY9n4+axM2dI9EcTEMURiO0nTCCRQqziWfzzwPtwz6v+gLTsccG3tOYfkK3fOxdgxo0sTYPwIguW0iIQVXuiAI8qRhprEe2/hz9Ch3IKQ96SQxlEO+cSJfI8bXfIqhVV+pT5pN5Izh/0begWYFO1WnZat3Qb0x1gqd/CyICTWf6FatFeTpLmCU3gQZGXKS+gALin+PHQsAqA3qvz6uNtgGMB8zjjFPpCx6G8/wuSVtX496B6IIBMQYxccco6gg+vkLevBMKr1ODNcrgwYBNTUAYvMemKFc3Ad8EY/HgswjYn+POQaYOjXKE9Sn8kwzHpd+XXg6VrRXKxzd5AohRPQ2HkYCGfm505s/li61bqxvX9cZ3h3n4FLgOgeXByj7y7WvdqPg8tqDiyfBbxhBwNiaz5EbsIipDsnLK0ytcXndJ8Ch8uHZCdcCEMPC3D7k75blozxU4vDopKtIzCyMUNzQTqYZGeJa00vi8pAwMQRoeLcvjRdGTTMmqEKJKZ9rLz+/ofJebxGTlwf07YsDS9diXM2n0dfDt5Lntid8fOwm3Dfijpi3Y+fXCsyYgr9PfABYuTJm/Ykn7Yu3ieEjSbGR1lTm7KPf2CZaI2otPiZw51dkAHDqqbLBNbfC0QskjxV5D9yhg37ItIIC4KSTVEadgEn4PiXSRK4U2MvyM+m50yrOlBzX+k38uc+jAAw8uHj6EAoBK/QVGXrPvvK3i/qM/fqJ/w8eLP5fWQksXGjdB8IQHxOsPZZ4GDRIzMeel2ddVg/Fs9Cq8Df8fbiDNUbY66x/f2d9kLBUcNGYHTMsJRaMsRrG2IuMsc8ZY58xxk6Szp/PGPuZMfaR9G+C4p6zGWPfMsa+YoyNVZwfJ537ljF2Vmw+Uj1F4BtYruj3CN6ffon9l6pDBzGUgxGTJ0efk9roU7kFL026mr9Ngx2xoRBQIXg7od2r2DJ3PZ4cf6NpEzcMuB+ARsF1+eViaAVtMnllfOE5c2QvtqOhiKB0Qs0n+Gb2RsQMQSBLgHRFM4mHF3pci84bbxStxpTvn8575sWzo/TgMnwX8/LE+MfgcM32mKDCkyHgC+rnCRszJmpRXpgZyctn1uOoGPdDhrjsMQHoPOdSTiRTtM/4vHmyIYIXmD0HXsiKk8GDS9U+T4jEZPLgmjgRGD1aHmtct63dNOfmRt7vcMLsGDGm8RcAIu/BVf0eQvtikzxzGoJx8OBKhAI2HmT6g94rXzm5tv8/8O60S3Sv/Xbc6Vjf7Snda47w4DOGXyPuZzNsVW5oEIBIXiLGVK+p1fM2utHneO4YfU837ifVZD+SG6i1Frg1aCAb8xDOjH18EKzv4507vJpj2rUDrr5aFLClOpInw5X9HnE3f6cSCRrPXePiOf95/jqMafw5356LBKpc9KrYYmvd42OCuP/t1QtAdJ6rTF9txGPMruBe+5trf8O8PGDlSj5lHGM6Hlz8n7NOsd6U75PCKvqZYPh8tSv+BWd2exaAizWrlAdMVk4p0aQT0RL1GRcvFsd5M/cbwhZZ/jr9MUjzTNw48H45nYuwfEX03LRwoWhgYjRWrTfOf6q9xe8TrMO+6rFypZir2aVcgRRciYNnlKkDcJogCB0A9AOwhjEWHkmuEQShm/TvKQCQrs0B0BHAOAA3M8b8jDE/gJsAjAfQAcBcRT2EWwTBnseE1y/VMceI+SfKyoxj57tsk2cD9Zchf0fj/N2W5dZ2egmARrBXVGQYC/WZ8dfhgZF/VZ3rVLoNf+r4AgAgL+MIWhWJoTZi4X7NIKhiHxNpxOWXqw7Dr4mZNVRUYUDOJYNp06KKuQpjJQiY0/IdlVU1j7VVvOdtlQcXC2FczWfRhRiLUnBd2uefeHHiVQAUi2CdsKdy7aWlwKZNwLx5aevZEE+inpOpU8EK9ZMJy89deEF89tliKKuBA63b0W3MPoYeXHamX837kxAPLkV/TZXpBdJv4WYj6LWCKysLOPZYPgEzT9vaUGiXXgoMGACcf76uZ6Du+Ofy2Qo/A6d2eU4Mw8lJPJSjhuFdUpgr+j6MD6dflLCwfx1LtqGXQcjbkqyD+iGOtMZXvHgg9D0iGXR9PmsT3w1SX/WstQGdHFzKHJoWr1Kzgp3cXimG+yKj3106byks3LRJDjeXzJEj44WfYw7rXvajKoS79udrV7wdV/V7yFkHTH4E+RngHaPTRejEm483HQgLIrt0SWw/nMI7RivSRIxu9DkeHHUbqvP2gDGbhow0aJny7rRLbZXP8UtrtrBBtGbNVJO/S/QYKywENm2y5wXM81t1785tVBqWLYTDunUp26ouoCfUlz7XuT2elI1L/Cwk5hAqKgIQnaNaiXKPo9tPi8/48bGbVO9IOPIBAFHhpTTyDXuPG7QPQPw8Tj2ECF2y/bX6ykvN3LOm40sozT5geN2Spk2BKVPw3DHXYExjHTmPFwQCovG4y3mzLg4GiIQ+lt+8IAjbBUH4QPp7H4AvADQyuWUKgAcEQTgiCMJmAN8C6CP9+1YQhO8FQTgK4AGpLOEFyhCFPOVjsdgtLxeT6E6QnPnMNuNBE+G9Qd9kIZyLvmvnUC4vGcYwtuZzdC3bqmq7MOsIrh/4D7GIoniscmLUUojCtIMxISpkWnjha6rgatsWWLBAfW78eOCGG8Qky0quu0713F/Y63F8OetcW+/R/SPVLt48t8oL/jihDVFoJPjVKrhyA7VoUSgqp+VNh5l31qWXAg0bAoxRqCIP0BWem212BgyQN1Ro1kw0qOANO8j5zJv9rsrnbEjV17JVppsQhdkmCak9Rycvh6kH1yWXAJdd5i5hfCKFKXbb9vvFRNmMAVVVsbV8V/RNfg9atLDl/ZqfccTrXkURfl7P6fFvZPmTIKyfB7Qr/kU2SgoTz/Hcaig6vt3ruH7AA+JBONyQU4GMBwquRrm7MajhNwCAJW1ej1ww8qL0+4GTTzb24NKctmOgZ/Y7aesJz+06BU3PW/ZH8QF4w1ilLYsXI8tfh63zzzQt9sGMi7Gu63/kYx9TPx1Tmv4Pp3Z5Tv3b+Hy4f8Rf0Ltis3kfSGAfjVOFeCqycKG4TmnePNE9cQbvfuy44+RcnwUZhzGzxQfypQzGsY5Md0VngsgOh7eW1ouGa+r27SNGYxCNp2e3eNeTPvCuG0c1+gKtCn8FICq5FrV5S11g8WLgoouA226LnJOem7LsA6JxCYAGOXtV71uAhYzld0oFl858afVYdi7dphrjw5EPAABDh6pzG0r7QeUcnq5RCJKJTB+fBxegma4dzt0jG30ZpUhmMPAiTND6QM/ooGPJz5EDGo9jhq2dO2OsGYDuAMIZWNcyxj5mjN3JGAtLPxoB+Elx21bpnNF5wgsEge/97dtXFA527BjzLiEnxzjMg1kydoMPYpp/xSgZ9bBh4v8DBgBAlBdUZc4+436YdkLdDx7ByHdzNthrS4NyoLx+wAN4ZPStruojkhNLD65LLhFjfYdjRytRWPfJZGerFpTVubvRtvhX2xOrXSFOg9x9eGuqPSs4N6hCFLIgKnP24Z5hd0WVm9DkUwyr+kpXcE05teKP3lNl9GgyJgCLFsV2UVhcbHpZ+Zz1rdiMMY0/j/SNE+W8M6L6S8xo/oFJ6dhjauiRmWn5nRhSVSX+n2ZhQDx7/BSKB9kDomFDW8L++a3fxvFtX+Mq62dBjGr0ua0uApHn44Je/4q74UKskN/XBG18fRpDCxmpP43yduNPnV4UQ+Gdd554rahIFD796U/2GmvSRPxfKQSySWn2Qbw6+UoAENcPgJhzy8yLsn17w3WMyrCBaVbQFi+Y2VirvPLa5Mtx3YB/GBS08uDip16vGpo3F/NUZGWhUd5u43I6yhYG9d5JVwjp82FOq/eQG7AYd0jBFU1enrgHnjDBsmjKk5HhfJ2SDNTUiP238kCrqhKj5SB6HCzLOYhdi06OTf8IU7LCnqnS3FWZzSdbGlvzOe4cdg8+PfZ8/sYM5seAz2BNoeHyfo/imznnGhfw+aKjmGhyegnLV6BpwR/67eugHOeNvLo9IxAwlgkSMSM3cFQla+pdsRl/GXKvZX40N+O21mPMMFKLmVNFDNFbt3w68wIw8L2rhHO4RxnGWD6ARwCcLAjCXgC3AGgJoBuA7QCu8qJDjLHljLH3GGPv/f67geUdEY0goCTrIAALQduSJcCf/yzmmIg1jKkT9SoHmKIiMfzPlVdG3xe2CNFYq7Yo+B2rOryk39by5dFxeSdNAmbNEv9u2RK48kocCUY2+F/MOhdX9nuY73NYFrHeXLUo3GHdlkkXVnd4GRu7PwkA6Fz6M1oU0PuRjig9uLyyDG5esDNSP9P+YdUhsZyTnFp9K7fYvscpWg8uxoDjwpZpkyaJ/zOG+0bciRcm6ucEZACwQV8RrafE5vkKx9d8giFVX1sXrKd4blnn9+OliVdirF7oAp4fTBIeGFGn2Jwp+/77If2wilp+WXC66A0MAIKA5ydeg2HV8X8+lHNWzKwbTz4ZmDEDmDs3NvXzYNd7xYbHVuO8P6wLmaHom4+FRM/RmTMRlMayt3UMBLSeqe2Kf8Vfh/6Nq7kGOXvx32Ous91N5fORdt4qCsF4PPNGGiqVtUqooiK1h2r//tFe2laUlwPnnit6OHjASZ2exztT9fOHack0UHBpv2k7zxVvyaLMQ8gwErpZKETsKJlthYdPN3gVSzpzb8AXVIfK1ZuHJMXYy9vbOukdAMWzVR+FSXPnGqcNIJKHjAwxOsTq1c7rYAzFWYcMLweXKfLaeKQQLudU5KQknAYhL028En5fJHx63Qkr0bzAQN4jrfmUY11uoBYdS7cbN2CVg0tiSNU3GNjgW/PO2h0DzzxTjBZjZqQW9u7K2h9dv87ndZyDS2ctz6DjNcZYVF5dsn+ILcLyFcgO1GFE9Vf465B7AYgeVie0e93Ag0s6V1wMrFplv0GpTjkEYLt2+uXChjUJegD6Vm7R9WwXwuqX+rgmiRNcowxjLAOicus+QRAeBQBBEH4VBCEoCEIIwF8ghiAEgJ8BKE36GkvnjM6rEAThdkEQegmC0KtCJw8KYYAg4Kf5Z1uXYyz+yWaPO050yT72WPX5qiqVq7ZMaSlwwQWii7SC7EAdbh50v34bjImxjZU0a6a2GpTayvSJruTtin+1letCbkeHeLg/96z4ERf2fgKAKOSKRa4vIvEoPbiCnO7eVoyr+Qy1J4iLCFlRwzvhS4ngbQk2Bw2y0z1PUAonVZbEJSXAxImqsozBQMElRKzd9Tj99OjyFjw1/kbU5O2yLFdf0fsOXUXUCgQwtPob56HUAgHTV8ynUQyF+1+evd+67rIyNMjdF3n2EpUQ/corVVaUMcvjVFwMjBkjenMnihjE2Q//5l/NPhfn9/yXeNLJBkoZ3sUXAubNA3JzZW/tPjoGAma/1QntXsX0ZsbegDkBZ++ESsGVbsJ8Rd7VnMz4WXkajjGMiaGGvaZRI8/ehexAHXpX/sC1Fsn06YfNisrBZeP1MffgsghLtGaN+D0YCZI5PLi07aed0tcJc+aYX8/OVh2+PfVStCzcoQ6VGx7bNCEKuVi9Wvxd16yJulSdu9teXQSRCHw+5wLPmhrLQVQ1HoZCcg4mp/Rv8B1+P+5064JJiDKntCGcv8XQ6m9U9/h9gvGcIP1GjfN24fXJ3hichGlWsBOvTbnC0zrRooV+tBhAlNNJfDtnA85QhJ+VkT5veJxvU/QLupX9FF2OByFadmG0lxevmYdFJLynMPMwjm8nhrCWv3HG8N8J1+CEdq/K5eTfY82aSKQPB8j7WGVoWuXzUF0tdUwjH44jpp7tRMywXO0xxhiAOwB8IQjC1YrzyidyGoBPpb+fADCHMZbFGGsOoDWAdwC8C6A1Y6w5YywTwBypLOEFNsPlxZWBA4ErrogMNDw0aGDsZWa0SdEu7nSUZ+NrPlHFrObCaJGj+s5ji/Y39bNQzHJ9EYlF6cHlpSt/OHyAvOjj3exPnAjMmGHPun3hQpu9c0/YKkxYvoIv9Kjiva6TBMpm+xm/LwS0bq06xysw1n53fp7NVT1BN1y2mxFVJ/66U3Yedwqaazxle5T/KHsvMAiylWfD3L3WFY4YAfTpEwkxligFV0GBKlxvWsen79dPXINYWQmGDaoaNDAv17u3/KcPAs7q9gy2zD3b2W85YgQwdy5OaPcqVrV/WX4ZlJ7mWsx+q+XtXsX67k8bXs9xqPT1sZCceDytnpR4RTPQQV7T6T03ylDDiRojeOAQAHYr/wnX9o8OE5jpV8yBNoW6ZqWV477uXqhLF+Cqq8Q8prqVW/dFO7fE0/MvaRkwIBJKUw9pfA1vm/SU9/LYpnLr4lyntmsn/q46Id56ru6LoyesAmbP5quLIFKJ6mrgrLP4ytrw4Bpe/SWKMw+46FhysqnnE9i9+GSusrbtlqTxyvC2/v0BiD/DgIbfu2zMAV55jEyapFortyzcoZ7TNYTH9q9mn4fmhTujrh8NcuQL1FFwATD8TEeDEc/3xvVYyeBWka3HnUPvsSyjnM9HNf4SNw/6P3w9+xyxT24fdWmNrPUGDGgjBqxcKe7ZTjnFZYPe4zPJWUe4hycz+0AACwF8whj7SDq3HsBcxlg3iOP4FgArAEAQhM8YYw8C+BxAHYA1giAEAYAxthbAswD8AO4UBEEnhhDhiGT3v/XyJTaqq3HjyN+zZwNNm0YVeWr8je7aM7IUgQDceCPw1VfA7fabsIvfF6JNdRpg9guKHlyRyTvbfxRl2Qe8eZd69hQts3gIBIAhQxASOBIYJyPKsdHgXd5xOF88ZSK+9esIlvMCRxx1qVfFD3hr6mVgt99mXbge4mpskxROWos9xgySz+oQfg6KMg9h8z61JzljEL0XIHlwVYj5JLksQnNzgeOPjxwncN4O1pcEzH6/6EVuxYknAk89BRxzjHm5448H+0hcuvqYgEx/UMxFEGxsfp8egQAwbBj+cs87gK+7fPpw0HhpbvZbGSY2l8h26MGlfGvSylulpCRhTWeHlY1WCqwUV3DlBmpxUucXcPKbauWC9jlWPVcWQlizeVqZ28vwXTF10Q0LKPmfc1qLS2RlGV8z+M5DqnlI51k3yBet68Vn9LuOGoWMoUNd5aAjiKSjRPI+PvZYcS1hZ29o4VUvLF+BYIjhH9/3wvwXTtAtk3TG1Jxk+IJ80XsYsx9OT/oNdA3sLrwwKpeVCqO5nlOhExfOOw/44ANg7Fj96xwhCvVomLsX/xp7IyY9u9a4UDjUKuea6LBkKHZw6VrH0QsIfZa0fQNLX15kWsan8cjO8IXQuug36ZrLsWPQIOCzzxB8XP28ReWBKy8HTtAfvxKNae5rwjWWI7cgCK8JgsAEQegiCEI36d9TgiAsFAShs3R+siAI2xX3XCwIQktBENoKgvC04vxTgiC0ka6ZJ7og7BFHb6KEY2TR16sXMHw4sG6daBlthlU4DZ62FYkRGZMs+Vu1clavTfxMoKExTVGGKFRu/u8dfhc2z13vun5BYGLOOpuL5HDYLG7ivAgvyDisf8FIiaDoXzg0jqnwWEf4kukPyiFPzaB31R5GAkOuJ6pLF6BFC/0Npl1PAYvi2nCFtjHb7MaYoEEusXpLZSWweHF0cm0tjMmCUtWY4CaJcZ8+4vpFom3xr6jJ+0PMX6bB6Ld6cNRt6Fq61bQZpx5cjAmR0G3p/KjE8cPJAhcrYY3f5rwbazSh5pzw+3GnRp2zoySS3wGdvCAZCgteRwJYSfBr1h8KUajA5pyq/a7ChiglWQcwoIHk0VBeHilQUQFccQXaFZvkqOGBlFtEmtFuXDMxr2JYCcyT1iMst5g82TKXo98npF9IYiWLF5tfD4VU+977RvwV67o+a36P5BmsO/MoxzU9ahOkhLETXam6WozqohxPzdZN0rXSLHNPQMaAiU0/MS5w4oliuHNAtWZiMDZcnNbsQzw6+hbXyq22Rb+4uj9d2dTzCYxq9LnhdVmBo/N85AZspofRkpUFnHhiRAEtPQMBFkwur6hp0wwvkQdXbKEYZ2mIWXz6tCYQEBVXZskww9iJxa4cgJTChlWr5M1+rAWE2jGQQhQmN7NavIef5kUnluRBGaJQKQwIsJCYMN3lhOh0fJjZ4n0MaviNdcFIQ47acUqU90KzZuL/HKGIwu+vmUAsyvVd4sgJJhZnhCNcWcQHAsCZZ3oSc131PBjkbPMxAW9MuczZ415WBpx6KnD++Y776BRliMKY5eBKc7Q5LbziqXE34MvZ5wI+Hy7u/RjGNI4EOzD6rWa2+CCS6FyHGwbcj/tG3OGoP4LAVAo4ALim/4OO6koWdF9XQZBzVcaanPAG32gtGo5A0LVrXPrDjVJYYUMh2K8yEo6pPJsz7JWUJ+atqZdGh8Q57zxdwZzSgpcxACNHcvcRgOjd3qePdTkFaa301RAOMSTDEeECgPwlqTwi8vJkAfofi07FyEZfAvPnA23aqO8tLCQvOYJQcPAgsOkCpjK0xfLl5vlsiooi3gz5+ZFQ2SaYKe9T3jDKauBu316l4BrV6EsMbPCtftlwRJSmTYFzz3VmYGdiJPX7caciwyCfpe12wkydKoZp3riRr7yT9rKz8eO8szC31bvu2igtjbSjCBNu1n52oA7Tmn/kqtkPpl+Evwz5m6s6Ug3eFArn9nxS9sgyRec982o2jw5RmGRKo3HjgKVLdS/5bESVIexDEvJ0IZnDmHhFeCAoK3Nflx0Fl1KppRyMGjSQExozvetaPExyKCq4aGBMVooyD6Fx/m7LcnoKlfCGQkxUqyjr0WbC6VNzx9C/4aWJV+HsbsY5XlSEFc1Nmjhs0R4ZWgXU2rWiwnvePP0bwu/qkiXyuyQrRXQWZHohCnlJayvIGBD1W0rYscjXjo927q2TFs2q4VznmQgLU/s3+D7qGjdt27pKsuuUehOiMAaEx2jV8+HGg0tDdqAOuYFaICcH67s/jTkt35OvRf1WGgtBI8OXAQ2/Q03+Lued6tIFOO88+bOf3Pl553UlAbrPvCBEhziJEbIFq1JAqeTkk8X1pV0FTayYO1f9P2BLs/Pm1MvQNH+H4fXwczWk6uuo+vtWbsGStm/IuSRCAjO0Oj+72zM4vu1rACQL2VmzuPso3uQDjj/e1pxdnzy4TAVaZvsfKdfdLZ8PEY+zs4GNG6O/uyFDdG+vT98xQViRk6Pj3FteDqxebXzTmjV8Xl6AHF3AbIgPpLNhVMeOwOLFKgVXgAX1x6GuXdXKwkaNoopwrbHrDBRYgoDy7AP6OQrd0LOnGKbZrZe4WX86dULN2A7wLV1s7jFox0qke3d1vkevvg+pD4MbfiMbcBVkHK5Xc88vC06PeFJLTGzyMT6cfqF83LroV/lvs3WS/L011oRv79fPEwNUAKjT5KlPyjGpoEB9XFMDgPbdsYYUXETqsGGDmOjcyq2cBzsKLmXCby2CteeHjFXYRBMYBJWVjY8JpOBKYtx4RCgn7GObf4A5Ld8BoJi4nZgLn3GG/GeLwt/t388iSrdL+jzGd8+yZcD48eYbLg9Z0uYNvDDxqsiJggIxZKlRrPnworhfPwQLigGow7ZpcbMY0S6Q6c01p0HuPnw/x104TjchCr/a3VD+e0bz98MViv9LYWjntXobM1u8L1rCAqLnWAqhDlGYhJuCJCaQ6UObcNiS1q3F/3v08K6BGTNEhZIkEFAm4I6aW8aNA/r1kw9jti5golIhXZT1WQ7DNdphUMNvMLnpR7rXijMPAevXR29+w+Tmis+AnbVqLBk2DLj+eqB//8g5m2PewTqTtbTEy5OusixTmGkQjhjAyEZfYlOvfwFwN8/aEcDQWpyDpk2BGTOwr1Zajw0fDpSWcn93T467Ec9OuDZ2/SOIdMArYb8krzAT7vt9IXFeSDH8ir30RzMuxLCqr6ILjRgB5OWpFFx+X0hf0tO1q6zAD6P93vzacGR6kYaMFFwSDXL2oiJ7r/VvzKvE9CoHaWWl6GHVvn30NcbEHLj9+pmvZTp3NrwU5VHEjA1cvKBv5Wac3Pl57F18IloVOZCXuOSyPo84jgBkRFHmQeRy5AxvkLsvak4uzDyEbuVi+PP3p1+Er2efK1/rUGIcOlgAxJQx2t9KEDC35buY2ORj7v4bERWi0JdkIQr16NIFZ3R5Fuf2eDL5+5rCJMnOiXBNfcjBVVMjunoaWbzaQbMYMSUQEENIXXihYREu7xq3A1lNjRxruzp3t/3kp0TcKM46yFVO75EozDyMEdVfAgB6VvyI+0eKYaUqcvaJBZwouFq1AkaMgLB8BQY1/M7+/U4oKhJDIHi1iLYgO1CH4dVfWxcMo0iI3qL4DwDR7u5eof3FSKFggSCgeeHOqNN2hlDbOeMUDKmSQnEWF2NI1TdomLMn4iW9ejXQrRvuG3En2hb/CixZIoZUWptaoSr7VG7B/434KwB33on1Ed+qFfhqzQ1iXoA//Qk47TRvBT1jxojW1pJlrfJZtlK08wqMV7R/Wd5Ef3LsJqzq8JJ8rTjTOIScV5aXiSZTz0tUMbeWZe3HK5OucNXGpX3+iSv6PhLdzPIVYl6IcBjCVCE8Z4aNtQy8bYxY0PodzG/1tu61gF5YHIPIFNkWysmwwVm8LGTrk4V3FDqTcstCAy+vMWMiHnrSfbzjVeui39C3cnPkhNYqnCCIKITlK0wF22VZ++W/N89dj87hPJ6SR7rZCJqqoa3leaFhQ3Qt24rZLd8zzPGnXHvl2cgbFL3n05xZuRKYMEGdl8tig/PO1Evx6cwLjAusWwcMHCjuu8249lrgyiu9y0uYkQFcfLG4HnbK7Nm6OWdXd3gJfxt+l+4t7Yu3oXPpz3xGQJwyv+PbviavUQoyxfcm3iGIG+XtRkXOfuuCNvj5yf/h/3RClC9s/WbUuahnVzpzcqfn0L5YnY9sbccXcdQgrHdI8ImKXO1zHQrhzG7P4l/jbuL/AAbcM+xu/GvsjXIbRtFfkgrGcHm/R3Fmt2dJwRVDSEKeLqgUXCSsMiTsit2li+gNNns2331VVbLLvgrZg4sDFwOZcnEkLF+B0uyDUa65APD8MVc7boPwjmw/Z6xsHTL8ITw/8RrVuZ/nr0Pfyi3iQSISPmif3WRPOjFpkvG1uXPFsEWKxX15jijQlRVcMf58pFCIPad2eQ4buj8lH9sZfhvl7ZZDMpzY6UVsX7gu8kzk5ak8ZlBWJio49KwXk5iALyTHxc/xu0z4W99o1kzc0HfsKAr927SJzUZFqlOt4NIRKilCvxgJjOWzUk6nAAuhKPMQAKBN0a8ozxY31LUnrELPih/l+woyDqGfImRJuqwvs/TmaMW4n5dxBIOrDPJt1HdmzwZuvtl2uPCr+z+Ev4+4UzyQ8teGyfTrCCZ0vNtenXw5TuvyX6723DyrdjwVyYMrwr4lJ+Kqfg8bXm+lUX45Vg6WlDq7jyDSGZ11iDw+6exrvp+7AfcOE8fkZgU7I7KGggKgSxfTcdDPQsm/F9TBz0LAOefI89fKDq/gi1nn65YNr71enXw5Ar4Q97ygLRelDCwsBKZMEdeRK1eKMiaLcPoNcvehMmzoqkfLlqK3lGZujSInx9hz3Ck+n7WiyWyNnJUle4ev7/YUXpSisRzX5k1xn6Jz73vTL8HrUy7n69/FF1uXYQx/Hfo32VspTPVwgzzeHvH65Mtw86D7AIhKZqf5yh4dfQseHHVb9IVJk5A3qr9uHvF7h98NAGiYs0f2ZNSGOQ+PCdcMeEg0zALkZ5UxiLnhAdEob9kysd5hd2JtxxcdfQ47dC//CRObfiIfJ10OLitSqa8pRmrF1CGMScFFRkK49lrxu/L7DRP/2cLnw1+H3IuhVV8DGGQ+WHmh4FLUoedtMqKRjqs9EXd6lv/g/Gad56Q6b0/kwOm77ibUkfZeD/PNeE7btsDEicbXDTwtupf9iAY5e8UDve/Ywfs7vdkHUnXqe5PFgysvcBgH6iw2Q4nA4Lu2I7Cc1PRjTGr6MS7+cIJlvXp0K98KCEWRE2ma5/KD6RehU+nPABYkuiuEFmkcUim49N6Bnj1FT/Nbb7X2sFKEmPNLG1Nl3qmAL5Lfc3j1l3hBNraYL7afJsp53RCFinDUmbwJ3U34cX8pGpgJpFIZN3k7srNVYZMBjeVtOG/WjBnAoUPARx/Jl+x4oLvJW2p2p/YdTI83wgMYQ37GEV1BWhh5LSTNxUEbykFlSUlPTxCEEp29i6xE1ln/FmYejgitoQhdzRiwZg2Eh+4xbCpVDfV8TBA9QHdZ5yTNzxC9eMLzDq9CXvvNmO5duncX/xmh3X+nqlCcQwF25PjVCPhC8jrT7JPmhp9bq++jcWM+Dy6DelqfMhFC9xfBRgy3rsMBpdkHZO/AZgVi5BKevW7fyu/x/d5y/H64UKwn6wD2HDVIyQDj/LwA0KdyMx4fe4tUTiuv0OmL9rc8+eSIkefvv2PhY49Frmm/1+bNgXclJZ7HsuukzMGl/fyp+v6mGOTBlS6QgouPzExVaDLXMIbj270e8zi9svWPYmDsXv4TxjT+LKbt1jeiYj07QFi+QmVRYobuIiZWk5+b0J6ppOByIngTBHww42LkZRyVj5UsbvOG7SrbF2/DI2NuAwoKrMNVJIj9S0/SDw0VJ3YtOln/QgzyzjAI9t8t5XNg9HeK0738p4gFHpFcSF6mx7d7Xbay9uv9Vj6fKCBZt87QwphBEDf5incg/JePCSphVbiOFzSexEB0UudURTdE4YwZsqd+WLDlhunNPiTvHj1WrYoKMScrFNesAQYNEv8uKBDL2iSs2NJVBnNi6rmgeQfTJS+dFR1KtrmuQ6uAP1ynCJNVau6VFV4vH1q6xixiPEHUX3TWpiHBWMEFqJUxdZqcNmZL3ZT24AK4ZEFX938I383ZIB/zftxoDy4X31Oy5OF0y5gx4v8jRxoWyfQHVftjrr2y1b6Od99n9D0z5r3HmwI/ExytVN6aehlOV3izZ/qDUfPr17PP4QoH3LboV/lvbR26BrnK72rdOnUEE+337feLRscDB4qeX8NjoChMpRxcSlKprylGmoyaBDp1ki1A3FgtEjbh0Mz3rtiMZ8Zf50opoKfgqszZh2cnXK8uqAi5OKP5+3hv2sWeJHKsDwjLV6Bb2VbrgrHGSkHj1JNk2DBgwAAxZ4xdtM+1RTLchOJkwWCxa7lr2D2265UX5hUV1uEqEkgiZ4virEP6F6R34PXJl+H4tq/Jp91Z5Lt8LtLUg4tIYrKygLVrUZZ9AAvbiHkBTIX2LVuaP+dXXin/6WOCymtG+bfZW3Y0lOGJIUii0Q1RWFICnCnmJVNatTtBWL4C2YE6HHWRCzCtUApEdOZbWeGYY2yBbBc3sgM7Hly7jtjI6ZuinNL5OXw2c1O0cFLnSzb72rVroeHVX+GuoXeLB5s2Gd+oUIhm+evSRuZLEF7z2czzcVa3p+VjKwVXO0VeHa0BS3g9ISxfga9nn4P3p1+Ef465GUBy7WPsIO/NcnPF/fC6dWI+LB3yM46gReEO+Zh3H3E4qM5v5Uouly6DXYsWwPXXRzy0tWiez009n0Cnkp+t67Wa6HmNXvXqCStuHChyBzb4Fr8tPM2yXIAFMa3ZR7hFClMI8D9np3X5L/YsPgmA+D4q59dWhb+iddFvCm9p9XMUzs23a9HJ+HPff0batmuw07Kl+ljve5w0SQyfOXSo5VrQDUnpwaWFlFpxIU1GTQKNGonCayK+cCw8upf9hLE1n7tSCnB7fEgDZ/OC3/Hw6NvRs+LHhOXM6Fr2U0LadUNx1kHvKnOaQN5KEWoVX9uIjAxg0SJVvhZutBNyMntweaHg4l10mbRl9s7S8kaBXu6qBWK4vAENv0eFyxBfV/Z7KHLgxoNLKXht0UL8X5kgmiBiQefOqkOn3p+/HipUbfQzfEExp8TyFQCAEzu9gOeOET22osIfa5J/J7Ngq03RL/hi1rmW5eRwtFqkMcKrz6j0UJnY5GMcWrrGk3pThlatxP+VihEdYwHD3wMALrpIzJvLydGgGH3fVQ4uk1la68H1168GOW6Hl9zAETTN32FdMEb4WEhcO06eDADIzzjMJbzTov1FsgN1WNz2TdF7SxEiNIqzzpIty0k+RBDGdCjZjlLFXtZUWL5gATqXbpPXAXWCtEYIe3ApirYu+g09yn/C1Gb/AyCNg6nswQWIY5pWQG8C76c9pFFwuYrakS4hCgFzrznNuuDcnk8iOyDJzczkZ1YKLLN5xaR9DBzoyIM8TIYviIqc/ZblAr4QCjMPY2WHV+RzvK+V3yegMPOwVE8QHUu2oTp3FzJ8dWha8IeqrNKD69TO/8Xvx4m5o4uzDkWezzZtop5x3dCGZt+5HYWsV4ajUpsp4cGl7F+y9zWFIQVXOiFYx6wlPKa6WlQcVFWJxzqDlV7+LLvIC7JevcT/O3aUQ+mI14P65RHtbhwPOpb8jI9mXBT3dt3yyOhbsX3BGdYFeeCwGtK16grH4u7RIyqMD5YuFZPTJgJlDOtkVnA1aGD/Hh4Fl97727GjYZXyex8KRW0wQ2DOFZUek9D5omlTYPny6POdOiEcg0hpTeakr6d1eU6618EG0+cTE0B37QqMGhU5X1wMXHWVucU5QcQAXc8jBeGh6/s56zGj+fvy+fYl21XlAhohfX7GEYxs9CUA4ECtRggRDi0D4ImxN+GJsTcDCxbg2zkbcErn5+x+hJiS5a9Du+JfTcsIy1cYe2hJG2W7Y83T46/XPX80FEl17GehiMCmvrBmDXDCCcCUKZE1q47xz1+G/A3fz1mvX0dFBbB6NTB3LleT4Zx1Wit6O5hZMWs9uD6ecQHO6/Evx23xMLz6K2yZt8G6YIzwQRC9HSRhIYMgCu9s7mvO7PosrhvwQPQay6qejAyE/JyCSoKor0jvlTK3XUgTdlDF4MGqQ60HV1AvJHFAnNPMjEBO6/If7FtyIk+P445umGdJ0K6bmzPMeeep5oWTOj1vaLByz7C7xcg9Em7C5aaVgssMIyVWu3aiEb+WQYPEvVlZmf59K1eKMroFnPmFa2oif48aJd4XVsjFUJEb8AWBU08V971z5wIXX4zsBkV4aeKV0WVZECOqv0TdCSujrlXl7kGb4t/w84Kz8OvCM/C45Gmp58GV6a8Tc5hpDUwLC6NCGermo+3UCWjTBhg7NvqanefT7fc6YIC4H5cMATNM8n8mDaTgigsB6yJEqkEhCuNIdjZw+eURCxEdpQZjgphUccgQx834fdJv2qePOGE3bAjs2QPcfjuE5Ssw87/L8fDmnpHyimcgyho7DiTLkN2j/Ad8sEMtTCnP3ocdh/XjKRdlHkaRZA2j5cyuz2BUoy8w+qlTPO+nihkzxIVDx47i5HfXXcAHH4jX+vaNbdtmXHaZs/CG8WLjRuCtt0RXeLvwhDDQW4gsXaoK+6UqHt7Q6Czg6kK+iLI6wSR0tujd2zj5r/SbOM5hM3Ys8OyzDjsmkZdnnAA6P99d3Ymma1fgf6IlruEGkUgqXp98Gfo12GxaJqxMb164E03zIxac2hwQhqFfxo/HnvuNw8RNahoOedwDLQt3xGVD2bP8B/Rv8D1u/Mw6dr/rECWSMEk374AJ42r086EqQxSq1uanxHgdkSzk5orjPACcfz5w5IjumF+QeQQFmSZ5zxgDioqs21u9GsFLHgEAFGYahMDlwDREoeZdal64E+f3+jc2fcC39nhx4lUY/m973k+J9pqUFeKyZ4c0LyvXThzCqo6l29GxdDsgjLfdh0TsZQgiFZEVU61bY0T1l9JYWGF+U00NHh19K3YdzQUgeqXqGgmcfDJwszTXGrzzfiYgL+A+j2Us0FU2SZ/jjiH3SnP5UvX1CROA6mp53Lu492NY2PotQ4OVmvxdqs/vyoOrb1/gww8jx+kqFM/LUx83bQqcfbbx51240Lw+o72bEZWVotFiYWH0GsWGImbr/DPR+L7LRMWVwhBdyQW9HsfC1m+j+f2XiGvztm3Ff2EyMzG0+puo++4dfhdmt3wPvnWniwbQmzcD114re2CGKdGJRhTSMxbt0AF49FHx7+7dgdmzUXheJGTpixOvQvfyH0UP+o+ltf+cOeL+9zSDNYwdA+iASzXEcceJ/+8Qvdv7Vm4BWAd3dcYa5ZrJSc54ggtaLaYhlNQ6zuTmRgZpPQ8uCMBZZwG5ubhp4P9hebtXospYofICq6kRvcbKy+WcW0GNhZbSQknXAivGJIuS9f3pl6iOt8w9G1Oa/s9RXW2KfkUHjRW8KRYLounNPlAJIGUyMkTvrawsUXG6dCkwfjywIXHWuwDEvrRpI/7dpEli+6JHTQ0wc6Yzz6hweNfwYph3MZuXp/bsUaDc0Ghrq7OZl6Uo08PQmUpikezVDhwbNUe5swBg+vSIZ62N9gCIC/fmzfW9y9KF448H1q4FzjtP/EckPQMafm8pKFFevbD34/hpnphTSikg37v4RCxo/bY6xObGjcC4ccAxx6Bd8S9oUfC7eWc4ktB7xeyW7+GGgQ9wlW1d9JvhtcENv8H+JRZGGrKCi++DFWUeRH6GvlEMIIaoXtbuVfXJqVNFq+T6ht9vbNAQxuyB4nnYunZFXYkoyC3PPmCjc9qmnIUf5mFY9de279EqqONBfsZhWXCmVbDJ+wqlUDLGwpqCzCNomLMnpm0QREoje3BJ72d+Pp475ho8OvpW6/VvRQV6V/6AMY2/kE8tbfs6Hgt7ggDAJZfIxl1m46CPhcAYogTvyYCuB5f0vWX7a1GmN29oQqmt7/40avJ3cbU3sMG3WNr2ddv9lOneHThXEXY5w7lnclKTmQn8+c+R44KC+CvzGja0XqMYcG3/f2D34pPQKG83AOC5nztER+GRKM06iGYFO/HkuBtQka0Thv+EE3SVYxm+oPjelZWJso727cVQimZI76vSQEQAxHxoBQpj75UrgcJCPDr6Vnw3R5Q3dS79WTT6XrVKNHC+5hpruUE4sk11tXGZ8ePF59qtLIkx+V/tCatwepf/uKsvhrQr3o4XJl6lPkkKrphBCq4042/D78TFvR9PdDcIBfL87PdjdceXMUqxeOTFakN9df+H8OyEawEAzx1zDf4x8i/ihVatcMvg+3D/iL/YbtMNRuHATuvyH/Qo/yGufVHStOAPVx4r3ML29u0BQYCwfAUaGGzIHxlzG18i+4wMUSCWDEqlZctES7bVqxPdE2+ZOFG0SlwqWe3pCdJyjL0a9JDf2T59ooRltSE/t2TYz4LYvdietf9nM8/HjQPv1732yqQr8M3sjfhm9sao0Bd3DLkHS9u+hprC3Zja7EPd++OG9P24EusxjcUa72apTRvRKMFsgZ7qZGWJYR2qq83j4hOJ55xzHN2WG6hF4/zdANRriILMI+KroFRw1dQA06YBGRl4bOzN+HzW+eJ5I69hrSeHQ3gEYO2L+QxLXp18Oe4edrfh9YAviLyMo+aVSBvOHLNQRRI3D7oPP8w7G78uPN2wTHHWIdw+5O8AksezPWXhtAxuUrgbfSu/d9WU2bzz1m/NHder9Axc1eElvDDxKvSpMPfK1N4XL5TGktqQprJ1+qxZkZPSu8MVDjgspA2HlA7najMhKxDE9oXrrOsmiPqKtKZXhsYNy4ANWb8e6NdPHQJW2u8UZB7BlGYKo1CFt3+d4EvKHFw3DrwfXUqNc4DrenBpcwFpP5e0VnLycR8ZfSuWtX/N/o1KlHsR3pxSqUhJSeTvZPJU4/jhM/11hhGAlJzY83VMafoRAGBCk0/1P2bjxsDZZ+Pg0rW4sFdEputjghj2Wfk9ma2LRo4U320AhRkaj/asLN17y7IPoEXhDnQp/QkFYeMtn08MS8ij/GvcWFSErzcIOQ2IMq2VK737jX0+BHyiUj2pnhuJwoxDmNbsIwwPGzfNmiXmM02SVBXpCCm40owFrd9Gp9Jtie4GoUDemDIGjBvnLhazFmlR1qxgp2x1NbLRl5FnoEsXtCzcgfFNPvWuTQ6M5pc/9/knupUZLzzjgW7CzDAdOojxfHVgjHNxW1kJnHSSfPjV7HNx97C77HUyWSksFHNpKBdX6YDfLyolwxsHvR96/nzu6kY3+hwnd3peXIiOGKF64+8f8RfcNEhf+aSHE2vx5gU7kG0goB1c9S1aFf2OVkW/R72oS9u9gTuG/g0/nnQ1/jnmVu72hOUr0DhPxxtRh6fHX4/pzT7gqFRScKnCKtj8LhS/o67VJkGkAo0bc3tbluqEJgGgPx7MmSN6Ep15pup0hi8k5voaPDgSAsSAWIu3Di5di4lNP+Eq2zBnr8poZGP3J/Ha5MvlY65tL2P45NhNuGf4XcDcuXhn6iWGwrJVHV5BUeZhMZcBT9XhbyuZc1gmGjPhRNga2iKsTUHmEbw19TJX3TBT3B6uc25BH1Dky21d+BuGV3+Nt6f9GRf3fgz/HHMzHh6lP+86Cb0pLF+BwQ2jwxzxUpolejL4WAh9KyUlHGPoU7FZzNd32mnq9XJuLtCli3ne35kzRWFteDw78URR0DNvnnWHyNqZIMwpLwdatsS4mk8xvkYzbxqNrU2bAkuWiPu7FSvEqBQdzMN8PTP+OlzW59FIVA8N8rp95kx8euz5OLfHv+1+Eses6fgSbht8H24edJ/udTMPrqjjjRtFwx/JS6ZF4Q7ufoS/bk/CODMmjp2zZqWvB1eYsBK1U6fE9sMmBRn6ITn/N+MC5AUiiq/rRv1LNjwzJTMTOYHaiJIJ0hqySxd1OW0kBqXhquJ5mdT0Y/ww7yypHonSUlH2ocnFBwD/O/YiZPodPrtlZfF9TrV56pKM3YtPxsW9H4ucGDkSOOaYhPWnPkA5uAgixqiWlNOmYcpTq/DetIvR658ehJzTCkqUVkjLlomh7h59NO6Ww0aCaD8LmYZ+iQcNcvYaXGgghuwysTrhygHg96u0YUWZh9GphJTOKc2qVUC3btzFbxl8H1oW7gDazI9aeM1p9Z74h6CTNFcH20od2NtQ6QryOBaLC1u/iU/+aISPdoqehbyhccfVfIZHN0uhIM2EmR55iIQRBYskICNSFE7T4a5lW7Fn8Umqc/uX/Enfc6mqyjwXVKtWlsoEu+FW7aJUWGX46lAbMu6PNoxaWfYBtCn6VT7m8oJhLGIgFAqhd+UPrkPSRaqW6iGrTWPM5p6qKtGb0crAxgOvgqNB4+fajbGE0hNKOf2t7/604T2PjbkZvSu2WNbdqeRnfLqrERrm7JE9nZyGrH909C2yUiu4bJXq2ltTw2GkNEpExoA1a1Dx3KXGFY8apQ7rXF7OL+jJzQUOOc+rRhBpj88HrFuHQStW4KnxNwJQ5CDi8Wzo0UP8Z8HYms/FP/r0wbZnPsYvtz+Bj3bWYOnLiwBI487GjUDjxuj40EP4U+4L2HUkFzd8NsKy7i6lP+HjP2qs+2pCvwab0aviB6x+Ldow0cyDq2GuJB8Iy1ZqasR/En0qt9gOu+hZnlKDcPhpx1lnAd98Yy9/VqzRevhp+G7OBjQr2Kl7rUvZz+oQw7wGToEAMGcOVgUfwqhGX6DTw+frr0XHjQMOHAB69hSf1ZNPBq6+OqoYY0ATbVhNxsTyqY5y3ZiEHlxJ2KW0J7lVnoQ9ktBVnIj2wAj4QuhZ8aM3lWt/86wsoGVL0fqqV6+EWTVoP3NYsMSYdwJrXtZ3ewrruz0lH1/Q6wlsX3BGdMH8fFMLUQbBnqBr6lT5z54VPyK4bCX/vURiEQSc0eVZVOdKi0Gz90hn3A0ovTZhnM/j1cmXo9JI4eoC7oT0Rp/LwnoTAK7t/yBGVH8lHx81ETxrORzkKCv1bUT1l2gtCaltLxIV8c/9TKBVJpG6VFgkiA8zdCgKMw/L+TkBWIflM8LsfZGEPrUxVnApOXrCGtPrWsVDpq9OlQ/Udh4jaWznVRK8OPEqtaV6ixbRhXr1AoYMsdeP+oTVGN24cXQy+hhwOBixPn5/+kW4YUDE63pc489s1cUQeS6VczNv2MFjmnyC6rxIqOs5Ld/RDUH8ycwL8M3sjXhnWkTBZOpNJfHtnGhjuxaFO1RtKtfGViHPeldskUOme8ry5eK4c4bO+p0gCHOceFT07m1+3edD1dgu6F7+E4Yr9gPNCnaK76o0UJRnH8D1A/9h2dxfh9yLlyZFC+e9xMhA4dDSNRjY8DvxwEgJoTfwGQyGYeNEbXhXwoLCQlFZk+ReOUpaFO7Qlw/16QNAM9fX1Ymfj4fhw5HpD6Jj6XZk+WvRUc9YOiNDjMbQujV3f20ZzqbCvpm8uwkNqTN6ENaQgispyfTVcZcd3ehznNjpef7Km+vkAjjjDDHshwInXiBuUE6Hfx9+B16ddEXC+nJxn8dxZrdn5eNMfzBipaWHwXvEmICa/F3YMvdsADDMrSXToQNwVSShpFdW4ER8uLzfo8gNcAiGdZ4X2WJPWqAbKXUHNfwO/5txId6eamzx7MT6z/V6dPJklYLWso1hw3CgNpLH6d/jbsCSNuqkysWZB2TLRy6vD2kzPrHpJ/h69rkWhQ2YPRsYMECszisrSoJIBMOGifkPzeLaA+JG97zzuEMamqI3F7ZuLYYfqa4Grr8eR03e5U4lP2NVh5fc9aF9e+6iWsvsTL967cWYICbAbtwYOP5444pKSsRwtVIeEl6jnGHVX6MmXwrVWlEhhnBT9o8Jomd9OufQcIsXYW082Asdqov8RhXZ++W1gLB8BUY1/pK7nhM7PY+6ZWLO0juH3oPHxtwiX+MNO6hUih3X+k3cNPB+TG76P92yrYp+R43CSttIOXvb4L/LireWOmG35DZnzAAuuEDXItwIxiCHTPeUZs1ErxCOfF0EQWgoKrJ/z9KlEQ+Prl3F/w3G6PCwe2DpWqzq8LL9tmBPXmJFWNYwpOprOczwXUPvxjFN9EMeZwcUbRt57GzYEJ2PuW1b/falPT/tPdIAQcBNA/8PFdlq2dGEmk8iHn0nnigq5yR6V2wW35nzz0dFzn5VXVi2DDjhBPGY01Pt8PFr0WqZB+t6ACUGocwBANOnq4+vucaTNmOKUiCR7Ao5Wv/HBVJwEUQMWdbuVSxs/RZX2U4lP2Nlh1dw3YAH+RvIzgZuvDFyHDatNBngCzIOYVGbN/jbcIDSaros+4AqzNAV/R7B65Pd5Ufgpl07AEBh5mF8P2c9/r+9O4+Tojr3P/59elYYBhj2QYYdQRBkU0GFACK4gAsKroDgLipuUVzBuPyMGpNoEhOTeNUbE5NobhKNiZrExOQmmrhdjRrXaJS4xIgLLiDM+f1xqnuqu6uXmemZnh4+79eL13RXVVdVD9PVp85zzvOotjavl5014b60ZfHf6JDad9V43An611Hn6uOVp+hX+3xVPSs/atow3DDu1s3X5EJpCe7UXvygf4tenhixl0izFyEIfg3o+oEGdE0Pln5wtA9St/TmKCqQfENqTvqGhuiAc3W171DPsf/tat7zTwYO1OBu76ouqNkxvd/Lqg2K7T666DJJLXgftbXSwoVJi57eUN/8fQSN9fLY1o7f8AUyKS/39Q+HDMm+XSzmg09m0rp16etb2/l/1lm+w7u8XKqq0uYsszGXjHhEX57+48h1M+uf1wWT7olcl+T00/Ouf5g+g2uruoRqj8XkfCfERRclRtZGuuIKf1MfXC9um/Nd/Wqfr6ZvN3p0WorHxIy2AQPS0jsWtP5qZzNjhg9cbJdf6t6sChHgCs3g6l75SV4zoaKUW6Ni5vTtmbfq6O3/pDnbNc1yyHemdfhr65bZN6tX9cdZA8thqQGuLmU+UHf8Dn/QESP/qoWDowNlCePH+/TdpNUESo+Z/y67+uqWDR6Ixfwgk699zadql3xa0fnzpcMPT9o0PhCka/lnsl6hNLLNCI5Xlm1NqlNYCHfu9U1dMvUuSdLRo/8cXTMzdbZQpu+QhgYfnIi78sqmmlEpupX7mkxl1phW5xSl5+Rxv08aPCKF+rp22MEPngp8ZfoP9aVpd/gn9fX6w8Kr9c8j1uiZxWt9bW4zPzvyssv8zOR8jBzpaze10iuHn6fV47MMpJ8/P7muV2pAtyMKz+DqaDP/wg24+npp2rTincs2pIP9FQCl74tflL4w9WeSpBtnfk/jer2R1+seXXS5Fg17vPkHzKPRGr6+Tui1XjfPuqX5x2mGcKd5mTUm3WT3rv5Iuw14WXfM/aZ6VGYZRVIIobROw7r/J6+aP5J0zbQ701YnRmYHm8bMqUv5Z5rf8ExidO/6I8/x08/DLrkk8zHnzcvxBlAULWggnb7jr/XnA3xtisQNWra/t9AxoraqrYzfHPnP0q79XlZDzbsRW3rnT7xHjxx0eWI0WVSH3IljH/QPhg71o8emTk3clD4WBKKaTsrUUPOuzppwnzYsPz1p1X6Dn1Rtxadava5O//7hb6UZM/TQgVfq6cXr/FsLBbgn93lNvao2amxd03UwsTZXwGnBguzrm4FRlNjm1Nf7ovGSNCeofdHazn+zpMBNthSFMbmMM7bPGP9rXbbzz7Ie6td3BoH/mTPTC2tHSKQgDNK/VMS2qqZis54/9CJ/PvnOoo7Fkt7j+F7/StQceeqQS/TPI9boi7vc6YONY8b47/igrZH2+wil02MWdxZHHeWzDxSic6IAAa5+XT5Uj8qPtXHFqepR+am2NmY5rywp8+JBrGPH/G/a111ranllCyxLSgQKU+vGTuv/cqKN8L05N+nne38j8uX8pQKdQEWFr10XmlnS4v2EL2CLFqUNgku6Zlx6adPjPFPKrptyl+YPelq1lZuaXecqm6rYFjXmqp+9667Jz7P9vsLfL1nqQZbFnNzxJ/hfW1S6YpSODG2KxKCleEAo2G71+N9qRv2Lic9M/64fqqHbBu1ww2nJqQT79s2/zZNvuybT3+7220vyg7QrOlvazPDvsCOnK1y3jsFC7YQAV2fC6PQO4ZxzpHN2ui+5FkMeWtX5MWuWn60wcWLk6kydTEO6vaNlo/6sO+Z+M23drbNuih61nEE4x7BJ0uzZmlX/nHbq/XraTbYkHTw8ezCvR+XH6l6Ru6B0mW2NrGVw1MiImXMZGghHjHy4aV3ENh+uOE2zBz6f8Rzi729gzfvpubsjGi8LB/+ftGJF+lRwdAz1fqbQQwf+P31n5q3Zt3VOnx6zStdO/7Gm9fdF2VNzrkfW4MqzURv/237owC9qfK/1Gbfboe7NpNp+GTuey8ul887zo8fMNLH3a9qxbr0m9fEpPHTUUf5nZaX+ueqLumbanepZlfw5vHvvr6ss5lQ2f676LJkjxWLqWfWJ+lT7NAxVKanBXj78At2zz/Xp55LPd9b++0uShtX+W6eM+13u7TMco4IZXNgWTZ7sR28vWeKfFziVddYAV5Y2TaJjYMkSPbvkYp067rdp2+w5M2KkdRaJdsCIEZKa0h2N6vF28vp8RXQUlMe2qqHbBp1zWfemGaYDBiTSOKWlXz3zzMTDvGsjouj+sPBqvXjYhYn6dVlncI0cmTElaLYgVrk1+s9nXH2OGcqhWYeje76ln+x1Q+ZtzzpLGj487/pxqRJtlmzfmXmk2rlo8t16tg2yFQLIQyFmxOZj6tTk+5wWzBZbO+XutHuNbMb3el1njr8/fcXAgdK55yYuXZVlW3NfB4cMka65Rjr5ZGmffRLZX1rs5JNb93p0LEG7OfVe3sz57/6DDvILcvXptCa4kW/bvb5eWr5cOvvs5OUnneRnZHdGpZSiEO2CAFdnMmhQsc8AgaqyLYkp8fnK1BlUm0eQR4cf7juxunZNX7d4cdLT+A335Tv/VC8cdpFumX1zZLCpZ9Un+dUgkvSNPW7ThuVnqDpIf+IkqbZWDyy8Vv26fKgt4dGvQeeTlKHjP/DYosv1pQzpjcK2HHeyXjj0Iv1+4TWJZYNq3tV/z/kv/yScTqCx0Td+U9w256amJxGjP7pVbMp+DuFOrUzFaQOXTv2ZHzVbW8sXcUe1887SEUdo136v6Jgx/5tz86qyLUn/leWxrdL06Ym/pVc39kp+wdln5x3gMpOvvaP00dhhvas2Jj0fGEp7OKDL+zpuzB/8k5Qg+B/3v9oXpW9o8NNPZ8zwK2Ixn4qsGeI1RVJnS/Wo/NSnBenvUz5m+9yn2W8/afp0vXz4herX5cNmnY+k5AAXsC3q3r3puyZTbYkoeVyjsgW48grolJVpTM+3VJPyHVvWgjRFZeakq65KdAR0SUlF1OxBRGPHps0iTcwS22uv5A7+4He1JXWmz6BB0okntuz4aJnUWfQt0Kv6Y/Wpbko9nbNuZIbOp8g6W0Ha6pg5n35z7lz/Xbtunf++yyT0eYyZ00HDnsi8bXW1dO65aR27O0YVqY8671ijrw3SPyJN87Jl/ryj7jdS7Nb/5Vb3FQNopnPP9RlCCpDSLC/HHitX3b6pzGYPfE5fmn5H9MrhwxMDBipjW/IL9NfW+ppJBx6Y/d48nzbUTjvlHrCAkjas9t/a+/jBvu5tfJbibrslp6OM/x2tWOH76fKczRipOW333XZLnikm+e/rqVPze32BB8K1ufJy3yZZvrzYZ5IuyyxPtB0CXJ1Jnz7+wnr55cU+E7Qgx2qmWVYfrDg9vy+bTA2yuXNlQwYnnlbGtkhLl+r8Sb9smqacIYd0rkZhPCVZddkWda/8VJ8cc6qkHJ0BZ56ZCMZmGxVbHtuqZaMe0h/3vyrrOUjS8O7vaFSPtxLPkzrWwl/osZh0/vm+Mz9V/PcXBBOiTyo6LczW8O9p+vSs55r4f84RCEMRmUmf+1yLX15ujdLRRyeeP70hZRTlqFFJnVXZPmfh68KWDAGu1488V3s3PN20YMgQ7T/k//TRylMkSTfMuE03zvyef0/LloV2bupS/pnvCD7xRKlnz+QdV1UlHj635CLVd30v43kGu9PfDlmXNoMt4Ygjsr4+o1amrRpXt97/fggoY1vXnELzedSsPHDoE76YdoSYuaR6nGGJj2IwonXT1uQR32mf1Ayf3XN2uld/PegKScH3fvD+/rD/VZo/6OmkbZtdA8ssrQ5gmTX6zqsM57fFRbd9DhvxFx016uHmHR8ts+OO/mcBIytJgcsc7fuu5Zu0cYVvC0d+FwaDTJzk67QuXtwUSDLTj+d+S0Nr35GkpvbvpZfm/v5assR/vy9blhhcEx4U8+GK03RtfNBYuF28fLmOGPmw9h/yRGJRdVnQJog65u67+7ShOWxYfnpyuwRA+xg+XDr44Iz3rAVnlr2bIkN2mUi9euXeRrm/z2Pm9N7Rq2UmfRpuX6xcmf+5RBkc9Kek3i+h84rP4AotevnwC3XS+RF/q926pS+bNi1nXeucWhMca654n2Aeg1g6jJkzfWCvo+nf39dZO++8Yp/JNoUAV2czfHhycUAUx5FH+pQ1xx4bXeg9cPyYB/X4Ip+rOuu9a3NGbkSI19k5eezvdNqOD/gvgRUrmjaIT68OKbPGnIW143V1UoNzvauTZ5NM6L1ehw7/q39SXp4YwZqtQVxujaos26rdB7wUuT5mjTp8xF/8KOu0dSk7Xr3afy5OPtmnTgiOH2nGjPSp3XEZGsaJTq0DD/T/UoXT0CRe1PpRxmgnedZuk6Sder+W1qk1uc+r6a8L5WQvL8v8QbDQMVJnB4zv9bo2LD9d29W85ze5+mo/42DVKpkpUUw5cSP4uc8lBa2SZPowBh1Z2/d8O2MQPixrzcHBgxOzGZqllQGuvy3+gr7QzBm1QKc0apR0yCE+hVkmxx7rZ5XkESA4evSf9cCC6CLyMXMZWxD9u3zgjzFypKTMA3wSFi+O7FBqqHlXU4Lra2IPjY3aY8BLKosl77PFM6hCQa4ya4xOPxSkZGqMSu3WpYt+sOd3tdcgcrW1i8MO80GeEwpXxyXRxtt556TBK1HKrFE1FZt18tjf6dARf/V1NiLa2JlmMh8y/DF1CbIhJNq//frl11m9++7+XyA8eKZbxaamtomZbytMmyYNHKjb5tykGQNelCQ9s3ithnd/J/excmhOujEApS3rd/gxx/hZzxEm9v5ncs2tTPcoKarLc6cw7lH5qSSpZ7ze98CB6fW2mqtnT+nKK5PrjKFzC+5Bp/T5Z44N1er71TSrV/v6WUuXFna/2Rx9tB+sfc457XfMzmzKFF/7HO2GABfQFiorpR128DfDWaapD+/+jkZ0/3fu/bXyCzM+Wejre/xAC4c86fcXHoUakUu/zBpzF2aVdMfcb2rJiEcSz9cfeY7u2OtbSdt0q9ik2+d+p2lB0JmeabSzlGHka8jeg57W9/f8buJ5uKsgLTXS2LF+ZmNEoVdTyrZmUt++emzRZbp615T0B1OmSF//uu9AGDYssThRgHzMmOgClytXptdoIMDVOaR8Np84+LK0jtRf7nN9er2MyZN9+swrrtB23d7XC4demLw+GIVu5hJpPVNThppccidS96AuTMosjcT5ZOsgyxTgOuIIn+pEBZgAVV0tTZqUCLjnvcPWXP+YtQU0MfMdTUHB6Ug77+wDSi347PTv8r7eXX6GJH/dKa+M6Z1lZ+q7M2/RPg1PSZI2rjhVu/R7JSl98ropdyUG+/jXpnwv9+0rXXaZduv/onqF0rGa+X9f2/0Hqo2nOcxwLcs0myynBQsS6V4ypl3s1k06+ujoLr7Ro32nWrwOGtpWdbVvoxVw9HFiln5FRc7PRUO3DZJ8e3tMz7ekyy6T5s9v2qCxUSfu8HvNG/RM805i4ULfQRuehS1p8fBHdO++X4l8ScY2/OzZfn+hgW7x7+Ud6t5s3nkB2OaVZ0srHPSJjOz+VtqM76T7pfjs2xweOehyXTjpnrzPbeGQJ/XJylV5b59TXV1eNQjRSQQDsW6c+T39fcnF7XvssWP9gLT2THXXu7cPcpFmEyWKABfQ3k47LfEwZk5JY5yrq32B01SHHtqqQ9ZWbdaP534rfcWee0oTJkTWpYqZS/QT7bXdM/r1fl/W84delLbdwcMfT8wUUc+eGljzvh81lUdaxePG/DEpLUpYamM5PqJVks6feI8unnK3fxJ0NoSPlnOkdujcKsuC40yalLTJpD6vaVDNhogTK/cdDGvWJNLYbWrMMbK2okIaOVKXTf2plm7/kF9Gw6F0ZPtbjkpHkKJflw81uNu7yQvNfJqgIBXAyB4pge66Ot251zf1/Tnf9aO3167V92bflPQZTOpni/gMN20XnH+2FAeZZomatSgVR9ro9CuuSASqPr/Tfbpi5//Jf2eFGhEXFXwG0CrhwFHMnOqqPg4eN0qDBql39UdaOeZPmt7/ZUlSTUUoUB9cW2srN2lin9eT9hPlj/tfrR/PvbHp2ME3/6pxv4t+TSjY3+wUhRHKsg28mT5dO/d9NXrQzMqV7VcPBa2Xkuo93xpcn59wr/64/9Xp68Nf1lu26IYZ39fAmvfTt4sSf22PHtLatUkztCRpdI+3NC/D7MBbZ/+X7pj7TY3v1fTZ0jXXJNXCbdN6GxEz1wB0PlVluQdtvnDYxWmzYBJXxoYG6ZRT8krfP6XvP5PbEfK1tz89JjqIZSZVlzOoFC00YIC0dq1i5lTf9X3VlH+aeduOXL+qS/vWyQOKhQAX0N7GjUsULo9ZY3KXyzXXpNe9WL487Ya2ucx82pM0S5ZIq1ZFjkiNmUukKLxvv69qz+3+rlE93s5+oHB6vqgv+fhxgjy51+9+u67Y+aeRuwrP4Nq44lQtGPJk4vnp43+jXfu94p9MmCBde626VzQ1OPJJRfTFXe6UFNQkO/jgyM6n/l0/yL6T4P00upjKso1eC1ww+Zca3G2DdMYZ0XXA0DFlC7CMHetna+aQV5HjFIuGPa5ZA5/3f2cDB6pX9cdJn8FEh21DQ8b8zj+a+y3NGficTw2YLRgX1MKJFPVZjgrEZ7J8eVKdv6l9X9V5k36V/41AoQJchU4dASBJ+Ls3Jpf0Gd/aGPH5i7gGrJtyV3TaQzOZJV9LI5Mghvd54YWJ0bdZg1O5BPvMFSTbu+FpNR5/UsuPg44hntJakhYuTEsPnCb4++hd/VEiwJtRHgMtMif3TBefMRZll36v6ODhj+vJQ4LZkfPnp99jxAeJFbpfbtw4ae+9C7xTAB3RwG4f6MlDLsm5XWot4cQAmW7d/LUozxSFOvdcqbxc39jjNt025zu6edYtPsgWv75mm6XeHlpZWgIdTDCItHvlp9q4cnXm7erq/N9xhtr2RTV+fHqJEqATaqfqkwCixFJvYysq0u8y27OwZEjMGrUly8wkU6N08cXS/ff7BmnPnsk1OyZOlO6+WxoyRPrPf6SNG5tmgkyYIF1yibR2bcY0heHRYDUVm5NmhCSCX6tX+2PGYqqpjckdf4Lsxm/lDnCZ6ZyJ92lTY7nqKj+WdpqTHOQLHs8e+LzeWpqhHleK6rLc+cATClj8HO0gW2CkosLX28tR7yOffPEDu27Qvz6OSEOQITBl5nxw69RT09NlVFdLn36qxfHAdsoMxYTDDpM++CD7LK3Ua9KyZfkXc12wIPO2+d4Ajh0r/eY3LSvqHP6/I8AFtKlwACh1QExSTc+gtl+8dlXYvEHPaFr/f6Qtj9sa6iDb6swHI94J1QwKX6+6d/epEM9RM0IGmbW4jhdKz047SdddJ1VVac8br9bPX90pZ3rC/l1SBkXNmdP0+KSTpPfekzYnzzzIKcv33jvLzswdUAtbtCh9WfCetuaRkjwvkydLjz3m69kC2DY0Nmp8r3/l3ixlsF9a7a5jjpG+/OWkRY8uukyL7jtRr24M1ZgfPlwaO1YnbXkw+fXxdv7ChU3pai8O0srlU8ewUEaMkN56y7dP0Pl07x69vLxcuv76jpkxJBbzA06BTo4AF1BEZn40yOOLLm3qoG7r6c2hgulh29VsULfyTXru/QGSpLLU9ImSD1oFqsu2+M6pcMHtDaGRpA0NvhBrba30+uvSnXdKhx/etH6AP07UyNjG407w99zr1kl//7t0++1JTeDK2BZpjz18x3dc6PeWqJMRUXNLUuKG/qLJ8Rzec6K3k08vJ0k6OyLQFYw0m97/JZ/O0GjIdkr5BEYuvVS6KD2FZ9z4Xv/SS4ddEL0y+Ntdf9QaHf/gUfr232f4ZVdcIW3alHF2lUnS5z8fPeJx1SrpS1/Kfd6pteGynF/iRnTgwPSOvj339EGotJMsQLfyuHH+fbYkrWc48EeAC2hT8dpZW4870QeD3ODEukQ9oHHjpCOP9I/r6nyb5K67JEn/PGJNdGpgKTRjuumaEpNLvz727Zv13FokOHaXPAYqoBMJvltn1L+oxw6+XFL2bAp9qoP6cFdckT6CO95+vidL7ZigU2zmgBea/s5Dac1T9a7+qOnJ6NFZzy2j4Htxc3hA2zHHtGxfkq8tumFDxxzBDqBt5FlXOjWQnvg2j7fV6+ulc87Rlb//iR7412jd+/o4Te7zmvp3+VCvbuwjd3xoMGFUf0m/fv5nbW16QL89A1yHHCL16tXqDDzoQEaPlp57Tho0SDr22MzbRQzcAtB+6O0BiihmjdK6dZr4uR6+A1dKb7AVooM4PFMiSI+Y6vUj12jpqIeSzi0trZpzunXWTerf5X2N6/Wv9HNLLepdV+cblEOH+iKZEXWCUtMVSKHd1tdHNmArYlulpUuTF4beY8ycH6UyfXraa5MPkOF5quHDE0Xmk8yfL02YoD8dcJV+NPfbHTv3MpqvVy//c/Dg7NtJ/qYqniYwQ8284d3fiVwe/rtJPIqnOAh/ZlauTHqZmcv8t7v99oUbQZ3PNWjJkvzzey9e7APg+d74mfk0Yy2ZzRqL+c/pvHmFuZYCSBL+VMVnOMXM+TpG4RSF8fZEaidTqE3S0G1D5o9psCK+fvseb2pG/Yu+o6G+viml3JQp/hpzQfKAgr7x4ENLOKfNx56kbhWb8tue9ESdU6Y2nnN6d/kZ2m/wU/55tg6u+GzqqNTGs2ZJgwbpWzNv03OHrvUzw6Pqa555ZvLzCy/0nW4tEcwQO3jYYzpm9B99bdBddmnZviT/nUtwC9i2zJ3rf2aqNRlcO9NmcJnz167Fi5OWnzvxXk3p82ri+c/mf0MvH3Z+8j7rUjJeTJ2aPJA2VXvOqqmp8YN34veRKH2nny5ddZUfzEoddaDDYgYXUERl5vyXZJYRmgXplM0z8BJOIVRmTqN7vtm08vzzpV/8Qku3f1j7D/0/f+52cfIOqqqkNWuaNVOiIpajdlVw7uEUhZGvCb1Hk/OdXJl+d7l+p/mef02NnymTIz1ds/aJjuPSS306odTAbSZDh0o33ND8/2uz/D6ju+4q/eUviVScY3q8Kdl2zTtWSwSfl9p4nbvWXpPmzm26GW4PUWmZABTcPz4MZk8NHepT8yxY4K+Jkk8H3BrBdTU+Q/u5Q9f65fX1frZ3nFny9eWzz/TqEWvUr/pDSXu1+PAVzanhledodpSYLIHLRKpAs+z1Luvr/ezqqHZF166+8yxXm3L0aH/fcN11/nmmmq4HH+yzJ8RfE6W2Vjr7bO14zTX6zuf+W9LU7McGgFQHHeTvuzMNCAyunakzuGLmfIA+4r4i3CcxIKom9oEHSh9+KD3+uH++fHl6uvawjpg2DqUjFpN69Cj2WQDIgQAXUESRKXOc028XfEmfbKnU25/USlaAm81co4kTI6uaGp5l1qgR3d/x6QB69vS1tILtelRm6egeNqxZpzax9+u6a/7XtPDeU7JuZ6HaF5H960mzYHJ0wOf6fbR0enm2/RLgKj3l5c1PaZHr/3mffdKXnX56Ws75XEGkD44+zdepy3Z92JojeJyv4IbxNwu+rE9GTpCGHBW9HbMWgG3LqlXSV29MPB3f63X/YOed/c+JE6Vrr5XOPFNnTPi1Fg55UlL/3PutqkofnR2Y2vdVLR315/zPccAADe62oXXpiZo7O5sAV+eUz3fc9dfnbgdkC4AV0rx5fkbF00/7Wd2ZhDMUMNMZQHPFYn5gSybB/Uh4BlfPyo80vd/LklLKCcTrAkaUMEhSUyOdeKL0xhs+nXum4NaKFT7QnzJLDADQ+dDjChRRLLW4qiQ5p9kDn9e+g/+mo0f/uTA3m/F0IxMmRK+PSB0QM9d0kx4fadoGKfhi5rRgyFPpK+I33MGIq3jwbfn2f4reUejcGp1l/72lpm5LHdVVXZ1cqyzf/4NsAYV3MqSnw7Zj3jzpgAPSl48Z42dISprc55+qjOWu81JbuUmVZTkCWP3z6EjOx/Tp0tixqj9uoYavXdrymZEAOpcJE2QjR0iS3jzqbD15yKXS8cdLc0J1LWtqpLVrVRFr1A51b0bvJ16TK+7aa6NHW0+dqrqqj3Xr7JvzP8faWl8PNJ+ahJnk2/aJ1yRtTQ0jdFyZ0vCG/z4KWX+jEN+pZWW+7Z+hlicAtLmIwa9vLztbXzrvnYzXudTZXgmheuCS/KzYbMG1adN8armWpnEFAJQMAlxAEeWaiSSpMDN/5s/3NbCOOy56fUTqgDJrlM4913e+x1/XFueWom/1B75GwamnBgt8yqMu5ZslSTfPuiX6hcG57NL3H9q34W/ZDzJmjHTJJU3PozrSMtQqy+qzLIGJsWObvz90LvX1OTusThr7oDYdm302Y9723NMH1Naubd1+Kiqk1aulmTOzb3fKKf7zetZZrTsegJITr7+lsWPT2wbhOkJR7YaZM307JS7TbKtMbZhc6urap4N/+nTpW9+i7kZnc+KJvmZW1ACVYqGQPYBS0bOndNVVSZliYnLRNbOC+6SFQ57Unts9K02e3LRu/nw/I6u5GIAHANsEUhQCxRB08ESmKExViEZZLJY9PUmmGVxDh0pnnNH642cydqz0zDOJpxdPvlvnTfylNGqRT1EU3+aww3T9p7fr4sm/yLyv4Pf08EFXBs8zFLqN69ev6XGuQF2+/wfZUiANHOjzjNPxte3Klrs79W8w37+5bDnlKyqkfffNbz+FMGqUdNllwZPX2++4AIoukUY407Xr4IOlu+4qbJCgvWr5kX512zZpkv+XSRtkN8hp1Chfl7OZacFzKsZ7AdD59eihJcMf0YefVemXr41vGhSTKmhDzBr4vGYNfF5SKMC1++7MRgUAZESACyiiHpWf5N6oPUYdde8uKTnAVZahPlhBnXaaHxkbGNXjbVWXp9SuMJNmz1av229Xr+osReqnT5cefDD/Y4cDCrlqc+QKgC1YIL30UnIdgyiZCoGjczv1VP/3kW0WX2oHaj6f++uu6/ijEjv6+QEoiMQnPdNnft48aa+9Mq9vbhCpV6/2q6kxcqT0yivJA2OAuLb6nss2gMVMWrmyfY8JAK1w8PDHdfDwx7NvlO0alG2gIABgm0eACyiGXXfVi4ddoGGzI0ZepgaR2qODuKZGWrNGjQc+n1gUObKq0AGu0Hv7aOUp6lL2WdryvC1Z4msO/fjH+b+mrk765JPMdRXq6qQNG3xqmmzC9bqAVDvu6P9l09Dg/732Wv77jc9yBIAiiX9dJ9oM2QaEZPtu37Il87oobZAiOaP99/fpV1NrfwBtqRjBJgJcANrDfvtFL09Nvzptmv8O3ryZ2VsAgKyowQUUQ58+GnHzxYodF1GIvFjpQYYNU2PTGGz1rtqYvk0bBt+6ln/WtLtcI7mXLk1fVlEhjR/fvHO7/HJfeD7TtmvWSMuW+ZHnQFuKxaQLLsi9HemDAHRApuDalGtGdCY77+x/jhlTmBMqpKoqadYsX0cESFXo7+UxY3y7dMSIwu43m3i6z/ZK+wlg27Xnnj5oFSUc4Lr0UmmnnXwN4yFD2ufcAAAlixlcQLFkmn2ReqPcjrUf4sVf3fEnRG/QrVv7nMjIkZnXLVok7bFH9LrwiO58RqHm2qZnT5/vG2gP4UBrXV30Nlu3ts+5FAopCoFtgpmTTjih5Z/5ESOkK6/MPwUR1xZ0FPPmSf/7v9I++xRmf6ef7r/rWxosbonFi6WDDmrfYwLYNmXLQBG+N+/bt+3PBQDQadCKBTqarl2Tnw8Y0G6H3upydBgtWSJt2iQ9+aR/XogUQd26SRuD2WLnn+/3ma1WVbab73AwkM4vlKLPf1569FE/ujHKkCHS3/8u1da273k1kxOfP2BbYI0+6B6TkyZPzrF1DpkC+2E77CA9+2zrjwUUyoAB0g03FC5tpllxAk0EtwAUm5l00kl+wC/38gCAZqAlC3Q0M2ZIL73kO3FGjWrXlDjbdX0v+wbdu0urVvlR2lJhbobPOEO6+24/MyufAu7ZGruZamkBpWLkyOwzGBcs8NeEDl4LhkyKwDYimFXabv1QJ57oA1zhlMRAsbVnTTgA6Mw6+D0OAKBjIsAFdDQVFdJxxxXl0GdNuF8njf29fzJ0aO4XFKLY66BBvsMqX9k6Ebp39/vq3r315wV0RJWV0pw5xT6LnLY6OvuAbcIRR0gXS3b08vY5XnW1NGlS+xwLAAAUFjOzAABtgAAXgISymFNt5SZfA+OMMzJveO21Ph1gRxyxSscXUHQEuIBtQ8XwBs2YIVXtNqXYpwIAADq6jth/AAAoeQS4AKTbYYfss7NqatrvXFIx6gvo8HLW8wPQKZhJDz5Y7LMAAAAlYcSIYp8BAKATIsAFoLSUlRX7DADksKWRzykAAAAASVdcIa1f7wfSAgBQYMwPBpCuI6YOiDeGd9yxuOcBIKfN8QAXMy4BAACAbVvv3tKECcU+CwBAJ8UMLgClYfVqafNmqaqq2GcCIIfNW2leAAAAAAAAoG11wGkaAIquI866MCO4BZSIzY0EuAAAAAAAANC2CHABaDJokP85cWJRTwNAafuMGlwAAAAAAABoYwyxBtDknHOkt96SGhqKfSYASthmAlwAAAAAAABoYwS4ADSpqpIGDy72WQAocdTgAgAAAAAAQFujBwoAABTUkhGPqEflJ8U+DQAAAAAAAHRi1OACAAAFddqOD+gX+3yt2KcBAAAAAACATixngMvMGszsATN7xsyeNrPVwfJeZna/mb0Q/KwLlpuZXWdmL5rZk2Y2ObSv5cH2L5jZ8rZ7WwAAAAAAAAAAAOis8pnBtUXSWc65sZKmSVplZmMlrZH0G+fcKEm/CZ5L0j6SRgX/jpd0g+QDYpLWStpV0i6S1saDYgAAoBNqbCz2GQAAAAAAAKCTyhngcs694Zx7LHj8oaRnJW0n6QBJtwSb3SLpwODxAZJudd5DknqaWb2k+ZLud86965zbIOl+SXsX8s0AAIAOZOvWYp8BAAAAAAAAOqlm1eAys6GSJkl6WFJ/59wbwao3JfUPHm8n6bXQy14PlmVannqM483sETN75N///ndzTg8AAHQkzOACAAAAAABAG8k7wGVm3STdKel059wH4XXOOSfJFeKEnHM3OuemOuem9u3btxC7BAAAxcAMLgAAAAAAALSRvAJcZlYhH9y6zTn3k2DxW0HqQQU/3w6Wr5fUEHr5oGBZpuUAAKAzIsAFAAAAAACANpIzwGVmJum7kp51zl0bWvVzScuDx8sl/Sy0fJl50yS9H6QyvFfSPDOrM7M6SfOCZQAAoDPZf3+ppkbaa69inwkAAAAAAAA6qfI8ttld0lJJT5nZE8Gy8yVdKelHZnaMpFclLQnW3SNpX0kvSvpY0gpJcs69a2aXSvprsN0XnHPvFuJNAACADmS//aR995XMin0mAAAAAAAA6KTMl8/qmKZOneoeeeSRYp8GAAAAAAAAAAAA2pmZPeqcmxq1Lq8aXAAAAAAAAAAAAEBHQYALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSQoALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSYs65Yp9DRmb2b0mvFvs8SkwfSe8U+yQAbLO4BgEoJq5BAIqN6xCAYuIaBKCYuAahrQxxzvWNWtGhA1xoPjN7xDk3tdjnAWDbxDUIQDFxDQJQbFyHABQT1yAAxcQ1CMVAikIAAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuDqfG4t9AgC2aVyDABQT1yAAxcZ1CEAxcQ0CUExcg9DuqMEFAAAAAAAAAACAksIMLgAAAAAAAAAAAJQUAlydhJntbWbPmdmLZram2OcDoPMws1fM7Ckze8LMHgmW9TKz+83sheBnXbDczOy64Fr0pJlNDu1nebD9C2a2vFjvB0DHZ2Y3mdnbZva30LKCXXfMbEpwXXsxeK217zsE0JFluAatM7P1QXvoCTPbN7TuvOB68pyZzQ8tj7xHM7NhZvZwsPyHZlbZfu8OQEdnZg1m9oCZPWNmT5vZ6mA5bSEAbS7LNYi2EDokAlydgJmVSfq6pH0kjZV0uJmNLe5ZAehkZjvnJjrnpgbP10j6jXNulKTfBM8lfx0aFfw7XtINkr8Zk7RW0q6SdpG0Nn5DBgARbpa0d8qyQl53bpB0XOh1qccCsG27WdHXhS8H7aGJzrl7JCm47zpM0rjgNd8ws7Ic92hfDPY1UtIGSce06bsBUGq2SDrLOTdW0jRJq4LrB20hAO0h0zVIoi2EDogAV+ewi6QXnXMvO+c2S7pd0gFFPicAndsBkm4JHt8i6cDQ8lud95CknmZWL2m+pPudc+865zZIul/cRAHIwDn3oKR3UxYX5LoTrOvunHvI+WK0t4b2BQCZrkGZHCDpdufcJufcPyS9KH9/FnmPFsySmCPpjuD14esZAMg594Zz7rHg8YeSnpW0nWgLAWgHWa5BmdAWQlER4OoctpP0Wuj568p+4QGA5nCS7jOzR83s+GBZf+fcG8HjNyX1Dx5nuh5xnQLQWoW67mwXPE5dDgC5nBKk/7opNAuiudeg3pLec85tSVkOAGnMbKikSZIeFm0hAO0s5Rok0RZCB0SACwCQyx7Oucny08pXmdnM8Mpg1J8rypkB2CZx3QFQBDdIGiFpoqQ3JH2pqGcDoNMzs26S7pR0unPug/A62kIA2lrENYi2EDokAlydw3pJDaHng4JlANBqzrn1wc+3Jf2P/DTzt4LUFgp+vh1snul6xHUKQGsV6rqzPnicuhwAMnLOveWc2+qca5T0bfn2kNT8a9B/5NOHlacsB4AEM6uQ71i+zTn3k2AxbSEA7SLqGkRbCB0VAa7O4a+SRpnZMDOrlC/s9/MinxOATsDMasysNv5Y0jxJf5O/xiwPNlsu6WfB459LWmbeNEnvB2k07pU0z8zqgmns84JlAJCvglx3gnUfmNm0IP/7stC+ACBSvFM5cJB8e0jy16DDzKzKzIZJGiXpL8pwjxbMunhA0iHB68PXMwBQ0D75rqRnnXPXhlbRFgLQ5jJdg2gLoaMqz70JOjrn3BYzO0W+8VIm6Sbn3NNFPi0AnUN/Sf/j2zcql/R959yvzOyvkn5kZsdIelXSkmD7eyTtK19U9GNJKyTJOfeumV0q38CRpC845/It3g5gG2NmP5A0S1IfM3td0lpJV6pw152TJd0sqYukXwb/AEBSxmvQLDObKJ8S7BVJJ0iSc+5pM/uRpGckbZG0yjm3NdhPpnu0cyXdbmaXSXpcvhMJAOJ2l7RU0lNm9kSw7HzRFgLQPjJdgw6nLYSOyHzQFAAAAAAAAAAAACgNpCgEAAAAAAAAAABASSHABQAAAAAAAAAAgJJCgAsAAAAAAAAAAAAlhQAXAAAAAAAAAAAASgoBLgAAAAAAAAAAAJQUAlwAAAAA0Axm1tvMngj+vWlm64PHG83sG2143Flmtltb7R8AAAAASkl5sU8AAAAAAEqJc+4/kiZKkpmtk7TROXdNOxx6lqSNkv7UDscCAAAAgA6NGVwAAAAAUADBDKu7g8frzOwWM/uDmb1qZovM7Coze8rMfmVmFcF2U8zs92b2qJnda2b1wfLTzOwZM3vSzG43s6GSTpR0RjBbbIaZLTSzh83scTP7tZn1b+axXwkt/4uZjSzKLw4AAAAAWoAAFwAAAAC0jRGS5kjaX9L3JD3gnBsv6RNJ+wWBpuslHeKcmyLpJkmXB69dI2mSc26CpBOdc69I+qakLzvnJjrn/iDpj5KmOecmSbpd0jn5Hju03fvB8q9J+kqB3z8AAAAAtBlSFAIAAABA2/ilc+4zM3tKUpmkXwXLn5I0VNJoSTtKut/MFGzzRrDNk5JuM7OfSvpphv0PkvTDYNZXpaR/NOPYcT8I/fxys98hAAAAABQJM7gAAAAAoG1skiTnXKOkz5xzLljeKD/Y0CQ9HczImuicG++cmxdss5+kr0uaLOmvZhY1OPF6SV8LZmCdIKm6GceOcxkeAwAAAECHRoALAAAAAIrjOUl9zWy6JJlZhZmNM7OYpAbn3AOSzpXUQ1I3SR9Kqg29voek9cHj5S08h0NDP//cwn0AAAAAQLsjRSEAAAAAFIFzbrOZHSLpOjPrIX9/9hVJz0v6XrDMJF3nnHvPzO6SdIeZHSDpVEnrJP3YzDZI+q2kYS04jToze1J+xtfhrX1PAAAAANBerClTBQAAAABgW2Fmr0ia6px7p9jnAgAAAADNRYpCAAAAAAAAAAAAlBRmcAEAAAAAAAAAAKCkMIMLAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpPx/Taa0BNrWmiUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(30,8))\n", + "plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(Y_pred, color = 'blue', linewidth=1)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE: 2.0572089029888656 %\n" + ] + } + ], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle effectuée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "f8f3967282314d3995245835bdaa8418", + "translation_date": "2025-09-04T01:52:37+00:00", + "source_file": "7-TimeSeries/3-SVR/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/3-SVR/working/notebook.ipynb b/translations/fr/7-TimeSeries/3-SVR/working/notebook.ipynb new file mode 100644 index 000000000..16e24ecc4 --- /dev/null +++ b/translations/fr/7-TimeSeries/3-SVR/working/notebook.ipynb @@ -0,0 +1,697 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dans ce carnet, nous montrons comment :\n", + "\n", + "- préparer des données de séries temporelles 2D pour entraîner un modèle de régression SVM \n", + "- implémenter un SVR en utilisant le noyau RBF \n", + "- évaluer le modèle à l'aide de graphiques et de la MAPE \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importation des modules\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### Charger les données\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                      load
                      2012-01-01 00:00:002698.0
                      2012-01-01 01:00:002558.0
                      2012-01-01 02:00:002444.0
                      2012-01-01 03:00:002402.0
                      2012-01-01 04:00:002403.0
                      \n", + "
                      " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Maintenant, vous devez préparer les données pour l'entraînement en effectuant le filtrage et la mise à l'échelle de vos données.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mettez les données à l'échelle pour qu'elles soient dans la plage (0, 1).\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [ + "### Création de données avec des pas de temps\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "Pour notre SVR, nous transformons les données d'entrée pour qu'elles soient de la forme `[batch, timesteps]`. Ainsi, nous remodelons les `train_data` et `test_data` existants de manière à ajouter une nouvelle dimension qui correspond aux timesteps. Pour notre exemple, nous prenons `timesteps = 5`. Ainsi, les entrées du modèle sont les données des 4 premiers timesteps, et la sortie sera les données du 5ème timestep.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [], + "source": [ + "x_train, y_train = None\n", + "x_test, y_test = None\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [], + "source": [ + "# Fit model on training data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "### Faire une prédiction de modèle\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = None\n", + "y_test_pred = None" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = None\n", + "test_timestamps = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(25,6))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(10,3))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "## Prédiction de l'ensemble des données\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [], + "source": [ + "# Extracting load values as numpy array\n", + "data = None\n", + "\n", + "# Scaling\n", + "data = None\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=None\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = None, None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = None\n", + "Y = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(30,8))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "e86ce102239a14c44585623b9b924a74", + "translation_date": "2025-09-04T01:55:19+00:00", + "source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/fr/7-TimeSeries/README.md b/translations/fr/7-TimeSeries/README.md new file mode 100644 index 000000000..c09cf96d6 --- /dev/null +++ b/translations/fr/7-TimeSeries/README.md @@ -0,0 +1,37 @@ + +# Introduction à la prévision des séries temporelles + +Qu'est-ce que la prévision des séries temporelles ? Il s'agit de prédire des événements futurs en analysant les tendances du passé. + +## Sujet régional : consommation mondiale d'électricité ✨ + +Dans ces deux leçons, vous serez initié à la prévision des séries temporelles, un domaine de l'apprentissage automatique un peu moins connu mais néanmoins extrêmement précieux pour les applications industrielles et commerciales, entre autres. Bien que les réseaux neuronaux puissent être utilisés pour améliorer l'efficacité de ces modèles, nous les étudierons dans le contexte de l'apprentissage automatique classique, car ces modèles aident à prédire les performances futures en se basant sur le passé. + +Notre sujet régional est la consommation électrique dans le monde, un ensemble de données intéressant pour apprendre à prévoir la consommation future d'énergie en fonction des schémas de charge passés. Vous pouvez constater à quel point ce type de prévision peut être extrêmement utile dans un environnement commercial. + +![réseau électrique](../../../translated_images/electric-grid.0c21d5214db09ffae93c06a87ca2abbb9ba7475ef815129c5b423d7f9a7cf136.fr.jpg) + +Photo de [Peddi Sai hrithik](https://unsplash.com/@shutter_log?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) de pylônes électriques sur une route au Rajasthan sur [Unsplash](https://unsplash.com/s/photos/electric-india?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) + +## Leçons + +1. [Introduction à la prévision des séries temporelles](1-Introduction/README.md) +2. [Construction de modèles ARIMA pour les séries temporelles](2-ARIMA/README.md) +3. [Construction d'un Support Vector Regressor pour la prévision des séries temporelles](3-SVR/README.md) + +## Crédits + +"L'introduction à la prévision des séries temporelles" a été écrite avec ⚡️ par [Francesca Lazzeri](https://twitter.com/frlazzeri) et [Jen Looper](https://twitter.com/jenlooper). Les notebooks sont apparus pour la première fois en ligne dans le [repo Azure "Deep Learning For Time Series"](https://github.com/Azure/DeepLearningForTimeSeriesForecasting) initialement rédigé par Francesca Lazzeri. La leçon sur le SVR a été écrite par [Anirban Mukherjee](https://github.com/AnirbanMukherjeeXD). + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/1-QLearning/README.md b/translations/fr/8-Reinforcement/1-QLearning/README.md new file mode 100644 index 000000000..70e411c43 --- /dev/null +++ b/translations/fr/8-Reinforcement/1-QLearning/README.md @@ -0,0 +1,256 @@ + +# Introduction à l'apprentissage par renforcement et au Q-Learning + +![Résumé du renforcement dans l'apprentissage automatique sous forme de sketchnote](../../../../translated_images/ml-reinforcement.94024374d63348dbb3571c343ca7ddabef72adac0b8086d47164b769ba3a8a1d.fr.png) +> Sketchnote par [Tomomi Imura](https://www.twitter.com/girlie_mac) + +L'apprentissage par renforcement repose sur trois concepts importants : l'agent, des états, et un ensemble d'actions par état. En exécutant une action dans un état donné, l'agent reçoit une récompense. Imaginez à nouveau le jeu vidéo Super Mario. Vous êtes Mario, dans un niveau de jeu, debout près du bord d'une falaise. Au-dessus de vous se trouve une pièce. Vous, étant Mario, dans un niveau de jeu, à une position spécifique... c'est votre état. Faire un pas vers la droite (une action) vous ferait tomber dans le vide, ce qui vous donnerait un score numérique faible. Cependant, appuyer sur le bouton de saut vous permettrait de marquer un point et de rester en vie. C'est un résultat positif qui devrait vous attribuer un score numérique positif. + +En utilisant l'apprentissage par renforcement et un simulateur (le jeu), vous pouvez apprendre à jouer au jeu pour maximiser la récompense, c'est-à-dire rester en vie et marquer autant de points que possible. + +[![Introduction à l'apprentissage par renforcement](https://img.youtube.com/vi/lDq_en8RNOo/0.jpg)](https://www.youtube.com/watch?v=lDq_en8RNOo) + +> 🎥 Cliquez sur l'image ci-dessus pour écouter Dmitry parler de l'apprentissage par renforcement + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/45/) + +## Prérequis et configuration + +Dans cette leçon, nous allons expérimenter avec du code en Python. Vous devriez être en mesure d'exécuter le code du Jupyter Notebook de cette leçon, soit sur votre ordinateur, soit dans le cloud. + +Vous pouvez ouvrir [le notebook de la leçon](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/notebook.ipynb) et suivre cette leçon pour construire. + +> **Note :** Si vous ouvrez ce code depuis le cloud, vous devez également récupérer le fichier [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py), qui est utilisé dans le code du notebook. Ajoutez-le au même répertoire que le notebook. + +## Introduction + +Dans cette leçon, nous allons explorer le monde de **[Pierre et le Loup](https://fr.wikipedia.org/wiki/Pierre_et_le_Loup)**, inspiré d'un conte musical du compositeur russe [Sergei Prokofiev](https://fr.wikipedia.org/wiki/Sergei_Prokofiev). Nous utiliserons **l'apprentissage par renforcement** pour permettre à Pierre d'explorer son environnement, de collecter de délicieuses pommes et d'éviter de rencontrer le loup. + +**L'apprentissage par renforcement** (RL) est une technique d'apprentissage qui nous permet d'apprendre un comportement optimal d'un **agent** dans un **environnement** en réalisant de nombreuses expériences. Un agent dans cet environnement doit avoir un **objectif**, défini par une **fonction de récompense**. + +## L'environnement + +Pour simplifier, considérons le monde de Pierre comme un plateau carré de taille `largeur` x `hauteur`, comme ceci : + +![Environnement de Pierre](../../../../translated_images/environment.40ba3cb66256c93fa7e92f6f7214e1d1f588aafa97d266c11d108c5c5d101b6c.fr.png) + +Chaque case de ce plateau peut être : + +* **sol**, sur lequel Pierre et d'autres créatures peuvent marcher. +* **eau**, sur laquelle il est évidemment impossible de marcher. +* un **arbre** ou de l'**herbe**, un endroit où l'on peut se reposer. +* une **pomme**, que Pierre serait ravi de trouver pour se nourrir. +* un **loup**, qui est dangereux et doit être évité. + +Il existe un module Python séparé, [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py), qui contient le code pour travailler avec cet environnement. Comme ce code n'est pas essentiel pour comprendre nos concepts, nous allons importer le module et l'utiliser pour créer le plateau d'exemple (bloc de code 1) : + +```python +from rlboard import * + +width, height = 8,8 +m = Board(width,height) +m.randomize(seed=13) +m.plot() +``` + +Ce code devrait afficher une image de l'environnement similaire à celle ci-dessus. + +## Actions et politique + +Dans notre exemple, l'objectif de Pierre serait de trouver une pomme tout en évitant le loup et les autres obstacles. Pour ce faire, il peut essentiellement se déplacer jusqu'à ce qu'il trouve une pomme. + +Ainsi, à n'importe quelle position, il peut choisir entre l'une des actions suivantes : haut, bas, gauche et droite. + +Nous allons définir ces actions sous forme de dictionnaire et les associer à des paires de changements de coordonnées correspondants. Par exemple, se déplacer à droite (`R`) correspondrait à une paire `(1,0)`. (bloc de code 2) : + +```python +actions = { "U" : (0,-1), "D" : (0,1), "L" : (-1,0), "R" : (1,0) } +action_idx = { a : i for i,a in enumerate(actions.keys()) } +``` + +Pour résumer, la stratégie et l'objectif de ce scénario sont les suivants : + +- **La stratégie** de notre agent (Pierre) est définie par ce qu'on appelle une **politique**. Une politique est une fonction qui retourne l'action à effectuer dans un état donné. Dans notre cas, l'état du problème est représenté par le plateau, y compris la position actuelle du joueur. + +- **L'objectif** de l'apprentissage par renforcement est d'apprendre une bonne politique qui nous permettra de résoudre le problème efficacement. Cependant, comme point de départ, considérons la politique la plus simple appelée **marche aléatoire**. + +## Marche aléatoire + +Résolvons d'abord notre problème en implémentant une stratégie de marche aléatoire. Avec la marche aléatoire, nous choisirons aléatoirement la prochaine action parmi les actions autorisées, jusqu'à ce que nous atteignions la pomme (bloc de code 3). + +1. Implémentez la marche aléatoire avec le code ci-dessous : + + ```python + def random_policy(m): + return random.choice(list(actions)) + + def walk(m,policy,start_position=None): + n = 0 # number of steps + # set initial position + if start_position: + m.human = start_position + else: + m.random_start() + while True: + if m.at() == Board.Cell.apple: + return n # success! + if m.at() in [Board.Cell.wolf, Board.Cell.water]: + return -1 # eaten by wolf or drowned + while True: + a = actions[policy(m)] + new_pos = m.move_pos(m.human,a) + if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water: + m.move(a) # do the actual move + break + n+=1 + + walk(m,random_policy) + ``` + + L'appel à `walk` devrait retourner la longueur du chemin correspondant, qui peut varier d'une exécution à l'autre. + +1. Exécutez l'expérience de marche plusieurs fois (disons, 100), et affichez les statistiques résultantes (bloc de code 4) : + + ```python + def print_statistics(policy): + s,w,n = 0,0,0 + for _ in range(100): + z = walk(m,policy) + if z<0: + w+=1 + else: + s += z + n += 1 + print(f"Average path length = {s/n}, eaten by wolf: {w} times") + + print_statistics(random_policy) + ``` + + Notez que la longueur moyenne d'un chemin est d'environ 30-40 étapes, ce qui est assez élevé, étant donné que la distance moyenne jusqu'à la pomme la plus proche est d'environ 5-6 étapes. + + Vous pouvez également voir à quoi ressemble le mouvement de Pierre pendant la marche aléatoire : + + ![Marche aléatoire de Pierre](../../../../8-Reinforcement/1-QLearning/images/random_walk.gif) + +## Fonction de récompense + +Pour rendre notre politique plus intelligente, nous devons comprendre quels mouvements sont "meilleurs" que d'autres. Pour ce faire, nous devons définir notre objectif. + +L'objectif peut être défini en termes de **fonction de récompense**, qui retournera une valeur de score pour chaque état. Plus le nombre est élevé, meilleure est la fonction de récompense. (bloc de code 5) + +```python +move_reward = -0.1 +goal_reward = 10 +end_reward = -10 + +def reward(m,pos=None): + pos = pos or m.human + if not m.is_valid(pos): + return end_reward + x = m.at(pos) + if x==Board.Cell.water or x == Board.Cell.wolf: + return end_reward + if x==Board.Cell.apple: + return goal_reward + return move_reward +``` + +Un aspect intéressant des fonctions de récompense est que dans la plupart des cas, *nous ne recevons une récompense substantielle qu'à la fin du jeu*. Cela signifie que notre algorithme doit d'une certaine manière se souvenir des "bons" pas qui mènent à une récompense positive à la fin, et augmenter leur importance. De même, tous les mouvements qui mènent à de mauvais résultats doivent être découragés. + +## Q-Learning + +L'algorithme que nous allons discuter ici s'appelle **Q-Learning**. Dans cet algorithme, la politique est définie par une fonction (ou une structure de données) appelée **Q-Table**. Elle enregistre la "qualité" de chaque action dans un état donné. + +On l'appelle Q-Table car il est souvent pratique de la représenter sous forme de tableau ou de tableau multidimensionnel. Étant donné que notre plateau a des dimensions `largeur` x `hauteur`, nous pouvons représenter la Q-Table à l'aide d'un tableau numpy de forme `largeur` x `hauteur` x `len(actions)` : (bloc de code 6) + +```python +Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions) +``` + +Notez que nous initialisons toutes les valeurs de la Q-Table avec une valeur égale, dans notre cas - 0.25. Cela correspond à la politique de "marche aléatoire", car tous les mouvements dans chaque état sont également bons. Nous pouvons passer la Q-Table à la fonction `plot` afin de visualiser la table sur le plateau : `m.plot(Q)`. + +![Environnement de Pierre](../../../../translated_images/env_init.04e8f26d2d60089e128f21d22e5fef57d580e559f0d5937b06c689e5e7cdd438.fr.png) + +Au centre de chaque case, il y a une "flèche" qui indique la direction préférée du mouvement. Étant donné que toutes les directions sont égales, un point est affiché. + +Nous devons maintenant exécuter la simulation, explorer notre environnement, et apprendre une meilleure distribution des valeurs de la Q-Table, ce qui nous permettra de trouver le chemin vers la pomme beaucoup plus rapidement. + +## Essence du Q-Learning : Équation de Bellman + +Une fois que nous commençons à nous déplacer, chaque action aura une récompense correspondante, c'est-à-dire que nous pourrions théoriquement sélectionner la prochaine action en fonction de la récompense immédiate la plus élevée. Cependant, dans la plupart des états, le mouvement n'atteindra pas notre objectif de trouver la pomme, et nous ne pouvons donc pas immédiatement décider quelle direction est meilleure. + +> Rappelez-vous que ce n'est pas le résultat immédiat qui compte, mais plutôt le résultat final, que nous obtiendrons à la fin de la simulation. + +Pour tenir compte de cette récompense différée, nous devons utiliser les principes de la **[programmation dynamique](https://fr.wikipedia.org/wiki/Programmation_dynamique)**, qui nous permettent de réfléchir à notre problème de manière récursive. + +Supposons que nous sommes maintenant dans l'état *s*, et que nous voulons passer à l'état suivant *s'*. En le faisant, nous recevrons la récompense immédiate *r(s,a)*, définie par la fonction de récompense, plus une certaine récompense future. Si nous supposons que notre Q-Table reflète correctement l'"attractivité" de chaque action, alors dans l'état *s'*, nous choisirons une action *a* qui correspond à la valeur maximale de *Q(s',a')*. Ainsi, la meilleure récompense future possible que nous pourrions obtenir dans l'état *s* sera définie comme `max` + +## Vérification de la politique + +Étant donné que la Q-Table liste l'"attractivité" de chaque action dans chaque état, il est assez facile de l'utiliser pour définir une navigation efficace dans notre monde. Dans le cas le plus simple, nous pouvons sélectionner l'action correspondant à la valeur la plus élevée de la Q-Table : (bloc de code 9) + +```python +def qpolicy_strict(m): + x,y = m.human + v = probs(Q[x,y]) + a = list(actions)[np.argmax(v)] + return a + +walk(m,qpolicy_strict) +``` + +> Si vous essayez le code ci-dessus plusieurs fois, vous remarquerez peut-être qu'il "bloque" parfois, et vous devez appuyer sur le bouton STOP dans le notebook pour l'interrompre. Cela se produit parce qu'il peut y avoir des situations où deux états "pointent" l'un vers l'autre en termes de valeur Q optimale, ce qui amène l'agent à se déplacer indéfiniment entre ces états. + +## 🚀Défi + +> **Tâche 1 :** Modifiez la fonction `walk` pour limiter la longueur maximale du chemin à un certain nombre de pas (par exemple, 100), et observez le code ci-dessus retourner cette valeur de temps en temps. + +> **Tâche 2 :** Modifiez la fonction `walk` afin qu'elle ne retourne pas aux endroits où elle est déjà passée auparavant. Cela empêchera `walk` de boucler, cependant, l'agent peut toujours se retrouver "piégé" dans un endroit dont il ne peut pas s'échapper. + +## Navigation + +Une meilleure politique de navigation serait celle que nous avons utilisée pendant l'entraînement, qui combine exploitation et exploration. Dans cette politique, nous sélectionnerons chaque action avec une certaine probabilité, proportionnelle aux valeurs dans la Q-Table. Cette stratégie peut encore amener l'agent à retourner à une position qu'il a déjà explorée, mais, comme vous pouvez le voir dans le code ci-dessous, elle aboutit à un chemin moyen très court vers l'emplacement souhaité (rappelez-vous que `print_statistics` exécute la simulation 100 fois) : (bloc de code 10) + +```python +def qpolicy(m): + x,y = m.human + v = probs(Q[x,y]) + a = random.choices(list(actions),weights=v)[0] + return a + +print_statistics(qpolicy) +``` + +Après avoir exécuté ce code, vous devriez obtenir une longueur moyenne de chemin beaucoup plus petite qu'auparavant, dans une plage de 3 à 6. + +## Étudier le processus d'apprentissage + +Comme nous l'avons mentionné, le processus d'apprentissage est un équilibre entre l'exploration et l'exploitation des connaissances acquises sur la structure de l'espace problème. Nous avons vu que les résultats de l'apprentissage (la capacité à aider un agent à trouver un chemin court vers l'objectif) se sont améliorés, mais il est également intéressant d'observer comment la longueur moyenne du chemin évolue pendant le processus d'apprentissage : + +## Les apprentissages peuvent être résumés comme suit : + +- **La longueur moyenne du chemin augmente**. Ce que nous observons ici, c'est qu'au début, la longueur moyenne du chemin augmente. Cela est probablement dû au fait que lorsque nous ne savons rien de l'environnement, nous sommes susceptibles de nous retrouver piégés dans des états défavorables, comme l'eau ou le loup. À mesure que nous apprenons davantage et commençons à utiliser ces connaissances, nous pouvons explorer l'environnement plus longtemps, mais nous ne savons toujours pas très bien où se trouvent les pommes. + +- **La longueur du chemin diminue à mesure que nous apprenons davantage**. Une fois que nous avons suffisamment appris, il devient plus facile pour l'agent d'atteindre l'objectif, et la longueur du chemin commence à diminuer. Cependant, nous restons ouverts à l'exploration, ce qui nous amène souvent à nous éloigner du meilleur chemin et à explorer de nouvelles options, rendant le chemin plus long que l'optimal. + +- **Augmentation brusque de la longueur**. Ce que nous observons également sur ce graphique, c'est qu'à un certain moment, la longueur a augmenté brusquement. Cela indique la nature stochastique du processus, et qu'à un moment donné, nous pouvons "altérer" les coefficients de la Q-Table en les remplaçant par de nouvelles valeurs. Cela devrait idéalement être minimisé en diminuant le taux d'apprentissage (par exemple, vers la fin de l'entraînement, nous ajustons les valeurs de la Q-Table uniquement par une petite valeur). + +Dans l'ensemble, il est important de se rappeler que le succès et la qualité du processus d'apprentissage dépendent significativement des paramètres, tels que le taux d'apprentissage, la décroissance du taux d'apprentissage et le facteur de réduction. Ceux-ci sont souvent appelés **hyperparamètres**, pour les distinguer des **paramètres**, que nous optimisons pendant l'entraînement (par exemple, les coefficients de la Q-Table). Le processus de recherche des meilleures valeurs d'hyperparamètres est appelé **optimisation des hyperparamètres**, et il mérite un sujet à part entière. + +## [Quiz post-lecture](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/46/) + +## Devoir +[Un monde plus réaliste](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle effectuée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/1-QLearning/assignment.md b/translations/fr/8-Reinforcement/1-QLearning/assignment.md new file mode 100644 index 000000000..a49777040 --- /dev/null +++ b/translations/fr/8-Reinforcement/1-QLearning/assignment.md @@ -0,0 +1,41 @@ + +# Un monde plus réaliste + +Dans notre situation, Peter pouvait se déplacer presque sans se fatiguer ni avoir faim. Dans un monde plus réaliste, il doit s'asseoir et se reposer de temps en temps, et aussi se nourrir. Rendons notre monde plus réaliste en appliquant les règles suivantes : + +1. En se déplaçant d'un endroit à un autre, Peter perd de **l'énergie** et accumule de la **fatigue**. +2. Peter peut récupérer de l'énergie en mangeant des pommes. +3. Peter peut se débarrasser de la fatigue en se reposant sous un arbre ou sur l'herbe (c'est-à-dire en marchant vers une case contenant un arbre ou de l'herbe - champ vert). +4. Peter doit trouver et tuer le loup. +5. Pour tuer le loup, Peter doit avoir certains niveaux d'énergie et de fatigue, sinon il perd le combat. + +## Instructions + +Utilisez le [notebook.ipynb](notebook.ipynb) original comme point de départ pour votre solution. + +Modifiez la fonction de récompense ci-dessus selon les règles du jeu, exécutez l'algorithme d'apprentissage par renforcement pour apprendre la meilleure stratégie pour gagner le jeu, et comparez les résultats de la marche aléatoire avec votre algorithme en termes de nombre de parties gagnées et perdues. + +> **Note** : Dans votre nouveau monde, l'état est plus complexe et inclut, en plus de la position de l'humain, les niveaux de fatigue et d'énergie. Vous pouvez choisir de représenter l'état comme un tuple (Plateau, énergie, fatigue), ou définir une classe pour l'état (vous pouvez également envisager de la dériver de `Board`), ou même modifier la classe `Board` originale dans [rlboard.py](../../../../8-Reinforcement/1-QLearning/rlboard.py). + +Dans votre solution, veuillez conserver le code responsable de la stratégie de marche aléatoire et comparer les résultats de votre algorithme avec la marche aléatoire à la fin. + +> **Note** : Vous devrez peut-être ajuster les hyperparamètres pour que cela fonctionne, en particulier le nombre d'époques. Étant donné que le succès du jeu (combattre le loup) est un événement rare, vous pouvez vous attendre à un temps d'entraînement beaucoup plus long. + +## Grille d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | +| | Un notebook est présenté avec la définition des nouvelles règles du monde, l'algorithme Q-Learning et quelques explications textuelles. Q-Learning améliore significativement les résultats par rapport à la marche aléatoire. | Un notebook est présenté, Q-Learning est implémenté et améliore les résultats par rapport à la marche aléatoire, mais pas de manière significative ; ou le notebook est mal documenté et le code est mal structuré. | Une tentative de redéfinir les règles du monde est faite, mais l'algorithme Q-Learning ne fonctionne pas, ou la fonction de récompense n'est pas entièrement définie. | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/1-QLearning/notebook.ipynb b/translations/fr/8-Reinforcement/1-QLearning/notebook.ipynb new file mode 100644 index 000000000..4fc1ded4a --- /dev/null +++ b/translations/fr/8-Reinforcement/1-QLearning/notebook.ipynb @@ -0,0 +1,411 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "17e5a668646eabf5aabd0e9bfcf17876", + "translation_date": "2025-09-04T02:52:03+00:00", + "source_file": "8-Reinforcement/1-QLearning/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Pierre et le Loup : Introduction au Renforcement Apprentissage\n", + "\n", + "Dans ce tutoriel, nous allons apprendre à appliquer l'apprentissage par renforcement à un problème de recherche de chemin. Le contexte est inspiré du conte musical [Pierre et le Loup](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) du compositeur russe [Sergei Prokofiev](https://en.wikipedia.org/wiki/Sergei_Prokofiev). C'est l'histoire d'un jeune pionnier, Pierre, qui sort courageusement de sa maison pour aller dans une clairière de la forêt afin de traquer un loup. Nous allons entraîner des algorithmes d'apprentissage automatique qui aideront Pierre à explorer les environs et à construire une carte de navigation optimale.\n", + "\n", + "Tout d'abord, importons un ensemble de bibliothèques utiles :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## Aperçu de l'apprentissage par renforcement\n", + "\n", + "**L'apprentissage par renforcement** (RL) est une technique d'apprentissage qui nous permet de découvrir un comportement optimal pour un **agent** dans un certain **environnement** en réalisant de nombreuses expériences. Un agent dans cet environnement doit avoir un **objectif**, défini par une **fonction de récompense**.\n", + "\n", + "## L'environnement\n", + "\n", + "Pour simplifier, considérons le monde de Peter comme un plateau carré de dimensions `width` x `height`. Chaque case de ce plateau peut être :\n", + "* **du sol**, sur lequel Peter et d'autres créatures peuvent marcher\n", + "* **de l'eau**, sur laquelle il est évidemment impossible de marcher\n", + "* **un arbre** ou **de l'herbe** - un endroit où l'on peut se reposer\n", + "* **une pomme**, qui représente quelque chose que Peter serait heureux de trouver pour se nourrir\n", + "* **un loup**, qui est dangereux et doit être évité\n", + "\n", + "Pour interagir avec l'environnement, nous allons définir une classe appelée `Board`. Afin de ne pas surcharger ce notebook, nous avons déplacé tout le code lié au fonctionnement du plateau dans un module séparé appelé `rlboard`, que nous allons maintenant importer. Vous pouvez consulter ce module pour obtenir plus de détails sur les aspects internes de l'implémentation.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "Créons maintenant un plateau aléatoire et voyons à quoi il ressemble :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 1" + ] + }, + { + "source": [ + "## Actions et Politique\n", + "\n", + "Dans notre exemple, l'objectif de Peter serait de trouver une pomme, tout en évitant le loup et les autres obstacles. Définissez ces actions sous forme de dictionnaire, et associez-les à des paires de modifications de coordonnées correspondantes.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 2" + ] + }, + { + "source": [ + "La stratégie de notre agent (Peter) est définie par ce qu'on appelle une **politique**. Considérons la politique la plus simple appelée **marche aléatoire**.\n", + "\n", + "## Marche aléatoire\n", + "\n", + "Commençons par résoudre notre problème en mettant en œuvre une stratégie de marche aléatoire.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "# Let's run a random walk experiment several times and see the average number of steps taken: code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 4" + ] + }, + { + "source": [ + "## Fonction de Récompense\n", + "\n", + "Pour rendre notre politique plus intelligente, nous devons comprendre quels mouvements sont \"meilleurs\" que d'autres.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 5" + ] + }, + { + "source": [ + "## Apprentissage par renforcement Q-Learning\n", + "\n", + "Construisez une table Q, ou un tableau multidimensionnel. Étant donné que notre plateau a des dimensions `width` x `height`, nous pouvons représenter la table Q par un tableau numpy de forme `width` x `height` x `len(actions)` :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 6" + ] + }, + { + "source": [ + "Passez la Q-Table à la fonction `plot` afin de visualiser la table sur le plateau :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "name 'm' is not defined", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mQ\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'm' is not defined" + ] + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Essence de l'apprentissage Q : Équation de Bellman et algorithme d'apprentissage\n", + "\n", + "Écrivez un pseudo-code pour notre algorithme d'apprentissage :\n", + "\n", + "* Initialiser la table Q Q avec des valeurs égales pour tous les états et actions\n", + "* Définir le taux d'apprentissage $\\alpha\\leftarrow 1$\n", + "* Répéter la simulation plusieurs fois\n", + " 1. Commencer à une position aléatoire\n", + " 1. Répéter\n", + " 1. Sélectionner une action $a$ dans l'état $s$\n", + " 2. Exécuter l'action en se déplaçant vers un nouvel état $s'$\n", + " 3. Si nous rencontrons une condition de fin de jeu ou si la récompense totale est trop faible - quitter la simulation \n", + " 4. Calculer la récompense $r$ dans le nouvel état\n", + " 5. Mettre à jour la fonction Q selon l'équation de Bellman : $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$\n", + " 7. Mettre à jour la récompense totale et diminuer $\\alpha$.\n", + "\n", + "## Exploiter vs. Explorer\n", + "\n", + "La meilleure approche est de trouver un équilibre entre exploration et exploitation. À mesure que nous apprenons davantage sur notre environnement, nous serons plus enclins à suivre la route optimale, tout en choisissant de temps en temps un chemin inexploré.\n", + "\n", + "## Implémentation en Python\n", + "\n", + "Nous sommes maintenant prêts à implémenter l'algorithme d'apprentissage. Avant cela, nous avons également besoin d'une fonction qui convertira des nombres arbitraires dans la table Q en un vecteur de probabilités pour les actions correspondantes :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 7" + ] + }, + { + "source": [ + "Nous ajoutons une petite quantité de `eps` au vecteur original afin d'éviter une division par 0 dans le cas initial, lorsque tous les composants du vecteur sont identiques.\n", + "\n", + "L'algorithme d'apprentissage que nous allons exécuter pour 5000 expériences, également appelées **époques** :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "# code block 8" + ] + }, + { + "source": [ + "Après l'exécution de cet algorithme, la table Q devrait être mise à jour avec des valeurs qui définissent l'attractivité des différentes actions à chaque étape. Visualisez la table ici :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUxd7H8c9sS7KbShJCL1IEBAURFEUBxXoVVFBARS7YQETgiooFsaGAXgUsIGIDHzuCXiuKICDKpYoiHUJJAmkk2Wzfc+b5YzcRrgSQZHM2ZN6+8kr27ObMlyX8nMyZmSOklCiKoig1h8noAIqiKMrfowq3oihKDaMKt6IoSg2jCreiKEoNowq3oihKDaMKt6IoSg0TscIthLhCCLFVCLFDCDE+Uu0oiqLUNiIS87iFEGZgG3ApsB9YDQySUv5R5Y0piqLUMpHqcXcFdkgpd0kp/cAHQN8ItaUoilKrRKpwNwT2HfZ4f/iYoiiKUkmWCJ1XHOXYEWMyQog7gTsBrFZr5zPPPDNCUSrP5/PhdDpJS0szOkqFioqKsFqtOBwOo6NUKCcnh7p162I2m42OUqG9e/fSpEkTo2NUKBgMkpeXR/369Y2OUqHS0lKCwSDJyclGR6lQXl4eiYmJxMTEGB2lQps2bcLj8RytloKUsso/gG7At4c9fgh4qKLX161bV0az7du3y9mzZxsd45gWLFggV65caXSMY3rqqadkYWGh0TEqpOu6vOeee4yOcUwFBQVy0qRJRsc4phUrVsiFCxcaHeOYZs2aJbdv3250jGMK18Wj1sxIDZWsBloJIZoLIWzAQODzCLWlKIpSq0SkcEspg8A9wLfAZuAjKeWmSLSlKMqpZf369Xi9XqNjRLVIjXEjpfwK+CpS51cU5dSSlZXFq6++SkxMDPPnz6dVq1YMGTLE6FhRSa2cVBTFcFJKcnJy2LZtG8OHD6d79+589NFHZdfIlP+hCreiKIYLBAJMnjyZF198kX/961+cccYZDBgwgLfeesvoaFEpYkMliqIoJ8pmszF+/Hhuu+02OnTowMcff8z333/PV1+p0dajqXE97l27dvHRRx8ZHUNRlCrWtGlT+vfvj9lsZsqUKdx7771GR4paNarH3adPH2JjYzn33HPp0KEDS5YsiepFMYqinLj09HTuuOMO9u3bx6JFi+jVq5fRkaJWjelx79q1i9jYWGbNmkW/fv24/PLL+f33342OpShKFWvcuDHffPMN/fv3NzpKldu0aRO6rlf6PDWmcK9du5auXbtSUlLCW2+9Rb169Vi+fLm66qwop6D4+HjOPPNMVq1aZXSUKrNkyRLee+89NE2r9LlqzFDJDTfcQIcOHThw4AD169dn3Lhx5OTkIMTRl/IrilJzORwOLrjgAn744QfOPfdco+NU2s8//8zPP//MuHHjsFqtlT5fjelxQ+j/WFdffTUul4sDBw4wfPhwioqKjI6lKEoExMTEIKXE7/cbHeWkSSnZsmUL8+bNY/To0aSkpFTJeWtU4U5LS6Nnz55MmDCBjIwM3n77bSZMmMCOHTuMjqYoShW75JJLcDqd/PLLL0ZHOWmrVq1i2rRpvPLKK1W6c2eNKtxlyoZHkpOTGT16NPPmzSMzM9PYUIqiKIdZsmQJ33//PS+88EKVD+nWyMJ9uJYtWzJ06FAee+wx3G53xNurigsLkSSlrJKr1pFUEzLquq4ufEeB4cOH8/rrr1fLv+2qIqVkw4YN/PDDD4wcORK73V7lbdT4wg3QrFkzZs2axa233kpOTk7E2snKyqJfv35s3ryZgoKCiLVTGevXr+eOO+5gy5YtUfnDHgwGee+993jhhRfYsmVLVBZwp9PJxIkT+fLLL9m1a5fRcaJWdnZ2xMefmzZtihCC3bt3R7SdqrRlyxamT5/OhAkTqmxM+3+dEoUbwG6389JLL/HSSy+xffv2iLTx+eef89JLLzFmzBhmz54dkTYq6/PPP2f06NEMGDCAdevWGR3nL9xuN4WFhTRt2pSLL744Krfv3LFjB927d2fDhg1cd911RseJOkVFRcyZM4eXXnqJ2bNn88UXX0S0vbfffptbbrklom1UlWXLljFnzhzeeOMNbDZbxNqpMdMBT0T9+vUZOnQob7zxBmPHjiUjI6NKzz9ixAjGjBmDpml88sknbNmy5aTPFRcXx8yZM6t87Ou+++5j1KhR6LrOpEmTqFu37kmfq127djz44INVmA4SExPp3r0706ZNQ9M07rzzzkrdyuy6667j2muvrcKE0KlTJ95//322bdtGVlZWpbcWHT9+PG3btq2idMY7cOAA8+bN44033uC///0vzz33HFdffbXRsQy3fPlyVq5cyWOPPYbJFNk+8SlVuAFatWrF2LFjGTFiBPPmzavSK7kej4dRo0bx9ddfk5mZyV133XXS5/J6vXTu3LlKxlHbt29Pv379gND42vjx45kyZQqXX345nTt3Punz/v7773Tq1KnS+QAGDx5cnq9x48Y88MADbNy4kQcffJDY2NiTPu/HH3/ME088USUZp02bBoSGc3r06EGbNm1Yt24djz76aKXO+8QTT7BpU9XcR+STTz6p8LnS0lIuuuiiiI/Ne71ecnNzueGGG1iwYAFms5mXX36Ze+65JyLtCSGYPn06DzzwAFOnTo1IG5UhpWTz5s0sWLCAxx9/nMTExIi3ecoVboCMjAzmzZvHPffcw2OPPUbz5s2r5LzPPvss7du35+OPP+aOO+6gVatWJ30uKSVr1qypklwQGiIBGDlyJD169GDXrl20a9euUhlbtmxJ3759qySfEIJJkyZRVFTE1KlTSU1NJTk5mVatWlWqcD/00EOMHz++yjJ+8skn/PLLLyxfvpxNmzbRuXPnSr2HAHPnzq2SfMAx1y04HI4q/ZmqyJYtW7j//vuZM2cO27ZtY+bMmSxZsiRi7QkhqFevHgcPHoxYG5WxYcMGXnrpJebMmRPxnnaZU7JwQ+iH+LHHHuOdd95h8ODBtGjRotLnfPLJJ3nppZdYunRppYc4hBARWfU5a9Ys5s+fz48//ljpc0UiY0pKCqNHjyY/P59JkyZV+nxVmbGsp9q9e3ecTie33HILjRs3rvR5q+sfc6R+pv5Xeno6HTt2ZPbs2QQCAW6++eaIt1unTh2aNWvGhg0b6NixY0Tb+jt++OEHli5dyqxZs6rt7xlO4cIN0Lx5cwYPHsxzzz3HlClTSEpKqvQ5R40aVQXJIsfhcHDrrbcaHeOYasJ475VXXml0hKiVnp7OpEmT2LhxIy1atKjS4ciKpKWlcdppp7FmzRrOOussw7e6kFKyevVqVq5cydixYyN6IfJoTplZJRVp0aIFU6dOZciQIVE7hU9RaqIzzzyzWop2mQEDBrBmzZqoWCm9detW5syZw3333RexKX/HcsoXbgjNZHjzzTd5+umnIzZVUFGUyIqNjSUYDBq+CO7nn39mxowZvPbaa8TFxRmSoVYUbgiNkY0cOZJ58+axd+9eo+MoinISBg4cyNy5c6t94dbzzz+PpmksWbKEJUuW8Nxzzxk6XFNrCjeEZknccccdjB8/PipXFSqKcmy9e/fmm2++qbbtCL7++mvOPfdcTjvtNLp168a3337LiBEjqnWI6GhqVeGG0N013njjDYYOHcr+/fuNjqMoyt/UsmXLahnn9vl8ZGZmMnbsWFq2bEkwGERKWa2zRypifAIDxMXF8cILL7BixQqjoyiK8je9/fbb3H777RFvx+l0sm/fPjp06MDXX3/Nl19+icPhiIp9U2pl4QZo2LAhAwcONDqGoih/k81mY9CgQbz33nsRbSctLY0zzjiDf/7zn9xwww0MGzaMoqKiqJhHfkrP41YU5dRjsVjo2LEjn332GTfddFNE2+rbty8XXHAB9913Hy+//LIhU/+ORhVuRVFqnKSkJKxWK3l5eaSnp0esnfj4eOLj48v3iDF64U+ZWjtUoihKzXXGGWeQkJBQbbc1q67tBE6U6nErilIjDRgwwPBpeUapVOEWQmQCTkADglLKc4QQdYAPgWZAJnCjlPJQ5WIqiqIcqVmzZkZHMExVDJX0klJ2lFKeE348HlgspWwFLA4/VhRFUapIJMa4+wLvhL9+B6ja25MoiqLUcpUt3BJYJIRYK4S4M3wsQ0qZAxD+fPL3zlIURVH+orIXJy+QUmYLIeoC3wkhTvgmjOFCfyeEptxE8659+/fvp6ioKKoz5ufno+t6VGd0uVzs3r2b/Px8o6NUyO/3R/V7WFJSgsvliuqMBw4ciPp/L0VFRezbt6/a9jw5GcfaSKtShVtKmR3+nCuEWAB0BQ4KIepLKXOEEPWB3Aq+dzYwGyA1NVUuXbq0MlEiqqioiP379xPNGXfu3Indbo/qPcfz8/NZuXIlMTExRkepUGlpaVT/PXu9Xn7O+5nPln5mdJQK2XPsXOK5pNp38Ps7srKyWLt2bVTs7V2RY75/UsqT+gAcQMJhX68ErgCeA8aHj48Hph7vXHXr1pXRbPv27XL27NlGxzimBQsWyJUrVxod45ieeuopWVhYaHSMCum6Lu+55x6jYxxTQUGB7DypsySK/6u3op5cuHCh0W/VMc2aNUtu377d6BjHFK6LR62ZlRnjzgBWCCF+Bf4LfCml/AaYDFwqhNgOXBp+rPyPyy67LKp7JIqiRK+THiqRUu4CzjrK8QLgksqEqg3y8vKMjqAoSg2llrwriqLUMKpwK4qi1DCqcCuKotQwqnAriqLUMKpwK4qi1DC1snB7vV42btzIU089hdvtVtPyjqK0tJShQ4caHUNRaoTdu3fz8MMPV1t7tbJw9+jRg+eff5527drRvHlz9u7da3SkqKNpmnpfFOUE+f1+Dhw4UG3t1brCvXjxYi677DImT55MQkICL774Ip9++mlU71mgnNreeust9fNXw1X331+tK9wZGRlkZWXx8MMPU79+fbKysmjcuLHRsZRaaOHChVxzzTWYTCb69OlTfl9DRTmeWnfrsiZNmpCZmUkwGOSXX37hlVdeYfny5VF1Pznl1Fe2C+FNN91Er169cDgcbN++Hb/fj81mMzqeEuVqVY87OzubyZMnM3v2bObOnYumaWRmZqoet1LtMjMzKSoqwm63M3HiRLp3747b7Y7q3eqU6FFretzFxcW8+uqr9OvXj5YtWwIwfPhwg1MptVVsbCw//fQTzzzzDNu2bePuu++ma9eutGvXzuhoSg1QKwq3pmkMHz6cJ554gtatWxsdR6nlPB4PDz/8MJMnhzbOfPjhh3nggQdo0qSJwcmUmuKUL9x5eXk8+OCDTJs2jYyMDKPjKLVcdnY2Y8aM4e2338ZutwPw7rvvRvXNJaKBz+cjPz+fhg0bGh3lqKr7GtkpPcadk5PDq6++yr/+9S9VtBUgNG1r/vz51d5uSUkJs2fP5pVXXuHFF18sL9qAKtonYM+ePdW6wOXvUtMBq4jX62Xy5Mn06dOH9u3bGx1HiQIfffQRQ4YM4cCBAwwePLjablEmpWTChAnExcUxZMiQqO01KjXHKTlU4vF4GDx4MNOmTaNRo0ZGx6mRhBDExMTg8/mqrUdYWloa0Z7LqlWr6NmzJ9deey1+v5+tW7dy4YUXYjabI9amz+fj7rvvZty4cbRt2zZi7ZzKpJR4vV7i4uKMjlIhk8mE2WwmEAhgtVoj3t4pV7hzcnKYOnUq06ZNi+qeTceOHfn111/p1KmT0VGOKiEhgfvuu49nnnmGJ554olraHDFiBFlZWRE7/86dO1myZAlLlixh6tSpPPfcc2RlZUXsomBhYSHTp09n5MiRtGnTJiJtnOp27dpFZmYmw4cP57XXXiMnJ4f69esbHesvWrVqRbdu3fi///s//vnPf0a8vVOqcOfn5zN79mxuvfXWqO9pz5gxgz59+rBkyRKjoxyVEAIhRLWO3c2bNy+i53/ooYfIz8/nqaeeYuTIkVx55ZURK9ozZsygqKiInj17cvbZZ0ekjdrg9ddfZ//+/ZSUlPDiiy/Sp08fbr/9dqNj/UXZxcnq+vdyyoxxa5rGuHHj6N+/f9T2YhVjDR06lH79+nH//fdz5513csUVV1R5G1JKJk2aRIMGDbjqqqvo1atXlbdRW/z3v//Fbrczbdo0GjRowMyZM9m8eTP79u0zOprhToked1FREXfffTcvvviimj2iVKh169blv9ImJSVV+fn9fj9vvPEGbdq04dprr43o2Hlt0LFjRxYuXMjy5ctZtGgRH374Ia1ataJBgwZGRzNcjS/cWVlZzJo1i8cff1wVbeW4hBARKdqLFi0iMzOTmJgY+vXrV+Xnr41sNhvt27fn/fff5+DBgyxbtoy77rpL/Q+RGj5U4nQ6eemll7juuuvUikjFMB9//DEbN24kMTGRYcOGGR3nlHLTTTfxwQcfkJSUxIcffsjFF19sdKSoUGN73MFgkNtvv51nnnmGFi1aGB1HqaUWL17Mvn37uPvuu49YVKNUHSEEAwcONDpGVKmRhTs3N5dHH32U6dOnU69ePaPjKLVYz5496dmzp/r1XalWNa5wHzhwgNmzZ3PPPfeooq0YThVsxQg1rnBbrVb69OnDmWeeaXSUU9qoUaP47bffyMvLY+vWrbzxxhvEx8cbHUtRoo6u6/zzn/9ky5YtACxZsoS3334bkylylxBrXOFOTU0lNTXV6BinNJfLxdq1axk1ahSrVq1i27ZtFBYWqsKtKEfhdDrZsWMHN954I0II5s+fj9PpjMjspTI1rnArkffyyy8zbtw4mjdvTiAQ4JZbbuHJJ59kzpw5RkdTlKjz5JNPMmnSJPx+P0IIzj77bJ588kn+/e9/R6xNVbiVv3jwwQdp27Yt999/P82bN2fAgAGsWbPG6FiKEpWmTp1K8+bNmT59OlJKxowZw+7duyPa5nEHYYQQbwohcoUQvx92rI4Q4jshxPbw55TwcSGEmCGE2CGE2CiEUJs01FBvvvkmAD/++CNz5sxRwySKUgGTycS8efPIzMxk7969zJs3L6Lj23BiPe63gZeBuYcdGw8sllJOFkKMDz9+ELgSaBX+OBeYGf6s1DDdunWjS5cuBINBYmNjjY6j1DDVfUcYIwkh6NGjB926dQNCKz4j7bj/W5BSLgMK/+dwX+Cd8NfvANcednyuDPkFSBZCRN8ejMoJsVgsqmgrJ6W67wgTDWw2W7UUbTj5Je8ZUsocgPDnuuHjDYHDt+7aHz6mKIqiVJGqHog52u9HR/1frxDiTiHEGiHEGo/HU8UxottDDz3ERRddxNq1a+nUqRMrVqwwOpKiKDXIyRbug2VDIOHPueHj+4HGh72uEZB9tBNIKWdLKc+RUp4Tzbckqmq5ubk4nU7mzZvH2WefzciRI9mxYwfBYNDoaIqi1BAnOx3wc2AIMDn8+bPDjt8jhPiA0EXJ4rIhlWPRNI2FCxeeZJTIy8/PZ+fOnVWS8ZdffiElJYVNmzZhs9lIS0tj9uzZ2Gy2Sm1S9Pvvv7Nnzx4OHjxY6YyRcuDAAb755puovndgSUlJVP8sut1uHDkOTlt4mtFRKpSQmcDvrt+jepx7165dWCwWfv/99+O/2CCaplX43HELtxDifaAnkCaE2A9MJFSwPxJC3AbsBW4Iv/wr4CpgB+AGhp5IQL9fMGJE9O6lbbfrDBlir5L9vvv27Vv+ddm9HCdMmFDp8+7Zs4dZs5IoKore97FlyxiuvTYdh8NhdJQKWSyWqN7XvbS0lC4xXZicMdnoKBXacmgLTpMzqt9Hu93OM3WewZ3hNjpKhfzCX+Fzxy3cUspBFTx1yVFeK4GRJ5ys/PtMHDjQ7e9+W7VJStpB/foF5dN9otHBgwcpKsqI6vexUaPFdO7cGZvNhtPpJKVOMgcPZZPgSKIkkMuiQ3PZ5d6EKWAhRsQjdDM5zmzOS7mCy5oPxO/20Si9CSUlJTgcDg4dOoTdbicQCKBpGg6HAyklcXFx5Uv0y5Yelz32+XwkJSXh8/mQUhIbG4vJZCq/v+Z7771XJX/Puq6zaNEi9uzZw4ABA3A6nbzwwgs888wzlfqNo7CwkNWrV0f1z6Ku6+Tn50d1xo0bN1LQoYDilsVGR6lQvKnitRM1+kYKSs0jpU5BIJstrl9YVfgVM7Lv5MPsKXx28DU0P7S2nYtdT6e01EdD2+mcl3oFiTEp3L/kZiavu5/Nub/h1/0EAgFMJhO6rgOhRRCapqFpGj6fDyEEmqYhhCh/bdljv9+Ppmnouh6xawtut5vPPvuMXr160a9fPywWC02aNGHp0qURae/vWrZsWVQPZSjHppa8K9VKIlmfu4rp6yeR4cigSVJTioMBft39B5nZ+2jXsjHWgI1tu3aQ37qI5kltEewnRiYSJxJ5f8ObnF6nA5e3vIZYWxxCCMxmM7qulxeiQCCA1WpF0zQsFguaphETE4MQAovFUl6spZQEAoGIzL2Nj4/nuuuu47bbbmPv3r08/PDD+P1+xo4dW+Vt/R0//fQT//nPf0hISOCrr77isssuU3eVqYFUj1upViZh5py0i6kf6MymrYVs3JTH+o05lGTbiHHXw7XPTtY2P5vW57Fq/Xo27VrNsnVL8biCrNz5M7nOAmatfIVCXz5OpxMI/Wru8XiwWCyYTAK7PQ6v14PVasXn8xEbG4vL5SrvbTscjvIiHsm71nTt2pXJkyeTlpbGoEGDmDhxYsTaOhFSStauXUtCQgL33nsvGRkZrFy5UvW8ayBVuJVqpes6DpOdGdfMoHlqcxbv+I5PNsznxx0/sjFrI1+tXkrdpMbcdulweqXdQANPV9xuF96SAvILD7E9ZyfBgJm+M69Bs4V6zjabjZSUFHxeD+u/fpJ5Dzfhs8kdWPvFYyQmJuJ0OklNTUXXdeLi4sjPz0fTNPx+P4WF/7souOokJydzwQUXkJyczLnnnmv4fVG3bNlSfpu1Sy+9lGHDhuH3+1m3bp2huZS/TxVupVqZTCZiYmLwlnp4rd8srmrzDyxmM6eln8Z5Lc/jzGbt2ZO3h01Zv1PgLCSnIAdHQVNcW5PokNgWT3E+6F60YsHtM25HCIHX66WwsADnwU3s3LSCQyVeGrbvQ3KDjjhLSoiPjycvLw8hBC6Xi7S0NCwWCxaLheTkZKPfkmrTtm1bGjduzCOPPEJWVhaPP/44NpuNzp07Gx1N+ZvUGLdSraSU+P1+UlJSCAQCzOz3Ko/GTeDTtZ9SVFqEw+zALuLwCT+5BVsoPlRMgjWRvt36UuosJY46FOTlYkrJxn8wgKYFsVqtLFkwjdzMnziUs49OF4/lwj5jCQZDz3k8HlJSUtA0DbvdTnFxMWazGSklpaWlEd3wPtr07t2bhIQEPvjgA77//nveffddoyMpJ0H1uJVqZzKZMJlMSClJiavDk5c/yYBzBlEacLErbze/Z/3B6t2r2XtoH6c1akGTBk3YlbMLp9dJgkila5OLyF/jI6btAd5aOIeA38vqpfPx+iz0vetNulx6Z/n5y6b5ld0bsuxxmdq0ix1Au3btGDp0KIsXL6Zhw4acddZZRkdSToLqcSvVzmQyUVpaisPhwOVykRiTyOR/PMOTV07kuleu51DJIXbs20XdhDQKSwuItybgdXshIMnLKyDe6uDSzn3Yv38by+UCfhnxFima5Ipet9C0bTesVitut5uYmJjyi5OlpaXYbDb8fj92u718OqDVajX67TBE06ZNjY6gVIIq3Eq1klLi8/lITU2lsLCQ5ORkXC4XNqsNf6mfL0Z+QWZhJv9Z+x9cXhemoAmHzU5JUQlIgcftJcZsY0DvAZxz1jks27iI11c+Ro9/DOCs865G0zRKS0upU6cOJSUlJCUlUVRURFpaGk6nk7i4OAoKCrDb7UgpcblcUb3CL1JiY2M555xzWLlyJeeff77RcZS/SRVupVoJIYiJiaGwsJC4uDiKi4uxWq0Eg0Hi4+ORUtKybktGXToKKSU2i5kDK77nwH8/xR4TS2qvK0nudgnWmBgOHTpE4EAQT5Hggt79sNlsSClJTk4mPzOT1W+8TOH+vaS0aEvnIXeQXDe9fLxb1/XyWSa1kd1up3v37vzwww+qcNdAqnAr1aqsx52UlERxcTGJiYm43W4sFkv5XGz8Xkw+L1seG4X0e2l03c2c89Cz6MKE1Wxi9+wpFPy6lqCmsyO/iJi8XHy/r2bNT8vI3biOgKbRdsAwOl0/EL/Pi+b18f6dgyktKaXPY0+Q2LwFGY2bYDKZcLlcxMTEGP22KMrfogq3Uu3MZjOBQKB8FWPZhUSz2YzmLCZ79nO49u6g7b+exJqQSKDoEN5d20GAT0LD62+h6a0jCbqcNPxxMeds20zBT8toduHFdLjpdoJBP65Dh/A7i9Ek6Ej6PPI4QU1n+f/NZeOKFdw1521OO7tz+UXL2igjIwNN08jLyyM9Pd3oOMrfoAq3Uq2EEEfsI1K2daWUEoJB9sx8Fu1gNqfdPBx/3gGCeQcQSMomfwgJ/r278UqJDiSe3pbkjp3R/EE8RQWU7NmJJiWaBE1KdCnRdNClJKhLzr66DwFd5//G/YuBz06l1bm195aonTp1Yv78+fzxxx/06NHD6DjK36AKt1KtpJQEg0FSUlKOuDhpsVjYt+BdPDs20/yW4RDwInQQIvxxxDlCBRwkmtuFX8pQsQ4XaE2X6JLy4h3UJJrUCYZf0/6iXvi8fmaNuIuxH35M27PPNujdUJSTowq3Uq1MJhOxsbHk5OSQmppKfn4+DocDn9tF4fefc/rNI9HcxUgTIASmcA/dFK7cUspQ71wSquBlRVqX6LokKHU0XaJpEAwX7oCuE5QQ1HU0XaDpOm3Pv4Dc/fvx5OdH/M+s9gJRqpoq3Eq1Kutxx8XFEQgEyi8MFqz4HpsjHm9+FmaTwGQOrQ0TZjAfVrh1GepVS12ApqNLHSlB6uGetl5WoCUBPTQ8EtQlQUmogOuhYZRAUCe1UVNeHX0vr2/6AxHBse5oXuTTtWtX1qxZQ7du3SJ6h/Lvv/+eHTt20LBhQ6655pqItVNbqMIdhSZOnMiECRNCMyxOQWWFrOyzlBLnupXYm7VE87gQJoE0mULrek0CYRKYw5Vb6hIhJVIHqcnwtD7Cn0PFW9NDRQuL1LoAACAASURBVPrPwq0T0P8s3AEt1Atv0KoFW1avMuptiAp9+vShV69e3HnnnREt3LGxsSQkJLBr1y5uvvnmI54bOnQovXv3jljbp6JTszLUUF9++SXjxo1j2rRpdOnShWuuuYYnn3zS6FhVqmz/bKfTid1ux+VyYbfbMZtNSM2P5nFhMgl0kwlpIlTAzaHiDYS73ICuo5cVbglBLVSUg1qoxx0M97gDuiQQ1AhKiV+XBDRBQNPCRZzyGzEokdW9e3e6d++Ox+OhT58+Rzz32muvMW7cuCOOzZ8/n7S0tPLHJpOJhISEaslaE6jCHWF5eXn89ttvJ/TaVatW0bt3b2w2Gx9++CFz5szh4MGDp9TKPl3X8fl8JCcn43a7SUxMxO/34/f5kQUHiQnvYyLMApNJIMwCYTIR6n5LgoCm66HirMlwgQ59HZDh3rQWKtj+YKg4l5QUY7Y78GtlxTv8fHgRTm3XqVMn1q5dS8+ePSPeVlxcHM2bNz/i2LPPPsuzzz57xLGBAweSf9j1hzp16jBixIgjXtOkSRNatmx5Qu1mZmaSkJBAamrqSSaPLqpwR1hBQcEJ367qjz/+wOVysWzZMm6//Xbsdjt5eXmnVOE2mUzYbDYKCgpIT0/n0KFDJCQkEJuYRM6P32AzmSA5GcLFG1NoSknQ70PExKFTNvwBPpcTd34efk3HF9Tx6xKfpuMLSjSTBUtaBgEExdn7sddriF/XCWjg0zSCOuTlHMDv9Rr9lhju+eefp3Pnzqxfv96Q9o92DeDDDz884nFBQQHTp08/4ljZZmWHGzZsGI0aNSp/7PP5mDJlCrquI4QgKSmJMWPGVGF6Y6jCHWFt2rQ54eGOjz76iIkTJ/LCCy8waNAgzjzzTNq3bx/hhNVL13X8fj/p6aHl58nJyfj9fupffyt5Py2maOtvaA2b4Eiri24S6CZBUEBw306sjVsgAc/BbAIlxXh9PrylpXiDGn5N4glKfEENr6bjR6Dv24sfM3GNm1Cck4NwOAho4NV0igsL2bXpDzpefS1E8cVDJSQ1NfUv/452797N9u3bjzj2yCOPkJOTU/44GAxSUFDAJ598QklJCYMHD2b06NHVkjmSVOGOItdeey2XXnopd999N5988gnx8RXf5bkm03W9/D6RZdusxjRogm6xEXC5Yfd20DRs8fEEpIYZ8JcUIzb+NzRXW9MIaDp+Tcev/Tk8EpR6eO42BDQNb1EhvqBOQX4+noCGH0Fi42YcOnSI3KwDeP1Brh4xIqpnfVSXtLQ0CgoKatRQQvPmzf8y7HLeeeeVL+oCuOqqq9i5cyf9+/fn1VdfZdasWTzwwAMnPMQSrVThjiI2mw2bzcb7779vdJSIEUJgs9lwOp3ExMTg8XjKi7gWE4dfl8iAhrmkmKAWQMveF54OKBCAhixfZOPXdYKawK8fPnatl495B8MzTIJaAE2DQFDDU1pKYc5BdAkIE3HxDqPfEsOZTCZmzpzJ2LFjmTt3rtFxKiUxMfGIx4sWLeK8885j3rx5FBYWMmLECDZv3sxrr71mUMKqoW6koFSrsjvgJCcn4/F4SEhIQNd1LBYLzW6+HV94nNpVWIi71IlP0/FqOh5Nx63peIM6nmDosV8DX7jXfUTPW9dDKyZ1WT67JBiefVJSeCh0R3iTiS79rkfE1s7dAWuLmJgY7r77bhYsWMCqVasYP3680ZGqhOpxK9WqbFvX/Px84uPjKSoqwmazEQgEaHDBpazXQZc6ugygO90Q1EPXJ0WojyGlHl6EA8HwYht/+GKlXy+bLSLxa6HnA2UFXEpEbCxejy/0Gi1Ix549aXLaaQa/I0ok2Ww2Ro4cycGDB4mLi/tLj7ymUj1upVpJKQkEAqSlpeF2u0lKSiq/E43T5Sahy0WhXnZQo9RZijsQ6mG7A3r4axnqcQd1PEENT3hGiTeo4Qtq+DQNf1Di1zT8mn7YXG4dV6kbv89PQno6lw+/C3NsXETv8l6TxMTEkJiYeMQUvFNJRkbGKVO0QRVupZqVLcBxu91YrVa8Xm/5LoFxCQm0vuk2vEEZLtAa3vBsEW9QwxvUDivaoSEUb1CWD6/4NIkvPFzi1wR+HfyaPGK+d0BKMlq1oqTwEN2u6VNrb6Twvxo3bkzXrl1ZsGCB0VGUE6AKt1LtpJTl27qWLYCRUmKxWEhpeTqNLusTLtThXnUwNLb95/i2xBMIPe8Lv84XnmUSCBfv0HCJFiriusSvh1ZXtruoJ5qwcH6//lgsllp7z0mlZlOFW6lWZUXbbrcTCASIi4srv4mCx+PB5IgntX1H/JhCvW4tNDTiDmq4y4t4MHSxsvxxqDfu1UJzuH26xBsMLbbx6xq+cG9bFyZSGjbE6Syhw0UXoWkaLpfL6LckathsNoLBIMFg0OgoynGowq1Uq7JtXXNzc3E4HBQUFJTfESc5OZm4uDhaD7iVjPMuDA2N+DXcAQ13UA99BHTcfokvKPEGZXi4JNQL9wbBo0l8wdCUQG94+CSgaUiLlfYXX8rqxUt5dsFCYmJjsVqtNWrecqQNGDCAdevWsW3bNqOjKMehCrdSrcouTsbHx+Pz+XA4HOULcrxeL36/H5MQtO3TH80ai0cLj20HNDyBP3vX7sPHvLU/i7gvPGxy+DTBICYan9mJAIIL+/dDs/7ZsywtLTX6LYkaaiFSzXHcwi2EeFMIkSuE+P2wY48LIbKEEBvCH1cd9txDQogdQoitQojLIxVcqbnMZjOapmG1WgkEAuWrJy0WS/k9IJtcfDn2NmfgDUrcQVne4y6/MBk+Xjb+7QuExrt95Rct/xz3rtuyNfaUOmRu+oMOvXrhiI8v3+fiVN0692SV/V2omz9EtxPpcb8NXHGU4y9KKTuGP74CEEK0AwYCZ4S/51UhRO29G6vyF2X3nPT7/Ufce1JKecSmQbqu84+nnseUknpYwS4bMpG4whclvYE/i7lHA0+4aHs1Dd1iJbFRUyzxCRQXFnL96Hs5vWtXzGZzeQ51cfJIM2bM4K677jpi2bgSfY5buKWUy4ATnezaF/hASumTUu4GdgBdK5FPOcX871CJ3W5H13VMJhMej4dAIACELpQ1aNmKga++SUKTZngCevgjNETiK5vfXT7GrZfPRPEFQ2Pgfinw+gOUFB6iU+9L6T10KLFxcTidTjRNUxcnjyI2NhaPx2N0DOU4KjPGfY8QYmN4KCUlfKwhsO+w1+wPH/sLIcSdQog1Qog1gYD6QaktylZOFhUVERsbS0lJCRDaxc3hcBATE4OUEq/Xi9PppGXX87j6yWfpdP2N+KQon2XiN1tofmHP8imC3qBGbFpd4us1wKtpoeXwvgA2u53rRo3i0mHDEELg9XpJTk7GbDZjsVjU5vxH8eijj/5lu1QlupzsAN9M4ClCt2x9Cvg3MIwjb8Zd5qiDZVLK2cBsgISEDOnznWQSpcax2WzUrVsXs9lMenp6+UWxsmJhsViw2+3lxzpfegXtu3XnmvtD+0xICcIksCcnU3rYykeLLQaEOGKPbVtsLHWbNEEPTzmMi4tDCFG+8EZdkPur6667zugIynGcVOGWUh4s+1oI8TrwRfjhfqDxYS9tBGSfdDrllHT4WPbRenbm/7lxr8lkwpqSQnxKyl9em5JR74TaLDtjWXvVWbDVhT6lqp3U70NCiPqHPbwOKJtx8jkwUAgRI4RoDrQC/lu5iIpSs914443ld7NXlKogjtcbEEK8D/QE0oCDwMTw446EhkEygbuklDnh1z9CaNgkCIyRUn59vBBJSXVk69b/Otk/Q8RZrS7OOCOfpk2bGh2lQgcOHODXX2Pwev/aK40WKSnb6NateVTP5Pjtt9/o0KGD0TEqFAgEyMzMpFWrVkZHqVBhYSF+v5969U7styEjZGZm8kf6HwQcAaOjVGjbC9soLiw+6q+Gxy3c1SEhoa70+7caHaNCiYmZNGjwE1u23Gx0lAo1bfoNr76aTufOnY2OUqFp06YxdOhQkpKSjI5SoUceeYRJkyYZHaNCRUVFzJ07l3vvvdfoKBVas2YNBQUFXH559C7jmDdvHhdddFFUd8ZOP/10cnNzj1q4o2T1gcDvj96eYiBQgKbFRHVGTYvD4XCQcpRx4GhhtVpJSkqK2oxle6ZEaz4IZbRarVGd0W6343a7ozpjTEwM8fHxUZ3xWNdh1JwfRVGUGkYVbkVRlBpGFW5FUaKalJLdu3cbHSOqRMkYt6Ioyl+tXr2aX3/9tXy2z4UXXsjpp59udCzDqR63oihR69NPP2XXrl089thjrFq1iuXLlxsdKSqowq0oSlRasWIFDoeD8ePHM3ToUCZPnsxvv/2mhk1QhVtRlCh1wQUX4HK5ePvtt9m8eTP//ve/6dChA82aNTM62l+43W62bq2+tShqjFtRlKgkhKBXr14sXboUp9OJEIKOHTtG3cZgc+fOZc+ePQSDQWw2G8OHD4/4LfFUj1tRKqEm3C2mJmSsyGWXXcbTTz9N/fr1mTRpEuecc47RkY4gpWTOnDmcd9553HHHHSxdupS8vLyIt6sKt6KcBCkl2dnZfPjhh8yaNYusrKyoK47BYJD9+/fz6KOPsnz5cnJzc42OdMqZPn069957L02bNmXKlCm8+eabjB8/Hl3XI9quKtyKcpK6dOlCVlYWVquVTp064ff7jY50hOzsbLp160b37t1ZuHAhV1111fG/SflbxowZw4wZM/jss8/YtGkTt956K5MnT474jShU4VaUkzBr1iwef/xxLr74Ylq3bs20adOYMWOG0bHKSSmZPXs2s2fPxuVyMWbMGAYNGsT8+fONjnbKGTVqFEVFRbjdbq699loyMjIi3qYq3LXEU089Rc+ePfH5fDXmRrCBQIDvvvuO9957j0AgEFVDEb1792bRokU0atSIzz//nOnTp9O7d2+jYx3h4osv5scff+Scc87h3nvvZcWKFVG9e2RNdcMNNzB48GDatWvH6NGjq2XjKlW4a4nx48fz2Wef0aNHD5544gl+/fVXgsGg0bEqJKWkZcuWfPfdd2RlZdGgQYOoGopo2bIlubm5TJw4EQCfz8fTTz/N/v37DU4WIoSgbdu2LFq0iIULF6LrOpmZmcyaNYuioiKj4ymVpAp3LVG2peovv/xC9+7dee2113j11Vf55ptvjI52VF9++SW33nord911Fw6HgyFDhvDpp58aHaucEIIff/yR22+/nauvvpoNGzYwbdo0XnvtNXbs2GF0PADq16/PunXrqF+/Pq+88grr16/niiuuYObMmZSWlhodT6kEVbhrocsuu4xXXnmFRo0a8ccffzBo0CB27txpdKwjxMfH43Q6sdlspKSk4HQ6mTp1qtGx/uLss8+mZ8+eADRu3JjBgwczc+ZM8vPzjQ12mAEDBtC4cehWsD179uTCCy/koYceiqqhJ+XvUQtwaikhBNdffz0ul4vrr7+ecePGsWPHDq655hruu+8+EhIS/nLT3urUo0cP7rzzTnRdp27duvznP//hnXfeoWPHjkyYMIHevXuTmJgYdYsxWrduzfjx4xk4cCDNmjXj5ZdfJjY21uhYR+jevTupqal06tSJ2267jREjRmCxqFJQGdX9c6h63LWcw+GgWbNmfPzxx6xfv55zzz2X/v37s3DhQtatW2dYLiEEW7dupX///rRt25asrCx69+7N+vXr2bJlCzfffDOLFy9m165dhmWsSHp6Ot999x3Dhw9n6tSpFBYWGh3pL9q0acP69euJj49n3rx5UX29oyao7t9eVOFWgFChFEJw9dVX8/3337N//34+//xzJk6caNgwihCCiy66iH79+pXnE0LwyCOP8Mknn/DTTz8xd+5cHn/8cbxeryEZKyKE4JxzzuHCCy9kxowZUZlPCMHQoUMRQvDKK68YHalCQghuuOEGFixYYHSUCqWlpdGkSRPWr19fLe2pwq0c1ejRo7n33nu58MILmTx5MjfddFP50uloGBuNjY1l4sSJ3HrrrXTv3p3+/fvzzDPPRE2+Mr169eKaa65h5MiRUZetzJAhQ2jSpAlTpkyJyoxCiPLfAqNVWeHesGFDtbSnCrdSoTp16tC7d2+mTZvG448/TqdOnejUqRNLliwhKyvL6HgAnHbaaVxyySW89957nH766XTq1ImlS5eSnZ1tdLRyZ599Nvfffz+dOnVi9uzZUTWtEUKFsU+fPjRv3pxOnTqxYsWKqCveypFU4VaOy+Fw0Lp1azZs2MCGDRv47rvvePrpp3nvvffYu3fvEa9dvHgxgUCgWvMJIUhMTKRfv35s2LCBb7/9lqeeeuqo+YwghKBNmzZs2LABi8XC3LlzI76Xxd9lNpu58cYb2bBhA19++SXffvut0ZGUY1CFW/nbnn32WZ588kmKi4t59dVXGTduHJs2bWLEiBGsW7eOsWPH8s477xiWb/LkyTzxxBMUFxdX+/9Ejue2227D4XDw/PPPGx2lQk8//TR//PGHWh4fxVThVk5Keno6I0aMYMSIEVx//fX07dsXs9nMsGHDuPrqq1myZImhS+vr1q3LiBEjaNGihWEZKjJgwABOP/10unTpwnfffRd1wxIWi4Xhw4eza9cuunTpQk5OjtGRlP+hCrdSKU2bNuWMM87g/PPPp06dOlxzzTV07dqVzp0788UXXxgdLyqZTCb69OnDypUr+f7771m2bFnUFW+73c59993HypUrGTt2LNu3bzc6knIYVbiVSktKSuKmm25izZo1fPjhh7z88susXr2avn37Gh0tagkhsFqtTJkyhVWrVhkd56hMJhNWq5XXX3+dH3/80eg4ymHUcimlSnTs2JFhw4bx7LPPctFFF3HllVcaHanGeOCBB4yOcEwJCQncfvvtRsdQDqMKt1Il6tWrR//+/enZsyd16tSJ+EbyihJtYmNjq23puyrcSpVKS0szOoKiGGLQoEHV1tZxu0VCiMZCiCVCiM1CiE1CiNHh43WEEN8JIbaHP6eEjwshxAwhxA4hxEYhxNmR/kMoiqIYrWwbgepwIr/PBoH7pJRtgfOAkUKIdsB4YLGUshWwOPwY4EqgVfjjTmBmladWFEWpxY5buKWUOVLKdeGvncBmoCHQFyhbZfEOcG34677AXBnyC5AshKhf5ckVRak1bDYb9erVMzpG1PhbV5CEEM2ATsAqIENKmQOh4g7UDb+sIbDvsG/bHz72v+e6UwixRgixJhDw/P3kiqLUGs2aNWPKlClGx4gaJ1y4hRDxwHxgjJSy5FgvPcqxv6wukFLOllKeI6U8x2qNO9EYiqIotd4JFW4hhJVQ0f4/KWXZjf8Olg2BhD/nho/vBxof9u2NgOjZqk1RFKWGO5FZJQJ4A9gspXzhsKc+B4aEvx4CfHbY8VvDs0vOA4rLhlQURVGUyjuRedwXAIOB34QQZbuEPwxMBj4SQtwG7AVuCD/3FXAVsANwA0OrNLGiKEotd9zCLaVcwdHHrQEuOcrrJTDy70eJrk12ji76M0bbZkVHE+0Zoz0fqIxVpSZkPBoRDcGTklJkx463GB2jQmazn6SkUmy2OkZHqVAwWEJysgW73W50lArl5uaSmppq6N3jj2f//mwslgZGxzgGjYApG2tdq9FBKqS7deKD8SQmJhodpUKFhYXEx8djs9mMjlKhd999l0OHDh210xwVhTshIUOWlh40OkaFkpJ28NxzS7jjjjuMjlKhhQsXkpGRwbnnnovP58Nqtf55lxWTzgHfHg4FDyJ1iQUbIPAE3NjNibRIPAOhm7HZrGiahhCCYDCIEAKTyUQwGMRms5V/Ljt/MBjEbDYf8dqy1WPBYBCrNVRcylaTPf3004wcOZKUlBSD3qVjk1Jy44338sknLxkdpUIxMYW0f+wy1j681ugoFar3Uz1m5c+K6t0hX3vtNS655BJatmxpdJQKZWRkcPDgwaMWbrVXySlG0zQKCgqITbDx30NfUDe2KUGTl52lv5Lj34PTW4rTW0yDuBZ4/B7qWhuxPXYzuwt2cM+5j+D3BRBCUFpaihCCmJgYSktLSUtLo7S0lDp16lBcXEydOnUoKSnB4XBQVFSE1WrFZrNhs9mwWCyUlpZGbYFWlKqWm5vLkiVLGDBgQLW0pwr3KWZH0a/MP/QiolhwwLcHq4wlGJQ4SCEtpiHJpFDkduHRA9SJaQS6la93fkqcJYGnfniAge1vo4G9MQkJCUgpCQaDpKam4nK5iImJIT8/n/j4eEpKSoiLi8Pn85GcnIyUEk3TcLvdQGilW0FBAcnJyVgs6sdMObUVFhby7bffqsKtnJx0e1M+WLyeOrF1ODP9TE6r24Zd2Zm8s+J9WrZOIt0Rz/aNOZgbBrmg3UWYg7HEWZIpdOYTY0/gzf/O5B9tr+WMlLOwWKxYrVby8vKoW7cuLpeLOqmpFBYUkJSURHFxMQ6Hg5KSEqzW0GsdDgcmkwmXy0VKSora3lWpFaprc6ky6l9VNdF1nU8//fT4L6ykOOzM/seb6Jrgyz++ZvoPL7Poj0VkpNTDn5eM70A9WtU9j9iihmhFOitW/Mzu/E2s3bmeLdk7WL13HfM3zMer+7BYLAghiI+Px+/343PmsO2Xuexe+wF7f/8PVmtoTDw2Nra8V+33+/F6vZhMJrxeb5VdtV+4cKGh97BUlGOp7muFqnBXE13XeeaZZyLejslkonWdljx68SOYLIKdBTs55DlEfKwDt9+NO+Cicd3GtE3rSKKnJc0S2+HcJhF+HTM+9uZm8+1vi5n0xdNA6AdS13WQGll/fMvSD8aw9qtHWbvo3wj5559N1/XyH16TyYSUskp+mFevXs3gwYPZt28fw4YNM/Tu8Yrx5syZQ3a2WoitCnc1io2Nxev1RrQNq9VKwB+gW6NuzL9pPmnxqZjMZoq8xVhtFnyanz/2byLPmcfWvVtYvuZnmtrb0ydjML8u3kqXNo2xO818/PXHBIIBAJwlReTuWc2yL1+iyB1Dl/5vcOmw/yOghWaV+P3+8hksZRcpdV0nLi6uUr9C6rrOzp07adWqFTfffDODBg1izZo1BAKBKnmvlJojMzOTNm3aoGkad9xxBzfccMPxv+kUpgp3NTGbzcyaNYvRo0dHtJ3i4mLq1q2LkIK29drx070rSHYkk+M8wIGSg2QX57Dv0H5+3vYzy7csJy0lHU1qHMzNp8/ZA3BsbkVSjIW6SXHs3LcNKSU/LnieOZOHEZvciktueYX2Xa8miAO73Y7X66VOnTrY7fby2ShFRUXYbDby8/MrNbxRWFjIsmXLGDp0KP/4xz/o0qULTZo0Yfny5VX4jinRTkrJhg0bGDJkCD169GDu3LnY7XZ27txpdDTDqMJdTcrmN0d6LKzsYqEQAq/XS4a9Hm8OepO7e9yNXw+QWZDJlpwt+HU/rRq2Jq1OGrlFuRwqLSQrLxu3101CYTPiEgVPfDaGT/8zh22bN5Jcrx3X3Dad9l2vwuv1Yrfb8fv9WK1W3G43fr8fgLi4OOx2O5qmkZCQUKmLk2lpaVx88cXcddddXHrppUycOJHdu3dz8cUXV9XbpdQQv/32G2eccQbPP/882dnZtGzZkh07dhgdyzBqVokBpJQRuwrt9XqJi4sjEAiUL8I5Pb01rXuNpWvDLhx0HeSZT54hKz+bXQd3Uic2FRs2CvLz8bkDeEs9jLh2BKPOv4di+37efnEKKbka9z31OinpjXG73cTFxeH1eomJiSlflFM2zl1WwMsKekxMTKX+PBdeeCEJCQm8++67/Pzzz3z++edV8TYpNYgQggEDBtCrVy+EEGzatAmTycSECROMjmYYVbirUZs2bejYsSMfffRRxOZ76rqOxWLB7/cfcZFQSuh2Wjdi42K5ot0VWG1WSp2l2MyCrF3bSE9KxSfBXiedWFssKckplJQcYmvzDfQa9g+ateqIEAJN0zCZTJTm5xGwmAloOqkNGmIymcqLN1D+2sr+hpGRkcHll1/Oeeedx6ZNm3jrrbd47rnnquKtUmqQFi1a8Msvv/D4449z991306pVK6MjGUoV7mpkNpvLi2qkxMbGls+r9vl85e0CxMTE4Pf7SYhNIH/NSmIDHpy5B0nI3kNJ0SGSO3QiseN5lGbuYLfHw74Dufy2/CfOO7s7gay9ZG/fQmxcHCXxKexZvpi9v/9KfHp97Ke1Jj41jYZnnEFGq9PLl8EnJSVV2TzupKQkGjZsiMViYe/evTRp0qRKzqvUDGazmR9++IFu3brRuXNno+MYThXuU4zL5SI1NZXS0lJiY2PRdR2fz4cQAo/HQ6zHye7/m4UjJRV/nJ2k9Hoknt8DKQQC8OzfgywuJEYP4ti9jfN9buTiL8jOykSYLBwK+Imr25DWl1xBi0suR2o6W39axoHff2Xv+rU4PV6ufXgCKWlpFBcXk5qaWmXFu2nTpjRu3JiffvpJFW6lVlOFu5pdf/31TJw4kZ49e9K4cePjf8PflJiYGNqrJDYWt9uNyWTCarUipcRhNbNh1B0kndaKlIsuw2S2gNTwZ+0NbdwrJWazhaSWbdClxNG4BS2vH4im6fjcJVji4tGkTiAQxFNciC5B0yWN2p9FfSkpLijg8+kv8Mbdd3HP2++SnJxc5TsB3nDDDUyYMIEePXrQoEE07+KnKJGjZpVUs7S0NEpKSsqHMapaSUkJaWlpSCmx2+2hed2BAN5DBay6/VrsDRpS/8p+6M5i9OJCpLMY4S1FeErB60K6StAK8wgW5qG7nASLC9CchxB+P/6iQgKHDhF0lhB0uQi6XQTcLvylTnyloeGZvmPuo/RADi//81b27dxZ5asd09PTSU5OZuvWrTV2L2VFqSzV4z7FxMbG4nK5EEIQCASQUmI2m8n5z0fUadyCBpf3IZCfgzk8PdEkwnfJEAIhJbqUIAUCCbqOlKBJSVAHTdfRpUSXhB9LNF0SkBJN6gR1ga5Lzh94E9+99SablvxA89NPr/I/4+TJk+nYsSPr51Q7CwAAIABJREFU16+v8nMr0amoqIj9+/fTq1cvo6NEBdXjPsXY7XaKiooA8Hg8oVkePg/ObRtJbtOeYP4B8LrB60b4XJh8bsx+N2afG5Pfg/C5ET43eFxIrxvpdSHdbqTHheZxE3S7CLpcBFxOAq5S/O5Sgi4X/lIXfpcTn9uJCWjW4SxWffYZxXl5xr4hyikhNzeXbdu2cf755xsdJSqowm2AadOmMWLEiD9vdFCFiouLycjIQEpJfHw8FouFnKXfgs+PrgXQPC6kJ1SYhdeNyevC7HNj8bkweV0I3/+zd+ZxTlbX/3/f7DOZZFb2fVMRFEUQgUIFVERxq7VudbdqrbYI6qB+RbG1isoiboigIra/Qq1KXepSRS2KqIAiiGwCOjIDwyyZ7HmW+/sjyeOMggyQITNw369XXkme58l9TrZPTs4995yUWMeiyEgEMxzBjIYxokHMSFK8tegPYRItHCIeCREPB0mEQ8RCYaKhOtr27EmwuppQTU3GnyPAwoULufjii5tkbIWiuaNCJVmguLiYnTt3NsnY+fn5bN++HZ/PRzgcxm63k+t2EnTZMRMxTB2kzQY2kDYBNoHNbkMIkCYIU4IpkabENAxMKyRiYpigG8nQSMKU6IZEN000EzTTREvdT5ipsImuQRPFodu3b4/X62XTpk306NGjSc6hUDRXlHAfZESjUXw+H4C1ajEWi2HGY0nP2QZ2mx3TBqZdYNpsmDaBDYEpU4JtmhimxDSkJdq6KZMCbSRv60ZSsBOGmRJriWaAZsqUiJsYTVgMKi8vj/PPP5/nn3+eu+66q8nOo1A0R1SoJEvMmDGDCRMmZHxcu91OJBKxutdIKXHYnQQ3rCVevRMjHEaPhNDT8epICC0cIWFliYTQIxGMSAgtEkILh9DCye1aKEQilAyJJMIh4qEQ279eQ7S2hlgoSCwUJBoKJsMlwVCTV/Hr378/UkpWrFjRpOdRZBfTNLnnnnuYOHFitk3ZLekSFgcq00l53Fmif//+3H333RkfN503nS5oZZom7pJW4HRRt/ZLRI9eSLcbabMh7QIpJIlwEOHOBacTQ9fREjrxWITar9eQ0HViuiRuSmK6QcwwiRvg69UXw+XCmZtLLBxBFwLNkMSNZMhk27dbCVRWIpqwo3tRUREFBQVs3ryZfv36Nevu8Ycama7Fs2bNGnr37p3RMTNJz549GTx4MH//+98PyNyLEu6DjHRZ12AwiNfrRdd1OPp4igePZPt/XsCIhino2gMjNxfDJrALibH9e4TDDS4XiWCA+M4dJIxkHDtumOiGJKFLNMNA1yWaYfL9qk+J6+AoaUNc08GbBy4PCSmo3VnN1g0bOPHK31HUrl2TPt9x48Zx0kknMWrUKAoKCpr0XIrGc6jl2Nvtdqs2/YFAhUqyhNvtZuzYsSxatCij4+bm5hIIBKyyrrqebHYQjSfQTUk8Eia4fRuxUB11326mbss3hGtqCX3/LXWbNxLekRTttOesGZJEatJRNyW6KTFkesLSILDtewIVFVSsX09NeTk7tm6h/JtNmCZ0P+pocvLyMvr8dsW4ceOYOnVqk59HoWguKOHOEi6XiwEDBvDpp59mdNxEIoHX60VKicvlwm63J7vRdOiAbneS0E2iwSDhQC3hqkrCVZVEIlGiuklMN4kZBlHdIG6YxI3kpGMilTGimaBJMzkxmV6EIyUGyUnMeCxGNBjGFAJ3np9YPN4kKY8/5vTTT+eVV15p8vMoskMikcDlcmXbjGaFEu6DkPTf1Pp/V7v/9npsJW2JGAaRSIxwIEBUM4hqJlHNJKKbRDSDiG4S1SVxHeK6SVw3SeikskaS2SKaKTH0H7zwhGFiIgjXhYlGo+i6Sb/TT2X4xRcdsOfcq1evQ7qw/sHM6aefzltvvZVtM5oVSrgPMlwuF9FoFCEEuq5jmmayLrewYStohW4kJxkjoUhStA2TqG4Q1c2U1y2JGaZ1SXrdqeuUBx43zWTKn0wKumGCDhgkQyhHDB2OHRu5npyMVQb8OYQQPPjgg0yaNKnJz6U48BiGoSaef4QS7izSp08fnE5nRmtuxGIx/H4/kKxb4nA4knnZhkHXS39P3BDEdJNoLJEU7pRgRzUjGSrRDWJa6tqQxI2kkCf0lHjrJrouSZikFtyk4uCaTiwWw+5xY3M7OfWaa6mrq8t4kand0bp1awYMGMAbb7xxQM6nUGQTJdxZpKSkBLvdzvbt2zM2ps/ns1ZlhkIh4vE4drsdp9NJt0FDMXPziKXCIsl4tiSa8q6juklEk8lwiSGJ6kkxjxsmMTMp4gkD4iYkTIO4kVx0o5smCUMiHU4Gn3cBNTur6NK3L61atcLhODCJS7m5uXTp0oUNGzYkM2kUioOYPQq3EKKTEGKxEGKtEGKNEOJPqe13CyG+F0J8nrqcVu8xtwkhNgoh1gkhRjflE1A0JBQKkZ+fj5QSj8eD0+nEMAxM0ySiaYx8+BkrHztiJGPbUc0kkopzR1OTkz944CYxzSChGz+ESgyThJ5e3m4QN0E3TI4Y8guWL17MDU/OxuVyEQqFDsjkZJpf/epXfPXVV3z11VcH7JyKpuXrr7/msMMOU6GSH9EYj1sHJkgpewMnAH8QQhyZ2jddSnlM6vI6QGrfBUAf4FTgcSGEetV3w8iRI1myZAmRSCQj47lcLmKxmNXzMR3jFkLgcrlwt25D26EjU4Kc8rJ1g6iuW5kl6fBITP9h0U3ykgqbGKaVMhg3JJpp4PbnE40lGHTaabTt0gXDMHA6nU3WFHlXCCE4++yzeeGFFw5YiEbRtMybN4/f/va35OTkZNuUZsUehVtKWS6lXJG6HQTWAh1+5iFnAf+QUsallJuBjcDxmTD2YGTIkCF89tlnxGKxjIzn8XgIBoMIIUgkEpimaS0OyM3NxVFQRPvjhxDXZSqrJOlZR3WZvE5lmUR1k7hhpMSa1OUHsY6bkriRrF1iCgd9Rp5ENJFgyJln4/P7MQwDr9d7QIUbYPTo0bz55psqXKI4qNmrGLcQoitwLLAstekGIcQqIcTTQojC1LYOwHf1HlbGzwu9AtiyZUtGxqmrq6NVq1aYppkUaocDTdPQNI2amhq8ubn0ueAyOo44haiZ9LDDmkE4YRBJpQdGUqGScErAY5pBTNeJawbx9MSlnvS8DbuTw3/xS6p3VtH/pJPp0LcvtbW1OJ1Odu7cmRXP96233mL0aBWhOxgoKSlR3vYuaLRwCyHygH8B46SUdcATQA/gGKAcSC9d25WL9ZP1r0KIa4QQnwkhPtO06F4bfrDw+eefU1ZWxkknncTcuXP3Oz7r9/uprq7GZrMRiUTQNA2n04nT6aSgoIBIJILd6aTzyaehO3OsvO2okZyUjBip+7r8IePEShOURNMxblOCx0PrHj2RDjuRugAdjjgCf34+BQUFaJpGUVFRVmKTubm5nHzyyQf8vIrMM2HCBAYOHJhtM5odjRJuIYSTpGj/TUr5IoCUcruU0pBSmsBT/BAOKQPqd8HtCGz78ZhSytlSygFSygFO56H7i/rqq68yevRovF4vy5cv55133tmv8SKRCH6/35qcdDgc6LqOrutW53cpJcefcx7DbypNetn6DxcrJdAwf5icNGRKuA3iejLerUuBy18ILjflm7fw27vu5oSxpxONRgmHwzgcDoLB4AGdnEzjdDq54447Dvh5FYoDRWOySgQwF1grpZxWb3v96kHnAKtTt/8NXCCEcAshugG9gE8yZ/LBw/Lly0kkEkyaNIkOHTpw7733snXrVtauXbvPY+bk5FBXV4eU0qpVYrPZsNlseL1eYrEYUkrq6ur45ZXXcsr/3Y1udya96VQ+d1Q3SQh7KiUwleNtmCSkjZhuENclcQSRaIyKLd9yyV2T6TVoULISoduNx+NB1/WsxLgVikOBxiTZDgUuAb4UQnye2nY7cKEQ4hiSYZAtwLUAUso1QoiFwFckM1L+IKVUU/y7oH///vznP/9h7ty5vP3228yYMYMuXbpwxBFH7POYdrsdh8OBw+Gwlrynb9ff53A4cLndDL74cnoedwJvP/EodTuT/SElMPiii/nf355HSjBNiSMnl05HHcXapUsxJUgERe3acvHtt1PUqRMOp9MaN31Oh8OhhFuhaAL2KNxSyiXsOm79+s885l7g3v2w65BACMGQIUN46623mDlzJuFwmFGjRu2X2NlsNkpKSna7Pz8/HwCv1wskVxy2bt2aPsOH/+TYU664ep/tcDqd+/xYhaIlYZom06dP5+OPPwagurqam266qUnLPah63Flm5MiRjBgxgiVLljBs2LBsm6NQKPYSKSWzZ89mzJgxCCGYPXs248aNa9JzNhPhlrjd1dk2Yre4XHXEYjGqq5vOxj59+uzX+JFIhFAo1KQ27i+aplFbW9vMi+wbzfqz6HbXYtfsuKvd2TZlt7hCLiKRSLP+LMZiMerq6jJi4xVXXMGLL77I+++/jxCCq6++ml/96lc888wz+zXuz31PRHP4EhUVFcmbb74522bslnA4TGVlJV27ds22KbulvLwct9tNUVFRtk3ZLevWraN79+7NOozyxRdf0K9fv2ybsVs0TWPJkm+oqTk826bsFo+nmmOPjdOuibsf7Q+bN2+mdevWVsiwOfLQQw9RXV2967iplDLrl9atW8vmzIYNG+Ts2bOzbcbP8tJLL8mPPvoo22b8LH/+859ldXV1ts3YLaZpyhtuuCFj43399dfyzTfflFJKuXPnTjl//vz9HrOqqkoed9y9EmSzvbRtu0S+/PLL+/1c0zzyyCMyFotJKaX8xz/+ISsqKvZ7zFmzZskNGzbs9zhNSUoXd6mZqjqgQtEE1NXVcd9999G7d2+uv/56AGpra3n55ZezbFnL4oknnqCwsJDy8nImT57MgAED+NOf/tQsa9G88sorB6wTUzOJcSsUBxc+n4/zzz+fqVOnsnz5ct577z2WLVvGddddl23TWhRXX301Y8aMwe12s2LFCtauXcvtt99+QBp07C2VlZUHLP21+T17heIgQAhBly5diMVilJWV8dprrzFixIgDVp/8YMHpdDJmzBj+9a9/8fXXX1NQUEDr1q0P+fUB6lOkUDQRRx55JLNmzWLDhg1Mnz7dyqFX7B0TJkxg/fr13HvvvcyaNSvb5jQLlMetUCgULQwl3AqFQtHCaFHCrWnafie1KxQKRUunxQj39OnTOeussxBCcMopp/DRRx9l2ySFQqHICi1icjIcDrNx40buuece2rVrRyAQYPPmzQwaNEg1EVUoFIccLcLjXr58OZ07d6ZLly7cd999tGnThs8++4xgMJht0xRNSDQa5cMPP8y2GQpFs6NFCPfw4cPZuHEjN998MxdddBEXXnghJ554IgUFBdk2rUl46KGHDvlmt48//ji33XYbH3zwATfccAPffvtttk1SKJoNLUK4ASZNmsQNN9zAo48+ysqVK3nttdcoLy/PtlkZxTAMpkyZwuGHH94sV4YdKHRd5/XXX+e8887jd7/7HcFgkPLy8mZeVVChOHC0GHXo1KkTAwYM4LnnnuOYY47h8ccfZ9y4cWzatCnbpmWMl156idzcXE4//fRDWriff/55zj33XLp3786dd97JH/7wB2bMmIGmadk2TaFoFrQodRBCNGiNNWfOHObMmcPy5cuzbNn+EwwGWb9+Pf369TukRRvg8ssvZ+HChSxcuJBRo0YxaNAgOnXqdMi/LgpFmhb9TfD5fNx444289NJLrFu3Ltvm7DNSSkpLSxkxYgTDd9FC7FDk9ttvp7CwkA8//JCFCxcyYMAAbr/99mybpVA0C1pEOuDP0b59e26++Wauv/56pk+fTps2bbJt0l4RjUa58cYbufXWWznssMOybc4+YZomNTU1QPJHaOzYsUSjUSZNmsS55567T2MOGzaMIUOGcPrpp1NcXIyUkvbt2zNp0iTuuOMO3O7m2wFGoWhqWrxwAxQUFDB//nyuvvpqJkyYQN++fbNtUqOZOnUqv/71r+nVq1e2TdkrAoEAS5cuBZJtoNLFf4QQvPvuu+Tk5Oz3Oex2O8XFxda4Q4cOpaamhlmzZtG3b19Gjhx5yFeJUxyaHBTCDckv+YMPPshjjz1GIpGgf//+2TZpj2zevBld1+nVq1ezF6Da2loefPBB677NZsPj8QDg8Xj4z3/+0+TPQQjBGWecwUsvvcTSpUvZunUrV155ZZOeU6Fojhw0wg1QUlLCNddcw5QpU2jVqhUdO3ZstoIYDoe55557mDRpEt26dcu2ORbp1kgAK1euJN0LND8/n5tuusk6Li8vj+OOOy4rNp5zzjmcccYZzJ8/n2effZbLLrus2b7PKoVx/0l/Jpvreww/vM8HysaDSrgB2rVrx3333ccll1zCjBkz6NixY7ZN+gnbt2/n97//PfPnz2/SZqVSSsrKyujUqdNujwmFQlRUVFj33377bWbPng1A//79+fe//w0kP5B5eXlNZuve4nA4uOSSS3jsscd4+eWXOfPMM5tl+YN7772XW265Bb/fn21TWixSSq644greeeedbJuyWzZs2MDSpUt5/PHHD8j5DjrhBsjJyeH5559n4sSJXHbZZRx77LHZNsli/fr1zJ07lyeeeKJJRXv58uWsXr2aTz75hEGDBjFkyBB69uwJwOrVq1mxYgUAO3bsYNWqVdbjRowYwcqVK5vMrkzicDj405/+xJQpU5g3bx69evVi2LBh2TarAfF4HLfb3ay9xZZANBrNyLxJU2GaJoZh4HQ6D8j5DkrhhmTctbS0lNmzZ+N0OpvNhOV7771H3759mzz75Z///CcAkydP5uabb2bu3LlW1kq7du0sL7xfv35WOKSlcuutt/Lcc8/x4YcfYhgGJ554YrZNUiialINWuCEpUNdffz2lpaX89a9/pW3btlmzRUrJ2rVrWb9+Pf/3f//XpOdasmSJleN+2mmnUVZWxrZt2ygtLaVr164UFxe3uLTJn0MIwWWXXUYgEODee++lpKSEPn36KC9XcdDSohfgNIZWrVrx1FNPcdNNN7F+/fqs2fHll1/ywAMPMGXKlCYvjjV06FCCwSALFizgtdde46KLLuKJJ55gzJgxHHnkkQeVaNcnPz+f+++/n2nTprF06VK2bNmSbZMUiibhoBduSKYKzpo1i+eee+6ALo8Ph8O89NJLvPfeeyxYsICnnnrqgEygCSEYNmwY69ev5/HHHyeRSHD00UcfEh6ozWZj9uzZLFq0iGeeeSarP9YKRVNxUIdK6pOfn8/111/Po48+Sn5+vjVR11T85S9/YfXq1QwdOpRbbrmF559//oBNXACcfvrpnHbaabz//vuHXMzX4XAwZcoUNm3axMyZM5k0aZK1kEehOBjYo8cthPAIIT4RQnwhhFgjhJic2t5NCLFMCLFBCLFACOFKbXen7m9M7e/atE+h8bRv357bbruNO+64o0EKXKYJh8OsWrWKSZMm0apVK4LBIKFQ6IDn9AohDjnRrk+PHj2YPHnyQVu3XXHo0phQSRwYKaXsBxwDnCqEOAGYAkyXUvYCaoCrUsdfBdRIKXsC01PHNRt8Ph9/+9vfuPPOOxukwWWSN954g+HDh1NUVMSmTZt49913WbhwoSpLmgUKCgqaZX63QrE/7FG4ZZJQ6q4zdZHASOCF1PZ5wNmp22el7pPaP0o0s+Cqw+Hg3nvv5eWXX+bzzz/P+Pjnnnsub775JjNmzODss8/m8ssv58orr8TlcmX8XAqF4tCjUTFuIYQdWA70BB4DNgG1Usp0f60yoEPqdgfgOwAppS6ECADFwM4M2r3ftG7dmmuuucaq751pHnjgAb799ltmzpzJww8/TJ8+fZrkPAqF4tCjUaolpTSAY4QQBcBLQO9dHZa63pV3/ZPgrhDiGuAaSIYvskFT5nX37t2bI444ghNPPFGVIFUoFBllr9IBpZS1wHvACUCBECIt/B2BbanbZUAngNT+fKB6F2PNllIOkFIOaM5LWfcHIYQSbYVCkXEak1XSKuVpI4TIAU4C1gKLgV+nDrsMWJS6/e/UfVL735WqRJpCoVBkjMaEStoB81JxbhuwUEr5qhDiK+AfQoi/ACuBuanj5wLzhRAbSXraFzSB3QqFQnHIskfhllKuAn5SXk9K+Q1w/C62x4DzMmKdQqFQKH7CIbHkXaFQKJqK5557jieffJIvvviCe++9l6qqqiY/pxJuhUKh2EeklMyZM4cePXpQXFzMe++9R2VlZZOfVwm3QqFo9rRu3TrbJuyShx9+mD/+8Y+MHj2avn378vTTTzNx4kRM02zS8zaLIlOmafLhhx9m24zdUlFRQXl5ebO2ccuWLdTU1DT5B2Z/qK6u5tNPP23Szj/7SyQSyej7HAgE2LBhQ8ZWzYZCITyeatq2bb6fxcLCdWzZEszo6zhp0qSMjldeXs6qVavYvn37fo0zcOBAJk2axB133MG5555LaWkpF198MUuXLt1vG3/uu9wshFtKeUDiQvtKIBAgGo02axvD4TDPPGMjGGy+NnbunGDQoBpisVi2TdktNTU6l1ySydfwJF59FSAzYzocEdqd+ik5t76YkfGaAtdmP+Hwb5r19yUWi/F/tf9HzJGBz+Kf4OrQ1RACLoCP+Tgjb3dcxne7r1kIt91u58wzz9zvcaSUvPzyy7hcLkaPHs2XX37J0qVLue6667DZ9j0qtHHjRgzDyIiNTYVpmuzY0YaKisHZNmW3FBev4pRTTqGwsDDbpuwSKSXz57/N5s3N9312u6vxt32IzWduzrYpu6Xth23ps7PPfn9fTNPk8ccfZ+jQoRx11FG8+eabJBIJzj777P2uLV9eXs624dsI9Azs1zhNSZ599825D6oY99atW3n//fet5rjdu3enqqqKjz/+ONumKRSKvWTp0qXU1tbSvXt3hg4dyqBBg3j//ffZunVrtk3LOgeVcHft2pW+ffsyfvx4ysvLufvuu4nFYgwZMiTbpikUir1k6NChhMNh7r77brZt28b48ePp27cvXbt2zbZpWeegEm6AESNGMGbMGOx2OwMHDuT888/PtkkKhWIfueCCCxg4cCB2u50xY8YwYsSIbJvULDjohLtHjx5ceOGFFBYWcsEFF3D00Udn2ySFQrGP9OvXjwsuuIDCwkIuvPBCevTokW2TmgUHnXArFArFwY4SboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWHHC++uorPvjgg2yboVC0WJRw7ydSSkzT5IEHHmDLli2N7vmYftzuLuvXr+fEE09scHnuueea+Nk0PTU1NcycOZM333yTESNGNOs2ZgpFc6VZtC7LNBUVFbRr1+6AnGvTpk0MHz6cadOm8cc//pFwOMw777wDwDfffIOu67t8XCwW4/LLL0dKucv9vXr14tVks0KLTDWczSYFBQX85S9/oaKigtdff53169fj8XiybZaFYRjZNkGxC9q1a0dFRQVt27bNtinNgoNSuEtLS3n44Yf3q89kY5BSsnjxYiZPnkznzp0ZO3YsDz30EPPmzQNgyZIlJBKJXT42JyeH5cuX73fvvJaGEILvvvuOGTNmsG3bNh544AHsdnu2zbIIh7NtgeLH2Gw2ZsyYQWlpqfXdOtQ5KIX7QGKaJg6HA9M0LW8t7WXPnDmTnJycbJrX7Kirq2PJkiWMHTuWt956i9mzZ5Obm5tts4DkD/FvfvPHbJuhUOwRJdz7gRCCUaNGMWzYMB5++GHeeOMNOnbsyFVXXZVt05otubm5FBUVsXXrVhYvXtyswiQKRUtBCfd+0qNHD8rKynjwwQeZMWMGXbp0ybZJzRqHw8FFF12ElLLJQ1kKxcGKEu79RAiB3W5n4sSJ2TalxSCEOORi+wpFJtmjyyOE8AghPhFCfCGEWCOEmJza/qwQYrMQ4vPU5ZjUdiGEmCmE2CiEWCWE6N/UT0KhUCgOJRrjcceBkVLKkBDCCSwRQvwnte8WKeULPzp+DNArdRkEPJG6VigUCkUG2KPHLZOEUnedqcuuk4+TnAU8l3rcx0CBEOLAJFUrFArFIUCjZoeEEHYhxOfADuBtKeWy1K57U+GQ6UIId2pbB+C7eg8vS21TKBQKRQZolHBLKQ0p5TFAR+B4IURf4DbgCGAgUASUpg7f1azTTzx0IcQ1QojPhBCfRaPRfTJeoVAoDkX2Kh9LSlkLvAecKqUsT4VD4sAzwPGpw8qATvUe1hHYtouxZkspB0gpB6hFKgqFQtF4GpNV0koIUZC6nQOcBHydjluLZF7X2cDq1EP+DVyayi45AQhIKcubxHqFQqE4BGlMVkk7YJ4Qwk5S6BdKKV8VQrwrhGhFMjTyOXBd6vjXgdOAjUAEuCLzZisUCsWhyx6FW0q5Cjh2F9tH7uZ4Cfxh/01TKBQKxa5Qa44VCoWihaGEW6FQKFoYSrgVCoWihaGEW6FQKFoYSrgVCkWzx+fzMWiQKnmUplmUddV1nSeffDJj40UiEV588UUKCgoyMl4gEKCsrCyjNmaab775hs6dcykpWZVtU3aL37+F+fPn43a793xwltD1avr2bb7vs90eI39zPn2f7JttU3ZLbnkuS2NLqaioyOi4drs9Y9/B1atX0yPQg0T+rlsLNge+1b/d7b5mIdx2u51Ro0ZlbLxMjgVQVlaGzWbL+LiZxOFwcMIJRRx11FEZGU/XdRyO5MfDMIyM9IWcO3cLf/7zMDTNt99jNRUnn7yCl15qvu9zXV0d//rXDq4YtevlERKJxERKiUhVn5CpihM2Ybe2NSWrVq2itraW4cOHZ2S8+p+/TH0WA4EAU4+fSseOHfd7rKZisG3wbvc1C+EWQtCzZ89sm/GzbNiwoVnbuHr1atq0aZMRG7du3crtt9/OnDlzCIdjCDOLAAAgAElEQVTD/PWvf+XSSy9l4MCB+zWu1+slGOxKPF643zY2DRKbzZXR97m8vJy8vDx8vsz8WFVXV+P1eunWrRtVVVXJjTkadeFa8vML+GLHYj6MvEowVoOpC7y2IsLxMJF4mKu6T8bjzKFdXkcKvcUEAgGcTiehUIiSkhJ27tyJ3+8nEolQUlJCOBzGbrejaZolmOFw2NqXn59PZWUlJSUlAFZHo+3bt2O32zPyOm7bto3S0lJmzpxJXV0dCxYsYMCAAZxyyin71YwjPz+fjh070qlTJ0KhEDk5OYTDYZxOJw6Hg2g0is/ns/bF43GEEDidTiKRCH6/n2AwSE5ODpqm4Xa7SS5hAZfLRSgUIi8vj3A4TG5uLrquY5ombrebYDCIz+cjEong8XgwTdNylDwej/W8fq5DVLMQbkXzYvHixfzyl7/k008/5f333+ekk07i1Vdf3W/hPhR5/PHHGTlyJCNGjMjouFE9xJfR9wjpAcrq1lAVq8BT7UOYDlrbutEh5yi+2vkpDruPvr5jsOXZ+aJ6Ka9uXMDoLucxqstY2ng6IKXE4/EQj8ctEUmLk2malhilRSR9rBCCSCSCy+Wyrl0uV0afI8Cnn37K0UcfTXl5OVOmTOGyyy7jrbfe4uSTT85IF6VQKER+fj6hUIjCwkJ0XUfTNIqKiqipqaGwsNASYSkl8XickpISampqKCoqIhKJkJubSzQaRQiBaZrWmFVVVeTn5xMIBHA4HNhsNqqrqykoKKCqqgq/309dXR1CCNxuN9FoFLfb3ajnpYRb8RMuv/xyDj/8cNq1a0dlZSWzZ89m7dq12TZLUQ+bsDHzk8fQjDgd/R3pXtgdt93Ls+/Ox+9zcViXdlRtDVMVX0O/vrUUuVqjGSbtcnqwpmIV6A5audsw+rAzASzRSd+22WyYponNZkPX9QbnTreeS4u5zWZrslZ0Z511Fr/85S95++232bBhA//73/94/fXXM9avNCcnh1AohMPhoK6uDrvdjs1mIxAIcOONNzJgwACuvfZaIpGI9Zxra2vxeDzU1dXhcDiIxWJWWNFms1k/bvn5+SQSCbxeL6ZpMm/ePN555x2efPJJ8vPz0TTN2ielbLRogxJuxW5YvHgxH3zwAR9//DHjx48nPz8/2yYp6uG25/KXgY9z9oKz2OEy2OioJlfkUiS6kBtzE9mSx87vo3xdsQN37pd4qoqoKdqJ11GEw+YiUBcjlkhwQsfhOKQTr9dLOBxGCJH86++UJGJhnA47CA+mlNjtduLxOF6vF13XcTqdhMNhfD5fk/YQXbhwIV9//TWPPPII06ZNo127zPVlCYfDFBYWUldXR15eHoZhoGkafr+f119/nUWLFmEYBpdeeikFBQXE43H8fr/lcYdCIVwuF7FYDMDyuAsKCqitrSU/P5/vv/+ed955h9LSUuLxOM888wy1tbX4/X5CoWSPmrTY5+TkKI9bse+0b9+e1q1b4/f76dy5c7bNUfyIWCxG91ZdWfibhVz4z/NZvmU5Tt1BsasImQAzYXLfhffz8ZdL6ezvzJtr3qRDp0K2fFuJ25dHeWUVsYTOfW//lbvGTiYcDuP3+4nH4zhljOfvPA5Tj4GQ/OqWleQUtMU0TQoKCgiHwzgcDgKBALm5udTU1JCbm0tubm6TPNc2bdoQCATwer0Z/yw6nU50Xcdut2MYRnJSt14z62g0SmlpKXfeeSdvvfUWxx57rBWP1nUdm82GlNL615EOe0gpcblcrFq1ilNPPZVAIAAkkwjsdrsVVnI6ncAP/3KUx61QHMTk5uZSWVlJB297nvjVLG5ceCM7anbQs7gXdmnHTBj888MFeO1eorEILoeT7Z84OKLLALbt2ERd8Q5KtE78vzcXcErXUzlt0GlUVlbiccHyNx8mENJo3XkAvY45CeHMJR6PY7fbqa6utiYni4qKqKyspLi4uEk97qbE4XCgaRo2mw1N06zn8fTTT1teNEAikeCiiy7ikksu4ZxzzqFr165MmTIFKSWGYVgC7HQ6+d3vfsf27dv5+9//zj/+8Q9LtCGZFTN79mx+97vfYZomDofDmkfYm2wZJdwKRQskEomQl5cHwADPAP7fJX/nrKfO5usd6/A5fOSIHOIiTmV8JxWV5VTvrOb0gWMpcbXHxM7ReQN464v/UOR24LY5CQaDBHZs5JV/z2DH1s9o3aE/w34zlYLWXbEJgd1uxzRNiouLLY+7qqoKn8/X5B53UxKNRikqKqKurg6/34+u6yQSCf7+97+TSDTM8d62bRtTpkzhtddew+v18tlnn2EYRoNjbDYbr732GlJKVq5c+ZPzSSmZPXs2F1xwAQUFBYRCIYQQeDweEomE5fHviUN25WQ8Hmfnzp3ZNkOh2CfS3pmUEpuw0bOoF+9c9w492x5GXayOdRXr+WzrClZ9twpfnp+BfQYS1aJ8u30rwmGj7vsEJ/YYQ16ugzufv4HN2zby7cbVfP3lcoadeRvn3jCf4rbdEST/xqcFJZ0WKITA4XBgmiZ2u/0n3mJL8cDTPzxut5vq6moikQgAmqZZx0ybNq3BGo7Vq1ezbNmyn4g2JGPcK1asaCDabdq0Yd68edZ9h8NBq1at0DSN/Px8vF4vkPwXpUIlP8Prr7/O1q1b+e677zjyyCM5++yzLe9FoWgJ2Gw2YrEYIuUNa5pG2/y2vHHtq7z25Wu8+uXrLF3zERVV24kkwlSZduL2BGbCBB3WrvuKUwaOZnjJr2k9WHDjtAs5vNLOMQNGcdhxY8jNy7dEOp31IIQgkUjgdDoxDAOXy2VNUv5YcNJ//5s76TTAuro6ioqKLI87HfqApIi/9NJLFBYW7lKs98SoUaMa/BDous7OnTspKCggEAhYHrdKB9wDkydPZty4cQwfPpzLL7+cX/ziF0q4FS2KWCxmhSai0Sher5fa2lp8Ph8je47i3IG/5o0Vb1ARrCARS+Dz5BGNRIlHEyAF+gidzm06MfL4kRQVFuGvKOK7j77g5F/9gZLW7amqqsLr9aJpGg6HwxLpdH6yx+OhtrbWWrjj8/maJI+7qUmnAzqdyXBReoKwvkDn5OSwrw3Nr7zySh544AHeeusta5vdbsfv9zdIB4Tkwh3lce+GqVOnUlpaSq9evXj11VdZsGABEyZM4IUXXmgxf+8UitzcXOrq6oDkFz69Gi8dsw2Hw4w+djSB2lpyXS6itVV8O+9RYhvX4mnXgSNu+jMJpxM7sLOinIqV23B7W9Opc0/qqqsp9PlIaBobX3mR5f+cj3B6OOLM39DjxJEUFhdjGAYlJSWEQiGKi4utPOaWRjweJy8vj0gkQk5OjrWK0ePxWMckEgncbreVebI3nHXWWQANJjqllITDYbxer7Xd5XI18Mr3RMt8tfeDcePGMXjwYDRN4/XXX+fKK6/k0UcfzbZZCsVeEQ6HrdV80WiUvLw8K284fb195TJE2Wa2vLYQZ46XoydPB5sTYbdh7Kxg7Z0TMYQNM2Zirv2S1kf3Z8sLz/LdB4uJBOvI69SNw8++kDPumYqpa3z17ts8f8WFuPILGfnH8eS1bU+XXr0IBALk5OS0yH+t9eP3UkorxPPyyy/Ttm1bgsEgW7duZcWKFT9ZiNQYNm7cyHHHHcfGjRut851zzjnWnED91MO9cRwPOeH+3//+x8iRI5FS8tRTT9G7d28KCwuVt61oUbjd7gYx7kQigcfjQdM0PB4POz94k61T76TTBVfT59a/IgSE160l/TGXQtD3zmlIAbGKcgo/XkIikcAubAy44VZwOIlHIySiESJVOzClpMtxA+l83PEEqqv516Q78HfqzGUPzSDH72+xHrfT6SQej2Oz2ayl/EKIBh7yI488wiOPPLJP40+YMIFt27YxdepUIDk3MW7cONxuN6Zp4nK5rB+LvXkNW+arvY8sXbqUjz76iNLSUmw2G5s3b+aYY47JtlkKxV6TzuaAHyrmpReSVL73Bt89eT89LroWb9cexL/fgkBgQyIEqVqBguimrzGlxARaHz8YE0hEIkQrKzBN0KXElBIDMEyJYYIpk+f95SWX8v78+cy5/vdc+/QzDSbzWhLpglrplYzpycmpU6fuc1z7x6RFG5Lv25133smdd95pTYqml8knEolGZ5YcEsItpWT9+vXMnz+fBx54wPpLp0Rb0VJJZ3UIIayVfJFIBFG1ne0vP0/nsy/GXVSCGajChg0hUisCAQGYSDCTtzEliUgIQ0p0MynSppSYMnlbT1+bEgMTzQCXO4dfXPRbFj08nUevvIKb//7/svuC7CPp5esej4eamhqklDz22GM89NBDDUIjhYWF2O32BmmRNTU1uxwzPz8fp9OJaZpWDZj0sVJK5syZg91u56677rIyVQzD2Kt0wEMij/uTTz5h2rRpPPbYYy0yDqdQ/Jh0TDtdeS4QCFCQn0/Flyvxl7TFW1CMGaqFWAQRD2GLR7DHw9jikeQlFkbEwhANQywE0TBmJIyMhDAiIfRICD0cJBEOoYWCJEJBEuEg8WDyOhaqw9Q1Tr7qamrKygju2JHtl2SfCAaDFBQUkEgk8Pl8PPnkk9xzzz0NFt8ceeSRrFixgrKyMjZt2sSOHTv47LPPdlkts3fv3rz77ruUlZXx5ZdfUlZWxieffEK/fv2sYwzD4PHHH+eBBx5g27ZthMNhIOn9NzaN8qAX7nfffZe3336b6dOnqzi24qAhXZDI7XZjGEYyrS1QS+37b2DL8aAFayAWQUYjEEsKtS0ewREPY49HELEIxCPWMUYkjIxGMKNhzGgEMxJBj0TQIyG0SJhE+jocJhEOkQiHiIdDaLEETm8e7/2jZXrcOTk5RCIRHA4H27dvZ9KkSQ329+nTh1mzZlFUVGTFwuvq6mjVqhVTp06lV69e1rFut5ubb76ZXr16EY/H8fl8aJpGmzZtmDt3Lscff3yDsadOnUo4HLY6Qql0QJJ/ST7//HPef/99xo0b1yKW40oprZzONJMnT2bx4sUAXH311Vx22WXZME3RzEiHRiD5hU8kErhtgtg3X1E8aixmNIxhs2G3iaR7ZgO7zY7NBqYEYUowJdKUSNNEGhLTBMM0k/FtU6KZEk2aaEYyhKKbZnKbKdGN1G0Jbbt2QctQPPhAo2kaubm5xGIxrrvuOiu7JE15eTm33norhmFwxBFH8Oijj+LxeIhEIhx77LGccsopbNiwAYBTTjmFESNGkEgkrB+Eu+++m5UrV2KaJlu3bm1wbiEEf/jDH3jxxRdxuVx7lWp40Ar32rVreeSRR5g1a9YBWRhQUVFBYWFho/spmqbJhg0bGnxIli1bxsMPP9zguMmTJ1NaWgrQYieAFJmnfvqaldJmE0jTwIxF0G1gs9kxbQJpE2ATSLuAtDCZIM2ko2AayWvdBN0w0SVouokuk3HthGEmhdww0U2ThCnQDIlmmmiGSSwcyvbLsc+kGxg4HA7mzp3L+++/z0UXXWTtr66u5uOPP6ZHjx7cf//92O12IpEIbrebeDzeIBPE5/PRqlUrK8vH6/UyadIkxowZw4oVK35y7pkzZ3LhhRc2aGDRWA5K4f7ggw9YtGgRc+bMyVjB9d0RCAR44YUX2LRpE+3bt6dLly6cccYZPznulVdeYUe9OKBhGCxbtqzBMQMGDNjlG5wNEokEn3/+Of3798+2KYpdkEgkLIfEMAw8Hg+xQC1GOEJs+zZy/PkYNjs2u0DYQNgFCBsmNkwkupQYZlKQdSPtVUt0aZIwQEt71EZyMjIajRLXNHDnkDBlSrhBMw3ikQhNucBdSsnixYsz1sPyx2OnwxN2u50PPvjgJ8f07t2bBQsWkJeXh8Ph4O2332bHjh0UFBTQr18/LrvsMnRdZ9CgQSxbtowtW7aQk5PD2WefjcfjYdGiRYwdO5Yvvviiwbiffvop5513nuW87U2ZgINOuD/44AM++ugj7rrrriYXbUj213vmmWd4+umnWbFiBVOmTMFut/PPf/6zwXHHHntsg76DbrebOXPmNNu4ezQa5bXXXuOdd97JtiktmnPOOYf58+dzwgknkJOTk7FxPR4PO3bsQAiB1+tN9kH05WFKqPt6DfZeRyByPGCzpTztVCaJpiPcHgxpJoVX1wlv+45YOEzMMEkYkrguiZsGcR2cxW3A5ycWiRJPJBC6QSJ1nGZKErrB1tWr6Tnw+D0bvY9IKZk1a9Yuq+1lgnSnn1AoxKxZszjzzDNZt24d69ats84/depUHnzwQYQQVFVVMX78eIYMGcILL7zAOeecY5Vnvfbaa3nhhReYNm0akKxLcueddzYQ5Q4dOjBq1Cief/55SktLyc3NbXRVwDQHjXBLKVm7di2LFi1i0qRJ+P3+Jj+naZpMnDiRv/3tb8ybN48XX3yRjRs3smzZMiZOnNjg2M6dO2f0i6toGfTv359bbrnFintminSz3vRiEZ/PRzAU5MjSe1kzeRzGl2FKDu+LdLswbAJDgIhHMGtrsLdpj6kbBDeuwdAlsXicuKYRN0ziOkR1g7huEjNMtIptaNiR3nzs+QXISAzd7kAzIGGYbPxyFTZXLkf+YljGntuBJN3Y1+Px4PF4+OSTTygpKeG3v/2tdczXX3/NunXr+OCDDzj//PO56qqrKCoqstL9DMOwmicYhkFeXh5nnHEGTz/9NNOnT2fLli0N5q4KCgqYPn06N954I926dbO6Dh2SC3C++OILHn74YebOnXtAPG1Ixhnvu+8+rr/+eubMmcOIESO47bbbDpi3rzi0MQzD+pwlvUY7wleIppvYwmGqv/qc/J5HYDN07KaB0OJold9DeVkyV9sEzTRJmEkPOqEnvWiDVO62hEQ8QUwziAWCxL/7jphhojvdeNu2Z9uWrQSDEboefxh9myCMcSBIN/aNx+MUFRVRWFjId999RywWs/puQtIx3Lx5M/fffz9r1qzh3//+N8888wxSSnJycqz0wb59+3LzzTczceJEFixY8JPwh81mIxqNUl5eTu/eva1FPk6nk1gs1ug5skYLtxDCDnwGfC+lHCuE6Ab8AygCVgCXSCkTQgg38BxwHFAFnC+l3NLY8+wLixcv5t133+XJJ588oIIphKC4uJijjjqKp556ilgsxkUXXaREW9HkpJdqp8U7XV41BJgeD4l4DDSdcG0NhOsQoSA2m8CGQCIxpIkpk8Ktm6Ri1j/ErvV0/NtMxsNNU2LI5OpJQ9MI1dQSi0Sxuz1I2XLqb/+YvLw8qxt7bW0tLpeLTZs2MWTIEEaPHk1dXZ01gTlr1iyklLzyyisMHjyY0tJSq9u91+tFSsmECROYP39+A9G+4YYbLI88XRxs48aNtG/fHr/fj2EYe/2PbG887j8Ba4F0DGIKMF1K+Q8hxCzgKuCJ1HWNlLKnEOKC1HHn78V5Go2UkmXLlvHhhx8yfvz4rJSVLCkp4f7772fVqlV0795dLfBRHBDi8bhVwS4SiZCbm5sss9r7KAp/cQrb33wZEx1ZVYVDmNh0E2ETiJRwm7KeEEuZjG0bsoGA6/UmL3WZnLA0pETXJPGaAKYEu8fDGbfeYtVIaWmkQ06JRIL8/HyklAwbNoyRI0cSi8Wspeg2m41evXoxfvx4AGbMmMFNN91kpRMmEglrleS0adMs0b7rrrv4/e9/j8fjsVa5ejweYrGYVdURsLrFN1bDGuUaCiE6AqcDc1L3BTASeCF1yDzg7NTts1L3Se0fJZro53j9+vU8++yzjB8/nsLCwqY4RaM5+uijlWgrDhher5dQKNSglnR+fj5xYcffpSe6CXHNJBqJEo0miBgmUd0koievo7pJTE+KdVSTyYlJ0ySRSv/TpCRuSnRDoktBIuVxa6aJzZuXDCW4ctB0ncEnj24R6yR2RW5uboPXMB3yqKurIycnh7q6Oqu7fe/eva3H6bpu9ZKMxWI4nc4GTYDT9OrVi8LCQpxOJzabDb/fTzQaJT8/36rHnfa098bxbKzHPQO4FUinRRQDtVLK9GL+MqBD6nYH4DsAKaUuhAikjs9on7ClS5cyf/58nnjiiRb7N02h2FcikYiVpZS+HQgE8Pl82Lr2wtaqPbGKMjSZwI7AbiNVGTDpq0nZ0OtOL66xskUMA81IinfCTOdzS3QDYjW1mAKOHjUCT1ExlZWVFBQUNMiaaimk67yk86jTYU6Hw2E1AZZSYrfbG0weCiGsvOt0DZP6lzTpbvDpbZqmWXne6RBXOo7+48V3P8cePW4hxFhgh5Ryef3NuzhUNmJf/XGvEUJ8JoT4bG+rcC1evJjFixdb6TkKxaFGOu4ajUatCa/03/ouQ0/E06EzUcMklsoOSXrYJjFdJ6brRHWDqG78sN8S6dREpSGT+dxpMU/leWtmMoRS0rUb36xew9jrb8Dv97fI7jfwQypgWpzr53SnKzBKKbHZbHTr1q1BY4T//ve/AFaIJB3/rqqqApIty/r27WvtS2ed2Gw2DMNo8DjIfB73UOBMIcRpgIdkjHsGUCCEcKS87o7AttTxZUAnoEwI4QDygeofDyqlnA3MBmjTpk2jLV6zZg3//e9/ufnmm60mmwrFoUb6i5/+8qczINKCM+CWe3jlt2cQjYawC5GcmJRYZV1NwExXAUSi68lMkqQ4m+gGJMykmGummco+SQq42+endc/DadWzJ0Xt2lntvloi6SbBfr+fQCCAy+XC6XRanYSqq6vx+XxEIhEKCgoYNmwYixYtIhwOc8MNN9CpUydL2AHKysqsSoDHHXcc7dq1s+qkp2vK1NTUWJ3l063LEolEZtMBpZS3AbcBCCFOBG6WUl4shPgn8GuSmSWXAYtSD/l36v7S1P53ZQY7h/bu3Zu7775bLf9WtBiaonGuYRjWFz39lz4SieByuYhGoxR070Fu527sWPM5NmHDbpV0NZHYkCLlAaYmJ5P1tpMrJ5P1SITlaWumScxIhkwSpoHPX4DN5aJbv374CgqsmtIt0etOVweMxWIUFBRgmiaGYVBUVGS1ZYtGo/h8PqSUVn0YgMrKSiorK3c7dvpfUCAQwG63Y7PZqKmpwev1Ul1dbcXQ02GXdLPgxrA/eWulwHghxEaSMey5qe1zgeLU9vHAxN08fp+w2WxKtBUtiqbwRr1eL8FgkFAohMPhsPKRI5EIxcXFRCIRxjz2DHHNJK4bRDUjFR6RyeuESVRLhk/i6TCKIYkaENMFMd0kYZjEjeR2zTBJ6AaFHTrTa+gwPLleTrngAoLBICUlJS12ctLn81FTU4PL5aKmpsbKq043QN65cyd2u526ujoikQgDBw6kU6dOexy3bdu2jBgxwvpBcLvd2Gw2qx9oSUmJlcmSjhzszWu4V8ItpXxPSjk2dfsbKeXxUsqeUsrzpJTx1PZY6n7P1P5v9uYcCoViz0SjUXJzc8nJybGK8KdXAAYCATweD9Lhot8lVyeF2kgKd0T7IbadzC4xkvFvQ9YT8eSy9rhuErfi3RJ/2w50H3A827Zs4aQrriAQDJGTk0NtbW2DVl8tiUgkYnVc9/v9VkpjQUGBFR4xDAOv14vH42Ho0KHMmzePgoKC3Y7pcrmYM2cOJ554Im63m2AwiKZpSCmtbJWamppk3n0oZP1Y7M1rqFaKKBQtELfbjaZpVpZCNBq1VvDl5eUlGwMUFlEyeDi2Vu2I6pKIbhIxkimBP6QFyh9uGyYxzUh62XoyRTBuGCRMicufT+uevajasZ1IMET3Y47B5/MRj8fxer0t9l+wx+MhHA7jcDgIh8NWOmD6RzAYDGK324nFYlZPyt69e7Ny5UqeffZZ/H4/Pp8Pv9+P3+9n+vTprFu3jsGDB+Pz+ax2ZA6Hw6orky5RoOs6ubm5DepxN5aDZsm7QnEoUX8pdjojon7tjPSkZbfjBzPg0qt5d/qDaJGw9XiZWogjZXKS0iAd7072mtStBTgmnqIS8tq0IxKN4nZ7mPL2W5YN9SdFWyL124ulqd+erP6+dPlcm81G69atGTNmDN9++y26rlsrIwFrviFdX9s0TSt7pP57BMn5ifpZJ41FCbdC0QJJNwhOi0G6WbDNZkPTNOva5XIx7KrrMKTk1b9MRjYQqGSGiSFJ5nSnl7XLH+py61JgMySBmhq6tmvH1Q8+iC1VCS8ej1s5yUKIFtnpvb7oplc3QtITT5fLhYbecHpf/YUz9VP6NE3D6XRamSKaplmPTSQS1r70e1b/h6KxqFCJQtECSedsx2Ixq7h/elteXp61BD0YDGKz2Tj+okv59UMz6XjswGQ8O3XpMOB4PG3aEjPM1EXSa/iJxE2SS+BNiEWi9D/5JK647z5yU81CTNMkLy+PeDxOXl5ei8woASxhTS+GSYtnfdFNL1VPe+DpSn7psEo6N1sIYSVPpJs5m6aJw+Gw9judTnRdb7Av/YO3N/9aWt5PpELRQohGo1RWVhKLxSgrK0PTNEpKSjI2flFREZD8C5+Tk4MQwtpWWFiIEIL27dtb+0deejnDzjsfo54HaHc6MU0D0/jBE3e4XGj1muUCuDweXB6P5R36/X6ryFpLzeGG5A+g2+1u8BrCD+GS9L76pLux72pfmp+LW+9LTPvHKOFWKJqI//3vf0yYMIEdO3YwYcIEiouL+dvf/pax8etXoUwLyJ6u7Y2sp+PZzeK23Y3bUkkvYkrfrr/9x9sas+9AoUIlCkUTEIlEeOedd3j66afp27cvTz31FH369GHJkiXZNk1xECCaYlXX3lJYWCgvueSSbJuxW+LxuLWKqrkSCARwOBwZKwNgGAZbtmyhR48eGRkPkm3etm8vQcrmm4FQUPA9Xbp02POBe8AwDLZu3Ur37t3ZtGkTXbt2pa6uDtM09+tzZBgGVVVVtG7der9tbCrC4TCGYWS0C9X69es57LDDMjZeVVUVeXl5jV6pmA3mz59PTU3NLt36ZiHcQohKIEyGKwhmkBKUbfuCsm3fULbtGwebbV2klK12taNZCDeAEOIzKeWAbNuxK2bvclkAAAUsSURBVJRt+4aybd9Qtu0bh5JtKsatUCgULQwl3AqFQtHCaE7CPTvbBvwMyrZ9Q9m2byjb9o1DxrZmE+NWKBQKReNoTh63QqFQKBpB1oVbCHGqEGKdEGKjECKjTRf20Z4tQogvhRCfCyE+S20rEkK8LYTYkLo+IC3lhRBPCyF2CCFW19u2S1tEkpmp13GVEKJ/luy7Wwjxfer1+zzV8i6977aUfeuEEKOb0K5OQojFQoi1Qog1Qog/pbZn/bX7Gduy/rqlzuURQnwihPgiZd/k1PZuQohlqddugRDCldruTt3fmNrfNQu2PSuE2FzvtTsmtT0b3wm7EGKlEOLV1P2med1+3J34QF4AO7AJ6A64gC+AI7Ns0xag5EfbHgAmpm5PBKYcIFuGA/2B1XuyBTgN+A/JZs0nAMuyZN/dJNvb/fjYI1Pvrxvolnrf7U1kVzugf+q2D1ifOn/WX7ufsS3rr1vqfALIS912AstSr8lC4ILU9v/f3tmEalGFcfz3LLQiI1FCxLsoQ1AIsUgJFBGTyAqvwl0IQS4EwWohLQQR3Lms3IiC9qF9KWmhuDK6iisx/Eiv+NGFgsSLd6XpxtL+Lc4z3uH1fV8VmznzwvOD4T1zZmD+/N85z8x5zsyc7cBaL78PbPfySmBvBm1fAgNt9s/RJj4CvgUO+XolvuW+454HDCvNpvM3af7K/sya2tEP7PLyLmB5HQeVdIz7J1rupKUf2K3EcdJkzlMz6OtEP7BH0m1JvwPDpP+/Cl0jkk55+SZwAZhGA7zroq0TtfnmmiTplq+O80XAYmCf17d6V3i6D3jdrJqPeHTR1ola24SZ9QFvAzt93ajIt9yBexrwZ2n9Ct1P4joQcNjMTprZGq+bImkEUsMDcr5v3ElLk7z80Lumn5fSSln0eRf0ZdLdWaO8a9EGDfHNu/tngFHgJ9Jd/nVJd9pouKfPt98gzUFbizZJhXeb3btPzax4j71u77YA64HiU4uTqci33IG73RUm92Mu8yW9AiwFPjCzhZn1PCxN8XIb8CIwBxgBPvb62vWZ2QRgP7BO0l/ddm1TV7e2xvgm6a6kOUAf6e5+VhcNtepr1WZmLwEbgJnAXGASaSLzWrWZ2TvAqKST5eoux38sbbkD9xWgPGVyH3A1kxYAJF3131HgR9KJe63oYvnvaD6FHbU0wktJ17xx/QvsYKxbX6s+MxtHCozfSPrBqxvhXTttTfGtjKTrwFFSfniimRWfgS5ruKfPtz/Lw6fP/g9tb3r6SUoTln9BHu/mA8vM7A9Syncx6Q68Et9yB+5fgBk+8jqelKQ/mEuMmT1tZs8UZeANYMg1rfLdVgEH8iiELloOAu/5SPprwI0iLVAnLTnEFST/Cn0rfTT9BWAGcKIiDQZ8BlyQ9ElpU3bvOmlrgm+u4zkzm+jlp4AlpDz8EWDAd2v1rvB0ABiUj7jVpO1i6WJspBxy2bta/ldJGyT1SXqeFMcGJb1LVb5VPcr6oIU08nuZlEfbmFnLdNII/q/A+UIPKff0M/Cb/06qSc93pG7zP6Qr9OpOWkhdr63u4zng1Uz6vvLjn/WTc2pp/42u7xKwtEJdC0jdzrPAGV/eaoJ3XbRl982PNRs47TqGgE2ltnGCNDj6PfCE1z/p68O+fXoGbYPu3RDwNWNPntTeJvy4ixh7qqQS3+LNySAIgh4jd6okCIIgeEQicAdBEPQYEbiDIAh6jAjcQRAEPUYE7iAIgh4jAncQBEGPEYE7CIKgx4jAHQRB0GP8B3ecKdiRIWmrAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Vérification de la politique\n", + "\n", + "Étant donné que la Q-Table répertorie \"l'attractivité\" de chaque action à chaque état, il est assez facile de l'utiliser pour définir une navigation efficace dans notre monde. Dans le cas le plus simple, il suffit de sélectionner l'action correspondant à la valeur la plus élevée de la Q-Table :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "# code block 9" + ] + }, + { + "source": [ + "Si vous essayez le code ci-dessus plusieurs fois, vous remarquerez peut-être qu'il \"se bloque\" parfois, et vous devez appuyer sur le bouton STOP dans le notebook pour l'interrompre.\n", + "\n", + "> **Tâche 1 :** Modifiez la fonction `walk` pour limiter la longueur maximale du chemin à un certain nombre d'étapes (par exemple, 100), et observez le code ci-dessus renvoyer cette valeur de temps en temps.\n", + "\n", + "> **Tâche 2 :** Modifiez la fonction `walk` afin qu'elle n'aille pas dans des endroits où elle est déjà passée auparavant. Cela empêchera `walk` de boucler, cependant, l'agent peut toujours se retrouver \"piégé\" dans un endroit dont il ne peut pas s'échapper.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 5.31, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "# code block 10" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 57 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5wU5Z3v8c8vEk1islETkuPtlcFdT3LMvjbRsF5iTnajibdkQ5KjOeRKjKsnWT3rms1mwVw8q/EWL6gJXlAwxBsqQSWCIgJeuDPc5TrDfQBhhoFhYBiYgef80U8PPT19qe7p7qrp+r5fL5jup6qrnuqq/tVTTz31POacQ0RE4uE9YWdAREQqR0FfRCRGFPRFRGJEQV9EJEYU9EVEYqRf2BnI5aMf/airqakJOxsiIn3KggULmpxz/TNNi3TQr6mpoba2NuxsiIj0KWa2Mds0Ve+IiMSIgr6ISIwo6IuIxIiCvohIjCjoi4jEiIK+iEiMKOiLiMSIgr5IlXr1nW007T0QdjYkYhT0RapQy/4OfvLkQn78x/lhZ0UiRkFfpAp1HjoMQMOu/SHnRKJGQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYCBX0zu8HMlpvZO2b2jJm9z8wGmNlcM6szs2fN7Gg/7zH+fb2fXpOynGE+fbWZXVyeTRIRkWzyBn0zOxn4V2Cgc+5vgaOAwcCdwHDn3OnALuAq/5GrgF3Oub8Bhvv5MLMz/Oc+DVwCPGhmR5V2c0REJJeg1Tv9gPebWT/gA8A24AJgnJ8+BviGfz3Iv8dPv9DMzKePdc4dcM6tB+qBs3u/CSIiElTeoO+c2wLcDWwiEexbgAXAbudcp5+tATjZvz4Z2Ow/2+nn/0hqeobPdDGza8ys1sxqGxsbi9kmERHJIkj1zvEkSukDgJOAY4FLM8zqkh/JMi1bevcE50Y65wY65wb2798/X/ZEpACz1+7k0bfWhZ0NCVG/APN8GVjvnGsEMLPxwOeB48ysny/NnwJs9fM3AKcCDb466MNAc0p6UupnRKQCvvPoHACu/uJpIedEwhKkTn8TcK6ZfcDXzV8IrACmA5f7eYYAL/nXE/x7/PRpzjnn0wf71j0DgNOBeaXZDBERCSJvSd85N9fMxgELgU5gETASmAiMNbPf+rRR/iOjgCfMrJ5ECX+wX85yM3uOxAmjE7jWOXeoxNsjIiI5BKnewTl3E3BTWvI6MrS+cc61A1dkWc6twK0F5lFEREpET+SKiMSIgr6ISIwo6IuIxEigOn0R6du27t7PrLU7w86GRICCvkgMDB45h03NbWFnQyKgqqt3duxp56xbprBme2vYWREJVWPrgbCzIAENHjmb+1+vK9vyqzroT1m5neZ9B3l85oawsyIiEsicdc0Mf31N2ZZf1UFfRES6U9AXEYkRBX0RkRhR0BcRiREFfZEq1GOgChFPQV+kimUauUjiTUFfpIqpxC/pFPRFqpBK+JJNTIL+kfLOV+59k/ELG0LMi4hIeKo66FuG8k7djr387LklIeRGRCR8VR30RUSkOwV9EZEYUdAXEYkRBX2RGHBqvCmegr6ISIwo6IuIxIiCvohIjMQq6Dunek2Jp0zPrEg8xSLoK9aLiCRUddA3FW5ERLqp6qAvIiLdVXXQV7WOiEh3VR30k1TNIyJRc+iw47/+spyGXW0VXW8sgr6ISNQs3ryLx2du4IZnF1d0vQr6IiIhSFY/H65wNbSCvkiVeLuukUfeXBt2NiTiAgV9MzvOzMaZ2SozW2lm55nZCWY2xczq/N/j/bxmZg+YWb2ZLTWzs1KWM8TPX2dmQ8q1USJx9INR87j9lVVhZ0MiLmhJ/37gVefcp4DPACuBocBU59zpwFT/HuBS4HT/7xrgIQAzOwG4CTgHOBu4KXmiqBS15hGRuMsb9M3sr4AvAqMAnHMHnXO7gUHAGD/bGOAb/vUg4E8uYQ5wnJmdCFwMTHHONTvndgFTgEtKujVZKNhL3OiQl2yClPRPAxqBx81skZk9ZmbHAh93zm0D8H8/5uc/Gdic8vkGn5YtvRszu8bMas2strGxseAN6r6sXn1cpM9L/gTUn74kBQn6/YCzgIecc2cC+zhSlZNJplDrcqR3T3BupHNuoHNuYP/+/QNkT0REggoS9BuABufcXP9+HImTwHZfbYP/uyNl/lNTPn8KsDVHuoiUicr3ki5v0HfOvQtsNrNP+qQLgRXABCDZAmcI8JJ/PQH4oW/Fcy7Q4qt/JgMXmdnx/gbuRT5NREpMNZuSTb+A8/1f4CkzOxpYB1xJ4oTxnJldBWwCrvDzTgIuA+qBNj8vzrlmM7sFmO/nu9k511ySrRARkUACBX3n3GJgYIZJF2aY1wHXZlnOaGB0IRkUEZHS0RO5IiIxEqugr5taIhJVlRrONRZBXw9nSdxpjNxo++sbJ/Gth2ZVZF1VHfR1mItIVKWWRQ8ddizatLsi663qoC8iIt0p6IuIhCCsmggFfRGRGFHQFxGJkaoO+mq0IyLSXVUH/SR1sSxx5Zzj91Pr2N9xKOysSETEIugnVerhB5Go2NXWwT1T1oSdDYmQWAV9kUrae6CTZQ0trNy2hzteWaVCh0RC0F42+zT91iQMV4+pZfa6nRzT7z0c6DzMtV/6az70vveGnS2Juaou6asqX8K0cNMuADoPJ0odpptLEgFVHfRFRKQ7BX2REL2xegf7D5a2ZY3uHUguCvoiIVn9bis/enw+v3rxnZIu97ZJK0u6PKkuCvoiIWlt7wBgw859JV3uk3M26cFEyUpBX0SkAhpbD1AzdCK1GxJDg4d1Yo5V0FfpRyopebwl2+yorj3e5q1PBPvRM9d3S690m65YBX2RMKilpkSJgr6ISIgqff0Xi6DvVLEjMaOLi+jTICploMtqEZHuqjroi4hIdwr6ImWmRjsSJQr6IiIxEqugf+iwilxSebq3JFESq6B/9+TVYWdBpAc9tCWVFKug/+ryd8POgkgXXQFIGKo66KsAJVFWruNTJ5PqsHPvgbIst6qDfpLpURWpgB2t7cxZt7Pgz5V6RC0VdqIt1/7pPHS463W5bkHGIujriVyphG+OmMXgkXPCzob0YXe+uqrs6wgc9M3sKDNbZGYv+/cDzGyumdWZ2bNmdrRPP8a/r/fTa1KWMcynrzazi0u9MT3zXO41iByxZff+nNNV9BA4EpcyHQ9zfU+cienlOWIKKelfD6QOyXMnMNw5dzqwC7jKp18F7HLO/Q0w3M+HmZ0BDAY+DVwCPGhmR/Uu+yIR5n+zql6UXCLZtbKZnQJ8FXjMvzfgAmCcn2UM8A3/epB/j59+oZ9/EDDWOXfAObceqAfOLsVGBKWSv4RCx50UI+Q6/fuAXwDJuwwfAXY75zr9+wbgZP/6ZGAzgJ/e4ufvSs/wmS5mdo2Z1ZpZbWNjYwGbIiIi+eQN+mb2NWCHc25BanKGWdMHCkqfluszRxKcG+mcG+icG9i/f/982SuIWjVI2DoOHWZWfVPY2ZAIyRqWynSFGKSkfz7wdTPbAIwlUa1zH3CcmfXz85wCbPWvG4BTAfz0DwPNqekZPiNSvVJ+1fdOWcN3H5vbNU5qqbR3HCrp8qT88sb0sKp3nHPDnHOnOOdqSNyIneac+x4wHbjczzYEeMm/nuDf46dPc4nnzCcAg33rngHA6cC8km1JACrpS5gMWLtjLwBNew+WdNnN+0q7PCmf1vbOrNMqcfunN+30/xP4mZnVk6izH+XTRwEf8ek/A4YCOOeWA88BK4BXgWudcyqexMg9r61mWUNL2NkI7K7Jq3hhUUPJlucobeHtF+OWUDN0YgmXKJXwdl336r0FG3dVdP398s9yhHPuDeAN/3odGVrfOOfagSuyfP5W4NZCM9lbyRK+Wu+E6/fT6vn9tHo23PHVsLMSyIjpawH45pmn9G5BeY67Yjtce642+wkp6BI7Dh3m1y++w79eeDonHff+ovIh5VGuiomqfiJX7aMlalKPyPRCyN4DnSzc1PtSXyGFm7frGhk7fzM3vrCs1+uVvqGqg75I1OQqvV371EK+9eAs9rR3VCw/SSoeRUPq8VGufaKgLxICs54NC5ZtSdzv6Og8nOET0tcVWr2s6h2RKpIa8EvRy6buV1WHqLfeEYmFGXVN7G7rO00inVN1TRRFpcm4gr5IHt8fNZerxtT2ejmpP/rmfQfZvKut18sslYjEo9hbktKkuVwnCQV9kQDWbG8t+rOZSt03vrCMG55dknH+Yn7rqQFif4Cncy9/aJbPm64JwhLWiVZBXySICvxCexN+t+bpyz9dbYUfCJLCles+jYK+VESxDyBFRVGl7wqW5fIN4CJ9j6p3eiH53fXxuBOqhZt20XGo+psSjphezx2v9ByyrvNwdW67hhINx4qte3hyzsZQ1l1QNwx9jqorS2Lltj1868FZXP0/B/DLr54RdnbK6q7JqwEYeumnuqW3dwQP+sPGL2XHngNd74OGVYXf+LjsgbdDW3d1B/20X5HaMhenaW8igK3cVvzNzGp36PCRg+2ZeZszzpPt+OvrVV9SHlEYI7fPUqyXchs2fmmg+XLF9zCO02ufWhTCWiVMsQj65eacU2kt5nL1eJkUtUPkzTWNgZp3SjjK1Zw2VkG/HD+6toOdDBg2iT9Mqy/9wiNGN/2KU4qf7oqte/iHu6bT0pa5M7b0Y3vKiu15l7moBD16SnCF972j6p1I2u1/hE/P2xRyTnqvdkMzO/ce6JGuB3h6pxQ/3Qem1rFxZxuz1gYbX/eXL76Td577Xq/reh21qxApHwX9Eho+ZQ33vLY67GwU7fKHZ3PFI7NLvtz7X69jwLBJJV9utSpFAFZ1o2QTq6Bf7tY790+t4/d9vJpnXeO+ki9zzOwNJV9mNUn2sqnWZZJKD2dJn1Xtpc69B7IPdF1q2b5J3W+Jvqj8DGIR9CPyXcdWNX//k5Zt429vmlySZeVszlnmATh0lRE96nunGClf2uHDrixn2moOaNLTo2+t4+a/rOh6/9aaxuAfDniwhBGAo1IKlSMmLXu3LMut7qCf4rQbJ2XslOqRN9fy0uItgZbxz2Pm89mbX8s4bVtLe6/yJ6WxoWkfNUMnsrRhd1mWf+uklYyeuR6APe0dge6BFBrDcwXgbNPS0xXE+75bXl6Rf6YixCboZ3P7K6u4fuziQPO+vnJHVxPNOEoGknELGlj17p6M83QeOsySzd0DbiUD0LRVOwAYvzDYiTyb1G4Vsvn2w7OZt6G5wCVnX25qCb9ue2ugtvYihYp90O+tOFSFplc3/Pz5JVxyX+YOo+5+bQ2DRsxk+daWjNP7iuZ9+YdHXPVusL6IijnnfWX4W1z9p56jdanuXXpLQT/mWto6WNu4t6jPDhk9r0fVWDLYN+3tO2PKVox1/ddNtbdukmhR0I+5r4+YwYX3vFlU4HlzTWPgqrFstu9pp2V/6arMol8S7l2AL9f5Qaed+FDQ76W+/mPZuDP44NzFBpxcJ5RzbpvKF+6cVtyCC9TecYimvQdoj3gnY+lt7mfUNfUYo7fQ4RFFkqq7P/0y29kHAkhQ5axhyLfo1vbgDzftbjvIuAUNXPWFAV1PsmZcZ4YN+tSvXwXg7075MBOu+0LgdZaMSzQGyC7z9nx/1NweaZ+/o/uJUjVE0fDtR2bzoWP6MepHf99jWlSuQhX0e+Fzv32dE449OuxsVEwUDtrP3jwl8ffU4xhYc0KP6UGyuLShuJvM/3DX9KI+F4GvLa++kMe+YN76QltzVV4sqnfKWQoK0sqjL0j9ivpC1cHBEMbrLaQqLFXwwy//nOpuQXqrqoO+Si+5ZRvoPL3qIKnok2c54lQBy2xsPcDztZmHMIyChZt2d6uzT+3KumboxIrkQaeS+FD1Toz95qUjfa7nutlazMkzSs0Q/88TtSzcVJ4ndEvlouFv8dEPJqoKc5Xms41tEJ1vW6Kuqkv6kluuJz63tezPWHUVpWCeS2oud7T2HBgmmvKfXh2OXwcYIEUSxs7bxKvvlKcPm0JF5aeTN+ib2almNt3MVprZcjO73qefYGZTzKzO/z3ep5uZPWBm9Wa21MzOSlnWED9/nZkNKd9mJUTkO+4T0r+r826fxlm3TOkx33MBq0neWH2kI7JK1u7katFTDa57ehFPzNkYdjb6jKHjl/GTJxeEnY1ICVLS7wT+3Tn3P4BzgWvN7AxgKDDVOXc6MNW/B7gUON3/uwZ4CBInCeAm4BzgbOCm5Imi3MKIA+ffMa3qSmQOR932zE/vvrx0K7tSrgz+OGtDhXIVfQc7E/dOdBNWoiBv0HfObXPOLfSvW4GVwMnAIGCMn20M8A3/ehDwJ5cwBzjOzE4ELgamOOeanXO7gCnAJSXdmgppyjCObLotu/cXVCL77csrutWxl0vDrjbWbG/11TRHzoa9ufTc1rKf655exE+fCl6iembeJs7M0mNpKaRuT5UX/gGYsGRrrz7fm2q78++Yxr1T1hT12T3tHRVvLfbKsm1sbk60xNqyez81QyeyMEaDxBdUp29mNcCZwFzg4865bZA4MQAf87OdDKTWATT4tGzp6eu4xsxqzay2sbGAvsorKFlyK6XHZqznT7PLf9n+hTunc9Hwt3hm3mYKrXgxLGMATX4fW3cH71562Phl7Cqwx9Ig33scAnwmBfXrX2Jbdu/ngal1+WfM4OLhb2VtLVYuP31qIZfdn+gwcEZd4nsbO29TSdfR0tbB6BnrI3kPLHDQN7MPAn8G/s05l7lfXT9rhjSXI717gnMjnXMDnXMD+/fvHzR7FRW93RjM9FVHngZNDxLlrHoo1YG/cluuwy65rpKsiu17QhwfIYQDLKx7IWGNQ9Fa5iEuh72wlJtfXkHtxuhdQQQK+mb2XhIB/ynn3HifvN1X2+D/JiNKA3BqysdPAbbmSC+7CJ5sQzFtVXoXAIX90B2uqOBQlhu5Zd6nC8rwY83W3DLdna+uLvm6o6alrYPdbdXxYGMmyaveYh/oK6cgrXcMGAWsdM7dmzJpApBsgTMEeCkl/Ye+Fc+5QIuv/pkMXGRmx/sbuBf5tLJJ/sTmbdjZq+V0HjrMw2+u7XofxUu2pBcWNXDFw7MK/lzOTUqJVZm2PUpfRzVU7/x5YUPF17k6y6A45fKZm1/r6lIjTOU6dhf7gYTumryqKy0qx2aQh7POB34ALDOzZD+6NwJ3AM+Z2VXAJuAKP20ScBlQD7QBVwI455rN7BZgvp/vZudcRTqq2Nxc/I2izkOHOfu2qX2mu4Ubnl2SdVpqFc6ry4O1XT4cYASpsI2esZ7jj30v3zzzlK601G3NVsLuOHSY68cu4voL/zuf/G8fKns+o2z7nr7yLEPpjJm1gZsmLC/rOqJUIErKG/SdczPIXg9wYYb5HXBtlmWNBkYXksGwvbmmMWPAzzZcYLVJ7+MmU/VOvhJM+oH/qxeX9TZb3dzsxxL95pmn8Nry4EMMrti6h0nL3qVh1/6K9Lp54FDuHlmDtAqrViOm1/P9cz7Bhz/w3oqt8+m5pb15m0lUSvep9ERuHpnGSnWOijzl19rewYqtxZ1cnHPM39DM7LW9q9pKDdj5Si2bmttYmFYXvqe9g/1p3U8/Oafnj62zRB2ozahv6vb+3ZZ2NjX3rFd1zvGbHKW8Fxf3bozdTK4e03P4w1LoC1djSTv3HmBHa8+bt3dNXs2vKtBkWRT08ypFq4ZtLfsZMb2+4HsBVz4+n8seyDwWbT7OwRUPz+Y7j84JPH82qdUj+b6NfQe7B/gfPz4/y5zdFTp6Vr7WRsnt+drvZ2Sc/lzt5h4DuKdaVIa+epYU2aVzPoWMR1Col5duZUPTvkDzBjn5fO63r3P2rVMzTmsrc4uaMESxekdBv0hBW2IA/PTJhdw1eTV1Owobi7Y3zb0OpRxt+w/2bqCXoAE2k8U5AmsQW3bv59aJK4ouzWarMvnPP5e2iilMo2asK9uyr3t6ERfd91bZlp8qzPhYyO+5EBGM+fEN+hOXbqvYupJB93CRp/1iWgulVkt9+5HZrGvcmzM4z12fvxrIrPCD+D0Br5Q6DmVe8vXPLOLRt9ezpKH7yeOFhVtwzmUthT5V5vraJ2ZvKOvyC/HAtPqyLr8cDyNWQiGNL54tU9fbhVSPVkpsg/61Ty+s+DorudNTb8Au29LCBfe8yZYcj7v/KEA1jHMw8q2epcpccf09AY+wc2/vfsm/o7Wd7Xva6chSwh+/aAuTl7/LzLVNGaeX269fKm+rj76ot4f37raD1AydyMtLjzy+s2Z7K/uKrPZpzNC76gV3v1Fs9qpGbIN+ujezPMZeiou+Qm4LzN/QsxVr0JPFz58/0lwzU510as+XhejNpW/Qkn6q1vYOzr51KufclrnuN6llf0dkSk/VYH3Auvtsevv8yjq//lEz1nct76Lhb3HVmGD3hQpZRy6z1jbxwqLKPytRKQr63pDR8zI+hZkpZjlXmqZYre0dfOvBmaxrPFLXf8XDs3uUyA8eOsyNLyzLe7k6bsGRA/W495em6Vtqff7qlNGdgiom6N82aVX+maTkdgZsMvrioi3UDJ3Yo6O0XCF/4859jJheWDVU8hwyZ11xj/PkuxeV7Xj+7qNzuz3v8vLSrTya4Qq3r6rqoF9oy5v/9dCswKWVl3I06UvvtyVZJ/r4zPXd0qet2sHCTbsZ/nr3zqrOT+uAasLirTw9dxO3T1oZKG8Ag0bMDDxvLtv3HGCXf1x+d5YO0nK2/Cni5Higo+eN50zNLqF7oPl/RT5ok8zijLpwqoqiImg5PfnEcCENE74/ai53Tc7dvUSxFwqz1jZ161eq1K57ehG3FvDb6y56l6JVG/Snr97BnHWFt1F/fkH+yzqHY21j9svE9GqJPe2JYPlcbXGXjMkbwNkasMysb6LtYHmau33p7jf4l6eKv/9RTEk/U23S9WMX93hQbOe+g7yR8mNP78O/vsDWUoti1L1uPqve3ZO1yjOb13OMxBakBVl6s90g4XJ90z6+++hcrvxjzyqgYk4iuQpzNUMnsnFn4ne/YGMzNUMnUuevFkZMr+ebD5amoFVuVTtG7pUB24enW76lBQaemn/GgvSMYm0HO3lweqI/n3yllGxx0znHym2tfO+xuXz9Myf1OpfFSg/G5XLFw7O7vf9dno7Jvnzvm+XMTlW75L78z4ekH5Y/fWohG+74Kks272bnvgNc8KmP9yoPQa66v5RyY3b+hmb+vuYEnHNFD5F5/djFOacvbWjhEx85lr8sSbT+e6uuidM//qG8VzEQnadzq7akXyrFPhGbz/Apa7rqFPfmaZ2Q7dj/3eTVXQ9vFfoMQCllC77rGvcW9NDVlBXbmVvE1VmpRO9CvLJyxdgOf2Lfvqedt/NUgw0aMZMf/zHx9PH6pn28sXpHUaXu9I+s3LYnY0OHpCsens3m5jYeeWsd59w2tceN6VJ0lJhcwtKGYM+fpK4yW/VopVVtSb9YyX00d91OTj3hA9yTYUSgH4ya16t17G47yMz63gW3WfVNPPTGkZ4/g/Q1Xy6vr8x8WX/BPYWVtK/+UyJQfOusI2Pr5HpqtpSmrNjeZ9ujV8L3HpvLoM+elHW4zKT2tPsxXyphE8lL/cAntwz6ND84rybjPHvaO7ruzWxOuQ/0wqIGBn2mx5hNef3kicyjwS30reMKOZFsbO5d66hSUdDP4n+PzN59Qbabipn8/PklPZ4KHTxyDqveLbwljMOxo7WdptaDLNtSnkf6o6C3TQcLtaShpeuEE2cz6xNNFedv6HlvY976Zuat717KzlRd8alfv1qSvHz/sbl8+qS/yjjtpgnL+d45n+A97+mZgQUbd3XlMzUc3/DsEv7p7wqvAg3SG+2yMnWvUS4K+mlKXe02Lu3G8KX3vx0o4Kc2H92YcpL5x7veoO3gIf7j4k+WLpMRU45+byS/sfM3RaaL5Rn1Td06z0ttrnzYwR2vrmJthirN3+R4aK5c1Xf/9IfM/TtBorEBJJrD5rtKqhQF/TRjZm8sawdWQathxqS0REmtxmnzrSCC3DgSKUSh3RuVq7+aTM66pfuAK5meDM9nXY4Wd5DorqRQnQG/tC/f+2bBY0KXS6xv5KaXwpPGLyp9t7oiUVfojc58fUlNydGEsxLS85evSW569VUmvxy/jJqhE7veBy18RSXgQ8yDfmq3BVGT2v9Il7g3L5Gyatpb2Ohw/zEu9++n2PskpareS29VVujPZ1tLz76q0gdUzzTeRtTFOuhHWR88liRmolL/H1ShLTbPu31a/pn6IAX9PkTVTiLFu/GFcMZQuPkvK0JZbzYK+iJStFINc1nNRqf1uRU2BX0RKdq/R/i+mGSmoC8iRXtpcYYGBxJpCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxoqAvIhIjCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxUvGgb2aXmNlqM6s3s6GVXr+ISJxVNOib2VHACOBS4AzgO2Z2RqnX07I/OkOTiYhESaVL+mcD9c65dc65g8BYYFCpV7KuMRqjzouIRE2lg/7JwOaU9w0+rYuZXWNmtWZW29jYWNRKPnvqccXnUEQkAp695tyyLLdfWZaanWVI6zZypXNuJDASYODAgUWNFGtmbLjjq8V8VESkqlW6pN8AnJry/hRAozCIiFRIpYP+fOB0MxtgZkcDg4EJFc6DiEhsVbR6xznXaWbXAZOBo4DRzrnllcyDiEicVbpOH+fcJGBSpdcrIiJ6IldEJFYU9EVEYkRBX0QkRhT0RURixJwr6vmnijCzRmBjLxbxUaCpRNnpC+K2vaBtjgttc2E+4Zzrn2lCpIN+b5lZrXNuYNj5qJS4bS9om+NC21w6qt4REYkRBX0RkRip9qA/MuwMVFjcthe0zXGhbS6Rqq7TFxGR7qq9pC8iIikU9EVEYqQqg341Db5uZqea2XQzW2lmy83sep9+gplNMbM6/y+8XRcAAAQhSURBVPd4n25m9oDf9qVmdlbKsob4+evMbEhY2xSEmR1lZovM7GX/foCZzfV5f9Z3zY2ZHePf1/vpNSnLGObTV5vZxeFsSTBmdpyZjTOzVX5fnxeDfXyDP6bfMbNnzOx91bafzWy0me0ws3dS0kq2X83sc2a2zH/mATPLNFBVd865qvpHosvmtcBpwNHAEuCMsPPVi+05ETjLv/4QsIbEoPK/A4b69KHAnf71ZcArJEYpOxeY69NPANb5v8f718eHvX05tvtnwNPAy/79c8Bg//ph4Kf+9b8AD/vXg4Fn/esz/L4/Bhjgj4mjwt6uHNs7Bvhn//po4Lhq3sckhkldD7w/Zf/+qNr2M/BF4CzgnZS0ku1XYB5wnv/MK8ClefMU9pdShi/5PGByyvthwLCw81XC7XsJ+AqwGjjRp50IrPavHwG+kzL/aj/9O8AjKend5ovSPxIjqk0FLgBe9gd0E9AvfR+TGJvhPP+6n5/P0vd76nxR+wf8lQ+AlpZezfs4OV72CX6/vQxcXI37GahJC/ol2a9+2qqU9G7zZftXjdU7eQdf76v8Je2ZwFzg4865bQD+78f8bNm2vy99L/cBvwAO+/cfAXY75zr9+9S8d22Xn97i5+9L23sa0Ag87qu0HjOzY6nifeyc2wLcDWwCtpHYbwuo7v2cVKr9erJ/nZ6eUzUG/byDr/dFZvZB4M/Avznn9uSaNUOay5EeKWb2NWCHc25BanKGWV2eaX1ie71+JKoAHnLOnQnsI3HZn02f32Zfjz2IRJXMScCxwKUZZq2m/ZxPodtY1LZXY9CvusHXzey9JAL+U8658T55u5md6KefCOzw6dm2v698L+cDXzezDcBYElU89wHHmVlypLfUvHdtl5/+YaCZvrO9kMhrg3Nurn8/jsRJoFr3McCXgfXOuUbnXAcwHvg81b2fk0q1Xxv86/T0nKox6FfV4Ov+bvwoYKVz7t6USROA5F38ISTq+pPpP/QtAc4FWvwl5GTgIjM73peyLvJpkeKcG+acO8U5V0Ni301zzn0PmA5c7mdL397k93C5n9/59MG+1ccA4HQSN70ixzn3LrDZzD7pky4EVlCl+9jbBJxrZh/wx3hym6t2P6coyX7101rN7Fz/Hf4wZVnZhX2To0w3Ti4j0cplLfDLsPPTy235AolLtqXAYv/vMhL1mVOBOv/3BD+/ASP8ti8DBqYs68dAvf93ZdjbFmDb/5EjrXdOI/FjrgeeB47x6e/z7+v99NNSPv9L/z2sJkCrhpC39bNArd/PL5JopVHV+xj4L2AV8A7wBIkWOFW1n4FnSNyz6CBRMr+qlPsVGOi/v7XAH0hrDJDpn7phEBGJkWqs3hERkSwU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEb+P5qkdQkuhnG4AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "## Exercice\n", + "## Un monde de Pierre et le Loup plus réaliste\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/1-QLearning/solution/Julia/README.md b/translations/fr/8-Reinforcement/1-QLearning/solution/Julia/README.md new file mode 100644 index 000000000..1867a9cb5 --- /dev/null +++ b/translations/fr/8-Reinforcement/1-QLearning/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/1-QLearning/solution/R/README.md b/translations/fr/8-Reinforcement/1-QLearning/solution/R/README.md new file mode 100644 index 000000000..28363d663 --- /dev/null +++ b/translations/fr/8-Reinforcement/1-QLearning/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb b/translations/fr/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb new file mode 100644 index 000000000..9ca61fe10 --- /dev/null +++ b/translations/fr/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb @@ -0,0 +1,457 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "eadbd20d2a075efb602615ad90b1e97a", + "translation_date": "2025-09-04T03:02:08+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Pierre et le Loup : Environnement Réaliste\n", + "\n", + "Dans notre situation, Pierre pouvait se déplacer presque sans se fatiguer ni avoir faim. Dans un monde plus réaliste, il doit s'asseoir et se reposer de temps en temps, ainsi que se nourrir. Rendons notre monde plus réaliste en appliquant les règles suivantes :\n", + "\n", + "1. En se déplaçant d'un endroit à un autre, Pierre perd de **l'énergie** et accumule de la **fatigue**.\n", + "2. Pierre peut récupérer de l'énergie en mangeant des pommes.\n", + "3. Pierre peut se débarrasser de la fatigue en se reposant sous un arbre ou sur l'herbe (c'est-à-dire en se rendant sur une case contenant un arbre ou de l'herbe - champ vert).\n", + "4. Pierre doit trouver et tuer le loup.\n", + "5. Pour tuer le loup, Pierre doit avoir certains niveaux d'énergie et de fatigue, sinon il perd le combat.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math\n", + "from rlboard import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "## Définir l'état\n", + "\n", + "Dans nos nouvelles règles du jeu, nous devons suivre l'énergie et la fatigue à chaque état du plateau. Ainsi, nous allons créer un objet `state` qui contiendra toutes les informations nécessaires sur l'état actuel du problème, y compris l'état du plateau, les niveaux actuels d'énergie et de fatigue, et si nous pouvons vaincre le loup lorsque nous sommes dans un état terminal :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class state:\n", + " def __init__(self,board,energy=10,fatigue=0,init=True):\n", + " self.board = board\n", + " self.energy = energy\n", + " self.fatigue = fatigue\n", + " self.dead = False\n", + " if init:\n", + " self.board.random_start()\n", + " self.update()\n", + "\n", + " def at(self):\n", + " return self.board.at()\n", + "\n", + " def update(self):\n", + " if self.at() == Board.Cell.water:\n", + " self.dead = True\n", + " return\n", + " if self.at() == Board.Cell.tree:\n", + " self.fatigue = 0\n", + " if self.at() == Board.Cell.apple:\n", + " self.energy = 10\n", + "\n", + " def move(self,a):\n", + " self.board.move(a)\n", + " self.energy -= 1\n", + " self.fatigue += 1\n", + " self.update()\n", + "\n", + " def is_winning(self):\n", + " return self.energy > self.fatigue" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(state):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(board,policy):\n", + " n = 0 # number of steps\n", + " s = state(board)\n", + " while True:\n", + " if s.at() == Board.Cell.wolf:\n", + " if s.is_winning():\n", + " return n # success!\n", + " else:\n", + " return -n # failure!\n", + " if s.at() == Board.Cell.water:\n", + " return 0 # died\n", + " a = actions[policy(m)]\n", + " s.move(a)\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 5, won: 1 times, drown: 94 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " elif z==0:\n", + " n+=1\n", + " else:\n", + " s+=1\n", + " print(f\"Killed by wolf = {w}, won: {s} times, drown: {n} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## Fonction de Récompense\n", + "\n", + "### Introduction\n", + "La fonction de récompense est un élément clé pour entraîner un modèle d'apprentissage par renforcement. Elle guide l'agent en lui attribuant des récompenses basées sur ses actions et leur impact sur l'environnement.\n", + "\n", + "### Objectif\n", + "L'objectif principal de la fonction de récompense est d'encourager l'agent à adopter des comportements qui maximisent les résultats souhaités tout en minimisant les actions indésirables.\n", + "\n", + "### Structure\n", + "Voici les principaux composants d'une fonction de récompense typique :\n", + "- **Récompenses positives** : Elles sont attribuées lorsque l'agent accomplit une tâche ou atteint un objectif.\n", + "- **Récompenses négatives** : Elles servent à pénaliser les actions qui mènent à des résultats indésirables.\n", + "- **Récompenses neutres** : Elles sont utilisées lorsque l'action de l'agent n'a pas d'impact significatif.\n", + "\n", + "### Exemple\n", + "Voici un exemple simple de fonction de récompense :\n", + "\n", + "```python\n", + "def reward_function(state, action):\n", + " if action == \"move_forward\" and state == \"clear_path\":\n", + " return 10 # Récompense positive\n", + " elif action == \"move_forward\" and state == \"obstacle\":\n", + " return -5 # Récompense négative\n", + " else:\n", + " return 0 # Récompense neutre\n", + "```\n", + "\n", + "### Bonnes pratiques\n", + "- **Définir des objectifs clairs** : Assurez-vous que la fonction de récompense reflète les objectifs globaux du système.\n", + "- **Éviter les biais** : Une fonction de récompense mal conçue peut introduire des biais dans le comportement de l'agent.\n", + "- **Tester et ajuster** : Testez la fonction de récompense dans différents scénarios et ajustez-la en fonction des résultats.\n", + "\n", + "### Conclusion\n", + "Une fonction de récompense bien conçue est essentielle pour garantir que l'agent apprend efficacement et atteint les objectifs souhaités. Prenez le temps de la concevoir soigneusement et de l'adapter en fonction des besoins spécifiques de votre projet.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def reward(s):\n", + " r = s.energy-s.fatigue\n", + " if s.at()==Board.Cell.wolf:\n", + " return 100 if s.is_winning() else -100\n", + " if s.at()==Board.Cell.water:\n", + " return -100\n", + " return r" + ] + }, + { + "source": [ + "## Algorithme Q-Learning\n", + "\n", + "L'algorithme d'apprentissage reste pratiquement inchangé, nous utilisons simplement `state` au lieu de la position du plateau.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " s = state(m)\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = s.board.human\n", + " v = probs(Q[x,y])\n", + " while True:\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " if s.board.is_valid(s.board.move_pos(s.board.human,dpos)):\n", + " break \n", + " s.move(dpos)\n", + " r = reward(s)\n", + " if abs(r)==100: # end of game\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUVd7H8c+Zmt5J6CC9qVQpKoqIoggIuouCoojCIkXQXUV3F0XEh10bYAFBUQFBwRXXroggIjYiKkWE0EsI6Zle7j3PH5mMsBBqkjsJ580rr2Tu3Mz9zoT8cubcc88RUkoURVGU6sNkdABFURTlzKjCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs2owq0oilLNVFrhFkL0FUL8LoTIEkJMrqzjKIqinG9EZYzjFkKYge1AH+AA8CNwq5Rya4UfTFEU5TxTWS3uS4AsKeUuKaUfeAsYWEnHUhRFOa9UVuGuB+w/6vaB0DZFURTlHFmMOrAQYhQwCsBqtXa66KKLjIpySj6fD4fDQVpamtFRylVUVITVaiU2NtboKOXKzs4mPT0ds9lsdJRy7du3j4YNGxodo1zBYJDc3Fzq1KljdJRyOZ1OgsEgSUlJRkcpV25uLgkJCdjtdqOjlGvLli14PB5xwjullBX+AXQHPjvq9sPAw+Xtn56eLiPZjh075Lx584yOcVIrVqyQ69evNzrGSU2bNk0WFBQYHaNcuq7LcePGGR3jpPLz8+X06dONjnFS69atk++9957RMU5q7ty5cseOHUbHOKlQXTxhzaysrpIfgeZCiAuEEDbgFuD9SjqWoijKeaVSukqklEEhxDjgM8AMLJBSbqmMYymKopxvKq2PW0r5MfBxZT2+oijK+UpdOakoilLNqMKtKIpSzajCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs3U2MK9cOHCsqs2FaXKeb1eli9fbnSM0/L222/j9/uNjlGut956K6LzGaHGFe6VK1cycOBAgsEggwYNYvHixYbkkFJy3333GXJsxVhPPfUUw4cPJzc3l4EDB7Jp0yajI53QTz/9xMCBAyksLGTo0KHMnDnT6EjHyMzMZODAgRQVFTF06FBmzZpldKSIUaMKdzAYJCsrixtuuIF+/foxatQotm3bhs/nq9IcL7zwAq1ateKWW26hZcuWzJkzp0qPX9mklBQUFBgdIyK53W42bdrEI488wk033cTFF1/Mnj170HXd6GjH0HWdPXv20LlzZwYNGsTkyZPZvHkzbrfb6GhAab7du3fTtWtXBg0axIMPPsjmzZvxeDxGR4sINapwHz58mF27dtG3b1/69u1Lly5dsNlsbN68ucoyFBQUUFRUxKJFi/D5fCxcuJCCggIKCwurLENlW716NdOnTzc6RkRavXo1HTt2JD09ndtvv52hQ4fy0Ucf4fV6jY52DJfLxRdffMGQIUO45ZZbqF+/Pq1bt2bdunVGRwNKZxhcvXo1f/rTnxgyZAiNGjWiVatWfP3110ZHiwiGTetaGerXr0/Lli0ZPXo0hw4dYvz48TRt2pROnTpVWQaPx4OmacTFxfH999+zb98+4uLi8Hg8JCcnV1mOyrJixQq2b9/Ov//9b6OjRKR+/foxZMgQfv/9d6644gruuusupk+fTkxMjNHRjhEfH8+AAQMYOXIke/fu5aGHHkJKyQMPPGB0NAASEhLo168fI0eOZM+ePTz44IMAEZPPaDWqcAP079+fNm3acOeddzJ+/HgaNGhQpcevV68eMTEx/OlPf2LZsmVcdNFFNG7cmMGDB5ORkRHRc1GXR0qJrut8+eWX7Ny5k3HjxlXJ8whPYWmqXm8Mp02bxv79+5k4cSLdunWjY8eORkc6oa5du/Kvf/2LcePGcfvtt9OoUSOjIx2je/fuzJgxg3HjxvHll1/y5ZdfGh0pYlSv34jTkJGRQY8ePYiNjaV79+6GTIo/ceJEfvjhB6ZOnYrD4WDTpk38+9//ZtCgQWRnZ1d5nnO1f/9+rrzySj7//HPuu+++KlmsYf/+/Xz33Xfce++9bNu2rVr1bbZo0YKrrrqKWbNm0aBBAyyWyGwfJScn06NHDxITE+natSvNmzc3OtIxyvKtW7eOtLS0iMhXUFCAw+EwOkbNa3FHAqvVitVqZdmyZeFtixYt4uDBgzz//PM0adKEP//5zyQkJBiY8vT89NNPvPnmm3z66adVurrOqFGjaNq0Kffccw8333wzr7/+Op07d66y458rIQRXXXUVq1ev5ocffqBXr15GR6q2oqKijI5AMBhk4cKFHDx4ELvdTt26dRk2bBhCnHiBmsqmCncVqlevHnfeeSfffvstjz76KM8++6xhP/jTsXXrVt5//30eeOCBKi3aH3zwAX369GHo0KE89NBD6LrOY489Rmpq6nH7Dho0iBtvvLHKsinnp2AwyIwZM3jzzTdxOp2MGjWKYcOGHbPP119/zSuvvHLC7+/cuTPjx4+vsDw1snA/+OCDzJ49OyKLYosWLWjRogVdu3Zl5MiRzJo1i+jo6Ih7O33kyBFmzJjBc889d8KCWZkuvfRSlixZwk033cTkyZN54oknuPnmm2nXrt1x+y5fvpypU6ee9PE+++wz0tPTKyvuSU2cOJHRo0fTuXNn4uPjDclwKgsXLuTWW2/lww8/NDrKCQkhmDVrFg8++KBhJ8VHjBjBf//7XzZs2MCzzz7LgQMHjjt30atXL/7xj3+c8Pvj4uIqNE9kVYsKkpOTQ+3atSOycJdp2bIl48ePp3///gwfPpzbb78dq9VqdCwAtm3bxrRp01i0aJEhJwZTUlKoX78+48aN4/rrr+fAgQO0adPmhH2cDz/8MJMnTz7p4xn5/yA1NZXCwsKIG8d9tHr16nHw4EGjY5RLCEHt2rXJyckxLMOrr75K9+7deffdd+nQoQM333wzmZmZx+1XVb8vNbJwVwdCCDp06MCaNWt4/fXX+de//kWbNm0YPHiwYZmOHDnC/Pnz8fv9PP/884aO5njqqacoKSnhww8/5Kuvvip3PyFERP+BBhg6dCiLFi1i3LhxRkdRzpLVamXAgAHhqTSGDx9u6P89VbgjwB133MGqVavCfcr9+/evkv8QUkrWr1/PkSNH6N+/P5MnT+ZPf/oTF198MSkpKZV+/FNJSEhg6NChRsc4ZyNGjKBjx46qcJ8jIQRSSkOKpdVqZdq0aezevZuYmBgyMjKqPMPRatxwwOpICMHVV1/N6NGjyczMpFOnTpX+1lVKSZs2bVi6dCnr1q2jXr16/N///R/XXXcddevWrdRjn2+EEKSmpqppAs5B06ZNueyyy3jzzTcNzXHBBRcYXrRBFe6IYrfbmTp1Kj/88APPP/98pR5r/fr19O7dm4cffpioqCh69uzJxo0bK/WY5yshBPPnz6/QUQXnG7PZjNVqjbipA4xSI7tKhg0bRq1atYyOcdYsFgszZsyo1GPk5eWRlpaGx+Ph5ptvZvXq1eTm5lbqMc9nqamp3H777UbHOCEhBH/729+MjnFKXbp0UVM1h9TIwn3NNdcYHSHiDRgwgAkTJuDxeMjIyODJJ5/kwIEDRseqsRITE+nbt6/RMU5ICFEtziW0adPG6AgRo0YWbuXUhBDs2LGDNWvWkJOTw8GDB7HZbEbHUhTlNKjCfR6z2Wzq3YmiVEPq5KSiKEo1owq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXNOo0qEEHsAB6ABQSllZyFECvA20BjYA/xZSllzVspVFEUxWEW0uHtJKdtLKcuWJ5kMrJJSNgdWhW4riqIoFaQyukoGAm+Evn4DUMuTKIqiVKBzLdwS+FwIkSmEGBXaliGlLFsR9zBg/FRaiqIoNci5Xjl5mZTyoBAiHVgphNh29J1SSimEOOGsMKFCPwpKl/XZsWPHOUapPAcOHKCoqCiiM+bl5aHrekRndLlc7N69m7y8PKOjlMvv90f0a1hSUoLL5YrojIcPH47435eioiL2798f0ZNWnWzVpHMq3FLKg6HPR4QQK4BLgBwhRB0pZbYQog5wpJzvnQfMA0hNTZVr1qw5lyiVqqioiAMHDhDJGXfu3ElMTAz5+flGRylXXl4e69evx263Gx2lXE6nM6J/zl6vl29zv+W/a/5rdJRyxWTH0NvTO6KXazt48CCZmZlkZWUZHaVcJ339pJRn9QHEAvFHfb0e6As8BUwObZ8M/PtUj5Weni4j2Y4dO+S8efOMjnFSK1askOvXrzc6xklNmzZNFhQUGB2jXLquy3Hjxhkd46Ty8/Nlp+mdJBH8r/a62vK9994z+qU6qblz58odO3YYHeOkQnXxhDXzXFrcGcCK0DJCFmCJlPJTIcSPwDIhxEhgL/DncziGoiiK8j/OunBLKXcBF59gez7Q+1xCKYqiKOVTV04qiqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDM1rnBLKZk5cyaHDh2K6AlkFEVRzlaNKtw7duzgggsuIC0tjbvuuosbb1RTgSuKUvPUmMItpeSHH37gr3/9K23atGHx4sXUqVOH3377zehoNcaBAwfYtWuX0TEU5bx3rvNxRwwpJYcPH6ZBgwbMmjWLBx98kJSUlIie5rS6kFIyZcoUpJSYTCZ8Ph9PPvkkZrPZ6Gh89tlnNGnShObNmxsdRVGqTI0p3CaTiX79+tGrVy80TeOXX34hOTmZJ5980uhoQGnx03U9IordmdJ1nXfffZcVK1ZgsVgYNGgQU6dONfS5OBwOrrnmGq677jqWLl1KcXExK1asMCyPolSlGtNVAtCiRQt27drFNddcw+LFi/n000+NjgSUrgiyadMmhgwZwpYtWygqKjI60hmZMGECc+fO5euvv2bDhg0sWrSI0aNHG5pp586dtG7dmrvvvptnnnmGYDDIgQMHDM2kKFWlRhVuk8lEdHQ0ZrMZu90eMSutPPXUUzz22GM888wzjBkzhg8++MDoSGfk+uuvp2/fvqxcuZJ69eoxaNAg5s+fb2imd955h5tuuomXX36ZjRs30r9/f0P/UGuaxiuvvMI333xjWIaaYNOmTRF/HuXzzz/H5XIZmqHGdJVEqszMTJKSkpgzZw6PPPIIl156KZs3byYnJ4eMjMhfR3nFihXs3buXuXPncvjwYb766isef/xxLBZj/+uUnYSuVasW69evZ+/evWzfvt2wPEIIoqOj+eqrr5g7dy6xsbHMmTOH0EIjyikEAgHuuece6tevj9frxe128+KLL0bU67dz504ee+wx2rdvz7Jly2jdujUPPPCAIVlqZOGOjo7G6/UipTT8B9+qVSuWLVtGVlYWkydP5r333uOpp55i9erVrFy5MvwuwehC+L+klHz11Vds3bqVSZMmERMTg8PhQNd1EhMTjY5HfHw8q1ev5sUXX6Rbt25ceumlhuYxmUwMGzaM4uJicnNzcblcdOzYEYCZM2fSsWNHLBYL0dHRuFwuNm/ezJdffsm4ceOIjY3FZKpRb37PmNPpZMeOHTz55JO4XC4GDBiAw+EI//7u37+fYcOGnfB7V61aRUpKSqXmk1Jy8OBB4uPjueOOO9i6dSvTp09n1KhR4X0+/vhjZsyYcdz3pqWlsXLlygrNE1nVooLMmTOHTp06sWHDBsMLd2xsLI0aNWLKlCmMHDmSjz/+mEWLFnHZZZcxYMAApJQMHTqUtm3b0r17d0OzHm3t2rV88MEHPP300+HXMD4+3uBUfzCbzRw4cIDU1FRuvfVWw3/OZRITE0lMTERKSWZmJlD67mDq1Km0a9eOwYMHc/fdd9OnTx969epF06ZN+fnnn6lbt67ByY01efJknn32Wb799ltefPFF9u/ff8x1GPXq1Qu/nv+rKn72gUCAV199lX/84x/Mnj2bL7/8km3btjFw4MDwPtdee225GStajSzcQoiIumry3nvv5S9/+Qsvv/wyq1evDm9ftWoVAG+88Qbr1q2LiML9008/8fHHHwMcU7QjUdnPOBIzCiHCuZ599lkAfvnlF0aMGEHv3r2pV68eycnJzJw5k6VLl3L//fdH5POoKrNnz6Zly5bMmzePe++9lz179rBq1aqIeU1sNhv33nsvd955J6+++ipRUVEkJiby0UcfGZKnRhbuSGQymRgzZswJ77vjjjuqOM3xpJTs2bOHpUuXcvXVV3P55ZdHzC9NeSI93/+6+OKLWbx4MTNmzKBTp040aNCA9evX06lTJ6OjGc5qtTJ//nw2bNhAfHw8r776qtGRjtOqVSumTJnC888/T+/evenbt69hWVThVoDSUREPPfQQr732GrGxsUbHOS09e/akR48eRsc4I23atCE7O5sFCxbQs2dPFi5cyF/+8pdq90eooplMJvr06cPll1+OyWTCZrMZHek4iYmJXHvttfTo0cPw8xKqcCsAWCwWli1bZnSMM2K1WrFarUbHOGMrV64kKyuL9evXs3PnTqPjRJSoqCijI5xSJJzrUYVbUQzQrFkzmjVrZnQMpZqqsWOQlixZct6//VQUpWaqsS3u1q1bGx1BURSlUtTYFreiKEpNpQq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXPKwi2EWCCEOCKE2HzUthQhxEohxI7Q5+TQdiGEmC2EyBJC/CqE6FiZ4RVFUc5Hp9Pifh3434vyJwOrpJTNgVWh2wDXAc1DH6OAORUTU1GU6kRdQ1G5Tlm4pZRrgYL/2TwQeCP09RvAjUdtXyhLfQckCSHqVFRYRVGqh0ianbMmOts+7gwpZXbo68NA2VIu9YD9R+13ILRNURRFqSDnfHJSlv5pPeM/r0KIUUKIDUKIDR6P51xjKIqinDfOtnDnlHWBhD4fCW0/CDQ4ar/6oW3HkVLOk1J2llJ2jo6OPssYiqIo55+znavkfeAOYEbo83+P2j5OCPEW0BUoPqpLpVyapvHee++dZZTKl5eXx86dOyM64+bNm9m7dy85OTlGRynX4cOH+fTTT4nkP9QlJSUR/XN2u93EZsfS5L0mRkcpV/yeeDa7Nkd0P/euXbuwWCxs3rz51DsbRNO0cu87ZeEWQiwFrgTShBAHgEcpLdjLhBAjgb3An0O7fwxcD2QBbmDE6QT0+wVjxkTuiucxMTp33BET0auy7927l8TExIjOaLfbqVWrVkQv1GCxWCL6NXQ6nXSxd2FGxvGL0kaKbYXbcJgcEf06xsTE8GTKk7gz3EZHKZdf+Mu975SFW0p5azl39T7BvhIYe9rJwt9n4vBh49dbLE9iYhZ16uRHxJqQ5cnJySEjI+OsM0op+f777xk8ePAx20ePHs3DDz9cISuSrFq1ik6dOmGz2XA4HCSnJJFTeIj42ERKAkf4vHAhu9xbMAUs2EUcQjeT7ThEt+S+XHPBLfjdPurXakhJSQmxsbEUFhYSExNDIBBA0zRiY2ORUhIdHU1BQQFxcXE4HA4SExPDt30+H4mJifh8PqSUREVFYTKZwuuULlmyJKJ/zgUFBfz4448RnVHXdfLy8iI646+//kr+hfkUNys2Okq54kxx5d5XY6d1VU5fMBhk/fr1XHPNNfh8vmPue+yxx7BarUycOJGYmJhzPpaUOvmBQ+xybcGEzvvZL9EstiN+3Y+NaFrYunLIt49iTxGtkjrQKPUiEqzJ/G31MOKtqYzt8A9q2epgC9gwmUzoug6ULn2laRpSSnw+H0IINE1DCEEgEAjfL4TA7/eH34YGg8GIXCZLUU5GFe7znKZprFixgokTJx5XtMs8+uijFBcX88QTT5zzUmESycYj3zNr43QyYjNomNiI4mCAX3ZvZc+h/bRp1gBrwMb2XVnktSjigsTWCA5glwlEiwSW/ryAlikXcm2z/kTZohFCYDab0XU93KcaCASwWq1omobFYkHTNOx2O0IILBYLwWCwNIuUBAIBVbiVakfNVXKeE0Lw3XffkZ1d/jnkYDDIO++8UyGLo5qEmc5pV1En0Iktvxfw65ZcNv6aTckhG3Z3bVz7Yzi43c+Wjbl8v3EjW3b9yNqf1uBxBVm/81uOOPKZu/5FCnx5OBwOoPStucfjwWKxYDIJYmKi8Xo9WK1WfD4fUVFRuFyucGs7NjY2XMQr4l2EolQ11eI+z2VnZ/P777+fcgRASUkJGzZsoGvXrud0PF3XiTXHMLv/bO5aMYJPNn+M7oNoGYVN2vgpS+NPl9zEyD5dKHYVYfPYOOD+BG9JPnkFhezQdhIMmBk4pz8rx68GwGazERUVhdfjZvOqGWT9uJhgUKN19zvodMPjOBwOUlNT8Xq9REdHk5eXh91uJxgM4na7SU1NPafnpChVTbW4z3Nms/m0ugpOd79TMZlM2O12vE4PL980l+tb9cNiNtOkVhO6NevGRY3bsTd3L1sObibfUUB2fjax+Y1w/Z7IhQmt8RTnge5FKxbcPftuhBB4vV4KCvJx5Gxh55Z1FJZ4qdduAEl12+MoKSEuLo7c3FyEELhcLtLS0rBYLFgsFpKSks75OSlKVVMt7vNcrVq1aNCgwSn3s9vttG3b9pyPJ6XE7/eTnJxMIBBgzk0v8Y/of/Ju5rsUOYuINccSI6LxCT9H8rdRXFhMvDWBgd0H4nQ4iSaF/NwjmJIP4c8JoGlBrFYrq1fM5MiebyjM3k+HqyZx+YBJBIOl93k8HpKTk9E0jZiYGIqLizGbzUgpcTqdJCYmnvPzUpSqpFrc5zmTycSIESNo1qzZSfd76qmnsFgq5u+8yWTCZDIhpSQ5OoXHr32cIZ1vxRlwsSt3N5sPbuXH3T+yr3A/Teo3pWHdhuzK3oXD6yBepHJJw57kbfBhb32Y1957hYDfy49r/oPXZ2Hg6AV06TMq/Phlw/zMZjNA+HYZNYudUh2pFvd5TghBu3btuOyyyzCZTGzfvv2Y+zMyMmjUqBG9e/eukJOTUFq4nU4nsbGxuFwuEuwJzOj3JI9f9yiDXhxMYUkhWft3kR6fRoEznzhrPF63FwKS3Nx84qyx9Ok0gAMHtvO1XMF3Y14jWZP07XUbjVp3x2q14na7sdvt4ZOTTqcTm82G3+8nJiYGTdPQdf2cR8mcqaysLOrUqRPRFyEpkU8VbgWz2cycOXO4++67ycrKCo+NBmjYsCHz588nJSWlQo5VNs46NTWVgoICkpKScLlc2Kw2/E4/H479kD0Fe/gg8wNcXhemoIlYWwwlRSUgBR63F7vZxpCrh9D54s6s/fVz5q+fwhX9hnBxtxvQNA2n00lKSgolJSUkJiZSVFREWloaDoeD6Oho8vPziYmJQUqJy+Wqkiv8ioqKmDt3bvgPSoMGDRg+fHilH1epmVThPs9JKZFSMnnyZJYuXXpM0Qb48ccfGTVqFCtXriQuLu6cuxaEENjtdgoKCoiOjqa4uBir1UowGCQuLg4pJc3SmzG+z3iklNgsZg6v+4LDP7xLjD2K1F7XkdS9N1a7ncLCQgKHg3iKBJdefRM2mw0pJUlJSeTt2cOPr75AwYF9JDdtTac77iEpvVa4v1vXdXRdr7J5UwoKCvjss894/fXX2bFjB//85z+5/fbbVVeNclZU4T5PlRXs/fv388gjj7B8+fLjinaZ77//ni5duvD666/TuXNnzGbzWRecshZ3YmIixcXFJCQk4Ha7sVgs4bHY+L2YfF62TRmP9HupP2gYnR/+P3Rhwmo2sXvev8j/JZOgppOVV4Q99wi+zT+y4Zu1HPn1JwKaRushd9Fh8C34fV40r4+lo27HWeJkwJSpJFzQlIwGDTGZTLhcLux2+7m8lKf1nCdNmsQbb7zBrFmzGDlyJA899BDPPPMMf/3rXyv12KcjPz+f5OTkCusKUyqfKtznISkluq7z7rvvsnz5ct59992TzkQG8Pvvv/OXv/yFUaNGMWTIEFJSUs66eJvNZgKBQPgqxrITiWazGc1RzKF5T+Hal0Xr+x/HGp9AoKgQ764dIMAnod7g22g0fCxBl4N6X62i8/bfyP9mLY0vv4oLh95NMOjHVViI31GMJkFHMuDvjxHUdL5+cyG/rlvH6Fdep0nHTuGTlpVJCMFzzz3HbbfdRvfu3Vm7di1vvPEG3377baUf+2RycnL45ptvWLlyJVdeeSVNmzalc+fOhmZSTo8q3OeZspb2vHnzuP/++8OTLZ2OX375hbFjx7J+/XoWLFiA1Wo94+IthDhmHpGyPxhSSggG2Tvn/9ByDtFk2F/w5x4mmHsYgaTsMEKCf99uvFKiAwktW5PUvhOaP4inKJ+SvTvRpESToEmJLiWaDrqUBHVJxxsGENB13vzr/dzyf/+m+TleUHS6UlNTadiwIZmZmaSmpjJhwoQqOe7JbNy4kVdeeYWXX36ZBQsW8NFHH7Fw4UKjYymnQRXu84ymabz66qs8/PDDeL3es3qMJUuWoGkar732GlFRUWf0vVJKgsEgycnJx5yctFgs7F+xGE/Wb1xw218g4EXoIETo45jHKC3gINHcLvxSlhbrUIHWdIkuCRfvoCbRpE4wtE+7nr3wef3MHTOaSW8vp3XHjmf1OpyJsvHiEyZMoF27doZfal9SUsLbb7/NvHnzmD59Ok888QRLlizh/fffZ8CAAYZmU05NFe7ziK7rvPXWW4wdO/aUXSMnI6XkP//5DykpKTz55JNndAGLyWQiKiqK7OxsUlNTycvLIzY2Fp/bRcEX79Ny2Fg0dzHSBAiBKdRCN4k/ji2lLF0sT0ooK9K6RNclQamj6RJNg2CocAd0naCEoK6j6QJN12nd41KOHDiAJy/vrF+H0yWlZMeOHcTFxXHJJZdU+vFOR3x8PDfffDPPPPMMmZmZrFmzhszMTMaMGWN0NOU0qMJ9HlmyZAnDhw8/pmuk7GKYshnzymMymcJ901A6A99LL72Epmk8/fTTxMWVP3fw0cpa3NHR0QQCgfCJwfx1X2CLjcObdxCzSWAyl54oE2YwH1W4dVnaqpa6AE1HlzpSgtRDLW29rEBLAnpp90hQlwQlpQVcL+1GCQR1Uus34qX7JjB/y1ZEJfZ1SymZOHEiP//8c6Ud40wJIWjcuDEej4eDBw/y8ccfc+WVV1bYRVZK5VKnkSPQo48+espCehHdQoQAACAASURBVKYWLFjAhAkTjuvP7tKlC/369TtlX3VGRgZjxx6/Rsb8+fO57777zmiZqrJjlX2WUuL4aT0xjZuheVzoHhfS7QKvCzxuhNeN2efB7PMgvKW3pdeF9LrRPW50txvd7UJ3u9DcTjS3m4DbddSHE7/rjw+vw4HX5aBu86ZovrPrLqoJ2rZty9y5c2nRogUzZ87kzjvvNDqScppU4Y4gH330Ea1bt6ZHjx506dKFKVOmnPNjlnWP3H///RQWFoa3R0VF0aRJE959911atGhxyseJi4tj2rRprF+/njZt2hzz+G+88QYjRow4rT82ZfNne71eLBYLfr8/tM2E1Pzhwq17XEiPC+lxQ6hYC2/p13g8cNR+utdF0BP6cLsJup0EQ0Xb73bhczrxuxz4XE68TjdepxOv04mnuLjcIZAV6bbbbuPtt9+u9ONUZw6Hgx9++IEnnniC4hP8XDRNo7i4+JiPOXPm0L59e3r3Pm4xrhpPvS+qZLm5uWzatOm09v3++++5+uqrsdlsvP3227zyyivhJcnOhpSSnJwcXnrpJYqL/1iiqW7duvzrX//ixhtvPKNLr+Pi4ujWrRvLly/n1ltvZdOmTUgp0TSNL774gk8//fSUrXdd1/H5fCQlJeF2u0lISMDv9+P3+ZH5OdhDXTfCLDCZBMIsECYTpW0MSRDQdJ2grhPUSrtBAqGvA1IS0EIfusQf1AnqUFJSjDkmFr8m8etH3R+6CKcy7dq1i+joaOrXr1+pxzkXHTp0IDMzkyuvvNKwDD179qRr16706dOHFi1a8Pzzz5OWlha+v6CggDlz5hzzPUOGDGHjxo1VHTUiqMJdyfLz81mzZs1p7bt161ZcLhdr167l7rvvJiYmhtzc3HO6JFvXdQKBQHhypfT0dKZMmcKgQYPOar4MIQStW7fmhRde4K9//Ss//PBD+D6/v/zFTcuYTCZsNhv5+fnUqlWLwsJC4uPjiUpIJPurT7GZTJCUBKHijal0SEnQ70PYo9Ep67cGn8uBOy8Xv6bjC+r4dYlP0/EFJZrJgiUtgwCC4kMHiKldD7+uE9DAp2kEdcjNPoz/LEfWnK7XXnuN2267LaLnJnn66afp1KmTYUXwo48+YtCgQdx1110sWLCAtLQ07rzzzmMuTkpNTWXVqlWG5ItEqnBXslatWvH444+f1r7Lli3j0Ucf5dlnn+XWW2/loosuol27dmd9bCEE6enpTJs2jb/97W9kZWXxn//8hw4dOpxTIRFC0L17d1577TXGjRvH999/z6OPPkrv3r1P2Veu6zp+v59atUovP09KSsLv91Nn8HByv1lF0e+b0Oo1JDYtHd0k0E2CoIDg/p1YGzRFAp6cQwRKivH6fKXdHkENvybxBCW+oIZX0/Ej0Pfvw4+Z6AYNKc7ORsTGEtDAq+kUFxSwa8tW2t9wI1TSZeeZmZlYLBYuvvjiSnn8mqJJkyYsX76cmJgYunXrxsqVK3n88ccZPHiwmhKgHKpwR5Abb7yRPn36cO+99/LOO++c9kiNk7FarfTq1YvVq1cTDAZJTU095peh7CrKUymb26PssmiLxUKbNm147733wl0fpzvTnq7r4XUiy94J2Os2RLfYCLjcsHsHaBq2uDgCUsMM+EuKEb/+UDpWW9MIaDp+Tcev/dE9EpR6aOw2BDQNb1EBvqBOfl4enoCGH0FCg8YUFhZy5OBhvP4gN4wZU2nFIT8/H5PJVGETdNVUrVu3Jjs7m3vuuYdevXqRnZ3NpZdeqor2SajCHUFsNhs2m42lS5dW6OOazeZyV3rRNI1GjRoRHx9PSUlJuY/RsWPHY4bvlUlISDijLEIIbDYbDocDu92Ox+MJF3HNHo1fl8iAhrmkmKAWQDu0PzQcUCAADRm+yMav6wQ1gV8/uu9aD/d5B/XSC26CWgBNg0BQw+N0UpCdgy4BYSI6rnK6MPx+P7///nuFLD5xPvjss8/YtWsXX3/9NVlZWUbHiXhqVMl5zmKxMHjwYBo2bFjuPkIIHnjggQqZjKlsBZykpCQ8Hg/x8fHouo7FYqHxsLvxhfqpXQUFuJ0OfJqOV9PxaDpuTccb1PEES2/7NfCFWt3HtLx1vfSKSb3s5GXpNl1CSUFh6YrwJhNdbhqMiKqc2QFdLhcffPABgwcPrpTHr4maNGnCHXfcYXSMakG1uJXTmu2voiZjKpvWNS8vj7i4OIqKirDZbAQCAepe2oeNOuhSR5cBdIcbgnrp+UlR2saQUg9dhAPB0MU2/tDJSr9eNlpE4tdK7w+UFXApEVFReD2+0n20IO2vvJKGTZpUyPP6XyNHjjxuFESkEkLw1ltvGR1DOQOqxa1UKSklgUCAtLQ03G43iYmJ4ZVoHC438V16lraygxpOhxN3oLSF7Q7ooa9laYs7qOMJanhCI0q8QQ1fUMOnafiDEr+m4dd0AqFiHgjquJxu/D4/8bVqce1fRmOOiqagoKDCn+OuXbuA0hZkdSCEoGXLlkbHUM6AKtxKlSq7AMftdmO1WvF6veFZAqPj42kxdCTeoAwVaA1vaLSIN6jhDWpHFe3SLhRvUIa7V3yaxBfqLvFrAr8Ofk0eM947ICUZzZtTUlBI9/4DKmUhhYcffpiZM2eqk2tKpVGFW6lyZRftCCHCI1qklFgsFpKbtaT+NQNChTrUqg6W9m3/0b8t8QRK7/eF9vOFRpkEQsW7tLtEKy3iusSvQ1DTadPzSjRhocdNN2OxWCplzclJkyYdc/GIolQ0VbiVKlVWtGNiYggEAkRHR4cXUfB4PJhi40ht1x4/ptJWt1baNeIOarjDRTxYerIyfLu0Ne7VSsdw+3SJN1h6sY1f1/CFWtu6MJFcrx4ORwkX9uyJpmm4XK4Kf47dunUzfNpWpWZTJyeVKlU2reuRI0dITU0lPz+fuLg4AoEASUlJaJpGiyHD2bluDXvXrkIgwnNyA0gpwhNaBeUfQwMDUhLUQicjQ5e0+8r6uDUdabHRrmcvfly1hhe//QZbVBRSyjMezqgokUC1uJUqVXZyMi4uDp/PR2xsbPiCHK/Xi9/vxyQErQfcjGaNwqOF+rYDGp7AH61r99F93prEG5Slre1Qt8nRwwSDmGhwUQcCCC6/+SY0q41gMEgwGMTpdBr9kijKGTtl4RZCLBBCHBFCbD5q22NCiINCiJ9DH9cfdd/DQogsIcTvQohrKyu4Un2ZzWY0TcNqtR4zj4rFYgkPO2x41bXEtGqLNyhxByXuoI776BOToe1l/d++QGl/ty980vKPfu/0Zi2ISU5hz5atXNirF7FxceF5yNX800p1dDot7teBvifY/pyUsn3o42MAIUQb4Bagbeh7XhJCVP5qrMo5OZO5tM9V2ZqTZdO5lp2klFKGiymUXhbfb9rTmJJTjyrYWqiAS1yhk5LewB/F3KOBJ1S0vZqGbrGSUL8Rlrh4igsKGHzfBFpeckl43LoQolJOTipKZTtl4ZZSrgVOd7DrQOAtKaVPSrkbyAIiY60mpVx2uz1cMKG0RXx0QZNSVtiwuf/tKomJiQnPgeLxeMIr7NhsNuo2a84tLy0gvmFjPAE99FHaReIrG99ddjWlpodHoviCEl9Q4pcCrz9ASUEhHa7uw9UjRhAVHY3D4UDTtEo7Oakole1c+rjHCSF+DXWlJIe21QP2H7XPgdC24wghRgkhNgghNgQCnnOIoZyrpKQkkpNLf4Rms5nRo0fz/PPPhy9xj42NpXbt2hVyrLIrJ4uKioiKigrPjxIMBomNjcVutyOlxOv14nA4aHZJN254/P/oMPjP+KQIjzLxmy1ccPmV4SGC3qBGVFo6cbXr4tW00svhfQFsMTEMGj+ePnfdhRACr9dLUlISZrMZi8VCfHx8hTwvRalKZ9vBNweYRumSrdOAZ4C7zuQBpJTzgHkA8fEZ0uc7yyTKORNC8Prrr+NyuRBCULduXeLi4rjiiivCJw7PZEHgU7HZbKSnp2M2m6lVq1b4QpWjZx4sG05nMpno1Kcv7bpfRv+/TQZCq7ybBDFJSTiPuvLRYrODEMfMsW2LiiK9YUP00JDD6OhohBDhdxDqIhmlOjqrwi2lzCn7WggxH/gwdPMg0OCoXeuHtikRTAhBo0aNjtveqlWrSjne0X3ZR3fRlPnfeVFMJhPW5GTikpOP2zc54/TeCZQ9YtnxVMFWqrOz6ioRQtQ56uYgoGzEyfvALUIIuxDiAqA58MP/fr+iKIpy9sSpRhQIIZYCVwJpQA7waOh2e0q7SvYAo6WU2aH9/05pt0kQmCil/ORUIRITU2SLFvef7XOodFari7Zt807YKo0Uhw8fxm63h/uqI9H27du54IILInokx6ZNm7jwwguNjlGuQCDAnj17aN68udFRylVQUIDf76+w8yKVYc+ePWyttZVAbMDoKOXa/ux2iguKT/jW8JSFuyrEx6dLv/93o2OUKyFhD3XrfsO2bcOMjlKuRo0+5aWXatGpUyejo5Rr5syZjBgxokL7yyva3//+d6ZPn250jHIVFRWxcOFCJkyYYHSUcm3YsIH8/HyuvTZyL+NYtGgRPXv2jOjGWMuWLTly5MgJC3eEXH0g8Psjt6UYCOSjafaIzqhp0cTGxkZ0i9tqtZKYmBixGcvmTInUfFCa0Wq1RnTGmJgY3G53RGe02+3ExcVFdMaTnYdRl7wriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnCfpzZv3hyeiU9RlOolQsZxK1Vl//79LFy4EJ/Ph81mo1WrVtx8881Gx1IU5QyoFvd5RErJ3r17+eWXXxg3bhwtW7Zk6dKlVbqQgqIo504V7vOI1+tl9uzZzJo1i8cff5zWrVtz/fXXs3jxYqOjnRWv1xuez1tRzieqq+Q8Eh0dzYQJE7j33nt56aWXuOiii7j88st59913jY52xj755BN27dpFbm4uF154If3798dmsxkdS1GqhGpxn2eaNGnClVdeyezZs3n44Yfp3Lkza9asMTrWGbv//vupU6cOffv25ZFHHsHtdhsdqVwvvPACHk9krvL00UcfkZWVZXQM5Qypwn2eqVu3Lvfddx933XUX48ePZ8yYMXz++ef8+uuv1aav+5///CczZ86kfv36/Prrr6xYsYJ7773X6FjlWrFiBX6/3+gYJ/Ttt99y8GDkr3Wyb98+HnvsMaNjlGvPnj1MnTq1yo6nCvd5qnnz5uFZ5h5//HGee+45tmzZYnSs0zJlyhQmT57Mxo0b2bhxI6NHj2bWrFlGx6qWateuzeHDh9E0zegoJ+X1etm9e7fRMcrl9XrZu3dvlR1PFW4Fi8XCK6+8wsKFC6tFt4nVauWGG27g448/JjMzk4suuojY2FijY1VL48aNY+7cuRHd1aQcTxVuBShd5/GRRx7hu+++Y926dUbHOaVp06Yxfvx4+vXrx4svvhheXFhRzgeqcCthSUlJjB07lmXLlrFt27Zq0+etKEar6sWnVeFWjhEfH8+sWbN46qmn+Omnn4yOoyjVQlU3clThVo4jhODFF1/kww8/ZPXq1UbHKVeTJk2QUrJr1y6jo5Tryy+/pGfPntjtdqOjlOuOO+5gwYIFRscol5SS5cuXM2jQIKOjlCstLY2GDRuycePGKjmeKtzKCUVFRTF+/HjWrl3Lhg0bIrLbpDoU7tWrV9OzZ0+ioqKMjlKu4cOH8/rrrxsdo1xSSt555x1uvPFGo6OUq6xw//zzz1VyPFW4lXKlpKTw0EMPMXfuXLZt22Z0HEVRQlThVk4qKiqK+fPnM2fOHL755huj4yiKgircymkQQjB9+nTWrl1bLcZ5K2cuNzeXN954w+gYx3nvvfcYO3YsBw4cYMyYMRHZeNB1nYkTJ7Jo0SIWLVrExIkT0XW9Uo+pCrdyWuLj4xkzZgyffPIJmzdvjsg+70hSUlJChw4dePXVVxkzZgzXX3+90ZHKdffdd5OXl8cDDzxAhw4d2Llzp9GRgNKC+P3333PJJZeQmppKgwYN2Lp1a6UXxTPl9/tZs2YNvXr1olevXqxZs6bSpzhQhVs5bUlJSTz55JM888wzbN682eg4ANSrV4+EhASjYxxny5Yt9OjRgxEjRjB79myio6Mj8iTqwYMH8fl8rF+/nuuuu47Bgwfz22+/RcQf5u+++47Y2FgGDRpEp06duPvuu9myZQv79u0zOtoxJk2axLx582jfvj3t27dn3rx5TJo0qVKPqQq3ckbMZjPz589nyZIlEdFtMmrUKC655BKjYxzniy++oHfv3lx66aU0btyYK664IiLf5v/yyy9cdNFF1K5dm759+9K9e3fWr18fEYW7R48euFwupkyZwnPPPcekSZNo164djRs3NjraMV544QWGDBlCdHQ0drudIUOG8MILL1TqMdV83MoZs1gsPPjgg8yZMwe73U737t2NjhRxxo0bR+vWrXn++ed58803Wbp0Kdu3bzc61nGuv/56/v3vf7Nr1y5uvfVWRowYwUcffYTJFBltumHDhrFt2zb+/ve/h1vekcZkMvHcc8+FhwI+99xzlf76qcKtnJXk5GQmTJjAQw89xAUXXEDt2rWNjhRREhMTyczMZNGiRXTr1i2ip51955132LNnD0uWLGHdunWkp6cbHSmsXbt2tG3blp49e0ZUrqMJIbjxxhvDE3VVxbw5qnArZy0uLq7S3xJWVyaTiXr16vHQQw8BVT+XxZlIS0sjNTWVTp06RWROIUTEFu2jVeVEZ6dszwshGgghVgshtgohtggh7gttTxFCrBRC7Ah9Tg5tF0KI2UKILCHEr0KIjpX9JBTjCCEi8pc9UlSX16e65FRKnU5HTBB4QErZBugGjBVCtAEmA6uklM2BVaHbANcBzUMfo4A5FZ5aURTlPHbKwi2lzJZS/hT62gH8BtQDBgJlI/bfAMomEhgILJSlvgOShBB1Kjy5oijKeeqMTn0KIRoDHYDvgQwpZXborsNARujresD+o77tQGjb/z7WKCHEBiHEhkAgMhdSVRRFiUSnXbiFEHHAf4CJUsqSo++TpYM+z2jgp5RynpSys5Sys9UafSbfqiiKcl47rcIthLBSWrTflFK+G9qcU9YFEvp8JLT9INDgqG+vH9qmKIqiVIDTGVUigFeB36SUzx511/vAHaGv7wD+e9T24aHRJd2A4qO6VBRFUZRzdDrjuC8Fbgc2CSHKZgl/BJgBLBNCjAT2An8O3fcxcD2QBbiBERWaWFEU5Tx3ysItpVwHlDfAs/cJ9pfA2DOPYvzcCKcW+RkjYY6JU4n0jJGeD1TGilIdMp6IiITgiYnJsn3724yOUS6z2U9iohObLcXoKOUKBktISrJU6dVbZ+rIkSOkpqZiNpuNjlKuAwcOYbHUNTrGSWgETIewpluNDlIu3a0TF4yLyFkbyxQUFBAXF4fNZjM6SrkWL15MYWHhCRvNEVG44+MzpNOZY3SMciUmZvHUU6u55557jI5Srvfee4+MjAy6du2Kz+fDarX+MW+xSeewby+FwRykLrFgAwSegJsYcwJNE9oidDM2mxVN0xBCEAwGEUJgMpkIBoPYbLbw57LHDwaDmM3mY/YtuwIvGAxitZYWl7Ir8p544gnGjh1LcnKyQa/SyUkp+fOfJ/DOO88bHaVcdnsB7aZcQ+YjmUZHKVftb2ozN28uAwcONDpKuV5++WV69+5Ns2bNjI5SroyMDHJyck5YuNVcJTWMpmnk5+cTFW/jh8IPSY9qRNDkZafzF7L9e3F4nTi8xdSNborH7yHdWp8dUb+xOz+LcV3/jt8XQAiB0+lECIHdbsfpdJKWlobT6SQlJYXi4mJSUlIoKSkhNjaWoqIirFYrNpsNm82GxWLB6XRGbIFWlOpOFe4aJqvoF/5T+ByiWHDYtxerjCIYlMSSTJq9HkkkU+R24dEDpNjrg27lk53vEm2JZ9qXD3JLu5HUjWlAfHw8UkqCwSCpqam4XC7sdjt5eXnExcVRUlJCdHQ0Pp+PpKQkpJRomhaeIc1ms5Gfn09SUhIWi/pvpigVSf1G1TC1Yhrx1qqNpESlcFGti2iS3opdh/bwxrqlNGuRSK3YOHb8mo25XpBL2/TEHIwi2pJEgSMPe0w8C36YQ7/WN9I2+WIsFitWq5Xc3FzS09NxuVykpKZSkJ9PYmIixcXFxMbGUlJSgtVaum9sbCwmkwmXy0VycnLEzOusKDWJKtw1TDQxzOu3gAc//xsfbf2EzzZ/gV23kZFcG3+uHZ8jjebpjThUtButSOfbn7+lfrsUsg4folmqnyJ3MV6fRtMrWpFkiUYIQVxcHH6/H58jm+3b3sdR4iAlvS5pTXqjaRpRUVHhfuyytfZMJhNer5fo6Gg165yiVDDVHKphTCYTLVKa8Y+r/o7JItiZv5NCTyFxUbG4/W7cARcN0hvQOq09CZ5mNE5og2O7RPh1zPjYd+QQn21axfQPnwBKT9jpug5S4+DWz1jz1kQyP/4HmZ8/gwid19Z1HV3Xw0OrTCYTUspqO9RKUSKdKtw1jNVqJeAP0L1+d/4z9D+kxaViMpsp8hZjtVnwaX62HthCriOX3/dt4+sN39Ioph0DMm7nl1W/06VVA2IcZpZ/spxAMACAo6SII3t/ZO1Hz1PkttPl5lfpc9ebBLTSUSV+vz88gqXsJKWu66q1rSiVRHWV1DDFxcXh/ujWtdvwzYR1DH7lZrLzs7FLGzZpJwo7ufm5SL9ORnJtNKmRcySPAR2HUPRbEYn2InyJ0ezcv51WF7TlqxVPsy3zQxpc0JrLrh5Fu0tuoKSkhLiYGLxeLykpKWiaRiAQwOl0IqUkJiaGvLw8UlNT1clJRalg6jeqhik7WWixWPB6vWTE1GbBrQv4YNMHzPlyDocKssEvibfE06ZeG2zCxpGiI8RYonGUOBAaxBc3xpFQxNT/TuRPTYeQ9duvJNVuQ/+RM0nNaITX6yUmJga/34/VasXtdofHb0dHl870qGka8fHx6uSkolQCVbhrmLITgoFAIHwRTstaLWjRaxKX1OtCjiuHJ995koN5h9iVs5OUqFRs2MjPy8PnDuB1ehhz4xjG9xhHccwBXn/uXyQf0Xhg2nySazXA7XYTHR2N1+vFbreHL8op6+cuOzlZVtDtdrvBr4ii1DyqcNcwuq5jsVjw+/3HnCSUEro36U5UdBR92/TFarPidDixmQUHd22nVmIqPgkxKbWIskWRnJRMSUkhv1/wM73u6kfj5u0RQqBpGiaTCWdeLgGLmYCmk1q3HiaTKVy8gfC+6gSlcq6OHDlCWlqaevd2FFW4a5ioqKjwuGqfzwcQnhvEbrfj9/uJj4onb8N6ogIeHEdyiD+0l5KiQpIu7EBC+24492Sx2+Nh/+EjbPr6G7p1vIzAwX0c2rGNqOhoSuKS2fv1KvZt/oW4WnWIadKCuNQ06rVtS0bzluHL4BMTE9Uvm3LWsrOzWbt2LWvXrqVHjx40a9aMrl27Gh0rIqjCXcO4XC5SU1NxOp1ERUWh6zo+nw8hBB6PhyiPg91vziU2ORV/dAyJtWqT0OMKpBAIwHNgL7K4ALseJHb3dnr43MhVH3Lo4B6EyUJhwE90ej1a9O5L097XIjWd379Zy+HNv7BvYyYOj5cbH/knyWlpFBcXk5qaqoq3clY2btzIm2++yZw5c1iwYAGff/65KtwhqnDXMAkJCaVzlURF4Xa7MZlMWK1WpJTEWs38PP4eEps0J7nnNZjMFpAa/oP7SifulRKz2UJis1boUhLboCnNBt+Cpun43CVYouPQpE4gEMRTXIAuQdMl9dtdTB0pKc7P5/1Zz/LqvaMZ9/pikpKSKm0mwEAggMViUcMNa6iioiKWL1/OnDlzmDp1KjNmzGDx4sW8//77DBgwwOh4hlNNoRqmpKSEtLS08JA8q9VKIBDAW5jP93ffSEzdetS57iZ0RzF6cQHSUYzwOhEeJ3hdSFcJWkEuwYJcdJeDYHE+mqMQ4ffjLyogUFhI0FFC0OUi6HYRcLvwOx34nKXdMwMnPoDzcDYv3Dmc/Tt3omlahT6/vLw8Nm7cyC233MLPP//M4cOHK/TxlciQmJjI4MGDefrpp/npp59YuXIlGzdupF+/fkZHiwiqcNcwUVFRuFwuhBAEAgE0TcNsNpP7wTJSGjSl3rWDCORlg9eN8Loxed0Irwfh82LyehAeF8JTeh8eJ9LtRHM7CHrcBN1Ogh4nuidUtJ1Ogk4nPpcTv8uJz+Ui4PHS45ah5OzeyZbVX1Z4i3jZsmU89NBDzJo1i6lTp/Lyyy9X6OMrkUEIQZMmTQgEAhw6dIjRo0dz1VVXRfRc7lVJFe4aJiYmhqKiIgA8Hk/pKA+fB8f2X0lq1Y5g3mHwuksLt8+FyefG7Hdj9rkx+T0Inxvhc4PHhfS6kV4X0u1GelxoHjdBt4ugy0XA5SDgcuJ3Owm6XPidLvwuBz63AxPQ+MKL+f6//6U4N7fCntvevXvZv38/r7zyCrNnz2bu3LlIKdm0aVOFHUOJHG3btuWFF15g0aJFNGjQgNtvv93oSBFDFe4IIKWkqKiIFStWsHTp0nN6rOLiYjIyMpBSEhcXh8ViIXvNZ+Dzo2sBNI8L6SktzKUtbhdmnxuLz4XJ60L4QsXa60G63eguN7rHheZxoLtLi3fA80c3ScDlxOd24nM58LuceJ0uPM4SajdrhqOgAGdhYQW9SlCnTh1q167NunXrGDFiRPhEVfPmzSvsGErk6dWrV7W8+tbr9VJYWMjgwYMpLCzE6/VW2GNXv1ejhtm5cydZWVm89NJLXHLJJTzyyCPn9HiJiYnk5OQQHx+Py+XCbDYTY7fisJnR/V70IEiTCUwgTQJMApPZhBAgdRC6BF0idYmuaeh66QlITdfRdAhqkoCU+HVJUJMEdZ2ADgFdJxC67dd1grpADwagAsdx22w2mjRpwgsvvICu66SnpyOEICoqqsKOUNx5nAAAIABJREFUoSgVZebMmSxfvpzly5dz1VVXMXz4cCZNmlQhj60Kt0F8Ph/Tp0/HZDJh/n/2zjxMiur63++t3qene1b2fTMoRECWQNxQIqIRlyRuuH0JKjHiL0YFJLgnGjdcokYkiiARxYhbNCFxjcEFRVAEkQAyyLDNMHvvtdzfH91dzigDA0zTPXjf5+mnq6uqqz59u/vUrXPPPcfh4Nlnn7Wnix8I0WiUQCAAYM9ajMViWPFYsuesgUNzYGlgOQSWpmFpAg2BJVMG27IwLYllSttoG5ZMGmgzuWyYSYOdMK2UsZboJuiWTBlxC1PXD/jzfJvx48czfvx45syZwx//+Efee++9Vj+HQrE/rFixghdffNF+/f7773PYYYfx/PPPs3DhQhYtWkR5eTldu3Y94HMpw51B0rMWH3vsMY4//nj69+8PwF133cW7777L1KlT6dmzJ7179261czocDrs6TXpg0ulw0bB+Lb5AAcLnw3BoCEey1y00AcKBACySRtewwLRMdFMmH5ZElxa6AQnTxJBJg50woWLzJvLad0TXHOgmyZ64BQkjmXQqU1x++eVUV1ezdOlSVqxYwVFHHZWxcymyixCCm266iTvvvJPrr78+23K46aabdtthGDRoEOPHj7df79y5k549e3L00UdTWVmJx+NptQLKynBnkIqKCgYPHsytt97Kr3/9a1avXk3Xrl2ZOXMmV155JYFAoNWjLtKj7kIIO5e2p7QduNzUr/0c0acf0uNBahrSIZBCkgg3IDx54HJhGgZ6wiAei1D75RoShkHMkMQtScwwiZkWcRMC/QZiut248vKIhSMYQqCbkriZdJls+3ozdZWViAxGARQXF1NYWMimTZsYNGiQijjIIVrzdy2EYMCAAbz00kutdswD4frrr99tp8Ttdje5a163bh0PP/wwo0aNYsqUKVx77bXKcLcF3njjDaZNm8bQoUNZtWoV/fv35//+7/8YOXJkxs6ZTuva0NCA3+/HMAw4cgQlo05k5z+fx4yGKezZBzMvD1MTOITE3LkV4fSA202ioY74rgoSZtKPHTctDFOSMCS6aWIYEt202LrqY+IGOEs7ENcN8OeD20tCCmp3VbN5/XpG//Iyijt1ythnBbj66qv5yU9+wpgxYygsLMzouRQt51DOUZOXl9ei/X71q18xefJkZs6cyZo1a1pVg4oqyRBSSjuDXiKRYObMmQQCATt7XqbIy8ujrq4OIQSxWAzDSBY7iMYTGJYkHgnTsHMbsVA99V9vor7sK8I1tYS2fk39pg2EK5JGO91z1k1JIjXoaFgSw5KYMj1gaVK3bSt1O3aw43//o2b7dio2l7H9q41YFvT+4ZH48vMz+nkhabxnzZqV8fMoFPuKEII77rij1Y+retwZQgjBaaedxg9/+EPuvvtuHn30UdasWcM999yT0fMmEgny8/OJRqO43W5M08Q0TXxdumA4XGDoiIYGpNuNrKrEIS2E0JIz3gFTJgcm9bSv2pIkUhEjugW6tFKRJSR94VJikhzEjMdiRENRLCHw5AeJxeNYlpXxXCU//elP7fEDxaGJpmlomoZhGG0yNLC1UT3uDNK+fXu2bdtGXV0d1113HcuWLTso503fpja+Xe194a/RSjsSMU0ikRjhujqiuklUt4jqFhHDIqKbRAyLqCGJGxA3LOKGRcIgFTWSjBbRLYlpfNMLT5gWFoJwfZhoNIphWAz66TiOu2DCQfm8Qgj69u17UM6lyA59+vTh+OOP56mnnsq2lJxAXboyiBACp9PJb37zm4N2TrfbTTQatXsn8E3xXq2wHcbXm5DSxAxF0EwLh5AIJKQHMwFLymTMtmXZPe94ymgnrORApW5Z6DJp0E0LDMAk6ULpf/RxONDI8/pUZkBFq5CusJTO9/59RxnuQ4x0Dch0WlfDMNB1Hcuy6HnxFXz824/RLAvDSqAhcGiSZELXJBYyOelGSgxJKn5bohvJiTUJ08IwIWGRmnCT8oNbJnHDwuH1oHlcjLt8MvX19Xi9XmW8Fa3C6NGjD+lBz31BGe5DjEAgwK5du/B6vYRCIYQQuFwuHA4HvX50NMvy8kk01KEJcGoCzRIIIdNZXTFlssdtkexxmxYYqZmSycHKpNFOWCZxE3QzuV/ClEinix+ffR7rVn5Kj4ED8fv9yh+paDV69OiRbQk5w167QkKIbkKIt4UQXwgh1gghfpNaf4sQYqsQ4tPU49RG75khhNgghFgnhDg5kx9A0ZRQKERBQQFSSrxeLy6XC9M0sSyLiK5z4oNP2vHYETPp247qFpGUnztqmkQNk6huEjOs5EM3SRhmctJNKkQwYaSnt5vELTBMi/4/PoZP3n6bKY/Nwe12EwqF1K2tQpEBWtIdMoBrpZQrhBAB4BMhxOupbfdLKe9tvLMQ4gjgPGAA0Bl4QwhxmJSydRMzK3aL2+0mFos1qfmYdlW43W487TvQ8egT+fq/b6Kl/IaCpJ9boiGRqZ530ndtWhaGlN9Mebe+CRFMWBZxM+nv9gQLiMYS/OjUU+nYowemaeJyuVShA4UiA+y1xy2l3C6lXJFabgDWAl328JYzgGellHEp5SZgAzCiNcQq9o7X66WhoQEhBIlEAsuycDgcyWRTeXk4C4vpPOLHxA2ZiipJ9qyjhkw+p6JMooZF3DSJmZKYSeqR7G3HzeQAZdJVYmEJJwNO/AnRRIIfn34mgWAQ0zTx+/3KcCsUGWCfRo2EED2BIUA6rm2KEGKVEGKuEKIota4LsKXR28rZs6FXtCL19fW0a9cOy7KShtrpRNd1dF2npqYGf14eA867hK4njCVqJV0hYd0knDCJpMIDIylXSThlwGO6ScwwiOsmcd1KulqM5ECl6XDxg2OOp3pXFUf95CS6DBxIbW0tLpeLXbt2tXoFHIVCsQ+GWwiRDywGrpZS1gOPAn2AwcB2YJ+mrgkhLhdCLBdCLNf16L68VbEHgsEg1dXVaJpGJBJB13VcLhcul4vCwkIikQgOl4vuJ52K4fLZcdtRUyZjuc3Ua0MSNSz7ETMkMVMSTfu4LQleL+379EU6HUTq6+jSvz/BggIKCwvRdZ3i4mKVP0ShyAAtGvIXQrhIGu2npZQvAEgpdzba/hfg1dTLrUC3Rm/vmlrXBCnlHGAOQCDQQcbj+yNf8W0ikQjBlKsiXeU9Hc+dSCTwer2YpsmIs84mWl3Fq7fcQFNvxjfx3KYlkwWBU1PcDZnMHKhbFlI4yA8WgdvD9k1lXH7PPQw49lii0agdv97Q0EAwGFTGW6FoZVoSVSKAJ4C1Usr7Gq1vnD3oLGB1avkV4DwhhEcI0QvoB3zUepIVe8Ln81FfX2/nSjEMw54u7Pf7icViSCmpr6/n+F9OZuwNt2A4XMnetGEl/d6GRUI4iDZaFzMtElIjZpjEDUkcQSQaY0fZ11x08630+9GPkpkIPR47flz5uBWKzNCSHvfRwEXA50KIT1PrfgecL4QYTDLFRRkwGUBKuUYI8RzwBcmIlCtVRMnBw+Fw4HQ6cTqd9mSF9HLjbU6nE7fHw6gL/o++Q0fy+qMPU78rWR9SAqMmXMB/n/4rUoJlSZy+PLr98Ies/eADLAkSQXGnjlzwu99R3K0bTpfLPm76nE6nUxluhSID7NVwSymXArv79/1jD++5Hbj9AHQp9hNN0ygtLW12e0FBAQB+vx9I5lNp3749A4477jv7jp146X7rcLlc+/1ehUKxZ9RcZIVCoWhj5Mh8ZInHU51tEc3idtcTi8Wors5djZFIhFAolNMadV2ntrY2x/NNmDn9W/R4anHoDjzVnmxLaRZ3yE0kEsnp32IsFqO+vj6nNe7pfyJy4U9UXFwsr7vuumzLaJZwOExlZSU9e/bMtpRm2b59Ox6Ph+Li4mxLaZZ169bRu3fvnHajfPbZZwwaNCjbMppF13WWLv2KmpofZFtKs3i91QwZEqdThqsfHQibNm2iffv2tsswF7n33nuprq7e/SBRuqBtNh/t27eXucz69evlnDlzsi1jj7z44ovy/fffz7aMPfL73/9eVldXZ1tGs1iWJadMmZJtGXukqqpKDh16u0ymBMvNR8eOS+VLL72U7abaI7Nnz5br16/Ptow9krKLu7WZysetUCgUbQxluBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrWhCKBQiHA5nW4ZCodgDOZKrRJFtLMti8eLFbNy4EafTSa9evfjZz36m0rIqFDmI6nErADBNk+nTpzNy5EgGDRrE1KlTsy1JoVA0gzLcCgAmT57M4sWL2bVrF7qu88wzzzBlypRsy1IoFLtBuUoUADzyyCOMGjWKSy65BI/Hw/Tp01mxYkW2Ze2Vbdu2kZ+fTzAYzLaU3bJt2zYCgQCBQCDbUhSHEKrHrQDA7XYzZswYqqurmTt3LkcffbRdhiyXeeyxx/joo9wtafroo4+yfPnybMtQHGIow60AkrUqZ82axcSJE/H5fEybNk0NTCraBLW1tdx1113ZlnFQUYb7IGIYBqFQKNsy9kjv3r156aWXuOyyy3K8Uo1CARMnTuT000+nT58+9OvX76C597JdyUkZ7oPEhx9+yKJFi7j11ltZsmQJkUgk25KapaSkhD59+vDxxx9nW4pC0SxfffUVPp+Pq6++mt69ezN16lQ+//xzTNPM2DnLyspYsmQJU6ZM4V//+hdfffVVxs61J9q04Q6FQixYsGCv+0kpuf3225k5cybvv//+QVD2Xa655hpqa2uZMGECM2bMYNu2bVnR0VLuueceZsyYkW0ZCsV3SCQS3HDDDVx66aXs2rWLL774go0bN9KtWze2bNmCZVkZO/cLL7zAggULmDVrFgsXLuS5557L2Ln2RO6PPjXDzJkz+eyzzzj99NMZPXo0Dz30EAMGDLC3X3zxxWzdutV+PW3aNPLy8ujevftB1/roo49y5ZVXMnLkSC699FK2b9/OZZddxhtvvGH7kYUQOedTFkIgpcw5XWnSt6q5qk9xYKTLdAGUl5dzySWXAOByuZgxYwYnnXQSv/vd74hGo4wePZoJEybwt7/9LWM1TdeuXUtlZSUPPPAAV1xxBf/73/947733+Ne//gXAuHHjdjv/IRP/7TZpuGtra/n666958MEH0XWd9957j5EjR9K3b180LXkTsXDhQrp27Wq/x+/329sONhMnTuTUU09l2LBh/PWvf2Xy5MnMnDmT4cOH2z/Md955h4KCgqzo2x3BYJBrr72WO+64g5kzZ2Zbzm75z3/+g6ZpHH/88dmW0izFxcVUV1djWVbWfn9tidraWnbt2gXAypUrueOOOwDo2rUrr7zyir1ffn4+Qghef/11Kisruffee1mzZg15eXkZ03bYYYdRUlLCSy+9xJw5c3j66aeprq7mmmuuAeAf//gHQ4cO/c773nrrLYqKilpVS5s03B988AGDBw8mPz+fqVOnsmLFCkaPHs0LL7yAx+PJtrzv4PV6Of7443nwwQfp1q0bxcXF9O7dO6fjpIUQeDwe4vF4tqU0i2EYADkdtvjb3/6WMWPG8JOf/CSnLsy5hmmaLFy4kM2bN/O///0PgEGDBrFy5co9vi8vL48ePXrw0EMPZVyjw+Fg4MCBLFy4EF3X+fjjjznnnHPsGP1zzz2Xc889N+M6oI0a7lNOOYXZs2ezYcMGrrnmGi655BJmzpyZk0Y7zc0330xNTQ2rV69uM77j/v378+677/LFF19wxBFHZFuO4hAnkUgwZswYbrjhhmxLaZZx48Yxbtw4Fi9ezPz587PmpmuThhvg4Ycfpry8nEceeYRnnnmGnj17ZlvSXikqKuLYY4/NtowW07lzZ9xuN2VlZRx++OE55UuOxWIkEgl0XScajeL1enNKn2LfcDgcTJo0KdsyWszPf/7zrJ6/zRrubt260bVrV0aMGIHD4ci2nEOW66+/nlNPPZVRo0a1up/uQDjyyCNxu93U19fz6KOPsnHjRgoLC7Mtqwm1tbV8+eWX1NXVsXz5cnr06EHfvn2zLUtxCNBmDTck/bDKaGcWTdMyGl61P7z66qtMmDCBY445hvfee4+OHTuyaNEiJk+enG1pTfjoo4+47bbbqKio4KmnnsIwDJ5++ulsy1IcAqhhbsVeueWWW3IqsqRjx45s27aNI488knPPPZetW7c2iSDKBUKhEC+99BJPPPEE/fr1484772To0KF26JhCcSDs1XALIbxCiI+EEJ8JIdYIIW5Nre8lhFgmhNgghFgkhHCn1ntSrzektvfM7EdQZJpRo0bx5ZdfZluGzbBhw1i5ciVTp07l73//O/PmzeOYY47Jtqwm5OXlMXbsWBYtWsTChQvZtm0bq1evblNjHIrcpSWukjhwopQyJIRwAUuFEP8ErgHul1I+K4SYDUwCHk0910gp+wohzgPuAg5OjIwiIwghePPNN7MtowkfffQRq1at4osvvmDz5s05NzCpaRo9evRg7ty5tG/fnjfeeINRo0ZlNM5Y8f1hr4ZbJmeIpDMjuVIPCZwITEitnw/cQtJwn5FaBngeeFgIIaTKWNSmyTXDKIRg0KBBDBo0KNtSmmXIkCG88sorLFq0iKeffjqnw1UVbYsW+biFEA4hxKdABfA6sBGolVIaqV3KgS6p5S7AFoDU9jqgpDVFKxRtiXPPPVcZbUWr0iLDLaU0pZSDga7ACKD/gZ5YCHG5EGK5EGJ5NBo90MMpFArF94Z9iiqRUtYCbwOjgEIhRNrV0hVIZ3TaCnQDSG0vAKp2c6w5UsphUsphPp9vP+UrFArF94+WRJW0E0IUppZ9wEnAWpIG/Bep3S4BXk4tv5J6TWr7W8q/rVAoFK1HS6JKOgHzhRAOkob+OSnlq0KIL4BnhRB/AFYCT6T2fwJYIITYAFQD52VAt0KhUHxvaUlUySpgyG7Wf0XS3/3t9THg7FZRp1AoFIrvoGZOKhQKRRtDGW6FQqFoYyjDrVAoFG2MnMgOaFkW7733XrZlNMuOHTvYvn17TmssKyujpqYm5zL5Naa6upqPP/4Yv9+fbSnNEolEcvp7DoVCeL3VdOyYuxqLitZRVtaQ0+24fft2Vq1axc6dO7MtpVn29F/OCcMtpaSq6juh3jlDXV0d0Wg0pzWGw2GefFKjoSF3NXbvnuBHP6ohFotlW0qz1NQYXHRR7rah0xmh07iP8U17IdtSmsW9KUg4fE5O/19isRg31N5AzJm7v8W4bL5sYE4YbofDwemnn55tGc2yYcMGTNPMaY2WZVFR0YEdO0ZlW0qzlJSsYuzYsTlVkKExUkoWLHidTZty93v2eKoJdryXTadvyraUZun4XkcG7BqQ0/+X7du3s+24bdT1rcu2lGbJd+Q3u035uBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrVAoFG0MZbgVCoWijXHIGO5Zs2aRSCSyLUOhUCgyTps33O+88w5HHXUUPXv2ZPTo0dxyyy3ZlqRQKBQZpU0bbl3X2bhxI//v//0/jjjiCObNm0dNTQ27du3KtjSFQqHIGG3acMdiMTZu3MjAgQP597//zWuvvUa7du346quvsi1tryQSCZ5//vlsy1AoFG2QNm24A4EAI0eOZOLEiZx00knMnDmTsrIyRoz4TinMnCMej/PII49kW4ZCkXPce++9VFdXZ1tGTtOmDTfA2LFjWbJkCX/4wx946aWXsi1HoVDsJ6tWraJPnz50796dn/3sZ1x00UXZlpSztHnD7fV66dKlC08//TSHH344hYWFlJeXZ1uWQqHYByzL4tNPP2XatGn07duX5557jvz8fDZu3JhtaTlJmzfcaYQQdOvWjf79+/Pmm29mW44iy5SXl/Pqq69mW4aihViWxdatW+nSpQtlZWU88MADlJaWUlFRkW1pOckhY7jT/PSnP2XFihWq1/09ZuLEiUybNo01a9Zw/PHHqyijNoDT6WTs2LFcccUVFBcX89RTT/Hoo48yY8YMPv3005yupZoNcqJ0WWvSqVMnvF4vmzZtokuXLgghsi1pt2zZsoUuXbpkW0ab4euvv25xrcrly5czb948OnXqRFlZGZs2baKkpCRnfwuKJIMHD2bt2rXceOONLF26lNLSUgCmTJlCRUUFDzzwAB06dKCgoCDLSrPPIWe4Ae666y6GDBnCJ598krN/1gsuuIBPPvkk2zLaDHPnzmXTppbVWdy+fTsPPvggJ598Mueccw7PPvssw4YNy7BCxYHicDjIz8/n/vvvb7J+3rx57Nixg+nTp9O/f3+6devGhAkT0LRDzmHQYg5Jww0wffp07rnnHqZPn55tKYpWYF9mxA4ZMoTevXvTvn17fvnLX7J06dKcvYArWkbHjh2ZP38+S5cuZe3atVx22WWMGzeOs88+O9vSssIhe8k67bTTeOONN1T+ku8hL7zwAiNGjOCdd97hn//8J+3bt8+2JEUrccwxxzBp0iSmTp1KWVkZ7777brYlZYVDtsft9/u54YYbuO222/jDH/6QbTk2O3bsYOPGjYTDYd5//326detGjx49si3rkKJXr1707NmTcePGfa9vpw9VNE2jf//+HHbYYd/bO6lD9ledDg90Op05NQX+lVde4Y9//CN1dXU88sgj/OUvf8m2pEMSIYQy2oc4mqYpw90cQgivEOIjIcRnQog1QohbU+vnCSE2CSE+TT0Gp9YLIcSfhBAbhBCrhBBHZfpDNEfv3r1xuVysW7cuWxKasHnzZjZs2MDs2bPp3Lkzf/rTn3C73axYsSLb0hQKRRuiJV2SOHCilHIQMBgYJ4QYmdo2VUo5OPX4NLXuFKBf6nE58Ghri94Xrr76ahYvXkxNTU02ZQDQpUsXevTowZIlS1iyZAnLli1D13UGDBiQbWkKhaINsVcft5RSAqHUS1fqIffwljOAp1Lv+1AIUSiE6CSl3H7AavcDv9/P448/no1Tfwen00nfvn3585//jKZpvPLKK5x99tl4PJ5sS1MoFG2IFjkBhRAOIcSnQAXwupRyWWrT7Sl3yP1CiLT16QJsafT28tQ6BXDyySfz8ssv43Q6efHFF7nggguyLUmhULQxWmS4pZSmlHIw0BUYIYQYCMwA+gPDgWJgnwKmhRCXCyGWCyGWR6PRfZTd9rn44ou/twMrCoXiwNinYXcpZS3wNjBOSrldJokDTwLpJNhbgW6N3tY1te7bx5ojpRwmpRzm8/n2T71CoVB8D2lJVEk7IURhatkHnAR8KYTolFongDOB1am3vAJcnIouGQnUZcu/rVAoFIciLZmA0wmYL4RwkDT0z0kpXxVCvCWEaAcI4FPgV6n9/wGcCmwAIsDE1petUCgU319aElWyChiym/UnNrO/BK48cGkKhUKh2B1qaplCoVC0MZThVigUijaGMtwKhULRxlCGW6FQKNoYynArFApFGyMn8nEbhsFjjz2WbRnNUldXR3l5eU5r/Oqrr+jePY/S0lXZltIswWAZCxYsyOncLIZRzcCBufs9OxwxCjYVMPCxgdmW0ix52/P4IPYBO3bsyLaUZlm9ejV96vqQKMjdQitfG183uy0nDLfD4WDMmDHZltEs5eXlaJqW0xqdTicjRxbzwx/+MNtSmuWJJ8r4/e+PRdcD2ZbSLCedtIIXX8zd77m+vp7FiyuYOGb30yMkEomFlBKBsNcBaMJhr8skq1atora2luOOOy7j59pf6urqmDViFl27ds22lGYZpY1qdltOGG4hBH379s22jD2yfv36nNa4evVqOnTokNMa/X4/DQ09iceLsi2lGSSa5m7VNty+fTv5+fkEAq1zsaqursbv99OrVy+qqqqSK3069eFaCgoK+azibd6LvEpDrAbLEPi1YsLxMJF4mEm9b8Xr8tEpvytF/hLq6upwuVyEQiFKS0vZtWsXwWCQSCRCaWkp4XAYh8OBruuYponD4SAcDtvbCgoKqKystKuxpwtX7Ny5E4fDkdO/xYKCArp27Uq3bt0IhUL4fD7C4TAulwun00k0GiUQCNjb4vE4QghcLheRSIRgMEhDQwM+nw9d1/F4PCSnsIDb7SYUCpGfn084HCYvLw/DMLAsC4/HQ0NDA4FAgEgkgtfrxbIsDMPA6XTi9XrtHEZ7KgSSE4ZboThU+fOf/8yJJ57ICSec0KrHjRohPo++Q8ioo7x+DVWxHXirAwjLSXutF118P+SLXR/jdAQYGBiMlu/gs+oPeHXDIk7ucTZjepxGB28XpJR4vV7i8bhtRNLGybIs2xiljUh6XyEEkUgEt9ttP7vd7lb9jAeDUChEQUEBoVCIoqIiDMNA13WKi4upqamhqKjINsJSSuLxOKWlpdTU1FBcXEwkEiEvL49oNIoQAsuy7GNWVVVRUFBAXV0dTqcTTdOorq6msLCQqqoqgsEg9fX1CCHweDxEo1E8Hk+Lks8pw61QtEE0ofGnjx5BN+N0DXald1FvPA4/895aQDDg5rAenajaHKYqvoZBA2spdrdHNy06+fqwZscqMJy083Tg5MNOB7CNTnpZ0zQsy0LTNAzDaHJuIUST0nBtuYSYz+cjFArhdDqpr6/H4XCgaRp1dXVcddVVDBs2jMmTJxOJROzPXFtbi9frpb6+HqfTSSwWw+lMmlJN0+yLW0FBAYlEAr/fj2VZzJ8/nzfffJPHHnuMgoICdF23t0kpW2y0QRluhaJN4nHk8Yfhf+bMRWdQ4TbZ4KwmT+RRLHqQF/MQKctn19YoX+6owJP3Od6qYmqKd+F3FuPU3NTVx4glEozsehxO6cLv9xMOhxFCJG/9XZJELIzL6QDhxZISh8NBPB7H7/djGAYul4twOEwgEGizhjscDlNUVER9fT35+fmYpomu6wSDQf7xj3/w8ssvY5omF198MYWFhcTjcYLBoN3jDoVCuN2O+SXYAAAgAElEQVRuYrEYgN3jLiwspLa2loKCArZu3cqbb77J9OnTicfjPPnkk9TW1hIMBgmFkjVq0sbe5/O1qC1VOKBC0QaJxWL0bteT5855jnq9lrc3vMO/1/6bL3as4eOvVvD6Z+9wyUmXcsbgczg2eD7VO6Czv4ianZXUh+r4onwdX5Sv54+v34Hm1QiHwwSDQUzTxCVj/PXGH7D4D0fw7K2HoYercLvdCCEoLCwkHA7bvdK8vDxqampsw5Vp1qxZYxu71sDlcmEYBg6HA9M0k4O6qTsKgGg0yvTp0+nRowfLli1DCGH7ow3DQNM0pJRomobD4cDhcNj+brfbzapVqxg+fDhXXHEF4XAYSAZjpN1KLpcLl8tl9+ZVj1uhOITJy8ujsrKSLv7OPPqz2Vz13FVU1FTQt6QfDunASpj87b1F+B1+orEIbqeLnR856d9jGNsqNlJfUkGp3o1n/rWIsT3HceqPTqWyshKvGz7514PUhXTadx9Gv8E/QbjyiMfjOBwOqqur7cHJ4uJiKisrKSkpyXiPu6qqigceeACn04lpmnTr1o3LLrvsgI/rdDrRdR1N09B13f4cc+fObXIxSiQSTJgwgYsuuoizzjqLnj17ctdddyGlTF7sXC4gaYgvu+wydu7cycKFC3n22Wepq6uzj2OaJnPmzOGyyy7DsiycTqc9juBwOFqu+4A/uUKhOOhEIhHy8/MBGOYdxjMXLeSMv5zJlxXrCDgD+ISPuIhTGd/FjsrtVO+q5qfDT6PU3RkLB0fmD+Pfn/2TYo8Tj+aioaGBuooN/P2VB6jYvJz2XY7i2HNmUdi+J5oQOBwOLMuipKSEcDiM0+mkqqqKQCBATU0NeXl55OXlZeSzSimpqqri448/Zu7cuaxfv54bbriBSy+99IAvGNFolOLiYurr6wkGgxiGQSKRYOHChSQSTWO8t23bxl133cVrr72G3+9n+fLlmKbZZB9N03jttdeQUrJy5crdfpY5c+Zw3nnnUVhYSCgUQgiB1+slkUjYPf69oVwlCkUbJN07k1KiCY2+xf1481dv0rfjYdTH6lm3438s37yCVVtWEcgPMnzAcKJ6lK93bkY4Neq3Jhjd5xTy85zc+NcpbNq2ga83rObLzz/h2NNn8PMpCyjp2BtBcjAybVDSYYFCCJxOJ5Zl2S6CxrRmD1xKyfTp05kzZw533HEHHTp04De/+Q0PPvjgAR87feHxeDxUV1cTiUQA0HXd3ue+++5rModj9erVLFu27DtGG5I+7hUrVjQx2h06dGD+/Pn2a6fTSbt27dB1nYKCAvx+P5C8i1KuEoXiEEbTNGKxGCLVG9Z1nY4FHVky+VVe+/w1Xv38H3yw5n12VO0kkghTZTmIOxJYCQsMWLvuC8YOP5njSn9B+1GCq+47nx9UOhg8bAyHDT2FvPwC20inox6EECQSCVwuF6Zp4na77UHKbxuc9O1/a33Wu+66iwsuuACHw8Hzzz/PkiVLWLp06QEfOx0GWF9fT3Fxsd3jTrs+IGnEX3zxRYqKinZrrPfGmDFjmlwIDMNg165dFBYWUldXZ/e4VTigQnGIE4vFbNdENBrF7/dTW1tLIBDgxL5j+PnwX7BkxRJ2NOwgEUsQ8OYTjUSJRxMgBcYJBt07dOPEESdSXFRMcEcxW97/jJN+diWl7TtTVVWF3+9H13WcTqdtpNPxyV6vl9raWnviTiAQyGgcd4cOHbjwwgtZsGABpmly3XXXtcpx0+GALlfSXZQeIGxsoH0+H/tb0PyXv/wld999N//+97/tdQ6Hg2Aw2CQcELAHgFvCIWe4DcOweyEKxaFKXl4e9fX1QPIPn56Nl/bZhsNhTh5yMnW1teS53URrq/h6/sPENqzF26kL/X/7exIuFw5g147t7Fi5DY+/Pd2696W+upqiQICErrPh7y/wyd8WIFxe+p9+Dn1Gn0hRSQmmaVJaWkooFKKkpMSOY84UBQUFdOzYkXPOOYfJkye3Wr6beDxOfn4+kUgEn89nz2L0er32PolEAo/HY0ee7AtnnHEGQJOBTikl4XAYv99vr3e73U165XvjkDHcUkqWL1/OBx98gKZpjBw5kqFDh7bZ+FKFYk+Ew2F7Nl80GiU/P9+OG04/71y5DFG+ibLXnsPl83PkrfeD5kI4NMxdO1h74/WYQsOKWVhrP6f9kUdR9vw8trz7NpGGevK79eIHZ57P+NtmYRk6X7z1On+deD7ugiJO/H/XkN+xMz369aOurg6fz2cPlmaK2tpa8vLyWjVJWWP/vZTSdvG89NJLdOzYkYaGBjZv3syKFSu+MxGpJWzYsIGhQ4eyYcMG+3xnnXWW3bFsHHq4L7bqkDHclmVx1llnMWvWLHt58+bNynArDkk8Hk8TH3cikcDr9aLrOl6vl13v/ovNs26k23mXMmDaHQgB4XVrSf8dpBAMvPE+pIDYju0UfbiURCKBQ2gMmzINnC7i0QiJaIRIVQWWlPQYOpzuQ0dQV13N4ptmEuzWnUvufQBfMJjxHnemcLlcxONxNE2zp/ILIZr0kB966CEeeuih/Tr+tddey7Zt25g1axaQ9NdfffXVeDweLMvC7XbbF4t9acNDJqrkxhtv5PHHH6ekpISOHTvy2GOPcdNNN2VbVpslEolw8803Z1uGohnS0RyNJ4BYloUQgsp3lrD+gVvoOWEywd6HEd9aRrx8MyIWRsTCEAtDNEx045dE1q/FaKil/YhRdD7meAq69yJauYPw1i3EqnZhhMMY0Qh6JEK8IUSsvg6Hw8HxF11M/ZYtPP7rK+wwtrZIOqwy7W9OG9JZs2btt1/726SNNiS/txtvvJG6umQ7hkIhotGonQelpe3YNi+Tu+Hqq6/m/PPPZ/z48TidThYvXsxzzz2XbVltFl3XW2XUXpEZ0lEdjWfyRSIRRNVOdr70V7qfeQGe4lKsuio0NIRIzQgEBGAhwUouY0kSkRCmlBgWmJbEkhJLJpeN9LMlMbHQTXB7fBwz4UJefvB+Hv7lRK5b+EzGP28ikcDn87XqcdPT171eLzU1NUgpeeSRR7j33nubuEaKiopwOBxNwiJramp2e8yCggJcLpd9IbUsy95XSsnjjz+Ow+Hg5ptvtiNVTNPcp3DAQ6bHXVpaSmFhIU8++SRXXXUVPp+PkpKSbMtSKDJC2qedzjxXV1dHYUEBOz5fSbC0I/7CEqxQLcQiiHgILR7BEQ+jxSPJR7r3HQ1DLATRMFYkjIyEMCMhjEgII9xAIhxCDzWQCDWQCDcQb0g+x0L1WIbOSZMupaa8nIaKiox+3o0bN7J06VIuuOCCVj1uQ0MDhYWFJBIJAoEAjz32GLfddluTyTdHHHEEK1asoLy8nI0bN1JRUcHy5csZPnz4d453+OGH89Zbb1FeXs7nn39OeXk5H330EYMGDbL3MU2TP//5z9x9991s27bNngofiURa3OM+ZAy3pmksXryYp556iqOOOooHH3xwj/lsc5WXX36ZrVu3ZluGIsdJJyTyeDyYppkMa6urpfY/S9B8XvSGGohFkNEIxJKGWotHcMbDOOIRRCwC8Yi9jxkJI6MRrGgYKxrBikQwIhGMSAg9EiaRfg6HSYRDJMIh4uEQeiyBy5/PO89mtsedprXHrHw+H5FIBKfTyc6dO7/jXh0wYACzZ8+muLjY9oXX19fTrl07Zs2aRb9+/ex9PR4P1113Hf369SMejxMIBNB1nQ4dOvDEE08wYsSIJseeNWsW4XDYHmz9XocDDho0iIEDc7esU3Ps3LmTn//855x55pk888wzeL1e5s2bl21Zihwl7RqB5B8+kUjg0QSxr76gZMxpWNEwpqbh0ESye6aBQ3OgaWBJEJYESyItibQspCmxLDAtC8sCw5LolkSXFrqZdKEYlpVcZ0kMM7UsoWPPHuit5A8+2Oi6Tl5eHrFYjF/96ld2dEma7du3M23aNEzTpH///jz88MN4vV4ikQhDhgxh7NixrF+/HoCxY8dywgkn2C6dSCTCLbfcwsqVK7Esi82bNzc5txCCK6+8khdeeAG3271PoYaHnOFuK1iWxfr16+0fyY4dO/D5fIwbN45LLrmESZMmsXPnTjp06JBlpYpcpHH4mh3SpgmkZWLFIhgaaJoDSxNITYAmkA4BacNkgbQklmVhmclnwwLDtDAk6IaFIZN+7YRpJQ25aWFYFglLoJsS3bLQTYtYuPWy9R1s0gUMnE4nTzzxBP/5z3+YMGGCvb26upoPP/yQPn36cOedd+JwOIhEIng8HuLxeJNIkEAgQLt27ewoH7/fz0033cQpp5zCihUrvnPuP/3pT5x//vlNCli0lEPScB933HG8/fbb9O3bN+vhgJs3b+aNN974znrTNFm2bJn9OhwOs2HDBu6//35uuOEGTj75ZN54441W9+kpDg0SiYQ9U9E0TbxeL7G6WsxwhNjObfiCBZiaA80hEBoIhwChYaFhITGkxLSSBtkw071qiSEtEibo6R61mRyMjEajxHUdPD4SlkwZbtAtk3gkQiZjSqSUvP322xmpYdk4qZPD4eDdd9/9zj6HH344ixYtIj8/H6fTyeuvv05FRQWFhYUMGjSISy65BMMw+NGPfsSyZcsoKyvD5/Nx5pln4vV6efnllznttNP47LPPmhz3448/5uyzz7Y7b/sSmXNIGu5JkyYxZMiQVskedqA0rhTSGI/Hw+OPP27r27JlC8cddxznn38+Tz75JK+99hqffPLJwZZr4/P5GD9+PC+++CJnnXVW1nS0dc466ywWLFjAyJEjWzUiwuv1UlFRgRACv9+frIMYyMeSUP/lGhz9+iN8XtC0VE87FUmiGwiPF1NaScNrGIS3bSEWDhMzLRKmJG5I4pZJ3ABXSQcIBIlFosQTCYRhkkjtp1uShGGyefVq+g4fsXfR+4mUktmzZ+82215rkK70EwqFmD17Nqeffjrr1q1j3bp19vlnzZrFPffcgxCCqqoqrrnmGn784x/z/PPPc9ZZZ9npWSdPnszzzz/PfffdByRnct94441NjHKXLl0YM2YMf/3rX5k+fTp5eXktzgqY5pA03LlE9+7dmThx9xW5G9OxY0eWLFnCvHnzGD16NJMmTToI6prH7XZz5JFH8s477yjDfQAcddRRTJ06tdVD2dLFetOTRQKBAA2hBo6Yfjtrbr0a8/MwpT8YiPS4MTWBKUDEI1i1NTg6dMYyTBo2rME0JLF4nLiuEzct4gZEDZO4YREzLfQd29BxIP0FOAoKkZEYhsOJbkLCtNjw+So0dx5HHHNsq322g0m6sK/X68Xr9fLRRx9RWlrKhRdeaO/z5Zdfsm7dOt59913OPfdcJk2aRHFxsR3uZ5qmXTzBNE3y8/MZP348c+fO5f7776esrMzORwJQWFjI/fffz1VXXUWvXr3sqkP7MgFHGe4cweVy8YMf/IDbb7+9yTRYhaI5TNO07+aSvUYHIlCEblho4TDVX3xKQd/+aKaBwzIRehy9citsL0/GalugWxYJK9mDThjJXrRJKnZbQiKeIKabxOoaiG/ZQsy0MFwe/B07s61sMw0NEXqOOIyBGXBjHAzShX3j8TjFxcUUFRWxZcsWYrGYPakJkr3uTZs2ceedd7JmzRpeeeUVnnzySaSU+Hw+O3xw4MCBXHfddVx//fUsWrToO+4PTdOIRqNs376dww8/3J7k43K5iMViLZ7O32LDLYRwAMuBrVLK04QQvYBngRLgE+AiKWVCCOEBngKGAlXAuVLKspaep7W44IILeOaZZ9qcj7gthjAqDj7pqdpp451OrxoCLK+XRDwGukG4tgbC9YhQA5om0BBIJKa0sGTScBsWKZ/1N75rI+3/tpL+cMuSmFJiWmDqOqGaWmKRKA6PFylbP0zvYJGfn29XY6+trcXtdrNx40Z+/OMfc/LJJ1NfX28PYM6ePRspJX//+98ZNWoU06dPt6vd+/1+pJRce+21LFiwoInRnjJlit0jTycH27BhA507d7bLxe3rHdm+9Lh/A6wFgqnXdwH3SymfFULMBiYBj6aea6SUfYUQ56X2O3cfztMqTJ48mfHjx7c5w50rTJo0iTVr1lBVVcUnn3xiD84ocoN4PG5nsItEIuTl5SXTrB7+Q4qOGcvOf72EhYGsqsIpLDTDQmgCkTLclmxkiKVM+rZN2cSAG40GLw2ZHLA0pcTQJfGaOiwJDq+X8dOm2jlSMsGMGTO4++67M3LstMspkUhQUFCAlJJjjz2WE088kVgsZlem0TSNfv36cc011wDwwAMP8Nvf/tYOJ0wkEvYsyfvuu8822jfffDNXXHEFXq/XnuXq9XqJxWJ2VkfArhbf0tS4LereCSG6Aj8FHk+9FsCJwPOpXeYDZ6aWz0i9JrV9jMjC5VgIoWZO7ic1NTVs3LiRadOmccYZZ+D1etmxY0e2ZSka4ff7CYVCTXJJFxQUEBcOgj36YlgQ1y2ikSjRaIKIaRE1LCJG8jlqWMSMpLGO6jI5MGlZJFLhf7qUxC2JYUoMKUikety6ZaH585OuBLcP3TAYddLJGStbBrBs2TJGjRqVkWPn5eU1acO0y6O+vh6fz0d9fb1d3f7www+332cYhl1LMhaL4XK5mhQBTtOvXz+KiopwuVxomkYwGCQajVJQUGDnR0n3tPcln3lLe9wPANOAQOp1CVArpUxP5i8HuqSWuwBbAKSUhhCiLrX/rharagXy8/NZvHjxwTzlIcP8+fO5/PLL6du3L4lEgjPPPJMHH3xwvzOkKVqfSCRCIBBoslxXV0cgEEDr2Q+tXWdiO8rRZQIHAodGKjNgsq8mZdNed3pyjR0tYproZtJ4J6x0PLfEMCFWU4sl4MgxJ+AtLqGyspLCwkJbT1sineclHUeddlWmixK7XC6klDgcjiaDh0IIO+46ncOk8SNNuhp8ep2u63acd9rFlfajNx7A3Bt77XELIU4DKqSUrRqbJoS4XAixXAixvLWycClah6uvvprbbruN//73vxQVFXHhhRdy2223ZVuWohFpv2s0GrUHvNK39T2OHo23S3eipkUsFR2S7GFbxAyDmGEQNUyihvnNdttIpwYqTZmM504b81Sct24lXSilPXvx1eo1nPbrKQSDwYxWv8kk6VDAtHFuHNOdzsCYzr7Yq1evJoUR0vMz0i6StP+7qqoKSJYsGzhwoL0tHXWiaRqmaTZ5H7R+HPfRwOlCiFMBL0kf94NAoRDCmep1dwXSCTa2At2AciGEEyggOUjZBCnlHGAOQIcOHdpmTshDmEWLFrF69Wo+/PBDnnvuuTbZmzqUSf/x03/+dARE2uAMm3obf79wPNFoCIcQyYFJmex1S8ACrHQWQCSGkYwkSRpnC8OEhJU05rplpaJPkgbcEwjSvu8PaNe3L8WdOtnlvjL1OTM5YJ8uEhwMBqmrq8PtduNyuexKQtXV1QQCASKRCIWFhRx77LG8/PLLhMNhpkyZQrdu3WzDDlBeXm5nAhw6dCidOnWy86Snc8rU1NTYleXTpcsSiUTrhgNKKWcAMwCEEKOB66SUFwgh/gb8gmRkySXAy6m3vJJ6/UFq+1uyrSbr/R6Tzvmyr1NxFd8lEz9/0zTtP3r6lj4SieB2u4lGoxT27kNe915UrPkUTWg47JSuFhINKVI9wNTgpGnJVArXdD4SYfe0dcsiZiZdJgnLJBAsRHO76TVoEIHCQurr69E0LSO97ltuuYUbbrjBroTe2qSzA8ZiMQoLC7EsC9M0KS4utsuyRaNRAoEAUko7PwxAZWUllZWVzR47fReUzr2taRo1NTX4/X6qq6ttH3ra7ZIuFtwSDuRSNh24RgixgaQP+4nU+ieAktT6a4DrD+AciizicDiU0W4FMtEb9fv9NDQ0EAqFcDqddjxyJBKhpKSESCTCKY88SVy3iBsmUd1MuUdk8jlhEdWT7pN42o1iSqImxAxBzLBImBZxM7leNy0ShklRl+70O/pYvHl+xp53Hg0NDZSWlmZscDLtg85Ujz4QCFBTU4Pb7aampsaOq04XQN61axcOh4P6+noikQjDhw+nW7duez1ux44dOeGEE+wLgsfjQdM0ux5oaWmpHcmSvijtSxvuk+GWUr4jpTwttfyVlHKElLKvlPJsKWU8tT6Wet03tf2rfTmHQqHYO9FolLy8PHw+n52EPz0DsK6uDq/Xi3S6GXTRpUlDbSYNd0T/xredjC4xk/5vUzYy4slp7XHDIm77uyXBjl3oPWwE28rK+MnEidQ1hPD5fNTW1jYp9dWWiEQidsX1YDBohzQWFhba7hHTNPH7/Xi9Xo4++mjmz59PYWFhs8d0u908/vjjjB49Go/HQ0NDA7quI6W0o1VqamqScfepCjjAPrWhmu2hULRBPB4Puq7bUQrRaNSewZefn58sDFBUTOmo49DadSJqSCKGRcRMhgR+ExYov1k2LWK6mexlG8kQwbhpkrAk7mAB7fv2o6piJ5GGEL0HDyYQCBCPx/H7/Rm7M5s6dep38li3Jl6vl3A4jNPpJBwO2+GA6YtgQ0MDDoeDWCxm16Q8/PDDWblyJfPmzSMYDBIIBAgGgwSDQe6//37WrVvHqFGjCAQCJBIJ8vLy7LuGdGX3QCCAYRhNih9nIhxQoVDkEI2nYqcjIhrnzkgPWvYaMYphF1/KW/ffgx4J2++XqYk4UiYHKU3S/m6S6VztCTgW3uJS8jt0IhKN4vF4uev1f9saGg+KZoLi4uKMHDdN4/JiaRqXJ2u8LZ0+V9M02rdvzymnnMLXX3+NYRj2zEjAHm9I59e2LMuOHmn8HUFyfKJx1ElLUYZboWiDmKZph6qlDadhGGiahq7r9rPb7ebYSb/ClJJX/3ArsomBSkaYmJJkTHd6Wrv8Ji+3IQWaKamrqaFnp05ces89aKlMePF43I5JFkK0yUrvjY1uenYjJHvi6XS50LQ3nN7WeOJM45A+XddxuVx2pIiu6/Z7E4mEvS39nTW+ULQU5SpRKNog6ZjtWCxmJ/dPr0tXLU/f6muaxogJF/OLe/9E1yHDk/7s1KPLsBF4O3QkZlqph6TfcaOJWySnwFsQi0Q56qSfMPGPfySvqAiPx4NlWeTn5xOPx8nPz2+zcdxpw5qeDJM2no2NbnqqeroHns7kl3arpEMW0ymcXS6XXczZsiycTqe93eVyYRhGk23pC96+3LW0vUukQtFGiEajVFZWEovFKC8vR9d1SktLW+34aTeCEAKfz4cQwl5XVFSEEILOnTvb20+8+P849uxzMRv1AB0uF5ZlYpnf9MSdbjd6o2K5AG6vF7fXa/cOg8GgnVairSaYguQF0OPxNGlD+MZdkt7WmHQ19t1tS7Mnv/X++LS/jTLcCkWG+O9//8u1115LRUUF1157LSUlJTz99NOtdvzGE1PSBmRvz44WJgrzNhM33dxx2yqNUyg3/ix7+ny58NmVq0ShyACRSIQ333yTuXPnMnDgQP7yl78wYMAAli5dmm1pikMAkQuTGouKiuRFF12UbRnNEo/H7VlUuUpdXR1OpzNjM8xag507d7JzZylSZiYCoTUoLNxKjx5d9r7jXjBNk82bN9O7d282btxIz549qa+vx7KsA/odmaZJVVUV7du3P2CNmSIcDmOaJsFgcO87Z4mqqiry8/NbPFMxGyxYsICamprddutzwnALISqBMAc5g+A+UIrStj8obfuH0rZ/HGraekgp2+1uQ04YbgAhxHIp5bBs69gdStv+obTtH0rb/vF90qZ83AqFQtHGUIZboVAo2hi5ZLjnZFvAHlDa9g+lbf9Q2vaP7422nPFxKxQKhaJl5FKPW6FQKBQtIOuGWwgxTgixTgixQQiR9aILQogyIcTnQohPhRDLU+uKhRCvCyHWp56LDpKWuUKICiHE6kbrdqtFJPlTqh1XCSGOypK+W4QQW1Pt92mq5F1624yUvnVCiJMzqKubEOJtIcQXQog1QojfpNZnve32oC3r7ZY6l1cI8ZEQ4rOUvltT63sJIZaldCwSQrhT6z2p1xtS23tmQds8IcSmRm03OLU+G/8JhxBipRDi1dTrzLTbt6sTH8wH4AA2Ar0BN/AZcESWNZUBpd9adzdwfWr5euCug6TlOOAoYPXetACnAv8EBDASWJYlfbeQLG/37X2PSH2/HqBX6nt3ZEhXJ+Co1HIA+F/q/Flvuz1oy3q7pc4ngPzUsgtYlmqT54DzUutnA1ekln8NzE4tnwcsyoK2ecAvdrN/Nv4T1wALgVdTrzPSbtnucY8ANshkNZ0EyfqVZ2RZ0+44A5ifWp4PnHkwTiqlfBeobqGWM4CnZJIPSRZz7pQFfc1xBvCslDIupdwEbCD5/WdC13Yp5YrUcgOwFuhCDrTdHrQ1x0Frt5QmKaUMpV66Ug8JnAg8n1r/7bZLt+nzwBghMpPEYw/amuOg/ieEEF2BnwKPp14LMtRu2TbcXYAtjV6Xs+cf8cFAAv8WQnwihLg8ta6DlHJ7ankH0CE70vaoJZfackrq1nRuI7dSVvSlbkGHkOyd5VTbfUsb5Ei7pW73PwUqgNdJ9vJrpZTGbjTY+lLb60jWoD0o2qSU6ba7PdV29wsh0vPYD3bbPQBMA9KpFkvIULtl23DnIsdIKY8CTgGuFEIc13ijTN7b5EQoTi5pacSjQB9gMLAdmJUtIUKIfGAxcLWUsr7xtmy33W605Uy7SSlNKeVgoCvJ3n3/bGn5Nt/WJoQYCMwgqXE4UEyykPlBRQhxGlAhpfzkYJwv24Z7K9C4ZHLX1LqsIaXcmnquAF4k+cPdmb7FSj1XZE9hs1pyoi2llDtTfy4L+Avf3NYfVH1CCBdJw/i0lPKF1OqcaLvdacuVdmuMlLIWeBsYRdLNkE4D3ViDrS+1vQCoOojaxqXcT1ImC5Y/SXba7mjgdCFEGUmX74nAg2So3bJtuD8G+qVGXt0knfSvZEuMEMIvhAikl4GxwOqUpktSu10CvJwdhR0Bo5UAAAF0SURBVLAHLa8AF6dG0kcCdY3cAgeNb/kQzyLZfml956VG03sB/YCPMqRBAE8Aa6WU9zXalPW2a05bLrRbSkc7IURhatkHnETSD/828IvUbt9uu3Sb/gJ4K3U3c7C0fdnoYixI+pAbt91B+V6llDOklF2llD1J2rG3pJQXkKl2+//t2z1uwkAQhuG3g5qOlgNQpUxBC9fIMZByi5wgkVJwBeAANBAgRX5ukibFDIIGJBf2stL7SC7ASPtphEfyjt3GZLXJQUx+v4l9tHnhLCNigv8BfJ7yEHtPK+AHWAKDjvK8E7fNf8T+2NO1LMTk/CXreAAeCuV7zfX3+eccXvx+nvm+gGmLuR6JbZA9sMtjdg+1u5GteN1yrTGwzRxH4Pni2tgQw9EF0Mvv+/n5N8+PCmRbZ+2OwBvnJ086vyZy3Qnnp0paqZtvTkpSZUpvlUiSGrJxS1JlbNySVBkbtyRVxsYtSZWxcUtSZWzcklQZG7ckVeYf2tkbinO+r1AAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Résultats\n", + "\n", + "Voyons si nous avons réussi à entraîner Peter à combattre le loup !\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 1, won: 9 times, drown: 90 times\n" + ] + } + ], + "source": [ + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [ + "Nous voyons maintenant beaucoup moins de cas de noyade, mais Peter n'est toujours pas toujours capable de tuer le loup. Essayez d'expérimenter et voyez si vous pouvez améliorer ce résultat en jouant avec les hyperparamètres.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAcD0lEQVR4nO3df3BV553f8fdHPxHCQgJkIEACrIkd4raxrcZksrOTCVmM3UzwH04Gz86azXrDtHHa7HZnEryZ1tMknkna7XrDrONdN2aDM1kTrzetaYpLKHYm05nasRw7trFNkLExkrGRkQAbJPTjfvvHeSQuQjrge4UkxOc1c9E53/Occ5/nHul+OD+kq4jAzMxsLBWT3QEzM5vaHBRmZpbLQWFmZrkcFGZmlstBYWZmuaomuwPjbd68ebF06dLJ7oaZ2UXlmWeeeScimkdbNu2CYunSpbS2tk52N8zMLiqSDoy1zKeezMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4NihOO9/Tz6XMdkd8PMbMqYdr9wV66vP/I8j734FlcuuIyrFjRMdnfMzCadjyhGePNYLwA9fYOT3BMzs6nBQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0ExhpjsDpiZTRHnDApJWyQdlvTiKMv+XFJImpfmJWmzpDZJz0u6tqjtBkn70mNDUf06SS+kdTZLUqrPkbQrtd8lqWl8hnyO8U7Ek5iZXUTO54jih8DakUVJS4A1wBtF5RuBFemxEbgvtZ0D3AVcD3wcuKvojf8+4EtF6w091yZgd0SsAHaneTMzm2DnDIqI+CXQNcqie4CvceZZmnXAg5F5EmiUtBC4AdgVEV0R0Q3sAtamZQ0R8WREBPAgcHPRtram6a1FdTMzm0AlXaOQtA7oiIjfjFi0CDhYNN+eann19lHqAPMj4lCafguYn9OfjZJaJbV2dna+3+GYmVmO9x0UkmYCfwH8x/HvzujS0caY15cj4v6IaImIlubm5onqlpnZJaGUI4rfAZYBv5H0OrAY+LWkBUAHsKSo7eJUy6svHqUO8HY6NUX6eriEvpqZWZned1BExAsRcXlELI2IpWSni66NiLeA7cBt6e6nVcCxdPpoJ7BGUlO6iL0G2JmWHZe0Kt3tdBvwaHqq7cDQ3VEbiupmZjaBzuf22IeA/wdcKald0u05zXcA+4E24L8BXwaIiC7gW8DT6fHNVCO1+UFa51XgsVT/DvD7kvYBn0nzZmY2warO1SAibj3H8qVF0wHcMUa7LcCWUeqtwNWj1I8Aq8/VPzMzu7D8m9lmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBMYYY8xO6zcwuLQ6KEaTJ7oGZ2dRyPh+FukXSYUkvFtX+i6RXJD0v6b9LaixadqekNkl7Jd1QVF+bam2SNhXVl0l6KtV/Iqkm1WvTfFtavnS8Bm1mZufvfI4ofgisHVHbBVwdEf8c+C1wJ4CklcB64KNpne9LqpRUCdwL3AisBG5NbQG+C9wTEVcA3cDQZ3LfDnSn+j2pnZmZTbBzBkVE/BLoGlH7eUQMpNkngcVpeh2wLSJORcRrQBvw8fRoi4j9EdEHbAPWSRLwaeCRtP5W4OaibW1N048Aq1N7MzObQONxjeKPgcfS9CLgYNGy9lQbqz4XOFoUOkP1M7aVlh9L7c8iaaOkVkmtnZ2dZQ/IzMxOKysoJH0DGAB+PD7dKU1E3B8RLRHR0tzcPJldMTObdqpKXVHSHwGfBVZHDN9M2gEsKWq2ONUYo34EaJRUlY4aitsPbatdUhUwO7U3M7MJVNIRhaS1wNeAz0XEyaJF24H16Y6lZcAK4FfA08CKdIdTDdkF7+0pYJ4AbknrbwAeLdrWhjR9C/B4USCZmdkEOecRhaSHgE8B8yS1A3eR3eVUC+xK15efjIh/HRF7JD0MvER2SuqOiBhM2/kKsBOoBLZExJ70FF8Htkn6NvAs8ECqPwD8SFIb2cX09eMwXjMze5/OGRQRceso5QdGqQ21vxu4e5T6DmDHKPX9ZHdFjaz3Ap8/V//MzOzC8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMyZ+RZGYGDoqzaLI7YGY2xTgozMws1zmDQtIWSYclvVhUmyNpl6R96WtTqkvSZkltkp6XdG3ROhtS+32SNhTVr5P0Qlpns9Jnq471HGZmNrHO54jih8DaEbVNwO6IWAHsTvMANwIr0mMjcB9kb/pkn7V9PdnHnt5V9MZ/H/ClovXWnuM5zMxsAp0zKCLil0DXiPI6YGua3grcXFR/MDJPAo2SFgI3ALsioisiuoFdwNq0rCEinoyIAB4csa3RnsPMzCZQqdco5kfEoTT9FjA/TS8CDha1a0+1vHr7KPW85ziLpI2SWiW1dnZ2ljAcMzMbS9kXs9ORwAW9l/RczxER90dES0S0NDc3X8iumJldckoNirfTaSPS18Op3gEsKWq3ONXy6otHqec9h5mZTaBSg2I7MHTn0gbg0aL6benup1XAsXT6aCewRlJTuoi9BtiZlh2XtCrd7XTbiG2N9hxmZjaBqs7VQNJDwKeAeZLaye5e+g7wsKTbgQPAF1LzHcBNQBtwEvgiQER0SfoW8HRq982IGLpA/mWyO6vqgMfSg5znMDOzCXTOoIiIW8dYtHqUtgHcMcZ2tgBbRqm3AlePUj8y2nOYmdnE8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQjCEu6EcxmZldPBwUI2Qfi2FmZkMcFGZmlstBYWZmuRwUZmaWq6ygkPRnkvZIelHSQ5JmSFom6SlJbZJ+Iqkmta1N821p+dKi7dyZ6nsl3VBUX5tqbZI2ldNXMzMrTclBIWkR8O+Aloi4GqgE1gPfBe6JiCuAbuD2tMrtQHeq35PaIWllWu+jwFrg+5IqJVUC9wI3AiuBW1NbMzObQOWeeqoC6iRVATOBQ8CngUfS8q3AzWl6XZonLV+t7BajdcC2iDgVEa8BbcDH06MtIvZHRB+wLbU1M7MJVHJQREQH8JfAG2QBcQx4BjgaEQOpWTuwKE0vAg6mdQdS+7nF9RHrjFU/i6SNkloltXZ2dpY6JDMzG0U5p56ayP6Hvwz4AFBPdupowkXE/RHREhEtzc3Nk9EFM7Npq5xTT58BXouIzojoB34KfBJoTKeiABYDHWm6A1gCkJbPBo4U10esM1bdzMwmUDlB8QawStLMdK1hNfAS8ARwS2qzAXg0TW9P86Tlj0dEpPr6dFfUMmAF8CvgaWBFuouqhuyC9/Yy+mtmZiWoOneT0UXEU5IeAX4NDADPAvcD/wvYJunbqfZAWuUB4EeS2oAusjd+ImKPpIfJQmYAuCMiBgEkfQXYSXZH1ZaI2FNqf83MrDQlBwVARNwF3DWivJ/sjqWRbXuBz4+xnbuBu0ep7wB2lNNHMzMrj38z28zMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMYQk90BM7MpwkExgia7A2ZmU4yDwszMcjkozMwsl4PCzMxyOSjMzCxXWUEhqVHSI5JekfSypE9ImiNpl6R96WtTaitJmyW1SXpe0rVF29mQ2u+TtKGofp2kF9I6m9Nnc19QrQe6L/RTmJldVMo9ovge8L8j4irgXwAvA5uA3RGxAtid5gFuBFakx0bgPgBJc8g+TvV6so9QvWsoXFKbLxWtt7bM/pqZ2ftUclBImg38HvAAQET0RcRRYB2wNTXbCtycptcBD0bmSaBR0kLgBmBXRHRFRDewC1ibljVExJMREcCDRdsyM7MJUs4RxTKgE/h7Sc9K+oGkemB+RBxKbd4C5qfpRcDBovXbUy2v3j5K/SySNkpqldTa2dlZxpDMzGykcoKiCrgWuC8irgFOcPo0EwDpSOCC/5JzRNwfES0R0dLc3Hyhn87M7JJSTlC0A+0R8VSaf4QsON5Op41IXw+n5R3AkqL1F6daXn3xKHUzM5tAJQdFRLwFHJR0ZSqtBl4CtgNDdy5tAB5N09uB29LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVW62+m2om2ZmdkEqSpz/X8L/FhSDbAf+CJZ+Dws6XbgAPCF1HYHcBPQBpxMbYmILknfAp5O7b4ZEV1p+svAD4E64LH0MDOzCVRWUETEc0DLKItWj9I2gDvG2M4WYMso9Vbg6nL6aGZm5fFvZpuZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMIS74H0c3M7s4OCjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxylR0UkiolPSvpZ2l+maSnJLVJ+kn6mFQk1ab5trR8adE27kz1vZJuKKqvTbU2SZvK7auZmb1/43FE8VXg5aL57wL3RMQVQDdwe6rfDnSn+j2pHZJWAuuBjwJrge+n8KkE7gVuBFYCt6a2ZmY2gcoKCkmLgX8F/CDNC/g08EhqshW4OU2vS/Ok5atT+3XAtog4FRGvAW3Ax9OjLSL2R0QfsC21NTOzCVTuEcVfA18DCml+LnA0IgbSfDuwKE0vAg4CpOXHUvvh+oh1xqqfRdJGSa2SWjs7O8sckpmZFSs5KCR9FjgcEc+MY39KEhH3R0RLRLQ0NzdPdnfMzKaVqjLW/STwOUk3ATOABuB7QKOkqnTUsBjoSO07gCVAu6QqYDZwpKg+pHidsepmZjZBSj6iiIg7I2JxRCwluxj9eET8AfAEcEtqtgF4NE1vT/Ok5Y9HRKT6+nRX1DJgBfAr4GlgRbqLqiY9x/ZS+2tmZqUp54hiLF8Htkn6NvAs8ECqPwD8SFIb0EX2xk9E7JH0MPASMADcERGDAJK+AuwEKoEtEbHnAvTXzMxyjEtQRMQvgF+k6f1kdyyNbNMLfH6M9e8G7h6lvgPYMR59NDOz0vg3s83MLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkoxpD9dREzM3NQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlKjkoJC2R9ISklyTtkfTVVJ8jaZekfelrU6pL0mZJbZKel3Rt0bY2pPb7JG0oql8n6YW0zmZJKmewZmb2/pVzRDEA/HlErARWAXdIWglsAnZHxApgd5oHuBFYkR4bgfsgCxbgLuB6so9QvWsoXFKbLxWtt7aM/pqZWQlKDoqIOBQRv07T7wIvA4uAdcDW1GwrcHOaXgc8GJkngUZJC4EbgF0R0RUR3cAuYG1a1hART0b29zQeLNqWmZlNkHG5RiFpKXAN8BQwPyIOpUVvAfPT9CLgYNFq7amWV28fpT7a82+U1CqptbOzs6yxmJnZmcoOCkmzgH8C/jQijhcvS0cCF/yv60XE/RHREhEtzc3NF/rpzMwuKWUFhaRqspD4cUT8NJXfTqeNSF8Pp3oHsKRo9cWplldfPErdzMwmUDl3PQl4AHg5Iv6qaNF2YOjOpQ3Ao0X129LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVV6rtuKtmVmZhOkqox1Pwn8IfCCpOdS7S+A7wAPS7odOAB8IS3bAdwEtAEngS8CRESXpG8BT6d234yIrjT9ZeCHQB3wWHqYmdkEKjkoIuL/AmP9XsPqUdoHcMcY29oCbBml3gpcXWofzcysfP7NbDMzy+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgGMMF/wNVZmYXCQeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgfFGArhG2TNzMBBMab/+vPfTnYXzMymBAfFGJ450D3ZXTAzmxKmfFBIWitpr6Q2SZsmuz9mZpeaKR0UkiqBe4EbgZXArZJWTmQfBgtT+1rFwGCBvoHC+1pnsBDEJXQNJuLSGu9oLobxXwx9vFSV/JnZE+TjQFtE7AeQtA1YB7w03k+0efc+Hn2u44zaVf/hMXr7z34TvuLyWWfVRn6THzrWS0//IALmN8xgRnUlFcr+hlQEvPbOCQCWzatHQHt3D32DBRY11tFxtIfFTXVUV1Yg4GTfIDNrK6nU2R9Rvu/wewDMm1XL7Lqq4b9RNdQy0j9Kz10oBK8fOQnA7zTXD2+nkNoMtR3p1c4Tw9M1lRX0DRZYPi9bv79QoL27h4UNM6itrkSCrhN9HD3Zz4KGGdRWV9A3UODQsV4AFjTMQILKCtHe3TO83eWpP719g7yZ2i6fV4+Uhduxnn7m1NecHleaCLKbDw6kcS2dOxOACgnpdN+XN2evdSGgQiCJUwODHOw63Ye59TUcOdE3vJ3uk/3MrqumQtA3UKDrZN/w98TyefVUVJz5YrWl/TE0lo7uHhrqqmmYUdqPmkbbGTkKEezvPEF1pVjUWDe8rwEuq62iqb6GqgpxaqBA57un6BssUFNZweKmOoJsnxQiOPJeH8d6+gFY1FhHbXXF8Is+UAj6BgrU11ZSCHi3d4BZtZWcGijQ2z9IVWUFM2sqqa48+/+hEcGrnSe4bEYV82bV0j9YoLJCw/uuvqaSGdWVw/sAsp+RUh3v6efIiT5m1lTSN1BgoBDMrqumb6BAT//gcLs59TXMrqtGguM9A0DwzntZHySYXVdNY101kqgs2ucDg9l2evsLzK2vQYI3j/ayYPYM3u0d4J33TgHZz5okIrLv41MDBebNqh3e1pH3TvFu7wAfnDuT4z39w889ZOHsGcysqSTIfrbf6DrJ5ZdlP1uQ/Vyf7Btk863XsGr53JJfr7FM9aBYBBwsmm8Hrh/ZSNJGYCPABz/4wZKeaH5DLVctaOCNrpP0DwZz62uoqhS9/aeQsh+W9u4eFjXW8eH5sxCj/AAXlWZUV7LnzeME2ZvGrNoqqioqUHqDmlVbxQsdx1j5gQYEvPNe9kP7sSWNdBztYW59DUvmZG94zxzoZs7MGi5vqD3rKdu7e+jpH6SupoKrFjScmRA63a1I8xUSrx85ycqFDSxrrh/9rx/mBMW/XNpE32Dwm4NH+UjquyQOdvXwobn1zJ2VvZGf7Bvk8VcO87EljdRWVzBYCH72/CEAPrakkRnVFQwGw0Exb1YNH1nYMPxDMBQUH1l4ekyvdZ5gyZw6qtIb0FA3h95MD6RxrZg/iwjoHyxQIfFq5wmuuHwWVy64DAIqKkQhHSkOFuKMoLjuQ038/KW3uX7ZHN463svcWTU0zaxhUWMW3Md7+3nu4FE63z3F/IYZw8E1ZOiNeuXCBgI4drKfmsoKrlrYMMoLfQ4l/gd7f+cJls+bxfLm+uGgqKmqYFFTHR+efxmDEVRI/M/fvAlA32CBD8+/jKpKMfT/nc53T/Gr17uA7GfjA411w13qGyiw66W3uemfLUASz7cf5YrLZ6XgLXDkvVO8ffwU1y+bPWr/Xu08wbu9A3zqysuprhADheDNoz3MqKpkUVMdr3a+N9x2xeWzsu+BEh3v7ecXezupTM8DWRj29A8yt76GhY0zeLHjONcsaaS+torBQnC0p4/X3zkdsBFZP4719PPh+ZdRiDjj5//p17s41tPP714xDwQLZs/g7eOnuHLBLN5py4LiqgWnx/D28V5aD3RzxeWz+MDs7HVt7e1noBCsXNjAqfT6DrnuQ010dPec/h5K4VyIGH5tKiXqqitpnFld8muVR1P5cE/SLcDaiPiTNP+HwPUR8ZWx1mlpaYnW1taJ6qKZ2bQg6ZmIaBlt2ZS+RgF0AEuK5henmpmZTZCpHhRPAyskLZNUA6wHtk9yn8zMLilT+hpFRAxI+gqwE6gEtkTEnknulpnZJWVKBwVAROwAdkx2P8zMLlVT/dSTmZlNMgeFmZnlclCYmVkuB4WZmeWa0r9wVwpJncCBElefB7wzjt25GHjMlwaP+dJQzpg/FBHNoy2YdkFRDkmtY/1m4nTlMV8aPOZLw4Uas089mZlZLgeFmZnlclCc6f7J7sAk8JgvDR7zpeGCjNnXKMzMLJePKMzMLJeDwszMcjkoEklrJe2V1CZp02T3p1SSlkh6QtJLkvZI+mqqz5G0S9K+9LUp1SVpcxr385KuLdrWhtR+n6QNkzWm8yWpUtKzkn6W5pdJeiqN7SfpT9UjqTbNt6XlS4u2cWeq75V0w+SM5PxIapT0iKRXJL0s6RPTfT9L+rP0ff2ipIckzZhu+1nSFkmHJb1YVBu3/SrpOkkvpHU2S+fxebtDHzx/KT/I/oT5q8ByoAb4DbBysvtV4lgWAtem6cuA3wIrgf8MbEr1TcB30/RNwGNknyy6Cngq1ecA+9PXpjTdNNnjO8fY/z3wD8DP0vzDwPo0/bfAv0nTXwb+Nk2vB36SplemfV8LLEvfE5WTPa6c8W4F/iRN1wCN03k/k3008mtAXdH+/aPptp+B3wOuBV4sqo3bfgV+ldoqrXvjOfs02S/KVHgAnwB2Fs3fCdw52f0ap7E9Cvw+sBdYmGoLgb1p+u+AW4va703LbwX+rqh+Rrup9iD79MPdwKeBn6UfgneAqpH7mOzzTT6RpqtSO43c78XtptoDmJ3eNDWiPm33cwqKg+nNryrt5xum434Glo4IinHZr2nZK0X1M9qN9fCpp8zQN+CQ9lS7qKVD7WuAp4D5EXEoLXoLmJ+mxxr7xfaa/DXwNaCQ5ucCRyNiIM0X9394bGn5sdT+YhrzMqAT+Pt0uu0HkuqZxvs5IjqAvwTeAA6R7bdnmN77ech47ddFaXpkPZeDYpqSNAv4J+BPI+J48bLI/isxbe6LlvRZ4HBEPDPZfZlAVWSnJ+6LiGuAE2SnJIZNw/3cBKwjC8kPAPXA2knt1CSYjP3qoMh0AEuK5hen2kVJUjVZSPw4In6aym9LWpiWLwQOp/pYY7+YXpNPAp+T9Dqwjez00/eARklDn+JY3P/hsaXls4EjXFxjbgfaI+KpNP8IWXBM5/38GeC1iOiMiH7gp2T7fjrv5yHjtV870vTIei4HReZpYEW6e6KG7MLX9knuU0nSHQwPAC9HxF8VLdoODN35sIHs2sVQ/bZ098Qq4Fg6xN0JrJHUlP4ntybVppyIuDMiFkfEUrJ993hE/AHwBHBLajZyzEOvxS2pfaT6+nS3zDJgBdmFvyknIt4CDkq6MpVWAy8xjfcz2SmnVZJmpu/zoTFP2/1cZFz2a1p2XNKq9BreVrStsU32RZup8iC7e+C3ZHdAfGOy+1PGOH6X7LD0eeC59LiJ7NzsbmAf8H+AOam9gHvTuF8AWoq29cdAW3p8cbLHdp7j/xSn73paTvYG0Ab8I1Cb6jPSfFtavrxo/W+k12Iv53E3yCSP9WNAa9rX/4Ps7pZpvZ+B/wS8ArwI/IjszqVptZ+Bh8iuwfSTHTnePp77FWhJr9+rwN8w4oaI0R7+Ex5mZpbLp57MzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCzX/wfjiuCHCiJzlAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/1-QLearning/solution/notebook.ipynb b/translations/fr/8-Reinforcement/1-QLearning/solution/notebook.ipynb new file mode 100644 index 000000000..710e61ebf --- /dev/null +++ b/translations/fr/8-Reinforcement/1-QLearning/solution/notebook.ipynb @@ -0,0 +1,577 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "488431336543f71f14d4aaf0399e3381", + "translation_date": "2025-09-04T02:56:37+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# Pierre et le Loup : Introduction au Renforcement Apprentissage\n", + "\n", + "Dans ce tutoriel, nous allons apprendre à appliquer l'apprentissage par renforcement à un problème de recherche de chemin. Le contexte est inspiré du conte musical [Pierre et le Loup](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) du compositeur russe [Sergei Prokofiev](https://en.wikipedia.org/wiki/Sergei_Prokofiev). C'est l'histoire d'un jeune pionnier, Pierre, qui sort courageusement de sa maison pour aller dans la clairière de la forêt à la poursuite du loup. Nous allons entraîner des algorithmes d'apprentissage automatique qui aideront Pierre à explorer les environs et à construire une carte de navigation optimale.\n", + "\n", + "Tout d'abord, importons quelques bibliothèques utiles :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## Aperçu de l'apprentissage par renforcement\n", + "\n", + "**L'apprentissage par renforcement** (RL) est une technique d'apprentissage qui nous permet de découvrir un comportement optimal pour un **agent** dans un certain **environnement** en réalisant de nombreuses expériences. Un agent dans cet environnement doit avoir un **objectif**, défini par une **fonction de récompense**.\n", + "\n", + "## L'environnement\n", + "\n", + "Pour simplifier, considérons le monde de Peter comme un plateau carré de dimensions `width` x `height`. Chaque case de ce plateau peut être :\n", + "* **du sol**, sur lequel Peter et d'autres créatures peuvent marcher\n", + "* **de l'eau**, sur laquelle il est évidemment impossible de marcher\n", + "* **un arbre** ou **de l'herbe** - un endroit où l'on peut se reposer\n", + "* **une pomme**, qui représente quelque chose que Peter serait ravi de trouver pour se nourrir\n", + "* **un loup**, qui est dangereux et doit être évité\n", + "\n", + "Pour interagir avec l'environnement, nous allons définir une classe appelée `Board`. Afin de ne pas surcharger ce notebook, nous avons déplacé tout le code lié au fonctionnement du plateau dans un module séparé appelé `rlboard`, que nous allons maintenant importer. Vous pouvez consulter ce module pour obtenir plus de détails sur les aspects internes de l'implémentation.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from rlboard import *" + ] + }, + { + "source": [ + "Créons maintenant un plateau aléatoire et voyons à quoi il ressemble :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "source": [ + "## Actions et Politique\n", + "\n", + "Dans notre exemple, l'objectif de Peter serait de trouver une pomme, tout en évitant le loup et les autres obstacles. Pour ce faire, il peut essentiellement se déplacer jusqu'à ce qu'il trouve une pomme. Ainsi, à n'importe quelle position, il peut choisir entre l'une des actions suivantes : haut, bas, gauche et droite. Nous définirons ces actions sous forme de dictionnaire et les associerons à des paires de changements de coordonnées correspondants. Par exemple, se déplacer vers la droite (`R`) correspondrait à une paire `(1,0)`.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "La stratégie de notre agent (Peter) est définie par ce qu'on appelle une **politique**. Considérons la politique la plus simple appelée **marche aléatoire**.\n", + "\n", + "## Marche aléatoire\n", + "\n", + "Commençons par résoudre notre problème en mettant en œuvre une stratégie de marche aléatoire.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "18" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(m):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(m,policy,start_position=None):\n", + " n = 0 # number of steps\n", + " # set initial position\n", + " if start_position:\n", + " m.human = start_position \n", + " else:\n", + " m.random_start()\n", + " while True:\n", + " if m.at() == Board.Cell.apple:\n", + " return n # success!\n", + " if m.at() in [Board.Cell.wolf, Board.Cell.water]:\n", + " return -1 # eaten by wolf or drowned\n", + " while True:\n", + " a = actions[policy(m)]\n", + " new_pos = m.move_pos(m.human,a)\n", + " if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water:\n", + " m.move(a) # do the actual move\n", + " break\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "source": [ + "Faisons l'expérience de marche aléatoire plusieurs fois et voyons le nombre moyen de pas effectués :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 32.87096774193548, eaten by wolf: 7 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " else:\n", + " s += z\n", + " n += 1\n", + " print(f\"Average path length = {s/n}, eaten by wolf: {w} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## Fonction de Récompense\n", + "\n", + "Pour rendre notre politique plus intelligente, nous devons comprendre quels mouvements sont \"meilleurs\" que d'autres.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "move_reward = -0.1\n", + "goal_reward = 10\n", + "end_reward = -10\n", + "\n", + "def reward(m,pos=None):\n", + " pos = pos or m.human\n", + " if not m.is_valid(pos):\n", + " return end_reward\n", + " x = m.at(pos)\n", + " if x==Board.Cell.water or x == Board.Cell.wolf:\n", + " return end_reward\n", + " if x==Board.Cell.apple:\n", + " return goal_reward\n", + " return move_reward" + ] + }, + { + "source": [ + "## Q-Learning\n", + "\n", + "Construisez une Q-Table, ou un tableau multidimensionnel. Étant donné que notre plateau a des dimensions `width` x `height`, nous pouvons représenter la Q-Table par un tableau numpy de forme `width` x `height` x `len(actions)` :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "source": [ + "Passez la table Q à la fonction de tracé afin de visualiser la table sur le tableau :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhU5f3+8fczk8m+BwIYBGQRZIkoiKIsIm6tuwVEZSkiqC1SXHAB259VYhUVqrUVUURA3FGwFLQKrsAXxJZNBQIkICEEkpBl9plznt8fmaRESEBJODPh8/LKlcmZ5dwkmduT5yyP0lojhBAictisDiCEEOLnkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMI1W3EqpK5VS25RSO5RSDzXWeoQQ4lSjGuM4bqWUHdgOXAbsBb4BbtZaf9/gKxNCiFNMY21x9wF2aK13aa39wFvAdY20LiGEOKU0VnFnAT8e9vXe0DIhhBAnKMqqFSulxgPjARwOR6/s7GyrohyTz+ejsrKSZs2aWR2lTmVlZTgcDhISEqyOUqfCwkIyMzOx2+1WR6nTnj17aNOmjdUx6hQMBjl48CCtWrWyOkqdnE4nwWCQ1NRUq6PU6eDBgyQnJxMTE2N1lDp99913eDweddQ7tdYN/gH0BT4+7OuHgYfrenxmZqYOZ7m5uXr27NlWx6jXBx98oFevXm11jHo9/vjjurS01OoYdTJNU0+YMMHqGPUqKSnROTk5Vseo19dff60XL15sdYx6zZo1S+fm5lodo16hXjxqZzbWUMk3QCel1BlKqWhgOPBhI61LCCFOKY0yVKK1DiqlJgAfA3bgVa31d42xLiGEONU02hi31noZsKyxXl8IIU5VcuakEEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsI02eLOy8urvhZ4WDIMgz179lgdo14ul4uDBw9aHaNeBw8exOVyWR2jXnv27MEwDKtj1ElrTV5entUx6uX3+9m3b5/VMepVVlZGWVnZSVmXZTPgNJZt27bx1VdfsXnzZnr06EHPnj3p3bu31bFq+fzzz9m2bRvbtm2ja9euXHnllbRu3drqWLW8/fbbFBQUUFFRQevWrRk5cmRYzRbi8/lYsGABe/fuJSkpiaysLIYPH251rFoKCgpYvnw533//PZ07d+bMM89k0KBBVseqZf369WzYsIFNmzaRnZ1Nv3796NKli9Wxalm6dCn5+fkUFBTQoUMHhgwZElaz62itmTdvHoWFhQC0atWK0aNHo9TRJ69pCE1ui/urr75i7dq1/OlPf2LXrl188MEHVkc6wpw5c3C73TzwwAMsX76cLVu2WB3pCI899hjdunXjhhtu4K9//Stut9vqSLV4PB5mzpzJ9ddfT/fu3XnsscesjnSE7777jmXLljF58mS8Xi+vvPKK1ZGOsHjxYnbt2sWjjz7KunXr+Oqrr6yOdISnn36ajIwMxo4dy4IFC9i/f7/VkWoxTZNp06YxYMAA+vfvz7Rp0zBNs1HX2aSKOy8vj82bNxMTE8O1117LQw89RGxsLKtWrbI6Wo1FixbRt29fPvroIx555BH+/ve/s3DhQsrLy62OVmPKlCn85S9/4aGHHmL16tUsXryY22+/3epYtdx+++1MmTKFMWPGkJqayt///ncefvhhq2PVqKioYP78+XTv3p2rrrqKkSNH0q9fP9577z2ro9VYvXo10dHR7Nq1i9GjR/Pkk0+yZcsWdu3aZXW0Gs8//zx33XUXzz33HPPnz2fBggVMmTIlrIaexo8fzzPPPMOECRMoLS3lvffeY/z48Y26ziY1VNKuXTt69OjBzp07Wb58OfPnz8fr9XLhhRdaHa3GjTfeyOjRo7ntttu4/PLLeeCBB7jllltITk62OlqNadOm0bNnT+bNm0daWho33XQTy5aF15wYL7/8Mpdffjnvv/8+FRUV3H777WzcuNHqWDWSkpIYNWoUb7/9Np9++ikrV65k1apVLFiwwOpoNfr27cuyZcu48MIL+e1vf8tTTz1F9+7dOeOMM6yOVuPuu+9m0KBBPPnkk3Tu3Jnx48fz1FNPYbOFzzbnSy+9RHZ2Nu+//z5Q9R7ftGlTo66zSRW3UoqePXuSl5fHc889h9fr5eKLL27UsaafSynFNddcw8aNG9m2bRuZmZl06NAhrDLabDZGjRrFBx98gM1m49JLLyU+Pt7qWLXExsZy+eWXM2/ePEzTZNSoUWH1ZlZK0b59e1q2bMkLL7yA3+/n2muvDaufs1KKgQMH8vnnn/Pcc88B0LNnz7DLeOutt/Lpp5/yxRdfkJ2dTfPmzcMqo81mY9iwYbz55psADBs2rNF/F5tUcQP07t2b3r17s2rVKi688MKw+gFXGzp0KDfccAPffvst559/vtVxjur++++npKSE0tJSOnXqZHWcI8TFxZGTk0Nubi5paWk0a9bM6khH6NixIzk5Oaxbt45zzjkHh8NhdaQjXHbZZVx66aWsXr2aiy66yOo4RzVu3DhcLhc7d+4kOzvb6jhHsNlsPProo+zduxfgpBxo0OSKu1q4/hJWi4qKCtvSrpaRkUFGRobVMeoVjv9T+ak+ffpYHaFeSqmwf78kJCSEZWkf7mQeGRY+f1sKIYQ4LlLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWFO6JR3pVQ+UAkYQFBr3VsplQ68DbQD8oFhWutDJxZTCCFEtYbY4h6kte6pta6eZuYhYIXWuhOwIvS1EEKIBtIYQyXXAfNCt+cB1zfCOoQQ4pR1osWtgX8rpb5VSlVP+dBCa10Yur0faHGC6xBCCHGYE72saz+tdYFSKhP4RCm19fA7tdZaKXXUqdZDRT8eIDExkdzc3BOM0nj27t1LWVlZWGcsLi7GNM2wzuhyucjLy6O4uNjqKHXy+/1h/T2sqKjA5XKFdcb9+/eH/fulrKyMH3/8Ea2PWk9hob55K0+ouLXWBaHPB5RSHwB9gCKlVCutdaFSqhVwoI7nzgZmA2RkZOjPP//8RKI0qrKyMvbu3Us4Z9y5cyfx8fGUlJRYHaVOxcXFrF69Oqxmi/8pp9MZ1j9nr9fLmoNrWPL5Equj1Cm+MJ7BnsGNPmHuiSgoKODbb79lx44dVkepU73fP631L/oAEoCkw26vBq4EngYeCi1/CJh+rNfKzMzU4Sw3N1fPnj3b6hj1+uCDD/Tq1autjlGvxx9/XJeWllodo06maeoJEyZYHaNeJSUluldOL00Y/9fy65Z68eLFVn+r6jVr1iydm5trdYx6hXrxqJ15IlvcLYAPQlODRQFvaK0/Ukp9A7yjlBoL7AaGncA6hBBC/MQvLm6t9S7g7KMsLwEGn0goIYQQdZMzJ4UQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3IsWLQrraYn8fj9Lly61Oka9CgoKWL9+vdUx6vXtt99SUFBgdYx6LV26FL/fb3WMiFZeXh7WMxMBbNu2jW3btp2UdZ3onJNh5/PPP2fOnDn07duX0aNHc8011zB06FCrY9Uya9Ys1q5dS8+ePRk5ciSTJ08mOzvb6li13HvvvRiGQVpaGs8//zwvvvgiCQkJVseq4Xa7ufPOO2nfvj1lZWUopZg5c6bVsWrZvHkz06dPp3fv3txxxx306dOHu+66y+pYEScnJ4c9e/bQvn175syZw1NPPcVpp51mdawapmkyfvx4mjVrhtaakpISZs+ejc3WeNvFTWqL2zAMtm3bRteuXbnpppu4+uqr2bhxI8Fg0OpoNfx+P2vXrmXo0KGMGDGCrKws8vPzw+qvA4/Hw9dff81dd93FnXfeWTP5azipnux1zJgx3HvvvaxatQqPx2N1rBpaa3bv3k2zZs24+eabue222/i///s/2fL+mXw+H1988QXjxo1jzJgxKKUoKioKq/eL2+1m48aNjBs3jokTJ7J582bcbnejrrNJFXdBQQHbtm2jqKiIUaNGcemllxIdHc1//vMfq6PV+Pe//03Pnj2ZM2cOjz/+OHfeeSf//Oc/qaystDpajRkzZnDPPffwu9/9juXLlzN9+nSmTp1qdaxapk6dyogRIxgzZgwHDx7kj3/8I88++6zVsWo4nU4WL15McnIyw4cP56yzzqJXr158/PHHVkeLKPPnz+fmm29m6tSpvPrqq0yZMoUZM2aE1UTEU6dO5Z577mHcuHFs3ryZZ555ptHfL01qqKRNmzZ07dqV5cuXM2fOHB588EEyMzPp06eP1dFqXH311YwcOZJOnTpx5513cvvtt3P//feTnJxsdbQaU6dO5ayzzmLKlCm0bduWoUOHsm7dOqtj1TJz5kx69+7Nq6++yg8//MC0adPYunWr1bFqJCUlMWzYMKZPn86rr77KjBkz2L17NxMnTrQ6WkQZN24cAwcO5IYbbmDQoEGMGDGC119/HbvdbnW0GjNmzKB9+/a88MIL+P1+7rjjDnbt2tWo62xSxQ1w5ZVXcvrppzN58mRuvfVWOnToYHWkIzzwwAPk5+czbdo0Jk+eTK9evayOdISXXnqJ7du3s2LFCl544QUSExOtjlRLQkICf//731m5ciVZWVnMnj3b6khHOPfcc5k8eTI5OTlce+21DB8+3OpIEenpp58mLy+PefPmkZOTQ+vWra2OVIvNZmPOnDls2rQJgDlz5jTq+DY0weJu3bo1rVu35oILLiA5OZnQLPRhpUePHnTv3p2BAweG1Zb24QYMGEDfvn0JBoPExcVZHecIDoeDK664ggEDBhAVFYXD4bA60hGaNWvGFVdcQd++fUlKSgrL38VI0KdPH3r16sVVV10VdhsQAEopLr30Uvr37w9ATExMo6+zyRV3tZSUFKsj1EspFbalXc3hcIRlIR4uHP+n8lPh/nOOBHa7PSxL+3Ano7CrNamdk0IIcSqQ4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCHLO4lVKvKqUOKKW2HLYsXSn1iVIqN/Q5LbRcKaWeV0rtUEptUkqd25jhhRDiVHQ8W9yvAVf+ZNlDwAqtdSdgRehrgF8BnUIf44EXGyamECKSyOn9jeuYxa21/hIo/cni64B5odvzgOsPWz5fV/k/IFUp1aqhwgohIkM4XS+7KfqlY9wttNaFodv7gRah21nAj4c9bm9omRBCiAZywjsnddX/Wn/2/16VUuOVUuuVUuvDaeYSIYQId7+0uIuqh0BCnw+ElhcApx/2uNahZUfQWs/WWvfWWveOhCu8CSFEuPill3X9EBgNPBn6vOSw5ROUUm8B5wPlhw2p1MkwDBYvXvwLozS+4uJidu7cGdYZt2zZwu7duykqKrI6Sp3279/PRx99FNaXYq2oqAjrn7Pb7SahMIH2i9tbHaVOSflJbHFtCetx7l27dhEVFcWWLVuO/WCLGIZR533HLG6l1JvAxUAzpdRe4P9RVdjvKKXGAruBYaGHLwN+DewA3MCY4wno9yvuuqvFsR9okfh4k9Gj42nRInwz7t69m1mzUigrC9+MHTvGcP31zcNqtvifioqKCuufs9Pp5LyY83iyxZNWR6nT1kNbqbRVhvX3MT4+nifSn8DdonEn9T0RflX3xNLHLG6t9c113DX4KI/VwO+PO1nN82zs39/35z7tpElJ2UGrViX07Ru+GYuKiigraxHW38fWrVfQq1cv0tLSftHzg8Egs2bN4oknnqi1fPbs2fz6178+4emitNa88cYbYf1zLi0t5ZtvvgnrjKZpUlxcHNYZN23aREmPEso7llsdpU6JtronjmiyM+CIpsXv9/Pqq68yceLEI/4Ev/baa/nwww+58soriYqSX2nR9Mkp7yLsBQIBZsyYwaRJk446bqq1ZtSoUSxYsIBgMGhBQiFOLiluEfZsNhuLFy/G5/PV+ZhDhw6xcuXKRp9dW4hwIL/lIuxt2bKFgwcPHvNx+fn55OXlnYREQlhLiluEPYfDcVxj18f7OCEinRS3CHudOnUiKSnpmI9r0aIFWVlyhQXR9Elxi7Bnt9vJycnB4XDU+ZjmzZszadIk7Hb7SUwmhDWkuEXYs9ls9O/fn/PPP/+oW9Tt27fnwgsv5Nxzz5XLiYpTghS3iAhxcXHMnz+fDh061CpnpRTdu3dn3rx5Mr4tThlS3CLsaa0JBoOMGzeOL7/8stax3FprPvzwQ+6++2601mF9fQwhGooUtwhbWmsMw2DDhg1cdNFFrFixos7HvvHGG1x33XXk5uZimqYUuGjS5G9LEZa01rhcLt544w1ee+011q9fX+/jDcNg2bJlaK256aabuPnmm7Hb7TLmLZokKW4RdrTWmKbJww8/zAsvvHDczzNNk2XLlvHRRx9RUFDA5MmTsdlsUt6iyZGhEhF2/H4/d999N7NmzfrZz60eXnn88ceZPn26XLtENElS3CKsuFwuHn74YV566aUTKl23280TTzzBnDlzCAQCDZhQCOtJcYuwEQgE+POf/8zMmTMxTbNmeVRU1HFdPCoqKqrWCThOp5O77rqLWbNmyc5K0aRIcVvE4/GQk5NjdYywMmXKFJ599tkjlo8YMYIzzzzzmM/v378/gwcPPmJM+6GHHuK5555rsJw/1xNPPIHbHb4zrWitmTJlitUx6rV///5fNHTWVElxW+Dee+/l4osvJjs7m7POOosvvvjC6kiWCgaD3H///Tz//PO1trTj4+O5/vrrmTFjBunp6fW+hlKKNm3asHDhQpYtW0Zi4v9mD3G73TzyyCP8/e9/r/X6je2rr76iS5cudO/enUsuuYRJkyadtHUfr2effZbs7GwuvfRSunbtyltvvWV1pCPcdNNNjBkzhujoaDp37szOnTutjmQ5Ke6TrKCgAMMwmDx5MllZWUyZMoXt27efsuOwWmvWrFnDhx9+iN9fNceeUorOnTuzcuVK3nrrLVJTU4/79Zo1a8Zll13GG2+8Qdu2bWu2vl0uF6+99hq5ubknZdgkEAiwbds2br75ZhITE3nnnXcwTZOCgoJGX/fxKikpoby8nHvvvZfY2FhmzpxJQUEBLpfL6mg1du7cSXx8PBMnTuSCCy5g3LhxbNiw4ZQf+pLiPskKCwtJS0tj8+bNbNiwgbZt27J3795T+uiHQCBQa0u4R48e/PWvf6V3797ExMT87MP57HY7l112GTk5ObRp06ZmeTAYrHfm7IYUDAb58ccf0VrzxRdfEB0dTXp6OoWFhSdl/cejtLQUm81Gfn4+69ato2XLllRWVoZVce/atYt27dqxZs0atm7dSufOnfnhhx+kuK0OcKrp3bs3u3btYs2aNZx77rmMHTuWvn37EhcXZ3U0Syil6NOnD48++igZGRmcc845LFiwgEsuueSErvQXGxvLjTfeyDvvvEOLFi3o1KkTjz32GO3btz8px3XHxcVx0UUX8frrr3P99dczevRocnNz6d27d6Ov+3h16tSJYDDI8uXLufrqqxkxYgRZWVlkZmZaHa3GZZddxsqVK8nPzycxMZG77rqLIUOGnPIzHckJOBZ48cUXKSsrY8qUKaxbt67WeOypKDExkZtuuqlmst+fDo2YpnnMsenqk3a01jXFHBcXR58+ffjuu+9QSpGcnHxSL0Q1aNAgvvnmG+69917mzJnzi2e3b0xTp07lnnvuYfz48Xz55ZfEx8dbHekIS5cuJT8/nwULFrB582aSk5OtjmQ5KW4LJCQkkJCQwLx586yOEjYcDgfNmjU76n3BYJCzzz6bdevW1VngsbGxNVuQP71ud0ZGRoPnPR4Oh4O0tDTmzp1ryfqPR1xcHHFxcSxatMjqKHVKSkqiR48eTJ8+3eooYePU/ntDRITo6GgmTpxY79Zyeno6o0aNqneyBSGaCiluERGONcShlJLZb8QpQ4pbCCEijBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhDlmcSulXlVKHVBKbTls2aNKqQKl1IbQx68Pu+9hpdQOpdQ2pdQVjRVcCCFOVcezxf0acOVRls/UWvcMfSwDUEp1BYYD3ULP+YdSSg6uFSfsWBcVOtUvOiROLccsbq31l0Dpcb7edcBbWmuf1joP2AH0OYF8QgAccQ2NqKioWifl2Gw2YmJiTnYsISxxImPcE5RSm0JDKdVXz8kCfjzsMXtDy46glBqvlFqvlFofCHhOIIY4FWRmZtZcjMvhcPDUU09x//3315R3SkqKZdckEeJk+6UXmXoReBzQoc/PArf9nBfQWs8GZgMkJbXQPt8vTCJOCQ6HgzVr1hAMBlFK0bFjR/x+P6NGjUJrTWxs7Em5XKsQ4eAXFbfWuqj6tlLqZWBp6MsC4PTDHto6tEyIE2Kz2Y6Yd9LhcHDWWWdZlEgI6/yioRKlVKvDvrwBqD7i5ENguFIqRil1BtAJWHdiEYUQQhxOHWtvvFLqTeBioBlQBPy/0Nc9qRoqyQfu0FoXhh4/laphkyAwSWu9/FghUlLS9Zln3vtL/w2NzuFw0a1bMW3btrU6Sp3279/Pxo0xeL3hd7H+amlp2+nb94ywvvTq5s2b6dGjh9Ux6hQIBMjPz6dTp05WR6lTaWkpfr+fli1bWh2lTvn5+Xzf/HsCCeE71+v2GdspLy0/6vjfMYv7ZEhKytR+/zarY9QpOTmf005bxdatt1odpU5t237EP/7RnF69elkdpU5//etfGTNmDCkpKVZHqdPUqVPJycmxOkadysrKmD9/PhMnTrQ6Sp3Wr19PSUkJV1wRvqdxLFiwgAEDBoT1xljnzp05cODAUYs7TGbAUfj94bulGAiUYBgxYZ3RMOJISEgIy+mxqjkcDlJSUsI2o9Yau90etvmgKmP1zDrhKj4+HrfbHdYZY2JiSExMDOuM9e1sl1PehRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLjFUVVUVLBy5UpmzJhBWVkZpmlaHakWrTVlZWXMnDmTFStWUFFRYXWkIwQCAcrKyhgzZgwFBQW4XC6rIx3B6/Vy6NAhhgwZQllZGT6fz+pIR3A6nWzZsoUHH3yQsrIyDMOwOlItWmvKy8t58803efPNNykvL6exZxaT4hZH1bt3b5YtW0bz5s3p2LEj5eXlVkeqpby8nI4dO5KRkcFHH30UllO2ff755/Tu3Zu7776bMWPGcMcdd1gd6Qg5OTlcfvnlPPnkk/Tr14/58+dbHekIV111FU8++SSXXHIJ3bp1Izc31+pItZimSadOndi7dy979+6lU6dOjb6hI8UtjrBo0SJuueUWEhISaN26NTNnzmTu3LlWx6pl7ty5TJgwgZ07d3LnnXcyduxY3nvvPatj1fB4PKxatYoRI0bw4YcfMn/+fDp27Mj69eutjlZjx44d2O12rrrqKv71r3+xcOFCCgoKOHDggNXRanz66acMGjSIDh064Ha7efHFF1m0aFFY/QX42muv8bvf/Q6n08mll17Kn/70J1577bVGXacUtzhC586d2b59O/369aNNmzZs2bKF7Oxsq2PVkp2dzY8//kj//v1JTU3l+++/p0uXLlbHqhEVFUXr1q1RStG/f38CgQCHDh2iVatWVkerkZaWhmmatGnThvPOO4+ioiKSkpKIj4+3OlqNdu3asWfPHs4//3zOPPNMtm/fTufOneudj/Fky87OJjc3l/79+9OiRQs2btzY6O8XKW5xhO7du1NQUMD8+fN57733eP/99znvvPOsjlXLeeedx5dffsn69eu55557yMvLo3v37lbHquFwOOjcuTNvvvkmLpeLoUOHopQiKyvL6mg1MjIySElJYebMmXi9XiZNmkRWVhaJiYlWR6vRsWNHXC4Xf/vb31i7di0vv/wy55xzTlgVd69evdi4cSPLly/nmWeeYc2aNY0+dBcms7yLcPPFF1/w3Xff8cMPP4TdmCJAcnIyubm5vPfee1x99dVhVdrV+vfvz9atW8nJyWHlypVhtSVb7b777uPee+9lypQpfP/991bHOaq3336bwsJClixZwrZt26yOcwSbzcaWLVv4/PPPUUoxY8aMRl+nFLeoU7du3ejWrZvVMeo1ZMgQqyMc09SpU62OUC+lFH/5y1+sjlGvVq1aceedd1odo14XX3zxSVuXDJUIIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMMcsbqXU6Uqpz5RS3yulvlNK/SG0PF0p9YlSKjf0OS20XCmlnldK7VBKbVJKndvY/wghhDiVHM8WdxC4T2vdFbgA+L1SqivwELBCa90JWBH6GuBXQKfQx3jgxQZPLYQQp7BjFrfWulBr/Z/Q7UrgByALuA6YF3rYPOD60O3rgPm6yv8BqUqp8LlAgxBCRLifNcatlGoHnAOsBVporQtDd+0HWoRuZwE/Hva0vaFlP32t8Uqp9Uqp9YGA52fGFkKIU9dxF7dSKhFYBEzSWte6ar2uumr4z7pyuNZ6tta6t9a6t8MR93OeKoQQp7TjKm6llIOq0l6otX4/tLioeggk9Ln6Ir4FwOmHPb11aJkQQogGcDxHlShgDvCD1vrwy159CIwO3R4NLDls+ajQ0SUXAOWHDakIIYQ4QcdzdcCLgJHAZqXUhtCyKcCTwDtKqbHAbmBY6L5lwK+BHYAbGNOgiYUQ4hR3zOLWWn8N1HXV8sFHebwGfv/zozTu5JoNI/wzNvYkpQ0h3DOGez6QjA0lEjIejQqH4CkpabpnzxFWx6iT3e4nJcVJdHS61VHqFAxWkJoaFZYX66924MABMjIysNvtVkep0969+4iKOs3qGPUwCNj24ch0WB2kTqbbJDGYSHJystVR6lRaWkpiYiLR0dFWR6nT66+/zqFDh4660RDZX9YAACAASURBVBwWxZ2U1EI7nUVWx6hTSsoOnn76M8aNG2d1lDotXryYFi1acP755+Pz+XA4HP+bUNVmst+3m0PBIrSpiSIaUHgCbuLtyXRI7oYy7URHOzAMA6UUwWAQpRQ2m41gMEh0dHTN5+rXDwaD2O32Wo9VStU83+GoKpfqaaamTZvG73//e9LS0iz6LtVPa82wYRN5772/WR2lTjExpXT/0+V8O+Vbq6PUqeWqlswqnsV1111ndZQ6vfTSSwwePJiOHTtaHaVOLVq0oKio6KjFLTPgNDGGYVBSUkJsUjTrDi0lM7YtQZuXnc6NFPp3U+l1Uukt57S4Dnj8HjIdrcmN/YG8kh1MOH8qfl8ApRROpxOlFDExMTidTpo1a4bT6SQ9PZ3y8nLS09OpqKggISGBsrIyHA4H0dHRREdHExUVhdPpDNuCFiLSSXE3MTvKNrLo0ExUuWK/bzcOHUswqEkgjWYxWaSSRpnbhccMkB7TGkwHy3e+T1xUEo+vfIDh3cdyWvzpJCUlobUmGAySkZGBy+UiJiaG4uJiEhMTqaioIC4uDp/PR2pqKlprDMPA7XYDEB0dTUlJCampqURFya+ZEA1J3lFNTPP4try14r+kx6aT3Tyb9pld2LUvn3lfv0nHM1NonpBI7qZC7FlBLuo6AHswlrioVEori4mJT+LVdS9y1VnX0y3tbKKiHDgcDg4ePEhmZiYul4v0jAxKS0pISUmhvLychIQEKioqcDiqHpuQkIDNZsPlcpGWlobNJhegFKKhSXE3MXHEM/uqV3ng35P51/fL+XjLp8SY0bRIa4n/YAy+ymZ0ymzLvrI8jDKTNRvW0Lp7Ojv276Njhp8ydzlen0GHgV1IjYpDKUViYiJ+vx9fZSHbt35IZUUl6Zmn0az9YAzDIDY2tmYc2+/3A1UzX3u9XuLi4mruE0I0DNkcamJsNhtnpnfkkUumYotS7CzZySHPIRJjE3D73bgDLk7PPJ2zmvUk2dORdsldqdyuUX4TOz72HNjHx5tXkLN0GlC1w840TdAGBd9/zOdvTeLbZY/w7b+fRYX2a5umiWmaNYdW2Ww2tNYRe6iVEOFOiruJcTgcBPwB+rbuy6JbFtEsMQOb3U6ZtxxHdBQ+w8/3e7/jYOVBtu3Zylfr19A2vjvXthjJxhXbOK/L6cRX2nl3+bsEggEAKivKOLD7G778198oc8dw3pA5XHbbQgJG1VElfr+/5giW6p2UpmnK1rYQjUSGSpqY8vLymvHos1p2ZdXEr7nxlSEUlhQSo6OJ1jHEEsPBkoNov0mLtJYY2qDoQDHXnnsTZT+UkRJThi8ljp0/bqfLGd344oNn2PrtUk4/4yz6XTqe7n2upqKigsT4eLxeL+np6RiGQSAQwOl0orUmPj6e4uJiMjIyZOekEA1M3lFNTPXOwqioKLxeLy3iW/Lqza/yz83/5MWVL7KvtBD8mqSoJLpmdSVaRXOg7ADxUXFUVlSiDEgqb0dlchl/XjKJoR1uYscPm0ht2ZVrxv6VjBZt8Xq9xMfH4/f7cTgcuN3umuO34+KqrvRoGAZJSUmyc1KIRiDF3cRU7xAMBAI1J+F0bn4mZw66hz5Z51HkKuKJ956goHgfu4p2kh6bQTTRlBQX43MH8Do93HX9Xdx94QTK4/fy2synSDtgcN/jL5PW/HTcbjdxcXF4vV5iYmJqTsqpHueu3jlZXegxMTEWf0eEaHqkuJsY0zSJiorC7/fX2kmoNfRt35fYuFiu7HoljmgHzkon0XZFwa7tNE/JwKchPr05sdGxpKWmUVFxiG1nbGDQbVfRrlNPlFIYhoHNZsNZfJBAlJ2AYZJxWhY2m62mvIGax8oOSiEanhR3ExMbG1tzXLXP5wOouTZITEwMfr+fpNgkitevJjbgofJAEUn7dlNRdojUHueQ3PMCnPk7yPN4+HH/ATZ/tYoLzu1HoGAP+3K3EhsXR0ViGru/WsGeLRtJbN6K+PZnkpjRjKxu3WjRqXPNafApKSkyVCJEI5DibmJcLhcZGRk4nU5iY2MxTROfz4dSCo/HQ6ynkryFs0hIy8AfF09K85YkXzgQrRQK8OzdjS4vJcYMkpC3nQt9bvSKpewryEfZojgU8BOXmcWZg6+kw+Ar0IbJtlVfsn/LRvb891sqPV6un/JH0po1o7y8nIyMDClvIRqYFHcTk5ycXHWtkthY3G43NpsNh8OB1poEh50Nd48jpX0n0gZcjs0eBdrAX7Cn6sK9WmO3R5HSsQum1iSc3oGONw7HMEx87gqi4hIxtEkgEMRTXoqpwTA1rbufTSutKS8p4cPnZjDnd3cw4bXXSU1NDesrAQoRqWRTqImpqKigWbNmNYfkORwOAoEA3kMlrL39euJPy6LVr36DWVmOWV6KrixHeZ0ojxO8LrSrAqP0IMHSg5iuSoLlJRiVh1B+P/6yUgKHDhGsrCDochF0uwi4XfidlficVcMz1026D+f+Ql747Sh+3LkTwzCs/pYI0eTIFncTExsbi8vlQilFIBBAa43dbqfwn++QfnoHTrviWgLFhdhDh+/ZVGiWDKVQWmNqDVqh0GCaaA2G1gRNMEwTU2tMTehrjWFqAlpjaJOgqTBNzYXDb+GTua/y3WcrOaNzZ6u/JUI0OVLcTUx8fDyFhYWkpKTg8XiIjo7GFvBRuX0TLc7qSbB4PzabqipqG9hC5U1VVaNNE7QKlXboiBSj6tT3qqI2MU0ImCaGCUGtMUJfB7XG0Bob0K7H2axdsoT+vxlCesuW1n5ThGhipLgtorXG6XSSlJTUoK9bXl5OixYt8Hg8JCYmYpomBZ98CD4/phHA8LhQNhsoUPaq0rbbqnZMGpqqLWoTtAnaMDHNqq1wQxuYhgptfWuChknQhKBpEtAQMAwMDQGz6nbLjh3ZnZuL89ChRi1uj8dDVFRUzaQNomkyDAOv10tCQoLVUepUfRTXyTh3QYrbAps3byY/P58lS5YwdOhQevXqRbNmzRrktVNSUigqKiIpKQmXy4Xdbic+xkFltB3T78UMgrbZwAbapsCmsNltKFVV1srUYGq0qTENA7NmSCS0hW1UDY34TU3Q0FXFHdriDoS+9puhYZNgABrpOO5AIMDKlStZs2YNWVlZdO7cmQEDBjTKuoS11q1bR15eHmvXruWKK67goosuIjEx0epYNbTWrFixgk2bNgGQnZ3N4MGDG/U6PbJz0gLTp0/n66+/5pFHHuHpp59m/fr1DfbaHo+nZis+Jiam5tR30+fF9LgwPC5Mj7vqw+vG9HowPW60O/TZ4z7scR4MjxvD4yLocRPwuAl4qnZKBl1OAm4XPpcLv6sSn8uJz+XC63Ljc7nxOisxAoEG+3f9lMvl4ve//z2DBg0iNjaW8ePHN9q6hLUmT57Mvn37GD16NFOmTGHv3r1WR6rFNE3Gjh1Lx44d6dixI2PHjv3ftIGNRIr7JFu6dCm9e/dmx44dPPfcc7zyyissWrSIioqKBnl9u92O2+2umb1Ga02U3UFl7g/4SosxXC6CbidBj7uqgN1OAi43/pqjRJwE3W4Mt5OA20nA5STgqloecDrxOyvxu5z4XU58TidFW7/DU3YIr7MSr7MSj7MSr9OFp9JJoBGL+5577uHhhx/mscceo1u3bkyfPp2cnJxGW5+wxiuvvMJvf/tbPv74Yz766CNef/11cnJywupopfvuu4+//OUvPPfcc0RHR/P6669z3333Neo6ZajkJLv88su54447uP322znvvPOYMWMG11xzTYONdVcfN62UqrmWdkyz5uCIpuKHzagOndAxMWibDW1XaKXxuypRMfHgcGAEgwT8QXxeN2Vbv8MfDOINanymxhs08BomPgOSOnXHiI7GER+P1+UmqBQBQ+MzqoZM9u3ZTfnBg6hGOo572rRpjBw5krlz52Kz2bjrrrv47LPPGmVd4udrqGGCESNGcN1115GTk0ObNm144IEHuOeee8LqpK7HH3+cwYMH8+abbxIbG8tvfvMbPvnkk0ZdpxT3SRYdHc3555/P22+/TW5uLnv27GH48OEN9otefVnXyspKEhISCAaDkN2HjL6XULT8PQyPi9R2HTDi4zFsCrvSGEUFqKgYiI7GX1mOr/gAfqNqHNtnmAQNjT+oCRgGwaAmYJgUbPoGXxCimrXAFwhCQiJEx+LXirLiUnbn5nLxbeNIb9WqQf5dP5WWlkZWVhZz587l0KFD9O3bl/j4+EZZl/j5GuoaNbGxsfTv35+XX36Z9u3bEwwGadmyZVhd5z0hIYEePXowe/ZsALp169boO1GluC1w5513ctttt/Hxxx8zceLEBn3t+Ph4ysvLsdvteL1eoGor3OPzEzQ1PreLyqJ9xDfPxFNWil2b4HWD34dJ1Y5IU4cK24SAofGHdjoGzaojSgz9vx2Wrn0F+AyNxzCJyWiOy+enpOggpgnte2QT10g7keLj41mwYAHr16+nVatWZGVlNcp6hPUeeeQRysvL+c9//sODDz5odZwj2Gw25syZw9atW1FK0fkknLsgxW2R6OhorrnmmgZ/Xb/fT2JiYs0x3IZhYBgGcVlZBO0OCAZQlZXo6Gh0yUHs2kQpW9UZ74ChzaqTasyqk278psYfOmIkYEJAm6EjS0In4WiNQdUx3j6vF4/Tg6kUMYnJeH0+TNNs1D9re/fu3WivLcJHSkoKgwYNsjpGvbp06XLS1hU+A0WiwVT/mXr4n6vtR/wOW7OWuA0Dt9uLq7wcT8DAEzDxBEzcQRN3wMAdNPEENb4g+IImvqCJP1hV4AHDrPowNUbwf1vhfsPEROGqcOHxeAgGTc6+6koG3HqLVd8CIZo02eJuYqKjo/F4PNhstqrxbf43ea8ttTnBPXlobWA43dgME7vSVedMVu/MpOokHKP65JrQlrcvVNp+s2pHZSB04o3fDD0WMKgaQuly0QDs2IiPjQurnUhCNBXyrmpivF4vycnJQNWOnaioKEzTxDAM2o26C5+h8AZNPF5/1dZ2MPQRMPAGzaojRwKhz4bGZ2i8hok/aOILfQ4GNf7Q+HfQ1FXj4IEgXq8Xe2wMthgHV46/g4qKirA6bEuIpkK2uJuYpKQkiouLiY2Nxel0opTC4XBgt9s54/yLWBufiL+yHJuCKJvCZiqU0tVXdf3fae9UbXFXX4/EHyrogAF+E/ymgc+AgFH1OL+h0VEOLhw6nG3/3UDb7t1JSEiQiYKFaATH3OJWSp2ulPpMKfW9Uuo7pdQfQssfVUoVKKU2hD5+fdhzHlZK7VBKbVNKXdGY/wBRm9PpJCUlBa01sbGxOBwODMPANE3cgQCXPDe35nhst1E1tu0JmLhD49wew8ATNA7bAjfxBgz8QQN/9VCJYeIPVp/ebuAzIWiYdLmwH99+9hkTXppNdHQ0Tqez0c8gE+JUdDybQ0HgPq31f5RSScC3Sqnqo8tnaq2fOfzBSqmuwHCgG3Aa8KlS6kyttfzNfBJER0fj9XprzflYPc4cHR1NTGYLWl50CXu+WoEtdGlXRdU4t8aGRtdcytUIXco1GLqwVNU1SXTNIYJ+08RnVI13xySn4PH6Of/Xv6Zl27YYhoHD4Qir422FaCqOucWttS7UWv8ndLsS+AGo76DZ64C3tNY+rXUesAPo0xBhxbHFxsZSWVmJUgq/349pmtjt9qqLTcXHE5Wazml9LsQX1KGjSqq2rD1BXfU5dJSJJ2jiM6rGub0GoY+qrW2fUbWDsmqoxMRUUXS75FI8fj8XXns9ScnJGIZBQkKCFLcQjeBn7ZxUSrUDzgHWhhZNUEptUkq9qpRKCy3LAn487Gl7qb/oRQOqqKigefPmmKZZVdRRUQQCAQKBAIcOHSIhPp5uw0fTetDleMyqoRBXwMDlN3CHDg90h4ZKXKEC9wYMvMEgvoCBr3rHZdDEb5gYdged+w2ktLiEcy+9jKzu3SkrK8PhcFBcXCw7J4VoBMdd3EqpRGARMElrXQG8CHQAegKFwLM/Z8VKqfFKqfVKqfWBgOfnPFXUIzk5mdLSUmw2G263m0AggMPhwOFwkJqaitvtxu5w0OayXxN0xNUct+0xdNWx3Ebo66D+3xEnQRNvUOM1NJ7qMW5TQ2wsmR06oqPsuCvKyerSheSUFFJTUwkEAqSnp8uck0I0guPa5a+UclBV2gu11u8DaK2LDrv/ZWBp6MsC4PTDnt46tKwWrfVsYDZAUlILHboGuThBbreb5NBQRfUs79XHc/v9fmJjYzEMgz43DMVTWsLSRx+h9mjG/47nrjr9nZpT3IM6dBq8aaKVncTkNIiOoTAvn/FPP023/v3xeDwopYiKiqKyspLk5GQpbyEa2PEcVaKAOcAPWusZhy0//OpBNwBbQrc/BIYrpWKUUmcAnYB1DRdZ1CcuLo6Kigq01ni9XoLBIDabDZvNRkJCAl6vF601FRUVDLztDi5/5FGCdkfV1nToeG5P0MSv7HgOW+Y1TPzahjdo4AtqfCjcHi/78/cw8v/9mU7nn191JcKYGGJjYwkGgzLGLUQjOZ4t7ouAkcBmpdSG0LIpwM1KqZ5UXeIiH7gDQGv9nVLqHeB7qo5I+b0cUXLy2O12oqKiiIqKqjnlvfr24fdFRUURHRND31t/S8deF/DJiy9QUXwQqPqB9r3lVr5a+Dpag2lqouLiOb1HD35YswZTg0aR3qolt06ZQvrppxPlcNS8bvU6o6KipLiFaATHLG6t9deEJgL/iWX1PCcHkKvaW8Bms9U7DVpKSgpAzWUnMzMzyczMpNtRpv26fMztvziHzAEpROORU96FECLChMn5yJqYmFKrQ9QpOroCr9dLaWn4ZnS73TidzrDOGAgEKCsra7CL7DcOI6x/F2NiyrAH7MSUNv5M4r9UtDMat9sd1r+LXq+XioqKsM5Y3/tEhcObKD09Xd9///1Wx6iTy+Xi4MGDtGvXzuoodSosLCQmJob09HSro9Rp27ZttG/fPqyHUTZu3MjZZ59tdYw6BQIBvv56F4cONf7F+n+p2NhSzjnHR6tGmv2oIeTl5ZGZmdnoM9WciGeeeYbS0tKj7yTSWlv+kZmZqcNZbm6unj17ttUx6vXBBx/o1atXWx2jXo8//rguLS21OkadTNPUEyZMsDpGvUpKSnSvXjm66pJg4fnRsuXXevHixVZ/q+o1a9YsnZuba3WMeoV68aidKWPcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwTba4V69eHdZTZAWDQdatW2d1jHqVlJSQm5trdYx67dixg5KSEqtj1Oubb74hGAxaHSOiuVwuNm/ebHWMeu3du5eCgoKTsq4wmXOy4axfv54PPviA2NhY/vWvf3HxxRdz2WWXWR2rlnfffZeNGzcSHR3NkiVLGD16NGeeeabVsWp55plnqKiowGazEQgEeOSRR4iLi7M6Vg2Px8O0adNwOByYpklSUhKTJ0+2OlYtO3bsYO7cucTExLBkyRKys7MZNmyY1bEizssvv8zu3btxOBy89dZbTJo0iebNm1sdq4Zpmjz22GM1G4pKKf70pz9hszXednGT2uLWWrNhwwZM0+QPf/gDLVu25PPPPw+rLW+tNf/85z/p3r07d999N0VFRezatSvsMs6bN48bbriB3/72t3zyySe43W6rY9Xi9Xr597//zejRo7nxxhuZP39+2H0Pd+3axf79+5kwYQJnn302H374YVhljARaaxYuXMill17K+PHj2bhxI8XFxWH1fTRNk7fffpvhw4dz8803884772CaZqOus0kVd35+Pps2baKyspJf/epXjB49mtjYWFavXm11tBrvv/8+F1xwAXPnzmXy5MlMmzaNhQsXUlFRYXW0GlOnTiUnJ4fbbruN5cuX88YbbzB+/HirY9Uybtw4Jk2axI033ojP5+P5559nypQpVseqUVlZyfz588nKymLw4MEMHjyYiy66iEWLFlkdLaL87W9/48477+Shhx7ixRdf5B//+AdTp05t9GL8OcaPH8+TTz7JLbfcwvbt20/K+6VJDZWcccYZZGdns27dOv75z3/y1FNPAXDRRRdZnOx/fvOb3zBy5Eh+9atfMXz4cCZMmMDtt99OSkqK1dFqPPHEE3Tr1o0ZM2bQsmVLbrjhBr788kurY9Xyyiuv0K9fPxYuXEhRURGTJk3i+++/tzpWjeTkZEaNGsVLL73EsmXLeP3111m7di0LFy60OlpEmThxIgMHDmTSpEmcd955jBw5kpdeegm73W51tBovv/wynTt3Zt68eQAMGTKEbdu2Neo6m1RxA/Tr1w+tNX/+85/p3r07PXv2tDrSEcaOHcvWrVt5+umnueKKK+jWrZvVkY7wxz/+kS1btrBmzRomTpxIfHy81ZFqiYuL4w9/+AMffPABSUlJ/PGPf7Q60hG6du3KlVdeyTPPPEOnTp24/fbbrY4Uke6//37y8/N55ZVXGDFiBC1btrQ6Ui02m42pU6fyxRdfoJRi6tSpjTq+DU2wuLt06UKXLl3YtWsXZ5xxBkopqyMd4eKLL6Z///78+OOPtGvXzuo4RzV8+HBcLhcul4vMzEyr4xwhJiaGcePGceDAAeLj40lMTLQ60hFat27NuHHjyM/P5/TTTw+rrcRIcs011+Dz+SguLiYrK8vqOEdQSjFmzBjKysoASE1NbfR1Nrnirta+fXurI9TLbreHbWlXS0hIICEhweoY9QrH/6n8VLj/nCNBTExMWJb24U5GYVdrUjsnhRDiVCDFLYQQEeaYxa2UilVKrVNKbVRKfaeU+nNo+RlKqbVKqR1KqbeVUtGh5TGhr3eE7m/XuP8EIYQ4tRzPFrcPuERrfTbQE7hSKXUB8BQwU2vdETgEjA09fixwKLR8ZuhxQgghGsgxi1tXcYa+dIQ+NHAJ8F5o+Tzg+tDt60JfE7p/sArHQzuEECJCHdcYt1LKrpTaABwAPgF2AmVa6+or5+wFqnf5ZgE/AoTuLwcyGjK0EEKcyo6ruLXWhta6J9Aa6AN0OdEVK6XGK6XWK6XWezyeE305IYQ4Zfyso0q01mXAZ0BfIFUpVX0ceGug+nqGBcDpAKH7U4AjrruptZ6tte6tte4dTledE0KIcHc8R5U0V0qlhm7HAZcBP1BV4ENCDxsNLAnd/jD0NaH7V+pwupSXEEJEuOM5c7IVME8pZaeq6N/RWi9VSn0PvKWUmgb8F5gTevwcYIFSagdQCgxvhNxCCHHKOmZxa603AeccZfkuqsa7f7rcCwxtkHRCCCGOIGdOCiFEhJHiFkKICCPFLYQQESYsLutqmiarVq2yOkad9u/fT2FhYVhnzM/P59ChQ2E1pdNPlZaW8s0334T1pWLdbndY/5ydTiexsaW0bBm+GdPStpGfXxnW38fCwkI2bdpEUVGR1VHqVN97OSyKW2tNSckRh3qHjfLycjweT1hndLlczJ1ro7IyfDO2aePn/PMP4fV6rY5Sp0OHgowcGb7fw6goN62u/Ia4B963OkqdovOScbmGhfX7xev18kjZI3ijwvd30ad9dd4XFsVtt9u59tprrY5Rpx07dmAYRlhnNE2TAwdasH9/X6uj1CkjYxOXX345aWlpVkc5Kq01CxZ8Ql5e+P6cY2JKSW75DHnX5lkdpU4tV7WkW3G3sH6/FBYWsm/APso7llsdpU6J9rpndZIxbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3M8//zxaa6tj1Mnn8/Hyyy9bHSPiffrpp+zYscPqGKKRFRcX8+6771odI2w0ueJeunQpAwcOpEWLFgwaNCgsyzEnJ4drrrmG6OhoBg4cyNq1a62OFHGcTicDBw5k1apVPPHEEwwbNszqSKKR3H333dxxxx3s27ePgQMHsnv3bqsjWS4spi5rKH6/n/z8fG644QbOOeccHnvsMf7973/jcrnCZoLa8vJy9uzZw7333stZZ53FoUOHyMvLo3fv3tjtdqvjRYz8/HyaNWvGkCFDaNmyJbfeeiuFhYW0atXK6miiARUXF1NQUMCDDz5IVlYWBQUF5OXl0aZNG5RSVsezTJPa4q7+Ie/fv59nn32WTp064XA42Llzp9XRavz3v/+lffv2LF68mDfeeINBgwaxbt06PB6P1dEiyoIFC+jXrx/Tp09n//79DBs2jCVLllgdSzSwzz77jAEDBvDSSy+xfPlyrr/+ehYvXhzWw6AnQ5Pa4j7ttNPo0KED8+fP5/XXX2fcuHGcffbZZGdnWx2txsUXX8ycOXMAuOGGG7j11lvJyckhMbHuiUHFkR5++GG6devGP/7xD5YvX87s2bPZvn271bFEAxs6dCgDBw6kT58+dO3alTFjxrBkyRJstia1zfmzNaniBhgyZAj9+vVj0qRJTJ8+nebNm1sd6QhPPfUURUVFTJs2jYULF9K6dWurI0WcpKQkVqxYwaJFi+jcuTPLli2zOpJoJPPnzycvL493332XJUuWcMYZZ1gdyXJNrrhTU1NJTU3l3XffxWazheU42GmnnUarVq2YP3/+Kb/l8EvZ7Xa6dOnCww8/jFIqLH/OomG0bduWNm3aMGDAAHm/hDS54q4W7jv6pGwahryRTw3yfqntmL/1SqlYpdQ6pdRGpdR3Sqk/h5a/ppTKU0ptCH30DC1XSqnnlVI7lFKblFLnNvY/QgghTiXHs8XtAy7RWjuVUg7ga6XU8tB9k7XW7/3k8b8COoU+zgdeDH0WQgjRAI65xa2rOENfOkIf9R2Lcx0wP/S8/wNSlVJycK0QQjSQ4xogVErZEnWskwAAIABJREFUlVIbgAPAJ1rr6lP9ckLDITOVUjGhZVnAj4c9fW9omRBCiAZwXMWttTa01j2B1kAfpVR34GGgC3AekA48+HNWrJQar5Rar5RaLyefCCHE8ftZu+S11v+/vTOPs6OqEv/31tvXfr1kIwtJSIyBsCeRiCAkEMBBFmUUdYAfi6BjQAWGwDgBZUYENBBxcADZQhBBkQgCKkhAPsPIEgJkkURCSEhn6e708paq9+rVcn9/1EJ3yNKJSV4/qO/n8z5Vr+7tqtP3vXfq1LnnntMDPA+cLKXc5LpDdOA+YKrbbQMwstefjXCPbX2uu6SUk6WUkxOJxO5JHxAQEPAxpD9RJYOEEDl3PwGcCKz0/NbCidE5A1ju/skTwLludMlRQF5KuWmvSB8QEBDwMaQ/USXDgPlCiBCOov+1lPJJIcQiIcQgQABvAt9w+z8NfA5YDWjA+Xte7ICAgICPLztV3FLKpcDh2zg+fTv9JfCtf1y0gICAgIBtESw7CwgICKgzAsUdEBAQUGcEijsgICCgzggUd0BAQECdESjugICAgDpjQKR1NU2TO++8s9ZibJd8Pk9ra+uAlnHNmjWMGpWkpWVprUXZLtnsWhYsWEAsFtt55xphml1MmjRwP+dQqELDew1MunNSrUXZLslNSf5a+SubN2+utSjbZfny5RyQP4BqQ7XWomyX9833t9s2IBR3KBRixowZtRZju7S2tqIoyoCWMRwOc9RRTRx88MG1FmW73HPPWv7zP4/BMDK1FmW7nHjiEhYuHLifc6FQ4Le/bef8GdteHiGRSGyklAiEfwxAESH/2N5k6dKl9PT0cOyxx+71a+0u+XyeuVPnDujqU9OUadttGxCKWwjBuHHjai3GDnnnnXcGtIzLly9nyJAhA1rGVCpFsTgaXW+stSjbQaIo0QE9hl1dXaRSKcaMGUNnZ6dzMGFQUHtoaMjxVvvzvKQ9SbHSjW0KUkoTqq6i6SoXjv0B8UiCYekRNKaayefzRCIRSqUSLS0tbNmyhWw2i6ZptLS0oKoqoVAIwzCwLItQKISqqn5bQ0MDHR0dtLS0AB8UtWhrayMUCg3ocWxoaGDEiBGMHDmSUqlEIpFAVVUikQjhcJhyuUwmk/HbdF1HCEEkEkHTNLLZLMVikUQigWEYxGIxv4BxNBqlVCqRTqdRVZVkMolpmti2TSwWo1gskslk0DSNeDyObduYpkk4HCYej/sFI3ZUJGRAKO6AgIBdo2yWWFZ+gZKZp7Wwgs7KZuJdGYQdZrAyhuGJg/nbltcIhzJMyhyGkg7xVtdfeXL1I5y0/z8zY/9TGRIfjpSSeDyOruu+EvGUk23bvjLylIjXVwiBpmlEo1F/G41Gazkku0WpVKKhoYFSqURjYyOmaWIYBk1NTXR3d9PY2OgrYSkluq7T0tJCd3c3TU1NaJpGMpmkXC4jhMC2bf+cnZ2dNDQ0kM/nCYfDKIpCV1cXuVyOzs5OstkshUIBIQSxWIxyuUwsFutXpZ9AcQcE1CGKULjt1dsxLJ0R2RGMbRxLLJTi/kULyGaifGL/YXSuU+nUV3DopB6aooMxLJthiQNYsXkpmGEGxYZw0idOA/CVjrevKAq2baMoCqZp9rm2V0bMU+YDtbZrf0gkEpRKJcLhMIVCgVAohKIo5PN5Lr30UiZPnswll1yCpmn+/9zT00M8HqdQKBAOh6lUKoTDjipVFMW/uTU0NFCtVkmlUti2zfz583nuuee48847aWhowDAMv01K2W+lDYHiDgioS2KhJP815eec8cjptEctVoe7SIokTWJ/kpUY2to0WzaUWbm5nVhyGfHOJrqbtpAKNxFWouQLFSrVKkeNOJawjJBKpVBVFSGE8+gfkVQrKpFwCEQcW0pCoRC6rpNKpTBNk0gkgqqqZDKZulXcqqrS2NhIoVAgnU5jWRaGYZDNZnn66ad5/PHHsSyLc889l1wuh67rZLNZ3+IulUpEo1EqlQqAb3Hncjl6enpoaGhgw4YNPPfcc8yePRtd17nvvvvo6ekhm81SKjk1ajxln0gkAos7IOCjSqVSYeyg0fz6S7/mK7/5Mq+vfZ2IGaY52oSsgl21+dFXbuTlZX9lVHYUf1rxJ4aPbGTt+x3EMmk2dXRSqZr86NkbuO7UH6CqKtlsFl3XicgKD845EtusgJB84d/eIJEbim3b5HI5VFUlHA6Tz+dJJpN0d3eTTCZJJpO1HpZdJhKJYJomoVAIy7KcSd1ehYnL5TKzZ89mzpw5PPPMMxx++OG+P9o0TRRFQUrpP3V4bg8pJdFolKVLl3LyySeTz+cBJ4ggFAr5bqVIJAJ88JQTWNwBAR9hkskkHR0dDE/tx/984Q4u/fWltHe3M655PCEZwq5a/OalR0iFUpQrGtFwhLZXw3xy/8lsbH+XQnM7LcZIfvWnR5g5+mQ+96nP0dHRQTwKr//pp+RLBoNHTWb8YScgIkl0XScUCtHV1eVPTjY1NdHR0UFzc3PdWtzhcBjDMFAUBcMw/P/j3nvv9a1ogGq1yle/+lXOOecczjzzTEaPHs1NN92ElBLLsnwFHIlE+PrXv05bWxsPPfQQDz/8sK+0ASzL4q677uLrX/86tm0TDof9eYRQKNR/uffEPx8QELBv0TSNdDoNwOT4ZH51zkOc/oszWNm+ikw4Q0Ik0IVOh76FzR2b6NrSxT9NOZWW6H7YhDgkPZln3voDTbEwMSVCsVgk376a3z8xj/Z1ixk8/AiO+dJccoNHowhBKBTCtm2am5t9i7uzs5NMJlPXFne5XKapqYlCoUA2m8U0TarVKg899BDVat8Y740bN3LTTTfx1FNPkUqlWLx4MZZl9emjKApPPfUUUkreeOOND11PSsldd93F2WefTS6Xo1QqIYQgHo9TrVZ9i39nBCsnAwLqEM86k1KiCIVxTeN57hvPMW7oJyhUCqza/HcWr1vC0vVLyaSzTDloCmWjzPtt6xBhhcKGKscdcArpZJg5D87ivY2reX/1clYue51jTruGL85aQPPQsQicx3hPoXhhgUIIwuEwtm0TCoU+ZC3WiwXu3XhisRhdXV1omgaAYRh+n1tuuaXPGo7ly5fzyiuvfEhpg+PjXrJkSR+lPWTIEObPn++/D4fDDBo0CMMwaGhoIJVKAc5TVOAqCQj4CKMoCpVKBeFaw4ZhMLRhKH+85EmeWvYUTy57mr+u+D82d7ahVVU67RB6qIpdtcGEt1f9jZlTTuLYlrMYPE1w6S1fYUJHiMMmz+ATR55CMt3gK2kv6kEIQbVaJRKJYFkW0WjUn6TcWuF4j/8DHS8MsFAo0NTU5FvcnusDHCW+cOFCGhsbt6msd8aMGTP63AhM02TLli3kcjny+bxvcQfhgAEBH3EqlYrvmiiXy6RSKXp6eshkMkwfN4MvTjmLPy75I5uLm6lWqmTiacpaGb1cBSkwjzcZNWQk06dOp6mxiezmJtb/31uc+IVv0TJ4Pzo7O0mlUhiGQTgc9pW0F58cj8fp6enxF+5kMpm6jOP2wgEjEcdd5E0Q9lbQiUSC3S1ofsEFF3DzzTfzzDPP+MdCoRDZbLZPOCA4C3cCizsg4CNMMpmkUCgAzg/eW43n+WxVVeWkw08i39NDMhql3NPJ+/P/m8rqt4kPG84nv/ufVCMRQsCWzZvY/MZGYqnBjBw1jkJXF42ZDFXDYPXvH+P13yxAROJ88rQvccBx02lsbsayLFpaWiiVSjQ3N/txzPWGruuk02k0TSORSPirGOPxuN+nWq0Si8X8yJNd4fTTTwfoM9EppURVVVKplH88Go32scp3Rn2OdkDAxxxVVf3VfOVymXQ67ccNe9u2N15BtL7H2qd+TSSR4pAf3ApKBBFSsLZs5u05V2MJBbtiY7+9jMGHHMHaR+9n/YvPoxULpEeOYcIZX+Hz18/FNg3+tuhZHjz/K0QbGpl+2eWkh+7H/uPHk8/nSSQS/mRpPdHbfy+l9F08v/vd7xg6dCjFYpF169axZMmSDy1E6g+rV6/myCOPZPXq1f71zjzzTH9OoHfo4a7MCwSKOyCgDonFYn183NVqlXg8jmEYxONxtrz4J9bNncPIsy/ioKtuQAhQV72NpxukEEyacwtSQGXzJhpf/l+q1SohoTB51lUQjqCXNaplDa2zHVtK9j9yCqOOnEq+q4vfXvs9siNHcd5P5pHIZuvW4o5EIui6jqIo/lJ+IUQfC/lnP/sZP/vZz3br/FdccQUbN25k7ty5gDM38Z3vfIdYLIZt20SjUf9msStjGESVBATUIV40R+8FILZtI4Sg44U/8s687zP6q5eQHfsJ9A1r0VvXISoqoqJCRYWySvndlWjvvI1Z7GHw1Gns95nP0jBqDOWOzagb1lPp3IKpqphlDUPT0IslKoU8oVCIz55zLoX167n7X7/ph7HVI15Ypedv9hTp3Llzd9uvvTWe0gbnc5szZw75vDOOpVKJcrns50Hp7zjW520yIOBjjhfVIYTwV/JpmobobKPtdw8y6oyvEWtqwc53oqAghLsiEBCAjQTb2ceWVLUSlpSYNli2xJYSWzr7pre1JRY2hgXRWILPfPVfePynt/LfF5zPlQ/9qrYDspt4y9fj8Tjd3d1IKbn99tv5yU9+0sc10tjYSCgU6hMW2d3dvc1zNjQ0EIlE/Bupbdt+Xykld999N6FQiOuuu86PVLEsa5fCAQOLOyCgDvF82l7muXw+T66hgc3L3iDbMpRUrhm71AMVDaGXUHSNkK6i6Jrz8qzvsgqVEpRVbE1FaiUsrYSplTDVIlW1hFEqUi0VqapF9KKzrZQK2KbBiRdeRHdrK8X29loPyW5RLBbJ5XJUq1UymQx33nkn119/fZ/FNwceeCBLliyhtbWVd999l/b2dhYvXsyUKVM+dL6JEyeyaNEiWltbWbZsGa2trbz66qsceuihfh/Lsvj5z3/OzTffzMaNG1FVFXCs//5a3IHiDgioQ7yERLFYDMuynLC2fA89f/kjSiKOUeyGioYsa1BxFLWia4R1lZCuISoa6Jrfx9JUZFnDLqvYZQ1b0zA1DVMrYWgqVW+rqlTVElW1hK6WMCpVIqk0LzxcnxZ3IpFA0zTC4TBtbW1ce+21fdoPOugg7rjjDpqamnxfeKFQYNCgQcydO5fx48f7fWOxGFdeeSXjx49H13UymQyGYTBkyBDuuecepk6d2ufcc+fORVVVvyLUroQDfuQUt5c74IILLvCTlw80bNumWCxy2WWX+YltBhqWZfHaa69x9913D1gZBzred/Hb3/42hUJhj34XvSRHXqKjarVKRBFU1vyNaHMLdlnFKmuORV12/NqhSplQtYyiawi97Cjtiuq8XIvb0pytqakYmopR9pS25ihsTUVXVfRSiUqphF7RGDp6f4w95A/eFrZts27dOn74wx/u8e+iYRhEo1Fs2+Yb3/jGhxTnpk2buOqqqzjhhBOYNWuWn7/cNE0OP/xwZs6c6fedOXMmxx9/PNVqlXA4jK7rXHPNNZx88snMmjWLdevW9Tm3EIJvfetbfhjgroQafuQU9/z585kwYQKXXXYZhxxyCNdff32tRfoQF198MSeccAJf+tKXGDt2LH/+859rLdKHOOyww7jzzjvRdZ1hw4bR09NTa5HqjkWLFjF27FjOOussZs6cyUUXXbTHzu2Fr3l+VD+kzbawKxpmueQo47JjSVMuIysqlDVk2du6FrbmbM2yo7DNsoqheu4Sz8IuopeKVEsFV2mrVEolKoUCFbW0x/6vbeEpvgkTJjBy5Ej+/ve/77FzewUMQqEQ99xzD7/85S/7tHd1dfHyyy/T1dXFjTfeSCgUQtM0YrGYvzjJI5PJMGjQIJLJpD/Zee2111KpVHj55Zdpa2vrc+7bbruNxx57zI8Z771ac2d8pBR3T08PGzdu5MILL2Tp0qUsXLgQKSWtra21Fs1n5cqVtLS0cO6555LP57n99ttZunQpuq7XWjSfF154geOPP55p06Yxbdo0Zs+ezdNPP11rseoKXdd56623uOCCC3jnnXd47LHHGDx4MCtXrtwj569Wq0SjUd9VEo/HqZQrWKpGpW0jlqo6L011FHC5hKGqGCUNU9UwNdX1ZTvthqpiqk6/qlrC0JxttVTEKKlonZ2UOtpdhV10XyoVtYSuaeyt57HFixdz0EEHcdpppzF48GBuuOEGnn/++T329NI7qVMoFOLFF1/8UJ+JEyeycOFC0uk04XCYv/zlLzz44IM8++yzHHrooZx33nl87Wtf46ijjuKVV17hoYce8hNNxeNxHn/88T4+bo/XXnsN0zT9J4hdeZL4yEWV9K7OMRAf7z3rSFGUD6WSHCj0rn7S25oL2DV61w70FnfsqXGMx+O0t7cjhCCVSjl1EDNpbAmFlSsIjf8kIhEHRUGGBAg3ksQwEbE4lrQxbDBME3XjeiqqSsWyqVoS3ZTotoVuQqR5CGSyVLQyerWKMC2qbj/DllRNi3XLlzNuytSdC70b9P69eBEae/q76H3XS6USd9xxB6eddhqrVq1i1apVAH544I9//GOEEHR2dnL55Zfz6U9/mkcffZQzzzzTT896ySWX8Oijj3LLLbcATl6SOXPm9NFFw4cPZ8aMGTz44IPMnj2bZDK5y9+Nj5TFncvlGDZsGL/4xS846KCD+MIXvoCiKAOqkvOECRPo7OzkvvvuI51Oc+mll3LwwQf7ExQDgWOPPZYXX3yRl156iZdeeombb76ZU045pdZi1RWxWIxDDjmEe++9l7Fjx/LFL36Rjo4OJkyYsEfO7xXrbWhowDRNMpkMRb3KgbN/iNbVwZZlr6Pn875PuqKqaF1bKK1/D62Yp9zTQ/eSl8gveZnSujWom1rRNrWibtxAceN6iq2tFDa8z+YVb7D+5f9ly7ur0QoFSp2daMUi5WIJrVBk5Ssvo0SiHPiZY/bI/7U1Rx55JG+//TYLFy6kra2N//iP/+C4447bYSHdXSEajfo+6Xg8zquvvsq8efNobm72+6xcuZIHHniAT33qU9xwww189rOfpampyb+JeMm4vCXx6XSaz3/+89x7771MmTKFBx54gKVLl/rny+Vy3HrrrbzyyiuMGTPGT9K1KwtwPnIW93nnncc555zDxRdfzNKlS/fYB7wnueuuu9A0jX//939nzZo1A1LGN998kyVLlvDWW2+xadOmASnjQGf69OmsWbOGK664gmeffdZP37mnsCzL/1wcqzGEyDRimDaKqtL1tzdpGPdJFMskZFsIQ8fo2ACbWp1YbRsM26ZqOxZ01XSsaAs3dltCVa9SMSwq+SL6+vVULBszEiM1dD82rl1HsagxeuonmHTssXv0f+vNH/7wB1pbW1mwYAHr16/fo99Fr7Cvrus0NTXR2NjI+vXrqVQq/pMnOFb3e++9x4033siKFSt44oknuO+++5BSkkgk/PDBSZMmceWVV3L11VfzyCOPfOipX1EUyuUymzZtYuLEif4in0gkQqVS6bcB12/FLYQIAYuBDVLKU4UQY4CHgWbgdeAcKWVVCBEDHgCOBDqBL0sp1/b3Ov8o3hLge+65Z19dcpdRFIV0Os1tt91Wa1G2i6IoTJ48mcmTJ9dalLrF+y7Omzdvj5/bW6rtKW8vvWoJsONxqnoFDBO1pxvUAqJURFEECgKJxJI2tnQUt2mD4bo+nC2Yto3pLroxpcS2JZaUWDZYhkGpu4eKViYUiyPl3s2/rSgKo0aN4nvf+94eP3c6nfarsff09BCNRnn33Xf59Kc/zUknnUShUPAnMO+44w6klPz+97/35368avepVAopJVdccQULFizoo7RnzZrllzPzkoOtXr2a/fbbj2w2i2VZVKtVEolEv+XeFYv728DbQNZ9fxNwq5TyYSHEHcCFwP+4224p5TghxNluvy/vwnUCAgJ2gq7rfjSCpmkkk0knzerEg2n8zEza/vQ7bExkZydhYaOYNkIRCFdx27KXIpbS8W1bso8C95W3ZWNKMCzbWV1pSPTuPLaEUDzO56/6Nz9HSr3huZyq1SoNDQ1IKTnmmGOYPn06lUrFr0yjKArjx4/n8ssvB2DevHl897vfxTAMkskk1WrV98HfcsstvtK+7rrr+OY3v0k8HvdXucbjcSqVip/VEfCrxfc3NW6/njmEECOAfwLudt8LYDrwqNtlPnCGu3+6+x63fYYIZrYCAvYoqVSKUqnUJ5d0Q0MDugiR3X8cpg26YVPWypTLVTTLpmzaaKazLZs2FdNR1mVDOhOTtk3VllQtG0NKdFtiWhJTCqquxW3YNkoq7bgSogkM02TaiSfVZdkycNLj9h5Dz+VRKBRIJBIUCgW/uv3EiRP9vzNN068lWalUiEQifYoAe4wfP57GxkYikQiKopDNZimXyzQ0NPghg56lvSv5zPtrcc8DrgIy7vtmoEdK6S3mbwWGu/vDgfUAUkpTCJF3+2/pt1QBAQE7RNM0MplMn/18Pk8mk0EZPR5l0H5UNrdiyCohBCEFNzOgY6tJ2dfqNm3biRLxokUsC8NylHfVdZlULYlpQaW7B1vAITOOJ97UTEdHB7lczpennvDyvNi27StXcCxgrwiwlJJQKNRn8lAI4cddezlMer88vIVS3jHDMPxsjp6Ly/Oj70qI404tbiHEqUC7lPL1fp+1HwghLhZCLBZCLN5TWbgCAj4ueH7XcrnsT3h5j/X7H30c8eGjKFs2FdOmYnkWtk3FNKmYJmXTomxaH7T7StqdqLQkVYsPlLnlKG/DdlwoLaPHsGb5Ck7911lks9m6rH4DH4QCesq5d0y3l4HRC0ccM2ZMn8II3sI5z0Xi+b87OzsBp2TZpEmT/DZvJa2iKFiW1efvYM/HcR8NnCaE+BwQx/Fx/xTICSHCrtU9Atjg9t8AjARahRBhoAFnkrIPUsq7gLsAhgwZMvACrgMCBjDeD9/78XsREJ7Cmfxv1/P7f/k85XKJkBDOxKR0rG4J2IDtZQFEYppOJImjnG1MC6q2o8wN23ajTxwFHstkGTxuAoPGjaNp2DA/xroe8YoEZ7NZ8vk80WiUSCTiVxLq6uoik8mgaRq5XI5jjjmGxx9/HFVVmTVrFiNHjvQVO0Bra6ufCfDII49k2LBhfp50L6dMd3e3X1neK13mhST2l532lFJeA1wDIIQ4DrhSSvk1IcRvgLNwIkvOAx53/+QJ9/1f3fZFciCuhAkIqGMsy/J/6N4jvaZpRKNRyuUyubEHkBw1hvYVb6IIhZCf0tVGoiCFawG6k5OWLd0Uro7LxLCFb2kbtk3FclwmVdsik82hRKOMOfRQMrkchUIBRVHq0ur2sgNWKhVyuRy2bWNZFk1NTX5ZtnK5TCaTQUrpV4EH6OjooKOjY7vn9p6CvNzbiqLQ3d1NKpWiq6vL96F7bhevWHB/+EcCImcDlwshVuP4sL34u3uAZvf45cDV/8A1AgICtkEqlaJYLFIqlQiHw348sqZpNDc3o2kap9x+H7pho5sWZcNy3SPS2VZtyobjPtE9N4olKVtQMQUV06Zq2eiWc9ywbKqmRePwUYw/+hjiyRQzzz6bYrFIS0tL3U5OZjIZuru7iUajdHd3+3HVXgHkLVu2EAqFKBQKaJrGlClTGDly5E7PO3ToUI4//nj/hhCLxVAUxa8H2tLS4keyePH9uzKGu6S4pZQvSClPdffXSCmnSinHSSn/WUqpu8cr7vtxbvuaXblGQEDAzimXyySTSRKJhJ+Ev1Qq+RZePB5HhqMces5FjqK2HMWtGR/4tp3oEsvxf1uylxJ3lrXrpo3u+7sl2aHDGTt5KhvXruWE888nXyyRSCTo6enpU+qrntA0za+4ns1m/ZDGXC7nu0csyyKVShGPxzn66KOZP38+uVxuu+eMRqPcfffdHHfcccRiMYrFIoZhIKX0o1W6u7uduHu3Ag6wS2MYLIcLCKhDvOx0XpRCuVz2V/Cl02mnMEBjEy3TjkUZNIyyKdFMG81yQgI/CAuUH+xbNhXDcqxs0wkR1C2Lqi2JZhsYPG48ne1taMUSYw87jEwmg67rpFKpXcpsN5CIx+Ooqko4HEZVVT8c0LsJFotFQqEQlUrFr0k5ceJE3njjDe6//36y2SyZTIZsNks2m+XWW29l1apVTJs2jUwmQ7VaJZlMEg6H/bwylUqFTCaDaZokk8k++bj7y0duyXtAwMeB3kuxvYiI3rkzvEnLMVOnMfnci1h0648xNNX/e+kuxJHSmaS08PzdYEo3ftu2MW2beFML6SHD0MplYrE4Nz37jC9D70nReqR3eTGP3uXJerf1Tng1ePBgTjnlFN5//31M0/RXRgL+fIOXX9u2bT96pPdnBM78RO+ok/4SKO6AgDrES2zkKYNQKOQXVTAMw99Go1GOufAbWFLy5H/9ANlHQTkRJpbEien2lrVL/NWSphQoliTf3c3oYcO46Mc/RnEz4em67sck72qSpIFCb6XrrW4ExxL30uVCX2vYa+u9cKZ3SJ9hGEQiET9SxCuUAE46Xq/N+8x63yj6S+AqCQioQ7yY7Uql4if39455Vcu9R31FUZj61XM56ye3MeLwKY4/230NnzyV+JChVCzbfUnGH3scuo2zBN6GilbmiBNP4Pwf/YhkYyOxWAzbtkmn0+i6TjqdrsuIEsBXrN5iGE959la63lJ1zwL3Cih4bhUvNttLJx2JRPxizrZtEw6H/fZIJIJpmn3avBverjy11N8tMiAgAICmpibAeYRPJBIIIfxjjY2NCCHYb7/9/Pbp5/4/jvnnL2P1sgBDkQi2bWFbH1ji4WgUo1exXIBoPE40Hvetw2w2ixCC5ubmuo3hBucGGIvF+owhfOAu8dp641Vj31abx4781rvj096aQHEHBNQpvdObegpkZ9tQOt2vc8e3k4J2e+etV7xFTN5+7+NbH+tP274icJUEBAQE1BliICxqbGxslOecc06txdguuq77q6iTozRIAAAFj0lEQVQGKvl8nnA4vMeT9e9J2traaGtrQcqBG4GQy21g//2H77xjjbAsi87OTgYPHlxrUbaLqqpYlkU2m9155xrR2dlJOp0eUJWntmbBggV0d3dv06wfEIpbCNEBqAzcDIItBLLtDoFsu0cg2+7xUZNtfynloG01DAjFDSCEWCylHJDlVgLZdo9Att0jkG33+DjJFvi4AwICAuqMQHEHBAQE1BkDSXHfVWsBdkAg2+4RyLZ7BLLtHh8b2QaMjzsgICAgoH8MJIs7ICAgIKAf1FxxCyFOFkKsEkKsFkLUvOiCEGKtEGKZEOJNIcRi91iTEOJZIcQ77rZxH8lyrxCiXQixvNexbcoiHG5zx3GpEOKIGsn3fSHEBnf83nRL3nlt17jyrRJCnLQX5RophHheCPE3IcQKIcS33eM1H7sdyFbzcXOvFRdCvCqEeMuV7wfu8TFCiFdcOR4RQkTd4zH3/Wq3fXQNZLtfCPFer7E7zD1ei99ESAjxhhDiSff93hm3rasT78sXEALeBcYCUeAt4MAay7QWaNnq2M3A1e7+1cBN+0iWY4EjgOU7kwX4HPAHQABHAa/USL7v45S327rvge7nGwPGuJ97aC/JNQw4wt3PAH93r1/zsduBbDUfN/d6Aki7+xHgFXdMfg2c7R6/A/imu/+vwB3u/tnAIzWQ7X7grG30r8Vv4nLgIeBJ9/1eGbdaW9xTgdXSqaZTxalfeXqNZdoWpwPz3f35wBn74qJSyheBrn7KcjrwgHR4GaeY87AayLc9TgcellLqUsr3gNU4n//ekGuTlHKJu18E3gaGMwDGbgeybY99Nm6uTFJKWXLfRtyXBKYDj7rHtx47b0wfBWYIsXeSeOxAtu2xT38TQogRwD8Bd7vvBXtp3GqtuIcD63u9b2XHX+J9gQSeEUK8LoS42D02REq5yd3fDAypjWg7lGUgjeUs99H03l5upZrI5z6CHo5jnQ2osdtKNhgg4+Y+7r8JtAPP4lj5PVJKcxsy+PK57XmcGrT7RDYppTd2P3TH7lYhhLeOfV+P3TzgKsBLtdjMXhq3WivugchnpJRHAKcA3xJCHNu7UTrPNgMiFGcgydKL/wEOAA4DNgFzayWIECIN/Bb4jpSy0Lut1mO3DdkGzLhJKS0p5WHACBzr/pO1kmVrtpZNCDEJuAZHxilAE04h832KEOJUoF1K+fq+uF6tFfcGoHfJ5BHusZohpdzgbtuBhThf3DbvEcvdttdOwu3KMiDGUkrZ5v64bOAXfPBYv0/lE0JEcBTjL6WUj7mHB8TYbUu2gTJuvZFS9gDPA9Nw3AxeGujeMvjyue0NQOc+lO1k1/0kpVOw/D5qM3ZHA6cJIdbiuHynAz9lL41brRX3a8B4d+Y1iuOkf6JWwgghUkKIjLcPzASWuzKd53Y7D3i8NhLCDmR5AjjXnUk/Csj3cgvsM7byIZ6JM36efGe7s+ljgPHAq3tJBgHcA7wtpbylV1PNx257sg2EcXPlGCSEyLn7CeBEHD/888BZbretx84b07OARe7TzL6SbWWvm7HA8SH3Hrt98rlKKa+RUo6QUo7G0WOLpJRfY2+N296YWd2VF87M799x/Gjfq7EsY3Fm8N8CVnjy4PiengPeAf4MNO0jeX6F89hs4PjHLtyeLDgz57e747gMmFwj+Ra411/qfjmH9er/PVe+VcApe1Guz+C4QZYCb7qvzw2EsduBbDUfN/dahwBvuHIsB67t9dt4FWdy9DdAzD0ed9+vdtvH1kC2Re7YLQce5IPIk33+m3CvexwfRJXslXELVk4GBAQE1Bm1dpUEBAQEBOwigeIOCAgIqDMCxR0QEBBQZwSKOyAgIKDOCBR3QEBAQJ0RKO6AgICAOiNQ3AEBAQF1RqC4AwICAuqM/w9pIihoDh14YgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Essence de l'apprentissage Q : Équation de Bellman et algorithme d'apprentissage\n", + "\n", + "Écrivez un pseudo-code pour notre algorithme d'apprentissage :\n", + "\n", + "* Initialiser la table Q avec des valeurs égales pour tous les états et actions\n", + "* Définir le taux d'apprentissage $\\alpha\\leftarrow 1$\n", + "* Répéter la simulation plusieurs fois\n", + " 1. Commencer à une position aléatoire\n", + " 1. Répéter\n", + " 1. Sélectionner une action $a$ à l'état $s$\n", + " 2. Exécuter l'action en passant à un nouvel état $s'$\n", + " 3. Si nous rencontrons une condition de fin de jeu ou si la récompense totale est trop faible - quitter la simulation \n", + " 4. Calculer la récompense $r$ dans le nouvel état\n", + " 5. Mettre à jour la fonction Q selon l'équation de Bellman : $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$\n", + " 7. Mettre à jour la récompense totale et diminuer $\\alpha$.\n", + "\n", + "## Exploiter vs. Explorer\n", + "\n", + "La meilleure approche consiste à trouver un équilibre entre exploration et exploitation. À mesure que nous apprenons davantage sur notre environnement, nous serons plus enclins à suivre la route optimale, tout en choisissant de temps en temps un chemin inexploré.\n", + "\n", + "## Implémentation en Python\n", + "\n", + "Nous sommes maintenant prêts à implémenter l'algorithme d'apprentissage. Avant cela, nous avons également besoin d'une fonction qui convertira des nombres arbitraires dans la table Q en un vecteur de probabilités pour les actions correspondantes :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "source": [ + "Nous ajoutons une petite quantité de `eps` au vecteur original afin d'éviter une division par zéro dans le cas initial, lorsque tous les composants du vecteur sont identiques.\n", + "\n", + "L'algorithme d'apprentissage que nous allons exécuter pour 5000 expériences, également appelées **époques** :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " m.random_start()\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " m.move(dpos,check_correctness=False) # we allow player to move outside the board, which terminates episode\n", + " r = reward(m)\n", + " cum_reward += r\n", + " if r==end_reward or cum_reward < -1000:\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "source": [ + "Après l'exécution de cet algorithme, la table Q devrait être mise à jour avec des valeurs qui définissent l'attractivité des différentes actions à chaque étape. Visualisez la table ici :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXwURd7H8U/NmUzug4Rb7kMRQW4RFRFFlwVdXFRUdlFRQTxQ8FgUFVRQ1xMeZBE8F0VXF1R0PUCUS+VQhKDcoCQkQO7MPdNdzx+ZzMJKAMlMepLUm1deyXSa7u8M5Jea6qpqIaVEURRFqTtMRgdQFEVRfh9VuBVFUeoYVbgVRVHqGFW4FUVR6hhVuBVFUeoYVbgVRVHqmKgVbiHEECHEdiHELiHE/dE6j6IoSkMjojGOWwhhBnYAg4FcYD1wjZTyp4ifTFEUpYGJVou7N7BLSrlHSukHFgHDo3QuRVGUBiVahbsZsP+Ix7mhbYqiKEoNWYw6sRDiZuBmAKvV2qNr165GRTkhn89HRUUFmZmZRkepVmlpKVarlYSEBKOjVCs/P5+srCzMZrPRUar166+/0rJlS6NjVCsYDHL48GGaNGlidJRqOZ1OgsEgqampRkep1uHDh0lOTsZutxsdpVpbt27F4/GIY35TShnxD6Af8NkRjx8AHqhu/6ysLBnLdu7cKefNm2d0jONavHixXLt2rdExjmv69OmyuLjY6BjV0nVdTpgwwegYx1VUVCQff/xxo2Mc1+rVq+WSJUuMjnFcc+fOlTt37jQ6xnGF6uIxa2a0ukrWA+2FEK2FEDbgauDDKJ1LURSlQYlKV4mUMiiEmAB8BpiBV6SUW6NxLkVRlIYman3cUspPgE+idXxFUZSGSs2cVJQo0HWd9evX8/rrr6PretW1HkWJCFW4FSUKunbtyrx58yguLqZJkyZUVFQYHekomqZx4MABo2Mop8iw4YCKUl99/fXXDB48mMmTJ1NYWIjP5+PTTz9l5MiRRkcDKvPt2rWLnJwcunfvzsUXX0zjxo2NjqX8DnWuxb1nzx7effddo2MoSrWCwSAWi4WcnBw++OADrFYrgUDA6Fhhs2fPxul0cvfdd/POO++wfft2oyMpv1OdanEPGzaMuLg4+vTpw5lnnsmKFStielKM0jANGjSICRMmsGTJElwuF4FAgN27dxsdC4BFixYxePBgrrjiCqZMmcK8efOYPHkyPXv2jOnJW0eSUuL1elm4cCGtWrWif//+xMfHGx2rVtWZFveePXuIi4tj7ty5jBgxgksuuYScnByjYynKMeXk5DBr1ixuueUW8vPzSUpKMjoSACNHjmTZsmUsX74cv9/P1KlTGTt2LA6Hw+hoJ83j8dC8eXN8Ph+fffYZnTt3NjpSraszhXvjxo307t2b8vJyXn31VRo3bsyqVavU1XolJpnNZkwmEyaTCYvFghDHnrlc20wmE0OHDuX777/HarWyfft2WrZsGTP5Tsbbb7/No48+Sq9evbj11lu58cYbWbx4sdGxalWd6Sr585//zJlnnklBQQFNmjRh0qRJ5Ofn16n/cErD0q1bN9asWcOWLVs488wzjY4TNnr0aPx+P0888QSnnXYabdu2NTrS79K8eXNeeuklCgoKmDBhAnl5eVx88cVGx6pVdabFDbBixQqGDh2Ky+WioKCAW2+9ldLSUqNjKcoxZWVloes6hYWFRkf5DZvNxvnnn4+UEr/fb3Sc32XAgAF8+umnBINBpk6dyjfffEOfPn2MjlWr6lThzszM5IILLuChhx4iOzub1157jYceeohdu3YZHU1R6pyBAwfi8/n45ptvjI7yu/Xq1YtevXpx0003sWnTJqPj1Lo6VbirVHWPpKamcuedd/Lmm2+yb98+Y0MpilIr5syZw6233sqIESPo3bt3g+wurZOF+0jt2rVjzJgxTJ06FbfbbXQc5RQsXbqUAQMGcPHFFxMIBNA0DU3T1IXnWmAymerUlPwZM2bQoUMHRo0aZXQUQ9X5wg3QqlUr5s6dy+jRo8nPz4/qufbu3RvT/8mDwSD79+8/8Y4xZMiQIXz22We89dZb9OvXj169etG7d282bNjAtm3b2LZtGx6Px+iY9dKDDz7IjBkzcDqdRkc5obKyMg4cOECXLl0aZCv7SHVmVMmJOBwOZs2axaxZsxgzZgzt27eP+DmWL1/OBx98QNeuXenVqxdnnXVWxM9RU2+99RabN2+mU6dODB06tE5MZbZYLFgsFhwOBxs2bAAqJ1lMnDgxXFDOPPPM8ASRgQMH1rmRELHKZrPF1KzO6pSVlTFnzhxGjhxJmzZtDMuxZcsWkpKSaNWq1Unt/9lnn7F//35atWrFRRddFLEc9aZwAzRp0oQxY8awYMECJk6cSHZ2dkSPbzKZeOSRR3jsscc4fPhwjQq3x+Nh3LhxEWm9t23blqpbv6WmpnLXXXdxyy230KlTpxoV7p9++oknn3yyxvmgslX9ewgheP7558OPly5dSlFREQD/+Mc/OHjwIABXXHEFl19+eUQyKrHr4MGDbNu2jQceeMCQ8wcCAW655RaaNm2K1+vF6/Uya9aso1r+q1atYv78+Uf9vbPOOouMjIyI366vXhVugPbt2zNx4kTGjRvHm2++GdFpvAMHDuTiiy9m9+7deDyeGq2ZEh8fz2uvvRaRt3xxcXFs3LgRqBwqdeGFF3LgwAFuuOGGGj3/Ll26MHXq1BrnA0hLS6vRtO+hQ4eGvy4oKAivtvevf/2LRx99FICLLroonNdsNh93NmBVK9NqtZ5yppNR9Uu0Z8+eMTN78n+98cYbXHPNNSxdutToKMek6zp33nknr732mmEZKioq2LFjB4899hgul4sBAwawbNmyo6baDxw4kAcffPCov9e0adOoLCVQ7wo3QHZ2Nm+++SYTJkxg6tSptG7dOiLH/emnn3j//feZM2cOmqZx//331+h4QoiI9dVVFe49e/bwxRdfcMcddzBu3Dj69+9fo+OaTLF3GaRx48bhdxIPPPBA+N9h+fLl/PGPfwQqf2BuvfVWoLI49+3bFyEEUkrWrl3Lhg0b0HWdXr160b9//6j1mWZkZFBSUoKu61E5fiQ0a9aMvLw8o2NUa/PmzWRnZ0f8HfTvcd999/H888+zevVq5syZg9PpZPTo0cycOfOo/Wrr56VeFm6AhIQEpk6dyuuvv871118fkT7RTZs28f777+P1ern44otjsqgtW7YMn89H69atadmyZUxmjKQjf/kNHjyYwYMHA5CXl8ecOXPC+3z55ZdAZd/57NmzmT17NmazmVGjRrF3796YvvN8Q7ZixQpWrFjBP/7xD0NzzJo1i06dOjF//nwmTJjAvffey5NPPmnYRdJ6W7gBWrduzfXXX8/TTz/Nk08+SUpKSo2ON2rUKFavXh3VFlpNTZw4kc2bN9OzZ0+joxiqWbNmPP744wD4/X6WL18OwL333ktFRQULFiwIv/2+9957eeaZZ4yMayghBFOmTOHvf/87kyZNMjpOmJSSzz//nEsvvRS73W5oFqvVyty5c1m3bh3Jycm8/PLLhuap14UbKi/cPfXUU4wePZoFCxaQkZFRo+Ode+65EUoWHTabrcEX7f9ls9m49NJLAejbty/9+/fnxRdfJCkpiT//+c988MEHBic0lhCCbt268eGHHxodJUzTND766COaNm1Kv379jI6D2WxmyJAhnH/++ZhMJsN/kdT7wg2QnJzMK6+8wvTp0xk/fnxUhgoqdUNKSgrdu3dn3rx5CCFo0aIFqampRsdS/kdJSQnz5s3jk09i637jsbLud4Mo3ADp6encdtttvPHGG9x00020bNnS6EiKAUwmEwsXLuSnn35CSskZZ5xhdKSYkJmZSceOHfnmm29iooU7e/ZsbrnlFqNjxKz6feXqf7Rr146xY8dy//33q+nxDdzpp59ea0XbbDajaVqtnOtUpaam0qJFi5i4OUkwGOTDDz9k2LBhRkeJWQ2qcAO0aNGCBQsWMGbMGHJzc42OozQAS5cu5ZJLLjE6Rp3x4IMP8tFHH8XsAIBY0OAKN1T2Uz377LOsXr3a6ChKA2CxWOrEtPKOHTty6NAhiouLDc0xc+ZMmjVrZmiGWNcgCzdUDhe7+uqrjY6hKDGjT58+7Nu3j4KCAqOjKCfQYC5OKopyYjNmzCA5OdnoGMoJqMKtKFEmhKgzt9bKzMw0OoJyEhpsV4mi1BYhhOFTtpX6RRVuRVGUOqZGXSVCiH1ABaABQSllTyFEOvAO0ArYB4yUUpbULKaiKIpSJRIt7oFSym5SyqoFMu4Hlksp2wPLQ48VRVGUCIlGV8lw4PXQ168D6vYkiqIoEVTTwi2Bz4UQG4UQN4e2ZUspq+7YWwAYt/q5oihKPVTT4YDnSinzhBBZwBdCiG1HflNKKYUQx7ypYqjQ3wyQmJjIzp07axglenJzcyktLY3pjIWFhei6HtMZXS4Xe/fupbCw0Ogo1fL7/TH9GpaXl+NyuWI6Y0FBQcz/vJSWlrJ///6I3PM1Wo5316QaFW4pZV7o8yEhxGKgN3BQCNFESpkvhGgCHKrm784D5gFkZGTIr776qiZRoqq0tJTc3FxiOePu3btxOBzhG+rGosLCQtauXWv4WsbH43Q6Y/rf2ev18s3hb/jgq9hdQ9yR72CQZ1BM364tLy+PjRs3smvXLqOjVOu4r5+U8pQ+gAQg6Yiv1wJDgKeB+0Pb7weeOtGxsrKyZCzbuXOnnDdvntExjmvx4sVy7dq1Rsc4runTp8vi4mKjY1RL13U5YcIEo2McV1FRkezxeA9JDP9pvLqxXLJkidEv1XHNnTtX7ty50+gYxxWqi8esmTXp484GVgshfgTWAR9LKT8FZgKDhRA7gYtCj5X/4XQ6ufLKK42OoShKBOzevZu777671s53yl0lUso9wFnH2F4EDKpJqIZAShnT3RqKopy8QCBAaWlprZ1PzZxUFEWpY1ThVhRFqWNU4VYURaljVOFWFEWpY+pV4c7Pz+e1114zOoaiKEpU1avCXVZWpu4jGSFOp5MxY8YYHaNeCwQCBINBo2ModZC6A45yTJqm8euvvxodo17SdZ1vv/2WVatWkZaWRrdu3ejVq5e6q3kdVtv/dvWqxZ2enk7Tpk3JyckxOoqiVMvv93PVVVdxxhlnEBcXx1VXXWV0JKWGZC2veVKvCndWVhYtW7Zk48aNRkdRlGrdd999LFy4kGAwSPv27XnhhReYNm2a0bGUOqReFW5FqQvuv/9+rr76atasWUPr1q156qmnuPPOO42OpdQhqnArSi1LS0sjEAhgs9l44oknaNOmDSkpKUbHUuoQdXFSUWrZ7Nmzef755+nYsSMpKSm0b9/e6EhKHVPvWtzDhg1j48aN7N+/3+goSh2gaVqtXVjSdZ0nn3ySDh06MGrUKHr27KmKtnJK6l3hzsrKoqysDK/Xa3QUJYaVlpaydetWRo4cSU5ODgUFBVE9n9/vZ8GCBbRq1YqhQ4eqoX/1jBoOqCi14IMPPmDcuHE8++yzTJ06leeeey6q56u6g9JVV12FyaR+7Oqb2h4OqPq4lQbj3Xff5aOPPgJgz5496LrO9OnTmTt3LvPmzWPTpk1ROa+UkhdeeIFx48ZF5fh10cyZM9m6dWv4sdVqZd68eVgskSlJK1aswGq1cu6550bkeLGmXhbu+Ph4vF4vUsqYfUvqdruJj483Oka1hBDY7XZ8Pl+t3yPS5/Ph9/tPat9XXnnlpNenGTVqFA8//DAA//73v3G5XFx33XXs3LkTt9tNhw4dTjVytXw+H+PHj2fSpEl07tw54sevq0aPHo3b7Q4/DgaD9O3bF03Tjrl/8+bNeeutt6o9nsViIT4+Hk3T6NatG0OGDMHv93P77bezcePGqL/LMZlMmM1mAoEAVqs1queCelq4X3rpJXr06MGGDRtitnBfeumlrF+/3ugY1UpKSuKee+7hiSee4NFHH43KOaSUrFq16jc3RV21ahUrVqw4qWOMHj36pCdcCSHC/x+6du3Kk08+SadOnZg/fz4jR47E4XD8vidwAsXFxbzwwgvcdtttdOrUKaLHruuaNm161GMpJevWrat2/7y8PIYPH17t9zt27MhVV12Fpmn4/X4uu+wyOnXqRHl5OT/++CPdu3ePWPZjad++Pf369WPhwoX89a9/jeq5oJ4WbiFErfc5/V6x/G4A/lvkovk6SilZsWIFgUDgqO3nn38+Dz30UNTOCzBkyBCGDBnCnDlz+OKLLzCZTBF9rh6Ph9mzZ3PBBRdw9tlnR+y49dWRv1SPpUWLFnz55ZfVfv/nn39m4cKF6LpOeXk5y5cvJy0tjZ49e7Jx48aoF+6q7LVVd+pl4VbqBpPJFO66MMr48eOjclyPx8Pq1auZOnVqVI6vHK1z58489thjBINBXn75ZTIzM/n888955plnyM/PNzpexKnL24oSYYWFhdx444289957RkdpcMxmM9u3byc9PZ2WLVuybdu2mH5ne6rqbYv7wgsv5KuvvuLCCy80OorSgOzcuZO5c+fy8ssvk5ycbHScBkcIQXp6OqNHjzY6SlTV2xb3I488olZcU2pVbm4ub7zxBrfeeiuZmZlGx1HqsXpbuBWlNkkpKSgooLy8XE1jV6Ku3naVKEpt+vnnn5k1axYLFiwwOorSAKgWt6JEwCeffMKCBQsiNvNPUY6n3v4vi4uLY+TIkSxatIirr77a6Dh1zu23386WLVs4fPgw27dvZ8GCBSQmJhodK2ZNmjTJ6AhKA1JvC/dFF11EXl4eFRUVTJkyhfXr15Oenm50rDrB5XKxceNGbr/9dr777jt27NhBcXGxKtyKEiPqZeHesmULrVu35tFHH+WLL74AYN26dQwZMsTgZHXD7NmzmTRpEq1btyYQCHDdddcxbdo05s+fb3Q0RVGop4V7z549tGvXjlatWnHRRRexf/9+fv75Z1W4T9J9991H586dmTx5Mq1bt+aqq65iw4YNRsdSFCXkhBcnhRCvCCEOCSFyjtiWLoT4QgixM/Q5LbRdCCFeFELsEkJsFkIYskjD8OHDWbhwIc8//zx5eXncfffdXH/99UZEqbNeeeUVAL7++mvmz5+vukkUJYacTIv7NWA28MYR2+4HlkspZwoh7g89vg+4FGgf+ugDvBT6XOvWrVvHpk2bWLduHbt37yYpKcmIGHVWv3796NWrF8FgkLi4OKPjKHVMfZxmHktOWLillCuFEK3+Z/Nw4ILQ168DX1FZuIcDb8jKJbK+FUKkCiGaSClrfZWXpKQkBgwYwIABA2r71PWGxWJRw9uUUxLrq3PWdaf6U5l9RDEuALJDXzcDjrxLb25oW/1bnusUrVq1in/+85/s37+fcePGcdlllx13nWFFUWKbruvceeedbNmyBYDvv/+eF154Iao3b6jxkUOt69/961UIcbMQYoMQYoPH46lpjDpB13W2bt1K27ZtyczMpF+/fqxfv77au34oihL7fD4fq1evZtCgQVx00UWsXr0an88X1XOeauE+KIRoAhD6fCi0PQ9occR+zUPbfkNKOU9K2VNK2TOWb+EVSfv27WPHjh389a9/pVevXlx++eXYbLaYvhOOoijHd8899zB37ly6detGt27dmDt3Lvfcc09Uz3mqXSUfAn8BZoY+f3DE9glCiEVUXpQsO5n+bU3TWLJkySlGib7CwkJ2794dkYw2m41Zs2YxYsQIFixYQF5eHgUFBTU+dk5ODr/88gsHDx6sccZoKSgo4NNPP43pe22Wl5fH9P9Ft9tNQn4CbZa0MTpKtZL2JZHjyonpfu49e/ZgsVjIyck58c4nMHjwYCZPnszdd98NwOTJk5k4cWKN/x8d7534CQu3EOJtKi9EZgohcoGHqSzY7wohbgR+AUaGdv8EuAzYBbiBMScT0O8XjBuXfeIdDeJw6PzlLw6ys2ue8cj+7OzsbM4555waHxPgl19+Ye7cFEpLY/d1bNfOzuWXNyIhIcHoKNWyWCwR+XeOFqfTSS97L2ZmzzQ6SrW2lWyjwlQR06+jw+HgifQncGe7T7zzyXgSxjEu/PV4an5nJb+o/obZJzOq5JpqvjXoGPtK4LaTThb+eyYKCvr93r9Wa1JSdtGkSRH9+sVuxoMHD1Jamh3Tr2Pz5svp0aMHNpuNiooK0tJTOVhygKSEFMoDh/i85A32uLdiCliwi0SEbia/4gB904Zwceur8bt9NG/UkvLychISEigpKcHhcBAIBNA0jYSEBKSUxMfHh6foV1RUkJKSEn7s8/lISUnB5/MhpSQuLg6TyRS+v+Zbb70VsX9nv99PIBCI6C+q4uJi1q9fX+OMuq7z6aefkpuby8iRIykvL+fFF19k+vTpNX5HpOs6hYWFMf3zsnnzZorOLKKsXZnRUaqVaKp+7oQa66XUKil1igIH2OPaigmdD/Pn0C7hbPy6HxvxdLD14YDvV8o8pXRK7c5pGV1JtqYxecW1JFkzuK37gzSyNcEWsGEymcJ3iDeZTGiahpQSn8+HEAJN0xBCEAgEwt8XQuD3+8NvQ4PBIDabLeLPc/ny5ezcuZODBw/So0cPLrnkEqxWa8TPc6pcLhcfffQRd999N1dccQVvv/02TZs2ZeXKlVxyySVGx1NOQC3rqtQqieSHQ98xbcMDvLThRczOZpSVBfh280+88ekS1uz4mtxf89j43Y+s3ruCX4p/IefgFuwymXiRzNubXuGzXR/i9FZgs9kQQmA2m4+6S3sgEMBqtaJpGhaLBU3TsNvtCCGwWCwEg8HKLFL+5g7zkTJ+/HhSU1O58MILueuuu3C7I/SWPEKSkpIYPnw4N954I3v27OGBBx5g06ZNdaJo+/1+5s6da3QMQ6nCrdQqkzDTM/NCmgR6sHV7MZu3HuaHzfmUH7BhdzfGtd9B3g4/W384zHc//MDWPetZ+f1XeFxB1u7+hkMVRcxd+38U+wqpqKgAKt+aezweLBYLJpPA4YjH6/VgtVrx+XzExcXhcrnCre2EhIRwEXc4HBF/jg8//DDPP/88bdq0YdeuXbz//vvcfvvtET9PTfXp04cZM2aQkZHBqFGjeOihh4yOdEIzZ85kyJAhJCUlce6557J69WqjIxlCdZUotUrXdRLMDl7844vcsHgM/8n5BN0H8TIOm7Tx/S6NP/cewY2De1HmKsXmsZHr/g/e8iIKi0vYqe0mGDAz/KU/8sXtK4DKkTpxcXF4PW5yls9k1/p/EgxqdO73F3oMnUZFRQUZGRl4vV7i4+MpLCzEbrcTDAZxu91kZGRE9Dn+7W9/o3///owfP54ff/yR119/nXfeeSei54iEtLQ0+vfvT0pKCn379o35ZSHKysrIzc3lxRdfJCEhgbKyMvbu3Uvfvn0b3Axf1eJWapXJZMJut+N1evjHiLlc1ukPWMxm2jRqQ992fenaqgu/HP6FrXk5FFUUk1+UT0LRabi2p3Bmcmc8ZYWge9HKBDe9eBNCCLxeL8XFRVQc3MruraspKffSrMswUpt2o6K8nMTERA4fPowQApfLRWZmZng6f2pqasSfo91uZ+DAgbz77rusXr2atm3bqju+R0BOTg5NmzYN38X93HPP5ccff4y5bqja0LB+TSmGk1Li9/tJS0sjEAjw0og5PBj/EP/e+G9KnaUkmBNwiHh8ws+hom2UlZSRZE1meL/hOCucxJNO0eFDmNIO4D8YQNOCWK1WVix+nkP71lCSv5/uF05kwLCJBIOV3/N4PKSlpaFpGg6Hg7KyMsxmM1JKnE4nKSkpEX+eTz/9NJ9//jnfffddneiCqAv69+/Pq6++yq233sqOHTu44YYbePjhhxvkL0VVuJVaZzKZwhcT0+LTmXbJNKzCzr/WvcvB4kMQABEAoQm6N+9OvDmePfl7iLfEk2TNoG3LTrz9+eu0ubiAV5fMZ/TQv7D+q/fJbtKc4be8QnarruHjVw3zM5vN4VElR04MUavY1S2PPfYY/fv3p23btrz66qs0a9bM6EiGUIVbqXUmkwmn00lCQgIul4tkezIz//AE0y59mCv+70+UlJewa/8espIyKXYWkWhNwuv2QkBy+HARidYEBvcYRm7uDlbJxXw77lXSNMmQgddxWud+WK1W3G43drs9fHHS6XRis9nw+/04HA40TUPX9agO0UtNTUXXdUpLS6PSJdMQNW7cmJSUFL7++uuYGl5Z21ThVmpV1TjrjIwMiouLSU1NxeVyYbPa8Dv9LL1tKfuK9/HRxo9weV2YgiYSbA7KS8tBCjxuL3azjasuuoqeZ/Vk5ebPeXntVM7/w1Wc1XcomqbhdDpJT0+nvLyclJQUSktLyczMpKKigvj4eIqKinA4HEgpcblcUZvh17t3bz766CN++OEHBg4cGJVzNFTRXHmvLlCFW6lVQgjsdjvFxcXEx8dTVlaG1WolGAySmJiIlJJ2We24ffDtSCmxWcwUrF5Gwbp/47DHkTHwUlL7DcJqt1NSUkKgIIinVND/ohHYbDaklKSmplK4bx/rF8ymOPdX0tp2psdfxpKa1Sjc363rOrqux/S6KcpvvfDCC0yePFkVbqMDKA1LVYs7JSWFsrIykpOTcbvdWCyW8Fhs/F5MPi/bpt6O9HtpfsW19HxgBrowYTWb2DvvSYp+3EhQ09lVWIr98CF8OevZsGYlhzZ/T0DT6HzVDXT/09X4fV40r4+3b74eZ7mTYVMfJbl1W7JbtMRkMuFyubDb7Ua/LMpJ2rJlC5MmTWrw1yZU4VZqndlsJhAIhGcxVl1INJvNaBVlHJj3NK5fd9H57mlYk5IJlJbg3bMTBPgkNPvTdZw2+jaCrgqafb2cnjt+pmjNSloNuJAzR91EMOjHVVKCv6IMTYKOZNiURwhqOqsWvsHm1au5Zf5rtDm7B2az2eiXQ1F+N1W4lVolhDhqHZGqNUOklBAM8stLM9AOHqDNtbfiP1xA8HABAklVA0tI8P+6F6+U6EByx86kduuB5g/iKS2i/JfdaFKiSdCkRJcSTQddSoK65OyhwwjoOgsn3c3VM56ifR9DbomqnIJ169Zx2mmnkZWVZXQUw6nCrdQqKSXBYJC0tLSjLk5aLBb2L/4nnl0/0/q6W5oHB38AACAASURBVCHgReggROjjqGNUFnCQaG4Xfikri3WoQGu6RJeEi3dQk2hSJxjap8t5A/F5/cwddwsT3/kXnc8+26BXQ/k9fv75Z5o0aUJ6errRUQynCrdSq0wmE3FxceTn55ORkUFhYSEJCQn43C6Kl31Ix2tvQ3OXIU2AEJhCLXRTqHJLKStb55LKCl5VpHWJrkuCUkfTJZoGwVDhDug6QQlBXUfTBZqu0/mc/hzKzcVTWGjky6Eop0QVbqVWVbW44+PjCQQC4QuDRauXYUtIxFuYh9kkMJkrRw0IM5iPKNy6rGxVS12ApqNLHSlB6qGWtl5VoCUBvbJ7JKhLgpLKAq5XdqMEgjoZzU9jzp138PLWnxCqrzumlZaWkpeXx/nnn290lJjQsMfUxKiHH344vPRofVQ1IqDqs5SSiu/X4mjVDs3jQve4kG4XeF3gcSO8bsw+D2afB+GtfCy9LqTXje5xo7vd6G4XutuF5naiud0E3K4jPpz4Xf/98FZU4HVV0LR9WzSf18iXQjlJhw4dYvv27fTv39/oKDFBFe4Y8vHHH9O5c2fOOeccevXqxdSpU42OFHFV62d7vV4sFgt+vz+0zYTU/OHCrXtcSI8L6XFDqFgLb+XXeDxwxH6610XQE/pwuwm6nQRDRdvvduFzOvG7KvC5nHidbrxOJ16nE09ZWfhGDIpSl6iukig7fPgwW7ZsOal9v/vuOy666CJsNhvvvPMO8+fP5+DBgzF9777fS9d1fD4fqampuN1ukpOT8fv9+H1+ZNFB7KF1TIRZYDIJhFkgTCYq2xiSIKDpOkFdJ6hVdoMEQl8HpCSghT50iT+oE9ShvLwMsyMBvybx60d8PzQJJ5ratGnD3r17GTBgQMwuPdq9e3c2btzIBRdcYHSUY5JSsnXrVk4//XSjo8SM2PyfVI8UFRXx1VdfndS+P/30Ey6Xi5UrV3LTTTfhcDg4fPhwvSrcJpMJm81GUVERjRo1oqSkhKSkJOKSU8j/+lNsJhOkpkKoeGOqHFIS9PsQ9nh0qvqtweeqwF14GL+m4wvq+HWJT9PxBSWayYIlM5sAgrIDuTgaN8Ov6wQ08GkaQR0O5xfg90a3q2TMmDEMGjSIESNGRGUVwkj4+9//To8ePfjhhx+MjnJMUkqmTZsWs/mMoAp3lHXq1Ilp06ad1L7vvvsuDz/8MM8++yzXXHMNXbt2pUuXLlFOWLt0Xcfv99OoUeX089TUVPx+P03+NJrDa5ZTun0LWrOWJGRmoZsEukkQFBDcvxtri7ZIwHPwAIHyMrw+X2W3R1DDr0k8QYkvqOHVdPwI9P2/4sdMfIuWlOXnIxISCGjg1XTKiovZs/Unug29HBr4LDyl7lGFO4ZcfvnlDB48mPHjx/Pee++RmFj9XZ7rMl3XMZvN6LoeXmbV3rQlusVGwOWGvTtB07AlJhKQGmbAX16G2Lyucqy2phHQdPyajl/7b/dIUOqhsdsQ0DS8pcX4gjpFhYV4Ahp+BMktWlFSUsKhvAK8/iBDx41r8NOnY92hQ4fq1bvOSFCFO4bYbDZsNhtvv/220VGiRgiBzWajoqICu92Ox+MJF3HNHo9fl8iAhrm8jKAWQDuwPzQcUCAADRmeZOPXdYKawK8f2Xeth/u8g3rlhJugFkDTIBDU8DidFOcfRJeAMBGfmGD0S6KcwNVXX83SpUuNjhFT1KgSpVZV3QEnNTUVj8dDUlISuq5jsVhode1N+EL91K7iYtzOCnyajlfT8Wg6bk3HG9TxBCsf+zXwhVrdR7W8db1yxqRedfGycpsuoby4BF3XkSYTvUb8CRGnVgdU6h7V4lZqVdWyroWFhSQmJlJaWorNZiMQCNC0/2B+0EGXOroMoFe4IahXXp8UlW0MKfXQJBwIhibb+EMXK/161WgRiV+r/H6gqoBLiYiLw+vxVe6jBel2wQW0bNPG4FdEOZ5gMKgWAjsG1eJWapWUkkAgQGZmJm63m5SUlPCdaCpcbpJ6nVfZyg5qOCucuAOVLWx3QA99LStb3EEdT1DDExpR4g1q+IIaPk3DH5T4NQ2/phMIFfNAUMfldOP3+Ulq1IhLbr0Fc1w8xcXFRr8kynE88sgjPPjggyQkqC6tI6nCrdSqqgk4brcbq9WK1+sNrxIYn5REh1E34g3KUIHW8IZGi3iDGt6gdkTRruxC8QZluHvFp0l8oe4Svybw6+DX5FHjvQNSkt2+PeXFJfT74zB1I4UYp2kaZrNZXUD+H6pwK7VOShle1rVqAoyUEovFQlq7jjS/eFioUIda1cHKvu3/9m9LPIHK7/tC+/lCo0wCoeJd2V2iVRZxXeLXIajpnH7eBWjCwjkjrsRisTTo+xYqdZcq3EqtqiraDoeDQCBAfHx8+CYKHo8HU0IiGV264cdU2erWKrtG3EENd7iIBysvVoYfV7bGvVrlGG6fLvEGKyfb+HUNX6i1rQsTac2aUVFRzpnnnYemabhcLqNfEqUaX375JUlJSfRRa6b/hircSq2qWtb10KFDJCQkUFRUFL4jTmpqKvHx8XS4ajTZfQdUdo34NdwBDXdQr/wI6Lj9El9Q4g3KUHdJZSvcGwSPJvEFK4cEekPdJwFNQ1qsdLlwMOuXf8WMxUuwx8VhtVrJyMiI+nPu2bMn69ati/p56puqbjR1a7nfUqNKlFpVdXEyMTERn89HQkJCeEKO1+tFSolJCDoPu5I936wh4HUf0br472qCOqGbJoQm3ISXbz1iCKA/tCZJEBOtunYngGDAlSPQrDaCwSBSSpxOJ0lJSVF9zjNmzODss89m06ZNUT2P0nCcsMUthHhFCHFICJFzxLZHhBB5QohNoY/LjvjeA0KIXUKI7UKIS6IVXKm7zGYzmqZhtVoJBALh2ZMWiyU89KvlhZfg6HQG3qDEHZThFnf4wmRoe1X/ty9Q2d/tC1+0/G+/d1a7DjjS0tm39SfOHDiQhMRETKHFrGJ14aeGrqysjMWLF3PttdcaHSUmnUxXyWvAkGNsf05K2S308QmAEOJ04GrgjNDfmSOEUIMwlbCqe05WLedadZFSShkuplA5Lf4P0/+OKS3jiIJd1WUicYUuSnoD/y3mHg08oaLt1TR0i5Xk5qdhSUyirLiYP915Bx179w6PUhBCqIuTMSoQCJCXl0fLli2NjhKTTli4pZQrgZMd7DocWCSl9Ekp9wK7gN41yKfUM//bVeJwONB1HZPJhMfjIRAIAJXT/5u2a8/Vc14hqWUrPAE99FF5IdJXNb473Meth0ei+IKVfeB+KfD6A5QXl9D9osFcNGYMcfHxVFRUoGmaujgZw+x2O4MGDTI6RsyqycXJCUKIzaGulLTQtmbA/iP2yQ1t+w0hxM1CiA1CiA2BgKcGMZS6pOpiU2lpKXFxcZSXlwOVM+QSEhKw2+1IKfF6vVRUVNCud1+GTptB9z+NxCdFeJSJ32yh9YALwkMEvUGNuMwsEhs3xatpldPhfQFsDgdX3H47g2+4ASEEXq+X1NRUzGYzFosl6v3byqlJSkrinnvuMTpGzDrVDr6XgOlU3rJ1OvAMcMPvOYCUch4wDyApKVv6fKeYRKlzbDYbWVlZmM1mGjVqFJ5cUdVNYrFYcDgc4W09Bg+hS79z+ePk+4HQXd5NAkdqKs4jZj5abHYQ4qg1tm1xcWS1bIkeGnIYHx+PECI88aY2JnYIIXj//fejfh6l4Tilwi2lPFj1tRDiZaBq6a48oMURuzYPbVOUsCP7sqs+H+l/16YwmUxY09JITEv7zb5p2Y1P6pxVR6w6X23OxBNC0LZt21o7n1L/nVJXiRCiyREPrwCqRpx8CFwthLALIVoD7QE1gFVRYpgQgtGjRxsdQ/kdhJTy+DsI8TZwAZAJHAQeDj3uRmVXyT7gFillfmj/KVR2mwSBu6SU/zlRiJSUdNmhw92n+hyizmp1ccYZhZx22mlGR6lWQUEBP/5ox+v9bas0VqSl7aBfv9YxPZJjy5YtnHnmmUbHqFYgEGDfvn20b9/e6CjVKi4uxu/307jxyb0bMsK+ffv4qdFPBBICRkep1o5nd1BWXHbMt4YnLNy1ISkpS/r9242OUa3k5H08/PCaGo8pPXTo0FGPrVYracd4+38qPv30Uxo1akSPHj0icrxoeP755xkzZkzM3nsRYMqUKTz++OMROZbf7ycQCJCQkBAewZKcnFyjY5aWlvLGG29wxx13RCRjNGzYsIGioiIuuSR2p3G8+eabnHfeeTHdGOvYsSOHDh06ZuGOkdkHAr8/dluKgUARdru9RkX266+/ZvDgweHhbgBnnHEG7733Hp06dapxxvj4eBISEiL2iyAQCLB+/XrOOeeciBwPKn9RpaSkRCxjpFWtmRKJfH6/n0WLFpGenk6LFi1o2bIlL7zwAnfccQetWrWqUcZI/sKPBofDgdvtjumMdrudxMTEiGV0Op3s3LmT7t27R+R4cPzrMGqtkigLBoN8+OGHXHvttUcVbYCtW7cyduxYtmzZQiy88zmS2+3moYceMjpGnaXrOsXFxWRkZPDQQw+FW96lpaVGR1OiIDc3l1mzZtXa+VThjiIpJV9++SW33noreXnHHlyzZs0a/vznP/+mG0Wp2+Li4ujduzdjx45l48aNjBgxgn379tGtWzejoyn1QIx0ldRPUkpKS0uPW5SllOzZs+c3rXGl7rvwwgvZunUrl112GYsWLYrprgOlblEt7ijy+XysWbMGTdOOu18gEGDZsmW1lEqpLWazGYfDEZ74o5YnVSJFFe4oslgstGvX7oSTPcxmM6effnotpVIUpa5ThTuKzGYzTZo0OeFdqi0WC82aHXNJF0VRlN9QhTuKhBAMHjyYUaNGHXe/5557juzs7FpKpShKXacKdxQJIUhKSuJPf/oTN9xww29mDDZp0oRx48Zx3nnnnbBVrig1oWkar732mtExjuk///kPBw8ePPGOSpgq3FEkpUQIwdChQytvtxW6o3kVt9vNmWeeSefOnQ1KqDQEc+bMYfjw4UgpufTSS1m1apXRkQA4ePAgl156KVu2bGHSpEkxPRs01qjhgFFWXl7Oo48+yptvvvmb0SVlZWVMmjSJjIwMhg4dGl7KVFEixe12s2PHDh544AFat26N0+lk79699OvXz9Dbtkkpyc3NpXnz5owePRpN07jxxhspLS0lNTXVsFx1hWpxR4mu6+zbt4/x48fz/PPPEwwGj7mf2+3mmmuu4bnnnqO4uDjmZlAqddsPP/xAdnY2HTt2ZPr06TRp0oQffvghJmZwzp8/n7Fjx/Lhhx/yn//8hxEjRrB48WKjY9UJqsUdYVVdIvPmzWPp0qV89tlnJyzGuq7z5JNPkpOTw9ixY7ngggvC90RUlJro378/b7/9NhMnTuT222+nT58+vPvuu2RmZhqaSwjBfffdxyWXXMKCBQsYP348NpuNDRs2GJqrrlCFO4KqivYrr7zC/fffH74t18moqKhg0aJFrF69mo8++oiuXbuqwn2EYDAYvsmv8vvce++95Ofn89xzz3HvvfcipQxffzFSkyZNWLhwIe+88w6PPfYYmqbxzDPPMHHixGPeYEP5L1W4I0jXdV599VXGjRt3wtmS1cnNzeWcc85h7dq1al0LKpcx3bdvHzNnzmTSpEk0btyY5s2bGx2rTmnZsiUtWrTg9ddfx2w288ADD9C4cWMGDBhgaPG22+307NmTbt26hQv1W2+9xWuvvUbv3r0544wzDP/lEqvUr7UIevPNN7n55ptPuWhX8Xg8XHPNNaxcuTJCyequZcuWMWHCBGbMmMFzzz3HE088YXSkOkkIgc1mw2w289RTT7Fs2TKWLl164r9YCywWS/h2dtdddx2apjFv3jw+/vhjo6PFLFW4I2TBggXcddddR/VnCyFwOBwnbDUIIUhISDhq27Zt27j55pv57rvvopK3LiguLmbt2rUsWLCAl19+mcTERFq0aMHatWuNjlbnTZkyhT179sTkxcCxY8fy9NNPs3v3bj744AOj48QkVbhrSNM03n77bSZPnkxZWdlR32vVqhWzZ88+YX+d1WplyZIlpKSkHDVJZ/v27Vx55ZXs2LGjQY42SU5O5qyzzmLZsmWMGzeOyy67jBdffJFdu3ZRVlbWIF+TSLHb7XTp0oWcnJxqRzwZyW63M3bsWDZv3szKlStj/t+6trt0VOGuASklK1eu5Prrr6ekpCS8vXHjxvTv359vv/2WzMzMk/pHPfvss/n111+55557jmp95+bm0q9fP/Lz86PyHGKZxWKhdevWLF68mBUrVjBnzhzuv/9+9u/fz7XXXsvy5cvZs2eP0THrrAsvvJDmzZvz5ptvxmTxdjgcPPjggyxZsiTmuw1r+xeLKtw1oOs6f//734/q027atCnTpk3jk08+oVGjRid9rKrp8ZMmTeK22247agnQiooK5s6dG/Otjmg477zzWLZsGX6/n48//pg777yTKVOm8N5777FmzRreeOMNHnnkEbxer9FRj+nLL7/kvPPOi8klXYUQjBkzBiEE//d//2d0nGMSQvDMM8+wZs2amOzWqZKZmUnLli354YcfauV8qnDXgBCCVq1ahdcZsVqtTJ8+nVGjRpGcnPy73z4JIcjIyOC+++5j/Pjx4e12u73WR1IkJCQwatSomFnf4qabbjpqpl9cXBwPP/wwo0eP5txzz+XKK6/kiSeeCA91ixUrVqzgvPPOIy4uzugo1frLX/5Cy5YtefLJJ2PqtasihOCuu+7il19+4ZNPPonJjFWFe9OmTbVyPlW4a0AIwfTp05k8eTJt27Zl/fr1jB49+jcXGn/vf7S0tDRmzJjByy+/TJs2bZg9e3a4ZVRbqropYr0rok2bNgwaNIi33nqLjh070r17d7766isOHDhgdLQ6QwjBsGHDaNSoEW+88YbRcY7J4XAwfvx41qxZw9q1a2OyeNcmVbhrQAhBWloajz/+ONu2baNr165HtQqllAQCgZOaOXnkrcuEENjtdm644Qa2b9/O6NGjDV1XItYJIUhOTmbEiBFs2rSJzz77LGbf+scqs9lM+/btyc/P/81F9lhhs9l4/PHH+fDDD/n888+NjmMoVbhrSAiByWTCYrEcs0Xctm1bevTocdxjXHHFFcfsAz3yuGoiwsmbOXMmjz/+uNEx6pwBAwbQt29fHn/88d+sZBlLHnvsMbZu3cq4cePYvHmz0XEMoQp3FAkhaN269QlvSzZo0KDfdK8oihEuuOACRo8ezU033RSTI02g8lrSLbfcwrhx43jxxRcpKCgwOlKtU4U7yk6mtaxa1EosOeOMM7jpppv429/+ZnSUaiUkJNC1a1fmzp3LXXfdxc6dO42OVKtU4VYU5ShCCJo2bUpcXBy7d+82Os5xWSwW5s2bx6uvvsrGjRuNjlNrVOFWFOU3WrVqxXXXXceLL74YE2t3H09ycjITJkxg8eLF7Nixw+g4tUINVVAU5Zg6dOjA1KlTSUpKMjrKCTVt2pTJkycTHx9vdJRaoQq3oijVysjIMDrCSUtJSTE6Qq05YVeJEKKFEGKFEOInIcRWIcSdoe3pQogvhBA7Q5/TQtuFEOJFIcQuIcRmIcTZ0X4SiqIoDcnJ9HEHgXuklKcDfYHbhBCnA/cDy6WU7YHloccAlwLtQx83Ay9FPLWiKEoDdsLCLaXMl1J+H/q6AvgZaAYMB14P7fY6cHno6+HAG7LSt0CqEKJJxJMriqI0UL9rVIkQohXQHfgOyJZSVq01WgBkh75uBuw/4q/lhrb977FuFkJsEEJsCAQ8vzN23XEyix7put7g115QFOXknXThFkIkAu8Dd0kpj7oLrqysOr+r8kgp50kpe0ope1qt9fdKcFxc3FGzIs1mM/Hx8UdNuMnIyFA3R1UU5aSdVLUQQlipLNoLpZT/Dm0+WNUFEvp8KLQ9D2hxxF9vHtrWIFksFrKzs0lOTiYxMZG//vWvbNq0ibPOOguHw0FGRgYZGRlq5qSi1FFSStxuN36/H7/fj9vtjvo76BMOBxSVFWUB8LOU8tkjvvUh8BdgZujzB0dsnyCEWAT0AcqO6FJpcIQQPPjgg0yZMiX82GQysWHDhvA+sdja3rhxIzk5Oezfv581a9bQp08ftUKhohyDruu0atWK1NRUhBA89NBD5Ofnh9fpj4aT+UnsD1wPbBFCVK0S/jcqC/a7QogbgV+AkaHvfQJcBuwC3MCYiCauY6pbhySa/6iRcO2119KtWzf279/Pddddx/fff09aWprRsRQl5ixatIh7772X9PR0hBAUFRWxaNEirr322qid84SFW0q5GqjuffygY+wvgdt+f5TYvzhXFy4gRiLjs88+y7Rp08jIyODrr7/m0ksv5W9/+xtz5syJQMLYfx0jme/aa68lMzMz4s851l9DaDgZTzvtNL799ltGjhyJEIKnnnqKvn37RvX5i1h4cVNS0mS3btcZHaNaZrOfJk2cpKenGx2lWuXl5VgsFhwOR0SOlZCQgKZpBAIBEhISKC4urvHzP3ToEBkZGTH9biM39wAWS1OjYxyHRsB0AGuW1egg1dLdOonBRJKTk42OUq3i4mISExOx2WwRO17Vz0ckflYA/vnPf1JSUnLMRnNMFO6kpGzpdB40Oka1UlJ28fTTKxg7dqzRUaq1ZMkSsrOz6dOnDz6fD6vV+t/F8E06Bb5fKAkeROoSCzZA4Am4cZiTaZt8BkI3Y7NZ0TQNIQTBYDDcHx8MBrHZbOHPVccPBoOYzeaj9q3qGgoGg1itlcWlqqvoscce47bbbovZLhcpJSNH3sF7780yOkq17PZiuky9mI1/i92V8BqvaczcwrkMHz7c6CjV+sc//sGgQYNo166d0VGqlZ2dzcGDB49ZuNXVpnpG0zSKioqIS7KxrmQpWXGnETR52e38kXz/L1R4nVR4y2ga3xaP30OWtTk7435mb9EuJvSZgt8XQAiB0+kM30LN6XSSmZmJ01n5rqOsrIz09PRwy7y0tBSr1YrNZsNms2GxWHA6nTFboBUlGtatW4cQgl69ekX9XKpwG8TlcjF58uSI9RtX2VX6I++XPIcoExT4fsEq4wgGJQmkkWlvRipplLpdePQA6fbmoFv5z+5/E29JYvqX93J1lxtp6mhBUlISUkqCwSAZGRm4XC7sdjuFhYUkJiZSXl5OfHw8Pp+P1NRUpJRomobb7QYq7w9YVFREamqqGo2iNAg5OTmqcNd3uq7z888/R/y4jRynsWj5D6THpdO1UVfaZHViz4F9vL76bdp1SKFRQiI7N+djbhak/+nnYQ7GEW9JpbiiELsjiVfWvcQfOl/OGWlnYbFYsVqtHD58mKysLFwuF+kZGRQXFZGSkkJZWRkJCQmUl5djtVbum5CQgMlkwuVykZaWFpNDHRWlrlOFu56Jx8G8P7zCvZ9P5uOf/sNnOcuw6zay0xrjP2zHV5FJ+6zTOFC6F61U55tN39C8Szq7Cg7QLsNPqbsMr0+j7fmdSLVUzvBMTEzE7/fjq8hnx7YPqSivID2rKZltBqFpGnFxceF+bL/fD1SOTfd6vb+ZJaooSs2p5lA9YzKZ6JDejgcvnILJIthdtJsSTwmJcQm4/W7cARctslrQObMbyZ52tEo+nYodEuHXMePj10MH+GzLch5f+hhQecFO13WQGnk/fcZXi+5i4ycPsvHzZxCh69q6rh+13orJZDqpNVoURTk1qnDXM1arlYA/QL/m/Xh/1PtkJmZgMpsp9ZZhtVnwaX5+yt3K4YrDbP91G6s2fMNpji4My76eH5dvp1enFjgqzPzrP/8iEAwAUFFeyqFf1rPy41mUuu30unIBg29YSECrHFXi9/vDI1iqLlLquh7x1ramaVRUVDBp0iR27twZ7k9XlIZGFe56pqysjKysLIQUdG58OmvuWE1qQir5FQUUlB/kQFk++0ty+WbHN6zatorMtEZoUuPgoUKGnX0VCT+3J8VuISslnt37dyCl5OvFf2f+zBuIS23PoOv+jy69hxIkAYfDgdfrJT09HYfDER6NUlpais1mo7CwEE3TIvbctm7dSufOncMTgmJ5uJmiRJMq3PVM1cVCIQRer5dsR2NeueYVxp8/Hr8eYF/RPrblb8Ov+2nfrAOZ6ZkcKj1EibOYvMMHcHvdJBW3Ij5Z8OgHd/Hvj+az4+fNpDY+nT/e+AJdel+G1+vF4XDg9/uxWq3hBXYA4uPjcTgcaJpGUlJSxC5OaprG0qVLeemllygvL2fWrFmcc845rFy5MiLHV5S6RF2crGeqLggGAoHwJJyOjTrQYeBEejfrxUHXQZ547wnyCg+w5+Bu0uMysGGjqLAQnzuA1+lh3OXjuP2cCZQ5cnntuSdJO6Rxz/SXSWvUArfbTXx8PF6vF7vdHp6UU9XPXVXAqwq63W6PyPMSQtC6dWv27dvH2rVrad++PQcOHKBZs98s9a4o9Z4q3PWMrutYLBb8fv9RFwmlhH5t+hEXH8eQ04dgtVlxVjixmQV5e3bQKCUDnwRHeiPibHGkpaZRXl7C9tabGHjDH2jVvhtCCDRNw2Qy4Sw8TMBiJqDpZDRthslkChdvILxvpC5QmkwmunXrxrBhwygsLOTTTz9lyJAhtG3bNiLHV5S6RBXueiYuLi48rtrn8wH/XYnQbrfj9/tJikuicMNa4gIeKg4dJOnAL5SXlpB6ZneSu/XFuW8Xez0e9hccYsuqNfQ9+1wCeb9yYOc24uLjKU9M45dVy/k150cSGzXB0aYDiRmZNDvjDLLbdwxPg09JSYnoOO7OnTuzc+dOXnjhBZ566ineeuutiB1bUeoSVbjrGZfLRUZGBk6nk7i4OHRdx+fzIYTA4/EQ56lg78K5JKRl4I93kNKoMcnnnI8UAgF4cn9BlhVj14Mk7N3BOT43cvlSDuTtQ5gslAT8xGc1o8OgIbQddAlS09m+ZiUFOT/y6w8bqfB4ufxvD5GWmUlZ2Fk8WgAAIABJREFUWVlU7u5z55138uqrr0b0mEr9smbNGqxWK7179zY6SlSowl3PJCcnV65VEheH2+3GZDJhtVqRUpJgNbPp9rGktGlP2nkXYzJbQGr4836tXLhXSsxmCyntOqFLSUKLtrT709Vomo7PXY4lPhFN6gQCQTxlxegSNF3SvMtZNJGSsqIiPnzhWRaMv4UJr/2T1NTUqK0EWNWqr1rISlGg8iL2gAED6NevH4FAgEmTJvHVV1/Vuxm89evZKJSXl4fXf3Y4HJXjugMBvCVFfHfT5TiaNqPJpSPQK8rQy4qRFWUIrxPhcYLXhXSVoxUfJlh8GN1VQbCsCK2iBOH34y8tJlBSQrCinKDLRdDtIuB24XdW4HNWds8Mv+senAX5zP7raPbv3h3R4YBH+vTTTxk2bFhUjq3UXTt37iQrK4trrrmGBx98kKysLHbt2mV0rIhThbueiYuL+3/2zjs+qir9/+9zpyaTmRRClw6KgFJl7QUUddfG7irY145tXQUEf2tdtwgK2MWGuigKVlx1LevqV3HXgqAUhSU0qSGkTDJzp9xyfn/MzDVR0AAJMwnn/XrNa+6ce+fcZ24yn3nuc55zHqLRKEIIDMPAsixcLhcV/5hHSZdedD5xNMb2LRDXEXEdLa4j4jFEIo4WjyFiUUQstY9YBKlHsPQ6zJiOqUcwYxHsWFq0IxHMSIRENEIyGiERjWLE4hw+9hzK165m+Qf/brbp7pkfJIWiPhdffDGHHXYYTz/9NOvWrePUU0/lrbfeyrZZTY4S7lZGfn4+NTU1AMRisVSWRyJG3f+WUNR3AOb2rRDXU8KdiKIldFxJHVdCR0vGEAkdkdAhFkXGdWQ8itR1ZCyKFdMx9ShmNIoRrcOIRkjqEcxolGQkSjJaR0KvQwO6HzSQz+bPJ1xRkd0Lotgn+OKLLxgzZgznnnsu99xzDwcffDCff/45kydP5ve//322zWtylHC3MsLhMO3bt0dKSUFBAW63my0fvgOJJLZlYMWiyFhKmFMedxRXQsediKLFo4hEWqzjMaSuY0d17FgUK1aHrafE24h9HyYxohESeoREtI5kNEI8EiUWqaVD797UVVURqa5uls8ZCoW46qqrmDFjRrP0r8htTNOkurqaK6+8koEDB/L4449z9913c+mll7Jo0SKEEASDQWeN7NaGGpxsZRQWFlJeXk4wGCQajeJyucj3eajzurCTcWwTpKaBBlIToAk0l4YQIG0QtgRbIm2JbVnYdmoA0rJtLBtMS2JISdKWmJbEtG0MGwzbxki/Tto2pi2wTQOaaaEpTdMIhULU1tY2S/+K3GT58uVs3LiRLVu28Pzzz3PHHXc4a9pnBLpLly5ceumlDdpaG0q4WxmxWIxgMAjgzFqMx+PYiXjKc9bApbmwNbBdAlvTsDWBhsCWacG2bSxbYlvSEW3TlimBtlLbppUS7KRlp8VaYlhg2DIt4jaWikErmojKykruvfde3G43mqax33778c477+z0+NYq2BmUcGeJ6667jmnTpjV5vy6Xy6lOkxmYdLs81K36lrxgISIvD9OlIVwpr1toAoQLAdikRNe0wbItDEumHrbEkDaGCUnLwpQpwU5asG39WvLbdcDQXBgWKU/chqRpNfvg4ZAhQ1iwYAGLFi1iyJAhzXouxd6l/rLAN9xwA5s2beKqq67igAMOoFOn3Cvm/N1337F06VJuvPHGvXI+JdxZYvHixQwaNKjJ+83kTQshnLW0faVtweOl9tuliF59kD4fUtOQLoEUkmS0DuHLB48HyzQxkiaJuE7NiuUkTZO4KUnYkrhpEbdsEhYE+wzA8nrx5OcTj+qYQmBYkoSVCpls/m494YoKRDNWdC8pKUFKSVVVVbOdQ7F77InHW15eztatW7nwwgsBeOCBBxg0aJBzJ5mL6LpOOBymY8eOe+V8SrhbGZllXevq6ggEApimCQcPp81hIyj/50tYsShF3Xth5edjaQKXkFjlmxBuH3i9JOvCJLZvI2ml4tgJy8a0JElTYlgWpikxLJtNS74gYYK7tD0Jw4RAAXj9JKWgZnsV61et4tiLL6NkL/0jK3KLXV2jxrIs5s6di23bfPXVV0SjURYvXtzqQx67ixLuVkZ+fj7hcBiXy0U8HgdSXngskcS0JQk9Sl35ZvLbtiNWU4VL2qn0wGQCm9RApC3Tgm2DYUmS6UFH05aYtsSS3w9YRjdvImFJYpaNr01bookkleUV2Db0POhg8goKmvXznnrqqcydO5fDDz+c/Pz8Zj2XonmYM2cOH330EYMGpRYyu+qqq+jZs2e2zcpplHC3MpLJJAUFBcRiMbxeL5ZlYVkWeZ07Y7o8YBqIujqk14usrMAlbYTQUjPeAUumBiaNTKzaliTTGSOGDYa005klpGLhUmKRGsRMxOPEIjFsIfAVhIgnEti23azTjYcNG8bkyZNJJpNKuFsQyWSSTZs2ceaZZ3LBBRdw7bXX0q9fP+VhNxIl3K2QzG1q/dvVnuddxYa3/4G+aR2WHsdyhxGGhUtKhABE6ngLmU4BpEG2SOo5lS1i2GCZ33vhScvGRhCvjRJLJDBNm6GjT+Loc8/J0hVQ5DoTJkxg48aNfPrpp2ia1urWEmlulHC3MrxeL7FYDE3TUvFtvi/eqxW1xfxuLVJaWBEdzbJxCYlAQmYwE7CldIQ743kn0qKdtFMDlYZtY8iUoFs2mIBFKoTS94ijcaGR78/bK1/I3/zmN8ybN4/LL7+82c+laBruv//+bJvQolE/c62MeDxOKBQCUuuWuN3uVF62ZdH9gitJWIK4aROLJ4kZNjEz/TAs4qadyhwx0s+WJGFJ4pZN0rRJpJ9NU5JMx79NO5UymDRM4vE4Lr8PzefhpMuvoLa2ttkWmarPuHHjnEkYCsW+gPK4WxnBYJDt27fj9/uJRCIIIfB4PLhcLnr84gg+yy8gWRdGE+DWBJotEEJmVnXFkimP2yblcVs2mOmZkqm8bkjakLQtEhYYVjqkYkmk28PhZ45l5eKv6DZgAIFAALdb/YspFE3Nz3rcQoguQogPhBDfCCGWCyGuS7ffLoTYJIT4Kv34Zb333CSEKBNCrBRCnNicH0DRkEgkQmFhIVJK/H4/Ho8Hy7KwbRvdMBhx31NOPrZu2eimTcyw0Y30tmURM616HrhN3LBImlZq0k06RTBpZqa3WyRsMC2bvocfyZcffMA1jz6G1+slEok4pcyam2HDhrFo0aK9ci6FIts0JlRiAuOllP2AQ4GrhRD90vtmSCkHpR9vAaT3jQX6AycBDwshmm8WhqIBXq+XeDzu1HzMZHUIIfB6vfjatafDESPSgpwKk+imRcw0iaWFOhMeiZvfT7pJPdJhEyvlYSes1LGGbeELFRKLJ/nFL39Jh27dsCwLj8ezV7IEhBDcfPPN3HPPPc1+LoUiF/hZ4ZZSbpFSLkpv1wHfAj9VWvt04AUpZUJKuRYoA1pn/aAcxO/3U1dXhxCCZDKJbdu4XK7UYlP5+biLSug0/HASpiRmfO9Zx0yZejZsJ/adsKy0WJN+fC/WCVumQyU2tnDTf8TxxJJJDj/tDIKhEJZlEQgE9mp6l8pMUGSLvZ3GuEv/6UKI7sBg4LN00zVCiCVCiFlCiOJ0W2dgQ723beSnhV7RhNTW1tK2bVts204JtduNYRgYhkF1dTWB/Hz6j72Q/Y4bRcxOedhRwyKatNANKxU2SYdKomkBjxsWcdMkYVgkMgOXZsrztlweDjjyGKq2VzLk+BPoPGAANTU1eDwetm/fvlcGJwG6du3Kk08+uVfOpVD8kF2dKbqnNFq4hRAFwMvAH6SUtcAjQC9gELAF2KUVk4QQlwshFgohFhpGbFfeqvgJQqEQVVVVaJqGrusYhoHH48Hj8VBUVISu67g8Hrqe8EtMT14qrm1KYpZEN1Nx75gp04/vs07ipiRuSWKZGLctwe+nXa/eSLcLvTZM5759CRUWUlRUhGEYlJSUNFvNyR+iaZqzGqJC0dpp1JC/EMJDSrSfk1K+AiClLK+3/3HgjfTLTUCXem/fL93WACnlY8BjAMFge5lI7I75ih+i6zqhdKgiU+U9k8+dTCbx+/1YlsXw0WcSq6rkjdtvpuFd3vf53Knp7zhT3E2ZngZv20jhoiBUDF4fW9au4/K776b/UUcRi8UQQuB2u6mrqyMUCu018VYo9hUak1UigCeBb6WU0+u11189aDSwLL39OjBWCOETQvQA+gCfN53JLRvDMIhEIliWRTQaJZlMNmn/eXl51NbWIqUkHo9jmqYzMy0QCBCPx5FSUltbyzEXX8Gom2/HdHlS3nQ6nztm2iSFi1i9trhlk5QacdMiYUoSCPRYnK3rvuP82+6gzy9+kVqJ0OfD7/djmuZej3ErFPsKjfG4jwDOB5YKIb5Kt/0/4GwhxCBSS1ysA64AkFIuF0LMA74hlZFytZRy7wQ6WwBPP/0006dPZ8OGDRx55JGcdtpp3HnnnU3Wv8vlwu1243a7nbhbZrv+Prfbjdfn47Bzf0fvoYfy3iMPUrs9VR9SAoedcy4fP/csUoJtS9x5+XQ56CC+/e9/sSVIBCUdO3Du//t/lHTpgtvjcfrNnNPtdivhVrR6lixZwrJlyygvL2fBggUMGTKk2dfN+VnhllIuAHb07dtp6WQp5V+Av+yBXa2SiooKtmzZwnPPPccll1zCSy+9xOzZs1mzZk2TrYamaRqlpaU73V9YWAhAIBAAoF27drRr147+Rx/9o2NHXXTpbtvh8Xh2+70KRUvi6quvpnfv3mzYsIErr7ySF198kb59+zbrOVX+1F7E7/eTl5dHTU0N999/P7quY9t2Ti8Qr1Aods5TTz3F7373OyZMmMCwYcN49tlnufvuu5t94lmOzEeW+Hy5W8XE660lHo83SaUVn8/HmDFjmD9/PqNGjeKCCy7A5XLtcd+6rhOJRHK6GoxhGNTU1Oz11Kldw8rp/0WfrwaX4cJXlbsZNN6IF13Xc/p/MR6PU1tbu8c2Hn/88YwbN44TTjiB2267jalTp3LOOedQU1Ozxzb+1PdE5MKXqKSkRE6YMCHbZuyUaDRKRUUF3bt3z7YpO2XLli34fD5KSkqybcpOWblyJT179szpMMrXX3/NwIEDs23GTjEMgwUL1lBdfUC2Tdkpfn8Vgwcn9loZr91h7dq1tGvXzgkZ5iL33HMPVVVVOx4kyhTlzOajXbt2MpdZtWqVfOyxx7Jtxk/y6quvyv/85z/ZNuMnufPOO2VVVVW2zdgptm3La665Jttm/CSVlZVy6NC/yNSSYLn56NBhgXzttdeyfal+kpkzZ8pVq1Zl24yfJK2LO9TMVhnjvuOOO9iwYcPPH6hQKBQtkFYp3GvWrHHqLSoUCkVro1UKt0KhUOxtVqxYwYoVK/bKuXIkq0ShUChaJrZtc+mll9K2bVsgNV/jiSeeaNbVKpVwKxQKxR4QiUT45ptveOWVVwD49a9/TSQScUoINgcqVKJQKBR7wK233srUqVN55513ePfdd5k6dSq33nprs55TedwKhUKxB0ybNo2ePXsyePBghBAsWrSINWvWNOs5lcetyDkyuarjxo1zthWKXEXTNGbNmkXv3r3p1asXs2bNavZqTEq4FTnH9OnT6du3L5deein7778/M2fOzLZJCsVOEUIwcuRI+vXrR//+/Rk5cmSzr4qphFuRU2zbto1oNMrcuXPZvn07zz77LFVVVTm97oVCsbdRwq3IKUzTREqJx+Nh/fr1zJ49u0EVH4VCoYRbkWN06tQJn8/Hb3/7Ww499FAef/xxCgoKfnKNcYViX0MJtyLnmDhxIl9//TVTp06lrq4O27Z5/fXXm32N4+Zg8+bN1NXVZdsMRStDCbci53C5XHi9Xp577jm8Xi/jx4+nrKyMOXPmZNu0XeaRRx5h4cKF2TZD0cpQwq1oEdxwww0kk0meeOKJbJuiUGQdJdyKFoGmaZx33nmYpsmLL76IZan604p9FyXcu8gnn3yS0xNCkskkX375ZbbNaBa8Xi9XXHEFq1ev5vXXX8/pv4PixxiGwdtvv+08DMPItkktFjXlfReYM2cOq1ev5q233mLUqFEcc8wx2TbpR8yYMYNEIsErr7zC5ZdfTrdu3bJtUpMihGDy5Mk8+OCDPPXUU1x88cXZNknRSCzLauBULFiwYIc/vmeffTYDBgzYm6a1OJRw7wIDBw7k1FNP5aGHHuKTTz7hqKOOyrZJDpkvwMiRI+nevTu///3v+e677+jSpctu97l48WKaqhboWWed1ST9ZBg3bhyzZ8/m6aef5sILL2z2mWqKPcfv9/PHP/4RSP2//uc//9lhfv7DDz/Mt99+26Ctc+fO/P3vf//RsUKInf7tpZREo1Fuvvlmpk+f/pPH7imZ79/e+j9slcLdvn17ysvL6d27d5NeyP79+zNq1ChWr15NLBbjxRdfbLK+95SCggKmTp1Kr169GDFiBJs3b+aLL76goKBgt/scMmQIr7/+epPY5/F4uOeee5qkLwC3283555/PQw89xGuvvcZpp52Gy+Vqsv6bipKSEqqqqrBtu9nXr2hJCCE44ogjdrhv+PDhPxL0DRs2MHTo0B8dO3ny5B22h0Ihbr75Zr766ivuueceevbsyRNPPMHxxx/fNB/gB6xatYr//ve/PPzww83S/w9plcI9depUBg8ezJdfftmkwv3hhx8yd+5c/vznP1NaWspNN93UZH3vKa+99hqQuv38xz/+wbhx45g8eTJHHnlkli1rPtxuN9dddx1TpkzhpZdeYsyYMdk26Udcf/31jBw5kuOPP57CwsJsm9MiyMvL+1Fbv379WLx48Y/aZ8yYwZtvvvmj9s6dO7N8+XLOPPNMYrEY9913H0uXLuWoo47C5/M1uc22bWNZFh6Pp8n73hGtUribC9M0uf322xkwYACHHHJIts3ZIVVVVdx3332cfvrp9O7dO9vm7BVuvPFGHn/8cR5//HEuu+yybJuj2Itcf/31O2xfsWIFH374IYZhYBgGbre7VWUiKeHeBY4//nh69OhBz549czameu6557J582a6du2abVP2GkIIfve73zF79mzmzJnD2LFjVVhiH6dv377069eP+fPnc8wxx3DOOefwxBNPNIu3nQ3Uf/cu0qtXr5wVbUiFD/Yl0c7g9Xq56KKL2LRpU85Mj6+pqeHTTz8lHA6zcOFCysrKsm3SPsVjjz3Ge++9x/PPP8/q1aubLb6dDZRwK1oNmqYxceJE1qxZw7PPPpttc/j888+ZMGEC27Zt4+9//zu33XZbtk3ap3C5XIRCIR588EHcbndOO1y7ihJuRavjuuuuw7KsrE6Pj0QivPbaazz55JP06dOHu+66i6FDh/LOO+9kzSZF6+FnhVsI4RdCfC6E+FoIsVwIcUe6vYcQ4jMhRJkQYq4Qwptu96Vfl6X3d2/ej6BQNMTlcnHeeedhGAYvvfRSVgal8vPzGTVqFHPnzmXOnDls3ryZZcuW5VTuv6Ll0hiPOwGMkFIOBAYBJwkhDgWmADOklL2BauCS9PGXANXp9hnp4xSKvYrH42HcuHGUlZUxf/78vT49XtM0unXrxsKFC3n11Vf529/+Rv/+/cnPz9+rdihaJz8r3DJFJP3Sk35IYATwUrr9GeCM9Pbp6dek948UrSm4pGgxZKbH19bWZuX8gwcP5vXXX6e4uJjnnnuO8ePHZ8UOReujUTFuIYRLCPEVsA14D1gN1EgpM9ObNgKd09udgQ0A6f1hoE1TGq1Q7Aq/+93vsjowNWbMmFaThqbIDRol3FJKS0o5CNgPGA703dMTCyEuF0IsFEIsjMVie9qdQqFQ7DPsUlaJlLIG+AA4DCgSQmQm8OwHbEpvbwK6AKT3FwKVO+jrMSnlMCnlsB1NcVUoFArFjmlMVklbIURRejsPOAH4lpSA/zZ92IXA/PT26+nXpPf/W6qFkxUKhaLJaMyU947AM0IIFymhnyelfEMI8Q3wghDiz8Bi4Mn08U8Cs4UQZUAVMLYZ7FYoFIqcoWfPnvztb3/ba+f7WeGWUi4BBu+gfQ2pePcP2+PAmU1inUKhULQAvF4v7du332vnUzMnFQqFooXR6oT77bff5uSTT2b16tX86le/4plnnvn5NykUCkULolUJt2EYrFmzhrPOOotu3bpx3XXXsWrVKuLxeLZNUygUiiYjJ9bjtm2bTz75ZI/72bRpE//5z3+48sorCQaDFBQUEIvFePLJJxk0aNBu97t161a2bNnSJDY2F+vWraO6ujonljPdGVVVVXzxxRcEAoFsm7JTdF3P6b9zJBLB76+iQ4fctbG4eCXr1tXl9HXcsmULS5Ysoby8PNum7JSf+i7nhHBLKams/FGq9y7j9/s566yzqKysZPLkyVRVVTmV2Pek/3A4TCwWaxIbm4toNMpTT2nU1eWujV27JvnFL6pz+g6outrk/PNz9xq63TodT/qCvBtfybYpO8W7NkQ0elZOf1/i8Tg319xM3J27/4sJmdjpvpwQbpfLxWmnnZZtM3ZKWVkZlmXltI22bbNtW3u2bj0s26bslDZtljBq1CiKi4uzbcoOkVIye/Z7rF2bu39nn6+KUId7WHva2mybslM6fNKB/tv75/T3ZcuWLWw+ejPh3uFsm7JTClw7L/TdqmLcCoVCsS+ghFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4s4SUkkQiwWOPPcZHH31EIrHzdQkUCoWiPkq4s0QkEqFTp05YlsXLL7/MgAEDsm2SQqFoIeTEIlP7Ii+++CK33347Q4YM4eSTTyYUCvHmm2/yq1/9KtumKRSKHCcnPe7Fixfz0ksvZduMZqVt27ZUVFTw3nvvsWLFCrZv306bNm2ybZZCoWgB5JxwDx8+nAceeIBVq1bRo0cPIpFItk1qFo477jgeffRRqqurefbZZ/n000859NBDs22WQqFoAeSUcC9atIiDDjqIKVOmMHDgQILBIB9//HG2zWoWAoEA8+bNY/78+Vx//fUsWrQo2yYpFK2eWCzG4sWLs23GHpNTMe7169fTo0cP6urq+Prrr4lEIpxzzjmMGzfOOaZLly5cddVVWbSyaUgmk/zrX/9i1qxZDB06NNvmtDo2btzIV199xSmnnJJtUxQ5wqxZsygrK8Pv97NmzRoYmW2Ldp+cEu7Ro0czYcIEwuEwBxxwAOFwmOeff578/HznmI0bN3Lsscc2eN8VV1zBmDFjGrQJIRBC7A2zd4tkMsmCBQu48847s21Kq+Oiiy4ikUgwcOBA7r77bl5++WVKS0uzbZZiD5BSIqXcoz7mzZvHDTfcwKBBg3jooYeayLLskFPCDbBkyRI+/fRTVq5cyfr16wkEAg0EeEclxB555JEfea333XcfHTp0cF673W569uzZvMbvAhs2bKBz587ZNqPF8N133zW6VuXChQt5+umn6dixI+vWrWPt2rW0adMmp3/IWyNSSsrKyvZYcCFVsPu6667boz5Wr17N5s2bOemkk+jVq9ce25RNck64A4EAI0eOZOTIHd/HuFwuCgoa1mKbOHEiEydObNB24403Nqjg7PP5OOKIIxocc8ABB2RtQPDcc8/lyy+/zMq5WyKzZs1i7drG1VncsmUL9913HyeeeCJnnXUWL7zwAsOGDWtmCxU/xLIspkyZgmEYe9xXhw4d9jg2fdJJJzF27FiOPfZY7r33XhUqyUWmTp3a4HU0GuWFF15o0Pb+++/z+OOPN2gbP348/fr1a3b7FLvG7bff3uhjBw8eTM+ePWnXrh0XX3wxCxYsUN52FnC73TzxxBPZNsPh+uuvZ82aNTz88MNNcheQTVqtcP+QQCDAJZdc0qCturq6gVcO8Ne//pVly5Zx0kkn8de//rVZbJk0aRL33nuvEpNm4pVXXuHbb7/lww8/5J///Cft2rXLtkmKHODEE0/EMAy2bdvGG2+8kW1z9oh9Rrh3RHFxMcXFxQ3ann76aaSUzSqqmzdvpnPnzkq4m4kePXrQvXt3TjrpJDQtpzJeFVnG4/G0irGlfVq4d0Rzf9G/+uorunfv/qMfDEXTkutZRQrFnvCzKiWE8AshPhdCfC2EWC6EuCPd/rQQYq0Q4qv0Y1C6XQgh7hdClAkhlgghhjT3h2hJfP755+y///5qertCodhtGuNxJ4ARUsqIEMIDLBBC/DO9b6KU8oeLipwM9Ek/fgE8kn5WAOeff362TVAoFC2cnxVumRp+zSwY4kk/fmpI9nTg7+n3fSqEKBJCdJRSbtlja1sBeXl52TZBoVC0cBoV0BVCuIQQXwHbgPeklJ+ld/0lHQ6ZIYTwpds6AxvqvX1juk2hUCgUTUCjhFtKaUkpBwH7AcOFEAOAm4C+wCFACTBpV04shLhcCLFQCLEwFovtotkKhUKx77JLKRRSyhrgA+AkKeUWmSIBPAUMTx+2CehS7237pdt+2NdjUsphUsphKnygUCgUjacxWSVthRBF6e084ARghRCiY7pNAGcAy9JveR24IJ1dcigQVvFthUKhaDoak1XSEXhGCOEiJfTzpJRvCCH+LYRoCwjgKyCz9upbwC+BMkAHLmp6sxUKhWLfpTFZJUuAwTtoH7GT4yVw9Z6bplAoFIodoeYDKxQKRQtDCbdCoVC0MJRwKxQKRQtDCbdCoVC0MJRwKxQKRQsjJ5Z1NU2TRx99NNtm7JRwOMzGjRtz2sY1a9bQtWs+paVLsm3KTgmF1jF79mx8Pt/PH5wlTLOKAQNy9+/scsUpXFvIgEcHZNuUnZK/JZ//xv/L1q1bs23KTlm2bBm9wr1IFiazbcpO+c78bqf7ckK4XS7XTmtM5gIbN25E07ScttHtdnPooSUcdNBB2TZlpzz55DruvPMoDCOYbVN2ygknLOKNcU+HAAAgAElEQVTVV3P371xbW8vLL2/jopE7nh4hkUjsVDEQhNMGoAmX09acLFmyhJqaGo4++ugm6c+yLFwu14+294RwOMy04dPYb7/99riv5uIw7bCd7ssJ4RZC0Lt372yb8ZOsWrUqp21ctmwZ7du3z2kbA4EAdXXdSSRytYiERNO8TXoNt2zZQkFBAcFg0/xYVVVVEQgE6NGjB5WVlanGPIPaaA2FhUV8ve0DPtHfoC5ejW0KAloJ0UQUPRHlkp534Pfk0bFgP4oDbQiHw3g8HiKRCKWlpWzfvp1QKISu65SWlhKNRnG5XBiG4QhmNBp19hUWFlJRUUFpaSnwfRGS8vJyXC5Xk1zHzZs3M2nSJO6//35qa2uZO3cuw4YNY9SoUXtUKKOwsJD99tuPLl26EIlEyMvLIxqN4vF4cLvdxGIxgsGgsy+RSCCEwOPxoOs6oVCIuro68vLyMAwDn8/n1LH0er1EIhEKCgqIRqPk5+djmia2bePz+airqyMYDKLrOn6/H9u2MU0Tt9uN3+93PtdPFXXJCeFWKForDz/8MCNGjOC4445r0n5jZoSlsQ+JmGE21i6nMr4Vf1UQYbtpp/Wgc95BfLP9C9yuIAOCg9AKXHxd9V/eKJvLid3OZGS3U2jv74yUEr/fTyKRcEQkI062bTtilBGRzLFCCHRdx+v1Os9er7dJPyPAF198wcEHH8yWLVuYMmUKF154Ie+++y4nnHBCk1Q4ikQiFBYWEolEKC4uxjRNDMOgpKSE6upqiouLHRGWUpJIJCgtLaW6upqSkhJ0XSc/P59YLIYQAtu2nT4rKyspLCwkHA7jdrvRNI2qqiqKioqorKwkFApRW1uLEAKfz0csFsPn8zXqcynhVihaIJrQuP/zhzCsBPuF9qNncU98rgBP/3s2oaCX/bt1pHJ9lMrEcgYOqKHE2w7DsumY14vlW5eA6aatrz0n7n8agCM6mW1N07BtG03TME2zwbkzZeEyYq5pWrOViTv99NM55phjeO+991i1ahUff/wxb731VpOVGMzLyyMSieB2u6mtrcXlcqFpGuFwmGuvvZZhw4ZxxRVXoOu685lramrw+/3U1tbidruJx+O43Skp1TTN+XErLCwkmUwSCASwbZtnnnmG999/n0cffZTCwkIMw3D2SSkbLdqghFuhaJH4XPn8+ZCHOWPu6WzzWpS5q8gX+ZSIbuTHfejrCti+KcaKrdvw5S/FX1lCdcl2Au4S3JqXcG2ceDLJofsdjVt6CAQCRKNRhBCpW3+PJBmP4nG7QPixpcTlcpFIJAgEApimicfjIRqNEgwGm7W+57x581ixYgUPPPAA06dPp2PHjk3WdzQapbi4mNraWgoKCrAsC8MwCIVCvPXWW8yfPx/LsrjgggsoKioikUgQCoUcjzsSieD1eonH4wCOx11UVERNTQ2FhYVs2rSJ999/n0mTJpFIJHjqqaeoqakhFAoRiaRq1GTEPi8vT3ncCkVrJR6P07Ntd+adNY+zXxzDl+u+xGO6aeMtQSbBTtr87ey7+HTpf+ka6so7y9+hc5di1n1XgS9YwJaKSuJJk7+991duO+UOotEooVCIRCKBR8Z59pah2GYchOTXExeTV9QB27YpKioiGo3idrsJh8Pk5+dTXV1Nfn4++fn5zfJZ27dvTzgcJhAI0LVr1ybt2+PxYJomLpcLy7JSg7r1Ck3HYjEmTZrELbfcwrvvvsvgwYOdeLRpmmiahpTSuevIhD2klHi9XpYsWcJJJ51EOBwGUkkELpfLCSt5PB7g+7sc5XErFK2Y/Px8Kioq6BzoxCO/nsm1865lW/U2erfpg0u6sJMWL34yl4ArQCyu43V7KP/cTd9uw9i8bTW1bbZRanTh+XfmMqr7SfzyF7+koqICvxe+fOc+whGDdl2H0WfQ8QhPPolEApfLRVVVlTM4WVJSQkVFBW3atGlWj7s5cbvdGIaBpmkYhuF8jlmzZjleNEAymeScc87h/PPPZ/To0XTv3p0pU6YgpcSyLEeAPR4Pl112GeXl5cyZM4cXXnjBEW1IZcU89thjXHbZZdi2jdvtdsYRdiVbRgm3QtEC0XWdgoICAIb5h/H8+XM4/fEzWLFtJUF3kDyRR0IkqEhsZ2vFFqq2V/GrQ06h1NsJGxcHFwzj3a//SYnPjU/zUFdXR3hbGf94/V62rV9Iu85DOOqsaRS1644mBC6XC9u2adOmjeNxV1ZWEgwGm93jbk5isRglJSXU1tYSCoUwTZNkMsmcOXNIJhvmeG/evJkpU6bw5ptvEggEWLhwIZZlNThG0zTefPNNpJQsXrz4R+eTUvLYY48xduxYioqKiEQiCCHw+/0kk0nH4/851MxJhaIFkvHOpJRoQqN3SR/eH/c+vTvsT228lpVb/8fC9YtYsmEJwYIQh/Q/hJgR47vy9Qi3Ru2mJMf2OpmCfDe3PHsNazeX8V3ZMlYs/ZKjTruJ31wzmzYdeiJI3cZnBCWTFiiEwO12Y9s2LpfrR95iS/HAMz88Pp+PqqoqdF0HwDAM55jp06c3mMOxbNkyPvvssx+JNqRi3IsWLWog2u3bt+eZZ55xXrvdbtq2bYthGBQWFhIIBIDUXZQKlSgUrRhN04jH44i0N2wYBh0KO/D2FW/w5tI3eWPpW/x3+X/YWlmOnoxSabtIuJLYSRtM+HblN4w65ESOLv0t7Q4TXDv9bA6ocDFo2Ej2H3oy+QWFjkhnsh6EECSTSTweD5Zl4fV6nUHKHwpO5vY/18mkAdbW1lJSUuJ43JnQB6RE/NVXX6W4uHiHYv1zjBw5ssEPgWmabN++naKiIsLhsONxq3RAhaKVE4/HndBELBYjEAhQU1NDMBhkRO+R/OaQ3/L2orfZWreVZDxJ0F9ATI+RiCVBCszjTLq278KI4SMoKS4htLWEDf/5mhN+fTWl7TpRWVlJIBDAMAzcbrcj0pn8ZL/fT01NjTNxJxgMNksed3OTSQf0eFLhoswAYX2BzsvLY3cLml988cVMnTqVd99912lzuVyEQqEG6YCQmrijPG6FohWTn59PbW0tkPrCZ2bjZWK20WiUEwefSLimhnyvl1hNJd898yDxsm/xd+xM3+vvJOnx4AK2b93C1sWb8QXa0aVrb2qrqigOBkkaBmX/eIUvX5yN8Pjpe9pZ9Dp2BMVt2mBZFqWlpUQiEdq0aePkMbc0EokEBQUF6LpOXl6eM4vR7/c7xySTSXw+n5N5siucfvrpAA0GOqWURKNRAoGA0+71eht45T9Hy7zaCsU+TjQadWbzxWIxCgoKnLzhzHP54s8QG9ey7s15ePICHHzHDNA8CJeGtX0r394yGUto2HEb+9ultDt4COteepoNH32AXldLQZceHHDG2Zz6p2nYpsE3/36PZy86G29hMSN+fwMFHTrRrU8fwuEweXl5zmBpS6J+/F5K6YR4XnvtNTp06EBdXR3r169n0aJFP5qI1BjKysoYOnQoZWVlzvlGjx7tjAnUTz3clXGBFi3cf//73zn//PNbzECIQtFU+Hy+BjHuZDKJ3+/HMAz8fj/bP3qH9dNuocvYS+l/418RAqIrvyXzVZFCMOCW6UgB8a1bKP50AclkEpfQGHbNjeD2kIjpJGM6euU2bCnpNvQQug4dTriqipdv/SOhLl258J57yQuFWqzH7fF4SCQSaJrmTOUXQjTwkB944AEeeOCB3ep//PjxbN68mWnTpgGpsYk//OEP+Hw+bNvG6/U6Pxa7cg1bZFbJ/PnzGT16NKZp8utf/5rXXnst2ya1OnRd57bbbsu2GYqdkMnmqD8BxLZthBBUfPg2q+69ne7nXEGo5/4kNq0jsXE9Ih5FxKMQj0IsSmz1CvRV32LW1dBu+GF0OvIYCrv2IFaxleimDcQrt2NGo5gxHUPXSdRFiNeGcblcHHP+BdRu2MATV13ppLG1RDJplZl4c0ZIp02btttx7R+SEW1I/d1uueUWwuHUdYxEIsRiMWcdlMZexxb3M2kYBv/73/8488wzOf744/H7/axcuRLDMBqMBCv2DMMwWLBgQbbNUOyETFaHEMKZyafrOqKynPLXnqXrGefiKynFDleioSFEekYgIAAbCXZqG1uS1CNYUmLaYNkSW0psmdo2M8+2xMLGsMDry+PIc85j/n0zePDii5gw5/nsXpDdJDN93e/3U11djZSShx56iHvuuadBaKS4uBiXy9UgLbK6unqHfRYWFuLxeJwfUtu2nWOllDzxxBO4XC5uu+02J1PFsqxdSgdscR73mjVrqKmpYcSIEdx8883O8oqZGJJCsS+QiWlnVp4Lh8MUFRaydeliQqUdCBS1wY7UQFxHJCJoCR1XIoqW0FOPjPcdi0I8ArEoth5F6hEsPYKpRzCjdSSjEYxIHclIHcloHYm61HM8UottGpxwyaVUb9xI3bZt2b4ku0VdXR1FRUUkk0mCwSCPPvoof/rTnxpMvunXrx+LFi1i48aNrF69mm3btrFw4UIOOeSQH/V34IEH8u9//5uNGzeydOlSNm7cyOeff87AgQOdYyzL4uGHH2bq1Kls3ryZaDQKpLz/xnrcLU64DzjgAEpKSrj66quZNGkSp556Kp988kmLnLWlUOwumQWJfD4flmWl0trCNdT839toeX6MumqI68iYDvGUUGsJHXciiiuhI+I6JHTnGEuPImM6diyKHdOxdR1T1zH1CIYeJZl5jkZJRiMkoxES0QhGPIknUMCHL7RMjzsvLw9d13G73ZSXl3Prrbc22N+/f39mzpxJSUmJEwuvra2lbdu2TJs2jT59+jjH+nw+JkyYQJ8+fUgkEgSDQQzDoH379jz55JMMHz68Qd/Tpk0jGo06FaFafTrg2LFjOfTQQ7npppuc2/k//vGPQGrAsqmWfMx1bNsmkUhwww03MGrUqGybo9iLZEIjkPrCJ5NJfJogvuYb2ow8BTsWxdI0XJpIuWcauDQXmga2BGFLsCXSlkjbRloS2wbLtrFtMG2JYUsMaWNYqRCKadupNltiWultCR26d8Noonjw3sYwDPLz84nH44wbN87JLsmwZcsWbrzxRizLom/fvjz44IP4/X50XWfw4MGMGjWKVatWATBq1CiOO+44ksmk84Nw++23s3jxYmzbZv369Q3OLYTg6quv5pVXXsHr9e5SqmGLFO7OnTvTuXNnhgwZQl5eHgBDhgxh7dq1TJw4kcsuu4yePXu2yAkBu8J1113HggULmDlzJhMnTmTKlCnZNkmxl6ifvuaktGkCaVvYcR1TA01zYWsCqQnQBNIlICNMNkhbYts2tpV6Nm0wLRtTgmHamDIV105adkrILRvTtknaAsOSGLaNYdnEo5FsX47dJlPAwO128+STT/J///d/nHPOOc7+qqoqPv30U3r16sVdd92Fy+VC13V8Ph+JRKJBJkgwGKRt27ZOlk8gEODWW2/l5JNPZtGiRT869/3338/ZZ5/doIBFY2mRwp0hI9qZ7X79+nH66adz9913M2TIELp3786vfvWrJj3n888/73g62Wbp0qWMHj2a8vJybrjhhmybo9iLJJNJxzGxLAu/3088XIMV1YmXbyYvVIiludBcAqGBcAkQGjYaNhJTSiw7JcimlfGqJaa0SVpgZDxqKzUYGYvFSBgG+PJI2jIt3GDYFgldpzlzSqSUfPDBB01Ww/KHfWfCEy6Xi48++uhHxxx44IHMnTuXgoIC3G437733Htu2baOoqIiBAwdy4YUXYpomv/jFL/jss89Yt24deXl5nHHGGfj9fubPn88pp5zC119/3aDfL774gjPPPNPx8HclM6dFC/eOOProozn66KN5+eWXWbVqFS+//DK/+c1vmqx/TdNyKhSTsSczbbapyMvL49RTT+XVV19l9OjRTdr3vsTo0aOZPXs2hx56aANHY0/x+/1s27YNIQSBQCBVBzFYgC2hdsVyXH36IvL8oGlpTzudSWKYCJ8fS9op4TVNops3EI9GiVs2SUuSMCUJ2yJhgqdNewiGiOsxEskkwrRIpo8zbEnStFi/bBm9Dxn+80bvJlJKZs6cucPV9pqCTKWfSCTCzJkzOe2001i5ciUrV650zj9t2jTuvvtuhBBUVlZyww03cPjhh/PSSy8xevRoZ3nWK664gpdeeonp06cDqXVJbrnllgai3LlzZ0aOHMmzzz7LpEmTyM/Pb/SqgBlanXBn+M1vfoOu6zzwwAMMGTKEN954g06dOu1xv2PGjGkC65qGxYsX8/LLL3P88cdz4403NmmoxOv1cvDBB/Phhx8q4d4DhgwZwsSJE524Z1ORKdabmSwSDAapi9TRb9JfWH7HH7CWRik9YADS58XSBJYAkdCxa6pxte+EbVrUlS3HMiXxRIKEYZCwbBImxEyLhGkTt2yMrZsxcCEDhbgKi5B6HNPlxrAgadmULV2C5s2n35FHNdln25tkCvv6/X78fj+ff/45paWlnHfeec4xK1asYOXKlXz00UeMGTOGSy65hJKSEifdz7Isp3iCZVkUFBRw6qmnMmvWLGbMmMG6desaOFZFRUXMmDGDa6+9lh49ejhVh3ZlAk6rFW5IrecwceJEJkyYwAUXXMCVV15Jjx496Ny5c7ZNaxLuvfdeEokE48eP5/rrr8+2OYq9jGVZzt1fymt0IYLFGKaNFo1S9c1XFPbui2aZuGwLYSQwKjbBlo2pXG0bDNsmaac86KSZ8qIt0rnbEpKJJHHDIh6uI7FhA3HLxvT4CHToxOZ166mr0+k+fH8GNEMYY2+QKeybSCQoKSmhuLiYDRs2EI/HG9zJSilZu3Ytd911F8uXL+f111/nqaeeQkpJXl6ekz44YMAAJkyYwOTJk5k7d+6Pwh+aphGLxdiyZQsHHnigM8nH4/EQj8edDJOfo9HCLYRwAQuBTVLKU4QQPYAXgDbAl8D5UsqkEMIH/B0YClQCY6SU6xp7nqYm84/9yCOP8Ne//pW8vDyuuOIKOnTokC2TmgxN08jLy+Phhx9Ws0f3MTJTtTPinVleNQLYfj/JRBwMk2hNNURrEZE6NE2gIZBILGljy5RwmzbpmPX3sWszE/+2U/Fw25ZYUmLZYBkGkeoa4noMl8+PlC1n/e0fUlBQ4FRjr6mpwev1snr1ag4//HBOPPFEamtrnQHMmTNnIqXkH//4B4cddhiTJk1yqt0HAgGklIwfP57Zs2c3EO1rrrnG8cgzi4OVlZXRqVMnQqEQlmXt8h3Zrnjc1wHfAqH06ynADCnlC0KImcAlwCPp52opZW8hxNj0cVmPL4RCIe666y6++eabJr1lba1ccsklLF++nMrKSr788ktncEaRGyQSCWcFO13Xyc/PTy2zeuBBFB85ivJ3XsPGRFZW4hY2mmkjNIFIC7ct6wmxlKnYtiUbCLhZb/DSlKkBS0tKTEOSqA5jS3D5/Zx640RnjZSWRibklEwmKSwsRErJUUcdxYgRI4jH405lGk3T6NOnj5MEcO+993L99dc76YTJZNKZJTl9+nRHtG+77TauvPJK/H6/M8vV7/cTj8edVR0Bp1p8YzPhGjXKJoTYD/gV8ET6tQBGAC+lD3kGOCO9fXr6Nen9I0UO/Rz369ePwsLCbJuR01RXV7N69WpuvPFGTj/9dPx+P1u3bs22WYp6BAIBIpFIg7WkCwsLSQgXoW69MW1IGDYxPUYslkS3bGKmjW6mnmOmTdxMiXXMkKmBSdsmmU7/M6QkYUtMS2JKQTLtcRu2jRYoSIUSvHkYpslhJ5zYYifA5efnN7iGmZBHbW0teXl51NbWOtXtDzzwQOd9pmk6tSTj8Tgej6dBEeAMffr0obi4GI/Hg6ZphEIhYrEYhYWFzvooGUdyV9KXG+tx3wvcCATTr9sANVLKzGT+jUAmcNwZ2AAgpTSFEOH08dsbbZUiqzzzzDNcfvnl9O7dm2QyyRlnnMF999232yukKZoeXdcJBoMNtsPhMMFgEK17H7S2nYhv3Yghk7gQuDTSKwOmfDUpG3rdmck1TraIZWFYKfFO2pl8bolpQby6BlvAwSOPw1/ShoqKCoqKihx7WhKZdV4yedSZ0Krb7XaKAEspcblcDQYPhRBO3nVmDZP6jwyZavCZNsMwnDzvTIgrE0fflcywn/W4hRCnANuklF82utdGIIS4XAixUAixsKlW4VI0DX/4wx/405/+xMcff0xxcTHnnXcef/rTn7JtlqIembhrLBZzBrwyt/XdjjgWf+euxCybeDo7JOVh28RNk7hpEjMtYqb1/X5HpNMDlZZM5XNnxDyd523YqRBKafcerFm2nFOuuoZQKNRiJ7tlUgEz4lw/pzuzAmNm9cUePXo0KIzwr3/9C8AJkWTi35WVlUCqZNmAAQOcfZmsE03TsCyrwfug6fO4jwBOE0L8EvCTinHfBxQJIdxpr3s/YFP6+E1AF2CjEMINFJIapGyAlPIx4DGA9u3bt8w1IVsxc+fOZdmyZXz66afMmzevRXpTrZnMFz/z5c9kQGQEZ9jEP/GP804lFovgEiI1MClTXrcEbMDOrAKIxDRTmSQpcbYxLUjaKTE3bDudfZIScF8wRLveB9C2d29KOnZ0yn21RDJFgkOhEOFwGK/Xi8fjcSoJVVVVEQwG0XWdoqIijjrqKObPn080GuWaa66hS5cujrADbNy40VkJcOjQoXTs2NFZJz2zpkx1dbVTWT5TuiyZTDZtOqCU8ibgJgAhxLHABCnluUKIF4HfksosuRCYn37L6+nX/03v/7dsqYv17sMMHDjQ8RbUcrl7RnP8+1uW5XzRM7f0uq7j9XqJxWIU9exFftcebFv+FZrQcDlLutpINKRIe4DpwUnLluklXDPrkQjH0zZsm7iVCpkkbYtgqAjN66XHwIEEi4qora1F07QW6XVnVgeMx+MUFRVh2zaWZVFSUuKUZYvFYgSDQaSUDWZNV1RUUFFRsdO+M3dBmbW3NU2jurqaQCBAVVWVE0PPhF0yxYIbw55MAZwE3CCEKCMVw34y3f4k0CbdfgMweQ/OocgiLpdLiXYT0BzeaCAQoK6ujkgkgtvtdvKRdV2nTZs26LrOyQ89RcKwSZgWMcNKh0dk6jlpEzNS4ZNEJoxiSWIWxE1B3LRJWjYJK9VuWDZJ06K4c1f6HHEU/vwAo8aOpa6ujtLS0hY7OBkMBqmursbr9VJdXe3kVWcKIG/fvh2Xy0VtbS26rnPIIYfQpUuXn+23Q4cOHHfccc4Pgs/nQ9M0px5oaWmpk8kSCAQAduka7pJwSyk/lFKekt5eI6UcLqXsLaU8U0qZSLfH0697p/ev2ZVzKBSKnycWi5Gfn09eXp6zCH9mBmA4HMbv9yPdXgaef2lKqK2UcOvG97HtVHaJlYp/W7KeiKemtSdMm4QT75aEOnSm57DhbF63juMvuohwXYS8vDxqamoalPpqSei67lRcD4VCTkpjUVGREx6xLItAIIDf7+eII47gmWeeoaioaKd9er1ennjiCY499lh8Ph91dXUYhoGU0slWqa6uTuXdpyvgALt0DXNn0Q2FQtFofD4fhmE4WQqxWMyZwVdQUJAqDFBcQulhR6O17UjMlOimjW6lUgK/TwuU329bNnHDSnnZZipFMGFZJG2JN1RIu959qNxWjl4XoeegQQSDQRKJBIFAoMXemfn9fqLRKG63m2g06qQDZn4E6+rqcLlcxONxpyblgQceyOLFi3n66acJhUIEg0FCoRChUIgZM2awcuVKDjvsMILBIMlkkvz8fNxut7OuTGaJAtM0yc/Pb7Aed2Np1VPeFYrWSv2p2JmMiPprZ2QGLXsMP4xhF1zKv2fcjaFHnffL9EQcKVODlBaZeDep5VydCTg2/pJSCtp3RI/F8Pn8THnvXceG+oOiLZH65cUy1C9PVn9fZvlcTdNo164dJ598Mt999x2maTozIwFnvCGzvrZt2072SP2/EaTGJ+pnnTQWJdwKRQvEsiwnVS0jnKZpomkahmE4z16vl6MuGYclJW/8+Q5kA4FKZZhYklROd2Zau/x+XW5TCjRLEq6upnvHjlx6991o6ZXwEomEk5MshGiRld7ri25mdiOkPPHMcrnQ0BvO7Ks/caZ+Sl+m/m0mU8QwDOe9yWTS2Zf5m9X/oWgsKlSiULRAMjnb8XjcWdw/05apWp651dc0jeHnXMBv77mf/QYfkopnpx+dhw3H374DcctOPyR9jj6WhE1qCrwNcT3GkBOO56K//Y384mJ8Ph+2bVNQUEAikaCgoKBFZpQAjrBmJsNkxLO+6Gamqmc88MxKfpmwSiY3WwiBpml4PB6nmLNt27jdbme/x+PBNM0G+zI/eLty19LyfiIVihZCLBajoqKCeDzOxo0bMQyD0tLSJuu/pKQESN3C5+XlIYRw2oqLixFC0KlTJ2f/iAt+x1FnjsGq5wG6PB5s28K2vvfE3V4vRr1iuQBevx+v3+94h6FQCCEEbdq0abE53JD6AfT5fA2uIXwfLsnsq0+mGvuO9mX4qbj17sS0f4gSboWimfj4448ZP34827ZtY/z48bRp04bnnnuuyfqvX9AjIyA/9+xq5EJh/nSK2g/ZWb8tlcwkpsx2/fYftjVm395ChUoUimZA13Xef/99Zs2axYABA3j88cfp37+/U9xaodgTRC5MaiwuLpbnn39+ts3YKYlEwplFlauEw2HcbreTzJ+LlJeXU15eipS5m4FQVLSJbt32vNCGZVmsX7+enj17snr1arp3705tbS22be/R/5FlWVRWVtKuXbs9trG5iEajWJZFKBT6+YMbyf/+9z/233//JuuvsrKSgoKCRs9UzAazZ8+murp6h259Tgi3EKICiJK7KwiWomzbHZRtu4eybfdobbZ1k1K23dGOnBBuACHEQinlsGzbsSOUbbuHsm33ULbtHvuSbSrGrVAoFC0MJdwKhULRwsgl4X4s2wb8BMq23UPZtnso23aPfca2nIlxKxQKheV94zkAAATgSURBVKJx5JLHrVAoFIpGkHXhFkKcJIRYKYQoE0JkveiCEGKdEGKpEOIrIcTCdFuJEOI9IcSq9HPxXrJllhBimxBiWb22HdoiUtyfvo5LhBBDsmTf7UKITenr91W65F1m301p+1YKIU5sRru6CCE+EEJ8I4RYLoS4Lt2e9Wv3E7Zl/bqlz+UXQnwuhPg6bd8d6fYeQojP0nbMFUJ40+2+9Ouy9P7uWbDtaSHE2nrXblC6PRvfCZcQYrEQ4o306+a5bj+sTrw3H4ALWA30BLzA10C/LNu0Dij9QdtUYHJ6ezIwZS/ZcjQwBFj2c7YAvwT+CQjgUOCzLNl3O6nydj88tl/67+sDeqT/7q5msqsjMCS9HQT+lz5/1q/dT9iW9euWPp8ACtLbHuCz9DWZB4xNt88ErkxvXwXMTG+PBeZmwbangd/u4PhsfCduAOYAb6RfN8t1y7bHPRwok6lqOklS9StPz7JNO+J04Jn09jPAGf+/vbMJsaoM4/jvWdgHJYkRMngXqQgtQlQUikRkRGk0kmAWQaCLoE0uWgkiuHNpH4toUSloodCY6NKPEVqFYY02MlaCQg2jA4qjbaSPf4v3OTOHy9xLszjnPQeeH1zu+bhwfvzvPc+97/Pee08dB5X0HXD/f7rsAo4p8T3pYs4DGfx6sQs4KemxpFvATdLzX4XXlKQfffkRMAEspwHZ9XHrRW25uZMk/emri/wmYBAY8e3d2RWZjgBbzar5E48+br2o9Zwwsw6wE/jC142KcstduJcDv5fW/6D/i7gOBJwzsytm9p5vWyZpypfvAMvyqPV1aVKWe31oeqTUVsri50PQdaRPZ43KrssNGpKbD/fHgGngPOlT/gNJf8/jMOvn+2dI16CtxU1Skd0hz+4jMyt+x153dh8D+4Dirxafp6LcchfuJrJJ0npgCHjfzDaXdyqNbRrxVZwmuZT4DFgFrAWmgMO5RMzsWeAU8IGkh+V9ubObx60xuUn6R9JaoEP6dP9SLpduut3M7GVgP8lxI7CUdCHzWjGzN4BpSVfqOF7uwj0JlC+Z3PFt2ZA06ffTwGnSC/duMcTy++l8hj1dGpGlpLt+cv0LfM7csL5WPzNbRCqMX0v61jc3Irv53JqSWxlJD4BLwKukNkPxN9Blh1k/3/8ccK9Gt9e9/SSlC5YfJU92rwFvmtltUst3EPiEinLLXbh/AFb7zOsTpCb92VwyZvaMmS0uloHtwLg77fGH7QHO5DGEPi5ngd0+k/4KMFNqC9RGVw/xLVJ+hd/bPpu+AlgNXK7IwYAvgQlJH5Z2Zc+ul1sTcnOPF8xsiS8/DWwj9eEvAcP+sO7sikyHgVEfzdTldqP0ZmykHnI5u1qeV0n7JXUkvUiqY6OS3qGq3KqYWV3IjTTz+yupj3Ygs8tK0gz+VeB64UPqPV0EfgMuAEtr8jlBGjb/ReqPvdvLhTRz/qnn+DOwIZPfcT/+NX9xDpQef8D9fgGGKvTaRGqDXAPG/LajCdn1ccuemx9rDfCTe4wDB0vnxmXS5Og3wJO+/Slfv+n7V2ZwG/XsxoGvmPvmSe3nhB93C3PfKqkkt/jlZBAEQcvI3SoJgiAIFkgU7iAIgpYRhTsIgqBlROEOgiBoGVG4gyAIWkYU7iAIgpYRhTsIgqBlROEOgiBoGf8BWrDWh9zMdxMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Vérification de la politique\n", + "\n", + "Étant donné que la Q-Table répertorie \"l'attractivité\" de chaque action pour chaque état, il est assez simple de l'utiliser pour définir une navigation efficace dans notre monde. Dans le cas le plus simple, il suffit de sélectionner l'action correspondant à la valeur la plus élevée dans la Q-Table :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "def qpolicy_strict(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = list(actions)[np.argmax(v)]\n", + " return a\n", + "\n", + "walk(m,qpolicy_strict)" + ] + }, + { + "source": [ + "Si vous essayez le code ci-dessus plusieurs fois, vous remarquerez peut-être qu'il \"se bloque\" parfois, et vous devez appuyer sur le bouton STOP dans le notebook pour l'interrompre.\n", + "\n", + "> **Tâche 1 :** Modifiez la fonction `walk` pour limiter la longueur maximale du chemin à un certain nombre d'étapes (par exemple, 100), et observez le code ci-dessus renvoyer cette valeur de temps en temps.\n", + "\n", + "> **Tâche 2 :** Modifiez la fonction `walk` afin qu'elle n'aille pas dans des endroits où elle est déjà passée auparavant. Cela empêchera `walk` de boucler, cependant, l'agent peut toujours se retrouver \"coincé\" dans un endroit dont il ne peut pas s'échapper.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 3.45, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 15 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de3xcdZ3/8deHVlBxf1ykPxYBN3XF9Yd3rAKL666i3HdxFRV+/rCrII+foj9FH6th2ZW7UAEREAqFVoHl0gqVFgK9t/RCL6T3W9qm1zSkbdqkSZu0uX5/f8x3kkkykzmTzMyZzHk/H488cuZ7zsx8z5yZz/me7+2Ycw4REYmGY8LOgIiI5I+CvohIhCjoi4hEiIK+iEiEKOiLiETI8LAz0J9TTjnFlZSUhJ0NEZEhZfny5fudcyOSrSvooF9SUkJ5eXnY2RARGVLMbGeqdareERGJEAV9EZEIUdAXEYkQBX0RkQhR0BcRiRAFfRGRCFHQFxGJEAV9EQlswZZadh5oCjsbMggFPThLRArLteOXAbDj3stDzokMlEr6IiIRoqAvIhIhCvoiIhGioC8iEiEK+iIiEaKgLyISIYGCvpndZGbrzWydmb1gZu82s5FmttTMKs1sopkd67c9zj+u9OtLEl7nZp++ycwuzs0uiYhIKmmDvpmdDvw/YJRz7uPAMOBqYAzwoHPuw0A9cJ1/ynVAvU9/0G+HmZ3tn/cx4BLgMTMblt3dERGR/gSt3hkOvMfMhgPvBWqALwMv+fVPA1/zy1f6x/j1F5qZ+fQXnXMtzrntQCXw+cHvgoiIBJU26DvnqoH7gV3Egn0DsBw46Jxr95vtBk73y6cDVf657X779yemJ3lOFzO7wczKzay8trZ2IPskIiIpBKneOYlYKX0k8AHgeGLVMznhnBvnnBvlnBs1YkTS+/qKiMgABane+Qqw3TlX65xrAyYDFwAn+uoegDOAar9cDZwJ4NefABxITE/yHBERyYMgQX8XcJ6ZvdfXzV8IbADmAlf5bUYDU/zyVP8Yv36Oc8759Kt9756RwFnAsuzshoiIBJF2lk3n3FIzewlYAbQDK4FxQBnwopnd5dPG+6eMB541s0qgjliPHZxz681sErETRjtwo3OuI8v7IyIi/Qg0tbJz7lbg1l7J20jS+8Y5dxT4ZorXuRu4O8M8iohIlmhErohIhCjoi4hEiIK+iEiEKOiLiESIgr6ISIQo6IuIRIiCvohIhCjoi8iAHG3r4NDRtrCzIRlS0BeRAbnwgTf5xG0zws6GZEhBX0QGpPrgkbCzIAOgoC8iEiEK+iIiEaKgLyISIQr6IiIRoqAvEhGfu3sW4+ZvDTsbEjIFfZGIqD3Uwm9erwg7GxIyBX0RkQgp2qD/y5dW8/Ly3WFnQ0SkoBRt0J9Uvptf/Hl12NkQESkoRRv0RUSkLwV9EZEIUdAXkUHp7HTc8eoGquqaw86KBKCgLyKDsqGmkQmLtnPj8yvCzooEoKAvIoPiXOx/Z3xBCpqCvohIhCjoi4hEiIK+iEiEKOiLiESIgr6IdGlqaef6p9+mpkG3QixWCvoi0qVsbQ2zNu7jgRmbw86K5IiCvohIhCjoi4hEiIK+iGSFxmYNDQr6IjIoZmHnQDKhoC8iEiEK+iIRN2vDXta/0xB2NiRPFPRFIu76Z8q5/OGFg36d9e80crilPQs5klxS0BeRrHl9bU3YWZA0AgV9MzvRzF4yswoz22hm55vZyWY208y2+P8n+W3NzB42s0ozW2Nm5yS8zmi//RYzG52rnRKR/FGvnaElaEn/IWCac+6jwKeAjUApMNs5dxYw2z8GuBQ4y//dAIwFMLOTgVuBc4HPA7fGTxQiIpIfaYO+mZ0AfBEYD+Cca3XOHQSuBJ72mz0NfM0vXwk842KWACea2WnAxcBM51ydc64emAlcktW9ERGRfgUp6Y8EaoE/mtlKM3vKzI4HTnXOxSvw9gCn+uXTgaqE5+/2aanSezCzG8ys3MzKa2trM9sbERHpV5CgPxw4BxjrnPsM0ER3VQ4AzjkHZKVmzzk3zjk3yjk3asSIEdl4SRER8YIE/d3AbufcUv/4JWIngb2+2gb/f59fXw2cmfD8M3xaqnQREcmTtEHfObcHqDKzv/NJFwIbgKlAvAfOaGCKX54KfNf34jkPaPDVQNOBi8zsJN+Ae5FPE5EhTNMwDC3DA273E+A5MzsW2AZ8j9gJY5KZXQfsBL7lt30duAyoBJr9tjjn6szsTuBtv90dzrm6rOyFiIgEEijoO+dWAaOSrLowybYOuDHF60wAJmSSQREZvLqm1vy8kfrsFzyNyBWJgB88Ux52FqRAKOiLRMDu+uawsyAFQkFfRLJqxa56Gprbws6GpKCgLyJZ9fXH3uI745eEnQ1JQUFfJAKM/ParXFfdmNf3k+AU9EVEIkRBX0QkQhT0RSJAo2YlTkFfRCRCFPRFJJCfvbgy7TZOQ3ILnoK+SAQMtHZnwZZafvJCLNi/suqd7GVIQqOgLyIpXTt+Ga+uVrAvJgr6IhFgaskVT0FfRCRCFPRFJGuc2nELnoK+iAxK4xFNrjaUKOiLSMZmrN/TtVw6eW2IOZFMKeiLSMZueHZ51/Kuuu65+lW7U/gU9EWkj5b2TqrqdOOVYhT0xugiEiGvrn5H/fOLlEr6IpI1ib13Nu05FF5GJCUFfZEICGNs1hWPLMj/m0paCvoikhNtHWrWLUQK+iIiEaKgLxIBmnpH4hT0RUQiREFfRLJGN1EpfAr6IhFgA76NSozTTGpFQ0FfRCRCFPRFRCJEQV8kAtR7R+IU9EUka1T1X/gU9EVEIkRBX0QkQhT0RUQiREFfRNIKWlevKv3Cp6AvEgF567yjltyCp6AvIt1SxOw9jUfzmw/JmcBB38yGmdlKM3vNPx5pZkvNrNLMJprZsT79OP+40q8vSXiNm336JjO7ONs7IyK58ff3zgk7C5IlmZT0fwpsTHg8BnjQOfdhoB64zqdfB9T79Af9dpjZ2cDVwMeAS4DHzGzY4LIvIkFY0NFZGsRV9AIFfTM7A7gceMo/NuDLwEt+k6eBr/nlK/1j/PoL/fZXAi8651qcc9uBSuDz2dgJEREJJmhJ//fAL4FO//j9wEHnXLt/vBs43S+fDlQB+PUNfvuu9CTP6WJmN5hZuZmV19bWZrArIiKSTtqgb2ZXAPucc8vzkB+cc+Occ6Occ6NGjBgx6Nc72NyahVyJDG35qrWZWF6VfiMJVZCS/gXAv5jZDuBFYtU6DwEnmtlwv80ZQLVfrgbOBPDrTwAOJKYneU7OrKw6mOu3EBFvXXVj2FmQNNIGfefczc65M5xzJcQaYuc4574DzAWu8puNBqb45an+MX79HBe7A8NU4Grfu2ckcBawLGt7IiIiaQ1Pv0lKvwJeNLO7gJXAeJ8+HnjWzCqBOmInCpxz681sErABaAdudM51DOL9RSQo9coRL6Og75ybB8zzy9tI0vvGOXcU+GaK598N3J1pJkUk90pKy/i///i3YWdDckwjckWky9pqtYEVOwV9kQhQ7Y7EKeiLiESIgr6ISIQo6ItIl/2HNJix2Cnoi0iXTXsPhZ0FybGiD/pqwBLJYJZNKXpFH/R1Hx8RkW6DGZErIkPYC8t2cYwuACJHQV8kApLF9psnr817PiR8RV+9IyIi3RT0RYpce0cn2/c3hZ0NKRAK+iJF7rfTN9HeqS4NEqOgL1Lkxs3f1ietpuFICDmRQqCgLxIx9U2tnH/PnLCzISFR0BeJmMajbWFnQUJU9EFf3ZBFRLoVfdAXEZFuRR/01WdBRKRb0Qd9ERHppqAvEjGmlq5IU9AXiZjaw0fDzoKESEFfJGK+MXZx2FmQECnoi4hEiIK+iEiEKOiLiERI0Qd99VMQEelW9EFfRES6KeiLiESIgr6ISIQUfdDX3Dsi4SkpLWPmhr1hZ0MSFH3QF5Fw3Tx5TdhZkAQK+iJSMK54ZAGvrKwOOxtFTUFfRArGuupGfjZxVdjZKGoK+iIiEaKgLyI5piGShaTog76+biJhUx+6QlL0QV+kmIydt5XyHXVhZ0OGsLRB38zONLO5ZrbBzNab2U99+slmNtPMtvj/J/l0M7OHzazSzNaY2TkJrzXab7/FzEbnbrdEitOYaRVc9bjmw5eBC1LSbwd+4Zw7GzgPuNHMzgZKgdnOubOA2f4xwKXAWf7vBmAsxE4SwK3AucDngVvjJwoRKWaqZC0kaYO+c67GObfCLx8CNgKnA1cCT/vNnga+5pevBJ5xMUuAE83sNOBiYKZzrs45Vw/MBC7J6t6IiEi/MqrTN7MS4DPAUuBU51yNX7UHONUvnw5UJTxtt09Lld77PW4ws3IzK6+trc0ke0mpCUlEpFvgoG9m7wNeBn7mnGtMXOecc2QpvjrnxjnnRjnnRo0YMSIbLykiIl6goG9m7yIW8J9zzk32yXt9tQ3+/z6fXg2cmfD0M3xaqnQJ2a4DzextPBp2NmQA5lbso76pNexsyBASpPeOAeOBjc653yWsmgrEe+CMBqYkpH/X9+I5D2jw1UDTgYvM7CTfgHuRT5OQffG+uZz7m9lhZ2PIOHC4hY/c8gbLd9aHmo+GI218709vc/0z5aHmQ4aWICX9C4BrgS+b2Sr/dxlwL/BVM9sCfMU/Bngd2AZUAk8CPwJwztUBdwJv+787fJrIkLJsex2tHZ08OX9bqPlo7+gEYPv+plDzIUPL8HQbOOcWkrrP1YVJtnfAjSleawIwIZMMDpY6i4kUp4o9jXz0r/9H2NkYcjQiV2SAXIH0DYuVswqX5aDkNW1dDZf8fgGvrn4n+y9e5BT0RRK0dXRy8+Q1vHPwSMptchHEBsIKJSMh2Lz3sP9/KOScDD0K+iIJFlbu54VlVZROXpt227AL2IVewk9Ue6iF+6ZX0Nk5dPJcrBT0RZKIbhk6N0pfXsOjc7eyeNuBlNsM5CQ2hM57BUNBXySJoRBLhlL1Tkt7rKdRZ5ai9NDZ88KTtveOyFBV03CEdw8fxknHHxto+zte3cDra2vSb1hgIWconKDislUyP9rekZ0XiqCiL+kPpR+EZNf598zh3HuCDzqbsGg7e4bQyOTCOvWkVnuoJeuN34/O3ZrdFywADUfaKCktY/KK3Tl9n6IP+ku2pq5DlOLX6qsV0mkZQMmxd4Gis9PRoYbKotbW0Unj0bYBPW9pP+0ZAFV1zQA8tWD7gPIWVNEH/flb9oedBRkCWgKeHHbXN6dscPw/45fyt//x+oDev2xNDWOmVQzoub2t3FUf+hQR+ZLvsRI3PreCT942I+PnPTBjM98et4RVVQdzkKvMFH3QHyqXwEFtqz3MjPV7eHPz4KedHgp2hDTFQLLAXlXXzBfGzOXBWZuTPuetQVxV3vj8CsbOy06Vxb8+9hbfGPtWVl4r2/oL0YXQE2f5znpKSsvYdyh5Nd+MDXsBOHS0jYbm4CX+LX48wf5DLYPP5CAVfdAvNl9+4E1ueHY5oycsY9Oe4ANTnHM8MGMTW2sP5zB3PTU0t/GRW97gra0Du9qasqqaf7p/XsGc4Pb5H2x8YFCuTHq7ig3vNKbfMI343DyFqqbhCCWlZazYlf2rkpLSMq5/OvOJ6CYsilWtLNnWc1qwlvYO5id8Dz9zx0w+dUfmJf4COK8Vf9AvhA85Vw5lULdYe7iFR+ZUcu1TS3OYo57WVB+ktaOTR+dWDuj5a3c3ALA5g5NbEB2djvumV3DgcOpS1xr/3v3JVcn0ly+v4bKHFwTePlU+CqlRuq2jb5fNBb7q9fmluwb12gcOt9BwpO9vYdbGvUxZVU1JaVngm8nHawZ6X+nd/uoGvjthWdfj9iHcdlP0QV88/x1t7cjfl9X8T2iwwTFZvW1bRydH2wbWbW9h5X4enbuV//hL6lG38SCyac8hLnxgHg3NbRn3QIn3xphbEbvVREt7BzN99UBQN09ew6i7ZiZdly4/zsGsDN8vV+Il55fK+/ZMSfX9aO/opLqf6TDiPnvXLM65M/ln9PNJqwEC30z+mBQf6vo0V15XjX0ra9VzuVb0QX9jzeAvk4tCnho3nHNdpaT472egQb+/oHbxg/P56H9Ny+j1SkrLKCkt66r2SGy8TZXHh+dsYWttE/M27+Prj2VWTx6vfntsXuxKZ8wbm/jBM+Us2x58RvEXllWx/3Dym6QE+VyXpOkxkm+JJfJ0X8k7X9vABffO6feKLP4ZDLTX1KGjbT16bsW/cw/P3pLR65TvrO+3Ib6QxtEVfdCX/Lr0oQV85D/fALp/1Iu3HehRH5oN2wbRwJvs0vxIa/KrhncPHwZAS9vg6sedc131xfXNrextPNrVRS+I3fU9tx1K8+4kSnbV9vKK3Un3J96W03i0fcDvly7WfuK2GVw1tvsqIL791tqe369sxexddc2hF0QV9CWrKvYcoq3D0dreSVtCcE2sDy00zjn+9NaOPul/mLOF494V+4mk68e/Jclsj4mBrLVXo+q5v5nNP/x2Lm+sraEuwO0Oxy/czrZejfDJSo/J6raHghW76lO2v8U/x6q6ZtZV92xraU5xsu56bpK0zk7X4yS6NuE1X1mV+VTN//lK+sn54u58bQOXPhS8vSYXFPSLRF1TKyWlZUxZle62w/kpIZ5z50xGZynQ57JQe8G9c/jof03j8Tf71sfeP2NzmhJed8a++uD8wO+5NKFnyA+fW8H1T7/d9ThVT6U/LtrRI1ik+kxqE7oaPrlgG0OlvfHWqetZVdWzF0/vuYX+4bdzueKRhT3SEk/W2/c3sbhXt9lk1T6Pz9/KF8bMpXJf/72w9h9uCdRu9N9LBtcQvXjrAfb3U4WVbQr6Q1ji1zleCnxm8c5+n7P/cCt3l21Iuu7f/7w6W1njcMvAL8lTmblhL+ffMzvQKNsgU/g6B9UHj/Q7MOtQvGphAJWyiUHLEk4f8WqeuMTGyv5OlIn5vPyRhXz6jljjpXOO7fub+lwxPLN4Z5/3ClviySrx81lX3cg3xqZubA1SnfWl++dxzZNL+p0/6WhbB1NWxkrz6RqJR901i+//6W2f17RvD8SutJLnNfULXPPkEr71xOKuE8xARvxmQkF/CHs2SYAP8uN4MsUw7z8v7+5Z8Vbl/gH3jgni7F9P46kFmd1j9rap66lpOJpy4EyilVka+Tg1fmemJJ9rPCnV55TLevfe9cJfun8eX/ztXAp9OGLQj+QXk7oLII5YQ2lQyX4XcT/87+Vs8lVxQY5PpgPuPnX7DMYmuWpMJd7Yv622iReWVQGwuz59j6XBUNAP2Z/Lq3qMADx0NNbN7y8r00+6NDXhVnHpSiKWQTCo2NPI/35qKXe8lvyKIG5ddQMlpWVU7Mm8Yaq5tYO7yjb2SX9m8Y6uElj85NT7pxkscKTeKNux+N43evbaONjcmlFj3d7G7Fza5+LqKiwvr9jddcP3xiNtVGTweaaavrmj0zF3U3Y7FCQb7Pj62hpeXf0Ozjne3FzLj59fweyKnl1ndx5oYuy8rfwhYQxLR2f3ldwbgWZ7HRgF/ZBNKo+d3edv3k9JaRlPvBkr/T4+L7NScDLlO+oC1PH3ddAPL09X5zlt3R4AZq7PTl/w/Ydb+PWU9fzbhGVZv8roWbebedQ/mqT3jhlcPW5xn0bgrz26iEsfWjDo+e57108Xg4F8JKUvr+XY4cFDVaqj+9XfvZnyOQP9rL/9RN8qqXXVjfzkhZXc/uoGRk9YxmtravoUNK4dv4wx03oOEEzc5IfPrRhQfoJQ0A9ZvAQeH3Y/ZXUsSMd/HLVp5uroXXed+Oiqxxfz0xdXJX3ehnca09ZpLtte1+/8Isf4PAZtLDzgG8ZSXVbHA3PDkTb+/aU1XekT367qdyqGICXcB2Zs6loeSEl/x4G+XUSd6ztcP7ZtrGfI7xPm6Pn62EUZv+c1Ty7J+DmF1B88mR51+gGfU9fcyruGdYeq/u5fHHuT5Mm9u/kmbpbus06V11RjKAC27Es9knxXku66+Tp0kQ76902v6Cqthq3dX9ol/ijmVOzlc3fP6jfg9a6CWbkrWF32ZQ8v4IJ756Td7kfPL2f5zjqfN9czYPsI8+CszYG6HX72rllcO35pj32ctWFv12CpxPTVCXXy2/c3pWzg3LTnEB+/dTpXj1tMSWlZV5fFHz+/ssd2Cyu75/8ZyF2ckp3YZvuRtqkk1gevq85P3+yFBT6rbKdzTCqv4puPv9U1l1E6HZ2OYcd0h8S/T/O9zdbdufIhjJN0pO+cFb8Rw457Lwdi9emfuG0GY77xCb79uQ/mJQ/L/JwgvXvd1DW18vLyWKl/1a6D/ONHRiR9/p/e2sEFHz6Fk49/V1eac65P1UImX67EYLWo8gCLKhez497LueeNCsbN38bW31zGsGOMhN8h5TvquuZS6c/bO+p7/Civf6acn154FjsPNHGMf0Gz5PlNlhZvT4iXuG+auIpLPvbX1DT0bOwdnpDZ219dDxAov73fpxAlhrhbp64PLR9BLN1ex1I/IvntHcEaZ48x65rKIoigIb8+QEFlMIKcexZVdv/W+rZd9f0dZ0OkS/q9xQNFupsYHDjcQklpGTPWd18lHGzu7iff2t5Jc+vgGtX2HWqhLGBjzg+eKSfx4vCuso18NmEukoPNrSlHnCaTagj6hIWxzyVeDdN7npJnl/TfXTSu95e7qr6ZV1a9w+QVvmorgwvd3tVXcyr28cuX1/RIe2T2lh4/nvoMpsSNC3oFJdl3jGU2aCrovQR+Pil7XZSTybTnT++TRK4uWBT0gR8/v4LW9s7AH3KF72b1u5nddbbxngYTFm7n2+MWc/avpw8oLwM90A1Hukst4xdu50BCKebTd8zkn/+wMNnTAnt0bmWfkvZAyyB9Bsz0ehhkIrFMPDAz3SCr3Eo3anSwDg1imoKhIGg1UC7l4yb0fUr6OXqfyAb9xMag19bUUL6zrmtekKDHtyJhyt/EL0W2S4VB7g70/T/1P3f4wRSl29518akGhvxx0Y6u5U/ePp3New91VcfE8hjczyf1LJ33fm5Nw9GkQbrQGylTSTdDoxSG+6YnnzDtD3O2hHInslyN84hs0D/ST5dAw7i7bENXcFr/TgOXPbSAppZ2rnx0Ed9JMid91zzcad73wOEW7nljI3sakg8wStYItauuOdAI04HoPSVtqlvB7T/cQpuflvloWyfP9arKGTc/eBfT19f2bDwP2vAW78Y8kFvkZTK4R6Ip1c3W75+R/E5p2fbq6p5VWLkq6UeqIXfsvK3s2N/EmKs+2e/lfuPRtq6BQb/71qe5/OFY1cijcyt79CpJFHQa4V+9vJZZG/fyxJvbWPirL/VZ37sBEmDyimr+5uTj+fQHT+z/xfMssU5/MCWhZJ9ZssvpeLXQr6cUdmOlSDaoTj8LxkyrYKIfDJVM/ENOFngBHgtwk4T+SqGdnY5ZG7sHMn1hzNy0rxe3dPuBrE1glg2O7M3VHvS7He/WWii3TxTJpVzd9D0SQT9I3VjZmuQ9ZUpKy/p9XlNLO00t7fxrkhts3DRxFfdNr8A5R0enY9r6gY8JGMxNt3NhTsW+rAXfPQ19B9tsTzJf/kBvlCEyFOWqpB+p6p24+Ztr+wSV55buYuQpx2f8WjdNXMU1536wKyAlDsL5y8pYF8QPnPgebvnLuiHbEJlMNieFCtpfeyBdLUWkp0gE/abWDt53XPeuprqhR7IJwNLZuKcxbXfAW/6yDsjtvPAiUlxyNbI4EkH/47dO54pPnpaT166qy+00qCISTWrIHaTXUtTZZ8OOQdyvVUQkmVyV9CMT9HPptlf7n3deRCRTN01MPkPuYCnoi4gUoFkbg08ylwkFfRGRCMl70DezS8xsk5lVmllpvt9fRCTK8hr0zWwY8ChwKXA2cI2ZnZ3PPIiIRFm+S/qfByqdc9ucc63Ai8CV2X6T3fV9b0UmIiL5D/qnA4mT3+z2aV3M7AYzKzez8tragQ3zz/ZNtUVE8u0r/+vUnLxuwQ3Ocs6NA8YBjBo1akAdVT/8P/+q6xaIIiLSLd8l/WrgzITHZ/g0ERHJg3wH/beBs8xspJkdC1wNTM1zHkREIiuv1TvOuXYz+zEwHRgGTHDO6Y4YIiJ5kvc6fefc68Dr+X5fERHRiFwRkUhR0BcRiRAFfRGRCFHQFxGJEAty0/CwmFktsHMQL3EKsD9L2RkKora/oH2OCu1zZv7GOTci2YqCDvqDZWblzrlRYecjX6K2v6B9jgrtc/aoekdEJEIU9EVEIqTYg/64sDOQZ1HbX9A+R4X2OUuKuk5fRER6KvaSvoiIJFDQFxGJkKIM+sV083UzO9PM5prZBjNbb2Y/9eknm9lMM9vi/5/k083MHvb7vsbMzkl4rdF++y1mNjqsfQrCzIaZ2Uoze80/HmlmS/1+TfRTc2Nmx/nHlX59ScJr3OzTN5nZxeHsSTBmdqKZvWRmFWa20czOj8Axvsl/p9eZ2Qtm9u5iO85mNsHM9pnZuoS0rB1XM/usma31z3nYzCxtppxzRfVHbMrmrcCHgGOB1cDZYedrEPtzGnCOX/4rYDOxm8r/Fij16aXAGL98GfAGYMB5wFKffjKwzf8/yS+fFPb+9bPfPweeB17zjycBV/vlx4Ef+uUfAY/75auBiX75bH/sjwNG+u/EsLD3q5/9fRq43i8fC5xYzMeY2G1StwPvSTi+/1Zsxxn4InAOsC4hLWvHFVjmtzX/3EvT5insDyUHH/L5wPSExzcDN4edryzu3xTgq8Am4DSfdhqwyS8/AVyTsP0mv/4a4ImE9B7bFdIfsTuqzQa+DLzmv9D7geG9jzGxezOc75eH++2s93FP3K7Q/oATfAC0XunFfIzj98s+2R+314CLi/E4AyW9gn5WjqtfV5GQ3mO7VH/FWL2T9ubrQ5W/pP0MsBQ41TlX41ftAeJ3UU61/0Ppc/k98Eug0z9+P3DQOdfuHyfmvWu//PoGv/1Q2t+RQC3wR1+l9ZSZHU8RH2PnXDVwP7ALqCF23JZT3Mc5LlvH9XS/3Du9X8UY9IuSmb0PeBn4mXOuMXGdi53mi6LvrZldAexzzi0POy95NJxYFcBY59xngCZil/1diukYA/h67CuJnfA+ABwPXBJqpuR29Y8AAAHSSURBVEIQxnEtxqBfdDdfN7N3EQv4zznnJvvkvWZ2ml9/GrDPp6fa/6HyuVwA/IuZ7QBeJFbF8xBwopnF7/SWmPeu/fLrTwAOMHT2F2IltN3OuaX+8UvETgLFeowBvgJsd87VOufagMnEjn0xH+e4bB3Xar/cO71fxRj0i+rm6741fjyw0Tn3u4RVU4F4K/5oYnX98fTv+p4A5wEN/lJyOnCRmZ3kS1kX+bSC4py72Tl3hnOuhNixm+Oc+w4wF7jKb9Z7f+Ofw1V+e+fTr/a9PkYCZxFr9Co4zrk9QJWZ/Z1PuhDYQJEeY28XcJ6Zvdd/x+P7XLTHOUFWjqtf12hm5/nP8LsJr5Va2I0cOWo4uYxYL5etwC1h52eQ+/IFYpd/a4BV/u8yYvWZs4EtwCzgZL+9AY/6fV8LjEp4re8Dlf7ve2HvW4B9/ye6e+98iNiPuRL4M3CcT3+3f1zp138o4fm3+M9hEwF6NYS8r58Gyv1xfoVYL42iPsbA7UAFsA54llgPnKI6zsALxNos2ohd0V2XzeMKjPKf31bgD/TqDJDsT9MwiIhESDFW74iISAoK+iIiEaKgLyISIQr6IiIRoqAvIhIhCvoiIhGioC8iEiH/H6G+/rPuz7xgAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "Ce que nous observons ici, c'est qu'au début, la longueur moyenne des trajets a augmenté. Cela est probablement dû au fait que, lorsque nous ne savons rien de l'environnement, nous avons tendance à nous retrouver piégés dans des états défavorables, comme l'eau ou les loups. Au fur et à mesure que nous apprenons et commençons à utiliser ces connaissances, nous pouvons explorer l'environnement plus longtemps, mais nous ne savons toujours pas bien où se trouvent les pommes.\n", + "\n", + "Une fois que nous avons suffisamment appris, il devient plus facile pour l'agent d'atteindre son objectif, et la longueur des trajets commence à diminuer. Cependant, nous restons ouverts à l'exploration, ce qui nous amène souvent à nous éloigner du meilleur chemin et à explorer de nouvelles options, rendant ainsi le trajet plus long que l'optimal.\n", + "\n", + "Ce que nous observons également sur ce graphique, c'est qu'à un certain moment, la longueur a augmenté brusquement. Cela indique la nature stochastique du processus, et qu'il est possible, à un moment donné, de \"détériorer\" les coefficients de la Q-Table en les remplaçant par de nouvelles valeurs. Cela devrait idéalement être minimisé en réduisant le taux d'apprentissage (c'est-à-dire qu'à la fin de l'entraînement, nous ajustons les valeurs de la Q-Table uniquement par de petites quantités).\n", + "\n", + "Dans l'ensemble, il est important de se rappeler que le succès et la qualité du processus d'apprentissage dépendent fortement des paramètres, tels que le taux d'apprentissage, la décroissance du taux d'apprentissage et le facteur d'actualisation. Ces paramètres sont souvent appelés **hyperparamètres**, pour les distinguer des **paramètres** que nous optimisons pendant l'entraînement (par exemple, les coefficients de la Q-Table). Le processus de recherche des meilleures valeurs d'hyperparamètres s'appelle **l'optimisation des hyperparamètres**, et il mérite un sujet à part entière.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "## Exercice\n", + "#### Un monde plus réaliste pour Pierre et le Loup\n", + "\n", + "Dans notre situation, Pierre pouvait se déplacer presque sans se fatiguer ni avoir faim. Dans un monde plus réaliste, il doit s'asseoir pour se reposer de temps en temps, et aussi se nourrir. Rendons notre monde plus réaliste en appliquant les règles suivantes :\n", + "\n", + "1. En se déplaçant d'un endroit à un autre, Pierre perd **de l'énergie** et accumule de la **fatigue**.\n", + "2. Pierre peut regagner de l'énergie en mangeant des pommes.\n", + "3. Pierre peut se débarrasser de la fatigue en se reposant sous un arbre ou sur l'herbe (c'est-à-dire en marchant vers une case contenant un arbre ou de l'herbe - champ vert).\n", + "4. Pierre doit trouver et tuer le loup.\n", + "5. Pour tuer le loup, Pierre doit avoir certains niveaux d'énergie et de fatigue, sinon il perd le combat.\n", + "\n", + "Modifiez la fonction de récompense ci-dessus en fonction des règles du jeu, exécutez l'algorithme d'apprentissage par renforcement pour apprendre la meilleure stratégie pour gagner le jeu, et comparez les résultats de la marche aléatoire avec votre algorithme en termes de nombre de parties gagnées et perdues.\n", + "\n", + "> **Note** : Vous devrez peut-être ajuster les hyperparamètres pour que cela fonctionne, en particulier le nombre d'époques. Étant donné que le succès du jeu (affronter le loup) est un événement rare, vous pouvez vous attendre à un temps d'entraînement beaucoup plus long.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/2-Gym/README.md b/translations/fr/8-Reinforcement/2-Gym/README.md new file mode 100644 index 000000000..5dddaa452 --- /dev/null +++ b/translations/fr/8-Reinforcement/2-Gym/README.md @@ -0,0 +1,333 @@ + +## Prérequis + +Dans cette leçon, nous utiliserons une bibliothèque appelée **OpenAI Gym** pour simuler différents **environnements**. Vous pouvez exécuter le code de cette leçon localement (par exemple, depuis Visual Studio Code), auquel cas la simulation s'ouvrira dans une nouvelle fenêtre. Si vous exécutez le code en ligne, vous devrez peut-être apporter quelques ajustements au code, comme décrit [ici](https://towardsdatascience.com/rendering-openai-gym-envs-on-binder-and-google-colab-536f99391cc7). + +## OpenAI Gym + +Dans la leçon précédente, les règles du jeu et l'état étaient définis par la classe `Board` que nous avons créée nous-mêmes. Ici, nous utiliserons un **environnement de simulation** spécial, qui simulera la physique derrière le balancement du poteau. L'un des environnements de simulation les plus populaires pour entraîner des algorithmes d'apprentissage par renforcement est appelé [Gym](https://gym.openai.com/), maintenu par [OpenAI](https://openai.com/). Grâce à ce gym, nous pouvons créer différents **environnements**, allant de la simulation de CartPole aux jeux Atari. + +> **Note** : Vous pouvez voir les autres environnements disponibles dans OpenAI Gym [ici](https://gym.openai.com/envs/#classic_control). + +Tout d'abord, installons le gym et importons les bibliothèques nécessaires (bloc de code 1) : + +```python +import sys +!{sys.executable} -m pip install gym + +import gym +import matplotlib.pyplot as plt +import numpy as np +import random +``` + +## Exercice - initialiser un environnement CartPole + +Pour travailler sur le problème d'équilibrage du CartPole, nous devons initialiser l'environnement correspondant. Chaque environnement est associé à : + +- **Observation space** qui définit la structure des informations que nous recevons de l'environnement. Pour le problème CartPole, nous recevons la position du poteau, la vitesse et quelques autres valeurs. + +- **Action space** qui définit les actions possibles. Dans notre cas, l'espace d'action est discret et se compose de deux actions : **gauche** et **droite**. (bloc de code 2) + +1. Pour initialiser, tapez le code suivant : + + ```python + env = gym.make("CartPole-v1") + print(env.action_space) + print(env.observation_space) + print(env.action_space.sample()) + ``` + +Pour voir comment fonctionne l'environnement, exécutons une courte simulation de 100 étapes. À chaque étape, nous fournissons une action à effectuer - dans cette simulation, nous sélectionnons simplement une action au hasard dans `action_space`. + +1. Exécutez le code ci-dessous et observez le résultat. + + ✅ N'oubliez pas qu'il est préférable d'exécuter ce code sur une installation locale de Python ! (bloc de code 3) + + ```python + env.reset() + + for i in range(100): + env.render() + env.step(env.action_space.sample()) + env.close() + ``` + + Vous devriez voir quelque chose de similaire à cette image : + + ![CartPole sans équilibre](../../../../8-Reinforcement/2-Gym/images/cartpole-nobalance.gif) + +1. Pendant la simulation, nous devons obtenir des observations pour décider comment agir. En fait, la fonction step retourne les observations actuelles, une fonction de récompense et un indicateur `done` qui indique s'il est pertinent de continuer la simulation ou non : (bloc de code 4) + + ```python + env.reset() + + done = False + while not done: + env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + print(f"{obs} -> {rew}") + env.close() + ``` + + Vous verrez quelque chose comme ceci dans la sortie du notebook : + + ```text + [ 0.03403272 -0.24301182 0.02669811 0.2895829 ] -> 1.0 + [ 0.02917248 -0.04828055 0.03248977 0.00543839] -> 1.0 + [ 0.02820687 0.14636075 0.03259854 -0.27681916] -> 1.0 + [ 0.03113408 0.34100283 0.02706215 -0.55904489] -> 1.0 + [ 0.03795414 0.53573468 0.01588125 -0.84308041] -> 1.0 + ... + [ 0.17299878 0.15868546 -0.20754175 -0.55975453] -> 1.0 + [ 0.17617249 0.35602306 -0.21873684 -0.90998894] -> 1.0 + ``` + + Le vecteur d'observation retourné à chaque étape de la simulation contient les valeurs suivantes : + - Position du chariot + - Vitesse du chariot + - Angle du poteau + - Taux de rotation du poteau + +1. Obtenez les valeurs minimales et maximales de ces nombres : (bloc de code 5) + + ```python + print(env.observation_space.low) + print(env.observation_space.high) + ``` + + Vous remarquerez également que la valeur de récompense à chaque étape de la simulation est toujours 1. Cela s'explique par le fait que notre objectif est de survivre le plus longtemps possible, c'est-à-dire de maintenir le poteau dans une position raisonnablement verticale pendant la période la plus longue possible. + + ✅ En fait, la simulation CartPole est considérée comme résolue si nous parvenons à obtenir une récompense moyenne de 195 sur 100 essais consécutifs. + +## Discrétisation de l'état + +Dans le Q-Learning, nous devons construire une Q-Table qui définit quoi faire à chaque état. Pour ce faire, l'état doit être **discret**, plus précisément, il doit contenir un nombre fini de valeurs discrètes. Ainsi, nous devons d'une manière ou d'une autre **discrétiser** nos observations, en les mappant à un ensemble fini d'états. + +Il existe plusieurs façons de procéder : + +- **Diviser en intervalles**. Si nous connaissons l'intervalle d'une certaine valeur, nous pouvons diviser cet intervalle en un certain nombre d'**intervalles**, puis remplacer la valeur par le numéro de l'intervalle auquel elle appartient. Cela peut être fait en utilisant la méthode [`digitize`](https://numpy.org/doc/stable/reference/generated/numpy.digitize.html) de numpy. Dans ce cas, nous connaîtrons précisément la taille de l'état, car elle dépendra du nombre d'intervalles que nous sélectionnons pour la digitalisation. + +✅ Nous pouvons utiliser l'interpolation linéaire pour ramener les valeurs à un certain intervalle fini (par exemple, de -20 à 20), puis convertir les nombres en entiers en les arrondissant. Cela nous donne un peu moins de contrôle sur la taille de l'état, surtout si nous ne connaissons pas les plages exactes des valeurs d'entrée. Par exemple, dans notre cas, 2 des 4 valeurs n'ont pas de limites supérieures/inférieures, ce qui peut entraîner un nombre infini d'états. + +Dans notre exemple, nous opterons pour la deuxième approche. Comme vous le remarquerez plus tard, malgré l'absence de limites supérieures/inférieures définies, ces valeurs prennent rarement des valeurs en dehors de certains intervalles finis, donc ces états avec des valeurs extrêmes seront très rares. + +1. Voici la fonction qui prendra l'observation de notre modèle et produira un tuple de 4 valeurs entières : (bloc de code 6) + + ```python + def discretize(x): + return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int)) + ``` + +1. Explorons également une autre méthode de discrétisation utilisant des intervalles : (bloc de code 7) + + ```python + def create_bins(i,num): + return np.arange(num+1)*(i[1]-i[0])/num+i[0] + + print("Sample bins for interval (-5,5) with 10 bins\n",create_bins((-5,5),10)) + + ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter + nbins = [20,20,10,10] # number of bins for each parameter + bins = [create_bins(ints[i],nbins[i]) for i in range(4)] + + def discretize_bins(x): + return tuple(np.digitize(x[i],bins[i]) for i in range(4)) + ``` + +1. Exécutons maintenant une courte simulation et observons ces valeurs discrètes de l'environnement. N'hésitez pas à essayer `discretize` et `discretize_bins` et à voir s'il y a une différence. + + ✅ `discretize_bins` retourne le numéro de l'intervalle, qui commence à 0. Ainsi, pour les valeurs de la variable d'entrée autour de 0, il retourne le numéro du milieu de l'intervalle (10). Dans `discretize`, nous ne nous sommes pas souciés de la plage des valeurs de sortie, leur permettant d'être négatives, donc les valeurs d'état ne sont pas décalées, et 0 correspond à 0. (bloc de code 8) + + ```python + env.reset() + + done = False + while not done: + #env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + #print(discretize_bins(obs)) + print(discretize(obs)) + env.close() + ``` + + ✅ Décommentez la ligne commençant par env.render si vous souhaitez voir comment l'environnement s'exécute. Sinon, vous pouvez l'exécuter en arrière-plan, ce qui est plus rapide. Nous utiliserons cette exécution "invisible" pendant notre processus de Q-Learning. + +## La structure de la Q-Table + +Dans notre leçon précédente, l'état était une simple paire de nombres allant de 0 à 8, et il était donc pratique de représenter la Q-Table par un tenseur numpy de forme 8x8x2. Si nous utilisons la discrétisation par intervalles, la taille de notre vecteur d'état est également connue, nous pouvons donc utiliser la même approche et représenter l'état par un tableau de forme 20x20x10x10x2 (ici 2 est la dimension de l'espace d'action, et les premières dimensions correspondent au nombre d'intervalles que nous avons choisi d'utiliser pour chacun des paramètres dans l'espace d'observation). + +Cependant, parfois, les dimensions précises de l'espace d'observation ne sont pas connues. Dans le cas de la fonction `discretize`, nous ne pouvons jamais être sûrs que notre état reste dans certaines limites, car certaines des valeurs originales ne sont pas bornées. Ainsi, nous utiliserons une approche légèrement différente et représenterons la Q-Table par un dictionnaire. + +1. Utilisez la paire *(state,action)* comme clé du dictionnaire, et la valeur correspondra à la valeur de l'entrée de la Q-Table. (bloc de code 9) + + ```python + Q = {} + actions = (0,1) + + def qvalues(state): + return [Q.get((state,a),0) for a in actions] + ``` + + Ici, nous définissons également une fonction `qvalues()`, qui retourne une liste de valeurs de la Q-Table pour un état donné correspondant à toutes les actions possibles. Si l'entrée n'est pas présente dans la Q-Table, nous retournerons 0 par défaut. + +## Commençons le Q-Learning + +Nous sommes maintenant prêts à apprendre à Peter à maintenir l'équilibre ! + +1. Tout d'abord, définissons quelques hyperparamètres : (bloc de code 10) + + ```python + # hyperparameters + alpha = 0.3 + gamma = 0.9 + epsilon = 0.90 + ``` + + Ici, `alpha` est le **taux d'apprentissage** qui définit dans quelle mesure nous devons ajuster les valeurs actuelles de la Q-Table à chaque étape. Dans la leçon précédente, nous avons commencé avec 1, puis diminué `alpha` à des valeurs plus faibles pendant l'entraînement. Dans cet exemple, nous le garderons constant pour simplifier, et vous pourrez expérimenter avec l'ajustement des valeurs de `alpha` plus tard. + + `gamma` est le **facteur d'actualisation** qui montre dans quelle mesure nous devons privilégier la récompense future par rapport à la récompense actuelle. + + `epsilon` est le **facteur d'exploration/exploitation** qui détermine si nous devons préférer l'exploration à l'exploitation ou vice versa. Dans notre algorithme, nous sélectionnerons dans `epsilon` pourcentage des cas la prochaine action selon les valeurs de la Q-Table, et dans le reste des cas, nous exécuterons une action aléatoire. Cela nous permettra d'explorer des zones de l'espace de recherche que nous n'avons jamais vues auparavant. + + ✅ En termes d'équilibrage - choisir une action aléatoire (exploration) agirait comme un coup aléatoire dans la mauvaise direction, et le poteau devrait apprendre à récupérer l'équilibre à partir de ces "erreurs". + +### Améliorer l'algorithme + +Nous pouvons également apporter deux améliorations à notre algorithme de la leçon précédente : + +- **Calculer la récompense cumulative moyenne**, sur un certain nombre de simulations. Nous imprimerons les progrès tous les 5000 itérations, et nous ferons la moyenne de notre récompense cumulative sur cette période. Cela signifie que si nous obtenons plus de 195 points, nous pouvons considérer le problème comme résolu, avec une qualité encore supérieure à celle requise. + +- **Calculer le résultat cumulatif moyen maximum**, `Qmax`, et nous stockerons la Q-Table correspondant à ce résultat. Lorsque vous exécutez l'entraînement, vous remarquerez que parfois le résultat cumulatif moyen commence à diminuer, et nous voulons conserver les valeurs de la Q-Table qui correspondent au meilleur modèle observé pendant l'entraînement. + +1. Collectez toutes les récompenses cumulatives à chaque simulation dans le vecteur `rewards` pour un futur tracé. (bloc de code 11) + + ```python + def probs(v,eps=1e-4): + v = v-v.min()+eps + v = v/v.sum() + return v + + Qmax = 0 + cum_rewards = [] + rewards = [] + for epoch in range(100000): + obs = env.reset() + done = False + cum_reward=0 + # == do the simulation == + while not done: + s = discretize(obs) + if random.random() Qmax: + Qmax = np.average(cum_rewards) + Qbest = Q + cum_rewards=[] + ``` + +Ce que vous pouvez remarquer à partir de ces résultats : + +- **Proche de notre objectif**. Nous sommes très proches d'atteindre l'objectif de 195 récompenses cumulatives sur 100+ exécutions consécutives de la simulation, ou nous l'avons peut-être déjà atteint ! Même si nous obtenons des nombres plus faibles, nous ne le savons pas, car nous faisons la moyenne sur 5000 exécutions, et seuls 100 exécutions sont nécessaires dans les critères formels. + +- **La récompense commence à diminuer**. Parfois, la récompense commence à diminuer, ce qui signifie que nous pouvons "détruire" les valeurs déjà apprises dans la Q-Table avec celles qui aggravent la situation. + +Cette observation est plus clairement visible si nous traçons les progrès de l'entraînement. + +## Tracer les progrès de l'entraînement + +Pendant l'entraînement, nous avons collecté la valeur de la récompense cumulative à chaque itération dans le vecteur `rewards`. Voici à quoi cela ressemble lorsque nous le traçons par rapport au numéro d'itération : + +```python +plt.plot(rewards) +``` + +![progrès brut](../../../../translated_images/train_progress_raw.2adfdf2daea09c596fc786fa347a23e9aceffe1b463e2257d20a9505794823ec.fr.png) + +À partir de ce graphique, il n'est pas possible de tirer des conclusions, car en raison de la nature du processus d'entraînement stochastique, la durée des sessions d'entraînement varie considérablement. Pour donner plus de sens à ce graphique, nous pouvons calculer la **moyenne mobile** sur une série d'expériences, disons 100. Cela peut être fait facilement en utilisant `np.convolve` : (bloc de code 12) + +```python +def running_average(x,window): + return np.convolve(x,np.ones(window)/window,mode='valid') + +plt.plot(running_average(rewards,100)) +``` + +![progrès de l'entraînement](../../../../translated_images/train_progress_runav.c71694a8fa9ab35935aff6f109e5ecdfdbdf1b0ae265da49479a81b5fae8f0aa.fr.png) + +## Variation des hyperparamètres + +Pour rendre l'apprentissage plus stable, il est judicieux d'ajuster certains de nos hyperparamètres pendant l'entraînement. En particulier : + +- **Pour le taux d'apprentissage**, `alpha`, nous pouvons commencer avec des valeurs proches de 1, puis diminuer progressivement le paramètre. Avec le temps, nous obtiendrons de bonnes probabilités dans la Q-Table, et nous devrions donc les ajuster légèrement, et non les écraser complètement avec de nouvelles valeurs. + +- **Augmenter epsilon**. Nous pouvons vouloir augmenter lentement `epsilon`, afin d'explorer moins et d'exploiter davantage. Il est probablement judicieux de commencer avec une valeur plus faible de `epsilon`, et de monter jusqu'à presque 1. +> **Tâche 1** : Expérimentez avec les valeurs des hyperparamètres et voyez si vous pouvez obtenir une récompense cumulative plus élevée. Atteignez-vous plus de 195 ? +> **Tâche 2** : Pour résoudre formellement le problème, vous devez atteindre une récompense moyenne de 195 sur 100 exécutions consécutives. Mesurez cela pendant l'entraînement et assurez-vous d'avoir résolu le problème de manière formelle ! + +## Voir le résultat en action + +Il serait intéressant de voir comment le modèle entraîné se comporte réellement. Lançons la simulation et suivons la même stratégie de sélection d'actions qu'au cours de l'entraînement, en échantillonnant selon la distribution de probabilité dans la Q-Table : (bloc de code 13) + +```python +obs = env.reset() +done = False +while not done: + s = discretize(obs) + env.render() + v = probs(np.array(qvalues(s))) + a = random.choices(actions,weights=v)[0] + obs,_,done,_ = env.step(a) +env.close() +``` + +Vous devriez voir quelque chose comme ceci : + +![un chariot en équilibre](../../../../8-Reinforcement/2-Gym/images/cartpole-balance.gif) + +--- + +## 🚀Défi + +> **Tâche 3** : Ici, nous utilisions la copie finale de la Q-Table, qui n'est peut-être pas la meilleure. Rappelez-vous que nous avons stocké la Q-Table la plus performante dans la variable `Qbest` ! Essayez le même exemple avec la Q-Table la plus performante en copiant `Qbest` dans `Q` et voyez si vous remarquez une différence. + +> **Tâche 4** : Ici, nous ne sélectionnions pas la meilleure action à chaque étape, mais plutôt en échantillonnant avec la distribution de probabilité correspondante. Serait-il plus logique de toujours sélectionner la meilleure action, celle avec la valeur la plus élevée dans la Q-Table ? Cela peut être fait en utilisant la fonction `np.argmax` pour trouver le numéro de l'action correspondant à la valeur la plus élevée dans la Q-Table. Implémentez cette stratégie et voyez si cela améliore l'équilibre. + +## [Quiz post-conférence](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/48/) + +## Devoir +[Entraîner une voiture de montagne](assignment.md) + +## Conclusion + +Nous avons maintenant appris à entraîner des agents pour obtenir de bons résultats simplement en leur fournissant une fonction de récompense qui définit l'état souhaité du jeu, et en leur donnant l'opportunité d'explorer intelligemment l'espace de recherche. Nous avons appliqué avec succès l'algorithme de Q-Learning dans des environnements discrets et continus, mais avec des actions discrètes. + +Il est également important d'étudier des situations où l'état des actions est continu, et où l'espace d'observation est beaucoup plus complexe, comme l'image de l'écran d'un jeu Atari. Dans ces problèmes, nous devons souvent utiliser des techniques d'apprentissage automatique plus puissantes, telles que les réseaux neuronaux, pour obtenir de bons résultats. Ces sujets plus avancés seront abordés dans notre prochain cours d'IA plus avancé. + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/2-Gym/assignment.md b/translations/fr/8-Reinforcement/2-Gym/assignment.md new file mode 100644 index 000000000..e7542be70 --- /dev/null +++ b/translations/fr/8-Reinforcement/2-Gym/assignment.md @@ -0,0 +1,57 @@ + +# Entraîner une voiture de montagne + +[OpenAI Gym](http://gym.openai.com) a été conçu de manière à ce que tous les environnements fournissent la même API - c'est-à-dire les mêmes méthodes `reset`, `step` et `render`, ainsi que les mêmes abstractions de **espace d'action** et **espace d'observation**. Ainsi, il devrait être possible d'adapter les mêmes algorithmes d'apprentissage par renforcement à différents environnements avec des modifications minimales du code. + +## Un environnement de voiture de montagne + +[L'environnement de voiture de montagne](https://gym.openai.com/envs/MountainCar-v0/) contient une voiture coincée dans une vallée : + +L'objectif est de sortir de la vallée et de capturer le drapeau, en effectuant à chaque étape l'une des actions suivantes : + +| Valeur | Signification | +|---|---| +| 0 | Accélérer vers la gauche | +| 1 | Ne pas accélérer | +| 2 | Accélérer vers la droite | + +Le principal défi de ce problème est cependant que le moteur de la voiture n'est pas assez puissant pour gravir la montagne en un seul passage. Par conséquent, la seule façon de réussir est de faire des allers-retours pour accumuler de l'élan. + +L'espace d'observation se compose de seulement deux valeurs : + +| Num | Observation | Min | Max | +|-----|--------------|-----|-----| +| 0 | Position de la voiture | -1.2| 0.6 | +| 1 | Vitesse de la voiture | -0.07 | 0.07 | + +Le système de récompense pour la voiture de montagne est assez complexe : + + * Une récompense de 0 est attribuée si l'agent atteint le drapeau (position = 0.5) au sommet de la montagne. + * Une récompense de -1 est attribuée si la position de l'agent est inférieure à 0.5. + +L'épisode se termine si la position de la voiture dépasse 0.5, ou si la durée de l'épisode dépasse 200 étapes. + +## Instructions + +Adaptez notre algorithme d'apprentissage par renforcement pour résoudre le problème de la voiture de montagne. Commencez avec le code existant dans [notebook.ipynb](notebook.ipynb), substituez le nouvel environnement, modifiez les fonctions de discrétisation de l'état, et essayez de faire en sorte que l'algorithme existant s'entraîne avec des modifications minimales du code. Optimisez le résultat en ajustant les hyperparamètres. + +> **Note** : L'ajustement des hyperparamètres sera probablement nécessaire pour que l'algorithme converge. + +## Critères d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | --------- | -------- | ----------------- | +| | L'algorithme Q-Learning est adapté avec succès à partir de l'exemple CartPole, avec des modifications minimales du code, et parvient à résoudre le problème de capture du drapeau en moins de 200 étapes. | Un nouvel algorithme Q-Learning a été adopté à partir d'Internet, mais est bien documenté ; ou l'algorithme existant a été adopté, mais n'atteint pas les résultats souhaités. | L'étudiant n'a pas réussi à adopter un algorithme, mais a fait des progrès substantiels vers la solution (implémentation de la discrétisation de l'état, structure de données Q-Table, etc.). | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/2-Gym/notebook.ipynb b/translations/fr/8-Reinforcement/2-Gym/notebook.ipynb new file mode 100644 index 000000000..ee6b83a39 --- /dev/null +++ b/translations/fr/8-Reinforcement/2-Gym/notebook.ipynb @@ -0,0 +1,394 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.4 64-bit ('base': conda)" + }, + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "coopTranslator": { + "original_hash": "f22f8f3daed4b6d34648d1254763105b", + "translation_date": "2025-09-04T03:04:27+00:00", + "source_file": "8-Reinforcement/2-Gym/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## Patinage avec CartPole\n", + "\n", + "> **Problème** : Si Peter veut échapper au loup, il doit pouvoir se déplacer plus vite que lui. Nous allons voir comment Peter peut apprendre à patiner, en particulier à garder l'équilibre, en utilisant le Q-Learning.\n", + "\n", + "Tout d'abord, installons le gym et importons les bibliothèques nécessaires :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 1" + ] + }, + { + "source": [ + "## Créer un environnement cartpole\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 2" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "Pour voir comment fonctionne l'environnement, exécutons une courte simulation de 100 étapes.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "Lors de la simulation, nous devons obtenir des observations afin de décider comment agir. En fait, la fonction `step` nous renvoie les observations actuelles, la fonction de récompense et le drapeau `done` qui indique s'il est pertinent de continuer la simulation ou non :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 4" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "Nous pouvons obtenir la valeur minimale et maximale de ces nombres :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "#code block 5" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 6" + ] + }, + { + "source": [ + "Explorons également une autre méthode de discrétisation en utilisant des intervalles :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "#code block 7" + ] + }, + { + "source": [ + "Faisons maintenant une courte simulation et observons ces valeurs d'environnement discrètes.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -2, -2)\n(0, 1, -2, -5)\n(0, 2, -3, -8)\n(0, 3, -5, -11)\n(0, 3, -7, -14)\n(0, 4, -10, -17)\n(0, 3, -14, -15)\n(0, 3, -17, -12)\n(0, 3, -20, -16)\n(0, 4, -23, -19)\n" + ] + } + ], + "source": [ + "#code block 8" + ] + }, + { + "source": [ + "## Structure de la table Q\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 9" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 10" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 22.0, alpha=0.3, epsilon=0.9\n", + "5000: 70.1384, alpha=0.3, epsilon=0.9\n", + "10000: 121.8586, alpha=0.3, epsilon=0.9\n", + "15000: 149.6368, alpha=0.3, epsilon=0.9\n", + "20000: 168.2782, alpha=0.3, epsilon=0.9\n", + "25000: 196.7356, alpha=0.3, epsilon=0.9\n", + "30000: 220.7614, alpha=0.3, epsilon=0.9\n", + "35000: 233.2138, alpha=0.3, epsilon=0.9\n", + "40000: 248.22, alpha=0.3, epsilon=0.9\n", + "45000: 264.636, alpha=0.3, epsilon=0.9\n", + "50000: 276.926, alpha=0.3, epsilon=0.9\n", + "55000: 277.9438, alpha=0.3, epsilon=0.9\n", + "60000: 248.881, alpha=0.3, epsilon=0.9\n", + "65000: 272.529, alpha=0.3, epsilon=0.9\n", + "70000: 281.7972, alpha=0.3, epsilon=0.9\n", + "75000: 284.2844, alpha=0.3, epsilon=0.9\n", + "80000: 269.667, alpha=0.3, epsilon=0.9\n", + "85000: 273.8652, alpha=0.3, epsilon=0.9\n", + "90000: 278.2466, alpha=0.3, epsilon=0.9\n", + "95000: 269.1736, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "#code block 11" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "À partir de ce graphique, il n'est pas possible de tirer des conclusions, car en raison de la nature du processus d'entraînement stochastique, la durée des sessions d'entraînement varie considérablement. Pour donner plus de sens à ce graphique, nous pouvons calculer une **moyenne glissante** sur une série d'expériences, disons 100. Cela peut être fait facilement en utilisant `np.convolve`:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "#code block 12" + ] + }, + { + "source": [ + "## Variation des hyperparamètres et observation des résultats en action\n", + "\n", + "Il serait maintenant intéressant de voir concrètement comment le modèle entraîné se comporte. Lançons la simulation, en suivant la même stratégie de sélection d'actions que pendant l'entraînement : un échantillonnage basé sur la distribution de probabilités dans la Q-Table :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 13" + ] + }, + { + "source": [ + "## Sauvegarder le résultat en GIF animé\n", + "\n", + "Si vous voulez impressionner vos amis, vous pouvez leur envoyer une image GIF animée du mât d'équilibre. Pour ce faire, nous pouvons utiliser `env.render` pour produire une image, puis enregistrer ces images en GIF animé en utilisant la bibliothèque PIL :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/2-Gym/solution/Julia/README.md b/translations/fr/8-Reinforcement/2-Gym/solution/Julia/README.md new file mode 100644 index 000000000..e09d1b9b6 --- /dev/null +++ b/translations/fr/8-Reinforcement/2-Gym/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/2-Gym/solution/R/README.md b/translations/fr/8-Reinforcement/2-Gym/solution/R/README.md new file mode 100644 index 000000000..9f5448d39 --- /dev/null +++ b/translations/fr/8-Reinforcement/2-Gym/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/2-Gym/solution/notebook.ipynb b/translations/fr/8-Reinforcement/2-Gym/solution/notebook.ipynb new file mode 100644 index 000000000..bf57394f9 --- /dev/null +++ b/translations/fr/8-Reinforcement/2-Gym/solution/notebook.ipynb @@ -0,0 +1,526 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "5c0e485e58d63c506f1791c4dbf990ce", + "translation_date": "2025-09-04T03:07:04+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/notebook.ipynb", + "language_code": "fr" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## Patinage avec CartPole\n", + "\n", + "> **Problème** : Si Peter veut échapper au loup, il doit pouvoir se déplacer plus vite que lui. Nous allons voir comment Peter peut apprendre à patiner, en particulier à garder l'équilibre, en utilisant le Q-Learning.\n", + "\n", + "Tout d'abord, installons le gym et importons les bibliothèques nécessaires :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: gym in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.18.3)\n", + "Requirement already satisfied: Pillow<=8.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (7.0.0)\n", + "Requirement already satisfied: scipy in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.10.4 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.19.2)\n", + "Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.6.0)\n", + "Requirement already satisfied: pyglet<=1.5.15,>=1.4.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.5.15)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n" + ] + } + ], + "source": [ + "import sys\n", + "!pip install gym \n", + "\n", + "import gym\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random" + ] + }, + { + "source": [ + "## Créer un environnement cartpole\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env = gym.make(\"CartPole-v1\")\n", + "print(env.action_space)\n", + "print(env.observation_space)\n", + "print(env.action_space.sample())" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Discrete(2)\nBox(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)\n0\n" + ] + } + ] + }, + { + "source": [ + "Pour voir comment l'environnement fonctionne, exécutons une courte simulation de 100 étapes.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "for i in range(100):\n", + " env.render()\n", + " env.step(env.action_space.sample())\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/gym/logger.py:30: UserWarning: \u001b[33mWARN: You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.\u001b[0m\n warnings.warn(colorize('%s: %s'%('WARN', msg % args), 'yellow'))\n" + ] + } + ] + }, + { + "source": [ + "Lors de la simulation, nous devons obtenir des observations afin de décider comment agir. En fait, la fonction `step` nous renvoie les observations actuelles, la fonction de récompense, et le drapeau `done` qui indique s'il est pertinent de continuer la simulation ou non :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " print(f\"{obs} -> {rew}\")\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[ 0.03044442 -0.19543914 -0.04496216 0.28125618] -> 1.0\n", + "[ 0.02653564 -0.38989186 -0.03933704 0.55942606] -> 1.0\n", + "[ 0.0187378 -0.19424049 -0.02814852 0.25461393] -> 1.0\n", + "[ 0.01485299 -0.38894946 -0.02305624 0.53828712] -> 1.0\n", + "[ 0.007074 -0.19351108 -0.0122905 0.23842953] -> 1.0\n", + "[ 0.00320378 0.00178427 -0.00752191 -0.05810469] -> 1.0\n", + "[ 0.00323946 0.19701326 -0.008684 -0.35315131] -> 1.0\n", + "[ 0.00717973 0.00201587 -0.01574703 -0.06321931] -> 1.0\n", + "[ 0.00722005 0.19736001 -0.01701141 -0.36082863] -> 1.0\n", + "[ 0.01116725 0.39271958 -0.02422798 -0.65882671] -> 1.0\n", + "[ 0.01902164 0.19794307 -0.03740452 -0.37387001] -> 1.0\n", + "[ 0.0229805 0.39357584 -0.04488192 -0.67810827] -> 1.0\n", + "[ 0.03085202 0.58929164 -0.05844408 -0.98457719] -> 1.0\n", + "[ 0.04263785 0.78514572 -0.07813563 -1.2950295 ] -> 1.0\n", + "[ 0.05834076 0.98116859 -0.10403622 -1.61111521] -> 1.0\n", + "[ 0.07796413 0.78741784 -0.13625852 -1.35259196] -> 1.0\n", + "[ 0.09371249 0.98396202 -0.16331036 -1.68461179] -> 1.0\n", + "[ 0.11339173 0.79106371 -0.1970026 -1.44691436] -> 1.0\n", + "[ 0.12921301 0.59883361 -0.22594088 -1.22169133] -> 1.0\n" + ] + } + ] + }, + { + "source": [ + "Nous pouvons obtenir la valeur minimale et maximale de ces nombres :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "print(env.observation_space.low)\n", + "print(env.observation_space.high)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def discretize(x):\n", + " return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int))" + ] + }, + { + "source": [ + "Explorons également une autre méthode de discrétisation en utilisant des intervalles :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "def create_bins(i,num):\n", + " return np.arange(num+1)*(i[1]-i[0])/num+i[0]\n", + "\n", + "print(\"Sample bins for interval (-5,5) with 10 bins\\n\",create_bins((-5,5),10))\n", + "\n", + "ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter\n", + "nbins = [20,20,10,10] # number of bins for each parameter\n", + "bins = [create_bins(ints[i],nbins[i]) for i in range(4)]\n", + "\n", + "def discretize_bins(x):\n", + " return tuple(np.digitize(x[i],bins[i]) for i in range(4))" + ] + }, + { + "source": [ + "Faisons maintenant une courte simulation et observons ces valeurs discrètes de l'environnement.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -1, -3)\n(0, 0, -2, 0)\n(0, 0, -2, -3)\n(0, 1, -3, -6)\n(0, 2, -4, -9)\n(0, 3, -6, -12)\n(0, 2, -8, -9)\n(0, 3, -10, -13)\n(0, 4, -13, -16)\n(0, 4, -16, -19)\n(0, 4, -20, -17)\n(0, 4, -24, -20)\n" + ] + } + ], + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " #env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " #print(discretize_bins(obs))\n", + " print(discretize(obs))\n", + "env.close()" + ] + }, + { + "source": [ + "## Structure de la table Q\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "Q = {}\n", + "actions = (0,1)\n", + "\n", + "def qvalues(state):\n", + " return [Q.get((state,a),0) for a in actions]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# hyperparameters\n", + "alpha = 0.3\n", + "gamma = 0.9\n", + "epsilon = 0.90" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 108.0, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v\n", + "\n", + "Qmax = 0\n", + "cum_rewards = []\n", + "rewards = []\n", + "for epoch in range(100000):\n", + " obs = env.reset()\n", + " done = False\n", + " cum_reward=0\n", + " # == do the simulation ==\n", + " while not done:\n", + " s = discretize(obs)\n", + " if random.random() Qmax:\n", + " Qmax = np.average(cum_rewards)\n", + " Qbest = Q\n", + " cum_rewards=[]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "À partir de ce graphique, il n'est pas possible de tirer des conclusions, car en raison de la nature du processus d'entraînement stochastique, la durée des sessions d'entraînement varie considérablement. Pour donner plus de sens à ce graphique, nous pouvons calculer une **moyenne glissante** sur une série d'expériences, disons 100. Cela peut être fait facilement en utilisant `np.convolve`:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                      ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "def running_average(x,window):\n", + " return np.convolve(x,np.ones(window)/window,mode='valid')\n", + "\n", + "plt.plot(running_average(rewards,100))" + ] + }, + { + "source": [ + "## Variation des hyperparamètres et observation des résultats en action\n", + "\n", + "Il serait maintenant intéressant de voir concrètement comment le modèle entraîné se comporte. Lançons la simulation, en suivant la même stratégie de sélection d'actions que pendant l'entraînement : un échantillonnage basé sur la distribution de probabilités dans la Q-Table :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "obs = env.reset()\n", + "done = False\n", + "while not done:\n", + " s = discretize(obs)\n", + " env.render()\n", + " v = probs(np.array(qvalues(s)))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + "env.close()" + ] + }, + { + "source": [ + "## Sauvegarder le résultat en GIF animé\n", + "\n", + "Si vous voulez impressionner vos amis, vous pouvez leur envoyer une image GIF animée du mât d'équilibre. Pour cela, nous pouvons utiliser `env.render` pour produire une image par image, puis les enregistrer en GIF animé en utilisant la bibliothèque PIL :\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/8-Reinforcement/README.md b/translations/fr/8-Reinforcement/README.md new file mode 100644 index 000000000..63b6e4b9f --- /dev/null +++ b/translations/fr/8-Reinforcement/README.md @@ -0,0 +1,67 @@ + +# Introduction à l'apprentissage par renforcement + +L'apprentissage par renforcement, ou RL, est considéré comme l'un des paradigmes fondamentaux de l'apprentissage automatique, aux côtés de l'apprentissage supervisé et non supervisé. Le RL concerne les décisions : prendre les bonnes décisions ou, à défaut, apprendre de celles-ci. + +Imaginez que vous avez un environnement simulé, comme le marché boursier. Que se passe-t-il si vous imposez une réglementation donnée ? A-t-elle un effet positif ou négatif ? Si quelque chose de négatif se produit, vous devez tirer parti de ce _renforcement négatif_, en apprendre et changer de cap. Si le résultat est positif, vous devez vous appuyer sur ce _renforcement positif_. + +![peter et le loup](../../../translated_images/peter.779730f9ba3a8a8d9290600dcf55f2e491c0640c785af7ac0d64f583c49b8864.fr.png) + +> Peter et ses amis doivent échapper au loup affamé ! Image par [Jen Looper](https://twitter.com/jenlooper) + +## Sujet régional : Pierre et le Loup (Russie) + +[Pierre et le Loup](https://fr.wikipedia.org/wiki/Pierre_et_le_Loup) est un conte musical écrit par le compositeur russe [Sergei Prokofiev](https://fr.wikipedia.org/wiki/Serge_Prokofiev). C'est l'histoire du jeune pionnier Pierre, qui sort courageusement de sa maison pour aller dans la clairière de la forêt et chasser le loup. Dans cette section, nous allons entraîner des algorithmes d'apprentissage automatique qui aideront Pierre à : + +- **Explorer** les environs et construire une carte de navigation optimale. +- **Apprendre** à utiliser un skateboard et à garder l'équilibre dessus, afin de se déplacer plus rapidement. + +[![Pierre et le Loup](https://img.youtube.com/vi/Fmi5zHg4QSM/0.jpg)](https://www.youtube.com/watch?v=Fmi5zHg4QSM) + +> 🎥 Cliquez sur l'image ci-dessus pour écouter Pierre et le Loup de Prokofiev + +## Apprentissage par renforcement + +Dans les sections précédentes, vous avez vu deux exemples de problèmes d'apprentissage automatique : + +- **Supervisé**, où nous avons des ensembles de données qui suggèrent des solutions possibles au problème que nous voulons résoudre. [La classification](../4-Classification/README.md) et [la régression](../2-Regression/README.md) sont des tâches d'apprentissage supervisé. +- **Non supervisé**, où nous n'avons pas de données d'entraînement étiquetées. L'exemple principal d'apprentissage non supervisé est [le clustering](../5-Clustering/README.md). + +Dans cette section, nous allons vous présenter un nouveau type de problème d'apprentissage qui ne nécessite pas de données d'entraînement étiquetées. Il existe plusieurs types de tels problèmes : + +- **[Apprentissage semi-supervisé](https://fr.wikipedia.org/wiki/Apprentissage_semi-supervis%C3%A9)**, où nous avons beaucoup de données non étiquetées qui peuvent être utilisées pour pré-entraîner le modèle. +- **[Apprentissage par renforcement](https://fr.wikipedia.org/wiki/Apprentissage_par_renforcement)**, dans lequel un agent apprend à se comporter en réalisant des expériences dans un environnement simulé. + +### Exemple - jeu vidéo + +Supposons que vous voulez apprendre à un ordinateur à jouer à un jeu, comme les échecs ou [Super Mario](https://fr.wikipedia.org/wiki/Super_Mario). Pour que l'ordinateur joue à un jeu, nous devons lui apprendre à prédire quel mouvement effectuer dans chacun des états du jeu. Bien que cela puisse sembler être un problème de classification, ce n'est pas le cas - car nous n'avons pas d'ensemble de données avec des états et des actions correspondantes. Bien que nous puissions avoir des données comme des parties d'échecs existantes ou des enregistrements de joueurs jouant à Super Mario, il est probable que ces données ne couvrent pas suffisamment un grand nombre d'états possibles. + +Au lieu de chercher des données de jeu existantes, **l'apprentissage par renforcement** (RL) repose sur l'idée de *faire jouer l'ordinateur* plusieurs fois et d'observer le résultat. Ainsi, pour appliquer l'apprentissage par renforcement, nous avons besoin de deux éléments : + +- **Un environnement** et **un simulateur** qui nous permettent de jouer au jeu plusieurs fois. Ce simulateur définirait toutes les règles du jeu ainsi que les états et actions possibles. + +- **Une fonction de récompense**, qui nous indiquerait à quel point nous avons bien joué à chaque mouvement ou partie. + +La principale différence entre les autres types d'apprentissage automatique et le RL est que dans le RL, nous ne savons généralement pas si nous gagnons ou perdons avant de terminer la partie. Ainsi, nous ne pouvons pas dire si un certain mouvement seul est bon ou non - nous ne recevons une récompense qu'à la fin de la partie. Et notre objectif est de concevoir des algorithmes qui nous permettront d'entraîner un modèle dans des conditions incertaines. Nous allons apprendre un algorithme de RL appelé **Q-learning**. + +## Leçons + +1. [Introduction à l'apprentissage par renforcement et au Q-Learning](1-QLearning/README.md) +2. [Utilisation d'un environnement de simulation gym](2-Gym/README.md) + +## Crédits + +"Introduction à l'apprentissage par renforcement" a été écrit avec ♥️ par [Dmitry Soshnikov](http://soshnikov.com) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/9-Real-World/1-Applications/README.md b/translations/fr/9-Real-World/1-Applications/README.md new file mode 100644 index 000000000..b78f98ed6 --- /dev/null +++ b/translations/fr/9-Real-World/1-Applications/README.md @@ -0,0 +1,159 @@ + +# Postscript : L'apprentissage automatique dans le monde réel + +![Résumé de l'apprentissage automatique dans le monde réel sous forme de sketchnote](../../../../translated_images/ml-realworld.26ee2746716155771f8076598b6145e6533fe4a9e2e465ea745f46648cbf1b84.fr.png) +> Sketchnote par [Tomomi Imura](https://www.twitter.com/girlie_mac) + +Dans ce programme, vous avez appris de nombreuses façons de préparer des données pour l'entraînement et de créer des modèles d'apprentissage automatique. Vous avez construit une série de modèles classiques de régression, de regroupement, de classification, de traitement du langage naturel et de séries chronologiques. Félicitations ! Maintenant, vous vous demandez peut-être à quoi tout cela sert... quelles sont les applications réelles de ces modèles ? + +Bien que l'industrie s'intéresse beaucoup à l'IA, qui utilise généralement l'apprentissage profond, les modèles classiques d'apprentissage automatique ont encore des applications précieuses. Vous utilisez peut-être déjà certaines de ces applications aujourd'hui ! Dans cette leçon, vous explorerez comment huit secteurs et domaines spécialisés différents utilisent ces types de modèles pour rendre leurs applications plus performantes, fiables, intelligentes et utiles aux utilisateurs. + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/49/) + +## 💰 Finance + +Le secteur financier offre de nombreuses opportunités pour l'apprentissage automatique. De nombreux problèmes dans ce domaine peuvent être modélisés et résolus grâce à l'IA. + +### Détection de fraude par carte de crédit + +Nous avons étudié le [regroupement k-means](../../5-Clustering/2-K-Means/README.md) plus tôt dans le cours, mais comment peut-il être utilisé pour résoudre des problèmes liés à la fraude par carte de crédit ? + +Le regroupement k-means est utile dans une technique de détection de fraude appelée **détection des anomalies**. Les anomalies, ou écarts dans les observations d'un ensemble de données, peuvent nous indiquer si une carte de crédit est utilisée normalement ou si quelque chose d'inhabituel se produit. Comme indiqué dans l'article ci-dessous, vous pouvez trier les données de carte de crédit en utilisant un algorithme de regroupement k-means et attribuer chaque transaction à un groupe en fonction de son degré d'anomalie. Ensuite, vous pouvez évaluer les groupes les plus risqués pour déterminer s'il s'agit de transactions frauduleuses ou légitimes. +[Référence](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.680.1195&rep=rep1&type=pdf) + +### Gestion de patrimoine + +En gestion de patrimoine, un individu ou une entreprise gère des investissements au nom de ses clients. Leur objectif est de maintenir et de faire croître la richesse à long terme, il est donc essentiel de choisir des investissements performants. + +Une façon d'évaluer la performance d'un investissement est d'utiliser la régression statistique. La [régression linéaire](../../2-Regression/1-Tools/README.md) est un outil précieux pour comprendre comment un fonds se comporte par rapport à un indice de référence. Nous pouvons également déterminer si les résultats de la régression sont statistiquement significatifs, ou dans quelle mesure ils affecteraient les investissements d'un client. Vous pourriez même approfondir votre analyse en utilisant une régression multiple, où des facteurs de risque supplémentaires peuvent être pris en compte. Pour un exemple de fonctionnement de cette méthode pour un fonds spécifique, consultez l'article ci-dessous sur l'évaluation des performances des fonds à l'aide de la régression. +[Référence](http://www.brightwoodventures.com/evaluating-fund-performance-using-regression/) + +## 🎓 Éducation + +Le secteur éducatif est également un domaine très intéressant où l'IA peut être appliquée. Il existe des problèmes fascinants à résoudre, comme détecter la triche lors des examens ou des essais, ou gérer les biais, intentionnels ou non, dans le processus de correction. + +### Prédiction du comportement des étudiants + +[Coursera](https://coursera.com), un fournisseur de cours en ligne ouverts, possède un excellent blog technique où ils discutent de nombreuses décisions d'ingénierie. Dans cette étude de cas, ils ont tracé une ligne de régression pour explorer une éventuelle corrélation entre une faible note NPS (Net Promoter Score) et la rétention ou l'abandon des cours. +[Référence](https://medium.com/coursera-engineering/controlled-regression-quantifying-the-impact-of-course-quality-on-learner-retention-31f956bd592a) + +### Réduction des biais + +[Grammarly](https://grammarly.com), un assistant d'écriture qui vérifie les fautes d'orthographe et de grammaire, utilise des systèmes sophistiqués de [traitement du langage naturel](../../6-NLP/README.md) dans ses produits. Ils ont publié une étude de cas intéressante sur leur blog technique concernant la manière dont ils ont traité les biais de genre dans l'apprentissage automatique, que vous avez étudiés dans notre [leçon introductive sur l'équité](../../1-Introduction/3-fairness/README.md). +[Référence](https://www.grammarly.com/blog/engineering/mitigating-gender-bias-in-autocorrect/) + +## 👜 Commerce de détail + +Le secteur du commerce de détail peut certainement tirer parti de l'IA, que ce soit pour améliorer le parcours client ou pour gérer les stocks de manière optimale. + +### Personnalisation du parcours client + +Chez Wayfair, une entreprise qui vend des articles pour la maison comme des meubles, aider les clients à trouver les produits adaptés à leurs goûts et besoins est primordial. Dans cet article, les ingénieurs de l'entreprise décrivent comment ils utilisent l'IA et le NLP pour "proposer les bons résultats aux clients". Leur moteur d'intention de requête utilise notamment l'extraction d'entités, l'entraînement de classificateurs, l'extraction d'opinions et de sentiments sur les avis clients. C'est un cas classique d'utilisation du NLP dans le commerce en ligne. +[Référence](https://www.aboutwayfair.com/tech-innovation/how-we-use-machine-learning-and-natural-language-processing-to-empower-search) + +### Gestion des stocks + +Des entreprises innovantes et agiles comme [StitchFix](https://stitchfix.com), un service de box qui expédie des vêtements aux consommateurs, s'appuient fortement sur l'IA pour les recommandations et la gestion des stocks. Leurs équipes de stylisme collaborent avec leurs équipes de merchandising : "un de nos data scientists a expérimenté un algorithme génétique et l'a appliqué à l'habillement pour prédire ce qui pourrait être un vêtement réussi qui n'existe pas encore aujourd'hui. Nous avons présenté cela à l'équipe de merchandising, et maintenant ils peuvent l'utiliser comme outil." +[Référence](https://www.zdnet.com/article/how-stitch-fix-uses-machine-learning-to-master-the-science-of-styling/) + +## 🏥 Santé + +Le secteur de la santé peut tirer parti de l'IA pour optimiser les tâches de recherche ainsi que les problèmes logistiques comme la réadmission des patients ou la prévention de la propagation des maladies. + +### Gestion des essais cliniques + +La toxicité dans les essais cliniques est une préoccupation majeure pour les fabricants de médicaments. Quelle quantité de toxicité est tolérable ? Dans cette étude, l'analyse de diverses méthodes d'essais cliniques a conduit au développement d'une nouvelle approche pour prédire les résultats des essais cliniques. En particulier, ils ont utilisé la forêt aléatoire pour produire un [classificateur](../../4-Classification/README.md) capable de distinguer entre différents groupes de médicaments. +[Référence](https://www.sciencedirect.com/science/article/pii/S2451945616302914) + +### Gestion des réadmissions hospitalières + +Les soins hospitaliers sont coûteux, surtout lorsque les patients doivent être réadmis. Cet article discute d'une entreprise qui utilise l'IA pour prédire le potentiel de réadmission en utilisant des algorithmes de [regroupement](../../5-Clustering/README.md). Ces groupes aident les analystes à "découvrir des groupes de réadmissions qui peuvent partager une cause commune". +[Référence](https://healthmanagement.org/c/healthmanagement/issuearticle/hospital-readmissions-and-machine-learning) + +### Gestion des maladies + +La récente pandémie a mis en lumière les façons dont l'IA peut aider à stopper la propagation des maladies. Dans cet article, vous reconnaîtrez l'utilisation d'ARIMA, de courbes logistiques, de régression linéaire et de SARIMA. "Ce travail est une tentative de calculer le taux de propagation de ce virus et ainsi de prédire les décès, les guérisons et les cas confirmés, afin de mieux nous préparer et survivre." +[Référence](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979218/) + +## 🌲 Écologie et technologies vertes + +La nature et l'écologie comprennent de nombreux systèmes sensibles où l'interaction entre les animaux et la nature est au centre des préoccupations. Il est important de pouvoir mesurer ces systèmes avec précision et d'agir de manière appropriée en cas de problème, comme un incendie de forêt ou une baisse de la population animale. + +### Gestion des forêts + +Vous avez appris le [Renforcement de l'apprentissage](../../8-Reinforcement/README.md) dans les leçons précédentes. Il peut être très utile pour prédire des schémas dans la nature. En particulier, il peut être utilisé pour suivre des problèmes écologiques comme les incendies de forêt et la propagation d'espèces invasives. Au Canada, un groupe de chercheurs a utilisé le Renforcement de l'apprentissage pour construire des modèles dynamiques d'incendies de forêt à partir d'images satellites. En utilisant un processus innovant de "propagation spatiale (SSP)", ils ont imaginé un incendie de forêt comme "l'agent à n'importe quelle cellule du paysage." "Les actions que le feu peut entreprendre à partir d'un emplacement à tout moment incluent la propagation vers le nord, le sud, l'est ou l'ouest, ou ne pas se propager." + +Cette approche inverse la configuration habituelle du RL puisque la dynamique du processus de décision de Markov (MDP) correspondant est une fonction connue pour la propagation immédiate des incendies. Lisez-en davantage sur les algorithmes classiques utilisés par ce groupe dans le lien ci-dessous. +[Référence](https://www.frontiersin.org/articles/10.3389/fict.2018.00006/full) + +### Détection des mouvements des animaux + +Bien que l'apprentissage profond ait révolutionné le suivi visuel des mouvements des animaux (vous pouvez créer votre propre [traqueur d'ours polaire](https://docs.microsoft.com/learn/modules/build-ml-model-with-azure-stream-analytics/?WT.mc_id=academic-77952-leestott) ici), les techniques classiques d'IA ont encore leur place dans cette tâche. + +Les capteurs pour suivre les mouvements des animaux de ferme et l'IoT utilisent ce type de traitement visuel, mais des techniques d'IA plus basiques sont utiles pour prétraiter les données. Par exemple, dans cet article, les postures des moutons ont été surveillées et analysées à l'aide de divers algorithmes de classification. Vous pourriez reconnaître la courbe ROC à la page 335. +[Référence](https://druckhaus-hofmann.de/gallery/31-wj-feb-2020.pdf) + +### ⚡️ Gestion de l'énergie + +Dans nos leçons sur la [prévision des séries chronologiques](../../7-TimeSeries/README.md), nous avons évoqué le concept de parcmètres intelligents pour générer des revenus pour une ville en comprenant l'offre et la demande. Cet article discute en détail de la manière dont le regroupement, la régression et la prévision des séries chronologiques se combinent pour aider à prédire l'utilisation future de l'énergie en Irlande, sur la base des compteurs intelligents. +[Référence](https://www-cdn.knime.com/sites/default/files/inline-images/knime_bigdata_energy_timeseries_whitepaper.pdf) + +## 💼 Assurance + +Le secteur de l'assurance est un autre secteur qui utilise l'IA pour construire et optimiser des modèles financiers et actuariels viables. + +### Gestion de la volatilité + +MetLife, un fournisseur d'assurance-vie, est transparent sur la manière dont ils analysent et atténuent la volatilité dans leurs modèles financiers. Dans cet article, vous remarquerez des visualisations de classification binaire et ordinale. Vous découvrirez également des visualisations de prévision. +[Référence](https://investments.metlife.com/content/dam/metlifecom/us/investments/insights/research-topics/macro-strategy/pdf/MetLifeInvestmentManagement_MachineLearnedRanking_070920.pdf) + +## 🎨 Arts, culture et littérature + +Dans les arts, par exemple dans le journalisme, il existe de nombreux problèmes intéressants. Détecter les fausses informations est un problème majeur, car il a été prouvé qu'elles influencent l'opinion des gens et même qu'elles renversent des démocraties. Les musées peuvent également bénéficier de l'utilisation de l'IA, que ce soit pour trouver des liens entre les artefacts ou pour planifier leurs ressources. + +### Détection des fausses informations + +Détecter les fausses informations est devenu un jeu du chat et de la souris dans les médias d'aujourd'hui. Dans cet article, les chercheurs suggèrent qu'un système combinant plusieurs des techniques d'IA que nous avons étudiées peut être testé et le meilleur modèle déployé : "Ce système est basé sur le traitement du langage naturel pour extraire des caractéristiques des données, puis ces caractéristiques sont utilisées pour l'entraînement des classificateurs d'apprentissage automatique tels que Naive Bayes, Support Vector Machine (SVM), Random Forest (RF), Stochastic Gradient Descent (SGD) et Logistic Regression (LR)." +[Référence](https://www.irjet.net/archives/V7/i6/IRJET-V7I6688.pdf) + +Cet article montre comment la combinaison de différents domaines de l'IA peut produire des résultats intéressants qui peuvent aider à stopper la propagation des fausses informations et à éviter des dommages réels ; dans ce cas, l'impulsion était la propagation de rumeurs sur les traitements COVID qui ont incité à la violence de masse. + +### IA dans les musées + +Les musées sont à l'aube d'une révolution de l'IA où la catalogation et la numérisation des collections ainsi que la recherche de liens entre les artefacts deviennent plus faciles grâce aux avancées technologiques. Des projets comme [In Codice Ratio](https://www.sciencedirect.com/science/article/abs/pii/S0306457321001035#:~:text=1.,studies%20over%20large%20historical%20sources.) aident à percer les mystères des collections inaccessibles comme les Archives du Vatican. Mais l'aspect commercial des musées bénéficie également des modèles d'IA. + +Par exemple, l'Art Institute of Chicago a construit des modèles pour prédire ce qui intéresse les visiteurs et quand ils assisteront aux expositions. L'objectif est de créer des expériences de visite individualisées et optimisées à chaque visite. "Au cours de l'exercice 2017, le modèle a prédit la fréquentation et les admissions avec une précision de 1 %, déclare Andrew Simnick, vice-président senior à l'Art Institute." +[Référence](https://www.chicagobusiness.com/article/20180518/ISSUE01/180519840/art-institute-of-chicago-uses-data-to-make-exhibit-choices) + +## 🏷 Marketing + +### Segmentation des clients + +Les stratégies marketing les plus efficaces ciblent les clients de différentes manières en fonction de divers regroupements. Dans cet article, les utilisations des algorithmes de regroupement sont discutées pour soutenir le marketing différencié. Le marketing différencié aide les entreprises à améliorer la reconnaissance de leur marque, à atteindre davantage de clients et à générer plus de revenus. +[Référence](https://ai.inqline.com/machine-learning-for-marketing-customer-segmentation/) + +## 🚀 Défi +Identifiez un autre secteur qui bénéficie de certaines des techniques que vous avez apprises dans ce programme, et découvrez comment il utilise l'apprentissage automatique. + +## [Quiz après le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/50/) + +## Révision et étude personnelle + +L'équipe de science des données de Wayfair propose plusieurs vidéos intéressantes sur la manière dont ils utilisent l'apprentissage automatique dans leur entreprise. Cela vaut la peine de [jeter un œil](https://www.youtube.com/channel/UCe2PjkQXqOuwkW1gw6Ameuw/videos) ! + +## Devoir + +[Une chasse au trésor sur l'apprentissage automatique](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/9-Real-World/1-Applications/assignment.md b/translations/fr/9-Real-World/1-Applications/assignment.md new file mode 100644 index 000000000..73593e886 --- /dev/null +++ b/translations/fr/9-Real-World/1-Applications/assignment.md @@ -0,0 +1,27 @@ + +# Une chasse au trésor en apprentissage automatique + +## Instructions + +Dans cette leçon, vous avez découvert de nombreux cas d'utilisation réels résolus grâce à l'apprentissage automatique classique. Bien que l'utilisation de l'apprentissage profond, des nouvelles techniques et outils en IA, et l'exploitation des réseaux neuronaux aient accéléré la production d'outils dans ces secteurs, l'apprentissage automatique classique utilisant les techniques de ce programme reste d'une grande valeur. + +Dans cet exercice, imaginez que vous participez à un hackathon. Utilisez ce que vous avez appris dans le programme pour proposer une solution utilisant l'apprentissage automatique classique afin de résoudre un problème dans l'un des secteurs abordés dans cette leçon. Créez une présentation où vous expliquez comment vous allez mettre en œuvre votre idée. Des points bonus seront attribués si vous parvenez à rassembler des données d'exemple et à construire un modèle d'apprentissage automatique pour soutenir votre concept ! + +## Grille d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ------------------------------------------------------------------- | ------------------------------------------------ | ---------------------- | +| | Une présentation PowerPoint est réalisée - bonus pour la création d'un modèle | Une présentation basique et non innovante est réalisée | Le travail est incomplet | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/9-Real-World/2-Debugging-ML-Models/README.md b/translations/fr/9-Real-World/2-Debugging-ML-Models/README.md new file mode 100644 index 000000000..de08e1468 --- /dev/null +++ b/translations/fr/9-Real-World/2-Debugging-ML-Models/README.md @@ -0,0 +1,183 @@ + +# Postscript : Débogage de modèles en apprentissage automatique avec les composants du tableau de bord IA responsable + +## [Quiz avant la leçon](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/) + +## Introduction + +L'apprentissage automatique influence notre vie quotidienne. L'IA s'intègre dans certains des systèmes les plus importants qui nous touchent en tant qu'individus et en tant que société, que ce soit dans les domaines de la santé, des finances, de l'éducation ou de l'emploi. Par exemple, des systèmes et modèles sont impliqués dans des tâches de prise de décision quotidienne, comme les diagnostics médicaux ou la détection de fraudes. En conséquence, les avancées de l'IA, combinées à son adoption accélérée, sont confrontées à des attentes sociétales en évolution et à une réglementation croissante. Nous observons constamment des domaines où les systèmes d'IA ne répondent pas aux attentes, exposent de nouveaux défis, et où les gouvernements commencent à réglementer les solutions d'IA. Il est donc essentiel d'analyser ces modèles pour garantir des résultats équitables, fiables, inclusifs, transparents et responsables pour tous. + +Dans ce programme, nous examinerons des outils pratiques permettant d'évaluer si un modèle présente des problèmes liés à l'IA responsable. Les techniques traditionnelles de débogage en apprentissage automatique reposent souvent sur des calculs quantitatifs tels que la précision agrégée ou la perte moyenne d'erreur. Imaginez ce qui peut se produire lorsque les données utilisées pour construire ces modèles manquent de certaines caractéristiques démographiques, comme la race, le genre, les opinions politiques, la religion, ou représentent ces caractéristiques de manière disproportionnée. Que se passe-t-il lorsque les résultats du modèle favorisent certains groupes démographiques ? Cela peut entraîner une surreprésentation ou une sous-représentation de ces groupes sensibles, ce qui pose des problèmes d'équité, d'inclusivité ou de fiabilité. Un autre facteur est que les modèles d'apprentissage automatique sont souvent considérés comme des boîtes noires, ce qui rend difficile la compréhension et l'explication des raisons derrière leurs prédictions. Tous ces défis sont rencontrés par les data scientists et les développeurs d'IA lorsqu'ils ne disposent pas d'outils adéquats pour déboguer et évaluer l'équité ou la fiabilité d'un modèle. + +Dans cette leçon, vous apprendrez à déboguer vos modèles en utilisant : + +- **Analyse des erreurs** : identifier les zones de votre distribution de données où le modèle présente des taux d'erreur élevés. +- **Vue d'ensemble du modèle** : effectuer une analyse comparative entre différents groupes de données pour découvrir des disparités dans les métriques de performance de votre modèle. +- **Analyse des données** : examiner les zones où il pourrait y avoir une surreprésentation ou une sous-représentation des données, ce qui pourrait biaiser votre modèle en faveur d'un groupe démographique par rapport à un autre. +- **Importance des caractéristiques** : comprendre quelles caractéristiques influencent les prédictions de votre modèle à un niveau global ou local. + +## Prérequis + +En guise de prérequis, veuillez consulter [les outils d'IA responsable pour les développeurs](https://www.microsoft.com/ai/ai-lab-responsible-ai-dashboard) + +> ![Gif sur les outils d'IA responsable](../../../../9-Real-World/2-Debugging-ML-Models/images/rai-overview.gif) + +## Analyse des erreurs + +Les métriques traditionnelles de performance des modèles utilisées pour mesurer la précision reposent principalement sur des calculs basés sur les prédictions correctes ou incorrectes. Par exemple, déterminer qu'un modèle est précis à 89 % avec une perte d'erreur de 0,001 peut être considéré comme une bonne performance. Cependant, les erreurs ne sont souvent pas réparties uniformément dans votre ensemble de données sous-jacent. Vous pourriez obtenir un score de précision de 89 %, mais découvrir que dans certaines régions de vos données, le modèle échoue 42 % du temps. Les conséquences de ces schémas d'échec pour certains groupes de données peuvent entraîner des problèmes d'équité ou de fiabilité. Il est essentiel de comprendre les zones où le modèle fonctionne bien ou non. Les régions de données où votre modèle présente un grand nombre d'inexactitudes peuvent s'avérer être des groupes démographiques importants. + +![Analyser et déboguer les erreurs du modèle](../../../../translated_images/ea-error-distribution.117452e1177c1dd84fab2369967a68bcde787c76c6ea7fdb92fcf15d1fce8206.fr.png) + +Le composant d'analyse des erreurs du tableau de bord RAI illustre comment les échecs du modèle sont répartis entre différents groupes avec une visualisation en arbre. Cela est utile pour identifier les caractéristiques ou les zones où le taux d'erreur est élevé dans votre ensemble de données. En voyant d'où proviennent la plupart des inexactitudes du modèle, vous pouvez commencer à enquêter sur la cause profonde. Vous pouvez également créer des groupes de données pour effectuer une analyse. Ces groupes de données aident dans le processus de débogage à déterminer pourquoi la performance du modèle est bonne dans un groupe, mais erronée dans un autre. + +![Analyse des erreurs](../../../../translated_images/ea-error-cohort.6886209ea5d438c4daa8bfbf5ce3a7042586364dd3eccda4a4e3d05623ac702a.fr.png) + +Les indicateurs visuels sur la carte en arbre permettent de localiser plus rapidement les zones problématiques. Par exemple, plus la couleur rouge d'un nœud d'arbre est foncée, plus le taux d'erreur est élevé. + +La carte thermique est une autre fonctionnalité de visualisation que les utilisateurs peuvent utiliser pour enquêter sur le taux d'erreur en utilisant une ou deux caractéristiques afin de trouver un contributeur aux erreurs du modèle dans l'ensemble des données ou les groupes. + +![Carte thermique d'analyse des erreurs](../../../../translated_images/ea-heatmap.8d27185e28cee3830c85e1b2e9df9d2d5e5c8c940f41678efdb68753f2f7e56c.fr.png) + +Utilisez l'analyse des erreurs lorsque vous devez : + +* Comprendre en profondeur comment les échecs du modèle sont répartis dans un ensemble de données et entre plusieurs dimensions d'entrée et de caractéristiques. +* Décomposer les métriques de performance agrégées pour découvrir automatiquement des groupes erronés afin d'informer vos étapes de mitigation ciblées. + +## Vue d'ensemble du modèle + +Évaluer la performance d'un modèle d'apprentissage automatique nécessite une compréhension globale de son comportement. Cela peut être réalisé en examinant plusieurs métriques telles que le taux d'erreur, la précision, le rappel, la précision ou l'erreur absolue moyenne (MAE) pour identifier des disparités entre les métriques de performance. Une métrique de performance peut sembler excellente, mais des inexactitudes peuvent être révélées dans une autre. De plus, comparer les métriques pour identifier des disparités dans l'ensemble des données ou les groupes permet de mettre en lumière les zones où le modèle fonctionne bien ou non. Cela est particulièrement important pour observer la performance du modèle parmi des caractéristiques sensibles ou non sensibles (par exemple, la race, le genre ou l'âge des patients) afin de découvrir des injustices potentielles dans le modèle. Par exemple, découvrir que le modèle est plus erroné dans un groupe contenant des caractéristiques sensibles peut révéler une injustice potentielle. + +Le composant Vue d'ensemble du modèle du tableau de bord RAI aide non seulement à analyser les métriques de performance de la représentation des données dans un groupe, mais il donne également aux utilisateurs la possibilité de comparer le comportement du modèle entre différents groupes. + +![Groupes de données - vue d'ensemble du modèle dans le tableau de bord RAI](../../../../translated_images/model-overview-dataset-cohorts.dfa463fb527a35a0afc01b7b012fc87bf2cad756763f3652bbd810cac5d6cf33.fr.png) + +La fonctionnalité d'analyse basée sur les caractéristiques du composant permet aux utilisateurs de réduire les sous-groupes de données au sein d'une caractéristique particulière pour identifier des anomalies à un niveau granulaire. Par exemple, le tableau de bord dispose d'une intelligence intégrée pour générer automatiquement des groupes pour une caractéristique sélectionnée par l'utilisateur (par exemple, *"time_in_hospital < 3"* ou *"time_in_hospital >= 7"*). Cela permet à un utilisateur d'isoler une caractéristique particulière d'un groupe de données plus large pour voir si elle est un facteur clé des résultats erronés du modèle. + +![Groupes de caractéristiques - vue d'ensemble du modèle dans le tableau de bord RAI](../../../../translated_images/model-overview-feature-cohorts.c5104d575ffd0c80b7ad8ede7703fab6166bfc6f9125dd395dcc4ace2f522f70.fr.png) + +Le composant Vue d'ensemble du modèle prend en charge deux classes de métriques de disparité : + +**Disparité dans la performance du modèle** : Ces ensembles de métriques calculent la disparité (différence) dans les valeurs de la métrique de performance sélectionnée entre les sous-groupes de données. Voici quelques exemples : + +* Disparité dans le taux de précision +* Disparité dans le taux d'erreur +* Disparité dans la précision +* Disparité dans le rappel +* Disparité dans l'erreur absolue moyenne (MAE) + +**Disparité dans le taux de sélection** : Cette métrique contient la différence dans le taux de sélection (prédiction favorable) entre les sous-groupes. Un exemple de cela est la disparité dans les taux d'approbation de prêt. Le taux de sélection signifie la fraction de points de données dans chaque classe classée comme 1 (dans une classification binaire) ou la distribution des valeurs de prédiction (dans une régression). + +## Analyse des données + +> "Si vous torturez les données suffisamment longtemps, elles avoueront n'importe quoi" - Ronald Coase + +Cette affirmation peut sembler extrême, mais il est vrai que les données peuvent être manipulées pour soutenir n'importe quelle conclusion. Une telle manipulation peut parfois se produire involontairement. En tant qu'humains, nous avons tous des biais, et il est souvent difficile de savoir consciemment quand nous introduisons des biais dans les données. Garantir l'équité dans l'IA et l'apprentissage automatique reste un défi complexe. + +Les données constituent un point aveugle majeur pour les métriques traditionnelles de performance des modèles. Vous pouvez avoir des scores de précision élevés, mais cela ne reflète pas toujours les biais sous-jacents qui pourraient exister dans votre ensemble de données. Par exemple, si un ensemble de données sur les employés montre que 27 % des femmes occupent des postes de direction dans une entreprise contre 73 % d'hommes au même niveau, un modèle d'IA publicitaire formé sur ces données pourrait cibler principalement un public masculin pour des postes de haut niveau. Ce déséquilibre dans les données a biaisé la prédiction du modèle en faveur d'un genre. Cela révèle un problème d'équité où il existe un biais de genre dans le modèle d'IA. + +Le composant Analyse des données du tableau de bord RAI aide à identifier les zones où il y a une surreprésentation ou une sous-représentation dans l'ensemble de données. Il aide les utilisateurs à diagnostiquer la cause profonde des erreurs et des problèmes d'équité introduits par des déséquilibres ou un manque de représentation dans les données. Cela donne aux utilisateurs la possibilité de visualiser les ensembles de données en fonction des résultats prédits et réels, des groupes d'erreurs et des caractéristiques spécifiques. Parfois, découvrir un groupe de données sous-représenté peut également révéler que le modèle n'apprend pas bien, d'où les nombreuses inexactitudes. Avoir un modèle avec des biais dans les données n'est pas seulement un problème d'équité, mais montre que le modèle n'est ni inclusif ni fiable. + +![Composant Analyse des données sur le tableau de bord RAI](../../../../translated_images/dataanalysis-cover.8d6d0683a70a5c1e274e5a94b27a71137e3d0a3b707761d7170eb340dd07f11d.fr.png) + +Utilisez l'analyse des données lorsque vous devez : + +* Explorer les statistiques de votre ensemble de données en sélectionnant différents filtres pour diviser vos données en différentes dimensions (également appelées groupes). +* Comprendre la distribution de votre ensemble de données entre différents groupes et caractéristiques. +* Déterminer si vos conclusions liées à l'équité, à l'analyse des erreurs et à la causalité (dérivées d'autres composants du tableau de bord) sont le résultat de la distribution de votre ensemble de données. +* Décider dans quels domaines collecter davantage de données pour atténuer les erreurs provenant de problèmes de représentation, de bruit dans les étiquettes, de bruit dans les caractéristiques, de biais dans les étiquettes, et de facteurs similaires. + +## Interprétabilité du modèle + +Les modèles d'apprentissage automatique ont tendance à être des boîtes noires. Comprendre quelles caractéristiques clés des données influencent les prédictions d'un modèle peut être difficile. Il est important de fournir de la transparence sur les raisons pour lesquelles un modèle fait une certaine prédiction. Par exemple, si un système d'IA prédit qu'un patient diabétique risque d'être réadmis à l'hôpital dans moins de 30 jours, il devrait être en mesure de fournir des données justificatives qui ont conduit à sa prédiction. Avoir des indicateurs de données justificatifs apporte de la transparence pour aider les cliniciens ou les hôpitaux à prendre des décisions éclairées. De plus, être capable d'expliquer pourquoi un modèle a fait une prédiction pour un patient individuel permet de respecter les réglementations en matière de responsabilité. Lorsque vous utilisez des modèles d'apprentissage automatique de manière à affecter la vie des gens, il est crucial de comprendre et d'expliquer ce qui influence le comportement d'un modèle. L'explicabilité et l'interprétabilité des modèles permettent de répondre à des questions dans des scénarios tels que : + +* Débogage du modèle : Pourquoi mon modèle a-t-il fait cette erreur ? Comment puis-je améliorer mon modèle ? +* Collaboration humain-IA : Comment puis-je comprendre et faire confiance aux décisions du modèle ? +* Conformité réglementaire : Mon modèle satisfait-il aux exigences légales ? + +Le composant Importance des caractéristiques du tableau de bord RAI vous aide à déboguer et à obtenir une compréhension complète de la manière dont un modèle fait ses prédictions. C'est également un outil utile pour les professionnels de l'apprentissage automatique et les décideurs afin d'expliquer et de montrer des preuves des caractéristiques influençant le comportement d'un modèle pour la conformité réglementaire. Ensuite, les utilisateurs peuvent explorer à la fois des explications globales et locales pour valider quelles caractéristiques influencent les prédictions d'un modèle. Les explications globales listent les principales caractéristiques qui ont affecté la prédiction globale d'un modèle. Les explications locales affichent les caractéristiques qui ont conduit à la prédiction d'un modèle pour un cas individuel. La capacité d'évaluer des explications locales est également utile pour déboguer ou auditer un cas spécifique afin de mieux comprendre et interpréter pourquoi un modèle a fait une prédiction correcte ou incorrecte. + +![Composant Importance des caractéristiques du tableau de bord RAI](../../../../translated_images/9-feature-importance.cd3193b4bba3fd4bccd415f566c2437fb3298c4824a3dabbcab15270d783606e.fr.png) + +* Explications globales : Par exemple, quelles caractéristiques affectent le comportement global d'un modèle de réadmission à l'hôpital pour diabétiques ? +* Explications locales : Par exemple, pourquoi un patient diabétique de plus de 60 ans avec des hospitalisations antérieures a-t-il été prédit comme étant réadmis ou non réadmis dans les 30 jours à l'hôpital ? + +Dans le processus de débogage visant à examiner la performance d'un modèle entre différents groupes, Importance des caractéristiques montre le niveau d'impact qu'une caractéristique a entre les groupes. Cela aide à révéler des anomalies en comparant le niveau d'influence qu'une caractéristique a dans les prédictions erronées d'un modèle. Le composant Importance des caractéristiques peut montrer quelles valeurs dans une caractéristique ont influencé positivement ou négativement le résultat du modèle. Par exemple, si un modèle a fait une prédiction incorrecte, le composant vous donne la possibilité d'approfondir et de déterminer quelles caractéristiques ou valeurs de caractéristiques ont influencé la prédiction. Ce niveau de détail aide non seulement dans le débogage, mais fournit également de la transparence et de la responsabilité dans des situations d'audit. Enfin, le composant peut vous aider à identifier des problèmes d'équité. Pour illustrer, si une caractéristique sensible comme l'origine ethnique ou le genre est très influente dans les prédictions d'un modèle, cela pourrait être un signe de biais racial ou de genre dans le modèle. + +![Importance des caractéristiques](../../../../translated_images/9-features-influence.3ead3d3f68a84029f1e40d3eba82107445d3d3b6975d4682b23d8acc905da6d0.fr.png) + +Utilisez l'interprétabilité lorsque vous devez : + +* Déterminer dans quelle mesure les prédictions de votre système d'IA sont fiables en comprenant quelles caractéristiques sont les plus importantes pour les prédictions. +* Approcher le débogage de votre modèle en le comprenant d'abord et en identifiant si le modèle utilise des caractéristiques pertinentes ou simplement des corrélations erronées. +* Découvrir des sources potentielles d'injustice en comprenant si le modèle base ses prédictions sur des caractéristiques sensibles ou sur des caractéristiques fortement corrélées avec elles. +* Renforcer la confiance des utilisateurs dans les décisions de votre modèle en générant des explications locales pour illustrer leurs résultats. +* Réaliser un audit réglementaire d'un système d'IA pour valider les modèles et surveiller l'impact des décisions du modèle sur les humains. + +## Conclusion + +Tous les composants du tableau de bord RAI sont des outils pratiques pour vous aider à construire des modèles d'apprentissage automatique moins nuisibles et plus fiables pour la société. Ils améliorent la prévention des menaces aux droits humains, la discrimination ou l'exclusion de certains groupes des opportunités de vie, et le risque de blessures physiques ou psychologiques. Ils aident également à renforcer la confiance dans les décisions de votre modèle en générant des explications locales pour illustrer leurs résultats. Certains des préjudices potentiels peuvent être classés comme : + +- **Allocation**, si un genre ou une origine ethnique, par exemple, est favorisé par rapport à un autre. +- **Qualité du service**. Si vous entraînez les données pour un scénario spécifique mais que la réalité est beaucoup plus complexe, cela conduit à un service de mauvaise qualité. +- **Stéréotypage**. Associer un groupe donné à des attributs préassignés. +- **Dénigrement**. Critiquer ou étiqueter injustement quelque chose ou quelqu'un. +- **Sur- ou sous-représentation**. L'idée est qu'un certain groupe n'est pas visible dans une certaine profession, et tout service ou fonction qui continue de promouvoir cela contribue à causer des préjudices. + +### Tableau de bord Azure RAI + +[Tableau de bord Azure RAI](https://learn.microsoft.com/en-us/azure/machine-learning/concept-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu) est basé sur des outils open-source développés par des institutions académiques et organisations de premier plan, y compris Microsoft. Ces outils sont essentiels pour les data scientists et les développeurs d'IA afin de mieux comprendre le comportement des modèles, identifier et atténuer les problèmes indésirables des modèles d'IA. + +- Apprenez à utiliser les différents composants en consultant la [documentation du tableau de bord RAI.](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu) + +- Consultez quelques [notebooks d'exemples du tableau de bord RAI](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks) pour déboguer des scénarios d'IA plus responsables dans Azure Machine Learning. + +--- +## 🚀 Défi + +Pour éviter que des biais statistiques ou de données ne soient introduits dès le départ, nous devrions : + +- avoir une diversité de parcours et de perspectives parmi les personnes travaillant sur les systèmes +- investir dans des ensembles de données qui reflètent la diversité de notre société +- développer de meilleures méthodes pour détecter et corriger les biais lorsqu'ils surviennent + +Réfléchissez à des scénarios réels où l'injustice est évidente dans la construction et l'utilisation des modèles. Que devrions-nous également prendre en compte ? + +## [Quiz après le cours](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/6/) +## Révision et étude personnelle + +Dans cette leçon, vous avez appris certains des outils pratiques pour intégrer une IA responsable dans l'apprentissage automatique. + +Regardez cet atelier pour approfondir les sujets : + +- Tableau de bord Responsible AI : Une solution complète pour opérationnaliser l'IA responsable en pratique par Besmira Nushi et Mehrnoosh Sameki + +[![Tableau de bord Responsible AI : Une solution complète pour opérationnaliser l'IA responsable en pratique](https://img.youtube.com/vi/f1oaDNl3djg/0.jpg)](https://www.youtube.com/watch?v=f1oaDNl3djg "Tableau de bord Responsible AI : Une solution complète pour opérationnaliser l'IA responsable en pratique") + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo : Tableau de bord Responsible AI : Une solution complète pour opérationnaliser l'IA responsable en pratique par Besmira Nushi et Mehrnoosh Sameki + +Consultez les matériaux suivants pour en savoir plus sur l'IA responsable et comment construire des modèles plus fiables : + +- Outils du tableau de bord RAI de Microsoft pour déboguer les modèles ML : [Ressources sur les outils d'IA responsable](https://aka.ms/rai-dashboard) + +- Explorez la boîte à outils Responsible AI : [Github](https://github.com/microsoft/responsible-ai-toolbox) + +- Centre de ressources RAI de Microsoft : [Ressources sur l'IA responsable – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- Groupe de recherche FATE de Microsoft : [FATE : Équité, Responsabilité, Transparence et Éthique dans l'IA - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +## Devoir + +[Explorez le tableau de bord RAI](assignment.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/9-Real-World/2-Debugging-ML-Models/assignment.md b/translations/fr/9-Real-World/2-Debugging-ML-Models/assignment.md new file mode 100644 index 000000000..f4c9f45d7 --- /dev/null +++ b/translations/fr/9-Real-World/2-Debugging-ML-Models/assignment.md @@ -0,0 +1,25 @@ + +# Explorez le tableau de bord Responsible AI (RAI) + +## Instructions + +Dans cette leçon, vous avez appris à connaître le tableau de bord RAI, un ensemble de composants basés sur des outils "open-source" pour aider les data scientists à effectuer des analyses d'erreurs, des explorations de données, des évaluations d'équité, des interprétations de modèles, des évaluations contrefactuelles/what-if et des analyses causales sur les systèmes d'IA. Pour cet exercice, explorez certains des [notebooks](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks) d'exemple du tableau de bord RAI et rapportez vos conclusions dans un document ou une présentation. + +## Grille d'évaluation + +| Critères | Exemplaire | Adéquat | À améliorer | +| -------- | ---------- | ------- | ----------- | +| | Un document ou une présentation PowerPoint est présenté(e), discutant des composants du tableau de bord RAI, du notebook exécuté et des conclusions tirées de son exécution | Un document est présenté sans conclusions | Aucun document n'est présenté | + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction professionnelle humaine. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/9-Real-World/README.md b/translations/fr/9-Real-World/README.md new file mode 100644 index 000000000..94fd4c58f --- /dev/null +++ b/translations/fr/9-Real-World/README.md @@ -0,0 +1,32 @@ + +# Postscript : Applications réelles de l'apprentissage automatique classique + +Dans cette section du programme, vous serez introduit à quelques applications réelles de l'apprentissage automatique classique. Nous avons parcouru l'internet pour trouver des articles et des publications sur des applications ayant utilisé ces stratégies, en évitant autant que possible les réseaux neuronaux, l'apprentissage profond et l'intelligence artificielle. Découvrez comment l'apprentissage automatique est utilisé dans les systèmes d'entreprise, les applications écologiques, la finance, les arts et la culture, et bien plus encore. + +![chess](../../../translated_images/chess.e704a268781bdad85d1876b6c2295742fa0d856e7dcf3659147052df9d3db205.fr.jpg) + +> Photo par Alexis Fauvet sur Unsplash + +## Leçon + +1. [Applications réelles de l'apprentissage automatique](1-Applications/README.md) +2. [Débogage de modèles en apprentissage automatique avec les composants du tableau de bord Responsible AI](2-Debugging-ML-Models/README.md) + +## Crédits + +"Applications réelles" a été écrit par une équipe composée, entre autres, de [Jen Looper](https://twitter.com/jenlooper) et [Ornella Altunyan](https://twitter.com/ornelladotcom). + +"Débogage de modèles en apprentissage automatique avec les composants du tableau de bord Responsible AI" a été écrit par [Ruth Yakubu](https://twitter.com/ruthieyakubu) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/CODE_OF_CONDUCT.md b/translations/fr/CODE_OF_CONDUCT.md new file mode 100644 index 000000000..69e8f96ff --- /dev/null +++ b/translations/fr/CODE_OF_CONDUCT.md @@ -0,0 +1,23 @@ + +# Code de conduite Open Source de Microsoft + +Ce projet a adopté le [Code de conduite Open Source de Microsoft](https://opensource.microsoft.com/codeofconduct/). + +Ressources : + +- [Code de conduite Open Source de Microsoft](https://opensource.microsoft.com/codeofconduct/) +- [FAQ sur le Code de conduite de Microsoft](https://opensource.microsoft.com/codeofconduct/faq/) +- Contactez [opencode@microsoft.com](mailto:opencode@microsoft.com) pour toute question ou préoccupation + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction professionnelle humaine. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/CONTRIBUTING.md b/translations/fr/CONTRIBUTING.md new file mode 100644 index 000000000..d3251d126 --- /dev/null +++ b/translations/fr/CONTRIBUTING.md @@ -0,0 +1,24 @@ + +# Contribuer + +Ce projet accueille avec plaisir les contributions et suggestions. La plupart des contributions nécessitent que vous acceptiez un Accord de Licence de Contributeur (CLA) déclarant que vous avez le droit, et que vous accordez effectivement, les droits nécessaires pour que nous puissions utiliser votre contribution. Pour plus de détails, visitez https://cla.microsoft.com. + +> Important : lorsque vous traduisez du texte dans ce dépôt, veuillez vous assurer de ne pas utiliser de traduction automatique. Nous vérifierons les traductions via la communauté, donc veuillez uniquement proposer des traductions dans des langues que vous maîtrisez. + +Lorsque vous soumettez une pull request, un CLA-bot déterminera automatiquement si vous devez fournir un CLA et annotera la PR en conséquence (par exemple, étiquette, commentaire). Suivez simplement les instructions fournies par le bot. Vous n'aurez à le faire qu'une seule fois pour tous les dépôts utilisant notre CLA. + +Ce projet a adopté le [Code de Conduite Open Source de Microsoft](https://opensource.microsoft.com/codeofconduct/). +Pour plus d'informations, consultez la [FAQ sur le Code de Conduite](https://opensource.microsoft.com/codeofconduct/faq/) ou contactez [opencode@microsoft.com](mailto:opencode@microsoft.com) pour toute question ou commentaire supplémentaire. + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/PyTorch_Fundamentals.ipynb b/translations/fr/PyTorch_Fundamentals.ipynb new file mode 100644 index 000000000..c72f5d69e --- /dev/null +++ b/translations/fr/PyTorch_Fundamentals.ipynb @@ -0,0 +1,2830 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "authorship_tag": "ABX9TyOgv0AozH1FKQBD+RkgT2bV", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU", + "coopTranslator": { + "original_hash": "0ca21b6ee62904d616f2e36dc1cf0da7", + "translation_date": "2025-09-04T01:00:54+00:00", + "source_file": "PyTorch_Fundamentals.ipynb", + "language_code": "fr" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EHh5JllMh1rG", + "outputId": "f55755ad-c369-414c-85ec-6e9d4f061a02", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.2.1+cu121'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import torch\n", + "torch.__version__" + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"I am excited to run this\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UPlb-duwXAfz", + "outputId": "cfd687e4-1238-49f4-ab6b-ee1305b740d2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "I am excited to run this\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "print(torch.__version__)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "byWVlJ9wXDSk", + "outputId": "fd74a5c4-4d4a-41b2-ef3c-562ea3e4811f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2.2.1+cu121\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "Osm80zoEYklS" + } + }, + { + "cell_type": "code", + "source": [ + "# scalar\n", + "scalar = torch.tensor(7)\n", + "scalar" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-o8wvJ-VXZmI", + "outputId": "558816f5-1205-4de1-fe1f-2f96e9bd79e6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(7)" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mCZ2tXC4Y_Sg", + "outputId": "2d86dbdc-56e1-45c6-d3dd-14515f2a457a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ssN00By0ZQgS", + "outputId": "490f40d1-5135-4969-a6d3-c8c902cdc473" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "7" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# vector\n", + "vector = torch.tensor([7, 7])\n", + "vector\n", + "#vector.ndim\n", + "#vector.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Bws__5wlZnmF", + "outputId": "944e38f9-5ba1-4ddc-a9c6-cfb6a19bb488" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([7, 7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "vector.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9pjCvnsZZzNG", + "outputId": "e030a4da-8f81-4858-fbce-86da2aaafe52" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([2])" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Matrix\n", + "MATRIX = torch.tensor([[7, 8],[9, 10]])\n", + "MATRIX" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "a747hI9SaBGW", + "outputId": "af835ddb-81ff-4981-badb-441567194d15" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[ 7, 8],\n", + " [ 9, 10]])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XdTfFa7vaRUj", + "outputId": "0fbbab9c-8263-4cad-a380-0d2a16ca499e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX[0]\n", + "MATRIX[1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TFeD3jSDafm7", + "outputId": "69b44ab3-5ba7-451a-c6b2-f019a03d0c96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Tensor\n", + "TENSOR = torch.tensor([[[1, 2, 3],[3,6,9], [2,4,5]]])\n", + "TENSOR" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ic3cE47tah42", + "outputId": "f250e295-91de-43ec-9d80-588a6fe0abde" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]]])" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Wvjf5fczbAM1", + "outputId": "9c72b5b8-bafe-4ae7-9883-b051e209eada" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([1, 3, 3])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mwtXZwiMbN3m", + "outputId": "331a5e36-b1b0-4a5f-a9b8-e7049cbaa8f9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "3" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vzdZu_IfbP3J", + "outputId": "e24e7e71-e365-412d-ff50-fc094b56d2f3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]])" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "A8OL9eWfcRrJ" + } + }, + { + "cell_type": "code", + "source": [ + "random_tensor = torch.rand(3,4)\n", + "random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hAqSDE1EcVS_", + "outputId": "946171c3-d054-400c-f893-79110356888c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.4414, 0.7681, 0.8385, 0.3166],\n", + " [0.0468, 0.5812, 0.0670, 0.9173],\n", + " [0.2959, 0.3276, 0.7411, 0.4643]])" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "g4fvPE5GcwzP", + "outputId": "8737f36b-6864-4059-eaed-6f9156c22306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XsAg99QmdAU6", + "outputId": "35467c11-257c-4f16-99aa-eca930bcbc36" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.size()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cii1pNdVdB68", + "outputId": "fc8d2de6-9215-43de-99f7-7b0d7f7d20fa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_image_tensor = torch.rand(size=(3, 224, 224)) #color channels, height, width\n", + "random_image_tensor.ndim, random_image_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aTKq2j0cdDjb", + "outputId": "6be42057-20b9-4faf-d79d-8b65c42cc27e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([3, 224, 224]))" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor_ofownsize = torch.rand(size=(5,10,10))\n", + "random_tensor_ofownsize.ndim, random_tensor_ofownsize.shape\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IyhDdj-Pd6nC", + "outputId": "43e5e334-6d4d-4b67-f87d-7d364c6d8c67" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([5, 10, 10]))" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "UOJW08uOert_" + } + }, + { + "cell_type": "code", + "source": [ + "zero = torch.zeros(size=(3, 4))\n", + "zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGvXtaXyefie", + "outputId": "d40d3e28-8667-4d2f-8b62-f0829c6162ad" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "zero*random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OyUkUPkDe0uH", + "outputId": "26c2e4be-36ba-4c6c-9a90-2704ec135828" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones = torch.ones(size=(3, 4))\n", + "ones\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "y_Ac62Aqe82G", + "outputId": "291de5d9-b9df-49de-c9d1-d098e3e9f4d8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1., 1., 1., 1.],\n", + " [1., 1., 1., 1.],\n", + " [1., 1., 1., 1.]])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TvGOA9odfIEO", + "outputId": "45949ef4-6649-4b6c-d6af-2d4bfb8de832" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones*zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "--pTyge-fI-8", + "outputId": "c4d9bb7e-829b-43db-e2db-b1a2d64e61f0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "qDcc7Z36fSJF" + } + }, + { + "cell_type": "code", + "source": [ + "one_to_ten = torch.arange(start = 1, end = 11, step = 1)\n", + "one_to_ten" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "w3CZB4zUfR1s", + "outputId": "197fcba1-da0a-4b4a-ed11-3974bd6c01aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 27 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ten_zeros = torch.zeros_like(one_to_ten)\n", + "ten_zeros" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WZh99BwVfRy8", + "outputId": "51ef8bfb-6fa0-4099-ff66-b97d65b2ddea" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Types de tenseurs\n" + ], + "metadata": { + "id": "pGGhgsbUgqbW" + } + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor = torch.tensor([3.0, 6.0,9.0], dtype = None, device = None, requires_grad = False)\n", + "float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JORJl4XkfRsx", + "outputId": "71114171-0f49-481f-b6fc-6cb48e2fb895" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3., 6., 9.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6wOPPwGyfRLn", + "outputId": "f23776a1-b682-404a-9f67-d5bcb0402666" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor = float_32_tensor.type(torch.float16)\n", + "float_16_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tFsHCvmZfOYe", + "outputId": "d3aa305a-7591-47f5-97fd-61bff60b44bd" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float16" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TQiCGTPuwq0q", + "outputId": "98750fce-1ca3-4889-e269-8b753efdea96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor = torch.tensor([3, 6, 9], dtype = torch.int32)\n", + "int_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5hlrLvGUw5D_", + "outputId": "41d890a0-9aee-446c-d906-631ce2ab0995" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9], dtype=torch.int32)" + ] + }, + "metadata": {}, + "execution_count": 33 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ihApD9u3xTNW", + "outputId": "d295eed0-6996-4e0f-8502-ff4b55cd1373" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(0,100,10)" + ], + "metadata": { + "id": "utKhlb_KxWDQ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p78D74E9Rj7Y", + "outputId": "781a1614-a900-41f5-9e5d-358f0b2390aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])" + ] + }, + "metadata": {}, + "execution_count": 36 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.min()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4BcSs5NeRkcj", + "outputId": "3f24a8dc-58e9-4a5f-9834-e85856a34f9d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.max()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hinqvXVLRm4q", + "outputId": "5c7d8a53-3913-4ac1-bba3-5ba8ff68250a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 38 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mean(x.type(torch.float32))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "k7okc0_vRpnB", + "outputId": "91e5494f-dc57-417c-ea4d-25dbc547c893" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 39 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.type(torch.float32).mean()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "29QcDTjHRq10", + "outputId": "62937c6c-78e0-49f2-dde3-1543ee8f7907" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 40 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.sum()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wlpY_G_sbdKF", + "outputId": "475d8258-af65-4011-a258-b93d4d8142d4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(450)" + ] + }, + "metadata": {}, + "execution_count": 41 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmax()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GT6HJzwhbk4n", + "outputId": "2e455c20-c322-4bcf-d07c-1259d3ccefc6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmin()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "egL3oi2Mb19P", + "outputId": "f71fb32f-6338-44a3-b377-75bea0a3ab54" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 43 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p2U8DZKib3DP", + "outputId": "b9f613b9-74e9-45f4-ed01-05babb6a6793" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 44 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[9]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "24qBFlGYcABe", + "outputId": "5813cfcb-7f63-4bd7-ee46-f95ccbfda939" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 45 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(1, 10)\n", + "x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0GPOxEzkcBHO", + "outputId": "aefbd903-4f4c-4d2c-c90f-eccd682fe018" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([9])" + ] + }, + "metadata": {}, + "execution_count": 46 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped = x.reshape(1,9)\n", + "x_reshaped, x_reshaped.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "spmRgQjwddgp", + "outputId": "85a7c55c-2909-4ea2-fc68-386dddc65742" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]]), torch.Size([1, 9]))" + ] + }, + "metadata": {}, + "execution_count": 47 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped.view(1,9)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tH2ahWGydqqP", + "outputId": "65d92263-4fc4-434a-c06d-c5e08436f7fe" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 48 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked = torch.stack([x, x, x, x], dim = 1)\n", + "x_stacked" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jgCeJcaud_-1", + "outputId": "7f293a37-6ef1-43b6-aee5-9d6d91c94f9e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 49 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XhJHIK6cfPse", + "outputId": "06c47b89-3a9e-453e-bcc3-00cbcb0b8b49" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 50 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ej2c3Xxzf0tq", + "outputId": "94024061-eb37-446d-c4a8-e4d16cb6de81" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 52 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4DJYo1a0f5M0", + "outputId": "efca2b47-1b14-44de-9a9a-2c83629d153f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 53 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=-2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "J4iEjn2ah2HL", + "outputId": "22395593-7c16-4162-beae-dd2bbe7bda35" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 55 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "tensor = torch.tensor([1, 2, 3])\n", + "tensor = tensor - 10\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cFfiD7Nth7Z_", + "outputId": "1139e1f8-fc1a-46ca-d636-f2bc4fd2eef6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-9, -8, -7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mul(tensor, 10)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dyA7BM_GHhqE", + "outputId": "0e3b9671-d9e8-4a32-87bb-59bc05986142" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-90, -80, -70])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.sub(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "owtUsZ1KNegI", + "outputId": "189b7b23-0041-4e09-b991-cd209a48506a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-109, -108, -107])" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.add(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "K5STXlQONsyc", + "outputId": "00cbb79a-0a1d-4e21-86ec-5c91c37a2d01" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([91, 92, 93])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.divide(tensor, 2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xqMGnzIUNvp0", + "outputId": "c894cf3e-f148-45f8-cfc8-d78740735306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-4.5000, -4.0000, -3.5000])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(tensor, tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ruGzKpV8NyBc", + "outputId": "fddb63bf-006f-48b6-ae28-287fbcda8bc5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8GS3r9yTeGfD", + "outputId": "c80b12ac-30b5-4f3d-c38c-9e41ba511b0e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "QmuYHqXTemC0", + "outputId": "402fe3ba-70b5-4bb2-c83b-254db84ff810" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 622 µs, sys: 0 ns, total: 622 µs\n", + "Wall time: 516 µs\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "torch.matmul(tensor,tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dGr1fzdNepd8", + "outputId": "97bd6c91-bc25-4b38-cdf5-f22dcdef243e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 424 µs, sys: 998 µs, total: 1.42 ms\n", + "Wall time: 1.43 ms\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.rand(3,2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pGYDoK2gevfo", + "outputId": "2c8783d5-0453-47c5-c7ed-af10d25d6989" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5999, 0.0073],\n", + " [0.9321, 0.3026],\n", + " [0.3463, 0.3872]])" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(torch.rand(3,2), torch.rand(2,3))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KGBGQoB8e2DP", + "outputId": "4c2ef361-a2d0-41ee-c328-3992cbbc138d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.3528, 0.1893, 0.0714],\n", + " [1.2791, 0.7110, 0.2563],\n", + " [0.8812, 0.4553, 0.1803]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch" + ], + "metadata": { + "id": "ib8DMtkBe_LJ" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x = torch.rand(2,9)" + ], + "metadata": { + "id": "nJo8ZBdrQY1b" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wi6oRv4MQfgf", + "outputId": "55c99f55-31f6-4cf5-ba4e-19a47c3a0167" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5894, 0.4391, 0.2018, 0.5417, 0.3844, 0.3592, 0.9209, 0.9269, 0.0681],\n", + " [0.0746, 0.1740, 0.6821, 0.6890, 0.0999, 0.7444, 0.2391, 0.4625, 0.8302]])" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "y=torch.randn(2,3,5)\n", + "y" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zpx8myAUQgoc", + "outputId": "07756d70-56bd-437c-c74e-9aecc1a77311" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[ 1.5552, -0.4877, 0.5175, -1.7958, -0.6187],\n", + " [-0.3359, -1.9710, 0.0112, -1.7578, -1.5295],\n", + " [ 0.0932, 1.4079, 0.9108, 0.3328, -0.6978]],\n", + "\n", + " [[-0.9406, -1.0809, -0.2595, 0.1282, 1.6605],\n", + " [ 1.1624, 1.0902, 1.7092, -0.2842, -1.3780],\n", + " [-0.1534, -1.2795, -0.5495, 0.9902, 0.1822]]])" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original = torch.rand(size=(224,224,3))\n", + "x_original" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "s4U-X9bJQnWe", + "outputId": "657a7a76-962c-4b41-a76b-902d0482266c" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[0.4549, 0.6809, 0.2118],\n", + " [0.4824, 0.9008, 0.8741],\n", + " [0.1715, 0.1757, 0.1845],\n", + " ...,\n", + " [0.8741, 0.6594, 0.2610],\n", + " [0.0092, 0.1984, 0.1955],\n", + " [0.4236, 0.4182, 0.0251]],\n", + "\n", + " [[0.9174, 0.1661, 0.5852],\n", + " [0.1837, 0.2351, 0.3810],\n", + " [0.3726, 0.4808, 0.8732],\n", + " ...,\n", + " [0.6794, 0.0554, 0.9202],\n", + " [0.0864, 0.8750, 0.3558],\n", + " [0.8445, 0.9759, 0.4934]],\n", + "\n", + " [[0.1600, 0.2635, 0.7194],\n", + " [0.9488, 0.3405, 0.3647],\n", + " [0.6683, 0.5168, 0.9592],\n", + " ...,\n", + " [0.0521, 0.0140, 0.2445],\n", + " [0.3596, 0.3999, 0.2730],\n", + " [0.5926, 0.9877, 0.7784]],\n", + "\n", + " ...,\n", + "\n", + " [[0.4794, 0.5635, 0.3764],\n", + " [0.9124, 0.6094, 0.5059],\n", + " [0.4528, 0.4447, 0.5021],\n", + " ...,\n", + " [0.0089, 0.4816, 0.8727],\n", + " [0.2173, 0.6296, 0.2347],\n", + " [0.2028, 0.9931, 0.7201]],\n", + "\n", + " [[0.3116, 0.6459, 0.4703],\n", + " [0.0148, 0.2345, 0.7149],\n", + " [0.8393, 0.5804, 0.6691],\n", + " ...,\n", + " [0.2105, 0.9460, 0.2696],\n", + " [0.5918, 0.9295, 0.2616],\n", + " [0.2537, 0.7819, 0.4700]],\n", + "\n", + " [[0.6654, 0.1200, 0.5841],\n", + " [0.9147, 0.5522, 0.6529],\n", + " [0.1799, 0.5276, 0.5415],\n", + " ...,\n", + " [0.7536, 0.4346, 0.8793],\n", + " [0.3793, 0.1750, 0.7792],\n", + " [0.9266, 0.8325, 0.9974]]])" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted=x_original.permute(2, 0, 1)\n", + "print(x_original.shape)\n", + "print(x_permuted.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DD19_zvbQzHo", + "outputId": "1d64ce1b-eb48-47e3-90b6-7f1340e7f2b2" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "torch.Size([224, 224, 3])\n", + "torch.Size([3, 224, 224])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NnPmMk4ZRF7w", + "outputId": "2cd5da7f-4a23-4a76-8c4a-bb982113f2a4" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z0ylNoAARgTo", + "outputId": "ddca0298-cddf-4048-9b71-a791655e5bed" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]=0.989" + ], + "metadata": { + "id": "RXw0xXsDRi4L" + }, + "execution_count": 13, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1sFdV6wzRo3f", + "outputId": "1cf87d2c-6d88-453a-d136-0f625a2800f1" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xTX-hx2SR1wp", + "outputId": "0d4908c4-c3bc-44e3-8ec6-1487104cc209" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x=torch.arange(1,10).reshape(1,3,3)\n", + "x, x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mZomOe7gR4Q8", + "outputId": "0b3c922f-ec11-46de-b8a5-9f9533d866ad" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]]]),\n", + " torch.Size([1, 3, 3]))" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3y7v4SQvSBs1", + "outputId": "8c53307d-e628-404d-db66-56c6bdffab7c" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hf9uG4xLSNya", + "outputId": "3075bc42-9ffa-426b-8a86-95628ffcd824" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zA4G2Se4SRB3", + "outputId": "324312d2-ed0a-49eb-f81f-e904e53992fe" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(1)" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][2][2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Mwy3zmKKSdbk", + "outputId": "d35172c3-b099-40a6-ddf1-a453c2adfa44" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[:,1,1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fE3nCM1KS7XT", + "outputId": "01f5d755-9737-4235-9f73-dce89ff6ba16" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([5])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,0,:]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "luNDINKNTTxp", + "outputId": "091195ef-2f71-4602-e95f-529a69193150" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,:,2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KG8A4xbfThCL", + "outputId": "5866bc41-9241-4619-be7b-e9206b3f80ab" + }, + "execution_count": 26, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np" + ], + "metadata": { + "id": "CZ3PX0qlTwHJ" + }, + "execution_count": 27, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array = np.arange(1.0, 8.0)" + ], + "metadata": { + "id": "UOBeTumiT3Lf" + }, + "execution_count": 28, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RzcO32E9UCQl", + "outputId": "430def24-c42c-461f-e5e7-398544c695d3" + }, + "execution_count": 29, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1., 2., 3., 4., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.from_numpy(array)\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JJIL0q1DUC6O", + "outputId": "8a3b1d7c-4482-4d32-f34f-9212d9d3a177" + }, + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1., 2., 3., 4., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "array[3]=11.0" + ], + "metadata": { + "id": "j3Ce6q3DUIEK" + }, + "execution_count": 33, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dc_BCVdjUsCc", + "outputId": "65537325-8b11-4f36-fc73-e56f30d6a036" + }, + "execution_count": 34, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 1., 2., 3., 11., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VG1e_eITUta2", + "outputId": "a26c5198-23b6-4a6d-d73a-ba20cd9782b8" + }, + "execution_count": 35, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1., 2., 3., 11., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 35 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.ones(7)\n", + "tensor, tensor.dtype\n", + "numpy_tensor = tensor.numpy()\n", + "numpy_tensor, numpy_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Swt8JF8vUuev", + "outputId": "c9e5bf6a-6d2c-41d6-8327-366867ffdd2d" + }, + "execution_count": 37, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(array([1., 1., 1., 1., 1., 1., 1.], dtype=float32), dtype('float32'))" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "random_tensor_A = torch.rand(3,4)\n", + "random_tensor_B = torch.rand(3,4)\n", + "print(random_tensor_A)\n", + "print(random_tensor_B)\n", + "print(random_tensor_A == random_tensor_B)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGcagTteVFTD", + "outputId": "49405790-08e7-4210-b7f1-f00b904c7eb9" + }, + "execution_count": 38, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.9870, 0.6636, 0.6873, 0.8863],\n", + " [0.8386, 0.4169, 0.3587, 0.0265],\n", + " [0.2981, 0.6025, 0.5652, 0.5840]])\n", + "tensor([[0.9821, 0.3481, 0.0913, 0.4940],\n", + " [0.7495, 0.4387, 0.9582, 0.8659],\n", + " [0.5064, 0.6919, 0.0809, 0.9771]])\n", + "tensor([[False, False, False, False],\n", + " [False, False, False, False],\n", + " [False, False, False, False]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "RANDOM_SEED = 42\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_C = torch.rand(3,4)\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_D = torch.rand(3,4)\n", + "print(random_tensor_C)\n", + "print(random_tensor_D)\n", + "print(random_tensor_C == random_tensor_D)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HznyXyEaWjLM", + "outputId": "25956434-01b6-4059-9054-c9978884ddc1" + }, + "execution_count": 46, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[True, True, True, True],\n", + " [True, True, True, True],\n", + " [True, True, True, True]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!nvidia-smi" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vltPTh0YXJSt", + "outputId": "807af6dc-a9ca-4301-ec32-b688dbde8be8" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Thu May 23 02:57:59 2024 \n", + "+---------------------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |\n", + "|-----------------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|=========================================+======================+======================|\n", + "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", + "| N/A 60C P8 11W / 70W | 0MiB / 15360MiB | 0% Default |\n", + "| | | N/A |\n", + "+-----------------------------------------+----------------------+----------------------+\n", + " \n", + "+---------------------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=======================================================================================|\n", + "| No running processes found |\n", + "+---------------------------------------------------------------------------------------+\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "torch.cuda.is_available()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "L6mMyPDyYh1j", + "outputId": "279c5dd8-c2a8-4fbd-f321-2f5d7c6e90e6" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "device" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "oOdiYa7ZYytx", + "outputId": "d73b04fc-8963-4826-9722-08d118d5ab91" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'cuda'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.cuda.device_count()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vOdsazLqZFM5", + "outputId": "8189cd6a-9017-4663-a652-3e15c517d9c3" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.tensor([1,2,3], device = \"cpu\")\n", + "print(tensor, tensor.device)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cdik9Vw3ZMv0", + "outputId": "044a68fd-83a1-409d-8e3b-655142ca0270" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([1, 2, 3]) cpu\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu = tensor.to(device)\n", + "tensor_on_gpu" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zmp835rrZp-z", + "outputId": "37fa3413-18a3-47bf-ae51-5b36ff85a3ef" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3], device='cuda:0')" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu.numpy()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 159 + }, + "id": "jhriaa8uZ1yM", + "outputId": "bc5a3226-1a12-4fea-8769-a44f21cdc323" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "error", + "ename": "TypeError", + "evalue": "can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtensor_on_gpu\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first." + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_cpu = tensor_on_gpu.cpu().numpy()" + ], + "metadata": { + "id": "LHGXK3GgaOzL" + }, + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "j-El4LlCajfq" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/fr/README.md b/translations/fr/README.md new file mode 100644 index 000000000..426920229 --- /dev/null +++ b/translations/fr/README.md @@ -0,0 +1,178 @@ + +[![GitHub license](https://img.shields.io/github/license/microsoft/ML-For-Beginners.svg)](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE) +[![GitHub contributors](https://img.shields.io/github/contributors/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/) +[![GitHub issues](https://img.shields.io/github/issues/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/issues/) +[![GitHub pull-requests](https://img.shields.io/github/issues-pr/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/pulls/) +[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) + +[![GitHub watchers](https://img.shields.io/github/watchers/microsoft/ML-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/ML-For-Beginners/watchers/) +[![GitHub forks](https://img.shields.io/github/forks/microsoft/ML-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/ML-For-Beginners/network/) +[![GitHub stars](https://img.shields.io/github/stars/microsoft/ML-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/ML-For-Beginners/stargazers/) + +### 🌐 Support multilingue + +#### Pris en charge via GitHub Action (Automatisé et toujours à jour) + +[French](./README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](../hi/README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md) + +#### Rejoignez la communauté + +[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr) + +# Apprentissage automatique pour débutants - Un programme + +> 🌍 Voyagez à travers le monde en explorant l'apprentissage automatique à travers les cultures du monde 🌍 + +Les Cloud Advocates de Microsoft sont ravis de proposer un programme de 12 semaines et 26 leçons entièrement dédié à **l'apprentissage automatique**. Dans ce programme, vous apprendrez ce que l'on appelle parfois **l'apprentissage automatique classique**, en utilisant principalement la bibliothèque Scikit-learn et en évitant l'apprentissage profond, qui est couvert dans notre [programme "AI for Beginners"](https://aka.ms/ai4beginners). Associez ces leçons à notre programme ['Data Science for Beginners'](https://aka.ms/ds4beginners) également ! + +Voyagez avec nous à travers le monde en appliquant ces techniques classiques à des données provenant de nombreuses régions du globe. Chaque leçon comprend des quiz avant et après la leçon, des instructions écrites pour compléter la leçon, une solution, un devoir, et bien plus encore. Notre pédagogie basée sur les projets vous permet d'apprendre tout en construisant, une méthode éprouvée pour que les nouvelles compétences soient bien assimilées. + +**✍️ Un grand merci à nos auteurs** Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu et Amy Boyd + +**🎨 Merci également à nos illustrateurs** Tomomi Imura, Dasani Madipalli, et Jen Looper + +**🙏 Remerciements spéciaux 🙏 à nos auteurs, relecteurs et contributeurs de contenu Microsoft Student Ambassador**, notamment Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila, et Snigdha Agarwal + +**🤩 Une gratitude supplémentaire envers les Microsoft Student Ambassadors Eric Wanjau, Jasleen Sondhi, et Vidushi Gupta pour nos leçons en R !** + +# Premiers pas + +Suivez ces étapes : +1. **Forkez le dépôt** : Cliquez sur le bouton "Fork" en haut à droite de cette page. +2. **Clonez le dépôt** : `git clone https://github.com/microsoft/ML-For-Beginners.git` + +> [retrouvez toutes les ressources supplémentaires pour ce cours dans notre collection Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +**[Étudiants](https://aka.ms/student-page)**, pour utiliser ce programme, forkez l'intégralité du dépôt sur votre propre compte GitHub et complétez les exercices seuls ou en groupe : + +- Commencez par un quiz avant la leçon. +- Lisez la leçon et complétez les activités, en vous arrêtant et en réfléchissant à chaque vérification des connaissances. +- Essayez de créer les projets en comprenant les leçons plutôt qu'en exécutant le code de solution ; cependant, ce code est disponible dans les dossiers `/solution` de chaque leçon orientée projet. +- Passez le quiz après la leçon. +- Relevez le défi. +- Complétez le devoir. +- Après avoir terminé un groupe de leçons, visitez le [forum de discussion](https://github.com/microsoft/ML-For-Beginners/discussions) et "apprenez à voix haute" en remplissant le PAT approprié. Un 'PAT' est un outil d'évaluation des progrès, une grille que vous remplissez pour approfondir votre apprentissage. Vous pouvez également réagir aux PAT des autres afin que nous puissions apprendre ensemble. + +> Pour approfondir vos connaissances, nous vous recommandons de suivre ces modules et parcours d'apprentissage [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott). + +**Enseignants**, nous avons [inclus quelques suggestions](for-teachers.md) sur la façon d'utiliser ce programme. + +--- + +## Vidéos explicatives + +Certaines leçons sont disponibles sous forme de vidéos courtes. Vous pouvez les retrouver toutes intégrées dans les leçons, ou sur la [playlist "ML for Beginners" de la chaîne YouTube Microsoft Developer](https://aka.ms/ml-beginners-videos) en cliquant sur l'image ci-dessous. + +[![Bannière ML pour débutants](../../translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.fr.png)](https://aka.ms/ml-beginners-videos) + +--- + +## Rencontrez l'équipe + +[![Vidéo promo](../../images/ml.gif)](https://youtu.be/Tj1XWrDSYJU) + +**Gif par** [Mohit Jaisal](https://linkedin.com/in/mohitjaisal) + +> 🎥 Cliquez sur l'image ci-dessus pour une vidéo sur le projet et les personnes qui l'ont créé ! + +--- + +## Pédagogie + +Nous avons choisi deux principes pédagogiques lors de la création de ce programme : garantir qu'il soit basé sur des **projets pratiques** et qu'il inclue des **quiz fréquents**. De plus, ce programme a un **thème commun** pour lui donner de la cohérence. + +En veillant à ce que le contenu soit aligné avec des projets, le processus devient plus engageant pour les étudiants et la rétention des concepts est augmentée. De plus, un quiz à faible enjeu avant un cours fixe l'intention de l'étudiant d'apprendre un sujet, tandis qu'un deuxième quiz après le cours assure une meilleure rétention. Ce programme a été conçu pour être flexible et amusant et peut être suivi en totalité ou en partie. Les projets commencent petits et deviennent de plus en plus complexes à la fin du cycle de 12 semaines. Ce programme inclut également un post-scriptum sur les applications réelles de l'apprentissage automatique, qui peut être utilisé comme crédit supplémentaire ou comme base de discussion. + +> Retrouvez notre [Code de conduite](CODE_OF_CONDUCT.md), nos [Directives de contribution](CONTRIBUTING.md), et nos [Directives de traduction](TRANSLATIONS.md). Nous accueillons vos retours constructifs ! + +## Chaque leçon inclut + +- un sketchnote optionnel +- une vidéo complémentaire optionnelle +- une vidéo explicative (certaines leçons uniquement) +- un quiz d'échauffement avant la leçon +- une leçon écrite +- pour les leçons basées sur des projets, des guides étape par étape sur la façon de construire le projet +- des vérifications des connaissances +- un défi +- des lectures complémentaires +- un devoir +- un quiz après la leçon + +> **Une note sur les langages** : Ces leçons sont principalement écrites en Python, mais beaucoup sont également disponibles en R. Pour compléter une leçon en R, allez dans le dossier `/solution` et recherchez les leçons en R. Elles incluent une extension .rmd qui représente un fichier **R Markdown** pouvant être défini simplement comme une intégration de `blocs de code` (en R ou d'autres langages) et un `en-tête YAML` (qui guide la mise en forme des sorties comme PDF) dans un `document Markdown`. Ainsi, il sert de cadre exemplaire pour la science des données puisqu'il vous permet de combiner votre code, ses résultats, et vos réflexions en les écrivant en Markdown. De plus, les documents R Markdown peuvent être rendus dans des formats de sortie tels que PDF, HTML ou Word. + +> **Une note sur les quiz** : Tous les quiz sont contenus dans le dossier [Quiz App](../../quiz-app), pour un total de 52 quiz de trois questions chacun. Ils sont liés dans les leçons, mais l'application de quiz peut être exécutée localement ; suivez les instructions dans le dossier `quiz-app` pour l'héberger localement ou le déployer sur Azure. + +| Numéro de leçon | Sujet | Regroupement de leçons | Objectifs d'apprentissage | Leçon liée | Auteur | +| :-------------: | :------------------------------------------------------------: | :-------------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------: | +| 01 | Introduction à l'apprentissage automatique | [Introduction](1-Introduction/README.md) | Apprenez les concepts de base de l'apprentissage automatique | [Leçon](1-Introduction/1-intro-to-ML/README.md) | Muhammad | +| 02 | L'histoire de l'apprentissage automatique | [Introduction](1-Introduction/README.md) | Découvrez l'histoire derrière ce domaine | [Leçon](1-Introduction/2-history-of-ML/README.md) | Jen et Amy | +| 03 | Équité et apprentissage automatique | [Introduction](1-Introduction/README.md) | Quels sont les enjeux philosophiques importants autour de l'équité que les étudiants doivent considérer en construisant des modèles ML ? | [Leçon](1-Introduction/3-fairness/README.md) | Tomomi | +| 04 | Techniques pour l'apprentissage automatique | [Introduction](1-Introduction/README.md) | Quelles techniques les chercheurs en ML utilisent-ils pour construire des modèles ML ? | [Leçon](1-Introduction/4-techniques-of-ML/README.md) | Chris et Jen | +| 05 | Introduction à la régression | [Regression](2-Regression/README.md) | Commencez avec Python et Scikit-learn pour les modèles de régression | +
                      • [Python](2-Regression/1-Tools/README.md)
                      • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html)
                      |
                      • Jen
                      • Eric Wanjau
                      | +| 06 | Prix des citrouilles en Amérique du Nord 🎃 | [Regression](2-Regression/README.md) | Visualisez et nettoyez les données en préparation pour le ML |
                      • [Python](2-Regression/2-Data/README.md)
                      • [R](../../2-Regression/2-Data/solution/R/lesson_2.html)
                      |
                      • Jen
                      • Eric Wanjau
                      | +| 07 | Prix des citrouilles en Amérique du Nord 🎃 | [Regression](2-Regression/README.md) | Construisez des modèles de régression linéaire et polynomiale |
                      • [Python](2-Regression/3-Linear/README.md)
                      • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html)
                      |
                      • Jen et Dmitry
                      • Eric Wanjau
                      | +| 08 | Prix des citrouilles en Amérique du Nord 🎃 | [Regression](2-Regression/README.md) | Construisez un modèle de régression logistique |
                      • [Python](2-Regression/4-Logistic/README.md)
                      • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html)
                      |
                      • Jen
                      • Eric Wanjau
                      | +| 09 | Une application web 🔌 | [Web App](3-Web-App/README.md) | Construisez une application web pour utiliser votre modèle entraîné | [Python](3-Web-App/1-Web-App/README.md) | Jen | +| 10 | Introduction à la classification | [Classification](4-Classification/README.md) | Nettoyez, préparez et visualisez vos données ; introduction à la classification |
                      • [Python](4-Classification/1-Introduction/README.md)
                      • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) |
                        • Jen et Cassie
                        • Eric Wanjau
                        | +| 11 | Délicieuses cuisines asiatiques et indiennes 🍜 | [Classification](4-Classification/README.md) | Introduction aux classificateurs |
                        • [Python](4-Classification/2-Classifiers-1/README.md)
                        • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) |
                          • Jen et Cassie
                          • Eric Wanjau
                          | +| 12 | Délicieuses cuisines asiatiques et indiennes 🍜 | [Classification](4-Classification/README.md) | Plus de classificateurs |
                          • [Python](4-Classification/3-Classifiers-2/README.md)
                          • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) |
                            • Jen et Cassie
                            • Eric Wanjau
                            | +| 13 | Délicieuses cuisines asiatiques et indiennes 🍜 | [Classification](4-Classification/README.md) | Construisez une application web de recommandation en utilisant votre modèle | [Python](4-Classification/4-Applied/README.md) | Jen | +| 14 | Introduction au clustering | [Clustering](5-Clustering/README.md) | Nettoyez, préparez et visualisez vos données ; introduction au clustering |
                            • [Python](5-Clustering/1-Visualize/README.md)
                            • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) |
                              • Jen
                              • Eric Wanjau
                              | +| 15 | Exploration des goûts musicaux nigérians 🎧 | [Clustering](5-Clustering/README.md) | Explorez la méthode de clustering K-Means |
                              • [Python](5-Clustering/2-K-Means/README.md)
                              • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) |
                                • Jen
                                • Eric Wanjau
                                | +| 16 | Introduction au traitement du langage naturel ☕️ | [Natural language processing](6-NLP/README.md) | Apprenez les bases du NLP en construisant un bot simple | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Stephen | +| 17 | Tâches courantes en NLP ☕️ | [Natural language processing](6-NLP/README.md) | Approfondissez vos connaissances en NLP en comprenant les tâches courantes liées aux structures linguistiques | [Python](6-NLP/2-Tasks/README.md) | Stephen | +| 18 | Traduction et analyse de sentiments ♥️ | [Natural language processing](6-NLP/README.md) | Traduction et analyse de sentiments avec Jane Austen | [Python](6-NLP/3-Translation-Sentiment/README.md) | Stephen | +| 19 | Hôtels romantiques d'Europe ♥️ | [Natural language processing](6-NLP/README.md) | Analyse de sentiments avec des avis d'hôtels 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen | +| 20 | Hôtels romantiques d'Europe ♥️ | [Natural language processing](6-NLP/README.md) | Analyse de sentiments avec des avis d'hôtels 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen | +| 21 | Introduction à la prévision des séries temporelles | [Time series](7-TimeSeries/README.md) | Introduction à la prévision des séries temporelles | [Python](7-TimeSeries/1-Introduction/README.md) | Francesca | +| 22 | ⚡️ Utilisation mondiale de l'énergie ⚡️ - prévision avec ARIMA | [Time series](7-TimeSeries/README.md) | Prévision des séries temporelles avec ARIMA | [Python](7-TimeSeries/2-ARIMA/README.md) | Francesca | +| 23 | ⚡️ Utilisation mondiale de l'énergie ⚡️ - prévision avec SVR | [Time series](7-TimeSeries/README.md) | Prévision des séries temporelles avec Support Vector Regressor | [Python](7-TimeSeries/3-SVR/README.md) | Anirban | +| 24 | Introduction à l'apprentissage par renforcement | [Reinforcement learning](8-Reinforcement/README.md) | Introduction à l'apprentissage par renforcement avec Q-Learning | [Python](8-Reinforcement/1-QLearning/README.md) | Dmitry | +| 25 | Aidez Peter à éviter le loup ! 🐺 | [Reinforcement learning](8-Reinforcement/README.md) | Gym d'apprentissage par renforcement | [Python](8-Reinforcement/2-Gym/README.md) | Dmitry | +| Postscript | Scénarios et applications ML dans le monde réel | [ML in the Wild](9-Real-World/README.md) | Applications intéressantes et révélatrices du ML classique | [Lesson](9-Real-World/1-Applications/README.md) | Team | +| Postscript | Débogage de modèles ML avec le tableau de bord RAI | [ML in the Wild](9-Real-World/README.md) | Débogage de modèles en apprentissage automatique en utilisant les composants du tableau de bord IA responsable | [Lesson](9-Real-World/2-Debugging-ML-Models/README.md) | Ruth Yakubu | + +> [retrouvez toutes les ressources supplémentaires pour ce cours dans notre collection Microsoft Learn](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +## Accès hors ligne + +Vous pouvez exécuter cette documentation hors ligne en utilisant [Docsify](https://docsify.js.org/#/). Clonez ce dépôt, [installez Docsify](https://docsify.js.org/#/quickstart) sur votre machine locale, puis dans le dossier racine de ce dépôt, tapez `docsify serve`. Le site web sera servi sur le port 3000 de votre localhost : `localhost:3000`. + +## PDFs + +Trouvez un PDF du programme avec des liens [ici](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf). + + +## 🎒 Autres cours + +Notre équipe produit d'autres cours ! Découvrez : + +- [Generative AI for Beginners](https://aka.ms/genai-beginners) +- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet) +- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript) +- [Generative AI with Java](https://github.com/microsoft/Generative-AI-for-beginners-java) +- [AI for Beginners](https://aka.ms/ai-beginners) +- [Data Science for Beginners](https://aka.ms/datascience-beginners) +- [ML for Beginners](https://aka.ms/ml-beginners) +- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101) +- [Web Dev for Beginners](https://aka.ms/webdev-beginners) +- [IoT for Beginners](https://aka.ms/iot-beginners) +- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners) +- [Mastering GitHub Copilot for Paired Programming](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming) +- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers) +- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/SECURITY.md b/translations/fr/SECURITY.md new file mode 100644 index 000000000..7b9c14c2c --- /dev/null +++ b/translations/fr/SECURITY.md @@ -0,0 +1,51 @@ + +## Sécurité + +Microsoft prend très au sérieux la sécurité de ses produits logiciels et services, y compris tous les dépôts de code source gérés via nos organisations GitHub, qui incluent [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), et [nos organisations GitHub](https://opensource.microsoft.com/). + +Si vous pensez avoir identifié une vulnérabilité de sécurité dans un dépôt appartenant à Microsoft qui correspond à [la définition d'une vulnérabilité de sécurité de Microsoft](https://docs.microsoft.com/previous-versions/tn-archive/cc751383(v=technet.10)?WT.mc_id=academic-77952-leestott), veuillez nous la signaler comme décrit ci-dessous. + +## Signaler des problèmes de sécurité + +**Veuillez ne pas signaler de vulnérabilités de sécurité via les issues publiques de GitHub.** + +Au lieu de cela, veuillez les signaler au Microsoft Security Response Center (MSRC) à l'adresse [https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report). + +Si vous préférez soumettre sans vous connecter, envoyez un email à [secure@microsoft.com](mailto:secure@microsoft.com). Si possible, chiffrez votre message avec notre clé PGP ; vous pouvez la télécharger depuis la [page de clé PGP du Microsoft Security Response Center](https://www.microsoft.com/en-us/msrc/pgp-key-msrc). + +Vous devriez recevoir une réponse sous 24 heures. Si, pour une raison quelconque, vous ne recevez pas de réponse, veuillez nous recontacter par email pour vous assurer que nous avons bien reçu votre message initial. Des informations supplémentaires sont disponibles sur [microsoft.com/msrc](https://www.microsoft.com/msrc). + +Veuillez inclure les informations demandées ci-dessous (autant que possible) pour nous aider à mieux comprendre la nature et l'étendue du problème potentiel : + + * Type de problème (par exemple, débordement de tampon, injection SQL, cross-site scripting, etc.) + * Chemins complets des fichiers source liés à la manifestation du problème + * L'emplacement du code source affecté (tag/branche/commit ou URL directe) + * Toute configuration spéciale requise pour reproduire le problème + * Instructions détaillées pour reproduire le problème + * Code de preuve de concept ou d'exploitation (si possible) + * Impact du problème, y compris comment un attaquant pourrait exploiter le problème + +Ces informations nous aideront à traiter votre rapport plus rapidement. + +Si vous signalez dans le cadre d'un programme de récompense pour bugs, des rapports plus complets peuvent contribuer à une récompense plus élevée. Veuillez consulter notre page [Programme de récompense pour bugs de Microsoft](https://microsoft.com/msrc/bounty) pour plus de détails sur nos programmes actifs. + +## Langues préférées + +Nous préférons que toutes les communications soient en anglais. + +## Politique + +Microsoft suit le principe de [Divulgation coordonnée des vulnérabilités](https://www.microsoft.com/en-us/msrc/cvd). + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous ne sommes pas responsables des malentendus ou des interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/SUPPORT.md b/translations/fr/SUPPORT.md new file mode 100644 index 000000000..3cb52d60d --- /dev/null +++ b/translations/fr/SUPPORT.md @@ -0,0 +1,24 @@ + +# Support +## Comment signaler des problèmes et obtenir de l'aide + +Ce projet utilise GitHub Issues pour suivre les bugs et les demandes de fonctionnalités. Veuillez rechercher les problèmes existants avant d'en créer de nouveaux afin d'éviter les doublons. Pour les nouveaux problèmes, signalez votre bug ou votre demande de fonctionnalité en tant que nouvel problème. + +Pour obtenir de l'aide et poser des questions sur l'utilisation de ce projet, créez un problème. + +## Politique de support de Microsoft + +Le support pour ce dépôt se limite aux ressources mentionnées ci-dessus. + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/docs/_sidebar.md b/translations/fr/docs/_sidebar.md new file mode 100644 index 000000000..6fa975ba4 --- /dev/null +++ b/translations/fr/docs/_sidebar.md @@ -0,0 +1,57 @@ + +- Introduction + - [Introduction au Machine Learning](../1-Introduction/1-intro-to-ML/README.md) + - [Histoire du Machine Learning](../1-Introduction/2-history-of-ML/README.md) + - [ML et Équité](../1-Introduction/3-fairness/README.md) + - [Techniques du ML](../1-Introduction/4-techniques-of-ML/README.md) + +- Régression + - [Outils du métier](../2-Regression/1-Tools/README.md) + - [Données](../2-Regression/2-Data/README.md) + - [Régression Linéaire](../2-Regression/3-Linear/README.md) + - [Régression Logistique](../2-Regression/4-Logistic/README.md) + +- Créer une application web + - [Application web](../3-Web-App/1-Web-App/README.md) + +- Classification + - [Introduction à la Classification](../4-Classification/1-Introduction/README.md) + - [Classificateurs 1](../4-Classification/2-Classifiers-1/README.md) + - [Classificateurs 2](../4-Classification/3-Classifiers-2/README.md) + - [ML appliqué](../4-Classification/4-Applied/README.md) + +- Regroupement + - [Visualisez vos données](../5-Clustering/1-Visualize/README.md) + - [K-Means](../5-Clustering/2-K-Means/README.md) + +- NLP + - [Introduction au NLP](../6-NLP/1-Introduction-to-NLP/README.md) + - [Tâches NLP](../6-NLP/2-Tasks/README.md) + - [Traduction et Sentiment](../6-NLP/3-Translation-Sentiment/README.md) + - [Avis d'hôtel 1](../6-NLP/4-Hotel-Reviews-1/README.md) + - [Avis d'hôtel 2](../6-NLP/5-Hotel-Reviews-2/README.md) + +- Prévision des séries temporelles + - [Introduction à la prévision des séries temporelles](../7-TimeSeries/1-Introduction/README.md) + - [ARIMA](../7-TimeSeries/2-ARIMA/README.md) + - [SVR](../7-TimeSeries/3-SVR/README.md) + +- Apprentissage par renforcement + - [Q-Learning](../8-Reinforcement/1-QLearning/README.md) + - [Gym](../8-Reinforcement/2-Gym/README.md) + +- ML dans le monde réel + - [Applications](../9-Real-World/1-Applications/README.md) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/for-teachers.md b/translations/fr/for-teachers.md new file mode 100644 index 000000000..b24a05938 --- /dev/null +++ b/translations/fr/for-teachers.md @@ -0,0 +1,37 @@ + +## Pour les enseignants + +Souhaitez-vous utiliser ce programme dans votre classe ? N'hésitez pas ! + +En fait, vous pouvez l'utiliser directement sur GitHub en utilisant GitHub Classroom. + +Pour ce faire, clonez ce dépôt. Vous devrez créer un dépôt pour chaque leçon, donc il faudra extraire chaque dossier dans un dépôt séparé. Ainsi, [GitHub Classroom](https://classroom.github.com/classrooms) pourra gérer chaque leçon individuellement. + +Ces [instructions complètes](https://github.blog/2020-03-18-set-up-your-digital-classroom-with-github-classroom/) vous donneront une idée de la manière de configurer votre classe. + +## Utiliser le dépôt tel quel + +Si vous souhaitez utiliser ce dépôt tel qu'il est actuellement, sans passer par GitHub Classroom, c'est également possible. Vous devrez communiquer avec vos étudiants pour leur indiquer quelle leçon suivre ensemble. + +Dans un format en ligne (Zoom, Teams ou autre), vous pourriez créer des salles de discussion pour les quiz et encadrer les étudiants afin de les préparer à apprendre. Ensuite, invitez les étudiants à participer aux quiz et à soumettre leurs réponses sous forme de "issues" à un moment donné. Vous pourriez faire de même avec les devoirs, si vous souhaitez que les étudiants travaillent de manière collaborative et visible. + +Si vous préférez un format plus privé, demandez à vos étudiants de cloner le programme, leçon par leçon, dans leurs propres dépôts GitHub privés, et donnez-vous accès. Ils pourront alors compléter les quiz et les devoirs de manière privée et vous les soumettre via des "issues" sur votre dépôt de classe. + +Il existe de nombreuses façons de faire fonctionner cela dans un format de classe en ligne. Faites-nous savoir ce qui fonctionne le mieux pour vous ! + +## Donnez-nous votre avis ! + +Nous voulons que ce programme soit utile pour vous et vos étudiants. Veuillez nous donner votre [retour](https://forms.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR2humCsRZhxNuI79cm6n0hRUQzRVVU9VVlU5UlFLWTRLWlkyQUxORTg5WS4u). + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/quiz-app/README.md b/translations/fr/quiz-app/README.md new file mode 100644 index 000000000..bbff78dd9 --- /dev/null +++ b/translations/fr/quiz-app/README.md @@ -0,0 +1,127 @@ + +# Quiz + +Ces quiz sont les quiz avant et après les cours pour le programme ML disponible sur https://aka.ms/ml-beginners + +## Configuration du projet + +``` +npm install +``` + +### Compilation et rechargement à chaud pour le développement + +``` +npm run serve +``` + +### Compilation et minification pour la production + +``` +npm run build +``` + +### Analyse et correction des fichiers + +``` +npm run lint +``` + +### Personnaliser la configuration + +Voir [Référence de configuration](https://cli.vuejs.org/config/). + +Crédits : Merci à la version originale de cette application de quiz : https://github.com/arpan45/simple-quiz-vue + +## Déploiement sur Azure + +Voici un guide étape par étape pour vous aider à démarrer : + +1. Forker un dépôt GitHub +Assurez-vous que le code de votre application web statique se trouve dans votre dépôt GitHub. Forkez ce dépôt. + +2. Créer une application web statique Azure +- Créez un [compte Azure](http://azure.microsoft.com) +- Accédez au [portail Azure](https://portal.azure.com) +- Cliquez sur « Créer une ressource » et recherchez « Application Web Statique ». +- Cliquez sur « Créer ». + +3. Configurer l'application web statique +- Bases : + - Abonnement : Sélectionnez votre abonnement Azure. + - Groupe de ressources : Créez un nouveau groupe de ressources ou utilisez-en un existant. + - Nom : Donnez un nom à votre application web statique. + - Région : Choisissez la région la plus proche de vos utilisateurs. + +- #### Détails du déploiement : + - Source : Sélectionnez « GitHub ». + - Compte GitHub : Autorisez Azure à accéder à votre compte GitHub. + - Organisation : Sélectionnez votre organisation GitHub. + - Dépôt : Choisissez le dépôt contenant votre application web statique. + - Branche : Sélectionnez la branche à partir de laquelle vous souhaitez déployer. + +- #### Détails de la construction : + - Préréglages de construction : Choisissez le framework avec lequel votre application est construite (par exemple, React, Angular, Vue, etc.). + - Emplacement de l'application : Spécifiez le dossier contenant le code de votre application (par exemple, / si c’est à la racine). + - Emplacement de l'API : Si vous avez une API, spécifiez son emplacement (optionnel). + - Emplacement de sortie : Spécifiez le dossier où la sortie de la construction est générée (par exemple, build ou dist). + +4. Réviser et créer +Révisez vos paramètres et cliquez sur « Créer ». Azure configurera les ressources nécessaires et créera un workflow GitHub Actions dans votre dépôt. + +5. Workflow GitHub Actions +Azure créera automatiquement un fichier de workflow GitHub Actions dans votre dépôt (.github/workflows/azure-static-web-apps-.yml). Ce workflow gérera le processus de construction et de déploiement. + +6. Surveiller le déploiement +Accédez à l’onglet « Actions » dans votre dépôt GitHub. +Vous devriez voir un workflow en cours d’exécution. Ce workflow construira et déploiera votre application web statique sur Azure. +Une fois le workflow terminé, votre application sera en ligne à l’URL Azure fournie. + +### Exemple de fichier de workflow + +Voici un exemple de ce à quoi pourrait ressembler le fichier de workflow GitHub Actions : +name: Azure Static Web Apps CI/CD +``` +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened, closed] + branches: + - main + +jobs: + build_and_deploy_job: + runs-on: ubuntu-latest + name: Build and Deploy Job + steps: + - uses: actions/checkout@v2 + - name: Build And Deploy + id: builddeploy + uses: Azure/static-web-apps-deploy@v1 + with: + azure_static_web_apps_api_token: ${{ secrets.AZURE_STATIC_WEB_APPS_API_TOKEN }} + repo_token: ${{ secrets.GITHUB_TOKEN }} + action: "upload" + app_location: "/quiz-app" # App source code path + api_location: ""API source code path optional + output_location: "dist" #Built app content directory - optional +``` + +### Ressources supplémentaires +- [Documentation des applications web statiques Azure](https://learn.microsoft.com/azure/static-web-apps/getting-started) +- [Documentation GitHub Actions](https://docs.github.com/actions/use-cases-and-examples/deploying/deploying-to-azure-static-web-app) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/sketchnotes/LICENSE.md b/translations/fr/sketchnotes/LICENSE.md new file mode 100644 index 000000000..7c507ebbe --- /dev/null +++ b/translations/fr/sketchnotes/LICENSE.md @@ -0,0 +1,199 @@ + +Attribution-ShareAlike 4.0 International + +======================================================================= + +Creative Commons Corporation ("Creative Commons") n'est pas un cabinet d'avocats et ne fournit pas de services ou de conseils juridiques. La distribution des licences publiques Creative Commons ne crée pas de relation avocat-client ou autre relation. Creative Commons met ses licences et les informations associées à disposition "en l'état". Creative Commons ne donne aucune garantie concernant ses licences, les matériaux sous licence selon leurs termes et conditions, ou les informations associées. Creative Commons décline toute responsabilité pour les dommages résultant de leur utilisation dans la mesure maximale permise par la loi. + +Utilisation des licences publiques Creative Commons + +Les licences publiques Creative Commons offrent un ensemble standard de termes et conditions que les créateurs et autres titulaires de droits peuvent utiliser pour partager des œuvres originales protégées par le droit d'auteur et d'autres droits spécifiés dans la licence publique ci-dessous. Les considérations suivantes sont fournies à titre informatif uniquement, ne sont pas exhaustives et ne font pas partie de nos licences. + + Considérations pour les concédants : Nos licences publiques sont + destinées à être utilisées par ceux qui sont autorisés à donner au public + la permission d'utiliser des matériaux de manière autrement restreinte par + le droit d'auteur et certains autres droits. Nos licences sont + irrévocables. Les concédants doivent lire et comprendre les termes + et conditions de la licence qu'ils choisissent avant de l'appliquer. + Les concédants doivent également s'assurer de disposer de tous les droits nécessaires + avant d'appliquer nos licences afin que le public puisse réutiliser le + matériel comme prévu. Les concédants doivent clairement marquer tout + matériel non soumis à la licence. Cela inclut d'autres matériaux sous licence CC, + ou des matériaux utilisés en vertu d'une exception ou d'une limitation au droit d'auteur. + Plus de considérations pour les concédants : + wiki.creativecommons.org/Considerations_for_licensors + + Considérations pour le public : En utilisant l'une de nos licences publiques, + un concédant accorde au public la permission d'utiliser le matériel sous licence + selon les termes et conditions spécifiés. Si la permission du concédant + n'est pas nécessaire pour une raison quelconque — par exemple, en raison d'une exception + ou limitation applicable au droit d'auteur — alors cette utilisation n'est pas + régie par la licence. Nos licences n'accordent que des permissions + en vertu du droit d'auteur et de certains autres droits que le concédant est autorisé + à accorder. L'utilisation du matériel sous licence peut encore être restreinte + pour d'autres raisons, notamment parce que d'autres détiennent des droits d'auteur + ou d'autres droits sur le matériel. Un concédant peut faire des demandes spéciales, + comme demander que toutes les modifications soient marquées ou décrites. + Bien que cela ne soit pas requis par nos licences, vous êtes encouragé à + respecter ces demandes lorsqu'elles sont raisonnables. Plus de considérations + pour le public : + wiki.creativecommons.org/Considerations_for_licensees + +======================================================================= + +Licence publique internationale Attribution-ShareAlike 4.0 de Creative Commons + +En exerçant les Droits Concédés (définis ci-dessous), Vous acceptez et convenez +d'être lié par les termes et conditions de cette Licence Publique Internationale +Attribution-ShareAlike 4.0 de Creative Commons ("Licence Publique"). Dans la mesure +où cette Licence Publique peut être interprétée comme un contrat, Vous êtes +autorisé à exercer les Droits Concédés en contrepartie de Votre acceptation de ces +termes et conditions, et le Concédant Vous accorde ces droits en contrepartie des +bénéfices que le Concédant reçoit en rendant le Matériel sous Licence disponible +selon ces termes et conditions. + +Section 1 -- Définitions. + + a. Matériel Adapté désigne le matériel soumis au droit d'auteur et à des Droits + Similaires qui est dérivé ou basé sur le Matériel sous Licence et dans lequel + le Matériel sous Licence est traduit, modifié, arrangé, transformé ou + autrement modifié d'une manière nécessitant une autorisation en vertu du droit + d'auteur et des Droits Similaires détenus par le Concédant. Aux fins de cette + Licence Publique, lorsque le Matériel sous Licence est une œuvre musicale, + une performance ou un enregistrement sonore, le Matériel Adapté est toujours + produit lorsque le Matériel sous Licence est synchronisé en relation temporelle + avec une image animée. + + b. Licence de l'Adaptateur désigne la licence que Vous appliquez à Vos droits + d'auteur et Droits Similaires dans Vos contributions au Matériel Adapté + conformément aux termes et conditions de cette Licence Publique. + + c. Licence Compatible BY-SA désigne une licence répertoriée sur + creativecommons.org/compatiblelicenses, approuvée par Creative Commons comme + étant essentiellement équivalente à cette Licence Publique. + + d. Droits d'Auteur et Droits Similaires désignent les droits d'auteur et/ou les + droits similaires étroitement liés aux droits d'auteur, y compris, sans + limitation, les droits de performance, de diffusion, d'enregistrement sonore, + et les Droits Sui Generis sur les Bases de Données, sans tenir compte de la + manière dont les droits sont étiquetés ou catégorisés. Aux fins de cette + Licence Publique, les droits spécifiés dans la Section 2(b)(1)-(2) ne sont pas + des Droits d'Auteur et Droits Similaires. + + e. Mesures Technologiques Efficaces désignent les mesures qui, en l'absence + d'autorité appropriée, ne peuvent pas être contournées en vertu des lois + remplissant les obligations de l'article 11 du Traité de l'OMPI sur le droit + d'auteur adopté le 20 décembre 1996, et/ou d'accords internationaux similaires. + + f. Exceptions et Limitations désignent l'usage loyal, le traitement équitable, + et/ou toute autre exception ou limitation aux Droits d'Auteur et Droits + Similaires qui s'applique à Votre utilisation du Matériel sous Licence. + + g. Éléments de la Licence désignent les attributs de licence énumérés dans le + nom d'une Licence Publique Creative Commons. Les Éléments de la Licence de + cette Licence Publique sont Attribution et Partage dans les Mêmes Conditions. + + h. Matériel sous Licence désigne l'œuvre artistique ou littéraire, la base de + données, ou tout autre matériel auquel le Concédant a appliqué cette Licence + Publique. + + i. Droits Concédés désignent les droits qui Vous sont accordés sous réserve des + termes et conditions de cette Licence Publique, qui se limitent à tous les + Droits d'Auteur et Droits Similaires qui s'appliquent à Votre utilisation du + Matériel sous Licence et que le Concédant a l'autorité de concéder. + + j. Concédant désigne la ou les personnes physiques ou morales accordant des droits + en vertu de cette Licence Publique. + + k. Partager signifie fournir du matériel au public par tout moyen ou processus + nécessitant une autorisation en vertu des Droits Concédés, tels que la + reproduction, l'affichage public, la performance publique, la distribution, + la diffusion, la communication ou l'importation, et rendre le matériel + disponible au public, y compris de manière à ce que les membres du public + puissent accéder au matériel depuis un lieu et à un moment choisis + individuellement par eux. + + l. Droits Sui Generis sur les Bases de Données désignent des droits autres que + les droits d'auteur résultant de la Directive 96/9/CE du Parlement européen et + du Conseil du 11 mars 1996 sur la protection juridique des bases de données, + telle que modifiée et/ou remplacée, ainsi que d'autres droits essentiellement + équivalents partout dans le monde. + + m. Vous désigne la personne physique ou morale exerçant les Droits Concédés en + vertu de cette Licence Publique. Votre a une signification correspondante. + +... +Droits, puis la base de données dans laquelle vous avez des droits de base de données sui generis (mais pas son contenu individuel) est un matériel adapté, + +y compris aux fins de la section 3(b) ; et +c. Vous devez respecter les conditions de la section 3(a) si vous partagez tout ou une partie substantielle du contenu de la base de données. + +Pour éviter tout doute, cette section 4 complète et ne remplace pas vos obligations en vertu de cette licence publique lorsque les droits concédés incluent d'autres droits d'auteur et droits similaires. + +--- + +Section 5 -- Déni de garanties et limitation de responsabilité. + +a. SAUF SI LE CONCÉDANT S'ENGAGE AUTREMENT SÉPARÉMENT, DANS LA MESURE DU POSSIBLE, LE CONCÉDANT OFFRE LE MATÉRIEL SOUS LICENCE TEL QUEL ET TEL QU'IL EST DISPONIBLE, ET NE FAIT AUCUNE DÉCLARATION NI GARANTIE DE QUELQUE NATURE QUE CE SOIT CONCERNANT LE MATÉRIEL SOUS LICENCE, QU'ELLE SOIT EXPRESSE, IMPLICITE, LÉGALE OU AUTRE. CELA INCLUT, SANS LIMITATION, LES GARANTIES DE TITRE, DE QUALITÉ MARCHANDE, D'ADAPTATION À UN USAGE PARTICULIER, DE NON-VIOLATION, D'ABSENCE DE DÉFAUTS LATENTS OU AUTRES, D'EXACTITUDE, OU DE PRÉSENCE OU ABSENCE D'ERREURS, QU'ELLES SOIENT CONNUES OU DÉCOUVRABLES. LÀ OÙ LES DÉNIS DE GARANTIES NE SONT PAS AUTORISÉS EN TOTALITÉ OU EN PARTIE, CE DÉNI PEUT NE PAS S'APPLIQUER À VOUS. + +b. DANS LA MESURE DU POSSIBLE, EN AUCUN CAS LE CONCÉDANT NE SERA RESPONSABLE ENVERS VOUS, SUR AUCUNE THÉORIE JURIDIQUE (Y COMPRIS, SANS LIMITATION, LA NÉGLIGENCE) OU AUTREMENT, POUR TOUTE PERTE DIRECTE, SPÉCIALE, INDIRECTE, ACCESSOIRE, CONSÉCUTIVE, PUNITIVE, EXEMPLAIRE OU AUTRE, COÛTS, DÉPENSES OU DOMMAGES DÉCOULANT DE CETTE LICENCE PUBLIQUE OU DE L'UTILISATION DU MATÉRIEL SOUS LICENCE, MÊME SI LE CONCÉDANT A ÉTÉ INFORMÉ DE LA POSSIBILITÉ DE TELS PERTES, COÛTS, DÉPENSES OU DOMMAGES. LÀ OÙ UNE LIMITATION DE RESPONSABILITÉ N'EST PAS AUTORISÉE EN TOTALITÉ OU EN PARTIE, CETTE LIMITATION PEUT NE PAS S'APPLIQUER À VOUS. + +c. Le déni de garanties et la limitation de responsabilité mentionnés ci-dessus doivent être interprétés de manière à, dans la mesure du possible, se rapprocher le plus d'un déni absolu et d'une renonciation à toute responsabilité. + +--- + +Section 6 -- Durée et résiliation. + +a. Cette licence publique s'applique pendant la durée des droits d'auteur et droits similaires concédés ici. Cependant, si vous ne respectez pas cette licence publique, vos droits en vertu de cette licence publique sont automatiquement résiliés. + +b. Lorsque votre droit d'utiliser le matériel sous licence a été résilié en vertu de la section 6(a), il est rétabli : + +1. automatiquement à la date où la violation est corrigée, à condition qu'elle soit corrigée dans les 30 jours suivant votre découverte de la violation ; ou +2. sur rétablissement exprès par le concédant. + +Pour éviter tout doute, cette section 6(b) n'affecte pas le droit du concédant de chercher des recours pour vos violations de cette licence publique. + +c. Pour éviter tout doute, le concédant peut également offrir le matériel sous licence selon des termes ou conditions distincts ou arrêter de distribuer le matériel sous licence à tout moment ; cependant, cela ne mettra pas fin à cette licence publique. + +d. Les sections 1, 5, 6, 7 et 8 survivent à la résiliation de cette licence publique. + +--- + +Section 7 -- Autres termes et conditions. + +a. Le concédant ne sera pas lié par des termes ou conditions supplémentaires ou différents communiqués par vous, sauf accord exprès. + +b. Tout arrangement, compréhension ou accord concernant le matériel sous licence non mentionné ici est distinct et indépendant des termes et conditions de cette licence publique. + +--- + +Section 8 -- Interprétation. + +a. Pour éviter tout doute, cette licence publique ne réduit, limite, restreint ou n'impose aucune condition sur l'utilisation du matériel sous licence qui pourrait être légalement faite sans autorisation en vertu de cette licence publique. + +b. Dans la mesure du possible, si une disposition de cette licence publique est jugée inapplicable, elle sera automatiquement réformée dans la mesure minimale nécessaire pour la rendre applicable. Si la disposition ne peut pas être réformée, elle sera séparée de cette licence publique sans affecter la validité des autres termes et conditions. + +c. Aucun terme ou condition de cette licence publique ne sera renoncé et aucun manquement ne sera consenti sauf accord exprès du concédant. + +d. Rien dans cette licence publique ne constitue ou ne peut être interprété comme une limitation ou une renonciation à tout privilège ou immunité applicable au concédant ou à vous, y compris vis-à-vis des processus juridiques de toute juridiction ou autorité. + +--- + +======================================================================= + +Creative Commons n'est pas partie à ses licences publiques. Néanmoins, Creative Commons peut choisir d'appliquer l'une de ses licences publiques au matériel qu'il publie et, dans ces cas, sera considéré comme le "concédant". Le texte des licences publiques Creative Commons est dédié au domaine public sous la Déclaration de domaine public CC0. Sauf pour l'objectif limité d'indiquer que le matériel est partagé sous une licence publique Creative Commons ou comme autrement permis par les politiques de Creative Commons publiées sur creativecommons.org/policies, Creative Commons n'autorise pas l'utilisation de la marque "Creative Commons" ou de toute autre marque ou logo de Creative Commons sans son consentement écrit préalable, y compris, sans limitation, en lien avec toute modification non autorisée de ses licences publiques ou tout autre arrangement, compréhension ou accord concernant l'utilisation du matériel sous licence. Pour éviter tout doute, ce paragraphe ne fait pas partie des licences publiques. + +Creative Commons peut être contacté à creativecommons.org. + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/fr/sketchnotes/README.md b/translations/fr/sketchnotes/README.md new file mode 100644 index 000000000..9be9fc938 --- /dev/null +++ b/translations/fr/sketchnotes/README.md @@ -0,0 +1,21 @@ + +Tous les sketchnotes du programme peuvent être téléchargés ici. + +🖨 Pour une impression en haute résolution, les versions TIFF sont disponibles sur [ce dépôt](https://github.com/girliemac/a-picture-is-worth-a-1000-words/tree/main/ml/tiff). + +🎨 Créé par : [Tomomi Imura](https://github.com/girliemac) (Twitter : [@girlie_mac](https://twitter.com/girlie_mac)) + +[![CC BY-SA 4.0](https://img.shields.io/badge/License-CC%20BY--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-sa/4.0/) + +--- + +**Avertissement** : +Ce document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de faire appel à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction. \ No newline at end of file diff --git a/translations/hi/1-Introduction/1-intro-to-ML/README.md b/translations/hi/1-Introduction/1-intro-to-ML/README.md new file mode 100644 index 000000000..74695349d --- /dev/null +++ b/translations/hi/1-Introduction/1-intro-to-ML/README.md @@ -0,0 +1,159 @@ + +# मशीन लर्निंग का परिचय + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/) + +--- + +[![शुरुआती लोगों के लिए मशीन लर्निंग - मशीन लर्निंग का परिचय](https://img.youtube.com/vi/6mSx_KJxcHI/0.jpg)](https://youtu.be/6mSx_KJxcHI "शुरुआती लोगों के लिए मशीन लर्निंग - मशीन लर्निंग का परिचय") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें इस पाठ को समझने के लिए एक छोटा वीडियो देखने के लिए। + +क्लासिकल मशीन लर्निंग पर आधारित इस कोर्स में आपका स्वागत है! चाहे आप इस विषय में बिल्कुल नए हों या एक अनुभवी मशीन लर्निंग प्रैक्टिशनर जो अपने ज्ञान को ताज़ा करना चाहते हैं, हम आपके साथ जुड़ने के लिए उत्साहित हैं। हम आपके मशीन लर्निंग अध्ययन के लिए एक दोस्ताना शुरुआत प्रदान करना चाहते हैं और आपके [फीडबैक](https://github.com/microsoft/ML-For-Beginners/discussions) का मूल्यांकन, उत्तर और समावेश करने के लिए तैयार हैं। + +[![मशीन लर्निंग का परिचय](https://img.youtube.com/vi/h0e2HAPTGF4/0.jpg)](https://youtu.be/h0e2HAPTGF4 "मशीन लर्निंग का परिचय") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें: MIT के जॉन गुट्टाग मशीन लर्निंग का परिचय देते हैं + +--- +## मशीन लर्निंग की शुरुआत + +इस पाठ्यक्रम को शुरू करने से पहले, आपको अपने कंप्यूटर को नोटबुक्स को लोकल रूप से चलाने के लिए तैयार करना होगा। + +- **अपने सिस्टम को इन वीडियो के साथ कॉन्फ़िगर करें**। [Python कैसे इंस्टॉल करें](https://youtu.be/CXZYvNRIAKM) और [टेक्स्ट एडिटर सेटअप करें](https://youtu.be/EU8eayHWoZg) सीखने के लिए दिए गए लिंक का उपयोग करें। +- **Python सीखें**। यह अनुशंसा की जाती है कि आप [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) की बुनियादी समझ रखें, जो डेटा वैज्ञानिकों के लिए उपयोगी प्रोग्रामिंग भाषा है और जिसे हम इस कोर्स में उपयोग करते हैं। +- **Node.js और JavaScript सीखें**। हम इस कोर्स में वेब ऐप्स बनाने के लिए कुछ बार JavaScript का उपयोग करते हैं, इसलिए आपको [node](https://nodejs.org) और [npm](https://www.npmjs.com/) इंस्टॉल करना होगा, साथ ही [Visual Studio Code](https://code.visualstudio.com/) को Python और JavaScript विकास के लिए उपलब्ध रखना होगा। +- **GitHub अकाउंट बनाएं**। चूंकि आपने हमें [GitHub](https://github.com) पर पाया है, आपके पास पहले से ही एक अकाउंट हो सकता है, लेकिन यदि नहीं, तो एक अकाउंट बनाएं और फिर इस पाठ्यक्रम को अपने उपयोग के लिए फोर्क करें। (हमें एक स्टार देना न भूलें 😊) +- **Scikit-learn का अन्वेषण करें**। [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) के साथ परिचित हों, जो एक ML लाइब्रेरी है जिसे हम इन पाठों में संदर्भित करते हैं। + +--- +## मशीन लर्निंग क्या है? + +'मशीन लर्निंग' शब्द आज के समय में सबसे लोकप्रिय और अक्सर उपयोग किए जाने वाले शब्दों में से एक है। यदि आप किसी भी प्रकार की तकनीक से परिचित हैं, तो संभावना है कि आपने इस शब्द को कम से कम एक बार सुना होगा, चाहे आप किसी भी क्षेत्र में काम करते हों। हालांकि, मशीन लर्निंग की प्रक्रिया अधिकांश लोगों के लिए एक रहस्य है। एक शुरुआती के लिए, यह विषय कभी-कभी भारी लग सकता है। इसलिए, यह समझना महत्वपूर्ण है कि मशीन लर्निंग वास्तव में क्या है और इसे व्यावहारिक उदाहरणों के माध्यम से चरण-दर-चरण सीखना चाहिए। + +--- +## प्रचार वक्र + +![मशीन लर्निंग प्रचार वक्र](../../../../translated_images/hype.07183d711a17aafe70915909a0e45aa286ede136ee9424d418026ab00fec344c.hi.png) + +> Google Trends 'मशीन लर्निंग' शब्द के हालिया प्रचार वक्र को दिखाता है + +--- +## एक रहस्यमय ब्रह्मांड + +हम एक ब्रह्मांड में रहते हैं जो रहस्यों से भरा हुआ है। स्टीफन हॉकिंग, अल्बर्ट आइंस्टीन और कई अन्य महान वैज्ञानिकों ने अपने जीवन को इस दुनिया के रहस्यों को उजागर करने वाली जानकारी की खोज में समर्पित किया है। यह सीखने की मानव स्थिति है: एक मानव बच्चा नई चीजें सीखता है और जैसे-जैसे वह वयस्कता तक बढ़ता है, अपने आसपास की दुनिया की संरचना को उजागर करता है। + +--- +## बच्चे का मस्तिष्क + +एक बच्चे का मस्तिष्क और उसकी इंद्रियां अपने आसपास के तथ्यों को महसूस करती हैं और धीरे-धीरे जीवन के छिपे हुए पैटर्न को सीखती हैं, जो बच्चे को सीखे गए पैटर्न की पहचान करने के लिए तार्किक नियम बनाने में मदद करती हैं। मानव मस्तिष्क की सीखने की प्रक्रिया मनुष्यों को इस दुनिया का सबसे परिष्कृत जीवित प्राणी बनाती है। छिपे हुए पैटर्न की खोज करके लगातार सीखना और फिर उन पैटर्न पर नवाचार करना हमें अपने जीवनकाल में बेहतर और बेहतर बनाने में सक्षम बनाता है। यह सीखने की क्षमता और विकसित होने की क्षमता एक अवधारणा से संबंधित है जिसे [मस्तिष्क प्लास्टिसिटी](https://www.simplypsychology.org/brain-plasticity.html) कहा जाता है। सतही तौर पर, हम मानव मस्तिष्क की सीखने की प्रक्रिया और मशीन लर्निंग की अवधारणाओं के बीच कुछ प्रेरणादायक समानताएं खींच सकते हैं। + +--- +## मानव मस्तिष्क + +[मानव मस्तिष्क](https://www.livescience.com/29365-human-brain.html) वास्तविक दुनिया से चीजों को महसूस करता है, प्राप्त जानकारी को संसाधित करता है, तार्किक निर्णय लेता है, और परिस्थितियों के आधार पर कुछ कार्य करता है। इसे हम बुद्धिमानी से व्यवहार करना कहते हैं। जब हम एक मशीन में बुद्धिमान व्यवहार प्रक्रिया की नकल को प्रोग्राम करते हैं, तो इसे कृत्रिम बुद्धिमत्ता (AI) कहा जाता है। + +--- +## कुछ शब्दावली + +हालांकि इन शब्दों को भ्रमित किया जा सकता है, मशीन लर्निंग (ML) कृत्रिम बुद्धिमत्ता का एक महत्वपूर्ण उपसमुच्चय है। **ML विशेष एल्गोरिदम का उपयोग करके प्राप्त डेटा से छिपे हुए पैटर्न और सार्थक जानकारी को उजागर करने और तार्किक निर्णय लेने की प्रक्रिया को समर्थन देने के लिए चिंतित है।** + +--- +## AI, ML, डीप लर्निंग + +![AI, ML, डीप लर्निंग, डेटा साइंस](../../../../translated_images/ai-ml-ds.537ea441b124ebf69c144a52c0eb13a7af63c4355c2f92f440979380a2fb08b8.hi.png) + +> AI, ML, डीप लर्निंग और डेटा साइंस के बीच संबंधों को दिखाने वाला एक आरेख। [Jen Looper](https://twitter.com/jenlooper) द्वारा बनाया गया इन्फोग्राफिक, [इस ग्राफिक](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining) से प्रेरित। + +--- +## कवर करने के लिए अवधारणाएं + +इस पाठ्यक्रम में, हम केवल मशीन लर्निंग की मुख्य अवधारणाओं को कवर करेंगे जो एक शुरुआती को जानना चाहिए। हम 'क्लासिकल मशीन लर्निंग' को मुख्य रूप से Scikit-learn का उपयोग करके कवर करेंगे, जो एक उत्कृष्ट लाइब्रेरी है जिसे कई छात्र बुनियादी बातें सीखने के लिए उपयोग करते हैं। कृत्रिम बुद्धिमत्ता या डीप लर्निंग की व्यापक अवधारणाओं को समझने के लिए, मशीन लर्निंग का मजबूत मौलिक ज्ञान अनिवार्य है, और हम इसे यहां प्रदान करना चाहते हैं। + +--- +## इस कोर्स में आप सीखेंगे: + +- मशीन लर्निंग की मुख्य अवधारणाएं +- मशीन लर्निंग का इतिहास +- मशीन लर्निंग और निष्पक्षता +- रिग्रेशन मशीन लर्निंग तकनीकें +- वर्गीकरण मशीन लर्निंग तकनीकें +- क्लस्टरिंग मशीन लर्निंग तकनीकें +- प्राकृतिक भाषा प्रसंस्करण मशीन लर्निंग तकनीकें +- टाइम सीरीज़ पूर्वानुमान मशीन लर्निंग तकनीकें +- सुदृढीकरण सीखना +- मशीन लर्निंग के वास्तविक दुनिया के अनुप्रयोग + +--- +## हम क्या कवर नहीं करेंगे + +- डीप लर्निंग +- न्यूरल नेटवर्क्स +- AI + +बेहतर सीखने के अनुभव के लिए, हम न्यूरल नेटवर्क्स, 'डीप लर्निंग' - कई-स्तरीय मॉडल-निर्माण का उपयोग करके न्यूरल नेटवर्क्स - और AI की जटिलताओं से बचेंगे, जिसे हम एक अलग पाठ्यक्रम में चर्चा करेंगे। हम डेटा साइंस पर ध्यान केंद्रित करने के लिए एक आगामी पाठ्यक्रम भी प्रदान करेंगे। + +--- +## मशीन लर्निंग क्यों पढ़ें? + +सिस्टम के दृष्टिकोण से, मशीन लर्निंग को स्वचालित सिस्टम बनाने के रूप में परिभाषित किया गया है जो डेटा से छिपे हुए पैटर्न सीख सकते हैं ताकि बुद्धिमान निर्णय लेने में मदद मिल सके। + +यह प्रेरणा ढीले तौर पर इस बात से प्रेरित है कि मानव मस्तिष्क बाहरी दुनिया से प्राप्त डेटा के आधार पर कुछ चीजें कैसे सीखता है। + +✅ एक मिनट के लिए सोचें कि कोई व्यवसाय मशीन लर्निंग रणनीतियों का उपयोग क्यों करना चाहेगा बनाम एक हार्ड-कोडेड नियम-आधारित इंजन। + +--- +## मशीन लर्निंग के अनुप्रयोग + +मशीन लर्निंग के अनुप्रयोग अब लगभग हर जगह हैं, और हमारे समाजों में बहने वाले डेटा जितने सर्वव्यापी हैं, जो हमारे स्मार्टफोन, कनेक्टेड डिवाइस और अन्य सिस्टम द्वारा उत्पन्न होते हैं। अत्याधुनिक मशीन लर्निंग एल्गोरिदम की अपार क्षमता को देखते हुए, शोधकर्ता बहु-आयामी और बहु-विषयक वास्तविक जीवन की समस्याओं को सकारात्मक परिणामों के साथ हल करने की उनकी क्षमता का पता लगा रहे हैं। + +--- +## लागू मशीन लर्निंग के उदाहरण + +**आप मशीन लर्निंग का कई तरीकों से उपयोग कर सकते हैं**: + +- किसी रोगी के मेडिकल इतिहास या रिपोर्ट से बीमारी की संभावना का पूर्वानुमान लगाने के लिए। +- मौसम डेटा का उपयोग करके मौसम की घटनाओं का पूर्वानुमान लगाने के लिए। +- किसी टेक्स्ट की भावना को समझने के लिए। +- नकली समाचार का पता लगाने के लिए ताकि प्रचार के प्रसार को रोका जा सके। + +वित्त, अर्थशास्त्र, पृथ्वी विज्ञान, अंतरिक्ष अन्वेषण, बायोमेडिकल इंजीनियरिंग, संज्ञानात्मक विज्ञान, और यहां तक कि मानविकी के क्षेत्र भी मशीन लर्निंग को अपने क्षेत्र की कठिन, डेटा-प्रसंस्करण भारी समस्याओं को हल करने के लिए अपना चुके हैं। + +--- +## निष्कर्ष + +मशीन लर्निंग वास्तविक दुनिया या उत्पन्न डेटा से सार्थक अंतर्दृष्टि खोजने के लिए पैटर्न-खोज प्रक्रिया को स्वचालित करता है। यह व्यवसाय, स्वास्थ्य, और वित्तीय अनुप्रयोगों सहित अन्य क्षेत्रों में अत्यधिक मूल्यवान साबित हुआ है। + +निकट भविष्य में, मशीन लर्निंग की बुनियादी बातों को समझना किसी भी क्षेत्र के लोगों के लिए आवश्यक होने वाला है क्योंकि इसका व्यापक रूप से अपनाया जा रहा है। + +--- +# 🚀 चुनौती + +कागज पर या [Excalidraw](https://excalidraw.com/) जैसे ऑनलाइन ऐप का उपयोग करके AI, ML, डीप लर्निंग, और डेटा साइंस के बीच के अंतर को समझाने के लिए एक स्केच बनाएं। उन समस्याओं के कुछ विचार जोड़ें जिन्हें इन तकनीकों द्वारा हल किया जा सकता है। + +# [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/) + +--- +# समीक्षा और स्व-अध्ययन + +यह जानने के लिए कि आप क्लाउड में ML एल्गोरिदम के साथ कैसे काम कर सकते हैं, इस [लर्निंग पाथ](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott) का अनुसरण करें। + +मशीन लर्निंग की मूल बातें के बारे में जानने के लिए इस [लर्निंग पाथ](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) को लें। + +--- +# असाइनमेंट + +[शुरू करें](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/1-Introduction/1-intro-to-ML/assignment.md b/translations/hi/1-Introduction/1-intro-to-ML/assignment.md new file mode 100644 index 000000000..734bc7d23 --- /dev/null +++ b/translations/hi/1-Introduction/1-intro-to-ML/assignment.md @@ -0,0 +1,23 @@ + +# शुरू करें और काम करने के लिए तैयार हो जाएं + +## निर्देश + +इस गैर-ग्रेडेड असाइनमेंट में, आपको Python को फिर से समझना होगा और अपने वातावरण को सेटअप करना होगा ताकि आप नोटबुक्स चला सकें। + +इस [Python Learning Path](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) को लें, और फिर इन परिचयात्मक वीडियो को देखकर अपने सिस्टम को सेटअप करें: + +https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6 + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/1-Introduction/2-history-of-ML/README.md b/translations/hi/1-Introduction/2-history-of-ML/README.md new file mode 100644 index 000000000..771482e90 --- /dev/null +++ b/translations/hi/1-Introduction/2-history-of-ML/README.md @@ -0,0 +1,164 @@ + +# मशीन लर्निंग का इतिहास + +![मशीन लर्निंग के इतिहास का सारांश एक स्केच नोट में](../../../../translated_images/ml-history.a1bdfd4ce1f464d9a0502f38d355ffda384c95cd5278297a46c9a391b5053bc4.hi.png) +> स्केच नोट: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/) + +--- + +[![मशीन लर्निंग के शुरुआती दिनों का इतिहास](https://img.youtube.com/vi/N6wxM4wZ7V0/0.jpg)](https://youtu.be/N6wxM4wZ7V0 "मशीन लर्निंग के शुरुआती दिनों का इतिहास") + +> 🎥 ऊपर दी गई तस्वीर पर क्लिक करें इस पाठ को समझने के लिए एक छोटा वीडियो देखने हेतु। + +इस पाठ में, हम मशीन लर्निंग और कृत्रिम बुद्धिमत्ता के इतिहास में प्रमुख मील के पत्थरों पर चर्चा करेंगे। + +कृत्रिम बुद्धिमत्ता (AI) का इतिहास मशीन लर्निंग के इतिहास से जुड़ा हुआ है, क्योंकि ML के अंतर्गत आने वाले एल्गोरिदम और कंप्यूटेशनल प्रगति ने AI के विकास में योगदान दिया। यह याद रखना उपयोगी है कि, जबकि ये क्षेत्र 1950 के दशक में अलग-अलग अध्ययन के रूप में उभरने लगे, महत्वपूर्ण [एल्गोरिदमिक, सांख्यिकीय, गणितीय, कंप्यूटेशनल और तकनीकी खोजें](https://wikipedia.org/wiki/Timeline_of_machine_learning) इस युग से पहले और इसके साथ-साथ हुईं। वास्तव में, लोग इन सवालों पर [सैकड़ों वर्षों](https://wikipedia.org/wiki/History_of_artificial_intelligence) से विचार कर रहे हैं: यह लेख 'सोचने वाली मशीन' के विचार के ऐतिहासिक बौद्धिक आधार पर चर्चा करता है। + +--- +## उल्लेखनीय खोजें + +- 1763, 1812 [बेयस प्रमेय](https://wikipedia.org/wiki/Bayes%27_theorem) और इसके पूर्ववर्ती। यह प्रमेय और इसके अनुप्रयोग पूर्व ज्ञान के आधार पर किसी घटना के होने की संभावना का वर्णन करते हैं। +- 1805 [लीस्ट स्क्वायर थ्योरी](https://wikipedia.org/wiki/Least_squares) फ्रांसीसी गणितज्ञ एड्रियन-मैरी लेजेंड्रे द्वारा। यह सिद्धांत, जिसे आप हमारे रिग्रेशन यूनिट में सीखेंगे, डेटा फिटिंग में मदद करता है। +- 1913 [मार्कोव चेन](https://wikipedia.org/wiki/Markov_chain), रूसी गणितज्ञ एंड्रे मार्कोव के नाम पर, पिछले स्थिति के आधार पर संभावित घटनाओं की एक श्रृंखला का वर्णन करने के लिए उपयोग किया जाता है। +- 1957 [पर्सेप्ट्रॉन](https://wikipedia.org/wiki/Perceptron) एक प्रकार का लीनियर क्लासिफायर है जिसे अमेरिकी मनोवैज्ञानिक फ्रैंक रोसेनब्लाट ने आविष्कार किया था और यह डीप लर्निंग में प्रगति का आधार है। + +--- + +- 1967 [नजदीकी पड़ोसी](https://wikipedia.org/wiki/Nearest_neighbor) एक एल्गोरिदम है जिसे मूल रूप से मार्गों को मैप करने के लिए डिज़ाइन किया गया था। ML संदर्भ में इसका उपयोग पैटर्न का पता लगाने के लिए किया जाता है। +- 1970 [बैकप्रोपेगेशन](https://wikipedia.org/wiki/Backpropagation) का उपयोग [फीडफॉरवर्ड न्यूरल नेटवर्क](https://wikipedia.org/wiki/Feedforward_neural_network) को प्रशिक्षित करने के लिए किया जाता है। +- 1982 [रिकरेंट न्यूरल नेटवर्क](https://wikipedia.org/wiki/Recurrent_neural_network) कृत्रिम न्यूरल नेटवर्क हैं जो फीडफॉरवर्ड न्यूरल नेटवर्क से प्राप्त होते हैं और अस्थायी ग्राफ बनाते हैं। + +✅ थोड़ा शोध करें। मशीन लर्निंग और AI के इतिहास में कौन-कौन सी अन्य तिथियां महत्वपूर्ण हैं? + +--- +## 1950: सोचने वाली मशीनें + +एलन ट्यूरिंग, एक असाधारण व्यक्ति जिन्हें [2019 में जनता द्वारा](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) 20वीं सदी के सबसे महान वैज्ञानिक के रूप में चुना गया था, को 'सोचने वाली मशीन' की अवधारणा की नींव रखने में मदद करने का श्रेय दिया जाता है। उन्होंने इस अवधारणा के लिए [ट्यूरिंग टेस्ट](https://www.bbc.com/news/technology-18475646) बनाया, जिसे आप हमारे NLP पाठों में खोजेंगे। + +--- +## 1956: डार्टमाउथ समर रिसर्च प्रोजेक्ट + +"डार्टमाउथ समर रिसर्च प्रोजेक्ट कृत्रिम बुद्धिमत्ता के क्षेत्र के लिए एक महत्वपूर्ण घटना थी," और यहीं पर 'कृत्रिम बुद्धिमत्ता' शब्द गढ़ा गया ([स्रोत](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth))। + +> सीखने या बुद्धिमत्ता की किसी अन्य विशेषता का हर पहलू सिद्धांत रूप में इतनी सटीकता से वर्णित किया जा सकता है कि एक मशीन इसे अनुकरण कर सके। + +--- + +मुख्य शोधकर्ता, गणित के प्रोफेसर जॉन मैकार्थी, ने आशा व्यक्त की कि "सीखने या बुद्धिमत्ता की किसी अन्य विशेषता का हर पहलू सिद्धांत रूप में इतनी सटीकता से वर्णित किया जा सकता है कि एक मशीन इसे अनुकरण कर सके।" प्रतिभागियों में इस क्षेत्र के एक और प्रमुख व्यक्ति, मार्विन मिंस्की, भी शामिल थे। + +इस कार्यशाला को "प्रतीकात्मक विधियों का उदय, सीमित डोमेन पर केंद्रित प्रणालियाँ (प्रारंभिक विशेषज्ञ प्रणालियाँ), और निगमनात्मक प्रणालियों बनाम आगमनात्मक प्रणालियों" जैसे कई चर्चाओं को शुरू करने और प्रोत्साहित करने का श्रेय दिया जाता है। ([स्रोत](https://wikipedia.org/wiki/Dartmouth_workshop))। + +--- +## 1956 - 1974: "स्वर्ण युग" + +1950 के दशक से लेकर 70 के दशक के मध्य तक, AI के कई समस्याओं को हल करने की आशा में बहुत उत्साह था। 1967 में, मार्विन मिंस्की ने आत्मविश्वास से कहा, "एक पीढ़ी के भीतर ... 'कृत्रिम बुद्धिमत्ता' बनाने की समस्या काफी हद तक हल हो जाएगी।" (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall) + +प्राकृतिक भाषा प्रसंस्करण अनुसंधान फला-फूला, खोज को परिष्कृत और अधिक शक्तिशाली बनाया गया, और 'माइक्रो-वर्ल्ड्स' की अवधारणा बनाई गई, जहां सरल कार्यों को साधारण भाषा निर्देशों का उपयोग करके पूरा किया गया। + +--- + +सरकारी एजेंसियों द्वारा अनुसंधान को अच्छी तरह से वित्त पोषित किया गया, कंप्यूटेशन और एल्गोरिदम में प्रगति हुई, और बुद्धिमान मशीनों के प्रोटोटाइप बनाए गए। इनमें से कुछ मशीनें शामिल हैं: + +* [शेकी रोबोट](https://wikipedia.org/wiki/Shakey_the_robot), जो कार्यों को 'बुद्धिमानी से' करने का निर्णय ले सकता था। + + ![शेकी, एक बुद्धिमान रोबोट](../../../../translated_images/shakey.4dc17819c447c05bf4b52f76da0bdd28817d056fdb906252ec20124dd4cfa55e.hi.jpg) + > शेकी 1972 में + +--- + +* एलिज़ा, एक प्रारंभिक 'चैटरबॉट', लोगों से बातचीत कर सकता था और एक आदिम 'थेरेपिस्ट' के रूप में कार्य कर सकता था। आप NLP पाठों में एलिज़ा के बारे में अधिक जानेंगे। + + ![एलिज़ा, एक बॉट](../../../../translated_images/eliza.84397454cda9559bb5ec296b5b8fff067571c0cccc5405f9c1ab1c3f105c075c.hi.png) + > एलिज़ा का एक संस्करण, एक चैटबॉट + +--- + +* "ब्लॉक्स वर्ल्ड" एक माइक्रो-वर्ल्ड का उदाहरण था जहां ब्लॉक्स को स्टैक और सॉर्ट किया जा सकता था, और मशीनों को निर्णय लेने के लिए सिखाने के प्रयोग किए जा सकते थे। [SHRDLU](https://wikipedia.org/wiki/SHRDLU) जैसी लाइब्रेरी के साथ बनाए गए प्रगति ने भाषा प्रसंस्करण को आगे बढ़ाने में मदद की। + + [![ब्लॉक्स वर्ल्ड SHRDLU के साथ](https://img.youtube.com/vi/QAJz4YKUwqw/0.jpg)](https://www.youtube.com/watch?v=QAJz4YKUwqw "ब्लॉक्स वर्ल्ड SHRDLU के साथ") + + > 🎥 ऊपर दी गई तस्वीर पर क्लिक करें: SHRDLU के साथ ब्लॉक्स वर्ल्ड का वीडियो + +--- +## 1974 - 1980: "AI विंटर" + +1970 के दशक के मध्य तक, यह स्पष्ट हो गया था कि 'बुद्धिमान मशीनें' बनाने की जटिलता को कम करके आंका गया था और उपलब्ध कंप्यूट पावर को देखते हुए इसकी संभावना को बढ़ा-चढ़ाकर पेश किया गया था। वित्त पोषण समाप्त हो गया और क्षेत्र में विश्वास धीमा हो गया। कुछ मुद्दे जिन्होंने विश्वास को प्रभावित किया उनमें शामिल हैं: +--- +- **सीमाएं**। कंप्यूट पावर बहुत सीमित थी। +- **कॉम्बिनेटोरियल विस्फोट**। कंप्यूटर से अधिक मांग करने पर प्रशिक्षित किए जाने वाले पैरामीटर की मात्रा तेजी से बढ़ गई, लेकिन कंप्यूट पावर और क्षमता समानांतर रूप से विकसित नहीं हुई। +- **डेटा की कमी**। डेटा की कमी ने एल्गोरिदम का परीक्षण, विकास और परिष्कृत करने की प्रक्रिया को बाधित किया। +- **क्या हम सही सवाल पूछ रहे हैं?**। पूछे जा रहे सवालों पर ही सवाल उठने लगे। शोधकर्ताओं ने अपने दृष्टिकोणों पर आलोचना का सामना करना शुरू किया: + - ट्यूरिंग टेस्ट को 'चीनी कक्ष सिद्धांत' जैसे विचारों के माध्यम से सवालों के घेरे में लाया गया, जिसमें कहा गया कि, "डिजिटल कंप्यूटर को प्रोग्राम करना इसे भाषा समझने में सक्षम बना सकता है लेकिन वास्तविक समझ पैदा नहीं कर सकता।" ([स्रोत](https://plato.stanford.edu/entries/chinese-room/)) + - समाज में "थेरेपिस्ट" ELIZA जैसे कृत्रिम बुद्धिमत्ता को पेश करने की नैतिकता को चुनौती दी गई। + +--- + +इसी समय, AI के विभिन्न स्कूल ऑफ थॉट बनने लगे। ["स्क्रफी" बनाम "नीट AI"](https://wikipedia.org/wiki/Neats_and_scruffies) प्रथाओं के बीच एक विभाजन स्थापित हुआ। _स्क्रफी_ लैब्स ने वांछित परिणाम प्राप्त करने तक प्रोग्रामों को घंटों तक ट्वीक किया। _नीट_ लैब्स "तार्किक और औपचारिक समस्या समाधान" पर केंद्रित थे। ELIZA और SHRDLU प्रसिद्ध _स्क्रफी_ सिस्टम थे। 1980 के दशक में, जब ML सिस्टम को पुन: उत्पन्न करने की मांग उभरी, तो _नीट_ दृष्टिकोण धीरे-धीरे प्रमुखता प्राप्त करने लगा क्योंकि इसके परिणाम अधिक व्याख्यात्मक हैं। + +--- +## 1980 के दशक: विशेषज्ञ प्रणालियाँ + +जैसे-जैसे क्षेत्र बढ़ा, इसका व्यवसाय के लिए लाभ स्पष्ट होने लगा, और 1980 के दशक में 'विशेषज्ञ प्रणालियों' का प्रसार हुआ। "विशेषज्ञ प्रणालियाँ कृत्रिम बुद्धिमत्ता (AI) सॉफ़्टवेयर के पहले वास्तव में सफल रूपों में से थीं।" ([स्रोत](https://wikipedia.org/wiki/Expert_system))। + +इस प्रकार की प्रणाली वास्तव में _हाइब्रिड_ होती है, जिसमें आंशिक रूप से एक नियम इंजन होता है जो व्यावसायिक आवश्यकताओं को परिभाषित करता है, और एक इंफेरेंस इंजन होता है जो नियम प्रणाली का उपयोग करके नए तथ्यों का अनुमान लगाता है। + +इस युग में न्यूरल नेटवर्क पर भी बढ़ती ध्यान दिया गया। + +--- +## 1987 - 1993: AI 'चिल' + +विशेषज्ञ प्रणालियों के हार्डवेयर का प्रसार दुर्भाग्यवश बहुत अधिक विशिष्ट हो गया। व्यक्तिगत कंप्यूटरों के उदय ने इन बड़े, विशिष्ट, केंद्रीकृत प्रणालियों के साथ प्रतिस्पर्धा की। कंप्यूटिंग का लोकतंत्रीकरण शुरू हो गया था, और इसने अंततः बड़े डेटा के आधुनिक विस्फोट का मार्ग प्रशस्त किया। + +--- +## 1993 - 2011 + +इस युग ने ML और AI के लिए एक नया दौर देखा, जिसमें पहले की समस्याओं को हल करने की क्षमता थी जो डेटा और कंप्यूट पावर की कमी के कारण उत्पन्न हुई थीं। डेटा की मात्रा तेजी से बढ़ने लगी और अधिक व्यापक रूप से उपलब्ध हो गई, अच्छे और बुरे दोनों के लिए, विशेष रूप से 2007 के आसपास स्मार्टफोन के आगमन के साथ। कंप्यूट पावर तेजी से बढ़ी, और एल्गोरिदम साथ-साथ विकसित हुए। क्षेत्र ने परिपक्वता प्राप्त करना शुरू कर दिया क्योंकि अतीत के स्वतंत्र दिनों ने एक सच्चे अनुशासन का रूप लेना शुरू कर दिया। + +--- +## वर्तमान + +आज मशीन लर्निंग और AI हमारे जीवन के लगभग हर हिस्से को छूते हैं। यह युग इन एल्गोरिदम के मानव जीवन पर संभावित प्रभावों और जोखिमों को सावधानीपूर्वक समझने की मांग करता है। जैसा कि माइक्रोसॉफ्ट के ब्रैड स्मिथ ने कहा है, "सूचना प्रौद्योगिकी ऐसे मुद्दों को उठाती है जो गोपनीयता और अभिव्यक्ति की स्वतंत्रता जैसे मौलिक मानवाधिकार संरक्षण के दिल तक जाते हैं। ये मुद्दे उन तकनीकी कंपनियों के लिए जिम्मेदारी बढ़ाते हैं जो इन उत्पादों को बनाती हैं। हमारे विचार में, ये विचारशील सरकारी विनियमन और स्वीकार्य उपयोगों के आसपास मानदंडों के विकास के लिए भी कहते हैं।" ([स्रोत](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/))। + +--- + +यह देखना बाकी है कि भविष्य क्या रखता है, लेकिन इन कंप्यूटर सिस्टम और सॉफ़्टवेयर और एल्गोरिदम को समझना महत्वपूर्ण है जो वे चलाते हैं। हमें उम्मीद है कि यह पाठ्यक्रम आपको बेहतर समझ प्राप्त करने में मदद करेगा ताकि आप स्वयं निर्णय ले सकें। + +[![डीप लर्निंग का इतिहास](https://img.youtube.com/vi/mTtDfKgLm54/0.jpg)](https://www.youtube.com/watch?v=mTtDfKgLm54 "डीप लर्निंग का इतिहास") +> 🎥 ऊपर दी गई तस्वीर पर क्लिक करें: यान लेकुन इस व्याख्यान में डीप लर्निंग के इतिहास पर चर्चा करते हैं + +--- +## 🚀चुनौती + +इन ऐतिहासिक क्षणों में से किसी एक में गहराई से जाएं और उनके पीछे के लोगों के बारे में अधिक जानें। ये पात्र आकर्षक हैं, और कोई भी वैज्ञानिक खोज कभी सांस्कृतिक शून्य में नहीं बनाई गई। आप क्या खोजते हैं? + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/) + +--- +## समीक्षा और स्व-अध्ययन + +यहां देखने और सुनने के लिए आइटम हैं: + +[यह पॉडकास्ट जहां एमी बॉयड AI के विकास पर चर्चा करती हैं](http://runasradio.com/Shows/Show/739) + +[![AI का इतिहास एमी बॉयड द्वारा](https://img.youtube.com/vi/EJt3_bFYKss/0.jpg)](https://www.youtube.com/watch?v=EJt3_bFYKss "AI का इतिहास एमी बॉयड द्वारा") + +--- + +## असाइनमेंट + +[एक टाइमलाइन बनाएं](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/1-Introduction/2-history-of-ML/assignment.md b/translations/hi/1-Introduction/2-history-of-ML/assignment.md new file mode 100644 index 000000000..f87a730f6 --- /dev/null +++ b/translations/hi/1-Introduction/2-history-of-ML/assignment.md @@ -0,0 +1,25 @@ + +# एक टाइमलाइन बनाएं + +## निर्देश + +[इस रिपॉजिटरी](https://github.com/Digital-Humanities-Toolkit/timeline-builder) का उपयोग करके, एल्गोरिदम, गणित, सांख्यिकी, एआई, या एमएल के इतिहास के किसी पहलू की टाइमलाइन बनाएं, या इनका संयोजन करें। आप एक व्यक्ति, एक विचार, या विचारों के लंबे समयावधि पर ध्यान केंद्रित कर सकते हैं। सुनिश्चित करें कि मल्टीमीडिया तत्व जोड़ें। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्टता | पर्याप्त | सुधार की आवश्यकता | +| -------- | ------------------------------------------------- | --------------------------------------- | ---------------------------------------------------------------- | +| | एक प्रकाशित टाइमलाइन GitHub पेज के रूप में प्रस्तुत की गई है | कोड अधूरा है और प्रकाशित नहीं किया गया है | टाइमलाइन अधूरी है, अच्छी तरह से शोधित नहीं है और प्रकाशित नहीं की गई है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/1-Introduction/3-fairness/README.md b/translations/hi/1-Introduction/3-fairness/README.md new file mode 100644 index 000000000..741f6da80 --- /dev/null +++ b/translations/hi/1-Introduction/3-fairness/README.md @@ -0,0 +1,168 @@ + +# जिम्मेदार AI के साथ मशीन लर्निंग समाधान बनाना + +![मशीन लर्निंग में जिम्मेदार AI का सारांश एक स्केच नोट में](../../../../translated_images/ml-fairness.ef296ebec6afc98a44566d7b6c1ed18dc2bf1115c13ec679bb626028e852fa1d.hi.png) +> स्केच नोट [Tomomi Imura](https://www.twitter.com/girlie_mac) द्वारा + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/) + +## परिचय + +इस पाठ्यक्रम में, आप यह जानना शुरू करेंगे कि मशीन लर्निंग हमारे रोज़मर्रा के जीवन को कैसे प्रभावित कर रही है। आज भी, सिस्टम और मॉडल स्वास्थ्य देखभाल निदान, ऋण स्वीकृति, या धोखाधड़ी का पता लगाने जैसे दैनिक निर्णय लेने के कार्यों में शामिल हैं। इसलिए यह महत्वपूर्ण है कि ये मॉडल भरोसेमंद परिणाम प्रदान करने के लिए अच्छी तरह से काम करें। जैसे किसी भी सॉफ़्टवेयर एप्लिकेशन में, AI सिस्टम उम्मीदों पर खरा नहीं उतर सकते या अवांछनीय परिणाम दे सकते हैं। यही कारण है कि AI मॉडल के व्यवहार को समझने और समझाने में सक्षम होना आवश्यक है। + +कल्पना करें कि जब आप इन मॉडलों को बनाने के लिए उपयोग किए जा रहे डेटा में कुछ जनसांख्यिकी जैसे जाति, लिंग, राजनीतिक दृष्टिकोण, धर्म की कमी हो, या इन जनसांख्यिकी का असमान प्रतिनिधित्व हो, तो क्या हो सकता है। क्या होगा जब मॉडल का आउटपुट किसी जनसांख्यिकी को प्राथमिकता देने के लिए व्याख्या किया जाए? एप्लिकेशन के लिए इसका क्या परिणाम होगा? इसके अलावा, जब मॉडल का प्रतिकूल परिणाम होता है और यह लोगों के लिए हानिकारक होता है, तो क्या होता है? AI सिस्टम के व्यवहार के लिए कौन जिम्मेदार है? ये कुछ सवाल हैं जिन्हें हम इस पाठ्यक्रम में खोजेंगे। + +इस पाठ में, आप: + +- मशीन लर्निंग में निष्पक्षता और निष्पक्षता से संबंधित नुकसान के महत्व के बारे में जागरूकता बढ़ाएंगे। +- असामान्य परिदृश्यों और बाहरी तत्वों की जांच करने की प्रथा से परिचित होंगे ताकि विश्वसनीयता और सुरक्षा सुनिश्चित हो सके। +- समावेशी सिस्टम डिज़ाइन करके सभी को सशक्त बनाने की आवश्यकता को समझेंगे। +- डेटा और लोगों की गोपनीयता और सुरक्षा की रक्षा करने के महत्व का पता लगाएंगे। +- AI मॉडल के व्यवहार को समझाने के लिए एक पारदर्शी दृष्टिकोण अपनाने के महत्व को देखेंगे। +- AI सिस्टम में विश्वास बनाने के लिए जवाबदेही के महत्व को ध्यान में रखेंगे। + +## पूर्वापेक्षा + +पूर्वापेक्षा के रूप में, कृपया "जिम्मेदार AI सिद्धांत" सीखने का पथ लें और नीचे दिए गए विषय पर वीडियो देखें: + +जिम्मेदार AI के बारे में अधिक जानने के लिए इस [लर्निंग पाथ](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott) का अनुसरण करें। + +[![Microsoft का जिम्मेदार AI दृष्टिकोण](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Microsoft का जिम्मेदार AI दृष्टिकोण") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें: Microsoft का जिम्मेदार AI दृष्टिकोण + +## निष्पक्षता + +AI सिस्टम को सभी के साथ निष्पक्ष व्यवहार करना चाहिए और समान समूहों के लोगों को अलग-अलग तरीकों से प्रभावित करने से बचना चाहिए। उदाहरण के लिए, जब AI सिस्टम चिकित्सा उपचार, ऋण आवेदन, या रोजगार पर मार्गदर्शन प्रदान करते हैं, तो उन्हें समान लक्षण, वित्तीय परिस्थितियों, या पेशेवर योग्यता वाले सभी लोगों को समान सिफारिशें देनी चाहिए। हम में से प्रत्येक, एक इंसान के रूप में, अपने निर्णयों और कार्यों को प्रभावित करने वाले पूर्वाग्रहों को अपने साथ लेकर चलता है। ये पूर्वाग्रह उस डेटा में दिखाई दे सकते हैं जिसका उपयोग हम AI सिस्टम को प्रशिक्षित करने के लिए करते हैं। ऐसा हेरफेर कभी-कभी अनजाने में हो सकता है। यह अक्सर जानबूझकर समझना मुश्किल होता है कि आप डेटा में पूर्वाग्रह कब पेश कर रहे हैं। + +**"असमानता"** में एक समूह के लोगों के लिए नकारात्मक प्रभाव या "हानियां" शामिल हैं, जैसे कि जाति, लिंग, आयु, या विकलांगता की स्थिति के संदर्भ में परिभाषित। मुख्य निष्पक्षता से संबंधित नुकसान को निम्नलिखित रूप में वर्गीकृत किया जा सकता है: + +- **आवंटन**, यदि उदाहरण के लिए एक लिंग या जातीयता को दूसरे पर प्राथमिकता दी जाती है। +- **सेवा की गुणवत्ता**। यदि आप डेटा को एक विशिष्ट परिदृश्य के लिए प्रशिक्षित करते हैं लेकिन वास्तविकता बहुत अधिक जटिल होती है, तो यह खराब प्रदर्शन करने वाली सेवा की ओर ले जाता है। उदाहरण के लिए, एक हैंड सोप डिस्पेंसर जो गहरे रंग की त्वचा वाले लोगों को पहचानने में असमर्थ था। [संदर्भ](https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773) +- **निंदा**। किसी चीज़ या किसी व्यक्ति की अनुचित आलोचना और लेबलिंग। उदाहरण के लिए, एक इमेज लेबलिंग तकनीक ने काले रंग की त्वचा वाले लोगों की छवियों को गोरिल्ला के रूप में गलत तरीके से लेबल किया। +- **अधिक या कम प्रतिनिधित्व**। विचार यह है कि एक निश्चित समूह को एक निश्चित पेशे में नहीं देखा जाता है, और कोई भी सेवा या कार्य जो इसे बढ़ावा देता है वह नुकसान में योगदान दे रहा है। +- **रूढ़िवादिता**। किसी दिए गए समूह को पूर्व-निर्धारित विशेषताओं के साथ जोड़ना। उदाहरण के लिए, अंग्रेजी और तुर्की के बीच एक भाषा अनुवाद प्रणाली में लिंग से जुड़े रूढ़िवादी शब्दों के कारण गलतियां हो सकती हैं। + +![तुर्की में अनुवाद](../../../../translated_images/gender-bias-translate-en-tr.f185fd8822c2d4372912f2b690f6aaddd306ffbb49d795ad8d12a4bf141e7af0.hi.png) +> तुर्की में अनुवाद + +![फिर से अंग्रेजी में अनुवाद](../../../../translated_images/gender-bias-translate-tr-en.4eee7e3cecb8c70e13a8abbc379209bc8032714169e585bdeac75af09b1752aa.hi.png) +> फिर से अंग्रेजी में अनुवाद + +AI सिस्टम को डिज़ाइन और परीक्षण करते समय, हमें यह सुनिश्चित करना होगा कि AI निष्पक्ष हो और इसे पक्षपाती या भेदभावपूर्ण निर्णय लेने के लिए प्रोग्राम न किया जाए, जो मनुष्यों को भी करने से रोका गया है। AI और मशीन लर्निंग में निष्पक्षता सुनिश्चित करना एक जटिल सामाजिक-तकनीकी चुनौती बनी हुई है। + +### विश्वसनीयता और सुरक्षा + +विश्वास बनाने के लिए, AI सिस्टम को सामान्य और अप्रत्याशित परिस्थितियों में विश्वसनीय, सुरक्षित और सुसंगत होना चाहिए। यह जानना महत्वपूर्ण है कि AI सिस्टम विभिन्न परिस्थितियों में कैसा व्यवहार करेगा, विशेष रूप से जब वे बाहरी तत्व हों। AI समाधान बनाते समय, उन परिस्थितियों की विस्तृत विविधता को संभालने पर पर्याप्त ध्यान देने की आवश्यकता होती है जिनका सामना AI समाधान कर सकता है। उदाहरण के लिए, एक सेल्फ-ड्राइविंग कार को लोगों की सुरक्षा को सर्वोच्च प्राथमिकता देनी चाहिए। नतीजतन, कार को चलाने वाले AI को उन सभी संभावित परिदृश्यों पर विचार करना चाहिए जिनका सामना कार कर सकती है, जैसे रात, तूफान, बर्फ़ीले तूफ़ान, सड़क पर दौड़ते बच्चे, पालतू जानवर, सड़क निर्माण आदि। AI सिस्टम कितनी अच्छी तरह से विभिन्न परिस्थितियों को विश्वसनीय और सुरक्षित तरीके से संभाल सकता है, यह डेटा वैज्ञानिक या AI डेवलपर द्वारा डिज़ाइन या परीक्षण के दौरान विचार किए गए स्तर को दर्शाता है। + +> [🎥 यहां वीडियो के लिए क्लिक करें: ](https://www.microsoft.com/videoplayer/embed/RE4vvIl) + +### समावेशिता + +AI सिस्टम को सभी को शामिल करने और सशक्त बनाने के लिए डिज़ाइन किया जाना चाहिए। AI सिस्टम को डिज़ाइन और लागू करते समय डेटा वैज्ञानिक और AI डेवलपर सिस्टम में संभावित बाधाओं की पहचान करते हैं और उन्हें संबोधित करते हैं जो अनजाने में लोगों को बाहर कर सकते हैं। उदाहरण के लिए, दुनिया भर में 1 अरब लोग विकलांगता के साथ रहते हैं। AI की प्रगति के साथ, वे अपनी दैनिक जिंदगी में अधिक आसानी से जानकारी और अवसरों तक पहुंच सकते हैं। बाधाओं को संबोधित करके, यह नवाचार के अवसर पैदा करता है और बेहतर अनुभवों के साथ AI उत्पादों को विकसित करता है जो सभी को लाभ पहुंचाते हैं। + +> [🎥 यहां वीडियो के लिए क्लिक करें: AI में समावेशिता](https://www.microsoft.com/videoplayer/embed/RE4vl9v) + +### सुरक्षा और गोपनीयता + +AI सिस्टम को सुरक्षित होना चाहिए और लोगों की गोपनीयता का सम्मान करना चाहिए। लोग उन सिस्टमों पर कम विश्वास करते हैं जो उनकी गोपनीयता, जानकारी, या जीवन को जोखिम में डालते हैं। मशीन लर्निंग मॉडल को प्रशिक्षित करते समय, हम सर्वोत्तम परिणाम प्राप्त करने के लिए डेटा पर निर्भर करते हैं। ऐसा करते समय, डेटा की उत्पत्ति और अखंडता पर विचार करना आवश्यक है। उदाहरण के लिए, क्या डेटा उपयोगकर्ता द्वारा प्रस्तुत किया गया था या सार्वजनिक रूप से उपलब्ध था? इसके बाद, डेटा के साथ काम करते समय, यह महत्वपूर्ण है कि AI सिस्टम गोपनीय जानकारी की रक्षा कर सके और हमलों का प्रतिरोध कर सके। जैसे-जैसे AI अधिक व्यापक होता जा रहा है, गोपनीयता की रक्षा करना और महत्वपूर्ण व्यक्तिगत और व्यावसायिक जानकारी को सुरक्षित करना अधिक महत्वपूर्ण और जटिल होता जा रहा है। गोपनीयता और डेटा सुरक्षा मुद्दों को AI के लिए विशेष रूप से ध्यान देने की आवश्यकता है क्योंकि डेटा तक पहुंच AI सिस्टम को लोगों के बारे में सटीक और सूचित भविष्यवाणियां और निर्णय लेने के लिए आवश्यक है। + +> [🎥 यहां वीडियो के लिए क्लिक करें: AI में सुरक्षा](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- उद्योग के रूप में हमने गोपनीयता और सुरक्षा में महत्वपूर्ण प्रगति की है, जिसे GDPR (जनरल डेटा प्रोटेक्शन रेगुलेशन) जैसे नियमों द्वारा काफी हद तक बढ़ावा दिया गया है। +- फिर भी AI सिस्टम के साथ हमें यह स्वीकार करना होगा कि सिस्टम को अधिक व्यक्तिगत और प्रभावी बनाने के लिए अधिक व्यक्तिगत डेटा की आवश्यकता और गोपनीयता के बीच तनाव है। +- जैसे इंटरनेट के साथ जुड़े कंप्यूटरों के जन्म के साथ, हम AI से संबंधित सुरक्षा मुद्दों की संख्या में भी भारी वृद्धि देख रहे हैं। +- साथ ही, हमने सुरक्षा में सुधार के लिए AI का उपयोग होते देखा है। उदाहरण के लिए, अधिकांश आधुनिक एंटी-वायरस स्कैनर आज AI ह्यूरिस्टिक्स द्वारा संचालित हैं। +- हमें यह सुनिश्चित करने की आवश्यकता है कि हमारे डेटा विज्ञान प्रक्रियाएं नवीनतम गोपनीयता और सुरक्षा प्रथाओं के साथ सामंजस्यपूर्ण रूप से मिश्रित हों। + +### पारदर्शिता + +AI सिस्टम को समझने योग्य होना चाहिए। पारदर्शिता का एक महत्वपूर्ण हिस्सा AI सिस्टम और उनके घटकों के व्यवहार को समझाना है। AI सिस्टम की समझ में सुधार के लिए यह आवश्यक है कि हितधारक यह समझें कि वे कैसे और क्यों काम करते हैं ताकि वे संभावित प्रदर्शन मुद्दों, सुरक्षा और गोपनीयता चिंताओं, पूर्वाग्रहों, बहिष्करण प्रथाओं, या अनपेक्षित परिणामों की पहचान कर सकें। हम यह भी मानते हैं कि जो लोग AI सिस्टम का उपयोग करते हैं, उन्हें यह बताने में ईमानदार और स्पष्ट होना चाहिए कि वे उन्हें कब, क्यों, और कैसे तैनात करने का निर्णय लेते हैं। साथ ही, वे जिन सिस्टमों का उपयोग करते हैं, उनकी सीमाओं के बारे में भी। उदाहरण के लिए, यदि कोई बैंक अपने उपभोक्ता ऋण निर्णयों का समर्थन करने के लिए AI सिस्टम का उपयोग करता है, तो यह महत्वपूर्ण है कि परिणामों की जांच की जाए और यह समझा जाए कि कौन सा डेटा सिस्टम की सिफारिशों को प्रभावित करता है। सरकारें उद्योगों में AI को विनियमित करना शुरू कर रही हैं, इसलिए डेटा वैज्ञानिकों और संगठनों को यह समझाना होगा कि AI सिस्टम नियामक आवश्यकताओं को पूरा करता है या नहीं, विशेष रूप से जब कोई अवांछनीय परिणाम होता है। + +> [🎥 यहां वीडियो के लिए क्लिक करें: AI में पारदर्शिता](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- क्योंकि AI सिस्टम इतने जटिल हैं, यह समझना मुश्किल है कि वे कैसे काम करते हैं और परिणामों की व्याख्या करते हैं। +- इस समझ की कमी इन सिस्टमों के प्रबंधन, संचालन, और दस्तावेज़ीकरण को प्रभावित करती है। +- यह समझ की कमी अधिक महत्वपूर्ण रूप से उन निर्णयों को प्रभावित करती है जो इन सिस्टमों द्वारा उत्पन्न परिणामों का उपयोग करके किए जाते हैं। + +### जवाबदेही + +AI सिस्टम को डिज़ाइन और तैनात करने वाले लोगों को उनके सिस्टम के संचालन के लिए जवाबदेह होना चाहिए। जवाबदेही की आवश्यकता विशेष रूप से संवेदनशील उपयोग प्रौद्योगिकियों जैसे चेहरे की पहचान के साथ महत्वपूर्ण है। हाल ही में, चेहरे की पहचान तकनीक की बढ़ती मांग रही है, विशेष रूप से कानून प्रवर्तन संगठनों से जो लापता बच्चों को खोजने जैसे उपयोगों में तकनीक की क्षमता देखते हैं। हालांकि, ये तकनीकें संभावित रूप से सरकार द्वारा अपने नागरिकों की मौलिक स्वतंत्रताओं को खतरे में डाल सकती हैं, उदाहरण के लिए, विशिष्ट व्यक्तियों की निरंतर निगरानी को सक्षम करके। इसलिए, डेटा वैज्ञानिकों और संगठनों को यह सुनिश्चित करने के लिए जिम्मेदार होना चाहिए कि उनका AI सिस्टम व्यक्तियों या समाज को कैसे प्रभावित करता है। + +[![प्रमुख AI शोधकर्ता चेहरे की पहचान के माध्यम से बड़े पैमाने पर निगरानी की चेतावनी देते हैं](../../../../translated_images/accountability.41d8c0f4b85b6231301d97f17a450a805b7a07aaeb56b34015d71c757cad142e.hi.png)](https://www.youtube.com/watch?v=Wldt8P5V6D0 "Microsoft का जिम्मेदार AI दृष्टिकोण") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें: चेहरे की पहचान के माध्यम से बड़े पैमाने पर निगरानी की चेतावनी + +आखिरकार, हमारी पीढ़ी के लिए सबसे बड़े सवालों में से एक, जो AI को समाज में लाने वाली पहली पीढ़ी है, यह है कि यह सुनिश्चित कैसे किया जाए कि कंप्यूटर लोगों के प्रति जवाबदेह बने रहेंगे और यह सुनिश्चित कैसे किया जाए कि कंप्यूटर डिज़ाइन करने वाले लोग बाकी सभी के प्रति जवाबदेह बने रहें। + +## प्रभाव मूल्यांकन + +मशीन लर्निंग मॉडल को प्रशिक्षित करने से पहले, AI सिस्टम के उद्देश्य को समझने के लिए प्रभाव मूल्यांकन करना महत्वपूर्ण है; इसका इरादा उपयोग क्या है; इसे कहाँ तैनात किया जाएगा; और कौन सिस्टम के साथ बातचीत करेगा। ये समीक्षक या परीक्षक के लिए सहायक होते हैं जो सिस्टम का मूल्यांकन कर रहे हैं ताकि संभावित जोखिमों और अपेक्षित परिणामों की पहचान करते समय किन कारकों पर विचार करना है, यह जान सकें। + +प्रभाव मूल्यांकन करते समय ध्यान केंद्रित करने के क्षेत्र निम्नलिखित हैं: + +* **व्यक्तियों पर प्रतिकूल प्रभाव**। किसी भी प्रतिबंध या आवश्यकताओं, असमर्थित उपयोग या किसी भी ज्ञात सीमाओं के बारे में जागरूक होना जो सिस्टम के प्रदर्शन को बाधित कर सकती हैं, यह सुनिश्चित करने के लिए महत्वपूर्ण है कि सिस्टम का उपयोग इस तरह से न किया जाए जो व्यक्तियों को नुकसान पहुंचा सके। +* **डेटा आवश्यकताएँ**। यह समझ प्राप्त करना कि सिस्टम डेटा का उपयोग कैसे और कहाँ करेगा, समीक्षकों को किसी भी डेटा आवश्यकताओं का पता लगाने में सक्षम बनाता है जिनके बारे में आपको जागरूक होना चाहिए (जैसे, GDPR या HIPPA डेटा नियम)। इसके अलावा, यह जांचें कि प्रशिक्षण के लिए डेटा का स्रोत या मात्रा पर्याप्त है या नहीं। +* **प्रभाव का सारांश**। संभावित नुकसान की एक सूची एकत्र करें जो सिस्टम का उपयोग करने से उत्पन्न हो सकती है। ML जीवनचक्र के दौरान, यह समीक्षा करें कि पहचानी गई समस्याओं को कम किया गया है या संबोधित किया गया है। +* **छह मुख्य सिद्धांतों के लिए लागू लक्ष्य**। मूल्यांकन करें कि प्रत्येक सिद्धांत के लक्ष्यों को पूरा किया गया है या नहीं और क्या कोई अंतराल है। + +## जिम्मेदार AI के साथ डिबगिंग + +किसी सॉफ़्टवेयर एप्लिकेशन को डिबग करने के समान, AI सिस्टम को डिबग करना सिस्टम में समस्याओं की पहचान और समाधान करने की एक आवश्यक प्रक्रिया है। कई कारक हैं जो मॉडल को अपेक्षित या जिम्मेदारी से प्रदर्शन न करने को प्रभावित कर सकते हैं। अधिकांश पारंपरिक मॉडल प्रदर्शन मेट्रिक्स मॉडल के प्रदर्शन के मात्रात्मक समुच्चय हैं, जो यह विश्लेषण करने के लिए पर्याप्त नहीं हैं कि मॉडल जिम्मेदार AI सिद्धांतों का उल्लंघन कैसे करता है। इसके अलावा, मशीन लर्निंग मॉडल एक ब्लैक बॉक्स है जो यह समझना मुश्किल बनाता है कि इसके परिणाम को क्या प्रेरित करता है या जब यह गलती करता है तो स्पष्टीकरण प्रदान करता है। इस पाठ्यक्रम में बाद में, हम जिम्मेदार AI डैशबोर्ड का उपयोग करना सीखेंगे ताकि AI सिस्टम को डिबग करने में मदद मिल सके। डैशबोर्ड डेटा वैज्ञानिकों और AI डेवलपर्स को निम्नलिखित कार्य करने के लिए एक समग्र उपकरण प्रदान करता है: + +* **त्रुटि विश्लेषण**। मॉडल की त्रुटि वितरण की पहचान करने के लिए जो सिस्टम की निष्पक्षता या विश्वसनीयता को प्रभावित कर सकता है। +* **मॉडल अवलोकन**। यह पता लगाने के लिए कि डेटा समूहों में मॉडल के प्रदर्शन में कहाँ असमानताएँ हैं। +* **डेटा विश्लेषण**। डेटा वितरण को समझने और डेटा में किसी भी संभावित पूर्वाग्रह की पहचान करने के लिए जो निष्पक्षता, समावेशिता, और विश्वसनीयता मुद्दों को जन्म दे सकता है। +* **मॉडल व्याख्या**। यह समझने के लिए कि मॉडल की भविष्यवाणियों को क्या प्रभावित करता है या प्रेरित करता है। यह मॉडल के व्यवहार को समझाने में मदद करता है, जो पारदर्शिता और जवाबदेही के लिए महत्वपूर्ण है। + +## 🚀 चुनौती + +हानियों को पहली जगह में पेश होने से रोकने के लिए, हमें: + +- सिस्टम पर काम करने वाले लोगों के बीच पृष्ठभूमि और दृष्टिकोण की विविधता होनी चाहिए। +- ऐसे डेटा सेट में निवेश करना चाहिए जो हमारे समाज की विविधता को दर्शाते हों। +- मशीन लर्निंग जीवनचक्र के दौरान जिम्मेदार AI का पता लगाने और सुधारने के लिए बेहतर तरीकों का विकास करना चाहिए। + +वास्तविक जीवन परिदृश्यों के बारे में सोचें जहां मॉडल की अविश्वसनीयता मॉडल-निर्माण और उपयोग में स्पष्ट है। हमें और क्या विचार करना चाहिए? + +## [पोस्ट +इस पाठ में, आपने मशीन लर्निंग में निष्पक्षता और अन्याय के कुछ मूलभूत सिद्धांतों के बारे में सीखा। + +इन विषयों को गहराई से समझने के लिए इस कार्यशाला को देखें: + +- जिम्मेदार AI की खोज में: सिद्धांतों को व्यवहार में लाना, प्रस्तुतकर्ता: बिसमिरा नुशी, मेहरनूश सामेकी और अमित शर्मा + +[![Responsible AI Toolbox: जिम्मेदार AI बनाने के लिए एक ओपन-सोर्स फ्रेमवर्क](https://img.youtube.com/vi/tGgJCrA-MZU/0.jpg)](https://www.youtube.com/watch?v=tGgJCrA-MZU "RAI Toolbox: जिम्मेदार AI बनाने के लिए एक ओपन-सोर्स फ्रेमवर्क") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें वीडियो के लिए: RAI Toolbox: जिम्मेदार AI बनाने के लिए एक ओपन-सोर्स फ्रेमवर्क, प्रस्तुतकर्ता: बिसमिरा नुशी, मेहरनूश सामेकी और अमित शर्मा + +इसके अलावा, पढ़ें: + +- Microsoft का RAI संसाधन केंद्र: [Responsible AI Resources – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- Microsoft का FATE शोध समूह: [FATE: Fairness, Accountability, Transparency, and Ethics in AI - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +RAI Toolbox: + +- [Responsible AI Toolbox GitHub repository](https://github.com/microsoft/responsible-ai-toolbox) + +Azure Machine Learning के उपकरणों के बारे में पढ़ें जो निष्पक्षता सुनिश्चित करते हैं: + +- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott) + +## असाइनमेंट + +[RAI Toolbox का अन्वेषण करें](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/1-Introduction/3-fairness/assignment.md b/translations/hi/1-Introduction/3-fairness/assignment.md new file mode 100644 index 000000000..48e6b67cd --- /dev/null +++ b/translations/hi/1-Introduction/3-fairness/assignment.md @@ -0,0 +1,25 @@ + +# जिम्मेदार AI टूलबॉक्स का अन्वेषण करें + +## निर्देश + +इस पाठ में आपने जिम्मेदार AI टूलबॉक्स के बारे में सीखा, जो "डेटा वैज्ञानिकों को AI सिस्टम का विश्लेषण और सुधार करने में मदद करने के लिए एक ओपन-सोर्स, समुदाय-संचालित प्रोजेक्ट" है। इस असाइनमेंट के लिए, RAI टूलबॉक्स के [नोटबुक्स](https://github.com/microsoft/responsible-ai-toolbox/blob/main/notebooks/responsibleaidashboard/getting-started.ipynb) में से एक का अन्वेषण करें और अपने निष्कर्षों को एक पेपर या प्रस्तुति में रिपोर्ट करें। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | --------- | -------- | ----------------- | +| | एक पेपर या पावरपॉइंट प्रस्तुति प्रस्तुत की गई है जिसमें Fairlearn के सिस्टम, चलाए गए नोटबुक, और इसे चलाने से प्राप्त निष्कर्षों पर चर्चा की गई है | एक पेपर प्रस्तुत किया गया है लेकिन निष्कर्ष नहीं दिए गए हैं | कोई पेपर प्रस्तुत नहीं किया गया है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/1-Introduction/4-techniques-of-ML/README.md b/translations/hi/1-Introduction/4-techniques-of-ML/README.md new file mode 100644 index 000000000..0a1a23529 --- /dev/null +++ b/translations/hi/1-Introduction/4-techniques-of-ML/README.md @@ -0,0 +1,132 @@ + +# मशीन लर्निंग की तकनीकें + +मशीन लर्निंग मॉडल और उनके उपयोग किए जाने वाले डेटा को बनाना, उपयोग करना और बनाए रखना कई अन्य विकास वर्कफ़्लो से बहुत अलग प्रक्रिया है। इस पाठ में, हम इस प्रक्रिया को सरल बनाएंगे और उन मुख्य तकनीकों को रेखांकित करेंगे जिन्हें आपको जानना आवश्यक है। आप: + +- मशीन लर्निंग की प्रक्रियाओं को उच्च स्तर पर समझेंगे। +- 'मॉडल', 'भविष्यवाणी', और 'ट्रेनिंग डेटा' जैसे मूलभूत अवधारणाओं का अन्वेषण करेंगे। + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7/) + +[![मशीन लर्निंग के लिए शुरुआती - मशीन लर्निंग की तकनीकें](https://img.youtube.com/vi/4NGM0U2ZSHU/0.jpg)](https://youtu.be/4NGM0U2ZSHU "मशीन लर्निंग के लिए शुरुआती - मशीन लर्निंग की तकनीकें") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें इस पाठ को समझने के लिए एक छोटा वीडियो देखने के लिए। + +## परिचय + +उच्च स्तर पर, मशीन लर्निंग (ML) प्रक्रियाओं को बनाने की कला में कई चरण शामिल होते हैं: + +1. **प्रश्न तय करें**। अधिकांश ML प्रक्रियाएं एक ऐसे प्रश्न से शुरू होती हैं जिसे एक साधारण कंडीशनल प्रोग्राम या नियम-आधारित इंजन द्वारा उत्तर नहीं दिया जा सकता। ये प्रश्न अक्सर डेटा के संग्रह के आधार पर भविष्यवाणियों के इर्द-गिर्द घूमते हैं। +2. **डेटा एकत्रित और तैयार करें**। अपने प्रश्न का उत्तर देने के लिए, आपको डेटा की आवश्यकता होती है। आपके डेटा की गुणवत्ता और कभी-कभी मात्रा यह निर्धारित करेगी कि आप अपने प्रारंभिक प्रश्न का उत्तर कितनी अच्छी तरह दे सकते हैं। इस चरण में डेटा को विज़ुअलाइज़ करना एक महत्वपूर्ण पहलू है। इस चरण में डेटा को ट्रेनिंग और टेस्टिंग समूहों में विभाजित करना भी शामिल है ताकि मॉडल बनाया जा सके। +3. **ट्रेनिंग विधि चुनें**। आपके प्रश्न और आपके डेटा की प्रकृति के आधार पर, आपको यह चुनना होगा कि आप अपने डेटा को सबसे अच्छी तरह से प्रतिबिंबित करने और इसके खिलाफ सटीक भविष्यवाणी करने के लिए मॉडल को कैसे प्रशिक्षित करना चाहते हैं। यह आपके ML प्रक्रिया का वह हिस्सा है जो विशिष्ट विशेषज्ञता और अक्सर काफी मात्रा में प्रयोग की आवश्यकता होती है। +4. **मॉडल को प्रशिक्षित करें**। अपने ट्रेनिंग डेटा का उपयोग करके, आप विभिन्न एल्गोरिदम का उपयोग करके मॉडल को डेटा में पैटर्न पहचानने के लिए प्रशिक्षित करेंगे। मॉडल आंतरिक वज़न का उपयोग कर सकता है जिन्हें डेटा के कुछ हिस्सों को दूसरों पर प्राथमिकता देने के लिए समायोजित किया जा सकता है ताकि बेहतर मॉडल बनाया जा सके। +5. **मॉडल का मूल्यांकन करें**। आप अपने संग्रहित सेट से पहले कभी न देखे गए डेटा (अपने टेस्टिंग डेटा) का उपयोग करके देख सकते हैं कि मॉडल कैसा प्रदर्शन कर रहा है। +6. **पैरामीटर ट्यूनिंग**। आपके मॉडल के प्रदर्शन के आधार पर, आप प्रक्रिया को अलग-अलग पैरामीटर या वेरिएबल का उपयोग करके फिर से कर सकते हैं जो मॉडल को प्रशिक्षित करने के लिए उपयोग किए गए एल्गोरिदम के व्यवहार को नियंत्रित करते हैं। +7. **भविष्यवाणी करें**। अपने मॉडल की सटीकता का परीक्षण करने के लिए नए इनपुट का उपयोग करें। + +## कौन सा प्रश्न पूछना है + +कंप्यूटर डेटा में छिपे पैटर्न खोजने में विशेष रूप से कुशल होते हैं। यह उपयोगिता उन शोधकर्ताओं के लिए बहुत मददगार है जिनके पास किसी दिए गए डोमेन के बारे में ऐसे प्रश्न हैं जिन्हें आसानी से कंडीशनली-आधारित नियम इंजन बनाकर उत्तर नहीं दिया जा सकता। उदाहरण के लिए, एक एक्चुरियल कार्य को देखते हुए, एक डेटा वैज्ञानिक धूम्रपान करने वालों बनाम गैर-धूम्रपान करने वालों की मृत्यु दर के आसपास हस्तनिर्मित नियम बना सकता है। + +हालांकि, जब कई अन्य वेरिएबल समीकरण में लाए जाते हैं, तो एक ML मॉडल पिछले स्वास्थ्य इतिहास के आधार पर भविष्य की मृत्यु दर की भविष्यवाणी करने में अधिक कुशल साबित हो सकता है। एक अधिक खुशहाल उदाहरण अप्रैल के महीने में किसी दिए गए स्थान के लिए मौसम की भविष्यवाणी करना हो सकता है, जिसमें अक्षांश, देशांतर, जलवायु परिवर्तन, महासागर के निकटता, जेट स्ट्रीम के पैटर्न और अधिक शामिल हैं। + +✅ यह [स्लाइड डेक](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf) मौसम मॉडल पर ML का उपयोग करने के लिए एक ऐतिहासिक दृष्टिकोण प्रदान करता है। + +## मॉडल बनाने से पहले के कार्य + +मॉडल बनाना शुरू करने से पहले, आपको कई कार्य पूरे करने होंगे। अपने प्रश्न का परीक्षण करने और मॉडल की भविष्यवाणियों के आधार पर एक परिकल्पना बनाने के लिए, आपको कई तत्वों की पहचान और कॉन्फ़िगर करना होगा। + +### डेटा + +अपने प्रश्न का किसी भी प्रकार की निश्चितता के साथ उत्तर देने के लिए, आपको सही प्रकार का पर्याप्त डेटा चाहिए। इस बिंदु पर आपको दो चीजें करनी होंगी: + +- **डेटा एकत्रित करें**। डेटा विश्लेषण में निष्पक्षता पर पिछले पाठ को ध्यान में रखते हुए, अपने डेटा को सावधानीपूर्वक एकत्रित करें। इस डेटा के स्रोतों, इसमें मौजूद किसी भी अंतर्निहित पूर्वाग्रहों के बारे में जागरूक रहें और इसके स्रोत का दस्तावेज़ीकरण करें। +- **डेटा तैयार करें**। डेटा तैयारी प्रक्रिया में कई चरण होते हैं। यदि डेटा विभिन्न स्रोतों से आता है, तो आपको इसे एकत्रित और सामान्यीकृत करने की आवश्यकता हो सकती है। आप स्ट्रिंग्स को नंबर में बदलने जैसे विभिन्न तरीकों से डेटा की गुणवत्ता और मात्रा में सुधार कर सकते हैं (जैसा कि हम [क्लस्टरिंग](../../5-Clustering/1-Visualize/README.md) में करते हैं)। आप मूल डेटा के आधार पर नया डेटा उत्पन्न कर सकते हैं (जैसा कि हम [क्लासिफिकेशन](../../4-Classification/1-Introduction/README.md) में करते हैं)। आप डेटा को साफ और संपादित कर सकते हैं (जैसा कि हम [वेब ऐप](../../3-Web-App/README.md) पाठ से पहले करेंगे)। अंत में, आप इसे यादृच्छिक और शफल भी कर सकते हैं, यह आपके ट्रेनिंग तकनीकों पर निर्भर करता है। + +✅ डेटा एकत्रित और प्रोसेस करने के बाद, एक पल लें यह देखने के लिए कि क्या इसका आकार आपके इच्छित प्रश्न को संबोधित करने की अनुमति देगा। यह हो सकता है कि डेटा आपके दिए गए कार्य में अच्छा प्रदर्शन न करे, जैसा कि हम अपने [क्लस्टरिंग](../../5-Clustering/1-Visualize/README.md) पाठ में खोजते हैं! + +### फीचर्स और टारगेट + +एक [फीचर](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection) आपके डेटा की एक मापने योग्य संपत्ति है। कई डेटासेट में इसे 'तारीख', 'आकार' या 'रंग' जैसे कॉलम हेडिंग के रूप में व्यक्त किया जाता है। आपका फीचर वेरिएबल, जिसे आमतौर पर कोड में `X` के रूप में दर्शाया जाता है, वह इनपुट वेरिएबल है जिसका उपयोग मॉडल को प्रशिक्षित करने के लिए किया जाएगा। + +एक टारगेट वह चीज़ है जिसे आप भविष्यवाणी करने की कोशिश कर रहे हैं। टारगेट, जिसे आमतौर पर कोड में `y` के रूप में दर्शाया जाता है, आपके डेटा से पूछे जा रहे प्रश्न का उत्तर दर्शाता है: दिसंबर में कौन से **रंग** के कद्दू सबसे सस्ते होंगे? सैन फ्रांसिस्को में कौन से पड़ोस में सबसे अच्छी रियल एस्टेट **कीमत** होगी? कभी-कभी टारगेट को लेबल एट्रिब्यूट भी कहा जाता है। + +### अपने फीचर वेरिएबल का चयन करना + +🎓 **फीचर चयन और फीचर एक्सट्रैक्शन** जब आप मॉडल बनाते समय वेरिएबल चुनते हैं तो आप कैसे जानते हैं कि कौन सा वेरिएबल चुनना है? आप शायद फीचर चयन या फीचर एक्सट्रैक्शन की प्रक्रिया से गुजरेंगे ताकि सबसे प्रदर्शनकारी मॉडल के लिए सही वेरिएबल चुने जा सकें। हालांकि, वे एक जैसे नहीं हैं: "फीचर एक्सट्रैक्शन मूल फीचर्स के फ़ंक्शन्स से नए फीचर्स बनाता है, जबकि फीचर चयन फीचर्स का एक उपसमुच्चय लौटाता है।" ([स्रोत](https://wikipedia.org/wiki/Feature_selection)) + +### अपने डेटा को विज़ुअलाइज़ करें + +डेटा वैज्ञानिक के टूलकिट का एक महत्वपूर्ण पहलू डेटा को विज़ुअलाइज़ करने की शक्ति है, जिसमें Seaborn या MatPlotLib जैसी कई उत्कृष्ट लाइब्रेरी शामिल हैं। अपने डेटा को विज़ुअल रूप से प्रस्तुत करना आपको छिपे हुए सहसंबंधों को उजागर करने की अनुमति दे सकता है जिन्हें आप लाभ उठा सकते हैं। आपके विज़ुअलाइज़ेशन आपको पूर्वाग्रह या असंतुलित डेटा को उजागर करने में भी मदद कर सकते हैं (जैसा कि हम [क्लासिफिकेशन](../../4-Classification/2-Classifiers-1/README.md) में खोजते हैं)। + +### अपने डेटासेट को विभाजित करें + +ट्रेनिंग से पहले, आपको अपने डेटासेट को दो या अधिक असमान आकार के हिस्सों में विभाजित करना होगा जो अभी भी डेटा का अच्छा प्रतिनिधित्व करते हैं। + +- **ट्रेनिंग**। डेटासेट का यह हिस्सा आपके मॉडल को प्रशिक्षित करने के लिए फिट किया जाता है। यह सेट मूल डेटासेट का अधिकांश हिस्सा बनाता है। +- **टेस्टिंग**। एक टेस्ट डेटासेट एक स्वतंत्र डेटा समूह है, जिसे अक्सर मूल डेटा से एकत्रित किया जाता है, जिसका उपयोग आप बनाए गए मॉडल के प्रदर्शन की पुष्टि करने के लिए करते हैं। +- **वैलिडेटिंग**। एक वैलिडेशन सेट एक छोटा स्वतंत्र उदाहरणों का समूह है जिसका उपयोग आप मॉडल के हाइपरपैरामीटर या आर्किटेक्चर को ट्यून करने के लिए करते हैं ताकि मॉडल में सुधार किया जा सके। आपके डेटा के आकार और आपके द्वारा पूछे गए प्रश्न के आधार पर, आपको इस तीसरे सेट को बनाने की आवश्यकता नहीं हो सकती (जैसा कि हम [टाइम सीरीज़ फोरकास्टिंग](../../7-TimeSeries/1-Introduction/README.md) में नोट करते हैं)। + +## मॉडल बनाना + +अपने ट्रेनिंग डेटा का उपयोग करके, आपका लक्ष्य एक मॉडल बनाना है, या आपके डेटा का एक सांख्यिकीय प्रतिनिधित्व, जिसे विभिन्न एल्गोरिदम का उपयोग करके **प्रशिक्षित** किया जाता है। मॉडल को प्रशिक्षित करना इसे डेटा के संपर्क में लाता है और इसे खोजे गए पैटर्न के बारे में धारणाएं बनाने, मान्य करने और स्वीकार या अस्वीकार करने की अनुमति देता है। + +### ट्रेनिंग विधि तय करें + +आपके प्रश्न और आपके डेटा की प्रकृति के आधार पर, आप इसे प्रशिक्षित करने के लिए एक विधि चुनेंगे। [Scikit-learn के दस्तावेज़](https://scikit-learn.org/stable/user_guide.html) के माध्यम से कदम उठाते हुए - जिसे हम इस पाठ्यक्रम में उपयोग करते हैं - आप मॉडल को प्रशिक्षित करने के कई तरीके खोज सकते हैं। आपके अनुभव के आधार पर, आपको सबसे अच्छा मॉडल बनाने के लिए कई अलग-अलग तरीकों को आज़माना पड़ सकता है। आप संभवतः एक प्रक्रिया से गुजरेंगे जिसमें डेटा वैज्ञानिक मॉडल के प्रदर्शन का मूल्यांकन करते हैं, इसे अनदेखे डेटा खिलाते हैं, सटीकता, पूर्वाग्रह और अन्य गुणवत्ता-घटाने वाले मुद्दों की जांच करते हैं, और कार्य के लिए सबसे उपयुक्त ट्रेनिंग विधि का चयन करते हैं। + +### मॉडल को प्रशिक्षित करें + +अपने ट्रेनिंग डेटा से लैस, आप इसे 'फिट' करने के लिए तैयार हैं ताकि एक मॉडल बनाया जा सके। आप देखेंगे कि कई ML लाइब्रेरी में आप 'model.fit' कोड पाएंगे - यह वह समय है जब आप अपने फीचर वेरिएबल को मानों के एक ऐरे के रूप में भेजते हैं (आमतौर पर 'X') और एक टारगेट वेरिएबल (आमतौर पर 'y')। + +### मॉडल का मूल्यांकन करें + +एक बार ट्रेनिंग प्रक्रिया पूरी हो जाने के बाद (एक बड़े मॉडल को प्रशिक्षित करने में कई पुनरावृत्तियां, या 'epochs', लग सकते हैं), आप टेस्ट डेटा का उपयोग करके मॉडल की गुणवत्ता का मूल्यांकन करने में सक्षम होंगे। यह डेटा मूल डेटा का एक उपसमुच्चय है जिसे मॉडल ने पहले कभी विश्लेषण नहीं किया है। आप अपने मॉडल की गुणवत्ता के बारे में मेट्रिक्स की एक तालिका प्रिंट कर सकते हैं। + +🎓 **मॉडल फिटिंग** + +मशीन लर्निंग के संदर्भ में, मॉडल फिटिंग उस मॉडल की अंतर्निहित फ़ंक्शन की सटीकता को संदर्भित करता है क्योंकि यह डेटा का विश्लेषण करने का प्रयास करता है जिससे यह परिचित नहीं है। + +🎓 **अंडरफिटिंग** और **ओवरफिटिंग** आम समस्याएं हैं जो मॉडल की गुणवत्ता को खराब करती हैं, क्योंकि मॉडल या तो पर्याप्त रूप से फिट नहीं होता या बहुत अधिक फिट होता है। इससे मॉडल या तो अपने ट्रेनिंग डेटा के साथ बहुत अधिक संरेखित भविष्यवाणियां करता है या बहुत कम संरेखित करता है। एक ओवरफिट मॉडल ट्रेनिंग डेटा को बहुत अच्छी तरह से भविष्यवाणी करता है क्योंकि उसने डेटा के विवरण और शोर को बहुत अच्छी तरह से सीखा है। एक अंडरफिट मॉडल सटीक नहीं है क्योंकि यह न तो अपने ट्रेनिंग डेटा का सटीक विश्लेषण कर सकता है और न ही डेटा जिसे उसने अभी तक 'देखा' नहीं है। + +![ओवरफिटिंग मॉडल](../../../../translated_images/overfitting.1c132d92bfd93cb63240baf63ebdf82c30e30a0a44e1ad49861b82ff600c2b5c.hi.png) +> [Jen Looper](https://twitter.com/jenlooper) द्वारा इन्फोग्राफिक + +## पैरामीटर ट्यूनिंग + +एक बार आपका प्रारंभिक ट्रेनिंग पूरा हो जाने के बाद, मॉडल की गुणवत्ता का अवलोकन करें और इसके 'हाइपरपैरामीटर' को समायोजित करके इसे सुधारने पर विचार करें। इस प्रक्रिया के बारे में अधिक पढ़ें [दस्तावेज़ में](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott)। + +## भविष्यवाणी + +यह वह क्षण है जब आप पूरी तरह से नए डेटा का उपयोग करके अपने मॉडल की सटीकता का परीक्षण कर सकते हैं। एक 'लागू' ML सेटिंग में, जहां आप मॉडल को प्रोडक्शन में उपयोग करने के लिए वेब एसेट्स बना रहे हैं, यह प्रक्रिया उपयोगकर्ता इनपुट (जैसे बटन दबाना) को एक वेरिएबल सेट करने और मॉडल को अनुमान या मूल्यांकन के लिए भेजने में शामिल कर सकती है। + +इन पाठों में, आप इन चरणों को तैयार करने, बनाने, परीक्षण करने, मूल्यांकन करने और भविष्यवाणी करने के तरीके खोजेंगे - डेटा वैज्ञानिक के सभी इशारों और अधिक, जैसे-जैसे आप 'फुल स्टैक' ML इंजीनियर बनने की अपनी यात्रा में आगे बढ़ते हैं। + +--- + +## 🚀चुनौती + +एक फ्लो चार्ट बनाएं जो एक ML प्रैक्टिशनर के चरणों को दर्शाता है। आप इस प्रक्रिया में अभी खुद को कहां देखते हैं? आप कहां कठिनाई का सामना करने की भविष्यवाणी करते हैं? आपको क्या आसान लगता है? + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8/) + +## समीक्षा और स्व-अध्ययन + +ऑनलाइन खोजें कि डेटा वैज्ञानिकों के साथ साक्षात्कार जो उनके दैनिक कार्य पर चर्चा करते हैं। यहाँ [एक](https://www.youtube.com/watch?v=Z3IjgbbCEfs) है। + +## असाइनमेंट + +[एक डेटा वैज्ञानिक का साक्षात्कार लें](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/1-Introduction/4-techniques-of-ML/assignment.md b/translations/hi/1-Introduction/4-techniques-of-ML/assignment.md new file mode 100644 index 000000000..45f69415c --- /dev/null +++ b/translations/hi/1-Introduction/4-techniques-of-ML/assignment.md @@ -0,0 +1,25 @@ + +# डेटा वैज्ञानिक का साक्षात्कार करें + +## निर्देश + +अपने कंपनी में, किसी उपयोगकर्ता समूह में, या अपने दोस्तों या सहपाठियों के बीच, किसी ऐसे व्यक्ति से बात करें जो पेशेवर रूप से डेटा वैज्ञानिक के रूप में काम करता है। उनके दैनिक कार्यों के बारे में एक छोटा लेख (500 शब्द) लिखें। क्या वे विशेषज्ञ हैं, या 'फुल स्टैक' के रूप में काम करते हैं? + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्टता | पर्याप्तता | सुधार की आवश्यकता | +| -------- | ------------------------------------------------------------------------------------ | ------------------------------------------------------------------ | --------------------- | +| | सही लंबाई का निबंध, जिसमें स्रोतों का उल्लेख किया गया हो, .doc फ़ाइल के रूप में प्रस्तुत किया गया है | निबंध का उल्लेख खराब है या आवश्यक लंबाई से छोटा है | कोई निबंध प्रस्तुत नहीं किया गया | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल दस्तावेज़, जो इसकी मूल भाषा में है, को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/1-Introduction/README.md b/translations/hi/1-Introduction/README.md new file mode 100644 index 000000000..af2b0e926 --- /dev/null +++ b/translations/hi/1-Introduction/README.md @@ -0,0 +1,37 @@ + +# मशीन लर्निंग का परिचय + +इस पाठ्यक्रम के इस भाग में, आपको मशीन लर्निंग के क्षेत्र के मूलभूत अवधारणाओं, यह क्या है, इसकी इतिहास और शोधकर्ता इसे कैसे उपयोग करते हैं, के बारे में परिचित कराया जाएगा। चलिए, इस नए ML की दुनिया को साथ में खोजते हैं! + +![globe](../../../translated_images/globe.59f26379ceb40428672b4d9a568044618a2bf6292ecd53a5c481b90e3fa805eb.hi.jpg) +> फोटो बिल ऑक्सफोर्ड द्वारा अनस्प्लैश पर + +### पाठ + +1. [मशीन लर्निंग का परिचय](1-intro-to-ML/README.md) +1. [मशीन लर्निंग और AI का इतिहास](2-history-of-ML/README.md) +1. [न्यायसंगतता और मशीन लर्निंग](3-fairness/README.md) +1. [मशीन लर्निंग की तकनीकें](4-techniques-of-ML/README.md) + +### क्रेडिट्स + +"मशीन लर्निंग का परिचय" को ♥️ के साथ [मुहम्मद साकिब खान इनान](https://twitter.com/Sakibinan), [ऑर्नेला अल्टुन्यान](https://twitter.com/ornelladotcom) और [जेन लूपर](https://twitter.com/jenlooper) सहित एक टीम द्वारा लिखा गया है। + +"मशीन लर्निंग का इतिहास" को ♥️ के साथ [जेन लूपर](https://twitter.com/jenlooper) और [एमी बॉयड](https://twitter.com/AmyKateNicho) द्वारा लिखा गया है। + +"न्यायसंगतता और मशीन लर्निंग" को ♥️ के साथ [टोमोमी इमुरा](https://twitter.com/girliemac) द्वारा लिखा गया है। + +"मशीन लर्निंग की तकनीकें" को ♥️ के साथ [जेन लूपर](https://twitter.com/jenlooper) और [क्रिस नोरिंग](https://twitter.com/softchris) द्वारा लिखा गया है। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/2-Regression/1-Tools/README.md b/translations/hi/2-Regression/1-Tools/README.md new file mode 100644 index 000000000..e78042ebb --- /dev/null +++ b/translations/hi/2-Regression/1-Tools/README.md @@ -0,0 +1,239 @@ + +# Python और Scikit-learn के साथ रिग्रेशन मॉडल्स शुरू करें + +![रिग्रेशन का स्केच नोट में सारांश](../../../../translated_images/ml-regression.4e4f70e3b3ed446e3ace348dec973e133fa5d3680fbc8412b61879507369b98d.hi.png) + +> स्केच नोट: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/9/) + +> ### [यह पाठ R में भी उपलब्ध है!](../../../../2-Regression/1-Tools/solution/R/lesson_1.html) + +## परिचय + +इन चार पाठों में, आप सीखेंगे कि रिग्रेशन मॉडल्स कैसे बनाए जाते हैं। हम जल्द ही चर्चा करेंगे कि इनका उपयोग किस लिए किया जाता है। लेकिन कुछ भी शुरू करने से पहले, सुनिश्चित करें कि आपके पास सही उपकरण हैं ताकि आप प्रक्रिया शुरू कर सकें! + +इस पाठ में, आप सीखेंगे: + +- अपने कंप्यूटर को स्थानीय मशीन लर्निंग कार्यों के लिए कॉन्फ़िगर करना। +- Jupyter नोटबुक्स के साथ काम करना। +- Scikit-learn का उपयोग करना, जिसमें इंस्टॉलेशन शामिल है। +- एक व्यावहारिक अभ्यास के साथ लीनियर रिग्रेशन का अन्वेषण करना। + +## इंस्टॉलेशन और कॉन्फ़िगरेशन + +[![मशीन लर्निंग के लिए शुरुआती - मशीन लर्निंग मॉडल्स बनाने के लिए अपने उपकरण सेट करें](https://img.youtube.com/vi/-DfeD2k2Kj0/0.jpg)](https://youtu.be/-DfeD2k2Kj0 "मशीन लर्निंग के लिए शुरुआती - मशीन लर्निंग मॉडल्स बनाने के लिए अपने उपकरण सेट करें") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें, अपने कंप्यूटर को मशीन लर्निंग के लिए कॉन्फ़िगर करने की प्रक्रिया के लिए एक छोटा वीडियो देखें। + +1. **Python इंस्टॉल करें**। सुनिश्चित करें कि [Python](https://www.python.org/downloads/) आपके कंप्यूटर पर इंस्टॉल है। आप Python का उपयोग कई डेटा साइंस और मशीन लर्निंग कार्यों के लिए करेंगे। अधिकांश कंप्यूटर सिस्टम में पहले से ही Python इंस्टॉल होता है। [Python Coding Packs](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott) भी उपलब्ध हैं, जो कुछ उपयोगकर्ताओं के लिए सेटअप को आसान बनाते हैं। + + हालांकि, Python के कुछ उपयोगों के लिए सॉफ़्टवेयर का एक संस्करण आवश्यक होता है, जबकि अन्य के लिए अलग संस्करण। इस कारण से, [वर्चुअल एनवायरनमेंट](https://docs.python.org/3/library/venv.html) में काम करना उपयोगी होता है। + +2. **Visual Studio Code इंस्टॉल करें**। सुनिश्चित करें कि आपके कंप्यूटर पर Visual Studio Code इंस्टॉल है। [Visual Studio Code इंस्टॉल करने](https://code.visualstudio.com/) के लिए इन निर्देशों का पालन करें। इस पाठ्यक्रम में आप Visual Studio Code में Python का उपयोग करेंगे, इसलिए [Python विकास के लिए Visual Studio Code को कॉन्फ़िगर करने](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) के बारे में जानकारी प्राप्त करना उपयोगी हो सकता है। + + > Python के साथ सहज होने के लिए इस [Learn modules](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott) संग्रह को देखें। + > + > [![Visual Studio Code के साथ Python सेटअप करें](https://img.youtube.com/vi/yyQM70vi7V8/0.jpg)](https://youtu.be/yyQM70vi7V8 "Visual Studio Code के साथ Python सेटअप करें") + > + > 🎥 ऊपर दी गई छवि पर क्लिक करें, Visual Studio Code में Python का उपयोग करने के लिए एक वीडियो देखें। + +3. **Scikit-learn इंस्टॉल करें**, [इन निर्देशों](https://scikit-learn.org/stable/install.html) का पालन करके। चूंकि आपको Python 3 का उपयोग सुनिश्चित करना है, इसलिए वर्चुअल एनवायरनमेंट का उपयोग करने की सिफारिश की जाती है। ध्यान दें, यदि आप M1 Mac पर इस लाइब्रेरी को इंस्टॉल कर रहे हैं, तो ऊपर दिए गए पृष्ठ पर विशेष निर्देश हैं। + +4. **Jupyter Notebook इंस्टॉल करें**। आपको [Jupyter पैकेज इंस्टॉल](https://pypi.org/project/jupyter/) करना होगा। + +## आपका मशीन लर्निंग लेखन वातावरण + +आप **नोटबुक्स** का उपयोग अपने Python कोड को विकसित करने और मशीन लर्निंग मॉडल्स बनाने के लिए करेंगे। यह प्रकार की फ़ाइल डेटा वैज्ञानिकों के लिए एक सामान्य उपकरण है, और इसे `.ipynb` एक्सटेंशन द्वारा पहचाना जा सकता है। + +नोटबुक्स एक इंटरैक्टिव वातावरण हैं जो डेवलपर को कोड लिखने और उसके आसपास नोट्स और दस्तावेज़ लिखने की अनुमति देते हैं, जो शोध-उन्मुख परियोजनाओं के लिए काफी उपयोगी है। + +[![मशीन लर्निंग के लिए शुरुआती - रिग्रेशन मॉडल्स बनाने के लिए Jupyter नोटबुक्स सेट करें](https://img.youtube.com/vi/7E-jC8FLA2E/0.jpg)](https://youtu.be/7E-jC8FLA2E "मशीन लर्निंग के लिए शुरुआती - रिग्रेशन मॉडल्स बनाने के लिए Jupyter नोटबुक्स सेट करें") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें, इस अभ्यास को पूरा करने के लिए एक छोटा वीडियो देखें। + +### अभ्यास - नोटबुक के साथ काम करें + +इस फ़ोल्डर में, आपको _notebook.ipynb_ फ़ाइल मिलेगी। + +1. _notebook.ipynb_ को Visual Studio Code में खोलें। + + एक Jupyter सर्वर Python 3+ के साथ शुरू होगा। आप नोटबुक के उन क्षेत्रों को पाएंगे जिन्हें `run` किया जा सकता है, कोड के टुकड़े। आप कोड ब्लॉक को चलाने के लिए उस आइकन का चयन कर सकते हैं जो प्ले बटन जैसा दिखता है। + +2. `md` आइकन का चयन करें और थोड़ा मार्कडाउन जोड़ें, और निम्नलिखित टेक्स्ट लिखें **# Welcome to your notebook**। + + इसके बाद, कुछ Python कोड जोड़ें। + +3. कोड ब्लॉक में **print('hello notebook')** टाइप करें। +4. कोड चलाने के लिए तीर का चयन करें। + + आपको प्रिंटेड स्टेटमेंट देखना चाहिए: + + ```output + hello notebook + ``` + +![VS Code में एक नोटबुक खुला हुआ](../../../../translated_images/notebook.4a3ee31f396b88325607afda33cadcc6368de98040ff33942424260aa84d75f2.hi.jpg) + +आप अपने कोड को टिप्पणियों के साथ इंटरलीफ कर सकते हैं ताकि नोटबुक को स्वयं दस्तावेज़ित किया जा सके। + +✅ एक मिनट के लिए सोचें कि एक वेब डेवलपर का कार्य वातावरण डेटा वैज्ञानिक के कार्य वातावरण से कितना अलग है। + +## Scikit-learn के साथ शुरुआत + +अब जब Python आपके स्थानीय वातावरण में सेट हो गया है, और आप Jupyter नोटबुक्स के साथ सहज हैं, तो चलिए Scikit-learn के साथ भी उतना ही सहज हो जाते हैं (इसे `sci` के रूप में उच्चारित करें, जैसे `science`)। Scikit-learn आपको मशीन लर्निंग कार्यों को करने में मदद करने के लिए [विस्तृत API](https://scikit-learn.org/stable/modules/classes.html#api-ref) प्रदान करता है। + +उनकी [वेबसाइट](https://scikit-learn.org/stable/getting_started.html) के अनुसार, "Scikit-learn एक ओपन सोर्स मशीन लर्निंग लाइब्रेरी है जो सुपरवाइज़्ड और अनसुपरवाइज़्ड लर्निंग का समर्थन करती है। यह मॉडल फिटिंग, डेटा प्रीप्रोसेसिंग, मॉडल चयन और मूल्यांकन, और कई अन्य उपयोगिताओं के लिए विभिन्न उपकरण प्रदान करती है।" + +इस पाठ्यक्रम में, आप Scikit-learn और अन्य उपकरणों का उपयोग करके मशीन लर्निंग मॉडल्स बनाएंगे ताकि 'पारंपरिक मशीन लर्निंग' कार्यों को अंजाम दिया जा सके। हमने जानबूझकर न्यूरल नेटवर्क्स और डीप लर्निंग को शामिल नहीं किया है, क्योंकि इन्हें हमारे आगामी 'AI for Beginners' पाठ्यक्रम में बेहतर तरीके से कवर किया जाएगा। + +Scikit-learn मॉडल्स को बनाना और उनका मूल्यांकन करना आसान बनाता है। यह मुख्य रूप से संख्यात्मक डेटा का उपयोग करता है और सीखने के उपकरण के रूप में उपयोग के लिए कई तैयार किए गए डेटासेट्स प्रदान करता है। इसमें छात्रों के लिए आज़माने के लिए प्री-बिल्ट मॉडल्स भी शामिल हैं। चलिए पहले Scikit-learn के साथ कुछ बुनियादी डेटा का उपयोग करके प्रीपैकेज्ड डेटा लोड करने और एक बिल्ट-इन एस्टीमेटर का उपयोग करने की प्रक्रिया का अन्वेषण करते हैं। + +## अभ्यास - आपका पहला Scikit-learn नोटबुक + +> यह ट्यूटोरियल Scikit-learn की वेबसाइट पर [लीनियर रिग्रेशन उदाहरण](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py) से प्रेरित है। + +[![मशीन लर्निंग के लिए शुरुआती - Python में आपका पहला लीनियर रिग्रेशन प्रोजेक्ट](https://img.youtube.com/vi/2xkXL5EUpS0/0.jpg)](https://youtu.be/2xkXL5EUpS0 "मशीन लर्निंग के लिए शुरुआती - Python में आपका पहला लीनियर रिग्रेशन प्रोजेक्ट") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें, इस अभ्यास को पूरा करने के लिए एक छोटा वीडियो देखें। + +इस पाठ से संबंधित _notebook.ipynb_ फ़ाइल में, सभी सेल्स को 'trash can' आइकन दबाकर साफ़ करें। + +इस सेक्शन में, आप Scikit-learn में सीखने के उद्देश्यों के लिए बनाए गए एक छोटे डेटासेट के साथ काम करेंगे जो डायबिटीज़ के बारे में है। कल्पना करें कि आप डायबिटीज़ रोगियों के लिए एक उपचार का परीक्षण करना चाहते हैं। मशीन लर्निंग मॉडल्स आपको यह निर्धारित करने में मदद कर सकते हैं कि कौन से रोगी उपचार के लिए बेहतर प्रतिक्रिया देंगे, चर के संयोजनों के आधार पर। यहां तक कि एक बहुत ही बुनियादी रिग्रेशन मॉडल, जब विज़ुअलाइज़ किया जाता है, तो चर के बारे में जानकारी दिखा सकता है जो आपको अपने सैद्धांतिक क्लिनिकल ट्रायल्स को व्यवस्थित करने में मदद कर सकता है। + +✅ रिग्रेशन विधियों के कई प्रकार होते हैं, और आप कौन सा चुनते हैं यह उस उत्तर पर निर्भर करता है जिसे आप ढूंढ रहे हैं। यदि आप किसी दिए गए उम्र के व्यक्ति की संभावित ऊंचाई की भविष्यवाणी करना चाहते हैं, तो आप लीनियर रिग्रेशन का उपयोग करेंगे, क्योंकि आप एक **संख्यात्मक मान** की तलाश कर रहे हैं। यदि आप यह पता लगाना चाहते हैं कि किसी प्रकार के भोजन को शाकाहारी माना जाना चाहिए या नहीं, तो आप एक **श्रेणी असाइनमेंट** की तलाश कर रहे हैं, इसलिए आप लॉजिस्टिक रिग्रेशन का उपयोग करेंगे। आप बाद में लॉजिस्टिक रिग्रेशन के बारे में अधिक जानेंगे। डेटा से कुछ प्रश्न पूछने के बारे में सोचें, और इनमें से कौन सी विधि अधिक उपयुक्त होगी। + +चलो इस कार्य को शुरू करते हैं। + +### लाइब्रेरीज़ इंपोर्ट करें + +इस कार्य के लिए हम कुछ लाइब्रेरीज़ इंपोर्ट करेंगे: + +- **matplotlib**। यह एक उपयोगी [ग्राफिंग टूल](https://matplotlib.org/) है और हम इसका उपयोग एक लाइन प्लॉट बनाने के लिए करेंगे। +- **numpy**। [numpy](https://numpy.org/doc/stable/user/whatisnumpy.html) Python में संख्यात्मक डेटा को संभालने के लिए एक उपयोगी लाइब्रेरी है। +- **sklearn**। यह [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) लाइब्रेरी है। + +अपने कार्यों में मदद के लिए कुछ लाइब्रेरीज़ इंपोर्ट करें। + +1. निम्नलिखित कोड टाइप करके इंपोर्ट्स जोड़ें: + + ```python + import matplotlib.pyplot as plt + import numpy as np + from sklearn import datasets, linear_model, model_selection + ``` + + ऊपर आप `matplotlib`, `numpy` और `sklearn` से `datasets`, `linear_model` और `model_selection` इंपोर्ट कर रहे हैं। `model_selection` का उपयोग डेटा को ट्रेनिंग और टेस्ट सेट्स में विभाजित करने के लिए किया जाता है। + +### डायबिटीज़ डेटासेट + +बिल्ट-इन [डायबिटीज़ डेटासेट](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) में डायबिटीज़ के आसपास 442 नमूनों का डेटा शामिल है, जिसमें 10 फीचर वेरिएबल्स हैं, जिनमें से कुछ शामिल हैं: + +- age: उम्र वर्षों में +- bmi: बॉडी मास इंडेक्स +- bp: औसत रक्तचाप +- s1 tc: टी-सेल्स (सफेद रक्त कोशिकाओं का एक प्रकार) + +✅ इस डेटासेट में डायबिटीज़ के शोध के लिए महत्वपूर्ण फीचर वेरिएबल के रूप में 'sex' की अवधारणा शामिल है। कई मेडिकल डेटासेट्स में इस प्रकार का बाइनरी वर्गीकरण शामिल होता है। सोचें कि इस प्रकार की वर्गीकरण कैसे आबादी के कुछ हिस्सों को उपचार से बाहर कर सकती है। + +अब, X और y डेटा लोड करें। + +> 🎓 याद रखें, यह सुपरवाइज़्ड लर्निंग है, और हमें एक नामित 'y' टारगेट की आवश्यकता है। + +एक नए कोड सेल में, डायबिटीज़ डेटासेट को `load_diabetes()` कॉल करके लोड करें। इनपुट `return_X_y=True` संकेत देता है कि `X` एक डेटा मैट्रिक्स होगा, और `y` रिग्रेशन टारगेट होगा। + +1. डेटा मैट्रिक्स के आकार और इसके पहले तत्व को दिखाने के लिए कुछ प्रिंट कमांड जोड़ें: + + ```python + X, y = datasets.load_diabetes(return_X_y=True) + print(X.shape) + print(X[0]) + ``` + + जो प्रतिक्रिया आप वापस प्राप्त कर रहे हैं, वह एक ट्यूपल है। आप जो कर रहे हैं वह ट्यूपल के पहले दो मानों को क्रमशः `X` और `y` को असाइन करना है। [ट्यूपल्स](https://wikipedia.org/wiki/Tuple) के बारे में अधिक जानें। + + आप देख सकते हैं कि इस डेटा में 442 आइटम्स हैं जो 10 तत्वों के एरेज़ में आकारित हैं: + + ```text + (442, 10) + [ 0.03807591 0.05068012 0.06169621 0.02187235 -0.0442235 -0.03482076 + -0.04340085 -0.00259226 0.01990842 -0.01764613] + ``` + + ✅ डेटा और रिग्रेशन टारगेट के बीच संबंध के बारे में सोचें। लीनियर रिग्रेशन फीचर X और टारगेट वेरिएबल y के बीच संबंधों की भविष्यवाणी करता है। क्या आप डायबिटीज़ डेटासेट के लिए [टारगेट](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) को दस्तावेज़ में पा सकते हैं? यह डेटासेट क्या प्रदर्शित कर रहा है, दिए गए टारगेट को देखते हुए? + +2. इसके बाद, इस डेटासेट के एक हिस्से को प्लॉट करने के लिए चुनें, डेटासेट के तीसरे कॉलम का चयन करके। आप `:` ऑपरेटर का उपयोग करके सभी पंक्तियों का चयन कर सकते हैं, और फिर इंडेक्स (2) का उपयोग करके तीसरे कॉलम का चयन कर सकते हैं। आप `reshape(n_rows, n_columns)` का उपयोग करके डेटा को 2D एरे में आकार दे सकते हैं - जैसा कि प्लॉटिंग के लिए आवश्यक है। यदि किसी पैरामीटर का मान -1 है, तो संबंधित आयाम स्वचालित रूप से गणना किया जाता है। + + ```python + X = X[:, 2] + X = X.reshape((-1,1)) + ``` + + ✅ किसी भी समय, डेटा का आकार जांचने के लिए इसे प्रिंट करें। + +3. अब जब आपके पास डेटा प्लॉट करने के लिए तैयार है, तो आप देख सकते हैं कि क्या मशीन इस डेटासेट में संख्याओं के बीच एक तार्किक विभाजन निर्धारित करने में मदद कर सकती है। ऐसा करने के लिए, आपको डेटा (X) और टारगेट (y) दोनों को टेस्ट और ट्रेनिंग सेट्स में विभाजित करना होगा। Scikit-learn में इसे करने का एक सीधा तरीका है; आप अपने टेस्ट डेटा को एक दिए गए बिंदु पर विभाजित कर सकते हैं। + + ```python + X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33) + ``` + +4. अब आप अपने मॉडल को ट्रेन करने के लिए तैयार हैं! लीनियर रिग्रेशन मॉडल लोड करें और इसे अपने X और y ट्रेनिंग सेट्स के साथ `model.fit()` का उपयोग करके ट्रेन करें: + + ```python + model = linear_model.LinearRegression() + model.fit(X_train, y_train) + ``` + + ✅ `model.fit()` एक फ़ंक्शन है जिसे आप TensorFlow जैसे कई ML लाइब्रेरीज़ में देखेंगे। + +5. फिर, टेस्ट डेटा का उपयोग करके एक प्रेडिक्शन बनाएं, `predict()` फ़ंक्शन का उपयोग करके। इसका उपयोग डेटा समूहों के बीच लाइन खींचने के लिए किया जाएगा। + + ```python + y_pred = model.predict(X_test) + ``` + +6. अब डेटा को प्लॉट में दिखाने का समय है। Matplotlib इस कार्य के लिए एक बहुत उपयोगी टूल है। सभी X और y टेस्ट डेटा का एक स्कैटरप्लॉट बनाएं, और मॉडल के डेटा समूहों के बीच सबसे उपयुक्त स्थान पर एक लाइन खींचने के लिए प्रेडिक्शन का उपयोग करें। + + ```python + plt.scatter(X_test, y_test, color='black') + plt.plot(X_test, y_pred, color='blue', linewidth=3) + plt.xlabel('Scaled BMIs') + plt.ylabel('Disease Progression') + plt.title('A Graph Plot Showing Diabetes Progression Against BMI') + plt.show() + ``` + + ![डायबिटीज़ के आसपास डेटा पॉइंट्स दिखाने वाला एक स्कैटरप्लॉट](../../../../translated_images/scatterplot.ad8b356bcbb33be68d54050e09b9b7bfc03e94fde7371f2609ae43f4c563b2d7.hi.png) +✅ सोचें कि यहाँ क्या हो रहा है। एक सीधी रेखा कई छोटे डेटा बिंदुओं के बीच से गुजर रही है, लेकिन यह वास्तव में क्या कर रही है? क्या आप देख सकते हैं कि इस रेखा का उपयोग करके आप यह अनुमान लगा सकते हैं कि एक नया, अनदेखा डेटा बिंदु प्लॉट के y अक्ष के संबंध में कहाँ फिट होगा? इस मॉडल के व्यावहारिक उपयोग को शब्दों में व्यक्त करने की कोशिश करें। + +बधाई हो, आपने अपना पहला लीनियर रिग्रेशन मॉडल बनाया, इसके साथ एक भविष्यवाणी की, और इसे एक प्लॉट में प्रदर्शित किया! + +--- +## 🚀चुनौती + +इस डेटा सेट से एक अलग वेरिएबल को प्लॉट करें। संकेत: इस लाइन को एडिट करें: `X = X[:,2]`। इस डेटा सेट के टारगेट को देखते हुए, आप डायबिटीज के रोग के प्रगति के बारे में क्या पता लगा सकते हैं? + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/10/) + +## समीक्षा और स्व-अध्ययन + +इस ट्यूटोरियल में, आपने सिंपल लीनियर रिग्रेशन के साथ काम किया, न कि यूनिवेरिएट या मल्टीपल लीनियर रिग्रेशन के साथ। इन विधियों के बीच के अंतर के बारे में थोड़ा पढ़ें, या [इस वीडियो](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef) को देखें। + +रिग्रेशन की अवधारणा के बारे में अधिक पढ़ें और सोचें कि इस तकनीक से किस प्रकार के प्रश्नों का उत्तर दिया जा सकता है। अपनी समझ को गहरा करने के लिए यह [ट्यूटोरियल](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) लें। + +## असाइनमेंट + +[एक अलग डेटा सेट](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/2-Regression/1-Tools/assignment.md b/translations/hi/2-Regression/1-Tools/assignment.md new file mode 100644 index 000000000..0212b3c2d --- /dev/null +++ b/translations/hi/2-Regression/1-Tools/assignment.md @@ -0,0 +1,27 @@ + +# स्किकिट-लर्न के साथ रिग्रेशन + +## निर्देश + +स्किकिट-लर्न में [लिनेरुड डेटासेट](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html#sklearn.datasets.load_linnerud) पर नज़र डालें। इस डेटासेट में कई [लक्ष्य](https://scikit-learn.org/stable/datasets/toy_dataset.html#linnerrud-dataset) शामिल हैं: 'यह बीस मध्यम आयु वर्ग के पुरुषों से एक फिटनेस क्लब में एकत्र किए गए तीन व्यायाम (डेटा) और तीन शारीरिक (लक्ष्य) चर पर आधारित है।' + +अपने शब्दों में, एक रिग्रेशन मॉडल बनाने की प्रक्रिया का वर्णन करें, जो कमर के आकार और कितने सिटअप्स पूरे किए गए हैं, उनके बीच संबंध को प्रदर्शित करे। इस डेटासेट में अन्य डेटा पॉइंट्स के लिए भी यही प्रक्रिया अपनाएं। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| ---------------------------- | ------------------------------------ | ---------------------------- | -------------------------- | +| एक वर्णनात्मक पैराग्राफ जमा करें | अच्छी तरह से लिखा गया पैराग्राफ जमा किया गया है | कुछ वाक्य जमा किए गए हैं | कोई विवरण प्रस्तुत नहीं किया गया | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/2-Regression/1-Tools/notebook.ipynb b/translations/hi/2-Regression/1-Tools/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/hi/2-Regression/1-Tools/solution/Julia/README.md b/translations/hi/2-Regression/1-Tools/solution/Julia/README.md new file mode 100644 index 000000000..fad8d2113 --- /dev/null +++ b/translations/hi/2-Regression/1-Tools/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb b/translations/hi/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb new file mode 100644 index 000000000..f0507baf2 --- /dev/null +++ b/translations/hi/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb @@ -0,0 +1,447 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_1-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "c18d3bd0bd8ae3878597e89dcd1fa5c1", + "translation_date": "2025-09-04T01:36:12+00:00", + "source_file": "2-Regression/1-Tools/solution/R/lesson_1-R.ipynb", + "language_code": "hi" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "YJUHCXqK57yz" + } + }, + { + "cell_type": "markdown", + "source": [ + "## रिग्रेशन का परिचय - पाठ 1\n", + "\n", + "#### इसे परिप्रेक्ष्य में रखना\n", + "\n", + "✅ रिग्रेशन के कई प्रकार के तरीके होते हैं, और आप कौन सा तरीका चुनते हैं, यह इस पर निर्भर करता है कि आप किस प्रश्न का उत्तर ढूंढ रहे हैं। यदि आप किसी दिए गए उम्र के व्यक्ति की संभावित ऊंचाई का अनुमान लगाना चाहते हैं, तो आप `linear regression` का उपयोग करेंगे, क्योंकि आप एक **संख्यात्मक मान** की तलाश में हैं। यदि आप यह जानना चाहते हैं कि किसी प्रकार के व्यंजन को शाकाहारी माना जाना चाहिए या नहीं, तो आप एक **श्रेणी निर्धारण** की तलाश में हैं, इसलिए आप `logistic regression` का उपयोग करेंगे। आप बाद में लॉजिस्टिक रिग्रेशन के बारे में और जानेंगे। डेटा से पूछे जा सकने वाले कुछ प्रश्नों के बारे में सोचें, और इनमें से कौन सा तरीका अधिक उपयुक्त होगा।\n", + "\n", + "इस खंड में, आप [डायबिटीज़ पर एक छोटे डेटा सेट](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) के साथ काम करेंगे। कल्पना करें कि आप मधुमेह रोगियों के लिए एक उपचार का परीक्षण करना चाहते हैं। मशीन लर्निंग मॉडल यह निर्धारित करने में मदद कर सकते हैं कि कौन से रोगी उपचार के लिए बेहतर प्रतिक्रिया देंगे, विभिन्न चर के संयोजनों के आधार पर। यहां तक कि एक बहुत ही बुनियादी रिग्रेशन मॉडल, जब विज़ुअलाइज़ किया जाता है, तो उन चर के बारे में जानकारी दिखा सकता है जो आपके सैद्धांतिक नैदानिक परीक्षणों को व्यवस्थित करने में मदद कर सकते हैं।\n", + "\n", + "तो चलिए, इस कार्य को शुरू करते हैं!\n", + "\n", + "

                                \n", + " \n", + "

                                @allison_horst द्वारा कलाकृति
                                \n", + "\n", + "\n" + ], + "metadata": { + "id": "LWNNzfqd6feZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. हमारे टूल सेट को लोड करना\n", + "\n", + "इस कार्य के लिए, हमें निम्नलिखित पैकेजों की आवश्यकता होगी:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) एक [R पैकेजों का संग्रह](https://www.tidyverse.org/packages) है, जिसे डेटा साइंस को तेज़, आसान और मज़ेदार बनाने के लिए डिज़ाइन किया गया है!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) फ्रेमवर्क एक [पैकेजों का संग्रह](https://www.tidymodels.org/packages/) है, जो मॉडलिंग और मशीन लर्निंग के लिए उपयोगी है।\n", + "\n", + "आप इन्हें इस प्रकार इंस्टॉल कर सकते हैं:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\"))`\n", + "\n", + "नीचे दिया गया स्क्रिप्ट यह जांचता है कि इस मॉड्यूल को पूरा करने के लिए आवश्यक पैकेज आपके पास हैं या नहीं, और यदि कुछ पैकेज गायब हैं तो उन्हें आपके लिए इंस्टॉल कर देता है।\n" + ], + "metadata": { + "id": "FIo2YhO26wI9" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse, tidymodels)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "id": "cIA9fz9v7Dss", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2df7073b-86b2-4b32-cb86-0da605a0dc11" + } + }, + { + "cell_type": "markdown", + "source": [ + "अब, आइए इन शानदार पैकेजों को लोड करें और उन्हें हमारे वर्तमान R सत्र में उपलब्ध कराएं। (यह केवल उदाहरण के लिए है, `pacman::p_load()` ने यह पहले ही आपके लिए कर दिया है)\n" + ], + "metadata": { + "id": "gpO_P_6f9WUG" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# load the core Tidyverse packages\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# load the core Tidymodels packages\r\n", + "library(tidymodels)\r\n" + ], + "outputs": [], + "metadata": { + "id": "NLMycgG-9ezO" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. डायबिटीज डेटा सेट\n", + "\n", + "इस अभ्यास में, हम अपने रिग्रेशन कौशल का प्रदर्शन करेंगे और डायबिटीज डेटा सेट पर भविष्यवाणियां करेंगे। [डायबिटीज डेटा सेट](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt) में डायबिटीज से संबंधित `442 नमूनों` का डेटा शामिल है, जिसमें 10 भविष्यवाणी करने वाले फीचर वेरिएबल्स हैं: `उम्र`, `लिंग`, `बॉडी मास इंडेक्स`, `औसत ब्लड प्रेशर`, और `छह ब्लड सीरम माप`, साथ ही एक परिणाम वेरिएबल `y`: एक साल बाद बीमारी की प्रगति का मात्रात्मक माप।\n", + "\n", + "|अवलोकनों की संख्या|442|\n", + "|------------------|:---|\n", + "|भविष्यवाणी करने वाले वेरिएबल्स की संख्या|पहले 10 कॉलम संख्यात्मक भविष्यवाणी करने वाले हैं|\n", + "|परिणाम/लक्ष्य|कॉलम 11 एक साल बाद बीमारी की प्रगति का मात्रात्मक माप है|\n", + "|भविष्यवाणी करने वाले वेरिएबल्स की जानकारी|- उम्र (सालों में)\n", + "||- लिंग\n", + "||- बॉडी मास इंडेक्स (BMI)\n", + "||- औसत ब्लड प्रेशर (BP)\n", + "||- s1 tc, कुल सीरम कोलेस्ट्रॉल\n", + "||- s2 ldl, लो-डेंसिटी लिपोप्रोटीन\n", + "||- s3 hdl, हाई-डेंसिटी लिपोप्रोटीन\n", + "||- s4 tch, कुल कोलेस्ट्रॉल / HDL\n", + "||- s5 ltg, संभवतः सीरम ट्राइग्लिसराइड्स स्तर का लॉग\n", + "||- s6 glu, ब्लड शुगर स्तर|\n", + "\n", + "> 🎓 याद रखें, यह सुपरवाइज्ड लर्निंग है, और हमें एक नामित 'y' लक्ष्य की आवश्यकता है।\n", + "\n", + "R के साथ डेटा को मैनिपुलेट करने से पहले, आपको डेटा को R की मेमोरी में इंपोर्ट करना होगा, या डेटा तक पहुंचने के लिए R के साथ एक कनेक्शन बनाना होगा।\n", + "\n", + "> [readr](https://readr.tidyverse.org/) पैकेज, जो Tidyverse का हिस्सा है, R में आयताकार डेटा को तेज़ और आसान तरीके से पढ़ने की सुविधा प्रदान करता है।\n", + "\n", + "अब, आइए इस स्रोत URL से प्रदान किए गए डायबिटीज डेटा सेट को लोड करें: \n", + "\n", + "साथ ही, हम अपने डेटा पर एक त्वरित जांच करेंगे `glimpse()` का उपयोग करके और पहले 5 पंक्तियों को `slice()` के माध्यम से प्रदर्शित करेंगे।\n", + "\n", + "आगे बढ़ने से पहले, आइए कुछ ऐसा भी जानें जिसे आप अक्सर R कोड में देखेंगे 🥁🥁: पाइप ऑपरेटर `%>%`\n", + "\n", + "पाइप ऑपरेटर (`%>%`) तार्किक क्रम में ऑपरेशन्स को अंजाम देता है, जिसमें एक ऑब्जेक्ट को आगे किसी फंक्शन या कॉल एक्सप्रेशन में पास किया जाता है। आप पाइप ऑपरेटर को अपने कोड में \"और फिर\" कहने जैसा समझ सकते हैं।\n" + ], + "metadata": { + "id": "KM6iXLH996Cl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import the data set\r\n", + "diabetes <- read_table2(file = \"https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt\")\r\n", + "\r\n", + "\r\n", + "# Get a glimpse and dimensions of the data\r\n", + "glimpse(diabetes)\r\n", + "\r\n", + "\r\n", + "# Select the first 5 rows of the data\r\n", + "diabetes %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "Z1geAMhM-bSP" + } + }, + { + "cell_type": "markdown", + "source": [ + "`glimpse()` हमें दिखाता है कि इस डेटा में 442 पंक्तियाँ और 11 कॉलम हैं, और सभी कॉलम का डेटा प्रकार `double` है।\n", + "\n", + "
                                \n", + "\n", + "> `glimpse()` और `slice()` [`dplyr`](https://dplyr.tidyverse.org/) की फंक्शन हैं। Dplyr, जो Tidyverse का हिस्सा है, डेटा को मैनेज करने का एक व्याकरण है, जो एक समान सेट के क्रियाओं (verbs) को प्रदान करता है, जिससे आप डेटा मैनेजमेंट से जुड़ी आम समस्याओं को हल कर सकते हैं।\n", + "\n", + "
                                \n", + "\n", + "अब जब हमारे पास डेटा है, तो इस अभ्यास के लिए हम एक फीचर (`bmi`) पर ध्यान केंद्रित करेंगे। इसके लिए हमें वांछित कॉलम को चुनना होगा। तो, हम यह कैसे करेंगे?\n", + "\n", + "[`dplyr::select()`](https://dplyr.tidyverse.org/reference/select.html) हमें डेटा फ्रेम में कॉलम को *चुनने* (और वैकल्पिक रूप से उनका नाम बदलने) की अनुमति देता है।\n" + ], + "metadata": { + "id": "UwjVT1Hz-c3Z" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select predictor feature `bmi` and outcome `y`\r\n", + "diabetes_select <- diabetes %>% \r\n", + " select(c(bmi, y))\r\n", + "\r\n", + "# Print the first 5 rows\r\n", + "diabetes_select %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "RDY1oAKI-m80" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. प्रशिक्षण और परीक्षण डेटा\n", + "\n", + "सुपरवाइज्ड लर्निंग में डेटा को दो उपसेट्स में *विभाजित* करना आम प्रथा है; एक (आमतौर पर बड़ा) सेट जिसका उपयोग मॉडल को प्रशिक्षित करने के लिए किया जाता है, और एक छोटा \"होल्ड-बैक\" सेट जिसका उपयोग यह देखने के लिए किया जाता है कि मॉडल ने कैसा प्रदर्शन किया।\n", + "\n", + "अब जब हमारे पास डेटा तैयार है, तो हम देख सकते हैं कि क्या मशीन इस डेटासेट में संख्याओं के बीच एक तार्किक विभाजन निर्धारित करने में मदद कर सकती है। हम [rsample](https://tidymodels.github.io/rsample/) पैकेज का उपयोग कर सकते हैं, जो Tidymodels फ्रेमवर्क का हिस्सा है, एक ऑब्जेक्ट बनाने के लिए जिसमें डेटा को *कैसे* विभाजित करना है इसकी जानकारी होती है, और फिर दो और rsample फ़ंक्शन्स का उपयोग करके बनाए गए प्रशिक्षण और परीक्षण सेट्स को निकाल सकते हैं:\n" + ], + "metadata": { + "id": "SDk668xK-tc3" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\r\n", + "# Split 67% of the data for training and the rest for tesing\r\n", + "diabetes_split <- diabetes_select %>% \r\n", + " initial_split(prop = 0.67)\r\n", + "\r\n", + "# Extract the resulting train and test sets\r\n", + "diabetes_train <- training(diabetes_split)\r\n", + "diabetes_test <- testing(diabetes_split)\r\n", + "\r\n", + "# Print the first 3 rows of the training set\r\n", + "diabetes_train %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "EqtHx129-1h-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. Tidymodels के साथ एक लीनियर रिग्रेशन मॉडल ट्रेन करें\n", + "\n", + "अब हम अपने मॉडल को ट्रेन करने के लिए तैयार हैं!\n", + "\n", + "Tidymodels में, आप `parsnip()` का उपयोग करके तीन मुख्य अवधारणाओं को निर्दिष्ट करके मॉडल सेट करते हैं:\n", + "\n", + "- मॉडल का **प्रकार** विभिन्न मॉडलों को अलग करता है, जैसे लीनियर रिग्रेशन, लॉजिस्टिक रिग्रेशन, डिसीजन ट्री मॉडल, आदि।\n", + "\n", + "- मॉडल का **मोड** सामान्य विकल्पों जैसे रिग्रेशन और क्लासिफिकेशन को शामिल करता है; कुछ मॉडल प्रकार इनमें से किसी एक को सपोर्ट करते हैं, जबकि कुछ केवल एक ही मोड रखते हैं।\n", + "\n", + "- मॉडल का **इंजन** वह गणनात्मक टूल है जिसका उपयोग मॉडल को फिट करने के लिए किया जाएगा। अक्सर ये R पैकेज होते हैं, जैसे **`\"lm\"`** या **`\"ranger\"`**।\n", + "\n", + "यह मॉडलिंग जानकारी एक मॉडल स्पेसिफिकेशन में कैप्चर की जाती है, तो चलिए इसे बनाते हैं!\n" + ], + "metadata": { + "id": "sBOS-XhB-6v7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- \r\n", + " # Type\r\n", + " linear_reg() %>% \r\n", + " # Engine\r\n", + " set_engine(\"lm\") %>% \r\n", + " # Mode\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Print the model specification\r\n", + "lm_spec" + ], + "outputs": [], + "metadata": { + "id": "20OwEw20--t3" + } + }, + { + "cell_type": "markdown", + "source": [ + "एक बार मॉडल को *निर्धारित* कर लिया गया हो, तो मॉडल को [`fit()`](https://parsnip.tidymodels.org/reference/fit.html) फ़ंक्शन का उपयोग करके `अनुमानित` या `प्रशिक्षित` किया जा सकता है, आमतौर पर एक सूत्र और कुछ डेटा का उपयोग करके।\n", + "\n", + "`y ~ .` का मतलब है कि हम `y` को पूर्वानुमानित मात्रा/लक्ष्य के रूप में फिट करेंगे, जिसे सभी पूर्वानुमानकों/विशेषताओं द्वारा समझाया जाएगा, यानी `.` (इस मामले में, हमारे पास केवल एक पूर्वानुमानक है: `bmi`)।\n" + ], + "metadata": { + "id": "_oDHs89k_CJj" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>%\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Train a linear regression model\r\n", + "lm_mod <- lm_spec %>% \r\n", + " fit(y ~ ., data = diabetes_train)\r\n", + "\r\n", + "# Print the model\r\n", + "lm_mod" + ], + "outputs": [], + "metadata": { + "id": "YlsHqd-q_GJQ" + } + }, + { + "cell_type": "markdown", + "source": [ + "मॉडल आउटपुट से, हम प्रशिक्षण के दौरान सीखे गए गुणांक देख सकते हैं। ये गुणांक उस सर्वश्रेष्ठ फिट लाइन के गुणांक को दर्शाते हैं, जो वास्तविक और अनुमानित चर के बीच कुल त्रुटि को न्यूनतम करता है। \n", + "
                                \n", + "\n", + "## 5. परीक्षण सेट पर भविष्यवाणियां करें\n", + "\n", + "अब जब हमने एक मॉडल प्रशिक्षित कर लिया है, तो हम इसका उपयोग परीक्षण डेटासेट के लिए बीमारी की प्रगति y की भविष्यवाणी करने के लिए कर सकते हैं, [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html) का उपयोग करके। इसका उपयोग डेटा समूहों के बीच रेखा खींचने के लिए किया जाएगा। \n" + ], + "metadata": { + "id": "kGZ22RQj_Olu" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\r\n", + "predictions <- lm_mod %>% \r\n", + " predict(new_data = diabetes_test)\r\n", + "\r\n", + "# Print out some of the predictions\r\n", + "predictions %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "nXHbY7M2_aao" + } + }, + { + "cell_type": "markdown", + "source": [ + "वाह! 💃🕺 हमने अभी एक मॉडल को प्रशिक्षित किया और इसका उपयोग भविष्यवाणियां करने के लिए किया!\n", + "\n", + "भविष्यवाणियां करते समय, tidymodels की परंपरा है कि हमेशा परिणामों का एक टिबल/डेटा फ्रेम तैयार किया जाए जिसमें मानकीकृत कॉलम नाम हों। यह मूल डेटा और भविष्यवाणियों को एक उपयोगी प्रारूप में संयोजित करना आसान बनाता है, जिसे बाद के कार्यों जैसे कि प्लॉटिंग के लिए उपयोग किया जा सकता है।\n", + "\n", + "`dplyr::bind_cols()` कई डेटा फ्रेम्स को कॉलम के रूप में कुशलतापूर्वक जोड़ता है।\n" + ], + "metadata": { + "id": "R_JstwUY_bIs" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Combine the predictions and the original test set\r\n", + "results <- diabetes_test %>% \r\n", + " bind_cols(predictions)\r\n", + "\r\n", + "\r\n", + "results %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "RybsMJR7_iI8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 6. मॉडलिंग परिणामों का प्लॉट करें\n", + "\n", + "अब, इसे विज़ुअली देखने का समय है 📈। हम टेस्ट सेट के सभी `y` और `bmi` मानों का एक स्कैटर प्लॉट बनाएंगे, फिर भविष्यवाणियों का उपयोग करके मॉडल के डेटा समूहों के बीच सबसे उपयुक्त स्थान पर एक रेखा खींचेंगे।\n", + "\n", + "R में ग्राफ बनाने के लिए कई सिस्टम हैं, लेकिन `ggplot2` सबसे सुंदर और सबसे बहुमुखी में से एक है। यह आपको **स्वतंत्र घटकों को मिलाकर** ग्राफ बनाने की अनुमति देता है।\n" + ], + "metadata": { + "id": "XJbYbMZW_n_s" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plot\r\n", + "theme_set(theme_light())\r\n", + "# Create a scatter plot\r\n", + "results %>% \r\n", + " ggplot(aes(x = bmi)) +\r\n", + " # Add a scatter plot\r\n", + " geom_point(aes(y = y), size = 1.6) +\r\n", + " # Add a line plot\r\n", + " geom_line(aes(y = .pred), color = \"blue\", size = 1.5)" + ], + "outputs": [], + "metadata": { + "id": "R9tYp3VW_sTn" + } + }, + { + "cell_type": "markdown", + "source": [ + "✅ यहाँ थोड़ा सोचें कि यहाँ क्या हो रहा है। एक सीधी रेखा कई छोटे डेटा बिंदुओं के बीच से गुजर रही है, लेकिन यह वास्तव में क्या कर रही है? क्या आप देख सकते हैं कि इस रेखा का उपयोग करके आप यह अनुमान कैसे लगा सकते हैं कि एक नया, अनदेखा डेटा बिंदु प्लॉट के y अक्ष के संबंध में कहाँ फिट होगा? इस मॉडल के व्यावहारिक उपयोग को शब्दों में व्यक्त करने की कोशिश करें।\n", + "\n", + "बधाई हो, आपने अपना पहला लीनियर रिग्रेशन मॉडल बनाया, इसके साथ एक भविष्यवाणी की, और इसे एक प्लॉट में प्रदर्शित किया!\n" + ], + "metadata": { + "id": "zrPtHIxx_tNI" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/2-Regression/1-Tools/solution/notebook.ipynb b/translations/hi/2-Regression/1-Tools/solution/notebook.ipynb new file mode 100644 index 000000000..347f9d480 --- /dev/null +++ b/translations/hi/2-Regression/1-Tools/solution/notebook.ipynb @@ -0,0 +1,671 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from sklearn import datasets, linear_model, model_selection\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "डायबिटीज डेटा सेट लोड करें, जिसे `X` डेटा और `y` फीचर्स में विभाजित करें\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 10)\n", + "[ 0.03807591 0.05068012 0.06169621 0.02187239 -0.0442235 -0.03482076\n", + " -0.04340085 -0.00259226 0.01990749 -0.01764613]\n" + ] + } + ], + "source": [ + "X, y = datasets.load_diabetes(return_X_y=True)\n", + "print(X.shape)\n", + "print(X[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "इस अभ्यास के लिए केवल एक विशेषता को लक्षित करें।\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442,)\n" + ] + } + ], + "source": [ + "# Selecting the 3rd feature\n", + "X = X[:, 2]\n", + "print(X.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 1)\n", + "[[ 0.06169621]\n", + " [-0.05147406]\n", + " [ 0.04445121]\n", + " [-0.01159501]\n", + " [-0.03638469]\n", + " [-0.04069594]\n", + " [-0.04716281]\n", + " [-0.00189471]\n", + " [ 0.06169621]\n", + " [ 0.03906215]\n", + " [-0.08380842]\n", + " [ 0.01750591]\n", + " [-0.02884001]\n", + " [-0.00189471]\n", + " [-0.02560657]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [ 0.01211685]\n", + " [-0.0105172 ]\n", + " [-0.01806189]\n", + " [-0.05686312]\n", + " [-0.02237314]\n", + " [-0.00405033]\n", + " [ 0.06061839]\n", + " [ 0.03582872]\n", + " [-0.01267283]\n", + " [-0.07734155]\n", + " [ 0.05954058]\n", + " [-0.02129532]\n", + " [-0.00620595]\n", + " [ 0.04445121]\n", + " [-0.06548562]\n", + " [ 0.12528712]\n", + " [-0.05039625]\n", + " [-0.06332999]\n", + " [-0.03099563]\n", + " [ 0.02289497]\n", + " [ 0.01103904]\n", + " [ 0.07139652]\n", + " [ 0.01427248]\n", + " [-0.00836158]\n", + " [-0.06764124]\n", + " [-0.0105172 ]\n", + " [-0.02345095]\n", + " [ 0.06816308]\n", + " [-0.03530688]\n", + " [-0.01159501]\n", + " [-0.0730303 ]\n", + " [-0.04177375]\n", + " [ 0.01427248]\n", + " [-0.00728377]\n", + " [ 0.0164281 ]\n", + " [-0.00943939]\n", + " [-0.01590626]\n", + " [ 0.0250506 ]\n", + " [-0.04931844]\n", + " [ 0.04121778]\n", + " [-0.06332999]\n", + " [-0.06440781]\n", + " [-0.02560657]\n", + " [-0.00405033]\n", + " [ 0.00457217]\n", + " [-0.00728377]\n", + " [-0.0374625 ]\n", + " [-0.02560657]\n", + " [-0.02452876]\n", + " [-0.01806189]\n", + " [-0.01482845]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [-0.06979687]\n", + " [ 0.03367309]\n", + " [-0.00405033]\n", + " [-0.02021751]\n", + " [ 0.00241654]\n", + " [-0.03099563]\n", + " [ 0.02828403]\n", + " [-0.03638469]\n", + " [-0.05794093]\n", + " [-0.0374625 ]\n", + " [ 0.01211685]\n", + " [-0.02237314]\n", + " [-0.03530688]\n", + " [ 0.00996123]\n", + " [-0.03961813]\n", + " [ 0.07139652]\n", + " [-0.07518593]\n", + " [-0.00620595]\n", + " [-0.04069594]\n", + " [-0.04824063]\n", + " [-0.02560657]\n", + " [ 0.0519959 ]\n", + " [ 0.00457217]\n", + " [-0.06440781]\n", + " [-0.01698407]\n", + " [-0.05794093]\n", + " [ 0.00996123]\n", + " [ 0.08864151]\n", + " [-0.00512814]\n", + " [-0.06440781]\n", + " [ 0.01750591]\n", + " [-0.04500719]\n", + " [ 0.02828403]\n", + " [ 0.04121778]\n", + " [ 0.06492964]\n", + " [-0.03207344]\n", + " [-0.07626374]\n", + " [ 0.04984027]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03207344]\n", + " [ 0.00457217]\n", + " [ 0.02073935]\n", + " [ 0.01427248]\n", + " [ 0.11019775]\n", + " [ 0.00133873]\n", + " [ 0.05846277]\n", + " [-0.02129532]\n", + " [-0.0105172 ]\n", + " [-0.04716281]\n", + " [ 0.00457217]\n", + " [ 0.01750591]\n", + " [ 0.08109682]\n", + " [ 0.0347509 ]\n", + " [ 0.02397278]\n", + " [-0.00836158]\n", + " [-0.06117437]\n", + " [-0.00189471]\n", + " [-0.06225218]\n", + " [ 0.0164281 ]\n", + " [ 0.09618619]\n", + " [-0.06979687]\n", + " [-0.02129532]\n", + " [-0.05362969]\n", + " [ 0.0433734 ]\n", + " [ 0.05630715]\n", + " [-0.0816528 ]\n", + " [ 0.04984027]\n", + " [ 0.11127556]\n", + " [ 0.06169621]\n", + " [ 0.01427248]\n", + " [ 0.04768465]\n", + " [ 0.01211685]\n", + " [ 0.00564998]\n", + " [ 0.04660684]\n", + " [ 0.12852056]\n", + " [ 0.05954058]\n", + " [ 0.09295276]\n", + " [ 0.01535029]\n", + " [-0.00512814]\n", + " [ 0.0703187 ]\n", + " [-0.00405033]\n", + " [-0.00081689]\n", + " [-0.04392938]\n", + " [ 0.02073935]\n", + " [ 0.06061839]\n", + " [-0.0105172 ]\n", + " [-0.03315126]\n", + " [-0.06548562]\n", + " [ 0.0433734 ]\n", + " [-0.06225218]\n", + " [ 0.06385183]\n", + " [ 0.03043966]\n", + " [ 0.07247433]\n", + " [-0.0191397 ]\n", + " [-0.06656343]\n", + " [-0.06009656]\n", + " [ 0.06924089]\n", + " [ 0.05954058]\n", + " [-0.02668438]\n", + " [-0.02021751]\n", + " [-0.046085 ]\n", + " [ 0.07139652]\n", + " [-0.07949718]\n", + " [ 0.00996123]\n", + " [-0.03854032]\n", + " [ 0.01966154]\n", + " [ 0.02720622]\n", + " [-0.00836158]\n", + " [-0.01590626]\n", + " [ 0.00457217]\n", + " [-0.04285156]\n", + " [ 0.00564998]\n", + " [-0.03530688]\n", + " [ 0.02397278]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [-0.0547075 ]\n", + " [-0.00297252]\n", + " [-0.06656343]\n", + " [-0.01267283]\n", + " [-0.04177375]\n", + " [-0.03099563]\n", + " [-0.00512814]\n", + " [-0.05901875]\n", + " [ 0.0250506 ]\n", + " [-0.046085 ]\n", + " [ 0.00349435]\n", + " [ 0.05415152]\n", + " [-0.04500719]\n", + " [-0.05794093]\n", + " [-0.05578531]\n", + " [ 0.00133873]\n", + " [ 0.03043966]\n", + " [ 0.00672779]\n", + " [ 0.04660684]\n", + " [ 0.02612841]\n", + " [ 0.04552903]\n", + " [ 0.04013997]\n", + " [-0.01806189]\n", + " [ 0.01427248]\n", + " [ 0.03690653]\n", + " [ 0.00349435]\n", + " [-0.07087468]\n", + " [-0.03315126]\n", + " [ 0.09403057]\n", + " [ 0.03582872]\n", + " [ 0.03151747]\n", + " [-0.06548562]\n", + " [-0.04177375]\n", + " [-0.03961813]\n", + " [-0.03854032]\n", + " [-0.02560657]\n", + " [-0.02345095]\n", + " [-0.06656343]\n", + " [ 0.03259528]\n", + " [-0.046085 ]\n", + " [-0.02991782]\n", + " [-0.01267283]\n", + " [-0.01590626]\n", + " [ 0.07139652]\n", + " [-0.03099563]\n", + " [ 0.00026092]\n", + " [ 0.03690653]\n", + " [ 0.03906215]\n", + " [-0.01482845]\n", + " [ 0.00672779]\n", + " [-0.06871905]\n", + " [-0.00943939]\n", + " [ 0.01966154]\n", + " [ 0.07462995]\n", + " [-0.00836158]\n", + " [-0.02345095]\n", + " [-0.046085 ]\n", + " [ 0.05415152]\n", + " [-0.03530688]\n", + " [-0.03207344]\n", + " [-0.0816528 ]\n", + " [ 0.04768465]\n", + " [ 0.06061839]\n", + " [ 0.05630715]\n", + " [ 0.09834182]\n", + " [ 0.05954058]\n", + " [ 0.03367309]\n", + " [ 0.05630715]\n", + " [-0.06548562]\n", + " [ 0.16085492]\n", + " [-0.05578531]\n", + " [-0.02452876]\n", + " [-0.03638469]\n", + " [-0.00836158]\n", + " [-0.04177375]\n", + " [ 0.12744274]\n", + " [-0.07734155]\n", + " [ 0.02828403]\n", + " [-0.02560657]\n", + " [-0.06225218]\n", + " [-0.00081689]\n", + " [ 0.08864151]\n", + " [-0.03207344]\n", + " [ 0.03043966]\n", + " [ 0.00888341]\n", + " [ 0.00672779]\n", + " [-0.02021751]\n", + " [-0.02452876]\n", + " [-0.01159501]\n", + " [ 0.02612841]\n", + " [-0.05901875]\n", + " [-0.03638469]\n", + " [-0.02452876]\n", + " [ 0.01858372]\n", + " [-0.0902753 ]\n", + " [-0.00512814]\n", + " [-0.05255187]\n", + " [-0.02237314]\n", + " [-0.02021751]\n", + " [-0.0547075 ]\n", + " [-0.00620595]\n", + " [-0.01698407]\n", + " [ 0.05522933]\n", + " [ 0.07678558]\n", + " [ 0.01858372]\n", + " [-0.02237314]\n", + " [ 0.09295276]\n", + " [-0.03099563]\n", + " [ 0.03906215]\n", + " [-0.06117437]\n", + " [-0.00836158]\n", + " [-0.0374625 ]\n", + " [-0.01375064]\n", + " [ 0.07355214]\n", + " [-0.02452876]\n", + " [ 0.03367309]\n", + " [ 0.0347509 ]\n", + " [-0.03854032]\n", + " [-0.03961813]\n", + " [-0.00189471]\n", + " [-0.03099563]\n", + " [-0.046085 ]\n", + " [ 0.00133873]\n", + " [ 0.06492964]\n", + " [ 0.04013997]\n", + " [-0.02345095]\n", + " [ 0.05307371]\n", + " [ 0.04013997]\n", + " [-0.02021751]\n", + " [ 0.01427248]\n", + " [-0.03422907]\n", + " [ 0.00672779]\n", + " [ 0.00457217]\n", + " [ 0.03043966]\n", + " [ 0.0519959 ]\n", + " [ 0.06169621]\n", + " [-0.00728377]\n", + " [ 0.00564998]\n", + " [ 0.05415152]\n", + " [-0.00836158]\n", + " [ 0.114509 ]\n", + " [ 0.06708527]\n", + " [-0.05578531]\n", + " [ 0.03043966]\n", + " [-0.02560657]\n", + " [ 0.10480869]\n", + " [-0.00620595]\n", + " [-0.04716281]\n", + " [-0.04824063]\n", + " [ 0.08540807]\n", + " [-0.01267283]\n", + " [-0.03315126]\n", + " [-0.00728377]\n", + " [-0.01375064]\n", + " [ 0.05954058]\n", + " [ 0.02181716]\n", + " [ 0.01858372]\n", + " [-0.01159501]\n", + " [-0.00297252]\n", + " [ 0.01750591]\n", + " [-0.02991782]\n", + " [-0.02021751]\n", + " [-0.05794093]\n", + " [ 0.06061839]\n", + " [-0.04069594]\n", + " [-0.07195249]\n", + " [-0.05578531]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03315126]\n", + " [ 0.04984027]\n", + " [-0.08488624]\n", + " [ 0.00564998]\n", + " [ 0.02073935]\n", + " [-0.00728377]\n", + " [ 0.10480869]\n", + " [-0.02452876]\n", + " [-0.00620595]\n", + " [-0.03854032]\n", + " [ 0.13714305]\n", + " [ 0.17055523]\n", + " [ 0.00241654]\n", + " [ 0.03798434]\n", + " [-0.05794093]\n", + " [-0.00943939]\n", + " [-0.02345095]\n", + " [-0.0105172 ]\n", + " [-0.03422907]\n", + " [-0.00297252]\n", + " [ 0.06816308]\n", + " [ 0.00996123]\n", + " [ 0.00241654]\n", + " [-0.03854032]\n", + " [ 0.02612841]\n", + " [-0.08919748]\n", + " [ 0.06061839]\n", + " [-0.02884001]\n", + " [-0.02991782]\n", + " [-0.0191397 ]\n", + " [-0.04069594]\n", + " [ 0.01535029]\n", + " [-0.02452876]\n", + " [ 0.00133873]\n", + " [ 0.06924089]\n", + " [-0.06979687]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [ 0.01858372]\n", + " [ 0.00133873]\n", + " [-0.03099563]\n", + " [-0.00405033]\n", + " [ 0.01535029]\n", + " [ 0.02289497]\n", + " [ 0.04552903]\n", + " [-0.04500719]\n", + " [-0.03315126]\n", + " [ 0.097264 ]\n", + " [ 0.05415152]\n", + " [ 0.12313149]\n", + " [-0.08057499]\n", + " [ 0.09295276]\n", + " [-0.05039625]\n", + " [-0.01159501]\n", + " [-0.0277622 ]\n", + " [ 0.05846277]\n", + " [ 0.08540807]\n", + " [-0.00081689]\n", + " [ 0.00672779]\n", + " [ 0.00888341]\n", + " [ 0.08001901]\n", + " [ 0.07139652]\n", + " [-0.02452876]\n", + " [-0.0547075 ]\n", + " [-0.03638469]\n", + " [ 0.0164281 ]\n", + " [ 0.07786339]\n", + " [-0.03961813]\n", + " [ 0.01103904]\n", + " [-0.04069594]\n", + " [-0.03422907]\n", + " [ 0.00564998]\n", + " [ 0.08864151]\n", + " [-0.03315126]\n", + " [-0.05686312]\n", + " [-0.03099563]\n", + " [ 0.05522933]\n", + " [-0.06009656]\n", + " [ 0.00133873]\n", + " [-0.02345095]\n", + " [-0.07410811]\n", + " [ 0.01966154]\n", + " [-0.01590626]\n", + " [-0.01590626]\n", + " [ 0.03906215]\n", + " [-0.0730303 ]]\n" + ] + } + ], + "source": [ + "#Reshaping to get a 2D array\n", + "X = X.reshape(-1, 1)\n", + "print(X.shape)\n", + "print(X)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "मॉडल चुनें और इसे प्रशिक्षण डेटा के साथ फिट करें\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                LinearRegression()
                                In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
                                On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
                                " + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = linear_model.LinearRegression()\n", + "model.fit(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "परीक्षण डेटा का उपयोग करके एक रेखा की भविष्यवाणी करें\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "परिणामों को एक प्लॉट में प्रदर्शित करें\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbmUlEQVR4nO3de3wU1f0//tcQIHIxiQmBALsQUdSigNYLxn6iSaECaj/5NKTawAfRWi2IbUBRS71gtIrKp5rUj5dqK7ZfXfwAWcVS8ALuYtCIQEERvAC/cAtJoCBJQAhkc35/rLtmk92dmd2Z2ZnZ1/Px2Edl92Tm7CTd894z7/M+khBCgIiIiMhEuiW6A0RERESdMUAhIiIi02GAQkRERKbDAIWIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHS6J7oDsWhvb8f+/ftx+umnQ5KkRHeHiIiIFBBCoKWlBYMGDUK3btHnSCwZoOzfvx9OpzPR3SAiIqIY7N27Fw6HI2obSwYop59+OgD/G0xLS0twb4iIiEiJ5uZmOJ3O4DgejSUDlMBtnbS0NAYoREREFqMkPYNJskRERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpqMqQHn++ecxatSo4OqZvLw8rFy5Mvh6QUEBJEkKeUyfPj3kGHv27MG1116L3r17o3///rj77rvR1tamzbshIiIiW1C1zNjhcODxxx/H8OHDIYTA3/72NxQVFWHTpk04//zzAQC33norHn744eDP9O7dO/jfPp8P1157LXJycvDRRx+hvr4eN954I3r06IHHHntMo7dEREREVicJIUQ8B8jMzMSCBQtwyy23oKCgABdeeCEqKirCtl25ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5m5ubkZ6ejqamJtZBISIisgg143fMOSg+nw+vv/46jh07hry8vODzr732Gvr164cLLrgAc+fOxbfffht8raamBiNHjgwGJwAwfvx4NDc3Y+vWrRHP1draiubm5pAHERERac/n88Hr9WLRokXwer3w+XwJ6YfqSrJbtmxBXl4eTpw4gb59++KNN97AiBEjAACTJ0/G0KFDMWjQIHz22We499578dVXX8HtdgMAGhoaQoITAMF/NzQ0RDzn/PnzUV5errarREREpILb7UZZWRn27dsXfM7hcKCyshLFxcWG9kX1LZ6TJ09iz549aGpqwtKlS/GXv/wFa9asCQYpHb3//vsYO3YsduzYgbPOOgu33XYbdu/ejXfeeSfY5ttvv0WfPn2wYsUKTJw4Mew5W1tb0draGvx3oJY/b/EQERFpw+12o6SkBJ3DgkBZ+qVLl8YdpOh6i6dnz544++yzcfHFF2P+/PkYPXo0Kisrw7YdM2YMAGDHjh0AgJycHDQ2Noa0Cfw7Jycn4jlTU1ODK4e4/w4REZG2fD4fysrKugQnAILPzZo1y9DbPXHXQWlvbw+Z3eho8+bNAICBAwcCAPLy8rBlyxYcOHAg2Oa9995DWlpa2BkYIiIi0l91dXXIbZ3OhBDYu3cvqqurDeuTqhyUuXPnYuLEiRgyZAhaWlrgcrng9XrxzjvvYOfOnXC5XLjmmmuQlZWFzz77DLNnz8aVV16JUaNGAQCuvvpqjBgxAlOnTsWTTz6JhoYG3H///Zg5cyZSU1N1eYNEREQUXX19vabttKAqQDlw4ABuvPFG1NfXIz09HaNGjcI777yDn/zkJ9i7dy9WrVqFiooKHDt2DE6nE5MmTcL9998f/PmUlBQsX74cM2bMQF5eHvr06YNp06aF1E0hIiIiYwXudGjVTgtx10FJBNZBISIi0o7P50Nubi7q6urC5qFIkgSHw4Ha2lqkpKTEfB5D6qAQERGRPaSkpAQXvARW7QQE/l1RURFXcKIWAxQiIiJCcXExli5disGDB4c873A4NFlirBZv8RAREVGQz+dDdXU16uvrMXDgQOTn52s2c6Jm/FZdSZaIiIjsKyUlBQUFBYnuBm/xEBERkfkwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREptM90R0gIjIzn8+H6upq1NfXY+DAgcjPz0dKSkqiu6W5ZHmfZB0MUIiIInC73SgrK8O+ffuCzzkcDlRWVqK4uDiBPdNWsrxPshbe4iEiCsPtdqOkpCRk0AaAuro6lJSUwO12J6hn2kqW90nWIwkhRKI7oVZzczPS09PR1NSEtLS0RHeHiGzG5/MhNze3y6AdIEkSHA4HamtrLX0bJFneJ5mHmvGbMyhERJ1UV1dHHLQBQAiBvXv3orq62sBeaS9Z3idZEwMUIqJO6uvrNW1nVsnyPsmaGKAQEXUycOBATduZVbK8T7ImBihERJ3k5+fD4XBAkqSwr0uSBKfTifz8fIN7pq1keZ+kzokTwMaNwPHjie0HAxQiok5SUlJQWVkJAF0G78C/KyoqLJ84mizvk5Q5dgzIzQV69QIuucT/37t2Ja4/DFCIiMIoLi7G0qVLMXjw4JDnHQ4Hli5dapv6IMnyPikyIYCbbgL69gV27/7++QMHgBdeSFi3uMyYiCiaZKmwmizvk0L95S/ArbdGfv2ZZ4A77tDufLotM37++ecxatQopKWlIS0tDXl5eVi5cmXw9RMnTmDmzJnIyspC3759MWnSJDQ2NoYcY8+ePbj22mvRu3dv9O/fH3fffTfa2trUdIOIyDApKSkoKChAaWkpCgoKbDtoJ8v7JL9PPgEkKXpw0rcvMGOGcX3qTFWA4nA48Pjjj2Pjxo3YsGEDfvzjH6OoqAhbt24FAMyePRv/+Mc/sGTJEqxZswb79+8PmR70+Xy49tprcfLkSXz00Uf429/+hldeeQUPPvigtu+KiIiIujh40B+YjBkTvd0f/wi0tACJjFPjvsWTmZmJBQsWoKSkBNnZ2XC5XCgpKQEAfPnll/jBD36AmpoaXH755Vi5ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5eYuHiIhIubY24OqrAY8neruiIsDtBrrplKFqSCVZn8+H119/HceOHUNeXh42btyIU6dOYdy4ccE25513HoYMGYKamhoAQE1NDUaOHBkMTgBg/PjxaG5uDs7CEBERkXbKy4EePaIHJ+npwOHDwJtv6hecqKV6N+MtW7YgLy8PJ06cQN++ffHGG29gxIgR2Lx5M3r27ImMjIyQ9gMGDEBDQwMAoKGhISQ4CbweeC2S1tZWtLa2Bv/d3NystttEZAJMxCQyzooVwLXXyrf79FNg1Cj9+6OW6gDl3HPPxebNm9HU1ISlS5di2rRpWLNmjR59C5o/fz7Ky8t1PQcR6cvtdqOsrCxk7xeHw4HKykouZf0OAzjSwv/3/wFnnSXfzuUCSkv170+sVE/k9OzZE2effTYuvvhizJ8/H6NHj0ZlZSVycnJw8uRJHDlyJKR9Y2MjcnJyAAA5OTldVvUE/h1oE87cuXPR1NQUfOzdu1dtt4kogdxuN0pKSrpsTFdXV4eSkhK43e4E9cw83G43cnNzUVhYiMmTJ6OwsBC5ubm8NqTYt98CZ58tH5z85jdAe7u5gxNAg0Jt7e3taG1txcUXX4wePXpg9erVwde++uor7NmzB3l5eQCAvLw8bNmyBQcOHAi2ee+995CWloYRI0ZEPEdqampwaXPgQUTW4PP5UFZWhnD5+IHnZs2aBZ/PZ3TXTIMBHMVDCOBXvwL69AF27ozcbuRIf/n6P/3Jv5LH7FSt4pk7dy4mTpyIIUOGoKWlBS6XC0888QTeeecd/OQnP8GMGTOwYsUKvPLKK0hLS8NvfvMbAMBHH30EwP9BdeGFF2LQoEF48skn0dDQgKlTp+JXv/oVHnvsMcWd5ioeSiROw6vj9XpRWFgo287j8aCgoED/DpmMz+dDbm5ul+AkQJIkOBwO1NbW8u+Muli4EPjlL+Xb7d4NDBmif3/kqBm/VeWgHDhwADfeeCPq6+uRnp6OUaNGBYMTAHj66afRrVs3TJo0Ca2trRg/fjyee+654M+npKRg+fLlmDFjBvLy8tCnTx9MmzYNDz/8cAxvk8h4zKNQr76+XtN2dlNdXR0xOAH8s0x79+5FdXV1UgZwFN7Gjf79cuSsWgWMHat/f/SgKkD561//GvX10047Dc8++yyeffbZiG2GDh2KFStWqDktkSkEpuE7TzoGpuG5b0l4AwcO1LSd3TCAIzX+/W9g4EB/XZNonngCuOceY/qkF5OsdiYyN+ZRxC4/Px8Oh6PLbrkBkiTB6XQiPz/f4J6ZAwM4UiJQaC07O3pwcu21/tetHpwADFCIFFEzDU+hUlJSUFlZCQBdgpTAvysqKpI2vyI/P7/LTsIdJXsAR8Cjj/oLrb33XuQ2ffoAhw4By5cntjy9lhigECnAafj4FBcXY+nSpV0GYofDkfS3xpYtW4YTJ06EfY0BXHJ75x3/apv774/ebtMm4OhRIDPTmH4ZRXWhNqJkxGn4+BUXF6OoqIgroDqIlNcUkJmZiRdffDGpA7hkVFsLDBsm3+7//T/gv/9b//4kStybBSYClxmT0QJLQevq6sIOJlwKSmrJLS8G/DNMu3bt4t9Ukvj2W+DCC4Ht26O3mzEDePZZa9Qy6cyQzQKJkgnzKEhrcnlNALBv3z7mNSUBIYDp0/15JNGCkx/8wB/EPPecNYMTtRigECnEPArSEvOaCAD+/nf/7sF//nP0drW1wLZtQK9exvTLDJiDQqSC2jwKVp2lSJjXlNw2bQJ++EP5du++C3xXCzXpMAeFSCesOkvRMK8pOR06BAweDLS2Rm/36KPA739vTJ+MxBwUogSz0+ZvPp8PXq8XixYtgtfrZTE6jTCvKbn4fMCECUC/ftGDk/Hj/YXW7BicqMUAhUhjdqo663a7kZubi8LCQkyePBmFhYXIzc21VIBlZsxrSg7z5wPdu/vrmkSSmuovY//22/YptBYv3uIh0phddu+NVKMj8O2eA6h2zJCrZIY+2M2qVcryRzZuVJaPYge67WZMRPLssDpDbhZIkiTMmjULRUVFHMQ0kJKSktBglflS2tq9G8jNlW+3cCFw001698a6eIuHSGNGrs7QKz+Eew8lDzvlSyXa8ePAiBHywcmttwLt7QxO5DBAIdKYUbv36pkfYodZIJJnp3ypRBICuP12oHdv4IsvIrcbPhw4dgx48cXkKLQWLwYoRBozYnWG3t96WaMjMjutauJMWfxcLn+hteefj95u507g66/9QQwpwwCFSAd6rs4w4luvUbNAVmO3VU1azJTZKWBT49NP/bMgU6ZEb7dypX+GRcnmfxSKAQqRToqLi7Fr1y54PB64XC54PB7U1tbGnXSo97fewGqOwAoe1ujws2OuRrwzZXYL2JQ4fBjo29e/qV80jzziD0wmTDCkW/YkLKipqUkAEE1NTYnuCpHhXC6XACD7cLlcqo9dVVUlHA5HyHFSUlJC/u10OkVVVZUO78y82traulyXjg9JkoTT6RRtbW2J7qoqgfclSZLq91VVVRX25yRJEpIk2e5vpK1NiGuvFcIfdkR+/OQnQpw6lejempea8ZszKEQWo1d+SKQZgsCU/axZszSbBbIau+ZqxJovlWzJtQsW+Aut/fOfkdukpAAHDvj3zunOAh6aYIBCZDF65IdEG3ACx6yqqkra4l12XtUUS76UXQO2zt5/359ncs890dutX+8vT5+dbUy/kgXjPCKLCXzrLSkpgSRJIUFFrPkhagYcM1e/1YvdVzWp3aVbq4DNrNVr9+wBhg6Vb/fXvwK//KX+/UlWnEEhsiCtVwnZeYZAC8mwqilQzba0tBQFBQVRAwUtAjYzJtieOAGMGiUfnNxyi7/QGoMTfTFAIbIoLVcJ2X2GIF7RcjUA/wzTH//4R1N8+zdCvAGb2VZECQH89rdAr17Ali2R2511FnD0KPCXv7DQmhG4WSARwefzITc3F3V1dWHzUCRJgsPhQG1tbdIMwuGE27MmINn2rgkEGQDC3maMNJMX+FuLdEvR6L+1118HSkvl2+3Y4Q9QKD5qxm/OoBCRIdVv7aC4uBhPP/102NesXA8lFrHeZjRLgu2WLf5ZELngZPly/wwLgxPjMUAhIgDfDziDBg0KeX7w4MEhA06yVg4F/O999uzZYV+z4/JaObHcZkx0vtORI0BGhj/XJJp58/yBybXX6tINUoCreIgoRKS8AiD8LY5kurXB1U5dBZJrlUpUvlN7O1BcDCxbFr1dYSFrmZgFZ1CICIB84uI999xjqsTGREj0t38ziHcGLRErop5+2l9ITS44aWz01z5hcGIODFCISLYyqBACTz31VNJUDo0k2Vc7abE02Mh8J6/Xn2dy553R261b57+d079/3KckDTFAISLZWxcAogYfdqkcKicZ6qFEouXSYD13+waAffv8gUlhYfR2L77oD0wuuyyu05FOGKAQkWa3JOx8awNI3tVOeuy9o8du362twA9/CDid0dtNm+bPSbn11phPRQbgnTYiE0lU6W+tbknY9dZGR4Fv/+GShSsqKmyZLKxXcrDaBNto7rzTn2sSzdChwOefA337qj++Wcvy2xkDFCKTCLdCJjMzE2VlZbjvvvt0/TAM3LqQu80TSaC4lh1vbYSjdu8aqzNzcvCSJcD118u3+/prYPjw2M6R7KvXEkZYUFNTkwAgmpqaEt0VIiGEEG1tbcLj8QiXyyU8Ho9oa2tT9fNVVVVCkiQBIOwjKytLVFVV6dT77/sQ6fzRHpIkCUmSdO8fyYv37zASj8ej6G/B4/Focj4lPv9cCH8GSfTHW2/Fd55I/9/k331s1IzfDFCI4lRVVSUcDkfIh5fD4VD8wdXW1tbl5yM99P4wLC8vVx2gOJ1OfkibQLx/h9EE/kYjBdGSJAmn06lZQBTNN98IccYZ8oHJ/ffHfy65/28a+b7tggEKkUG0+Hal9NtpIBjQ88NQyQeyw+EQq1at0vxbOsXOiG/5gXN0Po9RMwk+nxCTJskHJvn5Qpw8qc05zThzZHVqxm+u4iGKkVYrG9Tct9d7KW9glYokSRFXqVRWVmLs2LEoLS1FQUGBbfMurEKPFTbh6L00OJo//clfaK2qKnq7hgbggw+AHj20Oa+Zc2+SAQMUohhptemZ2pUven8YJnIgIvWM3HxPj6XB0VRX++uZlJVFb/fRR/75kwEDtD1/shfmSzSu4iGKkVbfrtSuoDHiwzDZVqlYmdHf8rVcGhxJXR3gcMi3e/55YPp0/foR+P9mXV1d2BmqZFu9ZjTOoBDFSKtvVx1vq0RjdJXSwEDEWznmZqdv+SdPApdeKh+cTJniL7SmZ3ACJG9hPrNggEIUIy3Lngduq2RlZUU8FsAPQ+rKLuX3Z80CUlOBDRsitxk8GGhuBl591X/rxwi85Zk4DFCIYqT1t6vi4mI0NjaivLwcmZmZIa/xw5Aisfq3/D/8wR9sfPcWIvryS/8eO6efbky/OjI694a+o2Z50GOPPSYuueQS0bdvX5GdnS2KiorEl19+GdLmqquu6rIE69e//nVIm927d4trrrlG9OrVS2RnZ4s5c+aIU6dOKe4HlxmTmYSrPxFvbRC9Cm6Rfenxd6inNWuUFVp7881E95S0pGb8loQIk/kTwYQJE/CLX/wCl156Kdra2vD73/8en3/+ObZt24Y+ffoAAAoKCnDOOefg4YcfDv5c7969kZaWBsC/JO7CCy9ETk4OFixYgPr6etx444249dZb8dhjjynqR3NzM9LT09HU1BQ8LlEicZ8OMgMr/B0ePAj07y/fbu5cQOGQQBaiZvxWFaB0dvDgQfTv3x9r1qzBlVdeCcAfoFx44YWoqKgI+zMrV67Eddddh/3792PAd2vCXnjhBdx77704ePAgevbsKXteBihERNbS3u6vT9LeHr3doEFAbS2gYCggC1IzfseVg9LU1AQAXe6Xv/baa+jXrx8uuOACzJ07F99++23wtZqaGowcOTIYnADA+PHj0dzcjK1bt4Y9T2trK5qbm0MeRERkDTfd5C+0JhecfP21f4kxgxMC4qiD0t7ejlmzZuFHP/oRLrjgguDzkydPxtChQzFo0CB89tlnuPfee/HVV1/B7XYDABoaGkKCEwDBfzc0NIQ91/z581FeXh5rV4mIKAFefx0oLVXW7oYb9O8PWUvMAcrMmTPx+eefY+3atSHP33bbbcH/HjlyJAYOHIixY8di586dOOuss2I619y5c3HnnXcG/93c3Ayn0xlbx4mISFdffw2ce658u5tuAhYu1L07ZFExBSh33HEHli9fjg8++AAOmYo6Y8aMAQDs2LEDZ511FnJycvDJJ5+EtGlsbAQA5OTkhD1GamoqUlNTY+kqEZGurJCYapQTJ4BeveTb9ejhb9uNhS4oClV/HkII3HHHHXjjjTfw/vvv48wzz5T9mc2bNwP4vophXl4etmzZggMHDgTbvPfee0hLS8OIESPUdIeIKKHcbjdyc3NRWFiIyZMno7CwEP3798fDDz8c9+Z8VnPZZcqCk4MH/RVjGZyQHFV/IjNnzsSrr74Kl8uF008/HQ0NDWhoaMDx48cBADt37sQjjzyCjRs3YteuXXjrrbdw44034sorr8SoUaMAAFdffTVGjBiBqVOn4tNPP8U777yD+++/HzNnzuQsCRFZhtvtRklJSZc9lA4fPox58+ZhwIABwdw7O3v8cX+htfXro7d75JE1EALo18+YfpENqCmwgk4F2AKPhQsXCiGE2LNnj7jyyitFZmamSE1NFWeffba4++67uxRk2bVrl5g4caLo1auX6Nevn7jrrrtYqI2ILKOtra1LUbRwD0mSTFsoLV5r1yortAb8XkiSJJxOJwsOkn6F2syCdVCIKJG8Xi8KCwsVtXU6naitrbVNXsqhQ0pnQf4F4OKQZzwej+47IZO5GVYHhYgoGdXX1ytuu3fvXlRXV+vYG2O0t/s381MWnPRC5+AEUHfdiBigEBGpFEj6V8rqA/Mtt/gLrZ08KdfyXAASgBNhX1V73Si5MUAhIlIpPz9ftsRCR1YdmBcv9ifAvvxy9HZ//3s7HA4nJGl72NclSYLT6UR+fr4OvSS7YoBCRKRSSkoKKisrZdtZdWDeudMfmMhVd50yxZ8GO3Vqt+D1kCQppE3g3xUVFbbJwyFjMEAhshmfzwev14tFixbB6/UmXT0OoxQXF6OqqgpZWVlhX7fiwNza6g9Mzj5bvq3PB7z66vf/Li4uxtKlSzF48OCQdg6HA0uXLkVxcbHGvSW74yoeIhtxu90oKysLqc3hcDhQWVnJAUInPp8Pjz76KCorK3H48OHg806nExUVFZa57ldcAdTUyLdrbAT694/8OivrUjRqxm8GKEQ2ESgc1vn/0oFv8vwWqy+rDswLFgD33CPfzuMBuEI4dlb9+9AaAxSiJOPz+ZCbm9ulqmmAJElwOBy2qscRDQcDeR9/DOTlybd76CFg3jzdu2NrnNn8HuugECWZ6urqiMEJ4N9Hyy71OOSE2x8nNzc3KcrOK3H4sD/PRC44ueACfwIsg5P4RNoSoa6uDiUlJfy7jIIBCpENKK2zYfV6HHJiGQySJalYCOD004EIOb0hjh0DtmzRv0925/P5UFZW1uW2K4Dgc7NmzbLt31y8GKAQmZDaQVNpnQ2r1uNQIpbBIFlmW6ZP9+8efPRo9HZbt/oDmd69jemX3XFmMz4MUIhMJpZBM1A4rHMNigCr1uNQQ+1gkAxT7263/3bOn/8cvd0rr/gDkxEjDOlW0uDMZnwYoBCZSKyDZsfCYclaKEvNYGD3qffaWn9gMmlS9HbXX+8PTKZNM6ZfyYYzm/FhgEJkEvEOmsleKEvNYGDXqfeTJ/2BybBh8m3b2oD/+z/9+5TMOLMZHwYoRCahxaBZXFyMXbt2wePxwOVywePxoLa21vbBCaBuMLDj1PtVV/l3G5ZTX++fNbHxZJppcGYzPgxQiExCq0EzJSUFBQUFKC0tRUFBQdJ8+KkZDOw09V5R4Z81+eCD6O1Wr/YHJjk5hnSLvpPsM5vxYIBCZBJ2GjQTRelgYIep9/Xr/YHJ7NnR2z3wgD8w+fGPjekXdZXMM5vxYCVZIpMIVIOtq6sLm4eSbNVg46GkkmwgIRlAyPU2+9YAR44AZ5wh3+7cc4Evv9S9O0SqsJIskQXxfrV2lNzmstrUuxD+ImtKgpOjRxmckPVxBoXIZMLt22G1nXGtxAr79vzmN8D//q98uy1b/CXqicyKmwUSWZwVBk0jJev1eOstoKhIvt3LLwM336x/f4jipWb87m5Qn4hIhcAtCkrOnWB37wZyc+XbFRcDVVW6d4coIRigEJFpBRJZO0/0BirrmjFXJB4nTyqrZQL4C60lwSQSJTEmyRKRKdm9HH1nP/mJsuCkro6F1ig5MEAhIlOyazn6zv73f/31TFatit7u3Xf9gcmgQcb0iyjReIuHiEzJKuXoY03g3bgRuOQS+ePPnQs89pgGHSWyGAYoFpSsKxoouVihsm4sCbxNTUBGhvyxhw0Dduzwz64QJSMuM7aYZFzRQMnJ7JV1IyXwRqpEG9gH58AB+WO3tAB9+2raXSJTYCVZmwp8IHa+Lx9Y0eB2uxPUM7Iyn88Hr9eLRYsWwev1mibp1MyVddUm8N55J9Ctm3xw8umn/kCGwQkRAxTLSLYVDWQMt9uN3NxcFBYWYvLkySgsLERubq5pgl2zlqNXmsD75JNbIUnA009HP96LL/oDk1GjNO4okYXxFo9FeL1eFBYWyrbzeDws8EWKqL1FkUhmy7tatGgRJk+eHKWFA8Be2eP89Kf+arFEyYKVZG3IKisaKPGUDOZyM3KSJGHWrFkoKioyRQK22SrrRk7M7Q7glKJjnDoFdOcnMFFEvMVjEVZY0UCJp/SWTbLUGNFLfn4+HA5Hp9yYf0JJcLJ3r/92DoMTougYoFhE+A/E70mSBKfTifz8fIN7RmahJok60TNyZk3MVapjAi8wHYAAcE3Un1m50h+YOBx6947IHhigWISZVzRQ4qlNok7kjJzZE3OVGjasGEK0A3g+ars5c/yByYQJxvSLyC6YJGsx4eqgOJ1OVFRUmCahUQmzJT3GwkzvQW0SdaJqjFgpMTeS5mYgPV2+3ZAhwK5dLLRG1JGq8VtYUFNTkwAgmpqaEt2VhGhraxMej0e4XC7h8XhEW1tborukSlVVlXA4HAL+eXEBQDgcDlFVVZXorilmtvfgcrlC+hLp4XK5Qt6DJElCkqSQNoHntH4vbW1tXa5Z5/M6nU7T/j23twsxeLAQ/vmQ6I8k/WgikqVm/GaAQoYKDIrhBic9BkU9mPE9eDweRQGKx+Pp8l46Bw1Op1OX9xBrH81gzhxlgcm//pXonhKZm5rxm7d4yDCB2wqRVo8kunS5EmZ9D/HcsjHqVpV87RA/l8uF0tJSzc8fi7ffBiZOlG/33HPAjBn694fI6ljqnkzJDktbzfoe4kmiDtQYKS0tRUFBgS7Bic/nQ2Njo6K2ZlgqX1fnzx2RC04mTPDPnTA4IdIeAxQyTKKXtmph2bJlitol4j2YtSx8YNXO7Nmzo7Yzw1L5tjZ/YKJkKfDJk/6lw0SkD5YKIsMYvbRV61sXbrcbFRUVitomahaguLgYRUVFplldFGnVTmdmWCpfVKSs7PyePYDTqX9/zMZMq9YoSahJbnnsscfEJZdcIvr27Suys7NFUVGR+PLLL0PaHD9+XNx+++0iMzNT9OnTRxQXF4uGhoaQNrt37xbXXHON6NWrl8jOzhZz5swRp06dUtwPJslaU2AVR7gEU2i4iqOtrU2Ul5eLzMxMzVbZyK1A0fo92IHSawYdE3OVeOklZQmwy5cnpHumYLZVa2Rduq3iGT9+vFi4cKH4/PPPxebNm8U111wjhgwZIo4ePRpsM336dOF0OsXq1avFhg0bxOWXXy6uuOKK4OttbW3iggsuEOPGjRObNm0SK1asEP369RNz587V5Q2Suei9tLWqqkpkZWVFDB5iPYfSFSgA+KH9HaXX7Omnn1Yd0Gmx1P7TT5UFJrNmqT60rZhx1RpZl2HLjA8cOCAAiDVr1gghhDhy5Ijo0aOHWLJkSbDNF198IQCImpoaIYQQK1asEN26dQuZVXn++edFWlqaaG1tVXReBijWptfS1qqqKt1mOJTWGZmV7KNZB7HUZlEi3m/zLS3KApOcHH/tk2Rm9do1ZD5qxu+4kmSbmpoAAJmZmQCAjRs34tSpUxg3blywzXnnnYchQ4agpqYGAFBTU4ORI0diwIABwTbjx49Hc3Mztm7dGvY8ra2taG5uDnmQdRUXF2PXrl3weDxwuVzweDyora2NK4kzUOpdjohxlY3SnJKioiJVx7UzPXKO1Ow31JkQwLBhwOmny5/nyBGgvp5VYM26ao2SQ8wBSnt7O2bNmoUf/ehHuOCCCwAADQ0N6NmzJzIyMkLaDhgwAA0NDcE2HYOTwOuB18KZP38+0tPTgw9nMmao2YzWS1vlPkg7U7vKhps1qqf1NVO731BHc+cC3boBtbXRz7Fhgz+QUVLKPhnYYeUdWVfMAcrMmTPx+eef4/XXX9eyP2HNnTsXTU1NwcfevXt1PydZi9oPSLWrbLhZo3paXzOl3+afeeaZYJDy7rv+WZDHH49+7Gee8QcmF1+sqCtJI5GbShLFFKDccccdWL58OTweDxwdCgbk5OTg5MmTOHLkSEj7xsZG5OTkBNt0LtgU+HegTWepqalIS0sLeRB1pOYDMtaZDrPWGTEzLa+Z0iB09uzZcDovgyQB48dHbzt2rD8wueMOxd1IKpw5pIRSk9zS3t4uZs6cKQYNGiS+/vrrLq8HkmSXLl0afO7LL78MmyTb2NgYbPPnP/9ZpKWliRMnTijqB5NkqTO5JczokNQXbzKu1TdrTAQtrpmyVUHdFCXAAkIozMlPekZvKkn2ptsqnhkzZoj09HTh9XpFfX198PHtt98G20yfPl0MGTJEvP/++2LDhg0iLy9P5OXlBV8PLDO++uqrxebNm8Xbb78tsrOzucyY4hbpgzTwyMrK4oephckHoUsVBSa7diX6nViPkZtKkr3pFqBE+taycOHCYJtAobYzzjhD9O7dW/zsZz8T9fX1IcfZtWuXmDhxoujVq5fo16+fuOuuu1iojTQR7oM0MzNTlJeX22KmI9lnb8IHoTcrCkyWLUt0760t2f/2SBvczZiSml1LcrvdbpSVlYUkijocDlRWViZV/sv31wEA5BPmf/KTr/Huu+fo3i8ikqdm/GaAQmQBkfa0CSQvJlOSbmsrMGaMwKefyhUpOQSgHzweDwoKCgzoGRHJUTN+czdjIpOLp/6H3cyaBZx2GhQEJxmQpGyuMCGyMAYoRCbHap7A//2fv57Jd2VVorgUgARJ8lebZm0aIutigEJkcslczXPLFn9g8otfRG+XlTUNgARgAwDWpiGyg+6J7gBRR3ZNcI1HMlbzPHIEyM0FvtvuK6J584CHHgJ8vpdRXX0z/26IbIRJsmQaXKUSns/nQ25uLurq6sLmoUiSBIfDgdraWssPyu3twKRJwJtvRm931VXAe+8BPXoY0i0i0giTZMly4tml1u6SZR+gigogJUU+OGlsBLxeBidEdscAhRKOq1TkmXkfIJ/PB6/Xi0WLFsHr9ar+Pa1Z488zmT07ert16/wl1/r3j6OzRGQZvMVDCef1elFYWCjbjvUszJejE89tuX37AKdT/hwvvgjcemu8PSUiM1AzfjNJlhIumVepqJWSkmKaIC1S8bjAbblIMzutrcAVVwD/+lf040+dCvztb/7ZFSJKPrzFQwmXjKtUrC7W23Jz5vgLrUULTpxOoKUF+PvfGZwQJTPOoFDC5efnw+FwyK5S6VwR1Cy3O8zSDyOpKR5XUFCApUuBn/9c/rhffQWcw21ziAicQSETiGWVitvtRm5uLgoLCzF58mQUFhYiNzfX8NU+ZumH0ZTeblu//hgkST44eestfwKslYKTeJODiUiGxjspG0LNds1kHVVVVcLhcAgAwYfT6RRVVVVd2kmSFNIOgJAkSUiS1KW9nv01Qz8SwePxdHnfoY80ARwU/rAj8uO++xL9TmIT7m/V4XDY+ndOpAU14zdX8ZCpyN0uCRQti3R7waiiZWbpR6JELh4nAXgdwPVRfz4/H1i92pq1TLizNFHs1IzfDFDIUsyyJNks/UikwEANBBJj7wDwjOzPNTQAAwbo2ze98oKSPTAlihcryZJtmWVJsln6kUiB4nH9+v0X/Hc5ogcnH33kv7Gjd3CiZ14Qd5YmMg4DFLIUsyxJNks/Emn/fmDSpGIcPBh94H/+eX9gkpenf5/03jKBgSmRcRigkKVcccUV6NevX8TXJUmC0+nssiRZa4Gl0Z1XHRndj0Q4eRK47DKgU9X9LqZM8W/+N326MStejNgygYEpkXEYoJBluN1unHXWWfj3v/8d9vV4N85TM4gmywZ+nd1zD5CaCqxfH7nN4MFAczPw6qv+QmtGLcU24vZLMgemRIbTaymRnrjM2K+trU14PB7hcrmEx+MRbW1tie6SbiIt6e34CCxJjuW6xLpsVOnSaKurqoq+XDjw+PLLzj9n3FJsl8sls/TZ/3C5XHGdJ/CeOr+vZFheThQvNeM3AxSLSqY6DG1tbV3ea+dHdna2aG1tjem6xDuI2jlQ/OILZYHJG290/Vm535skScLpdGp2veRrs/gfHo8n7nMlS2BKpDUGKDaXbAXClA485eXlqq+LFoOoHQOUpiYhBgyQD0x+97vIxzAyYBDi+99lpJk2rQMiO/7eifTGAMXGjP5WagZKp+4zMzNVX5d4B1G7zWS1twtxww3ygUlenhCtrdGPZdQtl454+4XI3NSM30yStZhkrMOgdEXE4cOHI74W6brEs2xU7yWtRnv2WaBbN+D//i96u/37/TVNevaM3i4RK14CtVkGd1pi5HA4WOGVyGIYoFhMMtZhULJyIisrS9GxOl+X/v37K/q5zu2MWNJqlA8/9K+2ueOO6O3WrvXPnyiNJxK14qW4uBi7du2Cx+OBy+WCx+NBbW0tgxMii2GAYjHJWIdByZLe3/72t4qOpdV1scNMVkODPzD5j/+I3u6ZZ/yByY9+pO74iVyKnZKSgoKCApSWlqKgoMB2y72JkgEDFItJ1joMclP39913X0zX5cCBA4rO37mdlWeyTp0CrrhCfibkhhsAn09+ZiUa3nIholh1T3QHSJ3At9KSkhJIkhRyi8HOBcIA/2BXVFQUcRO4WK5LrDNSVp3J+v3vgfnzo7cZMAD4+mtAq3045X5vZqHXBoNEFCM9s3X1ksyreAJiqcOQDMsi1V6XWJemGr2kNV5vvqmsnsm2bYnuaWLYbTUWkVlxmXGSUBNwJNMHsNpALNalqVZY0vrVV8oCk6VLE93TxEm2ukJEicQAhULwA1herJVBzVpRtLlZiMGD5QOTOXMS2s2ES8a6QkSJpGb8loQIs07S5Jqbm5Geno6mpiakaXWj3KZ8Ph9yc3MjrjiRJAkOhwO1tbVJf7891hwEM+UuCAFMnQq89lr0dpde6l82LFfLxO68Xi8KCwtl23k8HhQUFOjfISKbUzN+M0nWpLQa9NQsh032D+DA0lSjfk5rf/4zMH26fLu6OmDQIP37YwVWXo1FZHcMUEzI7XajrKwsJLBwOByorKxUvSyTH8D29/HHQF6efLsPPgBstvo8blZdjUWUDFgHxWS0Lp/OD2D7amz0F1qTC04qKvy3fhicdJWsdYWIrIABionoUT6dH8D2c+oUcOWVQE5O9HaTJvkLrZWVGdMvK0pktVsiio4BionoUT6dH8D28sAD/sTWaH8CWVnAkSPA0qX+zf8oOla7JTIn5qCYiNI8kLq6Oni9XsUJtIEP4HB5LRUVFfwAtoDly4Gf/lS+3eefA+efr39/7MYq1W6JkgmXGZuI0iWP2dnZOHjwYPDfShNozbQcVg92fH/btwPnnCPfbvFi4Oc/178/RETxUDN+M0AxkUDNkrq6urB5KJEEbtUk83S0liufzODoUeCCC4Ddu6O3u/NO4I9/DH3OjoGaFfC6E8lTNX7rVS1OT3auJBupfLrcI5krXtqpUm57uxDTpslXgL34YiFOnOj688m0pYGZ8LoTKaNrqfs1a9aI6667TgwcOFAAEG+88UbI69OmTesyUIwfPz6kzaFDh8TkyZPF6aefLtLT08Uvf/lL0dLSorgPdg5QhAj/YZedna0oUPF4PInuvqGUlCp3OBxi1apVsnvzJHozxZdeUrZvzt694X/eioFaoq+5Fqx43YkSRdcAZcWKFeK+++4Tbrc7YoAyYcIEUV9fH3wcPnw4pM2ECRPE6NGjxccffyyqq6vF2WefLUpLSxX3we4BihBdP7hfffVVRQGKy+VKdNcN5fF4VM00Rfpmm8hvwOvWKQtMvN7Ix7DinjJ2mHWw4nUnSiTDNguMFKAUFRVF/Jlt27YJAGL9+vXB51auXCkkSRJ1dXWKzpsMAUpnSgfiZJtBcblcqgOUzt9sE/UNuLFRWWDy1FPyx7La34ddZh2sdt2JEk3N+K1LlQSv14v+/fvj3HPPxYwZM3Do0KHgazU1NcjIyMAll1wSfG7cuHHo1q0b1q1bp0d3bIEF18KLpQKu6FD07uTJk5oXx5PT1gYUFAADBkRv97Of+QutzZ4tf0wrbWmgR0HCRLHSdSeyGs0DlAkTJuDvf/87Vq9ejSeeeAJr1qzBxIkTgx82DQ0N6N+/f8jPdO/eHZmZmWhoaAh7zNbWVjQ3N4c8kg0LroUnF7hFIr4revfcc89pXhwvmoceAnr0ANasidwmIwP45hvA7VZeaM1KWxroUZAwUax03YmsRvMA5Re/+AX+8z//EyNHjsR//dd/Yfny5Vi/fj28Xm/Mx5w/fz7S09ODD6fTqV2HLYQVL7uKFrgpsXPnTkXt4v0GvGKFf9+c8vLo7T77zB+cZGSoO76VZtjsNOtgpetOZDW6F8IeNmwY+vXrhx07dgAAcnJycODAgZA2bW1tOHz4MHIibC4yd+5cNDU1BR979+7Vu9umVVxcjF27dsHj8cDlcsHj8aC2tjYpg5OASIGbEmeddZaidrF+A9650x+YXHtt9HaLFvkzTkaOjOk0lpphs9Osg5WuO5HlxJPsgjBJsp3t3btXSJIkli1bJoT4Pkl2w4YNwTbvvPMOk2Qpbh1XPq1atSrq6goAwul0itbWVuFwOCLWnYl1FcbRo0KceaZ8AmxZmbbXINLKmPLyctMs5Q2sfNH6midSuOvudDotk+xLZBRdV/G0tLSITZs2iU2bNgkA4qmnnhKbNm0Su3fvFi0tLWLOnDmipqZG1NbWilWrVokf/vCHYvjw4eJEh6pSEyZMEBdddJFYt26dWLt2rRg+fDiXGZPm7r777qgByt133y2EiFwcL5YVJe3tQtx8s3xgMnq0EMeP6/O+OwZq5eXlYvDgwSHva/DgwQkPWLS85mZhh5ouRHrTNUCJtKxu2rRp4ttvvxVXX321yM7OFj169BBDhw4Vt956q2hoaAg5xqFDh0Rpaano27evSEtLEzfffDMLtZGm5OpTBL7hBgYRLb4Bv/yysmXDe/bo9a5DRVrK2/mRqNojesw6MEggMjc14zf34iFTindfE6UbL3o8HhQUFMR1zg0bgEsvle/T6tXAj38s304LgX2doq2WCUjkXk5a7l9jt/2YiOyIe/GQpWlRYVRpAbd4Ku8eOCBESor8jMmCBTGfImZqK+xaMe+jI7sUfiOyu4QXaiP78/l88Hq9WLRoEbxer2ZFtdxuN0pKSrp886+rq0NJSQncbrei4+i5UqStDRg3Dujf319ILZKf/tTfds4c1aeQJXf91S7RFRaqPdKZnQq/EVEHekdLeuAMSmLptYeKlvua6LVS5JFH5GdMTj9diE7bT2lKyfWPZY8ixDmjlCgsN09kHZxBId1oNcMRjpYVRrWuT/HOO/56Jg88EL3d5s1AczNwxhmKDqua0usfa4VdK9Qe6czowm96zR4SUSgGKKSY3lPpWg80WlTera31ByYTJkRv9+qr/vmT0aMVdS0maq6/2gq7Vq54amThN7fbjdzcXBQWFmLy5MkoLCxEbm5uXIE5EUWg72SOPniLRxtql2TqPZWu1/FjWXp67JgQw4fL386ZOdNf+8QIsVyfcLeDOj+snkhqVOE3JuISxU/XOihmwAAlfrHkkei9MsYMFUbb24W47Tb5wOT884X49lvduhFWrNe/c+E2O1Y81bvwm5b5UUTJjAEKRRXrN0EjkhETWWH0b39TVmht1y7duhCVVtffrsXM9Cw3z0RcIm0wQKGI4vkmaORUupHf8v/1L2WBybvv6nJ6xcwww2R2egVfRtTVIUoGasbv7qCkomalTKDCakAg8bKkpASSJIUka2q5c2txcTGKioo0qzDaWaB66ddfH8Idd/wMp05FzxWfPx/43e80OXVcjLr+VpaSktLl71YLRu/ArGWFXSLL0jta0gNnUGKnxTdBK+/cWlVVJQYPHiKAlbIzJhMnCmHGyQgrX3+rMnL2Sq86Q0RmwL14KKJY9qgJx4rf8NxuNyZN2gDgsajtevUC9u4FsrKM6VcsrHj9jaDndQnUoAEQdvZKi72MAufo/LGcyP2SiLTEvXgoomTNY1i5sk1Rnsn69fZ638nEiJkHPWevuFKIkgEryVJEWldYNbtdu/yF1iZOlHs/UwFIOHrUenvRdJSsVU71rHDcUXFxMXbt2gWPxwOXywWPx4Pa2lpNZjW0rKRMZAcMUJKQFhVWze74cWDECODMM+VaPgdAAvAqAO3KoSdCslY5NXqzwEAibmlpKQoKCjQL5o0u2U9kdgxQkpSe3wQTSQjg9tuB3r2BL76I1vJLAL0AzAx51op70QDGzSCYkV1mHoxeKURkdlxmnMT0WpKZKK++CkydqqTlmQB2hTwjSRIcDocl96KRm0GQJAmzZs1CUVGRbW7ddWSXmYfABo91dXVhf5dW/hsligVnUMjyNm/255nIBScPPLAWktQNkrQ75Hmr597YZQYhVnaZeUi2/DAiOQxQyLIOH/bfyrnooujtHn3Uf+vn4Yf/w5a5N4meQUh0Ym5g5iHSrs1W2qk5GfLDiJTiLR6yHJ8PKCoC/vnP6O2uvhpYsQLo+IVT7yq1iZDIGQS3242ysrKQGRyHw4HKykrDBlO7Vdi1498oUSxYqI0sZcEC4J57orfp0QPYvx/o18+YPiWaz+dDbm6ubO5CbW2tpoOc2YqKhQuWnE4nKioqOPNAZBJqxm8GKGQJq1cD48bJt9uwAbj4Yv37YzZGVDntKBAURcp90SsoUtIvzjwQmZea8Zs5KGRqe/b4E2DlgpOFC/15JskYnADG5y6YNTFXrxolRGQ85qCQKZ04AVx6KfD559HbFRbuwAMP7MOVV+YDSO7ByMjchUQn5hKR/TFAIVMRAigrA555Jnq77t1r0dZ2Pjye4/B4jE/MNCujatvYZWkvEZkXc1DINBYtAiZPVtLybAA7Q54x+26vdsuNSFRiLhFZG3NQyFI++8yfZyIXnPzjHz44HE50Dk4AffZc0Yod98hhUTEi0hsDFEqYI0eA9HRg9Ojo7crL/bd++vY1Z2JmNHbeI4dFxYhIT8xBIcO1twPFxcCyZdHbjR0LvP020P27v1KrJWaq2SMHgCVvAbGoGBHphQEKGeqpp4C77oreRpKAhgagf//Q562WmKl0Ke6jjz6Kl156KaHVWONht00nicgceIuHDOH1+gMPueDkk0/8MyydgxPAenuuKJ3JmTdvni1vARERxYMBCulq3z5/YFJYGL3dX/7izzO59NLIbayWmBnPTI6Zk34pvERvmkhkNwxQSBetrcAPfwg4ndHb3Xyzf8bklluUHddKiZlyMz5yzJj0S+HZcaUWUaIxQCHN3XkncNppwKZNkduceSZw9Cjw8sv+GRY1iouLsWvXLng8HrhcLng8HtTW1poqOAGUzfgoYZakXwrPziu1iBKJhdpIM4sXAzfcIN9u+3bg7LP1749ZhNtlNysrC4cOHVL08x6PJ5iEareCb1Zn1k0TicyKhdrIUFu3+mdB5IKTf/zDn2eSTMEJ0HXGZ9WqVejVq5fsz3VO+uVtBPMx66aJRHbAAIViduQIkJkJXHBB9HYPPugPTK67zpBumVLHXXZTUlKiDmoBQohg0i9vI5iT1WrzEFkJAxRSLVBo7YwzgG++idzuqquAkyf9lWDpe0oHq1mzZqG4uFi24FugLVeNGM9qtXmIrISF2jrg/X15FRXA7Nny7RoagAEDdO+OrvT6e1A6WHWsMKv0NgILphkrsFJLbtNEs9TmIbISzqB8h/f3o/vgA3+eiVxw8vHH/ts5geDEqrUh9Px7UFtwjrcRzMtqtXmILEVYUFNTkwAgmpqaNDleVVWVkCRJAAh5SJIkJEkSVVVVmpzHivbtE8IfckR/vPhi15+tqqoSDocj5Jo6HI6w17OtrU14PB7hcrmEx+MRbW1tBry78Iz4ewico/N5wp3D4/F06Uu4h8fjibtfFJtwf+tOpzOpPzuIwlEzfid9gNLW1tblg6XzgOF0OoMDppkGUj2dOCHExRfLByZTpwrR3t7159UM8moCGb2p/XuIh9JBLdCncNdT6z5R7JLls4EoHgxQVFDz7dRMA6me7rpLPjBxOoVoaQn/82oGebPNXhk9W6F0UFMz40JEZFZqxm/VOSgffPABfvrTn2LQoEGQJAlvvvlmyOtCCDz44IMYOHAgevXqhXHjxmH79u0hbQ4fPowpU6YgLS0NGRkZuOWWW3D06FG1XdGE0vv2y5Yts/0yz6VL/Xkmf/xj9HZffQXs2QP07Rv+daVJnV6v13SrU4zO9+i4/LigoCBiroKVSvybiVVzoIgohiTZY8eOYfTo0Xj22WfDvv7kk0/iT3/6E1544QWsW7cOffr0wfjx43HixIlgmylTpmDr1q147733sHz5cnzwwQe47bbbYn8XcVC6ouLVV1811UCqpS++8AcmP/959HbLlvnnT845J3o7pYO31+s1XZErMy8btUqJf7Ng4juRxcUzVQNAvPHGG8F/t7e3i5ycHLFgwYLgc0eOHBGpqali0aJFQgghtm3bJgCI9evXB9usXLlSSJIk6urqFJ1XjxyUaPf3s7OzbZmk2NQkRHa2/O2c++5Td1ylt0nuv/9+Re1cLpc+FyAMub8HfHdbr+OtGOYemI/Zbh0SkZ+ut3iiqa2tRUNDA8aNGxd8Lj09HWPGjEFNTQ0AoKamBhkZGbjkkkuCbcaNG4du3bph3bp1YY/b2tqK5ubmkIdWlCwTnDJliqJjGbXMMzBt/dprr6GiogKvvfaaqunr9nbg+uuB9HTg4MHI7X70I3+htT/8QV3/lC6jVVqzw8jZimh/DwHHjx/HsmXLAFj7W7pdb3+wsB2RTcQTCaHTDMqHH34oAIj9+/eHtPv5z38urr/+eiGEEI8++qg455xzuhwrOztbPPfcc2HPM2/evLDfZLVaZixE9BUVZlrmGa6f6PDNXu6b4TPPKFs2XF8ffz/lkjrNvDqlqqpKZGVlReyXJEni7rvvtuy3dDsnfJvp/69EFMqwVTxGBSgnTpwQTU1NwcfevXs1D1CEiDxVb5aBNNK0dee+hBtk1q5VFph89JG2/ZVbRmvW1SlKViKlpKREfd2sS3/tfvvD5XIpClCMvHVIRH4Ju8WTk5MDAGhsbAx5vrGxMfhaTk4ODhw4EPJ6W1sbDh8+HGzTWWpqKtLS0kIeeoi0osIM1SKjTVt31nH6ur7enwD7H/8R/Weef94fouTladFbv2hJnYHbC62trXjooYdMtzpFyUqkaLcIhEl3sU2G2x9mTnQmIhXiiYSA8Emy//M//xMSLYVLkt2wYUOwzTvvvJOwJFk1ElktUum0deDx7rteMWaM/IzJ5MnhC63pKdx1HDx4sCgvL9cl0TSWJFal38LlHoFv6WZJpE2G2x9mmfEkoq50vcXT0tIiNm3aJDZt2iQAiKeeekps2rRJ7N69WwghxOOPPy4yMjLEsmXLxGeffSaKiorEmWeeKY4fPx48xoQJE8RFF10k1q1bJ9auXSuGDx8uSktLdXmDWkvUQKNuwJwvG5gMHChEc7MhXQ9h9O2FWHMt1AaE0QZ6M+V7JMvtDyNuHZol6CSyEl0DlEgf3NOmTRNC+GdRHnjgATFgwACRmpoqxo4dK7766quQYxw6dEiUlpaKvn37irS0NHHzzTeLlkhlScNIZICSKMoGzP+SDUwAIb74IjHvwcgy8kLEFwwp+RauJAdlyZIlpsr3SIYZlAA9ZzzNFHQSWQlL3dtQ9MH9HEWBSYe7cbr0T+7bpJGDoxbBkNy38MAqnkivL1682NCATM11SZbbH3rMctg9yZhITwxQbKrrB2NfAdTJBia/+53+/VLybdLI2wtaBUNy38Ktsjy983sy48opKzB6FpDIbhig2FhVVZUYPNghgNdkA5MxY4Robf3+ZxP9bVLrATva+9EyGJK7bpFeN3O+RyITvq3MrEEnkVWoGb+7gyylsbEYdXXyS2/r6oBBg77/t9vtRllZWcjSWYfDgcrKypiX8sotWZUkCbNmzUJRURFSUlKCFWbr6urC/owkSXA4HMjPzw97rurqatTX12PgwIE4ePAg7rzzzojvR8ulpoHl52pfV9qHzptpGqG4uBhFRUUh1zQ/P1/XpfJ2YPRmkkRJTe9oSQ/JOIPy0UfKCq2tXdv1ZxcvXhxxOjqeKf1Yvk3GcnshWvXcSMcwQ66Fkn19Ag/OXFgDZ1CI4sNbPDZSX68sMHnmmfA/v2TJEt0qnsZ6C0PN7QUl1XMjvR8z5Foorf7LvAVrMEPgS2RlDFBs4ORJIX70I/nA5IYbhPD5wh+jqqpK8cAeyze+eL5NKsmHkUtIlDtnW1ubKC8vF5mZmYqCIb2Ul5fzW7eNmCHwJbIq5qBY3H33AY89Fr1Ndjawfbt/R+JwAvkhSsVyzzyenBK5vA5Avtx8NMuWLcPUqVNDfj4zMxNlZWW47777DM21GD58uKJ2zFuwhuLiYixdujRsTldFRUXCtmcgshsGKCby1ltAUZF8u61bgREjordRO7jHsi9JYI+ikpISSJIUEqRosUdRPAN2RUVFl+e++eYbPPTQQ7jgggsMHUS4N4z9MMmYSH+abhZIsfn6a/+GfnLBydKl/hs7csEJoG5wdzqdYWc5lAh8m9Rjs79YBmxJkiIOEoEAyujN8AIzTZ03mgyQJCmu3wElRqTNRYlIGwxQEujoUcDhAM49N3q7OXP8gcmkScqPrWZwj3cn5mi7FsdDbmDvLDCLY7Zdhs2wGzYRkdUwQEkAIYD//m/g9NP99UoiufRS4MQJYMEC9edQMrinpKRg8eLFmtzu0OPbZLSBPRyHw4FZs2YpOrbR+R56zjQREdmRJMJlN5pcc3Mz0tPT0dTUhLS0tER3R5UXXwR+/Wv5dvv2AZ3GMtXcbjdKSkoAIGwS65IlS4Kvm1mkInNPP/00+vXrF5IDUF1djcLCQtljejwe2SRdPXQuOMe8BSJKJmrGbybJGmTdOuDyy+XbffABoFUqQqTVBk6n03KrDToHWEIIdOvWrUuQEc/KIiMoWb1EREScQdFdYyOQkyPfrqICULEqWBUrf2sPzAJ1/jMN3PIJd3sk0sxRtJ8hIiL9qRm/GaDo5NQpYOxYQC4Xc9IkYPFioBuzgbrw+XzIzc2NuFw6MBtSW1vbJeAKd1vIijNHRER2wgAlwebNAx5+OHqbrCxg587IhdbsIp7ZG6/XG1c+iZVnjoiI7Ig5KAnyz38C110n3+7zz4Hzz9e/P0aIFgTEu4NyrDvHdu7T9ddfz8CEiMhiGKBoYMcOQEk188WLgZ//XP/+GCVaAAIgbO5IXV0dSkpKFOWBxFKBNd6giIiIzIG3eOJw7Jh/JmT37ujtZs8GnnrKmD51pOctjmjJq0IIZGVl4dChQ2F/NlruSOf+5+bmyq7ICRwnloRaIiIyjprxm6mZMRACuPlmoG/f6MHJRRf5C60lIjhxu93Izc1FYWEhJk+ejMLCQuTm5sLtdsd97MBGhOGChsBzkYKTQBsl1VzVVGCV65MQArfddhtWr15taJl7IiKKDQMUlf76V/+Km1deid5u717gX/8CUlMN6VaIwExC59Uvgdsr8QYp8ewy3JGSHBOlFViV9OnQoUMYN26cZoEa6cfn88Hr9WLRokXwer0MKomSEAMUhdav92/o96tfRW/n8fhnWBwOY/rVmZLZjXg3y9OqTLzSHBMle/2o6ZNWgRrpQ8/ZPyKyDibJyjh4EBgwwB90RPPHPwJ33mlMn6KRm0noeHsl1oqmsewy3FEs1VzlKrCq6ZMQApIkYdasWSgqKjJ0hQ+XPkcXKY9ITXK1Vvi7IkowYUFNTU0CgGhqatLtHKdOCfHjHwvhD00iP4qKhPD5dOuGai6XSwCQfbhcrpjP0dbWJhwOh5AkKeyxJUkSWVlZQpKkLm0Cz1VVVWn4ruX7FOnh8Xg07Uc0VVVVwuFwhJzf4XBofi2sKvA7jPS7kiRJOJ1O0dbWpntf+Lsi0oea8Zu3eMJ45BGgRw/g/fcjt0lPBw4fBt5801xVYGNZmquWkuTVF1980dDde9XufBxg1K7GeucF2YGa2T898XdFZBL6x0va02sGZe1a+RkTQIjPPtP0tJpSMruh1bfQcN8ynU5nyLfMtrY24fF4hMvlEh6PR7S2tob8W+tvw+H6FO1hxAyKmWYGzMyI2T85/F0R6UvN+M0A5Tv79wvRq1f0wGTRIs1Op6uqqqqwt1cCjyVLlmh2rs4BSOCDO9zzRk2bt7W1iVWrVonMzExTDDQej8c0wZKZmeE6maEPRHbGACUGr78eOTD5zW+EaG/X7FSKRBr4lYo2k5CZmSnKy8t1G5zDnTsrKytioKBHTkqgH0bmwURihpkBKzBy9i8S/q6I9MUAJQbbtgmRkhIamIwcKcTx45qdQjGtZhoWL14c9UM2KytL80E6EBQovcWi98Cj5DaU3vitXLlEB5X8XRHpiwFKjN59V4gbbxRi6lQhdu/W9NCKRRrg1X5Ay91L7/jQ6kNfzTmN/NCPdzZKi/MnembAShIZVPJ3RaQvNeM39+IxkcDeM5FWMijdwwYAvF4vCgsLFZ3X6XQqOqYcNecMx+VyobS0NK4+mFVgZQiAkBof3CcovETWIOHvikg/3IvHorRcZqlm+axWSzfjXbIbbwG4RJIrza60ZL9W57O6QGG+0tJSFBQUGFogTevfFRHFhpVkTUTpAF9XVwev1xv126XawV6LeiCxBhixVJY1E7fbjbKyspDg0uFwoLKyMmQwKy4uRlFRUVwzAz6fD48++igqKytx+PDhqOej2GnxuyKiOOl7t0kfRlSSTQSlCXr9+vWTTaBVmw+iRf5HLNVcjV5Ro7WqqipD8nsC50rEaigiIq0wB8WiAjkodXV1YTf7iyTSvfFI+5p0/lmleS1KRLt/L4RAVlYWDh06FHze6XSioqLCkt/8fT4fBgwYEPJ+OsvKykJjY2Pc19btdmPSpElR22j9uyQi0hpzUCxKSQn5cAKBQOddigP30rOyssL+XOCYFRUVmg1o0e7fV1VVobGxMequxFbi9XqjBicAcOjQIXi93rjOE9ihWo4wqBQ8EZERGKCYTKQBPlKQERBpcCouLkZjYyPKy8uRmZkZ8ppeSX/FxcXYtWtX2EAkkcmPWlMaeMQboMglT3dm1P5CRER6YpKsCXVO0Nu+fXtwZkVOuMEpJSUFDz74IO677z7Dkv4CgUi8uOW9+oDDyquhiIgCGKCYVGCAd7vdeOihhxTnpEQbnLQKGowSbnVMZmYmysrKcN999+keqMgFRwUFBfjDH/4ge5x4r7magMPpdFp2NRQRUUdMkjUxucJtHdklQTIQFCxbtgwVFRUR22VlZeHFF1/ULX9FydJho5JklSZPS5KU0DodnO0iIjmqxm99FhLpy0zLjPUso6502TG+W2Zq9SWm0TY4jPTQc5PBcNe483U2apmx3A7VeuyrpLZ/RuxUTUTWxr14DKL3h7LSnVUzMzMtPxDEsskgAM33RZGrHxNuL5aqqioxePBg3QfncH9veu9MrbRfWuwfRUT2l9AAZd68eV0+qM4999zg68ePHxe33367yMzMFH369BHFxcWioaFB1TnMEKAY8aGsdAZl1apVGryjxDHTJoOx7mZr1IaEid74MFx/1AZ0RJS81IzfuiwzPv/881FfXx98rF27Nvja7Nmz8Y9//ANLlizBmjVrsH//fsvVwQjUpRBh8gFEhJokscjPz4fD4YhYA0WSJDidTkslvoajdhltZ1ouq1V6rM7t7LR8Wg0t948iIupIl1U83bt3R05OTpfnm5qa8Ne//hUulws//vGPAQALFy7ED37wA3z88ce4/PLL9eiO5tR8KMcTPAQKt5WUlAQrsQboUWQtFlokRpppk0Glx0rEUl6le/4YKdaAjohIji4zKNu3b8egQYMwbNgwTJkyBXv27AEAbNy4EadOncK4ceOCbc877zwMGTIENTU1EY/X2tqK5ubmkEciGfmhbOadVd1uN3Jzc1FYWIjJkyejsLAQubm5cLvdqo4TzyaDWi+rVTprZfRS3sAWAp0D47q6OpSUlKi+5loxc0BHRBan9f2lFStWiMWLF4tPP/1UvP322yIvL08MGTJENDc3i9dee0307Nmzy89ceuml4p577ol4zHB5LUhgDkqseQrxMFvugZY5OGbbZDDSiplEJX2aOc9D7nfHHBQi6shUq3i++eYbkZaWJv7yl7/EHKCcOHFCNDU1BR979+5NaIBi1g9lIxM1tR4w5ZbR9u3bN+TfTqdT10Ah3IoZvc8ZSSICYjXMFtARkXklPEm2o4yMDJxzzjnYsWMHcnJycPLkSRw5ciSkTWNjY9iclYDU1FSkpaWFPBJJyaZ+RueGaHW7RQk9EiMj3cpyOp2oqqrCkSNHDN1kMNp+QkYze56HmW9DEpGF6R0ttbS0iDPOOENUVlaKI0eOiB49eoilS5cGX//yyy8FAFFTU6P4mGZYZiyEeb5lG12HQml9FpfLpfrYZruVZQZmn0EJ4O+OiOSoGb81L3U/Z84c/PSnP8XQoUOxf/9+zJs3D5s3b8a2bduQnZ2NGTNmYMWKFXjllVeQlpaG3/zmNwCAjz76SPE5zFTqPtHlveXK4Sspga/2PXi9XhQWFsr2zePxBFcxJfo6WZlcqXu7bHNARPaX0FL3N9xwgxg4cKDo2bOnGDx4sLjhhhvEjh07gq8HCrWdccYZonfv3uJnP/uZqK+vV3UOs8ygmEG8365jqYarNgeHZdDjxzwPIrIDUyXJ6oEByvfiud0Sz60hpQMmy6Brxyy3FImIYpXQWzxGMNMtnkSL5XYLoM2toXCFw5xOJyoqKlBcXKzJOSgUb5URkZWpGb8ZoFhcrPkJsQY24c4facDU6hxERGQPasZvXUrdk3FiLYev1dLVwB40sfys2nZERJQ8dK+DQvqLpQ6FESXKWQadiIhixVs8NqImP8GIpatcHktERB2pGb85g2IjgdstpaWlKCgoiDroG1EN14wVd4mIyBoYoCQxI0qUsww6ERHFgrd4yJClq1weS0REXGZMlCAMxIiIIuMyY6IECFe4zuFwoLKykreyiIhUYg4KkQbcbjdKSkq6VM2tq6tDSUkJ3G53gnpGRGRNDFCI4uTz+VBWVhZ2KXXguVmzZsHn8xndNSIiy2KAQhSn6urqiPsNAf4gZe/evaiurjawV0RE1sYAhShOLOlPRKQ9BihEcWJJfyIi7TFAIYpTfn4+HA5Hl2q5AZIkwel0Ij8/3+CeERFZFwMUojixpD8RkfYYoBBpgCX9iYi0xUqyRBpiJVkioshYSZYoQQI7ShMRUXx4i4eIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHQYoBAREZHpMEAhIiIi02GAQkRERKbDAIWIiIhMx5KVZAPV+ZubmxPcEyIiIlIqMG4r2WXHkgFKS0sLAMDpdCa4J0RERKRWS0sL0tPTo7ax5GaB7e3t2L9/P04//XS0tLTA6XRi79693DhQR83NzbzOBuB1Ng6vtTF4nY1hlesshEBLSwsGDRqEbt2iZ5lYcgalW7ducDgcAABJkgAAaWlppv6l2AWvszF4nY3Da20MXmdjWOE6y82cBDBJloiIiEyHAQoRERGZjuUDlNTUVMybNw+pqamJ7oqt8Tobg9fZOLzWxuB1NoYdr7Mlk2SJiIjI3iw/g0JERET2wwCFiIiITIcBChEREZkOAxQiIiIyHdMHKIcPH8aUKVOQlpaGjIwM3HLLLTh69GjUn3nxxRdRUFCAtLQ0SJKEI0eOaHJcu4vlmpw4cQIzZ85EVlYW+vbti0mTJqGxsTGkjSRJXR6vv/66nm/FVJ599lnk5ubitNNOw5gxY/DJJ59Ebb9kyRKcd955OO200zBy5EisWLEi5HUhBB588EEMHDgQvXr1wrhx47B9+3Y934IlaH2db7rppi5/txMmTNDzLViCmuu8detWTJo0Cbm5uZAkCRUVFXEfM1lofZ0feuihLn/P5513no7vQAPC5CZMmCBGjx4tPv74Y1FdXS3OPvtsUVpaGvVnnn76aTF//nwxf/58AUB88803mhzX7mK5JtOnTxdOp1OsXr1abNiwQVx++eXiiiuuCGkDQCxcuFDU19cHH8ePH9fzrZjG66+/Lnr27ClefvllsXXrVnHrrbeKjIwM0djYGLb9hx9+KFJSUsSTTz4ptm3bJu6//37Ro0cPsWXLlmCbxx9/XKSnp4s333xTfPrpp+I///M/xZlnnpk01zQcPa7ztGnTxIQJE0L+bg8fPmzUWzIltdf5k08+EXPmzBGLFi0SOTk54umnn477mMlAj+s8b948cf7554f8PR88eFDndxIfUwco27ZtEwDE+vXrg8+tXLlSSJIk6urqZH/e4/GEDVDiPa4dxXJNjhw5Inr06CGWLFkSfO6LL74QAERNTU3wOQDijTfe0K3vZnbZZZeJmTNnBv/t8/nEoEGDxPz588O2v/7668W1114b8tyYMWPEr3/9ayGEEO3t7SInJ0csWLAg+PqRI0dEamqqWLRokQ7vwBq0vs5C+AOUoqIiXfprVWqvc0dDhw4NO3DGc0y70uM6z5s3T4wePVrDXurP1Ld4ampqkJGRgUsuuST43Lhx49CtWzesW7fOdMe1sliuycaNG3Hq1CmMGzcu+Nx5552HIUOGoKamJqTtzJkz0a9fP1x22WV4+eWXFW21bXUnT57Exo0bQ65Pt27dMG7cuC7XJ6CmpiakPQCMHz8+2L62thYNDQ0hbdLT0zFmzJiIx7Q7Pa5zgNfrRf/+/XHuuedixowZOHTokPZvwCJiuc6JOKbV6XlNtm/fjkGDBmHYsGGYMmUK9uzZE293dWXqAKWhoQH9+/cPea579+7IzMxEQ0OD6Y5rZbFck4aGBvTs2RMZGRkhzw8YMCDkZx5++GEsXrwY7733HiZNmoTbb78dzzzzjObvwWz+/e9/w+fzYcCAASHPd74+HTU0NERtH/hfNce0Oz2uMwBMmDABf//737F69Wo88cQTWLNmDSZOnAifz6f9m7CAWK5zIo5pdXpdkzFjxuCVV17B22+/jeeffx61tbXIz89HS0tLvF3WTUJ2M/7d736HJ554ImqbL774wqDe2JsZrvUDDzwQ/O+LLroIx44dw4IFC/Db3/5W1/MSxeMXv/hF8L9HjhyJUaNG4ayzzoLX68XYsWMT2DMi9SZOnBj871GjRmHMmDEYOnQoFi9ejFtuuSWBPYssIQHKXXfdhZtuuilqm2HDhiEnJwcHDhwIeb6trQ2HDx9GTk5OzOfX67hmpOe1zsnJwcmTJ3HkyJGQWZTGxsao13HMmDF45JFH0Nraaqt9Izrr168fUlJSuqxqinZ9cnJyorYP/G9jYyMGDhwY0ubCCy/UsPfWocd1DmfYsGHo168fduzYkZQBSizXORHHtDqjrklGRgbOOecc7NixQ7Njai0ht3iys7Nx3nnnRX307NkTeXl5OHLkCDZu3Bj82ffffx/t7e0YM2ZMzOfX67hmpOe1vvjii9GjRw+sXr06+NxXX32FPXv2IC8vL2KfNm/ejDPOOMPWwQkA9OzZExdffHHI9Wlvb8fq1asjXp+8vLyQ9gDw3nvvBdufeeaZyMnJCWnT3NyMdevWRb3mdqbHdQ5n3759OHToUEhgmExiuc6JOKbVGXVNjh49ip07d5r77znRWbpyJkyYIC666CKxbt06sXbtWjF8+PCQpa/79u0T5557rli3bl3wufr6erFp0ybx0ksvCQDigw8+EJs2bRKHDh1SfNxkFMu1nj59uhgyZIh4//33xYYNG0ReXp7Iy8sLvv7WW2+Jl156SWzZskVs375dPPfcc6J3797iwQcfNPS9Jcrrr78uUlNTxSuvvCK2bdsmbrvtNpGRkSEaGhqEEEJMnTpV/O53vwu2//DDD0X37t3F//zP/4gvvvhCzJs3L+wy44yMDLFs2TLx2WefiaKiIi4z1vg6t7S0iDlz5oiamhpRW1srVq1aJX74wx+K4cOHixMnTiTkPZqB2uvc2toqNm3aJDZt2iQGDhwo5syZIzZt2iS2b9+u+JjJSI/rfNdddwmv1ytqa2vFhx9+KMaNGyf69esnDhw4YPj7U8r0AcqhQ4dEaWmp6Nu3r0hLSxM333yzaGlpCb5eW1srAAiPxxN8bt68eQJAl8fChQsVHzcZxXKtjx8/Lm6//XZxxhlniN69e4uf/exnor6+Pvj6ypUrxYUXXij69u0r+vTpI0aPHi1eeOEF4fP5jHxrCfXMM8+IIUOGiJ49e4rLLrtMfPzxx8HXrrrqKjFt2rSQ9osXLxbnnHOO6Nmzpzj//PPFP//5z5DX29vbxQMPPCAGDBggUlNTxdixY8VXX31lxFsxNS2v87fffiuuvvpqkZ2dLXr06CGGDh0qbr311qQeNAPUXOfAZ0bnx1VXXaX4mMlK6+t8ww03iIEDB4qePXuKwYMHixtuuEHs2LHDwHekniREEqz3JCIiIksx9TJjIiIiSk4MUIiIiMh0GKAQERGR6TBAISIiItNhgEJERESmwwCFiIiITIcBChEREZkOAxQiIiIyHQYoREREZDoMUIiIiMh0GKAQERGR6TBAISIiItP5/wEp1b8yUKjSwAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test, y_test, color='black')\n", + "plt.plot(X_test, y_pred, color='blue', linewidth=3)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "16ff1a974f6e4348e869e4a7d366b86a", + "translation_date": "2025-09-04T01:30:22+00:00", + "source_file": "2-Regression/1-Tools/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/hi/2-Regression/2-Data/README.md b/translations/hi/2-Regression/2-Data/README.md new file mode 100644 index 000000000..1da67ded9 --- /dev/null +++ b/translations/hi/2-Regression/2-Data/README.md @@ -0,0 +1,226 @@ + +# Scikit-learn का उपयोग करके एक रिग्रेशन मॉडल बनाएं: डेटा तैयार करें और विज़ुअलाइज़ करें + +![डेटा विज़ुअलाइज़ेशन इन्फोग्राफिक](../../../../translated_images/data-visualization.54e56dded7c1a804d00d027543f2881cb32da73aeadda2d4a4f10f3497526114.hi.png) + +इन्फोग्राफिक: [दसानी मडिपल्ली](https://twitter.com/dasani_decoded) + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/11/) + +> ### [यह पाठ R में भी उपलब्ध है!](../../../../2-Regression/2-Data/solution/R/lesson_2.html) + +## परिचय + +अब जब आपके पास Scikit-learn के साथ मशीन लर्निंग मॉडल बनाने के लिए आवश्यक उपकरण हैं, तो आप अपने डेटा से सवाल पूछने के लिए तैयार हैं। जब आप डेटा के साथ काम करते हैं और ML समाधान लागू करते हैं, तो सही सवाल पूछना बहुत महत्वपूर्ण है ताकि आप अपने डेटा सेट की संभावनाओं को सही तरीके से खोल सकें। + +इस पाठ में, आप सीखेंगे: + +- मॉडल बनाने के लिए अपने डेटा को कैसे तैयार करें। +- डेटा विज़ुअलाइज़ेशन के लिए Matplotlib का उपयोग कैसे करें। + +## अपने डेटा से सही सवाल पूछना + +आपके द्वारा पूछे जाने वाले सवाल यह तय करेंगे कि आप किस प्रकार के ML एल्गोरिदम का उपयोग करेंगे। और आपको मिलने वाले उत्तर की गुणवत्ता आपके डेटा की प्रकृति पर बहुत अधिक निर्भर करेगी। + +इस पाठ के लिए दिए गए [डेटा](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) पर एक नज़र डालें। आप इस .csv फ़ाइल को VS Code में खोल सकते हैं। एक त्वरित स्कैन से तुरंत पता चलता है कि इसमें खाली स्थान हैं और स्ट्रिंग्स और संख्यात्मक डेटा का मिश्रण है। इसमें 'Package' नाम का एक अजीब कॉलम भी है, जिसमें डेटा 'sacks', 'bins' और अन्य मानों का मिश्रण है। वास्तव में, यह डेटा थोड़ा गड़बड़ है। + +[![ML for beginners - How to Analyze and Clean a Dataset](https://img.youtube.com/vi/5qGjczWTrDQ/0.jpg)](https://youtu.be/5qGjczWTrDQ "ML for beginners - How to Analyze and Clean a Dataset") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें इस पाठ के लिए डेटा तैयार करने की प्रक्रिया को दिखाने वाले एक छोटे वीडियो के लिए। + +वास्तव में, ऐसा बहुत कम होता है कि आपको एक ऐसा डेटा सेट मिले जो पूरी तरह से तैयार हो और जिसे सीधे ML मॉडल बनाने के लिए उपयोग किया जा सके। इस पाठ में, आप मानक Python लाइब्रेरी का उपयोग करके एक कच्चे डेटा सेट को तैयार करना सीखेंगे। आप डेटा को विज़ुअलाइज़ करने की विभिन्न तकनीकों को भी सीखेंगे। + +## केस स्टडी: 'कद्दू बाजार' + +इस फ़ोल्डर में आपको रूट `data` फ़ोल्डर में [US-pumpkins.csv](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) नामक एक .csv फ़ाइल मिलेगी, जिसमें 1757 पंक्तियों का डेटा है जो शहर के अनुसार कद्दू बाजार के बारे में जानकारी देता है। यह डेटा [Specialty Crops Terminal Markets Standard Reports](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice) से लिया गया है, जिसे संयुक्त राज्य अमेरिका के कृषि विभाग द्वारा वितरित किया गया है। + +### डेटा तैयार करना + +यह डेटा सार्वजनिक डोमेन में है। इसे USDA वेबसाइट से अलग-अलग शहरों के लिए कई अलग-अलग फ़ाइलों में डाउनलोड किया जा सकता है। बहुत अधिक अलग-अलग फ़ाइलों से बचने के लिए, हमने सभी शहरों के डेटा को एक स्प्रेडशीट में जोड़ दिया है, इस प्रकार हमने डेटा को पहले ही _थोड़ा तैयार_ कर लिया है। अब, आइए डेटा को करीब से देखें। + +### कद्दू डेटा - प्रारंभिक निष्कर्ष + +आप इस डेटा के बारे में क्या नोटिस करते हैं? आपने पहले ही देखा है कि इसमें स्ट्रिंग्स, नंबर, खाली स्थान और अजीब मानों का मिश्रण है, जिन्हें समझने की आवश्यकता है। + +आप इस डेटा से कौन सा सवाल पूछ सकते हैं, रिग्रेशन तकनीक का उपयोग करके? उदाहरण के लिए, "किसी दिए गए महीने में बिक्री के लिए कद्दू की कीमत का अनुमान लगाएं।" डेटा को फिर से देखते हुए, आपको इस कार्य के लिए आवश्यक डेटा संरचना बनाने के लिए कुछ बदलाव करने होंगे। + +## अभ्यास - कद्दू डेटा का विश्लेषण करें + +आइए [Pandas](https://pandas.pydata.org/) का उपयोग करें, (जिसका नाम `Python Data Analysis` के लिए है) जो डेटा को आकार देने के लिए बहुत उपयोगी है, इस कद्दू डेटा का विश्लेषण और तैयारी करने के लिए। + +### सबसे पहले, गायब तारीखों की जांच करें + +आपको सबसे पहले गायब तारीखों की जांच करने के लिए कदम उठाने होंगे: + +1. तारीखों को महीने के प्रारूप में बदलें (ये US तारीखें हैं, इसलिए प्रारूप `MM/DD/YYYY` है)। +2. महीने को एक नए कॉलम में निकालें। + +Visual Studio Code में _notebook.ipynb_ फ़ाइल खोलें और स्प्रेडशीट को एक नए Pandas डेटा फ्रेम में आयात करें। + +1. पहले पांच पंक्तियों को देखने के लिए `head()` फ़ंक्शन का उपयोग करें। + + ```python + import pandas as pd + pumpkins = pd.read_csv('../data/US-pumpkins.csv') + pumpkins.head() + ``` + + ✅ आप अंतिम पांच पंक्तियों को देखने के लिए कौन सा फ़ंक्शन उपयोग करेंगे? + +1. वर्तमान डेटा फ्रेम में गायब डेटा की जांच करें: + + ```python + pumpkins.isnull().sum() + ``` + + डेटा गायब है, लेकिन शायद यह वर्तमान कार्य के लिए मायने नहीं रखता। + +1. अपने डेटा फ्रेम को काम करने में आसान बनाने के लिए, केवल आवश्यक कॉलम का चयन करें, `loc` फ़ंक्शन का उपयोग करके जो मूल डेटा फ्रेम से पंक्तियों (पहला पैरामीटर) और कॉलम (दूसरा पैरामीटर) का एक समूह निकालता है। नीचे दिए गए मामले में अभिव्यक्ति `:` का अर्थ है "सभी पंक्तियाँ।" + + ```python + columns_to_select = ['Package', 'Low Price', 'High Price', 'Date'] + pumpkins = pumpkins.loc[:, columns_to_select] + ``` + +### दूसरा, कद्दू की औसत कीमत निर्धारित करें + +सोचें कि किसी दिए गए महीने में कद्दू की औसत कीमत कैसे निर्धारित करें। इस कार्य के लिए आप कौन से कॉलम चुनेंगे? संकेत: आपको 3 कॉलम की आवश्यकता होगी। + +समाधान: `Low Price` और `High Price` कॉलम का औसत लें और नए Price कॉलम को भरें, और Date कॉलम को केवल महीने दिखाने के लिए बदलें। सौभाग्य से, ऊपर की जांच के अनुसार, तारीखों या कीमतों के लिए कोई गायब डेटा नहीं है। + +1. औसत की गणना करने के लिए, निम्नलिखित कोड जोड़ें: + + ```python + price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2 + + month = pd.DatetimeIndex(pumpkins['Date']).month + + ``` + + ✅ आप `print(month)` का उपयोग करके किसी भी डेटा को जांचने के लिए प्रिंट कर सकते हैं। + +2. अब, अपने परिवर्तित डेटा को एक नए Pandas डेटा फ्रेम में कॉपी करें: + + ```python + new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price}) + ``` + + अपने डेटा फ्रेम को प्रिंट करने से आपको एक साफ, व्यवस्थित डेटा सेट दिखाई देगा, जिस पर आप अपना नया रिग्रेशन मॉडल बना सकते हैं। + +### लेकिन रुको! यहाँ कुछ अजीब है + +यदि आप `Package` कॉलम को देखें, तो कद्दू कई अलग-अलग कॉन्फ़िगरेशन में बेचे जाते हैं। कुछ '1 1/9 bushel' माप में बेचे जाते हैं, और कुछ '1/2 bushel' माप में, कुछ प्रति कद्दू, कुछ प्रति पाउंड, और कुछ बड़े बक्सों में अलग-अलग चौड़ाई के साथ। + +> कद्दू को लगातार तौलना बहुत कठिन लगता है + +मूल डेटा में गहराई से देखने पर, यह दिलचस्प है कि जिनका `Unit of Sale` 'EACH' या 'PER BIN' के बराबर है, उनके `Package` प्रकार प्रति इंच, प्रति बिन, या 'each' भी हैं। कद्दू को लगातार तौलना बहुत कठिन लगता है, इसलिए आइए उन्हें फ़िल्टर करें और केवल उन कद्दू का चयन करें जिनके `Package` कॉलम में 'bushel' शब्द है। + +1. फ़ाइल के शीर्ष पर, प्रारंभिक .csv आयात के तहत एक फ़िल्टर जोड़ें: + + ```python + pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)] + ``` + + यदि आप अब डेटा प्रिंट करते हैं, तो आप देख सकते हैं कि आपको केवल लगभग 415 पंक्तियों का डेटा मिल रहा है जिसमें कद्दू बसल द्वारा हैं। + +### लेकिन रुको! एक और काम करना बाकी है + +क्या आपने देखा कि बसल की मात्रा प्रति पंक्ति बदलती है? आपको मूल्य निर्धारण को सामान्य करना होगा ताकि आप बसल के आधार पर मूल्य दिखा सकें, इसलिए इसे मानकीकृत करने के लिए कुछ गणना करें। + +1. नए_pumpkins डेटा फ्रेम बनाने वाले ब्लॉक के बाद ये लाइनें जोड़ें: + + ```python + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9) + + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2) + ``` + +✅ [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308) के अनुसार, बसल का वजन उत्पाद के प्रकार पर निर्भर करता है, क्योंकि यह एक वॉल्यूम माप है। "उदाहरण के लिए, टमाटर का एक बसल 56 पाउंड वजन का होना चाहिए... पत्ते और साग अधिक जगह लेते हैं और कम वजन होता है, इसलिए पालक का एक बसल केवल 20 पाउंड होता है।" यह सब काफी जटिल है! आइए बसल-से-पाउंड रूपांतरण करने की बजाय बसल के आधार पर मूल्य निर्धारण करें। हालांकि, कद्दू के बसल का यह अध्ययन दिखाता है कि आपके डेटा की प्रकृति को समझना कितना महत्वपूर्ण है! + +अब, आप उनके बसल माप के आधार पर प्रति यूनिट मूल्य का विश्लेषण कर सकते हैं। यदि आप डेटा को एक बार फिर प्रिंट करते हैं, तो आप देख सकते हैं कि यह मानकीकृत है। + +✅ क्या आपने देखा कि आधे बसल द्वारा बेचे जाने वाले कद्दू बहुत महंगे हैं? क्या आप इसका कारण पता लगा सकते हैं? संकेत: छोटे कद्दू बड़े कद्दू की तुलना में बहुत महंगे होते हैं, शायद इसलिए कि एक बड़े खोखले पाई कद्दू द्वारा लिए गए खाली स्थान को देखते हुए प्रति बसल उनमें से बहुत अधिक होते हैं। + +## विज़ुअलाइज़ेशन रणनीतियाँ + +डेटा वैज्ञानिक का एक हिस्सा यह प्रदर्शित करना है कि वे जिस डेटा के साथ काम कर रहे हैं उसकी गुणवत्ता और प्रकृति क्या है। ऐसा करने के लिए, वे अक्सर दिलचस्प विज़ुअलाइज़ेशन, या प्लॉट्स, ग्राफ़ और चार्ट बनाते हैं, जो डेटा के विभिन्न पहलुओं को दिखाते हैं। इस तरह, वे दृश्य रूप से उन संबंधों और अंतरालों को दिखा सकते हैं जिन्हें अन्यथा उजागर करना कठिन होता है। + +[![ML for beginners - How to Visualize Data with Matplotlib](https://img.youtube.com/vi/SbUkxH6IJo0/0.jpg)](https://youtu.be/SbUkxH6IJo0 "ML for beginners - How to Visualize Data with Matplotlib") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें इस पाठ के लिए डेटा को विज़ुअलाइज़ करने की प्रक्रिया को दिखाने वाले एक छोटे वीडियो के लिए। + +विज़ुअलाइज़ेशन यह निर्धारित करने में भी मदद कर सकते हैं कि डेटा के लिए कौन सी मशीन लर्निंग तकनीक सबसे उपयुक्त है। उदाहरण के लिए, एक स्कैटरप्लॉट जो एक रेखा का अनुसरण करता हुआ प्रतीत होता है, यह संकेत देता है कि डेटा एक रेखीय रिग्रेशन अभ्यास के लिए एक अच्छा उम्मीदवार है। + +एक डेटा विज़ुअलाइज़ेशन लाइब्रेरी जो Jupyter नोटबुक में अच्छी तरह काम करती है वह है [Matplotlib](https://matplotlib.org/) (जिसे आपने पिछले पाठ में भी देखा था)। + +> डेटा विज़ुअलाइज़ेशन के साथ अधिक अनुभव प्राप्त करें [इन ट्यूटोरियल्स](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott) में। + +## अभ्यास - Matplotlib के साथ प्रयोग करें + +नए डेटा फ्रेम को प्रदर्शित करने के लिए कुछ बुनियादी प्लॉट्स बनाने का प्रयास करें। एक बुनियादी लाइन प्लॉट क्या दिखाएगा? + +1. फ़ाइल के शीर्ष पर Pandas आयात के तहत Matplotlib आयात करें: + + ```python + import matplotlib.pyplot as plt + ``` + +1. पूरे नोटबुक को फिर से चलाएं ताकि यह ताज़ा हो जाए। +1. नोटबुक के नीचे एक सेल जोड़ें ताकि डेटा को एक बॉक्स के रूप में प्लॉट किया जा सके: + + ```python + price = new_pumpkins.Price + month = new_pumpkins.Month + plt.scatter(price, month) + plt.show() + ``` + + ![एक स्कैटरप्लॉट जो कीमत और महीने के संबंध को दिखाता है](../../../../translated_images/scatterplot.b6868f44cbd2051c6680ccdbb1510697d06a3ff6cd4abda656f5009c0ed4e3fc.hi.png) + + क्या यह एक उपयोगी प्लॉट है? क्या इसमें कुछ ऐसा है जो आपको आश्चर्यचकित करता है? + + यह विशेष रूप से उपयोगी नहीं है क्योंकि यह केवल आपके डेटा को एक दिए गए महीने में बिंदुओं के फैलाव के रूप में प्रदर्शित करता है। + +### इसे उपयोगी बनाएं + +चार्ट को उपयोगी डेटा प्रदर्शित करने के लिए, आपको आमतौर पर डेटा को किसी तरह से समूहित करना होता है। आइए एक प्लॉट बनाएं जहां y अक्ष महीनों को दिखाता है और डेटा वितरण को प्रदर्शित करता है। + +1. एक समूहित बार चार्ट बनाने के लिए एक सेल जोड़ें: + + ```python + new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar') + plt.ylabel("Pumpkin Price") + ``` + + ![एक बार चार्ट जो कीमत और महीने के संबंध को दिखाता है](../../../../translated_images/barchart.a833ea9194346d769c77a3a870f7d8aee51574cd1138ca902e5500830a41cbce.hi.png) + + यह एक अधिक उपयोगी डेटा विज़ुअलाइज़ेशन है! ऐसा लगता है कि कद्दू की सबसे अधिक कीमत सितंबर और अक्टूबर में होती है। क्या यह आपकी अपेक्षा के अनुरूप है? क्यों या क्यों नहीं? + +--- + +## 🚀चुनौती + +Matplotlib द्वारा प्रदान किए गए विभिन्न प्रकार के विज़ुअलाइज़ेशन का अन्वेषण करें। कौन से प्रकार रिग्रेशन समस्याओं के लिए सबसे उपयुक्त हैं? + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/12/) + +## समीक्षा और स्व-अध्ययन + +डेटा को विज़ुअलाइज़ करने के कई तरीकों पर एक नज़र डालें। उपलब्ध विभिन्न लाइब्रेरी की एक सूची बनाएं और नोट करें कि कौन सी लाइब्रेरी किस प्रकार के कार्यों के लिए सबसे अच्छी हैं, उदाहरण के लिए 2D विज़ुअलाइज़ेशन बनाम 3D विज़ुअलाइज़ेशन। आप क्या खोजते हैं? + +## असाइनमेंट + +[विज़ुअलाइज़ेशन का अन्वेषण](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/2-Regression/2-Data/assignment.md b/translations/hi/2-Regression/2-Data/assignment.md new file mode 100644 index 000000000..2fabea620 --- /dev/null +++ b/translations/hi/2-Regression/2-Data/assignment.md @@ -0,0 +1,23 @@ + +# विज़ुअलाइज़ेशन का अन्वेषण + +डेटा विज़ुअलाइज़ेशन के लिए कई अलग-अलग लाइब्रेरी उपलब्ध हैं। इस पाठ में कद्दू डेटा का उपयोग करके matplotlib और seaborn के साथ एक नमूना नोटबुक में कुछ विज़ुअलाइज़ेशन बनाएं। कौन सी लाइब्रेरी का उपयोग करना आसान है? + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | --------- | -------- | ----------------- | +| | एक नोटबुक जमा की गई है जिसमें दो अन्वेषण/विज़ुअलाइज़ेशन हैं | एक नोटबुक जमा की गई है जिसमें एक अन्वेषण/विज़ुअलाइज़ेशन है | कोई नोटबुक जमा नहीं की गई है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/2-Regression/2-Data/notebook.ipynb b/translations/hi/2-Regression/2-Data/notebook.ipynb new file mode 100644 index 000000000..68f8b7d73 --- /dev/null +++ b/translations/hi/2-Regression/2-Data/notebook.ipynb @@ -0,0 +1,46 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "coopTranslator": { + "original_hash": "1b2ab303ac6c604a34c6ca7a49077fc7", + "translation_date": "2025-09-04T01:36:29+00:00", + "source_file": "2-Regression/2-Data/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/2-Regression/2-Data/solution/Julia/README.md b/translations/hi/2-Regression/2-Data/solution/Julia/README.md new file mode 100644 index 000000000..21964cc88 --- /dev/null +++ b/translations/hi/2-Regression/2-Data/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/2-Regression/2-Data/solution/R/lesson_2-R.ipynb b/translations/hi/2-Regression/2-Data/solution/R/lesson_2-R.ipynb new file mode 100644 index 000000000..42e5a0ae1 --- /dev/null +++ b/translations/hi/2-Regression/2-Data/solution/R/lesson_2-R.ipynb @@ -0,0 +1,671 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_2-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "f3c335f9940cfd76528b3ef918b9b342", + "translation_date": "2025-09-04T01:46:12+00:00", + "source_file": "2-Regression/2-Data/solution/R/lesson_2-R.ipynb", + "language_code": "hi" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# एक प्रतिगमन मॉडल बनाएं: डेटा तैयार करें और विज़ुअलाइज़ करें\n", + "\n", + "## **कद्दू के लिए रैखिक प्रतिगमन - पाठ 2**\n", + "#### परिचय\n", + "\n", + "अब जब आपके पास मशीन लर्निंग मॉडल बनाने के लिए Tidymodels और Tidyverse के साथ काम करने के उपकरण तैयार हैं, तो आप अपने डेटा से सवाल पूछने के लिए तैयार हैं। जब आप डेटा के साथ काम करते हैं और एमएल समाधान लागू करते हैं, तो यह समझना बहुत महत्वपूर्ण है कि सही सवाल कैसे पूछा जाए ताकि आपके डेटा सेट की संभावनाओं को सही तरीके से खोला जा सके।\n", + "\n", + "इस पाठ में, आप सीखेंगे:\n", + "\n", + "- मॉडल-निर्माण के लिए अपने डेटा को कैसे तैयार करें।\n", + "\n", + "- डेटा विज़ुअलाइज़ेशन के लिए `ggplot2` का उपयोग कैसे करें।\n", + "\n", + "आपके द्वारा पूछे जाने वाले सवाल यह तय करेंगे कि आप किस प्रकार के एमएल एल्गोरिदम का उपयोग करेंगे। और आपको जो उत्तर मिलेगा उसकी गुणवत्ता काफी हद तक आपके डेटा की प्रकृति पर निर्भर करेगी।\n", + "\n", + "आइए इसे एक व्यावहारिक अभ्यास के माध्यम से समझते हैं।\n", + "\n", + "

                                \n", + " \n", + "

                                @allison_horst द्वारा कलाकृति
                                \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "Pg5aexcOPqAZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. कद्दू डेटा आयात करना और Tidyverse को बुलाना\n", + "\n", + "इस पाठ को समझने और डेटा को व्यवस्थित करने के लिए हमें निम्नलिखित पैकेजों की आवश्यकता होगी:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) एक [R पैकेजों का संग्रह](https://www.tidyverse.org/packages) है, जिसे डेटा साइंस को तेज़, आसान और मज़ेदार बनाने के लिए डिज़ाइन किया गया है!\n", + "\n", + "आप इन्हें इस तरह से इंस्टॉल कर सकते हैं:\n", + "\n", + "`install.packages(c(\"tidyverse\"))`\n", + "\n", + "नीचे दिया गया स्क्रिप्ट यह जांचता है कि क्या आपके पास इस मॉड्यूल को पूरा करने के लिए आवश्यक पैकेज हैं, और यदि कुछ गायब हैं तो उन्हें आपके लिए इंस्टॉल कर देता है।\n" + ], + "metadata": { + "id": "dc5WhyVdXAjR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse)" + ], + "outputs": [], + "metadata": { + "id": "GqPYUZgfXOBt" + } + }, + { + "cell_type": "markdown", + "source": [ + "अब, कुछ पैकेज शुरू करें और इस पाठ के लिए प्रदान किए गए [डेटा](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) को लोड करें!\n" + ], + "metadata": { + "id": "kvjDTPDSXRr2" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n =50)" + ], + "outputs": [], + "metadata": { + "id": "VMri-t2zXqgD" + } + }, + { + "cell_type": "markdown", + "source": [ + "`glimpse()` का उपयोग करने पर तुरंत पता चलता है कि डेटा में खाली स्थान हैं और स्ट्रिंग्स (`chr`) और संख्यात्मक डेटा (`dbl`) का मिश्रण है। `Date` का प्रकार कैरेक्टर है और एक अजीब कॉलम `Package` भी है, जिसमें डेटा `sacks`, `bins` और अन्य मानों का मिश्रण है। वास्तव में, डेटा थोड़ा गड़बड़ है 😤।\n", + "\n", + "सच कहें तो, ऐसा बहुत कम होता है कि आपको एक ऐसा डेटासेट मिले जो पूरी तरह से तैयार हो और जिसे सीधे ML मॉडल बनाने के लिए उपयोग किया जा सके। लेकिन चिंता मत करें, इस पाठ में आप सीखेंगे कि कैसे एक कच्चे डेटासेट को मानक R लाइब्रेरीज़ 🧑‍🔧 का उपयोग करके तैयार किया जाए। आप डेटा को विज़ुअलाइज़ करने की विभिन्न तकनीकों को भी सीखेंगे।📈📊\n", + "
                                \n", + "\n", + "> एक पुनश्चर्या: पाइप ऑपरेटर (`%>%`) लॉजिकल क्रम में ऑपरेशन्स करता है, जिसमें एक ऑब्जेक्ट को आगे किसी फंक्शन या कॉल एक्सप्रेशन में पास किया जाता है। आप पाइप ऑपरेटर को अपने कोड में \"और फिर\" कहने जैसा समझ सकते हैं।\n" + ], + "metadata": { + "id": "REWcIv9yX29v" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. डेटा में कमी की जांच करें\n", + "\n", + "डेटा वैज्ञानिकों को जिन सबसे आम समस्याओं का सामना करना पड़ता है, उनमें से एक है अधूरी या गायब डेटा। R गायब या अज्ञात मानों को एक विशेष संकेतक मान `NA` (Not Available) के रूप में दर्शाता है।\n", + "\n", + "तो हम कैसे जानेंगे कि डेटा फ्रेम में गायब मान हैं? \n", + "
                                \n", + "- एक सीधा तरीका यह होगा कि बेस R फ़ंक्शन `anyNA` का उपयोग करें, जो तार्किक वस्तुएं `TRUE` या `FALSE` लौटाता है।\n" + ], + "metadata": { + "id": "Zxfb3AM5YbUe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " anyNA()" + ], + "outputs": [], + "metadata": { + "id": "G--DQutAYltj" + } + }, + { + "cell_type": "markdown", + "source": [ + "यह सही है, ऐसा लगता है कि कुछ डेटा गायब है! यह शुरू करने के लिए एक अच्छा स्थान है।\n", + "\n", + "- एक और तरीका यह हो सकता है कि `is.na()` फ़ंक्शन का उपयोग करें, जो यह दर्शाता है कि कौन से व्यक्तिगत कॉलम तत्व एक तार्किक `TRUE` के साथ गायब हैं।\n" + ], + "metadata": { + "id": "mU-7-SB6YokF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "W-DxDOR4YxSW" + } + }, + { + "cell_type": "markdown", + "source": [ + "ठीक है, इतना बड़ा डेटा फ्रेम होने पर, हर पंक्ति और स्तंभ को व्यक्तिगत रूप से जांचना अक्षम और व्यावहारिक रूप से असंभव होगा😴।\n", + "\n", + "- एक अधिक सहज तरीका यह होगा कि प्रत्येक स्तंभ के लिए गायब मानों का योग निकालें:\n" + ], + "metadata": { + "id": "xUWxipKYY0o7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " colSums()" + ], + "outputs": [], + "metadata": { + "id": "ZRBWV6P9ZArL" + } + }, + { + "cell_type": "markdown", + "source": [ + "बहुत बेहतर! कुछ डेटा गायब है, लेकिन शायद यह दिए गए कार्य के लिए मायने नहीं रखेगा। चलिए देखते हैं कि आगे का विश्लेषण क्या सामने लाता है।\n", + "\n", + "> शानदार पैकेज और फंक्शन्स के साथ-साथ, R में बहुत अच्छी डॉक्यूमेंटेशन है। उदाहरण के लिए, `help(colSums)` या `?colSums` का उपयोग करके इस फंक्शन के बारे में अधिक जानकारी प्राप्त करें।\n" + ], + "metadata": { + "id": "9gv-crB6ZD1Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Dplyr: डेटा को व्यवस्थित करने का व्याकरण\n", + "\n", + "

                                \n", + " \n", + "

                                चित्रांकन: @allison_horst
                                \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "o4jLY5-VZO2C" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`dplyr`](https://dplyr.tidyverse.org/), Tidyverse का एक पैकेज है, जो डेटा प्रबंधन की व्याकरण प्रदान करता है और एक समान क्रियाओं का सेट देता है जो आपको सबसे सामान्य डेटा प्रबंधन चुनौतियों को हल करने में मदद करता है। इस भाग में, हम dplyr की कुछ क्रियाओं का अन्वेषण करेंगे! \n", + "
                                \n" + ], + "metadata": { + "id": "i5o33MQBZWWw" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::select()\n", + "\n", + "`select()` `dplyr` पैकेज में एक फ़ंक्शन है जो आपको कॉलम चुनने या हटाने में मदद करता है।\n", + "\n", + "अपने डेटा फ्रेम को अधिक सुविधाजनक बनाने के लिए, `select()` का उपयोग करके उन कॉलम्स को रखें जो आपको चाहिए और बाकी को हटा दें।\n", + "\n", + "उदाहरण के लिए, इस अभ्यास में हमारा विश्लेषण `Package`, `Low Price`, `High Price` और `Date` कॉलम्स पर आधारित होगा। आइए इन कॉलम्स को चुनें।\n" + ], + "metadata": { + "id": "x3VGMAGBZiUr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(Package, `Low Price`, `High Price`, Date)\n", + "\n", + "\n", + "# Print data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "F_FgxQnVZnM0" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::mutate()\n", + "\n", + "`mutate()` `dplyr` पैकेज का एक फ़ंक्शन है, जो आपको नए कॉलम बनाने या मौजूदा कॉलम को संशोधित करने में मदद करता है, जबकि बाकी कॉलम को वैसा ही रखता है।\n", + "\n", + "`mutate` का सामान्य ढांचा इस प्रकार है:\n", + "\n", + "`data %>% mutate(new_column_name = what_it_contains)`\n", + "\n", + "आइए `mutate` का उपयोग करके `Date` कॉलम पर निम्नलिखित कार्य करें:\n", + "\n", + "1. तारीखों को (जो वर्तमान में character प्रकार की हैं) महीने के प्रारूप में बदलें (ये अमेरिकी तारीखें हैं, इसलिए प्रारूप `MM/DD/YYYY` है)।\n", + "\n", + "2. तारीखों से महीने को निकालकर एक नए कॉलम में डालें।\n", + "\n", + "R में, [lubridate](https://lubridate.tidyverse.org/) पैकेज Date-time डेटा के साथ काम करना आसान बनाता है। तो, आइए `dplyr::mutate()`, `lubridate::mdy()`, `lubridate::month()` का उपयोग करें और ऊपर दिए गए उद्देश्यों को पूरा करें। हम Date कॉलम को हटा सकते हैं क्योंकि हमें इसे आगे के कार्यों में उपयोग करने की आवश्यकता नहीं होगी।\n" + ], + "metadata": { + "id": "2KKo0Ed9Z1VB" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load lubridate\n", + "library(lubridate)\n", + "\n", + "pumpkins <- pumpkins %>% \n", + " # Convert the Date column to a date object\n", + " mutate(Date = mdy(Date)) %>% \n", + " # Extract month from Date\n", + " mutate(Month = month(Date)) %>% \n", + " # Drop Date column\n", + " select(-Date)\n", + "\n", + "# View the first few rows\n", + "pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "5joszIVSZ6xe" + } + }, + { + "cell_type": "markdown", + "source": [ + "वाह! 🤩\n", + "\n", + "अब, आइए एक नया कॉलम `Price` बनाते हैं, जो कद्दू की औसत कीमत को दर्शाता है। अब, `Low Price` और `High Price` कॉलम का औसत लेकर नए Price कॉलम को भरते हैं। \n", + "
                                \n" + ], + "metadata": { + "id": "nIgLjNMCZ-6Y" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new column Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(Price = (`Low Price` + `High Price`)/2)\n", + "\n", + "# View the first few rows of the data\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "Zo0BsqqtaJw2" + } + }, + { + "cell_type": "markdown", + "source": [ + "येस!💪\n", + "\n", + "\"लेकिन रुको!\", आप कहेंगे जब आप पूरे डेटा सेट को `View(pumpkins)` के साथ जल्दी से देखेंगे, \"यहाँ कुछ अजीब है!\"🤔\n", + "\n", + "अगर आप `Package` कॉलम को देखें, तो कद्दू कई अलग-अलग विन्यासों में बेचे जाते हैं। कुछ `1 1/9 bushel` माप में बेचे जाते हैं, कुछ `1/2 bushel` माप में, कुछ प्रति कद्दू, कुछ प्रति पाउंड, और कुछ बड़े बॉक्सों में जिनकी चौड़ाई अलग-अलग होती है।\n", + "\n", + "आइए इसे सत्यापित करें:\n" + ], + "metadata": { + "id": "p77WZr-9aQAR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Verify the distinct observations in Package column\n", + "pumpkins %>% \n", + " distinct(Package)" + ], + "outputs": [], + "metadata": { + "id": "XISGfh0IaUy6" + } + }, + { + "cell_type": "markdown", + "source": [ + "अद्भुत!👏\n", + "\n", + "कद्दू का वजन लगातार मापना काफी मुश्किल लगता है, तो चलिए उन्हें छांटते हैं। इसके लिए, `Package` कॉलम में केवल उन कद्दुओं को चुनें जिनमें *bushel* शब्द हो और इसे एक नए डेटा फ्रेम `new_pumpkins` में रखें।\n" + ], + "metadata": { + "id": "7sMjiVujaZxY" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::filter() और stringr::str_detect()\n", + "\n", + "[`dplyr::filter()`](https://dplyr.tidyverse.org/reference/filter.html): डेटा का एक उपसमूह बनाता है जिसमें केवल वे **पंक्तियाँ** शामिल होती हैं जो आपकी शर्तों को पूरा करती हैं। इस मामले में, `Package` कॉलम में *bushel* स्ट्रिंग वाले कद्दू।\n", + "\n", + "[stringr::str_detect()](https://stringr.tidyverse.org/reference/str_detect.html): किसी स्ट्रिंग में किसी पैटर्न की उपस्थिति या अनुपस्थिति का पता लगाता है।\n", + "\n", + "[`stringr`](https://github.com/tidyverse/stringr) पैकेज सामान्य स्ट्रिंग ऑपरेशन्स के लिए सरल फ़ंक्शन प्रदान करता है।\n" + ], + "metadata": { + "id": "L8Qfcs92ageF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Retain only pumpkins with \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(Package, \"bushel\"))\n", + "\n", + "# Get the dimensions of the new data\n", + "dim(new_pumpkins)\n", + "\n", + "# View a few rows of the new data\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "hy_SGYREampd" + } + }, + { + "cell_type": "markdown", + "source": [ + "आप देख सकते हैं कि हमने लगभग 415 पंक्तियों के डेटा को सीमित कर दिया है, जिसमें कद्दू बसों में शामिल हैं।🤩 \n", + "
                                \n" + ], + "metadata": { + "id": "VrDwF031avlR" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::case_when()\n", + "\n", + "**लेकिन रुको! अभी एक और काम बाकी है**\n", + "\n", + "क्या आपने देखा कि प्रति पंक्ति बसल की मात्रा अलग-अलग है? आपको मूल्य निर्धारण को सामान्य करना होगा ताकि आप प्रति बसल मूल्य दिखा सकें, न कि 1 1/9 या 1/2 बसल के लिए। इसे मानकीकृत करने के लिए अब कुछ गणना करनी होगी।\n", + "\n", + "हम [`case_when()`](https://dplyr.tidyverse.org/reference/case_when.html) फ़ंक्शन का उपयोग करेंगे ताकि कुछ शर्तों के आधार पर Price कॉलम को *mutate* किया जा सके। `case_when` आपको कई `if_else()` स्टेटमेंट्स को वेक्टराइज़ करने की सुविधा देता है।\n" + ], + "metadata": { + "id": "mLpw2jH4a0tx" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(Price = case_when(\n", + " str_detect(Package, \"1 1/9\") ~ Price/(1 + 1/9),\n", + " str_detect(Package, \"1/2\") ~ Price/(1/2),\n", + " TRUE ~ Price))\n", + "\n", + "# View the first few rows of the data\n", + "new_pumpkins %>% \n", + " slice_head(n = 30)" + ], + "outputs": [], + "metadata": { + "id": "P68kLVQmbM6I" + } + }, + { + "cell_type": "markdown", + "source": [ + "अब हम उनके बुशल माप के आधार पर प्रति इकाई मूल्य का विश्लेषण कर सकते हैं। हालांकि, कद्दू के बुशल का यह सारा अध्ययन यह दिखाने के लिए है कि `अपने डेटा की प्रकृति को समझना` कितना `महत्वपूर्ण` है!\n", + "\n", + "> ✅ [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308) के अनुसार, बुशल का वजन उत्पाद के प्रकार पर निर्भर करता है, क्योंकि यह एक आयतन माप है। \"उदाहरण के लिए, टमाटर का एक बुशल 56 पाउंड वजन का होता है... पत्तियां और साग अधिक जगह लेते हैं लेकिन वजन कम होता है, इसलिए पालक का एक बुशल केवल 20 पाउंड का होता है।\" यह सब काफी जटिल है! चलिए बुशल-से-पाउंड रूपांतरण करने की झंझट में न पड़ें और इसके बजाय बुशल के आधार पर मूल्य निर्धारण करें। कद्दू के बुशल का यह सारा अध्ययन, हालांकि, यह दिखाने के लिए है कि अपने डेटा की प्रकृति को समझना कितना महत्वपूर्ण है!\n", + ">\n", + "> ✅ क्या आपने देखा कि आधे-बुशल में बिकने वाले कद्दू बहुत महंगे हैं? क्या आप इसका कारण समझ सकते हैं? संकेत: छोटे कद्दू बड़े कद्दुओं की तुलना में बहुत महंगे होते हैं, शायद इसलिए कि एक बड़े खोखले पाई कद्दू द्वारा ली गई जगह के कारण प्रति बुशल उनमें बहुत अधिक छोटे कद्दू होते हैं।\n" + ], + "metadata": { + "id": "pS2GNPagbSdb" + } + }, + { + "cell_type": "markdown", + "source": [ + "अब अंत में, सिर्फ रोमांच के लिए 💁‍♀️, चलिए Month कॉलम को पहले स्थान पर ले चलते हैं, यानी `Package` कॉलम से पहले।\n", + "\n", + "कॉलम की पोजीशन बदलने के लिए `dplyr::relocate()` का उपयोग किया जाता है।\n" + ], + "metadata": { + "id": "qql1SowfbdnP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new data frame new_pumpkins\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(Month, .before = Package)\n", + "\n", + "new_pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "JJ1x6kw8bixF" + } + }, + { + "cell_type": "markdown", + "source": [ + "अच्छा काम!👌 अब आपके पास एक साफ-सुथरा और व्यवस्थित डेटा सेट है, जिस पर आप अपना नया रिग्रेशन मॉडल बना सकते हैं! \n", + "
                                \n" + ], + "metadata": { + "id": "y8TJ0Za_bn5Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. ggplot2 के साथ डेटा विज़ुअलाइज़ेशन\n", + "\n", + "

                                \n", + " \n", + "

                                डसानी मदीपल्ली द्वारा इन्फोग्राफिक
                                \n", + "\n", + "\n", + "\n", + "\n", + "एक *समझदार* कहावत है जो इस प्रकार है:\n", + "\n", + "> \"एक साधारण ग्राफ ने डेटा विश्लेषक के दिमाग में किसी भी अन्य उपकरण की तुलना में अधिक जानकारी लाई है।\" --- जॉन टुकी\n", + "\n", + "डेटा वैज्ञानिक का एक हिस्सा यह दिखाना है कि वे जिस डेटा के साथ काम कर रहे हैं, उसकी गुणवत्ता और प्रकृति क्या है। ऐसा करने के लिए, वे अक्सर दिलचस्प विज़ुअलाइज़ेशन, या प्लॉट्स, ग्राफ़ और चार्ट बनाते हैं, जो डेटा के विभिन्न पहलुओं को दिखाते हैं। इस तरह, वे उन संबंधों और अंतरालों को दृश्य रूप से दिखा सकते हैं जिन्हें अन्यथा समझना मुश्किल होता है।\n", + "\n", + "विज़ुअलाइज़ेशन यह तय करने में भी मदद कर सकते हैं कि डेटा के लिए कौन-सी मशीन लर्निंग तकनीक सबसे उपयुक्त है। उदाहरण के लिए, एक स्कैटरप्लॉट जो एक रेखा का अनुसरण करता हुआ प्रतीत होता है, यह संकेत देता है कि डेटा एक लीनियर रिग्रेशन अभ्यास के लिए उपयुक्त हो सकता है।\n", + "\n", + "R कई ग्राफ बनाने की प्रणालियाँ प्रदान करता है, लेकिन [`ggplot2`](https://ggplot2.tidyverse.org/index.html) सबसे सुंदर और सबसे बहुमुखी में से एक है। `ggplot2` आपको **स्वतंत्र घटकों को संयोजित करके** ग्राफ बनाने की अनुमति देता है।\n", + "\n", + "आइए Price और Month कॉलम के लिए एक साधारण स्कैटर प्लॉट से शुरू करें।\n", + "\n", + "इस मामले में, हम [`ggplot()`](https://ggplot2.tidyverse.org/reference/ggplot.html) से शुरू करेंगे, एक डेटा सेट और एस्थेटिक मैपिंग (with [`aes()`](https://ggplot2.tidyverse.org/reference/aes.html)) प्रदान करेंगे, और फिर स्कैटर प्लॉट के लिए एक लेयर जोड़ेंगे (जैसे [`geom_point()`](https://ggplot2.tidyverse.org/reference/geom_point.html))।\n" + ], + "metadata": { + "id": "mYSH6-EtbvNa" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plots\n", + "theme_set(theme_light())\n", + "\n", + "# Create a scatter plot\n", + "p <- ggplot(data = new_pumpkins, aes(x = Price, y = Month))\n", + "p + geom_point()" + ], + "outputs": [], + "metadata": { + "id": "g2YjnGeOcLo4" + } + }, + { + "cell_type": "markdown", + "source": [ + "क्या यह प्लॉट उपयोगी है 🤷? क्या इसमें कुछ आपको चौंकाता है?\n", + "\n", + "यह खास उपयोगी नहीं है क्योंकि यह केवल आपके डेटा को एक दिए गए महीने में बिंदुओं के फैलाव के रूप में दिखाता है। \n" + ], + "metadata": { + "id": "Ml7SDCLQcPvE" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **हम इसे उपयोगी कैसे बनाएं?**\n", + "\n", + "चार्ट्स में उपयोगी डेटा दिखाने के लिए, आमतौर पर आपको डेटा को किसी न किसी तरीके से समूहित करना पड़ता है। उदाहरण के लिए, हमारे मामले में, हर महीने के लिए कद्दू की औसत कीमत ढूंढना हमारे डेटा में छिपे पैटर्न को बेहतर तरीके से समझने में मदद करेगा। यह हमें **dplyr** के एक और महत्वपूर्ण उपयोग की ओर ले जाता है:\n", + "\n", + "#### `dplyr::group_by() %>% summarize()`\n", + "\n", + "R में समूहित एग्रीगेशन को आसानी से निम्नलिखित तरीके से किया जा सकता है:\n", + "\n", + "`dplyr::group_by() %>% summarize()`\n", + "\n", + "- `dplyr::group_by()` विश्लेषण की इकाई को पूरे डेटा सेट से बदलकर व्यक्तिगत समूहों, जैसे कि प्रति माह, में बदल देता है।\n", + "\n", + "- `dplyr::summarize()` एक नया डेटा फ्रेम बनाता है, जिसमें प्रत्येक समूहिंग वेरिएबल के लिए एक कॉलम और आपके द्वारा निर्दिष्ट किए गए प्रत्येक सारांश सांख्यिकी के लिए एक कॉलम होता है।\n", + "\n", + "उदाहरण के लिए, हम `dplyr::group_by() %>% summarize()` का उपयोग करके कद्दुओं को **Month** कॉलम के आधार पर समूहों में विभाजित कर सकते हैं और फिर प्रत्येक महीने के लिए **औसत कीमत** निकाल सकते हैं।\n" + ], + "metadata": { + "id": "jMakvJZIcVkh" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price))" + ], + "outputs": [], + "metadata": { + "id": "6kVSUa2Bcilf" + } + }, + { + "cell_type": "markdown", + "source": [ + "संक्षेप में!✨\n", + "\n", + "महीनों जैसे श्रेणीबद्ध फीचर्स को बार प्लॉट 📊 के जरिए बेहतर तरीके से प्रस्तुत किया जा सकता है। बार चार्ट के लिए जिम्मेदार लेयर्स हैं `geom_bar()` और `geom_col()`। अधिक जानकारी के लिए `?geom_bar` देखें।\n", + "\n", + "चलो एक बनाते हैं!\n" + ], + "metadata": { + "id": "Kds48GUBcj3W" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month then plot a bar chart\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price)) %>% \r\n", + " ggplot(aes(x = Month, y = mean_price)) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"Pumpkin Price\")" + ], + "outputs": [], + "metadata": { + "id": "VNbU1S3BcrxO" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩यह एक अधिक उपयोगी डेटा विज़ुअलाइज़ेशन है! ऐसा प्रतीत होता है कि कद्दू की सबसे अधिक कीमत सितंबर और अक्टूबर में होती है। क्या यह आपकी अपेक्षा के अनुरूप है? क्यों या क्यों नहीं?\n", + "\n", + "दूसरा पाठ समाप्त करने पर बधाई 👏! आपने मॉडल निर्माण के लिए अपना डेटा तैयार किया, फिर विज़ुअलाइज़ेशन का उपयोग करके अधिक अंतर्दृष्टि प्राप्त की!\n" + ], + "metadata": { + "id": "zDm0VOzzcuzR" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/2-Regression/2-Data/solution/notebook.ipynb b/translations/hi/2-Regression/2-Data/solution/notebook.ipynb new file mode 100644 index 000000000..6df7d3bdd --- /dev/null +++ b/translations/hi/2-Regression/2-Data/solution/notebook.ipynb @@ -0,0 +1,437 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                                70BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                71BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                72BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                73BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1617.017.017.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                74BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/8/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                \n", + "

                                5 rows × 26 columns

                                \n", + "
                                " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade \\\n", + "70 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "71 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "72 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "73 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "74 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "\n", + " Date Low Price High Price Mostly Low ... Unit of Sale Quality \\\n", + "70 9/24/16 15.0 15.0 15.0 ... NaN NaN \n", + "71 9/24/16 18.0 18.0 18.0 ... NaN NaN \n", + "72 10/1/16 18.0 18.0 18.0 ... NaN NaN \n", + "73 10/1/16 17.0 17.0 17.0 ... NaN NaN \n", + "74 10/8/16 15.0 15.0 15.0 ... NaN NaN \n", + "\n", + " Condition Appearance Storage Crop Repack Trans Mode Unnamed: 24 \\\n", + "70 NaN NaN NaN NaN N NaN NaN \n", + "71 NaN NaN NaN NaN N NaN NaN \n", + "72 NaN NaN NaN NaN N NaN NaN \n", + "73 NaN NaN NaN NaN N NaN NaN \n", + "74 NaN NaN NaN NaN N NaN NaN \n", + "\n", + " Unnamed: 25 \n", + "70 NaN \n", + "71 NaN \n", + "72 NaN \n", + "73 NaN \n", + "74 NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "City Name 0\n", + "Type 406\n", + "Package 0\n", + "Variety 0\n", + "Sub Variety 167\n", + "Grade 415\n", + "Date 0\n", + "Low Price 0\n", + "High Price 0\n", + "Mostly Low 24\n", + "Mostly High 24\n", + "Origin 0\n", + "Origin District 396\n", + "Item Size 114\n", + "Color 145\n", + "Environment 415\n", + "Unit of Sale 404\n", + "Quality 415\n", + "Condition 415\n", + "Appearance 415\n", + "Storage 415\n", + "Crop 415\n", + "Repack 0\n", + "Trans Mode 415\n", + "Unnamed: 24 415\n", + "Unnamed: 25 391\n", + "dtype: int64" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Month Package Low Price High Price Price\n", + "70 9 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "71 9 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "72 10 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "73 10 1 1/9 bushel cartons 17.00 17.0 15.30\n", + "74 10 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "... ... ... ... ... ...\n", + "1738 9 1/2 bushel cartons 15.00 15.0 30.00\n", + "1739 9 1/2 bushel cartons 13.75 15.0 28.75\n", + "1740 9 1/2 bushel cartons 10.75 15.0 25.75\n", + "1741 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "1742 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "\n", + "[415 rows x 5 columns]\n" + ] + } + ], + "source": [ + "\n", + "# A set of new columns for a new dataframe. Filter out nonmatching columns\n", + "columns_to_select = ['Package', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Get an average between low and high price for the base pumpkin price\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "# Convert the date to its month only\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "\n", + "# Create a new dataframe with this basic data\n", + "new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price})\n", + "\n", + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9)\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2)\n", + "\n", + "print(new_pumpkins)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcXklEQVR4nO3dfZRcdZ3n8fdnKg80GbAJdLKkSQyTycnoEodoLQlGOXE0JiauZNiZFRbOoqPkuIddnWE3M7BwxmEOOcTJLOJZ96wbkBFHJjrjYGTFMWRRhlkXohUTCYoRkAh0kPQY4gO2Etrv/lG3YqW6bj3d7qrum8/rnD5d9btP3/u7v/p09a3bfRURmJlZfv1arwswM7OJ5aA3M8s5B72ZWc456M3Mcs5Bb2aWc9N6XUA9Z511VixcuLDXZZiZTRl79uz554gYqDdtUgb9woULKZVKvS7DzGzKkPT9tGk+dWNmlnMOejOznHPQm5nlnIPezCznHPRmZjnX9KobSXcAbwcOR8R5SdtW4F8DLwFPAu+OiKN1ll0LfAQoALdHxJbxK717Lr/tIb765JHjz1cums1dV104Zr7VtzzA44dfPP588ZxZ7LpmVTdKTLVj7xBbdx7g0NER5vX3sWnNEjYsG+xpTWbWXa28o/8EsLambRdwXkS8BvgucF3tQpIKwP8A3ga8GrhM0qszVdsDtSEP8NUnj3D5bQ+d0FYb8gCPH36R1bc8MNElptqxd4jr7t7P0NERAhg6OsJ1d+9nx96hntVkZt3XNOgj4kHgSE3bfRHxcvL0YeCcOoteADwREd+LiJeATwMXZ6y362pDPq29NuSbtXfD1p0HGDk2ekLbyLFRtu480KOKzKwXxuMc/R8A/1CnfRB4pur5s0lbXZI2SipJKg0PD49DWXbo6Ehb7WaWT5mCXtL1wMvAXVkLiYhtEVGMiOLAQN2/4rU2zevva6vdzPKp46CX9C7KH9JeHvVvUzUEzK96fk7SNqWsXDS7pfbFc2bVnS+tvRs2rVlC3/TCCW190wtsWrOkRxWZWS90FPTJ1TR/DLwjIn6WMtvXgcWSzpU0A7gUuKezMnvnrqsuHBPq9a662XXNqjGh3uurbjYsG+TmS5Yy2N+HgMH+Pm6+ZKmvujE7yajZPWMlbQdWAWcBzwMfpHyVzUzgh8lsD0fE+yTNo3wZ5bpk2XXArZQvr7wjIja3UlSxWAz/UzMzs9ZJ2hMRxbrTJuPNwR30ZmbtaRT0/stYM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzTYNe0h2SDkt6tKrt9yV9S9IvJdX9R/fJfAcl7Ze0T5LvJGJm1gOtvKP/BLC2pu1R4BLgwRaWf1NEnJ925xMzM5tY05rNEBEPSlpY0/YYgKQJKsvMzMbLRJ+jD+A+SXskbWw0o6SNkkqSSsPDwxNclpnZyWOig/4NEfFa4G3A1ZIuSpsxIrZFRDEiigMDAxNclpnZyWNCgz4ihpLvh4HPARdM5PbMzGysCQt6SbMknVZ5DLyV8oe4ZmbWRa1cXrkdeAhYIulZSe+R9LuSngUuBO6VtDOZd56kLyaLzgX+r6RvAl8D7o2IL03MbpiZWZpWrrq5LGXS5+rMewhYlzz+HvDbmaozM7PM/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznmt54RNIdwNuBwxFxXtL2+8CfAa8CLoiIUsqya4GPAAXg9ojYMk51j7Fj7xBbdx7g0NER5vX3sWnNEjYsG2x7PatveYDHD794/PniObN4avhFXo5fzTNN8MTN68csu/Dae8e0Hdwydr5qN+zYz/bdzzAaQUHisuXzuWnD0pZqbWWf6+3PrmtWtbR+K8tyjJZv3sXzP3np+PO5p81g9/WrgebjpdF2x2u8t6vR/jSTpR+b6VV/TBWKiMYzSBcBPwU+WRX0rwJ+Cfwv4L/UC3pJBeC7wGrgWeDrwGUR8e1mRRWLxSiV6v7sqGvH3iGuu3s/I8dGj7f1TS9w8yVL2zrYtaHYSG3Y13vRVqSF/Q079vOph58e037FigVNXwCt7HPa/jjsW5flGNWGYsXc02bUba84uGV9w+0WXzl7XMZ7uxrtT7Owz9KPzYzX63+qk7QnIor1pjU9dRMRDwJHatoei4gDTRa9AHgiIr4XES8BnwYubrHmtmzdeeCEgwwwcmyUrTublXiiVkMeOOEdfqe2736mrfZqrexz2v60s58nuyzHKC3MG4V8K9sdr/Heronan6x61R9TyUSeox8Eqo/is0lbXZI2SipJKg0PD7e1oUNHR9pqnyxGU36bSmuvNlX3earJcowmartT8dhPZD9Oxf7otknzYWxEbIuIYkQUBwYG2lp2Xn9fW+2TRUFqq73aVN3nqSbLMZqo7U7FYz+R/TgV+6PbJjLoh4D5Vc/PSdrG3aY1S+ibXjihrW96gU1rlrS1nsVzZrU877RxeJ1ftnx+W+3VWtnntP1pZz9PdlmO0dzTZrTV3up2x2u8t2ui9ierXvXHVDKRQf91YLGkcyXNAC4F7pmIDW1YNsjNlyxlsL8PAYP9fR19ELPrmlVjQnDxnFljQr3eVTdpH7g2uurmpg1LuWLFguPvagpSyx9OtbLPafvjD2Jbl+UY7b5+9ZgQrHxw2Wy8NNrueI33djXan2ay9GMzveqPqaSVq262A6uAs4DngQ9S/nD2vwMDwFFgX0SskTSP8mWU65Jl1wG3Ur688o6I2NxKUe1edWNmdrJrdNVN06DvBQe9mVl7Ml1eaWZmU5uD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnNNg17SHZIOS3q0qm22pF2SHk++n5Gy7KikfcnXhNxdyszMGmvlHf0ngLU1bdcC90fEYuD+5Hk9IxFxfvL1js7LNDOzTjUN+oh4kPKtA6tdDNyZPL4T2DC+ZZmZ2Xjp9Bz93Ih4Lnn8A2BuynynSCpJeljShkYrlLQxmbc0PDzcYVlmZlYr84exUb7pbNqNZ1+Z3MPw3wG3SlrUYD3bIqIYEcWBgYGsZZmZWaLToH9e0tkAyffD9WaKiKHk+/eAB4BlHW7PzMw61GnQ3wNcmTy+Evh87QySzpA0M3l8FrAS+HaH2zMzsw61cnnlduAhYImkZyW9B9gCrJb0OPCW5DmSipJuTxZ9FVCS9E3gK8CWiHDQm5l12bRmM0TEZSmT3lxn3hLw3uTx/wOWZqrOzMwy81/GmpnlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Oca3rjEQBJdwBvBw5HxHlJ22zgM8BC4CDwbyPihTrLXgnckDy9KSLuzF72WKtveYDHD794/PniObPYdc0qAHbsHWLrzgMcOjrCvP4+Nq1ZwoZlg22tr9bBLevHrDvtDun1TBM8cfN6Lr/tIb765JHj7SsXzeauqy5saR3LN+/i+Z+8dPz53NNmsPv61Q33o7pf8mThtfeOaasco6zLvuaDX+LHvxg9/vz0mQUeuXEt0HxsNVp3s+22u+xgf19LY/yGHfvZvvsZRiMoSFy2fD43bWjtHkHnXnvvCeNcwFPj1M/dcrK8Jqoponk8SboI+Cnwyaqg/wvgSERskXQtcEZE/EnNcrOBElAEAtgDvK7eD4RqxWIxSqVSyzuRFsqL58zi6jct5rq79zNy7Fcv1L7pBW6+ZGnqC6FZyFfc+s7zx6x7PLQS9rUhX1Ed9o36JU8Du16AVDQLkmbL1oZ8xekzC/z5hqUNx1ajdTdycMv6jpetV0e1G3bs51MPPz1m/itWLGga9rUhX9FK2Gc5RuMpz68JSXsiolhvWkunbiLiQeBITfPFQOXd+Z3AhjqLrgF2RcSRJNx3AWtb2WY70kL58cMvsnXngTFBPHJslK07D7S9vlr11j0eqt/hp6kX8rXtjfrFWlMv5CvtnYytbkmrY/vuZ+rOn9ZeLe0tYTu/yfbayfqayHKOfm5EPJc8/gEwt848g0D1CHo2aRtD0kZJJUml4eHhDGWd6NDRkbbax2PddnKYyLE1HurVMZryG3xau+XDuHwYG+XzP5lGSkRsi4hiRBQHBgbGoywA5vX3tdU+Huu2k8NEjq3xUK+OglR33rR2y4csQf+8pLMBku+H68wzBMyven5O0jauFs+Zldq+ac0S+qYXTmjvm15g05olba+vVr11j4eVi2Y3nWfuaTOatjfqF2vN6TPrH9/TZxY6GlvdklbHZcvn15k7vb1a2o+CqfQj4mR9TWQJ+nuAK5PHVwKfrzPPTuCtks6QdAbw1qRtXO26ZtWYA1X5cGXDskFuvmQpg/19iPKVCY0+iE1bX62DW9aPWXc7pqm8jtpQb/Wqm93Xrx4T9rVX3TTqlzxJ+zCvlQ/5mi37yI1rx4R95aqbZmOr0bqbbbeTZVsZ4zdtWMoVKxYcfwdfkFr6IBbKH7jWjvNWr7rJcozG08nymqjV6lU324FVwFnA88AHgR3A3wILgO9TvrzyiKQi8L6IeG+y7B8A/zVZ1eaI+Ktm22v3qhszs5Ndo6tuWgr6bnPQm5m1J/PllWZmNnU56M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczy7lMQS/pA5IelfQtSX9YZ/oqST+StC/5+tMs2zMzs/ZN63RBSecBVwEXAC8BX5L0hYh4ombWf4qIt2eo0czMMsjyjv5VwO6I+FlEvAz8I3DJ+JRlZmbjJUvQPwq8UdKZkk4F1gHz68x3oaRvSvoHSf8ybWWSNkoqSSoNDw9nKMvMzKp1fOomIh6T9CHgPuBFYB8wWjPbN4BXRsRPJa0DdgCLU9a3DdgG5ZuDd1qXmZmdKNOHsRHx8Yh4XURcBLwAfLdm+o8j4qfJ4y8C0yWdlWWbZmbWnqxX3cxJvi+gfH7+b2qm/wtJSh5fkGzvh1m2aWZm7en41E3i7yWdCRwDro6Io5LeBxARHwN+D/gPkl4GRoBLI8KnZczMuihT0EfEG+u0fazq8UeBj2bZhpmZZeO/jDUzyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcy/T96SR8ArgIE3BYRt9ZMF/ARyjcO/xnwroj4RpZtdssNO/azffczjEYgoHK3lILErBm/xo9/8avb4y6eM4td16zi8tse4qtPHmlp/QKe2rIeYMxyKxfN5q6rLgTgt67/Ij8f/dW9Wk4piO9sXgfA8s27eP4nLx2fNve0Gey+fvUJtVcM9vexac0SNiwbbHv/CxKXLZ/PTRuWtrTs6lse4PHDLx5/XukfgB17h9i68wCHjo4wr6qmTrbX6BhVlm9lvQuvvXfMug9uWV+3HwsSK37jDA7+cIRDR0c4dUaBn700StRst+I1H/zSCWPl9JkFHrlxbcPtVjQaF82WbaTRmGom7fhN9LJZNBsDjepqdAza1Wg7E9036vSGT5LOAz4NXAC8BHwJeF9EPFE1zzrgP1EO+uXARyJiebN1F4vFKJVKHdU1Hm7YsZ9PPfx0W8ucUtAJL55WCHj9otl1fzisXDSbPQdfqLvOUwriFadOPyHkW6mjb3qBmy9Z2nQApe3/FSsWNA3f2pCvWDxnFle/aTHX3b2fkWO/Cr6+6QVeu+AVdfug0fZaOUaL58yqW0v1eusFZlaV9deGfMXpMwt12ysOblmf+qZhZcp4qV62kdqQr2gl7HfsHap7/FoZU1mWzaLZWG5U19+Vnk49Bu2GfaPtAOPSN5L2RESx3rQsp25eBeyOiJ9FxMvAP1K+b2y1i4FPRtnDQL+kszNssyu2736m7WXaDXkovwNNe9F+9ckjqev8+WjUDflmdYwcG2XrzgNN60rb/1b6pV6wVtq37jxwwmCu1JTWB422l6WWTo5vOyrrTwvzRiFf0WhcZNFoTDWTdvxaGVNZls2i2VhuVNd4HoNG2+lG32QJ+keBN0o6U9KplN+1z6+ZZxCo7ulnk7YxJG2UVJJUGh4ezlBWdqM5vq3toaMjTedJ2/+s/dLKtlvdXpZaJvr45nX8pB2/Vo5rlmWzaDaWu1VXo+10o4aOgz4iHgM+BNxH+bTNPqD5W5X09W2LiGJEFAcGBjpdzbgoSD3d/kSa19/XdJ60/c/aL61su9XtZalloo9vXsdP2vFr5bhmWTaLZmO5W3U12k43ash01U1EfDwiXhcRFwEvAN+tmWWIE9/ln5O0TWqXLa/9xaS5Uwrtv7hF+XxfPSsXzU5d5ykFMfe0GW3X0Te9wKY1S5rWlbb/rfTL4jmzUts3rVlC3/TCmJrS+qDR9rLU0snxbUdl/afPLNSdntZerdG4yKLRmGom7fi1MqayLJtFs7HcqK7xPAaNttONvskU9JLmJN8XUD4//zc1s9wD/HuVrQB+FBHPZdlmN9y0YSlXrFhw/Kd+9UugII15oS6eM4vvbF7X1gCoXHVz11UXjlmu8mHPdzavG/MCrHxotvv61WPCfu5pM/jO5nUn1F4x2N/X8oc7tftfkFr6IBZg1zWrxgRs5aqbDcsGufmSpQz296Gqmu666sK2t9fsGF2xYgG7rlnVdL1pH14e3LK+bj8WJFYumn18H2bNKBzfdu36H7lx7ZixUrnqptF2gYbjotmyjTQaU82kHb9WxlSWZbNoNpYb1dXoGLSr0Xa60TcdX3UDIOmfgDOBY8A1EXG/pPcBRMTHkssrPwqspXx55bsjounlNL2+6sbMbKppdNVNpuvoI+KNddo+VvU4gKuzbMPMzLLxX8aameWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5zLeivBP5L0LUmPStou6ZSa6e+SNCxpX/L13mzlmplZuzoOekmDwPuBYkScBxSAS+vM+pmIOD/5ur3T7ZmZWWeynrqZBvRJmgacChzKXpKZmY2njoM+IoaAvwSeBp4DfhQR99WZ9d9IekTSZyXNT1ufpI2SSpJKw8PDnZZlZmY1spy6OQO4GDgXmAfMknRFzWz/G1gYEa8BdgF3pq0vIrZFRDEiigMDA52WZWZmNbKcunkL8FREDEfEMeBu4PXVM0TEDyPiF8nT24HXZdiemZl1IEvQPw2skHSqJAFvBh6rnkHS2VVP31E73czMJt60TheMiN2SPgt8A3gZ2Atsk/TnQCki7gHeL+kdyfQjwLuyl2xmZu1QRPS6hjGKxWKUSqVel2FmNmVI2hMRxXrT/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznOr7DFICkPwLeCwSwH3h3RPy8avpM4JOU7xX7Q+CdEXEwyzbzaMfeIbbuPMChoyPM6+9j05olbFg22HSaWSc8pk4+HQe9pEHg/cCrI2JE0t8ClwKfqJrtPcALEfGbki4FPgS8M0O9ubNj7xDX3b2fkWOjAAwdHeG6u/cfn542zS9M60Sj8eYxlV9ZT91MA/okTQNOBQ7VTL8YuDN5/FngzcmNxC2xdeeB4y+6ipFjo2zdeaDhNLNOeEydnDoO+ogYAv4SeBp4DvhRRNxXM9sg8Ewy/8vAj4Az661P0kZJJUml4eHhTsuacg4dHUltbzTNrBMeUyenjoNe0hmU37GfC8wDZkm6otP1RcS2iChGRHFgYKDT1Uw58/r7UtsbTTPrhMfUySnLqZu3AE9FxHBEHAPuBl5fM88QMB8gOb3zCsofylpi05ol9E0vnNDWN73ApjVLGk4z64TH1Mkpy1U3TwMrJJ0KjABvBko189wDXAk8BPwe8OWIiAzbzJ3KB2CNroLwFRI2XloZb5Y/ypK7km6kfBXNy8BeypdaXg+UIuIeSacAfw0sA44Al0bE95qtt1gsRqlU+zPDzMzSSNoTEcW60ybjG2wHvZlZexoFvf8y1sws5xz0ZmY556A3M8s5B72ZWc5Nyg9jJQ0D328y21nAP3ehnHZMxppgctblmlo3GeuajDXB5KyrWzW9MiLq/rXppAz6VkgqpX3C3CuTsSaYnHW5ptZNxromY00wOeuaDDX51I2ZWc456M3Mcm4qB/22XhdQx2SsCSZnXa6pdZOxrslYE0zOunpe05Q9R29mZq2Zyu/ozcysBQ56M7OcmxJBL+kOSYclPVrVNlvSLkmPJ9/PmAQ1/ZmkIUn7kq91Xa5pvqSvSPq2pG9J+kDS3rO+alBTr/vqFElfk/TNpK4bk/ZzJe2W9ISkz0iaMQlq+oSkp6r66vxu1VRVW0HSXklfSJ73rJ+a1NXTvpJ0UNL+ZNulpK2nWQVTJOgp33B8bU3btcD9EbEYuD953uuaAD4cEecnX1/sck0vA/85Il4NrACulvRqettXaTVBb/vqF8DvRMRvA+cDayWtoHwD+w9HxG8CL1C+wX2vawLYVNVX+7pYU8UHgMeqnveyn6rV1gW976s3JduuXDvf66yaGkEfEQ9S/n/21apvPH4nsGES1NRTEfFcRHwjefwTyi+AQXrYVw1q6qko+2nydHryFcDvUL6RPXS/r9Jq6ilJ5wDrgduT56KH/ZRW1yTW06yCKRL0KeZGxHPJ4x8Ac3tZTJX/KOmR5NRO139Fq5C0kPINX3YzSfqqpibocV8lv/bvAw4Du4AngaPJjewBnqXLP5Rqa4qISl9tTvrqw5JmdrMm4Fbgj4FfJs/PpMf9lFJXRS/7KoD7JO2RtDFp6/nrbyoH/XHJ7Ql7/s4H+J/AIsq/dj8H/LdeFCHp14G/B/4wIn5cPa1XfVWnpp73VUSMRsT5wDnABcBvdbuGWrU1SToPuI5ybf8KmA38SbfqkfR24HBE7OnWNlvRoK6e9VXiDRHxWuBtlE9TXlQ9sVevv6kc9M9LOhsg+X64x/UQEc8nL9RfArdRDo+ukjSdcqDeFRF3J8097at6NU2GvqqIiKPAV4ALgX6Vb2QP5bAd6nFNa5PTXxERvwD+iu721UrgHZIOAp+mfMrmI/S+n8bUJelTPe4rImIo+X4Y+Fyy/Z5n1VQO+sqNx0m+f76HtQDHD2LF7wKPps07QdsX8HHgsYi4pWpSz/oqraZJ0FcDkvqTx33AasqfH3yF8o3soft9Va+m71SFhCif3+1aX0XEdRFxTkQsBC4FvhwRl9PDfmpQ1xW97CtJsySdVnkMvDXZfu+zKiIm/RewnfKv98conw98D+XzhPcDjwP/B5g9CWr6a2A/8Ajlg3t2l2t6A+VfCx8B9iVf63rZVw1q6nVfvYbyDe0fofxi/NOk/TeArwFPAH8HzJwENX056atHgU8Bv97NvqqqbxXwhV73U5O6etZXSZ98M/n6FnB90t7TrIoI/wsEM7O8m8qnbszMrAUOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/N8s9l//aWz4AAAAASUVORK5CYII=", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "price = new_pumpkins.Price\n", + "month = new_pumpkins.Month\n", + "plt.scatter(price, month)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Pumpkin Price')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAARAElEQVR4nO3de5AlZX3G8e8joKigiIwbVNYVQ6ErwcVaiRW0CgUNikEQKxFTijHJahlUSsvUqknE/LVE0KoYNVkDigloNCoQLt5AxUuCLrrhIhqUQgMiLBGE0goR+OWP0+sMszOzZ8ft0zO830/VqTndfc7phwae6XlPX1JVSJLa8aChA0iSJsvil6TGWPyS1BiLX5IaY/FLUmMsfklqzK5DBxjHPvvsU6tWrRo6hiQtK1dcccVtVTU1e/6yKP5Vq1axadOmoWNI0rKS5IdzzXeoR5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYZXECl3auVesvHDoCN2w4eugIUrMsfjXNX4JqkUM9ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqTG/Fn2S/JF9M8p0k1yR5Yzf/lCQ3JdncPV7YVwZJ0rZ27fGz7wHeXFXfSrIncEWSz3fL3lNVp/W4bknSPHor/qq6Gbi5e35XkmuBx/W1PknSePrc4/+VJKuAQ4DLgcOAk5K8EtjE6K+C2yeRQ9L8Vq2/cOgI3LDh6KEjNKH3L3eT7AF8Eji5qu4EPgA8CVjD6C+C0+d537okm5Js2rJlS98xJakZvRZ/kt0Ylf7ZVfUpgKq6parurar7gA8Ch8713qraWFVrq2rt1NRUnzElqSl9HtUT4Azg2qp694z5+8542XHA1X1lkCRtq88x/sOAVwBXJdnczXsbcEKSNUABNwCv6TGDJGmWPo/q+SqQORZd1Nc6F+IXV5I04pm7ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JakxvxZ9kvyRfTPKdJNckeWM3f+8kn09yXffzUX1lkCRtq889/nuAN1fVauCZwJ8lWQ2sBy6pqgOAS7ppSdKE9Fb8VXVzVX2re34XcC3wOODFwFndy84Cju0rgyRpWxMZ40+yCjgEuBxYUVU3d4t+AqyY5z3rkmxKsmnLli2TiClJTei9+JPsAXwSOLmq7py5rKoKqLneV1Ubq2ptVa2dmprqO6YkNWOs4k/y0CQH7uiHJ9mNUemfXVWf6mbfkmTfbvm+wK07+rmSpMXbbvEn+T1gM/CZbnpNkvPHeF+AM4Brq+rdMxadD5zYPT8ROG8HM0uSfg3j7PGfAhwK3AFQVZuBJ47xvsOAVwDPTbK5e7wQ2AA8L8l1wJHdtCRpQnYd4zW/rKqfjXbgf2XOcfn7vaDqq0DmWXzEGOuVJPVgnOK/JsnLgV2SHAC8Afh6v7EkSX0ZZ6jn9cBTgbuBc4CfASf3mEmS1KPt7vFX1S+At3cPSdIyN85RPZ9PsteM6Ucl+WyvqSRJvRlnqGefqrpj60RV3Q48prdEkqRejVP89yVZuXUiyRMY46geSdLSNM5RPW8Hvprky4wOz3w2sK7XVJKk3ozz5e5nkjyd0aWVYXTNndv6jSVJ6su8Qz1Jntz9fDqwEvhx91jZzZMkLUML7fG/idGQzulzLCvgub0kkiT1at7ir6p1SR4E/EVVfW2CmSRJPVrwqJ6qug/4uwllkSRNwDiHc16S5PjMukqbJGl5Gqf4XwN8Arg7yZ1J7kpy5/beJElamsY5nHPPSQSRJE3GQodzHpDkvCRXJzknyeMmGUyS1I+FhnrOBC4Ajge+Dbx3IokkSb1aaKhnz6r6YPf8XUm+NYlAkqR+LVT8uyc5hOnbJz505nRV+YtAkpahhYr/ZuDdM6Z/MmPaM3claZla6Mzd50wyiCRpMsY5jl+S9ABi8UtSYyx+SWrMOHfgojt56wkzX19Vl/UVSpLUn+0Wf5JTgT8AvgPc280uwOKXpGVonD3+Y4EDq+runrNIkiZgnOK/HtgN2KHiT3Im8CLg1qo6qJt3CvCnwJbuZW+rqot25HMlqW+r1l84dARu2HB0b589TvH/Atic5BJmlH9VvWE77/swo5u4fGTW/PdU1Wk7ElKStPOMU/znd48dUlWXJVm1w4kkSb0a53r8Z+3kdZ6U5JXAJuDNVXX7XC9Kso7Rzd5ZuXLlTo4gSe1a6Hr8H+9+XpXkytmPRa7vA8CTgDWMrgV0+nwvrKqNVbW2qtZOTU0tcnWSpNkW2uN/Y/fzRTtrZVV1y9bnST7I6Hr/kqQJmnePv6pu7p6urqofznwAL1jMypLsO2PyOODqxXyOJGnxxvly9y+T3F1VlwIk+XPgOcDfL/SmJB8FDgf2SXIj8A7g8CRrGJ0AdgOjG7lLkiZonOI/BrggyVuAo4AnAy/e3puq6oQ5Zp+xY/EkSTvbOEf13JbkGOALwBXAS6uqek8mSerFvMWf5C5GQzJbPRjYH3hpkqqqR/QdTpK08y10B649JxlEkjQZ416W+SXAsxj9BfCVqjq3z1CSpP5s90YsSd4PvBa4itHhl69N8r6+g0mS+jHOHv9zgads/UI3yVnANb2mkiT1ZpxbL34fmHmxnP26eZKkZWicPf49gWuTfKObfgawKcn5AFV1TF/hJEk73zjF/1e9p5AkTcw4J3B9GSDJI7j/zdZ/2mMuSVJPxrnZ+jrgr4H/Be4Dwuiwzv37jSZJ6sM4Qz1vAQ6qqtv6DiNJ6t84R/X8gNF9dyVJDwDj7PG/Ffh6ksvZsZutS5KWoHGK/x+ASxmduXtfv3EkSX0bp/h3q6o39Z5EkjQR44zxX5xkXZJ9k+y99dF7MklSL8bZ4996J623zpjn4ZyStEyNcwLXEycRRJI0GeOcwPXKueZX1Ud2fhxJUt/GGep5xoznuwNHAN8CLH5JWobGGep5/czpJHsBH+srkCSpX+Mc1TPbzwHH/SVpmRpnjP/fGB3FA6NfFKuBj/cZSpLUn3HG+E+b8fwe4IdVdWNPeSRJPZu3+JPszugm67/J6HINZ1TVPZMKJknqx0Jj/GcBaxmV/guA0yeSSJLUq4WGelZX1W8BJDkD+MYCr91GkjOBFwG3VtVB3by9gX8BVgE3AL9fVbfveGxJ0mIttMf/y61PFjnE82HgqFnz1gOXVNUBwCXdtCRpghYq/qclubN73AUcvPV5kju398FVdRkw+768L2Y0hET389jFhJYkLd68Qz1VtUsP61tRVTd3z38CrOhhHZKkBSzmBK6doqqK6fMDttFdCnpTkk1btmyZYDJJemCbdPHfkmRfgO7nrfO9sKo2VtXaqlo7NTU1sYCS9EA36eI/Hzixe34icN6E1y9Jzeut+JN8FPh34MAkNyb5Y2AD8Lwk1wFHdtOSpAka55INi1JVJ8yz6Ii+1ilJ2r7BvtyVJA3D4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYXYdYaZIbgLuAe4F7qmrtEDkkqUWDFH/nOVV124Drl6QmOdQjSY0ZqvgL+FySK5KsGyiDJDVpqKGeZ1XVTUkeA3w+yXer6rKZL+h+IawDWLly5RAZJekBaZA9/qq6qft5K/Bp4NA5XrOxqtZW1dqpqalJR5SkB6yJF3+ShyfZc+tz4PnA1ZPOIUmtGmKoZwXw6SRb139OVX1mgByS1KSJF39VXQ88bdLrlSSNeDinJDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGjNI8Sc5Ksn3knw/yfohMkhSqyZe/El2Ad4HvABYDZyQZPWkc0hSq4bY4z8U+H5VXV9V/wd8DHjxADkkqUmpqsmuMHkpcFRV/Uk3/Qrgt6vqpFmvWwes6yYPBL430aDb2ge4beAMS4XbYprbYprbYtpS2RZPqKqp2TN3HSLJOKpqI7Bx6BxbJdlUVWuHzrEUuC2muS2muS2mLfVtMcRQz03AfjOmH9/NkyRNwBDF/03ggCRPTPJg4GXA+QPkkKQmTXyop6ruSXIS8FlgF+DMqrpm0jkWYckMOy0BbotpbotpbotpS3pbTPzLXUnSsDxzV5IaY/FLUmMsfklqzJI9jn9IM442+nFVfSHJy4HfAa4FNlbVLwcNOGFJ9gdewugw3HuB/wLOqao7Bw0maVH8cncOSc5m9EvxYcAdwB7Ap4AjGG2zE4dLN1lJ3gC8CLgMeCHwbUbb5DjgdVX1pcHCSVoUi38OSa6sqoOT7Mro5LLHVtW9SQL8Z1UdPHDEiUlyFbCm++d/GHBRVR2eZCVwXlUdMnDEiUnySOCtwLHAY4ACbgXOAzZU1R2DhVtCklxcVS8YOsekJHkEo/8uHg9cXFXnzFj2/qp63WDh5uFQz9we1A33PJzRXv8jgZ8CDwF2GzLYQHZlNMTzEEZ//VBVP0rS2rb4OHApcHhV/QQgyW8AJ3bLnj9gtolK8vT5FgFrJhhlKfgQcB3wSeDVSY4HXl5VdwPPHDTZPCz+uZ0BfJfRCWZvBz6R5HpG/xI/NmSwAfwj8M0klwPPBk4FSDLF6JdhS1ZV1akzZ3S/AE5N8uqBMg3lm8CXGRX9bHtNNsrgnlRVx3fPz03yduDSJMcMGWohDvXMI8ljAarqx0n2Ao4EflRV3xg02ACSPBV4CnB1VX136DxDSfI54AvAWVV1SzdvBfAq4HlVdeSA8SYqydXAcVV13RzL/ruq9pvjbQ9ISa4FnlpV982Y9yrgLcAeVfWEobLNx+KXxpTkUcB6RvePeEw3+xZG15raUFW3D5Vt0rrLq19VVdtcLj3JsVV17uRTDSPJ3wCfq6ovzJp/FPDeqjpgmGTzs/ilnSDJH1XVh4bOsRS4LaYt1W1h8Us7QZIfVdXKoXMsBW6LaUt1W/jlrjSmJFfOtwhYMcksQ3NbTFuO28Lil8a3AvhdYPZYfoCvTz7OoNwW05bdtrD4pfFdwOgojc2zFyT50sTTDMttMW3ZbQvH+CWpMV6dU5IaY/FLUmMsfglIUkn+ecb0rkm2JLlgkZ+3V5LXzZg+fLGfJe1sFr808nPgoCQP7aafx+jKrIu1F7DkrsoogcUvzXQRcHT3/ATgo1sXJNk7yblJrkzyH0kO7uafkuTMJF9Kcn13/wKADcCTkmxO8q5u3h5J/jXJd5Oc3V3mW5o4i1+a9jHgZUl2Bw4GLp+x7J3At7t7MbwN+MiMZU9mdBz3ocA7ustVrwd+UFVrquot3esOAU4GVgP7A4f1+M8izcvilzpVdSWwitHe/kWzFj8L+KfudZcCj+5uwAFwYVXdXVW3Mboxy3xna36jqm7sruK4uVuXNHGewCXd3/nAacDhwKPHfM/dM57fy/z/X437OqlX7vFL93cm8M6qumrW/K8AfwijI3SA27Zzs/m7gD37CCj9utzjkGaoqhuBv51j0SnAmd0FuX7B6HaLC33O/yT5WnfDkouBC3d2VmmxvGSDJDXGoR5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSY/4fZDFW+b6+4WkAAAAASUVORK5CYII=", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar')\n", + "plt.ylabel(\"Pumpkin Price\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "95726f0b8283628d5356a4f8eb8b4b76", + "translation_date": "2025-09-04T01:36:57+00:00", + "source_file": "2-Regression/2-Data/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/hi/2-Regression/3-Linear/README.md b/translations/hi/2-Regression/3-Linear/README.md new file mode 100644 index 000000000..03c4e917e --- /dev/null +++ b/translations/hi/2-Regression/3-Linear/README.md @@ -0,0 +1,381 @@ + +# Scikit-learn का उपयोग करके एक रिग्रेशन मॉडल बनाएं: चार तरीकों से रिग्रेशन + +![लिनियर बनाम पॉलिनोमियल रिग्रेशन इन्फोग्राफिक](../../../../translated_images/linear-polynomial.5523c7cb6576ccab0fecbd0e3505986eb2d191d9378e785f82befcf3a578a6e7.hi.png) +> इन्फोग्राफिक: [Dasani Madipalli](https://twitter.com/dasani_decoded) +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/13/) + +> ### [यह पाठ R में उपलब्ध है!](../../../../2-Regression/3-Linear/solution/R/lesson_3.html) +### परिचय + +अब तक आपने रिग्रेशन के बारे में जानकारी प्राप्त की है और इसे कद्दू की कीमतों के डेटा सेट के साथ देखा है, जिसे हम इस पाठ में उपयोग करेंगे। आपने इसे Matplotlib का उपयोग करके विज़ुअलाइज़ भी किया है। + +अब आप मशीन लर्निंग के लिए रिग्रेशन को गहराई से समझने के लिए तैयार हैं। जबकि विज़ुअलाइज़ेशन डेटा को समझने में मदद करता है, मशीन लर्निंग की असली ताकत _मॉडल को ट्रेन करने_ में है। मॉडल ऐतिहासिक डेटा पर प्रशिक्षित होते हैं ताकि डेटा की निर्भरताओं को स्वचालित रूप से कैप्चर किया जा सके, और वे नए डेटा के लिए परिणामों की भविष्यवाणी करने की अनुमति देते हैं, जिसे मॉडल ने पहले नहीं देखा है। + +इस पाठ में, आप रिग्रेशन के दो प्रकारों के बारे में अधिक जानेंगे: _बेसिक लिनियर रिग्रेशन_ और _पॉलिनोमियल रिग्रेशन_, साथ ही इन तकनीकों के पीछे की गणितीय अवधारणाओं को समझेंगे। ये मॉडल हमें विभिन्न इनपुट डेटा के आधार पर कद्दू की कीमतों की भविष्यवाणी करने में मदद करेंगे। + +[![मशीन लर्निंग के लिए शुरुआती - लिनियर रिग्रेशन को समझना](https://img.youtube.com/vi/CRxFT8oTDMg/0.jpg)](https://youtu.be/CRxFT8oTDMg "मशीन लर्निंग के लिए शुरुआती - लिनियर रिग्रेशन को समझना") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें और लिनियर रिग्रेशन का संक्षिप्त वीडियो देखें। + +> इस पाठ्यक्रम में, हम गणित का न्यूनतम ज्ञान मानते हैं और इसे अन्य क्षेत्रों से आने वाले छात्रों के लिए सुलभ बनाने का प्रयास करते हैं। इसलिए नोट्स, 🧮 गणितीय कॉलआउट, डायग्राम और अन्य शिक्षण उपकरणों पर ध्यान दें जो समझने में मदद करेंगे। + +### पूर्वापेक्षा + +अब तक आपको कद्दू के डेटा की संरचना से परिचित होना चाहिए जिसे हम जांच रहे हैं। आप इसे इस पाठ के _notebook.ipynb_ फ़ाइल में प्रीलोड और प्री-क्लीन किया हुआ पा सकते हैं। इस फ़ाइल में, कद्दू की कीमत प्रति बुशल एक नए डेटा फ्रेम में प्रदर्शित की गई है। सुनिश्चित करें कि आप इन नोटबुक्स को Visual Studio Code के कर्नल्स में चला सकते हैं। + +### तैयारी + +याद दिलाने के लिए, आप इस डेटा को लोड कर रहे हैं ताकि इससे सवाल पूछ सकें। + +- कद्दू खरीदने का सबसे अच्छा समय कब है? +- मिनिएचर कद्दू के एक केस की कीमत क्या हो सकती है? +- क्या मुझे उन्हें आधे-बुशल की टोकरी में खरीदना चाहिए या 1 1/9 बुशल बॉक्स में? + +आइए इस डेटा में और गहराई से जाएं। + +पिछले पाठ में, आपने एक Pandas डेटा फ्रेम बनाया और इसे मूल डेटा सेट के हिस्से से भरा, कीमतों को बुशल के अनुसार मानकीकृत किया। हालांकि, ऐसा करने से आप केवल लगभग 400 डेटा पॉइंट्स और केवल पतझड़ के महीनों के लिए डेटा प्राप्त कर सके। + +इस पाठ के साथ आने वाले नोटबुक में प्रीलोड किए गए डेटा को देखें। डेटा प्रीलोड किया गया है और एक प्रारंभिक स्कैटरप्लॉट चार्ट किया गया है जो महीने के डेटा को दिखाता है। शायद हम डेटा की प्रकृति के बारे में अधिक विवरण प्राप्त कर सकते हैं यदि इसे और अधिक साफ किया जाए। + +## एक लिनियर रिग्रेशन लाइन + +जैसा कि आपने पाठ 1 में सीखा, लिनियर रिग्रेशन अभ्यास का लक्ष्य एक लाइन को प्लॉट करना है ताकि: + +- **चर संबंध दिखाएं**। चर के बीच संबंध दिखाएं। +- **भविष्यवाणी करें**। यह भविष्यवाणी करें कि एक नया डेटा पॉइंट उस लाइन के संबंध में कहां गिरेगा। + +यह **लीस्ट-स्क्वेयर रिग्रेशन** के लिए सामान्य है कि इस प्रकार की लाइन खींची जाए। 'लीस्ट-स्क्वेयर' शब्द का मतलब है कि रिग्रेशन लाइन के चारों ओर सभी डेटा पॉइंट्स को वर्गीकृत किया जाता है और फिर जोड़ा जाता है। आदर्श रूप से, अंतिम योग जितना संभव हो उतना छोटा होना चाहिए, क्योंकि हम त्रुटियों की कम संख्या चाहते हैं, या `लीस्ट-स्क्वेयर`। + +हम ऐसा इसलिए करते हैं क्योंकि हम एक ऐसी लाइन को मॉडल करना चाहते हैं जिसका सभी डेटा पॉइंट्स से संचयी दूरी कम से कम हो। हम इन शर्तों को जोड़ने से पहले वर्गीकृत करते हैं क्योंकि हम इसकी परिमाण के बारे में चिंतित हैं, न कि इसकी दिशा के बारे में। + +> **🧮 गणित दिखाएं** +> +> इस लाइन, जिसे _सर्वश्रेष्ठ फिट की लाइन_ कहा जाता है, को [एक समीकरण](https://en.wikipedia.org/wiki/Simple_linear_regression) द्वारा व्यक्त किया जा सकता है: +> +> ``` +> Y = a + bX +> ``` +> +> `X` 'स्पष्टीकरण चर' है। `Y` 'निर्भर चर' है। लाइन की ढलान `b` है और `a` y-इंटरसेप्ट है, जो उस समय `Y` का मान है जब `X = 0`। +> +>![ढलान की गणना करें](../../../../translated_images/slope.f3c9d5910ddbfcf9096eb5564254ba22c9a32d7acd7694cab905d29ad8261db3.hi.png) +> +> पहले, ढलान `b` की गणना करें। इन्फोग्राफिक: [Jen Looper](https://twitter.com/jenlooper) +> +> दूसरे शब्दों में, और हमारे कद्दू डेटा के मूल प्रश्न का संदर्भ देते हुए: "महीने के अनुसार प्रति बुशल कद्दू की कीमत की भविष्यवाणी करें", `X` कीमत को संदर्भित करेगा और `Y` बिक्री के महीने को। +> +>![समीकरण पूरा करें](../../../../translated_images/calculation.a209813050a1ddb141cdc4bc56f3af31e67157ed499e16a2ecf9837542704c94.hi.png) +> +> `Y` का मान निकालें। यदि आप लगभग $4 का भुगतान कर रहे हैं, तो यह अप्रैल होना चाहिए! इन्फोग्राफिक: [Jen Looper](https://twitter.com/jenlooper) +> +> लाइन की गणना करने वाला गणित लाइन की ढलान को प्रदर्शित करना चाहिए, जो इंटरसेप्ट पर भी निर्भर करता है, या जहां `Y` स्थित है जब `X = 0`। +> +> आप इन मूल्यों की गणना की विधि [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html) वेबसाइट पर देख सकते हैं। [इस लीस्ट-स्क्वेयर कैलकुलेटर](https://www.mathsisfun.com/data/least-squares-calculator.html) पर भी जाएं और देखें कि संख्याओं के मान लाइन को कैसे प्रभावित करते हैं। + +## सहसंबंध + +एक और शब्द जिसे समझना महत्वपूर्ण है वह है **सहसंबंध गुणांक** दिए गए X और Y चर के बीच। स्कैटरप्लॉट का उपयोग करके, आप इस गुणांक को जल्दी से विज़ुअलाइज़ कर सकते हैं। एक प्लॉट जिसमें डेटा पॉइंट्स एक साफ लाइन में बिखरे होते हैं, उसमें उच्च सहसंबंध होता है, लेकिन एक प्लॉट जिसमें डेटा पॉइंट्स X और Y के बीच हर जगह बिखरे होते हैं, उसमें कम सहसंबंध होता है। + +एक अच्छा लिनियर रिग्रेशन मॉडल वह होगा जिसमें लीस्ट-स्क्वेयर रिग्रेशन विधि का उपयोग करके रिग्रेशन लाइन के साथ उच्च (1 के करीब) सहसंबंध गुणांक हो। + +✅ इस पाठ के साथ आने वाले नोटबुक को चलाएं और महीने से कीमत के स्कैटरप्लॉट को देखें। क्या कद्दू की बिक्री के लिए महीने से कीमत को जोड़ने वाला डेटा आपके स्कैटरप्लॉट की दृश्य व्याख्या के अनुसार उच्च या निम्न सहसंबंध रखता है? क्या यह बदलता है यदि आप `महीने` के बजाय अधिक सूक्ष्म माप का उपयोग करते हैं, जैसे *साल का दिन* (यानी साल की शुरुआत से दिन की संख्या)? + +नीचे दिए गए कोड में, हम मानते हैं कि हमने डेटा को साफ कर लिया है और `new_pumpkins` नामक एक डेटा फ्रेम प्राप्त किया है, जो निम्नलिखित के समान है: + +ID | Month | DayOfYear | Variety | City | Package | Low Price | High Price | Price +---|-------|-----------|---------|------|---------|-----------|------------|------- +70 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364 +71 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636 +72 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636 +73 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 17.0 | 17.0 | 15.454545 +74 | 10 | 281 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364 + +> डेटा को साफ करने का कोड [`notebook.ipynb`](notebook.ipynb) में उपलब्ध है। हमने पिछले पाठ में समान सफाई चरणों का प्रदर्शन किया है और निम्नलिखित अभिव्यक्ति का उपयोग करके `DayOfYear` कॉलम की गणना की है: + +```python +day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days) +``` + +अब जब आपको लिनियर रिग्रेशन के पीछे की गणितीय अवधारणाओं की समझ हो गई है, तो आइए एक रिग्रेशन मॉडल बनाएं और देखें कि हम कद्दू के पैकेजों की कीमतों की भविष्यवाणी कर सकते हैं या नहीं। कोई व्यक्ति जो छुट्टी के लिए कद्दू पैच खरीद रहा है, वह इस जानकारी का उपयोग कद्दू पैच के लिए कद्दू पैकेजों की खरीद को अनुकूलित करने के लिए कर सकता है। + +## सहसंबंध की तलाश + +[![मशीन लर्निंग के लिए शुरुआती - सहसंबंध की तलाश: लिनियर रिग्रेशन की कुंजी](https://img.youtube.com/vi/uoRq-lW2eQo/0.jpg)](https://youtu.be/uoRq-lW2eQo "मशीन लर्निंग के लिए शुरुआती - सहसंबंध की तलाश: लिनियर रिग्रेशन की कुंजी") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें और सहसंबंध का संक्षिप्त वीडियो देखें। + +पिछले पाठ से आपने शायद देखा है कि विभिन्न महीनों के लिए औसत कीमत इस प्रकार दिखती है: + +महीने के अनुसार औसत कीमत + +यह सुझाव देता है कि कुछ सहसंबंध होना चाहिए, और हम `Month` और `Price` के बीच या `DayOfYear` और `Price` के बीच संबंध की भविष्यवाणी करने के लिए लिनियर रिग्रेशन मॉडल को प्रशिक्षित करने का प्रयास कर सकते हैं। यहां स्कैटरप्लॉट है जो बाद के संबंध को दिखाता है: + +साल के दिन बनाम कीमत का स्कैटरप्लॉट + +आइए `corr` फ़ंक्शन का उपयोग करके देखें कि क्या कोई सहसंबंध है: + +```python +print(new_pumpkins['Month'].corr(new_pumpkins['Price'])) +print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price'])) +``` + +ऐसा लगता है कि सहसंबंध काफी छोटा है, `Month` के लिए -0.15 और `DayOfMonth` के लिए -0.17, लेकिन एक और महत्वपूर्ण संबंध हो सकता है। ऐसा लगता है कि विभिन्न कद्दू की किस्मों के लिए कीमतों के अलग-अलग समूह हैं। इस परिकल्पना की पुष्टि करने के लिए, आइए प्रत्येक कद्दू श्रेणी को एक अलग रंग का उपयोग करके प्लॉट करें। `scatter` प्लॉटिंग फ़ंक्शन को `ax` पैरामीटर पास करके हम सभी पॉइंट्स को एक ही ग्राफ पर प्लॉट कर सकते हैं: + +```python +ax=None +colors = ['red','blue','green','yellow'] +for i,var in enumerate(new_pumpkins['Variety'].unique()): + df = new_pumpkins[new_pumpkins['Variety']==var] + ax = df.plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var) +``` + +साल के दिन बनाम कीमत का स्कैटरप्लॉट + +हमारी जांच से पता चलता है कि तारीख की तुलना में किस्म का कुल कीमत पर अधिक प्रभाव पड़ता है। हम इसे बार ग्राफ के साथ देख सकते हैं: + +```python +new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar') +``` + +किस्म बनाम कीमत का बार ग्राफ + +आइए फिलहाल केवल एक कद्दू की किस्म, 'पाई टाइप', पर ध्यान केंद्रित करें और देखें कि तारीख का कीमत पर क्या प्रभाव पड़ता है: + +```python +pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE'] +pie_pumpkins.plot.scatter('DayOfYear','Price') +``` +साल के दिन बनाम कीमत का स्कैटरप्लॉट + +यदि हम अब `corr` फ़ंक्शन का उपयोग करके `Price` और `DayOfYear` के बीच सहसंबंध की गणना करते हैं, तो हमें कुछ `-0.27` जैसा मिलेगा - जो इंगित करता है कि एक भविष्यवाणी मॉडल को प्रशिक्षित करना समझ में आता है। + +> लिनियर रिग्रेशन मॉडल को प्रशिक्षित करने से पहले, यह सुनिश्चित करना महत्वपूर्ण है कि हमारा डेटा साफ है। लिनियर रिग्रेशन खाली मानों के साथ अच्छा काम नहीं करता है, इसलिए सभी खाली सेल्स को हटाना समझ में आता है: + +```python +pie_pumpkins.dropna(inplace=True) +pie_pumpkins.info() +``` + +एक अन्य दृष्टिकोण यह होगा कि उन खाली मानों को संबंधित कॉलम के औसत मानों से भर दिया जाए। + +## सरल लिनियर रिग्रेशन + +[![मशीन लर्निंग के लिए शुरुआती - Scikit-learn का उपयोग करके लिनियर और पॉलिनोमियल रिग्रेशन](https://img.youtube.com/vi/e4c_UP2fSjg/0.jpg)](https://youtu.be/e4c_UP2fSjg "मशीन लर्निंग के लिए शुरुआती - Scikit-learn का उपयोग करके लिनियर और पॉलिनोमियल रिग्रेशन") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें और लिनियर और पॉलिनोमियल रिग्रेशन का संक्षिप्त वीडियो देखें। + +हमारे लिनियर रिग्रेशन मॉडल को प्रशिक्षित करने के लिए, हम **Scikit-learn** लाइब्रेरी का उपयोग करेंगे। + +```python +from sklearn.linear_model import LinearRegression +from sklearn.metrics import mean_squared_error +from sklearn.model_selection import train_test_split +``` + +हम इनपुट मानों (फीचर्स) और अपेक्षित आउटपुट (लेबल) को अलग-अलग numpy arrays में विभाजित करके शुरू करते हैं: + +```python +X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1) +y = pie_pumpkins['Price'] +``` + +> ध्यान दें कि हमें इनपुट डेटा पर `reshape` करना पड़ा ताकि लिनियर रिग्रेशन पैकेज इसे सही ढंग से समझ सके। लिनियर रिग्रेशन एक 2D-array को इनपुट के रूप में अपेक्षित करता है, जहां array की प्रत्येक पंक्ति इनपुट फीचर्स के एक वेक्टर से मेल खाती है। हमारे मामले में, चूंकि हमारे पास केवल एक इनपुट है - हमें आकार N×1 के साथ एक array की आवश्यकता है, जहां N डेटा सेट का आकार है। + +फिर, हमें डेटा को ट्रेन और टेस्ट डेटा सेट में विभाजित करना होगा, ताकि हम प्रशिक्षण के बाद अपने मॉडल को मान्य कर सकें: + +```python +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) +``` + +अंत में, वास्तविक लिनियर रिग्रेशन मॉडल को प्रशिक्षित करना केवल दो लाइनों का कोड लेता है। हम `LinearRegression` ऑब्जेक्ट को परिभाषित करते हैं और इसे `fit` विधि का उपयोग करके हमारे डेटा पर फिट करते हैं: + +```python +lin_reg = LinearRegression() +lin_reg.fit(X_train,y_train) +``` + +`LinearRegression` ऑब्जेक्ट में `fit`-टिंग के बाद सभी रिग्रेशन गुणांक होते हैं, जिन्हें `.coef_` प्रॉपर्टी का उपयोग करके एक्सेस किया जा सकता है। हमारे मामले में, केवल एक गुणांक है, जो लगभग `-0.017` होना चाहिए। इसका मतलब है कि समय के साथ कीमतें थोड़ी गिरती दिखती हैं, लेकिन बहुत ज्यादा नहीं, लगभग 2 सेंट प्रति दिन। हम Y-एक्सिस के साथ रिग्रेशन के इंटरसेक्शन पॉइंट को `lin_reg.intercept_` का उपयोग करके भी एक्सेस कर सकते हैं - यह हमारे मामले में लगभग `21` होगा, जो साल की शुरुआत में कीमत को इंगित करता है। + +यह देखने के लिए कि हमारा मॉडल कितना सटीक है, हम टेस्ट डेटा सेट पर कीमतों की भविष्यवाणी कर सकते हैं और फिर देख सकते हैं कि हमारी भविष्यवाणियां अपेक्षित मानों के कितनी करीब हैं। यह मीन स्क्वायर एरर (MSE) मेट्रिक्स का उपयोग करके किया जा सकता है, जो अपेक्षित और भविष्यवाणी किए गए मानों के बीच सभी वर्गीकृत अंतर का औसत है। + +```python +pred = lin_reg.predict(X_test) + +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') +``` +हमारी त्रुटि लगभग 2 बिंदुओं के आसपास है, जो ~17% है। यह बहुत अच्छा नहीं है। मॉडल की गुणवत्ता का एक और संकेतक **निर्धारण गुणांक** है, जिसे इस तरह प्राप्त किया जा सकता है: + +```python +score = lin_reg.score(X_train,y_train) +print('Model determination: ', score) +``` +यदि मान 0 है, तो इसका मतलब है कि मॉडल इनपुट डेटा को ध्यान में नहीं रखता है और *सबसे खराब रैखिक भविष्यवक्ता* के रूप में कार्य करता है, जो केवल परिणाम का औसत मान है। मान 1 का मतलब है कि हम सभी अपेक्षित आउटपुट को पूरी तरह से भविष्यवाणी कर सकते हैं। हमारे मामले में, निर्धारण गुणांक लगभग 0.06 है, जो काफी कम है। + +हम परीक्षण डेटा को रिग्रेशन लाइन के साथ भी प्लॉट कर सकते हैं ताकि यह बेहतर तरीके से समझ सकें कि हमारे मामले में रिग्रेशन कैसे काम करता है: + +```python +plt.scatter(X_test,y_test) +plt.plot(X_test,pred) +``` + +रैखिक रिग्रेशन + +## बहुपद रिग्रेशन + +रैखिक रिग्रेशन का एक और प्रकार बहुपद रिग्रेशन है। कभी-कभी चर के बीच रैखिक संबंध होता है - जैसे कि कद्दू का आकार बढ़ने पर उसकी कीमत बढ़ती है - लेकिन कभी-कभी इन संबंधों को एक समतल या सीधी रेखा के रूप में प्लॉट नहीं किया जा सकता। + +✅ यहां [कुछ और उदाहरण](https://online.stat.psu.edu/stat501/lesson/9/9.8) हैं जो बहुपद रिग्रेशन का उपयोग कर सकते हैं। + +Date और Price के बीच संबंध पर फिर से नज़र डालें। क्या यह स्कैटरप्लॉट ऐसा लगता है कि इसे सीधी रेखा से विश्लेषित किया जाना चाहिए? क्या कीमतें बदल नहीं सकतीं? इस मामले में, आप बहुपद रिग्रेशन आज़मा सकते हैं। + +✅ बहुपद गणितीय अभिव्यक्तियाँ हैं जो एक या अधिक चर और गुणांक से बनी हो सकती हैं। + +बहुपद रिग्रेशन एक घुमावदार रेखा बनाता है जो गैर-रैखिक डेटा को बेहतर तरीके से फिट करता है। हमारे मामले में, यदि हम इनपुट डेटा में `DayOfYear` चर का वर्ग शामिल करते हैं, तो हम अपने डेटा को एक परवलयिक वक्र के साथ फिट कर सकते हैं, जिसका न्यूनतम वर्ष के किसी निश्चित बिंदु पर होगा। + +Scikit-learn में एक उपयोगी [पाइपलाइन API](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html?highlight=pipeline#sklearn.pipeline.make_pipeline) शामिल है जो डेटा प्रोसेसिंग के विभिन्न चरणों को एक साथ जोड़ने में मदद करता है। एक **पाइपलाइन** **अनुमानकर्ताओं** की एक श्रृंखला है। हमारे मामले में, हम एक पाइपलाइन बनाएंगे जो पहले हमारे मॉडल में बहुपद विशेषताएँ जोड़ती है और फिर रिग्रेशन को प्रशिक्षित करती है: + +```python +from sklearn.preprocessing import PolynomialFeatures +from sklearn.pipeline import make_pipeline + +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) + +pipeline.fit(X_train,y_train) +``` + +`PolynomialFeatures(2)` का उपयोग करने का मतलब है कि हम इनपुट डेटा से सभी दूसरे-डिग्री बहुपद शामिल करेंगे। हमारे मामले में इसका मतलब केवल `DayOfYear`2 होगा, लेकिन यदि दो इनपुट चर X और Y दिए गए हैं, तो यह X2, XY और Y2 जोड़ देगा। यदि हम चाहें तो उच्च डिग्री बहुपद का उपयोग भी कर सकते हैं। + +पाइपलाइन का उपयोग उसी तरह किया जा सकता है जैसे मूल `LinearRegression` ऑब्जेक्ट का, यानी हम पाइपलाइन को `fit` कर सकते हैं और फिर `predict` का उपयोग करके भविष्यवाणी परिणाम प्राप्त कर सकते हैं। यहां परीक्षण डेटा और अनुमानित वक्र दिखाने वाला ग्राफ है: + +बहुपद रिग्रेशन + +बहुपद रिग्रेशन का उपयोग करके, हम थोड़ा कम MSE और थोड़ा अधिक निर्धारण प्राप्त कर सकते हैं, लेकिन यह महत्वपूर्ण नहीं है। हमें अन्य विशेषताओं को ध्यान में रखना होगा! + +> आप देख सकते हैं कि न्यूनतम कद्दू की कीमतें कहीं हैलोवीन के आसपास देखी जाती हैं। आप इसे कैसे समझाएंगे? + +🎃 बधाई हो, आपने एक ऐसा मॉडल बनाया है जो पाई कद्दू की कीमत का अनुमान लगाने में मदद कर सकता है। आप शायद सभी प्रकार के कद्दू के लिए वही प्रक्रिया दोहरा सकते हैं, लेकिन यह थकाऊ होगा। अब चलिए सीखते हैं कि अपने मॉडल में कद्दू की विविधता को कैसे ध्यान में रखा जाए! + +## श्रेणीबद्ध विशेषताएँ + +आदर्श दुनिया में, हम एक ही मॉडल का उपयोग करके विभिन्न कद्दू की किस्मों की कीमतों का अनुमान लगाना चाहते हैं। हालांकि, `Variety` कॉलम `Month` जैसे कॉलम से थोड़ा अलग है, क्योंकि इसमें गैर-संख्या मान होते हैं। ऐसे कॉलम को **श्रेणीबद्ध** कहा जाता है। + +[![श्रेणीबद्ध विशेषताओं के साथ रैखिक रिग्रेशन](https://img.youtube.com/vi/DYGliioIAE0/0.jpg)](https://youtu.be/DYGliioIAE0 "श्रेणीबद्ध विशेषताओं के साथ रैखिक रिग्रेशन") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें श्रेणीबद्ध विशेषताओं का उपयोग करने का एक छोटा वीडियो देखने के लिए। + +यहां आप देख सकते हैं कि किस्म के आधार पर औसत कीमत कैसे बदलती है: + +किस्म के आधार पर औसत कीमत + +किस्म को ध्यान में रखने के लिए, हमें पहले इसे संख्यात्मक रूप में बदलना होगा, या **एन्कोड** करना होगा। इसे करने के कई तरीके हैं: + +* सरल **संख्यात्मक एन्कोडिंग** विभिन्न किस्मों की एक तालिका बनाएगी और फिर किस्म के नाम को उस तालिका में एक इंडेक्स से बदल देगी। यह रैखिक रिग्रेशन के लिए सबसे अच्छा विचार नहीं है, क्योंकि रैखिक रिग्रेशन इंडेक्स के वास्तविक संख्यात्मक मान को लेता है और इसे परिणाम में जोड़ता है, गुणांक से गुणा करता है। हमारे मामले में, इंडेक्स नंबर और कीमत के बीच संबंध स्पष्ट रूप से गैर-रैखिक है, भले ही हम सुनिश्चित करें कि इंडेक्स किसी विशिष्ट तरीके से क्रमबद्ध हैं। +* **वन-हॉट एन्कोडिंग** `Variety` कॉलम को 4 अलग-अलग कॉलम से बदल देगा, प्रत्येक किस्म के लिए एक। प्रत्येक कॉलम में `1` होगा यदि संबंधित पंक्ति दी गई किस्म की है, और `0` अन्यथा। इसका मतलब है कि रैखिक रिग्रेशन में चार गुणांक होंगे, प्रत्येक कद्दू की किस्म के लिए एक, जो उस विशेष किस्म के लिए "शुरुआती कीमत" (या "अतिरिक्त कीमत") के लिए जिम्मेदार होगा। + +नीचे दिया गया कोड दिखाता है कि हम किस्म को वन-हॉट एन्कोड कैसे कर सकते हैं: + +```python +pd.get_dummies(new_pumpkins['Variety']) +``` + + ID | FAIRYTALE | MINIATURE | MIXED HEIRLOOM VARIETIES | PIE TYPE +----|-----------|-----------|--------------------------|---------- +70 | 0 | 0 | 0 | 1 +71 | 0 | 0 | 0 | 1 +... | ... | ... | ... | ... +1738 | 0 | 1 | 0 | 0 +1739 | 0 | 1 | 0 | 0 +1740 | 0 | 1 | 0 | 0 +1741 | 0 | 1 | 0 | 0 +1742 | 0 | 1 | 0 | 0 + +वन-हॉट एन्कोडेड किस्म का उपयोग करके रैखिक रिग्रेशन को प्रशिक्षित करने के लिए, हमें केवल `X` और `y` डेटा को सही तरीके से प्रारंभ करना होगा: + +```python +X = pd.get_dummies(new_pumpkins['Variety']) +y = new_pumpkins['Price'] +``` + +बाकी कोड वही है जो हमने ऊपर रैखिक रिग्रेशन को प्रशिक्षित करने के लिए उपयोग किया था। यदि आप इसे आज़माते हैं, तो आप देखेंगे कि औसत वर्ग त्रुटि लगभग समान है, लेकिन हमें बहुत अधिक निर्धारण गुणांक (~77%) मिलता है। और भी सटीक भविष्यवाणियां प्राप्त करने के लिए, हम अधिक श्रेणीबद्ध विशेषताओं को ध्यान में रख सकते हैं, साथ ही संख्यात्मक विशेषताओं जैसे `Month` या `DayOfYear`। एक बड़ी विशेषता सरणी प्राप्त करने के लिए, हम `join` का उपयोग कर सकते हैं: + +```python +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] +``` + +यहां हम `City` और `Package` प्रकार को भी ध्यान में रखते हैं, जो हमें MSE 2.84 (10%) और निर्धारण 0.94 देता है! + +## सब कुछ एक साथ रखना + +सबसे अच्छा मॉडल बनाने के लिए, हम ऊपर दिए गए उदाहरण से संयुक्त (वन-हॉट एन्कोडेड श्रेणीबद्ध + संख्यात्मक) डेटा का उपयोग बहुपद रिग्रेशन के साथ कर सकते हैं। आपकी सुविधा के लिए यहां पूरा कोड है: + +```python +# set up training data +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] + +# make train-test split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + +# setup and train the pipeline +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) +pipeline.fit(X_train,y_train) + +# predict results for test data +pred = pipeline.predict(X_test) + +# calculate MSE and determination +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') + +score = pipeline.score(X_train,y_train) +print('Model determination: ', score) +``` + +यह हमें लगभग 97% का सबसे अच्छा निर्धारण गुणांक और MSE=2.23 (~8% भविष्यवाणी त्रुटि) देना चाहिए। + +| मॉडल | MSE | निर्धारण | +|-------|-----|---------------| +| `DayOfYear` रैखिक | 2.77 (17.2%) | 0.07 | +| `DayOfYear` बहुपद | 2.73 (17.0%) | 0.08 | +| `Variety` रैखिक | 5.24 (19.7%) | 0.77 | +| सभी विशेषताएँ रैखिक | 2.84 (10.5%) | 0.94 | +| सभी विशेषताएँ बहुपद | 2.23 (8.25%) | 0.97 | + +🏆 बहुत अच्छा! आपने एक ही पाठ में चार रिग्रेशन मॉडल बनाए और मॉडल की गुणवत्ता को 97% तक सुधार दिया। रिग्रेशन पर अंतिम अनुभाग में, आप श्रेणियों को निर्धारित करने के लिए लॉजिस्टिक रिग्रेशन के बारे में जानेंगे। + +--- +## 🚀चुनौती + +इस नोटबुक में कई अलग-अलग चर का परीक्षण करें और देखें कि सहसंबंध मॉडल की सटीकता से कैसे मेल खाता है। + +## [पाठ के बाद क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/) + +## समीक्षा और स्व-अध्ययन + +इस पाठ में हमने रैखिक रिग्रेशन के बारे में सीखा। रिग्रेशन के अन्य महत्वपूर्ण प्रकार भी हैं। Stepwise, Ridge, Lasso और Elasticnet तकनीकों के बारे में पढ़ें। अधिक जानने के लिए एक अच्छा कोर्स [स्टैनफोर्ड स्टैटिस्टिकल लर्निंग कोर्स](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning) है। + +## असाइनमेंट + +[मॉडल बनाएं](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/2-Regression/3-Linear/assignment.md b/translations/hi/2-Regression/3-Linear/assignment.md new file mode 100644 index 000000000..73eb303ee --- /dev/null +++ b/translations/hi/2-Regression/3-Linear/assignment.md @@ -0,0 +1,25 @@ + +# एक रिग्रेशन मॉडल बनाएं + +## निर्देश + +इस पाठ में आपको दिखाया गया कि कैसे लीनियर और पॉलिनोमियल रिग्रेशन का उपयोग करके एक मॉडल बनाया जा सकता है। इस ज्ञान का उपयोग करते हुए, एक डेटासेट खोजें या Scikit-learn के बिल्ट-इन सेट्स में से एक का उपयोग करके एक नया मॉडल बनाएं। अपने नोटबुक में समझाएं कि आपने कौन-सी तकनीक चुनी और क्यों। अपने मॉडल की सटीकता प्रदर्शित करें। यदि यह सटीक नहीं है, तो समझाएं क्यों। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्टता | पर्याप्तता | सुधार की आवश्यकता | +| ------- | ------------------------------------------------------------ | -------------------------- | ------------------------------- | +| | एक पूर्ण नोटबुक प्रस्तुत करता है जिसमें समाधान अच्छी तरह से दस्तावेज़ किया गया है | समाधान अधूरा है | समाधान त्रुटिपूर्ण या बगयुक्त है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/2-Regression/3-Linear/notebook.ipynb b/translations/hi/2-Regression/3-Linear/notebook.ipynb new file mode 100644 index 000000000..03c835fcf --- /dev/null +++ b/translations/hi/2-Regression/3-Linear/notebook.ipynb @@ -0,0 +1,128 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## कद्दू की कीमतें\n", + "\n", + "आवश्यक लाइब्रेरी और डेटा सेट लोड करें। डेटा को एक डेटा फ्रेम में बदलें जिसमें डेटा का एक उपसमूह हो:\n", + "\n", + "- केवल उन कद्दुओं को प्राप्त करें जिनकी कीमत बुशल के आधार पर दी गई है\n", + "- तारीख को महीने में बदलें\n", + "- कीमत को उच्च और निम्न कीमतों के औसत के रूप में गणना करें\n", + "- कीमत को बुशल मात्रा के अनुसार दर्शाने के लिए बदलें\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "एक बुनियादी स्कैटरप्लॉट हमें याद दिलाता है कि हमारे पास केवल अगस्त से दिसंबर तक का मासिक डेटा है। हमें संभवतः और अधिक डेटा की आवश्यकता होगी ताकि हम रैखिक रूप से निष्कर्ष निकाल सकें।\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.scatter('Month','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "plt.scatter('DayOfYear','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "b032d371c75279373507f003439a577e", + "translation_date": "2025-09-04T01:02:15+00:00", + "source_file": "2-Regression/3-Linear/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/hi/2-Regression/3-Linear/solution/Julia/README.md b/translations/hi/2-Regression/3-Linear/solution/Julia/README.md new file mode 100644 index 000000000..3ea16e7ef --- /dev/null +++ b/translations/hi/2-Regression/3-Linear/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb b/translations/hi/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb new file mode 100644 index 000000000..1392f24b3 --- /dev/null +++ b/translations/hi/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb @@ -0,0 +1,1084 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_3-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "5015d65d61ba75a223bfc56c273aa174", + "translation_date": "2025-09-04T01:17:56+00:00", + "source_file": "2-Regression/3-Linear/solution/R/lesson_3-R.ipynb", + "language_code": "hi" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "EgQw8osnsUV-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## कद्दू की कीमत के लिए रैखिक और बहुपद प्रतिगमन - पाठ 3\n", + "

                                \n", + " \n", + "

                                दासानी मदीपल्ली द्वारा इन्फोग्राफिक
                                \n", + "\n", + "\n", + "#### परिचय\n", + "\n", + "अब तक आपने कद्दू की कीमत के डेटासेट से एकत्र किए गए नमूना डेटा के साथ प्रतिगमन (Regression) क्या है, इसका पता लगाया है, जिसे हम इस पाठ में उपयोग करेंगे। आपने इसे `ggplot2` का उपयोग करके विज़ुअलाइज़ भी किया है।💪\n", + "\n", + "अब आप मशीन लर्निंग के लिए प्रतिगमन में गहराई से जाने के लिए तैयार हैं। इस पाठ में, आप प्रतिगमन के दो प्रकारों के बारे में अधिक जानेंगे: *मूल रैखिक प्रतिगमन* और *बहुपद प्रतिगमन*, साथ ही इन तकनीकों के पीछे कुछ गणितीय अवधारणाओं को समझेंगे।\n", + "\n", + "> इस पाठ्यक्रम में, हम गणित का न्यूनतम ज्ञान मानते हैं और इसे अन्य क्षेत्रों से आने वाले छात्रों के लिए सुलभ बनाने का प्रयास करते हैं। इसलिए नोट्स, 🧮 गणना, आरेख और अन्य शिक्षण उपकरणों पर ध्यान दें जो समझने में मदद करेंगे।\n", + "\n", + "#### तैयारी\n", + "\n", + "याद दिलाने के लिए, आप इस डेटा को लोड कर रहे हैं ताकि इससे सवाल पूछ सकें।\n", + "\n", + "- कद्दू खरीदने का सबसे अच्छा समय कब है?\n", + "\n", + "- मिनिएचर कद्दू के एक केस की कीमत क्या हो सकती है?\n", + "\n", + "- क्या मुझे उन्हें आधे-बुशल टोकरी में खरीदना चाहिए या 1 1/9 बुशल बॉक्स में? चलिए इस डेटा में और गहराई से जाते हैं।\n", + "\n", + "पिछले पाठ में, आपने एक `tibble` (डेटा फ्रेम का आधुनिक पुनर्कल्पना) बनाया और इसे मूल डेटासेट के हिस्से से भर दिया, बुशल द्वारा कीमत को मानकीकृत किया। हालांकि, ऐसा करने से, आप केवल लगभग 400 डेटा पॉइंट्स और केवल पतझड़ के महीनों के लिए डेटा एकत्र कर पाए। शायद हम डेटा की प्रकृति के बारे में अधिक विवरण प्राप्त कर सकते हैं यदि इसे और अधिक साफ किया जाए? देखते हैं... 🕵️‍♀️\n", + "\n", + "इस कार्य के लिए, हमें निम्नलिखित पैकेजों की आवश्यकता होगी:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) एक [R पैकेजों का संग्रह](https://www.tidyverse.org/packages) है जो डेटा साइंस को तेज़, आसान और मज़ेदार बनाता है!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) फ्रेमवर्क [पैकेजों का संग्रह](https://www.tidymodels.org/packages/) है जो मॉडलिंग और मशीन लर्निंग के लिए उपयोगी है।\n", + "\n", + "- `janitor`: [janitor पैकेज](https://github.com/sfirke/janitor) गंदे डेटा की जांच और सफाई के लिए सरल उपकरण प्रदान करता है।\n", + "\n", + "- `corrplot`: [corrplot पैकेज](https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html) एक विज़ुअल एक्सप्लोरेटरी टूल प्रदान करता है जो कोरिलेशन मैट्रिक्स पर आधारित है और छिपे हुए पैटर्न का पता लगाने के लिए स्वचालित वेरिएबल रीऑर्डरिंग का समर्थन करता है।\n", + "\n", + "आप इन्हें इस प्रकार इंस्टॉल कर सकते हैं:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"corrplot\"))`\n", + "\n", + "नीचे दिया गया स्क्रिप्ट यह जांचता है कि क्या आपके पास इस मॉड्यूल को पूरा करने के लिए आवश्यक पैकेज हैं और यदि वे गायब हैं तो उन्हें आपके लिए इंस्टॉल करता है।\n" + ], + "metadata": { + "id": "WqQPS1OAsg3H" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, corrplot)" + ], + "outputs": [], + "metadata": { + "id": "tA4C2WN3skCf", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "c06cd805-5534-4edc-f72b-d0d1dab96ac0" + } + }, + { + "cell_type": "markdown", + "source": [ + "हम बाद में इन शानदार पैकेजों को लोड करेंगे और उन्हें हमारे वर्तमान R सत्र में उपलब्ध कराएंगे। (यह केवल उदाहरण के लिए है, `pacman::p_load()` ने पहले ही यह आपके लिए कर दिया है)\n", + "\n", + "## 1. एक रेखीय प्रतिगमन रेखा\n", + "\n", + "जैसा कि आपने पाठ 1 में सीखा, रेखीय प्रतिगमन अभ्यास का उद्देश्य एक *सर्वश्रेष्ठ फिट रेखा* को प्लॉट करना है ताकि:\n", + "\n", + "- **चर संबंध दिखाएं**। चर के बीच संबंध दिखाएं।\n", + "\n", + "- **भविष्यवाणी करें**। यह सटीक भविष्यवाणी करें कि नया डेटा बिंदु उस रेखा के संबंध में कहां गिरेगा।\n", + "\n", + "इस प्रकार की रेखा खींचने के लिए, हम एक सांख्यिकीय तकनीक का उपयोग करते हैं जिसे **लीस्ट-स्क्वेयर प्रतिगमन** कहा जाता है। `लीस्ट-स्क्वेयर` का मतलब है कि प्रतिगमन रेखा के चारों ओर के सभी डेटा बिंदुओं को वर्गाकार किया जाता है और फिर जोड़ा जाता है। आदर्श रूप से, वह अंतिम योग जितना छोटा हो सके उतना छोटा होना चाहिए, क्योंकि हम त्रुटियों की कम संख्या चाहते हैं, या `लीस्ट-स्क्वेयर`। इस प्रकार, सर्वश्रेष्ठ फिट रेखा वह रेखा है जो वर्गाकार त्रुटियों के योग के लिए सबसे कम मान देती है - इसलिए इसे *लीस्ट-स्क्वेयर प्रतिगमन* कहा जाता है।\n", + "\n", + "हम ऐसा इसलिए करते हैं क्योंकि हम एक ऐसी रेखा को मॉडल करना चाहते हैं जिसका हमारे सभी डेटा बिंदुओं से संचयी दूरी सबसे कम हो। हम इन शब्दों को जोड़ने से पहले वर्गाकार करते हैं क्योंकि हमें इसकी परिमाण की चिंता है, न कि उसकी दिशा की।\n", + "\n", + "> **🧮 गणित दिखाएं**\n", + ">\n", + "> इस रेखा, जिसे *सर्वश्रेष्ठ फिट रेखा* कहा जाता है, को [एक समीकरण](https://en.wikipedia.org/wiki/Simple_linear_regression) द्वारा व्यक्त किया जा सकता है:\n", + ">\n", + "> Y = a + bX\n", + ">\n", + "> `X` '`स्पष्टीकरण चर` या `पूर्वानुमानक`' है। `Y` '`निर्भर चर` या `परिणाम`' है। रेखा का ढलान `b` है और `a` y-अवरोधक है, जो उस समय `Y` का मान दर्शाता है जब `X = 0` होता है।\n", + ">\n", + "\n", + "> ![](../../../../../../2-Regression/3-Linear/solution/images/slope.png \"slope = $y/x$\")\n", + " जेन लूपर द्वारा इन्फोग्राफिक\n", + ">\n", + "> पहले, ढलान `b` की गणना करें।\n", + ">\n", + "> दूसरे शब्दों में, और हमारे कद्दू डेटा के मूल प्रश्न का संदर्भ देते हुए: \"महीने के अनुसार प्रति बुशल कद्दू की कीमत की भविष्यवाणी करें\", `X` कीमत को संदर्भित करेगा और `Y` बिक्री के महीने को।\n", + ">\n", + "> ![](../../../../../../translated_images/calculation.989aa7822020d9d0ba9fc781f1ab5192f3421be86ebb88026528aef33c37b0d8.hi.png)\n", + " जेन लूपर द्वारा इन्फोग्राफिक\n", + "> \n", + "> `Y` का मान निकालें। अगर आप लगभग \\$4 खर्च कर रहे हैं, तो यह अप्रैल होना चाहिए!\n", + ">\n", + "> रेखा की गणना करने वाला गणित रेखा के ढलान को प्रदर्शित करना चाहिए, जो अवरोधक पर भी निर्भर करता है, या जहां `X = 0` होने पर `Y` स्थित होता है।\n", + ">\n", + "> आप इन मानों की गणना की विधि [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html) वेबसाइट पर देख सकते हैं। साथ ही [इस लीस्ट-स्क्वेयर कैलकुलेटर](https://www.mathsisfun.com/data/least-squares-calculator.html) पर जाएं और देखें कि कैसे संख्याओं के मान रेखा को प्रभावित करते हैं।\n", + "\n", + "इतना डरावना नहीं, है ना? 🤓\n", + "\n", + "#### सहसंबंध\n", + "\n", + "एक और शब्द जिसे समझना है वह है **सहसंबंध गुणांक** दिए गए X और Y चर के बीच। एक स्कैटरप्लॉट का उपयोग करके, आप इस गुणांक को जल्दी से देख सकते हैं। एक प्लॉट जिसमें डेटा बिंदु एक साफ रेखा में बिखरे होते हैं, उसमें उच्च सहसंबंध होता है, लेकिन एक प्लॉट जिसमें डेटा बिंदु X और Y के बीच हर जगह बिखरे होते हैं, उसमें कम सहसंबंध होता है।\n", + "\n", + "एक अच्छा रेखीय प्रतिगमन मॉडल वह होगा जिसमें लीस्ट-स्क्वेयर प्रतिगमन विधि का उपयोग करके एक रेखा के साथ उच्च (1 के करीब, 0 से दूर) सहसंबंध गुणांक हो।\n" + ], + "metadata": { + "id": "cdX5FRpvsoP5" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **2. डेटा के साथ एक नृत्य: एक डेटा फ्रेम बनाना जो मॉडलिंग के लिए उपयोग किया जाएगा**\n", + "\n", + "

                                \n", + " \n", + "

                                कला कार्य @allison_horst द्वारा
                                \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "WdUKXk7Bs8-V" + } + }, + { + "cell_type": "markdown", + "source": [ + "आवश्यक लाइब्रेरी और डेटा सेट लोड करें। डेटा को एक डेटा फ्रेम में बदलें जिसमें डेटा का एक उपसमूह हो:\n", + "\n", + "- केवल उन कद्दुओं को प्राप्त करें जिनकी कीमत बुशल के आधार पर दी गई है\n", + "\n", + "- तारीख को महीने में बदलें\n", + "\n", + "- कीमत को उच्च और निम्न कीमतों के औसत के रूप में गणना करें\n", + "\n", + "- कीमत को बुशल मात्रा के अनुसार दर्शाने के लिए बदलें\n", + "\n", + "> हमने इन चरणों को [पिछले पाठ](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/2-Data/solution/lesson_2-R.ipynb) में कवर किया था।\n" + ], + "metadata": { + "id": "fMCtu2G2s-p8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "library(lubridate)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "ryMVZEEPtERn" + } + }, + { + "cell_type": "markdown", + "source": [ + "आइए रोमांच की भावना में, [`janitor package`](../../../../../../2-Regression/3-Linear/solution/R/github.com/sfirke/janitor) का अन्वेषण करें, जो गंदे डेटा की जांच और सफाई के लिए सरल फ़ंक्शन प्रदान करता है। उदाहरण के लिए, आइए हमारे डेटा के कॉलम नामों पर एक नज़र डालें:\n" + ], + "metadata": { + "id": "xcNxM70EtJjb" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "5XtpaIigtPfW" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤔 हम बेहतर कर सकते हैं। आइए इन कॉलम नामों को `janitor::clean_names` का उपयोग करके [snake_case](https://en.wikipedia.org/wiki/Snake_case) कन्वेंशन में बदलकर `friendR` बनाएं। इस फ़ंक्शन के बारे में अधिक जानने के लिए: `?clean_names`\n" + ], + "metadata": { + "id": "IbIqrMINtSHe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Clean names to the snake_case convention\n", + "pumpkins <- pumpkins %>% \n", + " clean_names(case = \"snake\")\n", + "\n", + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "a2uYvclYtWvX" + } + }, + { + "cell_type": "markdown", + "source": [ + "बहुत साफ-सुथरा 🧹! अब, पिछले पाठ की तरह `dplyr` का उपयोग करके डेटा के साथ एक नृत्य! 💃\n" + ], + "metadata": { + "id": "HfhnuzDDtaDd" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(variety, city_name, package, low_price, high_price, date)\n", + "\n", + "\n", + "\n", + "# Extract the month from the dates to a new column\n", + "pumpkins <- pumpkins %>%\n", + " mutate(date = mdy(date),\n", + " month = month(date)) %>% \n", + " select(-date)\n", + "\n", + "\n", + "\n", + "# Create a new column for average Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(price = (low_price + high_price)/2)\n", + "\n", + "\n", + "# Retain only pumpkins with the string \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(string = package, pattern = \"bushel\"))\n", + "\n", + "\n", + "# Normalize the pricing so that you show the pricing per bushel, not per 1 1/9 or 1/2 bushel\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(price = case_when(\n", + " str_detect(package, \"1 1/9\") ~ price/(1.1),\n", + " str_detect(package, \"1/2\") ~ price*2,\n", + " TRUE ~ price))\n", + "\n", + "# Relocate column positions\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(month, .before = variety)\n", + "\n", + "\n", + "# Display the first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "X0wU3gQvtd9f" + } + }, + { + "cell_type": "markdown", + "source": [ + "अच्छा काम!👌 अब आपके पास एक साफ-सुथरा और व्यवस्थित डेटा सेट है, जिस पर आप अपना नया रिग्रेशन मॉडल बना सकते हैं!\n", + "\n", + "क्या एक स्कैटर प्लॉट बनाएंगे?\n" + ], + "metadata": { + "id": "UpaIwaxqth82" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set theme\n", + "theme_set(theme_light())\n", + "\n", + "# Make a scatter plot of month and price\n", + "new_pumpkins %>% \n", + " ggplot(mapping = aes(x = month, y = price)) +\n", + " geom_point(size = 1.6)\n" + ], + "outputs": [], + "metadata": { + "id": "DXgU-j37tl5K" + } + }, + { + "cell_type": "markdown", + "source": [ + "एक स्कैटर प्लॉट हमें याद दिलाता है कि हमारे पास केवल अगस्त से दिसंबर तक का मासिक डेटा है। हमें शायद और डेटा की आवश्यकता होगी ताकि हम रेखीय तरीके से निष्कर्ष निकाल सकें।\n", + "\n", + "आइए एक बार फिर अपने मॉडलिंग डेटा पर नज़र डालें:\n" + ], + "metadata": { + "id": "Ve64wVbwtobI" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Display first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "HFQX2ng1tuSJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "अगर हम कद्दू की `price` का अनुमान लगाना चाहें, जो `city` या `package` कॉलम पर आधारित हो, जो कि कैरेक्टर प्रकार के हैं, तो क्या करें? या और भी सरल तरीके से, हम कैसे `package` और `price` के बीच सहसंबंध (जिसके लिए दोनों इनपुट्स का संख्यात्मक होना आवश्यक है) का पता लगा सकते हैं? 🤷🤷\n", + "\n", + "मशीन लर्निंग मॉडल आमतौर पर टेक्स्ट वैल्यू की बजाय संख्यात्मक फीचर्स के साथ बेहतर काम करते हैं, इसलिए आपको सामान्यतः श्रेणीबद्ध फीचर्स को संख्यात्मक प्रतिनिधित्व में बदलने की आवश्यकता होती है।\n", + "\n", + "इसका मतलब है कि हमें अपने प्रेडिक्टर्स को इस तरह से पुनः स्वरूपित करने का तरीका खोजना होगा ताकि मॉडल उनका प्रभावी ढंग से उपयोग कर सके, जिसे `feature engineering` कहा जाता है।\n" + ], + "metadata": { + "id": "7hsHoxsStyjJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. मॉडलिंग के लिए डेटा को प्रीप्रोसेस करना रेसिपीज़ के साथ 👩‍🍳👨‍🍳\n", + "\n", + "ऐसी गतिविधियाँ जो प्रेडिक्टर मानों को पुनः स्वरूपित करती हैं ताकि मॉडल उन्हें प्रभावी ढंग से उपयोग कर सके, को `फीचर इंजीनियरिंग` कहा गया है।\n", + "\n", + "अलग-अलग मॉडलों की अलग-अलग प्रीप्रोसेसिंग आवश्यकताएँ होती हैं। उदाहरण के लिए, लीस्ट स्क्वेयर को `श्रेणीबद्ध वेरिएबल्स को एनकोड करना` पड़ता है, जैसे कि महीना, प्रकार और शहर का नाम। इसका मतलब है कि `श्रेणीबद्ध मानों` वाले कॉलम को एक या अधिक `संख्यात्मक कॉलम्स` में बदलना, जो मूल कॉलम की जगह लेते हैं।\n", + "\n", + "उदाहरण के लिए, मान लीजिए आपके डेटा में निम्नलिखित श्रेणीबद्ध फीचर शामिल है:\n", + "\n", + "| शहर |\n", + "|:-------:|\n", + "| डेनवर |\n", + "| नैरोबी |\n", + "| टोक्यो |\n", + "\n", + "आप *ऑर्डिनल एनकोडिंग* लागू कर सकते हैं, जो प्रत्येक श्रेणी के लिए एक अद्वितीय पूर्णांक मान को प्रतिस्थापित करता है, इस प्रकार:\n", + "\n", + "| शहर |\n", + "|:----:|\n", + "| 0 |\n", + "| 1 |\n", + "| 2 |\n", + "\n", + "और यही हम अपने डेटा के साथ करेंगे!\n", + "\n", + "इस सेक्शन में, हम एक और शानदार Tidymodels पैकेज [recipes](https://tidymodels.github.io/recipes/) का पता लगाएंगे - जिसे आपके डेटा को **मॉडल ट्रेनिंग से पहले** प्रीप्रोसेस करने में मदद करने के लिए डिज़ाइन किया गया है। मूल रूप से, एक रेसिपी एक ऑब्जेक्ट है जो यह परिभाषित करता है कि डेटा सेट पर कौन-कौन से स्टेप्स लागू किए जाने चाहिए ताकि इसे मॉडलिंग के लिए तैयार किया जा सके।\n", + "\n", + "अब, चलिए एक रेसिपी बनाते हैं जो हमारे डेटा को मॉडलिंग के लिए तैयार करती है, प्रेडिक्टर कॉलम्स में सभी ऑब्जर्वेशन्स के लिए एक अद्वितीय पूर्णांक को प्रतिस्थापित करके:\n" + ], + "metadata": { + "id": "AD5kQbcvt3Xl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\n", + "pumpkins_recipe <- recipe(price ~ ., data = new_pumpkins) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "# Print out the recipe\n", + "pumpkins_recipe" + ], + "outputs": [], + "metadata": { + "id": "BNaFKXfRt9TU" + } + }, + { + "cell_type": "markdown", + "source": [ + "वाह! 👏 हमने अभी अपना पहला रेसिपी बनाई है जो एक परिणाम (मूल्य) और उसके संबंधित भविष्यवक्ताओं को निर्दिष्ट करती है, और यह सुनिश्चित करती है कि सभी भविष्यवक्ता कॉलम को संख्याओं के सेट में एन्कोड किया जाए 🙌! चलिए इसे जल्दी से समझते हैं:\n", + "\n", + "- `recipe()` को एक फॉर्मूला के साथ कॉल करना रेसिपी को यह बताता है कि *चर* की भूमिकाएं क्या हैं, और यह `new_pumpkins` डेटा को संदर्भ के रूप में उपयोग करता है। उदाहरण के लिए, `price` कॉलम को `outcome` भूमिका दी गई है, जबकि बाकी कॉलम को `predictor` भूमिका दी गई है।\n", + "\n", + "- `step_integer(all_predictors(), zero_based = TRUE)` निर्दिष्ट करता है कि सभी भविष्यवक्ताओं को संख्याओं के सेट में परिवर्तित किया जाना चाहिए, जिसमें क्रमांक 0 से शुरू होता है।\n", + "\n", + "हमें यकीन है कि आपके मन में यह विचार आ रहा होगा: \"यह तो बहुत शानदार है!! लेकिन अगर मुझे यह सुनिश्चित करना हो कि रेसिपी वही कर रही है जो मैं उनसे उम्मीद कर रहा हूं, तो क्या होगा? 🤔\"\n", + "\n", + "यह एक शानदार विचार है! देखिए, एक बार जब आपकी रेसिपी परिभाषित हो जाती है, तो आप डेटा को वास्तव में प्रीप्रोसेस करने के लिए आवश्यक पैरामीटर का अनुमान लगा सकते हैं, और फिर प्रीप्रोसेस किए गए डेटा को निकाल सकते हैं। आमतौर पर आपको यह करने की आवश्यकता नहीं होती जब आप Tidymodels का उपयोग करते हैं (हम इसे सामान्य प्रक्रिया में जल्द ही देखेंगे -> `workflows`), लेकिन यह तब उपयोगी हो सकता है जब आप यह सुनिश्चित करना चाहते हैं कि रेसिपी वही कर रही है जो आप उनसे उम्मीद कर रहे हैं।\n", + "\n", + "इसके लिए, आपको दो और क्रियाओं की आवश्यकता होगी: `prep()` और `bake()`। और हमेशा की तरह, हमारे छोटे R दोस्त [`Allison Horst`](https://github.com/allisonhorst/stats-illustrations) आपको इसे बेहतर तरीके से समझने में मदद करते हैं!\n", + "\n", + "

                                \n", + " \n", + "

                                Artwork by @allison_horst
                                \n" + ], + "metadata": { + "id": "KEiO0v7kuC9O" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`prep()`](https://recipes.tidymodels.org/reference/prep.html): प्रशिक्षण सेट से आवश्यक पैरामीटर का अनुमान लगाता है, जिसे बाद में अन्य डेटा सेट पर लागू किया जा सकता है। उदाहरण के लिए, किसी दिए गए प्रेडिक्टर कॉलम के लिए, कौन सा ऑब्ज़र्वेशन इंटीजर 0, 1, 2 आदि के रूप में असाइन किया जाएगा।\n", + "\n", + "[`bake()`](https://recipes.tidymodels.org/reference/bake.html): एक तैयार की गई रेसिपी लेता है और किसी भी डेटा सेट पर ऑपरेशन्स लागू करता है।\n", + "\n", + "अब, चलिए अपनी रेसिपी को तैयार करते हैं और लागू करते हैं ताकि वास्तव में पुष्टि हो सके कि बैकग्राउंड में प्रेडिक्टर कॉलम पहले एन्कोड किए जाएंगे, उसके बाद मॉडल फिट किया जाएगा।\n" + ], + "metadata": { + "id": "Q1xtzebuuTCP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep the recipe\n", + "pumpkins_prep <- prep(pumpkins_recipe)\n", + "\n", + "# Bake the recipe to extract a preprocessed new_pumpkins data\n", + "baked_pumpkins <- bake(pumpkins_prep, new_data = NULL)\n", + "\n", + "# Print out the baked data set\n", + "baked_pumpkins %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "FGBbJbP_uUUn" + } + }, + { + "cell_type": "markdown", + "source": [ + "वाह! 🥳 प्रोसेस किए गए डेटा `baked_pumpkins` के सभी प्रेडिक्टर्स को एन्कोड कर दिया गया है, जिससे यह पुष्टि होती है कि हमारे द्वारा परिभाषित प्रीप्रोसेसिंग स्टेप्स, जो एक रेसिपी के रूप में हैं, अपेक्षित रूप से काम करेंगे। यह आपके लिए पढ़ना थोड़ा मुश्किल बना सकता है, लेकिन Tidymodels के लिए इसे समझना बहुत आसान हो जाता है! कुछ समय निकालें और पता करें कि कौन सा ऑब्ज़र्वेशन संबंधित पूर्णांक में मैप किया गया है।\n", + "\n", + "यह उल्लेख करना भी महत्वपूर्ण है कि `baked_pumpkins` एक डेटा फ्रेम है, जिस पर हम गणनाएँ कर सकते हैं।\n", + "\n", + "उदाहरण के लिए, चलिए आपके डेटा के दो बिंदुओं के बीच एक अच्छा सहसंबंध खोजने की कोशिश करते हैं ताकि संभावित रूप से एक अच्छा प्रेडिक्टिव मॉडल बनाया जा सके। इसके लिए हम `cor()` फ़ंक्शन का उपयोग करेंगे। इस फ़ंक्शन के बारे में अधिक जानने के लिए `?cor()` टाइप करें।\n" + ], + "metadata": { + "id": "1dvP0LBUueAW" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the correlation between the city_name and the price\n", + "cor(baked_pumpkins$city_name, baked_pumpkins$price)\n", + "\n", + "# Find the correlation between the package and the price\n", + "cor(baked_pumpkins$package, baked_pumpkins$price)\n" + ], + "outputs": [], + "metadata": { + "id": "3bQzXCjFuiSV" + } + }, + { + "cell_type": "markdown", + "source": [ + "जैसा कि पता चलता है, शहर और कीमत के बीच केवल कमजोर संबंध है। हालांकि, पैकेज और उसकी कीमत के बीच थोड़ा बेहतर संबंध है। यह समझ में आता है, है ना? आमतौर पर, जितना बड़ा उत्पाद बॉक्स होता है, कीमत उतनी ही अधिक होती है।\n", + "\n", + "जब हम इस पर हैं, तो चलिए `corrplot` पैकेज का उपयोग करके सभी कॉलम का एक सहसंबंध मैट्रिक्स भी विज़ुअलाइज़ करने की कोशिश करते हैं।\n" + ], + "metadata": { + "id": "BToPWbgjuoZw" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the corrplot package\n", + "library(corrplot)\n", + "\n", + "# Obtain correlation matrix\n", + "corr_mat <- cor(baked_pumpkins %>% \n", + " # Drop columns that are not really informative\n", + " select(-c(low_price, high_price)))\n", + "\n", + "# Make a correlation plot between the variables\n", + "corrplot(corr_mat, method = \"shade\", shade.col = NA, tl.col = \"black\", tl.srt = 45, addCoef.col = \"black\", cl.pos = \"n\", order = \"original\")" + ], + "outputs": [], + "metadata": { + "id": "ZwAL3ksmutVR" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 बहुत बेहतर।\n", + "\n", + "अब इस डेटा से पूछने के लिए एक अच्छा सवाल होगा: '`किसी दिए गए कद्दू पैकेज की कीमत क्या हो सकती है?`' चलिए इसे शुरू करते हैं!\n", + "\n", + "> नोट: जब आप **`bake()`** करते हैं प्रीप्ड रेसिपी **`pumpkins_prep`** के साथ **`new_data = NULL`**, तो आप प्रोसेस्ड (यानी एनकोडेड) ट्रेनिंग डेटा निकालते हैं। अगर आपके पास कोई दूसरा डेटा सेट है, जैसे कि टेस्ट सेट, और आप देखना चाहते हैं कि रेसिपी उसे कैसे प्री-प्रोसेस करेगी, तो आप बस **`pumpkins_prep`** को **`new_data = test_set`** के साथ बेक करेंगे।\n", + "\n", + "## 4. एक लीनियर रिग्रेशन मॉडल बनाएं\n", + "\n", + "

                                \n", + " \n", + "

                                दासानी मदीपल्ली द्वारा इन्फोग्राफिक
                                \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "YqXjLuWavNxW" + } + }, + { + "cell_type": "markdown", + "source": [ + "अब जब हमने एक रेसिपी बनाई है और यह सुनिश्चित कर लिया है कि डेटा को सही तरीके से प्री-प्रोसेस किया जाएगा, तो अब हम एक रिग्रेशन मॉडल बनाएंगे ताकि इस सवाल का जवाब दिया जा सके: `किसी दिए गए कद्दू पैकेज की कीमत क्या हो सकती है?`\n", + "\n", + "#### प्रशिक्षण सेट का उपयोग करके एक लीनियर रिग्रेशन मॉडल ट्रेन करें\n", + "\n", + "जैसा कि आपने पहले ही समझ लिया होगा, *price* कॉलम `परिणाम` वेरिएबल है जबकि *package* कॉलम `पूर्वानुमानक` वेरिएबल है।\n", + "\n", + "इसके लिए, हम पहले डेटा को इस तरह विभाजित करेंगे कि 80% प्रशिक्षण सेट में जाए और 20% टेस्ट सेट में। फिर एक रेसिपी परिभाषित करेंगे जो पूर्वानुमानक कॉलम को एक सेट ऑफ इंटीजर में एन्कोड करेगी, और फिर एक मॉडल स्पेसिफिकेशन बनाएंगे। हम अपनी रेसिपी को प्रेप और बेक नहीं करेंगे क्योंकि हमें पहले से ही पता है कि यह डेटा को अपेक्षित तरीके से प्री-प्रोसेस करेगी।\n" + ], + "metadata": { + "id": "Pq0bSzCevW-h" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\n", + "# Split the data into training and test sets\n", + "pumpkins_split <- new_pumpkins %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "\n", + "# Extract training and test data\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "\n", + "\n", + "# Create a recipe for preprocessing the data\n", + "lm_pumpkins_recipe <- recipe(price ~ package, data = pumpkins_train) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "\n", + "# Create a linear model specification\n", + "lm_spec <- linear_reg() %>% \n", + " set_engine(\"lm\") %>% \n", + " set_mode(\"regression\")" + ], + "outputs": [], + "metadata": { + "id": "CyoEh_wuvcLv" + } + }, + { + "cell_type": "markdown", + "source": [ + "शानदार काम! अब जब हमारे पास एक रेसिपी और मॉडल स्पेसिफिकेशन है, तो हमें इन्हें एक ऑब्जेक्ट में जोड़ने का तरीका ढूंढना होगा, जो पहले डेटा को प्रीप्रोसेस करेगा (पर्दे के पीछे prep+bake), प्रीप्रोसेस किए गए डेटा पर मॉडल को फिट करेगा और संभावित पोस्ट-प्रोसेसिंग गतिविधियों की भी अनुमति देगा। यह आपके मन की शांति के लिए कैसा है!🤩\n", + "\n", + "Tidymodels में, इस सुविधाजनक ऑब्जेक्ट को [`workflow`](https://workflows.tidymodels.org/) कहा जाता है और यह आपके मॉडलिंग घटकों को आसानी से संग्रहीत करता है! इसे हम *Python* में *pipelines* कहेंगे।\n", + "\n", + "तो चलिए सब कुछ एक workflow में जोड़ते हैं!📦\n" + ], + "metadata": { + "id": "G3zF_3DqviFJ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Hold modelling components in a workflow\n", + "lm_wf <- workflow() %>% \n", + " add_recipe(lm_pumpkins_recipe) %>% \n", + " add_model(lm_spec)\n", + "\n", + "# Print out the workflow\n", + "lm_wf" + ], + "outputs": [], + "metadata": { + "id": "T3olroU3v-WX" + } + }, + { + "cell_type": "markdown", + "source": [ + "साथ ही, एक वर्कफ़्लो को लगभग उसी तरह फिट/ट्रेन किया जा सकता है जैसे एक मॉडल को किया जाता है।\n" + ], + "metadata": { + "id": "zd1A5tgOwEPX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Train the model\n", + "lm_wf_fit <- lm_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the model coefficients learned \n", + "lm_wf_fit" + ], + "outputs": [], + "metadata": { + "id": "NhJagFumwFHf" + } + }, + { + "cell_type": "markdown", + "source": [ + "मॉडल प्रशिक्षण के दौरान सीखे गए गुणांक आउटपुट में देखे जा सकते हैं। ये गुणांक उस सर्वश्रेष्ठ फिट लाइन के गुणांक को दर्शाते हैं, जो वास्तविक और अनुमानित चर के बीच समग्र त्रुटि को न्यूनतम करता है।\n", + "\n", + "#### टेस्ट सेट का उपयोग करके मॉडल के प्रदर्शन का मूल्यांकन करें\n", + "\n", + "अब समय आ गया है यह देखने का कि मॉडल ने कैसा प्रदर्शन किया 📏! हम यह कैसे करेंगे?\n", + "\n", + "अब जब हमने मॉडल को प्रशिक्षित कर लिया है, तो हम इसका उपयोग `parsnip::predict()` के माध्यम से टेस्ट सेट के लिए भविष्यवाणियां करने में कर सकते हैं। फिर हम इन भविष्यवाणियों की तुलना वास्तविक लेबल मानों से करेंगे ताकि यह मूल्यांकन कर सकें कि मॉडल कितना अच्छा (या नहीं!) काम कर रहा है।\n", + "\n", + "आइए टेस्ट सेट के लिए भविष्यवाणियां करने से शुरू करें और फिर इन कॉलम्स को टेस्ट सेट के साथ जोड़ें।\n" + ], + "metadata": { + "id": "_4QkGtBTwItF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\n", + "predictions <- lm_wf_fit %>% \n", + " predict(new_data = pumpkins_test)\n", + "\n", + "\n", + "# Bind predictions to the test set\n", + "lm_results <- pumpkins_test %>% \n", + " select(c(package, price)) %>% \n", + " bind_cols(predictions)\n", + "\n", + "\n", + "# Print the first ten rows of the tibble\n", + "lm_results %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "UFZzTG0gwTs9" + } + }, + { + "cell_type": "markdown", + "source": [ + "हाँ, आपने अभी एक मॉडल को प्रशिक्षित किया और इसका उपयोग भविष्यवाणियाँ करने के लिए किया!🔮 क्या यह अच्छा है? चलिए मॉडल के प्रदर्शन का मूल्यांकन करते हैं!\n", + "\n", + "Tidymodels में, हम इसे `yardstick::metrics()` का उपयोग करके करते हैं! लीनियर रिग्रेशन के लिए, आइए निम्नलिखित मेट्रिक्स पर ध्यान दें:\n", + "\n", + "- `रूट मीन स्क्वायर एरर (RMSE)`: [MSE](https://en.wikipedia.org/wiki/Mean_squared_error) का वर्गमूल। यह एक पूर्ण मेट्रिक देता है जो लेबल (इस मामले में, कद्दू की कीमत) के समान इकाई में होता है। इसका मान जितना छोटा होगा, मॉडल उतना बेहतर होगा (सरल शब्दों में, यह औसत कीमत को दर्शाता है जिससे भविष्यवाणियाँ गलत होती हैं!)\n", + "\n", + "- `निर्धारण गुणांक (आमतौर पर R-squared या R2 के रूप में जाना जाता है)`: एक सापेक्ष मेट्रिक जिसमें मान जितना अधिक होगा, मॉडल का फिट उतना बेहतर होगा। मूल रूप से, यह मेट्रिक दर्शाता है कि मॉडल भविष्यवाणी और वास्तविक लेबल मानों के बीच के अंतर को कितना समझा सकता है।\n" + ], + "metadata": { + "id": "0A5MjzM7wW9M" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Evaluate performance of linear regression\n", + "metrics(data = lm_results,\n", + " truth = price,\n", + " estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "reJ0UIhQwcEH" + } + }, + { + "cell_type": "markdown", + "source": [ + "मॉडल का प्रदर्शन गिर गया। चलिए देखते हैं कि क्या हम पैकेज और कीमत का स्कैटर प्लॉट बनाकर और फिर भविष्यवाणियों का उपयोग करके एक सर्वश्रेष्ठ फिट लाइन को ओवरले करके बेहतर संकेत प्राप्त कर सकते हैं।\n", + "\n", + "इसका मतलब है कि हमें टेस्ट सेट को तैयार और प्रोसेस करना होगा ताकि पैकेज कॉलम को एन्कोड किया जा सके और फिर इसे हमारे मॉडल द्वारा की गई भविष्यवाणियों के साथ जोड़ना होगा।\n" + ], + "metadata": { + "id": "fdgjzjkBwfWt" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Encode package column\n", + "package_encode <- lm_pumpkins_recipe %>% \n", + " prep() %>% \n", + " bake(new_data = pumpkins_test) %>% \n", + " select(package)\n", + "\n", + "\n", + "# Bind encoded package column to the results\n", + "lm_results <- lm_results %>% \n", + " bind_cols(package_encode %>% \n", + " rename(package_integer = package)) %>% \n", + " relocate(package_integer, .after = package)\n", + "\n", + "\n", + "# Print new results data frame\n", + "lm_results %>% \n", + " slice_head(n = 5)\n", + "\n", + "\n", + "# Make a scatter plot\n", + "lm_results %>% \n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\n", + " geom_point(size = 1.6) +\n", + " # Overlay a line of best fit\n", + " geom_line(aes(y = .pred), color = \"orange\", size = 1.2) +\n", + " xlab(\"package\")\n", + " \n" + ], + "outputs": [], + "metadata": { + "id": "R0nw719lwkHE" + } + }, + { + "cell_type": "markdown", + "source": [ + "जैसा कि आप देख सकते हैं, लीनियर रिग्रेशन मॉडल वास्तव में पैकेज और उसकी संबंधित कीमत के बीच के संबंध को अच्छी तरह से सामान्यीकृत नहीं करता है।\n", + "\n", + "🎃 बधाई हो, आपने अभी-अभी एक ऐसा मॉडल बनाया है जो कुछ प्रकार की कद्दू की कीमत का अनुमान लगाने में मदद कर सकता है। आपका छुट्टी का कद्दू का खेत सुंदर होगा। लेकिन आप शायद एक बेहतर मॉडल बना सकते हैं!\n", + "\n", + "## 5. एक पॉलिनोमियल रिग्रेशन मॉडल बनाएं\n", + "\n", + "

                                \n", + " \n", + "

                                डसानी मदीपल्ली द्वारा इन्फोग्राफिक
                                \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "HOCqJXLTwtWI" + } + }, + { + "cell_type": "markdown", + "source": [ + "कभी-कभी हमारे डेटा में रैखिक संबंध नहीं होता है, लेकिन फिर भी हम परिणाम की भविष्यवाणी करना चाहते हैं। बहुपद प्रतिगमन (Polynomial Regression) हमें अधिक जटिल गैर-रैखिक संबंधों के लिए भविष्यवाणी करने में मदद कर सकता है।\n", + "\n", + "उदाहरण के लिए, हमारे कद्दू डेटा सेट में पैकेज और कीमत के बीच संबंध को लें। जबकि कभी-कभी चर के बीच रैखिक संबंध होता है - जैसे कि कद्दू का आकार बड़ा होने पर कीमत अधिक होती है - लेकिन कभी-कभी इन संबंधों को एक समतल या सीधी रेखा के रूप में नहीं दर्शाया जा सकता।\n", + "\n", + "> ✅ [यहां कुछ और उदाहरण](https://online.stat.psu.edu/stat501/lesson/9/9.8) दिए गए हैं, जहां बहुपद प्रतिगमन का उपयोग किया जा सकता है।\n", + ">\n", + "> पिछले प्लॉट में Variety और Price के बीच संबंध को फिर से देखें। क्या यह scatterplot ऐसा लगता है कि इसे सीधी रेखा से विश्लेषित किया जाना चाहिए? शायद नहीं। इस मामले में, आप बहुपद प्रतिगमन का प्रयास कर सकते हैं।\n", + ">\n", + "> ✅ बहुपद गणितीय अभिव्यक्तियां हैं, जो एक या अधिक चर और गुणांक से बनी हो सकती हैं।\n", + "\n", + "#### प्रशिक्षण सेट का उपयोग करके बहुपद प्रतिगमन मॉडल तैयार करें\n", + "\n", + "बहुपद प्रतिगमन एक *घुमावदार रेखा* बनाता है ताकि गैर-रैखिक डेटा को बेहतर तरीके से फिट किया जा सके।\n", + "\n", + "आइए देखें कि क्या बहुपद मॉडल भविष्यवाणी करने में बेहतर प्रदर्शन करेगा। हम पहले की तरह एक समान प्रक्रिया का पालन करेंगे:\n", + "\n", + "- एक रेसिपी बनाएं जो यह निर्दिष्ट करे कि हमारे डेटा को मॉडलिंग के लिए तैयार करने के लिए कौन-कौन से पूर्व-प्रसंस्करण चरण किए जाने चाहिए, जैसे: भविष्यवक्ताओं को एन्कोड करना और डिग्री *n* के बहुपदों की गणना करना।\n", + "\n", + "- एक मॉडल विनिर्देशन तैयार करें।\n", + "\n", + "- रेसिपी और मॉडल विनिर्देशन को एक वर्कफ़्लो में बांधें।\n", + "\n", + "- वर्कफ़्लो को फिट करके एक मॉडल बनाएं।\n", + "\n", + "- परीक्षण डेटा पर मॉडल के प्रदर्शन का मूल्यांकन करें।\n", + "\n", + "चलो शुरू करते हैं!\n" + ], + "metadata": { + "id": "VcEIpRV9wzYr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\r\n", + "poly_pumpkins_recipe <-\r\n", + " recipe(price ~ package, data = pumpkins_train) %>%\r\n", + " step_integer(all_predictors(), zero_based = TRUE) %>% \r\n", + " step_poly(all_predictors(), degree = 4)\r\n", + "\r\n", + "\r\n", + "# Create a model specification\r\n", + "poly_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>% \r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Bundle recipe and model spec into a workflow\r\n", + "poly_wf <- workflow() %>% \r\n", + " add_recipe(poly_pumpkins_recipe) %>% \r\n", + " add_model(poly_spec)\r\n", + "\r\n", + "\r\n", + "# Create a model\r\n", + "poly_wf_fit <- poly_wf %>% \r\n", + " fit(data = pumpkins_train)\r\n", + "\r\n", + "\r\n", + "# Print learned model coefficients\r\n", + "poly_wf_fit\r\n", + "\r\n", + " " + ], + "outputs": [], + "metadata": { + "id": "63n_YyRXw3CC" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### मॉडल के प्रदर्शन का मूल्यांकन करें\n", + "\n", + "👏👏 आपने एक बहुपद मॉडल बनाया है, अब टेस्ट सेट पर भविष्यवाणियां करें!\n" + ], + "metadata": { + "id": "-LHZtztSxDP0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make price predictions on test data\r\n", + "poly_results <- poly_wf_fit %>% predict(new_data = pumpkins_test) %>% \r\n", + " bind_cols(pumpkins_test %>% select(c(package, price))) %>% \r\n", + " relocate(.pred, .after = last_col())\r\n", + "\r\n", + "\r\n", + "# Print the results\r\n", + "poly_results %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "YUFpQ_dKxJGx" + } + }, + { + "cell_type": "markdown", + "source": [ + "वाह-वाह, चलो देखें कि मॉडल ने परीक्षण_सेट पर `yardstick::metrics()` का उपयोग करके कैसा प्रदर्शन किया।\n" + ], + "metadata": { + "id": "qxdyj86bxNGZ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "metrics(data = poly_results, truth = price, estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "8AW5ltkBxXDm" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 प्रदर्शन काफी बेहतर हुआ।\n", + "\n", + "`rmse` लगभग 7 से घटकर लगभग 3 हो गया है, जो यह संकेत देता है कि वास्तविक कीमत और अनुमानित कीमत के बीच त्रुटि कम हुई है। आप इसे *आम तौर पर* इस तरह समझ सकते हैं कि औसतन, गलत भविष्यवाणियां लगभग \\$3 तक गलत होती हैं। `rsq` लगभग 0.4 से बढ़कर 0.8 हो गया है।\n", + "\n", + "ये सभी मेट्रिक्स दिखाते हैं कि बहुपद मॉडल रैखिक मॉडल की तुलना में कहीं बेहतर प्रदर्शन करता है। शानदार काम!\n", + "\n", + "चलो इसे विज़ुअलाइज़ करने की कोशिश करते हैं!\n" + ], + "metadata": { + "id": "6gLHNZDwxYaS" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Bind encoded package column to the results\r\n", + "poly_results <- poly_results %>% \r\n", + " bind_cols(package_encode %>% \r\n", + " rename(package_integer = package)) %>% \r\n", + " relocate(package_integer, .after = package)\r\n", + "\r\n", + "\r\n", + "# Print new results data frame\r\n", + "poly_results %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_line(aes(y = .pred), color = \"midnightblue\", size = 1.2) +\r\n", + " xlab(\"package\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "A83U16frxdF1" + } + }, + { + "cell_type": "markdown", + "source": [ + "आप अपने डेटा के लिए एक घुमावदार रेखा देख सकते हैं जो इसे बेहतर तरीके से फिट करती है! 🤩\n", + "\n", + "आप इसे और अधिक स्मूथ बना सकते हैं `geom_smooth` में एक बहुपद सूत्र पास करके, इस तरह:\n" + ], + "metadata": { + "id": "4U-7aHOVxlGU" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_smooth(method = lm, formula = y ~ poly(x, degree = 4), color = \"midnightblue\", size = 1.2, se = FALSE) +\r\n", + " xlab(\"package\")" + ], + "outputs": [], + "metadata": { + "id": "5vzNT0Uexm-w" + } + }, + { + "cell_type": "markdown", + "source": [ + "एक चिकनी वक्र की तरह!🤩\n", + "\n", + "यहां बताया गया है कि आप एक नई भविष्यवाणी कैसे करेंगे:\n" + ], + "metadata": { + "id": "v9u-wwyLxq4G" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a hypothetical data frame\r\n", + "hypo_tibble <- tibble(package = \"bushel baskets\")\r\n", + "\r\n", + "# Make predictions using linear model\r\n", + "lm_pred <- lm_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Make predictions using polynomial model\r\n", + "poly_pred <- poly_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Return predictions in a list\r\n", + "list(\"linear model prediction\" = lm_pred, \r\n", + " \"polynomial model prediction\" = poly_pred)\r\n" + ], + "outputs": [], + "metadata": { + "id": "jRPSyfQGxuQv" + } + }, + { + "cell_type": "markdown", + "source": [ + "`polynomial model` की भविष्यवाणी सही लगती है, खासकर जब आप `price` और `package` के scatter plots को देखते हैं! और अगर यह मॉडल पिछले मॉडल से बेहतर है, तो वही डेटा देखते हुए, आपको इन महंगे कद्दुओं के लिए बजट बनाना होगा!\n", + "\n", + "🏆 बहुत बढ़िया! आपने एक ही पाठ में दो regression मॉडल बनाए। Regression के अंतिम भाग में, आप logistic regression के बारे में सीखेंगे, जो श्रेणियों को निर्धारित करने में मदद करता है।\n", + "\n", + "## **🚀चुनौती**\n", + "\n", + "इस नोटबुक में कई अलग-अलग variables का परीक्षण करें और देखें कि correlation मॉडल की सटीकता से कैसे संबंधित है।\n", + "\n", + "## [**पाठ के बाद का क्विज़**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/)\n", + "\n", + "## **समीक्षा और स्व-अध्ययन**\n", + "\n", + "इस पाठ में हमने Linear Regression के बारे में सीखा। Regression के अन्य महत्वपूर्ण प्रकार भी हैं। Stepwise, Ridge, Lasso और Elasticnet तकनीकों के बारे में पढ़ें। इस विषय पर अधिक जानने के लिए [Stanford Statistical Learning course](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning) एक अच्छा कोर्स है।\n", + "\n", + "यदि आप अद्भुत Tidymodels framework का उपयोग करना सीखना चाहते हैं, तो निम्नलिखित संसाधनों को देखें:\n", + "\n", + "- Tidymodels वेबसाइट: [Tidymodels के साथ शुरुआत करें](https://www.tidymodels.org/start/)\n", + "\n", + "- मैक्स कुह्न और जूलिया सिल्ज, [*Tidy Modeling with R*](https://www.tmwr.org/)*.*\n", + "\n", + "###### **धन्यवाद:**\n", + "\n", + "[एलिसन हॉर्स्ट](https://twitter.com/allison_horst?lang=en) को, जिन्होंने अद्भुत चित्रण बनाए, जो R को अधिक स्वागतयोग्य और आकर्षक बनाते हैं। उनके और चित्रण [गैलरी](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) में देखें।\n" + ], + "metadata": { + "id": "8zOLOWqMxzk5" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/2-Regression/3-Linear/solution/notebook.ipynb b/translations/hi/2-Regression/3-Linear/solution/notebook.ipynb new file mode 100644 index 000000000..4fee7b850 --- /dev/null +++ b/translations/hi/2-Regression/3-Linear/solution/notebook.ipynb @@ -0,0 +1,1111 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## कद्दू की कीमत के लिए रैखिक और बहुपद प्रतिगमन - पाठ 3\n", + "\n", + "आवश्यक पुस्तकालयों और डेटा सेट को लोड करें। डेटा को एक डेटा फ्रेम में बदलें जिसमें डेटा का एक उपसमूह हो:\n", + "\n", + "- केवल उन कद्दुओं को प्राप्त करें जिनकी कीमत बुशल के आधार पर है \n", + "- तारीख को महीने में बदलें \n", + "- कीमत को उच्च और निम्न कीमतों के औसत के रूप में गणना करें \n", + "- कीमत को बुशल मात्रा के आधार पर दर्शाने के लिए परिवर्तित करें \n" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                                0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                \n", + "

                                5 rows × 26 columns

                                \n", + "
                                " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 167, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                MonthDayOfYearVarietyCityPackageLow PriceHigh PricePrice
                                709267PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
                                719267PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
                                7210274PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
                                7310274PIE TYPEBALTIMORE1 1/9 bushel cartons17.017.015.454545
                                7410281PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
                                \n", + "
                                " + ], + "text/plain": [ + " Month DayOfYear Variety City Package Low Price \\\n", + "70 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "71 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "72 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "73 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 17.0 \n", + "74 10 281 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "\n", + " High Price Price \n", + "70 15.0 13.636364 \n", + "71 18.0 16.363636 \n", + "72 18.0 16.363636 \n", + "73 17.0 15.454545 \n", + "74 15.0 13.636364 " + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "new_columns = ['Package', 'Variety', 'City Name', 'Month', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "एक स्कैटरप्लॉट हमें याद दिलाता है कि हमारे पास केवल अगस्त से दिसंबर तक का मासिक डेटा है। हमें संभवतः निष्कर्ष निकालने के लिए रैखिक रूप में अधिक डेटा की आवश्यकता होगी।\n" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkT0lEQVR4nO3dfXRV9Z3v8fc3EB7kYcAQA+Wh0IZSUWLqzWVARi+W+lQdodXOtHcQZ41dOGumc1tn5graXqc67Ywybe2009Urtb3F2mnrkhYVtEIj1NoRNTAQEFQyhRpoCBihgEJIyPf+cXZiHs5Jzsbss0/O/rzWOivnfM/Z53zdhm9+57d/D+buiIhIchTFnYCIiOSWCr+ISMKo8IuIJIwKv4hIwqjwi4gkzOC4E8jGuHHjfOrUqXGnISIyoGzZsuUNdy/tHh8QhX/q1KnU1NTEnYaIyIBiZr9NF1dXj4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EuHphPNbK8/StOJ5rhTEZEIDYjhnBK9x7YdYNnqWoqLimhpa2PFDRVcXzkx7rREJAJq8QtNJ5pZtrqWUy1tHG9u5VRLG7evrlXLX6RAqfAL+4+cpLio669CcVER+4+cjCkjEYmSCr8waexwWtrausRa2tqYNHZ4TBmJSJRU+IWSkUNZcUMFQwcb5xQPYuhgY8UNFZSMHBp3aiISARV+ASC1AaeBBT9FpGBFWvjNbJ+Z7TCzbWZWE8TONbMNZrYn+Dk2yhykb+0Xd5tb23j79BmaW3VxV6SQ5aLFf7m7V7p7VfB4OVDt7tOB6uCxxEgXd0WSJY6unoXAquD+KmBRDDlIJ7q4K5IsURd+B9ab2RYzWxrEyty9ASD4eV7EOUgf2i/uDisuYtTQwQwrLtLFXZECFvXM3Xnu/jszOw/YYGavZHtg8IdiKcCUKVOiyk8C11dOZF75OPYfOcmkscNV9EUKWKQtfnf/XfDzEPAzYDbQaGYTAIKfhzIcu9Ldq9y9qrS0x85hEoGSkUO5aPIYFX2RAhdZ4TezEWY2qv0+cCWwE3gcuDl42c3AY1HlICIiPUXZ1VMG/MzM2j/n393952b2EvCImd0CvA58IsIcRESkm8gKv7v/BrgoTbwJWBDV54qISO80c1dEJGFU+KVDzd4mvrb+VWr2NsWdiohESBuxCACLH9zMc3Wpgv+NZ+q4tLyEH3x6TsxZiUgU1OIXavY2dRT9dr+qa1LLX6RAqfALz+55I1RcRAY2FX7hsunjQsVFZGBT4ReqppVwaXlJl9il5SVUTSvJcISIDGQq/ALAjVWTGTKoiCGDjCGDivhE1eS4UxKRiKjwS8dGLKfPtHH6jHP6jDZiESlkKvyijVjOUvWugyx7dDvVuw7GnYpIKBrHL9qI5Sxcef8mXmt8C4Cf1OxnRtkInr5tfqw5iWRLLX7p2IhlyCBj6OBUP782YsmsetfBjqLf7tXGt9TylwFDhV8AqNn3JqfPOM2tqX7+mt++GXdKeWv9rsZQcZF8o8Iv1DUe56HNr3eJPfT869Q1Ho8po/x25cyyUHGRfKPCL2yrPxoqnnQLZo5nRtmILrEZZSNYMHN8TBmJhKOLu0Ll5DGh4gJP3zaf6l0HWb+rkStnlqnoy4ASeYvfzAaZ2X+a2drg8RfN7ICZbQtuH406B+ldedkolsztuqH9krlTKC8bFVNGA8OCmeO578aLVPSz1HSime31RzU/JA/kosX/WWA3MLpT7H53/0oOPluydM/CWSyZM5Vt9UepnDxGRV/61WPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaiRVpi9/MJgHXAg9G+TnSP8rLRnFj1WQVfelX7TPDT7W0cby5lVMtmhket6i7er4O3A60dYt/xsxqzex7ZjY23YFmttTMasys5vDhwxGnKSJR0czw/BNZ4Tez64BD7r6l21PfBt4PVAINwFfTHe/uK929yt2rSktLo0pTRCKmmeH5J8oW/zzgejPbB/wY+LCZPezuje5+xt3bgO8AsyPMQURi1j4zfFhxEaOGDmZYcZFmhscssou77n4HcAeAmc0H/t7dF5vZBHdvCF72MWBnVDmISH64vnIi88rHsf/ISSaNHa6iH7M4xvGvMLNKwIF9wK0x5CAiOVYycqgKfp7ISeF3903ApuD+Tbn4TBERSU9LNoiIJIwKv4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EsHLZsbztLvv8AHv/AkS7//QtypDAh1jcd5tKZeO7vlAW3EIoCWzQ1r6vJ1HffXv/IGU5evY9+918aYUX67a82OLtt7Lpk7hXsWzooxo2RTi1+0bG5ImVr4avmnpz2d848Kv2jZ3JCerWsKFU867emcf1T4RcvmhnRZeUmoeNJpT+f8o8IvWjY3pJV//oeh4kmnPZ3zj7l73Dn0qaqqymtqauJOo+A1nWjWsrkhLP3+Czxb18Rl5SUq+lmoazyuPZ1zzMy2uHtVj7gKv4hIYcpU+NXVIyKSMJEXfjMbZGb/aWZrg8fnmtkGM9sT/Ey72brkniZwhfPlJ3Yy959/wZef0CZy2ViztZ5Pr3qJNVvr404l8SLv6jGzvwWqgNHufp2ZrQDedPd7zWw5MNbdl/X2HurqiZ4mcIXzvuXr6DwOqgj4jSZwZTTnnzZw8NjpjscTRg/h+TuviDGjZIilq8fMJgHXAg92Ci8EVgX3VwGLosxB+qYJXOF8+YmdtHWLtQVx6WnN1vouRR+g4dhptfxjFHVXz9eB26HLv5Oy9s3Wg5/npTvQzJaaWY2Z1Rw+fDjiNJNNE7jCWbvzYKh40q3dkeF8ZYhL9CIr/GZ2HXDI3beczfHuvtLdq9y9qrS0tJ+zk840gSuc6y4cHyqedNfNynC+MsQlelG2+OcB15vZPuDHwIfN7GGg0cwmAAQ/D0WYg2RBE7jC+fwfX9jjH05REJeeFl08mQmjh3SJTRg9hEUXT44pI8nJOH4zmw/8fXBx91+Apk4Xd89199t7O14Xd3NDE7jC+fITO1m78yDXXTheRT8La7bWs3bHQa6bNV5FP0dincDVrfCXAI8AU4DXgU+4+5u9Ha/CLyISXqbCn5P1+N19E7ApuN8ELMjF54qISE+auSsikjAFXfg1EzWcBzbu4Zp/fZYHNu6JO5UBQVsJykBVsFsvaiZqOOd/4UlOtqau9+xuOM7Xq/ew+0sfjTmr/KWtBGUgK8gWv2aihvPAxj0dRb/dyVZXyz8DbSUoA11BFn7NRA1nTW1DqHjSaStBGegKsvBrJmo4iyomhIonnbYSlIGuIAu/ZqKGc+vl0xk+2LrEhg82br18ekwZ5TdtJSgDXUHvwKWZqOE8sHEPa2obWFQxQUU/C9pKUPKdtl4U6WdqWEi+i3Xmrkih0XBhGcgKso9fJEoaLiwDnQq/dFj0zV/yvuXrWPTNX8adSl7TcOGzo5n0+UNdPQLA1OXrOu5vO3CCqcvXsU97yKY1aexwjje3dokdb27VcOFeqGssv6jFLxlb+Gr5p/dnK/8jVDzp1DWWf1T4hdoDJ0LFk+6VQ2+HiiedusbyT5R77g4zsxfNbLuZvWxmdwfxL5rZATPbFty0EljMKiaODBVPug+ed06oeNJpJn3+ibLF3wx82N0vAiqBq81sTvDc/e5eGdyejDAHycKav/kfoeJJ9/O/vTxUPOnaZ9IPHVzUcdNM+nhFVvg9pb2voDi45f9ssYT6o/KSLo8v7fZY5N2o2fcmza1tHbea3/a626pELNI+fjMbZGbbgEPABnd/IXjqM2ZWa2bfM7OxUeYgfavZ28RzdU1dYr+qa6Jmb1OGI5Jt6fdfCBVPOi1jnX8iLfzufsbdK4FJwGwzuxD4NvB+Ut0/DcBX0x1rZkvNrMbMag4fPhxlmon37J43QsWT7tm69H8QM8WTTstY55+cjOpx96OkNlu/2t0bgz8IbcB3gNkZjlnp7lXuXlVaWpqLNBPrsunjQsWT7rIM3WCZ4kmnZazzT5SjekrNbExwfzjwEeAVM+u8yPvHgJ1R5SDZqZqWvmBliifdyj//w1DxpMu0cqlWNI1PlC3+CcBGM6sFXiLVx78WWGFmO4L45cBtEeYgWfj7n2wNFU+6//nAr0PFk06/X/knsiUb3L0W+FCa+E1RfaacnQ27D4WKJ92Lvz0aKp50+v3KP5q5K1xx/nmh4kk3+71jQsWTTr9f+UeFX/jKn14cKp50/37rvFDxpNPvV/5R4RcA/mDYoF4fi7wb40cP6fJ4QrfHklsq/MLD/7GX35860yX2+1NnePg/9saUUX6r+Id1oeJJt2ZrPQePne4Sazh2mjVb62PKSLIq/Gb2ATOrNrOdweMKM/tCtKlJrjxW2xAqnnTHMqwmnCmedGt3HAwVl+hl2+L/DnAH0AIdI3Y+GVVSklsLKyaEiifd6Axri2WKJ911s8aHikv0si3857j7i91irWlfKQPO4kumpe3jX3zJtJgyym+1d6ffmSxTPOkWXTy5R5/+hNFDWHTx5JgykmwL/xtm9n6C1TXN7EZS6+xIgVjYbRu8hR/Stni9+ddPVnZ5/I1uj6Wr5++8gq//SQUfOf88vv4nFTx/5xVxp5Ro5t73Sslm9j5gJXAJcATYCyx2932RZheoqqrympqaXHxUItU1Hucj9z/bI/6L2y7TtPo0mk40M+++ZzjV8s7mIsOKi/j1sg9rjXnJK2a2xd2rusezmrnr7r8BPmJmI4Aid9d6qgWkt9UTVfh7at9K8BTvFP72rQRV+GUgyHZUzz+Z2Rh3f8vdj5vZWDP7UtTJSW5o9cRwtJWgDHTZ9vFfEyytDIC7HwG0V26BGDtiCIOKrEtsUJExdoQm2aTTvpVgEWCk/hFpK8G+1TUe59Gaem3AkgeyXaRtkJkNdfdm6FhmWb/lBWL/kZMUGXSewlVkqOuiF/9nzY6Ojh4PHl9fqQvimdy1ZkeXXbiWzJ3CPQtnxZhRsmXb4n8YqDazW8zsL4ANwKro0pJcamk9Q8uZrhf5W844La1nMhyRbJrpHI62Xsw/WRV+d18BfBk4H7gA+McgJgXghb3pN77OFE86zXQOR1sv5p+s1+N396eApyLMRWRAWFgxgZf2HUkbl540eCD/9NriN7Pngp/HzexYp9txMzvWx7HDzOxFM9tuZi+b2d1B/Fwz22Bme4KfY/vvP0fOxlUXpJ86nymedJrpHE552SiWzJ3SJbZk7hQNFY5Rry1+d/+j4OfZ/B9qBj7s7ifMrBh4zsyeAj4OVLv7vWa2HFgOLDuL95d+oj1Rw0vXxy+Z3bNwFkvmTGVb/VEqJ4/R71bM+uzjN7Oi9lU5w/CUE8HD4uDmwELeuTC8ClgU9r2lf12+ojpUPOm05+7ZKS8bxY1Vk1X080Cfhd/d24DtZjalr9d2Z2aDzGwbcIjUZusvAGXu3hC8dwOQdv81M1tqZjVmVnP48OGwHy0h7H3zVKh40mnPXRnosh3OOQF4OViT//H2W18HufsZd68EJgGzzezCbBNz95XuXuXuVaWlpdkeJmdh2rnDQsWTTnvuykCX7aieu9/Nh7j7UTPbBFwNNJrZBHdvMLMJpL4NSIw23r6Aqct77h618fYFMWST//791nlpz5f23JWBoq9RPcPM7HPAJ4APAr9291+23/o4ttTMxgT3hwMfAV4BHgduDl52M/DYu/ovkH6x795rmRismT5x9BD23au15Xuz795ruWTaGAYXwSXTxuh8yYDSV4t/Faldt34FXAPMBD6b5XtPAFaZ2SBSf2Aecfe1ZvY88IiZ3QK8TuqPisTsrjU7OBDsi3rg2GnuemyHptT3QS18Gaj6Kvwz3X0WgJl9F+i+C1dGwfaMH0oTbwLUh5BHMk2pXzJnqkZgiBSgvi7utrTfcXdttVigNKVeJFn6avFf1GmGrgHDg8dGaqj+6Eizk5zQlPqz84Wfbueplxu55oIyvvTxi+JORyRrfc3cHdTb81IYystGMaNsBK82vtURm1E2Qt08veg8qufhF/fz8Iv7dYFXBoxsx/FLAatrPN6l6AO82viWls3N4As/3R4qLpJvVPhFffwhPfVyY6i4SL5R4RfGnlMcKp5011xQFioukm9U+IUjb7eEiiddpgu5usArA4UKv2hUz1nYd++1LJ49iZIRxSyePUkXdmVAyXoHLilc7RtlPPR8182wNaqnd1/6+EV86eNxZyESngq/ANooQyRJVPilQ3nZKBV8kQRQH7+ISMKo8EuHusbjPFpTr4lbIgVOXT0CpJZl7rxC55K5U7Qss0iBUotfMi7LrJa/SGGKrPCb2WQz22hmu83sZTP7bBD/opkdMLNtwe2jUeUg2dGSDSLJEmVXTyvwd+6+1cxGAVvMbEPw3P3u/pUIP1tC0AQukWSJrPC7ewPQENw/bma7gYlRfZ6cvbEjhqQ2WOgUsyAuIoUnJ338ZjaV1DaMLwShz5hZrZl9z8zGZjhmqZnVmFnN4cOHc5FmYu0/cpKRQ7u2AUYOHcz+IydjykhEohR54TezkcBq4HPufgz4NvB+oJLUN4KvpjvO3Ve6e5W7V5WWlkadZqJNGjuclra2LrGWtjYmjR0eU0YiEqVIC7+ZFZMq+j90958CuHuju59x9zbgO8DsKHOQvpWMHMqKGyoYbDDIYLDBihsqKBk5NO7URCQCUY7qMeC7wG53/1qn+IROL/sYsDOqHCR7/7ZxD60OZxxaHb61cU/cKYlIRKIc1TMPuAnYYWbbgtidwKfMrJLUtcR9wK0R5iBZqN51kNfSbL1YvesgC2aOjykrEYlKlKN6niM1OKS7J6P6TDk763el3zJw/a5GFX6RAqSZu8KVM9NvGZgpLiIDmwq/sGDmeGaUjegSm1E2Qq19kQKlRdoEgKdvm0/1roOs39XIlTPLVPRFCpgKv3RYMHO8Cr5IAqirR0QkYVT4RUQSRoVfOmgHLpFkUB+/ANqBSyRJ1OIX7cAlkjAq/KIduEQSRoVftAOXSMKo8AvlZaNYMndKl9iSuVMoLxsVU0YiEiVd3BUA7lk4iyVzprKt/iiVk8eo6IsUMBV+6VBeNkoFPwQtcRGOzld4TSea2X/kJJPGDu/XjZFU+EXOwpX3b+rYw+AnNfuZUTaCp2+bH2tO+UznK7zHth1g2epaiouKaGlrY8UNFVxfObFf3jvKHbgmm9lGM9ttZi+b2WeD+LlmtsHM9gQ/0262LpKvetu4RnrS+Qqv6UQzy1bXcqqljePNrZxqaeP21bU0nWjul/eP8uJuK/B37n4+MAf4azObCSwHqt19OlAdPJY8ULO3ia+tf5WavU1xp5LXetu4RnrS+Qpv/5GTFBd1Lc/FRUXsP3KyX94/ssLv7g3uvjW4fxzYDUwEFgKrgpetAhZFlYNkb/GDm7nxgc1845k6bnxgMzc9uDnulPKWNq4JR+crvEljh9PS1tYl1tLWxqSxw/vl/XMynNPMpgIfAl4Ayty9AVJ/HIDzcpGDZFazt4nn6rq28n9V16SWfwbauCYcna/wSkYOZcUNFQwrLmLU0MEMKy5ixQ0V/XaBN/KLu2Y2ElgNfM7dj5ml24Y37XFLgaUAU6ZM6ePV8m48u+eNjPGqaSU5zmZg0MY14eh8hXd95UTmlY+LZFSPuXu/vVmPNzcrBtYCT7v714LYq8B8d28wswnAJnef0dv7VFVVeU1NTWR5Jl3N3iZufKBn186jt85R4RcZwMxsi7tXdY9HOarHgO8Cu9uLfuBx4Obg/s3AY1HlINmpmlbCpeVdC/yl5SUq+n1Ys7WeT696iTVb6+NOZUBoOtHM9vqj/TYyRc5elF0984CbgB1mti2I3QncCzxiZrcArwOfiDAHydKeQ11X4qw7pJU5ezPnnzZw8NhpAH6x+xD3/fwVnr/zipizyl9RjkmX8KIc1fOcu5u7V7h7ZXB70t2b3H2Bu08Pfr4ZVQ6SnTVb6zuKWLuGY6fVks1A5yucqMekS3gFvUibvlpmZ+2O9BNpMsWTTucrnKjHpEt4BVv4H9t2gHn3PcPiB19g3n3P8Pi2A3GnlLeum5V+hEWmeNLpfIUT9Zh0Ca8gC7++WobT+PtToeJJt+jiyUwYPaRLbMLoISy6eHJMGeW3qMekS3gFuUhb+1fLU7zTymj/aqlftp7W1DZkjN96+fQcZzMwPH/nFazZWs/aHQe5btZ4Ff0+RDkmXcIryMKvr5bhLKqYwO6GnqN4FlVMiCGbgWPRxZNV8EMoGTlUBT9PFGRXT/tXy6GDjXOKBzF0sOmrZS9uvXw6wwd3nVE9fLCptS9SoAqy8AOk5iMbWPBTevXfpp7b5XFVt8fSk1YzDaeu8TiP1tRT16g5InEryK6e9ou7za3vdPfcvrqWeeXj1OpPo7dF2jR7N73FD27uOGffeKaOS8tL+MGn58ScVf66a80OHtr8esfjJXOncM/CWTFmlGwF2eLXuOFwelukTXrSaqbh1DUe71L0AR56/nW1/GNUkIVfF3fDuWz6uFDxpNMfynC21R8NFZfoFWTh17jhcDJ156ibJz39oQyncvKYUHGJXkH28YPGDYfx5Sd2Zox//o8vzHE2+e9Xrx3KGNcfy57Ky0axZO4UHnq+ax9/edmoGLNKtoIt/KBxw9lauzPD2jM7D6rwp/HIlv0Z47dddX6OsxkY7lk4iyVzprKt/iiVk8eo6MesILt6JJzrLsyw9kyGeNJNGnNOqLiklJeN4saqySr6eUCFX/jT2e8NFU+68d3W6ekrLil/8/BLXHDXU/zNwy/FncqAUb3rIMse3U71rv5d+bWgu3okO8/VHc4YV+usp5r634eKC0xdvq7j/hM7D/HE8nXsu/faGDPKf1fev4nXGt8C4Cc1+5lRNoKnb5vfL+8d5daL3zOzQ2a2s1Psi2Z2wMy2BbePRvX5kr2jb7eEiifdmdYzoeJJl6mFr5Z/ZtW7DnYU/XavNr7Vby3/KLt6vg9cnSZ+f+cduSL8fMnSW6dbQ8WTrunt9OclUzzpnnkt/fyGTHGB9bsaQ8XDinLrxWcBbas4AFw1M/1F3EzxpJv1npGh4kn34Q+kn9+QKS5w5cyyUPGw4ri4+xkzqw26gsZmepGZLTWzGjOrOXw4fR+09I+qaSVpV+fUmPT07l50Uah40n1z8X8PFRdYMHM8M8pGdInNKBvBgn5qjOW68H8beD9QCTQAX830Qndf6e5V7l5VWlqao/SSqXrXQU62epfYyVbv95EEhWLS2OEMK+76T2dYcZGWBOnFvnuvpXxc6vyUjxuuC7tZePq2+dxx1Qc4f8Io7rjqA/12YRdyXPjdvdHdz7h7G/AdYHYuP1/Si7o/sdCUjBzKqZaua0GdamnTZMFeTL9jHXVvpBZJrHvjJNPvWNfHEbL4wc3889OvsbvhOP/89Gvc9ODmfnvvnBZ+M+u8pdPHgPRrBUhOzXrP6FDxpPvCT7eHiifd/U/vpqXrF0paPBWX9KJeATbK4Zw/Ap4HZpjZfjO7BVhhZjvMrBa4HLgtqs+X7A0bkn46R6Z40j31cvpvQpniSfdYbfouw0xxiX4F2ChH9XzK3Se4e7G7T3L377r7Te4+y90r3P16d0+/y7fklFZPDOeaC9KPrMgUT7qFFekvSGaKS/QrwGrJBpGQLv9g+gKfKZ50mRau04J2mVVNK+HS8q6j6i4tL+m3kXb6Li+9bpShJRt66u1ieH8NtyskmUaHVe86qPPVix98eg41e5t4ds8bXDZ9XL8Or1aLX9TVE1LUk2sKjUaNnb2qaSX87ZUz+n1OjQq/dGyU0Zk2ysgs6sk1hUZ/KPOPuXvfr4pZVVWV19TUxJ1GwatrPK6NMkKo3nWQ9bsauXJmmYp+H666fxOvdlp0rD9XmpTMzGyLu1f1iKvwi0gu6A9l7mUq/Lq4K3KWmk40a0/nEBbMHK+CnydU+EXOwmPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaIlnRxV2RkJpONLNsdS2nWto43tzKqZY2bl9dS9OJ5rhTE8mKCr9ISPuPnKS4qOs/neKiIvYfORlTRiLhqPCLhDRp7HBa2rquztnS1qZlmWXAUOEXCalk5FBW3FBBcREMKoLiIlhxQ4Uu8Pah6UQz2+uPqkssD+jirshZ+LeNe2hfkv8M8K2Ne3Rxtxe6GJ5f1OIXCal610Fe6zQZCeDVxre0Y1kGuhief1T4RULS2jPh6GJ4/olyI5bvmdkhM9vZKXaumW0wsz3Bz4ybrYvkK609E44uhuefKFv83weu7hZbDlS7+3SgOngsMqBokbZw2i+GDysuYtTQwQwrLtLF8JhFulaPmU0F1rr7hcHjV4H57t4Q7L+7yd1n9PU+WqtH8pHWnglHS1zkXr6s1VPWvt1iUPzPy/RCM1sKLAWYMmVKppeJxEZrz4RTMnKoCn6eyNuLu+6+0t2r3L2qtLQ07nRERApGrgt/Y9DFQ/DzUI4/X0Qk8XJd+B8Hbg7u3ww8luPPFxFJvCiHc/4IeB6YYWb7zewW4F7gCjPbA1wRPBYRkRyK7OKuu38qw1MLovpMERHp24DYetHMDgO/PcvDxwFv9GM6/UV5haO8wlFe4eRrXvDucnuvu/cYHTMgCv+7YWY16caxxk15haO8wlFe4eRrXhBNbnk7nFNERKKhwi8ikjBJKPwr404gA+UVjvIKR3mFk695QQS5FXwfv4iIdJWEFr+IiHSiwi8ikjAFU/jN7DYze9nMdprZj8xsWLfnzcy+YWZ1ZlZrZhfnSV7zzez3ZrYtuN2Vo7w+G+T0spl9Ls3zcZ2vvvLKyfl6NxsJmdnVZvZqcO76dc+Jd5nXPjPbEZy3fl3nPENenwj+P7aZWcbhiDGcr2zzyvX5+hczeyX49/YzMxuT4dh3f77cfcDfgInAXmB48PgR4M+7veajwFOAAXOAF/Ikr/mk9izI5fm6ENgJnENq9vYvgOl5cL6yySsn5wu4DLgY2NkptgJYHtxfDtyX5rhBwH8B7wOGANuBmXHnFTy3DxiXw/N1PjAD2ARUZTgujvPVZ14xna8rgcHB/fui/P0qmBY/qUIx3MwGkyocv+v2/ELgIU/ZDIxpXyk05rzicD6w2d3fdvdW4JfAx7q9Jo7zlU1eOeHuzwJvdgsvBFYF91cBi9IcOhuoc/ffuPtp4MfBcXHnFal0ebn7bnd/tY9Dc36+sswrUhnyWh/83gNsBialObRfzldBFH53PwB8BXgdaAB+7+7ru71sIlDf6fH+IBZ3XgBzzWy7mT1lZhdEmVNgJ3CZmZWY2TmkWveTu70m5+cry7wg9+erXZeNhIB0GwnFcd6yyQvAgfVmtsVSGx3lgzjOV7biPF9/Qeobd3f9cr4KovAHfZoLgWnAe4ARZra4+8vSHBrpWNYs89pKaj2Ni4BvAmuizAlSLR5SXyU3AD8n9XWxtdvLcn6+sswr5+crpJyftxDmufvFwDXAX5vZZXEnhM5XD2b2eVK/9z9M93SaWOjzVRCFH/gIsNfdD7t7C/BT4JJur9lP19bjJKLvdukzL3c/5u4ngvtPAsVmNi7ivHD377r7xe5+GamvnHu6vSSO89VnXnGdr0A2GwnFcd6y2uDI3X8X/DwE/IxUt0HcYvk9y0Yc58vMbgauA/7Mg079bvrlfBVK4X8dmGNm55iZkVr6eXe31zwOLAlGq8wh1e3SEHdeZjY+eA4zm03q/0lTxHlhwX7HZjYF+Djwo24vieN89ZlXXOcrkM1GQi8B081smpkNAT4ZHBdrXmY2wsxGtd8ndSFxZ/fXxSCO89WnOM6XmV0NLAOud/e3M7ysf85XFFes47gBdwOvkPqf8wNgKPCXwF8GzxvwLVJXxHfQy9X8HOf1GeBlUt0am4FLcpTXr4BdwecuCGL5cL76yisn54vUH5wGoIVUK+sWoASoJvUtpBo4N3jte4AnOx37UeC14Nx9Ph/yIjUKZHtwezlHeX0suN8MNAJP58n56jOvmM5XHan++23B7f9Gdb60ZIOISMIUSlePiIhkSYVfRCRhVPhFRBJGhV9EJGFU+EVEEkaFXwQwMzezH3R6PNjMDpvZ2rN8vzFm9ledHs8/2/cS6W8q/CIpbwEXmtnw4PEVwIF38X5jgL/q60UicVDhF3nHU8C1wf1P0WnWsKXWvF8TrJW+2cwqgvgXg7XVN5nZb8zsfwWH3Au8P1jL/V+C2EgzezRYc/2H7TOQRXJNhV/kHT8GPmmpzXIqgBc6PXc38J/uXgHcCTzU6bkPAleRWsvlH8ysmNS6+P/l7pXu/r+D130I+Bwwk9TM0HkR/reIZKTCLxJw91pgKqnW/pPdnv4jUktu4O7PACVm9gfBc+vcvdnd3yC1QFpZho940d33u3sbqSn5U/v1P0AkS4PjTkAkzzxOag+F+aTWwGnX23K4zZ1iZ8j87yrb14lESi1+ka6+B9zj7ju6xZ8F/gxSI3SAN9z9WC/vcxwYFUWCIu+WWhwinbj7fuBf0zz1ReD/mVkt8DbvLIOc6X2azOzXwWbaTwHr+jtXkbOl1TlFRBJGXT0iIgmjwi8ikjAq/CIiCaPCLyKSMCr8IiIJo8IvIpIwKvwiIgnz/wEDeg/76NO6rgAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('Month','Price')" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAshElEQVR4nO3dfZyU5Xno8d+1y7IgiwLLunJkV2xWSangRreKIVoVQ03qEdKon74YTKMlzan9pCatmLTHGtvaiE3M6UlOq4k59SVNJJiA9ZgIEqxRwThQXhQ0bAOyGFhwBd01sO7Ldf6YZ5aZ3ZndmWfuZ+aemev7+Sw7c+8z19zP7HDtM/erqCrGGGMqR1WxK2CMMaawLPEbY0yFscRvjDEVxhK/McZUGEv8xhhTYcYVuwLZmD59us6aNavY1TDGmJKyefPmN1W1YXh5SST+WbNmEYvFil0NY4wpKSLyerpya+oxxpgKY4nfGGMqjCV+Y4ypMJb4jTGmwljiN8aYCmOJ32TU1dPLto6jdPX0FrsqxhiHSmI4pym8NVvfYPlj26mpqqJvcJAVH5/H1a2nF7taxhgH7IrfjNDV08vyx7ZzvG+Q7t5+jvcNcutj2+3K35gyYYnfjLD/yDFqqlLfGjVVVew/cqxINTLGuGSJ34wwc+pE+gYHU8r6BgeZOXVikWpkjHHJEr8Zob6ulhUfn8eEmiom145jQk0VKz4+j/q62rziWmexMX6wzl2T1tWtp7OgZTr7jxxj5tSJeSd96yw2xh+RJn4R2Qt0AwNAv6q2icg04FFgFrAXuE5Vj0RZDxNOfV1t3gkfUjuLjxNvQrr1se0saJnuJL4xJjeFaOq5TFVbVbUtuH8bsF5VzwLWB/dNGbPOYmP8Uow2/sXAg8HtB4ElRaiDKSDrLDbGL1EnfgXWishmEVkWlDWq6gGA4PupEdfBFFlUncXGmHCi7txdoKq/FJFTgXUi8mq2Dwz+UCwDaG5ujqp+pkBcdxYbY8KL9IpfVX8ZfD8E/BC4AOgUkRkAwfdDGR57v6q2qWpbQ8OIncNMCaqvq+XcpimW9I0pssgSv4hMEpHJidvAIuBl4HHghuCwG4A1UdXBGGPMSFE29TQCPxSRxPP8m6r+WEReAlaKyI3APuDaCOtgjDFmmMgSv6r+Ajg3TXkXsDCq5zXGGDM6W7LBGGMqjCX+InK9do3v8YwxfrC1eorE9do1vsczxvjDrviLwPVGJ77HM8b4xRJ/Ebheu8b3eMYYv1jiLwLXa9f4Hs8Y4xdL/EXgeu0a3+MlWGexMX4QVS12HcbU1tamsVis2NVwrqun1+naNT7Hs85iYwpPRDYnLYk/xEb1FJGrjU58j2cbsRjjF2vqMZEr5c5i181T7Z3drIp10N7Z7SSeNZ+ZMOyK30SuVDuLXTdP3b56Bw9t2jd0f+lFzdy5eK439TOVw674Tc5yvWotxY1YXM9laO/sTkn6AA9t3Bf6yt/mWph82BW/yUnYq9ZS24gl0TyV6JOAE81TYeq+teNoxvKWxslFr5+pLHbFb7KW71VrKW3E4rp5qrVpSk7lYynV5jPjB0v8JmujXbWWG9fNUy2Nk1l6UeoWoksvag51tR9F/UxlsaYekzXXV62+c908defiuSydP4utHUdpbZoSOulHVT9TOSJP/CJSDcSAN1T1KhG5A/hj4HBwyBdV9cmo62Hyl7hqfWhjaht/vgnMZ67nRrQ0Tnb6ermun+tJgMZPhbji/yywCzg5qexeVf3HAjy3ccz1Vavxhw0PrRyRtvGLyEzgd4BvRfk8prBaGidzTVuTJf0yYsNDK0vUnbtfA24FBoeV3ywi20Xk2yIyNd0DRWSZiMREJHb48OF0hxhjHCnl2dUmd5ElfhG5CjikqpuH/eifgfcBrcAB4CvpHq+q96tqm6q2NTQ0RFVNYww2PLTSRHnFvwC4WkT2At8DLheRR1S1U1UHVHUQ+CZwQYR1MMZkwYaHVpbIOndV9QvAFwBE5FLgL1T1ehGZoaoHgsM+BrwcVR2MMdmz4aGVoxjj+FeISCugwF7g00WogzEmDdfDQ42fCpL4VfUZ4Jng9icK8ZzGGGPSsyUbjDGmwljiN8aYCmOJ3xhjKowlfmOMqTCW+I0xpsJY4jfGmApjid8UTFdPL9s6jka68Nf6nQdZvmob63cerIh4rl9T3+MZN0RVi12HMbW1tWksFit2NUweCrHk76J7n+Hnne8O3Z/dOImnbrm0bOO5fk19j2dyJyKbVbVteLld8ZvIFWLJ3/U7D6YkVYDXOt8NfWXtezzXr6nv8YxblvhN5Aqx5O/anZ05lZd6PNevqe/xjFuW+E3kCrHk76I5jTmVl3o816+p7/GMW5b4TeQKseTvwjmnMbtxUkrZ7MZJLJxzWlnGc/2a+h7PuGWdu6ZgCrGR9/qdB1m7s5NFcxpDJ9VSiuf6NfU9nslNps5dS/zGGFOmbFSPMcYYoACJX0SqReQ/ReSJ4P40EVknIruD72k3Wzf+cjkpZ/WWDm568CVWb+lwULPKmzAU29PFV9e+RmxPl5fx2ju7WRXroL2z20k840bkTT0i8jmgDThZVa8SkRXAW6r6ZRG5DZiqqstHi2FNPf5wOSln/l3rOPjOe0P3Z5w8no1f/LAXdSsF139rE8+1n0jQF7fU8/BN872Jd/vqHTy0ad/Q/aUXNXPn4rmh45ncFaWpR0RmAr8DfCupeDHwYHD7QWBJlHUw7riclLN6S0dK0gc48M57oa/8K23CUGxPV0qSBvhpe1foK3XX8do7u1OSPsBDG/fZlb8nom7q+RpwK5A8oLcxsdl68P3UdA8UkWUiEhOR2OHDhyOupsmGy0k5T+xIP2M1U3kh61YKnt39Zk7lhY63teNoTuWmsCJL/CJyFXBIVTeHebyq3q+qbara1tDQ4Lh2JgyXk3Kumpt+KGOm8kLWrRRcctb0nMoLHa+1aUpO5aaworziXwBcLSJ7ge8Bl4vII0CniMwACL4firAOxiGXk3KWnNfEjJPHp5TNOHk8S85rKnrdSkHbmfVc3FKfUnZxSz1tZ9ZneERh47U0TmbpRc0pZUsvaqalcXKoeMatgozjF5FLgb8IOnfvAbqSOnenqeqtoz3eOnf94nJSzuotHTyx4yBXzT0tdNKPqm6lILani2d3v8klZ00PnaSjjNfe2c3WjqO0Nk2xpF8ERZ3ANSzx1wMrgWZgH3Ctqr412uMt8RtjTO4yJf5xhXhyVX0GeCa43QUsLMTzGmOMGclm7hpjTIUp68Tv+yxO1/VzPUvS93iFYFsRmnJUkKaeYvB9Fqfr+rmeJel7vEKwrQhNuSrLK37fZ3G6rp/rWZK+xysE24rQlLOyTPy+z+J0XT/XsyR9j1cIthWhKWdlmfh9n8Xpun6uZ0n6Hq8QbCtCU87KMvH7PovTdf1cz5L0PV4h2FaEppyV9Q5cvs/idF0/17MkfY9XCLYVoSlltvWiqQiWWI05oagzd40pBBsuaUx2yrKN31QeGy5pTPYs8ReR61mc63ceZPmqbazfGW4zk2zjhX2edI9zteduVMMlfd/T1vXv3GYWVwZr4y8S180Si+59hp93vjt0f3bjJJ665VLn8cI+T7rHvX2sz9meu109vbT93dMkv5sFiP31FaHb+n3f09b179yayspPUfbcNem5bpZYv/NgSgIAeK3z3dBXgZni3fvUrlDPkymeyz13t+47wvBLGA3Kw/B9T1vXv3NrKqsslviLwHWzxNqdnTmVh423Znv6pDLW8+RSj7B77rp+DXzf09b1+drM4soS5Z67E0TkZyKyTUReEZEvBeV3iMgbIrI1+PpoVHXwletZnIvmNOZUHjbe4nnp98Md63lyqUfYPXddvwa+72nr+nxtZnFlifKKvxe4XFXPBVqBK0Uk0aB5r6q2Bl9PRlgHL7mexblwzmnMbpyUUja7cRIL54RLopni3fLbvx7qeTLFc7nnruvXwPc9bV2fb1Qzi21Zaz9FNo5f473GPcHdmuDL/57kArm69XQWtEx3NtnoqVsuZf3Og6zd2cmiOY2hE8BY8RomT+C1pLblUydPCB1v/l3r8qrjcK7fXJ3dx1PuHxp2P1cP3zTf6Z62rn/nrt+Ttqy1vyId1SMi1cBmoAX4hqouF5E7gE8C7wAx4POqOmoPXDmO6ilFsT1dXHPfphHlqz49P+cktnpLB3++cvuI8q9dNy/UVf/6nQe58aHNI8ofWHp+qIToOl6l6erpZcHdP+F434nmowk1VTy//PJQf1Bcx6sURRnVo6oDqtoKzAQuEJFzgH8G3ke8+ecA8JV0jxWRZSISE5HY4cOHo6ymyZLLDspMnbi+dO66jldpbFlrvxVkVI+qHiW+2fqVqtoZ/EEYBL4JXJDhMferapuqtjU0NBSimmPyfTKPa8PbU/PtoEyOl6kT15fOXdfxEh55YQ/X/ssLPPLCnrziRBXP1YQ6W9bab5G18YtIA9CnqkdFZCJwBXC3iMxQ1QPBYR8DXo6qDi4lT775p5+0O53M4yKea5naU0+ZUM3bxweGjjtlQnVWzTzp4qWLlU/n7oyTx3Ng2ISwfDq4XcYDOPeOHw+d70t7j3DP2tfYdseV3sSbf9e6obkVT+86xN0/fjX0hLr6ulrOmDYxpT/ojGnh+w3q62ppnjYxZe5CPvEqXZRX/DOADSKyHXgJWKeqTwArRGRHUH4ZcEuEdXDC98k8rmWazLN+58GURA3w9vGBMeudLt5frtrO8f7UK7jeAc1ra8Mjx/pTyo4c6/cm3iMv7En72oW9Uncdb/WWDqcT6mJ7ulKSPsQnmOXzfybdhDVf/s+UmsgSv6puV9UPqOo8VT1HVe8Myj+hqnOD8quTrv695ftkHtcytadmat8eq97p4lVXCdXibxuw63hrtqd/m2cqL3Q8130ulfZ/ptTYzN0s+D6Zx7VM7amZ2rfHqne6eAODyoD62wbsOt7ieTNyKi90PNd9LpX2f6bUWOLPgu+TeVzLNJln4ZzTQtU7Ea92nHBSTTW144R7rpnHPdecSzXxN2E1ONnasJr44myu4klwX/KMd/0Hz+SUCdUpZadMqOb6D57pRbwl5zU5nVBXaf9nSo1txJIl15NvXMdzLdNknt2HulOOax92P5P4bBGJZ1CNp9O7ntxJciv1Pzy5M68JOf9z9Y6heAPB/XziLV+1bWhSmAb3fZowNHF8auf4SeOrRzl6bK5n9FTa/5lSYlf8OWg7s57PLZrt7A3nOp5r9XW1nNs0ZSjph+0ATHTu9vYP8qv3BujtH+Tz39/mtDPRdWfnfRt2c6w/NRUe61fu27Dbi/q57ox1HS+h0v7PlIqsEr+InC0i60Xk5eD+PBH562irZnwTtgMwXUfpYIbLy7Cdia47O1dneFym8rH43hnrOp7xW7ZX/N8EvgD0QXzEDvB7UVXK+ClsB2C6jtIqSX9s2M5E152dSzI8LlP5WHzvjHUdz/gt28R/kqr+bFhZf9ojTdZKbeXCsB2A6TqLv3LtuU47E113dn76srOYOC71r9PEccKnLzvLi/q57ox1Hc/4LatF2kTkR8DNwPdV9TwRuQa4UVU/EnUFoTwXaSvllQtXb+ngiR0HuWruaTklhq6e3hGdxWFjZfLIC3tYs/0Ai+fNCJ1Uk923YTertx9gybwZoZN+VPVbs/UNPve9rSjxPvN7f68179+569+HKa5Mi7Rlm/h/Dbgf+CBwBNgDXK+qex3XM61yS/y2cqHJl/3OTTbyWp1TVX+hqlcADcD7VfVDhUr65cj3WaZh2AYZheXD79yUrqzG8YvIXcCKYJVNRGQq8XX0bWRPCL7PMs2VbZBReMX+nZvSlm3n7kcSSR8g2Dil4vbKdcX1NneF3jYvuTzTgm7ZXvn73sHta7zE73x8NdRWVzG+Or+ZxQntnd2sinXQ3pndxDxTmrKduVstIrWq2gsQLLNsDYl5cL3NXaG2zRte/qeXtlBTVcVxTlx9Vouw4dVDXPb+UwEy1sn3Dm7f48X2vsV7A0Dw2sdefyuveLev3sFDm/YN3V96UTN3Lp4bOp7xV7adu7cCVwP/l/jM7k8Bj6vqimirF1dunbu+y9Rx+MTNH+Kqrz+XUl47TgChd9gSy3W11RzvG0BEmDCuekSi872D2/d47Z3dXHHvsyPKn77lEloaJxc9nvFDvp27K4C/B34d+A3gbwuV9E3hZeo43NpxdET5+Opqbr6shQk1VUxKWiump3eA/kHoG9C0TUC+d3D7Hm9rx9Gcygsdz/gt60XaVPVHwI8irIvxRKaOw9amKWnL/+DCZv7gwmY2vHqIO/79FXp6U9ekSUgkuvq6Wu87uH2P19o0JafyQsczfhv1il9Engu+d4vIO0lf3SLyzhiPnSAiPxORbSLyioh8KSifJiLrRGR38H2qu9OpbK728D3RcVjF+GphfHW8s7ilcXKwvHLV0FeiQ/HIu+/R09tP30DmpsNj7/XzlbWvsXpLB0fefY+Pf2Am4wRqqoXx1eKkg7umCqqroKbKzbLM46vFaf1cxWtpnMzSi5pTypZe1By6WcZ1POO3Ua/4VfVDwfcwv/1e4HJV7RGRGuC5YAbw7wLrVfXLInIbcBuwPER8k8T1Hr4rYx28N5C4QlW+H+vg6tbTie19K6U9P/b6W8T2vpXSKZhJv8Z3TBqxa1LwxyLxHGF9fcNuEk3oA8A3NuzOK178NTjxhyzf+rmO53od5TsXz2Xp/Fls7ThKa9MUS/plbMw2fhGpSqzKmQuN6wnu1gRfCiwGHgzKHwSW5BrbpCrUnsCrt3SMSPAPbdyXVdLPRj51Xr/zYNo9WdfvDLe6pO/7LLd3dqf9XeQ7DLOlcTLXtDVZ0i9zYyZ+VR0EtolI81jHDici1SKyFThEfLP1F4HGxD67wfdTMzx2mYjERCR2+PDhXJ+6ohRqf9NCLNEbts6Z9gPOVB62Hr7sGWudsSYf2U7gmgG8EqzJ/3jia6wHqeqAqrYCM4ELROScbCumqverapuqtjU0NGT7sIpUqP1NC7FEb9g6Z9oPOFN52Hr4smesdcaafGSb+L8EXAXcCXwl6SsrwazfZ4ArgU4RmQEQfD+UfXVNOoXa33TJeU1pOwCHl4WVT50XzjmN2Y2TUspmN05i4Zxwf6x83zPWOmNNPkadwCUiE4A/AVqAHcADqprVOvwi0gD0qerRYKbvWuBu4LeArqTO3WmqeutosWwCV3Zc70eaKV57Z/eIDsDkMiDt7U3/9ebQksTvn3Eyz+5+k1PrxnOo5z1ndV6/8yBrd3ayaE5j6KSfrFCvaVjpfhfGJIRalllEHiW+69ZPgY8Ar6vqZ7N8wnnEO2+riX+yWKmqd4pIPbASaAb2Adeq6lujxbLEX/qSlys41tefcUavMcadTIl/rAlcc1R1bhDgAWD4LlwZBdszfiBNeRewMNs4pvQlL+R2Yk0fpW8g/uHx1se2s6Bluq0jb0yBjNXG35e4kW0TjzHDpVuuIJmtI29MYY2V+M9Nnq0LzMt25q4pX7ku3ZtuuYJkx/sH6OtPv8xD1HWzeKYSjTVzt3q0n5vKE2bp3sRyBbcOa+OH+CJufQPKNfdtynsZYNfLCldaPFM5sh3OaUzWs0WHb9SyreMoC1qm8/zyy3nkpgt58YtX8N2bLhyxrk8+M09dz2SttHimsmS9Oqcxo80WTQwlzHb0zoZX00/fSI7lum4Wz5g4u+I3WRtrtujwbRhHW4/f92WFKy2eqSyW+E3WxpotmsvoHd+XFa60eKayZLX1YrHZBC6/ZJotmm57wWTpthp0PfPU4hlzQqiZu76wxF86Ht/6xojROzZD15jiCDtz15icXN16OgtaprP/yLGhbQUTt21mrjF+sMRvnKuvq01J8pbwjfGLde4aY0yFsSt+UzBdPb3WBGSMByzxm4KwZZmN8Yc19ZjI5TKxyxgTvcgSv4g0icgGEdklIq+IyGeD8jtE5A0R2Rp8fTSqOpjCSV6fZzhbltkYv0TZ1NMPfF5Vt4jIZGCziKwLfnavqv5jhM9tCii5GSdd081YyzL3DQ4OtfsbY6IX2RW/qh5Q1S3B7W5gF2ANuWVmeDNOuqabxLLME2qqmFw7jnFVUFMtTK4dx4SaKlZ8fJ518BpTQAXp3BWRWcS3YXwRWADcLCJLgRjxTwVH0jxmGbAMoLm5efiPjScSzTgntlQ80XSTnMxtYpcx/oi8c1dE6oDHgD9X1XeAfwbeB7QCB4CvpHucqt6vqm2q2tbQ0BB1NU1I6ZpxMjXd1NfVcm7TlKEJXonbxpjCijTxi0gN8aT/HVX9AYCqdqrqgKoOAt8ELoiyDiZaw5txRmu6Sd4m0LYMNKZ4Imvqkfjeeg8Au1T1q0nlM1T1QHD3Y8DLUdXBFMbwZpx0SX/4NoHJbMtAYworyjb+BcAngB0isjUo+yLw+yLSCiiwF/h0hHUwBTJ8fZ5k6bYJTPbQxn0snT/LlhU2pkAiS/yq+hwgaX70ZFTPafyUaZvA4cdY4jemMGzmrolcNtsB2paBxhSOJX4TuXTbBCazLQONKSxbpM0UxJ2L57J0/qyhbQIB2zLQmCKxxG8KpqVxckqSt4RvTHFYU48xxlQYS/zGGFNhLPGbjEZbatmHeMaYcKyN36Q11lLLxY5njAnPrvjNCNkstVzMeMaY/FjiNyOk2zErn12yXMczxuTHEr8ZIZellosRzxiTH0v8ZoRcllouRjxjTH5EVYtdhzG1tbVpLBYrdjUqTldPr9NdslzHM8aMTkQ2q2rb8HIb1WMyGm2pZR/ipeP7HyuLZ/F8YInflA3fh6BaPIvni8ja+EWkSUQ2iMguEXlFRD4blE8TkXUisjv4PjWqOpjK4fsQVItn8XwSZeduP/B5Vf11YD7wpyIyB7gNWK+qZwHrg/sVyfeZsaU009b3IagWz+L5JModuA4AB4Lb3SKyCzgdWAxcGhz2IPAMsDyqevjK94+ZpfSxFfwfgmrxLJ5PCjKcU0RmAR8AXgQaE5utB99PLUQdfOL7x8xS+9gK/g9BtXgWzyeRD+cUkTrgP4C/V9UfiMhRVZ2S9PMjqjqinV9ElgHLAJqbm89//fXXI61nIW3rOMr133qR7t7+obLJteN45KYLOTfEFoS+xysk30dpWDyLV0hFGc4pIjXAY8B3VPUHQXGniMxQ1QMiMgM4lO6xqno/cD/Ex/FHWc9C8/1jZql9bE3m+xBUi2fxfBDlqB4BHgB2qepXk370OHBDcPsGYE1UdfBV4mNh7bgqThpfTe04Nx8z3ccTTqqppnacpMQL2+mb7nG+d0hbPFOOorziXwB8AtghIluDsi8CXwZWisiNwD7g2gjr4C1N/KsydM+/eAJCEDMubKdvuscpeN0hbfH87tA34dmSDUXQ1dPLgrt/wvG+E80pE2qqeH755aGu0gsV74mbP8RVX38u5+dJF692XBWg9PafeP+Vwmtg8UwpydTGX9aLtPn6Mdj3McSZ4m3tOBrqedLFq64SqqX0XgOLZ8pB2S7Z4PPH4JlTJ3K8fyCl7Hj/QF6dsT1JI3AAenr7ncdrbZoSqtM33fn2DQxSJanH+dQhbfFKp0Pf5K4sr/hLYVz78Ca2fJrcjrz73ohWfQ3KXcYDQo9VTne+t//33/B2HLXF83scuslPWV7xJz62HufEFUziY2uYN3IU8SbWjEsZJz+xZlzoeFs7jmYsb2mc7DTeNW1NLGiZntNY5Uzne85/O4Xnl1/ubNzz1a2n51w3ixddPOOvskz8vn8Mdh2vNcOkqkzl+cbLdazyaOfr+zhqi2fKUVk29Yw1Dj1sPF8/Vrc0TmbpRc0pZUsvag51tR9FPNfzDIwx+SnLK37IPA49LN8/Vp9/xjS+97N9CFUog7SdMc2reK7nGRSK71P6Ky2ecaMsx/FX2phk38d0l+rvw+eRYZUYz+SuosbxV9qYZN/HdJfi78P3kWGVFs+4VZaJP6oxyb5OCCt053Ou9R4tnuvXdPWWDm568CVWb+nIK47vf/wqLZ5xqyzb+BOdibcO+5iZT7OCzx+D6+tqaZ42kZ93vjtUdsa08G2q9XW1tJ0xlefau4bKfvOMqdTX1Yaqd31dLdedP5OHNu0bKruubSbPtb/p9DWdf9c6Dr4Tn7vw9K5D3P3jV9n4xQ+HijVz6kR+1Zc66exXfflNsvN5ZJjv8YxbZXnFD/HO0+eXX84jN13I88svzyuh+P4xOLanKyXpA7zW+S6xPV0ZHjG69s7ulKQP8NP2LmJ7ukLVu6unl5Wb96eUPfrSfm5dtc3Za7B6S8dQ0k848M57oa/8j7z7HgODqf1fA4MaelJcfV0t17XNTCm7rm2mNyPDfI9n3CrLK/4EV2OSfZ8Q9uzuNzOWt51Zn3O8TBO4nt39Zqh6pzvf6ioJRvicuKrO5zX44dZfZixfcl5TzvGeaz+csTzMsNaunl5WxlL/+K2M7eezC88O/R71faSZTQjzV9le8bvk+8fgS86anlP5WDJN4LrkrOkc60tdw+dY39hrAqU734FBHdGU0p3H+kIfyFDnTOVjmV43IafysUTV5l1fV8u5TVOcJVXf4xk3LPFnwfePwW1n1nNxS+qV/cUt9aGu9gGmThofvyJPUl0lTDlpPPH9dU4Yfj+ddM0cl53dkPbYPYd7cqxt3NzTT8mpfCwTa9L/18hUPpao2rxddWYnrN95kOWrtrF+50En8WJ7uvjq2tdCNztGHa+9s5tVsQ7aO7srIl5CWTf1uOT7x+CHb5pPbE8Xz+5+k0vOmh466UP86vSkmuqUtXVOqqlma8fRtO3eYzXPpGvmWLerM+2xYZuntu1/O2P5wjmnFT1efV0ttdXC8b4TZbXVktfv3WVnNsCie58Z6it6NLaf2Y2TeOqWS0PHu/5bm4b6iv7pJ+1c3FLPwzfN9ybe7at3pAw4WHpRM3cunlu28ZJFufXit0XkkIi8nFR2h4i8ISJbg6+PRvX8UfD9Y3DbmfV8btHsvJI+ZL46HVcFw/I+gwpvdh8fNV66Zo5xGd55vzb9pJzrO9rjfIm3eksHbx9Pbdp6+/hA6Ct1153Z63ceTDtAIOyVf2xPV8YBAj7Ea+/sTkmqAA9t3Bf6ytr3eMNF2dTzr8CVacrvVdXW4OvJCJ/fhJSpKeoXb/4q7fGZro4T0rbxk76JqH8wbfGYMj3Ol3hP7EifQDOVFzre2p3pP4FlKh/LaAMOfIg32gq05RhvuMgSv6o+C7wVVXwTratbT+eRT13AHy2YxSOfuoCrW08P3YmcvEhb4uvW356d9tioVhQtdryr5qZvHspUPpZLM7zmmcrHsmhOY07lY3E94KBQAxh8eb+4jjdcMTp3bxaR7UFT0NRMB4nIMhGJiUjs8OH0Q+tMdG5fvYNr7tvEP/2knWvu28Tta3bk1Ykc2/sWvf2DQ1/7j/zK6xVFXcdbcl4TM04en1I24+TxoYaaAsxtSv9fJ1P5WBbOOY3ZjZNSymY3TgrVnwHuBxy4juf7+8V1vOEiXaRNRGYBT6jqOcH9RuBN4ssz/i0wQ1U/NVacctts3Xftnd1cce+zI8qfvuUSWhons3pLB0/sOMhVc0/LKnGNFu/1rndZu7OTRXMaQyeZZOt3HvQ63n0bdrN6+wGWzJvBpy87K3ScqBa+e+SFPazZfoDF82Zw/QfPDB0nIdf3SqHj+f5+yXfARqZF2go6qkdVhxoMReSbwBOFfH6TndHaFx/auHeo0+npXYfY0nF0zJEGmeLdvuZlXvhFvDXw0dh+p6MgfI+360A3b7xzPHS80ZbVcFG/l/Ye4eeHe5ydb7bvlWLF8/H9krw8yv0//YXT1U0L2tQjIjOS7n4MeDnTsaZ4MrUjTj2pJtRIg0zxEkk/l1iZ+D6qIop46Ua5+FQ/ixc+XtSrm0Y5nPO7wEZgtojsF5EbgRUiskNEtgOXAbdE9fwmvEzti0d+1Zf2+LFGGqSL98H3pd/YxZdREBbP4hUzXtSrm0bW1KOqv5+m+IGons+4defiuSydP4utHUdpbZpCS+PkjFcv2Yw0OP+MaTz60n4S+29devapvPBfIwd9+TIKwuJZvGLGi3p1U1uywWTU0jiZa9qahkYSTJ00fsToewnKR5P42NrbP8jxYFTPV5/+Ode1pbZX5jNqIWzdLF5cS+PktKNm8hmVUmnxotinOqrVTW3JBpO1/UeOUVc7LmUph7racaFW56ypquIPL5zFsovfl/KpotB1s3hxXT29vPT6kZSyl14/QldPr8XLUrpPyfmIcnVTS/wma2E/fo72uPq6Widjk31fQdX3eL4vPe57vISWxsnOxtqDu6Xlh7OmHpO1sB8/C7Eph+8rqPoez/c/TL7HKzWRTuByxSZw+aWrpzfUx8+wjytE3SwePL71jRHbleYzbrzS4vko0wQuS/zGmCE+/2EqhXi+8WLmrjGlptwTw3Cu25QrLV6psMRvTAbJU+bLtSnAVCbr3DUmjainzBtTTJb4jUkj6inzxhSTJX5j0qj04X6mvFniNyaNqOYetHd2syrW4WzvVNfxunp62dZx1Jq0ypx17hqTgesp88nrtQNO1393Ec86syuHXfEbM4r6ulrObZri5Eq/ktd/N36xxG9MAVT6+u/GL1FuxPJtETkkIi8nlU0TkXUisjv4Hm5naGNKTKWv/278EuUV/78CVw4ruw1Yr6pnAeuD+8aUPdfrtZfa+u/GL5Gu1SMis4AnVPWc4P5rwKWqeiDYf/cZVZ09Vhxbq8eUi/bObmfrtUcRr9KWqCh3vqzV06iqBwCC5H9qpgNFZBmwDKC5uTnTYcaUFNfrtZfK+u/GL9527qrq/arapqptDQ0Nxa6OMcaUjUIn/s6giYfg+6ECP78xxlS8Qif+x4Ebgts3AGsK/PzGGFPxohzO+V1gIzBbRPaLyI3Al4EPi8hu4MPBfWOMMQUUWeeuqv5+hh8tjOo5jTHGjK0ktl4UkcPA6xE+xXTgzQjj+6Dcz7Hczw/sHMtFIc/xDFUdMTqmJBJ/1EQklm6sazkp93Ms9/MDO8dy4cM5ejuc0xhjTDQs8RtjTIWxxB93f7ErUADlfo7lfn5g51guin6O1sZvjDEVxq74jTGmwljiN8aYClP2iV9EmkRkg4jsEpFXROSzw37+FyKiIjI9qewLItIuIq+JyG8Xvta5Ge0cReTPgvN4RURWJJWXxTmKSKuIbBKRrSISE5ELkh5Tauc4QUR+JiLbgnP8UlCecQOjUjrHUc7vHhF5VUS2i8gPRWRK0mNK5vwg8zkm/dyPfKOqZf0FzADOC25PBn4OzAnuNwFPEZ8cNj0omwNsA2qBM4H/AqqLfR5hzhG4DHgaqA1+dmoZnuNa4CNB+UeJ7/FQqucoQF1wuwZ4EZgPrABuC8pvA+4uxXMc5fwWAeOC8rtL9fxGO8fgvjf5puyv+FX1gKpuCW53A7uA04Mf3wvcCiT3cC8Gvqeqvaq6B2gHLsBjo5zjZ4Avq2pv8LPEaqjldI4KnBwcdgrwy+B2KZ6jqmpPcLcm+FLi5/JgUP4gsCS4XVLnmOn8VHWtqvYH5ZuAmcHtkjo/GPV3CB7lm7JP/MmCHcE+ALwoIlcDb6jqtmGHnQ50JN3fz4k/FN5LPkfgbOBiEXlRRP5DRH4zOKyczvHPgXtEpAP4R+ALwWEleY4iUi0iW4kvWb5OVV9k2AZGQGIDo5I7xwznl+xTwI+C2yV3fpD+HH3LNxWT+EWkDniMeKLoB/4KuD3doWnKSmLMa/I5quo7xBfhm0r84/RfAitFRCivc/wMcIuqNgG3AA8kDk3zcO/PUVUHVLWV+FXvBSJyziiHl9w5jnZ+IvJXxP9vfidRlC5E5JXMU5pznIdn+aYiEr+I1BBPFt9R1R8A7yPenrZNRPYS/wVtEZHTiP/FbUp6+ExONB94K805QvxcfhB8/PwZMEh8gahyOscbgMTt73PiY3JJnmOCqh4FngGuJPMGRiV7jsPODxG5AbgK+EMNGr8p4fODlHNcjG/5ppgdIYX4Iv4X9SHga6Mcs5cTnS2/QWpnyy8ojQ6lEecI/AlwZ3D7bOIfKaXMznEXcGlweyGwuYR/jw3AlOD2ROCnxJPhPaR27q4oxXMc5fyuBHYCDcOOL6nzG+0chx1T9HxT6M3Wi2EB8AlgR9DuBvBFVX0y3cGq+oqIrCT+RuwH/lRVBwpS0/DSniPwbeDbIvIy8B5wg8bfbeV0jn8M/C8RGQccB5ZByf4eZwAPikg18U/jK1X1CRHZSLyZ7kZgH3AtlOQ5Zjq/duKJb128JZJNqvonJXh+kOEcMx1crHO0JRuMMabCVEQbvzHGmBMs8RtjTIWxxG+MMRXGEr8xxlQYS/zGGFNhLPGbsiUiA8Gqna8EqyV+TkRCv+dF5EPByouvBl/Lkn7WECyN8Z8SX0X0M0k/uzBYebIShk+bEmBvRFPOjml86jwicirwb8QXcvubXAMFsyz/DViiqluCZXWfEpE3VPX/EZ889qqq3iAijcBGEVkFdAFfB/6HnliILNfnFuJDrwfDPN6Y4WwcvylbItKjqnVJ938NeIn4shVnAA8Dk4If36yqL4jIw8AqVV0TPOY7wKPAbxJffPH2pHgLgTuAPwMeJz5T8w3gIuCPgse8BJxPfGLZl4FLiU9W+oaq3hesPbSG+JpKNcBfq+qaYCG6HwEbgnhLVPV1l6+PqVyW+E3ZGp74g7IjwPuBbmBQVY+LyFnAd1W1TUR+i/iib0tE5BRgK3AWsBJ4MPEHIYh1CrBHVaeJyCeBNlW9OfhZFbCR+EqabcDHie+H8HciUgs8T3wGbgdwkqq+E3yK2BQ83xnEp+9/UFU3RfICmYplTT2m0iRWQ6wBvi4ircAA8bWMUNX/EJFvBE1Dvws8pqr9QXNLuquktFdOqjooIvcR/2PQJSKLgHkick1wyCnEE/x+4C4RuYT4InqnA43BMa9b0jdRsMRvKkbQ1DNAfHXLvwE6gXOJD3I4nnTow8AfAr9HfH14gFeIX7k/nnTc+cTXWMlkMPiC+B+cP1PVp4bV6ZPEF/Y6X1X7gtUbJwQ/fjf7szMmezaqx1QEEWkA/gX4erBQ3SnAgaDD9BNAddLh/0p83wZU9ZWg7BvAJ4NPCIhIPfFtAleQnaeAzwRLSyMiZ4vIpKAeh4KkfxnxJh5jImVX/KacTQxW8qwhvvLhw8BXg5/9H+AxEbmWeAfq0NW1qnaKyC5gdVLZARG5HvimiEwmfgX/NVX99yzr8i1gFvF12AU4THwLxe8A/y4iMeL9Ca+GOVFjcmGdu8YMIyInATuIb+7+drHrY4xr1tRjTBIRuYL4Vff/tqRvypVd8RtjTIWxK35jjKkwlviNMabCWOI3xpgKY4nfGGMqjCV+Y4ypMP8fFF03YlhPduQAAAAASUVORK5CYII=", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.14878293554077535\n", + "-0.16673322492745407\n" + ] + } + ], + "source": [ + "print(new_pumpkins['Month'].corr(new_pumpkins['Price']))\n", + "print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "ऐसा लगता है कि सहसंबंध काफी छोटा है, लेकिन कुछ और अधिक महत्वपूर्ण संबंध है - क्योंकि ऊपर दिए गए प्लॉट में मूल्य बिंदु कई अलग-अलग समूहों में दिखाई देते हैं। आइए एक प्लॉट बनाते हैं जो विभिन्न कद्दू की किस्मों को दिखाएगा:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA7VklEQVR4nO2deXxU5fX/34cQzACyR6WyBEEpyBIlYF3rAlQtAi61Rtx+xq9tNZbar1q7iHxb7FdxrVr7VZt+QYGIS12wdcMvtmqtLIoIRFHbhCKUhMhO2M/vj3uTzCQzSWbmzsydmfN+ve7rzj1z7+c+T2Zy5rnneZ7ziKpiGIZhZA/tUl0AwzAMI7mY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFlG+1QXoC306tVLCwoKUl0MwzCMtGLZsmWbVDW/qT0tHH9BQQFLly5NdTEMwzDSChGpCme3UI9hGEaWYY7fMAwjyzDHbxiGkWWkRYzfMBLJvn37WLduHbt37051UQwjJvLy8ujTpw+5ubltOt8cv5H1rFu3jkMPPZSCggJEJNXFMYyoUFVqa2tZt24dAwYMaNM1FuoxIlJTA0uWOPtMZvfu3fTs2dOcvpGWiAg9e/aM6onVHL8RlvJy6N8fxo1z9uXlqS5RYjGnb6Qz0X5/zfEbzaipgZISqKuDrVudfUlJ5rf8DSNbMMdvNKOyEjp0CLXl5jp2IzHk5ORQWFjIsGHD+M53vsOuXbsA6Ny5MwCVlZUEAgEKCwsbtieeeCJE4/zzz6ewsJBBgwbRtWvXhvPOPPNMfvKTnzScV1VVxVFHHcWWLVs4/fTTGTx4MCNHjuTkk0/m008/BWiw12tcdNFFSfpLGElBVX2/jRo1So3kUV2tGgioQuMWCDj2TGT16tWpLoJ26tSp4fWll16q9957b4j9n//8px577LFt0lq0aJF++9vfbjjetWuXDh48uKGekyZN0jlz5qiq6je/+U1dsmSJqqo++uijet555zWzG+lBuO8xsFTD+FRr8RvNyM+HsjIIBKBLF2dfVubY4yGjOosTWJlTTz2Vzz//3DO9QCDAfffdx3XXXccrr7zC9u3bmTJlSrPzTjvtNE/va/gXc/xGWIqLoaoKFi509sXF8ellVGdxAiuzf/9+XnnlFYYPH97svS+++CIk1PP222+3Wffcc8+lR48eXHHFFTzyyCNhz1mwYEHIfadMmdJwr5tvvjn6yhi+JaHj+EWkEtgOHAD2q2qRiPQA5gMFQCVwsapuTmQ5jNjIz4+/lQ+hncV1dY6tpATGjvVGP6kkqDJ1dXUUFhYCTou/pKSk2TkDBw5k+fLlMd/j+uuvp66ujsGDB4fYp0yZQiAQoKCggIceeqjBPnfuXIqKimK+n+FfkjGB6wxV3RR0fCvwpqreKSK3usc/CX+pkQnUdxbX+0lo7CxOO8efoMoEAoG4nHpbaNeuHe3aNX/INweffaQi1DMJmO2+ng1MTkEZjCRSUAB794ba9u1z7GlHRlXGyFYS7fgVeF1ElonIta7tcFXdAODuD0twGYwUk6jO4pSQwso0jfE/+OCDCb1fcIx/7NixCb2XkVzEGfGTIHGRr6nqehE5DHgDuAF4SVW7BZ2zWVW7h7n2WuBagH79+o2qqgq7noCRRtTUOBGRggJ/Of2KigqGDBkS3UV+rYyRtYT7HovIMlVtFsdLaIxfVde7+2oReR4YA2wUkd6qukFEegPVEa59DHgMoKioKHG/TkbS8Kqz2BdkVGWMbCNhoR4R6SQih9a/BsYDK4GXgCvd064EXkxUGQzDMIzmJLLFfzjwvJs8qD0wT1VfFZElwNMiUgKsBb6TwDIYhmEYTUiY41fVfwAjw9hrgbMSdV/DMAyjZWzmrmEYRpZhjj+FeJ3uxe96hmH4A3P8KcLrdC9+1zNaRkS4/PLLG473799Pfn4+EyZMAGDWrFmUlpYCMH36dDp27Eh1deOAuPr0zU1fA9x///3k5eWxdetWamtrG8bmH3HEERx55JENx2vWrGHYsGEh106fPp177rkHgKuuuooBAwZQWFjIyJEjefPNNxvOszTO6YU5/hTg9UInftczWqdTp06sXLmSOjcVxBtvvMGRRx4Z8fxevXpx7733tkm7vLyc0aNH8/zzz9OzZ0+WL1/O8uXL+f73v8+NN97YcNyh6SIMYbj77rtZvnw5DzzwAN///vdD3ps7d26D1rPPPtumshmpwRx/CvB6oRO/62UiiQiDnXPOOfzpT38CHGdd3EJK1Kuvvpr58+fz1Vdftaj5xRdfsGPHDmbMmEG5h49tJ554Il9++aVnekZyMcefArxO9+J3vUwjUWGwSy65hKeeeordu3ezYsUKTjjhhIjndu7cmauvvprf/OY3rZTV+QE59dRT+fTTT0PCQ/Hw6quvMnny5BCbpXFOH8zxpwCv0734Xa+eTOgsTmQYbMSIEVRWVlJeXs65557b6vk//OEPmT17Ntu2bYt4zlNPPcUll1xCu3btuOCCC3jmmWcinhtpwe5g+80338xRRx3FZZddxs9+9rOQ84JDPXfffXer5TdSRzLSMhthKC52Urh7le7F73rl5Y6D7NDBeZooK4t/cZdUkOgU0xMnTuSmm27irbfeora2tsVzu3XrxqWXXhpxYZUVK1bw2WefMW7cOAD27t3LUUcdxfXXXx/2/J49e7J5c+jSGF999RUDBgxoOL777ru54IILePDBB7nyyitZtmxZNNUzfIK1+FNIfj6MHu1dyhe/6mVSZ3Giw2BXX30106ZNC7sCVzh+/OMf8+ijj7J///5m75WXlzN9+nQqKyuprKxk/fr1fPnll0RKeNi5c2d69+7dMFrnq6++4tVXX+WUU04JOa9du3ZMnTqVgwcP8tprr0VZQ8MPmOM3Ek46dxbv2wc7dzp7iD8MVlcHmzaFPjEE06dPH6ZOndrm8nXt2osJE85nz549zd576qmnOP/880Ns559/Pk899VREvSeeeIIZM2ZQWFjImWeeye23387AgQObnSci/OIXv2DmzJkNNkvjnD4kNC2zVxQVFenSpUtTXQwjRmpqnE7QYGcXCDhr+fohwWWktMy1tU4ZRUDVqUPPns57sWRlXrsWgvtWDzsM+vWLvdwtlc/IPqJJy2wtfiNqKipg9mxn3xbScSGWffscp3rwIBw44OyrqkJb/tGEwerqQp0+OMeRWv7xls8wWsI6d42ouOEGePjhxuPSUghanzsiXncWJ5q9e52WdDAijj03N3q9nTsj2wOB1JfPyC6sxW+0mYqKUKcPznE0LX8vO58TSYcOTvgkGNXmfRVtpVOn6Oyt4XX5jOzCHL/RZhYvjs6ezuTmOjHzdu0gJ8fZ9+8fe2s6EHBi+sEcdlhsrf1ElM/ILizUY7SZMWOis6c7PXs6fRJ79zot6Xidar9+ztPOzp1OSz9Wp5+o8hnZQ8Jb/CKSIyIfisjL7vF0EflSRJa7W+tTFA1fMGSIE9MPprTUsWcqubmOk/bKqQYC0KtX/E6/Hq/L13T4qpGZJCPUMxVoGgW+X1UL3e3PSSiD4REPPQSrV8OsWc6+LR27Ruvk5OQ0jIEvLCyk0p3kEJxSuZ633norJF1zfn4+hYWFfP3rX+f+++9n9+7dfP3rX+fjjz9uuGbmzJmcddZZDfo9evRoSLFcP+Z+0aIP6dBBmDXrNT7+2BkuCs3TPIOTrjk4pXNhYSFbtmxJzB/H8JyEhnpEpA/wbeAO4MeJvJeRPIYMyexWfioIBAIsX768mT04pfJVV10V9trvfve7PPzww9TW1jJ48GAuuugiHnjgAa677jr++te/sn79eh599FGWLl1K9+7dASe3/oQJExry5u/bB7NmlVNYeAqvvFLOCSd8i6oqJ5QUiRtvvJGbbrop3qobKSDRLf4HgFuAg03spSKyQkT+ICLdw10oIteKyFIRWVqTjnP7jYymZmcNS75cQs3OxH03o02p3LNnTwYNGsSGDRs4++yz6d27N0888QQ33ngj06dPb3D64dizR3nzzWe5/fZZvP/+6+zZs7theKiReSTM8YvIBKBaVZtmcfodMBAoBDYAYVeTUNXHVLVIVYvy02H8n5E1lH9cTv8H+jPuyXH0f6A/5Svjz8tcV1fXEDKpT7MQbUrltWvXsnv3bkaMGAHAAw88wM9//nNqampCVvcKx9Kl7/K1rw2gT5+BjBp1Ou++++dWh4fef//9DWU+44wzoquwkVIS2eI/GZgoIpXAU8CZIjJHVTeq6gFVPQg8DmTomBAjE6nZWUPJSyXU7a9j656t1O2vo+TFkrhb/vWhnuXLl/P8888DbU+pPH/+fI499liOOuoopk6dSl5eHgBf+9rXOPPMM/nBD37Q6v2feaac4uJLaNcOzj77El5/vbzV4aHBq3ctWrQo+kobKSNhMX5V/SnwUwAROR24SVUvE5HeqrrBPe18YGWiymAYXlO5pZIOOR2o29+YayE3J5fKLZXkd/LuyTSalMr1Mf733nuPb3/725xzzjkcccQRgJNJs127ltt3Bw4c4LnnniM39yV+85s7OHhQ+eqrWjp02A4c6lmdDP+QiglcM0XkYxFZAZwB3JiCMhhGTBR0K2DvgdDA974D+yjoVuDpfaJNqQzOcoiXX355q6tyNWXhwoWMHDmSf/3rX1RWVrJ2bRUXXnghL7zwQpy1MPxKUhy/qr6lqhPc15er6nBVHaGqE4Na/4bhe/I75VM2qYxA+wBdDulCoH2Askllnrb2IbaUygA/+clP+N///V+2b9/e5nuVl5c3u9eFF17IvHnzANi1axd9+vRp2O677z4gNMYfPATV8D+WltnIeiKlZW6Jmp01VG6ppKBbgedO3zBiIZq0zJaywTBiIL9Tvjl8I22xJG2GYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvJI2aGliyxNknipdfhmuucfZesGWLs1ykV4knvdbzOo2y3/UMbzDHbySF8nJnhahx45x9G3KORc3w4XDeec5C7uedB27KmphZtQo+/xw2bXL2q1YlTk9EQvLp7N+/n/z8/JD0y6XuYgg//OEP+dWvfkVtLXz8Mdxyyx1MmXI9tbVO1s36dMuFhYWcdNJJDdfn5+dz3HHHcfTRR/Otb32Lv/3tbyHlq9f78Y+nc/PN9zSkZQYoKChg06ZNQPMU0nfeeScAp59+OvXDrgsKChg6dDhDh47gtNO+yeuvV7WY5nnr1q1cccUVDBw4kIEDB3LFFVeEpKJetWoVZ555JscccwxHH300v/rVr6gfij5r1ixEhDfffLPh/Oeffx4R4dlnnw25z6xZsyguLg6xbdq0ifz8fPbs2QPApEmTOPHEE0POCU5DPXTo0JCkeVdddVXDfU4//XQGDx7c8Le56KKLuOOOOxqOg/92Dz74INOnT+eee+5p0An32W3cuJEJEyYwcuRIhg4dyrnnxr+EiQ3nNBJOTQ2UlEBdnbOBczx2rHfr7778Mqxskvzj448du+s7o2LLlsay1lNX59i7dfNer1OnTqxcuZK6ujoCgQBvvPEGRx55ZFitGTNmUFhYyMiRU1AVXnjh98yZ8yFVVXDwINx9990N6ZaDqU/tALBo0SIuuOACFi1axJAhQ9i3j4brVZ2tPi1z03w9kVJIN+WhhxbRtWsvHn30dh5/fAa9ez8eMc1zSUkJw4YN44knngDg9ttv55prruGZZ56hrq6OiRMn8rvf/Y7x48eza9cuLrzwQh555JGGFBbDhw+nvLycs846C3AmwI0cObLZfS644AJuuukmdu3aRceOHQF49tlnmThxIocccghbtmzhgw8+oHPnzvzzn/9kwIABDdfWp6H+7LPPGDVqFBdddBG5YZIZzZ07l6Ki0KHzP//5zwHnRy/4bzd9+vSQ88J9dtOmTWPcuHFMnToVcNJ5xIu1+I2EU1nZPMtjbq5j94pI2QVizToQKRTTaK8Blrh7L/TgnHPO4U9/+hPQmJkzHF26dOG22+5g5sxSZs68nu9975ccemg3RBzH3RbOOOMMrr32Wh577DHASb8sEnpOPGmZVRv1hg8/kZqaLyPqff755yxbtozbbrutwTZt2jSWLl3KF198wbx58zj55JMZP348AB07duThhx9ueNIAOPXUU1m8eDH79u1jx44dfP755xQWFja7V5cuXTjttNNYsGBBg+2pp55q+Fs/99xznHfeeVxyySURZ0kfffTRdOzYkc2bN0f7Z4mJDRs20KdPn4bjEfE+ymKO30gCBQXN/+H37XPsXjF5cnT21ojUqnfs5UB/YJy7bz1u1bKeQ72z2b17NytWrOCEE06IqHfZZcVs27aZnTu3ce65TohI1Vl0/eabb24IF0yZMiWixvHHH88nn3wCOD/MwZP4y8vv55JLCjnpJEdn/fr1De8Fp5AuLCxk/vz5zbRFGvXee+9VvvnNyRHTPK9evbohDFJPfUhk1apVrFq1ilGjRoVcM3DgQHbs2MG2bdvc+wljx47ltdde48UXX2TixIkR611cXNzg1NevX8+aNWsa0krX/+AWFxdHXAPhgw8+4Oijj+awww4L+/6UKVMa/jY333xzxHKEI9xnd/3111NSUsIZZ5zBHXfcEfJZxIqFeoyEk5/vxN1LSpyW/r59zrGXyyxMmODE+INWG2T48NjCPOA45EAgNDwTCEC3bjVACVDnbrjHY4HIFYqs13g8YsQIKisrKS8vbzWOu3HjOrZu/TcHDgh79uwgEOhM//6O448U6mlKcLqW3Fyn76WqynHal156I7fddhM9ezrvFwT9Src11HPDDWfw739vpEePw7j++hkR0zyrKtL0cSPIHul9IMR+ySWX8OCDD7J161buvfdefv3rX4e9ZsKECVx33XVs27aNp59+mosuuoicnBw2btzI559/zimnnIKI0L59e1auXMmwYcMAJzfR448/zj/+8Q9effXViPUOF+ppK+E+u29961sN93zllVc47rjjWLlyJfGsU2ItfiMpFBc7TmXhQmcfIYoRFytWwIIFzg/MggXOcTwceywMGuQsjj5okHMMlUDTZmuua49FL5SJEydy0003RQzz1DN16lR++cvpFBdfzDPP/BfDh9PgpNvKhx9+GJLbpWdPGnR6945eryl//esiKiurGDnyWJ59dlpEvWOPPZYPP/yQg0FxqoMHD/LRRx8xZMgQjj32WJrm6vrHP/5B586dOfTQxrTRY8aMYeXKlWzatIljjjkmYrkCgQBnn302zz//fEiYZ/78+WzevJkBAwZQUFBAZWVlSLjnxhtv5NNPP2X+/PlcccUV7N69O5Y/S0z06NGDSy+9lCeffJLRo0fz17/+NS49c/xG0sjPh9GjvW3pN2XCBPj972Nv6TelWzcnJNXYMi8Amgaq97n2WPRCufrqq5k2bRrDhw+PqPHKK69QXV3NFVdcwfTpt/Hyy8/z2Wer23T/ev7yl7/w2GOP8R//8R8h9txcJxwTFHWJiy5dAjz88APMmfMEX331VdhzBg0axHHHHceMGTMabDNmzOD4449n0KBBTJkyhXfeeYeFCxcCTqjphz/8Ibfcckszrf/+7/+O2NIPpri4mPvuu4+NGzfyjW98A3DCPK+++mpDKuxly5aFjfNfcMEFFBUVMXv27Db9DeLl//7v/9i1axcA27dv54svvqBfv35xaZrjN4yoyAfKgADQxd2X0VKYJxr69OnTMHojHLt37+ZHP/oRjzzyCCJCp06dmDlzZsNQTwiNExcWFrLX7WCZP38+hYWFHHPMMfz617/mueeeizorKTSP8d96660tnt+7d2+Ki4v57W9/C4RP81xWVsaaNWsYNGgQAwcOZM2aNZSVlQFOC/3FF19kxowZDB48mOHDhzN69OiQOtdzzjnntGkZyPHjx7N+/Xq++93vIiLuOgRrG34EAAYMGECXLl14//33m10/bdo07rvvvpCnlHqCY/xjx45ttSzBhPvsli1bRlFRESNGjODEE0/kmmuuYfTo0VHpNiXhaZlFJAdYCnypqhNEpAcwH6eJVAlcrKotdo9bWmZ/UVPjjMgpKIi/9T53Ljz9NFx8MbTQD5nQssWSltkZzVOJ8zVOXZbOHTtg61bo2hXCDI9PuV5dnTOBq1Mnp0/DSBzRpGVORot/KlARdHwr8KaqHg286R4baYKXE7H69oXLLoOXXnL2cT69JmWSWCP5wGhS6fTXrIFPPoENG5z9mjX+0lu71pmkVlnp7NeujU/P8I6EOn4R6QN8G/h9kHkSUB8cmw1MTmQZDO8Inoi1dauzLymJLQXD3Lmwbl2o7V//cuypLls6sGMHuCMZG9i2zbH7Qa+uDqqrQ23V1c0nsRmpIdEt/geAW4DgQNjh9cstuvuwg2FF5FoRWSoiS2sy9b83zfByItbTT0dnb414y5YOK9EFE5TNoE32ZOvt3Bmd3YiPaL+/CXP8IjIBqFbVZbFcr6qPqWqRqhbFM17V8A4vJ2JdfHF09taIp2x5eXnU1tamlfPv2jU6e7L1OnWKzm7EjqpSW1tLXl5em69J5ASuk4GJInIukAd0EZE5wEYR6a2qG0SkN1DdoorhG7yciDVlCvz0p054p56+fWPv4I2nbH369GHdunWk25Pljh0QPJQ8Ly/075lqvT17IHjN90MP9TZNh9FIXl5eSFqH1kjKYusicjpwkzuq526gVlXvFJFbgR6q2nxAbhA2qsdfZNqonnTm3Xfh9ddh/Hg4+WT/6VVUwOLFMGYMxDBy1IiTSKN6UuH4ewJPA/2AtcB3VDX8zA4Xc/yGYRjRE8nxJyVXj6q+Bbzlvq4FzkrGfQ3DMIzm2MxdwzCMLCOjHX8ylvqLB6/LV1EBs2c7+2zQSwZef0Z+/04aWYKq+n4bNWqURsu8eaqBgGrXrs5+3ryoJRKK1+UrLa1fN8nZSkszWy8ZeP0Z+f07aWQewFIN41OT0rkbL9F27tbUOFP2m+Y+r6ryx0gPr8tXUQFDhza3r14d20gKv+slA68/I79/J43MJJW5epJOMpb6iwevy7d4cXT2dNdLBl5/Rn7/ThrZRUY6/mQs9RcPXpdvzJjo7Omulwy8/oz8/p00souMdPz1szgDAejSxdl7vdRfPHhdviFDoGlq8tLS2MMoftdLBl5/Rn7/ThrZRUbG+Ovx+yxOr8vn9SxJv+slA68/I79/J43MIqUzd+PFZu4abcUcq2E0klWdu0Z2ktyFWAwjfTHHb2QE2bYQi2HEgzn+FOL1LM6XX4ZrrnH2idSL9T7hrps7FyZNin3lrXoSNVzy3Xfh9tudvRd4ref1Z24zi7OEcLO6/LbFMnPX73g9i3PYsNCZscOHJ0Yv1vuEu65Pn1Bb376xl7e6WlUkVE/EscfKuHGheuPHx66VCD2vP3ObWZx5EGHmbsqdelu2THP81dXOP1bwP20gELuTWrAgVKt+W7DAW73bbovtPpH0wm1z5nhb5lj/Bu+8E17vnXf8oed1fb3+Thr+IJLjt1BPCvA6LPHCC9HZY9WbPz+2+0RTjljX3PX6b/D669HZk63ndX1tZnF2kcg1d/NEZLGIfCQiq0Tkv1z7dBH5UkSWu9u5iSqDX/F6FufkydHZY9X77ndju0805Yh1zV2v/wbjx0dnT7ae1/W1mcVZRrjHAC82QIDO7utc4H3gG8B0nNW4sjbUo9oYT+3SxZt46vDhoY/p8cZ7I+nFep9w1/XtG2qLJ8YfT9kiMX58qF68MXmv9byur9ffSVUnVLR4sXchI6/1Mh2SHepx77vDPcx1N//PFksSxcVOZsaFC519cXF8eitWwIIFzhDGBQuc40ToHXFE6Hm9e8eupx5/G7zWW78+9HjDhvj0XnsN3nkHpk1z9q+9Fp+e15+5199Jr+dV2DwNDwn3a+DVBuQAy4EdwF2ubTpQCawA/gB0b00nE1v86YiXHZRz5oTX8kvnrtd62YbXncXW+RwbpKJzV1UPqGoh0AcYIyLDgN8BA4FCYANwb7hrReRaEVkqIktrbFCxL/CygzJSJ65fOne91ss2LK21v0nKqB5V3YKz2PrZqrrR/UE4CDwOhE3Oq6qPqWqRqhbl+yTpit8n83hN08k88XZQButF6sT1S+eu13r1/O53cNppzt4LvNbzakKdpbX2OeEeA7zYgHygm/s6ALwNTAB6B51zI/BUa1p+CPX4fTKP10SazNO9e2i5e/SIXa9Hj9i0IuF1Z7HXerH+7ZKl5+WEOlXvO5+9nrCWDZDsCVzACOBDnFj+SmCaa38S+Ni1vxT8QxBpS7Xj9/tkHq+JFE+NFPdurdyR9PLymtv8EgP2Wu+RR8L/7R55xB96Xve5ZNv/jF+J5PgTOapnhaoep6ojVHWYqv7StV+uqsNd+0RVjXOsROLx+2Qer4kUT40U326t3OH02rWDnJzm9/BLDNhrvUgjUGIdmeK1ntd9Ltn2P5Nu2MzdNuD3yTxeEymeGim+3Vq5w+kdPAgHDjS/h19iwF7rRRoaGeuQSa/1vO5zybb/mbQj3GOA37ZUh3pU/T+Zx2siTeaJtdzz5jmhnU6dnP28ec7Wvr1qTo6zj3fCUL1eu3be6eXkOMnecnLi1/O6T8PvfSTZ9j/jR4gQ6rEVuKLg3XedR8vx4+Hkk/2n5zXhVrPq2xfWrWs8p29fWLu2da3ycmeiUbt2Tmu/rAxuuSU2rUj06AGbN4ce19bGrtepE+zaFXq8Y0fk85Ndvlg/i2TpQfb9z/iNSCtwpbw135bNDy1+I/YOwHAdpR06xKYVCa87O++6K7zeXXf5o3xed8Z6rWf4A+Lp3BWRY0TkTRFZ6R6PEJFfePvbZPidWDsAw3WUHjwYm1Yk/N556vfOWK/1DH/T1s7dx4GfAvvAGbEDXJKoQhn+JNYOwHAdpe0ifPNi7Uz0e+ep3ztjvdYzfE64x4CmG7DE3X8YZFvelmu92DI11JOOmQtj7QAM11nsdWei152dnTqF6nXq5K/y+X3CmpF6iHMc/yYRGQhOdk0RuQgnz44RI+mauXDtWpgzByZOdPZt7fwLl/kxVq1I1NbCI4/Aqac6+3g6TsHpyL3rLigsdPbxdOwmonx33QXt2zvzIdq3d47jwevPw/AvbRrVIyJHAY8BJwGbgX8Cl6lqZUJL5+KXUT1eUVPjOOe6ukZbIOA4xFjSEnmtZ/gf+8yNthBpVE+bWvyq+g9VHYuTf+frqnpKspx+JuL3Waax0DShm5FY/PCZG+lLW0f1/FpEuqnqTlXdLiLdRWRGoguXqfh9lmm02AIZySfVn7mR3rQ1xn+OOqmVAVDVzUDWrZXrFfn5zgSmQAC6dHH2ZWWxP6J7rVdPpFZ8zc4alny5hJqdNdTUOBOz6upg61ZnX1LS9pZ/sJYXZIte/Wd+SPca8gYu4ZDuNZ585hVra5j9xhIq1tqjWybTvo3n5YjIIaq6B0BEAsAhiStW5lNcDGPHNp8Z6xe9+pm2HTo4LcuyMuce5R+XU/JSCR1yOrD3wF5+NqyMDh2KQ2LNOTnw5z/DuW7TIFKZmmqVTSqjeFjs6/1lm97ftpWz57oSONABcvbyt21lFBO73g2PlvPwv0rgYAf4y15K+5bx0PfiXH/R8CVt7dy9BZgI/C/OyJ6rgZdUdWZii+eQaZ27fidSx+GyT2oY9WR/6vY3vhFoH0Dvq2L3V6Fe/dBDYfduEHGuDf7xAKfl2/+B5lpVP6oiv1P0v1rZplextoahj/WH3KAPaV+A1ddWMaRf6vUMfxBv5+5M4A5gCHAs8KtkOX0j+UTqOFz8aSUdckLfyM3J5ef3VBIIQOfOjfbt252Y89694UNAlVvCa1VuqYytzFmmt/jTSqdlHszBXMfuAz3D37Q5LbOqvqKqN6nqf6rqa4kslJFaInUcjhlcwN4DoW/sO7CP711cQFUVPPyw09KPRPCok4Ju4bUKuhXEVuYs0xszuADaNZ0Ovc+x+0DP8DctOn4RecfdbxeRbUHbdhHZ1sq1eSKyWEQ+EpFVIvJfrr2HiLwhIp+5++7eVSe78WoN34aOw0Mat7IyGNIvn7JJZeTlBAhIF/JyApRNKiO/Uz6bNsG2bc4PRCTq6mDaNGc9101r87myWxkdJMAh2oVD2jVqxVTmTk7ZOkiA3INd6CDe6B3SztvyeaU3pF8+pX3LYF8AdneBfQFK+5bFHJYJ0dsTv57hc8JN5/ViAwTo7L7OBd4HvgHMBG517bcCd7WmlakpG7wkWWsCl5aq0rFa+dpipWO1lpa6tjCZHdu0BWnFW+Zhw0L14l2Tddw4b8vntV64zyJeVldV66zXF+vqqgTm/TCSBrGuuYvzVLCytfNa0egIfACcAHyKu84u0Bv4tLXrzfG3TLLWN42UutfLLdYyR1oPeMECb/8GflkzdvXq8HqrV8emZ2QmkRx/qzF+VT0IfCQi/aJ9mhCRHBFZDlQDb6jq+8Dh6q6z6+4Pi3DttSKyVESW1th00BZJ1vqmyUjRG2uZI60HHMkeazn8smbs4sXR2Q0jmLZ27vYGVrk5+V+q31q7SFUPqGoh0AcYIyLD2lowVX1MVYtUtSjfko+0SLLWN01Git5YyxxpPeBI9ljL4Zc1Y8eMic5uGCGEewxougHfDLe15dogjduBm7BQT0JI1vqmTeP5ccf4PSzz8OGhevHG+P2+Zmy4z8IwgiGWNXdFJA/4PjAI+BgoU9X9bflBEZF8YJ+qbnFn+r4O3OX+aNSq6p0icivQQ1VvaUnLJnC1jWStb1pR4YQUxoyBIUOa2yD867fecmYEFxfDiBGO9hFHwL//7V2ZX37ZCe9MngwTJsSv5/c1Y8N9FoZRT6QJXK05/vk4q269DZwDVKnq1DbecAQwG8jBCSk9raq/FJGewNNAP2At8B1V/aolLXP86U9wCohduyLP6DUMwztidfwfq+pw93V7YLGqHp+4YobHHH96Ey4FRDCWR94wEkOsKRsapuO0NcRjGE0JlwIiGMsjbxjJpTXHPzJ4ti4woq0zd43MpaICZs929m0hXAqIYHbvbvn9aIi2bKZnZCXhenz9ttmoHv8Q60iS4MXWc3NVO3RwNi9HpXg9yiXb9IzMg1hG9fgFi/H7g4oKGDq0uX316tARJTU1jTn4IfzrNWvglFNa1/K6bKZnZBNxpWU2DGjbbNHgZRiPPBL69GlcknHhQhg92unE/fzz6O7hRdlMzzAczPEbbaa12aJNl2FsKR+/1zNPTS8+PSO7MMdvtJkhQ6C0NNRWWtoYWohm9E5rWl6XzfQMoxGL8RtRE2m2aCzj9b2eeWp6htFITBO4/II5/vShfoZubq7zAyACeXlO2Mdm6BpGconk+NunojBG5lJcDGPHhh/JYzNzDcMfmOM3PCc/P9TJm8M3DH9hnbuGYRhZhrX4jaQRaWKXPREYRnIxx28kBUvLbBj+wUI9RsKJZmKXYRiJJ2GOX0T6isgiEakQkVUiMtW1TxeRL0Vkubudm6gyGMmjpgaWLAnvwC0ts2H4i0S2+PcD/6mqQ4BvANeLSH1aqftVtdDd/pzAMhhJIDg/T//+znEwraVl3revMe5vGEbiSZjjV9UNqvqB+3o7UAEcmaj7GamhaRgnXOgmP9+J4wcC0KWL08Lv0MF5HQg471kHr2Ekj6TE+EWkADgOeN81lYrIChH5g4h0j3DNtSKyVESW1lgA2LeEC+OEC90UFzvpGhYuhC+/hHXrnNdVVdaxaxjJJuEpG0SkM/AX4A5V/aOIHA5sAhT4FdBbVa9uScNSNviXcPl5bA1dw/AHKcnHLyK5wHPAXFX9I4CqblTVA6p6EHgcsESyaUzTME5LoZvgZQJtyUDDSB0JG8cvIgKUARWqel+QvbeqbnAPzwdWJqoMRnJomp8nnNO/4QZ4+OHw15eWwkMPJbKEhmEEk7BQj4icArwNfAwcdM0/A4qBQpxQTyXwvaAfgrBYqCe9ibRMYDC2ZKBheE/Ss3Oq6juAhHnLhm9mGW1ZDnDxYnP8hpEsbOaukXDashygLRloGMnDHL+RcMItExiMLRloGMnFkrQZSeGhh+C66xqXCQRbMtAwUoU5fiNpDBkS6uTN4RtGarBQj2EYRpZhjt8wDCPLMMdvRKalXMt+0DMMIybM8RvhaS3Xcqr1DMOImYQnafMCm7mbZLzOvGaZ3AwjJaQkSZuRprQ113Kq9AzDiAtz/EZzwi2ZFc8yWV7rGYYRF+b4jeZEk2s5FXqGYcSFxfiNyNTUtJxrOdV6hmG0SNKzcxoZQH6+tw7aa71w+P3HyvRMzw+oqu+3UaNGqWG0yrx5qoGAateuzn7ePNMzvfTV8wBgqYbxqQlz1kBfYBFQAawCprr2HsAbwGfuvntrWub4jVaprnb+2aBxCwQcu+mZXrrpeUQkx5/Izt39wH+q6hDgG8D1IjIUuBV4U1WPBt50j7MTv8+MTaeZtn4fgmp6pucjEub4VXWDqn7gvt6O0/I/EpgEzHZPmw1MTlQZfI3fZ8am20xbvw9BNT3T8xPhHgO83oACYC3QBdjS5L3NrV2fcaEevz9m+vSxtVXqY6xdungbszU900uFngcQIdST8OGcItIZ+Atwh6r+UUS2qGq3oPc3q2r3MNddC1wL0K9fv1FVVVUJLWdSWbLEaUlv3dpo69IFFi6E0aMzTy+Z+H2UhumZXhKJNJwzoY5fRHKBl4HXVPU+1/YpcLqqbhCR3sBbqjq4JZ2MG8fv91w4llvHMDKCpOfqEREByoCKeqfv8hJwpfv6SuDFRJXBtwTPZO3UyduZsV7q5eU5enl5oXqxdvqGu87vHdKmZ2QgiRzVczJwOXCmiCx3t3OBO4FxIvIZMM49zk7qn7a8euryWk8kdA+xd/qGu87vHdKmF5+e4V/CBf79tlnnrk/0Vq+O7T6R9PLy0u9vYHpGGkEKxvGnHr8+BidqDHEvoAhnnwi9xYtjK3e4+rZrBzk50WtFcw/TS52e4Wsy1/H7+TG4oCC04xRg9+74xhBP2A5VOHOhq4AJO7zXGzMmtrHK4eq7dy8cOBC9Vkv38PO47GzTM/xNuMcAv21Rh3r8/hhcXa2amxuql5sbu17NatWdTf5sO3HsXuvFMlY5Un3/53/8PY7a9OLTM1IOEUI9mZmds/6xNbiVWf/YGstIl0TodewYOk4+EIhdr3qxMyc6mH2uvdcQb/WKr4SxY6Mbqxypvscf7wwR9Wrcc3Fx9GUzvcTpGb4lMx2/3x+DvdY7bAzkNrHluvZE6EWbXrml+vo99bPpGRlIZsb4WxuHHqueX1ek6jUEPiyFXcBWnP2HpbG19hOh5/U8A8Mw4iIzHX894cahx0pxsROWWLjQ2RcX+0tv7Ukw+BA4L8/Zrz3JX3rg/TyDZODXkWHZqmd4Q7jAv9+2lHfu+p106MxOx8/D7wt1ZJueETUkeyEWL7eoHf/ixc6XLdjRdOni2DMRr+vrd71k4Pcfv2zTM2IikuPPzFBPosYk+/UxONmdz9GWuyU9j/+mL8/dzDWTqnl57ub4hNyRXBUMZjZXUMFgf02QyjY9w1vC/Rr4bYspZUOixjj79TF42LDQ1tXw4fHpjRsXqjd+fHzlLi0N1Sst9fxvMKxPrcLBhm1439rYxaqrtbTdb0P0Sts97J8WcLbpGTFBVoV66qmudsIJ8X7Z/P5P8c47oVr12zvvxKa3enVkPZ/m6lkw5yvXQQdLHtQFc76KSc/5EzTXWx3jnDhVDf/jFw9+n8BlE8JSTiTHn5mhnnry852FQ+IdNuj3x+DXX4/O3hqLF0fW82munhfm7IjK3hqLF26Lyt4qNTXOENZgysriC3H5faSZ13qGZ2S24/cKv0/gGj8+OntrjIkw8Wv8eNi1K9RWV9e2XD1791JDL5ZQRA294OBB2Lkz9Lxt22L+G0w+aWNU9tYYc3j4Fd8i2VslUTFvrxo36aJneII5/rbg9wlcJ5/c3MmPH+/YY6FXL2jfZFJ3+/bQo0fzORFtmSORn095yRv0p4pxLKQ/VZSf+0T4c9esianIE477N8NZDmjDNpzlTDju3zHpDelYRSkPhuiV8iBDOsbo+BM14GDuXJg0ydl7wcsvwzXXOHsvePdduP12Z+9HvYoKmD3b2WeDXj3h4j9+23yTj9+rPoNE6b3zjuq0abHH9uuJNPxy1izVnJxQe05Oq8Myw4b42+/Rano170eYNi22Mk+bpgq6gLO1hEd1AWd7oreawTqLK3Q1g+PTU1Xt3j20rj16xK6lqtqnT6he377x6SVrgIBf9Lzuc/GhHsnu3AX+AFQDK4Ns04EvgeXudm5btHzj+LOFSJ2xc+Y0d9SgumBBi3Jhf0cCe3QxRc215syJrcyRymZ6bWPBgpg+24h4PeAgWQMYYu2996leJMefyFDPLODsMPb7VbXQ3f6cwPsbsRIpFBUpDLNkSYtyYaMcB9pRQGXzk/fvj6nIEa/zi97TT0dnT7beCy9EZ28NrwccJGsAQyR7uus1IWGOX1X/CnyVKH0jwRQXwxtvwI9+5OyLi2PuRG74Hck7SJfAXgJ5Bym749/ks6n5yZE6llsj0nV+0bv44ujsrXF2uDZVC/bWmDw5OntreD3gIFkDGPzyffFarynhHgO82oACmod6KoEVOKGg7i1cey2wFFjar1+/6B6TjPiJFF8cPz7U3tY4a2mpVtNLF1PkxPZLS30ZE02oXt++oXrxxOQXLw4fCognDcbw4aFa8cb4Y/2uJEvP79+XdIzxa3jHfziQg/OkcQfwh7boWIw/ybQWX5wzR3XixLbHk1vSW7BAtaQk9lhyU/yud9ddqoWFzj4eEjUz9pFHVE891dl7QbTflWTr+f37EueADV84/ra+13Qzx59kZs0K76hnzYqtFRJJ76yzfNdCSis9G+WS2XoepDTxheMHege9vhF4qi065viTTKQWeqSRH62NNIik58NREKZner7Q8+iJLpLjT1jnroiUA+8Bg0VknYiUADNF5GMRWQGc4Tp/w28MGQKlpaG20lKorQ1/fmsjDcLpnXVWbFqR8PuoCtMzvWhIcHbThK25q6rhEnOUhbEZfuShh+C665wv7pgxjvOONHuwLSMNTjoJfv97Z6avqjP65M03Y9OKpgymZ3rpqJeomd71hHsM8NtmoR6fUF2t2q5d6ONnu3axZ+csKQm1xRMTjbVspteI30fh+F3Ph9lXycrsnIa3VFbCoYeG2jp3ji07Z24ufO97sHo1zJrl7B96KPllMz2Hmhp4++1Q29tvx549NNv0wPn+evV9hoRmN01YqMfIQGJ9/Gzpuvx8J4yUqrKZnkP9j3NdXaOtPqYcS/LAbNOrZ8gQb77P9eTnJySzqbX4jbYTa1ZRr7ORJuMe2abn9x8mv+ulG+HiP37bLMbvM2LNKup1NtJk3COb9Py+Apff9XwIEWL84rznb4qKinTp0qWpLoZhZD41NU64oz4MZ3ppjYgsU9WipnaL8RtGS2S4Y2iG1zHlbNNLEyzGbxiRKC+H/v1h3DhnX16e6hIZhieY4zeMcNTUQEmJM+pj61ZnX1IS33A/w/AJ5vgNIxwJnjJvGKnEHL9hhCPbh/sZGY05fsMIR6LmHlRUwOzZkfMepVqvpsZZStNCWhmNOX7DiITXU+ZvuAGGDoWrrnL2N9zgLz3rzM4abBy/YSSDigrHOTdl9erYpvh7rVdT4zj74BQGgYDzg5eFwx0zhUjj+K3FbxjJIMvzvxv+IpELsfxBRKpFZGWQrYeIvCEin7n77om6v2H4imzP/274ikS2+GcBZzex3Qq8qapHA2+6x4aR+URa1SzWTI5e6yUjkZ7hGxIa4xeRAuBlVR3mHn8KnK6qG0SkN/CWqg5uTcdi/EbGUFERuqqZ3/SyLUVFhhMpxp9sx79FVbsFvb9ZVcOGe0TkWuBagH79+o2qqqpKWDkNwzAykbTr3FXVx1S1SFWL8q3lYRiG4RnJdvwb3RAP7r46yfc3DMPIepLt+F8CrnRfXwm8mOT7G4ZhZD2JHM5ZDrwHDBaRdSJSAtwJjBORz4Bx7rFhGIaRRBK2EIuqRprfflai7mkYhmG0TlqkbBCRGiCRw3p6AZsSqO8HMr2OmV4/sDpmCsmsY39VbTY6Ji0cf6IRkaXhhjxlEplex0yvH1gdMwU/1NG3wzkNwzCMxGCO3zAMI8swx+/wWKoLkAQyvY6ZXj+wOmYKKa+jxfgNwzCyDGvxG4ZhZBnm+A3DMLKMjHf8ItJXRBaJSIWIrBKRqU3ev0lEVER6Bdl+KiKfi8inIvKt5Jc6Olqqo4jc4NZjlYjMDLJnRB1FpFBE/i4iy0VkqYiMCbom3eqYJyKLReQjt47/5dojLmCUTnVsoX53i8gnIrJCRJ4XkW5B16RN/SByHYPe94e/UdWM3oDewPHu60OBNcBQ97gv8BrO5LBerm0o8BFwCDAA+ALISXU9YqkjcAawEDjEfe+wDKzj68A5rv1cnDUe0rWOAnR2X+cC7wPfAGYCt7r2W4G70rGOLdRvPNDetd+VrvVrqY7usW/8Tca3+FV1g6p+4L7eDlQAR7pv3w/cAgT3cE8CnlLVPar6T+BzIMb17JJDC3X8AXCnqu5x36vPhppJdVSgi3taV2C9+zod66iqusM9zHU3xanLbNc+G5jsvk6rOkaqn6q+rqr7XfvfgT7u67SqH7T4GYKP/E3GO/5g3IVhjgPeF5GJwJeq+lGT044E/hV0vI7GHwrfE1xH4BjgVBF5X0T+IiKj3dMyqY4/Au4WkX8B9wA/dU9LyzqKSI6ILMdJWf6Gqr4PHK6qG8D5AQQOc09PuzpGqF8wVwOvuK/Trn4Qvo5+8zdZ4/hFpDPwHI6j2A/8HJgW7tQwtrQY8xpcR1XdhpOErzvO4/TNwNMiImRWHX8A3KiqfYEbgbL6U8Nc7vs6quoBVS3EafWOEZFhLZyednVsqX4i8nOc/8259aZwEgkvZJyEqeMIfOZvssLxi0gujrOYq6p/BAbixNM+EpFKnA/oAxE5AucXt2/Q5X1oDB/4ljB1BKcuf3QfPxcDB3ESRGVSHa8E6l8/Q+NjclrWsR5V3QK8BZxN5AWM0raOTeqHiFwJTACmqBv8Jo3rByF1nITf/E0qO0KSseH8oj4BPNDCOZU0drYcS2hnyz9Ijw6lZnUEvg/80n19DM4jpWRYHSuA093XZwHL0vhzzAe6ua8DwNs4zvBuQjt3Z6ZjHVuo39nAaiC/yflpVb+W6tjknJT7m4Tl4/cRJwOXAx+7cTeAn6nqn8OdrKqrRORpnC/ifuB6VT2QlJLGTtg6An8A/iAiK4G9wJXqfNsyqY7/AfxGRNoDu4FrIW0/x97AbBHJwXkaf1pVXxaR93DCdCXAWuA7kJZ1jFS/z3Ec3xtOJJK/q+r307B+EKGOkU5OVR0tZYNhGEaWkRUxfsMwDKMRc/yGYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvZCwicsDN2rnKzZb4YxGJ+TsvIqe4mRc/cbdrg97Ld1NjfChOFtEfBL13gpt5MhuGTxtpgH0RjUymTp2p84jIYcA8nERut0cr5M6ynAdMVtUP3LS6r4nIl6r6J5zJY5+o6pUicjjwnog8C9QCDwPXaWMismjvLThDrw/Gcr1hNMXG8RsZi4jsUNXOQcdHAUtw0lb0B54EOrlvl6rq30TkSeBZVX3RvWYuMB8YjZN8cVqQ3lnAdOAG4CWcmZpfAicC/8+9ZgkwCmdi2Z3A6TiTlX6rqo+6uYdexMmplAv8QlVfdBPRvQIscvUmq2qVl38fI3sxx29kLE0dv2vbDHwd2A4cVNXdInI0UK6qRSLyTZykb5NFpCuwHDgaeBqYXf+D4Gp1Bf6pqj1E5CqgSFVL3ffaAe/hZNIsAi7EWQ9hhogcAryLMwP3X0BHVd3mPkX83b1ff5zp+yep6t8T8gcyshYL9RjZRn02xFzgYREpBA7g5DJCVf8iIr91Q0MXAM+p6n433BKulRS25aSqB0XkUZwfg1oRGQ+MEJGL3FO64jj4dcCvReQ0nCR6RwKHu+dUmdM3EoE5fiNrcEM9B3CyW94ObARG4gxy2B106pPAFOASnPzwAKtwWu4vBZ03CifHSiQOuhs4Pzg3qOprTcp0FU5ir1Gqus/N3pjnvr2z7bUzjLZjo3qMrEBE8oH/AR52E9V1BTa4HaaXAzlBp8/CWbcBVV3l2n4LXOU+ISAiPXGWCZxJ23gN+IGbWhoROUZEOrnlqHad/hk4IR7DSCjW4jcymYCbyTMXJ/Phk8B97nuPAM+JyHdwOlAbWtequlFEKoAXgmwbROQy4HERORSnBf+Aqi5oY1l+DxTg5GEXoAZnCcW5wAIRWYrTn/BJLBU1jGiwzl3DaIKIdAQ+xlncfWuqy2MYXmOhHsMIQkTG4rS6HzKnb2Qq1uI3DMPIMqzFbxiGkWWY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFnG/wfSVo6szTyIxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax=None\n", + "colors = ['red','blue','green','yellow']\n", + "for i,var in enumerate(new_pumpkins['Variety'].unique()):\n", + " ax = new_pumpkins[new_pumpkins['Variety']==var].plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAGKCAYAAAAVEBpAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcxklEQVR4nO3df5h3dV3n8ecrwEBEARm4bhW8UxEDfwDekqztpiiFmiGGCW5GZhduLRVpJaX5a7e9bP25musurAiRgqaopGEiF+TiKnrzQ4SQIEMSEG615BbzB/DeP8538sswv+c7c85n5vm4rrnm/PjOzIvx/r488znnfE6qCklSe36s7wCSpOWxwCWpURa4JDXKApekRlngktSoHdfyh+211161efPmtfyRktS8yy677BtVNTVz+5oW+ObNm9m6deta/khJal6Sr862fcEhlCQ7J/l8ki8muSbJ60bbX5vk5iRXjj6eNenQkqS5LeYI/PvAEVX1nSQ7AZckOX+0761V9abViydJmsuCBV7drZrfGa3uNPrw9k1J6tmirkJJskOSK4HbgQuq6tLRrpOSXJXk9CR7rFZISdJ9LarAq+ruqjoYeBhwWJLHAu8CHgkcDNwKvHm2r01yYpKtSbZu27ZtIqElSUu8Dryq/gW4GDiqqm4bFfs9wGnAYXN8zalVtaWqtkxN3ecqGEnSMi3mKpSpJLuPlncBngF8OcmmsZcdA1y9KgklSbNazFUom4Azk+xAV/gfqKqPJTkrycF0JzRvBF66aiklSfexmKtQrgIOmWX7i1YlkSRpUdb0TkwN3+ZTPt53hAXd+IZn9x1BGgQns5KkRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1KjmH6nWwiPAwMeASZo8j8AlqVEWuCQ1asECT7Jzks8n+WKSa5K8brR9zyQXJLl+9HmP1Y8rSZq2mCPw7wNHVNUTgIOBo5I8GTgFuLCq9gcuHK1LktbIggVene+MVncafRRwNHDmaPuZwHNXI6AkaXaLGgNPskOSK4HbgQuq6lJgn6q6FWD0ee85vvbEJFuTbN22bduEYkuSFlXgVXV3VR0MPAw4LMljF/sDqurUqtpSVVumpqaWGVOSNNOSrkKpqn8BLgaOAm5Lsglg9Pn2SYeTJM1tMVehTCXZfbS8C/AM4MvAecAJo5edAHx0lTJKkmaxmDsxNwFnJtmBrvA/UFUfS/JZ4ANJXgLcBDx/FXNKkmZYsMCr6irgkFm2fxN4+mqEkiQtzDsxJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhq1YIEn2TfJRUmuTXJNkt8ZbX9tkpuTXDn6eNbqx5UkTdtxEa+5C3h5VV2eZDfgsiQXjPa9taretHrxJElzWbDAq+pW4NbR8vYk1wIPXe1gkqT5LWkMPMlm4BDg0tGmk5JcleT0JHvM8TUnJtmaZOu2bdtWllaS9G8WXeBJHgB8CDi5qu4A3gU8EjiY7gj9zbN9XVWdWlVbqmrL1NTUyhNLkoBFFniSnejK+71VdS5AVd1WVXdX1T3AacBhqxdTkjTTYq5CCfBu4NqqesvY9k1jLzsGuHry8SRJc1nMVShPAV4EfCnJlaNtfwQcn+RgoIAbgZeuQj5J0hwWcxXKJUBm2fXXk48jSVos78SUpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJatSCBZ5k3yQXJbk2yTVJfme0fc8kFyS5fvR5j9WPK0matpgj8LuAl1fVTwJPBv5zkgOBU4ALq2p/4MLRuiRpjSxY4FV1a1VdPlreDlwLPBQ4Gjhz9LIzgeeuUkZJ0iyWNAaeZDNwCHApsE9V3QpdyQN7TzydJGlOiy7wJA8APgScXFV3LOHrTkyyNcnWbdu2LSejJGkWiyrwJDvRlfd7q+rc0ebbkmwa7d8E3D7b11bVqVW1paq2TE1NTSKzJInFXYUS4N3AtVX1lrFd5wEnjJZPAD46+XiSpLnsuIjXPAV4EfClJFeOtv0R8AbgA0leAtwEPH9VEkqSZrVggVfVJUDm2P30ycaRJC2Wd2JKUqMscElqlAUuSY2ywCWpURa4JDXKApekRi3mOnBJy7D5lI/3HWFRbnzDs/uOoGXyCFySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjXIyK0lNcHKw+/IIXJIaZYFLUqMWLPAkpye5PcnVY9tem+TmJFeOPp61ujElSTMt5gj8DOCoWba/taoOHn389WRjSZIWsmCBV9WngW+tQRZJ0hKsZAz8pCRXjYZY9pjrRUlOTLI1ydZt27at4MdJksYtt8DfBTwSOBi4FXjzXC+sqlOraktVbZmamlrmj5MkzbSsAq+q26rq7qq6BzgNOGyysSRJC1lWgSfZNLZ6DHD1XK+VJK2OBe/ETHI28FRgryRfA14DPDXJwUABNwIvXb2IkqTZLFjgVXX8LJvfvQpZJElL4J2YktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY1asMCTnJ7k9iRXj23bM8kFSa4ffd5jdWNKkmZazBH4GcBRM7adAlxYVfsDF47WJUlraMECr6pPA9+asflo4MzR8pnAcycbS5K0kOWOge9TVbcCjD7vPdcLk5yYZGuSrdu2bVvmj5MkzbTqJzGr6tSq2lJVW6amplb7x0nShrHcAr8tySaA0efbJxdJkrQYyy3w84ATRssnAB+dTBxJ0mIt5jLCs4HPAgck+VqSlwBvAI5Mcj1w5GhdkrSGdlzoBVV1/By7nj7hLJKkJfBOTElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGLfhU+vkkuRHYDtwN3FVVWyYRSpK0sBUV+MjTquobE/g+kqQlcAhFkhq10gIv4JNJLkty4iQCSZIWZ6VDKE+pqluS7A1ckOTLVfXp8ReMiv1EgP3222+FP06SNG1FR+BVdcvo8+3Ah4HDZnnNqVW1paq2TE1NreTHSZLGLLvAk+yaZLfpZeBngasnFUySNL+VDKHsA3w4yfT3eV9VfWIiqSRJC1p2gVfVV4AnTDCLJGkJvIxQkhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1akUFnuSoJNcluSHJKZMKJUla2LILPMkOwDuBZwIHAscnOXBSwSRJ81vJEfhhwA1V9ZWq+gFwDnD0ZGJJkhaSqlreFybHAkdV1a+P1l8E/FRVnTTjdScCJ45WDwCuW37cNbMX8I2+Q6wj/j4nx9/lZLXy+3x4VU3N3LjjCr5hZtl2n/83qKpTgVNX8HPWXJKtVbWl7xzrhb/PyfF3OVmt/z5XMoTyNWDfsfWHAbesLI4kabFWUuBfAPZP8hNJ7gccB5w3mViSpIUsewilqu5KchLwN8AOwOlVdc3EkvWrqSGfBvj7nBx/l5PV9O9z2ScxJUn98k5MSWqUBS5JjbLAJalRG77Akzxwnn37rWUWaS5JHpzkmCRP7DtLi5J8YGz5T2fs++TaJ5qMDV/gwMXTC0kunLHvI2uapHHr9U3ShyQfS/LY0fIm4Grg14CzkpzcZ7ZG7T+2fOSMffe5w7EVFvi97yjdc559Wti6fJP05Ceq6urR8ouBC6rqOcBP0RW5lma+y+2avRRvJbfSrxc1x/Js65rfunyT9OSHY8tPB04DqKrtSe7pJ1LT7p/kELqD1l1Gyxl97NJrshWwwGHvJC+j+x9yepnRukeNS7Mu3yQ9+ackv0U3ZcWhwCcAkuwC7NRnsEZ9HXjLLMvT603a8DfyJHnNfPur6nVrlaV1SS6ab39VPW2tsrQuyd7A64FNwDur6pOj7U8DnlhVb+ozn4Zhwxf4fJKcXFVv6zuHNC7JjlV1V985WpJkf+CNwKOALwG/V1U395tq5TyJOb+XLfwSLSTJkUku6DtHS5JcMrZ81ozdn1/jOOvB6cDHgV8ELgfe0W+cybDA5+dVKEuQ5Igkf5/kO0n+IsmBSbYCbwDe1Xe+xuw6tnzQjH3+u1y63arqtKq6rqreCGzuO9AkeBJzfo4vLc2b6Z6+9Fm6Z6V+DvjjqvofvaZqk1f0TNbOYyfV4d4n2amqy3tLtgIbvsCTbGf2N0SA+69xnNZVVV08Wv5Ikm2W97LtnuQYur+Sd0/yvNH2AA/qL1azZrvyZHq9gCPWPNEEeBJTE5PkK8DvjW160/h6VZ275qEaleQ98+2vqhevVZb1IMkDq+qOvnNMmgU+iyS7As8FXlhVz+45TjMWKJ2qKu8gVC+S/APwyqo6p+8sk2SBj4weC/cs4IXAUcCHgHOr6q96DaYNaeyGsllV1Vvm2697S/Jw4G3AA4DfqKob+k00GY6BJ0cCxwM/B1wEnAUc5p+oSzdL6RTwDeCSqvrHHiK1bLe+A6wnVfVV4JgkRwGfSfIF4J6x/b/QW7gV2PAFTvdMz/8L/PR0ySTxxNvyzFY6m4FXJnntevvzdZV9s6r+rO8Q60mSA4A/oHu/v5OxAm/Vhh9CGV1KdBxwLPAV4Bzg1VX18F6DrSNJ9gQ+VVWH9p2lFUku9/c1OUneAPwC8PKqOr/vPJOy4W/kqaorquoVVfVI4LXAIcD9kpyf5MR+060PVfUtvPlE/doCHLqeyhss8Hs9aKCqPlNVJwEPpTvhcXhfudaTJEcA/9x3jsY8Pskds3xsT7LuLodbA3tW1ff6DjFpjoHPMmVsVd1DNzb+N2sfp11JvsR9b4raE7gF+JW1T9S0L1XVIX2H0LBZ4PCgsbvc7sObT5bkecAPxtaL7mTcnT3lkaY9Isl5c+30KpR2PQj4eWYfoy3AAl+893vibWL+su8A68w2url61hULHG7yDsGJ8UTl5Bw8vZDkT6vqFWPrn6yqn+0lVbu2V9Xf9h1i0ixwZ3abpKn57iD07sEledTY8pHAK8bWfdTf0t3Yd4DVYIHDt9brRDc92IHuVmWPxFeXBx1LVFVznudqmQUOnwQuS/Kaqnpf32Ead2tVvb7vEOuED4jWgjb8nZgASR5KNzfwXnRPjhmfI8GTmIuU5IrZLn1Lsi9w3OhJKFqEJBczz5G2D4gWeAQOQFXdnOTjwJ8Az+FHBe5VKEvz9OmFJHsBz6ebKOxh+Htckqp6at8Z1pMkv1xVfzFafkpVfWZs30mtzjuz4Y/AkxxEd9R9C/C7VXVrz5GalWQ34Bi6KXkfDXwYeEFVPazXYA2a794E8C/DpRqfW2bmPDMtzzvjETh8EDi5qu5z12WSXb0JZUlup3ti+qvoppCt0WPBtHTPmWeffxkuXeZYnm29GRZ4d73tXkm2AFdV1Q+S7A2cDPwq8JD+ojXnj+hmdnwX8L4k7+85T7Ocj37iao7l2dabseEnswL+E3Al8A7gc0lOAK6lO9P/xB5zNaeq3lpVP0U3bWeAjwAPSfKKJI/uNVyDkuwwOpcwvX6/JCcmubbPXI16TJKrRvP1TC9Prx/Qd7jlcgw8+Tu6hzl8K8l+wA3Af6iqz/UcbV1I8ji6MfFfGk3Zq0VIchzwv4E7gevppjo+C/gC8F+q6vL+0rVn9Ei1OY2e2NMcC/y+JzSurqrH9plJSnI18NyquiHJocBn6S7F/HDP0TQgFnhyO91TeKYdN75eVb+95qEalWQ7s48nhu6p9A9c40jNmuXA4stV9Zg+M7Vs7N/m9AnL6X+nTf/b9CQm/P6M9ct6SbEOVJUP4p2cvWfMK/OA8XXnlVma9fpvc8MfgUtDlOQ18+wupyxYmiQ7012w8CjgKuD0qrqr31Qrt+ELPMlfMf8ty01O9N6HWf5MZbS+I3C/qvIvvglI8qSq+kLfOVoyuqT1h3RPpH8m8NWq+p1+U62cbyh4U98B1ouZf6aO7sz8TeCldHdlapmSHEh3fuZ44Nt0D+nV4h1YVY8DSPJuuhvOmrfhC3yuSd6nJ2AC1t0k8Kstye50N0L9CvA+4ElV9c0+M7VodOnb8aOPu4CHA1uq6sY+czXqh9MLVXVX0uzNl/ey4Qt83IwJmB6KR41LMvr9vRx4AXA6cEhVfbvfVG1K8v/oHvd3DnBsVV2f5B8t72V7QpLpOf9DN0XvHXgVStvmmIDpEU7AtCxfpXv24HuA7wIvGT/S8cqJJdlGN4vjPnRP4Lmehm/57ltV7dB3htWw4QscJ2CapDfyo5JZl5dtrZWqOjrJg4BfBF6X5FHA7kkOq6p1MX6rlfMqlOR36ca6d6Ubr30/cEFVPaLXYNrQkuxUVT8cW9+bbmjqeGDfqtq3t3AajA1f4NOSPILuzXEcsD/wGuDDVfX3vQZrSJK3z7ffu1oXb3SH8EeBs4GLauyNmuThrc7docna8AWeZL+qumnGtsfRlfkLnIBp8UYzOc6pqs5cqyytS/Jg4Fh+dEDxQeDsqrq012AaFAv83k/q+FBV/WLfmaRxSR5Cd3XUccDewDlV9cp+U2kILPCxB/HO9VBeLU6S8+bb712ty5fkAcDzgJcBm6pqn54jaQC8CmX+J3VoaQ4H/olu3PZSGn5U1RCM5u94Dt1w3lOATwB/CHyyz1waDo/Ak7vpJs0P3VN4vju9i4Yv8O9Dkh2AI+kK5/HAx+nGba/pNViDkrwPeAbwabqbeT5WVd/rN5WGZsMXuFZHkh+nK/I3Aq+vqnf0HKkpoxPC51bV9r6zaLgscE3UqLifTVfem4Hz6KbuvLnPXNJ6ZIFrYpKcCTwWOJ/uSomre44krWsWuCYmyT105xPg3ieEPZ8grQILXBqgJM+bb39VnbtWWTRcFrg0QKO/Zq4cfcCMpxxV1a+tdSYNjwUuDdBoRswX0D3D8aN0l2Pe0G8qDY0FLg1Ykl2Bo+nK/MHAK+d6ipQ2nh/rO4CkeX2P7hmYd9BNebxzv3E0JB6BSwOU5Gl019IfBnyK7rLMrf2m0tBY4NIAjU5iXgVcQndJ5r3eqM6tLnAyK2moXtx3AA2fR+DSwI2mkq2qunPBF2tD8SSmNFBJfiPJTcBXgZuSfDXJb/adS8NhgUsDlORVdHOBP7WqHlxVDwaeBjxztE9yCEUaoiTXAU+YOQd4kl2AL1bVo/tJpiHxCFwaqNke4FBV/wrc00McDZAFLg3T15I8febGJEcAt/aQRwPkEIo0QEkOopsD5RLgMrrrwJ9E92zMo31MncAClwZr9FDjFwIH0c1GeA3wXp+NqWneyCMNVFV9L8lFwO10R+DXWt4a5xG4NEBJHgj8H+CJdHOC/xjwBLrhlJdU1R39pdNQWODSACU5A7gReH1V3TPaFuCPgUdV1a/0l05DYYFLA5Tk+qraf6n7tLF4GaE0TFn4JdroLHBpmD6T5NWjYZN/k+SPgc/1lEkD4xCKNECjk5jvBg6lO4lZwCHAFXQnMb/dXzoNhQUuDViSRwIHMroOvKr+IcnJVfW2fpNpCCxwqTFJbqqq/frOof45Bi61xxOcAixwqUX+2SzAW+mlQUqyndmLOsAuaxxHA+UYuCQ1yiEUqSFJdk/yyr5zaBgscGmAkuyb5NQkH0vy60nun+TNwPXA3n3n0zA4Bi4N058Dfwt8CDiK7u7La4DHVdXX+wym4XAMXBqgJF+sqieMrd8G7FdV3+8xlgbGI3BpoJLswY+u+f46cP8kuwJU1bd6C6bB8AhcGqAkN9I9fX62m3aqqh6xtok0RBa4JDXKIRRpgJIcOt/+qrp8rbJouDwClwZo9DDjuVRVHbFmYTRYFrgkNcobeaQBSvIHY8vPn7Hvv619Ig2RBS4N03Fjy384Y99RaxlEw2WBS8OUOZZnW9cGZYFLw1RzLM+2rg3Kk5jSACW5G7iTH83//d3pXcDOVbVTX9k0HBa4JDXKG3mkAUqy53z7nQtF4BG4NEhJ/pFurDvAJuAWfnTy0rlQBFjg0uAluaKqDuk7h4bHq1Ck4fMoS7OywCWpUZ7ElAYoycvGVveesU5VvWWNI2mALHBpmHYbWz5txroEeBJTkprlGLgkNcoCl6RGWeCS1ChPYkoDleQA4ETgMaNN1wKnVdV1/aXSkHgELg1QksOBi4HtwKl0V6LcCVyU5Mk9RtOAeBWKNEBJzgf+tKounrH9Z4BTquqZvQTToFjg0gAl+fuqevQc+66rqgPWOpOGxyEUaZi2z7PvzjVLoUHzJKY0TPsmefss2wM8dK3DaJgscGmYfn+efVvXLIUGzTFwqTFJdqyqu/rOof45Bi4NUJJLxpbPmrH782scRwNlgUvDtOvY8kEz9gUJC1waqvnGNh33FOBJTGmodk9yDN1B1u5JnjfaHuBB/cXSkHgSUxqgJGcwz5F2Vb147dJoqCxwSWqUY+DSACV5R5L7PEYtyWOSfKqPTBoeC1wapq8DVyZ5IUCS+yf578B5wDt7TabBcAhFGqgkPwH8Gd0DjR8CfAD4r1X13V6DaTA8ApeGa/roake69+q1lrfGWeDSACV5FfAp4M+r6t8B/x44OsnfJjmw33QaCq8Dl4ZpCjikqrYDVNXNwLFJngl8CPjJPsNpGBwDlxqT5Mer6vt951D/PAKXBmiOucDH/faaBNGgWeDSMF3WdwANn0MoktQoj8ClAUpy3nz7q+oX1iqLhssCl4bpcOCfgLOBS3EOcM3CIRRpgJLsABwJHA88Hvg4cHZVXdNrMA2KN/JIA1RVd1fVJ6rqBODJwA3AxUl+q+doGhCHUKSBSvLjwLPpjsI3A28Hzu0zk4bFIRRpgJKcCTwWOB84p6qu7jmSBsgClwYoyT3AnaPV8TdpgKqqB659Kg2NBS5JjfIkpiQ1ygKXpEZZ4JLUKAtczUtycZKfm7Ht5CT/c5Ff//okz1jgNb+a5CErySlNmgWu9eBs4LgZ244bbZ9Xkh2q6tVVtdCT3n+V7rmU0mBY4FoPPgj8/OjGF5JspivbFybZmuSaJK+bfnGSG5O8OsklwPOTnJHk2NG+J44eW3ZZkr9Jsmm0bwvw3iRXJnl2kg+Pfb8jk3iDjdacBa7mVdU3gc8DR402HQe8H3hlVW2hm0vkZ5I8fuzLvldVP11V50xvSLIT8A7g2Kp6InA68CdV9UFgK/Afq+pg4K+Bn0wyNfrSFwPvWbX/QGkOFrjWi/FhlOnhk19KcjlwBXAQMP4w4PfP8j0OoLv78YIkVwKvAh4280XV3TxxFvDLSXanmznw/In8V0hL4FwoWi8+ArwlyaHALsA/A78HPKmq/jnJGcDOY6+/8z7fobvL8ZqqOnwRP+89wF8B3wP+sqruWkF2aVk8Ate6UFXfAS6mG/Y4G3ggXUl/O8k+wDMX8W2uA6aSHA7dkEqSg0b7tgO7jf28W4Bb6I7Sz5jMf4W0NB6Baz05m262vuOq6stJrgCuAb4CfGahL66qH4xOWL49yYPo3h9vG32PM4D/leRfgcOr6l+B9wJTVfV3q/EfIy3EuVCkZUryZ8AVVfXuvrNoY7LApWVIchndEM2RVfX9vvNoY7LAJalRnsSUpEZZ4JLUKAtckhplgUtSoyxwSWrU/wdO32Yxjk19aAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.2669192282197318\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 174, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcL0lEQVR4nO3df5RcZZ3n8fenSduJJJDQCTEnPwxOhFkWYpSWhYkogsPiHA5wNuiZOSK4OpOVHT3i6iaic3D1zHpMMqszLu4ZGWUJLMMsQxAcZjiQBZTBJUCTyQ9+KdlBSCKE0CRDtyZth/7uH3U7qW6qOl3Vdavurft5ndMnVU9Vfe/zVFe+dfu5z/1eRQRmZlYcHa3ugJmZNZcTv5lZwTjxm5kVjBO/mVnBOPGbmRXMlFZ3YCJmz54dixcvbnU3zMxy5Yknnng1IuaMbc9F4l+8eDG9vb2t7oaZWa5IeqFSu6d6zMwKxonfzKxgnPjNzArGid/MrGCc+M3MCia1xC9poaQHJT0j6SlJn0va10l6VtI2ST+UNDOtPtjk9A0MsnXnfvoGBjMZz8zqk+ZyzkPAFyJis6QZwBOSNgIbgWsi4pCkNcA1wOoU+2F1uGvLblZv2EZnRwdDw8OsXbGUi5fNz0w8M6tfanv8EfFSRGxObvcDzwDzI+K+iDiUPG0TsCCtPlh9+gYGWb1hGweHhukfPMTBoWFWbdhW9556o+OZ2eQ0ZY5f0mLg3cCjYx76JHBPldeslNQrqXfv3r0p99DK7dp3gM6O0R+Nzo4Odu07kIl4ZjY5qSd+SdOBDcDVEfF6WftXKE0H3VLpdRFxfUT0RETPnDlvOuPYUrRg1jSGhodHtQ0ND7Ng1rRMxDOzyUk18UvqpJT0b4mIO8rarwQuAj4WvgRY5nRP72LtiqVM7exgRtcUpnZ2sHbFUrqnd2UinplNjtLKu5IErAdei4iry9ovBL4FfCAiJjSH09PTE67V03x9A4Ps2neABbOmNSRJNzqemY1P0hMR0TO2Pc1VPcuBjwPbJW1J2r4MfAfoAjaWvhvYFBGfTrEfVqfu6V0NTdCNjmdm9Ukt8UfEw4AqPPQPaW3TzMyOzmfumpkVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/tZW+gUG27txP38Cg4zle7uOlJbWLrZs1211bdrN6wzY6OzoYGh5m7YqlXLxsvuM5Xi7jpcl7/NYW+gYGWb1hGweHhukfPMTBoWFWbdhW956X4zleK+OlzYnf2sKufQfo7Bj9ce7s6GDXvgOO53i5i5c2J35rCwtmTWNoeHhU29DwMAtmTXM8x8tdvLQ58Vtb6J7exdoVS5na2cGMrilM7exg7YqldE/vcjzHy128tCkiWt2Ho+rp6Yne3t5Wd8NyoG9gkF37DrBg1rSG/KdzPMdrZbzJkvRERPS8qd2J38ysPVVL/KlN9UhaKOlBSc9IekrS55L2EyRtlPRc8u+stPqQdVlfQ5yXNclmVps01/EfAr4QEZslzQCekLQR+ARwf0R8U9KXgC8Bq1PsRyZlfQ1xntYkm1ltUtvjj4iXImJzcrsfeAaYD1wCrE+eth64NK0+ZFXW1xDnbU2ymdWmKat6JC0G3g08CsyNiJeg9OUAnFjlNSsl9Urq3bt3bzO62TRZX0OctzXJZlab1BO/pOnABuDqiHh9oq+LiOsjoicieubMmZNeB1sg62uI87Ym2cxqk2ril9RJKenfEhF3JM17JM1LHp8HvJJmH7Io62uI87Ym2cxqk9pyTkmiNIf/WkRcXda+DugrO7h7QkSsGi9Wuy7nzPoa4qytSTaz2lRbzpnmqp7lwMeB7ZK2JG1fBr4J3CbpU8CLwEdS7EOmdU/vamhCzXo8M8uG1BJ/RDwMqMrD56e1XTMzG59r9ZiZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBN/C2X9ilnV4tW7nUqvy+t74HiWZ2nW6rFxZP2KWdXi1budSq8LyOV74HiWd77Yegv0DQyyfM0DHBw6UvN+amcHP119Xl1F0ZoV7+7PvI+Lrnu45u1Uitc1pQMIBg8d+fzl4T1wPMuTpl9s3arL+hWzqsXbsnN/XdupFO+YDnGM8vceOJ61A0/1tEDWr5hVLd6yhTPr2k6leG8MBzD6r808vAeOZ+3Ae/wtkPUrZlWLt2TujLq2UyneusuWsu6yd+XuPXA8awee42+hrF8xq1q8erdT6XV5fQ8cz/Kg2hy/E7+ZWZvywV0zMwOc+M3MCseJ38ysYJz4zcwKxonfzKxgnPjNzAqmrRN/1isXOp6ZtULblmzIeuVCx3PlR7NWacs9/r6BQVZv2MbBoWH6Bw9xcGiYVRu21b2n6XjZimdmk5Na4pd0g6RXJD1Z1rZM0iZJWyT1SjozjW1nvXKh47nyo1krpbnHfyNw4Zi2tcDXImIZcG1yv+GyXrnQ8Vz50ayVUkv8EfEQ8NrYZuC45PbxwC/T2HbWKxc6nis/mrVSqkXaJC0G7o6I05L7/wq4FxClL53fiYgXjhan3iJtWa9c6HhmlqaWVOeskPi/A/wkIjZI+iiwMiI+VOW1K4GVAIsWLTrjhReO+v1gZmZlslKd80rgjuT23wJVD+5GxPUR0RMRPXPmzGlK58zMiqDZif+XwAeS2+cBzzV5+2ZmhZfaCVySbgXOBWZL2gV8Ffgj4C8kTQEOkkzlmJlZ86SW+CPiD6o8dEZa2zQzs6NryzN3zcysOid+M7OCceI3MysYJ34zs4Jp68RftPrvWa+fX7Tfh1lWuR5/m8h6/fyi/T7Msqwt9/iLVv896/Xzi/b7MMu6tkz8Rav/nvX6+UX7fZhlXVsm/qLVf896/fyi/T7Msq4tE3/R6r9nvX5+nn8fWT/AXbR41hiplmVulKzU48+6rNfPz9vvI+sHuIsWz2rXknr8jVJv4jerV9/AIMvXPMDBoSNTVFM7O/jp6vPq+tJyvMnFs/pkpR6/WS5k/QB30eJZY00o8Us6WdL9kp5M7i+V9Cfpds2sdbJ+gLto8ayxJrrH/1fANcAQQERsA34/rU6ZtVrWD3AXLZ411oTm+CU9HhHvlfRPEfHupG1LRCxLu4PgOX5rnawf4C5aPKtNtTn+iZZseFXSbwGRBLsMeKmB/TPLpO7pXQ1NWI5nWTDRxP/HwPXAb0vaDTwPXJ5ar8zMLDUTSvwR8c/AhyQdC3RERH+63TIzs7RMdFXPNyTNjIhfRUS/pFmS/jTtzpmZWeNNdFXPhyNi/8idiNgH/F4qPTIzs1RNNPEfI+nwERpJ04DCHbHJeh2T3uf7+NZ9P6P3+b6GxNuxp5/be3eyY8/omb16+13pdVl/T83a0UQP7v4v4H5J/5PSyp5PAutT61UGZb2OyeXf38TDO0oJ/zsP7OCcJd3c/Idn1R3v2ju3c9OmFw/fv+LsRXz9ktPr7nel1wVk+j01a1cTrtUj6cPA+YCA+yLi3jQ7Vq7V6/izXsek9/k+Lvvepje13/4fzqLnpO6a4+3Y08+Hvv1QxXiX3/BYzf2uNN6uKR1AMHjoyOcvS++pWTuYdK2eiLgnIr4YEV9oZtLPgqzXMXnouVdraj+aLTv3V41XT78rjfeYDnGMsvuemrWzcRO/pIeTf/slvV720y/p9eZ0sfWyXsfk/e+cXVP70SxbOLNqvHr6XWm8bwwHb0R239MRPgZh7WjcxB8R70v+nRERx5X9zIiI45rTxdbLeh2TnpO6OWfJ6Cmdc5Z01zXNA7Bk7gyuOHvRqLYrzl5Ez0nddfW70njXXbaUdZe9q6Hv6UfPWDCq7aM9CyY1zXPXlt0sX/MAl3//UZaveYAfbdldd6w04pnV66hz/JI6gG0RcVpNgaUbgIuAV8pfK+mzwGeAQ8DfR8Sqo8Vq9Rz/iKzXMel9vo+HnnuV979zdt1Jv9yOPf1s2bmfZQtnsmTujMPt9fa70usa9R5k/TiMj0FYK9RdqycihiVtlbQoIl482vPL3AhcB9xU1okPApcASyNiUNKJNcRruazXMek5qf69/EqWzJ0xKuGPqLfflV7XqPdgZI7/IEcS68gcfz3xsx7PbDImupxzHvCUpMeAX400RsTF1V4QEQ9JWjym+SrgmxExmDznldq6a81UbW+8kX+pNOqvlKwfh3F9esuSiSb+rzVoeycD50j6r8BB4IsR8XilJ0paCawEWLRoUaWnWIqqrYlv5Fr5Rp570D29i0UnTOPnew7vl/D2E+r/Ykoj3toVS1k15r3z3r61wriJX9JU4NPAEmA78IOIODTJ7c0CzgLeC9wm6R1R4UBDRFxPqSIoPT092b8wcBvpGxhk9YZtHBwaPjw1sWrDNk6dd1zF9uVLZtecwHqf7zuc9Ef8444+ep/vq2vPv/f5vlFJGuBne36VmXgAFy+bz/Ils12f3lruaOv41wM9lJL+h4H/Nsnt7QLuiJLHgGGgvjWHlppqa+K37NzfsLXyjT73IOvxRnRP7+JdC2c66VtLHS3xnxoRl0fE94DLgHMmub07gfOgdB1f4C3A5P4nWcNVm49etnBmw+apG33uQdbjmWXJ0RL/0MiNWqd4JN0KPAKcImmXpE8BNwDvSC7a/jfAlZWmeay1qp1nsGTujIadf9Docw+yHs8sS8Zdxy/pDY6s4hEwDfh1cjuadRJXVtbxF02eVvXkJZ5ZM1Vbxz/hIm2t5MRvZla7SRdpMxvRyLr/1Wr+t2u8Ozfv5A/XP86dm3dmMt79T7/M6tu3cv/TLzckXqOvEdGsa060a7wR3uO3mpSvvQcmtfa+Ws3/emU93lnf2MjLr//m8P15x72FR778u5mJd8G3fzxqCespc4/l3s+fW3e8Rn5W0oiX9c9LI+J5j98mbby197Xasad/1Ica4KZHXqx7zybr8e7cvHNUkgZ46fXf1L2n3uh49z/9csXzFurd82/kZyWNeFn/vDQ63lhO/DZhjVzbXq3mf7X2vMe7e3vlBFqtvdnx7nt6T03tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9q7XmPd9Hpb6upvdnxLjh1bk3tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9K1UDbId6l71nIvOPeMqpt3nFv4dL3LMxEvPNPfRunzD12VNspc4/l/FPr+yLJ+nkVWf+8NDreWD64azVr5Nr2ajX/2zXenZt3cvf2l7no9LfVnaTTjHf/0y9z39N7uODUuXUn/XJZP68i65+XycbzOn4zs4Lxqh6zNuRr+Fo9JlqP38wyppHXRrBi8R6/WQ6VXzOhf/AQB4eGWbVhm/f8bUKc+M1yqNo1E+q5NoIVjxO/WQ75Gr42GU78ZjlU7ZoJvrKXTYQP7prllK/ha/Vy4jfLse7pXU74VjNP9VhVeaktbma18R6/VZTF2uJm1hje47c3yVttcTOrjRO/vUneaoubWW2c+O1N8lZb3Mxq48Rvb5K32uJmVhuXZbaqslZb3MxqU60ss1f1WFVL5s5oaIJudDwzq4+neqxmjVyPn/VzBRzP8VoZL63rLXiP32rSyPX4WT9XwPEcr5Xx0rzeQmp7/JJukPSKpCcrPPZFSSFpdlrbt8Zr5Hr8rJ8r4HiO18p4aV9vIc2pnhuBC8c2SloI/C7w4tjHLNsauR4/6+cKOJ7jtTJe2tdbSC3xR8RDwGsVHvo2sArI/nIiG6WR6/Gzfq6A4zleK+Olfb2Fph7clXQxsDsitk7guSsl9Urq3bt3bxN6Z0fTyPX4WT9XwPEcr5Xx0r7eQqrr+CUtBu6OiNMkvRV4ELggIv5F0i+Anoh49WhxvI4/Wxq5Hj/r5wo4nuO1Ml7fwOCkrrdQbR1/MxP/6cD9wK+ThxcAvwTOjIiXx4vjxG9mVrtqib9pUz0RsT0iToyIxRGxGNgFvOdoSd+yp961xWmtSU5zG0WLZ8WQ2jp+SbcC5wKzJe0CvhoRP0hre9Yc9a4tTnNNclrbKFo8Kw7X6rEJ6xsYZPmaBzg4dGS1wdTODn66+rxx5x/rfV0z+uZ41s5aPtVj+Vfv2uK01ySnsY2ixbNiceK3Cat3bXHaa5LT2EbR4o3I+jGIrMfLCyd+m7B61xanvSY5jW0ULR6UjhksX/MAl3//UZaveYAfbdldd6wixssTz/FbzepdWzzZNcmt2EZR4mX9GETW42WV6/Fbw3RP76rrP0e9r2vlNooSb+SYwUGOJMKRYwb1xC9avLzxVI+ZZf4YRNbj5Y0Tv5ll/hhE1uPljef4zeywrB6DyEu8rPEcv5kdVVaPQeQlXl54qsfMrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgUkv8km6Q9IqkJ8va1kl6VtI2ST+UNDOt7ZuZWWVp7vHfCFw4pm0jcFpELAV+DlyT4vbNzKyC1BJ/RDwEvDam7b6IOJTc3QQsSGv7ZmZWWSvn+D8J3FPtQUkrJfVK6t27d28Tu2Vm1t5akvglfQU4BNxS7TkRcX1E9EREz5w5c5rXObMyfQODbN25n76BwVZ3xaxhpjR7g5KuBC4Czo+IaPb2zSbqri27Wb1hG50dHQwND7N2xVIuXja/1d0ym7Sm7vFLuhBYDVwcEb9u5rbNatE3MMjqDds4ODRM/+AhDg4Ns2rDNu/5W1tIcznnrcAjwCmSdkn6FHAdMAPYKGmLpL9Ma/tmk7Fr3wE6O0b/9+js6GDXvgMt6pFZ46Q21RMRf1Ch+Qdpbc+skRbMmsbQ8PCotqHhYRbMmtaiHpk1js/cNauge3oXa1csZWpnBzO6pjC1s4O1K5bSPb2r1V0zm7SmH9w1y4uLl81n+ZLZ7Np3gAWzpjnpW9tw4jcbR/f0Lid8azue6jEzKxgnfjOzgnHiNzMrGCd+M7OCceI3MysYJ34zs4Jx4jczKxgnfjOzgnHiN2uiHXv6ub13Jzv29Gcynq8/UAw+c9esSa69czs3bXrx8P0rzl7E1y85PTPxfP2B4vAev1kT7NjTPypJA9z0yIt176k3Op6vP1AsTvxmTbBl5/6a2psdz9cfKBYnfrMmWLZwZk3tzY7n6w8UixO/WRMsmTuDK85eNKrtirMXsWTujEzE8/UHikV5uN55T09P9Pb2trobZpO2Y08/W3buZ9nCmXUn6TTj9Q0M+voDbUTSExHRM7bdq3rMmmjJ3BkNSdBpxfP1B4rBUz1mZgXjxG9mVjBO/GZmBePEb2ZWME78ZmYFk4vlnJL2Ai+kuInZwKspxs+Cdh9ju48PPMZ20cwxvj0i5oxtzEXiT5uk3kprXdtJu4+x3ccHHmO7yMIYPdVjZlYwTvxmZgXjxF9yfas70ATtPsZ2Hx94jO2i5WP0HL+ZWcF4j9/MrGCc+M3MCqbtE7+khZIelPSMpKckfW7M41+UFJJml7VdI2mHpJ9J+rfN73VtxhujpM8m43hK0tqy9rYYo6RlkjZJ2iKpV9KZZa/J2xinSnpM0tZkjF9L2k+QtFHSc8m/s8pek5sxjjO+dZKelbRN0g8lzSx7TW7GB9XHWPZ4NvJNRLT1DzAPeE9yewbwc+DU5P5C4F5KJ4fNTtpOBbYCXcBJwP8Djmn1OOoZI/BB4P8AXcljJ7bhGO8DPpy0/x7w4xyPUcD05HYn8ChwFrAW+FLS/iVgTR7HOM74LgCmJO1r8jq+8caY3M9Mvmn7Pf6IeCkiNie3+4FngPnJw98GVgHlR7gvAf4mIgYj4nlgB3AmGTbOGK8CvhkRg8ljryQvaacxBnBc8rTjgV8mt/M4xoiIgeRuZ/ITlMayPmlfD1ya3M7VGKuNLyLui4hDSfsmYEFyO1fjg3F/h5ChfNP2ib+cpMXAu4FHJV0M7I6IrWOeNh/YWXZ/F0e+KDKvfIzAycA5kh6V9BNJ702e1k5jvBpYJ2kn8GfANcnTcjlGScdI2gK8AmyMiEeBuRHxEpS+AIETk6fnboxVxlfuk8A9ye3cjQ8qjzFr+aYwiV/SdGADpURxCPgKcG2lp1Zoy8Wa1/IxRsTrlK6wNovSn9P/GbhNkmivMV4FfD4iFgKfB34w8tQKL8/8GCPijYhYRmmv90xJp43z9NyNcbzxSfoKpf+bt4w0VQqReicnqcIYl5KxfFOIxC+pk1KyuCUi7gB+i9J82lZJv6D0C9os6W2UvnEXlr18AUemDzKrwhihNJY7kj8/HwOGKRWIaqcxXgmM3P5bjvyZnMsxjoiI/cCPgQuBPZLmAST/jkzZ5XaMY8aHpCuBi4CPRTL5TY7HB6PGeAlZyzetPBDSjB9K36g3AX8+znN+wZGDLf+a0Qdb/pl8HFB60xiBTwNfT26fTOlPSrXZGJ8Bzk1unw88kePf4xxgZnJ7GvCPlJLhOkYf3F2bxzGOM74LgaeBOWOen6vxjTfGMc9peb4pwsXWlwMfB7Yn824AX46If6j05Ih4StJtlD6Ih4A/jog3mtLT+lUcI3ADcIOkJ4HfAFdG6dPWTmP8I+AvJE0BDgIrIbe/x3nAeknHUPpr/LaIuFvSI5Sm6T4FvAh8BHI5xmrj20Ep8W0szUSyKSI+ncPxQZUxVntyq8bokg1mZgVTiDl+MzM7wonfzKxgnPjNzArGid/MrGCc+M3MCsaJ39qWpDeSqp1PJdUS/5Okuj/zkt6XVF58NvlZWfbYnKQ0xj+pVEX0qrLH/k1SebIIy6ctB/xBtHZ2IEqnziPpROCvKRVy+2qtgZKzLP8auDQiNidlde+VtDsi/p7SyWPPRsSVkuYCj0i6HegDrgP+YxwpRFbrtkVp6fVwPa83G8vr+K1tSRqIiOll998BPE6pbMXbgZuBY5OHPxMR/1fSzcDtEXFX8ppbgP8NvJdS8cVry+KdD/wX4LPAjyidqbkbOBv498lrHgfOoHRi2TeBcymdrPTdiPheUnvoLko1lTqBP4mIu5JCdPcADybxLo2IFxr5/lhxOfFb2xqb+JO2fcBvA/3AcEQclPRO4NaI6JH0AUpF3y6VdDywBXgncBuwfuQLIYl1PPB8RJwg6RNAT0R8JnmsA3iEUiXNHmAFpesh/KmkLuCnlM7A3Qm8NSJeT/6K2JRs7+2UTt//nYjYlMobZIXlqR4rmpFqiJ3AdZKWAW9QqmVERPxE0neTqaF/B2yIiEPJdEulvaSKe04RMSzpe5S+DPokXQAslXRZ8pTjKSX4XcA3JL2fUhG9+cDc5DkvOOlbGpz4rTCSqZ43KFW3/CqwB3gXpUUOB8ueejPwMeD3KdWHB3iK0p77j8qedwalGivVDCc/UPrC+WxE3DumT5+gVNjrjIgYSqo3Tk0e/tXER2c2cV7VY4UgaQ7wl8B1SaG644GXkgOmHweOKXv6jZSu20BEPJW0fRf4RPIXApK6KV0mcC0Tcy9wVVJaGkknSzo26ccrSdL/IKUpHrNUeY/f2tm0pJJnJ6XKhzcD30oe+x/ABkkfoXQA9fDedUTskfQMcGdZ20uSLgf+StIMSnvwfx4RfzfBvnwfWEypDruAvZQuoXgL8HeSeikdT3i2noGa1cIHd83GkPRWYDuli7v/S6v7Y9ZonuoxKyPpQ5T2uv+7k761K+/xm5kVjPf4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCub/A2eoKqxqO9IQAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']\n", + "print(pie_pumpkins['DayOfYear'].corr(pie_pumpkins['Price']))\n", + "pie_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### रैखिक प्रतिगमन\n", + "\n", + "हम Scikit Learn का उपयोग करके रैखिक प्रतिगमन मॉडल को प्रशिक्षित करेंगे:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n", + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.77 (17.2%)\n" + ] + } + ], + "source": [ + "X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1)\n", + "y = pie_pumpkins['Price']\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "lin_reg = LinearRegression()\n", + "lin_reg.fit(X_train,y_train)\n", + "\n", + "pred = lin_reg.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXXElEQVR4nO3df3BV5Z3H8feXEDGKEF0QTYCmdTEtv4R6tW5/rL+qYVerjF21bmeHrW5ZXWvXtmJFO63tdEdrnFY722mHGRl1a9mqpGzX1kZrtdqtQC+gBtBYLYgkKFGM+CMCCd/9495gSHJzf+Se3HuefF4zjDfPPfecJ1/hc899znOfY+6OiIiEYUypOyAiIsWjUBcRCYhCXUQkIAp1EZGAKNRFRAIydiQPNmnSJK+rqxvJQ4qIxN66detec/fJuWw7oqFeV1dHMpkcyUOKiMSemb2U67YafhERCYhCXUQkIAp1EZGAKNRFRAKiUBcRCUjW2S9mNg24GzgG2A8sc/fbzawR+AywF3gR+IK7d0bYVxkBqza00djcSntnFzXVVSxpqGfh/NpSd0tEcpTLmXo38DV3/whwCnClmc0EHgZmu/tc4HlgaXTdlJGwakMbS5taaOvswoG2zi6WNrWwakNbqbsmIjnKGuruvsPd16cfvwU8C9S6+0Pu3p3ebDUwNbpuykhobG6la1/PQW1d+3pobG4tUY9EJF95jambWR0wH1jT76lLgQczvGaxmSXNLNnR0VFQJ2VktHd25dUuIuUn51A3s/HASuBqd9/dp/0GUkM09wz2Ondf5u4Jd09MnpzTt1ylRGqqq/JqF5Hyk1Oom1klqUC/x92b+rQvAs4FPu+6hVLsLWmop6qy4qC2qsoKljTUl6hHIpKvXGa/GHAH8Ky7f79P+wLg68Cp7v5udF2UkdI7y0WzX0Tiy7KdYJvZJ4EngBZSUxoBrgd+CIwDXk+3rXb3y4faVyKRcC3oJSKSHzNb5+6JXLbNeqbu7n8AbJCnfp1vx0REJFr6RqmISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gEJOs9SkWitmpDG43NrbR3dlFTXcWShnoWzq8t+33LQKp36SnUpaRWbWhjaVMLXft6AGjr7GJpUwvAsMMgyn3LQKp3edDwi5RUY3PrgRDo1bWvh8bm1rLetwykepcHhbqUVHtnV17t5bJvGUj1Lg8KdSmpmuqqvNrLZd8ykOpdHhTqUlJLGuqpqqw4qK2qsoIlDfVlvW8ZSPUuD7pQKiXVewEtihkTUe5bBlK9y4O5+4gdLJFIeDKZHLHjiYiEwMzWuXsil22znqmb2TTgbuAYYD+wzN1vN7OjgJ8DdcBW4CJ3f6PQTpeC5tSKSGhyGVPvBr7m7h8BTgGuNLOZwHXAI+4+A3gk/XNs9M6pbevswnl/Tu2qDW2l7pqISMGyhrq773D39enHbwHPArXA+cBd6c3uAhZG1MdIaE6tiIQor9kvZlYHzAfWAFPcfQekgh84OsNrFptZ0sySHR0dw+xu8WhOrYiEKOdQN7PxwErganffnevr3H2ZuyfcPTF58uRC+hgJzakVkRDlFOpmVkkq0O9x96Z086tmdmz6+WOBndF0MRqaUysiIcoa6mZmwB3As+7+/T5P/RJYlH68CPif4ncvOgvn13LTBXOora7CgNrqKm66YI5mv4hIrGWdp25mnwSeAFpITWkEuJ7UuPq9wHRgG3Chu+8aal+apy4ikr+izlN39z8AluHpM/PpmIiIREtrv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBET3KBUpkO6cJeVIoS5SgN47Z/XeaKX3zlmAgl1KSsMvIgXQnbOkXCnURQqgO2dJuVKoixRAd86ScqVQFymA7pwl5UoXSkUK0HsxVLNfpNwo1EUKtHB+rUJcyo6GX0REAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJSNlPaYzrSnhx7beIxFtZh3pcV8KLa79FJP7KevglrivhxbXfIhJ/WUPdzJab2U4z29inbZ6ZrTazp8wsaWYnR9G5uK6EF9d+i0j85XKmfiewoF/bLcC33X0e8M30z0UX15Xw4tpvEYm/rKHu7o8Du/o3AxPSjycC7UXuFxDflfDi2m8Rib9CL5ReDTSb2a2k3hg+XrQe9RHXlfDi2m8RiT9z9+wbmdUBD7j77PTPPwR+7+4rzewiYLG7fzrDaxcDiwGmT59+4ksvvVSsvouIjApmts7dE7lsW+jsl0VAU/rxfUDGC6XuvszdE+6emDx5coGHExGRXBQa6u3AqenHZwB/Lk53RERkOLKOqZvZCuA0YJKZbQe+BXwRuN3MxgLvkR5eERGR0soa6u5+SYanTixyX0REZJjK+hulIiKSH4W6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhACr1H6Yhq3vQK//pf6w5qO/yQCmbVTGRmzQRm1UxgVs1EZkwZT2WF3qdEZPSKRahPPbJqQNs7e3tYu3UXa7fuyvr6D006nJk1E9JvABOZVTOBSePHRdFVEZGSyunG08WSSCQ8mUwWZV9vvLOXzTt2s6n9TTa172ZT+25e2Pl2Ufbd6/JTj+NLZ/w148fF4r1PRAKVz42nYxvqueru2c+LHe+wecebbGrbnX4DeJPd73UX7Rizaydw42dmkag7qmj7FBHppVAv0Notu/jOA5vY2LY7smM0zJrCrReewBGHVkZ2DBEJi0I9Ym/v6ebHj73Ajx59MdLj3PmFkzit/uhIjyEi5U+hXkb+9+l2rlqxIdJjfOaEGm6+YA6Ha+xfJEgK9Ryt2tBGY3Mr7Z1d1FRXsaShnoXza0vSl9ff3sPVP3+KJ/78WqTH+d5n53DxSdMjPYaIFJdCPQerNrSxtKmFrn09B9qqKiu46YI5JQv2XK1ct52v3fd0pMeoPqySJ649XWP/ImVAoZ6DT9z8O9o6uwa011ZX8X/XnVGCHhXfltfe4fRbH4v8OLd/bh7nzyvvN0KROFOo5+CD1/2KwX5zA7bcfM5Id6fkbvzlJu7849ZIj3HMhEP53TWnctghGvsXyUc+oT5q/3XVVFcNeqZeUz3w26ujwY3nzeLG82Zl3e75V9/i7B88XtAxXtn9HjO/2ZzTtj+8ZD7nnVBT0HFERrNRe6Ye5zH1OHB3rr3/Ge5btz3S4xx1+CH88bozOLSyItLjiJRSUYdfzGw5cC6w091n92m/CvgS0A38yt2vzXawcgp1KK/ZL6NVpmsbUfj+RSdwwUenjsixRIqp2KH+t8DbwN29oW5mpwM3AOe4+x4zO9rdd2Y7WLmFupRePtc29u93/vnOP/H48x2R96v1uwsYN1Zn/1Ieijqm7u6Pm1ldv+YrgJvdfU96m6yBLtGL4yePfK5tjBlj3H3pyTntN7l1F//wkycL7lf9N36T03Y/+sePcs7cYws+jkixFXqh9HjgU2b2H8B7wDXu/qfBNjSzxcBigOnT9aWXqPS/RtDW2cXSphaAsg720z88mZ+u3jZo+3Ak6o7itovnZb1u0t2zn0/d8ig73nyvoONc+bP1XPmz7NtVVVbwzI1na71/iVyhoT4WOBI4BTgJuNfMPuSDjOW4+zJgGaSGXwrtqAytsbn1oPAC6NrXQ2Nza1mH+qPPDT6Ukqk9H7nUZGzFGJ5cemZO+/vt5lf5l7sLGz7s2tfDjBsezGnbOxYlOPMjUwo6jkihob4daEqH+Foz2w9MAqIf7JRBtWe42JipvVxE2e9i7/vTM6ewNYfvMOzt3s+J332Ytwpc3vmyu3J745g/vZr7L/84FWOsoONImAoN9VXAGcBjZnY8cAgQ7aIlMqS4zruPst+lqskhY8fQcmNDTts+8Ew7X/pZYQu+bdjWyXHX/zqnbVde8Tec+AGt9z8aZA11M1sBnAZMMrPtwLeA5cByM9sI7AUWDTb0IiNnSUP9oOPHSxrqS9ir7KLsdxxqcu7cGs6dm/1LVnu6e1hw2xNsee2dgo7z2R/ndtH4ytOP45qz6zHT2X9cjdovH4UojrNfINp+x7Umw/GbjTu4/KfrIz1G9WGVrPq3T1A36fBIjyMpWvtFRLLa093D9U0bWbk+mm/9jh1jXJiYxkWJqcybVq2z/2HQ2i+jVFzPSuPa7yiN5KeX2y6el3Xfa/7yOhcvW53Xcbr3OyvWbmPF2oFTVvubP72aixLTOHfusVrueZh0ph6IuK5lE9d+RynKmkRd7/f29XDzg8/x3Cu7Wf2XXcPeX3/jxo7hosQ0LkpMY3bthFFz9q/hl1EoruvDx7XfUYqyJuVU7+1vvEvT+jbuTb7M9jeKP/U28YEjuTAxlXPm1jA+5rd61PDLKKR56uGI09z94Zh65GF8+cwZfPnMGUNut69nP4+1dnBf8mUe2vxqzvtPvvQGyZfe4OsrW4bc7vBDKrgwMY3PnTyNDx8zIef9lyuFeiA0Tz0cIc7dH47KijGcNXMKZ83M/i3bba+/y/3rt3N/8mXac1z64Z29Pdz5x60ZbxIzftxYZtZMYFbNBGYeO4FZNROZMWV82S75oFAPRBzmZA8mrv2O0mifuz8c0//qML561vF89azjh9xub/d+fvfcTu5Lvswjzw29HuHbe7pZu2UXa7dkv0bwoUmHp98AJqbeBGomMGn8uLx+h+HSmHpA4jqLJK79jpLm7pePznf3snnHbja372ZT+242tb/J86++nfd+Hrjqk8yunVhQH3ShVERkhHX37GfLa+8cCP7NO1JvAp3v7gPgD18/nalHHlbQvnWhVERkhI2tGMOMKUcwY8oRJf3kU54j/SIiUhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIB0Tx1OYi+bSgSbwp1OaD/WtttnV0sbUqtcKdgF4kHDb/IAY3NrQct9ATQta+HxubWEvVIRPKlUJcDymmtbREpjEJdDsi0pnY5r7UtIgdTqMsBSxrqqaqsOKgtpLW2RUYDXSiVA3ovhmr2i0h8KdTlIAvn1yrERWJMoS4lp7nxA8X1zkf6fznQSNdEoS4lpbnxA0VZk7juO65KUZOsF0rNbLmZ7TSzjYM8d42ZuZlNiqR3EjzNjR8oyprEdd9xVYqa5DL75U5gQf9GM5sGnAVsK3KfZBTR3PiBoqxJXPcdV6WoSdZQd/fHgV2DPPUD4Fpg5O5cLcHR3PiBoqxJXPcdV6WoSUHz1M3sPKDN3Z/OYdvFZpY0s2RHR0chh5OAaW78QFHWJK77jqtS1CTvC6VmdhhwA3B2Ltu7+zJgGUAikdBZvRxEc+MHirImcd13XJWiJuaePWfNrA54wN1nm9kc4BHg3fTTU4F24GR3f2Wo/SQSCU8mk8PrsYjIKGNm69w9kcu2eZ+pu3sLcHSfg20FEu7+Wr77Eoma5k3LaJPLlMYVwJNAvZltN7PLou+WyPD1zhFu6+zCeX+O8KoNbaXumkhksp6pu/slWZ6vK1pvRIpoqDnCOluXUGmVRgmW5k3LaKRlAiRYNdVVtA0S4KN53nTU4noNI679HozO1CVYmjc9suJ6DSOu/c5EoS7BWji/lpsumENtdRUG1FZXcdMFc2J7Blbu4rr2S1z7nYmGXyRoWh9+5MT1GkZc+52JztRFpCjiuvZLXPudiUJdRIoirtcw4trvTDT8IiJFEde1X+La70xyWvulWLT2i4hI/vJZ+0XDLyIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAcka6ma23Mx2mtnGPm2NZvacmT1jZr8ws+pIeykiIjnJ5Uz9TmBBv7aHgdnuPhd4Hlha5H6JiEgBsoa6uz8O7OrX9pC7d6d/XA1MjaBvIiKSp2KMqV8KPJjpSTNbbGZJM0t2dHQU4XAiIpLJsELdzG4AuoF7Mm3j7svcPeHuicmTJw/ncCIiksXYQl9oZouAc4Ez3d2L1yURESlUQaFuZguArwOnuvu7xe2SiIgUKpcpjSuAJ4F6M9tuZpcB/wkcATxsZk+Z2U8i7qeIiOQg65m6u18ySPMdEfRFRESGSd8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAUvPSuiETnG6taWLHmZXrcqTDjko9N47sL5xRl36s2tNHY3Ep7Zxc11VUsaahn4fzaouxbSk+hLlJmvrGqhZ+u3nbg5x73Az8PN9hXbWhjaVMLXft6AGjr7GJpUwuAgj0QGn4RKTMr1rycV3s+GptbDwR6r659PTQ2tw5731IeFOoiZaYnw43EMrXno72zK692iR+FukiZqTDLqz0fNdVVebVL/CjURcrMJR+blld7PpY01FNVWXFQW1VlBUsa6oe9bykPulAqUmZ6L4ZGMful92KoZr+Ey7wI43S5SiQSnkwmR+x4IiIhMLN17p7IZVsNv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBGREZ7+YWQfwEjAJeG3EDly+VAfVAFSDXqpD5hp8wN0n57KDEQ31Awc1S+Y6PSdkqoNqAKpBL9WhODXQ8IuISEAU6iIiASlVqC8r0XHLjeqgGoBq0Et1KEINSjKmLiIi0dDwi4hIQBTqIiIBKXqom9k0M3vUzJ41s01m9u/9nr/GzNzMJvVpW2pmL5hZq5k1FLtPpTBUHczsqvTvusnMbunTHlQdMtXAzOaZ2Woze8rMkmZ2cp/XBFUDADM71MzWmtnT6Tp8O91+lJk9bGZ/Tv/3yD6vCaoOQ9Sg0cyeM7NnzOwXZlbd5zVB1QAy16HP88PPR3cv6h/gWOCj6cdHAM8DM9M/TwOaSX8BKd02E3gaGAd8EHgRqCh2v0b6T6Y6AKcDvwXGpZ87OtQ6DFGDh4C/S7f/PfBYqDVI/14GjE8/rgTWAKcAtwDXpduvA74Xah2GqMHZwNh0+/dCrsFQdUj/XJR8LPqZurvvcPf16cdvAc8CvSvw/wC4Fuh7dfZ84L/dfY+7bwFeAE4m5oaowxXAze6+J/3czvRLgqvDEDVwYEJ6s4lAe/pxcDUA8JS30z9Wpv84qd/3rnT7XcDC9OPg6pCpBu7+kLt3p9tXA1PTj4OrAQz5dwGKlI+RjqmbWR0wH1hjZucBbe7+dL/NaoG+t0nfzvtvAkHoWwfgeOBTZrbGzH5vZielNwu6Dv1qcDXQaGYvA7cCS9ObBVsDM6sws6eAncDD7r4GmOLuOyD1Bggcnd48yDpkqEFflwIPph8HWQMYvA7FzMfIQt3MxgMrSf0D7gZuAL452KaDtAUzz7JvHdx9N6lbCB5J6qPnEuBeMzMCrsMgNbgC+Iq7TwO+AtzRu+kgLw+iBu7e4+7zSJ2Jnmxms4fYPMg6DFUDM7uBVE7c09s02C4i7+QIGKQOcyliPkYS6mZWSeof8T3u3gQcR2o86Gkz20rql1lvZseQeufpe0fdqbz/cTzWBqkDpH7fpvTHsLXAflKL+ARZhww1WAT0Pr6P9z9OBlmDvty9E3gMWAC8ambHAqT/2zsUF3Qd+tUAM1sEnAt83tMDyQReAzioDudTzHyM6ELA3cBtQ2yzlfcvBMzi4AsBfyGcCyID6gBcDnwn/fh4Uh+tLMQ6DFGDZ4HT0o/PBNYF/ndhMlCdflwFPEEqxBo5+ELpLaHWYYgaLAA2A5P7bR9cDYaqQ79thpWPY4fI+0J9AvgnoCU9bgRwvbv/erCN3X2Tmd1L6n9sN3Clu/dE0K+RNmgdgOXAcjPbCOwFFnnq/16IdchUgy8Ct5vZWOA9YDEE/XfhWOAuM6sg9en4Xnd/wMyeJDX8dhmwDbgQgq1Dphq8QCqwHk6NQrLa3S8PtAaQoQ6ZNi6kDlomQEQkIPpGqYhIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiATk/wHell9jjLoNCQAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test,y_test)\n", + "plt.plot(X_test,pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "रेखा की ढलान को रैखिक प्रतिगमन गुणांक से निर्धारित किया जा सकता है:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([-0.01751876]), 21.133734359909326)" + ] + }, + "execution_count": 178, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lin_reg.coef_, lin_reg.intercept_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 179, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([16.64893156])" + ] + }, + "execution_count": 179, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Pumpkin price on programmer's day\n", + "\n", + "lin_reg.predict([[256]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### बहुपद प्रतिगमन\n", + "\n", + "कभी-कभी विशेषताओं और परिणामों के बीच का संबंध स्वाभाविक रूप से गैर-रेखीय होता है। उदाहरण के लिए, कद्दू की कीमतें सर्दियों में (महीने=1,2) अधिक हो सकती हैं, फिर गर्मियों में (महीने=5-7) गिर सकती हैं, और फिर बढ़ सकती हैं। रैखिक प्रतिगमन इस संबंध को सटीक रूप से नहीं समझ सकता।\n", + "\n", + "इस स्थिति में, हम अतिरिक्त विशेषताओं को जोड़ने पर विचार कर सकते हैं। एक सरल तरीका यह है कि इनपुट विशेषताओं से बहुपदों का उपयोग करें, जिससे **बहुपद प्रतिगमन** प्राप्त होगा। Scikit Learn में, हम पाइपलाइनों का उपयोग करके स्वचालित रूप से बहुपद विशेषताओं की पूर्व-गणना कर सकते हैं:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.73 (17.0%)\n", + "Model determination: 0.07639977655280217\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 180, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbw0lEQVR4nO3de3Cc1Znn8e+jm93ClmRb8kWyjYBgDb6ATQQhFwIhFzu7meBQNVOVyu5Sm9RQSWWnJlMTZ3BIZWq2dpcMnprZzM5WTbEDFVLDsJOZOM4USTAEkkBYMJExjOwYY8AXkGRLsi35otb92T+6JbfurXa3ut+j36eqS2+ffvvto0f2T6/Oe/q0uTsiIhKGonx3QEREskehLiISEIW6iEhAFOoiIgFRqIuIBKRkLl+surra6+vr5/IlRUQib//+/Z3uXpPOvnMa6vX19TQ1Nc3lS4qIRJ6ZnUh3Xw2/iIgERKEuIhIQhbqISEAU6iIiAVGoi4gEZMbZL2a2Bvg+sBIYBh529++a2S7gd4F+4G3gP7t7Vw77KnNgz4EWdu09QmtXnNqqGDu2NrB9S12+uyUiaUrnTH0Q+BN3vwG4Dfiqma0HngE2uvuNwJvAztx1U+bCngMt7NzdTEtXHAdauuLs3N3MngMt+e6aiKRpxlB39zZ3fzW5fQE4DNS5+9PuPpjc7WVgde66KXNh194jxAeGxrTFB4bYtfdInnokIrM1qzF1M6sHtgD7xj30ReBnUzznPjNrMrOmjo6OjDopc6O1Kz6rdhEpPGmHupktAn4IfM3dz6e0P0BiiObxyZ7n7g+7e6O7N9bUpPUuV8mT2qrYrNpFpPCkFepmVkoi0B93990p7fcCnwG+4PoIpcjbsbWBWGnxmLZYaTE7tjbkqUciMlvpzH4x4BHgsLv/VUr7NuBPgTvcvSd3XZS5MjLLRbNfRKLLZjrBNrOPAC8AzSSmNAJ8E/gbYAFwJtn2srt/ebpjNTY2uhb0EhGZHTPb7+6N6ew745m6u/8asEke+ulsOyYiIrmld5SKiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQGb8jFKRXNtzoIVde4/Q2hWntirGjq0NbN9SV/DHlolU7/xTqEte7TnQws7dzcQHhgBo6Yqzc3czwBWHQS6PLROp3oVBwy+SV7v2HhkNgRHxgSF27T1S0MeWiVTvwqBQl7xq7YrPqr1Qji0Tqd6FQaEueVVbFZtVe6EcWyZSvQuDQl3yasfWBmKlxWPaYqXF7NjaUNDHlolU78KgC6WSVyMX0HIxYyKXx5aJVO/CYO4+Zy/W2NjoTU1Nc/Z6IiIhMLP97t6Yzr4znqmb2Rrg+8BKYBh42N2/a2ZLgX8C6oHjwO+7+7lMO50PmlMrIqFJZ0x9EPgTd78BuA34qpmtB+4HnnX364Fnk/cjY2RObUtXHOfynNo9B1ry3TURkYzNGOru3uburya3LwCHgTrgbuCx5G6PAdtz1Mec0JxaEQnRrGa/mFk9sAXYB6xw9zZIBD+wfIrn3GdmTWbW1NHRcYXdzR7NqRWREKUd6ma2CPgh8DV3P5/u89z9YXdvdPfGmpqaTPqYE5pTKyIhSivUzayURKA/7u67k82nzWxV8vFVQHtuupgbmlMrIiGaMdTNzIBHgMPu/lcpD/0rcG9y+17gx9nvXu5s31LHg/dsoq4qhgF1VTEevGeTZr+ISKTNOE/dzD4CvAA0k5jSCPBNEuPqPwDWAieB33P3s9MdS/PURURmL6vz1N3914BN8fDHZ9MxERHJLa39IiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEH1GqUiG9MlZUogU6iIZGPnkrJEPWhn55CxAwS55peEXkQzok7OkUCnURTKgT86SQqVQF8mAPjlLCpVCXSQD+uQsKVS6UCqSgZGLoZr9IoVGoS6Soe1b6hTiUnA0/CIiEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQAp+SmNUV8KLar9FJNoKOtSjuhJeVPstItFX0MMvUV0JL6r9FpHomzHUzexRM2s3s4MpbZvN7GUze83Mmszs1lx0Lqor4UW13yISfemcqX8P2Dau7SHgz919M/Dt5P2si+pKeFHtt4hE34yh7u7PA2fHNwMVye1KoDXL/QKiuxJeVPstItGX6YXSrwF7zewvSfxi+FDWepQiqivhRbXfIhJ95u4z72RWDzzp7huT9/8G+JW7/9DMfh+4z90/McVz7wPuA1i7du37T5w4ka2+i4jMC2a2390b09k309kv9wK7k9v/DEx5odTdH3b3RndvrKmpyejFuuMD9A8OZ/RcEZH5JNNQbwXuSG7fBRzNTncm97+ePcqt/+PnfGtPM/tPnCWdvy5EROajGcfUzewJ4E6g2szeA/4M+APgu2ZWAvSSHF7JlbtuWE77hT7+Zf97/MPLJ1m7tDzxAQWba7m2ZlEuX1pEJFLSGlPPlsbGRm9qasr4+Rf7Btl78BR7Xmvhxbc6GXa4aU0Vn9tcy+/eVMuyRQuy2FsRkcIwmzH1SIV6qtPne/nX11r50YEWftt2nuIi4451NWzfUscnb1hBrKx45oOIiETAvAj1VEdOXWDPay38+EALrd29XFVWzLaNq/jcljo+eN0yioss668pIjJX5l2ojxgedvYdO8ueAy38tLmNC32DrKhYwN2b69i+uY4bVi3GTAEvItEyb0M9Ve/AEM+90c6PDrTwyyPtDAw5DSsWs31LHXdvrtVb9kUkMhTq45y71M+TzW3sOdDC/hPnMIPbrlnG57bUsW3TSioWls55n0RE0qVQn8aJM5f4cfIC67HOS5SVFHFXw3I+vWklH/ud5Qp4ESk4CvU0uDuvv9c9Ov7efqGP0mLjw++rZtuGlXxi/QqqNUVSRAqAQn2WhoedA+92sffQKZ46eIqTZ3soMrilfinbNq5k64aVGoMXkbxRqF8Bd+dw2wWeOnSKvQdPceT0BQBuWl3JpzasZNvGlVynd7GKyBxSqGfROx0X2XvoNE8dOsXr73YBcP3yRaNn8BtqKzRNUkRySqGeI23dcZ4+dJqnDp5i37EzDDusXhJjW/IM/ua1SyjSG51EJMsU6nPgzMU+nj3czlOHTvHro530Dw1Ts3gBn1q/gm0bV3LbtcsoLS7oz/UWkYhQqM+xC70D/OJIB3sPnuIXR9rp6R+iYmEJn7hhBZ9Yv4IPX1dNZbmmSopIZhTqedQ7MMQLRzt56uApfn74NN3xAYossZrk7dfX8NHrq9m8pooSncWLSJoU6gVicGiY197t4vmjnbxwtIPX3+1i2GHxghI+9L5lyZCvYe2y8nx3VUQKmEK9QHX3DPDi24mAf/7NTlq64gBcvaycj15fw+3XV/PB65axWO9qFZEUCvUIcHeOdV7ihaOdPP9mBy+9c4ae/iGKi4yb11YlQn5dDZvqKrV0sMg8p1CPoP7BYV49eY4XjnbwwtFOmlu6cYfKWCkfeV81t19fze3raqjTO1tF5h2FegDOXOzjxbfP8MKbiZA/db4XgOtqrkqMxa+r5rZrl1FeNuPHzIpIxCnUA+PuvNV+kV8lA37fsTP0DgxTWmw0Xr2U29dV89Hra1i/qkJvfhIJkEI9cL0DQ+w/cY7nkxdcD7edB2DpVWWjQzUfuGYZa5bGtISBSAAU6mnac6CFXXuP0NoVp7Yqxo6tDWzfUpfvbs1a+4VeXnyrkxfe7OT5o510XuwDYPniBdxSv5TG+iXcUr+U31m5WPPjRSJIoZ6GPQda2Lm7mfjA0GhbrLSYB+/ZFMlgHzE87LzZfoGm4+doOn6W3xw/Nzp18qqyYm6+egmNVyeCfvOaKq5aoDF5kUKnUE/Dh7/z3GjYpaqrivHi/XfloUe509oVp+nE5ZB/49R53KG4yNhQW0Hj1Uu5pX4J769fwvLFC/PdXREZZzahPm9P01onCfTp2qOstirGZ6tifPamWgDO9w5w4GRXMuTP8o+vnODRF48BUL+snMb6pdy0poqNtRXcsKqChaXF+ey+iMzCvA312qrYpGfq8+ETjioWlnLHuhruWFcDJObIH2rtpun4OX5z/CzPvdHOv+x/D4Aig/ctX8TG2krW11awsS7xNZuf5RrKtQ2RQjBvh19CHVPPBnentbuXgy3dHGrp5lDreQ62dnP6fN/oPlcvK2djbSUb6irYUFvJxtoKlmXwma76OYjMLKvDL2b2KPAZoN3dN6a0/yHwX4BB4Cfu/o0M+5sXI4GhM8SJzIy6qhh1VTG2blg52t5xoY9DrcmQb+mmuaWbnzS3jT6+qnIhG2qTIV9XyYbaClZVLpx2WuWuvUfGBDpAfGCIXXuP6GchkoF0hl++B/wt8P2RBjP7GHA3cKO795nZ8tx0L7e2b6lTcMxCzeIF3NmwnDsbLv+4u3sGONTWzW+TQX+w9TzPvdHOcPIPwKVXlaUEfeLr1UvLR98kNZ+ubYjMhRlD3d2fN7P6cc1fAb7j7n3Jfdpz0DeZpXyMTVeWl/Kh66r50HXVo209/YMcbruQOKtvSQzdPPLrdxgYSiT9ogUlrK+tYENtBVXlpZzrGZhw3Gxd29B4vcw3mV4oXQfcbmb/HegFvu7uv5lsRzO7D7gPYO3atRm+nMxk/Nh0S1ecnbubAeY8xMrLSnj/1Ut4/9VLRtv6Boc4evoih1q7OZgM+ideOUnvwPCkx7imupyDLd3UV1/Fogzn0hdSTUTmSloXSpNn6k+OjKmb2UHgOeCPgFuAfwKu9RkOVkgXSkMTxXn3Q8POBx98lvYLfdPut3zxAq6pvmrM7dqaq1iztJwFJVNPt4xiTSQcQ8NOW3eck2d7ePdsDx9rWM7yiszeBzIX89TfA3YnQ/wVMxsGqoGODI8nVyiKY9PFRUbHNIH+d//hZt7pvMSxjksc67zEM789zZlL/aOPFxmsXlI+JuhHtmsrY5GsiUTL+d4BTp5JhPbJlNu7Z3to6YqPDjkC/J//1Mgn1+f+zX2Zhvoe4C7gl2a2DigDOrPVKZm9qM67n6rfdVUxtm1cNaG9u2eAY2cucazzIsc6LvFO5yWOn7lE0/GzXOq/PIumrKSI4iJjcHjiH48rKxbi7lrsTGY0MDRMW1fv5bA+dzm0T57toWvc9aCq8lLWLi1nQ10ln960irVLy0dvqyrn5t3a6UxpfAK4E6g2s/eAPwMeBR5NDsP0A/fONPQiubVja8Ok8713bG3IY69mNtt+V5aXsrm8is1rqsa0uzsdF/oSZ/bJ2/97q5NDrecZ/w+z7Xwv67+9l5WVC1lZsZBVlQtZUZn4urJiYaK9ciHVVy3QUsaBcncu9Q/R1dNPV88AXT0DnO3p571zY8+6W7t6GUo5MSgtNlYvKWfN0nJuXF05GthrkrdsvikvU/P2zUchiupMj1z2e8+BFh566g1au3upXlTGv9+0ijVLyznV3Uvb+V5OdSdup8/3TjirLykyVqSE/MgvgJUp4b988ULKSrTyZT71Dgxxrqefc5cG6IpfDulzPf10xwc4d6mfrvjAaICf6xmgO94/ZmgkVfWiskRILykfE9prl5WzsmJhXj5eUgt6iczS8LDTeamP0919tHXHOZUS+G3J0G/tjk+YrWMGVbFSqsrLqIiVUhUrpTJ5qyq/vH25rWz0Ma2pM1b/4HAieKcJ4smCu29w8hlUAAtLi6iKlVFVnqj5kvKR7TKqYon7lcn2JeWl1FbFCnLlUi3oNU/pTD1zRUXG8sWJM+9Nqysn3cfdOR8fpO18fEzgd17sozs+kDgr7Onn+JlLo/enO2cqKylKBHzKL4GK5HZbdy8vvX2G7vgAS8pL2b6ljtuvr6asuJiykqLErTjxdUHylto+3br5uaq3uzM07Ay5c7F3cFwQpwb05cA+d+ly3Xr6h6Y8dmmxjQnixPBHMpxHwjo27v48/cWpM/VARHUNlaj2Ox3Dw86FvkG6ewZGQ74r3j+6PdLelfJ4d3yAzot90559pqPIGA34BaXFia8lRcQHhjh1vnfMLxszWF0VY/HCUoZHgjkZzkPDzvDoNqOPj7QNpmynEyVFxmjwTnamXJn8Ov7suryseF5f2NaZ+jwU1TVUotrvdBQV2eiwy2xMNb++ZtEC/vcXbqZ/cJj+oSH6BobpHxqmb3A40TaYuJ+63TcwNGafnx8+PSF83aH9Qh8NKxdTZEZxUcrNjKLUr0WMaSsuTn4tsjHPXbSgZNJhjsULSnTxOccU6oGI6pzsqPY7l6b63jsv9nHrNUuv6NjX3P+TSdv7B4f5+3tvuaJjS2HQZftATDUfPQrz1GfTPh/ksiaqd/gU6oHYsbWB2LiLQlGZpx7FfudSLmuieodPwy+BiOr68FHtdy7lsiaqd/g0+0VEpMDNZvaLhl9ERAKiUBcRCYhCXUQkIAp1EZGAKNRFRAKiUBcRCYhCXUQkIAp1EZGA6B2lMkYhrG0uIplTqMuo8Wubt3TF2bm7GUDBLhIRGn6RUdOtbS4i0aBQl1Fa21wk+hTqMkprbYtEn0JdRmmtbZHo04VSGaW1tkWiT6EuY2zfUqcQF4kwhbrknebGT5TLmkT12FE11zVRqEteaW78RLmsSVSPHVX5qMmMF0rN7FEzazezg5M89nUzczOrzknvJHiaGz9RLmsS1WNHVT5qks7sl+8B28Y3mtka4JPAySz3SeYRzY2fKJc1ieqxoyofNZkx1N39eeDsJA/9NfANYO4+uVqCo7nxE+WyJlE9dlTloyYZzVM3s88CLe7+ehr73mdmTWbW1NHRkcnLScA0N36iXNYkqseOqnzUZNYXSs2sHHgA+FQ6+7v7w8DDAI2NjTqrlzE0N36iXNYkqseOqnzUxNxnzlkzqweedPeNZrYJeBboST68GmgFbnX3U9Mdp7Gx0Zuamq6sxyIi84yZ7Xf3xnT2nfWZurs3A8tTXuw40OjunbM9lkiuad60zDfpTGl8AngJaDCz98zsS7nvlsiVG5kj3NIVx7k8R3jPgZZ8d00kZ2Y8U3f3z8/weH3WeiOSRdPNEdbZuoRKqzRKsDRvWuYjLRMgwaqtitEySYDP53nTuRbVaxhR7fdkdKYuwdK86bkV1WsYUe33VBTqEqztW+p48J5N1FXFMKCuKsaD92yK7BlYoYvq2i9R7fdUNPwiQdP68HMnqtcwotrvqehMXUSyIqprv0S131NRqItIVkT1GkZU+z0VDb+ISFZEde2XqPZ7Kmmt/ZItWvtFRGT2ZrP2i4ZfREQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQCMmOom9mjZtZuZgdT2naZ2Rtm9m9m9iMzq8ppL0VEJC3pnKl/D9g2ru0ZYKO73wi8CezMcr9ERCQDM4a6uz8PnB3X9rS7DybvvgyszkHfRERklrIxpv5F4GdTPWhm95lZk5k1dXR0ZOHlRERkKlcU6mb2ADAIPD7VPu7+sLs3untjTU3NlbyciIjMoCTTJ5rZvcBngI+7u2evSyIikqmMQt3MtgF/Ctzh7j3Z7ZKIiGQqnSmNTwAvAQ1m9p6ZfQn4W2Ax8IyZvWZmf5fjfoqISBpmPFN3989P0vxIDvoiIiJXSO8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYBkvPSuiOTOt/Y088S+dxlyp9iMz39gDf9t+6asHHvPgRZ27T1Ca1ec2qoYO7Y2sH1LXVaOLfmnUBcpMN/a08w/vHxy9P6Q++j9Kw32PQda2Lm7mfjAEAAtXXF27m4GULAHQsMvIgXmiX3vzqp9NnbtPTIa6CPiA0Ps2nvkio8thUGhLlJghqb4ILGp2mejtSs+q3aJHoW6SIEpNptV+2zUVsVm1S7Ro1AXKTCf/8CaWbXPxo6tDcRKi8e0xUqL2bG14YqPLYVBF0pFCszIxdBczH4ZuRiq2S/hMs/COF26Ghsbvampac5eT0QkBGa2390b09lXwy8iIgFRqIuIBEShLiISEIW6iEhAFOoiIgGZ09kvZtYBnACqgc45e+HCpTqoBqAajFAdpq7B1e5ek84B5jTUR1/UrCnd6TkhUx1UA1ANRqgO2amBhl9ERAKiUBcRCUi+Qv3hPL1uoVEdVANQDUaoDlmoQV7G1EVEJDc0/CIiEhCFuohIQLIe6ma2xsx+YWaHzeyQmf3RuMe/bmZuZtUpbTvN7C0zO2JmW7Pdp3yYrg5m9ofJ7/WQmT2U0h5UHaaqgZltNrOXzew1M2sys1tTnhNUDQDMbKGZvWJmryfr8OfJ9qVm9oyZHU1+XZLynKDqME0NdpnZG2b2b2b2IzOrSnlOUDWAqeuQ8viV56O7Z/UGrAJuTm4vBt4E1ifvrwH2knwDUrJtPfA6sAC4BngbKM52v+b6NlUdgI8BPwcWJB9bHmodpqnB08Cnk+3/DvhlqDVIfl8GLEpulwL7gNuAh4D7k+33A38Rah2mqcGngJJk+1+EXIPp6pC8n5V8zPqZuru3ufurye0LwGFgZAX+vwa+AaRenb0b+L/u3ufux4C3gFuJuGnq8BXgO+7el3ysPfmU4OowTQ0cqEjuVgm0JreDqwGAJ1xM3i1N3pzE9/tYsv0xYHtyO7g6TFUDd3/a3QeT7S8Dq5PbwdUApv23AFnKx5yOqZtZPbAF2GdmnwVa3P31cbvVAakfk/4el38JBCG1DsA64HYz22dmvzKzW5K7BV2HcTX4GrDLzN4F/hLYmdwt2BqYWbGZvQa0A8+4+z5ghbu3QeIXILA8uXuQdZiiBqm+CPwsuR1kDWDyOmQzH3MW6ma2CPghif/Ag8ADwLcn23WStmDmWabWwd3Pk/gIwSUk/vTcAfzAzIyA6zBJDb4C/LG7rwH+GHhkZNdJnh5EDdx9yN03kzgTvdXMNk6ze5B1mK4GZvYAiZx4fKRpskPkvJNzYJI63EgW8zEnoW5mpST+Ez/u7ruB60iMB71uZsdJfDOvmtlKEr95Uj9RdzWX/xyPtEnqAInvd3fyz7BXgGESi/gEWYcpanAvMLL9z1z+czLIGqRy9y7gl8A24LSZrQJIfh0Zigu6DuNqgJndC3wG+IInB5IJvAYwpg53k818zNGFgO8D/3OafY5z+ULABsZeCHiHcC6ITKgD8GXgvya315H408pCrMM0NTgM3Jnc/jiwP/B/CzVAVXI7BrxAIsR2MfZC6UOh1mGaGmwDfgvUjNs/uBpMV4dx+1xRPpZMk/eZ+jDwH4Hm5LgRwDfd/aeT7ezuh8zsByR+sIPAV919KAf9mmuT1gF4FHjUzA4C/cC9nvjphViHqWrwB8B3zawE6AXug6D/LawCHjOzYhJ/Hf/A3Z80s5dIDL99CTgJ/B4EW4epavAWicB6JjEKycvu/uVAawBT1GGqnTOpg5YJEBEJiN5RKiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgH5/+EaqS+WjFbpAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)\n", + "\n", + "plt.scatter(X_test,y_test)\n", + "plt.plot(sorted(X_test),pipeline.predict(sorted(X_test)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### विभिन्न प्रकारों को एन्कोड करना\n", + "\n", + "आदर्श स्थिति में, हम चाहते हैं कि एक ही मॉडल का उपयोग करके विभिन्न कद्दू की किस्मों की कीमतों का अनुमान लगाया जा सके। किस्म को ध्यान में रखने के लिए, सबसे पहले हमें इसे संख्यात्मक रूप में बदलना होगा, या **एन्कोड** करना होगा। इसे करने के कई तरीके हैं:\n", + "\n", + "* सरल संख्यात्मक एन्कोडिंग, जो विभिन्न किस्मों की एक तालिका बनाएगी, और फिर किस्म के नाम को उस तालिका में एक इंडेक्स से बदल देगी। यह रैखिक प्रतिगमन (linear regression) के लिए सबसे अच्छा तरीका नहीं है, क्योंकि रैखिक प्रतिगमन इंडेक्स के संख्यात्मक मान को ध्यान में रखता है, और यह संख्यात्मक मान कीमत के साथ संख्यात्मक रूप से मेल खाने की संभावना नहीं रखता।\n", + "* वन-हॉट एन्कोडिंग (One-hot encoding), जो `Variety` कॉलम को 4 अलग-अलग कॉलम से बदल देगी, प्रत्येक किस्म के लिए एक कॉलम। यह कॉलम 1 दिखाएगा यदि संबंधित पंक्ति दी गई किस्म की है, और अन्यथा 0 दिखाएगा।\n", + "\n", + "नीचे दिया गया कोड दिखाता है कि हम किस प्रकार एक किस्म को वन-हॉट एन्कोड कर सकते हैं:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                FAIRYTALEMINIATUREMIXED HEIRLOOM VARIETIESPIE TYPE
                                700001
                                710001
                                720001
                                730001
                                740001
                                ...............
                                17380100
                                17390100
                                17400100
                                17410100
                                17420100
                                \n", + "

                                415 rows × 4 columns

                                \n", + "
                                " + ], + "text/plain": [ + " FAIRYTALE MINIATURE MIXED HEIRLOOM VARIETIES PIE TYPE\n", + "70 0 0 0 1\n", + "71 0 0 0 1\n", + "72 0 0 0 1\n", + "73 0 0 0 1\n", + "74 0 0 0 1\n", + "... ... ... ... ...\n", + "1738 0 1 0 0\n", + "1739 0 1 0 0\n", + "1740 0 1 0 0\n", + "1741 0 1 0 0\n", + "1742 0 1 0 0\n", + "\n", + "[415 rows x 4 columns]" + ] + }, + "execution_count": 181, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.get_dummies(new_pumpkins['Variety'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### विविधता पर रैखिक प्रतिगमन\n", + "\n", + "अब हम ऊपर दिए गए कोड का ही उपयोग करेंगे, लेकिन `DayOfYear` के बजाय हम अपनी वन-हॉट-एन्कोडेड विविधता को इनपुट के रूप में उपयोग करेंगे:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "metadata": {}, + "outputs": [], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety'])\n", + "y = new_pumpkins['Price']" + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 5.24 (19.7%)\n", + "Model determination: 0.774085281105197\n" + ] + } + ], + "source": [ + "def run_linear_regression(X,y):\n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + " lin_reg = LinearRegression()\n", + " lin_reg.fit(X_train,y_train)\n", + "\n", + " pred = lin_reg.predict(X_test)\n", + "\n", + " mse = np.sqrt(mean_squared_error(y_test,pred))\n", + " print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + " score = lin_reg.score(X_train,y_train)\n", + " print('Model determination: ', score)\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "हम उसी तरीके से अन्य विशेषताओं का उपयोग करने की कोशिश कर सकते हैं, और उन्हें संख्यात्मक विशेषताओं जैसे `Month` या `DayOfYear` के साथ संयोजित कर सकते हैं:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.84 (10.5%)\n", + "Model determination: 0.9401096672643048\n" + ] + } + ], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety']) \\\n", + " .join(new_pumpkins['Month']) \\\n", + " .join(pd.get_dummies(new_pumpkins['City'])) \\\n", + " .join(pd.get_dummies(new_pumpkins['Package']))\n", + "y = new_pumpkins['Price']\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### बहुपद प्रतिगमन\n", + "\n", + "बहुपद प्रतिगमन का उपयोग उन श्रेणीबद्ध विशेषताओं के साथ भी किया जा सकता है जिन्हें वन-हॉट-एन्कोड किया गया हो। बहुपद प्रतिगमन को प्रशिक्षित करने के लिए कोड मूल रूप से वही होगा जैसा हमने ऊपर देखा है।\n" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.23 (8.25%)\n", + "Model determination: 0.9652870784724543\n" + ] + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d77bd89ae7e79780c68c58bab91f13f8", + "translation_date": "2025-09-04T01:05:06+00:00", + "source_file": "2-Regression/3-Linear/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/hi/2-Regression/4-Logistic/README.md b/translations/hi/2-Regression/4-Logistic/README.md new file mode 100644 index 000000000..8673e87c1 --- /dev/null +++ b/translations/hi/2-Regression/4-Logistic/README.md @@ -0,0 +1,408 @@ + +# श्रेणियों की भविष्यवाणी के लिए लॉजिस्टिक रिग्रेशन + +![लॉजिस्टिक बनाम लीनियर रिग्रेशन इन्फोग्राफिक](../../../../translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.hi.png) + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/) + +> ### [यह पाठ R में उपलब्ध है!](../../../../2-Regression/4-Logistic/solution/R/lesson_4.html) + +## परिचय + +रिग्रेशन पर इस अंतिम पाठ में, जो कि मशीन लर्निंग की एक बुनियादी _क्लासिक_ तकनीक है, हम लॉजिस्टिक रिग्रेशन पर ध्यान देंगे। आप इस तकनीक का उपयोग पैटर्न खोजने और बाइनरी श्रेणियों की भविष्यवाणी करने के लिए करेंगे। क्या यह कैंडी चॉकलेट है या नहीं? क्या यह बीमारी संक्रामक है या नहीं? क्या यह ग्राहक इस उत्पाद को चुनेगा या नहीं? + +इस पाठ में, आप सीखेंगे: + +- डेटा विज़ुअलाइज़ेशन के लिए एक नई लाइब्रेरी +- लॉजिस्टिक रिग्रेशन की तकनीकें + +✅ इस प्रकार के रिग्रेशन के साथ काम करने की अपनी समझ को इस [लर्न मॉड्यूल](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott) में गहरा करें। + +## पूर्वापेक्षा + +कद्दू डेटा के साथ काम करने के बाद, अब हम इसके साथ पर्याप्त रूप से परिचित हैं कि यह महसूस कर सकें कि इसमें एक बाइनरी श्रेणी है जिसके साथ हम काम कर सकते हैं: `Color`। + +आइए एक लॉजिस्टिक रिग्रेशन मॉडल बनाएं ताकि यह भविष्यवाणी की जा सके कि कुछ वेरिएबल्स को देखते हुए, _किस रंग का कद्दू होने की संभावना है_ (नारंगी 🎃 या सफेद 👻)। + +> हम रिग्रेशन के बारे में एक पाठ में बाइनरी वर्गीकरण की बात क्यों कर रहे हैं? केवल भाषाई सुविधा के लिए, क्योंकि लॉजिस्टिक रिग्रेशन [वास्तव में एक वर्गीकरण विधि](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression) है, हालांकि यह एक लीनियर-आधारित है। डेटा को वर्गीकृत करने के अन्य तरीकों के बारे में अगले पाठ समूह में जानें। + +## प्रश्न को परिभाषित करें + +हमारे उद्देश्यों के लिए, हम इसे बाइनरी के रूप में व्यक्त करेंगे: 'सफेद' या 'सफेद नहीं'। हमारे डेटासेट में एक 'धारीदार' श्रेणी भी है लेकिन इसके कुछ ही उदाहरण हैं, इसलिए हम इसका उपयोग नहीं करेंगे। यह वैसे भी तब गायब हो जाती है जब हम डेटासेट से null मानों को हटा देते हैं। + +> 🎃 मजेदार तथ्य, हम कभी-कभी सफेद कद्दू को 'भूत' कद्दू कहते हैं। इन्हें तराशना बहुत आसान नहीं होता, इसलिए ये नारंगी वाले जितने लोकप्रिय नहीं होते लेकिन ये दिखने में बहुत अच्छे लगते हैं! तो हम अपने प्रश्न को इस तरह भी पुनः स्वरूपित कर सकते हैं: 'भूत' या 'भूत नहीं'। 👻 + +## लॉजिस्टिक रिग्रेशन के बारे में + +लॉजिस्टिक रिग्रेशन लीनियर रिग्रेशन से अलग है, जिसे आपने पहले सीखा था, कुछ महत्वपूर्ण तरीकों से। + +[![शुरुआती के लिए मशीन लर्निंग - लॉजिस्टिक रिग्रेशन को समझना](https://img.youtube.com/vi/KpeCT6nEpBY/0.jpg)](https://youtu.be/KpeCT6nEpBY "शुरुआती के लिए मशीन लर्निंग - लॉजिस्टिक रिग्रेशन को समझना") + +> 🎥 लॉजिस्टिक रिग्रेशन का संक्षिप्त वीडियो अवलोकन देखने के लिए ऊपर दी गई छवि पर क्लिक करें। + +### बाइनरी वर्गीकरण + +लॉजिस्टिक रिग्रेशन लीनियर रिग्रेशन के समान सुविधाएँ प्रदान नहीं करता। पूर्व बाइनरी श्रेणी ("सफेद या सफेद नहीं") के बारे में भविष्यवाणी प्रदान करता है जबकि बाद वाला निरंतर मानों की भविष्यवाणी करने में सक्षम है, उदाहरण के लिए कद्दू की उत्पत्ति और कटाई के समय को देखते हुए, _इसकी कीमत कितनी बढ़ेगी_। + +![कद्दू वर्गीकरण मॉडल](../../../../translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.hi.png) +> इन्फोग्राफिक [Dasani Madipalli](https://twitter.com/dasani_decoded) द्वारा + +### अन्य वर्गीकरण + +लॉजिस्टिक रिग्रेशन के अन्य प्रकार भी हैं, जिनमें मल्टीनोमियल और ऑर्डिनल शामिल हैं: + +- **मल्टीनोमियल**, जिसमें एक से अधिक श्रेणियां होती हैं - "नारंगी, सफेद, और धारीदार"। +- **ऑर्डिनल**, जिसमें क्रमबद्ध श्रेणियां होती हैं, उपयोगी यदि हम अपने परिणामों को तार्किक रूप से क्रमबद्ध करना चाहते हैं, जैसे हमारे कद्दू जो आकारों की एक सीमित संख्या (mini, sm, med, lg, xl, xxl) द्वारा क्रमबद्ध होते हैं। + +![मल्टीनोमियल बनाम ऑर्डिनल रिग्रेशन](../../../../translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.hi.png) + +### वेरिएबल्स को सहसंबद्ध होने की आवश्यकता नहीं है + +याद है कि लीनियर रिग्रेशन अधिक सहसंबद्ध वेरिएबल्स के साथ बेहतर काम करता था? लॉजिस्टिक रिग्रेशन इसके विपरीत है - वेरिएबल्स को संरेखित होने की आवश्यकता नहीं है। यह इस डेटा के लिए काम करता है जिसमें कुछ हद तक कमजोर सहसंबंध हैं। + +### आपको बहुत सारे साफ डेटा की आवश्यकता है + +लॉजिस्टिक रिग्रेशन अधिक सटीक परिणाम देगा यदि आप अधिक डेटा का उपयोग करते हैं; हमारा छोटा डेटासेट इस कार्य के लिए आदर्श नहीं है, इसलिए इसे ध्यान में रखें। + +[![शुरुआती के लिए मशीन लर्निंग - लॉजिस्टिक रिग्रेशन के लिए डेटा विश्लेषण और तैयारी](https://img.youtube.com/vi/B2X4H9vcXTs/0.jpg)](https://youtu.be/B2X4H9vcXTs "शुरुआती के लिए मशीन लर्निंग - लॉजिस्टिक रिग्रेशन के लिए डेटा विश्लेषण और तैयारी") + +> 🎥 लीनियर रिग्रेशन के लिए डेटा तैयार करने का संक्षिप्त वीडियो अवलोकन देखने के लिए ऊपर दी गई छवि पर क्लिक करें। + +✅ उन प्रकार के डेटा के बारे में सोचें जो लॉजिस्टिक रिग्रेशन के लिए उपयुक्त होंगे। + +## अभ्यास - डेटा को व्यवस्थित करें + +सबसे पहले, डेटा को थोड़ा साफ करें, null मानों को हटाएं और केवल कुछ कॉलम चुनें: + +1. निम्नलिखित कोड जोड़ें: + + ```python + + columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color'] + pumpkins = full_pumpkins.loc[:, columns_to_select] + + pumpkins.dropna(inplace=True) + ``` + + आप हमेशा अपने नए डेटा फ्रेम पर एक नज़र डाल सकते हैं: + + ```python + pumpkins.info + ``` + +### विज़ुअलाइज़ेशन - श्रेणीबद्ध प्लॉट + +अब तक आपने [स्टार्टर नोटबुक](./notebook.ipynb) को कद्दू डेटा के साथ फिर से लोड कर लिया है और इसे इस तरह से साफ किया है कि इसमें कुछ वेरिएबल्स, जिनमें `Color` शामिल है, का डेटासेट संरक्षित हो। आइए नोटबुक में डेटा फ्रेम को एक अलग लाइब्रेरी का उपयोग करके विज़ुअलाइज़ करें: [Seaborn](https://seaborn.pydata.org/index.html), जो पहले उपयोग किए गए Matplotlib पर आधारित है। + +Seaborn आपके डेटा को विज़ुअलाइज़ करने के कुछ शानदार तरीके प्रदान करता है। उदाहरण के लिए, आप `Variety` और `Color` के लिए डेटा वितरण की तुलना एक श्रेणीबद्ध प्लॉट में कर सकते हैं। + +1. कद्दू डेटा `pumpkins` का उपयोग करके और प्रत्येक कद्दू श्रेणी (नारंगी या सफेद) के लिए रंग मानचित्रण निर्दिष्ट करके `catplot` फ़ंक्शन का उपयोग करके ऐसा प्लॉट बनाएं: + + ```python + import seaborn as sns + + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + + sns.catplot( + data=pumpkins, y="Variety", hue="Color", kind="count", + palette=palette, + ) + ``` + + ![विज़ुअल डेटा का एक ग्रिड](../../../../translated_images/pumpkins_catplot_1.c55c409b71fea2ecc01921e64b91970542101f90bcccfa4aa3a205db8936f48b.hi.png) + + डेटा का अवलोकन करके, आप देख सकते हैं कि `Color` डेटा `Variety` से कैसे संबंधित है। + + ✅ इस श्रेणीबद्ध प्लॉट को देखते हुए, आप कौन-कौन से रोचक अन्वेषणों की कल्पना कर सकते हैं? + +### डेटा पूर्व-प्रसंस्करण: फीचर और लेबल एन्कोडिंग + +हमारे कद्दू डेटासेट में सभी कॉलम के लिए स्ट्रिंग मान हैं। श्रेणीबद्ध डेटा के साथ काम करना मनुष्यों के लिए सहज है लेकिन मशीनों के लिए नहीं। मशीन लर्निंग एल्गोरिदम संख्याओं के साथ बेहतर काम करते हैं। यही कारण है कि एन्कोडिंग डेटा पूर्व-प्रसंस्करण चरण में एक बहुत ही महत्वपूर्ण कदम है, क्योंकि यह हमें श्रेणीबद्ध डेटा को संख्यात्मक डेटा में बदलने में सक्षम बनाता है, बिना किसी जानकारी को खोए। अच्छी एन्कोडिंग एक अच्छे मॉडल के निर्माण की ओर ले जाती है। + +फीचर एन्कोडिंग के लिए दो मुख्य प्रकार के एन्कोडर हैं: + +1. ऑर्डिनल एन्कोडर: यह ऑर्डिनल वेरिएबल्स के लिए उपयुक्त है, जो श्रेणीबद्ध वेरिएबल्स हैं जहां उनका डेटा तार्किक क्रम का पालन करता है, जैसे हमारे डेटासेट में `Item Size` कॉलम। यह एक मैपिंग बनाता है ताकि प्रत्येक श्रेणी को एक संख्या द्वारा दर्शाया जा सके, जो कॉलम में श्रेणी का क्रम है। + + ```python + from sklearn.preprocessing import OrdinalEncoder + + item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']] + ordinal_features = ['Item Size'] + ordinal_encoder = OrdinalEncoder(categories=item_size_categories) + ``` + +2. श्रेणीबद्ध एन्कोडर: यह नाममात्र वेरिएबल्स के लिए उपयुक्त है, जो श्रेणीबद्ध वेरिएबल्स हैं जहां उनका डेटा तार्किक क्रम का पालन नहीं करता, जैसे हमारे डेटासेट में `Item Size` के अलावा सभी फीचर्स। यह एक वन-हॉट एन्कोडिंग है, जिसका अर्थ है कि प्रत्येक श्रेणी को एक बाइनरी कॉलम द्वारा दर्शाया जाता है: एन्कोडेड वेरिएबल 1 के बराबर है यदि कद्दू उस `Variety` से संबंधित है और अन्यथा 0। + + ```python + from sklearn.preprocessing import OneHotEncoder + + categorical_features = ['City Name', 'Package', 'Variety', 'Origin'] + categorical_encoder = OneHotEncoder(sparse_output=False) + ``` + +इसके बाद, `ColumnTransformer` का उपयोग कई एन्कोडर को एक ही चरण में संयोजित करने और उन्हें उपयुक्त कॉलम पर लागू करने के लिए किया जाता है। + +```python + from sklearn.compose import ColumnTransformer + + ct = ColumnTransformer(transformers=[ + ('ord', ordinal_encoder, ordinal_features), + ('cat', categorical_encoder, categorical_features) + ]) + + ct.set_output(transform='pandas') + encoded_features = ct.fit_transform(pumpkins) +``` + +दूसरी ओर, लेबल को एन्कोड करने के लिए, हम scikit-learn `LabelEncoder` क्लास का उपयोग करते हैं, जो एक उपयोगिता क्लास है जो लेबल को सामान्य बनाने में मदद करता है ताकि वे केवल 0 और n_classes-1 (यहां, 0 और 1) के बीच मान रखें। + +```python + from sklearn.preprocessing import LabelEncoder + + label_encoder = LabelEncoder() + encoded_label = label_encoder.fit_transform(pumpkins['Color']) +``` + +एक बार जब हमने फीचर्स और लेबल को एन्कोड कर लिया, तो हम उन्हें एक नए डेटा फ्रेम `encoded_pumpkins` में मर्ज कर सकते हैं। + +```python + encoded_pumpkins = encoded_features.assign(Color=encoded_label) +``` + +✅ `Item Size` कॉलम के लिए ऑर्डिनल एन्कोडर का उपयोग करने के क्या फायदे हैं? + +### वेरिएबल्स के बीच संबंधों का विश्लेषण करें + +अब जब हमने अपने डेटा को पूर्व-प्रसंस्कृत कर लिया है, तो हम फीचर्स और लेबल के बीच संबंधों का विश्लेषण कर सकते हैं ताकि यह समझ सकें कि मॉडल फीचर्स को देखते हुए लेबल की भविष्यवाणी कितनी अच्छी तरह कर पाएगा। इस प्रकार के विश्लेषण को करने का सबसे अच्छा तरीका डेटा को प्लॉट करना है। हम फिर से Seaborn के `catplot` फ़ंक्शन का उपयोग करेंगे, `Item Size`, `Variety` और `Color` के बीच संबंधों को एक श्रेणीबद्ध प्लॉट में विज़ुअलाइज़ करने के लिए। डेटा को बेहतर तरीके से प्लॉट करने के लिए हम एन्कोडेड `Item Size` कॉलम और अनएन्कोडेड `Variety` कॉलम का उपयोग करेंगे। + +```python + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size'] + + g = sns.catplot( + data=pumpkins, + x="Item Size", y="Color", row='Variety', + kind="box", orient="h", + sharex=False, margin_titles=True, + height=1.8, aspect=4, palette=palette, + ) + g.set(xlabel="Item Size", ylabel="").set(xlim=(0,6)) + g.set_titles(row_template="{row_name}") +``` + +![विज़ुअल डेटा का एक कैटप्लॉट](../../../../translated_images/pumpkins_catplot_2.87a354447880b3889278155957f8f60dd63db4598de5a6d0fda91c334d31f9f1.hi.png) + +### स्वॉर्म प्लॉट का उपयोग करें + +चूंकि `Color` एक बाइनरी श्रेणी है (सफेद या नहीं), इसे विज़ुअलाइज़ेशन के लिए 'एक [विशेष दृष्टिकोण](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar)' की आवश्यकता है। इस श्रेणी के अन्य वेरिएबल्स के साथ संबंध को विज़ुअलाइज़ करने के अन्य तरीके भी हैं। + +आप Seaborn प्लॉट्स के साथ वेरिएबल्स को साइड-बाय-साइड विज़ुअलाइज़ कर सकते हैं। + +1. मानों के वितरण को दिखाने के लिए एक 'स्वॉर्म' प्लॉट आज़माएं: + + ```python + palette = { + 0: 'orange', + 1: 'wheat' + } + sns.swarmplot(x="Color", y="ord__Item Size", data=encoded_pumpkins, palette=palette) + ``` + + ![विज़ुअल डेटा का एक स्वॉर्म](../../../../translated_images/swarm_2.efeacfca536c2b577dc7b5f8891f28926663fbf62d893ab5e1278ae734ca104e.hi.png) + +**ध्यान दें**: ऊपर दिया गया कोड एक चेतावनी उत्पन्न कर सकता है, क्योंकि Seaborn इतने सारे डेटा पॉइंट्स को स्वॉर्म प्लॉट में दर्शाने में विफल रहता है। एक संभावित समाधान मार्कर के आकार को कम करना है, 'size' पैरामीटर का उपयोग करके। हालांकि, ध्यान दें कि इससे प्लॉट की पठनीयता प्रभावित होती है। + +> **🧮 गणित दिखाएं** +> +> लॉजिस्टिक रिग्रेशन 'मैक्सिमम लाइकलीहुड' की अवधारणा पर निर्भर करता है, जिसमें [सिग्मॉइड फंक्शन्स](https://wikipedia.org/wiki/Sigmoid_function) का उपयोग होता है। एक 'सिग्मॉइड फंक्शन' प्लॉट पर 'S' आकार जैसा दिखता है। यह एक मान लेता है और इसे 0 और 1 के बीच कहीं मैप करता है। इसका वक्र 'लॉजिस्टिक वक्र' भी कहलाता है। इसका सूत्र इस प्रकार दिखता है: +> +> ![लॉजिस्टिक फंक्शन](../../../../translated_images/sigmoid.8b7ba9d095c789cf72780675d0d1d44980c3736617329abfc392dfc859799704.hi.png) +> +> जहां सिग्मॉइड का मध्य बिंदु x के 0 बिंदु पर होता है, L वक्र का अधिकतम मान है, और k वक्र की तीव्रता है। यदि फंक्शन का परिणाम 0.5 से अधिक है, तो संबंधित लेबल को बाइनरी विकल्प के '1' वर्ग में दिया जाएगा। यदि नहीं, तो इसे '0' के रूप में वर्गीकृत किया जाएगा। + +## अपना मॉडल बनाएं + +Scikit-learn में इन बाइनरी वर्गीकरणों को खोजने के लिए एक मॉडल बनाना आश्चर्यजनक रूप से सरल है। + +[![शुरुआती के लिए मशीन लर्निंग - डेटा वर्गीकरण के लिए लॉजिस्टिक रिग्रेशन](https://img.youtube.com/vi/MmZS2otPrQ8/0.jpg)](https://youtu.be/MmZS2otPrQ8 "शुरुआती के लिए मशीन लर्निंग - डेटा वर्गीकरण के लिए लॉजिस्टिक रिग्रेशन") + +> 🎥 लीनियर रिग्रेशन मॉडल बनाने का संक्षिप्त वीडियो अवलोकन देखने के लिए ऊपर दी गई छवि पर क्लिक करें। + +1. उन वेरिएबल्स का चयन करें जिन्हें आप अपने वर्गीकरण मॉडल में उपयोग करना चाहते हैं और `train_test_split()` को कॉल करके प्रशिक्षण और परीक्षण सेट को विभाजित करें: + + ```python + from sklearn.model_selection import train_test_split + + X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])] + y = encoded_pumpkins['Color'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + + ``` + +2. अब आप अपने मॉडल को प्रशिक्षित कर सकते हैं, `fit()` को अपने प्रशिक्षण डेटा के साथ कॉल करके, और इसके परिणाम को प्रिंट कर सकते हैं: + + ```python + from sklearn.metrics import f1_score, classification_report + from sklearn.linear_model import LogisticRegression + + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('F1-score: ', f1_score(y_test, predictions)) + ``` + + अपने मॉडल के स्कोरबोर्ड पर एक नज़र डालें। यह बुरा नहीं है, यह देखते हुए कि आपके पास केवल लगभग 1000 पंक्तियों का डेटा है: + + ```output + precision recall f1-score support + + 0 0.94 0.98 0.96 166 + 1 0.85 0.67 0.75 33 + + accuracy 0.92 199 + macro avg 0.89 0.82 0.85 199 + weighted avg 0.92 0.92 0.92 199 + + Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 + 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 + 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 + 0 0 0 1 0 0 0 0 0 0 0 0 1 1] + F1-score: 0.7457627118644068 + ``` + +## भ्रम मैट्रिक्स के माध्यम से बेहतर समझ + +जबकि आप ऊपर दिए गए आइटम को प्रिंट करके [शर्तों](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report) में स्कोरबोर्ड रिपोर्ट प्राप्त कर सकते हैं, आप अपने मॉडल को अधिक आसानी से समझ सकते हैं यदि आप [भ्रम मैट्रिक्स](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix) का उपयोग करें ताकि यह समझ सकें कि मॉडल कैसा प्रदर्शन कर रहा है। + +> 🎓 एक '[भ्रम मैट्रिक्स](https://wikipedia.org/wiki/Confusion_matrix)' (या 'त्रुटि मैट्रिक्स') एक तालिका है जो आपके मॉडल के सही बनाम गलत सकारात्मक और नकारात्मक को व्यक्त करती है, इस प्रकार भविष्यवाणियों की सटीकता को मापती है। + +1. भ्रम मैट्रिक्स का उपयोग करने के लिए, `confusion_matrix()` को कॉल करें: + + ```python + from sklearn.metrics import confusion_matrix + confusion_matrix(y_test, predictions) + ``` + + अपने मॉडल के भ्रम मैट्रिक्स पर एक नज़र डालें: + + ```output + array([[162, 4], + [ 11, 22]]) + ``` + +Scikit-learn में, भ्रम मैट्रिक्स की पंक्तियाँ (axis 0) वास्तविक लेबल हैं और कॉलम (axis 1) भविष्यवाणी किए गए लेबल हैं। + +| | 0 | 1 | +| :---: | :---: | :---: | +| 0 | TN | FP | +| 1 | FN | TP | + +यहाँ क्या हो रहा है? मान लें कि हमारा मॉडल कद्दू को दो बाइनरी श्रेणियों के बीच वर्गीकृत करने के लिए कहा गया है, श्रेणी 'सफेद' और श्रेणी 'सफेद नहीं'। + +- यदि आपका मॉडल कद्दू को सफेद नहीं के रूप में भविष्यवाणी करता है और यह वास्तव में श्रेणी 'सफेद नहीं' से संबंधित है, तो हम इसे एक सही नकारात्मक कहते हैं, जिसे शीर्ष बाएँ संख्या द्वारा दिखाया गया है। +- यदि आपका मॉडल कद्दू को सफेद के रूप में भविष्यवाणी करता है और यह वास्तव में श्रेणी 'सफेद नहीं' से संबंधित है, तो हम इसे एक गलत नकारात्मक कहते हैं, जिसे नीचे +कन्फ्यूजन मैट्रिक्स का प्रिसिजन और रिकॉल से क्या संबंध है? याद रखें, ऊपर प्रिंट किए गए क्लासिफिकेशन रिपोर्ट ने प्रिसिजन (0.85) और रिकॉल (0.67) दिखाया था। + +प्रिसिजन = tp / (tp + fp) = 22 / (22 + 4) = 0.8461538461538461 + +रिकॉल = tp / (tp + fn) = 22 / (22 + 11) = 0.6666666666666666 + +✅ प्रश्न: कन्फ्यूजन मैट्रिक्स के अनुसार, मॉडल ने कैसा प्रदर्शन किया? उत्तर: बुरा नहीं; सही नेगेटिव्स की संख्या अच्छी है लेकिन कुछ गलत नेगेटिव्स भी हैं। + +आइए कन्फ्यूजन मैट्रिक्स के TP/TN और FP/FN मैपिंग की मदद से पहले देखे गए शब्दों को फिर से समझते हैं: + +🎓 प्रिसिजन: TP/(TP + FP) प्राप्त किए गए उदाहरणों में से प्रासंगिक उदाहरणों का अंश (जैसे, कौन से लेबल सही तरीके से लेबल किए गए थे) + +🎓 रिकॉल: TP/(TP + FN) प्रासंगिक उदाहरणों का अंश जो प्राप्त किए गए थे, चाहे वे सही तरीके से लेबल किए गए हों या नहीं + +🎓 f1-score: (2 * प्रिसिजन * रिकॉल)/(प्रिसिजन + रिकॉल) प्रिसिजन और रिकॉल का भारित औसत, जिसमें सबसे अच्छा 1 और सबसे खराब 0 होता है + +🎓 सपोर्ट: प्रत्येक लेबल के प्राप्त होने की संख्या + +🎓 एक्यूरेसी: (TP + TN)/(TP + TN + FP + FN) किसी सैंपल के लिए सही तरीके से भविष्यवाणी किए गए लेबल्स का प्रतिशत + +🎓 मैक्रो औसत: प्रत्येक लेबल के लिए बिना वजन वाले औसत मेट्रिक्स की गणना, लेबल असंतुलन को ध्यान में नहीं रखते हुए + +🎓 वेटेड औसत: प्रत्येक लेबल के लिए औसत मेट्रिक्स की गणना, लेबल असंतुलन को ध्यान में रखते हुए और उन्हें उनके सपोर्ट (प्रत्येक लेबल के लिए सही उदाहरणों की संख्या) द्वारा वजन देकर + +✅ क्या आप सोच सकते हैं कि यदि आप अपने मॉडल में गलत नेगेटिव्स की संख्या कम करना चाहते हैं तो आपको कौन सा मेट्रिक देखना चाहिए? + +## इस मॉडल के ROC कर्व को विज़ुअलाइज़ करें + +[![शुरुआती के लिए मशीन लर्निंग - ROC कर्व्स के साथ लॉजिस्टिक रिग्रेशन प्रदर्शन का विश्लेषण](https://img.youtube.com/vi/GApO575jTA0/0.jpg)](https://youtu.be/GApO575jTA0 "शुरुआती के लिए मशीन लर्निंग - ROC कर्व्स के साथ लॉजिस्टिक रिग्रेशन प्रदर्शन का विश्लेषण") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें ROC कर्व्स का एक छोटा वीडियो अवलोकन देखने के लिए + +आइए एक और विज़ुअलाइज़ेशन करें ताकि तथाकथित 'ROC' कर्व को देख सकें: + +```python +from sklearn.metrics import roc_curve, roc_auc_score +import matplotlib +import matplotlib.pyplot as plt +%matplotlib inline + +y_scores = model.predict_proba(X_test) +fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1]) + +fig = plt.figure(figsize=(6, 6)) +plt.plot([0, 1], [0, 1], 'k--') +plt.plot(fpr, tpr) +plt.xlabel('False Positive Rate') +plt.ylabel('True Positive Rate') +plt.title('ROC Curve') +plt.show() +``` + +Matplotlib का उपयोग करके, मॉडल का [Receiving Operating Characteristic](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc) या ROC प्लॉट करें। ROC कर्व्स अक्सर किसी क्लासिफायर के आउटपुट को उसके सही बनाम गलत पॉजिटिव्स के संदर्भ में देखने के लिए उपयोग किए जाते हैं। "ROC कर्व्स आमतौर पर Y अक्ष पर सही पॉजिटिव रेट और X अक्ष पर गलत पॉजिटिव रेट दिखाते हैं।" इसलिए, कर्व की तीव्रता और मध्य रेखा और कर्व के बीच की जगह महत्वपूर्ण होती है: आप एक ऐसा कर्व चाहते हैं जो जल्दी ऊपर और रेखा के ऊपर जाए। हमारे मामले में, शुरुआत में कुछ गलत पॉजिटिव्स हैं, और फिर रेखा सही तरीके से ऊपर और आगे बढ़ती है: + +![ROC](../../../../translated_images/ROC_2.777f20cdfc4988ca683ade6850ac832cb70c96c12f1b910d294f270ef36e1a1c.hi.png) + +अंत में, Scikit-learn के [`roc_auc_score` API](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score) का उपयोग करके वास्तविक 'Area Under the Curve' (AUC) की गणना करें: + +```python +auc = roc_auc_score(y_test,y_scores[:,1]) +print(auc) +``` +परिणाम है `0.9749908725812341`। चूंकि AUC 0 से 1 तक होता है, आप एक बड़ा स्कोर चाहते हैं, क्योंकि एक मॉडल जो अपनी भविष्यवाणियों में 100% सही है उसका AUC 1 होगा; इस मामले में, मॉडल _काफी अच्छा_ है। + +भविष्य के क्लासिफिकेशन पाठों में, आप अपने मॉडल के स्कोर को सुधारने के लिए पुनरावृत्ति करना सीखेंगे। लेकिन अभी के लिए, बधाई हो! आपने ये रिग्रेशन पाठ पूरे कर लिए हैं! + +--- +## 🚀चुनौती + +लॉजिस्टिक रिग्रेशन के बारे में और भी बहुत कुछ जानने को है! लेकिन सीखने का सबसे अच्छा तरीका है प्रयोग करना। ऐसा डेटासेट खोजें जो इस प्रकार के विश्लेषण के लिए उपयुक्त हो और इसके साथ एक मॉडल बनाएं। आपने क्या सीखा? सुझाव: [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) पर दिलचस्प डेटासेट्स आज़माएं। + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/16/) + +## समीक्षा और स्व-अध्ययन + +[स्टैनफोर्ड के इस पेपर](https://web.stanford.edu/~jurafsky/slp3/5.pdf) के पहले कुछ पृष्ठ पढ़ें, जिसमें लॉजिस्टिक रिग्रेशन के कुछ व्यावहारिक उपयोग बताए गए हैं। उन कार्यों के बारे में सोचें जो अब तक हमने अध्ययन किए गए रिग्रेशन प्रकारों में से किसी एक के लिए बेहतर उपयुक्त हैं। कौन सा सबसे अच्छा काम करेगा? + +## असाइनमेंट + +[इस रिग्रेशन को फिर से आज़माएं](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/2-Regression/4-Logistic/assignment.md b/translations/hi/2-Regression/4-Logistic/assignment.md new file mode 100644 index 000000000..d4f4f4ea7 --- /dev/null +++ b/translations/hi/2-Regression/4-Logistic/assignment.md @@ -0,0 +1,25 @@ + +# पुनः प्रयास करना कुछ प्रतिगमन + +## निर्देश + +पाठ में, आपने कद्दू डेटा का एक उपसमुच्चय उपयोग किया था। अब, मूल डेटा पर वापस जाएं और इसे पूरी तरह से साफ और मानकीकृत करके एक लॉजिस्टिक प्रतिगमन मॉडल बनाने का प्रयास करें। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | ----------------------------------------------------------------------- | ------------------------------------------------------------ | ----------------------------------------------------------- | +| | एक नोटबुक प्रस्तुत की गई है जिसमें एक अच्छी तरह से समझाया गया और अच्छा प्रदर्शन करने वाला मॉडल है | एक नोटबुक प्रस्तुत की गई है जिसमें न्यूनतम प्रदर्शन करने वाला मॉडल है | एक नोटबुक प्रस्तुत की गई है जिसमें कम प्रदर्शन करने वाला मॉडल है या कोई मॉडल नहीं है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/2-Regression/4-Logistic/notebook.ipynb b/translations/hi/2-Regression/4-Logistic/notebook.ipynb new file mode 100644 index 000000000..43266326a --- /dev/null +++ b/translations/hi/2-Regression/4-Logistic/notebook.ipynb @@ -0,0 +1,269 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## कद्दू की किस्में और रंग\n", + "\n", + "आवश्यक लाइब्रेरी और डेटा सेट लोड करें। डेटा को एक डेटा फ्रेम में बदलें जिसमें डेटा का एक उपसमूह हो:\n", + "\n", + "आइए रंग और किस्म के बीच संबंध पर नज़र डालें\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                                0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                \n", + "

                                5 rows × 26 columns

                                \n", + "
                                " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "dee08c2b49057b0de8b6752c4dbca368", + "translation_date": "2025-09-04T01:18:36+00:00", + "source_file": "2-Regression/4-Logistic/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/hi/2-Regression/4-Logistic/solution/Julia/README.md b/translations/hi/2-Regression/4-Logistic/solution/Julia/README.md new file mode 100644 index 000000000..9a3d607e8 --- /dev/null +++ b/translations/hi/2-Regression/4-Logistic/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb b/translations/hi/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb new file mode 100644 index 000000000..edf56f386 --- /dev/null +++ b/translations/hi/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb @@ -0,0 +1,685 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## लॉजिस्टिक रिग्रेशन मॉडल बनाएं - पाठ 4\n", + "\n", + "![लॉजिस्टिक बनाम लीनियर रिग्रेशन इन्फोग्राफिक](../../../../../../translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.hi.png)\n", + "\n", + "#### **[पाठ-पूर्व क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/)**\n", + "\n", + "#### परिचय\n", + "\n", + "रिग्रेशन पर इस अंतिम पाठ में, जो कि *क्लासिक* मशीन लर्निंग तकनीकों में से एक है, हम लॉजिस्टिक रिग्रेशन पर नज़र डालेंगे। इस तकनीक का उपयोग आप पैटर्न खोजने और बाइनरी श्रेणियों की भविष्यवाणी करने के लिए करेंगे। क्या यह कैंडी चॉकलेट है या नहीं? क्या यह बीमारी संक्रामक है या नहीं? क्या यह ग्राहक इस उत्पाद को चुनेगा या नहीं?\n", + "\n", + "इस पाठ में, आप सीखेंगे:\n", + "\n", + "- लॉजिस्टिक रिग्रेशन के लिए तकनीकें\n", + "\n", + "✅ इस प्रकार के रिग्रेशन के साथ काम करने की अपनी समझ को इस [Learn module](https://learn.microsoft.com/training/modules/introduction-classification-models/?WT.mc_id=academic-77952-leestott) में गहराई से बढ़ाएं।\n", + "\n", + "## पूर्वापेक्षा\n", + "\n", + "कद्दू के डेटा के साथ काम करते हुए, अब हम इसके साथ इतना परिचित हो गए हैं कि हमें यह एहसास हो गया है कि इसमें एक बाइनरी श्रेणी है जिस पर हम काम कर सकते हैं: `Color`।\n", + "\n", + "आइए एक लॉजिस्टिक रिग्रेशन मॉडल बनाएं ताकि यह भविष्यवाणी की जा सके कि दिए गए कुछ वेरिएबल्स के आधार पर *किसी दिए गए कद्दू का रंग क्या होने की संभावना है* (नारंगी 🎃 या सफेद 👻)।\n", + "\n", + "> हम रिग्रेशन के बारे में एक पाठ समूह में बाइनरी वर्गीकरण की बात क्यों कर रहे हैं? केवल भाषाई सुविधा के लिए, क्योंकि लॉजिस्टिक रिग्रेशन [वास्तव में एक वर्गीकरण विधि](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression) है, हालांकि यह एक लीनियर-आधारित है। डेटा को वर्गीकृत करने के अन्य तरीकों के बारे में अगले पाठ समूह में जानें।\n", + "\n", + "इस पाठ के लिए, हमें निम्नलिखित पैकेजों की आवश्यकता होगी:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) एक [R पैकेजों का संग्रह](https://www.tidyverse.org/packages) है, जिसे डेटा साइंस को तेज़, आसान और अधिक मज़ेदार बनाने के लिए डिज़ाइन किया गया है!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) फ्रेमवर्क एक [पैकेजों का संग्रह](https://www.tidymodels.org/packages/) है, जो मॉडलिंग और मशीन लर्निंग के लिए है।\n", + "\n", + "- `janitor`: [janitor पैकेज](https://github.com/sfirke/janitor) गंदे डेटा की जांच और सफाई के लिए सरल छोटे टूल प्रदान करता है।\n", + "\n", + "- `ggbeeswarm`: [ggbeeswarm पैकेज](https://github.com/eclarke/ggbeeswarm) ggplot2 का उपयोग करके बीस्वॉर्म-शैली के प्लॉट बनाने के तरीके प्रदान करता है।\n", + "\n", + "आप इन्हें इस प्रकार इंस्टॉल कर सकते हैं:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"ggbeeswarm\"))`\n", + "\n", + "वैकल्पिक रूप से, नीचे दिया गया स्क्रिप्ट यह जांचता है कि क्या आपके पास इस मॉड्यूल को पूरा करने के लिए आवश्यक पैकेज हैं और यदि वे गायब हैं तो उन्हें आपके लिए इंस्टॉल करता है।\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, ggbeeswarm)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **प्रश्न को परिभाषित करें**\n", + "\n", + "हमारे उद्देश्य के लिए, हम इसे एक बाइनरी के रूप में व्यक्त करेंगे: 'सफेद' या 'सफेद नहीं'। हमारे डेटा सेट में 'धारीदार' श्रेणी भी है, लेकिन इसके उदाहरण बहुत कम हैं, इसलिए हम इसका उपयोग नहीं करेंगे। वैसे भी, जब हम डेटा सेट से null मानों को हटा देते हैं, तो यह गायब हो जाती है।\n", + "\n", + "> 🎃 मज़ेदार तथ्य, हम कभी-कभी सफेद कद्दुओं को 'भूत' कद्दू कहते हैं। इन्हें तराशना आसान नहीं होता, इसलिए ये नारंगी कद्दुओं जितने लोकप्रिय नहीं हैं, लेकिन ये देखने में बहुत अच्छे लगते हैं! तो हम अपने प्रश्न को इस तरह भी दोबारा परिभाषित कर सकते हैं: 'भूत' या 'भूत नहीं'। 👻\n", + "\n", + "## **लॉजिस्टिक रिग्रेशन के बारे में**\n", + "\n", + "लॉजिस्टिक रिग्रेशन कुछ महत्वपूर्ण तरीकों से लीनियर रिग्रेशन से अलग है, जिसके बारे में आपने पहले सीखा था।\n", + "\n", + "#### **बाइनरी वर्गीकरण**\n", + "\n", + "लॉजिस्टिक रिग्रेशन लीनियर रिग्रेशन जैसी विशेषताएं प्रदान नहीं करता। लॉजिस्टिक रिग्रेशन `बाइनरी श्रेणी` (\"नारंगी या नारंगी नहीं\") के बारे में भविष्यवाणी करता है, जबकि लीनियर रिग्रेशन `सतत मानों` की भविष्यवाणी करने में सक्षम है, जैसे कि कद्दू की उत्पत्ति और कटाई के समय को देखते हुए *उसकी कीमत कितनी बढ़ेगी*।\n", + "\n", + "![दासानी मदीपल्ली द्वारा इन्फोग्राफिक](../../../../../../translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.hi.png)\n", + "\n", + "### अन्य वर्गीकरण\n", + "\n", + "लॉजिस्टिक रिग्रेशन के अन्य प्रकार भी हैं, जिनमें मल्टीनोमियल और ऑर्डिनल शामिल हैं:\n", + "\n", + "- **मल्टीनोमियल**, जिसमें एक से अधिक श्रेणियां होती हैं - \"नारंगी, सफेद, और धारीदार\"।\n", + "\n", + "- **ऑर्डिनल**, जिसमें क्रमबद्ध श्रेणियां होती हैं, जो उपयोगी होती हैं यदि हम अपने परिणामों को तार्किक रूप से क्रमबद्ध करना चाहते हैं, जैसे हमारे कद्दू जो आकारों की एक सीमित संख्या (मिनी, छोटा, मध्यम, बड़ा, एक्सएल, एक्सएक्सएल) के अनुसार क्रमबद्ध होते हैं।\n", + "\n", + "![मल्टीनोमियल बनाम ऑर्डिनल रिग्रेशन](../../../../../../translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.hi.png)\n", + "\n", + "#### **चर का सहसंबंध होना आवश्यक नहीं है**\n", + "\n", + "याद है कि लीनियर रिग्रेशन अधिक सहसंबद्ध चर के साथ बेहतर काम करता था? लॉजिस्टिक रिग्रेशन इसके विपरीत है - चर का सहसंबद्ध होना आवश्यक नहीं है। यह इस डेटा के लिए काम करता है, जिसमें सहसंबंध अपेक्षाकृत कमजोर हैं।\n", + "\n", + "#### **आपको बहुत सारा साफ डेटा चाहिए**\n", + "\n", + "लॉजिस्टिक रिग्रेशन अधिक सटीक परिणाम देगा यदि आप अधिक डेटा का उपयोग करते हैं; हमारा छोटा डेटा सेट इस कार्य के लिए आदर्श नहीं है, इसलिए इसे ध्यान में रखें।\n", + "\n", + "✅ उन डेटा प्रकारों के बारे में सोचें जो लॉजिस्टिक रिग्रेशन के लिए उपयुक्त हो सकते हैं।\n", + "\n", + "## अभ्यास - डेटा को व्यवस्थित करें\n", + "\n", + "सबसे पहले, डेटा को थोड़ा साफ करें, null मानों को हटाएं और केवल कुछ कॉलम चुनें:\n", + "\n", + "1. निम्नलिखित कोड जोड़ें:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Load the core tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the data and clean column names\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\") %>% \n", + " clean_names()\n", + "\n", + "# Select desired columns\n", + "pumpkins_select <- pumpkins %>% \n", + " select(c(city_name, package, variety, origin, item_size, color)) \n", + "\n", + "# Drop rows containing missing values and encode color as factor (category)\n", + "pumpkins_select <- pumpkins_select %>% \n", + " drop_na() %>% \n", + " mutate(color = factor(color))\n", + "\n", + "# View the first few rows\n", + "pumpkins_select %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "आप अपने नए डेटा फ्रेम पर एक नज़र डाल सकते हैं, नीचे दिए गए तरीके से [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) फ़ंक्शन का उपयोग करके:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "pumpkins_select %>% \n", + " glimpse()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "आइए पुष्टि करें कि हम वास्तव में एक बाइनरी वर्गीकरण समस्या कर रहे हैं:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Subset distinct observations in outcome column\n", + "pumpkins_select %>% \n", + " distinct(color)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### विज़ुअलाइज़ेशन - श्रेणीबद्ध प्लॉट\n", + "अब तक आपने कद्दू डेटा को फिर से लोड किया है और इसे साफ किया है ताकि कुछ वेरिएबल्स सहित एक डेटासेट संरक्षित किया जा सके, जिसमें रंग (Color) शामिल है। चलिए ggplot लाइब्रेरी का उपयोग करके नोटबुक में डेटा फ्रेम को विज़ुअलाइज़ करते हैं।\n", + "\n", + "ggplot लाइब्रेरी आपके डेटा को विज़ुअलाइज़ करने के लिए कुछ शानदार तरीके प्रदान करती है। उदाहरण के लिए, आप श्रेणीबद्ध प्लॉट में प्रत्येक Variety और Color के लिए डेटा के वितरण की तुलना कर सकते हैं।\n", + "\n", + "1. geombar फ़ंक्शन का उपयोग करके ऐसा प्लॉट बनाएं, हमारे कद्दू डेटा का उपयोग करें, और प्रत्येक कद्दू श्रेणी (नारंगी या सफेद) के लिए रंग मैपिंग निर्दिष्ट करें:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "# Specify colors for each value of the hue variable\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# Create the bar plot\n", + "ggplot(pumpkins_select, aes(y = variety, fill = color)) +\n", + " geom_bar(position = \"dodge\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(y = \"Variety\", fill = \"Color\") +\n", + " theme_minimal()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "डेटा का अवलोकन करके, आप देख सकते हैं कि रंग डेटा किस प्रकार वैरायटी से संबंधित है।\n", + "\n", + "✅ इस श्रेणीबद्ध प्लॉट को देखते हुए, आप कौन-कौन से रोचक अन्वेषणों की कल्पना कर सकते हैं?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### डेटा पूर्व-प्रसंस्करण: फीचर एन्कोडिंग\n", + "\n", + "हमारे कद्दू के डेटासेट में सभी कॉलम के लिए स्ट्रिंग मान हैं। श्रेणीबद्ध डेटा के साथ काम करना इंसानों के लिए सहज होता है, लेकिन मशीनों के लिए नहीं। मशीन लर्निंग एल्गोरिदम संख्याओं के साथ बेहतर काम करते हैं। यही कारण है कि डेटा पूर्व-प्रसंस्करण चरण में एन्कोडिंग एक बहुत महत्वपूर्ण कदम है, क्योंकि यह हमें श्रेणीबद्ध डेटा को संख्यात्मक डेटा में बदलने में सक्षम बनाता है, बिना किसी जानकारी को खोए। अच्छी एन्कोडिंग एक अच्छे मॉडल के निर्माण में मदद करती है।\n", + "\n", + "फीचर एन्कोडिंग के लिए मुख्य रूप से दो प्रकार के एन्कोडर होते हैं:\n", + "\n", + "1. **ऑर्डिनल एन्कोडर**: यह ऑर्डिनल वेरिएबल्स के लिए उपयुक्त है, जो श्रेणीबद्ध वेरिएबल्स होते हैं और जिनका डेटा एक तार्किक क्रम का पालन करता है, जैसे हमारे डेटासेट में `item_size` कॉलम। यह एक मैपिंग बनाता है, जिसमें प्रत्येक श्रेणी को एक संख्या द्वारा दर्शाया जाता है, जो उस कॉलम में श्रेणी के क्रम को दर्शाती है।\n", + "\n", + "2. **श्रेणीबद्ध एन्कोडर (Categorical encoder)**: यह नोमिनल वेरिएबल्स के लिए उपयुक्त है, जो श्रेणीबद्ध वेरिएबल्स होते हैं और जिनका डेटा किसी तार्किक क्रम का पालन नहीं करता, जैसे हमारे डेटासेट में `item_size` के अलावा अन्य सभी फीचर्स। यह एक वन-हॉट एन्कोडिंग है, जिसका मतलब है कि प्रत्येक श्रेणी को एक बाइनरी कॉलम द्वारा दर्शाया जाता है: एन्कोडेड वेरिएबल 1 के बराबर होता है यदि कद्दू उस वैरायटी से संबंधित है, और अन्यथा 0 होता है।\n", + "\n", + "Tidymodels एक और शानदार पैकेज प्रदान करता है: [recipes](https://recipes.tidymodels.org/) - डेटा पूर्व-प्रसंस्करण के लिए एक पैकेज। हम एक `recipe` परिभाषित करेंगे, जो यह निर्दिष्ट करता है कि सभी प्रेडिक्टर कॉलम को संख्याओं के सेट में एन्कोड किया जाना चाहिए, इसे `prep` करेंगे ताकि आवश्यक मात्राओं और सांख्यिकी का अनुमान लगाया जा सके, और अंत में `bake` करेंगे ताकि नई डेटा पर गणनाओं को लागू किया जा सके।\n", + "\n", + "> आमतौर पर, recipes का उपयोग मॉडलिंग के लिए एक पूर्व-प्रसंस्करणकर्ता के रूप में किया जाता है, जहां यह परिभाषित करता है कि किसी डेटा सेट पर मॉडलिंग के लिए तैयार करने के लिए कौन-कौन से चरण लागू किए जाने चाहिए। इस मामले में यह **अत्यधिक अनुशंसित** है कि आप `workflow()` का उपयोग करें, बजाय इसके कि मैन्युअली `prep` और `bake` का उपयोग करके recipe का अनुमान लगाएं। हम इसे थोड़ी देर में विस्तार से देखेंगे।\n", + ">\n", + "> हालांकि, फिलहाल हम recipes + prep + bake का उपयोग यह निर्दिष्ट करने के लिए कर रहे हैं कि डेटा सेट पर कौन-कौन से चरण लागू किए जाने चाहिए ताकि इसे डेटा विश्लेषण के लिए तैयार किया जा सके, और फिर उन चरणों को लागू करके पूर्व-प्रसंस्कृत डेटा को निकाल सकें।\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Preprocess and extract data to allow some data analysis\n", + "baked_pumpkins <- recipe(color ~ ., data = pumpkins_select) %>%\n", + " # Define ordering for item_size column\n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " # Convert factors to numbers using the order defined above (Ordinal encoding)\n", + " step_integer(item_size, zero_based = F) %>%\n", + " # Encode all other predictors using one hot encoding\n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE) %>%\n", + " prep(data = pumpkin_select) %>%\n", + " bake(new_data = NULL)\n", + "\n", + "# Display the first few rows of preprocessed data\n", + "baked_pumpkins %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "✅ आइटम साइज कॉलम के लिए ऑर्डिनल एनकोडर का उपयोग करने के क्या फायदे हैं?\n", + "\n", + "### वेरिएबल्स के बीच संबंधों का विश्लेषण करें\n", + "\n", + "अब जब हमने अपने डेटा को प्री-प्रोसेस कर लिया है, तो हम फीचर्स और लेबल के बीच संबंधों का विश्लेषण कर सकते हैं ताकि यह समझ सकें कि मॉडल फीचर्स के आधार पर लेबल की भविष्यवाणी कितनी अच्छी तरह कर पाएगा। इस प्रकार के विश्लेषण को करने का सबसे अच्छा तरीका डेटा को प्लॉट करना है। \n", + "हम फिर से ggplot की geom_boxplot_ फ़ंक्शन का उपयोग करेंगे, ताकि आइटम साइज, वैरायटी और कलर के बीच संबंधों को एक श्रेणीबद्ध प्लॉट में देखा जा सके। डेटा को बेहतर तरीके से प्लॉट करने के लिए, हम एनकोडेड आइटम साइज कॉलम और अनएनकोडेड वैरायटी कॉलम का उपयोग करेंगे।\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Define the color palette\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins_select_plot<-pumpkins_select\n", + "pumpkins_select_plot$item_size <- baked_pumpkins$item_size\n", + "\n", + "# Create the grouped box plot\n", + "ggplot(pumpkins_select_plot, aes(x = `item_size`, y = color, fill = color)) +\n", + " geom_boxplot() +\n", + " facet_grid(variety ~ ., scales = \"free_x\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(x = \"Item Size\", y = \"\") +\n", + " theme_minimal() +\n", + " theme(strip.text = element_text(size = 12)) +\n", + " theme(axis.text.x = element_text(size = 10)) +\n", + " theme(axis.title.x = element_text(size = 12)) +\n", + " theme(axis.title.y = element_blank()) +\n", + " theme(legend.position = \"bottom\") +\n", + " guides(fill = guide_legend(title = \"Color\")) +\n", + " theme(panel.spacing = unit(0.5, \"lines\"))+\n", + " theme(strip.text.y = element_text(size = 4, hjust = 0)) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### स्वॉर्म प्लॉट का उपयोग करें\n", + "\n", + "चूंकि Color एक द्विआधारी श्रेणी (सफेद या नहीं) है, इसे विज़ुअलाइज़ेशन के लिए 'एक [विशेष दृष्टिकोण](https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf) की आवश्यकता होती है।'\n", + "\n", + "Color का वितरण item_size के संदर्भ में दिखाने के लिए `स्वॉर्म प्लॉट` का प्रयास करें।\n", + "\n", + "हम [ggbeeswarm पैकेज](https://github.com/eclarke/ggbeeswarm) का उपयोग करेंगे, जो ggplot2 का उपयोग करके बीस्वॉर्म-शैली के प्लॉट बनाने के तरीके प्रदान करता है। बीस्वॉर्म प्लॉट उन बिंदुओं को प्लॉट करने का एक तरीका है जो आमतौर पर एक-दूसरे के ऊपर आ जाते हैं, ताकि वे एक-दूसरे के बगल में गिरें।\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create beeswarm plots of color and item_size\n", + "baked_pumpkins %>% \n", + " mutate(color = factor(color)) %>% \n", + " ggplot(mapping = aes(x = color, y = item_size, color = color)) +\n", + " geom_quasirandom() +\n", + " scale_color_brewer(palette = \"Dark2\", direction = -1) +\n", + " theme(legend.position = \"none\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "अब जब हमें रंग की द्विआधारी श्रेणियों और आकारों के बड़े समूह के बीच संबंध का अंदाजा हो गया है, तो आइए लॉजिस्टिक रिग्रेशन का उपयोग करके किसी दिए गए कद्दू के संभावित रंग का निर्धारण करें।\n", + "\n", + "## अपना मॉडल बनाएं\n", + "\n", + "उन वेरिएबल्स को चुनें जिन्हें आप अपने वर्गीकरण मॉडल में उपयोग करना चाहते हैं और डेटा को प्रशिक्षण और परीक्षण सेट में विभाजित करें। [rsample](https://rsample.tidymodels.org/), जो कि Tidymodels का एक पैकेज है, डेटा को कुशलतापूर्वक विभाजित करने और पुन: नमूना लेने के लिए आधारभूत संरचना प्रदान करता है:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Split data into 80% for training and 20% for testing\n", + "set.seed(2056)\n", + "pumpkins_split <- pumpkins_select %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "# Extract the data in each split\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "# Print out the first 5 rows of the training set\n", + "pumpkins_train %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "🙌 अब हम एक मॉडल को प्रशिक्षित करने के लिए तैयार हैं, जिसमें प्रशिक्षण फीचर्स को प्रशिक्षण लेबल (रंग) के साथ फिट किया जाएगा।\n", + "\n", + "हम एक रेसिपी बनाकर शुरुआत करेंगे, जो यह निर्दिष्ट करती है कि हमारे डेटा पर मॉडलिंग के लिए तैयार करने के लिए कौन-कौन से प्रीप्रोसेसिंग चरण किए जाने चाहिए, जैसे: श्रेणीबद्ध वेरिएबल्स को संख्याओं में एन्कोड करना। ठीक उसी तरह जैसे `baked_pumpkins`, हम एक `pumpkins_recipe` बनाते हैं लेकिन इसे `prep` और `bake` नहीं करते क्योंकि इसे एक वर्कफ़्लो में शामिल किया जाएगा, जिसे आप कुछ ही चरणों में देखेंगे।\n", + "\n", + "Tidymodels में लॉजिस्टिक रिग्रेशन मॉडल को निर्दिष्ट करने के कई तरीके हैं। देखें `?logistic_reg()`। फिलहाल, हम लॉजिस्टिक रिग्रेशन मॉडल को डिफ़ॉल्ट `stats::glm()` इंजन के माध्यम से निर्दिष्ट करेंगे।\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create a recipe that specifies preprocessing steps for modelling\n", + "pumpkins_recipe <- recipe(color ~ ., data = pumpkins_train) %>% \n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " step_integer(item_size, zero_based = F) %>% \n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE)\n", + "\n", + "# Create a logistic model specification\n", + "log_reg <- logistic_reg() %>% \n", + " set_engine(\"glm\") %>% \n", + " set_mode(\"classification\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "अब जब हमारे पास एक रेसिपी और एक मॉडल स्पेसिफिकेशन है, तो हमें इन्हें एक ऐसे ऑब्जेक्ट में जोड़ने का तरीका खोजना होगा, जो पहले डेटा को प्रीप्रोसेस करेगा (पर्दे के पीछे प्रेप+बेक), प्रीप्रोसेस किए गए डेटा पर मॉडल को फिट करेगा, और संभावित पोस्ट-प्रोसेसिंग गतिविधियों की भी अनुमति देगा।\n", + "\n", + "Tidymodels में, यह सुविधाजनक ऑब्जेक्ट [`workflow`](https://workflows.tidymodels.org/) कहलाता है और यह आपके मॉडलिंग घटकों को आसानी से संगठित रखता है।\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Bundle modelling components in a workflow\n", + "log_reg_wf <- workflow() %>% \n", + " add_recipe(pumpkins_recipe) %>% \n", + " add_model(log_reg)\n", + "\n", + "# Print out the workflow\n", + "log_reg_wf\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "एक बार वर्कफ़्लो *निर्धारित* हो जाने के बाद, मॉडल को [`fit()`](https://tidymodels.github.io/parsnip/reference/fit.html) फ़ंक्शन का उपयोग करके `प्रशिक्षित` किया जा सकता है। वर्कफ़्लो एक रेसिपी का अनुमान लगाएगा और प्रशिक्षण से पहले डेटा को प्रीप्रोसेस करेगा, इसलिए हमें इसे मैन्युअली prep और bake का उपयोग करके करने की आवश्यकता नहीं होगी।\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Train the model\n", + "wf_fit <- log_reg_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the trained workflow\n", + "wf_fit\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "मॉडल प्रिंट आउट प्रशिक्षण के दौरान सीखे गए गुणांक दिखाता है।\n", + "\n", + "अब जब हमने प्रशिक्षण डेटा का उपयोग करके मॉडल को प्रशिक्षित कर लिया है, तो हम [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html) का उपयोग करके परीक्षण डेटा पर भविष्यवाणियां कर सकते हैं। चलिए शुरू करते हैं हमारे परीक्षण सेट के लिए लेबल और प्रत्येक लेबल के लिए संभावनाओं की भविष्यवाणी करके। जब संभावना 0.5 से अधिक होती है, तो भविष्यवाणी की गई श्रेणी `WHITE` होती है, अन्यथा `ORANGE`।\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make predictions for color and corresponding probabilities\n", + "results <- pumpkins_test %>% select(color) %>% \n", + " bind_cols(wf_fit %>% \n", + " predict(new_data = pumpkins_test)) %>%\n", + " bind_cols(wf_fit %>%\n", + " predict(new_data = pumpkins_test, type = \"prob\"))\n", + "\n", + "# Compare predictions\n", + "results %>% \n", + " slice_head(n = 10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "यह बहुत अच्छा है! यह लॉजिस्टिक रिग्रेशन के काम करने के तरीके के बारे में कुछ और जानकारी प्रदान करता है।\n", + "\n", + "### भ्रमण मैट्रिक्स के माध्यम से बेहतर समझ\n", + "\n", + "प्रत्येक भविष्यवाणी की तुलना उसके संबंधित \"ग्राउंड ट्रुथ\" वास्तविक मान से करना यह निर्धारित करने का एक बहुत प्रभावी तरीका नहीं है कि मॉडल कितनी अच्छी तरह भविष्यवाणी कर रहा है। सौभाग्य से, Tidymodels के पास कुछ और तरकीबें हैं: [`yardstick`](https://yardstick.tidymodels.org/) - एक पैकेज जो प्रदर्शन मेट्रिक्स का उपयोग करके मॉडलों की प्रभावशीलता को मापने के लिए उपयोग किया जाता है।\n", + "\n", + "वर्गीकरण समस्याओं से संबंधित एक प्रदर्शन मेट्रिक [`confusion matrix`](https://wikipedia.org/wiki/Confusion_matrix) है। एक भ्रमण मैट्रिक्स यह वर्णन करता है कि वर्गीकरण मॉडल कितना अच्छा प्रदर्शन कर रहा है। भ्रमण मैट्रिक्स यह दिखाता है कि प्रत्येक वर्ग में कितने उदाहरणों को मॉडल द्वारा सही तरीके से वर्गीकृत किया गया। हमारे मामले में, यह आपको दिखाएगा कि कितने नारंगी कद्दू को नारंगी के रूप में वर्गीकृत किया गया और कितने सफेद कद्दू को सफेद के रूप में वर्गीकृत किया गया; भ्रमण मैट्रिक्स यह भी दिखाएगा कि कितने गलत श्रेणियों में वर्गीकृत किए गए।\n", + "\n", + "[`conf_mat()`](https://tidymodels.github.io/yardstick/reference/conf_mat.html) फ़ंक्शन, जो yardstick से आता है, अवलोकित और भविष्यवाणी की गई श्रेणियों का यह क्रॉस-टैबुलेशन गणना करता है।\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Confusion matrix for prediction results\n", + "conf_mat(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "आइए कन्फ्यूजन मैट्रिक्स को समझते हैं। हमारे मॉडल को कद्दू को दो बाइनरी श्रेणियों में वर्गीकृत करने के लिए कहा गया है: श्रेणी `सफेद` और श्रेणी `गैर-सफेद`।\n", + "\n", + "- यदि आपका मॉडल किसी कद्दू को सफेद के रूप में भविष्यवाणी करता है और वह वास्तव में 'सफेद' श्रेणी में आता है, तो हम इसे `सही सकारात्मक` कहते हैं, जो ऊपर बाईं ओर की संख्या द्वारा दिखाया गया है।\n", + "\n", + "- यदि आपका मॉडल किसी कद्दू को गैर-सफेद के रूप में भविष्यवाणी करता है और वह वास्तव में 'सफेद' श्रेणी में आता है, तो हम इसे `गलत नकारात्मक` कहते हैं, जो नीचे बाईं ओर की संख्या द्वारा दिखाया गया है।\n", + "\n", + "- यदि आपका मॉडल किसी कद्दू को सफेद के रूप में भविष्यवाणी करता है और वह वास्तव में 'गैर-सफेद' श्रेणी में आता है, तो हम इसे `गलत सकारात्मक` कहते हैं, जो ऊपर दाईं ओर की संख्या द्वारा दिखाया गया है।\n", + "\n", + "- यदि आपका मॉडल किसी कद्दू को गैर-सफेद के रूप में भविष्यवाणी करता है और वह वास्तव में 'गैर-सफेद' श्रेणी में आता है, तो हम इसे `सही नकारात्मक` कहते हैं, जो नीचे दाईं ओर की संख्या द्वारा दिखाया गया है।\n", + "\n", + "| सत्यता |\n", + "|:-----:|\n", + "\n", + "| | | |\n", + "|---------------|--------|-------|\n", + "| **भविष्यवाणी** | WHITE | ORANGE |\n", + "| WHITE | TP | FP |\n", + "| ORANGE | FN | TN |\n", + "\n", + "जैसा कि आप अनुमान लगा सकते हैं, यह बेहतर है कि सही सकारात्मक और सही नकारात्मक की संख्या अधिक हो और गलत सकारात्मक और गलत नकारात्मक की संख्या कम हो, क्योंकि इसका मतलब है कि मॉडल बेहतर प्रदर्शन कर रहा है।\n", + "\n", + "कन्फ्यूजन मैट्रिक्स उपयोगी है क्योंकि यह अन्य मेट्रिक्स को जन्म देता है जो हमें वर्गीकरण मॉडल के प्रदर्शन का बेहतर मूल्यांकन करने में मदद कर सकते हैं। आइए उनमें से कुछ को समझते हैं:\n", + "\n", + "🎓 प्रिसीजन: `TP/(TP + FP)` इसे भविष्यवाणी किए गए सकारात्मक परिणामों में से सही सकारात्मक परिणामों का अनुपात कहा जाता है। इसे [सकारात्मक भविष्यवाणी मूल्य](https://en.wikipedia.org/wiki/Positive_predictive_value \"Positive predictive value\") भी कहा जाता है।\n", + "\n", + "🎓 रिकॉल: `TP/(TP + FN)` इसे वास्तविक सकारात्मक नमूनों में से सही सकारात्मक परिणामों का अनुपात कहा जाता है। इसे `संवेदनशीलता` भी कहा जाता है।\n", + "\n", + "🎓 स्पेसिफिसिटी: `TN/(TN + FP)` इसे वास्तविक नकारात्मक नमूनों में से सही नकारात्मक परिणामों का अनुपात कहा जाता है।\n", + "\n", + "🎓 एक्यूरेसी: `TP + TN/(TP + TN + FP + FN)` यह किसी नमूने के लिए सही ढंग से भविष्यवाणी किए गए लेबल का प्रतिशत है।\n", + "\n", + "🎓 एफ माप: प्रिसीजन और रिकॉल का भारित औसत, जिसमें सर्वश्रेष्ठ 1 और सबसे खराब 0 होता है।\n", + "\n", + "आइए इन मेट्रिक्स की गणना करें!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Combine metric functions and calculate them all at once\n", + "eval_metrics <- metric_set(ppv, recall, spec, f_meas, accuracy)\n", + "eval_metrics(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## इस मॉडल के ROC कर्व को विज़ुअलाइज़ करें\n", + "\n", + "आइए एक और विज़ुअलाइज़ेशन करते हैं ताकि तथाकथित [`ROC कर्व`](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) को देख सकें:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make a roc_curve\n", + "results %>% \n", + " roc_curve(color, .pred_ORANGE) %>% \n", + " autoplot()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "ROC वक्र अक्सर किसी वर्गीकरणकर्ता के आउटपुट को उसके सही बनाम गलत सकारात्मक परिणामों के संदर्भ में देखने के लिए उपयोग किए जाते हैं। ROC वक्र आमतौर पर Y अक्ष पर `True Positive Rate`/संवेदनशीलता और X अक्ष पर `False Positive Rate`/1-विशिष्टता को दर्शाते हैं। इसलिए, वक्र की तीव्रता और मध्य रेखा और वक्र के बीच की जगह महत्वपूर्ण होती है: आपको एक ऐसा वक्र चाहिए जो जल्दी से ऊपर और रेखा के पार जाए। हमारे मामले में, शुरुआत में कुछ गलत सकारात्मक परिणाम होते हैं, और फिर रेखा सही तरीके से ऊपर और पार जाती है।\n", + "\n", + "अंत में, चलिए `yardstick::roc_auc()` का उपयोग करके वास्तविक Area Under the Curve की गणना करते हैं। AUC की व्याख्या करने का एक तरीका यह है कि यह उस संभावना को दर्शाता है कि मॉडल एक यादृच्छिक सकारात्मक उदाहरण को एक यादृच्छिक नकारात्मक उदाहरण की तुलना में अधिक रैंक देगा।\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Calculate area under curve\n", + "results %>% \n", + " roc_auc(color, .pred_ORANGE)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "परिणाम लगभग `0.975` है। चूंकि AUC का मान 0 से 1 के बीच होता है, आप एक बड़ा स्कोर चाहते हैं, क्योंकि यदि कोई मॉडल अपनी भविष्यवाणियों में 100% सही है, तो उसका AUC 1 होगा। इस मामले में, मॉडल *काफी अच्छा* है।\n", + "\n", + "आने वाले पाठों में, जब आप वर्गीकरण (classification) के बारे में और जानेंगे, तो आप यह भी सीखेंगे कि अपने मॉडल के स्कोर को कैसे बेहतर बनाया जाए (जैसे कि इस मामले में असंतुलित डेटा को संभालना)।\n", + "\n", + "## 🚀चुनौती\n", + "\n", + "लॉजिस्टिक रिग्रेशन के बारे में जानने के लिए अभी और भी बहुत कुछ है! लेकिन सीखने का सबसे अच्छा तरीका है प्रयोग करना। ऐसा डेटा सेट खोजें जो इस प्रकार के विश्लेषण के लिए उपयुक्त हो और उसके साथ एक मॉडल बनाएं। आपने क्या सीखा? सुझाव: [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) पर दिलचस्प डेटा सेट्स आज़माएं।\n", + "\n", + "## समीक्षा और स्व-अध्ययन\n", + "\n", + "[स्टैनफोर्ड के इस पेपर](https://web.stanford.edu/~jurafsky/slp3/5.pdf) के शुरुआती कुछ पन्ने पढ़ें, जिसमें लॉजिस्टिक रिग्रेशन के कुछ व्यावहारिक उपयोग बताए गए हैं। उन कार्यों के बारे में सोचें जो अब तक पढ़े गए विभिन्न प्रकार के रिग्रेशन कार्यों के लिए बेहतर उपयुक्त हैं। किस प्रकार का रिग्रेशन सबसे अच्छा काम करेगा?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "langauge": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "feaf125f481a89c468fa115bf2aed580", + "translation_date": "2025-09-04T01:28:53+00:00", + "source_file": "2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/hi/2-Regression/4-Logistic/solution/notebook.ipynb b/translations/hi/2-Regression/4-Logistic/solution/notebook.ipynb new file mode 100644 index 000000000..244343194 --- /dev/null +++ b/translations/hi/2-Regression/4-Logistic/solution/notebook.ipynb @@ -0,0 +1,1255 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## लॉजिस्टिक रिग्रेशन - पाठ 4\n", + "\n", + "आवश्यक लाइब्रेरी और डेटा सेट लोड करें। डेटा को एक डेटा फ्रेम में बदलें जिसमें डेटा का एक उपसमूह हो:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                                0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                \n", + "

                                5 rows × 26 columns

                                \n", + "
                                " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \\\n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \\\n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                City NamePackageVarietyOriginItem SizeColor
                                2BALTIMORE24 inch binsHOWDEN TYPEDELAWAREmedORANGE
                                3BALTIMORE24 inch binsHOWDEN TYPEVIRGINIAmedORANGE
                                4BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
                                5BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
                                6BALTIMORE36 inch binsHOWDEN TYPEMARYLANDmedORANGE
                                \n", + "
                                " + ], + "text/plain": [ + " City Name Package Variety Origin Item Size Color\n", + "2 BALTIMORE 24 inch bins HOWDEN TYPE DELAWARE med ORANGE\n", + "3 BALTIMORE 24 inch bins HOWDEN TYPE VIRGINIA med ORANGE\n", + "4 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "5 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "6 BALTIMORE 36 inch bins HOWDEN TYPE MARYLAND med ORANGE" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Select the columns we want to use\n", + "columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color']\n", + "pumpkins = full_pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Drop rows with missing values\n", + "pumpkins.dropna(inplace=True)\n", + "\n", + "pumpkins.head()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# चलिए हमारे डेटा पर नज़र डालते हैं!\n", + "\n", + "Seaborn के साथ इसे विज़ुअलाइज़ करके\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHpCAYAAACVw6ZvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3klEQVR4nO3deVRU5f8H8PeFkQFZZXNQ2RQBwy3NNRVGMTCz3JW0JJcyjdwXLJcwBSszTcU0wKxccl9KyoVxS0VTEhXXRM1A+7qwmOz394eH+/M6A7IKV9+vc+7Jee6zfO7IkXfP3JkRRFEUQURERKRgRlVdABEREVF5MdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdDQc0sURaSnp4MfxUREpHwMNPTcysjIgLW1NTIyMqq6FCIiKicGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8VVUXQFTVrq5qAkszZnsipXIbdqWqS6BqgP+KExERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdCUU3BwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp8PPz8/g/MWHo0bN4ZGo8HcuXP1xvbv3x9t27ZFfn4+Zs2aJY1RqVRwc3PDuHHjkJmZKavP0PH4c0dERM8+BpqnRBRFDBw4EGFhYRgzZgySkpKg0+ng7OwMPz8/bNmyBQDg7e0NjUYDnU4njc3IyMCJEyfg4OAg+2V9+PBhZGdno3PnzlJbYGAgUlJSkJycjJ07d0Kr1WLMmDF47bXXkJeXJ6spLCwMKSkpsiMkJETWJyMjA1988UWJr3PTpk3SXPHx8QCA3bt3S2379+/H8uXL8cknnyAxMVEat379euzYsQPfffcdjI2NAQA+Pj7StcybNw/Lly/HhAkTZOs9Onfh0bJlyxLXS0REzwZVVRfwvPjpp5+wYcMGbNu2DT169JDaly9fjtu3b2P48OHo2rUrzM3NodVqodPpMHXqVADAwYMH4enpiU6dOkGn08HPzw/Aw10gV1dXuLu7S/Op1WpoNBoAQN26ddGiRQu0bdsWXbp0wcqVKzF8+HCpr6WlpdS3KCEhIfjyyy8xevRoODo6PvE6bW1tpT8X7ibZ2dnJ1nn99dfx5ptvYsiQITh69Cju3buH0aNHIyIiAl5eXlI/lUoljRswYAD27NmDbdu24ZtvvpH6PD43ERE9n7hD85SsXr0anp6esjBTaMKECbh9+zZ27doFANBqtTh48KC0oxIXFwc/Pz/4+voiLi5OGhcXFwetVvvEtTt37oxmzZph06ZNpa47KCgIHh4eCAsLK/XY4ixcuBC3b9/G7NmzMWrUKDRu3Fhvd+hxZmZmyMnJKfOa2dnZSE9Plx1ERPRs4A5NBdixYwcsLCxkbfn5+bLHFy5cQKNGjQyOL2y/cOECgIeB5v79+zh27BjatWsHnU6HSZMmoUOHDhgyZAiysrIgiiLi4+NlOy7F8fb2xqlTp2RtU6ZMwccffyxr27lzJzp27Cg9LryvpkePHhg3bhwaNGhQovWexMrKCjExMXjllVdgbm6OU6dOQRCEIvv/8ccfWL16tezlNQBo3749jIzkubzwPpvHhYeH45NPPtFrd307EVZWVmW4CiIiqi4YaCqAVqtFZGSkrO3o0aMYPHiwrE0UxRLN5+HhgXr16kGn08HHxwcnT56Er68vHB0d4eLigsOHD0MURWRnZ5doh6Zw7ccDw6RJkxAcHCxrq1u3rt7YgIAAdOjQAdOnT8fq1atLtF5JdO7cGW3btkXz5s3h6uqqdz4xMREWFhbIz89HTk4OunfvjsWLF8v6rFu3rsig+LjQ0FCMHz9eepyeng5nZ+fyXQQREVULDDQVwNzcHB4eHrK2v//+W/bY09MTSUlJBscXtnt6ekptfn5+iIuLQ9OmTdGwYUPp/pXCl51EUYSHh0eJfyEnJSXJ7rUBAHt7e726ixIREYF27dph0qRJJepfUiqVCiqV4R9DLy8vbNu2DSqVCnXq1IGJiYleH2dn5xJfg1qthlqtLle9RERUPfEemqdk4MCBuHjxIrZv3653bv78+bCzs0PXrl2lNq1Wi99//x27du2SbgIGIN0YrNPpSrw7s3fvXiQmJqJPnz5lrr9169bo3bu3dKPy02BiYgIPDw+4ubkZDDNERESFuEPzlAwcOBDr16/HkCFD8Pnnn6NLly5IT0/HkiVLsG3bNqxfvx7m5uZS/8L7aKKjo7FixQqp3dfXV7pvZtSoUXrrZGdnIzU1Ffn5+bh58yZiY2MRHh6O1157DW+//basb0ZGBlJTU2VtNWvWLPJ+kjlz5sDHx6fIHZWqcPv2bb1rsLGxgampaRVVREREVYE7NE+JIAj46aefMG3aNCxYsABeXl7o2LEjrl69Cp1Op/fhfO7u7nB1dUVGRgZ8fX2ldhcXF9SpUwc5OTmynZtCsbGxcHJygpubGwIDAxEXF4dFixZh69at0ue7FJoxYwacnJxkx+TJk4u8Bk9PTwwdOlT24X5Vzd/fX+8aCj/Th4iInh+CWNI7VYmeMenp6bC2tkZaWhrf5UREpHDcoSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVTVXUBRFXt6qomsDRjtq8obsOuVHUJRPQc4r/iREREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0z5ng4GAIggBBEGBiYgIPDw+EhYUhLy8PAKDT6SAIAu7duyd7bOhITU3Vm3/WrFlF9i88/P39ERAQoDd26dKlsLGxwd9//623bu3atdGnTx/89ddfUn83NzeD80dERFTOk0dERNWWqqoLoKcvMDAQMTExyM7Oxi+//ILRo0ejRo0aCA0NLXLM+fPnYWVlJWtzdHTU6zdx4kSMHDlSetyqVSu8++67GDFihNSWm5uLJk2a4JtvvsF7770HALhy5QomT56MyMhI1KtXD5cuXZLWtbS0xMWLF/Huu++iR48eOHXqFIyNjQEAYWFhsrkBwNLSspTPCBERKR0DzXNIrVZDo9EAAN5//31s3rwZ27ZtKzbQODo6wsbG5olzW1hYwMLCQnpsbGwMS0tLab1CCxcuxAcffIBXXnkFbm5uGDZsGF555RW89dZbBtd1cnLCjBkzMGjQIFy6dAleXl4AYHDuomRnZyM7O1t6nJ6eXqJxRERU/THQEMzMzHD79u2nuuaQIUOwefNmDB06FL1798bp06dx5syZYseYmZkBAHJycsq0Znh4OD755BO9dssOi2BlaQ7bBv5lmpeIiKoe76F5jomiiN27d+PXX39F586di+1br149affFwsICPj4+5V5/+fLlOH36NMaOHYvly5fDwcGhyL4pKSn44osvULduXWl3BgCmTJkiq8vCwgIHDhwwOEdoaCjS0tKk4/r16+W+BiIiqh64Q/Mc2rFjBywsLJCbm4uCggK8+eabmDVrVrFjDhw4ILs3pUaNGuWuw9HREe+99x62bNmCnj17GuxTr149iKKI//77D82aNcPGjRthYmIinZ80aRKCg4NlY+rWrWtwLrVaDbVaXe66iYio+mGgeQ5ptVpERkbCxMQEderUgUr15B8Dd3f3Et1DU1oqlarY9Q8cOAArKys4OjoavNnX3t4eHh4eFV4XEREpCwPNc8jc3FwxIaCyghQRET1bGGioRG7duoWsrCxZm52dXYW89FQeGRkZep+HU7NmTb23mBMR0bONNwVTiXh5ecHJyUl2/PHHH1VdFmbMmKFX1+TJk6u6LCIiesoEURTFqi6CqCqkp6fD2toaV05u4du2iYgUjjs0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/LZteu7Z1tfy27mJiBSOOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmYlz/Zuw65UYjVERFQW3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCml4OBgCIIgHXZ2dggMDMSpU6dk/QRBwJYtW2RtcXFxeO211+Dg4ABTU1M0aNAAAwYMwP79+4td083NDYIgYO3atXrnfHx8IAgCVq5cqXcuPDwcxsbG+Pzzzw3Om5qaipCQENSvXx9qtRrOzs7o0aMH9uzZI1v7q6++kh6LooiJEyfCysoKOp2uyFqLOt58803UrFkTq1evlo0rKChA+/bt0bdvXwDy59nExAQeHh4ICwtDXl4eAECn0xW5RmpqarHPJxERPXsYaMogMDAQKSkpSElJwZ49e6BSqfDaa68VO2bp0qXo0qUL7OzssG7dOpw/fx6bN29G+/btMW7cuCeu6ezsjJiYGFnbkSNHkJqaCnNzc4NjoqOjMXnyZERHR+udS05ORsuWLbF37158/vnnSExMRGxsLLRaLUaPHm1wvvz8fAwbNgyrVq1CXFwc/Pz89PocO3ZMem42btwIADh//rzUFhkZiYiICISEhCAlJUUaN3/+fPz1119YtmyZ1Fb4PF+8eBETJkzArFmz9MLZo3MXHo6OjoafRCIiemapqroAJVKr1dBoNAAAjUaDqVOnomPHjvj333/h4OCg1//atWsYO3Ysxo4diy+//FJ2rmnTpvjwww+fuOagQYOwYMECXL9+Hc7OzgAeBpZBgwZh1apVev337duHBw8eICwsDKtWrcLvv/+O9u3bS+dHjRoFQRAQHx8vC0Q+Pj4YOnSo3nzZ2dkICgrC8ePHceDAAXh5eRms89Hrt7W1BQA4OjrCxsZGag8JCcGWLVswYsQI7NixA+fOncOMGTOwbt062NvbS/0efZ7ff/99bN68Gdu2bUNoaKjU5/G5iYjo+cQdmnLKzMzEDz/8AA8PD9jZ2Rnss3HjRuTm5mLy5MkGzwuC8MR1ateujYCAAHz33XcAgP/++w/r1q0zGD4AICoqCkFBQahRowaCgoIQFRUlnbtz5w5iY2MxevRog7s7jweEzMxMdO/eHWfPnsWhQ4eKDDMlJQgCYmJicODAAaxYsQLBwcEYOHAgXn/99WLHmZmZIScnp8zrZmdnIz09XXYQEdGzgTs0ZbBjxw5YWFgAAO7fvw8nJyfs2LEDRkaG8+GFCxdgZWUl7TYAD0POkCFDpMeHDx9GkyZNil136NChmDBhAj766CNs2LABDRo0QPPmzfX6paenY8OGDTh8+DAAYPDgwejYsSMWLlwICwsLXLp0CaIowtvbu0TXO3v2bFhaWiIpKcngDlRZuLq64quvvsLw4cNRr149/Pbbb0X2FUURe/bswa+//oqQkBDZuXr16unNe+bMGYPzhIeH45NPPtFrt+ywCFaW+sHOtoF/SS6FiIiqAe7QlIFWq0VCQgISEhIQHx+PgIAAdOvWDVevXi1yzOO7MAEBAUhISMDPP/+M+/fvIz8//4nrdu/eHZmZmdi/fz+io6OL3J1Zs2YNGjRogGbNmgEAmjdvDldXV6xbtw7Aw4BQGq+88gru37+PuXPnlmrck7zzzjtwcnJCSEgIrKys9M4XBkdTU1N069YNAwYMwKxZs2R9Dhw4IP1dJCQk4JdffilyvdDQUKSlpUnH9evXK/R6iIio6nCHpgzMzc3h4eEhPf72229hbW2NFStW4NNPP9Xr37BhQ6SlpSE1NVXapbGwsICHhwdUqpL/FahUKrz11luYOXMmjh49is2bNxvsFxUVhTNnzsjmLigoQHR0NIYNG4aGDRtCEAScO3euROt26dIFISEheOONN1BQUICFCxeWuOYnUalURT4HWq0WkZGRMDExQZ06dQz2c3d3L/E9NGq1Gmq1ujzlEhFRNcUdmgogCAKMjIzw4MEDg+f79u2LGjVqYN68eeVea+jQodi3bx/eeOMN1KpVS+98YmIijh8/Dp1OJ9u50Ol0OHz4MM6dOwdbW1sEBARgyZIluH//vt4c9+7d02t75ZVXsH37dqxYsaJENzFXhMLg6OLiUqrgR0REzx/+liiD7Oxs6bNO7t69i8WLFyMzMxM9evQw2N/FxQXz58/HmDFjcOfOHQQHB8Pd3R137tzBDz/8AAAwNjYu0dqNGjXC//73P9SsWdPg+aioKLRu3RqdOnXSO9eqVStERUXh888/x5IlS/Dyyy+jdevWCAsLQ9OmTZGXl4ddu3YhMjISSUlJeuP9/f2xY8cO9OjRAwUFBVi8eHGJaq5Mt27dQlZWlqzNzs4ONWrUqKKKiIioKnCHpgxiY2Ph5OQEJycntGnTBseOHcP69esNfi5LoZCQEPz222/4999/0bdvXzRs2BCvvvoqrly5gtjY2CfeEPwoOzs7mJmZ6bXn5OTghx9+QJ8+fQyO69OnD1atWoXc3FzUr18fJ06cgFarxYQJE9C4cWN07doVe/bsQWRkZJFrd+7cGT///DNWrlyJ0aNHl/p+nIrm5eUl/V0UHn/88UeV1kRERE+fIFb1bySiKpKeng5ra2tcObmF73IiIlI47tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeLx27bpuWdbXwsrK6uqLoOIiMqBOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmaVl+3dhl2ptLmJiOgh7tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0ChMcHAwBEHAyJEj9c6NHj0agiAgODhY6tuzZ0+9sREREbJxW7ZsgSAI0mOdTgdBEHDv3j29Nby9vaFWq5GamirrW9yh0+kwa9YsNG/eXG++5ORkCIKAhIQEg/M5ODjg1VdfRWJiosHn4fEjMDCwBM8iERE9axhoFMjZ2Rlr167FgwcPpLasrCysXr0aLi4uxY41NTXFvHnzcPfu3VKve/DgQTx48AB9+/bFd999BwBo3749UlJSpKN///4IDAyUtbVv377Ua50/fx4pKSn49ddfkZ2dje7duyMnJ0fW5/F1UlJSsGbNmlKvRUREysdAo0AtWrSAs7MzNm3aJLVt2rQJLi4uePHFF4sd6+/vD41Gg/Dw8FKvGxUVhTfffBNvvfUWoqOjAQAmJibQaDTSYWZmBrVaLWszMTEp9VqOjo7QaDRo0aIFxo4di+vXr+PcuXOyPo+vo9FoUKtWrVKvRUREysdAo1BDhw5FTEyM9Dg6OhrvvPPOE8cZGxtj7ty5+Prrr/H333+XeL2MjAysX78egwcPRteuXZGWloYDBw6UqfbSSEtLw9q1awGgTMHoUdnZ2UhPT5cdRET0bFBVdQFUNoMHD0ZoaCiuXr0KADh06BDWrl0LnU73xLG9evVC8+bNMXPmTERFRZVovbVr16Jhw4bw8fEBAAwcOBBRUVHo2LFjma+hOPXq1QMA3L9/HwDw+uuvw9vbW9Znx44dsLCwkLVNmzYN06ZNMzhneHg4PvnkE712yw6LYGVpXhFlG3Tn8u4n9rFt4F9p6xMRPQ8YaBTKwcEB3bt3x8qVKyGKIrp37w57e/sSj583bx46d+6MiRMnlqh/dHQ0Bg8eLD0ePHgwfH198fXXX8PS0rLU9T/JgQMHULNmTRw5cgRz587FsmXL9PpotVpERkbK2mxtbYucMzQ0FOPHj5cep6enw9nZueKKJiKiKsNAo2BDhw7FBx98AABYsmRJqcZ26tQJAQEBCA0Nld4VVZSzZ8/iyJEjiI+Px5QpU6T2/Px8rF27FiNGjHjielZWVkhLS9NrL3wnlbW1tazd3d0dNjY28PLywq1btzBgwADs379f1sfc3BweHh5PXLuQWq2GWq0ucX8iIlIO3kOjYIGBgcjJyUFubi4CAgJKPT4iIgLbt2/H4cOHi+0XFRWFTp064c8//0RCQoJ0jB8/vsQvWXl5eeHvv//GzZs3Ze0nTpyAqalpse/OGj16NE6fPo3NmzeXaC0iInr+cIdGwYyNjZGUlCT9ubSaNGmCQYMGYdGiRUX2yc3Nxffff4+wsDA0btxYdm748OH48ssvcebMGenemqIEBATAy8sLQUFB+PTTT6HRaHDixAl8/PHHGDNmTLH116xZEyNGjMDMmTPRs2dP6TNzsrOzpc/DKaRSqUr10hsRET0buEOjcFZWVrCysirz+LCwMBQUFBR5ftu2bbh9+zZ69eqld65Ro0Zo1KhRiXZpVCoVfvvtN7i4uCAoKAiNGzfGzJkzMWbMGMyePfuJ4z/44AMkJSVh/fr1UltsbCycnJxkR4cOHZ44FxERPXsEURTFqi6CqCqkp6fD2toaV05uqdR3OZUE3+VERFQ+3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFU1V1AURVzba+tlzfWE5ERFWPOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4pQ40cXFxlVEHERERUZmVOtAEBgaiQYMG+PTTT3H9+vXKqImIiIioVEodaG7cuIEPPvgAGzZsQP369REQEICffvoJOTk5lVEfUaW7uqoJkqPcq7oMIiIqh1IHGnt7e4wbNw4JCQk4evQoPD09MWrUKNSpUwcffvgh/vzzz8qok4iIiKhI5bopuEWLFggNDcUHH3yAzMxMREdHo2XLlujYsSPOnDlTUTUSERERFatMgSY3NxcbNmzAq6++CldXV/z6669YvHgxbt68iUuXLsHV1RX9+vWr6FqJiIiIDCr1l1OGhIRgzZo1EEURb731Fj777DM0btxYOm9ubo4vvvgCderUqdBCiYiIiIpS6kBz9uxZfP311+jduzfUarXBPvb29nx7NxERET01pX7JaebMmejXr59emMnLy8P+/fsBACqVCr6+vhVTIREREdETlDrQaLVa3LlzR689LS0NWq22QooiIiIiKo1SBxpRFCEIgl777du3YW5uXiFFEREREZVGie+h6d27NwBAEAQEBwfLXnLKz8/HqVOn0L59+4qvkIiIiOgJShxorK2tATzcobG0tISZmZl0zsTEBG3btsWIESMqvkIiIiKiJyhxoImJiQEAuLm5YeLEiXx5iYiIiKqNMr3LSa1WY/fu3fjmm2+QkZEBAPjnn3+QmZlZ4QUSERERPUmpP4fm6tWrCAwMxLVr15CdnY2uXbvC0tIS8+bNQ3Z2NpYtW1YZdRIREREVqdQ7NGPGjMFLL72Eu3fvyu6j6dWrF/bs2VOhxREREVHpzZo1C82bN6/qMp6qUgeaAwcO4OOPP4aJiYms3c3NDTdu3KiwwoiIiJ5XqampCAkJQf369aFWq+Hs7IwePXpw46AYpQ40BQUFyM/P12v/+++/YWlpWSFFPY+e9MPr5uaGr776Surv5uYGQRBw5MgR2Txjx46Fn5+f9HjWrFkQBAGCIEClUsHe3h6dOnXCV199hezsbNlYPz8/qe+jx8iRI6U+j7ZbWVmhVatW2Lp1q2yelStXGpzH1NRU6hMcHIyePXsW+Xw8fr1FWbNmDYyNjTF69Ogn9iUiUoLk5GS0bNkSe/fuxeeff47ExETExsZCq9U+1X/rcnNzn9paFaHUgeaVV16R/aIRBAGZmZmYOXMmXn311Yqs7blR1h9eU1NTTJky5Ynz+/j4ICUlBdeuXUNcXBz69euH8PBwtG/fXrqpu9CIESOQkpIiOz777DNZn5iYGKSkpOD48eN4+eWX0bdvXyQmJsr6WFlZ6c1z9erVUjwrJRMVFYXJkydjzZo1yMrKqvD5iYietlGjRkEQBMTHx6NPnz7w9PSEj48Pxo8fL/1P7LVr1/DGG2/AwsICVlZW6N+/P27evFnknAUFBQgLC0O9evWgVqvRvHlzxMbGSueTk5MhCALWrVsHX19fmJqa4scff6z0a61IpQ408+fPx6FDh/DCCy8gKysLb775pvRy07x58yqjxmdeSX54DXn33Xdx5MgR/PLLL8XOr1KpoNFoUKdOHTRp0gQhISHYt28fTp8+rfd3VrNmTWg0GtlhZWUl62NjYwONRgNPT0/Mnj0beXl5el9GKgiC3jy1a9cu5TNTvCtXruD333/H1KlT4enpiU2bNhXbPzs7G+np6bKDiKg6uXPnDmJjYzF69GiDH49iY2ODgoICvPHGG7hz5w727duHXbt24a+//sKAAQOKnHfhwoWYP38+vvjiC5w6dQoBAQF4/fXXcfHiRVm/qVOnYsyYMUhKSkJAQECFX19lKnWgqVevHv78809MmzYN48aNw4svvoiIiAicPHkSjo6OlVHjM60kP7xFcXd3x8iRIxEaGoqCgoJSrevt7Y1u3bo9MQQUJy8vD1FRUQCgd0/V0xATE4Pu3bvD2toagwcPlmopSnh4OKytraXD2dkZAGDZYRGs/FY8jZKJiIp16dIliKIIb2/vIvvs2bMHiYmJWL16NVq2bIk2bdpg1apV2LdvH44dO2ZwzBdffIEpU6Zg4MCB8PLywrx589C8eXO9l/bHjh2L3r17w93dHU5OThV5aZWu1IEGePh//IMHD8Znn32GpUuXYvjw4bJ3PFHJleSHtzgff/wxrly5UqatQW9vbyQnJ8vali5dCgsLC9nx+NxBQUGwsLCAWq3GuHHj4Obmhv79+8v6pKWl6c3TrVu3UtdYlIKCAqxcuRKDBw8GAAwcOBAHDx7ElStXihwTGhqKtLQ06bh+/XqF1UNEVBFEUXxin6SkJDg7O0v/UwYAL7zwAmxsbJCUlKTXPz09Hf/88w9efvllWfvLL7+s1/+ll14qY+VVr0SfQ7Nt2zZ069YNNWrUwLZt24rt+/rrr1dIYc+LkvzwFsfBwQETJ07EjBkzit1uLGrtx79odNCgQfjoo49kbY+/VLRgwQL4+/vjr7/+wrhx47Bo0SLY2trK+lhaWuLEiROytooMvbt27cL9+/el+7bs7e3RtWtXREdHY/bs2QbHqNVq2XeQERFVNw0bNoQgCDh37lyVrK/kbwEoUaDp2bMnUlNT4ejoWOw7UwRBMPgOKCpaRfzwjh8/HkuXLsXSpUtLNS4pKQnu7u6yNmtra3h4eBQ7TqPRwMPDAx4eHoiJicGrr76Ks2fPyl5yNDIyeuI85REVFYU7d+7IQlJBQQFOnTqFTz75BEZGZdp8JCKqUra2tggICMCSJUvw4Ycf6gWMe/fuoVGjRrh+/TquX78u7dKcPXsW9+7dwwsvvKA3p5WVFerUqYNDhw7B19dXaj906BBat25duRf0FJXoX/2CggLpl1VBQUGRB8NM6T36w3v//n298/fu3XviHBYWFpg+fTrmzJmj966lopw7dw6xsbHo06dPaUuWad26NVq2bIk5c+aUa57SuH37NrZu3Yq1a9ciISFBOk6ePIm7d+/it99+e2q1EBFVtCVLliA/Px+tW7fGxo0bcfHiRSQlJWHRokVo164d/P390aRJEwwaNAgnTpxAfHw83n77bfj6+hb5ktGkSZMwb948rFu3DufPn8fUqVORkJCAMWPGPOWrqzyl+uqD3NxcBAYGYtmyZWjYsGFl1fTcWbJkCV5++WW0bt0aYWFhaNq0KfLy8rBr1y5ERkYafE30ce+++y4WLFiA1atXo02bNrJzeXl5SE1NRUFBAW7fvg2dTodPP/0UzZs3x6RJk2R9//vvP6Smpsra1Go1atWqVeTaY8eORa9evTB58mTUrVsXwMOXsx6fBwAcHR2l3ZO0tDQkJCTIztvZ2Un/x3Hjxg29866urvj+++9hZ2eH/v37671k9uqrryIqKgqBgYFF1ktEVJ3Vr18fJ06cwJw5czBhwgSkpKTAwcEBLVu2RGRkJARBwNatWxESEoJOnTrByMgIgYGB+Prrr4uc88MPP0RaWhomTJiAW7du4YUXXsC2bduerd/lYinZ29uLFy5cKO0weoJ//vlHHD16tOjq6iqamJiIdevWFV9//XUxLi5OFEVRdHV1FRcsWCD1f/yxKIri6tWrRQCir6+v1DZz5kwRgAhANDY2Fm1tbcUOHTqICxYsELOysmTjfX19pb6PHgEBAVIfAOLmzZtl4woKCkRvb2/x/fffF0VRFGNiYgzOA0BMSUkRRVEUhwwZYvD8sGHDpOszdP77778XmzRpIo4aNcrg87hu3TrRxMRE/Pfff5/4nKelpYkAxCsnt4i3L+16Yn8iIqq+BFEs3V2p48aNg1qtRkRERPmSFFEVS09Ph7W1Na6c3AIrS3PYNvCv6pKIiKiMSv1t23l5eYiOjsbu3bvRsmVLvRuWvvzyyworjoiIiKgkSh1oTp8+jRYtWgAALly4IDv3+P0MRERERE9DqQPN4x9xT0RERFTV+GEdREREpHil3qEBgOPHj+Onn37CtWvXkJOTIztXnu8GIiIiIiqLUu/QrF27Fu3bt0dSUhI2b96M3NxcnDlzBnv37oW1tXVl1EhERERUrFIHmrlz52LBggXYvn07TExMsHDhQpw7dw79+/eHi4tLZdRIREREVKxSB5rLly+je/fuAAATExPcv38fgiBg3LhxWL58eYUXSERERPQkpb6HplatWtL3BdWtWxenT59GkyZNcO/ePfz3338VXiAREdHTlBzl/uROFcRt2JWnttazrsQ7NKdPnwYAdOrUCbt27QIA9OvXD2PGjMGIESMQFBSELl26VE6VREREJLl+/TqGDh2KOnXqwMTEBK6urhgzZgxu374t9fHz84MgCBAEAaampvD09ER4eDgMfUHA4cOHYWxsLL0C86jk5GQIggBHR0e9L0Bu3rw5Zs2aJWu7dOkShg4dChcXF6jVatStWxddunTBjz/+iLy8PKlfYW2PH2vXri3Tc1LiQNO0aVO0adMGTZo0Qb9+/QAAH330EcaPH4+bN2+iT58+iIqKKlMRREREVDJ//fUXXnrpJVy8eBFr1qzBpUuXsGzZMuzZswft2rXDnTt3pL4jRoxASkoKzp8/j9DQUMyYMQPLli3TmzMqKgohISHYv38//vnnH4PrZmRk4Isvvii2tvj4eLRo0QJJSUlYsmQJTp8+DZ1Oh+HDhyMyMhJnzpyR9Y+JiUFKSors6NmzZ+mfFAAl/i6nAwcOICYmBhs2bEBBQQH69OmD4cOHo2PHjmVamKiqFX6XU1paGqysrKq6HCKqJqr7S07dunXD6dOnceHCBZiZmUntqampaNCgAd5++21ERkbCz88PzZs3x1dffSX1admyJVxdXWUfsZKZmQknJyccP34cM2fORNOmTTFt2jTpfHJyMtzd3TFp0iRERkbi8uXLcHR0BPBwh6Znz56YNWsWRFGEj48Patasifj4eBgZ6e+ZiKIofauAIAjYvHlzmQPM40q8Q9OxY0dER0cjJSUFX3/9NZKTk+Hr6wtPT0/MmzcPqampFVIQERERGXbnzh38+uuvGDVqlCzMAIBGo8GgQYOwbt06vZeVRFHEgQMHcO7cOZiYmMjO/fTTT/D29oaXlxcGDx6M6Ohogy9LBQUFwcPDA2FhYQZrS0hIQFJSEiZOnGgwzACV+xVJpX6Xk7m5Od555x3s27cPFy5cQL9+/bBkyRK4uLjg9ddfr4waiYiICMDFixchiiIaNWpk8HyjRo1w9+5d/PvvvwCApUuXwsLCAmq1Gp06dUJBQQE+/PBD2ZioqCgMHjwYABAYGIi0tDTs27dPb25BEBAREYHly5fj8uXLeucLv9/Ry8tLart16xYsLCykY+nSpbIxQUFBsvMWFha4du1aKZ6R/1eurz7w8PDAtGnT8PHHH8PS0hI///xzeaYjIiKiEijh3SIYNGgQEhIScOjQIXTr1g0fffQR2rdvL50/f/484uPjERQUBABQqVQYMGBAkffEBgQEoEOHDpg+fXqJ1rezs0NCQgISEhJgY2Oj9+0CCxYskM4XHnXq1CnR3I8r01cfAMD+/fsRHR2NjRs3wsjICP3798ewYcPKOh0RERE9gYeHBwRBQFJSEnr16qV3PikpCbVq1YKDgwMAwNraGh4eHgAevrTk4eGBtm3bwt/fH8DD3Zm8vDxZiBBFEWq1GosXLzb4DQARERFo164dJk2aJGtv2LAhgIch6cUXXwQAGBsbS+urVPqRQ6PRSOfLq1Q7NP/88w/mzp0LT09P+Pn54dKlS1i0aBH++ecfrFixAm3btq2QooiIiEifnZ0dunbtiqVLl+LBgweyc6mpqfjxxx8xYMAAg/eqWFhYYMyYMZg4cSJEUUReXh5WrVqF+fPny3ZI/vzzT9SpUwdr1qwxWEPr1q3Ru3dvTJ06Vdb+4osvwtvbG1988QUKCgoq7qJLqMQ7NN26dcPu3bthb2+Pt99+G0OHDpW9TkZERESVb/HixWjfvj0CAgLw6aefwt3dHWfOnMGkSZNQt25dzJkzp8ix7733HmbPno2NGzdCpVLh7t27GDZsmN5OTOFHsYwcOdLgPHPmzIGPj49s10UQBMTExKBr1654+eWXERoaikaNGiE3Nxf79+/Hv//+C2NjY9k89+7d03tTkaWlJczNzUv7tABiCfXo0UPcsmWLmJeXV9IhRNVaWlqaCEBMS0ur6lKIiEolOTlZHDJkiFi7dm2xRo0aorOzsxgSEiL+73//k/r4+vqKY8aM0Rv73nvviT4+PuJrr70mvvrqqwbnP3r0qAhA/PPPP8UrV66IAMSTJ0/K+rz77rsiAHHmzJmy9vPnz4tDhgwR69WrJ6pUKtHa2lrs1KmT+M0334i5ublSPwAGj/Dw8DI9JyX+HBqiZw0/h4aI6NlRrnc5EREREVUHZX6XE9Gz4uqqJrA008/2/NI4IiLl4A4NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/h4aIiOgRdy7vfmpr2Tbwf2prPeu4Q0NERKQQy5Ytg6WlJfLy8qS2zMxM1KhRA35+frK+Op0OgiDg8uXLcHNzw1dffaU336xZs9C8eXODj93c3CAIQpFHcHAwABR5fu3atRV89cXjDg0REZFCaLVaZGZm4vjx42jbti0A4MCBA9BoNDh69CiysrJgamoKAIiLi4OLiwsaNGhQprWOHTuG/Px8AMDvv/+OPn364Pz589J335mZmUl9Y2JiEBgYKBtvY2NTpnXLioGGiIhIIby8vODk5ASdTicFGp1OhzfeeAN79+7FkSNHpJ0anU4HrVZb5rUcHBykP9va2gIAHB0dDQYVGxsbaDSaMq9VEfiSExERkYJotVrExcVJj+Pi4uDn5wdfX1+p/cGDBzh69Gi5Ao3SMNAQEREpiFarxaFDh5CXl4eMjAycPHkSvr6+6NSpE3Q6HQDg8OHDyM7OlgWaKVOmwMLCQnbMnTu3QmoKCgrSm/vatWsVMndJ8SUnIiIiBfHz88P9+/dx7Ngx3L17F56ennBwcICvry/eeecdZGVlQafToX79+nBxcZHGTZo0SbqRt9CiRYuwf//+cte0YMEC+PvL37FVp06dcs9bGtyheQYEBwcbvMP80qVLAIDw8HAYGxvj888/1xu7cuVK2euhK1eulMYbGRnByckJAwYMwLVr1yCKIvz9/REQEKA3z9KlS2FjYwN/f/9i74p3c3OTxpSmrpJe8+M3pRERPWs8PDxQr149xMXFIS4uDr6+vgAeBghnZ2f8/vvviIuLQ+fOnWXj7O3t4eHhITsK740pL41Goze3SvV090wYaJ4RgYGBSElJkR3u7u4AgOjoaEyePBnR0dElmsvKygopKSm4ceMGNm7ciPPnz6Nfv34QBAExMTE4evQovvnmG6n/lStXMHnyZHz99dfYuHGjrAbg4d3vhY+PHTsmjSttXSW55jVr1pRpLiIiJdFqtdDpdNDpdLK3a3fq1Ak7d+5EfHz8c3X/DMBA88xQq9XQaDSyw9jYGPv27cODBw8QFhaG9PR0/P7770+cSxAEaDQaODk5oX379hg2bBji4+ORnp4OZ2dnLFy4EBMnTsSVK1cgiiKGDRuGV155BW+99Rasra1lNQD/f/e7RqOR7povS10lueZatWqVeh4iIqXRarU4ePAgEhISpB0aAPD19cU333yDnJycpxpo7t27h9TUVNlx//79p7Y+wHtonnlRUVEICgpCjRo1EBQUhKioKLRv377E42/duoXNmzfD2NgYxsbGAIAhQ4Zg8+bNGDp0KHr37o3Tp0/jzJkzT7WussjOzkZ2drb0OD09vVLXIyJlUsKn92q1Wjx48ADe3t6oXbu21O7r64uMjAzp7d1PyzvvvKPXFh4ejqlTpz61GiCS4g0ZMkQ0NjYWzc3NpaNv375iWlqaaGZmJiYkJIiiKIonT54ULSwsxIyMDGlsTEyMaG1tLXsMQDQ3Nxdr1qwpAhABiB9++KFszZs3b4r29vaikZGRuHnz5iJrA6B3vix1leSazc3NxTlz5hQ5ZubMmdL1PHpcOblFvH1pV5HjiIio+uMOzTNCq9UiMjJSemxubo41a9agQYMGaNasGQCgefPmcHV1xbp16zBs2LAi57K0tMSJEyeQm5uLnTt34scff8ScOXNkfRwdHfHee+9hy5Yt6NmzZ6lqLWtdj3v8mgEUe4NbaGgoxo8fLz0ufAmNiIiUj4HmGWFubg4PDw9ZW1RUFM6cOSO707ygoADR0dHFBgcjIyNprkaNGuHy5ct4//338f3338v6qVSqMt3FXta6HmfomoujVquhVqtLVSsRESkDA80zKjExEcePH4dOp5PtWty5cwd+fn44d+4cvL29SzTX1KlT0aBBA4wbNw4tWrSoNnUREREVYqB5RkVFRaF169bo1KmT3rlWrVohKirK4Oe/GOLs7IxevXphxowZ2LFjx1OrKz8/HwkJCbI+arUajRo1AvDwJt/U1FTZeZVKBXt7+3LVSEREysO3bT+DcnJy8MMPP6BPnz4Gz/fp0werVq1Cbm5uieccN24cfv75Z8THxz+1ujIzM/Hiiy/Kjh49ekj9Y2Nj4eTkJDs6dOhQ5vqIiEi5BFEUxaougqgqpKenw9raGldOboGVpbki3qpJRESGcYeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUT1XVBRBVNdv6WlhZWVV1GUREVA7coSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgoefe1VVNkBzlXtVlEBFROTDQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQKFRwcDAEQZAOOzs7BAYG4tSpU7J+giBgy5YteuOTk5MhCAISEhL0zvn5+WHs2LHSYzc3N9lahUdERESR8xZ3zJ49G+bm5rh06ZJs7D///INatWph8eLFeuuam5ujRYsWWL9+vdR/1qxZBuf39vYuxTNJRETPAgYaBQsMDERKSgpSUlKwZ88eqFQqvPbaa5WyVlhYmLRW4RESEqLXz9nZWdZnwoQJ8PHxkbVNnDgRAQEBCA4ORkFBgTR2xIgRaNmyJUaPHq237smTJ9GqVSsMGDAAv//+u3T+8blTUlJw8ODBSnkOiIio+lJVdQFUdmq1GhqNBgCg0WgwdepUdOzYEf/++y8cHBwqdC1LS0tpreIYGxvL+llYWEClUumN/eabb+Dj44Mvv/wSEydOxMqVK3Ho0CEkJiZCEAS9dTUaDZYsWYIffvgB27dvR/v27QHA4NxFyc7ORnZ2tvQ4PT29ROOIiKj6Y6B5RmRmZuKHH36Ah4cH7OzsqrqcJ3JwcMDy5csRFBSEZs2aYdy4cVi4cCGcnZ2LHKNSqVCjRg3k5OSUac3w8HB88skneu2ubyfCysqqTHMSEVH1wJecFGzHjh2wsLCAhYUFLC0tsW3bNqxbtw5GRhX/1zplyhRprcLjwIED5ZqzZ8+e6N+/PwIDA+Hr64shQ4YU2TcnJwfh4eFIS0tD586dpfbExES9ukaOHGlwjtDQUKSlpUnH9evXy1U/ERFVH9yhUTCtVovIyEgAwN27d7F06VJ069YN8fHxcHV1rdC1Jk2ahODgYFlb3bp1yz3v9OnTsWrVKnz88ccGz0+ZMgUff/wxsrKyYGFhgYiICHTv3l067+XlhW3btsnGFLXbolaroVary10zERFVPww0CmZubg4PDw/p8bfffgtra2usWLECn376abFjC3/pp6Wl6Z27d+8erK2tZW329vaytSqKSqWS/fdxhUHKwsICtWvXlt1fAwAmJiaVUhcRESkLX3J6hgiCACMjIzx48OCJfW1tbWFvb48//vhD1p6eno5Lly7B09OzssoslcIgpdFo9MIMERFRIe7QKFh2djZSU1MBPHzJafHixcjMzESPHj1k/a5cuaL3eTMNGzbE+PHjMXfuXNSuXRtt27bF7du3MXv2bDg4OKB3796y/hkZGdJahWrWrFnlN9Pm5eXp1SUIAmrXrl1FFRERUVVgoFGw2NhYODk5AXj49mZvb2+sX78efn5+sn7jx4/XG3vgwAFMnjwZFhYWmDdvHi5fvgxbW1u8/PLLiIuLg5mZmaz/jBkzMGPGDFnbe++9h2XLllXsRZXSmTNnpOegkFqtRlZWVhVVREREVUEQRVGs6iKIqkJ6ejqsra2RlpZW5TtNRERUPryHhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+Bhp57V1c1QXKUe1WXQURE5cBAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BTCsHBwejZs6esbcOGDTA1NcX8+fOlPoIgICIiQtZvy5YtEARBerxy5UrY2NgYXEcQBGzZskXWtnHjRvj5+cHa2hoWFhZo2rQpwsLCcOfOnSLnS0pKgrOzM/r164ecnJxi13y09sePwMDAIsfMmjULzZs312tPTk6GIAhISEiQPTZ0HDlyRDb2wYMHsLW1hb29PbKzs/XmdnNzk8aamZnBzc0N/fv3x969e4usk4iInm0MNOXw7bffYtCgQYiMjMSECROkdlNTU8ybNw93796tkHU++ugjDBgwAK1atcLOnTtx+vRpzJ8/H3/++Se+//57g2OOHTuGjh07IjAwEOvWrYOJiUmJ1goMDERKSorsWLNmTYVcBwDs3r1bb/6WLVvK+mzcuBE+Pj7w9vbWC3aFwsLCkJKSgvPnz2PVqlWwsbGBv78/5syZU2G1EhGRcqiqugCl+uyzzzBz5kysXbsWvXr1kp3z9/fHpUuXEB4ejs8++6xc68THx2Pu3Ln46quvMGbMGKndzc0NXbt2xb179/TG7N27F2+88QZGjRqFefPmlWo9tVoNjUZTrpqLY2dn98T5o6KiMHjwYIiiiKioKAwYMECvj6WlpTSPi4sLOnXqBCcnJ8yYMQN9+/aFl5dXpdRPRETVE3doymDKlCmYPXs2duzYoRdmAMDY2Bhz587F119/jb///rtca/3444+wsLDAqFGjDJ5//CWkzZs3o3v37vj4449LHWaqg8uXL+Pw4cPo378/+vfvjwMHDuDq1aslGjtmzBiIooitW7caPJ+dnY309HTZQUREzwYGmlLauXMnPvvsM2zduhVdunQpsl+vXr3QvHlzzJw5s1zrXbx4EfXr10eNGjWe2DczMxP9+vXDpEmTMGXKlDKtt2PHDlhYWMiOuXPnFjsmMTFRb4yPj4/Bvu3bt9fr+6jo6Gh069YNtWrVgq2tLQICAhATE1Oi2m1tbeHo6Ijk5GSD58PDw2FtbS0dzs7OAADXtxPhNuxKidYgIqLqiS85lVLTpk3xv//9DzNnzkTr1q31fiE/at68eejcuTMmTpxY5vVEUSxxXzMzM3To0AErVqxAUFAQGjVqVOr1tFotIiMjZW22trbFjvHy8sK2bdtkbTdu3ICfn59e33Xr1hVZV35+Pr777jssXLhQahs8eDAmTpyIGTNmwMjoyflbFEXZzdePCg0Nxfjx46XH6enpUqghIiJlY6Appbp162LDhg3QarUIDAzEzp07YWlpabBvp06dEBAQgNDQUAQHB8vOWVlZ4f79+ygoKJD9oi68J8ba2hoA4OnpiYMHDyI3N/eJuzTGxsbYsmULevfuDa1Wi7i4uFKHGnNzc3h4eJRqjImJid4Ylcrwj5azs3OR8//666+4ceOG3j0z+fn52LNnD7p27VpsHbdv38a///4Ld3d3g+fVajXUanWxcxARkTLxJacycHV1xb59+5CamorAwEBkZGQU2TciIgLbt2/H4cOHZe1eXl7Iy8uT3tZc6MSJEwAeBhkAePPNN5GZmYmlS5canP/xm4LVajU2bdqEVq1aQavV4uzZs6W8uqoTFRWFgQMHIiEhQXYMHDgQUVFRTxy/cOFCGBkZ6b21noiInn3coSkjZ2dn6HQ6aLVaBAQEIDY2FlZWVnr9mjRpgkGDBmHRokWydh8fH7zyyisYOnQo5s+fj/r16+P8+fMYO3YsBgwYgLp16wIA2rRpg8mTJ2PChAm4ceMGevXqhTp16uDSpUtYtmwZOnToIHv3E/Aw1GzcuBH9+vWDVqvF3r17pXta8vPz9UKUWq2WdnKys7ORmpoqO69SqWBvb1+u56vQ7du39ea3sbFBRkYGtm/fjm3btqFx48ay82+//TZ69eqFO3fuSC9/ZWRkIDU1Fbm5ubhy5Qp++OEHfPvttwgPDy/1DhMRESkfA0051KtXTxZqfv31V4P9wsLCsG7dOr32devWYebMmXjvvffwzz//oF69eujVqxemT58u6zdv3jy0bNkSS5YswbJly1BQUIAGDRqgb9++GDJkiME1TUxMsGHDBvTv318KNcDDG4dffPFFWd8GDRrg0qVLAIDY2Fg4OTnJznt5eeHcuXMle1KewN/fX69tzZo1uHHjBszNzQ3eaN2lSxeYmZnhhx9+wIcffggAmDFjBmbMmAETExNoNBq0bdsWe/bsgVarrZA6iYhIWQSxNHedEj1D0tPTYW1tjbS0NIO7a0REpBy8h4aIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUr0oDTXBwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp+P8tZfkufy0cePXrOhw83NDQDg5+dn8PzIkSMNXkdxcwqCAK1Wixo1auDgwYOycffv30f9+vUxceJEvXVNTU3xwgsvYOnSpVL/lStXGpzf1NTUYF1ERPTsUsQOjSiKGDhwIMLCwjBmzBgkJSVBp9PB2dkZfn5+2LJlCwDA29sbGo0GOp1OGpuRkYETJ07AwcFBFhQOHz6M7OxsdO7cWWoLDAxESkoKkpOTsXPnTmi1WowZMwavvfYa8vLyZDWFhYUhJSVFdoSEhMj6ZGRk4IsvvijxdZa3/tJauHChrH4AiImJkR4fO3ZM6jtixAi96/3ss88Mzvton6+++gpWVlaytu3btyMkJATBwcG4f/++NG7y5MkwMzPDp59+qrfu2bNn0b9/f4wePRpr1qyRzj8+d0pKCq5evVrm54SIiJRJEYHmp59+woYNG7Bq1SoMHz4c7u7uaNasGZYvX47XX38dw4cPl34xarVaWSA4ePAgPD090aNHD1m7TqeDq6sr3N3dpTa1Wg2NRoO6deuiRYsWmDZtGrZu3YqdO3di5cqVsposLS2h0Whkh7m5uaxPSEgIvvzyS9y6davE11qe+kvL2tpaVj8A2NjYSI8dHBykvjVr1tS7XisrK4PzPtrH2toagiDI2iwsLDB37lyYmJhgypQpAIC4uDh8++23WLVqlWyHpXDd+vXrY9asWWjYsCG2bdsmnX98bo1Gg9q1axusKzs7G+np6bKDiIieDYoINKtXr5Z+qT9uwoQJuH37Nnbt2gXgYSA4ePCgtKMSFxcHPz8/+Pr6Ii4uThoXFxcHrVb7xLU7d+6MZs2aYdOmTaWuOygoCB4eHggLCyvxmIquv7oyNTXFqlWrsHz5cmzduhVDhw7FtGnT0LJly2LHmZmZIScnp0xrhoeHw9raWjqcnZ0BAHf+isOdy7sr9CAioqerygPNjh07YGFhITu6desm63PhwgU0atTI4PjC9gsXLgB4GAju378vvVyi0+ng6+uLTp064ejRo8jKysKDBw8QHx9f4kDg7e2N5ORkWduUKVP06j5w4ICsT+F9NcuXL8fly5dLtFZ56i/Jc1lWS5cu1Zv7xx9/LNecL730EkJDQ9G7d2/Y2dnho48+KrJvfn4+fvjhB5w6dUr2MltaWlqJrzk0NBRpaWnScf369XLVT0RE1YeqqgvQarWIjIyUtR09ehSDBw+WtYmiWKL5PDw8UK9ePeh0Ovj4+ODkyZPw9fWFo6MjXFxccPjwYYiiiOzs7BIHGlEUIQiCrG3SpEkIDg6WtdWtW1dvbEBAADp06IDp06dj9erVlVp/SZ/Lshg0aJBe4CjqpZ3SmD59OsLCwjB16lSoVPo/jkuXLsW3336LnJwcGBsbY9y4cXj//fel85aWljhx4oRsjJmZmcG11Go11Gp1uWsmIqLqp8oDjbm5OTw8PGRtf//9t+yxp6cnkpKSDI4vbPf09JTa/Pz8EBcXh6ZNm6Jhw4ZwdHQEAOllG1EU4eHhIb3k8CRJSUl696rY29vr1V2UiIgItGvXDpMmTSpR/7LWX5Lnsqysra1LfL2lURhiDIUZ4P+DlJmZGZycnGBkJN9UNDIyqpS6iIhIWar8JaeSGDhwIC5evIjt27frnZs/fz7s7OzQtWtXqU2r1eL333/Hrl274OfnJ7V36tQJOp0OOp2uxLsze/fuRWJiIvr06VPm+lu3bo3evXtj6tSpJepfkfUrXWGQqlu3rl6YISIiKlTlOzQlMXDgQKxfvx5DhgzB559/ji5duiA9PR1LlizBtm3bsH79etk7jArvQ4mOjsaKFSukdl9fXwwfPhwAMGrUKL11srOzkZqaivz8fNy8eROxsbEIDw/Ha6+9hrffflvWNyMjA6mpqbK2mjVrFvnOnzlz5sDHx6fInYhHlbX+yvTff//pXa9arUatWrWeah2PE0VRry4AcHR0ZAAiInqOKOJffEEQ8NNPP2HatGlYsGABvLy80LFjR1y9ehU6nU7vA+Xc3d3h6uqKjIwM+Pr6Su0uLi6oU6cOcnJyZDsfhWJjY+Hk5AQ3NzcEBgYiLi4OixYtwtatW2FsbCzrO2PGDDg5OcmOyZMnF3kNnp6eGDp0qOzD8YpS1vor04oVK/SuNygo6KnWYEh6erpeXU5OTqV6qzwRESmfIJb0bluiZ0x6ejqsra1x5eQWWFmaP3lAKdg28K/Q+YiIqHiK2KEhIiIiKg4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESmeIr5tm6gy2dbXFvkt6UREpAzcoSEiIiLFY6AhIiIixWOgISIiIsXjPTT03BJFEQCQnp5exZUQ0dNmaWkJQRCqugyqQAw09Ny6ffs2AMDZ2bmKKyGipy0tLY1vBnjGMNDQc8vW1hYAcO3aNVhbW1dxNSWXnp4OZ2dnXL9+XTH/ICuxZkCZdSuxZuDp121paVnpa9DTxUBDzy0jo4e3kFlbWyvqH/5CVlZWiqtbiTUDyqxbiTUDyq2bqh5vCiYiIiLFY6AhIiIixWOgoeeWWq3GzJkzoVarq7qUUlFi3UqsGVBm3UqsGVBu3VR9CGLhe1eJiIiIFIo7NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDT03FqyZAnc3NxgamqKNm3aID4+vspq2b9/P3r06IE6depAEARs2bJFdl4URcyYMQNOTk4wMzODv78/Ll68KOtz584dDBo0CFZWVrCxscGwYcOQmZlZaTWHh4ejVatWsLS0hKOjI3r27Inz58/L+mRlZWH06NGws7ODhYUF+vTpg5s3b8r6XLt2Dd27d0fNmjXh6OiISZMmIS8vr9LqjoyMRNOmTaUPcGvXrh127txZrWt+XEREBARBwNixY6t13bNmzYIgCLLD29u7WtdMCiYSPYfWrl0rmpiYiNHR0eKZM2fEESNGiDY2NuLNmzerpJ5ffvlF/Oijj8RNmzaJAMTNmzfLzkdERIjW1tbili1bxD///FN8/fXXRXd3d/HBgwdSn8DAQLFZs2bikSNHxAMHDogeHh5iUFBQpdUcEBAgxsTEiKdPnxYTEhLEV199VXRxcREzMzOlPiNHjhSdnZ3FPXv2iMePHxfbtm0rtm/fXjqfl5cnNm7cWPT39xdPnjwp/vLLL6K9vb0YGhpaaXVv27ZN/Pnnn8ULFy6I58+fF6dNmybWqFFDPH36dLWt+VHx8fGim5ub2LRpU3HMmDFSe3Wse+bMmaKPj4+YkpIiHf/++2+1rpmUi4GGnkutW7cWR48eLT3Oz88X69SpI4aHh1dhVQ89HmgKCgpEjUYjfv7551LbvXv3RLVaLa5Zs0YURVE8e/asCEA8duyY1Gfnzp2iIAjijRs3nkrdt27dEgGI+/btk2qsUaOGuH79eqlPUlKSCEA8fPiwKIoPg5yRkZGYmpoq9YmMjBStrKzE7Ozsp1K3KIpirVq1xG+//bba15yRkSE2bNhQ3LVrl+jr6ysFmupa98yZM8VmzZoZPFddaybl4ktO9NzJycnBH3/8AX9/f6nNyMgI/v7+OHz4cBVWZtiVK1eQmpoqq9fa2hpt2rSR6j18+DBsbGzw0ksvSX38/f1hZGSEo0ePPpU609LSAPz/l37+8ccfyM3NldXt7e0NFxcXWd1NmjRB7dq1pT4BAQFIT0/HmTNnKr3m/Px8rF27Fvfv30e7du2qfc2jR49G9+7dZfUB1fu5vnjxIurUqYP69etj0KBBuHbtWrWvmZSJX05Jz53//e9/yM/Pl/0jCQC1a9fGuXPnqqiqoqWmpgKAwXoLz6WmpsLR0VF2XqVSwdbWVupTmQoKCjB27Fi8/PLLaNy4sVSTiYkJbGxsiq3b0HUVnqssiYmJaNeuHbKysmBhYYHNmzfjhRdeQEJCQrWtee3atThx4gSOHTumd666Ptdt2rTBypUr4eXlhZSUFHzyySfo2LEjTp8+XW1rJuVioCGichs9ejROnz6NgwcPVnUpJeLl5YWEhASkpaVhw4YNGDJkCPbt21fVZRXp+vXrGDNmDHbt2gVTU9OqLqfEunXrJv25adOmaNOmDVxdXfHTTz/BzMysCiujZxFfcqLnjr29PYyNjfXeTXHz5k1oNJoqqqpohTUVV69Go8GtW7dk5/Py8nDnzp1Kv6YPPvgAO3bsQFxcHOrVqyerOycnB/fu3Su2bkPXVXiuspiYmMDDwwMtW7ZEeHg4mjVrhoULF1bbmv/44w/cunULLVq0gEqlgkqlwr59+7Bo0SKoVCrUrl27Wtb9OBsbG3h6euLSpUvV9rkm5WKgoeeOiYkJWrZsiT179khtBQUF2LNnD9q1a1eFlRnm7u4OjUYjqzc9PR1Hjx6V6m3Xrh3u3buHP/74Q+qzd+9eFBQUoE2bNpVSlyiK+OCDD7B582bs3bsX7u7usvMtW7ZEjRo1ZHWfP38e165dk9WdmJgoC2O7du2ClZUVXnjhhUqp25CCggJkZ2dX25q7dOmCxMREJCQkSMdLL72EQYMGSX+ujnU/LjMzE5cvX4aTk1O1fa5Jwar6rmSiqrB27VpRrVaLK1euFM+ePSu+++67oo2NjezdFE9TRkaGePLkSfHkyZMiAPHLL78UT548KV69elUUxYdv27axsRG3bt0qnjp1SnzjjTcMvm37xRdfFI8ePSoePHhQbNiwYaW+bfv9998Xra2tRZ1OJ3tb7n///Sf1GTlypOji4iLu3btXPH78uNiuXTuxXbt20vnCt+W+8sorYkJCghgbGys6ODhU6ttyp06dKu7bt0+8cuWKeOrUKXHq1KmiIAjib7/9Vm1rNuTRdzlV17onTJgg6nQ68cqVK+KhQ4dEf39/0d7eXrx161a1rZmUi4GGnltff/216OLiIpqYmIitW7cWjxw5UmW1xMXFiQD0jiFDhoii+PCt29OnTxdr164tqtVqsUuXLuL58+dlc9y+fVsMCgoSLSwsRCsrK/Gdd94RMzIyKq1mQ/UCEGNiYqQ+Dx48EEeNGiXWqlVLrFmzptirVy8xJSVFNk9ycrLYrVs30czMTLS3txcnTJgg5ubmVlrdQ4cOFV1dXUUTExPRwcFB7NKlixRmqmvNhjweaKpj3QMGDBCdnJxEExMTsW7duuKAAQPES5cuVeuaSbkEURTFqtkbIiIiIqoYvIeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiKgUkpOTIQgCEhISqroUInoEAw0REREpHgMNESlKQUEBPvvsM3h4eECtVsPFxQVz5swBACQmJqJz584wMzODnZ0d3n33XWRmZkpj/fz8MHbsWNl8PXv2RHBwsPTYzc0Nc+fOxdChQ2FpaQkXFxcsX75cOu/u7g4AePHFFyEIAvz8/CrtWomo5BhoiEhRQkNDERERgenTp+Ps2bNYvXo1ateujfv37yMgIAC1atXCsWPHsH79euzevRsffPBBqdeYP38+XnrpJZw8eRKjRo3C+++/j/PnzwMA4uPjAQC7d+9GSkoKNm3aVKHXR0Rlo6rqAoiISiojIwMLFy7E4sWLMWTIEABAgwYN0KFDB6xYsQJZWVlYtWoVzM3NAQCLFy9Gjx49MG/ePNSuXbvE67z66qsYNWoUAGDKlClYsGAB4uLi4OXlBQcHBwCAnZ0dNBpNBV8hEZUVd2iISDGSkpKQnZ2NLl26GDzXrFkzKcwAwMsvv4yCggJpd6WkmjZtKv1ZEARoNBrcunWr7IUTUaVjoCEixTAzMyvXeCMjI4iiKGvLzc3V61ejRg3ZY0EQUFBQUK61iahyMdAQkWI0bNgQZmZm2LNnj965Ro0a4c8//8T9+/eltkOHDsHIyAheXl4AAAcHB6SkpEjn8/Pzcfr06VLVYGJiIo0louqDgYaIFMPU1BRTpkzB5MmTsWrVKly+fBlHjhxBVFQUBg0aBFNTUwwZMgSnT59GXFwcQkJC8NZbb0n3z3Tu3Bk///wzfv75Z5w7dw7vv/8+7t27V6oaHB0dYWZmhtjYWNy8eRNpaWmVcKVEVFoMNESkKNOnT8eECRMwY8YMNGrUCAMGDMCtW7dQs2ZN/Prrr7hz5w5atWqFvn37okuXLli8eLE0dujQoRgyZAjefvtt+Pr6on79+tBqtaVaX6VSYdGiRfjmm29Qp04dvPHGGxV9iURUBoL4+AvKRERERArDHRoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUrz/A+sUfVTiRBWAAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "# Specify colors for each values of the hue variable\n", + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# Plot a bar plot to visualize how many pumpkins of each variety are orange or white\n", + "sns.catplot(\n", + " data=pumpkins, y=\"Variety\", hue=\"Color\", kind=\"count\",\n", + " palette=palette, \n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# डेटा पूर्व-प्रसंस्करण\n", + "\n", + "आइए डेटा को बेहतर तरीके से प्लॉट करने और मॉडल को प्रशिक्षित करने के लिए फीचर्स और लेबल्स को एन्कोड करें।\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['med', 'lge', 'sml', 'xlge', 'med-lge', 'jbo', 'exjbo'],\n", + " dtype=object)" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the different values of the 'Item Size' column\n", + "pumpkins['Item Size'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OrdinalEncoder\n", + "# Encode the 'Item Size' column using ordinal encoding\n", + "item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']]\n", + "ordinal_features = ['Item Size']\n", + "ordinal_encoder = OrdinalEncoder(categories=item_size_categories)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OneHotEncoder\n", + "# Encode all the other features using one-hot encoding\n", + "categorical_features = ['City Name', 'Package', 'Variety', 'Origin']\n", + "categorical_encoder = OneHotEncoder(sparse_output=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_MICHIGANcat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIA
                                21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                                31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.01.0
                                43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                                53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                                61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                                \n", + "

                                5 rows × 48 columns

                                \n", + "
                                " + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_MICHIGAN cat__Origin_NEW JERSEY \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NEW YORK cat__Origin_NORTH CAROLINA cat__Origin_OHIO \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_PENNSYLVANIA cat__Origin_TENNESSEE cat__Origin_TEXAS \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VERMONT cat__Origin_VIRGINIA \n", + "2 0.0 0.0 \n", + "3 0.0 1.0 \n", + "4 0.0 0.0 \n", + "5 0.0 0.0 \n", + "6 0.0 0.0 \n", + "\n", + "[5 rows x 48 columns]" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.compose import ColumnTransformer\n", + "ct = ColumnTransformer(transformers=[\n", + " ('ord', ordinal_encoder, ordinal_features),\n", + " ('cat', categorical_encoder, categorical_features)\n", + " ])\n", + "# Get the encoded features as a pandas DataFrame\n", + "ct.set_output(transform='pandas')\n", + "encoded_features = ct.fit_transform(pumpkins)\n", + "encoded_features.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIAColor
                                21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                                31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.01.00
                                43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                                53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                                61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                                \n", + "

                                5 rows × 49 columns

                                \n", + "
                                " + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_NEW JERSEY cat__Origin_NEW YORK \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NORTH CAROLINA cat__Origin_OHIO cat__Origin_PENNSYLVANIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_TENNESSEE cat__Origin_TEXAS cat__Origin_VERMONT \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VIRGINIA Color \n", + "2 0.0 0 \n", + "3 1.0 0 \n", + "4 0.0 0 \n", + "5 0.0 0 \n", + "6 0.0 0 \n", + "\n", + "[5 rows x 49 columns]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "# Encode the 'Color' column using label encoding\n", + "label_encoder = LabelEncoder()\n", + "encoded_label = label_encoder.fit_transform(pumpkins['Color'])\n", + "encoded_pumpkins = encoded_features.assign(Color=encoded_label)\n", + "encoded_pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['ORANGE', 'WHITE']" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the mapping between the encoded values and the original values\n", + "list(label_encoder.inverse_transform([0, 1]))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAYpCAYAAABBoEQQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxVdf7H8ff1IuAI4oqAIqiIuORS5lqCpqnTkE2NOo6ZYlk5uOVYaf1m1MbCpkUrNbMhW8a0Tdtm1FwAzTRFpVxJDVMTRBNZHEGB8/vDh3e8gXpZT6f7ej4e5zH3nu853/vhjMGbL9/zPTbDMAwBAAAAFlLD7AIAAACAsiLEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcD7MLAAAAwK9fTEyMS8ctWbLEpeMIsQAAAKhy2dnZTu/PnTunDRs2KDo6ulz92QzDMCqjMAAAAMBVaWlp6tChg3Jzc8t1PnNiAQAAUO0qOo5KiAUAAIDlEGIBAABgOdzYBQAAgCqXlJTk9P7HH39UUVGREhMTZbPZHPsjIyNd6o8buwAAAFDl7Ha7DMNwCqw/ZxiGiouLXeqPkVgAAABUuaysrErtj5FYAAAAWA43dgEAAKDaLF++XHfddZfatm2rtm3b6q677tJ7771X5n4YiQUAAECVKy4u1pAhQ/Txxx+rVatWatOmjWw2m/bv36/U1FTdc889eu+991SjhmtjrMyJBQAAQJWbN2+ekpKS9Omnn+qOO+5wavvPf/6jkSNH6qWXXtIjjzziUn+MxAIAAKDKdejQQZMnT9aYMWNKbV+yZInmzp2rb7/91qX+CLEAAACocrVq1dKBAwcUEhJSavsPP/ygiIgInT9/3qX+uLELAAAAVc7b21vZ2dlXbc/JyVGtWrVc7o8QCwAAgCrXo0cPLViw4Krt8+fPV/fu3V3ujxu7AAAAUOX+9re/KTIyUqdPn9Zf/vIXtW3bVpK0f/9+vfDCC/r000+VmJjocn/MiQUAAEC1+Oyzz3T//ffr9OnTTvsbNmyof/7zn7rzzjtd7osQCwAAgGpz/vx5rV27Vt99950kKTw8XP379y/TfFiJEAsAAIBfiNTUVLVu3dqlY5kTCwAAAFMcPnxYCQkJji0jI0PFxcUunUuIBQAAQLU4cuSII7AmJibq+PHj8vHx0S233KLJkycrKirK5b6YTgAAAIAq17x5c/3www+qXbu2evXqpT59+igqKko333yzatQo+6qvhFgAAABUOQ8PD/n4+CgmJkb9+/fXrbfeKl9f33L3R4gFAABAlcvMzFRSUpKSkpKUmJio7777Tp07d1ZUVJT69OmjW265RT4+Pi73R4gtJ8MwlJubK19fX9lsNrPLAQAAsJSffvpJiYmJjlCbmpqqzp07a+vWrS6dz41d5ZSbmys/Pz9lZ2erTp06ZpfjVgzDUEFBgdllAKa48t+/l5cXv0SbhGsPVFyDBg3Uq1cvFRcXq7i4WNnZ2frmm29cPp8QC8spKCjQkCFDzC4DgBv74IMP5O3tbXYZgOUcO3ZMSUlJ2rhxozZu3KgffvhB3bp1U9++ffXOO++oe/fuLvdFiAUAAECVa9GihU6cOKFu3bopKipKr732mnr06CFPT89y9UeIhaU9M2i/PO2uLYoM/BoUFNr05Oq2kqSnB+6Tlwe3NVSXC0U19MSqNmaXAVjW0aNHVbNmTRmGIcMwHNMIyosQC0vztBfzQxxuy8vD4N9/teIXZqAifvzxRyUmJiohIUHvvfeenn76aXl6eqpr167q06ePIiMj1bNnT3l5ebnUHyG2gljcAQAA/Npdvqm0InPBGzdurGHDhmnYsGGSLoXay0/vevvtt/X3v/9dnp6eOn/+vEv9EWIriLvkAQDAr93lm6o/++yzSuuzSZMmuvfee3XvvfdKujTdYP369S6fX/ZnfOnSnWVjxoxRUFCQPD09FRISokmTJumnn35yHBMVFSWbzSabzSZvb2+Fh4crLi6u1JHLLVu2yG6364477ijRduTIEdlsNvn7+ys3N9eprVOnTpo5c6bTvkOHDmnMmDFq1qyZvLy81KRJE912221aunSpCgsLHcddru3n2/Lly8tzSQAAAFABzZo1U0xMjMvHl3kk9vvvv1ePHj0UHh6uZcuWqXnz5tq7d68effRRrVq1Slu3blX9+vUlSWPHjtVTTz2lgoICbdiwQQ8++KDq1q2rcePGOfUZHx+vCRMmKD4+XidOnFBQUFCJz83NzdXzzz+vWbNmXbW2bdu2qV+/fmrXrp0WLFigiIgISVJycrIWLFig9u3bq2PHjo7jlyxZooEDBzr1Ubdu3bJeEgAAAFyHKwHVMAy9+eabLvVX5hAbGxsrT09PffHFF6pVq5akS8m5c+fOatmypZ588km9+uqrkqTf/OY3CggIcBQ+f/58rV271inE5uXl6b333lNycrIyMjL05ptv6oknnijxuRMmTNCLL76o2NhY+fv7l/pFjx49WuHh4dq8ebNq1PjfIHOrVq00fPjwEqPAdevWddRXXvn5+crPz69QHyibK683U5IBVJcrv9/wfR/upjL+zb/99tsaOHDgVW/cKigo0KpVq6omxJ45c0Zr1qzR008/7QiwlwUEBGjEiBF67733tHDhQqc2wzD05Zdf6sCBA2rVqpVT2/vvv6+IiAi1bt1a9957ryZPnqzp06eXeBLK8OHDtXbtWj311FOaP39+idpSUlK0f/9+LVu2zCnAXqkiT1cpKChwmv+ak5MjSXrwwQdVs2bNcveLirlQZJN3TZIsgKp3oeh/P0NGjhxpYiWAdb3xxhtq3LhxqW2nTp0q0+BimebEHjx4UIZhqE2b0tfJa9OmjbKysnTq1ClJ0sKFC+Xj4yMvLy/17t1bxcXFmjhxotM58fHxjgm9AwcOVHZ2tpKSkkr0bbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAAA/4+HhoaKioqu2FxYWym63u95feYpwdVmpESNG6Mknn1RWVpZmzJihnj17qmfPno721NRUbdu2TStXrrxUjIeHhg0bpvj4eEVFRZXob8CAAbrlllv017/+Ve++++51P79BgwZKSUmRdOlGswsXLji1z507V/369XPaV9p8XEmaPn26pkyZ4nifk5Oj4OBgLV68uNTpDag6+fn5jlEQTzujsACqx5Xfb9555x0eOwu3cuXP3vKqV6+eTp48edWsdfLkScd9Va4oU4gNCwuTzWbT/v379fvf/75E+/79+1WvXj01atRIkuTn56ewsDBJl6YNhIWFqXv37o7gGB8fr8LCQqcvxjAMeXl5af78+fLz8yvxGXPmzFGPHj306KOPOu2/PE0hNTVVnTt3liTZ7XbH53t4lPxSAwICHO3X4+XlVeocDm9vb76RmagCM0QAoEyu/H7D936g7Dp27KhVq1Y5ctrPrV69Wh06dHC5vzJNJ2jQoIH69++vhQsXlliINiMjQ0uXLtWwYcNKnXvq4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/++Qo9wgwAAACVb8SIEZozZ442bNhQoi0hIUHPPPOMhg8f7nJ/ZZ5OMH/+fPXs2VMDBgzQ7NmznZbYatKkiZ5++umrnvvQQw/p73//uz766CN5eHgoKytL999/f4kR13vuuUfx8fF6+OGHS+3n6aefVrt27ZxGV202m5YsWaL+/furV69emj59utq0aaOLFy9q48aNOnXqVIl5FmfPnlVGRobTPl9fX9WuXbuslwUAAADXcN9992nFihXq16+fbrjhBrVp00Y2m00HDhzQN998o9/+9rcaPXq0y/2V+WEHrVq1UnJyslq0aKGhQ4eqZcuWevDBB9WnTx9t2bLlmnMZ6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMKbHcQ/fu3bVjxw61bt1asbGxatu2rXr27Klly5Zp7ty5JdanjYmJUWBgoNP2yiuvlPWSAAAAwAUrV67Um2++qZCQEO3du1e7d+9WkyZN9M9//lOffvppmVaSshmu3qUFJzk5OfLz89PZs2dLDeKoOvn5+RoyZIgk6fnf7ZWXB/+E4T4KCm2a+nk7Sfz7r25XXvsPPviAObFwK4ZhqKCg4Bf1775cqxPgfyqy9iwq7kJRDUnMgYb7KCi0lfoaVe/S9xvAPdlstl9UgJUIsbC4J1aVvmYx4A6eXN3W7BIAwGXNmze/7jGGYejIkSMu9UeIBQAAQJU7evSonnrqKfn6+kqSTp8+reeee07PPvusJCkvL0//93//53J/zIktp8tzYrOzs1WnTh2zy3Erl+flAO7oyn//Xl5eTGkyCdceKDu73a4TJ044Hjv7/fffq2PHjsrNzZV06UmrAQEBLi+VykgsLOeXOC8HqE61atUyuwQAMB2z1AEAAGA5hFgAAACY4ufTcsoyTYcQCwAAgCr30EMP6Te/+Y3jfZMmTbRq1SrHe19fX8XFxbncHzd2lRM3dgEAAJiHG7sAAABQ5X744QeXjgsJCXHpOEIsAAAAqlyLFi1kGIZsNpuunAjw8/euLrFV5XNiFy1aJF9fXxUWFjr25eXlqWbNmoqKinI6NjExUTabTYcPH1ZoaKjmzZtXor+ZM2eqU6dOpb4PDQ2VzWa76jZ69GhJumr78uXLK/mrBwAAgCTt2rVLKSkpjv+9vO3cuVOPPfaYatWqJX9/f5f7q/KR2D59+igvL0/Jycnq3r27JGnTpk0KCAjQ119/rfz8fMeanwkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjrmrF65tuKSJUs0cOBAp/Pr1q1brs8FAADAtXXo0KHEvi+++ELTp0/XoUOH9Nhjj2nq1Kku91flIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFA+27dv17Rp0/Tll1/qwQcf1Jo1a9SwYcMy9VEtS2z16dNHCQkJjvcJCQmKiopSZGSkY//58+f19ddfVyjEAgAA4Jfr4MGDGjZsmHr27KnAwEAdOHBAr7zySpkDrFSNIXbz5s0qLCxUbm6udu3apcjISPXu3VuJiYmSpC1btqigoMApxD7++OPy8fFx2p555plKqWn48OEl+j569OhVjy8oKFBOTo7TBgAAANc8/PDDateunbKzs7V9+3b961//UvPmzcvdX7WsThAVFaVz585p+/btysrKUnh4uBo1aqTIyEjFxMQoPz9fiYmJatGihZo1a+Y479FHH3XcjHXZyy+/rI0bN1a4prlz56pfv35O+4KCgq56fFxcnGbNmlXhzwUAAHBHr7/+ury9vZWZmamYmJirHrdr1y6X+quWEBsWFqamTZsqISFBWVlZioyMlHQpNAYHB+urr75SQkKC+vbt63Rew4YNFRYW5rTv8lzXigoICCjR97VMnz5dU6ZMcbzPyclRcHBwpdQCAADwazdjxoxK7a/a1ont06ePEhMTlZWVpUcffdSxv3fv3lq1apW2bdumcePGVVc5Zebl5SUvLy+zywAAALCkv/3tb5XaX7WG2NjYWF28eNExEitJkZGRGj9+vC5cuFCtN3WdPXtWGRkZTvt8fX1Vu3btaqsBAAAA5VMtN3ZJl0Ls+fPnFRYWpsaNGzv2R0ZGKjc317EUV3WJiYlRYGCg0/bKK69U2+cDAACg/GzGlc/5gstycnLk5+en7Oxsx8MUAAAAUD2qbSQWAAAAqCyEWAAAAJju7NmzZbo/ihALAAAA0124cEFJSUkuH0+IBQAAgOVU2xJbvzaX74fj8bMAAMCd+Pr6ymazlfm8H3744Zrtp06dKlN/rE5QTt9//71atmxpdhkAAADVKjMzU40aNSrzeXa7XYZhyGazqbT4eXl/cXGxS/0xEltOlx9/e/ToUfn5+Zlcjfu5/NjfY8eOscSZCbj+5uL6m4drby6uv7kuX39PT89ynb9r165rtp85c0Z9+/Z1uT9CbDnVqHFpOrGfnx//IZmoTp06XH8Tcf3NxfU3D9feXFx/c5VnKoEkdejQ4ZrtmZmZZeqPG7sAAADwi1CWgEyIBQAAgOk8PT3Vtm1bl48nxJaTl5eXZsyYIS8vL7NLcUtcf3Nx/c3F9TcP195cXH9zVfX137Rpk06fPu3y8axOAAAAANPk5uZq0qRJevfddzVjxgxNnz7dpfO4sQsAAACmSEhI0JgxY1S/fn3t2LFD7dq1c/lcQiwAAACqXN++fZ3Why0sLNTWrVv1xBNP6G9/+5vsdnuZ+iPEAgAAoMp16tTJ6X1hYaH27Nmj/fv368yZM2V+gAJzYgEAAGCK48ePKyYmRt9++63mz5+vIUOGuHwuqxOU04IFCxQaGipvb29169ZN27ZtM7skt7Bx40ZFR0crKChINptNH3/8sdkluY24uDjdfPPN8vX1lb+/v+666y6lpqaaXZbbePXVV9WhQwfHIu89evTQqlWrzC7Lbc2ZM0c2m02TJ082uxS3MHPmTNlsNqctIiLC7LLcyo8//qh7771XDRo0UK1atXTDDTcoOTm5wv02bdpUa9eu1d/+9jfFxMRo6NChLp9LiC2H9957T1OmTNGMGTO0c+dOdezYUQMGDCjzkyZQdufOnVPHjh21YMECs0txO0lJSYqNjdXWrVu1du1aXbx4UbfffrvOnTtndmluoWnTppozZ4527Nih5ORk9e3bV4MHD9bevXvNLs3tbN++Xa+99tp1nz6EytWuXTulp6c7ti+//NLsktxGVlaWevXqpZo1a2rVqlXat2+fXnjhBdWrV6/SPiM2NlYpKSk6fvy4y+cwnaAcunXrpptvvlnz58+XJBUXFys4OFgTJkzQtGnTTK7OfdhsNq1cuVJ33XWX2aW4pVOnTsnf319JSUnq3bu32eW4pfr16+u5557T/fffb3YpbiMvL0833nijFi5cqNmzZ6tTp06aN2+e2WX96s2cOVMff/yxUlJSzC7FLU2bNk2bN2/Wpk2bqvyzDMNw+ald3NhVRhcuXNCOHTuc1jCrUaOG+vXrpy1btphYGVC9srOzJV0KUqheRUVF+uCDD3Tu3Dn16NHD7HLcSmxsrO644w7169dPs2fPNrsct3Lw4EEFBQXJ29tbPXr0UFxcnJo1a2Z2WW7h008/1YABAzRkyBAlJSWpSZMm+vOf/6yxY8eWqZ9Zs2Zd9xjDMDRz5kyX+iPEltHp06dVVFSkxo0bO+1v3LixDhw4YFJVQPUqLi7W5MmT1atXL7Vv397sctzG7t271aNHD+Xn58vHx0crV64s0yMaUTHLly/Xzp07tX37drNLcTvdunXTm2++qdatWys9PV2zZs3Srbfeqj179sjX19fs8n71vv/+e7366quaMmWKnnjiCW3fvl0TJ06Up6enRo0a5XI/n3zyieP1hQsXdODAAadpOZdXKyDEAqgysbGx2rNnD3PSqlnr1q2VkpKi7Oxsffjhhxo1apSSkpIIstXg2LFjmjRpktauXStvb2+zy3E7gwYNcrzu0KGDunXrppCQEL3//vtMp6kGxcXF6tKli5555hlJUufOnbVnzx4tWrSoTCF2586djtdpaWnq2LGj075Tp04pICDA5f64sauMGjZsKLvdrpMnTzrtP3nyZJkuPGBV48eP1+eff66EhAQ1bdrU7HLciqenp8LCwnTTTTcpLi5OHTt21EsvvWR2WW5hx44dyszM1I033igPDw95eHgoKSlJL7/8sjw8PFRUVGR2iW6lbt26Cg8P16FDh8wuxS0EBgaW+GW5TZs2Onr0aLn7tNvtKiwsdNp38eJF1ajhejQlxJaRp6enbrrpJq1fv96xr7i4WOvXr2duGn7VDMPQ+PHjtXLlSm3YsEHNmzc3uyS3V1xcrIKCArPLcAu33Xabdu/erZSUFMfWpUsXjRgxQikpKWV+0hAqJi8vT4cPH1ZgYKDZpbiFXr16lVhS8bvvvlNISEi5+wwKCtLFixe1Y8cOx77NmzeXaXCE6QTlMGXKFI0aNUpdunRR165dNW/ePJ07d04xMTFml/arl5eX5/Sbd1pamlJSUlS/fn0m+Fex2NhYvfvuu/rkk0/k6+urjIwMSZKfn59q1aplcnW/ftOnT9egQYPUrFkz5ebm6t1331ViYqLWrFljdmluwdfXt8T879q1a6tBgwbMC68GU6dOVXR0tEJCQnTixAnNmDFDdrtdw4cPN7s0t/DII4+oZ8+eeuaZZzR06FBt27ZNixcv1uLFi8vdp4eHh373u99p0KBBGj58uPLz87V06VI9+OCDrndioFxeeeUVo1mzZoanp6fRtWtXY+vWrWaX5BYSEhIMSSW2UaNGmV3ar15p112SsWTJErNLcwtjxowxQkJCDE9PT6NRo0bGbbfdZnzxxRdml+XWIiMjjUmTJpldhlsYNmyYERgYaHh6ehpNmjQxhg0bZhw6dMjsstzKZ599ZrRv397w8vIyIiIijMWLF1e4z8zMTGPYsGFGw4YNjaCgIOPhhx828vLyXD6fdWIBAABgOUwnAAAAQJX74YcfXDrO1bm2jMQCAACgytntdscTuUqLn5f3FxcXu9QfI7EAAACoFuvWrVPDhg0lScePH9fQoUP11VdfSZLOnDmjvn37utwXIRYAAADVol27do6nnvr4+Mhmszme2pWZmVmmvlgnFgAAAJZDiAUAAECVq+zbsAixAAAAqHI2m+26+0o75moIsQDgBo4cOSKbzaaUlBSzSwHgppYtW6a6des63rdo0UI5OTmO9w0aNNCWLVtc7o8QCwDlMHr0aN11112O91FRUZo8ebJp9aSlpelPf/qTgoKC5O3traZNm2rw4ME6cOCAJCk4OFjp6ek8IhWAaYYOHSovL6+rttvtdnXt2tXl/lidAAAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZd+OAQEBJhbKABUIkZiAaCCRo8eraSkJL300kuy2Wyy2Ww6cuSIJGnPnj0aNGiQfHx81LhxY40cOVKnT592nBsVFaUJEyZo8uTJqlevnho3bqzXX39d586dU0xMjHx9fRUWFqZVq1Zd9fP37t2rw4cPa+HCherevbtCQkLUq1cvzZ49W927d5dUcjrB6NGjHbVeuSUmJkqSCgoKNHXqVDVp0kS1a9dWt27dHG0A8EtAiAWACnrppZfUo0cPjR07Vunp6UpPT1dwcLDOnj2rvn37qnPnzkpOTtbq1at18uRJDR061On8t956Sw0bNtS2bds0YcIEjRs3TkOGDFHPnj21c+dO3X777Ro5cqT++9//lvr5jRo1Uo0aNfThhx+qqKjI5Zov15qenq5JkybJ399fERERkqTx48dry5YtWr58ub799lsNGTJEAwcO1MGDByt2sQCgkvDYWQAoh9GjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxl59WI12au9qgQQPdcMMNjn2Xn25zrafZxMbGKiMjQ0uXLlWPHj30wQcfqF27dlq7du01a9y1a5dGjhyp+fPnq1evXpKk3bt3q6ioSOHh4U61JyUlOdUNAGbixi4AqCJ5eXmKjo7Ws88+W6ItMDDQ8bpmzZpObTabzWnf5XUTi4uLr/l5vr6+io6OVnR0tGbPnq0BAwZo9uzZ6t+/f6nHZ2Rk6M4779QDDzyg+++/36luu92uHTt2yG63O53j4+NzzRoAoLoQYgGgEnh6epaYj3rjjTfqo48+UmhoqDw8qvfbrc1mU0REhL766qtS2/Pz8zV48GBFREToxRdfdGrr3LmzioqKlJmZqVtvvbU6ygWAMmM6AQBUgtDQUH399dc6cuSITp8+reLiYsXGxurMmTMaPny4tm/frsOHD2vNmjWKiYlx+QYsV6SkpGjw4MH68MMPtW/fPh06dEjx8fF64403NHjw4FLPeeihh3Ts2DG9/PLLOnXqlDIyMpSRkaELFy4oPDxcI0aM0H333acVK1YoLS1N27ZtU1xcnP79739XWt0AUBGMxAJAJZg6dapGjRqltm3b6vz580pLS1NoaKg2b96sxx9/XLfffrsKCgoUEhKigQMHqkaNyhtDaNq0qUJDQzVr1izHUlqX3z/yyCOlnpOUlKT09HS1bdvWaX9CQoKioqK0ZMkSzZ49W3/5y1/0448/qmHDhurevbt+97vfVVrdAFARrE4AAAAAy2E6AQAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBwPswsAAADAr19MTIxLxy1ZssSl42yGYRgVKQgAAAC4nrvvvtvx+ty5c9qwYYOio6Md+woKCrRq1SoVFxe71B8hFgAAANUqLS1NHTp0UG5urmPfqVOnFBAQoKKiIpf6YE4sAAAAqlXNmjV18eJFp335+fny8HB9pishtpwMw1BOTo4YyAYAACiboKAgGYahdevWOfb95z//UbNmzVzugxu7yik3N1d+fn46efKk6tSpY3Y5bsUwDBUUFEiSvLy8ZLPZTK7IfXH9AQDlUaNGDY0YMULR0dEaMGCAzp8/r3Xr1mnmzJku98Gc2HLKycmRn5+fBgwYoJo1a5pdDmCKDz74QN7e3maXAQCwoPPnz2vWrFlav369PD09deedd+rRRx9VjRquTRRgJBYAAADVrlatWpozZ065zyfEVtCM/t+pvo/ZVbiXgkKbnlzdVpL09MB98vLgjwnV6UJRDT2xqo3ZZQAALCYpKcml4yIjI106jhBbQTVrFMvLgzmBZvHyMAix1c619fuAXxvm4wMV07dvXxmGcc3/dgzDcHmdWEJsBV0o4psYALiDgoICDRkyRBLzwYHyyMrKqtT+CLEAAACocpW9mlO51ok9duyYxowZo6CgIHl6eiokJESTJk3STz/95DgmKipKNptNNptN3t7eCg8PV1xcXKnrqm7ZskV2u1133HFHibYjR47IZrPJ39/f6akOktSpU6cSSzEcOnRIY8aMUbNmzeTl5aUmTZrotttu09KlS1VYWOg47nJtP9+WL19enksCAACAa0hKSnJpc1WZR2K///579ejRQ+Hh4Vq2bJmaN2+uvXv36tFHH9WqVau0detW1a9fX5I0duxYPfXUUyooKNCGDRv04IMPqm7duho3bpxTn/Hx8ZowYYLi4+N14sQJBQUFlfjc3NxcPf/885o1a9ZVa9u2bZv69eundu3aacGCBYqIiJAkJScna8GCBWrfvr06duzoOH7JkiUaOHCgUx9169Yt6yUBAADAdZQ2J7a091U2JzY2Nlaenp764osvVKtWLUlSs2bN1LlzZ7Vs2VJPPvmkXn31VUnSb37zGwUEBEiSYmJiNH/+fK1du9YpxObl5em9995TcnKyMjIy9Oabb+qJJ54o8bkTJkzQiy++qNjYWPn7+5doNwxDo0ePVnh4uDZv3uy0xlirVq00fPjwEqPAdevWddQHwDVX/meUn59vXiFANbvy3ztLrAPlk5qaqsaNG0u69Nf2W265RceOHZPNZtOpU6cUHh7ucl9lCrFnzpzRmjVr9PTTTzsC7GUBAQEaMWKE3nvvPS1cuNCpzTAMffnllzpw4IBatWrl1Pb+++8rIiJCrVu31r333qvJkydr+vTpJe5cGz58uNauXaunnnpK8+fPL1FbSkqK9u/fr2XLll11kdyK3ElaUFDguCtVuvSwA8AdXXkz48iRI02sBDBPQUFBiZ+DAK6vTp06jrmxPj4+MgxDfn5+ki79oliWXxDLNCf24MGDMgxDbdqUvkZkmzZtlJWVpVOnTkmSFi5cKB8fH3l5eal3794qLi7WxIkTnc6Jj4/XvffeK0kaOHCgsrOzS50PYbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAABVrFyrE7iakkeMGKEnn3xSWVlZmjFjhnr27KmePXs62lNTU7Vt2zatXLnyUjEeHho2bJji4+MVFRVVor8BAwbolltu0V//+le9++671/38Bg0aKCUlRdKlG80uXLjg1D537lz169fPaV9p83Elafr06ZoyZYrjfU5ODkEWbsnT/r///t955x2WGYLbyM/Pd/z1wcvLy+RqAOup7Gk4ZQqxYWFhstls2r9/v37/+9+XaN+/f7/q1aunRo0aSZL8/PwUFhYm6dK0gbCwMHXv3t0RHOPj41VYWOgUHA3DkJeXl+bPn+8YXr7SnDlz1KNHDz366KNO+y9PU0hNTVXnzp0lSXa73fH5Hh4lv9SAgABH+/V4eXnxTQuQdOWsHG9vb0Is3BIPOgDK7uf/3dSsWVOhoaHXPOZayjSdoEGDBurfv78WLlyo8+fPO7VlZGRo6dKlGjZsWKkF+Pj4aNKkSZo6daoMw1BhYaHefvttvfDCC0pJSXFs33zzjYKCgrRs2bJSa+jatavuvvtuTZs2zWl/586dFRERoeeff97lu9oAAABQPbZs2aIGDRo43gcHB2v37t2O9/7+/kpPT3e5vzJPJ5g/f7569uypAQMGaPbs2U5LbDVp0kRPP/30Vc996KGH9Pe//10fffSRPDw8lJWVpfvvv7/EiOs999yj+Ph4Pfzww6X28/TTT6tdu3ZOo6s2m01LlixR//791atXL02fPl1t2rTRxYsXtXHjRp06dUp2u92pn7NnzyojI8Npn6+vr2rXrl3WywIAAIBr6Nq163WPKW0Fqqsp88MOWrVqpeTkZLVo0UJDhw5Vy5Yt9eCDD6pPnz7asmWLY43Y0tSvX1/33XefZs6cqfj4ePXr16/UKQP33HOPkpOT9e2335baT3h4uMaMGVNieZ/u3btrx44dat26tWJjY9W2bVv17NlTy5Yt09y5c0usTxsTE6PAwECn7ZVXXinT9bhyfiAA4NfLy8tLH3zwgT744AOmlwG/ADaDxe7KJScnR35+fkqeG6IGvsyNqk4FhTZN/bydJOn53+2Vlwf/hKvTldef58cDAMxSrtUJ8D8XimqooPD6x6HyFBTaSn2N6nGhqFxPqwYAoFIRYito1tpw1axZ0+wy3NaTq9uaXQIAAKgE//3vf/Xcc89pxowZLh3PkAoAAABMl5eXp1mzZrl8PCOxFfT22287Hp+G6mEYhuMRwF5eXqzXaCJubgEAVKay/EwnxFYQi72bg2eWm+fKXyIAAKhMZVlvgBALoEwKCgo0ZMgQSaxOAABwXYsWLa4ZUouKisrUHyEWQJlcuT5zfn4+IRYA4JLJkydfsz0vL0//93//53J/hFgAAABUuYkTJ16zPTMzs0whltUJAAAAYDmEWABlUlxcXOprAAAqqiyrExBiAZRJbm5uqa8BAKiICxcuqG/fvi4fX+UhdtGiRfL19VVh4f+ezZqXl6eaNWsqKirK6djExETZbDYdPnxYoaGhmjdvXon+Zs6cqU6dOpX6PjQ0VDab7arb6NGjJemq7cuXL6/krx4AAADX8/bbb6tDhw6y2+0un1PlN3b16dNHeXl5Sk5OVvfu3SVJmzZtUkBAgL7++munu5sTEhLUrFkztWzZslyftX37dsfyDF999ZXuuecepaamOh5GcOXaokuWLNHAgQOdzq9bt265PhcAAABld+rUKT300ENat26dXnjhBY0dO9blc6s8xLZu3VqBgYFKTEx0hNjExEQNHjxYGzZs0NatWx0jsomJierTp0+5P6tRo0aO1/Xr15ck+fv7lxpO69atq4CAgHJ/FgAAAFz380fKFhYW6rXXXlP79u21e/duhYSElKm/alliq0+fPkpISNC0adMkXRpxfeyxx1RUVKSEhARFRUXp/Pnz+vrrrzVmzJjqKKnMCgoKnJ5SlJOTY2I1AAAA1vLJJ584vS8sLFRWVpbuvvvuMgdYqRpD7OTJk1VYWKjz589r165dioyM1MWLF7Vo0SJJ0pYtW1RQUOA0Evv444+XWC/swoULatu2bYVrGj58eIl5F/v27VOzZs1KPT4uLq7EbxAAAABwzc6dO0vs++yzzzR27FitWLFC8fHxat68ucv9VcvqBFFRUTp37py2b9+uTZs2KTw8XI0aNVJkZKRjXmxiYqJatGjhFCIfffRRpaSkOG0PP/xwpdQ0d+7cEn0HBQVd9fjp06crOzvbsR07dqxS6gAAAHBX0dHR2rt3rxo0aKAOHTpo4cKFLp9bLSOxYWFhatq0qRISEpSVlaXIyEhJUlBQkIKDg/XVV18pISGhxLIKDRs2VFhYmNO+y3NdKyogIKBE39fi5eUlLy+vSvlsAAAAXNKgQQN98MEHevfddxUbG6s///nPLp1XbevE9unTR4mJiUpMTHRaWqt3795atWqVtm3bVqGbugAAAGBdf/rTn7R3716Xj6+WkVjpUoiNjY3VxYsXHSOxkhQZGanx48frwoUL1Rpiz549q4yMDKd9vr6+ql27drXVAAAA4C6SkpJcOu5a0zuvVK0h9vz584qIiFDjxo0d+yMjI5Wbm+tYiqu6xMTElNgXFxfnWEEBAAAAladv374yDMPxaNkrX19mGIbLjzS3GYZhVHqVbiAnJ0d+fn7Kzs52PEwBcAdnzpzRqFGjJElvvfVWpc1TBwD8ul25POmRI0d0yy236Pjx4459p06dUnh4uOPBVddTbSOxAH4datSoUeprAACu5cpBP19fXxUXFzvtO3/+vMoytspPIAAAAFQrf39/nT9/Xunp6Y59Bw8elL+/v8t9MBILoEy8vb1LfQ0AgKtq166tTp066Q9/+IOmTp2q/Px8PfXUU7rllltc7oM5seXEnFi4K8MwHI9g9vLyKjEpHwAAV2zfvl333HOPfvzxR0lS27Zt9emnn7r81C5CbDllZ2erbt26OnbsGCEWAAC4DV9f30obwCgsLFRqaqo8PT0VFhZWpn4JseX0/fffq2XLlmaXAQAAUK0yMzPVqFEjs8tgTmx5XV5W6OjRo/Lz8zO5GveTk5Oj4OBgRsJNwvU3F9ffPFx7c3H9zXX5+nt6epbrfFemCRiGoSNHjrjUHyG2nC4vLeTn58d/SCaqU6cO199EXH9zcf3Nw7U3F9ffXOWdSnD06FE99dRT8vX1lSSdPn1azz33nJ599llJUl5env7v//7P5f4IsQAAAKgWDzzwgOPJrd9//73mzp2riRMnSro0TaEsIZZ1YgEAAGA5hNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrl/a9Wd1AgAAAFQ5u92uEydOOE0n6NSpk3JyciRdmk4QGBiooqIil/pjJBYAAABV7qGHHtJvfvMbx/smTZpo1apVjve+vr6Ki4tzuT9GYgEAAGA5jMQCAADAcgix5bRgwQKFhobK29tb3bp107Zt28wuyS1s3LhR0dHRCgoKks1m08cff2x2SW4jLi5ON998s3x9feXv76+77rpLqampZpflNl599VV16NDBsT5mjx49nP4Mh+o1Z84c2Ww2TZ482exS3MLMmTNls9mctoiICLPLcis//vij7r33XjVo0EC1atXSDTfcoOTkZFNrIsSWw3vvvacpU6ZoxowZ2rlzpzp27KgBAwYoMzPT7NJ+9c6dO6eOHTtqwYIFZpfidpKSkhQbG6utW7dq7dq1unjxom6//XadO3fO7NLcQtOmTTVnzhzt2LFDycnJ6tu3rwYPHqy9e/eaXZrb2b59u1577TV16NDB7FLcSrt27ZSenu7YvvzyS7NLchtZWVnq1auXatasqVWrVmnfvn164YUXVK9ePVPrYk5sOXTr1k0333yz5s+fL0kqLi5WcHCwJkyYoGnTpplcnfuw2WxauXKl7rrrLrNLcUunTp2Sv7+/kpKS1Lt3b7PLcUv169fXc889p/vvv9/sUtxGXl6ebrzxRi1cuFCzZ89Wp06dNG/ePLPL+tWbOXOmPv74Y6WkpJhdiluaNm2aNm/erE2bNpldihNGYsvowoUL2rFjh/r16+fYV6NGDfXr109btmwxsTKgemVnZ0u6FKRQvYqKirR8+XKdO3dOPXr0MLsctxIbG6s77rjD6WcAqsfBgwcVFBSkFi1aaMSIETp69KjZJbmNTz/9VF26dNGQIUPk7++vzp076/XXXze7LEJsWZ0+fVpFRUWONc4ua9y4sTIyMkyqCqhexcXFmjx5snr16qX27dubXY7b2L17t3x8fOTl5aWHH35YK1euVNu2bc0uy20sX75cO3fuLNMSQKgc3bp105tvvqnVq1fr1VdfVVpamm699Vbl5uaaXZpb+P777/Xqq6+qVatWWrNmjcaNG6eJEyfqrbfeMrUuD1M/HYAlxcbGas+ePcxJq2atW7dWSkqKsrOz9eGHH2rUqFFKSkoiyFaDY8eOadKkSVq7dq28vb3NLsftDBo0yPG6Q4cO6tatm0JCQvT+++8znaYaFBcXq0uXLnrmmWckSZ07d9aePXu0aNEijRo1yrS6GIkto4YNG8put+vkyZNO+0+ePKmAgACTqgKqz/jx4/X5558rISFBTZs2Nbsct+Lp6amwsDDddNNNiouLU8eOHfXSSy+ZXZZb2LFjhzIzM3XjjTfKw8NDHh4eSkpK0ssvvywPDw+XnzCEylG3bl2Fh4fr0KFDZpfiFgIDA0v8stymTRvTp3QQYsvI09NTN910k9avX+/YV1xcrPXr1zM3Db9qhmFo/PjxWrlypTZs2KDmzZubXZLbKy4uVkFBgdlluIXbbrtNu3fvVkpKimPr0qWLRowYoZSUFNntdrNLdCt5eXk6fPiwAgMDzS7FLfTq1avEkorfffedQkJCTKroEqYTlMOUKVM0atQodenSRV27dtW8efN07tw5xcTEmF3ar15eXp7Tb95paWlKSUlR/fr11axZMxMr+/WLjY3Vu+++q08++US+vr6OOeB+fn6qVauWydX9+k2fPl2DBg1Ss2bNlJubq3fffVeJiYlas2aN2aW5BV9f3xLzv2vXrq0GDRowL7waTJ06VdHR0QoJCdGJEyc0Y8YM2e12DR8+3OzS3MIjjzyinj176plnntHQoUO1bds2LV68WIsXLza3MAPl8sorrxjNmjUzPD09ja5duxpbt241uyS3kJCQYEgqsY0aNcrs0n71SrvukowlS5aYXZpbGDNmjBESEmJ4enoajRo1Mm677Tbjiy++MLsstxYZGWlMmjTJ7DLcwrBhw4zAwEDD09PTaNKkiTFs2DDj0KFDZpflVj777DOjffv2hpeXlxEREWEsXrzY7JIM1okFAACA5TAnFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgDcwJEjR2Sz2ZSSkmJ2KQBQKQixAFAOo0eP1l133eV4HxUVpcmTJ5tWT1pamv70pz8pKChI3t7eatq0qQYPHqwDBw5IkoKDg5Wenq727dubViMAVCYPswsAAFTMxYsX1b9/f7Vu3VorVqxQYGCgjh8/rlWrVuns2bOSJLvdroCAAHMLBYBKxEgsAFTQ6NGjlZSUpJdeekk2m002m01HjhyRJO3Zs0eDBg2Sj4+PGjdurJEjR+r06dOOc6OiojRhwgRNnjxZ9erVU+PGjfX666/r3LlziomJka+vr8LCwrRq1aqrfv7evXt1+PBhLVy4UN27d1dISIh69eql2bNnq3v37pJKTicYPXq0o9Yrt8TERElSQUGBpk6dqiZNmqh27drq1q2bow0AfgkIsQBQQS+99JJ69OihsWPHKj09Xenp6QoODtbZs2fVt29fde7cWcnJyVq9erVOnjypoUOHOp3/1ltvqWHDhtq2bZsmTJigcePGaciQIerZs6d27typ22+/XSNHjtR///vfUj+/UaNGqlGjhj788EMVFRW5XPPlWtPT0zVp0iT5+/srIiJCkjR+/Hht2bJFy5cv17fffqshQ4Zo4MCBOnjwYMUuFgBUEpthGIbZRQCA1YwePVpnz57Vxx9/LOnSiGqnTp00b948xzGzZ8/Wpk2btGbNGse+48ePKzg4WKmpqQoPD1dUVJSKioq0adMmSVJRUZH8/Px099136+2335YkZWRkKDAwUFu2bHGMrP7cggUL9Nhjj8lut6tLly7q06ePRowYoRYtWki6NBLbvHlz7dq1S506dXI6d8WKFRoxYoTWrVunXr166ejRo2rRooWOHj2qoKAgx3H9+vVT165d9cwzz1T08gFAhTESCwBV5JtvvlFCQoJ8fHwc2+WRzsOHDzuO69Chg+O13W5XgwYNdMMNNzj2NW7cWJKUmZl51c+KjY1VRkaGli5dqh49euiDDz5Qu3bttHbt2mvWuGvXLo0cOVLz589Xr169JEm7d+9WUVGRwsPDnWpPSkpyqhsAzMSNXQBQRfLy8hQdHa1nn322RFtgYKDjdc2aNZ3abDab0z6bzSZJKi4uvubn+fr6Kjo6WtHR0Zo9e7YGDBig2bNnq3///qUen5GRoTvvvFMPPPCA7r//fqe67Xa7duzYIbvd7nSOj4/PNWsAgOpCiAWASuDp6VliPuqNN96ojz76SKGhofLwqN5vtzabTREREfrqq69Kbc/Pz9fgwYMVERGhF1980amtc+fOKioqUmZmpm699dbqKBcAyozpBABQCUJDQ/X111/ryJEjOn36tIqLixUbG6szZ85o+PDh2r59uw4fPqw1a9YoJibG5RuwXJGSkqLBgwfrww8/1L59+3To0CHFx8frjTfe0ODBg0s956GHHtKxY8f08ssv69SpU8rIyFBGRoYuXLig8PBwjRgxQvfdd59WrFihtLQ0bdu2TXFxcfr3v/9daXUDQEUwEgsAlWDq1KkaNWqU2rZtq/PnzystLU2hoaHavHmzHn/8cd1+++0qKChQSEiIBg4cqBo1Km8MoWnTpgoNDdWsWbMcS2ldfv/II4+Uek5SUpLS09PVtm1bp/0JCQmKiorSkiVLNHv2bP3lL3/Rjz/+qIYNG6p79+763e9+V2l1A0BFsDoBAAAALIfpBAAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAy/EwuwAAAAD8+sXExLh03JIlS1w6zmYYhlGRggAAAIDrsdvtGjhwoLy8vCRJ586d04YNGxQdHS1JKigo0KpVq1RcXOxSf4RYAAAAVDm73a4TJ06ocePGkqS0tDR16NBBubm5kqRTp06pcePGLodY5sQCAACg2v18HLWs46qEWAAAAFQ5X19fZWVlOd5nZWXp3LlzysvLkyRlZGSofv36LvdHiAUAAECVi4iI0CuvvKLi4mIVFxdr4cKFCgoK0tSpU7V582Y9+eSTuvnmm13ujzmxAAAAqHIff/yx/vCHP6h27doqLi5W7dq1tXr1av3xj3/UwYMHFRwcrM8++0w33HCDS/0RYgEAAFAtNm7cqM8++0y1atXS2LFjFRwcLEn66aef1KBBgzL1RYgFAACA5TAnFgAAAJbDE7sAAABQ5ex2u0vLaLm6TiwhFgAAAFVu5cqVldofc2IBAABgOYzEAgAAoNocO3ZMH374oQ4ePChJatWqlf7whz84VipwFSOxAAAAqBbz58/XX/7yFxUWFsrPz0+GYSgnJ0ceHh6aO3eu/vznP7vcF6sTAAAAoMpt2LBBkydP1vjx45Wenq4zZ84oKytL6enpmjhxoiZMmKCEhASX+2MkFgAAAFXud7/7nRo2bKg333yz1PYxY8bo1KlT+uyzz1zqj5FYAAAAVLmvv/5ao0ePvmr7fffdp6+//trl/gixAAAAqHI5OTlq3ry54/1///tfrVixwvG+ZcuWys3Ndbk/QiwAAACqXIMGDXTmzBnH+4yMDI0aNcrxPjs7W02bNnW5P5bYAgAAQJXr0aOH3nnnHdWrV082m03Hjx93at+wYYO6dOnicn/c2AUAAIAqt27dOg0YMMDx6Fmbzabf/OY3jikEN998s1588UXdeuutLvVHiAUAAEC12Lt3r4qKihzv7Xa72rVrV66+CLEAAACwHG7sAgAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOILSfDMJSTkyPuiwMAAKh+POygnHJzc+Xn56fs7GzVqVPH7HIAAAB+0Vq0aHHdwT/DMHTkyBGX+iPEAoCFGIahgoICs8twS1de+zp16qhGDf6YCZTF5MmTr9p28uRJLV26VEePHnW5P0IsAFhIQUGBhgwZYnYZbu+dd95R3bp1zS4DsJSJEyc6vS8qKtK///1vLVmyRGvWrFFkZKT+8Y9/uNwfIRYAAADV5sCBA3rjjTf0r3/9S7Vr11ZMTIzmz5+vJk2alKkfQiwAWNQzg/bL015sdhluI6/ArplrI8wuA7C0rKwstWvXTr1799by5cvVu3fvcvdFiAUAC7nypoiaNYrl5cEKKdWloJBfGMx05ZxkLy8v2Ww2kytCefzmN7/RH//4R3388ceaMWOGYmJiNGTIENWqVavMfTErHQAs5Mqbui4U8UMc7uPyfPAhQ4Zwc6OFeXl5aenSpUpPT9fQoUP18ssvKzAwUA899JC+/vrrMvVVrhB77NgxjRkzRkFBQfL09FRISIgmTZqkn376yXFMVFSUbDabbDabvL29FR4erri4uFKXVtiyZYvsdrvuuOOOEm1HjhyRzWaTv7+/cnNzndo6deqkmTNnOu07dOiQxowZo2bNmsnLy0tNmjTRbbfdpqVLl6qwsNBx3OXafr4tX768TNdi7ty5ZToelePZZ59VdHS0nn32WbNLAQAAZVSnTh2NGzdOycnJ2rhxo2rVqqU77rhD7dq1c7mPMofY77//Xl26dNHBgwe1bNkyHTp0SIsWLdL69evVo0cPnTlzxnHs2LFjlZ6ertTUVE2fPl1/+9vftGjRohJ9xsfHa8KECdq4caNOnDhR6ufm5ubq+eefv2Zt27Zt04033qj9+/drwYIF2rNnjxITE/XAAw/o1Vdf1d69e52OX7JkidLT0522u+66q0zXY8uWLcrMzCzTOaiYzMxMffnll5KkL7/8kusPAIAF1K9fX/Xq1SuxRUZG6u2339aFCxe0f/9+l/sr85zY2NhYeXp66osvvnDMX2jWrJk6d+6sli1b6sknn9Srr74q6dK8h4CAAEly3Hm2du1ajRs3ztFfXl6e3nvvPSUnJysjI0NvvvmmnnjiiRKfO2HCBL344ouKjY2Vv79/iXbDMDR69GiFh4dr8+bNTuv3tWrVSsOHDy8xCly3bl1HfRXx+OOPa8mSJRXuB655/PHHS7zn+gMA8Mv20ksvVeqTTssUYs+cOaM1a9bo6aefLjEBNyAgQCNGjNB7772nhQsXOrUZhqEvv/xSBw4cUKtWrZza3n//fUVERKh169a69957NXnyZE2fPr3EhO3hw4dr7dq1euqppzR//vwStaWkpGj//v1atmzZVRegrqpJ4KdPn9b69et12223VUn/+J/169fr9OnTTvu4/gCqxRU/e/Pz85Wfn29eLW7oyuvNI9+t6Y9//KNq1qxZaf2VKcQePHhQhmGoTZs2pba3adNGWVlZOnXqlCRp4cKF+uc//6kLFy7o4sWL8vb2LrHQbXx8vO69915J0sCBA5Wdna2kpCRFRUU5HWez2TRnzhxFR0frkUceUcuWLZ3av/vuO0lS69atHfsyMzPVokULx/t//OMf+vOf/+x4P3z4cNntdqd+9u3bp2bNmpX42goKCpwmkufk5Di1v/LKK4qKiirRHypPUVGRXnnllVLbuP4AqtqVN9KNHTvWxEpQUFBQrrvZYa4mTZroT3/6k+6//37dcMMNFe6vXDd2ufob0IgRI5SSkqLNmzdr0KBBevLJJ9WzZ09He2pqqrZt26bhw4dLkjw8PDRs2DDFx8eX2t+AAQN0yy236K9//atLn9+gQQOlpKQoJSVFdevW1YULF5za586d62i/vAUFBZXaV1xcnPz8/BxbcHCwU3tRUZFWr17tUl0on9WrV6uoqKjUNq4/AAC/bNOmTdO2bdvUuXNndevWTa+99lqJm/bLokwjsWFhYbLZbNq/f79+//vfl2jfv3+/6tWrp0aNGkmS/Pz8FBYWJunStIGwsDB1795d/fr1k3RpFLawsNApOBqGIS8vL82fP19+fn4lPmPOnDnq0aOHHn30Uaf9l6cppKamqnPnzpIku93u+HwPj5JfakBAgKP9eqZPn64pU6Y43ufk5DgFWbvdroEDB7rUF8pn4MCBev3110sNslx/AFXN0/6/AZzXX3+dx85Ws/z8fI0cOVLSpWWaYD1TpkzRlClTtHnzZkVGRio/P19TpkzRH/7wB40ZM0aRkZFl6q9MIbZBgwbq37+/Fi5cqEceecRpKD8jI0NLly7VfffdV+rcUx8fH02aNElTp07Vrl27VFRUpLffflsvvPCCbr/9dqdj77rrLi1btkwPP/xwiX66du2qu+++W9OmTXPa37lzZ0VEROj555/X0KFDrzovtry8vLyu+R/NxIkT+VN2FbPb7ZowYYLmzZtXoo3rD6DKXfGjzdvbW97e3ubV4uZ40IG11atXTzabTd9884327Nmjd955RyNHjpS3t7diYmI0ffp0l/opc9KbP3++CgoKNGDAAG3cuFHHjh3T6tWr1b9/fzVp0kRPP/30Vc996KGH9N133+mjjz7S559/rqysLN1///1q376903bPPfdcdUqBJD399NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJkHP27FllZGQ4befOnSvrJVHDhg3Vt2/fMp+HsrvtttvUsGFDp31cfwAArKl9+/Z69tlnlZaWpiFDhrg8ZVQqR4ht1aqVkpOT1aJFCw0dOlQtW7bUgw8+qD59+mjLli2qX7/+Vc+tX7++7rvvPs2cOVPx8fHq169fqVMG7rnnHiUnJ+vbb78ttZ/w8HCNGTOmxJ2h3bt3144dO9S6dWvFxsaqbdu26tmzp5YtW6a5c+c6Le0lXVr2KzAw0Gm72o1D18KC+9Xr59eb6w8AgDV98803evTRRxUSEqKPP/64TD/Ty7xOrCSFhITozTffvOYxiYmJpe4v7WEHP9e1a1enm8dKu5Hstdde02uvvVZif3h4+HVru1qf5dGjR49S161F1fH399ctt9yiL7/8UrfccgvXH27lymlNV87RBH7tvLy89MEHHzhew7p++uknGYahG264QUePHtWQIUP04Ycfqnv37mXqp1whFv/zyCOPmF2CW3r88cdLPPQAcAdXzgVkWiDcyeXH2MO6nnvuOX300UdKTk5Wjx49NGbMGA0bNky/+c1vytUfIRYALOpCUQ1JxWaX4TYuFlXuDcOAu3nxxRc1cuRIvf322woPD69wf4RYALCoJ1aV/uAZAPglOn78uOMm+6ysLB08eFA2m01hYWGqV69emfvj10oAAABUObvdrrS0NP32t79Vw4YN1b17d3Xr1k0NGzbUb3/7W/3www9l6s9m8ADicsnJyZGfn5+ys7NVp04ds8sB4CYMw3B6BDaqz5XXvk6dOpW+Hjnwa3fy5EndeOONstvtio2NVUREhKRLD6qaP3++ioqKtHPnTjVu3Nil/gix5USIBWAGQizcFb9EWN/EiROVkJCgbdu2OT0wS7r0RLabb75ZUVFRLi93SogtJ0IsADPk5+dryJAhZpcBmOqdd97hsb8W1KJFCz3//PO6++67S23/+OOP9Ze//EWHDx92qT9+jQEAAECVS09PV4cOHa7a3r59e/34448u98fqBABgUa/8fay8PGuaXQZQLXLy/qupf3/T7DJQAY0aNVJhYeFV2y9evOjyfFiJEAsLunJelJeXl9Pi74A78fKsKS8vQizcg2fB/yILMyGt6aabbtIXX3zhuKHr51avXq2OHTu63B/TCWA5BQUFGjJkiIYMGcINLgDgJi5c/N8IHt/7remRRx7Ra6+9puzs7BJtOTk5ev311zV58mSX+2MkFgAAAFWud+/e2rt3b6ltderU0b59+8rUX5WPxC5atEi+vr5OcyDy8vJUs2ZNRUVFOR2bmJgom82mw4cPKzQ0VPPmzSvR38yZM9WpU6dS34eGhspms111Gz16tCRdtX358uWV/NUDAACgKlT5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr68vb0lSQkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjqWwLpyTbIlS5Zo4MCBTuezXAcAAEDVaNGihUvzmdPS0lzqr8pDbOvWrRUYGKjExERHiE1MTNTgwYO1YcMGbd261TEim5iYqD59+pT7sxo1auR4Xb9+fUmSv79/qeG0bt26CggIKPdnwTxX/geQn59vYiVA9bvy3zw3twCwkp/Pd12/fr3WrFmjv/71r/L19S1zf9UyJ7ZPnz5KSEjQtGnTJF0acX3sscdUVFSkhIQERUVF6fz58/r66681ZsyY6iipzAoKCpwmkufk5JhYjXu78v+HkSNHmlgJYK4LFwvl7e1pdhkA4JKJEyc6Xq9bt07Tp09XnTp1lJiYqH//+9/y9Czb97NqWZ2gT58+2rx5swoLC5Wbm6tdu3YpMjJSvXv3VmJioiRpy5YtKigocBqJffzxx+Xj4+O0PfPMM5VS0/Dhw0v0ffTo0aseHxcXJz8/P8cWHBxcKXUAAAC4k/Xr1+vOO+/UQw89pP379+vHH3/UH//4RxUXF5epn2oZiY2KitK5c+e0fft2ZWVlKTw8XI0aNVJkZKRiYmKUn5+vxMREtWjRQs2aNXOc9+ijjzpuxrrs5Zdf1saNGytc09y5c9WvXz+nfUFBQVc9fvr06ZoyZYrjfU5ODkHWJF5eXo7X77zzjmNONeAO8vPzHX+B8KzJAjMArCUhIUF33nmnHnzwQb344ouSLo3K9uzZUw888IDeeOMNl/uqlu+AYWFhatq0qRISEpSVlaXIyEhJl0JjcHCwvvrqKyUkJKhv375O5zVs2FBhYWFO+y7Pda2ogICAEn1fi5eXl1N4gnmufLiBt7c3IRZuiwd9ALCSpKQkRUdH64EHHnBagSooKEjr1q3TLbfcoqlTp+r55593qb9qe9hBnz59lJiYqMTERKeltXr37q1Vq1Zp27ZtFbqpCwAAAL9c0dHRiomJ0UsvvVSiLSwsTKtXr9Y///lPl/urtr9F9enTR7Gxsbp48aJjJFaSIiMjNX78eF24cKFaQ+zZs2eVkZHhtM/X11e1a9euthoAAADcxahRo/TKK69ctb1Tp0769NNPXe6vWkPs+fPnFRERocaNGzv2R0ZGKjc317EUV3WJiYkpsS8uLs6xggJ+uby8vPTBBx84XgMAfv2unAPO935rulaAvax3794u92czWGiwXHJycuTn56fs7GzHwxQAoKrl5+dryJAhkqTFz/5ZXl41Ta4IqB45uf/VhL++LunSTb08oAjc2goAFlVw4aLZJQDVhn/v+DlCLABY1OVRKQBwR9W2OgEAAABwNT/99JOaN2/u8vHMiS2n7Oxs1a1bV8eOHWNOLIBqYxiG06OXAXdx5b/9OnXqqEYNxuHM4uvrWyXrVGdmZiogIMDlJ3cxnaCcfvrpJ0niqV0AAMCtZGZmqlGjRmaXQYgtr8tPDjt69Kj8/PxMrsb9XH7sLyPh5uD6m4vrbx6uvbm4/ua6fP09PT3LdX5SUtI128+cOVOm/gix5XT5zxh+fn78h2SiOnXqcP1NxPU3F9ffPFx7c3H9zVXeqQR9+/aVYRiVNhWBEAsAAIAql5WVdc32U6dOqVWrVi73R4gFAABAlbve6Hl+fn6Z+uPWvnLy8vLSjBkzePSdSbj+5uL6m4vrbx6uvbm4/uaqjutflqkGLLEFAAAA0+Xm5urhhx/W0qVLXTqekVgAAACY7q233tLHH3/s8vHMiQUAAIBpjh49qjFjxiglJUXx8fEun8dILAAAAEzx1ltvqWPHjqpVq5b27t2rP/7xjy6fy0gsAAAAqlyLFi105a1YhYWFSk9P16JFi/TAAw+UuT9GYstpwYIFCg0Nlbe3t7p166Zt27aZXZJb2Lhxo6KjoxUUFCSbzVamuTOomLi4ON18883y9fWVv7+/7rrrLqWmpppdltt49dVX1aFDB8ci7z169NCqVavMLsttzZkzRzabTZMnTza7FLcwc+ZM2Ww2py0iIsLsstzKjz/+qHvvvVcNGjRQrVq1dMMNNyg5OblMfUyePFmPPPKI0xYcHKz4+HgdOHCgzDUxElsO7733nqZMmaJFixapW7dumjdvngYMGKDU1FT5+/ubXd6v2rlz59SxY0eNGTNGd999t9nluJWkpCTFxsbq5ptvVmFhoZ544gndfvvt2rdvn2rXrm12eb96TZs21Zw5c9SqVSsZhqG33npLgwcP1q5du9SuXTuzy3Mr27dv12uvvaYOHTqYXYpbadeundatW+d47+FBhKkuWVlZ6tWrl/r06aNVq1apUaNGOnjwoOrVq1emfiZOnFhi34MPPqjJkyfrxhtv1KxZszR16lSXl9liia1y6Natm26++WbNnz9fklRcXKzg4GBNmDBB06ZNM7k692Gz2bRy5UrdddddZpfilk6dOiV/f38lJSWpd+/eZpfjlurXr6/nnntO999/v9mluI28vDzdeOONWrhwoWbPnq1OnTpp3rx5Zpf1qzdz5kx9/PHHSklJMbsUtzRt2jRt3rxZmzZtqrLP+Pe//62xY8cqNDRUX331lUvnMJ2gjC5cuKAdO3aoX79+jn01atRQv379tGXLFhMrA6pXdna2pEtBCtWrqKhIy5cv17lz59SjRw+zy3ErsbGxuuOOO5x+BqB6HDx4UEFBQWrRooVGjBiho0ePml2S2/j000/VpUsXDRkyRP7+/urcubNef/31Sv2MO+64Q3v37lXTpk1dPocQW0anT59WUVGRGjdu7LS/cePGysjIMKkqoHoVFxdr8uTJ6tWrl9q3b292OW5j9+7d8vHxkZeXlx5++GGtXLlSbdu2Nbsst7F8+XLt3LlTcXFxZpfidrp166Y333xTq1ev1quvvqq0tDTdeuutys3NNbs0t/D999/r1VdfVatWrbRmzRqNGzdOEydO1FtvvVWpn1OvXj29//77Lh/PhBIAZRYbG6s9e/boyy+/NLsUt9K6dWulpKQoOztbH374oUaNGqWkpCSCbDU4duyYJk2apLVr18rb29vsctzOoEGDHK87dOigbt26KSQkRO+//z7TaapBcXGxunTpomeeeUaS1LlzZ+3Zs0eLFi3SqFGjXO4nJibmuscYhqE333zTpf4YiS2jhg0bym636+TJk077T548qYCAAJOqAqrP+PHj9fnnnyshIaFMf/ZBxXl6eiosLEw33XST4uLi1LFjR7300ktml+UWduzYoczMTN14443y8PCQh4eHkpKS9PLLL8vDw0NFRUVml+hW6tatq/DwcB06dMjsUtxCYGBgiV+W27RpU+YpHdnZ2Y7txIkT+te//uW0LzMzU2+//bbL/TESW0aenp666aabtH79escNRcXFxVq/fr3Gjx9vbnFAFTIMQxMmTNDKlSuVmJio5s2bm12S2ysuLlZBQYHZZbiF2267Tbt373baFxMTo4iICD3++OOy2+0mVeae8vLydPjwYY0cOdLsUtxCr169Siyp+N133ykkJKRM/axYscLxOi0tTR06dHDad+rUqTINCBJiy2HKlCkaNWqUunTpoq5du2revHk6d+6cS8PkqJi8vDyn37zT0tKUkpKi+vXrq1mzZiZW9usXGxurd999V5988ol8fX0dc8D9/PxUq1Ytk6v79Zs+fboGDRqkZs2aKTc3V++++64SExO1Zs0as0tzC76+viXmf9euXVsNGjRgXng1mDp1qqKjoxUSEqITJ05oxowZstvtGj58uNmluYVHHnlEPXv21DPPPKOhQ4dq27ZtWrx4sRYvXlzuPmvWrKmLFy867cvPzy/b0mkGyuWVV14xmjVrZnh6ehpdu3Y1tm7danZJbiEhIcGQVGIbNWqU2aX96pV23SUZS5YsMbs0tzBmzBgjJCTE8PT0NBo1amTcdtttxhdffGF2WW4tMjLSmDRpktlluIVhw4YZgYGBhqenp9GkSRNj2LBhxqFDh8wuy6189tlnRvv27Q0vLy8jIiLCWLx4cYX6KyoqMjw9PY21a9c69i1atMgICwtzuQ/WiQUAAEC1GzNmjJYtW6YBAwbo/PnzWrdunWbOnKm//vWvLp1PiAUAAEC1O3/+vGbNmqX169fL09NTd955px599FHVqOHaugOEWAAAAFgON3YBAACgyiUlJbl0XGRkpEvHMRILAACAKme322UYhmw2m2Nfae+Li4td6o+HHQAAAKBapKamKisrS1lZWdq1a5d8fHx05swZZWVl6bvvvnMKtNfDdAIAAABUizp16qhOnTqSJB8fHxmGIT8/P0mX1oktywQBRmIBAABgOYRYAAAAVLnKvg2LEAsAbuDIkSOy2WxKSUkxuxQAburn811r1qyp0NDQax5zLYRYACiH0aNH66677nK8j4qK0uTJk02rJy0tTX/6058UFBQkb29vNW3aVIMHD9aBAwckScHBwUpPT1f79u1NqxGAe9uyZYsaNGjgeB8cHKzdu3c73vv7+ys9Pd3l/rixCwAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZeWtgkICDC3UABurWvXrtc9xt/f3+X+GIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKwhO7AKAcRo8erbNnz+rjjz+WdGlEtVOnTpo3b57jmNmzZ2vTpk1as2aNY9/x48cVHBys1NRUhYeHKyoqSkVFRdq0aZMkqaioSH5+frr77rv19ttvS5IyMjIUGBioLVu2OEZWf27BggV67LHHZLfb1aVLF/Xp00cjRoxQixYtJF0aiW3evLl27dqlTp06OZ27YsUKjRgxQuvWrVOvXr109OhRtWjRQkePHlVQUJDjuH79+qlr16565plnKnr5AKDCGIkFgCryzTffKCEhQT4+Po7t8kjn4cOHHcd16NDB8dput6tBgwa64YYbHPsaN24sScrMzLzqZ8XGxiojI0NLly5Vjx499MEHH6hdu3Zau3btNWvctWuXRo4cqfnz56tXr16SpN27d6uoqEjh4eFOtSclJTnVDQBm4sYuAKgieXl5io6O1rPPPluiLTAw0PG6Zs2aTm02m81p3+UlZ673PHFfX19FR0crOjpas2fP1oABAzR79mz179+/1OMzMjJ055136oEHHtD999/vVLfdbteOHTtkt9udzvHx8blmDQBQXQixAFAJPD09S8xHvfHGG/XRRx8pNDRUHh7V++3WZrMpIiJCX331Vant+fn5Gjx4sCIiIvTiiy86tXXu3FlFRUXKzMzUrbfeWh3lAkCZMZ0AACpBaGiovv76ax05ckSnT59WcXGxYmNjdebMGQ0fPlzbt2/X4cOHtWbNGsXExLh8A5YrUlJSNHjwYH344Yfat2+fDh06pPj4eL3xxhsaPHhwqec89NBDOnbsmF5++WWdOnVKGRkZysjI0IULFxQeHq4RI0bovvvu04oVK5SWlqZt27YpLi5O//73vyutbgCoCEZiAaASTJ06VaNGjVLbtm11/vx5paWlKTQ0VJs3b9bjjz+u22+/XQUFBQoJCdHAgQNVo0bljSE0bdpUoaGhmjVrlmMprcvvH3nkkVLPSUpKUnp6utq2beu0PyEhQVFRUVqyZIlmz56tv/zlL/rxxx/VsGFDde/eXb/73e8qrW4AqAhWJwAAAIDlMJ0AAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOV4mF0AAAAA3EdMTMx1jzEMQ2+++eY1j7EZhmFUUk0AAADANd19991XbTMMQ7t27dLRo0dVXFx8zX4YiQUAAEC1WbFiRYl9p0+f1tKlS/XGG28oJydHDz/88HX7YSQWAAAA1a64uFirV6/WkiVL9Pnnn+uWW27RmDFjdPfdd8vLy+u65xNiAQAAUK3y8vIUEREhT09PjR49WjExMQoODi5TH6xOAAAAgGpnt9tls9lkGMZ157+WhhALAACAauXj46MjR45o4cKF2rt3r9q2bav+/ftr2bJlKigocKkPphMAAADAVGfOnNG//vUvLVmyRD/88IOGDx+uBQsWXPMcQiwAAACqze9///urttlsNu3atUs//PADS2wBAADgl6N+/fq61hhqnz59XOqHkVgAAABYDiOxAAAAqDauPHZWkpYsWXLNdkIsAAAAqk12dnal9MN0gnIyDEO5ubny9fWVzWYzuxwAAAC3wjqx5ZSbmys/Pz/l5OSYXQoAAIDbYTpBBbm6IC8AAABcmxNrGIbefPPNax5DiK2g/Px8s0sAAACwjGvNiS0qKtK6det0/vx5QiwAAAB+OVasWFHq/k8++URPPPGEvL29NWPGjOv2w5xYAAAAmGbTpk3q2bOnhg8frt/97nf6/vvv9dhjj133PEJsBV3vkWgAAAAoac+ePYqOjtZtt92mdu3a6dChQ3r22Wfl5+fn0vmE2ArKy8szuwQAbmbcuHGKjo7WuHHjzC4FAMrshx9+0KhRo9SpUyd5eHho9+7dev311xUUFFSmfsoVYo8dO6YxY8YoKChInp6eCgkJ0aRJk/TTTz85jomKipLNZpPNZpO3t7fCw8MVFxdX6rNyt2zZIrvdrjvuuKNE25EjR2Sz2eTv76/c3Fyntk6dOmnmzJlO+w4dOqQxY8aoWbNm8vLyUpMmTXTbbbdp6dKlKiwsdBx3ubafb8uXLy/PJQGAanH48GEdP35cknT8+HEdPnzY5IoAoGxat26tDz74QFOnTtXo0aN14MABffLJJyW26ynzjV3ff/+9evToofDwcC1btkzNmzfX3r179eijj2rVqlXaunWr6tevL0kaO3asnnrqKRUUFGjDhg168MEHVbdu3RKjB/Hx8ZowYYLi4+N14sSJUpN4bm6unn/+ec2aNeuqtW3btk39+vVTu3bttGDBAkVEREiSkpOTtWDBArVv314dO3Z0HL9kyRINHDjQqY+6deuW9ZIAQLWZOnVqifcrV640qRoAKLvCwkIZhqHnnnvuqscYhnHdKZtlHomNjY2Vp6envvjiC0VGRqpZs2YaNGiQ1q1bpx9//FFPPvmk49jf/OY3CggIUEhIiGJiYtShQwetXbvWqb+8vDy99957GjdunO64446rLqcwYcIEvfjii8rMzCy13TAMjR49WuHh4dq8ebOio6PVqlUrtWrVSsOHD9eXX36pDh06OJ1Tt25dBQQEOG3e3t5lvSQAUC2WLFni9Bcl6dIPg+s9XxwAfkkKCwtVVFR0zc2Ve47KFGLPnDmjNWvW6M9//rNq1arl1BYQEKARI0bovffeKzFlwDAMbdq0SQcOHJCnp6dT2/vvv6+IiAi1bt1a9957r954441SpxwMHz5cYWFheuqpp0qtLSUlRfv379fUqVNVo0bpX1ZFHg9bUFCgnJwcpw0AqsvFixevuizNihUrdPHixWquCADMVabpBAcPHpRhGGrTpk2p7W3atFFWVpZOnTolSVq4cKH++c9/6sKFC7p48aK8vb01ceJEp3Pi4+N17733SpIGDhyo7OxsJSUlKSoqyuk4m82mOXPmKDo6Wo888ohatmzp1P7dd99JujTP4rLMzEy1aNHC8f4f//iH/vznPzveDx8+XHa73amfffv2qVmzZiW+tri4uGtOZQCAqvT6669ft/3K728A8EuVlJTk0nGRkZHXbC/Xww5KGyktzYgRI/Tkk08qKytLM2bMUM+ePdWzZ09He2pqqrZt2+aYz+Xh4aFhw4YpPj6+RIiVpAEDBuiWW27RX//6V7377rvX/fwGDRooJSVF0qUbzS5cuODUPnfuXPXr189p39XujJs+fbqmTJnieJ+Tk6Pg4ODr1gAAlWHs2LFatWrVNdsBwAr69u0rwzCu+RdyV+bElinEhoWFyWazaf/+/fr9739fon3//v2qV6+eGjVqJEny8/NTWFiYpEvTBsLCwtS9e3dHcIyPj1dhYaFTcDQMQ15eXpo/f36p64TNmTNHPXr00KOPPuq0v1WrVpIuBePOnTtLkux2u+PzPTxKfqkBAQGO9uvx8vKSl5eXS8cCQGWrWbOm7r777lKnFNxzzz2qWbOmCVUBQNllZWVVSj9lmhPboEED9e/fXwsXLtT58+ed2jIyMrR06VINGzas1GTt4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/+eR5AAOBXKSYmpsQv5B4eHho9erQ5BQFAOaxbt061atVSnTp1rrldT5lXJ5g/f74KCgo0YMAAbdy4UceOHdPq1avVv39/NWnSRE8//fRVz33ooYf03Xff6aOPPtLnn3+urKws3X///Wrfvr3Tds899yg+Pv6q/Tz99NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJ+a9nz55VRkaG03bu3LmyXhIAqDbPP//8Nd8DwC/dsGHD1LRpU02dOlX79+8vdz9lDrGtWrVScnKyWrRooaFDh6ply5Z68MEH1adPH23ZssWxRmxp6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMUX5+vtP+7t27a8eOHWrdurViY2PVtm1b9ezZU8uWLdPcuXNLrE8bExOjwMBAp+2VV14p6yUBgGrTsmVLNW3aVJLUtGnTEje5AsAv3YkTJzR79mzt2LFD7dq1U8+ePfX666+X+SmoNsPVu7TgJCcnR35+fkpLS1NoaKjZ5QAAAFjK/v371aFDB/3jH//Qv/71L3333XcaMmSI7r//fvXq1eu655frsbP4n6utSQsAAICruzyO+sgjj2jHjh3avn27AgMDde+99zqeunotJDAAAACYLjw8XL1799Ytt9yiH3744brHE2IriMfUAgAAlF9ycrKmTJmiJk2aaNKkSbrhhhtcCrHletgB/oe1YwEAAMrmwIEDeuONN1RcXKyoqCgNHTpUH374oUtzYS8jxFbQtZ42AQAAAGft27fXvn371L17dy1evFh//OMfVbt2bUd7YWGhNm/eXDWPncX/sLgDAACA6wYOHKgPPvhAbdq0KbX9zJkz6tOnT+U+dhYlFRQUmF0CAACAZbjykBZX/tLNjV0V9PMHLgAAAKBiXPlLNyOxAAAAqDYxMTHXbD9//rxL/RBiK+h68zUAAADwP9nZ2ddsd3WqJiG2gsr6nF8AAAB3tmLFimu2nzp1So0bN75uP1U+J3bRokXy9fVVYWGhY19eXp5q1qypqKgop2MTExNls9l0+PBhhYaGat68eSX6mzlzpjp16lTq+9DQUNlstqtuo0ePlqSrti9fvrySv3oAAACUhasrP1X5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr7jqVcJCQlq1qyZWrZsWa7P2r59u4qKiiRJX331le655x6lpqaqTp06kqRatWo5jl2yZIkGDhzodH7dunXL9bkAAACoPK6sTlDlIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFD56tevr4SEhOseVy1zYvv06aOEhARNmzZN0qUR18cee0xFRUVKSEhQVFSUzp8/r6+//lpjxoypjpIAAABgkqKiIq1Zs0apqanKyckp9ZjevXtfs49qC7GTJ09WYWGhzp8/r127dikyMlIXL17UokWLJElbtmxRQUGB00js448/rv/7v/9z6uvChQtq27ZthWsaPny47Ha70759+/apWbNmpR5fUFDgdLfc1S44AAAAri4jI0O33367UlNT1bRpU/n5+ZU4xjAMzZgx45r9VEuIjYqK0rlz57R9+3ZlZWUpPDxcjRo1UmRkpGJiYpSfn6/ExES1aNHCKUQ++uijjpuxLnv55Ze1cePGCtc0d+5c9evXz2lfUFDQVY+Pi4vTrFmzKvy5AAAA7uyJJ56Qv7+/1q9f7zQVtKyqJcSGhYWpadOmSkhIUFZWliIjIyVdCo3BwcH66quvlJCQoL59+zqd17BhQ4WFhTntuzzXtaICAgJK9H0t06dP15QpUxzvc3JyFBwcXCm1AAAAuIuEhAS9++67FQqwUjWuE9unTx8lJiYqKytLjz76qGN/7969tWrVKm3btk3jxo2rrnLKzMvLS15eXmaXAQAAYGmnTp2qlJvrqzXExsbG6uLFi46RWEmKjIzU+PHjdeHChQqtTFBWZ8+eVUZGhtM+X19f1a5du9pqAAAAcDfNmzfXjh071Lx58wr1U60h9vz584qIiHB6CkNkZKRyc3MdS3FVl9Ke2xsXF+dYQQEAAACVb9SoUZo0aZJycnJ00003XXWd/pCQkGv2YzNcfSwCnOTk5MjPz09paWkKDQ01uxwAAABLKCoq0t/+9jfNmzdP+fn5JZ7QZbPZZBiGiouLr9kPIbacLofYH3744arLcgEAAKB0hmHo6NGjys7OLrW9Q4cO1zy/2qYTAAAAAJfZbLbrThm4FkIsAAAAqk1SUpJLx125EEBpCLEV5O3tbXYJAAAAltG3b18ZhiGbzebYV9r7682JJcSW0+WpxAUFBTyCFgAAuA1fX1+nwFlWWVlZTu+PHDmiW265RceOHZPNZtOpU6cUHh5+3X4IseX0008/SRI3dQEAALeSmZlZoadt1alTx+l9rVq1ZBiG/Pz8JKnUFQtKQ4gtp8uPvz169KjjoqP6XH7s77Fjx0r8x4Cqx/U3F9ffPFx7c3H9zXX5+nt6elZqv1u3btW5c+eUnZ0tPz8/nThxQg0bNrzueYTYcqpRo4Ykyc/Pj/+QTFSnTh2uv4m4/ubi+puHa28urr+5KjKV4Ernz5/XggULFB8fL0n685//rOHDh2vevHm6+eabr3t+jUqpAgAAAHDB8ePHNW3aNDVt2lSfffaZEhMTddddd2n58uUaPHiwDh06pGefffa6/TASCwAAgGrTsmVLRURE6I033tDgwYMlSStWrNB3332nCxcuKCIiQh4e14+ohNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrsq6/kuXLtUf/vCHEvtdWZHgSjx2FgAAAJbDSCwAAACqTUxMjEvHLVmy5JrtjMQCAACg2tjtdg0cONAxLeHcuXPasGGDoqOjJV16kNSqVauu+8QuQiwAAACqjd1u14kTJ9S4cWNJUlpamjp06KDc3FxJ0qlTpxQQEKCioqJr9sMSWwAAADDNz8dTDcNw6YldhNhyWrBggUJDQ+Xt7a1u3bpp27ZtZpfkFjZu3Kjo6GgFBQXJZrPp448/NrsktxEXF6ebb75Zvr6+8vf311133aXU1FSzy3Ibr776qjp06OBY5L1Hjx5atWqV2WW5rTlz5shms2ny5Mlml+IWZs6cKZvN5rRFRESYXZZb+fHHH3XvvfeqQYMGqlWrlm644QYlJyebWhMhthzee+89TZkyRTNmzNDOnTvVsWNHDRgwQJmZmWaX9qt37tw5dezYUQsWLDC7FLeTlJSk2NhYbd26VWvXrtXFixd1++2369y5c2aX5haaNm2qOXPmaMeOHUpOTlbfvn01ePBg7d271+zS3M727dv12muvqUOHDmaX4lbatWun9PR0x/bll1+aXZLbyMrKUq9evVSzZk2tWrVK+/bt0wsvvKB69epV2mf8/ClgLj0VzECZde3a1YiNjXW8LyoqMoKCgoy4uDgTq3I/koyVK1eaXYbbyszMNCQZSUlJZpfiturVq2f885//NLsMt5Kbm2u0atXKWLt2rREZGWlMmjTJ7JLcwowZM4yOHTuaXYbbevzxx41bbrml0vpr06aNcfr0acf7rKwspwx19uxZY9CgQdfth5HYMrpw4YJ27Nihfv36OfbVqFFD/fr105YtW0ysDKhe2dnZkqT69eubXIn7KSoq0vLly3Xu3Dn16NHD7HLcSmxsrO644w6nnwGoHgcPHlRQUJBatGihESNG6OjRo2aX5DY+/fRTdenSRUOGDJG/v786d+6s119/vdz97du3Tw0aNHC8r1u3rqZNm+Z47+fnp//85z/X7YcQW0anT59WUVGR4466yxo3bqyMjAyTqgKqV3FxsSZPnqxevXqpffv2ZpfjNnbv3i0fHx95eXnp4Ycf1sqVK9W2bVuzy3Iby5cv186dOxUXF2d2KW6nW7duevPNN7V69Wq9+uqrSktL06233uq4mx1V6/vvv9err76qVq1aac2aNRo3bpwmTpyot956y9S6eNgBgDKLjY3Vnj17mJNWzVq3bq2UlBRlZ2frww8/1KhRo5SUlESQrQbHjh3TpEmTtHbtWnl7e5tdjtsZNGiQ43WHDh3UrVs3hYSE6P3339f9999vYmXuobi4WF26dNEzzzwjSercubP27NmjRYsWadSoUabVxUhsGTVs2FB2u10nT5502n/y5EkFBASYVBVQfcaPH6/PP/9cCQkJatq0qdnluBVPT0+FhYXppptuUlxcnDp27KiXXnrJ7LLcwo4dO5SZmakbb7xRHh4e8vDwUFJSkl5++WV5eHhcdz1LVK66desqPDxchw4dMrsUtxAYGFjil+U2bdqYPqWDEFtGnp6euummm7R+/XrHvuLiYq1fv565afhVMwxD48eP18qVK7VhwwY1b97c7JLcXnFxsQoKCswuwy3cdttt2r17t1JSUhxbly5dNGLECKWkpMhut5tdolvJy8vT4cOHFRgYaHYpbqFXr14lllT87rvvFBISYlJFlzCdoBymTJmiUaNGqUuXLuratavmzZunc+fOufwsYJRfXl6e02/eaWlpSklJUf369dWsWTMTK/v1i42N1bvvvqtPPvlEvr6+jjngfn5+qlWrlsnV/fpNnz5dgwYNUrNmzZSbm6t3331XiYmJWrNmjdmluQVfX98S879r166tBg0aMC+8GkydOlXR0dEKCQnRiRMnNGPGDNntdg0fPtzs0tzCI488op49e+qZZ57R0KFDtW3bNi1evFiLFy82t7BKWy/BzbzyyitGs2bNDE9PT6Nr167G1q1bzS7JLSQkJBiSSmyjRo0yu7RfvdKuuyRjyZIlZpfmFsaMGWOEhIQYnp6eRqNGjYzbbrvN+OKLL8wuy62xxFb1GTZsmBEYGGh4enoaTZo0MYYNG2YcOnTI7LLcymeffWa0b9/e8PLyMiIiIozFixebXZJhMwwXnusFAAAA/IIwJxYAAACWQ4gFAACA5RBiAQAAYDmEWAAAAFgOIRYAAACWQ4gFAACA5RBiAQAAYDmEWABwA0eOHJHNZlNKSorZpQBApSDEAkA5jB49WnfddZfjfVRUlCZPnmxaPWlpafrTn/6koKAgeXt7q2nTpho8eLAOHDggSQoODlZ6ejqPSAXwq+FhdgEAgIq5ePGi+vfvr9atW2vFihUKDAzU8ePHtWrVKp09e1aSZLfbFRAQYG6hAFCJGIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKYjMMwzC7CACwmtGjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxHTp0cLy22+1q0KCBbrjhBse+xo0bS5IyMzOv+lmxsbHKyMjQ0qVL1aNHD33wwQdq166d1q5de80ad+3apZEjR2r+/Pnq1auXJGn37t0qKipSeHi4U+1JSUlOdQOAmbixCwCqSF5enqKjo/Xss8+WaAsMDHS8rlmzplObzWZz2mez2SRJxcXF1/w8X19fRUdHKzo6WrNnz9aAAQM0e/Zs9e/fv9TjMzIydOedd+qBBx7Q/fff71S33W7Xjh07ZLfbnc7x8fG5Zg0AUF0IsQBQCTw9PUvMR73xxhv10UcfKTQ0VB4e1fvt1mazKSIiQl999VWp7fn5+Ro8eLAiIiL04osvOrV17txZRUVFyszM1K233lod5QJAmTGdAAAqQWhoqL7++msdOXJEp0+fVnFxsWJjY3XmzBkNHz5c27dv1+HDh7VmzRrFxMS4fAOWK1JSUjR48GB9+OGH2rdvnw4dOqT4+Hi98cYbGjx4cKnnPPTQQzp27JhefvllnTp1ShkZGcrIyNCFCxcUHh6uESNG6L777tOKFSuUlpambdu2KS4uTv/+978rrW4AqAhGYgGgEkydOlWjRo1S27Ztdf78eaWlpSk0NFSbN2/W448/rttvv10FBQUKCQnRwIEDVaNG5Y0hNG3aVKGhoZo1a5ZjKa3L7x955JFSz0lKSlJ6erratm3rtD8hIUFRUVFasmSJZs+erb/85S/68ccf1bBhQ3Xv3l2/+93vKq1uAKgIVicAAACA5TCdAAAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWI6H2QUAAADA/WRlZengwYOy2WwKCwtTvXr1ynQ+I7EAAACoNmlpafrtb3+rhg0bqnv37urWrZsaNmyo3/72t/rhhx9c7sdmGIZRhXUCAAAAkqSTJ0/qxhtvlN1uV2xsrCIiIiRJqampmj9/voqKirRz5041btz4un0RYgEAAFAtJk6cqISEBG3btk21atVyasvPz9fNN9+sqKgovfLKK9fti+kEAAAAqBaff/65Zs2aVSLASpK3t7f+/ve/6z//+Y9LfRFiAQAAUC3S09PVoUOHq7a3b99eP/74o0t9EWIBAABQLRo1aqTCwsKrtl+8eNGl+bASIRYAAADV5KabbtIXX3xx1fbVq1erY8eOLvVFiAUAAEC1mDJlil577TVlZ2eXaMvJydHrr7+uyZMnu9QXqxMAAADAcnhiFwAAAKpFixYt5Mr4aVpa2nWPIcQCAACgWrg6VcAVTCcAAACA5XBjFwAAACyH6QQAAACoFq7MiTUMQ0eOHLluX4RYAAAAVItrzYlNS0vT4sWLdf78eZf6Yk4sAAAATHP69Gk9/fTTWrRokbp3765nn31WXbt2ve55jMQCAACg2p07d04vvviinn/+eTVv3lwrV67UwIEDXT6fEAsAAIBqU1hYqMWLF2v27NmqVauWFi5cqBEjRpS5H0IsAAAAqsXy5cv117/+VdnZ2XryyScVGxsrD4/yxVHmxJaTYRjKzc2Vr6+vbDab2eUAAAD84tntdnl5eelPf/qTfH19r3rc3Llzr9sXI7HllJubKz8/P2VnZ6tOnTpmlwMAqGKGYaigoECS5OXlxQAGUA5RUVEyDEPff//9VY9xdXyVkdhyysnJIcQCgBvJz8/XkCFDJEkffPCBvL29Ta4IcG88sQsAABfk5+eX+hqAOZhOAAAAgGoxa9Ysl46bMWPGdY8hxAIA4ILi4uJSXwNw3VNPPaV27dpddUWCwsJC7dmzhxALAEBlyc3NdXpdv359E6sBrGvt2rVq3LhxqW2nTp1SQECAS/2Ua07ssWPHNGbMGAUFBcnT01MhISGaNGmSfvrpJ8cxUVFRstlsstls8vb2Vnh4uOLi4kq942zLli2y2+264447SrQdOXJENptN/v7+Tt9AJKlTp06aOXOm075Dhw5pzJgxatasmby8vNSkSRPddtttWrp0qQoLCx3HXa7t59vy5cvLc0kAAABwHXa7/Zp/ySgqKlKNGq7F0zKH2O+//15dunTRwYMHtWzZMh06dEiLFi3S+vXr1aNHD505c8Zx7NixY5Wenq7U1FRNnz5df/vb37Ro0aISfcbHx2vChAnauHGjTpw4Uern5ubm/j979x5WVZX/cfxzPAiaECpeAC8gIuAlFTMVKQHT1CnTLHMYNEQrc9DUxkprJq1UbKaL5TUbMptKLc2aZgbNFNBMRUzM+y1MTRCvXBxFgf37w8fz6wTqAYEzp/N+Pc9+Ovu2zpf9mH5crr2WXn/99RvWlpaWpk6dOmnv3r2aO3eudu3apZSUFD3++OOaP3++du/ebXX9okWLlJWVZbUNHDiwvI8EAAAANvD09LTq9Py1M2fOqG7duja1Ve7hBPHx8XJ1ddXXX3+t2rVrS5KaN2+u0NBQtWzZUi+++KLmz58vSbrtttssXcJxcXGaM2eO1qxZo9GjR1vaKygo0LJly5Senq7s7Gx98MEHeuGFF0p979ixY/Xmm28qPj5ejRo1KnXeMAwNHz5cQUFB2rhxo1WKb9WqlaKjo0v1AtetW9fmLmsAAADcmjZt2ig5OVnt2rUr83xKSoratGljU1vl6ok9e/asVq9erT/+8Y+WAHuNt7e3YmJitGzZslJh0TAMbdiwQfv27ZOrq6vVuU8//VQhISEKDg7W0KFD9f7775c55CA6OlqBgYF65ZVXyqwtIyNDe/fu1cSJE6/bDc3E1AAAAPbzyCOPaPr06dq3b1+pc/v379err76qQYMG2dRWuULswYMHZRiGWrduXeb51q1b69y5czp16pQkad68eXJ3d5ebm5t69OihkpISPf3001b3JCYmaujQoZKkvn37Kjc3V6mpqaXaNplMmjlzphYuXKjDhw+XOn/gwAFJUnBwsOVYTk6O3N3dLdu8efOs7omOjrY67+7urqNHj5b5sxUWFiovL89qAwAAgO2eeuoptWjRQh06dNCAAQM0adIkTZ48WQ899JA6dOigpk2bWv2L/Y1U6MUuWxf5iomJUUZGhjZu3Kh+/frpxRdfVPfu3S3n9+/fr7S0NEVHR0uSXFxcNGTIECUmJpbZXp8+fXT33XfrL3/5i03f7+XlpYyMDGVkZKhu3bq6fPmy1fm33nrLcv7a5uvrW2ZbCQkJ8vT0tGzNmjWzqQYAAABcVbNmTa1du1YvvviiMjMzNXfuXM2ePVsHDx7Uc889p9TU1FL/an895RoTGxgYKJPJpL179+qhhx4qdX7v3r2qV6+eGjZsKOnq4N3AwEBJV4cNBAYGqlu3burVq5ekq72wRUVFVsHRMAy5ublpzpw58vT0LPUdM2fOVFhYmJ599lmr461atZJ0NRiHhoZKuvoG3LXvL2s+Mm9vb8v5m5k8ebKeeeYZy35eXh5BFgAAoJxuu+02vfTSS3rppZduqZ1y9cR6eXmpd+/emjdvni5evGh1Ljs7Wx9//LGGDBlS5thTd3d3jRs3ThMnTpRhGCoqKtKHH36oN954w6ondMeOHfL19dWSJUvKrKFLly4aNGiQJk2aZHU8NDRUISEhev3116tkEmo3NzfdfvvtVhsAAADso9yzE8yZM0fdu3dXnz59NG3aNLVo0UK7d+/Ws88+qyZNmmj69OnXvXfUqFF69dVXtWLFCrm4uOjcuXMaOXJkqR7Xhx9+WImJiXrqqafKbGf69OmlVnswmUxatGiRevfurfDwcE2ePFmtW7fWlStXtH79ep06dUpms9mqnfPnzys7O9vqmIeHh+rUqVPexwIAAICbiIqKuuk1hmEoJSXlpteVe0xsq1atlJ6eroCAAD366KNq2bKlnnzySUVFRWnTpk03XMGkfv36euyxxzR16lQlJiaqV69eZQ4ZePjhh5Wenq4ffvihzHaCgoI0YsQIXbp0yep4t27dtG3bNgUHBys+Pl5t2rRR9+7dtWTJEr311lulBgrHxcXJx8fHaps9e3Z5HwkAAABssH79egUHBys0NFShoaEKCAjQd999Z9kPDg7W+vXrbWrLZNj6lhas5OXlydPTU7m5uQwtAAAncPbsWcXGxkqSFi9ezLKzQAWYzWadOHHCsuzsjz/+qA4dOlhWZc3JyZG3t7dNQ0MrNDsBAADO5pdzkNu6LCaAqsP/hQAAAHA4hFgAAADYza9ntbJ1hVVCLAAANqhVq1aZnwHYrk+fPnJzc7PsN27cWO+++65l/7bbbtOoUaNsaosXuyqIF7sAwLkYhqHCwkJJV+cOt7W3CEDVoCcWAAAADqfcix0AAOCMCgsLNXjwYEnSZ599xpACoALMZrNsGQRgyxRbhFgAAGzwywV2Ll26RIgFKmDlypVW+ydPntT48eO1ZMkSSVJubq5lPuabIcQCAACgWjz44INW+z/++KNq1KhhOZ6Tk2NzW4yJBQAAgF38+OOPunjxooqLiyVdfXHew8PDpnsJsQAA2OCXY/RsGa8H4Ma2bt2qCRMmqKSkRLNnz1ZBQYHmzp2r4OBgm+4nxAIAYINra7v/+jOA8lm1apX69u2r3/3ud3rnnXcUEBCgZ555Rrfffrvmzp2rP//5zza1U+UhdsGCBfLw8FBRUZHlWEFBgWrWrKnIyEira1NSUmQymXT48GH5+/tr1qxZpdqbOnWqOnbsWOa+v7+/TCbTdbfhw4dL0nXPL126tJJ/egAAAFzTtm1bPfTQQ2rdurX27t2rqKgopaena8GCBXrnnXe0ffv2UuNmr6fKX+yKiopSQUGB0tPT1a1bN0nShg0b5O3trS1btli94ZmcnKzmzZurZcuWFfqurVu3WsZUfPfdd3r44Ye1f/9+y2IEtWvXtly7aNEi9e3b1+r+unXrVuh7AQAAcHNRUVH65ptv5OPjYzlWt25dPfnkk+Vuq8pDbHBwsHx8fJSSkmIJsSkpKRowYIDWrVunzZs3W3pkU1JSFBUVVeHvatiwoeVz/fr1JUmNGjUqM5zWrVtX3t7eFf4uAAAAlM+cOXMqra1qmWIrKipKycnJmjRpkqSrPa7PPfeciouLlZycrMjISF28eFFbtmzRiBEjqqOkcissLLQsNyhdfXsOAAAAtlu8eLFN19kyV2y1hdjx48erqKhIFy9e1Pbt2xUREaErV65owYIFkqRNmzapsLDQqif2+eefLzW49/Lly2rTps0t1xQdHS2z2Wx1bM+ePWrevHmZ1yckJOjll1++5e8FAABwViNGjNDtt98uk8kk6epMH3l5eZZ/NTcMw+YFD6olxEZGRurChQvaunWrzp07p6CgIDVs2FARERGKi4vTpUuXlJKSooCAAKsQ+eyzz1pexrrmnXfe0fr162+5prfeeku9evWyOubr63vd6ydPnqxnnnnGsp+Xl6dmzZrdch0AAADOZN++fWrcuLEkKTMzUx06dNDZs2clSadOnbJ5uGe1hNjAwEA1bdpUycnJOnfunCIiIiRdDY3NmjXTd999p+TkZPXs2dPqvgYNGigwMNDq2LWxrrfK29u7VNs34ubmJjc3t0r5bgAAAFzteTUM47r7N1Jt88RGRUUpJSVFKSkpVlNr9ejRQ0lJSUpLS7ull7oAAADgPKqlJ1a6GmLj4+N15coVS0+sJEVERGjMmDG6fPlytYbY8+fPKzs72+qYh4eH6tSpU201AAAAOBNbe1ltUa09sRcvXlRgYKBlHIR0NcTm5+dbpuKqLnFxcfLx8bHaZs+eXW3fDwAA4GyuvdB1Te3atdWjRw+r89fWD7hpW0ZlRmInkpeXJ09PT+Xm5loWUwAA/HadPXvW8sb04sWLK+0dDcCZ5OTkqFGjRpXSVrX1xAIA4Mhq1KhR5mcAtqusACtV45hYAAAAOLe4uDibrlu0aNFNryHEAgBgg1+O07N1zB4Aax9++KEiIiIsixvcCsbEVlBubq7q1q2rY8eOMSYWAJyAYRiW5cfd3NxKvaACOAsPD48K//o3m836/vvv1aFDh1uug57YCjpz5owksWoXAABwKjk5OWrYsKG9yyDEVtS1t1KPHj0qT09PO1fjfK4t+0tPuH3w/O2L528/PHv74vnb17Xn7+rqau9SJBFiK+zam6menp78j2RHt99+O8/fjnj+9sXztx+evX3x/O3rf2UoDXOEAAAAoFqMHDlSXl5eldIWPbEAAACoFgsXLqy0tgixFeTm5qYpU6bIzc3N3qU4JZ6/ffH87Yvnbz88e/vi+dtXZTz/Fi1a2HRdZmbmTa9hii0AAABUC7PZrIkTJ6pJkyY3vO7pp5++aVuEWAAAAFSLypwnlhe7AAAA4HAIsQAAAHA4hFgAAAA4HEJsBc2dO1f+/v6qVauWunbtqrS0NHuX5BTWr1+v/v37y9fXVyaTSV988YW9S3IaCQkJuuuuu+Th4aFGjRpp4MCB2r9/v73Lchrz589X+/btLZO8h4WFKSkpyd5lOa2ZM2fKZDJp/Pjx9i7FKUydOlUmk8lqCwkJsXdZTuXnn3/W0KFD5eXlpdq1a+uOO+5Qenp6udv5xz/+IT8/v0qpiRBbAcuWLdMzzzyjKVOmWAYn9+nTRzk5OfYu7TfvwoUL6tChg+bOnWvvUpxOamqq4uPjtXnzZq1Zs0ZXrlzRfffdpwsXLti7NKfQtGlTzZw5U9u2bVN6erp69uypAQMGaPfu3fYuzels3bpV7777rtq3b2/vUpxK27ZtlZWVZdm+/fZbe5fkNM6dO6fw8HDVrFlTSUlJ2rNnj9544w3Vq1ev3G399a9/1QcffKCzZ8/eemEGyq1Lly5GfHy8Zb+4uNjw9fU1EhIS7FiV85FkrFy50t5lOK2cnBxDkpGammrvUpxWvXr1jL///e/2LsOp5OfnG61atTLWrFljREREGOPGjbN3SU5hypQpRocOHexdhtN6/vnnjbvvvrtS2ho7dqzRpEkTw83NzRg8eLCxatUqo6SkpEJt0RNbTpcvX9a2bdvUq1cvy7EaNWqoV69e2rRpkx0rA6pXbm6uJKl+/fp2rsT5FBcXa+nSpbpw4YLCwsLsXY5TiY+P1/3332/1ZwCqx8GDB+Xr66uAgADFxMTo6NGj9i7Jafzzn/9U586dNXjwYDVq1EihoaF67733KtTWO++8o+PHj+ujjz7SihUrNHToUPn7+2vKlCk2LXDwS4TYcjp9+rSKi4vVuHFjq+ONGzdWdna2naoCqldJSYnGjx+v8PBwtWvXzt7lOI2dO3fK3d1dbm5ueuqpp7Ry5Uq1adPG3mU5jaVLl+r7779XQkKCvUtxOl27dtUHH3ygVatWaf78+crMzNQ999yj/Px8e5fmFH788UfNnz9frVq10urVqzV69Gg9/fTTWrx4cYXbbNOmjWrUqKHs7GzNnTtX+/bt0x133KHevXtryZIlNrXBsrMAyi0+Pl67du1iTFo1Cw4OVkZGhnJzc7V8+XLFxsYqNTWVIFsNjh07pnHjxmnNmjWqVauWvctxOv369bN8bt++vbp27So/Pz99+umnGjlypB0rcw4lJSXq3LmzZsyYIUkKDQ3Vrl27tGDBAsXGxt5S22azWQ888IAeeOAB5efna+bMmRo2bJiio6Nvei8htpwaNGggs9mskydPWh0/efKkvL297VQVUH3GjBmjf/3rX1q/fr2aNm1q73KciqurqwIDAyVJd955p7Zu3aq3335b7777rp0r++3btm2bcnJy1KlTJ8ux4uJirV+/XnPmzFFhYaHMZrMdK3QudevWVVBQkA4dOmTvUpyCj49Pqb8st27dWitWrKiU9s+cOaOlS5fqo48+0sGDBzV69Gib7mM4QTm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIIMBWs4KCAh0+fFg+Pj72LsUphIeHl5pS8cCBA7c0VVZxcbEMw1D//v3VtGlTrVy5UuPGjdOJEyc0e/Zsm9qgJ7YCnnnmGcXGxqpz587q0qWLZs2apQsXLiguLs7epf3mFRQUWP3NOzMzUxkZGapfv76aN29ux8p+++Lj4/XJJ5/oyy+/lIeHh2UMuKenp2rXrm3n6n77Jk+erH79+ql58+bKz8/XJ598opSUFK1evdrepTkFDw+PUuO/69SpIy8vL8aFV4OJEyeqf//+8vPz04kTJzRlyhSZzWab/skZt27ChAnq3r27ZsyYoUcffVRpaWlauHChFi5cWO62PvvsM61YsUJJSUlq2rSpOnXqpDlz5lQsEFfKfAlOaPbs2Ubz5s0NV1dXo0uXLsbmzZvtXZJTSE5ONiSV2mJjY+1d2m9eWc9dkrFo0SJ7l+YURowYYfj5+Rmurq5Gw4YNjXvvvdf4+uuv7V2WU2OKreozZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXFihdmrVqmUMHjzYWL169S3XZDIMwyh/9AUAAADK5+zZs5U2NSMhFgAAAA6HF7sAAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCgBM4cuSITCaTMjIy7F0KAFQKQiwAVMDw4cM1cOBAy35kZKTGjx9vt3oyMzP1hz/8Qb6+vqpVq5aaNm2qAQMGaN++fZKkZs2aKSsrS+3atbNbjQBQmVzsXQAA4NZcuXJFvXv3VnBwsD7//HP5+Pjo+PHjSkpK0vnz5yVJZrNZ3t7e9i0UACoRPbEAcIuGDx+u1NRUvf322zKZTDKZTDpy5IgkadeuXerXr5/c3d3VuHFjDRs2TKdPn7bcGxkZqbFjx2r8+PGqV6+eGjdurPfee08XLlxQXFycPDw8FBgYqKSkpOt+/+7du3X48GHNmzdP3bp1k5+fn8LDwzVt2jR169ZNUunhBMOHD7fU+sstJSVFklRYWKiJEyeqSZMmqlOnjrp27Wo5BwD/CwixAHCL3n77bYWFhemJJ55QVlaWsrKy1KxZM50/f149e/ZUaGio0tPTtWrVKp08eVKPPvqo1f2LFy9WgwYNlJaWprFjx2r06NEaPHiwunfvru+//1733Xefhg0bpv/+979lfn/Dhg1Vo0YNLV++XMXFxTbXfK3WrKwsjRs3To0aNVJISIgkacyYMdq0aZOWLl2qH374QYMHD1bfvn118ODBW3tYAFBJTIZhGPYuAgAczfDhw3X+/Hl98cUXkq72qHbs2FGzZs2yXDNt2jRt2LBBq1evthw7fvy4mjVrpv379ysoKEiRkZEqLi7Whg0bJEnFxcXy9PTUoEGD9OGHH0qSsrOz5ePjo02bNll6Vn9t7ty5eu6552Q2m9W5c2dFRUUpJiZGAQEBkq72xLZo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYflWOPGjSVJOTk51/2u+Ph4ZWdn6+OPP1ZYWJg+++wztW3bVmvWrLlhjdu3b9ewYcM0Z84chYeHS5J27typ4uJiBQUFWdWemppqVTcA2BMvdgFAFSkoKFD//v312muvlTrn4+Nj+VyzZk2rcyaTyeqYyWSSJJWUlNzw+zw8PNS/f3/1799f06ZNU58+fTRt2jT17t27zOuzs7P14IMP6vHHH9fIkSOt6jabzdq2bZvMZrPVPe7u7jesAQCqCyEWACqBq6trqfGonTp10ooVK+Tv7y8Xl+r97dZkMikkJETfffddmecvXbqkAQMGKCQkRG+++abVudDQUBUXFysnJ0f33HNPdZQLAOXGcAIAqAT+/v7asmWLjhw5otOnT6ukpETx8fE6e/asoqOjtXXrVh0+fFirV69WXFyczS9g2SIjI0MDBgzQ8uXLtWfPHh06dEiJiYl6//33NWDAgDLvGTVqlI4dO6Z33nlHp06dUnZ2trKzs3X58mUFBQUpJiZGjz32mD7//HNlZmYqLS1NCQkJ+ve//11pdQPAraAnFgAqwcSJExUbG6s2bdro4sWLyszMlL+/vzZu3Kjnn39e9913nwoLC+Xn56e+ffuqRo3K60No2rSp/P399fLLL1um0rq2P2HChDLvSU1NVVZWltq0aWN1PDk5WZGRkVq0aJGmTZumP/3pT/r555/VoEEDdevWTQ888ECl1Q0At4LZCQAAAOBwGE4AAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADsfF3gUAAADAecTFxdl03aJFi2543mQYhlEZBQEAAAA3M2jQIKv9CxcuaN26derfv78kqbCwUElJSSopKblhO4RYAAAA2E1mZqbat2+v/Px8SdKpU6fk7e2t4uLiG97HmFgAAADYza/7Uw3DKHWsLIRYAAAAVJsrV65USjuEWAAAAFSbJk2aaPz48dq5c6ckqU6dOvrd735ndY3JZLppO4RYAAAAVJtJkyYpLS1NoaGh6tq1q7744gv9/e9/t5xv2LChDh48eNN2eLELAAAA1W7jxo2KiIhQ27ZtdejQIT3yyCMaMWKEIiIibLqfnlgAAABUu3r16slkMmnHjh3asmWLvL29NWzYMAUFBSkhIeGm99MTCwAAgGq3Z88edejQwepFr+LiYr300kt67bXXVFRUdMP7WbELAAAAdrVjxw599NFHWrJkiTw9PfXaa6/d9B5CbAUZhqH8/Hx5eHjY9AYdAAAA/t+ZM2dkGIbuuOMOHT16VIMHD9by5cvVrVs3m+4nxFZQfn6+PD09dfLkSd1+++32LgeoNoZhqLCwUJLk5ubGX+LglPi1D1Tc3/72N61YsULp6ekKCwvTiBEjNGTIEN12223laocxsRWUl5cnT09P9enTRzVr1rR3OQCAavTZZ5+pVq1a9i4DcEg+Pj567LHHNHLkSAUFBVW4HXpiAQAAUG2OHz8us9l8y+0QYm/RlN4HVN/d3lUA1aewyKQXV7WRJE3vu0duLvxjDpzD5eIaeiGptb3LABzeRx99ZNN1sbGxNzxPiL1FruYSubkwLgrOyc3FIMTCiZTYuwDgN2HChAk3vcYwDEJsVWNEMQA4h1/+fs/rJEDFnT17tlLaYcWuW3S5mF5YAHAGv/z9/toMHQDsp0Ih9tixYxoxYoR8fX3l6uoqPz8/jRs3TmfOnLFcExkZKZPJJJPJpFq1almWECvrb6+bNm2S2WzW/fffX+rckSNHZDKZ1KhRI+Xn51ud69ixo6ZOnWp17NChQxoxYoSaN28uNzc3NWnSRPfee68+/vhjq5UfrtX2623p0qUVeSQAAACwweLFi23abqbcwwl+/PFHhYWFKSgoSEuWLFGLFi20e/duPfvss0pKStLmzZtVv359SdITTzyhV155RYWFhVq3bp2efPJJ1a1bV6NHj7ZqMzExUWPHjlViYqJOnDghX1/fUt+bn5+v119/XS+//PJ1a0tLS1OvXr3Utm1bzZ07VyEhIZKk9PR0zZ07V+3atVOHDh0s1y9atEh9+/a1aqNu3brlfSQAAACw0a/HxJaUlCgvL8+SwQzDUG5ubuWPiY2Pj5erq6u+/vpr1a5dW5LUvHlzhYaGqmXLlnrxxRc1f/58SdJtt90mb29vSVJcXJzmzJmjNWvWWIXYgoICLVu2TOnp6crOztYHH3ygF154odT3jh07Vm+++abi4+PVqFGjUucNw9Dw4cMVFBSkjRs3qkaN/+9kbtWqlaKjo0v1AtetW9dSHwAAAKrer8fEZmZmqkOHDpbjp06dsimflWs4wdmzZ7V69Wr98Y9/tATYa7y9vRUTE6Nly5aVCouGYWjDhg3at2+fXF1drc59+umnCgkJUXBwsIYOHar333+/zCEH0dHRCgwM1CuvvFJmbRkZGdq7d68mTpxoFWB/6VZWVyksLFReXp7VBgAAgFtz+fJllZT8/+wfv/x8I+UKsQcPHpRhGGrduux58lq3bq1z587p1KlTkqR58+bJ3d1dbm5u6tGjh0pKSvT0009b3ZOYmKihQ4dKkvr27avc3FylpqaWattkMmnmzJlauHChDh8+XOr8gQMHJEnBwcGWYzk5OXJ3d7ds8+bNs7onOjra6ry7u7uOHj1a5s+WkJAgT09Py9asWbPrPSYAAADYKCkpSf/973+Vk5Mj6WrPbOPGjW96X4Ve7LJ1apGYmBhlZGRo48aN6tevn1588UV1797dcn7//v1KS0tTdHS0JMnFxUVDhgxRYmJime316dNHd999t/7yl7/Y9P1eXl7KyMhQRkaG6tatq8uXL1udf+uttyznr21ljceVpMmTJys3N9eyHTt2zKYaAAAAUNrx48c1ZswYffzxxzKZTPr973+vOXPmaPTo0erRo8dN7y9XiA0MDJTJZNLevXvLPL93717Vq1dPDRs2lCR5enoqMDBQd911lz799FPNmTNH33zzjeX6xMREFRUVydfXVy4uLnJxcdH8+fO1YsUK5ebmlvkdM2fO1LJly7R9+3ar461atZJ0NRhfYzabFRgYqMDAQLm4lB7+6+3tbTl/o+skyc3NTbfffrvVBgAAgPLZsmWLfv/736tly5bKy8tTamqqxo0bp2+//Vbjxo1TrVq19Prrr9+0nXKFWC8vL/Xu3Vvz5s3TxYsXrc5lZ2fr448/1pAhQ8oce+ru7q5x48Zp4sSJMgxDRUVF+vDDD/XGG29Y9YTu2LFDvr6+WrJkSZk1dOnSRYMGDdKkSZOsjoeGhiokJESvv/66zWMpAAAAUL26d++uCxcuaMuWLfrwww9122236c0337T8a/emTZvUtGnTm7ZT7tkJ5syZo+7du6tPnz6aNm2a1RRbTZo00fTp069776hRo/Tqq69qxYoVcnFx0blz5zRy5Eh5enpaXffwww8rMTFRTz31VJntTJ8+XW3btrXqNTWZTFq0aJF69+6t8PBwTZ48Wa1bt9aVK1e0fv16nTp1Smaz2aqd8+fPKzs72+qYh4eH6tSpU97HAgAAABts2bJFnTt3LnX82qQBx48fV1xcnNasWXPDdso9JrZVq1ZKT09XQECAHn30UbVs2VJPPvmkoqKitGnTJsscsWWpX7++HnvsMU2dOlWJiYnq1atXqQArXQ2x6enp+uGHH8psJygoSCNGjNClS5esjnfr1k3btm1TcHCw4uPj1aZNG3Xv3l1LlizRW2+9VWp+2ri4OPn4+Fhts2fPLu8jAQAAgI3KCrDXfPjhh2rfvn2pjseymAwWgK6QvLw8eXp6auubfmpwO0vPwnkUFpk08V9tJUmvP7Bbbi78FgLncOmKSc/+++qv/U8//bTUVJMAKu7UqVMaNWqUvvnmG73xxht64oknbnpPuYcTwNqVkhoqLLr5dcBvRWGRqczPwG/dlZL//8fLW5l3HHB2v159taioSO+++67atWunnTt3ys/Pz6Z2CLG36OU1QapZs6a9ywDs4sVVbexdAgDAwXz55ZdW+0VFRTp37pwGDRpkc4CVCLEAAACoRt9//32pY1999ZWeeOIJff7550pMTFSLFi1u2g5jYivo2pjYkydPMmcsnIphGCosLJR0df5k/lkVzohf+0DlO3v2rEaNGqVVq1bptdde0x//+McbXk+IraBrITY3N5cQCwAAUEk++eQTxcfH69y5cze8rkLLzgIA4GwMw9ClS5d06dIlm5dfB1B+/fv3v+E0XNcQYgEAsEFhYaEGDx6swYMHW4bUAKh8Fy9e1Nq1a296HSEWAAAb/HKBnV8vtgOg+hFiAQAA4HCYYgsAABuUlJSU+RlA+ZjN5koZV06IBQDABvn5+Vaf69evb8dqAMe1cuXKG57Pzc1VbGzsTdup8uEECxYskIeHh4qK/n9t1oKCAtWsWVORkZFW16akpMhkMunw4cPy9/fXrFmzSrU3depUdezYscx9f39/mUym627Dhw+XpOueX7p0aSX/9AAAAPilBx988IZbnz59bGqnyntio6KiVFBQoPT0dHXr1k2StGHDBnl7e2vLli26dOmSatWqJUlKTk5W8+bN1bJlywp919atW1VcXCxJ+u677/Twww9r//79lnlca9eubbl20aJF6tu3r9X9devWrdD3AgAAwDZXrlxRzZo1b7mdKu+JDQ4Olo+Pj1JSUizHUlJSNGDAALVo0UKbN2+2Oh4VFVXh72rYsKG8vb3l7e1t+WeeRo0aWY55enparq1bt67l+LXtWpgGAABA1WjSpInGjx+vnTt3lnnebDbL39//pu1Uy+wEUVFRSk5OtuwnJycrMjJSERERluMXL17Uli1bbinEAgAA4H/bpEmTlJaWptDQUHXt2lXvvvuu1ZhzLy8v/fjjjzdtp9pC7MaNG1VUVKT8/Hxt375dERER6tGjh6WHdtOmTSosLLQKsc8//7zc3d2tthkzZlRKTdHR0aXaPnr06HWvLywsVF5entUGAACA8nnmmWf03XffKTU1Vdu2bdO8efPk7e2t2NhYpaam2txOtYTYyMhIXbhwQVu3btWGDRsUFBSkhg0bKiIiwjIuNiUlRQEBAWrevLnlvmeffVYZGRlW21NPPVUpNb311lul2vb19b3u9QkJCfL09LRszZo1q5Q6AAAAnFG9evVkMpm0Y8cObdmyRd7e3ho2bJiCgoKUkJBw0/urJcQGBgaqadOmSk5OVnJysiIiIiRJvr6+atasmb777jslJyerZ8+eVvc1aNBAgYGBVltlTWni7e1dqm0Xl+u/5zZ58mTl5uZatmPHjlVKHQAAAM6uXbt2eu2115SZmanBgwfrL3/5y03vqbZ5YqOiopSSkqJz587p2WeftRzv0aOHkpKSlJaWptGjR1dXOeXm5uYmNzc3e5cBAADwm7Njxw599NFHWrJkiTw9PfXaa6/d9J5qDbHx8fG6cuWKpSdWkiIiIjRmzBhdvny5Wl/qOn/+vLKzs62OeXh4qE6dOtVWAwAAgLM6c+aMDMPQHXfcoaNHj2rw4MFavny5ZUrWm6nWEHvx4kWFhISocePGluMRERHKz8+3TMVVXeLi4kodS0hI0KRJk6qtBgAAAGfzt7/9TStWrFB6errCwsI0YsQIDRkyRLfddlu52jEZlbF4rRPKy8uTp6encnNzLYspAAB+u86ePWtZCnPx4sUsOwtUkI+Pjx577DGNHDlSQUFBFW6n2npiAQBwZDVq1CjzM4DyOX78uMxm8y23Q4gFAABAtfnoo49suu7av3xcDyEWAAAA1WbEiBGqU6fODac2NQyDEAsAQGWoVatWmZ8BlN+GDRvUoUOHW2qDEFtB196HY/lZAHAOhmEoMTFR0tWlyC9fvmznigD78PDwkMlksncZhNiKOnPmjCSx/CwAAHAqOTk5atiwob3LIMRW1LWpVY4ePSpPT087V+N88vLy1KxZMx07dowpzuyA529fPH/74dnbF8/fvq49f1dXV3uXIokQW2HXplfx9PTkfyQ7uv3223n+dsTzty+ev/3w7O2L529ftzqUoGXLlnJzc7vlOgixAAAAqDYHDhyolHYIsQAAAKg2cXFxNl23aNGiG55nyZEKcnNz05QpUyqlOxzlx/O3L56/ffH87Ydnb188f/uqrOf/4YcfKicnR7m5ucrNzdWJEyf00UcfWfZzcnK0ePHim7ZjMq7NFQUAAABUMbPZrBMnTqhx48aSpMzMTLVv3175+fmSpFOnTsnb21vFxcU3bIeeWAAAANjNr/tTDcModawshFgAAAA4HEIsAAAA7OrX03bZMo0XIRYAAADVJjg4WC4u/z9BVv369fXCCy9Y9t3c3NSnT5+btkOIraC5c+fK399ftWrVUteuXZWWlmbvkpzC+vXr1b9/f/n6+spkMumLL76wd0lOIyEhQXfddZc8PDzUqFEjDRw4UPv377d3WU5j/vz5at++vWWS97CwMCUlJdm7LKc1c+ZMmUwmjR8/3t6lOIWpU6fKZDJZbSEhIfYuy6n8/PPPGjp0qLy8vFS7dm3dcccdSk9Pr1Bbe/bskZeXl2W/bt26mjRpkmXf09NT//nPf27aDiG2ApYtW6ZnnnlGU6ZM0ffff68OHTqoT58+ysnJsXdpv3kXLlxQhw4dNHfuXHuX4nRSU1MVHx+vzZs3a82aNbpy5Yruu+8+Xbhwwd6lOYWmTZtq5syZ2rZtm9LT09WzZ08NGDBAu3fvtndpTmfr1q1699131b59e3uX4lTatm2rrKwsy/btt9/auySnce7cOYWHh6tmzZpKSkrSnj179MYbb6hevXp2rYsptiqga9euuuuuuzRnzhxJUklJiZo1a6axY8da/U0CVctkMmnlypUaOHCgvUtxSqdOnVKjRo2UmpqqHj162Lscp1S/fn397W9/08iRI+1ditMoKChQp06dNG/ePE2bNk0dO3bUrFmz7F3Wb97UqVP1xRdfKCMjw96lOKVJkyZp48aN2rBhg71LsUJPbDldvnxZ27ZtU69evSzHatSooV69emnTpk12rAyoXrm5uZKuBilUr+LiYi1dulQXLlxQWFiYvctxKvHx8br//vut/gxA9Th48KB8fX0VEBCgmJgYHT161N4lOY1//vOf6ty5swYPHqxGjRopNDRU7733nr3LIsSW1+nTp1VcXGyZoPeaxo0bKzs7205VAdWrpKRE48ePV3h4uNq1a2fvcpzGzp075e7uLjc3Nz311FNauXKl2rRpY++ynMbSpUv1/fffKyEhwd6lOJ2uXbvqgw8+0KpVqzR//nxlZmbqnnvusUyOj6r1448/av78+WrVqpVWr16t0aNH6+mnn7ZpVa2q5HLzSwDAWnx8vHbt2sWYtGoWHBysjIwM5ebmavny5YqNjVVqaipBthocO3ZM48aN05o1a1SrVi17l+N0+vXrZ/ncvn17de3aVX5+fvr0008ZTlMNSkpK1LlzZ82YMUOSFBoaql27dmnBggWKjY21W130xJZTgwYNZDabdfLkSavjJ0+elLe3t52qAqrPmDFj9K9//UvJyclq2rSpvctxKq6urgoMDNSdd96phIQEdejQQW+//ba9y3IK27ZtU05Ojjp16iQXFxe5uLgoNTVV77zzjlxcXG66PCYqV926dRUUFKRDhw7ZuxSn4OPjU+ovy61bt7b7kA5CbDm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIkNlstneJTqWgoECHDx+Wj4+PvUtxCuHh4aWmVDxw4ID8/PzsVNFVDCeogGeeeUaxsbHq3LmzunTpolmzZunChQuKi4uzd2m/eQUFBVZ/887MzFRGRobq16+v5s2b27Gy3774+Hh98skn+vLLL+Xh4WEZA+7p6anatWvbubrfvsmTJ6tfv35q3ry58vPz9cknnyglJUWrV6+2d2lOwcPDo9T47zp16sjLy4tx4dVg4sSJ6t+/v/z8/HTixAlNmTJFZrNZ0dHR9i7NKUyYMEHdu3fXjBkz9OijjyotLU0LFy7UwoUL7VuYgQqZPXu20bx5c8PV1dXo0qWLsXnzZnuX5BSSk5MNSaW22NhYe5f2m1fWc5dkLFq0yN6lOYURI0YYfn5+hqurq9GwYUPj3nvvNb7++mt7l+XUIiIijHHjxtm7DKcwZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXGjvkgzmiQUAAIDDYUwsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAHACR44ckclkUkZGhr1LAYBKQYgFgAoYPny4Bg4caNmPjIzU+PHj7VZPZmam/vCHP8jX11e1atVS06ZNNWDAAO3bt0+S1KxZM2VlZbFEKoDfDBd7FwAAuDVXrlxR7969FRwcrM8//1w+Pj46fvy4kpKSdP78eUmS2WyWt7e3fQsFgEpETywA3KLhw4crNTVVb7/9tkwmk0wmk44cOSJJ2rVrl/r16yd3d3c1btxYw4YN0+nTpy33RkZGauzYsRo/frzq1aunxo0b67333tOFCxcUFxcnDw8PBQYGKikp6brfv3v3bh0+fFjz5s1Tt27d5Ofnp/DwcE2bNk3dunWTVHo4wfDhwy21/nJLSUmRJBUWFmrixIlq0qSJ6tSpo65du1rOAcD/AkIsANyit99+W2FhYXriiSeUlZWlrKwsNWvWTOfPn1fPnj0VGhqq9PR0rVq1SidPntSjjz5qdf/ixYvVoEEDpaWlaezYsRo9erQGDx6s7t276/vvv9d9992nYcOG6b///W+Z39+wYUPVqFFDy5cvV3Fxsc01X6s1KytL48aNU6NGjRQSEiJJGjNmjDZt2qSlS5fqhx9+0ODBg9W3b18dPHjw1h4WAFQSk2EYhr2LAABHM3z4cJ0/f15ffPGFpKs9qh07dtSsWbMs10ybNk0bNmzQ6tWrLceOHz+uZs2aaf/+/QoKClJkZKSKi4u1YcMGSVJxcbE8PT01aNAgffjhh5Kk7Oxs+fj4aNOmTZae1V+bO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKs9sS1atND27dvVsWNHq3s///xzxcTE6JtvvlF4eLiOHj2qgIAAHT16VL6+vpbrevXqpS5dumjGjBm3+vgA4JbREwsAVWTHjh1KTk6Wu7u7ZbvW03n48GHLde3bt7d8NpvN8vLy0h133GE51rhxY0lSTk7Odb8rPj5e2dnZ+vjjjxUWFqbPPvtMbdu21Zo1a25Y4/bt2zVs2DDNmTNH4eHhkqSdO3equLhYQUFBVrWnpqZa1Q0A9sSLXQBQRQoKCtS/f3+99tprpc75+PhYPtesWdPqnMlksjpmMpkkSSUlJTf8Pg8PD/Xv31/9+/fXtGnT1KdPH02bNk29e/cu8/rs7Gw9+OCDevzxxzVy5Eirus1ms7Zt2yaz2Wx1j7u7+w1rAIDqQogFgErg6upaajxqp06dtGLFCvn7+8vFpXp/uzWZTAoJCdF3331X5vlLly5pwIABCgkJ0Ztvvml1LjQ0VMXFxcrJydE999xTHeUCQLkxnAAAKoG/v7+2bNmiI0eO6PTp0yopKVF8fLzOnj2r6Ohobd26VYcPH9bq1asVFxdn8wtYtsjIyNCAAQO0fPly7dmzR4cOHVJiYqLef/99DRgwoMx7Ro0apWPHjumdd97RqVOnlJ2drezsbF2+fFlBQUGKiYnRY489ps8//1yZmZlKS0tTQkKC/v3vf1da3QBwK+iJBYBKMHHiRMXGxqpNmza6ePGiMjMz5e/vr40bN+r555/Xfffdp8LCQvn5+alv376qUaPy+hCaNm0qf39/vfzyy5aptK7tT5gwocx7UlNTlZWVpTZt2lgdT05OVmRkpBYtWqRp06bpT3/6k37++Wc1aNBA3bp10wMPPFBpdQPArWB2AgAAADgchhMAAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAw3GxdwEAAAD47YuLi7PpukWLFtl0nckwDONWCgIAAABuxmw2q2/fvnJzc5MkXbhwQevWrVP//v0lSYWFhUpKSlJJSYlN7RFiAQAAUOXMZrNOnDihxo0bS5IyMzPVvn175efnS5JOnTqlxo0b2xxiGRMLAACAavfrftTy9qsSYgEAAFDlPDw8dO7cOcv+uXPndOHCBRUUFEiSsrOzVb9+fZvbI8QCAACgyoWEhGj27NkqKSlRSUmJ5s2bJ19fX02cOFEbN27Uiy++qLvuusvm9hgTCwAAgCr3xRdf6JFHHlGdOnVUUlKiOnXqaNWqVfr973+vgwcPqlmzZvrqq690xx132NQeIRYAAADVYv369frqq69Uu3ZtPfHEE2rWrJkk6cyZM/Ly8ipXW4RYAAAAOBzGxAIAAMDhsGIXAAAAqpzZbLZpGi1b54klxAIAAKBavPXWW2rRokWltMWY2AoyDEP5+fny8PCQyWSydzkAAAD/08xms77//nt16NChUtpjTGwF5efny9PT07JUGgDgt80wDF26dEmXLl0q98pCACofIRYAABsUFhZq8ODBGjx4sAoLC+1dDuD0CLEAANjg0qVLZX4GYB+82AUAAIAqt2HDBrVq1UqSdO7cOeXl5ZV5nZ+fn03tEWIBAABQ5cLCwvTaa6/pzTff1OnTp0udN5lMMgyDKbYAAKhMv/yD1dY/ZAH8v3nz5unNN9/UCy+8oDvvvFOenp631B4hFgAAG/xyNpr8/HzVr1/fjtUAjue9997TrFmz9Ic//KFS2qvQi13Hjh3TiBEj5OvrK1dXV/n5+WncuHE6c+aM5ZrIyEiZTCaZTCbVqlVLQUFBSkhIKHNakk2bNslsNuv+++8vde7IkSMymUxq1KhRqemsOnbsqKlTp1odO3TokEaMGKHmzZvLzc1NTZo00b333quPP/5YRUVFluuu1fbrbenSpRV5JAAAALiBw4cPq1u3bpXWXrlD7I8//qjOnTvr4MGDWrJkiQ4dOqQFCxZo7dq1CgsL09mzZy3XPvHEE8rKytL+/fs1efJkvfTSS1qwYEGpNhMTEzV27FitX79eJ06cKPN78/Pz9frrr9+wtrS0NHXq1El79+7V3LlztWvXLqWkpOjxxx/X/PnztXv3bqvrFy1apKysLKtt4MCB5X0kAAAAuIn69euXORa2osodYuPj4+Xq6qqvv/5aERERat68ufr166dvvvlGP//8s1588UXLtbfddpu8vb3l5+enuLg4tW/fXmvWrLFqr6CgQMuWLdPo0aN1//3364MPPijze8eOHas333xTOTk5ZZ43DEPDhw9XUFCQNm7cqP79+6tVq1Zq1aqVoqOj9e2336p9+/ZW99StW1fe3t5WW61atcr7SAAAAHAT4eHhevXVV687K0F5lSvEnj17VqtXr9Yf//hH1a5d2+qct7e3YmJitGzZslJDBgzD0IYNG7Rv3z65urpanfv0008VEhKi4OBgDR06VO+//36ZQw6io6MVGBioV155pczaMjIytHfvXk2cOFE1apT9Y93K8rCFhYXKy8uz2gAAAGCbmTNnau/evWrSpIlCQ0MVFRVV5marcoXYgwcPyjAMtW7duszzrVu31rlz53Tq1ClJV99Cc3d3l5ubm3r06KGSkhI9/fTTVvckJiZq6NChkqS+ffsqNzdXqamppdo2mUyaOXOmFi5cqMOHD5c6f+DAAUlScHCw5VhOTo7c3d0t27x586zuiY6Otjrv7u6uo0ePlvmzJSQkyNPT07I1a9bseo8JAAAAv9K8eXPt3r1bCxcu1MCBAxUaGlrmZqsKzU5g65rRMTExevHFF3Xu3DlNmTJF3bt3V/fu3S3n9+/fr7S0NK1cufJqMS4uGjJkiBITExUZGVmqvT59+ujuu+/WX/7yF33yySc3/X4vLy9lZGRIuvqi2eXLl63Ov/XWW+rVq5fVMV9f3zLbmjx5sp555hnLfl5eHkEWAACgHNzc3BQdHV0pbZUrxAYGBspkMmnv3r166KGHSp3fu3ev6tWrp4YNG0qSPD09FRgYKOnqsIHAwEB169bNEhwTExNVVFRkFRwNw5Cbm5vmzJlT5vxhM2fOVFhYmJ599lmr49dWgNi/f78lxZvNZsv3u7iU/lG9vb0t52/Gzc1Nbm5uNl0LAACAqlWu4QReXl7q3bu35s2bp4sXL1qdy87O1scff6whQ4aUOfbU3d1d48aN08SJE2UYhoqKivThhx/qjTfeUEZGhmXbsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/11JqEGAAD4H9OiRYubbv7+/ja3V+7hBHPmzFH37t3Vp08fTZs2TS1atNDu3bv17LPPqkmTJpo+ffp17x01apReffVVrVixQi4uLjp37pxGjhxZqsf14YcfVmJiop566qky25k+fbratm1r1btqMpm0aNEi9e7dW+Hh4Zo8ebJat26tK1euaP369Tp16pTMZrNVO+fPn1d2drbVMQ8PD9WpU6e8jwUAAAA3cPToUb3yyivy8PCQJJ0+fVp/+9vf9Nprr0m6OmPVn//8Z9sbNCrgyJEjRmxsrNG4cWOjZs2aRrNmzYyxY8cap0+ftlwTERFhjBs3rtS9o0aNMtq2bWs88MADxu9+97sy29+yZYshydixY4eRmZlpSDK2b99udc2TTz5pSDKmTJlidXz//v1GbGys0bRpU8PFxcXw9PQ0evToYbz77rvGlStXLNdJKnNLSEiw6Rnk5uYakozc3FybrgcAOLYjR44YDzzwgPHAAw8YR44csXc5gMOpUaOGkZ2dbdk/fPiw4e7ubtk/efKkYTKZbG7PZBg2vqUFK3l5efL09FRubq5uv/12e5cDAKhiZ8+eVWxsrCRp8eLFLDsLlJPZbNaJEyfUuHFjSVcX0OrQoYNlRdacnBx5e3vbPCy0QsvOAgDgbH45B/n15iMHUH34vxAAAAB28evJAMqzMBUhFgAAG/xyWXKWKAfKb9SoUbrtttss+02aNFFSUpJl38PDQwkJCTa3x5jYCmJMLAA4F8MwVFhYKOnq3OG3spQ5gFtXoRW7AABwNiaTiR5Y4H8IwwkAAADgcAixAAAAcDiEWAAAANidYRj66aefbL6eEAsAAAC7O3XqlFq0aGHz9YRYAAAA/E9gnlgAAAA4nPLM/FrlU2wtWLBAzz77rM6dOycXl6tfV1BQoHr16ik8PFwpKSmWa1NSUhQVFaVDhw7p3nvv1fjx4zV+/Hir9qZOnaovvvhCGRkZpfb9/f1vOJYiNjZWH3zwwXVT/pIlS/T73//+ln5eAAAAlPbyyy/f8HxBQUG52qvyEBsVFaWCggKlp6erW7dukqQNGzbI29tbW7Zs0aVLlyzz7iUnJ6t58+Zq2bJlhb5r69atKi4uliR99913evjhh7V//37LYgS1a9e2XLto0SL17dvX6v66detW6HsBAABwY19++eUNzxcVFZWrvSoPscHBwfLx8VFKSoolxKakpGjAgAFat26dNm/erMjISMvxqKioCn9Xw4YNLZ/r168vSWrUqFGZ4bRu3bry9vau8HcBAADAdt9///0Nz586dUqNGze2ub1qGRMbFRWl5ORky35ycrIiIyMVERFhOX7x4kVt2bLllkJsVSosLFReXp7VBgAAgMpRnvGwUjWG2I0bN6qoqEj5+fnavn27IiIi1KNHD8uY2E2bNqmwsNAqxD7//PNyd3e32mbMmFEpNUVHR5dq++jRo9e9PiEhQZ6enpatWbNmlVIHAAAArirP7ARVPpxAkiIjI3XhwgVt3bpV586dU1BQkBo2bKiIiAjFxcXp0qVLSklJUUBAgJo3b26579lnn9Xw4cOt2nrnnXe0fv36W67prbfeUq9evayO+fr6Xvf6yZMn65lnnrHs5+XlEWQBAAAqiaen501f/vqlagmxgYGBatq0qZKTk3Xu3DlFRERIuhoamzVrpu+++07Jycnq2bOn1X0NGjRQYGCg1bFrY11vlbe3d6m2b8TNzU1ubm6V8t0AAAD4f6dPn9ZTTz2lVatW6c9//rNN91TbPLFRUVFKSUlRSkqK5UUuSerRo4eSkpKUlpb2PzseFgAAAFXjyy+/VLt27XTy5En98MMPNt9XLT2x0tUQGx8frytXrlh6YiUpIiJCY8aM0eXLl6s1xJ4/f17Z2dlWxzw8PFSnTp1qqwEAAMBZ/Hou/6KiIr366qv67LPP9Oqrr1oN27RFtYbYixcvKiQkxGr6hIiICOXn51um4qoucXFxpY4lJCRo0qRJ1VYDAACAswgICJBhGDKZTJb/mkwmrVq1qtR7SrYwGeWdzwCSrr7Y5enpqdzcXMtiCgAAACjbr4cKFBUVafr06UpOTtabb75Z6mX+myHEVhAhFgAA4NZ99NFHevrppxUWFqb33nvvhrNF/VK1vdgFAAAA/NrQoUO1a9cuFRUVqV27djbfV21jYgEAAICy+Pr6avXq1Zo3b57N9zCcoIIYTgAAAGA/9MRW0LXsn5eXZ+dKAAAAqo+Hh0e5loe95trsBDdiGIaOHDliU3uE2Ao6c+aMJLH0LAAAcCo5OTlq2LBhue8bP3685fPp06f1t7/9Ta+99prlWEFBgc2rdUkMJ6iw8+fPq169ejp69Kg8PT3tXY7TycvLU7NmzXTs2DGGc9gBz9++eP72w7O3L56/fV17/ufPn7/l7PPjjz+qQ4cOys/PtxzLycmRt7e3SkpKbGqDntgKqlHj6sQOnp6e/I9kR7fffjvP3454/vbF87cfnr198fztqyJDCX7N3d1dly5d0uXLl+Xq6irpaki+7bbbbG6DKbYAAABQrRo1aiQPDw+98cYbkqTi4mK9/vrrCg4OtrkNemIBAABQ7V544QU9//zz+utf/6orV67o4sWLWrZsmc33E2IryM3NTVOmTJGbm5u9S3FKPH/74vnbF8/ffnj29sXzt6/Kfv4TJ05Uu3bttHbtWrm6uqp///7q1q2bzffzYhcAAAAcDj2xAAAAqHIvv/yyTddNmTLFpuvoiQUAAECVM5vNatu2rVxcrvahXr58Wfv27VP79u0lSUVFRdq1a5fNU2wRYgEAAFDlzGazTpw4ocaNG0uSMjMz1b59e8tcsadOnZK3t7eKi4ttao8ptgAAAFDtft2PahjGTZel/SVCbAXNnTtX/v7+qlWrlrp27aq0tDR7l+QU1q9fr/79+8vX11cmk0lffPGFvUtyGgkJCbrrrrvk4eGhRo0aaeDAgdq/f7+9y3Ia8+fPV/v27S2TvIeFhSkpKcneZTmtmTNnymQyWS2jiaozdepUmUwmqy0kJMTeZTmVn3/+WUOHDpWXl5dq166tO+64Q+np6XatiRBbAcuWLdMzzzyjKVOm6Pvvv1eHDh3Up08f5eTk2Lu037wLFy6oQ4cOmjt3rr1LcTqpqamKj4/X5s2btWbNGl25ckX33XefLly4YO/SnELTpk01c+ZMbdu2Tenp6erZs6cGDBig3bt327s0p7N161a9++67lnF8qB5t27ZVVlaWZfv222/tXZLTOHfunMLDw1WzZk0lJSVpz549euONN1SvXr1ytVNWL+strf5loNy6dOlixMfHW/aLi4sNX19fIyEhwY5VOR9JxsqVK+1dhtPKyckxJBmpqan2LsVp1atXz/j73/9u7zKcSn5+vtGqVStjzZo1RkREhDFu3Dh7l+QUpkyZYnTo0MHeZTit559/3rj77rtvuZ3atWsbJ0+etOyfOnXKGD16tGX/zJkzRuvWrW1uj57Ycrp8+bK2bdumXr16WY7VqFFDvXr10qZNm+xYGVC9cnNzJUn169e3cyXOp7i4WEuXLtWFCxcUFhZm73KcSnx8vO6//36rPwNQPQ4ePChfX18FBAQoJiZGR48etXdJTuOf//ynOnfurMGDB6tRo0YKDQ3Ve++9V+52/vvf/6pRo0aW/QYNGmjevHmW/fr162vPnj02t0eILafTp0+ruLjY8mbdNY0bN1Z2dradqgKqV0lJicaPH6/w8HC1a9fO3uU4jZ07d8rd3V1ubm566qmntHLlSrVp08beZTmNpUuX6vvvv1dCQoK9S3E6Xbt21QcffKBVq1Zp/vz5yszM1D333GN5qx1V68cff9T8+fPVqlUrrV69WqNHj9bTTz+txYsX27UuFjsAUG7x8fHatWsXY9KqWXBwsDIyMpSbm6vly5crNjZWqampBNlqcOzYMY0bN05r1qxRrVq17F2O0+nXr5/lc/v27dW1a1f5+fnp008/1ciRI+1YmXMoKSlR586dNWPGDElSaGiodu3apQULFig2NtZuddETW04NGjSQ2WzWyZMnrY6fPHlS3t7edqoKqD5jxozRv/71LyUnJ6tp06b2LsepuLq6KjAwUHfeeacSEhLUoUMHvf322/Yuyyls27ZNOTk56tSpk1xcXOTi4qLU1FS98847cnFxsXleS1SOunXrKigoSIcOHbJ3KU7Bx8en1F+WW7dubfchHYTYcnJ1ddWdd96ptWvXWo6VlJRo7dq1jE3Db5phGBozZoxWrlypdevWqUWLFvYuyemVlJSosLDQ3mU4hXvvvVc7d+5URkaGZevcubNiYmKUkZEhs9ls7xKdSkFBgQ4fPiwfHx97l+IUwsPDS02peODAAfn5+dmpoqsYTlABzzzzjGJjY9W5c2d16dJFs2bN0oULFxQXF2fv0n7zCgoKrP7mnZmZqYyMDNWvX1/Nmze3Y2W/ffHx8frkk0/05ZdfysPDwzIG3NPTU7Vr17Zzdb99kydPVr9+/dS8eXPl5+frk08+UUpKilavXm3v0pyCh4dHqfHfderUkZeXF+PCq8HEiRPVv39/+fn56cSJE5oyZYrMZrOio6PtXZpTmDBhgrp3764ZM2bo0UcfVVpamhYuXKiFCxfat7Bbni/BSc2ePdto3ry54erqanTp0sXYvHmzvUtyCsnJyYakUltsbKy9S/vNK+u5SzIWLVpk79KcwogRIww/Pz/D1dXVaNiwoXHvvfcaX3/9tb3LcmpMsVV9hgwZYvj4+Biurq5GkyZNjCFDhhiHDh2yd1lO5auvvjLatWtnuLm5GSEhIcbChQvtXZJhMoxyrO8FAAAA/A9gTCwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAcAJHjhyRyWRSRkaGvUsBgEpBiAWAChg+fLgGDhxo2Y+MjNT48ePtVk9mZqb+8Ic/yNfXV7Vq1VLTpk01YMAA7du3T5LUrFkzZWVlsUQqgN8MF3sXAAC4NVeuXFHv3r0VHByszz//XD4+Pjp+/LiSkpJ0/vx5SZLZbJa3t7d9CwWASkRPLADcouHDhys1NVVvv/22TCaTTCaTjhw5IknatWuX+vXrJ3d3dzVu3FjDhg3T6dOnLfdGRkZq7NixGj9+vOrVq6fGjRvrvffe04ULFxQXFycPDw8FBgYqKSnput+/e/duHT58WPPmzVO3bt3k5+en8PBwTZs2Td26dZNUejjB8OHDLbX+cktJSZEkFRYWauLEiWrSpInq1Kmjrl27Ws4BwP8CQiwA3KK3335bYWFheuKJJ5SVlaWsrCw1a9ZM58+fV8+ePRUaGqr09HStWrVKJ0+e1KOPPmp1/+LFi9WgQQOlpaVp7NixGj16tAYPHqzu3bvr+++/13333adhw4bpv//9b5nf37BhQ9WoUUPLly9XcXGxzTVfqzUrK0vjxo1To0aNFBISIkkaM2aMNm3apKVLl+qHH37Q4MGD1bdvXx08ePDWHhYAVBKTYRiGvYsAAEczfPhwnT9/Xl988YWkqz2qHTt21KxZsyzXTJs2TRs2bNDq1astx44fP65mzZpp//79CgoKUmRkpIqLi7VhwwZJUnFxsTw9PTVo0CB9+OGHkqTs7Gz5+Pho06ZNlp7VX5s7d66ee+45mc1mde7cWVFRUYqJiVFAQICkqz2xLVq00Pbt29WxY0erez///HPFxMTom2++UXh4uI4ePaqAgAAdPXpUvr6+lut69eqlLl26aMaMGbf6+ADgltETCwBVZMeOHUpOTpa7u7tlu9bTefjwYct17du3t3w2m83y8vLSHXfcYTnWuHFjSVJOTs51vys+Pl7Z2dn6+OOPFRYWps8++0xt27bVmjVrbljj9u3bNWzYMM2ZM0fh4eGSpJ07d6q4uFhBQUFWtaemplrVDQD2xItdAFBFCgoK1L9/f7322mulzvn4+Fg+16xZ0+qcyWSyOmYymSRJJSUlN/w+Dw8P9e/fX/3799e0adPUp08fTZs2Tb179y7z+uzsbD344IN6/PHHNXLkSKu6zWaztm3bJrPZbHWPu7v7DWsAgOpCiAWASuDq6lpqPGqnTp20YsUK+fv7y8Wlen+7NZlMCgkJ0XfffVfm+UuXLmnAgAEKCQnRm2++aXUuNDRUxcXFysnJ0T333FMd5QJAuTGcAAAqgb+/v7Zs2aIjR47o9OnTKikpUXx8vM6ePavo6Ght3bpVhw8f1urVqxUXF2fzC1i2yMjI0IABA7R8+XLt2bNHhw4dUmJiot5//30NGDCgzHtGjRqlY8eO6Z133tGpU6eUnZ2t7OxsXb58WUFBQYqJidFjjz2mzz//XJmZmUpLS1NCQoL+/e9/V1rdAHAr6IkFgEowceJExcbGqk2bNrp48aIyMzPl7++vjRs36vnnn9d9992nwsJC+fn5qW/fvqpRo/L6EJo2bSp/f3+9/PLLlqm0ru1PmDChzHtSU1OVlZWlNm3aWB1PTk5WZGSkFi1apGnTpulPf/qTfv75ZzVo0EDdunXTAw88UGl1A8CtYHYCAAAAOByGEwAAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACH42LvAgAAAPDbFxcXZ9N1ixYtsuk6QiwAAACqXG5urtX+zz//rB07duh3v/tdhdojxAIAAKDKff7555bPx44dU2RkpK5cuaKgoCDNnDmz3O0xJhYAAADV5vjx44qMjFSTJk20du1azZ8/X3/961/L3Q49sQAAAKgWJ06cUFRUlHx9fZWUlKQ6deroyy+/1P3336/69evr8ccft7ktQiwAAACqXFZWliIjI9W4cWOtWrVKderUkSRFRkZqyZIlGjJkiOrWratHHnnEpvZMhmEYVVkwAAAAEBISIi8vL61evVru7u6lzn/44YcaNWqULl68aFN79MQCAACgynl5eWnVqlVlBlhJeuyxx3TmzBmb26MnFgAAAFWuoKDgugG2IgixAAAAqHK2LHZgGIY++OADm9ojxAIAAKDKDRo06LrniouL9c033+jixYsqKSmxqT3GxAIAAKDK/XKxg1/68ssv9cILL6hWrVqaMmWKze2x2AEAAACq3YYNG9S9e3dFR0frgQce0I8//qjnnnvO5vsJsQAAAKg2u3btUv/+/XXvvfeqbdu2OnTokF577TV5enqWqx1CLAAAAKrcTz/9pNjYWHXs2FEuLi7auXOn3nvvPfn6+laoPV7sAgAAQJWrVauWatSooaefflphYWHXvW7AgAE2tUeIBQAAQJVzcXHRzWKnYRg2z05AiAUAAIDDYUwsAAAAHA7zxAIAAKDa7NmzR/v371deXl6Z52NjY21qh+EEAAAAqHJ5eXl69NFHtWbNGrm4uKhOnTqlrjEMQ+fOnbOpPXpiAQAAUOWmTJminJwcbdu2TR07drzl9uiJBQAAQJULCgrSggUL1LNnz0ppjxe7AAAAUOVOnDihgICASmuPEAsAAIAq17RpU+3bt6/S2mNMLAAAAKrcoEGDNGHCBLm6uurOO++Up6fnLbXHmFgAAABUuf/+97964okntHTp0huu3MWKXQAAAPifk5WVpQMHDig3N7fM8w8++KBN7RBiK8gwDOXn58vDw0Mmk8ne5QAAADgVxsRWUH5+vjw9PZWbm6vbb7/d3uUAAAA4hLS0NH3yySc6cOCATCaTAgMDFRMToy5dupSrHWYnAADABoZh6NKlS7p06dINx/MBuL5JkyYpLCxMixYtUlZWlk6cOKEPPvhA3bp104svvliutgixAADYoLCwUIMHD9bgwYNVWFho73IAh7N8+XK9+eabmjVrls6ePavt27dr+/btOnv2rN555x399a9/1YoVK2xujxALAIANLl26VOZnALaZO3euJkyYoLFjx8psNluOm81mjRkzRn/60580Z84cm9sjxAIAAKDKbd++XQ899NB1zw8cOFDbt2+3uT1CLAAANvjl3JW2zmMJ4P+VlJTI19f3uud9fX1VXFxsc3uEWAAAbJCfn1/mZwC2admypQ4ePHjd8wcPHlTLli1tbq9CIfbYsWMaMWKEfH195erqKj8/P40bN05nzpyxXBMZGSmTySSTyaRatWopKChICQkJZb7RuWnTJpnNZt1///2lzh05ckQmk0mNGjUq9ZtGx44dNXXqVKtjhw4d0ogRI9S8eXO5ubmpSZMmuvfee/Xxxx+rqKjIct212n69LV26tCKPBAAAADfwyCOP6N13373u+QULFujhhx+2ub1yh9gff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W11+b3uGX28CBA8v7SAAAAHATY8eO1T333FPmSl15eXnq0aOHxowZY3N75V7sID4+Xq6urvr6669Vu3ZtSVLz5s0VGhqqli1b6sUXX9T8+fMlSbfddpu8vb0lSXFxcZozZ47WrFmj0aNHW9orKCjQsmXLlJ6eruzsbH3wwQd64YUXSn3v2LFj9eabbyo+Pl6NGjUqdd4wDA0fPlxBQUHauHGjatT4/3zeqlUrRUdHl+oFrlu3rqU+AAAAVJ3bb79dY8eOLfe56ylXiD179qxWr16t6dOnWwLsNd7e3oqJidGyZcs0b948q3OGYejbb7/Vvn371KpVK6tzn376qUJCQhQcHKyhQ4dq/Pjxmjx5cqmlXKOjo7VmzRq98sorZU6/kJGRob1792rJkiVWAfaXWB4WAADAPhYvXmzTdbGxsTZdV64Qe/DgQRmGodatW5d5vnXr1jp37pxOnTolSZo3b57+/ve/6/Lly7py5Ypq1aqlp59+2uqexMREDR06VJLUt29f5ebmKjU1VZGRkVbXmUwmzZw5U/3799eECRNKDfw9cOCAJCk4ONhyLCcnRwEBAZb9v/71r/rjH/9o2Y+Ojraap0yS9uzZo+bNm5f62QoLC60mt87LyyvzGQAAAKC0CRMmWO0XFRXp4sWL8vDwsBwzDMPmEFuhF7tsXW4vJiZGGRkZ2rhxo/r166cXX3xR3bt3t5zfv3+/0tLSFB0dLUlycXHRkCFDlJiYWGZ7ffr00d13362//OUvNn2/l5eXMjIylJGRobp16+ry5ctW59966y3L+Wvb9aZ+SEhIkKenp2Vr1qyZTTUAAADg6r/oX9tOnjype+65R5L0/vvvW46fO3fO5vbKFWIDAwNlMpm0d+/eMs/v3btX9erVU8OGDSVJnp6eCgwM1F133aVPP/1Uc+bM0TfffGO5PjExUUVFRfL19ZWLi4tcXFw0f/58rVixosxBv5I0c+ZMLVu2rNRkuNeGKezfv99yzGw2KzAwUIGBgXJxKd3p7O3tbTl/o+skafLkycrNzbVsx44du8GTAgAAQFkuX76shx56SBkZGXrxxRf1hz/8QevWrSt3O+UKsV5eXurdu7fmzZunixcvWp3Lzs7Wxx9/rCFDhpQ59tTd3V3jxo3TxIkTZRiGioqK9OGHH+qNN96w6gndsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/31KpmE2s3NTbfffrvVBgAAANsVFRXpkUce0bZt27R27VpNnTpVr7zyigYOHKitW7eWq61yz04wZ84cde/eXX369NG0adPUokUL7d69W88++6yaNGmi6dOnX/feUaNG6dVXX9WKFSvk4uKic+fOaeTIkfL09LS67uGHH1ZiYqKeeuqpMtuZPn262rZta9VrajKZtGjRIvXu3Vvh4eGaPHmyWrdurStXrmj9+vU6depUqfGv58+fV3Z2ttUxDw8P1alTp7yPBQAAADdQXFysRx55RFu3blVycrJCQkIkSRMnTtTZs2f1u9/9TuvXr7/uu1e/Vu4xsa1atVJ6eroCAgL06KOPqmXLlnryyScVFRWlTZs2qX79+te9t379+nrsscc0depUJSYmqlevXqUCrHQ1xKanp+uHH34os52goCCNGDFCly5dsjrerVs3bdu2TcHBwYqPj1ebNm3UvXt3LVmyRG+99ZbV1F7S1Wm/fHx8rLbZs2eX95EAAADgJgYPHqzNmzdr3bp1lgB7zYwZM/Twww+rT58+NrdnMmx9SwtW8vLy5OnpqdzcXIYWAIATOHv2rOWt6cWLF9+w0wZAad7e3lq3bp3atGlz3WuGDBmiZcuW2dRehWYnAADA2fxyDvLrzUcO4PpuFmAl6eOPP7a5vXKPiQUAAADKa+vWrTd9eevaCqy2IMQCAACgyo0YMUJ16tS57nSmEiEWAIBKV6tWrTI/A7Ddhg0b1KFDh0ppixALAIAN3Nzc9Nlnn1k+A7AvQiwAADYwmUz0wAL/Q3i9EgAAAA6HEAsAAIAq17Jly0odisNwAgAAAFS5AwcOVGp7hFgAAABUubi4OJuuW7RokU3XsexsBbHsLAAAgO3MZrP69u1rGVJw4cIFrVu3Tv3795ckFRYWKikpSSUlJTa1R4itIEIsAACA7cxms06cOKHGjRtLkjIzM9W+fXvl5+dLkk6dOiVvb28VFxfb1F6Vv9i1YMECeXh4qKioyHKsoKBANWvWVGRkpNW1KSkpMplMOnz4sPz9/TVr1qxS7U2dOlUdO3Ysc9/f318mk+m627UVIK53funSpZX80wMAAKAsv+5HNQyj1LEbqfIxsVFRUSooKFB6erq6desm6epqDd7e3tqyZYsuXbpkmXcvOTlZzZs3V8uWLSv0XVu3brWk9++++04PP/yw9u/fb+kprV27tuXaRYsWqW/fvlb3161bt0LfCwAAgOpV5SE2ODhYPj4+SklJsYTYlJQUDRgwQOvWrdPmzZstPbIpKSmKioqq8Hc1bNjQ8rl+/fqSpEaNGpUZTuvWrStvb+8KfxcAAABujclkuuH+jVTLPLFRUVFKTk627CcnJysyMlIRERGW4xcvXtSWLVtuKcRWpcLCQuXl5VltAAAAsE1wcLBcXP6//7R+/fp64YUXLPtubm7q06ePze1VW4jduHGjioqKlJ+fr+3btysiIkI9evRQSkqKJGnTpk0qLCy0CrHPP/+83N3drbYZM2ZUSk3R0dGl2j569Oh1r09ISJCnp6dla9asWaXUAQAA4Az27NkjLy8vy37dunU1adIky76np6f+85//2NxetcwTGxkZqQsXLmjr1q06d+6cgoKC1LBhQ0VERCguLk6XLl1SSkqKAgIC1Lx5c8t9zz77rOVlrGveeecdrV+//pZreuutt9SrVy+rY76+vte9fvLkyXrmmWcs+3l5eQRZAAAAO6mWEBsYGKimTZsqOTlZ586dU0REhKSrobFZs2b67rvvlJycrJ49e1rd16BBAwUGBloduzbW9VZ5e3uXavtG3NzcKnWpNAAAAFRctQwnkK4OKUhJSVFKSorV1Fo9evRQUlKS0tLS/mfHwwIAAOB/S7UtOxsVFaX4+HhduXLF0hMrSRERERozZowuX75crSH2/Pnzys7Otjrm4eGhOnXqVFsNAAAAqJhq7Ym9ePGiAgMDLSs1SFdDbH5+vmUqruoSFxcnHx8fq2327NnV9v0AAACoOJadrSCWnQUAALDdyy+/bNN1U6ZMsek6QmwFEWIBAABs16lTJ6v9y5cva9++fWrfvr3lmGEY2r59u03tEWIriBALAABQcZmZmWrfvr3y8/MrdH+1jYkFAAAArrnVftRqm53gt+bag2f5WQAA4Ew8PDxkMpnsXQYhtqLOnDkjSazaBQAAnEpOTo4aNmxo7zIIsRV1beWwo0ePytPT087VOJ9ry/4eO3aMMcl2wPO3L56//fDs7Yvnb1/Xnr+rq2uF7v/pp5+s9o8fPy7DMHTkyBGrnl0/Pz+b2iPEVlCNGleHE3t6evI/kh3dfvvtPH874vnbF8/ffnj29sXzt6+KDiUICAiwGgd7rZ2AgADLvmEYKikpsak9QiwAAACqnK1TZ9mKEAsAAIAq98v5YCsDIbaC3NzcNGXKFLm5udm7FKfE87cvnr998fzth2dvXzx/+7rV5//rMbHXY+uYWBY7AAAAQJUzm80yDMMy9vXXGBMLAACA/0nffPONGjRoIOnq7ASPPvqovvvuO0nS2bNn1bNnT5vbIsQCAACgWrRt21aNGzeWJLm7u8tkMlnGyubk5JSrLZadBQAAgMMhxAIAAKDKVfZrWITYCpo7d678/f1Vq1Ytde3aVWlpafYuySmsX79e/fv3l6+vr0wmk7744gt7l+Q0EhISdNddd8nDw0ONGjXSwIEDtX//fnuX5TTmz5+v9u3bWyZ5DwsLU1JSkr3LclozZ86UyWTS+PHj7V2KU5g6dapMJpPVFhISYu+ynMrPP/+soUOHysvLS7Vr19Ydd9yh9PT0crVR1iIJvz5WnoUUCLEVsGzZMj3zzDOaMmWKvv/+e3Xo0EF9+vQp91gOlN+FCxfUoUMHzZ07196lOJ3U1FTFx8dr8+bNWrNmja5cuaL77rtPFy5csHdpTqFp06aaOXOmtm3bpvT0dPXs2VMDBgzQ7t277V2a09m6davefffdSp/zEjfWtm1bZWVlWbZvv/3W3iU5jXPnzik8PFw1a9ZUUlKS9uzZozfeeEP16tUrVztLlixR3bp1LfsBAQHKy8uz7Ht5eWnTpk02t8cUWxXQtWtX3XXXXZozZ44kqaSkRM2aNdPYsWM1adIkO1fnPEwmk1auXKmBAwfauxSndOrUKTVq1Eipqanq0aOHvctxSvXr19ff/vY3jRw50t6lOI2CggJ16tRJ8+bN07Rp09SxY0fNmjXL3mX95k2dOlVffPGFMjIy7F2KU5o0aZI2btyoDRs23FI7b775poYNG6aGDRtWSl30xJbT5cuXtW3bNvXq1ctyrEaNGurVq1e5/vYAOLrc3FxJV4MUqldxcbGWLl2qCxcuKCwszN7lOJX4+Hjdf//9Vn8GoHocPHhQvr6+CggIUExMjI4ePWrvkpzGP//5T3Xu3FmDBw9Wo0aNFBoaqvfee6/c7UyfPl1NmzbVI488oqSkJJvng70eQmw5nT59WsXFxZbpIa5p3LixsrOz7VQVUL1KSko0fvx4hYeHq127dvYux2ns3LlT7u7ucnNz01NPPaWVK1eqTZs29i7LaSxdulTff/+9EhIS7F2K0+natas++OADrVq1SvPnz1dmZqbuuece5efn27s0p/Djjz9q/vz5atWqlVavXq3Ro0fr6aef1uLFi8vVTk5Ojv71r3/Jzc1N999/v/z8/PTnP/9Zhw8frlBdzBMLoNzi4+O1a9cuxqRVs+DgYGVkZCg3N1fLly9XbGysUlNTCbLV4NixYxo3bpzWrFmjWrVq2bscp9OvXz/L5/bt26tr167y8/PTp59+ynCaalBSUqLOnTtrxowZkqTQ0FDt2rVLCxYsUGxsrM3tmM1m9e7dW02aNNFnn32md955Rx999JHuuOMOdevWTSNHjtTDDz9s8/9j9MSWU4MGDWQ2m3Xy5Emr4ydPnpS3t7edqgKqz5gxY/Svf/1LycnJatq0qb3LcSqurq4KDAzUnXfeqYSEBHXo0EFvv/22vctyCtu2bVNOTo46deokFxcXubi4KDU1Ve+8845cXFxUXFxs7xKdSt26dRUUFKRDhw7ZuxSn4OPjU+ovy61bt76lIR2GYeihhx7SihUrlJ2drejoaC1cuFC+vr42t0GILSdXV1fdeeedWrt2reVYSUmJ1q5dy9g0/KYZhqExY8Zo5cqVWrdunVq0aGHvkpxeSUmJCgsL7V2GU7j33nu1c+dOZWRkWLbOnTsrJiZGGRkZMpvN9i7RqRQUFOjw4cPy8fGxdylOITw8vNSUigcOHJCfn1+ltF9cXCzDMGQYhlxcbB8kwHCCCnjmmWcUGxurzp07q0uXLpo1a5YuXLiguLg4e5f2m1dQUGD1N+/MzExlZGSofv36at68uR0r++2Lj4/XJ598oi+//FIeHh6WMeCenp6qXbu2nav77Zs8ebL69eun5s2bKz8/X5988olSUlK0evVqe5fmFDw8PEqN/65Tp468vLwYF14NJk6cqP79+8vPz08nTpzQlClTZDabFR0dbe/SnMKECRPUvXt3zZgxQ48++qjS0tK0cOFCLVy48JbaXb58uT755BOtWrVK99xzj8aOHVu+GYcMVMjs2bON5s2bG66urkaXLl2MzZs327skp5CcnGxIKrXFxsbau7TfvLKeuyRj0aJF9i7NKYwYMcLw8/MzXF1djYYNGxr33nuv8fXXX9u7LKcWERFhjBs3zt5lOIUhQ4YYPj4+hqurq9GkSRNjyJAhxqFDh+xdllP56quvjHbt2hlubm5GSEiIsXDhwnK3cfnyZSMpKcn4wx/+YNSoUcPw9/c3Xn75ZePo0aMVqol5YgEAAFDlvLy89N///lcPPfSQRo4cqXvvvfeW2iPEAgAAoMrNmTNHQ4cOtVq161YQYgEAAOBweLELAAAAVc6WWW0Mw9CRI0dsao+eWAAAAFQ5s9msV155RR4eHmWeLygo0J///Gebl6MlxAIAAKDKmc1mnThxQo0bNy7zfE5Ojry9vW0OsSx2AAAAgCrn6uqqK1euXPf85cuXy7WsMyEWAAAAVc7b21uZmZnXPX/kyJHr9tKWhRALAACAKtetWzf94x//uO75f/zjH+rSpYvN7RFiAcAJHDlyRCaTSRkZGfYuBYCTGj16tN5//3299NJLOnv2rOX4uXPnNHXqVP3973/XU089ZXN7hFgAqIDhw4dbrfEdGRmp8ePH262ezMxM/eEPf5Cvr69q1aqlpk2basCAAdq3b58kqVmzZsrKylK7du3sViMA59ajRw/NnDlTM2fOVMOGDeXt7S0fHx81aNBA06dP17Rp0xQVFWVze8wTCwAO7sqVK+rdu7eCg4P1+eefy8fHR8ePH1dSUpLOnz8v6epbwd7e3vYtFIDTmzhxogYNGqQvvvhCmZmZMgxD/v7+GjBggFq1alW+xgwAQLnFxsYaAwYMsHyWZLVlZmYahmEYO3fuNPr27WvUqVPHaNSokTF06FDj1KlTlnYiIiKMMWPGGOPGjTPq1q1rNGrUyFi4cKFRUFBgDB8+3HB3dzdatmxp/Oc//7luLdu3bzckGUeOHLnuNZmZmYYkY/v27detWZKRnJxsGIZhXLp0yfjTn/5k+Pr6GrfddpvRpUsXyzkA+F/AcAIAuEVvv/22wsLC9MQTTygrK0tZWVlq1qyZzp8/r549eyo0NFTp6elatWqVTp48qUcffdTq/sWLF6tBgwZKS0vT2LFjNXr0aA0ePFjdu3fX999/r/vuu0/Dhg3Tf//73zK/v2HDhqpRo4aWL1+u4uJim2u+VmtWVpbGjRunRo0aKSQkRJI0ZswYbdq0SUuXLtUPP/ygwYMHq2/fvjp48OCtPSwAqCQsdgAAFTB8+HCdP39eX3zxhaSrY2I7duyoWbNmWa6ZNm2aNmzYoNWrV1uOHT9+XM2aNdP+/fsVFBSkyMhIFRcXa8OGDZKk4uJieXp6atCgQfrwww8lSdnZ2fLx8dGmTZvUrVu3MuuZO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKsvdrVo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYfl2LV5E3Nycq77XfHx8crOztbHH3+ssLAwffbZZ2rbtq3WrFlzwxq3b9+uYcOGac6cOQoPD5ck7dy5U8XFxQoKCrKqPTU11apuALAnXuwCgCpSUFCg/v3767XXXit1zsfHx/K5Zs2aVudMJpPVMZPJJEk3XYrRw8ND/fv3V//+/TVt2jT16dNH06ZNU+/evcu8Pjs7Ww8++KAef/xxjRw50qpus9msbdu2yWw2W93j7u5+wxoAoLoQYgGgEri6upYaj9qpUyetWLFC/v7+cnGp3t9uTSaTQkJC9N1335V5/tKlSxowYIBCQkL05ptvWp0LDQ1VcXGxcnJydM8991RHuQBQbgwnAIBK4O/vry1btujIkSM6ffq0SkpKFB8fr7Nnzyo6Olpbt27V4cOHtXr1asXFxdn8ApYtMjIyNGDAAC1fvlx79uzRoUOHlJiYqPfff18DBgwo855Ro0bp2LFjeuedd3Tq1CllZ2crOztbly9fVlBQkGJiYvTYY4/p888/V2ZmptLS0pSQkKB///vflVY3ANwKemIBoBJMnDhRsbGxatOmjS5evKjMzEz5+/tr48aNev7553XfffepsLBQfn5+6tu3r2rUqLw+hKZNm8rf318vv/yyZWWua/sTJkwo857U1FRlZWWpTZs2VseTk5MVGRmpRYsWadq0afrTn/6kn3/+WQ0aNFC3bt30wAMPVFrdAHArmJ0AAAAADofhBAAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcFzsXQAAAAB+++Li4my6btGiRTZdR4gFAABAlcvNzbXav3DhgtatW6f+/ftXqD2TYRhGZRQGAAAA2CozM1Pt27dXfn5+he5nTCwAAACq3a32oxJiAQAA4HAIsQAAAHA4vNgFAACAKpeammq1//PPP6u4uFgpKSkymUyW4xERETa1x4tdAAAAqHJms1mGYVgF1l8zDEMlJSU2tUdPLAAAAKrcuXPnKrU9emIBAADgcHixCwAAANVm6dKlGjhwoNq0aaM2bdpo4MCBWrZsWbnboScWAAAAVa6kpESDBw/WF198oVatWql169YymUzau3ev9u/fr4cffljLli1TjRq29bEyJhYAAABVbtasWUpNTdU///lP3X///Vbn/vOf/2jYsGF6++23NWHCBJvaoycWAAAAVa59+/YaP368RowYUeb5RYsW6a233tIPP/xgU3uEWAAAAFS52rVra9++ffLz8yvz/E8//aSQkBBdvHjRpvZ4sQsAAABVrlatWsrNzb3u+by8PNWuXdvm9gixAAAAqHJhYWGaO3fudc/PmTNH3bp1s7k9XuwCAABAlXvppZcUERGh06dP609/+pPatGkjSdq7d6/eeOMN/fOf/1RKSorN7TEmFgAAANXiq6++0siRI3X69Gmr4w0aNNDf//53Pfjggza3RYgFAABAtbl48aLWrFmjAwcOSJKCgoLUu3fvco2HlQixAAAA+B+xf/9+BQcH23QtY2IBAABgF4cPH1ZycrJly87OVklJiU33EmIBAABQLY4cOWIJrCkpKTp+/Ljc3d119913a/z48YqMjLS5LYYTAAAAoMq1aNFCP/30k+rUqaPw8HBFRUUpMjJSd911l2rUKP+sr4RYAAAAVDkXFxe5u7srLi5OvXv31j333CMPD48Kt0eIBQAAQJXLyclRamqqUlNTlZKSogMHDig0NFSRkZGKiorS3XffLXd3d5vbI8QCAACg2p05c0YpKSmWULt//36FhoZq8+bNNt3Pi10AAACodl5eXgoPD1dJSYlKSkqUm5urHTt22Hw/PbEAAACoFseOHVNqaqrWr1+v9evX66efflLXrl3Vs2dPRUZGqlu3bnJ1dbWpLUIsAAAAqlxAQIBOnDihrl27KjIyUj179lRYWJjNofXXyj+fAQAAAFBOR48elclkkmEYMgzDMoygouiJBQAAQJU7efKkUlJSLIsdHDp0SK6ururSpYuioqIUERGh7t27y83Nzab2CLEAAACodj///LPVkrM//fSTXF1ddfHiRZvuJ8QCAADA7o4ePaq1a9cqLi7OpusJsQAAAHA4zBMLAACAKmdLD6thGPrggw9sao+eWAAAAFQ5s9msvn37XvfFrcLCQiUlJdk8YwEhFgAAAFXObDbrxIkTaty4cZnnT506JW9vbxUXF9vUHvPEAgAAoMq5uLjcMKAWFRXJbDbb3B4hFgAAAFWuXr16Onny5HXPnzx5UvXr17e5PUIsAAAAqlyHDh2UlJR03fOrVq1S+/btbW6PEAsAAIAqFxMTo5kzZ2rdunWlziUnJ2vGjBmKjo62uT1e7AIAAEC1GDhwoP75z3/qjjvuUOvWrWUymbRv3z7t2LFDv/vd7/TVV1/JZDLZ1BYhFgAAANXCMAz94x//0PLly5WZmSnDMOTv769BgwZp+PDhqlHD9kEChFgAAAA4HMbEAgAAwOGw7CwAAACqXIsWLW56jWEYOnLkiE3tMZwAAAAAVc5sNuuVV16Rh4eHJOn06dP629/+ptdee02SVFBQoD//+c8sOwsAAID/Hb9edvbHH39Uhw4dlJ+fL0nKycmRt7e3zSGWMbEAAABwOIRYAAAAOBxCbAUZhqG8vDwxGgMAAKBifr2wga0LHUiE2ArLz8+Xp6enZRwHAAAArm/UqFG67bbbLPtNmjRRUlKSZd/Dw0MJCQk2t8eLXRWUl5cnT09P5ebm6vbbb7d3OQAAAE6FeWIBAABQ5X766SebrvPz87PpOkIsAAAAqlxAQIAMw5DJZLJ6p+jX+7ZOsUWIBQAAQJXbvn17mccNw9CSJUs0e/Zsy0IItiDEAgAAoMq1b9++1LGvv/5akydP1qFDh/Tcc89p4sSJNrdHiAUAAEC12rp1qyZNmqRvv/1WTz75pFavXq0GDRqUq40KTbF17NgxjRgxQr6+vnJ1dZWfn5/GjRunM2fOWK6JjIyUyWSSyWRSrVq1FBQUpISEhDLnVd20aZPMZrPuv//+UueOHDkik8mkRo0alZrOqmPHjpo6darVsUOHDmnEiBFq3ry53Nzc1KRJE9177736+OOPVVRUZLnuWm2/3pYuXVqRRwIAAICbOHjwoIYMGaLu3bvLx8dH+/bt0+zZs8sdYKUKhNgff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W1y9atEhZWVlW28CBA8v7SAAAAHATTz31lNq2bavc3Fxt3bpVH330kVq0aFHh9so9T2y/fv20a9cuHThwQLVr17Ycz87OVsuWLfXYY49p/vz5ioyMVMeOHTVr1izLNXfeeaf8/Pz0+eefW44VFBTIx8dH6enpmjJlitq3b68XXnjBcv7IkSNq0aKFnn32Wc2fP1+HDx9Wo0aNJF3tiR04cKCmTp0qwzDUtm1b3XbbbUpLS1ONGqXz+bU34qSrPbErV66scGhlnlgAAADbmc1m1apVS8HBwTdc8fR6L4D9WrnGxJ49e1arV6/W9OnTrQKsJHl7eysmJkbLli3TvHnzrM4ZhqFvv/1W+/btU6tWrazOffrppwoJCVFwcLCGDh2q8ePHa/LkyaWWHYuOjtaaNWv0yiuvaM6cOaVqy8jI0N69e7VkyZIyA6xUvqXMfq2wsFCFhYWW/by8vAq3BQAA4GymTJlSqe2VK8QePHhQhmGodevWZZ5v3bq1zp07p1OnTkmS5s2bp7///e+6fPmyrly5olq1aunpp5+2uicxMVFDhw6VJPXt21e5ublKTU1VZGSk1XUmk0kzZ85U//79NWHCBLVs2dLq/IEDByRJwcHBlmM5OTkKCAiw7P/1r3/VH//4R8t+dHS0zGazVTt79uxR8+bNS/1sCQkJevnll8v8uQEAAHBjL730UqW2V6EXu2wdgRATE6OMjAxt3LhR/fr104svvqju3btbzu/fv19paWmKjo6WJLm4uGjIkCFKTEwss70+ffro7rvv1l/+8hebvt/Ly0sZGRnKyMhQ3bp1dfnyZavzb731luX8tc3X17fMtiZPnqzc3FzLduzYMZtqAAAAQOUrV09sYGCgTCaT9u7dq4ceeqjU+b1796pevXpq2LChJMnT01OBgYGSrg4bCAwMVLdu3dSrVy9JV3thi4qKrIKjYRhyc3PTnDlz5OnpWeo7Zs6cqbCwMD377LNWx68NU9i/f79CQ0MlXR17ce37XVxK/6je3t6W8zfj5uYmNzc3m64FAABA1SpXT6yXl5d69+6tefPm6eLFi1bnsrOz9fHHH2vIkCFljj11d3fXuHHjNHHiRBmGoaKiIn344Yd64403rHpCd+zYIV9fXy1ZsqTMGrp06aJBgwZp0qRJVsdDQ0MVEhKi119/3eblygAAAOCYyr3YwZw5c9S9e3f16dNH06ZNU4sWLbR79249++yzatKkiaZPn37de0eNGqVXX31VK1askIuLi86dO6eRI0eW6nF9+OGHlZiYqKeeeqrMdqZPn662bdta9a6aTCYtWrRIvXv3Vnh4uCZPnqzWrVvrypUrWr9+vU6dOlVq/Ov58+eVnZ1tdczDw0N16tQp72MBAABANSr3mNhWrVopPT1dAQEBevTRR9WyZUs9+eSTioqK0qZNm1S/fv3r3lu/fn099thjmjp1qhITE9WrV68yhww8/PDDSk9P1w8//FBmO0FBQRoxYoQuXbpkdbxbt27atm2bgoODFR8frzZt2qh79+5asmSJ3nrrLY0ePdrq+ri4OPn4+Fhts2fPLu8jAQAAQCXYv3+/zdeWe55YXMU8sQAAALfm8OHDSk5OtmzZ2dk2Dwst93ACAAAAoCKOHDliCawpKSk6fvy43N3ddffdd2v8+PGlpli9EUIsAAAAqlyLFi30008/qU6dOgoPD1d8fLwiIyN11113XXehqhshxAIAAKDKHTt2TLfffrvi4uLUu3dv3XPPPfLw8KhwexVa7AAAAAAojxMnTui9997TlStX9Nxzz8nLy0tdu3bV888/r1WrVqmgoKBc7fFiVwXxYhcAAEDFnTlzRikpKUpNTVVKSoplwarNmzfbdD/DCeBwDMNQYWGhvcsA7OKXv/7d3NzKXFwG+K3j1/5vg5eXl8LDw1VSUqKSkhLl5uZqx44dNt9PiIXDKSws1ODBg+1dBgDATj777DPVqlXL3mWgAo4dO6bU1FStX79e69ev108//aSuXbuqZ8+e+sc//qFu3brZ3BYhFgAAAFUuICBAJ06cUNeuXRUZGal3331XYWFhcnV1rVB7hFg4tNmvPiE315r2LgOoNoWXr2jsX96TxK9/OJdf/tqHYzp69Khq1qwpwzBkGIZlGEFFEWJvEe/F2Zeba025ufGHOJwTv/7hTH755y1/9jqmn3/+WSkpKUpOTtayZcs0ffp0ubq6qkuXLoqKilJERIS6d+8uNzc3m9ojxN4iXjACAKDqXb5SZPlcWFio2rVr27EaVETjxo01ZMgQ/V97dx7U1PX2AfwbAgEUBBcIIEtcitQqoKKojLKIWyvitKOORQxorbVxQes6OhV/MmBra9W64liq4zhWrVq7oLWa4C6KUrepVcBxA8EphkUIGPL+4ZDXFNSwJLeY72cmM7kn9548nkmbJ4fnnjN+/HgAz5Pa2t27duzYgRUrVkAikaCiosKo/ky+TuzmzZvh6OiIZ8/+/8NXVlYGGxubOluLqVQqiEQi5OTkQCaTYc2aNXX6S0xMRGBgYL3HMpkMIpHopY+4uDgAeOnru3fvbuZ/PRERERHVp2PHjpg4cSK2bduG3Nxc5OXlYePGjUZfb/KZ2PDwcJSVleHixYv6O85OnjwJNzc3nD9/HpWVlfo7DJVKJby9vdGlS5dGvdeFCxeg1WoBAGfOnMEHH3yAmzdv6tdxffFXW1paGkaMGGFwvbOzc6Pel4iIiIiaxtvbG/Hx8Uafb/Iktlu3bnB3d4dKpdInsSqVCtHR0Th+/DjOnTunn5FVqVQIDw9v9Hu5uLjon7dr1w4A4OrqWm9y6uzsDDc3t0a/B2svWgAAEfNJREFUFxEREREZz9gENS0tzajzzFITGx4eDqVSiUWLFgF4PuO6YMECaLVaKJVKhIWFoaKiAufPn8fkyZPNEVKzqaysRGVlpdBhWJQXx5vF/URERC2DWq02OC4vL8fx48cRFRXVqP7MlsQmJCTg2bNnqKiowOXLlxEaGorq6mps3rwZAHD27FloNBqDmdiFCxdi6dKlBn1VVVWhe/fuTY5pwoQJEIvFBm03btyAt7d3vedrNBqDm7hKSkoAAB9//DFsbHh3sFCqqp/Bzq5x68sRERGR+ezfv9/gOC8vD/7+/nXajWWWJDYsLAzl5eW4cOECiouL4evrCxcXF4SGhiI+Ph6VlZVQqVTo3LmzQRI5f/58/c1YtdatW4cTJ040OaZvvvkGkZGRBm0eHh4vPT8lJQXLly9v8vsSERERUdP/mmqWJLZr167w9PSEUqlEcXExQkNDATxPGr28vHDmzBkolUpEREQYXNehQwd07drVoK221rWp3Nzc6vT9KosXL8bcuXP1xyUlJfDy8kJqaipcXV2bJSYyTmVlJWJjYwEAEhuuEkdERGSJzJYBhIeHQ6VSobi4GPPnz9e3Dx48GOnp6cjMzMT06dPNFU6D2dra1rv4rp2dHfdvFpBIJBI6BCIiIhKAWZNYhUKB6upq/UwsAISGhmLGjBmoqqpq0soEDfXkyRMUFBQYtDk6OqJ169Zmi4GIiIjIUmRkZBgcP3jwAFqtVr9PQK0X88RXMWsSW1FRAT8/P0ilUn17aGgoSktL9UtxmUt9yzykpKToV1AgIiIiouYTEREBnU5X56+oQ4YM0T/X6XSoqakxqj+zJbEymazeAl4fH5962+/cuVNvP4mJiUhMTHzpca2wsLCXFgw357JMxu7vS0RERI334j0Q/O5tmYqLi5u1P94V00SsySQiIjK9F79v+d3bMtXuoNpcmMRSi6apqhY6BCKzevEzz88/WRJ+3lu+f9fEvoyxNbEiHbc8apSSkhI4OTlBrVY3+y8LerXKykqMHTtW6DCIiEgge/fu5cpALZBYLK63JvZF/8maWCIiIiKyXM1dE8uZ2EZSq9VwdnbGvXv3OBNrZjqdzmALYCJL8uLn39bWlrWBZJH42ReWo6OjSca/tLQUs2bNQlpamlHnM4ltpNzcXHTp0kXoMIiIiIjMqrCwEC4uLibp183NjeUEpla7/e3du3fh5OQkcDSWp3bbX86EC4PjLyyOv3A49sLi+AurdvwlEonJ3qMhM7xMYhvJysoKAODk5MT/kATUpk0bjr+AOP7C4vgLh2MvLI6/sExZytGQAgEmsURERERkcrWrEzQXJrFEREREZHIHDhx45etqtRpyudzo/pjENpKtrS2WLVvGre8EwvEXFsdfWBx/4XDshcXxF1ZTx3/06NGvfL2wsLBB/XF1AiIiIiISXENXJ7AycTxERERERK8lFoshk8mMPp8zsURERETU4rAmloiIiIhMLjw8/LXn6HQ6qFQqo/rjTCwRERERmZxYLMbUqVPRqlUrAM9XI9i5cycUCgUA4OnTp0hNTWVNrKlt2LABMpkMdnZ2CA4ORmZmptAhWYQTJ04gKioKHh4eEIlEOHjwoNAhWYyUlBT07dsXjo6OcHV1xZgxY3Dz5k2hw7IYmzZtgr+/v36R9wEDBiA9PV3osCzWypUrIRKJkJCQIHQoFiExMREikcjg4efnJ3RYFuXBgweYOHEi2rdvD3t7e/Ts2RMXL15scD/Lly/H6tWrsXr1aixZsgQSiUR//L///a9BfTGJbYQffvgBc+fOxbJly3Dp0iUEBARg+PDhDV4aghquvLwcAQEB2LBhg9ChWJyMjAwoFAqcO3cOR48eRXV1NYYNG4by8nKhQ7MInp6eWLlyJbKysnDx4kVEREQgOjoa169fFzo0i3PhwgVs2bIF/v7+QodiUd555x3k5+frH6dOnRI6JItRXFyMkJAQ2NjYID09HTdu3MDXX3+Ntm3bChoXywkaITg4GH379sX69esBADU1NfDy8sLMmTOxaNEigaOzHCKRCAcOHMCYMWOEDsUiFRUVwdXVFRkZGRg8eLDQ4Vikdu3aYdWqVZgyZYrQoViMsrIy9O7dGxs3bkRSUhICAwOxZs0aocN64yUmJuLgwYPIzs4WOhSLtGjRIpw+fRonT55sUj9isRgPHz6EVCoFAOTm5iIgIAClpaUAuMSWyVVVVSErKwuRkZH6NisrK0RGRuLs2bMCRkZkXmq1GsDzRIrMS6vVYvfu3SgvL8eAAQOEDseiKBQKvPfeewbfAWQet27dgoeHBzp37oyYmBjcvXtX6JAsxqFDhxAUFISxY8fC1dUVvXr1wtatW5ulb5FI9MrjV2ES20CPHz+GVqvV/4qoJZVKUVBQIFBUROZVU1ODhIQEhISEoEePHkKHYzGuXr0KBwcH2Nra4pNPPsGBAwfQvXt3ocOyGLt378alS5eQkpIidCgWJzg4GN9//z0OHz6MTZs2IS8vD4MGDdLP4JFp5ebmYtOmTXjrrbdw5MgRTJ8+HbNmzcL27dsb1M/w4cMNdvuSSqXYsmWL/rhVq1aYNm2a0f1xiS0iajCFQoFr166xJs3MunXrhuzsbKjVauzbtw9yuRwZGRlMZM3g3r17mD17No4ePQo7Ozuhw7E4I0eO1D/39/dHcHAwfHx8sGfPHpbTmEFNTQ2CgoKQnJwMAOjVqxeuXbuGzZs3Qy6XG93Pb7/9ZnDcunVrTJgwQX/s4OCAjRs3Gt0fZ2IbqEOHDhCLxXj06JFB+6NHj+Dm5iZQVETmM2PGDPzyyy9QKpXw9PQUOhyLIpFI0LVrV/Tp0wcpKSkICAjA2rVrhQ7LImRlZaGwsBC9e/eGtbU1rK2tkZGRgXXr1sHa2hparVboEC2Ks7MzfH19cfv2baFDsQju7u51fiy//fbbgpd0MIltIIlEgj59+uDYsWP6tpqaGhw7doy1afRG0+l0mDFjBg4cOIDjx4+jU6dOQodk8WpqaqDRaIQOwyIMGTIEV69eRXZ2tv4RFBSEmJgYZGdnQywWCx2iRSkrK0NOTg7c3d2FDsUihISE1FlS8e+//4aPj49AET3HcoJGmDt3LuRyOYKCgtCvXz+sWbMG5eXliI+PFzq0N15ZWZnBL++8vDxkZ2ejXbt28Pb2FjCyN59CocCuXbvw008/wdHRUV8D7uTkBHt7e4Gje/MtXrwYI0eOhLe3N0pLS7Fr1y6oVCocOXJE6NAsgqOjY53679atW6N9+/asCzeDefPmISoqCj4+Pnj48CGWLVsGsVhs8KdoMp05c+Zg4MCBSE5Oxrhx45CZmYnU1FSkpqYKG5iOGuXbb7/VeXt76yQSia5fv366c+fOCR2SRVAqlToAdR5yuVzo0N549Y07AF1aWprQoVmEyZMn63x8fHQSiUTn4uKiGzJkiO73338XOiyLFhoaqps9e7bQYViE8ePH69zd3XUSiUTXsWNH3fjx43W3b98WOiyL8vPPP+t69Oihs7W11fn5+elSU1OFDknHdWKJiIiISHBcJ5aIiIiIWiSuE0tERERELU5DCgR4YxcRERERmdzrNkeo3QnSWKyJJSIiIiKTe9025TqdDmq12uiaWCaxRERERCS4oqIiSKVS3thFRERERC1HQ+dVmcQSERER0X8CVycgIiIDd+7cgUgkQnZ2ttChEBHVy8HBAaGhoUafzySWiKgR4uLiMGbMGP1xWFgYEhISBIsnLy8PH374ITw8PGBnZwdPT09ER0fjr7/+AgB4eXkhPz+fW6QS0X+SRqPB559/jlOnThl9DZfYIiJq4aqrqzF06FB069YN+/fvh7u7O+7fv4/09HQ8efIEACAWi+Hm5iZsoERE9cjKyoJcLodGo4FKpTL6Os7EEhE1UVxcHDIyMrB27VqIRCKIRCLcuXMHAHDt2jWMHDkSDg4OkEqliI2NxePHj/XXhoWFYebMmUhISEDbtm0hlUqxdetWlJeXIz4+Ho6OjujatSvS09Nf+v7Xr19HTk4ONm7ciP79+8PHxwchISFISkpC//79AdQtJ4iLi9PH+uKj9gtEo9Fg3rx56NixI1q3bo3g4OAGfbkQEb2OVqvF8uXLERISgoiICFy5cgUDBw40+nomsURETbR27VoMGDAAU6dORX5+PvLz8+Hl5YUnT54gIiICvXr1wsWLF3H48GE8evQI48aNM7h++/bt6NChAzIzMzFz5kxMnz4dY8eOxcCBA3Hp0iUMGzYMsbGxePr0ab3v7+LiAisrK+zbtw9ardbomGtjzc/Px+zZs+Hq6go/Pz8AwIwZM3D27Fns3r0bV65cwdixYzFixAjcunWraYNFRBZLLBbDyspK/7CxscGKFSuwZ88erFu3Dvb29g3qj+vEEhE1QlxcHJ48eYKDBw8CeD6jGhgYiDVr1ujPSUpKwsmTJ3HkyBF92/379+Hl5YWbN2/C19cXYWFh0Gq1OHnyJIDnMxNOTk54//33sWPHDgBAQUEB3N3dcfbsWf3M6r9t2LABCxYsgFgsRlBQEMLDwxETE4POnTsDeD4T26lTJ1y+fBmBgYEG1+7fvx8xMTH4448/EBISgrt376Jz5864e/cuPDw89OdFRkaiX79+SE5OburwEZEFOnTokMGxVqvFypUrUVRUhG3btiE8PLxB/bEmlojIRP78808olUo4ODjUeS0nJwe+vr4AAH9/f327WCxG+/bt0bNnT32bVCoFABQWFr70vRQKBSZNmgSVSoVz585h7969SE5OxqFDhzB06NCXXnf58mXExsZi/fr1CAkJAQBcvXoVWq1WH18tjUaD9u3bG/EvJyKqa/To0XXaoqOjkZycjHfffReTJ0/GqlWr0KpVK6P6YxJLRGQiZWVliIqKwhdffFHnNXd3d/1zGxsbg9dEIpFBW+26ia/bxcbR0RFRUVGIiopCUlIShg8fjqSkpJcmsQUFBRg9ejQ++ugjTJkyxSBusViMrKwsiMVig2vqS8iJiBrLysoKS5cuxahRoxAbG4sePXogNzfXqGuZxBIRNQOJRFKnHrV379748ccfIZPJYG1t3v/dikQi+Pn54cyZM/W+XllZiejoaPj5+WH16tUGr/Xq1QtarRaFhYUYNGiQOcIlIgsXGBiIS5cuYcmSJUZfwxu7iIiagUwmw/nz53Hnzh08fvwYNTU1UCgU+OeffzBhwgRcuHABOTk5OHLkCOLj442+AcsY2dnZiI6Oxr59+3Djxg3cvn0b27Ztw3fffYfo6Oh6r5k2bRru3buHdevWoaioCAUFBSgoKEBVVRV8fX0RExODSZMmYf/+/cjLy0NmZiZSUlLw66+/NlvcREQvsrGxwZdffmn0+ZyJJSJqBvPmzYNcLkf37t1RUVGBvLw8yGQynD59GgsXLsSwYcOg0Wjg4+ODESNGwMqq+eYQPD09IZPJsHz5cv1SWrXHc+bMqfeajIwM5Ofno3v37gbtSqUSYWFhSEtLQ1JSEj777DM8ePAAHTp0QP/+/TFq1Khmi5uILEtERARet56ATqczejk/rk5ARERERCY3d+5c/XO1Wo2dO3dCoVDo254+fYrU1NTX1v/XYhJLRERERGaVm5uLgIAAlJaW6tuKiooglUqNTmJZE0tEREREZmVvb4+qqiqDhLW8vBy2trZG98EkloiIiIjMyt3dHdbW1ti1a5e+bfv27foNWozBG7uIiIiIyOw+/fRTyOVyfPXVV6ioqMCtW7ewYcMGo69nTSwRERERCWLz5s04duwYJBIJRo8ejfHjxxt9LZNYIiIiImpxWE5ARERERCa3fft2o86Ty+VGnceZWCIiIiIyObFYjDZt2kAkEgEAampqUFJSAmdnZwDPNzpQq9VcJ5aIiIiI/jvEYjEePnwIqVQKAMjLy0NAQABKSkoAPF8n1s3NzehtubnEFhERERGZnU6nM9iG9t/Hr8MkloiIiIhaHCaxRERERGRyzV3ByiSWiIiIiEyu9oauWvb29hg8eLDB63Z2dsb3xxu7iIiIiMjUCgsL4eLiUieZbSwmsURERETU4rCcgIiIiIhaHCaxRERERNTiMIklIiIiohaHSSwRERERtThMYomIiIioxWESS0REREQtDpNYIiIiImpxmMQSERERUYvzf6ZZxmSdoxyiAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size']\n", + "\n", + "g = sns.catplot(\n", + " data=pumpkins,\n", + " x=\"Item Size\", y=\"Color\", row='Variety',\n", + " kind=\"box\", orient=\"h\",\n", + " sharex=False, margin_titles=True,\n", + " height=1.8, aspect=4, palette=palette,\n", + ")\n", + "# Defining axis labels \n", + "g.set(xlabel=\"Item Size\", ylabel=\"\").set(xlim=(0,6))\n", + "g.set_titles(row_template=\"{row_name}\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9+0lEQVR4nO3deXQc1Z33/3dV9aatZcnaF1tesTEYL3gLdmzAxDAOkEDCPgES8jwTiJMZMkxgzu8MhFmAMUlIgkOWYSDJQIAwLE54MAEvbLHBbGFzAjZeZFuLV+1qqZffH1dSd6m7Zcu2UBs+r3N0wP3tunVv1e263666V7JisVgMERERkQxkD3cFRERERNJRoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLM9wV+BoRKNRdu/eTV5eHpZlDXd1RERE5DDEYjFaWlqoqKjAtge+Z3JcJyq7d++murp6uKshIiIiR6C2tpaqqqoB33NcJyp5eXmAaWgwGBzm2oiIiMjhaG5uprq6um8cH8hxnaj0Pu4JBoNKVERERI4zhzNtQ5NpRUREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0J/165dfPe73+Xpp5+mvb2d8ePHc99993HqqacOd9U+2SIhqP1fOPg25E2E0ZeAJzseb3wR6laBNwg1l0N2wh+Nat0G238L4Tao/DwUzY3HultNrHULFMyA6i+C7TWxWBR2r4I9L0KgDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHoKMOihdAxdlg9eTZ0W6ofRwOvAG542D0peDNjW+7dwPs+gN4ckwstyYea99pyu1uhvKzoWRBPBZuh+0PQ8tfYcRUqL4QHH9PW2JQ/xw0rAF/sWlLoGSwZ0FERA7BisViseHa+YEDB5g+fTqnn3463/jGNyguLubDDz9k3LhxjBs37pDbNzc3k5+fT1NTk/7Wz2B07oXVi6DpvfhrOTWweB1kj4JXroGP/jses31w2sNQ/QXY9hCs/1uIhePxCdfBrLuhZTM8twg6dsVjBdPhzNXg5MAL55vkp5c3HxY9DcXzYNOd8OYN7npO+0848QaTaKw9G7qb4rHyJfDZlRBph9VnmiSlV1YlnLkWghPgtWXwwd3xmOWBeb+Gmkth55Pw0kUQ7YrHx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kUpD7mIiMQNZvwe1kTlxhtv5OWXX+bFF188ou2VqByhjd+ED1ckvz7qyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4dzM8f647qep16gqTSGxanhyrWGr2u3pRcsyTB+dtgacmmzs1/S18CrbeDzt+lxybcB2MnAUbrkqO5Y6Fcz+M3+kREZGUBjN+D+sVdeXKlZx66ql8+ctfpqSkhOnTp/PLX/4y7ftDoRDNzc2uHzkCiXcCXK8/CbueTB0L7YMP70mdpIB5jFT3dPr97UxTbtN7sOW/k5MUMK9tvjd1knKocuuehh3/mzoWbjFtSZWk9JW7Mk3s8fT7bP0IDr6TOiYiIkdkWBOVjz76iHvuuYcJEybwzDPP8I1vfINvfetb/OpXv0r5/ttuu438/Py+n+rq6o+5xp8QvfMs+rP95iftdtkDxAJgedPH0u0TwMlKH/McYp/pyrW84AkMsO0hyrV9g4/BwMdPREQGbVgTlWg0yowZM/iP//gPpk+fzv/5P/+Hr3/96/zsZz9L+f6bbrqJpqamvp/a2tqPucafEDWXp3n9MvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7rJgHoz/abWPGC5Nihyh11EdRcYerWX6DMtCWnJvW2NQOUW3N5+ljBDMiflDomIiJHZFgTlfLyck488UTXa5MnT2bHjh0p3+/3+wkGg64fOQJT/hkqPu9+rXgBTLvDrOCZdkd8pQ6YgX3+I+YOxYJHwV8Uj9k+mHkXFJwCM38II+e4y62+ECZdD6MvhonLcCUOeRNg3v0QKIbPPGAmpPby5JjXAsXmPXkTEwq1TKJRc4kpu/pL7n2OnGPqUjAVZv7IfQfEXwTzf2faMv937sTL8sC023uOwe3JCVLFUnPsqs6Fyf/knouSU2PqKyIix9SwTqa97LLLqK2tdU2m/Yd/+AdeeeUV/vSnPx1ye02mPUr73+hZnnyCWXmTqKPOLL/1BqH8HHASBvtIJ+x+2ixPLv9c8rLcxpegdbO5w1Aw1R1r2QJ7XoKscihb7B7su5tNuQAV55h994pFTX066qB4PuT1WxV24O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrHL3tnvWx5cnF85wx1q3QePzpv1lZ4E97Kv9RUSOC8fNqp+NGzfymc98hu9973tcdNFFvPrqq3z961/nF7/4BZdfnub2egIlKiIiIsef42bVz6xZs3j88cf57W9/y0knncS//uu/ctdddx1WkiIiIiKffMN6R+Vo6Y6KiIjI8ee4uaMiIiIiMhAlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3Du/JZbbuF73/ue67UTTjiBv/zlL8NUo34e9ANd8X9f3AHbH4Gm9yB/Coy+CJxAPN6wFuqeBX8h1FwOWeXxWMsW2P4QRDqh+gtQODMe626GbQ9C2zYYORsqzwO759TEorDrKdj7MmRVwZjLwVcQ3/bAn6H2MbAcGH0xBE+IxzobYev/QGgPlJ4OZWeBZZlYJAS1/wsH34a8iTD6EvBkx7dtfBHqVoE3aNqSXRWPtW6D7b+FcBtUfh6K5ia0pdXEWrdAwQyo/iLY3nhbdq+CPS9CoAzGXAH+kfFtD74HtY+a/6/+EoyYEo+F9sG2B6CjDooXQMXZYPXk2dFuqH0cDrwBueNg9KXgzY1vu3cD7PoDeHJMLLcmHmvfacrtbobys6FkQTwWboftD0PLX2HEVKi+EBx/T1tiUP8cNKwBf7FpS6Akvm3zX822sQhUXwAFp8RjXQdg6wPQsROKPmOOYV9bwrBrJex7FXJqoOYycw567X8dap8w9Rh9KeSNi8c66kxbQvuh/CxzzntFOo9d3930X7D9Z/H4uO/AnDv5pIt07CXSsRfL8eLJqcTyxI9ftLuNSNtuYrEonuxSbP+Ivlgs2k24dTexcDu2fwROdilWz/mOxWJEOhqJdu7H8gRMuY4vXm6omXB7HRYWTk4Fti/er2OREOHWXcQiIZxAEXZWEVbP5zsWixBpqyfa1YztzcHJqcSynXhbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7bUEe1uwfbm4eSUu8738c6KxWKx4dr5LbfcwqOPPspzzz3X95rH46GoqGiAreKam5vJz8+nqamJYDB46A0G40Hr0O/JmwBnroOsMvjTFWaA7uVkwYLHzIC65T549etm0Oo1+Z9g+h1mcF5zJnQ2xGMj58IZfwTLA+v+BhrXxWP+kXD6H6FwBrxzK7xzc0KFLDj1JzDxOmhYB8+fC+HWeLjqfJj/KHQdhNWLzKDVK6cGFq+D7FHwyjXw0X/HY7YPTnvYDFLbHoL1fwuxcDw+4TqYdTe0bIbnFkHHrnisYDqcuRqcHHjhfJP89PLmw6KnoXgebLoT3rzBfXyn/SeceINJNNaeDd1N8Vj5EvjsSoi0w+ozTZLSK6sSzlwLwQnw2jL44O6EQ+SBeb+Gmkth55Pw0kUQTUhGx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kXwwU/htW8CCR+tk2+Bk2+G/W/C2rNM4tWrZKE5DrEIrDkL9m2IxwIlcMYak7S9dSO8f0dCW2yY/UsY91XY/Qy8+EWIdMTjoy+Bzzxg+tZzC6Hlw3jsaPpuKp6RcNHegd9znIrFYnTteZNI2+74i5aNv+RUnOwSwi21dO19m8Tz7ckfh69wMtGuFjrrN5gvBj1s/wj8ZXMBi1DDq0Q7E/qC7SVQNhfbn0/3gQ/oPviBqy7ekSfhDdYQ6dhLqGGj67w42aX4SmZCNExn3Xpi3S3x6nqy8JfNw/Jk0bX3bSKttQml2vhKZuDJKSPcuouuPW+525I3Gl/RyUS72wjVrScW6YyX6wsSKJsLtodQw0aiHXsSivXgL52DEyigu2kL3fs3udtSMBnviHFEOg8QanjFJOm9m2YV4y+dBdEInfUbiHXFP/uWE8BfPhfbm0vXvncJN29LKNXCVzwNT24l4bZ6uhrfAKLxY5Rbja9oKrFwB6H69cTC8c+L5c0jUD4XbC9dja8TaU+4JlsO/tJZOFlFdDdvo3vfu+62jJiIt2Ai0VCTOd/R7nhbAoX4S+cAMUL1G4iGDiYcIx+B8nnYvjy69m8i3LTFVa6vaCqevFFE2hsJNb5mvuz1tiWnAl/xdIiEzPkOt8Wr68nBXz4POyGZzjSDGb+HPVF54okneOutt45o+yFLVH4/HVoOs05jr4KKpWbg6i+rAs5+E1aONt9G+1uy0QzOiYlIr5NvMYNf/8EboHAWzLsfnpqSHLO9cN5WeO6z0PpRcnzu/bBvI3y4Ijk26ssw5ip4fmlyzD8Slm6CleMg3JIcP3MdbFoOu59Kjk2+wSRCr12XHMufAgt/D78f7/oQAmYgPnezSbgSk6pep64wicSm5cmxiqVmv6sXJcc8eXDeFnhqsjth6LXwKdh6P+z4XXJswnUwchZsuCo5ljsWFr8AK8e4LlR9lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpnLZsF1KhlS4bXfPgOdmOX78FQvo3Lkmue8C/or5dO/f5E5EenhHTATbSRq8AWxfPr7iaXTuej5FbSwCVWf0DLLtSVFf0SnmW3nL9qSYk1OOJ7fKJDhJO/USqFpEZ+1a95eQ3raUzaO7aQvRjsakmCd/LJYnO2nwBjP4+0tnmWOUQqDqDEING11JVS/vyJOIhdsJNyVfx+ysErz54wjVr08u1PIQqDqdzl3rUn4O/aWzCLfu7Lu742pL3mhs/wi69v45RbHZ+Mvm9bQlua8HKhfStectoglJVV9bCidDNJKUeALYgZF4CycT2v1SirbY5hjtfpFYQrLby1cyg0h7I5HWnUkxJ7cKf/G05DIzxGDG72F99APw4YcfUlFRQSAQYN68edx2222MGjUq5XtDoRChUPxkNTc3D02lDjdJAXMbPtWgBGbg+PCe9Bf67b9NnaSA+bbuyUkd278Rtv4mdSzaDZt/kTpJ6S13X4oLFZg7DImPlRKF9pm2pEpSwDxGqns6/T5zxqSONb0HW+5NeaEnFoXN96ZOUnrLbUu+IAOmLjljU8fCLaYtqZKU3nJ3rkwTezx1QgDmmG/+Rfr+sPXXqZMUMI+uEu+GJGpcZx69pBLphM33pK9T7ePpz8vR9N1PkUhbQ8rXY5GQSQhS9V0g0ro7ZZICEG6v73vM0F+0q4lwioGnZ6+EW7anTFIAIu31REPJAyWYdiQ+ZnDvtNvcmUiRpACE2+pSJil95SY8bnHVtruFcMuO1PsEwi07UiYpptx6Ymk+E9GORsKe1PskFibcsi1t3w63N7jvliTus70+ZUJgim0n3LqDVEkKQLh1Z8okBXrakuauZLRzH+HWXSljxKLmGKWpU6StnkjiXazEWJo2Ho+GdTLtnDlzuP/++1m1ahX33HMPW7duZcGCBbS0pO64t912G/n5+X0/1dXVH3ONU3D8YPvTx9MlGwBOtplbkoo9ULmW2TbtPgeI2f74PItB7ZOB9+kEwEpzEXQC6fd5qHIHastA5VpeGOi256HaYvsGH4ND1DcHSPNIcaByLcc8jkm7z4H62EBtOcT59g5Q7qeJlf4yaVkDfNezbNKdb8uyByw37XXhkPt00pd7iH0esi0DlGsdYVsYYB6FmWNxpG0Z6PjZA5Q7wPEDLAZoy0DtHPAYWQPWd+ByD3G+PyGGtSXnnHMOX/7yl5k6dSpLlizh//2//8fBgwd55JFHUr7/pptuoqmpqe+ntrY25fuO2ui/O/z31lxuflIJTjLzRXyFyTHLhjFfMfNGBltu+edg3NVmvkV/nlwY/3dmIutgy625zPykklMDE79pJsEmsUyZoy5Kve3oy9Lvs3gBjP+6e2JnL9tvYsULkmOHKnfURVBzBSkHikCZaUtOTeptawYod6DjVzDDHHtPbnLM8phzVr5k8OVWnQ9jr0x94fEVwIRrITh58OUequ9OSNN3P2U8uZUpX7e8uXiCNfHJ4v23y6vCyS5NGXNyKtOWa2cV48mrJmXftRw8+aOxfPmpy82txElTrie3AicnTVs8WTjBmrSJvze3CienPGXMk1uZtlzbX4g3OCp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntTJ/UDHfqDjZ/ny8eSPTpM4WHjyqrGzilNuO9AxcrJLe853CrYXb7AGy5vimtJTridNuelePx5lVMo1YsQIJk6cyObNm1PG/X4/wWDQ9TMkTrvn8N5Xthim3gplZ5g5JYkdOLsKTnsIPFkw/xH3IxXbD7N+biZ7nrrCTDhNVHO5GXzGXg3jrsF1wcqfYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt3hvvgGykwbPAFY8Cj4EyY72z6YeZdZ1TLzhzByjrvc6gth0vVmRdLEZe625E0wc20Cxaa+iXcGPDnmtUCxeU/exIRCLZNo1Fxiyq7+knufI+eYuhRMhZk/ct9R8BeZeRuegPlvYuJleWDa7T3H4PbkBKliqTl2VeeaydCJF9+cGlNfX76ZeJy4UsfJgrn3mXM2+xfmHCa2Zdw15lxPuLYnuUpQMM30kbzxps8k3gHxFfS0Jduc98SVWZYDJ91s+ubUW01fTXSkfTfdHaHyNEnqJ4CTVWTmlCS03XIC+ItnYNkO/pKZ7s+LZeMrmortzcU38iQsn/s65eRU4gnW4ORW4+S6ByjLm2e29WThKz7F3ccsD/6SGVi2F3/xdKx+d+88+WPxZJfizR+PnVXiitn+QryFk3ECBXgLJrnaguPHVzITu68tiXfgbLyFU7D9QXyFU1yrmQCc7DKz39wKk7QltsWTg6/4FCzHbyZ9JvYxy8FXPL0ndgpWv7t3nmCNGYTzx+JkuxMk2z/C1MUXxFs4BdcwZvvw97TFVzKzX+Jl4S2YZI5B4aSkBMnMexmPJ7sUT/44V8zyZJljbnvxl8xwf0m0bHzFp5hzVjQVy5vn2rb3PHuCNUnJiuUL4ht5ErY3B1/RVPf5tr34S2b29LEZWK4vcxaeERNM3yyYiB1wL0CxA+b1T4phnUzbX2trK6NGjeKWW27hW9/61iHfP6SrfgBeuBJ2/tr8f9YY+OJHsPdVaH4fgidC0Wz3+9t3Qv0as8SzfIn74hVuh91Pm2f+FWe7l+XGYtD4vJkYWjjLvSwXzFLXvRvMAFJ6RnyJMZilrrtXmeXM5ee4l+VGw1D/rFmmXLLQvSwXYP8bPcuTTzArbxJ11Jnlt96gKTdhmSGRTtOWcJu5uxNwXxRpfAlaN5s7DAVT3bGWLbDnJbP8tWyx+4PZ3WzKBag4xz3Yx6KmPh11UDzfvSwX4MDb8eXJJf0SjM5GqPujSX4qznHfvYl0mZVI3U2mPln9vjXuWR9fnlzY7y5V6zZz3gIlZul3wpJJulvN3JBo2JzvxME+FjPLmttroWiee0k5QNP78eXJJQvd5zu0z5xvJ2DakjhYRbuh7hmzPLnsDHfiAse27yauivuETqLtLxruINqxD8vxYmcVu27lx6IRIh2NEIvgZJW4luWapa77iIU7sP0jXMtywSx1jYYOYHmysAMj+5ayglnqGunYA5Zlyk3oY7FYlGjHXmKREHZgpGtZLkA01ES0qxnLm+taYgxmqWukYy/YHpzskgHaUuxalgsQ6dxPrLsN25+P3S8Ji3a3maXWTsC1XNqU202k3cyncLKLXfNlzNLmvcQindiBQteyXHOMmomGmrC82a4lxuYYhXqOkdNzjJyEcqNE2hshGsbJKnItKTdtOUCsZ3my7XffpYp2txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHiIQOEOtqxfLl4vjTzDXMIMfNqp9//Md/5Nxzz2X06NHs3r2bm2++mbfeeov333+f4uLUt9ASDXmiIiIiIsfccbPqZ+fOnVx66aXs27eP4uJi5s+fz4YNGw4rSREREZFPvmFNVB56KM2SSxEREREybDKtiIiISCIlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3BXINHtt9/OTTfdxLe//W3uuuuu4a4OPGi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qolwL54nHK4bDcyeLFYjEhHI9HO/VieAJ6cSizH1xePhpoJt9dhYeHkVGD74v06FgkRbt1FLBLCCRRhZxVh9Xy+Y7EIkbZ6ol3N2N4cnJxKLNvp2zbSuY9I+x4s24OTW4ntyYrvs7udSNtuYtEwTnYpTiB+vYlFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW+VuS1cLkbY6AJyccmxfXkJbunra0okTKMTOKkloS7SnLU3Ynmyc3EosOz50RToPEGlvMG3JqcD2xq9j0XAHkdZdPW0pxgnErzexaIRI226i3a3YvmBPW5x4Wzr3EunY29OWSqzezz4Q7Wo1x4gYnuxybH/8MxqLdBFu20Us3IntL8DJLnW3pb2BaOgglicbT24FVu/1EYiGDhJub8DCxsmtwPbmpOw3nzZWLBaLDXclADZu3MhFF11EMBjk9NNPP6xEpbm5mfz8fJqamggGg4d8/6D0T1JSyZsAZ66DrDL40xVmgO7lZMGCx8yAuuU+ePXrZtDqNfmfYPodZnBecyZ0NsRjI+fCGX8EywPr/gYa18Vj/pFw+h+hcAa8cyu8c3NChSw49Scw8TpoWAfPnwvh1ni46nyY/yh0HYTVi8yg1SunBhavg+xR8Mo18NF/x2O2D0572AxS2x6C9X8LsXA8PuE6mHU3tGyG5xZBx654rGA6nLkanBx44XyT/PTy5sOip6F4Hmy6E968wX18p/0nnHiDSTTWng3dTfFY+RL47EqItMPqM02S0iurEs5cC8EJ8Noy+ODuhEPkgXm/hppLYeeT8NJFEO2Kx8deDXPuhfYdpi1t2+Kx/CmmXF8BvPRl2PlEPObJgYV/gNJF8MFP4bVvAgkfrZNvgZNvhv1vwtqzTOLVq2ShOQ6xCKw5C/ZtiMcCJXDGGpO0vXUjvH9HQltsmP1LGPdV2P0MvPhFiHTE46Mvgc88YPrWcwuh5cN47Gj6bjqXZcSl5LgRi0YINbxKtDOhL9heAmVzsf35dB/4gO6DH7i28Y48CW+whkjHXkING13nxckuxVcyE6JhOuvWE+tu6YtZniz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPWyT2XU/eaHxFJxPtbiNUt55YpDNeri9IoGwu2B5CDRuJduxJKNaDv3QOTqCA7qYtdO/f5G5LwWS8I8YR6TxAqOEVk6T3bppVjL90FkQjdNZvINYV/+xbTgB/+Vxsby5d+94l3LwtoVQLX/E0PLmVhNvq6Wp8A4jGj1FuNb6iqcTCHYTq1xMLxz8vljePQPlcsL10Nb5OpD3hmmw5+Etn4WQV0d28je5977rbMmIi3oKJRENNdNZvMF+eetsSKMRfOgeIEarfQDR0MOEY+QiUz8P25dG1fxPhpi2ucn1FU/HkjeKTaDDjd0YkKq2trcyYMYOf/vSn/Nu//RvTpk0b3kTlcJKUXmOvgoqlZuDqL6sCzn4TVo4230b7W7LRDM6JiUivk28xg1//wRugcBbMux+empIcs71w3lZ47rPQ+lFyfO79sG8jfLgiOTbqyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4d7NJuBKTql6nrjCJxKblybGKpWa/qxclxzx5cN4WeGqyO2HotfAp2Ho/7PhdcmzCdTByFmy4KjmWOxYWvwArx7guVH2Wvgfrr4L9G5Nj05ebO1Tv3JIcK1lk4s/MSo45AThvO6yaDh0p7mrM/505Jx/dnxw7mr6bihKVQUk1eAPYvnx8xdPo3PV8iq0sAlVn9Ayy7UlRX9Ep5lt5y/akmJNTjie3yiQ4STv1EqhaRGftWveXkB7+snl0N20h2tGYFPPkj8XyZCcN3mAGf3/pLDp3rknRFkxbGja6kqpe3pEnEQu3E25Kvo7ZWSV488cRql+fXKjlIVB1Op271qX8HPpLZxFu3dl3d8fVlrzR2P4RdO39c4pis/GXzetpS3JfD1QupGvPW0QTkqq+thROhmgkKfEEsAMj8RZOJrT7pRRtscmqXuy6M/VJMZjxOyMe/Vx33XUsXbqUxYsX82//9m9p3xcKhQiFQn3/bm5u/jiqN7DaJ1IPSmAGjg/vSX+h3/7b1EkKmG/rnjS3/fZvhK2/SR2LdsPmX6ROUnrL3ZfiQgXmDkPiY6VEoX2mLamSFDCPkeqeTr/PnDGpY03vwZZ7k5MUMK9tvjd1ktJbblvyBRkwdckZmzoWbjFtSZWk9Ja7c2Wa2OOpEwIwx3zzL9L3h62/SZ2kgHl0lXg3JFHjOvPoJZVIp2lLujrVPp7+vBxN35WjFmmrT/l6tKuJcOvONFvFCLfuSJmkAETa64mGkgdKs78G12MG9067zZ2JFEkKQLitLmWS0lduwuMWV227Wwi37Ei9TyDcsiNlkmLKrSeW5jMR7Wgk7Em9T2Jhwi3b0vbtcHuD+25J4j7b64lFQiljsXB7T1tSJ+Th1p0pkxToaUuau5LRzn1EWtN8fmNRIh178ORWpo5/Sgx7ovLQQw/xxhtvsHFjmgt4gttuu43vfe97H0OtBsHxg+1PH0+XbAA42WZuSaoObA9UrmW2HajcdGx/fJ7FoPZ5iHKdAFheiKX4kDuB9Ps8VLnpLkaHKtfygieQOnaofToB87grmqYt9gDfbg55XixSXuicQPrHK5YD9gBtGbCPDVDfo+m7cvSsAdYyWE760AAxLCd9uZY94D4ta4DhoHfbVF8oLLtvnkraOqVjD9BO2yEWOdK2DHT8bMw6klRtGeD49dQpfXCgmI1FLE2KYx2iL2jNy7AegdraWr797W/zwAMPEAgMcCHucdNNN9HU1NT3U1tbe8htjszIQ7+lV83l5ieV4CQzX8RXmByzbBjzFTNvZLDlln8Oxl1t5lv058mFCX9nJrIOttyay8xPKjk1MPGbZhJsEsuUOeqi1NuOviz9PosXwPivuyd29rL9Jla8IDl2qHJHXQQ1V5i69RcoM23JqUm9bc0A5Q50/ApmmGPvyU2OWR5zzsqXDL7cqvNh3FWpL1i+Aph4LQQnD77cI+27ckyk+5ZsZxXjyasmZd+1HDzB0Vi+/JTbOrmVOGnK9eRW4OSkjlmeLJxgTdrE35tbhZNTnjLmya1MW67tL8QbHJW671o23rxR2P7UfczJqUh7jJyccrx5VSljOH6c4BishAnC7m0r05c7wPGzfPl4gqPTJCQWnrxq7KzilNsOdIyc7NKe852C7cXJKkkd+xQZ1kTl9ddfp7GxkRkzZuDxePB4PDz//PP8+Mc/xuPxEIm4v2H6/X6CwaDrZ0hctvfw3le2GKbeCmVnmDkliR04uwpOewg8WTD/EfcjFdsPs35uJnueusJMOE1UczlMuNZM7Bx3Da4LVv4UM4Eyu8rMN3ESPozeoNmnL99Mokx83GLZZs5G1bkw5Z+h4vPufRYvgGl3mBU80+6Ir9QBM7DPf8TcoVjwKPiLEtrig5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVSY+SP3HQV/kZm34QmY/yYmXpYHpt3ecwxuT06QKpaaY1d1rpkMnXjxzakx9fXlm4nHiSt1nCyYe585Z7N/Yc5hYlvGXWPO9YRre5KrBAXTTB/JG2/6TOIdEF9BT1uyzXlPXJllOXDSzaZvTr3V9NVER9p300o9KEh6Tm41Tq57gLK8efiKpmJ7svAVn+LuY5YHf8kMLNuLv3g6Vr+7jZ78sXiyS/Hmj8fuN7jZ/kK8hZNxAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPcbcguM/vNrcATrHG3xZODr/gULMePr3i6u49ZDr7i6T2xU7D6rW7xBGvw5FbiyR+Lk+1OkGz/CFMXXxBv4RRcw5jtw9/TFl/JzH6Jl4W3YJI5BoWTkhIkM+9lPJ7sUjz541wxy5NljrntxV8yw/0l0bLxFZ9izlnRVCxvnmvb3vPsCdYkJSuWL4hv5EnY3hx8RVPd59v24i+ZOfBdnE+JYZ1M29LSwvbt7jkGV199NZMmTeK73/0uJ5100oDbD+mqH4AHg0DC89PLYrD3VWh+H4InQtFs9/vbd0L9GrPEs3yJe7APt8Pup80z/4qz3ctyYzFofN5MDC2c5V6WC2ap694NZgApPSO+xBjMUtfdq8xy5vJz3Mtyo2Gof9YsUy5Z6F6WC7D/jZ7lySeYlTeJOurM8ltv0JSbOJkr0mnaEm4zd3cC/TL+xpegdbO5w1Aw1R1r2QJ7XjLLX8sWuz+Y3c2mXICKc9yDfSxq6tNRB8Xz3ctyAQ68HV+eXNIvwehshLo/muSn4hz33ZtIl1mJ1N1k6pPV71vjnvXx5cmF/e5StW4z5y1QYpZ+JyyZpLvVzA2Jhs35ThzsYzGzrLm9FormuZeUAzS9H1+eXLLQfb5D+8z5dgKmLYmDVbQb6p4xy5PLznAnLnBs+27ihHNNoj0q0a5WoqEDWJ4s7MDIvqWsYJa6Rjr2gGXhZJW4luXGYlGiHXuJRULYgZGuZbkA0VAT0a5mLG+ua4kxQCzcSaRjL9genOwS16ObWDRCpKMRYhGcrGLXslyASOd+Yt1t2P58bJ/7uhvtbjNLrZ2Aa7m0KbebSLtZFeRkF7vmy5ilzXuJRTqxA4VJy3KjXc1EQ01Y3mzXEmNzjEI9x8jpOUZOQrlRIu2NEA3jZBVh9XscHOk8QKxnebLtd9+lina3E+3ch+X4e9qSeIzCPcco1nOM4tdHs7R5H7FwB7a/wLWk3LSlpWd5crrz3ZiyLZ80x92qn0SLFi0a/lU/IiIiMmQGM35rlo6IiIhkrGFf9dPfunXrhrsKIiIikiGO6I7KwYMH+a//+i9uuukm9u/fD8Abb7zBrl27DrGliIiIyOEb9B2Vt99+m8WLF5Ofn8+2bdv4+te/TmFhIY899hg7duzg17/+9VDUU0RERD6FBn1H5frrr+eqq67iww8/dP3uk7/5m7/hhRdeOKaVExERkU+3QScqGzdu5P/+3/+b9HplZSX19al/JbSIiIjIkRh0ouL3+1P+jZ0PPviA4uLUv5VPRERE5EgMOlE577zzuPXWW+nuNn/wybIsduzYwXe/+10uvPDCY15BERER+fQadKLy/e9/n9bWVkpKSujo6GDhwoWMHz+evLw8/v3f/30o6igiIiKfUoNe9ZOfn8+zzz7LSy+9xNtvv01rayszZsxg8eLFh95YREREZBAGnajs2LGD0tJS5s+fz/z58/tej8Vi1NbWMmrUqGNaQREREfn0GvSjn5qaGmbMmMGWLVtcrzc2NjJmzJg0W4mIiIgM3hH9ZtrJkycze/ZsVq9e7Xo9w/6+oYiIiBznBp2oWJbFT3/6U/6//+//Y+nSpfz4xz92xURERESOlUHPUem9a/IP//APTJo0iUsvvZR33nmHf/mXfznmlRMREZFPt6P668nnnHMOf/rTnzjvvPN49dVXj1WdRERERIAjSFQWLlyIz+fr+/eJJ57IK6+8wgUXXKA5KiIiIocpEon0/fLUTyKfz4dtH9FUWBcrdhxnF83NzeTn59PU1EQwGBzu6oiIiBxSLBajvr6egwcPDndVhpRt24wZM8Z1c6PXYMbvw7qj0tzc3FdQqr/zk0gJg4iISHq9SUpJSQnZ2dmfyIUo0WiU3bt3U1dXx6hRo46qjYeVqBQUFFBXV0dJSQkjRoxIucNYLIZlWUQikSOujIiIyCdZJBLpS1JGjhw53NUZUsXFxezevZtwOIzX6z3icg4rUVmzZg2FhYUArF279oh3JiIi8mnWOyclOzt7mGsy9Hof+UQikaFPVBYuXJjy/0VERGTwPomPe/o7Vm087Om4e/fuZfv27a7X3nvvPa6++mouuugiHnzwwWNSIREREZFeh52oLFu2zPVbaBsbG1mwYAEbN24kFApx1VVX8Zvf/GZIKikiIiKfToedqGzYsIHzzjuv79+//vWvKSws5K233uLJJ5/kP/7jP1ixYsWQVFJERESOzi233MK0adOGuxqDdtiJSn19PTU1NX3/XrNmDRdccAEej5nmct555/Hhhx8e8wqKiIiIGYeXLVvG2LFj8fv9VFdXc+655yb9geBPmsNOVILBoOuX07z66qvMmTOn79+WZREKhY5p5URERAS2bdvGzJkzWbNmDcuXL+edd95h1apVnH766Vx33XUfWz2G4zfpHnaiMnfuXH784x8TjUZ59NFHaWlp4YwzzuiLf/DBB1RXVw9JJUVERD7Nrr32WizL4tVXX+XCCy9k4sSJTJkyheuvv54NGzYAsGPHDs4//3xyc3MJBoNcdNFFNDQ0pC0zGo1y6623UlVVhd/vZ9q0aaxataovvm3bNizL4uGHH2bhwoUEAgEeeOCBIW9rf4edqPzrv/4rK1euJCsri4svvph/+qd/oqCgoC/+0EMPaemyiIjIMbZ//35WrVrFddddR05OTlJ8xIgRRKNRzj//fPbv38/zzz/Ps88+y0cffcTFF1+cttwf/ehHfP/73+fOO+/k7bffZsmSJSmncdx44418+9vfZtOmTSxZsuSYt+9QDvuPEk6dOpVNmzbx8ssvU1ZW5nrsA3DJJZdw4oknHvMKioiIfJpt3ryZWCzGpEmT0r5n9erVvPPOO2zdurXv6cavf/1rpkyZwsaNG5k1a1bSNnfeeSff/e53ueSSSwC44447WLt2LXfddZdrcczf//3fc8EFFxzjVh2+Qf315KKiIs4///yUsaVLlx6TComIiEjc4fzt4E2bNlFdXe2agnHiiScyYsQINm3alJSoNDc3s3v3bk477TTX66eddhp//vOfXa+deuqpR1H7o3f0f39ZREREhsyECROwLIu//OUvw7L/VI+bPk5KVERERDJYYWEhS5YsYcWKFbS1tSXFDx48yOTJk6mtraW2trbv9ffff5+DBw+mnJYRDAapqKjg5Zdfdr3+8ssvZ9w0jkE9+hEREZGP34oVKzjttNOYPXs2t956K1OnTiUcDvPss89yzz338P7773PyySdz+eWXc9dddxEOh7n22mtZuHBh2kc3N9xwAzfffDPjxo1j2rRp3Hfffbz11lvDsrJnIEpUREREMtzYsWN54403+Pd//3e+853vUFdXR3FxMTNnzuSee+7BsiyefPJJli1bxmc/+1ls2+bss8/mJz/5Sdoyv/Wtb9HU1MR3vvMdGhsbOfHEE1m5ciUTJkz4GFt2aFbscGbppNDY2EhjYyPRaNT1+tSpU49JxQ5Hc3Mz+fn5NDU1EQwGP7b9ioiIHInOzk62bt3KmDFjCAQCw12dITVQWwczfg/6jsrrr7/OlVdeyaZNm/pmIluWRSwWw7IsIpHIYIsUERERSWnQicpXv/pVJk6cyL333ktpaSmWZQ1FvUREREQGn6h89NFH/O///i/jx48fivqIiIiI9Bn08uQzzzwz6ZfBiIiIiAyFQd9R+a//+i+uvPJK3n33XU466SS8Xq8rft555x2zyomIiMin26ATlfXr1/Pyyy/z9NNPJ8U0mVZERESOpUE/+lm2bBlXXHEFdXV1RKNR14+SFBERETmWBp2o7Nu3j3/4h3+gtLR0KOojIiIi0mfQicoFF1zA2rVrh6IuIiIiIi6DnqMyceJEbrrpJl566SVOPvnkpMm03/rWt45Z5UREROTT7YhW/eTm5vL888/z/PPPu2KWZSlRERER+ThEI7DnReiog6xyKF4AtjPku12xYgXLly+nvr6eU045hZ/85CfMnj17yPY36ERl69atx2zn99xzD/fccw/btm0DYMqUKfzLv/wL55xzzjHbx1F5sN9v3b24A7Y/Ak3vQf4UGH0ROAl/v6BhLdQ9C/5CqLncdJxeLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQW9v0k4EoLa/4WDb0PeRBh9CXiy49s2vgh1q8AbNG3JrorHWrfB9t9CuA0qPw9FcxPa0mpirVugYAZUfxFsb7wtu1eZD1agDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHzAeyeAFUnA1Wz5PLaDfUPg4H3oDccTD6UvDmxrfduwF2/QE8OSaWWxOPte805XY3Q/nZULIgHgu3w/aHoeWvMGIqVF8Ijr+nLTGofw4a1oC/2LQlUBLftvmvZttYBKovgIJT4rGuA7D1AejYCUWfMcewry1h2LUS9r0KOTVQc5k5B732vw61T5h6jL4U8sbFYx11pi2h/VB+ljnnvSKdx67vrur/l1i9cFkXcvyIdO4j0r4Hy/bg5FZie7L6YtHudiJtu4lFwzjZpTiB+PUmFg0Tad1FNNyO7cvHySnD6um7sViMaEcjkc79WI4fT24VluOLl9vVQqStDgAnpxzblxcvN9JFuHUXsUgnTqAQO6uk77eex2JRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3mDaklOB7Y1fx6LhDiKtu3raUowTiF9vYtEIkbbdRLtbsX3BnrY48bZ07iXSsbenLZVYvZ/9TFH7GLz+bXMN65VdBTN/ZK45Q+Thhx/m+uuv52c/+xlz5szhrrvuYsmSJfz1r3+lpKTk0AUcgSP+o4RdXV1s3bqVcePG4fEc2R9h/v3vf4/jOEyYMIFYLMavfvUrli9fzptvvsmUKVMOuf2Q/lHC/klKKnkT4Mx1kFUGf7rCDNC9nCxY8JgZULfcB69+3QxavSb/E0y/wwzOa86EzoZ4bORcOOOPYHlg3d9A47p4zD8STv8jFM6Ad26Fd25OqJAFp/4EJl4HDevg+XMh3BoPV50P8x+FroOwepEZtHrl1MDidZA9Cl65Bj7673jM9sFpD5tBattDsP5vIRaOxydcB7PuhpbN8Nwi6NgVjxVMhzNXg5MDL5xvkp9e3nxY9DQUz4NNd8KbN7iP77T/hBNvMInG2rOhuykeK18Cn10JkXZYfaZJUnplVcKZayE4AV5bBh/cnXCIPDDv11BzKex8El66CKIJg+zYq2HOvdC+w7SlbVs8lj/FlOsrgJe+DDufiMc8ObDwD1C6CD74Kbz2TSDho3XyLXDyzbD/TVh7lkm8epUsNMchFoE1Z8G+DfFYoATOWGOStrduhPfvSGiLDbN/CeO+CrufgRe/CJGOeHz0JfCZB0zfem4htHwYjx1N303nsiO6lMjHKBaL0bX3bSKttQmv2vhKZuDJKSPcuouuPW+R2Hc9eaPxFZ1MtLuNUN16YpHOvpjlCxIomwu2h1DDRqIdexKK9eAvnYMTKKC7aQvd+ze56uItmIx3xDginQcINbxikvTeTbOK8ZfOgmiEzvoNxLrin33LCeAvn4vtzaVr37uEm7cllGrhK56GJ7eScFs9XY1vAPE/nOvkVuMrmkos3EGofj2xcPzzYnnzCJTPBdtLV+PrRNoTrsmWg790Fk5W0WEe6fSOyR8lrH0MXvwSrmsMAD3j1oJHhyxZmTNnDrNmzeLuu811NRqNUl1dzbJly7jxxhtd7z1Wf5Rw0IlKe3s7y5Yt41e/+hUAH3zwAWPHjmXZsmVUVlYmVXSwCgsLWb58OV/72tcO+d4hS1QOJ0npNfYqqFhqBq7+sirg7Ddh5WjzbbS/JRvN4JyYiPQ6+RYz+PUfvAEKZ8G8++GpFMmc7YXztsJzn4XWj5Ljc++HfRvhwxXJsVFfhjFXwfNLk2P+kbB0E6wcB+GW5PiZ62DTctj9VHJs8g0mEXrtuuRY/hRY+Hv4/XhzxyWRZcO5m03ClZhU9Tp1hUkkNi1PjlUsNftdvSg55smD87bAU5PdCUOvhU/B1vthx++SYxOug5GzYMNVybHcsbD4BVg5xtzl6W/pe7D+Kti/MTk2fbm5Q/XOLcmxkkUm/sys5JgTgPO2w6rp0LE7OT7/d+acfHR/cuxo+m4qSlQyXqS9gVBDiv5newlULaKzdq37S0gPf9k8upu2EO1oTIp58sdiebLp3vduUszy5uEvnUXnzjUp6xOoOoNQw0Zi3cnXFO/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoOp3OXetSfg79pbMIt+7su7vjakveaGz/CLr2Jv/2dcuTTaDq9KP++3ZHnahEI7Cyxn0nxcUyd1bO23rMHwN1dXWRnZ3No48+yhe+8IW+16+88koOHjzIk08+6Xr/sP315Jtuuok///nPrFu3jrPPPrvv9cWLF3PLLbcccaISiUT43e9+R1tbG/PmzUv5nlAoRCgU6vt3c3PzEe3rmKp9IvWgBGbg+PCe9Bf67Q+lTlLAfFv35KSO7d8IW3+TOhbths2/SJ2k9Ja7L8WFCswdhsTHSolC+0xbUiUpYB4j1SX/EsC+feaMSR1reg+23JucpIB5bfO9qZOU3nLbtqeO1T1tHgOlEm4xbUmVpPSWu3NlmtjjqRMCMMd88y/S94etv06dpIB5dJV4NyRR4zrTV1KJdJq2pKtT7ePpz8vR9F05LrnuEiSKdps7EymSFIBwe13KJAUg0taAlfC4JVGsu4Vwy4609Qm37EiZpJhy64ml+UxEOxoJe1Lvk1iYcMu2tH073N6Q9jhE2uuJRUIpY7FwO7GuFiz/Mb57P1h7XhwgSQGIQXuteV/pomO667179xKJRJJ+PUlpaSl/+ctfjum+Eg06UXniiSd4+OGHmTt3riuznDJlClu2bBl0Bd555x3mzZtHZ2cnubm5PP7445x44okp33vbbbfxve99b9D7GFKOH+wBnl160yQbYG6xW07q2+r2QOVa4KT5kMLAMdsfn2cxqH0eolwnAJYXYik+5E4g/T4PVW66i9GhyrW8R75PJ2Aed0XTtMX2Jb/ea8D65mBuzaa48+AE0j9esRzTV9Luc6A+NkB9D9V3BypXjk9W+t9IYVnphwML22yb6guFZffNU0m98QDf6geIWbZDLJKmXMs+RFsGKNeyMb+ZI1VbnAHLHTD2celIvhN0VO87Dgz6qO/ZsyflhJm2trYjuiV2wgkn8NZbb/HKK6/wjW98gyuvvJL3338/5Xtvuukmmpqa+n5qa2tTvu9jVXO5+UklOMk8KvAVJscsG8Z8xcwbGWy55Z+DcVeb+Rb9eXJhwt+ZiayDLbfmMvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7r7omdvWy/iRUvSI4dqtxRF0HNFfQ9s00UKDNtyalJvW3NAOUOdPwKZsD4vzPnoD/LY85Z+ZLBl1t1Poy9MvVF0lcAE6+F4OTBl3uovjsxTd+V45aTU5nydcuThROsSZvce3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV4clOX6+SU482rShnD8eMEx2B5Uif3Tk5l+nJzK3HSxCxfPrYvxWf745aV+jwc8fsGoaioCMdxaGhw35FqaGigrCzV2HBsDDpROfXUU3nqqfg8hN7k5L/+67/SPrIZiM/nY/z48cycOZPbbruNU045hR/96Ecp3+v3+wkGg66fIXG4z9rLFsPUW6HsDDOnJDGLz66C0x4CTxbMf8T9SMX2w6yfm8mep64wE04T1VwOE641EzvHXYNrsM2fYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt0RX6kDZmCf/wh4AmaSlj9hQpntg5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVQzAz7xjoK/yMzb8ATMfxMTL8sD027vOQa3JydIFUvNsas610yGTrz45tSY+vryzcTjxJU6ThbMvc+cs9m/MOcwsS3jrjHnesK1PclVgoJppo/kjTd9JvEOiK+gpy3Z5rwnrsyyHDjpZtM3p95q+mqiI+27clxzAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPc5WWX4ckfiye3Ak+wxhWzPDn4ik/Bcvz4iqe7+5jl4Cue3hM7BavfnWdPsAZPbiWe/LE42e4B1/aPMHXxBfEWTsE1jNk+/D1t8ZXM7Jd4WXgLJpljUDgpKUEy817G48kuxZPvfmxsebLwF/e7Tg+X4gU9n/V0NwYsyK5O/wXvKPh8PmbOnMnq1av7XotGo6xevfqIxv/DNejJtC+99BLnnHMOV1xxBffffz//9//+X95//33+9Kc/8fzzzzNz5sxDFzKAM844g1GjRnH//fcf8r1DuuoHkifVXhaDva9C8/sQPBGK+q0bb98J9WvMEs/yJe7BPtwOu582z/wrznYvy43FoPF5MzG0cJZ7WS6Ypa57N5jOWXpGfIkxmKWuu1eZ5czl57iX5UbDUP+sWaZcstC9LBdg/xs9y5NPMCtvEnXUmeW33qApN2GZIZFO05Zwm7m7E+h3h63xJWjdbO4wFEx1x1q2wJ6XTLZfttg92Hc3m3IBKs5xD/axqKlPRx0Uz3cvywU48HZ8eXJJvw9oZyPU/dEkPxXnuO/eRLrMSqTuJlOf/t9C9qyPL08u7HeXqnWbOW+BErP0O2HJJN2tZm5INGzOd+JgH4uZZc3ttVA0z72kHKDp/fjy5JKF7vMd2mfOtxMwbUl81BTthrpnzPLksjPciQsc276b+NnQJNrjTizcSaRjL9genOwS16ObWDRCpKMRYhGcrOKkZbmRzv3Eutuw/fnYPvd1N9rdRrRzP5YTwM4qct1lj0W7ibSbVUFOdjFWQh8zS5v3Eot0YgcKsfslLtGuZqKhJixvtmuJMUAsEiLSsQcsByerBCthAmksFiXS3gjRME5WEZbHfec20nmAWM/yZNuf368t7UQ792E5/p62HJvHPsd21Q+4HyUP/aqfhx9+mCuvvJKf//znzJ49m7vuuotHHnmEv/zlL0lzV4Zt1Q/Ali1buP322/nzn/9Ma2srM2bM4Lvf/S4nn3zyoMq56aabOOeccxg1ahQtLS08+OCD3HHHHTzzzDOcddZZh9x+yBMVERGRY+iYJCqQ5veoVJs73EP4e1QA7r777r5f+DZt2jR+/OMfM2fOnKT3DWuicqx87WtfY/Xq1dTV1ZGfn8/UqVP57ne/e1hJCihRERGR48sxS1Rg2H4z7eEatuXJjuNQV1eXNKF23759lJSUEIkcxi+G6nHvvfcOdvciIiICJik5xkuQM9GgH7qluwETCoXw+QZYtikiIiIySId9R+XHP/4xYFb59P5hwl6RSIQXXniBSZMmHfsaioiIyKfWYScqP/zhDwFzR+VnP/sZjhN/Dubz+aipqeFnP/vZsa+hiIiIfGoddqLS+1eTTz/9dB577DEKCvS7FURERGRoDXoy7dq1a4eiHiIiIiJJDjtRuf766w/rfT/4wQ+OuDIiIiIiiQ47UXnzzTcP+Z6j/fPXIiIiIokOO1HRIx8RERH5uA3Z36wOBoN89NFHQ1W8iIiIfAoMWaIyjL+ZX0RE5BMvFosR6dhLuHUXkY69Qz7uvvDCC5x77rlUVFRgWRZPPPHEkO6v16BX/YiIiMjwCrfV0b3vPWKRzr7XLCeAd+QUPDnlA2x55Nra2jjllFP46le/ygUXDO0fPkykREVEROQ4Em6ro6vx9aTXY5FO83rJzCFJVs455xzOOeecY17uoQzZox8RERE5tmKxGN373hvwPd373vtETb9QoiIiInKciHbucz3uSSUW6STaue9jqtHQU6IiIiJynIhFQsf0fceDIUtUOjo66OjoGKriRUREPnUsx39M33c8GLJEJSsri6ysrKEqXkRE5FPHDozEcgIDvsdyAtiBkR9TjYaeVv2IiIgcJyzLwjtySspVP728I6cMyZ+0aW1tZfPmzX3/3rp1K2+99RaFhYWMGjXqmO+vlxIVERGR44gnpxxKZn7sv0fltdde4/TTT+/7d+8fK77yyiu5//77h2SfoERFRETkuOPJKcfJLutZBRTCcvzmsdAQ/nHgRYsWDcuy5yFLVPSXlEVERIaOZVk4WUXDXY0hp7/1IyIiIhlryBKVp59+msrKyqEqXkRERD4FDuvRT++EmcPxgx/8AID58+cfWY1EREREehxWovLmm2+6/v3GG28QDoc54YQTAPjggw9wHIeZM2ce+xqKiIh8wkSj0eGuwpA7VlNADitRWbt2bd///+AHPyAvL49f/epXFBQUAHDgwAGuvvpqFixYcEwqJSIi8knk8/mwbZvdu3dTXFyMz+f7RC4+icVi7Nmzx/zeF6/3qMqyYoNMeSorK/njH//IlClTXK+/++67fO5zn2P37t1HVaHBaG5uJj8/n6amJoLB4Me2XxERkSPV1dVFXV0d7e3tw12VIWVZFlVVVeTm5ibFBjN+D3p5cnNzM3v27El6fc+ePbS0tAy2OBERkU8Vn8/HqFGjCIfDRCKR4a7OkPF6vTiOc9TlDDpR+eIXv8jVV1/N97//fWbPng3AK6+8wg033MAFF1xw1BUSERH5pOt9JHK0j0U+DQadqPzsZz/jH//xH7nsssvo7u42hXg8fO1rX2P58uXHvIIiIiLy6TWoOSqRSISXX36Zk08+GZ/Px5YtWwAYN24cOTk5Q1bJdDRHRURE5PgzZHNUHMfhc5/7HJs2bWLMmDFMnTr1qCoqIiIiMpBB/2bak046iY8++mgo6iIiIiLiMuhE5d/+7d/4x3/8R/7whz9QV1dHc3Oz60dERETkWBn071Gx7Xhuk/hLamKxGJZlfaxLrTRHRURE5PgzpL9HJfG31IqIiIgMpUEnKgsXLhyKeoiIiIgkGXSiAnDw4EHuvfdeNm3aBMCUKVP46le/Sn5+/jGtnIiIiHy6DXoy7Wuvvca4ceP44Q9/yP79+9m/fz8/+MEPGDduHG+88cZQ1FFEREQ+pQY9mXbBggWMHz+eX/7yl3g85oZMOBzmmmuu4aOPPuKFF14Ykoqmosm0IiIix5/BjN+DTlSysrJ48803mTRpkuv1999/n1NPPfVj/WuQSlRERESOP4MZvwf96CcYDLJjx46k12tra8nLyxtscSIiIiJpDTpRufjii/na177Gww8/TG1tLbW1tTz00ENcc801XHrppUNRRxEREfmUGvSqnzvvvBPLsvjKV75COBwGwOv18o1vfIPbb7/9mFdQREREPr0GPUelV3t7u+uvJ2dnZx/Tih0OzVERERE5/gzpb6btlZ2dzcknn3ykmwNw22238dhjj/GXv/yFrKwsPvOZz3DHHXdwwgknHFW5x8yDlvvfF3fA9keg6T3InwKjLwInEI83rIW6Z8FfCDWXQ1Z5PNayBbY/BJFOqP4CFM6Mx7qbYduD0LYNRs6GyvPA7jk1sSjsegr2vgxZVTDmcvAVxLc98GeofQwsB0ZfDMGEY9fZCFv/B0J7oPR0KDsLev/sQSQEtf8LB9+GvIkw+hLwJCSbjS9C3SrwBk1bsqvisdZtsP23EG6Dys9D0dyEtrSaWOsWKJgB1V8E2xtvy+5VsOdFCJTBmCvAPzK+7cH3oPZR8//VX4IRU+Kx0D7Y9gB01EHxAqg4G6yeJ5fRbqh9HA68AbnjYPSl4M2Nb7t3A+z6A3hyTCy3Jh5r32nK7W6G8rOhZEE8Fm6H7Q9Dy19hxFSovhAcf09bYlD/HDSsAX+xaUugJL5t81/NtrEIVF8ABafEY10HYOsD0LETij5jjmFfW8KwayXsexVyaqDmMnMOeu1/HWqfMPUYfSnkjYvHOupMW0L7ofwsc857RTqPXd9941ZoXBmPV1wKix5EMkcsFiHSVk+0qxnbm4OTU4llO33xSOc+Iu17sGwPTm4ltierLxbtbifStptYNIyTXYoTiF9vYtEwkdZdRMPt2L58nJwyrJ6+G4vFiHY0Euncj+X48eRWYTm+eLldLUTa6gBwcsqxffE5jbFIF+HWXcQinTiBQuyskr4/0RKLRXva0oTtycbJrcSy40NXpPMAkfYG05acCmxv/DoWDXcQad3V05ZinED8ehOLRoi07Sba3YrtC/a0xYm3pXMvkY69PW2pxOr97MvH7ojvqBwLZ599NpdccgmzZs0iHA7zz//8z7z77ru8//775OTkHHL7Ib2j0j9JSSVvApy5DrLK4E9XmAG6l5MFCx4zA+qW++DVr5tBq9fkf4Lpd5jBec2Z0NkQj42cC2f8ESwPrPsbaFwXj/lHwul/hMIZ8M6t8M7NCRWy4NSfwMTroGEdPH8uhFvj4arzYf6j0HUQVi8yg1avnBpYvA6yR8Er18BH/x2P2T447WEzSG17CNb/LcTC8fiE62DW3dCyGZ5bBB274rGC6XDmanBy4IXzTfLTy5sPi56G4nmw6U548wb38Z32n3DiDSbRWHs2dDfFY+VL4LMrIdIOq880SUqvrEo4cy0EJ8Bry+CDuxMOkQfm/RpqLoWdT8JLF0G0Kx4fezXMuRfad5i2tG2Lx/KnmHJ9BfDSl2HnE/GYJwcW/gFKF8EHP4XXvgkkfLROvgVOvhn2vwlrzzKJV6+SheY4xCKw5izYtyEeC5TAGWtM0vbWjfD+HQltsWH2L2HcV2H3M/DiFyHSEY+PvgQ+84DpW88thJYP47Gj6bsp+eGyzkO8Rz4OsUgXnXXriXW39L1mebLwl83D8mTRtfdtIq21CVvY+Epm4MkpI9y6i649b5HYdz15o/EVnUy0u41Q3Xpikfh5tnxBAmVzwfYQathItGNPQrEe/KVzcAIFdDdtoXv/Jlc9vQWT8Y4YR6TzAKGGV0yS3rtpVjH+0lkQjdBZv4FYV/yzbzkB/OVzsb25dO17l3DztoRSLXzF0/DkVhJuq6er8Q0g2hd1cqvxFU0lFu4gVL+eWDj+ebG8eQTK54LtpavxdSLtCddky8FfOgsnq+hQh18O05AuTx5Ke/bsoaSkhOeff57Pfvazh3z/kCUqv6uA7rrDe+/Yq6BiqRm4+suqgLPfhJWjzbfR/pZsNINzYiLS6+RbzODXf/AGKJwF8+6Hp6Ykx2wvnLcVnvsstH6UHJ97P+zbCB+uSI6N+jKMuQqeX5oc84+EpZtg5TgItyTHz1wHm5bD7qeSY5NvMInQa9clx/KnwMLfw+/HmzsuiSwbzt1sEq7EpKrXqStMIrFpeXKsYqnZ7+pFyTFPHpy3BZ6a7E4Yei18CrbeDzt+lxybcB2MnAUbrkqO5Y6FxS/AyjHmLk9/S9+D9VfB/o3JsenLzR2qd25JjpUsMvFnZiXHnACctx1WTYeO3cnx+b8z5+Sj+5NjR9N3U7ksYy4ln2pde98h3LI96XUnpxxPbhWhhhT9z/YSqFxE58617i8hPfxl8+hu2kK0ozEp5skfi+XJpnvfu0kxy5uHv3QWnTvXpKxroOoMQg0bXUlVL+/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoPp3OnetSfg79pbMIt+7su7vjakveaGz/CLr2/jlFsdkEqk53/TFeOXIfy6OfodDUZLLmwsLClPFQKEQoFOr7d3Nz89BU5HCTFDC34VMNSmAGjg/vSX+h3/5Q6iQFzLd1T5q7Svs3wtbfpI5Fu2HzL1InKb3l7ktxoQJzhyHxsVKi0D7TllRJCpjHSHVPp99nzpjUsab3YMt/JycpYF7bcm/qJKW33LbkCzJg6pIzNnUs3GLakipJ6S1358o0scdTJwRgjvnmX6TvD1t/kzpJAfPoKvFuSKLGdaavpBLpNG1JV6fax9Ofl6Ppu5KxXHcCEl9va8DqfQzbX7TbJDcpkhSAcHtdyiSlr1xv6jmKse4Wwi3Jv86ir9yWHSmTFFNuPbE0n4loRyPhNPskFibcvD1t3w63N6Q/Ru31xCKhlLFYuJ1YVwuWX/MhP26DXp48VKLRKH//93/PaaedxkknnZTyPbfddhv5+fl9P9XV1R9zLVNw/GAP8OwyXbIB5ha75aSO2QOVa4EzwORlzwAx2x+fZzGofTLwPp0AWGkugk4g/T7BHIcj3We6ci0veAKpY4dTru0bfOyQ5WYDab6NDVSu5YA9QFsG7GMDteUo+q5kLivNZd2y08egb65JyhgDbGvZA26b9hp3iJiZUzPAPgcYvqyByrXsAcp1BjxGA8ZkyGTMUb/uuut49913eeihNN8cgZtuuommpqa+n9ra2rTvPSrFKR59pFNzuflJJTjJzBfxpbhDZNkw5itm3shgyy3/HIy72sy36M+TC+P/zkxkHWy5NZeZn1RyamDiN80k2CSWKXPURam3HX1Z+n0WL4DxX3dP7Oxl+02seEFy7FDljroIaq4gZWIQKDNtyalJvW3NAOUOdPwKZsCEvzPnoD/LY85Z+ZLBl1t1Poy7KvVF0lcAE6+F4OTBl3ukfVcympNbmfJ1T24FTk7qmOXJwgmOSZv4e3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV40rTFySnHk1eVMobjxwnWYHlSfwFycirTl5tbmfb4Wb58bF+Kz7YMuYxIVL75zW/yhz/8gbVr11JVlabzAX6/n2Aw6PoZEmf94fDeV7YYpt4KZWeYOSWJWXx2FZz2EHiyYP4j7kcqth9m/dxM9jx1hZlwmqjmcphwrZnYOe4aXINt/hQzgTK7ysw3Sbwb4Q2affryzSTKxMctlm3mbFSdC1P+GSo+795n8QKYdodZwTPtjvhKHTAD+/xHzB2KBY+CP2FCme2DmXeZVS0zfwgj57jLrb4QJl1vViRNXOZuS94EM9cmUGzqm/gN3pNjXgsUm/fkTUwo1DKJRs0lpuzqL7n3OXKOqUvBVJj5I/cdBX+RmbfhCZj/JiZelgem3d5zDG5PTpAqlppjV3WumQydePHNqTH19eWbiceJK3WcLJh7nzlns39hzmFiW8ZdY871hGt7kqsEBdNMH8kbb/pM4h0QX0FPW7LNeU9cmWU5cNLNpm9OvdX01URH2nfTKZh/6PfIx8KbPx47q8T1mu0vxFs4GSdQgLdgEq7PoePHVzIT23bwl8zsdwfOxls4BdsfxFc4Bds/wlWuk12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wULK/77p0nWIMntxJP/licbHeCZPtHmLr4gngLp+Aaxmwf/p62+Epm9ku8LLwFk8wxKJyUlCCZeS/j8WSX4skf54pZniz8xf2u0/KxGdbJtLFYjGXLlvH444+zbt06JkyYMKjth/z3qKw6A/avNf9vBeHSJtj7KjS/D8EToWi2+/3tO6F+jVniWb7EPdiH22H30+aZf8XZ7mW5sRg0Pm8mhhbOci/LBbPUde8GM4CUnhFfYgxmqevuVWY5c/k57mW50TDUP2uWKZcsdC/LBdj/Rs/y5BPMyptEHXVm+a03aMpNWGZIpNO0Jdxm7u4E3BdFGl+C1s3mDkPBVHesZQvsecksfy1b7B7su5tNuQAV57gH+1jU1KejDornu5flAhx4O748uaRfgtHZCHV/NMlPxTnuuzeRLrMSqbvJ1Cer37fGPevjy5ML+92lat1mzlugxCz9TlgySXermRsSDZvznTjYx2JmWXN7LRTNcy8pB2h6P748uWSh+3yH9pnz7QRMWxIf80W7oe4Zszy57Ax34gLHtu8mrorTJNqMFA01Ee1qxvLmupYYA8TCnUQ69oLtwckucT26iUUjRDoaIRbBySpOWpYb6dxPrLsN25+P7XNfd6PdbUQ792M5AeysItfE01i0m0i7WRXkZBe75suYpc17iUU6sQOF2P0Sl2hXM9FQE5Y327XEGCAWCRHp2AOWg5NV4lqGHYtFibQ3QjSMk1WE1e9xcKTzALGe5cm2P79fW9qJdu7Dcvw9bcmI7/WfGMfNqp9rr72WBx98kCeffNL1u1Py8/PJyhpg3kIP/cI3ERGR489xk6ikW+Z13333cdVVVx1yeyUqIiIix5/jZnlyBv0KFxEREclAeugmIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhnLM5w7f+GFF1i+fDmvv/46dXV1PP7443zhC18Yziq5PWi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qqlQEM8TjVctgP55ItFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW4Xl+Pq2jXa1EGmrA8DJKcf25cXLjXQRbt1FLNKJEyjEzirB6rlWxWJRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3oBle3ByKrC98etYNNxBpHUXsWgYJ7sYJ5BwvZHjhhWLxWLDtfOnn36al19+mZkzZ3LBBRcMOlFpbm4mPz+fpqYmgsHgoTcYjP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6EC//IuXDGH8HywLq/gcZ18Zh/JJz+RyicAe/cCu/cnFAhC079CUy8DhrWwfPnQrg1Hq46H+Y/Cl0HYfUiM2j1yqmBxesgexS8cg189N/xmO2D0x42g9S2h2D930IsHI9PuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDdimRj0G0u41Q3Xpikc6+1yxfkEDZXLA9hBo2Eu3YE9/A9uAvnYMTKKC7aQvd+ze5yvMWTMY7YhyRzgOEGl4xSXrvplnF+EtnQTRCZ/0GYl3xz77lBPCXz8X25tK1713CzdsSSrXwFU/Dk1tJuK2ersY3gGhf1Mmtxlc0tS8JkuEzmPF7WBOVRJZlZU6icjhJSq+xV0HFUjNw9ZdVAWe/CStHm2+j/S3ZaAbnxESk18m3mMGv/+ANUDgL5t0PT01JjtleOG8rPPdZaP0oOT73fti3ET5ckRwb9WUYcxU8vzQ55h8JSzfBynEQbkmOn7kONi2H3U8lxybfYBKh165LjuVPgYW/h9+PN3dcElk2nLvZJFyJSVWvU1eYRGLT8uRYxVKz39WLkmOePDhvCzw12Z0w9Fr4FGy9H3b8Ljk24ToYOQs2XJUcyx0Li1+AlWPMXZ7+lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpqJE5ROts/5Voh2NSa978sdiebLp3vduUszy5uEvnUXnzjUpywxUnUGoYSOx7uRrinfkScTC7YSbkq9jdlYJ3vxxhOrXJxdqeQhUnU7nrnUpP4f+0lk42aUp6yMfn8GM38P66GewQqEQoVCo79/Nzc3DWJsetU+kHpTADBwf3pP+Qr/9odRJCphv656c1LH9G2Hrb1LHot2w+Repk5TecvelGCjB3GFIfKyUKLTPtCVVkgLmMVLd0+n3mTMmdazpPdhyb3KSAua1zfemTlJ6y23bnjpW97R5DJRKuMW0JVWS0lvuzpVpYo+nTgjAHPPNv0jfH7b+JnWSAubRVeLdkESN60xfSSXSCZvvSV+n2sfTn5ej6bvyqRKLRVMmKQCRtgashMctru26Wwi3pH8sGG7ZkTJJMeXWE0vzmYh2NBJOs09iYcIt29L27XB7gxKV48xxNZn2tttuIz8/v++nurp6uKtk5grY/vRxb5pkA8wtdstJHbMHKtcCJ82HFAaO2f74PItB7fMQ5ToBsLzpY+n2eahyPYfYZ7pyLe+R79MJmMddg40dstxsIM3duoHKtRywA6ljkD6hPVS5h+q7A5Urnz5WmuHCsvvmqaSOp7nGAdjpY5btkHaIsmysAYYva4B9DlhXyUjH1Rm76aabaGpq6vupra0doj0NItuuudz8pBKcZB4V+AqTY5YNY75i5o0Mttzyz8G4q818i/48uTDh78xE1sGWW3OZ+UklpwYmftNMgk1imTJHXZR629GXpd9n8QIY/3X3xM5ett/Eihckxw5V7qiLoOYKUiYGgTLTlpya1NvWDFDuQMevYIY59p7c5JjlMeesfMngy606H8ZdlXqg8BXAhGshOHnw5R6q705M03flU8eybJyc8pQxT24lTk5lypjtL8QbHJW671o23rxR2P7UfczJqcCTm7pcJ6ccT15VyhiOHyc4BsuTlWbb1GVK5jquEhW/308wGHT9DInL6g/vfWWLYeqtUHaGmVOSmMVnV8FpD4EnC+Y/4n6kYvth1s/NZM9TV5gJp4lqLjeDz9irYdw1uAbb/ClmAmV2lZlv4iR8GL1Bs09fvplEmfi4xbLNnI2qc2HKP0PF5937LF4A0+4wK3im3RFfqQNmYJ//CHgCsOBR8BcltMUHM+8yq1pm/hBGznGXW30hTLrerEiauMzdlrwJZq5NoNjUN/EbvCfHvBYoNu/Jm5hQqGUSjZpLTNnVX3Lvc+QcU5eCqTDzR+47Cv4iM2/DEzD/TUy8LA9Mu73nGNyenCBVLDXHrupcMxk68eKbU2Pq68s3E48TV+o4WTD3PnPOZv/CnMPEtoy7xpzrCdf2JFcJCqaZPpI33vSZxDsgvoKetmSb8564Msty4KSbTd+ceqvpq4mOtO+mlXfot8hxzVc4Bds/wvWak12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wUrH53nj3BGjy5lXjyx+JkuxMk2z/C1MUXxFs4BdcwZvvwl8zEth18JTP73VW18BZMwgkcTn+WTKLJtAN5sBA4EP/3ZTHY+yo0vw/BE6Fotvv97Tuhfo1Z4lm+xD3Yh9th99PmmX/F2e5lubEYND5vJoYWznIvywWz1HXvBjOAlJ4RX2IMZqnr7lVmOXP5Oe5ludEw1D9rlimXLHQvywXY/0bP8uQTzMqbRB11ZvmtN2jKTVhmSKTTtCXcZu7uJC7LBWh8CVo3mzsMBVPdsZYtsOcls/y1bLF7sO9uNuUCVJzjHuxjUVOfjjoonu9elgtw4O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrH7fGvesjy9PLux3l6p1mzlvgRKz9DthySTdrWZuSDRsznfiYB+LmWXN7bVQNM+9pByg6f348uSShe7zHdpnzrcTMG1JfDQW7Ya6Z8zy5LIz3IkLHNu+mzjhXJNoP1UinfuJdbdh+/Oxfe7rbrS7jWjnfiwngJ1V5FpdE4t2E2k3q4Kc7GKshD5mljbvJRbpxA4UYvdLXKJdzURDTVje7KQlxrFIiEjHHrAcnKySnkdGveVGibQ3QjSMk1WE5RngEap8rI6bVT+tra1s3rwZgOnTp/ODH/yA008/ncLCQkaNGnXI7Yc8UREREZFj7rhZ9fPaa69x+unxX0p1/fXXA3DllVdy//33D1OtREREJFMMa6KyaNEiMuTJk4iIiGSg42oyrYiIiHy6KFERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkY3mGuwIAK1asYPny5dTX13PKKafwk5/8hNmzZw93teBBy/3viztg+yPQ9B7kT4HRF4ETiMcb1kLds+AvhJrLIas8HmvZAtsfgkgnVH8BCmfGY93NsO1BaNsGI2dD5Xlg95yaWBR2PQV7X4asKhhzOfgK4tse+DPUPgaWA6MvhuAJ8VhnI2z9HwjtgdLToewssHraFAlB7f/CwbchbyKMvgQ82fFtG1+EulXgDZq2ZFfFY63bYPtvIdwGlZ+HorkJbWk1sdYtUDADqr8Itjfelt2rYM+LECiDMVeAf2R824PvQe2j5v+rvwQjpsRjoX2w7QHoqIPiBVBxNlg9eXa0G2ofhwNvQO44GH0peHPj2+7dALv+AJ4cE8uticfad5pyu5uh/GwoWRCPhdth+8PQ8lcYMRWqLwTH39OWGNQ/Bw1rwF9s2hIoiW/b/FezbSwC1RdAwSnxWNcB2PoAdOyEos+YY9jXljDsWgn7XoWcGqi5zJyDXvtfh9onTD1GXwp54+KxjjrTltB+KD/LnPNekc5j13dXnYqbA5eFOd60b/2D699Zo88h0lZHtLsF25uHk1OOZTt98UjHXiIde7EcL56cSixP/PhFu9uItO0mFoviyS7F9o/oi8Wi3YRbdxMLt2P7R+Bkl2L1nO9YLEako5Fo534sT8CU6/ji5YaaCbfXYWHh5FRg++L9OhYJEW7dRSwSwgkUYWcVYfV8vmOxCJG2eqJdzdjeHJycSndbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7Ycm77bWf8XiO7ti+MpJbt6FsPJisViseGswMMPP8xXvvIVfvaznzFnzhzuuusufve73/HXv/6VkpKSAbdtbm4mPz+fpqYmgsHggO8dtP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6GeGzkXDjjj2B5YN3fQOO6eMw/Ek7/IxTOgHduhXduTqiQBaf+BCZeBw3r4PlzIdwaD1edD/Mfha6DsHqRGbR65dTA4nWQPQpeuQY++u94zPbBaQ+bQWrbQ7D+byGWMDBNuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDeikZlP5JSiqWJwd/+Twsx0/XnjeJtO1OCNr4S07FyS4h3FJL1963STzfnvxx+AonE+1qobN+g/li0MP2j8BfNhewCDW8SrQzoS/YXgJlc7H9+XQf+IDugx+46uQdeRLeYA2Rjr2EGja6zouTXYqvZCZEw3TWrSfW3ZLQliz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPW+625I3GV3Qy0e42QnXriUU64+X6ggTK5oLtIdSwkWjHnoRiPfhL5+AECuhu2kL3/k3uthRMxjtiHJHOA4QaXjFJeu+mWcX4S2dBNEJn/QZiXfHPvuUE8JfPxfbm0rXvXcLN2xLPGr7iaXhyKwm31dPV+AYQjR+j3Gp8RVOJhTsI1a8nFo5/XixvHoHyuWB76Wp8nUh7wjXZcvCXzsLJKqK7eRvd+951t2XERLwFE4mGmsz5jnbH2xIoxF86B4gRqt9ANHQw4Rj5CJTPw/bl0bV/E+GmLa5yfUVT8eSNItLeSKjxNfNlr7ctORX4iqdDJGTOd7gtXt2j6LvpZI/5/CHfMxiDGb+HPVGZM2cOs2bN4u67zWASjUaprq5m2bJl3HjjjQNuO2SJyuEkKb3GXgUVS83A1V9WBZz9Jqwcbb6N9rdkoxmcExORXiffYga//oM3QOEsmHc/PDUlOWZ74byt8NxnofWj5Pjc+2HfRvhwRXJs1JdhzFXw/NLkmH8kLN0EK8dBuCU5fuY62LQcdj+VHJt8g0mEXrsuOZY/BRb+Hn4/3vUhBMxAfO5mk3AlJlW9Tl1hEolNy5NjFUvNflcvSo558uC8LfDUZHfC0GvhU7D1ftjxu+TYhOtg5CzYcFVyLHcsLH4BVo5xXaj6LH0P1l8F+zcmx6YvN3eo3rklOVayyMSfSfGtxgnAedth1XTo2J0cn/87c04+uj85djR9N5XjJFFp3/pHoOuQ7wNwcqtwskt6Bjw3y/Hjr1hA5841yX0X8FfMp3v/Jnci0sM7YiLYTtLgDWD78vEVT6Nz1/MpamQRqDqjZ5BtT4r6ik4x38pbtie3JaccT26VSXCSduolULmIzp1r3V9CettSNo/upi1EOxqTYp78sVie7KTBG8zg7y+dZY5RCoGqMwg1bHQlVb28I08iFm4n3JR8HbOzSvDmjyNUvz65UMtDoOp0OnetS/k59JfOIty6s+/ujqsteaOx/SPo2vvnFMVm4y+b19OW5L4eqFxI1563iCYkVX1tKZwM0UhS4glgB0biLZxMaPdLKdpim2O0+0ViCcluL1/JDCLtjURadybFjqbvpjKcicqwPvrp6uri9ddf56abbup7zbZtFi9ezPr1yR0wFAoRCsVPVnNz88dSzwHVPpF6UAIzcHx4T/oL/fbfpk5SwHxb9+Skju3fCFt/kzoW7YbNv0idpPSWuy/FhQrMHYbEx0qJQvtMW1IlKWAeI9U9nX6fOWNSx5regy3/nfrDEovClntTJym95bYlX5ABU5ecsalj4RbTllRJSm+5O1emiT2eOiEAc8w3/yJ9f9j6m9RJCphHV4l3QxI1rjOPXlKJdJq2pKtT7ePpz8vR9N3j2uElKYD5Vp3mu1wsEjIJQZoLfbh1V8okBSDcXt/3mKG/aFcT4RQDT89eCbfuSJmkmPrWEw0lD5QAkbYG12MG9067e9qS+hFeuL0uZZLSV27C4xZXbbtbCLfsSL1PINyyI2WSYsqtJ5bmMxHtaCTsSb1PYmHCLdvS9u1we4P7bkniPtvrUyYEpth2wq07SHf3Idy6M2WSAj1tSXNXMtq5j3DrrpQxYlFzjNLUKdJWTyTxLlZi7Cj6bqYZ1sm0e/fuJRKJUFpa6nq9tLSU+vr6pPffdttt5Ofn9/1UV1d/XFVNz/GD7U8fT5dsADjZZm5JKvZA5Vpm27T7HCBm++PzLAa1TwbepxMAK81F0Amk3yeYRw1Hus905VpeSHgOO+hybd/gYzDwsXeygTR36wYq13LAHqAtA/axgdpyiPPtHaDcTwvLjs8fShlP/13PJCKpz7d1yHLTXBf6yh1gu3TlHmKf1kAxBtjWsgfcFnuA+g4QM3MsjrQtAx0/e4ByBzh+gMUhjn3a2EDHyDpEfYfqfGfEFNXDclyt+rnppptoamrq+6mtrT30RkOt5nLzk0pwkpkv4itMjlk2jPmKmTcy2HLLPwfjrk59kfTkwvi/MxNZB1tuzWXmJ5WcGpj4TTMJNollyhx1UeptR1+Wfp/FC2D8190TO3vZfhMrXpAcO1S5oy6CmitIOVAEykxbcmpSb1szQLkDHb+CGebYe3KTY5bHnLPyJYMvt+p8GHdV6ouOrwAmXgvByYMv91B9d0Kavnu8s4sO/Z4enpxKPLmVKWOWNxdvsCY+Wbz/tnlVONmlKWPOAOXaWcV48qpJ2XctB09wNJYvP3W5uZU4acr15Fbg5KRpiycLJzgmbeLvya3CySlPE6tMW67tL8SbNyp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntRfgAY69gMdP8uXjyd/dJqExMKTV42dVZxy24GOkZNd2nO+U7C9eII1WN4U15Secj1pyj1U3/UM0HczzbAmKkVFRTiOQ0OD+zZcQ0MDZWXJA6Lf7ycYDLp+hsThPmsvWwxTb4WyM8ycksQOnF0Fpz0EniyY/4j7kYrth1k/N5M9T11hJpwmqrkcJlxrJnaOuwbXBSt/iplAmV1l5psk3o3wBs0+fflmEmXi4xbLNnM2qs6FKf8MFf2eNxYvgGl3mBU80+5wd+BAmWmDJwALHgV/woXe9sHMu8yqlpk/hJFz3OVWXwiTrjcrkiYuc7clb4KZaxMoNvVNvDPgyTGvBYrNe/ImJhRqmUSj5hJTdvWX3PscOcfUpWAqzPyR+46Cv8jM2/AEzH8TEy/LA9Nu7zkGtycnSBVLzbGrOtdMhk68+ObUmPr68s3E48SVOk4WzL3PnLPZvzDnMLEt464x53rCtT3JVYKCaaaP5I03fSbxDoivoKct2ea8J67Mshw46WbTN6feavpqoiPtu58A2aPnHvpNgB0owlswESeryMwpSei7lhPAXzwDy3bwl8x0f14sG1/RVGxvLr6RJ2H53NcpJ6cST7AGJ7caJ9c9QFnePLOtJwtf8SnuPmZ58JfMwLK9+IunY/W7e+fJH4snuxRv/njsLPdCBNtfiLdwMk6gAG/BJFdbcPz4SmZi97Ul8Q6cjbdwCrY/iK9wims1E4CTXWb2m1thBr7Etnhy8BWfguX4zaTPxD5mOfiKp/fETsHqd/fOE6wxg3D+WJxsd4Jk+0eYuviCeAun4BrGbB/+nrb4Smb2S7wsvAWTzDEonJSUIJl5L+PxZJfiyR/nilmeLHPMbS/+khnuL4mWja/4FHPOiqZiefNc2/aeZ0+wJilZsXxBfCNPwvbm4Cua6j7fthd/ycyePjYDy/VlzsIzYoLpmwUTsQPu5PuI+25aqRPjj0tGTKadPXs2P/nJTwAzmXbUqFF885vfHL7JtL36T6q9LAZ7X4Xm9yF4IhT1W0LdvhPq15glnuVL3B0g3A67nzbP/CvOdi/LjcWg8XkzMbRwlntZLpilrns3mAGk9Iz4EmMwS113rzLLmcvPcS/LjYah/lmzTLlkoXtZLsD+N3qWJ59gVt4k6qgzy2+9QVNuwjJDIp2mLeE2c3cn4L4o0vgStG42dxgKprpjLVtgz0tm+WvZYvcHs7vZlAtQcY57sI9FTX066qB4vntZLsCBt+PLk0v6JRidjVD3R5P8VJzjvnsT6TIrkbqbTH2y+n1r3LM+vjy5sN9dqtZt5rwFSszS74Qlk3S3mrkh0bA534mDfSxmljW310LRPPeScoCm9+PLk0sWus93aJ85307AtCVxsIp2Q90zZnly2RnuxAWObd9N/GwcJ5No+2vf9ieI7e/5l032mL8hEjpArKsVy5eL43cnaNFwB9GOfViOFzur2HUrPxaNEOlohFgEJ6vEtSzXLHXdRyzcge0f4VqWC2apazR0AMuThR0Y2beUFcxS10jHHrAsU25CH4vFokQ79hKLhLADI13LcgGioSaiXc1Y3lzXEmMwS10jHXvB9uBklwzQlmLXslyASOd+Yt1t2P587H5JWLS7zSy1dgKu5dKm3G4i7WY+hZNd7JovY5Y27yUW6cQOFLqW5Zpj1Ew01ITlzXYtMTbHKNRzjJyeY+QklBsl0t4I0TBOVpFrWa5pywFiPcuTbb97MI52txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHjmnfTVwVd6wn0fY6rlb9PPzww1x55ZX8/Oc/Z/bs2dx111088sgj/OUvf0mau9LfkCcqIiIicswdN6t+AC6++GL27NnDv/zLv1BfX8+0adNYtWrVIZMUERER+eQb9jsqR0N3VERERI4/gxm/j6tVPyIiIvLpokRFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0L/aPT+Ut3m5uZhromIiIgcrt5x+3B+Of5xnai0tLQAUF1dfYh3ioiISKZpaWkhPz9/wPcc13/rJxqNsnv3bvLy8lx/Kls+mZqbm6murqa2tlZ/20nkE0af70+XWCxGS0sLFRUV2PbAs1CO6zsqtm1TVVU13NWQj1kwGNSFTOQTSp/vT49D3Unppcm0IiIikrGUqIiIiEjGUqIixw2/38/NN9+M3+8f7qqIyDGmz7ekc1xPphUREZFPNt1RERERkYylREVEREQylhIVERERyVhKVERERCRjKVGR48aKFSuoqakhEAgwZ84cXn311eGukogcpRdeeIFzzz2XiooKLMviiSeeGO4qSYZRoiLHhYcffpjrr7+em2++mTfeeINTTjmFJUuW0NjYONxVE5Gj0NbWximnnMKKFSuGuyqSobQ8WY4Lc+bMYdasWdx9992A+TtP1dXVLFu2jBtvvHGYaycix4JlWTz++ON84QtfGO6qSAbRHRXJeF1dXbz++ussXry47zXbtlm8eDHr168fxpqJiMhQU6IiGW/v3r1EIhFKS0tdr5eWllJfXz9MtRIRkY+DEhURERHJWEpUJOMVFRXhOA4NDQ2u1xsaGigrKxumWomIyMdBiYpkPJ/Px8yZM1m9enXfa9FolNWrVzNv3rxhrJmIiAw1z3BXQORwXH/99Vx55ZWceuqpzJ49m7vuuou2tjauvvrq4a6aiByF1tZWNm/e3PfvrVu38tZbb1FYWMioUaOGsWaSKbQ8WY4bd999N8uXL6e+vp5p06bx4x//mDlz5gx3tUTkKKxbt47TTz896fUrr7yS+++//+OvkGQcJSoiIiKSsTRHRURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEMtott9zCtGnThrsaIjJMlKiIyJCqr69n2bJljB07Fr/fT3V1Neeee67rj0yKiKSjP0ooIkNm27ZtnHbaaYwYMYLly5dz8skn093dzTPPPMN1113HX/7yl4+lHt3d3Xi93o9lXyJybOmOiogMmWuvvRbLsnj11Ve58MILmThxIlOmTOH6669nw4YNAOzYsYPzzz+f3NxcgsEgF110EQ0NDWnLjEaj3HrrrVRVVeH3+5k2bRqrVq3qi2/btg3Lsnj44YdZuHAhgUCABx54YMjbKiJDQ4mKiAyJ/fv3s2rVKq677jpycnKS4iNGjCAajXL++eezf/9+nn/+eZ599lk++ugjLr744rTl/uhHP+L73/8+d955J2+//TZLlizhvPPO48MPP3S978Ybb+Tb3/42mzZtYsmSJce8fSLy8dCjHxEZEps3byYWizFp0qS071m9ejXvvPMOW7dupbq6GoBf//rXTJkyhY0bNzJr1qykbe68806++93vcskllwBwxx13sHbtWu666y5WrFjR976///u/54ILLjjGrRKRj5vuqIjIkIjFYod8z6ZNm6iuru5LUgBOPPFERowYwaZNm5Le39zczO7duznttNNcr5922mlJ7z/11FOPsOYikkmUqIjIkJgwYQKWZX1sE2b7S/W4SUSOP0pURGRIFBYWsmTJElasWEFbW1tS/ODBg0yePJna2lpqa2v7Xn///fc5ePAgJ554YtI2wWCQiooKXn75ZdfrL7/8csr3i8jxT3NURGTIrFixgtNOO43Zs2dz6623MnXqVMLhMM8++yz33HMP77//PieffDKXX345d911F+FwmGuvvZaFCxemfXRzww03cPPNNzNu3DimTZvGfffdx1tvvaWVPSKfUEpURGTIjB07ljfeeIN///d/5zvf+Q51dXUUFxczc+ZM7rnnHizL4sknn2TZsmV89rOfxbZtzj77bH7yk5+kLfNb3/oWTU1NfOc736GxsZETTzyRlStXMmHChI+xZSLycbFihzPjTURERGQYaI6KiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMb6/wHCnL2DXQSZ/gAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Suppressing warning message claiming that a portion of points cannot be placed into the plot due to the high number of data points\n", + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')\n", + "\n", + "palette = {\n", + " 0: 'orange',\n", + " 1: 'wheat'\n", + "}\n", + "sns.swarmplot(x=\"Color\", y=\"ord__Item Size\", hue=\"Color\", data=encoded_pumpkins, palette=palette)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**ध्यान दें**: चेतावनियों को नज़रअंदाज़ करना एक अच्छी प्रथा नहीं है और इसे जहाँ तक संभव हो, टालना चाहिए। चेतावनियों में अक्सर उपयोगी संदेश होते हैं जो हमें अपने कोड को बेहतर बनाने और किसी समस्या को हल करने में मदद करते हैं। \n", + "हम इस विशेष चेतावनी को नज़रअंदाज़ कर रहे हैं ताकि प्लॉट की पठनीयता सुनिश्चित की जा सके। सभी डेटा पॉइंट्स को छोटे मार्कर साइज के साथ प्लॉट करना, जबकि पैलेट के रंग की संगति बनाए रखना, एक अस्पष्ट विज़ुअलाइज़ेशन उत्पन्न करता है।\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "# X is the encoded features\n", + "X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])]\n", + "# y is the encoded label\n", + "y = encoded_pumpkins['Color']\n", + "\n", + "# Split the data into training and test sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.94 0.98 0.96 166\n", + " 1 0.85 0.67 0.75 33\n", + "\n", + " accuracy 0.92 199\n", + " macro avg 0.89 0.82 0.85 199\n", + "weighted avg 0.92 0.92 0.92 199\n", + "\n", + "Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0\n", + " 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0\n", + " 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1\n", + " 0 0 0 1 0 0 0 0 0 0 0 0 1 1]\n", + "F1-score: 0.7457627118644068\n" + ] + } + ], + "source": [ + "from sklearn.metrics import f1_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "# Train a logistic regression model on the pumpkin dataset\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "# Evaluate the model and print the results\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('F1-score: ', f1_score(y_test, predictions))" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[162, 4],\n", + " [ 11, 22]])" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import confusion_matrix\n", + "confusion_matrix(y_test, predictions)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAIjCAYAAABBOWJ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgUElEQVR4nO3dd1gUV8MF8LOUZelqsItBjTV2jcYKKgoWFDWKJUKIvUc0tqjYoibWxKDGFqwRNGqMjQiC3WhE7CX2BiixgHR27/eHL/tJBGVxl9lyfs/DE3aY2T07ETjcuTMjE0IIEBEREWmRmdQBiIiIyPiwYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBCZgODgYMhkMvWHhYUFypYtiy+++AIPHz7MdRshBDZs2ICWLVuiSJEisLGxQa1atTBz5kwkJyfn+Vo7duxA+/bt4eTkBLlcjjJlyqBnz544ePBgvrKmpaVh8eLFaNy4MRwdHaFQKFClShWMGDEC169fL9D7J6LCJ+O9SIiMX3BwMPz9/TFz5kxUqFABaWlpOHnyJIKDg+Hi4oKLFy9CoVCo11cqlejTpw9CQ0PRokULdOvWDTY2Njhy5Ag2b96MGjVqIDw8HCVLllRvI4TAl19+ieDgYNSrVw+fffYZSpUqhdjYWOzYsQNnzpzBsWPH0LRp0zxzJiQkwNPTE2fOnEGnTp3g7u4OOzs7XLt2DVu2bEFcXBwyMjJ0uq+ISEsEERm9X375RQAQp0+fzrF8woQJAoAICQnJsXzOnDkCgBg3btwbz7Vr1y5hZmYmPD09cyyfP3++ACC++uoroVKp3thu/fr14q+//nprzo4dOwozMzOxbdu2N76WlpYmxo4d+9bt8yszM1Okp6dr5bmIKHcsGEQmIK+CsXv3bgFAzJkzR70sJSVFFC1aVFSpUkVkZmbm+nz+/v4CgDhx4oR6m2LFiolq1aqJrKysAmU8efKkACAGDhyYr/VdXV2Fq6vrG8v9/PzEhx9+qH58+/ZtAUDMnz9fLF68WFSsWFGYmZmJkydPCnNzczF9+vQ3nuPq1asCgFi6dKl62bNnz8To0aNFuXLlhFwuF5UqVRLz5s0TSqVS4/dKZAo4B4PIhN25cwcAULRoUfWyo0eP4tmzZ+jTpw8sLCxy3c7X1xcAsHv3bvU2T58+RZ8+fWBubl6gLLt27QIA9OvXr0Dbv8svv/yCpUuXYtCgQVi4cCFKly4NV1dXhIaGvrFuSEgIzM3N0aNHDwBASkoKXF1dsXHjRvj6+uLHH39Es2bNMGnSJAQEBOgkL5Ghy/2nBxEZpRcvXiAhIQFpaWn466+/MGPGDFhZWaFTp07qdS5fvgwAqFOnTp7Pk/21K1eu5PhvrVq1CpxNG8/xNg8ePMCNGzdQvHhx9TIfHx8MHjwYFy9eRM2aNdXLQ0JC4Orqqp5jsmjRIty8eRNnz55F5cqVAQCDBw9GmTJlMH/+fIwdOxbOzs46yU1kqDiCQWRC3N3dUbx4cTg7O+Ozzz6Dra0tdu3ahXLlyqnXSUpKAgDY29vn+TzZX0tMTMzx37dt8y7aeI636d69e45yAQDdunWDhYUFQkJC1MsuXryIy5cvw8fHR71s69ataNGiBYoWLYqEhAT1h7u7O5RKJQ4fPqyTzESGjCMYRCYkKCgIVapUwYsXL7B27VocPnwYVlZWOdbJ/gWfXTRy898S4uDg8M5t3uX15yhSpEiBnycvFSpUeGOZk5MT2rRpg9DQUMyaNQvAq9ELCwsLdOvWTb3eP//8g/Pnz79RULI9fvxY63mJDB0LBpEJadSoERo2bAgA8Pb2RvPmzdGnTx9cu3YNdnZ2AIDq1asDAM6fPw9vb+9cn+f8+fMAgBo1agAAqlWrBgC4cOFCntu8y+vP0aJFi3euL5PJIHI5y16pVOa6vrW1da7Le/XqBX9/f8TExKBu3boIDQ1FmzZt4OTkpF5HpVKhbdu2GD9+fK7PUaVKlXfmJTI1PERCZKLMzc0xd+5cPHr0CD/99JN6efPmzVGkSBFs3rw5z1/W69evBwD13I3mzZujaNGi+PXXX/Pc5l28vLwAABs3bszX+kWLFsXz58/fWH737l2NXtfb2xtyuRwhISGIiYnB9evX0atXrxzrVKpUCS9fvoS7u3uuH+XLl9foNYlMAQsGkQlzc3NDo0aNsGTJEqSlpQEAbGxsMG7cOFy7dg3ffPPNG9vs2bMHwcHB8PDwwKeffqreZsKECbhy5QomTJiQ68jCxo0bcerUqTyzNGnSBJ6enli9ejV27tz5xtczMjIwbtw49eNKlSrh6tWrePLkiXrZuXPncOzYsXy/fwAoUqQIPDw8EBoaii1btkAul78xCtOzZ0+cOHECYWFhb2z//PlzZGVlafSaRKaAV/IkMgHZV/I8ffq0+hBJtm3btqFHjx5Yvnw5hgwZAuDVYQYfHx/89ttvaNmyJbp37w5ra2scPXoUGzduRPXq1REREZHjSp4qlQpffPEFNmzYgPr166uv5BkXF4edO3fi1KlTOH78OJo0aZJnzidPnqBdu3Y4d+4cvLy80KZNG9ja2uKff/7Bli1bEBsbi/T0dACvzjqpWbMm6tSpg/79++Px48dYsWIFSpYsicTERPUpuHfu3EGFChUwf/78HAXldZs2bcLnn38Oe3t7uLm5qU+ZzZaSkoIWLVrg/Pnz+OKLL9CgQQMkJyfjwoUL2LZtG+7cuZPjkAoRgVfyJDIFeV1oSwghlEqlqFSpkqhUqVKOi2QplUrxyy+/iGbNmgkHBwehUCjExx9/LGbMmCFevnyZ52tt27ZNtGvXThQrVkxYWFiI0qVLCx8fHxEVFZWvrCkpKWLBggXik08+EXZ2dkIul4vKlSuLkSNHihs3buRYd+PGjaJixYpCLpeLunXrirCwsLdeaCsviYmJwtraWgAQGzduzHWdpKQkMWnSJPHRRx8JuVwunJycRNOmTcWCBQtERkZGvt4bkSnhCAYRERFpHedgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1pncvUhUKhUePXoEe3t7yGQyqeMQEREZDCEEkpKSUKZMGZiZvX2MwuQKxqNHj+Ds7Cx1DCIiIoN1//59lCtX7q3rmFzByL699P3799W3hyYiIqJ3S0xMhLOzs/p36duYXMHIPizi4ODAgkFERFQA+ZliwEmeREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1khaMw4cPw8vLC2XKlIFMJsPOnTvfuU1UVBTq168PKysrfPTRRwgODtZ5TiIiItKMpAUjOTkZderUQVBQUL7Wv337Njp27IhWrVohJiYGX331FQYMGICwsDAdJyUiIiJNWEj54u3bt0f79u3zvf6KFStQoUIFLFy4EABQvXp1HD16FIsXL4aHh4euYhoVIQSi7z3Dk6R0qaMQEVEhaFLJCY7WloX+upIWDE2dOHEC7u7uOZZ5eHjgq6++ynOb9PR0pKf//y/TxMREXcUzCCdvPUXvVSeljkFERIVk76gWLBjvEhcXh5IlS+ZYVrJkSSQmJiI1NRXW1tZvbDN37lzMmDGjsCLqvQsPnwMAnOys4PKBjbRhiIhI52zk5pK8rkEVjIKYNGkSAgIC1I8TExPh7OwsYSJp3XuaAgDo9YkzxnlUlTgNERFp05kzZ/DTTz9h5cqVsLQs/FGL1xlUwShVqhTi4+NzLIuPj4eDg0OuoxcAYGVlBSsrq8KIZxDuPU0FAJQvxtELIiJjcvr0abRr1w7Pnz9H+fLlJR+9N6jrYDRp0gQRERE5lh04cABNmjSRKJHhuf+/EQxnFgwiIqNx6tQptG3bFs+fP0ezZs0wbtw4qSNJWzBevnyJmJgYxMTEAHh1GmpMTAzu3bsH4NXhDV9fX/X6Q4YMwa1btzB+/HhcvXoVy5YtQ2hoKMaMGSNFfIOjVAk8ePaqYJTn/AsiIqPw119/oW3btnjx4gWaN2+Offv2wd7eXupY0haMv//+G/Xq1UO9evUAAAEBAahXrx6mTZsGAIiNjVWXDQCoUKEC9uzZgwMHDqBOnTpYuHAhVq9ezVNU8yn2RSoylQKW5jKUclBIHYeIiN7TyZMn0a5dOyQmJqJFixZ6Uy4AQCaEEFKHKEyJiYlwdHTEixcv4ODgIHWcQnX8ZgL6rPoLFZxsETnOTeo4RET0HlJTU1GpUiXExsbC1dUVu3fvhp2dnU5fU5PfoQY1B4PeD+dfEBEZD2tra2zevBkdO3bEnj17dF4uNGVQZ5HQ+8k+RfVDFgwiIoOVmZmpPgXVzc0Nbm5u0gbKA0cwTAhPUSUiMmxHjx5FtWrVcPHiRamjvBMLhgm5x0MkREQG68iRI/D09MStW7fw7bffSh3nnVgwTEj2HAyOYBARGZbDhw+jffv2SE5Ohru7O9auXSt1pHdiwTARSWmZeJqcAQBwLpb7VU+JiEj/HDp0SF0u2rZti127duV59Wp9woJhIrIPjxSzlcNeIe316YmIKH8iIyPRoUMHpKSkwMPDA7///rtBlAuABcNk8BRVIiLDIoTA3LlzkZKSAk9PT+zcudNgygXAgmEyeIoqEZFhkclk2LZtGyZMmIAdO3ZAoTCsKzCzYJiIe5zgSURkEO7evav+3MHBAfPmzTO4cgGwYJgMXgODiEj/HThwANWqVcO8efOkjvLeWDBMBOdgEBHptz///BNeXl5IS0vD8ePHoVQqpY70XlgwTABv005EpN/CwsLQuXNnpKeno0uXLti2bRvMzc2ljvVeWDBMAG/TTkSkv/bt24cuXbogPT0d3t7eCA0NhVwulzrWe2PBMAHZEzzLFbWBuZlM4jRERJRt79698Pb2Rnp6Orp27YqQkBCjKBcAC4ZJ4CXCiYj0040bN5CRkYHu3bsbVbkAeLt2k8BTVImI9NOoUaNQoUIFeHp6qm/Bbiw4gmECeIoqEZH+OHjwIJ49e6Z+7OXlZXTlAmDBMAn3/k0GwFNUiYik9vvvv8PT0xPt2rVDYmKi1HF0igXDBPAQCRGR9Hbs2IHPPvsMmZmZqFy5MmxsjPtnMguGkUtMy8SzlEwAvAYGEZFUtm/fjp49eyIrKwt9+vTB+vXrYWFh3NMgWTCMXPYZJB/YymFnZdz/mImI9NFvv/0GHx8fZGVloW/fviZRLgAWDKPHS4QTEUln586d6nLRr18/rFu3zuCv0Jlfxl+hTBznXxARSad69eooUaIE2rZti7Vr15pMuQBYMIweCwYRkXSqVq2KU6dOoXTp0iZVLgAeIjF6d/9lwSAiKky//vor/vzzT/XjcuXKmVy5ADiCYfQ4B4OIqPBs2rQJvr6+kMvlOHXqFGrVqiV1JMlwBMOIvbpN+/+u4slTVImIdGrjxo3w9fWFSqXC559/jo8//ljqSJJiwTBisS9SkaUSkJub8TbtREQ6tGHDBnW5GDhwIH7++WeYmZn2r1geIjEiT5LSkZKRpX4cc/85AKBcUWvepp2ISEfWrVsHf39/CCEwaNAgLF++3OTLBcCCYTR2n3+EEZvP5vo1zr8gItKNqKgodbkYMmQIgoKCWC7+hwXDSFx+9OqmOZbmMlhZ/P9sZbmFGbrVLytVLCIio9a8eXP4+PigaNGiCAoKgkzG0eJsLBhG5vNPP0Sgl2lPLCIiKiwWFhbYsGEDzM3NWS7+g+M4REREGli9ejUGDBgAlUoF4FXJYLl4E0cwiIiI8mnlypUYPHgwAMDd3R29evWSOJH+4ggGERFRPvz888/qcjF69Gj4+PhInEi/sWAQERG9w/LlyzFkyBAAwJgxY7B48WIeFnkHFgwiIqK3CAoKwrBhwwAAY8eOxcKFC1ku8oEFg4iIKA93795FQEAAAGDcuHGYP38+y0U+cZInERFRHj788EOEhobi1KlTmD17NsuFBlgwiIiI/iMpKQn29vYAgC5duqBLly4SJzI8PERCRET0msWLF6NmzZq4ffu21FEMGgsGERHR/yxatAgBAQG4d+8efvvtN6njGDQWDCIiIgALFy7E2LFjAQBTp05Vf04Fw4JBREQmb/78+Rg3bhwAYNq0aZgxYwYndL4nFgwiIjJp33//PcaPHw8AmD59OsuFlvAsEiIiMllpaWnYtGkTAGDGjBmYNm2axImMBwsGERGZLIVCgfDwcGzfvl19nxHSDh4iISIik3P27Fn158WLF2e50AEWDCIiMimzZs1C/fr1sXLlSqmjGDUWDCIiMhmvz7N4+vSpxGmMG+dgEBGRScg+QwQA5s2bhwkTJkicyLixYBARkVETQmD69OmYOXMmgFenpX799dcSpzJ+LBhERGS0hBCYNm0aZs+eDQBYsGABr9BZSFgwiIjIJCxatAhjxoyROobJYMEgIiKjJZPJMHPmTLRv3x5NmzaVOo5J4VkkRERkVIQQWLVqFVJSUgC8KhksF4WPBYOIiIyGEAITJkzAoEGD0LlzZyiVSqkjmSweIiEiIqMghMD48eOxYMECAEDXrl1hbm4ucSrTxYJBREQGTwiBcePGYdGiRQCAoKAgDBs2TOJUpo0Fg4iIDJoQAgEBAViyZAkAYPny5RgyZIi0oYgFg4iIDNvUqVPV5WLFihW8cZme4CRPIiIyaN26dUOxYsXw888/s1zoEY5gEBGRQatfvz7++ecfFCtWTOoo9BqOYBARkUHJPlvk5MmT6mUsF/qHBYOIiAyGSqXC8OHDMX/+fLRv3563XNdjPERCREQGQaVSYdiwYfj5558hk8mwZMkSjlzoMRYMIiLSeyqVCkOHDsXKlSshk8kQHBwMX19fqWPRW7BgGAkhdQAiIh1RqVQYPHgwVq9eDTMzM6xbtw6ff/651LHoHVgwjMSp26+OQ5Z2VEichIhIu4KCgtTlYv369ejbt6/UkSgfWDCMwLW4JJy5+wwWZjJ41ysrdRwiIq0aOHAgwsLC0KdPH/Tp00fqOJRPLBhG4NdT9wAA7tVLooQ9RzCIyPCpVCrIZDLIZDIoFAr88ccfkMlkUsciDfA0VQOXmqHEb9EPAAC9G5eXOA0R0ftTKpXw9/fH119/DSFezTBjuTA8kheMoKAguLi4QKFQoHHjxjh16tRb11+yZAmqVq0Ka2trODs7Y8yYMUhLSyuktPpnz4VYJKVloVxRa7T4yEnqOERE7yW7XKxfvx5LlizB+fPnpY5EBSRpwQgJCUFAQAACAwMRHR2NOnXqwMPDA48fP851/c2bN2PixIkIDAzElStXsGbNGoSEhGDy5MmFnFx/ZB8e6d2oPMzM2PCJyHAplUr4+flhw4YNMDc3x5YtW1CnTh2pY1EBSVowFi1ahIEDB8Lf3x81atTAihUrYGNjg7Vr1+a6/vHjx9GsWTP06dMHLi4uaNeuHXr37v3OUQ9j9frkzh4Ny0kdh4iowLKysuDr64tNmzbBwsICISEh+Oyzz6SORe9BsoKRkZGBM2fOwN3d/f/DmJnB3d0dJ06cyHWbpk2b4syZM+pCcevWLezduxcdOnTI83XS09ORmJiY48NYcHInERmD7HKxefNmWFhYIDQ0FN27d5c6Fr0nyc4iSUhIgFKpRMmSJXMsL1myJK5evZrrNn369EFCQgKaN28OIQSysrIwZMiQtx4imTt3LmbMmKHV7Prg9cmdfTi5k4gM2LFjx7BlyxZYWFhg69at8Pb2ljoSaYHkkzw1ERUVhTlz5mDZsmWIjo7G9u3bsWfPHsyaNSvPbSZNmoQXL16oP+7fv1+IiXUne3KnczFrNOfkTiIyYK6urggODsa2bdtYLoyIZCMYTk5OMDc3R3x8fI7l8fHxKFWqVK7bTJ06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZmb/YlKysrWFlZaf8NSCz78EivTzi5k4gMT2ZmJp4/f47ixYsDAO8rYoQkG8GQy+Vo0KABIiIi1MtUKhUiIiLQpEmTXLdJSUl5o0SYm5sDgPpcaVPAyZ1EZMgyMzPRu3dvtGzZEnFxcVLHIR2R9EqeAQEB8PPzQ8OGDdGoUSMsWbIEycnJ8Pf3B/Cq0ZYtWxZz584FAHh5eWHRokWoV68eGjdujBs3bmDq1Knw8vJSFw1TsO3Mq8M8bWtwcicRGZbMzEz06tUL27dvh1wux8WLF/MctSbDJmnB8PHxwZMnTzBt2jTExcWhbt262L9/v3ri571793KMWEyZMgUymQxTpkzBw4cPUbx4cXh5eeHbb7+V6i1I4u+7zwAAHh/zm5KIDEdGRgZ69eqFHTt2QC6XY8eOHTnOJCTjIhOmdGwBQGJiIhwdHfHixQs4ODhIHUdjWUoVak4PQ1qmChFjXVGpuJ3UkYiI3ikjIwM9e/bE77//DisrK+zcuROenp5SxyINafI7lDc7MzA3nrxEWqYKdlYWqPCBrdRxiIjeKSMjAz169MCuXbtgZWWF33//HR4eHlLHIh0zqNNUCbjw4AUA4OMyDjx7hIgMwtOnT3Hp0iUoFArs2rWL5cJEcATDwFx8+Kpg1CrrKHESIqL8KVWqFCIjI3Hjxg20atVK6jhUSDiCYWDOZxeMciwYRKS/0tPTERUVpX7s7OzMcmFiWDAMSJZShSuxr+6lUpMjGESkp9LS0tCtWze4u7tj69atUschibBgGBBO8CQifZeWloauXbti7969kMvl+OCDD6SORBLhHAwDwgmeRKTPUlNT4e3tjT///BM2NjbYs2cP3NzcpI5FEmHBMCAXOMGTiPRUamoqunTpggMHDsDGxgZ79+6Fq6ur1LFIQiwYBuQCJ3gSkR5KT09H586dER4eDltbW+zduxctW7aUOhZJjHMwDAQneBKRvpLL5ahcuTJsbW2xb98+lgsCwIJhMDjBk4j0lUwmw08//YTo6Gi0aNFC6jikJ1gwDAQneBKRPklOTsbMmTORmZkJADAzM0OVKlUkTkX6hHMwDAQneBKRvkhOTkbHjh1x6NAh3Lp1C8HBwVJHIj3EEQwDwQmeRKQPXr58iQ4dOuDQoUNwcHDAkCFDpI5EeoojGAbg9QmeHMEgIqlkl4sjR47AwcEBf/75Jxo3bix1LNJTHMEwAK9P8HThBE8ikkBSUhLat2+PI0eOwNHREQcOHGC5oLfiCIYBOM8JnkQkISEEevTogaNHj6JIkSI4cOAAGjZsKHUs0nMcwTAAvEU7EUlJJpNh0qRJKFu2LMLDw1kuKF84gmEAOMGTiKTm6uqKGzduQKFQSB2FDARHMPQcJ3gSkRRevHgBLy8vXLx4Ub2M5YI0wREMPccJnkRU2J4/fw4PDw+cOnUKN27cwMWLF2Fubi51LDIwLBh6jhM8iagwPX/+HO3atcPp06fxwQcfYMuWLSwXVCA8RKLnOMGTiArLs2fP0LZtW5w+fRpOTk44ePAg6tSpI3UsMlAcwdBjSpVAxJXHAIB65YtKnIaIjNnTp0/Rtm1bREdHq8tFrVq1pI5FBowjGHrs8D9P8PB5KhytLdGmegmp4xCREZs8eTKio6NRvHhxREZGslzQe2PB0GO//nUPANCtflkoLHkMlIh0Z/78+fD29sbBgwdRs2ZNqeOQEeAhEj0Vn5iGiKuvDo/0aVRe4jREZIxSU1NhbW0NALC3t8eOHTskTkTGhCMYeir09H0oVQKfuBRF5ZL2UschIiOTkJCATz/9FHPnzpU6ChkpFgw9pFQJbDl9HwDQpzFHL4hIu548eYLWrVvj/Pnz+OGHH/D06VOpI5ERYsHQQ69P7mxfs7TUcYjIiDx+/BitW7fGhQsXUKpUKURFRaFYsWJSxyIjxDkYeoiTO4lIF7LLxaVLl1C6dGlERkaiatWqUsciI8URDD3DyZ1EpAvx8fFo1aoVLl26hDJlyiAqKorlgnSKIxh6hpM7iUgXwsLCcPnyZXW5qFy5stSRyMixYOgRTu4kIl3x9fVFWloaWrVqxXJBhYIFQ49wcicRaVNcXBysrKxQtOirWw0MGjRI4kRkSjgHQ49s/t/kzu71y3FyJxG9l9jYWLi5uaFdu3Z4/vy51HHIBLFg6Im4F2k4mD25s7GzxGmIyJA9evQIbm5uuHbtGuLj4/Hs2TOpI5EJYsHQE6F/v5rc2cilGD4qwcmdRFQwDx8+hJubG65fv44PP/wQhw4dQoUKFaSORSaIczD0gFIlEPK/yZ29OXpBRAX04MEDtGrVCjdu3MCHH36IqKgouLi4SB2LTBRHMPTA4euc3ElE7+f+/ftwc3PDjRs34OLiwnJBkmPB0AObT3FyJxG9n9TUVKSkpKBChQosF6QXeIhEYpzcSUTaUKVKFURGRsLa2hrly/M6OiQ9jmBIjJM7iaig7t69i4iICPXjqlWrslyQ3mDBkNDrkzt55U4i0sSdO3fg5uaGjh074uDBg1LHIXoDC4aEXp/c6VmzlNRxiMhAZJeLO3fuwNnZmTctI73EgiEhTu4kIk3dvn0brq6uuHv3LipXroyoqCiULVtW6lhEb2DBkAgndxKRpm7dugU3Nzfcu3cPVapUYbkgvcazSAqRSiVw/Oa/eJmeicirTzi5k4jyLfvy3/fv30fVqlURGRmJ0qV53RzSXywYhWjTX3cx9fdLOZZxcicR5UeJEiXQrFkzxMTE4ODBgywXpPdYMAqJEALrTtwFAFQpaQcHhSVcnGzRoRZ/SBDRu1lYWGDDhg14/vw5nJycpI5D9E4sGIXk77vPcOPxS1hbmuO3oU1hr7CUOhIR6bnr169j1apV+O6772BmZgYLCwuWCzIYLBiFZPNfr84Y6VynDMsFEb3TtWvX0KpVK8TGxsLOzg6BgYFSRyLSCM8iKQTPUzKw50IsAKA351wQ0TtcvXpVXS5q1qyJoUOHSh2JSGMcwSgEv0U/REaWCjVKO6BOOUep4xCRHssuF3FxcahVqxYiIiJQvHhxqWMRaYwjGDomhMCv/7ugVu/G5SGTySRORET66sqVK3Bzc0NcXBxq166NgwcPslyQwWLB0LHTd/5/cqd33TJSxyEiPZWWlgYPDw/Ex8ejbt26OHjwICd0kkFjwdCx7NELTu4kordRKBQICgpC48aNER4ejg8++EDqSETvhQVDh54lc3InEb2dEEL9uZeXF44fP85yQUbhvQpGWlqatnIYpe1nObmTiPJ2/vx5NGzYELdu3VIvMzPj331kHDT+l6xSqTBr1iyULVsWdnZ26m+MqVOnYs2aNVoPaKiEENj816srd3JyJxH917lz59C6dWtER0dj3LhxUsch0jqNC8bs2bMRHByM77//HnK5XL28Zs2aWL16tVbDGbLTd57h5pNkTu4kojfExMSgTZs2+Pfff9GwYUP+cUZGSeOCsX79eqxcuRJ9+/aFubm5enmdOnVw9epVrYYzZNmjF5zcSUSvO3v2rLpcfPLJJzhw4ACKFi0qdSwirdO4YDx8+BAfffTRG8tVKhUyMzO1EsrQPUvOwN6LcQB4t1Qi+n/R0dFo06YNnj59ikaNGuHAgQMoUqSI1LGIdELjglGjRg0cOXLkjeXbtm1DvXr1tBLK0L0+ubM2J3cSEV7Nyxo7diyePXuGxo0b488//4SjI38+kPHS+FLh06ZNg5+fHx4+fAiVSoXt27fj2rVrWL9+PXbv3q2LjAaFkzuJKDcymQxbt27FhAkTsHjxYjg4OEgdiUinNB7B6NKlC/744w+Eh4fD1tYW06ZNw5UrV/DHH3+gbdu2ushoUDi5k4he9++//6o/d3Jywpo1a1guyCQU6GZnLVq0wIEDB7SdxShwcicRZTt9+jQ8PDwwb948DBo0SOo4RIVK4xGMihUr5mjk2Z4/f46KFStqJZSh4uROIsp26tQpuLu749mzZ9i0aROUSqXUkYgKlcYF486dO7l+o6Snp+Phw4daCWWofot+wMmdRIS//voLbdu2RWJiIlq0aIE9e/bkOK2fyBTk+xDJrl271J+HhYXlmP2sVCoREREBFxcXrYYzJK/flr0PJ3cSmawTJ07Aw8MDSUlJaNmyJfbs2QM7OzupYxEVunwXDG9vbwCvZkL7+fnl+JqlpSVcXFywcOFCrYYzJKduP1VP7uzCyZ1EJun48ePw9PREUlIS3NzcsHv3btja2kodi0gS+S4YKpUKAFChQgWcPn0aTk5OOgtliHhbdiKKjIxEUlISWrVqhT/++IPlgkyaxmeR3L59Wxc5DBondxIRAEyePBllypSBj48PbGxspI5DJKkC3Rc4OTkZe/fuxYoVK/Djjz/m+NBUUFAQXFxcoFAo0LhxY5w6deqt6z9//hzDhw9H6dKlYWVlhSpVqmDv3r0FeRtawyt3Epmu6OhoJCcnA3h1CNnf35/lgggFGME4e/YsOnTogJSUFCQnJ6NYsWJISEiAjY0NSpQogVGjRuX7uUJCQhAQEIAVK1agcePGWLJkCTw8PHDt2jWUKFHijfUzMjLQtm1blChRAtu2bUPZsmVx9+5dya/lf+nRCwCAZ81SnNxJZEIOHz6MDh06oFGjRti9ezeLBdFrNB7BGDNmDLy8vPDs2TNYW1vj5MmTuHv3Lho0aIAFCxZo9FyLFi3CwIED4e/vjxo1amDFihWwsbHB2rVrc11/7dq1ePr0KXbu3IlmzZrBxcUFrq6uqFOnjqZvQyesLAo0IEREBujQoUNo3749kpOTYWlpyT8uiP5D49+IMTExGDt2LMzMzGBubo709HQ4Ozvj+++/x+TJk/P9PBkZGThz5gzc3d3/P4yZGdzd3XHixIlct9m1axeaNGmC4cOHo2TJkqhZsybmzJnz1gvYpKenIzExMccHEdH7iIqKUo/kenh4YOfOnbC2tpY6FpFe0bhgWFpawszs1WYlSpTAvXuvzp5wdHTE/fv38/08CQkJUCqVKFmyZI7lJUuWRFxcXK7b3Lp1C9u2bYNSqcTevXsxdepULFy4ELNnz87zdebOnQtHR0f1h7Ozc74zEhH918GDB9XlwtPTk+WCKA8az8GoV68eTp8+jcqVK8PV1RXTpk1DQkICNmzYgJo1a+oio5pKpUKJEiWwcuVKmJubo0GDBnj48CHmz5+PwMDAXLeZNGkSAgIC1I8TExNZMoioQA4ePIhOnTohNTUV7du3x/bt26FQKKSORaSXNC4Yc+bMQVJSEgDg22+/ha+vL4YOHYrKlStjzZo1+X4eJycnmJubIz4+Psfy+Ph4lCpVKtdtSpcuDUtLyxyX3K1evTri4uKQkZEBuVz+xjZWVlawsrLKdy4iorwUKVIECoUCrVu3xm+//cafLURvoXHBaNiwofrzEiVKYP/+/QV6YblcjgYNGiAiIkJ9lVCVSoWIiAiMGDEi122aNWuGzZs3Q6VSqQ/TXL9+HaVLl861XBARaVP9+vVx/PhxVKhQgeWC6B20dtpDdHQ0OnXqpNE2AQEBWLVqFdatW4crV65g6NChSE5Ohr+/PwDA19cXkyZNUq8/dOhQPH36FKNHj8b169exZ88ezJkzB8OHD9fW2yAiyuHPP//E8ePH1Y+rVavGckGUDxqNYISFheHAgQOQy+UYMGAAKlasiKtXr2LixIn4448/4OHhodGL+/j44MmTJ5g2bRri4uJQt25d7N+/Xz3x8969e+qRCgBwdnZGWFgYxowZg9q1a6Ns2bIYPXo0JkyYoNHrEhHlx/79++Ht7Q25XI4TJ07g448/ljoSkcHId8FYs2YNBg4ciGLFiuHZs2dYvXo1Fi1ahJEjR8LHxwcXL15E9erVNQ4wYsSIPA+JREVFvbGsSZMmOHnypMavQ0SkiX379qFr165IT09H+/btUblyZakjERmUfB8i+eGHH/Ddd98hISEBoaGhSEhIwLJly3DhwgWsWLGiQOWCiEgf7d27F97e3khPT0fXrl0RGhrKeV5EGsp3wbh58yZ69OgBAOjWrRssLCwwf/58lCtXTmfhiIgK2+7du9G1a1dkZGSge/fuCAkJgaUl75BMpKl8F4zU1FT1dfZlMhmsrKxQunRpnQUjIipsx48fR7du3ZCRkYHPPvsMv/76K8sFUQFpNMlz9erVsLOzAwBkZWUhODgYTk5OOdbR5GZnRET6pH79+nB3d4ednR02bdrEckH0HvJdMMqXL49Vq1apH5cqVQobNmzIsY5MJmPBICKDpVAosH37dlhYWMDCQuPLBBHRa/L9HXTnzh0dxiAiksaOHTtw8uRJzJs3DzKZjJf+JtISVnQiMlnbt2+Hj48PsrKyULduXfTu3VvqSERGQ2tX8iQiMiTbtm1Dz549kZWVhb59+6rPkiMi7WDBICKTs3XrVvTq1QtKpRL9+vXDunXrOOeCSMtYMIjIpISEhKB3795QKpXw9fXFL7/8kuMOzUSkHSwYRGQy7t+/j379+kGpVMLPzw9r165luSDSkQIVjJs3b2LKlCno3bs3Hj9+DODVdfsvXbqk1XBERNrk7OyM1atXo3///lizZg3LBZEOaVwwDh06hFq1auGvv/7C9u3b8fLlSwDAuXPnEBgYqPWARETvKzMzU/25r68vVq9ezXJBpGMaF4yJEydi9uzZ6tu2Z2vdujXvckpEemfjxo2oV68e4uLipI5CZFI0LhgXLlxA165d31heokQJJCQkaCUUEZE2bNiwAX5+frh06RJWrlwpdRwik6JxwShSpAhiY2PfWH727FmULVtWK6GIiN7XunXr4OfnB5VKhcGDB2PKlClSRyIyKRoXjF69emHChAmIi4uDTCaDSqXCsWPHMG7cOPj6+uoiIxGRRoKDg+Hv7w8hBIYMGYJly5bBzIwnzREVJo2/4+bMmYNq1arB2dkZL1++RI0aNdCyZUs0bdqUfyEQkeR++eUXfPnllxBCYNiwYSwXRBLR+NJ1crkcq1atwtSpU3Hx4kW8fPkS9erVQ+XKlXWRj4go39LS0jB37lwIITB8+HAsXboUMplM6lhEJknjgnH06FE0b94c5cuXR/ny5XWRiYioQBQKBSIiIrBu3Tp88803LBdEEtJ43LB169aoUKECJk+ejMuXL+siExGRRm7fvq3+3NnZGVOmTGG5IJKYxgXj0aNHGDt2LA4dOoSaNWuibt26mD9/Ph48eKCLfEREb/Xzzz+jSpUqCA0NlToKEb1G44Lh5OSEESNG4NixY7h58yZ69OiBdevWwcXFBa1bt9ZFRiKiXC1fvhxDhgxBVlYWTp8+LXUcInrNe02trlChAiZOnIh58+ahVq1aOHTokLZyERG91bJlyzBs2DAAwNixY/H9999LnIiIXlfggnHs2DEMGzYMpUuXRp8+fVCzZk3s2bNHm9mIiHL1008/Yfjw4QCAr7/+GvPnz+ecCyI9o/FZJJMmTcKWLVvw6NEjtG3bFj/88AO6dOkCGxsbXeQjIsph6dKlGDVqFABg/PjxmDdvHssFkR7SuGAcPnwYX3/9NXr27AknJyddZCIiytO1a9cAvLrx4pw5c1guiPSUxgXj2LFjushBRJQvS5cuRbt27eDl5cVyQaTH8lUwdu3ahfbt28PS0hK7du1667qdO3fWSjAiomy///472rdvD7lcDplMxp8zRAYgXwXD29sbcXFxKFGiBLy9vfNcTyaTQalUaisbEREWLlyIcePGwdvbG9u2bYO5ubnUkYgoH/JVMFQqVa6fExHp0vz58zF+/HgAQO3atXnTMiIDovF36/r165Genv7G8oyMDKxfv14roYiIvvvuO3W5CAwMxIwZMzjngsiAaFww/P398eLFizeWJyUlwd/fXyuhiMi0zZs3DxMnTgQATJ8+HdOnT5c2EBFpTOOzSIQQuf4V8eDBAzg6OmolFBGZrvnz52PSpEkAgJkzZ2Lq1KkSJyKigsh3wahXrx5kMhlkMhnatGkDC4v/31SpVOL27dvw9PTUSUgiMh2NGjWCjY0NJk2ahClTpkgdh4gKKN8FI/vskZiYGHh4eMDOzk79NblcDhcXF3Tv3l3rAYnItLi6uuLKlSsoX7681FGI6D3ku2AEBgYCAFxcXODj4wOFQqGzUERkWhYsWABPT0/UrFkTAFguiIyAxpM8/fz8WC6ISGumT5+Or7/+Gq1bt8a///4rdRwi0pJ8jWAUK1YM169fh5OTE4oWLfrWU8WePn2qtXBEZLyEEJg+fTpmzpwJ4NWNyz744AOJUxGRtuSrYCxevBj29vbqz3kuOhG9DyEEpk2bhtmzZwN4dYhk7NixEqciIm3KV8Hw8/NTf/7FF1/oKgsRmQAhBKZOnYpvv/0WALBo0SKMGTNG4lREpG0az8GIjo7GhQsX1I9///13eHt7Y/LkycjIyNBqOCIyPqtXr1aXi8WLF7NcEBkpjQvG4MGDcf36dQDArVu34OPjAxsbG2zdulV9WV8iorz06tULzZo1w5IlS/DVV19JHYeIdETjK3lev34ddevWBQBs3boVrq6u2Lx5M44dO4ZevXphyZIlWo5IRIbu9SsA29vbIyoqKsfF+ojI+Gg8giGEUN9RNTw8HB06dAAAODs7IyEhQbvpiMjgCSHw9ddfY+7cueplLBdExk/j7/KGDRti9uzZcHd3x6FDh7B8+XIAwO3bt1GyZEmtByQiwyWEwLhx47Bo0SIAgKenJ+rVqydxKiIqDBqPYCxZsgTR0dEYMWIEvvnmG3z00UcAgG3btqFp06ZaD0hEhkkIgYCAAHW5WL58OcsFkQnReASjdu3aOc4iyTZ//nyYm5trJRQRGTYhBMaMGYMffvgBAPDzzz9j0KBBEqciosJU4AOhZ86cwZUrVwAANWrUQP369bUWiogMlxACo0ePxtKlSwEAK1euxMCBAyVORUSFTeOC8fjxY/j4+ODQoUMoUqQIAOD58+do1aoVtmzZguLFi2s7IxEZkEOHDmHp0qWQyWRYtWoV+vfvL3UkIpKAxnMwRo4ciZcvX+LSpUt4+vQpnj59iosXLyIxMRGjRo3SRUYiMiBubm5YsmQJVq9ezXJBZMI0HsHYv38/wsPDUb16dfWyGjVqICgoCO3atdNqOCIyDCqVCsnJyep7Fo0ePVriREQkNY1HMFQqFSwtLd9Ybmlpqb4+BhGZDpVKhWHDhqFVq1Z4/vy51HGISE9oXDBat26N0aNH49GjR+plDx8+xJgxY9CmTRuthiMi/aZSqTBkyBD8/PPPiI6OxuHDh6WORER6QuOC8dNPPyExMREuLi6oVKkSKlWqhAoVKiAxMVE9a5yIjJ9KpcLgwYOxatUqmJmZYf369ejcubPUsYhIT2g8B8PZ2RnR0dGIiIhQn6ZavXp1uLu7az0cEeknlUqFgQMHYu3atepy0bdvX6ljEZEe0ahghISEYNeuXcjIyECbNm0wcuRIXeUiIj2lUqkwYMAA/PLLLzAzM8OGDRvQp08fqWMRkZ7Jd8FYvnw5hg8fjsqVK8Pa2hrbt2/HzZs3MX/+fF3mIyI9Exsbi/3798PMzAybNm1Cr169pI5ERHoo33MwfvrpJwQGBuLatWuIiYnBunXrsGzZMl1mIyI9VLZsWURGRmLr1q0sF0SUp3wXjFu3bsHPz0/9uE+fPsjKykJsbKxOghGR/lAqlYiJiVE/rlq1Krp16yZdICLSe/kuGOnp6bC1tf3/Dc3MIJfLkZqaqpNgRKQflEolvvjiC3z66acICwuTOg4RGQiNJnlOnToVNjY26scZGRn49ttv4ejoqF6WfWtmIjJ8WVlZ8PPzw+bNm2FhYYGXL19KHYmIDES+C0bLli1x7dq1HMuaNm2KW7duqR/LZDLtJSMiSWVlZcHX1xe//vorLCwsEBISwsMiRJRv+S4YUVFROoxBRPokKysLn3/+OUJCQmBhYYHQ0FB07dpV6lhEZEA0vtAWERm3rKws9O3bF6GhobC0tMTWrVvRpUsXqWMRkYFhwSCiN5ibm8PS0hLbtm3j5b+JqEA0vhcJERk3CwsLrF+/HseOHWO5IKICY8EgImRmZmLZsmVQKpUAXpWMTz75ROJURGTIWDCITFxGRgZ8fHwwfPhwDB8+XOo4RGQkClQwjhw5gs8//xxNmjTBw4cPAQAbNmzA0aNHtRqOiHQru1zs2LEDVlZWnMxJRFqjccH47bff4OHhAWtra5w9exbp6ekAgBcvXmDOnDlaD0hEupGRkYEePXpg586dsLKyws6dO9G+fXupYxGRkdC4YMyePRsrVqzAqlWrYGlpqV7erFkzREdHazUcEelGeno6PvvsM+zatQsKhQK7du2Cp6en1LGIyIhofJrqtWvX0LJlyzeWOzo64vnz59rIREQ61rdvX/zxxx/qctG2bVupIxGRkdF4BKNUqVK4cePGG8uPHj2KihUrFihEUFAQXFxcoFAo0LhxY5w6dSpf223ZsgUymQze3t4Fel0iU+Xn5wdHR0f88ccfLBdEpBMaF4yBAwdi9OjR+OuvvyCTyfDo0SNs2rQJ48aNw9ChQzUOEBISgoCAAAQGBiI6Ohp16tSBh4cHHj9+/Nbt7ty5g3HjxqFFixYavyaRqfPy8sKdO3fg7u4udRQiMlIaF4yJEyeiT58+aNOmDV6+fImWLVtiwIABGDx4MEaOHKlxgEWLFmHgwIHw9/dHjRo1sGLFCtjY2GDt2rV5bqNUKtG3b1/MmDGjwKMmRKYkLS0N/fv3z3FzwiJFikgXiIiMnsYFQyaT4ZtvvsHTp09x8eJFnDx5Ek+ePMGsWbM0fvGMjAycOXMmx19RZmZmcHd3x4kTJ/LcbubMmShRogT69+//ztdIT09HYmJijg8iU5KamoouXbpg7dq16NSpk/piWkREulTge5HI5XLUqFHjvV48ISEBSqUSJUuWzLG8ZMmSuHr1aq7bHD16FGvWrEFMTEy+XmPu3LmYMWPGe+UkMlTZ5eLAgQOwtbXFihUrYG5uLnUsIjIBGheMVq1aQSaT5fn1gwcPvlegt0lKSkK/fv2watUqODk55WubSZMmISAgQP04MTERzs7OuopIpDdSUlLQpUsXhIeHw9bWFvv27eOcJSIqNBoXjLp16+Z4nJmZiZiYGFy8eBF+fn4aPZeTkxPMzc0RHx+fY3l8fDxKlSr1xvo3b97EnTt34OXlpV6mUqkAvLp3wrVr11CpUqUc21hZWcHKykqjXESGLiUlBZ07d0ZERATs7Oywb98+NG/eXOpYRGRCNC4YixcvznX59OnT8fLlS42eSy6Xo0GDBoiIiFCfaqpSqRAREYERI0a8sX61atVw4cKFHMumTJmCpKQk/PDDDxyZIPqf8ePHq8vF/v370axZM6kjEZGJKfAcjP/6/PPP0ahRIyxYsECj7QICAuDn54eGDRuiUaNGWLJkCZKTk+Hv7w8A8PX1RdmyZTF37lwoFArUrFkzx/bZM+H/u5zIlE2fPh3nzp3Dd999h6ZNm0odh4hMkNYKxokTJ6BQKDTezsfHB0+ePMG0adMQFxeHunXrYv/+/eqJn/fu3YOZGW/6SvQuSqVSPYHTyckJhw8ffut8KSIiXdK4YHTr1i3HYyEEYmNj8ffff2Pq1KkFCjFixIhcD4kAQFRU1Fu3DQ4OLtBrEhmTly9folOnTujduzcGDx4MACwXRCQpjQuGo6NjjsdmZmaoWrUqZs6ciXbt2mktGBHlT1JSEjp06ICjR4/i3Llz6N69e77PsiIi0hWNCoZSqYS/vz9q1aqFokWL6ioTEeVTUlIS2rdvj2PHjsHR0RFhYWEsF0SkFzSa3GBubo527drxrqlEeiAxMRGenp7qcnHgwAE0atRI6lhERAAKcKnwmjVr5rifAREVvuxycfz4cRQpUgTh4eH45JNPpI5FRKSmccGYPXs2xo0bh927dyM2Npb3+SCSQGhoKE6cOIGiRYsiPDwcDRs2lDoSEVEO+Z6DMXPmTIwdOxYdOnQAAHTu3DnHLHUhBGQyGW+kRFQI+vfvjydPnsDDwwP169eXOg4R0RvyXTBmzJiBIUOGIDIyUpd5iCgPL168gIWFBWxtbSGTyTBp0iSpIxER5SnfBUMIAQBwdXXVWRgiyt3z58/Rrl072NnZYffu3bCxsZE6EhHRW2k0B4MX7iEqfM+ePUPbtm1x+vRpnD9/Hvfu3ZM6EhHRO2l0HYwqVaq8s2Q8ffr0vQIR0f97+vQp2rZti+joaDg5OSEiIgLVqlWTOhYR0TtpVDBmzJjxxpU8iUg3nj59Cnd3d5w9exZOTk44ePAgatWqJXUsIqJ80ahg9OrVCyVKlNBVFiL6n3///Rfu7u6IiYlB8eLFcfDgQd4xmIgMSr7nYHD+BVHhefToEe7evYsSJUogMjKS5YKIDI7GZ5EQke7VqlUL4eHhUCgUqFGjhtRxiIg0lu+CoVKpdJmDyOQlJCTg9u3b6kt+8wJaRGTINL5UOBFp35MnT9C6dWu0adMGJ0+elDoOEdF7Y8Egktjjx4/RunVrXLhwAXZ2dihatKjUkYiI3ptGZ5EQkXZll4tLly6hTJkyiIyMRJUqVaSORUT03jiCQSSR+Ph4tGrVCpcuXULZsmURFRXFckFERoMjGEQSePLkCVq1aoUrV66oy8VHH30kdSwiIq1hwSCSgL29PVxcXJCUlITIyEiWCyIyOiwYRBJQKBTYvn07Hj9+jPLly0sdh4hI6zgHg6iQPHr0CN999536onUKhYLlgoiMFkcwiArBw4cP0apVK/zzzz9QqVSYNGmS1JGIiHSKIxhEOvbgwQO4ubnhn3/+wYcffojevXtLHYmISOdYMIh06P79+3Bzc8ONGzfg4uKCQ4cOwcXFRepYREQ6x4JBpCPZ5eLmzZuoUKECoqKi8OGHH0odi4ioULBgEOlAeno62rRpg1u3bqFixYosF0RkclgwiHTAysoK06ZNQ5UqVRAVFcWzRYjI5LBgEOnI559/jvPnz8PZ2VnqKEREhY4Fg0hLbt++DU9PT8TGxqqXWVlZSZiIiEg6LBhEWnDr1i24ubkhLCwMQ4YMkToOEZHkWDCI3tPNmzfh5uaGe/fuoUqVKli+fLnUkYiIJMcreRK9h+xy8eDBA1StWhWRkZEoXbq01LGIiCTHEQyiArpx4wZcXV3x4MEDVKtWDVFRUSwXRET/w4JBVEADBgzAw4cPUb16dURGRqJUqVJSRyIi0hssGEQFtGHDBnh5ebFcEBHlgnMwiDSQmpoKa2trAICzszN27dolcSIiIv3EEQyifLp27RqqVq2K0NBQqaMQEek9FgyifLh69Src3Nxw//59zJs3D1lZWVJHIiLSaywYRO9w5coVuLm5IS4uDrVr18aff/4JCwseXSQiehsWDKK3uHz5Mtzc3BAfH486deogIiICTk5OUsciItJ7LBhEebh06RJatWqFx48fo27duiwXREQaYMEgysPmzZvx+PFj1KtXDxEREfjggw+kjkREZDB4IJkoD7Nnz0aRIkXQv39/FCtWTOo4REQGhSMYRK+5ceMGMjIyAAAymQxff/01ywURUQGwYBD9z7lz5/Dpp5+iZ8+e6pJBREQFw4JBBCAmJgatW7fGv//+i0ePHiE1NVXqSEREBo0Fg0ze2bNn0aZNGzx9+hSNGzfGgQMH4OjoKHUsIiKDxoJBJi06OlpdLj799FOEhYWxXBARaQELBpmsM2fOoE2bNnj27BmaNGnCckFEpEUsGGSykpOTkZGRgaZNm2L//v1wcHCQOhIRkdHgdTDIZLVs2RKRkZGoXr067O3tpY5DRGRUWDDIpJw6dQoKhQK1a9cGADRq1EjiRERExomHSMhknDx5Em3btkWbNm1w9epVqeMQERk1FgwyCSdOnEC7du2QmJiIGjVqoFy5clJHIiIyaiwYZPSOHz8ODw8PJCUlwdXVFXv37oWdnZ3UsYiIjBoLBhm1Y8eOqcuFm5sb9uzZA1tbW6ljEREZPRYMMlpnzpyBp6cnXr58idatW7NcEBEVIp5FQkarSpUqqFOnDhQKBXbt2gUbGxupIxERmQwWDDJa9vb22LdvH8zNzVkuiIgKGQ+RkFE5dOgQ5s+fr35sb2/PckFEJAGOYJDRiIyMRKdOnZCSkoLy5cvDx8dH6khERCaLIxhkFA4ePIiOHTsiJSUFnp6e6NKli9SRiIhMGgsGGbyIiAh06tQJqamp6NChA3bs2AGFQiF1LCIik8ZDJGTQwsPD4eXlhbS0NHTo0AHbt2+HlZWV1LGIiEweRzDIYD18+BCdO3dGWloaOnbsyHJBRKRHOIJBBqts2bKYN28ewsPDsXXrVpYLIiI9whEMMjhCCPXno0aNws6dO1kuiIj0DAsGGZR9+/ahRYsWePbsmXqZmRn/GRMR6Rv+ZCaDsXfvXnh7e+PYsWM5LqZFRET6hwWDDMLu3bvRtWtXZGRkoHv37pgxY4bUkYiI6C1YMEjv/fHHH+jWrRsyMjLw2Wef4ddff4WlpaXUsYiI6C30omAEBQXBxcUFCoUCjRs3xqlTp/Jcd9WqVWjRogWKFi2KokWLwt3d/a3rk2HbtWsXunfvjszMTPTo0QObN29muSAiMgCSF4yQkBAEBAQgMDAQ0dHRqFOnDjw8PPD48eNc14+KikLv3r0RGRmJEydOwNnZGe3atcPDhw8LOTnpWnp6OkaPHo3MzEz4+PiwXBARGRDJC8aiRYswcOBA+Pv7o0aNGlixYgVsbGywdu3aXNfftGkThg0bhrp166JatWpYvXo1VCoVIiIiCjk56ZqVlRXCwsIwcuRIbNy4ERYWvGwLEZGhkLRgZGRk4MyZM3B3d1cvMzMzg7u7O06cOJGv50hJSUFmZiaKFSuW69fT09ORmJiY44P0W0JCgvrzKlWq4Mcff2S5ICIyMJIWjISEBCiVSpQsWTLH8pIlSyIuLi5fzzFhwgSUKVMmR0l53dy5c+Ho6Kj+cHZ2fu/cpDvbtm1DhQoVEBYWJnUUIiJ6D5IfInkf8+bNw5YtW95698xJkybhxYsX6o/79+8XckrKr61bt6JXr154+fIltm3bJnUcIiJ6D5KOOzs5OcHc3Bzx8fE5lsfHx6NUqVJv3XbBggXq+1DUrl07z/WsrKx4GWkDEBoaij59+kCpVMLX1xcrVqyQOhIREb0HSUcw5HI5GjRokGOCZvaEzSZNmuS53ffff49Zs2Zh//79aNiwYWFEJR3asmWLulz4+flh7dq1MDc3lzoWERG9B8lnzgUEBMDPzw8NGzZEo0aNsGTJEiQnJ8Pf3x8A4Ovri7Jly2Lu3LkAgO+++w7Tpk3D5s2b4eLiop6rYWdnBzs7O8neBxXMr7/+is8//xwqlQr+/v5YtWoVywURkRGQvGD4+PjgyZMnmDZtGuLi4lC3bl3s379fPfHz3r17OW5mtXz5cvUVHV8XGBiI6dOnF2Z00oJ9+/ZBpVLhyy+/xKpVq3jjMiIiIyF5wQCAESNGYMSIEbl+LSoqKsfjO3fu6D4QFZq1a9fC1dUV/v7+LBdEREaEP9Gp0B09ehRKpRIAYGFhgf79+7NcEBEZGf5Up0K1bt06tGzZEv3791eXDCIiMj4sGFRogoOD4e/vDyEErK2tIZPJpI5EREQ6woJBhWLt2rX48ssvIYTA0KFDERQUxMMiRERGjD/hSefWrFmDAQMGQAiBYcOGsVwQEZkA/pQnnXq9XIwYMQI//fQTD40QEZkAvThNlYxXiRIlYGlpiaFDh2LJkiUsF0REJoIFg3TKy8sLZ86cQc2aNVkuiIhMCA+RkNatW7cON2/eVD+uVasWywURkYlhwSCtWrZsGb744gu0atUKCQkJUschIiKJsGCQ1gQFBWH48OEAXt1j5oMPPpA4ERERSYUFg7Ri6dKl6vvJjB8/Ht9//z0PixARmTAWDHpvP/74I0aNGgUAmDBhAubNm8dyQURk4lgw6L1s3LgRo0ePBgBMmjQJc+fOZbkgIiKepkrvx9PTE7Vr14aXlxdmzZrFckFERABYMOg9OTk54fjx47CxsWG5ICIiNR4iIY3Nnz8fK1asUD+2tbVluSAiohw4gkEa+e677zBx4kQAwCeffIIGDRpInIiIiPQRRzAo3+bNm6cuFzNmzGC5ICKiPLFgUL7MmTMHkyZNAgDMmjUL06ZNkzgRERHpMx4ioXf69ttvMWXKFPXnkydPljgRERHpOxYMeqvDhw+ry8XroxhERERvw4JBb9WyZUtMmzYNNjY2mDBhgtRxiIjIQLBg0BuEEMjMzIRcLgfwakInERGRJjjJk3IQQiAwMBAeHh5ISUmROg4RERkoFgxSE0Jg2rRpmDVrFqKiorB7926pIxERkYHiIRIC8KpcTJkyBXPmzAEALFq0CD179pQ4FRERGSoWDIIQApMnT8a8efMAAIsXL8ZXX30lbSgiIjJoLBgmTgiBSZMm4bvvvgMA/PDDDxg1apTEqYiIyNCxYJi4R48eYeXKlQCApUuXYsSIERInIiIiY8CCYeLKli2LiIgI/P333xg4cKDUcYiIyEiwYJggIQTu3LmDChUqAADq1auHevXqSZyKiIiMCU9TNTFCCIwdOxZ16tTBiRMnpI5DRERGigXDhAghMGbMGCxevBhJSUm4dOmS1JGIiMhI8RCJiRBCYPTo0Vi6dCkAYOXKlRgwYIDEqYiIyFixYJgAIQRGjhyJoKAgAMCqVatYLoiISKdYMIycEAIjRozAsmXLIJPJsHr1anz55ZdSxyIiIiPHgmHkMjMzcefOHchkMqxZswb+/v5SRyIiIhPAgmHk5HI5fvvtNxw6dAgeHh5SxyEiIhPBs0iMkEqlwtatWyGEAAAoFAqWCyIiKlQsGEZGpVJhyJAh6NmzJ8aPHy91HCIiMlE8RGJEVCoVBg0ahDVr1sDMzAx169aVOhIREZkoFgwjoVKpMHDgQKxduxZmZmbYsGED+vTpI3UsIiIyUSwYRkCpVGLAgAEIDg6GmZkZNm3ahF69ekkdi4iITBjnYBiBQYMGITg4GObm5ti8eTPLBRERSY4Fwwi0atUKcrkcmzdvho+Pj9RxiIiIeIjEGHz++edwdXWFs7Oz1FGIiIgAcATDIGVlZWHixImIjY1VL2O5ICIifcKCYWCysrLg6+uL7777Dh4eHsjKypI6EhER0Rt4iMSAZGVloV+/ftiyZQssLCwwc+ZMWFjwfyEREekf/nYyEFlZWejbty9CQ0NhaWmJrVu3okuXLlLHIiIiyhULhgHIzMxE3759sXXrVlhaWuK3336Dl5eX1LGIiIjyxDkYBmDChAnYunUr5HI5tm/fznJBRER6jwXDAAQEBODjjz/G9u3b0alTJ6njEBERvRMPkegpIQRkMhkAoFy5coiJieGETiIiMhgcwdBDGRkZ6NGjB0JCQtTLWC6IiMiQsGDomfT0dHz22Wf47bff0L9/fzx58kTqSERERBrjn8V6JLtc7N69GwqFAtu3b0fx4sWljkVERKQxFgw9kZ6eju7du2PPnj1QKBTYtWsX2rZtK3UsIiKiAmHB0ANpaWno3r079u7dC4VCgT/++APu7u5SxyIiIiowzsHQA+vWrcPevXthbW2N3bt3s1wQEZHB4wiGHhg0aBCuX7+Ojh07onXr1lLHISIiem8sGBJJTU2Fubk55HI5ZDIZFi5cKHUkIiIireEhEgmkpqaiS5cu6NmzJzIyMqSOQ0REpHUcwShkKSkp6NKlC8LDw2Fra4urV6+idu3aUsciIiLSKhaMQpSSkgIvLy8cPHgQtra22LdvH8sFEREZJR4iKSTJycno1KkTDh48CDs7O+zfvx8tWrSQOhYREZFOcASjEGSXi6ioKNjb22P//v1o2rSp1LGIiIh0hgWjEFy9ehWnT5+Gvb09wsLC0KRJE6kjERER6RQLRiFo0KAB9uzZA7lcznJBREQmgQVDR16+fIkHDx6gWrVqAABXV1eJExERERUeTvLUgaSkJLRv3x4tWrTAhQsXpI5DRERU6FgwtCwxMRGenp44evQoMjMzkZaWJnUkIiKiQqcXBSMoKAguLi5QKBRo3LgxTp069db1t27dimrVqkGhUKBWrVrYu3dvISV9u7T0dHh6euL48eMoUqQIwsPD8cknn0gdi4iIqNBJXjBCQkIQEBCAwMBAREdHo06dOvDw8MDjx49zXf/48ePo3bs3+vfvj7Nnz8Lb2xve3t64ePFiISd/0+pVq3DixAkULVoU4eHhaNiwodSRiIiIJCETQggpAzRu3BiffPIJfvrpJwCASqWCs7MzRo4ciYkTJ76xvo+PD5KTk7F79271sk8//RR169bFihUr3vl6iYmJcHR0xIsXL+Dg4KCV9zBy42n8cfExnkWuhfk/kQgPD0f9+vW18txERET6QpPfoZKOYGRkZODMmTNwd3dXLzMzM4O7uztOnDiR6zYnTpzIsT4AeHh45Ll+eno6EhMTc3xom0z26r/WNjaIiIhguSAiIpMnacFISEiAUqlEyZIlcywvWbIk4uLict0mLi5Oo/Xnzp0LR0dH9Yezs7N2wr+mcqkiqFfOAVPHjkS9evW0/vxERESGxuivgzFp0iQEBASoHycmJmq9ZIxsUxkj21TW6nMSEREZMkkLhpOTE8zNzREfH59jeXx8PEqVKpXrNqVKldJofSsrK1hZWWknMBEREeWLpIdI5HI5GjRogIiICPUylUqFiIiIPC+p3aRJkxzrA8CBAwd4CW4iIiI9IvkhkoCAAPj5+aFhw4Zo1KgRlixZguTkZPj7+wMAfH19UbZsWcydOxcAMHr0aLi6umLhwoXo2LEjtmzZgr///hsrV66U8m0QERHRayQvGD4+Pnjy5AmmTZuGuLg41K1bF/v371dP5Lx37x7MzP5/oKVp06bYvHkzpkyZgsmTJ6Ny5crYuXMnatasKdVbICIiov+Q/DoYhU0X18EgIiIyBQZzHQwiIiIyTiwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdZLfrr2wZd88NjExUeIkREREhiX7d2d+bsRucgUjKSkJAODs7CxxEiIiIsOUlJQER0fHt64jE/mpIUZEpVLh0aNHsLe3h0wm08pzJiYmwtnZGffv34eDg4NWntPUcZ9qH/epdnF/ah/3qXbpYn8KIZCUlIQyZcrAzOztsyxMbgTDzMwM5cqV08lzOzg48JtCy7hPtY/7VLu4P7WP+1S7tL0/3zVykY2TPImIiEjrWDCIiIhI61gwtMDKygqBgYGwsrKSOorR4D7VPu5T7eL+1D7uU+2Sen+a3CRPIiIi0j2OYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWDkU1BQEFxcXKBQKNC4cWOcOnXqretv3boV1apVg0KhQK1atbB3795CSmo4NNmnq1atQosWLVC0aFEULVoU7u7u7/x/YGo0/TeabcuWLZDJZPD29tZtQAOk6T59/vw5hg8fjtKlS8PKygpVqlTh9/5rNN2fS5YsQdWqVWFtbQ1nZ2eMGTMGaWlphZRW/x0+fBheXl4oU6YMZDIZdu7c+c5toqKiUL9+fVhZWeGjjz5CcHCw7gIKeqctW7YIuVwu1q5dKy5duiQGDhwoihQpIuLj43Nd/9ixY8Lc3Fx8//334vLly2LKlCnC0tJSXLhwoZCT6y9N92mfPn1EUFCQOHv2rLhy5Yr44osvhKOjo3jw4EEhJ9dPmu7PbLdv3xZly5YVLVq0EF26dCmcsAZC032anp4uGjZsKDp06CCOHj0qbt++LaKiokRMTEwhJ9dPmu7PTZs2CSsrK7Fp0yZx+/ZtERYWJkqXLi3GjBlTyMn11969e8U333wjtm/fLgCIHTt2vHX9W7duCRsbGxEQECAuX74sli5dKszNzcX+/ft1ko8FIx8aNWokhg8frn6sVCpFmTJlxNy5c3Ndv2fPnqJjx445ljVu3FgMHjxYpzkNiab79L+ysrKEvb29WLduna4iGpSC7M+srCzRtGlTsXr1auHn58eC8R+a7tPly5eLihUrioyMjMKKaFA03Z/Dhw8XrVu3zrEsICBANGvWTKc5DVV+Csb48ePFxx9/nGOZj4+P8PDw0EkmHiJ5h4yMDJw5cwbu7u7qZWZmZnB3d8eJEydy3ebEiRM51gcADw+PPNc3NQXZp/+VkpKCzMxMFCtWTFcxDUZB9+fMmTNRokQJ9O/fvzBiGpSC7NNdu3ahSZMmGD58OEqWLImaNWtizpw5UCqVhRVbbxVkfzZt2hRnzpxRH0a5desW9u7diw4dOhRKZmNU2L+bTO5mZ5pKSEiAUqlEyZIlcywvWbIkrl69mus2cXFxua4fFxens5yGpCD79L8mTJiAMmXKvPHNYooKsj+PHj2KNWvWICYmphASGp6C7NNbt27h4MGD6Nu3L/bu3YsbN25g2LBhyMzMRGBgYGHE1lsF2Z99+vRBQkICmjdvDiEEsrKyMGTIEEyePLkwIhulvH43JSYmIjU1FdbW1lp9PY5gkMGZN28etmzZgh07dkChUEgdx+AkJSWhX79+WLVqFZycnKSOYzRUKhVKlCiBlStXokGDBvDx8cE333yDFStWSB3NIEVFRWHOnDlYtmwZoqOjsX37duzZswezZs2SOhrlE0cw3sHJyQnm5uaIj4/PsTw+Ph6lSpXKdZtSpUpptL6pKcg+zbZgwQLMmzcP4eHhqF27ti5jGgxN9+fNmzdx584deHl5qZepVCoAgIWFBa5du4ZKlSrpNrSeK8i/0dKlS8PS0hLm5ubqZdWrV0dcXBwyMjIgl8t1mlmfFWR/Tp06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZm/PtYU3n9bnJwcND66AXAEYx3ksvlaNCgASIiItTLVCoVIiIi0KRJk1y3adKkSY71AeDAgQN5rm9qCrJPAeD777/HrFmzsH//fjRs2LAwohoETfdntWrVcOHCBcTExKg/OnfujFatWiEmJgbOzs6FGV8vFeTfaLNmzXDjxg11WQOA69evo3Tp0iZdLoCC7c+UlJQ3SkR2eRO8hVaBFPrvJp1MHTUyW7ZsEVZWViI4OFhcvnxZDBo0SBQpUkTExcUJIYTo16+fmDhxonr9Y8eOCQsLC7FgwQJx5coVERgYyNNU/0PTfTpv3jwhl8vFtm3bRGxsrPojKSlJqregVzTdn//Fs0jepOk+vXfvnrC3txcjRowQ165dE7t37xYlSpQQs2fPluot6BVN92dgYKCwt7cXv/76q7h165b4888/RaVKlUTPnj2legt6JykpSZw9e1acPXtWABCLFi0SZ8+eFXfv3hVCCDFx4kTRr18/9frZp6l+/fXX4sqVKyIoKIinqeqDpUuXivLlywu5XC4aNWokTp48qf6aq6ur8PPzy7F+aGioqFKlipDL5eLjjz8We/bsKeTE+k+Tffrhhx8KAG98BAYGFn5wPaXpv9HXsWDkTtN9evz4cdG4cWNhZWUlKlasKL799luRlZVVyKn1lyb7MzMzU0yfPl1UqlRJKBQK4ezsLIYNGyaePXtW+MH1VGRkZK4/F7P3o5+fn3B1dX1jm7p16wq5XC4qVqwofvnlF53l4+3aiYiISOs4B4OIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg8jIBAcHo0iRIlLHKDCZTIadO3e+dZ0vvvgC3t7ehZKHiAqGBYNID33xxReQyWRvfNy4cUPqaAgODlbnMTMzQ7ly5eDv74/Hjx9r5fljY2PRvn17AMCdO3cgk8kQExOTY50ffvgBwcHBWnm9vEyfPl39Ps3NzeHs7IxBgwbh6dOnGj0PyxCZKt6unUhPeXp64pdffsmxrHjx4hKlycnBwQHXrl2DSqXCuXPn4O/vj0ePHiEsLOy9nzuv23e/ztHR8b1fJz8+/vhjhIeHQ6lU4sqVK/jyyy/x4sULhISEFMrrExkyjmAQ6SkrKyuUKlUqx4e5uTkWLVqEWrVqwdbWFs7Ozhg2bBhevnyZ5/OcO3cOrVq1gr29PRwcHNCgQQP8/fff6q8fPXoULVq0gLW1NZydnTFq1CgkJye/NZtMJkOpUqVQpkwZtG/fHqNGjUJ4eDhSU1OhUqkwc+ZMlCtXDlZWVqhbty7279+v3jYjIwMjRoxA6dKloVAo8OGHH2Lu3Lk5njv7EEmFChUAAPXq1YNMJoObmxuAnKMCK1euRJkyZXLcJh0AunTpgi+//FL9+Pfff0f9+vWhUChQsWJFzJgxA1lZWW99nxYWFihVqhTKli0Ld3d39OjRAwcOHFB/XalUon///qhQoQKsra1RtWpV/PDDD+qvT58+HevWrcPvv/+uHg2JiooCANy/fx89e/ZEkSJFUKxYMXTp0gV37tx5ax4iQ8KCQWRgzMzM8OOPP+LSpUtYt24dDh48iPHjx+e5ft++fVGuXDmcPn0aZ86cwcSJE2FpaQkAuHnzJjw9PdG9e3ecP38eISEhOHr0KEaMGKFRJmtra6hUKmRlZeGHH37AwoULsWDBApw/fx4eHh7o3Lkz/vnnHwDAjz/+iF27diE0NBTXrl3Dpk2b4OLikuvznjp1CgAQHh6O2NhYbN++/Y11evTogX///ReRkZHqZU+fPsX+/fvRt29fAMCRI0fg6+uL0aNH4/Lly/j5558RHByMb7/9Nt/v8c6dOwgLC4NcLlcvU6lUKFeuHLZu3YrLly9j2rRpmDx5MkJDQwEA48aNQ8+ePeHp6YnY2FjExsaiadOmyMzMhIeHB+zt7XHkyBEcO3YMdnZ28PT0REZGRr4zEek1nd2nlYgKzM/PT5ibmwtbW1v1x2effZbrulu3bhUffPCB+vEvv/wiHB0d1Y/t7e1FcHBwrtv2799fDBo0KMeyI0eOCDMzM5GamprrNv99/uvXr4sqVaqIhg0bCiGEKFOmjPj2229zbPPJJ5+IYcOGCSGEGDlypGjdurVQqVS5Pj8AsWPHDiGEELdv3xYAxNmzZ3Os89/by3fp0kV8+eWX6sc///yzKFOmjFAqlUIIIdq0aSPmzJmT4zk2bNggSpcunWsGIYQIDAwUZmZmwtbWVigUCvWtsBctWpTnNkIIMXz4cNG9e/c8s2a/dtWqVXPsg/T0dGFtbS3CwsLe+vxEhoJzMIj0VKtWrbB8+XL1Y1tbWwCv/pqfO3curl69isTERGRlZSEtLQ0pKSmwsbF543kCAgIwYMAAbNiwQT3MX6lSJQCvDp+cP38emzZtUq8vhIBKpcLt27dRvXr1XLO9ePECdnZ2UKlUSEtLQ/PmzbF69WokJibi0aNHaNasWY71mzVrhnPnzgF4dXijbdu2qFq1Kjw9PdGpUye0a9fuvfZV3759MXDgQCxbtgxWVlbYtGkTevXqBTMzM/X7PHbsWI4RC6VS+db9BgBVq1bFrl27kJaWho0bNyImJgYjR47MsU5QUBDWrl2Le/fuITU1FRkZGahbt+5b8547dw43btyAvb19juVpaWm4efNmAfYAkf5hwSDSU7a2tvjoo49yLLtz5w46deqEoUOH4ttvv0WxYsVw9OhR9O/fHxkZGbn+opw+fTr69OmDPXv2YN++fQgMDMSWLVvQtWtXvHz5EoMHD8aoUaPe2K58+fJ5ZrO3t0d0dDTMzMxQunRpWFtbAwASExPf+b7q16+P27dvY9++fQgPD0fPnj3h7u6Obdu2vXPbvHh5eUEIgT179uCTTz7BkSNHsHjxYvXXX758iRkzZqBbt25vbKtQKPJ8Xrlcrv5/MG/ePHTs2BEzZszArFmzAABbtmzBuHHjsHDhQjRp0gT29vaYP38+/vrrr7fmffnyJRo0aJCj2GXTl4m8RO+LBYPIgJw5cwYqlQoLFy5U/3Wefbz/bapUqYIqVapgzJgx6N27N3755Rd07doV9evXx+XLl98oMu9iZmaW6zYODg4oU6YMjh07BldXV/XyY8eOoVGjRjnW8/HxgY+PDz777DN4enri6dOnKFasWI7ny57voFQq35pHoVCgW7du2LRpE27cuIGqVauifv366q/Xr18f165d0/h9/teUKVPQunVrDB06VP0+mzZtimHDhqnX+e8IhFwufyN//fr1ERISghIlSsDBweG9MhHpK07yJDIgH330ETIzM7F06VLcunULGzZswIoVK/JcPzU1FSNGjEBUVBTu3r2LY8eO4fTp0+pDHxMmTMDx48cxYsQIxMTE4J9//sHvv/+u8STP13399df47rvvEBISgmvXrmHixImIiYnB6NGjAQCLFi3Cr7/+iqtXr+L69evYunUrSpUqlevFwUqUKAFra2vs378f8fHxePHiRZ6v27dvX+zZswdr165VT+7MNm3aNKxfvx4zZszApUuXcOXKFWzZsgVTpkzR6L01adIEtWvXxpw5cwAAlStXxt9//42wsDBcv34dU6dOxenTp3Ns4+LigvPnz+PatWtISEhAZmYm+vbtCycnJ3Tp0gVHjhzB7du3ERUVhVGjRuHBgwcaZSLSW1JPAiGiN+U2MTDbokWLROnSpYW1tbXw8PAQ69evFwDEs2fPhBA5J2Gmp6eLXr16CWdnZyGXy0WZMmXEiBEjckzgPHXqlGjbtq2ws7MTtra2onbt2m9M0nzdfyd5/pdSqRTTp08XZcuWFZaWlqJOnTpi37596q+vXLlS1K1bV9ja2goHBwfRpk0bER0drf46XpvkKYQQq1atEs7OzsLMzEy4urrmuX+USqUoXbq0ACBu3rz5Rq79+/eLpk2bCmtra+Hg4CAaNWokVq5cmef7CAwMFHXq1Hlj+a+//iqsrKzEvXv3RFpamvjiiy+Eo6OjKFKkiBg6dKiYOHFiju0eP36s3r8ARGRkpBBCiNjYWOHr6yucnJyElZWVqFixohg4cKB48eJFnpmIDIlMCCGkrThERERkbHiIhIiIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi07v8A1k+hWenkwRsAAAAASUVORK5CYII=", + "text/plain": [ + "
                                " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import roc_curve, roc_auc_score\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "y_scores = model.predict_proba(X_test)\n", + "# calculate ROC curve\n", + "fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])\n", + "\n", + "# plot ROC curve\n", + "fig = plt.figure(figsize=(6, 6))\n", + "# Plot the diagonal 50% line\n", + "plt.plot([0, 1], [0, 1], 'k--')\n", + "# Plot the FPR and TPR achieved by our model\n", + "plt.plot(fpr, tpr)\n", + "plt.xlabel('False Positive Rate')\n", + "plt.ylabel('True Positive Rate')\n", + "plt.title('ROC Curve')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.9749908725812341\n" + ] + } + ], + "source": [ + "# Calculate AUC score\n", + "auc = roc_auc_score(y_test,y_scores[:,1])\n", + "print(auc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "vscode": { + "interpreter": { + "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" + } + }, + "coopTranslator": { + "original_hash": "ef50cc584e0b79412610cc7da15e1f86", + "translation_date": "2025-09-04T01:20:03+00:00", + "source_file": "2-Regression/4-Logistic/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/hi/2-Regression/README.md b/translations/hi/2-Regression/README.md new file mode 100644 index 000000000..cfce1f401 --- /dev/null +++ b/translations/hi/2-Regression/README.md @@ -0,0 +1,54 @@ + +# मशीन लर्निंग के लिए रिग्रेशन मॉडल +## क्षेत्रीय विषय: उत्तरी अमेरिका में कद्दू की कीमतों के लिए रिग्रेशन मॉडल 🎃 + +उत्तरी अमेरिका में, कद्दू अक्सर हैलोवीन के लिए डरावने चेहरों में तराशे जाते हैं। आइए इन दिलचस्प सब्जियों के बारे में और जानें! + +![jack-o-lanterns](../../../translated_images/jack-o-lanterns.181c661a9212457d7756f37219f660f1358af27554d856e5a991f16b4e15337c.hi.jpg) +> फोटो बेथ ट्यूट्सचमैन द्वारा अनस्प्लैश पर + +## आप क्या सीखेंगे + +[![रिग्रेशन का परिचय](https://img.youtube.com/vi/5QnJtDad4iQ/0.jpg)](https://youtu.be/5QnJtDad4iQ "रिग्रेशन परिचय वीडियो - देखने के लिए क्लिक करें!") +> 🎥 ऊपर दी गई छवि पर क्लिक करें इस पाठ के लिए एक त्वरित परिचय वीडियो देखने के लिए + +इस खंड के पाठ मशीन लर्निंग के संदर्भ में रिग्रेशन के प्रकारों को कवर करते हैं। रिग्रेशन मॉडल चर के बीच _संबंध_ निर्धारित करने में मदद कर सकते हैं। इस प्रकार का मॉडल लंबाई, तापमान, या आयु जैसे मानों की भविष्यवाणी कर सकता है, जिससे यह डेटा बिंदुओं का विश्लेषण करते हुए चर के बीच संबंधों को उजागर करता है। + +इस पाठ श्रृंखला में, आप लीनियर और लॉजिस्टिक रिग्रेशन के बीच के अंतर को जानेंगे, और कब एक को दूसरे पर प्राथमिकता देनी चाहिए। + +[![शुरुआती के लिए मशीन लर्निंग - मशीन लर्निंग के लिए रिग्रेशन मॉडल का परिचय](https://img.youtube.com/vi/XA3OaoW86R8/0.jpg)](https://youtu.be/XA3OaoW86R8 "शुरुआती के लिए मशीन लर्निंग - मशीन लर्निंग के लिए रिग्रेशन मॉडल का परिचय") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें रिग्रेशन मॉडल का परिचय देने वाला एक छोटा वीडियो देखने के लिए। + +इस पाठ समूह में, आप मशीन लर्निंग कार्यों को शुरू करने के लिए सेटअप करेंगे, जिसमें नोटबुक्स को प्रबंधित करने के लिए विजुअल स्टूडियो कोड को कॉन्फ़िगर करना शामिल है, जो डेटा वैज्ञानिकों के लिए एक सामान्य वातावरण है। आप Scikit-learn, मशीन लर्निंग के लिए एक लाइब्रेरी, के बारे में जानेंगे और अपने पहले मॉडल बनाएंगे, इस अध्याय में रिग्रेशन मॉडल पर ध्यान केंद्रित करते हुए। + +> ऐसे उपयोगी लो-कोड टूल्स हैं जो आपको रिग्रेशन मॉडल के साथ काम करने के बारे में सीखने में मदद कर सकते हैं। इस कार्य के लिए [Azure ML](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) आज़माएं। + +### पाठ + +1. [टूल्स ऑफ द ट्रेड](1-Tools/README.md) +2. [डेटा प्रबंधन](2-Data/README.md) +3. [लीनियर और पॉलिनोमियल रिग्रेशन](3-Linear/README.md) +4. [लॉजिस्टिक रिग्रेशन](4-Logistic/README.md) + +--- +### क्रेडिट्स + +"रिग्रेशन के साथ मशीन लर्निंग" को ♥️ के साथ [जेन लूपर](https://twitter.com/jenlooper) द्वारा लिखा गया है। + +♥️ क्विज योगदानकर्ताओं में शामिल हैं: [मुहम्मद साकिब खान इनान](https://twitter.com/Sakibinan) और [ऑर्नेला अल्टुन्यान](https://twitter.com/ornelladotcom) + +कद्दू डेटा सेट का सुझाव [Kaggle पर इस प्रोजेक्ट](https://www.kaggle.com/usda/a-year-of-pumpkin-prices) द्वारा दिया गया है और इसका डेटा [स्पेशलिटी क्रॉप्स टर्मिनल मार्केट्स स्टैंडर्ड रिपोर्ट्स](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice) से लिया गया है, जिसे संयुक्त राज्य कृषि विभाग द्वारा वितरित किया गया है। हमने वितरण को सामान्य बनाने के लिए विविधता के आधार पर रंग के कुछ बिंदु जोड़े हैं। यह डेटा सार्वजनिक डोमेन में है। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/3-Web-App/1-Web-App/README.md b/translations/hi/3-Web-App/1-Web-App/README.md new file mode 100644 index 000000000..a1883a790 --- /dev/null +++ b/translations/hi/3-Web-App/1-Web-App/README.md @@ -0,0 +1,359 @@ + +# वेब ऐप बनाएं जो ML मॉडल का उपयोग करे + +इस पाठ में, आप एक डेटा सेट पर ML मॉडल को प्रशिक्षित करेंगे जो अद्वितीय है: _पिछली सदी में UFO देखे जाने की घटनाएं_, जो NUFORC के डेटाबेस से ली गई हैं। + +आप सीखेंगे: + +- प्रशिक्षित मॉडल को 'पिकल' कैसे करें +- उस मॉडल का उपयोग Flask ऐप में कैसे करें + +हम नोटबुक्स का उपयोग जारी रखेंगे ताकि डेटा को साफ किया जा सके और मॉडल को प्रशिक्षित किया जा सके, लेकिन आप इस प्रक्रिया को एक कदम आगे ले जा सकते हैं और मॉडल को 'वास्तविक दुनिया' में उपयोग करने का पता लगा सकते हैं: एक वेब ऐप में। + +इसके लिए, आपको Flask का उपयोग करके एक वेब ऐप बनाना होगा। + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/17/) + +## ऐप बनाना + +मशीन लर्निंग मॉडल को उपयोग करने के लिए वेब ऐप बनाने के कई तरीके हैं। आपकी वेब आर्किटेक्चर आपके मॉडल के प्रशिक्षण के तरीके को प्रभावित कर सकती है। कल्पना करें कि आप एक व्यवसाय में काम कर रहे हैं जहां डेटा साइंस समूह ने एक मॉडल प्रशिक्षित किया है जिसे वे ऐप में उपयोग करना चाहते हैं। + +### विचार करने योग्य बातें + +आपको कई सवाल पूछने की आवश्यकता होगी: + +- **क्या यह वेब ऐप है या मोबाइल ऐप?** यदि आप मोबाइल ऐप बना रहे हैं या IoT संदर्भ में मॉडल का उपयोग करने की आवश्यकता है, तो आप [TensorFlow Lite](https://www.tensorflow.org/lite/) का उपयोग कर सकते हैं और मॉडल को Android या iOS ऐप में उपयोग कर सकते हैं। +- **मॉडल कहां रहेगा?** क्लाउड में या स्थानीय रूप से? +- **ऑफ़लाइन समर्थन।** क्या ऐप को ऑफ़लाइन काम करना होगा? +- **मॉडल को प्रशिक्षित करने के लिए कौन सी तकनीक का उपयोग किया गया था?** चुनी गई तकनीक आपके द्वारा उपयोग किए जाने वाले टूलिंग को प्रभावित कर सकती है। + - **TensorFlow का उपयोग।** यदि आप TensorFlow का उपयोग करके मॉडल को प्रशिक्षित कर रहे हैं, तो उदाहरण के लिए, यह इकोसिस्टम [TensorFlow.js](https://www.tensorflow.org/js/) का उपयोग करके वेब ऐप में उपयोग के लिए TensorFlow मॉडल को कनवर्ट करने की क्षमता प्रदान करता है। + - **PyTorch का उपयोग।** यदि आप [PyTorch](https://pytorch.org/) जैसी लाइब्रेरी का उपयोग करके मॉडल बना रहे हैं, तो आपके पास इसे [ONNX](https://onnx.ai/) (Open Neural Network Exchange) फॉर्मेट में एक्सपोर्ट करने का विकल्प है ताकि इसे JavaScript वेब ऐप्स में उपयोग किया जा सके जो [Onnx Runtime](https://www.onnxruntime.ai/) का उपयोग कर सकते हैं। इस विकल्प को भविष्य के पाठ में Scikit-learn-प्रशिक्षित मॉडल के लिए खोजा जाएगा। + - **Lobe.ai या Azure Custom Vision का उपयोग।** यदि आप [Lobe.ai](https://lobe.ai/) या [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) जैसे ML SaaS (Software as a Service) सिस्टम का उपयोग करके मॉडल को प्रशिक्षित कर रहे हैं, तो इस प्रकार का सॉफ़्टवेयर कई प्लेटफार्मों के लिए मॉडल को एक्सपोर्ट करने के तरीके प्रदान करता है, जिसमें क्लाउड में आपके ऑनलाइन एप्लिकेशन द्वारा क्वेरी किए जाने के लिए एक bespoke API बनाना शामिल है। + +आपके पास एक पूरा Flask वेब ऐप बनाने का अवसर भी है जो वेब ब्राउज़र में ही मॉडल को प्रशिक्षित कर सकता है। इसे JavaScript संदर्भ में TensorFlow.js का उपयोग करके भी किया जा सकता है। + +हमारे उद्देश्यों के लिए, चूंकि हम Python-आधारित नोटबुक्स के साथ काम कर रहे हैं, आइए उन चरणों का पता लगाएं जिन्हें आपको प्रशिक्षित मॉडल को नोटबुक से Python-निर्मित वेब ऐप द्वारा पढ़े जाने वाले फॉर्मेट में एक्सपोर्ट करने के लिए उठाने की आवश्यकता है। + +## टूल + +इस कार्य के लिए, आपको दो टूल्स की आवश्यकता होगी: Flask और Pickle, दोनों Python पर चलते हैं। + +✅ [Flask](https://palletsprojects.com/p/flask/) क्या है? इसके निर्माताओं द्वारा 'माइक्रो-फ्रेमवर्क' के रूप में परिभाषित, Flask Python का उपयोग करके वेब फ्रेमवर्क की बुनियादी विशेषताएं प्रदान करता है और वेब पेज बनाने के लिए एक टेम्पलेटिंग इंजन। [इस Learn मॉड्यूल](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) को देखें ताकि Flask के साथ निर्माण का अभ्यास किया जा सके। + +✅ [Pickle](https://docs.python.org/3/library/pickle.html) क्या है? Pickle 🥒 एक Python मॉड्यूल है जो Python ऑब्जेक्ट संरचना को सीरियलाइज़ और डी-सीरियलाइज़ करता है। जब आप मॉडल को 'पिकल' करते हैं, तो आप इसकी संरचना को वेब पर उपयोग के लिए सीरियलाइज़ या फ्लैटन करते हैं। सावधान रहें: पिकल स्वाभाविक रूप से सुरक्षित नहीं है, इसलिए यदि किसी फ़ाइल को 'अन-पिकल' करने के लिए कहा जाए तो सावधान रहें। एक पिकल्ड फ़ाइल का उपसर्ग `.pkl` होता है। + +## अभ्यास - अपने डेटा को साफ करें + +इस पाठ में आप 80,000 UFO देखे जाने की घटनाओं के डेटा का उपयोग करेंगे, जिसे [NUFORC](https://nuforc.org) (The National UFO Reporting Center) द्वारा एकत्र किया गया है। इस डेटा में UFO देखे जाने की कुछ दिलचस्प विवरण हैं, जैसे: + +- **लंबा विवरण उदाहरण।** "एक आदमी रात में एक घास के मैदान पर चमकने वाली रोशनी की किरण से बाहर निकलता है और टेक्सास इंस्ट्रूमेंट्स पार्किंग लॉट की ओर दौड़ता है।" +- **छोटा विवरण उदाहरण।** "रोशनी ने हमारा पीछा किया।" + +[ufos.csv](../../../../3-Web-App/1-Web-App/data/ufos.csv) स्प्रेडशीट में `city`, `state` और `country` के कॉलम शामिल हैं जहां देखे जाने की घटना हुई, वस्तु का `shape` और उसका `latitude` और `longitude`। + +इस पाठ में शामिल खाली [notebook](notebook.ipynb) में: + +1. पिछले पाठों में आपने जैसे `pandas`, `matplotlib`, और `numpy` को इम्पोर्ट किया था, वैसे ही करें और ufos स्प्रेडशीट को इम्पोर्ट करें। आप डेटा सेट का नमूना देख सकते हैं: + + ```python + import pandas as pd + import numpy as np + + ufos = pd.read_csv('./data/ufos.csv') + ufos.head() + ``` + +1. ufos डेटा को नए शीर्षकों के साथ एक छोटे डेटा फ्रेम में बदलें। `Country` फ़ील्ड में अद्वितीय मानों की जांच करें। + + ```python + ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']}) + + ufos.Country.unique() + ``` + +1. अब, आप उन डेटा को कम कर सकते हैं जिनसे हमें निपटना है, किसी भी null मानों को हटाकर और केवल 1-60 सेकंड के बीच देखे जाने की घटनाओं को इम्पोर्ट करके: + + ```python + ufos.dropna(inplace=True) + + ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)] + + ufos.info() + ``` + +1. Scikit-learn की `LabelEncoder` लाइब्रेरी को इम्पोर्ट करें ताकि देशों के टेक्स्ट मानों को एक संख्या में बदल सकें: + + ✅ LabelEncoder डेटा को वर्णानुक्रम में एन्कोड करता है + + ```python + from sklearn.preprocessing import LabelEncoder + + ufos['Country'] = LabelEncoder().fit_transform(ufos['Country']) + + ufos.head() + ``` + + आपका डेटा इस तरह दिखना चाहिए: + + ```output + Seconds Country Latitude Longitude + 2 20.0 3 53.200000 -2.916667 + 3 20.0 4 28.978333 -96.645833 + 14 30.0 4 35.823889 -80.253611 + 23 60.0 4 45.582778 -122.352222 + 24 3.0 3 51.783333 -0.783333 + ``` + +## अभ्यास - अपना मॉडल बनाएं + +अब आप डेटा को प्रशिक्षण और परीक्षण समूह में विभाजित करके मॉडल को प्रशिक्षित करने के लिए तैयार हो सकते हैं। + +1. तीन फीचर्स चुनें जिन पर आप प्रशिक्षण देना चाहते हैं, जो आपका X वेक्टर होगा, और y वेक्टर `Country` होगा। आप `Seconds`, `Latitude` और `Longitude` को इनपुट करना चाहते हैं और एक देश का आईडी प्राप्त करना चाहते हैं। + + ```python + from sklearn.model_selection import train_test_split + + Selected_features = ['Seconds','Latitude','Longitude'] + + X = ufos[Selected_features] + y = ufos['Country'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + ``` + +1. अपने मॉडल को लॉजिस्टिक रिग्रेशन का उपयोग करके प्रशिक्षित करें: + + ```python + from sklearn.metrics import accuracy_score, classification_report + from sklearn.linear_model import LogisticRegression + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('Accuracy: ', accuracy_score(y_test, predictions)) + ``` + +सटीकता बुरी नहीं है **(लगभग 95%)**, जो आश्चर्यजनक नहीं है, क्योंकि `Country` और `Latitude/Longitude` सहसंबद्ध हैं। + +आपका बनाया गया मॉडल बहुत क्रांतिकारी नहीं है क्योंकि आप `Latitude` और `Longitude` से एक `Country` का अनुमान लगा सकते हैं, लेकिन यह कच्चे डेटा से प्रशिक्षण देने, उसे साफ करने, एक्सपोर्ट करने और फिर इस मॉडल का वेब ऐप में उपयोग करने का एक अच्छा अभ्यास है। + +## अभ्यास - अपने मॉडल को 'पिकल' करें + +अब, अपने मॉडल को _पिकल_ करने का समय है! आप इसे कुछ लाइनों के कोड में कर सकते हैं। एक बार जब यह _पिकल_ हो जाए, तो अपने पिकल्ड मॉडल को लोड करें और सेकंड, अक्षांश और देशांतर के लिए मानों वाले नमूना डेटा ऐरे के खिलाफ इसका परीक्षण करें, + +```python +import pickle +model_filename = 'ufo-model.pkl' +pickle.dump(model, open(model_filename,'wb')) + +model = pickle.load(open('ufo-model.pkl','rb')) +print(model.predict([[50,44,-12]])) +``` + +मॉडल **'3'** लौटाता है, जो UK का देश कोड है। अद्भुत! 👽 + +## अभ्यास - Flask ऐप बनाएं + +अब आप एक Flask ऐप बना सकते हैं जो आपके मॉडल को कॉल करता है और समान परिणाम लौटाता है, लेकिन अधिक आकर्षक तरीके से। + +1. _notebook.ipynb_ फ़ाइल के बगल में एक **web-app** नामक फ़ोल्डर बनाएं जहां आपकी _ufo-model.pkl_ फ़ाइल स्थित है। + +1. उस फ़ोल्डर में तीन और फ़ोल्डर बनाएं: **static**, जिसमें एक **css** फ़ोल्डर हो, और **templates**। अब आपके पास निम्नलिखित फाइलें और डायरेक्टरी होनी चाहिए: + + ```output + web-app/ + static/ + css/ + templates/ + notebook.ipynb + ufo-model.pkl + ``` + + ✅ समाप्त ऐप का दृश्य देखने के लिए समाधान फ़ोल्डर देखें + +1. _web-app_ फ़ोल्डर में बनाने वाली पहली फ़ाइल **requirements.txt** है। JavaScript ऐप में _package.json_ की तरह, यह फ़ाइल ऐप द्वारा आवश्यक डिपेंडेंसी को सूचीबद्ध करती है। **requirements.txt** में निम्नलिखित पंक्तियां जोड़ें: + + ```text + scikit-learn + pandas + numpy + flask + ``` + +1. अब, इस फ़ाइल को _web-app_ में नेविगेट करके चलाएं: + + ```bash + cd web-app + ``` + +1. अपने टर्मिनल में `pip install` टाइप करें, ताकि _requirements.txt_ में सूचीबद्ध लाइब्रेरीज़ को इंस्टॉल किया जा सके: + + ```bash + pip install -r requirements.txt + ``` + +1. अब, आप ऐप को पूरा करने के लिए तीन और फाइलें बनाने के लिए तैयार हैं: + + 1. **app.py** को रूट में बनाएं। + 2. _templates_ डायरेक्टरी में **index.html** बनाएं। + 3. _static/css_ डायरेक्टरी में **styles.css** बनाएं। + +1. _styles.css_ फ़ाइल में कुछ स्टाइल्स जोड़ें: + + ```css + body { + width: 100%; + height: 100%; + font-family: 'Helvetica'; + background: black; + color: #fff; + text-align: center; + letter-spacing: 1.4px; + font-size: 30px; + } + + input { + min-width: 150px; + } + + .grid { + width: 300px; + border: 1px solid #2d2d2d; + display: grid; + justify-content: center; + margin: 20px auto; + } + + .box { + color: #fff; + background: #2d2d2d; + padding: 12px; + display: inline-block; + } + ``` + +1. अगला, _index.html_ फ़ाइल बनाएं: + + ```html + + + + + 🛸 UFO Appearance Prediction! 👽 + + + + +
                                + +
                                + +

                                According to the number of seconds, latitude and longitude, which country is likely to have reported seeing a UFO?

                                + +
                                + + + + +
                                + +

                                {{ prediction_text }}

                                + +
                                + +
                                + + + + ``` + + इस फ़ाइल में टेम्पलेटिंग पर ध्यान दें। देखें कि ऐप द्वारा प्रदान किए जाने वाले वेरिएबल्स के चारों ओर 'मस्टाच' सिंटैक्स है, जैसे कि भविष्यवाणी टेक्स्ट: `{{}}`। इसमें `/predict` रूट पर भविष्यवाणी पोस्ट करने वाला एक फॉर्म भी है। + + अंत में, आप Python फ़ाइल बनाने के लिए तैयार हैं जो मॉडल की खपत और भविष्यवाणियों के प्रदर्शन को संचालित करती है: + +1. `app.py` में जोड़ें: + + ```python + import numpy as np + from flask import Flask, request, render_template + import pickle + + app = Flask(__name__) + + model = pickle.load(open("./ufo-model.pkl", "rb")) + + + @app.route("/") + def home(): + return render_template("index.html") + + + @app.route("/predict", methods=["POST"]) + def predict(): + + int_features = [int(x) for x in request.form.values()] + final_features = [np.array(int_features)] + prediction = model.predict(final_features) + + output = prediction[0] + + countries = ["Australia", "Canada", "Germany", "UK", "US"] + + return render_template( + "index.html", prediction_text="Likely country: {}".format(countries[output]) + ) + + + if __name__ == "__main__": + app.run(debug=True) + ``` + + > 💡 टिप: जब आप Flask का उपयोग करके वेब ऐप चलाते समय [`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode) जोड़ते हैं, तो आपके एप्लिकेशन में किए गए किसी भी बदलाव तुरंत प्रतिबिंबित होंगे बिना सर्वर को पुनः आरंभ किए। सावधान रहें! इस मोड को प्रोडक्शन ऐप में सक्षम न करें। + +यदि आप `python app.py` या `python3 app.py` चलाते हैं - आपका वेब सर्वर स्थानीय रूप से शुरू हो जाता है, और आप एक छोटा फॉर्म भर सकते हैं ताकि आपको यह उत्तर मिल सके कि UFO कहां देखे गए हैं! + +ऐसा करने से पहले, `app.py` के भागों पर एक नज़र डालें: + +1. सबसे पहले, डिपेंडेंसी लोड होती हैं और ऐप शुरू होता है। +1. फिर, मॉडल इम्पोर्ट होता है। +1. फिर, होम रूट पर index.html रेंडर होता है। + +`/predict` रूट पर, जब फॉर्म पोस्ट किया जाता है तो कई चीजें होती हैं: + +1. फॉर्म वेरिएबल्स को एकत्र किया जाता है और numpy ऐरे में परिवर्तित किया जाता है। फिर उन्हें मॉडल में भेजा जाता है और एक भविष्यवाणी लौटाई जाती है। +2. जिन देशों को हम प्रदर्शित करना चाहते हैं उन्हें उनके भविष्यवाणी देश कोड से पठनीय टेक्स्ट के रूप में पुनः रेंडर किया जाता है, और वह मान index.html में टेम्पलेट में रेंडर करने के लिए वापस भेजा जाता है। + +इस तरह से Flask और पिकल्ड मॉडल के साथ मॉडल का उपयोग करना अपेक्षाकृत सरल है। सबसे कठिन बात यह समझना है कि मॉडल को भविष्यवाणी प्राप्त करने के लिए किस आकार का डेटा भेजा जाना चाहिए। यह पूरी तरह से इस बात पर निर्भर करता है कि मॉडल को कैसे प्रशिक्षित किया गया था। इस मॉडल में भविष्यवाणी प्राप्त करने के लिए तीन डेटा पॉइंट्स को इनपुट करना होता है। + +एक पेशेवर सेटिंग में, आप देख सकते हैं कि मॉडल को प्रशिक्षित करने वाले लोगों और इसे वेब या मोबाइल ऐप में उपयोग करने वाले लोगों के बीच अच्छा संचार कितना आवश्यक है। हमारे मामले में, यह केवल एक व्यक्ति है, आप! + +--- + +## 🚀 चुनौती + +नोटबुक में काम करने और मॉडल को Flask ऐप में इम्पोर्ट करने के बजाय, आप मॉडल को Flask ऐप के भीतर ही प्रशिक्षित कर सकते हैं! अपने नोटबुक में Python कोड को बदलने का प्रयास करें, शायद आपके डेटा को साफ करने के बाद, ताकि ऐप के भीतर `train` नामक रूट पर मॉडल को प्रशिक्षित किया जा सके। इस विधि को अपनाने के फायदे और नुकसान क्या हैं? + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/18/) + +## समीक्षा और स्व-अध्ययन + +मशीन लर्निंग मॉडल को उपयोग करने के लिए वेब ऐप बनाने के कई तरीके हैं। उन तरीकों की सूची बनाएं जिनसे आप JavaScript या Python का उपयोग करके वेब ऐप बना सकते हैं। आर्किटेक्चर पर विचार करें: क्या मॉडल ऐप में रहना चाहिए या क्लाउड में? यदि बाद वाला, तो आप इसे कैसे एक्सेस करेंगे? एक लागू ML वेब समाधान के लिए एक आर्किटेक्चरल मॉडल बनाएं। + +## असाइनमेंट + +[एक अलग मॉडल आज़माएं](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/3-Web-App/1-Web-App/assignment.md b/translations/hi/3-Web-App/1-Web-App/assignment.md new file mode 100644 index 000000000..8e4e04598 --- /dev/null +++ b/translations/hi/3-Web-App/1-Web-App/assignment.md @@ -0,0 +1,25 @@ + +# एक अलग मॉडल आज़माएं + +## निर्देश + +अब जब आपने प्रशिक्षित Regression मॉडल का उपयोग करके एक वेब ऐप बनाया है, तो पहले के Regression पाठ में से किसी एक मॉडल का उपयोग करके इस वेब ऐप को फिर से बनाएं। आप शैली को बनाए रख सकते हैं या इसे कद्दू डेटा को दर्शाने के लिए अलग तरीके से डिज़ाइन कर सकते हैं। अपने मॉडल के प्रशिक्षण विधि को ध्यान में रखते हुए इनपुट बदलने में सावधानी बरतें। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------------------------- | --------------------------------------------------------- | --------------------------------------------------------- | -------------------------------------- | +| | वेब ऐप अपेक्षित रूप से चलता है और क्लाउड पर तैनात है | वेब ऐप में खामियां हैं या अप्रत्याशित परिणाम दिखाता है | वेब ऐप सही ढंग से काम नहीं करता है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/3-Web-App/1-Web-App/notebook.ipynb b/translations/hi/3-Web-App/1-Web-App/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/hi/3-Web-App/1-Web-App/solution/notebook.ipynb b/translations/hi/3-Web-App/1-Web-App/solution/notebook.ipynb new file mode 100644 index 000000000..325bd361f --- /dev/null +++ b/translations/hi/3-Web-App/1-Web-App/solution/notebook.ipynb @@ -0,0 +1,267 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5fa2e8f4584c78250ca9729b46562ceb", + "translation_date": "2025-09-04T02:22:26+00:00", + "source_file": "3-Web-App/1-Web-App/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " datetime city state country shape \\\n", + "0 10/10/1949 20:30 san marcos tx us cylinder \n", + "1 10/10/1949 21:00 lackland afb tx NaN light \n", + "2 10/10/1955 17:00 chester (uk/england) NaN gb circle \n", + "3 10/10/1956 21:00 edna tx us circle \n", + "4 10/10/1960 20:00 kaneohe hi us light \n", + "\n", + " duration (seconds) duration (hours/min) \\\n", + "0 2700.0 45 minutes \n", + "1 7200.0 1-2 hrs \n", + "2 20.0 20 seconds \n", + "3 20.0 1/2 hour \n", + "4 900.0 15 minutes \n", + "\n", + " comments date posted latitude \\\n", + "0 This event took place in early fall around 194... 4/27/2004 29.883056 \n", + "1 1949 Lackland AFB, TX. Lights racing acros... 12/16/2005 29.384210 \n", + "2 Green/Orange circular disc over Chester, En... 1/21/2008 53.200000 \n", + "3 My older brother and twin sister were leaving ... 1/17/2004 28.978333 \n", + "4 AS a Marine 1st Lt. flying an FJ4B fighter/att... 1/22/2004 21.418056 \n", + "\n", + " longitude \n", + "0 -97.941111 \n", + "1 -98.581082 \n", + "2 -2.916667 \n", + "3 -96.645833 \n", + "4 -157.803611 " + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                datetimecitystatecountryshapeduration (seconds)duration (hours/min)commentsdate postedlatitudelongitude
                                010/10/1949 20:30san marcostxuscylinder2700.045 minutesThis event took place in early fall around 194...4/27/200429.883056-97.941111
                                110/10/1949 21:00lackland afbtxNaNlight7200.01-2 hrs1949 Lackland AFB&#44 TX. Lights racing acros...12/16/200529.384210-98.581082
                                210/10/1955 17:00chester (uk/england)NaNgbcircle20.020 secondsGreen/Orange circular disc over Chester&#44 En...1/21/200853.200000-2.916667
                                310/10/1956 21:00ednatxuscircle20.01/2 hourMy older brother and twin sister were leaving ...1/17/200428.978333-96.645833
                                410/10/1960 20:00kaneohehiuslight900.015 minutesAS a Marine 1st Lt. flying an FJ4B fighter/att...1/22/200421.418056-157.803611
                                \n
                                " + }, + "metadata": {}, + "execution_count": 23 + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "ufos = pd.read_csv('../data/ufos.csv')\n", + "ufos.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array(['us', nan, 'gb', 'ca', 'au', 'de'], dtype=object)" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ], + "source": [ + "\n", + "ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']})\n", + "\n", + "ufos.Country.unique()\n", + "\n", + "# 0 au, 1 ca, 2 de, 3 gb, 4 us" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nInt64Index: 25863 entries, 2 to 80330\nData columns (total 4 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 Seconds 25863 non-null float64\n 1 Country 25863 non-null object \n 2 Latitude 25863 non-null float64\n 3 Longitude 25863 non-null float64\ndtypes: float64(3), object(1)\nmemory usage: 1010.3+ KB\n" + ] + } + ], + "source": [ + "ufos.dropna(inplace=True)\n", + "\n", + "ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)]\n", + "\n", + "ufos.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Seconds Country Latitude Longitude\n", + "2 20.0 3 53.200000 -2.916667\n", + "3 20.0 4 28.978333 -96.645833\n", + "14 30.0 4 35.823889 -80.253611\n", + "23 60.0 4 45.582778 -122.352222\n", + "24 3.0 3 51.783333 -0.783333" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                SecondsCountryLatitudeLongitude
                                220.0353.200000-2.916667
                                320.0428.978333-96.645833
                                1430.0435.823889-80.253611
                                2360.0445.582778-122.352222
                                243.0351.783333-0.783333
                                \n
                                " + }, + "metadata": {}, + "execution_count": 26 + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "\n", + "ufos['Country'] = LabelEncoder().fit_transform(ufos['Country'])\n", + "\n", + "ufos.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "Selected_features = ['Seconds','Latitude','Longitude']\n", + "\n", + "X = ufos[Selected_features]\n", + "y = ufos['Country']\n", + "\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", + " FutureWarning)\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", + " \"this warning.\", FutureWarning)\n", + " precision recall f1-score support\n", + "\n", + " 0 1.00 1.00 1.00 41\n", + " 1 1.00 0.02 0.05 250\n", + " 2 0.00 0.00 0.00 8\n", + " 3 0.94 1.00 0.97 131\n", + " 4 0.95 1.00 0.97 4743\n", + "\n", + " accuracy 0.95 5173\n", + " macro avg 0.78 0.60 0.60 5173\n", + "weighted avg 0.95 0.95 0.93 5173\n", + "\n", + "Predicted labels: [4 4 4 ... 3 4 4]\n", + "Accuracy: 0.9512855209742895\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import accuracy_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('Accuracy: ', accuracy_score(y_test, predictions))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[3]\n" + ] + } + ], + "source": [ + "import pickle\n", + "model_filename = 'ufo-model.pkl'\n", + "pickle.dump(model, open(model_filename,'wb'))\n", + "\n", + "model = pickle.load(open('ufo-model.pkl','rb'))\n", + "print(model.predict([[50,44,-12]]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/3-Web-App/README.md b/translations/hi/3-Web-App/README.md new file mode 100644 index 000000000..acfbd6c90 --- /dev/null +++ b/translations/hi/3-Web-App/README.md @@ -0,0 +1,35 @@ + +# अपने ML मॉडल का उपयोग करने के लिए एक वेब ऐप बनाएं + +इस पाठ्यक्रम के इस भाग में, आपको एक व्यावहारिक ML विषय से परिचित कराया जाएगा: कैसे अपने Scikit-learn मॉडल को एक फाइल के रूप में सेव करें जिसे वेब एप्लिकेशन के भीतर भविष्यवाणी करने के लिए उपयोग किया जा सके। एक बार मॉडल सेव हो जाने के बाद, आप सीखेंगे कि इसे Flask में बनाए गए वेब ऐप में कैसे उपयोग करें। सबसे पहले, आप कुछ डेटा का उपयोग करके एक मॉडल बनाएंगे जो UFO देखे जाने के बारे में है! फिर, आप एक वेब ऐप बनाएंगे जो आपको सेकंड की संख्या, अक्षांश और देशांतर मान दर्ज करने की अनुमति देगा ताकि यह भविष्यवाणी की जा सके कि किस देश ने UFO देखने की रिपोर्ट की है। + +![UFO Parking](../../../translated_images/ufo.9e787f5161da9d4d1dafc537e1da09be8210f2ee996cb638aa5cee1d92867a04.hi.jpg) + +फोटो माइकल हेरेन द्वारा Unsplash पर + +## पाठ + +1. [एक वेब ऐप बनाएं](1-Web-App/README.md) + +## क्रेडिट्स + +"एक वेब ऐप बनाएं" को ♥️ के साथ [जेन लूपर](https://twitter.com/jenlooper) द्वारा लिखा गया था। + +♥️ क्विज़ [रोहन राज](https://twitter.com/rohanraj) द्वारा लिखे गए थे। + +डेटासेट [Kaggle](https://www.kaggle.com/NUFORC/ufo-sightings) से लिया गया है। + +वेब ऐप आर्किटेक्चर आंशिक रूप से [इस लेख](https://towardsdatascience.com/how-to-easily-deploy-machine-learning-models-using-flask-b95af8fe34d4) और [इस रिपॉजिटरी](https://github.com/abhinavsagar/machine-learning-deployment) द्वारा सुझाया गया था, जिसे अभिनव सागर ने बनाया है। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/4-Classification/1-Introduction/README.md b/translations/hi/4-Classification/1-Introduction/README.md new file mode 100644 index 000000000..9b9e11031 --- /dev/null +++ b/translations/hi/4-Classification/1-Introduction/README.md @@ -0,0 +1,313 @@ + +# वर्गीकरण का परिचय + +इन चार पाठों में, आप क्लासिक मशीन लर्निंग के एक महत्वपूर्ण पहलू - _वर्गीकरण_ - का अन्वेषण करेंगे। हम एशिया और भारत के सभी अद्भुत व्यंजनों के बारे में एक डेटासेट का उपयोग करके विभिन्न वर्गीकरण एल्गोरिदम का उपयोग करना सीखेंगे। उम्मीद है कि आप भूखे हैं! + +![बस एक चुटकी!](../../../../translated_images/pinch.1b035ec9ba7e0d408313b551b60c721c9c290b2dd2094115bc87e6ddacd114c9.hi.png) + +> इन पाठों में पैन-एशियाई व्यंजनों का जश्न मनाएं! छवि [Jen Looper](https://twitter.com/jenlooper) द्वारा + +वर्गीकरण [सुपरवाइज्ड लर्निंग](https://wikipedia.org/wiki/Supervised_learning) का एक रूप है, जो रिग्रेशन तकनीकों से काफी समानता रखता है। यदि मशीन लर्निंग का उद्देश्य डेटासेट का उपयोग करके चीजों के मान या नाम की भविष्यवाणी करना है, तो वर्गीकरण आम तौर पर दो समूहों में विभाजित होता है: _बाइनरी वर्गीकरण_ और _मल्टीक्लास वर्गीकरण_। + +[![वर्गीकरण का परिचय](https://img.youtube.com/vi/eg8DJYwdMyg/0.jpg)](https://youtu.be/eg8DJYwdMyg "वर्गीकरण का परिचय") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें: MIT के John Guttag वर्गीकरण का परिचय देते हैं + +याद रखें: + +- **लिनियर रिग्रेशन** ने आपको वेरिएबल्स के बीच संबंधों की भविष्यवाणी करने और यह अनुमान लगाने में मदद की कि एक नया डेटा पॉइंट उस रेखा के संबंध में कहां गिरेगा। उदाहरण के लिए, आप _सितंबर बनाम दिसंबर में कद्दू की कीमत_ की भविष्यवाणी कर सकते थे। +- **लॉजिस्टिक रिग्रेशन** ने आपको "बाइनरी श्रेणियों" की खोज करने में मदद की: इस मूल्य बिंदु पर, _क्या यह कद्दू नारंगी है या नारंगी नहीं है_? + +वर्गीकरण विभिन्न एल्गोरिदम का उपयोग करके यह निर्धारित करता है कि किसी डेटा पॉइंट का लेबल या वर्ग क्या हो सकता है। आइए इस व्यंजन डेटा के साथ काम करें और देखें कि क्या हम सामग्री के एक समूह को देखकर उसके मूल व्यंजन का पता लगा सकते हैं। + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/) + +> ### [यह पाठ R में भी उपलब्ध है!](../../../../4-Classification/1-Introduction/solution/R/lesson_10.html) + +### परिचय + +वर्गीकरण मशीन लर्निंग शोधकर्ता और डेटा वैज्ञानिक की मूलभूत गतिविधियों में से एक है। बाइनरी मान ("क्या यह ईमेल स्पैम है या नहीं?") के सरल वर्गीकरण से लेकर कंप्यूटर विज़न का उपयोग करके जटिल छवि वर्गीकरण और विभाजन तक, डेटा को वर्गों में छांटना और उससे प्रश्न पूछना हमेशा उपयोगी होता है। + +यदि इसे वैज्ञानिक तरीके से कहा जाए, तो आपका वर्गीकरण विधि एक प्रेडिक्टिव मॉडल बनाता है, जो इनपुट वेरिएबल्स और आउटपुट वेरिएबल्स के बीच संबंध को मैप करने में सक्षम बनाता है। + +![बाइनरी बनाम मल्टीक्लास वर्गीकरण](../../../../translated_images/binary-multiclass.b56d0c86c81105a697dddd82242c1d11e4d78b7afefea07a44627a0f1111c1a9.hi.png) + +> बाइनरी बनाम मल्टीक्लास समस्याएं, जिन्हें वर्गीकरण एल्गोरिदम संभाल सकते हैं। इन्फोग्राफिक [Jen Looper](https://twitter.com/jenlooper) द्वारा + +हमारे डेटा को साफ करने, उसे विज़ुअलाइज़ करने और हमारे एमएल कार्यों के लिए तैयार करने की प्रक्रिया शुरू करने से पहले, आइए जानें कि मशीन लर्निंग का उपयोग करके डेटा को वर्गीकृत करने के विभिन्न तरीके क्या हैं। + +[सांख्यिकी](https://wikipedia.org/wiki/Statistical_classification) से व्युत्पन्न, क्लासिक मशीन लर्निंग का उपयोग करके वर्गीकरण विशेषताओं का उपयोग करता है, जैसे `smoker`, `weight`, और `age`, यह निर्धारित करने के लिए कि _किसी बीमारी के विकसित होने की संभावना कितनी है_। एक सुपरवाइज्ड लर्निंग तकनीक के रूप में, जो आपने पहले रिग्रेशन अभ्यासों में किया था, आपका डेटा लेबल किया गया होता है, और एमएल एल्गोरिदम इन लेबल्स का उपयोग डेटा सेट की कक्षाओं (या 'विशेषताओं') को वर्गीकृत और भविष्यवाणी करने और उन्हें एक समूह या परिणाम में असाइन करने के लिए करते हैं। + +✅ एक पल लें और व्यंजनों के बारे में एक डेटासेट की कल्पना करें। एक मल्टीक्लास मॉडल क्या उत्तर दे सकता है? एक बाइनरी मॉडल क्या उत्तर दे सकता है? यदि आप यह निर्धारित करना चाहते हैं कि कोई विशेष व्यंजन मेथी का उपयोग करता है या नहीं, तो क्या होगा? यदि आपके पास स्टार ऐनीज़, आर्टिचोक, फूलगोभी, और हॉर्सरैडिश से भरा एक ग्रॉसरी बैग है, तो क्या आप एक विशिष्ट भारतीय व्यंजन बना सकते हैं? + +[![पागल मिस्ट्री बास्केट्स](https://img.youtube.com/vi/GuTeDbaNoEU/0.jpg)](https://youtu.be/GuTeDbaNoEU "पागल मिस्ट्री बास्केट्स") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें। शो 'Chopped' का पूरा आधार 'मिस्ट्री बास्केट' है, जहां शेफ को यादृच्छिक सामग्री से कुछ व्यंजन बनाना होता है। निश्चित रूप से एक एमएल मॉडल मदद कर सकता था! + +## हैलो 'क्लासिफायर' + +हम इस व्यंजन डेटासेट से जो प्रश्न पूछना चाहते हैं, वह वास्तव में एक **मल्टीक्लास प्रश्न** है, क्योंकि हमारे पास काम करने के लिए कई संभावित राष्ट्रीय व्यंजन हैं। सामग्री के एक बैच को देखते हुए, इन कई वर्गों में से डेटा किस वर्ग में फिट होगा? + +Scikit-learn विभिन्न प्रकार की समस्याओं को हल करने के लिए डेटा को वर्गीकृत करने के लिए कई अलग-अलग एल्गोरिदम प्रदान करता है। अगले दो पाठों में, आप इन एल्गोरिदम के बारे में जानेंगे। + +## अभ्यास - अपने डेटा को साफ और संतुलित करें + +इस परियोजना को शुरू करने से पहले पहला कार्य यह है कि आप अपने डेटा को साफ और **संतुलित** करें ताकि बेहतर परिणाम प्राप्त हो सकें। इस फ़ोल्डर की रूट में स्थित खाली _notebook.ipynb_ फ़ाइल से शुरू करें। + +पहली चीज़ जो आपको इंस्टॉल करनी है, वह है [imblearn](https://imbalanced-learn.org/stable/)। यह एक Scikit-learn पैकेज है, जो आपको डेटा को बेहतर संतुलित करने की अनुमति देगा (आप इस कार्य के बारे में थोड़ी देर में और जानेंगे)। + +1. `imblearn` को इंस्टॉल करने के लिए, `pip install` चलाएं, इस प्रकार: + + ```python + pip install imblearn + ``` + +1. अपने डेटा को आयात करने और विज़ुअलाइज़ करने के लिए आवश्यक पैकेज आयात करें, साथ ही `imblearn` से `SMOTE` भी आयात करें। + + ```python + import pandas as pd + import matplotlib.pyplot as plt + import matplotlib as mpl + import numpy as np + from imblearn.over_sampling import SMOTE + ``` + + अब आप डेटा को आयात करने के लिए तैयार हैं। + +1. अगला कार्य डेटा को आयात करना होगा: + + ```python + df = pd.read_csv('../data/cuisines.csv') + ``` + + `read_csv()` का उपयोग करके, _cusines.csv_ फ़ाइल की सामग्री को पढ़ा जाएगा और इसे वेरिएबल `df` में रखा जाएगा। + +1. डेटा का आकार जांचें: + + ```python + df.head() + ``` + + पहले पांच पंक्तियाँ इस प्रकार दिखती हैं: + + ```output + | | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | + | --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | + | 0 | 65 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 1 | 66 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 2 | 67 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 3 | 68 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 4 | 69 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + ``` + +1. इस डेटा के बारे में जानकारी प्राप्त करने के लिए `info()` कॉल करें: + + ```python + df.info() + ``` + + आपका आउटपुट इस प्रकार दिखता है: + + ```output + + RangeIndex: 2448 entries, 0 to 2447 + Columns: 385 entries, Unnamed: 0 to zucchini + dtypes: int64(384), object(1) + memory usage: 7.2+ MB + ``` + +## अभ्यास - व्यंजनों के बारे में जानना + +अब काम अधिक दिलचस्प होने लगता है। आइए व्यंजनों के अनुसार डेटा के वितरण की खोज करें। + +1. डेटा को बार के रूप में प्लॉट करें, `barh()` कॉल करके: + + ```python + df.cuisine.value_counts().plot.barh() + ``` + + ![व्यंजन डेटा वितरण](../../../../translated_images/cuisine-dist.d0cc2d551abe5c25f83d73a5f560927e4a061e9a4560bac1e97d35682ef3ca6d.hi.png) + + व्यंजनों की संख्या सीमित है, लेकिन डेटा का वितरण असमान है। आप इसे ठीक कर सकते हैं! ऐसा करने से पहले, थोड़ा और अन्वेषण करें। + +1. यह पता लगाएं कि प्रत्येक व्यंजन के लिए कितना डेटा उपलब्ध है और इसे प्रिंट करें: + + ```python + thai_df = df[(df.cuisine == "thai")] + japanese_df = df[(df.cuisine == "japanese")] + chinese_df = df[(df.cuisine == "chinese")] + indian_df = df[(df.cuisine == "indian")] + korean_df = df[(df.cuisine == "korean")] + + print(f'thai df: {thai_df.shape}') + print(f'japanese df: {japanese_df.shape}') + print(f'chinese df: {chinese_df.shape}') + print(f'indian df: {indian_df.shape}') + print(f'korean df: {korean_df.shape}') + ``` + + आउटपुट इस प्रकार दिखता है: + + ```output + thai df: (289, 385) + japanese df: (320, 385) + chinese df: (442, 385) + indian df: (598, 385) + korean df: (799, 385) + ``` + +## सामग्री की खोज + +अब आप डेटा में गहराई से जा सकते हैं और जान सकते हैं कि प्रत्येक व्यंजन के लिए विशिष्ट सामग्री क्या हैं। आपको बार-बार आने वाले डेटा को साफ करना चाहिए, जो व्यंजनों के बीच भ्रम पैदा करता है, तो आइए इस समस्या के बारे में जानें। + +1. एक फ़ंक्शन `create_ingredient()` Python में बनाएं, जो एक सामग्री डेटा फ्रेम बनाए। यह फ़ंक्शन एक अनावश्यक कॉलम को हटाकर शुरू करेगा और सामग्री को उनकी गिनती के अनुसार छांटेगा: + + ```python + def create_ingredient_df(df): + ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value') + ingredient_df = ingredient_df[(ingredient_df.T != 0).any()] + ingredient_df = ingredient_df.sort_values(by='value', ascending=False, + inplace=False) + return ingredient_df + ``` + + अब आप इस फ़ंक्शन का उपयोग करके प्रत्येक व्यंजन के लिए शीर्ष दस सबसे लोकप्रिय सामग्री का अंदाजा लगा सकते हैं। + +1. `create_ingredient()` को कॉल करें और इसे `barh()` कॉल करके प्लॉट करें: + + ```python + thai_ingredient_df = create_ingredient_df(thai_df) + thai_ingredient_df.head(10).plot.barh() + ``` + + ![थाई](../../../../translated_images/thai.0269dbab2e78bd38a132067759fe980008bdb80b6d778e5313448dbe12bed846.hi.png) + +1. जापानी डेटा के लिए भी ऐसा ही करें: + + ```python + japanese_ingredient_df = create_ingredient_df(japanese_df) + japanese_ingredient_df.head(10).plot.barh() + ``` + + ![जापानी](../../../../translated_images/japanese.30260486f2a05c463c8faa62ebe7b38f0961ed293bd9a6db8eef5d3f0cf17155.hi.png) + +1. अब चीनी सामग्री के लिए: + + ```python + chinese_ingredient_df = create_ingredient_df(chinese_df) + chinese_ingredient_df.head(10).plot.barh() + ``` + + ![चीनी](../../../../translated_images/chinese.e62cafa5309f111afd1b54490336daf4e927ce32bed837069a0b7ce481dfae8d.hi.png) + +1. भारतीय सामग्री को प्लॉट करें: + + ```python + indian_ingredient_df = create_ingredient_df(indian_df) + indian_ingredient_df.head(10).plot.barh() + ``` + + ![भारतीय](../../../../translated_images/indian.2c4292002af1a1f97a4a24fec6b1459ee8ff616c3822ae56bb62b9903e192af6.hi.png) + +1. अंत में, कोरियाई सामग्री को प्लॉट करें: + + ```python + korean_ingredient_df = create_ingredient_df(korean_df) + korean_ingredient_df.head(10).plot.barh() + ``` + + ![कोरियाई](../../../../translated_images/korean.4a4f0274f3d9805a65e61f05597eeaad8620b03be23a2c0a705c023f65fad2c0.hi.png) + +1. अब, उन सबसे सामान्य सामग्री को हटा दें, जो विभिन्न व्यंजनों के बीच भ्रम पैदा करती हैं, `drop()` कॉल करके: + + हर कोई चावल, लहसुन और अदरक पसंद करता है! + + ```python + feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1) + labels_df = df.cuisine #.unique() + feature_df.head() + ``` + +## डेटासेट को संतुलित करें + +अब जब आपने डेटा को साफ कर लिया है, तो [SMOTE](https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html) - "सिंथेटिक माइनॉरिटी ओवर-सैंपलिंग टेक्नीक" - का उपयोग करके इसे संतुलित करें। + +1. `fit_resample()` को कॉल करें, यह रणनीति इंटरपोलेशन द्वारा नए नमूने उत्पन्न करती है। + + ```python + oversample = SMOTE() + transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df) + ``` + + अपने डेटा को संतुलित करके, आपके पास इसे वर्गीकृत करते समय बेहतर परिणाम होंगे। बाइनरी वर्गीकरण के बारे में सोचें। यदि आपके अधिकांश डेटा एक वर्ग के हैं, तो एक एमएल मॉडल उस वर्ग की अधिक बार भविष्यवाणी करेगा, केवल इसलिए कि उसके लिए अधिक डेटा है। डेटा को संतुलित करना किसी भी असंतुलित डेटा को लेता है और इस असंतुलन को दूर करने में मदद करता है। + +1. अब आप सामग्री के प्रति लेबल की संख्या की जांच कर सकते हैं: + + ```python + print(f'new label count: {transformed_label_df.value_counts()}') + print(f'old label count: {df.cuisine.value_counts()}') + ``` + + आपका आउटपुट इस प्रकार दिखता है: + + ```output + new label count: korean 799 + chinese 799 + indian 799 + japanese 799 + thai 799 + Name: cuisine, dtype: int64 + old label count: korean 799 + indian 598 + chinese 442 + japanese 320 + thai 289 + Name: cuisine, dtype: int64 + ``` + + डेटा साफ, संतुलित और बहुत स्वादिष्ट है! + +1. अंतिम चरण यह है कि आपके संतुलित डेटा, जिसमें लेबल और विशेषताएं शामिल हैं, को एक नए डेटा फ्रेम में सहेजें, जिसे एक फ़ाइल में निर्यात किया जा सके: + + ```python + transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer') + ``` + +1. आप `transformed_df.head()` और `transformed_df.info()` का उपयोग करके डेटा पर एक और नज़र डाल सकते हैं। भविष्य के पाठों में उपयोग के लिए इस डेटा की एक प्रति सहेजें: + + ```python + transformed_df.head() + transformed_df.info() + transformed_df.to_csv("../data/cleaned_cuisines.csv") + ``` + + यह ताजा CSV अब रूट डेटा फ़ोल्डर में पाया जा सकता है। + +--- + +## 🚀चुनौती + +इस पाठ्यक्रम में कई दिलचस्प डेटासेट शामिल हैं। `data` फ़ोल्डर्स को खंगालें और देखें कि क्या उनमें से कोई डेटासेट बाइनरी या मल्टी-क्लास वर्गीकरण के लिए उपयुक्त है? आप इस डेटासेट से कौन से प्रश्न पूछेंगे? + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/) + +## समीक्षा और स्व-अध्ययन + +SMOTE के API का अन्वेषण करें। यह किन उपयोग मामलों के लिए सबसे अच्छा उपयोग किया जाता है? यह किन समस्याओं को हल करता है? + +## असाइनमेंट + +[वर्गीकरण विधियों का अन्वेषण करें](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/4-Classification/1-Introduction/assignment.md b/translations/hi/4-Classification/1-Introduction/assignment.md new file mode 100644 index 000000000..740540429 --- /dev/null +++ b/translations/hi/4-Classification/1-Introduction/assignment.md @@ -0,0 +1,25 @@ + +# वर्गीकरण विधियों का अन्वेषण करें + +## निर्देश + +[Scikit-learn दस्तावेज़](https://scikit-learn.org/stable/supervised_learning.html) में आपको डेटा को वर्गीकृत करने के कई तरीके मिलेंगे। इन दस्तावेज़ों में थोड़ा खोजबीन करें: आपका लक्ष्य वर्गीकरण विधियों को खोजना और इस पाठ्यक्रम में दिए गए किसी डेटासेट, उससे पूछे जाने वाले प्रश्न, और वर्गीकरण तकनीक से मेल बैठाना है। एक स्प्रेडशीट या .doc फ़ाइल में एक तालिका बनाएं और समझाएं कि डेटासेट वर्गीकरण एल्गोरिदम के साथ कैसे काम करेगा। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | ----------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| | एक दस्तावेज़ प्रस्तुत किया गया है जिसमें 5 एल्गोरिदम और एक वर्गीकरण तकनीक का अवलोकन है। अवलोकन अच्छी तरह से समझाया गया है और विस्तृत है। | एक दस्तावेज़ प्रस्तुत किया गया है जिसमें 3 एल्गोरिदम और एक वर्गीकरण तकनीक का अवलोकन है। अवलोकन अच्छी तरह से समझाया गया है और विस्तृत है। | एक दस्तावेज़ प्रस्तुत किया गया है जिसमें तीन से कम एल्गोरिदम और एक वर्गीकरण तकनीक का अवलोकन है और अवलोकन न तो अच्छी तरह से समझाया गया है और न ही विस्तृत है। | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/4-Classification/1-Introduction/notebook.ipynb b/translations/hi/4-Classification/1-Introduction/notebook.ipynb new file mode 100644 index 000000000..23975347d --- /dev/null +++ b/translations/hi/4-Classification/1-Introduction/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d544ef384b7ba73757d830a72372a7f2", + "translation_date": "2025-09-04T02:40:10+00:00", + "source_file": "4-Classification/1-Introduction/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/4-Classification/1-Introduction/solution/Julia/README.md b/translations/hi/4-Classification/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..d452132f4 --- /dev/null +++ b/translations/hi/4-Classification/1-Introduction/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb b/translations/hi/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb new file mode 100644 index 000000000..157e0f737 --- /dev/null +++ b/translations/hi/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb @@ -0,0 +1,719 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_10-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "2621e24705e8100893c9bf84e0fc8aef", + "translation_date": "2025-09-04T02:51:22+00:00", + "source_file": "4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb", + "language_code": "hi" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "ItETB4tSFprR" + } + }, + { + "cell_type": "markdown", + "source": [ + "## वर्गीकरण का परिचय: अपने डेटा को साफ़ करें, तैयार करें, और विज़ुअलाइज़ करें\n", + "\n", + "इन चार पाठों में, आप क्लासिक मशीन लर्निंग के एक महत्वपूर्ण पहलू - *वर्गीकरण* - का अन्वेषण करेंगे। हम एशिया और भारत के सभी शानदार व्यंजनों के बारे में एक डेटासेट का उपयोग करके विभिन्न वर्गीकरण एल्गोरिदम का उपयोग करना सीखेंगे। उम्मीद है कि आप भूखे हैं!\n", + "\n", + "

                                \n", + " \n", + "

                                इन पाठों में पैन-एशियाई व्यंजनों का जश्न मनाएं! छवि: जेन लूपर
                                \n", + "\n", + "\n", + "\n", + "\n", + "वर्गीकरण [सुपरवाइज्ड लर्निंग](https://wikipedia.org/wiki/Supervised_learning) का एक रूप है, जो रिग्रेशन तकनीकों के साथ कई समानताएं रखता है। वर्गीकरण में, आप एक मॉडल को प्रशिक्षित करते हैं ताकि वह यह भविष्यवाणी कर सके कि कोई वस्तु किस `श्रेणी` में आती है। यदि मशीन लर्निंग का उद्देश्य डेटासेट का उपयोग करके चीजों के मान या नाम की भविष्यवाणी करना है, तो वर्गीकरण आम तौर पर दो समूहों में विभाजित होता है: *बाइनरी वर्गीकरण* और *मल्टीक्लास वर्गीकरण*।\n", + "\n", + "याद रखें:\n", + "\n", + "- **लिनियर रिग्रेशन** ने आपको वेरिएबल्स के बीच संबंधों की भविष्यवाणी करने और यह अनुमान लगाने में मदद की कि एक नया डेटा पॉइंट उस रेखा के संबंध में कहां गिरेगा। उदाहरण के लिए, आप यह भविष्यवाणी कर सकते थे कि *सितंबर बनाम दिसंबर में कद्दू की कीमत क्या होगी*।\n", + "\n", + "- **लॉजिस्टिक रिग्रेशन** ने आपको \"बाइनरी श्रेणियों\" की खोज करने में मदद की: इस मूल्य बिंदु पर, *क्या यह कद्दू नारंगी है या नारंगी नहीं है*?\n", + "\n", + "वर्गीकरण विभिन्न एल्गोरिदम का उपयोग करता है ताकि यह निर्धारित किया जा सके कि किसी डेटा पॉइंट का लेबल या वर्ग क्या है। आइए इस व्यंजन डेटा के साथ काम करें और देखें कि क्या हम सामग्री के एक समूह को देखकर उसके मूल व्यंजन का पता लगा सकते हैं।\n", + "\n", + "### [**पाठ-पूर्व प्रश्नोत्तरी**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/)\n", + "\n", + "### **परिचय**\n", + "\n", + "वर्गीकरण मशीन लर्निंग शोधकर्ता और डेटा वैज्ञानिक की मूलभूत गतिविधियों में से एक है। बाइनरी मान का बुनियादी वर्गीकरण (\"क्या यह ईमेल स्पैम है या नहीं?\") से लेकर कंप्यूटर विज़न का उपयोग करके जटिल छवि वर्गीकरण और खंडन तक, डेटा को वर्गों में छांटना और उससे प्रश्न पूछना हमेशा उपयोगी होता है।\n", + "\n", + "यदि इस प्रक्रिया को अधिक वैज्ञानिक तरीके से कहा जाए, तो आपका वर्गीकरण विधि एक प्रेडिक्टिव मॉडल बनाती है, जो इनपुट वेरिएबल्स और आउटपुट वेरिएबल्स के बीच संबंध को मैप करने में सक्षम बनाती है।\n", + "\n", + "

                                \n", + " \n", + "

                                वर्गीकरण एल्गोरिदम के लिए बाइनरी बनाम मल्टीक्लास समस्याएं। इन्फोग्राफिक: जेन लूपर
                                \n", + "\n", + "\n", + "\n", + "हमारे डेटा को साफ़ करने, विज़ुअलाइज़ करने और हमारे एमएल कार्यों के लिए तैयार करने की प्रक्रिया शुरू करने से पहले, आइए जानें कि डेटा को वर्गीकृत करने के लिए मशीन लर्निंग का उपयोग करने के विभिन्न तरीके क्या हैं।\n", + "\n", + "[सांख्यिकी](https://wikipedia.org/wiki/Statistical_classification) से व्युत्पन्न, क्लासिक मशीन लर्निंग का उपयोग करके वर्गीकरण विशेषताओं का उपयोग करता है, जैसे `smoker`, `weight`, और `age`, ताकि *X बीमारी विकसित होने की संभावना* का निर्धारण किया जा सके। एक सुपरवाइज्ड लर्निंग तकनीक के रूप में, जो आपने पहले किए गए रिग्रेशन अभ्यासों के समान है, आपका डेटा लेबल किया गया होता है और एमएल एल्गोरिदम उन लेबल्स का उपयोग डेटा सेट की कक्षाओं (या 'विशेषताओं') को वर्गीकृत और भविष्यवाणी करने और उन्हें एक समूह या परिणाम को सौंपने के लिए करते हैं।\n", + "\n", + "✅ एक पल लें और व्यंजनों के बारे में एक डेटासेट की कल्पना करें। एक मल्टीक्लास मॉडल क्या उत्तर दे सकता है? एक बाइनरी मॉडल क्या उत्तर दे सकता है? यदि आप यह निर्धारित करना चाहते हैं कि कोई विशेष व्यंजन मेथी का उपयोग करता है या नहीं, तो क्या होगा? यदि आप यह देखना चाहते हैं कि स्टार ऐनीज़, आर्टिचोक, फूलगोभी, और हॉर्सरैडिश से भरे एक ग्रॉसरी बैग के साथ आप एक विशिष्ट भारतीय व्यंजन बना सकते हैं या नहीं, तो क्या होगा?\n", + "\n", + "### **'क्लासिफायर' से मिलें**\n", + "\n", + "हम इस व्यंजन डेटासेट से जो प्रश्न पूछना चाहते हैं, वह वास्तव में एक **मल्टीक्लास प्रश्न** है, क्योंकि हमारे पास काम करने के लिए कई संभावित राष्ट्रीय व्यंजन हैं। सामग्री के एक बैच को देखते हुए, यह डेटा इनमें से किस वर्ग में फिट होगा?\n", + "\n", + "Tidymodels वर्गीकृत डेटा के लिए उपयोग करने के लिए कई अलग-अलग एल्गोरिदम प्रदान करता है, यह इस बात पर निर्भर करता है कि आप किस प्रकार की समस्या हल करना चाहते हैं। अगले दो पाठों में, आप इन एल्गोरिदम में से कई के बारे में जानेंगे।\n", + "\n", + "#### **पूर्वापेक्षा**\n", + "\n", + "इस पाठ के लिए, हमें डेटा को साफ़ करने, तैयार करने और विज़ुअलाइज़ करने के लिए निम्नलिखित पैकेजों की आवश्यकता होगी:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) एक [R पैकेजों का संग्रह](https://www.tidyverse.org/packages) है, जिसे डेटा साइंस को तेज़, आसान और अधिक मज़ेदार बनाने के लिए डिज़ाइन किया गया है!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) फ्रेमवर्क मॉडलिंग और मशीन लर्निंग के लिए [पैकेजों का संग्रह](https://www.tidymodels.org/packages/) है।\n", + "\n", + "- `DataExplorer`: [DataExplorer पैकेज](https://cran.r-project.org/web/packages/DataExplorer/vignettes/dataexplorer-intro.html) ईडीए प्रक्रिया और रिपोर्ट जनरेशन को सरल और स्वचालित करने के लिए बनाया गया है।\n", + "\n", + "- `themis`: [themis पैकेज](https://themis.tidymodels.org/) असंतुलित डेटा से निपटने के लिए अतिरिक्त रेसिपी स्टेप्स प्रदान करता है।\n", + "\n", + "आप इन्हें इस प्रकार इंस्टॉल कर सकते हैं:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "वैकल्पिक रूप से, नीचे दिया गया स्क्रिप्ट जांचता है कि क्या आपके पास इस मॉड्यूल को पूरा करने के लिए आवश्यक पैकेज हैं और यदि वे गायब हैं तो उन्हें आपके लिए इंस्टॉल करता है।\n" + ], + "metadata": { + "id": "ri5bQxZ-Fz_0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, DataExplorer, themis, here)" + ], + "outputs": [], + "metadata": { + "id": "KIPxa4elGAPI" + } + }, + { + "cell_type": "markdown", + "source": [ + "हम बाद में इन शानदार पैकेजों को लोड करेंगे और उन्हें हमारे वर्तमान R सत्र में उपलब्ध कराएंगे। (यह केवल उदाहरण के लिए है, `pacman::p_load()` ने यह पहले ही आपके लिए कर दिया है)\n" + ], + "metadata": { + "id": "YkKAxOJvGD4C" + } + }, + { + "cell_type": "markdown", + "source": [ + "## अभ्यास - अपने डेटा को साफ़ और संतुलित करें\n", + "\n", + "इस प्रोजेक्ट को शुरू करने से पहले सबसे पहला काम है अपने डेटा को साफ़ करना और **संतुलित** करना ताकि बेहतर परिणाम मिल सकें।\n", + "\n", + "आइए डेटा से मिलते हैं! 🕵️\n" + ], + "metadata": { + "id": "PFkQDlk0GN5O" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# View the first 5 rows\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": { + "id": "Qccw7okxGT0S" + } + }, + { + "cell_type": "markdown", + "source": [ + "दिलचस्प! देखने से लगता है कि पहली कॉलम एक प्रकार की `id` कॉलम है। आइए डेटा के बारे में थोड़ी और जानकारी प्राप्त करें।\n" + ], + "metadata": { + "id": "XrWnlgSrGVmR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Basic information about the data\r\n", + "df %>%\r\n", + " introduce()\r\n", + "\r\n", + "# Visualize basic information above\r\n", + "df %>% \r\n", + " plot_intro(ggtheme = theme_light())" + ], + "outputs": [], + "metadata": { + "id": "4UcGmxRxGieA" + } + }, + { + "cell_type": "markdown", + "source": [ + "आउटपुट से, हम तुरंत देख सकते हैं कि हमारे पास `2448` पंक्तियाँ और `385` कॉलम हैं और `0` गायब मान हैं। हमारे पास 1 विविक्त कॉलम भी है, *cuisine*।\n", + "\n", + "## अभ्यास - व्यंजनों के बारे में सीखना\n", + "\n", + "अब काम और अधिक रोचक होने लगता है। आइए प्रत्येक व्यंजन के अनुसार डेटा के वितरण का पता लगाएं।\n" + ], + "metadata": { + "id": "AaPubl__GmH5" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Count observations per cuisine\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(n)\r\n", + "\r\n", + "# Plot the distribution\r\n", + "theme_set(theme_light())\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " ggplot(mapping = aes(x = n, y = reorder(cuisine, -n))) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"cuisine\")" + ], + "outputs": [], + "metadata": { + "id": "FRsBVy5eGrrv" + } + }, + { + "cell_type": "markdown", + "source": [ + "खानों की एक सीमित संख्या होती है, लेकिन डेटा का वितरण असमान है। आप इसे सुधार सकते हैं! ऐसा करने से पहले, थोड़ा और अन्वेषण करें।\n", + "\n", + "अब, आइए प्रत्येक खाने को उसके व्यक्तिगत टिबल में विभाजित करें और पता करें कि प्रत्येक खाने के लिए कितना डेटा उपलब्ध है (पंक्तियाँ, स्तंभ)।\n", + "\n", + "> एक [tibble](https://tibble.tidyverse.org/) एक आधुनिक डेटा फ्रेम है।\n", + "\n", + "

                                \n", + " \n", + "

                                @allison_horst द्वारा कलाकृति
                                \n" + ], + "metadata": { + "id": "vVvyDb1kG2in" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create individual tibble for the cuisines\r\n", + "thai_df <- df %>% \r\n", + " filter(cuisine == \"thai\")\r\n", + "japanese_df <- df %>% \r\n", + " filter(cuisine == \"japanese\")\r\n", + "chinese_df <- df %>% \r\n", + " filter(cuisine == \"chinese\")\r\n", + "indian_df <- df %>% \r\n", + " filter(cuisine == \"indian\")\r\n", + "korean_df <- df %>% \r\n", + " filter(cuisine == \"korean\")\r\n", + "\r\n", + "\r\n", + "# Find out how much data is available per cuisine\r\n", + "cat(\" thai df:\", dim(thai_df), \"\\n\",\r\n", + " \"japanese df:\", dim(japanese_df), \"\\n\",\r\n", + " \"chinese_df:\", dim(chinese_df), \"\\n\",\r\n", + " \"indian_df:\", dim(indian_df), \"\\n\",\r\n", + " \"korean_df:\", dim(korean_df))" + ], + "outputs": [], + "metadata": { + "id": "0TvXUxD3G8Bk" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **व्यायाम - dplyr का उपयोग करके व्यंजनों के अनुसार शीर्ष सामग्री की खोज करना**\n", + "\n", + "अब आप डेटा में गहराई से उतर सकते हैं और जान सकते हैं कि प्रत्येक व्यंजन के लिए विशिष्ट सामग्री क्या हैं। आपको बार-बार आने वाले डेटा को साफ़ करना चाहिए जो व्यंजनों के बीच भ्रम पैदा करता है, तो चलिए इस समस्या के बारे में सीखते हैं।\n", + "\n", + "R में एक फ़ंक्शन `create_ingredient()` बनाएं जो एक सामग्री डेटा फ्रेम लौटाए। यह फ़ंक्शन एक गैर-उपयोगी कॉलम को हटाने और सामग्री को उनकी गिनती के आधार पर क्रमबद्ध करने से शुरू होगा।\n", + "\n", + "R में फ़ंक्शन की मूल संरचना इस प्रकार है:\n", + "\n", + "`myFunction <- function(arglist){`\n", + "\n", + "**`...`**\n", + "\n", + "**`return`**`(value)`\n", + "\n", + "`}`\n", + "\n", + "R फ़ंक्शन्स का एक सरल परिचय [यहां](https://skirmer.github.io/presentations/functions_with_r.html#1) पाया जा सकता है।\n", + "\n", + "चलो सीधे इसमें उतरते हैं! हम [dplyr क्रियाओं](https://dplyr.tidyverse.org/) का उपयोग करेंगे, जिन्हें हमने अपने पिछले पाठों में सीखा है। एक पुनरावलोकन के रूप में:\n", + "\n", + "- `dplyr::select()`: यह आपको चुनने में मदद करता है कि कौन से **कॉलम्स** रखना है या हटाना है।\n", + "\n", + "- `dplyr::pivot_longer()`: यह डेटा को \"लंबा\" करने में मदद करता है, जिससे पंक्तियों की संख्या बढ़ती है और कॉलम्स की संख्या घटती है।\n", + "\n", + "- `dplyr::group_by()` और `dplyr::summarise()`: यह आपको विभिन्न समूहों के लिए सारांश आँकड़े खोजने और उन्हें एक सुंदर तालिका में रखने में मदद करता है।\n", + "\n", + "- `dplyr::filter()`: डेटा का एक उपसमूह बनाता है जिसमें केवल वे पंक्तियाँ होती हैं जो आपकी शर्तों को पूरा करती हैं।\n", + "\n", + "- `dplyr::mutate()`: यह आपको कॉलम्स बनाने या संशोधित करने में मदद करता है।\n", + "\n", + "Allison Horst द्वारा बनाया गया यह [*कला*-युक्त learnr ट्यूटोरियल](https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome) देखें, जो dplyr *(Tidyverse का हिस्सा)* में कुछ उपयोगी डेटा प्रबंधन फ़ंक्शन्स का परिचय देता है।\n" + ], + "metadata": { + "id": "K3RF5bSCHC76" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Creates a functions that returns the top ingredients by class\r\n", + "\r\n", + "create_ingredient <- function(df){\r\n", + " \r\n", + " # Drop the id column which is the first colum\r\n", + " ingredient_df = df %>% select(-1) %>% \r\n", + " # Transpose data to a long format\r\n", + " pivot_longer(!cuisine, names_to = \"ingredients\", values_to = \"count\") %>% \r\n", + " # Find the top most ingredients for a particular cuisine\r\n", + " group_by(ingredients) %>% \r\n", + " summarise(n_instances = sum(count)) %>% \r\n", + " filter(n_instances != 0) %>% \r\n", + " # Arrange by descending order\r\n", + " arrange(desc(n_instances)) %>% \r\n", + " mutate(ingredients = factor(ingredients) %>% fct_inorder())\r\n", + " \r\n", + " \r\n", + " return(ingredient_df)\r\n", + "} # End of function" + ], + "outputs": [], + "metadata": { + "id": "uB_0JR82HTPa" + } + }, + { + "cell_type": "markdown", + "source": [ + "अब हम इस फ़ंक्शन का उपयोग करके विभिन्न व्यंजनों में सबसे लोकप्रिय दस सामग्री का अंदाज़ा लगा सकते हैं। चलिए इसे `thai_df` के साथ आज़माते हैं।\n" + ], + "metadata": { + "id": "h9794WF8HWmc" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Call create_ingredient and display popular ingredients\r\n", + "thai_ingredient_df <- create_ingredient(df = thai_df)\r\n", + "\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "agQ-1HrcHaEA" + } + }, + { + "cell_type": "markdown", + "source": [ + "पिछले भाग में, हमने `geom_col()` का उपयोग किया था, आइए देखें कि आप `geom_bar` का उपयोग कैसे कर सकते हैं, बार चार्ट बनाने के लिए। आगे पढ़ने के लिए `?geom_bar` का उपयोग करें।\n" + ], + "metadata": { + "id": "kHu9ffGjHdcX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a bar chart for popular thai cuisines\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10) %>% \r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"steelblue\") +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "fb3Bx_3DHj6e" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "RHP_xgdkHnvM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Japanese cuisines and make bar chart\r\n", + "create_ingredient(df = japanese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"darkorange\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "019v8F0XHrRU" + } + }, + { + "cell_type": "markdown", + "source": [ + "चीनी व्यंजनों के बारे में क्या ख्याल है?\n" + ], + "metadata": { + "id": "iIGM7vO8Hu3v" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Chinese cuisines and make bar chart\r\n", + "create_ingredient(df = chinese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"cyan4\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lHd9_gd2HyzU" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "ir8qyQbNH1c7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Indian cuisines and make bar chart\r\n", + "create_ingredient(df = indian_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#041E42FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "ApukQtKjH5FO" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "qv30cwY1H-FM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Korean cuisines and make bar chart\r\n", + "create_ingredient(df = korean_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#852419FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lumgk9cHIBie" + } + }, + { + "cell_type": "markdown", + "source": [ + "डेटा विज़ुअलाइज़ेशन से, अब हम उन सबसे सामान्य सामग्रियों को हटा सकते हैं जो विभिन्न व्यंजनों के बीच भ्रम पैदा करती हैं, `dplyr::select()` का उपयोग करके।\n", + "\n", + "हर किसी को चावल, लहसुन और अदरक पसंद है!\n" + ], + "metadata": { + "id": "iO4veMXuIEta" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "iHJPiG6rIUcK" + } + }, + { + "cell_type": "markdown", + "source": [ + "## व्यंजनों का उपयोग करके डेटा को पूर्व-प्रसंस्कृत करना 👩‍🍳👨‍🍳 - असंतुलित डेटा से निपटना ⚖️\n", + "\n", + "

                                \n", + " \n", + "

                                चित्रण @allison_horst द्वारा
                                \n", + "\n", + "चूंकि यह पाठ व्यंजनों के बारे में है, हमें `recipes` को संदर्भ में रखना होगा।\n", + "\n", + "Tidymodels एक और शानदार पैकेज प्रदान करता है: `recipes` - डेटा को पूर्व-प्रसंस्कृत करने के लिए एक पैकेज।\n" + ], + "metadata": { + "id": "kkFd-JxdIaL6" + } + }, + { + "cell_type": "markdown", + "source": [ + "चलो फिर से हमारे व्यंजनों के वितरण पर नज़र डालते हैं।\n" + ], + "metadata": { + "id": "6l2ubtTPJAhY" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "old_label_count <- df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "old_label_count" + ], + "outputs": [], + "metadata": { + "id": "1e-E9cb7JDVi" + } + }, + { + "cell_type": "markdown", + "source": [ + "जैसा कि आप देख सकते हैं, व्यंजनों की संख्या में काफी असमान वितरण है। कोरियाई व्यंजन थाई व्यंजनों से लगभग तीन गुना अधिक हैं। असंतुलित डेटा का मॉडल के प्रदर्शन पर अक्सर नकारात्मक प्रभाव पड़ता है। एक बाइनरी वर्गीकरण के बारे में सोचें। यदि आपके अधिकांश डेटा एक ही वर्ग के हैं, तो एक मशीन लर्निंग मॉडल उसी वर्ग की भविष्यवाणी अधिक बार करेगा, केवल इसलिए कि उसके पास उस वर्ग के लिए अधिक डेटा है। डेटा को संतुलित करना किसी भी असमान डेटा को लेता है और इस असंतुलन को दूर करने में मदद करता है। कई मॉडल तब सबसे अच्छा प्रदर्शन करते हैं जब अवलोकनों की संख्या समान होती है और इसलिए, असंतुलित डेटा के साथ संघर्ष करते हैं।\n", + "\n", + "असंतुलित डेटा सेट से निपटने के मुख्यतः दो तरीके हैं:\n", + "\n", + "- अल्पसंख्यक वर्ग में अवलोकन जोड़ना: `ओवर-सैंपलिंग`, जैसे SMOTE एल्गोरिदम का उपयोग करना\n", + "\n", + "- बहुसंख्यक वर्ग से अवलोकन हटाना: `अंडर-सैंपलिंग`\n", + "\n", + "अब आइए एक `recipe` का उपयोग करके असंतुलित डेटा सेट से निपटने का तरीका प्रदर्शित करें। एक recipe को एक खाका माना जा सकता है, जो यह बताता है कि डेटा सेट को डेटा विश्लेषण के लिए तैयार करने के लिए कौन-कौन से कदम लागू किए जाने चाहिए।\n" + ], + "metadata": { + "id": "soAw6826JKx9" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = df_select) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "cuisines_recipe" + ], + "outputs": [], + "metadata": { + "id": "HS41brUIJVJy" + } + }, + { + "cell_type": "markdown", + "source": [ + "आइए हमारे प्रीप्रोसेसिंग चरणों को समझते हैं।\n", + "\n", + "- `recipe()` को एक फॉर्मूला के साथ कॉल करने से `df_select` डेटा को संदर्भ के रूप में उपयोग करते हुए वेरिएबल्स के *roles* को निर्धारित किया जाता है। उदाहरण के लिए, `cuisine` कॉलम को `outcome` भूमिका दी गई है, जबकि बाकी कॉलम्स को `predictor` भूमिका दी गई है।\n", + "\n", + "- [`step_smote(cuisine)`](https://themis.tidymodels.org/reference/step_smote.html) एक *specification* बनाता है, जो एक रेसिपी स्टेप को परिभाषित करता है। यह स्टेप अल्पसंख्यक वर्ग के नए उदाहरणों को उनके निकटतम पड़ोसियों का उपयोग करके कृत्रिम रूप से उत्पन्न करता है।\n", + "\n", + "अब, यदि हम प्रीप्रोसेस्ड डेटा देखना चाहते हैं, तो हमें [**`prep()`**](https://recipes.tidymodels.org/reference/prep.html) और [**`bake()`**](https://recipes.tidymodels.org/reference/bake.html) का उपयोग करना होगा।\n", + "\n", + "`prep()`: प्रशिक्षण सेट से आवश्यक पैरामीटर का अनुमान लगाता है, जिसे बाद में अन्य डेटा सेट्स पर लागू किया जा सकता है।\n", + "\n", + "`bake()`: एक प्रीप्रोसेस्ड रेसिपी लेता है और किसी भी डेटा सेट पर ऑपरेशन्स को लागू करता है।\n" + ], + "metadata": { + "id": "Yb-7t7XcJaC8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep and bake the recipe\r\n", + "preprocessed_df <- cuisines_recipe %>% \r\n", + " prep() %>% \r\n", + " bake(new_data = NULL) %>% \r\n", + " relocate(cuisine)\r\n", + "\r\n", + "# Display data\r\n", + "preprocessed_df %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Quick summary stats\r\n", + "preprocessed_df %>% \r\n", + " introduce()" + ], + "outputs": [], + "metadata": { + "id": "9QhSgdpxJl44" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "dmidELh_LdV7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "new_label_count <- preprocessed_df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "list(new_label_count = new_label_count,\r\n", + " old_label_count = old_label_count)" + ], + "outputs": [], + "metadata": { + "id": "aSh23klBLwDz" + } + }, + { + "cell_type": "markdown", + "source": [ + "यम! डेटा साफ-सुथरा, संतुलित और बहुत स्वादिष्ट है 😋!\n", + "\n", + "> आमतौर पर, एक रेसिपी को मॉडलिंग के लिए प्रीप्रोसेसर के रूप में उपयोग किया जाता है, जहां यह परिभाषित करती है कि डेटा सेट पर कौन-कौन से चरण लागू किए जाने चाहिए ताकि इसे मॉडलिंग के लिए तैयार किया जा सके। ऐसे मामलों में, आमतौर पर `workflow()` का उपयोग किया जाता है (जैसा कि हमने अपने पिछले पाठों में देखा है) बजाय इसके कि रेसिपी को मैन्युअल रूप से अनुमानित किया जाए।\n", + ">\n", + "> इस प्रकार, जब आप tidymodels का उपयोग करते हैं तो आपको आमतौर पर **`prep()`** और **`bake()`** रेसिपी की आवश्यकता नहीं होती है, लेकिन ये आपके टूलकिट में उपयोगी फंक्शन होते हैं ताकि यह सुनिश्चित किया जा सके कि रेसिपी वही कर रही है जो आप उम्मीद कर रहे हैं, जैसे कि हमारे मामले में।\n", + ">\n", + "> जब आप **`bake()`** करते हैं एक प्रीप की गई रेसिपी के साथ **`new_data = NULL`**, तो आपको वही डेटा वापस मिलता है जो आपने रेसिपी को परिभाषित करते समय प्रदान किया था, लेकिन वह प्रीप्रोसेसिंग चरणों से गुजर चुका होता है।\n", + "\n", + "अब चलिए इस डेटा की एक कॉपी भविष्य के पाठों में उपयोग के लिए सेव करते हैं:\n" + ], + "metadata": { + "id": "HEu80HZ8L7ae" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Save preprocessed data\r\n", + "write_csv(preprocessed_df, \"../../../data/cleaned_cuisines_R.csv\")" + ], + "outputs": [], + "metadata": { + "id": "cBmCbIgrMOI6" + } + }, + { + "cell_type": "markdown", + "source": [ + "यह नया CSV अब रूट डेटा फोल्डर में पाया जा सकता है।\n", + "\n", + "**🚀चुनौती**\n", + "\n", + "इस पाठ्यक्रम में कई रोचक डेटा सेट शामिल हैं। `data` फोल्डर्स को खंगालें और देखें कि क्या इनमें से कोई डेटा सेट बाइनरी या मल्टी-क्लास वर्गीकरण के लिए उपयुक्त है? आप इस डेटा सेट से कौन-कौन से सवाल पूछेंगे?\n", + "\n", + "## [**पाठ के बाद का क्विज़**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/)\n", + "\n", + "## **समीक्षा और स्व-अध्ययन**\n", + "\n", + "- [पैकेज themis](https://github.com/tidymodels/themis) को देखें। असंतुलित डेटा से निपटने के लिए हम और कौन-कौन सी तकनीकों का उपयोग कर सकते हैं?\n", + "\n", + "- टाइड मॉडल्स [संदर्भ वेबसाइट](https://www.tidymodels.org/start/)।\n", + "\n", + "- एच. विकहम और जी. ग्रोलेमंड, [*R फॉर डेटा साइंस: डेटा को विज़ुअलाइज़, मॉडल, ट्रांसफॉर्म, टाइड और इंपोर्ट करें*](https://r4ds.had.co.nz/)।\n", + "\n", + "#### धन्यवाद:\n", + "\n", + "[`एलिसन हॉर्स्ट`](https://twitter.com/allison_horst/) को, जिन्होंने अद्भुत चित्रण बनाए हैं जो R को और अधिक स्वागतयोग्य और आकर्षक बनाते हैं। उनके और चित्रण [गैलरी](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) में देखें।\n", + "\n", + "[कैसी ब्रेवियू](https://www.twitter.com/cassieview) और [जेन लूपर](https://www.twitter.com/jenlooper) को, जिन्होंने इस मॉड्यूल का मूल Python संस्करण बनाया ♥️\n", + "\n", + "

                                \n", + " \n", + "

                                चित्रण @allison_horst द्वारा
                                \n" + ], + "metadata": { + "id": "WQs5621pMGwf" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/4-Classification/1-Introduction/solution/notebook.ipynb b/translations/hi/4-Classification/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..59a325681 --- /dev/null +++ b/translations/hi/4-Classification/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,697 @@ +{ + "cells": [ + { + "source": [ + "# स्वादिष्ट एशियाई और भारतीय व्यंजन\n", + "\n", + "## परिचय\n", + "एशियाई और भारतीय व्यंजन अपनी विविधता, मसालों और अनोखे स्वादों के लिए प्रसिद्ध हैं। इस गाइड में, हम कुछ लोकप्रिय व्यंजनों और उनकी विशेषताओं पर चर्चा करेंगे।\n", + "\n", + "## एशियाई व्यंजन\n", + "एशियाई व्यंजन विभिन्न देशों और संस्कृतियों का मिश्रण है। यहाँ कुछ मुख्य व्यंजन दिए गए हैं:\n", + "\n", + "### सुशी\n", + "सुशी जापानी व्यंजनों का एक महत्वपूर्ण हिस्सा है। यह आमतौर पर चावल, समुद्री शैवाल और कच्ची मछली से बनाया जाता है। \n", + "[!NOTE] सुशी को ताज़ा सामग्री के साथ परोसा जाना चाहिए।\n", + "\n", + "### पद थाई\n", + "पद थाई थाईलैंड का एक प्रसिद्ध नूडल व्यंजन है। इसे चावल के नूडल्स, अंडे, टोफू, और मूंगफली के साथ बनाया जाता है। \n", + "[!TIP] इसे नींबू और हरी मिर्च के साथ परोसें।\n", + "\n", + "## भारतीय व्यंजन\n", + "भारतीय व्यंजन अपने मसालों और विविधता के लिए जाने जाते हैं। यहाँ कुछ लोकप्रिय व्यंजन दिए गए हैं:\n", + "\n", + "### बटर चिकन\n", + "बटर चिकन एक मलाईदार और मसालेदार करी है, जिसे चिकन, मक्खन और टमाटर की ग्रेवी से बनाया जाता है। \n", + "[!IMPORTANT] इसे नान या चावल के साथ परोसें।\n", + "\n", + "### बिरयानी\n", + "बिरयानी एक सुगंधित चावल का व्यंजन है, जिसे मसालों, मांस या सब्जियों के साथ पकाया जाता है। \n", + "[!CAUTION] बिरयानी पकाते समय चावल को ज़्यादा न पकाएँ।\n", + "\n", + "## निष्कर्ष\n", + "एशियाई और भारतीय व्यंजन न केवल स्वादिष्ट होते हैं, बल्कि वे विभिन्न संस्कृतियों और परंपराओं का भी प्रतिनिधित्व करते हैं। इन्हें बनाना और खाना दोनों ही एक अद्भुत अनुभव है।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: imblearn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.0)\n", + "Requirement already satisfied: imbalanced-learn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imblearn) (0.8.0)\n", + "Requirement already satisfied: numpy>=1.13.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.19.2)\n", + "Requirement already satisfied: scipy>=0.19.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.4.1)\n", + "Requirement already satisfied: scikit-learn>=0.24 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.24.2)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.16.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.24->imbalanced-learn->imblearn) (2.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install imblearn" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "import numpy as np\n", + "from imblearn.over_sampling import SMOTE" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../../data/cuisines.csv')" + ] + }, + { + "source": [ + "इस डेटा सेट में 385 कॉलम शामिल हैं, जो दिए गए व्यंजनों के सेट से विभिन्न व्यंजनों में सभी प्रकार की सामग्री को दर्शाते हैं।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 65 indian 0 0 0 0 0 \n", + "1 66 indian 1 0 0 0 0 \n", + "2 67 indian 0 0 0 0 0 \n", + "3 68 indian 0 0 0 0 0 \n", + "4 69 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 385 columns]" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                065indian00000000...0000000000
                                166indian10000000...0000000000
                                267indian00000000...0000000000
                                368indian00000000...0000000000
                                469indian00000000...0000000010
                                \n

                                5 rows × 385 columns

                                \n
                                " + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 2448 entries, 0 to 2447\nColumns: 385 entries, Unnamed: 0 to zucchini\ndtypes: int64(384), object(1)\nmemory usage: 7.2+ MB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "korean 799\n", + "indian 598\n", + "chinese 442\n", + "japanese 320\n", + "thai 289\n", + "Name: cuisine, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "df.cuisine.value_counts()" + ] + }, + { + "source": [ + "बार ग्राफ में व्यंजनों को दिखाएं\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD4CAYAAAAtrdtxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAASY0lEQVR4nO3df7TldV3v8eerGZkRRoeAiXtE5UgNIkUCjlwQIzAiC7NscdcSbcmsfkxl5SXX0juuyzK9d3UvlXnpplajma0kMtCUhluImNcr8msGBmb4pZaTQCFQOYom0fi+f+zPkd14hpnzOWefvYfzfKy113z35/vde7/22fvMa3++3733SVUhSVKPbxt3AEnSgcsSkSR1s0QkSd0sEUlSN0tEktRt+bgDLKYjjjiipqenxx1Dkg4oW7dufbiq1sy2bkmVyPT0NFu2bBl3DEk6oCT5u72tc3eWJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqduS+sT69vt3Mb3xqnHH0ALZefG5444gLXnORCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktRtIkokyaFJXtuWz0yyeY6X/29Jzh5NOknS3kxEiQCHAq/tvXBVvbmqPraAeSRJ+2FSSuRi4DuTbAN+E1iV5Iokdye5NEkAkrw5yc1JdiTZNDT+viTnjTG/JC1Jk1IiG4G/qaoTgTcAJwEXAscDxwCnt+3eUVUvrKrvAZ4KvGxfV5xkQ5ItSbbs/tqu0aSXpCVqUkpkTzdV1X1V9Q1gGzDdxs9KcmOS7cBLgO/e1xVV1aaqWldV65YdvHp0iSVpCZrUL2B8dGh5N7A8yUrgXcC6qro3yVuAleMIJ0kamJSZyFeAp+1jm5nCeDjJKsBjIJI0ZhMxE6mqf0xyXZIdwL8AX5xlmy8leTewA3gAuHmRY0qS9jARJQJQVa/ay/gvDS1fBFw0yzbrR5dMkrQ3k7I7S5J0ALJEJEndLBFJUjdLRJLUzRKRJHWbmHdnLYYTjlrNlovPHXcMSXrScCYiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6rZ83AEW0/b7dzG98apxx9CY7Lz43HFHkJ50nIlIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG77VSJJPj3qIJKkA89+lUhVvWjUQSRJB579nYk8kmRVkmuT3JJke5Ifa+umk9yd5NIkdyW5IsnBbd2bk9ycZEeSTUnSxj+R5NeT3JTkM0m+r40vS/Kb7TK3J/m5Nj6V5JNJtrXrmtn+nCTXt0yXJ1k1ih+SJGl2czkm8nXgFVV1MnAW8FszpQA8F3hXVT0P+DLw2jb+jqp6YVV9D/BU4GVD17e8qk4BLgR+tY39NLCrql4IvBD42STPAV4FXF1VJwLPB7YlOQK4CDi7ZdoCvH4ud16SND9z+dqTAP8jyRnAN4CjgCPbunur6rq2/H7gdcDbgLOSvBE4GDgMuAP4i7bdh9q/W4HptnwO8L1JzmvnVwNrgZuB9yZ5CvDhqtqW5PuB44HrWpcdBFz/LaGTDcAGgGVPXzOHuytJ2pe5lMirgTXAC6rqsSQ7gZVtXe2xbSVZCbwLWFdV9yZ5y9D2AI+2f3cP5Qjwy1V19Z433srrXOB9Sd4O/DNwTVWd/0Shq2oTsAlgxdTaPXNKkuZhLruzVgMPtgI5Czh6aN2zk5zWll8FfIrHC+PhdqziPPbtauAX2oyDJMcmOSTJ0cAXq+rdwHuAk4EbgNOTfFfb9pAkx87h/kiS5ml/ZyIFXAr8RZLtDI4/3D20/h7gF5O8F7gT+N2q+lqSdwM7gAcY7JLal/cw2LV1Szve8hDw48CZwBuSPAY8Arymqh5Ksh64LMmKdvmLgM/s532SJM1Tqp54D0+Sw4FbqurovayfBja3g+cTbcXU2pq64JJxx9CY+FXwUp8kW6tq3WzrnnB3VpJnMDhY/bZRBJMkHdiecHdWVf098ITHGapqJzDxsxBJ0sLzu7MkSd0sEUlSN0tEktRtLh82POCdcNRqtvgOHUlaMM5EJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd2WjzvAYtp+/y6mN1417hhSt50XnzvuCNK/40xEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3Ra0RJK8L8l5s4w/I8kVC3lbkqTxW5QPG1bV3wPfUi6SpAPbvGYiSV6T5PYktyX54zZ8RpJPJ/nbmVlJkukkO9ry+iQfSvJXST6b5DeGru+cJNcnuSXJ5UlWtfGLk9zZbuttbWxNkg8mubmdTp/PfZEkzV33TCTJdwMXAS+qqoeTHAa8HZgCXgwcB1wJzLYb60TgJOBR4J4kvwP8S7u+s6vqq0n+C/D6JO8EXgEcV1WV5NB2Hb8N/K+q+lSSZwNXA8+bJecGYAPAsqev6b27kqRZzGd31kuAy6vqYYCq+qckAB+uqm8AdyY5ci+XvbaqdgEkuRM4GjgUOB64rl3PQcD1wC7g68AfJNkMbG7XcTZwfNsW4OlJVlXVI8M3VFWbgE0AK6bW1jzuryRpD6M4JvLo0HL2Y5vdLUeAa6rq/D03TnIK8AMMjqv8EoMC+zbg1Kr6+kKEliTN3XyOiXwc+E9JDgdou7Pm4wbg9CTf1a7vkCTHtuMiq6vq/wC/Ajy/bf9R4JdnLpzkxHneviRpjrpnIlV1R5JfA/5vkt3ArfMJUlUPJVkPXJZkRRu+CPgK8JEkKxnMVl7f1r0OeGeS2xncj08CPz+fDJKkuUnV0jlMsGJqbU1dcMm4Y0jd/HsiGockW6tq3Wzr/MS6JKmbJSJJ6maJSJK6WSKSpG6WiCSp26J8AeOkOOGo1Wzx3S2StGCciUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6LR93gMW0/f5dTG+8atwxJM3RzovPHXcE7YUzEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUbWQlkuTTc9z+zCSb2/LLk2wcTTJJ0kIZ2edEqupF87jslcCVCxhHkjQCo5yJPNL+PTPJJ5JckeTuJJcmSVv30jZ2C/ATQ5ddn+QdbflHk9yY5NYkH0tyZBt/S5L3tuv+2ySvG9V9kSTNbrGOiZwEXAgcDxwDnJ5kJfBu4EeBFwD/YS+X/RRwalWdBPwp8MahdccBPwScAvxqkqeMJr4kaTaL9bUnN1XVfQBJtgHTwCPA56vqs238/cCGWS77TOADSaaAg4DPD627qqoeBR5N8iBwJHDf8IWTbJi53mVPX7OQ90mSlrzFmok8OrS8m7mV1+8A76iqE4CfA1bO5XqralNVrauqdcsOXj2Hm5Uk7cs43+J7NzCd5Dvb+fP3st1q4P62fMHIU0mS9tvYSqSqvs5gN9NV7cD6g3vZ9C3A5Um2Ag8vUjxJ0n5IVY07w6JZMbW2pi64ZNwxJM2RXwU/Xkm2VtW62db5iXVJUjdLRJLUzRKRJHWzRCRJ3SwRSVK3xfrE+kQ44ajVbPFdHpK0YJyJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrotH3eAxbT9/l1Mb7xq3DEkaVHtvPjckV23MxFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1W9ASSTKdZMdCXqckaXJNxEwkyZL60KMkPVmMrESSHJPk1iTfl+QPk2xv589q69cnuTLJx4Fr29gbktyc5PYkbx26rg8n2ZrkjiQbhsYfSfJrSW5LckOSI0d1fyRJ32okJZLkucAHgfXAKUBV1QnA+cAfJVnZNj0ZOK+qvj/JOcDatv2JwAuSnNG2+6mqegGwDnhdksPb+CHADVX1fOCTwM/OkmVDki1Jtuz+2q5R3F1JWrJGUSJrgI8Ar66q24AXA+8HqKq7gb8Djm3bXlNV/9SWz2mnW4FbgOMYlAoMiuM24AbgWUPj/wpsbstbgek9w1TVpqpaV1Xrlh28eqHuoySJ0XwB4y7gCwzK4859bPvVoeUA/7Oqfn94gyRnAmcDp1XV15J8ApiZyTxWVdWWd7PEvlBSksZtFDORfwVeAbwmyauA/we8GiDJscCzgXtmudzVwE8lWdW2PSrJdwCrgX9uBXIccOoIMkuSOozklXtVfTXJy4BrgP8OnJBkO/BvwPqqejTJnpf5aJLnAde3dY8APwn8FfDzSe5iUD43jCKzJGnu8vjeoCe/FVNra+qCS8YdQ5IW1Xz/nkiSrVW1brZ1E/E5EUnSgckSkSR1s0QkSd0sEUlSN0tEktRtSX0474SjVrNlnu9SkCQ9zpmIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqtqT+KFWSrzD7n+adFEcAD487xBMw3/yYb37MNz/zyXd0Va2ZbcWS+u4s4J69/XWuSZBki/n6mW9+zDc/SzWfu7MkSd0sEUlSt6VWIpvGHWAfzDc/5psf883Pksy3pA6sS5IW1lKbiUiSFpAlIknqtmRKJMlLk9yT5HNJNo4pw3uTPJhkx9DYYUmuSfLZ9u+3t/Ek+d8t7+1JTl6EfM9K8tdJ7kxyR5L/PEkZk6xMclOS21q+t7bx5yS5seX4QJKD2viKdv5zbf30KPO121yW5NYkmycw284k25NsS7KljU3EY9tu89AkVyS5O8ldSU6blHxJntt+bjOnLye5cFLytdv8lfZ7sSPJZe33ZfTPv6p60p+AZcDfAMcABwG3AcePIccZwMnAjqGx3wA2tuWNwK+35R8B/hIIcCpw4yLkmwJObstPAz4DHD8pGdvtrGrLTwFubLf7Z8Ar2/jvAb/Qll8L/F5bfiXwgUX4Gb4e+BNgczs/Sdl2AkfsMTYRj227zT8CfqYtHwQcOkn5hnIuAx4Ajp6UfMBRwOeBpw4979YvxvNvUX7o4z4BpwFXD51/E/CmMWWZ5t+XyD3AVFueYvCBSIDfB86fbbtFzPoR4AcnMSNwMHAL8B8ZfAp3+Z6PNXA1cFpbXt62ywgzPRO4FngJsLn9BzIR2drt7ORbS2QiHltgdftPMJOYb49M5wDXTVI+BiVyL3BYez5tBn5oMZ5/S2V31swPeMZ9bWwSHFlV/9CWHwCObMtjzdymtycxeLU/MRnb7qJtwIPANQxmmF+qqn+bJcM387X1u4DDRxjvEuCNwDfa+cMnKBtAAR9NsjXJhjY2KY/tc4CHgD9suwPfk+SQCco37JXAZW15IvJV1f3A24AvAP/A4Pm0lUV4/i2VEjkg1OBlwdjfc51kFfBB4MKq+vLwunFnrKrdVXUig1f9pwDHjSvLsCQvAx6sqq3jzvIEXlxVJwM/DPxikjOGV475sV3OYFfv71bVScBXGewe+qZxP/cA2jGFlwOX77lunPnasZgfY1DGzwAOAV66GLe9VErkfuBZQ+ef2cYmwReTTAG0fx9s42PJnOQpDArk0qr60CRmBKiqLwF/zWCKfmiSme+BG87wzXxt/WrgH0cU6XTg5Ul2An/KYJfWb09INuCbr1apqgeBP2dQwpPy2N4H3FdVN7bzVzAolUnJN+OHgVuq6ovt/KTkOxv4fFU9VFWPAR9i8Jwc+fNvqZTIzcDa9k6FgxhMR68cc6YZVwIXtOULGByHmBl/TXuXx6nArqFp80gkCfAHwF1V9fZJy5hkTZJD2/JTGRyvuYtBmZy3l3wzuc8DPt5eLS64qnpTVT2zqqYZPL8+XlWvnoRsAEkOSfK0mWUG+/V3MCGPbVU9ANyb5Llt6AeAOycl35DzeXxX1kyOScj3BeDUJAe33+OZn9/on3+LcSBqEk4M3i3xGQb70P/rmDJcxmB/5WMMXnn9NIP9kNcCnwU+BhzWtg3wzpZ3O7BuEfK9mMF0/HZgWzv9yKRkBL4XuLXl2wG8uY0fA9wEfI7BboYVbXxlO/+5tv6YRXqcz+Txd2dNRLaW47Z2umPmd2BSHtt2mycCW9rj+2Hg2ycs3yEMXq2vHhqbpHxvBe5uvxt/DKxYjOefX3siSeq2VHZnSZJGwBKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd3+PxNFbW14TY8fAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df.cuisine.value_counts().plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "thai df: (289, 385)\njapanese df: (320, 385)\nchinese df: (442, 385)\nindian df: (598, 385)\nkorean df: (799, 385)\n" + ] + } + ], + "source": [ + "\n", + "thai_df = df[(df.cuisine == \"thai\")]\n", + "japanese_df = df[(df.cuisine == \"japanese\")]\n", + "chinese_df = df[(df.cuisine == \"chinese\")]\n", + "indian_df = df[(df.cuisine == \"indian\")]\n", + "korean_df = df[(df.cuisine == \"korean\")]\n", + "\n", + "print(f'thai df: {thai_df.shape}')\n", + "print(f'japanese df: {japanese_df.shape}')\n", + "print(f'chinese df: {chinese_df.shape}')\n", + "print(f'indian df: {indian_df.shape}')\n", + "print(f'korean df: {korean_df.shape}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def create_ingredient_df(df):\n", + " # transpose df, drop cuisine and unnamed rows, sum the row to get total for ingredient and add value header to new df\n", + " ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value')\n", + " # drop ingredients that have a 0 sum\n", + " ingredient_df = ingredient_df[(ingredient_df.T != 0).any()]\n", + " # sort df\n", + " ingredient_df = ingredient_df.sort_values(by='value', ascending=False, inplace=False)\n", + " return ingredient_df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAeAklEQVR4nO3de7RVdb338fcHRFAhTPBCeNnogzckQJcdb11ES01QSxGLUtNHjl1EM2twhmbUo+PY5dhN07DHII+nuKSPFKe0FPEasTcCG1TUEk8QCmjuJIRg+33+WL+ti82+AWvvORfr8xpjjT3Xb/7mnN85x2J/+M0595qKCMzMzPKiW9YFmJmZlXIwmZlZrjiYzMwsVxxMZmaWKw4mMzPLlV2yLmBn0L9//6ipqcm6DDOzitG/f3/uv//++yPi9ObzHExlUFNTQ21tbdZlmJlVFEn9W2r3qTwzM8sVB5OZmeWKg8nMzHLF15jMzLrApk2bWLFiBRs2bMi6lC7Xq1cv9t9/f3r06NGh/g6mMqhf2UDNxNlZl2G2Q5bfdGbWJezUVqxYQZ8+faipqUFS1uV0mYjg1VdfZcWKFQwaNKhDy/hUnplZF9iwYQP9+vWrqlACkES/fv22aaRYEcEkaYqk81pof4+kme0su7y1WxLNzLpStYVSk23d74o+lRcRfwW2CiwzM6tcuQwmSRcC1wABLAYagQ9IuhrYD/hKRMyUVAP8OiKOktQd+CZwOvAWcEdE/LBknbsB9wD3RMQdkj4FTAB2BeYBn4uIRknrgO8Do4A3gbMj4pWu2G8zqx7lvi5d7muEvXv3Zt26dWVdZ0fl7lSepCHAdcDIiBgGXJlmDQBOohgYN7Ww6HigBhgeEe8F7i6Z1xv4FfDzFEpHAGOBEyNiOMXgG5f67gH8IW37EeCyVuocL6lWUm3j+obt3l8zM9tS7oIJGAnMiIi1ABHxWmr/fxHxVkQ8DezbwnKnAj+OiM3NlgO4D/hpRPwsvT8FOAaYL2lhen9wmvdP4Ndpuo5i2G0lIiZHRCEiCt1377sdu2lm1nUmTpzIrbfe+vb7SZMmccMNN3DKKadw9NFHM3ToUO67776tlnv44YcZNWrU2++/8IUvMGXKFADq6ur44Ac/yDHHHMNpp53GqlWrylJrHoOpNRtLprf1CuLjwOl65wqcgKkRMTy9DouISWnepnjnefON5PR0p5nZthg7dizTp09/+/306dO56KKLuPfee1mwYAFz5szhS1/6Eu/8+mvbpk2buOKKK5g5cyZ1dXVccsklXHvttWWpNY+/dB8C7pV0c0S8KmmvDi73O+BfJc2JiM2S9ioZNV2fXrcCnwMeBO6T9N2IWJ220SciXir3zpiZ5cGIESNYvXo1f/3rX1mzZg3vfve72W+//fjiF7/II488Qrdu3Vi5ciWvvPIK++23X7vrW7ZsGUuWLOHDH/4wAI2NjQwYMKAsteYumCJiqaQbgbmSGoGnOrjoT4BDgcWSNgF3ALeUzL8SuFPStyLiK5KuAx6Q1A3YBHwecDCZ2U5rzJgxzJw5k5dffpmxY8dy9913s2bNGurq6ujRowc1NTVb/b3RLrvswltvvfX2+6b5EcGQIUN48skny15n7oIJICKmAlPbmN87/VwOHJWmNwNXp1dp35qSt58paZ8GTGtt3Wl6JtDm30mZmVWKsWPHctlll7F27Vrmzp3L9OnT2WeffejRowdz5szhpZe2/r/5QQcdxNNPP83GjRt58803efDBBznppJM47LDDWLNmDU8++STHH388mzZt4rnnnmPIkCE7XGcug6nSDB3Yl1p/nYuZbYMsvgJqyJAhvPHGGwwcOJABAwYwbtw4Ro8ezdChQykUChx++OFbLXPAAQdw/vnnc9RRRzFo0CBGjBgBwK677srMmTOZMGECDQ0NbN68mauuuqoswaSOXuiy1hUKhfCDAs2sLc888wxHHHFE1mVkpqX9l1QXEYXmfSvprjwzM6sCDiYzM8sVB5OZWRep1ksn27rfDiYzsy7Qq1cvXn311aoLp6bnMfXq1avDy/iuPDOzLrD//vuzYsUK1qxZk3UpXa7pCbYd5WAyM+sCPXr06PATXKudT+WZmVmuOJjMzCxXHExmZpYrvsZUBvUrG8r+NEqzvMriq3SsunjEZGZmuVJ1wSTpvyXtmXUdZmbWsqo6lZeeYDsqIt5qt7OZmWVipx8xSaqRtEzSz4AlQKOk/mnehZIWS1ok6a7UtrekX0qan14nZlm/mVm1qZYR02Dgooj4g6TlAJKGANcBJ0TE2pJHuH8f+G5EPCbpQOB+YKvvqpc0HhgP0P1de3fBLpiZVYdqCaaXIuIPzdpGAjMiYi1ARLyW2k8Fjiye9QPgXZJ6R8S60oUjYjIwGaDngMHV9eVXZmadqFqC6R/b0LcbcFxEbGi3p5mZld1Of42pDQ8BYyT1Ayg5lfcAcEVTJ0nDM6jNzKxqVW0wRcRS4EZgrqRFwM1p1gSgkG6KeBq4PKsazcyqkart2SCdoVAoRG1tbdZlmJlVFEl1EVFo3l61IyYzM8snB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Uq1fLt4p6pf2UDNxNlZl2GWmeU3nZl1CbYT8YjJzMxyxcFkZma5UjHBJOksSRPLtK5Jkq4px7rMzKy8KuIak6RdImIWMCvD7W/OYttmZtWmy0dMki5MD+FbJOkuSTWSHkptD0o6MPWbIul2SfOAb0m6WNItad5oSfMkPSXp95L2Te2TJN0p6WFJf5Y0oWS710p6TtJjwGEl7YdI+q2kOkmPSjq8pe134SEyM6tqXTpikjQEuA44ISLWpseZTwWmRsRUSZcAPwDOSYvsn/o2Srq4ZFWPAcdFREj638BXgC+leYcDJwN9gGWSbgPeC1wADKe4zwuAutR/MnB5RDwv6V+AHwEjm2+/hX0ZD4wH6P6uvXfksJiZWYmuPpU3EpgREWsBIuI1SccDH0/z72LL0cmMlkKBYmBMkzQA2BV4sWTe7IjYCGyUtBrYF3g/cG9ErAeQNCv97A2cAMyQ1LR8zw5sn4iYTDHU6DlgsB8DbGZWJnm/xvSPVtp/CNwcEbMkfQiYVDJvY8l0I23vYzfg9YgYvo3bNzOzTtLV15geAsZI6geQTuU9QfE0G8A44NEOrKcvsDJNX9SB/o8A50jaTVIfYDRARPwdeFHSmFSPJA3r6M6YmVn5demIKSKWSroRmCupEXgKuAL4qaQvA2uAz3RgVZMonn77G8WwG9TOdhdImgYsAlYD80tmjwNuk3Qd0AP4RepnZmYZUIQvj+yoQqEQtbW1WZdhZlZRJNVFRKF5e8X8ga2ZmVUHB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Urev128ItSvbKBm4uysyzDL3PKbzsy6BNsJeMRkZma54mAyM7NcyTSYJJ0j6cgO9Jsi6bwW2j8k6ddlrKcg6Qdp+mJJt5Rr3WZm1jFZj5jOAdoNpq4SEbURMSHrOszMqlmbwSTpJkmfL3k/SdI1kr4sab6kxZK+XjL/q5KWSXpM0s8lXZPaD5H0W0l1kh6VdLikE4CzgG9LWpj6XJbWu0jSLyXtXlLOqZJqJT0naVQLte4h6U5Jf5T0lKSz29ivXpJ+Kqk+9T05tXd4BCZpfKqntnF9Q0cWMTOzDmhvxDQNOL/k/fkUnzI7GHgfMBw4RtIHJB0LnAsMA84ASh/+NBm4IiKOAa4BfhQRTwCzgC9HxPCI+BNwT0QcGxHDgGeAS0vWUZO2eSZwu6RezWq9FngoIt4HnEwx8PZoZb8+D0REDAU+AUxtYX1tiojJEVGIiEL33ftuy6JmZtaGNm8Xj4inJO0j6T3A3sDfgKHARyg+Fh2gN8Wg6gPcFxEbgA2SfgUgqTdwAsVHoTetumcrmzxK0g3Anmm995fMmx4RbwHPS/ozcHizZT8CnNU0SgN6AQdSDLjmTgJ+mPbxWUkvAYe2dSzMzKxrdOTvmGYA5wH7URxBHQT8e0T8uLSTpKtaWb4b8HpEDO/AtqYA50TEIkkXAx8qmdf8GfDN3ws4NyKWdWA7ZmaWUx25+WEacAHFcJpBcRRzSRoJIWmgpH2Ax4HR6fpNb2AUQET8HXhR0pjUX5KGpXW/QXGk1aQPsEpSD2BcszrGSOom6RDgYKB5AN0PXKE0LJM0oo19erRp/ZIOpTiycqCZmeVAu8EUEUspBsbKiFgVEQ8A/wU8KakemAn0iYj5FK8ZLQZ+A9QDTXcFjAMulbQIWAo03ZjwC+DL6QaEQ4CvAvMohtyzzUr5H+CPad2Xp1OGpf4P0ANYLGlpet+aHwHdUv3TgIsjYmN7x8LMzDqfIpqfEduBlUm9I2JdupvuEWB8RCwo2wZyqlAoRG1tbdZlmJlVFEl1EVFo3l7u78qbnP5gthcwtRpCyczMyquswRQRnyzn+naUpNOAbzZrfjEiPpZFPWZm1r6d+tvFI+J+trzl3MzMci7rryQyMzPbgoPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrO/XfMXWV+pUN1EycnXUZZhVh+U1nZl2C5ZxHTGZmlisOplZIGi7po1nXYWZWbRxMrRsOOJjMzLpY7oJJ0oWSFktaJOkuSTWSHkptD0o6MPXbV9K9qd8iSSek9qslLUmvq1JbjaRnJN0haamkByTtluY9LKmQpvtLWi5pV+AbwFhJCyWNzeZomJlVn1wFk6QhwHXAyIgYBlwJ/JDiIzTeC9wN/CB1/wEwN/U7Glgq6RjgM8C/AMcBl5U8yXYwcGtEDAFeB85trY6I+CdwPTAtIoZHxLQWah0vqVZSbeP6hq1XYmZm2yVXwQSMBGZExFqAiHgNOJ7iE3MB7gJOKul7W+rXGBENad69EfGPiFgH3AO8P/V/MSIWpuk6oGZHCo2IyRFRiIhC99377siqzMysRN6CqTOVPjq9kXduld/MO8ehV5dWZGZmW8lbMD0EjJHUD0DSXsATwAVp/jjg0TT9IPDZ1K+7pL5p3jmSdpe0B/Cxkv6tWQ4ck6bPK2l/A+izQ3tjZmbbLFfBFBFLgRuBuZIWATcDVwCfkbQY+DTF606knydLqqd4au7I9Cj3KcAfgXnATyLiqXY2+x3gs5KeAvqXtM8BjvTND2ZmXUsRkXUNFa/ngMEx4KLvZV2GWUXwNz9YE0l1EVFo3u6vJCqDoQP7Uut/bGZmZZGrU3lmZmYOJjMzyxUHk5mZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFX8lURnUr2ygZuLsrMswq2j+Dj1r4hGTmZnlSsUHk6RvSDo16zrMzKw8Kv5UXkRc39nbkNQ9Iho7eztmZlZhIyZJX5W0TNJjkn4u6RpJUySdl+Yvl/R1SQsk1Us6PLXvLel3kpZK+omklyT1T/M+JemP6YGAP5bUPbWvk/Qf6YGFx2e202ZmVaZigknSscC5wDDgDGCrh0slayPiaOA24JrU9jXgoYgYAswEDkzrPAIYC5wYEcOBRoqPbwfYA5gXEcMi4rEW6hkvqVZSbeP6hrLso5mZVdapvBOB+yJiA7BB0q9a6XdP+lkHfDxNnwR8DCAifivpb6n9FOAYYL4kgN2A1WleI/DL1oqJiMnAZCg+wXZ7dsjMzLZWScHUURvTz0ba3z8BUyPi31qYt8HXlczMul7FnMoDHgdGS+olqTcwahuXPR9A0keAd6f2B4HzJO2T5u0l6aAy1mxmZtuoYkZMETFf0ixgMfAKUA909OLO14GfS/o08CTwMvBGRKyVdB3wgKRuwCbg88BLZd8BMzPrEEVUzuURSb0jYp2k3YFHgPERsaADy/UEGiNis6TjgdvSzQ5lUSgUora2tlyrMzOrCpLqImKrG9kqZsSUTJZ0JNCL4rWhdkMpORCYnkZF/wQu66wCzcxsx1RUMEXEJ7dzueeBEWUux8zMOkEl3fxgZmZVwMFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeVKRf2BbV7Vr2ygZuLsrMswqzrLbzoz6xKsE3jEZGZmueJgMjOzXKmIYJJ0uaQL0/QUSedt53qGS/poeaszM7NyqohrTBFxe5lWNRwoAP/dfIakXSJic5m2Y2Zm2ymXwZRGR9cAQfHBgH8C1kXEd5r1ux4YDewGPAH8a0SEpIeBecDJwJ7Apen9N4DdJJ0E/DtwBHAIcDDwP5I+A9xGMbw2A1dHxJzO3VszMyuVu1N5koYA1wEjI2IYcGUb3W+JiGMj4iiK4VT6uPVdIuJ9wFXA1yLin8D1wLSIGB4R01K/I4FTI+ITFJ9eGxExFPgEMFVSr1bqHC+pVlJt4/qOPkjXzMzak7tgAkYCMyJiLUBEvNZG35MlzZNUn5YbUjLvnvSzDqhpYx2zIuLNNH0S8J9pu89SfMT6oS0tFBGTI6IQEYXuu/dtZ5fMzKyjcnkqryPSSOZHQCEi/iJpEsUn2zbZmH420vZ+/qNzKjQzs+2RxxHTQ8AYSf0AJO3VSr+mEForqTfQkTv13gD6tDH/UWBc2u6hFB/JvqwjRZuZWXnkLpgiYilwIzBX0iLg5lb6vQ7cASwB7gfmd2D1c4AjJS2UNLaF+T8CuqVTg9OAiyNiYwv9zMyskygisq6h4hUKhaitrc26DDOziiKpLiIKzdtzN2IyM7Pq5mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeWKg8nMzHLFwWRmZrniYDIzs1yp2G8Xz5P6lQ3UTJyddRlm1omW33Rm1iVUDY+YzMwsVxxMZmaWKw4mMzPLlVwEk6QLJS2WtEjSXZJGp0emPyXp95L2ldRN0vOS9k7LdJP0gqS90+uXkuan14mpzyRJd0p6WNKfJU1I7TWSnpF0h6Slkh6QtFuad4ik30qqk/SopMOzOzJmZtUn82CSNAS4DhgZEcOAK4HHgOMiYgTwC+ArEfEW8J+kJ8wCpwKLImIN8H3guxFxLHAu8JOSTRwOnAa8D/iapB6pfTBwa0QMAV5PywFMBq6IiGOAayg+PLClusdLqpVU27i+YYePg5mZFeXhrryRwIyIWAsQEa9JGgpMkzQA2BV4MfW9E7gP+B5wCfDT1H4qxSfTNq3zXelx6wCz01NoN0paDeyb2l+MiIVpug6oScucAMwoWVfPloqOiMkUQ4yeAwb7aYtmZmWSh2BqyQ+BmyNilqQPAZMAIuIvkl6RNJLiCKhp9NSN4ghrQ+lKUriUPhq9kXf2uXn7bmk9r0fE8LLujZmZdVjmp/KAh4AxkvoBSNoL6AusTPMvatb/JxRP6c2IiMbU9gBwRVMHSdsVLBHxd+BFSWPSeiRp2Pasy8zMtk/mwRQRS4EbgbmSFgE3UxwhzZBUB6xttsgsoDfvnMYDmAAU0g0UTwOX70BJ44BLUy1LgbN3YF1mZraNFFFZl0ckFSje6PD+rGtp0nPA4Bhw0feyLsPMOpG/+aH8JNVFRKF5e16vMbVI0kTgs7xzbSkXhg7sS60/tGZmZZH5qbxtERE3RcRBEfFY1rWYmVnnqKhgMjOznZ+DyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFQeTmZnlSkV9JVFe1a9soGbi7KzLMLOdWDV9V59HTGZmlitVEUySJkh6RtLf0hfBttbvYkm3dGVtZma2pWo5lfc54NSIWJF1IWZm1radfsQk6XbgYOA3kr7YNCKSNEbSEkmLJD1Sssh7JP1W0vOSvpVJ0WZmVWynD6aIuBz4K3Ay8LeSWdcDp0XEMOCskvbhwFhgKDBW0gEtrVfSeEm1kmob1zd0TvFmZlVopw+mNjwOTJF0GdC9pP3BiGiIiA3A08BBLS0cEZMjohARhe679+2Ccs3MqkPVBlMaSV0HHADUSeqXZm0s6dZI9VyHMzPLhar9pSvpkIiYB8yTdAbFgDIzs4xV7YgJ+LakeklLgCeARVkXZGZmVTJiioiaNDklvYiIj7fQ9e35qc+oTi3MzMy2UhXB1NmGDuxLbRV9XYiZWWeq5lN5ZmaWQw4mMzPLFQeTmZnlioPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYr/uaHMqhf2UDNxNlZl2Fm1qWWd9I33njEZGZmueJgMjOzXKnaYJJ0saRb0vTlki7MuiYzM6vSa0ySttjviLg9q1rMzGxLFR1Mkr4KfApYA/wFqAMagPHArsALwKcjYr2kKcAGYATwOLC4ZD2TgHUR8R1J/wu4Hdib4qPVx0TEn7pqn8zMql3FnsqTdCxwLjAMOAMopFn3RMSxETEMeAa4tGSx/YETIuLqNlZ9N3BrWv4EYFUr2x8vqVZSbeP6hh3cGzMza1LJI6YTgfsiYgOwQdKvUvtRkm4A9gR6A/eXLDMjIhpbW6GkPsDAiLgXIK27RRExGZgM0HPA4NihPTEzs7dV7IipDVOAL0TEUODrQK+Sef/IpCIzM+uwSg6mx4HRknpJ6g2MSu19gFWSegDjtmWFEfEGsELSOQCSekravZxFm5lZ2yo2mCJiPjCL4k0MvwHqKd748FVgHsXgenY7Vv1pYIKkxcATwH5lKdjMzDpEEZV7eURS74hYl0Y1jwDjI2JBV9dRKBSitra2qzdrZlbRJNVFRKF5eyXf/AAwWdKRFK8jTc0ilMzMrLwqOpgi4pNZ12BmZuVVsdeYzMxs5+RgMjOzXHEwmZlZrlT0XXl5IekNYFnWdWyH/sDarIvYDq67a7nurlUtda8FiIjTm8+o6JsfcmRZS7c85p2kWtfddVx313LdXaucdftUnpmZ5YqDyczMcsXBVB6Tsy5gO7nuruW6u5br7lplq9s3P5iZWa54xGRmZrniYDIzs1xxMO0ASadLWibpBUkTs66nNZIOkDRH0tOSlkq6MrVPkrRS0sL0+mjWtTYnabmk+lRfbWrbS9LvJD2ffr476zpLSTqs5JgulPR3SVfl9XhLulPSaklLStpaPMYq+kH6zC+WdHTO6v62pGdTbfdK2jO110h6s+TY356zulv9bEj6t3S8l0k6LZuqW617WknNyyUtTO07drwjwq/teAHdgT8BBwO7AouAI7Ouq5VaBwBHp+k+wHPAkcAk4Jqs62un9uVA/2Zt3wImpumJwDezrrOdz8nLwEF5Pd7AB4CjgSXtHWPgoxSffybgOGBezur+CLBLmv5mSd01pf1yeLxb/Gykf6eLgJ7AoPQ7p3te6m42/z+A68txvD1i2n7vA16IiD9HxD+BXwBnZ1xTiyJiVaRHgkTxKb3PAAOzrWqHnA1MTdNTgXMyrKU9pwB/ioiXsi6kNRHxCPBas+bWjvHZwM+i6A/AnpIGdE2lW2qp7oh4ICI2p7d/APbv8sLa0crxbs3ZwC8iYmNEvAi8QPF3T5drq25JAs4Hfl6ObTmYtt9A4C8l71dQAb/sJdUAIyg+5RfgC+m0x515OyWWBPCApDpJ41PbvhGxKk2/DOybTWkdcgFb/mPN+/Fu0toxrqTP/SUUR3dNBkl6StJcSe/Pqqg2tPTZqJTj/X7glYh4vqRtu4+3g6mKSOoN/BK4KiL+DtwGHAIMB1ZRHIrnzUkRcTRwBvB5SR8onRnF8wa5/JsHSbsCZwEzUlMlHO+t5PkYt0bStcBm4O7UtAo4MCJGAFcD/yXpXVnV14KK/GyU+ARb/gdsh463g2n7rQQOKHm/f2rLJUk9KIbS3RFxD0BEvBIRjRHxFnAHGZ0iaEtErEw/VwP3UqzxlabTR+nn6uwqbNMZwIKIeAUq43iXaO0Y5/5zL+liYBQwLoUq6VTYq2m6juK1mkMzK7KZNj4blXC8dwE+DkxratvR4+1g2n7zgcGSBqX/GV8AzMq4phal87//F3gmIm4uaS+9NvAxYEnzZbMkaQ9JfZqmKV7YXkLxOF+Uul0E3JdNhe3a4n+ReT/ezbR2jGcBF6a7844DGkpO+WVO0unAV4CzImJ9Sfvekrqn6YOBwcCfs6lya218NmYBF0jqKWkQxbr/2NX1teNU4NmIWNHUsMPHO4u7O3aWF8U7lJ6j+L+Ba7Oup406T6J4KmYxsDC9PgrcBdSn9lnAgKxrbVb3wRTvSFoELG06xkA/4EHgeeD3wF5Z19pC7XsArwJ9S9pyebwphucqYBPFaxiXtnaMKd6Nd2v6zNcDhZzV/QLFazJNn/PbU99z02doIbAAGJ2zulv9bADXpuO9DDgjT3Wn9inA5c367tDx9lcSmZlZrvhUnpmZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWK/8fnSxrKwF+wYgAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "thai_ingredient_df = create_ingredient_df(thai_df)\r\n", + "thai_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 11 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAdqUlEQVR4nO3de5xXdb3v8dcbREhBvICJeBkvKAocbmN57eb9btsLFpmkD3nUMT1mdg4dtWNnu/fW3NXOtHQ6JewyE1DTorwcNDVF5TfcBi9gKZ5AVLAaRcQQP+eP9Z36McwMg/5m1vrN7/18PObBWt91+X3WmoE337XWrK8iAjMzs6LolXcBZmZm5RxMZmZWKA4mMzMrFAeTmZkVioPJzMwKZau8C+gJBg0aFHV1dXmXYWZWNQYNGsR99913X0Qc13qZg6kC6urqKJVKeZdhZlZVJA1qq92X8szMrFAcTGZmVigOJjMzKxTfYzIz6wbr169n+fLlrFu3Lu9Sul2/fv3Ybbfd6NOnT6fWdzBVQNOKZuqmzMq7DHufll1zYt4lWA1Yvnw5AwYMoK6uDkl5l9NtIoLXX3+d5cuXs9dee3VqG1/KMzPrBuvWrWOnnXaqqVACkMROO+20RT3FmgomSb+RtH3edZhZbaq1UGqxpcddU5fyIuKEvGswM7OO9ahgkvQ14J2IuF7Sd4HREfEpSZ8CzgcOA+qB/sBvgd8DhwIrgFMj4m1J+wA3AoOBtcAFEfFcDodjZj1Ype9LV/peaf/+/VmzZk1F99lZPe1S3qPAEWm6HugvqU9qe6TVusOAGyNiBPBX4PTU3gBcFBHjgcuAH7T1QZImSypJKm1Y21zhwzAzq109LZgagfGStgPeAeaQBdQRZKFV7sWIWFC2XZ2k/mQ9qBmSFgA3A0Pa+qCIaIiI+oio773NwC44FDOzypkyZQo33njj3+evuuoqrr76ao488kjGjRvHqFGjuPvuuzfZ7ne/+x0nnXTS3+e//OUvM3XqVAAaGxv5+Mc/zvjx4zn22GNZuXJlRWrtUcEUEeuBF4FJwONkYfRJYF/g2Varv1M2vYHssmYv4K8RMabs64AuL9zMrItNmDCB6dOn/31++vTpnHvuudx1113MmzePhx56iK9+9atERKf2t379ei666CJmzpxJY2Mj5513HpdffnlFau1R95iSR8kuwZ0HNAHfARojIjb3ZEhEvCHpRUlnRsQMZRv8l4hY2OVVm5l1obFjx/Laa6/x8ssvs2rVKnbYYQd22WUXvvKVr/DII4/Qq1cvVqxYwauvvsouu+yy2f0tWbKExYsXc/TRRwOwYcMGhgxp8wLTFuupwXQ5MCci3pK0jk0v43VkIvBDSVcAfYBfAA4mM6t6Z555JjNnzuSVV15hwoQJ3HrrraxatYrGxkb69OlDXV3dJr9vtNVWW/Hee+/9fb5leUQwYsQI5syZU/E6e1wwRcRsskBpmd+vbLouTa4GRpa1/3vZ9IvAJuODmJlVuwkTJnDBBRewevVqHn74YaZPn87OO+9Mnz59eOihh3jppZc22WbPPffkmWee4Z133uHtt99m9uzZHH744ey///6sWrWKOXPmcMghh7B+/XqWLl3KiBEjPnCdPS6Y8jBq6EBKfq2NmW2BPF6FNWLECN58802GDh3KkCFDmDhxIieffDKjRo2ivr6e4cOHb7LN7rvvzllnncXIkSPZa6+9GDt2LABbb701M2fO5OKLL6a5uZl3332XSy65pCLBpM7e6LL21dfXhwcKNLOOPPvssxxwQO0+S9XW8UtqjIj61uv2qKfyzMys+jmYzMysUBxMZmbdpFZvnWzpcTuYzMy6Qb9+/Xj99ddrLpxaxmPq169fp7fxU3lmZt1gt912Y/ny5axatSrvUrpdywi2neVgMjPrBn369On0CK61zpfyzMysUBxMZmZWKA4mMzMrFN9jqoCmFc0VH43SiiuPV8mY1RL3mMzMrFBqNpgkTZJ0Q5r+oqTP512TmZnV6KU8SRsdd0TclFctZma2saoOJklXAp8DVgF/AhqBZmAysDXwB+CciFgraSqwDhgLPAYsKtvPVcCaiPh3SfsCNwGDyYZcPzMi/thdx2RmVuuq9lKepIOA04HRwPFAy6vT74yIgyJiNPAscH7ZZrsBh0bEpR3s+lbgxrT9ocDKdj5/sqSSpNKGtc0f8GjMzKxFNfeYDgPujoh1wDpJv0rtIyVdDWwP9AfuK9tmRkRsaG+HkgYAQyPiLoC07zZFRAPQANB3yLDaevmVmVkXqtoeUwemAl+OiFHAN4HyNwe+lUtFZmbWadUcTI8BJ0vqJ6k/cFJqHwCslNQHmLglO4yIN4Hlkk4DkNRX0jaVLNrMzDpWtcEUEXOBe8geYvgt0ET24MOVwJNkwfXc+9j1OcDFkhYBjwO7VKRgMzPrFFXz2CCS+kfEmtSreQSYHBHzuruO+vr6KJVK3f2xZmZVTVJjRNS3bq/mhx8AGiQdSHYfaVoeoWRmZpVV1cEUEZ/NuwYzM6usqr3HZGZmPZODyczMCsXBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrlKr+BduiaFrRTN2UWXmXYVVo2TUn5l2CWeG4x2RmZoXiYDIzs0Kp+mCS9L8lHZV3HWZmVhlVf48pIr7R1Z8hqXdHQ7KbmVnlVFWPSdKVkpZI+r2k2yRdJmmqpDPS8mWSvilpnqQmScNT+2BJD0h6WtL/kfSSpEFp2eckPSVpgaSbJfVO7WskfVvSQuCQ3A7azKzGVE0wSToIOB0YDRwPbDK4VLI6IsYBPwQuS23/C3gwIkYAM4E90j4PACYAh0XEGGAD/xiOfVvgyYgYHRG/b6OeyZJKkkob1jZX5BjNzKy6LuUdBtwdEeuAdZJ+1c56d6Y/G4F/StOHA58GiIh7Jf0ltR8JjAfmSgL4EPBaWrYBuKO9YiKiAWgA6DtkWPUOA2xmVjDVFEyd9U76cwObPz6RjXz79TaWrfN9JTOz7lc1l/KAx4CTJfWT1B84aQu3PQtA0jHADql9NnCGpJ3Tsh0l7VnBms3MbAtVTY8pIuZKugdYBLwKNAGdvbnzTeA2SecAc4BXgDcjYrWkK4D7JfUC1gMXAi9V/ADMzKxTFFE9t0ck9Y+INZK2AR4BJkfEvE5s1xfYEBHvSjoE+GF62KEi6uvro1QqVWp3ZmY1QVJjRGzyIFvV9JiSBkkHAv3I7g1tNpSSPYDpqVf0N+CCrirQzMw+mKoKpoj47Pvc7nlgbIXLMTOzLlBNDz+YmVkNcDCZmVmhOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoVSVb9gW1RNK5qpmzIr7zKsB1l2zYl5l2CWG/eYzMysUHpcMEmqk7Q4TX9C0q/T9CmSpuRbnZmZbU7NXMqLiHuAe/Kuw8zMOla4HpOkbSXNkrRQ0mJJEyQdJOnx1PaUpAGpZ/SopHnp69DN7HeSpBvSdJ2kByUtkjRb0h6pfaqk69NnvSDpjO44ZjMz+4ci9piOA16OiBMBJA0E5gMT0mCB2wFvA68BR0fEOknDgNuATcb1aMf3yYbNmCbpPOB64LS0bAhwODCcrIc1s60dSJoMTAbovd3gLT9KMzNrU+F6TGQj0x4t6VpJR5CNpbQyIuYCRMQbEfEu0Af4kaQmYAZw4BZ8xiHAz9P0T8mCqMUvI+K9iHgG+HB7O4iIhoioj4j63tsM3IKPNjOzjhSuxxQRSyWNA04ArgYebGfVr5ANsT6aLGDXVaiEd8qmVaF9mplZJxWuxyRpV2BtRPwMuA74KDBE0kFp+QBJWwEDyXpS7wHnAL234GMeB85O0xOBRytVv5mZfTCF6zEBo4DrJL0HrAe+RNZz+b6kD5HdXzoK+AFwh6TPA/cCb23BZ1wE3CLpa8Aq4AsVrN/MzD4ARUTeNVS9vkOGxZBz/yPvMqwH8ZsfrBZIaoyITR5aK2KPqeqMGjqQkv8hMTOriMLdYzIzs9rmYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxQHk5mZFYqDyczMCsXBZGZmheJgMjOzQvEriSqgaUUzdVNm5V2G9XB+f57VCveYzMysUBxMZmZWKA4mMzMrlB4fTJI+J+kpSQsk3Sypt6TzJS1N7T+SdENadx9JT0hqknS1pDV5129mVmt6dDBJOgCYABwWEWOADWRDqV8JHAwcBgwv2+R7wPciYhSwfDP7niypJKm0YW1zl9RvZlaLenQwAUcC44G5khak+UuBhyPizxGxHphRtv4hZfM/72jHEdEQEfURUd97m4FdULqZWW3q6cEkYFpEjElf+wNX5VyTmZl1oKcH02zgDEk7A0jaEZgPfFzSDpK2Ak4vW/+Jsvmzu7VSMzMDengwRcQzwBXA/ZIWAQ8AQ4B/BZ4CHgOWAS03iS4BLk3r7lvWbmZm3aTHv/khIm4Hbi9vk7Q4IhpSj+ku4Jdp0Qrg4IgISWcD+3dvtWZm1uODqR1XSToK6Afczz+CaTxwgyQBfwXO68zORg0dSMmvizEzq4iaDKaIuKyd9keB0d1cjpmZlenR95jMzKz6OJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaHU5JsfKq1pRTN1U2blXYbViGV+/ZX1cO4xmZlZodRsMEn6naT6vOswM7ON1WwwmZlZMfWoYJK0raRZkhZKWixpgqRvSJqb5hvSkBbl2/SSNFXS1Wn+GElzJM2TNENS/3yOxsysNvWoYAKOA16OiNERMRK4F7ghIg5K8x8CTipbfyvgVuD5iLhC0iCyEW+PiohxQAm4tK0PkjRZUklSacNaD3RrZlYpPS2YmoCjJV0r6YiIaAY+KelJSU3Ap4ARZevfDCyOiH9J8wcDBwKPSVoAnAvs2dYHRURDRNRHRH3vbQZ22QGZmdWaHvW4eEQslTQOOAG4WtJs4EKgPiL+JOkqslFrWzxOFlzfjoh1gIAHIuIz3V27mZllelSPSdKuwNqI+BlwHTAuLVqd7hWd0WqTHwO/AaZL2gp4AjhM0r5pf9tK2q97qjczM+hhPSZgFHCdpPeA9cCXgNOAxcArwNzWG0TEdyQNBH4KTAQmAbdJ6ptWuQJY2vWlm5kZgCIi7xqqXn19fZRKpbzLMDOrKpIaI2KT3yftUZfyzMys+jmYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKxcFkZmaF4mAyM7NCcTCZmVmhOJjMzKxQetq78nLRtKKZuimz8i7DrBCWXXNi3iVYlXOPyczMCsXBZGZmhZJrMEk6TdKBnVhvqqTWYykh6ROSfl3BeuolXZ+mJ0m6oVL7NjOzzsm7x3Qa2VDmhRARpYi4OO86zMxqWYfBJOkaSReWzV8l6TJJX5M0V9IiSd8sW36lpCWSfi/pNkmXpfZ9JN0rqVHSo5KGSzoUOIVsYL8FaZ0L0n4XSrpD0jZl5RwlqSRpqaST2qh1W0k/kfSUpPmSTu3guPpJukVSU1r3k6m9oj0wMzPbcpvrMd0OnFU2fxawChgGfAQYA4yX9DFJBwGnA6OB44HywZ8agIsiYjxwGfCDiHgcuAf4WkSMiYg/AndGxEERMRp4Fji/bB916TNPBG6S1K9VrZcDD0bER4BPkgXetu0c14VARMQo4DPAtDb21yFJk1NQljasbd6STc3MrAMdPi4eEfMl7SxpV2Aw8Bey4cuPAean1fqTBdUA4O6IWAesk/QrAEn9gUOBGZJadt2Xto2UdDWwfdrvfWXLpkfEe8Dzkl4Ahrfa9hjglJZeGtAP2IMs4Fo7HPh+OsbnJL0E7NfRuWgtIhrIApe+Q4Z5GGAzswrpzO8xzQDOAHYh60HtCfxbRNxcvpKkS9rZvhfw14gY04nPmgqcFhELJU0CPlG2rPU//q3nBZweEUs68TlmZlZQnXn44XbgbLJwmkHWizkv9YSQNFTSzsBjwMnp/k1/4CSAiHgDeFHSmWl9SRqd9v0mWU+rxQBgpaQ+wMRWdZwpqZekfYC9gdYBdB9wkVK3TNLYDo7p0Zb9S9qPrGflQDMzK4DNBlNEPE0WGCsiYmVE3A/8HJgjqQmYCQyIiLlk94wWAb8FmoCWmy8TgfMlLQSeBloeTPgF8LX0AMI+wJXAk2Qh91yrUv4f8FTa9xfTJcNy/wz0ARZJejrNt+cHQK9U/+3ApIh4Z3PnwszMup4iKnd7RFL/iFiTnqZ7BJgcEfMq9gEFVV9fH6VSKe8yzMyqiqTGiKhv3V7pd+U1pF+Y7QdMq4VQMjOzyqpoMEXEZyu5vw9K0rHAta2aX4yIT+dRj5mZbV6Pfrt4RNzHxo+cm5lZweX9SiIzM7ONOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXSo3+Pqbs0rWimbsqsvMswqyrLrjkx7xKsoNxjMjOzQqmKYJK0q6SZeddhZmZdryqCKSJejogz8vhsSb7caWbWjQoXTJKukXRh2fxVki6TtDjNT5J0p6R7JT0v6Vtl6x4jaY6keZJmlA1meIKk5yQ1Srpe0q9T+0fS+vMlPS5p/7LPuEfSg8Dsbj0BZmY1rnDBRDZw31ll82eRDR5YbgwwARgFTJC0u6RBwBXAURExDigBl0rqB9wMHB8R44HBZft5DjgiIsYC3wD+tWzZOOCMiPh4W0VKmiypJKm0YW1zW6uYmdn7ULjLVBExX9LOknYlC5G/AH9qtdrsiGgGkPQMsCewPXAg8FgaXX1rYA4wHHghIl5M294GTE7TA4FpkoYBQTYCbosHIuLPHdTZADQA9B0yrHKjLZqZ1bjCBVMyAzgD2IWsB9Va+TDoG8iOQ2Rh8pnyFSWN6eBz/hl4KCI+LakO+F3Zsre2uGozM/vAingpD7IwOpssnGZ0cpsngMMk7QsgaVtJ+wFLgL1T8EB2CbDFQGBFmp70wUo2M7NKKGQwRcTTwABgRUSs7OQ2q8jC5TZJi0iX8SLibeC/AvdKagTeBFpuCn0L+DdJ8ylu79HMrKYoouffHpHUPyLWKLv5dCPwfER8t1L77ztkWAw59z8qtTuzmuA3P5ikxoiob91eK72ECySdS/ZAxHyyp/QqZtTQgZT8l8zMrCJqIphS76hiPSQzM+s6hbzHZGZmtcvBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKpSbe/NDVmlY0UzdlVt5lmFkX8Dv9up97TGZmVig1F0ySfiNp+7zrMDOzttXUpbw07MVJEfFe3rWYmVnbenyPSVKdpCWS/hNYDGyQNCgt+7ykRZIWSvppahss6Q5Jc9PXYXnWb2ZWa2qlxzQMODcinpC0DEDSCOAK4NCIWC1px7Tu94DvRsTvJe0B3Acc0HqHkiYDkwF6bze4Gw7BzKw21EowvRQRT7Rq+xQwIyJWA0TEn1P7UcCB2VU/ALZrGQG3fOOIaAAaIBvBtssqNzOrMbUSTG9twbq9gIMjYl1XFWNmZu3r8feYOvAgcKaknQDKLuXdD1zUspKkMTnUZmZWs2o2mCLiaeBfgIclLQS+kxZdDNSnhyKeAb6YV41mZrWox1/Ki4hlwMiy+bqy6WnAtFbrrwYmdFN5ZmbWSo8Ppu4wauhASn5tiZlZRdTspTwzMysmB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxS/+aECmlY0UzdlVt5lmJl1q2Vd9MYb95jMzKxQHExmZlYoDiYzMysUB5OZmRVKlwaTpG0lzZK0UNJiSRMkHSlpvqQmST+R1FfSpyT9smy7oyXd1c4+e0uamvbXJOkrqf0CSXPTZ90haZvUPlXSGWXbrymb/h9pHwslXZPa9pF0r6RGSY9KGt5V58fMzDbV1T2m44CXI2J0RIwE7gWmAhMiYhTZU4FfAh4ChksanLb7AvCTdvY5BhgaESPTPm5J7XdGxEERMRp4Fji/o8IkHQ+cCnw0bfOttKgBuCgixgOXAT9oZ/vJkkqSShvWNnd8FszMrNO6OpiagKMlXSvpCKAOeDEilqbl04CPRUQAPwU+J2l74BDgt+3s8wVgb0nfl3Qc8EZqH5l6OE3ARGDEZmo7CrglItYCRMSfJfUHDgVmSFoA3AwMaWvjiGiIiPqIqO+9zcDNnQczM+ukLv09pohYKmkccAJwNfBgB6vfAvwKWAfMiIh329nnXySNBo4FvgicBZxH1hM7LSIWSpoEfCJt8i4pgCX1ArbuoIZewF8jYkxnjs/MzCqvq+8x7QqsjYifAdeR9YTqJO2bVjkHeBggIl4GXgau4B+X59ra5yCgV0TckdYdlxYNAFZK6kPWY2qxDBifpk8B+qTpB4AvlN2L2jEi3gBelHRmalMKQTMz6yZd/eaHUcB1kt4D1pPdTxpIdqlsK2AucFPZ+rcCgyPi2Q72ORS4JfV+AL6e/rwSeBJYlf4ckNp/BNwtaSHZPa63ACLiXkljgJKkvwG/Af4nWaj9UNIVZCH2C2Dh+zx+MzPbQspu7xSDpBuA+RHx47xr2RL19fVRKpXyLsPMrKpIaoyI+tbthXlXnqRGst7MV/OuxczM8lOYYEqPZ29E0pNA31bN50REU/dUZWZm3a0wwdSWiPho3jWYmVn38iuJzMysUBxMZmZWKIV6Kq9aSXoTWJJ3HZ00CFiddxFbwPV2LdfbdaqpVuj+elcDRMRxrRcU+h5TFVnS1iOPRSSpVC21guvtaq6361RTrVCsen0pz8zMCsXBZGZmheJgqoyGvAvYAtVUK7jeruZ6u0411QoFqtcPP5iZWaG4x2RmZoXiYDIzs0JxMH0Ako6TtETSHyRNybue1iTtLukhSc9IelrSf0vtV0laIWlB+joh71pbSFomqSnVVUptO0p6QNLz6c8d8q4TQNL+ZedwgaQ3JF1SpPMr6SeSXpO0uKytzfOZxh+7Pv08L0qDfOZd63WSnkv13JVGuEZSnaS3y87xTe3vuVvrbfd7L+nr6dwukXRsQeq9vazWZWnk7vzPb0T46318Ab2BPwJ7k42KuxA4MO+6WtU4BBiXpgcAS4EDgauAy/Kur52alwGDWrV9C5iSpqcA1+ZdZzs/D68Aexbp/AIfIxtMc/HmzifZSNO/BQQcDDxZgFqPAbZK09eW1VpXvl6Bzm2b3/v0924h2Uup90r/dvTOu95Wy78NfKMI59c9pvfvI8AfIuKFiPgb2YCCp+Zc00YiYmVEzEvTbwLPkg20WG1OBaal6WnAaTnW0p4jgT9GxEt5F1IuIh4B/tyqub3zeSrwn5F5Athe0pDuqbTtWiPi/oh4N80+AezWXfVsTjvntj2nAr+IiHci4kXgD2T/hnSbjuqVJOAs4LburKk9Dqb3byjwp7L55RT4H31JdcBYstF9Ab6cLo/8pCiXxpIA7pfUKGlyavtwRKxM068AH86ntA6dzcZ/qYt6fqH981n0n+nzyHp0LfaSNF/Sw5KOyKuoNrT1vS/6uT0CeDUini9ry+38OphqgKT+wB3AJRHxBvBDYB9gDLCSrAtfFIdHxDjgeOBCSR8rXxjZdYZC/Y6DpK2BU4AZqanI53cjRTyfbZF0OfAucGtqWgnsERFjgUuBn0vaLq/6ylTN976Vz7Dxf6xyPb8OpvdvBbB72fxuqa1QJPUhC6VbI+JOgIh4NSI2RMR7wI/o5ksKHYmIFenP14C7yGp7teWSUvrztfwqbNPxwLyIeBWKfX6T9s5nIX+mJU0CTgImpiAlXRJ7PU03kt2z2S+3IpMOvveFPLcAkrYC/gm4vaUt7/PrYHr/5gLDJO2V/sd8NnBPzjVtJF03/jHwbER8p6y9/L7Bp4HFrbfNg6RtJQ1omSa78b2Y7Lyem1Y7F7g7nwrbtdH/Not6fsu0dz7vAT6fns47GGguu+SXC0nHAf8dOCUi1pa1D5bUO03vDQwDXsinyn/o4Ht/D3C2pL6S9iKr96nurq8dRwHPRcTylobcz29eT130hC+yp5iWkv1v4vK862mjvsPJLtMsAhakrxOAnwJNqf0eYEjetaZ69yZ7cmkh8HTLOQV2AmYDzwP/F9gx71rLat4WeB0YWNZWmPNLFpgrgfVk9zXOb+98kj2Nd2P6eW4C6gtQ6x/I7s20/PzelNY9Pf2MLADmAScX5Ny2+70HLk/ndglwfBHqTe1TgS+2WjfX8+tXEpmZWaH4Up6ZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVij/H6ovFeU7ywQTAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "japanese_ingredient_df = create_ingredient_df(japanese_df)\r\n", + "japanese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfeElEQVR4nO3deZwV1Z338c8XbCEKYlSMiEurISECsl1NULO5xD2aCYgT4hLzkkcn4pgEnyGPJoMTM+OSbTRGJRmFUUcF1GjCqHGUuBL1NggNKmgiPmGJ4tZiEILwmz/qtN603U033O5bl/6+X69+dd1Tp079Thfxl3Oqbh1FBGZmZnnRrdIBmJmZlXJiMjOzXHFiMjOzXHFiMjOzXHFiMjOzXNmm0gFsDXbZZZeora2tdBhmZlWlrq7u1Yjo27TciakMamtrKRaLlQ7DzKyqSHqpuXJP5ZmZWa44MZmZWa44MZmZWa74HpOZWSdYv349y5YtY+3atZUOpdP17NmTPfbYg5qamjbVd2Iqg/rlDdROmlXpMKyDLb30uEqHYFVs2bJl9O7dm9raWiRVOpxOExG89tprLFu2jH322adNx3gqz8ysE6xdu5add965SyUlAEnsvPPO7RopOjGZmXWSrpaUGrW3305MZmaWK7m4xyTpNGAiEMACYDpwEbAt8BowDlgFLAYOjohVkroBS4BRqZlrgb3S9vkR8Zikyals3/T7pxFxpaRa4B7gUeBgYDlwYkS8I2k/4GqgL7AGOCsinuu43ptZV1Tu+9Llvgfaq1cv3n777bK22VYVHzFJGkSWhA6LiKHAP5IljE9FxHDgVuD/RsRG4CayJAVwBDA/IlYB/w78JCIOBL4M/LLkFAOBo4CDgH+W1PhYyADg6ogYBLyZjgOYAkyIiJFkyfLnLcQ9XlJRUnHDmoYt/juYmVmm4okJOAyYERGvAkTE68AewH2S6oELgEGp7vXAaWn7TOCGtH0E8DNJTwN3AztI6pX2zYqIdan9V4CPpPIXI+LptF0H1KZjDgZmpLauA/o1F3RETImIQkQUum/XZwv/BGZmHWvSpElcffXV732ePHkyl1xyCYcffjgjRoxgyJAh3HXXXR847ne/+x3HH3/8e5/PPfdcpk6dCkBdXR2f/exnGTlyJEcddRQrV64sS6x5SEzNuQr4WUQMAf4P0BMgIv4EvCzpMLIR0D2pfjeyEdaw9NM/IhrHoOtK2t3A+9OXzZV3A94saWdYRHyiIzpoZtaZxo4dy/Tp09/7PH36dE4//XTuvPNO5s6dy+zZs/n2t79NRLSpvfXr1zNhwgRmzpxJXV0dZ555JhdeeGFZYs3DPaYHgTsl/TgiXpO0E9CH7L4PwOlN6v+SbErvxojYkMp+C0wArgCQNKxkNNRmEfGWpBcljYmIGcoeJTkgIuZvRr/MzHJj+PDhvPLKK6xYsYJVq1bx4Q9/mN12241vfvObPPzww3Tr1o3ly5fz8ssvs9tuu22yvcWLF7Nw4UKOPPJIADZs2EC/fs1OMLVbxRNTRCyS9APgIUkbgHnAZLLptDfIElfpt7LuJpvCu6Gk7DzgakkLyPr0MHD2ZoY0DrhG0kVADdk9LicmM6t6Y8aMYebMmfz5z39m7Nix3HzzzaxatYq6ujpqamqora39wPeNttlmGzZu3Pje58b9EcGgQYOYM2dO2eOseGICiIhpwLQmxR+c7MwMJXvo4b0n5dL9o7HNtDu5yefBJR8Hl5T/sGT7ReDotsZuZlYtxo4dy1lnncWrr77KQw89xPTp09l1112pqalh9uzZvPTSB1eh2HvvvXnmmWdYt24d77zzDg888ACHHnooH//4x1m1ahVz5sxh1KhRrF+/niVLljBo0KBmztw+uUhMbSVpEnAO7z+ZlwtD+veh6NfVmFk7VOIVV4MGDWL16tX079+ffv36MW7cOE444QSGDBlCoVBg4MCBHzhmzz335OSTT2bw4MHss88+DB8+HIBtt92WmTNnct5559HQ0MC7777L+eefX5bEpLbe6LKWFQqF8EKBZtaaZ599lk98ous+S9Vc/yXVRUShad28PpVnZmZdlBOTmZnlihOTmVkn6aq3TtrbbycmM7NO0LNnT1577bUul5wa12Pq2bNnm4+pqqfyzMyq1R577MGyZctYtWpVpUPpdI0r2LaVE5OZWSeoqalp8wquXZ2n8szMLFecmMzMLFecmMzMLFd8j6kM6pc3lH01SsuvSrxKxqwr8YjJzMxypcslJkn/LWnHSsdhZmbN61JTeWnhv+MjYuMmK5uZWUVs9SMmSbWSFkv6T2AhsEHSLmnfaZIWSJov6cZU1lfS7ZKeSj+HVDJ+M7OupquMmAYAp0fE7yUtBZA0CLgIODgiXk1LugP8O/CTiHhU0l7AfcAH3lUvaTwwHqD7Dn07oQtmZl1DV0lML0XE75uUHQbMSKvfEhGvp/IjgP2zWT8AdpDUKyLeLj04IqYAUwB69BvQtV5+ZWbWgbpKYvpLO+p2Az4VEWs3WdPMzMpuq7/H1IoHgTGSdgYomcr7LTChsZKkYRWIzcysy+qyiSkiFgE/AB6SNB/4cdp1HlBID0U8A5xdqRjNzLoidbW1QTpCoVCIYrFY6TDMzKqKpLqIKDQt77IjJjMzyycnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzy5Wu8nbxDlW/vIHaSbMqHYblxNJLj6t0CGZVzSMmMzPLFScmMzPLlapITJJ2lzSz0nGYmVnHq4rEFBErImJ0Jc4tyffhzMw6Ue4Sk6RLJX2j5PNkSRMlLUyfz5B0h6R7JT0v6fKSul+QNEfSXEkzJPVK5cdKek5SnaQrJf0mlR+U6s+T9Likj5ec425JDwIPdOofwMysi8tdYgJuA04u+Xwy8ESTOsOAscAQYKykPSXtAlwEHBERI4Ai8C1JPYHrgGMiYiTQt6Sd54BPR8Rw4HvAv5bsGwGMjojPNhekpPGSipKKG9Y0bG5fzcysidxNU0XEPEm7StqdLIm8AfypSbUHIqIBIC1/vjewI7A/8JgkgG2BOcBA4I8R8WI69hZgfNruA0yTNAAIoKbkHPdHxOutxDkFmALQo98ALwNsZlYmuUtMyQxgNLAb2QiqqXUl2xvI+iGyZPL3pRUlDWvlPN8HZkfElyTVAr8r2feXdkdtZmZbLI9TeZAlo1PIktOMNh7ze+AQSR8FkLS9pI8Bi4F9U+KBbAqwUR9gedo+Y8tCNjOzcshlYoqIRUBvYHlErGzjMavIksstkhaQpvEi4h3gH4B7JdUBq4HGm0KXA/8maR75HT2amXUpitj6b49I6hURbyu7+XQ18HxE/KRc7RcKhSgWi+VqzsysS5BUFxGFpuW5HDF1gLMkPQ0sIpu+u67C8ZiZWQu6xPRVGh2VbYRkZmYdp6uMmMzMrEo4MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa50iS/YdrT65Q3UTppV6TDM2mTppcdVOgSzVnnEZGZmuVL1iUnS+ZK2K1Nbn2tcdt3MzCqj6hMTcD7QrsQkqXsHxWJmZluoqhJTWvxvlqT5khZK+mdgd2C2pNmpzjWSipIWSbq45Nilki6TNBcYI+mjkv4ntTVX0n6pai9JMyU9J+nmtFSGmZl1kmp7+OFoYEVEHAcgqQ/wNeDzEfFqqnNhRLyeRkUPSDogIhakfa9FxIh07BPApRFxp6SeZEl6T2A4MAhYATwGHAI82jQQSeOB8QDdd+jbMb01M+uCqmrEBNQDR6aRz6cjoqGZOienUdE8sgSzf8m+2wAk9Qb6R8SdABGxNiLWpDpPRsSyiNgIPA3UNhdIREyJiEJEFLpv16csnTMzsyobMUXEEkkjgGOBSyQ9ULpf0j7ARODAiHhD0lSgZ0mVv7ThNOtKtjdQZX8jM7NqV1UjJkm7A2si4ibgCmAEsBronarsQJZ8GiR9BDimuXYiYjWwTNJJqd0e5Xqyz8zMtky1jQaGAFdI2gisB84BRgH3SloREZ+XNA94DvgT2T2ilpwKXCfpX1JbYzo2dDMzawtFRKVjqHo9+g2Ifqf/tNJhmLWJ3/xgeSGpLiIKTcurbcSUS0P696Ho/7GbmZVFVd1jMjOzrZ8Tk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YpfSVQG9csbqJ00q9JhmLWL35lneeURk5mZ5YoTk5mZ5UpFE5OkkyTt34Z6UyWNbqb8c5J+U8Z4CpKuTNtnSPpZudo2M7O2qfSI6SRgk4mps0REMSLOq3QcZmZdWauJSdKlkr5R8nmypImSLpD0lKQFki4u2f9dSYslPSrpFkkTU/l+ku6VVCfpEUkDJR0MfJFsRdqnU52zUrvzJd3eZLnzIyQVJS2RdHwzsW4v6XpJT0qaJ+nEVvrVU9INkupT3c+n8jaPwCSNT/EUN6xpaMshZmbWBpsaMd0GnFzy+WRgFTAAOAgYBoyU9BlJBwJfBoYCxwClqxJOASZExEhgIvDziHgcuBu4ICKGRcQfgDsi4sCIGAo8C3y9pI3adM7jgGsl9WwS64XAgxFxEPB5soS3fQv9+gYQETEE+HtgWjPttSoipkREISIK3bfr055DzcysFa0+Lh4R8yTtKml3oC/wBjAE+AIwL1XrRZaoegN3RcRaYK2kXwNI6gUcDMyQ1Nh0jxZOOVjSJcCOqd37SvZNj4iNwPOS/ggMbHLsF4AvNo7SgJ7AXmQJrqlDgatSH5+T9BLwsdb+FmZm1jna8j2mGcBoYDeyEdTewL9FxHWllSSd38Lx3YA3I2JYG841FTgpIuZLOgP4XMm+aFK36WcBX46IxW04j5mZ5VRbHn64DTiFLDnNIBvFnJlGQkjqL2lX4DHghHT/phdwPEBEvAW8KGlMqi9JQ1Pbq8lGWo16Aysl1QDjmsQxRlI3SfsB+wJNE9B9wASlYZmk4a306ZHG9iV9jGxk5YRmZpYDm0xMEbGILGEsj4iVEfFb4L+AOZLqgZlA74h4iuye0QLgHqAeaHwqYBzwdUnzgUVA44MJtwIXpAcQ9gO+CzxBluSeaxLK/weeTG2fnaYMS30fqAEWSFqUPrfk50C3FP9twBkRsW5TfwszM+t4img6I7YFjUm9IuLt9DTdw8D4iJhbthPkVKFQiGKxWOkwzMyqiqS6iCg0LS/3u/KmpC/M9gSmdYWkZGZm5VXWxBQRXylne1tK0lHAZU2KX4yIL1UiHjMz27St+u3iEXEff/vIuZmZ5VylX0lkZmb2N5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV7bq7zF1lvrlDdROmlXpMMw6xNJLj6t0CNbFeMRkZma54sRkZma54sTUhKSzJZ2WtqdKGl3pmMzMuhLfY2oiIq6tdAxmZl1ZWUdMkraXNEvSfEkLJY2VNFLSQ5LqJN0nqV+qe56kZyQtkHRrKjtI0py0cODjkj6eys+Q9CtJ90taKulcSd9K9X4vaadUbz9J96ZzPSJpYCux1kp6MJ3/AUl7pfLJkia2oa/jJRUlFTesadhUdTMza6NyT+UdDayIiKERMRi4F7gKGB0RI4HrgR+kupOA4RFxAHB2KnsO+HREDAe+B/xrSduDgb8DDkxtrEn15gCnpTpTgAnpXBPJVqptyVVka0YdANwMXNmejkbElIgoRESh+3Z92nOomZm1otxTefXAjyRdBvwGeIMsodwvCaA7sDLVXQDcLOlXwK9SWR9gmqQBQJAtld5odkSsBlZLagB+XXLOAyT1Ag4GZqRzAfRoJdZRZIkO4Ebg8vZ318zMyq3cCwUukTQCOBa4BHgQWBQRo5qpfhzwGeAE4EJJQ4DvkyWgL0mqBX5XUn9dyfbGks8byfrRDXgzIoaVrUNmZtbpyn2PaXeyKbabgCuATwJ9JY1K+2skDZLUDdgzImYD/0Q2UuqVfi9PzZ3RnnNHxFvAi5LGpHNJ0tBWDnkcOCVtjwMeac/5zMysY5R7Km8IcIWkjcB64BzgXeBKSX3S+X4KLAFuSmUCroyINyVdTjaVdxGwOa9SGAdck46vAW4F5rdQdwJwg6QLgFXA1zbjfAAM6d+Hor8db2ZWFoqISsdQ9QqFQhSLxUqHYWZWVSTVRUShabm/YGtmZrmy1X/BVtKFwJgmxTMi4gfN1Tczs8ra6hNTSkBOQmZmVcJTeWZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitb/ePinaF+eQO1kzbnDUpmtqWW+nVgWx2PmMzMLFecmMzMLFe2usSUlkxfmLY/J+k3afuLkiZVNjozM9uULnOPKSLuBu6udBxmZta63I2YJG0vaZak+ZIWShor6UBJj6eyJyX1TiOjRyTNTT8Hb6LdMyT9LG3XSnpQ0gJJD0jaK5VPlXRlOtcfJY3ujD6bmdn78jhiOhpYERHHAaTFBOcBYyPiKUk7AO8ArwBHRsRaSQOAW4APrOvRgquAaRExTdKZwJXASWlfP+BQYCDZCGtmcw1IGg+MB+i+Q9/299LMzJqVuxETUA8cKekySZ8G9gJWRsRTkC2hHhHvkq1Q+wtJ9cAMYP92nGMU8F9p+0ayRNToVxGxMSKeAT7SUgMRMSUiChFR6L5dn3ac2szMWpO7EVNELJE0AjgWuAR4sIWq3wReBoaSJdi1ZQphXcm2ytSmmZm1Ue5GTJJ2B9ZExE3AFcAngX6SDkz7e0vaBuhDNpLaCJwKdG/HaR4HTknb44BHyhW/mZltmdyNmIAhwBWSNgLrgXPIRi5XSfoQ2f2lI4CfA7dLOg24F/hLO84xAbhB0gXAKuBrZYzfzMy2gCKi0jFUvUKhEMVisdJhmJlVFUl1EfGBh9ZyN5VnZmZdmxOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlSh7flVd16pc3UDtpVqXDMLMyWnrpcZUOocvyiMnMzHKlyyamJkutn53eUm5mZhXWJafy0npO74mIaysVi5mZ/a2qTkySvgt8lWxNpT8BdUADMB7YFngBODUi1kiaSrbK7XDgMWBBSTuTgbcj4oeSPgpcC/QFNgBjIuIPndUnM7Ourmqn8tKKtl8mW1r9GKBxTY87IuLAiBgKPAt8veSwPYCDI+JbrTR9M3B1Ov5gYGUL5x8vqSipuGFNwxb2xszMGlXziOkQ4K6IWAuslfTrVD5Y0iXAjkAv4L6SY2ZExIaWGpTUG+gfEXcCpLabFRFTgCkAPfoN8GqLZmZlUrUjplZMBc6NiCHAxUDPkn3tWX7dzMwqoJoT02PACZJ6SuoFHJ/KewMrJdUA49rTYESsBpZJOglAUg9J25UzaDMza13VJqaIeAq4m+whhnuAerIHH74LPEGWuJ7bjKZPBc6TtAB4HNitLAGbmVmbKKJ6b49I6hURb6dRzcPA+IiY29lx9Og3IPqd/tPOPq2ZdSC/+aHjSaqLiELT8mp++AFgiqT9ye4jTatEUgIY0r8PRf8jNjMri6pOTBHxlUrHYGZm5VW195jMzGzr5MRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma5UtVvfsiL+uUN1E6aVekwzKwD+J15nc8jJjMzy5WqT0yS/kXSEZWOw8zMyqPqp/Ii4nsdfQ5J3Vtbkt3MzMqnqkZMkr4rabGkRyXdImmipKmSRqf9SyVdLGmupHpJA1N5X0n3S1ok6ZeSXpK0S9r3VUlPSnpa0nWSuqfytyX9SNJ8YFTFOm1m1sVUTWKSdCDwZWAocAzwgcWlklcjYgRwDTAxlf0z8GBEDAJmAnulNj8BjAUOiYhhwAbeX459e+CJiBgaEY82E894SUVJxQ1rGsrSRzMzq66pvEOAuyJiLbBW0q9bqHdH+l0H/F3aPhT4EkBE3CvpjVR+ODASeEoSwIeAV9K+DcDtLQUTEVOAKZCtYLs5HTIzsw+qpsTUVuvS7w1sun8iW/n2O83sW+v7SmZmna9qpvKAx4ATJPWU1As4vp3Hngwg6QvAh1P5A8BoSbumfTtJ2ruMMZuZWTtVzYgpIp6SdDewAHgZqAfaenPnYuAWSacCc4A/A6sj4lVJFwG/ldQNWA98A3ip7B0wM7M2qZrElPwwIiZL2g54GKiLiF807oyI2pLtIvC59LEBOCoi3pU0CjgwItalercBtzU9UUT06rBemJlZi6otMU2RtD/Qk+ze0Nw2HrcXMD2Niv4KnFXOoIb070PRry0xMyuLqkpMEfGVzTzueWB4mcMxM7MOUE0PP5iZWRfgxGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrlSVV+wzav65Q3UTppV6TDMzDrV0g56441HTGZmlitOTGZmlitOTGZmlitOTGZmlisdmpgkbS9plqT5khZKGivpcEnzJNVLul5SD0mHSfpVyXFHSrqzhTa7S5qa2quX9M1Ufpakp9K5bk9rNpHqji45/u2S7X9KbcyXdGkq20/SvZLqJD0iaWBH/X3MzOyDOnrEdDSwIiKGRsRg4F5gKjA2IoaQPRV4DjAbGCipbzrua8D1LbQ5DOgfEYNTGzek8jsi4sCIGAo8C3y9tcAkHQOcCHwyHXN52jUFmBARI4GJwM9bOH68pKKk4oY1bV1I18zMNqWjE1M9cKSkyyR9GqgFXoyIJWn/NOAzERHAjcBXJe0IjALuaaHNPwL7SrpK0tHAW6l8cBrh1APjgEGbiO0I4IaIWAMQEa9L6gUcDMyQ9DRwHdCvuYMjYkpEFCKi0H27Ppv6O5iZWRt16PeYImKJpBHAscAlwIOtVL8B+DWwFpgREe+20OYbkoYCRwFnAycDZ5KNxE6KiPmSzuD9ZdXfJSXgtILttq3E0A14MyKGtaV/ZmZWfh19j2l3YE1E3ARcQTYSqpX00VTlVOAhgIhYAawALuL96bnm2twF6BYRt6e6I9Ku3sBKSTVkI6ZGS4GRafuLQE3avh/4Wsm9qJ0i4i3gRUljUplSEjQzs07S0W9+GAJcIWkjsJ7sflIfsqmybYCngGtL6t8M9I2IZ1tpsz9wQxr9AHwn/f4u8ASwKv3uncp/AdwlaT7ZPa6/AETEvZKGAUVJfwX+G/h/ZEntGkkXkSWxW4H5m9l/MzNrJ2W3d/JB0s+AeRHxH5WOpT0KhUIUi8VKh2FmVlUk1UVEoWl5bt6VJ6mObDTz7UrHYmZmlZObxJQez/4bkp4AejQpPjUi6jsnKjMz62y5SUzNiYhPVjoGMzPrXH4lkZmZ5YoTk5mZ5UqunsqrVpJWA4srHUcZ7QK8Wukgysx9yr+trT+w9fWp3P3ZOyL6Ni3M9T2mKrK4uUceq5Wk4tbUH3CfqsHW1h/Y+vrUWf3xVJ6ZmeWKE5OZmeWKE1N5TKl0AGW2tfUH3KdqsLX1B7a+PnVKf/zwg5mZ5YpHTGZmlitOTGZmlitOTFtA0tGSFkt6QdKkSsezuSQtlVQv6WlJxVS2k6T7JT2ffn+40nG2RtL1kl6RtLCkrNk+pHW2rkzXbUFazDJXWujPZEnL03V6WtKxJfu+k/qzWNJRlYm6ZZL2lDRb0jOSFkn6x1RezdeopT5V83XqKelJSfNTny5O5ftIeiLFfpukbVN5j/T5hbS/tiyBRIR/NuMH6A78AdiXbFXc+cD+lY5rM/uyFNilSdnlwKS0PQm4rNJxbqIPnyFbNHLhpvpAtqLyPYCATwFPVDr+NvZnMjCxmbr7p39/PYB90r/L7pXuQ5MY+wEj0nZvYEmKu5qvUUt9qubrJKBX2q4hW9vuU8B04JRUfi1wTtr+B+DatH0KcFs54vCIafMdBLwQEX+MiL+SLSh4YoVjKqcTgWlpexpwUgVj2aSIeBh4vUlxS304EfjPyPwe2FFSv86JtG1a6E9LTgRujYh1EfEi8ALZv8/ciIiVETE3ba8GniVb9LOar1FLfWpJNVyniIi308ea9BPAYcDMVN70OjVev5nA4ZK0pXE4MW2+/sCfSj4vo/V/lHkWwG8l1Ukan8o+EhEr0/afgY9UJrQt0lIfqvnanZumtq4vmV6tqv6k6Z7hZP9vfKu4Rk36BFV8nSR1l/Q08ApwP9nI7s2IeDdVKY37vT6l/Q3AzlsagxOTARwaESOAY4BvSPpM6c7IxulV/b2CraEPwDXAfsAwYCXwo8qG036SegG3A+dHxFul+6r1GjXTp6q+ThGxISKGAXuQjegGdnYMTkybbzmwZ8nnPVJZ1YmI5en3K8CdZP8YX26cOkm/X6lchJutpT5U5bWLiJfTfzQ2Ar/g/WmgquiPpBqy/4DfHBF3pOKqvkbN9anar1OjiHgTmA2MIptKbXy3amnc7/Up7e8DvLal53Zi2nxPAQPS0yrbkt34u7vCMbWbpO0l9W7cBr4ALCTry+mp2unAXZWJcIu01Ie7gdPSk1+fAhpKppNyq8k9li+RXSfI+nNKekJqH2AA8GRnx9eadN/hP4BnI+LHJbuq9hq11Kcqv059Je2Ytj8EHEl272w2MDpVa3qdGq/faODBNPLdMpV+CqSaf8ieHFpCNgd7YaXj2cw+7Ev2pNB8YFFjP8jmiR8Angf+B9ip0rFuoh+3kE2brCebA/96S30ge/Lo6nTd6oFCpeNvY39uTPEuSP9B6FdS/8LUn8XAMZWOv5n+HEo2TbcAeDr9HFvl16ilPlXzdToAmJdiXwh8L5XvS5ZEXwBmAD1Sec/0+YW0f99yxOFXEpmZWa54Ks/MzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLlfwHH5sUVMquziAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "chinese_ingredient_df = create_ingredient_df(chinese_df)\r\n", + "chinese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfTElEQVR4nO3de5RXdb3/8ecLHEEdQkU0fngZNBRFBGH0eMtMTSs17QjiL0tMj/ws01ylHUrr4MnWsU4Xu1iGHsPMo1zSBcVKLe+aF2ZAbhJqggWSgOUkGoTj+/fH/ox8HecK35m9v8zrsdZ3zd6f/dmf/d6f9WXefPbesz+KCMzMzIqiV94BmJmZlXJiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtku7wC2BbvttlvU1NTkHYaZWUWpr69fFxEDm5c7MZVBTU0NdXV1eYdhZlZRJL3YUrkv5ZmZWaE4MZmZWaE4MZmZWaH4HpOZWTfYtGkTK1euZMOGDXmH0u369u3LnnvuSVVVVYfqOzGVwaJVDdRMmpN3GLaNWnHtKXmHYGWwcuVK+vXrR01NDZLyDqfbRASvvPIKK1euZMiQIR3ax5fyzMy6wYYNGxgwYECPSkoAkhgwYECnRopdnpgkXSppqaTbuvpY5SBphaTd8o7DzLY9PS0pNenseXfHpbzPAidGxMpuONbbJG0XEW925zHNzGzrdWliknQDsC/wG0l3APsBBwNVwOSImCXpPOBjwI5p+10R8aW0//qIqE7LY4FTI+I8SfsBtwE7AbOAyyKiWtJxwNeBvwHDgP0lfRK4FNgeeBL4bEQ0SjoJuBroA/wR+HRErC+JfQfgTuDOiLixyzrJzHqkct+XLve9yOrqatavX99+xS7QpZfyIuIi4CXgg2RJ5P6IODyt/7eknVLVUcB4YAQwXtJe7TT9feD7ETECaD4SGw18PiL2l3RgavfoiBgFNALnpEt1V5GN5EYDdcAXStqoBn4F3N5aUpI0UVKdpLrGNxra7wwzM+uQ7nz44SRgkqSngQeBvsDeadt9EdEQERuAZ4B92mnrSGBGWv7fZtueiojlafkEYAwwNx33BLIR3BHAQcBjqXxCs2POAn4WET9vLYCImBIRtRFR23vH/u2Ea2aWr0mTJnH99de/vT558mSuueYaTjjhBEaPHs2IESOYNWvWu/Z78MEHOfXUU99e/9znPsfUqVMBqK+v5wMf+ABjxozh5JNPZvXq1WWJtTsTk4AzI2JU+uwdEUvTto0l9RrZfImxdN73vh08zuvNjnlLyTEPiIjJqfy3JeUHRcQFJfs9BnxYPfVOpZltc8aPH8/06dPfXp8+fToTJkzgrrvuYt68eTzwwAN88YtfJCLaaGWzTZs2cckllzBz5kzq6+s5//zzufLKK8sSa3cmpnuAS5p+2Us6tAP7vCzpQEm9gI+XlD8BnJmWz25j//uAsZJ2T8fcVdI+af+jJb0vle8kaf+S/b5Gdp/q+uYNmplVokMPPZQ1a9bw0ksvsWDBAnbZZRfe+9738pWvfIVDDjmEE088kVWrVvHyyy93qL1ly5axePFiPvShDzFq1CiuueYaVq4szzNu3fkHtl8HrgMWpkSzHDi17V2YBPwaWEt2H6g6lV8G/ELSlcDdQIs3eSLiGUlXAfemY24CLo6IJ9JDF7dL6pOqXwU8W7L754GbJX2r6WEMM7NKNm7cOGbOnMlf/vIXxo8fz2233cbatWupr6+nqqqKmpqad/290Xbbbcdbb7319nrT9ohg+PDhPP7442WPs8sTU0TUlKz+vxa2TwWmlqyfWrI8E5jZQrOrgCMiIiSdDRyQ6j9Idv+qtP1pwLQWjns/cFg78X66hWObmVWk8ePHc+GFF7Ju3Toeeughpk+fzu67705VVRUPPPAAL7747lko9tlnH5555hk2btzIP/7xD+677z6OOeYYDjjgANauXcvjjz/OkUceyaZNm3j22WcZPnz4VsdZqa8kGgP8KF0WfBU4P89gRgzuT51fG2NmnZDHq6aGDx/Oa6+9xuDBgxk0aBDnnHMOp512GiNGjKC2tpZhw4a9a5+99tqLs846i4MPPpghQ4Zw6KHZXZjtt9+emTNncumll9LQ0MCbb77JZZddVpbEpI7e6LLW1dbWhicKNLO2LF26lAMPPDDvMHLT0vlLqo+I2uZ1/a48MzMrFCcmMzMrFCcmM7Nu0lNvnXT2vJ2YzMy6Qd++fXnllVd6XHJqmo+pb9+OviOhcp/KMzOrKHvuuScrV65k7dq1eYfS7ZpmsO0oJyYzs25QVVXV4RlcezpfyjMzs0JxYjIzs0JxYjIzs0LxPaYyWLSqoeyzUZptiTxec2NWbh4xmZlZoTgxmZlZoTgxtUMZ95OZWTcp9C9cSTWS/iDpNklLJc2UtKOkMZIeklQv6R5Jg1L9ByV9X9LTkhZLOjyVT5Z0q6THJT0n6cKSY1whaa6khZKuLjnuMkk/BxYDe+Vx/mZmPVElPPxwAHBBRDwm6WbgYrJp1k+PiLWSxgPfYPOcTDtGxChJxwI3Awen8kOAI4CdgPmS5qRtQ4HDAQGz035/SuUTIuKJloKSNBGYCND7PQPLfc5mZj1WJSSmP0fEY2n5F8BXyBLKb7N5AukNrC6pfztARDws6T2Sdk7lsyLiH8A/JD1AloyOAU4C5qc61WQJ6U/Ai60lpdT+FGAKQJ9BQ3vWy6/MzLpQJSSm5r/0XwOWRMSRHawfbZQL+K+I+GnpBkk1wOudjtTMzLZaoe8xJXtLakpCnwCeAAY2lUmqklQ6l+/4VH4M0BARDan8dEl9JQ0AjgPmAvcA50uqTvsMlrR7l5+RmZm1qhJGTMuAi9P9pWeAH5IllB9I6k92DtcBS1L9DZLmA1Vsvu8EsBB4ANgN+HpEvAS8JOlA4PF0WXA98EmgscvPyszMWqQizw2SLqn9OiIObqdqU/0Hgcsjoq5Z+WRgfUR8u8whAlBbWxt1dXXtVzQzs7dJqo+I2ubllXApz8zMepBCX8qLiBVsfty7I/WPa6V8cnkiMjOzruYRk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFUqh/8C2Uixa1UDNpDl5h2HWI6y49pS8Q7Au5hGTmZkVihOTmZkVSq6JSdIZkg7qQL2pksa2UH6cpF+XMZ5aST9Iy+dJ+lG52jYzs47Je8R0BtBuYuouEVEXEZfmHYeZWU/WZmKSdK2ki0vWJ0u6XNIVkuZKWijp6pLtX5W0TNKjkm6XdHkq30/S3ZLqJT0iaZiko4CPAf8t6elU58LU7gJJv5S0Y0k4J0qqk/SspFNbiHUnSTdLekrSfEmnt3FefSX9TNKiVPeDqbysIzAzM+u89kZM04CzStbPAtYCQ4HDgVHAGEnHSjoMOBMYCXwEKJ38aQpwSUSMAS4HfhwRvwdmA1dExKiI+CNwZ0QcFhEjgaXABSVt1KRjngLcIKlvs1ivBO6PiMOBD5IlvJ1aOa+LgYiIEcD/BW5pob02SZqYEmVd4xsN7e9gZmYd0ubj4hExX9Lukv4PMBD4GzACOAmYn6pVkyWqfsCsiNhANr35rwAkVQNHATPS9OUAfVo55MGSrgF2Tu3eU7JtekS8BTwn6QVgWLN9TwI+1jRKA/oCe5MluOaOIZuinYj4g6QXgf3b6ovmImIKWcKlz6ChxZ0G2MyswnTk75hmAGOB95KNoPYB/isiflpaSdJlrezfC3g1IkZ14FhTgTMiYoGk84DjSrY1/+XffF3AmRGxrAPHMTOzgurIww/TgLPJktMMslHM+WkkhKTBknYHHgNOS/dvqoFTASLi78BySeNSfUkamdp+jWyk1aQfsFpSFXBOszjGSeolaT9gX6B5AroHuERpWCbp0DbO6ZGm9iXtTzayckIzMyuAdhNTRCwhSxirImJ1RNwL/C/wuKRFwEygX0TMJbtntBD4DbAIaLr5cg5wgaQFwBKg6cGEO4Ar0gMI+wFfBZ4kS3J/aBbKn4CnUtsXpUuGpb4OVAELJS1J6635MdArxT8NOC8iNrbXF2Zm1vUUUb7bI5KqI2J9epruYWBiRMwr2wEKqra2Nurq6vIOw8ysokiqj4ja5uXlflfelPQHs32BW3pCUjIzs/Iqa2KKiE+Us72tJelk4JvNipdHxMfziMfMzNq3Tb9dPCLu4Z2PnJuZWcHl/UoiMzOzd3BiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtmm/46puyxa1UDNpDl5h2HWY6y49pS8Q7Au5BGTmZkVSsUnJkn/KenEvOMwM7PyqPhLeRHxta4+hqTeEdHY1ccxM7MKGzFJ+qqkZZIelXS7pMslTZU0Nm1fIelqSfMkLZI0LJUPlPRbSUsk3STpRUm7pW2flPSUpKcl/VRS71S+XtJ30hxSR+Z20mZmPUzFJCZJhwFnAiOBjwDvmsMjWRcRo4GfAJensv8A7o+I4WQTG+6d2jwQGA8cnaZ+b2TzzLk7AU9GxMiIeLSFeCZKqpNU1/hGQ/PNZma2hSrpUt7RwKw0c+0GSb9qpd6d6Wc98K9p+Rjg4wARcbekv6XyE4AxwNw0I/sOwJq0rRH4ZWvBRMQUYApAn0FDyzfboplZD1dJiamjmqZIb6T98xPZhIZfbmHbBt9XMjPrfhVzKQ94DDhNUl9J1cCpndz3LABJJwG7pPL7gLGSdk/bdpW0TxljNjOzTqqYEVNEzJU0G1gIvAwsAjp6c+dq4HZJnwIeB/4CvBYR6yRdBdwrqRewCbgYeLHsJ2BmZh1SMYkp+XZETJa0I/AwUB8RNzZtjIiakuU64Li02gCcHBFvSjoSOCwiNqZ604BpzQ8UEdVddhZmZtaqSktMUyQdBPQluzc0r4P77Q1MT6OifwIXljOoEYP7U+dXpJiZlUVFJaaI+MQW7vcccGiZwzEzsy5QSQ8/mJlZD+DEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmhVJRb34oqkWrGqiZNCfvMMxsK63wq8UKwSMmMzMrlB6bmCSdJ+lHafkiSefmHZOZmfXQS3mS3nHeEXFDXrGYmdk7VXRikvRV4JPAWuDPQD3Z3EsTge2B54FPRcQbkqYCG8jeMv4Y2YSDTe1MBtZHxLclvQ+4ARhINj37uIj4Y3edk5lZT1exl/IkHQacCYwEPgLUpk13RsRhETESWApcULLbnsBREfGFNpq+Dbg+7X8UsLqV40+UVCeprvGNjk6ka2Zm7ankEdPRwKyI2ABskPSrVH6wpGuAnYFq4J6SfWZERGNrDUrqBwyOiLsAUtstiogpwBSAPoOGxladiZmZva1iR0xtmAp8LiJGAFeTzXbb5PVcIjIzsw6r5MT0GHCapL6SqoFTU3k/YLWkKuCczjQYEa8BKyWdASCpj6Qdyxm0mZm1rWITU0TMBWaTPcTwG2AR2YMPXwWeJEtcf9iCpj8FXCppIfB74L1lCdjMzDpEEZV7e0RSdUSsT6Oah4GJETGvu+PoM2hoDJpwXXcf1szKzG9+6F6S6iOitnl5JT/8ADBF0kFk95FuySMpAYwY3J86f6HNzMqiohNTRHwi7xjMzKy8KvYek5mZbZucmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFAq+s0PRbFoVQM1k+bkHYaZdTG/S697eMRkZmaF4sRkZmaF4sRkZmaFUojEJOlcSQslLZB0q6TTJD0pab6k30naQ1IvSc9JGpj26SXpeUkD0+eXkuamz9GpzmRJN0t6UNILki5N5TWSlkq6UdISSfdK2iFt20/S3ZLqJT0iaVh+PWNm1vPknpgkDQeuAo6PiJHA54FHgSMi4lDgDuBLEfEW8As2T5d+IrAgItYC3we+FxGHAWcCN5UcYhhwMnA48B9pynWAocD1ETEceDXtBzAFuCQixgCXAz9uJe6Jkuok1TW+0bDV/WBmZpkiPJV3PDAjItYBRMRfJY0ApkkaBGwPLE91bwZmAdcB5wM/S+UnAgdJamrzPZKq0/KciNgIbJS0BtgjlS+PiKfTcj1Qk/Y5CphR0lafloKOiClkSYw+g4ZW7jTAZmYFU4TE1JIfAt+NiNmSjgMmA0TEnyW9LOl4shFQ0+ipF9kIa0NpIym5bCwpamTzOTcv3yG182pEjCrr2ZiZWYflfikPuB8YJ2kAgKRdgf7AqrR9QrP6N5Fd0psREY2p7F7gkqYKkrYosUTE34HlksaldiRp5Ja0ZWZmWyb3xBQRS4BvAA9JWgB8l2yENENSPbCu2S6zgWo2X8YDuBSoTQ9QPANctBUhnQNckGJZApy+FW2ZmVknKaKybo9IqiV70OH9ecfSpLa2Nurq6vIOw8ysokiqj4ja5uVFvcfUIkmTgM+w+d6SmZltY3K/lNcZEXFtROwTEY/mHYuZmXWNikpMZma27XNiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQqmoNz8U1aJVDdRMmpN3GGbWDVZce0reIWzzPGIyM7NCcWIyM7NCqZjEJOlj6SWu5WhrsqTLy9GWmZmVV0XcY5K0XUTMJpuLKa/jv5nHsc3MeppuHzFJOjdN6LdA0q2SaiTdn8ruk7R3qjdV0g2SngS+Jek8ST9K206T9KSk+ZJ+J2mPVD5Z0s2SHpT0gqRLS457paRnJT0KHFBSvp+kuyXVS3pE0rCWjt+NXWRm1qN164hJ0nDgKuCoiFiXplG/BbglIm6RdD7wA+CMtMueqW6jpPNKmnoUOCIiQtK/AV8Cvpi2DQM+CPQDlkn6CXAIcDYwiuyc5wH1qf4U4KKIeE7SvwA/Bo5vfvwWzmUiMBGg93sGbk23mJlZie6+lHc8MCMi1gFExF8lHQn8a9p+K+8cncxoKSmQJYxpkgYB2wPLS7bNiYiNwEZJa4A9gPcDd0XEGwCSZqef1cBRZNO4N+3fpwPHJyKmkCU1+gwaWlnTAJuZFVjR7zG93kr5D4HvRsRsSccBk0u2bSxZbqTtc+wFvBoRozp5fDMz6yLdfY/pfmCcpAEA6VLe78kus0E2ZfojHWinP7AqLU/oQP2HgTMk7SCpH3AaQET8HVguaVyKR5JGdvRkzMys/Lp1xBQRSyR9A3hIUiMwH7gE+JmkK4C1wKc70NRksstvfyNLdkPaOe48SdOABcAaYG7J5nOAn0i6CqgC7kj1zMwsB4rw7ZGtVVtbG3V1dXmHYWZWUSTVR0Rt8/KK+QNbMzPrGZyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUIr+dvGKsGhVAzWT5uQdhpkVzIprT8k7hIrkEZOZmRVKj0pMkv5T0ol5x2FmZq3rUZfyIuJrecdgZmZtq/gRk6QvSFqcPpdJqpG0VNKNkpZIulfSDqnuVElj0/IJkuZLWiTpZkl9UvkKSVdLmpe2Dcvz/MzMepqKTkySxpBNLPgvwBHAhcAuwFDg+ogYDrwKnNlsv77AVGB8RIwgGzl+pqTKuogYDfwEuLyVY0+UVCeprvGNhrKel5lZT1bRiQk4BrgrIl6PiPXAncD7geUR8XSqUw/UNNvvgFTn2bR+C3BsyfY729gXgIiYEhG1EVHbe8f+W30iZmaWqfTE1JqNJcuNdP5eWtP+W7KvmZlthUpPTI8AZ0jaUdJOwMdTWXuWATWS3pfWPwU81EUxmplZJ1T0aCAi5kmaCjyVim4C/taB/TZI+jQwQ9J2wFzghi4L1MzMOkwRkXcMFa/PoKExaMJ1eYdhZgXjNz+0TVJ9RNQ2L6/oEVNRjBjcnzp/Ac3MyqLS7zGZmdk2xonJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxa8kKoNFqxqomTQn7zDMrAL4/Xnt84jJzMwKJdfEJGlnSZ/NM4YUx02SDso7DjMzy3/EtDPQqcQkqXc5A5DUOyL+LSKeKWe7Zma2ZfJOTNcC+0l6WtJcSb9u2iDpR5LOS8srJH1T0jxgnKQHJX1PUp2kpZIOk3SnpOckXVPSxiclPZXa/2lTUpO0XtJ3JC0Ajkzt1aZtH5Y0T9ICSfd1Z2eYmVn+iWkS8MeIGAVc0U7dVyJidETckdb/mSaYugGYBVwMHAycJ2mApAOB8cDRqf1G4Jy0707AkxExMiIebTqApIHAjcCZETESGNdaMJImpsRY1/hGQ2fP28zMWlFJT+VNa7Y+O/1cBCyJiNUAkl4A9gKOAcYAcyUB7ACsSfs0Ar9s4RhHAA9HxHKAiPhra8FExBRgCmQz2G7B+ZiZWQuKlJje5J0juL7Ntr/ebH1j+vlWyXLT+naAgFsi4sstHGtDRDRuRaxmZtZF8r6U9xrQLy2/CBwkqY+knYETtrLt+4CxknYHkLSrpH3a2ecJ4FhJQ5r22coYzMysk3IdMUXEK5Iek7QY+A0wHVgMLAfmb2Xbz0i6CrhXUi9gE9l9qBfb2GetpInAnWmfNcCHtiYOMzPrHEX49sjW6jNoaAyacF3eYZhZBfCbHzaTVJ8eYnuHIt1jqlgjBvenzl82M7OyyPsek5mZ2Ts4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4zQ9lsGhVAzWT5uQdhplZt+qq1yt5xGRmZoXixGRmZoXS4xOTpIsknZt3HGZmlunx95gi4oa8YzAzs80qbsQk6VxJCyUtkHSrpKmSxpZsX59+HifpIUmzJL0g6VpJ50h6StIiSfulepMlXZ6WH5T0zVTnWUnvz+cszcx6ropKTJKGA1cBx0fESODz7ewyErgIOBD4FLB/RBwO3ARc0so+26U6lwH/0UYsEyXVSaprfKOhk2diZmatqajEBBwPzIiIdQAR8dd26s+NiNURsRH4I3BvKl8E1LSyz53pZ30bdYiIKRFRGxG1vXfs38HwzcysPZWWmFryJuk8JPUCti/ZtrFk+a2S9bdo/f5aU53GNuqYmVkXqbTEdD8wTtIAAEm7AiuAMWn7x4CqfEIzM7NyqKgRQUQskfQN4CFJjcB84N+BWZIWAHcDr+cZo5mZbR1FRN4xVLza2tqoq6vLOwwzs4oiqT4iapuXV9qlPDMz28Y5MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4qbwykPQasCzvODphN2Bd3kF0guPtWpUWL1RezI63ZftExMDmhRX1d0wFtqylRx6LSlKd4+06jrfrVVrMjrdzfCnPzMwKxYnJzMwKxYmpPKbkHUAnOd6u5Xi7XqXF7Hg7wQ8/mJlZoXjEZGZmheLEZGZmheLEtBUkfVjSMknPS5qUdzwtkbRC0iJJT0uqS2W7SvqtpOfSz11yjvFmSWskLS4pazFGZX6Q+nyhpNEFiXeypFWpn5+W9NGSbV9O8S6TdHIO8e4l6QFJz0haIunzqbyQfdxGvIXsY0l9JT0laUGK9+pUPkTSkymuaZK2T+V90vrzaXtNQeKdKml5Sf+OSuXd/32ICH+24AP0JpuufV+yWXMXAAflHVcLca4AdmtW9i1gUlqeBHwz5xiPBUYDi9uLEfgo8BtAwBHAkwWJdzJweQt1D0rfjT7AkPSd6d3N8Q4CRqflfsCzKa5C9nEb8Rayj1M/VaflKuDJ1G/TgbNT+Q3AZ9LyZ4Eb0vLZwLRu7t/W4p0KjG2hfrd/Hzxi2nKHA89HxAsR8U/gDuD0nGPqqNOBW9LyLcAZOcZCRDwM/LVZcWsxng78PDJPADtLGtQ9kWZaibc1pwN3RMTGiFgOPE/23ek2EbE6Iual5deApcBgCtrHbcTbmlz7OPXT+rRalT4BHA/MTOXN+7ep32cCJ0hSN4XbVryt6fbvgxPTlhsM/LlkfSVt/+PJSwD3SqqXNDGV7RERq9PyX4A98gmtTa3FWOR+/1y61HFzyeXRQsWbLhsdSva/5ML3cbN4oaB9LKm3pKeBNcBvyUZtr0bEmy3E9Ha8aXsDMCDPeCOiqX+/kfr3e5L6NI836fL+dWLa9h0TEaOBjwAXSzq2dGNkY/VC/81AJcQI/ATYDxgFrAa+k2847yapGvglcFlE/L10WxH7uIV4C9vHEdEYEaOAPclGa8NyDqlNzeOVdDDwZbK4DwN2Bf49r/icmLbcKmCvkvU9U1mhRMSq9HMNcBfZP5qXm4bi6eea/CJsVWsxFrLfI+Ll9I/9LeBGNl9KKkS8kqrIfsnfFhF3puLC9nFL8Ra9jwEi4lXgAeBIskteTe8jLY3p7XjT9v7AK90cKvCOeD+cLqFGRGwEfkaO/evEtOXmAkPTkzfbk93EnJ1zTO8gaSdJ/ZqWgZOAxWRxTkjVJgCz8omwTa3FOBs4Nz0pdATQUHI5KjfNrrl/nKyfIYv37PQk1hBgKPBUN8cm4H+ApRHx3ZJNhezj1uItah9LGihp57S8A/AhsvtiDwBjU7Xm/dvU72OB+9OINc94/1DynxSR3Q8r7d/u/T509dMV2/KH7GmVZ8muJ1+ZdzwtxLcv2dNKC4AlTTGSXc++D3gO+B2wa85x3k52aWYT2fXrC1qLkezJoOtTny8CagsS760pnoVk/5AHldS/MsW7DPhIDvEeQ3aZbiHwdPp8tKh93Ea8hexj4BBgfoprMfC1VL4vWYJ8HpgB9EnlfdP682n7vgWJ9/7Uv4uBX7D5yb1u/z74lURmZlYovpRnZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF8v8BEBScEicaSW4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "indian_ingredient_df = create_ingredient_df(indian_df)\r\n", + "indian_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAAD4CAYAAABYIGfSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5xXVb3/8dcbHCEFp1SyCbQho0hAQAYTNPV4KfOSdhTpRF7SXxz9HbFOWnHSftFJfz/NfuZdo1JILQXKS3KCTPBOyowIwyWsRI8gKd5GkSCEz/ljr5Ev48www56ZLzPf9/PxmMfs79prr/XZCx58WGvv796KCMzMzGz7dCt2AGZmZp2ZE6mZmVkOTqRmZmY5OJGamZnl4ERqZmaWw07FDsA61p577hmVlZXFDsPMrFOpqal5JSL6NLbPibTEVFZWUl1dXewwzMw6FUnPN7XPS7tmZmY5OJGamZnl4ERqZmaWg6+RmpnZe2zcuJGVK1eyfv36YofSoXr27Em/fv0oKytr8TFOpCWmdlUdlRNnFjsM68Keu+y4YodgbWDlypX07t2byspKJBU7nA4REbz66qusXLmS/v37t/g4L+2amdl7rF+/nj322KNkkiiAJPbYY49Wz8KdSDuYpJMk7deCelMkndJI+eGS7muf6MzMtiilJFpve87ZibTjnQRsM5GamVnn4GukDUi6DHghIq5PnycBawEBpwI9gLsi4ntp/3eBLwNrgBeAmoj4kaR9geuBPsA64KvA7sDngcMkXQycDBwBjAd2Bv4CnBYR61I4R0maCOwGfCMitpqJStoVuBYYDJQBkyLinjYfFDMreW19b0VbX0vv1asXa9eubdM2W8oz0ve6kyxh1juVLEkOAA4EhgEjJB0qaSRZMhwKfA6oKjhuMjAhIkYAFwI3RMTjwL3ANyNiWET8FfhNRIyMiKHAMuDsgjYqU5/HATdJ6tkg1ouAORFxIPBPwBUpuW5F0nhJ1ZKqN62r244hMTOzpjiRNhARC4APSvqwpKHA68AQ4DPAAuApYCBZYj0YuCci1kfEW8BvAST1AkYD0yU9DfwEqGiiy8GSHpFUC4wDBhXsmxYRmyPiz8Czqd9CnwEmpj4eBHoC+zRyTpMjoioiqrrvUt7KETEz63gTJ07k+uuvf/fzpEmTuOSSSzjyyCM54IADGDJkCPfc894FuAcffJDjjz/+3c/nnXceU6ZMAaCmpobDDjuMESNG8NnPfpbVq1e3SaxOpI2bDpwCjCWboQr4f2kWOSwiPhYRP2/m+G7AGwX1h0XEJ5uoOwU4LyKGAN8nS4b1okHdhp8FnFzQxz4Rsaxlp2hmtuMaO3Ys06ZNe/fztGnTOOOMM7jrrrt46qmnmDt3LhdccAERDf9ZbNzGjRuZMGECM2bMoKamhrPOOouLLrqoTWJ1Im3cncAXyZLpdGA2cFaaaSKpr6QPAo8BJ0jqmfYdDxARbwIrJI1J9ZVmtwBvAb0L+uoNrJZURjYjLTRGUrd0vfWjwPIG+2cDE5RuM5M0vA3O3cys6IYPH87LL7/Miy++yMKFC/nABz7Ahz70Ib7zne+w//77c9RRR7Fq1SpeeumlFrW3fPlyFi9ezNFHH82wYcO45JJLWLlyZZvE6puNGhERSyT1BlZFxGqyRPdJYF7KWWuBL0fEfEn3AouAl4BaoP4i5DjgxnRTURlwB7Aw/f6ppPPJEvV3gSfIrsM+wdZJ9r+BJ8luNjonItY3uDX7B8BVwCJJ3YAVpGRuZtbZjRkzhhkzZvC3v/2NsWPHcvvtt7NmzRpqamooKyujsrLyPd/53Gmnndi8efO7n+v3RwSDBg1i3rx5bR6nE2kT0lJr4eergasbqfqjiJgkaRfgYaAm1V8BHNNIu4+x9ddfbkw/Deud2URcD5JdDyUi/g786zZPxsysExo7dixf/epXeeWVV3jooYeYNm0aH/zgBykrK2Pu3Lk8//x732z2kY98hKVLl7Jhwwb+/ve/88ADD3DIIYfwiU98gjVr1jBv3jxGjRrFxo0beeaZZxg0aFAjPbeOE2l+k9MDFnoCUyPiqWIH1Jwhfcup9iPczKyVivHox0GDBvHWW2/Rt29fKioqGDduHCeccAJDhgyhqqqKgQMb3n8Je++9N6eeeiqDBw+mf//+DB+eXfHaeeedmTFjBueffz51dXW88847fP3rX2+TRKqWXqi1rqGqqir8Ym8z25Zly5bxyU82dY9k19bYuUuqiYiqxur7ZiMzM7McnEjNzMxycCI1M7NGleKlv+05ZydSMzN7j549e/Lqq6+WVDKtfx9pz54Nn8baPN+1a2Zm79GvXz9WrlzJmjVrih1Kh+rZsyf9+vVr1TFOpGZm9h5lZWX079+/2GF0Cl7aNTMzy8GJ1MzMLAcnUjMzsxx8jbTE1K6qa/M33Zu1VDEeM2fW3jwjNTMzy8GJ1MzMLIeiJFJJJ6U3prT2uLXtEU9XIWmKpFOKHYeZWSlpVSJVpi2S70ls/U5OMzOzTmmbSVFSpaTlkn4BLAZOk1QrabGkywvq3SipWtISSd8vKL9M0lJJiyT9SNJo4PPAFZKelrRv+pklqUbSI5IGpmP7S5qX+rtkG3FWSHo4tblY0qdT+WdSG09Jmi6pV2NxpbITJD0haYGkP0jaK5VPkjQ1xfa8pH+W9MMU1yxJZaneCEkPpfOYLamimXjPL+j/jlS2q6SbJT2ZYjgxlXeXdIWk+an+v6ZySbou/fn8AfhgE32NT3821ZvW1TX7521mZq3T0rt2BwBnAP8N/BEYAbwO/F7SSRFxN3BRRLwmqTvwgKT9gVXAF4CBERGS3h8Rb0i6F7gvImYASHoAOCci/izpU8ANwBHA1cCNEfELSf+2jRi/BMyOiEtTDLtI2hO4GDgqIt6W9G3gG5KubxhXauNR4KBU9r+AbwEXpH37Av9ENpOeB5wcEd+SdBdwnKSZwLXAiRGxRtJY4FLgrCbinQj0j4gNBf1fBMyJiLNS2ZMpQY4D6iJipKQewGOSfg8MBz6RYtoLWArc3LCjiJgMTAboUTGgdB6caWbWAVqaSJ+PiD+mGdKDEbEGQNLtwKHA3cCpksanNivI/nFfCqwHfi7pPuC+hg2nGeJoYLqk+uIe6ffBwMlp+1bgcpo2H7g5zQ7vjoinJR2W4ngstb0zWRKsayKufsCdaSa5M7CioP3fRcRGSbVAd2BWKq8FKskS2mDg/tRXd2B1M/EuAm6XdDfZ+AF8Bvi8pAvT557APql8f225/llO9p+bQ4FfRcQm4EVJc5rpz8zM2kFLE+nbze2U1B+4EBgZEa9LmgL0jIh3JB0IHAmcApxHNtMs1A14IyKGNdF8i2ZQEfGwpEOB44Apkq4kmzXfHxH/0kjMjcV1LXBlRNwr6XBgUsEhG1I/myVtjC2vRNhMNo4ClkTEqJbEm+I8FDgBuEjSkNTGyRGxvEGsAiZExOwG5ce2sC8zM2snrb1x6EngMEl7puXTfwEeAnYjS7Z16bri5+Dd2WZ5RPwX8O/A0NTOW0BvgIh4E1ghaUw6RpLq6z0GfDFtj2suMEkfAV6KiJ8CPwMOIFuGPljSx1KdXSV9vJm4ysmWoyFbym6N5UAfSaNSX2WSBjURazdg74iYC3w79dsLmA1MSIkTScPTIbOBcwuuxX5c0q7Aw8DYdA21gmzp2czMOlCrnmwUEaslTQTmks2eZkbEPQCSFgB/Al4gS4CQJct7JPVM9b+Ryu8AfirpfLIZ4TjgRkkXA2Vp/0Lga8Av07XNe7YR3uHANyVtBNYCp6drlWcCv0rXFiG7ZvpWE3FNIltifh2YA7T41QcR8Y+09HqNpHKysb0KWNJI9e7AbamegGvSteMfpGMWpWS7Ajie7D8GlcBTKcmuIbvz+S6ymfRSsuvX87YV55C+5VT76TJmZm1GpfTSVoOqqqqorq4udhhmZp2KpJqIqGpsn59sZGZmlkOne2h9uinn1gbFGyLiU8WIZ1vSV20OblB8dUTcUox4zMysbXW6RBoRtUBTd/jucCJiW99/NTOzTsxLu2ZmZjk4kZqZmeXgRGpmZpaDE6mZmVkOTqRmZmY5OJGamZnl0Om+/mL51K6qo3LizGKHYbaV5/zYSuvEPCM1MzPLwYnUzMwsByfSIpC0ttgxmJlZ23AiNTMzy8GJtJXSy8FnSlooabGksZKOlLRAUq2kmyX1kHSEpLsLjjta0l0Fn38saYmkByT1SWX7SpolqUbSI5IGpvITJD2R+vhDenk6kial/h6U9Gx6v6uZmXUgJ9LWOwZ4MSKGRsRgYBYwBRgbEUPI7oQ+l+zl5wPrkyTwFeDmtL0rUB0Rg4CHgO+l8snAhIgYAVwI3JDKHwUOiojhZC89/1ZBPAOBzwIHAt+TVNYwYEnjJVVLqt60ri73AJiZ2RZOpK1XCxwt6XJJnwYqgRUR8UzaPxU4NLI3pt8KfFnS+4FRwO9Snc3AnWn7NuAQSb2A0cB0SU8DPwEqUp1+wGxJtcA3gUEF8cyMiA0R8QrwMrBXw4AjYnJEVEVEVfddyttgCMzMrJ6/R9pKEfGMpAOAY4FLgDnNVL8F+C2wHpgeEe801SzZf2reiIjGXhF3LXBlRNwr6XBgUsG+DQXbm/CfqZlZh/KMtJUkfRhYFxG3AVeQzTQrJX0sVTmNbLmWiHgReBG4mCyp1usGnJK2vwQ8GhFvAiskjUn9SNLQVKccWJW2z2iXEzMzs+3i2UvrDQGukLQZ2Eh2PbScbEl2J2A+cFNB/duBPhGxrKDsbeBASReTLceOTeXjgBtTeRnZ9dCFZDPQ6ZJeJ5sB92+nczMzs1ZSdinP2ouk64AFEfHzYscCUFVVFdXV1cUOw8ysU5FUExFVje3zjLQdSaohm31eUOxYzMysfTiRtqP0NRYzM+vCfLORmZlZDk6kZmZmOTiRmpmZ5eBEamZmloMTqZmZWQ5OpGZmZjk4kZqZmeXgRGpmZpaDH8hQYmpX1VE5cWaxwzBrV89ddlyxQ7AS4hmpmZlZDk6kOzhJ/5VeDG5mZjsgL+3uwCQJOD4iNhc7FjMza5xnpDsYSZWSlkv6BbAY2CRpz7TvdEmLJC2UdGsq6yPp15Lmp5+Dixm/mVmp8Yx0xzQAOCMi/ijpOQBJg4CLgdER8Yqk3VPdq4EfR8SjkvYBZgOfLGxM0nhgPED33fp00CmYmZUGJ9Id0/MR8ccGZUcA0yPiFYCIeC2VHwXsl60CA7CbpF4Rsba+ICImA5MBelQM8JvczczakBPpjuntVtTtBhwUEevbKxgzM2uar5F2HnOAMZL2AChY2v09MKG+kqRhRYjNzKxkOZF2EhGxBLgUeEjSQuDKtOt8oCrdhLQUOKdYMZqZlSIv7e5gIuI5YHDB58qC7anA1Ab1XwHGdlB4ZmbWgBNpiRnSt5xqPz7NzKzNeGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7Mc/IjAElO7qo7KiTOLHYZZUT3nx2RaG/KM1MzMLAcnUjMzsxy6XCKVVClpcSPlD0qq2o72zpR0XdtEZ2ZmXU2XS6QGknzt28ysg3TVRLqTpNslLZM0Q9IuhTsl3SipWtISSd8vKB8p6XFJCyU9Kal3g+OOkzRP0p6NdSppiqSbUtvPSDo+lXeXdIWk+ZIWSfrXVH64pIclzZS0PB3bLe1bK+nHKcYHJPVJ5ftKmiWpRtIjkgY26PsJ4IcN4hqfYqretK4u9+CamdkWXTWRfgK4ISI+CbwJ/O8G+y+KiCpgf+AwSftL2hm4E/haRAwFjgL+Xn+ApC8AE4FjI+KVZvquBA4EjgNuktQTOBuoi4iRwEjgq5L6p/oHAhOA/YB9gX9O5bsC1RExCHgI+F4qnwxMiIgRwIXADQV99wNGR8Q3CgOKiMkRURURVd13KW8mdDMza62uugT4QkQ8lrZvA85vsP9USePJzr+CLIkFsDoi5gNExJsAkgCOAKqAz9SXN2NaRGwG/izpWWAg8Blgf0mnpDrlwADgH8CTEfFs6utXwCHADGAzWWKvP4ffSOoFjAamp7gAehT0PT0iNm0jPjMza0NdNZFGU5/TTPBCYGREvC5pCtBzG+39Ffgo8HGgejv6FtkscnbhDkmHNxdrI+XdgDciYlgTdd7eRmxmZtbGuurS7j6SRqXtLwGPFuzbjSzh1EnaC/hcKl8OVEgaCSCpd8FNO88DJwO/kDRoG32PkdRN0r5kyXc5MBs4V1JZavvjknZN9Q+U1D9dGx1bEGs3oH4G+yXg0TQbXiFpTGpHkoa2dFDMzKztddVEuhz4N0nLgA8AN9bviIiFwALgT8AvgcdS+T/IEtm1khYC91MwU42IPwHjyJZV922m7/8GngR+B5wTEeuBnwFLgafSV3N+wpbVgPnAdcAyYAVwVyp/myzJLiZbWv7PVD4OODvFuAQ4sVUjY2ZmbUoRTa0kWmulZeL7ImJGC+sfDlwYEcc3sm9tRPRq2wihqqoqqqu3tTptZmaFJNWkm1Tfo6vOSM3MzDpEV73ZqF1JuggY06B4ekSc2Zp2IuJB4MEm9rX5bNTMzNqeE+l2iIhLgUuLHYeZmRWfl3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWbNeO6y44odgrWCZ6RmZmY5OJGamZnl4ETayUk6R9LpaXuKpFO2dYyZmbUdXyPt5CLipmLHYGZWykp6RippV0kzJS2UtFjSWEkjJD0kqUbSbEkVqe75kpZKWiTpjlR2oKR5khZIelzSJ1L5mZLulnS/pOcknSfpG6neHyXtnurtK2lW6usRSQObibVS0pzU/wOS9knlkyRduI3zHC+pWlL1pnV1bTV8ZmZGiSdS4BjgxYgYGhGDgVnAtcApETECuJktb3mZCAyPiP2Bc1LZn4BPR8Rw4P8A/7eg7cHAPwMjUxvrUr15wOmpzmRgQurrQuCGZmK9Fpia+r8duKalJxkRkyOiKiKquu9S3tLDzMysBUp9abcW+P+SLgfuA14nS4D3SwLoDqxOdRcBt0u6G7g7lZUDUyUNAAIoK2h7bkS8BbwlqQ74bUGf+0vqBYwGpqe+AHo0E+sossQMcCvww9afrpmZtbWSTqQR8YykA4BjgUuAOcCSiBjVSPXjgEOBE4CLJA0BfkCWML8gqZKtX9K9oWB7c8HnzWTj3g14IyKGtdkJmZlZhyvppV1JHyZbcr0NuAL4FNBH0qi0v0zSIEndgL0jYi7wbbKZaK/0e1Vq7szW9B0RbwIrJI1JfUnS0GYOeRz4YtoeBzzSmv7MzKx9lPSMFBgCXCFpM7AROBd4B7hGUjnZ+FwFPAPclsoEXBMRb0j6IdnS7sXA9jwuaBxwYzq+DLgDWNhE3QnALZK+CawBvrId/TGkbznVfmqKmVmbUUQUOwbrQFVVVVFdXV3sMMzMOhVJNRFR1di+kl7aNTMzy6vUl3Z3OJIuAsY0KJ4eEZc2Vt/MzIrLiXQHkxKmk6aZWSfhpV0zM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvDXX0pM7ao6Kiduz9MMzayUPOdHibaYZ6RmZmY5OJGamZnl4ERqZmaWgxOpmZlZDk6kBSTtKmmmpIWSFksaK+lISQsk1Uq6WVIPSUdIurvguKMl3dVEm90lTUnt1Ur691T+VUnzU1+/lrRLKp8i6ZSC49cWbH87tbFQ0mWpbF9JsyTVSHpE0sD2Gh8zM3svJ9KtHQO8GBFDI2IwMAuYAoyNiCFkdzmfC8wFBkrqk477CnBzE20OA/pGxODUxi2p/DcRMTIihgLLgLObC0zS54ATgU+lY36Ydk0GJkTECOBC4IZGjh0vqVpS9aZ1ddseBTMzazEn0q3VAkdLulzSp4FKYEVEPJP2TwUOjext6LcCX5b0fmAU8Lsm2nwW+KikayUdA7yZygenGWQtMA4YtI3YjgJuiYh1ABHxmqRewGhguqSngZ8AFQ0PjIjJEVEVEVXddylvyTiYmVkL+XukBSLiGUkHAMcClwBzmql+C/BbYD3Z+0LfaaLN1yUNBT4LnAOcCpxFNtM9KSIWSjoTODwd8g7pPziSugE7NxNDN+CNiBjWkvMzM7O25xlpAUkfBtZFxG3AFWQzzUpJH0tVTgMeAoiIF4EXgYvZslzbWJt7At0i4tep7gFpV29gtaQyshlpveeAEWn780BZ2r4f+ErBtdTdI+JNYIWkMalMKWmbmVkH8Yx0a0OAKyRtBjaSXQ8tJ1s63QmYD9xUUP92oE9ELGumzb7ALWl2CfAf6fd3gSeANel371T+U+AeSQvJrtG+DRARsyQNA6ol/QP4L+A7ZEn4RkkXkyXdO4CF23n+ZmbWSsou99n2kHQdsCAifl7sWFqqqqoqqqurix2GmVmnIqkmIqoa2+cZ6XaSVEM2W7yg2LGYmVnxOJFup/R1k61IegLo0aD4tIio7ZiozMysozmRtqGI+FSxYzAzs47lu3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWZdzHOXHVfsEIrGM1IzM7McnEjNzMxycCI1MzPLwYm0lSSdLmmRpIWSbpV0gqQnJC2Q9AdJe0nqJunPkvqkY7pJ+oukPunn15Lmp5+DU51Jkm6W9KCkZyWdn8orJS2T9FNJSyT9XtL70r59Jc2SVCPpEUkDizcyZmalyYm0FSQNAi4GjoiIocDXgEeBgyJiONlLtb8VEZuB28heug1wFLAwItYAVwM/joiRwMnAzwq6GAh8FjgQ+J6kslQ+ALg+IgYBb6TjACYDE9KbaC4Ebmgi7vGSqiVVb1pXl3sczMxsC9+12zpHANMj4hWAiHhN0hDgTkkVwM7AilT3ZuAe4CrgLOCWVH4UsJ+k+jZ3k9Qrbc+MiA3ABkkvA3ul8hUR8XTargEq0zGjgekFbTV8hRspzslkSZceFQP8JnczszbkRJrftcCVEXGvpMOBSQAR8YKklyQdQTbDrJ+ddiObwa4vbCQlww0FRZvY8ufTsPx9qZ03ImJYm56NmZm1ipd2W2cOMEbSHgCSdgfKgVVp/xkN6v+MbIl3ekRsSmW/BybUV5C0XYkwIt4EVkgak9qRpKHb05aZmW0/J9JWiIglwKXAQ5IWAleSzUCnS6oBXmlwyL1AL7Ys6wKcD1SlG5aWAufkCGkccHaKZQlwYo62zMxsOyjCl8zai6QqshuLPl3sWOr1qBgQFWdcVewwzKyL6epPNpJUExFVje3zNdJ2ImkicC5bro3uEIb0Lae6i/+FNzPrSF7abScRcVlEfCQiHi12LGZm1n6cSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvAjAktM7ao6KifOLHYYZlYCuvrzd+t5RmpmZpaDE2mRSaqUtDhtHy7pvrT9+fTgezMz24F5aXcHFRH3kr3P1MzMdmCekeYkaVdJMyUtlLRY0lhJIyU9nsqelNQ7zTwfkfRU+hm9jXbPlHRd2q6UNCe9DPwBSfuk8imSrkl9PSvplI44ZzMz28Iz0vyOAV6MiOMAJJUDC4CxETFf0m7A34GXgaMjYr2kAcCvgEZfEtuIa4GpETFV0lnANcBJaV8FcAgwkGwGO6PhwZLGA+MBuu/WZ/vO0szMGuUZaX61wNGSLpf0aWAfYHVEzAeIiDcj4h2gDPippFpgOrBfK/oYBfwybd9Kljjr3R0RmyNiKbBXYwdHxOSIqIqIqu67lLfq5MzMrHmekeYUEc9IOgA4FrgEmNNE1X8HXgKGkv0HZn0bhbChYFtt1KaZmbWQZ6Q5SfowsC4ibgOuAD4FVEgamfb3lrQTUE42U90MnAZ0b0U3jwNfTNvjgEfaKn4zM8vHM9L8hgBXSNoMbATOJZsZXivpfWTXR48CbgB+Lel0YBbwdiv6mADcIumbwBrgK20Yv5mZ5aCIKHYM1oF6VAyIijOuKnYYZlYCutKTjSTVRESjN4h6RlpihvQtp7oL/eU2Mys2XyM1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBTzYqMbWr6qicOLPYYZiZdaj2fFyhZ6RmZmY5OJGamZnl4ETaSUg6U9J1afuc9Do2MzMrMl8j7QTSi8HfFRE3FSsWMzPbmhNpB5L0XeDLZC/nfgGoAeqA8cDOwF+A0yJinaQpwHpgOPAYsKignUnA2oj4kaSPATcBfYBNwJiI+GtHnZOZWanz0m4HkTQSOBkYCnwOqH9B7G8iYmREDAWWAWcXHNYPGB0R32im6duB69Pxo4HVjfQ9XlK1pOpN6+ra4GzMzKyeZ6Qd52DgnohYD6yX9NtUPljSJcD7gV7A7IJjpkfEpqYalNQb6BsRdwGktt8jIiYDkwF6VAyI3GdiZmbv8oy0+KYA50XEEOD7QM+CfW8XJSIzM2sxJ9KO8xhwgqSeknoBx6fy3sBqSWXAuNY0GBFvASslnQQgqYekXdoyaDMza54TaQeJiPnAvWQ3Df0OqCW70ei7wBNkifZP29H0acD5khYBjwMfapOAzcysRRThS2YdRVKviFibZo0PA+Mj4qmOjKGqqiqqq6s7skszs05PUk1EVDW2zzcbdazJkvYjuw46taOTqJmZtT0n0g4UEV8qdgxmZta2fI3UzMwsBydSMzOzHJxIzczMcvBduyVG0lvA8mLHsQPZE3il2EHsQDweW3gstlbq4/GRiOjT2A7fbFR6ljd1C3cpklTt8djC47GFx2JrHo+meWnXzMwsBydSMzOzHJxIS8/kYgewg/F4bM3jsYXHYmsejyb4ZiMzM7McPCM1MzPLwYnUzMwsByfSEiLpGEnLJf1F0sRix9MRJN0s6WVJiwvKdpd0v6Q/p98fSOWSdE0an0WSDihe5G1P0t6S5kpaKmmJpK+l8pIbj/Re4CclLUxj8f1U3l/SE+mc75S0cyrvkT7/Je2vLLtjiJIAAALmSURBVGb87UVSd0kLJN2XPpf0eLSUE2mJkNQduB74HLAf8C/pTTRd3RTgmAZlE4EHImIA8ED6DNnYDEg/44EbOyjGjvIOcEFE7AccBPxb+jtQiuOxATgiIoYCw4BjJB0EXA78OCI+BrwOnJ3qnw28nsp/nOp1RV8DlhV8LvXxaBEn0tJxIPCXiHg2Iv4B3AGcWOSY2l1EPAy81qD4RGBq2p4KnFRQ/ovI/BF4v6SKjom0/UXE6vpX90XEW2T/YPalBMcjndPa9LEs/QRwBDAjlTcci/oxmgEcKUkdFG6HkNQPOA74WfosSng8WsOJtHT0BV4o+LwylZWivSJiddr+G7BX2i6ZMUpLccOBJyjR8UjLmE8DLwP3A38F3oiId1KVwvN9dyzS/jpgj46NuN1dBXwL2Jw+70Fpj0eLOZFaSYvs+18l9R0wSb2AXwNfj4g3C/eV0nhExKaIGAb0I1uxGVjkkIpG0vHAyxFRU+xYOiMn0tKxCti74HO/VFaKXqpfoky/X07lXX6MJJWRJdHbI+I3qbhkxwMgIt4A5gKjyJav659BXni+745F2l8OvNrBobang4HPS3qO7LLPEcDVlO54tIoTaemYDwxId+HtDHwRuLfIMRXLvcAZafsM4J6C8tPT3aoHAXUFS56dXrqG9XNgWURcWbCr5MZDUh9J70/b7wOOJrtmPBc4JVVrOBb1Y3QKMCe60NNsIuI/IqJfRFSS/dswJyLGUaLj0Vp+slEJkXQs2XWQ7sDNEXFpkUNqd5J+BRxO9gqol4DvAXcD04B9gOeBUyPitZRoriO7y3cd8JWIqC5G3O1B0iHAI0AtW66DfYfsOmlJjYek/clululONqGYFhH/KemjZDOy3YEFwJcjYoOknsCtZNeVXwO+GBHPFif69iXpcODCiDje49EyTqRmZmY5eGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHL4Hx9S2FkSapv/AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "korean_ingredient_df = create_ingredient_df(korean_df)\r\n", + "korean_ingredient_df.head(10).plot.barh()" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                00000000000...0000000000
                                11000000000...0000000000
                                20000000000...0000000000
                                30000000000...0000000000
                                40000000000...0000000010
                                \n

                                5 rows × 380 columns

                                \n
                                " + }, + "metadata": {}, + "execution_count": 15 + } + ], + "source": [ + "feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1)\n", + "labels_df = df.cuisine #.unique()\n", + "feature_df.head()\n" + ] + }, + { + "source": [ + "सर्वोच्च वर्ग के लिए SMOTE ओवरसैंपलिंग के साथ डेटा संतुलित करें। अधिक पढ़ें यहाँ: https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "oversample = SMOTE()\n", + "transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "new label count: korean 799\nchinese 799\njapanese 799\nindian 799\nthai 799\nName: cuisine, dtype: int64\nold label count: korean 799\nindian 598\nchinese 442\njapanese 320\nthai 289\nName: cuisine, dtype: int64\n" + ] + } + ], + "source": [ + "print(f'new label count: {transformed_label_df.value_counts()}')\r\n", + "print(f'old label count: {df.cuisine.value_counts()}')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                00000000000...0000000000
                                11000000000...0000000000
                                20000000000...0000000000
                                30000000000...0000000000
                                40000000000...0000000010
                                \n

                                5 rows × 380 columns

                                \n
                                " + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "transformed_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy \\\n", + "0 indian 0 0 0 0 0 0 \n", + "1 indian 1 0 0 0 0 0 \n", + "2 indian 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 thai 0 0 0 0 0 0 \n", + "3991 thai 0 0 0 0 0 0 \n", + "3992 thai 0 0 0 0 0 0 \n", + "3993 thai 0 0 0 0 0 0 \n", + "3994 thai 0 0 0 0 0 0 \n", + "\n", + " apricot armagnac artemisia ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 ... 0 0 0 \n", + "3991 0 0 0 ... 0 0 0 \n", + "3992 0 0 0 ... 0 0 0 \n", + "3993 0 0 0 ... 0 0 0 \n", + "3994 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 0 0 0 0 \n", + "3991 0 0 0 0 0 0 0 \n", + "3992 0 0 0 0 0 0 0 \n", + "3993 0 0 0 0 0 0 0 \n", + "3994 0 0 0 0 0 0 0 \n", + "\n", + "[3995 rows x 381 columns]" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisia...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                0indian000000000...0000000000
                                1indian100000000...0000000000
                                2indian000000000...0000000000
                                3indian000000000...0000000000
                                4indian000000000...0000000010
                                ..................................................................
                                3990thai000000000...0000000000
                                3991thai000000000...0000000000
                                3992thai000000000...0000000000
                                3993thai000000000...0000000000
                                3994thai000000000...0000000000
                                \n

                                3995 rows × 381 columns

                                \n
                                " + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "# export transformed data to new df for classification\n", + "transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer')\n", + "transformed_df" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 3995 entries, 0 to 3994\nColumns: 381 entries, cuisine to zucchini\ndtypes: int64(380), object(1)\nmemory usage: 11.6+ MB\n" + ] + } + ], + "source": [ + "transformed_df.info()" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "transformed_df.to_csv(\"../../data/cleaned_cuisines.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "1da12ed6d238756959b8de9cac2a35a2", + "translation_date": "2025-09-04T02:42:29+00:00", + "source_file": "4-Classification/1-Introduction/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/hi/4-Classification/2-Classifiers-1/README.md b/translations/hi/4-Classification/2-Classifiers-1/README.md new file mode 100644 index 000000000..8424d6101 --- /dev/null +++ b/translations/hi/4-Classification/2-Classifiers-1/README.md @@ -0,0 +1,253 @@ + +# व्यंजन वर्गीकरणकर्ता 1 + +इस पाठ में, आप पिछले पाठ से सहेजे गए डेटा सेट का उपयोग करेंगे, जिसमें व्यंजनों से संबंधित संतुलित और साफ डेटा भरा हुआ है। + +आप इस डेटा सेट का उपयोग विभिन्न वर्गीकरणकर्ताओं के साथ करेंगे ताकि _सामग्री के एक समूह के आधार पर किसी दिए गए राष्ट्रीय व्यंजन की भविष्यवाणी की जा सके_। ऐसा करते समय, आप यह भी जानेंगे कि वर्गीकरण कार्यों के लिए एल्गोरिदम का उपयोग कैसे किया जा सकता है। + +## [पाठ-पूर्व प्रश्नोत्तरी](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/) +# तैयारी + +यह मानते हुए कि आपने [पाठ 1](../1-Introduction/README.md) पूरा कर लिया है, सुनिश्चित करें कि इन चार पाठों के लिए रूट `/data` फ़ोल्डर में एक _cleaned_cuisines.csv_ फ़ाइल मौजूद है। + +## अभ्यास - एक राष्ट्रीय व्यंजन की भविष्यवाणी करें + +1. इस पाठ के _notebook.ipynb_ फ़ोल्डर में काम करते हुए, उस फ़ाइल को Pandas लाइब्रेरी के साथ आयात करें: + + ```python + import pandas as pd + cuisines_df = pd.read_csv("../data/cleaned_cuisines.csv") + cuisines_df.head() + ``` + + डेटा इस प्रकार दिखता है: + +| | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | +| 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + + +1. अब, और अधिक लाइब्रेरी आयात करें: + + ```python + from sklearn.linear_model import LogisticRegression + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + from sklearn.svm import SVC + import numpy as np + ``` + +1. X और y निर्देशांक को प्रशिक्षण के लिए दो डेटा फ्रेम में विभाजित करें। `cuisine` लेबल्स डेटा फ्रेम हो सकता है: + + ```python + cuisines_label_df = cuisines_df['cuisine'] + cuisines_label_df.head() + ``` + + यह इस प्रकार दिखेगा: + + ```output + 0 indian + 1 indian + 2 indian + 3 indian + 4 indian + Name: cuisine, dtype: object + ``` + +1. `Unnamed: 0` कॉलम और `cuisine` कॉलम को हटा दें, `drop()` का उपयोग करते हुए। बाकी डेटा को ट्रेनिंग फीचर्स के रूप में सहेजें: + + ```python + cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) + cuisines_feature_df.head() + ``` + + आपके फीचर्स इस प्रकार दिखेंगे: + +| | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| ---: | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: | +| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | + +अब आप अपने मॉडल को प्रशिक्षित करने के लिए तैयार हैं! + +## अपने वर्गीकरणकर्ता का चयन करना + +अब जब आपका डेटा साफ और प्रशिक्षण के लिए तैयार है, तो आपको यह तय करना होगा कि इस कार्य के लिए कौन सा एल्गोरिदम उपयोग करना है। + +Scikit-learn वर्गीकरण को Supervised Learning के अंतर्गत वर्गीकृत करता है, और इस श्रेणी में आपको वर्गीकरण के कई तरीके मिलेंगे। [विविधता](https://scikit-learn.org/stable/supervised_learning.html) पहली नज़र में काफी भ्रमित कर सकती है। निम्नलिखित विधियों में सभी वर्गीकरण तकनीकें शामिल हैं: + +- रैखिक मॉडल +- सपोर्ट वेक्टर मशीन +- स्टोकेस्टिक ग्रेडिएंट डिसेंट +- निकटतम पड़ोसी +- गॉसियन प्रक्रियाएं +- निर्णय वृक्ष +- समुच्चय विधियां (वोटिंग क्लासिफायर) +- मल्टीक्लास और मल्टीआउटपुट एल्गोरिदम (मल्टीक्लास और मल्टीलेबल वर्गीकरण, मल्टीक्लास-मल्टीआउटपुट वर्गीकरण) + +> आप [न्यूरल नेटवर्क का उपयोग करके डेटा को वर्गीकृत](https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification) भी कर सकते हैं, लेकिन यह इस पाठ के दायरे से बाहर है। + +### किस वर्गीकरणकर्ता का चयन करें? + +तो, आपको कौन सा वर्गीकरणकर्ता चुनना चाहिए? अक्सर, कई विकल्पों को आजमाना और अच्छे परिणाम की तलाश करना एक तरीका होता है। Scikit-learn एक [साइड-बाय-साइड तुलना](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html) प्रदान करता है, जिसमें KNeighbors, SVC, GaussianProcessClassifier, DecisionTreeClassifier, RandomForestClassifier, MLPClassifier, AdaBoostClassifier, GaussianNB और QuadraticDiscriminationAnalysis का एक बनाए गए डेटा सेट पर तुलना की जाती है, और परिणामों को विज़ुअलाइज़ किया जाता है: + +![वर्गीकरणकर्ताओं की तुलना](../../../../translated_images/comparison.edfab56193a85e7fdecbeaa1b1f8c99e94adbf7178bed0de902090cf93d6734f.hi.png) +> Scikit-learn के दस्तावेज़ों पर उत्पन्न प्लॉट + +> AutoML इस समस्या को क्लाउड में इन तुलनाओं को चलाकर और आपके डेटा के लिए सबसे अच्छा एल्गोरिदम चुनने की अनुमति देकर आसानी से हल करता है। इसे [यहां आज़माएं](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott) + +### एक बेहतर दृष्टिकोण + +बेतरतीब ढंग से अनुमान लगाने से बेहतर तरीका यह है कि इस डाउनलोड करने योग्य [ML चीट शीट](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott) के विचारों का पालन करें। यहां, हम पाते हैं कि हमारे मल्टीक्लास समस्या के लिए, हमारे पास कुछ विकल्प हैं: + +![मल्टीक्लास समस्याओं के लिए चीटशीट](../../../../translated_images/cheatsheet.07a475ea444d22234cb8907a3826df5bdd1953efec94bd18e4496f36ff60624a.hi.png) +> Microsoft के एल्गोरिदम चीट शीट का एक खंड, मल्टीक्लास वर्गीकरण विकल्पों का विवरण + +✅ इस चीट शीट को डाउनलोड करें, इसे प्रिंट करें, और इसे अपनी दीवार पर लगाएं! + +### तर्क + +आइए देखें कि क्या हम अपनी बाधाओं को देखते हुए विभिन्न दृष्टिकोणों के माध्यम से तर्क कर सकते हैं: + +- **न्यूरल नेटवर्क बहुत भारी हैं।** हमारे साफ लेकिन न्यूनतम डेटा सेट को देखते हुए, और यह तथ्य कि हम नोटबुक के माध्यम से स्थानीय रूप से प्रशिक्षण चला रहे हैं, न्यूरल नेटवर्क इस कार्य के लिए बहुत भारी हैं। +- **कोई दो-वर्ग वर्गीकरणकर्ता नहीं।** हम दो-वर्ग वर्गीकरणकर्ता का उपयोग नहीं करते हैं, इसलिए यह विकल्प बाहर हो जाता है। +- **निर्णय वृक्ष या लॉजिस्टिक रिग्रेशन काम कर सकते हैं।** एक निर्णय वृक्ष काम कर सकता है, या मल्टीक्लास डेटा के लिए लॉजिस्टिक रिग्रेशन। +- **मल्टीक्लास बूस्टेड निर्णय वृक्ष एक अलग समस्या हल करते हैं।** मल्टीक्लास बूस्टेड निर्णय वृक्ष गैर-पैरामीट्रिक कार्यों के लिए सबसे उपयुक्त हैं, जैसे रैंकिंग बनाने के लिए डिज़ाइन किए गए कार्य, इसलिए यह हमारे लिए उपयोगी नहीं है। + +### Scikit-learn का उपयोग करना + +हम अपने डेटा का विश्लेषण करने के लिए Scikit-learn का उपयोग करेंगे। हालांकि, Scikit-learn में लॉजिस्टिक रिग्रेशन का उपयोग करने के कई तरीके हैं। [पास करने के लिए पैरामीटर](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression) पर एक नज़र डालें। + +मूल रूप से, दो महत्वपूर्ण पैरामीटर हैं - `multi_class` और `solver` - जिन्हें हमें निर्दिष्ट करना होगा, जब हम Scikit-learn से लॉजिस्टिक रिग्रेशन करने के लिए कहते हैं। `multi_class` मान एक निश्चित व्यवहार लागू करता है। सॉल्वर का मान यह निर्धारित करता है कि किस एल्गोरिदम का उपयोग करना है। सभी सॉल्वर को सभी `multi_class` मानों के साथ जोड़ा नहीं जा सकता। + +दस्तावेज़ों के अनुसार, मल्टीक्लास मामले में, प्रशिक्षण एल्गोरिदम: + +- **वन-वर्सेस-रेस्ट (OvR) योजना का उपयोग करता है**, यदि `multi_class` विकल्प `ovr` पर सेट है। +- **क्रॉस-एंट्रॉपी लॉस का उपयोग करता है**, यदि `multi_class` विकल्प `multinomial` पर सेट है। (वर्तमान में `multinomial` विकल्प केवल ‘lbfgs’, ‘sag’, ‘saga’ और ‘newton-cg’ सॉल्वर द्वारा समर्थित है।) + +> 🎓 यहां 'योजना' 'ovr' (वन-वर्सेस-रेस्ट) या 'मल्टीनोमियल' हो सकती है। चूंकि लॉजिस्टिक रिग्रेशन वास्तव में बाइनरी वर्गीकरण का समर्थन करने के लिए डिज़ाइन किया गया है, ये योजनाएं इसे मल्टीक्लास वर्गीकरण कार्यों को बेहतर ढंग से संभालने की अनुमति देती हैं। [स्रोत](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/) + +> 🎓 'सॉल्वर' को "अनुकूलन समस्या में उपयोग किए जाने वाले एल्गोरिदम" के रूप में परिभाषित किया गया है। [स्रोत](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression) + +Scikit-learn इस तालिका की पेशकश करता है ताकि यह समझाया जा सके कि सॉल्वर विभिन्न प्रकार की डेटा संरचनाओं द्वारा प्रस्तुत विभिन्न चुनौतियों को कैसे संभालते हैं: + +![सॉल्वर](../../../../translated_images/solvers.5fc648618529e627dfac29b917b3ccabda4b45ee8ed41b0acb1ce1441e8d1ef1.hi.png) + +## अभ्यास - डेटा विभाजित करें + +हम अपने पहले प्रशिक्षण परीक्षण के लिए लॉजिस्टिक रिग्रेशन पर ध्यान केंद्रित कर सकते हैं क्योंकि आपने हाल ही में पिछले पाठ में इसके बारे में सीखा था। +अपने डेटा को `train_test_split()` को कॉल करके प्रशिक्षण और परीक्षण समूहों में विभाजित करें: + +```python +X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) +``` + +## अभ्यास - लॉजिस्टिक रिग्रेशन लागू करें + +चूंकि आप मल्टीक्लास मामले का उपयोग कर रहे हैं, आपको यह चुनना होगा कि कौन सी _योजना_ का उपयोग करना है और कौन सा _सॉल्वर_ सेट करना है। मल्टीक्लास सेटिंग और **liblinear** सॉल्वर के साथ LogisticRegression का उपयोग करके प्रशिक्षण लें। + +1. एक लॉजिस्टिक रिग्रेशन बनाएं, जिसमें multi_class को `ovr` और सॉल्वर को `liblinear` पर सेट करें: + + ```python + lr = LogisticRegression(multi_class='ovr',solver='liblinear') + model = lr.fit(X_train, np.ravel(y_train)) + + accuracy = model.score(X_test, y_test) + print ("Accuracy is {}".format(accuracy)) + ``` + + ✅ एक अलग सॉल्वर आज़माएं, जैसे `lbfgs`, जिसे अक्सर डिफ़ॉल्ट रूप से सेट किया जाता है। +ध्यान दें, जब आवश्यक हो तो अपने डेटा को समतल करने के लिए Pandas [`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html) फ़ंक्शन का उपयोग करें। +सटीकता **80%** से अधिक है! + +1. आप इस मॉडल को एक डेटा की पंक्ति (#50) का परीक्षण करके देख सकते हैं: + + ```python + print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}') + print(f'cuisine: {y_test.iloc[50]}') + ``` + + परिणाम प्रिंट होता है: + + ```output + ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object') + cuisine: indian + ``` + + ✅ एक अलग पंक्ति संख्या आज़माएं और परिणाम जांचें + +1. गहराई में जाकर, आप इस भविष्यवाणी की सटीकता की जांच कर सकते हैं: + + ```python + test= X_test.iloc[50].values.reshape(-1, 1).T + proba = model.predict_proba(test) + classes = model.classes_ + resultdf = pd.DataFrame(data=proba, columns=classes) + + topPrediction = resultdf.T.sort_values(by=[0], ascending = [False]) + topPrediction.head() + ``` + + परिणाम प्रिंट होता है - भारतीय व्यंजन इसका सबसे अच्छा अनुमान है, और संभावना भी अच्छी है: + + | | 0 | + | -------: | -------: | + | indian | 0.715851 | + | chinese | 0.229475 | + | japanese | 0.029763 | + | korean | 0.017277 | + | thai | 0.007634 | + + ✅ क्या आप समझा सकते हैं कि मॉडल को क्यों पूरा यकीन है कि यह एक भारतीय व्यंजन है? + +1. और अधिक जानकारी प्राप्त करने के लिए, एक वर्गीकरण रिपोर्ट प्रिंट करें, जैसा आपने रिग्रेशन पाठों में किया था: + + ```python + y_pred = model.predict(X_test) + print(classification_report(y_test,y_pred)) + ``` + + | | precision | recall | f1-score | support | + | ------------ | --------- | ------ | -------- | ------- | + | chinese | 0.73 | 0.71 | 0.72 | 229 | + | indian | 0.91 | 0.93 | 0.92 | 254 | + | japanese | 0.70 | 0.75 | 0.72 | 220 | + | korean | 0.86 | 0.76 | 0.81 | 242 | + | thai | 0.79 | 0.85 | 0.82 | 254 | + | accuracy | 0.80 | 1199 | | | + | macro avg | 0.80 | 0.80 | 0.80 | 1199 | + | weighted avg | 0.80 | 0.80 | 0.80 | 1199 | + +## 🚀चुनौती + +इस पाठ में, आपने अपने साफ किए गए डेटा का उपयोग करके एक मशीन लर्निंग मॉडल बनाया, जो सामग्री की एक श्रृंखला के आधार पर एक राष्ट्रीय व्यंजन की भविष्यवाणी कर सकता है। स्किकिट-लर्न द्वारा डेटा वर्गीकृत करने के लिए प्रदान किए गए कई विकल्पों को पढ़ने के लिए कुछ समय निकालें। 'सॉल्वर' की अवधारणा में गहराई से जाएं ताकि यह समझ सकें कि पर्दे के पीछे क्या होता है। + +## [पाठ के बाद की क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/22/) + +## समीक्षा और स्व-अध्ययन + +लॉजिस्टिक रिग्रेशन के पीछे गणित को [इस पाठ](https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf) में और अधिक गहराई से समझें। +## असाइनमेंट + +[सॉल्वर का अध्ययन करें](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/4-Classification/2-Classifiers-1/assignment.md b/translations/hi/4-Classification/2-Classifiers-1/assignment.md new file mode 100644 index 000000000..80bc97301 --- /dev/null +++ b/translations/hi/4-Classification/2-Classifiers-1/assignment.md @@ -0,0 +1,24 @@ + +# सॉल्वर का अध्ययन करें +## निर्देश + +इस पाठ में आपने उन विभिन्न सॉल्वर के बारे में सीखा जो एल्गोरिदम को मशीन लर्निंग प्रक्रिया के साथ जोड़ते हैं ताकि एक सटीक मॉडल बनाया जा सके। पाठ में सूचीबद्ध सॉल्वर को देखें और उनमें से दो चुनें। अपने शब्दों में, इन दो सॉल्वर की तुलना और विरोधाभास करें। वे किस प्रकार की समस्या का समाधान करते हैं? वे विभिन्न डेटा संरचनाओं के साथ कैसे काम करते हैं? आप एक को दूसरे पर क्यों चुनेंगे? + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | ---------------------------------------------------------------------------------------------- | ------------------------------------------------ | ---------------------------- | +| | एक .doc फ़ाइल प्रस्तुत की गई है जिसमें दो पैराग्राफ हैं, प्रत्येक सॉल्वर पर विचारशील तुलना की गई है। | एक .doc फ़ाइल प्रस्तुत की गई है जिसमें केवल एक पैराग्राफ है | असाइनमेंट अधूरा है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/4-Classification/2-Classifiers-1/notebook.ipynb b/translations/hi/4-Classification/2-Classifiers-1/notebook.ipynb new file mode 100644 index 000000000..5702eb912 --- /dev/null +++ b/translations/hi/4-Classification/2-Classifiers-1/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "68829b06b4dcd512d3327849191f4d7f", + "translation_date": "2025-09-04T02:23:05+00:00", + "source_file": "4-Classification/2-Classifiers-1/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/4-Classification/2-Classifiers-1/solution/Julia/README.md b/translations/hi/4-Classification/2-Classifiers-1/solution/Julia/README.md new file mode 100644 index 000000000..644431c77 --- /dev/null +++ b/translations/hi/4-Classification/2-Classifiers-1/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb b/translations/hi/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb new file mode 100644 index 000000000..1e11a6d01 --- /dev/null +++ b/translations/hi/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb @@ -0,0 +1,1298 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_11-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "6ea6a5171b1b99b7b5a55f7469c048d2", + "translation_date": "2025-09-04T02:31:13+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb", + "language_code": "hi" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "zs2woWv_HoE8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## व्यंजन वर्गीकरणकर्ता 1\n", + "\n", + "इस पाठ में, हम विभिन्न प्रकार के वर्गीकरणकर्ताओं का अन्वेषण करेंगे ताकि *सामग्री के एक समूह के आधार पर किसी दिए गए राष्ट्रीय व्यंजन की भविष्यवाणी की जा सके।* ऐसा करते समय, हम यह भी जानेंगे कि वर्गीकरण कार्यों के लिए एल्गोरिदम का उपयोग कैसे किया जा सकता है।\n", + "\n", + "### [**पाठ-पूर्व प्रश्नोत्तरी**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/)\n", + "\n", + "### **तैयारी**\n", + "\n", + "यह पाठ हमारे [पिछले पाठ](https://github.com/microsoft/ML-For-Beginners/blob/main/4-Classification/1-Introduction/solution/lesson_10-R.ipynb) पर आधारित है, जहाँ हमने:\n", + "\n", + "- एशिया और भारत के सभी शानदार व्यंजनों के डेटा सेट का उपयोग करके वर्गीकरण का एक सरल परिचय दिया था। 😋\n", + "\n", + "- डेटा को तैयार और साफ करने के लिए कुछ [dplyr क्रियाओं](https://dplyr.tidyverse.org/) का अन्वेषण किया था।\n", + "\n", + "- ggplot2 का उपयोग करके सुंदर विज़ुअलाइज़ेशन बनाए थे।\n", + "\n", + "- असंतुलित डेटा को [recipes](https://recipes.tidymodels.org/articles/Simple_Example.html) का उपयोग करके पूर्व-प्रसंस्करण करके कैसे संभालें, यह प्रदर्शित किया था।\n", + "\n", + "- यह सुनिश्चित करने के लिए कि हमारी रेसिपी अपेक्षित रूप से काम करेगी, उसे `prep` और `bake` करना प्रदर्शित किया था।\n", + "\n", + "#### **पूर्वापेक्षा**\n", + "\n", + "इस पाठ के लिए, हमें डेटा को साफ, तैयार और विज़ुअलाइज़ करने के लिए निम्नलिखित पैकेजों की आवश्यकता होगी:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) [R पैकेजों का संग्रह](https://www.tidyverse.org/packages) है, जिसे डेटा साइंस को तेज़, आसान और मज़ेदार बनाने के लिए डिज़ाइन किया गया है!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) ढांचा [पैकेजों का संग्रह](https://www.tidymodels.org/packages/) है, जो मॉडलिंग और मशीन लर्निंग के लिए उपयोगी है।\n", + "\n", + "- `themis`: [themis पैकेज](https://themis.tidymodels.org/) असंतुलित डेटा को संभालने के लिए अतिरिक्त रेसिपी चरण प्रदान करता है।\n", + "\n", + "- `nnet`: [nnet पैकेज](https://cran.r-project.org/web/packages/nnet/nnet.pdf) एकल छिपी हुई परत वाले फीड-फॉरवर्ड न्यूरल नेटवर्क और बहु-नामक लॉजिस्टिक रिग्रेशन मॉडल का अनुमान लगाने के लिए कार्य प्रदान करता है।\n", + "\n", + "आप इन्हें इस प्रकार इंस्टॉल कर सकते हैं:\n" + ], + "metadata": { + "id": "iDFOb3ebHwQC" + } + }, + { + "cell_type": "markdown", + "source": [ + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "वैकल्पिक रूप से, नीचे दिया गया स्क्रिप्ट यह जांचता है कि इस मॉड्यूल को पूरा करने के लिए आवश्यक पैकेज आपके पास हैं या नहीं, और यदि वे गायब हैं तो उन्हें आपके लिए इंस्टॉल कर देता है।\n" + ], + "metadata": { + "id": "4V85BGCjII7F" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, themis, here)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "an5NPyyKIKNR", + "outputId": "834d5e74-f4b8-49f9-8ab5-4c52ff2d7bc8" + } + }, + { + "cell_type": "markdown", + "source": [ + "अब, चलिए काम शुरू करते हैं!\n", + "\n", + "## 1. डेटा को प्रशिक्षण और परीक्षण सेट में विभाजित करें।\n", + "\n", + "हम अपनी पिछली कक्षा के कुछ चरणों को चुनकर शुरुआत करेंगे।\n", + "\n", + "### `dplyr::select()` का उपयोग करके उन सबसे सामान्य सामग्रियों को हटा दें, जो अलग-अलग व्यंजनों के बीच भ्रम पैदा करती हैं।\n", + "\n", + "हर किसी को चावल, लहसुन और अदरक पसंद है!\n" + ], + "metadata": { + "id": "0ax9GQLBINVv" + } + }, + { + "cell_type": "code", + "execution_count": 3, + "source": [ + "# Load the original cuisines data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger)) %>%\r\n", + " # Encode cuisine column as categorical\r\n", + " mutate(cuisine = factor(cuisine))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Display distribution of cuisines\r\n", + "df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "New names:\n", + "* `` -> ...1\n", + "\n", + "\u001b[1m\u001b[1mRows: \u001b[1m\u001b[22m\u001b[34m\u001b[34m2448\u001b[34m\u001b[39m \u001b[1m\u001b[1mColumns: \u001b[1m\u001b[22m\u001b[34m\u001b[34m385\u001b[34m\u001b[39m\n", + "\n", + "\u001b[36m──\u001b[39m \u001b[1m\u001b[1mColumn specification\u001b[1m\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", + "\u001b[1mDelimiter:\u001b[22m \",\"\n", + "\u001b[31mchr\u001b[39m (1): cuisine\n", + "\u001b[32mdbl\u001b[39m (384): ...1, almond, angelica, anise, anise_seed, apple, apple_brandy, a...\n", + "\n", + "\n", + "\u001b[36mℹ\u001b[39m Use \u001b[30m\u001b[47m\u001b[30m\u001b[47m`spec()`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to retrieve the full column specification for this data.\n", + "\u001b[36mℹ\u001b[39m Specify the column types or set \u001b[30m\u001b[47m\u001b[30m\u001b[47m`show_col_types = FALSE`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to quiet this message.\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 indian 0 0 0 0 0 0 0 0 \n", + "2 indian 1 0 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 0 0 \n", + "5 indian 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 0 0 \n", + "2 0 ⋯ 0 0 0 0 0 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 1 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                A tibble: 5 × 381
                                cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                <fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
                                indian0000000000000000000
                                indian1000000000000000000
                                indian0000000000000000000
                                indian0000000000000000000
                                indian0000000000000000010
                                \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 799\n", + "2 indian 598\n", + "3 chinese 442\n", + "4 japanese 320\n", + "5 thai 289" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 799 |\n", + "| indian | 598 |\n", + "| chinese | 442 |\n", + "| japanese | 320 |\n", + "| thai | 289 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 799\\\\\n", + "\t indian & 598\\\\\n", + "\t chinese & 442\\\\\n", + "\t japanese & 320\\\\\n", + "\t thai & 289\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                A tibble: 5 × 2
                                cuisinen
                                <fct><int>
                                korean 799
                                indian 598
                                chinese 442
                                japanese320
                                thai 289
                                \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 735 + }, + "id": "jhCrrH22IWVR", + "outputId": "d444a85c-1d8b-485f-bc4f-8be2e8f8217c" + } + }, + { + "cell_type": "markdown", + "source": [ + "बढ़िया! अब, डेटा को इस तरह विभाजित करने का समय है कि 70% डेटा प्रशिक्षण के लिए जाए और 30% परीक्षण के लिए। हम डेटा विभाजित करते समय `स्तरीकरण` तकनीक का भी उपयोग करेंगे ताकि `प्रत्येक व्यंजन की समानुपातिकता` प्रशिक्षण और सत्यापन डेटासेट्स में बनी रहे।\n", + "\n", + "[rsample](https://rsample.tidymodels.org/), जो कि Tidymodels का एक पैकेज है, डेटा विभाजन और पुनःनमूना लेने के लिए एक प्रभावी ढांचा प्रदान करता है:\n" + ], + "metadata": { + "id": "AYTjVyajIdny" + } + }, + { + "cell_type": "code", + "execution_count": 4, + "source": [ + "# Load the core Tidymodels packages into R session\r\n", + "library(tidymodels)\r\n", + "\r\n", + "# Create split specification\r\n", + "set.seed(2056)\r\n", + "cuisines_split <- initial_split(data = df_select,\r\n", + " strata = cuisine,\r\n", + " prop = 0.7)\r\n", + "\r\n", + "# Extract the data in each split\r\n", + "cuisines_train <- training(cuisines_split)\r\n", + "cuisines_test <- testing(cuisines_split)\r\n", + "\r\n", + "# Print the number of cases in each split\r\n", + "cat(\"Training cases: \", nrow(cuisines_train), \"\\n\",\r\n", + " \"Test cases: \", nrow(cuisines_test), sep = \"\")\r\n", + "\r\n", + "# Display the first few rows of the training set\r\n", + "cuisines_train %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Display distribution of cuisines in the training set\r\n", + "cuisines_train %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training cases: 1712\n", + "Test cases: 736" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 chinese 0 0 0 0 0 0 0 0 \n", + "2 chinese 0 0 0 0 0 0 0 0 \n", + "3 chinese 0 0 0 0 0 0 0 0 \n", + "4 chinese 0 0 0 0 0 0 0 0 \n", + "5 chinese 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 1 0 \n", + "2 0 ⋯ 0 0 0 0 1 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 0 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                A tibble: 5 × 381
                                cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                <fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
                                chinese0000000000000100000
                                chinese0000000000000100000
                                chinese0000000000000000000
                                chinese0000000000000000000
                                chinese0000000000000000000
                                \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 559\n", + "2 indian 418\n", + "3 chinese 309\n", + "4 japanese 224\n", + "5 thai 202" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 559 |\n", + "| indian | 418 |\n", + "| chinese | 309 |\n", + "| japanese | 224 |\n", + "| thai | 202 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 559\\\\\n", + "\t indian & 418\\\\\n", + "\t chinese & 309\\\\\n", + "\t japanese & 224\\\\\n", + "\t thai & 202\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                A tibble: 5 × 2
                                cuisinen
                                <fct><int>
                                korean 559
                                indian 418
                                chinese 309
                                japanese224
                                thai 202
                                \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 535 + }, + "id": "w5FWIkEiIjdN", + "outputId": "2e195fd9-1a8f-4b91-9573-cce5582242df" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. असंतुलित डेटा से निपटना\n", + "\n", + "जैसा कि आपने मूल डेटा सेट और हमारे प्रशिक्षण सेट में देखा होगा, व्यंजनों की संख्या में काफी असमान वितरण है। कोरियाई व्यंजन *लगभग* थाई व्यंजनों से 3 गुना अधिक हैं। असंतुलित डेटा का मॉडल के प्रदर्शन पर अक्सर नकारात्मक प्रभाव पड़ता है। कई मॉडल तब सबसे अच्छा प्रदर्शन करते हैं जब अवलोकनों की संख्या समान होती है, और इसलिए, असंतुलित डेटा के साथ संघर्ष करते हैं।\n", + "\n", + "असंतुलित डेटा सेट से निपटने के दो मुख्य तरीके हैं:\n", + "\n", + "- अल्पसंख्यक वर्ग में अवलोकन जोड़ना: `Over-sampling`, जैसे SMOTE एल्गोरिदम का उपयोग करना, जो इन मामलों के निकटतम पड़ोसियों का उपयोग करके अल्पसंख्यक वर्ग के नए उदाहरण कृत्रिम रूप से उत्पन्न करता है।\n", + "\n", + "- बहुसंख्यक वर्ग से अवलोकन हटाना: `Under-sampling`\n", + "\n", + "हमने अपने पिछले पाठ में दिखाया था कि `recipe` का उपयोग करके असंतुलित डेटा सेट से कैसे निपटा जा सकता है। एक recipe को एक खाका माना जा सकता है जो यह वर्णन करता है कि डेटा सेट को डेटा विश्लेषण के लिए तैयार करने के लिए किन चरणों को लागू किया जाना चाहिए। हमारे मामले में, हम अपने `training set` में व्यंजनों की संख्या में समान वितरण चाहते हैं। चलिए इसे शुरू करते हैं।\n" + ], + "metadata": { + "id": "daBi9qJNIwqW" + } + }, + { + "cell_type": "code", + "execution_count": 5, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing training data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "# Print recipe\r\n", + "cuisines_recipe" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Data Recipe\n", + "\n", + "Inputs:\n", + "\n", + " role #variables\n", + " outcome 1\n", + " predictor 380\n", + "\n", + "Operations:\n", + "\n", + "SMOTE based on cuisine" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 200 + }, + "id": "Az6LFBGxI1X0", + "outputId": "29d71d85-64b0-4e62-871e-bcd5398573b6" + } + }, + { + "cell_type": "markdown", + "source": [ + "आप निश्चित रूप से इस रेसिपी को जांच सकते हैं (prep+bake का उपयोग करके) ताकि यह सुनिश्चित हो सके कि यह आपकी अपेक्षा के अनुसार काम करेगी - सभी व्यंजन लेबल्स में `559` ऑब्ज़र्वेशन हैं।\n", + "\n", + "चूंकि हम इस रेसिपी का उपयोग मॉडलिंग के लिए एक प्रीप्रोसेसर के रूप में करेंगे, एक `workflow()` हमारे लिए सारा prep और bake कर देगा, इसलिए हमें रेसिपी को मैन्युअली अनुमानित करने की आवश्यकता नहीं होगी।\n", + "\n", + "अब हम एक मॉडल को ट्रेन करने के लिए तैयार हैं 👩‍💻👨‍💻!\n", + "\n", + "## 3. अपने क्लासिफायर का चयन करना\n", + "\n", + "

                                \n", + " \n", + "

                                आर्टवर्क: @allison_horst
                                \n" + ], + "metadata": { + "id": "NBL3PqIWJBBB" + } + }, + { + "cell_type": "markdown", + "source": [ + "अब हमें तय करना है कि इस काम के लिए कौन सा एल्गोरिदम इस्तेमाल करना है 🤔।\n", + "\n", + "Tidymodels में, [`parsnip package`](https://parsnip.tidymodels.org/index.html) विभिन्न इंजन (पैकेज) के साथ मॉडल पर काम करने के लिए एक सुसंगत इंटरफ़ेस प्रदान करता है। कृपया [मॉडल प्रकार और इंजन](https://www.tidymodels.org/find/parsnip/#models) और उनके संबंधित [मॉडल तर्क](https://www.tidymodels.org/find/parsnip/#model-args) को एक्सप्लोर करने के लिए parsnip दस्तावेज़ देखें। पहली नज़र में विविधता काफी चौंकाने वाली लगती है। उदाहरण के लिए, निम्नलिखित विधियां सभी वर्गीकरण तकनीकों को शामिल करती हैं:\n", + "\n", + "- C5.0 नियम-आधारित वर्गीकरण मॉडल\n", + "\n", + "- लचीले भेदभाव मॉडल\n", + "\n", + "- रैखिक भेदभाव मॉडल\n", + "\n", + "- नियमित भेदभाव मॉडल\n", + "\n", + "- लॉजिस्टिक रिग्रेशन मॉडल\n", + "\n", + "- बहु-नामांकित रिग्रेशन मॉडल\n", + "\n", + "- नाइव बेयस मॉडल\n", + "\n", + "- सपोर्ट वेक्टर मशीन\n", + "\n", + "- निकटतम पड़ोसी\n", + "\n", + "- निर्णय वृक्ष\n", + "\n", + "- समुच्चय विधियां\n", + "\n", + "- न्यूरल नेटवर्क\n", + "\n", + "सूची जारी रहती है!\n", + "\n", + "### **कौन सा वर्गीकरणकर्ता चुनें?**\n", + "\n", + "तो, आपको कौन सा वर्गीकरणकर्ता चुनना चाहिए? अक्सर, कई विकल्पों को आजमाना और अच्छे परिणाम की तलाश करना एक तरीका है।\n", + "\n", + "> AutoML इस समस्या को आसानी से हल करता है, इन तुलनाओं को क्लाउड में चलाकर, जिससे आप अपने डेटा के लिए सबसे अच्छा एल्गोरिदम चुन सकते हैं। इसे [यहां](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott) आज़माएं।\n", + "\n", + "साथ ही, वर्गीकरणकर्ता का चयन हमारी समस्या पर निर्भर करता है। उदाहरण के लिए, जब परिणाम को `दो से अधिक वर्गों` में वर्गीकृत किया जा सकता है, जैसे कि हमारे मामले में, तो आपको `मल्टीक्लास वर्गीकरण एल्गोरिदम` का उपयोग करना होगा, बजाय `बाइनरी वर्गीकरण` के।\n", + "\n", + "### **एक बेहतर तरीका**\n", + "\n", + "हालांकि, अंधाधुंध अनुमान लगाने से बेहतर तरीका यह है कि इस डाउनलोड करने योग्य [ML Cheat Sheet](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott) पर दिए गए विचारों का पालन करें। यहां, हम पाते हैं कि हमारे मल्टीक्लास समस्या के लिए हमारे पास कुछ विकल्प हैं:\n", + "\n", + "

                                \n", + " \n", + "

                                माइक्रोसॉफ्ट के एल्गोरिदम चीट शीट का एक हिस्सा, जो मल्टीक्लास वर्गीकरण विकल्पों को दर्शाता है
                                \n" + ], + "metadata": { + "id": "a6DLAZ3vJZ14" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **तर्क**\n", + "\n", + "आइए देखें कि दिए गए प्रतिबंधों को ध्यान में रखते हुए हम विभिन्न दृष्टिकोणों का विश्लेषण कैसे कर सकते हैं:\n", + "\n", + "- **डीप न्यूरल नेटवर्क बहुत भारी हैं।** हमारे पास साफ लेकिन सीमित डेटा सेट है, और हम नोटबुक्स के माध्यम से स्थानीय रूप से प्रशिक्षण चला रहे हैं, इसलिए डीप न्यूरल नेटवर्क इस कार्य के लिए बहुत भारी साबित होंगे।\n", + "\n", + "- **दो-श्रेणी वर्गीकरणकर्ता का उपयोग नहीं।** हम दो-श्रेणी वर्गीकरणकर्ता का उपयोग नहीं कर रहे हैं, इसलिए यह विकल्प बाहर हो जाता है।\n", + "\n", + "- **डिसीजन ट्री या लॉजिस्टिक रिग्रेशन काम कर सकते हैं।** डिसीजन ट्री काम कर सकता है, या बहु-श्रेणी डेटा के लिए बहु-श्रेणी रिग्रेशन/लॉजिस्टिक रिग्रेशन उपयुक्त हो सकता है।\n", + "\n", + "- **मल्टीक्लास बूस्टेड डिसीजन ट्री अलग समस्या हल करते हैं।** मल्टीक्लास बूस्टेड डिसीजन ट्री गैर-पैरामीट्रिक कार्यों के लिए सबसे उपयुक्त हैं, जैसे रैंकिंग बनाने के लिए डिज़ाइन किए गए कार्य, इसलिए यह हमारे लिए उपयोगी नहीं है।\n", + "\n", + "सामान्यतः, अधिक जटिल मशीन लर्निंग मॉडल (जैसे एन्सेम्बल मेथड्स) पर जाने से पहले, सबसे सरल मॉडल बनाना एक अच्छा विचार है ताकि यह समझा जा सके कि डेटा में क्या हो रहा है। इसलिए इस पाठ में, हम `मल्टिनोमियल रिग्रेशन` मॉडल से शुरुआत करेंगे।\n", + "\n", + "> लॉजिस्टिक रिग्रेशन एक तकनीक है जिसका उपयोग तब किया जाता है जब परिणाम चर श्रेणीबद्ध (या नाममात्र) होता है। बाइनरी लॉजिस्टिक रिग्रेशन में परिणाम चर की संख्या दो होती है, जबकि मल्टिनोमियल लॉजिस्टिक रिग्रेशन में परिणाम चर की संख्या दो से अधिक होती है। अधिक जानकारी के लिए [Advanced Regression Methods](https://bookdown.org/chua/ber642_advanced_regression/multinomial-logistic-regression.html) देखें।\n", + "\n", + "## 4. मल्टिनोमियल लॉजिस्टिक रिग्रेशन मॉडल को प्रशिक्षित करें और उसका मूल्यांकन करें।\n", + "\n", + "Tidymodels में, `parsnip::multinom_reg()` एक ऐसा मॉडल परिभाषित करता है जो मल्टिनोमियल वितरण का उपयोग करके बहु-श्रेणी डेटा की भविष्यवाणी करने के लिए रैखिक प्रेडिक्टर्स का उपयोग करता है। इस मॉडल को फिट करने के लिए आप किन-किन तरीकों/इंजनों का उपयोग कर सकते हैं, यह जानने के लिए `?multinom_reg()` देखें।\n", + "\n", + "इस उदाहरण में, हम डिफ़ॉल्ट [nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf) इंजन के माध्यम से एक मल्टिनोमियल रिग्रेशन मॉडल फिट करेंगे।\n", + "\n", + "> मैंने `penalty` के लिए एक मान को थोड़े यादृच्छिक रूप से चुना है। इस मान को चुनने के बेहतर तरीके हैं, जैसे `resampling` और मॉडल को `tuning` करना, जिसके बारे में हम बाद में चर्चा करेंगे।\n", + ">\n", + "> यदि आप मॉडल हाइपरपैरामीटर को ट्यून करने के बारे में अधिक जानना चाहते हैं, तो [Tidymodels: Get Started](https://www.tidymodels.org/start/tuning/) देखें।\n" + ], + "metadata": { + "id": "gWMsVcbBJemu" + } + }, + { + "cell_type": "code", + "execution_count": 6, + "source": [ + "# Create a multinomial regression model specification\r\n", + "mr_spec <- multinom_reg(penalty = 1) %>% \r\n", + " set_engine(\"nnet\", MaxNWts = 2086) %>% \r\n", + " set_mode(\"classification\")\r\n", + "\r\n", + "# Print model specification\r\n", + "mr_spec" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 166 + }, + "id": "Wq_fcyQiJvfG", + "outputId": "c30449c7-3864-4be7-f810-72a003743e2d" + } + }, + { + "cell_type": "markdown", + "source": [ + "शानदार काम 🥳! अब जब हमारे पास एक रेसिपी और एक मॉडल स्पेसिफिकेशन है, तो हमें इन्हें एक ऐसे ऑब्जेक्ट में जोड़ने का तरीका खोजना होगा जो पहले डेटा को प्रीप्रोसेस करेगा, फिर प्रीप्रोसेस्ड डेटा पर मॉडल फिट करेगा, और संभावित पोस्ट-प्रोसेसिंग गतिविधियों की भी अनुमति देगा। Tidymodels में, इस सुविधाजनक ऑब्जेक्ट को [`workflow`](https://workflows.tidymodels.org/) कहा जाता है, जो आपके मॉडलिंग घटकों को आसानी से संभालता है! इसे हम *Python* में *pipelines* कह सकते हैं।\n", + "\n", + "तो चलिए सब कुछ एक वर्कफ़्लो में जोड़ते हैं!📦\n" + ], + "metadata": { + "id": "NlSbzDfgJ0zh" + } + }, + { + "cell_type": "code", + "execution_count": 7, + "source": [ + "# Bundle recipe and model specification\r\n", + "mr_wf <- workflow() %>% \r\n", + " add_recipe(cuisines_recipe) %>% \r\n", + " add_model(mr_spec)\r\n", + "\r\n", + "# Print out workflow\r\n", + "mr_wf" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow ════════════════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 333 + }, + "id": "Sc1TfPA4Ke3_", + "outputId": "82c70013-e431-4e7e-cef6-9fcf8aad4a6c" + } + }, + { + "cell_type": "markdown", + "source": [ + "वर्कफ़्लो 👌👌! एक **`workflow()`** को उसी तरह फिट किया जा सकता है जैसे एक मॉडल को किया जाता है। तो, मॉडल को प्रशिक्षित करने का समय आ गया है!\n" + ], + "metadata": { + "id": "TNQ8i85aKf9L" + } + }, + { + "cell_type": "code", + "execution_count": 8, + "source": [ + "# Train a multinomial regression model\n", + "mr_fit <- fit(object = mr_wf, data = cuisines_train)\n", + "\n", + "mr_fit" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow [trained] ══════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Call:\n", + "nnet::multinom(formula = ..y ~ ., data = data, decay = ~1, MaxNWts = ~2086, \n", + " trace = FALSE)\n", + "\n", + "Coefficients:\n", + " (Intercept) almond angelica anise anise_seed apple\n", + "indian 0.19723325 0.2409661 0 -5.004955e-05 -0.1657635 -0.05769734\n", + "japanese 0.13961959 -0.6262400 0 -1.169155e-04 -0.4893596 -0.08585717\n", + "korean 0.22377347 -0.1833485 0 -5.560395e-05 -0.2489401 -0.15657804\n", + "thai -0.04336577 -0.6106258 0 4.903828e-04 -0.5782866 0.63451105\n", + " apple_brandy apricot armagnac artemisia artichoke asparagus\n", + "indian 0 0.37042636 0 -0.09122797 0 -0.27181970\n", + "japanese 0 0.28895643 0 -0.12651100 0 0.14054037\n", + "korean 0 -0.07981259 0 0.55756709 0 -0.66979948\n", + "thai 0 -0.33160904 0 -0.10725182 0 -0.02602152\n", + " avocado bacon baked_potato balm banana barley\n", + "indian -0.46624197 0.16008055 0 0 -0.2838796 0.2230625\n", + "japanese 0.90341344 0.02932727 0 0 -0.4142787 2.0953906\n", + "korean -0.06925382 -0.35804134 0 0 -0.2686963 -0.7233404\n", + "thai -0.21473955 -0.75594439 0 0 0.6784880 -0.4363320\n", + " bartlett_pear basil bay bean beech\n", + "indian 0 -0.7128756 0.1011587 -0.8777275 -0.0004380795\n", + "japanese 0 0.1288697 0.9425626 -0.2380748 0.3373437611\n", + "korean 0 -0.2445193 -0.4744318 -0.8957870 -0.0048784496\n", + "thai 0 1.5365848 0.1333256 0.2196970 -0.0113078024\n", + " beef beef_broth beef_liver beer beet\n", + "indian -0.7985278 0.2430186 -0.035598065 -0.002173738 0.01005813\n", + "japanese 0.2241875 -0.3653020 -0.139551027 0.128905553 0.04923911\n", + "korean 0.5366515 -0.6153237 0.213455197 -0.010828645 0.27325423\n", + "thai 0.1570012 -0.9364154 -0.008032213 -0.035063746 -0.28279823\n", + " bell_pepper bergamot berry bitter_orange black_bean\n", + "indian 0.49074330 0 0.58947607 0.191256164 -0.1945233\n", + "japanese 0.09074167 0 -0.25917977 -0.118915977 -0.3442400\n", + "korean -0.57876763 0 -0.07874180 -0.007729435 -0.5220672\n", + "thai 0.92554006 0 -0.07210196 -0.002983296 -0.4614426\n", + " black_currant black_mustard_seed_oil black_pepper black_raspberry\n", + "indian 0 0.38935801 -0.4453495 0\n", + "japanese 0 -0.05452887 -0.5440869 0\n", + "korean 0 -0.03929970 0.8025454 0\n", + "thai 0 -0.21498372 -0.9854806 0\n", + " black_sesame_seed black_tea blackberry blackberry_brandy\n", + "indian -0.2759246 0.3079977 0.191256164 0\n", + "japanese -0.6101687 -0.1671913 -0.118915977 0\n", + "korean 1.5197674 -0.3036261 -0.007729435 0\n", + "thai -0.1755656 -0.1487033 -0.002983296 0\n", + " blue_cheese blueberry bone_oil bourbon_whiskey brandy\n", + "indian 0 0.216164294 -0.2276744 0 0.22427587\n", + "japanese 0 -0.119186087 0.3913019 0 -0.15595599\n", + "korean 0 -0.007821986 0.2854487 0 -0.02562342\n", + "thai 0 -0.004947048 -0.0253658 0 -0.05715244\n", + "\n", + "...\n", + "and 308 more lines." + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "GMbdfVmTKkJI", + "outputId": "adf9ebdf-d69d-4a64-e9fd-e06e5322292e" + } + }, + { + "cell_type": "markdown", + "source": [ + "आउटपुट उन गुणांकों को दिखाता है जो मॉडल ने प्रशिक्षण के दौरान सीखे।\n", + "\n", + "### प्रशिक्षित मॉडल का मूल्यांकन करें\n", + "\n", + "अब समय आ गया है यह देखने का कि मॉडल ने कैसा प्रदर्शन किया 📏, इसे टेस्ट सेट पर मूल्यांकन करके! आइए टेस्ट सेट पर भविष्यवाणियां करके शुरू करें।\n" + ], + "metadata": { + "id": "tt2BfOxrKmcJ" + } + }, + { + "cell_type": "code", + "execution_count": 9, + "source": [ + "# Make predictions on the test set\n", + "results <- cuisines_test %>% select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test))\n", + "\n", + "# Print out results\n", + "results %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class\n", + "1 indian thai \n", + "2 indian indian \n", + "3 indian indian \n", + "4 indian indian \n", + "5 indian indian " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | .pred_class <fct> |\n", + "|---|---|\n", + "| indian | thai |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & .pred\\_class\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t indian & thai \\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                A tibble: 5 × 2
                                cuisine.pred_class
                                <fct><fct>
                                indianthai
                                indianindian
                                indianindian
                                indianindian
                                indianindian
                                \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "CqtckvtsKqax", + "outputId": "e57fe557-6a68-4217-fe82-173328c5436d" + } + }, + { + "cell_type": "markdown", + "source": [ + "शानदार काम! Tidymodels में, मॉडल के प्रदर्शन का मूल्यांकन [yardstick](https://yardstick.tidymodels.org/) का उपयोग करके किया जा सकता है - यह एक पैकेज है जो प्रदर्शन मेट्रिक्स का उपयोग करके मॉडलों की प्रभावशीलता को मापने के लिए उपयोग किया जाता है। जैसा कि हमने अपने लॉजिस्टिक रिग्रेशन पाठ में किया था, आइए एक कन्फ्यूजन मैट्रिक्स की गणना करके शुरू करें।\n" + ], + "metadata": { + "id": "8w5N6XsBKss7" + } + }, + { + "cell_type": "code", + "execution_count": 10, + "source": [ + "# Confusion matrix for categorical data\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class)\n" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " Truth\n", + "Prediction chinese indian japanese korean thai\n", + " chinese 83 1 8 15 10\n", + " indian 4 163 1 2 6\n", + " japanese 21 5 73 25 1\n", + " korean 15 0 11 191 0\n", + " thai 10 11 3 7 70" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 133 + }, + "id": "YvODvsLkK0iG", + "outputId": "bb69da84-1266-47ad-b174-d43b88ca2988" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "c0HfPL16Lr6U" + } + }, + { + "cell_type": "code", + "execution_count": 11, + "source": [ + "update_geom_defaults(geom = \"tile\", new = list(color = \"black\", alpha = 0.7))\n", + "# Visualize confusion matrix\n", + "results %>% \n", + " conf_mat(cuisine, .pred_class) %>% \n", + " autoplot(type = \"heatmap\")" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deWBU9b3//0+ibApWrbYuvYorXaxoaatWvVqpqG2HsCmLBAqoVXBDjCKbKMqOQUDFFVxKqyhVFLUqWKJsxg3Lz2IFGilLiEqptMX0hpzvnJkMCbx5/W5vz5k5Z+D5/OOc85nEz3w8Mw9mMjmo84gocC7qBRDtCQGJKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQijHkLb+NUZVRb2Ahn26OeoVNCxWpyZWi/mbeGbnGNJl42PUmbNiVM+7nohRlz4ao/o/HqOuFc/sHEMasShGdfwsRt3+1qYYNXJ9jLq9MkZNE89sIMUkIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSbI+EVLQktatJvB8FpNGtv9LoqMteTx7d/f2vND6h5M3oIS07xT0XxjyhQJpx+sGNj79pbfCJgkJ6o7V72t/f4FKdFSmkRa3dnNTBgnYHNPneY7GCVPvB1ggg3ezaTZraq+C8RYvGF7a64cbW7rLIIU1sdmR8IE1ynX4957qC9pFDGtvsiDSkywsn+D0eJaRxycWkIC1pcdzYSecUzIwTpP+0YJBOONJ/CTqncP6iI49YsGjRwqMOjhrSS03GTY0PpJNaVia3P92nImJIc5vcWZqG1LVFoInCgPRCkzF3pyF1bLa8snLdd1pGC+nTOy8uvvdLr+iVEZ2KF/hv7WoTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZgHS8cf624sKF5RdO84/+plbEDGk8oWfxQjSt7/pb7vu80ngmYJBWvTa+jpIPz0ickhLFlSmIa1vVuSPR7lXI4V0w9jN6wdM94qu+fCfj3XZ5v+MVDRwi/dKl23eoPFfVD/es3pj+/e3b7xudmaYDUjD3C+fmz+6aee64Zsnfz3QdOF82BAjSFPckOV/nrFfv+AzBf6woQ7SWa3Wr18dLaRkaUiL3FB/MMdNjhLS6sTG5KbcK3ra8zYmKlKQ5nrepsQnqxKbkz8zdStblVjtedu9zDD5zyxpn+wPIUJadFsz5wp7pz5i+P1vH2i372gg7dT9+yfPz/WVwScKC1Lrlh0PdAddvyYOkJ5zd/mDN9ywKCG92b42tS9anHwvl/g4BSl9WJZINbv2ng4ls9Z7mWHye9/4cbL3QoR0T/MzRt91SWHqI4bJzh0+KdBsex6kZw/4yYzfXL7PzfGB1LKw20P3F7mL4gDpSTfVHyxzN0YJaVH77WlIS+ohpQ+XJjJv4zbNG9mhrH64uwJBeuPwE/0Xo66FTya3L44f2ragF5AatPGo7/ovRlcULo0NpLff87dd3ZwYQHrOTfIHZW54lJDWJCo876MXdgNpbWJl8usbvZotyd30wZlhFiA97VJwJrjMLL9wDwGpvrfddf7uCXdPbCCle8IFmi8kSEvcLf7gqfQLU1SQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpgVSD383Wg3+PkbHkyTugVI9ZW7/v7uEXdXbCCtXOlv73fjYgBpQ4uf+4MhrixSSFvu6NJz2rbdQdo8ruslJSu82ll9Ova6+++ZYRYgvdH8mDeSuw7usRcLT/WPLnGTgVTfxq+02pjc9Xa/jwukdwsv9AfnFbwRA0iVlzZ5p7Jy7bHfDjTXHnGt3UB32qgJFxe2XbSo2H332pLzC77zRsSQ5pWW9nADSkvfiQOkTXe6Hz/wxOWFRcFnCgbp2QkTurorJ0xYvL6Paztu1OmuX6DpgkGaO2lSN9d/0qRlle8dfPTQO37QaA6QFo06qWmjlleWLVr0Zkmrps2O7fFqoNlCgNQ7fS2ZezAWkDY9+P39Gp8wZH3wiYJB6ll3Vu5dv3ZM6xZNT5kYaLaAkHrVLWZ6ZeWiC1s0Pe2ZQLPtIZDCjau/ZVz9rQKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEiqmEDqOSJGnXJfjOpw+z0xqtOUGNU76rPRsMvEMzvHkEa+GqMuHBajznv8tRg1IOoFNGzgKzFqiHhm5xjSvZ/GqF/MjFHd3on6zWXD7ox6AQ27oypG3Sue2UCKSUCSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyhQTpraYHhzDLL/7zp/3YY9zg1MFDHQ7Z92sXz0ge3fTt5o2O6j0jWkjLTnHPhTFPGJDmt23e/OTSquAThQFpXcl/NW45bFPwiUKEVJN4f6fxpkTFrjdlGVLVmS5aSL0bH1wH6QeFF155puswc+b1BUf37HWi6xQppInNjowNpJcbtbx90jnuluAzhQEpsc9V0y9xJcEnChFS7Qdbd4W0601ZhjSp8bmRQhrWqPiyNKQS1y25/f43Z8z82qEPzJz58GEHRAnppSbjpsYG0o8O+ONnn1V9Z7+NgWcKAdJsd1ty+/Mzg78kZfGtXRLSv/29oUD6wwEll0YKadyomXWQftT0ofRND/e4zt+d7R6IEFL5ws/iA2nydH/bx/0p8EwhQOrSfF3wSVKF+9auNrFwRP++8z1v9aAuVy9Mv7WrGN6964gN3o4vZQ/SRSeujxZSsjpIh540c2aDH4tmnPDV/3TCkD5siA+kdOceGnyOECAdfW5VVWXwaapC/xmpaOAW75Uu22r7lW6rGpKGdGXptn+MKfEyX8oepIcK5n0aE0gzCs7t8/WC/S9KvQw9dNfw0/e5BkgNe9jdHnyS4JA2FfaadEzBQf0/iR+kuf5buk/+mNjoeUvSkLZ+6XmLO9RmvpT8xgVtkr0dNqQ/HdL307hAut8deuxVN15Y0Ma/qcS5Q274jyfcIyH9utlFsfjUrsId9b0Hnrqq8Gfxg7TY8zYnPi5rv93zPklDWj6kuLhboibzpeQ3lvdM9mHYkLoeviY2kB50zacndz9xtya3U6+/7LSCBJDqG7dPpw0hTBMc0l/cQWuSu8vcK7GDtCSlZX77Ws9bk4K0odPsam+pD2lJBtJuCg7pqYKHKyoquh1csS4GkGY2+6a/HeT61N3cPkUKSKmudIM+DWOeEH5GanGmv/2NuyvwTNmBtDxR6XllKUhlRTWe92j2IfVzdZ0fB0itDvO317orphQP948Gur5AqmtgQWkIs3wWCqQzjve3j7l7As+UHUjVPUq3rrs5BWllYsW/Fg5OVGUb0tsv+LU74IU34wCplytJbs8oHD+14Jv+p3ftUmMgJXvahfWJRQiQxrunk9su+7wVeKbsQPI+ur7z1e8k/uzfNKN7jylbB3bblGVI6aL9GWlonz5nu4v69Jkw86GWTdr3+6E7f+bMn7nju/c+veC4//QaoTAgzSst7eEGlJYGnyq4gcrjDipN9V7gqUKAtK71foPuLnKXB59pz7rWLmJIP657d3nVzJn3tv3KPocVJ/XM6H1046bfuGj6fzpnGJB6163rwcAzBYf0UeYt+GOBpwrjEqGP+3yt0XFj43WtXZC4+lvF1d8yrv62AUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAcl28S9jVKt2Mer4blGfjob9KOoFNOxnV8Soi8QzO8eQ7loVo7r/JUYNf/KNGDXkTzFq1PoYNU08s3MMafLaGNUz6rcJDbvtmWUxanhFjIrV+8z7xDMbSDEJSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIs/yBt6n1EoUsFpFwHJFn+Qbp437a9+6UCUq4Dkiz/IH312WwBAtL/FpBk+QdpvyogRRWQZPkH6ezXgRRVQJLlH6S3f7gYSBEFJFn+QTrzv9x+R6cCUq4Dkiz/IJ3dNhOQch2QZPkHKfsBSQUkWT5C+uyFBx56+Qsg5T4gyfIP0vZBjfzLGvYfD6ScByRZ/kEa7zo+/OIL91/gHgVSrgOSLP8gfeuG9P6K7wEp1wFJln+QmsxP7+c1A1KuA5Is/yDt/3x6/2xzIOU6IMnyD9JZP672d9vanQukXAckWf5Bmldw1JWjbr/8iMJXgZTrgCTLP0jeb7/pf/z93XnZcgQkGZBkeQjJ89a/VV6ZNUZA0gFJlpeQshyQVECS5RmkVqO9VjsCUq4DkizPIJ1W6p22IyDlOiDJ8gxSTgKSCkiy/IPU5sP0/ulvASnXAUmWf5BceWr3P7c1BlKuA5Is3yC5+rhoNecBSZZvkN6/2xWl/uuQl434C5ByHZBk+QbJ8y74U7YAAel/C0iy/IPkbZyS3FTdtglIOQ9IsvyDtPIw/1OGCnfYaiDlOiDJ8g9Sh+Pf8ncfHt8JSLkOSLL8g3ToI+n9/S2AlOuAJMs/SM2eSO9/tV9MIc07t3nzk8ZW+Ie/P9k9GT2kkvSvC86OGtJrmV9cjF+2bNoPvtL4xMFLo4T0/Dn773/SmDUVFdenV3Vm9JCWneKeC2OefwvSjy6o8Xdf/ODMzC01ifdjBOnZfY8eNuYsd2PycHSzI+IA6ZeFd/n9OmpIbw5JdX7Br5ZNKmx1402nuCsihPTbfY8eOvosN6iiom/hWL+ZkUOa2OzIHEJ6ueDYASNH9Dm08OXMLbUfbI0RpNNbvLt2bcW391uz9rdNRk2KA6TuBwSfI10Yb+1eP7TDsmXfOLJs2bJFRx8cIaTTWrxdUbHmW/utqri4RaCJQoP0UpNxU3MIyXuljf9CfHJc/4bs+Lv9bbFbvrbsd2tjAelnRwafI10YkC458NVliwdO9A9/7sqigzRusr/t6d6ruPDweEAqX/hZTiF53mcf/H8N/4vF/lu7iuHdu47Y4FUnXh7cr+9SLzOuTSwc0b/vfM/bPL5Xl8GrPO+1qzoX31u9Y5gFSOnOPiS1iwWks1tVVa0NPk1VKJCeLCzJHC5tfVigqcL4sOHsQyoqzjyxomJlDCAlyzGkXfIhXVm67R9jSpKH1/3Ve7XDlszYKxq4xXulyzZv0Pgvqh/vWb2x/fvbN143OzNM/sP/XJfsy7Ah3eeGxQfSKcd0PsgdNOgvsYB0/qFvpPZvzH34gn3HRg3pHje0ouLklkUHuoOu/WhvgrTbvyHrQ9qatLC4Q21N4jnP2971lczYK5rreZsSn6xKbE7+LNWtbFVidfLrXmaY/IcXtEn2dsiQZjZrVxEfSMcU9pj5UEf30+AzBYf0ZOGg9MFU5w4vDTZXcEiPNDt/TUVFy8JL7r8n4S7YmyDt9m/I+pCWDyku7paoqUksS95w1azM2CtanHxbl/i4LJFqdu09HUpmrfcyw+T3rrg52c4XSQSGNGqfotVr4wPp/RX+trubG3im4JC6Nn49ffC7icPPL/hFtJBu36f9x8ndknJ/cLF7ai+CtNuSkDZ0ml3tLfUh+f9fzCt+nRl7RUtSkJYmquu+edO8kR3K6oe7Kyikfu7aT9bGCFK637hRgecIDGnp13/UYNTXzYgSUl93zZ/rR4+6EUB6v6yoxvMe9SE97XnVnV/LjDOQ1iZWJr9xo1ezJbmbPjgzzAqkqwvG7jiOBaTVq/3tQ25i4JkCQ3rE3eLvXip5xN/d5YZGCGlAwZj0wYoV/vYeN3ovgrR/g3b8DdkkpJWJFf9aODhRVZMYUFE9q+PfMuMMJG9oSVXNi10+f7XPx7Wbh0zJDLMB6VduZP0gDpA+KLzI37UtWBI9pKvdr/zd7wq/tyS56+qmRgfp8cwr0LLCdv7u3ILX9yJIXZO1anRG5w6nFLS5ugEkb0b3HlO2Duy2IfHiTZ37lXuZ8aYMpM3jul5SssKrndWnY6+7/54ZZgHSmmMPHDvOb8naOePGXeJ+OW7cm9FCqurnzp8w+gx3efCZAkP6uft9at/bnXz9ze0KTloSGaRVxxw4JnVBw6KK3u680SN/6PoEmS4MSPNKS3u4AaWl7+QAUrLZJ23wdyu/ObchpB2H74g5/g8FgvR+5oKyB9deWnc0LWJIG8efckDTU0uDTxQc0tmF6f3Swa2aNjuu5+uBJgsE6d3M4/RAxeo7Tm7RtPW4QI7CgNQ788zJDaSTnkrv72tdd8P2jxI7PnWLHlLYcfW3jKu/Vf8WpMavpfezm9TdsLDDqFog5SQgyfIP0hGXpna1XQ8PTgZI/7eAJMs/SLe67147atSAb7nBQMp1QJLlH6TacYf7P5EdMrwGSLkOSLL8g5Sk9Mmypau3Z4sRkHRAkuUjpG1vzfnU+x8g5T4gyfIQ0sQWzi3xhvwia5SApAKSLP8gPeDaT09CenTf8UDKdUCS5R+kk6/0tiUhebecCKRcByRZ/kFq+moa0u8aASnXAUmWf5C+9nwa0lMHACnXAUmWf5B+cs4/fUifn9QOSLkOSLL8g/T6Psdf5/r2PqDRm0DKdUCS5R8k77VT/Ssbfvj7bDkCkgxIsjyE5Hmb3ntvc9YYAUkHJFn+QToje/+JVSD9LwFJln+QvjEJSFEFJFn+QXruW7/9F5CiCUiy/IN09ndd4yOO9gNSrgOSLP8gnXle27qAlOuAJMs/SNkPSCogyfIO0rZlb24BUkQBSZZvkCa3cK5R/y/FNwIpuwFJlmeQnnEtbxh2lrtafCOQshuQZHkG6eyW/v8utm+jvwEpioAkyzNIzYf727dc1i5YBdL/X0CS5Rkkd7+/3eBeFt8JpKwGJFm+QXrQ3250LwEpioAkAxKQ/v2AJMs3SLcsSTbPlfo7IOU6IMnyDVLDgJTrgCTLM0i3NgxIuQ5IsjyDlJOApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZOvQM0Yd/4sYdWq7TjHqB5fGqJ/2iVEXimd2jiFNWR+jij+PUaOWboxRiWkxanTUj03DYvKKBCQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiRbUEhvtHZP+/sbXKqzIodUduEBTdr8KoSJAkNa1No9s+tRFJBGHOWuSx1cf3zjxifcsPNtkUEK7XEKBVJN4p1oIY1tdkQa0uWFE/wejxrS2y2OmzD53IIngs8UFNK45Kl5ZpejKCB1a3xQGs2V7shLLj1s35sa3hYZpPAepz0C0twmd5amIXVtEWii0CB1bvbh559vOumY4DMFhPR8k9GT03zqj6KANKjRJT3TaA498K5p0ya0aNXwtsgghfc47RGQFr22vg7ST4+IBaSqZh393Wj3euCpAkJaPH9jHZ/6oygg3XrLtDSaMe4sf9y2YHz9bZFBCvFxCg1SzbCRNX8d36tzyYfe9sTv+k32No/v1WXwKs+rGN6964gNXm1i4Yj+fednBVKyOkhntVq/fnX0kJa54f5urpsaeKrgHzbU84kQUrI0mjvcef6gixtYf1tkkEJ8nEKDVFrypTfo1i1fPtz1b17RwFX/9AaN/6L68Z7V3pWl2/4xpsRL3rjFe6XLtuS3f74s2d+yAql1y44HuoOuXxMxpBfc3f5uiRsReKo9DdLU/Y7yB23cZTGAFOLjFBakJ/p/4a1OrPW86osXeEVPet6qxGbPq+1W5m390vMWd6j1iuZ63qbEJ8lvX9Am2dtZgdSysNtD9xe5iyKG9Iy7z9+9424KPNWeBmlawv33yNsuaOH6xgBSiI9TSJDGJv7geW+2r00O+v/GKyrzvLJEqtne8iHFxd0SNV7RYs/bnPcB240AABDoSURBVPg4+R2rpyRblxVIb7/nb7u6OdFCmucm+7vF7tbAU+1xkO4+r8C5b13qrowBpBAfp5Ag9RsxsKYO0lVPeEVLPG9pojr1tQ2dZlcnBzWpG9OQdlNYkNI94UZGC+ltN8zfzUn/gReoPQ7StGljS+5M/ow0LAaQQnycQoJUvrXPI94a/43bts7zU2bWJlYmv7LRKyuq8bxHcwVp5Up/e78bFy2kT1sk/N1wtzjwVHsgJL/v7jclBpBCfJxC+7BhRYd3vZKRX2y7r+c/Uma8oSVVNS92+XxlYsW/Fg5OVOUE0ruFF/qD8wreiBbS58VNln/++YZjvxN8pj0O0umHTp42bXDhORZX7iGF+DiF93ukx4u3VN3R89Lbkj/8pCBtHtf1kpIVnjeje48pWwd225RFSM9OmNDVXTlhwuL1fVzbcaNOd/0CTRcCpD98teXwMT9sNDf4TAEhzZ04sZu7auLEpQ2OooB0Q48ep7u2PXqMnHZFwQnFHZp/dWzD2yKDFN7jtEdca9czfYWdu3f92jGtWzQ9ZWKg2UK51m7ZRS2anvFcCBMFhFRcd2rua3AUBaSz6u69z7Rpfb7RqPlpd+58W1SQwnuc9ghIIcfV3zKu/lYByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSRUTSB2LY9SJfWJUm469Y1TLs2NUIurHpmEXimd2jiFNq4xRvaP+c79ht77zWYwatSlGXV8eo24Xz2wgxSQgyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSLagkBa1dnNSBwvaHdDke49FCym5mGd2PYoW0pz/PrjJSZM+DT5RcEh/cnXNjBbSgsw6JpSXzzq7eeOT7oo1pKIlOw1rEu9nBdK4ZkekIS1pcdzYSecUzIwSkr+YZ3Y5ihbSrMKTx0443Q2OA6R1d6UqKng9WkiLh6Y6v2BW+Zz9j7p56GkFE+MKafnHBlLtB1uzAemFJmPuTkPq2Gx5ZeW677SMENLzTUZPTvOpP4oYUsuj13322cbjD40DpHSrDy8OPkkIb+0WHtqxvPyCpi+Vly894RtxhXTbiwaSLBikJQsq05DWNyvyx6Pcq9FBWjx/Yx2f+qNoIVXe8YS/6+HWxQbSZQd/FHySECB1PXB++bKm5/uHg9wT8YQ0pH2n672iV0Z0Kl7geRXDu3cdsSFrb+0q6yAtckP9wRw3OTpIyer5xAJSuk9P+0bwSUKC9Gbh2BBmCQ5pduHN5eVPuwH+8XQ3Ip6QvH7+K9I1H/7zsS7bvCtLt/1jTEkdpPXPJKvKBqTn3F3+4A03DEg7tWH5y50bzQw+T0iQOhz+lxBmCQ6p3aGLyssfcMP846fc1XGG9LTnbUxUeFu/9LzFHWrTkBa0SfZ2NiA96ab6g2XuRiDt1DPOHfWbEOYJB9KbhXeGMU1gSLMLb0xup7nb/MGz7vI4Q1rseZsTH3vLhxQXd0vUZP8VaZI/KHPDgbRTH/1qaseCgcHnCQfS5Y1XhzFNYEjdGi9Mbh90Q/3BU+6aOENakoK0odPsam9pBtJuCgnSEneLP3gq/cIEpJ0a5F4NPEcokCqP+EkY0wSG9NbXz/R3c1x/f3dP+oUp3pDKimo879HsQ9rQ4uf+YIgrA1J9fxz3O3/3azc5HpBecpPCmCYwpBnpl6Jl+5/n7wa4p2IKqf/Df89AWplY8a+FgxNV2YZUeWmTdyor1x777UBz7WmQPio8syq5+6V7Jh6Qhrvgv4z1CwrpGjcrte/Q+Pny8kX/dUKgybIIaW7nPhlI3ozuPaZsHdhtQ3YgzZ00qZvrP2nSssr3Dj566B0/aDQnQkhzJ07s5q6aOHFpg6NoIX12nfvhqImdCr5fFQ9I3d2aMKYJDCnhFqb28w48csCgk/edHldI/5eCQepVd9nU9MrKRRe2aHraM4FmCwipuG4x9zU4ihjSp5NObrb/t66uCD5TKJAuKAxjluCQ/ruw7uDpc/Zvcup9wSbbIyCFHFd/y7j6WwUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkVUwgzXg8Rg2MegENGzY16hU07NqoF9CwWD1O08QzO8eQiPbMgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQghIRCGUl5CmTY56BQ2ad+emqJdQ34d3Lo16CfV9eeesqJfQoBl3ZnX6vISUaBf1Chp0R5uPo15Cfa+2eTzqJdS3tc3VUS+hQb2/n9XpgRQ0IKmAFPeApAKSDEg2IKmAJAMSUfwDElEIAYkohPIDUtGS1K4m8X7ECzFL2JSoyPmqYnAaTDWJd6Jegq7u6ZMpK+cvryDVfrA14oWYJSQh5XxVMTgNpthCWv6xgZSV85dXkGJYElLUS4hFsYV024u5efrEHNKnd15cfO+XXtErIzoVL/Bfk2sTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZruGS1g9qMvVC9Nv7SqGd+86YoO340vZXkPmDqsTLw/u13epZxaQ69PjQ6oZNrLmr+N7dS750Nue+F2/yTvuNadnZ+eGtO90febpk1nH3vjW7oaxm9cPmO4VXfPhPx/rss0/A0UDt3ivdNnmDRr/RfXjPas3tn9/+8brZmeGWV9QgyXU9ivdVjUkDenK0m3/GFPi7Vhd1tdQd4c1iev+6r3aYYtZQK5Pjw+ptORLb9CtW758uOvfkutY9c8d95rTs7NL/fxXpPTTp/6k7XWQVic2JjflXtHTnrcx/ZQtmuu/n/pkVWJz8s1ut7JVidWet93LDLO+ogZL+KO/uCXpVW390vMWd6jNfCn7a6i7w5rEc8l//a6v7LqAnJ+eJKQn+n+RfMDWel71xQu8oie9+nvN6dnZpRSk9NOn/qTtdZDebF+b2hctTr5ZSXycehanD8sSqWbX3tOhZNZ6LzPM+ooaLqH9ds/7JA1p+ZDi4m6JmsyXsr+GujusSSxL3nDVrF0XkPPTU5MYm/hD5gHr/xuvKIl2x73m9OzsUgpS3f3uOGl7HaRF/nPVS/+0mIGUPlyayLxP2TRvZIey+mGWa7CE+f6TZk0K0oZOs6u9pf5TZUluIGXusCaRfI54V/x61wXk/PTUJPqNGFhTB+mqJ1LryNxrbs/OLvV7ccfTp/6k7XWQ1vifiX30wm4grU2sTH59o1ezJbmbPjgzzHoNlrA8Uen/qetDKiuq8bxHcwgpc4c1ieS7lurOr+26gJyfnppE+dY+jyQfsOQbt22d56fWkbnX3J6dXWoAqf6k7XWQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpj1BTVYQnWP0q3rbk5BWplY8a+FgxNVOYOUucOaxICK6lkd/2YWkOvT43/YsKLDu17JyC+23dfzH+lPnOvuNbdnZ5f6P/z3zP3Wn7S9D9KWO7r0nLZtd5A2j+t6SckKr3ZWn4697v57Zpj1Gi7ho+s7X/1O4s/+TTO695iydWC3TbmClLnDDYkXb+rcr9wzC8j16Un9Hunx4i1Vd/S89LZ1db+6ydxrTs/OLs3t3GfHA7bjpO19kGg3NfgTNba/B93rAlLetf0j/zPtdECKS0DKuxZ2GFWbOQZSXAISUQgBiSiEgEQUQkAiCiEgEYUQkPK3X7pMp+32622Pzu169uqAlL+9PnXq1Gtd5+TWXNb9nv+4AimHASm/e92V7u7mKUDKcUDK7+ognXn28984w2vd2j8u+qp3QfLtXhuv7XFrLmze/JLsX8lLQMr36iCdd/I373mhHtKfilz5h17blq1HP3tjwS+iXeFeEpDyuzpIbd2c5HYHJK+f23Hjj74W4fL2noCU32UgNf6XZyE19a/J61UY4fL2noCU32UgHeFvd4V0tD/sx0OcizjL+V0G0tH+FkjRxVnO73aCdOpJ/vY0IEUQZzm/2wnSeYckfyja1CwJ6TL3P0DKaZzl/G4nSJPdmMp3f/ydJKQR7rangZTLOMv53U6Qqm84sknr5we08Ly/nNqoFZByGWeZKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYXQ/wMhANIDIZLX1QAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 436 + }, + "id": "HsAtwukyLsvt", + "outputId": "3032a224-a2c8-4270-b4f2-7bb620317400" + } + }, + { + "cell_type": "markdown", + "source": [ + "कन्फ्यूजन मैट्रिक्स प्लॉट में गहरे रंग के वर्ग अधिक मामलों की संख्या को दर्शाते हैं, और आप उम्मीद कर सकते हैं कि गहरे वर्गों की एक तिरछी रेखा दिखाई देगी, जो उन मामलों को दर्शाती है जहां भविष्यवाणी और वास्तविक लेबल समान हैं।\n", + "\n", + "अब आइए कन्फ्यूजन मैट्रिक्स के लिए सारांश सांख्यिकी की गणना करें।\n" + ], + "metadata": { + "id": "oOJC87dkLwPr" + } + }, + { + "cell_type": "code", + "execution_count": 12, + "source": [ + "# Summary stats for confusion matrix\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class) %>% \n", + "summary()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " .metric .estimator .estimate\n", + "1 accuracy multiclass 0.7880435\n", + "2 kap multiclass 0.7276583\n", + "3 sens macro 0.7780927\n", + "4 spec macro 0.9477598\n", + "5 ppv macro 0.7585583\n", + "6 npv macro 0.9460080\n", + "7 mcc multiclass 0.7292724\n", + "8 j_index macro 0.7258524\n", + "9 bal_accuracy macro 0.8629262\n", + "10 detection_prevalence macro 0.2000000\n", + "11 precision macro 0.7585583\n", + "12 recall macro 0.7780927\n", + "13 f_meas macro 0.7641862" + ], + "text/markdown": [ + "\n", + "A tibble: 13 × 3\n", + "\n", + "| .metric <chr> | .estimator <chr> | .estimate <dbl> |\n", + "|---|---|---|\n", + "| accuracy | multiclass | 0.7880435 |\n", + "| kap | multiclass | 0.7276583 |\n", + "| sens | macro | 0.7780927 |\n", + "| spec | macro | 0.9477598 |\n", + "| ppv | macro | 0.7585583 |\n", + "| npv | macro | 0.9460080 |\n", + "| mcc | multiclass | 0.7292724 |\n", + "| j_index | macro | 0.7258524 |\n", + "| bal_accuracy | macro | 0.8629262 |\n", + "| detection_prevalence | macro | 0.2000000 |\n", + "| precision | macro | 0.7585583 |\n", + "| recall | macro | 0.7780927 |\n", + "| f_meas | macro | 0.7641862 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 13 × 3\n", + "\\begin{tabular}{lll}\n", + " .metric & .estimator & .estimate\\\\\n", + " & & \\\\\n", + "\\hline\n", + "\t accuracy & multiclass & 0.7880435\\\\\n", + "\t kap & multiclass & 0.7276583\\\\\n", + "\t sens & macro & 0.7780927\\\\\n", + "\t spec & macro & 0.9477598\\\\\n", + "\t ppv & macro & 0.7585583\\\\\n", + "\t npv & macro & 0.9460080\\\\\n", + "\t mcc & multiclass & 0.7292724\\\\\n", + "\t j\\_index & macro & 0.7258524\\\\\n", + "\t bal\\_accuracy & macro & 0.8629262\\\\\n", + "\t detection\\_prevalence & macro & 0.2000000\\\\\n", + "\t precision & macro & 0.7585583\\\\\n", + "\t recall & macro & 0.7780927\\\\\n", + "\t f\\_meas & macro & 0.7641862\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                A tibble: 13 × 3
                                .metric.estimator.estimate
                                <chr><chr><dbl>
                                accuracy multiclass0.7880435
                                kap multiclass0.7276583
                                sens macro 0.7780927
                                spec macro 0.9477598
                                ppv macro 0.7585583
                                npv macro 0.9460080
                                mcc multiclass0.7292724
                                j_index macro 0.7258524
                                bal_accuracy macro 0.8629262
                                detection_prevalencemacro 0.2000000
                                precision macro 0.7585583
                                recall macro 0.7780927
                                f_meas macro 0.7641862
                                \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 494 + }, + "id": "OYqetUyzL5Wz", + "outputId": "6a84d65e-113d-4281-dfc1-16e8b70f37e6" + } + }, + { + "cell_type": "markdown", + "source": [ + "अगर हम कुछ मेट्रिक्स जैसे सटीकता, संवेदनशीलता, और ppv पर ध्यान दें, तो शुरुआत के लिए हम बुरी स्थिति में नहीं हैं 🥳!\n", + "\n", + "## 4. गहराई में जाना\n", + "\n", + "आइए एक सूक्ष्म सवाल पूछें: किसी दिए गए प्रकार के व्यंजन को भविष्यवाणी के परिणाम के रूप में चुनने के लिए कौन से मानदंड का उपयोग किया जाता है?\n", + "\n", + "दरअसल, सांख्यिकीय मशीन लर्निंग एल्गोरिदम, जैसे लॉजिस्टिक रिग्रेशन, `संभावना` पर आधारित होते हैं; तो जो वास्तव में एक क्लासिफायर द्वारा भविष्यवाणी की जाती है, वह संभावित परिणामों के एक सेट पर एक संभावना वितरण होता है। फिर उस वर्ग को चुना जाता है जिसकी संभावना सबसे अधिक होती है, और उसे दिए गए अवलोकनों के लिए सबसे संभावित परिणाम माना जाता है।\n", + "\n", + "आइए इसे क्रियान्वित होते हुए देखें, जहां हम कठोर वर्ग भविष्यवाणियां और संभावनाएं दोनों बनाएंगे।\n" + ], + "metadata": { + "id": "43t7vz8vMJtW" + } + }, + { + "cell_type": "code", + "execution_count": 13, + "source": [ + "# Make hard class prediction and probabilities\n", + "results_prob <- cuisines_test %>%\n", + " select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test)) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test, type = \"prob\"))\n", + "\n", + "# Print out results\n", + "results_prob %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class .pred_chinese .pred_indian .pred_japanese .pred_korean\n", + "1 indian thai 1.551259e-03 0.4587877 5.988039e-04 2.428503e-04\n", + "2 indian indian 2.637133e-05 0.9999488 6.648651e-07 2.259993e-05\n", + "3 indian indian 1.049433e-03 0.9909982 1.060937e-03 1.644947e-05\n", + "4 indian indian 6.237482e-02 0.4763035 9.136702e-02 3.660913e-01\n", + "5 indian indian 1.431745e-02 0.9418551 2.945239e-02 8.721782e-03\n", + " .pred_thai \n", + "1 5.388194e-01\n", + "2 1.577948e-06\n", + "3 6.874989e-03\n", + "4 3.863391e-03\n", + "5 5.653283e-03" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 7\n", + "\n", + "| cuisine <fct> | .pred_class <fct> | .pred_chinese <dbl> | .pred_indian <dbl> | .pred_japanese <dbl> | .pred_korean <dbl> | .pred_thai <dbl> |\n", + "|---|---|---|---|---|---|---|\n", + "| indian | thai | 1.551259e-03 | 0.4587877 | 5.988039e-04 | 2.428503e-04 | 5.388194e-01 |\n", + "| indian | indian | 2.637133e-05 | 0.9999488 | 6.648651e-07 | 2.259993e-05 | 1.577948e-06 |\n", + "| indian | indian | 1.049433e-03 | 0.9909982 | 1.060937e-03 | 1.644947e-05 | 6.874989e-03 |\n", + "| indian | indian | 6.237482e-02 | 0.4763035 | 9.136702e-02 | 3.660913e-01 | 3.863391e-03 |\n", + "| indian | indian | 1.431745e-02 | 0.9418551 | 2.945239e-02 | 8.721782e-03 | 5.653283e-03 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 7\n", + "\\begin{tabular}{lllllll}\n", + " cuisine & .pred\\_class & .pred\\_chinese & .pred\\_indian & .pred\\_japanese & .pred\\_korean & .pred\\_thai\\\\\n", + " & & & & & & \\\\\n", + "\\hline\n", + "\t indian & thai & 1.551259e-03 & 0.4587877 & 5.988039e-04 & 2.428503e-04 & 5.388194e-01\\\\\n", + "\t indian & indian & 2.637133e-05 & 0.9999488 & 6.648651e-07 & 2.259993e-05 & 1.577948e-06\\\\\n", + "\t indian & indian & 1.049433e-03 & 0.9909982 & 1.060937e-03 & 1.644947e-05 & 6.874989e-03\\\\\n", + "\t indian & indian & 6.237482e-02 & 0.4763035 & 9.136702e-02 & 3.660913e-01 & 3.863391e-03\\\\\n", + "\t indian & indian & 1.431745e-02 & 0.9418551 & 2.945239e-02 & 8.721782e-03 & 5.653283e-03\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                A tibble: 5 × 7
                                cuisine.pred_class.pred_chinese.pred_indian.pred_japanese.pred_korean.pred_thai
                                <fct><fct><dbl><dbl><dbl><dbl><dbl>
                                indianthai 1.551259e-030.45878775.988039e-042.428503e-045.388194e-01
                                indianindian2.637133e-050.99994886.648651e-072.259993e-051.577948e-06
                                indianindian1.049433e-030.99099821.060937e-031.644947e-056.874989e-03
                                indianindian6.237482e-020.47630359.136702e-023.660913e-013.863391e-03
                                indianindian1.431745e-020.94185512.945239e-028.721782e-035.653283e-03
                                \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "xdKNs-ZPMTJL", + "outputId": "68f6ac5a-725a-4eff-9ea6-481fef00e008" + } + }, + { + "cell_type": "markdown", + "source": [ + "बहुत अच्छा!\n", + "\n", + "✅ क्या आप समझा सकते हैं कि मॉडल को पहले अवलोकन को थाई मानने में इतना विश्वास क्यों है?\n", + "\n", + "## **🚀चुनौती**\n", + "\n", + "इस पाठ में, आपने अपने साफ किए गए डेटा का उपयोग करके एक मशीन लर्निंग मॉडल बनाया जो सामग्री की एक श्रृंखला के आधार पर राष्ट्रीय व्यंजन की भविष्यवाणी कर सकता है। कुछ समय निकालें और [कई विकल्पों](https://www.tidymodels.org/find/parsnip/#models) को पढ़ें जो Tidymodels डेटा को वर्गीकृत करने के लिए प्रदान करता है और [अन्य तरीके](https://parsnip.tidymodels.org/articles/articles/Examples.html#multinom_reg-models) बहुविकल्पीय प्रतिगमन फिट करने के लिए।\n", + "\n", + "#### धन्यवाद:\n", + "\n", + "[`एलिसन हॉर्स्ट`](https://twitter.com/allison_horst/) को अद्भुत चित्रण बनाने के लिए जो R को अधिक स्वागतयोग्य और आकर्षक बनाते हैं। उनके [गैलरी](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) में और चित्रण खोजें।\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) और [Jen Looper](https://www.twitter.com/jenlooper) को इस मॉड्यूल का मूल Python संस्करण बनाने के लिए ♥️\n", + "\n", + "
                                \n", + "कुछ चुटकुले डालने की कोशिश करता, लेकिन मुझे फूड पन्स समझ नहीं आते 😅।\n", + "\n", + "
                                \n", + "\n", + "खुशहाल सीखना,\n", + "\n", + "[Eric](https://twitter.com/ericntay), गोल्ड Microsoft Learn स्टूडेंट एंबेसडर।\n" + ], + "metadata": { + "id": "2tWVHMeLMYdM" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/4-Classification/2-Classifiers-1/solution/notebook.ipynb b/translations/hi/4-Classification/2-Classifiers-1/solution/notebook.ipynb new file mode 100644 index 000000000..082ec2d5c --- /dev/null +++ b/translations/hi/4-Classification/2-Classifiers-1/solution/notebook.ipynb @@ -0,0 +1,279 @@ +{ + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                00indian00000000...0000000000
                                11indian10000000...0000000000
                                22indian00000000...0000000000
                                33indian00000000...0000000000
                                44indian00000000...0000000010
                                \n

                                5 rows × 382 columns

                                \n
                                " + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "from sklearn.svm import SVC\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                00000000000...0000000000
                                11000000000...0000000000
                                20000000000...0000000000
                                30000000000...0000000000
                                40000000000...0000000010
                                \n

                                5 rows × 380 columns

                                \n
                                " + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy is 0.8181818181818182\n" + ] + } + ], + "source": [ + "lr = LogisticRegression(multi_class='ovr',solver='liblinear')\n", + "model = lr.fit(X_train, np.ravel(y_train))\n", + "\n", + "accuracy = model.score(X_test, y_test)\n", + "print (\"Accuracy is {}\".format(accuracy))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "ingredients: Index(['artemisia', 'black_pepper', 'mushroom', 'shiitake', 'soy_sauce',\n 'vegetable_oil'],\n dtype='object')\ncuisine: korean\n" + ] + } + ], + "source": [ + "# test an item\n", + "print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')\n", + "print(f'cuisine: {y_test.iloc[50]}')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0\n", + "korean 0.392231\n", + "chinese 0.372872\n", + "japanese 0.218825\n", + "thai 0.013427\n", + "indian 0.002645" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                0
                                korean0.392231
                                chinese0.372872
                                japanese0.218825
                                thai0.013427
                                indian0.002645
                                \n
                                " + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "#rehsape to 2d array and transpose\n", + "test= X_test.iloc[50].values.reshape(-1, 1).T\n", + "# predict with score\n", + "proba = model.predict_proba(test)\n", + "classes = model.classes_\n", + "# create df with classes and scores\n", + "resultdf = pd.DataFrame(data=proba, columns=classes)\n", + "\n", + "# create df to show results\n", + "topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])\n", + "topPrediction.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.75 0.73 0.74 223\n indian 0.93 0.88 0.90 255\n japanese 0.78 0.78 0.78 253\n korean 0.87 0.86 0.86 236\n thai 0.76 0.84 0.80 232\n\n accuracy 0.82 1199\n macro avg 0.82 0.82 0.82 1199\nweighted avg 0.82 0.82 0.82 1199\n\n" + ] + } + ], + "source": [ + "y_pred = model.predict(X_test)\r\n", + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल दस्तावेज़ को उसकी मूल भाषा में आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं।\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "9408506dd864f2b6e334c62f80c0cfcc", + "translation_date": "2025-09-04T02:23:35+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/hi/4-Classification/3-Classifiers-2/README.md b/translations/hi/4-Classification/3-Classifiers-2/README.md new file mode 100644 index 000000000..888b4cd3c --- /dev/null +++ b/translations/hi/4-Classification/3-Classifiers-2/README.md @@ -0,0 +1,249 @@ + +# व्यंजन वर्गीकरणकर्ता 2 + +इस दूसरे वर्गीकरण पाठ में, आप संख्यात्मक डेटा को वर्गीकृत करने के और तरीके जानेंगे। आप यह भी समझेंगे कि एक वर्गीकरणकर्ता को दूसरे पर चुनने के क्या परिणाम हो सकते हैं। + +## [पाठ-पूर्व प्रश्नोत्तरी](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/) + +### पूर्वापेक्षा + +हम मानते हैं कि आपने पिछले पाठ पूरे कर लिए हैं और आपके पास इस 4-पाठ फ़ोल्डर की रूट में `data` फ़ोल्डर में _cleaned_cuisines.csv_ नामक एक साफ़ किया हुआ डेटासेट है। + +### तैयारी + +हमने आपके _notebook.ipynb_ फ़ाइल को साफ़ किए गए डेटासेट के साथ लोड कर दिया है और इसे X और y डेटा फ्रेम में विभाजित कर दिया है, जो मॉडल निर्माण प्रक्रिया के लिए तैयार हैं। + +## एक वर्गीकरण मानचित्र + +पिछले पाठ में, आपने डेटा को वर्गीकृत करने के विभिन्न विकल्पों के बारे में सीखा था, जिसमें Microsoft का चीट शीट शामिल था। Scikit-learn एक समान, लेकिन अधिक विस्तृत चीट शीट प्रदान करता है, जो आपके वर्गीकरणकर्ताओं (जिसे 'एस्टिमेटर्स' भी कहा जाता है) को और अधिक संकीर्ण करने में मदद कर सकता है: + +![Scikit-learn से ML मानचित्र](../../../../translated_images/map.e963a6a51349425ab107b38f6c7307eb4c0d0c7ccdd2e81a5e1919292bab9ac7.hi.png) +> सुझाव: [इस मानचित्र को ऑनलाइन देखें](https://scikit-learn.org/stable/tutorial/machine_learning_map/) और मार्ग पर क्लिक करके प्रलेखन पढ़ें। + +### योजना + +यह मानचित्र तब बहुत सहायक होता है जब आपके डेटा की स्पष्ट समझ हो, क्योंकि आप इसके मार्गों पर चलते हुए निर्णय ले सकते हैं: + +- हमारे पास >50 नमूने हैं +- हम एक श्रेणी की भविष्यवाणी करना चाहते हैं +- हमारे पास लेबल किया हुआ डेटा है +- हमारे पास 100K से कम नमूने हैं +- ✨ हम एक Linear SVC चुन सकते हैं +- यदि यह काम नहीं करता है, क्योंकि हमारे पास संख्यात्मक डेटा है + - हम ✨ KNeighbors Classifier आज़मा सकते हैं + - यदि यह काम नहीं करता है, तो ✨ SVC और ✨ Ensemble Classifiers आज़माएं + +यह अनुसरण करने के लिए एक बहुत ही सहायक मार्ग है। + +## अभ्यास - डेटा विभाजित करें + +इस मार्ग का अनुसरण करते हुए, हमें उपयोग के लिए कुछ लाइब्रेरी आयात करके शुरू करना चाहिए। + +1. आवश्यक लाइब्रेरी आयात करें: + + ```python + from sklearn.neighbors import KNeighborsClassifier + from sklearn.linear_model import LogisticRegression + from sklearn.svm import SVC + from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + import numpy as np + ``` + +1. अपने प्रशिक्षण और परीक्षण डेटा को विभाजित करें: + + ```python + X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) + ``` + +## Linear SVC वर्गीकरणकर्ता + +सपोर्ट-वेक्टर क्लस्टरिंग (SVC) सपोर्ट-वेक्टर मशीनों के परिवार की एक विधि है (नीचे इसके बारे में और जानें)। इस विधि में, आप लेबल को क्लस्टर करने के लिए 'कर्नेल' चुन सकते हैं। 'C' पैरामीटर 'रेग्युलराइज़ेशन' को संदर्भित करता है, जो पैरामीटरों के प्रभाव को नियंत्रित करता है। कर्नेल [कई प्रकार के](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC) हो सकते हैं; यहां हम इसे 'linear' पर सेट करते हैं ताकि हम Linear SVC का उपयोग कर सकें। Probability डिफ़ॉल्ट रूप से 'false' होती है; यहां हम इसे 'true' पर सेट करते हैं ताकि संभावना अनुमान प्राप्त कर सकें। हम डेटा को शफल करने के लिए रैंडम स्टेट को '0' पर सेट करते हैं। + +### अभ्यास - Linear SVC लागू करें + +क्लासिफायर का एक ऐरे बनाकर शुरू करें। जैसे-जैसे हम परीक्षण करेंगे, आप इस ऐरे में प्रगतिशील रूप से जोड़ेंगे। + +1. Linear SVC से शुरू करें: + + ```python + C = 10 + # Create different classifiers. + classifiers = { + 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0) + } + ``` + +2. Linear SVC का उपयोग करके अपने मॉडल को प्रशिक्षित करें और एक रिपोर्ट प्रिंट करें: + + ```python + n_classifiers = len(classifiers) + + for index, (name, classifier) in enumerate(classifiers.items()): + classifier.fit(X_train, np.ravel(y_train)) + + y_pred = classifier.predict(X_test) + accuracy = accuracy_score(y_test, y_pred) + print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100)) + print(classification_report(y_test,y_pred)) + ``` + + परिणाम काफी अच्छा है: + + ```output + Accuracy (train) for Linear SVC: 78.6% + precision recall f1-score support + + chinese 0.71 0.67 0.69 242 + indian 0.88 0.86 0.87 234 + japanese 0.79 0.74 0.76 254 + korean 0.85 0.81 0.83 242 + thai 0.71 0.86 0.78 227 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +## K-Neighbors वर्गीकरणकर्ता + +K-Neighbors "पड़ोसियों" परिवार का हिस्सा है, जिसे सुपरवाइज़्ड और अनसुपरवाइज़्ड लर्निंग दोनों के लिए उपयोग किया जा सकता है। इस विधि में, एक पूर्वनिर्धारित संख्या में बिंदु बनाए जाते हैं और डेटा को इन बिंदुओं के चारों ओर इकट्ठा किया जाता है ताकि डेटा के लिए सामान्यीकृत लेबल की भविष्यवाणी की जा सके। + +### अभ्यास - K-Neighbors वर्गीकरणकर्ता लागू करें + +पिछला वर्गीकरणकर्ता अच्छा था और डेटा के साथ ठीक काम किया, लेकिन शायद हम बेहतर सटीकता प्राप्त कर सकते हैं। K-Neighbors वर्गीकरणकर्ता आज़माएं। + +1. अपने क्लासिफायर ऐरे में एक लाइन जोड़ें (Linear SVC आइटम के बाद एक कॉमा जोड़ें): + + ```python + 'KNN classifier': KNeighborsClassifier(C), + ``` + + परिणाम थोड़ा खराब है: + + ```output + Accuracy (train) for KNN classifier: 73.8% + precision recall f1-score support + + chinese 0.64 0.67 0.66 242 + indian 0.86 0.78 0.82 234 + japanese 0.66 0.83 0.74 254 + korean 0.94 0.58 0.72 242 + thai 0.71 0.82 0.76 227 + + accuracy 0.74 1199 + macro avg 0.76 0.74 0.74 1199 + weighted avg 0.76 0.74 0.74 1199 + ``` + + ✅ [K-Neighbors](https://scikit-learn.org/stable/modules/neighbors.html#neighbors) के बारे में जानें + +## सपोर्ट वेक्टर क्लासिफायर + +सपोर्ट-वेक्टर क्लासिफायर [सपोर्ट-वेक्टर मशीन](https://wikipedia.org/wiki/Support-vector_machine) परिवार का हिस्सा हैं, जो वर्गीकरण और प्रतिगमन कार्यों के लिए उपयोग किए जाते हैं। SVM "प्रशिक्षण उदाहरणों को स्थान में बिंदुओं पर मैप करते हैं" ताकि दो श्रेणियों के बीच की दूरी को अधिकतम किया जा सके। इसके बाद डेटा को इस स्थान में मैप किया जाता है ताकि उनकी श्रेणी की भविष्यवाणी की जा सके। + +### अभ्यास - सपोर्ट वेक्टर क्लासिफायर लागू करें + +आइए सपोर्ट वेक्टर क्लासिफायर के साथ थोड़ी बेहतर सटीकता प्राप्त करने का प्रयास करें। + +1. K-Neighbors आइटम के बाद एक कॉमा जोड़ें, और फिर यह लाइन जोड़ें: + + ```python + 'SVC': SVC(), + ``` + + परिणाम काफी अच्छा है! + + ```output + Accuracy (train) for SVC: 83.2% + precision recall f1-score support + + chinese 0.79 0.74 0.76 242 + indian 0.88 0.90 0.89 234 + japanese 0.87 0.81 0.84 254 + korean 0.91 0.82 0.86 242 + thai 0.74 0.90 0.81 227 + + accuracy 0.83 1199 + macro avg 0.84 0.83 0.83 1199 + weighted avg 0.84 0.83 0.83 1199 + ``` + + ✅ [सपोर्ट-वेक्टर](https://scikit-learn.org/stable/modules/svm.html#svm) के बारे में जानें + +## एन्सेम्बल क्लासिफायर + +आइए इस मार्ग के अंत तक चलते हैं, भले ही पिछला परीक्षण काफी अच्छा था। आइए कुछ 'एन्सेम्बल क्लासिफायर' आज़माएं, विशेष रूप से Random Forest और AdaBoost: + +```python + 'RFST': RandomForestClassifier(n_estimators=100), + 'ADA': AdaBoostClassifier(n_estimators=100) +``` + +परिणाम बहुत अच्छा है, विशेष रूप से Random Forest के लिए: + +```output +Accuracy (train) for RFST: 84.5% + precision recall f1-score support + + chinese 0.80 0.77 0.78 242 + indian 0.89 0.92 0.90 234 + japanese 0.86 0.84 0.85 254 + korean 0.88 0.83 0.85 242 + thai 0.80 0.87 0.83 227 + + accuracy 0.84 1199 + macro avg 0.85 0.85 0.84 1199 +weighted avg 0.85 0.84 0.84 1199 + +Accuracy (train) for ADA: 72.4% + precision recall f1-score support + + chinese 0.64 0.49 0.56 242 + indian 0.91 0.83 0.87 234 + japanese 0.68 0.69 0.69 254 + korean 0.73 0.79 0.76 242 + thai 0.67 0.83 0.74 227 + + accuracy 0.72 1199 + macro avg 0.73 0.73 0.72 1199 +weighted avg 0.73 0.72 0.72 1199 +``` + +✅ [एन्सेम्बल क्लासिफायर](https://scikit-learn.org/stable/modules/ensemble.html) के बारे में जानें + +यह मशीन लर्निंग विधि "कई बेस एस्टिमेटर्स की भविष्यवाणियों को जोड़ती है" ताकि मॉडल की गुणवत्ता में सुधार हो सके। हमारे उदाहरण में, हमने Random Trees और AdaBoost का उपयोग किया। + +- [Random Forest](https://scikit-learn.org/stable/modules/ensemble.html#forest), एक एवरेजिंग विधि, 'डिसीजन ट्री' का एक 'फॉरेस्ट' बनाता है, जिसमें यादृच्छिकता को शामिल किया जाता है ताकि ओवरफिटिंग से बचा जा सके। n_estimators पैरामीटर पेड़ों की संख्या पर सेट होता है। + +- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) एक डेटासेट पर एक क्लासिफायर फिट करता है और फिर उसी डेटासेट पर उस क्लासिफायर की प्रतियां फिट करता है। यह गलत वर्गीकृत वस्तुओं के वज़न पर ध्यान केंद्रित करता है और अगले क्लासिफायर के लिए फिट को समायोजित करता है। + +--- + +## 🚀चुनौती + +इनमें से प्रत्येक तकनीक में कई पैरामीटर होते हैं जिन्हें आप समायोजित कर सकते हैं। प्रत्येक के डिफ़ॉल्ट पैरामीटर का अध्ययन करें और सोचें कि इन पैरामीटरों को समायोजित करने से मॉडल की गुणवत्ता पर क्या प्रभाव पड़ेगा। + +## [पाठ-उत्तर प्रश्नोत्तरी](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/) + +## समीक्षा और स्व-अध्ययन + +इन पाठों में बहुत सारा तकनीकी शब्दावली है, इसलिए [इस सूची](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott) को पढ़ने के लिए कुछ समय निकालें! + +## असाइनमेंट + +[पैरामीटर खेल](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/4-Classification/3-Classifiers-2/assignment.md b/translations/hi/4-Classification/3-Classifiers-2/assignment.md new file mode 100644 index 000000000..741a27a81 --- /dev/null +++ b/translations/hi/4-Classification/3-Classifiers-2/assignment.md @@ -0,0 +1,25 @@ + +# पैरामीटर प्ले + +## निर्देश + +जब इन क्लासिफायर के साथ काम करते हैं, तो कई पैरामीटर डिफ़ॉल्ट रूप से सेट होते हैं। VS Code में Intellisense आपकी मदद कर सकता है इन्हें समझने में। इस पाठ में से किसी एक ML क्लासिफिकेशन तकनीक को अपनाएं और विभिन्न पैरामीटर मानों को समायोजित करते हुए मॉडल को फिर से प्रशिक्षित करें। एक नोटबुक बनाएं जिसमें यह समझाया गया हो कि कुछ बदलाव मॉडल की गुणवत्ता में सुधार क्यों करते हैं जबकि अन्य इसे खराब क्यों करते हैं। अपने उत्तर में विस्तार से बताएं। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | ---------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------- | ----------------------------- | +| | एक नोटबुक प्रस्तुत की गई है जिसमें क्लासिफायर पूरी तरह से बनाया गया है और उसके पैरामीटर समायोजित किए गए हैं और टेक्स्टबॉक्स में बदलाव समझाए गए हैं | एक नोटबुक आंशिक रूप से प्रस्तुत की गई है या खराब तरीके से समझाई गई है | एक नोटबुक त्रुटिपूर्ण या दोषपूर्ण है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/4-Classification/3-Classifiers-2/notebook.ipynb b/translations/hi/4-Classification/3-Classifiers-2/notebook.ipynb new file mode 100644 index 000000000..c2fbeb8e1 --- /dev/null +++ b/translations/hi/4-Classification/3-Classifiers-2/notebook.ipynb @@ -0,0 +1,163 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                00indian00000000...0000000000
                                11indian10000000...0000000000
                                22indian00000000...0000000000
                                33indian00000000...0000000000
                                44indian00000000...0000000010
                                \n

                                5 rows × 382 columns

                                \n
                                " + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                00000000000...0000000000
                                11000000000...0000000000
                                20000000000...0000000000
                                30000000000...0000000000
                                40000000000...0000000010
                                \n

                                5 rows × 380 columns

                                \n
                                " + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "15a83277036572e0773229b5f21c1e12", + "translation_date": "2025-09-04T02:32:21+00:00", + "source_file": "4-Classification/3-Classifiers-2/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/hi/4-Classification/3-Classifiers-2/solution/Julia/README.md b/translations/hi/4-Classification/3-Classifiers-2/solution/Julia/README.md new file mode 100644 index 000000000..b7f690ee7 --- /dev/null +++ b/translations/hi/4-Classification/3-Classifiers-2/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb b/translations/hi/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb new file mode 100644 index 000000000..2fdfb4f88 --- /dev/null +++ b/translations/hi/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb @@ -0,0 +1,648 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "lesson_12-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "fab50046ca413a38939d579f8432274f", + "translation_date": "2025-09-04T02:39:47+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb", + "language_code": "hi" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "jsFutf_ygqSx" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HD54bEefgtNO" + }, + "source": [ + "## व्यंजन वर्गीकरणकर्ता 2\n", + "\n", + "इस दूसरे वर्गीकरण पाठ में, हम श्रेणीबद्ध डेटा को वर्गीकृत करने के `अधिक तरीकों` का पता लगाएंगे। हम यह भी जानेंगे कि एक वर्गीकरणकर्ता को दूसरे के ऊपर चुनने के क्या परिणाम हो सकते हैं।\n", + "\n", + "### [**पाठ से पहले का क्विज़**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/)\n", + "\n", + "### **पूर्वापेक्षा**\n", + "\n", + "हम मानते हैं कि आपने पिछले पाठ पूरे कर लिए हैं क्योंकि हम पहले सीखे गए कुछ अवधारणाओं को आगे बढ़ाएंगे।\n", + "\n", + "इस पाठ के लिए, हमें निम्नलिखित पैकेजों की आवश्यकता होगी:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) एक [R पैकेजों का संग्रह](https://www.tidyverse.org/packages) है, जिसे डेटा विज्ञान को तेज़, आसान और अधिक मज़ेदार बनाने के लिए डिज़ाइन किया गया है!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) फ्रेमवर्क मॉडलिंग और मशीन लर्निंग के लिए [पैकेजों का संग्रह](https://www.tidymodels.org/packages/) है।\n", + "\n", + "- `themis`: [themis पैकेज](https://themis.tidymodels.org/) असंतुलित डेटा से निपटने के लिए अतिरिक्त रेसिपी स्टेप्स प्रदान करता है।\n", + "\n", + "आप इन्हें इस प्रकार इंस्टॉल कर सकते हैं:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"kernlab\", \"themis\", \"ranger\", \"xgboost\", \"kknn\"))`\n", + "\n", + "वैकल्पिक रूप से, नीचे दिया गया स्क्रिप्ट यह जांचता है कि क्या आपके पास इस मॉड्यूल को पूरा करने के लिए आवश्यक पैकेज हैं और यदि वे गायब हैं तो उन्हें आपके लिए इंस्टॉल करता है।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vZ57IuUxgyQt" + }, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, themis, kernlab, ranger, xgboost, kknn)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z22M-pj4g07x" + }, + "source": [ + "## **1. एक वर्गीकरण मानचित्र**\n", + "\n", + "हमारे [पिछले पाठ](https://github.com/microsoft/ML-For-Beginners/tree/main/4-Classification/2-Classifiers-1) में, हमने इस सवाल का जवाब देने की कोशिश की: हम कई मॉडलों में से कैसे चुनें? काफी हद तक, यह डेटा की विशेषताओं और उस समस्या के प्रकार पर निर्भर करता है जिसे हम हल करना चाहते हैं (जैसे कि वर्गीकरण या प्रतिगमन?)\n", + "\n", + "पहले, हमने माइक्रोसॉफ्ट के चीट शीट का उपयोग करके डेटा को वर्गीकृत करने के विभिन्न विकल्पों के बारे में सीखा। पायथन के मशीन लर्निंग फ्रेमवर्क, Scikit-learn, एक समान लेकिन अधिक विस्तृत चीट शीट प्रदान करता है, जो आपके अनुमानों (classifiers का एक और नाम) को और अधिक सीमित करने में मदद कर सकता है:\n", + "\n", + "

                                \n", + " \n", + "

                                \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u1i3xRIVg7vG" + }, + "source": [ + "> टिप: [इस मानचित्र को ऑनलाइन देखें](https://scikit-learn.org/stable/tutorial/machine_learning_map/) और रास्ते पर क्लिक करके प्रलेखन पढ़ें। \n", + "> \n", + "> [Tidymodels संदर्भ साइट](https://www.tidymodels.org/find/parsnip/#models) विभिन्न प्रकार के मॉडलों के बारे में उत्कृष्ट प्रलेखन भी प्रदान करती है। \n", + "\n", + "### **योजना** 🗺️\n", + "\n", + "यह मानचित्र तब बहुत सहायक होता है जब आपको अपने डेटा की स्पष्ट समझ हो, क्योंकि आप इसके रास्तों पर चलते हुए निर्णय तक पहुँच सकते हैं:\n", + "\n", + "- हमारे पास \\>50 नमूने हैं \n", + "\n", + "- हम एक श्रेणी की भविष्यवाणी करना चाहते हैं \n", + "\n", + "- हमारे पास लेबल किया हुआ डेटा है \n", + "\n", + "- हमारे पास 100K से कम नमूने हैं \n", + "\n", + "- ✨ हम एक Linear SVC चुन सकते हैं \n", + "\n", + "- यदि यह काम नहीं करता है, क्योंकि हमारे पास संख्यात्मक डेटा है \n", + "\n", + " - हम ✨ KNeighbors Classifier आज़मा सकते हैं \n", + "\n", + " - यदि यह भी काम नहीं करता है, तो ✨ SVC और ✨ Ensemble Classifiers आज़माएँ \n", + "\n", + "यह एक बहुत ही सहायक मार्गदर्शिका है। अब, चलिए इसे [tidymodels](https://www.tidymodels.org/) मॉडलिंग फ्रेमवर्क का उपयोग करके शुरू करते हैं: R पैकेजों का एक सुसंगत और लचीला संग्रह, जिसे अच्छे सांख्यिकीय अभ्यास को प्रोत्साहित करने के लिए विकसित किया गया है 😊। \n", + "\n", + "## 2. डेटा को विभाजित करें और असंतुलित डेटा सेट को संभालें। \n", + "\n", + "हमने अपने पिछले पाठों में सीखा कि हमारी व्यंजनों में कुछ सामान्य सामग्री थीं। साथ ही, व्यंजनों की संख्या में काफी असमान वितरण था। \n", + "\n", + "हम इनसे निपटेंगे: \n", + "\n", + "- उन सबसे सामान्य सामग्रियों को हटाकर जो अलग-अलग व्यंजनों के बीच भ्रम पैदा करती हैं, `dplyr::select()` का उपयोग करके। \n", + "\n", + "- एक `recipe` का उपयोग करके जो डेटा को पूर्व-प्रसंस्करण करता है और इसे मॉडलिंग के लिए तैयार करता है, एक `over-sampling` एल्गोरिदम लागू करके। \n", + "\n", + "हमने उपरोक्त को पिछले पाठ में पहले ही देखा है, इसलिए यह आसान होना चाहिए 🥳! \n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "6tj_rN00hClA" + }, + "source": [ + "# Load the core Tidyverse and Tidymodels packages\n", + "library(tidyverse)\n", + "library(tidymodels)\n", + "\n", + "# Load the original cuisines data\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\n", + "\n", + "# Drop id column, rice, garlic and ginger from our original data set\n", + "df_select <- df %>% \n", + " select(-c(1, rice, garlic, ginger)) %>%\n", + " # Encode cuisine column as categorical\n", + " mutate(cuisine = factor(cuisine))\n", + "\n", + "\n", + "# Create data split specification\n", + "set.seed(2056)\n", + "cuisines_split <- initial_split(data = df_select,\n", + " strata = cuisine,\n", + " prop = 0.7)\n", + "\n", + "# Extract the data in each split\n", + "cuisines_train <- training(cuisines_split)\n", + "cuisines_test <- testing(cuisines_split)\n", + "\n", + "# Display distribution of cuisines in the training set\n", + "cuisines_train %>% \n", + " count(cuisine) %>% \n", + " arrange(desc(n))" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zFin5yw3hHb1" + }, + "source": [ + "### असंतुलित डेटा से निपटना\n", + "\n", + "असंतुलित डेटा अक्सर मॉडल के प्रदर्शन पर नकारात्मक प्रभाव डालता है। कई मॉडल तब सबसे अच्छा प्रदर्शन करते हैं जब अवलोकनों की संख्या समान होती है, और इसलिए असंतुलित डेटा के साथ संघर्ष करते हैं।\n", + "\n", + "असंतुलित डेटा सेट से निपटने के दो मुख्य तरीके हैं:\n", + "\n", + "- अल्पसंख्यक वर्ग में अवलोकन जोड़ना: `ओवर-सैंपलिंग`, जैसे SMOTE एल्गोरिदम का उपयोग करना, जो इन मामलों के निकटतम पड़ोसियों का उपयोग करके अल्पसंख्यक वर्ग के नए उदाहरण कृत्रिम रूप से उत्पन्न करता है।\n", + "\n", + "- बहुसंख्यक वर्ग से अवलोकन हटाना: `अंडर-सैंपलिंग`\n", + "\n", + "हमने अपने पिछले पाठ में दिखाया था कि कैसे एक `recipe` का उपयोग करके असंतुलित डेटा सेट से निपटा जा सकता है। एक recipe को एक खाका के रूप में सोचा जा सकता है जो यह वर्णन करता है कि डेटा सेट पर कौन-कौन से कदम लागू किए जाने चाहिए ताकि इसे डेटा विश्लेषण के लिए तैयार किया जा सके। हमारे मामले में, हम चाहते हैं कि हमारे `training set` में हमारे व्यंजनों की संख्या का समान वितरण हो। चलिए इसे शुरू करते हैं।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cRzTnHolhLWd" + }, + "source": [ + "# Load themis package for dealing with imbalanced data\n", + "library(themis)\n", + "\n", + "# Create a recipe for preprocessing training data\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>%\n", + " step_smote(cuisine) \n", + "\n", + "# Print recipe\n", + "cuisines_recipe" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KxOQ2ORhhO81" + }, + "source": [ + "अब हम मॉडल्स को प्रशिक्षित करने के लिए तैयार हैं 👩‍💻👨‍💻!\n", + "\n", + "## 3. बहु-नामांकित प्रतिगमन मॉडल्स से आगे\n", + "\n", + "हमने अपने पिछले पाठ में बहु-नामांकित प्रतिगमन मॉडल्स पर चर्चा की थी। आइए अब वर्गीकरण के लिए कुछ और लचीले मॉडल्स का अन्वेषण करें।\n", + "\n", + "### सपोर्ट वेक्टर मशीन्स\n", + "\n", + "वर्गीकरण के संदर्भ में, `सपोर्ट वेक्टर मशीन्स` एक मशीन लर्निंग तकनीक है जो *हाइपरप्लेन* खोजने की कोशिश करती है, जो कक्षाओं को \"सबसे अच्छे\" तरीके से अलग करता है। आइए एक सरल उदाहरण देखें:\n", + "\n", + "

                                \n", + " \n", + "

                                https://commons.wikimedia.org/w/index.php?curid=22877598
                                \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C4Wsd0vZhXYu" + }, + "source": [ + "H1~ कक्षाओं को अलग नहीं करता है। H2~ अलग करता है, लेकिन केवल एक छोटे अंतर के साथ। H3~ उन्हें अधिकतम अंतर के साथ अलग करता है।\n", + "\n", + "#### रेखीय सपोर्ट वेक्टर क्लासिफायर\n", + "\n", + "सपोर्ट-वेक्टर क्लस्टरिंग (SVC) मशीन लर्निंग तकनीकों के सपोर्ट-वेक्टर मशीन परिवार का एक हिस्सा है। SVC में, हाइपरप्लेन को इस तरह चुना जाता है कि वह `अधिकांश` प्रशिक्षण अवलोकनों को सही ढंग से अलग कर सके, लेकिन `कुछ अवलोकनों को गलत वर्गीकृत` कर सकता है। कुछ बिंदुओं को गलत पक्ष पर रहने की अनुमति देकर, SVM बाहरी मूल्यों (outliers) के प्रति अधिक मजबूत बन जाता है और इस प्रकार नए डेटा पर बेहतर सामान्यीकरण करता है। इस उल्लंघन को नियंत्रित करने वाले पैरामीटर को `cost` कहा जाता है, जिसकी डिफ़ॉल्ट मान 1 होती है (देखें `help(\"svm_poly\")`)।\n", + "\n", + "आइए एक रेखीय SVC बनाएं, इसके लिए बहुपद SVM मॉडल में `degree = 1` सेट करें।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vJpp6nuChlBz" + }, + "source": [ + "# Make a linear SVC specification\n", + "svc_linear_spec <- svm_poly(degree = 1) %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svc_linear_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svc_linear_spec)\n", + "\n", + "# Print out workflow\n", + "svc_linear_wf" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rDs8cWNkhoqu" + }, + "source": [ + "अब जब हमने प्रीप्रोसेसिंग चरणों और मॉडल विनिर्देश को *workflow* में कैद कर लिया है, तो हम आगे बढ़ सकते हैं और linear SVC को प्रशिक्षित कर सकते हैं और साथ ही परिणामों का मूल्यांकन कर सकते हैं। प्रदर्शन मेट्रिक्स के लिए, आइए एक मेट्रिक सेट बनाएं जो इनका मूल्यांकन करेगा: `accuracy`, `sensitivity`, `Positive Predicted Value` और `F Measure`।\n", + "\n", + "> `augment()` दिए गए डेटा में भविष्यवाणियों के लिए कॉलम जोड़ देगा।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "81wiqcwuhrnq" + }, + "source": [ + "# Train a linear SVC model\n", + "svc_linear_fit <- svc_linear_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svc_linear_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0UFQvHf-huo3" + }, + "source": [ + "#### सपोर्ट वेक्टर मशीन\n", + "\n", + "सपोर्ट वेक्टर मशीन (SVM) सपोर्ट वेक्टर क्लासिफायर का विस्तार है, जो वर्गों के बीच एक गैर-रेखीय सीमा को समायोजित करने के लिए बनाया गया है। मूल रूप से, SVMs *कर्नल ट्रिक* का उपयोग करते हैं ताकि फीचर स्पेस को बड़ा किया जा सके और वर्गों के बीच गैर-रेखीय संबंधों के अनुकूल बनाया जा सके। SVMs द्वारा उपयोग किया जाने वाला एक लोकप्रिय और अत्यधिक लचीला कर्नल फ़ंक्शन *रेडियल बेसिस फ़ंक्शन* है। आइए देखें कि यह हमारे डेटा पर कैसा प्रदर्शन करता है।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-KX4S8mzhzmp" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Make an RBF SVM specification\n", + "svm_rbf_spec <- svm_rbf() %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svm_rbf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svm_rbf_spec)\n", + "\n", + "\n", + "# Train an RBF model\n", + "svm_rbf_fit <- svm_rbf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svm_rbf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QBFSa7WSh4HQ" + }, + "source": [ + "बहुत बेहतर 🤩!\n", + "\n", + "> ✅ कृपया देखें:\n", + ">\n", + "> - [*Support Vector Machines*](https://bradleyboehmke.github.io/HOML/svm.html), Hands-on Machine Learning with R\n", + ">\n", + "> - [*Support Vector Machines*](https://www.statlearning.com/), An Introduction to Statistical Learning with Applications in R\n", + ">\n", + "> अधिक पढ़ने के लिए।\n", + "\n", + "### निकटतम पड़ोसी वर्गीकरणकर्ता\n", + "\n", + "*K*-nearest neighbor (KNN) एक एल्गोरिथ्म है जिसमें प्रत्येक अवलोकन को अन्य अवलोकनों के साथ उसकी *समानता* के आधार पर भविष्यवाणी की जाती है।\n", + "\n", + "आइए इसे हमारे डेटा पर लागू करें।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "k4BxxBcdh9Ka" + }, + "source": [ + "# Make a KNN specification\n", + "knn_spec <- nearest_neighbor() %>% \n", + " set_engine(\"kknn\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "knn_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(knn_spec)\n", + "\n", + "# Train a boosted tree model\n", + "knn_wf_fit <- knn_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "knn_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HaegQseriAcj" + }, + "source": [ + "ऐसा लगता है कि यह मॉडल उतना अच्छा प्रदर्शन नहीं कर रहा है। संभवतः मॉडल के तर्कों को बदलने से (देखें `help(\"nearest_neighbor\")`) मॉडल का प्रदर्शन बेहतर हो सकता है। इसे आज़माना सुनिश्चित करें।\n", + "\n", + "> ✅ कृपया देखें:\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> अधिक जानने के लिए *K*-Nearest Neighbors classifiers के बारे में।\n", + "\n", + "### Ensemble classifiers\n", + "\n", + "Ensemble एल्गोरिदम कई बेस अनुमानों को मिलाकर एक बेहतर मॉडल बनाने का काम करते हैं, जो निम्नलिखित तरीकों से किया जा सकता है:\n", + "\n", + "`bagging`: बेस मॉडल के संग्रह पर *औसत निकालने का कार्य* लागू करना\n", + "\n", + "`boosting`: ऐसे मॉडल की श्रृंखला बनाना जो एक-दूसरे पर आधारित होते हैं ताकि भविष्यवाणी प्रदर्शन को बेहतर बनाया जा सके।\n", + "\n", + "चलो शुरुआत करते हैं एक Random Forest मॉडल को आज़माने से, जो निर्णय वृक्षों का एक बड़ा संग्रह बनाता है और फिर एक औसत निकालने का कार्य लागू करता है ताकि एक बेहतर समग्र मॉडल तैयार हो सके।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "49DPoVs6iK1M" + }, + "source": [ + "# Make a random forest specification\n", + "rf_spec <- rand_forest() %>% \n", + " set_engine(\"ranger\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "rf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(rf_spec)\n", + "\n", + "# Train a random forest model\n", + "rf_wf_fit <- rf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "rf_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RGVYwC_aiUWc" + }, + "source": [ + "अच्छा काम 👏!\n", + "\n", + "आइए अब Boosted Tree मॉडल के साथ भी प्रयोग करें।\n", + "\n", + "Boosted Tree एक ensemble विधि को परिभाषित करता है, जो एक श्रृंखला में क्रमिक निर्णय पेड़ों का निर्माण करता है, जहां प्रत्येक पेड़ पिछले पेड़ों के परिणामों पर निर्भर करता है ताकि त्रुटि को धीरे-धीरे कम किया जा सके। यह गलत वर्गीकृत वस्तुओं के वज़न पर ध्यान केंद्रित करता है और अगले classifier के लिए फिट को समायोजित करता है ताकि सुधार किया जा सके।\n", + "\n", + "इस मॉडल को फिट करने के अलग-अलग तरीके हैं (देखें `help(\"boost_tree\")`)। इस उदाहरण में, हम Boosted trees को `xgboost` इंजन के माध्यम से फिट करेंगे।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Py1YWo-micWs" + }, + "source": [ + "# Make a boosted tree specification\n", + "boost_spec <- boost_tree(trees = 200) %>% \n", + " set_engine(\"xgboost\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "boost_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(boost_spec)\n", + "\n", + "# Train a boosted tree model\n", + "boost_wf_fit <- boost_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "boost_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zNQnbuejigZM" + }, + "source": [ + "> ✅ कृपया देखें:\n", + ">\n", + "> - [Machine Learning for Social Scientists](https://cimentadaj.github.io/ml_socsci/tree-based-methods.html#random-forests)\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> - - AdaBoost मॉडल की खोज करता है, जो xgboost का एक अच्छा विकल्प है।\n", + ">\n", + "> अधिक जानने के लिए Ensemble classifiers के बारे में।\n", + "\n", + "## 4. अतिरिक्त - कई मॉडलों की तुलना करना\n", + "\n", + "हमने इस लैब में काफी सारे मॉडल फिट किए हैं 🙌। अलग-अलग प्रीप्रोसेसर और/या मॉडल स्पेसिफिकेशन के सेट से कई वर्कफ़्लो बनाना और फिर प्रदर्शन मेट्रिक्स को एक-एक करके गणना करना थकाऊ या कठिन हो सकता है।\n", + "\n", + "आइए देखें कि क्या हम इसे एक फ़ंक्शन बनाकर हल कर सकते हैं, जो ट्रेनिंग सेट पर वर्कफ़्लो की एक सूची फिट करता है और फिर टेस्ट सेट के आधार पर प्रदर्शन मेट्रिक्स लौटाता है। हम [purrr](https://purrr.tidyverse.org/) पैकेज से `map()` और `map_dfr()` का उपयोग करेंगे ताकि सूची के प्रत्येक तत्व पर फ़ंक्शन लागू कर सकें।\n", + "\n", + "> [`map()`](https://purrr.tidyverse.org/reference/map.html) फ़ंक्शन आपको कई for loops को कोड से बदलने की अनुमति देता है, जो अधिक संक्षिप्त और पढ़ने में आसान होता है। [`map()`](https://purrr.tidyverse.org/reference/map.html) फ़ंक्शन के बारे में सीखने के लिए सबसे अच्छा स्थान R for data science की [iteration chapter](http://r4ds.had.co.nz/iteration.html) है।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Qzb7LyZnimd2" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "# Define a function that returns performance metrics\n", + "compare_models <- function(workflow_list, train_set, test_set){\n", + " \n", + " suppressWarnings(\n", + " # Fit each model to the train_set\n", + " map(workflow_list, fit, data = train_set) %>% \n", + " # Make predictions on the test set\n", + " map_dfr(augment, new_data = test_set, .id = \"model\") %>%\n", + " # Select desired columns\n", + " select(model, cuisine, .pred_class) %>% \n", + " # Evaluate model performance\n", + " group_by(model) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class) %>% \n", + " ungroup()\n", + " )\n", + " \n", + "} # End of function" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Fwa712sNisDA" + }, + "source": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "3i4VJOi2iu-a" + }, + "source": [ + "# Make a list of workflows\n", + "workflow_list <- list(\n", + " \"svc\" = svc_linear_wf,\n", + " \"svm\" = svm_rbf_wf,\n", + " \"knn\" = knn_wf,\n", + " \"random_forest\" = rf_wf,\n", + " \"xgboost\" = boost_wf)\n", + "\n", + "# Call the function\n", + "set.seed(2056)\n", + "perf_metrics <- compare_models(workflow_list = workflow_list, train_set = cuisines_train, test_set = cuisines_test)\n", + "\n", + "# Print out performance metrics\n", + "perf_metrics %>% \n", + " group_by(.metric) %>% \n", + " arrange(desc(.estimate)) %>% \n", + " slice_head(n=7)\n", + "\n", + "# Compare accuracy\n", + "perf_metrics %>% \n", + " filter(.metric == \"accuracy\") %>% \n", + " arrange(desc(.estimate))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KuWK_lEli4nW" + }, + "source": [ + "[**workflowset**](https://workflowsets.tidymodels.org/) पैकेज उपयोगकर्ताओं को बड़ी संख्या में मॉडल बनाने और आसानी से फिट करने की अनुमति देता है, लेकिन यह मुख्य रूप से `cross-validation` जैसी पुनःनमूना तकनीकों के साथ काम करने के लिए डिज़ाइन किया गया है, जिसे हम अभी कवर करना बाकी है।\n", + "\n", + "## **🚀चुनौती**\n", + "\n", + "इन तकनीकों में से प्रत्येक में कई पैरामीटर होते हैं जिन्हें आप समायोजित कर सकते हैं, जैसे कि SVMs में `cost`, KNN में `neighbors`, और रैंडम फॉरेस्ट में `mtry` (रैंडमली चुने गए प्रेडिक्टर्स)।\n", + "\n", + "प्रत्येक के डिफ़ॉल्ट पैरामीटर पर शोध करें और सोचें कि इन पैरामीटर को समायोजित करने से मॉडल की गुणवत्ता पर क्या प्रभाव पड़ेगा।\n", + "\n", + "किसी विशेष मॉडल और उसके पैरामीटर के बारे में अधिक जानने के लिए, उपयोग करें: `help(\"model\")` जैसे `help(\"rand_forest\")`\n", + "\n", + "> व्यवहार में, हम आमतौर पर *सर्वश्रेष्ठ मान* का *अनुमान* लगाने के लिए कई मॉडल को एक `सिम्युलेटेड डेटा सेट` पर प्रशिक्षित करते हैं और मापते हैं कि ये सभी मॉडल कितनी अच्छी तरह प्रदर्शन करते हैं। इस प्रक्रिया को **ट्यूनिंग** कहा जाता है।\n", + "\n", + "### [**पोस्ट-लेक्चर क्विज़**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/)\n", + "\n", + "### **समीक्षा और स्व-अध्ययन**\n", + "\n", + "इन पाठों में बहुत सारे तकनीकी शब्द हैं, इसलिए [इस सूची](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott) को देखने के लिए कुछ समय निकालें, जिसमें उपयोगी शब्दावली दी गई है!\n", + "\n", + "#### धन्यवाद:\n", + "\n", + "[`एलिसन हॉर्स्ट`](https://twitter.com/allison_horst/) को, जिन्होंने अद्भुत चित्रण बनाए हैं जो R को अधिक स्वागतपूर्ण और आकर्षक बनाते हैं। उनके और चित्रण [गैलरी](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) में देखें।\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) और [Jen Looper](https://www.twitter.com/jenlooper) को, जिन्होंने इस मॉड्यूल का मूल Python संस्करण बनाया ♥️\n", + "\n", + "खुशहाल सीखने की शुभकामनाएं,\n", + "\n", + "[Eric](https://twitter.com/ericntay), गोल्ड माइक्रोसॉफ्ट लर्न स्टूडेंट एंबेसडर।\n", + "\n", + "

                                \n", + " \n", + "

                                चित्रण @allison_horst द्वारा
                                \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/4-Classification/3-Classifiers-2/solution/notebook.ipynb b/translations/hi/4-Classification/3-Classifiers-2/solution/notebook.ipynb new file mode 100644 index 000000000..2a4fca7f6 --- /dev/null +++ b/translations/hi/4-Classification/3-Classifiers-2/solution/notebook.ipynb @@ -0,0 +1,302 @@ +{ + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                00indian00000000...0000000000
                                11indian10000000...0000000000
                                22indian00000000...0000000000
                                33indian00000000...0000000000
                                44indian00000000...0000000010
                                \n

                                5 rows × 382 columns

                                \n
                                " + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 2 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                00000000000...0000000000
                                11000000000...0000000000
                                20000000000...0000000000
                                30000000000...0000000000
                                40000000000...0000000010
                                \n

                                5 rows × 380 columns

                                \n
                                " + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# विभिन्न वर्गीकरणकर्ताओं को आज़माएं\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.svm import SVC\n", + "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "C = 10\n", + "# Create different classifiers.\n", + "classifiers = {\n", + " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n", + " 'KNN classifier': KNeighborsClassifier(C),\n", + " 'SVC': SVC(),\n", + " 'RFST': RandomForestClassifier(n_estimators=100),\n", + " 'ADA': AdaBoostClassifier(n_estimators=100)\n", + " \n", + "}\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy (train) for Linear SVC: 76.4% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.64 0.66 0.65 242\n", + " indian 0.91 0.86 0.89 236\n", + " japanese 0.72 0.73 0.73 245\n", + " korean 0.83 0.75 0.79 234\n", + " thai 0.75 0.82 0.78 242\n", + "\n", + " accuracy 0.76 1199\n", + " macro avg 0.77 0.76 0.77 1199\n", + "weighted avg 0.77 0.76 0.77 1199\n", + "\n", + "Accuracy (train) for KNN classifier: 70.7% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.65 0.63 0.64 242\n", + " indian 0.84 0.81 0.82 236\n", + " japanese 0.60 0.81 0.69 245\n", + " korean 0.89 0.53 0.67 234\n", + " thai 0.69 0.75 0.72 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.73 0.71 0.71 1199\n", + "weighted avg 0.73 0.71 0.71 1199\n", + "\n", + "Accuracy (train) for SVC: 80.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.71 0.69 0.70 242\n", + " indian 0.92 0.92 0.92 236\n", + " japanese 0.77 0.78 0.77 245\n", + " korean 0.87 0.77 0.82 234\n", + " thai 0.75 0.86 0.80 242\n", + "\n", + " accuracy 0.80 1199\n", + " macro avg 0.80 0.80 0.80 1199\n", + "weighted avg 0.80 0.80 0.80 1199\n", + "\n", + "Accuracy (train) for RFST: 82.8% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.80 0.75 0.77 242\n", + " indian 0.90 0.91 0.90 236\n", + " japanese 0.82 0.78 0.80 245\n", + " korean 0.85 0.82 0.83 234\n", + " thai 0.78 0.89 0.83 242\n", + "\n", + " accuracy 0.83 1199\n", + " macro avg 0.83 0.83 0.83 1199\n", + "weighted avg 0.83 0.83 0.83 1199\n", + "\n", + "Accuracy (train) for ADA: 71.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.60 0.57 0.58 242\n", + " indian 0.87 0.84 0.86 236\n", + " japanese 0.71 0.60 0.65 245\n", + " korean 0.68 0.78 0.72 234\n", + " thai 0.70 0.78 0.74 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.71 0.71 0.71 1199\n", + "weighted avg 0.71 0.71 0.71 1199\n", + "\n" + ] + } + ], + "source": [ + "n_classifiers = len(classifiers)\n", + "\n", + "for index, (name, classifier) in enumerate(classifiers.items()):\n", + " classifier.fit(X_train, np.ravel(y_train))\n", + "\n", + " y_pred = classifier.predict(X_test)\n", + " accuracy = accuracy_score(y_test, y_pred)\n", + " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n", + " print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "7ea2b714669c823a596d986ba2d5739f", + "translation_date": "2025-09-04T02:32:57+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/hi/4-Classification/4-Applied/README.md b/translations/hi/4-Classification/4-Applied/README.md new file mode 100644 index 000000000..55ee1b02a --- /dev/null +++ b/translations/hi/4-Classification/4-Applied/README.md @@ -0,0 +1,329 @@ + +# क्यूज़ीन रिकमेंडर वेब ऐप बनाएं + +इस पाठ में, आप पिछले पाठों में सीखी गई तकनीकों का उपयोग करके एक वर्गीकरण मॉडल बनाएंगे और इस श्रृंखला में उपयोग किए गए स्वादिष्ट क्यूज़ीन डेटासेट के साथ काम करेंगे। इसके अलावा, आप एक छोटा वेब ऐप बनाएंगे जो सेव किए गए मॉडल का उपयोग करेगा, और Onnx के वेब रनटाइम का लाभ उठाएगा। + +मशीन लर्निंग का एक सबसे उपयोगी व्यावहारिक उपयोग रिकमेंडेशन सिस्टम बनाना है, और आप आज इस दिशा में पहला कदम उठा सकते हैं! + +[![इस वेब ऐप को प्रस्तुत करते हुए](https://img.youtube.com/vi/17wdM9AHMfg/0.jpg)](https://youtu.be/17wdM9AHMfg "Applied ML") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें: जेन लूपर वर्गीकृत क्यूज़ीन डेटा का उपयोग करके एक वेब ऐप बनाती हैं + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/25/) + +इस पाठ में आप सीखेंगे: + +- कैसे एक मॉडल बनाएं और उसे Onnx मॉडल के रूप में सेव करें +- कैसे Netron का उपयोग करके मॉडल का निरीक्षण करें +- कैसे अपने मॉडल को वेब ऐप में इन्फरेंस के लिए उपयोग करें + +## अपना मॉडल बनाएं + +एप्लाइड मशीन लर्निंग सिस्टम बनाना इन तकनीकों को आपके बिजनेस सिस्टम में उपयोग करने का एक महत्वपूर्ण हिस्सा है। आप अपने वेब एप्लिकेशन में मॉडल का उपयोग कर सकते हैं (और यदि आवश्यक हो तो ऑफलाइन संदर्भ में भी उपयोग कर सकते हैं) Onnx का उपयोग करके। + +[पिछले पाठ](../../3-Web-App/1-Web-App/README.md) में, आपने UFO sightings पर एक रिग्रेशन मॉडल बनाया था, उसे "पिकल्ड" किया था, और फ्लास्क ऐप में उपयोग किया था। जबकि यह आर्किटेक्चर जानने के लिए बहुत उपयोगी है, यह एक फुल-स्टैक पायथन ऐप है, और आपकी आवश्यकताओं में जावास्क्रिप्ट एप्लिकेशन का उपयोग शामिल हो सकता है। + +इस पाठ में, आप इन्फरेंस के लिए एक बेसिक जावास्क्रिप्ट-आधारित सिस्टम बना सकते हैं। लेकिन पहले, आपको एक मॉडल को ट्रेन करना होगा और उसे Onnx के साथ उपयोग के लिए कन्वर्ट करना होगा। + +## अभ्यास - वर्गीकरण मॉडल ट्रेन करें + +सबसे पहले, उस साफ किए गए क्यूज़ीन डेटासेट का उपयोग करके एक वर्गीकरण मॉडल ट्रेन करें जिसे हमने उपयोग किया था। + +1. उपयोगी लाइब्रेरीज़ को इंपोर्ट करके शुरू करें: + + ```python + !pip install skl2onnx + import pandas as pd + ``` + + आपको '[skl2onnx](https://onnx.ai/sklearn-onnx/)' की आवश्यकता होगी ताकि आप अपने Scikit-learn मॉडल को Onnx फॉर्मेट में कन्वर्ट कर सकें। + +1. फिर, अपने डेटा के साथ उसी तरह काम करें जैसे आपने पिछले पाठों में किया था, `read_csv()` का उपयोग करके एक CSV फ़ाइल पढ़ें: + + ```python + data = pd.read_csv('../data/cleaned_cuisines.csv') + data.head() + ``` + +1. पहले दो अनावश्यक कॉलम हटाएं और शेष डेटा को 'X' के रूप में सेव करें: + + ```python + X = data.iloc[:,2:] + X.head() + ``` + +1. लेबल्स को 'y' के रूप में सेव करें: + + ```python + y = data[['cuisine']] + y.head() + + ``` + +### ट्रेनिंग प्रक्रिया शुरू करें + +हम 'SVC' लाइब्रेरी का उपयोग करेंगे जिसमें अच्छी सटीकता है। + +1. Scikit-learn से उपयुक्त लाइब्रेरीज़ इंपोर्ट करें: + + ```python + from sklearn.model_selection import train_test_split + from sklearn.svm import SVC + from sklearn.model_selection import cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report + ``` + +1. ट्रेनिंग और टेस्ट सेट्स को अलग करें: + + ```python + X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3) + ``` + +1. पिछले पाठ में किए गए तरीके से एक SVC वर्गीकरण मॉडल बनाएं: + + ```python + model = SVC(kernel='linear', C=10, probability=True,random_state=0) + model.fit(X_train,y_train.values.ravel()) + ``` + +1. अब, अपने मॉडल का परीक्षण करें, `predict()` को कॉल करें: + + ```python + y_pred = model.predict(X_test) + ``` + +1. मॉडल की गुणवत्ता की जांच करने के लिए एक वर्गीकरण रिपोर्ट प्रिंट करें: + + ```python + print(classification_report(y_test,y_pred)) + ``` + + जैसा कि हमने पहले देखा, सटीकता अच्छी है: + + ```output + precision recall f1-score support + + chinese 0.72 0.69 0.70 257 + indian 0.91 0.87 0.89 243 + japanese 0.79 0.77 0.78 239 + korean 0.83 0.79 0.81 236 + thai 0.72 0.84 0.78 224 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +### अपने मॉडल को Onnx में कन्वर्ट करें + +सुनिश्चित करें कि कन्वर्ज़न सही टेंसर नंबर के साथ किया गया है। इस डेटासेट में 380 सामग्री सूचीबद्ध हैं, इसलिए आपको `FloatTensorType` में उस नंबर को नोट करना होगा: + +1. 380 टेंसर नंबर का उपयोग करके कन्वर्ट करें। + + ```python + from skl2onnx import convert_sklearn + from skl2onnx.common.data_types import FloatTensorType + + initial_type = [('float_input', FloatTensorType([None, 380]))] + options = {id(model): {'nocl': True, 'zipmap': False}} + ``` + +1. Onnx बनाएं और इसे **model.onnx** फ़ाइल के रूप में सेव करें: + + ```python + onx = convert_sklearn(model, initial_types=initial_type, options=options) + with open("./model.onnx", "wb") as f: + f.write(onx.SerializeToString()) + ``` + + > ध्यान दें, आप अपने कन्वर्ज़न स्क्रिप्ट में [विकल्प](https://onnx.ai/sklearn-onnx/parameterized.html) पास कर सकते हैं। इस मामले में, हमने 'nocl' को True और 'zipmap' को False सेट किया। चूंकि यह एक वर्गीकरण मॉडल है, आपके पास ZipMap को हटाने का विकल्प है जो डिक्शनरी की सूची बनाता है (आवश्यक नहीं)। `nocl` मॉडल में क्लास जानकारी शामिल होने को संदर्भित करता है। अपने मॉडल का आकार कम करने के लिए `nocl` को 'True' सेट करें। + +पूरा नोटबुक चलाने से अब एक Onnx मॉडल बनेगा और इसे इस फ़ोल्डर में सेव किया जाएगा। + +## अपने मॉडल को देखें + +Onnx मॉडल Visual Studio Code में बहुत स्पष्ट नहीं होते हैं, लेकिन एक बहुत अच्छा मुफ्त सॉफ़्टवेयर है जिसे कई शोधकर्ता अपने मॉडल को विज़ुअलाइज़ करने के लिए उपयोग करते हैं ताकि यह सुनिश्चित किया जा सके कि यह सही तरीके से बना है। [Netron](https://github.com/lutzroeder/Netron) डाउनलोड करें और अपनी model.onnx फ़ाइल खोलें। आप अपने सरल मॉडल को विज़ुअलाइज़ कर सकते हैं, जिसमें इसके 380 इनपुट और वर्गीकर्ता सूचीबद्ध हैं: + +![Netron विज़ुअल](../../../../translated_images/netron.a05f39410211915e0f95e2c0e8b88f41e7d13d725faf660188f3802ba5c9e831.hi.png) + +Netron आपके मॉडल को देखने के लिए एक उपयोगी टूल है। + +अब आप इस शानदार मॉडल का उपयोग एक वेब ऐप में कर सकते हैं। चलिए एक ऐसा ऐप बनाते हैं जो आपके फ्रिज में देखे गए सामग्री के संयोजन का उपयोग करके यह तय करता है कि आपके मॉडल द्वारा निर्धारित क्यूज़ीन कौन सा हो सकता है। + +## रिकमेंडर वेब एप्लिकेशन बनाएं + +आप अपने मॉडल का उपयोग सीधे एक वेब ऐप में कर सकते हैं। यह आर्किटेक्चर आपको इसे लोकली और यहां तक कि ऑफलाइन भी चलाने की अनुमति देता है। उस फ़ोल्डर में एक `index.html` फ़ाइल बनाकर शुरू करें जहां आपने अपनी `model.onnx` फ़ाइल सेव की थी। + +1. इस फ़ाइल _index.html_ में, निम्न मार्कअप जोड़ें: + + ```html + + +
                                + Cuisine Matcher +
                                + + ... + + + ``` + +1. अब, `body` टैग के भीतर काम करते हुए, कुछ सामग्री को दर्शाने के लिए चेकबॉक्स की एक सूची दिखाने के लिए थोड़ा मार्कअप जोड़ें: + + ```html +

                                Check your refrigerator. What can you create?

                                +
                                +
                                + + +
                                + +
                                + + +
                                + +
                                + + +
                                + +
                                + + +
                                + +
                                + + +
                                + +
                                + + +
                                + +
                                + + +
                                +
                                +
                                + +
                                + ``` + + ध्यान दें कि प्रत्येक चेकबॉक्स को एक वैल्यू दी गई है। यह उस इंडेक्स को दर्शाता है जहां सामग्री डेटासेट के अनुसार पाई जाती है। उदाहरण के लिए, Apple इस अल्फाबेटिक सूची में पांचवें कॉलम पर है, इसलिए इसकी वैल्यू '4' है क्योंकि हम 0 से गिनती शुरू करते हैं। आप [ingredients spreadsheet](../../../../4-Classification/data/ingredient_indexes.csv) को देखकर किसी सामग्री का इंडेक्स पता कर सकते हैं। + + अपने index.html फ़ाइल में काम जारी रखते हुए, एक स्क्रिप्ट ब्लॉक जोड़ें जहां मॉडल को अंतिम बंद `` के बाद कॉल किया जाता है। + +1. सबसे पहले, [Onnx Runtime](https://www.onnxruntime.ai/) को इंपोर्ट करें: + + ```html + + ``` + + > Onnx Runtime का उपयोग आपके Onnx मॉडल को विभिन्न हार्डवेयर प्लेटफॉर्म पर चलाने के लिए किया जाता है, जिसमें ऑप्टिमाइज़ेशन और उपयोग के लिए API शामिल है। + +1. एक बार Runtime सेट हो जाने के बाद, आप इसे कॉल कर सकते हैं: + + ```html + + ``` + +इस कोड में, कई चीजें हो रही हैं: + +1. आपने 380 संभावित वैल्यूज़ (1 या 0) का एक ऐरे बनाया जिसे सेट किया जाएगा और इन्फरेंस के लिए मॉडल को भेजा जाएगा, यह इस बात पर निर्भर करता है कि सामग्री चेकबॉक्स चेक किया गया है या नहीं। +2. आपने चेकबॉक्स का एक ऐरे बनाया और एक तरीका बनाया जिससे यह पता लगाया जा सके कि वे चेक किए गए हैं या नहीं, एक `init` फंक्शन में जिसे एप्लिकेशन शुरू होने पर कॉल किया जाता है। जब कोई चेकबॉक्स चेक किया जाता है, तो `ingredients` ऐरे को चुनी गई सामग्री को दर्शाने के लिए बदला जाता है। +3. आपने एक `testCheckboxes` फंक्शन बनाया जो जांचता है कि कोई चेकबॉक्स चेक किया गया है या नहीं। +4. आप `startInference` फंक्शन का उपयोग करते हैं जब बटन दबाया जाता है और, यदि कोई चेकबॉक्स चेक किया गया है, तो आप इन्फरेंस शुरू करते हैं। +5. इन्फरेंस प्रक्रिया में शामिल हैं: + 1. मॉडल को असिंक्रोनस रूप से लोड करना + 2. मॉडल को भेजने के लिए एक टेंसर संरचना बनाना + 3. 'feeds' बनाना जो उस `float_input` इनपुट को दर्शाता है जिसे आपने अपने मॉडल को ट्रेन करते समय बनाया था (आप Netron का उपयोग करके उस नाम को सत्यापित कर सकते हैं) + 4. इन 'feeds' को मॉडल में भेजना और प्रतिक्रिया की प्रतीक्षा करना + +## अपने एप्लिकेशन का परीक्षण करें + +Visual Studio Code में उस फ़ोल्डर में एक टर्मिनल सत्र खोलें जहां आपकी index.html फ़ाइल स्थित है। सुनिश्चित करें कि आपने [http-server](https://www.npmjs.com/package/http-server) को ग्लोबली इंस्टॉल किया है, और प्रॉम्प्ट पर `http-server` टाइप करें। एक लोकलहोस्ट खुलना चाहिए और आप अपने वेब ऐप को देख सकते हैं। विभिन्न सामग्री के आधार पर कौन सा क्यूज़ीन रिकमेंड किया गया है, यह जांचें: + +![सामग्री वेब ऐप](../../../../translated_images/web-app.4c76450cabe20036f8ec6d5e05ccc0c1c064f0d8f2fe3304d3bcc0198f7dc139.hi.png) + +बधाई हो, आपने कुछ फ़ील्ड्स के साथ एक 'रिकमेंडेशन' वेब ऐप बनाया है। इस सिस्टम को बनाने में समय लगाएं! + +## 🚀चुनौती + +आपका वेब ऐप बहुत साधारण है, इसलिए इसे [ingredient_indexes](../../../../4-Classification/data/ingredient_indexes.csv) डेटा से सामग्री और उनके इंडेक्स का उपयोग करके और विकसित करें। कौन से फ्लेवर संयोजन एक दिए गए राष्ट्रीय व्यंजन को बनाने के लिए काम करते हैं? + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/26/) + +## समीक्षा और स्व-अध्ययन + +हालांकि इस पाठ ने खाद्य सामग्री के लिए एक रिकमेंडेशन सिस्टम बनाने की उपयोगिता को केवल छुआ है, मशीन लर्निंग एप्लिकेशन के इस क्षेत्र में उदाहरणों की भरमार है। पढ़ें कि ये सिस्टम कैसे बनाए जाते हैं: + +- https://www.sciencedirect.com/topics/computer-science/recommendation-engine +- https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-recommendation-engines/ +- https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/ + +## असाइनमेंट + +[नया रिकमेंडर बनाएं](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/4-Classification/4-Applied/assignment.md b/translations/hi/4-Classification/4-Applied/assignment.md new file mode 100644 index 000000000..b578424a8 --- /dev/null +++ b/translations/hi/4-Classification/4-Applied/assignment.md @@ -0,0 +1,25 @@ + +# एक अनुशंसा प्रणाली बनाएं + +## निर्देश + +इस पाठ में आपके अभ्यासों को देखते हुए, अब आप जानते हैं कि Onnx Runtime और एक परिवर्तित Onnx मॉडल का उपयोग करके जावास्क्रिप्ट-आधारित वेब ऐप कैसे बनाना है। इन पाठों के डेटा या कहीं और से प्राप्त डेटा का उपयोग करके एक नई अनुशंसा प्रणाली बनाने का प्रयास करें (कृपया श्रेय दें)। आप विभिन्न व्यक्तित्व विशेषताओं के आधार पर एक पालतू अनुशंसा प्रणाली बना सकते हैं, या किसी व्यक्ति के मूड के आधार पर संगीत शैली अनुशंसा प्रणाली बना सकते हैं। रचनात्मक बनें! + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | ---------------------------------------------------------------------- | ------------------------------------- | --------------------------------- | +| | एक वेब ऐप और नोटबुक प्रस्तुत किए गए हैं, दोनों अच्छी तरह से प्रलेखित और चल रहे हैं | इनमें से एक गायब है या त्रुटिपूर्ण है | दोनों या तो गायब हैं या त्रुटिपूर्ण हैं | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/4-Classification/4-Applied/notebook.ipynb b/translations/hi/4-Classification/4-Applied/notebook.ipynb new file mode 100644 index 000000000..0d3ac0dec --- /dev/null +++ b/translations/hi/4-Classification/4-Applied/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2f3e0d9e9ac5c301558fb8bf733ac0cb", + "translation_date": "2025-09-04T02:31:34+00:00", + "source_file": "4-Classification/4-Applied/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/4-Classification/4-Applied/solution/notebook.ipynb b/translations/hi/4-Classification/4-Applied/solution/notebook.ipynb new file mode 100644 index 000000000..ab4f80662 --- /dev/null +++ b/translations/hi/4-Classification/4-Applied/solution/notebook.ipynb @@ -0,0 +1,290 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "49325d6dd12a3628fc64fa7ccb1a80ff", + "translation_date": "2025-09-04T02:31:56+00:00", + "source_file": "4-Classification/4-Applied/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: skl2onnx in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (1.8.0)\n", + "Requirement already satisfied: protobuf in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (3.8.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.19.2)\n", + "Requirement already satisfied: onnx>=1.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.9.0)\n", + "Requirement already satisfied: six in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from skl2onnx) (1.12.0)\n", + "Requirement already satisfied: onnxconverter-common<1.9,>=1.6.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.8.1)\n", + "Requirement already satisfied: scikit-learn>=0.19 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (0.24.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.4.1)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from protobuf->skl2onnx) (45.1.0)\n", + "Requirement already satisfied: typing-extensions>=3.6.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from onnx>=1.2.1->skl2onnx) (3.10.0.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (2.1.0)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (0.16.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install skl2onnx" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd \n" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                00indian00000000...0000000000
                                11indian10000000...0000000000
                                22indian00000000...0000000000
                                33indian00000000...0000000000
                                44indian00000000...0000000010
                                \n

                                5 rows × 382 columns

                                \n
                                " + }, + "metadata": {}, + "execution_count": 60 + } + ], + "source": [ + "data = pd.read_csv('../../data/cleaned_cuisines.csv')\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                00000000000...0000000000
                                11000000000...0000000000
                                20000000000...0000000000
                                30000000000...0000000000
                                40000000000...0000000010
                                \n

                                5 rows × 380 columns

                                \n
                                " + }, + "metadata": {}, + "execution_count": 61 + } + ], + "source": [ + "X = data.iloc[:,2:]\n", + "X.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine\n", + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                cuisine
                                0indian
                                1indian
                                2indian
                                3indian
                                4indian
                                \n
                                " + }, + "metadata": {}, + "execution_count": 62 + } + ], + "source": [ + "y = data[['cuisine']]\n", + "y.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.svm import SVC\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SVC(C=10, kernel='linear', probability=True, random_state=0)" + ] + }, + "metadata": {}, + "execution_count": 65 + } + ], + "source": [ + "model = SVC(kernel='linear', C=10, probability=True,random_state=0)\n", + "model.fit(X_train,y_train.values.ravel())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.72 0.70 0.71 236\n indian 0.91 0.88 0.89 243\n japanese 0.80 0.75 0.77 240\n korean 0.80 0.81 0.81 230\n thai 0.76 0.85 0.80 250\n\n accuracy 0.80 1199\n macro avg 0.80 0.80 0.80 1199\nweighted avg 0.80 0.80 0.80 1199\n\n" + ] + } + ], + "source": [ + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from skl2onnx import convert_sklearn\n", + "from skl2onnx.common.data_types import FloatTensorType\n", + "\n", + "initial_type = [('float_input', FloatTensorType([None, 380]))]\n", + "options = {id(model): {'nocl': True, 'zipmap': False}}\n", + "onx = convert_sklearn(model, initial_types=initial_type, options=options)\n", + "with open(\"./model.onnx\", \"wb\") as f:\n", + " f.write(onx.SerializeToString())\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/4-Classification/README.md b/translations/hi/4-Classification/README.md new file mode 100644 index 000000000..3d0ca1c1b --- /dev/null +++ b/translations/hi/4-Classification/README.md @@ -0,0 +1,41 @@ + +# वर्गीकरण के साथ शुरुआत करें + +## क्षेत्रीय विषय: स्वादिष्ट एशियाई और भारतीय व्यंजन 🍜 + +एशिया और भारत में, भोजन परंपराएं बेहद विविध और बहुत स्वादिष्ट हैं! चलिए क्षेत्रीय व्यंजनों के बारे में डेटा देखते हैं ताकि उनके सामग्री को समझने की कोशिश की जा सके। + +![थाई भोजन विक्रेता](../../../translated_images/thai-food.c47a7a7f9f05c21892a1f9dc7bf30669e6d18dfda420c5c7ebb4153f6a304edd.hi.jpg) +> फोटो लिशेंग चांग द्वारा अनस्प्लैश पर + +## आप क्या सीखेंगे + +इस खंड में, आप अपने पिछले रिग्रेशन अध्ययन पर आधारित होकर अन्य वर्गीकरणकर्ताओं के बारे में जानेंगे, जिन्हें आप डेटा को बेहतर तरीके से समझने के लिए उपयोग कर सकते हैं। + +> ऐसे उपयोगी लो-कोड टूल्स हैं जो आपको वर्गीकरण मॉडल के साथ काम करने के बारे में सीखने में मदद कर सकते हैं। इस कार्य के लिए [Azure ML](https://docs.microsoft.com/learn/modules/create-classification-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) आज़माएं। + +## पाठ + +1. [वर्गीकरण का परिचय](1-Introduction/README.md) +2. [अधिक वर्गीकरणकर्ता](2-Classifiers-1/README.md) +3. [कुछ अन्य वर्गीकरणकर्ता](3-Classifiers-2/README.md) +4. [एप्लाइड एमएल: एक वेब ऐप बनाएं](4-Applied/README.md) + +## श्रेय + +"वर्गीकरण के साथ शुरुआत करें" को ♥️ के साथ [कैसी ब्रेविउ](https://www.twitter.com/cassiebreviu) और [जेन लूपर](https://www.twitter.com/jenlooper) द्वारा लिखा गया था। + +स्वादिष्ट व्यंजनों का डेटासेट [कागल](https://www.kaggle.com/hoandan/asian-and-indian-cuisines) से लिया गया था। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/5-Clustering/1-Visualize/README.md b/translations/hi/5-Clustering/1-Visualize/README.md new file mode 100644 index 000000000..7a1392357 --- /dev/null +++ b/translations/hi/5-Clustering/1-Visualize/README.md @@ -0,0 +1,347 @@ + +# क्लस्टरिंग का परिचय + +क्लस्टरिंग [अनसुपरवाइज्ड लर्निंग](https://wikipedia.org/wiki/Unsupervised_learning) का एक प्रकार है, जो मानता है कि डेटा सेट लेबल रहित है या इसके इनपुट्स को पहले से परिभाषित आउटपुट्स के साथ नहीं जोड़ा गया है। यह विभिन्न एल्गोरिदम का उपयोग करके लेबल रहित डेटा को छांटता है और डेटा में पहचाने गए पैटर्न के अनुसार समूह प्रदान करता है। + +[![PSquare द्वारा No One Like You](https://img.youtube.com/vi/ty2advRiWJM/0.jpg)](https://youtu.be/ty2advRiWJM "PSquare द्वारा No One Like You") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें और वीडियो देखें। जब आप क्लस्टरिंग के साथ मशीन लर्निंग का अध्ययन कर रहे हों, तो कुछ नाइजीरियाई डांस हॉल ट्रैक्स का आनंद लें - यह PSquare का 2014 का एक उच्च रेटेड गाना है। + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/) + +### परिचय + +[क्लस्टरिंग](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124) डेटा एक्सप्लोरेशन के लिए बहुत उपयोगी है। आइए देखें कि क्या यह नाइजीरियाई दर्शकों के संगीत उपभोग के तरीके में रुझान और पैटर्न खोजने में मदद कर सकता है। + +✅ एक मिनट लें और क्लस्टरिंग के उपयोगों के बारे में सोचें। असल जिंदगी में, क्लस्टरिंग तब होती है जब आपके पास कपड़ों का ढेर होता है और आपको अपने परिवार के सदस्यों के कपड़े छांटने होते हैं 🧦👕👖🩲। डेटा साइंस में, क्लस्टरिंग तब होती है जब उपयोगकर्ता की प्राथमिकताओं का विश्लेषण करने या किसी लेबल रहित डेटा सेट की विशेषताओं को निर्धारित करने की कोशिश की जाती है। क्लस्टरिंग, एक तरह से, अराजकता को समझने में मदद करती है, जैसे मोजे की दराज। + +[![ML का परिचय](https://img.youtube.com/vi/esmzYhuFnds/0.jpg)](https://youtu.be/esmzYhuFnds "क्लस्टरिंग का परिचय") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें और वीडियो देखें: MIT के John Guttag क्लस्टरिंग का परिचय देते हैं। + +पेशेवर सेटिंग में, क्लस्टरिंग का उपयोग बाजार विभाजन जैसे चीजों को निर्धारित करने के लिए किया जा सकता है, जैसे कि कौन सी आयु वर्ग कौन सी वस्तुएं खरीदती हैं। एक अन्य उपयोग अनियमितता का पता लगाना हो सकता है, जैसे कि क्रेडिट कार्ड लेनदेन के डेटा सेट से धोखाधड़ी का पता लगाना। या आप मेडिकल स्कैन के बैच में ट्यूमर का निर्धारण करने के लिए क्लस्टरिंग का उपयोग कर सकते हैं। + +✅ एक मिनट लें और सोचें कि आपने 'वास्तविक दुनिया' में, बैंकिंग, ई-कॉमर्स, या व्यवसाय सेटिंग में क्लस्टरिंग का सामना कैसे किया होगा। + +> 🎓 दिलचस्प बात यह है कि क्लस्टर विश्लेषण की शुरुआत 1930 के दशक में मानवशास्त्र और मनोविज्ञान के क्षेत्रों में हुई थी। क्या आप कल्पना कर सकते हैं कि इसका उपयोग कैसे किया गया होगा? + +इसके अलावा, आप इसे खोज परिणामों को समूहित करने के लिए उपयोग कर सकते हैं - उदाहरण के लिए, खरीदारी लिंक, छवियां, या समीक्षाएं। क्लस्टरिंग तब उपयोगी होती है जब आपके पास एक बड़ा डेटा सेट होता है जिसे आप कम करना चाहते हैं और जिस पर आप अधिक गहन विश्लेषण करना चाहते हैं, इसलिए इस तकनीक का उपयोग अन्य मॉडलों के निर्माण से पहले डेटा के बारे में जानने के लिए किया जा सकता है। + +✅ एक बार जब आपका डेटा क्लस्टर्स में व्यवस्थित हो जाता है, तो आप इसे एक क्लस्टर आईडी असाइन करते हैं, और यह तकनीक डेटा सेट की गोपनीयता बनाए रखने में उपयोगी हो सकती है; आप इसके बजाय डेटा पॉइंट को इसके क्लस्टर आईडी द्वारा संदर्भित कर सकते हैं, बजाय इसके कि अधिक खुलासा करने वाले पहचान योग्य डेटा द्वारा। क्या आप अन्य कारणों के बारे में सोच सकते हैं कि आप क्लस्टर को पहचानने के लिए क्लस्टर आईडी का उपयोग क्यों करेंगे? + +क्लस्टरिंग तकनीकों की अपनी समझ को इस [लर्न मॉड्यूल](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott) में गहरा करें। + +## क्लस्टरिंग के साथ शुरुआत + +[Scikit-learn](https://scikit-learn.org/stable/modules/clustering.html) क्लस्टरिंग करने के लिए कई विधियां प्रदान करता है। आप किस प्रकार का चयन करते हैं, यह आपके उपयोग के मामले पर निर्भर करेगा। दस्तावेज़ के अनुसार, प्रत्येक विधि के विभिन्न लाभ हैं। यहां Scikit-learn द्वारा समर्थित विधियों और उनके उपयुक्त उपयोग मामलों की एक सरल तालिका दी गई है: + +| विधि का नाम | उपयोग का मामला | +| :--------------------------- | :-------------------------------------------------------------------- | +| K-Means | सामान्य उद्देश्य, इंडक्टिव | +| Affinity propagation | कई, असमान क्लस्टर्स, इंडक्टिव | +| Mean-shift | कई, असमान क्लस्टर्स, इंडक्टिव | +| Spectral clustering | कुछ, समान क्लस्टर्स, ट्रांसडक्टिव | +| Ward hierarchical clustering | कई, बाधित क्लस्टर्स, ट्रांसडक्टिव | +| Agglomerative clustering | कई, बाधित, गैर-यूक्लिडियन दूरी, ट्रांसडक्टिव | +| DBSCAN | गैर-फ्लैट ज्यामिति, असमान क्लस्टर्स, ट्रांसडक्टिव | +| OPTICS | गैर-फ्लैट ज्यामिति, असमान क्लस्टर्स, परिवर्तनीय घनत्व, ट्रांसडक्टिव | +| Gaussian mixtures | फ्लैट ज्यामिति, इंडक्टिव | +| BIRCH | बड़े डेटा सेट के साथ आउटलायर्स, इंडक्टिव | + +> 🎓 हम क्लस्टर्स कैसे बनाते हैं, इसका बहुत कुछ इस बात से लेना-देना है कि हम डेटा पॉइंट्स को समूहों में कैसे इकट्ठा करते हैं। आइए कुछ शब्दावली को समझें: +> +> 🎓 ['ट्रांसडक्टिव' बनाम 'इंडक्टिव'](https://wikipedia.org/wiki/Transduction_(machine_learning)) +> +> ट्रांसडक्टिव इनफेरेंस उन देखे गए प्रशिक्षण मामलों से प्राप्त होता है जो विशिष्ट परीक्षण मामलों को मैप करते हैं। इंडक्टिव इनफेरेंस उन प्रशिक्षण मामलों से प्राप्त होता है जो सामान्य नियमों को मैप करते हैं और केवल तभी परीक्षण मामलों पर लागू होते हैं। +> +> उदाहरण: कल्पना करें कि आपके पास एक डेटा सेट है जो केवल आंशिक रूप से लेबल किया गया है। कुछ चीजें 'रिकॉर्ड्स' हैं, कुछ 'सीडी' हैं, और कुछ खाली हैं। आपका काम खाली चीजों के लिए लेबल प्रदान करना है। यदि आप इंडक्टिव दृष्टिकोण चुनते हैं, तो आप 'रिकॉर्ड्स' और 'सीडी' की तलाश में एक मॉडल को प्रशिक्षित करेंगे और उन लेबल्स को अपने लेबल रहित डेटा पर लागू करेंगे। यह दृष्टिकोण उन चीजों को वर्गीकृत करने में कठिनाई करेगा जो वास्तव में 'कैसेट्स' हैं। दूसरी ओर, ट्रांसडक्टिव दृष्टिकोण इस अज्ञात डेटा को अधिक प्रभावी ढंग से संभालता है क्योंकि यह समान वस्तुओं को एक साथ समूहित करने और फिर समूह को एक लेबल लागू करने का काम करता है। इस मामले में, क्लस्टर्स 'गोल संगीत चीजें' और 'चौकोर संगीत चीजें' को दर्शा सकते हैं। +> +> 🎓 ['गैर-फ्लैट' बनाम 'फ्लैट' ज्यामिति](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering) +> +> गणितीय शब्दावली से लिया गया, गैर-फ्लैट बनाम फ्लैट ज्यामिति डेटा पॉइंट्स के बीच की दूरी को 'फ्लैट' ([यूक्लिडियन](https://wikipedia.org/wiki/Euclidean_geometry)) या 'गैर-फ्लैट' (गैर-यूक्लिडियन) ज्यामितीय तरीकों से मापने को संदर्भित करता है। +> +>'फ्लैट' इस संदर्भ में यूक्लिडियन ज्यामिति (जिसके कुछ हिस्से 'प्लेन' ज्यामिति के रूप में पढ़ाए जाते हैं) को संदर्भित करता है, और गैर-फ्लैट गैर-यूक्लिडियन ज्यामिति को संदर्भित करता है। मशीन लर्निंग के साथ ज्यामिति का क्या संबंध है? खैर, गणित में जड़ें होने वाले दो क्षेत्रों के रूप में, पॉइंट्स के बीच की दूरी को मापने का एक सामान्य तरीका होना चाहिए, और इसे डेटा की प्रकृति के आधार पर 'फ्लैट' या 'गैर-फ्लैट' तरीके से किया जा सकता है। [यूक्लिडियन दूरी](https://wikipedia.org/wiki/Euclidean_distance) को दो पॉइंट्स के बीच एक रेखा खंड की लंबाई के रूप में मापा जाता है। [गैर-यूक्लिडियन दूरी](https://wikipedia.org/wiki/Non-Euclidean_geometry) को एक वक्र के साथ मापा जाता है। यदि आपका डेटा, विज़ुअलाइज़ किया गया, ऐसा लगता है कि यह एक प्लेन पर मौजूद नहीं है, तो आपको इसे संभालने के लिए एक विशेष एल्गोरिदम का उपयोग करने की आवश्यकता हो सकती है। +> +![फ्लैट बनाम गैर-फ्लैट ज्यामिति इन्फोग्राफिक](../../../../translated_images/flat-nonflat.d1c8c6e2a96110c1d57fa0b72913f6aab3c245478524d25baf7f4a18efcde224.hi.png) +> इन्फोग्राफिक [Dasani Madipalli](https://twitter.com/dasani_decoded) द्वारा +> +> 🎓 ['दूरी'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf) +> +> क्लस्टर्स को उनकी दूरी मैट्रिक्स द्वारा परिभाषित किया जाता है, जैसे कि पॉइंट्स के बीच की दूरी। इस दूरी को कुछ तरीकों से मापा जा सकता है। यूक्लिडियन क्लस्टर्स पॉइंट वैल्यूज़ के औसत द्वारा परिभाषित होते हैं, और इनमें एक 'सेंट्रॉइड' या केंद्र बिंदु होता है। दूरी को उस सेंट्रॉइड से दूरी के रूप में मापा जाता है। गैर-यूक्लिडियन दूरी 'क्लस्ट्रॉइड्स' को संदर्भित करती है, जो अन्य पॉइंट्स के सबसे करीब बिंदु है। क्लस्ट्रॉइड्स को विभिन्न तरीकों से परिभाषित किया जा सकता है। +> +> 🎓 ['बाधित'](https://wikipedia.org/wiki/Constrained_clustering) +> +> [बाधित क्लस्टरिंग](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf) इस अनसुपरवाइज्ड विधि में 'सेमी-सुपरवाइज्ड' लर्निंग को पेश करती है। पॉइंट्स के बीच के संबंधों को 'cannot link' या 'must-link' के रूप में चिह्नित किया जाता है ताकि डेटा सेट पर कुछ नियम लागू किए जा सकें। +> +>उदाहरण: यदि एक एल्गोरिदम को लेबल रहित या सेमी-लेबल्ड डेटा के बैच पर स्वतंत्र रूप से छोड़ दिया जाता है, तो यह जो क्लस्टर्स उत्पन्न करता है, वे खराब गुणवत्ता के हो सकते हैं। ऊपर दिए गए उदाहरण में, क्लस्टर्स 'गोल संगीत चीजें', 'चौकोर संगीत चीजें', 'त्रिकोणीय चीजें' और 'कुकीज़' को समूहित कर सकते हैं। यदि कुछ बाधाएं दी जाती हैं, या पालन करने के लिए नियम ("आइटम प्लास्टिक से बना होना चाहिए", "आइटम को संगीत उत्पन्न करने में सक्षम होना चाहिए") तो यह एल्गोरिदम को बेहतर विकल्प बनाने में मदद कर सकता है। +> +> 🎓 'घनत्व' +> +> डेटा जो 'शोरयुक्त' है, उसे 'घना' माना जाता है। इसके प्रत्येक क्लस्टर्स में पॉइंट्स के बीच की दूरी, जांच करने पर, अधिक या कम घनी, या 'भीड़भाड़' वाली साबित हो सकती है, और इस डेटा को उपयुक्त क्लस्टरिंग विधि के साथ विश्लेषण करने की आवश्यकता होती है। [यह लेख](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html) दिखाता है कि शोरयुक्त डेटा सेट के असमान क्लस्टर घनत्व का पता लगाने के लिए K-Means क्लस्टरिंग बनाम HDBSCAN एल्गोरिदम का उपयोग कैसे किया जाता है। + +## क्लस्टरिंग एल्गोरिदम + +100 से अधिक क्लस्टरिंग एल्गोरिदम हैं, और उनका उपयोग डेटा की प्रकृति पर निर्भर करता है। आइए कुछ प्रमुख एल्गोरिदम पर चर्चा करें: + +- **हायरार्किकल क्लस्टरिंग**। यदि किसी वस्तु को उसके निकटवर्ती वस्तु की निकटता के आधार पर वर्गीकृत किया जाता है, बजाय इसके कि वह दूर की वस्तु से हो, तो क्लस्टर्स उनके सदस्यों की दूरी के आधार पर बनते हैं। Scikit-learn का एग्लोमरेटिव क्लस्टरिंग हायरार्किकल है। + + ![हायरार्किकल क्लस्टरिंग इन्फोग्राफिक](../../../../translated_images/hierarchical.bf59403aa43c8c47493bfdf1cc25230f26e45f4e38a3d62e8769cd324129ac15.hi.png) + > इन्फोग्राफिक [Dasani Madipalli](https://twitter.com/dasani_decoded) द्वारा + +- **सेंट्रॉइड क्लस्टरिंग**। यह लोकप्रिय एल्गोरिदम 'k', या बनाने के लिए क्लस्टर्स की संख्या चुनने की आवश्यकता करता है, जिसके बाद एल्गोरिदम क्लस्टर के केंद्र बिंदु को निर्धारित करता है और उस बिंदु के चारों ओर डेटा इकट्ठा करता है। [K-means क्लस्टरिंग](https://wikipedia.org/wiki/K-means_clustering) सेंट्रॉइड क्लस्टरिंग का एक लोकप्रिय संस्करण है। केंद्र निकटतम औसत द्वारा निर्धारित किया जाता है, इसलिए इसका नाम। क्लस्टर से वर्ग दूरी को न्यूनतम किया जाता है। + + ![सेंट्रॉइड क्लस्टरिंग इन्फोग्राफिक](../../../../translated_images/centroid.097fde836cf6c9187d0b2033e9f94441829f9d86f4f0b1604dd4b3d1931aee34.hi.png) + > इन्फोग्राफिक [Dasani Madipalli](https://twitter.com/dasani_decoded) द्वारा + +- **डिस्ट्रिब्यूशन-आधारित क्लस्टरिंग**। सांख्यिकीय मॉडलिंग पर आधारित, डिस्ट्रिब्यूशन-आधारित क्लस्टरिंग का केंद्र यह निर्धारित करना है कि डेटा पॉइंट के क्लस्टर में होने की संभावना कितनी है, और इसे उसी के अनुसार असाइन करना। Gaussian मिश्रण विधियां इस प्रकार से संबंधित हैं। + +- **डेंसिटी-आधारित क्लस्टरिंग**। डेटा पॉइंट्स को उनके घनत्व, या उनके एक-दूसरे के चारों ओर समूह बनाने के आधार पर क्लस्टर्स में असाइन किया जाता है। समूह से दूर डेटा पॉइंट्स को आउटलायर्स या शोर माना जाता है। DBSCAN, Mean-shift और OPTICS इस प्रकार की क्लस्टरिंग से संबंधित हैं। + +- **ग्रिड-आधारित क्लस्टरिंग**। बहु-आयामी डेटा सेट के लिए, एक ग्रिड बनाया जाता है और डेटा को ग्रिड की कोशिकाओं के बीच विभाजित किया जाता है, जिससे क्लस्टर्स बनते हैं। + +## अभ्यास - अपने डेटा को क्लस्टर करें + +क्लस्टरिंग एक तकनीक के रूप में उचित विज़ुअलाइज़ेशन से बहुत सहायता प्राप्त करती है, तो आइए अपने संगीत डेटा को विज़ुअलाइज़ करके शुरुआत करें। यह अभ्यास हमें यह तय करने में मदद करेगा कि इस डेटा की प्रकृति के लिए क्लस्टरिंग की कौन सी विधि सबसे प्रभावी रूप से उपयोग की जाए। + +1. इस फ़ोल्डर में [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/notebook.ipynb) फ़ाइल खोलें। + +1. डेटा विज़ुअलाइज़ेशन के लिए `Seaborn` पैकेज आयात करें। + + ```python + !pip install seaborn + ``` + +1. [_nigerian-songs.csv_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/data/nigerian-songs.csv) से गाने का डेटा जोड़ें। गानों के बारे में कुछ डेटा के साथ एक डेटा फ्रेम लोड करें। लाइब्रेरीज़ आयात करके और डेटा को डंप करके इस डेटा का पता लगाने के लिए तैयार हो जाएं: + + ```python + import matplotlib.pyplot as plt + import pandas as pd + + df = pd.read_csv("../data/nigerian-songs.csv") + df.head() + ``` + + डेटा की पहली कुछ पंक्तियों की जांच करें: + + | | नाम | एल्बम | कलाकार | कलाकार का शीर्ष शैली | रिलीज़ तिथि | लंबाई | लोकप्रियता | नृत्य क्षमता | ध्वनिकता | ऊर्जा | वाद्य क्षमता | जीवंतता | तेज़ी | भाषण क्षमता | टेम्पो | समय हस्ताक्षर | + | --- | ------------------------ | ---------------------------- | ------------------- | -------------------- | ------------ | ------ | ---------- | ------------ | -------- | ------ | -------------- | -------- | ------ | ----------- | ------- | -------------- | + | 0 | Sparky | Mandy & The Jungle | Cruel Santino | वैकल्पिक r&b | 2019 | 144000 | 48 | 0.666 | 0.851 | 0.42 | 0.534 | 0.11 | -6.699 | 0.0829 | 133.015 | 5 | + | 1 | shuga rush | EVERYTHING YOU HEARD IS TRUE | Odunsi (The Engine) | अफ्रोपॉप | 2020 | 89488 | 30 | 0.71 | 0.0822 | +| 2 | LITT! | LITT! | AYLØ | इंडी आरएंडबी | 2018 | 207758 | 40 | 0.836 | 0.272 | 0.564 | 0.000537 | 0.11 | -7.127 | 0.0424 | 130.005 | 4 | +| 3 | Confident / Feeling Cool | Enjoy Your Life | Lady Donli | नाइजीरियन पॉप | 2019 | 175135 | 14 | 0.894 | 0.798 | 0.611 | 0.000187 | 0.0964 | -4.961 | 0.113 | 111.087 | 4 | +| 4 | wanted you | rare. | Odunsi (The Engine) | अफ्रोपॉप | 2018 | 152049 | 25 | 0.702 | 0.116 | 0.833 | 0.91 | 0.348 | -6.044 | 0.0447 | 105.115 | 4 | + +1. डेटा फ्रेम की जानकारी प्राप्त करें, `info()` कॉल करके: + + ```python + df.info() + ``` + + आउटपुट इस प्रकार दिखेगा: + + ```output + + RangeIndex: 530 entries, 0 to 529 + Data columns (total 16 columns): + # Column Non-Null Count Dtype + --- ------ -------------- ----- + 0 name 530 non-null object + 1 album 530 non-null object + 2 artist 530 non-null object + 3 artist_top_genre 530 non-null object + 4 release_date 530 non-null int64 + 5 length 530 non-null int64 + 6 popularity 530 non-null int64 + 7 danceability 530 non-null float64 + 8 acousticness 530 non-null float64 + 9 energy 530 non-null float64 + 10 instrumentalness 530 non-null float64 + 11 liveness 530 non-null float64 + 12 loudness 530 non-null float64 + 13 speechiness 530 non-null float64 + 14 tempo 530 non-null float64 + 15 time_signature 530 non-null int64 + dtypes: float64(8), int64(4), object(4) + memory usage: 66.4+ KB + ``` + +1. नल मानों की दोबारा जांच करें, `isnull()` कॉल करके और सुनिश्चित करें कि योग 0 है: + + ```python + df.isnull().sum() + ``` + + सब ठीक लग रहा है: + + ```output + name 0 + album 0 + artist 0 + artist_top_genre 0 + release_date 0 + length 0 + popularity 0 + danceability 0 + acousticness 0 + energy 0 + instrumentalness 0 + liveness 0 + loudness 0 + speechiness 0 + tempo 0 + time_signature 0 + dtype: int64 + ``` + +1. डेटा का वर्णन करें: + + ```python + df.describe() + ``` + + | | रिलीज़ डेट | लंबाई | लोकप्रियता | डांसएबिलिटी | एकॉस्टिकनेस | ऊर्जा | इंस्ट्रूमेंटलनेस | लाइवनेस | लाउडनेस | स्पीचनेस | टेम्पो | टाइम सिग्नेचर | + | ----- | ----------- | ----------- | ---------- | ------------ | ------------ | -------- | ---------------- | -------- | --------- | ----------- | ---------- | -------------- | + | count | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | + | mean | 2015.390566 | 222298.1698 | 17.507547 | 0.741619 | 0.265412 | 0.760623 | 0.016305 | 0.147308 | -4.953011 | 0.130748 | 116.487864 | 3.986792 | + | std | 3.131688 | 39696.82226 | 18.992212 | 0.117522 | 0.208342 | 0.148533 | 0.090321 | 0.123588 | 2.464186 | 0.092939 | 23.518601 | 0.333701 | + | min | 1998 | 89488 | 0 | 0.255 | 0.000665 | 0.111 | 0 | 0.0283 | -19.362 | 0.0278 | 61.695 | 3 | + | 25% | 2014 | 199305 | 0 | 0.681 | 0.089525 | 0.669 | 0 | 0.07565 | -6.29875 | 0.0591 | 102.96125 | 4 | + | 50% | 2016 | 218509 | 13 | 0.761 | 0.2205 | 0.7845 | 0.000004 | 0.1035 | -4.5585 | 0.09795 | 112.7145 | 4 | + | 75% | 2017 | 242098.5 | 31 | 0.8295 | 0.403 | 0.87575 | 0.000234 | 0.164 | -3.331 | 0.177 | 125.03925 | 4 | + | max | 2020 | 511738 | 73 | 0.966 | 0.954 | 0.995 | 0.91 | 0.811 | 0.582 | 0.514 | 206.007 | 5 | + +> 🤔 यदि हम क्लस्टरिंग के साथ काम कर रहे हैं, जो एक अनसुपरवाइज्ड विधि है और लेबल वाले डेटा की आवश्यकता नहीं होती, तो हम इस डेटा को लेबल्स के साथ क्यों दिखा रहे हैं? डेटा एक्सप्लोरेशन चरण में, यह उपयोगी हो सकता है, लेकिन क्लस्टरिंग एल्गोरिदम के काम करने के लिए यह आवश्यक नहीं है। आप कॉलम हेडर्स को हटा सकते हैं और डेटा को कॉलम नंबर द्वारा संदर्भित कर सकते हैं। + +डेटा के सामान्य मानों को देखें। ध्यान दें कि लोकप्रियता '0' हो सकती है, जो उन गानों को दिखाती है जिनका कोई रैंकिंग नहीं है। चलिए इसे जल्द ही हटा देते हैं। + +1. बारप्लॉट का उपयोग करके सबसे लोकप्रिय जेनर्स का पता लगाएं: + + ```python + import seaborn as sns + + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top[:5].index,y=top[:5].values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + ![सबसे लोकप्रिय](../../../../translated_images/popular.9c48d84b3386705f98bf44e26e9655bee9eb7c849d73be65195e37895bfedb5d.hi.png) + +✅ यदि आप अधिक शीर्ष मान देखना चाहते हैं, तो शीर्ष `[:5]` को बड़े मान में बदलें, या इसे हटाकर सभी देखें। + +ध्यान दें, जब शीर्ष जेनर को 'Missing' के रूप में वर्णित किया जाता है, तो इसका मतलब है कि Spotify ने इसे वर्गीकृत नहीं किया, तो चलिए इसे हटा देते हैं। + +1. गायब डेटा को फ़िल्टर करके हटा दें + + ```python + df = df[df['artist_top_genre'] != 'Missing'] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + अब जेनर्स को फिर से जांचें: + + ![सभी जेनर्स](../../../../translated_images/all-genres.1d56ef06cefbfcd61183023834ed3cb891a5ee638a3ba5c924b3151bf80208d7.hi.png) + +1. अब तक, शीर्ष तीन जेनर्स इस डेटा सेट पर हावी हैं। चलिए `afro dancehall`, `afropop`, और `nigerian pop` पर ध्यान केंद्रित करते हैं, और अतिरिक्त रूप से डेटा सेट को फ़िल्टर करते हैं ताकि 0 लोकप्रियता वाले किसी भी डेटा को हटा दें (जिसका मतलब है कि इसे डेटा सेट में लोकप्रियता के साथ वर्गीकृत नहीं किया गया और हमारे उद्देश्यों के लिए इसे शोर माना जा सकता है): + + ```python + df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')] + df = df[(df['popularity'] > 0)] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + +1. जल्दी से जांचें कि क्या डेटा किसी विशेष रूप से मजबूत तरीके से सहसंबद्ध है: + + ```python + corrmat = df.corr(numeric_only=True) + f, ax = plt.subplots(figsize=(12, 9)) + sns.heatmap(corrmat, vmax=.8, square=True) + ``` + + ![सहसंबंध](../../../../translated_images/correlation.a9356bb798f5eea51f47185968e1ebac5c078c92fce9931e28ccf0d7fab71c2b.hi.png) + + केवल मजबूत सहसंबंध `energy` और `loudness` के बीच है, जो बहुत आश्चर्यजनक नहीं है, क्योंकि तेज़ संगीत आमतौर पर काफी ऊर्जावान होता है। अन्यथा, सहसंबंध अपेक्षाकृत कमजोर हैं। यह देखना दिलचस्प होगा कि क्लस्टरिंग एल्गोरिदम इस डेटा से क्या बना सकता है। + + > 🎓 ध्यान दें कि सहसंबंध कारणता को इंगित नहीं करता है! हमारे पास सहसंबंध का प्रमाण है लेकिन कारणता का कोई प्रमाण नहीं है। एक [मजेदार वेबसाइट](https://tylervigen.com/spurious-correlations) में कुछ विज़ुअल्स हैं जो इस बिंदु को उजागर करते हैं। + +क्या इस डेटा सेट में गाने की लोकप्रियता और डांसएबिलिटी के आसपास कोई अभिसरण है? एक FacetGrid दिखाता है कि कुछ केंद्रित वृत्त हैं जो लाइन अप करते हैं, चाहे जेनर कुछ भी हो। क्या यह हो सकता है कि नाइजीरियन स्वाद इस जेनर के लिए डांसएबिलिटी के एक निश्चित स्तर पर अभिसरण करता है? + +✅ विभिन्न डेटा पॉइंट्स (energy, loudness, speechiness) और अधिक या अलग संगीत जेनर्स आज़माएं। आप क्या खोज सकते हैं? डेटा पॉइंट्स के सामान्य प्रसार को देखने के लिए `df.describe()` टेबल पर एक नज़र डालें। + +### अभ्यास - डेटा वितरण + +क्या इन तीन जेनर्स में उनकी लोकप्रियता के आधार पर डांसएबिलिटी की धारणा में महत्वपूर्ण अंतर है? + +1. हमारे शीर्ष तीन जेनर्स के डेटा वितरण की जांच करें, लोकप्रियता और डांसएबिलिटी के लिए दिए गए x और y अक्षों के साथ। + + ```python + sns.set_theme(style="ticks") + + g = sns.jointplot( + data=df, + x="popularity", y="danceability", hue="artist_top_genre", + kind="kde", + ) + ``` + + आप एक सामान्य अभिसरण बिंदु के आसपास केंद्रित वृत्तों की खोज कर सकते हैं, जो बिंदुओं के वितरण को दिखाता है। + + > 🎓 ध्यान दें कि इस उदाहरण में एक KDE (Kernel Density Estimate) ग्राफ का उपयोग किया गया है जो डेटा को एक सतत संभावना घनत्व वक्र का उपयोग करके प्रस्तुत करता है। यह हमें कई वितरणों के साथ काम करते समय डेटा की व्याख्या करने की अनुमति देता है। + + सामान्य तौर पर, तीन जेनर्स उनकी लोकप्रियता और डांसएबिलिटी के संदर्भ में ढीले ढंग से संरेखित होते हैं। इस ढीले-संरेखित डेटा में क्लस्टर्स निर्धारित करना एक चुनौती होगी: + + ![वितरण](../../../../translated_images/distribution.9be11df42356ca958dc8e06e87865e09d77cab78f94fe4fea8a1e6796c64dc4b.hi.png) + +1. एक स्कैटर प्लॉट बनाएं: + + ```python + sns.FacetGrid(df, hue="artist_top_genre", height=5) \ + .map(plt.scatter, "popularity", "danceability") \ + .add_legend() + ``` + + समान अक्षों के स्कैटरप्लॉट में अभिसरण का समान पैटर्न दिखता है। + + ![Facetgrid](../../../../translated_images/facetgrid.9b2e65ce707eba1f983b7cdfed5d952e60f385947afa3011df6e3cc7d200eb5b.hi.png) + +क्लस्टरिंग के लिए, आप डेटा के क्लस्टर्स दिखाने के लिए स्कैटरप्लॉट्स का उपयोग कर सकते हैं, इसलिए इस प्रकार की विज़ुअलाइज़ेशन में महारत हासिल करना बहुत उपयोगी है। अगले पाठ में, हम इस फ़िल्टर किए गए डेटा को लेंगे और k-means क्लस्टरिंग का उपयोग करके इस डेटा में समूहों की खोज करेंगे जो दिलचस्प तरीकों से ओवरलैप करते हैं। + +--- + +## 🚀चुनौती + +अगले पाठ की तैयारी में, उन विभिन्न क्लस्टरिंग एल्गोरिदम के बारे में एक चार्ट बनाएं जिन्हें आप उत्पादन वातावरण में खोज सकते हैं और उपयोग कर सकते हैं। क्लस्टरिंग किस प्रकार की समस्याओं को हल करने की कोशिश कर रही है? + +## [पाठ के बाद क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/) + +## समीक्षा और स्व-अध्ययन + +क्लस्टरिंग एल्गोरिदम लागू करने से पहले, जैसा कि हमने सीखा है, अपने डेटा सेट की प्रकृति को समझना एक अच्छा विचार है। इस विषय पर अधिक पढ़ें [यहां](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html) + +[यह उपयोगी लेख](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/) आपको विभिन्न डेटा आकारों को देखते हुए विभिन्न क्लस्टरिंग एल्गोरिदम के व्यवहार के माध्यम से मार्गदर्शन करता है। + +## असाइनमेंट + +[क्लस्टरिंग के लिए अन्य विज़ुअलाइज़ेशन पर शोध करें](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/5-Clustering/1-Visualize/assignment.md b/translations/hi/5-Clustering/1-Visualize/assignment.md new file mode 100644 index 000000000..3e5cd437b --- /dev/null +++ b/translations/hi/5-Clustering/1-Visualize/assignment.md @@ -0,0 +1,25 @@ + +# क्लस्टरिंग के लिए अन्य विज़ुअलाइज़ेशन पर शोध करें + +## निर्देश + +इस पाठ में, आपने कुछ विज़ुअलाइज़ेशन तकनीकों के साथ काम किया है ताकि क्लस्टरिंग के लिए डेटा को तैयार करने के लिए उसे प्लॉट करने की समझ प्राप्त की जा सके। विशेष रूप से, स्कैटरप्लॉट्स वस्तुओं के समूह खोजने के लिए उपयोगी होते हैं। स्कैटरप्लॉट्स बनाने के विभिन्न तरीकों और विभिन्न लाइब्रेरीज़ पर शोध करें और अपने काम को एक नोटबुक में दस्तावेज़ करें। आप इस पाठ, अन्य पाठों, या स्वयं द्वारा प्राप्त डेटा का उपयोग कर सकते हैं (हालांकि, कृपया अपने नोटबुक में उसके स्रोत का श्रेय दें)। स्कैटरप्लॉट्स का उपयोग करके कुछ डेटा प्लॉट करें और जो आपने खोजा है उसे समझाएं। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | -------------------------------------------------------------- | ---------------------------------------------------------------------------------------- | ----------------------------------- | +| | एक नोटबुक प्रस्तुत की गई है जिसमें पाँच अच्छी तरह से दस्तावेज़ किए गए स्कैटरप्लॉट्स हैं | एक नोटबुक प्रस्तुत की गई है जिसमें पाँच से कम स्कैटरप्लॉट्स हैं और यह कम अच्छी तरह से दस्तावेज़ है | एक अधूरी नोटबुक प्रस्तुत की गई है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल दस्तावेज़, जो इसकी मूल भाषा में है, को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/5-Clustering/1-Visualize/notebook.ipynb b/translations/hi/5-Clustering/1-Visualize/notebook.ipynb new file mode 100644 index 000000000..c847431e4 --- /dev/null +++ b/translations/hi/5-Clustering/1-Visualize/notebook.ipynb @@ -0,0 +1,50 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python383jvsc74a57bd0e134e05457d34029b6460cd73bbf1ed73f339b5b6d98c95be70b69eba114fe95", + "display_name": "Python 3.8.3 64-bit (conda)" + }, + "coopTranslator": { + "original_hash": "40e0707e96b3e1899a912776006264f9", + "translation_date": "2025-09-04T01:58:05+00:00", + "source_file": "5-Clustering/1-Visualize/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/5-Clustering/1-Visualize/solution/Julia/README.md b/translations/hi/5-Clustering/1-Visualize/solution/Julia/README.md new file mode 100644 index 000000000..b639796c5 --- /dev/null +++ b/translations/hi/5-Clustering/1-Visualize/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb b/translations/hi/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb new file mode 100644 index 000000000..f8aa988fa --- /dev/null +++ b/translations/hi/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb @@ -0,0 +1,499 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## **Spotify से प्राप्त नाइजीरियाई संगीत - एक विश्लेषण**\n", + "\n", + "क्लस्टरिंग [अनसुपरवाइज्ड लर्निंग](https://wikipedia.org/wiki/Unsupervised_learning) का एक प्रकार है, जो मानता है कि डेटा सेट लेबल रहित है या इसके इनपुट्स को पहले से परिभाषित आउटपुट्स के साथ मिलाया नहीं गया है। यह विभिन्न एल्गोरिदम का उपयोग करके लेबल रहित डेटा को वर्गीकृत करता है और डेटा में पहचाने गए पैटर्न के अनुसार समूह प्रदान करता है।\n", + "\n", + "[**प्री-लेक्चर क्विज**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/)\n", + "\n", + "### **परिचय**\n", + "\n", + "[क्लस्टरिंग](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124) डेटा एक्सप्लोरेशन के लिए बहुत उपयोगी है। आइए देखें कि क्या यह नाइजीरियाई दर्शकों के संगीत उपभोग के तरीकों में रुझान और पैटर्न खोजने में मदद कर सकता है।\n", + "\n", + "> ✅ क्लस्टरिंग के उपयोगों के बारे में सोचने के लिए एक मिनट लें। असल जिंदगी में, क्लस्टरिंग तब होती है जब आपके पास कपड़ों का ढेर होता है और आपको अपने परिवार के सदस्यों के कपड़े अलग करने होते हैं 🧦👕👖🩲। डेटा साइंस में, क्लस्टरिंग तब होती है जब उपयोगकर्ता की प्राथमिकताओं का विश्लेषण करने या किसी लेबल रहित डेटा सेट की विशेषताओं को निर्धारित करने की कोशिश की जाती है। क्लस्टरिंग, एक तरह से, अराजकता को समझने में मदद करती है, जैसे मोजे की दराज।\n", + "\n", + "पेशेवर सेटिंग में, क्लस्टरिंग का उपयोग बाजार विभाजन, यह निर्धारित करने के लिए कि कौन सी आयु वर्ग कौन सी वस्तुएं खरीदती हैं, जैसे चीजों को निर्धारित करने के लिए किया जा सकता है। एक अन्य उपयोग अनियमितता का पता लगाना हो सकता है, जैसे कि क्रेडिट कार्ड लेनदेन के डेटा सेट से धोखाधड़ी का पता लगाना। या आप इसे मेडिकल स्कैन के बैच में ट्यूमर का पता लगाने के लिए उपयोग कर सकते हैं।\n", + "\n", + "✅ एक मिनट सोचें कि आपने बैंकिंग, ई-कॉमर्स, या व्यवसाय सेटिंग में 'क्लस्टरिंग' को 'वास्तविक जीवन' में कैसे देखा होगा।\n", + "\n", + "> 🎓 दिलचस्प बात यह है कि क्लस्टर विश्लेषण की शुरुआत 1930 के दशक में मानवशास्त्र और मनोविज्ञान के क्षेत्रों में हुई थी। क्या आप कल्पना कर सकते हैं कि इसका उपयोग कैसे किया गया होगा?\n", + "\n", + "इसके अलावा, आप इसे खोज परिणामों को समूहित करने के लिए उपयोग कर सकते हैं - जैसे शॉपिंग लिंक, छवियां, या समीक्षाएं। क्लस्टरिंग तब उपयोगी होती है जब आपके पास एक बड़ा डेटा सेट होता है जिसे आप कम करना चाहते हैं और जिस पर आप अधिक गहन विश्लेषण करना चाहते हैं, इसलिए इस तकनीक का उपयोग अन्य मॉडलों के निर्माण से पहले डेटा के बारे में जानने के लिए किया जा सकता है।\n", + "\n", + "✅ एक बार जब आपका डेटा क्लस्टर्स में व्यवस्थित हो जाता है, तो आप इसे एक क्लस्टर आईडी असाइन करते हैं, और यह तकनीक डेटा सेट की गोपनीयता बनाए रखने में उपयोगी हो सकती है; आप क्लस्टर के अधिक खुलासा करने वाले पहचान योग्य डेटा के बजाय क्लस्टर आईडी द्वारा डेटा पॉइंट का उल्लेख कर सकते हैं। क्या आप अन्य कारणों के बारे में सोच सकते हैं कि आप इसे पहचानने के लिए क्लस्टर आईडी का उपयोग क्यों करेंगे?\n", + "\n", + "### क्लस्टरिंग के साथ शुरुआत\n", + "\n", + "> 🎓 हम क्लस्टर्स कैसे बनाते हैं, इसका बहुत कुछ इस बात से लेना-देना है कि हम डेटा पॉइंट्स को समूहों में कैसे इकट्ठा करते हैं। आइए कुछ शब्दावली को समझें:\n", + ">\n", + "> 🎓 ['ट्रांसडक्टिव' बनाम 'इंडक्टिव'](https://wikipedia.org/wiki/Transduction_(machine_learning))\n", + ">\n", + "> ट्रांसडक्टिव इनफेरेंस उन देखे गए प्रशिक्षण मामलों से प्राप्त होता है जो विशिष्ट परीक्षण मामलों से मेल खाते हैं। इंडक्टिव इनफेरेंस उन प्रशिक्षण मामलों से प्राप्त होता है जो सामान्य नियमों से मेल खाते हैं, जिन्हें केवल बाद में परीक्षण मामलों पर लागू किया जाता है।\n", + ">\n", + "> उदाहरण: कल्पना करें कि आपके पास एक डेटा सेट है जो केवल आंशिक रूप से लेबल किया गया है। कुछ चीजें 'रिकॉर्ड्स' हैं, कुछ 'सीडी' हैं, और कुछ खाली हैं। आपका काम खाली स्थानों के लिए लेबल प्रदान करना है। यदि आप इंडक्टिव दृष्टिकोण चुनते हैं, तो आप 'रिकॉर्ड्स' और 'सीडी' की तलाश में एक मॉडल को प्रशिक्षित करेंगे और उन लेबल्स को अपने लेबल रहित डेटा पर लागू करेंगे। यह दृष्टिकोण उन चीजों को वर्गीकृत करने में कठिनाई करेगा जो वास्तव में 'कैसेट्स' हैं। दूसरी ओर, ट्रांसडक्टिव दृष्टिकोण इस अज्ञात डेटा को अधिक प्रभावी ढंग से संभालता है क्योंकि यह समान वस्तुओं को एक साथ समूहित करने और फिर समूह को एक लेबल लागू करने का काम करता है। इस मामले में, क्लस्टर्स 'गोल संगीत चीजें' और 'चौकोर संगीत चीजें' को दर्शा सकते हैं।\n", + ">\n", + "> 🎓 ['नॉन-फ्लैट' बनाम 'फ्लैट' ज्योमेट्री](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering)\n", + ">\n", + "> गणितीय शब्दावली से लिया गया, नॉन-फ्लैट बनाम फ्लैट ज्योमेट्री पॉइंट्स के बीच की दूरी को 'फ्लैट' ([यूक्लिडियन](https://wikipedia.org/wiki/Euclidean_geometry)) या 'नॉन-फ्लैट' (नॉन-यूक्लिडियन) ज्योमेट्रिकल तरीकों से मापने को संदर्भित करता है।\n", + ">\n", + "> 'फ्लैट' इस संदर्भ में यूक्लिडियन ज्योमेट्री (जिसके कुछ हिस्से 'प्लेन' ज्योमेट्री के रूप में पढ़ाए जाते हैं) को संदर्भित करता है, और नॉन-फ्लैट नॉन-यूक्लिडियन ज्योमेट्री को संदर्भित करता है। मशीन लर्निंग में ज्योमेट्री का क्या काम? खैर, गणित में जड़ें होने के कारण, पॉइंट्स के बीच की दूरी को मापने का एक सामान्य तरीका होना चाहिए, और इसे 'फ्लैट' या 'नॉन-फ्लैट' तरीके से किया जा सकता है, डेटा की प्रकृति के आधार पर। [यूक्लिडियन डिस्टेंस](https://wikipedia.org/wiki/Euclidean_distance) को दो पॉइंट्स के बीच की लाइन सेगमेंट की लंबाई के रूप में मापा जाता है। [नॉन-यूक्लिडियन डिस्टेंस](https://wikipedia.org/wiki/Non-Euclidean_geometry) को एक वक्र के साथ मापा जाता है। यदि आपका डेटा, विज़ुअलाइज़ किया गया, एक प्लेन पर मौजूद नहीं लगता है, तो आपको इसे संभालने के लिए एक विशेष एल्गोरिदम का उपयोग करने की आवश्यकता हो सकती है।\n", + "\n", + "

                                \n", + " \n", + "

                                डासानी मडिपल्ली द्वारा इन्फोग्राफिक
                                \n", + "\n", + "\n", + "\n", + "> 🎓 ['डिस्टेंस'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf)\n", + ">\n", + "> क्लस्टर्स को उनके डिस्टेंस मैट्रिक्स द्वारा परिभाषित किया जाता है, जैसे कि पॉइंट्स के बीच की दूरी। इस दूरी को कुछ तरीकों से मापा जा सकता है। यूक्लिडियन क्लस्टर्स पॉइंट वैल्यूज के औसत द्वारा परिभाषित होते हैं, और इनमें एक 'सेंट्रॉइड' या केंद्र बिंदु होता है। दूरी को उस सेंट्रॉइड से दूरी के रूप में मापा जाता है। नॉन-यूक्लिडियन डिस्टेंस 'क्लस्ट्रॉइड्स' को संदर्भित करता है, जो अन्य पॉइंट्स के सबसे करीब होता है। क्लस्ट्रॉइड्स को विभिन्न तरीकों से परिभाषित किया जा सकता है।\n", + ">\n", + "> 🎓 ['कंस्ट्रेन्ड'](https://wikipedia.org/wiki/Constrained_clustering)\n", + ">\n", + "> [कंस्ट्रेन्ड क्लस्टरिंग](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf) इस अनसुपरवाइज्ड विधि में 'सेमी-सुपरवाइज्ड' लर्निंग को पेश करती है। पॉइंट्स के बीच के संबंधों को 'कैनॉट लिंक' या 'मस्ट-लिंक' के रूप में चिह्नित किया जाता है ताकि डेटा सेट पर कुछ नियम लागू किए जा सकें।\n", + ">\n", + "> उदाहरण: यदि किसी एल्गोरिदम को लेबल रहित या सेमी-लेबल्ड डेटा के बैच पर स्वतंत्र रूप से छोड़ दिया जाता है, तो यह जो क्लस्टर्स उत्पन्न करता है, वे खराब गुणवत्ता के हो सकते हैं। ऊपर दिए गए उदाहरण में, क्लस्टर्स 'गोल संगीत चीजें', 'चौकोर संगीत चीजें', 'त्रिकोणीय चीजें', और 'कुकीज़' को समूहित कर सकते हैं। यदि कुछ बाधाएं दी जाती हैं, या पालन करने के लिए नियम (\"आइटम प्लास्टिक का बना होना चाहिए\", \"आइटम को संगीत उत्पन्न करने में सक्षम होना चाहिए\") तो यह एल्गोरिदम को बेहतर विकल्प बनाने में मदद कर सकता है।\n", + ">\n", + "> 🎓 'डेंसिटी'\n", + ">\n", + "> डेटा जो 'शोरयुक्त' है, उसे 'घना' माना जाता है। इसके प्रत्येक क्लस्टर्स में पॉइंट्स के बीच की दूरी, जांच करने पर, अधिक या कम घनी, या 'भीड़भाड़ वाली' साबित हो सकती है, और इस प्रकार इस डेटा को उपयुक्त क्लस्टरिंग विधि के साथ विश्लेषण करने की आवश्यकता होती है। [यह लेख](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html) दिखाता है कि शोरयुक्त डेटा सेट के साथ असमान क्लस्टर डेंसिटी का पता लगाने के लिए K-Means क्लस्टरिंग बनाम HDBSCAN एल्गोरिदम का उपयोग कैसे किया जाता है।\n", + "\n", + "क्लस्टरिंग तकनीकों की अपनी समझ को इस [लर्न मॉड्यूल](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott) में गहराई से बढ़ाएं।\n", + "\n", + "### **क्लस्टरिंग एल्गोरिदम**\n", + "\n", + "100 से अधिक क्लस्टरिंग एल्गोरिदम हैं, और उनका उपयोग डेटा की प्रकृति पर निर्भर करता है। आइए कुछ प्रमुख एल्गोरिदम पर चर्चा करें:\n", + "\n", + "- **हायरार्किकल क्लस्टरिंग**। यदि किसी वस्तु को उसके पास की वस्तु की निकटता के आधार पर वर्गीकृत किया जाता है, बजाय दूर की वस्तु के, तो क्लस्टर्स उनके सदस्यों की दूरी के आधार पर बनते हैं। हायरार्किकल क्लस्टरिंग की विशेषता दो क्लस्टर्स को बार-बार मिलाने से होती है।\n", + "\n", + "

                                \n", + " \n", + "

                                डासानी मडिपल्ली द्वारा इन्फोग्राफिक
                                \n", + "\n", + "\n", + "\n", + "- **सेंट्रॉइड क्लस्टरिंग**। यह लोकप्रिय एल्गोरिदम 'k' या बनने वाले क्लस्टर्स की संख्या चुनने की आवश्यकता करता है, जिसके बाद एल्गोरिदम क्लस्टर के केंद्र बिंदु को निर्धारित करता है और उस बिंदु के चारों ओर डेटा इकट्ठा करता है। [K-means क्लस्टरिंग](https://wikipedia.org/wiki/K-means_clustering) सेंट्रॉइड क्लस्टरिंग का एक लोकप्रिय संस्करण है जो डेटा सेट को पूर्व-निर्धारित K समूहों में विभाजित करता है। केंद्र निकटतम औसत द्वारा निर्धारित किया जाता है, इसलिए इसका नाम। क्लस्टर से वर्ग दूरी को न्यूनतम किया जाता है।\n", + "\n", + "

                                \n", + " \n", + "

                                डासानी मडिपल्ली द्वारा इन्फोग्राफिक
                                \n", + "\n", + "\n", + "\n", + "- **डिस्ट्रिब्यूशन-आधारित क्लस्टरिंग**। सांख्यिकीय मॉडलिंग पर आधारित, डिस्ट्रिब्यूशन-आधारित क्लस्टरिंग इस बात की संभावना निर्धारित करने पर केंद्रित है कि कोई डेटा पॉइंट किसी क्लस्टर से संबंधित है, और इसे उसी के अनुसार असाइन करता है। Gaussian मिश्रण विधियां इस प्रकार से संबंधित हैं।\n", + "\n", + "- **डेंसिटी-आधारित क्लस्टरिंग**। डेटा पॉइंट्स को उनकी डेंसिटी, या उनके एक-दूसरे के चारों ओर समूह बनाने के आधार पर क्लस्टर्स में असाइन किया जाता है। समूह से दूर डेटा पॉइंट्स को आउटलीयर या शोर माना जाता है। DBSCAN, Mean-shift और OPTICS इस प्रकार की क्लस्टरिंग से संबंधित हैं।\n", + "\n", + "- **ग्रिड-आधारित क्लस्टरिंग**। बहु-आयामी डेटा सेट के लिए, एक ग्रिड बनाया जाता है और डेटा को ग्रिड की कोशिकाओं के बीच विभाजित किया जाता है, जिससे क्लस्टर्स बनते हैं।\n", + "\n", + "क्लस्टरिंग के बारे में सीखने का सबसे अच्छा तरीका इसे खुद आजमाना है, और यही आप इस अभ्यास में करेंगे।\n", + "\n", + "इस मॉड्यूल को पूरा करने के लिए हमें कुछ पैकेजों की आवश्यकता होगी। आप उन्हें इस प्रकार इंस्टॉल कर सकते हैं: `install.packages(c('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork'))`\n", + "\n", + "वैकल्पिक रूप से, नीचे दिया गया स्क्रिप्ट जांचता है कि क्या आपके पास इस मॉड्यूल को पूरा करने के लिए आवश्यक पैकेज हैं और यदि कुछ गायब हैं तो उन्हें आपके लिए इंस्टॉल करता है।\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork')\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## अभ्यास - अपने डेटा को क्लस्टर करें\n", + "\n", + "क्लस्टरिंग एक ऐसी तकनीक है जो उचित विज़ुअलाइज़ेशन से बहुत लाभान्वित होती है, तो चलिए अपने म्यूज़िक डेटा को विज़ुअलाइज़ करके शुरुआत करते हैं। यह अभ्यास हमें यह तय करने में मदद करेगा कि इस डेटा की प्रकृति के लिए क्लस्टरिंग के कौन से तरीके का सबसे प्रभावी रूप से उपयोग किया जाना चाहिए।\n", + "\n", + "चलिए डेटा को इंपोर्ट करके शुरुआत करते हैं।\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core tidyverse and make it available in your current R session\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# Import the data into a tibble\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\")\r\n", + "\r\n", + "# View the first 5 rows of the data set\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "कभी-कभी, हम अपने डेटा के बारे में थोड़ी अधिक जानकारी प्राप्त करना चाह सकते हैं। हम [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) फ़ंक्शन का उपयोग करके `डेटा` और `उसकी संरचना` पर एक नज़र डाल सकते हैं:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Glimpse into the data set\r\n", + "df %>% \r\n", + " glimpse()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "शानदार काम!💪\n", + "\n", + "हम देख सकते हैं कि `glimpse()` आपको कुल पंक्तियों (observations) और स्तंभों (variables) की संख्या दिखाएगा, फिर प्रत्येक वेरिएबल के नाम के बाद, पंक्ति में प्रत्येक वेरिएबल के पहले कुछ प्रविष्टियों को। इसके अलावा, वेरिएबल का *डेटा प्रकार* प्रत्येक वेरिएबल के नाम के तुरंत बाद `< >` के अंदर दिया जाता है।\n", + "\n", + "`DataExplorer::introduce()` इस जानकारी को व्यवस्थित रूप से संक्षेप में प्रस्तुत कर सकता है:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe basic information for our data\r\n", + "df %>% \r\n", + " introduce()\r\n", + "\r\n", + "# A visual display of the same\r\n", + "df %>% \r\n", + " plot_intro()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "बहुत बढ़िया! हमने अभी-अभी सीखा कि हमारे डेटा में कोई भी मान गायब नहीं है।\n", + "\n", + "जब हम इस पर काम कर रहे हैं, तो हम सामान्य केंद्रीय प्रवृत्ति सांख्यिकी (जैसे [औसत](https://en.wikipedia.org/wiki/Arithmetic_mean) और [मध्यिका](https://en.wikipedia.org/wiki/Median)) और प्रसार के माप (जैसे [मानक विचलन](https://en.wikipedia.org/wiki/Standard_deviation)) का पता लगा सकते हैं `summarytools::descr()` का उपयोग करके।\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe common statistics\r\n", + "df %>% \r\n", + " descr(stats = \"common\")\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "आइए डेटा के सामान्य मानों पर नज़र डालते हैं। ध्यान दें कि लोकप्रियता `0` हो सकती है, जो उन गानों को दिखाती है जिनकी कोई रैंकिंग नहीं है। हम इन्हें जल्द ही हटा देंगे।\n", + "\n", + "> 🤔 अगर हम क्लस्टरिंग पर काम कर रहे हैं, जो एक अनसुपरवाइज्ड विधि है और लेबल वाले डेटा की आवश्यकता नहीं होती, तो हम यह डेटा लेबल्स के साथ क्यों दिखा रहे हैं? डेटा एक्सप्लोरेशन चरण में ये उपयोगी होते हैं, लेकिन क्लस्टरिंग एल्गोरिदम के काम करने के लिए ये आवश्यक नहीं हैं।\n", + "\n", + "### 1. लोकप्रिय शैलियों का अन्वेषण करें\n", + "\n", + "आइए आगे बढ़ते हैं और यह पता लगाते हैं कि सबसे लोकप्रिय शैलियां 🎶 कौन सी हैं, इसके उदाहरणों की गिनती करके।\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Popular genres\r\n", + "top_genres <- df %>% \r\n", + " count(artist_top_genre, sort = TRUE) %>% \r\n", + "# Encode to categorical and reorder the according to count\r\n", + " mutate(artist_top_genre = factor(artist_top_genre) %>% fct_inorder())\r\n", + "\r\n", + "# Print the top genres\r\n", + "top_genres\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "यह अच्छा रहा! कहते हैं कि एक तस्वीर हजार पंक्तियों के डेटा फ्रेम के बराबर होती है (वैसे, ऐसा कोई नहीं कहता 😅)। लेकिन आप समझ ही गए होंगे, है ना?\n", + "\n", + "श्रेणीबद्ध डेटा (character या factor वेरिएबल्स) को विज़ुअलाइज़ करने का एक तरीका बारप्लॉट्स का उपयोग करना है। चलिए, शीर्ष 10 शैलियों (genres) का एक बारप्लॉट बनाते हैं:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Change the default gray theme\r\n", + "theme_set(theme_light())\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "अब यह पहचानना काफी आसान हो गया है कि हमारे पास `missing` शैलियां हैं 🧐!\n", + "\n", + "> एक अच्छी विज़ुअलाइज़ेशन आपको ऐसी चीजें दिखाएगी जिनकी आपने उम्मीद नहीं की थी, या डेटा के बारे में नए सवाल उठाएगी - हैडली विकहम और गैरेट ग्रोलमंड, [R For Data Science](https://r4ds.had.co.nz/introduction.html)\n", + "\n", + "ध्यान दें, जब शीर्ष शैली को `Missing` के रूप में वर्णित किया जाता है, तो इसका मतलब है कि Spotify ने इसे वर्गीकृत नहीं किया है, तो चलिए इसे हटा देते हैं।\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " filter(artist_top_genre != \"Missing\") %>% \r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "थोड़े डेटा अन्वेषण से, हम सीखते हैं कि शीर्ष तीन शैलियां इस डेटा सेट पर हावी हैं। चलिए `afro dancehall`, `afropop`, और `nigerian pop` पर ध्यान केंद्रित करते हैं, और साथ ही डेटा सेट को फ़िल्टर करते हैं ताकि 0 लोकप्रियता मान वाले किसी भी चीज़ को हटा दिया जाए (जिसका मतलब है कि इसे डेटा सेट में लोकप्रियता के साथ वर्गीकृत नहीं किया गया था और हमारे उद्देश्यों के लिए इसे शोर माना जा सकता है):\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "nigerian_songs <- df %>% \r\n", + " # Concentrate on top 3 genres\r\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \r\n", + " # Remove unclassified observations\r\n", + " filter(popularity != 0)\r\n", + "\r\n", + "\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "nigerian_songs %>%\r\n", + " count(artist_top_genre) %>%\r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "आइए देखें कि हमारे डेटा सेट में संख्यात्मक चर के बीच कोई स्पष्ट रेखीय संबंध है या नहीं। इस संबंध को गणितीय रूप से [सहसंबंध सांख्यिकी](https://en.wikipedia.org/wiki/Correlation) द्वारा मापा जाता है।\n", + "\n", + "सहसंबंध सांख्यिकी -1 और 1 के बीच का एक मान होता है, जो संबंध की ताकत को दर्शाता है। 0 से ऊपर के मान *सकारात्मक* सहसंबंध को इंगित करते हैं (एक चर के उच्च मान आमतौर पर दूसरे चर के उच्च मान के साथ मेल खाते हैं), जबकि 0 से नीचे के मान *नकारात्मक* सहसंबंध को इंगित करते हैं (एक चर के उच्च मान आमतौर पर दूसरे चर के निम्न मान के साथ मेल खाते हैं)।\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Narrow down to numeric variables and fid correlation\r\n", + "corr_mat <- nigerian_songs %>% \r\n", + " select(where(is.numeric)) %>% \r\n", + " cor()\r\n", + "\r\n", + "# Visualize correlation matrix\r\n", + "corrplot(corr_mat, order = 'AOE', col = c('white', 'black'), bg = 'gold2') \r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "डेटा में मज़बूत सहसंबंध नहीं है, सिवाय `energy` और `loudness` के बीच, जो समझ में आता है क्योंकि तेज़ संगीत आमतौर पर काफी ऊर्जावान होता है। `Popularity` का `release date` के साथ एक संबंध है, जो भी समझ में आता है, क्योंकि हाल के गाने शायद अधिक लोकप्रिय होते हैं। लंबाई और ऊर्जा के बीच भी एक सहसंबंध दिखाई देता है।\n", + "\n", + "यह देखना दिलचस्प होगा कि क्लस्टरिंग एल्गोरिदम इस डेटा से क्या निष्कर्ष निकाल सकता है!\n", + "\n", + "> 🎓 ध्यान दें कि सहसंबंध का मतलब कारण नहीं होता! हमारे पास सहसंबंध का प्रमाण है लेकिन कारण का कोई प्रमाण नहीं है। एक [मज़ेदार वेबसाइट](https://tylervigen.com/spurious-correlations) में कुछ विज़ुअल्स हैं जो इस बात को उजागर करते हैं।\n", + "\n", + "### 2. डेटा वितरण का अन्वेषण करें\n", + "\n", + "आइए कुछ और सूक्ष्म सवाल पूछते हैं। क्या लोकप्रियता के आधार पर उनके डांस करने की क्षमता की धारणा में शैलियाँ (genres) महत्वपूर्ण रूप से अलग हैं? आइए हमारे शीर्ष तीन शैलियों के डेटा वितरण को लोकप्रियता और डांस करने की क्षमता के लिए दिए गए x और y अक्ष पर [घनत्व प्लॉट्स](https://www.khanacademy.org/math/ap-statistics/density-curves-normal-distribution-ap/density-curves/v/density-curves) का उपयोग करके जांचें।\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Perform 2D kernel density estimation\r\n", + "density_estimate_2d <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre)) +\r\n", + " geom_density_2d(bins = 5, size = 1) +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " xlim(-20, 80) +\r\n", + " ylim(0, 1.2)\r\n", + "\r\n", + "# Density plot based on the popularity\r\n", + "density_estimate_pop <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " theme(legend.position = \"none\")\r\n", + "\r\n", + "# Density plot based on the danceability\r\n", + "density_estimate_dance <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = danceability, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\")\r\n", + "\r\n", + "\r\n", + "# Patch everything together\r\n", + "library(patchwork)\r\n", + "density_estimate_2d / (density_estimate_pop + density_estimate_dance)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "हम देखते हैं कि कुछ समकेंद्रित वृत्त एक पंक्ति में आते हैं, चाहे शैली कोई भी हो। क्या ऐसा हो सकता है कि इस शैली के लिए नाइजीरियाई पसंद एक निश्चित स्तर की नृत्य क्षमता पर मिलती हो?\n", + "\n", + "सामान्य तौर पर, इन तीन शैलियों की लोकप्रियता और नृत्य क्षमता के मामले में समानता है। इस ढीले-संरेखित डेटा में समूहों को निर्धारित करना एक चुनौती होगी। आइए देखें कि क्या एक स्कैटर प्लॉट इसमें मदद कर सकता है।\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# A scatter plot of popularity and danceability\r\n", + "scatter_plot <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre, shape = artist_top_genre)) +\r\n", + " geom_point(size = 2, alpha = 0.8) +\r\n", + " paletteer::scale_color_paletteer_d(\"futurevisions::mars\")\r\n", + "\r\n", + "# Add a touch of interactivity\r\n", + "ggplotly(scatter_plot)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "एक ही अक्षों का स्कैटरप्लॉट समान अभिसरण पैटर्न दिखाता है।\n", + "\n", + "सामान्यतः, क्लस्टरिंग के लिए, आप स्कैटरप्लॉट्स का उपयोग डेटा के क्लस्टर्स दिखाने के लिए कर सकते हैं, इसलिए इस प्रकार की विज़ुअलाइज़ेशन में महारत हासिल करना बहुत उपयोगी है। अगले पाठ में, हम इस फ़िल्टर किए गए डेटा का उपयोग करेंगे और k-means क्लस्टरिंग का उपयोग करके इस डेटा में समूहों की खोज करेंगे जो दिलचस्प तरीकों से ओवरलैप होते हैं।\n", + "\n", + "## **🚀 चुनौती**\n", + "\n", + "अगले पाठ की तैयारी के लिए, विभिन्न क्लस्टरिंग एल्गोरिदम के बारे में एक चार्ट बनाएं जिन्हें आप प्रोडक्शन वातावरण में खोज सकते हैं और उपयोग कर सकते हैं। क्लस्टरिंग किस प्रकार की समस्याओं को हल करने की कोशिश कर रही है?\n", + "\n", + "## [**पाठ के बाद क्विज़**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/)\n", + "\n", + "## **समीक्षा और स्व-अध्ययन**\n", + "\n", + "जैसा कि हमने सीखा है, क्लस्टरिंग एल्गोरिदम लागू करने से पहले, अपने डेटा सेट की प्रकृति को समझना एक अच्छा विचार है। इस विषय पर अधिक पढ़ें [यहां](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html)\n", + "\n", + "क्लस्टरिंग तकनीकों की अपनी समझ को गहरा करें:\n", + "\n", + "- [Tidymodels और दोस्तों का उपयोग करके क्लस्टरिंग मॉडल को ट्रेन और मूल्यांकन करें](https://rpubs.com/eR_ic/clustering)\n", + "\n", + "- ब्रैडली बोएमके और ब्रैंडन ग्रीनवेल, [*Hands-On Machine Learning with R*](https://bradleyboehmke.github.io/HOML/)*.*\n", + "\n", + "## **असाइनमेंट**\n", + "\n", + "[क्लस्टरिंग के लिए अन्य विज़ुअलाइज़ेशन पर शोध करें](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/assignment.md)\n", + "\n", + "## धन्यवाद:\n", + "\n", + "[जेन लूपर](https://www.twitter.com/jenlooper) इस मॉड्यूल के मूल Python संस्करण को बनाने के लिए ♥️\n", + "\n", + "[`दसानी मडिपल्ली`](https://twitter.com/dasani_decoded) अद्भुत चित्रण बनाने के लिए जो मशीन लर्निंग अवधारणाओं को अधिक व्याख्यात्मक और समझने में आसान बनाते हैं।\n", + "\n", + "खुशहाल सीखना,\n", + "\n", + "[एरिक](https://twitter.com/ericntay), गोल्ड Microsoft Learn स्टूडेंट एंबेसडर।\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "99c36449cad3708a435f6798cfa39972", + "translation_date": "2025-09-04T02:08:58+00:00", + "source_file": "5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/hi/5-Clustering/1-Visualize/solution/notebook.ipynb b/translations/hi/5-Clustering/1-Visualize/solution/notebook.ipynb new file mode 100644 index 000000000..9bd250309 --- /dev/null +++ b/translations/hi/5-Clustering/1-Visualize/solution/notebook.ipynb @@ -0,0 +1,818 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Defaulting to user installation because normal site-packages is not writeable\n", + "Requirement already satisfied: seaborn in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (0.11.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (3.5.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.21.4)\n", + "Requirement already satisfied: pandas>=0.23 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.3.4)\n", + "Requirement already satisfied: scipy>=1.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.7.2)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (4.28.1)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.4.7)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (1.3.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (8.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (0.11.0)\n", + "Requirement already satisfied: packaging>=20.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (21.2)\n", + "Requirement already satisfied: setuptools-scm>=4 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (6.3.2)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.3 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from pandas>=0.23->seaborn) (2021.3)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from python-dateutil>=2.7->matplotlib>=2.2->seaborn) (1.16.0)\n", + "Requirement already satisfied: tomli>=1.0.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (1.2.2)\n", + "Requirement already satisfied: setuptools in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (59.1.1)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                                1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                                3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                \n", + "
                                " + ], + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "डेटाफ्रेम के बारे में जानकारी प्राप्त करें\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 530 entries, 0 to 529\n", + "Data columns (total 16 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 530 non-null object \n", + " 1 album 530 non-null object \n", + " 2 artist 530 non-null object \n", + " 3 artist_top_genre 530 non-null object \n", + " 4 release_date 530 non-null int64 \n", + " 5 length 530 non-null int64 \n", + " 6 popularity 530 non-null int64 \n", + " 7 danceability 530 non-null float64\n", + " 8 acousticness 530 non-null float64\n", + " 9 energy 530 non-null float64\n", + " 10 instrumentalness 530 non-null float64\n", + " 11 liveness 530 non-null float64\n", + " 12 loudness 530 non-null float64\n", + " 13 speechiness 530 non-null float64\n", + " 14 tempo 530 non-null float64\n", + " 15 time_signature 530 non-null int64 \n", + "dtypes: float64(8), int64(4), object(4)\n", + "memory usage: 66.4+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "name 0\n", + "album 0\n", + "artist 0\n", + "artist_top_genre 0\n", + "release_date 0\n", + "length 0\n", + "popularity 0\n", + "danceability 0\n", + "acousticness 0\n", + "energy 0\n", + "instrumentalness 0\n", + "liveness 0\n", + "loudness 0\n", + "speechiness 0\n", + "tempo 0\n", + "time_signature 0\n", + "dtype: int64" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "डेटा के सामान्य मानों को देखें। ध्यान दें कि लोकप्रियता '0' हो सकती है - और उस मान के साथ कई पंक्तियाँ हैं।\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                release_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                count530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000
                                mean2015.390566222298.16981117.5075470.7416190.2654120.7606230.0163050.147308-4.9530110.130748116.4878643.986792
                                std3.13168839696.82225918.9922120.1175220.2083420.1485330.0903210.1235882.4641860.09293923.5186010.333701
                                min1998.00000089488.0000000.0000000.2550000.0006650.1110000.0000000.028300-19.3620000.02780061.6950003.000000
                                25%2014.000000199305.0000000.0000000.6810000.0895250.6690000.0000000.075650-6.2987500.059100102.9612504.000000
                                50%2016.000000218509.00000013.0000000.7610000.2205000.7845000.0000040.103500-4.5585000.097950112.7145004.000000
                                75%2017.000000242098.50000031.0000000.8295000.4030000.8757500.0002340.164000-3.3310000.177000125.0392504.000000
                                max2020.000000511738.00000073.0000000.9660000.9540000.9950000.9100000.8110000.5820000.514000206.0070005.000000
                                \n", + "
                                " + ], + "text/plain": [ + " release_date length popularity danceability acousticness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 2015.390566 222298.169811 17.507547 0.741619 0.265412 \n", + "std 3.131688 39696.822259 18.992212 0.117522 0.208342 \n", + "min 1998.000000 89488.000000 0.000000 0.255000 0.000665 \n", + "25% 2014.000000 199305.000000 0.000000 0.681000 0.089525 \n", + "50% 2016.000000 218509.000000 13.000000 0.761000 0.220500 \n", + "75% 2017.000000 242098.500000 31.000000 0.829500 0.403000 \n", + "max 2020.000000 511738.000000 73.000000 0.966000 0.954000 \n", + "\n", + " energy instrumentalness liveness loudness speechiness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 0.760623 0.016305 0.147308 -4.953011 0.130748 \n", + "std 0.148533 0.090321 0.123588 2.464186 0.092939 \n", + "min 0.111000 0.000000 0.028300 -19.362000 0.027800 \n", + "25% 0.669000 0.000000 0.075650 -6.298750 0.059100 \n", + "50% 0.784500 0.000004 0.103500 -4.558500 0.097950 \n", + "75% 0.875750 0.000234 0.164000 -3.331000 0.177000 \n", + "max 0.995000 0.910000 0.811000 0.582000 0.514000 \n", + "\n", + " tempo time_signature \n", + "count 530.000000 530.000000 \n", + "mean 116.487864 3.986792 \n", + "std 23.518601 0.333701 \n", + "min 61.695000 3.000000 \n", + "25% 102.961250 4.000000 \n", + "50% 112.714500 4.000000 \n", + "75% 125.039250 4.000000 \n", + "max 206.007000 5.000000 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsIElEQVR4nO3debyt9dz/8ddbpzI20EETGRKZwpHMGVJyU6ZUJN25C0Uh81CmW4RkCLmLTCXTLXT/lFA3bkPSQETRdKSOBkMpOn1+f3yvzXKcOtN3t9Y++/V8PPbjrH2ta639qWvvtd7rO6aqkCRJ0oq72bgLkCRJWlkYrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJ0ybhzyNf1yf8ZeT7Z4+7PknqLS4QKummkHAe8PwqvjHuWpZHwpwqrht3HZImmy1Wkm5yCasnvDfht8PXexNWH+7bMuGihNcm/D7hvBtr3Uq4S8LJCX9K+EbCBxM+NXL/FgnfS7gy4fSELUfu+3bCWxK+Ozz++IR1hvs2SqiE3RMuAL45HP/3hJ8nXJHw9YQ7D8eTcHDCpQl/TDgz4T7T839Q0qQyWEkah9cBWwCbAfcHNgdeP3L/HYF1gPWBXYHDEja5gef6DPBD4HbAAcAuU3ckrA98DXgrcFtgP+ALCXNHHr8zsBtwe2C14ZxRjwbuBWydsB3wWuBpwFzgf4GjhvOeADwKuAewJrADcNkS/j9IWskYrCSNw7OBN1dxaRULgDcxEogGb6ji2ipOooWjHRZ9koQ7AQ8G3ljFX6v4DnDsyCnPAY6r4rgqrq/iBOAUYNuRcz5WxS+r+AtwDC3sjTqgiquG+18AvL2Knw/dgv8JbDa0Wv0NuA1wTyDDORcv+/8aSTOZwUrSOKwHnD/y/fnDsSlXVHHVjdw/+jyXV3H1yLELR27fGXjm0A14ZcKVwCOAdUfO+d3I7auBWy/yMxZ9vkNGnutyIMD6VXwT+ADwQeDShMMS1lhMzZJWYgYrSePwW1pImXKn4diUtRNudSP3T7kYuG3CLUeObThy+0Lgk1WsNfJ1qyoOXIZaR2f4XAjsucjz3aKK7wFU8b4qHgRsSusSfMUy/BxJKwGDlaRxOAp4fcLcYbD4G+EfA84Hb0pYLeGRwL8Bn1v0Sao4n9a1d8Bw7kOBJ4+c8ingyQlbJ6yScPNhcPwGy1n3h4HXJNwbIGHNhGcOtx+c8JCEVYGrgGuA65fz50iaoeaMuwBJs9JbgTWAM4bvPzccm/I74ApaK9XVwAuq+MUNPNezgY/TBor/EPgssApAFRcOA87fSQtzC4dzXrg8RVfxpYRbA0cP46r+AJww1L8GcDBwV1qo+jpw0PL8HEkzl+tYSZoow3IIn6pavlalhM8Cv6hi/66FSdJSsCtQ0ow2dMHdLeFmCdsA2wH/PeayJM1SdgVKmunuCHyRto7VRcALq/jJeEuSNFvZFShJktSJXYGSJEmdGKwkSZI6mYgxVuuss05ttNFG4y5DkiRpiX784x//vqrmLu6+iQhWG220Eaeccsq4y5AkSVqiJOff0H12BUqSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpkz7gKW1YNe8YlxlzAr/Pig5467BEmSZhxbrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHWyxGCV5OZJfpjk9CQ/S/Km4fhdkvwgyTlJPptkteH46sP35wz3bzTN/w2SJEkTYWlarK4FHltV9wc2A7ZJsgXwDuDgqro7cAWw+3D+7sAVw/GDh/MkSZJWeksMVtX8efh21eGrgMcCnx+OHwlsP9zebvie4f7HJUmvgiVJkibVUo2xSrJKktOAS4ETgHOBK6vquuGUi4D1h9vrAxcCDPf/Abhdx5olSZIm0lIFq6paWFWbARsAmwP3XNEfnGSPJKckOWXBggUr+nSSJEljt0yzAqvqSuBbwEOBtZLMGe7aAJg/3J4PbAgw3L8mcNlinuuwqppXVfPmzp27fNVLkiRNkKWZFTg3yVrD7VsAWwE/pwWsZwyn7Qp8ebh97PA9w/3frKrqWLMkSdJEmrPkU1gXODLJKrQgdkxVfTXJWcDRSd4K/AQ4fDj/cOCTSc4BLgd2nIa6JUmSJs4Sg1VVnQE8YDHHf00bb7Xo8WuAZ3apTpIkaQZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKmTJQarJBsm+VaSs5L8LMk+w/EDksxPctrwte3IY16T5JwkZyfZejr/AyRJkibFnKU45zrg5VV1apLbAD9OcsJw38FV9a7Rk5NsCuwI3BtYD/hGkntU1cKehUuSJE2aJbZYVdXFVXXqcPtPwM+B9W/kIdsBR1fVtVX1G+AcYPMexUqSJE2yZRpjlWQj4AHAD4ZDeyc5I8kRSdYejq0PXDjysItYTBBLskeSU5KcsmDBgmWvXJIkacIsdbBKcmvgC8C+VfVH4EPA3YDNgIuBdy/LD66qw6pqXlXNmzt37rI8VJIkaSItVbBKsiotVH26qr4IUFWXVNXCqroe+Cj/6O6bD2w48vANhmOSJEkrtaWZFRjgcODnVfWekePrjpz2VOCnw+1jgR2TrJ7kLsDGwA/7lSxJkjSZlmZW4MOBXYAzk5w2HHstsFOSzYACzgP2BKiqnyU5BjiLNqNwL2cESpKk2WCJwaqqvgNkMXcddyOPeRvwthWoS5IkacZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktTJEoNVkg2TfCvJWUl+lmSf4fhtk5yQ5FfDv2sPx5PkfUnOSXJGkgdO93+EJEnSJFiaFqvrgJdX1abAFsBeSTYFXg2cWFUbAycO3wM8Edh4+NoD+FD3qiVJkibQEoNVVV1cVacOt/8E/BxYH9gOOHI47Uhg++H2dsAnqvk+sFaSdXsXLkmSNGmWaYxVko2ABwA/AO5QVRcPd/0OuMNwe33gwpGHXTQcW/S59khySpJTFixYsKx1S5IkTZylDlZJbg18Adi3qv44el9VFVDL8oOr6rCqmldV8+bOnbssD5UkSZpISxWskqxKC1WfrqovDocvmeriG/69dDg+H9hw5OEbDMckSZJWakszKzDA4cDPq+o9I3cdC+w63N4V+PLI8ecOswO3AP4w0mUoSZK00pqzFOc8HNgFODPJacOx1wIHAsck2R04H9hhuO84YFvgHOBqYLeeBUuSJE2qJQarqvoOkBu4+3GLOb+AvVawLkmSpBnHldclSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInSwxWSY5IcmmSn44cOyDJ/CSnDV/bjtz3miTnJDk7ydbTVbgkSdKkWZoWq48D2yzm+MFVtdnwdRxAkk2BHYF7D485NMkqvYqVJEmaZEsMVlV1MnD5Uj7fdsDRVXVtVf0GOAfYfAXqkyRJmjFWZIzV3knOGLoK1x6OrQ9cOHLORcOxf5FkjySnJDllwYIFK1CGJEnSZFjeYPUh4G7AZsDFwLuX9Qmq6rCqmldV8+bOnbucZUiSJE2O5QpWVXVJVS2squuBj/KP7r75wIYjp24wHJMkSVrpLVewSrLuyLdPBaZmDB4L7Jhk9SR3ATYGfrhiJUqSJM0Mc5Z0QpKjgC2BdZJcBOwPbJlkM6CA84A9AarqZ0mOAc4CrgP2qqqF01K5JEnShFlisKqqnRZz+PAbOf9twNtWpChJkqSZyJXXJUmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJ0sMVkmOSHJpkp+OHLttkhOS/Gr4d+3heJK8L8k5Sc5I8sDpLF6SJGmSLE2L1ceBbRY59mrgxKraGDhx+B7gicDGw9cewIf6lClJkjT5lhisqupk4PJFDm8HHDncPhLYfuT4J6r5PrBWknU71SpJkjTRlneM1R2q6uLh9u+AOwy31wcuHDnvouGYJEnSSm+FB69XVQG1rI9LskeSU5KcsmDBghUtQ5IkaeyWN1hdMtXFN/x76XB8PrDhyHkbDMf+RVUdVlXzqmre3Llzl7MMSZKkybG8wepYYNfh9q7Al0eOP3eYHbgF8IeRLkNJkqSV2pwlnZDkKGBLYJ0kFwH7AwcCxyTZHTgf2GE4/ThgW+Ac4Gpgt2moWZIkaSItMVhV1U43cNfjFnNuAXutaFGSJEkzkSuvS5IkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE6WuNyC1NMFb77vuEtY6d3pjWeOuwRJmrVssZIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpmzIg9Och7wJ2AhcF1VzUtyW+CzwEbAecAOVXXFipUpSZI0+VYoWA0eU1W/H/n+1cCJVXVgklcP37+qw8+RNGYPf//Dx13CSu+7L/7uuEuQtAKmoytwO+DI4faRwPbT8DMkSZImzooGqwKOT/LjJHsMx+5QVRcPt38H3GEFf4YkSdKMsKJdgY+oqvlJbg+ckOQXo3dWVSWpxT1wCGJ7ANzpTndawTIkSZLGb4VarKpq/vDvpcCXgM2BS5KsCzD8e+kNPPawqppXVfPmzp27ImVIkiRNhOUOVkluleQ2U7eBJwA/BY4Fdh1O2xX48ooWKUmSNBOsSFfgHYAvJZl6ns9U1f9L8iPgmCS7A+cDO6x4mZIkSZNvuYNVVf0auP9ijl8GPG5FipIkSZqJXHldkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUyZxxFyBJmn4nPerR4y5hpffok08adwmaALZYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6mTPuAiRJ0o37wMu/Mu4SVnp7v/vJXZ7HFitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqZNqCVZJtkpyd5Jwkr56unyNJkjQppiVYJVkF+CDwRGBTYKckm07Hz5IkSZoU09VitTlwTlX9uqr+ChwNbDdNP0uSJGkipKr6P2nyDGCbqnr+8P0uwEOqau+Rc/YA9hi+3QQ4u3shk2Md4PfjLkLLzes3c3ntZjav38y1sl+7O1fV3MXdMbaV16vqMOCwcf38m1KSU6pq3rjr0PLx+s1cXruZzes3c83mazddXYHzgQ1Hvt9gOCZJkrTSmq5g9SNg4yR3SbIasCNw7DT9LEmSpIkwLV2BVXVdkr2BrwOrAEdU1c+m42fNELOiy3Ml5vWbubx2M5vXb+aatdduWgavS5IkzUauvC5JktSJwUqSJKkTg9UMlOSuSVYfdx2SJOmfGaxmmCRrA/sBrzNcSdINS5Jx16DZx2A1gyTZqKquAL4ArAnsZ7iaPL6YzyxJHpTELbdWMklSVZXk4Ul2T/K4YfkfzQCjr6PD/sMzhsFqhkiyFvCuJK+rqhOBLwLrYbgam6k//CT3HV681wcYXswNVxNs5NrNo22t9YYk2463KvU0/B0+BvgkcHfgvcBLktx9rIVpiaZC8XD7ecATZlIoNljNHFcB7wPunWS/qjoJOAbD1ViMfBp+PO06vAV4S5KXj74oaDIN1+6JwFHA6bRFjV+U5OnjrUy9JNkEeAGwb1W9BtgV2BjYaqyFaYlGQtVewD7A2VX11/FWtfQMVhNu6pN1Vf0N+D7wQWCLRcLV7YE3Gq5uOsMb8wOBVwDbV9Vjgc/RtnKyW2lmmAe8vqoOBfanhay9kmwz3rK0IjIAHgXcDdg6ya2q6lTaNd5jGKuqCZbk9sAutJ1bzkvy9CQvGFqZJ5rBaoIt0hy6JkBVfRd4D/DQkXD1VWA14NZjK3aWGZqlHw08Blh/OPwd4I/Ag8dVl27YYrpnbwk8D6CqLgV+APwV+I8km9+01WlFjVzfdYA5VfVR4G1AaG/OAL8D/jQc0wRJMjfJFsPtbYA7AicABwMfB3YANgMeO6YSl9q0bGmjPkZC1UuAxwGXJTm+qo4eXkP2SfLGqnpzku9U1V/GWe/KbqT7b1Xgb7TWw7WBVyW5oqp+kuQ0YOcktwT+Ypfg5Biu3YNpQfjrwH8C705ySFXtA9yK1uW+ALgr8MOxFatlNlzfbYE3A/OTXAXsTruuuybZmfae986qunyMpWrxVgVen6RoDQU7AF8BzgVOrqpfD1vlzUtys6q6foy13iiD1YRL8gLg6cCzgYNobwS3q6oPJpkD7J7ktr5QTL/hhfvJwFNp3a8H0bpiLwOOTXIErQXroKq6enyVatRIIN4S+DBwKfAU4LO0cYsHJDkJWJfWjfsU4N7jqVbLK8m9gLcCewOnAZ8BPlZVOya5BtgaOLOqvjqc71jICVJVv03yf7ThFR+oqj/QPtz8EP4+iP35wM6THKrArsCJluTmwLW0N/JnALcAngO8PMkLq+pkYE9D1U0jyYOAdwD/Rev22wW4P23W0adorYofqaqvzLTpwSujoWVxKhBvRlv/7UlV9SjgPOAJwDpV9Qza39UjaIF5N+DT46hZK+Ra4Czg1Kq6uqq2B9YdBkD/N62r9/5JdjRUTYbFdM9/lfa3+Pgk+42c93DgzsBzquqsm7DE5WKL1QRZtHmzqq4BPpZkQ2AbYPeqmp/kdNoMpqOq6soxlTsb3Qv4YVV9D/hekmcArwK+BbwbuJjWgnh6Vf10jHXOekluBxyd5ClDF/lDgS2B+9G6Ft4N7As8J8lqVXV8krsAzwSeUVW/GE/lWlojLZGr0BoJLqe1Os6jffABOJqWra9LciStC/9bhqrxW2QM8bNoYx5/VVVfTXI5cMjQnXsu7UPQW2fK+53BakIk2aCqLhpuvxi4C/Bb4DD+MeDyLkmeBFwC7DFTfslmqpEX7qnAexawbZJ5VXVKVX0+bWHJjavqpCSfA64H/jDWwkVVXZbk+cBGSf5aVR9KchvawPTLh+t1MK3b4aLhMb9J8qqqumqctWvpDH+b2wHPpQ1GP4g27vH9SQ4HrqF1C+4znP834MgxlatFjISqvWmtVB8AvpFkt6o6Ksmew7E5wPNm0vtdDO7jNTSFrkEbE/B24AzauI//on26Xoe2/sqewAOBBwHPrqozxlHvbJO2TtVDgStpM1ReQGuZmg+cTZu+/bSp65FklapaOJ5qBf98DZK8DngjcK+Rwa9bAe+rqhOnQvOkD4bVv0pyT9rr5Ntpr5MH0Lrn/0YbT7UB8PmqOn5cNerGJbk/beHW7WnhandgLdoEgw8Pk4BuPtOGuxisJkSShwGH01pFPlhV30yyHq2raQ1gr6q6Osmaw6A+TbOhX/8IWrfRc2n9/+cDc4GH0WYbfbSqjnXMxmQYaWXcArh0CFOvAl4KPLyqzk3yclq42hm40kA18yS5D+3v8uyqeslwbGvatPxHVtU5YyxPN2Bxr5NJ1qGNb9y3qrZMshvtvfAZVfXFcdS5ohy8PkZTA/eGX7bv0RL7vYFtoc2SAA4EFgIfHD5VG6puAknuAbyI1rJxGO0T1e2A+1XV+6pqR1rztKFqggyhampF9aktht5BW/vt5CT3qKp3M0z6MFTNWL+kDZG4V5KNk6xeVV+n7aM6d7ylaXEWGVP16CTbJlm7qn4PrE7rAYC2FuBngZ+MqdQVZovVmCzyS/Z42to582nrIv0Pbcr+R4b770h7z7hkXPXONsOb80toM41eOoy/WQM4CXhWVf1yrAVqsYYB6F+hhd5TktwXWLWqTh1arl4JbFCu+TZjTXX1DrM+Dwf+AnyDtozGUcB2VfWjcdaoG5bkpbQlhM4AtqB1/60B/DttketNgCdX1W/GVuQKMliN2fBLtj1tZtmjaYui3ZU2yPLDVfXesRU3i4x0Id0VuJo2w2gT2ti2C2ifhEPb/PpJVXXh2IrVP1nkQ8qtaAtEXk5ruXgALRx/oqo+leTudhPNXCN/p3OGmX6r0QasP5j2oedrwwxPW5EnUJL7AW+qqqcm2Qf4t6raKm1NxvsA96XNvD77Rp9owtkVOEZJNgW2rqpHA2sCV9DGfPyANqZnlyRrjbHEWWOkC+mrtG6jH9Fm9x1Fm779OdoL+KsMVZNj5I122yT701ovLqBNuz+etv3F12gTPwBm7Kfg2WhkuMTGQ8s9AEOomlNtY94XAafQpuufaqiaHFPXb8TFwOlJPkob8vLE4fh2wFlV9cmZHqrAYHWTWswv2V+BC5K8FrgHbUXZvyXZrqp+CDxsJk0xncmGF+23Av9RVTvTgtSxwK9os46+B3yb1rK4uGupMRhC1VNoe8KdWlXXV9UhVbV3VR1HC1TPA/7fcL4zNmeIkdC8Ne1v8b9pm2TfHf4pXP2NFq5uD7wGlxGaCEOX7VRL8m2HQeqXAxsBdwd2Ha7hc2kzd283tmI7syvwJrJId8V2tDFV3we+RFt4ctPhl+z5tOUVtq+qy8ZW8CwwMtX+wbSVuA8E9q9/rCf2fmBhVe2btn7YU2kDKj9SVdeNq+7ZLsm6wAOq6rhhnM0RwDtprVEPoW1JczBwW2B/4Iiq+vK46tXySzKPNjP6NcAdaBN8zgX+e6pLd2TM1Wq0lfR/O7aCBfy9N+YOVfWtJC+j/U3eHngTrUHhubT3wKLNsN6xqn42rnp7M1jdxIZ1dPagrX10TpLH0nZevz0taO1IW7bflbunSZJbTA1eTvII4FDaIoL7AseNTBp4FrBZVb1m+P4JwOlOIhivtI12zwN+W1VXJvkEbbunWwA/o6319uuq2iPJetX2ILN7aIZJW9D1QGCbqrrbcOyRwE60iT6fm5pEEtchmyhJ3kRbR+y7tOu1A631+OXAx2jbC92b9r538kweqL44Bqub0NCEfTiw09SnquET91q0T2JXAP+3MvQxT6ph/Zv3Av9GG4fzYdoigh8dWq4Ooy0EeiXwLOC1VfW18VSrUUnuDMwdZvutCRwCfBn4Ou1anVZVP0myCW2R3R2r6orxVaxltWgAHrmW5wAvHlqYt6RtSv+fK9sb8kw30n17M+B1tMkjfx2WpyFtfbkv0Qat/3iMpU4rx1hNo8WMw/k9bfDeaklWG34J/0ZbaPK9VfVxQ9X0GULsvrQ1UtYCHklbM+VZSdYfpmjvDPyaNgPwpVX1NcdTjVeaNWifcj+d5PHV1nP7X1pAfmJVfWwIVU8HPg8caqiaWUbelLdKsnuS5w+vhy+mtUa+Z2iZ+jbwSkPVZBkNxUPr4duAE4G1kzw2yS2r6vu0D0NrjLHUaWeL1TRZZEzVOsBVwHXAMcDxVfWh4b6dacssvKzco2xaDcHq9cDdaDul7wmsQhvTdh1wSFVdPL4KdWOSvJ02Q/M64AND6N2F9vfz7WE5hXcOt4+z+2/mGBnv+CTaZJFX0LqMPlNV+w2t/W8FLq+qF9n1N1kWeb/bmfbB9dqqOjzJvsBmtO7b3wBvALZcmYOxsyemwSK/ZC+j9TGfTpvVsjfwuaHb6Tpgc2AXQ9X0mmodTPIdWqD6dlWdNdz3JVrLx6uT/KdjqCZHklWHVl1oszLXoi2g+/wkVNUnk1wPPCnJVVX1yuFxhqoZIG1B15tV22poHdrr4w60WdLnAc9MW51797TlNFaHv7eIaEKMvN+9ENgN+BSwXZKnV9W2aRsq70UbZrHVyhyqwK7AaTHyS/Zg2oC9F9PW0tmX9on7CbSWq/+jDWI/czyVzg4jXQx3pS0a+TTgZkneOrxofxc4jhZ01xpjqRqRtsnu4UkeMxw6nrbe2xa0BXRflGSbqvo0bZzVuVOPNVTNGA8Dbpe2Jc3vaRN7VqPNHnsE8BhgtyQfqKqzy83nJ8owlmrq9hxa6/FLq237tTWwMMn7hwlBnwTeVbNg1wpbrKbJMNvsi7Tupe8nuQXwJ1oT93pTXYGafkOoegptRe5zaGOoPkKbofKSJO+rqv9Ncma5btgkuT3D/plJPgxcT5t2vxNtvNXNaa2MN6uqI8dXppZXVX06ya2BHyV5TlWdkbb5/I+HrsE70hbs/fp4K9Wi0havXg84a2hEuBj4G21ZjCmvoDUoUFUH3cQljo0tVp0sOsC5qr5DS+g7JFlnmN5/Mm0m01ZJ1nZQ9E1jmInyBmBr2oyUF9FaDd9F+4T18rSFBq8cW5H6F1V1MvAo4J7Ab2lbPR1Nu34b0AapH0ZbD0czyNRrX9rin/ehvVZ+dJi1ex6wZpJDaVtJfbmqTvD1cuJsAvxbkiNpYx4voi3E+5Ekmw/nPBS4e5Jbzqbr5+D1DhYZU/U44DbACVV1VZKDaV0X21XVpcMA6lWr6uoxljyrJNmAtrTC2rQBsDvTllm4HPg4sKDctHViDW++7wXuR5u+vQ3w3ao6cQjELtY6Aw1vvofQuo6+P4xH3Zm2dyq0631VVZ00phJ1I4b3so/RFv98bVV9YDi+J//YZuhBwLNrJVr8c2kYrDrKP3bt/hWtOfQdVXVSkoNog6MfVVV+uh6TJG8DLq2qQ9K2UXgJ8PSqOn/MpWkJhtli7wK2qKo/LDKoXTNMkg1pq+NfXlV7jBx/GfAfwDPLRZInzqKzMZM8ENiK9qH1TODoaqvgP5C2vNB1NQtXwneM1QoY+v+vqKprk2xFm+3wiCSvpg3K3G1ozHpFkmtp61UZrMbnTGDP4ZPW04B9DFUzw7C0wkLgl0nu6RpVM951wBm0mWPbVNXUXo7vSbIKTiKZSFOhKsmuwKrABVX1jiQvoPXM/CnJ2rRemw/O1kkktlgth6GveC5tjMd/0aaWrg3cmjaTZVda8+jHaJtNvrKqvjWeajUlbZHJp9KuzRHliuozztByddWwSKRmiJGZuQ+lvXZeQJtE8jza1ibHVNWJYyxRS2mYCPRu4NO0rr5vVtXBafvcPgR4HPDk2db9N8oWq+WTYbzUW4CX0RZC+yxwWZJ/B/6nqq5J8l3aJpM2aU+AqvojcGSST1fb8Nq1jmaYqTDstZtZhlD1BNqYqvcwbGsCHAssBJ6Xtpny8WMsU0uQtiDv5sBTqurnSR4EvGn4c3xvkk8Ca8z2IS8Gq+Uw0sd8S9pWC0ekLdf/MeB7wKFJ7kGbEfHM2f5LNoEWgmsdzWReu5ljWOtoLdrCvE8FbgucBZxaVZck+Rxt4U93PZgwIy2NUx9k7kSbYPBt4OfAacD+wMFJVquqd+JwF7sCl1eSZwGvAp5Im8XyXOBQ2j50D6cN6PtUVf1iXDVK0qRI8iraAq+Ppc0UOzfJ82jL0JznauqTZZHZ7hvTxlNdO/TK7EdrNPjZsDDofYDLqurCMZY8MWyxWn63A06utv3JR5JcRltT55ZV9VHAKcKSZrUkm9GWmnkTbfLOLsBjhlB1f9qH03Oq6tdjLFOLMRKqprYZujTJfFoL1RzgqCS7VNXptJYrDQxWy+8CYLNhjaT5VfX5YQr/k5McXVV/GnN9knSTG+k+eiTwTGDrJJdW1RvTtinaP8l1tI15XzUspqwJlLaDyJ60HpiNaLPdP0TrDlwP+FCSLavqr2MrcgIZrJbf/wLPpm0a+pMkt6QNVN/HUCVptpkKVEOoehRt1tjewHzgMWn7Ae4wvFmvTVut+8dORJgci7kWC4HTqup3SS6h7YDwAOAhVXVA2h6OhqpFGKxuxA39wQ+rPf8hyV60NP8IYGNgv6o67yYuU5LGKm1/v3sl+XZVLaQNcv5AVX05yYm01ql3DC+ph4w+1lA1GRYZU/Vi4I7AQbSemd2GyVkXJLmetp3N94HLxlbwBDNY3YBFfsm2AwJcX1XHDlP151TV5UneUW2z0FtV1VXjrVqSxuLBtB0nbjV08/0BOCDJMVX1myTfo61b9egkC6rqM+MsVv9q5P3uP2gb1J9aVVcm2Q/YL8kmwC+B+wMHjD5G/8xNmG/AyC/ZC4C30BL6B5K8crj/umEa8dQvlnv/SZqVqurLwO9oM6O3B46n7cd5yDCu6n60/Tp/Baw/pjK1BMOMvxfQZrkvTHJ74ERgX9qMzk2AXarqN2MrcgawxWoRi7RU3Zw2G2LXqvpJkmOAryf5c1UdOjo92OQuabYZfb0cWvBPAp4A/JW2CGiAT9K2sNkdeCCw1bCt1HW+bo7XIu9369AaCJ5SVfOTvAK4ZmhE+HNVvXCsxc4gBqsbMLRUnU1r+rxF2uaTvxmmnu443uokafyGgeqPBu5L29rko0n+TNs26vqqOijJocPpmwNvBJ5abqA9douEqr2Bu9IC8BeHU64Cbj0MhdknybZVdel4qp1ZDFaDJJtU1dnDC8XTaNOEd6INznspbXbLJcCGwC2H7RcWjq9iSRqPkSUVHkLr/jsLmJfku0O4Wgg8Z1g88gu0ldcfRlvT6udjK1x/NxKqXkTrmdkJOBVYL8mBwDXA+2nLKjzXULX0XHkdSLI1bW2OB9LGAbwbOLeqXjzcfwRtevBVtD7m3arK/f8kzVpJNgfeTNtk/owkO9LC05lDuNoJOGtYQJJhyxOn5k+QtI3p3wO8gdaYsC1tS5pbA2fSWh53rqqzxlbkDDTrW6yGT1Sb036xNqVNC/4WsF2SJ1fVV6rq34dPZqvQFgM9f2wFS9JkWAt4PG3xyDOAzwPXM4yhqqpD4Z/WtzJUTZiq+uOwbNA9aV20j0kS4FLgN8ATbKladrM+WA0D884FXk9bDO0xtCbQv9BWUV9YVcdV1Q/GWackTZKqOn4YNvH2JL+tqqOSfJ72AfT0kfPsFplg1fb/uxqYk+S+tBXWvwkcbKhaPrM+WA3OoM2G+COwZlX9PskXaZ++dklybVWdONYKJWnCVNWxw7pVbxm6+o4Ejhp3XVpmFwBfpXULrkfbYNkNlZfTrBxjtchsiNWAhVW1cFgI7bHA/lX1o2EfwCcCX62qi8dYsiRNrCRPAQ6kdQ3+bnQpGs0MwxIYd6TN5pw/7npmslkXrBYzxXRTWkvVAVV1TZLXAg8BDqyq/3P2nyQtWZK5VbVg3HVI4zbrgtWUYYrps2i7dJ8KfAN4Y1Wdm+StwN2B51XVNWMsU5IkzSCzMljdwBTTS2lLLbywqs5JcruqcoNJSZK01GZlsAJIsjptiul7R6aYLgA+QusWdGVgSZK0TGbtrMDFTDG9M22zyY8YqiRJ0vKYtS1W8PdWq31pM1mmppi6wqwkSVouszpYgVNMJUlSP7M+WEmSJPVys3EXIEmStLIwWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRO/j/0nFv+UbvkvAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top[:5].index,y=top[:5].values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "महत्वपूर्ण नियम: \n", + "1. 'Missing' शैलियों को हटा दें, क्योंकि इसे Spotify में वर्गीकृत नहीं किया गया है।\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAHuCAYAAADELJsvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZdklEQVR4nO3debytc9n48c/lHENmcsxzREqGjBkbRMgYGRJShqg0e2gQ9aSJRkoTqUilqJSkNOjXQElFnlQkKZ4iPWnC9fvj+q72sjucs89ea6/7nPN5v177tde613B/73vdw/WdIzORJElStyww6gRIkiTpPxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSRqaCP6v7++BCP7W9/zgUadPkrosHMxW0lSI4GbgeZl8ddRpmRMRTM/kvlGnQ9L8w5I0SVMugoUjeEcEv2t/74hg4fbajhH8NoITI/jfCG5+uFK3CNaK4JsR/CWCr0bw3gg+1vf6VhF8J4K7I/hxBDv2vXZlBKdGcFX7/FciWK69tmYEGcEREfwG+Fpb/twIbojgrggui2CNtjwiOCOCOyK4J4KfRPC44exBSfMDgzRJo3ASsBWwMbARsAXw6r7XVwSWA1YBDgXOjmC9h/iuTwDfBx4JnAwc0nshglWALwJvAJYFXg58JoIZfZ8/CDgcWB5YqL2n3w7AY4CdI9gTOBHYB5gBfAs4v73vacD2wKOBpYD9gT/OYj9I0kMySJM0CgcDp2RyRyZ3Aq+nL7hqXpPJPzL5BhVo7T/+SyJYHdgceG0m/8zk28AlfW95NnBpJpdm8kAmlwNXA7v2vecjmfxPJn8DLqQCx34nZ/LX9vrRwJsyuaFVff43sHErTfsXsASwPhDtPbdPfNdIUjFIkzQKKwO39D2/pS3ruSuTvz7M6/3f86dM7u1bdmvf4zWA/VpV590R3A1sC6zU957f9z2+F1h83DrGf987+77rT0AAq2TyNeA9wHuBOyI4O4IlZ5JmSZotBmmSRuF3VMDTs3pb1rNMBIs9zOs9twPLRrBo37LV+h7fCpyXydJ9f4tlctoE0trfu+pW4Khx3/eITL4DkMm7MnkCsAFV7fmKCaxHkh7EIE3SKJwPvDqCGa2h/mthrLF/8/oIFopgO2B34FPjvySTW6jqy5Pbe7cGntH3lo8Bz4hg5wimRbBI65iw6hym+33Af0XwWIAIlopgv/Z48wi2jGBB4K/A34EH5nA9ksT0USdA0nzpDcCSwHXt+afasp7fA3dRpWf3Akdn8vOH+K6DgXOoRvrfBz4JTAPI5NbW2P8tVGB4f3vPMXOS6Ew+G8HiwAWtHdqfgctb+pcEzgDWpgK0y4C3zsl6JAkcJ01Sx7QhMj6WOWelXRF8Evh5Jq8baMIkaYpZ3SlprtaqGR8VwQIR7ALsCXxuxMmSpEmzulPS3G5F4CJqnLTfAsdk8qPRJkmSJs/qTkmSpA6yulOSJKmDOlHdudxyy+Waa6456mRIkiTN0jXXXPO/mTlj1u+cnE4EaWuuuSZXX331qJMhSZI0SxFxy6zfNXlWd0qSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB00fdQLGu/Osjw19HTOOefbQ1yFJkjQZlqRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkddAsg7SIWCQivh8RP46In0XE69vytSLiexFxU0R8MiIWassXbs9vaq+vOeRtkCRJmufMTknaP4AnZ+ZGwMbALhGxFfBm4IzMXAe4Cziivf8I4K62/Iz2PkmSJE3ALIO0LP/Xni7Y/hJ4MvDptvxcYK/2eM/2nPb6UyIiBpVgSZKk+cFstUmLiGkRcS1wB3A58Evg7sy8r73lt8Aq7fEqwK0A7fU/A4+cyXceGRFXR8TVd95556Q2QpIkaV4zW0FaZt6fmRsDqwJbAOtPdsWZeXZmbpaZm82YMWOyXydJkjRPmVDvzsy8G/g6sDWwdERMby+tCtzWHt8GrAbQXl8K+OMgEitJkjS/mJ3enTMiYun2+BHATsANVLD2zPa2Q4GL2+NL2nPa61/LzBxgmiVJkuZ502f9FlYCzo2IaVRQd2FmfiEirgcuiIg3AD8CPtTe/yHgvIi4CfgTcMAQ0i1JkjRPm2WQlpnXAZvMZPmvqPZp45f/HdhvIKmTJEmaTznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB80ySIuI1SLi6xFxfUT8LCJe3JafHBG3RcS17W/Xvs/8V0TcFBE3RsTOw9wASZKkedH02XjPfcDLMvOHEbEEcE1EXN5eOyMz39b/5ojYADgAeCywMvDViHh0Zt4/yIRLkiTNy2ZZkpaZt2fmD9vjvwA3AKs8zEf2BC7IzH9k5q+Bm4AtBpFYSZKk+cWE2qRFxJrAJsD32qLjIuK6iPhwRCzTlq0C3Nr3sd8yk6AuIo6MiKsj4uo777xz4imXJEmah812kBYRiwOfAY7PzHuAs4BHARsDtwNvn8iKM/PszNwsMzebMWPGRD4qSZI0z5utIC0iFqQCtI9n5kUAmfmHzLw/Mx8APsBYleZtwGp9H1+1LZMkSdJsmp3enQF8CLghM0/vW75S39v2Bn7aHl8CHBARC0fEWsC6wPcHl2RJkqR53+z07twGOAT4SURc25adCBwYERsDCdwMHAWQmT+LiAuB66meocfas1OSJGliZhmkZea3gZjJS5c+zGfeCLxxEumSJEmarznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10CyDtIhYLSK+HhHXR8TPIuLFbfmyEXF5RPyi/V+mLY+IeFdE3BQR10XEpsPeCEmSpHnN7JSk3Qe8LDM3ALYCjo2IDYATgCsyc13givYc4OnAuu3vSOCsgadakiRpHjfLIC0zb8/MH7bHfwFuAFYB9gTObW87F9irPd4T+GiW7wJLR8RKg064JEnSvGxCbdIiYk1gE+B7wAqZeXt76ffACu3xKsCtfR/7bVs2/ruOjIirI+LqO++8c6LpliRJmqfNdpAWEYsDnwGOz8x7+l/LzARyIivOzLMzc7PM3GzGjBkT+agkSdI8b7aCtIhYkArQPp6ZF7XFf+hVY7b/d7TltwGr9X181bZMkiRJs2l2encG8CHghsw8ve+lS4BD2+NDgYv7lj+n9fLcCvhzX7WoJEmSZsP02XjPNsAhwE8i4tq27ETgNODCiDgCuAXYv712KbArcBNwL3D4IBMsSZI0P5hlkJaZ3wbiIV5+ykzen8Cxk0yXJEnSfM0ZByRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpg2YZpEXEhyPijoj4ad+ykyPitoi4tv3t2vfaf0XETRFxY0TsPKyES5IkzctmpyTtHGCXmSw/IzM3bn+XAkTEBsABwGPbZ86MiGmDSqwkSdL8YpZBWmZ+E/jTbH7fnsAFmfmPzPw1cBOwxSTSJ0mSNF+aTJu04yLiulYdukxbtgpwa997ftuW/YeIODIiro6Iq++8885JJEOSJGneM6dB2lnAo4CNgduBt0/0CzLz7MzcLDM3mzFjxhwmQ5Ikad40R0FaZv4hM+/PzAeADzBWpXkbsFrfW1dtyyRJkjQBcxSkRcRKfU/3Bno9Py8BDoiIhSNiLWBd4PuTS6IkSdL8Z/qs3hAR5wM7AstFxG+B1wE7RsTGQAI3A0cBZObPIuJC4HrgPuDYzLx/KCmXJEmah80ySMvMA2ey+EMP8/43Am+cTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdNMsgLSI+HBF3RMRP+5YtGxGXR8Qv2v9l2vKIiHdFxE0RcV1EbDrMxEuSJM2rZqck7Rxgl3HLTgCuyMx1gSvac4CnA+u2vyOBswaTTEmSpPnLLIO0zPwm8Kdxi/cEzm2PzwX26lv+0SzfBZaOiJUGlFZJkqT5xpy2SVshM29vj38PrNAerwLc2ve+37Zl/yEijoyIqyPi6jvvvHMOkyFJkjRvmnTHgcxMIOfgc2dn5maZudmMGTMmmwxJkqR5ypwGaX/oVWO2/3e05bcBq/W9b9W2TJIkSRMwp0HaJcCh7fGhwMV9y5/TenluBfy5r1pUkiRJs2n6rN4QEecDOwLLRcRvgdcBpwEXRsQRwC3A/u3tlwK7AjcB9wKHDyHNkiRJ87xZBmmZeeBDvPSUmbw3gWMnmyhJkqT5nTMOSJIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10Cx7d85Pfn/m64a+jhVf8Pqhr0OSJM39LEmTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA6aPpkPR8TNwF+A+4H7MnOziFgW+CSwJnAzsH9m3jW5ZEqSJM1fBlGS9qTM3DgzN2vPTwCuyMx1gSvac0mSJE3AMKo79wTObY/PBfYawjokSZLmaZMN0hL4SkRcExFHtmUrZObt7fHvgRVm9sGIODIiro6Iq++8885JJkOSJGneMqk2acC2mXlbRCwPXB4RP+9/MTMzInJmH8zMs4GzATbbbLOZvkeSJGl+NamStMy8rf2/A/gssAXwh4hYCaD9v2OyiZQkSZrfzHGQFhGLRcQSvcfA04CfApcAh7a3HQpcPNlESpIkzW8mU925AvDZiOh9zycy88sR8QPgwog4ArgF2H/yyZQkSZq/zHGQlpm/AjaayfI/Ak+ZTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQdNHnQCV687aY+jrePwxlwx9HZIkaTAsSZMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6qDpo06ARu+yD+069HXsfMSlQ1+HJEnzEoM0jdR55+w89HUccthlQ1+HJEmDZnWnJElSBxmkSZIkdZDVnZpvvf384Ve1vuxAq1olSXPGIE0agcM/u8vQ1/GRvb880+W7fu41Q1/3pXudOvR1SNK8bmjVnRGxS0TcGBE3RcQJw1qPJEnSvGgoQVpETAPeCzwd2AA4MCI2GMa6JEmS5kXDqu7cArgpM38FEBEXAHsC1w9pfZLmArtddObQ1/HFfV4w0+W7f/rjQ1/3F5558EyX7/HpLwx93Zc8c/eZLt/nM98d+rov2nermS5/0WdvHfq637X3ajNdfv5n7hz6ug/cd8ZMl1/10eGve5vnzHzdN7/j90Nf95rHrzjT5X8447qhr3uFlzx+psvvePdXh77u5V/41KGvY7zIzMF/acQzgV0y83nt+SHAlpl5XN97jgSObE/XA26cxCqXA/53Ep+fDNftul2363bdrtt1z1/rXiMzZx4pD9DIOg5k5tnA2YP4roi4OjM3G8R3uW7X7bpdt+t23a7bdXfBsDoO3Ab0l0Gv2pZJkiRpNgwrSPsBsG5ErBURCwEHAJcMaV2SJEnznKFUd2bmfRFxHHAZMA34cGb+bBjragZSbeq6Xbfrdt2u23W7btfdFUPpOCBJkqTJce5OSZKkDjJIkyRJ6iCDtJmIiLUjYuFRp0OSJM2/DNLGiYhlgJcDJ83rgVpExKjT0AUz2w+T3TcRMeXnlr9nt4ziGJhbeex2X//x3EZt0GyIiKUiYpX2eJ2IWHRCn7fjwJiIWDMzb46IpwB7AHcAb8vMfwxwHZEd2Om9dETENsD6wM3AtzLzn1O17vZ4WmbeP+x1PkxaFsjMB9rjVYH7M/P2SX7nv7cpItYD7s3Moc2P0ztu2+ODqd/z+8CPM/M3w1rvIIw7FnrH5L9/kzn5nlGLiMcBv83Mu+dkWya57t4+3A5YjLrGf2mq1j9Z7fh9NHAtcG1m/rotf9DvO4rfu2/fLgzcN8rr1ihFxHOAv2TmZ0ew7ik9nyYrIqYD2wOPBdYB1gSelZl/n93vMKfXRMTSwNsi4qTMvAK4CFgZePmclKj1coYRsWFEbNOLpNtJPvJcY0vHk4DzqIPnHcCLImKdYa533E35MOBpo8qVRcQTqBOIiHgp8Hnggog4u+89E/qtImJ94IT2+Bhq/34hIl7dbpwDFREzgFdGxEsj4lDgpcC9wPOA50fEJoNe5yC14/AZbZ+fGxGPz8wHZrXfI2LbiNi1BUQjP6/6zvfHAKcA74qIpdq2TNl1tu2H3YEzqevXmyLiJVO1/slo58sxwI+p69GT2/L+a8a67ca34BSnrReg7QZcALw3Io4d9jrb/8dGxNYRsdyISui3jIjP9y16AnBPfxqHuO6DIuKoiHghwFSfT5OVmfcBvwD2AZ4FnDORAA0M0vr9FXgX8NiIeHlmfgO4kDkI1PpO6Ke27zgVODUiXtaVHH8r4TkaOD4z/ws4FFgX2GmY6+272B4LvBi4cSpK7x7CtsApLWf4RGBX6mR6dC9Qm4Pfam1gzYh4O7BX+97DgH9SAenyg0n6v/0FuII6Tg8FnpeZbwJeQ41RuDV0tzopIh4LvB74CnAT8JmI2LJXovYQn9kS+Ci1X49rwf5IA7W27r2AjwC/A2ZQgdoyU3ljaaXBLwf2BP5GHXdHRMRrpmL9cyLKMsDjgN2BxYH/Ac5p+22h9r7jgfdR1+lDh3AuzSxtK0bE6u333ZE6Vl9DZYQOjYhFhrXuts49gXOBw4EP0zKVUykzv0dd0y5uixYDHtFL47DW24L244GFgadHxDfbOmeZiRu1/vS1WpSPAp+m4ovt+t4368xGZs7Xf7Qq3/Z4IWCbtjNf3pbtALwTeCOw8AS+d1NqMN/12vOnU7nDvUa9ve3v+cDVwHuBxdprOwI/ApYZchqWB74LrEdlFPalAsbNRrA/jgb+X/vNF+87Dq4D9puD75sO7AKc1fZlr0nBBsC3gKcOYRsWpqrnvwt8CJjWlu8MfA1YdJTH3MOkexPgc8CpfcuOpKreV3qIzywNHAVs354fBLwfOHTE27IQ8BngiX2/9+nAB4Gl2rIYchpWpCaMXgfYgiqRWrIdG/8HnDzq37wvrf+xL4BXA98GLutbdhwVmBwEXNnOry+1xycByw8xjesAVwGPbc/3oDJdu7Vrxhpt+doDXOfjgEPa41Xbti4GHAz8EFh22MdR/2/Uu5a059+mgo3XAvu3ffHYdqytPMhjov3OFwDb9C37HDUw/siP3wlsx07tWrAqsBTwJuA0qknKrlRc8LC/53xdkjauGH0pgMy8irq4bt1XovYF6iK8+Gx+70JUcPckYJW2+NtUEfHmA92I2dQX2S8HTM/MD1CBZ1DTdgH8niqZGWguJSJmRMRW7fEu1M3kcuAM4BzqhN+YVr0xTFE9d/+dA8/M9wEfoE6iJ0TEElkle18B/jWb37lhb/9mFW9/FfgUNV/tqyNikcy8nrpprjuAbdglIl7fHk/LajP5ZerieT9wYnvrQu35tMmuc0juoC7Gm0TEqm1bzga+Tt2MHqSVKnwceAmwYVv8ZeqG/ZSIOGJKUj1z04BlGPt9f0FNj7chcHJELNa71gxaK4laHvgksHpm3kRlhC7JzHuA+6jqzyuHsf6JGnfdfUlEvKZVYf4a+AdVAhkRcQAVkN8OJPBs4AXUvn4nlQl5UUSsNOj0tYf7Ar8C7oiInan5qM8FXgXslpm3RMTTWhqWGMB6l6Wa2fTaQN8BXE+VJh0LPDMz/wRsFxFLTnZ9s0hLZLk/InaPave6LbAScDKVET2Kqtp/HXWdmcz6plOBCxGxOXWP+BewQt/bTqBKMDut79h+EfAGqnbmfcAawFuo7TqVysD9cpbXhVFHnV34A14EXEwVJx/Qlj2Ruui9tj1/xOxEz1RbiaBukKdQpWmbtNf2oUpsFmWKckPj0rgrVXp2MfAJqsj62VTAdAXwDWD3Iax3ZSrQ/XzbH0tRua/DaLlQKsd8DrDAELd/b6pk6YlUoNr/2qFUcPVm6oL4S1op6Cy+8+nAz4Anz+S17akA8ItUW5ufAetOchueRpXy7dm/DcDefen5ZnvPl4HHT/Vx9jBp750jGwNbtovWI6gSqNOoIH1rKrjdcNxnN6EC582pavKfA5u315Ztx/HjRrAt69JK/ahc82XArn2//wep0ocnTEGaXgV8FliCuoleQd1QbwO27k93F/7a7/gtYP32fEkqg3Fu+61/QAVlm/S9fj5jJcVfAN4GLDfgdPVK1BcEfgPcDazVln2Kuk5Op66n1wNPH9B6l2vb84J27q5G1b5c1zt+qIz/z3r7bAp+oxdRNQLr9S27FPhc3/MlBrCezYFXtt/+e23ZwcCdwBbt+eHUNbqTNQPjtucpVGZzOlXo85123PSO5fWpDNWsv2vUGzPqP6q66xtUScr57YJ2bHtt+3bQLDub3/UMKtD7AlWS9rh2IbqVasvwTeAZI9rOx1DF5U+kgsTPARe0155JBRMv6nv/QC/mVNXE3cAbZvLaYVRvrg2GuP0rUwHq5uOW7wq8uj0+isrNv6l3UZ7Fd67SLphP6d9n7SL70fZ4h/a7n88kA7T2fScCr5jJ8h+03zGoAO7NwKqjONZmkf7d2kW/dyM+ngrULgSuoarfe0FOb3+u0I7PK/u+5/i273vVi9OncBt66doZuIGqZn4RVWq2N1Vd+17gt1Szhw8Aew4pLWsDS7bHi7b1rtue7wc8F3jaqH/3/v3WHi8EfKxdl9YCjmCss8AMqhrt1VQv5XX7PvND4K1U6fu3gVUGmT4qEPwkVZKzOFWSdgPVdrf3vgupYO3y3rE6yfXO6NvGD1JtCY9vz59CNWH4YDv3b2AIGemHSNfj2j5errf/+177OXBhezzpjDUVEH+Mqm06rm/5UVQNxIeoe8RjR30cz+rYbs/Xp4Ls51LB2lJtG35Ga6oxu39DmWB9btEaff6DurA+h7GSpQ9FxAOZeVZEfD9nozdGVE/BN1O96rYHDqF+nPOoE/4pwFmZ+fkYzbAT/6ByfT9s27NXRHyjNeB/P9XWZ+tWxfDJbEfanJpJB4kvUCfbqyPi7sx8W3vfNlSJyrOzqgSHZWHqInzTuP3/QHuNzHx/RNxJ7aObZ+M776EC/L9GxHLAn6hqmfOAx7Qi/O9SDY2vz8w75zTxffvzLmDTiHgVddFajLqRfIS62G9O3Ty+mpl/ndP1DUNELE41an9hZn47ItaiSk9/T7VFO4dqO3UFPKhR8l1UKeyxEfGyzHx7Zr6jNbr9WFQP1numajsyMyNiM+pcfwYVRB5M5ZrPB55KBU/voEpHtgT+e5BpiIhp1HH7QeD6iPgzFdTcR+3jozLzU33vH3mHpd76I2KjzPxxRNxLNbl4BBUMrEyVSn2tnU9PBXbOzLsiYnpm/jMi9qVKJjagMtO3DTCJ0zPznqjesEtSbc7WjoiVgc9FxJKZeUpm7h811tX0rOrkOdaqVg+jeoAvRF0v/gqsERFPyswrIuL3VEnyMsCRmfmtYfyeM/nOu6iMBhGxcLahqFqTkPUjYg2ohvyTXV9m/isiTgd+AqwaNRTLBe2a/APgf6lhT343xxs4JOOq7x8D3J2ZP2/P16ba3P45In5D3SNumdAKRh2BTuUfDxHxUxHvl2m5MqrK4CfA0hP47mdT3Wt7z59JlW6sTF2oX0RVtU1JlQxjuf1pVC5laermt23fe44Bjm6PF6Sq/FYY1Lrb42dRxdTbtudPbPvlGKrq7m0T2c+TTMvJVEBwAxUQXNx+63uoXNzJzEYJYt++DaptwUVUCdwXqRLK71HF9BcA75md75zANizU9t33qRKFi6kq9Cup3O236EgJ2vjtpkomvgCsM+74eEt7vGpL/4ntuH0SFbwdAyxCNRd4N/Divs+vOUXbsjZwSnu8GNXG5Jd9r29Ptft6bS9NVCna54GNBr1PGeuM8AiqBO8CKkB8PnVj3XZQ6xzwflyJaoz/XCrIfFL73VelArUvU9W1q1LVamvx4Mbry7f/A63yoqrMfw48pj0/hKrqfEZ7vklL9xsHuM7lGOtYtmK7lmzanv8XVfKyA7DgFPwu/deYRdu5uhBV2r1H32sHU22JB5YmWq90WokvVbv1bqqjxqFUU5jOVNM/zHYcR2Xa3w1c3pa9E7iEak93/Zxcm0e+YVO4A1fte/xCKjf2cirHtCBVfL1tuym8D5gxi+/rXSwXaP83pdp5bdb3nvOAHdrjldqPuNoUbvOeVHufi6i2PvtQVU3HtZPiZwyht2Hf+o+jcobPBv4OHNi3r75DBRpDq+Icl5Zem5w9aUOttAvgZlSQ81pmo43AuItZ7zuf2o6ZRalSlc2Bs9tF5lED3IaXAC9oj99KNV7uvXYEVZIy2z2Qp/A47D/3Tmm/e69H8f5t/y/anq9MZZqeRA3JcRRVDfoWapDT3ak2Xi9r7x9aG8Zx2zAd2Kq3LVTPv8uo6sXeNWBHqmqz185yKQbYXqrvmrMbFZSPD1iPoNqlPUC72Xftj7rW7kD1Wjy2b/kLqJvYv6tn2++8B2MB6cHt3H3Y9sGTSNupVHOXR7fnB1CZ9d3b802pJhOPYvIZrwWpzMi72jVoaapU9C19638FdQ/ZidYrfwp+nxdRGYsrqYKGbdr5987291MGWNDQft9fUBnkzzNWzfv8di79io5WcY7bjp2pQpAlqNLhy/teezlVkj5H7YNHvnFTsPOiXSx/TQVgW1E3iSOpUo4LqBzdi6jSlZ/M7s6kbs6voYK+9anqjVdRQcnm1E3m8X3vnzaMbXyItK1P5Ux3o3Ijv6aC0C2pgORshthWBdiIsbr4Y6m2JL9irORuUWazrd8A0rI/Yx0WNqVubou0155GlaYtPcHvPJgqEVySCswuogW8bX1fZYDDA1Bt575EK+mkep6dTpVSPrul5dFTdXzNIq1rAM9tj3cBbqQyMIdTpVBvbMteSZVe7NLeu0D7m0YFvUe15QtTN6v3tOf7MLWdBPo7aPwI+HR7vC7VBvUdjAVqy7T/A7uhjlv/U6mG5Bu1/fgHalaU/vevOOpjYCbbsB9jJYwLUiXql1FV31ABy7btWP4fqnRwK6qk+CNUgHAjQ7hh0xfoUxmdOxgLlA5qv/le7fmkG8n3ras3RuCbqeGIlqSCtrcx1kbtxGEe6zw407lPu46sw1gm6ZlUxukAqn31OgNc9yHUtbhXevkEqqT9+PZ8YWZRWDLC43l8LcFWbV8dT5U+LtSWbzPpdY16Y6dwpz6Rqub6DK0nXjv43tkuAr2c/FKz+X3btIvGkVQwdAJwIBXsXUDlCvaY2Q86Bdv6uHYBfFffsp2pruwDO8nGrXNm4x4tRw3oemV7fjiVy99nCvfF3lTw3QsEprcLwReoG/8PmWAOhwp0v9M7Aalc8KsYG3rjhkHeTKipRD5G6/XUlq1PlT58hhqWYsNBrW8A6d2Cajx/MlVls027IJ9OzYgQVA76mYxrRNt3Hr6SygAt0Z4vTlWFLsEUlZ6NS9djqEB5OnXT/nBbvg5VzXhmez7QtFEZi48wVjr3rHZ+P713DFIl4m/q+0z0/x/RMRDj/r+XKoVZoz1fuB0fd1IlJgdRwe6CVGnadVQQs2K7hhzLAEulZ5Lexfsejw/UDm3n9IxB/L48ODBajwq239rO6aWo6sT3MORM17h0LEe1mz6tb9lGVKe3gV5b+o6Jk4A/Avu259OoQO2bwCtHdezO5jb0MmW9bdmQasP3g773HEZ1MllyUusa9cYOeUeOv1A8gcq5v63vPStRxcwfmd0TkKp2+ThjvUCXaydZ/4Xykf3rnuLtXojqPXc5ldtfuC1/D62Kbhj7uT3egbqZ9UoUngW8vz3el7qhzbLn5ADTdnS7ObyMVk1Cldb0BhKcUFqoAGNXxjqF9KrtZrSL7JMZcJuw9nvuQrV3exVjQxD0jutFpvoYm400b0UN+HlJ37K9qEDtBGYyYDLweKo932rt85+jcvRLU4HJ9xjwcAsT2J79gXf2/R7XA2e3549mCEOdtO99BjXW0vm06njqRv5Z4Ent+QepxshdKUntvx6s2ff4BCpTtGZ7/jzg7dQMDbfz4EDpue29TxpSGpdjbAiX3lRP/QNan0BVffZKeWY6uPKc7huqjdvjqVLnXhXZW6mgbWkqqJ2qYTaOou4Vh1All4v2vfbeQR/bPPie9Nx2LvUGDJ5ODdEzZc2CJpj2Tfsev7idl2+mqqyf1I7lA6kS0B8ygFLQkW/0EHdm/4XiqVSuYLl2gNxEq0ppr6/IBBrMUzf3L7WbSG/8nCWpHPZIL5SM3cAXpNp0vJ+qatihHUCbD3HdL6FKFc9sB+gmbb3nUiU+P2UKA7S+dB1KFUE/hQEENFSQtyNVCvsahjhuT99FfUGqPda7qTYOU1Z1Pom0b0dVx/V3qX9m229rj3vvLlRJyk+pDjbLUaWg51MByfdpY8FN8TZs1C6+C7UbWC9jthAVGJ07pPWuQjVR2IkqSX05lStfo73+ESro3ZkKMCY9vMsQtuFYqm3TJ6lx8Bah2ll9l5qR41dUoHJh+31PGPf5I6jG+osywBLKdi79VzveDmrpeQpVJX85LUCgBmm9a1DrZ6z05cntWvxBqmp3H6oDyClUdef6U3V+t+vYlYy1+/tk+9udCt6uZzbH85rN9R1HlZR9ul0HlqZqo65jgB1shri//h9VS7VF+79vO85/0n7XHaiMx9sYUJA98o2egp36EqrHxclU6ccMqrrq5/SNfTOL7+jdKNemArqFqOLN91DVMo+iqj2uY4Q5gL50Tm//F6KqEq5tJ8TT+t834HU/Hvhse/xixnq39HJGhzAbg8MOYNsfNLVI3+OjqcD66bN7AZzZfmIsCJ5GtWd7OzWu2iCCv5n+Ln3rXIgqxfsIfWPadfmPamd0Da3DQ1u2wrj3rEvdtLajgqLXUVV5M6gb5GNoHUyGcew+TNqXpIL729tNa5t2ju/YXl+QCY55NIF1b0kF5Nu1C/56VMP2C4FHUm2EPtZuDvuO+neeSfp3bGlbrT1+TTtugwo896cC85XaflyRanj9hvb5HdrvvviQ0rch1R7sQ8Bb+5a/h7r59kotJ13FSl9nHqqE+DTGpjXbmhpeYicqMH8TU1eCtgR1/7odOKhv+SktHZ9hgB272rXgJ+233opq+nB+OyZObuf8QoNa34D3Vf995fJ2vTqwb9nuVO/+gWfYR77xQ96xGwBfbo/PoBp3L9ieb9FuHkvP5nc9ncpVfIIa72v1dtG+kCo1uowBjTw90QOHusmtyEwClHYB/CAVrC3HgG5y47+HuqGe3NZzWd/69x32iTduu1ejAqherrU/UDu+HQOzPJHGfefy9AUWfd89rZ2cb2KS1XDj1rcnVUqyx0zWuRBVetK5xuEPc2w8kWq/+R+BJXWT3gh4X287qfZKF1E57kfN7DunYBt6zRW2pHLPX6HGUvwaVQKzTN97h5HpCap6957edYUaluJUqpq9N8DojFHsn4f6zfv+P50aF7J3DVqbaiLSG3H9lVSp+7VUELozVb17DZWZ+gGt1HBI6ZxOBbuntd92+773fJAqXVqESZagUZ2KXsTYgMOfpNq7bdeXlkMY6xQzlKD0YdK3IhUsfYDWbrfvtYH2FKcC0vN6vwN1Dz0P2KotG0lThgkcM/3X6CuAH/c9X5JqjzzwuWRHvgOGsTP7nq9D9WI8kYpyez369mz/Z+sgbAfyNYw1FH91u7gsT1XpvYcqPl9kZukY8oHTP+r5cTx4DKr+ErWLqVKfSY9vw4PHLVqWCv6mUQ30v04LIKib2o8ZUHuO2UjXC6gA8b+pm1kvsOnvvbX0BL/zJe3YuYIHTwTePw7dYgPchqOp0ppXUeM0vbLvtc5Vcfbth02ogHWmVSNULnrbccseT/XifBXV/ueIvteOb8fsd5iikoW+dS9P3ahfS5UCb0vdaHdox/hfh3lMM1Zy+h4qUD2BsaBsFart0meoIKIT40f1nWu9tkZrtevS/r3jhMrg7kt1CPgWFZCvQvWOf3PfteRlDKGDU9+xuj4VmG1Cte97Y7tm9I8hOZCOP1R13npUJ7Vej82Pt9+v10b2QKr6b9qwfk8e3M5s8XGvrd5+g7Pom81gUGlp3/3Gti9+Ahze99q5wKGDXN8wjpn2eFuq9mTZ9vwbVKbtUVSV9Y3DuC6MfCcMaWfuSeXeF2gX+v9hLGB5XrtAPHIW39e76GxOlRJ9iAeP9/Ru4B3t8W7URf1YpnZ6ms2o6H0dqlTvLKrtSn+g1l9VtvIA1rkBYw2WX0rlOK+nOgjsTbUfOptqC/eTQV3sZiNd+7STZoWWhg+Oe312qzj7A7r92sV8ASqYuOyh3jug43aRdtL3ShvWasfuCya7niHt8945shPVfuoTVGbmUGaRo6QaxH+DylycSzWOv4XKUD2Tat/5OCpQuoI2J+4Qt6V3A9+eKt3bmirhuJpqPH0KY5mwKQsaqerez1NBRO/msCodaYNGBVy9HrnHUCWgz6MC3V2oHs8ntmPih1Sv3idTJWVLtc+tQmXunj0Fv+/uVOnN96nBcjejgsNTqNqWgVVf05chppqbvJuxQO3iloYT2zk/tB7vVM/op1FVjAdRvQ7Hz128OlW6+Q4GWGVHjXd2M3BRe74zVV14GtVp4FpG0E55Drbjle1a9SWqrffz2/KvMjZh+lCa84x844ewM4+jSiLWac+fTAUNn6NypNfyMD0u6BsokYqcr6MaDl/MgzsbPIsH9+Z8GgMYrX8C27lEu3n0j3q+HdVo/yT6OjAw2Ea3vXYcz20n2zJUo9tLqaBmdaqq49CpPPnaunenhvnoH6dmowl8xwbjfuPdqdKTV1EldL2q8o0HmO7ezePodpy9j5bB6DuuPjxV+3E207xk3+P1qFKB3hyae1MZlt6YcTNr17cCVdXVm1j7uHbMnky1UXk7fTctpqgahGrv9ytam7O2bMt2bP8L+ERb9qDetUNIx787/7T/K1MZj7czRWMLzmY6F6VK+86lSoMub+ffRdRNbSOqtOoj1M3/KKrqeEbf814J4cmMDdQ8yDHm+tuDrd1+301buo6hSskf347JgbQHo28stXZOH0AFrO+ngsHe0B7nUTUNvZ6NAy8ppzKvZ1LB8dVUwNTreb/AuPeuykx6XU9i3c+lMm3b06oCqWrmx1IFCm+mQ0MHjUt7f+Z5RSo4691TntL2aa938GcY0tBWmfNYkEaVKH2DvhIjKgc+g6q2OoyHiXapnPtXqRKNtagbcy9i3pzK3b+Fyv38mL4R36f6wGnP1+OhRz0faIDEWDCxANUI+CLaBO1t+VZUA9QnTPE+2Zu6uW5Jjbl0Vd9rx1DtXWa3Wvtx7WL9GCr3uRdVuvOpvvccSTXYnlRus/84bBfSK9pF7I3tgtYbtPYIqvdeJ6o62345o124plHV/DcCL+97z4vbeTTTUmUqsO8fZ67XbvJzVLA95eN8UaVnP2JsWp4N+9L3SKrqflidBHrbuyTjmiMwFrCtQgWLnRhmoy99j6GCm+8xNv7k5u2adCJjPSUPbtfMXin8gVS17ZfaMfRrBlw6yFh7sN6wGo8CvtT3+spUoHQZbaiNAaxzUaqK+plUW+Hr27XydCqD+xGqY0yvI8xFVEnpwGtg2vXkGirzvjfwSyoTtOMUHBfLUcFpb6rFzzPWLm+NUR+3E9iO3ahCh5/3XRsWpXrhvnoq0rAAc7E2OW2//6UChYUiYqE28em/qFHO35GZ52TmjQ/xXQtS7WA+SdWdb0c12n1WRKySmT+giop/RbWveElmfnEmaRiK3iSuEbFTRBwREc9r2/JCqvv26RGxQGZeSbVj+vWg1w3/nkz3jVRQsUxEPDkiFs3M71KljUsOar0PlZa+xwtQAfgTqKqU9wM3R8S2EXEEVdR+TraJgR/mOx8fEa/LzJ9SE3y/AnhpZn6ONuxBRGwdES+j9vebMvPeSWzDzsCXImLpNiHv86gJ2O/IzJOAvwDvi4iPUSVsb8ixCeFH7T7q91+EqrI8jSqpXj0i9mjvuYrahoVn9gWZeRdtUOmIeFw7Rz/F2DAji7T35RC3Y7z7qVLzbSPi/VQu/8yIOCgz/wh8PDO/OYzzvZ3Xz6BmL/hCRDw7Ih7dXrs/IqZlTSS+V2b+z6DXPxmZeQNVknY7cFJELNaulR+i2n49KyKWp6qK1qNuemTm+dRx82ngH9RE6r8YcPL+QQVgS0TEJpn5S2CRiHh9S8PvqCDmd8CREbFUu6bMsXZdOIO6hryL6gG4T1vPA1Q708dQ9xLaa/dSmZ5B+yd1nT6gre8Z1DX62RGxN9SE4BExY5ArjYjjqAB9UyrjDNWOc/GIOAT4TDsmOiciVo6IRdrj7akMxJepY/XQiNig/cY3Ufe/6UOPAUYdqU4iwh0/WvIjqIv8Z4Fj+l47iLp5P2zj7vbZ11OlJN+iqr42pEpiTmOKGr8/RNp6pWS7UTeSnakLy9va8nWo0paBj3o+bj8fRDXOP6I9P55qSP1GKtC4hSluX0BVZ19FlYQsTZWefZ66ccxyIEGqZHBL6mbx6rZsO9rwKu35Ce04+AiTzHFTxf2voUoWntj25yuo6r9n9L1vy/b6GqM67h7umKBKCr5JXfgXbPvom+38+S59PVMf4jt6PRW/xNg0UVtQkxFvNBXb0P6vRZVSTWvH9xnAru21o6lqmaHOm0hV/9xA3dQOo9qfnci42U+GmYYBbMOjqHZXH2RsgOeNGLvJvZAqXfsbcNIUpGd8e7DefL2bUG0nz2vH7vVUKem5DLYt1k7UGGuvaM+nU6WHb2IS8zjOQTreTmU8j2/Pl6NqAz5Mta26nMHOL/uCdh1YhRoj8WNUDcU5VMbs/zFF8zXPQdp3owpplqXatf8YOLK9tjFjtQZvpUp+p2aolFHvmDncmf2Bw0upRqgfpHLhq1BVKR+mot9rmUW9d98Feyfg9zy4Gm+bdmK9kylsc9bWvRZjQxAsR93Q1qfaF3yHCoo+1F5fb5gnPhX8fJ+qPrgMuLQtP4oKHN/OEKtiqNzn49vj7YHT+147kQqger2l/j0ExwSOowOoXOeL2vMnUjfoVzDWY20gVRJUMHA91bFiOaoK8bh2vO46lcfYHKT93z0KqZ56l7bjcYG2r84Bnjeb37Uk1VbnVVSGaMt2LE3JecbYsDrnU1Wda/W9tnX7fXaagnTsTBtjsD3flqou7lR7HWYSJPLgjjbrUUHuJ6kqob2oG/YyjE2dtx6VwTx5SGl8uPZgJ1HNMlZo5/YZVND2xJbOh+1MNgdp2YuasuvA9nwaNTfp0Dp9jP+NqEzsoVTJ5nOowoylqHZV72ewk6UvSd2HV6LuE1+mguHPUm3xrqWDARqVCXsE1T7xudQsEOtRhTWf63vftLY/n8FUtrce9Q6a5M7dnIrUt6Lq3L9KRcCLtxPzcMaNbD6zH6j9X5u6eT6RquJ6A2MNLLejgpChDcb6EGk7mCpd6AUJq1GNXH9E3RTXporQ3zOEdfdffKdTJXXb9C37PPDu9vgVDHlIAqrUbjmqncX2VK7sc1SQuAcVqM3RyNhUj9hLqZv11xkrUduaCjpOYIClKVTO8mpa9+22bGUqF3o+8JSpPM5mkdYVaL2a28Xp0nYh3q4t248q/XpmO05eRd0AJ7QN1A31u0zRqOP857A6J1E31FXbefZ5+ko2h5SGNdv/lagbRP+4eO8HnjXq378vPf0ZmpXoC2h48JA8G9BqHqjgYB+qdPArjPUC3YuqLnrkoM6p9r0P1x7sFCoj92r6AhOqDe/QRrun2steQxtmYgp/o31718b2fOd2bTmICQ5DNME0LEyVoH69lyaqyvN0hjCG2IDTvlO7Bvyh73j6Lq2GamTpGvWOmcQO3ZYaFPCk9vwR1PRPl9FX3Tmb37UHFeV/muoY0Out+DrGArWlR7Sdi7eLSK8UaUva8BJUQPk2Bpzbp6oNew1bN283rvN4cI+79WkDkA55+/sHo30c1aum14BzT6oX2U3A34H/noPvX4GqLl2KsarPTwEv7tvfkyrZGXfxXIixxuC94LDXS2hVqh3dyKrWZ5L2M6mqoG2pksZntjT+ggc3Av8K1eN4Nap0e0IXZOqmvsaQt2VWw+q8k7H5OXuB6UCrGBnLFG5MteM6oz1/IVWN8moqc3ATU9wJZ1Zpbo9fRmUwLuHB0331B2q9Xqk7UI3VvzXu88czvJkE9qY6MXyJFnhRmd3XUc1ZLmj/l2qv7cSQS0Wo+8v1VEZsYE1RHmZ9x7d98FYqQ3U+Vcq1K9UmbT+GOybbulQp1IZUxu6TdHQuznHp3o0KKK9gbBikJalS4KFM/zZb6Rr1jpnADpxZUfvbqXrjXjfu3rQ5F1FF7LM8CKlSuB9QN+uDqfr7N1PFml+jStSmbOyz/m2lcj9bUSVV32Os9+GnqJvn7YyVaAwyR7olFfycC3yvLTu4HcBbtOeHUyWXiw7xZF+GsWBxR6rdyzuom+kT+t63PZVTm2VR+vi0UoHRzxgbDmIxKtf9P7RAbVDHLVWleSZtHsO27MR24dy6Pe9EL86+NC9Ma9DOgwfzPbDto53a8xX7XuvaNszRsDpDTM9ubd1vBP5EBRBLUKX/57fz7mHb9I1oP/YyMI+mmoH8jOpANdPfncpgnk5lJHekqtuuYYBVbA+Rzk60BxuXphlTtJ7pVO1Sr1ftiu16dmJ7vj8DGC9zFmlYmCpRv7wdI52r4mzpHH8vWICqqTmIyjz3hhFaqm3LSGZ5GfmOmujOpEq59mKsceoZVGPE5dvzBZlAA1DqJr05NR7V96lG+F+lqjx3ZYgTks8iXVu07epNmfFSKge7avvbFdhhSOtesJ3o9/Dg3PJRVFD8IarkcagD1VLtRU6jqil+0ZYtSuUQ30GVOPRKpWYZSI87jjZgrBr5lVTV6dp92/kG+kpZBrAtL6CGh+k1qP04Y1Wdb6By+JOe/3PA+79/IOT3U21M1mAsE3EocCsdGrtrJtvQmWF1qKqfxaic+n5t2YpUadOb+963xPjjddR/VID2Q+Bdfcs2pdrtnfgwn1upnU9fpBqqT0k7O0bQHmxEv0v/NW3pdox9h74p2Kiqzw9McboWpErVVxn1PpqN/XYkVbr6YqrTwALten0xY52IRnYujnxnTXDHvoQqevwIFenu0Ja/leodNce5FSpX++L2+DlUQLTGiLZzNarq9exxy1/atnPgOVH+c2DDTanc0GlUKdq0vuWrM+TcWF863kqVbvb32F2ipesDwJYT3T6qROtnVBXdvlSnhJdRHTHe1v4PbHBCZt6gttezqjfo8kAbLQ8w7f2B2nlUSeDqfa9PyXEwh2nvjb/2fCoYeg5VEvRVxsZvegzVi/Mkxsb5GuoFmcpg7NL3fDtquIRXDnO9E0zjzGoueqPjb9h3XGxBlfIv+3D7rf0Wk56SboLbMGXtwUb9G1FBxQnt8Q7t/nhIe34w1Xh/sWEf23PbH1U1/DWq0+E3qMzyyu21lzLWCWbo1dQPmcZR76RZ7MAVGSvt2ImxHoUnUF1hz6ENMEmVRqw5iXUdQDUafzl9A22OaLtXoqbDuYb/nPT2FYybA3HA6z6UGk7jae350dR0Jnu0144b5ok+/rupzhHPo3o+HsDYxNcrUqOUT6i9GJXD/gSV63w+NSzAYVQR/Q5UVdQw5g2cWYPa/6UyB1N685rob8GD54D9SDvv1hh1+mYj/SMfVqdvHz6Kagc3rZ1TX2FswOJNWxpv7p13Xfjd2+M923nXK2V+NVXqvBFjgdpAJ+Ie8LZMaXuwEW3jUVSg3KviXJyqcfpFO65uZIqm55ub/qjCkHe3a/MrqHaMb6Mycr35p5cedTp7F5BOaYPDzaBKkz5IHWjLUAfftlSwsAd1w1iHyoF+fZLrXJJqdLoHNQ3PFyfzfRNcd2+g2q2p7f4NNWjuYdTYPhdm5hVTkI49qHZ+H6cGiP1aZp4REc+jqjueQvV4+9mQ1v/vQXMj4tlUidnNmfmliNiPumFcSO2TacBbMvOfs/jOp1EjXX86IlalSrDuzczd2+uHUMfUj4DzM/PPw9i2tq51qfZdL6CqDQ+h2s38ZljrnIi+43BdajDaP/T9HtMz876IWJg67/47a/DfTuof/JkqAbwyMw9or21D5ZwXpbbjD0NOyy5UE4ErqIFLj6XGytuKOtd3okp99gW+nTUg9chFxEuo3pnfpc65j2bmBRFxAtVe9kWZ+ZNRpnF2RMSMzLxz1u+c+0TEI6h2jGdRtT/7UQH0t6nOHSsBf8nM20eWyI5qA9gvS8UQp1Ht0LeiCgR+CDwnOzCI+PRRJ+AhRGbeERGnUkWO/8jMTwJ/jIjnUlN7/D0irgISmPTNIjPvAc6NiI+3m9G/A4ZhazeTp1EN4k+niqZ3p06y+4HD2qjjXxlWGlqwsgXVYPmGiHgC8Pq2G94REedRwc7QLnZ9AcFLqIDsU8CrImJLqsTpASpQ3JoaZPBhA7Tmt8DfImL1zPxNRLwVODUiXpyZ78zM81rgseEwtmmc31AN8E+ncvb7dTBA25mqjvsz8LGI+HJm3tTOiemZ+Y+IOHiqzo050bcta1OZnn2A4yPiDcDbM/OqNrL8XlSJ6tCCtIjYkGo0fyD1+7+I6hhwONUAf3WqTdxqVMeFC4aVlologex2mbldRJxI3eyfGhFk5mkR8U/g7pEmcjbNqwEaQGb+LSIupYKMWxkbf3E74JPZsRkquiRrppM/RMQGwHWZ+a+IWIu6/767CwEa0Pnqzj2BK6kpJQ5vy3amGtqeRTVeH/R8b1NaZ081UlyWGvdrfWpYjZ8wVhWyPBWoDrTBLWPVML3/JwF/BPZtz6dRpWnfZArbylANvT9KVQe+kqqmOouqtuoNVrvkBL9zaSrAO6Y934mqsulvXDuh75zE9nW2QS2wGRUYr0P13juLqv4f2uTBQ9yWkQ6r086fJakqpyupWoAFqGDn7dQ4bL2q+3WpUpAp73XYl97+Ks7F29/q1JArV1Dtmd5JlTAcNOrf178H/XaLUJ1glm3Pe013BjaDwtz8N6t7OmM9/D8K3EbHeqOOPAEPs+Oe1S4IK1B17ldRDSCnU22H3sAUTcswRdv7Kqp7+HcZ6/V3GNUma6BtKcZdkNdlrN3fc6mc2GPb8+nUeE5DG+Nm/AlEVXGuQlX/XEm1gzq6nUSnzum+YGwC9ue1509tF7KjR/3bd+Gv7ff3Ar/sW7Yd1VHgJDo2sfcstmVkw+rwn5mfx1GZrhf2vWdlqld6b7y/abTAcdR/VE+3kxnrPf8KxoayeAEVuHd6UNL59Y/KBBzRjrehDnMyt/yNu9dt0869pfuW9dpVLk8VSnRuPLeuVndCjUb9zaz2Iu+PiD9SdcWLZuYHqJ4Yc7WI2BjYMzNfT+VUD6EGCP1lRGxEBW43ZeavBrne7B29NRHu/sAdEXEbVcowHTg/Ig7JzB9TpRFDMa4N2s5UQ/rfZuZtbXLb72fmP1vVypepmRUemJN1Zeb3ImJX4CsR8UBmfjgi7qdKOuZL/fs/M/8SEe8C1omI91JBxbciYhoV6PxrlGmdoN9SAcVGVLf6jYH3UUNwvA24MzPvG/RK+6pZdwT2joibqKBwD+DL7bh7b2b+LiJela26Pqta5a5Bp2cC6V4gMx+IiF7HoD0z86/t5e9T58w61Nhyu2fmHaNKqx7WIlSNwf5ZE9/P18bdX46keif/BPhuRFyUmTdk5v2tKdEd1OD4ndPJjgMAEbE7dXE7BbitXfwuaS8fnJl/GV3q5lzfhXw7qpHnzsA7MvOsiLgQ+AdwH3VjeV1mXvLQ3zapdGxL5Yp3Atakqlk3pwbyex01btyOOXvtviablsOpXmM3UifRp6kT5gaqGnhHatDUnw9gXZtRN55DM/O8yX7f3Gpcw/rVqWvBByPi0VTv6XuAl7ab9zKZObIgYk5FxBuBOzLznRHxHKo92L6ZecsQ1/kU6rw6k8qdb0iVmt1KNR14Y2a+Z1jrn4jWUennmXlXa0T9XuDzmfn59vz+9vtvSpVCXJa2ceq0qWxLPbdonc6eRBV6PJ665y4AfGwQ95Rh63JJ2reoHPxxwI8iYlGqk8CL58YArXfytBvj9lQPyuOoOvAnRcTCmbl/C56WoUqNrhnUSTeT77kfuDYzfx8Rf6AmPd6EGnfs5Ih4z7ACtHE5nGdRN4DHUu11nkX97qdTweMWVLA6kNLEzLy6dYq4dxDfNzfqKznZjRqF/RXARyJi/cx8eUT8N1Ul+B6qRGpoPV6H7CfAUS3g2Ie6dgwtQGs2oAKxcyNiKSrzc3hmHhIRe1HT13XF5sAtEfG3rI5YdwKPjoiFeud+K+H+aWa+e6Qp1WwxQHuwiFiMai6zYosbrooIqNk9joqIs7qe8VhglCuPtrdmsnx61lAIx1I3iG2pm/dJmXnz1KVwMCJiZeDJreoIquTiPZl5MZV7fRewX+tx+O3M/HxmXgODOenGBUUvbCUMNwAbR8ThLXb8DVVUvl772B8nu97ZSEuvCmUfarT9X1OjPP+BGidutcz8whCqe3+UmTcO8jvnBhGxVkQ8qgVoy1GZhP2pcYJupo7BD2XmTVRp6vsA5rSKuQMupcZ025oKnK4a9Ar6zumeRal2XbRr2LXAUhGxVmZ+LzOvfKjr3lTprT8z30W1+bwmIh5JtQHdCtgmIpZtJRCvoa4LUueNP7datf1zgL9GxFlt2VVUZ5g/MsJmBrNrZNWd427We1K9+R7oVe/F2LhMvVz/Yn3tJOYqbft+QbWVuY/qaXYGVYX366jhAM6l2qV9OjM/MaR0PJ9qBP7DzNyn5ZJfTg2a+z9UddDeLVgaqlb9dAhV5ft+quH6Xllt0DakqmE/nkMew2p+EhEHU8fhj7OG0liNKrU9l2o0uyY1sfeZmXncyBI6YH3XkoFVBUXEEr0S/dZ0YR3g59T+fTk1n/DzIuKx1Bhpzxl1jr2virv3/zCq6v+5VLXs3lSGaWeqTfDi1LRw140qzdLsGhdTPJe6tv25NeNYhToPf5mZx7b3PCIz/za6FM+ekZWk9e3Mo6lee+sB74mIV7bX72vBS++iOtdWT7USs99T7VT2okYbfx/wzohYn6onX4m6wK8yjDS0g/ZoKldxf0QsT+UmjqcmkF2PmkZkKgK0/akqzRdk5t3UjAK3AZ9uVS0/oUoaDdAGKDM/TvXe/UFEPD4zb6Wq365ppWUrUtXMF48wmcNwPwyuKqg1vfhiROzbzt+zqXaTR1NjzF0EPBAR36C69b951AFaszr8e1zG/ajg7O7MfDk16fwlwCWZeQhwDLCPAZrmIgH/7hB3BDULw1kR8ZrMvI063jeNiNOhxpgbWUonYMrbpI2LdhehqlsOzcwfRTWcvywi/i8zz+yvZpkb69r7tzUz/9Qu2k+j5un7LHVQnUeVrh1BTQ+zU2tDc99ktnncfl6OCnL3yOo5+Qrg7y0Q/r/MPGYSmzmhtDSLUyVlG1MTp/8lIo5nbHaJ/Zm7ehN2Wl/Jyc5U84HzgA9ExBFUNedSEXEmVZKyf1avznmmAfKgtyMz742IM6gOFn8FjsjM70QNhHk4NZXbkVEzXPwrM/8w6v3Z2h++JSI2p4b1eQHwxayepgtQPd9OBb4VETvl8NvuSQMREU+iaof+3M7BpwPPoDrBfRt4VkQsm5kviYh9qLEq5xoj6zjQStBupKrZHtGqNX/douADRpWuQWo3xh2oqoSvZeYHIuL/qF6rD2TmW9vNEaqB/Gup6sZJBSjjArTjqIvyfVQOH+rGsnirhn1xROyaQ+pWP5M2aHfm2PAXp0TEHZn5jcz8awsaloK5MyjvqnYcbkGNf/WSdtzdT7XX2gt4CVWa+8nM/FbvM6NJ7dwhMz8bEX+heh8/mZrv91Yq975fe89v+94/ygBtIaqJxaupDjobUYPn7hYRX8vMH1Alf68B/ka1q5PmFpsCv4zqAPPrqKFknkBlOLePmrHm/0XEL7MjPasnYsqCtIhYLzNvbDeMfagL2YFU472XUI2Y/0CNxr5o1Ngl3ZiWYYL6Si62pKo4rwc2i4irWqB2P/DsiJhOXeSXpnqB7ZkDGN+mLyh6AVUqdSA1MPDKEXEa8HdqYtmVqbYyQxsfpi8tL6c6CdwTET8EPkCVJJ4RNWbU5Zl5L3NxtXZXtbZnrwR+kpnfBcjM06Pa2F5OTU916QiTOFfKzK+2dl1vbTeA81smbIPWnODOLgS7We08f0O1R02qZ9uCVKnfc6PGb7umZQ5fP8KkShOWmW+Pmm/4TxGxRmb+b1SHntvaW1ai5hueK69xU9ImrVWzfCkilo6Ix1BtkK7PzDsy8yRqMuf3RcTHqHYdb5hbAzR4UMnF64EDM3M/ajDWDSPi+Zl5ITX9zo2ZeX9m/hF46yACtJ6oCeM3pXrF7ktNIJ5UlcZvgEdR1TTXD2qdD5OWnakqoN2oDgKPpRp0nkO1zXtdRDwiYrS93uZh91Ftjp4QNdk3UIEaNeH70iNK11wvMz9LZTLfGxEXU9WIp7Zr28gDtD5XU80MfkeV4v+eyiD+GnhJRGwyysRJExERK0V1MCMinpGZv6CuZd+N6qn8I2rO5oup2UbelAMeJWCqDL13Zyst+i/gV9QFYWOqF+OeVIPaz7f3bUlNj3LbvNAeImrC9EuBV7VIfzrVc2on4EeZeWZ739DaqkRNHL4+NVjuk1oQdAfVJum0IVZxLthfZdv2xQZUkPh0qsTwHxGxQWZeHxFLZQ1XoAHoK8ndmppg/DfU+XcYFSBfmJlXjDCJ85xWO3AK8PzM/H8daIPW38xgAaqDyDSqynsl4DWZeVPLNO8CnN8CN6nzImJNqgPeD6jOdvtm5h9bW9HdqQKKB6gaql9l5i9HldbJGnp1Z1bj9F9S7SHup6q8/k61fXhGRNyfmZdm5veGnZaplJlfaRfuN0XE71pVyKepC+WP+943tAt5C4TuBaa3XMea1DQ1ZwwxQFsSODAiPk7Nj7k0VYrzTNrvnzWkyvHA1hFxqAHaYLUA7WnUhNinU51Udqd6790PHNaaE3xlhMmcp2TmRRFxZWb+qT3vSoB2JFVqflvWuGgvjYh3A6+NiDdm5g0RcdNk28FKU6F3bGfmzRFxLjWO36tagBZZnQMWoDKm62Tm5aNN8eRNVZu066i2RvcAS7U644uoSPeQiPjHvJizz8xLIuI+4NSooSXOBc6f4mT8BvgCdbNemWp/dOswVtRK0O6JiAeokpvfUyWnC1ETx98HvCAi/kGV6jw7M/8+jLTMr9oFamngKKq35rJUm8gfZvUy/BQ1eO3tI0vkPKoXoI3auDapBwEvBK6MiLWBUzLzhRFxDvCyiDjWAE1zg3GZj0dTVfgHAOdGxF2Z+VGAzHxxRPyOuvYNZVD2qTSU6s5xO3Mhag64+1vj8SdT0/z8IKqL+tOBL2TmPHvTiIg9gNOokqXf5xSP4B41pMeKVFuU22b1/jlcxwbUEBp7tXVdQA2j8eSWy1mTGs18a6rDwPsz82fDSIsgIl5F9ZR9MjXX7S9bI/dvAjdP9TGoqdOaNaxAzWRyLNV56JlU298/Ay/MzLsjYoV0LEJ1XK+tcl9M8TJqwOXDs4aUego1csEhVMHT9pl5/IiSO3ADD9LGBWjHUW2R7gFOzpof7kRgS6pN1P+LubgX50RExIzMvHPU6RimljtfhepN+meqx+5B1CC5P48aQPW6aLNIjDCp86SI2Jhq7/f6iDiF6r33pNb2aCMqcH5+Zn57lOnU1Iiat3BDqtH0kyJidWpWhNcDb5sfrrua+8WD55I9kJoZZ+dWa7N6Zv4mavy/s6lY44U5Dw3CPPDqznFF7ftRN+kfAqtFxGsz878j4g3U+Fw/ml+qu+blAK0XaGfmYRHxQSpXs29mnhE1OvtnonruPjkiDsjqzaoB6OsksB11vu0cNfbca6NGw39dq3LfmGq7YYA2n8gae/ABYIGoyd4fB3we+IQBmrqulaA9GnhHROzWMvYJfAnYKyLWAPaIiJ9TPayfRg0effeo0jwMw6ruXJJqA/Ua6saxK9WrcCXgmJazf6Q367nbuFLT/rkMz6LNBZiZd0bEUcD21CTXQx/yY34wbt9vD3ycKrlcnxrI8TuZ+Y6I2Jaaw+53mXnNqHsdarBm9nv2105EzTbySmBzqgp0n8z8+dSnVJozETGDOn5/TLWnfTGV4Xg78L/UFIMfycxrR5XGYRraEBwx8+Ef7qQm0z7Zxqpzt5lUa69H9dp9bWb+LSLeQwVq+7cG6/8ustbkRMTKwGOAK1tbz2cDq2TmmyNicarU7M3UUBvvHGFSNUQRsUivJiIingAskDV7wL8nlW+Pl6Z6dt+V88DwRpr39bdDa4U+L6bGIHxca+P8iHaf2ZMaVmbvzLx5ZAkeoqENZpuZ/6B6dPaGf9iNmtD7/QZoc7+ZVGufRk3e/qGIWDszj6Pmhfxo63Hobz44m1O9Mxdr1cl/Bp4fEWtl5v9RUxT9CtghIg4aYTo1JO2aenhELN7OwQuA0yLiUvj30EcLtsd3Z+a1BmiaW2QTNX3klzLzVGp8zx9FxEotQHsWFaAdMq8GaDD8IThmNvzDb4a8Tk2RGJvV4AAqUPsRNczG+yPiqMw8NCJWtJPAYGXmxRGxLDXl2KXUyPHvA94ZEa8EFqGaFlxDdeTQvGcVqrf4otQ5uHnrsfmNiLg0M3fNzH/NLx2zNO+JiKcz1q6dzHxla2P57Yh4IvBV4NvDGrGgK4YapGUNpno68AmGOPyDRqP1rjmWqtbee1y19vMi4nXpKOYD01/FnJl/iohvUI1l/0kNWBtUbvM+4Ajq5r1TK1G5z7Zoc7+IWDQz783ML0fEItTwGstTQfndmblDRHw9ap7gbQzQNLcY14RmYWAtasaAJwC3AGTmCa1Jx1eATeaHAoCpmHHgX8BQBk/V6OV/zmqwBlWt/T6rtQerFf/vQLX1+1pmfiBqQu89qEzQWyPizPb2LYDXUsGzv8M8oN2cto2Iu4GNgD9QYxMeDWwTEfdm5i0ts3RpRKyWQxq4WhqkcQHaUsDfMvPMqHFWnx8Rd2fm1wAy87iIWH5+CNBg6mYc0LzNau0h6htmY0uqivN6YLNWWvKBiLgfeHbU/LCfoWYceCI1ZtoNI0u4Bu0+ai7WU4BHAjtm5q3tRnYwMC0iLs/MX2XmrqNMqDS7omYPWAK4JiJeSg1Uu0hEHN16qP+dGrJrwcy8rH1snh3SajyDNE2a1drD1QK0LahBSA/MGhD4AOCJEfH8FqhNA25s1Vt/jIi32pt23pI1GPi3qZ5u3wbWjYjbW9XnfdQQLP+IiN9Qs7xYva1Oa00xXgT8K2rWml2B51Nt0b4RETtk5vsi4hHAcyPiW626f745tg3SNBBWaw/d0lRD8Z2ouXA/Tc19u1PLYZ4JD5qA2ABtHhM1vdx61NRqz6HmZl2aGjz6WmqsvKt6Q29IXRY188y/IuJU4BXA7sDVmflr4C2tk8AVEfG0rIHRl87Me0ea6BEY2hAckgYnM78C7EPlJg9sN+JPA18Drux733yTw5zX9caK6nt8D1XScEhmfgj4BTXMyieoXr5fzczfjSSx0gS0zGSvTdk04NVU54C1ImIzgMx8G3AW8Lk2zubdI0nsiA1tMFtJgxcRuwKnAu/KzHNHnR4NX0Qsnpn/16qGtqRmcvl0q+beCXgy8PHM/OlIEypNUEQcQ3V82ocaTuZ1wN+o47s3MPOymfmn0aVytAzSpLlMq/Y6jar+/P380stpftNKz54InAPslJk3t0Bte+CNwLmZedYIkyjNsXYdOxXYozfQctQUUCdS0z99MDN/2N/zc35kdac0l8nMS4AdMvN3Bmjzlv4qzta28CrgQuDTEbFGa/t5FfBr4BkRscyIkipN1srAJzPzlohYqA28fCfVQeou4LdgEw47DkhzoXYx0zxk3FhRe1Pzbd5Itde5G7goIp5PDVL8AHBoZt41mtRKk3YLsFdEfCYzbwSIiMOAWzLzpJGmrEOs7pSkDomI44EDgW8AywKPAJ5LDVq7KfAY4HmZed2o0ihNVptW8BVUYdFV1FhpLwUOysxfjDJtXWKQJkkd0QYkPgf4rzZQ7YrAscBfM/O0NutAZuZfR5lOaRAiYiVgT6rzwJ+BN5n5eDCDNEkakXFVnEtTN6qrgAsy811t+b7Azpl55MgSKg1RmzUDx3f8T3YckKQRGBegvQA4uj3/L2CXiDikvXURYEZELNbfsUCaV2TmPw3QZs6SNEkaoYg4impz9sxWxbk4NR7a+4DvAZsD+2Tmz0aYTEkjYO9OSRqRNifh04HXAvdGxNHARtTcnJsCKwF/yczbR5dKSaNiSZokjVBEHAkcQ819ez3wG+DxwHHOwynN3yxJk6TR+ijwI+CXmfmniDiAmkh9IcAgTZqPWZImSR0QEQsAhwPHAwc6F6ckS9IkqRsWoWYS2D8zbxh1YiSNniVpktQR8/tk0pIezCBNkiSpgxzMVpIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOuj/A/TuAEmJ9MDRAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[df['artist_top_genre'] != 'Missing']\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlmklEQVR4nO3de9yt9Zz/8de7tqLofEsqEokGs7El50PoMNgxv9JBysSWKeeQzISGwaQQid2InFKK0dCMkpQzu6SSoiiVXXuriE46fH5/XNc9Ldve7cP9vVvrvvfr+Xjcj73W97rWWp96rPte7/U9XakqJEmSNHGrDLsASZKk6cJgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmaNAl/Hvi5M+Hmgft7DLs+SWotbhAq6Z6QcBnwiiq+OexaVkTCjCpuH3YdkkabPVaS7nEJqyd8KOF3/c+HElbvjz0z4cqEgxJ+n3DZ3fVuJTwk4ayEPyV8M+HIhM8NHN8m4fsJf0j4WcIzB459O+HfEr7XP/7UhA36Y5slVMI+Cb8FvtW3/1PCLxKuT/hGwoP79iR8MGFBwg0J5yc8anL+D0oaVQYrScPwdmAbYCbw98DWwL8MHH8AsAGwMbAXMDdhyyU81xeAHwPrA+8E9hw/kLAx8HXg3cB6wAHASQljA4/fHXg5cH9gtf6cQc8AHglslzAbOAh4MTAGfAc4rj/vecDTgYcDawO7ANcu5f+DpGnGYCVpGPYADqliQRULgXcxEIh6/1rFrVWcSReOdln0SRIeBDwBOLiKv1TxXeDkgVNeCpxSxSlV3FnFacA8YMeBcz5VxS+ruBk4gS7sDXpnFTf2x/cF3lvFL/phwX8HZva9VrcB9wMeAaQ/Z/7y/6+RNJUZrCQNwwOBywfuX963jbu+ihvv5vjg81xXxU0DbVcM3H4wsHM/DPiHhD8ATwU2Gjjn6oHbNwH3XeQ1Fn2+Dw8813VAgI2r+BbwUeBIYEHC3IS1FlOzpGnMYCVpGH5HF1LGPahvG7duwpp3c3zcfGC9hDUG2jYduH0F8Nkq1hn4WbOK9y1HrYMrfK4AXrXI892niu8DVHFEFY8HtqIbEnzzcryOpGnAYCVpGI4D/iVhrJ8sfjDcNeG8966E1RKeBjwf+NKiT1LF5XRDe+/sz30S8IKBUz4HvCBhu4RVE+7dT47fZAXr/jjwtoS/A0hYO2Hn/vYTEp6YcC/gRuAW4M4VfB1JU9SMYRcgaaX0bmAt4Lz+/pf6tnFXA9fT9VLdBOxbxUVLeK49gE/TTRT/MXA8sCpAFVf0E87/gy7M3dGf8+oVKbqKryTcF/hiP6/qj8Bpff1rAR8ENqcLVd8ADl2R15E0dbmPlaSR0m+H8LmqFetVSjgeuKiKdzQtTJKWgUOBkqa0fgjuoQmrJGwPzAb+a8hlSVpJORQoaap7APBlun2srgReXcVPh1uSpJWVQ4GSJEmNOBQoSZLUiMFKkiSpkZGYY7XBBhvUZpttNuwyJEmSlurss8/+fVWNLe7YSASrzTbbjHnz5g27DEmSpKVKcvmSjjkUKEmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqZMawC2jt8W/+zLBL0DRz9qEvG3YJkqQpwh4rSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1MhSg1WSTZOckeTCJD9P8rq+fb0kpyX5Vf/vun17khyR5JIk5yV53GT/R0iSJI2CZemxuh14U1VtBWwD7JdkK+BA4PSq2gI4vb8PsAOwRf8zBziqedWSJEkjaKnBqqrmV9U5/e0/Ab8ANgZmA8f2px0L7NTfng18pjo/BNZJslHrwiVJkkbNcs2xSrIZ8FjgR8CGVTW/P3Q1sGF/e2PgioGHXdm3Lfpcc5LMSzJv4cKFy1u3JEnSyFnmYJXkvsBJwOur6obBY1VVQC3PC1fV3KqaVVWzxsbGluehkiRJI2mZglWSe9GFqs9X1Zf75mvGh/j6fxf07VcBmw48fJO+TZIkaVpbllWBAT4J/KKqDh84dDKwV397L+CrA+0v61cHbgP8cWDIUJIkadqasQznPAXYEzg/ybl920HA+4ATkuwDXA7s0h87BdgRuAS4CXh5y4IlSZJG1VKDVVV9F8gSDm+7mPML2G+CdUmSJE057rwuSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiNLDVZJjkmyIMkFA23HJzm3/7ksybl9+2ZJbh449vFJrF2SJGmkzFiGcz4NfBT4zHhDVb1k/HaSw4A/Dpx/aVXNbFSfJEnSlLHUYFVVZyXZbHHHkgTYBXh247okSZKmnInOsXoacE1V/Wqg7SFJfprkzCRPW9IDk8xJMi/JvIULF06wDEmSpOGbaLDaDThu4P584EFV9VjgjcAXkqy1uAdW1dyqmlVVs8bGxiZYhiRJ0vCtcLBKMgN4MXD8eFtV3VpV1/a3zwYuBR4+0SIlSZKmgon0WD0HuKiqrhxvSDKWZNX+9ubAFsCvJ1aiJEnS1LAs2y0cB/wA2DLJlUn26Q/tyl8PAwI8HTiv337hRGDfqrquYb2SJEkja1lWBe62hPa9F9N2EnDSxMuSJEmaetx5XZIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGlhqskhyTZEGSCwba3pnkqiTn9j87Dhx7W5JLklycZLvJKlySJGnULEuP1aeB7RfT/sGqmtn/nAKQZCtgV+Dv+sd8LMmqrYqVJEkaZUsNVlV1FnDdMj7fbOCLVXVrVf0GuATYegL1SZIkTRkTmWO1f5Lz+qHCdfu2jYErBs65sm/7G0nmJJmXZN7ChQsnUIYkSdJoWNFgdRTwUGAmMB84bHmfoKrmVtWsqpo1Nja2gmVIkiSNjhUKVlV1TVXdUVV3Akdz13DfVcCmA6du0rdJkiRNeysUrJJsNHD3RcD4isGTgV2TrJ7kIcAWwI8nVqIkSdLUMGNpJyQ5DngmsEGSK4F3AM9MMhMo4DLgVQBV9fMkJwAXArcD+1XVHZNSuSRJ0ohZarCqqt0W0/zJuzn/PcB7JlKUJEnSVOTO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1stRgleSYJAuSXDDQdmiSi5Kcl+QrSdbp2zdLcnOSc/ufj09i7ZIkSSNlWXqsPg1sv0jbacCjquoxwC+Btw0cu7SqZvY/+7YpU5IkafQtNVhV1VnAdYu0nVpVt/d3fwhsMgm1SZIkTSkt5lj9E/A/A/cfkuSnSc5M8rQlPSjJnCTzksxbuHBhgzIkSZKGa0LBKsnbgduBz/dN84EHVdVjgTcCX0iy1uIeW1Vzq2pWVc0aGxubSBmSJEkjYYWDVZK9gecDe1RVAVTVrVV1bX/7bOBS4OEN6pQkSRp5KxSskmwPvAV4YVXdNNA+lmTV/vbmwBbAr1sUKkmSNOpmLO2EJMcBzwQ2SHIl8A66VYCrA6clAfhhvwLw6cAhSW4D7gT2rarrFvvEkiRJ08xSg1VV7baY5k8u4dyTgJMmWpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDWyTMEqyTFJFiS5YKBtvSSnJflV/++6fXuSHJHkkiTnJXncZBUvSZI0Spa1x+rTwPaLtB0InF5VWwCn9/cBdgC26H/mAEdNvExJkqTRt0zBqqrOAq5bpHk2cGx/+1hgp4H2z1Tnh8A6STZqUKskSdJIm8gcqw2ran5/+2pgw/72xsAVA+dd2bf9lSRzksxLMm/hwoUTKEOSJGk0NJm8XlUF1HI+Zm5VzaqqWWNjYy3KkCRJGqqJBKtrxof4+n8X9O1XAZsOnLdJ3yZJkjStTSRYnQzs1d/eC/jqQPvL+tWB2wB/HBgylCRJmrZmLMtJSY4DnglskORK4B3A+4ATkuwDXA7s0p9+CrAjcAlwE/DyxjVLkiSNpGUKVlW12xIObbuYcwvYbyJFSZIkTUXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzNW9IFJtgSOH2jaHDgYWAd4JbCwbz+oqk5Z0deRJEmaKlY4WFXVxcBMgCSrAlcBXwFeDnywqj7QokBJkqSpotVQ4LbApVV1eaPnkyRJmnJaBatdgeMG7u+f5LwkxyRZd3EPSDInybwk8xYuXLi4UyRJkqaUCQerJKsBLwS+1DcdBTyUbphwPnDY4h5XVXOralZVzRobG5toGZIkSUPXosdqB+CcqroGoKquqao7qupO4Ghg6wavIUmSNPJaBKvdGBgGTLLRwLEXARc0eA1JkqSRt8KrAgGSrAk8F3jVQPN/JJkJFHDZIsckSZKmrQkFq6q6EVh/kbY9J1SRJEnSFOXO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNTJj2AVIWn6/PeTRwy5B08yDDj5/2CVI04I9VpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzMm+gRJLgP+BNwB3F5Vs5KsBxwPbAZcBuxSVddP9LUkSZJGWaseq2dV1cyqmtXfPxA4vaq2AE7v70uSJE1rkzUUOBs4tr99LLDTJL2OJEnSyGgRrAo4NcnZSeb0bRtW1fz+9tXAhos+KMmcJPOSzFu4cGGDMiRJkoZrwnOsgKdW1VVJ7g+cluSiwYNVVUlq0QdV1VxgLsCsWbP+5rgkSdJUM+Eeq6q6qv93AfAVYGvgmiQbAfT/Lpjo60iSJI26CQWrJGsmud/4beB5wAXAycBe/Wl7AV+dyOtIkiRNBRMdCtwQ+EqS8ef6QlX9b5KfACck2Qe4HNhlgq8jSZI08iYUrKrq18DfL6b9WmDbiTy3JEnSVOPO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1ssLBKsmmSc5IcmGSnyd5Xd/+ziRXJTm3/9mxXbmSJEmja8YEHns78KaqOifJ/YCzk5zWH/tgVX1g4uVJkiRNHSscrKpqPjC/v/2nJL8ANm5VmCRJ0lTTZI5Vks2AxwI/6pv2T3JekmOSrLuEx8xJMi/JvIULF7YoQ5IkaagmHKyS3Bc4CXh9Vd0AHAU8FJhJ16N12OIeV1Vzq2pWVc0aGxubaBmSJElDN6FgleRedKHq81X1ZYCquqaq7qiqO4Gjga0nXqYkSdLom8iqwACfBH5RVYcPtG80cNqLgAtWvDxJkqSpYyKrAp8C7Amcn+Tcvu0gYLckM4ECLgNeNYHXkCRJmjImsirwu0AWc+iUFS9HkiRp6nLndUmSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpkItstSJI0aZ7ykacMuwRNM997zfcm/TXssZIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGJi1YJdk+ycVJLkly4GS9jiRJ0qiYlGCVZFXgSGAHYCtgtyRbTcZrSZIkjYrJ6rHaGrikqn5dVX8BvgjMnqTXkiRJGgmpqvZPmvw/YPuqekV/f0/giVW1/8A5c4A5/d0tgYubF6K7swHw+2EXIU0y3+daGfg+v+c9uKrGFndgxj1dybiqmgvMHdbrr+ySzKuqWcOuQ5pMvs+1MvB9PlomayjwKmDTgfub9G2SJEnT1mQFq58AWyR5SJLVgF2BkyfptSRJkkbCpAwFVtXtSfYHvgGsChxTVT+fjNfSCnMYVisD3+daGfg+HyGTMnldkiRpZeTO65IkSY0YrCRJkhoxWKmJJJsnWX3YdUiSNEwGK01YknWBA4C3G64kaepJkmHXMF0YrDQhSTarquuBk4C1gQMMV5rK/IDRyiZJqqqSPCXJPkm27bdK0gowWGmFJVkH+ECSt1fV6cCXgQdiuNIUMB6gkjy6/0DZGKD/gDFcaaXRv+efBXwWeBjwIeC1SR421MKmKLdb0ApLci/gScC+wDlV9YEkzwB2AX4HfKCqbh1mjdLiDHxDfw7wEWA+cBnwc+Dw8g+jViJJtgQOAT5fVScneRzwKuDcqjpquNVNPfZYabmNf5uvqtuAHwJHAtskOaCqzgROAO4PHGzPlUZRH6oeB7wZ2Kmqng18ie5SXLOHWpx0D0kPeDrwUGC7JGtW1TnAccCcfg6tloPBSstl/Jt+f3ttgKr6HnA48KSBcPU1YDXgvkMrVlqCfv7IM4BnARv3zd8FbgCeMKy6pHvCwFD3BsCMqjoaeA8QukvQAVwN/Klv03KYlEvaaPoaCFWvBbYFrk1yalV9sf9dfV2Sg6vqkCTfraqbh1mvNG5g+O9ewG10Pa3rAm9Ncn1V/TTJucDuSdYAbnZIUNNR/3uwI93w31VJbgT2AdYE9kqyO10++I+qum6IpU5JBisttyT7Av8I7AEcChyWZP2qOjLJDGCfJOv5C6lR0n+YvAB4Ed1Q9aF0w9bXAicnOYauB+vQqrppeJVKkyvJI4F3A/sD5wJfAD5VVbsmuQXYDji/qr7Wnx+/ZCw7g5WWS5J7A7fSfTi9DLgP8FLgk0nurKqjkvy4qm4ZZp3SopI8Hng/8Aq6OSV7AmfQrYR6AF0P7FFV9d9JVq2qO4ZWrDS5bgUupFt0dAuwU5Izk+wHfAJYh25qx67A8Yaq5eMcK92tJH/1HqmqW6rqU3RdxtsD+1XVGcDPgH9Oso6hSiPqkcCPq+r7VfU+4H+B1wP3Bg6j673aJ8mjDFWaTga2Flm1Hwq/DtgImDVw2heBO6rqduBY4CzgDEPV8jNYaYmSbFJVd/a3X5Pk8CQHJFmLuyY2PiTJHOAa4NlV9YfhVSzdZeDDZPzv3IXAaklmAVTVicBFwBZV9Xu6VYFfBv44hHKlSdMPg8+m+/JwPN2XjCOBjyTZP8kr6IYFL+nPv62qjq2qa4ZW9BTmPlb6G/0H0lp0Y+/vBc4DjgD+E3gM3UqSvej2OXkc8Hhgj6o6bxj1SkvS71P1JOAPwGl0e67NB64CLqZbUv7i8feuQ4CajpI8gu7v93vp/n6/k24o/Da6+VSbACdW1anDqnE6MVhpiZI8Gfgk3Tf9I6vqW0keCLyVLnjtV1U3JVm7qvyWr5GS5CnAMXTDfC+j2wLkcmAMeDLdcPbR/YaITs7VtJTkUXS/AxdX1Wv7tu2ATwNPq6pLhljetORQoP7KwPBJqur7dBPT/w7YEaCqfge8D7gDODLJKoYqjZokDwf+GTiiquYCOwHrA4+pqiOqaldgb0OVVgK/pJu68cgkWyRZvaq+QXd917HhljY92WOl/7PI5p/PARbSDZmsC/wP3TL0T/THH0A3dO8YvEZOkh2A19KtfnpDVf2mnxt4JvCSqvrlUAuU7gHjQ9v9hPVPAjcD3wQW0A2Dz66qnwyzxunIYKW/keQNdN/wz6DbnXoXYHO6lSIfr6oPDa04aTEGNv/cHLiJbtXTlnTzAH9L9+08dJPT/6GqrhhasdI9YOB3YkZV3d5fbeBIuisLnAl8vapOtce2PYcC9VeSbAVsV1XPANYGrgf+UFU/opunsmeSdYZYovQ3+g+QHejmUR0O/IRudd9xdEvKv0T3ofJWQ5Wmo4FpHFv0IwoA9KFqRlX9hW54fB6wBnCOoWpyGKxWcgPXjBr3F+C3SQ4CHg7sXlW3JZldVT8GnuyWCho1/QfJu4FXVtXudEHqZOBXdCuhvg98m64XdnHve2nKGuid2o7uff9fwH5JHgZ/Fa5uowtX9wfehpuETwqD1UpskTlVs/tVgL8GNgT2pht/v6Xf4+SA/rI1tw6vYuku4/tTJXkC3WKKc+lW/VFV7wa+AxxUVT+lmyP4ULoNQGf4LV3TSR+qZtFdVeAFwJvoFh3ttEi4WrXvudoZOKwPWmrMYLUSGwhV+wP/BizoNwT9MN23+xOTHEi3cdyrq+raYdUqjUtyH4CqujPJU+km5T6Kbn+efxg49bt0k3Wpqq/TbY54Yr+ztDRtJLkf8HLgcVV1SVV9j+76f5sDL+lXydJPZF+lqv7Sr/DWJLAbcCXXf5vZGdh+4BftO8D5dFstXE+3iuriIZUo/Z9+T54PJXk+3SU5/hX4SFWdkeTPwNwkD6XbEPQlwEHjj3XzQ00ngyMOVfWnJEcAD0tyJPCaqvpOklWBPeg2AqU/987hVLzycFXgSmbRyYr9RPSPAwcCvwNu67uVNwMud8hEo6JfMn4U8CPgv4Hn0Q17rAvsVVVXJXkk3UrW9YEf9JvaOkFX08rAnKrnAg+i+yz/z75n6kDgBuCNfa/uulV1/VALXsk4FLgSWWRO1Qb9kMqNwOrADn33cCXZnW5i4xpDLFdanKvogtOX6FY3HUI3t+o1STaqql9U1cer6j1V9S24a8hbmg76obxK8g90O6pfCRyS5AP9/mz/DjwA+Gj/EDdwvofZY7WSWCRUvRHYDfgZ3eqRn9J9UF0E3A5sDexZVecPp1rpry3yDf2zwLf73dPHL13zfLovAv/uprWajpI8BFilqi5NsgHd78Eb6FZvHwhsDHyzqvZJsiWwenn91qGwx2olMRCqnkB34eTXAF8HXk+3z8/z6Cb3/oDuorSGKo2ERTb/HANeDKyS5N39MMf3gFPovhSsM8RSpcn0ZGD9/pI0vwfmAKsB7wKeCjwLeHmSj1bVxYaq4XHy+kqkX0H1ZeDDVfXDfijwT8CbgQdW1VFDLVBajD5UvZBu2O8Sui1BPkG3pPy1SY7oJ+qe7x5rmq6q6vNJ7gv8JMlLq+q8JA8Ezu7nUj2AbnPcbwy3UtljNY0tugliVX2Xrvt4lyQbVNXNwFl02ys8N8m6bpyoUZNkG7rVf9sBX6Hb4PB5wAfo5lu9qd+b6g9DK1KaJAM7qm9Ht63IZ4Gj+xWylwFrJ/kY3WWbvlpVp/l3fLicYzVNLTKnalvgfsBpVXVjkg8C29BtALqgX211r6q6aYglS4uVZBO6rRXWpdtdfXe6lazXAZ8GFpYXktU0lmRrui/Ab+hHG95I93uwU3/KY4Abq+rMIZWoAQaraS7dBZX/ke7SHhsC76+qM5McSjfh9+lVtXCYNUrLIsl76Dax/XCSlwGvBf6xqi4fcmnSpEmyKfBB4LqqmjPQ/kbglcDOVXXBsOrT33KO1TTTj7NfX1W39iuonltVT+13UH8y3eTGqqo3J7kVWBMwWGkqOB94Vd/D+mLgdYYqrQRuB84DZifZvqr+F6CqDu83AF1nmMXpb9ljNU30Y+pjwInAfwKfoxs6uS/dipG9gBcCnwIeBrylqs4YTrXS8kuyFvAiuvfxMf1laqRpZWAV7JPo/qb/lm7Bxt501/87oapOH2KJWgonr08fqaoFdNf8242ue/ja/hv9w4H/qapbgO/RDQvadawppapuqKpj6S6x9HUn6Go66kPV84Bj6KZvnA08BTiZrudq7/64RpRDgdPEwPWf1gDuAxyTZI2q+hTwfeBj/eUOnkQXuhz+01R1B7ijuqafJKvQDe29iq53dj3gQuCcqromyZforpQxf2hFaqkcCpxGkrwEeCuwA91qkZcBHwOOp/vG81zgc1V10bBqlCTdvSRvBdYGng3s0e+2vjfd9jiXeSHl0WaP1fSyPnBWf0mPTyS5FpgLrFFVRwMuxZWkEZRkJt0WOO+iW1S0J/CsPlT9Pd2X5kuq6tdDLFPLwGA1vfwWmNnv+3NVVZ3YL0t/QZIvVtWfhlyfJKk3MFH9acDOwHZJFlTVwUkeAbwjye3ATOCt/SbPGnEOBU4jSdam2zjxcroLK69BNyT4uqq6bHiVSZLGLbKB89OBzwP7A48AHg98v6o+1F+GbF3gd1V19uDjNLoMVlPMkn6x+kt63J5kPbqJjw8EtgAOcPM4SRoN/fX9Hgl8u6ruSPJSYOOqen9/LcCZwPvptlX48BBL1QoyWE0hi3zLmQ0EuLOqTu7bxsPVKv1FOdesqhuHWbMk6S793+5fAVfSbf65Ld3O6s+tqt/0KwOPpZtndWJVfWFoxWqFuI/VFDIQqval269qS+CjSd7SH7+9/6UcT8te+0+SRkhVfRW4mm7F9k7AqXRTOD7cz6t6DN21MX8FbDykMjUBTl6fAhbpqbo3sAuwV1X9NMkJwDeS/LmqPja4DNexeEkaDYN/x6vquiRnAs8D/gJ8hW4E4rN0vVj7AI8Dnttfwul2/55PHQarKaTvqboY+CVwn37I7zdJ9gd2HW51kqQl6Vf/PQN4NPCtqjo6yZ/pLtF0Z1UdmuRj/elbAwcDL6qq24ZUslaQQ4EjLMmW8H+/kC+mW477c+Ba4A1015EC2BRYo78gpyRpRIxfeinJE+mG/54BvCXJK6vqOOBrwEuT7ALcAtwbeDLdnlY/H1LZmgAnr4+oJNsBR9F1B28EHAZcWlWv6Y8fQ7cM90a6uVYvd/WfJI2eJFsDhwBvqarzkuxKF57O73uudgMurKqf9eevVlV/GWLJmgCHAkdQkhl0XcH/CmxFt/z2DGB2khdU1X9X1T/134BWpdsM9PKhFSxJujvrAM+hu6zYecCJwJ30c6iq6mNw1zwsQ9XUZrAaQf3qvkuBf6G74Oyz6LqIb6bbRf2Oqjqlqn40zDolSUtXVaf20znem+R3VXVckhPpvhj/bOA8h5CmAYPV6DqPbruEG4C1q+r3Sb5M9y1nzyS3VtXpQ61QkrRMqurk/vI0/9YP9R0LHDfsutSec6xGxCJbKqwG3NHvynsA3RXO31FVP+mvA7gD8LWqmj/EkiVJyynJC4H30Q0NXj24RY6mB4PVCFgkVO1PN6/qBuCdVXVLkoOAJwLvq6ofJFm1qu4YYsmSpBWUZKyqFg67Dk0Og9UISfLPwEuA3YFzgG8CB1fVpUneDTwM2LuqbhlimZIkaQkMViMiyVrA4XQrAXcGdgQW0G218OqquiTJ+lV17RDLlCRJd8NgNUKSrA48AvhQVT2r31huIfAJumFBd+CVJGmEuSpwhFTVrUluAmYkeTTwYOB04BOGKkmSRp89ViOm77V6Pd2KkQcCO1fVhUMtSpIkLROD1Qjqr2b+ALoLc1417HokSdKyMVhJkiQ1ssqwC5AkSZouDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpkf8PwQ8MlHUQ3OMAAAAASUVORK5CYII=", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAJZCAYAAABoaLenAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZx0lEQVR4nO3dd5glZZn///eHIUnWBROCIKKAIAMiomJGZA1gQFFxlTVgWuMuij8UEXXFtGv265gwoCIYQEXAVRFFEIY0BFFYxFVRMIEgkmbu3x9VDWd6eronNVXV/X5d17m6znPqVN3ndLrPXU9IVSFJkiT13WpdByBJkiQtCxNXSZIkDYKJqyRJkgbBxFWSJEmDYOIqSZKkQTBxlSRJ0iCYuEqSJGm5JdkryS+SXJbk4Ake3zzJD5Ocm2RBkieu9Dmdx1WSJEnLI8kc4JfA44HfAmcBz6mqi0f2mQecW1UfT7IdcEJVbbEy57XiKkmSpOW1K3BZVV1eVTcDXwH2GbdPARu02xsCV67sSVdf2QNIkiRp1tkU+M3I/d8CDxm3z2HAyUleBawL7LGyJzVx7aFb/nR57/tv3Omej+g6hCmdd6+dug5hUlf9fd2uQ5jSGlnUdQhT+vfVruo6hCm9aM7mXYcwqSvn9P5PDldxc9chTOletWbXIUzprgvTdQhT+t3q/f55PPyKo3rxJk53rrDmJlu9FDhwpGleVc1bzsM8Bziyqt6f5KHAF5JsX1Ur/M/FxFWSJEmLaZPUyRLV3wGbjdy/V9s26kXAXu3xTk+yNrAxcPWKxmUfV0mSpKFZtHB6b1M7C9g6yZZJ1gSeDRw/bp//Ax4HkGRbYG3gjyvzsk1cJUmStFyq6lbg34CTgJ8DX62qi5IcnmTvdrd/B16S5Hzgy8ABtZLTWdlVQJIkaWhWvJvoqguh6gTghHFth45sXww8fFWe08RVkiRpaBZ1n7h2wa4CkiRJGgQrrpIkSQOzEjNKDZoVV0mSJA2CFVdJkqShsY+rJEmS1F9WXCVJkobGPq6SJElSf1lxlSRJGpplW5Z1xrHiKkmSpEGw4ipJkjQ09nHtryTXdx3DmKliSbJRklfcUfFIkiTNFr1JXNPoTTwrYSPAxFWSJE2fRYum99ZTnSaKSbZI8osknwcuBN6S5KwkC5K8bSnPOWiifZJ8M8nZSS5KcmDbNifJkUkuTHJBkte17VslObHd/8dJtpkkxi2TnN4+/x0j7esl+X6Sc9rH9mkfOgLYKsl5Sd47WcySJEladn3o47o18AJgA2BfYFcgwPFJHllVp47tmGTPdv+J9nlhVf0lyZ2As5J8DdgC2LSqtm+fv1F7qHnAy6rq0iQPAT4GPHYp8X0Q+HhVfT7JK0fabwSeVlV/S7IxcEaS44GDge2rau4yxCxJkrTcyj6unfl1VZ0B7NnezgXOAbahSfhGTbbPq5OcD5wBbNa2Xw7cJ8mHk+wF/C3JesDDgGOSnAd8ArjHJPE9HPhyu/2FkfYA/5lkAfA/wKbA3SZ4/rK8LpIcmGR+kvmf+vyXxz8sSZI06/Wh4vr39muAd1XVJybZd8J9kjwa2AN4aFXdkOQUYO2q+muSHYEnAC8DngW8FrhmrCK6jGqCtv2BTYAHVdUtSa4A1l7WmJc4QdU8mkowt/zp8onOJ0mS1OhxP9Tp1IeK65iTgBe2FVGSbJrkrsu4z4bAX9ukdRtgt/bxjYHVquprwJuBnavqb8Cvkjyz3Sdtcrs0pwHPbrf3H2nfELi6TVofA9y7bb8OWH85X5ckSZKm0IeKKwBVdXKSbYHTkwBcDzwPuHoZ9jkReFmSnwO/oOkuAM3l+8+OzFbwpvbr/sDHk7wZWAP4CnD+UkJ7DfClJG8EjhtpPwr4VpILgPnAJW2Mf05yWpILge9W1UFTvS5JkqTlMkv7uKbKq9J9M4SuAne65yO6DmFK591rp65DmNRVf1+36xCmtEb6/4fx31e7qusQpvSiOZt3HcKkrpzT+z85XMXNXYcwpXvVml2HMKW7LkzXIUzpd6v3++fx8CuO6sWbeNMvfzKtb9Ra99u9F69zvN5UXCVJkrSMFi3sOoJOmLi2khwCPHNc8zFV9c4u4pEkSVqqWdpVwMS11SaoJqmSJEk9ZeIqSZI0NE6HJUmSJPWXFVdJkqShmaV9XK24SpIkaRCsuEqSJA2NfVwlSZKk/rLiKkmSNDBVs3MBAiuukiRJGgQrrpIkSUPjrAKSJElSf1lxlSRJGhpnFZAkSZL6y4prD93pno/oOoQp/ePKH3cdwpQO2eWQrkOY1KVrXd91CFN6OBt2HcKUPr/Wel2HMKUP3HJT1yFMaoeFa3UdwpSecEt1HcIy6Pf3GeD0NdfuOoQpbXlLug5hGOzjKkmSJPWXFVdJkqShWeQ8rpIkSVJvWXGVJEkaGvu4SpIkSf1lxVWSJGloZuk8riaukiRJQ2NXAUmSJKm/rLhKkiQNzSztKmDFVZIkSYNgxVWSJGlorLhKkiRJ/WXFVZIkaWCqXPJVkiRJ6i0rrpIkSUNjH9fZJ8n103DMuUmeOHL/sCT/sarPI0mSNNtYcV315gK7ACd0HIckSZqpXDlrdktyUJKzkixI8ra2bYskP0/yySQXJTk5yZ3axx7c7ntekvcmuTDJmsDhwH5t+37t4bdLckqSy5O8uqOXKEmSNGgmrkCSPYGtgV1pKqYPSvLI9uGtgY9W1QOAa4BntO2fBV5aVXOBhQBVdTNwKHB0Vc2tqqPbfbcBntAe/61J1pju1yRJkmawRYum99ZTJq6NPdvbucA5NInm1u1jv6qq89rts4EtkmwErF9Vp7ftX5ri+N+pqpuq6k/A1cDdVmHskiRJs4J9XBsB3lVVn1isMdkCuGmkaSFwpxU4/vhjLPG+JzkQOBAgczZktdXWXYHTSJKkWcE+rrPaScALk6wHkGTTJHdd2s5VdQ1wXZKHtE3PHnn4OmD95Q2gquZV1S5VtYtJqyRJ0pKsuAJVdXKSbYHTkwBcDzyPtu/qUrwI+GSSRcCPgGvb9h8CByc5D3jXtAUtSZJmrx73Q51Oszpxrar1RrY/CHxwgt22H9nnfSPtF1XVAwGSHAzMb/f5C/DgSc65/dIekyRJ0tLN6sR1JT0pyZto3sNfAwd0G44kSZo1ZmkfVxPXFdROdXX0lDtKkiRplTBxlSRJGhr7uEqSJGkQZmni6nRYkiRJGgQrrpIkSUMzSwdnWXGVJEnSIFhxlSRJGhr7uEqSJEn9ZeIqSZI0NLVoem/LIMleSX6R5LJ2FdGJ9nlWkouTXJTkSyv7su0qIEmSpOWSZA7wUeDxwG+Bs5IcX1UXj+yzNfAm4OFV9dckd13Z85q4SpIkDU33fVx3BS6rqssBknwF2Ae4eGSflwAfraq/AlTV1St7UrsKSJIkaTFJDkwyf+R24LhdNgV+M3L/t23bqPsB90tyWpIzkuy1snFZcZUkSRqaaZ7HtarmAfNW8jCrA1sDjwbuBZyaZIequmZFD2jFVZIkScvrd8BmI/fv1baN+i1wfFXdUlW/An5Jk8iuMBNXSZKkoVm0aHpvUzsL2DrJlknWBJ4NHD9un2/SVFtJsjFN14HLV+Zl21Wgh867105dhzClQ3Y5pOsQpvTO+e/sOoRJfXOHt3QdwpT+PIC/EK+9sboOYUpPzFpdhzCphek6gqkdvfacrkOY0gb0P8bNbu06gqltWzd0HYKWQVXdmuTfgJOAOcBnquqiJIcD86vq+PaxPZNcDCwEDqqqP6/MeQfwb0mSJEmL6X5WAarqBOCEcW2HjmwX8Pr2tkrYVUCSJEmDYMVVkiRpaKr/3aSmgxVXSZIkDYIVV0mSpKHpQR/XLlhxlSRJ0iBYcZUkSRoaK66SJElSf1lxlSRJGpqanRVXE1dJkqShsauAJEmS1F9WXCVJkobGBQgkSZKk/rLiKkmSNDT2cZUkSZL6y8R1nCRbJLlwBZ7305HnP3fVRyZJktRatGh6bz1l4rqSkqwOUFUPa5u2AExcJUmSVrHBJa5tRfOSJEcl+XmSY5Osk+RxSc5NckGSzyRZq93/iiTvadvPTHLftv3IJPuOHPf6pZzrx0nOaW8Pa9sf3bYfD1w87vlHAI9Icl6S1yU5NcnckWP+JMmO0/X+SJKkWaAWTe+tpwaXuLbuD3ysqrYF/ga8HjgS2K+qdqAZdPbykf2vbds/AnxgOc5zNfD4qtoZ2A/40MhjOwOvqar7jXvOwcCPq2puVf038GngAIAk9wPWrqrzlyMGSZIkMdzE9TdVdVq7/UXgccCvquqXbdvngEeO7P/lka8PXY7zrAF8MskFwDHAdiOPnVlVv1qGYxwDPDnJGsALaRJsSZKkFVaLalpvfTXUxHX8O3rNcuw/tn0r7etPshqw5gTPex1wFbAjsMu4ff6+TIFW3QB8D9gHeBZw1ET7JTkwyfwk84/52/8ty6ElSZJmlaEmrpsnGaucPheYD2wx1n8V+BfgRyP77zfy9fR2+wrgQe323jTV1fE2BH5fVYvaY85ZhtiuA9Yf1/Ypmm4GZ1XVXyd6UlXNq6pdqmqXZ26w+TKcRpIkzVrOKjAovwBemeTnwJ2B/wb+FTimvay/CPh/I/vfOckC4DU0VVSATwKPSnI+TfeBiSqoHwNe0O6zzVL2GW8BsDDJ+UleB1BVZ9P0xf3s8r1MSZIkjRnqylm3VtXzxrV9H9hpKfu/t6reONpQVVcBu400vbFtvwLYvt2+FHjgBPucApwy7njrtV9vAR47+liSe9J8SDh50lclSZK0LHo88n86DbXiOhhJng/8DDik7XIgSZKkFTC4iutoRXQZ999i2oJZtvN/Hvh8lzFIkqQZpscj/6eTFVdJkiQNwuAqrpIkSbNej0f+TycrrpIkSRoEK66SJElDM0srriaukiRJQ1MOzpIkSZJ6y4qrJEnS0MzSrgJWXCVJkjQIVlwlSZKGxgUIJEmSpP6y4ipJkjQ0ZR9XSZIkqbesuEqSJA2NfVwlSZKk/rLi2kNX/X3drkOY0qVrXd91CFP65g5v6TqEST31grd3HcKU3v+gQ7sOYUo7585dhzClW3reFe2S1W7sOoQpbV5rdR3ClM6qa7sOYUq/Wb3/7+Oat6zTdQiT2q3rAFrlPK6SJElSf1lxlSRJGhr7uEqSJEn9ZcVVkiRpaJzHVZIkSeovK66SJElDYx9XSZIkqb+suEqSJA2N87hKkiRJ/WXFVZIkaWhmaR9XE1dJkqShcTosSZIkqb+suEqSJA3NLO0qYMVVkiRJg2DFVZIkaWDK6bD6I8lhSf6jb+dPcs8kx7bbj07y7XZ77yQHt9tPTbLdHRuxJEnSzGfFdTlU1ZXAvhO0Hw8c3959KvBt4OI7LjJJkjSr2Me1W0kOSfLLJD8B7t+2vSTJWUnOT/K1JOu07Ucm+VCSnya5PMm+I8d5Y5IL2ucc0bZtleTEJGcn+XGSbdr2pyT5WZJzk/xPkruNhLRjktOTXJrkJe3+WyS5cILYD0jykSQPA/YG3pvkvPa854zst/XofUmSJC27XlRckzwIeDYwlyamc4Czga9X1Sfbfd4BvAj4cPu0ewC7A9vQVDuPTfLPwD7AQ6rqhiR3afedB7ysqi5N8hDgY8BjgZ8Au1VVJXkx8Abg39vnPBDYDVgXODfJd6Z6HVX10yTHA9+uqrEuBdcmmVtV5wH/Cnx2Rd4jSZKk28zSimsvElfgEcA3quoGgDb5A9i+TVg3AtYDThp5zjerahFw8UildA/gs2PHqaq/JFkPeBhwTJKx567Vfr0XcHSSewBrAr8aOf5xVfUP4B9JfgjsCpy3Aq/tU8C/Jnk9sF97nCUkORA4EOC16z+IJ99pqxU4lSRJ0szVm64CS3Ek8G9VtQPwNmDtkcduGtkOS7cacE1VzR25bds+9mHgI+3xXzru+OM/yqzoR5uvAf8MPBk4u6r+PNFOVTWvqnapql1MWiVJ0qRq0fTeeqovieupwFOT3CnJ+sBT2vb1gd8nWQPYfxmO8z2a6uZYX9i7VNXfgF8leWbbliQ7tvtvCPyu3X7BuGPtk2TtJP8EPBo4axlfy3Vt3ABU1Y00leKPYzcBSZKkFdaLxLWqzgGOBs4HvsvtSeJbgJ8BpwGXLMNxTqTp7zo/yXnA2JRW+wMvSnI+cBFNP1iAw2i6EJwN/Gnc4RYAPwTOAN7eziiwLL4CHNQO+BornR4FLAJOXsZjSJIkLd2imt5bT/WljytV9U7gnRM89PEJ9j1g3P31RraPAI4Y9/ivgL0mOM5xwHETtB+2lBivALZvt08BTmm3j6Tp1kBVnQaMn8d1d5q+twsnOq4kSZKm1pvEdaZK8g1gK5pZDCRJklZa9bgqOp1MXKdZVT2t6xgkSZJmAhNXSZKkoZmlFddeDM6SJEmSpmLiKkmSNDSLFk3vbRkk2SvJL5JcluTgSfZ7RpJKssvKvmwTV0mSJC2XJHOAj9IssrQd8Jwk42dVop2f/zU005uuNBNXSZKkoel+Htddgcuq6vKquplmHvt9Jtjv7cC7gRtXxcs2cZUkSRqa7hPXTYHfjNz/bdt2myQ7A5tV1XdW1cs2cZUkSdJikhyYZP7I7cDlfP5qwH8B/74q43I6LEmSpIGpmt7psKpqHjBvkl1+B2w2cv9ebduY9WlWGz0lCcDdgeOT7F1V81c0LiuukiRJWl5nAVsn2TLJmsCzgePHHqyqa6tq46raoqq2AM4AVippBSuukiRJw9PxAgRVdWuSfwNOAuYAn6mqi5IcDsyvquMnP8KKMXGVJEnScquqE4ATxrUdupR9H70qzmniKkmSNDQu+SpJkiT1lxVXSZKkgalZWnE1ce2hNbJsawR36eFs2HUIU/pzz3+63/+gCbsB9cq/n3141yFM6SE7PL/rEKb0+LU2m3qnDj38lrW7DmFKp62xShbdmVbPvaX/fxdPXfOWrkOY0mVr9P9/oLrT83/tkiRJWsIsrbjax1WSJEmDYMVVkiRpaGZpjworrpIkSRoEK66SJEkDM1tnFbDiKkmSpEGw4ipJkjQ0VlwlSZKk/rLiKkmSNDTOKiBJkiT1lxVXSZKkgXFWAUmSJKnHrLhKkiQNzSzt42riKkmSNDB2FZAkSZJ6bFYlrklem2SdkfsnJNmow5AkSZKW36JpvvXUrEpcgdcCtyWuVfXEqrqms2gkSZK0zDpNXJN8M8nZSS5KcmDbtleSc5Kcn+T7bdtd2n0XJDkjyQPb9sOS/MfI8S5MskWSdZN8pz3GhUn2S/Jq4J7AD5P8sN3/iiQbt9vPb49/fpIvtG1HJvlQkp8muTzJviPnOijJWe1z3ta2LXHetv2IJBe3+77vjnhvJUnSzFWLpvfWV10PznphVf0lyZ2As5IcB3wSeGRV/SrJXdr93gacW1VPTfJY4PPA3EmOuxdwZVU9CSDJhlV1bZLXA4+pqj+N7pzkAcCbgYdV1Z9GzgtwD2B3YBvgeODYJHsCWwO7AgGOT/JIYJPx503yT8DTgG2qquyaIEmStGK67irw6iTnA2cAmwEHAqdW1a8Aquov7X67A19o234A/FOSDSY57gXA45O8O8kjquraKeJ4LHDMWEI7cl6Ab1bVoqq6GLhb27ZnezsXOIcmqd16Kee9FrgR+HSSpwM3TBRAkgOTzE8y//gbLp8iXEmSNKvZx/WOleTRwB7AQ6tqR5ok8LzlPMytLP4a1gaoql8CO9Mkku9IcuhKhHrTyHZGvr6rqua2t/tW1acnOm9V3UpTmT0WeDJw4kQnqap5VbVLVe2y9zr3WYlwJUmSZqYuK64bAn+tqhuSbAPsRpN4PjLJltD0bW33/TGwf9v2aOBPVfU34AqaRJEkOwNjz7sncENVfRF479g+wHXA+hPE8gPgme1lfcZ1FZjIScALk6zX7r9pkrtOdN52nw2r6gTgdcCOy/b2SJIkTcw+rne8E4GXJfk58Aua7gJ/pOku8PUkqwFXA48HDgM+k2QBzaX2F7TH+Brw/CQXAT8Dftm27wC8N8ki4Bbg5W37PODEJFdW1WPGAqmqi5K8E/hRkoU01d8DlhZ4VZ2cZFvg9CQA1wPPA+47wXnXB45LsjZNpfb1K/BeSZIkzXqdJa5VdRPwz0t5+Lvj9v0L8NQJjvEPmr6m411BUxUdv/+HgQ+P3N9iZPtzwOfG7X/AuPvrjWx/EPjguFP870TnpekqIEmStGr0uCo6nboenCVJkiQtk66nw5IkSdJy6nM/1OlkxVWSJEmDYMVVkiRpYKy4SpIkST1mxVWSJGlgrLhKkiRJPWbFVZIkaWgqU+8zA1lxlSRJ0iBYcZUkSRqY2drH1cRVkiRpYGqRXQUkSZKk3rLiKkmSNDCztauAFVdJkiQNghVXSZKkgSmnw5IkSZL6y4prD/37ald1HcKUPr/Wel2HMKXX3lhdhzCpnXPnrkOY0kN2eH7XIUzpZxd8vusQpvT1Hd7SdQiTunKNriOY2ke/8/KuQ5jSB5/42a5DmNITb5zTdQhTWrDW7KwkLi/7uEqSJEk9ZsVVkiRpYJzHVZIkSeoxK66SJEkDU/0exjFtrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQwziogSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqdlZcTVwlSZIGphZ1HUE37CqwCiTxA4AkSdI0m5WJa5LnJTkzyXlJPpFkTpLrk7wzyflJzkhyt3bfTZJ8LclZ7e3hbfthSb6Q5DTgC+1+30tyUZJPJfl1ko2THJ7ktSPnfmeS13TzyiVJ0kywqDKtt76adYlrkm2B/YCHV9VcYCGwP7AucEZV7QicCrykfcoHgf+uqgcDzwA+NXK47YA9quo5wFuBH1TVA4Bjgc3bfT4DPL8992rAs4EvTtsLlCRJmqFm4yXuxwEPAs5KAnAn4GrgZuDb7T5nA49vt/cAtmv3BdggyXrt9vFV9Y92e3fgaQBVdWKSv7bbVyT5c5KdgLsB51bVn6frxUmSpJnPwVmzR4DPVdWbFmtM/qPqtnUoFnL7e7MasFtV3Thuf4C/L+M5PwUcANydpgK7ZFDJgcCBAPfe8L5sss49lvHQkiRJs8Os6yoAfB/YN8ldAZLcJcm9J9n/ZOBVY3eSzF3KfqcBz2r32RO488hj3wD2Ah4MnDTRk6tqXlXtUlW7mLRKkqTJ1KJM662vZl3iWlUXA28GTk6yAPgeMFmm+GpglyQLklwMvGwp+70N2DPJhcAzgT8A17XnvBn4IfDVqlq4al6JJEnS7DIbuwpQVUcDR49rXm/k8WNpBlhRVX+iGcw1/hiHjWu6FnhCVd2a5KHAg6vqJrhtUNZuNAmtJEnSSrmtc+MsMysT12myOfDVNkm9mXZWgiTb0Qz6+kZVXdphfJIkSYNm4rqKtEnpThO0Xwzc546PSJIkzVR96IeaZC+aaUPnAJ+qqiPGPf564MXArcAfgRdW1a9X5pyzro+rJEmSVk6SOcBHgX+mmdf+Oe1V5lHnArtU1QNpumC+Z2XPa8VVkiRpYHqwutWuwGVVdTlAkq8A+wAXj+1QVT8c2f8M4Hkre1IrrpIkSVpemwK/Gbn/27ZtaV4EfHdlT2rFVZIkaWCme+Ws0YWRWvOqat4KHut5wC7Ao1Y2LhNXSZIkLaZNUidLVH8HbDZy/15t22KS7AEcAjxqbJrQlWHiKkmSNDA9mMf1LGDrJFvSJKzPBp47ukOSnYBPAHtV1dWr4qT2cZUkSdJyqapbgX+jWcr+5zSrg16U5PAke7e7vZdmgadjkpyX5PiVPa8VV0mSpIHpwawCVNUJwAnj2g4d2d5jVZ/TiqskSZIGwYqrJEnSwEz3rAJ9ZeIqSZI0MD0YnNUJuwpIkiRpEKy4SpIkDUwfBmd1wYqrJEmSBsGKaw+9aM7mXYcwpQ/cstKLX0y7J2atrkOY1C2Luo5gao9fa7Opd+rY13d4S9chTOnpF7y96xAm9dUHHjr1Th37ryd+tusQpvSP9L/T4W/WmNN1CFPaYAB/G/tgtg7OsuIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwPS/R/X0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGZrYuMGbFVZIkSYNgxVWSJGlgCvu4SpIkSb1lxVWSJGlgFs3SpbOsuEqSJGkQpkxck/x0RQ6c5KlJtluR506HJBslecUy7nv9dMcjSZK0ohaRab311ZSJa1U9bAWP/VRgwsQ1SRddFDYClilxlSRJUv8sS8X1+vbro5OckuTYJJckOSpJ2seOSHJxkgVJ3pfkYcDewHuTnJdkq/a5H0gyH3hNkiOT7LuU8/woyXFJLm+PvX+SM5NckGSrdr9NknwtyVnt7eFt+2FJPtOe7/Ikr25PcQSwVRvPe5Osl+T7Sc5pj7vPBK99stf8oDbOs5OclOQebfurR96Lr7Rtj2rPe16Sc5Osv4LfL0mSJIpM662vlrfyuRPwAOBK4DTg4Ul+DjwN2KaqKslGVXVNkuOBb1fVsQBtvrdmVe3S3j9ykvPsCGwL/AW4HPhUVe2a5DXAq4DXAh8E/ruqfpJkc+Ck9jkA2wCPAdYHfpHk48DBwPZVNbc9/+rA06rqb0k2Bs5IcnxVje/uPNFr/hnwYWCfqvpjkv2AdwIvbM+zZVXdlGSj9hj/Abyyqk5Lsh5w49RvtSRJ0sRm6wIEy5u4nllVvwVIch6wBXAGTSL26STfBr49yfOPXsbznFVVv2/P87/AyW37BTQJKcAewHZtQgywQZsUAnynqm4CbkpyNXC3Cc4R4D+TPJLm+79pu98fxu030Wu+Btge+F57/jnA79v9FwBHJfkm8M227TTgv5IcBXx97HiSJEladss7q8BNI9sLgdWr6lZgV+BY4MnAiZM8/+8j27eOnT/JasCaSznPopH7i7g92V4N2K2q5ra3Tavq+gmev5CJE/T9gU2AB7VV2KuAtSfYb6JjBbho5Nw7VNWe7T5PAj4K7AyclWT1qjoCeDFwJ+C0JNuMP0mSA5PMTzL/x9dfOkEYkiRJjdnaVWClp8Nqq5wbVtUJwOtoLvMDXEdzqX5prgAe1G7vDayxnKc+mabbwFgcc6fYf3w8GwJXV9UtSR4D3Hs5zv0LYJMkD23PvUaSB7QJ+GZV9UPgje051kuyVVVdUFXvBs6i6cqwmKqaV1W7VNUuj1hv6+UIRZIkaXZYFaP71weOS7I2TSXy9W37V4BPtoOj9p3geZ9sn3c+TZX27xPsM5lXAx9NsoDmdZwKvGxpO1fVn5OcluRC4LvAu4FvJbkAmA9csqwnrqqb24FlH0qyYXv+DwC/BL7YtgX4UNvf9+1tcrwIuKg9vyRJ0gqZrX1cs+RYJHXt/232vN5/U86dc9PUO3Vsu0VrdR3CpG7pOoBl8MfVFnYdwpR2vqn/66g8/YK3dx3CpL76wEO7DmFK/7e81+Q68I/0/k83d1/Y30vAY/r+V+dVv/liL97EE+/27Gn9gdvrqq/04nWO55KvkiRJAzNbK679L1VIkiRJWHGVJEkanD6P/J9OVlwlSZI0CFZcJUmSBmbR7Cy4WnGVJEnSMFhxlSRJGphF9nGVJEmS+suKqyRJ0sD0f7mL6WHFVZIkSYNgxVWSJGlgXDlLkiRJ6jErrpIkSQOzKM4qIEmSJPWWFVdJkqSBma2zCpi4SpIkDcxsHZxl4tpDV87p/+eoHRau1XUIU1rY8+4/l6x2Y9chTOnht6zddQhTunKNriOY2lcfeGjXIUzqWQsO7zqEKR2yyyFdhzClHW+e03UIU7pijf7/f7l73/94q1MmrpIkSQOzaJbm9w7OkiRJ0iBYcZUkSRqYRczOkqsVV0mSJA2CFVdJkqSB6f8wu+lhxVWSJEmDYMVVkiRpYJxVQJIkSeoxK66SJEkDM1tXzrLiKkmSpEGw4ipJkjQwziogSZIk9ZgVV0mSpIFxVgFJkiSpx6y4SpIkDYyzCswwSa5vv94zybFdxyNJkqSVM+MrrlV1JbBv13FIkiStKlZcZ6gkWyS5sN0+I8kDRh47JckuSdZN8pkkZyY5N8k+7eMHJPl6khOTXJrkPSPP3TPJ6UnOSXJMkvXa9iOSXJxkQZL3tW3PTHJhkvOTnHrHvgOSJEkzw4yvuI5zNPAs4K1J7gHco6rmJ/lP4AdV9cIkGwFnJvmf9jlzgZ2Am4BfJPkw8A/gzcAeVfX3JG8EXp/ko8DTgG2qqtpjARwKPKGqfjfSJkmStELKWQVmha9ye7eBZwFjfV/3BA5Och5wCrA2sHn72Per6tqquhG4GLg3sBuwHXBa+5wXtO3XAjcCn07ydOCG9hinAUcmeQkwZ6LAkhyYZH6S+edcd9mqebWSJGlGWjTNt76aVYlrVf0O+HOSBwL70VRgAQI8o6rmtrfNq+rn7WM3jRxiIU2VOsD3RvbfrqpeVFW3ArvSJMRPBk5sz/symgrtZsDZSf5pgtjmVdUuVbXLzuvfd5W/dkmSpKGbVYlr62jgDcCGVbWgbTsJeFWSACTZaYpjnAE8PMl92/3XTXK/tp/rhlV1AvA6YMf28a2q6mdVdSjwR5oEVpIkaYX0oeKaZK8kv0hyWZKDJ3h8rSRHt4//LMkWK/hybzMbE9djgWfTdBsY83ZgDWBBkova+0tVVX8EDgC+nGQBcDqwDbA+8O227SfA69unvDfJBe0gsZ8C56+6lyNJknTHSjIH+CjwzzTdJ5+TZLtxu70I+GtV3Rf4b+DdK3veGTs4q6rWa79eAWw/0n4V4153Vf0DeOkExzgSOHLk/pNHtn8APHiCU+86wXGevpzhS5IkLVV1HUCT71xWVZcDJPkKsA/NeKAx+wCHtdvHAh9Jkqpa4fBnY8VVkiRJkxgdNN7eDhy3y6bAb0bu/7Ztm3CfdhzQtcAS43yWx4ytuEqSJM1Ui6Z5OqyqmgfMm96zLD8rrpIkSVpev2Pxweb3atsm3CfJ6sCGwJ9X5qQmrpIkSQPTg1kFzgK2TrJlkjVpBr4fP26f42nmuodmHv0frEz/VrCrgCRJkpZTVd2a5N9ophSdA3ymqi5Kcjgwv6qOBz4NfCHJZcBfaJLblWLiKkmSNDB9WN2qnbf+hHFth45s3wg8c1We064CkiRJGgQrrpIkSQPTg3lcO2HFVZIkSYNgxVWSJGlgpnse176y4ipJkqRBsOIqSZI0MH2YVaALVlwlSZI0CFZcJUmSBsZZBSRJkqQes+IqSZI0MItmac3VxLWHruLmrkOY0hNu6f8vzNFrz+k6hEltXmt1HcKUTlvjxq5DmNJHv/PyrkOY0n898bNdhzCpQ3Y5pOsQpvTO+e/sOoQpHfGgt3QdwpTm3tT/IT2Xrdnvv9190f/v5PSwq4AkSZIGwYqrJEnSwPT/uuf0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwCxK1xF0w4qrJEmSBsGKqyRJ0sDM1gUIrLhKkiRpEKy4SpIkDczsrLdacZUkSdJAWHGVJEkaGOdxlSRJknrMiqskSdLAOKuAJEmS1GMzJnFNcv0qOs6jk3x7VRxLkiRpOtQ03/pqxiSukiRJmtlmXOKaxnuTXJjkgiT7te2LVVKTfCTJAe32XkkuSXIO8PSRfQ5L8pkkpyS5PMmrRx57XpIzk5yX5BNJ5rS3I0fO/bp231cnuTjJgiRfuaPeC0mSNDMtmuZbX83EwVlPB+YCOwIbA2clOXVpOydZG/gk8FjgMuDocbtsAzwGWB/4RZKPA/cF9gMeXlW3JPkYsD9wEbBpVW3fHnuj9hgHA1tW1U0jbZIkSVoOM67iCuwOfLmqFlbVVcCPgAdPsv82wK+q6tKqKuCL4x7/TlXdVFV/Aq4G7gY8DngQTVJ8Xnv/PsDlwH2SfDjJXsDf2mMsAI5K8jzg1omCSHJgkvlJ5v/8ustX4GVLkqTZYhE1rbe+momJ69LcyuKvd+1lfN5NI9sLaarUAT5XVXPb2/2r6rCq+itNpfcU4GXAp9rnPQn4KLAzTbK7RKW7quZV1S5Vtcu2699neV6XJEnSrDATE9cfA/u1/U03AR4JnAn8GtguyVrt5frHtftfAmyRZKv2/nOW4RzfB/ZNcleAJHdJcu8kGwOrVdXXgDcDOydZDdisqn4IvBHYEFhvlbxSSZI0K83WWQVmYh/XbwAPBc6nee/fUFV/AEjyVeBC4FfAuQBVdWOSA4HvJLmBJvFdf7ITVNXFSd4MnNwmprcArwT+AXy2bQN4EzAH+GKSDWkqtR+qqmtW4euVJEmzTJ8HUE2nGZO4VtV67dcCDmpv4/d5A/CGCdpPpOnrOr79sHH3tx/ZPpolB3JB0x1gvN0nj16SJElTmTGJqyRJ0mxRvb6gP31mYh9XSZIkzUBWXCVJkgZmtvZxteIqSZKkQbDiKkmSNDB9XiRgOllxlSRJ0iBYcZUkSRqY2VlvteIqSZKkgbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGpuzjKkmSJPWXFVdJkqSBsY+rJEmS1GNWXHvoXrVm1yEsg5u6DmBKGzCn6xAmdVZd23UIU3ruLRt2HcKUPvjEz3YdwpT+kX73Rdvx5n7/rgAc8aC3dB3ClA4+++1dhzClo3Y8tOsQprTebC0lLif7uEqSJEk9ZsVVkiRpYGZrYdrEVZIkaWAWlV0FJEmSpN6y4ipJkjQws7PeasVVkiRJA2HFVZIkaWAWzdKaqxVXSZIkDYIVV0mSpIFxAQJJkiSpx6y4SpIkDcxsXYDAiqskSZIGwYqrJEnSwDirgCRJktRjVlwlSZIGxlkFZpkkVyTZeIL2vZMc3EVMkiRJWrpZm7guTVUdX1VHdB2HJEnS0iya5tvKSHKXJN9Lcmn79c4T7DM3yelJLkqyIMl+y3LsXiSuSdZN8p0k5ye5MMl+bUX0PUkuSHJmkvu2+26S5GtJzmpvDx85xmfafc9Nsk/bPifJ+9rjLkjyqpFTvyrJOe05tmn3PyDJR9rtI5N8KMlPk1yeZN+RmA9qz78gyduW9jra9iOSXNzu+7475E2VJEnqxsHA96tqa+D77f3xbgCeX1UPAPYCPpBko6kO3Jc+rnsBV1bVkwCSbAi8G7i2qnZI8nzgA8CTgQ8C/11VP0myOXASsC1wCPCDqnph+8LPTPI/wPOBLYC5VXVrkruMnPdPVbVzklcA/wG8eILY7gHsDmwDHA8cm2RPYGtgVyDA8UkeCWwy/nUk+SfgacA2VVXL8k2RJEmaTFWv+7juAzy63f4ccArwxtEdquqXI9tXJrmaJo+6ZrID96LiClwAPD7Ju5M8oqqubdu/PPL1oe32HsBHkpxHk0hukGQ9YE/g4Lb9FGBtYPN2/09U1a0AVfWXkfN+vf16Nk1yO5FvVtWiqroYuFvbtmd7Oxc4hyap3Xopr+Na4Ebg00meTvMJYwlJDkwyP8n8+ddftvR3SpIkqd/uVlW/b7f/wO3504SS7AqsCfzvVAfuRcW1qn6ZZGfgicA7knx/7KHR3dqvqwG7VdWNo8dIEuAZVfWLce2Tnfqm9utClv5e3DSynZGv76qqT4zfefzrqKrD22/I44B9gX8DHjv+eVU1D5gH8PZ779/rj1GSJKlb0z2Pa5IDgQNHmua1ucrY4/8D3H2Cpx4yeqe92rzUYJPcA/gC8IKqmrJ7bS8qrknuCdxQVV8E3gvs3D6038jX09vtk4FXjTx3brt5Ek2f1bTtO7Xt3wNemmT1tn20q8CKOgl4YVvpJcmmSe460eto99mwqk4AXgfsuArOL0mSNG2qal5V7TJymzfu8T2qavsJbscBV7UJ6VhievVE50iyAfAd4JCqOmNZ4upFxRXYAXhvkkXALcDLgWOBOydZQFP1fE6776uBj7btqwOnAi8D3k7TD3ZBktWAX9H0if0UcL+2/Rbgk8BHVibYqjo5ybbA6W2efD3wPOC+E7yO9YHjkqxNU6l9/cqcW5IkaWVH/k+z44EXAEe0X48bv0OSNYFvAJ+vqmOX9cC9SFyr6iSaKuZt2oTwvVU1vjPvn7i9Ejva/g/gpRO030qTLL5+XPsWI9vzaTsRV9WRwJHt9gHjnrPeyPYHaQaKjfrf8a+jtesEbZIkSSuk5wsQHAF8NcmLgF8DzwJIsgvwsqp6cdv2SOCfkhzQPu+AqjpvsgP3InGVJEnSzFBVf6YZ2zO+fT7tDE5tt8ovLu+xe5u4jlZEJUmSdLvpHpzVV70YnCVJkiRNpbcVV0mSJE2s5wsQTBsrrpIkSRoEK66SJEkD0/PpsKaNFVdJkiQNghVXSZKkgen5PK7TxoqrJEmSBsGKqyRJ0sA4j6skSZLUY1ZcJUmSBsZ5XCVJkqQes+IqSZI0MPZxlSRJknrMimsP3XVhug5hSqevuXbXIUxps1u7jmByv1l9ra5DmNKpa97SdQhTeuKNc7oOYUq/WaPfMV6xRv8rN3Nv6v86QUfteGjXIUxp//MP7zqEKX19h7d0HcIgOI+rJEmS1GNWXCVJkgZmkbMKSJIkSf1lxVWSJGlgZme91cRVkiRpcJwOS5IkSeoxK66SJEkDY8VVkiRJ6jErrpIkSQNTToclSZIk9ZcVV0mSpIGxj6skSZLUY1ZcJUmSBqasuEqSJEn9ZcVVkiRpYJxVYJZJslGSV3QdhyRJkpbNrE1cgY0AE1dJkjQ4i6hpvfXVbE5cjwC2SnJekvcmOSjJWUkWJHkbQJItklyS5Mgkv0xyVJI9kpyW5NIku7b7HZbkC0lOb9tf0ranPfaFSS5Isl+Hr1eSJGnQZnMf14OB7atqbpI9gX2BXYEAxyd5JPB/wH2BZwIvBM4CngvsDuwN/H/AU9vjPRDYDVgXODfJd4CHAnOBHYGNgbOSnFpVv78jXqAkSZqZ7OM6u+3Z3s4FzgG2AbZuH/tVVV1QVYuAi4DvV/PTcgGwxcgxjquqf1TVn4Af0iTBuwNfrqqFVXUV8CPgwXfEC5IkSZppZnPFdVSAd1XVJxZrTLYAbhppWjRyfxGLv3/jP/os10ehJAcCBwLsv9GuPGLdrad4hiRJmq363A91Os3miut1wPrt9knAC5OsB5Bk0yR3Xc7j7ZNk7ST/BDyaplvBj4H9ksxJsgnwSODMiZ5cVfOqapeq2sWkVZIkaUmztuJaVX9uB1ldCHwX+BJwehKA64HnAQuX45ALaLoIbAy8vaquTPINmn6u59NUYN9QVX9YhS9DkiTNQrN15axZm7gCVNVzxzV9cILdth/Z/4CR7StGHwMWVNXzxx2/gIPamyRJklbCrE5cJUmShmjRLJ1VwMR1Faiqw7qOQZIkaaYzcZUkSRoY+7hKkiRpEGZrV4HZPB2WJEmSBsSKqyRJ0sDM1q4CVlwlSZI0CFZcJUmSBsY+rpIkSVKPWXGVJEkaGPu4SpIkST1mxVWSJGlg7OMqSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqUdchdMLEtYd+t3r/y/9b3pKuQ5jStnVD1yFMas1b1uk6hCldtkb//zAuWKv/P4sb9PxtvPvC/r+Hl605p+sQprRez7/PAF/f4S1dhzClp1/w9q5DUI+ZuEqSJA3MIvu4SpIkSf1lxVWSJGlgynlcJUmSpP6y4ipJkjQw9nGVJEmSesyKqyRJ0sDM1j6uJq6SJEkDs2iWJq52FZAkSdIgWHGVJEkamHJwliRJktRfVlwlSZIGZrYOzrLiKkmSpEEwcZUkSRqYRdS03lZGkrsk+V6SS9uvd55k3w2S/DbJR5bl2CaukiRJWpUOBr5fVVsD32/vL83bgVOX9cAmrpIkSQNTVdN6W0n7AJ9rtz8HPHWinZI8CLgbcPKyHniVJ65JNkryinb7nkmOXdXnmOL8uyT50DQc96lJtlvVx5UkSZph7lZVv2+3/0CTnC4myWrA+4H/WJ4DT8esAhsBrwA+VlVXAvtOwzmWqqrmA/On4dBPBb4NXLysT0iyelXdOg2xSJKkWWy6V85KciBw4EjTvKqaN/L4/wB3n+Cph4zeqapKMlGwrwBOqKrfJlnmuKYjcT0C2CrJecClwLZVtX2SA2iSv3WBrYH3AWsC/wLcBDyxqv6SZCvgo8AmwA3AS6rqkolOlOSZwFuBhcC1VfXIJI8G/qOqnpxkE+BLwD2B04HHAw8C1gO+C/wEeBjwO2CfqvpHkpfQfKPWBC5r45sL7A08KsmbgWcAn27PMz/JxsD8qtqifZ1Pb88xJ8kTgQ8D2wNrAIdV1XEr/O5KkiRNszZJnTfJ43ss7bEkVyW5R1X9Psk9gKsn2O2hwCPaq/TrAWsmub6qJusPOy19XA8G/req5gIHjXtse5qk7sHAO4EbqmonmqTy+e0+84BXVdWDaMrHH5vkXIcCT6iqHWkSy/HeCvygqh4AHAtsPvLY1sBH28euoUlGAb5eVQ9uj/lz4EVV9VPgeOCgqppbVf87xXuwM7BvVT2K5pPHD6pqV+AxwHuTrDvF8yVJkpaq531cjwde0G6/AFiiYFdV+1fV5lW1BU2+9/mpkla44wdn/bCqrquqPwLXAt9q2y8AtkiyHk0F9Ji2YvsJ4B6THO804Mi2Sjpngsd3B74CUFUnAn8deexXVXVeu302sEW7vX2SHye5ANgfeMByvcLG96rqL+32nsDB7es5BVibxRNooCnJJ5mfZP451122AqeUJEnqhSOAxye5FNijvT82DulTK3PgO3rlrJtGtheN3F/UxrIacE1brZ1SVb0syUOAJwFnt6PTViSWhcCd2u0jgadW1fntZf9HL+X5t3J74r/2uMf+PrId4BlV9YvJghktyR+6xf6zczkMSZK0TFZ2rtXpVFV/Bh43Qft84MUTtB9Jk39NaToqrtcB66/IE6vqb8Cv2r6rpLHj0vZPslVV/ayqDgX+CGw2bpfTgGe1++4JLHUC3BHrA79PsgZNxXXM+Nd1BU1/WZh8ANpJwKvS9jxOstMyxCBJkqRxVnni2mbZpyW5EHjvChxif+BFSc4HLqKZC2xp3pvkgvZcPwXOH/f424A928efSTMlw3VTnP8twM9okt7RQWFfAQ5Kcm47gOx9wMuTnAtsPMnx3k4zKGtBkova+5IkSSus531cp036HNzKSrIWsLCqbk3yUODjy9oNoUtD6Cqw5S3LPnVFV7atG7oOYVI/zzpdhzCly9ZY1HUIU1qn+v+zuMGifse4Tu//4sDfBrBcznr9/3Vhg4X9/2Y//YJ+13fW2Pg+vfiF3mDd+0zrN/Nvf7+8F69zvDu6j+sdbXPgq+0ktzcDL+k4HkmSpJU23fO49tUgEtckh9Bc6h91TFW9c7LnVdWlgH1KJUmSZoBBJK5tgjppkipJkjRbVI9nFZhOg0hcJUmSdLvZ2lVgAN3dJUmSJCuukiRJgzOTZ4WajBVXSZIkDYIVV0mSpIGZrYOzrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQws7PeasVVkiRJA5HZ2kdiNklyYFXN6zqOyRjjqmGMK6/v8YExrip9j7Hv8YEx6o5nxXV2OLDrAJaBMa4axrjy+h4fGOOq0vcY+x4fGKPuYCaukiRJGgQTV0mSJA2CievsMIS+Pca4ahjjyut7fGCMq0rfY+x7fGCMuoM5OEuSJEmDYMVVkiRJg2DiKkmSpEEwcZUkSdIgmLjOcEl2T/Kv7fYmSbbsOqZRSeYkuWeSzcduXcc0KskOXceg6ZfkVUnu3HUck0mybpLV2u37Jdk7yRpdx7U0Se6c5IFdxzGZJKsl2aDrOIYmyd2SPLm93bXreJYmyZ2S3L/rOLRqmbjOYEneCrwReFPbtAbwxe4iWlySVwFXAd8DvtPevt1pUEv6WJIzk7wiyYZdBzNekrOTvLLPSVeS9yTZIMkaSb6f5I9Jntd1XOPcDTgryVeT7JUkXQc0gVOBtZNsCpwM/AtwZKcRjZPklPZ7fRfgHOCTSf6r67hGJflSG+O6wIXAxUkO6jquMX3/fUnyLOBM4JnAs4CfJdm326iWlOQpwHnAie39uUmO7zQorRImrjPb04C9gb8DVNWVwPqdRrS41wD3r6oHVNUO7a1XFZqqegSwP7AZcHb7T+/xHYc1aj/gnjRJ11eSPKGHSdeeVfU34MnAFcB9gd4kCgBV9WZga+DTwAHApUn+M8lWnQa2uFTVDcDTgY9V1TOBB3Qc03gbtt/rpwOfr6qHAHt0HNN427UxPhX4LrAlzYeAvuj778shwIOr6gVV9XxgV+AtHcc0kcNoYrsGoKrOo/lea+BMXGe2m6uZ76ygudTYcTzj/Qa4tusgplJVlwJvpqlePwr4UJJLkjy928igqi6rqkOA+wFfAj4D/DrJ29qqVx+s3n59EnBMVfXye97+rvyhvd0K3Bk4Nsl7Og3sdknyUJoPUt9p2+Z0GM9EVk9yD5pKXN+unoxZo+1i8VTg+Kq6hfZvZE/0/fdltaq6euT+n+lnLnHLBO9dn77PWkGrT72LBuyrST4BbJTkJcALgU91HBNJXt9uXg6ckuQ7wE1jj1dVby4ttn30/pXmn8j3gKdU1TlJ7gmcDny9y/hgsRifCHwNOArYHfgBMLe7yG7z7SSXAP8AXp5kE+DGjmNaTJLXAM8H/kTzO3JQVd3S9im9FHhDl/G1XkvT7ecbVXVRkvsAP+w2pCUcDpwE/KSqzmpjvLTjmMb7BE0l83zg1CT3Bv7WaUSL6/vvy4lJTgK+3N7fDzihw3iW5qIkzwXmJNkaeDXw045j0irgAgQzXHtZe08gwElV9b2OQxrre7s0VVWH32HBTCHJj2gSmWOr6h/jHvuXqvpCN5HdFsPZNJfCPg18rapuGnns61XVeVUYoK3+XltVC5OsA2xQVX/oOq4xSd4GfKaqfj3BY9tW1c87CGup2oR6vfaSslZSktWr6tau4xgzgN+Xp9N8OAb4cVV9o8t4JtK+b4fQ/P+D5gPVO6qqTx8CtAJMXGewJO+uqjdO1daVJM+sqmOmautSktdW1QfGtb2mqj7YUUiLSXKfqrp8XNuWVfWrrmIaL8kzgROr6rokbwZ2pvkHck7Hod1mKd0qrmsvI/dCki8BLwMWAmcBGwAfrKr3dhrYiLZbxTtoqoUnAg8EXldVfRoU+hrgs8B1NB9KdwIOrqqTOw2sNZDfl7sDDwEWAWf1KamGZrYa4H+q6jFdx6JVr4/9UrTqTDSI6J/v8CiW7k3L2Nal50/QdsAdHcQkjl3Gti69pf0nvDvNQJ1PAx/vOKbxzgH+CPyS5tL2H4ErkpyT5EGdRna7vg8qgv4PLAJ4YRvjnjT9mP8FOKLbkBbT69+XJC+mmVXgacC+wBlJXthtVIurqoXAoj7OBKOVZx/XGSjJy4FXAPdJsmDkofWB07qJ6nZJ/pmmP+amST408tAGNINiOpfkOcBzgS3HTaGyPvCXbqK6XZJtaEaUbzhukNgGwNrdRLVUC9uvTwLmVdV3kryjy4Am8D2a7iAnASTZE3gGTWXuYzTVpa6NDir6SNsHt2+XzJYYWNS/SS4YC+iJwBfa/sJ9CrLvvy8HATtV1Z8BkvwTTd/Rz3Qa1ZKuBy5I8j3amXUAqurV3YWkVcHEdWb6Ek1F5l3AwSPt11VV50kXcCUwn2aqrrNH2q8DXtdJREv6KfB7YGPg/SPt1wELJnzGHev+NFWtjYCnjLRfB7yki4Am8bt2kODjgXcnWYv+Xe3Zrapue9+q6uQk76uql7bx9kHfBxVB/wcWQTOt3ck0Fes3JVmf5pJ3X/T99+XPNH9nxlzXtvXN1+nB4FmtevZxnQXSrGxyWxWuqv6vw3Buk2SNPvUhHKIkD62q07uOYzLtIIm9gAuq6tJ2uqQd+tKnEKBNZL4PfKVt2o8mcdiLpg/fzl3FNpm+DSqCJQYWrQus36c+kO3AtrnA5VV1TVsx3LSq+vCBtPe/L0k+D+wAHEczvdQ+NB/mF0C/ZoXRzGTFdQZrVw75L5oJ6q8G7g38nP5MWn7OBJc6r6Wpxr5j7FJUF5L8pKp2T3Idi8/9F5qZDzpdJjLJG6rqPcBz224Ni+nT5bCquiHJ1TSjkC+l6Q7StymSngu8Ffgmzff7tLZtDs2cpJ1LcjfgP4F7VtU/J9kOeChNH8heaJOuVwCbAwfS/O25P/2a07WA7WiuWBwOrEuPutcM4Pflf9vbmOPar31a3IYkv2KCeVur6j4dhKNVyIrrDJbkfOCxNKMrd0ryGOB5VfWijkMDbhuBvJCmawPAs4F1aCaA372qnrK05852SZ5SVd9K8oKJHq+qz93RMS1NO/3ZLjSrpN2vnQP3mKp6eMehAbeNQP58Ve3fdSyTSfJdmj63h1TVjklWB86tqh06Du02SY6m6f7z/Kravk1kf1pVc7uN7HZJPk7TNeCxVbVtmuWST66qB3ccGtD/35ehaCvpY9amWaL2LlV1aEchaRWx4jqz3VJVf06yWpLVquqHST7QdVAj9hh3CfaCJOdU1c7pwdrcbUJzUVVt03Us41XVt9qvvUlQJ/E0mimHzoFm6eG2X2EvtJe0751kzaq6uet4JrFxVX01yZsAqurWJAunetIdbKuq2m/sKkBbPezTwCeAh7R/Y84FqKq/Jlmz66BG9Pr3JckuNPOj3puRHKL6t1z3+Ct2H0gz77WJ68CZuM5s1yRZDzgVOKq9/PT3KZ5zR5qTZNeqOhMgyYO5fQnLzvvttQnNL5Js3pd+wWOSfItJli+sqr3vwHCmcnNV1Vi3kPRv6WFoVnE7rZ1BYnQEcp/66/29rSKNvY+70b8lk29Ociduj3ErRlbF64lb2g+lYzFuQr8GZ/X99+UompkFLqBf79tikowWRVajqWKb88wAfhNntn1oRvS+jmZ98w1p+nT1xYuBz7TJdWhGSL+4/UP9rk4ju92daZYOPJPFE5quE8P3dXz+5THR0sOf7Dim8cb67a1Gz/rqjXg9cDywVZLTgE1o5tHsk7fSLDywWZKjgIfTr3mPAT4EfAO4a5J30ryHb+42pMX0/fflj1V1/NS7dW50NphbgV/Rk/7qWjn2cVXnxiaJrqq+VY9I8qiJ2qvqR3d0LEOWHi49PJEk61TVDV3HsTRtv9b707yPv+jjrBxtVXg3mhjPqKo/dRzSEtp5kB9HE+P3e7ikb29/X5I8DngOzSwct1XTq6pXU09lAKsKasWYuM5AE4yEX0zXI+LHtPMTPgPYgsX7SvWpKtxLSb5aVc9KcgETz3rQq/5mfZdkbHT+elW1eZIdgZdW1Ss6Dm0xSR7Gkr8vn+8soAkk2ZQl+z+e2l1ES2q7CtyNxWPsVXegvkryRWAb4CJu7ypQVdWr1bPGxkuMazu7qvqyEp5WkF0FZqCqWh8gydtpJtH/Ak1Csz9wjw5DG+84mj56Z9O/fnDAbf0IPwxsC6xJ0wf37z1I/l/Tfn1yp1EsgzQre70buCvNz2EvphQb5wPAE2guxVNV5yd5ZKcRjZPkC8BWwHncvrpSAb1JXJO8m2YO3MWSGpp+9r2Q5FU0XRquonkfQxNjLz7sDeD35cFVdf+ug1iaDGtVQa0AE9eZbe+q2nHk/sfbKbL6MqryXlW1V9dBTOEjNNN0HUPTuf/5wP06jQioqt+3X3+d5O7ArjT/fM/q02TvrfcAT+nb5djxquo34wbA923E/i7AdtXvy2RPpZnGqZcfRFuvoYmxj6s9Qf9/X36aZLuqurjrQJZiSKsKagWYuM5sf0+yP81qQEXTL6lPswr8NMkOVXVB14FMpqouSzKnqhYCn22n0XlT13EBJHkxzQeRH9BUZj6c5PCq6tO64Vf1+J/wmN+0l+EryRo0yU3fYr4QuDvNVZS+uhxYg55eQWn9hv7NxjCq778vuwHntRP830TPuidV1XHAcRnAqoJaMSauM9tzgQ+2t9HVgPpid+CAvv4BbN3QzvF4Xrtgwu/p17rhBwE7jVWP2oExPwX6lLjObyem/yb9HczxMprfk02B3wEnA6/sNKIlbQxc3M5wMfo+dj3DxagbaH5Xxg/c6c1KbjTJ9SlJvsPiMfZl6rO+/770/SrZmHOTvJKm28Dokue96our5WfiOoNV1RU0U2JNKMmbqqrLaaf+ucNzL6t/oenX+m8004ptRjOgrC/+THMJbMx1bVufbECT0Ow50lZAX/4R04587/XKWcBhXQewDI5vb332f+1tzfbWN73+fWm7J+0ObF1Vn23nwV2v67gm8AXgEpq+64fT/H73uZKtZeSsArPYRKMuO4hhiT+ATlcytSSvbzfnAjvQDHQrmg8qC6rqgG4iG6b2Z+8lLDli3+rMcmoXINi8qn7RdSxa9YayJG2Sc6tZ6nxBVT2w7QL046rarevYtHKsuM5unS7FOPoHkGYN9jWAL9JMWt6pCaaZWkwPujOMTZI/NnH+mOM6iGVSST4HvKaqrmnv3xl4f8+SwuOAHwP/Q88GZU0yvV3fRpuT5Ck0i2OsCWyZZC5weB+6M/R9tbkkb6iq9yT5MBPE2aPuFr1eknbE2BzH1yTZHvgDzUwNGjgT19mt63J7n/8A9nqaqap6W9cxLIcHjiWtcNva8Dt1GM9E1qmqN3YdxETGprcbiMNoZrg4BaCqzktyny4DGjG22tzTaQa5fbG9/xyaqbG6NnYZe36nUUyt70vSjpnXfkh+C033lfXoz4w6WgkmrrNbpxVXevwHsKp+3XUMy6K9xP0GlhyA8NjOglrSaknuXFV/BUhyF/r3t+fbSZ5YVSd0HchUktyVxb/XfZo4/5aqunbctGK9WM9+bLW7JO+vql1GHvpWks6Txar6Vvv1c13HMoW+L0kLQFV9qt38EdCXD09aBfr2z0N3rGM6Pn/v/wCOu0y7Jk13hj4sQDDmKOBomgrxy4AXAH/sNKIlvR84PckxNB+W9gXe2W1IS3gN8KYkN9NcYuzjZfi9ad7LewJX06xO9XOaDy19cVGS5wJzkmwNvJpmlos+WXd0OdAkWwK9+dCc5H7Af7Bkf+u+fBjdBDgW+BtNN69DgT06jWgCrsw4czk4awZr/wB+HLhbVW2f5IE0ixK8o+PQbtPnNbnHS1NG2gfYraoO7joeuH0Jw7EBCG3bWVX14K5jG5VkO2DsH+8P+jZ5eZLVaEYdb1lVhyfZHLhHVf2s49Bu0y4e8ljgf9pBJ48BnldVL+o4tNskWQc4hNtHxJ8EvKOqbuwuqsUl2QuYRzMtVmg+ALy0qk7qNLBW+33+fzQrCt7W37qqzu4sqBFLWUr1tr8/fZHkRG5fmXH0fXx/Z0FplTBxncGS/Ihmns9PVNVObduFVbV9t5EN29ho1a7jAEhyRlXtluQk4EPAlcCxVbVVx6GRZIOq+lvbNWAJVfWXOzqmpUnycZpL2o+tqm3bvnEn9+kDQJL5VbVLm9jsVFWLkpw/bnW8TiXZuarO6TqOqbTVuG3au5f0aaWvsQ+jXccxXpKXA6+guew+OiB0feC0qnpeJ4Ethf/rZi67Csxs61TVmeP6m93aVTBjBjZKenSt69VoZkHoTfUIeEeSDYF/Bz5MMwfk67oN6TZfounCcDaLf7/H1obvU7+zh1TVzu2qaGMDyPo2x+c1SdYDTgWOSnI1/VoJD+D9aZYgPhY4uqou7Dqg8ZI8f1zTjkmoqs93ElBr5APet5K8AvgGiy9A0PUHvS8B3wXeBYxecbquB7FNZBArM2r5WXGdwZJ8l2bi/GPaf8r7Ai+qqiFM/N8LST47cvdW4Argk1V1dTcRaTok+RnwMOCs9ndlE5qKay8q63Db4MV/0HyA2h/YEPhi35KGNnF9FrAfzQepo3vWPenDI3fXBh4HnFNV+3YUEgBpVhAsJh40W1XVpw96vZfkYuC+QJ9XZtQKMHGdwdppaObR/EP+K80v8PPaFbU0AwykH/P3q+pxU7V1Kcn+NInWzsDnaAaQvbmquh7AeJsk7x4/ZddEbX2RZAeaGS/2q6q+Va9vk2Qj4CtVNZSlTLUMktx7ovahzBijpevTmutaxarq8qrag2YU6DZVtbtJ6/JJcp8k30ryxyRXJzmuR/NSQjMLw5toJ9uuqgXAszuNqJVk7fby58ZJ7pzkLu1tC2DTjsNbTFUdRZNkvQv4PfDUPiWtrcdP0NarqydJtk1yWJoFPD5MM6PAvToOayp/B7bsOogxSV7ZJtNj9+/cdh3Q8rlugtuVnUakVcI+rjNYktfQrEh1HfDJJDsDB1fVyd1GNihfAj5Ks1gCNEnhl4GHdBbR4nrZj7n1UuC1NNM3nc3tl0D/Bnyko5iWqqouoVnbvFdGB8UkWTDy0PrAad1EtVSfoZme7QlV1cskIYuvoDUH2Bb4ancRLeElVfXRsTttf+uXAB/rMKYhOgfYjOZqY4CNgD8kuYrmPe7FLA1afiauM9sLq+qDSZ4A/BPwL8AXABPXZbdOVX1h5P4XkxzUWTRL+lOSrWj/Ebf9mH/fbUiNqvog8MEkr6qqD0/5BC3NYAbFVNVDu45hGbxvZPtW4NdV9duugpnAnCSpth9fkjk0c0hr+XyPZoaVkwCS7Ekzr+tnaT4E9KX4oOVkV4GZbazC9UTg81V1ERN3/NfSfTfJwUm2SHLvJG8AThi77N11cMArgU8A2yT5HU2F8+WdRrSkP6RdyjfJm5N8va3+axlU1bVVdUVVPQf4LU23kALWa+eb7VySr7ZfL0iyYOR2wbgqcefaFbQuoalY3xm4uduIlnAicHSSxyV5HM0VnhM7jmmIdhudm7e90vjQqjoDWKu7sLSyHJw1g7Uj4jel6b+1I81lsVP6OEdgX7UjfZemNyN92xHnq1XVdV3HMt7Y5ORJdgfeAbwXOLSqrHgshyT/BhwGXMXty6j2YpR0kntU1e+HMCAmybNofgZPofkg/wjgoKo6tsu4xqRZDOOlNLMdQFM5/FRVLVz6szRekpOB7wNfaZv2o+knvhft7CFdxaaVY+I6g7V/AOcCl1fVNUn+Cdi0HcCjGSDJfwLvqapr2vt3Bv69qt7caWAjxhZsSPIu4IKq+lJ6tIjDUCS5jGa+2T93HcuQtQs4PH5sSrt26rP/6dlCDncCNq+qX3Qdy1Al2Rh4K7B723Qa8Daa1bQ2r6rLuopNK8fEdYZrE5mtaeYrBKCqTu0uomFJsgbNpfdHtk2n0KxEdktnQY2YKAHMBEsydinJt4Hf0VQ7dqaZi/TMPiUKQ5DkhzQJV18G391mYIuKXFBVO4zcXw04f7StS0n2pqkIr1lVWyaZCxxeVXt3G5nUDw7OmsGSvBh4Dc10NOcBuwGnc/ua8Zrax4E1uH1E77+0bS/uLKLFzUmy1tiSlW2lpm/9t55Fc3nufW3l/x40SxFr+VwOnJLkOyy+otJ/dRfSbTGs33UMy+HENEskf7m9vx9wQofxjPdWYFeaD8lU1XlJejNdV98l+UBVvXbc7BG38QPA8Jm4zmyvAR4MnFFVj0myDfCfHcc0NA8eVxn8QXupsS+OAr6f21f4+leaCfT7ZGNgPsDIYKLeTTs1AP/X3tbEUeYrrKoOSvIM4OFt07yq+kaXMY1zS1VdO26KOy+NLruxWWDeN+leGiwT15ntxqq6MQltVe6SJPfvOqiBWZhkq6r6X7htNbLeDJKoqne3o7bHBnK8fXQkbU98h9uXslybZrDgL4AHdBnU0FTV2wCSrFNVN3Qdz5BV1deAr3Udx1JclOS5NFdTtgZeTbOQg5bB2Pys7ewRwG1d5jZzfMfMYOI6s/22XYHlm8D3kvwV6M3o3oE4CPhhksvb+1vQVDV7o6q+SzPPZy+N7zvYToXlSkDLKclDgU8D6wGbJ9kReGlV+V4ugwH1w30VcAhNd5AvASfRzMah5ZDkFGBvmjznbODqJKdV1es7DUwrzcFZs0SSRwEbAidWVd/mLeytJGsD/05T0bwGOAv476q6scu4xiR5OvBu4K40/4D79k94QuMHyGhqSX4G7AscPzYgL8mFVbV9t5FpOlhZXzkjs5m8mKba+taxqfm6jk0rx4rrDNfOnbl1VX22nfZlU2CyuUm1uM/TLFH69vb+c2n6UD2zs4gW9x7gKVX1864DWZokoxWO1WhmFujlcqB9V1W/Gdf3sTfdVrRqJHkY8CmsrK+s1duBoM+iqWBrhjBxncGSvBXYBbg/zTJ3awBf5PZBCZra9lW13cj9Hya5uLNolnRVn5PW1uiI81tp+rz2tX9hn/2mTWqqnabtNUDfv/dafv8NPAE4HqCqzk/yyMmfogkcTtPN4idVdVY7PuHSjmPSKmDiOrM9DdgJOAegqq4cW3pTy+ycJLu1ywSS5CG0I+R7Yn6So2n6MY9OkfT1ziIaZ2RQ0Xrt/eu7jWiwXgZ8kOaqye+Ak2mW/NUMY2V95VXVMcAxI/cvB54xdj/Jm6rqXV3EppVj4jqz3VxVlaTgtmVBtXweBPw0yf+19zcHfpHkAvqx3OYGwA3AniNtBfQmcU2yPU33iru09/8EvKCqLuw0sIGpqj8B+3cdh6adlfU7xjMBE9cBMnGd2b6a5BPARkleArwQ+GTHMQ3NXl0HMJmq6tUMB0sxD3h9Vf0QIMmj27aHdRjT4LST0L+KZmaL2/52O6H6jDNaWb+S5nK3lfVVL1Pvoj5yVoEZLsnjaapxAU6qqu91HJJWoXbWgxfRzIk6uqzvCzsLapwk549f3nWiNk2uXfji08AFwKKx9tH5KiUtm74tja1lZ8V1hmsTVZPVmesLNKtQPYFmMML+9O+y4uVJ3sLtK9o8j2b5Ui2fG6vqQ10HoenVDiL6IM0S3UWzTPfr2j6aWnWsuA6UFdcZaEATbWsljcxVuKCqHtj2iftxVe3WdWxj2lVr3gbsTvNz+WPgbVX1104DG5h2NaWtaQZljQ7EO6ezoLTKJTkD+Cjw5bbp2cCrquoh3UU18yT5/6rKJdAHyMRVGrAkZ1bVrklOpVmN6g/AmVV1n45D0yqW5F3AvwD/y+1dBaqqHttdVFrVJpok3641yy/J/YCPA3erqu2TPBDYu6pchWzgVus6AE2vJLsn+dd2e+N2gIdmjnltRfPNNPM+XkyzklZvJPleu/Tw2P07Jzmpw5CG6pnAfarqUVX1mPZm0jrzfDfJwUm2SHLvJG8ATkhylyR36Tq4Afkk8CbgFoCqWkBTvdbA2cd1BptgAYI1cQGCGWHcalRjMwt8tP3at2nPNq6qa8buVNVfk9y1w3iG6kJgI+DqjuPQ9HpW+/Wl3N7lKzRJVwFeTVk261TVmePmw721q2C06pi4zmwuQDBzjX0f7w88mHaVHeApwJmdRLR0i5JsXlX/B5BkCybug63JbQRckuQsFu/j6nRYM8sbgROr6m/toMadgbfbl3m5/SnJVrR/a5LsC/y+25C0Kpi4zmwuQDBDjaxGdSqwc1Vd194/jGZJ1T45BPhJkh/RVI4eARzYbUiD9NauA9Ad4s1V9dUkuwOPBd5H01fTwVnL55U080Vvk+R3wK9oZjTRwJm4zlBpro982wUIZry7ATeP3L+5beuNqjoxyS40yeq5NMvT/qPToAbI+VpnjbHlXZ8EfLKqvpPEAUXLqZ0+bI+2YLPa2Id7DZ+J6wzVVlqfCbwe+BvNJeVDXYBgxvk8cGaSb7T3nwoc2Vk0E0jyYpplK+8FnEczP+XpNNUkLaNx09ytCawB/N3p7Wac37UFh8cD706yFg6kXm7tgNDn0640N9bXtape3V1UWhWcDmsGS/I54CNVdVbXsWj6JNmZ5vI7wKlVdW6X8YyX5AKafrhnVNXcJNsA/1lVT+84tMFqr6jsA+xWVQd3HY9WnSTr0Cw1fUFVXZrkHsAOVXVyx6ENSpKfAmew5Epzn+ssKK0SJq4zWJJLgPsCvwb+PtY+fo5AaTolOauqHpzkPOAhVXVTkouq6gFdxzZ0YwtQdB2H1Dcu6Tpz2VVgZntC1wFIwG/by3bfBL6X5K80H6a0HJKMVqhXo5nq7saOwpH67gvt2I5vs/gsHH/pLiStClZcJd1hkjwK2JBmup+bp9pft0vy2ZG7twJX0AzecV5XaZwkrwTeCVzD7X3Dy1UFh8/EVZJ6Lskc4NVV9d9dxyINQZLLgV2r6k9dx6JVy5GKktRzVbUQeE7XcUgDchlwQ9dBaNWzj6skDcNpST4CHM3igy1dUUla0t+B85L8kMX7uDod1sDZVUCSBqD9BzxeVZXz4UrjJHnBRO1OhzV8Jq6SNABJ7tOuBjRpmyTNZCaukjQAE81LmeTsqnpQVzFJfZPkq1X1rHbhk/EJTlXVjl3EpVXHPq6S1GPtSmMPADYcN5frBsDa3UQl9dZr2q8/Bw4aaQ/wnjs+HK1qJq6S1G/3B54MbAQ8ZaT9OuAlXQQk9VVV/b7dvG9VLbbQSfshUANnVwFJGoAkD62q07uOQ+qzJC8HXgHcB/jfkYfWB06rqud1EphWGRNXSRqAJO8B3gH8AzgReCDwuqr6YqeBST2SZEPgzsC7gINHHrrO5V5nBhNXSRqAJOdV1dwkT6PpOvB64FQHm0iaTVw5S5KGYY3265OAY6rq2i6DkaQuODhLkobhW0kuoekq8PIkmwA3dhyTJN2h7CogSQOR5C7AtVW1MMk6wAZV9Yeu45KkO4oVV0kajm2ALZKM/u3+fFfBSNIdzcRVkgYgyReArYDzgIVtc2HiKmkWsauAJA1Akp8D25V/tCXNYs4qIEnDcCFw966DkKQu2VVAkoZhY+DiJGcCN401VtXe3YUkSXcsE1dJGobDug5AkrpmH1dJkiQNghVXSeqxJD+pqt2TXEczi8BtDwFVVRt0FJok3eGsuEqSJGkQnFVAkiRJg2DiKkmSpEEwcZUkSdIgmLhKkiRpEExcJUmSNAj/Px/6v9Jq3TQTAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "corrmat = df.corr()\n", + "f, ax = plt.subplots(figsize=(12, 9))\n", + "sns.heatmap(corrmat, vmax=.8, square=True);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGkCAYAAAB+TFE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dWH39m+q9Xuqvde3eTeG7bBdAwm9A6BBEJJvtASSggJCYQk1IQSCBBIqKaYjgvuvTfZktV71/Y+8/2x0tpCkrst28z7PPvM7MydmbNl7m/uveeeI0iSJCEjIyMjIzPAKAbaABkZGRkZGZAFSUZGRkbmJEEWJBkZGRmZkwJZkGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMC1UAbICNzuIiSiD8YwBf04Q368AX9+AKhZfd7b8CHL9j98qNRqjFpIzHrIkmOTMCkjUQQhIH+KDIyMvshC5LMgODyuWlyttLhttLpsdLhtuL0uXAHvLgDHjx+D+6AF4/fgyfg3U9sQgJztBg1EeREZzAsoZCihEFkWFJkgZKRGWAEOVKDzPGm1dXO7pa9lLZVUmtroNbWQIfb2qucVqVFr9KiV+nQqbXoVDr0Ki06lRaNSoNWqUGjVKNVadB0rytD6z22qfbbp9KgUajxBX3YvA7a3Vbq7Y3UWBvY3bqXOlsjAKmmJM7ImsD0zAmYdaYT/RXJyMggC5LMccDld7O1cReb6newq6WUFmcbEBKc1MhEUsyJpJqSSDTGEa23YNGbsehMaJTqE25ru6uTjfXbWVq5hpK2ctRKNWflTGVO4Wyi9OYTbo+MzI8ZWZBkjgl2r4PVNZtYX7eVHc17CIpBIjURDI7PZ1BcLoWxuWRaUlEoTl4/mlpbA/OLF7Csai1KhZI5hbO5uHA2GpVmoE2TkflRIAuSzBHjC/rZVL+dZZVr2dywg6AkkmSMZ0xKEWNThpMfk31SC1B/NDpaeG/7fFZVbyAhIpZbRl/FiKTBA22WjMxpjyxIMoeFJEkUt+xledU6VtdsxOV3E6UzMyVjLFMzxp9WzgE7mnbz+sb3qbM3MjtnGteNuBSt3FqSkTluyIIkc0jYvA6WVqxhYflyGuzNaFVaxqeOYFrGeIbGF5ySLaFDwR/08972+Xy+ZyHJkQn8cuJPyYxKHWizZGROS2RBkukXSZLY3bqXBWUrWFOziYAYoCA2h7NypjIudQQ6lXagTTxh7GjazQtr38Tpc/GzMdcyNXPcQJskI3PaIQuSTC9EUWRt3WY+Lf6Wio4aDGo90zLGc2bOFNItKQNt3oDR6bHxzKrXKG4p5by8GVw74lJUCuVAmyUjc9ogC5JMmIAYZFnlGj7b/R0N9maSjPFcWHgWUzLG/qhaQwciIAZ5Z+vHfFWymEFxufxq0q1Y5HlLMjLHBFmQZJAkic0NO3h7y8fU2RvJikrjkkHnMC5lxGk7NnS0rKhax8vr3yFSY+S+KT8jOzpjoE2SkTnlkQXpR06rs51XN/yXLY27SIqM57rhcxmdXHTaeModTyo6anh6xctYvXZuH3stUzLkcSUZmaNBFqQfKZIk8X3FKt7a/BEiElcOvZCzc6ejUsrhDQ8Hq8fG31f9i+KWvVxUeBZXD7tYblXKyBwhsiD9CPEEvLy07m1W12xkSHw+t4+9jnhj7ECbdcoSCAZ4c/OHfFe2jBGJg7l74s0YNREDbZaMzCmHLEg/MhrtzTy98hVqbQ1cNWwOFxWehUKQn+iPBQvLlvP6pveJM0Rz/5TbSTUnDbRJMjKnFLIg/YjY21bJn5a9CMAvJ95CUeKgAbbo9GN3y17+tvJVfEE/d064kbEpwwfaJBmZUwZZkH4k7GjazV9WvIxJa+ThM+4h0Rg30CadtrS62vnrilco76jmnLwzuHb43AGJZC4jc6ohC9KPgE31O/jbyldIjIznoel3Ea23DLRJpz2+oJ//bfuUr0oWk25O4c7xN5AZlTbQZsnInNTIgnSas6u5hCeWvUiqKZFHpt+DUSsPtp9INjfs4J/r3sbudXBR4Vn8ZPB5cjoLGZl+kAXpNKasvYrHv3+WaIOF38/8NSatcaBN+lHi8Dp5e+vHfF+xiviIGK4ZfgkTUkfJc71kZH6ALEinKY2OFh5a+Bd0Ki1/mHkv0QbLQJv0o2dH0x7e3Pwh1dY68mOyuXLYhQyJL5CFSUamC1mQTkOcPhcPL3waq9fOE2feT1Jk/ECbJNOFKIosqVzD+9vn0+GxkhudycWDzmZ08jCUcqBWmR85siCdZgTEIE8u+wc7W0p4ZPrdDI7PH2iTZPrAF/SzpGI183d/R7OzjWi9hZnZk5iZNZnYiOiBNk9GZkCQBek049+b3ueb0iXcPvY6ZmRPGmhzZA5CUAyysX47i8pXsKVhFwgwInEw0zLHMzZ5uOwAIfOjQhak04hllWt5ce2bnJ8/ixtG/mSgzZE5TFqcbSwqX8nSyjW0uTrQq3VMSB3F9MzxFMblyhE1ZE57ZEE6TajsqOXhRX8hNzqTR864Rx6POIURJZHilr0srVzDmppNeAJe4gzRTM0cx7SM8SSbEgfaRBmZ44IsSKcBDp+T33z3JD7Rz1OzfysnjDuN8AZ8rK/bwrLKtWxtKkaSJPKiM5maOZ7J6WOIlF35ZU4jZEE6xRElkaeWv8S2pmJ+P+P/yI/NHmiTZI4THW4rK6rWs6xyDVXWOtQKFVMzxnF+wSzSzMkDbZ6MzFEjC9Ipzkc7v+SDHV9w86grOCfvjIE2R+YEUdlRy4KyZSytXIMv6Gd44mAuLDiTYQmF8rwmmVMWWZBOYbY07OTPy/7BlIyx3Dn+Rrki+hFi9zpYULacb0qX0OmxURibw2VDL2CoPOFW5hREFqRTlGZnGw989ydi9VH88cz70cruwT9q/EE/i8tX8UnxN7S7OxkUl8tlQy5gaELBQJsmI3PIyIJ0CuIL+nl00V9pdLTw5FkPkihHYpDpwhf0s7h8JZ8Uf0OH28qQ+HyuGHoRhXE5A22ajMxBkQXpFOTl9e+wuHwl90/5OWPkBHAyfeAL+llYtpxPir/F6rExMmkIVwy9iOzo9IE2TUamX2RBOsVYXL6Kl9e/zSWDzuGqojkDbY7MSY4n4OWb0iV8tvs7nD4X41NHcsXQC+X06jInJbIgnUKUt1fxyKK/UhiXy0PT7kKhkGfuyxwaLp+bL0oW8sWeRXiDPqZmjOOyIeeTIGcOljmJkAXpFKHd1clvFj6JUlDy5OzfyLmNZI4Im9fBZ8Xf8s3epYhikJnZk7l08HlyehKZkwJZkE4BPAEvv1v8Nxrszfxx1n2kW1IG2iSZU5x2dycf7/qaReUrUQgKzs6ZxsWDzsakixxo02R+xMiCdJIjiiJ/X/0v1tdt5YEptzMqedhAmyRzGtHsaOWjnV+xtGoNWqWGM7OncF7BTGINcgoMmROPLEgnMZIk8eqG/7GofAU3jryM8/JnDrRJMqcpdbZG5u38ilU1GxGAieljuLDgTLKi0gbaNJkfEbIgnaRIksQ7Wz/m8z0LmTv4HK4cdnw86oJBkU6Hlzarh3abhw6bB5vLh9sTwOUN4PYG8PqCiKLUZReIXX8ZhSCgUSvQqJVdLwUaVWhd27Vdq1ai1SjD65qu99of7NOolSgVB48sIIoSgaCIPyASCIrh9e6XLxDE7xfx+oP4A0F8fhGfP4gvIPZ+7w92lQsd173PH+h5vD8QRBQP7ftUKEClVIReqtBSHV4Xwvu6P7tOq0Kn6VrXdK+r0He912qV6DUqIvRqjHo1Wo3yuEZgaHW281XJYhaWr8AT8DIsoYBz8mYwKmmoHEFe5rgjC9JJiCRJfLDjC+bt+oqzc6dz86grjroS8ngDVDbYqGiwUd/ioLbZQX2Lg8Z2V1hs9ketUqDXqtBrVWg1ShSCgCCA0L0ERJEeFXf3eiB4ZH8phUIgpEn7rkHX9QACAZFgH7YeLoIAalVINNUq5T5RVSm6titRh8U1tO1QxBJCYr2/WAYCUg/h3CegQTy+rpc3cMifS6UUwuJk1GuIMITWTREaok06oiK1RJl0REXqiDJpMUVoD9n2/XH6XCwsW8HXpd/T7u4kRh/FrJzJzMyeTLTectjnk5E5FGRBOskQJZE3N33IN3uXMDNrEreNveawE7OJokRVo40dZW2UVHdQVtdJXbOD7jpPo1aSEhdBcpyR5NgI4qIMxJh0oQqtqxJTq47cpTwoSqFWiD+I1xdqhXi71n1d6/vv6173B8Ww/RBqjUmEBBpCItnd2lB3tz66liqlIiwePxQUjSr0XqtWolYpUSmFky7Omz8g4vUF8PiC4VapZ7/3Trcfh9uPw+XD4fbve+/243T5sTq9uDyBXudVKASiIrXERxlIiDGQEG0gMTqChBgDybERRJt0B/wuujPaLihbxtbGYhSCgjEpRczMmszwxEFyq0nmmCIL0kmEL+jn5XVvs6J6PRcWnMm1w+ceUsUZFCUq6q3sKGtjR1kruyrasLv8AMSYdeSkWMhJNZOTYiYr2UysRY/iCJ6aZU5uPL4AnXYvHTYvHfZQ92uH3Uur1U1Tu4umdhdtnW72b4xF6NWkJ0SS1vVKT4wkPSGSGHNvoWq0N7OwfAXfl6/C7nNi1pmYkj6WaZnjybSknnQiL3PqIQvSSUKzs42/r3yV8o5qri66mDmFs/u9wYNBkbI6KzvKWtle1kZxRRvOrqfjpJgIhubEhF7ZscRHG07kx5A5yfEHRFo6XTS1uahvcVDVZKemyU51ox2b0xcuF6FTkZNqITvFTE6qhdxUM8mxRhQKgUAwwObGnSytXMPG+u0ExSBp5mSmZ45ncvpYYgxRA/gJZU5lZEE6CVhft5WX1r2NKIncOf6GXvHp/AGRvTWd7ChvZUdZG8WVbbi9QQBS4oxdAhTLsJwYYsz6gfgIB0QK+Am6bIg+N5Lfi+j3IPm6lx5EvxcpGABJBFFE+sESQFAoQaEILZXK0FJQIigUoFCiUGsR1FoUGl1o2fU+tK5DUGtCx8j0i9XhpbpLnCobbJTVdlLZYMMfCP0Geq2SrOSQQOWkmMlNtWA2w7r6zSyrXEdJWzkAeTFZjE8dyfjUEXIkCJnDQhakAaTd1cm/N7/PutotZFhS+fWkW0mMjMfl8bO7qoNdFW3sKm9nT3UHPn9IgNITIxmaHRKgodkxRJl0A2K7JEmIHicBa0voZWshYG0l6LKFxMdlI+gOrUs+z1FcqbuVeAycGdRaFFoDCl0ECm0ECp0h/F7Zva17v26/dW2onKDW/ui6pQJBkZomO2W1VspqOymrs1Jeb8XrC/0fNSoFWclmslPNxMYo6FRUU+raRpW1GoBMSyrjUkcwPHEwOVEZcrgrmQMiC9IAYPPY+aJkEd+ULiEgipybcS7p6qGUVHWys6KNijorogQKAbJTzAzOimFIduhlNmpPiI2SJCG6bPg7m7vEpuvV9d5vbUXyunocI6g0KCPMKPQmlIZIlAYTCoMJpcGEUh+JQqtHUOtCrReNLtRy0YRaMChVCIIi1ArqWiIowgIQai0FkcTuZTDUihKDSMEAUsC3r7Xl94aXkt+D6PeFlj43oseF6HEieruXToIeJ6LHBWJvp4AeKJQotPougdonVGFh2/8VFrKe5QXNgZ0ITgWCokRds53yOitldVb21nZSXmcNO1WolAIp8Qb0Ji92ZR2tVCAYbBh1OoYlFDI8YRDDEgcRZ4g+5b8LmWOLLEgnCEmS2NNcwVc717G2pByf3UBkMAWvw4DLHbqRNWolhRlRDM6KYXBWNAUZURh06uNjjxgkaG8nYGsjYG3Bb23eJzrWZgLWVqSAr8cxgtaA2hyHyhyHyhzftYwLb1MYTKdsBSNJElLAFxIs736C1f3yunq++trmdYe6HQ+EoAh1K2r0IbHqWu57b0Ch0XWJlx6FVhfa1lVW2P8Y9ckjbqIo0dju7NGSKqvtDDvXAOgjgohaG0FNJ4LegckE+alxDE7KJD8mi+zoDHSqE/PAJXNyIgvSMUSSJJxuP21WD21WD9XNneysqaOisZO2Dh8Bt5buLiiVUiAzOeT51t0nn51iRqU8ui4NSZKQfO5Q15nTSsDRTtDWRsDW2vUKrQcdnb0qT4XBhMoUh9oSFxab/YVHqYs4KttOd0LfvacPofqhgLlD42k+d3hd9LoQfZ7wtoMKGwBCl0CFBEyhCa0L3evdIvYD8eu9zYCg0YZapsf4+2jpdFNWa6Wy3kpNs4OaJju1zfaec9VUXgStG4XWQ0SERKxFR3KMiYz4WLLj48mMjSc2wiJ39/0IkAWJru4pKfSUFwyK4TkzP1x6fAEcbj82p5dOhwery4PN6cXqCLna2hwBAj/s9VEEUOjcWCwK8pJjGZOVQ0F6LGkJkaiUitAcGzGIFPQjBQKhZdDf1Q3lD73CFZerRwUmda13j9sEnVZElw0p6O/1GQWVBpUpBqUpFpUpBlVk19IUGxYchWZgxqNkehJurXldXb+9p8dvL4X/A/uWkq/7/+HpKhMSONHrOkRxIyRS+7XKBK0ehUoTcghR7XspfvBeUGtQqLTh9X371AgKJYJSCQpV17qKIAKtNj+1rW5qW11UNlmpbu6gpcONwyEhin20+pR+VJoAWp2EwaAkQq/AoFMTodNg1GswGbSY9AZMBi1GvQa9Roteo+5aatCp1aE5a11z2eRpDycnp6QgBQIBGhsbD1jG6vDywgdbcHr8BEWJYFBCEiWCkoQohl5BUULsen+4CIjoFD50gh+d4MOocBOpcGNUeDEpvZiVXqJUoaU6/OQpgtQ10VOSIBgAMcgRDdgLyq6nYy1KnRFBF4nSYAyN1eiMoTEcfSQKgxlVZBSCNuKk6d6ROXFIkgRBf2hczedG9HlDLTG/p2tczbOvZeb3dnk/uhG9XiS/e99DUdCHFPAjBvwQ8IMUPIZWCiAoQBnynHQKejoDeqyiDoeowhnU4BA1OEUNrqAGp6TBJWrwSWpEjrDVJIihCCDCfvde13r39q6gISgEAZPOiFJQ7BetZN+91L3avWV4fhxzz8g9qAmJiYmoVKojs/805ZQUpNraWmbNmjXQZsjIyMgcMYsWLSI1NXWgzTipOCUF6VBaSEdKY2Mj11xzDf/9739JTEw8Ltc4Xsi2Dwyy7QPDqWw7yC2kvjglvw2VSnXcnywSExNP2acX2faBQbZ9YDiVbZfpiey2IiMjIyNzUiALkoyMjIzMSYEsSDIyMjIyJwWyIP0Ak8nEnXfeiclkGmhTDhvZ9oFBtn1gOJVtl+mbU9LLTkZGRkbm9ENuIcnIyMjInBTIgiQjIyMjc1JwSgpSIBCgtraWQK/AcTIyMjKnDz+2uu6UFKTGxkZmzZp13KI1yMjIyJwM/NjquuMuSA6HgwsuuIDa2tpe+xYuXMicOXO46KKLuOOOO7BarcfbHBkZGRmZk5TjKkhbt27lqquuorKystc+h8PBY489xquvvsr8+fMpKCjghRdeOJ7myMjIyMicxBzXWHYffPABv/vd77j//vt77fP7/Tz22GMkJCQAUFBQwOeff96rnM1mw2az9dj2Y2m+ysjI/HiQ67rjLEhPPPFEv/uioqI488wzAfB4PLz66qtcd911vcq99dZbvPjii8fNRhkZGZmTAbmuOwmifdvtdu644w4KCwu55JJLeu2/4YYbem3vDjsvI/Njw+/3U1tbi8fjGWhTZA4BnU5HamoqarX6oGXlum6ABam5uZlbbrmFCRMm8Nvf/rbPMiaTSQ4NIiPTRW1tLZGRkWRmZsoZgE9yJEmira2N2tpasrKyDlperusG0O07GAzy85//nHPPPZeHHnpIvrlkZA4Bj8dDTEyMfL+cAgiCQExMjNyaPQxOeAvp1ltv5e6776axsZFdu3YRDAb59ttvARg6dOgBx51kZGSQxegUQv6tDo8TIkiLFy8Or//rX/8CYNiwYezevftEXF5GRkZG5hTglIzUICMjc+zYtm0bjz76KADbt2/n7rvvPuTyx6KcjEw3siDJyPzI2bt3L01NTUCo5+L5558/5PLHopyMTDcD7vYtIyNzfBBFkT/96U9s3boVp9OJJEn88Y9/5MMPP6Szs5OamhqGDx/OqlWrsNvt/OY3v+Hiiy/mD3/4A1988QUbNmzgySefRBRFAH72s59RVFTE888/Hy7/5z//uc9rNzQ09Cr3/vvv8/bbb6NQKIiNjeWRRx4hKyuLBx98EEEQKCsro729ncmTJ/Pwww8f0FU6GAzyl7/8hcWLFxMZGUlRURFlZWW8/fbb2O12nnjiCUpKSvD7/UycOJH7778flUrFsGHDuO2221i5ciXNzc1cf/313HjjjXz88cd89NFHuN1ujEYjb7/9Nh9++CHvvvsuoihisVh45JFHyMnJOS6/lUwX0ilITU2NlJ+fL9XU1Ay0KTIyJ5Rdu3YdctlNmzZJd911lxQMBiVJkqRXXnlF+tnPfiY98MAD0g033BAuN2/ePOm2226TJEmS1qxZI51//vmSJEnS9ddfL33xxReSJElScXGx9Nhjj/UqfyD2L7dq1SrpzDPPlNra2sL7zj33XEkURemBBx6QLr74YsnhcEher1e65pprpLfffvuA53733Xela665RvJ4PJLX65Vuvvlm6dprr5UkSZIefPBB6T//+Y8kSZIUCASke++9V3r11VclSZKk/Pz88Lm3b98uDR06VPJ4PNK8efOksWPHSna7XZIkSVq7dq109dVXSy6XS5IkSVq+fLl07rnnHvQz98Xh/GY/5MdW18ktJBmZ05SRI0diNpt57733qKmpYe3atURERGCxWBg9evRBjz/33HN5/PHHWbx4MZMmTeL//u//jtiW5cuXc9555xEdHQ3A3LlzeeKJJ8JBly+55BIiIiIAmDNnDosWLeLaa6/t93xLly5lzpw5aLVaAK644grefvttAJYsWcL27dv56KOPAHq5Xc+aNQuAIUOG4PP5cLlcQCh8mdFoDJ+jqqqKK6+8Mnyc1Wqls7MTi8VyxN+DzIGRBUlG5jRlyZIlPPHEE9x0003MmjWL7Oxs5s+fD4DBYDjo8VdeeSUzZsxg5cqVLF++nBdffDF8/OEiSVKf27rz/CiVyh7bFYoDD2+rVD2rrv3Li6LIc889F+5es9lsPdyvu0Wse1u3bft/J6IoMmfOHO67777w++bmZsxm80E+qczRIDs1yMicpqxcuZIZM2Zw9dVXM2zYMBYuXEgwGOxVTqlU9pkA7sorr6S4uJi5c+fyhz/8AZvNhtVq7bf8gc47ZcoUvvrqK9rb2wGYN28eFouFjIwMAL7++mt8Ph9er5dPPvmEGTNmHPDc06dPZ/78+fh8PgKBAJ988kl435QpU3jzzTeRJAmfz8ftt9/OO++8c1B792fy5Ml8+eWXNDc3A/Duu+9yww03HNY5ZA4fWZBkZE5TrrzyStavX8+FF17IFVdcQVpaGrW1tWEnhW5GjhxJeXk5v/jFL3psv/fee3n++ee5+OKLuf7667nzzjtJTU3tt/wP2b/c5MmTufHGG7nhhhs4//zz+fTTT3nllVfCLRudTsfVV1/NhRdeyJgxY7j00ksPeO65c+dSVFTExRdfzJVXXolarUav1wPw0EMP4XK5uPDCC7nwwgvJz8/npz/96WF9d1OnTuXWW2/l5ptv5sILL+SLL77gxRdflCe6HmcEqa+29ElObW0ts2bNYtGiRaSmpg60OTIyJ4zi4mIGDRo00GYcUx588EHy8vK45ZZbDvmYFStW0NbWxpw5cwD44x//iFarDXexnUwczW/2Y6vr5DEkGRmZI6K8vJxf/epXfe7Lysri2WefParzX3311Tidzj73/fOf/+T111/n9ddfJxgMUlhYyGOPPXZU15MZeGRBkpGROSKys7P57LPPjvo8Tz75ZJ/b//e//x3wuDfeeOOory1zciGPIcnIyMjInBTIgiQjIyMjc1IgC5KMjIyMzEmBLEgyMjIyMicFsiDJyMjIyJwUyIIkIyNzTHn++eeZNWuW7AUnc9jIbt8yMjLHlM8++4zXXnuNrKysgTZF5hRDFiQZmVOUxRuqWbCu+ric+6xx6cwck37AMoFAgMcee4zS0lJaW1vJysoiOTmZpqYmfvGLX/C3v/2Nm266iSFDhtDa2spHH33E66+/zvz581EqlUyePJn77ruPhoYGbr/9dtLS0qiqqiI5OZmnn34ai8XC999/z7PPPosoiqSlpfH4448TGxvLzJkzmTlzJhs2bADgT3/6E4MHDz4u34XMiUPuspORkTkiNm/ejFqt5v3332fBggV4vV4mT55MfHw8r776KoMGDaKjo4PbbruNzz77jFWrVrF48WI+/vhjPvnkE6qqqnjvvfcAKCkp4YYbbuDLL78kJyeHF198kba2Nh599FH+8Y9/8PnnnzNq1Cgef/zx8PUtFguffvopd999Nw888MBAfQ0yxxC5hSQjc4oyc8zBWzHHk7Fjx2KxWPjvf/9LeXk5lZWV4dxC+zN8+HAA1qxZw/nnn49OpwPg0ksv5dNPP2X69OlkZmYyfvx4AC6++GLuvfdeJk+eTFFRUTiG2xVXXMGrr74aPu/ll18OwMyZM3nwwQdpb28P51uSOTWRW0gyMjJHxKJFi7j33nvR6XTMnTuXsWPH9pn3qFuAfhhlHAinp9g/v5EkSSiVyl7l98+f9MNjRFHskVNJ5tREFiQZGZkjYvXq1Zx77rlceumlxMbGsn79+j7zLXUzYcIEvvzySzweD4FAgHnz5jFhwgQAKioqKC4uBkK5kqZNm8bw4cPZunVrOKvs+++/H25FAXz55ZcALFiwgJycHDl53mmA3GUnIyNzRFx22WXce++9fPPNN2g0GkaMGBEWj76YMWMGxcXFXHrppQQCAaZOncq1115LY2MjZrOZ559/nurqagoKCvjjH/+IwWDg8ccf584778Tv95OcnMwTTzwRPt+mTZv46KOP0Ov1/QZolTm1kAVJRkbmiCgoKODzzz/vtX3/lBR79uzpse+OO+7gjjvu6HWMXq/npZde6rW925uuL37961//KHIE/ZiQu+xkZGRkZE4K5BaSjIzMgJKamsrixYsP65jDLS9zaiC3kGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMCWZBkZGSOKU1NTdx6663H5FzPPfccixYtOibnkjn5kb3sZGRkjikJCQn861//Oibnuueee47JeWRODWRBkpGROSLWrl3LK6+8gk6no6ysjIKCAv7617/S3NzM9ddfz+LFi2lsbOTee+/FarWSn5/P+vXrWbZsGU6nk8cff5zS0lKCwSC33norF1xwQTgSeGdnJzNmzKC5uZlx48Yxd+5cnnnmGVavXo3VaiUqKooXXniBuLg4pkyZwtlnn83GjRtRKpU8++yzpKWl9bC1v3QVFRUVPProo3R2dmIwGHjooYcoKiriwQcfRBAESkpKcDgc3H777Vx88cUD8C3/uJAFSUbmFMW+bQn2rcdnPk7k8JlEFp1x0HKbN2/m66+/Jj4+nssvv5wVK1aQn58f3v/EE09w7rnncs0117BgwQK++OILAF566SWGDBnCU089hcPh4MorrwxHBW9qauKrr75CpVLx4IMPAlBVVUV5eTnvvfceCoWC+++/n88//5ybb76ZlpYWJk6cyCOPPMKTTz7Jf//73/Bx+9OdrmLx4sU88MADfP7559x3333cdtttzJ49my1btnDPPffw7bffhu147733aGtrY+7cuUyePJm4uLij/WqPiL6C1p6OyGNIMjIyR0xeXh6JiYkoFApycnKwWq099q9cuZI5c+YAcNZZZ2EymQBYtWoV7733HnPmzOGaa67B5XJRWloKwODBg3tE8gbIyMjggQce4MMPP+TJJ59ky5YtPVJdTJ06NWzPD23oZv90FU1NTTQ2NlJdXc3s2bMBGDFiBGazmfLycgDmzp2LWq0mMTGRUaNGsXHjxqP6ro6OH4cgyS0kGZlTlMiiMw6pFXM80Wq14XVBEHo9ySuVyj6f7kVR5Omnn2bIkCEAtLa2Yjab+fzzz8PpKvZnx44d/PrXv+bGG2/k7LPPRqFQ9Dhvtx192dDND9NVBIPBXmUlSQpHLN8/nYUoir1E8oQS8A/ctU8gcgtJRkbmuDFp0qRwANalS5dis9mAUCqKd999F4Dm5mYuuugiGhoa+j3P+vXrGTduHFdddRW5ubmsXLnygKku+uKH6SpSUlJIS0vju+++A2DLli20traSl5cHwNdff40kSdTV1bFt2zZGjx59eB/+GCIGfxyCJLeQZGRkjhu//e1veeCBB/jggw8oLCwMd9ndeeedPPbYY1xwwQUEg0Huu+8+0tPTw04HP+S8887jzjvv5MILL0StVlNQUHDAVBd90Ve6iqeffprHHnuMF154AbVazQsvvIBGowHA4/Fw6aWX4vP5ePzxx4mKijqKb+LocDl6Z+I9LZFOQWpqaqT8/HyppqZmoE2RkTmh7Nq1a6BNOCzeeustqbS0VJIkSdqxY4d0ySWXDIgdM2bMOKz64oEHHpDmzZt3TK59NL9Zd123esnSY2LLyc5xbyF1e9C8/PLLvXKXFBcX8/DDD+NwOBgzZgy///3vB7afVua0R5IkvAEvLr8HT8CDN+jHH/QTlLrHEwRUCiUqhRKNSoNepSNCrUer0iIIwkCbf8qRkZHB//3f/6FQKNBqtfzhD38YaJNOSaxW50CbcEI4rrX/1q1befjhh6msrOxz/3333ccf//hHRowYwW9/+1s++OADrr766uNpksxpjCRJWD02Gh2tNDtbaXW10+7qpNXdQYe7k06PDbvXSUAMHPa51QoVJl0k0XoLcYZo4o2xxEfEkhwZT4opEbPOdBw+0anP9OnTmT59+kCbcdjpKk62DLStVvtAm3BCOK6C9MEHH/C73/2O+++/v9e+uro6PB4PI0aMAEIuls8//3wvQbLZbOGB0G4aGxuPm80yJz+iKNLkbKXGWk+drZE6eyN11kbq7U24A54eZY2aCGIMUUTrzWRYUjFpI4nURBCh0aNTadEoNWiUahSCAoUgIAFBUSQg+vEGfbj9Xlx+Fzavg063jXZ3J+Ud1ayt3UxQEsPXMetMZEelkR2VQU50OnkxWSdUpCRJQpQkRDG0HnrtcxYWAEEIeaEpFAKKrqXMycOB6rqmDlmQjponnnii333Nzc09JpnFxcXR1NTUq9xbb73Fiy++eFzskzn56fTYqLHWU2Otp9paT1VnLTXWenz7eR1F6c2kmpKYnjmBpMh4kiLjiYuIIdYQjValOS52iaJIq7uDelsTtbYGqjprKe+oZkvjrrArcVJkPIPi8hgcl8fg+DxiDdFHdC2vP0hjm5Omdhcqb4DWTjeBoEgwKBEQQ0tRlA57pooggEohoFIqUKkUqLteGpUSjVopC9YJ5kB1XWOnp8/tpxsDNmAj9TFXoK8++htuuIFLLrmkx7bGxkauueaa42abzIlFlETa3Z002JuptzVRbw9V8tWddVi9+54MIzURZFhSOStnGmnmZNLNySSbEjCo9SfcZoVCQXxEDPERMYxIGhze7g34qOiopqStnF0te1lTs4nF5SsBSDTGMTShkCHxeQyJy8eiN4ePkySJDruX6kYb1U126pod1LU4qGt20GrdVxnde2kqnQ4vKoWAUhkSD6VGQKEUUO7X+uluDe1PqBXVNddG7HoFRQJBCY8viMPl79GiUqsV6DQq9BolOq0KjVqJzPHjQHVdu0Ps56jTiwETpISEBFpbW8PvW1paiI+P71XOZDKFXUVlTi0CwQBOvwunz4Xd58TudWD12On02OhwW2l1d9DiaKXJ2dqjxaNVaUmNTGRk8lDSzSlkWFJIMydj1kae9I4FWpWGwrhcCuNyuahwNqIkUt1Zz87mPWxv3sPK6vUsLFsOgEUdQ0QwgYDVQmu9DodVTUgKIEKnIiXeyNDcWFLijCTFRJAQYyDoaCQnxXxcvgdJkvAHRHz+IF5/EK8viNPtx+b0AaBWKYjQqYjQq9FrVSf9b3GqcaC6rsP943gYGDBBSklJQavVsnHjRkaPHs2nn37KtGnTBsocmX5w+z20uTpod3di9dixee04fC6cfhcuvxtPwIs34MXj9+IJeHEHPKGl34P/AM4DkZoIovUWEoxxDE8cTGJXV1tyZALRestpU9lZHT7amtS46tJQ1pvR1+fT6axHEdlGm6mdzsgSiAxAAUQpDKQaU8mPyyQ/PpF0SzKJxnhUin2VUXFx03H7bgRBQKMOddcZu7ZJkoQvIOL2BHB5/FidPjodPpQKgUiDmsgIDTqN7Bl7vHEGdDTZOkkwWQbalOPKCf8n3Xrrrdx9990MGzaMv/71rzz88MM4nU4GDx7M9ddff6LNkemi022lvKOGamsdtbYGGuzNNDpasHsdvcoKCOjVIXdonUqLTqVFq9Ji0kWiU2nRq3To1DoMah0GtZ4ItYFIbQSRWiMmrRGLzoRaqT7un0mSJFx+Nx0eKzaPHbvPidPnxhPw4Au7e4uAhEJQoFKo0Cg16FVaIjSGkK16MzH6qIOORYmiRGO7k/I6K+V1VirqbZTXWWm37etui4/Sk5VsZtqIcWQlm8hKNhNr0VFra6CkrYyS1grKOqr4unwBX5WFOs+UgoJEY3yXV18MI9T5OLzOLtd0FUqF8riKtyAIaNVKtGollkgtoijh8vixu/aJk06jxGzUEmlQh215/vnn+eyzz7j22mu56aabjsqGF154AYC77rrrqD/PgaitrQ1HKT9UZs6cyX/+8x/WrVvHunXrjqN3nsCCbdu4dsrp/dB+QgRp/x94/zwphYWFfPTRRyfCBJn9kCSJBnsTO5r3UNyyl5LWclpc7eH90XoLSZHxjE8ZQbwxllhDNNF6MxadCZM2EoNGj0LoHXVKCvrxNlXha64i0N5AwF6D6HYgBkJdPoJShag1YI0wozLForYkoo5NQR2dhKA4si4JURJpcbZRZ2uk3t5Mo6OZFmcbLc52WlzteAPeAx4vIIBw8GjKJq2RRGOoFZcYkYA2GIXfbqSpOUhFfUiA3N5Qi1CpEEiNN1KUF0tOioWcFDNZKWaM+r5FODMqlcyoVGbnhtyjfQEftbZGam0N1NoaqLc10eRspaS1jLz0VJqc+7q6BUClUIUFSqVQoVaqUCvUqJUhwTqWKBQCRoMGo0FDMCh2CZOXpnYXbVaBqEgdpggNn332Ga+99hpZWVnH9Po/Zlbu2SsLkszpQSAYYEfzHjbUbWNL406anW1AyEOtICaHc/NnkB2VQYYlhQiN4ZDPG3TZcBavxlmyHk/1TqQu8UGhQmW0oNBHIqhDk0pFr4tARyMBpxXJuy8UiqDSoEnMRpeSjy5tELr0wSj1xl7XcvicVHbUUNlZR3VnHTW2emqtDXiDvnAZg1pPQkQsyZEJFCUOIkYfRZTejKmrdWbQGDCodGhUGlQKZVhYQwP9wZCrd8CDw+ui02OnqrWZypYmaq0t1De3Utq0BUm1n8eTT48hMo68kWkMSchnTGYumUnmo3IA0Kg0ZEenkx2d3mvfzl27SDUlERCDLK9cy/LqdSEXb6Twcn8EBBSCIuTu3eXaLnDwFtWMrElMz5pwwDKSJPLXp/5ASUkJra1tJKem8+Cjf+b1l5+lsbGRX/ziF/ztb3/jpptuYsiQIbS2tvLRRx/x+uuvM3/+fJRKJZMnT+a+++7rEcgU4LXXXuODDz4gKioKk8lEUVERAO+88w6fffYZbrcbQRB49tlnycnJYebMmVx00UWsWLECt9vNU089xdChQykuLubRRx/F4/FgNpv561//SmJiIq+++ipff/01wWCQKVOmcN999wGhcEG/+tWvKC0txWQy8Y9//IOoqKh+r3uiMCq9NDRCVWctGZbUgx9wiiIL0mmMKInsbC5hedU61tdtxelzoVVpGRZfwEWFsylKHERCROxBu3yCotTlZizS3ZAINFfg2vgF7j1rQQygjk4icsSZ6NIHoU3IQmWJP2CrJ+hxEmhvwNdag7epEm9dKdYNX2FdOx9JUOBJzqI5KZ0mk4maoIvKzlpaukQUQvN+0s1JzMqeTJo5mRRTEsmmBCI1EYfdheUPiDS2OalttlPT5KCm2U5NU2jd5w8CWgQhlcToAoqSIkmO1hIR5SKg6aDRXc/e9kpKXSspbVjJgjYDQ+LyGZpQQFFCIUmRCce0S00hCGhVGrSAXq1Dreh9C4thgRJD65JEUNoXiFSBAoVCgVJQ9NnSPVQ2b96MWq3mgw8+QBRFrr/+esp3b+L/7nuIDevW8Ps/PUN2Tg4dHR3cdtttjB8/nqVLl7J48WI+/vhjVCoVd911F++9914Pr9nt27czb948PvnkEwRB4IorrqCoqAiHw8HChQt5++230el0PPfcc/zvf//jkUceAUL5jj766CPefvttXnnlFV544QXuvfde7r33XmbMmMH//vc/3nrrLSZOnMiOHTv46KOPEASB++67j/nz5zN69Gja29u56aabKCoq4u677+arr75izpw5B7zuiSBbZ2W3LZt5O7/h/yb/9IRd90QjC9JpSKurncXlK1lSsYZWVzt6tY4xyUVMTBtNUeIgxKBAU5uL6ioXGzsqaLN56LR76XR4sTt9ONx+XJ4AHl8Ary9IUNz31B2jsHORYSMjNNV4JDVrvbms9+fR5opF16xCu8mFXrsHg66MCJ2aCL2aSIOGSIMao0GDKWLfy2xMRR2dgjU1m+qcAio7qqlqKaPG3oRdtEPnToQOidggpOksTE8eQ172WLJjMg866VSURGweO+1uK50eG802Ky02G+1OJ1anC7vLg8Ptx+H243QHkYIKpKAKAipMWiNJ5mhmZSWSlxRHRpKJ9IRIdNr+b5dWZzu7WkrZ0byHnU17WFe3BYBYQ3RYnIYmFGI5hpNlp2dNOGgrphtREvEGQq2/bgcUCQmloCBCY8CoiUB3mOGRxo4di8Vi4b///S/l5eVUVVUR9HtJjTeiVAgEgiI1TaExyGFdLZw1a9Zw/vnnh1NMXHrppXz66ac9BGndunVMnz6diIgIAM455xxEUcRoNPK3v/2NL7/8ksrKSpYvX86gQYPCx+2fE+m7776jvb2dlpYWZsyYARCedP/UU0+xbds25s6dC4RaRcnJyYwePZr4+Phwayw3N5eOjo6DXvdEkK1ppdhbyKqSPZyXX0Zh3IlrnZ1IZEE6TZAkieKWvXxVupgNdduQJImhCYWclXY2OncKNY0uPtti5x/Ni3vMa4HQuIDFqMVi1GKK0BBj1mPQqdBrVWg1StQqJWqlRGL9chJrFiIpFDQkn0ljwmR0aBjf5Srs8QXx+AK4vQFcngBN7S7sbh8unwsPDgSNG4XOhaB1I+icoZfGQ3cdKIhKNKKZCDLJVsYRrzST57WR5CjDXLMH5e5SxJWLqIwZhDN+GPaofDokL62eFjp8LXT627EHOnGLdrw4QTjA3A1JAK0AWglVVM9uLg9QAVR4YUN9BAm2WFLqE0kzJ5MVlUZ2VDpGbUSPY2IjopkWMZ5pmeMBaHK0sLWxmG1Nxayv28qSitUApJqSGBSXS0FsDvmx2YfUQj0WKAQFerUOvVoH+tDEXlfAHXbJt3kdqJWqrkgWRpSKg7ecFi1axPPPP8/111/P3Llz6ejoQJKkcDSIlDgjWkNo3KzVFiBRFUQUe/8mgUBPb0xBEHqUU6lU+Hw+GhoauO6667j22muZNm0asbGxFBcXh8vtnxMJQK3uOWbn9Xppbm4mGAxyww03hJ0tbDYbSqWSjo6OHrE0u3MrHey6J4IsQqk5dO40Xtv4Ln8+64ET4hh0opEF6RRHlEQ21G3jk+JvKGuvQqfUk6Ecga8xlS2bAqwLdAAd6DRK0hIiGZYbS3KckeTYCBKiDcRFGbAYtQeclR+wt9P8yd/x1BQTUTiRmLNuIivCTKfXRqfbRqfHhtVjw+q1d63bET023B4rQbcVAl72T7mmVeowq6OIUMSjk8yo/WYErwm/S4fLHcTh9tPo8VPhDbDUG4kojUCpGEx6ZCWxhgZUUiVtnVU0uVT49rNb8msQfBGoRTNGIRWjMhKT1kS0wUy8yUJSlJnkKDMpcWZMhn2J5URJxB8M4Pa7cfhd2DwOOj1WWl3tNDlaaXS0sKN5D8uq1oaPSTTGkR+bzaDYXIbE55NgjOshLAnGOGbnxjE7dxqiKFLRWcP2pt0Ut5Syono9C7rmIkVqIsiMSiPdnEKaOYkUUyJJkUfW9Xg4KBQKjJoIjJoIREnE6QuFR2pzddDhtoa9IQ/kFLF69WrOPfdcLr30Upqamli/fj0TJ07c7xoCCTEh4Q4ERGqa7YwYNYY3Xv8XV1xxBSqVinnz5jFhQs9W3sSJE7nnnnu466670Gg0LFiwgOnTp7N9+3YyMjK48cYb8fl8vPzyy0RH9x/9IjIyksTERFauXMnkyZP57LPPWLduHeeddx7PP/88l19+OVqtll/84hdccskljBs3rs/zHO51jwcmyUp6QiR48qm2fsb/tn3GDSN/ckJtOBHIgnSKIkoiq6s38v62L2l0NaEKGPHXDcHdnIxdoSY3NYJzJ0WTl2YhN81CUkzEYYWCCYpBGh0tVFZtYe+aebQJIs4Rw7EpPbQvfrJPd3AIjWtYtCYsehOZljRGJg0lWm8hPiKGuK7IBsaDVLa+gI/KzlrK2qsoa6+ivKOaensTjZJIIxChtpCssTDeFyC+vZmEznbi/EHM8VkYcoZhyB2FOikbp9+D1WvH7nXi9Lvw+DtoCDZTUx+K7B1y9VaiVWkxqPVEaiOw6Ewkxcb3WRF3O1Xsba+itK2CrQ27WFYZEql9XXODKEochEm7zylDoVCQE51BTnQGFw86G1EUqbbWU9JWTnlHNZUdNXxXtgz/fpOD9SodsYaoUBw+QxTReksosGswEm/AF3bIOBaipRAURGqNRGqNeANeOj1dDxleOxatCbPO1GeL6bLLLuPee+/lm2++QaPRMGLEiH5zFKUlGGloc5E7eCzjJxZz6aWXEggEmDp1Ktdee22PsoMGDeKGG27gJz/5CSaTieTkZAAmT57Mu+++y3nnnYdGo6GoqCic9rw/uvMd/eUvfyEqKoq//OUvxMfHs3v3bi6//HKCwSBTp07lkksuoa6urs9zHMl1jwfTiuJ4Z0E5s0fP4MuSRRTEZjMhbdQJt+N4IkgH83c9CamtrWXWrFksWrSoV0qL0x1RFPlqxzo+2f0FdqkN0R1BoD6HTEMho/ITGJEfR0FGNNrD8PIKikGqOmspaatgb3slVR211NmbekTFjlDpiDfGEW0IVYxRejMWXcgV3KIzYdZFYtZGojnM2HEun5vKzhoqOmqo6FrW2RoRuwKXmnUmcqLSyezqKsuOTidGHxXu1mmwN1NZt4Pq6q3UtdfQ4nPQqVJgUykIHmFlLQgC0ToLCcZYkk2JpJuTybCkkGVJQ6fe19aTJIl6exM7mvawozn0cvpcCAhkRqWGxakgNgfNQbpXRFGk2dlKvb2JenvIdb3V1R6KWO4OzaOSkLgz5xpSstNCdnanylCqUCtUqJVqNEo1GqWmx2TaI8EX9NPh7sThc6EUlEQbLEfdahNFiaZ2Fw63H4tRQ6xFf9pMgD4QxcXFRzzm1F3XvTk3n/TbXuTnL27hytl5FCu/pKKzht+d8UvyY7OPscUDh9xCOkWwOrzMW72JRXXf4Nc3I3kMpElTmV0wifGXJhIVqTv4SbqQJIk6WyObGnawvWk3e1rL8HTN1+mOWj3EEI9x2wqS9FEMveQBzNHJR2W/w+ekwd5MXdf8mhprA9XWOtpcHeEyFp2JrKh0xqYUdUXNzghHbfAEvFR21LKudgsVHTVUd4Ym8O4fDcISYSIhLokCEYwOB4b2ZiJcdiKCIgatEVNiNsakPAzJ+Wjj0pAUCgLBAJ6u/Eh2376I3i2uNprsLayu2RgO9SMgkGZOJj8mi0FxeQyJzyfFlEiKKZGz86YjiiLlHdVsbdzFtqbdfLFnIZ/t/g61QkVe1zGFcTnkRWdh0PSMv6dQKEiMjCcxMp6+nnkDYpBOj5X68joSjLEExCBBMYhfDBAQAzh8rrCIA6GWn1KDTq1Dr9KhUaoPq/LXKNUkGOMwB7y0uTpocbZh9zqIi4g5qLj2h0IhkBhjoNXqptPuQ5IgLurHIUrHglh9kKE5MSzbVM9ffvkzHl78V55c/k8eOeMesqLSBtq8Y4IsSCc5e2s7mbdsJ+valqGIq0ap1TA+6kxunnQeUcZDDyoqSRKlbRWsqtnI+rqtYRfqFFMi0zLHUxibS2FsDjGGKHxNFdS//QgqcxzJVz2O0nBwzzBPV8XV6mqnxdlGs7ON5q44dU2OVhy+fQnGVAoVKaZEBsXmkmZOJjMqlSxLWjjYaCAYoNpax8b6bextq6KsvZJae2N48qpZG0lmVCrnJJxBmjmZ1C6X7x8GWZUkiUBHA+7KHXhqivFU7yKweyMuwK3SoEnMQpuUQ1RSDolJuaiTMnu5qkuSRIfbSkVnDWVdXXWrajaysHwFEIroPSyhkOGJgxkSn09uTCa5MZlcOuQ83H4PxS2lbG/aw66WEj4u/hppV1ckcGM8GVGpZJhDcfqSIxOIj4jpt4WpUiiJNUTTomzCqInos0xQDOIL+vAG/XgDPrwBL06/O3y8Qa0nQmNAr9IdsgjoVFqSIxOw+5y0uzqotTZ0tY5NRyQkgiAQaw6JUIfNiyDwo2kpHS2i18WM0Wm88MEWGpsDPDz9Lh77/hkeX/Isj0y/m+zojIE28aiRu+xOQiRJYntZKx8sLGFH+1Y0GXsQVH4mp0zi5rGX9PLwOhBNjha+r1jN8sq1tLjaUSlUFCUOYnTSMEYmD+mVEiHg6KDu3/eDoCDlxj+jigzt9/g9NDpaaXK20ORo3a9LKSRCTp+rx3mUgoLYrjGjBGMcica4rmR2ScRHxITHaERRpN7eFB4vKmuvpLKzNtzyMWmN5ERnkhOd3tVll0GU7siDiwZsrXjqSvDW7sFTvxdfY3l4Mq+g1qFJyESbmI02KQdtUjbqmJReIiWKIpWdtexsLmFH8x52tZTiDXhRCgryYrIoShxMUUIhOdEZPcaiXH43e9sqKW2roLyjmqrO2vAE5W4sOhMxhihi9FHhrtHwS2fGUW+lsLAQhUKxX86j0C0s0DvKdyAYwBXw4PK7cfndSJKESqEMhXHSGFEpD/2ZNCAGw7+1TqUlPiLmiD29JEkKt5RizTqiTIfewj+VkCSJ3bt3H5Muu6IbH4b0UVz/2DfMHp/Bz+YW0exo5fffP4Pd5+T/Jt3WI/L8qYgsSCcZu6va+c+XxeyoqcGQuwvR2EJOVCY/H3fNIc/QFkWRDfXb+HbvErY37UEQBIoSBjElfSxjU4f3m65BEoPU/Pd3VLdW4ppxOXWiJ5QEz95Ih9vao6xBrSfOEE1MRDSx+tDge6whmtiIKOIMMUTrLSh+MBDuCXiptYZyB1V21nZFXagNR1rQqrRkR6WTE51BbnQmudEZxEXEHNenZ0kM4m+tw9tYjrexDG9DOb6mCiR/qAtTUGtDApWShy6lAG1qASpjVI9zBIIB9rSVh7rqGoup6KhBQkKv0jEoLpfB8XkUxuaSFZXWqwL3+D3U2ZuotzXR7GylxdlOg72FVkcHNp8dr9jTRf/y1HMoTM5HZ4wAlCAqQFKAqETqWlcoQKlQoFKGch2pVUq0agUajQJf0Ivd58TldyMQSmBo0ZsPuRtOkiQcPhetrnYkJGIN0Uc8tiRJoTElu8tPcmwEEf2EVjpVkSSJtrY27Hb7EYdQ2l+Qhl71f0QWzeCp/6xn295W3vrd2aiUCtpdnfx5+T+osdbz09FXcmbO1GP8SU4ccpfdSUJLh5s3vtjJ8i21RKY2EzlyJwoFXDP8CmbnTjukGfWegJfF5Sv5qmQxzc42YgxRXD70QmZkTSTGENXnMaFupb3sailhR9laqlVWAsmRsOdrtCotaaYkihIGhWK4GeNJNMYSb4ztt9tIkiTsXgel7RXU25qoszdSa2ukztpAs7Mt/DSvV+nIsKQwM3syWVFp5ERnkBKZ2EvEDgdPwEurqz3sumzzOnD6XLj9HnxBH4GuaAUKQYFGoUan1mLURGDSGomKiyUuoyD01K9Q4m+r7xKoMrz1e7Gu/wrrmvkAqKOT0WUMQZ9VhD5zGCp9JEPi8xkSn8/VRRdj8zrY0bSbHU2h1tOmhh0AKBVKMswpZEalkRaZjE6KwufQ0dEGdS0KalsMNLSKuL2R+z6UIojBGMBkEdFFBNlQY0VHExatDoRQNIb9wwUJKFCgROgSK1Gkx8RmpSIU0VutEgjgoy5QiyRJ6FRaItSGQ/7+g6KI3eegNliNVqXBqIk4oqgP3XmgGmolok3aQ5r/dCqh0+mO2UOz2BVua8aYNFZsrWfT7mbGDUkk2mDh8Zm/5tnVr/Hqhv+xt62Sm0dfecRjfQOJLEgDTFCU+Hx5Ge98sxsJH7mTq6jzlzAoNpdfjLuBeGPsQc/hCXj5tnQp8/cswO51UBCbw7XD5zI2ZXif7sv19ibW125lU8N2SlrLCUoiKkFJitvDFH0cKYXnEqNORC+Y8AdCidzwA53Q5lBgUznwCy24JSsO0UqHt51mZyuNjmaaHK24usYtIDRelBQZT050BtOzJpBmTibDnEK8MfaIw9aEPPNqqbbWUd2VxrzB3kSnx9arbPeEUI1SjUro6iaUJHyiH08/KTLiDNGkmpPJtKSSM3g0uVMvJVkdgbepAk/1LjzVu3DsWol98wIQFOhSCzDkjyNi0ATU5nhMWiOT0scwKX0MAFWtLazcu4Pi5nIa2uqpaF2PpNwXf08SFSiJQJ8QSXKamRiDhURzDKmWGNJj4kg0R2PWmfr0nJMkCavHRrW1nsrOGva2VbGntYwOT6hFm25OYWzyCNK1hbQ0CWwva2VraT1ubxCzUcPUMbFIcWUsq1iJUqHkJ4PP4/yCWYfkpSeKIvP3LOD97e9i1pm4c/wNDE0oPLQfcT8a25zc8/clZCaZ+NMdU1DKmWr7RPSEBGlUQTymCA2LN9YwbkgiEJpu8cCUO/hg5+d8vOsbKjpquGfizSSbEgfS5MNG7rIbQOpbHPz93U3sqepg6BA1ttjVtHnauXzoBVxcePZBn1YDYpCFZcuZt+trrB4bwxMHc+ngcymMy+1VttnZxoqqdaysWk+NLTTr26KKI8KfjNgZxcVt3xMlOviz9SJcUtekUUFE0DlR6B0IekdoqXMi6FwIin0eXZIooAgY0EkmIlUW4gyxpEclUpiYzrD0NIx6bS97DhV/0E9FRw2lXS7p5e3VNDiaw/sj1HpSTUkkmRJINMYRHxFDjCGKKJ0Zky7yoAP43oAPm9dOm6uTVlcbjY5W6m2NVFnrqLc1dqWnCIlUYVxoEuzQ+ALiDFF46/fiKtuEq2QDvuZKAJRJ+XTEj2aXkEtpg4fyuk7abfsijsda9GQmR5IYr8Rg8aDUu/EKNto87bQ622lzd4ZdvPdHQMCsiyTGEEVcREzXmFwCqaYk0szJPdJjdHtRbm7Yyfq6LexuLQNgWEIB5+bNZFj8YLaWtLJwfTVrdzSgUCiYPiEKZ/RWtjbtIMOcwu3jrjvkQfLy9iqeW/NvGuzNnJ8/i6uGXXTY7v+LN1TzzLubue3iYVw49fRxYz5awl12lw8jf/oFxJx5IwCvfLyNb9dW8Z/HzukVRX5j/XZeXPsm/qCfa4fPPeQelpMBWZAGiO831vDPj7aiUiqYdZaapS1fYFDr+eWkWxgUl3fQ4zfV7+CtLR/SYG9mSHw+Vw67iILYnvGtAsEA6+q28vWepexpD03kU7qjcTfHI3YkIPn0REVqmWkqZ6p7EWszzqc5Lgar1ESrr5FWT3M4KKeAQIw+hhhdLFGaaIxKC1rJjDIQgd+lpdPuo7XTTVO7i5YOF/v1EoXzAOWkmMlJs5CfFoUlsm+Rsnkd7GktC71ayijrqA7Ph4rWW8iNziQ7Op1MSyoZltTjmszPF/RT2SWGe1rLKW4pDadUj4+IYXBsATHKNALWaNoqGzA0bGawVEKi0opHUlGsHERL8mQSM7PJSTWTlWTCaDh4Rd3t4h2KgmGlw22jw9NJu6uT1i4X7GZXG0Gx67cRBFJNSRTE5jA0Pp9hCYVE7jcxt9XZztLKNSwsW0Gbu4NUUxI/GXIeE9JG0drh4YNFJSxYV41Rr+asszSsbl+AzWvn0iHnc8mgsw8phYUn4OWdrR/z3d5lJEcmcMe46w9rfowkSfzu1dXsqe7glQfP7Pf/8WOju677z7XjyB45kbgL7gCgpLqDXz+3jDsvG8HZE3o/OLS7O3l53dtsadxFUcIgbh93Xb/d9icTsiCdYAJBkdc/28EXKysYnB3NsImdzC/9ioKYbH49+baw63N/tLk6+Pem91lft5WkyHiuH/ETRiUN7VEpO3xOPtq6kMUVy/BILkSvnmBLChGeLIamplGQEUVumgWLRWRP207WrnqXMp0KhxD6KxjUenKiM8iKSg+7JaeYEg7Zo8ofEGlqd4YiZzfZqWywUVFvpa7FEY4WHh9toCDDQkqKgMrUSXuwgZLWcursjUCoqy87Kp382GwKYrPJi84i2mA5/C/8GNE9AL+qZA+baoupdlbgVjchqAJIEqh8FuJUaQyKzWOiyUBCw3rce1ZDMEjE4ElETbkMTdyxmysSFIM0OVuptTZ0ddVVsqetHLffg4BAYVwOE9NGMyl9TDhqRFAMsrpmI5/s+oYaWwPZUencOPJyCuNyqGqw8cIHW9hT3cGZE5OQkrezqmYDhbE53D3x5l7emP2xrbGYl9a/Tburk3PyzuDKYReF4ucdAjVNdu786/ecNzGTn80tOuLv5nSiu65755ZppOcUkHDpvUDo/3j7U4uwROp48hdT+jxWkiQWlC3n7S3zUCqUXDnsIs7KmXrMc2QdS2RBOoG4PH6e+s8GNu1p5qKpWUgp21lYvoIpGeO4fey1B6zwJUliUflK3t4yj6AU5CdDzueC/Fk93HbbnFZeWfEpW9s3ICkCBK2xJElDmJ47krGDk8hIjKTJ0cKqmo2sq91CeUc1AKZAkKFJQxiWMZqCuBySIxOOSxO/3WFnZWkxW+tLqbJWYZWaQNU1lhJQEyHFk2XKZHT6IKYVDiFSN3CuwMGgSEW9jV0VbRRXtlNc2U5bV1BavVZJXloUBRkWTHEunKpGSjpKKWkrJygGEQSBTEsqeaYUUtrbiN6zmRi3B3PRGURNvxpV5PF5UhVFkbKOKjY37GBtzWZqbA2oFCompo3i/PxZ4fxKoiiyono97277jDZ3BzOzJ3Pt8EvQK/W8/XUx877fy5hBCUybAW9seQ+VQsWd429kVPLQQ7LD5Xfz7rbP+G7vMqL0Zm4Y+RMmpI46pJbsix9uYdH6Gl5/+CyiT1NX8MOhu6773+3nkBwfTdLVvwvve3/BHt75ZjevP3QW8dH95zBrtDfz6ob/saN5D2nmZG4aeTlDEwpOhPmHjSxIJwib08fv/rWa8jort186lGJxMatrNnLxoLO5aticA96sVo+Nl9a/w6b67QyNL+BnY68hwRi3b7/TyXPfz2OHbT2SIoDGmcaMtDOYM3YkcVF63H4PK6rW833FKva2VwKQF5PFmITBJH7/EZkJeSRd8dAx/bwev4fKzjoqOqop66iivL2aOltjeGwkOTKB/Jhskgyp4Iiivk6guKKd6iZ7qMWhFMhNtTAoK4aCjCgKM6KIMR/aRGBvwIfVa+/ysHPjFwOIktgVakcV8ijTGDBrI9GrQ2NMHXYPJVUd7KnuYE9VByXVHXh8oS6xuCg9gzKiGZwVzaCsGDKSTH0OvHsCXkpayylu2cvu1r3sbasMu7SrUZDg8REfEElPHUpG4WQSjPHERURj0kYel27Hqs5aFpWvZGnFGtwBDyMSB3PlsDlhYfIEvHy080u+2LMIi87EHeOupyhxEF+vquCf87YxqSiJ6y5O57k1r1PVWcvcwedw+ZALD9kTr6S1nNc2vktlZy1D4vO5YcRlZEYd+H6tb3Xw8ycXccWZBVxzzuE7SJxudNd1795zCQk6iZSbnwrva2xzcuufFnLTBUOYO6P3uPH+SJLEurot/GfzR7S42pmQNorrh19KbMSJDRJ7MGRBOgE43H4eemklNU127r9+NCs7v2Bt7WauHX4JFxXOPuCxxS2lPLvqdRw+J9cMv4Rz8s4It14CgSAvL/mWZY0LQO3B6EvnimEXMnv4EARBoN7exFcli1lWuRZPwEuaOZnpmROYlD6aWEM01nVf0LbgDZJv/DO6lPwj+mzdKcSrrfVUd9ZRZa2jqqOWRkdLWHzMOlMouGhUOnkxWeRGZ/Y7udfh8rGrop2d5aGWSWlNJ4FgyLEgxqwjJ8VCVrKJtEQjmkgXLtppcjVRb2+iydFKq7MtHJ3gUFBIKiSfnoBLj+iOQPBEkmRMYmhKJoMzYxmcFUNc1KFHxNifoBikztYYCqDaWUt1awU1bdVYhWCPcmqFiii9uWsirCW8HmOwEKMPOTFE6c1H5ZX4XdkyPt+9ALvPyRmZE7lm+MXhnFJl7VW8uPZN6myNXFR4FlcOm8MXyyt4ff5Orjt3EBefkcnrm97n+4pVDEso5J4JN2PSRR7kqiFEUWRh+Qre3z4fh8/FjKyJXD7sQqL1ln6Peexfq6lssPH6w7N/9B533XXd+/dfTYyvlbTbX+ix/5fPLEGpEPjbPdMP6Xy+gI/5exbwSfG3CMDFg87mooKzDtsJ5XghC9JxxusP8ugrqyip7uChm8ay1vYdSyvXcP2In3BBwawDHvtN6RLe2vwh8RGx/GrSrT2eLteVlvP8qv/g0zWh8Udz3fCfcPawkUDoyXjezq9ZW7sZpULJlPSxzM6dRk50RvhJXBKD1PzzTlSmGJKv/+MhfRarx0ZVZx011nqqrfXUWOupsTXgDezzIkuIiCXDkkpmVCqZllBA1Cj9kUdW8AeClNVZ2VJRw7b6Emqd1bgUrQgG2z5PP0lAGTCilUwYFJHoBCMaQY9S1CIGlXi94HIHsDq8uHxeUAYRlH4UGh9GcxCd0Y+kduAQO8NOHBqlumsMK4fC2BwK43L6nXt1OEiSRNv2JZQueYs2gviHTsYRHUeH20q7uzO83D8tO4REK9EYR4o5iQxzCjnRGeTFZB1WunmXz83Hxd/wZcki9CodN468jKkZ4xAEAV/Ax5tbPmJh2XIKYnP45cRbeH1eGau21fPMr6aTlWxmcflKXt/4HiZtJL+a9NPDclpw+Jx8vPNrvt67BJWg5IKCM7mo8Kw+x5eWba7l6Xc28uc7JjM05+DTHk5nuuu6Dx+5BXPrbjJ++e8e+z9cVMJ/vio+aLfdD2lxtvH21o9ZU7OJOEM014/8CeNSRgx4CCdZkI4jkiTxt/9uYunmWu6/bgxVwjrm7/6Oy4acz2VDL+j3OFEUeXPLh3xTuoRRycO4e/xN4WCcgaDI0199yib7YgQEzkg+k59NvQClUkmzo5X/bf+MVdUb0Kt1nJN7Bufmz+gzS6mrdCONH/yJ+Ln3Yhw0sdf+dlcne9srKWuvCkfj3n+eT6TWGHZ4SDMnk9710h3iAPbB6PTYwlG0dzWX0OhoAUJCkWVJJ06bhEGMQXKbcNu02BwBbE4fTo8ff0AkKEooBQGtRoleqyLSoCHarCPOoicpNoKUOCOp8UY0+0VFD4pBGuzNVHTUUNZeSWl7JeUd1aFxIQTSLSkMictjcHw+g+PzjkqgAvYOWj5/HnfFNoxFZxB77s9QdD2lSpKE2++h3d1Jq6udZmcbTY4W6u1N1FobaHK2AoSjio9MGsK4lJFkRaUdUoVSa2vglXXvsKetnAlpo/jZmGvCwraiaj2vbPgvepWWn4+6mb/9q5ysZBN//PlkACo6avj7yldpdbVz7fC5nJc/87AqsUZHC//b9ilrajZh0hq5dPB5nJUztcdYqMvj5+pHvubi6TnceMGQQz736Uh3XTfvj3cSUbaSrAff67G/odXJbX9eyK1zhnLRtMPPIruzuYQ3Nn1AtbWOYQkF3DjyctLMRxdI+WiQBek4Mn9ZGf/6bAfXnltIfHYbL61/m9k507hl9JX93sQBMciLa95gVc1Gzs+fxXXD54b77Fttdh747J/YNZWYxCQenv0zMmMS8AV8fFL8LfN3f4cgCJyfP4sLC888YIXZ+OGTeOtKSb/rFVAoQ0nomvaws7mE3a1ltLtDUbgVKIg3xJNmSiE7Oo3c2HQyo1IOmkL8cPEEvOxu2cu2xmK2Ne2m2hrKTWNQ6xkcl8eguDwGxeWSGZV21KkVDgdfwMfe9ip2tZSyq7mEPW3l+IN+BAQyLCkh2+LzKIjNOez05JIk0rHsAzpXfIg2JZ+EnzyAymg56HEuv5vy9iqKW/ayvWk3JW0ViJJIcmQCM7MnMTN78kHFct+k1vnEGqL5v8m3hSNGV3fW8fTKV2hzdTDGOIvvFwo8fddUCjND4w1On4t/rPsPG+q2MjZlOLePu+6wxXlvWyX/3fYJO5tLSDTGcXXRxYxPHRm+L+5/YTmSJPH03dMO67ynG9113cd/uQ/9jq/JeuA9BFVP56efP7mQpFgjv/vpoaWz/yFBMciCsuW8v+Nz3H4P5+RO57KhFxxW6/tYIQvScaKqwcYvn1nKqIJ4rro4gUcX/41Bcbn8dtqd/bpdBsQgz61+vc/xpd31tfx+0QsE1DbGRE3jvtlXoBAU7G4p46X1/6HB3syU9LFcO3zuQd2jg04r5c/fSvOIKawzWNjesgtHsCtWnV9LwBaF6LAgOixIrkiQ9tmrUgrERRlIiTOSlWyiID2KIdkxhzS/Zn+6UzVsayruSoFRTkAMoFaoKIjNoShxEEPjC8iOSj+qcELHGn/Qz972SnY2l7CzuYSStopwYr0EYxx50ZnkRGeQHZ1Ohjm1V5qJvnDuXkPzZ8+hjIwm6apHUEcd3ux6u9fButotLK1cw+7WMrRKDWflTuPiwtkHHespaS3nmVWvYfc5uGPc9eHoEg6vk2dW/4vtTXugOZvxMTP49dVjwsdJksSXJYv479ZPiNZbuGfiLYedl0eSJLY07uSdLR9TY2tgcFweN468nMyoVP716Xa+WVPFh386/7ASS55udNd1nz77CNpNn5Dxy3+jjOg5NeSf87by/YYa3v3jeaiUR36v2LwO3t8+n4VlKzBqI7h62BxmZE06ofefLEjHgaAocd/zy2jucPH0PZP406q/EpCC/GX2b3tMWNwfURJ5ce1brKhaxw0jfsL5+40vbaou4anl/0RC5OpBV3PxqAmIoshHu75k3q6viTVE87Mx11CUePCIwhUdNXy69B22OytxqBRIogLRGoPel0x6RBaZ0UnEWgyYIjTotSqUSgFRlPD4gjhcPtptHpraXdQ2O6husiOKEoIA+elRTByaxPRRqcRaelfCoiRSY63vipBdwq7mknCIoQxLKkUJhRQlDmJQbO5RD7D6gn46PTZsHjvugAdf0B/2stMo1ejVulBQUZ3pkOfI9EcgGKC8o5rdrXspaQ1Fk2h3d4b3xxqiSTMnkRSZQHJXPMD4iBhiDdE9uqk8dSU0vv8EglJD0rWPoYlJOSJ7Kjtq+WLPQpZXr0On0nLZkPM5N2/GAeeedHps/H3lq+xuLePyoRdy6eBzEQSBgBjkjU3vh9Ktdybw+vUPEKnv+duWtlXw3OrXaXV1cMXQC5kzaPZhO18ExSCLy1fx3o75OHxOzs6dTqx7BP/6eDevP3wW8VEn/kn9ZKG7rpv/0p9Rr/4vqT9/AU1Mzy61lVvrefI/6/nr3VMpyDh6r7mKjhre2PQ+u1vLyI5K56ZRl/eadH+8kAXpOPDtmipe/HALv75mNMWB71lSuZrHZ/76gD/qf7d+wme7v+PKYRcxd/C54e2b63bz5LJ/IPnV3D3uZ0wpLMDudfDs6tfZ3rSb6ZkTuHnUFQesWEVRZE3tJt7f8i0N7loUIuQ4g4i6s5hRMJrR+UmH7FK9P15/kJLqDraVtrJhdxN7azoRhFCsrQumZhAZ42ZPWzm7W/ZS3Lo3nKIiISKWoQmFDE0IheE50u6/7lTn3V5sddYGGh0t4WgKh4JBrSc+IoakyATSzElkWEK5mWIMUUc8wNvptlLeUUNVZ23Y8aPB3oRvvxTlAgIWvYlYQzRxhmhiI2KIFgWUaz4nNigw5KrH0cUceV9+ra2Bt7fMY3PDTrKj0rlrwk2kHCCumT/o55X1/2VZ1VpmZk/m1tFXoVQokSSJV5Z/xqL6b0mOSOH3Z97Va/K2y+fm1Q3/ZVXNRobGF3DnhBsP6EXXHw6vk/d2zGfB3uVEqI207cjnz9ddwuCsmMM+1+lCd133xevPolz6Gsk3PYUuuaeLd1O7i58+sYA7Li3i3ElHFlX8h0iSxMrqDbyz9WPa3Z1MyxjPNcMvIeogE/ePFlmQjjE+f5Db/ryQWIue6y6P44mlzzOncDbXDL+k32NWVK3n+TX/5sycqdw6+qpwRbintZzfLXyGgEfLXaN/zvRhuTQ5WvjT0hdpcbXz09FXMTN7Ur/nFSWRlVUbeHfb57S6WxE9BizOLO6xLSN+9AUknHX9MfnMoiTS5GhlQ9UeVpTupNJajajtRFDsS0ZXGJfLoK5YcHERR1bBePweilv3sqNpD8Ute6noqA7HmovURJBqTibJGNflJm3BpDViUOvRqjQoBAWiJOIP+nH5PTh8Tjrc1i6ngdau9A/7opGbtEZyozPJj82mMDaH3OjMo2q5iZJIh9tKk6OVJkcLLa5Q7LruNOWtro4eKeOVUmiuVmZMKHNuYWwOmZa0w+o+kSSJNbWbeG3je/gCPm4dczXTMscfsPz7O+bz8a5vGJcygnsm3oxaqcbl8XPNX99Al7edaIOJ30y7k1RzUq9jv69YzRub3kejVPOL8TcwKnnY4X9RdLW6Vr5Js7uZ4dGjuW/G9SeNW/KJpruu+/LtV1AseIHEqx7FkD28RxlJkrj6ka+ZPDyZOy8bcUyv7/F7+HT3t8zfvRCVQsllQy7g3PwZx20cV472fYxZtL6aNquHu68czr83vUSiMe6AHnV1tkZeWf8OhbE53DzqirAY1dub+OP3LxLwargo5WqmD8ul1tbA498/S0AM8ugZv6Qwrv8WV0lrOa9vei+Um8cVibptDDdMmcnEyHpaP/0ec+G4I/p8oiTS6GihoqOa8vZqyjuqqeioCXe/aZRq8tPSUXvzKNkN1uYIskfkcf3MoYed70aSJKo6a9ncsJMtjbvCkRBUChV5MZlcWHhWV96kzKNyLe/GE/BS3VnX5WUXyg67f+qInKgMBsXlMiguj4LY7MMa9FUIilDiPUMUg+N7xyoUJZFOt41mZys1NTso3TCf5mArOwJulletA0K5i0YkDmZS+mhGJA09aKUgCAIT00ZTEJvD86v/zYtr36TaWs/VRXP67FYTBIErh83BpI3kzc0f8pcVL3Hv5J9j0GlI0eZidKbQplvGw4ue5v4pt/f4HIIgMDN7EgWx2Ty7+nWeXP5PLsifxdXDLznsyisvJotfjb6Hez/8F1vZyMOLmrh/yu0n3STOE4lCE+oBEX+QCBNC331GkomapkPvGThUdGodVw6bwxlZk3hz0we8vXUeSyvX8NPRVx2w/jlSZEE6hkiSxBcrK8hNNdNEMQ32Zh6ceke/eUmCYpAX176JRqnml5N+Gr5xXT43Ty79J15fkBTHbK6ZNZJGRwuPf/8sAI/P/HWvJ9RuvAEf/9v2KV+Xfo+WCHxlRYyIH8Gvfj4Ks1FLy5ffoNAa0KYcPICrJEm0uToo6Yq0XdZeRWVHDe5AKISOWqEi3ZLCpPQx5EZnkB2VQZo5KTxe4Z4V4P0Fe/hkyV62lbXymxvGkptqOeA1nT4X25t2s6lhB1sadoZdzTMtqZyfP4uihEIKYnN6RLc+VuhUWvJjs3sMztu9DkraKkLdji17+aJkEZ/t/g4BgTRzMoWxORTE5pAXk0mCMe6IRVEhKIg2WIg2WCiMy2VyZBqNHz6JIX8sqgvuZ3drGVsbi9lUv50V1esx60zMzpnKufkzDurhFq238PAZ9/DGpveZv/s7Oj1Wbh97Xb/jSuflz0Sv0vHy+nd4cvk/eHDqL8hMMrOzIsBfrrifPy17kT8ufZ67J9zEhLRRPY5NMSXyxJn38/aWeXxRsojStgp+NfnWw+7CUylUBGoKuWTMeBY1f8ZvFjzJb6bdGY4y8WNDodEhApK370nfCdEGtpW2HLfrJxrjeGDqHayv28obmz/g0cV/ZWbWJK4efkk4VuKxQBakY0hZrZXqRjs/u3QQH+96jSHx+YxM6j/+15cliyhrr+KXE38avmElSeLlDe/Q5GzBWzqWO2+ZhNPv5ImlLxAUg/z+AGJUZ2vkbytfpdbWQLZ2BDtXxnLBxDx+evGw8Ix3d9UOdOlDeqXl7qbZ0cq2pt3saN7DnpYy2rrcv9UKFZmWVKZmjiM7KoPsqHRSzUkHfPrVa1XceMEQJgxN4qm3N/DAiyt44PoxjBu8bywjKAYpa69iW1MxWxt2UdJegSRJRKj1FCUOZmTSEIYnDj7ufdf9Eak1Mjp5GKO7up+8AR+lbRXsbt3L7pYyllWt5buyZUCoBZMTHcp4m2lJI8OSSkJE7BF5KRnyRhM963raF75JVFIuUybPZUrGOAJikK2Nu1hQtpwPd37JFyWL+Mng8zkv/8COCyqFkp+OvooovYUPdnyOKEncOf6Gfh0QZmRPQqVQ8eK6N3lq+T/JTTiLpZvdRKrM/GHmvTy14iWeWfUat465qleGUo1SzS2jr2RQXB4vrX+bB7/7M/dN+Tl5MYc+vuELhCYoF1gKmFl0P39a+iK/X/IMD0+/+7DOc7rQLUiiz9Pn/oRoA202D/6AiFp1fLziBEFgXOoIihIK+WjX13y5ZyEb67dz29hrGJsy/OAnOARkQTqGrNhah1IhEDTXYK2x8+uht/X7xNzpsfHRzq8YlTyMifs9Za6oWs+amk0omwYxKnUQOSlmnlj2PO2uDn4341f9itG2xmL+tvJV1EoVV+Vcz7/fbWbmmDRuu2RY2IaAvYNARyOm0WeHjwt1i9WxqmYD6+u2UmcLRduO0pkZFJ9HYWwOeTFZZJhTeniFHQ6FmdH8/ZfTePz1tfzpzTXceFkqisgOdjWXUNyyF3cgFKE6OyqdSwadw4jEIeTFZJ6UUYm1Kg1DEwrCwSmDYpBaW0NXvqYqytqr+LT4O8SusS21Uk1aV86iVFMSKaZEUk2JxB+CUJnHXYC3vpSOpe+iTx+ELm0QKoUyLJBVnbX8b9tnvL11HquqN3DPxJtJjIzv93yCIPCTIeehEATe2z4fo8bAzaOu6Lf81MxxSEi8uPZNnEYJyKShzUlWspmHp9/N31f9i1c3/A9f0M95+TN7HT8pfTSppkT+suIlHvv+GX458ZZDrrhc7tB4WoReTaoplj/MupfHvn+GPy19gT+eef8BHTRORwR1d5dd3y0ks1GLJIHT7T/uqTt0ah3XDr+EaRnj+Mfat3h6xctMyxzPzSOvOKRpDgdCFqRjyMbdzQzOjub7qoXkRmf2mSivm492fok/6OeGET8JC4bD6+TNLR+SpE+hvCqd83+axae7v2V70x5+Pva6fud5rKnZxHOrXyfFlMT9k2/n4Rc3kxIXwR0/Gd5DEL11ewDQpRbi8XtYUrmGRWUrqLLWoRAUDInP48zsKQxPGkxKZOIxCSNi8zrY21ZJSVs5pmFlaBPK+V95qLJJioxnSsbYUAUfX9CvS/yR4Al4aXa00ubuwOoJBVr1Bf1ISCgFZTjtdpTeTKwhihhD9BEN1CoVSjK6cjN1txR8QT811vpwmKUaaz3bGotZWrkmfJxaoSLVnESWJY3s6HRyozPJsKT2EGFBEIg77+d4G8po/vRZUm/9Owrdvu65DEsqv5n2C9bUbOKVDf/lwQVP9hrb6YtLBp2Dw+vki5JFpEQmcnZe/3HQpmWOx+V38+9N76POdFHXPI6sZDNalYb7Jv+MZ9e8zpubP0QhKDgn74xex6dbUvjTmQ/w5PJ/8reVr3Ln+BuZkjH2oN9rpyMUjsoUEeqajTFE8cgZ9/DbBU/y9IqXefKsB49ZVJBTAUGpAoUqnMb8h+g0of+NxxcATkwuqXRLCk+ceT/zdn3NJ8XfUNpawa8n30a65cimLIAsSMcMp9tPVaONM2caWGFv4s7xN/Zbtt3dyeLyVczInkzSfk+0H+36CofPSZ50Dk06D7GJAf628EsmpY1mRlbv8D4Amxt28Nzq18mJzuS30+5kU3E7Da1OfnvjOLTqnhWst6EMr1LJ5+17+Grtyzj9brKi0vjp6CuZkDb6qPuCXX43lR01lLWHInyXtVWGw9woBAUZ5hTOyJrImrVeJHs0j//yHMzGo795XD43e9sr9wt1VEuLs+2wzqFUKEmNTCSrSxwKYrNJMycfUUBTjVIdCib7g4yrTp+LOlsjtbZGam0NVHfWsb5uK4srVgGhMayihEGMSx3BmJQiDGo9Cq2B+Dn3UP/WQ7QtfJO4C37R63oT0kaRHZ3Bn5e9yBNLn+eh6XcxOL7/YLmCIHDt8LnU25t4c8uH5ERnkBuT2W/5c/LOoMXRyed8y5KaZUwZcRUAKqWKX078KX9f9S/+vel9jJqIPsXGpIvk0TPu4cnl/+SFtW+gU2kYc5CWUoc91DW1fwqK+IgYfjXpVh7//lne2foJPx1z1QHPcbqh0OqQ+umy02lDVbnbG+hz//FCpVRxxbALKUos5JlVr/HQwr9w+7jrmZQ++sjOd4zt+9FSXm9FksCqKkev0jEhdWS/ZReWLScoBrmo8KzwtnZ3Jwv2LuOMzIls+x6GZMfy9taP0Km0Pbzv9qfGWs/fV71GujmF306/E4Naz7LNdUSbdIwf0rNLQ5IkVjTt5LOMGOy7vmJMchEXDzr7sGfXd+P2e0KpJbrEp6Kjmgb7vtTisYZosqPTmZUzhfyYLLKjM9CpQuJzdpqVXz+3jH98tJXf3DD2sFpioiTSaG+mtCsh3Z7WMmqtDWF37SRjPHnRmczMmkRiZByxhmgsOhMRGgMapQYFAkFJxB3w4PA66fBYaXG202Bvoqqzlo3121lSsRoIjQkNTxzEqKRhDE8afNSCHaEx9HKakCSJFlc7e9sq2NFcwqb67ayr24JWqeHMnKnMKTwLS0o+lolz6Fz1Ccah09Bn9nanjo+I4fGZv+bRxX/jLyte5snZvyFxvxQlP0ShUHDnhBu579sneGHtGzw9+6EDulZfM+Iivtq4nW3ScopbxoSzGqsUSn458RaeWPoCL637D4nGuD7FTafW8eDUO/j9kmd5bvW/eeLM+w/4JN3a6UGjVvbyzBwSn885eWfwTekSZudOO6qn8VMNhcbQb5edXhOqyj3eYJ/7jzeD4vJ4avZv+fvKV3lu9es4fA5m5x5aBPL9kQXpGFHf4gQkKhyljE4p6vfmFkWRReUrGZE0uEeF8VXJ9wSkIBcVzOabD9eSPzjI6qbd3Djysj7Dv/gCPv6+8l/oVFoemHoHBnWo73ZXRRtjBiX0CLdi9zp4ad3bbBA6yFTo+M2sew74RPxDJEmi3t7E7pa97GkrZ29bZY/cRjGGKLKj0pmWMZ7s6HSyo9IPONk1O8XMdecW8sYXu1i5rZ4pw/uuVDwBL/W2RmqsDVRZQ7mV9ncx16t05MdmMTFtNPkxWeREZxySK7aK0FiQRWfqcz5Nk7OVPS1lbG/ezdaGXays3oBCUDA8cRBT0scxNqXomHUXCYJAfEQM8RExTEofgyiJlLZVsKBsOV+Xfs/i8pX8dPRVTJ5yGY7i1bR+/Sqpt/0doQ/PzUitkd9Mu5MHvn2CF9e8yeOzfn3AFp5RE8Ed467nD0ue49Pd33L50Av7LasQFOSI0ykLfs7za97g7+c8Gp6MrVGquXfybTz43Z95ZtW/ePqch8P/x/3RqXU8MOV27vvuTzy35t88ddZv+h2XbOl0EWfR9/mwctmQ81lSsZpPir/hnom39Gvz6YZCq0Psx8tO26PLbmCI0pt55Ix7+Pvq10Jz34J+Lig487DOIQvSMaLd6kaIsOLwOxl1AM+6nS0ldLit3DTy8vC2QDDA9+UrGZsyHK1kQhQlKoObiNKbe3kwdfPBzi+oszfy8PS7w7HrPL4AVoePlLh9T/K1tgaeWvZP2twdnN9i54LhM4k5BDFy+JxsadjJpoadbG/ajbXL/TpSE0FeTBaT0keHYrYdRHz6Y860HJZuruPV+ZuITvBi83fS7Gyl0dFKk6OZenszba6OcHm1QkW6eZ+LeW50JqmmpGMeZ0sQBBKNcSQa45ieNQFREilvr2Zd3RZWVK3nhbVvoFfrmJU9hXPyziD+CCf59odCUFDQ5Up+6eDzeHn927yw9g06hs/lzNm30Pj+E1jXf4Vlwpw+j4+PiOGGkZfxz3X/YVX1xoOO1wxLKGRS2mjm717A7NzpBwwQm5MUw65Nw2gvXMOHO77g+pE/Ce+L1Bq5Z+ItPLL4r7y3bT43j+7bWcKiN/OzMdfwlxUv8XXpEi4s7LvCau5wE99PHiqjNoIzsiayoGw5Lr+7T/E7HRE0+v5bSF1ddgMpSAAalYZ7J/+M59f8m/9smUdcRAzjD9Bb9ENkQTpGONx+dNGdABQl9J/pcn3dVtRKdQ938K1Nxdh9TmZmTcLtDSDoHDR4q7hq2Jw+5zDV25v4cs8iZmZN6hG/LhgMtVi63T6rO+v4/ZJnUSDw0PCr0H/4d7QHCEfjD/pZX7eNpZVr2Na4i6AkEqk1UpRQyJD4AgbH5ZIUmXBYXWxBMUirq51GRwtNjpZQpAJnK82OVjrSW/EEPTy29Ktw+UhNBInGOIbE5ZMUGR/ySjMnkWSMHxCvO4WgIDcmk9yYTK4cdhF7Wsv4bu8yvipZzNel33N+/ix+Mvjc4zLAnhQZz6Nn/JLn17zBO1s/Jn/mvZhzRtK5ch6Rw2ei1PcdOHVa5ng+2/0dX5YsOiQHgiuGXcTq2k18XfI9VxX1LXQAeekW/EvMTIgfzdd7l3Bu/oweUTfyY7M5K2cq35Ut47z8Gf16/I1JKaIoYRDzd3/HuXln9NlKam53kTOsb49SgPGpI/i69Ht2NpccM5fjkx2FSoMY8PW5T6ftmvs3QF12+6NSKLlz/I20Odt5cc2bpM5OOmSvSFmQjhG+gIjC2ElSZOIBIyzvbNrD4LjcHhM719duQa/WUZQwiKZ2D8qYhlCuo34cGebt/AqVQsWVP6g89FoVKqVAp91Lq6udPy59HrVCxWMzfkVkfSVNgMqS0Ot8br+Hb/cu5auSxXR6bMQYoji/YBbjU0eSE51xSAP7/qCfOlsj1dZ6am0N1NoaabA10ehsISjuu0nUSjXxhhjijbEUxOawu9TD3jIf910xjRHpGUftNno8UQiKrjQYeVwz/BI+2P4F83d/x9bGXTx6xj3H1EuwG6VCyR3jrmdXSylf7FnIXTOupe61e+lc/SkxM6/r184ZWRN5Z+sntLk6iDFEHfAaSZHxjEwaypLK1Vwx7MJ+f++C9FCkhDRGsVnaxNelS7h+xKU9ylw6+DwWl6/im71LuXHkZf1e89z8GTy1/J9sayruFWLI4w3ltjpQUNWc6EwEBKo6a380goRSjeTp28suPIY0wC2kbjRKNfdO+Tn/9/XveX3jezxyxj2H9CArC9IxQgBEnZWsqP6765w+F7W2xnCIfwiNWWxtKqYoYRAqpQqjXo0yqok4TUqfk0E73FZWVW/g7LwzenWvKBQC6QkmSmvbeWblF3gDPp44834SI+Ox2jcBoDLte6KVJIklFav537ZPsXrtDE8cxB3511OUMOiAXWGiKFJtraekrZy97ZWUt1dTZ2sIx5VTCgoSI+NJNiUwJqWIpK4o14nGOCx6U48Kz1rg5fanFvHxV82Mv7PgwF/ySUSsIZo7xoe8iZ5e8TJvb/2YO8YdXmxASZJweUKZbO0uH15/EFGUUCoUGHQqTBFaok1atCoNg+PyKO+oRpuQiXHIFGwbvsEy/qJeqQi6KYwNTTmo6Kg5qCABTE4bw6b67VR01PTyDuwmLkpPfLSB8kofI3OHsrJ6PdcNn9ujoonSmxmZNIQ1NZt6TGn4IcMSClEr1exo2tNLkFo6Q91S/XXZQWgMMFIbQbvbetDPdrogqNRI+wXo3Z/wGNJJ0ELqJkpv5qqiOby28T021m9nTErRQY+RBekYoVKLEHQfsGla0VGDhNTDoaDN3UGbq4M5XbmPRIUbhcGBWew7MOXyqrUEJZHZuX0nLivKi+WrvQtQtlfyq0k/DQ/aBx0dIChQGkIiZvM6+MfaN9ncsJOC2Bzun3r7AWfAt7ra2VS/nS2NxT1SR0RqjeREpTM6eRjplmQyzKkkRsYf8pwes1HLbZcU8bf/buSdr4u54fzBh3TcycKIpCHkx2ZT1lbZbxlJkmjpdFNWa6WiPhTNo67FQVO786BdLAqFQFJMBL6MWrRaJTVNduInX4pj5wqsG74ienrfrs/mrla6w+c8pM8xKD4kYHvbKvsVJIDhubGs2t7ALVOHsaF+Gw32JpJ/8J8fnjiY9XVbaXG2EW/sOwW5RqkmOTKBentTr32tXYIUd5C0EwpBgSiePBXw8UZQqqAfQdJ1tZBc3r73DxSzsqcwb9fXLChbLgvSiUTQecADUbr+n0ZrbQ0APVIEV3bUAJAdFYrRVdpeCYC7ve/B5bU1m8mJyiA5snfXG8CooWa+cZSRpstjYtq+uQBBtw2F3oigUNJgb+aPS5+n023l5lFXMDt3Wp/dNE6fi+VV61hetY7StgoA4iJimJA2isFxoSgOcRExRz2B9oxRqewoa+WjxaUkxhg4e0LmUZ3vRLKudgu7Wko5P29fpAKXx09JdQfFlR3sqWqntKYTmzPU9y8IkBgTSqE+LDeWWLMeS6QWU4QGrUaJQhAIBEVcngCdDi8tHS52teyhXNFER3ked6xcTFJMBLeaC2H911gmzUWh7j2XqzvVx6Hme4rRR6FSqGhxtR+w3Ij8OBasq0bpDbXMam2NvQSp+6GsydnaryBBKPWHJ+Dttb3NGhKkGPOBU6o4fC6Mx6Gb9GRFUKqRgn13ySkUAnqt6oTPQzoYSoWS6ZkT+Gz3dzh8zoPGXTyugvT555/z0ksv4ff7ufHGG7nmmmt67N+5cyePPvoofr+fpKQknn76aUymY5sa+0Sh1YWe1BTB/m+iFmcbaqWaKN2+bpb6rrk73Tdxd+rumkp6xaVy+Jzsba/i0iHn9XuNnfb1CAqRll0ZeM4JhCfMiR4nSl0EzY5WHvv+7+G4eH25f3e4rXy2+zsWla/EG/CSYU7hqmFzGJ864rCdGkRRxOl34faHEuV1p1hQCAq0Kg0GtZ4IjYGfXVJEa6ebFz/cSpvVwxVnFYTj752MBMUgnxR/y4c7vyA9Mo143whe/HALuyvbqW6yI0kh8UlLiGTc4ERy0yzkpJrJTDKFn2YPhZLWcr5ftpwUfSL/d8PNbC/tYPW2Bv5Xmc5dkcW8+/JbjDj/UoZk9/T229NaDoSiORwKgiCgVqh6pMDoi+F5cQgCVNSEhMTudfQqo1WGxkd9/TzNd+PyuYjpI4J3m7X3pNgf0uhoJiAGSD5AqKTTDUGpQgr0/50adCrcnpNLkACGxhfwafG3lLdXHzSJ6HETpKamJp555hk+/vhjNBoNV155JePHjyc3d184nSeeeIK7776b6dOn8+STT/L666/zq1/96niZdFyJMIY83Jy9788wnR4bFp2pR4Xe5upAr9KF58802luIVJto9gjsKm9jeP6+uUpl7VVISAzqJySRP+hncfkqBkcPYeN6Fe8t2MONFwwBQPJ58Ku1PLviJXxBP7+f8X+9JhUGxSCf71nIvJ1fERADTE4fy3n5M8g+QBcOhFKv11obqOysoc7WSIO9mRZnG+3uTmxeR3i+Un8IgoBFayI2M5r0SBUfbqtgZfk2fn7ONIZlnTwxyyRJorXTw5q9u5lf+SlWsRmhI4Xd6/PZLe4kQqeiICOayUXJFGREU5ARddgpN7oJBAPM37OAD3d8QWxEDL+ddidxERbS4iycNymL1s4RNPx7C+mdG3nwHwmMyIvjpguHkJ1iRpREFpavIMOccsDJsfvjC/hwBzwHfYI1G7XkplrYXtYEsfTp+ej0h1pnhgO0zgLBAA2OZob24ZHabvNg1KvRqPvv9t3RXAJwwjKZngyExpD6FxyDToXrJBSkzK6Holpbw8AJ0qpVq5gwYQIWiwWAs88+m2+++YY777wzXEYURZzOUB+32+3GbO49QGuz2bDZbD22NTY2Hi+zjxhTZOjmaW7t2y0TwOl3Y1T37Be3ee09vPI6PJ3EG6OxapQs31rXQ5CqO+sByLKk9Xn+7U27cficXDR+OtEdfj5ZspdxQxIZnBWDFPTzpT5IjbWe3067q5cYtbk6+Puqf1HaVsHYlOFcN3xuv267kiRR0VHD5oYd7GjeQ2lbRfhpWKVQkWCMJT4ilpzoDMw6E5HaCAxqPRqlGqVCiYBAUAriDfhw+d3YvA463Faana0EDE2o0620sIfH1yxBvzKGooQhXDJiKjlxJ25Wvs3po67ZQU2znaoGG5UNNsob2/FG70SZUAUBDVG2iQyLHUb+iGgKM6NIi4/sMSH5SAiIQVZVb+DDnV/S5GhhQtoobht9NUZtT6GItRhQTz2fiO/+zS9mRvGfNZ386pklXDAlm/i8Jmqs9fzyMCaNVnbWApDWT/De/RlVEM9H68rQxNKnw0StNdQ1nWTsv/VS0vWf6SunTofdS9QBWkcAK6s3kGSM77fr+lTkYHXdgbrsAAw6NU73yTWGBIQftp195HL6IcdNkJqbm4mL21eZxsfHs23bth5lHnzwQW666Sb+9Kc/odfr+eCDD3qd56233uLFF188XmYeMzTqrrk/jf03kfxBX695RW6/B4Nq383n8LqIMliYOCyJFVvq+OlFQ8Pdbk3OFiI0hl6VUzebG3aiVWkZllBA4RzYUdbGU/9Zz99/OZ0G0csKlZezc6czIqmn40CdrZE/LHkOl9/NLyfe0sMLcH9aXe0sKlvJ8qq1NDvbEBDItKQyK3sKeTFZZEWlkWiMO+r5Qjavg12NZXyzbRO720tY176UdYuXovHFkBcxgklpY8hIMBMXpcccoT0sEZAkCY8viM3pw+rw0m7z0NbppqXTTXOHm4Y2J42tThz73dhajZL4NAeqwRsJ4mBM/DhuGXspMcZj171s9dj4vmI135Yupc3dQYYlld9Ou5MRSUP6PcY4ZBptC99irK6SKb+5kv98XcyXW9ej8WygIKqgxxjiwVhXtxWFoGBw3MHzZA3Pj2Pezk5g39Pv/uxo3kN8REyvVOf7s6ZmE2qFiqKE3k/MnXYvUQeIWF3ZUUtxSynXFF1yTAIAnywcrK4TlKp+vewg1MVZ23zsk/QdLYIgdD2Eigcte9wEqa/M6Pv/eTweDw899BBvvfUWRUVFvPHGGzzwwAO8+uqrPY654YYbuOSSnum/Gxsbe41HDTTdn620phNJkvq8UURJ6uVOHRCDPSYGeoJetEoNsydksmRjLd9vquXciZkAdLptROv6v8n3tJaRH5OFWqlGrYSHbhrHfS8s4/evrSElyYUaemWvbXd18sclzxOURP4w694+xxxanG18sOMLVlStQ5QkihILuXTweYxKHnpEURoOhklrZELGcCZkDEcUJdaVVvJN8SpKA9vY6V/E9uJVBBbmEGxNQaFQYIrQEKFTo9cqUauUKBQCCkFAlCQCARFfIIjHF8TtCeBw+wkEe98YKqVAXJSBhGgDU0ekkBxnJDkuguRYAwtrv+Wr0qWkmBK5feztRxz/74cExSBbG4v5vmIVG+q2EpREhsTnc8voKxmVPPSg87+UhkgM2SNw7lpJ9MzrGDsBVgQ3I3oi2f59Gt+aqjin679zIDwBL9+Xr2RU8rBDmktVkB6FKqqFSCG2V3mX3822pt3Myprc7/Fuv4elVWsYnzqyT6eLdpuHQZn9Z4edt+sr9CodZ+ZMOaitpxKHVNf1Ua92E2fRs6Wkud/6Z6Bw+z1ISBgPMazXcSEhIYENGzaE3zc3NxMfv68JX1JSglarpago5Ap4xRVX8Nxzz/U6j8lkOiUcHZRdQmNzeahuspOR2NtmhSDg/0FlKAj0+JOJkoRSUDA4K5rcVDOfLNnL7PEZKBUCTr+r31htoihSa2vkvPwZ4W0ZSSYevH4cf3hrOc0pXiYGND0ChIqSyPNr/o3T7+Lxmb/uJUaiJPL57oV8sPMLBODs3OmcVzDrmIfLORAKhcCEgiwmFGQhSVezoW477237ghrtDmIKWhmingmeSJxuPx5fEH8gSFCUQuIvCBh0KixqLVqNEoNOTYROhdGgwRyhwWzUEmXSEmPWYzH2bml5Az7+uvJltjYWc07eGVw7fG6/2X8Ph0Z7M4srVrG0Yg0dHiuRWiPn5s1gZs5kUk0H7zLbn4jCCVjLNvLWqjf4qnY9OVEZ3DX2Nl7x7uEfH22lucPFdecOOmAF9Vnxd9h9Ti7umnpwMFrcLQjGTlT2Eb32rahahz/oZ2rmuH6P/3bvUtx+D+cXzOq1T5Ik2m2efrvsdrfsZW3tZi4bcv5hpZA/FTikuu4Av2OsRY/bG8Tp9mM0HPuMykdKd1ddhHoABWnSpEm88MILtLe3o9fr+e677/jDH/4Q3p+RkUFjYyPl5eVkZ2ezaNEihg3re+7NqYBW2dXFoAyyeU9zn4KkVmqwe3vOC1EqVAT2m0uhFBSIkoggCFw2K58/v7WepZtqmDkmHX8w0G/q7nZ3JwExQOIP+u1HFcZz4XkRfFMPGc0ebE5fOMfM9+Wr2NVSyu1jryMzque4lMfv4ZnVr7O5YQfjUkZw46jLiDX0/9R6IhAEgbGpRYxJGcbyqnW8vWUeqzwfcMOInzA7d9oxfSoUJZFnV7/Gtsbd/HzstczM7v+J/1DPt6l+B1+Xfs/2pt0IgsDIpKHcnDWR0UnDjij5oSRJlJgjeT0tmtba9ZyZM5UbR16GRqnm0ZvH89LH2/hwUSkA15/X9/yu/2fvvMOjKtM+fJ9pmZmUmfTeeyAJCaH3KoioKApi1/WzrH11i72srrruuq517b03RJDeWyChJJCekN57Mpk+5/tjkkBIIaEISO7r8pLMnHPmzWTmPO/7vM/z+xU1lvBTzhomB40Z9MpvRe56JEhpLPbAZhO7A7nNZmNl7kbCXO0WHn3RYdLzc846knxH9Nnv1NZhxmyx9VnybbFZeS/9K9zVriw8Rin/wkHE3oLfN56djcR1zfpzKiDVdlrQePRRUXk8Z3SF9MADD3DDDTdgNptZvHgxCQkJ3Hbbbdx7773Ex8fzj3/8g/vvvx9RFHF3d+f5558/U8M543QJPHp7yNlzuIbLp/WuhFPLVZSZK3s8ppQ5oLcc9ThRSOUYrfbCiPEjfQkP0PD56px+FbG7aO4UP+1L3cHkUIdSlOCr0/PXN7bx1B8m4KZ14LusVUS5h/WSKDJaTDy/9XXyGo7wh9FLmRN+em/2p4ogCEwNGcconzje2PMJ7+/7ipKWCv6QvPS0ia2uyd9CemUmtyQvOaVgZLPZ2FGaxg9Zv1LRVo27ypUlIxcyI3RityjuUBFFkey6fL49vJLDtXl4yBTcYVQzM2VZ9zFSqYQ/LrZL6ny7IR8vV3Wv9F2zoZWXd7yD1sGFm5OvZjBUt9ex5cguopwS2d8ho6HF0H0j3FmWRlV7LQ9OvK3fz8uP2atpN+lY0o+yeF2TfTbtoe2t0vBT9hpKWyp4ePId3VYmFxKiKA4Uj7rfs/pmPaF+/af2f2sqWu3Nz/7OJ66YPaN9SAsXLmThwp4fvHfffbf739OmTWPatKF7ZpyLOHcWGkSEqNm5tZ7mNmMvK2EXhSPtx62QnOTqHtUnKrmKDrM9QEkkAjcvGMFj/9vJ8q2FyCTSfvtEuoKaStZ7ZnmkuYwQuSMeylYamw089N+tLF6koaGjiZuTru5183h/31fk1Bdy/4Q/nLTR1m+Bi9KZv0y5ky8zlrM8Zy06Uwf3jL/5pJxfj8VsNfND1q/Ee0dz0Ul4unSRW1/Ie+lfUdJcTrDGn3vH38L4wOSTHp/VZmVPxQF+yd1AfsMRNEoXbk66mtHl5bSnrsBm1CNxOHojFwSBO69MpK5Jzzs/ZRIT4kaI71Gljr9v/i9txnaenvngoHX4PjnwPTKpnFlBM9nPYbtNhKsKi9XC15krCNb4MzZgVJ/n1uoaWJW3sdOmpO9WgupG+3fB261neqe4qZzvD69kYlDKhaNd1wfCQCsk7dEV0rlERVs1SplDn5Pl4zm92v0XMF2b+wF+CmwibD9Y0ecxeosB4zGKvS5KZ9pNHd1pO2cHxx7NholRnowb4cM36/OQIEdv7tsx0mqz7031dbOraa/HR+GCYOrgxbsmIJdL+WT7JhQSh146YhnV2Ww+sotFsfPO6WDUhUSQcG3iIq5LvIJdZem8uecTbIOo5hmI3PoiWoxtzIuccVIrQ6vNyucHf+SJDf+i3aTj3vG38OJFjzA5eMxJBaNmQys/ZP3K3b88zis736PV0MatyUt5Y8GzzI+agVPwSLBZMVbm9zpXKhF4cFkyjko5r39zAFEUqdU18OTGf1HVXsvDk+84YZ9ZF3srDpJWcZAr4+bj72pXYOhSoFhTsIUaXT3LEi/vtxjj84M/IgjCgIrilXX2z76fx9FKUrPVzOupH+Hk4MStyX3bWlwQdHVb94PWWYlUInRLL50rVLbW4O/sM6jv0nBAOk04KdTIJDJEuYFQPxc2ppX1OsZNpQWg4Rh5FjeVBhGRZoNdJFKrdKHJ0FMw8rbL47GJUFFlpK0fbbKuogrLcdpeFquFDrO+uwTX38nKv++bioO2BX2DC9+sy+9REfnd4ZV4qt1YPIAaxLnIpTFzWBp/KdtL9vB15opTulZFq733o799kIEwWky8sO1NluesZVbYJP497wkmB485KSv0goZi/rv7Q+5c8QhfZf6Mn4s3f558B69e/DQXRU7rNoF08LfblRsq8vq8jsbJgesvjiW3tInv9uzkb+teoFnfwqNT7z5ho2IXbcZ23k37gmCNP5dEz0bRqSBiNttoM7bz3eGVJHjH9rBVOZacugJ2laVzWczcAcVeS6vb8NAoUSuPFo98e3glpS0V3DnmujOiqH7+MHCDuVQi4K5VnZMrJD+XwfWLDWvZnSYkggR3lZb6jkZmjI7ngxWHKatpI9D7aNNrl3dMXUdjt/5X15ezXteEh9oNd5UrOlMHBouxO0/u7aZm6ZwovsjIQilvxSbaet3guo49Xhusq2FVpbKv4Cyt9Tj5u2GVtxOkDePLtblU1LZz39IkmoyN5NQXcm3CIuSnoZrst2ZR7DzqdI38mL2aUNdAxgcmn9R1zDb7ezbUijqrzcrLO/5HRk02t6dcy6yTKEsWRZF9VYf4KXsNufWFqGRK5oRPYV7EtF6acV1IlY7IXH0w1RT3e93JSd58lJ7Pt0dWE6Dx5aFJ/9fv9foa09t7P6PNpOORqXfbU8ed3ltSqcDXmSvQW4zceIxh3/Hnf37wR1yVmhMWIxSUNxPmr+3+uaixlJ9z1jE9dEKv1fwFh8iAKySwp+3qms6dgGQwG2joaBq0H9LwCuk04uXkTl17PdOTA5BIBDbsLe3xvHen0GRNe93Rcxztj3VVonQHLV1Dj3MXTY/ATaXFKlqpbm7ieJw7JV9ajcc1xnV+fgWVfWZpbqxCZ+rAJtqYkxzJjQvi2Hqggife2UV6eTbAoFR5z0UEQeDW5CVEuoXw1t5PqT3uPRwsLg72SUSXS+5g+T5rFQers7ht9LKTCkYZ1dn8dd0/eHHbmzR2NHFT0lW8fek/uCV5yQmDh8IrGFNtSZ/PHag6zF/WPY/FvRBbfRBPT3940MEIYFXeRvZWHOTahMu7qzHbOlN1HTSyrmgbcyOm9hANPpb9VYfJbShi8YgFAxYjtOpMlNe2Ex1sn6TZRBvvpn2Bi4NTL9+lC5OBq+wAPDSqcypl16XVOVhFjeGAdBrxcvSkWlePq4uSsXHebNhbhtlydD/DVaVBLpVT1XZsQHJHQKC63f6H69Ieqz4maAHIpBIun2APFB+vT+N4XDvTgY365h6PKzvL0Y0yGUhkmBoqutN6CqmcxTMjefi60eSWNPLN9n3IJLLzWo5FJpVx38Q/gAhv7fmkzwbtExHQebMubu69D9gf1W21/Ji9hinBY4fcsNmob+al7W/z9y3/RWfq4K6xN/Dqgme4OGrmoNW6Fe7+mJtrekjLlDSX84+tr/P81teRCAKXB1yL8UgcdY39y1sdz+HaPD49+ANj/BNZEHW0b6iqQQeIbK5Zg6NczdUjLun3Gj9mr8ZT7caMsIkDvlZGgf0zPzLcPinbXrKXwqYSrk+88oQaexcCNrMRQT5wObenq4qGFj0229A/92eCyjZ7+nvYMfYs4OvsSZuxHZ2pg4vGh7D7UDWph6u6S7YlggQfR48eKyS5VI6noxuVnaWRvp36cZWtNXBcpXdKWBif5kBqQQFZR1KICz3aoOogU6BxcKa2vb7HORKJBBcHJ5qN7cjd/TDXleEks6eiDJ3FFVOTAnBSKXh+wyFkZhk6gwWnkxQFPRfwcnTnusQreDf9C7YWpzItdPyQzg/U+KOQKjhQmUO4UywmsxWzxYbFasMmit0TValEQCaVIJdJ+LFgDQIC1yYsOuH1jyWt4iBvpH6M2WZhWcLlLIiaeVLpUpnWG2xWLG2N1EisfHd4FbtK01HLlVyfeCXzIqeRX9rKl2ynua235UNfVLXV8q8d7+Dr7MUfx93YY1O6oLwZtVcjeY0F3JK8pF85q6LGEnLrC7kp6aoTFnSkZ9fiqJITHeSK1Wblm0MrCHUNZFJw31JWFxqi2YjkBBMUd40Si1WkrcOExunsl8ZXtNYgCMKgRX6HA9JpxLdzZVHVVktSdDAeWhXrUkt79BD5OHt1B58u/F18Ke/cSHdUqNEqXbq9k47Fy9EduUSG3NXAG98d5NUHpyOTHl3k+rn4dG/IH4u3owfV7bU4eIegLz6Et1yNXCrvsZpKjvEipdyX9JoqXvx4L0/dNh6p9PxdQM8Kn8SmIzv5IvMnJgQmIyCjoUVPXZOe+hY9jS0GmtqMNLcZadHZHVvbOszo9Gb0BjOySBc2tu/j128HsYku2FAm7cHa7MUtT25F46TAzUWJl5saf08ngnxciArU4uvh2H1TF0WRn7LX8GXmcsJdg7l3wi3dk5GTQabxoFoh5ce0z9jTUIBCpuCy2LlcGjOne3Vh7Zw1D8bWo8XQyvNbX0cQBP4y5a7uPruusR/Ir0ERmoe7szezw6f0e50NRTtQSOVMD5nQ7zEAVquNPVnVjI7xQiqVkFq+n1pdAw+NWnxSBSG/R2wmA4Ji4IDUZdnR0GI4RwJSNd6OHoOeZA0HpNNIV6qrsq2GCPcQZo0J5Jv1edQ2deDV6X7p6+zNvqpDWG3WbhHSABcfMmtysNlsSCQSAjV+3YrJxyKVSAlw8cWmspGzqY2ftxZxxYyjDbhBGj+2FO/uVfQQqPFjb8VBFH7TaD+0FWtbI35OXpS39GzSjQvwZ1/DHg4UVfD5mpx+u/vPZdo6TBRX2tW5HZvjKbCt4Na3PqClxLeXDJiDQoqrswMaRwdcnZUEejvjpJSjUsootxk4oNvMLVeE4q52Qy6TIJVKkAgCgmCvwO3SyitoKeCXSgszw8fhEhpAc5uRhhYDJVVtpB6q7g4EWmcHkqI8mZYcQIF5D99nrWJy0BjuGHv9KUkSFTWW8m3RRtKD3HFoOsJlsXO5JGpWDxV5gJoGe4WmxwDW4GD33Xpuy2s06Zt5Yvr9vWa3RRUt1AsFKCQtXJOwpN+Vj81mY3f5flL8E1ErBn7N9NxaWnUmpo6yT962FKfiqtSQ4nd+7meeCUSzAcmJAlKnwkVjq4Ew/7PfHFvcXEaQZvAq/cMB6TTi7ejRYz9o9pggvl6Xx4a9ZVwzNxoAf2dvrDYrtbqG7hmxv4svFpuFWl09Ps5eBGn8WVe4tTtAHUuwawD7KjMZHTuZr9blMjMlsLsBN8w1iDUFW6hsq+mhiRbuFsLGIztpcbcHTENFLuFuwaSW7+/xGl2utaNHy/l+Yz4T4n2JDOy/RPdsI4oiFXXtZBTUc7iogdySJmoajzYZq1Uy5DGuSD3LWRI5HW83NZ5aFe5aJW4uPUuLj6e0WcOBNZtx8+tgaujAN8UjB1ORVkn4w+xpvTbtzRYb5bVt5JU2kVnQwN6sGraW7EYRdohIx3juGnsjMunJNcqWNJfzdeYK0iozUMuUzGrUsXDsUvwS+i7ZP1TUgJNKjo97//sx7UYdz219jfLWav48+Y4+5YR+3VWE3L+QEE0gY/1H9XutI81ltBnbSRlEddyvO4vROjswOtYbk9XMweosZoVOOm3KG78HbCZDn+7Ax3LsCuls027SUd1e10sJZiCGA9JpRCaV4a52pbpzH8fH3ZGECA82pZWxdE4UgiB0b+5VtFZ3B6SuTfTy1qrOgOSHyWqmRlffK40T5hrE5iO7uHJuAPtfq+PrdbncfoX9hhndefPIrSvsEZDivOyWArliB5FyJYaSw8THjWLjkZ3kNRzp9qSJ9ghHJVPi6tuES7Yv7y0/xAt/nHxOyQaJokhuSRNb9peTeri6u8TVzUVJbIgb8yaEEOanIdjXGTcXJSty5Xx28EcWTPdDOwRl8gAXXxykCo40lzGNgfegcuoKCHML7rOCTC6TEOqnIdRPw0XjQ8irO8KTm1YhN/iQsceXx0t38bcbx3brCw6GRn0zX2YsZ2txKiq5kiUjFzI3IIW61+/EsZ/NbKPZyu5D1YyJ8+43Zdesb+G5ra9T0VrNgxNv69P6oqnVwOaiVCQhepYkLBzws5FbXwhAnGfUgL9PWU0badk1XDM3GplUQnZdIWarmQSf3uZ9FzKiyYCgHvgz3GXb0dI+uH3CM0lho73qsy/Nwv4YDkinGW8njx6FBTNGB/Dq1wfIL2smKsi1R0DqKq8O6DRFK2upIsU/sds8r6S5vFdA6vrjdkjqmTM2iNW7S7hyZiQeWhW+zt5olC4crs3rUXbs5+yNl6M76VWHiQ+KRX8kg6RZ1yGXyNhRurc7IMmlciYGpbCtJJVFs8bw0U+FZBTUkxg5uA3JM4nRbGVdagkrthVRWa9DIZOQFO3FVbOiSIz0wNfdsc+bY1cpcnVb3ZACkkQiwcvRvVf5/fGYLCYKmkpYEDXzhNc0WUy8ufdjtEoXXrz0QfbENPHm9wd55M3tvHzf1BNam9tsNn7N38RXh1ZgtVlZGDOby2MvwknhiM2gow4QbX2rVKxPLUGnN3PRuL5vDmUtlbyw9Q1aje38ZcqdJPr0na79Yk0OeBfh6+hDcj9NsF2UtlTi7OB0Qs2+7zbmo5BLuXhiKAAlndWNg1WQuFCwmY1ITpD6lMukyKQCeuPZd449UJWFXCIbkqvv8Hr4NOPp6N7dUwR2gVSpRGBnhn2/pqtooaLtaPGBWq7CXe1KWWchQ6CLL4IgUNrSu+w4RBuATCIjr76Iq2dFYRNFlm+1z0QFQSDeO4aMmuwe8jmCIDAuIMn+eHAc5sZK5O0tjAtIYmtxKh2mo30LC6NnYbFZaVBmoHFS8Mv2otP7Bg0RURTZsLeU255bx/9+zMTZUcF9S5L49Ol5PHbLOOZPCMHPw6nfmbrebJ8pnswejVLmgMk6cIl0Vl0BVpuVEV4DrwLArjhQ2VbDnWOvx0XpzOyxQTx681hKqtv4bkNv2Z9jqW6v44mN/+LjA98R5xnBK/Of4LrEK7oLFrrK2/t6H3R6M1+tzyMu1I0RYb2tQ3aX7ePR9S9htll4auaD/Qaj/LIm1mWnIVG1c8WIi064cq7T1Z+wuqq4qpVN6WVcPDGkO/Vcq2tAIZXjOoD314WIaDIgnCBlB6BykJ31gGSz2dhTvp8RXlFDEsIdDkinGS9HD5oNrd0KCU5qBfERHuw+dLRIwc/Zu1elXaCLb3eRgUKmwM/Ju88+GLlUTphrEHn1RXi5qZmU4Me6PaUYTPYPYLLvCFqN7RQ0FPc4b2rIOKw2K+lK+02kIz+NS6Jno7cYWJW/8ejYXHy4KGIaG4q2kzhKQlp2DW0dg+9bOZ3o9Gae/SCV/3y1Hy83Nf+4axIv3zuV2WODBtz/6UIURTYf2YmTwpGgfpo2B6LVpDuhh0taxUEUUvkJ01LFTeWsyF3PjNCJPeR6Rsd4M26ED+v2lPbbM7W7bB9/WfM85a1V3DPuZv465Y94H3ejFztL+IU+7Ek+/OUwre1G/nDZyJ4mmWYD7+z9nH/vfJdAjR8vzPlbv+kVo9nKK1/uR+lfjouDM5P6cRU+lmZ964BBRRRF3v0pEyeVnKtnH33/Wg1taBycz6lU8bmAbRBFDXBuBKQD1VnUdTSesPfseIYD0mnGs9MzqKHjqJrCmDhvKup0VHdWOfk6e1PVWfjQRYDGj4q2GmydKZdgrT8lTb318ABiPMMpbCrFZDExf0IIOr2Z3Zn2gJfkOxKpRMru8v09zgnWBhDlHsa6in1IPAPR5ewmzC2Isf6jWJ6zjvpj9PWuib8UX2cvsmzrsMraST3Uu5T8TNNhMPPImzvYl1PLbZeP5KW7pzAy3GPQ59tEG58e+J4D1VlcGTd/yH5DTfoWatrr+nTQ7cJoMbGjLI0Uv4R+farAPlt8J+1znBRqrk+8otfzsSFuNLYaet1EbKKNrzNX8O+d7xLg4sPLFz3GlJCxfbsRG+yipBJlz4KF7QcrWLO7hEXTI3oUqByszuJPa/7OhqIdXBozl6dnPNhvak0URf73QwblTTXYnGqZHT55UO9n+wCGkgCb0svIKKjn+vmxOB/j39NhMaD+nZnvnSqiKCKajINaIUkkdrfks4VNtPH94ZW4qbSMGaDopS+GA9Jpxr3zS32sgOqozj2YjAJ7Ks/byYM2Y3sP5e4AF1/MVnN3ui/ENZC6jkba+xBTjfWMxGKzkN9YzIgwdzw0SrYfPJoSTPSOZVdpei/V60tj5lCjqycrOAxDWTaW1nq7JIso8vaez7qPV8qV/HnKnUgkoIpLY2t2zml6dwbPf77aT0l1K4/dMo5Lp4T3cnMdiIKGYh5f/09+ydvAvIjpzD/GRXewrM7fDMC4fqwUADYUbbc3QUcObFHxS94GChqLuSnp6j4bSHUGMxIBFPKj1XYWq4XXd3/E91mrmBE6kadn/mlAgzNLu30CJHXUdj9WVNHCq1/tJzrYlWvn2Vdlte31/GvHOzy35TVkgpSnZj7AdYmLBgwwK3ccYd2eUkaMbUciCMwZoO/oWI7VYzye+mY97/x0iNgQNy4aH9LjOZPFhIP03DGYOyewmADxhHtIYO83G0yv2Zlie8le8huLWRp/6ZDV7YcD0mmmS9G7SX9UBy3Q2xknlZzcEvtNw7PzxnLshrl/pxpuRZs9lRfcWdhQ2kfaLsYjHEEQOFybZ7f4HunL/rw6TGa7JNDUkHE06Js4VJPb47wU/wTCXINYYajEJED7oW14OXlwY9JiMmqy+ebQL93H+jl78/j0+5DJIUe+gu3FveWKzhQ5xY3syqxi2UUxpMQOTsbIYDawtTiVJzf+i0fWv0htRyN3j7uJm5OvHnJj5ZGmMn7JXc/EoJR+Nd9aDW18f3gVI7yiiPHobcbYhb00+2dS/BP7THOJokhadg2Rga7dTc4Gi5EXt7/J9tK9LI2/lDvGXHfCFYml2b7ilmk6pacadDz93m6c1Ar+duMYDNYOPjnwPff/+jT7qw5x9ciF/HPeY8R6Rg543V2Zlbz7UyYpI9ypFrMZGzBqQLXuY3+v/gKS1Sby7y/2YbXauP+apF6TDZPVhPwkHHR/z3SnZAchJWW1ikjOUrqzur2O9/d9RaRbCFNDxg35/OGAdJrp8kVqMR4NSIIgEBGgpaiiGQBPtX1juf6YtN6xKg9Ad6qopI+A5KhQE6YN4lCNfeWSFO2FyWztDnhj/BNxVjiytmBrj/MkgoQbkxbTYGhhY3AQbQc3Ioois8ImMzN0Ij9k/cqqvKP7SSGugdwQeRs2vSP/TX2ff25/u5fG3plgZ2YVMqmEhVMGttSu1TWwvnAbL2x7k1uX/5nXUz+iUd/CdYlX8OrFTzE1ZNyQ9yFKmyt4fuvrODs4cXPSVX0eYxNtvLX3UzosBm5JXtLva3SY9byy8z0cFWpuT1nW53F7s2s4UtnKnHH2HjCdqYPnNv+XjJoc7hhzPVfEzR/U72CqK0OQOyDTeFDb1MFjb+/EZLby15uS2Fy+ibtXPs7KvA1MDhrDqxc/zeIRF5+w0GNfTi0vfZpOVJArCWN16Mx6LjlGz24gjFYToij2qcX3+epsMgvruX1RAn4evZUwjFYTiuEVUg9spk7TTsWJU3YWq62HgstvRYdZz793vIMEgfsm/uGkFDYGNQ1ZtGgRy5Yt45JLLkGlOvGS8UJGLVchFSS0HmOyBxDk68zqXSXYbGJ3rv7YfSZnhSOOclV3U62rUoOTwpHS49QUuoj3iWFFzjo6zHriQu0rrqziBuIj7DIds8InszxnLdXtdT0qnWI9I5kTPoX1hdsI1zfhUXoYVfBI/pCyjHZzBx/t/5YmfQvXxF+GRCJh2ohI3vlmAuGjG8moPsD9q55iQmAyF0VMI7pzpXa6aWjR46FVonI4+vG02KyUt1SR33CE7PoCcuoKuve9PB3dmR02mXEBo4jxjDipL4JNtLH5yC4+3P8tarmSx6bf2z25OBZRFPki4yfSKzO5KemqfhWurTYr/9n5nr06bvr9fV6rpd3IW99nEOjtxMyUIJoNrTy35TXKW6t4YMIfhmSfYawqQOEVQlVDB4+/vZN2g4F5lwi8lP6SvTnVP5GlIxd2txSciLTsGp7/aA9B3s48eEM8j216jnjvmD4bZfui1WBXndc49FSL2La/gm835HPR+GBmjw3q81y92dA9QRvGTvcK6QRFDVabSHuHaUh9bacDg8XIP7a+QVlLJX+ecidejr2rOQfDoALS448/ztdff82rr77K3Llzueaaa4iMHHipf6EiCAKOCjXtx9iSA/h7OmEyW2lqM+DqrEFA6KElJwgC3k6e3cKrgiAQpPHrs/QbYJRPHD9lr+FQTS5jA0bh7+lIfunR682PnMHK3A38mLWaO8de3+Pc60ddSXZdPl/YRHz2LicxeCQyiZQHJvyBD/Z9zfKcteQ1HOGusdfj7eTJ6Bhfsg858O+HL2N1wSbWF25nR2kaHmo3UvwTSPCOIco9rJdUzckgiiJqZyuN1gp+ydlIZVsVR5rLKG2uwNxp365RuhDrEcGlMXMY4RVFQGeZ/Mlgs9k4UH2Ybw+tpLCphJFe0fxx3I19pqVsoo3PD/7Iitz1zI2YyvzIvvembDYbb+z5hAPVWfxfyrXdjcnHYjRb+cfHe2lpN/LITZNpMjTy9y3/pVHfzF8m38Uo38HLNtlMeoyVhYixc3jy9a1YXEpwHlHMryWtxHvHsDT+UiLdQwd9va37y3nly30E+7rw9G0T+Pzw1+jM+iFZQHTthR6775V9pJFXvtpHbIgbty/qX72h1diOywVtxNcbm9mIACcUV23vMGET+U117FqN7by8/W3yGoq4f8Kt/Zo0DoZBBaTk5GSSk5NpbW1lxYoV3HnnnXh5eXH99dczf/78k37x3ytquYoOc09Pki4tu7omPe4aFS5K517OsD5OnhQ2HfVQCtL6s/nIrj4N+aI8wlHLVaRXZjI2YBRh/lpyS44WUriqNMwJn8KvBZtZEDWzx8xYKXPgr1P+yCOrnuG/xhIeL8skJDAeqUTKH0ZfQ5R7GB/s+5oHf7VbIExMTmRXZhXZ+R1cn3QlV41YwO7y/aSW72dj0Y7uAgB3lSsBGh+8HT1xU2vRODjjqFCjkCq6Nzdtog2T1YzBYkRn6qDN1E6zvpUGfTP1ugZqdQ0YrSakUfDJwVQcFWpCtYFcFDmdMNcgItyC8XbyPKWVmdVmpaiplL0VB9lRspe6jkY81G7cNfYGpoaM63OF1W7S8WbqJ6RVZnBRxDRuTr66zzFYrBZe3/MxO0vTuCb+sj6tKDoMZp7/aA9ZRxp46NrRSBxbeXTDm1hsFp6Yfv+gVyHd1yvcj2iz8O/cZszhuYiKdnycw3gg4dZB9Ud1IXb2tH2w4jBxoe48dss4dpTvZHPxLq6Imz9gxeHxFDeXA/Z2BoDS6lae/WA3nloVj948Frms783uDpOeDrMej0HsU11IiF0B6QQrpC4vpC5NuzNNZWs1/+j077pv/K1MCBx9Stcb9M5ha2sry5cv57vvvsPZ2Zn58+ezfPlyNm3axEsvvXRKg/i9oZIpMZh7akl1SXo0ttofd1W60HycAZyXkwe7y/d3C68Ga/wxWIzU6hp6NRjKJFKSfEeQVpmBzWYj1M+FbQcq0OnNOHZaR1w54mK2lKTywb6veWLG/T1utF5OHjw26Q6e2fwqT+38H/dPtc/KBUFgWuh44r1j+CLjJ37OWYdcuglNrD+fbTMyIf4KlHIl00MnMD10AiarmYKGYgoaiylpLqeitZqCxhJ0x60Q+0NAwNnBETeVFm8nT+K9Y/B28mT99kZKim389dZZRAf3X102EFablWZDK3W6Bqrb6yhvraKosZSCxmIMFiMSQUKCdwzXJi5irP+oPgsHRFEkrTKD99K/pNXQxs1JVzMvcnqfwajdqONfO9/hcG0e1yYs4rLYub2OqarX8fxHeyitaeP+pcnIPWp4cuPHaByceXLG/T0knwaDzSayeevPbPJzo05diI+jF9cnXUeKX8KQgrbFauPtHzJYs7uESQl+PLAsmW2lO/lg/9ck+8UP6HfUF5k1uXg7eaJVaaiq1/H4/3Yhk0p4+v8mDDh7L2u1p6jPZ0+uM4HY2eB9oqKGslr7VkGA55lfYe4sTeN/aZ8jl8h4csYDQ55I9cWgAtKf/vQntm7dyvTp03nqqadISkoC4JprrmHixKE1Pl0IOMgUGI/r8O/qQm/pdNrUKF16OZL6OHlhE23UdzTi7eTZ7c5Z3FTWZ8f7uIAkdpSmcag2lxBf+4yyuKq1uxvf2cGJ6xOv4O29n7EqbyOXRM/ucX6IfxwPu8TyVvNhnt/6GvMiprM04VLUchVuai13j7+Jy+MuYmXuRrbYUml2LubWH/cwPjiBkV7RRLmH4u3kSZxXZK+0lMliotXYjs7cgdFiwipaERAQBAG5RI5S7oCTXI2jQt2ten4s430MPPzaNp58Zxd/vXEMo6K8MFnNtBrbaDPqaDO202psp91k/3ebUUebyf7/FmMbLYZWWoxtPZpNZRIZQRo/poWMJ9YzgnjvGJwHSA0VNpbwRcZPZNbkEKjx4y+T7+xXzqagoZhXdr5Lk6GVu8fd1KvCyK44Uca7yzORSgQeu3UMucZd/LxzHdHuYTw0+fY+95kGorShhhdWvUe9tgWlzYGbR13F3MjJfb6fA9HcZuTFT/dyqLCBxTMjWTw7lI8PfMX6ou0k+Y7ggQl/GJLIaauhjYyabOZHTKemsYNH396B2WLjH3dNGlDYFSC/4QgwLBt0PDazESknLmoor2lDIoCf55kzNDRYjHy8/zs2FG0nyj2M+ybc0u10faoMKiBFRkby6KOP4ubWc6Yqk8n48ssvT8tAfk8opAr0lp4rJKfOxr/2jq6A5NzL86gr6FS11eHt5Emgxg+pIKGoqbTPDe5k35Go5Sq2FO9mWexSAAormnvIw8wInci+ykN8fvBHQrSBjPSO7nGNiMlLuet/97IxOoY1BVvYUZbGZTFzmR02GbVCRYCLL7ePuZbrE6/g8S9/oqQjn93CfjYf2QXYV4MBLj74Onvj6eiOm0qLRumMk8IRtVyFUqawBx1BigDYELHZbJhtFpoMLVS116I3G+kw69GZOtCZO7oDTOD4ZnIranhu1wZk+y1YMff7njvKVTg5OOGicMRD7Uq4axBalQY3lRYvR3e8nDzwdvQ44c3aarOyv+oQq/I2cag2FyeFIzclXcXciGl99lRYrBZ+zF7N91m/4qbS8szMPxHhHtLjmNLqVv73YyYZBfWMCHPnhstD+CL7M/IaipgbPpUbkxYPyZTPYDbw3u7lbC3fikRmY3qTnmuveg6N++Bl/rvIKWnkhY/30tZh5v5rEhHcKnlwzdM061u5LGYuS+MvHXKAW12wGavNyki3JP725nb0Bgt/v2Miwb4nDrgHqrLwd/bpbp8Yxs7Rsu+Bi8ryy5sJ8HbuNyV6quyrPMT76V9S39HE5bEXcfXIhUPuNRqIQQWktLQ07rjjjh6PXX311XzzzTeEhw9eOO9CQS6V0WrsefNUyCTIpAI6vf1xrVJDi8E+g+9KrXQJqVa11TDKNw6FVE6Q1p/CxuI+X0chUzApKIXNxbu5cdRiXJ0dyC9r7nGMIAjcNfYGHtvwT17a/haPTbu3x9Ja7uqDe8Is5h3cyOxlf+GbI9v57OAPfHd4JRODUpgclEKMZyRqhYqnrrqSP726ldYKI/dcF4ZZ0ciRpjLKW6s4XJdHY2nzSVmG937/5LgonHBxcCI6wJO6OiuV1WaUUjVjo4MYGxWEm9oFJwdHnBWOOCkch3zTPBaL1UJOfSF7Kw6ysyydFkMrrioN1yYsYk7ElB7mdMeSVZvHe+lfUd5axeTgsdyavKSHMkFVvY6v1+eyKa0MlVLO7YviUfpW8sLulxEEgfsm3MKkoDGDHqfVZmVj4S4+2f8jRrEDrc6d2xtyCR17+ZCDkSiK/LytiI9+OYyrG1w818Z3le/QUNhEhFsIf5r4fyeVgqnTNbAiZz0JnvG8+lE+ZovI3++YSHiA9oTnthraOFyb22slPwzYTPaU3UB7SFabSG5xI1OSBr/XN1ia9S18uP9bdpWlE+Diy9MzHyTGs//+u5NlwIB07733cuTIEcrKyli4cGH34xaLZdinZADkEnl3RVgXgiCgcpDT0SkPo1W6YLFZaDfputNGWqULarmqh+trpFso20r29OmNBHBRxDTWFW5jbeE24kI9OVTY0CPIAagVKh6bdi9Pbvo3z25+lXvG38zYYxQIXKdcRXvmZjT7NvPYogcpbCxhdf5mdpSmsbFoB2q5ihFeUcR6RnDj1T6893UJr31SyAPXjObW0ZO6r2OxWe2pMkMb7SYdBosRg8WI2WrGeoxqhEwiRS6RI5fKUMocUMmVqOUqHDtTeH3J8GQdaeCjX7LYsLqR9B21zJ+gZs5YLRrl0NoQRFGkQd9EaXMlR5pKya0vJLu+EKPFiFwiI8lvJNNCxpPkO7LfmV9FazVfZi5nT/kBPNVu/GXKXYzu9Pyx2UQyC+tZueMIuw9VIZdKWDglnGnjtXyV/T2ZaTmM8IrirrE3DDrNIYoi+6oO8WH699R21GBr1zBGOYcl7auQanzRTl48pPegpd3Iy99sI7P+MK6jmtBJa1lTIjLCK4o/pFxDsu/IkyoasdisvJ76MaIIWTu8kYrwjz9OIthncKnIjUd2YhVtTAkeO+TX/r1zdA+p/3Lu0upWdAYLsSEnt+faFzbRxsaiHXx+8EdMVjNLRi7kspi5Q5biGiwDXvXPf/4zFRUVPP744zz++OPdj0ul0uGy7wGQS2WYrb3TS04qOR16e0A6KjHU3B2QBEEgwMW3RyovxjOctYVbKW4u6zOvHqT1J9kvnpV5G7gs4jZ2ZFRSWtPW6ybgptby7KyHeGnbW7y843/MjZjKsoTLUctVyJzd0Iy/jObt32JImU94YCx/HHcjt45eSkZ1NvuqDnG4Jpe9FQftFwsHqVXFy7t34ZflybioULyd3bpTdY4KFT5OnihlDsilcuQSGVKJtNdNThRFRFHEIlqx2uz/6c162oztWGwWLDZr9/+lzlZuXOJNXqmCnZkVfJ26nW/2bCfQx4m4EFfCAjQ4OUqx2uxVfCarCb3ZQIdZT5tRR5OhhcaOpu4qvi4CXHyZFjKOBO9YErxjUA6waVzeWsVPWWvYVroHhVTBkpELuSR6NgqpnMLyZnZkVLJlXzm1TXqc1XIWz4xkznh/tlVu5amta5FJZPxh9FJmh08ZdK9UVm0enx9cTn5jEaJBjUPDGO6ZMhG/fW9hMenxuuaxE5q2gb1p8XBtHpty9pNeeQjRUYfCEVxdfLk48GKmBI/F5xQs1G2ijXfTviC7Lh9KRuEsOPPsHyfiN8jNdYPFyMrcDcR7xwy6V+pCQrQYEWQKhAEyAXuz7CoviZGD13wciPKWKt5J+5yc+kJGeEVxW8qyM15sMmBACggIICAggDVr1gwr7w4BB6kCYx8ByVEtp11vvxm6q+xFCI36JkJcjy6xg7T+7CpN617ljPSy7/lk1OT0u9G7dOSl/GXt81RJ9yERHNmyr7xP+3Gt0oWnZj7IlxnLWZW3kdSy/SyKm8essMloJy6iLWMT9avfxf/WfyJIpChlDowNGNW9mmrWt1DUVEpxczllLVUcLi+j2lDMz7m5MIiPhyAICJ0Hiognn95Tg0PnVlgNUNMImxr7PrQr/adROuPt7EWCTxy+zl4EuPgSog04obW2TbRxqCaXVfmb2FeZiUIqZ0HkTCZ4T6G8ysTb3x1mf14tDS0GJAKMivLi+vmxjIv3YW/lPp7Z/iIN+iYmBaVww6jFuKoGZ6mQU1fIt4d+IbM2B8xKTOVxzAqfxHVTHWlb+R8sumZ8lj6Gg3dIn+dbbVbyG4rJqMkiozqHgsZibKIN0SpBYfHiougZzI0dc0pB6NjXejf9SzYd2Ym1MgJvInn2ngm4awa/el2evZYWYxtLRi488cEXIKLJeMKm2D1Z1UQGaof0vveFyWrmx6zV/JSzBpVMyV1jb2BayPjfJAYMGJCuueYavvzyS5KTk3sMputmuW/fvjM+wPMRpcyhV9k3gIujorvKritdU3ucAVyYaxDrC7dR3V6Hr7MXWpWGMNcg9lYc5PLYi/p8vRDXAOZGTGVtwVaiR8xlXWopS+dE9xDr7EIhlXNj0mImB4/hkwPf89H+b/nu8CqmBo8leeIlqFd/RMuelWjHX9rrXK1KQ7IqnuRjLKmPVLbw7vIMMksq0Whg/Cg34iI0CFILRqsJk9XUudKx2m+Ix/j2SAQBiSBBKkiRSqTIuv+TIZPIkEokR/8tSJFKJJ3H2/8vdJ5f26gnt7iZ3JImCsta0RsAmwS1QkmAj5ZAb2f8XZzwclbjrlWidXLAxVGBSt7/x7+ypY5NhbvZXpZKg6EBB4maUEkK1IXw6wEj3+p3A/ZVb2KkJymx3qTEeqNxUrC/6hBPbPqEkuZywlyDuG/CLYPKt4uiyKHaXH7I+tWuU2h1wFwRTbA8njuujMarYitNXy1H6qjB97qnUfr37DFqNrSyv/IQ+6oOkVmTQ4dZb3cpdvTHoTmK5kpn5o4cxa2LE05oBjhYWg1t/Hf3h2TUZGOpDCNUksJTd0/ood59IkqbK/gpZw2Tg8acltLh3yM2i2nAptj6Zj15pU0su+jUXHYP1+bxTtrnVLXVMjV4HDeMuvK0NLwPlgE/la+++ioAv/zyy0CHDXMcaoUaY+eN+Nh9CFdnB0qq7KXeWqULSplDt3ZdFzGd7orZdfndRQ7jA5P5IuMnatrrevngdHFtwuUcrM6iXraDZmMKq3Ye4fJp/d8Ew92CeXrmg+TUFbAqfxNrC7exymbBOcKHiMPLGaUWiA5IIFDjN2AFWKifhufumExGQT3fb8xnzfo6NmwyMDHBl9ljIkiI9EB6hnW1wt1gQuevarXaOFLVSkFZM0UVLZRUt7Izo6pPTyeJAA4KGXKZxC7ZL2vH4liNzaUSwcku62RtdcVal4C+0QejQkGQj5xJie5EBGiJDnYlyMcFqURAFEUya3L4JvUX8hqK8Hb04L4JtzAhcPQJ03M20UZaRQbLs9eQ31iM1KbCVBaDxhjBH6d4EWvJpv3nj2k26HAaORX3OTcjVbsgiiIVbdXsLT9IWsVB8juLX9xUWsYHJjPCM4acTIFfNlfg5uzAk9ckkRx96iuiLtIqMng37QtaDO2YikaS4JbEIzeNRekw+GBnMBt4ddf73dWMw/SNzWwYcIW0fm8pogjTk0+uoEFn6uDTgz+wsWgH3o4ePDbt3h6+Xb8VA35yDhw4MODJ/v7Dud6+cO508WwztvdI0XhoVTS1GjBbbMhlEgJcfHtJA/m7+OCq1HCgOouZYfaCgcnBY/gyczkbi3ZyTcJlfb6mUq7koUm38/iGl9EmHOCLDTImxvvh5Tawr0yMZwQxnhHoTB2kV2ayr3QfGeUH2J+9CrJXIREkeDt54OvkhZejBx6ObriptLiqNGgcnHF2sFe5JUZ6khjpSUlVK6t3F7MpvZyt+yvQOjkwMcGXiQl+jAhzP+Oij1KphIgALRHHVXW1d5iobdLT0KKnuc1IW4eZxo4WaozlNFjKaRDLMdIMgLPgRrBqIrGakQTEeuOhVeGpVaF1duhzH2xfZSbfZ/1KfsMR3FWu3DZ6GTPCJp6wHNZkNbO1eDcrctdT1VaLzOqEvDyMOL2SOYFmfExrsOyooFWQ4Bg9Fu3EK1H4hFLUVEpqwUb2lB+gslMdPtwtmCUjFzLaL55gbQCHihp446sDVNTpmDM2iFsuHYmTauiuuX1R3VbLpwd/YG/FQZwl7nRkjmNSVAwPLhuNXDb4v6/NZuP11I8pb6vm0an3/KYz8fMN0WxEoup7r9BmE1mXWsKoSM8T9nn1xd6Kg7yX9iUtxjYujZnLVSMWDOjvdSYZMCB9+umn/T4nCAJz5/buRB8GtCp7QUFzZ/lwF77ujthEuzVAoLczoa6BbC/d20MaSBAEkv3i2VG6F5PVjEIqt2vG+SWwrnAbi2Iv6nfjPUjrz8OT7+CFrW9CxE6e/ULOv25f0Gfq7ngcFWqmhoxjasg4Wg9sIHfN27SkzKbBy4/y1iqq22rJrivo1V/VxbGVcioXJfGzHejogMZmMxsqD7K2RIJCqiDQU0u4rzuR/h64OTmilDngIHOwV9vJlJ0/K06pjPt4DBYjjaZ66sRaysUqSiwVFOlKutOlCqmcWM8IRvnMZrRf/KD2VSw2K7vL0lmes46S5nI81W7cNnoZ00PH91hRilYzNkMHVoMOm7EDm0FHS3s9G6sPsbG5kDbRjIdBYF6DhfEdJSiFIpCBUKdAHhSLJnku6piJHDE1s6ZsH6lp71PX0YhEkDDCK5L5kTMY45/YLdjb0m7kv18fYP3eUrzd1Dx7+wRGRZ2eVVFNex3Ls9ey6chOZFI5kbLxZOxyYe7YUO5anDgkDx5RFHl/31fsqTjATUlXnZXZ+PmEaDYh0Wj7fO5gfh21TXpuWjBiSNdsMbTywb5v2FWWTrA2gL9M6b/x+7fipAPSMP3joT7qdxTaqbYAdFe+lVS3EujtTLRHOOsKt1HaXNGtygAwITCZDUXbSavIYGKQXRtqUew89la8yC95G1g8YkG/rz3SO5onZtzH85vfpFq2loe/aOTFa65FqRj87Ng5cSaBBem479nIlJuexyHevtEsiiJ6s4FGfTPNhhZajG20GtppM+nQmTroMNt1yPRmA+0mHXoM2JwMODrYy79FREqB0lrYVDvwGORSOapjgpRS3hmspAoUUjlyqRyZRNodyLuq9UxWMwazAZ25g1ZjO82G1l4yRt6OHoS6BjE3YirRHuGEuQYNujG1w6xnY9FOVuVtpL6jEV+llpu9kkgRVYhZ+6nfswmrrgWrvg2bob27XBegXi5lm1ZFurMKi0QgWmdkTKMZb7MaR3dfPEZOROkZiIN3CHKvIIpaKllXmsauLS/T0NGETCIjwTuGxSMWMMY/sYfZn9VqY01qCZ+uykZvtHDljAiWzo0+5b0iURTJqS/g1/zNpJbvRypImR0+BUNZKKu3VXPJpFBuuzx+SAaKNpuN9/d9xbrCbVwWM5eLo2ae0hgvBESzsV/ZoLWpJTir5YyP79u7qy8OVB3mjdSP0Zn1LI2/lEtj5p7WBteTZcBP63PPPcejjz7aqym2i7fffvuMDOp856jiQs+7brCvMzKphNySJiYn+nerJhyozuoRkEZ6ReOhdmNd4dbugBThHsL4gGR+yl7DlOCx/e4lAUR5hPHvBY/x9Jq3qTKmctu3+dw+4SomhSYOqlJGEAQ8F9xJ+XsPUfPjvwm45SUkSkcEQUCtUNkVHDRD01wTRRGzzUKHyUBeeR0ZRdVkldRRXNOIFQsSmRUvdzleHg64aWU4O0uwCRYMZgMGixGj1UiHqYNGSxMmqxmzzYLFZum2ahYEAZkgRSGVo5QrcZSr8HfxYaRXNO5qVzwd3fBx8sLf2XvA0u7+qGyqYNXB5WytzcIgWgk1WLm4sY2Yjlok5NEmkSJzckXq5IrMxR2FTyhSlTMSpSNFNgPLGwrIMdYgiAKyBk/UjaH4xMQTOyesh7V4aXMF20v3smPfR9TpGpBKpIzyieOa+MsY7RffpyX4gbxa3lt+iJLqNhIiPLh9UTxBg+z96Y9mQyvbS/awqWgnZa1VOMpVLIyezcVRM1m1uYqftuWxcEoYt102tJ4lo8XEG6kfs7t8H5fFzGVZwuWnNM4LBZvF2GdTbEu7kd2Hqrh4Uuig1BksVgufZ/zEyrwNBGr8eHz6fedUmf2AAWnChAkAXHRR39Vdw/SNo0KNm0pLyXH7Q3KZlJgQVzLy7dL8biqtvYKu/ECPCjqJRML8yBl8evB78uqLuiuPbkxazMGaLF5P/ZgnZzww4IzGTaXlP5f9hXe3rGFd6Rr+u/d/fJnpxYLYaUwMSkF7At00qcoZ78sfoPLTx6ld8Treix9GOAmfoS4EQUAhlaNQyRkb6czYSPvvZDBZyC1uIrOwnszCeg7tbsZitTfR+rq7ER3iSlyQK5GhWkL9NINKP54urGYje/b9zNriXWSJHQhAQruJGTJXIr2jUYwMRu4RgNzVB6mTtkePSE2jjuUZqWwv20q7pAbRIkesi2CkJplZk6MYE+fdvXpp0rewvWQvW4p3U9pSgUSQEO8dw1WdK6G+ghBAYXkzn6zKZl9uLV5uav56wxgmJpy8FYfO1GFXQC9NI7MmB5toI9IthDvGXMfEoBSUMgdWbi/i6/V5zB0XPORgVK9r5F873qGoqZQbRl05rMgwBPor+96UXobFKjJ37IlTbS2GVv69812y6wqYFzGd6xIXoThLe0X9MWBAmjnTvpRetGgRTU1NHDhwAJlMRmJiIi4upzYD+70T7hZMQadQ5LGMjvHm45VZ1DZ14OWq7q6gq2qr7a6qA5gTPpmfc9by2cEfeHrmnxAEAXe1K/+XsoxXd33AR/u+4dbRSwe8IQiCwP9Nn8eM8jH8Y/mP1Kjy+Wj/t3y8/zsi3EOI944hxiOCcLegPkVGlYExuM++kYZ1H9K8/Xtcp5z+KiilQkZilCeJUfYVn8lsJb+smZziRnJKGjmYV8fmdLuVgVQiEOjtTJi/hlA/DSG+zgT5uODaR7HBqdDUVMnqnZ+xpbmQRpkEJ6vIfLUfc6Jm4BuRguS43iWj2UpReSv5pU1klzaQUXuIDk02EnUbWFWEMIGLR0xlbIw/aqU9NWi1WUmrOMj6oh3srzqEKIpEuoVwS/ISJgQmDyi0WlzVyldrc9mRUYmTSs6tl47g4omhJxWsW43tpFVkkFq+n4yabKw2K56O7lwaM4epweN6rIT35dTyzk+ZjBvhw11XDk1NfF/lId7Y8zEWm4WHJ99Oin/ikMd6IWMv++5Z1CCKImtTS4gOdj2hTmBpcwX/2PYGbcZ27h1/C5ODBy9Z9VsyqATz5s2b+ctf/kJkZCQ2m43S0lJeeeUVxow5N3+pc4FYzwj2VhykoaOph9nbpAQ/Pl6ZxZZ95Vw1K4ppIeP5OvNn1hRs6VH2qpQrWRJ/Ke+kfc7mI7uYEWZXVZ8UNIYjTWX8nLMOR4WapfGXnvDGEBngzv9uv4UfNxfw3c50TE6VVNhaKGhYg8ivwFEvIx8nL7ydPPBQ26vptHHjcajMp2nrVyg8A3GMGX8G3q2jKORSRoS5dwvEiqJIfbOBgvIm8suaKaxoYX9uLRvTyrrPcVTJCfB0wtfTET93R7zd1Xi6qvHQqHDTKHEYxI3aJtrIrDzM6vTvONBRg1UQCJepuDpsElOSLkMQZDS2Gsgu76C6oY6qeh3lte2UVLdSWa/DZrMhdavGIbAQ0bcdrdSNeeFXc1nCFOTHyKy0GtpYX7SdtQVbadQ3o1W6cFnMXKaHjMfPZeA9gLzSJr7dkMfuQ9WoHGQsmRPF5dMihlw9V9tez96Kg+ypOEhOfQGiKOKpdmN+5AwmBCYT4RbS6zNV16Tn5c/TCPJx4U/Xjh50Kb/RYuKLjJ/4NX8TQRp/Hpx027C1xMlg7r1CyiluoqymnXuuHjXgqXn1Rfxj6+s4yBx4ZuZDhLn17dR7LjCogPTqq6/y2WefdcsFHT58mMcff5wffvjhjA7ufKZLYSGzJofpoRO6H/f1cGREmDtrU0u4YkYkrioNE4NS2FC0gyvi5vdwypwZNpFtJXv4aP+3xHhGdK+gliVcjs6k58fs1bSZdNySvOSEG5JymYSrZ0dx0fhglm8tZNXOYjqMejz8jASF2VA6d9BibCCvIRV9H0296nBvHPd+gPuRDbhpvNEqXdCqNLgqNbirtbir3XBXu6IYgmr1YBAEAU9XFZ6uKibEH7ULb24zUlLdSml1G2W1bVTWtXO4qIEt+8o5XgBCrZShcXTASS3HUSVH5SBDqZCikEsxCW3UkE+N5RAdgh6V1Ua8XgXWcbSYAviuxMT7KzbQ1mHqcV2JAN7ujgR6OxEea6TIlkq9sRZ/F18Wj1jK+ICkHtqDNe11rMhZz6biXZitZhK8Y7kleQnJfvED/u0sVhu7D1Xx89YisosbcVTJWTInisumhg+6+VQURY40lZFWeZC95Qe7U8mBLr5cETufsQGjCNEG9DuxEUWR177Zj9li4283julhLT8QOXUFvLX3U6raapkXOZ3rEq847Z+PCwex1wpp3Z4SVA5Spozqfw8op66Q57a+hlbpwuPT7ztpa/HfikF9sgRB6KFdN2LEiNOi6vx7Jkjrj5tKy96Kgz0CEsDCyWG88MledmZUMmWUP4vi5rG9dC8/Zq3mxqSjQpkSQcI9427iL2uf5+Xtb/PMrIdwVKiRCBJuS7kGZwdHfspeQ1lLJfeMuwkvpxNrWGmcHLjh4jiunhXFjoxKNqaVcWBbPTbRGXdNMImRHkSFOOHpBTKlkRZjG036Fhrb6qjJ201rXSmF5g5azHbx1ONxU2nxcfLEz8WHABcfgjR+BGkDTrsltdbZAa2zvffpWMwWK3XNemobO6hvNtDUZqCpzUhLu5H2DjM6vZm61jY6HEoxOZVic6wHEcL1JuJaRIraJlAiC0XpIMNJJSHAy5mRYQ5onR1w1yjxdFXj7abGy1VNaWsZnxz4jj11Bfg4eXJv0i1MDBzdIxDV6Rr49vBKthTvRipImRoyjkuiZp2wKKSmsYN1e0pYl1pKY6sBbzc1t102ktljg7rTfgNhsVrIqssnrTKje6UuCALR7mHcMOpKUvwT+/TY6ovdh6rYn1fH/10ePyhtug6zni8yfmJdwTY8HN14fPp9xHufmoLAMD3N+QxGC9sPVjA50b/fCUJ5SxUvbn8TN5WGp2Y8OGjZqrPJgAGpubkZgJEjR/L++++zdOlSJBIJP/zwA+PHn9nUzfmORJAwPiCJtYXbaDO299ijGR/vS6C3E5+vzmFCvC8BLr7MCJ3I6vxNzAid0KPqxcPRjQcm/oHntr7Oi9ve5JGpd6OUK5EIEpYlXE6Qxp9307/gT2v+zlUjLubiyJmDUuJVOsiYNSaIWWOCaG4zsjermvScWtKyatmUZt+zcVTJCffXEOoXRKjvCKaOGoNi3UtI2xrxu/7vWNRONOlbaOhooqGjibqORmra66hqq2VXWXqPcmtPtRsR7qFEuYcS7RFOiGvgGSkzlcuk+Hk44efR88ZpsBg5UHWYHaWZ7KvMxGyz4OPkSYrBkxEF2QREjMNz2V1IHAZuJAb75vB7+z5n05GdaByc+cPoa5gZNqnH76M3G/gxezW/5G5AAOZHzuDSmDkD+vy0683szKhkc3o5mYX1CAIkR3vxx8WJjI71PmGfT4dZz8HqLPZWZLCvMpMOsx65VE6idyxLRi4k2XfkkJtPRVHkq3V5+Hs6cfHEkBMeu7t8Hx/t+5ZmQyvzIqdzTfylJ1XVOExvjlX63plZhd5oZdaYvtNv7UYd/9j6OnKJjEen3nNeBCMAQRxgqRMTE4MgCH2uhgRBIDs7+4wOrj/Ky8uZNWsWGzZsICDg9Ht/nC5Kmyt4aM3fuS7xCi6NmdPjuT2Hq3n2g1RuWTiCRdMjaDW288CvT+OhduW5WX/uFVR2laXz6q4PCHcN4i9T/9hjxVGna+D9fV+zrzITT0d3roybz5TgsUMyfevCZhMpq20jp7iJgvJmCsqbKa1uw2S2AhAkredul3XopM6kBt6Am5cXvu5qvN3sezddBQaiKNJiaKW0pZLi5nIKGospaCimvsOuguogcyDWI5wRXtGM8Ioi1DXwtDbDgn2/5kB1FnsrDrK/6hAmqxmN0oUJgclMDkjGecsP6PP24Dp1CdrJV51wL04URTYf2cUnB77DYDGyIHoWV8TN7+WXtK/yEO+mfUGDvompweNYmnBpd2/a8TS3GdmTVc2uzCoO5NVisYr4eTgyMyWQGSmBeLkOHCCb9C2kV2ayt+IgmTU5WGwWnBWOjPZLYExAIgnesafUdV9S1crdL2/ijkXxLJjcv85cTXsd76d/xYHqLEK1gdyWsqyXUeEwQ6frXvfRFVHEX/dnnEZMAeCxt3dQ09jBO3+b3ad6yD+3v83+6sM8O/Oh8+rvMOBUOicn55QuvmLFCt566y3MZjM33XQT1157bY/ni4qKePLJJ2lpacHT05N///vfaDTnRyQfDEFaf2I8wllbsIUFUTN73HDHxHkzJs6bz1bnMHaED/6eTtyeci0v7/gfnx38gZuSr+5xrQmBo5EKUl7d/QGPrHuBhybd3t275Onozl+n3MWBqiy+ylzO23s/48uM5UwPncC0kPFD6hmSSASCfVwI9nHhIuylpFabSE2DjtKaNipq29lX6sGYis9JLv6EVw/MRicenQErZBI8XdX4ejji46bG290RH/eRJISOw2e0mg5bOzl1hWTV5XG4No/PM34E7M6zMZ4RxHpGEOkeSphrEKohzqxbDW0UNJaQU19AZnUORU2liIi4KjVMD53A+IBk4jwjEQSoXf4qurw9uM+9Bc2Y/huNu2jsaOatvZ9ysDqLGI9w/m/MtQS49HxfzVYznxz4njUFWwhw8eXvEx/uJRZqtdrIL29mf04t6Tm15JU1IYrg5aZm4ZRwJif6ERmoHTA41ukaSC0/QGr5fvLqixAR8XJ0Z17ENMYEJBLlHnbagvuhIruaxZi4vgsuLFYLv+Rt4NvDK5EKEm5KuoqLIqad9snFMCDI7HtITW0GMgrqWTonus/PyeYju0irzODGUYvPq2AEg9xDMplMbNmyBZ1OB4DVaqW0tJQHHnig33Nqamp45ZVX+OGHH1AoFCxdupRx48YREWFXwRRFkTvvvJNHH32UqVOn8vLLL/POO+/w8MMPn4Zf69xhYcwc/rn9bbaV7OmxlyQIAn9cnMjd/9zEy5+l8eLdUxgbMIr5kTNYlb+JQI0fs8In97jW2IBRPDXjAf614x0eXf8S1yRcxsVRM7vVCkb5xpHoE0tmTQ6r8zezInc9y3PWEujiy2j/BEb5xBHlHjZkcy2pRMDP0+mY/YNIOo6EIP/mBV6K3AVzH6LWIKemQUd1Ywc1jR3UNHSQfaQBnaGnUaGrswO+Ho74ekQzwWM02gjokFVTZSglr6GQ/VWH7O8PAl5OHvi7+OCldkercsFJoUYukSMCJqsJnamDJn0LNbp6yluqaNDbBVGlgoQItxCuGrmAJN+RhLoG9hA4bdz0GbrD23Gbce2ggtH+qkO8vvsjTFYztyQvYW7E1F6CqW3Gdv65/W1y6gtZEDWLZQmXIZfKMVusFFa0kFXUSGZhPVlHGugwWBAEiAzUsuyiGMbG+RDq5zJgEDJYjOwqTWdL8W6y6vIBCNL4c9XISxjrn0igxu+M2AM0tRoQBPB07W1pUNRYwlt7PqWkpYKxAaO4JWlJt4TRMKcfobOoIS2rBlGECfG9J5rtJh2fZfxItEf4eamAMag70wMPPEBZWRl1dXXExcVx8OBBxo4d2NVx586djB8/Hq1WC9iba1evXs3dd98N2Cv11Go1U6dOBeCOO+6gtbW113VaW1t7PV5dXd3ruHOV0X7xhLsG882hX5gYlNKjyshdo+L+pUn8/cM9vPV9BvcuGcX1o66ksq2Gd9O/xMnBkXEBST2uF+keyotz/8b/9n7OJwe+Z0dpGrcmL+2eCQmCQIJPLAk+sTTrW9hVto89FQf4OWcdP2WvQS6VE+kWQpRHGGGuQYS5BuHp6D7km5k6NBGfq/9G9bcvIFv9IqOWPYEstndKp73DRFWDjur6DqobdVTV66is17E/t5YNe8uOOdIZd814wrxkOLrrENStGKVNVLXUkV2b36+GnqNCjbejB7GeEYS4BhDhFkK4W0i/aar2nF007/wR56Q5aCYsGvB3FEWRH7NX81XmzwRr/Hmgn5LldpOOZza/SkVrNctiluFiDubDFTnklTZRWN7S3ejr7+nIlFH+jIryJCHCExfHE6fSDGYDq/I3sTJ3A20mHb5OXiyNv5SJgaNPi5fRiVArZYiifX+rq6rParPyU/Yavj28Eo2DMw9PvoMxw31Fp8yJ7nVdVXaph6vxdFUR0kfv0c8562g36rh12pLz0sNuUAEpOzubtWvX8tRTT3HzzTcjiiJPP/30gOfU1tbi6Xm0isfLy4uMjIzun0tLS/Hw8OAvf/kLWVlZREVF9XCl7eLjjz/m9ddfH+zvc84hESRcm3g5z2x+lRU567hyxMU9nh830pelc6L5al0uvh6OXD07ij9NvI2/b3mN/+x8j/sm3Mr4wOQe52iULjw8+Q52lO7l4wPf88j6F5kYOJrFIxf0SCNpVRrmR81gftQMdKYOsuryOVybR05dASty1nXbijvKVQRpA+wVcRp/grR+BGsDUMoGdiJVhSbge83jVH/9PBUfP4rvNY+h8Oy5yeqkVhCpVvSQx+lCb7RQWddOZb2Oyrp2Kjr/O3xAis7gDDgDQUgkAl5uDnh6yvB0dcDLVY2PqzMB7q74urvgrJYP6stnbq6l7pc3cfCLxGPurQOeY7PZeCf9CzYW7WBy0BjuGHMdCpkCURRp6zBT0xlcy2vb2Nj4Ha1CNZb8ZN7f3Qg04qCQEhGg5ZLJocSEuBEX4oary9BSkEWNJbyy631q2utI8h3J5bFzifGI+E1vNNHB9r2vtOwaZowOpNXQxqu73yezJpeJQSn8YfRSnBRDV5gepjcnutcJcgVGs5X9eXXMGRvU63OgM3WwpmAL4wOTe0iRnU8MKiB5eXkhk8kICQkhLy+P+fPno9frBzynv0KILiwWC3v27OGzzz4jPj6e//znP7zwwgu88MILPc658cYbWbSo50y2urq6137UucxI7xjGBybzQ9avTAhM7tUAec3caKobdXz6azZOajkXTwzlkal3849tb/DKzve4Kekq5kfN6HGOIAhMDh5Lsl88P+esZWXuRnaV7SPFP4EFUTOJ9Yzs8X47KtSM8U/snsmarGZKmysobi6jqKmM0uYKthandq9EBAT8XLwJdw0mwj2EGI9wgrT+vVJVysBYfK9/luovn6Xyk8fwXvxnVMEjB/W+qBxkhAdoCT/OKkIURVp1JirrdFTUtVPVoOsOXEVHWtAZepoaKuRS3DVK3DVKXJ2VaJwUuDg64NLZd6RWyVHJJKi2/BuJzYZl8v9R0WhAEIzYbCI2m4jZasNktmIwWekwmFlV9iMFusOEy1KwFCfybEYaDS0G6ps70But3a8t8ypFHlKJn2ECo5JGE+LrQpi/Bn8v5yGpXx9PZVsNT2/+D2q5iqdmPECcV9SJTzoDxIS4EeDlxLcb8ggPk/LPHW/RaGjhjjHXM7OzWXuY08OJ7nWC3IG80iZMZmufvlbbS/aiNxu47LgCqvOJQQUktVrNihUriImJ4ZtvviEsLKy7JLw/vL29SUtL6/65trYWL6+jb6KnpyfBwcHEx9vdRy+55BLuvffeXtdxcXH5XcgU3ZJ0NZnV2byR+jHPzHqox6avRCJw35IkOvQW3vo+A0EQmD8hhMem3curu97nw/3fUNZSyc3JV/eqnFPLVSyNv4yLo2axKm8Dawu2sbfiYHcp+ZTgMWj7KPlUSOVEuIf02PQURZH6jkZKmsspairjSFMpGTXZbC1JBcDZwYkE7xhG+9ldY7uqyxy8Q/C7+R9Uf/UcVV88i+fFt+OcePL5a0EQ0Dg5oHFyIDa0Z3WaKIq0683UNHRQ29RBXbOe+mY9DS0GGlsNFJY309Ju7LV3Nc0hmysc8/msfRJ7384c8PVlgbnIfY9gLo8kt9aLGucGXJ0dCPByYlSUJ16uqs6qQiUv7H0BP+dInpxx/WlduXxy4HukgpRnZv6p2134bCCVCNx66Uie+WwDj6xdidJBytMzHjzvNsvPB050r5PIHcgpse+TRgf3zjhsK9lDoMbvrFtInAqDCkhPPPEE33zzDQ8//DDfffcd1113HQ8++OCA50ycOJHXXnuNxsZGVCoVa9eu5dlnn+1+PikpicbGRnJycoiJiWHjxo2MGDE0P4/zCa1Kw20py/jPrvf55tAvvYz2ZFIJf70xhec/2sub3x1Eb7BwxYwIHpp0O18d+pmfstdQ1FTK/RNu7XPvwMXBiaXxl7Eodj47S9NYX7iNTw9+z2cZP5DgHcP4gGTGBozqU7OuC0EQ8HR0x9PRvVtrrCtIZdXmk1mTw8HqLHaUpiGXyhnjl8CMsInEe8cg13jhd+Pz1P7wMnW/vIGptgS3WTf0EBw9HQiCgLNagbNaQUSgtt/jLFYbbR0mOgwWdLWVSFd8hclzJLNTljDDBlZRBFG0q4RLJUilAgq5lIK2LL4rPMKUwInccukS1Mr+04E5dYU0G1q5Ofnq0xqMrDYrB6oOc3HkjLMajLqICXfCNeEgHWYr872Hy7nPFoLMgZziRnw9HNE49Uyn17TXkddQdN6rpw8qIIWEhPDnP/+Z1tZW/vOf/wzqwt7e3jzwwAPccMMNmM1mFi9eTEJCArfddhv33nsv8fHxvPHGGzz22GPo9Xp8fHx46aWXTuV3OeeZGJRCRnU2P2avJtI9lBT/hB7Py2VSHrlpLK98uY8PfzlMc7uRmxbEsSzhciLdQ3kz9WMeXvs8N41azMywSX3eBB1kCmaETWRG2EQqWqvZWpzKztI0/pf2Oe+mf8kIryjG+CcyNmDUgE2aXXQFqWmh7kwLHY9NtJHfcITtJXvZUZrGzrJ0/Jy9uThqJtNDJ+Cz9DEa1n1Ey55fMNYcwevyB5E5nfh1TjcyqQRXZyVaJ5Hq9V9jkEqIuOoeZC79q1k0G1p57dcVRLqHcuf4ZSds3O1yaw1zPb3aYHqzAZto66GBeDb5eP93mIR2ws3z+PqXCnydvJiZcu7qof1eEeQK8suaeqmTAByszgLoVQR1vjGogFRUVMQ999xDa2sr3333HTfddBOvv/464eHhA563cOFCFi5c2OOxd999t/vfiYmJfPfddycx7POXW5KXUNxczmu7P+S5OX/u1csil0n407WjcXFU8OPmAuqb9dy/NIkx/on8c95jvJH6Mf9L+5w9FQe4bfQyPBz7brgEux36NQmXsTT+Uo40lbG7fB+p5fv5YN/XfLjvGyLdQxkXkMSEoOR+GzePRyJIiPYIJ9ojnBtGXUlq+X5W5m7kvfQv+f7wKi6Lncvs2Tfg4BtO/a//o+L9h/C6/P5B7yudbnTZO9EXHcB97i0DBiOAbzJXYLAYuWvsDYNSkZB27qdZbdYTHDk0lHIlAgI688D7tL8F5S1VbCnezWUxc1kcdzHPvr+b/3y1H4lEwvTkc7cp/feIzizQ2GrsNvo8lqza/G7ZrvOZQUn2/v3vf+eRRx7B3d0db29vrrvuOp544okzPbbfJQqZgocm345CpuCFrW/QYuhd6i6VCNy+KJ6bFsSx7UAFj729k5Z2Ix5quy7YLclLyKrN50+rn2VN/hZsndVy/SEIAmFuQSxLuJxXL36af89/gqtGXoLJauLTg9/zxxWP8dTGf7OxaEef+nT9IZfKmRw8lufn/IUnpt+Pn4s3H+3/lvtWPkmqowzvG55DolBR9dlTNG7+AtFqOfFFTyNWfRsNa9/HwTccl9HzBjy2Sd/CpiM7mRU2Cf8TqG53Edwp8ZTXh83IqSCTSHFVaajTNZz44DPM9tI9SAQJC6Nn4yCX8tgt4xgZ5sErX6SzM6PybA/vwkGmoKre3gfal55gdl1BZ9P3+VfqfSyDCkjNzc1MmjSp++drr72W9vb2Mzao3zseajf+MvlOmg2tvLjtLYwWU69jBEHgypmR/PWGMRSWN/Pwf7dRUdeORJAwL3I6/5r3OBHuIby/7yue3vQKla2D780KcPFl8YiLeemiR/nvgme4auQlNBtaeXvvZ9z+81/5YN/X1LbXD/p6giAw0juaJ2c8wBPT78NNreWdtM/5276PKbnoGtTx02ne8T0VH/0NU23poK97qjSs+whrRxseC+464V7WluLdWEUbl0TNGvT1g7UBeDt6sK5w22kXG/ZUu3XLLJ1NipsrCHDx7dbAUypkPH7rOCKDXPnnZ+lkHTn7QfNCQJApqOwMSP6ePcvsWwytNBlaCD+Pixm6GLQFqNFo7I6+dXV12GwDz8qHGZgI9xDuHX8LhY0lvLrr/X7TPpMS/XjurknoDGYe/u9Wso/Yb1JeTh48Nu1e7hxzPaUtlTy89nlW5Kw/4WrpeHycPFk84mJemf8kz8x8iNF+Cawr3Ma9q57kjdSPhxSYwF7i/vdZD/PnyXcgl8r5795PeVnRTNmsqzC11lP+wcM0bf8O0Woe0nWHii5nN+2Zm9FOvAIH75ATHp9emUm4a/CQmk0FQeDSmLnkNxwhtXz/yQ+2D1yUzrQZdaf1mieDVJBgsfVc2aocZDxx63i8XFU8/9EeGlrOfmrx944gtSuhAPi49wxIpS32lWqgxq/XeecbgwpIy5Yt49Zbb6WhoYF//etfLFmyhGuuueZMj+13z9iAUdycfDVplRl8uO+bfmfZMcFuvHzvVJzUCh57ewd7s+yrIUEQmBE2kX/Pe4JEnzg+Pfg9z25+lSZ9y5DHIggCMZ7h3Dv+Zt5Y8HfmR85gZ1k69//6NJ8d/AFDHx5JA10rxT+Rl+Y+wr3jb8FsM/NGyRbeiA4mKyKW+i1fUv7un9AXD1x+fbKYm2uoW/UWCp/wQbnc2mw2ihpLiPWMGPJrzQybSLA2gA/3fUO76fQFEJlE1isQnA1iPSOobKshr76ox+Mujgoeu2UcBpOV1789OGxHc4YRZDKa242olbJezsAVndmRoWhWnqsMKiAtXryY++67j4ULF2KxWHj22WdZtmzZmR7bBcG8yOlcGjOXtYVb+TV/U7/H+Xo48s97phDk48xzH+5hx8Gj+XtXlYaHJ93OHWOuo6ChmL+u/QcFDcUnPSY3tZYbkxbz2sXPMDloDD/nrOOBX58hrSLjxCcfg0QiYXLwGF6Z9yT3jLsZBAmfWGt4OTaE9Qoz+V8+Tc33/8TcePr2ImxGPTXfvgiiiPeiBxAGodvXZGjBbLPgexJOplKJlDvHXE+rsY330r86mSH3icFiOCWV7tPFrLDJuKm0/HPH/yhqLOnxXKC3M9fPjyUtu4a07JqzNMILA0EipbXdhMaxt3pKi6ENAQGtw/nfrzmogNTe3s6+fft4+OGHue6669i8eTMdHR0nPnGYQbEs4TLG+CfyyYHvOVST2+9xGicHnrtzElFBrrz0WRq7D1V1PycIAjPDJvHc7D8jl8p4evN/yKw5NbV2N7WWu8bdwLOzHkKtUPHS9rd4ffdHQ14JSCQSpoSM5Z/zHuOvU+4iwC2QXx3hH2FevNuSy/pPHqZm5dtYWupOabw2k57qr5/DVFeG1+UPIHcb3IyxyyHXUdFbQHQwhLkFsXjEAnaWprGzNP2krnE89bpG3FVnv+xbJVfy+PT7kAlSHln/Eu+lf9kjjbtgUihebmp+2FxwFkf5+0eQymnRGXFx6j1JaTG04uzg2MMY8nxlUL/B3/72t25lBhcXuypxX7pzw5wcEkHC3eNuwsfJk9d2f0ibsf+CEbVSzlO3jSciQMNLn6Z17yl1EaT15++zHsbL0Z2Xtr9NcVP5KY8v2iOcF+f8jSvjLmZ76V4eXv1cd9/DUJAIEpL94nl8+v38e94TXBQ5nSKtCx/6uvBI837e+Pphdv/4AvqK/CFf29xUTeXHj2Eoz8Xr8vtRhw++H6Pri2w5hfLty2MvItw1mA/3fX3KqTuDxUhFWw1B2nNjT8DfxYd/znuU2WGT2VC4nXtWPcFL294irSIDQRCZPSaIQ4UNtLQPvkJzmKEhSGW09LdCMrahcRia8eK5yqD6kIqLi3nttdcAcHZ25pFHHuHSSy89owO70FDJldw/4Vb+tu4FPj3wA3eNu6HfY9VKOU/cOp6HX9vG8x/t4ZUHpuGhPTq716o0PDrtHv627gX+s+s9Xrro0R4q4yeDTCpjSfxCUvwTeD31I57b8hpzwqdwXeIVQ/YtAnu++6bkq7k2cRHplZlsK9xOak0OO0wluGz+JyNtDozxTyRx5FwcPQP7LWe16lpoSVtFy+6fEWQKfJY8MqRgBODcKQ460ERgIAxGC01tRub4XcLbh9/glQ3fEOcwGZ3BjN5gwWCyYrJYsVhtiCIIgr1xV6mQ4aSSo3FywNNVRaC3M/6eTuTUFWATbcR4RJ7UeM4ETgpH/pByDVfEzWdNwRY2HtlJWmUGrkoNI7SjQC5wpLKFUVFnXoH8QkSQymltMRLZhzpJq6ENjfL8T9fBIAOSxWKhvb0dJyd7/btOpxvexDwDhLgGsiB6Fity1nNJ9KweVubHo3Fy4PFbxvGnV7fw8ufpPHfnpB5inm4qLXeOuYHnt77GuoKtLIgefDnzQIS7BfPinL/x1aEVrMzdwP6qw9w6eimj/eJP6npyqZzxgcmMD0ymw6xnb/FeduVuJq29ip116cg3pBFphpFKDxJcg/Fy8gRRxKprxlh9BEN5DtisOMZOwH32zchchi6146RwxEHmQO1xfT8ms5XGVoNdJ6/FQEPrUc28xlYDTa0GGluN6I1Hiw/kYX5kWNPZc8AZiahA7SBDqZAil0uRSSVIBLCJdmkjg9FCu96M2XK0MlIuk6CNzUWqkqM0eSJ2yhudK7iptVyTcBlXjbyE/VWH2FC4nR1VW1Emwk9FzQQGXH3OKEz8rpBIadWZ+rQsaTG2ndf6dccyqIB0+eWXc9VVVzFv3jwEQWDdunVcccUVZ3psFySXx1zEmvwtrMrbyB1jrx/w2EBvZ25flMB/vtrPyu1FXDq1p3LGKN84oj3CWV+4/bQFJLA3994w6krGBYzinb2f8+K2N0nxS+CGUVeekkePWq5iWuRUpkVOxWQxcfBIKnsLdpLRWk6W2MA3jQ14VFuI7DARZRKJVnvjOm4hzgkzUHgMXjXAbLHS2GqkscVAY5s92ChsTuzOK6A4bVd3EGrr6N0fppBLcXNxwM1FSaifhtExSrTO9p+1zg60ieG8mfEGd93qybyoqYOyRe8wWKht6qC0uo2csjo2dqzDUu/Jw//dSYivC/MmhDBrTCBKxdCMFc8kMom0Wz1+Y0YOr2/+kVxpJvetOszS+Et7GEcOc+oYkWOxir007MBe1KC9kFJ2t99+OxEREezatQuZTMZDDz3EtGnTzvTYLkicHBwZF5hEavl+bktZdkIr6JkpgWw7UMFnq7OZPMoft+M8dyYEJvPR/m9p6Gg67TPXaI9wXpz7CCvzNvJ91ioe+PVpZodPYVHcvEHp5A2EQqZgTOQUxkROQRRFqtpq2F91mIyqLPbVF7DLakIqdBBFLaNqD5EkFQnWBmA0Walt6qC2SU9dpxp4V4Bp6lzZtHX07oFSREmRKVtQd5jwdlMTG+qGm4sSdxcl7hqV3d5Cq8JRKRswyIiiF1/nu5LTkM984cTfEUEQcFTJCVVpCPXTYHQpREw388ilV1Fb5sDaPaW8/UMGX63N5erZUcybEIJcdm7d6EtLrVjLRvD8spv5NvtHPjnwPVl1Bdw/4dZTThUPY0cn2gOR5riiBpPFhN5i6G5cPt8Z9JRrypQppKSkdKfqmpubu91ghzm9JHjHsrU4laq22hP2FgiCwP8tiuePL23k89U53HP1qB7PdzXLVbfXnZFUikwq47LYuUwLGce3h1eyvnAbG4t2MCtsMpfGzBlQa2+wCIKAn4sPfi4+LIiehdlqZl9ZLjuLD5LdkEt23XK+zFwOZgcsTZ5Ym7yxtbqBKEUiEXB1dsBdo8TXw5G4MHfcXZS4uijtAafTQ+nDzDqKm8t45cZTm2gJgkCoWxDlLUMvZbfarKzI3UC4WzDJAdEIgQLzJ4ZyuKiBz1fn8M5PmazccYT/WxTfpx/O2aCtw8Sa3SWMifUm1MOHhyffwaq8jXx84Dv+s+t9Hpr0f8MrpdNAh80eiFyOK2po7dz3vKCKGj7++GP+9a9/YTbbZ5Zdee3s7OwzOrgLlS6BxLqOhkE1u/l5ODF/YigrtxexaHo4AV5HP5xyiX2Gaj7DOnJd9hqXxszhh6zVrCvcytrCrUwMHM2C6FmnJGsiiiJV9ToO5NdxuKiB3JImaho7ACdgNBqtiMa3BZtzDS1e5Vi8ylFIFIz0imNKSAqj/UagHKDwQhRFKttqTnlV14WLgxMFJ6Fvt61kDzXtdVw/6fYeq7ARYe48d+dE0rJreHf5IZ58ZxeTE/34w2UjcdecXKn66UAURV7/9gB6o4Vr58UA9oDclR7++MB3bCrayazwyWdtjL8X2q327/HxK6QWY5v98QupqOHTTz/lyy+//F37FZ1LdKU5hhJErp4VxbrUEr5ck8vD16d0P95uss+gnBTq0zvIfvB28uTOsddz1YgFrMzbyMaiHWwv3Uu0RzjzI2cwNmDUoJS0bTaRnJJGdmRUsudwNdUN9r43NxclsSFuXDwxhHB/LSF+Lj3y6marmUO1ueytyGBP+X72VR9ALpWT6BNHil88CT6xPZTNbaKNX/M2UdJczi3JS07Le2Cz2U6Yaj0ek9XMN4d+Idw1uNvV91gEQWBMnA+jojz5YVMBX6/PIz2nhmvmxnDJ5LDfPI1ns4m8+1MmOzOquPmSOEL9eppAXhw1kx2laazIXT8ckE4DXQFJ69RzYtUlzqy5kFJ2np6ew8HoN6Sj03ZgKOXUWmcHFk4J47uN+SyeFdl9gyjvlBX5rWXpPRzduDFpMVeNXMCmop2szt/Mf3a9h6tKw9zwqcwOn9znrK6uSc/a1BI2ppVS26RHLpOQGOnJ5dMiSIryxNfDccA9HLlUTpLvSJJ8R/KH5KVk1xeQWr6fvRUHSas4CICrUoOPsycyiZTKtloaOppI9IllVtikfq87FOo7GnFT9nbpHYhf8zZR39HInWMHdp6Vy6QsmRPN1KQA3vkpkw9WHGb1rmJuWBDHhJG+SE7BNn2wtLQb+e/XB9iTVc3l08JZNL235JIgCEwOHsNH+7+lSd+Cax+uxcMMHp3FfqvWOh+3QjJ0rpAupJTdpEmT+OKLL5g1axYODkdno8N7SGeGms5O+MF6FHVxxfQIft1ZzAc/H+aZ2ycgCAL5DUfwdvTAycHxxBc4A6jlKhZEz2J+5Az2Vx9mdf4mvj60gu+zfmVSUAoXR80k1DWQrCMN/LSlkNRDVYhAYqQn186LZfxIH9TKk9sYl0gkjPCKYoRXFDcnXU1ZSyWHanM50lRGna4Bg8VEtHsYKQkJTAoac1rKq202G0eayxgfkDzoc5r1LfyQ9SvJfvHEe8cM6hxfD0eeuHUc6Tm1fLDiEC98vJcwPw1XzIhgUqIfMunpXzGZLTbW7y3ls1+z6TBYuH1RPAsmhfb7vjl19nfpLQZcGQ5Ip0KbRYqTSo5c1nPl3dy9QrqAUnbvvPMOJpOJZ555pvux4T2kM8eR5jIcpAq8HQc2lDseJ7WCay6K5t2fDrEjo5KJCb7k1BUw2i/hxCefYSQSCaP94hntF09FazW/5m9iS3EqW4p342DyorU4ALXJj0XTI5g/MRRvt9ObYhQEgSCt/4C9XaeDgsZidKYORngNvqn184yfMNnM3Dhq8ZBeSxAEUmK9SYr2Yuv+cr5el8vLn6fz/s+HmDUmiKlJ/oT4upxyoG1o0bMpvZxVO49Q16QnNsSNP16V2KdR3LEUNBYjk8iGPLEapjdtZila594l3436ZhzlqnNC9/B0MKiAlJExNFHNYU6N7LoCIt1DT0qbasHEUDallfHW9xk4uXXQZtIx0jv6DIzy5PFz9ibeYTqZZe6UmrMQfEtxiNqHt3MlIbFuuGt7f/HOF7aX7kUmkZHkOziH3Oy6fLYU7+by2IvwPckeLqlEYMboQKYlBZCWU8PqXcX8sLmA7zbl4uZrxC/QjMrZhEJpw1Elx1Xlgr+zDzGeEb1eUxRFmtuMFFa0kFPSyMG8OnJKmgAYGe7OXVcmMjrG64RBrrGjmS3Fuxnrnzhc+n0aaDcLuDr3TuE36Jtx+x01Ig8qIJlMJrZs2YJOZ9foslqtlJaW8sADD5zRwV2ItBhaKWkuZ2n8yUkzSaUSHlw2mgf/s4U3Vm8EF86ZgGSziew+VMXX6/MoqmjBx13NXbMWMSXZj7TK/SzPWcebez7h20O/cFnsXGaETkR+Ht3MOkx6thTvZlzAKBwHUURisVl5L/0rPNRuXBE3/5RfXyIRSIn1QuHaiCoqgwNVh9GLJgpFEJukiBY5AiDITSCxq0MorC64mMNQd4TS0SalvlmP3mjX9JMIEB6g5bp5MUwZ5d+nU2lftJt0vLT9LWyiyJKT/BwP05N2o0BoHyukpo7m01Ydei4wqID0wAMPUFZWRl1dHXFxcRw8eJCxY8ee6bFdkHQpdCd4x570NQK9nXlw2Whe3rEXpdUZpXB29o+6sFhtbDtQwXcb8ymtbsPXw5H7lyYxPTkAaedex+TgsUwKGsP+qsP8kPUr76V/xY9Za1gUN4+ZoRORDcJG4myzKn8TerOBhdGzB3X8L7nrKWup5M+T70ApO7VVoc1mY3vpXn7MWk1FWzVOCkemho4lyXcE4a4htLcKFFe1UVbbZm8cbq+lyVaBzqGMeuUBcDiIRhPAqPAERniOIMxfS7i/Zsj7d7n1hbye+jENHU08NOn2k171DdOTNpPQZ8quQd90xtPQvyWD+pZnZ2ezdu1annrqKW6++WZEUeTpp58+02O7IDlYnY2zwpEw16BTus6EeF+0eSaaa5346xvb+fP1KT36k34LWnUm1qWW8MuOI9Q36wnyceZP145myij/Hrp7XQiCQLLfSJJ8R5BZk8O3h37hvfQv+TlnLVePXMjkoDHnrMR+Y0czP+esZYx/4qB0xarbavn28ErGBowipY8y76GQXZfP++lfU9pSQbA2gHvG3cz4wKQeq0t3Rwj27buwoKa9jg1FO9hYtIMDxpWUNe9kkiYFpS6JcEXwCd9zq83Kodpcfs3fzL7KTDwd3Xl8+r3Eep474rDnOwYLvVRYOkx6mg2tv3kF7ZlkUAHJy8sLmUxGSEgIeXl5zJ8/H71+2Lb4dCOKIpk1OYzwjj7lG68oinRYW5kUM5K0jXru+/cWls6J4rKp4b0cJ08nVpvIocJ6NuwtZcfBSkwWG/HhHtx1ZQKjY7wHVZYsCAIJPrHEe8dwoPowX2X8zOupH/FzzjqWJVxGku/Ic0pwVBRF3k3/Aqto44ZRV57weJto439pnyOTSE+p98lgMfLZwR9YW7AVD7Ub90+4lfGByUNWRvB28mRZwuVcNWIBeysOsqU4lZW5G/g5Zx1quYpwtyACXPzwdHTDUa5GEAT0ZgMN+mbKWirIqS9EbzbgrHBkyciFXBw186QU4IcZGHdNz/e0vNXuh/Z7sC7vYlABSa1Ws2LFCmJiYvjmm28ICwvr9kca5vRR015Ho76ZkV6nvucjImIVbQR4arjxoRm89X0Gn6zKZuWOI1wyOYzZY4L6TAGcDGaLlcNFDaQermZXZhUNLQbUShmzxgRx8aRQQnxPriRVEASSfEeS6BPH7rJ9fJn5My9se5MRXlFcn3jFOaNwvKZgC+mVmdwwajHeg5itri/czuHaPG5Pufak8//lrVX8a8c7VLbWsCBqFkvjLz3lSiu5VM7EoBQmBqXQbtRxoDqLrLp8ihpL2HhkJ0ZLT78jmUSGn7M3k4LGkOgTS7LvyPNqz+984/iAVNopTxX4O7Au72JQAemJJ57g22+/5eGHH+b777/n+uuvHy5oOAPkdcrNxHiEn+DIEyMRJDg7OFHf0Yi7RsVjt4wjo6COr9fl8fHKLD79NZuECA+SoryIC3MjzE8zqJWTKIrUNesprmqloKyZ7OJGsosbMZqsKGQSkqK9uHVhAGNH+uBwmlZiEkHCxKAUxvqPYn3Rdr49vJK/rnuByUFjWJpwGV6OQ7ecOF1k1uTw8f5vSfYdycVRM054fE17HZ8d/IEE71hmnmQj7v6qQ7yy8z0cpAoen34vIwfZuzQUnBwcmRw8hsnBYwD7311n7qDDbABRxEGmwFnhdM6mUH+PHC8TVdJcjoPMAc+z+Pk/3QwYkK6/vmfX+A033IAoikRHR/Prr79yzTXXnPEBXkiUNJcjl8jwd/E5LdeL84xkX2UmJosJhUxBQoQnCRGelFS3sjm9nNTDVXz4y2HAXlHl4arGQ6NE4+SAykGGRBCwiSJGk5W2DhNNbQZqm/QYTfYqLEGAYB8X5owJIinGi4RwD5QOZ674QCaVMS9yOlNDxrE8ey0r8zawu3w/8yKmsShuHs4Og6sCO13k1BXw0va38XP25t7xt5wwVWaz2Xg99WMEQeCOsdedVNpxU9FO3k77jBBNAH+Zchduau1Jjn5oCIKAk8Kxu9l1mN8e9+P2kHLqC4lyD/ldidcOePe47rrrAFi3bh3t7e1ceeWVSKVSli9fjovL76Mz+FyiRlePl6PHkHXQ+mN+5HRSy/fzZebP3DDqyu4bYLCPCzcuiOPGBXE0tOjJK22iqKKVqnodDa16ymvbMZos2GwigkRAqZDipFIQ4OVMcrQ3fp6OBPu4EOrnctIqCqeCWq7imoTLmBsxla8PrWBl/kY2FO1gYcxsLo6aiVp+5gVH95Qf4LXdH+Km1vLY9PtQK078mt9lrSK3vpB7xt18Us2iq/M388G+r0n0ieVPE/9vQMHYYX5fKOVCj8leh0lPaXMFi0dcfBZHdfoZMCBddNFFALz//vt89dVX3cvz6dOns2TJ6RGiHOYobcZ2tKrTF+jjvKK4KGIaK/M20GHWc/2oK3rNcN01KibEq5gQf/5tjLqrXblr7A0sjJ7NV5k/882hX1iVt4kFUTOZFzl9UL1AQ8VsNfP1oRX8nLOOCLcQ/jzlTrSDkG3JqM7m+8OrmBoyjikhQ2+ZWFewjQ/2fU2KfyIPTLh1eK/mAkPr2PNWndtQiIhIjGdvHcHzmUHlV5qamjAajahU9lmgTqejpaXljA7sQsRitQxqpj0Ubk6+GkeFmh+yfmVXWTpTg8cxyncEYa5BaFUufS73bTYbbaZ2WgxtNBlaaNK30GxopVnfQrOxjTZjO+0mHQazEaPVhMVmVyWXSqQopArUciUuDk64KrV4OLrh6+RFgMYXfxefM9K1H6jx4+HJd1DYWMK3h1fy9aEV/JSzlpmhE5kbMfW0pEBFUWR/1WE+OfAdlW01zA6fwk2jFqMYRCFBra6BV3e9j7+LD38YPfQ0987SdN5L/5Jkv3genPCH86Ina5jTi1bd829+sCoLuURGpHvoWRrRmWFQn+xLLrmEq6++mjlz5iCKIqtXr+bqq68+02O74FDIFBjMxhMfOAQkgoSl8ZcyITCZ5Tnr2FK8m7WFWwF7lZSzgyMOUvtN1Wy1oLcY0JsNiIi9rqWSKdEonXFxcEar1KByVuIgVXTbSVhFGyaLCZ1ZT6uxjbKWKpr0Ld3XkgoSgjT+RHmEEecVyQivaFxO475PuFswf51yF8VNZfySu4G1hVv5NX8T0R7hTAkeQ4p/4pCr2vRmA6nl+/k1fxNHmsrwdfLikan3MMo3blDn60wdvLD1DWyijYdPogE2qzaP11M/ItojbDgYXcBonY7+3UVRJK0yg3jvmFNuqD7XGNSn+7777mPEiBHs3r0bgL/+9a/DFuZnAHeVK5m1OWfk2sHaAO4dfzMmi4nCphJKmiuo72ik3ajDaDUB9rJfpcwBJ4UaFwdnNEpntEoXXJUatEqXk9qzMFnN1LTXUdZSRXFzGYWNxWwu3s2agi0ICIS7BZPin8BY/1GDMiMcDCGugdw9/iauG3UFm4/sYmtxKu+lf8V76V8RqPEjxiOcUNcg/Jy9cVNpUMtVSCVSzDYLrYY2anX1lLZUkl2Xz+HafCw2C37O3twx5jqmBo8bdFAwWky8tP0tqtpreXTq3UNWLShvreKf29/G28mDP0+5c1CrsWF+n2jVRzMLZS2V1OoauDz2orM4ojPDoKdbs2fPZvbswUmiDHNyhLgGsrUklYaOpjNiNw72VVisZ+Rv1kWvkMoJ1PgRqPFjYtBowK7hVtRYQkZNNvsqD/FV5s98lfkzgS6+TA4ey5SQsadFIVqrdOHy2Iu4LGYuFa3VpFVmcKgml+2le1lXuO2E5we4+DIvYhpjA5KI9ggbUlWcwWLkn9vfIqeukHsn3Dzk0uxWYzsvbn0TmUTG36bePVzddoHjfExA2tvp63UuqPifbobX/+cQo3zi+ARILd/PxVEzz/ZwzhgyiZQojzCiPMJYPGIBjfpm9pQfYEdpGl9mLuerzJ9J8IlldvhkRvslDMphdiAEQSBA40uAxpfLYy/CJtqo1zVS1V5Lk74FvdmAVbQil8hxdnDCQ+1KgIvvSe/ntRnbeXHbW+Q3HuGusTcwKWjMkM43W828vP1tGvXNPDnjgbPaZzXMuYGz6uitOq0yg0i3kN+l6eFwQDqHCND4Eu4azJqCLcyLmH7BNB26qbTMi5zOvMjp1LTXsaV4N5uKdvGvHe/gqtIwJ3wKs8OnDKqabTBIBAleTh54OQ3Nb2owlDZX8M/OYPLAhD8wPnDwRn1g3x/4X9rn5NQXcv+EW4nyCDvtYxzm/EOttqdrG/XNFDaWnLQbwLnOhXHHO4+4LHYuVW21g0op/R7xdvLk6pELeeOSv/PnyXcSpPHnm0O/cNeKR3kj9WOKm8rO9hD7RBRF1hdu55H1L2KwmnhyxgNDDkYA3x1eydbiVK4eeQkTg1LOwEiHOR9xUtlTdukVmQCMOUVB3nOV4RXSOca4gCTivWP47OAPxHlF/q6EE4eCRCIhxT+BFP8EKttq+DVvE5uLd7OleDcjvKKYHzmDFL+Ec2IVWdlWwwfpX5NRk028dwz3jLsJ7UmkU9YX2mWRpodM4Mq431fD4zCnhrPKvkJKqzyIt6MHAS6/H/26Yzn73+ZheiAIAn8ceyMquZJ/bH2DWl3D2R7SWcfP2ZtbRy/l7YXPc13iFdS01/Pyjv9xz6on+Cl7DS2G1rMyrmZ9Cx/u+4Y/rX6W/IYj3Jq8lEen3XNSwWh32T7eTf+CJN8R/N+Ya88pNfNhzj5OjgoMZgOZNbmk+Cf+bj8fwyukcxA3tZa/Tb2bZza9wuMb/smfJ99J+DmibH02cVSouTRmDguiZrK34iBrCrbwRcZPfH1oBSl+CUwLGcconxFnvFfnSFMZawq2sK04FatoY0boRJbELzzpPa69FQd5ddf7RLqF8sDE2065iGOY3x9KBzkZNTlYbBZG+8Wf7eGcMYYD0jlKqGsgT8/8Ey9se5PHNvyTJSMXcknUrOHGSOyKEOMDkxkfmEx5axUbC3ewtSSV1PL9OMpVjPZLYLR/PPFeMTg5nHq5tCiKlLZUkF6Zya7SdEpaKpBL5UwLGc+lMXPwOQVX1J2laby2+0PCXIN4ZOrdv7tGx2FOD4JExr7KdFRy5e9OLuhYhu9u5zBBWn9enPs33kn7gi8yfmLTkZ0sjlvAxKDRp02A9XwnwMWXG5IWsyxxERnVWewsS2df5SG2lqQiIBCk8SPCPZRQ1wACXHzxcvJAq9T0uwoxWIzUdzRS3VZHaUsFRY2l5NYX0mJsAyDKPYxbkpcwOXjMKfcG/Zq3iY/2f0uMZzh/mXLXbyIKO8x5iiBhf9VhEr3jftcr6OGAdI7j7ODEnyb9H/sqD/H5wR94LfVDvsj8iRmhE5gQOJoAF98zmk82Wc006ptp7GimxdhKi6ENnakDvcWAyWrGZrMBdmsIlUyJs4MjWqULHmo3/Jy9T8sKZTDIJFKS/eJJ9ovHarNS2FhCRk0OOXUF7C5LZ0PR9h7HO8pVKOVKZBIZomjDbLPQYdJ3q1Z04ePkSYJPLCO8oknyHXFaej8sNisf7/+WNQVbSPFP5P7xtwyrMAwzIBW6WpoMLST7jTzbQzmjnNGAtGLFCt566y3MZjM33XQT1157bZ/Hbd68mWeeeYaNGzeeyeGc1yT7jWSUbxz7KjNZU7CF7w//yneHV+Hp6M4Irygi3UIJ1vrj6+yFk8JxUEHKJtpoN+po1LfQqG+ivqOROl0jdboG6nQN1OoaulcGxyOXyFDIFN3irGarGaPF1EsDT6t0IcwtmGj3MEZ4RRHuFnzGV3fSYxpvwZ5ya9A3UdlaQ62uniZ9C21GHQaLEYvNgiAIyCUy1HIVLkpn3FRafJw8T6k5tj/qOxp5ddcH5NYXckn0bK5LWHROVAoOc26TVV8IwCjfEWd5JGeWMxaQampqeOWVV/jhhx9QKBQsXbqUcePGERHRM/9ZX1/Piy++eKaG8btCIkhI8U8kxT+RJn0LeysOcKA6m/SKDDYf2dV9nIPMAa3SBSe5GgeZAqlEioCAxWbBZDWjNxtoN+loM+mwibYeryGVSPFQu+Hl6MZo/wQ81G54qF1xU2nRKl1wcXDCSeHY516WTbShM3XQpG+hVtdAVVstJS3lFDaUsK/S3j+hkitJ8h3JuIBRJPmO/E32TARB6Pw9Tl2O6GQRRZFtJXv4cN/XWEUb90+4dbjPaJhBk99QTJDG/7Q1h5+rnLGAtHPnTsaPH49WqwXs3kqrV6/m7rvv7nHcY489xt13382//vWvPq/T2tpKa2vPst7q6uozMubzCVeVhrkR05gbMQ1RFKnV1VPWUkl1ez0NHU00G1rQmTowHbNykUmkOCrUeKjd7AKqSic0Di64qjS4qexWEVoHl5OesXfZpjs7OBGk9e/xXKuxnazaPPZXHSa9MoOdpWk4yBwY5z+K6aHjifOK+l05Xx5LdVstH+7/hv1Vh4lyD+Pu8Tfh4+R5toc1zDnGQPe6Iy1lzAmbcTaG9ZtyxgJSbW0tnp5Hv3ReXl5kZGT0OOaTTz4hLi6OxMT+u44//vhjXn/99TM1zN8FgiDg7eSJ9zl8k3NxcOqujLPZbGTV5bO9dC+7ytLZWpKKl6M7s8ImMyN0wkn18ZyLtBnb+TF7DavzNyOTSLkp6aoLShJqmKEx0L3OaDER4/H7ra7r4owFJFHs7adz7L5GXl4ea9eu5aOPPhpwxXPjjTeyaNGiHo9VV1f3ux81zLmPRCJhpHc0I72juSXpavZUHGB94Xa+zFzON4dWMDYgibkRU4nzjDwvGwBbDK2sytvE6vzNGCxGpoWM55qEy36XYpjDnD5OdK+L8Qg/G8P6TTljAcnb25u0tLTun2tra/HyOtqvsXr1aurq6rjyyisxm83U1taybNkyvvjiix7XcXFxwcXl9503vZBRyBRMDh7L5OCxVLZWs65wO5uLd7GrLB0/Z29mhk1iasi4cz53LooihY0lrCvcxvaSPVhsVsYFJrE47uJe6cthhumLge51KrnqjFnSnEucsYA0ceJEXnvtNRobG1GpVKxdu5Znn322+/l7772Xe++9F4Dy8nJuuOGGXsFomAsLPxcfbkxazDXxl7KrbB/ri7bz2cEf+DLjJ0b5jmBK8FiS/eLPqebRmvY6dpXtY1vJHspaKnGQOTA9dAILombidxqs04cZBuzfjfMxWzBUzugK6YEHHuCGG27AbDazePFiEhISuO2227j33nuJj//9yl8Mc2ooZAqmhY5nWuh4ylur2HxkN9tKUkmvzEQhlZPoE8dovwRG+cYN2ZL8VDFZTOQ2FJFZk8O+ykOUtlQA9obZ20YvY1JQymkvFR9mGP9TUAM5nxDEvjZ7znHKy8uZNWsWGzZsICAg4GwPZ5jfAJvNRk59ATvL0kmryKBR3wyAv4sPsR4RRLiHEuYaRICLz2mTVzJbzVS21VDSXEFRUymFDcUUNpVisVmQChKiPcJJ8U9kbMCoYRO9Yc4IXfe6J95/jmsnLz7bwznjDCs1DHNeIJFIiPOKIs4riluTl1LaUsHB6mwO1+ayqyyd9Z1KDFJBgreTJz5Onnio3dCqNLg4OOKoUOMgdUAhlSMRBETo0ZelM3XQamynydBCQ0cjte0N1HY0dBfnyKVywrSBXBw1g7hOC3iVXHkW35FhLiR+60zA2WI4IA1z3iEIAsHa/2/vTmOjKhs2jl8DbdlKKYUuPKC8AbENYYuC7CU8ULpRdkNZLAqCgCyWSNjEQMSASFKIJGyi4UNRSkGwBAHZZGmDghrW+kLCIn0ZSi1SaEs7Mz3vBx4m1hateRznHvr/JU2Yc8+cueZOOdec6cw9rdQ6uJWGRMWowqqQ/X6+rv76s278+n/Ku29X/oMC/e8vV/WgvLjG+61jq6Mm9RurWYOmatvsf9Sn9Ut6pkkLPdvk0QoYrB8Ib2lav3a8Q5NCgs+rY6ujfwVF6F9BEer9bOUxp8up++XFKnaUqMxZLofLoYr/nPX41amrgLoBauBfT438G6phQIOn9sO58G215SMDFBKean51/dS0QZNa8x8aT6fashI8TwcBwHC14S3fEoUEADAEhQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMIJHCykrK0sJCQmKiYlRenp6lfGDBw9q6NChGjJkiKZPn6579+55Mg4AwGAeK6Tbt28rLS1NW7du1e7du7VtEpZtFQAADjxJREFU2zZduXLFPf7gwQMtWbJEGzdu1JdffqnIyEh99NFHnooDADCcn6d2nJ2drR49eig4OFiSFBsbq3379mnGjBmSJIfDoSVLlig8PFySFBkZqaysrCr7KSoqUlFRUaVtdrvdU7EBwCs41nmwkPLz8xUaGuq+HBYWprNnz7ovN23aVAMHDpQkPXz4UBs3btQrr7xSZT9btmzR2rVrPRUTAIzAsc6DhWRZVpVtNputyrb79+9r+vTpioqK0vDhw6uMT5gwocp2u92ucePG/X1hAcDLONZ5sJDCw8N1+vRp9+X8/HyFhYVVuk5+fr4mTZqkHj16aOHChdXuJygoSEFBQZ6KCQBG4FjnwTc19OrVSzk5OSosLFRpaakOHDig6Oho97jL5dLUqVMVHx+vRYsWVXv2BACoPTx6hpSamqqUlBQ5HA6NGjVKnTp10uTJkzVr1izZ7XZdvHhRLpdL+/fvlyR16NBB77//vqciAQAM5rFCkqSkpCQlJSVV2rZp0yZJUseOHZWbm+vJuwcA+BBWagAAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGMGjhZSVlaWEhATFxMQoPT29yvilS5c0cuRIxcbGatGiRXI6nZ6MAwAwmMcK6fbt20pLS9PWrVu1e/dubdu2TVeuXKl0nblz52rx4sXav3+/LMtSRkaGp+IAAAznsULKzs5Wjx49FBwcrIYNGyo2Nlb79u1zj+fl5enhw4fq0qWLJGnEiBGVxh8rKirSzZs3K/3Y7XZPxQYAr+BYJ/l5asf5+fkKDQ11Xw4LC9PZs2efOB4aGqrbt29X2c+WLVu0du1aT8UEACNwrPNgIVmWVWWbzWar8fhjEyZM0PDhwytts9vtGjdu3N+QEgDMwLHOg4UUHh6u06dPuy/n5+crLCys0nhBQYH78p07dyqNPxYUFKSgoCBPxQQAI3Cs8+DfkHr16qWcnBwVFhaqtLRUBw4cUHR0tHu8ZcuWqlevns6cOSNJ2rVrV6VxAEDt4rFCCg8PV2pqqlJSUjRs2DANHjxYnTp10uTJk3Xu3DlJ0qpVq7R8+XLFx8ertLRUKSkpnooDADCcx16yk6SkpCQlJSVV2rZp0yb3v6OiopSZmenJCAAAH8FKDQAAI1BIAAAjUEgAACN49G9InuJyuSSp1n2KGcDTIyIiQn5+PnkI9hifnI07d+5IUq36wBiAp8uhQ4fUqlUrb8cwis2qbskEwz18+FDnz59XaGio6tat+7fu+/Eno9PT0xUREfG37tvTyO4dZPcOX84u1ewMyel0ym6315qzKZ98hPXr11fXrl09eh8RERE+++yF7N5Bdu/w5ex/xs/P76l9bNXhTQ0AACNQSAAAI1BIAAAjUEi/ExQUpBkzZvjkqrtk9w6ye4cvZ0f1fPJddgCApw9nSAAAI1BIAAAjUEj/cebMGY0cOVJDhw7VhAkTlJeXJ0kqKirSlClTFB8fr3HjxrlXiTBNVlaWEhISFBMTo/T0dG/H+VNr165VYmKiEhMTtXLlSklSdna2kpKSNGjQIKWlpXk54Z/74IMPNH/+fEnSpUuXNHLkSMXGxmrRokVyOp1eTle9w4cPa8SIEYqLi9OyZcsk+c6879692/0788EHH0jynXlHDVmwLMuy+vfvb126dMmyLMvavn27NXXqVMuyLGvp0qXWhg0bLMuyrC+++MKaPXu2tyI+kd1ut/r372/dvXvXKi4utpKSkqzLly97O9YTnTx50ho9erRVVlZmlZeXWykpKVZWVpbVr18/68aNG5bD4bAmTpxoHT161NtRnyg7O9vq3r27NW/ePMuyLCsxMdH64YcfLMuyrAULFljp6eleTFe9GzduWH369LFu3bpllZeXW2PGjLGOHj3qE/NeUlJidevWzfrll18sh8NhjRo1yjp58qRPzDtqjjMkSeXl5Zo9e7aioqIkSZGRkbp165Yk6ejRo+4vGRw8eLCOHTsmh8PhtazVyc7OVo8ePRQcHKyGDRsqNjZW+/bt83asJwoNDdX8+fMVEBAgf39/tW3bVteuXVPr1q31zDPPyM/PT0lJScY+hl9//VVpaWmaOnWqJCkvL08PHz5Uly5dJEkjRowwMvvXX3+thIQERUREyN/fX2lpaWrQoIFPzLvL5VJFRYVKS0vldDrldDrl5+fnE/OOmqOQJAUEBGjo0KGSpIqKCq1du1YDBw6UJOXn5ys0NFTSo2U8AgMDVVhY6LWs1fltRkkKCwvT7du3vZjoj7Vr1859ELl27Zr27t0rm83mM4/h3XffVWpqqvvtxr+f/9DQUCOzX79+XS6XS5MmTdKQIUO0detWn/ndCQwM1OzZsxUfH6/o6Gi1bNlS/v7+PjHvqLlaV0hfffWVoqOjK/28+uqrkh6dKb399ttyOp164403nriPOnXMmjarmnfu22w2LyT5ay5fvqyJEydq3rx5evbZZ6uMm/gYtm/frhYtWqhnz57ubb4y/y6XSzk5Ofrwww+VkZGhc+fO6ebNm1WuZ2L23Nxc7dixQ0eOHNGJEydUp04dnTx5ssr1TMyOmvPJxVX/G/Hx8YqPj6+yvbi4WNOmTVNwcLDWrVsnf39/SY+eMRYUFCgiIkJOp1MPHjxQcHDwP5z6j4WHh+v06dPuy/n5+QoLC/Nioj935swZzZo1SwsXLlRiYqK+/fZbFRQUuMdNfQx79+7VnTt3NHToUN27d08lJSWy2WyVst+5c8fI7M2bN1fPnj0VEhIiSRowYID27dtXacV8U+f9xIkT6tmzp5o1aybp0ctzmzdv9ol5R82Z9VTfi+bOnavWrVtrzZo1CggIcG/v16+fdu3aJenRwahr167usjJFr169lJOTo8LCQpWWlurAgQOKjo72dqwnunXrlt58802tWrVKiYmJkqTOnTvr6tWr7peV9uzZY+Rj+PTTT7Vnzx7t3r1bs2bN0r///W8tX75c9erV05kzZyRJu3btMjJ7//79deLECRUVFcnlcun48eOKi4vziXmPiopSdna2SkpKZFmWDh8+rJdeeskn5h01V+vOkKpz8eJFHTp0SM8995yGDRsm6dGZ0aZNmzR79mzNnz9fiYmJaty4sVatWuXdsNUIDw9XamqqUlJS5HA4NGrUKHXq1MnbsZ5o8+bNKisr04oVK9zbkpOTtWLFCs2cOVNlZWXq16+f4uLivJjyr1m1apXeeecdFRcXq3379kpJSfF2pCo6d+6s119/XWPHjpXD4VDv3r01ZswYtWnTxvh579Onjy5evKgRI0bI399fHTt21JQpUxQTE2P8vKPmWDoIAGAEXrIDABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAp5g/vz52rx581+6zaFDh9yraB89elRr1qzxRDTgqcTnkIC/0YABAzRgwABJ0rlz53Tv3j0vJwJ8B4UEn3Pq1CmtXLlS4eHh+vnnn1W/fn2tWLFCYWFhWrp0qXJzc2Wz2dS3b1/NmTNHfn5+at++vSZMmKBTp06ppKREc+bM0aBBg7Rz507t379fGzZskKQqlx/LzMzUtm3b5HA4dO/ePU2ePFljx47Vzp07lZmZqdLSUgUGBmr48OHav3+/pk+frs8//1wul0uNGzfW2bNnFRcXp9GjR0uS1q1bp7t372rhwoX/+PwBpqKQ4JMuXryoBQsWqGvXrvrss880d+5ctWvXTsHBwcrKypLD4dC0adP0ySefaMqUKXK5XGrSpIl27typ3NxcjR8/Xl27dq3RfRUXF2v79u3auHGjmjZtqh9//FGvvfaaxo4dK0m6cuWKDh8+rMDAQO3cuVPSo1URkpOTdffuXaWmpurgwYNav369Ro8erYqKCm3fvl0ff/yxx+YH8EX8DQk+KSoqyl0oI0eO1KVLl7Rnzx6NHz9eNptNAQEBSk5O1rFjx9y3GT9+vPu2zz//vL777rsa3VejRo20fv16ffPNN1q9erXWr1+vkpIS93hkZKQCAwP/cB/9+/dXQUGBcnNzdfz4cbVq1Upt2rT5qw8beKpRSPBJv12hWnr0FRC/XwWroqKi0lda//Y2FRUVqlu3rmw2W6XbVffli3a7XcOGDVNeXp5efPFFvfXWW5XGGzZsWKO8ycnJyszM1I4dO5ScnPyntwFqGwoJPik3N1e5ubmSpG3btumFF15QfHy80tPTZVmWysvLlZGRoV69erlv83jV9gsXLujq1avq1q2bQkJCdPnyZZWVlcnpdOrIkSNV7uv8+fMKCQnR9OnT1bdvX/d1XC7XH2asW7dupUJ8+eWXdfDgQV24cEExMTH/7RQATx3+hgSf1Lx5c61evVp5eXkKCQnRypUr1ahRIy1btkxJSUlyOBzq27ev+2vGJen7779XRkaGKioqlJaWpiZNmqh3797q1q2b4uPjFRoaqu7du+unn36qdF+9e/dWZmam4uLi1KBBA3Xq1EkhISG6fv36H2bs2bOnZs6cKX9/fy1evFjNmjVThw4d1LZtW+O+wgQwAat9w+ecOnVK7733nvbs2VPj20RGRionJ8f95XTeUFhYqFGjRik9PV0tWrTwWg7AVLxkB/wDMjIylJCQoJSUFMoIeALOkAAARuAMCQBgBAoJAGAECgkAYAQKCQBgBAoJAGAECgkAYIT/B5VRJ992K6JTAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set_theme(style=\"ticks\")\n", + "\n", + "# Show the joint distribution using kernel density estimation\n", + "g = sns.jointplot(\n", + " data=df,\n", + " x=\"popularity\", y=\"danceability\", hue=\"artist_top_genre\",\n", + " kind=\"kde\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFcCAYAAACwQwV1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABcRklEQVR4nO3deVxU5f4H8M9hZlgVAQGXNHPLLMXSVNxDVEQk1xKXcCkry+v90c2iTK/XpcXqmkm5lNfMSFFEDc1dSVNzqyS8erVMxRIQQUcRmO38/qAZZzlz5szMObN+369Xr3vnzPbMDJ7veZ7n+3wfhmVZFoQQQogfCnB3AwghhBB3oSBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4La8MghqNBlevXoVGo3F3UwghhHgxrwyCJSUlSExMRElJibubQgghxIt5ZRAkhBBCxEBBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL8ld3cDCCGepeBUMb7ccRblldWIjgxBenJ7PNGlububRYgkKAgSQgwKThUja+Np1Kq1AIDrldXI2ngaACgQEp9Ew6GEEIMvd5w1BEC9WrUWX+4466YWESItCoKEEIPyymq7jhPi7SgIEkIMoiND7DpOiLejIEgIMUhPbo8ghczkWJBChvTk9m5qESHSosQY4lcOXT6OdYVbceNuBRqGRmFs3DD0adHN3c3yGPrkF8oOJf6CgiDxG4cuH8eKE9lQaVUAgPK7FVhxIhsAKBAaeaJLcwp6xG9QECQeSYoe27rCrYYAqKfSqrCucCsFQUL8FAVBidCwm+Ok6rHduFth13FiH1pkT7wRJcZIQH8SL79bARb3TuKHLh93d9O8Al+PzRkNQ6PsOk6E0y+yv15ZDRb3FtkXnCp2d9MI4UVBUAJSncT9hVQ9trFxwxAoCzQ5FigLxNi4YU69LqFF9sR70XCoBDxl2O120UFUHsiGRnkD8vCGiEwYj/od+rq0DY5oGBqFco7vytkem34olYapxUeL7Im3oiAoAalO4va4XXQQ5duXg9XUAgA0ynKUb18OAB4fCMfGDTOZEwTE67H1adHN7UHPF+fOoiNDcJ0j4NEie+LpaDhUAp4w7FZ5INsQAPVYTS0qD2Q7/dqHLh/HS/mzMCZnGl7KnyX6XGefFt3wQtfxiA6NAgMgOjQKL3Qd7/bgJQZfnTujRfbEW1FPUAKeMOymUd6w67hQUq6184eMWr65M2/uDdIie+KtKAhKxN3DbvLwhtAoyzmPO0OqtXb+spDdl+fOaJE98UY0HOqjIhPGg5EHmRxj5EGITBjv1OtKlfTjCRm1Ug/zAlSgmhBPQ0HQR9Xv0BfRKS9CHh4NgIE8PBrRKS86nRQj1Vo7d2fUumptJ82dEeJZaDjUh9Xv0Ff0TFCpMjfdnVHrqpJqNHdGiGeRNAjm5+dj2bJlUKvVmDRpEsaPNx2K++677/DBBx8AAB588EHMmzcPYWFhUjaJOEmqpB8pl0UI4cqeqBRzZ7aSivwh6YgQR0gWBEtLS7F48WLk5eUhMDAQaWlp6N69O9q0aQMAUCqVyMzMxNq1a9GmTRt89tlnWLx4Md566y2pmkREIkXSj7szat3dE3WGraQif0k6IsQRks0JHjlyBPHx8YiIiEBoaCiSkpKwc+dOw/2XLl1C06ZNDUExISEBe/futXgdpVKJq1evmvxXUlIiVbOJG/Vp0Q2fpi5Ezphl+DR1oUtP0J6wttNRtpKKPCHpiBBPJVlPsKysDDExMYbbsbGxKCwsNNx+4IEHUFJSgnPnzuGhhx7Cjh07UF5umdK/Zs0aZGVlSdVMr+Ct5c+8ibt7os6wNZTr7qQjQjyZZEGQZVmLYwzDGP5/eHg43nvvPcyePRs6nQ5PP/00FAqFxXMmTpyIESNGmBwrKSmxmF/0Vd5c/sxeUsxbmZcoi++lxc93vud8D3ev7XSUraFcbx7qJURqkgXBRo0a4eTJk4bbZWVliI2NNdzWarVo3LgxNm7cCAA4c+YMmje3TBYIDw9HeHi4VM2UjFgndL7yZ74UBKWYt9KXKNNXaKlgfsOea2fAyLSivYcnsJVU5O6kI0I8mWRBsGfPnli6dCkqKioQEhKC3bt3Y/78+Yb7GYbBlClTsHHjRsTGxuI///kPhgwZIlVzJGGtEDLXCX3ZsbVYufkX3CqOtistXqryZ7aIVeSZ72LA+D6GCYCO1Zk8V+gSBWttNS9RJm9+3hAA7X0PT2ZrKNebh3oJkZqkPcGMjAykp6dDrVZj9OjRiIuLw9SpUzFjxgx07NgR8+bNw3PPPQeVSoUePXrg2Weflao5JsTopZn3MvSFkAFgw5+WiQgaVgNVVBHY4idMHmsrsDhT/szRz8n32ewJhHy9OwAm97FmAVDP1rwVX1vNS5ExgTUOvYc3sDWU661DvYRITdJ1gqmpqUhNTTU59tlnnxn+/xNPPIEnnnhCyiZYEGvYja8QclVb7pOq8UlYaNHkyITxJnOCgLDyZ858TmeKPAvt3en/vy225q342mq+vQ+rCgYTZBkIaW6MEP/ldxVjxKoMwlcIuZmVRARWFSzoNYzp5/3szQ515nM6WuTZPPA62rvTEzJvxdfWV8Z1NuklaoofhKLlGZMhUXvmxnxlwbkv7mdIiKP8LghyBSe+49bwbSLKlYjAagOgKX7Q4rFC8JU/s3ZiduZzOrpBKlfg5aLveXG1JYAJAMvqBAcZvraalyiLYlsjvskDVrND+Xj7gnP930n53QqwqhCombZg0dThoW5CfIXfBUFGHQJWYXnSZNT2VfFPT25v0ssA7hVC7tOi7mSiD05h8nAoL7WCtqKxxWOdwXdiDuAYitQfd+az8RHSwzPueXFlLNq7ea6ttnKXKEsW/Pp6rqotKhbji6N6gWG4q66Blq37jpjAaihaFgEAtBVNeYe6qddIfJ3fBcHay22haFkERnYvQLDaAKgut7XrdWwVQjZPRJDiZMJ3YuYKgACsHjfmaJFna+vR+Hp3zg4vuqogtTctODe/OLqtqrJ4DCPTQd78PLQVTQFwDyuLlSBFiCfzuyAYxbZGxe9/pcsH1oBVBUNT/CCi2NZ2v5Y9hZClKJrMd2KOthKQogUmgTjSXmvr0az17sTKWHTFZq7etOBc6LC0caIW11C3MwlSrkI9VeIsvwuCdcNnKtSebmo4FqSQIf0pcfdzc0USBd+J2R0LpH15PZoz36ery94J7Z3qE7WsDXU7miDlKtRTJWLwuyDoiuEzVyVR8J2YxQxIvpIV6QxHv093lL2zdnFkQieDpvhBxPD8/TuaIOUq3tBTJZ7P74Ig4PjwmdBg4KokCiGVQpx9P3sCursyKF0VpPm+T2vDcu4oe8d1cSQPkCFYFowqddW972gs/3fkaIKUq3h6T5V4B78Mgo6w5wTvyiQKqSuB2BPQ7Q3+YgQvT1i6wDcsd78byt6JNQrgqqQjR3l6T5V4BwqCAtlzgrc6HKUOwZP/2OpxJxPAekCyJ6Db81ixgpcnLF3gG5ab24C/7J0zFwJ8z/WmpCNHeXpPlXgHCoIC2XOCf7Reb+y5vd2kMol+GQYLz5vA5wtI9mRF2vNYsYKXrd/FFUOlfMNykcOtl71z5kLAE3rA7ubpPVXiHSgICmTPCf6HwzKomUcslmHo12QBnjWBzxeQ7MmKtOexYg0Z8/0u9gYKRwMm37AcX9m7dfmzHL4Q8IQesCfw5J4q8Q5+EQTF6A3Yc4Ivr6wGi6YmQY+Lvgfh7p3j+QKSPfNL9jzW3nV31n5Dvt/FnkDhTM/K1rCctbJ3zlwIeNPifUI8mc8HQbH29rPnBG+tZ8D1OE/YOd5WQLJnfknoY+25qBASoLh+l6wfVnO+N1egcKZnJXaFHSEL8L1p8T4hnszngyDXyc3Rvf2EnuC5egbm9D2FygMLLFLofwwGdhV+jVtn1rlkXZ6rFtab9+aeeCAeP14rcnrJibXfJUoRihvqu5zHzTnbsxKzwo6Q793Wc2ltJyHC+HwQtHYSc2RvP6G4egZdH4rFiXNlFj2Fiztv4Kd6QdjVsB5uygMQomWhCmCgDWAAuCbhwRWVXrh6cwWXfhBUMNveAGUIAPqamQxjuE+hYzGo/I7Fc9zRs3Lme+d7rjcmzVDQJu7i80GwXmAYZwFhaBQmN8VeYMvVM5jG8bjTMQ2RV5+B+q+gVy1nLB4jRcID10nn09SFor2+OWeGG+0JUCYBQB/8WBYAEKHRIenGHXS6Y1lXs3OTDtj920HO41JyZimDted6W9KMNwZt4jt8Pgj+df6zPA7TO9y1wHZ3dD2oOYbszAkZlhN6Ne2Ok44zw432DBtyFo9mGESotci8XLdAXR4ebfG8H68Vcb63teOu8vnJddh78XvoWB0CmAAMaNUbzz0+lvc53pY0421Bm/gWnw+Cd9QcvUAAjFxj+P/uXGBbISAAAraH5ewJbO446Tgz3GjPsKG1E/1NeQDebdEQSTdrMeiJ8YKfZ3zc1UN2n59cZ9I71bE6w+3nHh9rtT3eljTjbUGb+BafD4LWNtGFKhgM4PYFtkKKHQtJlrAnsLnjpOPscKPQYUOr3yfD4KZChs2x9RFbPxh9BD5PHzjc0Xvee/F7q8fbxbS22h537CDiDG8L2sS32N5m3MvVXm4LVmc6z8bqGKiLH8Q3Hw7Df94a5NbFtmPjhiFQFmhyTMbIUD8wrC5Ih0aJnjxi7eQi5UnHVcONXN+nMRWrxbrCrYKeZxw4+C4ypMK3MbKti54Xuo5HdGiUXX9D7mLruydESj7fE6wfFogamE8Msqgfxn2idPWQl1iZmUKupvWfjetxUp90HM7wdCJr0loPm+s9+7Tohv9d/81k/u2JB+INrydm71noZwtgAjgDYQATYLM9UhdWF5Mv70NJPJ/PB0FF8/Oo1ZgeYwLqjptzV5aarROWkN2zhawbM79fL9oFJx2HMzxh/++g/z5fyp9l13sWXPrBEHR0rA4Fl35Au5jWgubZpEhKGtCqN+cQ8oBWvfHjtSKfGkL0pqBNfIvPD4dWaZSCj7tjyMsW/TY91yurTYpvF5wqNnmcrSEwzqzJvx73aepC0U5Ahy4fx0v5szAmZxpeyp+FQ5ePA7BvyEus30HM9+R7LX1gK79bARb3Apv+sxecKsaUBbvx5D+2IuvQesGf7bnHx2JQ674IYIz+mWpl2PXrQZQr74CB6TA/DSESYj+f7wlau4JnmACMyZnm8LZBgGuGTu3ZPZvvatoVyTD2ljcbHtkOLb5ZhYvKRSY1U8VqqxhZpcbDi9Ze6yWeQtja8iYm1YN08mpYrgS1/v7PPT4Wzz0+FisP7MCea3U7kzAAIFdBp2MQLAuGiq2hIUQH0AJ9AvhBEOQaJgTuJR2U363AsuNfAnDtkJ1QYu2e7YoMPHvKm+lrpmo4aqaK2VZns0qN39Paa/EFUPOLGFYVDCaoxuKxtj7bvj/2gFGYXgwxASxUKgY5E5bxPldMvhI4aIE+0fP54VDzYULzISQA0Oi0+OLHDW4ZsrPF2iJ+IYv7jYcma9S1kAfITO4Xe/jMnh5c5YFsi5qprKYWlQey7c4WtDYEaw9nMhT5sm3NL1Y0xQ/CPNdFxshsvo9Ozn3RY+24OTG+I1vDvt7EE6c+iHv4fBAE6gLhp6kLkTNmmUWlGL3bqiq7UstdtdYuPbk9ghSmwUvI4n7zE9YddRVYFnYvvbCHPUsvNMobnI/VKG/Y9TuIdWIW8p6OzHdyX6yYXogxXOOjZgI03Bc91o4bO3T5OJYd/9LkO1p2/Eu7vyNfChy0QJ/o+fxwqL34hs+MszRDHgsBOBbhizG8aD7kNCipN344HGjXNj1cJywtq0WQPAirRnzgdBu5cA09yxk5bv/WCk/+Y6tJ2+XhDaFRllu8hjy8IQDhw5hiVr/he09Ht3PSJhebzAnKm58HE2B6IabRaW22N/G+gYY5QT1WK8OA+wba/Fxf/LgBGp3pUKp+9MOe78hagCi/W2Exv+7paIE+0aMgKJA+S1N/Mqu93BaKlmdMTkpiDC9ynWwP1u7EC8+MR58WgwS/jjuudPu06Ibq4nPIvXIENwOABlog/M8YnC+pq9VpvG1Vl4TxJvsoAgAjD0JkgmVJMz6u+pyObudkvqNIQKDlfCBfe40viILlwahVy8DKVAjQhGDAfQPxfEKyzbZzFpDnOW4NX3Uj41444Pnzat5WVYdIR9IgmJ+fj2XLlkGtVmPSpEkYP970BHfmzBnMmTMHarUaTZo0wfvvv4/w8HApm4T6VnaVqB8Yxvs88wQH/a7xQS0uAIpq0a6CxerZuONK93bRQbQ9vBOZRoFNxVZgfWB9nFK1AmCU2fpWXUCvPJANjfKGSXaoPVz1OZ0JtsY7iryUf9zh5KtatgaBQYF4oetktwQZa0lmxryl8DUt0Cd6kgXB0tJSLF68GHl5eQgMDERaWhq6d++ONm3aGB6zcOFCzJgxA/369cO7776LVatWISMjQ6omAQAmdX4ay45/aTI8JA+QYVLnp3mfx5WNqa1oiuqKpvjmQ/ckl/Bxx5UuV7JLIKPF0JCfDEEQuPdd1u/Q1+6gZ85Vm8uKFWzHxg3j/PuzN/nKns9QTxHGWUi+noL/ws+ceeCwskGLpFV0xEQL9AkgYWLMkSNHEB8fj4iICISGhiIpKQk7d+40eYxOp0NVVd0/zurqagQHB0vVHIM+LbphWrd0kwSIad3Sbf5jcCZL0x5i1fV0Vf1I42SRBZEsfqoXZPGYyADTE7CY3xnf5xQzm1HM+pbm23tZ2+5LrAuiyV2ehowxTa6SMTJM7sJ/4cfFOMksWqS/VV/KOiXeR7KeYFlZGWJiYgy3Y2NjUVhYaPKYzMxMTJ48GW+//TZCQkKwYcMGi9dRKpVQKk2ru5SUlDjVNkeuANOT25vMCQLSbMEkZg9O6itd8+G6mwoZ8mLDASjx2J17PcJK3b0ehxTfmSs2lxVr+Gxd4VZoWdMkFS3LnRgjVu9TqqE/sf5WaT9B4k6SBUGW4/KWMcoFr6mpwaxZs7BmzRrExcVh9erVeP3117Fy5UqT56xZswZZWVlSNVMw8wQHqbZg8qa5Cq6TlzqAwa6G9QxBUBegwHdsd7u3rRJjeEzspBkxLirsaZOnXxCJ9bdKyxWIO0kWBBs1aoSTJ08abpeVlSE2NtZw+/z58wgKCkJcXBwAYMyYMViyZInF60ycOBEjRowwOVZSUmKRZOMKxgkOUpKqByf2vAvfBrYAY0h2+UeHvviHne0Uo5qHJ6bB29MmqS6IxPw7EONv1RN/J+I/JAuCPXv2xNKlS1FRUYGQkBDs3r0b8+fPN9zfokULlJSU4OLFi2jVqhX27duHjh07WrxOeHi45Bmjnk6Mk5YUZaKsnbyiwxqi1azlDr0mIN7wmCemwdvbJrEviDyxXJgn/k7Ef0jaE8zIyEB6ejrUajVGjx6NuLg4TJ06FTNmzEDHjh3xzjvv4P/+7//AsiwaNmyIt99+W6rmCMYXcFyVwWa8KL9B83Jom/4MDVu3H5T5SUtom6SYd5Hq5OWOAtqu4u42eeL8m7u/E+LfGJZr8s7DXb16FYmJidi3bx+aNWsm2uty7bkXKAvEC13rhl6t3SfmP9aCU8XI2vst0OQcmL8WVnOV1dLvASi0TWNypnGmtDMAcsY4XoBZigsDa/sA6rd9Io4T++9AyF6XhHgyqhhjxFZtRFdcQa86tBtM80IwMssdxY3duFth11W9VPMuUsxf0vCYdMT8OzCvomRcEYgCIfEWFASNODIMJ3YGW3VUEQJsBECg7qRlq73GvbQwRRjkATKTRdruDizmvcjOTTrgx2tFuHG3AvUCwxAYoECVuspmD1OqYerbRQedrmjjaexZrG+Ltb0uP/z6R3y54yz1ColXoCBoxNZVsisy2KzVljSmD17rCrdabdOhy8ex4tiXUP21Ju2OugoyMKgfGIY7KtuBRWpcCRq7fztouP+2qgqBskBMj+cvESZVood+v0OWY79Dbw+EQhfr28K3pyX1Com38IsgKLSnYOsq2RVDdMGyENTouE4uDBiwFu231qavT+UYAqCeFiwCWdapOUBzjvbCuIZyzQkZbrY30UNoe/n2O/TmIGjPYn1boiNDcJ0nEBrqxFIQJB7M54PgocvHsezYWpPsymXH1gLg7ilYu0qWMoPN+MRs7aK8niIU/xlpugUSX5uWHv0PZ0bNDSs7BzgSzJzphQkdRrb1OHuGsO1pL99+h1KSOtFEzIXpXFWUzPH1FgnxBD4fBFef3GQIgHoaVoPVJzdZnPhsXSVLkQTClZHKpYqjADJgPTElQqPDTbPNePXHbbVBaDBzJt2eb1se88c58jpcz7OnvVz7Hf5ULwi7YsJxS6K981yRaCJmYoxxFSVrPUKxa+sSIjafD4J31ErzjbwNx803AhXzKtlWz0p/v5BAANh/kkq+yyC3Pgt1wL0Pr9CxSL7LWLSPYQKgY02Do5Bg5sz3JWRbHiHDzfZkktrT3kiz/Q5/qheEvNhww/cpxSJzrkQTTf1iLDu7H8t+FWe7LrEzb/VVlMwDOCBNnVhCxObzQVCnCkZAEEeyCWO5EWg9K3sN1rOy16C17EFbPSuhvT89GSNDraYWY3KmIUwRBoaBzeSWAT3HQ1ewCrsignBTHoAIjQ5JN2sx4IlnLd6fZbmzUW0FM2d6FVxDucbZoUJP+LaGqY2HF0MeCwEUlj0Wrvbq5/30v++umHCTCwpA/CUy5kOHsqg/oWhZBPavbGExAq9Uw/quqq1LiNh8PgiGVHRATeyPvOvu9CczlZW5Da7jfNmD637fxTvsJiQpJIAJAMvqEKYIQ422xhCcjfeF4zsp1u/QF4MAdD2QDY2y/K8g/Szqd+iLdfmzBAVgW8HM2V6FWMPL1l7HvHdSe7ktFC3PgJEJWybyc/1grHsgGjfuBoi6d5415okm8ubnLf5uxQi8UtWmdVVtXULE5PNB8Nk+g5C1VwPWRgWWG3cr6pJgOO6r1Vn2JPmyB2/Ecm/TqD9h2jpxGld9eSl/FueGqHp8J0Vrm9YKOXELCWauLHflSMKI+fCitqIpACCoxQVAwT+8KLS3LuYSGfNEE8bKchlX7q7w+cl12Hvxe+hYHQKYAAxo1RvPPT7WZe9PiNR8PgjWnSiH4MsdLf8aEvsOrJUhsbLKu5xDpzqV5Wa/fNmDDR9oxztMyJcUEm12YhZywrP3pGjt/fW9T3uCmSt253Y0YYQrM1Fb0RTVFU3xzYf8AV5Ib13sJTLmQ4oBmhCrf6uu8PnJdSZrN3WsznCbAiHxFT4fBAHTYZpDl5tYHcJbufkXi6FTVhuAkIoOFq/JlT2oP25rmNCemp9CsijtPSkKeX/9jvGeUNDYWmUSW2vQrK1jE5KxyHdhwQCSfSdC/1ZdYe/F760epyBIfIVfBEFjfEN42j5NTIZOWVUwcO0hPDtgkMXrmGcPAgAjD0Jkwnjcb2OY0J5hxLFxw5D1wxdgrcxKOXJStPX+QhJ7XFnx39paM1tr0LjWsQnNWLS6TZQLi3i7e3cF84xhruNUQJt4O78LgoD1ITzzoVO+f9Tm2YPmtSVtDRMKHUY8e/EGdDqAMZpmZNm6eU3zoVN78L2/rULirt6PztEenTMZi55SxJvvd5K6tmkAx9IZ/XGACmgT3+CXQZCPeYZb3bDgcs4rcWuJJ2La98ceMArTXiDDAIw6xKkeCV9vjm89nTv2o3OmR+doxqK7e2G2uKK26YBWvU3mBI2PA44PUxPiSSgI8vCEXbh18mquhFXo5I6Xo7JVSs7aUKB+XSUXsTMWjXs5rcIb4rVeg7H8dJjdPTpnhm5dlfTjSE/VFbVN9fN+1rJDHR2mJsSTUBDk4Qm7cFvLEAzQOF6OylYpOSHVXMw5krFoLUBx9XJi/rsRS4a/iPodLOdn+V7f3RcxfJwZTnRVbdPnHh9rNQnGmcQjQjwFBUEeriyjZk3ifQOx59p2kwXerFaGAfcNtLsNenyl5ADToUAhZd0cmSvjC1AtROrluOsiRmjvzpkyaXzZya7izDA1IZ6CgqAZ85qaXCXFWAAv5c8SHMic6ZE8n5AMHKibG9TJ69aODbhvYN1xB1krJWe8HlI/FDgmZ5rVainOLBXgC1CvitTLsfciRoysV3t6d86USePLTnYVKpVGfAEFQSNCa2oC9gUyZ3skzyck43lwBz1HTtxcpeSsrYeUaqkAX4ASq5djT21TsYZO7UkWcaZMmq3sZFehUmnE23HX9/JT1qqEBDDcX5PxsgE+jvRIXsqfhTE50/BS/iwcunzc6uNWnMhG+V/7EOpP3NYer/dsn0Fgi+Ogqw0Gy6Luf4vj8Gwfy/m2sXHDECgLNDkmxlIBa3OIDUOjEJkwHow8yOS4I70ce9pua1mIUPYki6Qnt0eQ0XZX9pZJq9+hL+7/2wq0mpWL+/+2wqs3+yXEXagnaMTayYZldWAAzmFBIfODUvVIHO1hClkPaTyv1aB5HOo1P48qjRINQ6PQuF4MPjm2Bkt/WO1wPcnOTTpwpt93btJBtF6OPcscxJr/tSdZxNPKpBHijygIGrEVrBzdNsiehdf2BDZnTtx8w1jm81o3i6MRVNII05/qhF/Z70WpJ/njtSLe42KtwRS6zEHIhYqQoWd7k0U8qUwaIf7IL4dDrQ038g2fOTMs2KdFN7zQdTyiQ6PAoG4+jatOKGBfYOMbUnQG37wWXz1Je4iZeSsGW7+v0KHnJ7o0x/SnOiEmMgQMgJjIELzWS41WRxbg4sLRuLL0BdwusuwBA/b9nRBCxOF3PUEhw418V/tSL7wOU4Rxbp0UprDc2Nfe0l7GPRm+zXn55rWCBdSTFMKZDXmlYOu3t6eHbty7q1vz+AU0Aiu7uGKBPiHkHr8LgrZOZuYnIVfspmAcnDgX8IF7D0QhhbD199ULDMNddQ20bF0Pj29zXr55rbs26kkKJWVtTkeXOvAFIEd7rq6o7GIve6rUUIFs4uv8LgjaczJzRcURy81buVfl3VFxb6xr7cRt/rq3rTxfz/hCgG9e61f2Bm89SaHsrc3JF9hMk3jKoW36s0lJODF+M0d7rq6q7CKUPesYqUA28Qd+FwTtOZm5ouKIkM1brbVPjNc1pr8Q4FsE/QT460nawzyAF5wqxpS1uw3BTPFXRmqYIgw12hpodHUnY+PApi1vYnKiro4qQoBZSTjj38zRXqKjPVdPqOxizJ51jFQgm/gDvwuC9pzMXJG8IeS1HBkmdKSNxoGWL3uUr56ko4x7HbKoP1ETW4RaTd2wK9ccqT6w1ZzuZ3Ki5ltr50zP3tFdJTyhsosxe9Yxilkg29V7UBIilN8FQXtOZq5I3rD2HgF/lWzjm+dzpO3WuHs+zrjXwVU5hcuNuxWoNjshs6pgMBwl4RqGRjnds3ckacVTKrvo2bOOUawC2Z5eyJz4N0mDYH5+PpYtWwa1Wo1JkyZh/Ph7V79nz55FZmam4XZFRQUaNGiAbdu2SdkkAJYnM2vJL67YWNXae3Clxtuz43u9wDDIGJkhEQYA5AEyBMuCUaWuQmBAIFQ6NViwCGAC8MQD8Q6dkMSajzPuXVjrzZlrGBqFGrMTtab4QShaFpkEUf1vlvXDas7XkXpZhiv2nRTKnnWMYhXI9oTdWAixRrIgWFpaisWLFyMvLw+BgYFIS0tD9+7d0aZNGwBA+/btsXVrXUmq6upqPPXUU5g7d65UzbHK2SUTzhLyHvrgxtWzs7bj+21VFeQBMtSTh6FKbboMQv+Z2b+ScHSsDgWXfkC7mNZ2fTbzxAlb83F8jHsd1npzxvSBTdu0CbL2fgs0OQcmsAasKhhsRTPUb3LTUOFG/7mtfYcME4AxOdP8YpjOnqLXYhXI9rQ1oYQYkywIHjlyBPHx8YiIiAAAJCUlYefOnZg+fbrFY1esWIGuXbvi8ccfl6o5Vtm7ZEIKfO9hmT1qydqO7xqdFsHBQfjPyA9Mjot1ZW6eOGFv7Utjxr0OTfGDULT6BUzAvUxZBgzqBYZarGs8hOMIbFlk6H0yQTWQx/6JyY8/Y9I7zvphNWfvGLi3xtH8Akis5QGfn1wnSiKRWOwpei1GgWxPWxNKiDHJgmBZWRliYmIMt2NjY1FYWGjxOKVSiQ0bNiA/P5/zdZRKJZRKpcmxkpIS0drp6VepQrI8G4ZG2fU5xPrM5gkSfPNxthj3OqyvlrS0rnAr5wbBQnrHDMeaR/3FgHnWqaPLAz4/uU6UMnPezBXTCoQ4SrIgyLKW690YjhXf+fn5GDBgABo25E4ZX7NmDbKyskRvn56nX6XaCkzyABlq1LVW9/yrF2hZacbez2wt2cU8cYJvPk4Ifa/jpfxZKL9r+olYsIa1jsY9Nr6Abqt3PCZnmtXnirU8gK/MnL8EQVdMKxDiKMmCYKNGjXDy5EnD7bKyMsTGxlo8bu/evXjhhResvs7EiRMxYsQIk2MlJSUmSTbO8PSrVL4sz/p/VYHhWkKgx3EtYtdn5pszNU+c0FY0hVwegPptLlrMx9lDSI9U32PjC+i2erx8z70q0vIAa+Xk7C0z5+2oHBzxVJIFwZ49e2Lp0qWoqKhASEgIdu/ejfnz55s8hmVZnDlzBo899pjV1wkPD0d4eLhUzfT4q9Thke2w5s4RqAPu9aIVOhYTm/fElsr/2awEU8URIO35zHzzh/pNdU3mzQYMkWwOydyNuxWYHj/ZakC3lgij7/HyXQysPn2Td3mA0PnCAJHKzAH+s9bOXz4n8QyS9gQzMjKQnp4OtVqN0aNHIy4uDlOnTsWMGTPQsWNHVFRUQKFQICgoyPYLSsiTr1If+ukwRupuY1fDergpD0CERoekG3fwUPlh3Ii1fSK1NsQp9DPb6k1JsbM4V3Di0jA0ymZA5+vx8j1Xm1xsdXkAZzmxvd/iy0uWPeABrXqLUmbOX9ba+cvnJJ6DYbkm7zzc1atXkZiYiH379qFZs2bubo6BFFewFxeOBnc9UQYfxLXj7TFZW29oj7r5OY5lBeoQVP/UT7KiyuY7XhiXTQP4P5vQ3TJssdbbm7Jgt0kvURb1J+dcqL59YmSHWvsdokOjDD1yX+Avn5N4Dr+rGCMVqa5g+WpP8vWYokUKwlzvwWplUF1uCxbSFVXmKmhgfIHRuUkHw9IHrjWQ+vbeUVchUBaI6fGT7f4urPVyzecFuSrcGC85EaPMnKdnMYvFXz4n8RwUBJ1gfGLmS7d3JhDx1Z683w2L+aEOgepyW2grmhoe44qiysZBke+CwxXVScyzYp1ZHymUp2cxi8VfPifxHH65s7wYDl0+jmXH1hp2GreW7WdP/U4u9Tv0RXTKi5CHRwNgIA+PRnTKiy4tw9WnRTd8mroQOWOWofqnfiYBUM+RosqO4gt0ruhJpCe3R5BCZrjNqoI5HyfmiXtsHP/O977CXz4n8RzUE3TQ6pObLBZpc3EkC9CctdqT7kgiEKuosi182Zd8gc4VPQnzcmIhFR1MaqYC4p+4PT2L2Rah8+Xe/jmJ9xEUBEeMGIFx48Zh6NChCAkR92TnDmKUw7qjVgoqayLlejB3FCZOT26PJTk/QaO9l6wjlzF2F1XmY2szV75A56p1n+bzha5I6/fkLGY+9l6seevnJN5JUBCcPXs2cnJysGTJEgwaNAhjx45F27ZtpW6bJMTaLVunCkaAjSLPQF2CilTclURgnk/saH6xtcBhq1pL5yYdOJcddG7SwW09CTpxW0e7SBBPJigIdu7cGZ07d4ZSqUR+fj6mTZuG2NhYPPPMM0hOTpa6jU4zPtlCHQJN/baAk4kdIRUdUBP7o0lWIMsCxpXh5AEySecyrPWIGqi1uLL0BUn2rftyx1lodaZRT6tj7f7++HoHtjZz/fFaEef9+uPeHJDEKtrtSSjjk3gywXOCSqUSW7duRW5uLurXr4/k5GRs3boVBw4cwKJFi6Rso1MsdmFQVEPRsu5kaZzgYW9ix7N9BiFrrwasfgsfjRyMTGMyRCrFCkzjk2RY2wZApNmJhGXxUFUtNMo7KN++HABEDYTlldWQRf1Ztyzgr62LNMUPopwjWYYPX+8gOrIf77yjr55UxRql8DSU8Uk8maCsjX/84x9ITExEYWEh5s6di82bN+OZZ55BVlYWCgoKJG6ic7hOtoxMB3nz8ybH7E3seKJLc0wfMAThV5JRe2IwZFDAPAdGy2oNuxmIQX+SvF5ZDRaAOvSa5YMYBufC6irwsJpaVB7IFu39AaBB83IoWhYhIKgGDAMEBNVA0bIIDZpbrmXkwxfIzLMvAdPNXK2dPPXHC04VY8qC3XjyH1sxZcFuFJwqtqtt7sI3DOzNKOOTeDJBPcG2bdti1qxZiIoyPfnI5XKsW7dOkoaJxdrJ1nhtlyO7ZQOmyRFP5+zkfIyzSySMCd2/76b8XjTWKG+I9v4AoGh+HrUa02QfRqaDwuyiwha+3oGtzVz5kl+8uTdlaxjYW1HGJ/FkgoLgyZMn8eKLL5oce/rpp7Fhwwa0bt1akoaJxdrJNkATAgYQbd6FUYeAVVierBi1eNm0QvfvizAKUvJw7i2qHFWlUdp13BpbWZx8NUn5TqpT1u4WZQskW/jm7hyd13PV8hN38OZ5WuLbeIPgjBkz8Pvvv6O4uBipqamG4xqNBgEB3rHO3lom4cCHuuK5CeINx9RebmtRP5LVBkB1WbwsWiH79yl0LJJu3AFwr7KMmMSa33G2d2DtpOqK3hRfbxOAwz1R862pAMdHKQghwvAGwddeew1//PEHZs+ejdmzZxuOy2Qyr1kiYSuTUCxRbGtU/A6LhJEoVryesq39+6IUoRhUfged7qggD4+WJDtUzHV49vQOhK7Dc0VvytbcnaM9UVvDwIQQ8fEGwWbNmqFZs2bYtWsX567w3sDanJyYc3WAPkCpUHv6XpZkkEKG9KfEu4rnPEmKsH+fPdwxv2PPYmtX9KYc6W0K7YlKsTUVIcQ63iA4duxYrFu3Dp07dzYJgizLgmEY/Pjjj5I30FlibmrKx1VX8Z5wknT1/I49i61d8TvY6m16+rwebVpLyD28QXDJkiUAgG3btrmkMVKwVrZMinJmnhCgfJG96wKl/h1s9TY9eV6PNq0lxBRvEPz55595n3zfffeJ2RZJRFtJ5JCynBkRl6ctthbS2/TUeT0qYUaIKd4guHbtWqv3MQyDQYMGid4gsbmqoDKRjif+hny9TU8eEfDVajuEOMrhIOgthCRy0ByJZ6PF1uLxtF41Ie7GGwQXLlyIWbNmWSyU11u+fLkkjRIbXyIHzZF4B1u/IQVIYTyxV02IO/EGwR49egAAkpKSXNIYd6A5Eu9GFzH2oV41IaZ4g2D//v0B1G2qW1lZiZ9//hlyuRydOnVCeHi4SxooNZojEZere2V0EWM/KmFGyD2CFssVFBRg8ODBWLVqFZYtW4YhQ4bgxIkTUrfNJWztSECE0/fKyu9WgMW9Xtmhy8c5Hy/Gbg90EUN8SWFhIebMmQMA+OWXXzBjxgzBjxfjcf5IUBBcsmQJvvrqK3z11Vf4+uuvsWLFCrzzzjtSt80laJsX8fD1ysyZbwulr7FpbyCkixjiS3799VeUlpYCADp27IiPP/5Y8OPFeJw/ErSLBMMwJrVCH3nkEbBS7BjrBlLNkfhjsoY9vTK++pv2LC+gRA/iDXQ6Hd5++22cPn0aVVVVYFkWCxYswMaNG3Hz5k0UFxejU6dOOHLkCG7fvo033ngDw4cPx/z587Ft2zacPHkS7777LnS6uiIfL7zwAuLi4vDxxx8bHm+tY3Lt2jWLx+Xk5GDt2rUICAhAdHQ0Zs+ejZYtWyIzMxMMw+C3335DRUUFevXqhbfeegsKhcLqZ9NqtVi0aBH279+P+vXrIy4uDr/99hvWrl2L27dvY+HChTh//jzUajV69OiB1157DXK5HB07dsTzzz+Pw4cPo6ysDOnp6Zg0aRLy8vKQm5uL6upq1KtXD2vXrsXGjRuxbt066HQ6REREYPbs2aLtYMQbBG/evAkA6NChA1atWoW0tDQEBAQgLy8P8fHxojTAE4g9R+ILyRqOBHF70u/F2u2BEj2INzh9+jTKysqQk5ODgIAArFy5Ep999hkiIiJQU1OD7du3AwDy8vKwa9cuvPPOOzh27Jjh+UuXLsXkyZORkpKCc+fOIScnB0lJSZgxY4bh8dY0adLE5HFHjx7F559/jpycHERFRSEvLw8vv/yyoQ3nzp3DV199BYVCgSlTpiAnJwcTJkyw+vobN27EmTNnsG3bNjAMg2nTphnue/vtt/HII4/g3XffhVarRWZmJlavXo2pU6dCpVIhMjIS69evR1FREcaOHYuxY8cCqOu57t+/H/Xq1cPx48exZcsWZGdnIyQkBN9//z3+9re/4dtvv3XqN9HjDYLx8fFgGMbQ63v//fcN9zEMg9dff12URvgab0/WsCeIGwfLeoFhkDEyaNl7PTxrvTIxd3ugRA/i6R577DE0aNAA69evR3FxMY4dO4awsDBERESgS5cuNp+fnJyMefPmYf/+/ejZsydeeeUVh9ty6NAhDBkyxLBJ+siRI7Fw4UJcvXoVQF0iZFhYGABg2LBh2LdvH28Q/O677zBs2DAEBQUBAMaMGWNYY15QUIBffvkFubm5AICaGtP9TxMTEwHUjS6qVCrcvXsXANCuXTvUq1fP8BqXL19GWlqa4Xm3bt3CzZs3ERER4fD3oMcbBM+dO+f0G/gjb0/WEBrEzYPlbVUV5AEy1JOHoUpdxdsro73ziD8pKCjAwoULMXnyZCQmJqJVq1b45ptvAAChoaE2n5+WloaEhAQcPnwYhw4dQlZWluH59uKaymJZFhqNBkDdVnnGx23tHSuXm4YR48frdDosWbLEMHSpVCpNNmPQB079MX3bjL8TnU6HYcOGYebMmYbbZWVlaNCggY1PKoygxBiVSoU9e/Zgy5Yt2LJlCzZt2oTFixeL0gBXECML0R7enqwhNIhzBUuNTotgRRByxizDp6kLrfbQnujSHNOf6oSYyBAwAGIiQzD9qU4eW26MEGccPnwYCQkJGDduHDp27Ii9e/dCq9VaPE4mkxmCkbG0tDScPXsWI0eOxPz586FUKnHr1i2rj+d73d69e+Pbb79FRUXdv+dNmzYhIiICLVq0AADs2LEDKpUKtbW12Lx5MxISEnhfu1+/fvjmm2+gUqmg0WiwefNmw329e/fGF198AZZloVKpMG3aNHz11Vc222usV69e2L59O8rKygAA69atw8SJE+16DT6CEmMyMjJQXFyM69ev4+GHH8bp06fRrZt3DD/x7QIu1QnX25M1hM7tOdvj9eQam4SIKS0tDa+++ipSU1Mhk8nw+OOPY/fu3WjWrJnJ4x577DF89NFHePnll5Genm44/uqrr+Ltt9/GRx99hICAAEyfPh3NmjWDTqczPP6TTz6x+v7Gr/vJJ59g0qRJmDhxInQ6HaKiorBixQpDDy44OBjjxo2DUqlEUlISRo0axfvZRo4cid9//x3Dhw9HaGgomjVrhpCQummNWbNmYeHChUhNTYVarUbPnj3x3HPP2fXd9enTB1OnTsWUKVPAMAzq1auHrKws0fa4ZVgBaZ79+/fH7t27MXfuXEyePBksy+Jf//qX22qLXr16FYmJidi3b5/FH5G5KQt2c849xUSG4D9vSVcA3JuzQ82HOYG6IP5C1/Emn+Gl/FlWd+j4NHWhS9pKCBFPZmYm2rZti2effVbwc77//nvcuHEDw4bVXeQvWLAAQUFBhuFLTyeoJxgbGwu5XI4HHngA58+fR3JyMqqrbWfx5efnY9myZVCr1Zg0aRLGjx9vcv/Fixfxz3/+E7du3UJMTAz+/e9/izbOqydWFqK9vDlZQ2jGpbf3eAnxFRcvXkRGRgbnfS1btsRHH33k1OuPGzcOVVVVnPd9+umnWLVqFVatWgWtVouHHnoIc+fOder9XElQEAwNDUV+fj4eeughbNiwAa1atTIsn7CmtLQUixcvRl5eHgIDA5GWlobu3bujTZs2AOomQKdNm4ZZs2ahb9+++OCDD7By5UrRrx7EzEL0Np+fXIe9F7+HjtUhgAnAgFa98dzjYwU9V0gQp+UJhHiGVq1aYetWy6IU9nr33Xc5j3/99de8z1u9erXT7+0ugoLgnDlzsGHDBsycORO5ubmYMGGCzRTdI0eOID4+3pDCmpSUhJ07d2L69OkAgDNnziA0NBR9+/YFALz44otQKpUWr6NUKi2Ol5SUCGk2gL+yEPd+CzQ5ByawBqwqGLj2ENIHDBH8Gt7o85PrsPu3g4bbOlZnuC00EArhzT1eQggRFAQfeOABvPbaa1AqlYK71WVlZYiJiTHcjo2NRWFhoeH2lStXEB0djddffx3//e9/8eCDD2L27NkWr7NmzRpkZWUJek8usuhrCGxZBA1blxnFBNVA3rIIsujHAPhuUsbei99bPS5mECSEEG8maInExYsXkZKSgpSUFJSWliI5ORm//fYb73O48m2Ms3k0Gg2OHz+OCRMmID8/H82bN+fsik+cOBH79u0z+S87O1tIswHUDdXpA6DhvVkNZz1LX6JjdXYdJ4QQfyQoCC5YsABvvvkmGjZsiEaNGmHChAk2K5I3atQI5eXlhttlZWWIjY013I6JiUGLFi3QsWNHAMDQoUNNeop64eHhaNasmcl/jRs3FvThAO9fuO6oAIb7p7V2nBBC/JGgM+LNmzfRq1cvw+3x48fjzp07vM/p2bMnjh49ioqKClRXV2P37t2G+T+gbt1KRUWFoSrN/v378cgjjzjyGXh5+8J1Rw1o1duu44QQ4o8Edwtqa2sNw5nXr183VDO3plGjRsjIyEB6ejqGDx+OoUOHIi4uDlOnTsUvv/yC4OBgfPLJJ3jrrbeQkpKCY8eOITMz07lPw8Fft0p67vGxGNS6r6HnF8AEYFDrvg7NB94uOogrS1/AxYWjcWXpC7hddND2kwghbvfxxx8jMTHRq7M3pSZosXxubi62bNmCK1euYNiwYdi+fTuee+45jBs3zhVttGDPYnnAuxeuu9vtooMo374crKbWcIyRByE65UXU79DX4vH0XbsHfe/eoeBUMb7ccRblldWIjgxBenJ7SasmJSYm4vPPP0fLli0lew9vJygIAsCJEydQUFAAnU6H3r17mwyPupq9QZA47srSF6BRllscl4dH4/6/rTA5JrTSDBEXfe/ewbyEI1BXNF6MmrkajQZz587FhQsXUF5ejpYtW6Jp06bIy8vD/fffjw8//BCTJ0/GI488gvLycuTm5mLVqlX45ptvIJPJ0KtXL8ycORPXrl3DtGnT0Lx5c1y+fBlNmzbF+++/j4iICBw4cAAfffQRdDodmjdvjnnz5iE6Ohr9+/dH//79cfLkSQB12yc9/PDDTn0eVxI0HHrnzh38+OOPmDlzJiZMmICCggLDlhfEt2mUNwQft2dneWe5uii6J3Pl904cx7eRtLN++uknKBQK5OTkYM+ePaitrUWvXr0QGxuLlStXon379qisrMTzzz+PrVu34siRI9i/fz/y8vKwefNmXL58GevXrwcAnD9/HhMnTsT27dvRunVrZGVl4caNG5gzZw4++eQT5Ofno3Pnzpg3b57h/SMiIrBlyxbMmDHD67bYExQE33jjDUOFmPDwcDAMw7mmj/geeXhDwcddlYmrv6K+XlkNFveKovtrIPTXDGhvI2UJx65du2LcuHHIzs7GwoULcenSJc6OSqdOnQAAP/zwA1JSUhAcHAy5XI5Ro0bh6NGjAOrWhXfv3h0AMHz4cPzwww8oLCxEXFycYeRtzJgx+OGHHwyv+/TTTwOoqzNdWlpq2KHCGwgKgpcuXTJE9/r16+PNN9/EhQsXJG0Y8QyRCePByINMjjHyIEQmjLd4rKsycaW8ovZG/poB7W2slWoUo4Tjvn378OqrryI4OBgjR45E165dOddqBwcHAwBnYqN+qyXj/QFZloVMJrN4vPH+g+bP0el0JnsSejpBQVCj0ZgsiaiqquL8gonvqd+hL6JTXoQ8PBoAA3l4tNWkmLFxwyBjTP/4ZYxM9ExcdxVF91TuzICmzGHh0pPbI0hh+u9DrI2kjx49iuTkZIwaNQrR0dE4ceIE536FevHx8di+fTtqamqg0WiwadMmxMfHAwB+//13nD1bd0G5adMm9O3bF506dcLp06cNu8/n5OQYeosAsH37dgDAnj170Lp1a9E3QpCSoLJpw4cPx1NPPYXBgweDYRjs2bMHI0eOlLptxEPU79CXM+hxYRgArNltkflzUXQu7ipkbp45rFGWo3z7cgAQ/PfiT/TJL1Jkhz711FN49dVXsXPnTgQGBuLRRx81BCwuCQkJOHv2LEaNGgWNRoM+ffpgwoQJKCkpQYMGDfDxxx/jypUraNeuHRYsWIDQ0FDMmzcP06dPh1qtRtOmTbFw4b3t0n788Ufk5uYiJCTEahFuTyU4O3Tfvn04evQo5HI5evTogX79+kndNqsoO9QzuWp/QSmz7Ihw9mQOE+9w9epVpKenY//+/YKf079/f3z55Zdeey4W1BME6nb3ffzxxw3DoDdv3jTsEEGk5S1rwFyVoGHritpbvi9vZ0/mMCGeSlAQXLNmDT788EOo1WoAdZOiDMMYxo2JdMzXgJXfrcCKE3UFxD3txN4wNIqzJyhFgsYTXZpz9vq86fvydvLwhlZ6gtwZxcTzNWvWzK5eIAC7H+9pBCXGrF27FuvWrcPZs2dx9uxZnDt3jgKgi3jTGjBPKFHnTd+Xt7Mnc5gQTyWoJxgTEyNJcWtimzetAfOEnea96fvydvU79MXZ329AfnoLGuAObqEeNA8PR0tKiiFeRFAQ7NWrF77++mskJiYiKOjelR/NCUrPlUOMYnD3TvPe9n15s4JTxcg6rECt+l6meNBhGaY3LaYEJeI1BA2Hrly5EvPmzUO/fv0QHx+P+Ph49OjRQ+q2EXjGEKM3oe/LdahoAfEFgnqCXJvdEtfwhCFGb2Lv90WZpI6jogWer7S0FG+99RY+++wzp19ryZIl6NChAxITE0VomecQtE5QpVLhu+++Q1VVFQBAq9XiypUryMjIkLyBXGidIBED7b7gnCkLdnMWLYiJDMF/3hrkhhYRYj9BPcGMjAwUFxfj+vXrePjhh3H69Gl060YnCeLd+DJJKQjalp7cnrNogRhlwHzV7aKDqDyQDY3yBuThDRGZMF6U6jrHjh3DihUrEBwcjN9++w3t2rXDBx98gLKyMsPi95KSErz66qu4desWHnzwQZw4cQIHDx5EVVUV5s2bhwsXLkCr1WLq1KkYOnSoYYeJmzdvIiEhAWVlZejWrRtGjhyJxYsX4+jRo7h16xYiIyOxdOlSxMTEoHfv3khKSsKpU6cgk8nw0UcfoXlz0/lha1sv/f7775gzZw5u3ryJ0NBQzJo1C3FxccjMzATDMDh//jzu3LmDadOmYfjw4U5/Z3qC5gTPnj2LvLw8JCYm4s0338T69etx+/Zt0RpBiDtQJqlznujSHNOf6oSYyBAwqOsBUtUe6/Rl5urWVrKGMnNi1Vv96aefMGfOHOzYsQN//vknvv/+e5P7Fy5ciOTkZOTn52Pw4MEoLS0FACxbtgyPPPII8vLykJ2djeXLl6O4uG5HltLSUmzevBmvvPKK4XUuX76MixcvYv369di1axfuv/9+5OfnAwCuX7+OHj16YMuWLejatSuys7M528q19dLMmTPxzDPPID8/H2+88Qb+/ve/Q6VSGdqxfv16rFmzBosWLcL169dF+c4AgT3B2NhYyOVyPPDAAzh//jySk5NRXU3j/v7KV+bR3JVJ6ivfH2C9aAGxVHkg21BnVY/V1KLyQLYovcG2bduicePGAIDWrVvj1q1bJvcfPnwY77zzDgBg4MCBCA8PBwAcOXIENTU12LRpEwDg7t27hl2CHn74YZMdIgCgRYsWeP3117Fx40b8/vvv+Pnnn3H//fcb7u/Tp4+hPfrenjnjrZcyMzNRUlKCK1euYNCgumH0Rx99FA0aNMDFixcBACNHjoRCoUDjxo3RuXNnnDp1CoMHD3bwmzIlKAiGhoYiPz8fDz30EDZs2IBWrVoZ9hck/sWXKrKMjRvGOScoZSapL31/xD5Sl5kzXr7GMIzFTj8ymYxz9x+dTof333/fsBa8vLwcDRo0QH5+vmHrJWNFRUX4xz/+gUmTJiEpKQkBAQEmr6tvB1cb9My3XtJqtRaPZVnWsBOG8dZMOp3OIjA7Q9Bw6Jw5c3Du3Dn07t0bMpkMzzzzDJ599lnRGkG8hy9VZOnTohte6Doe0aFRYFBX6FvqpBhf+v6IfezZoFoKPXv2NAxbfvfdd1AqlQDqtlVat24dAKCsrAxPPvkkrl27ZvV1Tpw4gW7dumHs2LFo06YNDh8+zLttExfzrZfuu+8+NG/eHLt37wYA/PzzzygvL0fbtm0BADt27ADLsvjjjz9QWFiILl262PfhefCG02eeeQaM0V446enpYFkW7dq1w44dOzB27FjRGuINXDWMVXCqWJLtVsTga/Norl7c72vfHxEuMmG8ydZTgGvLzL355pt4/fXXsWHDBjz00EOG4dDp06dj7ty5GDp0KLRaLWbOnIn777/f6lDmkCFDMH36dKSmpkKhUKBdu3a82zZx4dp66f3338fcuXOxdOlSKBQKLF26FIGBdWt+a2pqMGrUKKhUKsybNw+RkZFOfBOmeJdI7Nq1C0BdtL5z5w5GjRoFmUyGrVu3Ijw8HPPnzxetIfZwxxIJV6XTe/o2Qa7aLslX0ffn36TKDhXiyy+/RM+ePdGmTRucOXMGs2fPRl5enkve25i9Wy9lZmYaslKlwNsTTEpKAgCsWrUK69evR0BA3ejpE088gTFjxkjSIE/lqnR6viocnhAE3TGP5kvo+/Nv9mxQLbYWLVrglVdeQUBAAIKCgtzWifE0gmYXKysrUVtbi5CQup27q6qqLDKPfJ2rhrE8vQoHVbBxji9/f548jE+Afv36uXUzdD17t16Seqd6QUFw6NChePrppzFw4ECwLIudO3caUlz9havS6aMjQzircERHhoj6Ps5wd5Fsb+eL35/5MP71ympkbTwNABQIiUcTlB3697//HX//+9+hVCpx+/ZtZGZm4rnnnpO6bR7FVYWZ05PbI0ghMznmL1U4Dl0+jpfyZ2FMzjS8lD8Lhy4fd3eTiEBUTJt4K8GLLQYMGIABAwZI2RaP5qphLP1Vs78NK9H6Oe8m5jC+LxUTIJ5PvBWHfsBVw1j+WIWD6nh6N7GG8eliiLiaoOFQQqTmTOIRDaO6n1jD+FRMgLgaBUHiEawlGNlKPNL3HMrvVoDFvZ4DBULXEquYNhUTEN/HH3+MxMRErF692unXWrp0KZYuXSpCq/hdvXoV/fv3t+s5/fv3x9WrV5GXl4fMzEzBz5N0ODQ/Px/Lli2DWq3GpEmTMH68aWWErKwsbNq0yVC54Omnn7Z4DPEPjq6fo2FUzyHGML67ipq7ijvmO7du3YrPP/8cLVu2lPR9vJVkQbC0tBSLFy9GXl4eAgMDkZaWhu7du6NNmzaGxxQVFeHf//43HnvsMamaQbyEo4lH1HPwLb5cTEDK+U6NRoO5c+fiwoULKC8vR8uWLZGVlYW3334bpaWlePnll/Hhhx9i8uTJeOSRR1BeXo7c3FysWrUK33zzDWQyGXr16oWZM2eaFKsGgM8//xwbNmxAZGQkwsPDERcXBwD46quvsHXrVlRXV4NhGHz00Udo3bo1+vfvjyeffBLff/89qqur8d5776FDhw44e/Ys5syZg5qaGjRo0AAffPABGjdujJUrV2LHjh3QarXo3bs3Zs6cCaCuVFpGRgYuXLiA8PBwfPLJJ4iMjLT6vo6SbDj0yJEjiI+PR0REBEJDQ5GUlISdO3eaPKaoqAifffYZUlNTMW/ePNTW1lq8jlKpxNWrV03+KykpkarZxI36tOiGT1MXImfMMnyaulDQicHRYVTimdxR1NxVpJzv/Omnn6BQKJCTk4M9e/agtrYW3333HebNm4fY2FisXLkS7du3R2VlJZ5//nls3boVR44cwf79+w2b516+fBnr1683ed1ffvkFmzZtwubNm7F69WrDuffOnTvYu3cv1q5di23btmHAgAH4+uuvDc+LiIhAbm4u0tLSsGLFCgDAq6++ipdeegn5+fkYMmQI1qxZg4MHD6KoqAi5ubnYsmULSktL8c033wAAKioqMHnyZGzbtg3R0dH49ttvbb6vIyTrCZaVlSEmJsZwOzY2FoWFhYbbVVVVaN++PV5//XXcd999yMzMxKeffoqMjAyT11mzZg2ysrKkaibxcr7cc/BXvlhMAJB21KJr166IiIhAdnY2Ll68iEuXLuHu3bucj+3UqRMA4IcffkBKSophu6RRo0Zhy5YtJlNSx48fR79+/RAWFgYAGDx4MHQ6HerVq4cPP/wQ27dvx6VLl3Do0CG0b38vCcp4T8Hdu3ejoqIC169fR0JCAgBg3LhxAID33nsPhYWFhrqgNTU1aNq0Kbp06YLY2FhDr7NNmzaorKy0+b6OkCwIctXlNt6RIiwsDJ999pnh9pQpU/Dmm29aBMGJEydixIgRJsdKSkrcMndIZaE8jy+XISO+Rcr5zn379uHjjz9Geno6Ro4cicrKSqt7+emDnk6ns7hPo9GY3GYYxuRxcrkcKpUK165dwzPPPIMJEyagb9++iI6Oxtmz9wojGO8pCAAKhcLkdWtra1FWVgatVouJEydi8uTJAOpG/mQyGSorK032DNTvTWjrfR0h2XBoo0aNUF5ebrhdVlaG2NhYw+0///wTubm5htssy3JulBgeHo5mzZqZ/KffPdmV9GWhrldWg8W9slAFp4pd3hZiypFhVEJcTcqqU0ePHkVycjJGjRqF6OhonDhxwuYef/Hx8di+fTtqamqg0WiwadMmxMfHmzymR48eKCgowO3bt1FbW4s9e/YAqBsmbdGiBSZNmoROnTrh4MGDvO9Xv359NG7cGIcPHwZQl6yzZMkSxMfHY+vWraiqqoJGo8HLL79s2L2Ii73vK4RkPcGePXti6dKlqKioQEhICHbv3m1StTw4OBjvv/8+unfvjmbNmiE7OxsDBw6UqjlO85TdHaiaBiHeScpRi6eeegqvvvoqdu7cicDAQDz66KM29/hLSEjA2bNnMWrUKGg0GvTp0wcTJkwweUz79u0xceJEjB49GuHh4WjatCkAoFevXli3bh2GDBmCwMBAxMXF4cKFC7zvp98vcNGiRYiMjMSiRYsQGxuLc+fO4emnn4ZWq0WfPn0wYsQI/PHHH5yv4cj72sK7n6Cz8vPzsWLFCqjVaowePRpTp07F1KlTMWPGDHTs2BG7du3C0qVLoVar0blzZ/zrX/8ybKLIxx37CT75j63g+qIYAN986Jr5J1ftaUgIIf5C0nWCqampSE1NNTlmPA+YlJRk2LPQ03nC7g6+vibOnRuOAtTLJsQfUe1QG/QnxjttKxCsCoH6SltoK+qGBFy9u4Mvr4m7XXQQ5duXg9XULZPRKMtRvn05ALgkEFLNSkL8E5VN42FckgsAmMBqBLY6A1nUnw6XhXKGL6+JqzyQbQiAeqymFpUHsl3y/lSzkhD/RD1BHlwnRgRo0TTuKj5Nneby9vjymjiN8oZdx42JMYzpy71sQoh1FAR5eNqJ0ZVr4lw9PyYPbwiNspzzOB+xhjF9vWYlIYQbBUEennhidEU1DXfMj0UmjDeZEwQARh6EyAT+oghiJQv5ci+bEGIdzQnykHJxqydzx/xY/Q59EZ3yIuTh0QAYyMOjEZ3yos2kGLF6675cs5IQYh31BHn4a0kudw0D1+/Q1+5MUDF7675as5IQYh0FQRv88cToicPA1tAwJiHEGTQcSix40zAwDWMSQpxBPUFiwduGgf2xt04IEYdfBEEqh2U/CiyEEH/g80GQymERQgixxufnBKkcFiGEEGt8Pgh6WtUXQgghnsPng6AvF50mhBDiHJ8Pgt6U7k8IIcS1fD4xxtvS/QkhhLiOzwdBgNL9CSGEcPOLIEiINbSGlBD/RkGQ+C1aQ0oI8fnEGEKsoTWkhBAKgsRv0RpSQggNhxK3cfd8nDdtGUUIkQb1BIlb6Ofjyu9WgMW9+bhDl4+7rA20hpQQQkGQuIUnzMfRXoSEEBoOJW7hKfNxtIaUEP9GPUHiFlTTlRDiCSgIEreg+ThCiCeg4VDiFlTTlRDiCSgIEreh+ThCiLtJOhyan5+PIUOGYODAgcjOzrb6uIKCAvTv31/KphBCCCEWJOsJlpaWYvHixcjLy0NgYCDS0tLQvXt3tGnTxuRx5eXleO+996RqBiGEEGKVZD3BI0eOID4+HhEREQgNDUVSUhJ27txp8bi33noL06dPl6oZhBBCiFWS9QTLysoQExNjuB0bG4vCwkKTx3z55Zd4+OGH0alTJ6uvo1QqoVQqTY6VlJSI21hCCCF+SbIgyLKsxTGGYQz///z589i9eze++OIL3qC2Zs0aZGVlSdJGQggh/k2yINioUSOcPHnScLusrAyxsbGG2zt37sT169cxatQoqNVqlJWVYdy4cfj6669NXmfixIkYMWKEybGSkhKMHz9eqqYTQgjxEwzL1WUTQWlpKcaOHYvc3FyEhIQgLS0N8+fPR1xcnMVjr169ivT0dOzfv1/Qa1+9ehWJiYnYt28fmjVrJnbTCSGE+AnJEmMaNWqEjIwMpKenY/jw4Rg6dCji4uIwdepU/PLLL1K9LSGEECKYZD1BKVFPkBBCiBiodighhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiAhhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C1Jg2B+fj6GDBmCgQMHIjs72+L+PXv2IDU1FSkpKcjMzIRKpZKyOYQQQogJyYJgaWkpFi9ejK+//hpbt25FTk4Ofv31V8P9d+/exbx587B69Wps374dtbW12Lx5s1TNIYQQQixIFgSPHDmC+Ph4REREIDQ0FElJSdi5c6fh/tDQUOzfvx/R0dG4e/cubty4gfDwcKmaQwghhFiQS/XCZWVliImJMdyOjY1FYWGhyWMUCgW+++47vPbaa4iNjUXv3r0tXkepVEKpVJocKykpkabRhBBC/IpkQZBlWYtjDMNYHOvXrx+OHTuGf//735g7dy4+/PBDk/vXrFmDrKwsqZpJCCHEj0kWBBs1aoSTJ08abpeVlSE2NtZw++bNmygqKjL0/lJTU5GRkWHxOhMnTsSIESNMjpWUlGD8+PEStZwQQoi/kGxOsGfPnjh69CgqKipQXV2N3bt3o2/fvob7WZbFzJkz8eeffwIAduzYgc6dO1u8Tnh4OJo1a2byX+PGjaVqNiGEED8iaU8wIyMD6enpUKvVGD16NOLi4jB16lTMmDEDHTt2xPz58/HCCy+AYRi0adMG//rXv6RqDiGEEGKBYbkm7zzc1atXkZiYiH379qFZs2bubg4hhBAvRRVjCCGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8lmS1Qwkxd7voICoPZEOjvAF5eENEJoxH/Q59bT+REEIkQkGQuMTtooMo374crKYWAKBRlqN8+3IAoEBICHEbGg4lLlF5INsQAPVYTS0qD2S7qUWEEEJBkLiIRnnDruOEEOIKFASJS8jDG9p1nBBCXIGCIHGJyITxYORBJscYeRAiE8a7qUWEEEKJMcRF9MkvlB1KCPEkFASJy9Tv0JeCHiHEo9BwKCGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/JZXrhPUarUAgJKSEje3hBDirxo3bgy53CtPocSIV/6C169fBwCMH08ltwgh7rFv3z40a9bM3c0gTmJYlmXd3Qh71dTUoKioCDExMZDJZFYfV1JSgvHjxyM7OxuNGzd2YQupPY7ytDZRe2zztDa5qj3UE/QNXvkLBgcH4/HHHxf8+MaNG3vUFRu1xzZPaxO1xzZPa5OntYd4JkqMIYQQ4rcoCBJCCPFbFAQJIYT4LZ8OguHh4Zg+fTrCw8Pd3RQA1B4hPK1N1B7bPK1NntYe4tm8MjuUEEIIEYNP9wQJIYQQPhQECSGE+C2fDYL5+fkYMmQIBg4ciOzsbLe1486dOxg6dCiuXr0KADhy5AhSU1MxaNAgLF682KVtycrKQkpKClJSUrBo0SK3twcAlixZgiFDhiAlJQWrV6/2iDYBwHvvvYfMzEwAwNmzZzFq1CgkJSVh1qxZ0Gg0Lm1Leno6UlJSMGzYMAwbNgynT59269/3/v37MXLkSAwePBgLFiwA4L7fbOPGjYbvZdiwYejSpQvmzZvnEX9DxEuwPqikpIRNSEhgKysr2aqqKjY1NZW9cOGCy9vx888/s0OHDmUfeeQRtri4mK2urmb79evHXrlyhVWr1eyUKVPYgoICl7Tl8OHD7JgxY9ja2lpWpVKx6enpbH5+vtvaw7Ise+zYMTYtLY1Vq9VsdXU1m5CQwJ49e9atbWJZlj1y5AjbvXt39vXXX2dZlmVTUlLYn376iWVZln3jjTfY7Oxsl7VFp9OxvXr1YtVqteGYO/++r1y5wvbu3Zu9du0aq1Kp2LFjx7IFBQVu/81YlmXPnz/PDhw4kP3zzz89oj3EO/hkT/DIkSOIj49HREQEQkNDkZSUhJ07d7q8HRs2bMA///lPxMbGAgAKCwvRokULNG/eHHK5HKmpqS5rV0xMDDIzMxEYGAiFQoHWrVvj0qVLbmsPAHTr1g1ffvkl5HI5bty4Aa1WC6VS6dY23bx5E4sXL8aLL74IAPjjjz9QU1ODRx99FAAwcuRIl7bn4sWLYBgGU6dOxZNPPomvvvrKrX/fe/bswZAhQ9C4cWMoFAosXrwYISEhbv3N9ObOnYuMjAwUFxd7RHuId/DJIFhWVoaYmBjD7djYWJSWlrq8HQsXLjQp7+bOdrVt29ZwIr906RK+/fZbMAzj9u9JoVDg448/RkpKCnr06OH2327OnDnIyMgwpNebtycmJsal7VEqlejRowc++eQTfPHFF1i/fj3+/PNPt31Hly9fhlarxbPPPosnn3wSX3/9tdt/M6DuwrempgbJycke0R7iPXwyCLIcqz4YhnFDS0x5QrsuXLiAKVOm4PXXX8f999/v9vYAwIwZM3D06FFcu3YNly5dclubNm7ciCZNmqBHjx6GY+7+zR577DEsWrQIoaGhiIqKwujRo/Hxxx+7rU1arRZHjx7F+++/jw0bNuCXX34xzHe7oz1669evx+TJkwG4/zcj3sUrC2jb0qhRI5w8edJwu6yszDAk6U6NGjVCeXm54bar23Xq1CnMmDEDb775JlJSUnD8+HG3tue3336DSqVC+/btERISgkGDBmHnzp0mO4O4sk3ffvstrl+/jmHDhuHWrVu4e/cuGIYx+Y6uX7/u0u/o5MmTUKvVhsDMsizuu+8+t/1u0dHR6NGjB6KiogAAiYmJbv3NAEClUuHEiRN49913Abj/3xnxLj7ZE+zZsyeOHj2KiooKVFdXY/fu3ejbt6+7m4VOnTrh999/Nwwpbdu2zWXtunbtGl5++WV88MEHSElJcXt7AODq1at46623oFKpoFKpsG/fPqSlpbmtTatXr8a2bduwdetWzJgxA/3798c777yDoKAgnDp1CgCwZcsWl35Ht2/fxqJFi1BbW4s7d+5g8+bNeP/99932952QkIDvv/8eSqUSWq0Whw4dwuDBg936d/S///0PDzzwAEJDQwG4/++aeBef7QlmZGQgPT0darUao0ePRlxcnLubhaCgILz77rv429/+htraWvTr1w+DBw92yXuvWrUKtbW1hqtlAEhLS3NbewCgX79+OH36NIYPHw6ZTIZBgwYhJSUFUVFRbmsTlw8++ABvvfUWqqqq8PDDDyM9Pd1l752QkGD4jnQ6HcaNG4cuXbq47e+7U6dOeO655zBu3Dio1Wr06tULY8eORatWrdz2mxUXF5vsG+jOf2fE+1DZNEIIIX7LJ4dDCSGEECEoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiDxW5mZmVi1apVdz9m3b59h54SCggIsWbJEiqYRQlzEJ9cJEiKVxMREJCYmAgB++eUX3Lp1y80tIoQ4g4Ig8TjHjh3DokWL0KhRIxQXFyM4OBjvvvsuYmNj8a9//Qvnzp0DwzDo06cPXnnlFcjlcjz88MOYOHEijh07hrt37+KVV17BoEGDkJeXh127dmHFihUAYHFbLzc3Fzk5OVCr1bh16xamTp2KcePGIS8vD7m5uaiurka9evUwYsQI7Nq1Cy+99BLWr18PrVaL+vXro7CwEIMHD8aYMWMAAMuWLUNlZSXefPNNl39/hBDhKAgSj/Tf//4Xb7zxBh5//HGsW7cOM2fORNu2bREREYH8/Hyo1WpMmzYN//nPf/D8889Dq9WiQYMGyMvLw7lz5zBhwgSTHTz4VFVVYePGjVi5ciUiIyPx888/Y/LkyRg3bhwA4Ndff8X+/ftRr1495OXlAairnJKWlobKykpkZGRg7969WL58OcaMGQOdToeNGzfi888/l+z7IYSIg+YEiUd66KGHDEFs1KhROHv2LLZt24YJEyaAYRgEBgYiLS0NBw8eNDxnwoQJhuc++OCDOHHihKD3CgsLw/Lly/Hdd9/ho48+wvLly3H37l3D/e3atUO9evV4XyMhIQHl5eU4d+4cDh06hGbNmqFVq1b2fmxCiItRECQeyXhXAqBu9wTzCn86nQ4ajYbzOTqdDjKZDAzDmDxPrVZbvFdJSQmGDx+OP/74A126dMH//d//mdyvL8xsq71paWnIzc3Fpk2bkJaWZvM5hBD3oyBIPNK5c+dw7tw5AEBOTg46d+6M5ORkZGdng2VZqFQqbNiwAT179jQ8Z8uWLQCAM2fO4Pfff0fXrl0RFRWFCxcuoLa2FhqNBgcOHLB4r6KiIkRFReGll15Cnz59DI/RarW8bZTJZCZB+KmnnsLevXtx5swZDBw40NmvgBDiAjQnSDxSdHQ0PvroI/zxxx+IiorCokWLEBYWhgULFiA1NRVqtRp9+vTBiy++aHjOjz/+iA0bNkCn02Hx4sVo0KABevXqha5duyI5ORkxMTHo3r07/ve//5m8V69evZCbm4vBgwcjJCQEcXFxiIqKwuXLl3nb2KNHD/ztb3+DQqHA7Nmz0bBhQ3To0AGtW7eGQqGQ5HshhIiLdpEgHufYsWOYP38+tm3bJvg57dq1w9GjRw2bvbpDRUUFRo8ejezsbDRp0sRt7SCECEfDoYSIYMOGDRgyZAjS09MpABLiRagnSAghxG9RT5AQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/Nb/AzTNtGFHfP2fAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.FacetGrid(df, hue=\"artist_top_genre\", size=5) \\\n", + " .map(plt.scatter, \"popularity\", \"danceability\") \\\n", + " .add_legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.9" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "c61deff2839902ac8cb4ed411eb10fee", + "translation_date": "2025-09-04T02:00:15+00:00", + "source_file": "5-Clustering/1-Visualize/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/hi/5-Clustering/2-K-Means/README.md b/translations/hi/5-Clustering/2-K-Means/README.md new file mode 100644 index 000000000..694863171 --- /dev/null +++ b/translations/hi/5-Clustering/2-K-Means/README.md @@ -0,0 +1,261 @@ + +# K-Means क्लस्टरिंग + +## [Pre-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/) + +इस पाठ में, आप Scikit-learn और पहले आयात किए गए नाइजीरियाई संगीत डेटा सेट का उपयोग करके क्लस्टर बनाना सीखेंगे। हम क्लस्टरिंग के लिए K-Means की मूल बातें कवर करेंगे। ध्यान रखें कि, जैसा कि आपने पिछले पाठ में सीखा था, क्लस्टर के साथ काम करने के कई तरीके हैं और आपके डेटा के आधार पर उपयोग की जाने वाली विधि अलग हो सकती है। हम K-Means का प्रयास करेंगे क्योंकि यह सबसे सामान्य क्लस्टरिंग तकनीक है। चलिए शुरू करते हैं! + +आप जिन शब्दों के बारे में जानेंगे: + +- सिल्हूट स्कोरिंग +- एल्बो मेथड +- इनर्शिया +- वेरिएंस + +## परिचय + +[K-Means Clustering](https://wikipedia.org/wiki/K-means_clustering) सिग्नल प्रोसेसिंग के क्षेत्र से निकली एक विधि है। इसका उपयोग डेटा के समूहों को 'k' क्लस्टर में विभाजित और व्यवस्थित करने के लिए किया जाता है। प्रत्येक अवलोकन एक दिए गए डेटा पॉइंट को उसके निकटतम 'मीन' या क्लस्टर के केंद्र बिंदु के सबसे करीब समूहित करने का काम करता है। + +क्लस्टर को [Voronoi diagrams](https://wikipedia.org/wiki/Voronoi_diagram) के रूप में देखा जा सकता है, जिसमें एक बिंदु (या 'बीज') और उसका संबंधित क्षेत्र शामिल होता है। + +![voronoi diagram](../../../../translated_images/voronoi.1dc1613fb0439b9564615eca8df47a4bcd1ce06217e7e72325d2406ef2180795.hi.png) + +> [Jen Looper](https://twitter.com/jenlooper) द्वारा इन्फोग्राफिक + +K-Means क्लस्टरिंग प्रक्रिया [तीन चरणों में निष्पादित होती है](https://scikit-learn.org/stable/modules/clustering.html#k-means): + +1. एल्गोरिदम डेटा सेट से k-संख्या के केंद्र बिंदु चुनता है। इसके बाद यह लूप करता है: + 1. यह प्रत्येक सैंपल को निकटतम सेंट्रॉइड को असाइन करता है। + 2. यह पिछले सेंट्रॉइड्स को असाइन किए गए सभी सैंपल्स के औसत मान को लेकर नए सेंट्रॉइड बनाता है। + 3. फिर, यह नए और पुराने सेंट्रॉइड्स के बीच का अंतर गणना करता है और तब तक दोहराता है जब तक सेंट्रॉइड्स स्थिर न हो जाएं। + +K-Means का उपयोग करने की एक कमी यह है कि आपको 'k', यानी सेंट्रॉइड्स की संख्या स्थापित करनी होगी। सौभाग्य से, 'एल्बो मेथड' 'k' के लिए एक अच्छा प्रारंभिक मान अनुमान लगाने में मदद करता है। आप इसे अभी आजमाएंगे। + +## पूर्वापेक्षा + +आप इस पाठ के [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/notebook.ipynb) फ़ाइल में काम करेंगे, जिसमें पिछले पाठ में किया गया डेटा आयात और प्रारंभिक सफाई शामिल है। + +## अभ्यास - तैयारी + +गानों के डेटा पर एक बार फिर नज़र डालें। + +1. प्रत्येक कॉलम के लिए `boxplot()` कॉल करके एक बॉक्सप्लॉट बनाएं: + + ```python + plt.figure(figsize=(20,20), dpi=200) + + plt.subplot(4,3,1) + sns.boxplot(x = 'popularity', data = df) + + plt.subplot(4,3,2) + sns.boxplot(x = 'acousticness', data = df) + + plt.subplot(4,3,3) + sns.boxplot(x = 'energy', data = df) + + plt.subplot(4,3,4) + sns.boxplot(x = 'instrumentalness', data = df) + + plt.subplot(4,3,5) + sns.boxplot(x = 'liveness', data = df) + + plt.subplot(4,3,6) + sns.boxplot(x = 'loudness', data = df) + + plt.subplot(4,3,7) + sns.boxplot(x = 'speechiness', data = df) + + plt.subplot(4,3,8) + sns.boxplot(x = 'tempo', data = df) + + plt.subplot(4,3,9) + sns.boxplot(x = 'time_signature', data = df) + + plt.subplot(4,3,10) + sns.boxplot(x = 'danceability', data = df) + + plt.subplot(4,3,11) + sns.boxplot(x = 'length', data = df) + + plt.subplot(4,3,12) + sns.boxplot(x = 'release_date', data = df) + ``` + + यह डेटा थोड़ा शोरयुक्त है: प्रत्येक कॉलम को बॉक्सप्लॉट के रूप में देखकर, आप आउटलायर्स देख सकते हैं। + + ![outliers](../../../../translated_images/boxplots.8228c29dabd0f29227dd38624231a175f411f1d8d4d7c012cb770e00e4fdf8b6.hi.png) + +आप डेटा सेट के माध्यम से जा सकते हैं और इन आउटलायर्स को हटा सकते हैं, लेकिन इससे डेटा काफी न्यूनतम हो जाएगा। + +1. फिलहाल, तय करें कि आप अपने क्लस्टरिंग अभ्यास के लिए किन कॉलम्स का उपयोग करेंगे। समान रेंज वाले कॉलम चुनें और `artist_top_genre` कॉलम को संख्यात्मक डेटा के रूप में एन्कोड करें: + + ```python + from sklearn.preprocessing import LabelEncoder + le = LabelEncoder() + + X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')] + + y = df['artist_top_genre'] + + X['artist_top_genre'] = le.fit_transform(X['artist_top_genre']) + + y = le.transform(y) + ``` + +1. अब आपको यह तय करना होगा कि कितने क्लस्टर को लक्षित करना है। आप जानते हैं कि डेटा सेट से हमने 3 गाने की शैलियों को निकाला है, तो चलिए 3 का प्रयास करते हैं: + + ```python + from sklearn.cluster import KMeans + + nclusters = 3 + seed = 0 + + km = KMeans(n_clusters=nclusters, random_state=seed) + km.fit(X) + + # Predict the cluster for each data point + + y_cluster_kmeans = km.predict(X) + y_cluster_kmeans + ``` + +आप एक ऐरे देखते हैं जिसमें डेटा फ्रेम की प्रत्येक पंक्ति के लिए अनुमानित क्लस्टर (0, 1, या 2) प्रिंट किए गए हैं। + +1. इस ऐरे का उपयोग करके 'सिल्हूट स्कोर' की गणना करें: + + ```python + from sklearn import metrics + score = metrics.silhouette_score(X, y_cluster_kmeans) + score + ``` + +## सिल्हूट स्कोर + +1 के करीब सिल्हूट स्कोर देखें। यह स्कोर -1 से 1 तक भिन्न होता है, और यदि स्कोर 1 है, तो क्लस्टर घना और अन्य क्लस्टर से अच्छी तरह से अलग होता है। 0 के पास का मान ओवरलैपिंग क्लस्टर का प्रतिनिधित्व करता है, जिसमें सैंपल पड़ोसी क्लस्टर के निर्णय सीमा के बहुत करीब होते हैं। [(स्रोत)](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam) + +हमारा स्कोर **.53** है, जो बीच में है। यह संकेत देता है कि हमारा डेटा इस प्रकार की क्लस्टरिंग के लिए विशेष रूप से उपयुक्त नहीं है, लेकिन चलिए आगे बढ़ते हैं। + +### अभ्यास - मॉडल बनाएं + +1. `KMeans` आयात करें और क्लस्टरिंग प्रक्रिया शुरू करें। + + ```python + from sklearn.cluster import KMeans + wcss = [] + + for i in range(1, 11): + kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) + kmeans.fit(X) + wcss.append(kmeans.inertia_) + + ``` + + यहां कुछ हिस्से हैं जिन्हें समझाने की आवश्यकता है। + + > 🎓 रेंज: ये क्लस्टरिंग प्रक्रिया के पुनरावृत्तियां हैं। + + > 🎓 random_state: "सेंट्रॉइड प्रारंभिककरण के लिए यादृच्छिक संख्या पीढ़ी निर्धारित करता है।" [स्रोत](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans) + + > 🎓 WCSS: "within-cluster sums of squares" एक क्लस्टर के भीतर सभी बिंदुओं की औसत दूरी को क्लस्टर सेंट्रॉइड से मापता है। [स्रोत](https://medium.com/@ODSC/unsupervised-learning-evaluating-clusters-bd47eed175ce) + + > 🎓 इनर्शिया: K-Means एल्गोरिदम सेंट्रॉइड्स को चुनने का प्रयास करता है ताकि 'इनर्शिया' को कम किया जा सके, "जो मापता है कि क्लस्टर कितने आंतरिक रूप से सुसंगत हैं।" [स्रोत](https://scikit-learn.org/stable/modules/clustering.html)। मान प्रत्येक पुनरावृत्ति पर wcss चर में जोड़ा जाता है। + + > 🎓 k-means++: [Scikit-learn](https://scikit-learn.org/stable/modules/clustering.html#k-means) में आप 'k-means++' अनुकूलन का उपयोग कर सकते हैं, जो "सेंट्रॉइड्स को (आमतौर पर) एक-दूसरे से दूर प्रारंभिक करता है, जिससे यादृच्छिक प्रारंभिककरण की तुलना में बेहतर परिणाम प्राप्त होते हैं।" + +### एल्बो मेथड + +पहले, आपने अनुमान लगाया था कि, क्योंकि आपने 3 गाने की शैलियों को लक्षित किया है, आपको 3 क्लस्टर चुनने चाहिए। लेकिन क्या यह सही है? + +1. सुनिश्चित करने के लिए 'एल्बो मेथड' का उपयोग करें। + + ```python + plt.figure(figsize=(10,5)) + sns.lineplot(x=range(1, 11), y=wcss, marker='o', color='red') + plt.title('Elbow') + plt.xlabel('Number of clusters') + plt.ylabel('WCSS') + plt.show() + ``` + + पिछले चरण में बनाए गए `wcss` चर का उपयोग करके एक चार्ट बनाएं जो 'एल्बो' में मोड़ दिखाता है, जो क्लस्टर की इष्टतम संख्या को इंगित करता है। शायद यह **वास्तव में** 3 है! + + ![elbow method](../../../../translated_images/elbow.72676169eed744ff03677e71334a16c6b8f751e9e716e3d7f40dd7cdef674cca.hi.png) + +## अभ्यास - क्लस्टर प्रदर्शित करें + +1. प्रक्रिया को फिर से आजमाएं, इस बार तीन क्लस्टर सेट करें, और क्लस्टर को एक स्कैटरप्लॉट के रूप में प्रदर्शित करें: + + ```python + from sklearn.cluster import KMeans + kmeans = KMeans(n_clusters = 3) + kmeans.fit(X) + labels = kmeans.predict(X) + plt.scatter(df['popularity'],df['danceability'],c = labels) + plt.xlabel('popularity') + plt.ylabel('danceability') + plt.show() + ``` + +1. मॉडल की सटीकता जांचें: + + ```python + labels = kmeans.labels_ + + correct_labels = sum(y == labels) + + print("Result: %d out of %d samples were correctly labeled." % (correct_labels, y.size)) + + print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size))) + ``` + + इस मॉडल की सटीकता बहुत अच्छी नहीं है, और क्लस्टर के आकार से आपको इसका कारण पता चलता है। + + ![clusters](../../../../translated_images/clusters.b635354640d8e4fd4a49ef545495518e7be76172c97c13bd748f5b79f171f69a.hi.png) + + यह डेटा बहुत असंतुलित है, बहुत कम सहसंबद्ध है और कॉलम मानों के बीच बहुत अधिक भिन्नता है, जिससे क्लस्टर अच्छी तरह से नहीं बन पाते। वास्तव में, जो क्लस्टर बनते हैं वे शायद ऊपर परिभाषित तीन शैली श्रेणियों द्वारा भारी रूप से प्रभावित या विकृत होते हैं। यह एक सीखने की प्रक्रिया थी! + + Scikit-learn के दस्तावेज़ में, आप देख सकते हैं कि इस तरह के मॉडल, जिसमें क्लस्टर बहुत अच्छी तरह से परिभाषित नहीं हैं, में 'वेरिएंस' की समस्या है: + + ![problem models](../../../../translated_images/problems.f7fb539ccd80608e1f35c319cf5e3ad1809faa3c08537aead8018c6b5ba2e33a.hi.png) + > Scikit-learn से इन्फोग्राफिक + +## वेरिएंस + +वेरिएंस को "मीन से वर्गीय अंतर का औसत" के रूप में परिभाषित किया गया है [(स्रोत)](https://www.mathsisfun.com/data/standard-deviation.html)। इस क्लस्टरिंग समस्या के संदर्भ में, इसका मतलब है कि हमारे डेटा सेट की संख्याएं मीन से थोड़ा अधिक भटकने की प्रवृत्ति रखती हैं। + +✅ यह एक अच्छा समय है यह सोचने का कि आप इस समस्या को ठीक करने के लिए क्या कर सकते हैं। डेटा को थोड़ा और ट्वीक करें? अलग-अलग कॉलम का उपयोग करें? अलग एल्गोरिदम का उपयोग करें? संकेत: अपने डेटा को [स्केल करें](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/) ताकि इसे सामान्यीकृत किया जा सके और अन्य कॉलम का परीक्षण करें। + +> इस '[वेरिएंस कैलकुलेटर](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)' को आजमाएं ताकि इस अवधारणा को थोड़ा और समझा जा सके। + +--- + +## 🚀चुनौती + +इस नोटबुक के साथ कुछ समय बिताएं और पैरामीटर को ट्वीक करें। क्या आप डेटा को अधिक साफ करके (जैसे आउटलायर्स को हटाकर) मॉडल की सटीकता सुधार सकते हैं? आप वेट्स का उपयोग करके कुछ डेटा सैंपल्स को अधिक वेट दे सकते हैं। बेहतर क्लस्टर बनाने के लिए आप और क्या कर सकते हैं? + +संकेत: अपने डेटा को स्केल करने का प्रयास करें। नोटबुक में टिप्पणी की गई कोड है जो मानक स्केलिंग जोड़ता है ताकि डेटा कॉलम रेंज के संदर्भ में एक-दूसरे के अधिक करीब दिखें। आप पाएंगे कि जबकि सिल्हूट स्कोर नीचे चला जाता है, एल्बो ग्राफ में 'किंक' चिकना हो जाता है। ऐसा इसलिए है क्योंकि डेटा को बिना स्केल किए छोड़ने से कम वेरिएंस वाले डेटा को अधिक वेट मिलता है। इस समस्या पर थोड़ा और पढ़ें [यहां](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226)। + +## [Post-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/) + +## समीक्षा और स्व-अध्ययन + +एक K-Means सिम्युलेटर [जैसे इस](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/) को देखें। आप इस टूल का उपयोग करके सैंपल डेटा पॉइंट्स को विज़ुअलाइज़ कर सकते हैं और इसके सेंट्रॉइड्स निर्धारित कर सकते हैं। आप डेटा की रैंडमनेस, क्लस्टर की संख्या और सेंट्रॉइड्स की संख्या को संपादित कर सकते हैं। क्या इससे आपको यह समझने में मदद मिलती है कि डेटा को कैसे समूहित किया जा सकता है? + +साथ ही, [Stanford द्वारा K-Means पर इस हैंडआउट](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) को देखें। + +## असाइनमेंट + +[अलग-अलग क्लस्टरिंग विधियों का प्रयास करें](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/5-Clustering/2-K-Means/assignment.md b/translations/hi/5-Clustering/2-K-Means/assignment.md new file mode 100644 index 000000000..311130003 --- /dev/null +++ b/translations/hi/5-Clustering/2-K-Means/assignment.md @@ -0,0 +1,25 @@ + +# विभिन्न क्लस्टरिंग विधियों को आज़माएं + +## निर्देश + +इस पाठ में आपने K-Means क्लस्टरिंग के बारे में सीखा। कभी-कभी K-Means आपके डेटा के लिए उपयुक्त नहीं होता। एक नोटबुक बनाएं जिसमें इन पाठों से या कहीं और से डेटा का उपयोग करें (अपने स्रोत का उल्लेख करें) और K-Means का उपयोग किए बिना एक अलग क्लस्टरिंग विधि दिखाएं। आपने क्या सीखा? + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | --------------------------------------------------------------- | -------------------------------------------------------------------- | ---------------------------- | +| | एक नोटबुक प्रस्तुत की गई है जिसमें अच्छी तरह से प्रलेखित क्लस्टरिंग मॉडल है | एक नोटबुक प्रस्तुत की गई है जिसमें अच्छी प्रलेखन नहीं है और/या अधूरी है | अधूरा कार्य प्रस्तुत किया गया है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/5-Clustering/2-K-Means/notebook.ipynb b/translations/hi/5-Clustering/2-K-Means/notebook.ipynb new file mode 100644 index 000000000..f05e48f99 --- /dev/null +++ b/translations/hi/5-Clustering/2-K-Means/notebook.ipynb @@ -0,0 +1,229 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "3e5c8ab363e8d88f566d4365efc7e0bd", + "translation_date": "2025-09-04T02:09:46+00:00", + "source_file": "5-Clustering/2-K-Means/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                                1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                                3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                \n
                                " + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "हम केवल 3 शैलियों पर ध्यान केंद्रित करेंगे। शायद हम 3 समूह बना सकें!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
                                6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
                                \n
                                " + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/5-Clustering/2-K-Means/solution/Julia/README.md b/translations/hi/5-Clustering/2-K-Means/solution/Julia/README.md new file mode 100644 index 000000000..98b867231 --- /dev/null +++ b/translations/hi/5-Clustering/2-K-Means/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb b/translations/hi/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb new file mode 100644 index 000000000..b0adac2f2 --- /dev/null +++ b/translations/hi/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb @@ -0,0 +1,632 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "colab": { + "name": "lesson_14.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "coopTranslator": { + "original_hash": "ad65fb4aad0a156b42216e4929f490fc", + "translation_date": "2025-09-04T02:21:56+00:00", + "source_file": "5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb", + "language_code": "hi" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "GULATlQXLXyR" + }, + "source": [ + "## आर और टाइडी डेटा सिद्धांतों का उपयोग करके K-Means क्लस्टरिंग का अन्वेषण करें\n", + "\n", + "### [**प्री-लेक्चर क्विज़**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/)\n", + "\n", + "इस पाठ में, आप सीखेंगे कि Tidymodels पैकेज और आर इकोसिस्टम के अन्य पैकेजों (जिन्हें हम दोस्त 🧑‍🤝‍🧑 कहेंगे) और पहले से आयात किए गए नाइजीरियाई संगीत डेटा सेट का उपयोग करके क्लस्टर कैसे बनाएं। हम क्लस्टरिंग के लिए K-Means की मूल बातें कवर करेंगे। ध्यान रखें कि, जैसा कि आपने पिछले पाठ में सीखा, क्लस्टर्स के साथ काम करने के कई तरीके हैं और आप जो तरीका उपयोग करते हैं वह आपके डेटा पर निर्भर करता है। हम K-Means आज़माएंगे क्योंकि यह सबसे सामान्य क्लस्टरिंग तकनीक है। चलिए शुरू करते हैं!\n", + "\n", + "आप जिन शब्दों के बारे में जानेंगे:\n", + "\n", + "- सिल्हूट स्कोरिंग \n", + "- एल्बो विधि \n", + "- इनर्शिया \n", + "- वैरिएंस \n", + "\n", + "### **परिचय**\n", + "\n", + "[K-Means क्लस्टरिंग](https://wikipedia.org/wiki/K-means_clustering) सिग्नल प्रोसेसिंग के क्षेत्र से निकली एक विधि है। इसका उपयोग डेटा के समूहों को उनकी विशेषताओं में समानताओं के आधार पर `k क्लस्टर्स` में विभाजित और वर्गीकृत करने के लिए किया जाता है।\n", + "\n", + "क्लस्टर्स को [वोरोनॉय डायग्राम्स](https://wikipedia.org/wiki/Voronoi_diagram) के रूप में देखा जा सकता है, जिसमें एक बिंदु (या 'बीज') और उसका संबंधित क्षेत्र शामिल होता है।\n", + "\n", + "

                                \n", + " \n", + "

                                जेन लूपर द्वारा इन्फोग्राफिक
                                \n", + "\n", + "K-Means क्लस्टरिंग के निम्नलिखित चरण होते हैं:\n", + "\n", + "1. डेटा वैज्ञानिक सबसे पहले यह निर्दिष्ट करता है कि कितने क्लस्टर्स बनाए जाने हैं। \n", + "2. इसके बाद, एल्गोरिदम डेटा सेट से K ऑब्ज़र्वेशन को यादृच्छिक रूप से चुनता है, जो क्लस्टर्स के प्रारंभिक केंद्र (यानी सेंट्रॉइड्स) के रूप में कार्य करते हैं। \n", + "3. फिर, शेष प्रत्येक ऑब्ज़र्वेशन को उसके निकटतम सेंट्रॉइड को सौंपा जाता है। \n", + "4. इसके बाद, प्रत्येक क्लस्टर का नया औसत गणना किया जाता है और सेंट्रॉइड को उस औसत पर ले जाया जाता है। \n", + "5. अब जब केंद्रों को पुनः गणना कर लिया गया है, तो प्रत्येक ऑब्ज़र्वेशन को फिर से जांचा जाता है कि क्या यह किसी अन्य क्लस्टर के करीब हो सकता है। सभी ऑब्ज़ेक्ट्स को अपडेट किए गए क्लस्टर औसत का उपयोग करके फिर से असाइन किया जाता है। क्लस्टर असाइनमेंट और सेंट्रॉइड अपडेट चरणों को तब तक दोहराया जाता है जब तक क्लस्टर असाइनमेंट बदलना बंद न कर दें (यानी, जब कन्वर्जेंस प्राप्त हो जाए)। आमतौर पर, एल्गोरिदम तब समाप्त होता है जब प्रत्येक नई पुनरावृत्ति में सेंट्रॉइड्स की नगण्य गति होती है और क्लस्टर्स स्थिर हो जाते हैं। \n", + "\n", + "
                                \n", + "\n", + "> ध्यान दें कि प्रारंभिक k ऑब्ज़र्वेशन के यादृच्छिक चयन के कारण, जो प्रारंभिक सेंट्रॉइड्स के रूप में उपयोग किए जाते हैं, हमें हर बार प्रक्रिया लागू करने पर थोड़े अलग परिणाम मिल सकते हैं। इस कारण से, अधिकांश एल्गोरिदम कई *यादृच्छिक प्रारंभ* का उपयोग करते हैं और सबसे कम WCSS वाले पुनरावृत्ति को चुनते हैं। इसलिए, यह दृढ़ता से अनुशंसा की जाती है कि हमेशा K-Means को कई *nstart* मानों के साथ चलाएं ताकि *अवांछनीय स्थानीय ऑप्टिमम* से बचा जा सके। \n", + "\n", + "
                                \n", + "\n", + "एलिसन हॉर्स्ट के [आर्टवर्क](https://github.com/allisonhorst/stats-illustrations) का उपयोग करते हुए यह छोटा एनीमेशन क्लस्टरिंग प्रक्रिया को समझाता है:\n", + "\n", + "

                                \n", + " \n", + "

                                @allison_horst द्वारा आर्टवर्क
                                \n", + "\n", + "क्लस्टरिंग में एक मूलभूत प्रश्न यह उठता है: आप कैसे जानें कि अपने डेटा को कितने क्लस्टर्स में विभाजित करना है? K-Means का एक नुकसान यह है कि आपको `k`, यानी `सेंट्रॉइड्स` की संख्या स्थापित करनी होगी। सौभाग्य से, `एल्बो विधि` `k` के लिए एक अच्छा प्रारंभिक मान अनुमानित करने में मदद करती है। आप इसे अभी आज़माएंगे।\n", + "\n", + "### \n", + "\n", + "**पूर्वापेक्षा**\n", + "\n", + "हम वहीं से शुरू करेंगे जहां हमने [पिछले पाठ](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb) में छोड़ा था, जहां हमने डेटा सेट का विश्लेषण किया, कई विज़ुअलाइज़ेशन बनाए और डेटा सेट को रुचि के ऑब्ज़र्वेशन तक फ़िल्टर किया। इसे ज़रूर देखें!\n", + "\n", + "इस मॉड्यूल को पूरा करने के लिए हमें कुछ पैकेजों की आवश्यकता होगी। आप इन्हें इस प्रकार इंस्टॉल कर सकते हैं: `install.packages(c('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork'))`\n", + "\n", + "वैकल्पिक रूप से, नीचे दिया गया स्क्रिप्ट जांचता है कि क्या आपके पास इस मॉड्यूल को पूरा करने के लिए आवश्यक पैकेज हैं और यदि कुछ गायब हैं तो उन्हें आपके लिए इंस्टॉल करता है। \n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ah_tBi58LXyi" + }, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork')\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7e--UCUTLXym" + }, + "source": [ + "चलो तेजी से शुरुआत करते हैं!\n", + "\n", + "## 1. डेटा के साथ नृत्य: सबसे लोकप्रिय 3 संगीत शैलियों तक सीमित करें\n", + "\n", + "यह पिछले पाठ में किए गए कार्यों का पुनरावलोकन है। चलिए कुछ डेटा को छांटते और विश्लेषण करते हैं!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Ycamx7GGLXyn" + }, + "source": [ + "# Load the core tidyverse and make it available in your current R session\n", + "library(tidyverse)\n", + "\n", + "# Import the data into a tibble\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\", show_col_types = FALSE)\n", + "\n", + "# Narrow down to top 3 popular genres\n", + "nigerian_songs <- df %>% \n", + " # Concentrate on top 3 genres\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \n", + " # Remove unclassified observations\n", + " filter(popularity != 0)\n", + "\n", + "\n", + "\n", + "# Visualize popular genres using bar plots\n", + "theme_set(theme_light())\n", + "nigerian_songs %>%\n", + " count(artist_top_genre) %>%\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\n", + " fill = artist_top_genre)) +\n", + " geom_col(alpha = 0.8) +\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\n", + " ggtitle(\"Top genres\") +\n", + " theme(plot.title = element_text(hjust = 0.5))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b5h5zmkPLXyp" + }, + "source": [ + "🤩 यह अच्छा रहा!\n", + "\n", + "## 2. डेटा की और अधिक खोजबीन।\n", + "\n", + "यह डेटा कितना साफ-सुथरा है? चलिए बॉक्स प्लॉट्स का उपयोग करके आउटलायर्स की जांच करते हैं। हम उन संख्यात्मक कॉलम्स पर ध्यान केंद्रित करेंगे जिनमें कम आउटलायर्स हैं (हालांकि आप आउटलायर्स को साफ कर सकते हैं)। बॉक्स प्लॉट्स डेटा की रेंज दिखा सकते हैं और यह तय करने में मदद करेंगे कि किन कॉलम्स का उपयोग करना है। ध्यान दें, बॉक्स प्लॉट्स वेरिएंस नहीं दिखाते हैं, जो कि अच्छे क्लस्टरेबल डेटा का एक महत्वपूर्ण तत्व है। कृपया [इस चर्चा](https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot) को और पढ़ें।\n", + "\n", + "[बॉक्स प्लॉट्स](https://en.wikipedia.org/wiki/Box_plot) का उपयोग `संख्यात्मक` डेटा के वितरण को ग्राफिक रूप से दिखाने के लिए किया जाता है, तो चलिए लोकप्रिय संगीत शैलियों के साथ सभी संख्यात्मक कॉलम्स को *चुनने* से शुरू करते हैं।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HhNreJKLLXyq" + }, + "source": [ + "# Select top genre column and all other numeric columns\n", + "df_numeric <- nigerian_songs %>% \n", + " select(artist_top_genre, where(is.numeric)) \n", + "\n", + "# Display the data\n", + "df_numeric %>% \n", + " slice_head(n = 5)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uYXrwJRaLXyq" + }, + "source": [ + "देखें कि चयन सहायक `where` इसे कितना आसान बनाता है 💁? ऐसे अन्य फ़ंक्शन्स को [यहां](https://tidyselect.r-lib.org/) एक्सप्लोर करें।\n", + "\n", + "चूंकि हम प्रत्येक संख्यात्मक विशेषता के लिए एक बॉक्सप्लॉट बनाएंगे और लूप्स का उपयोग करने से बचना चाहते हैं, तो चलिए अपने डेटा को *लंबे* प्रारूप में पुनः व्यवस्थित करते हैं, जो हमें `facets` का लाभ उठाने की अनुमति देगा - उप-ग्राफ जो डेटा के प्रत्येक उपसेट को प्रदर्शित करते हैं।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "gd5bR3f8LXys" + }, + "source": [ + "# Pivot data from wide to long\n", + "df_numeric_long <- df_numeric %>% \n", + " pivot_longer(!artist_top_genre, names_to = \"feature_names\", values_to = \"values\") \n", + "\n", + "# Print out data\n", + "df_numeric_long %>% \n", + " slice_head(n = 15)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-7tE1swnLXyv" + }, + "source": [ + "अब कुछ और लंबा! अब समय है कुछ `ggplots` का! तो हम कौन सा `geom` इस्तेमाल करेंगे?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "r88bIsyuLXyy" + }, + "source": [ + "# Make a box plot\n", + "df_numeric_long %>% \n", + " ggplot(mapping = aes(x = feature_names, y = values, fill = feature_names)) +\n", + " geom_boxplot() +\n", + " facet_wrap(~ feature_names, ncol = 4, scales = \"free\") +\n", + " theme(legend.position = \"none\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EYVyKIUELXyz" + }, + "source": [ + "आसान-जीजी!\n", + "\n", + "अब हम देख सकते हैं कि यह डेटा थोड़ा शोरयुक्त है: प्रत्येक कॉलम को बॉक्सप्लॉट के रूप में देखकर, आप आउटलायर्स देख सकते हैं। आप डेटा सेट में जाकर इन आउटलायर्स को हटा सकते हैं, लेकिन इससे डेटा बहुत कम हो जाएगा।\n", + "\n", + "फिलहाल, चलिए तय करते हैं कि हम अपने क्लस्टरिंग अभ्यास के लिए कौन से कॉलम का उपयोग करेंगे। चलिए उन्हीं न्यूमेरिक कॉलम्स को चुनते हैं जिनकी रेंज समान है। हम `artist_top_genre` को न्यूमेरिक के रूप में एन्कोड कर सकते थे, लेकिन फिलहाल इसे छोड़ देते हैं।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-wkpINyZLXy0" + }, + "source": [ + "# Select variables with similar ranges\n", + "df_numeric_select <- df_numeric %>% \n", + " select(popularity, danceability, acousticness, loudness, energy) \n", + "\n", + "# Normalize data\n", + "# df_numeric_select <- scale(df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D7dLzgpqLXy1" + }, + "source": [ + "## 3. R में k-means क्लस्टरिंग की गणना करना\n", + "\n", + "हम R में बिल्ट-इन `kmeans` फ़ंक्शन का उपयोग करके k-means की गणना कर सकते हैं, देखें `help(\"kmeans()\")`। `kmeans()` फ़ंक्शन का मुख्य तर्क एक डेटा फ्रेम है जिसमें सभी कॉलम संख्यात्मक होते हैं।\n", + "\n", + "k-means क्लस्टरिंग का उपयोग करते समय पहला कदम यह तय करना होता है कि अंतिम समाधान में कितने क्लस्टर (k) बनाए जाएंगे। हमें पता है कि डेटा सेट से हमने 3 गाने की शैलियों को निकाला है, तो चलिए 3 का प्रयास करते हैं:\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "uC4EQ5w7LXy5" + }, + "source": [ + "set.seed(2056)\n", + "# Kmeans clustering for 3 clusters\n", + "kclust <- kmeans(\n", + " df_numeric_select,\n", + " # Specify the number of clusters\n", + " centers = 3,\n", + " # How many random initial configurations\n", + " nstart = 25\n", + ")\n", + "\n", + "# Display clustering object\n", + "kclust\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hzfhscWrLXy-" + }, + "source": [ + "kmeans ऑब्जेक्ट में कई प्रकार की जानकारी होती है, जिसे `help(\"kmeans()\")` में अच्छी तरह से समझाया गया है। फिलहाल, आइए कुछ मुख्य बिंदुओं पर ध्यान दें। हम देखते हैं कि डेटा को 3 क्लस्टर्स में विभाजित किया गया है, जिनके आकार 65, 110, 111 हैं। आउटपुट में 5 वेरिएबल्स के आधार पर इन 3 समूहों के क्लस्टर सेंटर्स (औसत) भी शामिल हैं।\n", + "\n", + "क्लस्टरिंग वेक्टर प्रत्येक ऑब्ज़र्वेशन के लिए क्लस्टर असाइनमेंट को दर्शाता है। आइए `augment` फंक्शन का उपयोग करके मूल डेटा सेट में क्लस्टर असाइनमेंट जोड़ें।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "0XwwpFGQLXy_" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "augment(kclust, df_numeric_select) %>% \n", + " relocate(.cluster) %>% \n", + " slice_head(n = 10)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NXIVXXACLXzA" + }, + "source": [ + "हमने अभी-अभी अपने डेटा सेट को 3 समूहों में विभाजित किया है। तो, हमारी क्लस्टरिंग कितनी अच्छी है 🤷? आइए `Silhouette score` पर नज़र डालते हैं।\n", + "\n", + "### **Silhouette स्कोर**\n", + "\n", + "[Silhouette विश्लेषण](https://en.wikipedia.org/wiki/Silhouette_(clustering)) का उपयोग परिणामस्वरूप बने क्लस्टर्स के बीच की दूरी का अध्ययन करने के लिए किया जा सकता है। यह स्कोर -1 से 1 के बीच होता है, और यदि स्कोर 1 के करीब है, तो क्लस्टर घना और अन्य क्लस्टर्स से अच्छी तरह से अलग होता है। 0 के करीब का मान उन क्लस्टर्स को दर्शाता है जो ओवरलैप हो रहे हैं और जिनके सैंपल पड़ोसी क्लस्टर्स की निर्णय सीमा के बहुत करीब हैं। [स्रोत](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam)।\n", + "\n", + "औसत Silhouette विधि विभिन्न *k* मानों के लिए ऑब्ज़र्वेशन्स के औसत Silhouette की गणना करती है। उच्च औसत Silhouette स्कोर एक अच्छी क्लस्टरिंग को इंगित करता है।\n", + "\n", + "`silhouette` फ़ंक्शन का उपयोग क्लस्टर पैकेज में औसत Silhouette चौड़ाई की गणना के लिए किया जाता है।\n", + "\n", + "> Silhouette को किसी भी [दूरी](https://en.wikipedia.org/wiki/Distance \"Distance\") मीट्रिक के साथ गणना की जा सकती है, जैसे कि [Euclidean distance](https://en.wikipedia.org/wiki/Euclidean_distance \"Euclidean distance\") या [Manhattan distance](https://en.wikipedia.org/wiki/Manhattan_distance \"Manhattan distance\"), जिन पर हमने [पिछले पाठ](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb) में चर्चा की थी।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Jn0McL28LXzB" + }, + "source": [ + "# Load cluster package\n", + "library(cluster)\n", + "\n", + "# Compute average silhouette score\n", + "ss <- silhouette(kclust$cluster,\n", + " # Compute euclidean distance\n", + " dist = dist(df_numeric_select))\n", + "mean(ss[, 3])\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QyQRn97nLXzC" + }, + "source": [ + "हमारा स्कोर **.549** है, जो ठीक बीच में आता है। इसका मतलब है कि हमारा डेटा इस प्रकार के क्लस्टरिंग के लिए विशेष रूप से उपयुक्त नहीं है। चलिए देखते हैं कि क्या हम इस अनुमान को विज़ुअली पुष्टि कर सकते हैं। [factoextra पैकेज](https://rpkgs.datanovia.com/factoextra/index.html) क्लस्टरिंग को विज़ुअलाइज़ करने के लिए फंक्शन्स (`fviz_cluster()`) प्रदान करता है।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "7a6Km1_FLXzD" + }, + "source": [ + "library(factoextra)\n", + "\n", + "# Visualize clustering results\n", + "fviz_cluster(kclust, df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IBwCWt-0LXzD" + }, + "source": [ + "क्लस्टर्स में ओवरलैप यह दर्शाता है कि हमारा डेटा इस प्रकार के क्लस्टरिंग के लिए विशेष रूप से उपयुक्त नहीं है, लेकिन चलिए आगे बढ़ते हैं।\n", + "\n", + "## 4. इष्टतम क्लस्टर्स का निर्धारण\n", + "\n", + "K-Means क्लस्टरिंग में अक्सर उठने वाला एक बुनियादी सवाल यह है - जब वर्ग लेबल ज्ञात नहीं होते, तो आप कैसे तय करेंगे कि अपने डेटा को कितने क्लस्टर्स में विभाजित करना है?\n", + "\n", + "हम इसे जानने के लिए एक तरीका आज़मा सकते हैं: `क्लस्टरिंग मॉडल्स की एक श्रृंखला बनाएं` जिसमें क्लस्टर्स की संख्या को क्रमिक रूप से बढ़ाया जाए (जैसे 1 से 10 तक), और क्लस्टरिंग मेट्रिक्स जैसे **सिलुएट स्कोर** का मूल्यांकन करें।\n", + "\n", + "आइए, *k* के विभिन्न मानों के लिए क्लस्टरिंग एल्गोरिदम को चलाकर और **Within Cluster Sum of Squares** (WCSS) का मूल्यांकन करके इष्टतम क्लस्टर्स की संख्या निर्धारित करें। कुल within-cluster sum of square (WCSS) क्लस्टरिंग की कॉम्पैक्टनेस को मापता है, और हम इसे यथासंभव छोटा रखना चाहते हैं, क्योंकि छोटे मान यह दर्शाते हैं कि डेटा पॉइंट्स एक-दूसरे के करीब हैं।\n", + "\n", + "आइए, 1 से 10 तक के `k` के विभिन्न विकल्पों का इस क्लस्टरिंग पर प्रभाव देखें।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "hSeIiylDLXzE" + }, + "source": [ + "# Create a series of clustering models\n", + "kclusts <- tibble(k = 1:10) %>% \n", + " # Perform kmeans clustering for 1,2,3 ... ,10 clusters\n", + " mutate(model = map(k, ~ kmeans(df_numeric_select, centers = .x, nstart = 25)),\n", + " # Farm out clustering metrics eg WCSS\n", + " glanced = map(model, ~ glance(.x))) %>% \n", + " unnest(cols = glanced)\n", + " \n", + "\n", + "# View clustering rsulsts\n", + "kclusts\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m7rS2U1eLXzE" + }, + "source": [ + "अब जब हमारे पास प्रत्येक क्लस्टरिंग एल्गोरिदम के लिए केंद्र *k* के साथ कुल क्लस्टर के भीतर का योग (tot.withinss) है, तो हम [एल्बो विधि](https://en.wikipedia.org/wiki/Elbow_method_(clustering)) का उपयोग करके क्लस्टर्स की आदर्श संख्या का पता लगाते हैं। इस विधि में WCSS को क्लस्टर्स की संख्या के अनुसार प्लॉट करना शामिल है, और [वक्र के एल्बो](https://en.wikipedia.org/wiki/Elbow_of_the_curve \"Elbow of the curve\") को क्लस्टर्स की संख्या के रूप में चुनना होता है।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "o_DjHGItLXzF" + }, + "source": [ + "set.seed(2056)\n", + "# Use elbow method to determine optimum number of clusters\n", + "kclusts %>% \n", + " ggplot(mapping = aes(x = k, y = tot.withinss)) +\n", + " geom_line(size = 1.2, alpha = 0.8, color = \"#FF7F0EFF\") +\n", + " geom_point(size = 2, color = \"#FF7F0EFF\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pLYyt5XSLXzG" + }, + "source": [ + "प्लॉट दिखाता है कि जब क्लस्टर्स की संख्या एक से दो तक बढ़ती है, तो WCSS (अर्थात *सघनता*) में बड़ी कमी होती है, और दो से तीन क्लस्टर्स तक एक और ध्यान देने योग्य कमी होती है। इसके बाद, कमी कम स्पष्ट हो जाती है, जिससे चार्ट में लगभग तीन क्लस्टर्स पर एक `कोहनी` 💪 बनती है। यह इस बात का अच्छा संकेत है कि डेटा पॉइंट्स के दो से तीन उचित रूप से अलग-अलग क्लस्टर्स हैं।\n", + "\n", + "अब हम आगे बढ़ सकते हैं और वह क्लस्टरिंग मॉडल निकाल सकते हैं जहाँ `k = 3` है:\n", + "\n", + "> `pull()`: एक सिंगल कॉलम निकालने के लिए उपयोग किया जाता है \n", + ">\n", + "> `pluck()`: लिस्ट जैसी डेटा संरचनाओं को इंडेक्स करने के लिए उपयोग किया जाता है \n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JP_JPKBILXzG" + }, + "source": [ + "# Extract k = 3 clustering\n", + "final_kmeans <- kclusts %>% \n", + " filter(k == 3) %>% \n", + " pull(model) %>% \n", + " pluck(1)\n", + "\n", + "\n", + "final_kmeans\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l_PDTu8tLXzI" + }, + "source": [ + "आइए प्राप्त किए गए क्लस्टर्स को विज़ुअलाइज़ करें। क्या आप `plotly` का उपयोग करके कुछ इंटरएक्टिविटी चाहते हैं?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "dNcleFe-LXzJ" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "results <- augment(final_kmeans, df_numeric_select) %>% \n", + " bind_cols(df_numeric %>% select(artist_top_genre)) \n", + "\n", + "# Plot cluster assignments\n", + "clust_plt <- results %>% \n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = .cluster, shape = artist_top_genre)) +\n", + " geom_point(size = 2, alpha = 0.8) +\n", + " paletteer::scale_color_paletteer_d(\"ggthemes::Tableau_10\")\n", + "\n", + "ggplotly(clust_plt)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6JUM_51VLXzK" + }, + "source": [ + "शायद हम यह उम्मीद कर सकते थे कि प्रत्येक क्लस्टर (जो विभिन्न रंगों द्वारा दर्शाए गए हैं) के पास अलग-अलग शैलियाँ (जो विभिन्न आकारों द्वारा दर्शाई गई हैं) होंगी।\n", + "\n", + "आइए मॉडल की सटीकता पर एक नज़र डालें।\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HdIMUGq7LXzL" + }, + "source": [ + "# Assign genres to predefined integers\n", + "label_count <- results %>% \n", + " group_by(artist_top_genre) %>% \n", + " mutate(id = cur_group_id()) %>% \n", + " ungroup() %>% \n", + " summarise(correct_labels = sum(.cluster == id))\n", + "\n", + "\n", + "# Print results \n", + "cat(\"Result:\", label_count$correct_labels, \"out of\", nrow(results), \"samples were correctly labeled.\")\n", + "\n", + "cat(\"\\nAccuracy score:\", label_count$correct_labels/nrow(results))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C50wvaAOLXzM" + }, + "source": [ + "इस मॉडल की सटीकता बुरी नहीं है, लेकिन बहुत अच्छी भी नहीं है। हो सकता है कि यह डेटा K-Means क्लस्टरिंग के लिए उपयुक्त न हो। यह डेटा बहुत असंतुलित है, आपस में कम संबंधित है, और कॉलम मानों के बीच बहुत अधिक विविधता है, जिससे क्लस्टरिंग अच्छी तरह से नहीं हो पाती। वास्तव में, जो क्लस्टर बनते हैं, वे शायद ऊपर परिभाषित तीन जेनर श्रेणियों से काफी प्रभावित या विकृत होते हैं।\n", + "\n", + "फिर भी, यह एक अच्छा सीखने का अनुभव था!\n", + "\n", + "Scikit-learn के दस्तावेज़ में, आप देख सकते हैं कि इस तरह के मॉडल में, जहां क्लस्टर बहुत स्पष्ट रूप से परिभाषित नहीं हैं, 'वैरिएंस' की समस्या होती है:\n", + "\n", + "

                                \n", + " \n", + "

                                Scikit-learn से लिया गया इन्फोग्राफिक
                                \n", + "\n", + "\n", + "\n", + "## **वैरिएंस**\n", + "\n", + "वैरिएंस को \"औसत से वर्गीय अंतर का औसत\" के रूप में परिभाषित किया गया है [स्रोत](https://www.mathsisfun.com/data/standard-deviation.html)। इस क्लस्टरिंग समस्या के संदर्भ में, इसका मतलब है कि हमारे डेटा सेट के नंबर औसत से बहुत अधिक विचलित हो रहे हैं।\n", + "\n", + "✅ यह एक अच्छा समय है इस समस्या को हल करने के तरीकों पर विचार करने का। डेटा को थोड़ा और समायोजित करें? अलग-अलग कॉलम का उपयोग करें? कोई अलग एल्गोरिदम आज़माएं? संकेत: अपने डेटा को [स्केल करें](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/) ताकि इसे सामान्यीकृत किया जा सके और अन्य कॉलम का परीक्षण करें।\n", + "\n", + "> इस '[वैरिएंस कैलकुलेटर](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)' का उपयोग करके इस अवधारणा को और बेहतर समझें।\n", + "\n", + "------------------------------------------------------------------------\n", + "\n", + "## **🚀चुनौती**\n", + "\n", + "इस नोटबुक के साथ कुछ समय बिताएं और पैरामीटर को समायोजित करें। क्या आप डेटा को और साफ करके (जैसे, आउटलायर्स को हटाकर) मॉडल की सटीकता सुधार सकते हैं? आप कुछ डेटा सैंपल्स को अधिक वेट दे सकते हैं। बेहतर क्लस्टर बनाने के लिए और क्या किया जा सकता है?\n", + "\n", + "संकेत: अपने डेटा को स्केल करने का प्रयास करें। नोटबुक में कमेंटेड कोड है जो स्टैंडर्ड स्केलिंग जोड़ता है ताकि डेटा कॉलम रेंज के मामले में एक-दूसरे से अधिक मेल खा सकें। आप पाएंगे कि जबकि सिलोएट स्कोर कम हो जाता है, एल्बो ग्राफ में 'किंक' स्मूद हो जाता है। ऐसा इसलिए है क्योंकि डेटा को बिना स्केल किए छोड़ने से कम वैरिएंस वाले डेटा को अधिक वेट मिल जाता है। इस समस्या पर और पढ़ें [यहां](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226)।\n", + "\n", + "## [**पोस्ट-लेक्चर क्विज़**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/)\n", + "\n", + "## **समीक्षा और स्व-अध्ययन**\n", + "\n", + "- K-Means सिम्युलेटर [जैसे इस](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/) को देखें। आप इस टूल का उपयोग सैंपल डेटा पॉइंट्स को विज़ुअलाइज़ करने और उनके सेंट्रॉइड्स निर्धारित करने के लिए कर सकते हैं। आप डेटा की रैंडमनेस, क्लस्टर्स की संख्या और सेंट्रॉइड्स की संख्या को एडिट कर सकते हैं। क्या इससे आपको यह समझने में मदद मिलती है कि डेटा को कैसे ग्रुप किया जा सकता है?\n", + "\n", + "- [K-Means पर यह हैंडआउट](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) स्टैनफोर्ड से भी देखें।\n", + "\n", + "क्या आप अपने नए सीखे गए क्लस्टरिंग कौशल को उन डेटा सेट्स पर आज़माना चाहते हैं जो K-Means क्लस्टरिंग के लिए उपयुक्त हैं? कृपया देखें:\n", + "\n", + "- [क्लस्टरिंग मॉडल्स को ट्रेन और इवैल्यूएट करें](https://rpubs.com/eR_ic/clustering) Tidymodels और उनके साथियों का उपयोग करके\n", + "\n", + "- [K-Means क्लस्टर एनालिसिस](https://uc-r.github.io/kmeans_clustering), UC बिज़नेस एनालिटिक्स R प्रोग्रामिंग गाइड\n", + "\n", + "- [टिडी डेटा प्रिंसिपल्स के साथ K-Means क्लस्टरिंग](https://www.tidymodels.org/learn/statistics/k-means/)\n", + "\n", + "## **असाइनमेंट**\n", + "\n", + "[अलग-अलग क्लस्टरिंग विधियों को आज़माएं](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/assignment.md)\n", + "\n", + "## धन्यवाद:\n", + "\n", + "[जेन लूपर](https://www.twitter.com/jenlooper) को इस मॉड्यूल के मूल Python संस्करण को बनाने के लिए ♥️\n", + "\n", + "[`एलिसन हॉर्स्ट`](https://twitter.com/allison_horst/) को अद्भुत चित्रण बनाने के लिए जो R को अधिक स्वागतयोग्य और आकर्षक बनाते हैं। उनके और चित्रण [यहां](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) देखें।\n", + "\n", + "खुशहाल सीखना,\n", + "\n", + "[एरिक](https://twitter.com/ericntay), गोल्ड माइक्रोसॉफ्ट लर्न स्टूडेंट एंबेसडर।\n", + "\n", + "

                                \n", + " \n", + "

                                @allison_horst द्वारा आर्टवर्क
                                \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/5-Clustering/2-K-Means/solution/notebook.ipynb b/translations/hi/5-Clustering/2-K-Means/solution/notebook.ipynb new file mode 100644 index 000000000..82c144868 --- /dev/null +++ b/translations/hi/5-Clustering/2-K-Means/solution/notebook.ipynb @@ -0,0 +1,544 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "e867e87e3129c8875423a82945f4ad5e", + "translation_date": "2025-09-04T02:11:54+00:00", + "source_file": "5-Clustering/2-K-Means/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                                1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                                3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                \n
                                " + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "हम केवल 3 शैलियों पर ध्यान केंद्रित करेंगे। शायद हम 3 समूह बना सकें!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
                                6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
                                \n
                                " + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "df.head()" + ] + }, + { + "source": [ + "इस डेटा की सफाई कितनी है? बॉक्स प्लॉट्स का उपयोग करके बाहरी मानों की जांच करें। हम उन कॉलम्स पर ध्यान केंद्रित करेंगे जिनमें बाहरी मान कम हैं (हालांकि आप बाहरी मानों को साफ कर सकते हैं)। बॉक्स प्लॉट्स डेटा की रेंज दिखा सकते हैं और यह तय करने में मदद करेंगे कि किन कॉलम्स का उपयोग करना है। ध्यान दें, बॉक्स प्लॉट्स वैरिएंस नहीं दिखाते, जो कि अच्छे क्लस्टरेबल डेटा का एक महत्वपूर्ण तत्व है (https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot)।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADFQAAAxLCAYAAAAjUVg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdsU5bZxiA4R/XFalaEEsHS1xCOpbroL3Qluug3Zp7YGAzqdRIwe7QMBAlEBrsY/w+z2QfWfgbLMv/d/SKg/V6PQAAAAAAAAAAAAAAAEpmUw8AAAAAAAAAAAAAAACwbYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyJlv+w0PDg4Oxxg/fXh6Pca43fYMAAAA7Lxvxhg/fnj813q9fjflMPBc7EUAAAD4QnYj7B17EQAAAL7QVvciWw8qxn+H4z8meF8AAABepp/HGH9OPQQ8E3sRAAAAnspuhH1hLwIAAMBTbXwvMtvkHwcAAAAAAAAAAAAAANhFU/yHiuu7B5eXl2OxWEwwAgAAALvs6upqnJ2d3T29fui18MLYiwAAAPAouxH2lL0IAAAAj9r2XmSKoOL27sFisRinp6cTjAAAAMALcvv4S+DFsBcBAADgqexG2Bf2IgAAADzVxvcis02/AQAAAAAAAAAAAAAAwK4RVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5MynHgAKVqvVWC6XU49BwGq1Gjc3N/euHR0djdlMP8fmHB8f+4wBAMAn2AfwMed2do0zPQAAAAB8PfcDdoc9/PbYL7NPBBWwBcvlcpyfn089BsBGXFxcjJOTk6nHAACAnWMfAOw6Z3oAAAAA+HruB1Bkv8w+kQYBAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx4Aqv5+/etYzw+nHoN98/6f8cOb3+9devv6lzHmryYaiH1z8P7d+P7Nb1OPAQAAL5Z9QJxzOxNypgcAAACA7XE/YCL28Bthv8y+E1TARNbzw7H+9rupx2DPHHzq4vyVzxoAAMCOsA9oc24HAAAAAGhwP2Aa9vDA/zGbegAAAAAAAAAAAAAAAIBtE1QAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx5g16xWq7FcLu9dOz4+HrOZ9gQAAHj5nHmAh/iOAAAAdo1zCgCwLX53AAD7zG+dzxNUfGS5XI7z8/N71y4uLsbJyclEEwEAADwfZx7gIb4jAACAXeOcAgBsi98dAMA+81vn8yQlAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAwL/s3bFOXGcax+FvWMJqdtcYuYi3MJeQckpzEUlBJJB8AUikyAXkCtIQcQGRQApFvO7T2SVlcgVhG9NZFLMmxLNFtljHY3xsw5x3zv95JDdnBnhlffqY8838bAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAACiXF5e9j0CUJg9gq4qr5XKswEAQCWCCgAAAAAAAABiTKfT9vXXX7fpdNr3KEBB9gi6qrxWKs8GAADVCCoAAAAAAAAAiHF0dNR+/vnndnx83PcoQEH2CLqqvFYqzwYAANUIKgAAAAAAAACIcHZ21k5OTlprrZ2cnLSzs7OeJwIqsUfQVeW1Unk2AACoSFABAAAAAAAAwODNZrN2cHDQrq6uWmut/fbbb+3g4KDNZrOeJwMqsEfQVeW1Unk2AACoSlABAAAAAAAAwOA9ffq0nZ6evnbt9PS0PXv2rKeJgErsEXRVea1Ung0AAKoSVAAAAAAAAAAwaNPptB0eHs597PDwsE2n0wVPBFRij6Crymul8mwAAFCZoAIAAAAAAACAQTs6Omrn5+dzH3v+/Hk7Pj5e8ERAJfYIuqq8VirPBgAAlQkqAAAAAAAAABisX3/9tZ2cnFz7nB9++KGdnZ0taCKgEnsEXVVeK5VnAwCA6gQVAAAAAAAAAAzSbDZr3333Xbu6urr2eVdXV+3g4KDNZrMFTQZUYI+gq8prpfJsAACwDFb7HqCaV69evXHtxYsXPUzCkMxdQ25QgWU0Z+/yexJguczbt+fdBwGZnIvcLOcBQCnu6QFYUh97lvH06dN2enra6bmnp6ft2bNnbWtrq/P3B5abPYKuKq+VyrMtG+ejwIfyfgCD53x5EHxe5O1uPKgYjUYP3vGUf970z7xJFxcXb1x79OhRD5MweL+/bK39re8pAN7P7y/fuOT3JMDyu7i4aPfu3et7DBgE5yK8k/MAoC/u6QEYkK5nGdPptB0eHr7X9z48PGyTyaSNx+MPHQ9iLdu5iD2CriqvlcqzLSPno8CN8n4AQ+J8ebB8XuQPK7fwPc/e8adbEg0AAACwfJyLAAAAFHF0dNTOz8/f62ueP3/ejo+Pb2kiGLylOhexR9BV5bVSeTYAAFgWtxFUAAAAAAAAAEBvLi8v2+PHjz/oa3/88cd2eXl5wxMBldgj6KryWqk8GwAALJPbCCo23/Fncgs/EwAAAKAC5yIAAAAFrK2ttc8///yDvvaLL75oa2trNzwRRFiacxF7BF1VXiuVZwMAgGWyetPfcDab/fu6x0ej0U3/yBt1586dN659//337e7duz1Mw1C8ePGiPXr06PWLf/lrP8MAfIw5e5ffkwDLZd5r03n3QcCHcS7C/3MeAJTinh6AJfUxZxm7u7vtp59+aufn551/3v3799vOzs57zQj8YdnORewRdFV5rVSebRk5HwU+lPcDGDzny4Pg8yJvd+NBxbJbWXnzP+24e/du29jY6GEaBq3YYRFAJ3P2Lr8nAZbfvPsgIJNzkQVwHgD0xT09AAPS9SxjPB63vb299s0333T+3nt7e208Hn/oaMASsUfQVeW1Unm2ZeR8FLhR3g9gSJwvD5bPi/zB3wIAAAAAAAAAg7S1tdUmk0mn504mk/bw4cNbngioxB5BV5XXSuXZAABgGQgqAAAAAAAAABik0WjU9vf32+rq6rXPW11dbfv7+23kX5GFKPYIuqq8VirPBgAAy0BQAQAAAAAAAMBgbW5utu3t7Wuf8+WXX7bNzc0FTQRUYo+gq8prpfJsAABQnaACAAAAAAAAgEHb3d1tn3766dzH7t+/33Z2dhY8EVCJPYKuKq+VyrMBAEBlggoAAAAAAAAABm08Hre9vb25j+3t7bXxeLzgiYBK7BF0VXmtVJ4NAAAqE1QAAAAAAAAAMHhbW1ttMpm8dm0ymbSHDx/2NBFQiT2CriqvlcqzAQBAVYIKAAAAAAAAAAZvNBq1/f39trq62lpr7ZNPPmlfffVVG41GPU8GVGCPoKvKa6XybAAAUJWgAgAAAAAAAIAIm5ubbXt7u7XW2vb2dnvw4EHPEwGV2CPoqvJaqTwbAABUJKgAAAAAAAAAIMbu7m777LPP2s7OTt+jAAXZI+iq8lqpPBsAAFSz2vcAAAAAAAAAALAo4/G4ffvtt21tba3vUYCC7BF0VXmtVJ4NAACq8T9UAAAAAAAAABDFB0yB69gj6KryWqk8GwAAVCKoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAKrtqYAAACAASURBVAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDirfQ9Qzfr6envy5Mkb1wAAAIbAPQ9wHXsEAABQjfsUAGBRvO4AAIbMa523E1T8ycrKStvY2Oh7DAAAgFvhnge4jj0CAACoxn0KALAoXncAAEPmtc7brfQ9AAAAAAAAAAAAAAAAwKIJKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiLPa9wCQanT1su8RGKKr/8y9Nlr8JAyUvQsAAD6O19Th3LfTI/sPAAAAACyO87ieOIe/FdYzQyeogJ78/ZfHfY9AiH/88q++RwAAAOB/nAfwZ+7bAQAAAACGx/sBdTiHB95lpe8BAAAAAAAAAAAAAAAAFk1QAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcVb7HgASrK+vtydPnvQ9BgFevXrVLi4uXrt2586dtrKin+P2rK+v9z0CAACU5DyAP3PfTjXu6QEAAADg43k/oA7n8IvjfJkhEVTAAqysrLSNjY2+xyDEvXv3+h4BAACA5jyA+dy3AwAAAAAMi/cDanEOD7wvyRUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAwH/Zu+8w6YoyYeP3Qw4CgqCIqAQjgooCKyDyIqYFQWFFQFExYVhZw+oiqyzgmpVVVIwgQQwogih8JhAMyC6goIgiBkBQkIwE4SU83x9V7RyaDjPzdvf0TN+/6zpXn9OnzjnVXWd6uqrrqZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNnGXm4JpLt1auvPLKObi8JEmSJGnctdUXl+6WTpqHbBeRJEmSJPVl24gWKNtFJEmSJEl9jbpdJDJz2Ne49wUjNgPOGelFJUmSJEnz2eaZee5cZ0IaBNtFJEmSJEmzYNuIFgTbRSRJkiRJszD0dpGlhnlySZIkSZIkSZIkSZIkSZIkSZKkcTQXM1QsD2xSN68B7h7RpddmaqSDzYGrRnRdDZ5luXBYlguHZblwWJYLh2W5cFiWC4vlOX1LA2vV9Qsy8465zIw0KHPYLjITflZpEnnfa1J572sSed9rUnnvzz+2jWjBmSftIhos//9oUniva5J4v2tSeK9rkozj/T7SdpFlhnnyTuoLGvl0pBHR3LwqM68YdR40GJblwmFZLhyW5cJhWS4cluXCYVkuLJbnjF021xmQBm2u2kVmws8qTSLve00q731NIu97TSrv/XnLthEtKPOhXUSD5f8fTQrvdU0S73dNCu91TZIxvt9H1i6y1KguJEmSJEmSJEmSJEmSJEmSJEmSNC4MqJAkSZIkSZIkSZIkSZIkSZIkSRPHgApJkiRJkiRJkiRJkiRJkiRJkjRxDKiQJEmSJEmSJEmSJEmSJEmSJEkTx4AKSZIkSZIkSZIkSZIkSZIkSZI0cQyokCRJkiRJkiRJkiRJkiRJkiRJE8eACkmSJEmSJEmSJEmSJEmSJEmSNHEiM+c6D5IkSZIkSZIkSZIkSZIkSZIkSSPlDBWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJs5EBFRExMMj4pCIuCgibo2I6yPinIh4W0SsNNf5m2QR8cCIeG5EvCsivh0R10ZE1uWoWZzvnyPixIi4IiLuqI8nRsQ/DyH7aoiIzSLivyLie433/5aIuDgijoyIp87wfJblHIiIVSNij/qZ+cOI+H1E3BQRiyPi6og4IyL+IyIeMM3zbRURx0bEZRFxe0RcFRHfjYg9h/1a1FtEfKDxeZsRsWgax/h3OYfayqvXcsY0zmVZjpGIeFhEHBwR50bENfXz8vKI+HH9jrRxn+MtzzlQ/ydO9++y72et5Shp0EbVFuLnl8bNMO/9iFgpInaNiE/Vc94QEXdGxHURcVZEHBQRaw/qtUjTNarP/LZrrhQRf2x81710GNeRehnlvR8Rz4iIo6K0l94apc304og4PiJeFxH3G+T1pG5Gcd9HxHpR2o9/FhE31u8710fET6P8DvTAQVxHkjS/WN/WpLCOrUlivVqTwrq0FroYcD/saV5zzyh9ha+K0s/psij9RLccxvVGITJzrvMwVBGxE3AssGqXJBcDO2bm70eXK7VERK8b8OjM3Hua51kK+Czwyh7JDgdek5n3TD+Hmo6I+BGwzTSSHgO8OjMX9ziXZTmHIuIZwPenkfRaYK/M/G6Pcx0EHED34L1TgBdk5u0zzaeWTEQ8ETgHWKbx9HaZeUaX9P5djoE+/zObfpiZi7qcw7IcMxGxL/A+YOUeyQ7NzDd1ONbynENRgpe2ncEh9wAPy8w/t53HcpQ0cKNoC/HzS+NomPd+RDweOBPo98Pe34B9MvO4mV5Dmo25av+OiA8D/9546rLMXG+Q15B6GdW9HxGrA0cCz+uTdNPMPH9JriX1M6Lv+S8BPgOs2CPZ9cAemTmd3xIkSQuA9W1NCuvYmiTWqzUprEtrEgyqH/Y0r7UicDywQ5ck9wDvysyDB3XNUVnQM1RExKbAcZQPw1uAdwBbAdsDn6vJHgWcEhGrzEkm1fQn4HuzPPY9THXiOA/YE9iiPp5Xn38V8O4lyaC6Wqc+/gU4FHgB5f3fEngL0Oo4+FLgqD7nsizn3uWU4Jc3ArtSynFrYHfga8DdwJrANyPiCZ1OEBGvAQ6k/J/5A6VMtwCeD5xek+0IfH5or0IdNTq+LQNcPc3D/LscL58CNumxvLzHsZblGImIdwIfowRTXAy8DVgEbAo8o27/lFLZ6MTynFsvp/ff4iaU/50tp7UHU1SWo6SBGmFbiJ9fGisjuPdXZapzx5nA/sAzgScBz6b8WHJPTffFcJYWjcBctX/X674JuB24eVDnlaZrVPd+RKxGGXym1enjRODFwFOAzSltp4cCV8z2GtJ0jeK+j4itKb/hrEj5XnMkpU1/C8rvPt+qSdcAToqIDWZzHUnS/GJ9W5PCOrYmifVqTQrr0ppQS9IPezo+z1QwxelM3e+vpPQTXQo4KCL2GWIehiMzF+wC/AhI4E5gyw7731b3J3DQXOd3EhfgYOC5wIPq9nqNMjlqmud4VC3jpIy4vmLb/pXq86174RFz/boX2gKcDLwQWLrL/jWB3zbK9mmW5Xgu3cqwLc3zG2V5Qof9awA31v2XAWu2XwP4ZuMci+b6dU/SQmmMSeA3wHv7lYN/l+OzLOl3FstyvBZKBb1VpkcDy/ZIu5zlOT8X4AONct7LcnRxcRnFwgjaQvz8chnHZdj3PuVHluOAjXqkeR7lB5MEfk+dHdjFZVjLKD7zO5xzaeDces4DgEvr+qVz/X64TM4yqnufMuhMUjo27dwjXQDLzPX74rKwlxF9zz+5cY7Xd0lzSCPNJ+b6fXFxcXFxGf5ifdtlUhbr2C6TtFivdpmUxbq0y6QsDKAf9jSv8/TGeb9JW19TSj/hy+r+G4DV5/q9mcmyYGeoiIgtgG3q5hGZeVaHZIdQOpQCvDEilh1J5vQPmXlgZp6cmX9dgtO8iTLSOsC+mfn3tmvcBuxbN5cB3rwE11IHmfnczPxqZt7dZf+13Ht6whd0OZVlOce6lWFbmm9QAmRg6nO26VXAanV9v1r+7dd4PWWmCyhfTjUCEfEw4L/r5muBxdM4zL/LhcOyHBN1pphP1c1fAK/MzDu7pc/MTn+rlueYq+X84rp5C3BCh2SWo6SBGmFbiJ9fGiujuPcz86eZuXtm/rpHmpOY+p+/IWXmMWko5rD9+43AkyltQx8YwPmkGRnVvR8RTwVeUjffmZnf7JY2i7tmeg1pukb4mb9VfbwuMz/ZJc27GutbzuIakqR5xPq2JoV1bE0S69WaFNalNUkG1A97Ot5aH++iBBDdq69p7Se6X928P6Uf6byxYAMqKCOotxzZKUFm3kOJhIRSeNsNO1MarIgIpqYFuygz/7dTuvp8qwP48+pxGq3TG+sbtu+0LOed1lSTK3TY1/r8/RudO4+SmVcAp9bN7Qc5JaZ6OowyZe7RmfnDfon9u1w4LMux8yzgkXX9AzNtHLI8543tgYfU9eNr5+J/sBwlDcnQ20L8/NKYGqd2wJ7tH9IAjfy+j4iHM/Xj32u7BH9Lwzaqe/8N9fEm4BOzOF4apFHd98vVx0u6JcjMm4DWIErLdUsnSVowrG9rUljH1iSxXq1JYV1aGqDav3P7unlq7f/ZyQmUfqMAuww9YwO0kAMqnlofbwV+1iNds0Pp1sPLjoZkfWCdut6vc3Br/0MoU9potJZvrHeaBcGynCci4tHAE+vmRW37lgO2qJtn9an0t8pxeWCzgWZS9xERL6RM7XU9U9Gi/fh3uXBYluNlt/qYlOkfAYiINSLikRGxRp/jLc/54aWN9WM67LccJQ3DKNpC/PzSOBqndsB+7R/SoMzFff9JYGXgC5l5xhKeS5qtod/7tY2zFUD6/cy8vT6/dEQ8NCLWi4hOA81IwzKqz/xWQPT63RJExKrAmm3pJUkLl/VtTQrr2Jok1qs1KaxLS4O1OVMBQV1/I679RVsD8m0+oFm9RmIhB1Q8tj7+vs+ov83OwI/tmkrjaqPG+kVdU913v2U9ets21n/TYb9lOcYiYqXayfctlH+Iy9RdH21L+ihg6bpuOY6JiLg/cGjd3K9OrzUd/l2Op90i4tcRcVtE3BwRv4uIoyOiV6S8ZTlenlIfL83MmyPiRRFxAXAdcDFwXUT8NiLeGhHLdzje8hxzEXE/piLtLwPO6JDMcpQ0DKNoC/HzS+NonNoB+7V/SIMy0vs+IvYAdgBuAP59tueRBmAU9/4TmJqZ94KIWDUiPkoZSfBPlBEHb4qI70fEohmeW5qNUX3mf7o+PiAiXtslzQEd0kuSFi7r25oU1rE1SaxXa1JYl5YGaza/ES8DPHI42Rm8BRlQUSMYWxFd3aYVASAzb6BEoQE8dJj50lCs21jvWdbA5Y11y3qEImIp4O2Np77aIZllOWYiYu+IyIhIyufkxcAhwINqkvcDX2o7zHIcTx8E1gbOBI6YwXGW53jaiFKJWxG4H/AIykj4P4iIEyNitQ7HWJZjov5PfEzdvDYiDgW+CGzclvRRwIco5Xr/tn2W5/j7F8qoQgDHZmZ2SGM5ShqoEbaF+PmlsTJO7YAR8QRgx7p5QWbawUNDMer7PiJWZ2pQjbdn5jWzOY+0pEZ47zd/HFwKOBd4I9Csny8HPINSb99vhueXpm3En/mfZ2qWzcMi4nMRsVNEbBYRu0bEiUzNfvyezDx1FteQJM0T1rc1Kaxja5JYr9aksC4tDcWC/414QQZUAKs01m+ZRvrWB+L9hpAXDddMyvrWxrplPVpvBrao6ydkZqdptCzL+eN8YIvM3L9DB1HLccxExDbAq4C7gNd26dTbjeU5Xm4DvgK8GtgG2BR4FvAeyswGAM8HTuowXZplOT5WY+o7+CbAvwFXAnsBawArUUZZak1/txWlAt5keY6/lzbWj+mSxnKUNGijagvx80vjZizaAevMYoczNWvjOwZ5fqnNqO/7D1EG2DgL+NwszyENwqju/TUa6/tRRlH7DqWNewXggcDrgJuAAN4fEc+b4TWk6RrZZ35m3p2ZLwN2A35BaVf+JnAO8HVK2+PpwDMz850zPb8kad6xvq1JYR1bk8R6tSaFdWlp8Bb8b8QLNaBihcb64mmkv6M+rjiEvGi4ZlLWdzTWLesRiYhtKTMZAFxN+ULciWU5fr5B6ey7CaVSsydwIvBE4MsR8dwOx1iOYyQilgM+S6mAfiQzfzXDU1ie4+UhmblnZh6emT/JzPMz8/u1wvU44Lyablvu+1lrWY6PlRvrK1ACZbbLzC9m5g2Z+ffM/BHwdEplG2CXiPintuNaLM8xExHrAovq5v9m5sVdklqOkgZtVG0hfn5p3IxLO+AngM3q+tGZ+a0Bn19qGtl9HxFPA17B7AZqkAZtVPd+e939+8BzM/OczLwjM6/JzE8DzwXuqeneFxExw+tI0zHS7zoR8VjKQBGbdEmyJfDKiHjIbM4vSZpXrG9rUljH1iSxXq1JYV1aGrwF/xvxQg2ouL2xvtw00i9fH/8+hLxouGZS1ss31i3rEYiIx1E64C9DKavdMvPqLsktyzGTmTdm5q/qck5mfiUzd6V8AdyAMgr+3m2HWY7j5T+BxwB/Ag6exfGW5xjJzBt77Psr8ALgzvrUvm1JLMvxcXvb9uGZ+dv2RJn5d+49ytLuXc5heY6fvZiqZx3dI53lKGnQRtUW4ueXxs2ctwNGxP6UUaegjDr1r4M6t9TFSO77OhJsa6CGQzPzguXcewAAIABJREFUlzM5XhqCufi+A7BfZt7dnigzfwKcUDcfS/cfzaUlMbLvOnW247OAnYA/Ay8B1q7XfSjlO85twB7A2fU3IEnSwmV9W5PCOrYmifVqTQrr0tLgLfjfiBdqQMXNjfXpTBfSioqczvQ+Gi8zKetm9KtlPWQRsT7wPWB14G5gjzridjeW5TyRmV8Avkb5H/KJiGhO1Wc5jomIeAywf93cNzNv7ZW+C8tzHsnMP1JGdgB4RESs09htWY6Pm9u2v9cj7WmUEWoANu9yDstz/LykPt4BHNcjneUoadBG1Rbi55fGzZy2A0bEa4D31s2LgB1mWf+SZmJU9/07gEcDlwMHzvBYaRjm4vvONZl5XteU8N3G+uZdU0mzN5L7vnbw+zKwGnAV8JTMPDYz/5qZd2bmFZn5SeBplB/Q16H3QBKSpPnP+rYmhXVsTRLr1ZoU1qWlwVvwvxEvM9cZGIbMvD0irgMeAKzbK21ErM5U4V0+7Lxp4K5orPcsa0rEX4tlPUS1E++plC8BCbwiM0/qc5hlOb+cBLyQ8vn5HOBL9XnLcXy8mRIN+kdgpYjYo0OajRvrT4+Itev6t2qDpOU5//wa2KGuPwT4S123LMdEZt4REdcAa9Wnur7H9TvttZTRC9Zq7LI8x1REbAZsVDdPzswbeiS3HCUN1AjbQvz80liZy3bAiNgT+GTdvAx4ZmZeu6TnlfoZ4X2/X308FdgpIjqlaZ175Ubbw9WZ+YMZXkvqa4T3fjP9FV1T3TftWl1TSbM0wvv+OZT2RICPZ+ZVXfJzYUQcSxkt/MkR8YTM/MUMryVJmgesb2tSWMfWJLFerUlhXVoaivbfiM/tkXZe/ka8IAMqql8D21BGaF4mM+/qku4xjfXfDD9bGrBfN9Yf0zXVffdb1kMSEWtSRkjfoD61b2YeM41DLcv55ZrG+sMb6xdTZiRZGstxrrWmztqAEg3dzwGN9fWBW/Hvcj7KLs9bluPlQmBRXV+6T9rW/uZ3WctzfL20sd5vZAnLUdIwjKItxM8vjaORtwNGxM7AMZTZG68Ets/Mfj8OSoM0ivu+NW33y+vSy5pMtT/8ELCzh4ZlFPf+hY316dbb4d51d2mQRnHfP7ax/vM+aX9G6QTSuqadQCRp4bK+rUlhHVuTxHq1JoV1aWmwZvMb8V3A74aTncFbaq4zMEQ/qY8rA0/ukW7bxvqZw8uOhuQSpkbf3rZXQsrUSQB/Bi4dVoYmWUSsRpmKrTUy89sz87BpHm5Zzi8Paaz/Y1qmzFwMnF03t4yI5eiuVc530DtiUXPHv8v5Z6PG+l8a65blePlRY32DbokiYlVKgymU8mixPMdQRCwLtEYLugb4dp9DLEdJwzCKthA/vzSORtoOGBHbA1+lDFZzHWWkzD/M9nzSLNn+rUk19Hs/My8D/lQ314suQ8dWGzbW/9w1lbRkRvGZ3+xY0m9AvmW7HCdJWnisb2tSWMfWJLFerUlhXVoarHOAxXW962/Etb/oU1rHZOadw87YoCzkgIpvNNY7RvZGxFJMjSJ7I3D6sDOlwcrMBE6qm4+JiKd0Slefb0U9nVSP0wBFxErAKcCT6lPvycwPTPd4y3Le2a2xfkHbvtbn76rArp0Ojoh1gWfUzdMy8+bBZk+ZuXdmRq8FOLhxyHaNfZfWc/h3OY9ExPrAM+vmHzLzH40NluXY+XpjfZce6XYBWo1LP249aXmOrX9mahraL/UY4QKwHCUNzdDbQvz80pgaWTtgRGxF+RtYHrgJeHZmXtj7KGkoRvGZ37NdobYtXFaTX9Z4ftEMX4s0E6P6zG/V3VcFtu+Rrtn++ZOuqaQlM4r7/pLG+jZ90jZ/NL+kaypJ0kJgfVuTwjq2Jon1ak0K69LSANX+nafVzWfU/p+d7Er57Ac4cegZG6AFG1CRmWcz1fHslRGxZYdk/87UtDuHzqdIGN3LR4G76/rHI2LF5s66/fG6eVdNrwGqUWUnAlvXpw7NzHfO4lSW5RyLiL0jYoU+ad4M7FA3L6HRybc6nNLIBfD+iHhA2/FLA59katq+Dy1RpjVs/l2OgYjYKSK6RrNHxIMoDRKtWWE+2SGZZTkmMvOXTM1esGcdceleImJt4N11czFwZFsSy3P8vLSxfsw0j7EcJQ3UINpCImJRRGRdjupyKT+/NFZGde9HxBMpg0msDNwK7JiZPxvEa5BmaoSf+dJYGfH3ndvr+v/UWSTvJSL2AhbVzVMy8/LpvxJp+kZ0358G3FbXXxcRm3TKS0T8M1MDhPwZOH/6r0SSNN9Y39aksI6tSWK9WpPCurQ0M7XfaOt+P6hLsg/Xx2WAw2o/0OY51gRag7DfSOlHOm/0m2ZmvnsjZRqeFYHvRcR7KVFkKwJ7APvUdBcDh8xJDidcRDwVeETjqTUb64+IiL2b6TPzqPZzZObFEfEh4O3AZsCZEfEB4A+UacH2AzatyT+Umb8b2AtQy5eBZ9X1HwBHRMTGPdIvzsyL25+0LMfCQcAhEfF1SuT3H4BbgFWATYAXMxU4sxjYJzPvbp4gM6+PiP2ATwMPB/4vIt5DmcliHeBNwHY1+Zcz84xhviAtGf8ux8bHgWXr3+ZZwKXA3yn/NxcBr2Hqf+hPgMPaT2BZjp03AVsC9wdOjoiPAv+PUq5bAPsDrWjuA5ozjoDlOW4iYnXguXXzV5n58+kcZzlKGpKht4X4+aUxNdR7PyI2BL5L+f4G8E7gpj7tH1dn5tUzvZY0A7Z/a1KN4vvOnyLiv4APUtpFz67fd37J1My8r6vJ/wa8eXYvRZq2od73mXljRLwfeBfl94CfRsTHge8DNwAPAp4HvJqpAfvenpn3zPoVSZLmC+vbmhTWsTVJrFdrUliX1kQYRD/s6cjMH0TEVyh/PzsD36/9nf5C+ax/B/Cwmny/zLxhNteZK5GZc52HoYqInYBjmZpCpN3FlOj2348uV2qpkXsvm276OsVdp/MsBXwOeEWPw4+gdP72H9KARcRMP0guy8z1upzLspxDEXEpJQiinyuAV2Tm93uc62DgAKDj3y2l4/C/ZObtXfZryGo06YF1c7tuwS3+Xc69Gfxtfh14VWbe2OU8luUYqRWa4ymV6E4SeE9mHtDleMtzTETEa4FP1c3/yMxpz75kOUoahiVpC4mIRUxNaXx0Zu7d5Rp+fmnsDPPer43N7bOG9XNwZh40w2OkGRnFZ36f619Kqa92be+ThmFU935EvI8SLNqtjfNq4PmZedb0ci7N3rDv+4gI4H8oHU663fMAdwL/mZkf7pFGkrSAWN/WpLCOrUlivVqTwrq0JsEg+mG3fS/v+n07Ilak9HXaocvp7wH+ez5+X1+qf5L5LTO/BTwe+Ajlw+82ylQi51JHTDSYYv7LzHsy85XAjsBJlIinxfXxJGCHzHyVnTjGn2U5555Nmc7sBEpU+F+Bu4CbKaPNfh14OfDoXsEUAJl5IPBU4EvA5ZRyvJoShfuizNzRYIr5wb/LsfAySvDLdyjfZ66n/G3eSJn95TPAVpn5gm7BFGBZjpvM/AnwOOBg4BeUkTduBy6hVFKe3C2Yoh5veY6Pl9THu4EvzuRAy1HSMIyiLcTPL40j2wE1ibzvNalGde9n5v6UGXu/QJkx9A7gJuAcymAyj7LTh0Zl2Pd9Fm8GNqfMQP0rym8Dd1Pu+59ROolsbAcQSZos1js0KbzXNUmsV2tSWJeWBisz/56ZOwIvpvQDvZryG/HllH6iT52PwRQwATNUSJIkSZIkSZIkSZIkSZIkSZIktVvwM1RIkiRJkiRJkiRJkiRJkiRJkiS1M6BCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJGjMRcVREZERcOtd5AYiIvWt+MiLWm+v8SJIkSZKkyRARixptEovmOj+SJEmSJEmSJGnhMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEnSEhm3GTUkSZIkSdL4ioj1GrNO7D3X+ZEkSZIkSZIkSZNtmbnOgCRJGm+ZeRRw1BxnQ5IkSZIkTZjMPAOIuc6HJEmSJEmSJElauJyhQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSNKci4qCIyIjIun3/iDg4Ii6MiFsi4vqIOD0i9pzGudaLiI/UY2+OiNsi4ncR8ZmI2KTPsVmXg+r2MyLimxFxZUTcHhF/jIhPRMRDpvtaeqRb1Ljeon6vq8PxK0fE7hFxeEScHxE3RcSdEXFNRPwwIt4aEfeb4et9ekR8LSIur+e6tJF270b69dpfL/Cy+tTDG+n+sdS0Ozee22Mar/GQmvauiFhnpu+RJEmSJEnDFBEbR8Q7I+K7EXFFRNxR2zF+FxFHR8RTpnmerWv9/rcR8beIWFzPd3JE/GtE3L/HsTtFxPGN618XEWdFxNt7tQsMsv0iIp4cEUdExMURcWttQ7k8In4WEYfV9oBopE/gksYpjuzQlnDQTPLQSLtDRBxb23BaebkkIr5e2zZWakt/r/aOiFgqIvaJiJ9GxA31HL+MiHe0H9vl+ktHxMtq2f2lUSY/iYi3RMSKfY6f0XvZOG6FiPi3iDgjStvQnVHa034bEd+u116vX/4lSZIkSVqIImK72lbzxyh9SP4WERdExIe69UVobzupde+3RcTPo/RFuTkizo6IN0TEMtPIwwo17WkRcVVt/7k6Ik6NiFf2OkdEXFrzclTdfnJEHFXbPO7o1L4TEStFxAG1XePWRvvEK6Lo2N4SEY9vPP/2abyufRvpt+iXXpKkcdb3H7okSaMSEesD3wc2bDy9MrAIWBQRzwdenJl3dTj2pcBngeXbdj2iLq+MiAMy833TyMeBwEFtT68P/CuwV0TslJk/ntaLGo5TgG07PL8m8LS6vD4idsjMi/qdLCLeA/znYLN4H6cAVwIPBvYGvtIjP8sAe9XN72TmX4acN0mSJEmSpq3+0Hx6h13LMdUO8dKIeH9m7t/lHCsCRwCdBpB4SF12BNairY0iIlYAvgTs0nbcGsBT6rJvROyYmedP71XNXES8Gfgw9x24ad26PAl4PbAKcMsQ8/EA4Dhg+w6716vLrnX7qC6nWQn4XodzbFKXnSPi6Zl5a5c8PAz4JvCEtl1rAFvX5XW1TC7ucPys3suIeDBwKrBR23Gr1+VRwHOAdYC3dsq7JEmSJEkLUW0/ORLoNODjxnV5XUTsmZnf6nGeBwHfAZ7YtmvzujwrIp6fmfd0Of4JwEnAw9t2rUVph9geeE3th/LXPq/ptcDH6dHnMyLWBX4APLLx9EpMtU/sAnys07GZ+cuIOKe+rpcB7++VH+Dl9fHCzDy7T1pJksaaARWSpHFyHCVw4dPA8cBNwOOB/Sg/AL8Q+Avw5uZBEbEj5QfxoPyofAjlx+S7gK2A/SnBBu+NiBsz81M98rAjsBnwW+CDwC+B1YDdgFfX9ZMjYuPMvHyJX/HsLANcQPmh/lzKexKUCvgulPdpfeAbEfHEzLy9x7l2pXQMuAD4CPArYEXu2xjQyScp5fRu4Hk1H8/ulDAz764jJuwPPDMi1s3MK7qcd0fggXX989PIhyRJkiRJo7QMcCtl8IAfABcBf6PUZR8H/Buljv72iLg4M49sHhwRS1F+SH9mfep3lDr2ucBtlMEItqLU7zs5mqlgil9Q2kF+Q+m8vwdlIIN1gNMi4vGZ+ecle7n3FRGPZyoA4BLgE8D5wPWUTv+PBrajtBc0bVLz9t26/U7Ke9F09QzysRIluKU1M+nPKANu/Aq4A3goZeCJ3fuc6nOUQJSjga8CVwEPA/4D2BLYoub1PgEyNaDjJ/Vad9Rz/RC4FLgf8CzgjZRAm29HxJMy86bG8bN9L6F0omgFUxwLnEBpn7mbch9t1uU4SZIkSZIWrDrD4/GUvgcA36LU9/8I3EOp5/87pe5/fERsnZnndjndCZS698fqea6n1NUPAB4L7ETpS/KZDvl4BKWNYDVK29FhwNnA5cADgJ2B11ACGE6KiG0y884u+dicMjDl5ZR2hHMpbVTbNK63LKW9qhVMcQqlneIKyoAN+wDPpQRzdHN4vdZjImLLzDyrU6IaKLJp3bRfhyRp3ovMnrN6S5I0VBFxEHBg46kXZeaX29KsAvyYMsrfPcATMvNXdd+ylB+o16EEU2zTPvpiRDwcOIvyQ/JtwMMz89q2NM1/iD8Hts3MW9rSvAQ4pm5+LTNf2Lb/H68lM6PHa17E1EiW22XmGW37j6JE+1+Wmet1OP6Rmfm7Hud/BqVjwlLAqzLziA5pmq/3NGDHzLyjy/n2pozcALB+Zl46k/w20m1I6SQSwDsy871d0p1EaTi4BnhIjwYDSZIkSZJGLiLWBO7KzBu77F8OOJkSMHEZsGFm3t3Y/2/AoXXzRGDPTnXyGnjx4GZARB1U4uS6eRqwQ2Yubjvu1ZSgAoCvZububfsPYgnbLyLiXZSOA7fW19dxBMWIWA24uTlKY0SsRwkcAHh5Zh41mzzU/f/D1MAbhwH7ZocfPWqZrN7MZ1t7B8BLMvPYtuOWp3RQ2Bi4Dli7febUiPgi8CJKWW+XmZfQJiI2pbRtrQy8NzPf0dg3q/eyjrT5N2BZ4JDM7DoDRUSskZnXd9svSZIkSdJC0mgbuRPYOTO/0yHN6pS6+uOAMzPzqY19BzHVj+VO4Fkd2iTWAH4NPAj4ZWa2z1pJRJxJGTTjvHqOazukeQ4l8GEpYJ/M/Fzb/kuZmt3iAuBpPdqk3gh8tG5+NDPf3CHNx4E3NJ5qb/NZBbiS0obxuczcp8u1DqUMKnInpV/HNZ3SSZI0X7RPHy1J0lw6uT2YAiAzb6ZEykP53/Xaxu5dKMEUAO9uD6aox18GvK1ursTUtIPd7NMeTFHP8wXg263rRsTafc4zFL2CKer+UymzVwA8v8/p7qEEXXQMphikzPwDcEbd3LtTmjpd5g5181iDKSRJkiRJ4yYzr+32w3Xdv5ipdoiH05gFsgZJtPZdAby0W508M+/pMLvEv9bHOynBCIvb9lN/eD+1bu4aEQ/u85Jmo9UmcnG3AICal5uawRSDFBH3p4ziCGVmijd2Cqao+VjcK5/ACe3BFPW4OygzRkAZOXKj5v4aHNIKWHlDp2CKep7zKAEfcN82kdm+l2tQgikAftTtuHqswRSSJEmSpIlQZ6fYr25+rFMwBUBm3sBUG83WEfHITumAj7cHU9Tjr2dqoIZN6kAIzXxsQwmmAHhZp2CKep7vUGbTgC79KBr+tVebFFN9aa4A3t4lzX9QZrfsqPbP+Wrd3D0iVmxPUweueHHdPNlgCknSQmBAhSRpnBzZbUdmng1cWDef0djVWk96TyP4NeCmDse3uyAzf9Zjf+saywCLeqQbmYhYKyIeGREbtxbK7A5QZvXo5cz2GSeG7PD6+MiIeGqH/XtR3ltwWkhJkiRJ0jwQEctHxMMiYqNGvbw580Ozbv5EYN26/rlOAzr0uM4ywLZ183uZeXmP5K3RDIfVfnFlfdwoIrYYwvmn4+mUgTOgdJC4u1fiPr7YY1+znWiDtn07AktTZkT9Nr21gh7WiYiHNZ6f7Xt5HdAKqHlJvT8kSZIkSZp0GwEb1vXjeyXk3gMUbNklzXTaDAJYv23fzvXxt5l5wTTzsXmP+v3lmfnjbieIiIcAj6mbX+sxgMffKf1nemn161gV+JcO+3eiDDwB9uuQJC0QBlRIksbJOX32n10fH1Uj3gE2ro+X9Ip6ryM2ntd2zJLkAWCTPmmHJiK2jojjIuI64GrgYsr0jq3l1TXpmn1O9cvh5bKjE4Ab6nqnmUJaz52Tmb8aTZYkSZIkSZqZiFg5IvaPiF8AtwKXUQaCaNXLz2skb9bNN22sd/0RvIsNmAog+L8+aZv7e7WDzNaXKbNkLA+cGRHfiojX1oCS6HPsoCzJe9nuoh77mrM7rNK2b7P6uBJwV0RktwU4uXFcc9bTWb2XtWPEcXXzBcDvI+KDEbFDnb1DkiRJkqRJtFlj/aw+dfXmQBdr09mSthk8ulceaj5as2MuS5mRspN+fTua7T+9BhEFOLfXzsz8KfDrutmrX8eV9B9gQpKkecGACknSOLm6z/6/1scAVq/rrcpkv2MBrmo7Zkny0O88QxMRBwE/AV44jTzcZ/rFNjf02T9QmXk7cGzdfGFErNzaV0dhfFzddBQDSZIkSdJYioj1KEET7wUeT5mhoJdm3bwZXHFle8I+mm0A/dovrmqsD7z9IjMvAvaktCssAzwX+BTlfbk6Ir4QEdsM+rptluS9bHdbj333NNbby/qBs7xeKzBmSd/LNwDfqusPB94GnAJcFxHnRMTbImK1WeZRkiRJkqT5aInr6k2ZOWdtBm369e1YvbHedTDSae4HOKI+blfbwgCIiAcDz6mbxyzhjKGSJI0Np4CWJI2TnKNjh3GeoYiI7YED6+YfgQ9Tgiv+BNyamXfVdO8CDpjGKeeicns4sC9wP8oIikfX51ujGPydMjqjJEmSJEnj6AvA+pQ2hCOBrwC/ofwYvTgzMyKWYqrOPYwZG+a8/SIzvx4RpwK7A88GtgHWogQ67AXsFRFHA6/IzHu6n2lea3WWuBbYbgbHXdLcmO17mZl/A3aug1S8EFgEPLHma7O6vDUinp+ZZ8385UmSJEmSNO80Axt2Ai6d5nHTGcRzNvn4BaVuP11/7vL8qPt2HAO8D1gOeBlwcH3+pUy9NgfKlCQtGAZUSJLGyYOAy/vsh9JpoBV9f33bvl5aUzRe3yNNv/M097ef5x8/aEfEUj06C6zc5fnpeHV9vAF4SmZ2GzlgTmbPmI7M/GVEnANsTgmiODoiVgD2qElOyMyb5iyDkiRJkiR1ERGPAZ5aN9+bme/skrRbvfzaxvqDgYtmcPlmO0S/9ou1G+tDa7+o9ffP1oWIeCzwPMpACutQfnA/Dzi037lmof29vKRbwiG6rj6uAvxmSUZlXJL3MjPPBs6ux61CCazYG9iVMiLm1yNiw8z8+2zzJ0mSJEnSPHFdY/3GzPzVHOfjfiPKQ3MGi7X6pO23n8y8NiJOAnYDXhYR78rMpLQ3AJyZmRfPKqeSJI2hpeY6A5IkNWw+zf2/y8zFdb1V8Vw/IrpW+iJiWWDTtmOWJA+dznNzY311untUn2v08rj6eHqPYAooIxCOymxGxTy8Pj4tIjag/MB///qcoxhIkiRJksbV4xrrx/VI161e/vPG+tNmeO0/ArfV9X/qk3aLxvrI2i8y8zeZ+X7gKcCt9ekXtieb6Xm7WJL3clDOq4/LM+C2mGm+l52Ouzkzv5WZ/wJ8rD79YKYCgSRJkiRJWsjOa6xvPWe5mMrHBhGxds+Ug3FhY/3JfdJOtw2j1a9jfWBRRGwFPKY+Z78OSdKCYkCFJGmcvKzbjojYHNi4bp7a2NVaD8psB928AFitw/HtNomITXvsf0V9vBs4o21fcyTEXhXQPXrs66c1u1TXUSJr/vt1rBik2+vj8jM45suUzgBBGcGgVXaXAKcPLGeSJEmSJA1Wc9bnXjM4vLbL879ganbOV0XE/aZ74cy8C/hh3XxmRKzbI/mr6uNdzEH7RWZeDrRGKVyzbfftjfWZtCW0O52pQIN9I2LpJTjXbH2LqQCRNw3jAn3ey35Oa6zP9FhJkiRJkuajnwNX1PV9ImKFOcrHN+tjAG8c9sUy8wqm2g92i4iObS71/dhtmqc9Fbisrr+cqX4dtwBfnWVWJUkaSwZUSJLGyc4RcZ+R9mrngs/UzXsa6wDfAP5S198REZt0OP6hwIfr5m3AkX3y8dmIuE+niIh4EbBD67qZeWVbkp9SOioAvDkiosM53sa9R4mcqd/Vx6dGxCM6nH8t4AtLcP7ZaL0PD4yIVaZzQGbezFQF+zXA0+v6UXWaSEmSJEmSxtHvGut7d0oQEa8DntdpX2beA3yobq4LHBMRy3U5z1IRsU7b04fVx+WAI+qMnO3HvQJ4Vt08YRjtFxHx/Ii4f4/9D2VqxMJL2nZfB7RmHt2w2zn6ycwbmWojejLw0U6vpeZn2Yh44Gyv1SMPvwW+Vjf3iIi39EofEetHxJ5tz83qvYyIDSJi2z5ZfFZjvb0cJEmSJElacGrby3vr5gaUtpeuAzpExKoR8YYh5ON7wNl1822d+sK05WOTiNhpCS/baidZF3h/lzQfAtrbmzqq72VrJop/AXav61/LzFtmm0lJksbRMv2TSJI0MucCX6o/Bh8P/A14PLAf8Oia5rDM/GXrgMxcHBH7UEYEXBU4MyI+RBmB725gK+DtQOtH87dm5rV98rAZcG5EfAC4gDKzxQsoHf8Bbgbe2n5gZl4dEV8D9gSeDXwzIg4D/go8DHgJpZL505qv2TgG2IkyCuYPI+L9wM/qvq2AtwBrA2cBW87yGjP10/q4FPDpiPg48I/3ODN/3+W4wykjGLTK5h7gqCHlUZIkSZKkQTgP+BVlFs3XRMTqlIENrqT8WL0XpQ3hTGDrLuc4jFK3fyawC3BBRHyS0iZxG6Ve/xRK+8KXgINaB2bmKbXtYTdKZ/n/jYj/AS4CVqfMKtGaXfN6SjvBvQwiEvFtAAAgAElEQVSo/eJNwBcj4hTgB8BvgJtqHjYD9gVWrGk/3Xb9uyLinPr+vCIizgPOB+5s5Tszr+9y3XYHUN7HTYA3AFtGxGco7TmLKWWyTX2t72Q47Q6vo7zmDYBDIuJ5lPabC4E7gAcATwCeQxlQ4kTKzJ0ts30vHwacHhG/ruc8F/hz3fdQSieHVmeN84H/G8zLlSRJkiRp7H2aqXaX3YAn1faCsyl17lUpgxcsAnamzKb5iSHk40X1mmsAx0XEXsBxlAE77qb0ldiU0k70FOAQSt+X2foEpQ/GxsCb6iCdn6PM2LEusA+wY81TayCNfgNefh44EFip7TlJkhYUAyokSePkhZRAiNfXpd3X6dwR4JSIeDkl2n4V4F11abobOCAzP9UnD6fU5UA6z2TxN2DnzLy0y/FvpvzY/UjguXVp+golkODUPvnoKDOPj4gjKZXgdYCPtSW5u+ZhdUYXUPED4H8pFfwX1aWp4+iQmfnT+qP/RvWp0zLzT0PLpSRJkiRJSygzMyJeQqkLr05py2gfYfACyo/1f6GDzLwnIp4PHE0JvngU8NEZZOOllLb9XYAnAcd2SPMXYMfM/HOHfTCY9ouVKK9zty777wEOzMxvdNj3PkoHgQdQgkaaDqYRRNJLZt4WEU+ntBk9jTJTxWenc+ygZOb1EbE1ZSbObWo+ntbjkL91eG5J3suNmGpb6eQiYFdnBJUkSZIkTYrafrM7cCjwWsoMmR/sccjVQ8rHHyJiS0q7xcaUwIles1B0ajOYyfUWR8SOlHarDenc5vM94CPAt+v27X3OeUVEfBf45/rUxZn5kyXJpyRJ42ipuc6AJEktmXkJ5Yfv91JG47uNMjrAj4C9MvMFmXlXl2OPpowgcGg99lbg78AfKBH3m2bm+6aZj4MoowaeQhmdcTFwKfBJ4HGZ+cMex/4V+CfgA5RRBe6gjAjZeg17UoIeZi0zX0EZLfLHlNky7gAuo4yIuVVmHrok559Ffu6hjIr5buAXwC30H8Wgpdnpw1EMJEmSJEljLzPPB55IGe3wMsrMCtdTRvd7K7BFZl7Z5xy3ZeZulBkLvgBcQmnHWAxcTgk2eA1lZML2Y2/PzF0pIyieQAmeWAzcQJmFYH/g0TWf3a6/pO0Xe1JGNfwSZfaDq4C7KG0CFwKforTFvLvL9U8BtgdOqvm/s1O66cjMazNzW2BXyoynV9TXczvwR+BrwIu596wQA5WZV2Xm0yidFL5Yr3sb5XVdQ5nt4xBg29qu0zTb9/LHlJE03wecDvye0k50J6U963uUTiNPrG1ukiRJkiRNjMy8MzNfT5k18uOUATBuorR33ESpgx9BGezisUPMx8WUdqQXUQIr/sRUG9CVwBmUvhZPzsz2gUNnc70/UV7zgZRZVv8O3EgZJPP1lMCIFRqH3DSN036hsd5pYFJJkua9cFAiSdJcioiDKBU5MrPjTAYjykfrH+LBNaBCIxARX6Q0HNwAPDgz75jjLEmSJEmSJEmSJEmSJC1IEfFO4L8pAzqskpk9Z6mIiPcA/0kJRnlov4FEJEmaj5yhQpIkzYmIuD+wS938osEUkiRJkiRJkiRJkiRJwxERAexeN8+fRjDF0sBL6+a3DaaQJC1UBlRIkqS58m/AinX903OZEUmSJEmSJEmSJEmSpPksItaLiGV6JHkXsHFdP3oap3wxsG5dt1+HJGnB6vXPU5IkaWBqpX09YHlgO8qUkADfzMwL5ypfkiRJkiRJkiRJkiRJC8DewMsj4kvAmcBfgGWBxwIvAxbVdL8GPtfpBBHxiHrMZsBH6tO/AP7fsDItSdJcM6BCkiSNyrrA79qeuwl4yxzkRZIkSZIkSZIkSZIkaaF5GPD2HvsvAnbMzDu67G/v13En8LrMzEFkTpKkcWRAhSRJmgtXA2cB78jMP8x1ZiRJkiRJkiRJkiRJkua5IygDWz4LeASwFrAScD1llokTgc9n5uJpnOsG4OfAf2XmWcPJriRJ4yEMHJQkSZIkSZIkSZIkSZIkSZIkSZNmqbnOgCRJkiRJkiRJkiRJkiRJkiRJ0qgZUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZL+P3t3kNPWFQZQ+OK6IlUbxKQDpGQH6bCsg3Yj7KxlHbSzZg8ZZBIMlRopmA6aSIWQAk3ws32+b2SuLN4/ssV/dQQAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmq37gzs7O7hjjh/c/vh5jXK56BgAAANbeV2OM79+//uPq6urtlMPAl2IvAgAAwD3ZjbB17EUAAAC4p5XuRVYeVIx//jj+bYLnAgAAsJl+HGP8PvUQ8IXYiwAAAPBQdiNsC3sRAAAAHurR9yKzx/zlAAAAAAAAAAAAAAAA62iK/1Dx+sOL09PTcXBwMMEIAAAArLNXr16Nw8PDDz++/q/3woaxFwEAAOBOdiNsKXsRAAAA7rTqvcgUQcXlhxcHBwfj2bNnE4wAAADABrm8+y2wMexFAAAAeCi7EbaFvQgAAAAP9eh7kdljPwAAAAAAAAAAAAAAAGDdCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmUw+wbpbL5VgsFtfO9vb2xmymPQEAAADYNrftgqa2XC7H+fn5tbOnT5/aT30G+z0AAAAAAFjPe5FVK93DuB+B+xFU3LBYLMbR0dG1s5OTk7G/vz/RRAAAAAA8ltt2QWwf+z0AAAAAAHAvUuN+BO5HdgQAAAAAAAAAAAAAAOQIKm44Ozu71xkAAAAAAAAAAAAAALC5BBUAAAAAAAAAAAAAAEDOfOoBAAAAAGCd/Pni53E1351ugHd/je9e/nrt6OLFT2PMn0w00GbZefd2fPvyl6nHAAAAAACAjTD5vciqbek9jPsR+P8EFQAAAADwL1fz3XH19TeTPX/ntsP5k0lnAgAAAAAAttPU9yKr5h4GuGk29QAAAAAAAAAAAAAAAACrJqgAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMiZTz3Aulkulx+dvXnzZjx//nzMZvoTAAAAYHstl8uxWCyune3t7dmJAHwmn68AAAAA28W+B4BN47vr0wQVN1xcXHx0dnx8PE5OTsb+/v4EEwEAAACsxmKxGEdHR9fO7EQAPp/PVwAAAIDtYt8DwKbx3fVpkhIAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAPibvfuJjeuq/wZ87Lj5ya/SNEZq+6LWYovUIL1ITXYNKxYsQIioiaNEqhDQFJImFFg6RaLuFikhEW1ZISVK0qqoArGhK9JVky4imggQC6SGqmoiZJpatX6uY78bbDnj8Z07M/fM3Lnf55EQ9vjc8+/eOb33jD8xAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQEVJH330UfrHP/6RlpaW0sLCwvrrCwsLaWlpKS0tLa2/tvZ962vtbCy3VZnW8v0oe3y/7Qyr7rrJMdatrqvWtiLNM0TlfQ5EYb3Lx9wCADRT0X1eu591W77b9te+n5+f37L8Vsd02mevuu/dau1n0++xo4wzl17nzXx3VsUc1WWec/UjR70bPzMdRXU550A9WSMgJu/9wSrz+3WDOied2nFtAECzCVSU9MMf/jD94Ac/SN/97nfTgQMH0vz8fJqfn08HDhxIzz//fHrhhRfS4uJiWlxcTC+88EI6efLkfa/99Kc/TYuLi/fVuVb2hRdeSPPz823LtJbvVKZI2eP7bWdYdddNjrFurHOrr3O1DdSL9zkQhfUuH3MLANBMRfd57X7Wbflu21/7/p///Gfav39/+uijjzaVX9snbz1m4775IPrerdZ+ltnnH2Xtzgvl9XpNenbrrIo5qss85+pHjnrXPifdKixXd3U550A9WSMgJu/9wWrdD+j2ub/qvhS149oAgOYTqOjShx9+mD777LN06tSpNDs7mz777LP097//Pd28eTNduHAhnT9/Pt28eTP99a9/ve+1999/P124cOG+utbK3rx5M83OzrYt01q+U5kiZY/vt51h1V03Oca6sc6tvs7VNlAv3udAFNa7fMwtAEAzFd3ntftZt+W7bX/t+x/96EdpZWUlnThxYlP5tX3y1mM27psPou/dau1nmX3+UdbuvFBer9ekZ7fOqpijusxzrn7kqHftc9JTp05VVucg1eWcA/VkjYCYvPcHq3U/oNvn/qr7UtSOawMAmk+gokc3btxIN2/evO+1ixcvposXL2567dKlSymllC5fvpxu3bqVUkrp1q1b66+nlNbr2lhmo1u3bqXLly8XlilS9vh+26miD02QY6wb67x06dL69bPx68uXL6erV6+GmWeIKtJ6CsRmvcvH3AIANFPRfV67n3Vbvtv2N+5Vrv0rjnfu3El//OMf18tv3Ce/dOnSfT3bnlAAACAASURBVMes7Zu37oHm6Hu3Nrax1s9O+/yjrN14mzjOXHq9Jj27dVbFHNVlnnP1I0e9V69eXV8Lbty4ka5evdp3nYNUl3MO1JM1AmLy3h+s1v2Adr9fN6hz0qkd1wYAxCBQUaF79+6llZWVTa/du3cvpZTS559/ns6cOZNWVlbS6dOn11/faK3M6urq+murq6vpzJkzaXl5ecsyRcoe3287VfShCXKMtbXO5eXl9etn49eff/55mpubCzHPEFWk9RSIzXqXj7kFAGimovu8dj87ffp0On36dOnyne4Z2x2zca9yo1/+8pdpeXl50z758vJy22Na90Cr7nu3Wtto1bR77K3G27Rx5tLrNenZrbMq5qgu85yrHznqXVlZSXNzc/e9Njc3t+kz0rqqyzkH6skaATF57w/W6urqpv2A1t+vK3rur7ovRefetQEAcQhUDNi1a9fSq6++mt57773CMu+8887691euXEnXrl0rLFOk7PH9tlNFH5ogx1jb1bmVu3fvVto2UC+R1lMgNutdPuYWAKCZiu7z2v3svffe27RPXVS+0z1ju2Na9yrX3Lt3Lx0/frztPvlWx+Tse7fK7Nc26R67aLxNGmcuvV6Tnt06q2KO6jLPufqRo95XX31101p99+7d9Nprr/Vc5yDV5ZwD9WSNgJi89wfrypUrhb83l1Lxc3/VfSk6964NAIhDoKLF22+/nb2NN954o2OZc+fOpcXFxbS4uJjOnTtXWKZI2eP7baeKPjRBjrEW1VlW0+YZooq0ngKxWe/yMbcAAM1UdJ939uzZdPbs2dJ1FZXf6p6xlz3Mv/3tb12VL6OXvnerm7E24R67zHibMM5cen0G8+zWWRVzVJd5ztWPHPXOz89v+Tnn66+/nubn57uuc5Dqcs6BerJGQEze+4O1uLjY1R5FqyrPSadzPz8/79oAgEAEKlr8/ve/z95GmT95+/HHH6cLFy6k8+fPp9u3bxeWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd592+fTvduXOndF1F5be6Z6xiD7MKvfS9W92MtQn32GXG24Rx5tLrM5hnt86qmKO6zHOufuSod3Z2dsvPOVdWVtKpU6e6rnOQ6nLOgXqyRkBM3vuDdf78+a72KFpVeU46nfvZ2VnXBgAEIlCxwf79+4fdhftcvHgxXbp0qbDMpUuX0q1bt9r+7IMPPkiXL1/uePy7775bqtxW7RQp24de6q6bHGMtU2dZTZlniCrSegrEZr3Lx9wCADRTlXuIZbTeMw66/X70e7/by1hH+R67m/GO8jhz6fUZzLNbZ1XMUV3mOVc/ctT77rvvpps3bxaWuXHjRrp69WrpOgepLuccqCdrBMTkvT9YH3zwQcffgyujinNS5tx3uve9dOlS+vDDD/vqBwBQHwIV//Xpp5+mf//738Puxn3u3buX7t27V1hmeXk5nTlzJq2urt73+urqavrVr36VlpeXOx7/8ssvlyrXrp0i3fSh27rrJsdYy9ZZVhPmGaKKtJ4CsVnv8jG3AADNVPUeYhkb7xmH0X4/+rnf7XWso3qP3e14R3WcufT6DObZrbMq5qgu85yrHznqXVlZSS+//HKp9ufm5rb8KxbDUpdzDtSTNQJi8t4frNXV1XTmzJmOvwdXRr/npKq9jOXl5fSb3/ymrzoAgPqYGHYH6uKb3/zmsLvQs2vXrqV33nkn7du3b/21K1eupGvXrpU6/u7duz23U6SbPnRbd93kGGs3dZY16vMMUUVaT4HYrHf5mFugrHa/+PTJJ58MoSeD03Z8PiAdbW3OX9OvY+qv3TVYxS+b5thDLGPtnnF1dXUo7fej1/vdfuZ6FO+xexnvKI4zl16fwTy7dVbFHNVlnnP1I0e9r776aunPE+/evZtee+219Nxzz5UqPwh1OedAPVkjICbv/cG6cuVKeu+99yqrr59zUuVeyvXr1ze9Zh+SUeBzkQbz+Qgd5PqsogkqD1SMjY093qHI/626zX5V8efEhu3cuXNpz549aXJyMi0uLqZz585lb6dIL30oW3fd5BhrHc4hUA+R1lMgNutdPuYWBmsU90U2+vTTTze99swzzwyhJ0N2739TSv9n2L2gV/f+d9NLIa9jau/TTz9NX/jCF3o+PuceYhlnz54d2X+hs9v73SrmepTusfsZ7yiNM5den8G+8pWveHbroIrn27o8I+fqR4565+fn0xtvvNFVna+//no6ePBgmpqa6uq4HOpyziGKUdsXsUZATN77g7W4uJjOnj1beb29nJNB7KXYh2Rk+VykGXw+Qg/6/ayiKcYz1Hmrw/9q989VvfLKK8PuQt8+/vjjdOHChZRSSufPn0+3b9/O3k6RXvpQtu66yTHWOpxDoB4iradAbNa7fMwtDNzI7YsAMJpy7iGWcfv27XTnzp2htd+Pbu93q5jrUbrH7me8ozTOXHp9BpudnfXs1kEVz7d1eUbO1Y8c9c7Oznb9LxWurKykU6dOdXVMLnU55xDISO2LWCMgJu/9wTp//nyW/YNezsmw91IAgPrKEagYKX/+85+H3YXKvPnmm2lhYSH97ne/y97O0tLSlj9fWlrquQ+d6q6bHGPtp85+2wbqJdJ6CsRmvcvH3AIANNMg9hCbruz9bpVzPQr32FWMdxTGmUs/83fz5s2ejosy31U839blGTlXP3LUu7Cw0PO1eePGjbSwsNDTsVWpyzkH6skaATF57w/W0tJSevPNN7PV3805sZcCABTJEaiY7vC/PRna7NnXvva1YXehMvv37087duxI3/nOd7K3s3379i1/vn379p770Knuuskx1n7q7LdtoF4iradAbNa7fMwtDMVI7YsAMJoGsYfYdGXvd6uc61G4x65ivKMwzlz6mb8nnniip+OizHcVz7d1eUbO1Y8c9e7YsaPna3P37t1px44dPR1blbqccwhmZPZFrBEQk/f+YG3fvj3t378/W/3dnBN7KQBAkYmqK1xdXf1X0c/HxsaqbrJvzz33XHrllVeG3Y2+PProo+nw4cMppZSOHDmS3n777Sx/omxjO0V66UPZuusmx1jrcA6Beoi0ngKxWe/yMbcwWKO4L7LRgw8+uOm13/72t+mhhx4aQm8G45NPPknPPPPM/S9u+5/hdIZqtDl/Tb+Oqb92a027NbcbOfcQy3jkkUfS6upqunPnzlDa70e397tVzPUo3WP3M95RGmcuvT6Dzc3NpaNHj3p2K1DF821dnpFz9SNHvXNzc2n//v1pZWWldJ3j4+PppZdeKl0+p7qcc4hi1PZFrBEQk/f+YB05ciT96U9/qnz/oJdzMoi9FPuQjAKfizSYz0foIMdnFU1ReaBiFM3MzIx8oOLYsWNpcnIypZTS5ORkOnbsWPr5z3+etZ0ivfShbN11k2OsdTiHQD1EWk+B2Kx3+ZhboBvj45v/mOlDDz2Udu3aNYTeDFHNfsGDLrU5fyGvY2qv3ZrbjZx7iGUcP348ra6uDq39fnR7v1vFXI/SPXY/4x2lcebS6zPY1NSUZ7cOqni+rcszcq5+5Kh3amoqPf300+ny5cul6zxw4ECampoqXT6nupxzoJ6sERCT9/5gTU5OpuPHj1e+f9DLORnEXop9SEaWz0Wawecj9KDfzyqawiz81x/+8Idhd6Fne/bsSU899dR9r+3bty/t2VPur2Xu3Lmz53aKdNOHbuuumxxj7abOskZ9niGqSOspEJv1Lh9zCwDQTDn2EMtYu2ccVvv96PV+t5+xjuI9di/jHcVx5tLrM5hnt86qmKO6zHOufuSo9+jRo6U/T9y5c2d69tlnS5UdlLqcc6CerBEQk/f+YO3bty89+eSTldXXzzmpci/jq1/9aiX1AADDJ1DxXw8++GB6+OGHh92N+2zbti1t27atsMzExEQ6ceLEpj+NOTY2lk6cOJEmJor/CMnExESanZ0tVa5dO0W66UO3dddNjrGWrbOsJswzRBVpPQVis97lY24BAJqp6j3EMjbeMw6j/X70c7/b61hH9R672/GO6jhz6fUZzLNbZ1XMUV3mOVc/ctQ7Pj6eZmdnS7U/Oztbu3/ZsC7nHKgnawTE5L0/WGNjY+nkyZMdfw+ujH7PSVV7GRMTE+n73/9+X3UAAPVRr92sIXvjjTeG3YX7HDp0KM3MzBSWmZmZSdPT021/Nj09nQ4ePNjx+L1795Yqt1U7Rcr2oZe66ybHWMvUWVZT5hmiirSeArFZ7/IxtwAAzVTlHmIZrfeMg26/H/3e7/Yy1lG+x+5mvKM8zlx6fQbz7NZZFXNUl3nO1Y8c9e7duzc98cQThWV2796d9u7dW7rOQarLOQfqyRoBMXnvD9b09HTH34Mro4pzUubcd7r3nZmZSY899lhf/QAA6kOgosW3vvWt7G2U+VdZHn300XT48OF05MiR9MgjjxSWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd5z3yyCNd/XXmovJb3TNWsYdZhV763q1uxtqEe+wy423COHPp9RnMs1tnVcxRXeY5Vz9y1Ds3N7fl55zj4+PppZde6rrOQarLOQfqyRoBMXnvD9aRI0e62qNoVeU56XTu5+bmXBsAEIhARYuvf/3r2dt4+umnO5Y5duxYmpycTJOTk+nYsWOFZYqUPb7fdqroQxPkGGtRnWU1bZ4hqkjrKRCb9S4fcwsA0ExF93nHjx9Px48fL11XUfmt7hl72cP88pe/3FX5Mnrpe7e6GWsT7rHLjLcJ48yl12cwz26dVTFHdZnnXP3IUe/U1NSWn3MeOHAgTU1NdV3nINXlnAP1ZI2AmLz3B2tycrKrPYpWVZ6TTud+amrKtQEAgQhUDNiePXvS0aNH05NPPllY5qmnnlr/ft++fWnPnj2FZYqUPb7fdqroQxPkGGu7Oreyc+fOStsG6iXSegrEZr3Lx9wCADRT0X3eVj9r3afuVL7onrHdMa17lWu2bduWzp4923affKtjNnryyScr7Xu3yuzXNukeu2i8TRpnLr1ek57dOqtijuoyz7n6kaPeo0ePblqrd+7cmZ599tme6xykupxzoJ6sERCT9/5g7du3r/D35lIqfu6vui9F5961AQBxCFRUaNu2bZv+zO22bdvStm3bUkopPfDAA+nkyZNpfHw8nTx5cv31jdbKjI2Nrb82NjaWTpw4kSYmJrYsU6Ts8f22U0UfmiDHWFvrnJiYWL9+Nn79wAMPpFOnToWYZ4gq0noKxGa9y8fcAgA0U9F93lY/O3nyZFfli+4Z2x2zca9yo5/97GdpYmJi0z75xMRE22Na90B//OMfV9r3brW20app99hbjbdp48yl12vSs1tnVcxRXeY5Vz9y1Ds+Pp5mZ2fve+3FF1/c9BlpXdXlnAP1ZI2AmLz3B2tsbGzTfkDr79cVPfdX3Zeic+/aAIA4RmNnq4Z2796dnnjiifteO3ToUDp06NCm12ZmZlJKKR08eDA9/vjjKaWUpqen119PKa3XtbHMRtPT0+ngwYOFZYqUPb7fdqroQxPkGOvGOmdmZtavn41fHzx4MO3ZsyfMPENUkdZTIDbrXT7mFgCgmYru89r9rNvy3ba/ca9ycnIypZTSww8/nL7xjW+sl9+4Tz4zM3PfMWv75q17oDn63q2Nbaz1s9M+/yhrN94mjjOXXq9Jz26dVTFHdZnnXP3IUe/evXvX14Ldu3d3/BeG66Yu5xyoJ2sExOS9P1it+wHtfr9uUOekUzuuDQCIof0/n8SWHnvssTQ/P59eeumllFJKhw8fTtPT02liYiIdPnw4pZTS9evX08rKShofH19/7S9/+cv612uOHDmSrl+/nlJKaW5uLr344oubyrSWb1dPWWWP77edYdVdNznG2lrnVl9HmmeIyvsciMJ6l4+5BQBopqL7vHY/67Z8t+2vff+Tn/wkfe9730tnzpzZVH5tn7z1mF/84hf37Zvn7nu3WvvZ2t+m2eq8UE6v16Rnt86qmKO6zHOufuSod25uLh0+fHj9M9NRU5dzDtSTNQJi8t4frHb7Ad0891fdl6J2XBsA0Hxjq6urg21wbOzxlNKtlFK6detW7VKb77//fnr++ec3vf7rX/86TUxMpC996UtpaWkp7dixI6WU0sLCQtq+fXtKKa3//9LS0vpxG19b+3qjtbLbt2/fskxr+U5lqji+33aGVXfd5Bjrxjq3+jpX20C9eJ8DUVjv8qnz3P7rX/9K09PTa99Or66u/muY/YGq1H1f5D//+U/69re/fd9rb731Vtq1a9eQepRfuzEv/L9DafWBySH1KKWxzxfTjusX73tt2H0aJe3mr+nXMfU36PW16D6v3c+6Ld9t+2vfz8/Pp6mpqbblU0ptjynaA83R92619rPO99hViDLOXHqdN/PdWRVzVJd5ztWPHPUuLCysf2Y6iupyzrdib4Qmqvu+yEZ1XyOAPLz3B6t1P6Db5/6q+1LUTrufR9xPpxnq+LnIoDX1cxifj9DJKP23a9D7Iv5CRUlf/OIX1y+YjTdH7TYJ291cbXXDtfH1Mjd//d4glj0+541opAePHGPd6pppbSvSPENU3udAFNa7fMwtAEAzFd3ndbN/3elnZY9Z+75dmKJTnzrtoVfd92619rPp99hRxplLr/NmvjurYo7qMs+5+pGj3lEOU6RUn3MO1JM1AmLy3h+sMr/rNKhz0qkd1wYANNv4sDsAAAAAAAAAAAAAAAAwaAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOBPD7kDd7NixY9Nrp0+fTjt37hxCbwAAAAAGZ+fOnemtt97a9BoA/bG+AgAAADSL/R4ARo3/dm1NoKLF+PjmP9qxa9eutq8DAAAANMn4+HjatWvXsLsB0DjWVwAAAIBmsd8DwKjx366tSQkAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAWz1K/gAAIABJREFUAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFTw/9m783iJ7vl+/K93FhJLEEEsrRDVSqmqWBJClKpd7UuVaC21Vf3Kl1aRllpKS2upJYi9VAVBpaioWCKofYkgUYkgSBCSiHx+f5wzvZObmbvMnTtz753n8/E4jzln5nPO58ycz+fMOZ/zeZ8DAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALZ7d5rwAAAAAAbCV1/rnzXYHzzxn5Xs1+TbaluW8/AAAAAADYRhauXX2HXodZuO0IUySgAgAAAACGXPILb5v3KlzEpb5w1LxXAQAAAAAA2IG24nWRWXMdBhbbLvNeAQAAAAAAAAAAAAAAgFkTULHMZS5zmTW9BwAAAAAAAAAAAAAAbF8CKgAAAAAAAAAAAAAAgIWz27xXYKvZa6+98va3v/0i7wEAAACw84xqC5q3Cy64ID/5yU8u9N6lL33p7LKLe6NMSvseAAAAAABszesis7ZI12FcH4G1EVCxzC677JLLXvay814NAAAAAGZgq7YF7b333vNeBQAAAAAAYIfZqtdFZs11GGDYzgunAgAAAAAAAAAAAAAAWIWACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4ew2hzx3HYx85zvfmUP2AAAAbHXLzhd3HZcOtiHtIgAAAKxK2wg7lHYRAAAAVjXrdpFqrW12HhfOsOrAJCfMNFMAAAC2sxu11j4575WAadAuAgAAwAS0jbAjaBcBAABgApveLrLLZi4cAAAAAAAAAAAAAABgK5rHEyounuR6/eT3k/xypiuwNvtm6a4IN0py+hzXBaZFuWanUrbZiZRrdiLlmvXaNckV+vHPt9bOnefKwLSMaBe5QuwfWeL/kgFlgQFlgWHKAwPKAsOUh51L2wg7zgb6i9jXbS+21/ZhW20vttf2YnttH7bV9mJ7bS+21/axFbfVTNtFdtvMhY/Sf6Et/TjSqhqePL219u15rQtMi3LNTqVssxMp1+xEyjUTOmXeKwDTtrxdpKqGOw7YPy44/5cMKAsMKAsMUx4YUBYYpjzseNpG2FEm7S9iX7e92F7bh221vdhe24vttX3YVtuL7bW92F7bxxbeVjNrF9llVhkBAAAAAAAAAAAAAABsFQIqAAAAAAAAAAAAAACAhSOgAgAAAAAAAAAAAAAAWDgCKgAAAAAAAAAAAAAAgIUjoAIAAAAAAAAAAAAAAFg4AioAAAAAAAAAAAAAAICFI6ACAAAAAAAAAAAAAABYONVam/c6AAAAAAAAAAAAAAAAzJQnVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcHZ0QEVVXb2q/qGqvlJVZ1fVD6vqhKp6QlVdYor53L6qjqqqb1fVuf3rUVV1+2nlAQObWa6r6hJVdfeq+pd+mT+qql9U1Q+q6mNVdXhV7Tut7wIDs9pfL8vzElX1japq/XDyZuTD4pplua6q21TVkVV1Up/XWVV1YlW9taoeUVWXmmZ+LLZZlO2q2q+qnlNVn6qqM/vjkR9W1Uer6qlVdcVp5AMwTdogGNjk8/ZdquqAqjqsql7SL/fcofOaQ6f0NZgS7TgMbHJZuE5VPbqqXlNVn+7/G87p8/lGVb25qu5aVTWt78PGaAtjYJP3DYcNbe/VhsOm9JWY0Cz3C6UtEZiT6tp9H1NV/15VX6uqn/XHrd+uqrdX1X2rard1LO+6VfWyqvp6Vf28qr5fVR+uqj9dz3LWmNf9quo/q+r0fp1PqarXV9VB08xnK6mqS1XVLarq8VX1lqr65nqPJavq5HUcjwyG/SZc3yM3O4+tbErba791/IZHTmm9d+vr7If7Ovzzvk6/rKp+cxp5bDVT2la79Mt4ZlUd2++bzquqH1fVF6prN/ytKa2vurXB7bVsef675qi69tL1/i8dPmFeh252Hjtdv39b0284xTwP7uvJKX29Ob2qjqmq+00rj52qpnysv0I+6tYqyjXriVVrU9ufbClVdeckr0+y15gkJya5Y2vtpA3ksUuSlyf5kxWSHZHk4a21CybNBwY2s1z3J1MfSbJaQ/mPkzystfbm9eYBo8xifz0m3+cl+Yuht05pre03zTxYXLMq11V1uSSvTnLXVZLeoLX2mY3kBcnMjrH/KMnLkuy5QrIfJrlva+19k+YDME3aIBjY7LJQVQ9KcuQKSW7VWjt2kmUzfdpxGJjBvuH1Sf5wDUk/lOQerbUfTJIP06EtjIEZ7BsOS9dutBYPbq0dOUk+bJy2RGARVNXTkzw5yWpBvickuWdr7VurLO+hSV6U5GJjknwi3b7zjPWu67J89kzy1iR3GJPkgiR/21r7m43ksxVV1QeTHDrm4zUdS/adja++jmzPSrJva+2cdcwzyOvIJA9aY/JrtNZOXm8eW9mUttd+Sb65xixf01o7bI1px+W3T5L3JLnRmCTnJnl0a+2IjeSz1UxpW30rya+skuyCJM9L8qS2gc6B6tbGt9fQsvx3zVnfufpp65zt/q21N02Q16FJPrjG5H/TWjt8vXnsdFV1bJJbriVta23DN5Lpy8dTMv4m9e9Od5y67uOUnW7ax/qr5HVo1K2xXLPemKlGNm4VVXWDJG9O1wnrp0mela4S7ZnkvkkemuTaSd5dVQe21n4yYVZ/l6VC8T9J/j7J15Psn+T/JblBkock+X6Sv5owD0gyk3K9V5Yuwn8kybuSfDLJD5JcIcnd+zz2SvKGqvpxa+0/NvSlWHgz3F+PyvfPk5yT5BdJLj2N5UIyu3JdVZdJ8r4kN+zfOipdw8jXk/wyXSPaLZPcY+IvA0NmUbar6mbpOonukq4x7zVJ3pHktCS/mq7B9s5J9k7yjqq6bmvtGxv7ZgAbow2CgRmVheHG6F8k+XyS3ZNcbwOrzibQjsPAjPYN5yc5Pl1Z+HyS09P9H1wuyW8keXiS66Y7Rzy6qm6+3S5k7BTawhiYQ1n4/XTn1uN8e4PLZ0LaEoEFcuV057Rnp9sHfSDJ19Idn1wnyZ+l61R9oyTvr6rfaa39dNSCquoOSV6arh35u+naTI5P12780HTnQzdOclRVHdpa++UG1vtVWeqQ+sEk/5TuP/V66dpf9k9yeFV9p7X28g3ksxUNt0H8MN0558FZPbB/2G0zvuPwwG2SPL8ff8sUOimelu7YZyWnbjCPrWga22vYX6e7PjPOjyZcbpKkqnZNty8YBFO8Lckr0q37Tfr8r5jkZVV16g5r05jGtrpK/3pSkn9P1x5wWrpjyFsleVy6NoH/l+5YbxrtxerWBuqW/64t4yXpzoNWsmuS/07XrvrjJG+fQr5/nK4j+Tjfm0IeO9knkzx4MzOoqodnKdjm60mema6d9SpJHptu33rHdPXr/pu5LtvU1I7110ndGuKa9RS01nbckO5PraW7MHDQiM+f0H/ekhw+YR7X7pff0lXKPZd9fon+/cF6XGvev4thew+bXa7THfC/OckBK6S5a7rOjS3diVnN+3cxbO9hFvvrEcvcNd3BdksXWXxyP37yvH8Pw84YZlWuk7y2X8Y5Se6yQrpKstu8fxfD9h9mdIz9rqFlPHJMmn8YSvOief8uBoPBoA3CMOOycOMkj0ly0yR79O8dPrTcQ+f9OxhmUx6042yfYUb7hhXP+fq2kH8fymfsOaRh+5eHMdtfW9gWG2a0bzhsaBn7zfs7G+ZXFvrlaEs0GAxzHZI8J13nmkuP+XzX/hxnsM976ph0u6frrNPSPc1g/xFpXjy0nMM2sM6/O7ScdybZddnn+yQ5pf/8R0kuN+/fecrb7GFJ7pehdqbNOJZctt1vvoHlHLnIx7nT2F5J9ptG3VljXn88lNeLR3x+rb6Ot3QdMnfM8cmUttVH0wU3jGzrSdeh8XtDx5nX3MD6qlsb317+u7bRkOT2Q7/hERtYzqFDyzl03t9rOw5Jju1/v2M3OZ+9k5zZ53VKkn2Wfb5rX59sz/G/4VSO9deYl7o1/rdxzXqDw7jH02xbVXXjJIf0k69srX1sRLJ/SPLlfvyxVbX7BFn9eZae8PGY1trPhz9srf0s3QXu9OkeN0EekGQ25bq19tHW2n1aa19aIc070t0ZIOlOwG6wnjxg2Az318s9Nt1duL6a7oAOpmZW5bqqbp7kj/rJv26tvXNc2tY5f715wLAZ7rMP7l9/0Fp7yZg0fzs0ftAEeQBMjTYIBmZVFlprn2itvbC19vHmsdJblnYcBma4b1jxnK91dzV87tBbh4xLy+bRFsbAHMsCW4y2RGCRtNae2Fr7+zbmLqj9Mesjk5zXv3XPMYu6W5Jr9uPPaq19fUSaJ2Tp7vlPmHCVk+Tx/ev56W4AdKG7hbfWzkjyxH7ysunuwrpjtNZe3lp7U2vtpM3Ko3+C0l36yW+01o7brLx2ullsrykb1K8fZkQ97b/Hs/rJa6Wr+zvCNLZVa+3g1toxre+5OOLzr2fpetpuSf5g0rwW3ZTqlv+u7eWBQ+OvndtaMEsPSXKZfvyJfT35P0PHqYP6tJE6uiNN8VifCblmPR07LqAiFz4IfPWoBK17nPngD++y6R7Js2ZVVenu8JYkX2mtfXxMPh9Pd5EiSe7azweT2PRyvQ4fHBrff5PyYDHMvFxX1dWz1HDwp62181ZKDxOYVbl+dP96VpIXTTA/rNesyvbg0d/fHJegtXZWkkEjxmqPCgfYbNogGNhK5+3M31YqD9px5msrlYXhi1l7bFIerExbGANbad/AfGlLBBjSWvtBks/1k+POX4b3nUeOWc7Pkrylnzygqq693nWpqksnuXU/+f7W2rfHJH1bkh/34zumw/cM3TtL5yc6rS6Ivk5ep598S19nRzlyaFz9Wj9tQluH/65toqr2ytL1mG8m+fAcV4fZGdTRH2fpBkUX0ten9/eTt+7rG+uwxmN9Juea9RTsxICKm/evZyf51ArpPjQ0frN15nGNJFcZsZyV8rlqusfjwSRmUa7X6uJD478cmwpWN49y/ZIkl0zyutbasRtcFoyy6eW6qi6WpQPU9w3uTFxVu1bVr1TVflWlcwzTNqt99uCk6hrjEvQNWfssSw8wL9ogGNhK5+3M31YqD9px5msrlYX7Do1/ZZPyYGXawhjYSvsG5ktbIsBFDc5hxp2/DPadX22tnb7Ccjb6P3qjLN3QZ2x7TB+wOuhIdCNPlVq3wV3AW5LXzXNFmKmbD42vVL9OT3JiP+l4eP20CW0d/ru2j3sl2bMff924p8Cwc/TnzDfuJz+2ys1IBvXq4kkO3NQV27lWO9Zncq5ZT8FODKgYRDGftMojaYcvGl1nbKrRDhiznGnnAwOzKNdrdcuh8S+PTQWrm2m5rqr7JrlDusck/sWky4FVzKJcXz9Ld+v5fFXtVVUvSHfH/m+lu1PCWVX1vqo6dJ3LhnFmtc9+af96+ar60zFpnjIiPcC8aINgYCudtzN/W6k8aMeZr7mWharap6oOqqpXJnly//YZSd4wrTxYF21hDMxj3/Dqqjqtqs6rqjOq6uNV9YyquuoGl8vGaEsEGFJVV8zSfu4i5y9Vdakkv9JPbnYbySTtMbsl+bUJ8lpIVXWNLHXiOq619o0pLfryVfWhqvpBVZ1bVd+pqmOq6tFVdYkp5bEIHlNVJ1XVOVV1VlV9sapeWlW/M4VlT1K/fqWqLjmFvBfJtNuE1K0J+O/adh44ND7NJyf9XVWd0tedH1XV/1TV8yd5EsmC+o2qOr6qzuz/l75dVe+oqgdOISDo2kl27cddg9tEqx3rT0jdWuKa9RTsqICK/g4qg7vVjntsVZKktfajdNE4ydKBy1pdbWh8xXyS/O/Q+HrzgVmW67Wsy/WT3LGf/HxrzYV4JjLrcl1Vl0vygn7ySa2170+yHFjJDMv18AHqLkk+meSx6R7HNnCxJLdJ8l9V9cR1Lh8uZMb77FdlqXHqxVX1iqq6c1UdWFV3r6qjkjy+//zvWmvvH70YgM2nDYKBrXTezvxtpfKgHWe+5lUWqurYqmpV1ZJ8P8lHk/xxkkrXefZurbUzN5IH66ctjIE5/k8cmuTKSXZPcvkkN0kXaHVSVT18g8tmAtoSAUZ6QrqOnUnylhGfz7KNRHvM5ntguvOUZLqdVi+V5BZJ9k73H7dvktsmeWGSE6vq4CnmtZP9TpL9091Jeq90xxQPT/KpPrDi4ivNvIpJ6lctm48V9AEOf95PnpvkHVNYrLo1Gf9d20RV7ZfkkH7yI621r09x8Qcn+dV0deeySX47XR39clUdXlW10szkSumeInGZdP9LV01ylySvSfKZqtpIZ231ZnZWO9afhLoV16ynabfVk2wrlx4a/+ka0p+d7nHXl9rEfM4eGl9vPpDMrlyvqD8hPiJLUZlPXiE5rGbW5fq56Q6wP5bkFRMuA1Yzq3K999D4E9PdYe69SZ6a5HPpGjXvkeTZ6U4on11VX2mtTaOhjMU0s312a+2XSR5UVUcn+askD+mHYR9M8kzBFMAWoA2CgS1x3s6WsSXKg3acLWFLlIUh/5zk6a21MzZp+axMWxgDsy4L30jytnRlYXAh85rp2o7uma5d6aVV1VprL58wDyajLRFgSFXdJEudf7+d5F9GJJtlG4n2mM33R/3rzzOdTnUtyceTHJ3k00m+m+5/73pJ/iRdR8yrJvnPqjqktfY/U8hzJzozyVFJjk3ytSTnpAvMvW263/FS6QIrLp3kDyfMQ/3afM9J18E0SV7cWjttA8tStzbGf9f28UdZCvR7zZSW+Z105+THpTs/Pz9d3bxTusDC3ZM8LV1n8L+aUp47yQVJPpDkPUk+m+QH6cr576T7L7pOuoC/D1bVjVtr35ogD/VmBtZ4rL8e6taFuWY9JTstoGKPofHz1pD+3P51z03M59yh8fXmA8nsyvVqXpTkwH78Na21o6e8fBbLzMp1Vd0i3Z0Yz0/yp621tt5lwBrNqlwPP852jyTvS3KnviN60t2B9KVV9YUkH0p357lnVdU7lX8mNNNjkf4OEg9M1xA7ykFJ/qSqvtxaO3WSPACmRBsEA1vlvJ2tYauUB+048zevsvDgdOeNle6uXAcmeUSSRye5ZlU9pLX23Q3mwfppC2NglvuGo9L9BywvAyckeXNV3Sndxefdkzy/bzs6fYJ8mIy2RIBeVV0pyVvT9V9pSR7UWvvZiKSzbCPRHrOJ+jvZ799PvqO19uMpLPZxY57G97GqekWSZ6TrUHfJJEdU1YH+6y7itCRXHVH//ifJe6rqxUnen67D4v2r6s2ttXdOkI/6tYmq6g/TtQEkyZeT/PUGF6lubYz/ru3jAf3rOZlOoN8JSa7eWvvFsvc/neTtVfXyJP+ZLrD9Sf0+9bNTyHcnufuY/c+Hq+ol6W4i8qB0NxV5QZK7T5CHerPJ1nGsv1bq1kW5Zj0lu8x7BabsnKHxi60h/eARdD/fxHyGH3O33nwgmV25Hquq/jJLd4c+IcmjprVsFtZMynV/R86Xp+tE8E+ttc+tZ35Yp3kchyTJE4cugP6f1tpx6S6KJ11k/rjO6bCamR2LVNUh6e6aeeckp6a7E8i+fb6/ku4Y5GdJ7pvkE1X1m+vNA2CKtEEwMPfzdraUuZcH7ThbxlzKQmvtm621L7TWPt9a+3Br7flJfivdndzulOSEqrraykthE2gLY2Bm+4bW2lkrdWRqrb0ryd/2k5dId3dZZkdbIrAlVVWbwnDYOvK7dJJ3Jxkcoz6ptfZfY5LPso1kW7THzHp7TdEDh8anchfwMR0uB5+11tqT093lOunubH3wNPJdj62+vVpr563UwbG19rUsdThOksdMmNWWr19bfVutsN6HJnllP/nDJPdorW20nUHd2hj/XROYw/HITZNcu598R2vtrI1+h9ba2SM6fA9//oksBT/V0Pi2spnbapX9zy/StYF/tX/rblV11Qm+wo6pN2sxh7q1nmP9NVmUurVOrllPyU4LqPjJ0PhaHhMyuCvLWh5zMmk+w3d+WW8+kMyuXI9UVQ9P8sx+8itJ7tBaO3uFWWAtZlWun5zk19M9zv5p65wX1msexyHfX+WxqccMjd9onfnAwEzKdnUdf96U7k4Bpye5aWvt9a2177bWftFa+3Zr7SVJbpHuRO0qmd7jVgEmoQ2Cgbmet7PlaMdhYMvsG1pr56R7csXP0gUq//2082BV2sIY2DL7ht7L090dMEluuUl5MJq2RGDhVdUeSd6R5Ib9W89rra10rDrLNhLtMZukvxZw737yO+menjQrLxsad+wzgdbah5N8qZ+8eVVN0u9M/doEVXVgknem68D403RtQl+eUfbq1nj+u7aH4UC/184w339NMnhKk7qzTq2187MURJZM9huqN5tkgmP9aVq0uuWa9ZTsNu8VmKbW2jlV9YMkl89SVNNIVXW5LG20/11nVt8eGl/tbl6/MjS+3nxgluV61PLul+Ql/eQpSX6vtXbGRpcLMyzXT+xf35/kzlU1Ks1g2Zesqvv249/baEQsi2eG5Xo4/bfHprpo2iusMx9IMtOyfbskg7tGvLC1dvqY9fliVb0+3R0nblhV11+ARzQCW5A2CAbmed7O1qMdh4Gttm9orZ1RVR9J8ntJ7lpVu690Jy+mS1sYA1tw3/C9fn32ydI5OTOgLRHYwq4zhWV8Z7UEVbVbkrckuVX/1hGttSesMtupQ+Ob3UayvD3mk5uY10bMZHtN2Z2TXK4ff+OoJydtoi8Njc/j2Gc7bq9RvpTkgCR7pDuW+f46519ev1ZquxjUr5bVj2WmaVttq+qe6P7eJJdOcm6SP2itHT+r/KNurcR/12Rmtk2r6mJJ7tNPfjcXDjTfVK2186vqxCQHZvuek8+7/m10/7No1+C28rH+1OyQurVmrllPz44KqOh9KckhSa5VVbv1kWij/MbQ+Hojcod3xL8xNtXG84GBWZR7s5/AAAAgAElEQVTrC6mqu6SLut0l3R/hrVtrszxBZeebRbkePF7qwf2wkn3S3Rk9ST6UxEVkJjGLcv3FofFdV0k7/Pm4dYG1mEXZHj55//QqaT+VLqBikKeACmBetEEwMPPzdrY07TgMbLV9w6CTyyXStYNshY44i0RbGANbbd/QVk/CJtGWCGw5rbWvbHYe/R3tX5euY32SvDnJw1ebr7X2k6r633Sdcza7jWSS9pjzk3xtgrwmNovttQmG7wI+66dQz/W4Z5tur1E2+jsur1+fWSHtoH797yyfwLmdtlVV7Z/uSS+XT7cfuk9r7QMzXg11awz/XZOZ8Ta9U5K9+/E3zDjQL9nm5+RboP5t9Pc7Mckv050P7/hrcFv5WH8TbOu6NQHXrKdgkkevbXXH9a+XzNLjYkYZfpTLR9aZxzeTnDZiOaPcon89NcnJ68wHBmZRrv9PVd06XZTgbkl+kO6Ohl+fdHkwxkzLNczIppfr1topSb7VT+5XY2432dt/aPzUsalgdbPYZw+f0K0W+L37mPkAZk0bBAPObximHYeBrbZvGL4b17Z5zPYOstXKA/OzZcpCVV0hXXBNsnTMyexoSwQW1cuSDJ6UdXSSB7TWLljjvIN9569X1b4rpNvo/+gJSc4bsawL6e9qfdPBPJ4Ct7L+2ON2/eRnWmufn/EqHDA07thncoPf8dx07RDrddzQ+Er1a98k1+4nnRuNUFVXS/eEwisnuSDJg1pr75jDqqhbK/PftbUNB/q9dpYZ93fxH+zn1J3JbGj/01o7L8kn+smD+voxzqBenZuVnwCz6DZyrD8VC1q3XLOegp0YUPH2ofGRd2Dqo6AGf4ZnJvngejJorbUkgwPQ36iqm45K178/iLR5Rz8fTGLTy/XQcg5OV74vnuSsJL/fWvviynPBRGaxv67VhiSn9MlPGXr/0HV+FxiY1f763/vXvZLceoV0dx8aP25sKljdLMr2N4fGD1kl7fDJ2TfHpgLYfNogGJjZeTvbgnYcBrbMvqHvZHFQP3lKa+0nm5EPK9IWxsCW2TckeViSQQf7D21SHoynLRFYOFX1j1l6+vAHktxrhbunjjK87zxsTB6XSHLvfvJLrbUT17ue/fHy4A7vt+mPp0e5e7r9a5Ictd58FtD9snTDpFk/nSK58N2RHftMoKpuluQ3+8njJukg2dfJwZ2K793X2VEOGxpXv5apqiumC6bYr3/rT1trb5zT6qhbK/PftUVV1eWT3KGf/Gxr7bMzXoX7JLlMP67urFPfaf6Ph9767wkXNaije+XC58XDeV0tyW36yQ9oWx1tCsf607KIdcs16ynYcQEVrbVPJPlwP/knVXXQiGR/keQ6/fg/LY+0rKpDq6r1w5FjsnpBusf9JMkLq2rPZcvYM8kL+8nz+/QwkVmV66r67STvThepdnaSO7bWPjWN7wDLzXB/DTMz4+OQc/rxf6yqvZYnqKoHJDm0n3x3a+1/1/5N4MJmVLY/kORn/fgjqup6o9alqm6f5G795KlZ+VHQAJtKGwQDzm8Yph2HgVmUhaq6dlX97krrUVWXSfLGJIM7rM30bnt0/FcwMKN9w35VdYOV1qOq7pTkqf3kz5O8eh1fgynQlggsmqo6PMnj+smPJrlra+3cdS7mqCTf6Mf/sqr2H5HmuUkuNzQ+al0OG9p/Hj4mr+f1r7sleXFV7bpsGfskeU4/eWaSI9b2FRbaoAPX+enOUdakqg4f2l6Hjfj8plV15RXmr6p6RpY6Qn42nnhwEVX1B1Xjn2ZVVdfKhbfbS8akW3F79Qb1a+8kfz9iGfsn+ct+8qQseKfv5arqskmOSfLr/VuPa629YoLlqFuz4b9r6xoO9Ftze1l/zj3YFseO+PxyVXXoKsu4cZIX9ZMtyb+sNf9FUFW36vd14z7fPV35HZwvHz3qPHa1bdU7It3NipLk2dUF2gwvY9d0/3mD+jSyji66aRzrq1uTc816Onab9wpsksemO0DbM8l/VtUz00XT7JnucTIP69OdmOQfJsmgtXZiVT03yZOSHJjkI1X1nCRfT/dI3CcmGTRWP7e19rUJvwsMbGq57g/Yj0kyOBj56yRnVdV1V5jte6217603Lxiy6ftrmINZHId8q6qemq6B8XpJPtEfh3wuS1Hzj+iT/zhLJy2wEZtatltrZ1bVs5P8bZJLJ/loVb0wyfuS/CjJlZLcNclDsxQY/qRZPx4SYARtEAzM5PxmxMXN3x4av11V7Tc0fVJrzd2F50M7DgObvW+4SpIPVNVn092F6lNJTk93sWLfJDdL8if9eJJ8IcmzJ/omTIO2MAY2uyzsl+SDVfWxJEen69g0+A+4ZpJ79sOgw9zjW2unTpAPG6ctEVgIVfWYJE/rJ09N8v+SXGOFvttJ8tXlnXxaa7/ol3V0un3YR/rOvJ9I1xH1oUnu0Sc/LsnrJl3n1tp/VdW/ptsf3yXJ+6rqBUlOS7c/fXKSX+2TP7G19qNJ89qK+s7zN1/29qUGryPaJ97bWjt9heUdkOSGQ2mneX56uyRPqqr3prum8KV0HYUvnuS30t29+iZ92p8leeh2ulPuWkxpex2V5KSqelu6OvXtJOcmuXKS3093bjlY5ltaa2/bwCq/Jt12uVmSR1XVvkleke560I2TPCVdHb8gyZ/N6e7Wm2Kj26qqLp7uBhuDNsE3JHn/Km1CZ7fWJnniu7o1hbrlv2tLGw70e8MUl3uZdOfkn8tSe9130nVC/tUkd0ryR1m6+cnz3CjnIh6U5J1V9c4kxyb5arrz1UulO554WJID+rTfS3duPZHW2g+r6olJXprk6kmOr6q/S/L5dG2vf57kVn3yN7XWjp00r51qWsf6a6Burcw1641qre3IIcmd00WOtTHDV5Nca8y8hw6lO3KFPHZJ8soV8mjpIth2mffvYdgZw2aW63SPlVupLI8aDp/3b2LY/sMs9ter5H9yP//J8/4tDDtnmFW5TvKsdA2J4/L5bpKD5v17GHbOsNllO11HjuevUq5bkvPSdfaY+29iMBgMrWmDMMy8LKznvH3scgzbuzxEO862Gja5LBy6jjLwriRXmPfvsejDLP4rVsn/5GgL2xLDFtk3nJ3kYfP+LRZ9mNV+IdoSDQbDHId0HeHWew6z3wrLe2i6jt7j5j0+yT4rzH/YUNrDV0i3Z7qOy+Py+eVK82/nIes/7zx0leU9eyjtvda5LocPzXvYKp+vNJyS5Gbz/m236vZax7wvSXLxSbfXULp90nUoH5fPOUkeMu/fdqttq3TB0+vdnx47ybZSt6a7L4z/ri01JPmNod/k3eucd7geHrvK5ysN56frhF7z/j222pDkyDX+hp9LcsCk22pZ2r/JyufM706yx7x/m604ZErH+urWVLaFa9YbGHbqEyrSWju6qn4rXdTNHZNcLV3Hq5OS/FuSF7XWfrbBPC5I93iUf08XvXOjdAf8ZyQ5IcnLWmv/sZE8YNgsyjXMmnLNTjSrct1a+8s+Iv8RSQ5Jd4eYc9JFE78zyQtba2etsAhYl80u2607+3pcVb0+yUPS3fHl6kkukeSnfT4fSnecfeJGvgvANGmDYMD5DcOUBwY2uSx8JN2dQm+T7o5QV0v3dLdLpLtr2zeTfDzd3dM+spHvwXTYNzCwyWXhU0kekOSgdPuGK6c7dtwt3V1/v5jkA0mOaJ5eNHfaEgHWr7X2iv5JTH+W5Nbp7h58dpIvp7vD9BFtCne0b639PMkdq+r+6TqyXj/dkwK/m+TD6fbRH9toPjtdVe2S5A/7yTPT/e9M06vTBwamu2v+FZNcPl1nujOSfDrdneHf2Fo7Z8p57yR3Sfcb3iTdtZl9klwy3bnlN9KV+Ve11r4wjcxaa2dU1cHpOpnfP8l1+vxOS3es+k+ttS9OIy8mpm5Nkf+uLeePhsZfO+Vln5bkXunqzo2TXDXdPnWPdB2dv5quA/oRrbWTp5z3TvGcJJ9J9xsekOQKSfZOF5T03SSfTPLWJEe11n45jQxba0+rqmOSPCrdOfOV0h23fDbJq1trb5pGPmyIurUK16w3pvqIEQAAAAAAAAAAAAAAgIWxy7xXAAAAAAAAAAAAAAAAYNYEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFwDZVVYdVVeuH/ea9PrBcVZ3cl88j570uAAAAsJOs1C5UVUf27588l5UDAAAAmJKd1DemqvYb+i6HzXt9AIAlAioAAAAAAAAAAAAAAICFI6ACgKmrqsMHUfXzXheWVNWx/XY5dt7rAgAAAAAAAAAAADBvAioAtqnW2pGtteqHk+e9PgAAAADMX2vtsL69aL95rwsAAAAAAMBWJ6ACAAAAAAAAAAAAAABYOAIqAAAAAAAAAAAAAACAhSOgAmCbqqrDqqr1w37LPju2f//YfvqqVfWPVXVSVf28qn5QVcdU1e1XyWPXPp9jqur0qjqvqs6qqq9V1Qeq6q+q6oDl65TkaUPvtRHDfkOfL1/XX6uqF/V5/Gw4/Urfedl67zeU7rARnx/Zf3ZyP71vVT2vqk7s8zy1qt5SVb85Yrn/3Kf7eVV9t6reUFX7r/Q7Ds1/q6p6TVV9o8/nx1X1+ap6blVdZYX5Dh98n356j6p6QlV9uqp+0g+fqKpHV9Vu475vklv2b91yxDY5edk8l6yq+1TVEVX1mX67/6Kqvl9VH6qqx1fVpdbyvcd8p0OH8j60f+/efbn6fv/7frWq/r6q9l7jMv+gqv6tqr5VVedU1ZlV9cmqelpVXW6Vea9dVS+sqi/0v+d5VXVa/91f1f8WFx8x37rqCAAAAGy25e0eQ+8/dehc/NfWsJxj+rTfqapdx6SZ6Fx8RNvMZavqb6vqi1V1dr+c/66qP1zjd75MVf1lVX2kb1c4r1/vo6vqnlVVq8x/t6p6e1V9u6rO7dsGvlFVH66qp1fVjcfMd5WqenbfRjNoO/lu397zpr7NYK+1fAcAAABgMlV1hap6RlX9T9+mcE5VnVxVr6uqm68y76Ct5PBV0l2ob8uYNLtW1SOr6vjq+oOc1bcZPH5Uf4MR82svAYA5uUinSwB2lqq6WZK3J9ln6O09ktw2yW2r6gmtteeNmO9SSd6T5JBlH+2eZK8k10ryu0l+J8k9p7Sud03yhiSXnMby1pjn9ZO8N8m+Q2/vmeReSe5QVbdrrR1XVb+b5G1JLjOUbo8k909y+6o6pLX2xTF57JHk1UnuO+Lj6/bDI6rqfq21o1dZ3yv16/vbyz66UT/ctqr+oLV2wUrLWYN3ZykAY9g+SW7RD4+sqju01r6ywbx2qarXJXnAsvevneQJSe7W/76nj5q576Dx1nTlcdjFk9ywHx5ZVXdtrX18xPz3SvL6JBdb9tGV++H6SR6c5HpJvjA038zrCAAAAGzAG5P8TT9+/6Hxi+jbH27dT/5ra+2Xyz7f0Ln4smX9erq2jv2WfXRIkkOq6qDW2qNXmP/WSd6c5PLLPto3yZ364T1VdZ/W2k+XzbtrkjelawcadrEkl0pyjSQ3T3L7JAcum/eQJO9K1wYw7Ir9cN10bUFn9OkAAACAKauq2yb5t1z0/Pzq/fCAqnpxkj+bQj+KldZjXP+BG/TD/ZI8ZB3L014CADMkoAJgZ7tyumCKC5I8KclxSc5Ld2Lz1CSXTfKsqvqPEcEAh2fpRO9d6QIdvpXknHQnOTdId4LVhuZ5e5JPJnlkkkf0711vxHqdOuK9X03Xqf1nSZ6e5MNJfpkuSOCnI9JPwyWSHJXupO+vknyoz/N2/fQlk7yuqn4v3Xc7K93vdny6/9B7JPnzJJdL8sokN12eQR/R/9Ykd+zfOjrJW5J8I912uXGSv0j3/d9aVTdrrX1yhXV+W5IDkvxzv6wfJvn1JE9Jcp0kd07y0CQvG5rnyUmely6o48B02+jBy5Z73rLp3ZJ8Psk7+/SnJal0DQ53S3LvdCfJb6+q326tnbPCOq/m6UkOTvcbvzbJKUmulORR6X63ayV5froGhgvp7+Lw/nRBC79M1znkPUm+mS6w4RZJ/r90ZfY9VXWD1topQ/NfKd3vcrEk30vyoiQfT3fyvmef9y2T/MGI9T48668jAAAAMBettZOq6vgkN8kqARVJ7pNk8FSKNwx/sNFz8WUuka594/JJntEv96fpzqmfluRqSR5VVUe31o5ZPnN/I5H/6PP9bpIXJvlsunaMq/Tf4wFJ7pDkNenacoY9IkudA45LckSSryc5u1+n30rXTjR8g43Bb/Cv6ToH/CTJvyT5YLq2hYulazM5OF0bCgAAALAJquq307UrXCzJL9Jd739nuvP6G6TrJ3ONdH0Pzk7yxE1cnddnqf/AJ9L1cfhaur4Ph6Vrf3jZyDkvSnsJAMyYgAqAne3a6Tqn36y1NhzEcEJVnZDkv9P9FzwsyWOXzXvv/vWtrbXlUedJFwn/rKrae/BGa+3MJGdW1feG3vvCiHlHuUa6k7eDWmvfGnr/+DXOP4krpAsSuHFr7evDeVbVGelOtvdL8tEkp6f7Hb8/lO4jVXV+uqco3KTvIPA/y/J4SLqggF8kuUtr7b3LPv94/3SGDyf5zSQvSBfwMs6Nkty2tXbs0Hufrqpjknwp3cn4IzN0It5v+1Or6uz+rbPXsF0e3Fr72oj3j0/ylqp6ZZJj0gVz/GG6gJJJHZzkr1trfzf8ZlW9N105u22Se1bVny37/ZMuwOV3kpyZ5DattU8t+/y4qnpDko+lCzB6Zr++A3fM0hNRbj3id/loktdW1ag7O6y7jgAAAMCcvSFdQMW1q+rAFW7qcP/+9cQRaTZ6Lj7sCukuqB+07GYfn6qqY9Pd7GGPdG0dF+ogUFW7p+ussHu6c/B7tNZ+NpTk00neVVX/neTlSe5eVb/XWnvfUJrBuf3xSW7VWjt/2fq9P8k/jji3v1m6DghJcv/W2vI7Kn48yZuq6nHpOkEAAAAA0/fydO0Kv0xyp9bafw59dkJV/Vu6gIADkjy+ql474majG1ZVd0xy137yPUnuuqyN4T1V9dSsfHOLYdpLAGDGdpn3CgCw6R6zLJgiSdJaOy5LwQrLHzmYdI/5S7qO/mO11n64sdW7kCctC6aYhacsC6YYeFW6Jw0k3cnqqM78SRdRP3Ch37F/OsXgDgf/PCKYIknSWvtRuqCMJLlZVf3aCuv7wmXBFINl/DDdkxaS5HpVdZnladZjTDDF8OfvT3dnh2T00xvW41PpOlcsz6Ml+cd+crckBw1/3j8y81H95FNGdOAYLOeUdE/BSJJ7VdUlhz4elPMfrRRk0lr7eWvt58venkcdAQAAgI14c7pOBsmYIIeq2j9d0EVy0adTTONcfLmnjOrM0Fo7Kd3TLJPRN5+4b7obYZyT5IHLOgcML+cV6e4MmXR3hBw2OLf/6IjOAcPLWH5uv+/Q+H+vMN/5rbUfj/scAAAAmExV3TjdDSmT5BXLgimS/F9fjIf1k7ukC0DYDIPlnpvkoWPaGJ6RZK03JE20lwDATAmoANjZzkzy7hU+H1z0vuaIz77Tv96nqmYRGX5ekn+bQT7DWpK3jPyg6zw/CCr4UZZF9Q+l+2a6RxUmF/0dD0iyfz/+1lXWZfhk8qCxqZZ1ZFhmsD0r3RM/pqaqrlBVv1ZV1x0MSQYBJtff4OLf2AdPjDLcMWP573vLLD1Ccq2/7+5Jbjj0/qCcX66q7pr1mXUdAQAAgA1prX0vyeCOg/epqlHXCO4/NP7GZZ9N41z8Qqs0Io9hg3aBvavqsss+u0v/+qExN8EYtS7L21wG5/Z3rqp9VlnGqPmS5MHrmA8AAACYjtsMjb9yXKLW2keSfHnEPFNRVbsmObSf/M/W2mlj1uOCJK9Z42K1lwDAjAmoANjZvtaflI0ziBa/9IjPBidyByf5ZlW9qKruVlVXmOoaLvlaa+2c1ZNN1RmrPD3gzP71pBU6/A+nW/47Hjg0/rGqauOGJD8dSrtvxvvKCp8Nf5dR23RdqupmVfXmqvpBku8lOTHdoyMHw0P7pOs5gR5l0u80/Pt+Z5Xfd/hOD8O/7zuztP2Oqqr/qqrHVdUN+4aPlcy6jgAAAMA0DG7WcOUkvzvi80FAxfH9XQ+HTeNcfNgZrbUfrLCua2kX+P2V1qNfl8ePWY/Buf21kpxUVa+qqvtV1dVWWKckOS7JN/rxF1TVJ6rqL/u2lIutMi8AAACwcdftX89L8plV0h7fv/7aJpy3759kcAPGE1ZJ+4lVPh/QXgIAMyagAmBnG/noviGDYItR/wdPT/KqdJHvV0zyqCRvS/K9qvpCVf1NVV1pamvaPQVi1tb6+6w13fIO+Fdc9xp1xj7tYNzjGJetx6h1WZeqOjz/P3v3H2x5Xddx/PVZl18J62YqrNoPBc0SSlFBERVFsdA1QENNR9Py56gpTU6NYzWWTuOgVFKCWZZFKZktkZo/Mk2jxJ+TRDlqgGRIGMGCprHspz++3+teLvf3nnvP3X0/HjN37vn1PefDuXuH+/2c7/PzHXZ2z0xy5yUefsjevFYWeX/nBEETf3/HSYgnJflqhjN7PDrJG5N8Ksn1rbV3t9aeuMDzrPfvCAAAAEzCjuzZF3/G7Dtaa8cmud94db6zZE56rmO5cy7JZOYFbjOH0Xv/gySvS7Irw5k3npNhBcirW2tfaq29obV2uzO79t5vSbI9e1a4fMj4PB9PckNr7W9aaz+1jMUaAAAAgNWZOY7h+t77riUe+7Xxe0vy3Ws0jmRYqHIx1y7zOc2XAMA62zztAQCwMY07Oj/TWntDkqdnWLHwwUkOTHL/8eus1toze+8XTeAlb53Ac2w0s3cCtye5cpnbLbWTvaZaaycn+ZXx6r8nOTvDDu5XknxjZjKitfaaJK+eyiAHs9/fY5Pcsszt/mP2ld77x1prRyV5cpJTkzwyyT2TbElyepLTW2vvT3LG7KBlCr8jAAAAsNd67ze31i7KsC97RmvtRbPOGjpzdopbk7xzns0nsi8+ITNjeV+SV672SXrvr2qtvSVDXHJykodmCECOTHJWkpe21l7Wez9vznaXt9aOyTDnsz3DfMJRGQ5CePz4dVZr7dTe+1TnegAAAGA/1qc9gFk2wljMlwDAKggqAFhU7/3yDAfNv7q1dnCSEzN8uP6sJIcm+bPW2pG992vWYTizK/vFzrJ0x7UeyDLNPgXjDb33y6Y2kpV53vj9f5I8tPd+3QKPW+rMFWtt9vt7Xe991QdnjAeOXDB+pbV2ryRPSPLSJPfNsFP/2iSvmGfbjfQ7AgAAAMtxQYagYkuSJyZ5V2ttU5Knjfd/cIEPtSe2Lz4B/53k7kkO3Ns5l977VRlWTHxda+2ADCsonpnkBUkOTvK7rbVP9N4/O2e7WzOc8WNHkrTWtiX5sQxnsXzQ+HV+hgUbAAAAgMm5fvz+Pa21zUucpeKI8XvPcBzEbD3DmSsWOwYlWfg4lNnPd/gSz7HU/ZNgvgQAVmGpPwQA4Dt679/qvX+o9/7cJL8w3nxIhg/eb/PQNRrCTbMuL3Yaxvuu0euv1OydxodPbRR7LPfncv/x+98tElMkw9kYpmnN3t/e+xW993MzTAjMHBxy5jK2W+7vCAAAAEzT+5N8fbw8c1aKRyW5x3j5ggW220hzHTNjeXBr7cBJPWnv/Zbe+yW995dnz3vTkjxlGdte03t/W5KHJfnMePMTW2uHTGp8AAAAQJJkJhY4MMkDlnjsceP3L/be/2/OfTPHoSx4DEprrWU4y8J8vpzkf8fLD1liHEvdPwnmSwBgFQQVAKzW3866fJc5931r5kJr7aAJvuYVsy4vdjD/0yf4mnvjM9lzMP7zx7MXTNPMz2Wpn8nMGawWPNNHa+2BSY6fxKD2woeSfHO8/LJxEmOieu87k3xyvDr33/lSFvsdAQAAgKkZV228cLx6amtta/Z8GP7NjCsIzmPN98VX4K/G73dK8pw1eo1V7dv33m9J8tHx6uYkWyc5KAAAACAfmnX5uQs9qLX2sCQ/PM82M2aOQ1nsGJQfzwL79uMcy0fGq6eMZ2OYbxybkjx7kdeYFPMlALAKggoAbqe1dufW2vYlPhQ/ZdblK+bcd82sy0dObmS5LHtO2/iS+WKN1tqZSX5ygq+5ar333RlOf5gk907y9sUCk9baltbaS9ZwSDM/l3sv8bP94vj9xNba7VZZaK3dNckfT3pwK9V7vyHJuePVE5KcM05CzKu1dnhr7Wfn3Pb4hSY0xvvvlD2rVVwx6/a9/R0BAACAaZs5C8VBGWKKJ4/XL+q93zzfBpPYF5+gP0py9Xj57NbaIxd7cGvtxNbao+bc9szW2uaFtskC+/attUfMN2cy6/4DM5zxI0luTrLYGUABAACAFeq9X5rkU+PV57XWTp77mPHz/vPHq7uTvHmep5o5wP/41trtzsbZWjsiyZuWGM7M8x6U5PzW2h3mecwvJTlmieeZBPMlALAKi/2PD4C6tmSo1q9srb07ySeSXJVkV5JtSbYnmfkw/KtJ/nrO9pfMunxOa+21GQ7m7+NtV46V/or03ne11s7PsKN5dJIPt9Zen+QrSQ7PEFL89Pj6J6z0+dfIeUkel+T0DOM7dvxvuDTJjRne6/slOSnJkzKcReLceZ9p712SYQWCuyV5Y2vtT8YxJMktvferxstvz/AzvmOSj7bWfiPJp8f7TkhyVpIjkvxjhlMyTtMvZ9jhPp31x/UAACAASURBVD7JzyU5qbX2e0k+l+QbGU7Lef8kj82wasTnk7x11vZPT3Jxa+2DST6QPdHOYRn+jb0kyT3Gx543a7u9/R0BAACAqeq9X9JauyLJvZK8NntWBbxg4a2S7P2++KTG/+1xYY2PJDk0wzzROzKcXeOKDAtKbUvyoAzzMsckeWn2HCiRDAtGnD3u21+S5MsZ5mYOzzCf86LxcTfntu/LyUle3Vr7WJL3JPnnDAcBHJLkvklemOTY8bG/v5p5MAAAAGBJz8vwWf2BSd7bWntTkoszzE88MMkvZlj8MknO7r1fNs9zvCXJizMcR3lxa+01ST4+PufDMxwfcUCGhSnvM98geu8Xt9YuznCcwPYk/9BaO2fc5m4ZjmN5aoYAZLEzYew18yUAsDqCCgAW8wMZdg4Xck2Sn5i7amHv/UuttQuTnJmhTD9lznb3SnLlKsf060keneShGQ7u3zHn/o9kOAh+vh3hddd77621pyb5rQw7h0cmef0im/zXGg7nHRlilHsnefn4NeOqDD/v9N7f1Vp7W4b44u5JfnvO89ya5BUZDpCYalAxTgY8LskfJjkjyY9m8SBl5zy3HZDk1PFrIefl9u9DssrfEQAAANgg/jTJq7Inpvh6kvcvtsGE9sUnovf+T621k5JcmOR7kzxj/FrJWA7PcCDAi+a5LxkWo3ha7/3qObdvyhCWPOr2m3zHRRnmYgAAAIAJ671/rrW2PcmfZ1gU8efHr7l+Jwvsn/fe/6W19sokb8xwDMQ5cx5yfZLTkvxaFggqRs9I8r4MEcbxGY7PmO2zSV6QPYtZrhnzJQCwcoIKAOZzVZLjMhxgfkKS78+ws3RokhuSXJ6h6n9L732hD8WfmaGuf0qSH8yw4v+mvR1Y7/2brbXHZDig/2lJjkpyS5IvZDh14XkZdgg3jN77LUle3Fp7c4YVEk5K8n0Z3s+bM6wC8OkMO9drdiaD3vvNrbUTMuyYnpLh5/pdCzz2ua21Dyd5fpIHZFh94WtJ/j7Jub33S1trv7pWY12J3vtNSZ7cWjsxybOTPCJDCHJIhh3/L2c4I8h7MpyFYrZXJPlgksck+ZEMKzHcNUM0cnWGs3C8tff+8TnbTeJ3BAAAAKbtggxBxYwLl7M64F7ui0/UeJDAfTKs9rg9wwqUd0myO8MqiP+aYZXFv+i9f2HO5kcneUKSEzMsgnF4hrjkpiT/liEueXPv/do5252dYZXFx46vd/cMK04mw/zJpUne3nt/z8T+QwEAAIDb6b1/oLV2VIYFJU/NsMDkQUmuTfKxJOfN83n/3Oc4p7V2eYbjB47LcBzFfyZ5b5LX996/0lpbahw3jRHDC5M8K8kPJekZ5kjemeQ3kxyxyv/MFTNfAgAr03rv0x4DAAAAAAAAAAAAAADAutrrlcIBAAAAAAAAAAAAAAD2NYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5Wxe7xdsrR2U5Jjx6nVJbl3vMQAAALDh3SHJXcfLn++9f3uag4FJMS8CAADAMpkbYb9jXgQAAIBlWtd5kXUPKjLsHH9yCq8LAADAvukhST417UHAhJgXAQAAYKXMjbC/MC8CAADASq35vMimtXxyAAAAAAAAAAAAAACAjWgaZ6i4bubCpZdemm3btk1hCAAAAGxk11xzTY477riZq9ct9ljYx5gXAQAAYEnmRthPmRcBAABgSes9LzKNoOLWmQvbtm3LPe95zykMAQAAgH3IrUs/BPYZ5kUAAABYKXMj7C/MiwAAALBSaz4vsmmtXwAAAAAAAAAAAAAAAGCjEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmbpz0A9t7u3buzc+fOaQ9jw9i9e3duuumm29x22GGHZdMm/RCL27Jli38nAAAAwLLsS3Ny5sumy5wTAAAAAPOZb47RXBIArD9BxX5g586dOe2006Y9DNjn7dixI1u3bp32MAAAAIB9gDk5lsucEwAAAADzmW+O0VwSAKw/KSMAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAABgHd14443Lug0AWFuCCgAAAAAAAAAAAAAAoJzN0x4Aa+MbR5+RvvmgaQ9jOnZ9K4de9pe3uenmo09PNh88pQGxEbVd384dL3v3tIcBAAAA7Ec27Jyc+bJ1Y84JAAAAAABg3yKo2E/1zQelH3DItIcxFW2+GzcfXPb9AAAAAGB9bNQ5OfNlAAAAAAAAML9N0x4AAAAAAAAAAAAAAADAehNUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOZunPYCNZvfu3dm5c+dtbtuyZUs2bdKeAAAbh79ZAIBp8XcIADDD3wUAAACwert27VrWbQDA2hJUzLFz586cdtppt7ltx44d2bp165RGBABwe/5mAQCmxd8hAMAMfxcAAADA6l177bXz3nbkkUdOYTQAUJclggAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAA+H/27i7EqvPcA/g7H1WmWuNI1VOI0ptCYSyci4wpLfE2lEapSvxASS4KsaA4aAuFMqZQp4XeTJmJXhgopEFRE9R0YihpoRRDW/y4OFAHAr3TQIi22hjt4HScORfn7OBst9u9ZvaatfZ+fj8I4trr43nfvffqs177nwEAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAaHN3794tuoRZJicnS33+vOsrWruPr1q08WZlfoB63CMAgKJV+pFG+pKH95mcnAzVy1SPNa+xZzlv1hoivV8VRYw5y3eq2dednJxMt2/fznxcnsq2bgqUy5kzZ4ouAQAAIDcXL14suoRSEagAAGhjt2/fTtu2bcv8j5V5mZiYSD/84Q/TxMREKc+fd31Fa/fxVYs23qzMD1CPewQAULRKP3L79u0n9iUP9y4TExPpwIED6cCBAyF6meq+La8+Lst5s9YQsfcsYsxZvlPNvu6BAwfS3r1709atW9PHH3/c8HF51lm2dVOgXEZGRtJrr72WRkZGii4FAACg6cbGxtKPf/zjNDY2VnQppSFQAQDQxgYHB9O///3vdOjQoaJLSSmldPz48fS3v/0tnThxopTnz7u+orX7+KpFG29W5geoxz0CAChapR8ZHBx8Yl/ycO9y/PjxND4+nsbHx0P0MtV9W159XJbzZq0hYu9ZxJizfKeafd3x8fH097//PU1PT6f9+/c3fFyedZZt3RQol3Pnzs36EwAAoJ0MDw/P+hOBCgCAtnXp0qU0Pj6eUkrp6tWr6dKlS4XWc/369XT69OmUUkqnT59O169fL9X5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L6nTp1KJ0+e/Py1U6dOtXUvU923Xbp0KZc+Lkt/mLWXjNh7FjHmLN+pZl/31KlTs7bdvHkzvffee088Ls85Ktu6KVAuzz//fN2/AwAAtLKXXnqp7t+jEqgAAGhD09PTaWhoaNa2oaGhND09XUg9MzMzaXR0NE1NTaWUUvrPf/6TRkdH08zMTCnOn3d9RWv38VWLNt6szA9Qj3sEAFC06n6kolZfUr3v1NTUrLWPqampNDIy0pa9TK2+bWhoqOl9XJb+MGsvGbH3LGLMWb5Tzb7uyMhIevDgwSOvDQ8P19xeq95m11m2dVOgXG7dupXu378/a9v9+/fTrVu3CqoIAACgee7du5euXbs2a9u1a9fSvXv3CqqoPAQqAADa0LFjx9KdO3dmbbtz5056/fXXC6nnwoUL6fLly7O2Xb58OX3wwQelOH/e9RWt3cdXLdp4szI/QD3uEQBA0Wr1IxXVfUm9fSuuXLnSlr1MrbFXrwU1o4/L0h9m7SUj9p5FjDnLd6rZ171y5UrN1x48eJBeffXVxx6X5xyVbd0UKJctW7Zk2g4AANBKXnjhhZrbN27cuMCVlI9ABQBAm7l9+3Z6++23a7721ltvpdu3by9oPRMTE+no0aM1Xzt69GiamJgo9Px511e0dh9ftWjjzcr8APW4RwAARavXj1RU+pJG9q04cuRIW/UyWcY+nz4uS3+YtZeM2HsWMeYs36lmX/fIkSN19/nzn/+cPv7440eOy3OOyrZuCpTLyMjIvF4HAAAos7Gxscf+BtDp6ek0Nja2wBWVi0AFAECbGRwcfOyvqJ+enk6HDh1a0HqOHz+ebty4UfO1Tz75JJ04caLQ8+ddX9HafXzVoo03K/MD1OMeAQAUrV4/UlHpSxrZ4JWy9AAAIABJREFUt+LGjRtt1ctkGft8+rgs/WHWXjJi71nEmLN8p5p93Zs3bz5xv/379z9yXJ5zVLZ1U6Bczp07N6/XAQAAymx4eHher7c7gQoAgDZy8eLFND4+Xnefq1evpkuXLi1IPdeuXUunT5+uu8+pU6fS9evXCzl/3vUVrd3HVy3aeLMyP0A97hEAQNEa6UcqTp48mU6dOpXp/CdPnmyLXibLPFXMpY/L0h9m7SUj9p5FjDnLZ6WZ17527VrD38+bN2+m99577/Pj8pyjsq2bAuXy/PPPN3U/AACAMtm9e3dD+7300ks5V1JeAhUAAG1ieno6/fznP29o36Ghocf+NLZmmZmZSa+99lqampqqu9/U1FQaHR197K+Vy+v8eddXtHYfX7Vo483K/AD1uEcAAEVrtB+pePDgQXrw4EGmazx48CCNjIy0dC+TdZ4qsvZxWfrDkZGRNDo62nAvOT09Ha73LKLfzvpZada1Z2Zm0ujoaKbv5/DwcJqamsp1jsq2bgqUy61bt9L9+/cb2vf+/fvp1q1bOVcEAADQPPfu3UsfffRRQ/teu3Yt3bt3L+eKyqm76ALKptYC2aefflpAJY2rWV8bLDBDrmp8R8r+XQd4WK171htvvJHu3LnT0PF37txJr7/+evrBD37Q7NI+d+HChXT58uWG9r18+XL64IMP0oYNGxbs/HnXV7R2H1+1aOPNyvwA9WS9R/z1r399ZLvnKSKyJkdN1pwIptbney7/R+Qs/ch8XLlypaWfd+YzT1me9bJc58qVK5lqOHbsWLjn0yKeyefyWWnGtS9cuJDpM5HS/4Wd9u3blz788MOG9p9LnceOHSvVuilQLlu2bMm8/5/+9Kd8igEAAGiyF154IdP+GzduTH/84x9zqqa8mh6o6OjoePoJu/xXs6/ZTJ999tkj215++eUCKpmnB/dTSl8sugoorweP/pSRlvyuAzzk/PnzmfZ/66230vbt21Nvb2/Ta5mYmEhHjx7NdMzRo0dTf39/6unpyf38eddXtHYfX7Vo483K/MDCarV1kbncI379618/ss3zFPw/a3JYc4L02WefpRUrVjS8/1z6kfk4cuRISz7vNGOeGnnWy/v9ePvttzPt3+rPp0U8k8/nPZzPtScmJtKRI0fmdN1GwxQVWeq8fft25s9dnuum0O5abV1kZGRkzscNDAw0uRoAAIDmGhsbm9Nv+hwbG0ubNm3Kqapy6szhnNef8F/+P2IIACCgrD8Bcnp6Oh06dCiXWo4fP55u3LiR6ZhPPvkknThxYkHOn3d9RWv38VWLNt6szA8suJZaF5nLPeKf//xnTtUAABHNpR+Zjxs3brTk804z5qmRZ72834+s61et/nxaxDP5fN7D+Vz7+PHj6ebNm3M6NqssdQ4ODpZq3RQCaKl1kXPnzi3ocQAAAAtpeHh4QY9rZXkEKgAAaBFXr15Nd+/ebeo5Jycn09mzZ+d07JkzZ9Lk5GSu5797926u9RUt7/kvm2jjzcr8APXM5x4BANAMRfUjrfa808x5qjf2svaHrfZ+VRTxTN6M93Au1y7is9NInXfv3k3j4+NzOn8e66ZAuZw5c6bQ4wEAAPJ08eLFQo9vNXkEKtY84b/+HK4JAMAcrFu3Li1durSp51y0aFHasmXLnI7dunVrWrRoUa7nX7p0aa71FS3v+S+baOPNyvxAIVpmXWQ+9wgAgGYoqh9pteedZs5TvbGXtT9stferoohn8ma8h3O5dhGfnUbqXLp0aerr65vT+fNYN4UgWmZdZOvWrYUeDwAAkKdnn3220ONbTXezTzgzM/NRvdc7Ojqafcmm+tKXvvTItt/85jfpqaeeKqCaxnz66afp5Zdfnr2xa3ExxUCrqPEdKft3HeBhtf73v7OzM9Ovr+/s7EyHDx9udmkppZR2796d/vCHP6QbN240fMzq1avTrl27FuT8eddXtHYfX7Vo483K/MDCarV1kbncI7785S+nf/zjH7O2eZ4iImty1GTNiWBq3Qtr/TtLPXPpR+Zj1apVLfm804x5auRZL+/3I+v6Vas/nxbxTD6f93A+1969e3f6/e9/n27evDmn47PIUufQ0FDaunVradZNod212rrI5s2b07lz5+Z0HAAAQNkdPHgwDQ8Pz+m4aJoeqGh1nZ2P/tKOp556Ki1fvryAauahZAsRUDo1viMt+V0HeMjGjRvTb3/724b337ZtW+rt7c2llp6enrR3797005/+tOFj9u7dm3p6ehbk/HnXV7R2H1+1aOPNyvwA9czlHvH9738//fKXv5y1zfMU/D9rclhzgpr/zlLPXPqR+di3b19LPu80Y54aedbL+/148cUX0+nTpxvev9WfT4t4Jp/Pezifa/f09KR9+/bN6bpf//rX04cfftjw/lnq7O3tzfy5y3PdFCiXgYGBOQUqBgYGcqgGAACguTZt2pR+9atfpZmZmYaP6ezsTJs2bcqxqnLKtqoNAEBpvfzyy2nZsmUN7bts2bL0yiuv5FrPhg0bUn9/Y7+9u7+/Pz333HMLev686ytau4+vWrTxZmV+gHqy3iO++c1v5lwRABBNln5kPlr9eWc+85Rl7Fn7w2eeeabhfffs2RPu+bSIZ/K5fFaace0NGzY0/Hmo6OrqSkeOHMl1jvbs2VOqdVOgXM6ePZvr/gAAAEU6f/58pv3ffffdnCopN4EKAIA20dnZmQYHBxvad3BwMPNPjMyqo6Mj7d+/P3V31/+laN3d3Wn//v2Zf9X3fM+fd31Fa/fxVYs23qzMD1CPewQAULRG+5GKrq6u1NXVlekaXV1dLd/LZJ2niqx9XNb+cGBgoOF9Ozs7w/WeRfTbWT8rzbp2R0dHGhgYyPT9PHjw4OfXz2uOyrZuCpTLihUr0uLFixvad/HixWnFihU5VwQAANA8S5YsSWvXrm1o37Vr16YlS5bkXFE5WQ0CAGgj69evT319fXX3WbduXVq/fv2C1LNmzZq0ffv2uvvs2LEjrVmzppDz511f0dp9fNWijTcr8wPU4x4BABStkX6kYufOnWnHjh2Zzr9z58626GWyzFPFXPq4LP1h1l4yYu9ZxJizfFaaee01a9Y0/P1cuXJl+u53v/v5cXnOUdnWTYFyef/995u6HwAAQJm8+eabTd2vHQlUAAC0maGhocf+FLXOzs50+PDhBa1n9+7dadWqVTVfW716ddq1a1eh58+7vqK1+/iqRRtvVuYHqMc9AgAoWr1+pKLSlzSyb8WqVavaqpfJMvb59HFZ+sOsvWTE3rOIMWf5TjX7uitXrnzifqOjo48cl+cclW3dFCiXzZs3z+t1AACAMjt48OC8Xm93AhUAAG2mt7c3vfjiizVf27ZtW+rt7V3Qenp6etLevXtrvrZ3797U09NT6Pnzrq9o7T6+atHGm5X5AepxjwAAilavH6mo9CWN7Fuxb9++tuplsox9Pn1clv4way8ZsfcsYsxZvlPNvu6+ffvq7vPtb387feUrX3nkuDznqGzrpkC5DAwMzOt1AACAMtu0aVPq6Oio+VpnZ2fatGnTAldULgIVAABtaM+ePWnZsmWzti1btiy98sorhdSzYcOG1N/fP2tbf39/eu6550px/rzrK1q7j69atPFmZX6AetwjAICi1epHKqr7knr7Pu6YdlFr7NVrQc0Ye5b+MGsvGbH3LGLMWb5Tzb7uM888U/O1rq6u9LOf/eyxx+U5R2VbNwXK5ezZs5m2AwAAtJLz58/X3P7uu+8ucCXlI1ABANCGOjs70+Dg4Kxtr7766mN/pX3eOjo60v79+1N3d3dKKaUvfOELaWBg4LHJ54U+f971Fa3dx1ct2nizMj9APe4RAEDRqvuRilp9SfW+3d3ds9Y+uru727aXqdW3HTp0qOl9XJb+MGsvGbH3LGLMWb5Tzb7uwMBA6urqeuS1H/3oRzW316q32XWWbd0UKJcVK1akxYsXz9rW09OTVqxYUVBFAAAAzbNkyZK0du3aWdu++tWvpiVLlhRUUXlYGQIAaFPr169PfX19KaWU1q1b99ifCLdQ1qxZk7Zv355SSmn79u3p6aefLtX5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L47duxIO3fu/Py1HTt2tHUvU9239ff359LHZekPs/aSEXvPIsac5TvV7Ovu2LFj1raVK1em73znO088Ls85Ktu6KVAu77///qy//+53vyuoEgAAgOZ78803Z/39jTfeKKaQkhGoAABoY0NDQ+mLX/xiOnz4cNGlpJRS2r17d/rGN76Rdu3aVcrz511f0dp9fNWijTcr8wPU4x4BABSt0o8MDQ09sS95uHfZvXt36uvrS319fSF6meq+La8+Lst5s9YQsfcsYsxZvlPNvm5fX1/62te+ljo7O9Po6GjDx+VZZ9nWTYFy2bx586w/AQAA2snBgwdn/UlKHTMzMwt7wY6Op1NK11NK6fr166X7STP/+te/0ve+971Z29555520fPnygip6slo13/3vnWnmCz0FVVSsjv9MpKX/c3LWtsjzQW21Pidl/64DPCxLz3L37t20dOnShSrtiSYnJ9OiRYtKe/686ytau4+vWrTxZlXm+fnoo4/SmjVrKn9dMzMz81GR9UCzlH1d5GGPu0e04toJ5KGV1uSsly0ca05Ek3dfUOlHGnl2eXifycnJlFIq7fNOs1XPT17PelnOm7WGMj+f5qWIMWf5TjX7uimldO/evdTb25vpuDzrLNu6aTVrI7SjVloXOXPmTNq6dWvRZQDQ5v7yl7+kn/zkJ7O2/eIXv0jf+ta3CqoIgCguXryYnn322aLLeKyFXhfpzvPkAAAUr2z/KJj3P9bO9/zt/o/37T6+atHGm5X5AepxjwAAilbpRxrpSx7eJ1ofUz3evMaf5bxZa4j2nqVUzJizfKfKcN286yzbuilQLsIUAABAOytzmKIInUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHC6iy6gbJYtW5beeeedR7YBAJSJngUAKIo+BACo0BcAAADA3K1evbqhbQBAvgQqqnR2dqbly5cXXQYAQF16FgCgKPoQAKBCXwAAAABz19396P99s9Y2ACBfnUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAA/pe9Ow+X5yrrBP59fwkBEkgCBIkgEhYVUFSGRcMiQTaFAMoIMi4QhUEYZRTFCYhL1FEQhhFkGRAYAwoIKiEBRQhLkE0JOGyyLwECgSQsISwh25k/qi63c+nbd+v11ufzPPXc6ttVp6r7rVNVfareUwAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAINz8KJXgNmoS7+56FVYnEsvGvu/mv+asMQGXUcAAACAmVja9gbtZXOztNsAAAAAAAAAY0mo2KcOe9/LFr0KS+Vq7ztl0asAAAAAwD63Sm1y2ssAAAAAAAAgObDoFQAAAAAAAAAAAAAAAJg3CRUAAAAAAAAAAAAAc3TEEUds638AwGxJqAAAAAAAAAAAAAAAAAbn4EWvAHt3+OGH5+Uvf/miV2NpXH755bnwwguv8L+rX/3qOXBA/hCTHX744YteBQAAAGBFrFKbnPayxdLmBAAAAMA449oYtSUBwPxJqNgHDhw4kCOPPHLRq7FUrnnNay56FQAAAADYx1atTU57GQAAAAAsl1VrYwSA/UoXZAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAACdn8Y+AAAgAElEQVQAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBOXgByzxobeScc85ZwOIBAABYdht+Lx602XSwgrSLAAAAsCVtI+xT2kUAAADY0rzbRaq1NutlXHGBVbdOcuZcFwoAAMAqu01r7R2LXgmYBu0iAAAA7IK2EfYF7SIAAADswszbRQ7MsnAAAAAAAAAAAAAAAIBltIgnVFw5yS36l+cluWyuK8DQHZ31Hi9uk+RzC1wX2IrtlVVhW2WV2F5ZFbbV7pGN1+7H39ta++YiVwamRbvIyrAfHgZx3v/EeP8T4/1PjIdBnPc/Md4dbSPsOyvSLmKftdzEZ7mJz/ISm+UmPstLbJab+Cw38VleqxKbubaLHDzLwsfpP5DHkbIQVTX68nOttbMXtS6wFdsrq8K2yiqxvbIqbKvf8slFrwBMm3aR1WA/PAzivP+J8f4nxvufGA+DOO9/Yrwn2kbYV1ahXcQ+a7mJz3ITn+UlNstNfJaX2Cw38Vlu4rO8Viw2c2sXOTCvBQEAAAAAAAAAAAAAACwLCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHCqtbbodQAAAAAAAAAAAAAAAJgrT6gAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqWElVdYOqenJVfbCqvlZVX6yqM6vqt6vq0D2WfaCqbl5VJ1TVM/tyv1lVrR+Om9LHYCBmvL0eWlX3q6r/05f5paq6pKq+UFVvq6qTquroaX0W9rcZb6s3q6pfq6rnV9W/V9XZVXVRv5yPV9VLquq+VVXT+jzsX7PcVics89B+W107HzhrFsth/5nxvvWEkW1yq+GEKX0kgJVVVYdU1UOr6tVVdU7/W/+rVfWhqvqrqrrdNsv5yao6pT+n/Wb/95Sq+slZf4ahqqrvqKrjq+qPqupVVXX+yDHu5F2Ut+cYVtXBVfXwqnpTVZ1XVd+oqo9V1bOr6vt3uk5DN40YT7uNpC/vf/RlfbE/l/tgf253g11/2AGbdl3eUPaufrOJ83TNIsZVddeqOrmqPtrH54Kq+nBV/X1VPaKqrrbF/GI8RdOMcVUdU1V/VlXvrKov9/vsL1bVW6vq96vqO7ZZjhhPUVXduv/+XzNyrvTVvt79VVXdYYflOe8CpqKqDq+qB/b79zf25wYXVNXFVXVuVZ3RHw+uNcVl2odt07ziU1P63devz7ba1veyvstijvGZ6jWLIZznzSM21Z13bzcuE39TD63uTFLdb5nRz3zclMr9L9Wdi3+uuvspPllVf1NVx+6gjH1fd7YyzfhU1RFV9fPV/R56d19HL6nuuP6GqvqtqjpyG+WctZf6t19MOTYn7WC/tuVyquqo6to73lNVX+mH9/T/m9o55jKbVnyq6rhdHHvO2KSsQdWdvX5fu1ie486o1prBsFJDknsnuSBJ22T4UJKb7KH8B08ouyU5btHfgWF1hllur0l+MMmFW2yvrV/+zy76uzAs9zCHfevfbGNbbUnOSHKtRX8fhuUdZr2tTlju/9qwnLMW/V0Yln+Yw771hG3uW1uSExb9fRgMBsMihyQ3SPK+bewv/yJJbVLGgSTP3WL+5yQ5sOjPu9+GLb7zk3dQzlRimOSoJG+fUMZFSR666O9tlYa9xjhTbiNJcpMkH96inOMX/b2t2jCturxJ2Tv+zSbOyx3jJNdI8vJt1OsfFuPVi3GSX0zy9S3K+0KSu21RjhhPN77/so0615I8P8khW5TlvMtgMEx1SHLXbe6jzktyjz0uyz5sCeOTKf7uS3c9cjvr2xb93a5KfPrlnLDd7zVbXLPIQM7z5lR3jtlBXNaGV29S1qDqzoTv9IeTXLLhMx+3xzKvmuQfJ3ynlyX5g22UM4i6M6/4JPnJdMfrrbb5c5LceYuyztpm/Tlr0d/hKsSmL++kHezXJi4nyY/0cdxs/s8mue2iv8NViU+S43YQm7Xh2ZuUNai6s4Pv64w9LsdxZ8xwcGCFVNUtk7wkXYX+apLHJ3lD//qBSf5rku9N8o9VdevW2oW7WczI+CVJ3pvkSklusYdVZ4DmsL0enmStB7a3JHllkneku9B07ST365dxeJIXVtVXWmuv2tOHYl+a07710iT/lm5bfW+Sz6Vr+LlGkpsm+ZUkP5DkTkleUVV3aK1dvpfPxf4zp211s+X+RrrGkkuSXH0a5bK/LWB7vUe6hpzNnL3H8gFWVlVdKV2j4FrPj+9J8r/TJbZdPckdkvxWksOSPDLd/vQJY4r6kyQP6cf/X5InJvlYkhsn+R9JbpnkoenOc39nBh+FzqeSfDDJ3Xcx755jWFUHJTklyW36f70s3Y00X0x30eV3k3xHkmdX1Wf8Dt+V3cR4am0kVXX1dPuM7+n/9Zwkf5vkG0nunOSxfTkvqarbt9betYP1ZN1e6vIV7OY3mzjPxa5jXFVHJDk9ya36f52S5O/T7bMvS3L9dG1I/3lCGWI8e7uKcVXdPsnJ6W5WvTzdzfmnpjsH++50nV7dO8k1k5xaVT/QWvv4mHLEePqu2//9bJK/S/KmdHE+KMmx6c6Zr5fkQemum/3chLKcdwGz8Ol0bazv7MfPSXc8+a4kP5PuvP+oJKdV1W1ba+/e5XLsw3Zn1vGZxbXxdyT5pR2ux6qaV/1Zs+trFgM8z5t1bD6T7d3v9Nisn989f4tph1R3rqCqDiT5yyQHJzk33b58Gv5vknv2429I8tR0degW6Y41N05yUlWd01r7y03WbWh159vMID7XSnLldL9dT0/yz0neneTL6erozyf52SRHJ3nlNr/XU9OdB2zm4j2u81KaYd1Zs9V+7hObvVFV10/yinTnE5emu370yv7t45P8ZpLvTHcv061aa/vuuvsM4nNmtnfseXq6Nr5k62PP0OrO/0nyzAnvf22P5TvujLPojA6DYSdD1nvHuSTJsWPe/+2sZzedtMtl3DbdDRQ/muQq/f9OGin3uEV/D4bVGGa9vSa5XbobNW8+YZr7pjuxb0k+mk16WjUMe5jTvvXgLd4/KMk/jCznPov+XgzLN8xjWx1T5kHpGgVbkt/Levb7WYv+PgzLPcxp33rCSBnHLPozGwwGw7IO6S48ru0v35rkoDHT3CpdY2tL8qWN56/pkuDWeuY5M8lVN7x/aP//tX3/1J+YNeQhyR+mu3Bxnf71MSMxPXmbZUwlhkl+eWTZzxjz/k2y/oSqj2z1W8gwnRhnim0kSf5oZNm/vcmy1ralMxb93a3SMI26PKbMXf1mE+fljnGSF/TzXJQJbUTpOkcau58V4+WNcbqbEtbm+W+bTPPkkWmeLsZzi+8rkzwgY86X+/ePSpeUvPa9/9gm0znvMhgMUx822zdtmOanRvYbL9vlcuzDljQ+me7vvjOGdI4wx/pzwkgZx+xhfQdznjev2GxnPdIlXrQkX9m47xuZblB1Z5Pv4Df67+ADSf50JDbH7aHMHx8p57SN20W68/BPZr3t+hqblDOYujOv+KRLlnhWku+eMM0jR5bz+gnTnZU9tIGt+jCjunPSWjl7XLcXjKzP/ce8/4CR9/dl/GYRn20s88isPwHmIxOmG1TdGfnuT5rhMhx3NhkOBFZEVd02yR37l89rrb1tzGRPTrdjT5Jf73uh3JHW2ttba09rrf1ra+2iXa4uAzeP7bW19tbW2s+21t4/YZpT0/V4knSZg7fcyTLY/+a4b710i/cvS/KkkX/dcbNpGaZ5batj/Hq6Gyw/lOTPplAeA7DA7RWA8W43Mv74/tzzClpr78x6j0NHJrnZhkl+I/nWk14f2Vr7xob5v57uwkn66R6115VmXWvtD1prr2ytfX4PxUwrho/u/34xXYLkxnX9aLonUyXdDTI/vYd1Hoy9xnhabST9Odl/719+IN0527ctK8nz+pd3qqrbbJyG8aZUlzfa8W82cZ6dacS4qu6Q5Bf7l7/bWjttwvLauDYnMZ6dKdXjtXOzL7TWNutp749Gxo/d+KYYz0Zr7fjW2kvHnS/375+f7ikVa35mk6KcdwFTt9m+acM0L093Xpjs/jqTfdguzCM+ro3v3hzrz54N7TxviWJz16w/rezvN+776FTVdyf54/7lwzO93tDXjhmXpks6v8J20Z+Hn9i/PDLdU5I2rtug6s44s4hPa+0lrbWHt9Y+NWGap6Xr7CPpvtej9rrc/WaGdWfPqurodE8aSZJXt9b+buM0rbWXJnl1//IX+3n2jQXG52fTPQEmSf56Tsuk47izCQkVrJKfGhn/q3ETtNYuT5c1mHSV+c6zXinYxDJtr28YGb/xjJbB6lqmbfXCkfGrzGgZrK65b6tVdYOsX8B/eGttaX7Ys/SWad8KQHLIyPjHJ0z3sXHzVFWl6+EwST7YWvvXcTP3/1+7uHnffj6WwLRiWFXfm/Vkm5f2N9KMc/LI+ErfFLMPbdVGcuckR/Tjz+/P2cY5eWRcjBdkD7/ZxHm5/Vr/94IkT99lGWK83NbOsz6x2QSttQuSnL9h+lFivDgTj6XOu4AlsHatacfXmezD5mLX8dkB18Z3bx7x2YrzvPFmHZsHjYw/f0bL2A+ekeRq6bbNN06jwKq6epK79C9f21o7e5NJX5bu6SHJ+G1e3ZlBfHbgjP7vgSQ3nPOyV8EiY7OV+2T9Huqx1/V7J/d/D/Tz7CeLis/asadl/b4JZsxxZzIJFaySO/R/v5bknROmG92x3352qwMTLdP2euWR8S17OGBwlmlbfeDI+AdntAxW1yK21WcmOSzJX7fWzthjWQzLMu1bAVi/ySFJbjRhurWL7C3JR0b+f8Os99C2VWPy2vvXS3LMNteP2ZtWDO8wZrpv01r7XJIP9y8d45fLVm0k24pxul7n1m6KEuPF2e1vNnFeUlV1SNZvYjx97QnSVXVQVV2/qo6pqu3cQCTGy23t3GzTm0yq6vAka716fmjMJGK8OFsdS513AQtTVd+X5If7l7u5zmQfNkNTiM92uTa+C3OMz1ac520w69j0N1audRR2VpJ/mfYy9oOqekCS49M9eejRW0y+E7fJehL5pGPGxUnWEv1u0/cMPmrQdWeG8dkux55NLEFstrLdurMvr+svKj5VdeOsP8H0Ta21s+a1bBx3JpFQwSpZ68Xho+Me4z1i9AfEzTadCmZrmbbXO42Mf2BGy2B1LXRbraqjqurYqnpeksf1/z4/yQuntQz2jbluq1X1wCT3TPKlJL+123IYrEXsW/+qqj5bVRdX1flV9a9V9T+r6np7LBdgP3hx1ntRObGqDto4QVXdMsm9+pcvaq19ZeTtm4+Mb3XRUpvEcppWDHdTzvWr6rAtpmV+tmoj2VaM+3O8j/Yv1fUF2ONvNnFeXj+U9R5X31tVh1fVU9K1FX0q3RMNLqiq06vquAnliPFye1b/91pV9fBNpvm9MdOPEuPFmcqxdMz7zruAXamqQ6vqe6rqN9PdyHNw/9ZTdlGcfdiUTTk+27WTa+M3rap/q6ovV9VFVXV2VZ1aVQ8ac9PYvjPj+Oz2moXzvMy97vxMkkP78b9urbVtzDOoulNVRyZ5av/yxNba+ZOm36HdHDMOTvI9uylnP9adGcdnu9aOPZdk/fvdzI9V1buq6sKq+npVfaKqXlJVP7Xfnno9z9hU1Wuq6tz+uHNuVZ1RVY+pqmtsMeta3bmgT3Ydq7V2TtavM6k7e7ebJyMNpu707l9V7+8/64VV9ZGqen5V3XmP5TruTCChgpXQ9zq11hvRZo+ZSZK01r6UrjfgJLn+LNcLxlmm7bWqfijrNwW9t7UmoYJvWdS22v9waVXVkpyX5K1JfjlJpbtA/tOttS/vZRnsL/PeVvsf1WsNko9prZ23m3IYpgWeBxyX5DuTXCnJtZL8SLpEtY9W1a/ssWyAldY3Av9iuh5Qbp/kzP7i3o9W1V2r6g/SXZg8JMm/59tvzP2ukfGJ+/Yknx4Z1yaxPKYVw92UUxvmY0G22UayFquvbeN36VqMr11VV544JVM1hd9s4ry8Ri/EHUjXg9mvJzly5P+HJLlrktdX1YmblCPGy+3/JnlBP/6MqnpOVd27qm5dVferqlOy3ivin7TWXjumDDFegKo6kOQxI/966ZjJnHcBM1dVJ4xcZ/pauqc8PDnJdfpJnpDkRbso2j5sCmYYn+0se6fXxq+T5LZJjkjXu/j1ktwn3Y1976qqpb/pa6fmGJ/jsrtrFoM9z1tg3Rm9qfUFm051RUOrO09McnSStyR53pTLnvaxZ3B1J7ONz5aq6l5JfrB/+eoNnTWNc8N0HUpcLclV0z3p6gFJTknypn3WWd48Y3O3JNdOd9y5drokl8cn+XhV3XfCfGt1Z6v6l6zXnf1y7WchdadPfviF/uU3kvzdNmcdUt1JunbSm6X7rFdLcpN0x+zXV9UpVXXELst13Jng4K0ngaVw9ZHxr25j+q+le9z71WazOjDRUmyv/QHouUnWel993ITJGaal2FZH/EWSP15QjwEst3lvq09K1xD4tiTP2WUZDNe8t9ePJ3lZuu117YfojZL853S9Cl0lybOqqrXW/nKXywBYea2106rqVumSJR6Sb+/x5vPpekJ+Tmvt6xve28m+/Wsj49oklse0YmhbWFE7aCNZi/F2z+PWXC3JN3e3duzCXn+zifPyuubI+Inpfs/8c5LfT/KeJIen+63zhHQ37jyhqj7YWjt1QzlivMRaa5cleXBVvSLJ7yR5aD+MekOSP90kmSIR40V5VLob55LkZa21d46ZxnkXsEjvSvKw1tqZu5zfPmy29hqfiXZ4bfzyJK9L8k9J3p3kC+ni9p+S/Eq6m9dunuQNVXXb1tqnZrHOS2Za8dnrNQvned9uZnWnqr476z3rv7W1tlXP+oOrO1V1x3S/Vy5N8vBtPsFjJ6Z97BlU3ZlDfLZa/jWTPKN/eVm69ovNXJzktCSvSfK+JBek60Di2CSPSHez8u2TnF5Vx7bWLpjVes/DHGPz3iQvT/L2JJ9Nl1DxfUl+Psnd033H/1BV926tvWrM/LupOyt/zrbgunOHdOcGSXJKa+3CLaYfVN1J1zncaemOtx9Mt22uJQk9PF2i6k8lObWq7tZau2SH5TvuTCChglVxlZHxi7cx/Vqlu+oM1gW2sizb69OT3Loff35r7RVTLp/Vt6ht9ZfS3Txc6U5yb53uJPfXktyoqh7aWvv8HpfB/jK3bbWqfizdE1MW0ujCvjDPfesp6Y7xG7fTM5O8pKqOT3fh4kpJ/ryqTpv0qFKA/ayqDknXc8t9052HbnSddD3ifCJdQ+WonezbRxsBtUksj2nF0LawurbbRrIW452cxyViPDdT+s0mzsvrsJHxqyQ5Pcnx/Q34Sfek02dV1fvSPV3qQJLH97912oZ5EzFeWn2PtQ9KcotNJjk2yUOq6gOttc+MeV+M56yq7pQumSlJzk3XnjuO8y5gHl6e7klWSVfvb5yud9qfTvLiqvqN1tord1Gufdh0zCo+W9nJtfH7bdKT7puq6pnpErcfnK696ClJ7jfVNV2sWcZnGtcshnyet4i68wtZbyvdztMpBlV3+jblv0z3Hf15a+19M1jMtI89g6k7c4rPpOUflOSFSW7Q/+t/ttb+34RZbrtJ/Tmjqp6e5O/TJQDcLMkfJPnNaa7vPM0xNk9prZ005v//luQF/RORnpUu2fK5VXXj1tpFG6bdTd1Z2XqTLL7upHui/JrtHHsGU3d619vk855eVU9L8qokt0yXYPGIdJ0X74TjzgQHFr0CsE2jB7NDtjH92qNhvjGDdYGtLHx7rarHZr1XrzOT/Oq0ymZfWci22lr7RGvtfa2197bW3tRa+/N0j0D8pyTHJzmzqvbFY42Zmrlsq33vRWs/HJ/aWnvPTuaH3tz2ra21CybdQNY3rP9R//LQdD2yAwxOVR2W5LVJHpuu5+snpmtYvXK63q3vnuTN6S66v7yqNja27mTfPvqoWm0Sy2NaMbQtrKAdtpGsxXgn53GJGM/FFH+zifPy2nhR+8SRZIpvaa29Od2NWEl3TN94U74YL7G+F8S3Jbl3ks+ku5B+dLp4XT/dfvrrSR6Y5O1V9f1jihHjOepjcEq6jvouSnL/1tq5m0zuvAuYudbal/vrTO9rrZ3ZWvvb1tr90iXr3Shdb60n7KJo+7ApmGF8NrXTa+Ob3KS29t4lfVkf6v/101V1vWms5zKYZXymdM1isOd5i6g7Wb+p9ZtJXrKddZzw3n6sO7+T5KZJPpXkD2e0jGkfe4ZUd+YRn0memeQn+vFXJvnjSRNvUX8uTJdA9cX+Xw/rb3pfVXOJzaTvtH//2Ume17+8brqnJW20m7qzyvUmWWDdqaqrJLl///Kz6a7dTTSwurPV5/18uid+rT2V4pG7WITjzgQSKlgVo4/22c5jk9Z6strOI2Vg2ha6vfYZtn/av/xgknu21r42YRaGa2n2rX0W+C+lu1h6/XQ3ucGaeW2rj0v3+MdPp8tch91Ymn1r7y+TrF3AuNOkCQH2sZOS3LEff0hr7cTW2gdbaxe31r7SWjs9yZ2TvCHdTbpPqqofGpl/J/v20Z61tUksj2nF0LawYnbRRrIW452cxyViPC/T+s0mzstrdD973hY9O756ZPw2m5QjxkumT4x6cbqk1s8l+dHW2t+01j7fWruktXZ2a+2ZSX4s3YXZ6yZ5/piixHhOquqGSV6T5BpJLkvywNbav0yYxXkXsDCttb9O8nfp7oN5elVdc4dF2IfN0BTiM9Ysro231i7N+g2YyQDa1mcVnzG2umbhPG+DGdad26a7oTZJTtvqxuTt2E91p6pumq6DniR55AzvuZn2sWcQdWeO8dls+Y9P8rD+5ZuSPGBchxA70Vq7IMnf9i8Py/pTl1bKomMzxrNHxqd13FnJepMsRXzuk+TIfvyFe603yf6pO9vVWvt4uqf6JslNquq6OyzCcWeCgxe9ArAdrbWLquoLSa6VZGKv5VV1jaxXwk/Pet1go0Vur1X1X9JlQSfJJ5PcrbV2/l7LZX9atn1ra+38qnpLkrsluW9VXanvyYKBm+O2emL/97VJ7l1V46ZZK/uwqnpgP35ua+31O1wW+9QS7lvP7dfnqCSr3hMQwI5Vd0D/5f7lh1tr427IS2vt0qr6vXRPqjiQ5IQkj+rfPntk0q2epHb9kXFtEstjWjHcWM6k39tr5bQN8zEnu2wjOTvJj6Q73z9yi5sJ1mJ8XmvtmxOmY3qm9ZtNnJfX6H53q33n6LTX3vCeGC+vn8j6b9OntdY+N26i1tp/VNXfpOvh9lZV9UOttXePTCLGc9BflH9tusSWluSXW2unbjGb8y5g0U5N10vtYemOOy/awbz2YbO3l/h8mxlfG3//yPhQ2tanGp9xtnHNwnneeLOIzYNGxl8whfLW7Je686h0vW5/PMmhI20Mo35gZPzHq+rofvwVO7hJeeMx4x0Tpt3q2DOkujOv+HybqjoxyWP6l/+e5PjW2rR6XN8P9WdhsdnEVt/p2Umuk63P/ZL1urPK134WHR/Hnul4f5J79uPXS/e0j+1y3JlAQgWr5P3pepS8SVUd3Gc2j3PTkfEPzH61YKy5b69VdZ90JxsHkpyT5C6ttSE0vLE3y7ZvPa//e2i6hrRzZrgsVss8ttW1R9H9Uj9MclS6HhWT5I1JJFQwatn2rZs+YhtgAK6TZK3Xtkm9XCfJO0fGR/fR79/k/+Nok1hO04rhxnLetY1yPr0EvXANzh7aSN6f9Ue/3zTJv25S/sFJbty/VNfnZ1q/2cR5ef3HyPhBW0w7+v7G31xivLxuNjL+71tM+850CRVJF8fRhAoxnrGqOipdj4c36v/1yNbadm52cN4FLNp5I+M32OG89mGzt5f4XMEcro0PsV19avHZwqTv1nneeFONTVVdKcm3OiFI8s97LXPEfqk7V+7/3ijr7QuT/N7I+A2TbHefvptjz6VJPjKmnCHVnXnF5wqq6r8leUL/8gNJ7tFa+6RtGjwAACAASURBVMpuytrEfqg/C4nNBFt9p+9PcqskR1TV0Zt1/FBV35nk8P6lurMLVfUdSe7Rv/z31tr7dlvWGPuh7uzEXj6v484EBxa9ArADb+7/HpbuQLaZ0cczvWV2qwMTzXV7raq7JHlpukS5L6TrfeNjuy2PQVm2fetopvBSP+aLuVu2bRUmWZrttaqune5msmRnPRMA7BejN1hu1bHIlTaZ7xNZ34du9Zj6H+v/fibJWVutHHMzrRi+eWR803L6Hpu+t3/pnHTO9thGsq0Yp3ts+NqTEMR49YjzkmqtfTLJp/qXx9QmjyHp3Xhk/DMb3hPj5TWNc7NEjGeqqo5I8uokN+//9ZjW2jO2ObvzLmDR9nKdyT5s9qZyHXBO18ZvPjI+lLb1mV+n3cY1C+d54007NvdK96T1JHnRhI7BdmOIdWcvzkxycT8+6ZhxSJIfXZuntXbJhknUnRmrql9M8vT+5ceT3HWKT0Vao/5M31bf6XbrjvtQ9u7nst4WNM2nUyTDqzt7+byOOxNIqGCVvHxkfGwPZFV1IOuPBvpykjfMeqVgE3PbXqvqduke8XjlJBeky4D+j8lzwbcszb61qr4rybH9y0+21i6cxXJYWTPfVltrtdWQ7pHRSbeNrv3/uB1+Fva/pdm3JnlYkrWbkN44o2UALLMvJlnrIerYvieUzYw2+H1ibaS11tL95kqSm1bVj2aM/v9rvbWc2s/HEphWDFtrH856DzoPqKpDN1nkCSPjp+xqpdmVKbSRnNHPlyQPnnAz9wkj42I8J1P8zXZGxHmZ/UP/9/Akd5kw3f1Gxt+84b0zIsbL6hMj43fcYtqx52a9MyLGM9Gf3/xjkv/U/+tPWmt/tt35nXcBS+D+I+Pv3cmM9mFzsev4rJnHtfG+/eiXR/71L9Msf4ntOT7bsNU1izPiPG+cacfmQSPjz59CeUn2V91prZ2wjTaIPxyZ5c4j7521g+VcmOR1/cu79vdMjHO/rPeOP26bPyMDqjvzis+aqrpfkr9Kt/86O91TkaZ603af2L725JivJ3nHNMufl3nHZht+ZWR83HHntCSX9+OTnoh7Qv/38n6elbTg+Kwdey5J8qI9lvUt+6XubFdV3TDJ3fqXH2utbexoZiLHnckkVLAyWmtvT/Km/uVDqurYMZP9VtYfGf3UjZlRVXVcVbV+OHl2a8vQzWt7raofTndx47B0j9W6V2vtndP4DAzDPLbVqvreqvrxSevRn+C+KMkh/b+mnY3MinMewCqZ0771mKq65aT1qKrjk/x+//Ib6Rr6AAaltXZ5ut9MSXLdJI8bN11VXSPJ6I1ir9wwyVOSXNaPP62qrrph/qsmeVr/8tJ+epbLtGL4v/q/10zyxI1vVtWNkzy2f/nRrEAD8X4xjTaS1trFSf6if3mzJI8es5xjkzykf/nG1tqZu15pFkKcl95TklzUj//vqjp84wRV9QtJjutf/mNr7dOj74vxUntduovbSfKIqrrFuImq6ieT/HT/8jNJ3jX6vhjPRt/74ClJbt//66mttd/dRVHOu4Cpq6oTquoqW0zzqCT37F9+IutttGvvb+cagX3YLswrPtP43VdVd66qIye8f6Ukz816+/0rNp5vrpp5xGda1yyGdp43x33b6PTXTPeEiiR5b2vtXZOmH5lvcHVnGvoYr8XnpE0mWztmHJzkGVV10IYyjsp62/WX033PVzC0ujMt24lPVd09yYuTHJTk3HRPpjhrh8v5iY3nFBvev1q6Jy+tPTnmea21b+5kGfvNVrGpqltU1U22KONhSR7av/xcxpxvtdY+l+SF/ct7VNXPjCnn/knu0b/8636eQdvmvm10+u9Psnae8M+ttfO2uZxB1Z2qundN6Biuqq6TrjOatXvrnjlmGsedPdjqcbqwbH493aNfrprkNVX1p+l6871qukyzh/XTfTjJk3e7kKo6YcO/fnhk/Ceq6piR1x9trW3sAQuSGW+vfUPbq5Os/Wj93SQXVNUPTJjt3NbauTtdFvverPet103yuqp6d7pe29+Z7sfKpUmOTneB7iH9eJK8L8kTdvVJ2O/mch4AUzLr7fWYJG+oqrcleUWSd6drxEuSGyX5mX5Y6wng0TvtnQBgH/mjJPdNcmiSk6rqVul6Xvt4kquke2TtbyT57n7617XWXjNaQGvtw1X1pCSPSfd42rdU1Z8l+ViSGyc5MeuNwU9qrX1kth9pWKrqDklGL44cNTJ+k43tOK21kzeWMcUYPj9dT3u3T/KrVXV0kuck+VKS2yb5vXS99lye5L+31i7d/icdrr3GeMptJE9K8rNJvjfJE/sLc3+b7maPOyf5nXTt6t9It+9gm6ZRl6dInGdgSvvrT1XV76e78fAWSd7e76/fk27/er8kj+gn/0qSR22yOmI8A3uNcWvty1X1hHTnZ1dP8taqelqS09MdS6+T7rztv2a9U7jH9EmyG4nx9L04yd378dcned4Wx9KL+17Yr8B5FzAjJyV5clX9Q7qnU30syVfTHU9ukeTns54QdnGSh7XWLhtTzkT2Ybt2UmYcnyn+7ntwktOq6rR0Pet+KN155dWS3Cpd2/3N1+ZP19a/6k7K7OvPMZneNYshneedlDns2zZ4YNZvxNzJ0ymGWHfmorX2+qr623SxuU+S06vqKUk+m247eFzW265PbK19aZOihlR35qK6p1Kdkq7OXJKuDeJKWxx7zm6tfXnD/x6T5IVV9bJcsa4fkeR2SR6e9Rh/KN2+gcluleS5VfWGJK9K9/SeL6Tbxm+abv+59vv2snT7z69tUtbjkvxEkmsneXFV3TrrnW4dn66jxCQ5L935Bzv34JHxnRx7hlZ3npZuH/MPSd6W5Kx0++yj0nUu8ytZb4t7c5Jn7GYhjjsTtNYMhpUaktw73eNi2ibDh5LcZJN5jxuZ7uQJy9is7HHDpuUYDLPcXtM9Emkn22pLctKivxPDcg4z3laP28E2+sok117092FY3mEe5wFbLP+sfv6zFv1dGJZ/WJJ969fSNRAt/PswGAyGRQ5J7pqusXur/ebrklxjkzIOJHneFvM/N8mBRX/e/TYkOXknv30nlDOVGKZrsH77hDIuSvLQRX9vqzTsNcaZchtJupuFPzxh3guSHL/o723VhmnV5S2WcVa2+ZtNnJc7xkken+4Gw83m/3ySY8V49WKc7ia6P98ivi3dDWOPFuO5xnenx9KzJpTlvMtgMEx1GDnP22r4dJK7bVLGcSPTnTxhWfZhSxifTOl3X7Z/PvOeJDdf9He7QvE5bpvL2NY1iwzkPG8esRkz/b/2016a5OgdrOvg6s42vpOTRj73cZtMM7rvOmlCWVdN9wSezb7XyybNP1LOIOrOvOKzoYztDieMKeeMbc57RpLrLfq7W5HYnLDN7/T8JPfdxjr9SJJzJpRzTpIfWfR3tyrx2TDtgXRPH21JvpjkkB2sy6DqTrZ/XvD3SY7cS2ziuDN28IQKVk5r7RVV9YPpspnvleS70jWsfzTJ3yV5emvt6xOKgLmxvbIqZrytviXd4+/umq43n+9K19vcoel6rfhEuoabF7fW3rKXz8H+Z7/KKpnx9vrOJL+Q5Nh0+9bvTHeB7uB0vZz9R7qbgp/bPJ0KIK2111bVTdM9Ge0nk3x/uh4NL0339LQzk7woyWmtbwEcU8blSR7S9wzzsCS3SbfvPb+f/9mttVfN+rOwe9OKYWvt/Kq6Xbres38u3eOMD0vXe8/rkjy1tfYfs/kUzENr7aNVdcskv5rk/ukuChyS7gaGf0oX408ucBWZAnFebq21x/Y9nz4iyR3T/ea5KN0FutOSPK21dsEWZYjxEurPtR5VVX+T5KFJ7pDkBunaCr+a7jfzG9Mdl7/t6QcbyhLjJeW8C5iBe6RrY719uv39dZJcK11vp+cmeVe6TrteutdrBPZhuzK3+EzBn/Xrc2y63vSvneSaSb6ZLmn3HeluUjul7f1JAMtiHvGZ6jWLAZ3nzbXuVNX3pLtpOElOb619bgezD7HuzE1r7RtJ7lVVP5fuZtgfStd+/fkkb0p3TfFt2yhnKHVn1Tw6yV3S1Z/vS7d/PDLJ19OdF/xbuicGvmaz6xN8m39Kd73n2HRPD1vbf1a6m/bfneSf0yWafWWrwlpr/1ZVt0h3Xf+n0j15KenuZzo1yVNaa1+Y8mcYirsk+f/s3XmYJVV9N/DvD0FFBHFDUFRcYoxCVBQTNwSj0biCor4aE8HEXZNINJvhFZNoXhNMosHgLmiMcQUVNW4Rlxijxg2XuERARFQUcVA2gfP+caqdy+XeXmZ6pme6Pp/nuU/f6qo6dW518wz16/M954bD+ze21i5Zwblj+2/nsUnumf55b57+eXdLr5edmeTjSU5Yzr8HS/Hvzmy1Pn6PAAAAAAAAAAAAAAAAlm+Hte4AAAAAAAAAAAAAAADA1iZQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVADAGquqfaqqDa/DN6Odwyfa2WfVOggAAAAAAAAAjE5VHb0wDmGt+7I9qqqDJsZxHLTW/QEAZhOoAAAAAAAAAAAAAAAARkegAgAAAAAA1jGrWgIAAACT1ArYEqzIAcD2SqACANaJ1trxrbUaXqevdX8AAAAAAAAAgO1Xa+3ohXEIa92X7VFr7ZSJcRynrHV/AIDZBCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACgFVRVTesqv9XVZ+pqh9X1c+q6ntVdWpVvaGqDq+q3abOacPr6GH73lX1jqo6u6ouqqpvVtWxVXWjZfZh/6p6aVV9tap+UlU/Hd4fV1W32opt7FtV/zh89h8N9+K7VfWBqvqjqtprGW3cp6reOZx3cVWdNvRh70XOOXzinu4zY/8pw75Thu0bVdXfVdU3qurCqvphVb23qn5jmZ9zz6p6XlV9uqrOHfp5ZlW9qaruvcS5Vxn6+97hM14y/N58vao+WFV/VlW3mXPurYb7+8WqOn849ztV9bmqenVVPbKqrraczwAAAADrWVUdVFUtyWsmvn3aRP1g4XXQjHMPqao3V9W3hjrNeUMN4DlVde1Frnn80Obpw/aeVXVMVX2tqi6oqrOG2sFtp87bp6pePBx34VBXen1V3WKRax298BmG7d2r6rlV9aWhrnNuVX2oqh61zPu1T1X9/XD++UN/v15VL6uq/ZbTBgAAAGzLVlormH72ntHe6cP+44ft/Yfn+TOH5/tvDOMSrjd13l2n6g7/W1UvqKpdl/EZrlJVj62qk4exAhcP4x0+VlVHVtXOm3p/lrjuvaqPfzlt+GwXVNUZVfWJofZxrxnnHLRY/WXiuJtUHxNy2nA/vlNVJ1XVwcP+pX4O0+NvDhj6+u3h/pxVVa+rql9a4jPevKr+sPp4ldOHz3nh8DnfWFX3m3PePkPfPjTx7Q/N+L06fOKcK9SQFunTUmNhpn8H7zi0fdrw2efds80eHwTA+lGtzfz3AgCWrarukeTkJLstceiDWmsnT5y38I/Qc5O0JEfPOe/Hw7kfnXP9HZIck+QPktScNi5N8tTW2su3YBtXSfK3S7SRJCe01g6fOG+fJKcNm0ck+cUkfzLn3HOS3LO19pUZ1z88G4seN2utnT61/5Qk90zy4STPTnJSkisULSY8q7V2zLwPUFW/meRlSXaZd0ySVyV5Umvt0qlzr5nk3Unusci5SfLW1tphU+c+PMk/J7nqEufu11r74hLHAAAAwLo2/KH+Q0sdl+Tg1topwznXTvKWJFcaBDDh+0ke0lr7xIxrHp/ksUnOSPKQJP+WZM8Zbfw0yf1aax8bBhy8Lcm1Zhz3oyT3aK19aca1jk7ynGHz5knen2ReAONNSX5zuk4x0dZvJ3l5knmTNFyW5KjW2l/P2Q8AAADbvJXWCiafvVtrVxoHMQyGv2mSE5J8MMkrM/vv+V9LH+vw3ap6ZpK/yexxFZ8ZjvvJnP7fJMk7ktxukb5/I8kDWmtfW+SYFamqv08fC7KYH7bWpoMjB2Xj/f55/WXqmHsleXuSa85osyX58/R7utjPYXL8zfeTvCjJjjPauyDJb7TWPjKjjZsl+eaMc6b9c5IjJmssU+NeFnNEa+344ZzjM9SQWmv7zDthGWNhTs/G38FPJPnHTH32yXu2GuODAFh/Zv2jCQDLVn0lgH9ND1Ocn+S49IfB76c/0N0syV2THLpIMw9IcqckX01/aP5C+h/QH57k8cP7k6tq39bamTPO/8ckTxnefyTJ8ekPeRekP0T/QZLbJnlZVX23tfaOLdTGy5M8bnh/dpJjk3w8PRBy/SR3TnLYjPMmPT79fn04PbDwtSS7J/nt4XX9JK9Ocpcl2lnMXulhisvTgxsfS3JJkrsn+b/D9f66qt4zZ7DCI5K8Lv3B8pvD5/xyethjnyS/k+T+w9cNSY6cauLobAxTnJzk9Um+leSiJHskuUOSB6YXBiave4P0h+Srpv9+HZv+MPyDJDsnuWV6YOSQFd4PAAAAWK8+lWS/9GDDXw3fu2+S70wdd1ry8zrPB5Lsnx4g+Jf0SRFOS7JTkgPTn/P3SPLuqrpDa+2MOde+RpIT05/j/yy91nFZkvsN27skeV1V3Se9TvHj9LrEf6X/7eJh6fWYa6dP2vCrS3zWN6bXoV6aHgj5cZJfTvLHSW6V5BHD537G9IlV9YD0WlAl+UmSFw734dL0Os2fpk9K8fyqOq+1dtwSfQEAAIBt1YpqBStwuySPSg8zHJPk1CS7po+heEz6s/kxVfW29IkqFwa+fzX9mfv30scZ7J8eILjSJJRVdd308Q03TnJxklek1xtOTw8j/HqS308fO/Ceqtq/tfbjFX6OK6mqB2ZjmOIL6eNivpJee9g9fSzJvdPHhKy07ZunB0R2Sa9DHJdeJ9mQZN8kz0ryvPR6yXLcd+jHqemhilPTx1Mcmn5vrpFej/mF1tolU+deJX3syHvTJ634cpJzk1wn/ef31OGzPiZ9rMhzJs49K/336oD0MS1J/9l/auoa317m59gUBwx9OzP9d/DT6TWm6ck+V2N8EADrjBUqANgsQ1L+g8PmFVagmDpuxyTXaK1tmPje5D9CM2cZqKrfSvLaYfPNrbVHTO2/T5L3DZu/21p71YxrXz3Ju9JnVjwjyS2nkvKr0caD02cMSJL/THL/1tp5c+7FjSeDITOS+q9I8sQ29Y90Vb0iye8Om/u31j47tf/wLG+Figyf4W6ttbOmjrl7+gNjJXlxa+33p/ZfL70Acq30h+AnzprZsaqelz444vIkt2mtfXVi37fSCxxvaa09fPrcieOu01o7d2L7cekDKJJFVqCoYfnO1tqF89oGAACAMVmqZjBx3MLz/HlJ7t1a++8Zx9w0vfaxV5J/aa395tT+49NnF0z6JAi/2lr736ljnpo+UULSJ2g4L71Occ7UcX+TPnAgmV0LOTpX/OP9o1trb5g6ZtckH03/g/jlSW43WVOoqp3SB17cMD1McY/W2ucW+cwXJLlpa+0HAQAAgO3UCmoFR2d5K1QkfcLJ+7TWLpg65s3pk09elh5C+FCSR7bWLps45irpYYlfTfLDJHtOj0WoqtcneXT6eIeDW2tXCn1U1R3S6wC7JHl+a+3Zc27BslXVa5P81nDdfRdZPeMKYxyG7x2URVaoqKoTs3HSyENbaydN7b/GcP7PwxpLrFCR9MkxDp0OTFTVs7MxRPPQ1tqJU/t3SbJba+3sOZ+v0seJHJ6+8uiNpgMry1mRY+LY47O6K1QkPUBy4CLjdTZ7fBAA69MOa90BALZ7e068v9KSgAtaa5dOhilmeMKsh87W2uuSvGfYPLSq9pw6ZGFWgrfOetAZ2rgoydOGzZsmOXgLtnFBksPmPZwNbc1aZWPB2UmePh2mGBwz8X46Qb9ST58OUwx9+1g2zmww6xpPTg9TnJXkKYs8ND5nOGaH9JU1Ji38DD+6WAenCw0T5/1oXphiOO9CYQoAAABYmaq6ZvpMg0ly1KwwRZIMK1L85bD58OGP7fMcNR2mGLw6faXKpK/G+XvTYYrB5EoQS9VCTp4OUwz9PT/JE4bNHZI8aeqQQ9PDFEnyV9NhiqGNM7Ix2HGNJEcs0RcAAAAYm5Y+QP2CGfv+afh6lSRXTx8fctnkAcP2y4fN6ya5zeT+YaLKRw6bT5sVphja+WySlwybh6/oE8y3MFbhM/PCFMO1p8c4LKqqbpjkQcPmW6bDFEObF2RjXWM5LkpyxIzVJ5LkxekrUCQz6iyttZ/OC1MM+1uSP0wPxuySvirHtuapi43XyeqMDwJgHRKoAGBzTT5Mbeofk0+d90f6wcJygDsmOWjhm1W128T2Wxa7QGvtK+mzIibJXVa5jeumz5KQJG9srU0vhbkSb2mtXTzn+l9NnykxSW6+Gdc4Lz1NP8/Cz2LWNR48fD15Xj+THqBJn7kxmbhXg4XfmUcOsyks18J5166qh6zgPAAAAGBp90yfRCFZokaSjZNq7JTkjnOOaUneNHNHnwjh68Pmj5K8d85xpyU5f9hcqhbymnk7WmufTPKlYXP6j/0L2y0ba1CzvDl9Fs1ZbQAAAMDYfWEYUzHL5yfev3+R4MHkcdN1gAekBzIuyMZJOedZqFvcsKpussSxy7EwVuHAqrrFKrS34OD0z5Qkr5t3UGvt87nivVnM+1tr35/TzvnZWI9ZcsxJVe1UVXtX1S9V1b5VtW/6pBQ/HA653TL7tLWc2VqbO7HnaowPAmD9EqgAYHN9LMk3h/f/UFWfrKo/raq7VdVVl9nGp5bY/8mJ9/tNvL9DNv5b9oaqaou9klxvOHbPVW7j9kkWllRcdNWFZfifJfb/aPi662Zc4+uttcsX2b9QvLjCNYYlNm8/bD5xGffqsOHY6VVFThi+3jXJaVV1bFUdWlXXX6Lf70gPgyTJiVX171X1jKq649A3AAAAYNPdaeL92Us880+uHDn93L/gB0vMzLjwjP+NOSt1Th+3VC1kufWlW03VrPYdvp42Z5WMJMkws+Nnp84BAAAAuq8tsm9yxYDlHjddB1ioW1wjyaVL1C1OnjhvXt1iJV47fL1uki9W1b9W1RFVdcvNbHeyvrDYJKRJ8ulltrnUmJOZ40EWDCGKp1bVJ9In/DwzyZeTnDrx2mM4/Hqz2lhDX1hi/2qMDwJgnRKoAGCztNZ+lr4E4cJMAwckeX560OK8qvq3qnr0EgPeZ6bjJ3xv4v11Jt7vMX3gMk2uirAabUw+JM5d/nCZZi1/OWkhCLE5AYLlXmP6/xOuk75KyEpNr0Lxl+kzPrb0+//UJG9L8v2q+mJVPbeqbjDdSGvth+krZJyVHmA5OMnfpRcOzq2qt1XVAzehfwAAAMDq1EgmLbf+sFq1kOXWlyrJtSe+v1BrWur8JPnu1DkAAABAN/f5fmrCx8XqAJPHTdcBVrtusWyttQ8meVqSC5NcPckj08c8fL2qvl1VL62qTVmtYbI+MXeSh2XuX7DJdZaquk6S/0xybJJfSbLUJKo7L7NPW8uPlti/Zr9DAGz7NmVQJABcQWvty1W1X3qw4kFJDkxyy/SHp/sOryOr6v5zlhZcbBbCxUw+4D0xyceXed7kQ9RqtDEWk/fqlUletMzzLpncGEI4v1NVL0zyqCT3Sp9N4qpJbju8jqyqx7TW3j517keHWR4eluT+6b9reyfZLcmhSQ6tqvcmeWhrbalCAQAAALDR5HP//kl+tszzvr0F+rIpNrW+tFrnAwAAAFvOQt3iB+mTLy7Xaatx8dbaS6rqzUkeneQ+Se6W5FpJbpQ+1uQJVfX81tqfr8b11siLktxxeH9SemjkC+mTUFy0sMJoVX0ryY3TJ63Ylly2xH7jgwCYS6ACgFXRWrss/YHqpCSpqr2S3C999YE7Dq+XpQ96n3al1QgW2X/uxPsfTry/oLX2xRV2e7Xa+MHE+7024fztxeS9r028Vz/XWvtykqOSHFVVV09y9/Tiw28nuWb6Eou3aK2dPXXeRUleP7xSVTdL8oAkT09yq/QAz/OSPGNz+gcAAAAjM1kjOae1tq0EJZbrBknOXGJ/0oMTk38IP3dq/2L2nDoHAAAA2DoW6ha7JvnKMEZlqxomEP2HJP9QVTskuX36GJinJdk9ybOr6lPTE0cuYrI+cf0kZy1y7PU3ocvLVlW7pa+8kSSvb609ZpHDr73IvpVYWC1jhyWO22WVrrca44MAWKeW+scIADZJa+3s1tprktwlyWeGbz+wqmYt+XfAEs1N7p98oPlcNs4eeLdN6ujqtPHZiTYO3MQ2tnmttUuSfGnY3NR7Na/ti1prH2itPS7Js4Zv75zkgcs497TW2rHpvycLgz0esZr9AwAAgO3cclZf+OzE+1V97t9Klltf+vpQ41iwUGu6WVXNHZxQVTslucPUOQAAALC92t5WalyoW1wtyZ3WsiNJ0lq7vLX2mdbaUUl+bWLXSsYqfGni/R3nHtVt6c/8C0l2Gt6/cd5BVXXr9Aky51nJ79X5w9fdlzjuVitoczGrMT4IgHVKoAKALaq19rMkHx42d8zsB6H9quoOM76/4HHD18uSnDLR9jlJPjFsPnqxP3ov0r/VaOPcbFwK8BFVdcOVtrEdecfw9dZVdd8tdI0PTry/3nJPaq1tSPKplZ4HAAAAI3DRxPurzTnmA0kuGN7/XlXVlu3SqnvsvB1VdUCSfYfN9bePyQAAIABJREFUD0ztXtiuJEcs0v5hSa41pw0AAADY3iynVrAteWc2Dob/g7XsyLTW2meycbWJlYxVOCUbV2n4rXkHVdXtktxukzq3fDtOvF9sRYgnLdHOSn6vThu+7lpVvzjrgKq6apKHLdHOsqzG+CAA1i+BCgA2S1Xdo6puucj+qya557D5kyTnzDn05VV1pYeyqnp0kvsPmye11s6eOuSvhq+7JXlLVc1NrlfV1arqqVV19S3QxguGr9dI8uaqulbmqKq95+3bDrwo/eeYJK+pqtsudnBVPaCqfnli+zpV9aAlBmX8+sT7hQfoVNV9q2qvRa51rSR3nj4PAAAAyGQ95RazDmitnZfk2GHzrkn+vqrm/g2hqm5QVb+7el3cbA+uqivNAllV10zysmHz8on3C05K8p3h/bOrar8Zbdw4yTHD5gVJXrMqPQYAAIC1s2StYFvSWvtqkjcPm/+nqo5c7PiqullVPWo1rl1Vj6yqnRfZf6ck1x42lz1WobX27STvGjYPq6pDZrS9c5KXr6C7m+ob2RhYeeysMR1V9aAkT1uinZX8Xn144v0fzjnm75LcaIl2VmI1xgcBsA7tuPQhALCoX0tyVFV9NP1B7wvpoYmd05fde1KS/YdjX9Vau3RGG59OX57w01X1giSnps/4d1iSJw7HnJ/kmdMnttbeXVUvSvL7SQ5M8pWqemmSjyX5YXpy/pZJ7pHkoekPsSdsgTbeWVWvSvI76YMOvlxVxyb5jyQb0mchuFOSRyb5fJLDZ97NbVxr7XtV9dgkb0myV/rP7Pgk70ny7fQlIPdODzYcluTmSR6U/nuR9IfSdyQ5vareluS/kpyR5NKhvQclWRiMcVaSkycu/6gk76yq9yd5X5IvJjk3ya7ps0w+LRsfpF+6mp8bAAAAtnOfTZ8h8OpJ/rKqfpb+PL4wC+JZrbULk/zf9IkxfiW9TnJQVb0iyeeS/DS9JnLbJPdO8hvpNZxXbsXPsZhPJ/mXqrpnet1iQ5JfTvLHSRZmOXxJa+0Lkye11i6pqiekz3S5W5L/qKq/TV9B87L0Os+fJNljOOWZrbUfbOkPAwAAAFvYcmsF25Inp4+7uHmSF1bVQ5K8NsmXklyc5LrpKzncL8m9kpyY5A2rcN0XJHlpVb09yUeSfC29TnLdJHdP8vThuMuy8jrJkenjbhYm7zxu6PeG9HEQf5TkNkk+leSAzfsY87XWflhV707ygPT7976hL2ek10Qelj7O5ZtJdk8yc3WH1tq3qurb6eNGnjm8/2r6vUmS77XWzh+O/WxV/WeSuyR5/DBh6wlJfpzkF5I8If3n+PH0+sxqfM7NHh8EwPokUAHAatgh/Y/t91zkmLcn+dM5+941vJ6T2TP8bUjy4Nba6XPOf0b6wPqjkuyZ5OhF+vHTbHxQW+02npjkwiRPTXLDJM+fc/7nF2l7m9dae9tQmDg+yXXSQzPzlnW8PP1+TdsnvTAwz9lJHtJa+8nU93dKX7Hk/lc+5edemuTFi+wHAACAUWmtnV9VL07/I/z+6RMVTDo4ySmttYur6j7pz/wPTR+EcGzm27AFurupHpEegnjK8Jr21sypRbTW3lVVR6SvXrFrkr8YXpMuS3JUa+24VesxAAAArJHl1gq2dr8W01o7t6ruluRN6QPeDxxe86xm3WL3JI8dXrNcnORJrbVPr6TR1to3hpUpTkwfzP/0bAxoLHhu+ricA9JDMFvKk9ODBTdJn0zj3lP7v5XkkCTvXqKd5yf5pyQ3Sx8rNOmI9LrTgselr1SxR2bf32PSAzOrEqgYrMb4IADWmbnLdQPAMh2TnkQ/Lskn0h+gLhpep6c/yD6wtXbIYrMXtNaOTk+5vyvJ95JcMpz/T0lu21r78CLnttbaX6SviPE36TMSnpv+UHN+ki8neX36g9des/qxSm1c1lp7evqMCC/PxlkJfpbku+kFiCMzY6WN7U1r7Z3pD7/PTPLv6T+zn6UHSk5LX1niyCT7tNY+NHHqGemrVxydfj++muS89BUqfpA+m8Ozkty6tfbfU5d9RpLHJHl1+s/nrPTfkwvT7/UJSe7RWntya+3yAAAAAJP+JMnjk3w0G2seV9JaO7+19rD0gQmvTH92Pz/92f3c9BkRX5I+2cF9tny3l6e1dlqSO6b/0f4rSS5In9HwI0ke01o7bM7KqQvnn5Dk1kleNJz/0/Saw/8meUWSO7TW/nqLfggAAADYupZVK9iWtNa+21o7MMkD08dwfDO9BvCzJOekr2bwwiT3bK09bpUue3D6igZvTV+t85z0OsmG9JU+jklym9ba8ZvSeGvt/emrUbwsfUzFJeljMN6V5H7DeJrdhsN/vKkfYhn9ODM9XPO36WMwLh6u9/n0UMftW2tfXkY7x6WPI3pfku+n36t5x/7PcM2F1TAuSb+//5bkAa21Z23GR5p3zc0eHwTA+lOttbXuAwAjVVUL/wg9d3gABAAAAIBlqaqj01c8TWut1rY3AAAAAFtGVX0gya8l+Vhr7R5r3R8AWG+sUAEAAAAAAAAAAACwjamqGyY5cNj8xFr2BQDWK4EKAAAAAAAAAAAAgK2sqm65yL6dkxyfZKfhW6/dGn0CgLHZca07AAAAAAAAAAAAADBCr6yqXZK8Kcl/Jzk3ya5J7pTkKUkWAhevaq2dujZdBID1TaACAAAAAAAAAAAAWHeqao8ke2zCqZe01r622v2Z407Da54Tkzx9K/UFAEZHoAIAAAAAAAAAAABYj56S5DmbcN4ZSfZZ3a7MdGSSQ5PcK8neSa6fpJJ8P8knkpzQWnv3VugHAIxWtdbWug8AAAAAAAAAAAAAq6qqjs4mBipaa/usbm8AgG2RQAUAAAAAAAAAAAAAADA6O6x1BwAAAAAAAAAAAAAAALY2gQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGZ8etfcGqulqS/YbNc5JctrX7AAAAwDbvKkmuP7w/tbV28Vp2BlaLuggAAADLpDbCuqMuAgAAwDJt1brIVg9UpD8cf2oNrgsAAMD26YAkn17rTsAqURcBAABgpdRGWC/URQAAAFipLV4X2WFLNg4AAAAAAAAAAAAAALAtWosVKs5ZePPJT34ye+211xp0AQAAgG3Z2WefnTvf+c4Lm+csdixsZ9RFAAAAWJLaCOuUuggAAABL2tp1kbUIVFy28GavvfbK3nvvvQZdAAAAYDty2dKHwHZDXQQAAICVUhthvVAXAQAAYKW2eF1khy19AQAAAAAAAAAAAAAAgG2NQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKOz41p3AABgW3L55Zdnw4YNa92Ndevyyy/P+eeff4Xv7brrrtlhBznfzbXbbru5jwAArEvr/TnNc9Km8xwEAAAAAPOt99rqWlLX3brUgtnSBCoAACZs2LAhhxxyyFp3A1bspJNOyu67777W3QAAgFXnOY15PAcBAAAAwHxqq6wXasFsaeI6AAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjM6Oa90BAIBt3U/3fWjajldb626sD5delGt+8cQrfOsn+x6a7Hj1NerQ9qkuvTi7fPFta90NAABYM+vqOc1z0rJ4DgIAAACAzbeuaqtrSV13i1ELZi0IVAAALKHteLW0nXZe626sCzXrmzte3f0FAABWZD09p3lOAgAAAAC2lvVUW11L6rqwvuyw1h0AAAAAAAAAAAAAAADY2gQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdP4/e3fwG2XV7wH8tLdyU4OFcQE3Rv4CYGFi2cHfYCRQE0hYCSZNcOF20AV16YY3XYArE0gsROPeHaykGxPhH5DrAjYNhdiIvNO78L2R4kynffqcPuf09/kkbKYzh29Mf8/MOY9fRqECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIZ6rrAAAlGwwGaXV1dcNjMzMzaXJSHw0AqJPPNwC0zXsLAHg/BAAAumdfAgBsxmeF0RQqADaxurqaPvjggw2P/fDDD+ngwYMdJQIA2BmfbwBom/cWAPB+CAAAdM++BADYjM8Ko6mUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUbOLFixddR4DiNJ2L3PPU9vrmHwAAiC7HvqjUvVapuQAAgPFKvXcF1M01Iq/nz593HWHLaspao5pmraasAABsj0LFCGtra+mzzz5La2trXUeBYjSdi9zz1Pb65h8AAIgux76o1L1WqbkAAIDmzGtMAAAgAElEQVTxSr13BdTNNSKvlZWVdPbs2bSystJ1lLFqylqjmmatpqwAAGyfQsUIN2/eTL/88ku6detW11GgGE3nIvc8tb2++QcAAKLLsS8qda9Vai4AAGC8Uu9dAXVzjcir3++n33//PV25cqXrKGPVlLVGNc1aTVkBANg+hYohHj16lJaWllJKKS0tLaVHjx51nAi613Qucs9T2+u/vt5vv/2244wAAAA1ybGPK/WspdRcAADAeKXeuwLq5hqR1/3799PDhw9TSik9ePAg3b9/v+NEo9WUtUY1zVpNWQEAaEah4jXr6+vp2rVr6eXLlymllP7888907dq1tL6+3nEy6E7Tucg9T22vP2y9r7/+upWsAAAANcixjyv1rKXUXAAAwHil3rsC6uYakddgMEgLCwsbHltYWEiDwaCjRKPVlLVGNc1aTVkBAGhOoeI1d+/eTcvLyxseW15eTvfu3esoEXSv6Vzknqe21x+23s8//9w4HwAAQG1y7ONKPWspNRcAADBeqfeugLq5RuR1/fr1tLq6uuGx1dXVdOPGjY4SjVZT1hrVNGs1ZQUAoDmFilesra2lxcXFoT9bXFxMa2tru5wIutd0LnLPU9vrb7YeAABABDn2caWetZSaCwAAGK/Ue1dA3Vwj8lpZWUl37twZ+rPbt2+nlZWVXU40Wk1Za1TTrNWUFQCAnVGoeMXNmzfTkydPhv7s8ePH6datW7ucCLrXdC5yz1Pb62+2HgAAQAQ59nGlnrWUmgsAABiv1HtXQN1cI/Lq9/tpMBgM/dlgMEhXrlzZ5USj1ZS1RjXNWk1ZAQDYGYWK//j111/T0tLSps/59ttv06NHj3YpEXSv6Vzknqe219/KegAAAHtZjn1cqWctpeYCAADGK/XeFVA314i8fvrpp/Tw4cNNn/PgwYN0//79XUo0Wk1Za1TTrNWUFQCAnVOoSCmtr6+nf/3rX+nly5ebPu/ly5fp2rVraX19fZeSQXeazkXueWp7/a2uBwAAsFfl2MeVetZSai4AAGC8Uu9dAXVzjchrMBikL7/8ckvPXVhYGPnNELuhpqw1qmnWasoKAEA7proOUIK7d++m5eXlLT13eXk53bt3L506dSpzKuhW07nIPU9tr7+d9f7f06dPt/V8oC5DZ9whGKUZ8jvp/YmtGva74sYPxJZjH1fqWUupuWo37H3EZxPaZJ9GSsk+iOLZa0F+pd67AurmGpHX9evX0+rq6paeu7q6mm7cuJE++eSTzKmGqylrjWqatZqyvs45HfA6Z6tUyVlwNs4wR2u9UDExMfHumKf8T9t/506sra2lxcXFbb1mcXExzc7Opunp6UypoFtN5+L48eNZ56nteW2yXkopXbhwYduvASr37z9SSm92nQL+9u8//vGQ9yd24tmzZ+ntt9/uOgbsCc5Fyj1rKTXXXvDs2bN/POazCdnZp8VjH0SF7LWgPaXeuwI2ci7Cq1ZWVtKdO3e29Zrbt2+nubm51Ov1MqUarqasNapp1mrKOoxzOmBLnK1SOmfBu8oZ5l8mM6z5aMyf7f1T8JndvHkzPXnyZFuvefz4cbp161amRNC9pnPR7/ezzlPb89pkPQAAgDHCn4uUetZSai4AAGC8Uu9dAf8Q/lyEv/X7/W3/a7eDwSBduXIlU6LRaspao5pmraasAAC0J0ehohovXrxI33//faPXfvfdd+nFixctJ4Lu7WQuHj582Oh1W5mntud1J+sBAADsBTnORUo9ayk1FwAAMF6p966AujkryOv58+eNr8EPHjxIz58/bznRaDVlrVFNs1ZTVgAA2pWjUHFkzJ/ZDH9nI/v27Usffvhho9eePn067du3r+VE0L2dzMXRo0cbvW4r89T2vO5kPQAAgE2EPhcp9ayl1FwAAMB4pd67AoYKfS7C3/bv39/4Gnzs2LG0f//+lhONVlPWGtU0azVlBQCgXVNtL7i+vv6/m/18YmKi7b9yR86fP59+/PHHbX1d2+HDh9O5c+cypoJuNZ2LhYWFdOnSpWzz1Pa8NlkvpZRu3LiRDh06tK3XAPV4+vRpunDhwsYH/+u/uwkDowz5nfzmm2/SgQMHOghDbYZd5956662O0sDe41yk3LOWUnPtBcPeR3w2oU32aaSU7IMonr0W5FXqvStgI+civGphYSGdPn06DQaDLb9mcnIyXb16NWOq4WrKWqOaZq2mrMM4pwNe52yVKjkLzsYZ5mitFypqMz09nebn59MXX3yx5dfMz8+n6enpjKmgW03notfrZZ2ntue1yXoppXTo0KF08ODBbb0GqFxhB/ww7HfywIED3p9obHIyx5cXAjXIcS5S6llLqbn2gmHvIz6bkJ19Wjz2QVTIXgvaU+q9K6Buzgry6vV66cyZM2lpaWnLrzl79mzq9XoZUw1XU9Ya1TRrNWUdxjkdsCXOVimds+Bd5QzzL/4rpJROnTqVZme39s2Ss7Oz6eTJk5kTQfeazkXueWp7/e2sBwAAsBfl2MeVetZSai4AAGC8Uu9dAXVzjcjr0qVLaWZmZkvPnZmZSRcvXsycaLSastaoplmrKSsAAO1QqEh/fa3k5cuX09TU5l/YMTU1lS5fvlzc11BCDk3nIvc8tb3+VtcDAADYq3Ls40o9ayk1FwAAMF6p966AurlG5DU5OZn6/f6Wntvv9zv913FrylqjmmatpqwAALTDp/v/OHLkSJqbm9v0OR999FE6cuTILiWC7jWdi9zz1Pb6W1kPAABgL8uxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHN33OsWPH0okTJ3Yp0Wg1Za1RTbNWU1YAAHZOoeIV58+fT4cOHRr6s8OHD6dz587tciLoXtO5yD1Pba+/2XoAAAAR5NjHlXrWUmouAABgvFLvXQF1c43Ia2FhYeQ3OkxOTqarV6/ucqLRaspao5pmraasAADsjELFK6anp9P8/PzQn83Pz6fp6eldTgTdazoXueep7fU3Ww8AACCCHPu4Us9aSs0FAACMV+q9K6BurhF59Xq9dObMmaE/O3v2bOr1erucaLSastaoplmrKSsAADujUPGaU6dOpdnZ2Q2Pzc7OppMnT3aUCLrXdC5yz1Pb6w9b77333mucDwAAoDY59nGlnrWUmgsAABiv1HtXQN1cI/K6dOlSmpmZ2fDYzMxMunjxYkeJRqspa41qmrWasgIA0JxCxWsmJibS5cuX09TUVEoppTfeeCN9+umnaWJiouNk0J2mc5F7ntpef9h6H3/8cStZAQAAapBjH1fqWUupuQAAgPFKvXcF1M01Iq/JycnU7/c3PPb555+nycny/telmrLWqKZZqykrAADN+aQ/xJEjR9Lc3FxKKaW5ubn07rvvdpwIutd0LnLPU9vrv77eO++8s+OMAAAANcmxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHU0opHTt2LL3//vsdJxqtpqw1qmnWasoKAEAzChUjnD9/Ph0/fjydO3eu6yhQjKZzkXue2l7f/AMAANHl2BeVutcqNRcAADBeqfeugLq5RuS1sLCQ3nzzzXT16tWuo4xVU9Ya1TRrNWUFAGD7proOUKrp6en01VdfpX379nUdBYrRdC5yz1Pb67+63h9//NHKmgAAADXJsY8r9ayl1FwAAMB4pd67AurmGpFXr9dLt2/fTvv37+86ylg1Za1RTbNWU1YAALbPN1Rswodg+Kemc5F7ntpe3/wDAADR5dgXlbrXKjUXAAAwXqn3roC6uUbkVVNBoaasNapp1mrKCgDA9ihUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAADA/7F379HWnHV9wL+/NxcgJCFyUVpAwkVcICqsJkgQ4VVRqwsERClasa9KEVpslaqwrNrUeqOWBVphRbyQIF6gSCJFQaAYigISoBZSCBclUeSSIBJCQhJCpn/MnJz9npy9z97n7LNvz+ez1qx37/fMfp6Z+T3zPDOz5zcbAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgOScuewEAVtnpp5+eiy666Fb/BwCwrhzfADBvxhYAMB4CAADL57wEAJjEscJ4EioAJjhy5EjOOOOMZS8GAMDcOL4BYN6MLQBgPAQAAJbPeQkAMIljhfGOLHsBAAAAAAAAAAAAAAAAFk1CBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADTnxGUvAADAqqubblj2ImyOm67f9f9q8Uuy1rRJAABat1HHxM6TprJRMQcAAACAJXGdbU5c1z002ijLIKECAGAPt7/0lctehI126qUXLnsRAACANbPp52nOkwAAAACAw7Dp11aXyXVdWF9Hlr0AAAAAAAAAAAAAAAAAiyahAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDknLnsBAABWyemnn56LLrpo2YuxsW6++eZcc801x/3faaedliNH5Pke1Omnn77sRQAAgEOx6edpzpP2z3kQAAAAAIy36ddWl8l13cVyLZjDJqECAGDEkSNHcsYZZyx7MTbaHe94x2UvAgAAsEZaOE9zngQAAAAAzFsL11aXyXVd2BxSoQAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaM6JS6jzhK0XH/vYx5ZQPQAAAKtux/niCePmgzXkuggAAAB7cm2EDeW6CAAAAHta9HWR6rrusOs4vsKqs5JcstBKAQAAWGdnd133jmUvBMyD6yIAAADsg2sjbATXRQAAANiHQ78ucuQwCwcAAAAAAAAAAAAAAFhFy/iFitsk+crh7VVJvrDQBWjbXbP9tIezk3x8icvCfInt5hLbzSW2m0tsN5fYbi6xXU0nJLnL8Po9XdfdsMyFgXlxXWQsfTHjaBuMo20wjrbBONoG42gbjLPstuHaCBvHdZG1suw+kNmJ2foRs/UjZutHzNaPmK0fMVs/6xKzhV4XOfEwC9/NsEJ+jnQJqmr07ce7rvvIspaF+RLbzSW2m0tsN5fYbi6x3Vxiu9KuWHM3WBcAACAASURBVPYCwLy5LrI7fTHjaBuMo20wjrbBONoG42gbjLMibcO1ETaK6yLrY0X6QGYgZutHzNaPmK0fMVs/YrZ+xGz9rFnMFnZd5MiiKgIAAAAAAAAAAAAAAFgVEioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmlNd1y17GQAAAAAAAAAAAAAAABbKL1QAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQsWaqap7VtVzq+qyqrq2qj5VVZdU1Y9X1SkHLPv+VfWMqrqgqt5VVR+pquuHev6mql5WVY+tqprX+nC8w4zvhDpPGeLbDdPlh1FP6w553z02Er+9pmNzWiUGi9xvq+pRVXV+VX1oqOvqqvpAVb2iqp5eVafOs77WHVZsq+rMGfZZffMhWMR+O8T5OVX1zqr6dFV9fqjnLVX1M1X1xfOoh+MtKLb3qqrnVdWlVXXNUM8Hq+qFVfUV86gDYD+q6our6tFV9bNV9Zqq+uTIscT5+yjvW6vqwuHawA3DvxdW1bfOUMaJVfW0qnpzVV1VVZ+rqr+uql+fpc+sqjsP6/XuqvrMML17+L87zVDOA4e6/3pYlquGZXtaVZ04QzkH3jaLNI+2UXM+76z+WsRPDOP0p4bx9LJhHL/nDOs2l7G/qh5WVS+tqiuqvxb28ar606r67mnLGMr57qp63fD564fyXlpV58xSzqJU1VnDsenrRtrzZ6s/z3xxVT18xvL0G+PLWbd+48BtQ78xdTlr029U1elV9aRh+72p+utTV1fVjVV1ZVVdPMRoqn1slbbhpravRZlH26iqozP0GedOsUzGkzVQ/bWz0dgeneIzjjfGl7NR7QM2UW3gOVhVPaD6Y51XV9Xl1R+7XFdVH66qP6iqb5tlnSbUs5Tvwzc0ZpdPuR0vn2Xd9qhzYWPUpsWs+nsDZv1e+dgs6zhSV/P7WVXdpqoeWlU/XFW/U1Xvr6qbt9Z7H+u2yHtJFnosuIlxm/c6Tajn3Bn2taPzqHOodxNjNu12vHiWddujzoVdy9u0mFV/fWjWMe3oLOs4Upf9rOpLquopVfV7VfXeYTlurKqPVdVrq+qpVXW7GZZlY8e043RdZ1qTKcljklydpBszvT/JfQ9Q/ksnlD06XZzkTsveHps2HXZ8J9T733bUc/myt8WmTQvYd49Nue92SY4te3ts0rSo/TbJFyW5aIr4PmjZ22RTpsOMbZIzZ9hnt6Y/XfY22ZRpEfttkicnuW6PmP5Dkm9a9vbYpGlBsX1qkhsm1HFDkmcse1uYTKY2pz3GnfNnKOdIkt/co7zfSHJkj3LunOTtE8q4PslTplier0nysQnlfDTJQ6Yo51/v0Yf/ZZI7L2LbrGPbyBzPO5PcN8kHJnz+6iSPnmKZ5jL2Jzk3yRcmlPPqJLfdo4zbJfnjCWV8Icl/WnZb2LHM/3vKeF6Q5ORF7BvRbyy9XcyzbUS/sYn9xqOmjOdVSb5lXbbhJravdWwbSY5OWUaX5Nw9lsd4sgZTkgcl+fyOdTh62NtA+1h+7E2mVqds4DnYsKzTrNNrk5xxwO13bMq6uszp+/BNjNlQxuVTrtflc9iGCx2jNjFmSc6foe1vTefYz/YXsyQvnvT5GddtUfeSLPxYcBPjNs91mqKuc2fY146K2cRlmXY7XjyHbbjQa3mbGLP09xxPG7OtbXo3+9nsMUt/reGmKZblA0m+aop129gx7VbLcFgFm+YcqOTB2b4x75okP5nknCTfkORFOxrnafus4/wkb0vy3PQHyv88yT9LfzH8GUneM1LPWw6zYbY2LSK+E+q9KcnnknxmqOPyZW+PTZoWtO8eGynnm5M8cMJ0oItVpsXGdqjnDkneMVLeK5N8T/ovbM5K8vgkz0/yd5FQsRaxTXLSHvvp1vS7I3V9z7K3yyZMC+qTvzbbNz58IclvJ3lskrOTPCHJq0bquS7JvZe9XTZhWlBsnzRSzqeT/PQQ77PSn5B+cPjbzUmeuOxtYjKZ2ptG+qguyRVJ/nTk/fkzlPOLI59719D/nT38+66Rv/3ChDJOSPLmkXn/MP01hock+eEknxgZK791Qjn3SHLlMO/nkzwnydcN03OyfQPWJ5LcfUI53zYyPn98WIaHDMv0hyPL+eYkJxzmtlnXtpE5nXcmOW0Yj7fKetEwXp8zjN/XDP9/bSac32ROY3+SHxqZ90NJfmCI6WOTvHHkb7+3x/b5/ZF535jt478fGMrd+ttTl90eRpZ5a7n+Pv055ROGZX5okh9N8pEZ1l+/cYjbZl3bRvQbm9hvPCrJ36b/0u/fpb8m9dAkD0vyxCQvz/YXdTck+epV34ab2r7WsW3k+ISK78/kPuOLJyyL8WQF2sQUbeZItm8s/MTI8h89zG2gfaxH+zCZNnXKBp6DJXnDMM8/JPn1JN+d/hjo7PQPJ7psR1+27/tLsoTvwzcxZkM5lw/zXbTHdrzfHLbhQseoTYxZkrvtEacHpj8G2TqmeL/97EAxO39kvs+kv/n3liTaGdZrYfeALXo/29S4zXOdpqjr3JGy9tq/by9mE5dlq4wX7rEd7zWHbbjQa3mbGLMk95qizT9xpJ7X2c/2F7MkPzX8/Yb0xx8/lOQR6cen78zx3xNemcnXLjZ6TLvVMhxWwaY5B2o7g+nz2SWbOMmPjzSYc/dZx4l7/P2EHH8B79uXvV02ZVpEfMfEc+sm7Z/O9onz5cveHps0LWjfPTZSxpnLXudWpkXtt0leMpRx/aR+N0nt1Y+bViu2eyzDCekPsrdORm637O2yCdOC+uRXj5Txb8bM89yReX5t2dtlE6bDjm2SU7J9YfuaJA/cZZ7Tk7x7mOfjSU5d9nYxmUxtTUn+c5JHJ/mS4f2ZI33f+VOWcb9s3/xzyc5jkKE/vGSkz931aSPpLyBv1f2CXf5+32w/yeSD445jR46FuyTftcvfRy+s7rqO6ZNZ/3qY5+ok99llnheMlHPsMLfNGreNYyOfOfMAy/KzI+X8+C5/f9jIdr54QjkHHvuT3DF9kmSXPtHkzjv+fkKOT4Y9OqacbxiZ51XZcbNb+icRXjH8/R+TfNGy28SwXK8e9qFdb84blnv0JuNHjJlPv7Fh/cYc24Z+Y/P6jbE3847M87iRdXvlqm/DTWxfa9w2js5j3WI8WZnxZI84/ciwvO9L8gtT7POONxpqHybTpk7ZwHOw9E8qfmqS24yp45QcfzP59x1g+x0bKedMMTvQOHb5pDFqjttv4WPUpsZsivV++kg9P3WA7Wc/S/7FsB2+IkMSWEaeqD7Dei3qXpKlHAtuYtzmtU5T1nXurG1KzMau14H3oynrWfi1vE2N2RTr/ZyRdfreA5TT9H6WPoHjl5LcZcLyjt639NsT5tvoMe1Wy7GoBmM6QJD67OStRnfemHmOJHnvSMd80iEty0NHluWXl71tNmFaVnyTPHMo77IkJ0dCxdrGNhIqNjm2Dx+p58eWvd4tTKsy5ib5lmkOXE2rF9sknxo+/8kJ89xhZFneuexts+7TImKbPkt/q46fmzDfo0bme8ayt43JZGp7yv5umn/hyGceOmae0esCt/oicJhnq8/9hySnjJnn2SPl7HYT0l2z/WS1105Y5tcO83whyV13+fvozUzPHlPGKSNj+P87zG2zCtM+28axkc+cuc96T8r2jaLvzfifIj5vpK6zd/n7XMb+JD8xUs6TxpRz92w/UfuPx8zzJ9m+gLvrU3xy/C9d3eqG3VWd0ifibC33r46ZR7/RQL+xz7ah32iw3xiWfetJxFet8jbc1Pa1ytMebePoyPofPUAdxpMVH0+SfGm2f/3lkTn+qZG7xn5e20D7WP32YTK1PmXNzsGmXKcHjpTxqgNsm2Mj5Zy57Fitc8yyuISKlRyj1jFmU6zTW4fP35zkngfYNs3vZ2M+d/HW56acf2H3G6zqfraOcZvXOk1ZzrnzXrZWYzZSz7mHvG1W8lreOsZsj/KOZPtXHK7JmLFzyrLsZ3svy8lJPjqU8enscm00DY5pR8I6eNzI6xfvNkPXdTenfyJKkpyR5OsPaVmuGXl920OqozULj29V3TP907eS5Gld1914kPIYa5X2XeZrUbF9xvDv1Ul+bR+fZ3arst9+38jrCw6h/BYtKrYnD/9+eNwMXdddneSTO+Zn/xYR27NGXr9mwnwXp/9FoaRPwgBYG1VV6X+iOEku67rubbvNN/z/+4e3jx0+N1rO/ZLcf3j78q7rrhtT5fkjrx+/y9+/PbnlutWu/fuOco4Mn9lpdJw4f5e/Z1jGlw9vHzCswy3mtW3I16dPLE2SC4bxeTfnj7zerW3Ma+zfKuczSV45ppyPJHnD8PYbq+q00b8P779xePuGYf7dvHKoJ9l9nVbVn428vs/OP+o3mu43JraNOdJv9Nap30i2v0PY7fuDVdqGG9e+1sCktnFgxpO1GU9ekOTU9Pvdm/aa2fFGc+0DWrdu52B76rru0mx/H3KY5w7LsnExm4cVH6M2KmZV9WXpby5Mkjd1XXfFrGWsgYXEbI4W8p30Cq73TusWt2ks6nrYsmxizA5sxa/lbVrMvjHJ3YbXr5gwdq6zlYnZcL/wXwxv75DkTrvM1tyYJqFiPTx8+PfaJO+cMN/ohcevPaRledLI68sOqY7WLCO+L0xy+yS/03XdxQcsi/FWad9lvg49tlV1crYPFl7fdd31w/+fUFX3qKozq0pi2/wtfb8dTsi2DkovT//zaRzcomK7dfB+r3EzVNXp6X/Ob3R+9m8RsR09efzEuJm6rrsp/ZMDk+ScqjpxxnoAluleSf7p8HqvG5u2/n639L92MOrhu8x3K13XfTzJB4a3u/XLU5WTvfv3rXLeP9S5n3LmtW1aN21M35Fk60L5pJjue+wfzrceMrx96x4Pmtgq5zY5PskySc7OdoLspPZ+Y5KtC8BnV9VJE+pbJbcZef2FXf6u3xhfzqb3G3u1jXnRbwyfWZd+o6q+PMmDhreX7fjbqm3DTWxfK2tS25gj40lvZceTqnpi+qcxfirJj035Mccb48vZqPYBJFm/c7BpbR27Hea5w7JsaswOapXHqE2L2ehD+l4ydq71tqiYzcuivpNetfXead3iNo1FXQ9blk2M2Tys8rW8TYuZMW3xMdtreZob0yRUrIetrOUPDTdpjTN6Efr+Y+eaUVXduarOqarfSvIfh//+ZJLfnVcdjVtofKvqSUm+Lf1P7PyH/ZbDVJax7764qj5aVTdW1Ser6m1V9XNVdbe9P8oMFhHbr87209reU1WnV9Xz0/e/f5v+6fdXV9Xrq+rojGUz3lLH3MF3pv8596RPfOvmXH6rFhXb84Z/71RVTxszz0/vMj/7t4jYfnbk9R3GzTRkwJ8+vD05yX1nrAdgmR4w8nqvm9wm9an7KeceVXX7MeVcPekGo67rPpbtp/4ctyxVdWqSe8y4LLcqJ/PbNptiv+edU23HYTz/0PB2t204j7H/fklO2GtZpihnP23jxCRftse8q+KRI6/ft8vf9RvbWus39mobO+k3tm1cv1FVp1TVl1XVM9N/obWVWP78HbOu2jbcxPa1UmZoGzv9fFVdUVU3VNU/VtX/qarn7Xw6/y6MJ+PLWbqqOiPJrwxvn9V13ScnzT/C8ca2jW0fwC3W7RxsT1X14GxfM5/m3GEaq/R9+DrH7BFV9VdVdU1VXVdVH66ql1XV4+bwtN9VHqPWOWbHGeL0vcPb65K8YtrPTqHF/WxeFvWd9Kqt907rFrdpzHo9bE9V9bqqunLY166sqour6tlV9UXzKH9G6xyz76qq9w7j2TVV9cGquqCqZn5S/i5W+VreOsfsOMN58tYve1yR5OI5lm0/28WQ9HPO8PYTXdd9apfZmhvTJFSsuOHp41tPMB73k0FJkq7r/jF9NlCyfSFuv/VeXFVdVXVJrkryliQ/kKTS38z7+K7rPn2QOlh8fIeBYOvLimd3XXfVfsphb8vad5McTfJPkpyU/mnaX5M+EepDVfVDByybLDS2owcLR9I/De/fp/95rC0nJ3lUkjdW1bNmLJ8dlrjf7tRC1vVCLTi2v53tuL2gqn6jqh5TVWdV1XdU1YXZfgLfz3dd94Z91MFggbEdPZl95Ni5kgcnOXXk/ZfOWA/AMt195PXEPjXJ34283tmn7qec2vG50XL2KmO0nHksy2GWsymOZn/nnVvb8dopriltbce7VNUtT8iZ49ivbeyhqo4kefbIf718l9n0G9u0jcmORr8x73KWqqqOjXx/cG36J6o+N8mXDLP8UpLf2/GxVduGm9i+lm6fbWOnh6U/nz45/bXQByX5kSTvq6pzJ9zgZzwZX84q+K9J7prkL5L81gyfc7yxbZPbBzRvTc/BpvGTI6+nOXeYxtGswPfhGxCze6V/wN+pSW6X/gm/T0xyYZI3H/DG+ZUcozYgZjs9IttPZr6w67prZvjsXo6mvf3swBb8nfTKrPdO6xa3aezzetg0vinJXdLva3dJ/z30Lyb5m6p67Jzq2NMGxOwB6W+svl36ce2+6e+7eWNVXVhVYx+YOIWVXO8NiNlOT0iylVT40jk/eNZ+trunZnvM+h87/9jqmHbi3rOwZKeNvP7s2Lm2XZu+czl1rxn36VeT/JcZnhzDZIuO7y+n/+LirUl+Y59lMJ1Fx/ZvkrwyfWy3Bo57pz/g+M70v3RwXlV1Xde9aJ910FtUbO848vpZ6WP42iQ/k+Td6Z/m8oT0X0LeIckvVdVlXdf90Yz1sG3pY25VfWm2b9Z+S9d1H5o0P1NbWGy7rvtCkn9VVf8z/RcFTxmmUX+W5BckU8zFomL7miQ3pT9/emZVvWTn8fBwAvzzE5YPYNXN0qdeO/J6Z58673Km7d8XsSwHLWfdHfS8cz8xTfrteMOOMmYpZ7exX9vY248mecjw+pVd1+32c86rth31G4sxTdvYot9oq20kyV8leWrXdZfs8rdV24ab2L5W2aS2seVj6fuMP0/ff9yUPrHi0elvhDgpyX9Kn2jxk7t83ngyvpylqqqvS3997KYkT5vxxohV25baB3BY1vEcbKKq2jruT5J3ph/nD2LVvg9f15jdmORVSV6X5NIkV6dPYj0nydPT35j2tUleX1XndF139R717WZVx6h1jdk4ow/pu2CGz03S8n42D4u832CV1nundYvbNGa5HjaN9yS5KMnbk3w0/fnulyf5l0m+OX2//IdV9Ziu615zwLqmsa4xuy79mPa/0j+1/rPZvmH+aekTwh6X5I+q6pu6rvv8PupYxfVO1jdm4xzGg2ftZ2NU1b2zfW/LZ9MnmBxkWbaWZ+3HNAkVq++2I69vnGL+rQv5tztgvd+fvoFX+s7jrPQnT89Icu+qekrXdZ84YB0sML5V9Yj0vzKynwvWzG6R++6FSS7YJaaXJHlZVT06/UnvSUmeV1WvmvRT1OxpUbEd/TnP2yZ5fZJHDzdrJ/2vB51XVZcmeVP6X7H4xSG+9u/9WdaYO+p704+9iV+nmKeFxraq7p/+hO8rx8xyTpIfrKr3dV339/upg1ssJLZd1/1dVZ2X/lj4bkn+oqp+In1yzI3pn5Z5bpJvGd6fvJ96AJZslj71hpHXO/u6eZdzkP591dZpnc3jvHM/MU2O347zGvu1jQmq6pHpk/eT5Mr01wR3s2rbUb9xyGZoG4l+Y7dlmWc5y3ZR+l9TTfplu0/6p9k+PsnvV9WPdF336h2fWbVtuIntaxXsp20kfd9wz11ubnhXkouq6kXpb/q7Q5JnV9XLuq77vzvmNZ6ML2dpqurkJC9Kf83zeV3XXTpjEau2LbUPYO7W+BxsrOF7khcPbz+X5MkH/P5ypb4PX/OYPWTML7RdXFW/luQV6W8yvH/6ZNZn7lHfblZujFrzmN3K8NTorYSlv09/M/FBtb6fzcMiv5NepfW+xZrGbaIZr4dN4/ld1527y///ZZKXDL8Cc16SE5L8ZlXdp+u66w9Y51hrHrO7jRnTXl9V/z39QxMfnD7B4unpHyQ+q5Vb7zWP2a1U1d3T/zJSkryt67oPzKFY+9n4ZTkl/Xi+9cstP9x13UcPuCyjy7PWY9qReRfI3I3uqCePnWvb1s9Nf+4glXZd9+Gu6y7tuu49Xde9ueu65yX5qiR/kv5pQJcMnRkHs5D4Dj9DvnXB+le6rnv3LJ9nXxa273Zdd/WkC1DDF1Q/O7w9JckPzloHx1lUbHceqD1rJJniFl3X/Xm2n+hy/4y/gZu9LWXM3eHJw783JHnZHMtt3cJiOzxx761JHpP+AuaTk9x1qPceSf5t+iclPCnJ26vqK2atg+Mscr/9sfTHwklyv/Q3iVw9lPXW9MkU70jyWyOfmefPKwMctln61NuMvN7Zp867nIP076u2TmtrTued+4lpcvx2nNfYr22MMRyfXpj+QTzXJ/muruuuHDP7qm1H/cYhmrFt6Dd2X5Z5lrNUXdd9evj+4NKu6y7puu4Puq77jvQPF7h3+if/HdvxsVXbhpvYvpZun20jXdddO+lJkV3XvT39Qw7y/9u773BbqvLw498XEFGkgwo2lKIi/ARBIwH0Ioiggr0glgtGjYVEDRgbckGi0Whi7CJR7A0iFmyxXIrGCKgRjYoIFytVmvTy/v5Ya3vm7rvrOfucfc7e38/zzLP37JlZs2bWlD1rVqG853hZh9m8n3QPZ5xeCzwA+A1wzCyWX2z70uND0kgt8WewjiJiK0pe+gZAAodl5s8HWbabxfQ+fKmnWZeCp61p11Iqw/6p/vTCWjlyWIvqHrXU06yLJwIb1u8fz8zbB1yuK8+zkVjI95aLabuBJZ1uXQ2bHzaIXtfhOv0DzLxv3orSQ8y8WOpp1ueedgml4lkrr+HwWa5mUW33Uk+zLp7NTDn2kfS45HnWNS7rAJ8DHlx/el9mnjiCuDTjs6TvaVaoWPyahbAG6aKk1aL5IN2sDKXWwjqUUgjwXsBbR72OKbRQ6fs6SpdFv6W0IqD5t2jO3ep4SoYVlJq3mr2FStvmei7LzB/1mPfrje8PHXI9mjHW8zYiHkZ5uQjwxX5/8DWUBUnbWoHxU5Sa3BcDD8/Mj2fmJZl5S2b+LjPfCzyC8kCwFaPrgndaLdh5m5k3USrKvAD4MTP3VSitCPwTsBczvcwAXDnseiRpjIa5pjZ7U2u/po46nLlc3xfbNk26fs+ds0lTWH0/jure77HRQUTcl9L69ybAbcAzM/P0Hosstv3odWOezOLYGJTXjdmHsyhl5scoL+XWAt4dEZs2Ji+2fTiJx9ei1efYGNSngWvq917XDPB+siiOjYh4APCaOnp4Zl43i2AW2770+JA0MhPwDLaGeo//BrB1/enwzPx0v+VGZN7fh09imrXLzKsp/7taYe02bBgsonvUBKfZcxvfPzrgMqMwyefZKCxkeYPFtN1LPd06msf8sEF8oPHdc22WMvMC4L/q6La10uewFs12T3Cajavh2ak6zyIigBOBx9afPkvnBktmE5dmfJb0Pc0KFYtcrcRwRR3t2SNERGzCzAHz23mKz+XAd+voEyLiDvOxnmmxgOn7j/Xzm8CBEfHM9qER9vqN3x815HpULcJz99JGfO4xH+uYFguYts35fzfEvFsMuR5Vi+C8HVfG18RbwLTdn5lr7Lu6dXObmT8DPl5Hd42IB3eaT/0t9Hmbmbdn5gmZuQul4sx2lDTfMjNfX+OzXWOR/5vNeiRpTJr/Ofv1SHmvxvf2a+pswknW/M/bGh+kd8xWOO1x+f0s4tIpnFHtm4k2wHNnaz+uHxEb9wmutR8vq5UaW+sY1b1/nMd7p3DGrr5M+ial0m+rBdEv9FnM68YMj41Z8LqxtI+NHlrHx/qU5+SWxbYPJ/H4Wuy6HRsDycxbgfPqaK9rBng/WSzHxisoLQteANy5y7upHRvzP6oxrXW++H9jxqQdH9JUm5BnsNVExAbA14BWz9xHZeZ7+oQ/MvP9PnwS06yH5ruN2ezLRXGPmtQ0i4i7AfvV0XMyc8HeRU34eTZnC/zectFs91JPt07mMz9sQHO9Dvc0iWnWg/e0YlGmWUTsBuxQR7+cmQvZYOW0nWfvAQ6p378KPLtXD1fTek+zQsXS0Dp5t63drnTzgMb3OXWZ2Mdl9fPOwObzuJ5psRDp2+oK51BKy9mdhlZabt747Q1DrkerW2znbtfuGTW0hUjbnzW+r91n3ub0W4dcj1Y3lvO2VlB8Zh29lJLhrNFaiLR9YOP7D/vMe06XdWp4YzlvM/PazDw/M//QetCMiLWBnessF9TKyJK0VDQzDvvdm3pdU2cTzm87tFbbCmejiLh7twAiYktmurdfLS6ZeS0zmWkLvU2dwpkGvZ47B9qP9X6+TR3ttA9Hce8/j9IaUM+4DBDObI6NW4Ff9Zl3QUXE5pSWuu5Xfzo8Mwep5O11Y8ZEXjfmcGwMw+tG/3AW3XWjj8sa3+/T+L7Y9uEkHl+LXbdjYxhzvma0Tfd+Mr/uWD/vR/d3U09pzH9U4/dWw0H+35gxaceHNLUm6BnsLyLiTsCXgIfWn/4lM4/rE/Z8mJf34ZOYZn3MdT+O/R414Wl2CDPlAz4ywPyjNqnn2ags1HvLRbHdE5Ruf7FA+WH9zFv5rklMsz7GcU8baV7ehKdZs+HZhb6nTc15FhFvAV5cR08HnpKZtwwRn6m4p4EVKpaKM+vn+sCuPeZrdj3z3a5zzV2zRpbdws7d0d1e9wAAIABJREFUYktfjc6iSduI2IKZSjN/mI91TJl5T9vMvAj4TR3duna91c02je+/7zqXBjGu8/ZxwGb1+ydri3sarYVI22a69XqYAGj28mV6z82iud8CezNzLi9kd5SSNAoXMvOs0K9r20fUz98Dq9qmndn43jWcWvho+zra6bo8UDj0v763wrl/rwJPfcIZ1b6ZaAM8dw6aprsx05JNrzSd9b0/M28GflBHd4+IdemuFc5NwNlt084Cbu6wvtXU8B/eWmbAjOoFEREbAV9nphWoVw/RgqjXje7hLPnrxhyPjUHX4XWji8V83RhAx/cHi3AfTuLxtdjN6d1SfXHbug/M+prh/WTJ8f9G93A8PqQlaMKewVrz3QE4uRHW+zPzVX3iN3Lz9T58EtNsADs0vs9mX471HjUFadYqfHoLpSLqgpnw82xUFuq95di3e8LSDViY/LABzfU63NEkptkA5rovx5qXN8lp1tbw7GWUXhMW0lScZxHxeqD13/ws4PGZecOA8Zmae1qLFSqWhlMa3w/tNENErMXMn+argO/MR0Qi4p7A7nX0otqKiuZm3tM3M6PfAFxUZ7+o8fuyIbdFq1s05y7wQqBVIP+0eVrHNFmotD25fm4I7NNjvic3vp/ZdS4NYlzn7ThrXU+LhUjbCxvf9+ozb/Mh4MKuc2kQi+J+Wyu+raijtwAfHPU6JGk+ZWYCra5mHxARD+80X/291frHF+pyzXDOY6ZFkKdHxJ27rHJ54/vnO0z/ItDqarbj9b0tnNvrMu2a94nlHaZT4/j0Ovp/dRv+YlT7Zgr0e+5cCVxdvz+vR6Xx5Y3vnY6NUd37W+FsyOrPVM1w7gnsW0e/1Z4PVse/VUf3rfN38mRmWijutE1jUY/9U4GH1J/+KTPfMujyXjcm97ox12NjCF43lth1Y0BPa3w/t23aYtqHK5mw42sJ6HVsDOIZwEb1+xrXDO8ni+9+kpnLB3g3dUxjkb0b01bVMPy/UUzc8SFNowl8Bmv12vxJ4ID608eAl/TYjPk08vfhk5hm/dRCgK3Cjdczi0q847xHTXqaRcROwIPr6Fdy4XtKn9jzbIQW5L3luLd7AtNtIfPDBvGixnfPtVmKiPsCj66jv87MoRuoHWde3hSk2QHM9E45joZnJ/48i4i/B95YR88F9h8yP3Eq7mntkXFYAgOlq5WkFM7avcP0I+v0BFZ0mL6sMf3EDtO3Bx7VJw4bNeKRwLHj3i+TMsx3+g4Yh1V1+VXj3h+TNCzAubs1sEufODye0mJZUjI97jHu/TIJw0Kct8C9gRvqPD8BNuwwz7Mb4Xx53PtlEoaFviYDmzbO0Z+Me/sneViAa/LGwHV1+jXATl3icQBwW53vd8Ba4943S31YoGvyZsAdu0xbG3hPI4xjxr1PHBwcHOqzwlDPiZS8gVvrMmcBd2qbfqf6e+uau12XcA5rrPvdHaZvQynAmJRuj9fpEs5HG+E8tcP0pw1w/b4D8Os6z9XANh3maV7Dl8/nvlkMw7DHBiN87gSObaz7yA7Td6/7L4GVPdY3p3t/nWdTSuZuUvJENmubvjal8FsrnGVdwnlUY54vAGu3Td+c0ohFAlcCm4z7GKjxWpfSSlIr7u+YZTheNybsujGKY8PrxsReN5YD6/WZ5xWNbbugw7Ytqn04icfXUjw2gE36bQ/wsJqWSSmgvmuX+byfLJL7yRDHz4oBznn/b0zp8eHgMEkDE/gMRilU/aFGOCfR9r9swG1a1uu6yZjeh09omu3fvv626Xdp2+Z3zibNRrnd055mHZZ5WyPMJw+xTZ5nszzeKJXxE8ghlhnFM+KiPM8mNd1GuE3Le6UtsBOwbZ8wXtgI44/A+qZZx/kPpMd1E7gb8MPGNr9yNmlW51nwvLxJTLMOy5/U2L6HDLGc59lg/0MOpeShJfBL4G6zjM9E39PWiMd8BOowDwkFu1D+kCZwLfAaSjdBewMfaBxwvwQ26LB8z4OyMf3HlMzLA4GH1vUeABxXLx6tMM4F7jzu/TIpw3yn74BxWFWXXzXu/TFJwwKeu9+rYT+W0g39bpSWiz7buDkm8JJx75NJGRbqvGX1Px6/oPzh2bWu513M/Jm4er7+LEzbsNDXZEpLPa35/2Hc2z/Jw0KkLXBUY55rgTfV8HcGHgO8l5nCGAk8e9z7ZRKGBUrbpwIXA+8AnlSvxXsALwZ+1Fj+K8C6494nDg4O0zcAe1IyEVvDEY1r05lt05b3COfNjeV+SGkJeLf62cx8flOPMNau62zNe1K9Dz4MeBlwSf39NuCAHuHcC7iUmcyxf67buWf93rqnXgrcs0c4j2WmMuPFNQ4Pq3FqZtieQY8X/6PYN0vx2GCEz53ABpT7cWveD1Du1w+vYV9bf78e2LlHOHO69zfCeVFj3vMpz1u7AQcB325M+2SfffypxrzfrsvvVsM7vzHtheM+HhpxPrkRr29RXjLs2GPY3uvGdFw3RnFs4HVjUq8bq4ArgOMprY7tQWkZdU/Kc1HzHL4J2Hex78NJPb6W2rHBTGXP/6X0VnAQ5f3UQ4AnAicwU3Argbf2iIv3k0VwTAx5/KxoxH/ZfO4Dj4+ld3w4OEzSwAQ+gwFvbyx/LuXe3WubduwSzrJGOCf2mL6g78MnNM1WUv63fRB4HuXetTOlV/XXMFMYNCnvpTedTZqNcrunPc06hPeHuswVDPEuql+a4XnWCuPutOWV1nOhtWz7tI4FdhnBM2K/NBvXeTap6TaqbaJ/Qe/llDI+/wW8ktJ7wkMo14Xnsnph7FuBA02zrmm2Cvg98E7gYEqjGDtTevY8DrisEd4ZdG84sWeaNeZb0Ly8SUyztvA2AW6sy5475L7pmWZ4nkHJT2uWJ9y/T1x2pEulEib8nrZGHOYrYId5SKxSyeHqxoHRPvyy28Wo30HZNr3f8GVgi3Hvj0kb5jN9B1z/qrr8qnHvi0kbFsm5ex2L6AXspAwLdd7WPwy391jPJXSoBeqw+NO2zv99Zv6o333c2z7pw3ynLaVFpn/rc84mcDNwxLj3xyQNC5C2T+2TprcD/0GXzBgHBweH+R6AEwd8Nkgge4SzVr2e9Vr+BPr0sERpkecHPcK4EfibAbbrr1i9gYf24Y/AXw0QzgtYvSBe+/A/wOZ9whjJvllqxwYjfu4EtgXO6xHO1cDjBwhn1vf+tnCOofd/t1Pp3+r2nep83cK4jR4vY8Z0XAx8TNRh1XyfG3jdGPtxMapjA68bk3rdWDVguv4WePRS2YeTeHwttWOD1XvP6jXcChwNRJ/4eD9ZQgODV6jw/8YUHh8ODpM0DHivaw6reoS1KK6JDP4f4C9Dl3CWNeY5sc/0XsNI34dPaJqtHHBbVtKj94F+aTbq7Z7mNGsLa//Gcu8Zct/0TDM8z4bdD61heY+w5vSM2C/NxnWeTWq6jWqbGKyg9yDhXw48wTTrmWarBlz2JGDjHnHpmWaN+RY0L28S06wtvL9tzLtGr7F9lu2ZZniewZDvBeuwrEd8JvaetkYc5itgh3lKMLgP8K/1ILyO0k3QWcCr6NFjRL+DktK17H7AWym16M6rJ8EtlJrNZwPvBvYY9z6Y5GG+0nfAda/qd7F2WHxpS2lF7ZB6fn6f0mrEdZQM+IspNR5fC9x13PtgUoeFOm8ptak/ClxIyVi5ipL58npgo3Hvh0kcFiJtge0a83513Ns8LcMCpe2uwPsorTJdQ3npf1X9T/V2etQ2d1icaUvpFvQISg8UF9Twr63rej8DvCR3cHBwmM+BEVWoaIT3WOAUSgs/N9XPUxigtbRGGOtQWiU+g5IxeQPwa0rrxQ8aIpzNgTfW++q1dfhJ/W2zIcLZsa771zUul9e4/S09uoaej32zlI4N5uG5E1i/3p/Pqvfr6yitGf0rcJ8hwpnVvb9DOH8NfAL4Td2uS4BvAAcPua+fVZe7pIbzmxruoqsAP8wxwYD5RV435nffLKVjw+vGUPt7KV037k9p1e1kSk8CF1PeH1xDaYnvJMoLy4H242Lah5N6fC2VYwNYl9KIwdsp19gL6rI3U1qUPJPSuuTWQ8TJ+8kSGRiwQsUo94HHh4ODwzgGJvAZjIWrUDGW9+ETmma7Af9Y1/lzyn+tWyhlg35OyUN6DP0rsPZMs/nY7mlNs7ZwPtGI+1DvpDzPBkszRl9geNbPiIv1PJvUdBvVNtG/oPddgcMoPQWdTWl44HrKdeH3lPfQfwdsaJr1TbNHAm8Avko5x66g3NOupDyXvZ8B8ob6pVmH+RckL28S06wtvO/W+W4Fthpy33ie9UkzRlyhooZ5HybwntY+RI2AJEmSJEmSJEmSJEmSJEmSJEnS1Fhr3BGQJEmSJEmSJEmSJEmSJEmSJElaaFaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1rFAhSZIkSZIkSZIkSZIkSZIkSZKmjhUqJEmSJEmSJEmSJEmSJEmSJEnS1LFChSRJkiRJkiRJkiRJkiRJkiRJmjpWqJAkLZiIWB4RWYetxx2fSdbYzyvmEMayRjjLOkxf0ZreZfmVdfrK2cZBkiRJkiTNnXkynUXEiXWfrBp3XCRJkiRJ0poiYlV9dj9x3HGZVpb9kCRNAytUSJIkSZIkSZIkSZIkSZIkSZKkqWOFCkmSNBaj6EVDkiRJkiSpyd44JEmSJEmSlo6I2LqRl7N83PGRJE2ndcYdAUmStDhl5kog5rD8spFFRpIkSZIkSZIkSZIkSZIkacTsoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSdLIRMQmEfHPEfGLiLghIi6NiG9GxNMGWHbdiDgwIt4dEWdFxJURcUtEXBER/xMRKyJi8z5hrIqIjIgT6/j9I+KD9febIuKSiPh8RDx8wO3ZOiLeEhHn1HjcEhGXR8QZNT7367HsRhHxmoj4bkRcFhE3R8QfI+JLEfHUiIgey64fEc+IiBMi4scRcXVd92URcVpEHBERdxlkGxph7hsRX6xxuDEiLqj7+h49lllW92dGxLJh1leXX1mXXdn2+6qIyMZPRzfW0xpOrPP+Zx2/MiLW67O+dSLi4jr/V4aNryRJkiRJ0ywi1o6I50XElyPiDzUv5YqIODMiXhkRd+qx7Gp5ABFxj4j414g4v+YRXRERX4+IAwaMy3NrHsiVEfHniDg3It4QERvW6a38gxWNZZbV/IYPN4K6sEOew7Ie6904Io6NiJ9FxHURcVVEnB4RhwwSb0mSJEmSJl0tK5Gtd/61bMRREfGj+hydEbG8bZlZl58YIl7bRsS/1TyEq2t+xAURcWJE7NZn2S0j4iURcVJE/KrmCdwUEb+PiC/U8hs9y1lGxHoR8Xc1j+SyWsbjTxHxy4j4as1b2brH8rPOl5mriHh4RHyulre4MSIujIjjI+L+Ay4/6/1Xj6MLGz99uENezoouyz4kIt5f9/Gf63p/GRHvi4jth94RkqSpts64IyBJmgwR8UDgm8BWjZ/XA/YB9omIDwOn9wjieOB5HX7fFHhYHV4WEU/IzO8OEJ8nAR8H7tz4+a7AE4EDI+KQzPxMj+WPAN4E3KFt0mbAnnVYVof2ZfcBPlPnbbo78Pg6fCUinpGZf+6w+lOBR3b4fXPgEXV4SUQ8NjN/0W0bGvE5GljR9vN9gZcCz46IAzPzjH7hjMkJwJOAjSlp9+ke8z4WuFv9/qF5jpckSZIkSRMjIu4NfBF4cNukTYE96vDiiHhcZp7XJ6w9gFMo+Rgt6wH7AftFxJGZ+bYuy94B+BzwhLZJO9bh2RHx6MG2aji1kMDXgK3bJu0F7BURu2fmy+Zj3ZIkSZIkLUURsR3wDdZ8lm7OM9fyE4PEo1v5jvvW4bkRcVxmvqHDsmsDv6Nzw9RbAQfV4fkR8eROcYyILSnlZXZom7RJHbYH9q/hHdFh+ZHlywwrIl4BvI3Vt39r4AXAsyLi6X2Wn/P+m0Wc16pxfjnQXhln+zr8TUS8NDOPn+v6JEnTwQoVkqQ5i9I64NeZqUzxGeAjwKWUB5VXAodSXnx3sw5wAfB54AfAb4BbgfsA+wKHUR6wPx8RO2bmpT3C2gl4BvBH4O3A2ZSHqMcAr6a8xD8+Ir6dmZd12J6jgGPr6FXAe4HvAFdQCvY/BHgykB2W3QP4KuVB/RLgXcD/An+o++cZwLMphf8/Ajyly744l/LAfHZdNuq+eBLwdMpD/ykRsXNm3thjXzwO2A34JfBW4CfARsDTKA/AGwFfrvv0tz3CGaX9gHUp2wjwPso+brqyfn6N8vB9T8ox1KtCxaH183LKvpMkSZIkSX1ExGbAmcC9gJuADwKnAauAu1Ce4/8e2Bb4akQ8JDOv7hLclpTKFLdT8mDOBG6mNEzxBkq+ypsj4quZ+bMOy/87M5UpfkZ5Of5TYENKnsiLKflOnZxFyRN6AnBc/e0xlHyVpgtZ052BL1Hyno6jFIL4M7ALcDQlX+KlEfGlzPx6l/VLkiRJkjRtTgLuQSkX8UXKe/7tgItgZOUneoqIIyllIaCUh3gf8CtKWY/7Ay8DdgeOiojLM/Od7UHUz2/XuJ4LXAZsANyPUq5id+DRwHvo3FDou5ipTPFx4D/rNt5GySvZjTUbj2jFf5T5MkOpDZX+ax29GngLsLKOPwp4FfAJyv7oGkz9nO3+24lyLLTyW14PfKFtnvbyQe8CXlK/nw6cSClvdD2lUsrLgQcBH4iIizPT8iOSpL4ic42yoJIkDSUi/oWZWvSvzcw3t02/A/BlyoNey30zc1Vjnm2AC7LLjSkidgK+R3lgPC4zj+owzypKpQOAc4BHZeY1bfMcQnmABXhlZv5b2/RdKJUY1gLOA/bJzN91idO9mpUQ6naeR6mt/zXgKZl5fYflXkDpkQNgv8z8r7bp22Xmrzqts07fl/IwuRbwN5n5Hx3mae7HHwKPbK/pHxHPAT5aRz+XmU9vm76MUpEEYO/MXNk2fQWlUAGZuUYXnBGxktLTxmmZuaxHHI/JzBVrbOjMfMcCR1EKY9ynU3pExF0pFS/uAPx7Zr68W3iSJEmSJE2biFgOfLiOtufJfAJ4FqWww96ZuUaFg5pfcgawPvCmzHxd2/SVzPS2eRGwR2b+vm2ePSkvuQN4Z2b+fYd1nFOn/zclT+aGtnmeSunBomWNPIVe29phu05k5kX+1TXeP2ubZ1tKYYD1gC9mZscCEJIkSZIkTYNmOQHKO/wDMvMbHeYbVfmJVZRyIB/JzOVt03YAfkwpJ3AMJZ8g2+ZZi1JZ49mUxhPunZlXNqYHsE1mnt9jm4+hNBSRwP2b5TkiYj3gmhqHt2fmGj1QNObdNDP/1PbbnPNlZiMi1qU0OrEVJU9k98z8eds8OwLfpTR0AR3Kfsx1/9XpWzPTAMahmXlij7AeTekVBbqXl1kPOJVSKeQiYNvMvLVbmJIkQeeuliRJGlh9yHp+Hf0J8M/t82TmLXWeW7qFk5m/7laZok4/Fzihjj5xgKgd1l6ZovokMy0T7tVh+pGU+2MCz+xWmaLGqb1Hh2dSMgNuBJ7bKTOgLvdBSi8cAMs7TO9amaJO/yYzPTAMsi9e2KnbxMz8GKWFAIAnRcTdBwhrHD5ESY+16NzaA5TMjzs05pckSZIkSX3UF9bPqKMv6/TSHiAzf0RpRRA65GW0Oby9MkUN40zgf+popzyZFzLTquEL2itT1DBOovRuOh+O6tRrRi0QcEod3XOe1i1JkiRJ0lJ0YqfKFNVIyk/08Q+UcgJn06EyRQ3/duBwSu8PdwGe2jY9e1UGqI4FLqfkWxzUNm1TZsoqnN4rkA6VKbZm9Pkyg3oCpTIFwBvbK1PU9f4U+KdegYxg/w3r1fXz5E6VKWqcbqT0TAKlMs7ec1ynJGkKWKFCkjRXuwKb1O8f6VYpolZM6PYgvYaI2CQitomIB0XEjrXm+1V18g61NYNuzs3Mn3SJRwI/qqP3a1vnWsABdXRlfSgdRuvB77TM7NXlIcw8SO/eL9CI2CIitmvth7ovWuE/uM/i52bmOT2mtyofrAMs6xeXcagtSX6zji7vMtuh9fOcbmkvSZIkSZLW8DhgbeB6Zhpd6KaVl7FVRNy7yzxXUVoA7KaVR3G/DtP2rZ8/6lSxoeGjPabNVlIa4eimFe9NI2LjeVi/JEmSJElL0Sd6TJuX8hNtDqyfJ/dpwPMqSu+TfdcREWtFxFYRcf9G+YwHAq3GONvLaFwB3Fy/Pyci1hki/qPOlxlGKx8mKT14dPPhOs9AZrH/BhYRGzJTruWkXvPWCiKX19FhjytJ0hQa5gYuSVInOzW+n9Vn3h9QHgg7ioidgFdQKjX06i1hLUoljku7TP9Fn3i0av1v0Pb7fYHWS/Ez+oTRyW718zERMegDZcftjIg9gL+jPMRu2mP5zfuEP0iatOwEfLrP/ONyAvBoYNuI2Csz/5I+EbEbsGMdtXcKSZIkSZIG18rLuDNwa0T0mrfp7sBvOvz+q9ryYzcd82QiYj1g2zraq2EIKK1OjtrlmXlFj+nNFiQ3YKbRD0mSJEmSplmvxg5HVn6ik4i4D7BFHX1zRLx5tuuIkiFyCPB84K+AO/VYfrUyGpl5U0R8BngOpfeLh0bEZ4GVwPdqZY5uRp0vM4xWWZ8LM/PybjNl5mURsYpSnqajuey/Ie3CTAPin4qITw243MDHlSRpelmhQpI0V83C/t0qOLRc0m1CRDwfeD+D35t6PYB17CqyofVif+2235sPbn8cMB5Nd53FMmtsR0SsAI6e7fJthkmTXhU3xu0USusBm1N6o2hWeDmsft5I79YkJUmSJEnS6maTlwHlRX8ng+bJtPee3ez1oV+rlf2mz8ag8YY185MkSZIkSZpWV/aYNpLyEyMOH9ryNGojD/9JafhzEJ3i+DJK3saBwH2AI+twe0T8EPgscHxmXt223KjzZYbRKh/Sr0wJlHIlHStUjGj/DWqc+0uSNOGsUCFJGqWBu/lriogHMFOZ4lLgX4BvA6uAazPzljrfYcB/tBaba2TnQeuF+leBV80mgIjYh5nKFBcAbwPOpLQucF1m3lrnOxY4aoAgZ5Umi01m3hwRH6P0YPK0iDg8M6+rD+cH19k+36d1B0mSJEmStLpWXsblwN5DLHfhPMRFkiRJkiQtIZl5W4/Jcy4/0UezwYNjgc8NuNx1beOvY6YywGnAe4AfAhcDN7R64oyI04G96FBWJTOvAQ6KiIcBTweWATvXOO5WhyMi4omZ+d8dtmGc+TJzLVMy5/03hGaavwj43oDL9ar4I0kSYIUKSdLcNR887gac12Peu3X5fTnlnnQb8MjM/EWX+ea7B4VmN4ZbzmL5K4CtgHUz86ezjMML6ueVwMMzs1uri4Pui277vNP0Pw0Y5ricQKlQcRfgacCJwBOZacXyQ+OJliRJkiRJS9YV9XMD4Od9CkLMp2YDCVv0mbffdEmSJEmSNH6jKD/RL/yWW2azjogI4G/q6BnAo1oVADroW0YjM38A/KCGvQGlYsVy4MmU3hVOjohtMvOGtm0YR75Mq6xPvzIlXecZ9f4bQDPNr5+n40qSNKXau9WWJGlY5za+P7TPvN2mP6h+/m+PyhRQau3PpwuZeYH/iFks/6P6uVtErDvLOLT2xXd6VKaAwffFMGmyqB82M/P/gFZrDYfWz8Pq50XAtxY8UpIkSZIkLW2tvIw7Mv/5Ll1l5o3Ar+vorn1m7xfPieitU5IkSZKkJW4U5Sd6uQC4un7fY5ZhbArcvX7/XLfKABFxF+D+wwScmddm5pcy8ynAO+vPWwJ7NmYbZ75Mq6zPfSNis24zRcQWwNZdJo9q/w2al/PjxryzTXNJkjqyQoUkaa7OYabm+nNqDfQ1RMQ9gP26hNHqMWn9biuJiC2Bg2YbyUHUh7tT6+gjI2KXIYP4Yv3ciJkC/8MaZF/sAvzVgOHt1Gc7WhUSbgNWDhjmqNxYP+84xDIn1M+9ImJvYJ86fmJmWmBCkiRJkqThfImZF9EvH2dEmGkoYZeIeFCP+Z7bJ5wbG9+HyXOQJEmSJEmjM4ryE13V3hy+Ukf3i4gHziKYdRrfu5bRoPTCsE6P6f00G4fcvPF9nPky36yfQe+8luV1nk5Gtf8GysupjZJ+v44+q1b2kCRpJKxQIUmak8y8CfhwHd0ZOLJ9nohYB/gg0K3VgV/Vz+0i4q87LH9n4JPAneYc4f7eBtxOeSD8dETcs9uMHaZ9BPhtK5yI6NnLRUTsGRGPbPu5tS/2jIhtOyyzBfCxXuF2cHxErPHwGhHPAh5bR0/JzD8OGe5ctda3zRDLfAa4lpI+n6T8l0lmjkFJkiRJkjSgzPwl8Lk6+syIeGWv+SPivhFx8DxF53hmChF8MCLWyAeKiKcAT+oTTjN/Y5g8B0mSJEmSNDqjKD/Rz5spjUeuBZzUp3zH2hFxSNs8lwFX1e8HR8Qahfkj4qHAG3uEe78B4t1sfPTC1pcx58ucwkweylERsUYPEhGxA/C6HmHMef9VVwA31+/98nKOq58bUtJ8424zRsQdI+KlEbFenzAlSbJChSRpJI4Ffle/vyUiPhkR+0fEQyLimcD3gAOAs7ss36ogsBZwakS8NiIeEREPi4gXU7qQ5UZvAAAHxklEQVTtWwZ8d/42ocjMHwNH19HtgXMj4riI2Ccido6IZRHx8og4nbaKDbVyydOBm4C7AN+OiI9HxFMjYteIeGhEHBQRx0TET4AzgJ3aovDR+rk+cFpEHB4Rf12HI4D/BXYA/nvATTqb0jXk2RGxvMbjURHx3kb8rwWOGDC8Ufpe/TwoIl4UETtGxLZ1uGunBTLzOuDTdbTVdeS3M/Oi+Y6sJEmSJEkT6sXABfX72yPitIh4fkQ8PCJ2iYh9I+IfIuK/gPOBp8xHJDLzHEqDHAC7A2dFxPNqXsbeEfEuSkMLP2gu1iGoHzHTsuEbI+LREbF9I89hIRrskCRJkiRpqo2o/ES/dZzLTFmHHYCfRsRba3mVXSJi94g4OCLeSanc8XFg48bytwOfqKP/Dzizzr9bLSPyduB0Sj7DeV2icW9gZUT8rJYteWLdtodGxJMj4jPAS+u8Pwb+p235seTLZObNwOF1dBPg+xHx6rre3SPiNcyU6Ti/Sxij2H9k5q3AWXX0sBrGAxt5OZs25v0K8O919BHAzyPi6EaZnj1qftIJlAoj72ZuvYtIkqaENwtJ0pxl5tURsT+lS8C7AwfXoelE4DQ69CSQmWdFxNHAMZSH13/qsJq3Az8F9hhdzDvLzOMi4vZGfF5H51r3p3VY9vsRsQz4LHAv4JA6dHNN2/InRcSHKV1ebgW8s23+24BXUB5odx9gc06tw9F07sXhGuCgzFw1QFij9jbgqZQuG9/fNu0jlK4jOzkBeEFj/EMjj5kkSZIkSVMiM/8UEXtQ8jL2oryM7tVq5DU9ps3V4ZT8kMcDD6LkJzVdCDyLmRf5N7ZNJzOvrQUlXgU8BPhG2yx7AytHFmNJkiRJktTRXMtPDLiOd0TEdcA7gI2AI+vQyc2smZfwOko5lJ0pjVV+sm36nyiVGI6lNMrZzQ516OYXwJMzc7XGIcaZL5OZJ0fEkcBbKWVj3tw2y/WUSjFHAtt2CWZU++/NwJeAzTqEcQywojH+ihruUZQySivo7jpKORtJknqyhwpJ0khk5s8oL7rfCvyK0srA5cB3gGdl5qF9lj8WeBzlJfeVlAfZ3wH/CeyXmQvag0JmvonysPsOSkWOa4BbKV0Wnga8HnhOl2W/D2wH/C2lMsMfmHkw/y1lG18HPCAzP9ph+cNq2GdQeo+4CbiI0qPEX2fmv7cv02dbVgD717hcUuOyCngv8KDMXKNiyEKovYHsDnwK+A1lOwdZ7gfMtF5wFeUYkSRJkiRJs5SZF2fmIygVGT5BaRnxeuAWSl7I9yiNXTyy5lvMVzxuBg6iNDRxJnB1jcfPgTcBuwJXNBa5uktQr6Y0xnAG5QW7L84lSZIkSRqDuZafGHAdHwTuR2lo8ruUsiq3UgrTnwecXNd/j8w8v23ZqykVAo4Czq3x+jMlL+JtwIMz8/Qeqz8DWEapEPAdSiMQ11LyVC6p2/e3wM6ZeWGX+I8tXyYz3wbsSSl3cSkz5VM+BOyWmaf2WX6u+68VzqnAPsAXKMfILT3mzVrGaHtKGaWzmcn/uRb4P8p+fB6wZWbe0G/9kiRFW6VHSZKkRS0iNgQuBu4EvC8zXzLmKEmSJEmSpAUSEXtSCisA7JuZ3xpnfCRJkiRJkiRJ0tJmDxWSJGmpOZhSmQLgP8YZEUmSJEmStOAOrp+3AOeMMyKSJEmSJEmSJGnps0KFJElaMiJiHeCVdfTszLTghCRJkiRJEyIiNo+IjXtMfwzwojr6xcy8amFiJkmSJEmSJEmSJtU6446AJElSLxGxKbApsBnwD8D2ddKbxhYpSZIkSZI0H3YEvhARnwO+CfwauB24D3AQ8GxgbeAG4LXjiqQkSZIkSZIkSZockZnjjoMkSVJXEbECOLrt5y9n5oFjiI4kSZIkSZonEbEM+E6f2a4BnpaZ35j/GEmSJEmSJC0+EXFX4K6zWPTmzDxv1PGRJGmps4cKSZK0VNwKXAR8CnjzmOMiSZIkSZJG72xgObA/8GBgC2BjSiWK84GvAe/OzMvGFUFJkiRJkqRF4CWs2TDlIC4Cth5tVCRJWvrsoUKSJEmSJEmSJEmSJEmSJGkJiIgVzLJCRWZuPdrYSJK09FmhQpIkSZIkSZIkSZIkSZIkSZIkTZ21xh0BSZIkSZIkSZIkSZIkSZIkSZKkhWaFCkmSJEmSJEmSJEmSJEmSJEmSNHWsUCFJkiRJkiRJkiRJkiRJkiRJkqaOFSokSZIkSZIkSZIkSZIkSZIkSdLUsUKFJEmSJEmSJEmSJEmSJEmSJEmaOlaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1/j+aeOcrmpqnWAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(20,20), dpi=200)\n", + "\n", + "plt.subplot(4,3,1)\n", + "sns.boxplot(x = 'popularity', data = df)\n", + "\n", + "plt.subplot(4,3,2)\n", + "sns.boxplot(x = 'acousticness', data = df)\n", + "\n", + "plt.subplot(4,3,3)\n", + "sns.boxplot(x = 'energy', data = df)\n", + "\n", + "plt.subplot(4,3,4)\n", + "sns.boxplot(x = 'instrumentalness', data = df)\n", + "\n", + "plt.subplot(4,3,5)\n", + "sns.boxplot(x = 'liveness', data = df)\n", + "\n", + "plt.subplot(4,3,6)\n", + "sns.boxplot(x = 'loudness', data = df)\n", + "\n", + "plt.subplot(4,3,7)\n", + "sns.boxplot(x = 'speechiness', data = df)\n", + "\n", + "plt.subplot(4,3,8)\n", + "sns.boxplot(x = 'tempo', data = df)\n", + "\n", + "plt.subplot(4,3,9)\n", + "sns.boxplot(x = 'time_signature', data = df)\n", + "\n", + "plt.subplot(4,3,10)\n", + "sns.boxplot(x = 'danceability', data = df)\n", + "\n", + "plt.subplot(4,3,11)\n", + "sns.boxplot(x = 'length', data = df)\n", + "\n", + "plt.subplot(4,3,12)\n", + "sns.boxplot(x = 'release_date', data = df)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import LabelEncoder, StandardScaler\n", + "le = LabelEncoder()\n", + "\n", + "# scaler = StandardScaler()\n", + "\n", + "X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')]\n", + "\n", + "y = df['artist_top_genre']\n", + "\n", + "X['artist_top_genre'] = le.fit_transform(X['artist_top_genre'])\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "y = le.transform(y)\n", + "\n" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 1, 0, 0,\n", + " 0, 1, 0, 2, 0, 0, 2, 2, 1, 1, 0, 2, 2, 2, 2, 1, 1, 0, 2, 0, 2, 0,\n", + " 2, 0, 0, 1, 1, 2, 1, 0, 0, 2, 2, 2, 2, 1, 1, 0, 1, 2, 2, 1, 2, 2,\n", + " 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 0,\n", + " 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2,\n", + " 1, 2, 2, 2, 0, 2, 1, 1, 1, 2, 1, 0, 1, 2, 2, 1, 1, 1, 0, 1, 2, 2,\n", + " 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2,\n", + " 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 2, 0, 2, 2, 0, 2, 2, 1, 1, 0,\n", + " 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 2, 2, 2, 1, 1, 1, 1, 1, 0,\n", + " 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2,\n", + " 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 1, 2, 1, 2, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 1],\n", + " dtype=int32)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ], + "source": [ + "\n", + "from sklearn.cluster import KMeans\n", + "\n", + "nclusters = 3 \n", + "seed = 0\n", + "\n", + "km = KMeans(n_clusters=nclusters, random_state=seed)\n", + "km.fit(X)\n", + "\n", + "# Predict the cluster for each data point\n", + "\n", + "y_cluster_kmeans = km.predict(X)\n", + "y_cluster_kmeans" + ] + }, + { + "source": [ + "उन संख्याओं का हमारे लिए ज्यादा मतलब नहीं है, तो चलिए 'सिल्हूट स्कोर' प्राप्त करते हैं ताकि सटीकता देख सकें। हमारा स्कोर बीच में है।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.5466747351275563" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ], + "source": [ + "from sklearn import metrics\n", + "score = metrics.silhouette_score(X, y_cluster_kmeans)\n", + "score" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.cluster import KMeans\n", + "wcss = []\n", + "\n", + "for i in range(1, 11):\n", + " kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)\n", + " kmeans.fit(X)\n", + " wcss.append(kmeans.inertia_)" + ] + }, + { + "source": [ + "उस मॉडल का उपयोग करके, एल्बो विधि का उपयोग करते हुए, क्लस्टर बनाने के लिए सर्वोत्तम संख्या तय करें।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAFNCAYAAACAH1JNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5hdZX33//d3coIQgSQEUkJMQE4iVMABgyIp4SyHhD3wCLWK/VEpLSii9Kn2oG3110ptK1JbWypWeMoD8kNIEJCDnEU5hIMEpEIKBMIpkUA4J4R8f3+sNWYnmWRmktmz9t7zfl3XvvZa91p7z3c5l5kP973WfUdmIkmSpNbRUXUBkiRJ6h8DnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASdI6RMSnIuKndfsZETtWWZMkgQFOkoiIJyPizYh4re717arrkqR1McBJUuHozBxT9zq96oIkaV0McJLUPx+NiMcj4tcR8Y2I6ACIiI6I+IuIWBARiyLiwojYojx2QUR8odyeVA7FnlbuvycilnR/jyT1hf9gSFL/HAt0AnsDM4H/p2z/VPk6ENgBGAN0D8PeCvxOuT0deBw4oG7/9sxc2diyJbUTA5wkFWZHxMt1r0+v47yzM3NJZj4FnAOcWLZ/HPinzHw8M18DvgScEBHDKQLc/mUv2wHA3wMfLj83vTwuSX1mgJOkwqzM3LLu9R/rOO/puu0FwLbl9rblfv2x4cA2mfk/wOvAnsBHgKuAZyNiFwxwkjaAAU6S+mdy3fa7gWfL7WeBKWscWwG8UO7fChwHjMzMZ8r9k4CxwAONLFhS+zHASVL//ElEjI2IycAZwA/K9ouBMyNi+4gYA/wt8IPMXFEevxU4Hbit3L+l3P9pZr4zaNVLagvDqy5AkprEjyKiPkjdAMzp4bw5wL3AFsD3gfPL9u9RDKPeBmwCXAd8pu5ztwLvYlWA+ykwum5fkvosMrPqGiRJktQPDqFKkiS1GAOcJElSizHASZIktRgDnCRJUosxwEmSJLWYITeNyFZbbZVTp06tugxJkqRe3Xvvvb/OzAlrtg+5ADd16lTmzp1bdRmSJEm9iogFPbU7hCpJktRiDHCSJEktxgAnSZLUYgxwkiRJLcYAJ0mS1GIMcJIkSS3GACdJktRihtw8cA21ciUsWgTLlsGoUbD11tBhRpYkSQPLdDFQVq6EefNg2jSYOrV4nzevaJckSRpABriBsmgRzJwJC8oJkxcsKPYXLaq2LkmS1HYMcANl2bJV4a3bggVFuyRJ0gAywA2UUaNgypTV26ZMKdolSZIGkAFuoGy9NcyZsyrETZlS7G+9dbV1SZKktuNTqAOlowP22APuvBMefxzeeqvY9ylUSZI0wEwXA6mjAyZOhGuugUMPhSVLqq5IkiS1IQNcI9Rq8M47cOWVVVciSZLakAGuEfbaq5gL7vLLq65EkiS1IQNcI0QUvXA33ACvvFJ1NZIkqc0Y4BqlqwuWL4err666EkmS1GYMcI0ybVrxQIPDqJIkaYAZ4BqlowOOPbZ4IvWNN6quRpIktREDXCN1dRXh7frrq65EkiS1EQNcIx1wAIwbBz/8YdWVSJKkNmKAa6QRI2DmTPjRj4oHGiRJkgaAAa7RajVYuhRuuqnqSiRJUpswwDXawQfDu97l06iSJGnAGOAabZNN4MgjYfbsYnktSZKkjWSAGwy1GixeDD/9adWVSJKkNmCAGwxHHFH0xDmMKkmSBoABbjCMGQOHHVYEuJUrq65GkiS1OAPcYOnqgoULYe7cqiuRJEktzgA3WI46CoYPd1JfSZK00Qxwg2XsWDjooGIYNbPqaiRJUgszwA2mWg3mz4eHHqq6EkmS1MIMcINp5kyIcBhVkiRtFAPcYNpmG/jIR5xORJIkbRQD3GCr1WDePHjssaorkSRJLcoAN9hqteLdXjhJkrSBGhrgIuLMiHg4Ih6KiIsjYpOI2D4i7oqI+RHxg4gYWZ47qtyfXx6fWvc9XyrbfxURh9W1H162zY+ILzbyWgbM5Mmwzz7eBydJkjZYwwJcREwCPgt0ZubuwDDgBOBs4JuZuSPwEnBy+ZGTgZfK9m+W5xERu5Wfex9wOPCvETEsIoYB/wIcAewGnFie2/y6uuCee+Cpp6quRJIktaBGD6EOBzaNiOHAaOA5YAZwWXn8AmBWuT2z3Kc8flBERNl+SWYuy8wngPnAvuVrfmY+npnLgUvKc5vfsccW77NnV1uHJElqSQ0LcJn5DPAPwFMUwW0pcC/wcmauKE9bCEwqtycBT5efXVGeP76+fY3PrKu9+e28M+y+u8OokiRpgzRyCHUsRY/Y9sC2wGYUQ6CDLiJOiYi5ETF38eLFVZSwtq4uuP12eOGFqiuRJEktppFDqAcDT2Tm4sx8G7gc+DCwZTmkCrAd8Ey5/QwwGaA8vgXwYn37Gp9ZV/taMvO8zOzMzM4JEyYMxLVtvFqtWFJrzpyqK5EkSS2mkQHuKWBaRIwu72U7CPglcDNwXHnOSUB3grmy3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSMpHnS4soHXM7D22AN23NHpRCRJUr818h64uygeRrgPmFf+rPOAPwU+HxHzKe5xO7/8yPnA+LL988AXy+95GLiUIvxdC5yWme+U98mdDlwHPAJcWp7bGiKKXrgbb4SXXqq6GkmS1EKi6OQaOjo7O3Pu3LlVl1G4+2744AfhwgvhE5+ouhpJktRkIuLezOxcs92VGKrU2QnbbecwqiRJ6hcDXJU6Ooo54a69Fl57repqJElSizDAVa2rC956qwhxkiRJfWCAq9r++8OECU7qK0mS+swAV7Vhw2DWLLjqqqInTpIkqRcGuGZQqxX3wP3kJ1VXIkmSWoABrhnMmAFbbOHTqJIkqU8McM1g5Eg4+uhiWa0VK6quRpIkNTkDXLOo1WDJErj11qorkSRJTc4A1ywOOwxGj3YYVZIk9coA1yxGj4YjjoArroCVK6uuRpIkNTEDXDPp6oLnnoM776y6EkmS1MQMcM3kyCOLBxqc1FeSJK2HAa6ZbL45HHJIcR9cZtXVSJKkJmWAaza1Gjz5JDzwQNWVSJKkJmWAazbHHFMsr+UwqiRJWgcDXLPZaiuYPt3pRCRJ0joZ4JpRrQaPPFK8JEmS1mCAa0bHHlu82wsnSZJ6YIBrRttuC/vt531wkiSpRwa4ZtXVBfffD088UXUlkiSpyRjgmlX3MOoVV1RbhyRJajoGuGa1ww6w554Oo0qSpLUY4JpZVxf87GfF+qiSJEklA1wzq9WKd4dRJUlSHQNcM9ttN9h1V6cTkSRJqzHANbtaDW65BV58sepKJElSkzDANbuuLnjnHbjyyqorkSRJTcIA1+z22gumTHEYVZIk/YYBrtlFFMOo118Pr7xSdTWSJKkJGOBaQVcXLF8O11xTdSWSJKkJGOBawX77wcSJTuorSZIAA1xr6Ogolta65hp4882qq5EkSRUzwLWKWg3eeAOuu67qSiRJUsUMcK1i+nQYN86nUSVJkgGuZYwYAcccU8wHt3x51dVIkqQKGeBaSa0GS5fCzTdXXYkkSaqQAa6VHHIIjBnjMKokSUOcAa6VbLIJHHkkzJ5dLK8lSZKGJANcq+nqgkWL4I47qq5EkiRVxADXao44ouiJc1JfSZKGLANcqxkzBg47rLgPLrPqaiRJUgUMcK2oVoOFC+Gee6quRJIkVcAA14qOPhqGD/dpVEmShigDXCsaOxZmzCjug3MYVZKkIccA16pqNZg/Hx56qOpKJEnSIDPAtapZsyDCYVRJkoaghga4iNgyIi6LiP+OiEciYr+IGBcRN0TEY+X72PLciIhzI2J+RDwYEXvXfc9J5fmPRcRJde0fiIh55WfOjYho5PU0lW22gf33dzoRSZKGoEb3wH0LuDYzdwXeDzwCfBG4MTN3Am4s9wGOAHYqX6cA3wGIiHHAV4APAvsCX+kOfeU5n6773OENvp7m0tUF8+bBY49VXYkkSRpEDQtwEbEFcABwPkBmLs/Ml4GZwAXlaRcAs8rtmcCFWbgT2DIifgs4DLghM5dk5kvADcDh5bHNM/POzEzgwrrvGhqOPbZ4dxhVkqQhpZE9cNsDi4H/jIj7I+K7EbEZsE1mPlee8zywTbk9CXi67vMLy7b1tS/soX3oePe7YZ99DHCSJA0xjQxww4G9ge9k5l7A66waLgWg7Dlr+DwYEXFKRMyNiLmLFy9u9I8bXLUa3H03PP107+dKkqS20MgAtxBYmJl3lfuXUQS6F8rhT8r3ReXxZ4DJdZ/frmxbX/t2PbSvJTPPy8zOzOycMGHCRl1U06nVivcrrqi2DkmSNGgaFuAy83ng6YjYpWw6CPglcCXQ/STpScCccvtK4JPl06jTgKXlUOt1wKERMbZ8eOFQ4Lry2CsRMa18+vSTdd81dOy8M+y+u8OokiQNIcMb/P2fAS6KiJHA48DvU4TGSyPiZGAB8L/Kc68BPgrMB94ozyUzl0TEV4HuhT//JjOXlNt/DHwf2BT4cfkaemo1+NrXYNEi2HrrqquRJEkNFjnElmLq7OzMuXPnVl3GwHrwQXj/++G88+DTn666GkmSNEAi4t7M7Fyz3ZUY2sEee8B73uOkvpIkDREGuHYQUUzqe+ON8PLLVVcjSZIazADXLmo1WLECrrqq6kokSVKDGeDaxT77wKRJDqNKkjQEGODaRUdH0Qt37bXw+utVVyNJkhrIANdOajV46y348dCcTUWSpKHCANdOPvIRmDDBSX0lSWpzBrh2MmwYzJxZPMiwbFnV1UiSpAYxwLWbri549VX4yU+qrkSSJDWIAa7dzJgBm2/uMKokSW3MANduRo6Eo4+GOXOKeeEkSVLbMcC1o64uePFFuO22qiuRJEkNYIBrR4cdBqNHO6mvJEltygDXjkaPhiOOgCuugJUrq65GkiQNMANcu6rV4Lnn4M47q65EkiQNMANcuzrqqOKBBp9GlSSp7Rjg2tXmm8PBBxcBLrPqaiRJ0gAywLWzWg2eeAIeeKDqSiRJ0gAywLWzmTOho8NhVEmS2sx6A1xE7BMRE+v2PxkRcyLi3IgY1/jytFG22gqmT3c6EUmS2kxvPXD/DiwHiIgDgK8DFwJLgfMaW5oGRFcXPPJI8ZIkSW2htwA3LDOXlNsfA87LzB9m5l8COza2NA2IWbOKd4dRJUlqG70GuIgYXm4fBNxUd2x4D+er2UyaBPvtZ4CTJKmN9BbgLgZujYg5wJvA7QARsSPFMKpaQa0G990HTz5ZdSWSJGkArDfAZeb/C3wB+D6wf+ZvJhTrAD7T2NI0YGq14t1eOEmS2kJvT6GOBu7NzCsy8/WI2CUizgR2z8z7BqdEbbQddoA99zTASZLUJnobQr0WmAq/GTb9ObADcFpE/F1jS9OAqtXgZz8r1keVJEktrbcANzYzHyu3TwIuzszPAEcARzW0Mg2srq5iSa3Zs6uuRJIkbaTeAlz9IpozgBsAMnM5sLJRRakB3vte2GUXJ/WVJKkN9BbgHoyIfyjve9sRuB4gIrZseGUaWBFFL9wtt8CLL1ZdjSRJ2gi9BbhPA7+muA/u0Mx8o2zfDfiHBtalRqjV4J134Ec/qroSSZK0EXoLcGOAH2XmGZn5i7r2pRQPOKiV7L03TJniMKokSS2utwD3z8D4HtrHAd8a+HLUUBFFL9z118Orr1ZdjSRJ2kC9BbgdM/O2NRsz83bgtxtTkhqqVoPly+Hqq6uuRJIkbaDeAty71nNsxEAWokHyoQ/BxIlO6itJUgvrLcDNj4iPrtkYEUcAjzemJDVURwfMmgXXXANvvll1NZIkaQMM7+X454CrI+J/AfeWbZ3AfjiRb+vq6oJ/+7fiXriZM6uuRpIk9VNvPXBHAr8H3AFMKV+3Ar+dmY82uDY1yvTpMHasw6iSJLWo3nrgtgPOAd4LPEgR5BYBo4G3GluaGmbECDjmGJgzp3igYeTIqiuSJEn9sN4euMw8KzM/BGwDfAlYAvw+8FBE/HIQ6lOjdHXByy8XKzNIkqSW0tsQardNgc2BLcrXs8BdjSpKg+CQQ2DMGCf1lSSpBa03wEXEeRFxB/ADigcXfgYcn5mdmfn7g1GgGmSTTeDII2H27GJ5LUmS1DJ664F7NzAKeB54BlgIvNzoojRIajVYtAjuuKPqSiRJUj/0dg/c4cA+rFq4/gvAPRFxfUT8daOLU4N99KMwapRPo0qS1GJ6vQcuCw8B1wA/pngS9T3AGQ2uTY02ZgwcdlgR4DKrrkaSJPVRb/fAfTYiLomIpyjmfzsK+G+gRrGgvVpdrQZPPw1z51ZdiSRJ6qPe5oGbCvx/wJmZ+Vzjy9GgO/poGD686IXbZ5+qq5EkSX3Q2z1wn8/MH25MeIuIYRFxf0RcVe5vHxF3RcT8iPhBRIws20eV+/PL41PrvuNLZfuvIuKwuvbDy7b5EfHFDa1xSBs3Dg48sJhOxGFUSZJaQl/ngdsYZwCP1O2fDXwzM3cEXgJOLttPBl4q279ZnkdE7AacALwPOBz41zIUDgP+BTgC2A04sTxX/dXVBY89Bg8/XHUlkiSpDxoa4CJiO4r1VL9b7gcwA7isPOUCYFa5PbPcpzx+UHn+TOCSzFyWmU8A84F9y9f8zHw8M5cDl5Tnqr9mzoQIJ/WVJKlFNLoH7hzgfwMry/3xwMuZuaLcXwhMKrcnAU8DlMeXluf/pn2Nz6yrXf01cSLsv7/TiUiS1CIaFuAi4ihgUWbe26if0Y9aTomIuRExd/HixVWX05xqNXjwQZg/v+pKJElSLxrZA/dh4JiIeJJieHMG8C1gy4jofvp1O4oVHijfJwOUx7cAXqxvX+Mz62pfS2aeVy7/1TlhwoSNv7J2dOyxxbu9cJIkNb2GBbjM/FJmbpeZUykeQrgpMz8O3AwcV552EjCn3L6y3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSPLn3Flo66n7U2ZAp2dBjhJklrAYDyFuqY/BT4fEfMp7nE7v2w/Hxhftn8e+CJAZj4MXAr8ErgWOC0z3ynvkzsduI7iKddLy3O1oWo1uOsuWLiw6kokSdJ6RA6xub86OztzrqsO9OzRR2GXXeDcc+Ezn6m6GkmShryIuDczO9dsr6IHTs1q553hfe9zOhFJkpqcAU6r6+qC22+HRYuqrkSSJK2DAU6rq9Vg5Uq40udBJElqVgY4re63fxt22MFhVEmSmpgBTquLKIZRb7wRXn656mokSVIPDHBaW60Gb78NV11VdSWSJKkHBjitbd99YdIkJ/WVJKlJGeC0to6OYmmta6+F11+vuhpJkrQGA5x61tUFb75ZhDhJktRUDHDq2f77w1ZbOYwqSVITMsCpZ8OHw8yZxYMMy5ZVXY0kSapjgNO6dXXBK68UU4pIkqSmYYDTus2YAZtv7qS+kiQ1GQOc1m3UKDj6aJgzB1asqLoaSZJUMsBp/Wo1ePFFuO22qiuRJEklA5zW7/DDYdNNfRpVkqQmYoDT+o0eDUccAVdcAStXVl2NJEnCAKe+qNXg2WfhrruqrkSSJGGAU18cdRSMGOEwqiRJTcIAp95tsQUcfHAxnUhm1dVIkjTkGeDUN11d8MQT8ItfVF2JJElDngFOfXPMMdDR4aS+kiQ1AQOc+mbCBJg+3fvgJElqAsOrLkAt5NRTi4cZ5s+HMWNg662LXjlJkjSo/Ourvlm5EnbaCc48s3ifNg3mzXNuOEmSKmCAU98sWgTHHgsLFhT7CxbAzJlFuyRJGlQGOPXNsmWrwlu3BQuKdkmSNKgMcOqbUaNgypTV26ZMcV44SZIqYIBT32y9NcyZsyrETZkC3/senHyyT6ZKkjTIDHDqm44O2GMPuPNOePLJ4n3XXeHVV4tJfs86C95+u+oqJUkaEgxw6ruODpg4seh9mzgRtt0Wbr8dTjsN/vEfYcaMYtF7SZLUUAY4bZxRo+Db34aLLoL77oO99oKbb666KkmS2poBTgPjd38X7rkHxo0rFr7/u79zjjhJkhrEAKeBs9tucPfdcPzx8Gd/VswT99JLVVclSVLbMcBpYL3rXXDxxfDP/wzXXQcf+EAxtCpJkgaMAU4DLwJOPx1uuw1WrIAPfQjOO8854yRJGiAGODXOtGlF79v06fCHfwif+hS88UbVVUmS1PIMcGqsrbaCa66Br3wF/s//KULdo49WXZUkSS3NAKfGGzYM/uqv4Mc/LuaJ6+yEH/6w6qokSWpZBjgNnsMOK4ZUd9sNjjsOPv95V2+QJGkDGOA0uN797uLhhtNPh29+Ew48EJ55puqqJElqKQY4Db6RI4tpRi6+GB54APbeG266qeqqJElqGQY4VeeEE4rVG8aPh0MOgb/9W1dvkCSpDwxwqtZ731us3vCxj8Gf/zkccwwsWVJ1VZIkNTUDnKo3ZgxcdBF8+9tw/fXF6g1z51ZdlSRJTcsAp+YQAaedBrffDu+8Ax/+MPz7v7t6gyRJPTDAqbl88INw//0wYwaceiqcdBK8/nrVVUmS1FQaFuAiYnJE3BwRv4yIhyPijLJ9XETcEBGPle9jy/aIiHMjYn5EPBgRe9d910nl+Y9FxEl17R+IiHnlZ86NiGjU9WgQjR8PV18Nf/3X8F//Vaze8KtfVV2VJElNo5E9cCuAL2TmbsA04LSI2A34InBjZu4E3FjuAxwB7FS+TgG+A0XgA74CfBDYF/hKd+grz/l03ecOb+D1aDB1dMCXvwzXXgvPPQf77AOXXVZ1VZIkNYWGBbjMfC4z7yu3XwUeASYBM4ELytMuAGaV2zOBC7NwJ7BlRPwWcBhwQ2YuycyXgBuAw8tjm2fmnZmZwIV136V2ceihxZDq+94Hxx8PZ57p6g2SpCFvUO6Bi4ipwF7AXcA2mflceeh5YJtyexLwdN3HFpZt62tf2EN7Tz//lIiYGxFzFy9evFHXogpMngy33gqf/Syccw78zu/AwoW9fkySpHbV8AAXEWOAHwKfy8xX6o+VPWcNf8wwM8/LzM7M7JwwYUKjf5waYeRI+Na34JJL4MEHi9UbfvKTqquSJKkSDQ1wETGCIrxdlJmXl80vlMOflO+LyvZngMl1H9+ubFtf+3Y9tKudfexjxeoNEyYUw6tf+5qrN0iShpxGPoUawPnAI5n5T3WHrgS6nyQ9CZhT1/7J8mnUacDScqj1OuDQiBhbPrxwKHBdeeyViJhW/qxP1n2X2tmuu8Jdd8GJJ8Jf/iUcfbSrN0iShpRG9sB9GPgEMCMiHihfHwW+DhwSEY8BB5f7ANcAjwPzgf8A/hggM5cAXwXuKV9/U7ZRnvPd8jP/A/y4gdejZjJmTDHFyL/+azGUuvfert4gSRoyIofYTPednZ051z/07eWee+C44+D554uHHE49tVjZQZKkFhcR92Zm55rtrsSg1rfPPnDffXDQQfDHfwyf+ISrN0iS2poBTu1h/Hi46ir46lfh//7fYkkuV2+QJLUpA5zaR0cH/MVfwPXXwwsvQGcnXHpp1VVJkjTgDHBqPwcfXKzesMcexbQjZ5wBy5dXXZUkSQPGAKf2tN12cMstRXg791xXb5AktRUDnNrXyJHFU6mXXgrz5sFee8ENN1RdlSRJG80Ap/Z3/PHFHHHbbAOHHVY86ODqDZKkFmaA09Cwyy7F6g0f/zh8+ctw5JHw4otVVyVJ0gYxwGno2GwzuPBC+M534KabitUb7r676qokSeo3A5yGlohipYY77ii299+/WI5riK1IIklqbQY4DU2dncXqDYccAqedBr/3e/Daa1VXJUlSnxjgNHSNGwc/+hF87WtwySXF6g2PP16sqbpgQfHuww6SpCZkgNPQ1tEBf/7nxeoNkyfDk0/CtGkwdWrxPm+eIU6S1HSGV12A1BQOOgh22gkOOKDofYPifeZMuPHGItANG1ZpiZIkdTPASd0yV4W3bgsWFCs4vP/9sO++sN9+xWvaNNhqq2rqlCQNeQY4qduoUTBlyuohbsoUGD8ePvUp+PnP4eyz4Z13imM77bQq0O23H+y+u710kqRBETnEpk/o7OzMuXPnVl2GmtHKlcU9bzNnFiFuyhSYMwf22KO4Vw7g9deLVR1+/vNVr8WLi2ObbWYvnSRpQEXEvZnZuVa7AU6qs3IlLFoEy5YVPXJbb70qvPUkE554YvVA94tf2EsnSRoQBriSAU4NZy+dJGmArCvAeQ+cNNA22wymTy9e0HMvnffSSZI2gj1wUhXqe+nuvLN4X7SoOGYvnSSpZA+c1Ew2ppdu2rSil264//eVpKHKHjipWdlLJ0lDnj1wUqtpRC9df5+ylSQ1JXvgpFbWn166D30Inn56/fPcSZKaitOIlAxwamvrm5fu8svhzDPXXmnijjtg0qTqapYkrZNDqNJQEAE77FC8Pv7xoq27l27s2J7Xep0/v1jrdfvtV7122GHV9pQpMHLk4F+LJGmdDHBSu+u+l+7553te63XMGDjuOHj8cbj/fpg9G95+e9U5EUUP3ZrBrvu17bYOwUrSIDPASUPF1lsX97z1dA/cv/3bqvPeeQeefbYYin3iiSLYdW//5CfFsfpbL0aOhKlT1w523a9x44oQKEkaMN4DJw0lA/EU6rJlRQCsD3b1ryVLVj9/8817DnY77FAEv9GjB+zyJKndeA+cpCKsTZy4cd8xahTsvHPx6snSpT0Hu1/9Cq67Dt58c/Xzt9lm3fffTZ7shMWS1AP/ZZQ0sLbYAvbcs3itKRNeeGH1YNfdk/fzn8Oll66a1w6KNWEnT+453G2/fRH+6odnnedO0hBhgJM0eCKKHsCJE4u56db09tuwcOHa99498QRcfXUR/uptuumq++8OPBD23x9OOGHVPX6zZxf3+A0bNiiXJ0mDxQAnqXmMGLGqd23GjLWPv/EGPPlkz/ff7bzzqvAGxfusWXDOOXDqqcXDFP15bb65vXeSmpYBTlLrGD0adtuteK1pwYKe57mbOhWOOaZ4uGLJEnjqqWJy4yVL4LXX1v2zOjpgyy37H/zGjvW+PUkN578yktrDqFE9z3M3cSKcd17Pn1m+HF56aVW4W9/r17+GRx8ttl9+ef21bL75hgW/TTbp/Tq9z08SBlFgrMMAAApnSURBVDhJ7WJd89xtvfW6PzNyZPEgxDbb9O9nvfNOEeLWF/jqg+HTT6/arn9IY02jR68e6NYMeTvvXDzUcfzxq67x8suLkDpsWBHoNtmkeG/VufcMqFKfGOAktYeOjuKBhTvvbPwf/2HDYPz44tUfmfDqq33r8VuyZFWP34svFr2Fl1++KrxB8V6rwTe/WbzX6w5z9a+e2vpzvD/fsSHDyCtXwrx5PU82bYiTVuNEvpLU7DKL+fOeew523HHt4w89BLfdBm+9tfZr2bKe23s7vrGGDet/APyDP4ATT1x7GHz2bLjnnqLHdOTI4ju6t9fcX9exESOaIwTaw6h+ciJfSWpVEcXw6mab9Xyf3/jx8Ed/NHA/L7Po8duYANiX40uXrn78U5/q+UGUpUvhlFM2/rpGjOh/8Ovvues7tuWWxZPUtdqqHsYrrijmNxw2rOi17A6arToEDu0fUpvk+gxwktQqNuQ+vw0RUfxhGjVqYL+3N88/33NA3WGHYn7AZcuKYNn9qt9f37H+nLtsWdHbuXTp+j+3bNnqawL3xeWXw5lnrj4EfuyxPQ+BjxixKtDVb6/53te2RhzrqW2zzYr7P+tD6uzZxe+wo6M4b/jwIrC2YkhtomF+h1AlqZU0yX/9N0QT/XHskxUr+hcSp07teQqcBx8slpl7++3iO99+e/XtNd/7e6y38wcyB6wZUqH4PfYUUrsDXXfv48ZsD8R39GV7zz3hqKPWvr4779z4ZQrXwSFUSWoHA7GebbMazAdRBkL3H/fRo/t2/rp6GCdMgLPOakyNfbFy5cAFxV126XkYfMcd4e//vngKe8WK4jVQ28uXb9hn69/76pZber6+Zcs2+tfQXwY4SVLzaOeAOlhD4P3V0TFwQ+brC6l/8icb//2NkFmE2L4Ev2HDer6+wb7dAAOcJEmDo9V6GDdEs4bU9Ykogln3XIrrs3Jl01yfAU6SpMHSzj2M0P4htYmur+UDXEQcDnwLGAZ8NzO/XnFJkiQNXUMhpDbB9bV0JI6IYcC/AEcAuwEnRkQPj/hIkiS1j5YOcMC+wPzMfDwzlwOXADMrrkmSJKmhWj3ATQKerttfWLZJkiS1rVYPcH0SEadExNyImLt48eKqy5EkSdoorR7gngEm1+1vV7atJjPPy8zOzOycMGHCoBUnSZLUCK0e4O4BdoqI7SNiJHACcGXFNUmSJDVUS08jkpkrIuJ04DqKaUS+l5kPV1yWJElSQ7V0gAPIzGuAa6quQ5IkabBEZlZdw6CKiMXAgl5P1PpsBfy66iK0Ufwdtj5/h63N31/rG6zf4ZTMXOsG/iEX4LTxImJuZnZWXYc2nL/D1ufvsLX5+2t9Vf8OW/0hBkmSpCHHACdJktRiDHDaEOdVXYA2mr/D1ufvsLX5+2t9lf4OvQdOkiSpxdgDJ0mS1GIMcOqziJgcETdHxC8j4uGIOKPqmtR/ETEsIu6PiKuqrkX9FxFbRsRlEfHfEfFIROxXdU3qn4g4s/w39KGIuDgiNqm6Jq1fRHwvIhZFxEN1beMi4oaIeKx8HzuYNRng1B8rgC9k5m7ANOC0iNit4prUf2cAj1RdhDbYt4BrM3NX4P34u2wpETEJ+CzQmZm7U6widEK1VakPvg8cvkbbF4EbM3Mn4MZyf9AY4NRnmflcZt5Xbr9K8YdjUrVVqT8iYjvgSOC7Vdei/ouILYADgPMBMnN5Zr5cbVXaAMOBTSNiODAaeLbietSLzLwNWLJG80zggnL7AmDWYNZkgNMGiYipwF7AXdVWon46B/jfwMqqC9EG2R5YDPxnOQz+3YjYrOqi1HeZ+QzwD8BTwHPA0sy8vtqqtIG2ycznyu3ngW0G84cb4NRvETEG+CHwucx8pep61DcRcRSwKDPvrboWbbDhwN7AdzJzL+B1BnnYRhunvE9qJkUY3xbYLCJ+r9qqtLGymNJjUKf1MMCpXyJiBEV4uygzL6+6HvXLh4FjIuJJ4BJgRkT8V7UlqZ8WAgszs7vn+zKKQKfWcTDwRGYuzsy3gcuBD1VckzbMCxHxWwDl+6LB/OEGOPVZRATFvTePZOY/VV2P+iczv5SZ22XmVIqbpm/KTP/Lv4Vk5vPA0xGxS9l0EPDLCktS/z0FTIuI0eW/qQfhgyit6krgpHL7JGDOYP5wA5z648PAJyh6bh4oXx+tuihpiPkMcFFEPAjsCfxtxfWoH8re08uA+4B5FH+HXZWhyUXExcDPgV0iYmFEnAx8HTgkIh6j6Fn9+qDW5EoMkiRJrcUeOEmSpBZjgJMkSWoxBjhJkqQWY4CTJElqMQY4SZKkFmOAk9Q0IiIj4h/r9s+KiL8aoO/+fkQcNxDf1cvPOT4iHomImxtZV0RMjYjf7X+FktqBAU5SM1kG1CJiq6oLqVcuOt5XJwOfzswDG1VPaSrQrwDXz+uQ1MQMcJKayQqKSU3PXPPAmj1VEfFa+f47EXFrRMyJiMcj4usR8fGIuDsi5kXEe+q+5uCImBsRj5ZrwxIRwyLiGxFxT0Q8GBF/WPe9t0fElfSw2kFEnFh+/0MRcXbZ9mVgf+D8iPhGD5/50/Izv4iItSb9jIgnu8NrRHRGxC3l9vS6ybPvj4h3UUwa+pGy7cy+XkdEbBYRV5c1PBQRH+vLL0ZSc/G/xiQ1m38BHoyIv+/HZ94PvBdYAjwOfDcz942IMyhWLvhced5UYF/gPcDNEbEj8ElgaWbuExGjgDsi4vry/L2B3TPzifofFhHbAmcDHwBeAq6PiFmZ+TcRMQM4KzPnrvGZIygWMf9gZr4REeP6cX1nAadl5h0RMQZ4i2IR+7MyszuIntKX64iILuDZzDyy/NwW/ahDUpOwB05SU8nMV4ALgc/242P3ZOZzmbkM+B+gO7jMowht3S7NzJWZ+RhF0NsVOBT4ZEQ8ANwFjAd2Ks+/e83wVtoHuKVckHwFcBFwQC81Hgz8Z2a+UV7nkn5c3x3AP0XEZ4Ety5+5pr5exzyK5X/OjoiPZObSftQhqUkY4CQ1o3Mo7iXbrK5tBeW/WRHRAYysO7asbntl3f5KVh9pWHPtwAQC+Exm7lm+ts/M7gD4+kZdRf/95hqBTX5TZObXgT8ANqXoWdu1h8/26Toy81GKHrl5wNfKYV9JLcYAJ6nplL1Tl1KEuG5PUgxZAhwDjNiArz4+IjrK++J2AH4FXAf8UUSMAIiInSNis/V9CXA3MD0itoqIYcCJwK29fOYG4PcjYnT5c3oaQn2SVdfY1d0YEe/JzHmZeTZwD0XP4avAu+o+26frKId/38jM/wK+QRHmJLUY74GT1Kz+ETi9bv8/gDkR8QvgWjasd+wpivC1OXBqZr4VEd+lGGa9LyICWAzMWt+XZOZzEfFF4GaKnq+rM3NOL5+5NiL2BOZGxHLgGuDP1jjtrykegPgqcEtd++ci4kCKHsWHgR+X2++U/3t8H/hWH69jD+AbEbESeBv4o/XVLak5ReaaIwqSJElqZg6hSpIktRgDnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASZIktRgDnCRJUov5/wEEXUm8vjXJ1AAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(10,5))\n", + "sns.lineplot(range(1, 11), wcss,marker='o',color='red')\n", + "plt.title('Elbow')\n", + "plt.xlabel('Number of clusters')\n", + "plt.ylabel('WCSS')\n", + "plt.show()" + ] + }, + { + "source": [ + "Looks like 3 is a good number after all. Fit the model again and create a scatterplot of your clusters. They do group in bunches, but they are pretty close together." + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd3gUVduH7zOzNZWE0BKqVAHpAgpSFBTBil2wI2Lvfnasr72j2MWCBVGQpqgIAtKl914SSoD0bJ853x+zCdnsbFhCAop7X5eXZHZ2zskmOc85T/k9QkpJjBgxYsT476Ic7wnEiBEjRozjS8wQxIgRI8Z/nJghiBEjRoz/ODFDECNGjBj/cWKGIEaMGDH+48QMQYwYMWL8x6k2QyCE+FQIkS2EWB3hdSGEeFsIsVkIsVII0am65hIjRowYMSJTnSeCMcCACl4/F2ge/G84MLoa5xIjRowYMSJQbYZASjkbyKnglguBL6TBAqCGEKJedc0nRowYMWKYYzmOY2cAu8p8nRm8tqeiN6WlpcnGjRtX47RixIgR48Tj77//PiClrGX22vE0BFEjhBiO4T6iYcOGLFmy5DjPKEaMGDH+XQghdkR67XhmDWUBDcp8XT94LQwp5YdSyi5Syi61apkatBgxYsSIUUmOpyGYBFwbzB7qDuRLKSt0C8WIESNGjKqn2lxDQohvgD5AmhAiExgJWAGklO8D04CBwGbABdxQXXOJESNGjBiRqTZDIKW86jCvS+D26ho/RowYMWJER6yyOEaMGDH+48QMQYwYMWL8x4kZghgxYsT4jxMzBDFixIjxH+dfUVAWI0aM/xYysAu8vxtf2PsjLPWP74ROcGKGIEaMGP8o9OLPofBVQBoXCl9HJj6IEn/tcZ3XiUzMNRQjRox/DDKwM2gEvIAv+J8XCl8xTgkxqoWYIYgRI8Y/B+9vgG7ygg7eX4/1bP4zxFxDMWIcJQd25zD5velsWbGdFqc24/wRZ5NSO/l4T+tfijzeE/hPEjMEMU54pJRIKVGUqj8Ab125g3t7PYHf68fvDbBsxiomvDWVd+b/j/ot0qt8vBMee38ofMvkBcV4LUa1EHMNHWN25uex/sB+NN3s+BujKinOL+bl60cx0Hk1A2xXcn/fkezaYCpwW2neuvVDXAVu/N4AAD6Pn+I8F+/dM6ZKx/mvICyNIOEewI6xT7UY/064B2FpeETPklJH+jciAxHVl2MEEYbkz7+HLl26yH9jP4LMgnxumfIT2/JyUYXAplp49ewB9G180vGe2gmJlJI7uj3CtpU78PuMRVoIQXxyHGM2vk1yWtJRj6FpGufar0Lq4X9DVruFae5vjnqM/yoysB08wZiA42yEpfGRvd87D5n/AEgXSB3U+oiUdxGWJlU+138LQoi/pZRdzF6LnQiOAbqUXP3jODYcPIAnEKDY7yfX4+b2aZPZlpd7vKfHrvx83l44n2dnz2Tuzh382zYHZqxbuImd6zJLjQAYxsHn9fPLp39UyRiKomCxmntX7U57lYxRFUj57zt9CktjRMJw478jNQLaHmTuraAfMAwBHtC2IHOGIqW/Wub7bydmCI4Bi7IyyXW70cstsAFd5+tVK47TrAymbtzAOWPH8O7iBXy2fCkjpv7ELVN+qhbXVXF+MZuXb6Mwt6jKn12ezA27Ta/73D62rqwaV4EQgn5De2G1W0Ou2xxWBtx0ZpWMcTTorono2b2Q+1qhZ/dEd/1wvKd0TJCu8UCg/FXDKHjnHo8p/eOJBYuPAftdxabXA7pOVmHBMZ7NIVx+Pw/9/gueQCDk2rzMnUzfspmBzVtUyTi6rvPhg18yefR0LDYLAV+As4b24u73bka1qFUyRgl5+/NZ+vsq8g8UoJu4bOxxNpp3qjp33K1vXMfuLXtZv2gTqkVF82u069OGG569ssrGqAy66ycoeBLwBC9kQ8Ez6IASd8nxnFr1o+8FTHb+UjdOCTHCiBmCY0CnuukETHbYTouV3g0bH/sJBVmUlYlqkknj8vv5acPaKjMEP7w+hSkf/IbP48fnMf5A/xg7h6TUBIa9OLRKxgCY+M40PnzoKyw2FYEg4AugWo3FGUBRBPY4O+fc0LfKxnQmOHn1j6fYtnonmRt206hNAxq2yjC9t8TlJoSosvEjUvwmpUagFDcUvQUnuCEQttOQ7qkY/a7KooOt0/GY0j+emGvoGJCRlMRlrdvitBxyIdhVlXqJCVzY6uTjNi+LokRM27apVbdHGP/6ZLwub8g1r9vHpPemV1k8YsuK7Xz88Fj8Xj/uQg+uQje6piMAZ6IDq91Ct0GdeXfRiySmJFTJmGVp0rYhZ1zS3dQI7N2ezaPnPs8A25UMdF7NC0PfoiCnsMrnEIIWoeurvveEiAFViONssDTEyDwqwQmOAQhL0+M1q380sRPBMeLpPmfRqV4GX6xchsvnY2DzltzQoRMOi/Xwb64mumbUR1XCd6dOi5XLW7etsnEixQQ8xR50Ta8S99D0MTPxe8PdATaHjQc+u50zBnc76jEqg6vQzZ3dHqHgYCG6LtE1ndnjF7B15Q4+WP5qtdQ2AKDWB21n+HUl/dicSMohpRf0IlBSEKJ6959C2CD1W6TrS/BMBuyIuCHgvKhax/03EzMExwghBBe1OpmLjuMJoDw2VeWD8y7ipkk/AqAFC6+uansKPRs2qrJxWnRuypp5G8KuN2iVUWUxAneRxzQmIKXEU1zeRXLsmPHVbDwub8jcAr4A+7bvZ8WsNXQ885TqGTjhfsj/P0LdQw5IuK9Kh5FSgn8J0vMHiHiE84KQfH8pfciC58A9AZCgJCMTn0BxDqjSeZRHKHGIhFsg4ZZqHedEoVpNsxBigBBigxBisxDiYZPXGwkhZgghVgohZgkhYlqzx5iuGfVZcNMInjuzP4/27M3PQ67j8V59q3TXeOsb1+OIs6METx9CCOxxNu5456YqG+OMwd1xxIenbGoBjc7921XZOEfKttU78RR7w65rms6u9eaZTVWB4jwXkl8CtSGgGv9PfgEl7oIqG0NKicx/CJk7DFyfQPF7yAOD0F0TD92T/zi4J1IqIqfvh/yHkL5FVTaPGEdPtZ0IhBAq8C7QH8gEFgshJkkp15a57VXgCynl50KIM4EXgGuqa04nGlJKxq5awUdLl5DncXNqen0e7tmLZqk1j+g58TYbF7asvpNKy1Ob8c7CFxj7/A9sXrqVRm0aMOSxS6o0e6fLOe3pfHZ7/v51BZ5iL0KAzWnjuqevILVuSpWNEwktoFGYW0RiSkLIKadp+8Y44u1hxkBVFRq1rt59j+I8F5znVt8AvjmGSJx0By8EjP8KnkA6zgQkeKZhKIiWxYMsGo1I7Vp9c4txRFSna6grsFlKuRVACPEtcCFQ1hC0BkrOqjOBifzLkVJG3E3vys/npw3rKPL5OLPJSZyannFUO+8X587mq1XLcQfTP2du38rCrEymXX0tDZL/WaJnjds04LGv76m25yuKwlWPXMzmpdvwuo0UwabtG9NvaK9KPa+in+OcHxYw7tVJ5O8voMs57YlLdDJ59K/4fQFsDitDn7yMS+4ZhBCCM6/uyedPjcPn8aNrRuaY1WYho3k92vVuXblv9h+CdE8NFmyVQ1jA9xeozUBYQZY3BJjHL2IcN6rTEGQAZQXEM4HyEbsVwGDgLeBiIFEIUVNKebDsTUKI4cBwgIYNj0xv5FixKCuTZ/78g3UH9pNkt3NTx87c2qVbaXrmTxvW8cjvv6JJHb+u8+XK5XTLqE+yw8HO/Dy612/A9R06USsuPqrx8j0evli5DK+mlV6TgCfg5/2/F/H8mcdWoCtvfz5/TViE3xug23mdqNekzlE/c/nM1Ux4exp5+wvocVFXzrulP3GJzpAxJ749jaUzVpNat4ZxGiiTnbRh8Rbu7/sUn6x5I2qDu2XFdt654xPWzt+AI87OucPO4qYXhmALFo19+ez3fPfyT3iDO/wpH/wWIjHh9/r5/IlviUt0MHBYP5wJTkYtfIF37/qUxb8sQ7Wo9LmyByNevfa4BG2rFGEBBOapZxawNDBy98NQwNqheucW44ioNq0hIcSlwAAp5bDg19cA3aSUd5S5Jx0YBTQBZgOXAG2llHmRnlsVWkP5Hg/j1qxi2b49tKyZxlVt21E7vvIphWuy93H5+G9Ld+YATouFy9ucwsjeZ1Lg9dL9k/dDCrdKKPkzsikq8TYrk6+6hvTEw+vgLN+7h+smjqfQF77balUzjWlDrotq7gFd5+OlS/hq1XKKfX56NWrMQz3OICOKOZQwe/x8XrpuFIoQ6MF6iasfu4Qhjx1Zvrqr0M3fv61ECNi1Pouxz/9YmnZqc9qo3aAm7y15CWeCk4N7chnR8UGK812m2UIlOBMdPDvpYdr3bnPY8fft2M/Np9yHu+hQgNXmtNLl7A48PeEhivOLubzecHwekx1uOWo1SOPrHaOj+K7/vUjfEmTOTYA79AURh6g9HyGc6EXvQ/HoMu4jAcKJqPlDLJXzGFOR1lB1ngiygAZlvq4fvFaKlHI3xokAIUQCcElFRqBKJlVYwKCvv6DI60NH8uvmTXy4ZDHjL7+Kk2vVrtQz3160IGyRdwcCfLt6Jfd278G8XTuNnH0TSsywT9fQvDpvLPiLV/of3q+bnpiIr8xpoAQBnJSSGvXcH/j1Z6Zv2VR6spiycT1zd+7gt2uuJ9UZd9j3F+QU8tJ1o/C5QxfHb/73I90GdqJZx+hEvmaPn8/L149CtahIKXEXhmb6+Nw+sncdZOqHv3Ppfecz9rnxFOYUoQXCP4OySF2yd1t2VIZgwttTS1VED43rZ8n05ezZto+DWTlY7ZaoDEHu3iPTkFo+czVf/+9H9m7LpvXpLRn6xKXUb17viJ5xrBG2Lsj466H4U4zfPAWQiBqjEMI4uYn4W0BNRxaNNqp6bZ0g4U7wr0Z3jTdE4ByDEEp0J+EY1UN1Zg0tBpoLIZoIIWzAlcCksjcIIdLEoaTiR4BPq3E+APzfb9Mp8HrRg0uwDri1ALdPm1LpZ248eMD0cGxVVXYXFmAxydU3Q5OSOTui08GpHZ9A38YnYVdD0y8dFgsjuhwKwi3bs5sLv/2KZu+8TocPRvHmgr9Kq5x35efzy+aNYe6lAq+Hb1atjGoeC6csRVXDf438Xj8zvp4T1TMOZB3kpetG4XX5cBW4w4xACT63j/mTjdPg4p+XH9YIgOHrj9YYbVq6jYA//NRmtVvJ3LCb1HopISJ2FdHgZPPqYjP++HYuj5//AstmrGLP1n3M/GYut3V5iB3rMqN+xvFCSbwXkTYVkfgQIulJRO25CHtPpLYbGdhmSEFru0E/CLIQApmQOxxZMBJcnyALnkfuP8toUVkBUi9Gun9CFn+O9IenIsc4OqrNEEgpA8AdwHRgHTBOSrlGCPGMEKIkh60PsEEIsRGoAzxfXfMpYUGWed/T7fm5eE1cN9HQKi0Ns6Xer2lkJCbRo0GjqKs5kx2OqMd9/Zxzuahla+yqikVRqJ+UxHsDL6BtbcM/v+ngQYZO+J5V2fvQpaTA6+XDpUt4YubvAKzdn43fRPpCk5KZ27dGNQdN002/NymJaqEG+HPcfFMp5/IIASl1awCQWPPwrjy700a7Xm1o2r5xVPNo3qmJqZqo3+unfst00pvWpWWXplhsFR+k7U4bt7wSXaN1TdN47+7P8LoOnTJ0TcdT5GXM499G9YzjjbA0RMQPRcQNBj0X/cCFyP3nIA9cBPs7Q9EokHmADtqmMqqgAG6QeciCxyM+X/qWI/efgcwfiSx8BXnwMvT8h0/8CuljSLXWEUgpp0kpW0gpm0opnw9ee1JKOSn47/FSyubBe4ZJKcMTrquY8gqgZamsIbiz62k4LKGLg9Ni4aq27Ui023Farbw38AIcqorDYsGqKMZBulyw0GmxMKxj56jHdVisvNDvbFaMuJPFw27lz+uG0bvxod3v6CULQ3b7AJ5AgInr15LjdlHk90VsDGgWezCj28COpdkwZbE5bfS+7PSonuEp9kZlNGxOGxfdYbjNLr3v/LC6AdWqUDMjleS0JNLq1+TKhy/i6YkPRjUHgMF3D8LqKKck6rRx6oCOpcHvpyY8SPverbHarTgTHCSkxHPF/11Iiy5NSUiJp/XpLXh+6qN07t8+qjFz9+WHxCRKkFKy+q91Uc+99H2BzUjvQqRezRIWZmPLADJnCAQ2YNQNuIML/uF+l3TwLUKaZBdJqSHzbgVZhKEd5AM84P4ZvNOr+luocqS2Fz1/JPr+/ugHr0Z6Zh7vKZnyn6ssTrDZKDJZ5FQhiLfZKvXM1rVqM+aiS3jmz5msO7CfZLudG4NZQyXUS0ykZlw8+13FKEJgV1XqJyWTWViAVVHwaRpDTmnPpZWQdrCpKjY1vEJ37YH9pobPpqrsys+nht1hBHhN7qkZRXwAIKVODW598wZG3zsGLaChazo2h43+1/biQOZBJrw9jdant6Rll8iBwVPP7cA3L04I0yMSwpCIUK0qWkDnllevoW2PVgD0vbIH21fv5Ic3pmC1Wwn4AjTr2IRnJv0fSamJUc29PLUb1uLNOc8y6s5PWDPPyBoaOLwfNzx3Vek9SamJvDj9CXL35VGYW0xGs7pHVR0dnxwX8TSUcgT1D1I7gMwdDoHNpSmbMuEOlGNZWeubG1ywKyNhXhJjKId/FUgzV6Eb6RqHcFRvhfLRILV9yAMXBD+TAGg7kHlrkIn3osRff7ynF8J/zhDc2+10np/7Z8jiJ4Ahp7Q3VeKMxAGXi+/WrGTDgQO0q1OXy1q3ZfJV5rVwmq4z9Mfv2e8qDtmBZxYW8N7A87GrFlqmpUUVnD0STk6rxeacg2ELvVfTaJCcTIPkZCxBI1QWu6pyXouWUY9z3vD+dDyzLTO//Qu/x0+Tdo14546PmTF2DgGfhqIqdOp3CiPHP2C6aLbo3JRmnZqwZu76kOsd+rZlxOvXU5hTRItTm+KMP+Q2E0Jw4/NXc+n957N1xQ7SMlKrpEdwfHIcaRmpJNSIIy7R+LfFGj7nlDo1SKlT46jHc8Y7OPPqnsz89q+QgLs93s7Vj1xc+rXU9iILXwPvbBBOiBuCiL8BIYw/YZl3OwTWA4FDC2fxe0hLC4Sj6tRWK0TLjpAuejgsYO9V+r2EEgBTxysgK3eCP1bI4g8PGYFS3FD4BjLuitKA+j+B/5whuL5DJ3I8bj5eagQddQmXnNyax87oE/UzNh48wGXff4tPC+DVNH7ftoX3/17ExCuGUD8pvJBrfuYuiv3+MDeMX9OYtWM7T/WuniYmt3bpyq9bNoWktTosFi5o0arU6NzZtTvvLV5Yeo/DYqFRcg0Gnxy52ElKyboFG1k4bSlxiU76XtmDjGb1GPr4pUgpubH1PRQeLKSs/Vn6+yqmfvg7F9x2Ttjz9mzbx6YlW8Kur5m3gcTUBE5qZ657tG/HfsY+/wMr/1xDrQZpXPXwxXTqV3k5idx9edza5SGKc4vRdUnBwSI+e/xbdqzN5L4PR1T6uYfjrneH4ff6mfPDQiw2FalLhj55GX2u6AGA1POQBy8GPQ/QQOZC0TvIwDpEjdeRgUzwryWsGYt0I12fVbkhkHoe+DeAWi+0j7C1IxHlbEMQGMqgunF6UVIRSc+a32pth7kH24mI+4eLyHnnE94gBxAqBLaAteqEHY+W/2zPYpffT2ZBPnUTEkiyRx+gBbjs+29Yumd3yK+8KgRnNWnK++ddGHb/lI3refj3X3EFTNQxVZWArtM8tSaP9+pDjwZVJ/YGRtbQU3/+wersfSTa7VzXviN3dj0tJJ11zs7tfLliOXleDwObteCKNqfgtJqrokopeeWGd5kzfgEetxeL1YKiKjz02e30vvx0dm/Zy/D294cEP0to2qEx7y99Jez6uFd+4rMnviVQLiPH5rAy7MWhXHzXwLD37Nm2j1s7P4SnyIMWMHah9jg7t799A+feeNYRfUYljHnyW8a9MimsLsHqsPLF5lGkpRtpuWvmbWDCO9PI2ZNL9/O6MGh4P+KTKj7NSWmksVpsFmrVN5cAKcgpJGdPHvVOqh3S6lIv+gCK3iW8v4AdkTYNZAEy55rg7rMcanOUWlONOfhXGgJw/lUgEiDuGkTCbRF24ubfgyx8FVxfgLCB9IO1PSLlPYRiuOP03HvAO5NDtQV2YywZAArA0goSH0GgQWAjqI3BfkaFc5De2cjcOwEN8IGIA2tnRMoHUc/9eKDn3Gi4y8KwIWr9jlDrHtP5HK86gn8Ufk3DHQiQaLMhhCDOaqVFzbQjfk5A11m2d0/YvkeTktk7t5u+p1PddFMjAJS6ZTYcPMDNkyfy5cWX0rleaOphkc+HVVGwW478x9WxXjo/XVlx85czGjbmjCgb5Cz+ZTlzflhQWsFbsni/cuO7nHpuRwJ+LWLFbMBvHhAO+DVTP7muy4jv+eqZ8bgLPSGBaq/Lywf3f0H/a3pH7CUspWTt/I0cyMqhRZeTQiqgV81ZZy5lbbeybeUO0tJTmfrRb4y+93N8bi9SGtXLU97/ldF/v0R8snku/Nr5G3hhyFvkZucjdUmDVhk8Me4+MpqF1gkkpSaaxzd8Swg3Ahi76cA6sPfBfCduA4dx2pSBrUFjEVygZT4Uf4zU9yKS/2c67zA8E8H1FeCFkrwO/zJk/oOIlPeNKdV4DekaB+5vjHscgxDxNyIUkywve4+ohhX2XlDrV6R7MugHEfaeYDut2uWsjxYRfzPS9zehBXc2sHU95kbgcJzwhsCvabz412y+Wb2SgK6TFhfHYz37ALD2QDZNaqQwqHnLiDvg8ihCoEYIsJbP6S9ha14uFqEQOIz/1BMI8Mb8v/hq8OUALN2zm0dm/MrW3FwUAec0bc5zZ/YnyX78GqPPGDvHVE1Ttags/X0lPS7qSmJqQtg9NqeN/teY6/6cfuGpjH3+h7DMIUURnH6h6QaGFbPWmGYraZrO3m3ZpvGCg3tyefCsp9ifmYMiBAF/gL5X9eS+j0agKAoNW2Wweu76sOcGfAHqNK6Nx+Xl/fs+Dwlq+9w+DmTl8NN707n6kcFhY+buy+Phc54LyQzaunIH9/V6krE7Rkc0WCFYmoJvHuHtFzVQ6yOEDZn4BBQ8hZGtIwG7of0ffyNQ4q8OF3/DPQmZ+ABCOXwRoiz+lLAqYnzgnYvU8xFKMkKoiPirIP4qs0dUGqHWQSQMq9JnVjfCfhoy6TEofBGjZ7LfMGA1Xj/eUwvjhDcEI2fNYOL6dXg0Y+e6t6iIu36Zgk1V8WoacVYrL/01hx8vvzoqoTZFCAY2b8G0TZvw64cWLruqRsz4yfO4sVssBPyHT8ncmGPILO3Kz+eaCeNxB08SmoTpWzax/sB+GiQnE9B1Lm7VhvNbtDyiIPfRoloij6WoCkIIHvvmXh4Z8BxaQMPn8eNMcNDw5AwuutO8YrpxmwZcev/5/PDa5NKCLavNwlWPDg7ZNWdu2sOPb0xh+5pdYW6kEjS/RlKaedbQ81e9QdamvSEL/azv5nFyt+YMGt6fwfcM4rcvZ4cs9Fa7hZanNsMRb2fRz8tMTyh+r5854+ebGoJfv5gVZuCkLnEXe1n08zJOv+BU07mWRcQNQbq/MRaSQzMDtTnCasRylLjBSEsTZPFnRs9e2xmI+GsQSjCg7V+L4Vop/3A7BHaALYpqdD1S0b8SdEslG7n93llI93cgPQjH+eC8ACGOXwOmo0EGthlGWCSC/awjroBW4i5HOi8yPmMlBaEeuRfiWHBCG4ICr5cf163Fp5f7Q4TS/HqX348nEODhGdMZG9yJH46n+/RjW14em3MOIjBqEzrWTef+08yPul3SMwjo0RVXNUsx/Mefr1iKTwtd7Py6zubcHDbn5gCwZPduJm9cx8fnX1ytAmYuv5+J69eyKCsTxzn1UX9LQNsT6o+WuiwN1LY5vSVfbBnFjLFz2J+ZQ7szTqbbeZ1QI5yYAG545krOGNyNOeMXIISg9+Wn0eSUQ/GSNfM28PA5z+L3+tECuqlBsjqsdBvYydS9krsvj/ULN4ft9r0uLxNH/cyg4f1p0DKD56c8wmvDRrM/0zDI7fq0IXvHAW5oeRdSyogGyBWhGjp754HSPs1l8Xv9HMzKifh5lEVYGkDKp8j8R0ELVhvbe4e5dIStI8LW0fwhlpMNn3z51E7pBbWB6VvCsPcM9hYo97usJIBiGGxZ+CK4vqXk5CB9y4ymNKmfYyjT/zsw4iHPgWuccUFYgKcg5SOELfpaHwh2TLM2r/I5ViUntCHYX1xkWjlbHl1KFmVl4g0EovLDJ9ntTLj8albu28u2vFxa1kyrUKeobkIiN3ToxOcrlpfu8C2KgqbrIZ5dh8XCPd2NIqwV+/aiHSaQ7w74WZiVyfzMXZzeIHpV1vUH9vPrls1YFIWBzVvQuEbkfPVct5sLvv2KHLcbd8CPTVWRD7Yl/f31OHcUBbWB4Inv78cRd8hlVaNWMpfcc17UcwJo1qEJzTqYy0G8ccsHIe6mkgCxoirY42wEfBqnntOBh8bcbvp+T7EXRTU3lmXdNu37tOHzTe9QcLAQCdx08t0U5hRxuJyKSIa4bqNaptcDvsARyVAIW2dI+yVYoWtHKEeWaiwSbkZ6fiHUteMw+vgGd6lSSmMnX/QB6MXg6A2Jj6KoKcFn3GV0IpPFGIVdCmBDJD2LEAoysAtcX2O4p0pwQ2A1eGeBo3JB/OOC709wjaf0ewnGRGTuCKg97197wonECW0IFCGQUaWzAYgj2lULIWhftx7t60YnDPbg6WfQOT2Dr1Yup8jnY1DzlhT7fHy6/G9yPR6apqTyRK++dM0wmpWYCcqZ4fL7mb1je9SG4NV5c/h0+VL8moYiBKMWLeDhnr24tr35TvKthfPILmNQfZoGCgQe6MJNRRk4E5z0HNy10kVc0eBxedm1Psv0NavDyltzn6NGnRqk1I7s2qvbpDaJKQl4XaG7cIvNQs9y/YyFECSnJTFj7Bz83sBhjQBAk1PMP//c7ALT64qqkL3D6JsgpWTy6Ol8/cIE8vbl06h1fW557To6nRXaxlIIAaJyTXaEpRmkfo4seBoCa0HEg/NqROLdpffIvLtCq3U9P4FnOnqtuShqEk0NypcAACAASURBVEKth6z5FeQ9adQsqDUh4T5EyQLvW4hpqqd0Ib0zD933L0C6xhMeDwEIgG8p2I9PD+zq4oQ2BGayz2aoQtCzYUPT6tyqQgTTS89qElphe3vX7qZNUOKt0VU521SVFGd06a9r92fz6fKlpZ+LJiV+dF6Y+ydnN21G3YTwxXz6lk2mp6oDXjc9h/WhTkLl5bujxVqBto+qKCEupEgIIXjo8zt44oKX0PwBAn4Ne5yd5FqJpr59gANZOaZunfCHw3m3mPd/MAtog/E9lcQbvn1xAl//78fSE8/WlTt48oIXeXH647TtWXWd44StAyJtgunvmx7IiiDZ4IHC56DGy0htH+RcazShxwuaG/IfRirxCHtvUJJAKCYJTBaIIhj9j8KsmQ5g1EBE8TvxL+OfnX91lFgPE0S1KArxVht14hN48axDhU5+TePzFcs4/5svOe/rLxizfGnUO/TKYHYS6dO4ScQspLIoQhDQJW/M/4u/du2oUIhr2qaN+Ew0fYQQzNh2SGRu6Z7d3Dx5Av2//MxUjgOMQjx7FTWej4pK1Lvous5vX/zJnac9ys3t7mPt/A28Pe85LrzzXHpc1JVhLw7ho5Wvk1TT/DTTqlszrPbD75UsFpVNS7eZvnbGJd2xx4UbdV2XdB3YEb/PzzcvTAjLsvK6fXz2RKjonJRepG8Z0r8pKsE16d+AnncP+v4B6Ll3If2GdpHpydddQXNA75/G84pGgZ7PIdePDniQ+Y8hpQ723pjvLS0I55H1pjjeCOcFRgV3GDrYzDPZ/s2c0CeC+snJEfsnNUhKZsgp7WlcowZ9G5+ENbjoSikZNnkCS3ZnlVbbvjxvDr9t3cxXF192zLpKXdn2FMasWMpBl6t0R25TVQSUzlXTJbrUeXex0Q8hbrmVjnXr8ekFg0vvKYsiBMLkAykrgPf71s3c9ctUvIEAEvPiflUIOtdLp4ajakvkc/flsXDqUhCC7ud1okYtw9Xj84ZXZZegaTq7t+wlOS0xLI//zVs+ZOa3c0sX2a83/8isb+fx7pKXSjuOVUS7Xq1peWoz1i/chNcdOeMr4NeY++NCrvy/8ErXlqc2xRHvCCuwa9Q6g7T0VA5kHYx4atix9pAMte6eDAVPAgKkBmo6pHwQUtkr/auRxV+CtsdIOXX/gOHL10HbjvT+CamfIMwWMrUCl5N0oe8/G7S9mFbK6gWg70GoGZA6Bpl7c7BeQRhjJ72IsFRtoWS14zgXPJMNd5d0AVZAhaSXEeLIClD/DZzQhqDA60URwjToWuD1MHP7VlrXqk2X9IxSyYXFu7P4e8/uEFkGTyDAin17KwzKegMBpm3ayF+7dpCRlMTlbU45oi5f5UmyO5h85TW8t2Qhv23dTKLNELK7oEUrlu/bg1/TueeXqRxwH+oZ6/L7WbpnN+PWrGJIu/BWgOe1aMnHy5aglXOZ6VLS76SmSCl5cuaMEJdaySenCIFDtSAE1IqP580B4dW+R8PPn85g1B2foAR7G7xz+0fc+9EI+g3phTPeQUbzemRu2B32Pr/Pzy0dHkALaPQc3J37Px6B3Wkna/MeZoydHeLa8Xn87N2ezZ/j5tH/mt6HnZMQgv/9/BgT357GL5/+gdftI2dPrmkKaXIt81PF/ElLwpr2AOxav5utK3dQv2U6IkK/igYtjVoI6V8H+Y8RUlSmbUPmXg9pvyOEgu6eAvmPUrrw+xcSavF1wI0seBaR9lP4YI5LoOAZzAXjvKBtN51jcDJGzAEQ1jZQaw74VxgBVlvHals4pdQNgyPiqnyDJoQKNd4H3zzDgCo1EM4LDWN3jJHSjXRNBv8SsDRGOC9FqJVrohWJE9oQFPv9WBUVTQvfxeR7vSzMymRhViafL1/K95ddRcd66SzZnWUaW3D7/SzZnWVqCIp8Pi4Z9zVZhQW4/EZmzcdLl/DR+RcfUTZPeWrGxfFEr7480StUK+bU9Pqs3Z9tWq3sDgQYv26NqSFoUTONu7qexlsL5wHGQiel5Nm+/cj3eFiTvY8ct1mADOIsVp7qcybpiUl0zagfJqF9NOzdns2oOz4J88e/cfP7dOjblrT0VO4ZPZzHznsBv9doAq+oCrqmowd0PAFjx//XhIUAPDr2btbO2xgUuAt9pqfYy9+/rohoCApyCvnh9SnM+2kxiakJDL5nEJc/eCGXP2hIh9zc7j52rssK2cU74u1cfNcg0+ctn7XaVGYaYM1f6zmpXSMuvf98vn91ckj9gt1p47qnrwBAur4mXMpZBz3XqOy1ngIFIwmtPo5whgqsN40RKIodPfl1yL+PI1MPtRpFUsohAT4hVKMTWclM9ELwTEVq2QhbJ7CdflRVwVJKZPEnwRaYLlBqIBPuQ4m7rNLPNEMIAfYeiCgroKsDqecgD14CWg5G8NpmFAemfoGwVl5XqzwntCFolFyDRLsNj6vioLEO3PDTDywfcSdpcXE4LBZc/tAFxGGxUis+1PXg9vvJLi5m/LrV7MzPK61NKIkn3Dd9GvNuuqVKF80SKtoBVfTaiC5dGdi8Bb9v3YJFUWhXpw4P//4ruwryUYQIq7kooVZ8PINPPny7x8ow+/v56BGkmMc8/i2tujWnw5lteWfB//j+1UnsWLOLA1k55OwNLXDyefzM/XEhhblFRgMbk8/BYlOp1cC8qKc4v5hbOz9E7t680paVm5ZuZfN927j+6SsBeH7KIzw84Dn27zqIalHxe/0MefwSupxt3n8gLSMVm8MaZuRUi1raZOfakZfjKfLw06hf8PsCJKTGc8fbN9Ghb7BAUduH+eIsQM+BwKYIr5vhiPj7oTgHIu09kK7vjE5ingoa44jEoNZQK0SNVyPepvvWQM6VlMQVZLECluZQczxCVK5CXhZ/CkXvUJrVox+EgufQsSNsHYzCLaX6stiOJbLwneDPv2QN8xkS43kPIWr9UmXjnNCGQBGCV/qfy4ipPxHQNAIVBNgKfD6KfT4GNm/J83Nmhb2uCsGg5i0AQ1b6xbmzGbt6BYoQuE2URQGK/D625ebQNNVcZOxI8QYCjF6yiB/WrUGLUB/htFi44jA9DRom1+DGjp2RUtL3i0/ILCiosGGP02JhROfDV8BWloBfQ5r4yX0eP398M4dZ4/5C6pJzbzqLBz+7HSEEQ5vcZvos1aqSv7+Ajme1JT7ZiafYE6JjpFpUBt5snsY45YPfyMsuCOlb7Cn28v0rkxh81yCSaiZSu2EtPlnzJpuXbSP/QCEtT21KYkrkzKn+1/bh6+d/DLkmhJH22nWgsWte9sdqJr//G1rwM/C5fLx/7xja9WptCNTZ+wZTM8ud1qTPUPyUbiNuEA3iMJWxIgFh64BUalVgCASixpug1EVUUCglpYTc6witK9AhsAFZ8AoiOXJXsgqfWfw+4amdbih4CIkd0JCOsxHJz/+jpJ4rhfdXTOMyWiZSO4hQq2ZtOaGzhgB6NWrMlKuuYWi7jmGpm+XxBPwk2GyMHXw59ZOScFqsxFmtpCcm8uXgy0pVSt9ZtICvV6/AEwjgimAEwAjmOixVU3gipeTaieP5cOlisgoL2FtcZNQCYCzUFkXBabHSo0EjLomyuc2yvXs44HKZGgFFCBJsNhwWC8M6dalUw5xoOe2CLqgmmv8Afm8Ar8uHz+Nn+piZLJjyNwBterQqjSeEzFsR1GlcC1VVeW3m0zRu0wC704YzwUGNWkmM/OHBEKG5siz+ZbmpP99is7ChjEy2EILmnU6iy9ntKzQCAGnpqTw35RFS69XAkeDAHmcjo0U6r816GpvdipSS14a9h9flLXU3+Tx+CnOL+Hzkd8Z4cReDmgGU9bU7IX4YQk0zKo8tzYEosrjkwYgZR9K/Cbm/NzL3FiiMIAsNYDkFYT+jQiNgPG8DSPM6Cjw/HH6upniN3semGHEQ8IHnN2Tew5Uc459EpFOTNEQHq4hqPREIIQYAb2H8hn4spXyx3OsNgc+BGsF7HpZSTqvqeZyUksqTvQ0/e9O3X4u4cCcGF/q2tevw53XD2JKbg5TQLDW19DgtpeTTZX+HBJPNUISgaUoKGUmVDxiXZcmeLNbszw6JX/h1nTirlUtatSY9KYmu6fXpULde1IGzHLcrotuqe0YDHunZi0Y1UkioZOe2w5G5cTcrZq0hLskZMWBaFk+xl2kf/c5p53fh2qcuY8GUJXiKPKVuJUecnZv+dzVWm/EHkt60Lh+ueI2szXvwunw0alO/QpmLWg3TEIoIU0LVNZ2UOkYGk6ZpfPviRCa+M43ifDdtTm/BrW/cELFnAkD73m34ZtcH7FibidVmIaP5oZ9Rzt48cvflh71HC+gsmrYUwAi21vzeiBV4poOShIi7JqTPgEh5D5l7Y1CCQjWXpAZjx2/yM5dSN96vZ0f8PgziIGX0Ye4Jou+P/Fqlu9LaQUmLYp5e8M5A6rkIpXJFeFJ6ka4Jxq5cSUHEDTFiHMeSuCtMJMhVsHVGKFWztkA1GgJhCIu8C/QHMoHFQohJUsq1ZW57HKOp/WghRGtgGtC4uuYEMLB5C6Zu2hh2/ZTadUIKyoQQNDNx6fh1neIKxOPirFYEgkS7jfcGXVA1kwZW7ttHwMQd5PL7sVss3NK56xE/s0PddNP6CKfFwoBmzWlT23znfLRIKXnrtg/57YvZCGHoFEVVuAV4PcZnn9GsHu8ufokvnx7HqjnrSMuoyVWPXMxp54enRpaXe47ExXeey5zv54ekiiqqQr2T6tC0fWMA3hrxIX98M7c0HXT5zDXc0/NxPlj+KvVOivx5KYpCk7bhiQOOeHvEVpXxyYdkJIQSj0i4GRJuNr1XqHWg5hRDllo/gCz+Dny/hd9o624+Qf+yCMZDgNrU0COyd0fEXR29b9/awXi/2dZLqVw6qRACmfBAMJXWPAh/6GarET+ohCGQ0os8eAUEtmGcMgTS8xsy8X6U+OsqM/VKIeJvRPqXgXeeUayHACUNkRze1+NoqM4TQVdgs5RyK4AQ4lvgQqCsIZBAiVlLBsLzA6uY58/sz7oD+9mZn09A17EoCikOJ+8PCm8oY4ZNVWmQnMzO/PBdXKuaadzYsTO14xPo0aBhlaqCZiQmYVXUsIXbabHQMLlyLRPT4uK4pfOpfLz071INJLuqUi8xsdoCwwBzfljAjK/mmLphKsIRb+esq88o/bp+83o88tXdEe+XUjLzm7lMGj0dT7GXPlf04MI7BoS0vCxLi85Nuf+T23jr1g/RdYkW0DjplIaM/PFBhBDkZufz+1dzwnoW+Dx+xr3yE3ePHn5E3w9AfFIcXc7pwJLpy0ME7exxdi4yachTEUIICKqRyvxnzG/yrTG/LoswrxqRoNZDSf3giOYCoKiJ6PZzwVv+kC8guQLX0+GeG3cRUnEiC98EbXewSU4BpgYnWkG9ckjXhDJGgOCzPVD4KtI5+JgFo4WwIlLeR/rXg3+NUT9i61blvRiq0xBkALvKfJ0JlBfoeAr4VQhxJxAP9DN7kBBiODAcoGHDyqdjgpGfP33I9czeuZ11+/fTuEYK/U5qekTyEiN7n8nt0yaXumkEhmDcM3370SW9evKMz2xyEvE2K+6AP8Snb1EUEu12vl29klPTM0wD05qus7eoiES7PayXwb3de9Cudl0+X7mMfI+Hc5u1IMFmY8BXY8h2FdMstSaP9ux9VGmw5Zn64e+mPQ3MUC0qWkDDkeDg5O7NOWvIGYd/U5C3bvuQGV8d6p+wa0MWM7+ZyzsLX4hYUNb3yh6ccUk3tq/eRUJKPHUbH8rXztywG5vDGmYItIAWEkM4Uh4aczuPn/cCW1bswGJV8Xn99Bt6BuePOLvSz0TPNL8ud5umj2LtVE7mOohwHlWDeFHjNWRhBrg+B3yGSqnzCigciZ67A9S6kHAvitM8/Tbicx3nIByGGoAM7EQevChY+KWXzpuEeyqdmWQEaU1SqYUV/EuDVdTHDmFtBdZW1ff86mpVKYS4FBggpRwW/PoaoJuU8o4y99wXnMNrQojTgE+AtlJG7uBSVa0qD8fyvXuYtGE9Esn5LVrRqV5oo5M/tm3ludl/sK+4mPqJSTxzZn+6BQXjqov5u3YybPKE0viERQgcVitI0KShZDqoeUte6ndOqe9/2qYNPDlrBi6/YUD6NWnKS/3OIT6C33/M8qW8Mm9OWJ/jMRdeUiqId7Tce8YTrP5rfYX3WG0WajeqRd+relBwsJCu53bi1AEdUKI8Ze3Zuo9hbe8Nczk54u3cPXo4/YaaN8mpiAO7c7i26R1hhkBRFfpf04sHPjVXPo2W7Wt2sW97Nk07NCYt4+iyQfTsPqCbHLCV2ii1zdongl48FgpforQoTThBbYao+Y0hpXwUGOuMZhRo5d5BqFvHAUkjUeIqL0MhAzuQRW+DbxEotREJtyIcpvvKqNDz7gfPFMLL8OMRKZ9Glvv+B1NRq8rqzBrKAsqey+oHr5XlJmAcgJRyPkZaxHHv3PDyX7O5+sdxfLFyGV+sWMY1E77nf2VSSrfm5nD/rz+zt7gYdyBAZmEhd/08hT2FkbIZjh5vIMCt0yaFLNABKSny+Sjy+3AHAniC1c2TNhiL7N97snjwt1/IcbvxBAL4NI0Z27Zw1y9TTMfQdJ03F84LC4R7AgFemTenyr6XM4ecgT0ufKdmsVmIS3KSUCOec27oy6iFL3DdU1dw5zvD6DawU9RGAGD1X+tNexZ4ir0smb68UvNOS0/ltAu6YHOGLopWu5XLHozOtVgRjds0oNugzkdtBABIuJvQLCMAJyTcFfEtSvwQROqX4LwI7GciEkdWiREAw20lhAVZ+Arhvn0PFL0elX5SRLQd4F9pBKi1LYYmk4xOdNJ0vnFDCM/YESCSwGpeM/JvpjpdQ4uB5kKIJhgG4Erg6nL37ATOAsYIIU7G+M2tINWg+tmcc5AxK5aFZOe4AwG+WrWCwSe3oVVaLR774zcKvJ7SvYI74MenBXh+zixGDTy/WuY1ddMGCryHd6e4A36+Xr2Ci1qdzAdLFodVSXs1jXm7drK3qJC6CYn4NI13Fs3n61UrKPb5I7bT3BTsnFYVDLixL398PYcty7fjLvJgtVlQLApPfHcf3QZF3/Rj7YKNfPjAF2xaupXkWklc/uCFJNSI589x83AVutG18IXFYrVELCgDw300+r7PWTlrDc5EB+ffNoCrH7m4tKXk/31xJx899CU/f/IHPrePxqc05K53h9Ho5CM7LXlcXhZOXYq70E2n/u2oXcGcKoMSdzE6ASh6IxgwTYX4u1HiKm6+JGztEbZqXOgC282v6wcx6g2OXI5C+paHnjKkC1xfIvX9RnBc2MDex7xvcgSErRMy8X4ofDWYpilBJCFSP/3H90quDNVmCKSUASHEHcB0jNTQT6WUa4QQzwBLpJSTgPuBj4QQ92Kcwa6X1eCryi4u4vu1q8kqKKBb/Qac26xFxJjAH9u2mhZr+TWNGdu20iy1Jot3Z5k2r5+5fWvY+6qKP3dsj/reksV/Z0G+aaqsVVXZV1xM3YREbp36E39u345+mL4NjSoZkDbDarPy0m9P8sVT45g/eQk1aiVxw3NX0rZH9JLLm5dv46F+z5TKMuzfdZD37vkMRVXQSrSATGKfqlVl4DDzgrIDWQe5s/ujuArcSCnxun2Me2kimRt28+hYIyhts1u5/a0bue3NG9ACGharhaK8Yia8PZVtq3fRvGMTzhrai7jEyIVMq+eu47FBLyCRSF2iBXSufPgirh0ZXYe8aFHiLoO4y5DSB1iPmWBihah1jd17eUQikXPmK0YWjcL0lOGZiPROx3B86FBjFMIefYxJib8O6RxsxASCJ4ET0QhANdcRBGsCppW79mSZf68FqlXIY8nuLK6Z8D1+TUMHxq9dzdsL5/PTlUNN8+MjGQghBPag+qcSoXm9Ral6WeZV2fuYu3M72UXRuZ0cFgsXtTQW1K7pGWzNzQlLO/VrOk1TUtmWm8Os7dsO27rHYbFwb/fQH9OWFdtZ/PMyHAkOel92Gil1ojcUPq+fh/o9zZYVO/AUedhtU3n47Od4/Lv76H5edCeCL54ah88dekKSukQrK5ERlE+12a2oFhWLzcL/fXFnxDTPCW//jM/tC3FReN0+5k5YSPbO/dRueKjbmBACi9VC1uY93HXao3jdPrwuHzPj7Xz5zPeMWvSi6S7f5/Xz+Pkv4ioMDUSOe2USJ7VvTFp6Cg1aZRCfdGQdyCqiIteODGwH7wxAAcc5CDU94r1VgtrY3BAodStvqDRzCXAgqIIa/GfeHVDrryM7GSiJxzwwfDw4oSUmpJQMnzyhVAMIDL/6trxcHp0xnR4NGtG4RgpdM+qX/hKeVr+BaSOWgK5zWn0jJfScps34dcvmkPtsqsrgk1tXOB+338/M7Vtx+f30bNjItBHM6ux9rMneR/2kZCasX8u0zRvxa5ppYl8JJYYpzmqlWWpNrj7FEKMa0aUrkzaup8jrK93xOy0Wbul8Kgk2G9+t3hrRCAiMxa5uQgKP9uxNz4aNyCosoIbdwSf3fs6vn88i4NNQrSof/99XPPrNPVE1YgeY/tlMNi/bVpqLH/BpBNB48Zq3+X7fx6UFYRWxZfn2qFoUOOIdDHlsMF3O7kCTUxoGhejMWb9oE36TnsQ2u5UdazNDDEEJb474kMLc4tJaAE+xF5/Hz+h7xjDyhwfC7l/+x2pTX7jX5eWZS1/FmeAg4NO47MHzue6pK6p1F68XvR8sVtIBAYWvIxMfMpQt9SKjbqCq1Tb9y8yva5uRMoAQlViSLCcHC+kO9wuhGL0VjjBD6b/ACW0ItuXmkhfBrz5l00ZmbNuKIgTpiUl8c8nlpDrjWLJnN6qJdLWKYMmeTNrUrs2zffuxOSeHXQX5pal4LWumcUOHTvyxbSu14+NpU6t2yB/xoqxMbpo0obTZvSZ17ujandtPNQp8vIEAN0+eyN97jHi6LiU+TYuq0WaduHjibDb6NG7CLZ1PZfzaNazdn03rWrX5ZvAVfLR0MfMyd5LmjGN451M5v4WRhmapIPiakZjI79fehE1V+Wb1Srp89B5+TUPTdOLz9pHi9SM0I9ce4IUhbzFu78cRc/TL8sfYOWH6/GAY7o1LttLm9JaHfUaDlulk7zxw2PsURdCwVX2adTTvhVyWJqc0ZM28DYdcS0H8Xj/pzeqGzHPD4s3kZhewYtYa00rkRT8vNR2jfMZRWaQucRUYO9gfXp9CRrN6UcllVwbp3xQ0AuX+PgqfReI0BJEKNGTcdShJ4Qat8kQK4EqOTPX0ECLhDqR3DuatJcuPUdmK5hObE9oQZLuKK3y9JDtme14uj/3xG6MHXchBl8u0f4GG5IDL0P6v4XAy7eprWZSVyba8XFrUrMnPmzZyzldjsKkqmi5pkJzM5xddQu34hOAiPyGsIvm9xQs5rX5DOtVL570lC1m8OzPk9BIt+90uAsVFZBUWMGb5UmyqijsQwGmxEGe1MuGKIbyeFF6c1L9pM56ZPdPU2JzfohU2VeX3rZt5dvbMUGmLjqlofo1a47eXXlNUhWW/r+L0Cw9/KrCZdOwCYyG0OaLTTxn65GWsnru+woYxYFT0dhkQKsl9YHcOOXtyadAyHWfCIV/+4LsHMf2zmSGGwOaw0r5Pm9Lq5L3bs/m/s58ld28eiHA5ihJKgsvl6dC3jWk/g/J4ir2Me+Wn6jMEnulEXpTdhzbX7i+R9tOqTorZ3hc8vwBlPwMB1k6Vzk4S1laQ+gWy8CXwrwIRFyyQK2d0pQa26GME/yVOzMhHkBY1a1boUinBr+vM2LYVv6axsyAv4n078w69JoSgW/0GXNm2HVmFhXy9ehVeTaPQ58MV8LM55yC3T5sMwNxdO0zdGJ5AgO/XrgZg3JrVlTICQGkMwBMIoElZauDcgQC5Hg8jZ80wfV96YhIXt2qNWs79UMPhYHhQsuKdRQvCMo+kTaWwW210W+ivT7Rx/vOG98cRHx4YTEiJj2rnDtC2Ryue+P5+0pvWQVEEzgQH3c/vjM1hJS7JSVyik+S0RF6c/nhp8Zir0M1j5/2Pa5vdwYNnPc1ldYbx7UsTSp+Z3rQur8wYSbOOjVEUgdVupd/QXjw5/oHS7+/x815g79Z9uIs8uAvNd6BWuyVi4Vt8cjztelfsQiwhLzu8er3qiDInQ7oNWeoqQiT+X7B/cYkBdoBIRFRQaazrPvSDN6DvbYW+twX6vu7onlmhz7W1R6n5NUrdVYjaC4wOY6XKo4oxTuL9CDXcvRfjBD8RpDrj6Fa/AQsydx32Xl1KdCnJLop8isguNn/NEKErV20qJauz97G3qBCvSZ9gMP4U3cG+B9H2RLapKrXj4vFoAfI9HtN4Rll0KZmz0yQ4F+Tl/gPoULceY5Yvpcjno99JTbm72+kkOwwXT8TaCCnR4ywowZ7GAb/GytlrWT5rDb0u6U7bnq1M/dsBf4AeF3el34ze/DpmJkJRUFUFi03l2UkPH5FPvNvATnQb2Amfx4fFZkFRFNxFblbOXofdaeOUM04OiQm8fP0ols1Yhd8bwB8sNBv73A9kNKvHGZcYLrpWXZsz+u9X8Hn9WKxqSO3CjrWZ7Nu+37R3gqIqWO3GHBq2rs/NLw81nfOB3TmsnBVB5qHs8xRB+z7Vp/gqHOcgiz8idGceAXk4l8sRjKvWhbRfke5JEFgFluYI58UhjW3CODgoNMAscyBvOHrq9ygmqa5CCEh+BXwLjJOPcBrdxaqxMvffzgltCADeH3Qht02dxOLdmShCwa8ZvXjL/ikLoH2dutgtFlrXqsXcXeYL58m1zHcTkfL7VUWh0OujR4OG+E0avsRZrQxqbvjDzz6pGT+sXxOW4VMStC3pV/zewAvo3bgJGw8e4OLvxh7WEABYKkh5U4RgaLsODDXpaAbQvm49/ti2JWz/KAISa3EAq8OKpunoAY2J7/yM1HV++WQGfa7owX0fjShd2H//6k8+zyHhdgAAIABJREFUfngsOXtySa6VzDUjL+OD5a+ycvY6kmom0HVgp6j6CJthcxxyKTgTnHQbGK4QWZBTyKJpy0J6DYDhgvnu5YmlhqD0mSZzKc53oZgUqQHUb1GPwXcPolGbBrQ5vWVEg7Z23gYsNkuFInuqVcURZ+eG566MeM/RIqwtkAkjoGg0hjEQhLlSAHAinOeVfiWlBN8CoxWlmg6O/kes+S+UeET8VcBVh71X9601zzICoytb2kRjXtp+pOszQ5xNTUfE34Swn4awn3ZEc/uvcsIbgiS7na8GX0ZWYQH7i4tJttu56sdxFHp9uAN+HBYLNlXlxbMM3ZI7u57GJ8v+No0TTNu0kXFrV9Mtoz6P9Oxdqk7a/6SmfLZ8Wdhib1ctnJSSgqoojOx9Js/MnmkEXIMZPj0aNOSsk4weCfef3pM5O7eT5/Xg8vtxqBYsqsKzfc4is7CARJudQc1bUjPOSCtsHmWzG6uicl6LwwdfI3H/aT2Yt2tHSLWxTVW5rV0H0kY2R9d0xv7vBwLlmrnM+u4v+l/bm3a9WjPru794c8RHpTn/edn5fPjglwx/eSgX3FZ5HZsjoTCnCNWi4Dex2eU7nUWiWcfGpqcBm9PG2df1YdDw/od9Ro3ayaYuNEUR1G5UC0ecnVN6ncwVD11EnUbV68ZQEm5DOgaA5//ZO8/wKKo2DN9ntqZ3IEDoTXoTEFFRARVQUBAQ7KBi7+WzYu8FCypiwYKAgAoCIoh0lI50pNdACOnJtpnz/ZhkSbKzyZJkQ8t9XVyY2Z2Zs7iZd+YtzzMPhAmJGbLeRa8deIBQsLYFu95lI6UDefxW8GzVZaSFHTJfhbgJCHPJXh9lxrXM/2v5w2lSPYI8ds2JuoBnC9K5BBn5Mkpo+Se+zwXO+kBQQK2ISK+Z/J833c4v27awPvkwTeLiGdi8BdF2/a4mzGrll8HDuPXXaaTmG8MX3I0XFJ8X7NnNykMHmT3sFmpFRHJXh078tn0bxx26lINJCCwmE69f3tOrQDqkZWvaJ9Zk6pZNZLuc9GrQmIvq1vNqAsWHhjL3ptv4ddsW1iYfokF0LAObt/Re+IuT4XT49UQQgM1sRhGC+tExPFvM8/hkiAsJ9RafC9CkpFPrJnTpncTvX83HbDYVCQSgB4OXB72HxaYPXBX24wW9XfLbF38qdyBIO5LOjrW7ia8VS/1WRaWNVVVlxqd/MOPTP3DmOr0OYIVRTArtewTm/WoLsXHnWzfy8f1fFplajogN5+q7rwjoGC27NSMiJhxHjrNIodlis/Dy9Keo16JsapmBINVD+vCVcykosYiwEWDvjQjXVVMFIG0XI/OmgpaOsF0Gtkt0D2JA5ozTFTALOm9kDpCLTH8EEf9rcBZtMX5SBfThNEBmf5pvVlPwHSxQCn0ZGdIbUYEGLmcrQROdCxaVJToH+kRyam4u106e4JPDtygKQ1u14YVLLgP09NCkjf+yeN9eakVGckubdjSLL/mOzuFx88fOHRzKyqJ19RpcUDsp4Bz5T5s28OSffxi+Zsl/AmkUG8f5NWuVqxf9vlkzmLXD178hxm5n1R338OcPi/nwni/8GrSXhBAwy/Gj3w6bkpBS8vmj45n+6R9YbGZUj0adZrV4bfbTRCfoJjKv3vA+y2es9gYhk9mEqqrevKDJbCIkws5na94O+O77f1e9wrr5m/C4C0lGh1j5YMkrJRa6NU3zGtMIRfB8vzc5svcYJpOCUASPfDGSiwcGnsaQUtMN4XMnAW6w90OEDvTbeaPfNffNv2su+C7bwXoByHTAjAi9HuzX+J2e1VIuB9Wo3mZFJPwVtEKsdrSL7s1cnOgvUOyX+F+XCEXETUGYGwVlXWcaJYnOnTNPBCdDptPJO8sWM2P7Njyaavgo79Y0Zu/Yzv6MDNrUqMHQlm24o8P53BGgt++utOMMnjIRR75YnM1spll8At9fOzAge8ukqCi/r4VbrQxtdaKIpknJsdwcwq02Qi0nd3c0b7exvHKaw8HBrCy69O3AByNPXqseIDYxpkxBAGDe94uY+cU83E63tzd/1797efWGD3h73gvs23qQZdNXFfE8UD0qVruFWo0TkZqkdfcWDH6iX8A6P0f2pvDvws1FggDo08KT3v6VZyY8ZLjf+oWbeO2GD8jN1v2TE5LiGDX1MRCCvKw8GratF9AQXWFkxpO6VHJBIde9BemYBbHfGl7IZc6X+TLNhW9oHOD668R7MjeCYwEi5gM/Jy3ppjGIN5TxsyD1hkITxFaIeArFnt9aq8QZBwLpAVE2d7JzjapAUAxV0xg0ZSJ70tNK7eQ5lpPD/JxdLN2/l6/WruHnwUOpFx3YF++h32dyPC/P++uT63az6egRPl+9kgc7dzXcx6WqfLNuDZM3b0DVJBZFMSwWj2h/IujP3bmD5xbMI8Ohi+Rd1agJr17WM+CAYOSKVkCOy0nt+ASenfgIrwx5D0VRUD1qQG5jtlArt79WXIMwcKZ98JuPp4HqUdm0dBtpRzPYtmKHoaexy+Gmfuu6/O87/yqc/ji67xgWm8Xn80lNcvC/w4b7HDt0nGf7vl5krQe3H+LRS0cxYd9nZSqQS/c23bKyiL6OAzwbwbUIbN19d3L9g3ExuPCB88D5F9K9CWExMCYK6Qc54yg6lCXAXE+fRg4SihILCXPQNBeQi1Ksw0iEDUemP0HRgTILWDtVmLn72c5ZPUdQFhbu3cPBzIyA2jkLLpH6/ICTVxcvDOgcx3Jz2X481eceyqmqTNls3FoopWTE9J/54J9l7EpLY29GOkjpMyfRq0Ej7u6o+/+sSz7Mg3NmcjQnB6eq4lJVft+xnYfnzAxonQDVQsMMtwsgKV+IrkvfDny6+i26XdeZDr3aYPZjRF+Y869sV65hqazjxq28ikmQk5FLfO1YjDJiFpu5REvJkqjborbhZLDZaqL1xcaCeXO/XeA1pS9ASnA73F5P4pPG9Q+Gd+AyF+n0U1w11cbYgaw4Hl3T3wARdgeYG+sDWwCE6oqcUe8FcNzyoyhWnyAAeiss4SPRZxLCAZs+oBb9fqWs62zgnH0i8Ggax/NyibaHFBGa23IshTy3cRG2YPDKqKNIk5IlJfTrF0aW8Bjt77W1yYdZffhQ0QlfKQmzWBjRrgMJYeH0atiY+ELF5U9XrcBpIEO9cO8ejmRnUz28dPGt5y65lAdm/1bkMwv0yeOCp4q/Ji3lndvH6PIZmoaqaigmxecCWJgl0/7hiye/5863bip1DUbUbpLIkb2+iuWqW6Vmw+rUbFid6IQonLmuIuswmf2rj5ZGZGwE/e67iulj5njrDooisIfZGfiIsfz4sYPHDZ+QVI+qTyfnM+/7RfzwylRSDx2nYdt63PHWTTTv0sR4IUosCLOBAbwFXOvR0u4G68WI0P7e1k4RNgLpXELpMgwWvx6/QgmFuCngWoR0/asL1NmvQijGNwuViRJ+NzL0JvBsByUBYQ5e0f1s5Jx8Ivhm3Ro6jB1D9/Ff0u7zT3hn2RKvmmjdqChCDPLWYRYL93Xqwie9r8biR2XUaD8jEkLDaBAd43N/ZjOZuLap8dTpuuTDhrMIOW43uW4PQ1u1KRIEAPZmpBuGFavJRHIxNVOZP1AHsGz/PoZOnUy3r8fy2/atDG/XAatiQhECBejTuAlv9tC7ZDJTs3jntjG48lw481y4nZ78bhiJ2WIynCAuYOr7xgY5geCv5VMCGceyUBSFd/4aRbPOjbDYzNhCrFSrE89rs54pl/b/HW/eyL2jb6POebWIrhbFJYO7MmbVm37NZNp2b0lIuLH+UosL9QGnaR/O5IORYzmw/RB52Q42LtnKEz1eYtvKHcaLsPdAV3Yvjhs863U10aw3kMf6IzXdkF5Y20HU6/k58xDAguGvv1DA5r8NVggFYeuOEvGAXpw+DYJAAUIJR1jbVwWBMnDOPRFM27LJx4rx63WrsSgKD3bpSs8GjXh18QKvXAPoQ1cOj4exq1diVhRUTfURprOZTAxu0SrgdXxwZR8GT5mIS9XI87gJs1ioFx3D3eefsHXOcbmYsGE9v+/8j1y322++PsRs/L+xY2Itdh1PxVPsCcatajSIiQX0yebXlixk6pZNOD0e6kXHcDAr05saK5gstppMaJrEpphYsHcPO9OO0zyhGv/MXGPoBCYl9L6jBwMe7sstje83XJ+majjznNhCTl6HPi/LuEvJYjWTk5FLTLUoqiXFM3rJq6QdSceZ56J63QTdhP5IOmlHMqjVuIbhuXeu38OaeRuIiAmja//zWTFrLb9/NR9N0+h1y6X0uqU7Vw0P7Kmia7/zSWpWiz2b9nsL1/YwG136dqBB67p43B6+fWGyYXvtV8/+yJtznvM5phB2XVsnbWS+abvILwQXFm7LA/UQMnc8Ily30FRCeiPtV4B6EJRIcG9Fpj+Ibk1Jvg3jmKBf3KVnPzLnK91RzNIYETai1M4e6VyGzBmvdw/ZL0OE3lhpBvLnAudcIPhoxd8+/fd5Hg9frl3N/Z0vwGY2M2XQUJ6aN8crTWE1mXB4PEX2U6TEajJhNZlwqxoXJtXhIT9FXiOaxMWz+LY7mfnfNg5lZtK6Rg26163vnTvIc7u5dtIP7M/MxKmWbLnnz1Xs7o6dmLF9CznuE4b3IWYzw9t1JCLfxP6u334tIna3Oz2tyDEKQkjB605NxelSeXjOLObceCuapvlNZ5mtZmo2rFFimqjwVPDJ0Llve2Z+PtdHwM1kNvH1MxMIiQjhytsvo3H7+mz5+z8cuU4kks8eHs/K39dhsZnRVI1bXhzsTetIKXl3+BgWTF6G6tEwW0y8f9fnuqF8fnrnv9W7WDx1Oa/M+J+3LVdKydYVOziw/RD1WiTRuH2DIut5b+GL/Prx7/z5w2LMVjNXj+xFz1v0+kj60Qw8BtLXALvW7/H7+YWlOSQs1Ien3NshcxSQW+xdTnDMhvATXspCmMBcR//B1gWqLQPPJsAM5mZBN16R7u3I44Pz01oe8GxG5s2G2C8RVsPORrScryBrNN60VvZWZN4UiPv1pLwFqvDPORcIjuRkG27P87hxejyEWCzUiojku2uvx+nxsPVYCkOn/eRzqdOAdjUSual1O5rGxdEwwEnfwoRbrX6fIqZu2cTBrNKDAICRAKaUklqRkfwy5EbeXbaEvw/uJzYklDvbd2TAeXpHyM7jqaw6fLBMYnd7M9JJycmhU+/2aPd84fO61W6l+2BdsbL74K7Mn+BrmN6+Z+siMw471u5m4U/LEIpC90FdadC6rs8+BQx7ZgCLp/5Ddlo2Lodb7xCSEpfDzaIpfyOEyD+nxGKzIKXEkeNEUQSqR/MWfce/MInEBtW5sH8nlvy8goU/LS/kk6D/27sKBTFHjpN/F27m34WbadO9BTkZOTzZ6xX2bt6PEAJNkzQ9vyGvznwae74vsy3ExqDH+zHIwNc4Ms7/XW2N+iUXtYUQYGkOIgzpT8JZlHzXLIQJLIEN1FUEMuv1/EG0AlQgD5n5AiLet4lBatmQ9T5FO5WcoB5F5k7wDsOVaS3OJfowmnoIrB0Q4fchzPXKfLwzmXMuEDSLi2fdkWSf7SFmCzf+/BNxIaHc2rY9XZPqYDObcaoqJsW428KtqvRu7KegV07+3L3T7+RwYULMFno0ODHeP23LJt5ZvoTk7GwSwyN4rGu3Ij7KblVl8uaN/LxlE5lOZ5kNw6WUmBRBTLUo7vt4OB/f9yWaJtFUDYvVTN+RPTmvc2MAnhh/H2lHMlg7f4P3EaNZ58bc+tIQprw3g8i4CPZs2s/0T37XL9BCMO3937jhf9cy7NmBhuePqR7NFxve5bfP/mDNvA2YzCY2Lt3qTb9IKb0X+8L6QmqxqOnIcTLxjZ+5sH8n/vjmL5+WVCMcOU7WLdhIm+4t+OTBr9m1fk8RQ5stf//H2Ce+5eq7ehGVEElsDf8txVa7lWvuvYLpY/4okh6yhVq5+YXrS10LgDDXRZrrguc/imr6hyBCy1aMDxqu1cbbPTuR0okQxVJ17o2657BPYdwJzr+gjIFAy50KmS/hfcpwHEY6/4S4aQhzYAq4ZxNBDQRCiCuB0eiVrXFSyjeKvf4+UKB/EApUk1JWnDmuAU91u4Rbf51apPtGAE7Vw9pkvRd86f69PNzlQka070jLatUNPYztJhO9GjYO2jqrhYX7tcQsINRs4aK6dflt+1bGrVlFhM3GjG1bcBTk97OzeGb+XACubdYcTUqGT/+Z1YcPBhRkSiIpKorYEL04fdXtl9P20pYsnLwct9PNBdd0pFHbE79MJpOJt+Y+T9qRdA5sP0z1egmMe+p7Hr/8RVSPismkFPMV0P2CJ7z+M5cMvpDajRMN1xAZG8HQpwcw9OkBvDt8TJHhsZMh9bCeDlP9qMQWxxpiJSouEiklf01c6pPacTvdzBjzB/O+W4zH5aHtZS15ZsKDhEUVzb3n5ThwO9wMf30YZquZXz6cjcvpJjo+kjvfvZnzr2wX8GcQ0Z8ij9+UbwKfXysIHazLMZ9OKBGgGdV3LPl/ir8/BmPfBAFK2Yr+Unog63WKdlBpuuR29ofnZNtp0AKB0AVKPgF6AgeAlUKI6fk+xQBIKR8u9P77gcC/+WWkU63afH/t9byzbAlbU1Owm82k5uYWGczK83h4d/lSBrVoRaTNxjMXdfcWkCW6h29ieESR6d2K5sbWbZmxfWuRgKUIQUJoGJfVa4AqNRLDw/l8zSqvkJ3At7vc4fHw7vIl9G96Hkv27WVN8qESg4BAdy4TgNlkwuF2GyYdMhwONCm9WkmJ9asz5Mn+JX6mmOrRxFSPZv6ExSyfvsp7B+xvNZqqsXz6Kq5/1Lg1szBh0WGltqwaoZgU2l6qyz23urg5K39fV+o+UpPMGf8XUz/4zW9+H/D6Faybv4FXh47mtZlPA3qn1du3j2HVHP1cifWr8dhX93DLi4NxZDsIjQwtgyyIlp9ycaJ/CxRQDWQZTjWhN0H2GIoOw9kgZKBxfcLcRJ+B8Oyi6FS0HRF2S9nWoCaDNBqu08BVOfI1pxsBBQIhxGrgK2CClDKttPfn0wnYIaXclX+MiUA/YLOf998AvBDgsctF+8SaTBgwCIAhUyeRnO1bN7CaFDYcTebCpLoMbdWGZvEJjF+/hqM5OfRs0IjBLVoRZi1boTMQWlWrzsuX9uCFBX+iCIGqadSMiOTLa66lTlQ0blXl/C8+LRIo/D07HMrKotFH72H2M4ks0AviqpR0qZ3ECxdfSkJYOMdycxgydZLXma0wOW43R7KzSYwwzkE785ws/WUlacnpNO/alGadGnkvbrO/nB9QCkZRREDDaQBX3HYpv332R6mOZT5IyfWPXQPAvq0H/b7NFmpDMQk0VUNqkh1rSjBML4bb6WHd/I2kHk4jtkY0T/Z6mT0b93kL3fu3HeLJK17hy43vGfoiB/QxUgfnawYVoIFzOjK3LSLM2BvhVCDC7kCq+yHvVxA2kC6wdUdEPmX8fiEgZhwy7U7w7ANh0p3GIp7yW1wuFSUavz4MQZyQPp0J9IlgMHAb+l39KuBr4A9ZcoK5FlBYAOQA0NnojUKIukB9YH6A66kwEkJDDe+kPZokxn5CZ719Yk3aJ9as1LUNOK8FfRo3YePRo0TYbDSJjfNeTLccS0H10y1khAS/3gUSePLCi7m1bVEd/0ibjWh7iGEg0KQk3E8g3L1xH49d+gJulwe304PZYqJN9xa8+PMTJ4TfAuSiAYZfGR/qt6zD3R/cypgHv8FsNeFxqwGlikwWE4umLKd+yzqk+PFADo0M4daXBlO3RR2eu/p1wwGxgqcRIYwlecxWM+lHMzh2IJUD2w/5dDt5XB6mfzqHEa/rF+2czFzmfP0XGxZvIalpTfqO7OV3/kFzbwGZavwBsz+FcgQCKSW41+laPpbm5RZwE8KEiHoVGf6wrh1kStLNakrax5SIiJ+B9OwALR3MzfXhtrKuQQlH2q/Kt8wsfEMSgggbWer++myGPKvaVwPqFZNS7pBSPgM0ASagPx3sFUK8KISIrYB1DAGmSCkNrxBCiDuFEKuEEKtSUnynScvDLW3aYy/Wh28SgloREZxXinpoaTg9HlYcPMC65MMl5vpLwm620LFmLZrGxRdJF4RZLOXO8xfG3/ruaNfBZ07BajJxab363hbUwkgpeWngO2SmZpOX5cDj8ujF1b828tvnulpqr5u7eztqimMLtWEPtWG1W3jg0zv8DmoZ0eeOnkw6NJbHv76X/vdd6XeQqzBup4c/f1gMQMdebbCG+AY3j8vDpTd0w2ozY7EZ3zvF1ojm0iEXct4FTYq4ohUgpSSpaU2S96QUcT0rfI79Ww8BcDw5jeHNH+KrZ35kybR/mPLuDIa3eIhN859HS+mJduxaZN7PJwr9nv/8f0BZdrtLqaUhU/sh025DZr6APHYdWtpdSFm2WkxhhCkeYT2/1CBQZB9zI4S1Y7mCgPdYUS+DvSdg1SUzRJhuZWn3P0wn1UNoqcOQRzshj3ZGOzYQ6dlV7rWcDgRcIxBCtEZ/KugNTAV+ALqh38UbiYYfBAqP+NXO32bEEOBeP68hpRwLjAVdhjrQNQdCx5q1ePqi7ry2eAFmRcGjaSRFRvFlv+vKJd88d+cOHp07G9AvAmFWK+OuvpaW1cqmc1Mcm8nst+PHoiioUmISIiAHM5vJ5FeEbmDzluw4fpxv/12L1WTCpWp0SKzJWz2MfQQO7Uwm5YDv3akz18V3L/7E/AlLqNsiicYd6vPf2j04sh1Y7RYUReHRr+4hJz0HIQQXXNORmOon3zcQHh1Gt2s706JrU375aHZA+7idHqa+/xvV6iYQERtGZorm7QKyhVpp36M1rw0bjSPb6W0tLYwQcF6XJjw94SFSDqRyV9vHyM3M8xaf7aE2Rrw+FKvdSsO29fAYFKVtIVZadtMnjb9+9kfSj2Z693e7PLhdHt4duY5xi3QZE5kxClwbEFHPg6WD/w9nKvtTrMx4Gjw7KFLFcS5DZn+OiDAeEjxTEMKOiH4PqWXoBXZTbb8S3gBSuvT0m5aCtzPLswGZOgQS5p/x8wwB+RHk1wjSgS+BqVKe6OUSQkyTUl5nsI8Z2A5cjh4AVgJDpZSbir2vGfA7UL+UVBMQPD+CXLebjUePEG230yTu5LsRth5L4c0li1idfIhom53DWZk+WchIq5V/RtyNzc8k8MmwPvkww37+iVy3b5qiaVw8s4fdwiNzZjFj+1ZDbaTC2Ewmltx2p18THIC0vDy2px4jMSKCOlH+L9D7tx3kno5PllgDMJkVLDYLt782jOPJacQkRHHp0G7EVPMvrV0Wprw3g2+en4jb4UbTJEIRRcxgQL+ImyxmvThuMxMWFcYFV3dg7fyNRMaGgxDsWr/H+3mEIkBSJAjbQq28Ne8FrzZQyoFUfnx9GmvmbSC+ViyDn+hXpAPo5cHv8c9vq731DJNZITIugq+2jCY8OoyB1YeTkZLp83nMVo0JqzcTFVfwzbIiEuYhTDXQjl2bPxhW5NNB9NgTcs0ngZQO5JH2GJbylWoo1XznQs5mpGMOMuOpYjMQAKGIyKcRoYNOybpOhorwI7i+oOhb6KD1pZS7jYIAgJTSI4S4D5iD3j76lZRykxDiJWCVlHJ6/luHABMDCQLBJNRioVOt2mXad1facfpP/B5X/t13tsv40Tnb7eavPbu5slH5204bxcYZpnMsikK3Ovog1t0dOzPrv20+gnGgO5gJ9JTQWz2uLDEIAMSEhNC5dukaLrWb1CQyLqLEQKB6NFSPkz++mc+nq98u9ZhlZeAjV5PYsAY/vj4NR46TTr3bMXf8Apx5LjwuFU1V0VTp7fxxuzw4c10c3nWEr7eMZvvqnTxyyQtF+vtlfkAxm02YbRbMFhP3fzKiiEBcQu04HvjkDr/revqHB/np3RnM+GwOjhwnXfp04LZXbyA8Wm8vtYfaMEzoSLDYCv0/F1ZdpsFUAxH7HTLtHnCvzH/RAhHPlCkI6OcqIe3o09N/ZiK1THDMQHoO6FpMtsvQ718NUA/4+dy5SHVfQLqupzOBBoIpQHFH8ClACc+kIKWcBcwqtu35Yj+PCnANFcahrEy+WruadUeSaRIbx4j2Hb3aO2Vh1II/vUGgJDQp2Xg0uUICQZjVykOduzL6n2XeWoFZUYiw2bizvW6Ok+fRh7MKowjBRXXqcln9hlgUhR4NGpUaBE4GIQTPTHyYp654Gc2jldjFs3PdXn2OwCCnXhH88e0CRt/9BZpHRfVoJO8+yiWDLqBz7/akHkpj/AuTyMkoWgjXVI21f27E5XCxbv5GHxMa0INB/4evoveIHtRsWOOk128ymxjyZH+/7bZ9R/bi+5d/KpKGMps12l2cTWh44e+ZBoqeahRKOCLuW6R2HLQ0MNUpl0WjUMKR5obg2VZ89WAru/Xp6YJ0b9bnLqQHyEPmhYKpDsT+aKy1ZG6eP9hW7PsgQhGWlpWy5mBSYiDIT9u0AKKEEIXv/COB0itxpwlSSlYeOsjRnGyi7XbumTUDp8eDW9NYn3yYX7dtYXz/gXSsWatMx1916FDA7y1emC4Pd3Y4nwYxMYxds4qUnBwurluPezp2JiFM/yJ/tmoF7mIdOqqULD+wnzd7XOl9X0XTvEsTvt81hvkTlnDsYCq/jpmDw8DK0mw1G5rHBIoj18m87xaxfsFGqtdLoO9dvahRT2//y0rLZvTIL3A5TlxMnblOFv20nMuHXczFAy/g2xcn+zmyRNMkkXERWKxm1GIdPla7hep1qpHUtGzfl9K4/tGr2b56Z76gnwmpqSTWyeSxD/YVepcJlEQfeQihxOoy1QEitex8g3gT2Lp6ZasBRNTr+RdLN7owXQgoYYiIR8v1+U4HZPoj+T7HBRtywbMLmTMWEfGw7w7WLmBqlB8YC54MLKDUAFvZZM1PJ0q7KjUF+gLRQOGpnizA/7PvacSF1AToAAAgAElEQVThrCyG/TyZozk5CPRhscIpFVVK8jwenpk/lzk33lq2kwT4XGgSgjY1jKdky0qPBo3o0aBoS19ydhZ70tPZfvyY4WyBBAb+9CNhVitDWrRiaKs2mA06WcpDZFwE/e/Xp1oX/rScZINAEBJhL3NBPistm3vPf4q0I+k4cpyYrSZ+/eh3Xp7xFG0vbcmqOesxWZSic0vo8hALJi6h/eWtqNciiY1LtvocO7paFPZQGxcN6MyYh7/2eV0xKXQfErjA4MliMpt4fvKj7N92kB1r91C9XgLN2h6EzKf1C5ZUwdISET26XA0NWt5MyPif7m2gb4HoDxG2iwH0O934ObovsrpDN3sJGXDGF0alekRP9fjggrzpYBAIhBC64mvOJ5D3i/7/wN4HEfFguZ68ThdKDARSyl+BX4UQF0gpl1fSmiqU+2bPYH9GRqkF051px3F43AH5BRenY2Itluwv3ZRGk5J2NYI3i+BSVR6fO5s/du7AajL5rVW4VJX9mXoW+s2li1i8bw9fXH1t0NZl1EUEkHksq8ypoYlv/ELKgVRvft/jUvG4VN685SMm7P3MUBob9F9oU/6QWsp+47mBzOPZqB6VsKgwnpnwEC8OfMerV2S2mHjsq3uITqjYwrYRSU1rFXrqaIK0LQF1ry4XbSpf95lUD0LGU4CzyBCNTLsfqi1E5DuBCVO1M75DyJcSvm/C/2tCCUVEPA4RjwdhTaeWEm8DhRBP5P/nUCHEh8X/VML6ysWR7Gw2pxwtNQiAnl/3ZzhTGqO6X4bNVPq+ihAs2BO8vuP3li9l7q6d+daZroDsxPM8Hpbt38e/BkJ8FYXZz4VeMSllTg0tnvq3obxD1vFsDu86Qscr2qKpvv8C1hArPW7UC6iZqcZKtJpHw5HrRPWofPrIeNRCshWapjH28e9wGVhWVjSappGVlu1tIxXChDA38AYBKR1Ix19Ixx9eA5pAkXm/gZF4iAAcc8u58tMbYYrXLTd9Ln92CDEWOTzbKe23cEv+36uA1QZ/TmvyPO6AsjY2k4lrmzX3egGcLA1iYvl58DC6161PhNXq1yhGlZJ9GWUf8CmNCRvXF5GcCBRVSlYfDrzOcdL4SV+UI6uBzc9AmqZJbKE2QiNCeG7Sw9hCrNjD9AE1q93CgIf70KJrU0BXQDUirlYMoREhrJi9luPJaWieQoFAlWQdz2bpz8a+vhXF3O8WMqTWnQxKvIP+sbfy1bMTikxkS+cy5NELkBmPIjOeQh69AC13eglHLIbMwbA1VKr5JjdnNyL6A13QToQBFhAhYGmLCLv9VC/tlFBaamhG/t/jK2c5FUudqGgfd67CRFituFSNrklJPH9x+TohmsUn8FU/vZ5++6/TWLDXWItGKc/VrxSMZgoCwaIoVA9S4RjwKwSnqbpsdVlSQ/3uvZLPHh1fpLVTMSk0aluPuERd9rlznw5M2P8ZS39egSPHyflXteXvGau5PnEEWalZJDaogdVuwe3yeOcLbKFW7vtwOEII9m4+YChTkZftYM+m/T7bK4q/f1vN6LvHFvFFmPbBLKQqGf76MKSWhUy/G2Qx/+HMZ5DWtogC45kSELbuuuOXj4exAraLKuaDnMYIc13d2Mc5H9TDetHd0r5cNZczmdK6hmbgX8sMKeU1Fb6iCuRYbo6hhDRA9bAw3ul1FXUio0mKqth8b4uEaizcu9vnH86iKNSNDp7Kdutq1Q29FkpCF5wzc3n9hqW+t6y0uLAp6+Zv9NneoE3dMreO9r7jcjYt38aiycv0YwiIqRbFs5MeKfK+yNgIr63k18/+yNQPZnqDx4Hth7DaLbS9tCXJu49Qq3Eiw54dSMt8L+E6zWphDbH62GKGhNupe15wOoYAvh01yWeC2Znr5JePZ3Pzi4Mwq/NAGl2wVGTedETEfaWfxNIO7FeA84/8JwAB2CF0CMLcoLS9y4XUMpF5U/UZCHMTRMgghOnkjZ3KixBWsBtPyJ9rlNY19E6lrCJIHMjM9BvF0hwOLkzy74BVHga1aMW4tat8nL9CLBYuqxe8X7IXL+3BDVMn4fJ48EiJWQjMJhOtEqqzNTWFmJAQrmjYmN+2bSXd6UACtSIiGdP7mgqZdvbHPe/fyoPdnsPlcKG6VRSTomsJfTKizMdUFIUnv7mPG58dwLYVO4irFUuri84z1PEBvdW0cBAowOVwY7Ga+XbHJz77dO7TnuiEKFx5bm+e3mRWCIsOo9uALmVee2kk7zXW09JUjey0HKLDczDM76OCDKxWIISAqDfB1QeZNwOECWG/FmEL3ucCXa9Hpg4ALQe9pWseMmccxE5EWILn71FFyZSWGlpYWQsJBpEGomgFBFLcLStJUVF8cEUfHps7GyEEUkpCLVbGXXNtUC+4rapVZ+YNN/PFmpVsTjlKi2rVGdGuo89TyFMXXszu9DTMilKiXERFUb9VXcauf4cp781g28qdNGhdh+sfvYbaTcrfQVWrUSK1GpXeknvs4HEUP05zuzfsM9xuMpsYvexVPr7/S5b9uhKpSTr3bc/9Hw3Hagtey2DDNvUMn6CsIVYi4yNAXgxZb/ruKEIQ9sB72oUQYLsEYSvj9HEZkJmv6wNv3kDmBOlCZj6LiJtUaeuooiilpYYmSykHCSE2UDRFJAAppaw8s9MyUC86hjCLhRyD3PkVhdzFPJrGHzv/48/du4gPCWVwy1blmjQGuKJRY7rXq8/a5MPYTCba1EgMan2ggLrR0bxymX8FRdAvAOX9fCdLjXrVuO/D4ZV6zsLE1YzxW6uo28JXWiQvOw+z1UxMtSiem/SIV1uoMnLIt786lMcvH1UkPWQLtXHbKzdgMpmAOsjQWyD3O/S7aqkraFq7g6WMGv2VhWsRvk8zEtzrkdJVovBbFcGjRNE5IUSilPJwvl+AD1LK0pvnK5iTFZ2buX0bj86djSs/TaMIQbTNxqxht1AtLByXqjJs2mS2HEsh1+32plPe6nEFfZs0C9bHqOIUMPaJ75g+Zo6PN3BhwbhNy7bx/p2fcWD7IRRF4ZLBXXngkxGEhIf4O2xQ2Lx8G+Oe+oGd6/cQXyuWm18YxCWDig6xSdcKPdcu3Qj71frdvZHL12mEduR8P9LYFkT19f61fqooNyWJzgWkPpp/kBrormMSWCmlDF7jeQmURX10/ZFkxq1ZxYHMDC5MqsOtbTsQn6+v8+OG9byyeIGPtn+oxcKqO+4u04BZFSdPekoGnz78jd6WKQQXD+zCyHdvITKuZPMPj9vDkb0pRMVHekXb/KFpGhPf+Jkp784gKy2HOs1rc+8Ht9G+h/5ge+C/w9zd/vEignkWm4WW3Zrx1tzn/R22ipNAy3wDcn+gqCGMBexXoES/d6qWdU5Q7kAghBgBPI/uPSCAS4CXpJRfVeRCA6GiZaiHTZvM8gO+rYDhViuf9+nHBUmlt+JVUT7cLje3n/cQKftTvUVZs8VEjfrVGLfxfb+dRTO/mMsXT3yPmi8q1+26zjzyxUi/pjeFkVL6pHk+um8cM8fO8zGxt4VY+Wzt2xVS0zjXkdKBTLsLXOtODJKY6iFixyOU4E9rn8tUhAz140A7KXU/PCFEHLAM3ansjCbUYpyTlFIS4sespSxIKZm+fSvfrl9LjttN70ZNuL1dB792j+cSy35dRUZKZpELsMetkno4jX9mraHrNef77LNi9lo+ffibInn0pT//g5SSZyY8VOo5jXL9ezbt9wkCoIvjHd51pCoQVABC2BGx45HuzbqAm6k+WNqcs/37pwuBBoJUdKG5ArLyt53xDG3VmmX79+mSzYWIsNpoXT1wG73SGLVwPlM2b/SmoPampzFj+1Zm3HDjGZ9+klKyYvZaZo/7E6fDxeVDL+LSIReWOiOgqipH9x5j+6qd5BmI0jlzXezddMAwEEx4bZpPr73L4WbpzyvISssmIubkhdGaX9CELX9v9+oKFeB2uqnXsurJsCIRluZgaX6ql1FFPqV1DRVM5+wA/hFC/IpeI+gH/BvktVUK3evW56bWbRm/fg0mRUFBYDGZ+LLfdRXW5XMwM5PJmzYUmStwqiqHsrL4ddtWBrdoVSHnOVV8/th4Zo6d582tb1y8hXnfL+K1WU/77etfPO0fRt89FkeOE4/L4zV/L4wt1ErtpsZ34cf8CNmZLCYyUjLLFAj639+b3z6bi8etFpk0vmjgBSTUrvyBpyqqqCxKeyIoqNTtzP9TwK/BWU5wyHI6mfXfNpJzsmlXoybd6tT1XuSFEDzV7WJuatOWFQcOEGW3c1GdulgqcM5gTfIhzIriM2CW53GzcO/uMzoQHNqZzIxP/8DlOPFE5chxsmnZNlbNWU+nq9r57LNt1U7evPlDQ//fAkxmE5GxEVxwtbH3UYtuzUg5kOoTPBRFUL1eQpk+S1xiDB+veJ0vnvyetfM2EBIRQv/7ruT6x07rAfoqqig3pQ2UvVhZCwkWm1OOcsPUyaiaRq7HTajFQrO4eH64blCR4a5aEZFce15wHlUTQo27WcyKQq2IyKCcs7JY++cGhMFdvyPbwd+/rTIMBFPem4Erz3e2Q1EECD04d+nbgQfGjMBsMf6K3vzC9fw9YxWOHKc3GNhCbQx/fRgWa9lTbbUaJTJq6tknM1xFFSURUI1ACJEAPIHuVuZ1JpNSXlbKflcCo9EFwMdJKd8weM8gYBR6ymm9lHJooIsvDSkl98/+jSzXiVa1XLebzSkpfLl2Nfec37miTlUinWrVJtoe4mOKY1YUhrZqUylrCBbhMeEoJt8Umtli8tv6mbzrCEbdaiHhdl785QlaXdzcb0qpgFqNEhmz6k2+HfUTGxZvJqF2HDf87zq69C3RPbWKKqowINBi8Q/AJHS3spHALYCxIEo+QggT8AnQEzgArBRCTJdSbi70nsbA/4ALpZRpQohqJ/8R/HMwK5PD2Vk+2x2qh2lbN1VaIFCEYMJ1g7jrt1/Yk5GOSeh1iHd6XkX96JhKWYM/NE3jzWWLmbjxX1yqSrsaNXm755XUigzsSaVzn/aGF22T2cQVtxorura5tAU71+3BXcxPwO3y0KBNvVKDQAG1GiXyv+8fCOi9VVRRhX8CDQRxUsovhRAP5usPLRRCrCxln07ADinlLgAhxET0IvPmQu+5A/hESpkGIKU8enLLLxmBQNWM5yQCnKOrMJKiopg17Bb2pqeT63HTODauwu0hy8LAn34solj698H9XPrtlyy97Q4SwkovuNpDbbz++7M8d/UbuJ1uELo42uNf30tiA2MXrQEP9WX2l/PR0nNQ87X+7WE2rn2gd5mKvFVUUUX5CDQQFCR0Dwsh+gCHgNLEamoBhSe1DgDFb8GbAAghlqKnj0ZJKX8PcE2lUjMiAn8q2pUhtmZEMGWoT5atKSmGstUeTWPUwvl80juwIul5nRsz6dBYNi/fjtvppsWFTbGF+B/qiqkezWdr3ua7l35i1Zx1RMVHMPCRa7hsaLcyf5Yqqqii7AQaCF4RQkQBjwIfAZGAr8Nz2c7fGOgO1AYWCSFaSSnTC79JCHEncCdAnTqB93MfzMr0O6iyLyPdcPu5xG//+Rq3F/D3ASNzb/+YzCZaXXRewO9PqB3HI2NHntQ5qqiiiuAQUCCQUv6W/58ZQKBWXgeBpEI/187fVpgDwD9SSjewWwixHT0wFEk7SSnHAmNBl5gI8PwIhN9ZgMpQAj3dKempKDak7CJrUkp+/nAWk9+ZTlZqFk06NmTke7fStGPJ5jcZxzJZMWstCL32EBlbss5QFacHUkrQjoCwIZRTW/OqomwElKQWQjQRQvwphNiY/3NrIcSzpey2EmgshKgvdG3ZIUBxU9Vf0J8GEELEo6eKKszdvVZkpGF7pt1sZuB5LSrqNGcsA89r4bdO8XCXC8t83HFPfc9Xz/xI6sHjuBxuNi7ZymPdXyjR3vGPbxcwtM5IPrpvHB/dO46hSSP5a9LSMq/hZJBS4nK4DDuZqigZ6VqFPNYDmdITebQbWuqNSLVCS31VVAKBViu/QO/ucQNIKf9Fv7D7RUrpAe4D5gBbgMlSyk1CiJeEEAXJ5zlAqhBiM/AX8HiBnlFF8dFVfYmy2Qi1WFCEINRioXX1Gtzatn1FnuaMRFEUJg4Y7GPSc3vb9vRu3KRMx8zNyuOXj343cAJz8cMrUwz3ObovhdEjx+JyuMnLdpCX7cCZ5+Kd28aQejitTOsIlD8nLOaGpLu4OvxGrou/jUlv/1oVEAJEqoeQacNB3Y+uJuoG92rk8Zuq/g3PMAKtEYRKKVcUy7d7/L25ACnlLGBWsW3PF/pvCTyS/ycoNItPYOntdzF7x3aSs7NpXyORLrWTqkSu8mmfWJMt9z7Esv37SMnJpmeDRoSWQwgvefdRzFYTrmLSQZom+W+N8cPewsnLvZIORRCweOrf9L/vqjKvpySW/bqS9+/8zDvhnJ2Ww/cv/QRSMviJ/kE559mEzJ0IsvhlQNXTRO5VYPXViKri9CTQQHBMCNGQ/BYcIcRA4HDQVlXBhFosDKhKBZVI1wqS205IivMRbQNdcbjOeb5OYAAupxuPgeqn6lFxO3wnkCuKr5/70UfmwpHj5MfXf2bgo1fnu4FV4Rd1LycaCgsjQK1cuxIpXeD4A+n6B0y1ECHXIUwVOpZ0VhNoauhe4HOgmRDiIPAQcHfQVlXFGUtETDg9b7oYW2jRpwpriJVhzwww3Kdz7/aGgx2aR6NTn+Cl8JL3GM9EOnOdOAzUUKsohqUTYNBUID1gaVlpy5BaNjL1OmTGs5A3CbI/Rh7rhXRVnG/J2U5AgUBKuUtK2QNIAJpJKbtJKfcEdWVVBIRbVflz904mb9rA7vTg5tMD5f5PRtDv3iuxh9kQiqB2k0Re/PkJmp7fyPD9qYfTUAwkq01mhdRDwftMdZoZK5uGRYUSEnHiApednsP8CYuZ9/0iMlN9J9XPVURIf1BigMLaTnaw90CY61faOmTOV+DZC+Tmb3GBzEWmP1JVqwiQQLWGXgPeKujvF0LEAI9KKUvrHKoiiOw4nsoNUyfj9HhQpUSTGv2bNue1y3ue0hqI2WLmjjdvYvjrw/C4Vay2kkXgtq3Yger2TQ1pmmT7yh20vzw46qzDX7+R5695A2deMZP4V2/wylwsmrKcN2/5GJNJ/1n1qDz42Z30url7UNZ0JiGUMIifhsz+BBxzQdghdBgi9MbKXYhjJkWtL/PRMvT0lble5a7nDCTQ1NBVhYe88iUhegdnSVUEgpSSO2f8wvG8XLLdLvI8bpyqyoztW5m+3f+gWGWiKEqpQQD0uoI9zHcS2RZiJSEpPhhLA6D95a148ZcnaNimHla7hZqNavDI2Lvoc0dPANKOpPPmLR/jynN5u5lcDjejR47lyN4SpbbOGYQSixL5HEq1RSgJf6CE3YIuM1aZi/DX3KCV8FoVhQk0EJiEEN7fVCFECFC6MWwVQWPH8eMcycnxEdDI9bj5YcP6U7KmsnLJoK6YrWYKP8QIIbDYLXS7rlNQz92hZxs+W/s2M3MnMH77R1w29CLva4un/oPRc5WmSRZOXhbUdVVxEtj83JMqsQhTlb1oIAQaCH4A/hRCDBdCDAfmAuODt6wqSsOpevxORzs8weu0CQahESG8t/Al6raog8VmwWKz0KB1Xd5f9HKJmkXBxuVwoWmaz3bNo+J0+DfVAUhPyWDF7LXsWLu7Kk8dbNTDYBSytSx00YIqSiNQiYk3hRD/Apfnb3pZSjkneMuqojSaxSdgMSk+3Xt2s5lrmgSu+XO6UL9lHb74911SD6chBMTWOPVSBZ37tOfr5yb6bLfYLVzQt6PhPlJKvnpmAtM+mInFZkH1qNSoX5035jxLXOKp/0xnJe6lGIpLCi2/RmDcpFDFCQLWQZZSzpZSPpb/pyoInGLMisL7vXoTYjZjUfScbKjFQqPYOG5sfeaa3cQlxpwWQQAgqWktBjzUB1uo3v0khMAeauOq4ZfTqJ1xV8ziqX/zy0ezcTnc5GTk4shxsm/LAV4c8HYlr/4cQvHjJy09IE6P79LpTqBdQ9cBbwLV0J/BBPpg8Jnts3iGc0m9+sy58VYmb9rIkZxsLqpTlysaNq5Qv+WKYvvqnYx/YTK7/91LUrOa3PTCIFpe2OxUL6tUbn91KBdccz5//rAITZNcNuRCWpSw7qkfzMSRU7SDRVM1dq7bw9F9KVSrUzY/5bIgtRxk3m/g2QLmpoiQqxHK2ef3IMKGI9OfAPIKbbWAtTPC5CdIVFGEQCeL3wKullJuCeZiqjh5akdG8cgFZReIqww2Lt3KU1e8givPiZSQciCVTUu38cLUxzj/Sl9P49ON8zo35rzOjQN6b3ZatuF2k8VEdnou1SpmgLtUpHoYmToAtBz0C2QIMns0xE1BmI0nvM9UhP0KZPhuyB4DwgzSDZa2iOj3TvXSzhgCDQRHqoJAUaSUrEk+xJ70dJrExdOqmrEbV0Wfc+n+fUzdshGPJunXtBmX1W942ktqf/boeB8ROmeei08e/Jpvtp3+geBk6NrvfA7vPOJjw2kym6jbvPIuwDLzJdCOAwXF7jyQTmTmKETsuEpbR2WhhI9Eht4Inv9ASTjrgl2wCTQQrBJCTEKXjfb+RksppwVlVac5mU4Hw6b95J3klVLSqnoNvr7mOkIspffNl5VXFy/gx40byMvvCvprzy4uq9eA0Vf2Oa1F9Hat32O4/dCOw6geFZPBVPGZyvWPXcP8CUtIT8nEledCUfQ22Ic+u6tyP6dzESeCQAEauJYipTytvy9lRSjhYD27biwqi0ADQST6/HavQtskcE4Gguf/+pPtqcdwF2otXJ98mHeWL+G5iwP17Tk5dqUd54cN/+JUT9xp5rrd/Ll7F6sOH+T8mqfvHVBkfCSpB4/7bA+JCEExnXrf5ookMjaCsevfYebYeayas45qdeLp/0BvGrWtPMkFHRPGgnBnT9AtCSldyNzJ4JgBwo4IvQFsV5yVAbAiCLR99LZgL+RMQZOS2Tu2FwkCAE5VZeqWTUELBIv27sGoRS7P4+av3btO60Aw5Mn+jHvqhyLpIVuojese6ntW/mKGRYUx6PF+DHq836lbREgfyJtO0WBgAfvZfzGU0oM8fiO4t1FQQJaudRDyNyJq1Cld2+lKoF1DdmA40AKwF2yXUt4epHWdtmhSovoZEHKpvno5FUWY1YpJUaDYOSyKQrj19B7y7nfvlWQcy+Snd2agKAJN1eh7Zw9ufM5YjbSs5GTkMPHNX1j403Jsdit97+5F37t6npNy0iLif0j3Zr2PXqogTGCqjYh8vvSdz3Sc88CznaJdRHmQNxUZdhvCXLdchy8YEDybAmqgqaHvgK3AFcBLwDB017FzDrOi0L5GTVYfPljk/lxBcEndekE77xUNGzFqwXyf7SZFoV/T03uATAjBLaMGM+TJ/qQcOE5czRhCwuyl73gSuBwu7uvyNEf2pOB26nfBXzzxPRsXb+GZHx+u0HOdCQglEuJ+AdcKvYBqbqi3U4qzKxVnhHQuAZlr8IoCrpVQxkAgtePIjFF6oEEibRcjIl9EmGqUZ7mnBYF+KxpJKZ8DcqSU44E+QOfgLev05rXLexJhs2E363E0xGwmJsTOs0FKCwFE2ux83rcf4Var90+I2cw7Pa+kVuSZMc5hC7FRu3FihQcBgL8mLuXYgVRvEADdV2D59FXs23ow4OO4XW7mfb+Ilwa+w+h7xrLTT6H7TEAIgbB1RoTdiLBdcE4EASB/wMygaUMo+bLZJ4+UKjJ1SH4Q8AAqOBciUwci5ZnvXRHoE0HBb1e6EKIlkIw+XHZO0ig2jvk3385PmzayNfUYratXZ8B5LYm0BTdF061OXVaOuJvlB/ajahpdaicRVg5bybOJdX9t9BnkAhCKYMvf26nTrFapx3A53Tx6yfPs2bQfR44TxaQwd/xC7vt4OFfedlkwll1FEBAhA5E5X+NbLLeC7SKjXUrHuQi0FIo69Gogs8HxO4Sc2damgQaCsfkeBM8C04Fw4LnSdhJCXAmMRm9VGCelfKPY67cCbwMFt2wfSynPiCbn2JBQ7uoYXGVMI2xmM93rVXYHyulPjfrVsNjMPjaZQhHE14oN6Bhzxy9g98b93qK2pmo481x8fP9XXDKoa1CeZKqoeIQ5CaJHIzMeQ2+w0EBEI2I+R5RVllrdBdLA80DmIt3/IQyM2s4kSgwEQojCpvIFnUOf5P8dVsq+pvz39gQOACuFENOllJuLvXWSlPK+wJd8+uBWVTKdTqLtdr2QW8Upo/eIHkx5d0aRQKAogojYcNpeFpht4sKflvsMvoHulLZ52TY69DxzNZzONYT9UrD9De6NIGxgPq98xV1zI/04spgftwhFWJqWb7GnAaU9EUTk/90UOB/9aQDgamBFKft2AnZIKXcBCCEmAv2A4oHgjENKyUcr/uaLNStxaxp2k5kHu3TltrbB89etomQSasfx6syneeOmD8lMzUJTJQ1a1+G5yY8G3DUUHm18byOlLGJdWcWZgRCWihsws3YDpYbeheVND5lARIH9ioo5xymkxEAgpXwRQAixCGgvpczK/3kUMLOUY9cC9hf6+QDGBeYBQoiLge3Aw1LK/cXfIIS4E7gToE6dShJrKYHPV6/k89UryPPoXwiXqvLOssVEWK0MbF55pt1G7E1PZ9zaVWxKOUqLhGqMaNeRutHRp3RNlUXri5vzw55PSd59FIvdQnzNwFJCBfQd2YuVs9fiKPZUEB4VRrNOVVLG5zJCmCDuR2Tma3pNAA1slyEin6WQZ9cZS6D5jOpAYScOV/628jIDqCelbE0JZjdSyrFSyo5Syo4JCZWn3uhnLXxWKAgUkOfx8OGKv0/RqnQ2Hj1Cnx+/ZdLGf1mXfJhJG/+lz4/fsvHokVO6rspECEFig+onHQRAt64c/GQ/LHYLoREhhEaEEFM9mtdmP+P1MK7i3EUo0SjRb6HU+BelxkaUmKyH6lIAABJdSURBVA8RprOjZybQYvG3wAohxM/5P/cHvilln4NAUqGfa3OiKAyAlDK10I/j0FVOT2vcmkaW06BoBBzNMVaerCxeWPAnue4TnRIeKfG43Yxa8CdTBg09hSurHHIyc/np3RksnLQMW4iVq+/uxVUjLj+pi/iNz11Pnzt78u+iLUTEhNGme4tyawTl5TiY+t4M5v+4FLPFRJ87e9D3rl5nlcZSFWc2gUpMvCqEmA0U9F7dJqVcW8puK4HGQoj66AFgCFDkaiSESJRSHs7/8RpO0yE1l6rywd/L+GHDOnLcbsyK4iMxAXpb6alk/ZFkw+3r/Gw/m3A5XDxwwdMc3n0Ut0MPhp8+Mp5/F2/hf989cFLHioyPoF7LJMKjw8p9sfa4PTx80XPs33oQV/66vnjyB9bO38ioqY+X69hVVFFRBPpEgJRyDbDmJN7vEULcB8xBbx/9Skq5SQjxErBKSjkdeEAIcQ169eU4cOvJLL6yeHzu78zdtQNHfjpIM5CYsJvNPN3tkspeWhFCLRayXb5eumFBVEQtTF6OA03VCIsMrZTzFWbh5OUc3XfMGwRAHyhbMu0f9j97kKSmpc8RACz5+R/ev+tzXA43qkelWafGPDf5EWKqRZVpXUt/WcmhHcneIFCwrlVz1rFj3e5TIEZXRRW+BDXxKaWcJaVsIqVsKKV8NX/b8/lBACnl/6SULaSUbaSUl0optwZzPWUhOTuLP3b+5w0CBShCEGsPIdJmo0NiTb7pN4CuSae2kH1Dy9beaecC7GYzw1q1Dep5Uw+n8b8rX+Ha2FsZEH8793R8gt0b9gb1nMVZM3+D4UCZogg2L98e0DF2rNutdx0dy8KR7cDtcLN5+TaevurVMq/r30WbyMs2mDyVsCXAdVVRRbAJ+IngXGVPejpWkxlnMbE3TUrqREUxbfCwU7QyXx69oBuHs7KYu2sHVpMJl6rSs0FDHurSNWjnVFWVRy5+jiN7U1A9errsvzW7efiS5/l2x8dExkaUcoSKoXrdBCxWs48hjKIoxAVYOP7lw1lFnigAVLfK/m2H2PXvXhq0PnmNmoSkeKx2S5EnAtCNagJdVxVVBJuqVohSqBcdXcQDoACzEDRPOL06BqwmEx9e1Zf5Nw/nsz79mH/zcEZf2RdrENU31/65kbSjGd4gUIDH6eGP8QuCdt7i9B5xOSZL0c+pKIKw6FDaXR5YS2/ynhQ0zTftZ7aYSD3k66cQCL1uvsSnziCEwBZq4/yrgvukVkUVgVIVCEqhRngEVzRs5JNysZrNjGjf8RStqmQSIyK4IKkOiRHBvxs/vOsImse3cO7Mc3Fg22GDPYJDtaR4Xp7+FHE1Y7CH2bDaLTRoU493F7wY8EBZ+56tsdp9JQjcTjeNOzQo07pia8Tw2uxnSEiKxx5qwxpipV7LJN5b+CIWa+XUbqqoojTOidSQ0+Phrz27OZKTRbsaNWld/eRkY9/ueRXv/72UCRvWk+N206Z6DUZ1v5x60WVTMjybaNSuPkLxHd23h9k4r0tghu8VRdtLWzJh32cc2pGM1W6hWp2Tmzm5emQvpo+ZQ0ZKJp78FJM9zMY1915JdELZisUALS9sxg97xnBwRzIWq5nqdU/tLEwVVRRHSD8mK6crHTt2lKtWrQr4/bvSjjN4yiQcHjceTUMRgs61k/i8Tz8s56BhSUUjpeTxy19ky9/bvXlwk8VEfM1Yvtz8PraQM2vqMj0lg4lv/sLyX1cRERvGgIevpvvgrmeVCUkV5yZCiNVSSsM0xlkfCHr/MJ5tqceKmMiEmM081rUbt7XtUPELPAdxOVx8/8oU5nz9Fx6XyoXXduL2V28o1110FVVUUbGcs4HgUFYml3/7lU/HD0Dj2Djm3HhrBa+uiiqqqOL0pKRAcFYXiz2a5veR3mMwGfz/9u4/yKryvuP4+7PL7soiIhTGqFB3VaISlR9FA0karUqLP4KdmEZMmpBEy8SqI8ROitKxE1NnqjP1RyamDqYmnalKq8aUAadqiWmjbQQUURQRlE2BIGADQfm1LPvtH+esOSzrsqR7Oefe83nN3Ln3POe5dz/cs8v3nufc8xwzszKq6UIw6pghjGg+eGrhpvr6wl/n18zsSKnpQiCJ70y9lEENjR98/bO5oYFThg4r7Fc/rfqtemENN0y+halN0/mTj1zN/DueoNN7oFZgNX2MoMuvdu/ix2+sYuN7OzjnhJFcdPIpDPC0wlYB61b+DzdMuuWAK501NTdxyTUX8uf3fLWXZ5pVVm/HCEpxHsGwgc18bby/IWSV9/Dtj9O+58CJ//bu2suiec8w41ufZ9CQXq/wapaLUhQCq007fvUeC+9/muWLV/KRlhF8dtaltJ51+PMB9ae1y9uInqapaBzApnVbPNuoFZILgVWlbZu38/UJ3+T9be/TvmcfdfV1PDv/eebOn83kz+R3/KflzFFsXLOJ7kOuHe0dPqPYCssD5VaVHr79R+x4d8cHZzN37u9k7+527vqz+3M9MPvFuVfQOPDAOYSamhuZ8uXzGDz06JxSmfXOhcCq0s8XvkjHvoNPFNyzcw+/fCu/azSfOr6V2xfdQutZybUpmo8ZyBWzP8MN370mt0xmh+KhIatKRw9thraD2/d3dDJoyJG/QlrW2PM+xrwVf0dnZ6cvem9Vwb+lVpU+O+syjhp04IR2Axrq+dgnT/utLyvZ31wErFpU9DdV0lRJqyWtlTSnl35XSApJPsvL+uSiP/00l86cQsNRDQwaMpCm5iZazz6JuY/MyjuaWdWp2AllkuqBN4EpwAZgKXBVRLzerd9gYBHQCFwfEb2eLfbbnFBmtWvb5u2sXb6O4ScOy/2ro2ZFltekc+cCayPi7YhoB+YDl/fQ79vAHUAPV/g2693Q447lnKnjXQTM/h8qWQhOBNZnljekbR+QNAEYFRGLKpjDzMx6kdvRLEl1wF3ATX3oO1PSMknLtm7dWvlwZmYlUslCsBEYlVkembZ1GQycCfxUUhswCVjQ0wHjiJgXERMjYuKIET4708ysP1WyECwFRktqldQITAcWdK2MiF9HxPCIaImIFuDnwLRDHSw2M7P+VbFCEBEdwPXAU8Aq4F8i4jVJt0maVqmfa2Zmh6eiZxZHxJPAk93abv2QvudXMouZmfXMpz6amZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJVbQQSJoqabWktZLm9LD+65JelfSypOckjalkHjMzO1jFCoGkeuA+4GJgDHBVD//RPxwRZ0XEOOBO4K5K5TEzs55Vco/gXGBtRLwdEe3AfODybIeI2JFZHAREBfOYmVkPBlTwtU8E1meWNwAf795J0nXAN4BG4IIK5jEzsx7kfrA4Iu6LiFOAvwT+qqc+kmZKWiZp2datW49sQDOzGlfJQrARGJVZHpm2fZj5wB/3tCIi5kXExIiYOGLEiH6MaGZmlSwES4HRklolNQLTgQXZDpJGZxYvBdZUMI+ZmfWgYscIIqJD0vXAU0A98GBEvCbpNmBZRCwArpd0EbAP2AbMqFQeMzPrWSUPFhMRTwJPdmu7NfP4xkr+fDMzO7TcDxabmVm+XAjMzErOhcDMrOQqeozArD9FBGteeptfrn2H1rNP4qQzRuYdyawmuBBYVXh/+07m/NHf8IvX11NXV8f+jv2Mu+BM/vrxv6ChsSHveGZVzUNDVhXuvXYeb61oY8/Ovex6bzd7d7ez/Ccreejbj+UdzazquRBY4XXs6+C5J5bQ0d5xQHv77nYWPbA4p1RmtcOFwApvf8d+Ovd39rhu7+69RziNWe1xIbDCaxrYxMljTzqova5OnDN1fA6JzGqLC4FVhZseuJaBgwfS0JQcGG4c2MjgYYOZeeeXck5mVv38rSGrCqeOb+XBVfew8P6naVu5njMmjebiay7kmGGD845mVvVcCKxqDD9hGF+5bXreMcxqjoeGzMxKzoXAzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxKzoXAzKzkXAjMzEpOEZF3hsMiaSvwiz52Hw68W8E4/aVackL1ZHXO/lUtOaF6sh7pnCdFxIieVlRdITgckpZFxMS8cxxKteSE6snqnP2rWnJC9WQtUk4PDZmZlZwLgZlZydV6IZiXd4A+qpacUD1ZnbN/VUtOqJ6shclZ08cIzMzs0Gp9j8DMzA6hZguBpKmSVktaK2lO3nm6SHpQ0hZJKzNtwyQ9I2lNej80z4xpplGSnpX0uqTXJN1YxKySjpK0RNKKNOe30vZWSS+k2/+fJTXmmbOLpHpJyyUtTJeLmrNN0quSXpa0LG0r1LZPMx0r6TFJb0haJWly0XJKOi19H7tuOyTNKlLOmiwEkuqB+4CLgTHAVZLG5JvqAz8EpnZrmwMsjojRwOJ0OW8dwE0RMQaYBFyXvodFy7oXuCAixgLjgKmSJgF3AHdHxKnANuDqHDNm3QisyiwXNSfAH0TEuMxXHIu27QHuBf4tIk4HxpK8t4XKGRGr0/dxHPB7wC7gCYqUMyJq7gZMBp7KLN8M3Jx3rkyeFmBlZnk1cHz6+Hhgdd4Ze8j8r8CUImcFmoGXgI+TnKgzoKffhxzzjST5g78AWAioiDnTLG3A8G5thdr2wBBgHemxzqLm7JbtD4Hni5azJvcIgBOB9ZnlDWlbUR0XEZvSx+8Ax+UZpjtJLcB44AUKmDUdbnkZ2AI8A7wFbI+IjrRLUbb/PcA3gc50+XcoZk6AAJ6W9KKkmWlb0bZ9K7AV+EE63PZ9SYMoXs6s6cAj6ePC5KzVQlC1Ivl4UJivckk6GngcmBURO7LripI1IvZHsts9EjgXOD3nSAeRdBmwJSJezDtLH30qIiaQDK9eJ+nT2ZUF2fYDgAnA30fEeGAn3YZXCpITgPT4zzTg0e7r8s5Zq4VgIzAqszwybSuqzZKOB0jvt+ScBwBJDSRF4KGI+FHaXMisABGxHXiWZIjlWEkD0lVF2P6fBKZJagPmkwwP3UvxcgIQERvT+y0k49nnUrxtvwHYEBEvpMuPkRSGouXscjHwUkRsTpcLk7NWC8FSYHT6jYxGkt2xBTln6s0CYEb6eAbJeHyuJAn4B2BVRNyVWVWorJJGSDo2fTyQ5DjGKpKC8Lm0W+45I+LmiBgZES0kv48/iYgvUrCcAJIGSRrc9ZhkXHslBdv2EfEOsF7SaWnThcDrFCxnxlX8ZlgIipQz74MnFTwocwnwJsl48dy882RyPQJsAvaRfKK5mmSseDGwBvh3YFgBcn6KZFf1FeDl9HZJ0bICZwPL05wrgVvT9pOBJcBakl3xprzf00zm84GFRc2ZZlqR3l7r+vsp2rZPM40DlqXb/8fA0ILmHAT8LzAk01aYnD6z2Mys5Gp1aMjMzPrIhcDMrORcCMzMSs6FwMys5FwIzMxKzoXArJ9IasnOKnsYz/uvzPO/0P/JzHrnQmCWk64ziiPiE2lTC+BCYEecC4GVRvqJ+w1JD6Vz1z8mqVnShemkZa+m14toSvu3SbozbV8i6dS0/YeSPpd53fc/5Gf9TNJL6e0Tafv5afsCkrNgs8//W+D30znrZ0v6T0njMq/5nKSxFXuDrLRcCKxsTgO+FxFnADuAb5BcI+LKiDiLZCKzazP9f522f5dk9tC+2gJMiWTitiuB72TWTQBujIiPdnvOHOBnkcxdfzfJFB9fAZD0UeCoiFhxGBnM+sSFwMpmfUQ8nz7+J5L5adZFxJtp2z8C2Zk2H8ncTz6Mn9MAPCDpVZKpI7IXRloSEev68BqPApelk/99jaRgmfW7AYfuYlZTus+psp1kzpe+9O963EH6IUpSHdDT5SVnA5tJrppVB+zJrNvZp6ARuyQ9A1wOfJ7k6lZm/c57BFY2vyup65P9F0gmLGvpGv8HvgT8R6b/lZn7/04ft/Gb/5SnkXz6724IsCkiOtPXrO9DtveAwd3avk8yrLQ0Irb14TXMDpsLgZXNapILrawimanybuCrwKPpME4ncH+m/1BJr5Bca3h22vYAcJ6kFSTDRT19wv8eMCPtc/qH9OnuFWC/pBWSZgNEciGbHcAPDu+fadZ3nn3USiO95ObCiDizj/3bgIkR8W4FYx0qwwnAT4HT070Ls37nPQKzgpL0ZZLrRM91EbBK8h6BmVnJeY/AzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxK7v8A+me/ab3a2nMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "from sklearn.cluster import KMeans\n", + "kmeans = KMeans(n_clusters = 3)\n", + "kmeans.fit(X)\n", + "labels = kmeans.predict(X)\n", + "plt.scatter(df['popularity'],df['danceability'],c = labels)\n", + "plt.xlabel('popularity')\n", + "plt.ylabel('danceability')\n", + "plt.show()" + ] + }, + { + "source": [ + "इस मॉडल की सटीकता खराब नहीं है, लेकिन बहुत अच्छी भी नहीं है। हो सकता है कि डेटा K-Means क्लस्टरिंग के लिए उपयुक्त न हो। आप कोई अन्य विधि आज़मा सकते हैं।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 811, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Result: 109 out of 286 samples were correctly labeled.\nAccuracy score: 0.38\n" + ] + } + ], + "source": [ + "labels = kmeans.labels_\n", + "\n", + "correct_labels = sum(y == labels)\n", + "\n", + "print(\"Result: %d out of %d samples were correctly labeled.\" % (correct_labels, y.size))\n", + "\n", + "print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/5-Clustering/2-K-Means/solution/tester.ipynb b/translations/hi/5-Clustering/2-K-Means/solution/tester.ipynb new file mode 100644 index 000000000..bcea7fc68 --- /dev/null +++ b/translations/hi/5-Clustering/2-K-Means/solution/tester.ipynb @@ -0,0 +1,341 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "6f92868513e59d321245137c1c4c5311", + "translation_date": "2025-09-04T02:12:46+00:00", + "source_file": "5-Clustering/2-K-Means/solution/tester.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                                1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                                3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                \n
                                " + }, + "metadata": {}, + "execution_count": 105 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import numpy as np\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "हम केवल 3 शैलियों पर ध्यान केंद्रित करेंगे। शायद हम 3 समूह बना सकें!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 106 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
                                6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
                                \n
                                " + }, + "metadata": {}, + "execution_count": 107 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "scaler = StandardScaler()\n", + "\n", + "# X = df.loc[:, ('danceability','energy')]\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "Unknown label type: 'continuous'", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;31m# we create an instance of SVM and fit out data. We do not scale our\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;31m# data since we want to plot the support vectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0mls30\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 30% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0mls50\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 50% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mls100\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 100% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/semi_supervised/_label_propagation.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 229\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mX_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 230\u001b[0;31m \u001b[0mcheck_classification_targets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[0;31m# actual graph construction (implementations should override this)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/utils/multiclass.py\u001b[0m in \u001b[0;36mcheck_classification_targets\u001b[0;34m(y)\u001b[0m\n\u001b[1;32m 181\u001b[0m if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',\n\u001b[1;32m 182\u001b[0m 'multilabel-indicator', 'multilabel-sequences']:\n\u001b[0;32m--> 183\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Unknown label type: %r\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0my_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 184\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unknown label type: 'continuous'" + ] + } + ], + "source": [ + "from sklearn.svm import SVC\n", + "from sklearn.semi_supervised import LabelSpreading\n", + "from sklearn.semi_supervised import SelfTrainingClassifier\n", + "from sklearn import datasets\n", + "\n", + "X = df[['danceability','acousticness']].values\n", + "y = df['energy'].values\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "# step size in the mesh\n", + "h = .02\n", + "\n", + "rng = np.random.RandomState(0)\n", + "y_rand = rng.rand(y.shape[0])\n", + "y_30 = np.copy(y)\n", + "y_30[y_rand < 0.3] = -1 # set random samples to be unlabeled\n", + "y_50 = np.copy(y)\n", + "y_50[y_rand < 0.5] = -1\n", + "# we create an instance of SVM and fit out data. We do not scale our\n", + "# data since we want to plot the support vectors\n", + "ls30 = (LabelSpreading().fit(X, y_30), y_30, 'Label Spreading 30% data')\n", + "ls50 = (LabelSpreading().fit(X, y_50), y_50, 'Label Spreading 50% data')\n", + "ls100 = (LabelSpreading().fit(X, y), y, 'Label Spreading 100% data')\n", + "\n", + "# the base classifier for self-training is identical to the SVC\n", + "base_classifier = SVC(kernel='rbf', gamma=.5, probability=True)\n", + "st30 = (SelfTrainingClassifier(base_classifier).fit(X, y_30),\n", + " y_30, 'Self-training 30% data')\n", + "st50 = (SelfTrainingClassifier(base_classifier).fit(X, y_50),\n", + " y_50, 'Self-training 50% data')\n", + "\n", + "rbf_svc = (SVC(kernel='rbf', gamma=.5).fit(X, y), y, 'SVC with rbf kernel')\n", + "\n", + "# create a mesh to plot in\n", + "x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n", + "y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n", + "xx, yy = np.meshgrid(np.arange(x_min, x_max, h),\n", + " np.arange(y_min, y_max, h))\n", + "\n", + "color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)}\n", + "\n", + "classifiers = (ls30, st30, ls50, st50, ls100, rbf_svc)\n", + "for i, (clf, y_train, title) in enumerate(classifiers):\n", + " # Plot the decision boundary. For that, we will assign a color to each\n", + " # point in the mesh [x_min, x_max]x[y_min, y_max].\n", + " plt.subplot(3, 2, i + 1)\n", + " Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n", + "\n", + " # Put the result into a color plot\n", + " Z = Z.reshape(xx.shape)\n", + " plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)\n", + " plt.axis('off')\n", + "\n", + " # Plot also the training points\n", + " colors = [color_map[y] for y in y_train]\n", + " plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black')\n", + "\n", + " plt.title(title)\n", + "\n", + "plt.suptitle(\"Unlabeled points are colored white\", y=0.1)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/5-Clustering/README.md b/translations/hi/5-Clustering/README.md new file mode 100644 index 000000000..1b2cff649 --- /dev/null +++ b/translations/hi/5-Clustering/README.md @@ -0,0 +1,42 @@ + +# मशीन लर्निंग के लिए क्लस्टरिंग मॉडल + +क्लस्टरिंग एक मशीन लर्निंग कार्य है जिसमें समान वस्तुओं को खोजा जाता है और उन्हें समूहों में बांटा जाता है जिन्हें क्लस्टर्स कहा जाता है। अन्य मशीन लर्निंग दृष्टिकोणों से क्लस्टरिंग को अलग बनाता है कि यह प्रक्रिया स्वचालित रूप से होती है। वास्तव में, इसे सुपरवाइज्ड लर्निंग का उल्टा कहना उचित होगा। + +## क्षेत्रीय विषय: नाइजीरियाई दर्शकों के संगीत स्वाद के लिए क्लस्टरिंग मॉडल 🎧 + +नाइजीरिया के विविध दर्शकों के संगीत स्वाद भी विविध हैं। Spotify से डेटा स्क्रैप करके (प्रेरित [इस लेख](https://towardsdatascience.com/country-wise-visual-analysis-of-music-taste-using-spotify-api-seaborn-in-python-77f5b749b421) से), आइए नाइजीरिया में लोकप्रिय कुछ संगीत पर नज़र डालें। इस डेटा सेट में विभिन्न गानों के 'डांसएबिलिटी' स्कोर, 'एकॉस्टिकनेस', लाउडनेस, 'स्पीचनेस', लोकप्रियता और ऊर्जा के बारे में जानकारी शामिल है। इस डेटा में पैटर्न्स की खोज करना दिलचस्प होगा! + +![एक टर्नटेबल](../../../translated_images/turntable.f2b86b13c53302dc106aa741de9dc96ac372864cf458dd6f879119857aab01da.hi.jpg) + +> फोटो Marcela Laskoski द्वारा Unsplash पर + +इस पाठ श्रृंखला में, आप क्लस्टरिंग तकनीकों का उपयोग करके डेटा का विश्लेषण करने के नए तरीके खोजेंगे। क्लस्टरिंग विशेष रूप से उपयोगी है जब आपके डेटा सेट में लेबल नहीं होते। यदि इसमें लेबल होते हैं, तो पिछले पाठों में सीखे गए वर्गीकरण तकनीक अधिक उपयोगी हो सकते हैं। लेकिन जब आप बिना लेबल वाले डेटा को समूहबद्ध करना चाहते हैं, तो क्लस्टरिंग पैटर्न्स खोजने का एक शानदार तरीका है। + +> कुछ उपयोगी लो-कोड टूल्स हैं जो आपको क्लस्टरिंग मॉडल के साथ काम करने के बारे में सीखने में मदद कर सकते हैं। [Azure ML](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) को इस कार्य के लिए आज़माएं। + +## पाठ + +1. [क्लस्टरिंग का परिचय](1-Visualize/README.md) +2. [K-Means क्लस्टरिंग](2-K-Means/README.md) + +## क्रेडिट्स + +ये पाठ 🎶 के साथ [Jen Looper](https://www.twitter.com/jenlooper) द्वारा लिखे गए हैं, और [Rishit Dagli](https://rishit_dagli) और [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan) द्वारा सहायक समीक्षाओं के साथ। + +[Nigerian Songs](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify) डेटा सेट Kaggle से प्राप्त किया गया था, जो Spotify से स्क्रैप किया गया था। + +K-Means के उपयोगी उदाहरण जिन्होंने इस पाठ को बनाने में मदद की, उनमें शामिल हैं यह [iris exploration](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering), यह [प्रारंभिक नोटबुक](https://www.kaggle.com/prashant111/k-means-clustering-with-python), और यह [काल्पनिक NGO उदाहरण](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering)। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/1-Introduction-to-NLP/README.md b/translations/hi/6-NLP/1-Introduction-to-NLP/README.md new file mode 100644 index 000000000..3b3337803 --- /dev/null +++ b/translations/hi/6-NLP/1-Introduction-to-NLP/README.md @@ -0,0 +1,179 @@ + +# प्राकृतिक भाषा प्रसंस्करण का परिचय + +यह पाठ *प्राकृतिक भाषा प्रसंस्करण* (NLP), जो *कंप्यूटेशनल लिंग्विस्टिक्स* का एक उपक्षेत्र है, के इतिहास और महत्वपूर्ण अवधारणाओं को कवर करता है। + +## [पाठ से पहले का क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/31/) + +## परिचय + +NLP, जैसा कि इसे आमतौर पर जाना जाता है, मशीन लर्निंग के सबसे प्रसिद्ध क्षेत्रों में से एक है, जिसे उत्पादन सॉफ़्टवेयर में लागू और उपयोग किया गया है। + +✅ क्या आप किसी ऐसे सॉफ़्टवेयर के बारे में सोच सकते हैं जिसे आप हर दिन उपयोग करते हैं और जिसमें शायद कुछ NLP शामिल है? आपके वर्ड प्रोसेसिंग प्रोग्राम्स या मोबाइल ऐप्स के बारे में क्या जो आप नियमित रूप से उपयोग करते हैं? + +आप निम्नलिखित के बारे में जानेंगे: + +- **भाषाओं का विचार**। भाषाओं का विकास कैसे हुआ और अध्ययन के मुख्य क्षेत्र क्या रहे हैं। +- **परिभाषा और अवधारणाएँ**। आप यह भी सीखेंगे कि कंप्यूटर टेक्स्ट को कैसे प्रोसेस करते हैं, जिसमें पार्सिंग, व्याकरण, और संज्ञा और क्रिया की पहचान शामिल है। इस पाठ में कुछ कोडिंग कार्य हैं, और कई महत्वपूर्ण अवधारणाएँ पेश की गई हैं जिन्हें आप अगले पाठों में कोड करना सीखेंगे। + +## कंप्यूटेशनल लिंग्विस्टिक्स + +कंप्यूटेशनल लिंग्विस्टिक्स दशकों से अनुसंधान और विकास का एक क्षेत्र है जो यह अध्ययन करता है कि कंप्यूटर भाषाओं के साथ कैसे काम कर सकते हैं, और यहां तक कि उन्हें समझ सकते हैं, अनुवाद कर सकते हैं, और संवाद कर सकते हैं। प्राकृतिक भाषा प्रसंस्करण (NLP) एक संबंधित क्षेत्र है जो इस पर केंद्रित है कि कंप्यूटर 'प्राकृतिक', या मानव, भाषाओं को कैसे प्रोसेस कर सकते हैं। + +### उदाहरण - फोन डिक्टेशन + +यदि आपने कभी टाइप करने के बजाय अपने फोन पर कुछ बोला है या किसी वर्चुअल असिस्टेंट से कोई सवाल पूछा है, तो आपकी आवाज़ को टेक्स्ट में बदला गया और फिर उस भाषा से *पार्स* किया गया जिसे आपने बोला। फिर पहचाने गए कीवर्ड्स को एक ऐसे प्रारूप में प्रोसेस किया गया जिसे फोन या असिस्टेंट समझ सके और उस पर कार्रवाई कर सके। + +![समझ](../../../../translated_images/comprehension.619708fc5959b0f6a24ebffba2ad7b0625391a476141df65b43b59de24e45c6f.hi.png) +> असली भाषाई समझना कठिन है! छवि: [जेन लूपर](https://twitter.com/jenlooper) + +### यह तकनीक कैसे संभव हुई? + +यह इसलिए संभव हुआ क्योंकि किसी ने इसे करने के लिए एक कंप्यूटर प्रोग्राम लिखा। कुछ दशक पहले, कुछ विज्ञान कथा लेखकों ने भविष्यवाणी की थी कि लोग ज्यादातर अपने कंप्यूटर से बात करेंगे, और कंप्यूटर हमेशा ठीक वही समझेंगे जो वे कहना चाहते हैं। दुर्भाग्य से, यह समस्या जितनी कल्पना की गई थी उससे कहीं अधिक कठिन निकली, और जबकि आज यह समस्या बेहतर समझी जाती है, वाक्य के अर्थ को समझने में 'संपूर्ण' प्राकृतिक भाषा प्रसंस्करण प्राप्त करने में महत्वपूर्ण चुनौतियाँ हैं। यह विशेष रूप से तब कठिन हो जाता है जब हास्य को समझने या वाक्य में व्यंग्य जैसी भावनाओं का पता लगाने की बात आती है। + +इस बिंदु पर, आप स्कूल की कक्षाओं को याद कर सकते हैं जहाँ शिक्षक ने वाक्य में व्याकरण के भागों को कवर किया था। कुछ देशों में, छात्रों को व्याकरण और भाषाविज्ञान एक समर्पित विषय के रूप में पढ़ाया जाता है, लेकिन कई देशों में, ये विषय भाषा सीखने का हिस्सा होते हैं: या तो प्राथमिक विद्यालय में आपकी पहली भाषा (पढ़ना और लिखना सीखना) और शायद माध्यमिक या उच्च विद्यालय में दूसरी भाषा। चिंता न करें यदि आप संज्ञा और क्रिया या क्रिया विशेषण और विशेषण के बीच अंतर करने में विशेषज्ञ नहीं हैं! + +यदि आप *साधारण वर्तमान* और *वर्तमान प्रगतिशील* के बीच अंतर के साथ संघर्ष करते हैं, तो आप अकेले नहीं हैं। यह कई लोगों के लिए एक चुनौतीपूर्ण चीज है, यहां तक कि किसी भाषा के मूल वक्ताओं के लिए भी। अच्छी खबर यह है कि कंप्यूटर औपचारिक नियमों को लागू करने में वास्तव में अच्छे हैं, और आप कोड लिखना सीखेंगे जो एक वाक्य को *पार्स* कर सकता है जैसे कि एक इंसान। बड़ी चुनौती जिसे आप बाद में जांचेंगे वह है वाक्य के *अर्थ* और *भावना* को समझना। + +## पूर्वापेक्षाएँ + +इस पाठ के लिए मुख्य पूर्वापेक्षा इस पाठ की भाषा को पढ़ने और समझने में सक्षम होना है। हल करने के लिए कोई गणितीय समस्याएँ या समीकरण नहीं हैं। जबकि मूल लेखक ने यह पाठ अंग्रेजी में लिखा था, इसे अन्य भाषाओं में भी अनुवादित किया गया है, इसलिए आप एक अनुवाद पढ़ रहे हो सकते हैं। ऐसे उदाहरण हैं जहाँ विभिन्न भाषाओं का उपयोग किया गया है (विभिन्न भाषाओं के व्याकरण नियमों की तुलना करने के लिए)। ये *अनुवादित नहीं* हैं, लेकिन व्याख्यात्मक पाठ है, इसलिए अर्थ स्पष्ट होना चाहिए। + +कोडिंग कार्यों के लिए, आप Python का उपयोग करेंगे और उदाहरण Python 3.8 का उपयोग कर रहे हैं। + +इस खंड में, आपको आवश्यकता होगी और उपयोग करना होगा: + +- **Python 3 समझ**। प्रोग्रामिंग भाषा की समझ Python 3 में, यह पाठ इनपुट, लूप्स, फाइल रीडिंग, और एरेज़ का उपयोग करता है। +- **विजुअल स्टूडियो कोड + एक्सटेंशन**। हम Visual Studio Code और इसके Python एक्सटेंशन का उपयोग करेंगे। आप अपनी पसंद के किसी भी Python IDE का उपयोग कर सकते हैं। +- **TextBlob**। [TextBlob](https://github.com/sloria/TextBlob) Python के लिए एक सरलीकृत टेक्स्ट प्रोसेसिंग लाइब्रेरी है। इसे अपने सिस्टम पर इंस्टॉल करने के लिए TextBlob साइट पर दिए गए निर्देशों का पालन करें (नीचे दिखाए गए अनुसार कॉर्पस भी इंस्टॉल करें): + + ```bash + pip install -U textblob + python -m textblob.download_corpora + ``` + +> 💡 टिप: आप Python को सीधे VS Code वातावरण में चला सकते हैं। अधिक जानकारी के लिए [डॉक्स](https://code.visualstudio.com/docs/languages/python?WT.mc_id=academic-77952-leestott) देखें। + +## मशीनों से बात करना + +कंप्यूटर को मानव भाषा समझाने की कोशिश का इतिहास दशकों पुराना है, और प्राकृतिक भाषा प्रसंस्करण पर विचार करने वाले शुरुआती वैज्ञानिकों में से एक *एलन ट्यूरिंग* थे। + +### 'ट्यूरिंग टेस्ट' + +जब ट्यूरिंग 1950 के दशक में *कृत्रिम बुद्धिमत्ता* पर शोध कर रहे थे, तो उन्होंने सोचा कि क्या एक वार्तालाप परीक्षण दिया जा सकता है जिसमें एक इंसान और एक कंप्यूटर (टाइप किए गए संवाद के माध्यम से) शामिल हों, जहाँ वार्तालाप में इंसान यह सुनिश्चित न कर सके कि वे किसी अन्य इंसान से बात कर रहे हैं या कंप्यूटर से। + +यदि, एक निश्चित अवधि की बातचीत के बाद, इंसान यह निर्धारित नहीं कर सकता कि उत्तर कंप्यूटर से हैं या नहीं, तो क्या कंप्यूटर को *सोचने* वाला कहा जा सकता है? + +### प्रेरणा - 'द इमिटेशन गेम' + +इस विचार की प्रेरणा एक पार्टी गेम *द इमिटेशन गेम* से आई, जहाँ एक पूछताछकर्ता एक कमरे में अकेला होता है और यह निर्धारित करने का कार्य करता है कि दो अन्य लोग (दूसरे कमरे में) क्रमशः पुरुष और महिला कौन हैं। पूछताछकर्ता नोट्स भेज सकता है और ऐसे सवाल सोचने की कोशिश करता है जिनके लिखित उत्तर रहस्यमय व्यक्ति के लिंग को प्रकट करते हैं। बेशक, दूसरे कमरे में खिलाड़ी पूछताछकर्ता को गुमराह करने या भ्रमित करने के लिए सवालों के जवाब देने की कोशिश करते हैं, जबकि ईमानदारी से जवाब देने का दिखावा भी करते हैं। + +### एलिज़ा का विकास + +1960 के दशक में MIT के एक वैज्ञानिक *जोसेफ वीज़नबाम* ने [*एलिज़ा*](https://wikipedia.org/wiki/ELIZA) नामक एक कंप्यूटर 'थेरेपिस्ट' विकसित किया, जो मानव से सवाल पूछता था और उनके उत्तरों को समझने का आभास देता था। हालांकि, जबकि एलिज़ा एक वाक्य को पार्स कर सकता था और कुछ व्याकरणिक संरचनाओं और कीवर्ड्स की पहचान कर सकता था ताकि एक उचित उत्तर दे सके, इसे वाक्य को *समझने* वाला नहीं कहा जा सकता था। यदि एलिज़ा को "**I am** sad" प्रारूप का वाक्य प्रस्तुत किया गया, तो यह वाक्य को पुनः व्यवस्थित कर सकता था और शब्दों को प्रतिस्थापित कर सकता था ताकि उत्तर बने "How long have **you been** sad"। + +इससे यह आभास हुआ कि एलिज़ा ने कथन को समझा और एक अनुवर्ती प्रश्न पूछा, जबकि वास्तव में, यह केवल काल को बदल रहा था और कुछ शब्द जोड़ रहा था। यदि एलिज़ा को कोई ऐसा कीवर्ड नहीं मिला जिसके लिए उसके पास उत्तर हो, तो यह एक यादृच्छिक उत्तर देता जो कई अलग-अलग कथनों पर लागू हो सकता था। उदाहरण के लिए, यदि उपयोगकर्ता ने लिखा "**You are** a bicycle", तो यह उत्तर दे सकता था "How long have **I been** a bicycle?", बजाय एक अधिक तर्कसंगत उत्तर के। + +[![एलिज़ा से बातचीत](https://img.youtube.com/vi/RMK9AphfLco/0.jpg)](https://youtu.be/RMK9AphfLco "एलिज़ा से बातचीत") + +> 🎥 ऊपर की छवि पर क्लिक करें एलिज़ा प्रोग्राम के बारे में वीडियो देखने के लिए + +> नोट: आप [एलिज़ा](https://cacm.acm.org/magazines/1966/1/13317-elizaa-computer-program-for-the-study-of-natural-language-communication-between-man-and-machine/abstract) का मूल विवरण 1966 में प्रकाशित पढ़ सकते हैं यदि आपके पास ACM खाता है। वैकल्पिक रूप से, [विकिपीडिया](https://wikipedia.org/wiki/ELIZA) पर एलिज़ा के बारे में पढ़ें। + +## अभ्यास - एक बुनियादी संवादात्मक बॉट कोड करना + +एक संवादात्मक बॉट, जैसे एलिज़ा, एक प्रोग्राम है जो उपयोगकर्ता इनपुट प्राप्त करता है और समझने और बुद्धिमानी से प्रतिक्रिया देने का आभास देता है। एलिज़ा के विपरीत, हमारा बॉट कई नियमों के साथ एक बुद्धिमान बातचीत का आभास नहीं देगा। इसके बजाय, हमारे बॉट में केवल एक क्षमता होगी, बातचीत को जारी रखना, यादृच्छिक प्रतिक्रियाओं के साथ जो लगभग किसी भी सामान्य बातचीत में काम कर सकती हैं। + +### योजना + +संवादात्मक बॉट बनाने के लिए आपके चरण: + +1. उपयोगकर्ता को बॉट के साथ बातचीत करने के निर्देश प्रिंट करें +2. एक लूप शुरू करें + 1. उपयोगकर्ता इनपुट स्वीकार करें + 2. यदि उपयोगकर्ता ने बाहर निकलने के लिए कहा है, तो बाहर निकलें + 3. उपयोगकर्ता इनपुट को प्रोसेस करें और प्रतिक्रिया निर्धारित करें (इस मामले में, प्रतिक्रिया संभावित सामान्य प्रतिक्रियाओं की सूची से एक यादृच्छिक चयन है) + 4. प्रतिक्रिया प्रिंट करें +3. चरण 2 पर वापस जाएँ + +### बॉट बनाना + +आइए अगला बॉट बनाते हैं। हम कुछ वाक्यांशों को परिभाषित करके शुरू करेंगे। + +1. निम्नलिखित यादृच्छिक प्रतिक्रियाओं के साथ Python में इस बॉट को स्वयं बनाएं: + + ```python + random_responses = ["That is quite interesting, please tell me more.", + "I see. Do go on.", + "Why do you say that?", + "Funny weather we've been having, isn't it?", + "Let's change the subject.", + "Did you catch the game last night?"] + ``` + + यहाँ कुछ नमूना आउटपुट है जो आपको मार्गदर्शन करेगा (उपयोगकर्ता इनपुट `>` से शुरू होने वाली पंक्तियों पर है): + + ```output + Hello, I am Marvin, the simple robot. + You can end this conversation at any time by typing 'bye' + After typing each answer, press 'enter' + How are you today? + > I am good thanks + That is quite interesting, please tell me more. + > today I went for a walk + Did you catch the game last night? + > I did, but my team lost + Funny weather we've been having, isn't it? + > yes but I hope next week is better + Let's change the subject. + > ok, lets talk about music + Why do you say that? + > because I like music! + Why do you say that? + > bye + It was nice talking to you, goodbye! + ``` + + इस कार्य का एक संभावित समाधान [यहाँ](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/1-Introduction-to-NLP/solution/bot.py) है। + + ✅ रुकें और विचार करें + + 1. क्या आपको लगता है कि यादृच्छिक प्रतिक्रियाएँ किसी को यह सोचने में 'धोखा' दे सकती हैं कि बॉट वास्तव में उन्हें समझता है? + 2. बॉट को अधिक प्रभावी बनाने के लिए किन विशेषताओं की आवश्यकता होगी? + 3. यदि एक बॉट वास्तव में वाक्य के अर्थ को 'समझ' सकता है, तो क्या उसे बातचीत में पिछले वाक्यों के अर्थ को 'याद' रखने की भी आवश्यकता होगी? + +--- + +## 🚀चुनौती + +ऊपर दिए गए "रुकें और विचार करें" तत्वों में से एक को चुनें और या तो इसे कोड में लागू करने का प्रयास करें या कागज पर छद्म कोड का उपयोग करके एक समाधान लिखें। + +अगले पाठ में, आप प्राकृतिक भाषा को पार्स करने और मशीन लर्निंग के कई अन्य दृष्टिकोणों के बारे में जानेंगे। + +## [पाठ के बाद का क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/32/) + +## समीक्षा और स्व-अध्ययन + +नीचे दिए गए संदर्भों को आगे पढ़ने के अवसरों के रूप में देखें। + +### संदर्भ + +1. शुबर्ट, लेनहार्ट, "कंप्यूटेशनल लिंग्विस्टिक्स", *द स्टैनफोर्ड एनसाइक्लोपीडिया ऑफ फिलॉसफी* (स्प्रिंग 2020 संस्करण), एडवर्ड एन. ज़ाल्टा (संपादक), URL = . +2. प्रिंसटन यूनिवर्सिटी "वर्डनेट के बारे में।" [वर्डनेट](https://wordnet.princeton.edu/)। प्रिंसटन यूनिवर्सिटी। 2010। + +## असाइनमेंट + +[एक बॉट खोजें](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/1-Introduction-to-NLP/assignment.md b/translations/hi/6-NLP/1-Introduction-to-NLP/assignment.md new file mode 100644 index 000000000..5150e87da --- /dev/null +++ b/translations/hi/6-NLP/1-Introduction-to-NLP/assignment.md @@ -0,0 +1,25 @@ + +# एक बॉट की खोज करें + +## निर्देश + +बॉट हर जगह हैं। आपका कार्य: एक बॉट खोजें और उसे अपनाएं! आप उन्हें वेबसाइट्स, बैंकिंग एप्लिकेशन्स, और फोन पर पा सकते हैं, जैसे जब आप वित्तीय सेवाओं की कंपनियों को सलाह या खाता जानकारी के लिए कॉल करते हैं। बॉट का विश्लेषण करें और देखें कि क्या आप उसे भ्रमित कर सकते हैं। यदि आप बॉट को भ्रमित कर सकते हैं, तो आपको क्यों लगता है कि ऐसा हुआ? अपने अनुभव के बारे में एक छोटा लेख लिखें। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | ------------------------------------------------------------------------------------------------------------- | -------------------------------------------- | --------------------- | +| | एक पूरा पृष्ठ का लेख लिखा गया है, जिसमें अनुमानित बॉट आर्किटेक्चर की व्याख्या और आपके अनुभव का विवरण है | लेख अधूरा है या अच्छी तरह से शोधित नहीं है | कोई लेख प्रस्तुत नहीं किया गया | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/2-Tasks/README.md b/translations/hi/6-NLP/2-Tasks/README.md new file mode 100644 index 000000000..771a95cd2 --- /dev/null +++ b/translations/hi/6-NLP/2-Tasks/README.md @@ -0,0 +1,228 @@ + +# सामान्य प्राकृतिक भाषा प्रसंस्करण कार्य और तकनीकें + +अधिकांश *प्राकृतिक भाषा प्रसंस्करण* कार्यों के लिए, जिस पाठ को संसाधित करना है, उसे तोड़ना, जांचना और परिणामों को नियमों और डेटा सेट्स के साथ संग्रहीत या क्रॉस-रेफरेंस करना आवश्यक होता है। ये कार्य प्रोग्रामर को पाठ में शब्दों और शब्दावली की _अर्थ_ या _इरादा_ या केवल _आवृत्ति_ को समझने में मदद करते हैं। + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/33/) + +आइए उन सामान्य तकनीकों की खोज करें जो पाठ को संसाधित करने में उपयोग की जाती हैं। मशीन लर्निंग के साथ मिलकर, ये तकनीकें आपको बड़े पैमाने पर पाठ को कुशलतापूर्वक विश्लेषण करने में मदद करती हैं। हालांकि, इन कार्यों पर एमएल लागू करने से पहले, आइए उन समस्याओं को समझें जिनका सामना एक एनएलपी विशेषज्ञ करता है। + +## एनएलपी के सामान्य कार्य + +पाठ का विश्लेषण करने के कई तरीके हैं जिन पर आप काम कर रहे हैं। ऐसे कार्य हैं जिन्हें आप कर सकते हैं और इन कार्यों के माध्यम से आप पाठ को समझने और निष्कर्ष निकालने में सक्षम होते हैं। आप आमतौर पर इन कार्यों को एक क्रम में करते हैं। + +### टोकनाइजेशन + +शायद पहली चीज जो अधिकांश एनएलपी एल्गोरिदम को करनी होती है, वह है पाठ को टोकन या शब्दों में विभाजित करना। हालांकि यह सरल लगता है, विराम चिह्न और विभिन्न भाषाओं के शब्द और वाक्य सीमाओं को ध्यान में रखना इसे जटिल बना सकता है। आपको सीमाओं को निर्धारित करने के लिए विभिन्न तरीकों का उपयोग करना पड़ सकता है। + +![टोकनाइजेशन](../../../../translated_images/tokenization.1641a160c66cd2d93d4524e8114e93158a9ce0eba3ecf117bae318e8a6ad3487.hi.png) +> **Pride and Prejudice** से एक वाक्य को टोकन में विभाजित करना। [Jen Looper](https://twitter.com/jenlooper) द्वारा इन्फोग्राफिक + +### एम्बेडिंग्स + +[वर्ड एम्बेडिंग्स](https://wikipedia.org/wiki/Word_embedding) आपके पाठ डेटा को संख्यात्मक रूप में बदलने का एक तरीका है। एम्बेडिंग्स इस तरह से की जाती हैं कि समान अर्थ वाले या एक साथ उपयोग किए गए शब्द एक साथ क्लस्टर करते हैं। + +![वर्ड एम्बेडिंग्स](../../../../translated_images/embedding.2cf8953c4b3101d188c2f61a5de5b6f53caaa5ad4ed99236d42bc3b6bd6a1fe2.hi.png) +> "I have the highest respect for your nerves, they are my old friends." - **Pride and Prejudice** के एक वाक्य के लिए वर्ड एम्बेडिंग्स। [Jen Looper](https://twitter.com/jenlooper) द्वारा इन्फोग्राफिक + +✅ [इस रोचक टूल](https://projector.tensorflow.org/) को आज़माएं और वर्ड एम्बेडिंग्स के साथ प्रयोग करें। किसी एक शब्द पर क्लिक करने से समान शब्दों के क्लस्टर दिखते हैं: 'toy' 'disney', 'lego', 'playstation', और 'console' के साथ क्लस्टर करता है। + +### पार्सिंग और पार्ट-ऑफ-स्पीच टैगिंग + +हर शब्द जिसे टोकनाइज किया गया है, उसे पार्ट-ऑफ-स्पीच के रूप में टैग किया जा सकता है - जैसे संज्ञा, क्रिया, या विशेषण। वाक्य `the quick red fox jumped over the lazy brown dog` को इस प्रकार टैग किया जा सकता है: fox = संज्ञा, jumped = क्रिया। + +![पार्सिंग](../../../../translated_images/parse.d0c5bbe1106eae8fe7d60a183cd1736c8b6cec907f38000366535f84f3036101.hi.png) + +> **Pride and Prejudice** से एक वाक्य को पार्स करना। [Jen Looper](https://twitter.com/jenlooper) द्वारा इन्फोग्राफिक + +पार्सिंग यह पहचानने की प्रक्रिया है कि वाक्य में कौन से शब्द एक-दूसरे से संबंधित हैं - उदाहरण के लिए `the quick red fox jumped` एक विशेषण-संज्ञा-क्रिया अनुक्रम है जो `lazy brown dog` अनुक्रम से अलग है। + +### शब्द और वाक्यांश आवृत्तियां + +किसी बड़े पाठ का विश्लेषण करते समय एक उपयोगी प्रक्रिया यह है कि हर शब्द या रुचि के वाक्यांश का एक शब्दकोश बनाया जाए और यह कितनी बार प्रकट होता है। वाक्यांश `the quick red fox jumped over the lazy brown dog` में 'the' की आवृत्ति 2 है। + +आइए एक उदाहरण पाठ देखें जहां हम शब्दों की आवृत्ति गिनते हैं। रुडयार्ड किपलिंग की कविता "The Winners" में निम्नलिखित पंक्ति है: + +```output +What the moral? Who rides may read. +When the night is thick and the tracks are blind +A friend at a pinch is a friend, indeed, +But a fool to wait for the laggard behind. +Down to Gehenna or up to the Throne, +He travels the fastest who travels alone. +``` + +जैसा कि वाक्यांश आवृत्तियां केस सेंसिटिव या केस इंसेंसिटिव हो सकती हैं, वाक्यांश `a friend` की आवृत्ति 2 है और `the` की आवृत्ति 6 है, और `travels` की आवृत्ति 2 है। + +### एन-ग्राम्स + +पाठ को एक निश्चित लंबाई के शब्द अनुक्रमों में विभाजित किया जा सकता है, जैसे एक शब्द (यूनिग्राम), दो शब्द (बाइग्राम्स), तीन शब्द (ट्राइग्राम्स) या किसी भी संख्या के शब्द (एन-ग्राम्स)। + +उदाहरण के लिए `the quick red fox jumped over the lazy brown dog` के लिए एन-ग्राम स्कोर 2 निम्नलिखित एन-ग्राम्स उत्पन्न करता है: + +1. the quick +2. quick red +3. red fox +4. fox jumped +5. jumped over +6. over the +7. the lazy +8. lazy brown +9. brown dog + +इसे वाक्य पर एक स्लाइडिंग बॉक्स के रूप में देखना आसान हो सकता है। यहां यह 3 शब्दों के एन-ग्राम्स के लिए है, प्रत्येक वाक्य में एन-ग्राम को बोल्ड किया गया है: + +1. **the quick red** fox jumped over the lazy brown dog +2. the **quick red fox** jumped over the lazy brown dog +3. the quick **red fox jumped** over the lazy brown dog +4. the quick red **fox jumped over** the lazy brown dog +5. the quick red fox **jumped over the** lazy brown dog +6. the quick red fox jumped **over the lazy** brown dog +7. the quick red fox jumped over **the lazy brown** dog +8. the quick red fox jumped over the **lazy brown dog** + +![एन-ग्राम्स स्लाइडिंग विंडो](../../../../6-NLP/2-Tasks/images/n-grams.gif) + +> एन-ग्राम मान 3: [Jen Looper](https://twitter.com/jenlooper) द्वारा इन्फोग्राफिक + +### संज्ञा वाक्यांश निष्कर्षण + +अधिकांश वाक्यों में एक संज्ञा होती है जो वाक्य का विषय या वस्तु होती है। अंग्रेजी में, इसे अक्सर 'a', 'an', या 'the' के साथ पहचाना जा सकता है। वाक्य के अर्थ को समझने का प्रयास करते समय 'संज्ञा वाक्यांश निकालना' एनएलपी में एक सामान्य कार्य है। + +✅ वाक्य "I cannot fix on the hour, or the spot, or the look or the words, which laid the foundation. It is too long ago. I was in the middle before I knew that I had begun." में संज्ञा वाक्यांशों की पहचान करें। + +वाक्य `the quick red fox jumped over the lazy brown dog` में 2 संज्ञा वाक्यांश हैं: **quick red fox** और **lazy brown dog**। + +### भावना विश्लेषण + +किसी वाक्य या पाठ का विश्लेषण किया जा सकता है कि वह कितना *सकारात्मक* या *नकारात्मक* है। भावना को *पोलैरिटी* और *ऑब्जेक्टिविटी/सब्जेक्टिविटी* में मापा जाता है। पोलैरिटी -1.0 से 1.0 (नकारात्मक से सकारात्मक) और 0.0 से 1.0 (सबसे ऑब्जेक्टिव से सबसे सब्जेक्टिव) तक मापी जाती है। + +✅ बाद में आप सीखेंगे कि मशीन लर्निंग का उपयोग करके भावना निर्धारित करने के विभिन्न तरीके हैं, लेकिन एक तरीका यह है कि मानव विशेषज्ञ द्वारा सकारात्मक या नकारात्मक के रूप में वर्गीकृत शब्दों और वाक्यांशों की एक सूची हो और उस मॉडल को पाठ पर लागू करें ताकि पोलैरिटी स्कोर की गणना की जा सके। क्या आप देख सकते हैं कि यह कुछ परिस्थितियों में कैसे काम करेगा और अन्य में कम प्रभावी होगा? + +### इन्फ्लेक्शन + +इन्फ्लेक्शन आपको किसी शब्द को लेकर उसका एकवचन या बहुवचन प्राप्त करने में सक्षम बनाता है। + +### लेमाटाइजेशन + +एक *लेम्मा* शब्दों के एक सेट के लिए मूल या मुख्य शब्द है, उदाहरण के लिए *flew*, *flies*, *flying* का लेम्मा क्रिया *fly* है। + +एनएलपी शोधकर्ता के लिए उपयोगी डेटाबेस भी उपलब्ध हैं, विशेष रूप से: + +### वर्डनेट + +[वर्डनेट](https://wordnet.princeton.edu/) शब्दों, पर्यायवाची, विलोम और कई अन्य विवरणों का एक डेटाबेस है जो विभिन्न भाषाओं में हर शब्द के लिए उपलब्ध है। यह अनुवाद, स्पेल चेकर्स, या किसी भी प्रकार के भाषा उपकरण बनाने का प्रयास करते समय बेहद उपयोगी है। + +## एनएलपी लाइब्रेरीज़ + +सौभाग्य से, आपको इन तकनीकों को स्वयं बनाने की आवश्यकता नहीं है, क्योंकि उत्कृष्ट पायथन लाइब्रेरीज़ उपलब्ध हैं जो प्राकृतिक भाषा प्रसंस्करण या मशीन लर्निंग में विशेषज्ञता न रखने वाले डेवलपर्स के लिए इसे अधिक सुलभ बनाती हैं। अगले पाठों में इनमें से अधिक उदाहरण शामिल हैं, लेकिन यहां आप कुछ उपयोगी उदाहरण सीखेंगे जो आपको अगले कार्य में मदद करेंगे। + +### अभ्यास - `TextBlob` लाइब्रेरी का उपयोग करना + +आइए एक लाइब्रेरी का उपयोग करें जिसे TextBlob कहा जाता है क्योंकि इसमें इन प्रकार के कार्यों को हल करने के लिए उपयोगी एपीआई हैं। TextBlob "[NLTK](https://nltk.org) और [pattern](https://github.com/clips/pattern) के विशाल कंधों पर खड़ा है, और दोनों के साथ अच्छी तरह से काम करता है।" इसमें अपने एपीआई में काफी मात्रा में एमएल एम्बेडेड है। + +> नोट: TextBlob के लिए एक उपयोगी [Quick Start](https://textblob.readthedocs.io/en/dev/quickstart.html#quickstart) गाइड उपलब्ध है जिसे अनुभवी पायथन डेवलपर्स के लिए अनुशंसित किया जाता है। + +जब *संज्ञा वाक्यांशों* की पहचान करने का प्रयास किया जाता है, तो TextBlob कई विकल्प प्रदान करता है जो संज्ञा वाक्यांशों को खोजने के लिए एक्सट्रैक्टर्स का उपयोग करता है। + +1. `ConllExtractor` पर एक नज़र डालें। + + ```python + from textblob import TextBlob + from textblob.np_extractors import ConllExtractor + # import and create a Conll extractor to use later + extractor = ConllExtractor() + + # later when you need a noun phrase extractor: + user_input = input("> ") + user_input_blob = TextBlob(user_input, np_extractor=extractor) # note non-default extractor specified + np = user_input_blob.noun_phrases + ``` + + > यहां क्या हो रहा है? [ConllExtractor](https://textblob.readthedocs.io/en/dev/api_reference.html?highlight=Conll#textblob.en.np_extractors.ConllExtractor) "एक संज्ञा वाक्यांश एक्सट्रैक्टर है जो ConLL-2000 प्रशिक्षण कॉर्पस के साथ प्रशिक्षित चंक पार्सिंग का उपयोग करता है।" ConLL-2000 2000 में आयोजित Computational Natural Language Learning सम्मेलन को संदर्भित करता है। प्रत्येक वर्ष सम्मेलन ने एक कठिन एनएलपी समस्या को हल करने के लिए एक कार्यशाला आयोजित की, और 2000 में यह संज्ञा चंकिंग थी। एक मॉडल को Wall Street Journal पर प्रशिक्षित किया गया था, जिसमें "सेक्शन 15-18 को प्रशिक्षण डेटा (211727 टोकन) और सेक्शन 20 को परीक्षण डेटा (47377 टोकन)" के रूप में उपयोग किया गया था। आप उपयोग की गई प्रक्रियाओं को [यहां](https://www.clips.uantwerpen.be/conll2000/chunking/) और [परिणाम](https://ifarm.nl/erikt/research/np-chunking.html) देख सकते हैं। + +### चुनौती - अपने बॉट को एनएलपी के साथ बेहतर बनाना + +पिछले पाठ में आपने एक बहुत ही सरल Q&A बॉट बनाया। अब, आप मार्विन को थोड़ा अधिक सहानुभूतिपूर्ण बनाएंगे, उपयोगकर्ता के इनपुट का विश्लेषण करके उसकी भावना का मिलान करने के लिए प्रतिक्रिया देंगे। आपको एक `noun_phrase` की पहचान भी करनी होगी और उस विषय पर अधिक इनपुट मांगना होगा। + +अपने बॉट को बेहतर संवादात्मक बनाने के लिए आपके कदम: + +1. उपयोगकर्ता को बॉट के साथ कैसे बातचीत करनी है, इसके निर्देश प्रिंट करें +2. लूप शुरू करें + 1. उपयोगकर्ता इनपुट स्वीकार करें + 2. यदि उपयोगकर्ता ने बाहर निकलने के लिए कहा है, तो बाहर निकलें + 3. उपयोगकर्ता इनपुट को संसाधित करें और उपयुक्त भावना प्रतिक्रिया निर्धारित करें + 4. यदि भावना में एक संज्ञा वाक्यांश का पता चलता है, तो इसे बहुवचन बनाएं और उस विषय पर अधिक इनपुट मांगें + 5. प्रतिक्रिया प्रिंट करें +3. चरण 2 पर वापस लूप करें + +यहां TextBlob का उपयोग करके भावना निर्धारित करने के लिए कोड स्निपेट है। ध्यान दें कि केवल चार *ग्रेडिएंट्स* की भावना प्रतिक्रिया है (आप चाहें तो अधिक जोड़ सकते हैं): + +```python +if user_input_blob.polarity <= -0.5: + response = "Oh dear, that sounds bad. " +elif user_input_blob.polarity <= 0: + response = "Hmm, that's not great. " +elif user_input_blob.polarity <= 0.5: + response = "Well, that sounds positive. " +elif user_input_blob.polarity <= 1: + response = "Wow, that sounds great. " +``` + +यहां कुछ नमूना आउटपुट है जो आपको मार्गदर्शन करेगा (उपयोगकर्ता इनपुट > से शुरू होने वाली पंक्तियों पर है): + +```output +Hello, I am Marvin, the friendly robot. +You can end this conversation at any time by typing 'bye' +After typing each answer, press 'enter' +How are you today? +> I am ok +Well, that sounds positive. Can you tell me more? +> I went for a walk and saw a lovely cat +Well, that sounds positive. Can you tell me more about lovely cats? +> cats are the best. But I also have a cool dog +Wow, that sounds great. Can you tell me more about cool dogs? +> I have an old hounddog but he is sick +Hmm, that's not great. Can you tell me more about old hounddogs? +> bye +It was nice talking to you, goodbye! +``` + +इस कार्य का एक संभावित समाधान [यहां](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/2-Tasks/solution/bot.py) है। + +✅ ज्ञान जांच + +1. क्या आपको लगता है कि सहानुभूतिपूर्ण प्रतिक्रियाएं किसी को यह सोचने में 'धोखा' दे सकती हैं कि बॉट वास्तव में उन्हें समझता है? +2. क्या संज्ञा वाक्यांश की पहचान करना बॉट को अधिक 'विश्वसनीय' बनाता है? +3. वाक्य से 'संज्ञा वाक्यांश' निकालना उपयोगी क्यों हो सकता है? + +--- + +पिछले ज्ञान जांच में बॉट को लागू करें और इसे किसी मित्र पर परीक्षण करें। क्या यह उन्हें धोखा दे सकता है? क्या आप अपने बॉट को अधिक 'विश्वसनीय' बना सकते हैं? + +## 🚀चुनौती + +पिछले ज्ञान जांच में एक कार्य लें और इसे लागू करने का प्रयास करें। बॉट को किसी मित्र पर परीक्षण करें। क्या यह उन्हें धोखा दे सकता है? क्या आप अपने बॉट को अधिक 'विश्वसनीय' बना सकते हैं? + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/34/) + +## समीक्षा और स्व-अध्ययन + +अगले कुछ पाठों में आप भावना विश्लेषण के बारे में अधिक जानेंगे। इस रोचक तकनीक पर [KDNuggets](https://www.kdnuggets.com/tag/nlp) जैसे लेखों में शोध करें। + +## असाइनमेंट + +[बॉट को बात करने के लिए बनाएं](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/2-Tasks/assignment.md b/translations/hi/6-NLP/2-Tasks/assignment.md new file mode 100644 index 000000000..8d4b3d445 --- /dev/null +++ b/translations/hi/6-NLP/2-Tasks/assignment.md @@ -0,0 +1,25 @@ + +# एक बॉट को जवाब देने वाला बनाएं + +## निर्देश + +पिछले कुछ पाठों में, आपने एक साधारण बॉट प्रोग्राम किया था जिससे आप चैट कर सकते हैं। यह बॉट तब तक रैंडम जवाब देता है जब तक आप 'bye' नहीं कहते। क्या आप जवाबों को थोड़ा कम रैंडम बना सकते हैं और कुछ खास चीजें कहने पर जवाब ट्रिगर कर सकते हैं, जैसे 'क्यों' या 'कैसे'? सोचें कि मशीन लर्निंग इस प्रकार के काम को कम मैनुअल बनाने में कैसे मदद कर सकती है जब आप अपने बॉट को विस्तार देते हैं। आप अपने कार्यों को आसान बनाने के लिए NLTK या TextBlob लाइब्रेरी का उपयोग कर सकते हैं। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | --------------------------------------------- | ------------------------------------------------ | ----------------------- | +| | एक नया bot.py फ़ाइल प्रस्तुत और प्रलेखित है | एक नया बॉट फ़ाइल प्रस्तुत है लेकिन इसमें बग हैं | फ़ाइल प्रस्तुत नहीं की गई | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/3-Translation-Sentiment/README.md b/translations/hi/6-NLP/3-Translation-Sentiment/README.md new file mode 100644 index 000000000..e1c904ff2 --- /dev/null +++ b/translations/hi/6-NLP/3-Translation-Sentiment/README.md @@ -0,0 +1,200 @@ + +# मशीन लर्निंग के साथ अनुवाद और भावना विश्लेषण + +पिछले पाठों में आपने `TextBlob` का उपयोग करके एक बुनियादी बॉट बनाना सीखा, जो एक लाइब्रेरी है जो मशीन लर्निंग का उपयोग करके संज्ञा वाक्यांश निकालने जैसे बुनियादी प्राकृतिक भाषा प्रसंस्करण (NLP) कार्य करती है। कंप्यूटेशनल भाषाविज्ञान में एक और महत्वपूर्ण चुनौती है एक भाषा से दूसरी भाषा में वाक्य का सटीक _अनुवाद_। + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/35/) + +अनुवाद एक बहुत कठिन समस्या है, क्योंकि दुनिया में हजारों भाषाएं हैं और प्रत्येक की व्याकरणिक संरचना अलग हो सकती है। एक तरीका यह है कि एक भाषा, जैसे अंग्रेजी, के औपचारिक व्याकरण नियमों को एक गैर-भाषा-निर्भर संरचना में परिवर्तित किया जाए, और फिर इसे दूसरी भाषा में बदल दिया जाए। इस दृष्टिकोण में निम्नलिखित चरण शामिल होते हैं: + +1. **पहचान**। इनपुट भाषा के शब्दों को संज्ञा, क्रिया आदि में टैग करें। +2. **अनुवाद बनाएं**। लक्ष्य भाषा प्रारूप में प्रत्येक शब्द का सीधा अनुवाद तैयार करें। + +### उदाहरण वाक्य, अंग्रेजी से आयरिश + +'अंग्रेजी' में, वाक्य _I feel happy_ तीन शब्दों में होता है: + +- **विषय** (I) +- **क्रिया** (feel) +- **विशेषण** (happy) + +हालांकि, 'आयरिश' भाषा में, वही वाक्य बहुत अलग व्याकरणिक संरचना रखता है - भावनाओं जैसे "*happy*" या "*sad*" को *आप पर* होने के रूप में व्यक्त किया जाता है। + +अंग्रेजी वाक्य `I feel happy` का आयरिश में अनुवाद `Tá athas orm` होगा। एक *शाब्दिक* अनुवाद होगा `Happy is upon me`. + +एक आयरिश वक्ता जो अंग्रेजी में अनुवाद कर रहा है, वह कहेगा `I feel happy`, न कि `Happy is upon me`, क्योंकि वह वाक्य का अर्थ समझता है, भले ही शब्द और वाक्य संरचना अलग हों। + +आयरिश में वाक्य का औपचारिक क्रम है: + +- **क्रिया** (Tá या is) +- **विशेषण** (athas, या happy) +- **विषय** (orm, या upon me) + +## अनुवाद + +एक साधारण अनुवाद प्रोग्राम केवल शब्दों का अनुवाद कर सकता है, वाक्य संरचना को नजरअंदाज करते हुए। + +✅ यदि आपने वयस्क के रूप में दूसरी (या तीसरी या अधिक) भाषा सीखी है, तो आपने शायद अपनी मूल भाषा में सोचकर शुरुआत की होगी, एक अवधारणा को शब्द दर शब्द दूसरी भाषा में अपने दिमाग में अनुवाद किया होगा, और फिर अपनी अनुवादित बात को बोल दिया होगा। यही साधारण अनुवाद कंप्यूटर प्रोग्राम कर रहे हैं। इस चरण को पार करना और प्रवाह प्राप्त करना महत्वपूर्ण है! + +साधारण अनुवाद खराब (और कभी-कभी मज़ेदार) गलत अनुवादों की ओर ले जाता है: `I feel happy` का शाब्दिक अनुवाद आयरिश में `Mise bhraitheann athas` होता है। इसका मतलब (शाब्दिक रूप से) `me feel happy` है और यह एक वैध आयरिश वाक्य नहीं है। भले ही अंग्रेजी और आयरिश दो पड़ोसी द्वीपों पर बोली जाने वाली भाषाएं हैं, वे बहुत अलग भाषाएं हैं जिनकी व्याकरण संरचनाएं अलग हैं। + +> आप आयरिश भाषाई परंपराओं के बारे में कुछ वीडियो देख सकते हैं जैसे [यह](https://www.youtube.com/watch?v=mRIaLSdRMMs) + +### मशीन लर्निंग दृष्टिकोण + +अब तक, आपने प्राकृतिक भाषा प्रसंस्करण के औपचारिक नियम दृष्टिकोण के बारे में सीखा है। एक और दृष्टिकोण यह है कि शब्दों के अर्थ को नजरअंदाज किया जाए, और _इसके बजाय मशीन लर्निंग का उपयोग करके पैटर्न का पता लगाया जाए_। यदि आपके पास बहुत सारे पाठ (एक *कॉर्पस*) या मूल और लक्ष्य भाषाओं में पाठ (*कॉर्पोरा*) हैं, तो यह अनुवाद में काम कर सकता है। + +उदाहरण के लिए, *Pride and Prejudice* का मामला लें, जो 1813 में जेन ऑस्टेन द्वारा लिखित एक प्रसिद्ध अंग्रेजी उपन्यास है। यदि आप पुस्तक को अंग्रेजी में और *फ्रेंच* में पुस्तक के मानव अनुवाद को देखते हैं, तो आप एक में वाक्यांशों का पता लगा सकते हैं जो दूसरे में _मुहावरेदार_ रूप से अनुवादित हैं। आप इसे अभी करेंगे। + +उदाहरण के लिए, जब एक अंग्रेजी वाक्यांश जैसे `I have no money` को फ्रेंच में शाब्दिक रूप से अनुवादित किया जाता है, तो यह `Je n'ai pas de monnaie` बन सकता है। "Monnaie" एक मुश्किल फ्रेंच 'false cognate' है, क्योंकि 'money' और 'monnaie' समानार्थी नहीं हैं। एक बेहतर अनुवाद जो एक मानव कर सकता है वह होगा `Je n'ai pas d'argent`, क्योंकि यह बेहतर तरीके से व्यक्त करता है कि आपके पास पैसे नहीं हैं (बल्कि 'loose change' जो 'monnaie' का अर्थ है)। + +![monnaie](../../../../translated_images/monnaie.606c5fa8369d5c3b3031ef0713e2069485c87985dd475cd9056bdf4c76c1f4b8.hi.png) + +> छवि [Jen Looper](https://twitter.com/jenlooper) द्वारा + +यदि किसी ML मॉडल के पास पर्याप्त मानव अनुवाद हैं जिन पर मॉडल बनाया जा सकता है, तो यह पहले से विशेषज्ञ मानव वक्ताओं द्वारा अनुवादित पाठों में सामान्य पैटर्न की पहचान करके अनुवाद की सटीकता में सुधार कर सकता है। + +### अभ्यास - अनुवाद + +आप वाक्य अनुवाद करने के लिए `TextBlob` का उपयोग कर सकते हैं। **Pride and Prejudice** की प्रसिद्ध पहली पंक्ति आज़माएं: + +```python +from textblob import TextBlob + +blob = TextBlob( + "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife!" +) +print(blob.translate(to="fr")) + +``` + +`TextBlob` अनुवाद का अच्छा काम करता है: "C'est une vérité universellement reconnue, qu'un homme célibataire en possession d'une bonne fortune doit avoir besoin d'une femme!". + +यह तर्क दिया जा सकता है कि TextBlob का अनुवाद वास्तव में 1932 में V. Leconte और Ch. Pressoir द्वारा पुस्तक के फ्रेंच अनुवाद की तुलना में कहीं अधिक सटीक है: + +"C'est une vérité universelle qu'un célibataire pourvu d'une belle fortune doit avoir envie de se marier, et, si peu que l'on sache de son sentiment à cet egard, lorsqu'il arrive dans une nouvelle résidence, cette idée est si bien fixée dans l'esprit de ses voisins qu'ils le considèrent sur-le-champ comme la propriété légitime de l'une ou l'autre de leurs filles." + +इस मामले में, ML द्वारा सूचित अनुवाद मानव अनुवादक से बेहतर काम करता है, जो 'स्पष्टता' के लिए अनावश्यक रूप से मूल लेखक के शब्दों में बदलाव कर रहा है। + +> यहां क्या हो रहा है? और TextBlob अनुवाद में इतना अच्छा क्यों है? खैर, पर्दे के पीछे, यह Google Translate का उपयोग कर रहा है, एक परिष्कृत AI जो लाखों वाक्यांशों को पार्स करके कार्य के लिए सबसे अच्छे स्ट्रिंग्स की भविष्यवाणी करने में सक्षम है। यहां कुछ भी मैनुअल नहीं हो रहा है और आपको `blob.translate` का उपयोग करने के लिए इंटरनेट कनेक्शन की आवश्यकता है। + +✅ कुछ और वाक्य आज़माएं। कौन बेहतर है, ML या मानव अनुवाद? किन मामलों में? + +## भावना विश्लेषण + +मशीन लर्निंग एक और क्षेत्र में बहुत अच्छा काम कर सकती है, वह है भावना विश्लेषण। भावना का एक गैर-ML दृष्टिकोण 'सकारात्मक' और 'नकारात्मक' शब्दों और वाक्यांशों की पहचान करना है। फिर, दिए गए नए पाठ के लिए, सकारात्मक, नकारात्मक और तटस्थ शब्दों के कुल मूल्य की गणना करें ताकि समग्र भावना की पहचान की जा सके। + +यह दृष्टिकोण आसानी से धोखा दिया जा सकता है जैसा कि आपने Marvin कार्य में देखा होगा - वाक्य `Great, that was a wonderful waste of time, I'm glad we are lost on this dark road` एक व्यंग्यात्मक, नकारात्मक भावना वाला वाक्य है, लेकिन सरल एल्गोरिदम 'great', 'wonderful', 'glad' को सकारात्मक और 'waste', 'lost' और 'dark' को नकारात्मक के रूप में पहचानता है। विरोधाभासी शब्दों के कारण समग्र भावना प्रभावित होती है। + +✅ एक पल रुकें और सोचें कि हम मानव वक्ताओं के रूप में व्यंग्य कैसे व्यक्त करते हैं। स्वर का उतार-चढ़ाव इसमें बड़ी भूमिका निभाता है। वाक्यांश "Well, that film was awesome" को अलग-अलग तरीकों से कहने की कोशिश करें ताकि पता चले कि आपकी आवाज़ अर्थ कैसे व्यक्त करती है। + +### ML दृष्टिकोण + +ML दृष्टिकोण होगा नकारात्मक और सकारात्मक पाठों को मैन्युअल रूप से इकट्ठा करना - ट्वीट्स, या मूवी समीक्षाएं, या कुछ भी जहां मानव ने एक स्कोर *और* एक लिखित राय दी हो। फिर NLP तकनीकों को राय और स्कोर पर लागू किया जा सकता है, ताकि पैटर्न उभरें (जैसे, सकारात्मक मूवी समीक्षाओं में 'Oscar worthy' वाक्यांश नकारात्मक मूवी समीक्षाओं की तुलना में अधिक होता है, या सकारात्मक रेस्तरां समीक्षाओं में 'gourmet' शब्द 'disgusting' की तुलना में अधिक होता है)। + +> ⚖️ **उदाहरण**: मान लें कि आप एक राजनेता के कार्यालय में काम करते हैं और कोई नया कानून बहस के लिए है, तो नागरिक कार्यालय को उस विशेष नए कानून के समर्थन में या उसके खिलाफ ईमेल लिख सकते हैं। मान लें कि आपको ईमेल पढ़ने और उन्हें 2 ढेरियों में छांटने का काम सौंपा गया है, *समर्थन में* और *विरोध में*। यदि बहुत सारे ईमेल हों, तो आप सभी को पढ़ने की कोशिश में अभिभूत हो सकते हैं। क्या यह अच्छा नहीं होगा कि एक बॉट सभी को पढ़ सके, उन्हें समझ सके और आपको बता सके कि प्रत्येक ईमेल किस ढेरी में है? +> +> इसे प्राप्त करने का एक तरीका मशीन लर्निंग का उपयोग करना है। आप मॉडल को *विरोध में* ईमेल और *समर्थन में* ईमेल के एक हिस्से के साथ प्रशिक्षित करेंगे। मॉडल वाक्यांशों और शब्दों को विरोध पक्ष और समर्थन पक्ष के साथ जोड़ने की प्रवृत्ति रखेगा, *लेकिन यह किसी भी सामग्री को नहीं समझेगा*, केवल यह कि कुछ शब्द और पैटर्न *विरोध में* या *समर्थन में* ईमेल में अधिक संभावना से दिखाई देते हैं। आप इसे कुछ ईमेल के साथ परीक्षण कर सकते हैं जिन्हें आपने मॉडल को प्रशिक्षित करने के लिए उपयोग नहीं किया था, और देख सकते हैं कि क्या यह आपके द्वारा किए गए निष्कर्ष पर पहुंचता है। फिर, एक बार जब आप मॉडल की सटीकता से संतुष्ट हो जाएं, तो आप भविष्य के ईमेल को पढ़े बिना ही प्रोसेस कर सकते हैं। + +✅ क्या यह प्रक्रिया उन प्रक्रियाओं जैसी लगती है जिन्हें आपने पिछले पाठों में उपयोग किया है? + +## अभ्यास - भावनात्मक वाक्य + +भावना को *पोलारिटी* के साथ -1 से 1 तक मापा जाता है, जिसका अर्थ है -1 सबसे नकारात्मक भावना है, और 1 सबसे सकारात्मक। भावना को 0 - 1 स्कोर के साथ वस्तुनिष्ठता (0) और व्यक्तिपरकता (1) के लिए भी मापा जाता है। + +जेन ऑस्टेन की *Pride and Prejudice* पर एक बार फिर नज़र डालें। पाठ यहां उपलब्ध है [Project Gutenberg](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) पर। नीचे दिया गया नमूना एक छोटा प्रोग्राम दिखाता है जो पुस्तक की पहली और अंतिम पंक्तियों की भावना का विश्लेषण करता है और इसकी भावना पोलारिटी और व्यक्तिपरकता/वस्तुनिष्ठता स्कोर प्रदर्शित करता है। + +आपको इस कार्य में `TextBlob` लाइब्रेरी (ऊपर वर्णित) का उपयोग करके `sentiment` निर्धारित करना चाहिए (आपको अपना खुद का भावना कैलकुलेटर लिखने की आवश्यकता नहीं है)। + +```python +from textblob import TextBlob + +quote1 = """It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.""" + +quote2 = """Darcy, as well as Elizabeth, really loved them; and they were both ever sensible of the warmest gratitude towards the persons who, by bringing her into Derbyshire, had been the means of uniting them.""" + +sentiment1 = TextBlob(quote1).sentiment +sentiment2 = TextBlob(quote2).sentiment + +print(quote1 + " has a sentiment of " + str(sentiment1)) +print(quote2 + " has a sentiment of " + str(sentiment2)) +``` + +आप निम्नलिखित आउटपुट देखते हैं: + +```output +It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want # of a wife. has a sentiment of Sentiment(polarity=0.20952380952380953, subjectivity=0.27142857142857146) + +Darcy, as well as Elizabeth, really loved them; and they were + both ever sensible of the warmest gratitude towards the persons + who, by bringing her into Derbyshire, had been the means of + uniting them. has a sentiment of Sentiment(polarity=0.7, subjectivity=0.8) +``` + +## चुनौती - भावना पोलारिटी की जांच करें + +आपका कार्य है कि *Pride and Prejudice* में यह निर्धारित करें कि क्या इसमें अधिक बिल्कुल सकारात्मक वाक्य हैं बनाम बिल्कुल नकारात्मक वाक्य। इस कार्य के लिए, आप मान सकते हैं कि पोलारिटी स्कोर 1 या -1 बिल्कुल सकारात्मक या नकारात्मक है। + +**चरण:** + +1. [Pride and Prejudice की एक प्रति](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) को Project Gutenberg से .txt फ़ाइल के रूप में डाउनलोड करें। फ़ाइल की शुरुआत और अंत में मेटाडेटा हटा दें, केवल मूल पाठ छोड़ दें। +2. फ़ाइल को Python में खोलें और सामग्री को एक स्ट्रिंग के रूप में निकालें। +3. पुस्तक स्ट्रिंग का उपयोग करके एक TextBlob बनाएं। +4. पुस्तक में प्रत्येक वाक्य का एक लूप में विश्लेषण करें। + 1. यदि पोलारिटी 1 या -1 है तो वाक्य को सकारात्मक या नकारात्मक संदेशों की एक सूची में संग्रहीत करें। +5. अंत में, सभी सकारात्मक वाक्य और नकारात्मक वाक्य (अलग-अलग) और प्रत्येक की संख्या प्रिंट करें। + +यहां एक नमूना [समाधान](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb) है। + +✅ ज्ञान जांच + +1. भावना वाक्य में उपयोग किए गए शब्दों पर आधारित है, लेकिन क्या कोड *शब्दों को समझता है*? +2. क्या आपको लगता है कि भावना पोलारिटी सटीक है, या दूसरे शब्दों में, क्या आप स्कोर से *सहमत* हैं? + 1. विशेष रूप से, क्या आप निम्नलिखित वाक्यों की बिल्कुल **सकारात्मक** पोलारिटी से सहमत हैं या असहमत हैं? + * “What an excellent father you have, girls!” said she, when the door was shut. + * “Your examination of Mr. Darcy is over, I presume,” said Miss Bingley; “and pray what is the result?” “I am perfectly convinced by it that Mr. Darcy has no defect. + * How wonderfully these sort of things occur! + * I have the greatest dislike in the world to that sort of thing. + * Charlotte is an excellent manager, I dare say. + * “This is delightful indeed! + * I am so happy! + * Your idea of the ponies is delightful. + 2. अगले 3 वाक्यों को बिल्कुल सकारात्मक भावना के साथ स्कोर किया गया था, लेकिन करीब से पढ़ने पर, वे सकारात्मक वाक्य नहीं हैं। भावना विश्लेषण ने उन्हें सकारात्मक वाक्य क्यों माना? + * Happy shall I be, when his stay at Netherfield is over!” “I wish I could say anything to comfort you,” replied Elizabeth; “but it is wholly out of my power. + * If I could but see you as happy! + * Our distress, my dear Lizzy, is very great. + 3. क्या आप निम्नलिखित वाक्यों की बिल्कुल **नकारात्मक** पोलारिटी से सहमत हैं या असहमत हैं? + - Everybody is disgusted with his pride. + - “I should like to know how he behaves among strangers.” “You shall hear then—but prepare yourself for something very dreadful. + - The pause was to Elizabeth’s feelings dreadful. + - It would be dreadful! + +✅ जेन ऑस्टेन के किसी भी प्रशंसक को समझ में आएगा कि वह अक्सर अपनी पुस्तकों का उपयोग अंग्रेजी रीजेंसी समाज के अधिक हास्यास्पद पहलुओं की आलोचना करने के लिए करती हैं। *Pride and Prejudice* की मुख्य पात्र एलिजाबेथ बेनेट एक तेज सामाजिक पर्यवेक्षक हैं (जैसे लेखक) और उनकी भाषा अक्सर बहुत सूक्ष्म होती है। यहां तक कि मिस्टर डार्सी (कहानी में प्रेम रुचि) भी एलिजाबेथ की चंचल और चिढ़ाने वाली भाषा के उपयोग पर ध्यान देते हैं: "I have had the pleasure of your acquaintance long enough to know that you find great enjoyment in occasionally professing opinions which in fact are not your own." + +--- + +## 🚀चुनौती + +क्या आप Marvin को और बेहतर बना सकते हैं उपयोगकर्ता इनपुट से अन्य विशेषताओं को निकालकर? + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/36/) + +## समीक्षा और स्व-अध्ययन +पाठ से भावना निकालने के कई तरीके हैं। उन व्यावसायिक अनुप्रयोगों के बारे में सोचें जो इस तकनीक का उपयोग कर सकते हैं। यह कैसे गलत हो सकता है, इस पर विचार करें। उन उन्नत एंटरप्राइज़-रेडी सिस्टम के बारे में अधिक पढ़ें जो भावना का विश्लेषण करते हैं, जैसे [Azure Text Analysis](https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/how-tos/text-analytics-how-to-sentiment-analysis?tabs=version-3-1?WT.mc_id=academic-77952-leestott)। ऊपर दिए गए Pride and Prejudice के कुछ वाक्यों का परीक्षण करें और देखें कि क्या यह सूक्ष्मता का पता लगा सकता है। + +## असाइनमेंट + +[Poetic license](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/3-Translation-Sentiment/assignment.md b/translations/hi/6-NLP/3-Translation-Sentiment/assignment.md new file mode 100644 index 000000000..1eb6a89eb --- /dev/null +++ b/translations/hi/6-NLP/3-Translation-Sentiment/assignment.md @@ -0,0 +1,25 @@ + +# काव्यात्मक स्वतंत्रता + +## निर्देश + +[इस नोटबुक](https://www.kaggle.com/jenlooper/emily-dickinson-word-frequency) में आप 500 से अधिक एमिली डिकिंसन की कविताओं को पा सकते हैं, जिन्हें पहले Azure टेक्स्ट एनालिटिक्स का उपयोग करके भावनाओं के लिए विश्लेषित किया गया है। इस डेटा सेट का उपयोग करके, इसे पाठ में वर्णित तकनीकों का उपयोग करके विश्लेषित करें। क्या किसी कविता का सुझाया गया भाव Azure सेवा के अधिक परिष्कृत निर्णय से मेल खाता है? आपके विचार में, क्यों या क्यों नहीं? क्या कुछ आपको आश्चर्यचकित करता है? + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्टता | पर्याप्तता | सुधार की आवश्यकता | +| -------- | -------------------------------------------------------------------------- | ------------------------------------------------------- | ------------------------ | +| | एक नोटबुक प्रस्तुत की गई है जिसमें लेखक के नमूना आउटपुट का ठोस विश्लेषण है | नोटबुक अधूरी है या विश्लेषण नहीं करती है | कोई नोटबुक प्रस्तुत नहीं की गई है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में लिखा गया दस्तावेज़ ही आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/3-Translation-Sentiment/solution/Julia/README.md b/translations/hi/6-NLP/3-Translation-Sentiment/solution/Julia/README.md new file mode 100644 index 000000000..79c96b647 --- /dev/null +++ b/translations/hi/6-NLP/3-Translation-Sentiment/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/3-Translation-Sentiment/solution/R/README.md b/translations/hi/6-NLP/3-Translation-Sentiment/solution/R/README.md new file mode 100644 index 000000000..f72d72153 --- /dev/null +++ b/translations/hi/6-NLP/3-Translation-Sentiment/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb b/translations/hi/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb new file mode 100644 index 000000000..8e2568e50 --- /dev/null +++ b/translations/hi/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb @@ -0,0 +1,100 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "27de2abc0235ebd22080fc8f1107454d", + "translation_date": "2025-09-04T03:09:52+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from textblob import TextBlob\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# You should download the book text, clean it, and import it here\n", + "with open(\"pride.txt\", encoding=\"utf8\") as f:\n", + " file_contents = f.read()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "book_pride = TextBlob(file_contents)\n", + "positive_sentiment_sentences = []\n", + "negative_sentiment_sentences = []" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for sentence in book_pride.sentences:\n", + " if sentence.sentiment.polarity == 1:\n", + " positive_sentiment_sentences.append(sentence)\n", + " if sentence.sentiment.polarity == -1:\n", + " negative_sentiment_sentences.append(sentence)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n", + "for sentence in positive_sentiment_sentences:\n", + " print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n", + "for sentence in negative_sentiment_sentences:\n", + " print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/6-NLP/4-Hotel-Reviews-1/README.md b/translations/hi/6-NLP/4-Hotel-Reviews-1/README.md new file mode 100644 index 000000000..fc6c00446 --- /dev/null +++ b/translations/hi/6-NLP/4-Hotel-Reviews-1/README.md @@ -0,0 +1,418 @@ + +# होटल समीक्षाओं के साथ भावना विश्लेषण - डेटा को संसाधित करना + +इस अनुभाग में, आप पिछले पाठों में सीखी गई तकनीकों का उपयोग करके एक बड़े डेटा सेट का अन्वेषणात्मक डेटा विश्लेषण करेंगे। जब आपको विभिन्न कॉलमों की उपयोगिता का अच्छा समझ आ जाएगा, तो आप सीखेंगे: + +- अनावश्यक कॉलमों को कैसे हटाएं +- मौजूदा कॉलमों के आधार पर नया डेटा कैसे गणना करें +- अंतिम चुनौती के लिए परिणामी डेटा सेट को कैसे सहेजें + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/37/) + +### परिचय + +अब तक आपने सीखा है कि टेक्स्ट डेटा संख्यात्मक डेटा प्रकारों से काफी अलग होता है। यदि यह टेक्स्ट किसी इंसान द्वारा लिखा या बोला गया है, तो इसे पैटर्न और आवृत्तियों, भावना और अर्थ खोजने के लिए विश्लेषित किया जा सकता है। यह पाठ आपको एक वास्तविक डेटा सेट और एक वास्तविक चुनौती में ले जाता है: **[यूरोप में 515K होटल समीक्षाओं का डेटा](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)**, जिसमें [CC0: सार्वजनिक डोमेन लाइसेंस](https://creativecommons.org/publicdomain/zero/1.0/) शामिल है। इसे Booking.com से सार्वजनिक स्रोतों से स्क्रैप किया गया था। इस डेटा सेट के निर्माता Jiashen Liu हैं। + +### तैयारी + +आपको आवश्यकता होगी: + +* Python 3 का उपयोग करके .ipynb नोटबुक चलाने की क्षमता +* pandas +* NLTK, [जिसे आपको स्थानीय रूप से इंस्टॉल करना चाहिए](https://www.nltk.org/install.html) +* डेटा सेट, जो Kaggle पर उपलब्ध है [यूरोप में 515K होटल समीक्षाओं का डेटा](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)। यह अनज़िप करने के बाद लगभग 230 MB है। इसे इन NLP पाठों से जुड़े रूट `/data` फ़ोल्डर में डाउनलोड करें। + +## अन्वेषणात्मक डेटा विश्लेषण + +यह चुनौती मानती है कि आप भावना विश्लेषण और अतिथि समीक्षा स्कोर का उपयोग करके एक होटल अनुशंसा बॉट बना रहे हैं। जिस डेटा सेट का आप उपयोग करेंगे, उसमें 6 शहरों के 1493 विभिन्न होटलों की समीक्षाएं शामिल हैं। + +Python, होटल समीक्षाओं के डेटा सेट, और NLTK के भावना विश्लेषण का उपयोग करके आप पता लगा सकते हैं: + +* समीक्षाओं में सबसे अधिक बार उपयोग किए जाने वाले शब्द और वाक्यांश कौन से हैं? +* क्या होटल का आधिकारिक *टैग* समीक्षा स्कोर से मेल खाता है (जैसे, क्या *युवा बच्चों के साथ परिवार* के लिए किसी विशेष होटल की अधिक नकारात्मक समीक्षाएं हैं, बजाय *एकल यात्री* के, जो शायद संकेत देता है कि यह *एकल यात्रियों* के लिए बेहतर है)? +* क्या NLTK भावना स्कोर होटल समीक्षक के संख्यात्मक स्कोर से 'सहमत' हैं? + +#### डेटा सेट + +आइए उस डेटा सेट का अन्वेषण करें जिसे आपने डाउनलोड और स्थानीय रूप से सहेजा है। फ़ाइल को किसी संपादक जैसे VS Code या Excel में खोलें। + +डेटा सेट में हेडर निम्नलिखित हैं: + +*Hotel_Address, Additional_Number_of_Scoring, Review_Date, Average_Score, Hotel_Name, Reviewer_Nationality, Negative_Review, Review_Total_Negative_Word_Counts, Total_Number_of_Reviews, Positive_Review, Review_Total_Positive_Word_Counts, Total_Number_of_Reviews_Reviewer_Has_Given, Reviewer_Score, Tags, days_since_review, lat, lng* + +इन्हें इस तरह से समूहित किया गया है जो जांचने में आसान हो सकता है: +##### होटल कॉलम + +* `Hotel_Name`, `Hotel_Address`, `lat` (अक्षांश), `lng` (देशांतर) + * *lat* और *lng* का उपयोग करके आप Python के साथ होटल स्थानों का एक मानचित्र बना सकते हैं (शायद नकारात्मक और सकारात्मक समीक्षाओं के लिए रंग कोडित) + * Hotel_Address हमारे लिए स्पष्ट रूप से उपयोगी नहीं है, और हम इसे आसान छंटाई और खोज के लिए देश के साथ बदल सकते हैं + +**होटल मेटा-समीक्षा कॉलम** + +* `Average_Score` + * डेटा सेट निर्माता के अनुसार, यह कॉलम होटल का *औसत स्कोर है, जो पिछले वर्ष की नवीनतम टिप्पणी के आधार पर गणना किया गया है*। यह स्कोर की गणना करने का असामान्य तरीका लगता है, लेकिन यह स्क्रैप किया गया डेटा है, इसलिए हम इसे फिलहाल मान सकते हैं। + + ✅ इस डेटा के अन्य कॉलमों के आधार पर, क्या आप औसत स्कोर की गणना करने का कोई अन्य तरीका सोच सकते हैं? + +* `Total_Number_of_Reviews` + * इस होटल को प्राप्त समीक्षाओं की कुल संख्या - यह स्पष्ट नहीं है (कुछ कोड लिखे बिना) कि क्या यह डेटा सेट में समीक्षाओं को संदर्भित करता है। +* `Additional_Number_of_Scoring` + * इसका मतलब है कि समीक्षा स्कोर दिया गया था लेकिन समीक्षक द्वारा कोई सकारात्मक या नकारात्मक समीक्षा नहीं लिखी गई थी। + +**समीक्षा कॉलम** + +- `Reviewer_Score` + - यह एक संख्यात्मक मान है जिसमें अधिकतम 1 दशमलव स्थान है, और इसका मान 2.5 और 10 के बीच है। + - यह स्पष्ट नहीं किया गया है कि 2.5 सबसे कम स्कोर क्यों है। +- `Negative_Review` + - यदि समीक्षक ने कुछ नहीं लिखा, तो यह फ़ील्ड "**No Negative**" होगा। + - ध्यान दें कि समीक्षक नकारात्मक समीक्षा कॉलम में सकारात्मक समीक्षा लिख ​​सकता है (जैसे, "इस होटल के बारे में कुछ भी बुरा नहीं है") +- `Review_Total_Negative_Word_Counts` + - उच्च नकारात्मक शब्द गणना कम स्कोर का संकेत देती है (भावना की जांच किए बिना) +- `Positive_Review` + - यदि समीक्षक ने कुछ नहीं लिखा, तो यह फ़ील्ड "**No Positive**" होगा। + - ध्यान दें कि समीक्षक सकारात्मक समीक्षा कॉलम में नकारात्मक समीक्षा लिख ​​सकता है (जैसे, "इस होटल में कुछ भी अच्छा नहीं है") +- `Review_Total_Positive_Word_Counts` + - उच्च सकारात्मक शब्द गणना उच्च स्कोर का संकेत देती है (भावना की जांच किए बिना) +- `Review_Date` और `days_since_review` + - समीक्षा पर ताजगी या पुरानी होने का माप लागू किया जा सकता है (पुरानी समीक्षाएं नई समीक्षाओं जितनी सटीक नहीं हो सकती हैं क्योंकि होटल प्रबंधन बदल गया है, या नवीनीकरण किया गया है, या एक पूल जोड़ा गया है आदि।) +- `Tags` + - ये छोटे विवरणक हैं जिन्हें समीक्षक चुन सकता है ताकि वह जिस प्रकार का अतिथि था उसका वर्णन कर सके (जैसे, अकेला या परिवार), जिस प्रकार का कमरा था, रहने की अवधि और समीक्षा कैसे प्रस्तुत की गई थी। + - दुर्भाग्यवश, इन टैग्स का उपयोग करना समस्याग्रस्त है, नीचे दिए गए अनुभाग में उनकी उपयोगिता पर चर्चा की गई है। + +**समीक्षक कॉलम** + +- `Total_Number_of_Reviews_Reviewer_Has_Given` + - यह अनुशंसा मॉडल में एक कारक हो सकता है, उदाहरण के लिए, यदि आप यह निर्धारित कर सकते हैं कि अधिक समीक्षाएं देने वाले समीक्षक, जिनके पास सैकड़ों समीक्षाएं हैं, नकारात्मक होने की संभावना अधिक है बजाय सकारात्मक। हालांकि, किसी विशेष समीक्षा के समीक्षक को एक अद्वितीय कोड के साथ पहचाना नहीं गया है, और इसलिए इसे समीक्षाओं के सेट से जोड़ा नहीं जा सकता। 100 या अधिक समीक्षाओं वाले 30 समीक्षक हैं, लेकिन यह देखना मुश्किल है कि यह अनुशंसा मॉडल में कैसे मदद कर सकता है। +- `Reviewer_Nationality` + - कुछ लोग सोच सकते हैं कि कुछ राष्ट्रीयताओं के पास सकारात्मक या नकारात्मक समीक्षा देने की अधिक संभावना है क्योंकि उनकी राष्ट्रीय प्रवृत्ति है। अपने मॉडलों में ऐसे उपाख्यानात्मक विचारों को शामिल करने में सावधानी बरतें। ये राष्ट्रीय (और कभी-कभी नस्लीय) रूढ़ियाँ हैं, और प्रत्येक समीक्षक एक व्यक्ति था जिसने अपने अनुभव के आधार पर समीक्षा लिखी। यह कई दृष्टिकोणों से फ़िल्टर किया गया हो सकता है जैसे उनके पिछले होटल प्रवास, यात्रा की दूरी, और उनका व्यक्तिगत स्वभाव। यह सोचना कि उनकी राष्ट्रीयता समीक्षा स्कोर का कारण थी, इसे सही ठहराना मुश्किल है। + +##### उदाहरण + +| औसत स्कोर | कुल समीक्षाओं की संख्या | समीक्षक स्कोर | नकारात्मक
                                समीक्षा | सकारात्मक समीक्षा | टैग्स | +| -------------- | ---------------------- | ---------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------- | ----------------------------------------------------------------------------------------- | +| 7.8 | 1945 | 2.5 | यह वर्तमान में एक होटल नहीं है बल्कि एक निर्माण स्थल है मुझे सुबह जल्दी और पूरे दिन अस्वीकार्य निर्माण शोर से आतंकित किया गया था जबकि एक लंबी यात्रा के बाद आराम कर रहा था और कमरे में काम कर रहा था लोग पूरे दिन काम कर रहे थे जैसे कि जैकहैमर के साथ आसन्न कमरों में मैंने कमरे बदलने के लिए कहा लेकिन कोई शांत कमरा उपलब्ध नहीं था चीजों को और खराब करने के लिए मुझे अधिक शुल्क लिया गया मैंने शाम को चेक आउट किया क्योंकि मुझे बहुत जल्दी उड़ान लेनी थी और एक उपयुक्त बिल प्राप्त किया एक दिन बाद होटल ने मेरी सहमति के बिना बुक की गई कीमत से अधिक शुल्क लिया यह एक भयानक जगह है खुद को यहां बुक करके दंडित न करें | कुछ भी नहीं भयानक जगह दूर रहें | व्यवसाय यात्रा युगल मानक डबल कमरा 2 रातें रुके | + +जैसा कि आप देख सकते हैं, इस अतिथि का इस होटल में ठहराव सुखद नहीं था। होटल का औसत स्कोर 7.8 और 1945 समीक्षाएं हैं, लेकिन इस समीक्षक ने इसे 2.5 दिया और अपनी नकारात्मक यात्रा के बारे में 115 शब्द लिखे। यदि उन्होंने सकारात्मक समीक्षा कॉलम में कुछ भी नहीं लिखा, तो आप अनुमान लगा सकते हैं कि कुछ भी सकारात्मक नहीं था, लेकिन उन्होंने 7 शब्दों की चेतावनी लिखी। यदि हम केवल शब्दों की गिनती करते हैं बजाय उनके अर्थ या शब्दों की भावना के, तो हमें समीक्षक के इरादे का विकृत दृष्टिकोण मिल सकता है। अजीब बात है, उनका स्कोर 2.5 भ्रमित करने वाला है, क्योंकि अगर वह होटल प्रवास इतना खराब था, तो उन्होंने इसे कोई अंक क्यों दिए? डेटा सेट को करीब से जांचने पर, आप देखेंगे कि सबसे कम संभव स्कोर 2.5 है, 0 नहीं। सबसे अधिक संभव स्कोर 10 है। + +##### टैग्स + +जैसा कि ऊपर उल्लेख किया गया है, पहली नज़र में, डेटा को वर्गीकृत करने के लिए `Tags` का उपयोग करने का विचार समझ में आता है। दुर्भाग्यवश, ये टैग्स मानकीकृत नहीं हैं, जिसका मतलब है कि एक होटल में विकल्प *सिंगल रूम*, *ट्विन रूम*, और *डबल रूम* हो सकते हैं, लेकिन अगले होटल में वे *डीलक्स सिंगल रूम*, *क्लासिक क्वीन रूम*, और *एक्जीक्यूटिव किंग रूम* हो सकते हैं। ये वही चीजें हो सकती हैं, लेकिन इतने सारे बदलाव हैं कि विकल्प बन जाता है: + +1. सभी शब्दों को एक मानक में बदलने का प्रयास करें, जो बहुत कठिन है, क्योंकि यह स्पष्ट नहीं है कि प्रत्येक मामले में रूपांतरण पथ क्या होगा (जैसे, *क्लासिक सिंगल रूम* को *सिंगल रूम* से मैप किया जा सकता है लेकिन *सुपीरियर क्वीन रूम विद कोर्टयार्ड गार्डन या सिटी व्यू* को मैप करना बहुत कठिन है) + +1. हम एक NLP दृष्टिकोण ले सकते हैं और कुछ शब्दों जैसे *सोलो*, *बिजनेस ट्रैवलर*, या *युवा बच्चों के साथ परिवार* की आवृत्ति को माप सकते हैं क्योंकि वे प्रत्येक होटल पर लागू होते हैं, और इसे अनुशंसा में शामिल कर सकते हैं। + +टैग्स आमतौर पर (लेकिन हमेशा नहीं) एकल फ़ील्ड होते हैं जिसमें 5 से 6 अल्पविराम से अलग किए गए मान होते हैं जो *यात्रा का प्रकार*, *अतिथि का प्रकार*, *कमरे का प्रकार*, *रातों की संख्या*, और *जिस डिवाइस पर समीक्षा प्रस्तुत की गई थी* से मेल खाते हैं। हालांकि, क्योंकि कुछ समीक्षक प्रत्येक फ़ील्ड को नहीं भरते (वे एक को खाली छोड़ सकते हैं), मान हमेशा एक ही क्रम में नहीं होते। + +उदाहरण के लिए, *समूह का प्रकार* लें। इस फ़ील्ड में `Tags` कॉलम में 1025 अद्वितीय संभावनाएं हैं, और दुर्भाग्यवश उनमें से केवल कुछ ही समूह को संदर्भित करती हैं (कुछ कमरे के प्रकार आदि हैं)। यदि आप केवल उन लोगों को फ़िल्टर करते हैं जो परिवार का उल्लेख करते हैं, तो परिणामों में कई *फैमिली रूम* प्रकार के परिणाम होते हैं। यदि आप *with* शब्द को शामिल करते हैं, यानी *फैमिली विद* मानों की गणना करते हैं, तो परिणाम बेहतर होते हैं, जिसमें 515,000 परिणामों में से 80,000 से अधिक में "युवा बच्चों के साथ परिवार" या "बड़े बच्चों के साथ परिवार" वाक्यांश शामिल होता है। + +इसका मतलब है कि टैग्स कॉलम हमारे लिए पूरी तरह से बेकार नहीं है, लेकिन इसे उपयोगी बनाने में कुछ काम लगेगा। + +##### औसत होटल स्कोर + +डेटा सेट के साथ कुछ विचित्रताएं या विसंगतियां हैं जिन्हें मैं समझ नहीं पा रहा हूं, लेकिन यहां उन्हें चित्रित किया गया है ताकि आप उन्हें अपने मॉडल बनाते समय ध्यान में रखें। यदि आप इसे समझते हैं, तो कृपया चर्चा अनुभाग में हमें बताएं! + +डेटा सेट में औसत स्कोर और समीक्षाओं की संख्या से संबंधित निम्नलिखित कॉलम हैं: + +1. Hotel_Name +2. Additional_Number_of_Scoring +3. Average_Score +4. Total_Number_of_Reviews +5. Reviewer_Score + +इस डेटा सेट में सबसे अधिक समीक्षाओं वाला एकल होटल *Britannia International Hotel Canary Wharf* है, जिसमें 515,000 में से 4789 समीक्षाएं हैं। लेकिन अगर हम इस होटल के लिए `Total_Number_of_Reviews` मान देखें, तो यह 9086 है। आप अनुमान लगा सकते हैं कि कई और स्कोर बिना समीक्षाओं के हैं, इसलिए शायद हमें `Additional_Number_of_Scoring` कॉलम मान जोड़ना चाहिए। वह मान 2682 है, और इसे 4789 में जोड़ने से हमें 7471 मिलता है, जो अभी भी `Total_Number_of_Reviews` से 1615 कम है। + +यदि आप `Average_Score` कॉलम लेते हैं, तो आप अनुमान लगा सकते हैं कि यह डेटा सेट में समीक्षाओं का औसत है, लेकिन Kaggle का विवरण है "*होटल का औसत स्कोर, पिछले वर्ष की नवीनतम टिप्पणी के आधार पर गणना किया गया*।" यह बहुत उपयोगी नहीं लगता, लेकिन हम डेटा सेट में समीक्षा स्कोर के आधार पर अपना औसत गणना कर सकते हैं। उसी होटल को उदाहरण के रूप में लेते हुए, औसत होटल स्कोर 7.1 दिया गया है लेकिन गणना किया गया स्कोर (समीक्षक स्कोर का औसत *डेटा सेट में*) 6.8 है। यह करीब है, लेकिन समान मान नहीं है, और हम केवल अनुमान लगा सकते हैं कि `Additional_Number_of_Scoring` समीक्षाओं में दिए गए स्कोर ने औसत को 7.1 तक बढ़ा दिया। दुर्भाग्यवश, उस कथन का परीक्षण या प्रमाणित करने का कोई तरीका नहीं होने के कारण, `Average_Score`, `Additional_Number_of_Scoring` और `Total_Number_of_Reviews` का उपयोग करना या उन पर भरोसा करना मुश्किल है जब वे डेटा पर आधारित हैं या डेटा का संदर्भ देते हैं जो हमारे पास नहीं है। + +चीजों को और जटिल बनाने के लिए, सबसे अधिक समीक्षाओं वाले दूसरे होटल का गणना किया गया औसत स्कोर 8.12 है और डेटा सेट का `Average_Score` 8.1 है। क्या यह सही स्कोर एक संयोग है या पहला होटल एक विसंगति है? +इस संभावना पर कि ये होटल एक अपवाद हो सकते हैं, और शायद अधिकांश मान सही हैं (लेकिन कुछ किसी कारण से सही नहीं हैं), हम अगले चरण में एक छोटा प्रोग्राम लिखेंगे ताकि डेटा सेट में मानों का पता लगाया जा सके और उनके सही उपयोग (या गैर-उपयोग) को निर्धारित किया जा सके। + +> 🚨 सावधानी का एक नोट +> +> जब आप इस डेटा सेट के साथ काम कर रहे हों, तो आप ऐसा कोड लिखेंगे जो टेक्स्ट से कुछ गणना करता है, बिना टेक्स्ट को खुद पढ़े या विश्लेषण किए। यही NLP का सार है, अर्थ या भावना को समझना बिना किसी मानव हस्तक्षेप के। हालांकि, यह संभव है कि आप कुछ नकारात्मक समीक्षाएं पढ़ें। मैं आपको ऐसा न करने की सलाह दूंगा, क्योंकि इसकी आवश्यकता नहीं है। उनमें से कुछ मूर्खतापूर्ण या अप्रासंगिक नकारात्मक होटल समीक्षाएं हो सकती हैं, जैसे "मौसम अच्छा नहीं था", जो होटल या किसी के नियंत्रण से बाहर है। लेकिन कुछ समीक्षाओं का एक अंधकारमय पक्ष भी होता है। कभी-कभी नकारात्मक समीक्षाएं नस्लवादी, लिंगभेदी, या उम्रभेदी होती हैं। यह दुर्भाग्यपूर्ण है लेकिन सार्वजनिक वेबसाइट से स्क्रैप किए गए डेटा सेट में अपेक्षित है। कुछ समीक्षक ऐसी समीक्षाएं छोड़ते हैं जो आपको अप्रिय, असहज, या परेशान कर सकती हैं। बेहतर होगा कि कोड भावना को मापे बजाय आप खुद उन्हें पढ़कर परेशान हों। हालांकि, ऐसे लोग अल्पसंख्यक हैं जो ऐसा लिखते हैं, लेकिन वे फिर भी मौजूद हैं। + +## अभ्यास - डेटा अन्वेषण +### डेटा लोड करें + +अब डेटा को दृश्य रूप से जांचने के लिए पर्याप्त है, अब आप कुछ कोड लिखेंगे और उत्तर प्राप्त करेंगे! इस सेक्शन में pandas लाइब्रेरी का उपयोग किया गया है। आपका पहला कार्य यह सुनिश्चित करना है कि आप CSV डेटा को लोड और पढ़ सकते हैं। pandas लाइब्रेरी में एक तेज़ CSV लोडर है, और परिणाम को पिछले पाठों की तरह एक डेटा फ्रेम में रखा जाता है। जिस CSV को हम लोड कर रहे हैं उसमें आधे मिलियन से अधिक पंक्तियां हैं, लेकिन केवल 17 कॉलम हैं। pandas आपको डेटा फ्रेम के साथ बातचीत करने के कई शक्तिशाली तरीके देता है, जिसमें हर पंक्ति पर ऑपरेशन करने की क्षमता भी शामिल है। + +इस पाठ के आगे के हिस्से में कोड स्निपेट्स और कोड की कुछ व्याख्याएं और परिणामों के बारे में चर्चा होगी। अपने कोड के लिए शामिल _notebook.ipynb_ का उपयोग करें। + +आइए उस डेटा फ़ाइल को लोड करने से शुरू करें जिसे आप उपयोग करेंगे: + +```python +# Load the hotel reviews from CSV +import pandas as pd +import time +# importing time so the start and end time can be used to calculate file loading time +print("Loading data file now, this could take a while depending on file size") +start = time.time() +# df is 'DataFrame' - make sure you downloaded the file to the data folder +df = pd.read_csv('../../data/Hotel_Reviews.csv') +end = time.time() +print("Loading took " + str(round(end - start, 2)) + " seconds") +``` + +अब जब डेटा लोड हो गया है, तो हम उस पर कुछ ऑपरेशन कर सकते हैं। अगले भाग के लिए इस कोड को अपने प्रोग्राम के शीर्ष पर रखें। + +## डेटा का अन्वेषण + +इस मामले में, डेटा पहले से ही *साफ* है, इसका मतलब है कि यह काम करने के लिए तैयार है और इसमें अन्य भाषाओं के वर्ण नहीं हैं जो केवल अंग्रेजी वर्णों की अपेक्षा करने वाले एल्गोरिदम को बाधित कर सकते हैं। + +✅ आपको ऐसे डेटा के साथ काम करना पड़ सकता है जिसे NLP तकनीकों को लागू करने से पहले प्रारंभिक प्रोसेसिंग की आवश्यकता हो, लेकिन इस बार ऐसा नहीं है। यदि आपको करना पड़े, तो आप गैर-अंग्रेजी वर्णों को कैसे संभालेंगे? + +एक पल लें यह सुनिश्चित करने के लिए कि डेटा लोड होने के बाद, आप इसे कोड के साथ अन्वेषण कर सकते हैं। `Negative_Review` और `Positive_Review` कॉलम पर ध्यान केंद्रित करना बहुत आसान है। ये प्राकृतिक टेक्स्ट से भरे हुए हैं जिन्हें आपके NLP एल्गोरिदम द्वारा प्रोसेस किया जाना है। लेकिन रुको! NLP और भावना में कूदने से पहले, आपको नीचे दिए गए कोड का पालन करना चाहिए ताकि यह सुनिश्चित किया जा सके कि डेटा सेट में दिए गए मान आपके द्वारा pandas के साथ गणना किए गए मानों से मेल खाते हैं। + +## डेटा फ्रेम ऑपरेशन + +इस पाठ में पहला कार्य यह जांचना है कि निम्नलिखित दावे सही हैं या नहीं, इसके लिए डेटा फ्रेम की जांच करने वाला कोड लिखें (बिना इसे बदले)। + +> कई प्रोग्रामिंग कार्यों की तरह, इसे पूरा करने के कई तरीके हैं, लेकिन अच्छा सुझाव यह है कि इसे सबसे सरल, आसान तरीके से करें, खासकर यदि यह भविष्य में इस कोड को समझने में आसान होगा। डेटा फ्रेम के साथ, एक व्यापक API है जो अक्सर आपके इच्छित कार्य को कुशलतापूर्वक करने का तरीका प्रदान करेगा। + +निम्नलिखित प्रश्नों को कोडिंग कार्यों के रूप में मानें और समाधान को देखे बिना उनका उत्तर देने का प्रयास करें। + +1. आपने अभी लोड किए गए डेटा फ्रेम का *आकार* प्रिंट करें (आकार पंक्तियों और कॉलम की संख्या है) +2. समीक्षक राष्ट्रीयताओं के लिए आवृत्ति गणना करें: + 1. `Reviewer_Nationality` कॉलम के लिए कितने विशिष्ट मान हैं और वे क्या हैं? + 2. डेटा सेट में सबसे आम समीक्षक राष्ट्रीयता कौन सी है (देश और समीक्षाओं की संख्या प्रिंट करें)? + 3. अगली शीर्ष 10 सबसे अधिक बार पाई जाने वाली राष्ट्रीयताएं और उनकी आवृत्ति गणना क्या हैं? +3. शीर्ष 10 सबसे समीक्षक राष्ट्रीयताओं के लिए प्रत्येक के लिए सबसे अधिक समीक्षा किया गया होटल कौन सा था? +4. डेटा सेट में प्रति होटल कितनी समीक्षाएं हैं (होटल की आवृत्ति गणना)? +5. जबकि डेटा सेट में प्रत्येक होटल के लिए `Average_Score` कॉलम है, आप एक औसत स्कोर भी गणना कर सकते हैं (डेटा सेट में प्रत्येक होटल के लिए सभी समीक्षक स्कोर का औसत प्राप्त करना)। अपने डेटा फ्रेम में एक नया कॉलम जोड़ें जिसका कॉलम हेडर `Calc_Average_Score` हो जिसमें वह गणना किया गया औसत हो। +6. क्या किसी होटल का `Average_Score` और `Calc_Average_Score` (1 दशमलव स्थान तक गोल) समान है? + 1. एक Python फ़ंक्शन लिखने का प्रयास करें जो एक Series (पंक्ति) को तर्क के रूप में लेता है और मानों की तुलना करता है, जब मान समान नहीं होते हैं तो एक संदेश प्रिंट करता है। फिर `.apply()` विधि का उपयोग करके प्रत्येक पंक्ति को फ़ंक्शन के साथ प्रोसेस करें। +7. कॉलम `Negative_Review` के "No Negative" मान वाले कितने पंक्तियां हैं, इसकी गणना करें और प्रिंट करें। +8. कॉलम `Positive_Review` के "No Positive" मान वाले कितने पंक्तियां हैं, इसकी गणना करें और प्रिंट करें। +9. कॉलम `Positive_Review` के "No Positive" **और** `Negative_Review` के "No Negative" मान वाले कितने पंक्तियां हैं, इसकी गणना करें और प्रिंट करें। + +### कोड उत्तर + +1. आपने अभी लोड किए गए डेटा फ्रेम का *आकार* प्रिंट करें (आकार पंक्तियों और कॉलम की संख्या है) + + ```python + print("The shape of the data (rows, cols) is " + str(df.shape)) + > The shape of the data (rows, cols) is (515738, 17) + ``` + +2. समीक्षक राष्ट्रीयताओं के लिए आवृत्ति गणना करें: + + 1. `Reviewer_Nationality` कॉलम के लिए कितने विशिष्ट मान हैं और वे क्या हैं? + 2. डेटा सेट में सबसे आम समीक्षक राष्ट्रीयता कौन सी है (देश और समीक्षाओं की संख्या प्रिंट करें)? + + ```python + # value_counts() creates a Series object that has index and values in this case, the country and the frequency they occur in reviewer nationality + nationality_freq = df["Reviewer_Nationality"].value_counts() + print("There are " + str(nationality_freq.size) + " different nationalities") + # print first and last rows of the Series. Change to nationality_freq.to_string() to print all of the data + print(nationality_freq) + + There are 227 different nationalities + United Kingdom 245246 + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + ... + Comoros 1 + Palau 1 + Northern Mariana Islands 1 + Cape Verde 1 + Guinea 1 + Name: Reviewer_Nationality, Length: 227, dtype: int64 + ``` + + 3. अगली शीर्ष 10 सबसे अधिक बार पाई जाने वाली राष्ट्रीयताएं और उनकी आवृत्ति गणना क्या हैं? + + ```python + print("The highest frequency reviewer nationality is " + str(nationality_freq.index[0]).strip() + " with " + str(nationality_freq[0]) + " reviews.") + # Notice there is a leading space on the values, strip() removes that for printing + # What is the top 10 most common nationalities and their frequencies? + print("The next 10 highest frequency reviewer nationalities are:") + print(nationality_freq[1:11].to_string()) + + The highest frequency reviewer nationality is United Kingdom with 245246 reviews. + The next 10 highest frequency reviewer nationalities are: + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + Saudi Arabia 8951 + Netherlands 8772 + Switzerland 8678 + Germany 7941 + Canada 7894 + France 7296 + ``` + +3. शीर्ष 10 सबसे समीक्षक राष्ट्रीयताओं के लिए प्रत्येक के लिए सबसे अधिक समीक्षा किया गया होटल कौन सा था? + + ```python + # What was the most frequently reviewed hotel for the top 10 nationalities + # Normally with pandas you will avoid an explicit loop, but wanted to show creating a new dataframe using criteria (don't do this with large amounts of data because it could be very slow) + for nat in nationality_freq[:10].index: + # First, extract all the rows that match the criteria into a new dataframe + nat_df = df[df["Reviewer_Nationality"] == nat] + # Now get the hotel freq + freq = nat_df["Hotel_Name"].value_counts() + print("The most reviewed hotel for " + str(nat).strip() + " was " + str(freq.index[0]) + " with " + str(freq[0]) + " reviews.") + + The most reviewed hotel for United Kingdom was Britannia International Hotel Canary Wharf with 3833 reviews. + The most reviewed hotel for United States of America was Hotel Esther a with 423 reviews. + The most reviewed hotel for Australia was Park Plaza Westminster Bridge London with 167 reviews. + The most reviewed hotel for Ireland was Copthorne Tara Hotel London Kensington with 239 reviews. + The most reviewed hotel for United Arab Emirates was Millennium Hotel London Knightsbridge with 129 reviews. + The most reviewed hotel for Saudi Arabia was The Cumberland A Guoman Hotel with 142 reviews. + The most reviewed hotel for Netherlands was Jaz Amsterdam with 97 reviews. + The most reviewed hotel for Switzerland was Hotel Da Vinci with 97 reviews. + The most reviewed hotel for Germany was Hotel Da Vinci with 86 reviews. + The most reviewed hotel for Canada was St James Court A Taj Hotel London with 61 reviews. + ``` + +4. डेटा सेट में प्रति होटल कितनी समीक्षाएं हैं (होटल की आवृत्ति गणना)? + + ```python + # First create a new dataframe based on the old one, removing the uneeded columns + hotel_freq_df = df.drop(["Hotel_Address", "Additional_Number_of_Scoring", "Review_Date", "Average_Score", "Reviewer_Nationality", "Negative_Review", "Review_Total_Negative_Word_Counts", "Positive_Review", "Review_Total_Positive_Word_Counts", "Total_Number_of_Reviews_Reviewer_Has_Given", "Reviewer_Score", "Tags", "days_since_review", "lat", "lng"], axis = 1) + + # Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found + hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count') + + # Get rid of all the duplicated rows + hotel_freq_df = hotel_freq_df.drop_duplicates(subset = ["Hotel_Name"]) + display(hotel_freq_df) + ``` + | Hotel_Name | Total_Number_of_Reviews | Total_Reviews_Found | + | :----------------------------------------: | :---------------------: | :-----------------: | + | Britannia International Hotel Canary Wharf | 9086 | 4789 | + | Park Plaza Westminster Bridge London | 12158 | 4169 | + | Copthorne Tara Hotel London Kensington | 7105 | 3578 | + | ... | ... | ... | + | Mercure Paris Porte d Orleans | 110 | 10 | + | Hotel Wagner | 135 | 10 | + | Hotel Gallitzinberg | 173 | 8 | + + आप देख सकते हैं कि *डेटा सेट में गिना गया* परिणाम `Total_Number_of_Reviews` मान से मेल नहीं खाता। यह स्पष्ट नहीं है कि डेटा सेट में यह मान होटल की कुल समीक्षाओं का प्रतिनिधित्व करता है, लेकिन सभी स्क्रैप नहीं किए गए थे, या कुछ अन्य गणना। इस अस्पष्टता के कारण मॉडल में `Total_Number_of_Reviews` का उपयोग नहीं किया गया है। + +5. जबकि डेटा सेट में प्रत्येक होटल के लिए `Average_Score` कॉलम है, आप एक औसत स्कोर भी गणना कर सकते हैं (डेटा सेट में प्रत्येक होटल के लिए सभी समीक्षक स्कोर का औसत प्राप्त करना)। अपने डेटा फ्रेम में एक नया कॉलम जोड़ें जिसका कॉलम हेडर `Calc_Average_Score` हो जिसमें वह गणना किया गया औसत हो। कॉलम `Hotel_Name`, `Average_Score`, और `Calc_Average_Score` प्रिंट करें। + + ```python + # define a function that takes a row and performs some calculation with it + def get_difference_review_avg(row): + return row["Average_Score"] - row["Calc_Average_Score"] + + # 'mean' is mathematical word for 'average' + df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + + # Add a new column with the difference between the two average scores + df["Average_Score_Difference"] = df.apply(get_difference_review_avg, axis = 1) + + # Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel) + review_scores_df = df.drop_duplicates(subset = ["Hotel_Name"]) + + # Sort the dataframe to find the lowest and highest average score difference + review_scores_df = review_scores_df.sort_values(by=["Average_Score_Difference"]) + + display(review_scores_df[["Average_Score_Difference", "Average_Score", "Calc_Average_Score", "Hotel_Name"]]) + ``` + + आप यह भी सोच सकते हैं कि `Average_Score` मान और गणना किए गए औसत स्कोर में कभी-कभी अंतर क्यों होता है। जैसा कि हम नहीं जान सकते कि कुछ मान क्यों मेल खाते हैं, लेकिन अन्य में अंतर है, इस मामले में यह सबसे सुरक्षित है कि हमारे पास मौजूद समीक्षा स्कोर का उपयोग करके औसत खुद गणना करें। हालांकि, अंतर आमतौर पर बहुत छोटा होता है, यहां वे होटल हैं जिनमें डेटा सेट औसत और गणना किए गए औसत के बीच सबसे बड़ा विचलन है: + + | Average_Score_Difference | Average_Score | Calc_Average_Score | Hotel_Name | + | :----------------------: | :-----------: | :----------------: | ------------------------------------------: | + | -0.8 | 7.7 | 8.5 | Best Western Hotel Astoria | + | -0.7 | 8.8 | 9.5 | Hotel Stendhal Place Vend me Paris MGallery | + | -0.7 | 7.5 | 8.2 | Mercure Paris Porte d Orleans | + | -0.7 | 7.9 | 8.6 | Renaissance Paris Vendome Hotel | + | -0.5 | 7.0 | 7.5 | Hotel Royal Elys es | + | ... | ... | ... | ... | + | 0.7 | 7.5 | 6.8 | Mercure Paris Op ra Faubourg Montmartre | + | 0.8 | 7.1 | 6.3 | Holiday Inn Paris Montparnasse Pasteur | + | 0.9 | 6.8 | 5.9 | Villa Eugenie | + | 0.9 | 8.6 | 7.7 | MARQUIS Faubourg St Honor Relais Ch teaux | + | 1.3 | 7.2 | 5.9 | Kube Hotel Ice Bar | + + केवल 1 होटल में स्कोर का अंतर 1 से अधिक है, इसका मतलब है कि हम शायद अंतर को अनदेखा कर सकते हैं और गणना किए गए औसत स्कोर का उपयोग कर सकते हैं। + +6. कॉलम `Negative_Review` के "No Negative" मान वाले कितने पंक्तियां हैं, इसकी गणना करें और प्रिंट करें। + +7. कॉलम `Positive_Review` के "No Positive" मान वाले कितने पंक्तियां हैं, इसकी गणना करें और प्रिंट करें। + +8. कॉलम `Positive_Review` के "No Positive" **और** `Negative_Review` के "No Negative" मान वाले कितने पंक्तियां हैं, इसकी गणना करें और प्रिंट करें। + + ```python + # with lambdas: + start = time.time() + no_negative_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" else False , axis=1) + print("Number of No Negative reviews: " + str(len(no_negative_reviews[no_negative_reviews == True].index))) + + no_positive_reviews = df.apply(lambda x: True if x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of No Positive reviews: " + str(len(no_positive_reviews[no_positive_reviews == True].index))) + + both_no_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" and x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of both No Negative and No Positive reviews: " + str(len(both_no_reviews[both_no_reviews == True].index))) + end = time.time() + print("Lambdas took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Lambdas took 9.64 seconds + ``` + +## एक और तरीका + +लंब्डा के बिना आइटम गिनने का एक और तरीका, और पंक्तियों को गिनने के लिए sum का उपयोग करें: + + ```python + # without lambdas (using a mixture of notations to show you can use both) + start = time.time() + no_negative_reviews = sum(df.Negative_Review == "No Negative") + print("Number of No Negative reviews: " + str(no_negative_reviews)) + + no_positive_reviews = sum(df["Positive_Review"] == "No Positive") + print("Number of No Positive reviews: " + str(no_positive_reviews)) + + both_no_reviews = sum((df.Negative_Review == "No Negative") & (df.Positive_Review == "No Positive")) + print("Number of both No Negative and No Positive reviews: " + str(both_no_reviews)) + + end = time.time() + print("Sum took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Sum took 0.19 seconds + ``` + + आपने देखा होगा कि `Negative_Review` और `Positive_Review` कॉलम के "No Negative" और "No Positive" मान वाले 127 पंक्तियां हैं। इसका मतलब है कि समीक्षक ने होटल को एक संख्यात्मक स्कोर दिया, लेकिन न तो सकारात्मक और न ही नकारात्मक समीक्षा लिखने से इनकार कर दिया। सौभाग्य से यह पंक्तियों की एक छोटी संख्या है (127 में से 515738, या 0.02%), इसलिए यह शायद हमारे मॉडल या परिणामों को किसी विशेष दिशा में प्रभावित नहीं करेगा, लेकिन आप उम्मीद नहीं कर सकते थे कि समीक्षाओं के डेटा सेट में ऐसी पंक्तियां हों जिनमें कोई समीक्षा न हो, इसलिए डेटा का अन्वेषण करना और ऐसी पंक्तियों की खोज करना महत्वपूर्ण है। + +अब जब आपने डेटा सेट का अन्वेषण कर लिया है, अगले पाठ में आप डेटा को फ़िल्टर करेंगे और कुछ भावना विश्लेषण जोड़ेंगे। + +--- +## 🚀चुनौती + +यह पाठ दिखाता है, जैसा कि हमने पिछले पाठों में देखा, कि आपके डेटा और इसकी विशेषताओं को समझना कितना महत्वपूर्ण है इससे पहले कि आप उस पर ऑपरेशन करें। टेक्स्ट-आधारित डेटा, विशेष रूप से, सावधानीपूर्वक जांच की आवश्यकता है। विभिन्न टेक्स्ट-भारी डेटा सेटों को खोदें और देखें कि क्या आप ऐसे क्षेत्र खोज सकते हैं जो मॉडल में पूर्वाग्रह या विकृत भावना को पेश कर सकते हैं। + +## [पाठ के बाद क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/38/) + +## समीक्षा और स्व-अध्ययन + +[NLP पर यह लर्निंग पाथ](https://docs.microsoft.com/learn/paths/explore-natural-language-processing/?WT.mc_id=academic-77952-leestott) लें ताकि उन उपकरणों की खोज की जा सके जिन्हें आप स्पीच और टेक्स्ट-भारी मॉडल बनाते समय आज़मा सकते हैं। + +## असाइनमेंट + +[NLTK](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/4-Hotel-Reviews-1/assignment.md b/translations/hi/6-NLP/4-Hotel-Reviews-1/assignment.md new file mode 100644 index 000000000..87f7849cd --- /dev/null +++ b/translations/hi/6-NLP/4-Hotel-Reviews-1/assignment.md @@ -0,0 +1,19 @@ + +# NLTK + +## निर्देश + +NLTK कम्प्यूटेशनल लिंग्विस्टिक्स और NLP में उपयोग के लिए एक प्रसिद्ध लाइब्रेरी है। इस अवसर का लाभ उठाएं और '[NLTK पुस्तक](https://www.nltk.org/book/)' को पढ़ें और इसके अभ्यासों को आज़माएं। इस गैर-अंकित असाइनमेंट में, आप इस लाइब्रेरी को और गहराई से जान पाएंगे। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/4-Hotel-Reviews-1/notebook.ipynb b/translations/hi/6-NLP/4-Hotel-Reviews-1/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/hi/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md b/translations/hi/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md new file mode 100644 index 000000000..342ae0b99 --- /dev/null +++ b/translations/hi/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/4-Hotel-Reviews-1/solution/R/README.md b/translations/hi/6-NLP/4-Hotel-Reviews-1/solution/R/README.md new file mode 100644 index 000000000..b895f567c --- /dev/null +++ b/translations/hi/6-NLP/4-Hotel-Reviews-1/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb b/translations/hi/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb new file mode 100644 index 000000000..af7c5e009 --- /dev/null +++ b/translations/hi/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb @@ -0,0 +1,174 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2d05e7db439376aa824f4b387f8324ca", + "translation_date": "2025-09-04T03:09:33+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# EDA\n", + "import pandas as pd\n", + "import time" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_difference_review_avg(row):\n", + " return row[\"Average_Score\"] - row[\"Calc_Average_Score\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "print(\"Loading data file now, this could take a while depending on file size\")\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n", + "end = time.time()\n", + "print(\"Loading took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What shape is the data (rows, columns)?\n", + "print(\"The shape of the data (rows, cols) is \" + str(df.shape))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# value_counts() creates a Series object that has index and values\n", + "# in this case, the country and the frequency they occur in reviewer nationality\n", + "nationality_freq = df[\"Reviewer_Nationality\"].value_counts()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What reviewer nationality is the most common in the dataset?\n", + "print(\"The highest frequency reviewer nationality is \" + str(nationality_freq.index[0]).strip() + \" with \" + str(nationality_freq[0]) + \" reviews.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What is the top 10 most common nationalities and their frequencies?\n", + "print(\"The top 10 highest frequency reviewer nationalities are:\")\n", + "print(nationality_freq[0:10].to_string())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many unique nationalities are there?\n", + "print(\"There are \" + str(nationality_freq.index.size) + \" unique nationalities in the dataset\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What was the most frequently reviewed hotel for the top 10 nationalities - print the hotel and number of reviews\n", + "for nat in nationality_freq[:10].index:\n", + " # First, extract all the rows that match the criteria into a new dataframe\n", + " nat_df = df[df[\"Reviewer_Nationality\"] == nat] \n", + " # Now get the hotel freq\n", + " freq = nat_df[\"Hotel_Name\"].value_counts()\n", + " print(\"The most reviewed hotel for \" + str(nat).strip() + \" was \" + str(freq.index[0]) + \" with \" + str(freq[0]) + \" reviews.\") \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many reviews are there per hotel (frequency count of hotel) and do the results match the value in `Total_Number_of_Reviews`?\n", + "# First create a new dataframe based on the old one, removing the uneeded columns\n", + "hotel_freq_df = df.drop([\"Hotel_Address\", \"Additional_Number_of_Scoring\", \"Review_Date\", \"Average_Score\", \"Reviewer_Nationality\", \"Negative_Review\", \"Review_Total_Negative_Word_Counts\", \"Positive_Review\", \"Review_Total_Positive_Word_Counts\", \"Total_Number_of_Reviews_Reviewer_Has_Given\", \"Reviewer_Score\", \"Tags\", \"days_since_review\", \"lat\", \"lng\"], axis = 1)\n", + "# Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found\n", + "hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count')\n", + "# Get rid of all the duplicated rows\n", + "hotel_freq_df = hotel_freq_df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "print()\n", + "print(hotel_freq_df.to_string())\n", + "print(str(hotel_freq_df.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# While there is an `Average_Score` for each hotel according to the dataset, \n", + "# you can also calculate an average score (getting the average of all reviewer scores in the dataset for each hotel)\n", + "# Add a new column to your dataframe with the column header `Calc_Average_Score` that contains that calculated average. \n", + "df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n", + "# Add a new column with the difference between the two average scores\n", + "df[\"Average_Score_Difference\"] = df.apply(get_difference_review_avg, axis = 1)\n", + "# Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel)\n", + "review_scores_df = df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "# Sort the dataframe to find the lowest and highest average score difference\n", + "review_scores_df = review_scores_df.sort_values(by=[\"Average_Score_Difference\"])\n", + "print(review_scores_df[[\"Average_Score_Difference\", \"Average_Score\", \"Calc_Average_Score\", \"Hotel_Name\"]])\n", + "# Do any hotels have the same (rounded to 1 decimal place) `Average_Score` and `Calc_Average_Score`?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/6-NLP/5-Hotel-Reviews-2/README.md b/translations/hi/6-NLP/5-Hotel-Reviews-2/README.md new file mode 100644 index 000000000..f9f28dcfe --- /dev/null +++ b/translations/hi/6-NLP/5-Hotel-Reviews-2/README.md @@ -0,0 +1,383 @@ + +# होटल समीक्षाओं के साथ भाव विश्लेषण + +अब जब आपने डेटासेट को विस्तार से देखा है, तो यह समय है कि कॉलम्स को फ़िल्टर करें और फिर डेटासेट पर NLP तकनीकों का उपयोग करके होटलों के बारे में नई जानकारियाँ प्राप्त करें। +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/39/) + +### फ़िल्टरिंग और भाव विश्लेषण संचालन + +जैसा कि आपने शायद देखा होगा, डेटासेट में कुछ समस्याएँ हैं। कुछ कॉलम्स में बेकार जानकारी भरी हुई है, जबकि अन्य गलत लगते हैं। अगर वे सही भी हैं, तो यह स्पष्ट नहीं है कि उन्हें कैसे गणना की गई, और आपके अपने गणनाओं से उत्तर स्वतंत्र रूप से सत्यापित नहीं किए जा सकते। + +## अभ्यास: डेटा प्रोसेसिंग को थोड़ा और बेहतर बनाना + +डेटा को थोड़ा और साफ करें। ऐसे कॉलम्स जोड़ें जो बाद में उपयोगी होंगे, अन्य कॉलम्स में मान बदलें, और कुछ कॉलम्स को पूरी तरह से हटा दें। + +1. प्रारंभिक कॉलम प्रोसेसिंग + + 1. `lat` और `lng` को हटा दें। + + 2. `Hotel_Address` के मानों को निम्नलिखित मानों से बदलें (यदि पता शहर और देश का नाम शामिल करता है, तो इसे केवल शहर और देश में बदल दें)। + + डेटासेट में केवल ये शहर और देश हैं: + + एम्स्टर्डम, नीदरलैंड्स + बार्सिलोना, स्पेन + लंदन, यूनाइटेड किंगडम + मिलान, इटली + पेरिस, फ्रांस + वियना, ऑस्ट्रिया + + ```python + def replace_address(row): + if "Netherlands" in row["Hotel_Address"]: + return "Amsterdam, Netherlands" + elif "Barcelona" in row["Hotel_Address"]: + return "Barcelona, Spain" + elif "United Kingdom" in row["Hotel_Address"]: + return "London, United Kingdom" + elif "Milan" in row["Hotel_Address"]: + return "Milan, Italy" + elif "France" in row["Hotel_Address"]: + return "Paris, France" + elif "Vienna" in row["Hotel_Address"]: + return "Vienna, Austria" + + # Replace all the addresses with a shortened, more useful form + df["Hotel_Address"] = df.apply(replace_address, axis = 1) + # The sum of the value_counts() should add up to the total number of reviews + print(df["Hotel_Address"].value_counts()) + ``` + + अब आप देश स्तर का डेटा क्वेरी कर सकते हैं: + + ```python + display(df.groupby("Hotel_Address").agg({"Hotel_Name": "nunique"})) + ``` + + | Hotel_Address | Hotel_Name | + | :--------------------- | :--------: | + | एम्स्टर्डम, नीदरलैंड्स | 105 | + | बार्सिलोना, स्पेन | 211 | + | लंदन, यूनाइटेड किंगडम | 400 | + | मिलान, इटली | 162 | + | पेरिस, फ्रांस | 458 | + | वियना, ऑस्ट्रिया | 158 | + +2. होटल मेटा-रिव्यू कॉलम्स को प्रोसेस करें + + 1. `Additional_Number_of_Scoring` को हटा दें। + + 2. `Total_Number_of_Reviews` को उस होटल के लिए डेटासेट में वास्तव में मौजूद समीक्षाओं की कुल संख्या से बदलें। + + 3. `Average_Score` को हमारे द्वारा गणना किए गए स्कोर से बदलें। + + ```python + # Drop `Additional_Number_of_Scoring` + df.drop(["Additional_Number_of_Scoring"], axis = 1, inplace=True) + # Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values + df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count') + df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + ``` + +3. रिव्यू कॉलम्स को प्रोसेस करें + + 1. `Review_Total_Negative_Word_Counts`, `Review_Total_Positive_Word_Counts`, `Review_Date` और `days_since_review` को हटा दें। + + 2. `Reviewer_Score`, `Negative_Review`, और `Positive_Review` को जैसा है वैसा रखें। + + 3. `Tags` को अभी के लिए रखें। + + - हम अगले सेक्शन में टैग्स पर कुछ अतिरिक्त फ़िल्टरिंग संचालन करेंगे और फिर टैग्स को हटा देंगे। + +4. समीक्षक कॉलम्स को प्रोसेस करें + + 1. `Total_Number_of_Reviews_Reviewer_Has_Given` को हटा दें। + + 2. `Reviewer_Nationality` को रखें। + +### टैग कॉलम्स + +`Tag` कॉलम समस्या पैदा करता है क्योंकि यह एक सूची (टेक्स्ट फॉर्म में) के रूप में कॉलम में संग्रहीत है। दुर्भाग्य से, इस कॉलम में उपखंडों की संख्या और क्रम हमेशा समान नहीं होता। 515,000 पंक्तियों और 1427 होटलों के साथ, यह मानव के लिए सही वाक्यांशों की पहचान करना कठिन है। यही वह जगह है जहाँ NLP उपयोगी है। आप टेक्स्ट को स्कैन कर सकते हैं, सबसे सामान्य वाक्यांशों को ढूंढ सकते हैं, और उनकी गिनती कर सकते हैं। + +दुर्भाग्य से, हम एकल शब्दों में रुचि नहीं रखते, बल्कि बहु-शब्द वाक्यांशों (जैसे *Business trip*) में रुचि रखते हैं। इतने बड़े डेटा (6762646 शब्द) पर एक बहु-शब्द आवृत्ति वितरण एल्गोरिदम चलाना असाधारण रूप से समय लेने वाला हो सकता है। लेकिन डेटा को देखे बिना, यह आवश्यक खर्च लग सकता है। यही वह जगह है जहाँ खोजपूर्ण डेटा विश्लेषण उपयोगी होता है। उदाहरण के लिए, आपने टैग्स का एक नमूना देखा होगा जैसे `[' Business trip ', ' Solo traveler ', ' Single Room ', ' Stayed 5 nights ', ' Submitted from a mobile device ']`, आप यह पूछना शुरू कर सकते हैं कि क्या आपको प्रोसेसिंग को काफी हद तक कम करना संभव है। सौभाग्य से, यह संभव है - लेकिन पहले आपको रुचि के टैग्स का पता लगाने के लिए कुछ चरणों का पालन करना होगा। + +### टैग्स को फ़िल्टर करना + +याद रखें कि डेटासेट का उद्देश्य भाव और ऐसे कॉलम्स जोड़ना है जो आपको सबसे अच्छा होटल चुनने में मदद करें (अपने लिए या शायद किसी क्लाइंट के लिए जो आपसे होटल सिफारिश बॉट बनाने का काम करवा रहा हो)। आपको खुद से पूछना होगा कि क्या टैग्स अंतिम डेटासेट में उपयोगी हैं या नहीं। यहाँ एक व्याख्या है (यदि आपको अन्य कारणों से डेटासेट की आवश्यकता होती, तो अलग टैग्स चयन में रह सकते थे/निकल सकते थे): + +1. यात्रा का प्रकार प्रासंगिक है, और इसे रखना चाहिए। +2. अतिथि समूह का प्रकार महत्वपूर्ण है, और इसे रखना चाहिए। +3. अतिथि ने जिस प्रकार के कमरे, सुइट, या स्टूडियो में ठहराव किया, वह अप्रासंगिक है (सभी होटलों में मूल रूप से समान कमरे होते हैं)। +4. जिस डिवाइस से समीक्षा सबमिट की गई, वह अप्रासंगिक है। +5. समीक्षक ने कितनी रातें ठहरीं, यह *प्रासंगिक हो सकता है यदि आप लंबे ठहराव को होटल को अधिक पसंद करने से जोड़ते हैं, लेकिन यह एक खिंचाव है और शायद अप्रासंगिक है। + +सारांश में, **2 प्रकार के टैग्स रखें और बाकी को हटा दें**। + +पहले, आप तब तक टैग्स की गिनती नहीं करना चाहते जब तक वे बेहतर प्रारूप में न हों, इसलिए इसका मतलब है वर्ग कोष्ठक और उद्धरण चिह्न हटाना। आप इसे कई तरीकों से कर सकते हैं, लेकिन आप सबसे तेज़ तरीका चाहते हैं क्योंकि यह बहुत सारे डेटा को प्रोसेस करने में समय ले सकता है। सौभाग्य से, पांडा में इन चरणों में से प्रत्येक को करने का एक आसान तरीका है। + +```Python +# Remove opening and closing brackets +df.Tags = df.Tags.str.strip("[']") +# remove all quotes too +df.Tags = df.Tags.str.replace(" ', '", ",", regex = False) +``` + +प्रत्येक टैग कुछ इस तरह बन जाता है: `Business trip, Solo traveler, Single Room, Stayed 5 nights, Submitted from a mobile device`। + +इसके बाद एक समस्या सामने आती है। कुछ समीक्षाओं या पंक्तियों में 5 कॉलम्स होते हैं, कुछ में 3, कुछ में 6। यह डेटासेट के निर्माण के तरीके का परिणाम है और इसे ठीक करना कठिन है। आप प्रत्येक वाक्यांश की आवृत्ति गिनना चाहते हैं, लेकिन वे प्रत्येक समीक्षा में अलग क्रम में हैं, इसलिए गिनती गलत हो सकती है, और किसी होटल को वह टैग नहीं मिल सकता जो उसे मिलना चाहिए था। + +इसके बजाय आप अलग क्रम का लाभ उठाएँगे, क्योंकि प्रत्येक टैग बहु-शब्द है लेकिन एक अल्पविराम से भी अलग है! इसका सबसे सरल तरीका यह है कि 6 अस्थायी कॉलम्स बनाएँ और प्रत्येक टैग को उस कॉलम में डालें जो टैग के क्रम से मेल खाता हो। फिर आप 6 कॉलम्स को एक बड़े कॉलम में मर्ज कर सकते हैं और परिणामी कॉलम पर `value_counts()` विधि चला सकते हैं। इसे प्रिंट करने पर, आप देखेंगे कि 2428 अद्वितीय टैग्स थे। यहाँ एक छोटा नमूना है: + +| Tag | Count | +| ------------------------------ | ------ | +| Leisure trip | 417778 | +| Submitted from a mobile device | 307640 | +| Couple | 252294 | +| Stayed 1 night | 193645 | +| Stayed 2 nights | 133937 | +| Solo traveler | 108545 | +| Stayed 3 nights | 95821 | +| Business trip | 82939 | +| Group | 65392 | +| Family with young children | 61015 | +| Stayed 4 nights | 47817 | +| Double Room | 35207 | +| Standard Double Room | 32248 | +| Superior Double Room | 31393 | +| Family with older children | 26349 | +| Deluxe Double Room | 24823 | +| Double or Twin Room | 22393 | +| Stayed 5 nights | 20845 | +| Standard Double or Twin Room | 17483 | +| Classic Double Room | 16989 | +| Superior Double or Twin Room | 13570 | +| 2 rooms | 12393 | + +कुछ सामान्य टैग्स जैसे `Submitted from a mobile device` हमारे लिए उपयोगी नहीं हैं, इसलिए उन्हें वाक्यांश की घटना की गिनती करने से पहले हटाना एक स्मार्ट कदम हो सकता है, लेकिन यह इतना तेज़ ऑपरेशन है कि आप उन्हें छोड़ सकते हैं और अनदेखा कर सकते हैं। + +### ठहराव की अवधि वाले टैग्स को हटाना + +इन टैग्स को हटाना पहला कदम है, यह विचार किए जाने वाले टैग्स की कुल संख्या को थोड़ा कम कर देता है। ध्यान दें कि आप उन्हें डेटासेट से नहीं हटाते, बस उन्हें समीक्षाओं के डेटासेट में गिनने/रखने के लिए विचार से हटा देते हैं। + +| ठहराव की अवधि | Count | +| --------------- | ------ | +| Stayed 1 night | 193645 | +| Stayed 2 nights | 133937 | +| Stayed 3 nights | 95821 | +| Stayed 4 nights | 47817 | +| Stayed 5 nights | 20845 | +| Stayed 6 nights | 9776 | +| Stayed 7 nights | 7399 | +| Stayed 8 nights | 2502 | +| Stayed 9 nights | 1293 | +| ... | ... | + +कमरे, सुइट्स, स्टूडियो, अपार्टमेंट्स आदि की एक बड़ी विविधता है। वे सभी लगभग एक ही चीज़ का मतलब रखते हैं और आपके लिए प्रासंगिक नहीं हैं, इसलिए उन्हें विचार से हटा दें। + +| कमरे का प्रकार | Count | +| ----------------------------- | ----- | +| Double Room | 35207 | +| Standard Double Room | 32248 | +| Superior Double Room | 31393 | +| Deluxe Double Room | 24823 | +| Double or Twin Room | 22393 | +| Standard Double or Twin Room | 17483 | +| Classic Double Room | 16989 | +| Superior Double or Twin Room | 13570 | + +अंत में, और यह प्रसन्नता की बात है (क्योंकि इसमें ज्यादा प्रोसेसिंग नहीं लगी), आपके पास निम्नलिखित *उपयोगी* टैग्स बचेंगे: + +| Tag | Count | +| --------------------------------------------- | ------ | +| Leisure trip | 417778 | +| Couple | 252294 | +| Solo traveler | 108545 | +| Business trip | 82939 | +| Group (combined with Travellers with friends) | 67535 | +| Family with young children | 61015 | +| Family with older children | 26349 | +| With a pet | 1405 | + +आप यह तर्क दे सकते हैं कि `Travellers with friends` लगभग `Group` के समान है, और इसे ऊपर की तरह संयोजित करना उचित होगा। सही टैग्स की पहचान करने के लिए कोड [Tags नोटबुक](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) में है। + +अंतिम चरण में इन टैग्स के लिए नए कॉलम्स बनाएँ। फिर, प्रत्येक समीक्षा पंक्ति के लिए, यदि `Tag` कॉलम नए कॉलम्स में से किसी एक से मेल खाता है, तो 1 जोड़ें, अन्यथा 0 जोड़ें। अंतिम परिणाम यह होगा कि कितने समीक्षकों ने इस होटल को (सामूहिक रूप से) व्यवसाय बनाम अवकाश के लिए चुना, या पालतू जानवर लाने के लिए, और यह होटल की सिफारिश करते समय उपयोगी जानकारी है। + +```python +# Process the Tags into new columns +# The file Hotel_Reviews_Tags.py, identifies the most important tags +# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, +# Family with young children, Family with older children, With a pet +df["Leisure_trip"] = df.Tags.apply(lambda tag: 1 if "Leisure trip" in tag else 0) +df["Couple"] = df.Tags.apply(lambda tag: 1 if "Couple" in tag else 0) +df["Solo_traveler"] = df.Tags.apply(lambda tag: 1 if "Solo traveler" in tag else 0) +df["Business_trip"] = df.Tags.apply(lambda tag: 1 if "Business trip" in tag else 0) +df["Group"] = df.Tags.apply(lambda tag: 1 if "Group" in tag or "Travelers with friends" in tag else 0) +df["Family_with_young_children"] = df.Tags.apply(lambda tag: 1 if "Family with young children" in tag else 0) +df["Family_with_older_children"] = df.Tags.apply(lambda tag: 1 if "Family with older children" in tag else 0) +df["With_a_pet"] = df.Tags.apply(lambda tag: 1 if "With a pet" in tag else 0) + +``` + +### अपनी फ़ाइल सहेजें + +अंत में, डेटासेट को अब एक नए नाम के साथ सहेजें। + +```python +df.drop(["Review_Total_Negative_Word_Counts", "Review_Total_Positive_Word_Counts", "days_since_review", "Total_Number_of_Reviews_Reviewer_Has_Given"], axis = 1, inplace=True) + +# Saving new data file with calculated columns +print("Saving results to Hotel_Reviews_Filtered.csv") +df.to_csv(r'../data/Hotel_Reviews_Filtered.csv', index = False) +``` + +## भाव विश्लेषण संचालन + +इस अंतिम सेक्शन में, आप समीक्षा कॉलम्स पर भाव विश्लेषण लागू करेंगे और परिणामों को एक डेटासेट में सहेजेंगे। + +## अभ्यास: फ़िल्टर किए गए डेटा को लोड और सहेजें + +ध्यान दें कि अब आप पिछले सेक्शन में सहेजे गए फ़िल्टर किए गए डेटासेट को लोड कर रहे हैं, **मूल** डेटासेट को नहीं। + +```python +import time +import pandas as pd +import nltk as nltk +from nltk.corpus import stopwords +from nltk.sentiment.vader import SentimentIntensityAnalyzer +nltk.download('vader_lexicon') + +# Load the filtered hotel reviews from CSV +df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv') + +# You code will be added here + + +# Finally remember to save the hotel reviews with new NLP data added +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r'../data/Hotel_Reviews_NLP.csv', index = False) +``` + +### स्टॉप वर्ड्स हटाना + +यदि आप नकारात्मक और सकारात्मक समीक्षा कॉलम्स पर भाव विश्लेषण चलाते हैं, तो इसमें काफी समय लग सकता है। एक शक्तिशाली टेस्ट लैपटॉप पर तेज़ CPU के साथ परीक्षण किया गया, तो इसमें 12-14 मिनट लगे, यह इस बात पर निर्भर करता है कि कौन सा भाव लाइब्रेरी उपयोग किया गया। यह (सापेक्ष रूप से) लंबा समय है, इसलिए यह जांचने लायक है कि इसे तेज़ किया जा सकता है या नहीं। + +स्टॉप वर्ड्स, या सामान्य अंग्रेजी शब्द जो वाक्य के भाव को नहीं बदलते, को हटाना पहला कदम है। इन्हें हटाने से भाव विश्लेषण तेज़ होना चाहिए, लेकिन कम सटीक नहीं (क्योंकि स्टॉप वर्ड्स भाव को प्रभावित नहीं करते, लेकिन वे विश्लेषण को धीमा कर देते हैं)। + +सबसे लंबी नकारात्मक समीक्षा 395 शब्दों की थी, लेकिन स्टॉप वर्ड्स हटाने के बाद यह 195 शब्दों की हो गई। + +स्टॉप वर्ड्स हटाना भी एक तेज़ ऑपरेशन है। 515,000 पंक्तियों पर 2 समीक्षा कॉलम्स से स्टॉप वर्ड्स हटाने में टेस्ट डिवाइस पर 3.3 सेकंड लगे। यह आपके डिवाइस की CPU गति, RAM, SSD की उपस्थिति, और अन्य कारकों पर निर्भर करता है कि इसमें थोड़ा अधिक या कम समय लग सकता है। ऑपरेशन की सापेक्ष छोटी अवधि का मतलब है कि यदि यह भाव विश्लेषण समय में सुधार करता है, तो यह करने लायक है। + +```python +from nltk.corpus import stopwords + +# Load the hotel reviews from CSV +df = pd.read_csv("../../data/Hotel_Reviews_Filtered.csv") + +# Remove stop words - can be slow for a lot of text! +# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches +# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends +start = time.time() +cache = set(stopwords.words("english")) +def remove_stopwords(review): + text = " ".join([word for word in review.split() if word not in cache]) + return text + +# Remove the stop words from both columns +df.Negative_Review = df.Negative_Review.apply(remove_stopwords) +df.Positive_Review = df.Positive_Review.apply(remove_stopwords) +``` + +### भाव विश्लेषण करना +अब आपको नकारात्मक और सकारात्मक समीक्षा कॉलम के लिए भाव विश्लेषण की गणना करनी चाहिए और परिणाम को 2 नए कॉलम में संग्रहीत करना चाहिए। भाव का परीक्षण समीक्षक के स्कोर के साथ तुलना करना होगा जो उसी समीक्षा के लिए दिया गया है। उदाहरण के लिए, यदि भाव विश्लेषण यह मानता है कि नकारात्मक समीक्षा का भाव 1 (अत्यधिक सकारात्मक भाव) है और सकारात्मक समीक्षा का भाव भी 1 है, लेकिन समीक्षक ने होटल को सबसे कम स्कोर दिया है, तो या तो समीक्षा का टेक्स्ट स्कोर से मेल नहीं खाता है, या भाव विश्लेषक भाव को सही ढंग से पहचानने में असमर्थ हो सकता है। आपको उम्मीद करनी चाहिए कि कुछ भाव स्कोर पूरी तरह से गलत होंगे, और अक्सर इसका कारण समझाया जा सकता है, जैसे कि समीक्षा अत्यधिक व्यंग्यात्मक हो सकती है "बिल्कुल, मुझे बिना हीटिंग वाले कमरे में सोना बहुत पसंद आया" और भाव विश्लेषक इसे सकारात्मक भाव मानता है, जबकि एक इंसान इसे पढ़कर समझ जाएगा कि यह व्यंग्य है। + +NLTK विभिन्न भाव विश्लेषकों को सीखने के लिए प्रदान करता है, और आप उन्हें बदल सकते हैं और देख सकते हैं कि भाव अधिक या कम सटीक है। यहां VADER भाव विश्लेषण का उपयोग किया गया है। + +> Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. + +```python +from nltk.sentiment.vader import SentimentIntensityAnalyzer + +# Create the vader sentiment analyser (there are others in NLTK you can try too) +vader_sentiment = SentimentIntensityAnalyzer() +# Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. + +# There are 3 possibilities of input for a review: +# It could be "No Negative", in which case, return 0 +# It could be "No Positive", in which case, return 0 +# It could be a review, in which case calculate the sentiment +def calc_sentiment(review): + if review == "No Negative" or review == "No Positive": + return 0 + return vader_sentiment.polarity_scores(review)["compound"] +``` + +बाद में जब आप अपने प्रोग्राम में भाव की गणना करने के लिए तैयार हों, तो आप इसे प्रत्येक समीक्षा पर इस प्रकार लागू कर सकते हैं: + +```python +# Add a negative sentiment and positive sentiment column +print("Calculating sentiment columns for both positive and negative reviews") +start = time.time() +df["Negative_Sentiment"] = df.Negative_Review.apply(calc_sentiment) +df["Positive_Sentiment"] = df.Positive_Review.apply(calc_sentiment) +end = time.time() +print("Calculating sentiment took " + str(round(end - start, 2)) + " seconds") +``` + +यह मेरे कंप्यूटर पर लगभग 120 सेकंड लेता है, लेकिन यह प्रत्येक कंप्यूटर पर अलग-अलग हो सकता है। यदि आप परिणामों को प्रिंट करना चाहते हैं और देखना चाहते हैं कि भाव समीक्षा से मेल खाता है या नहीं: + +```python +df = df.sort_values(by=["Negative_Sentiment"], ascending=True) +print(df[["Negative_Review", "Negative_Sentiment"]]) +df = df.sort_values(by=["Positive_Sentiment"], ascending=True) +print(df[["Positive_Review", "Positive_Sentiment"]]) +``` + +फाइल का उपयोग करने से पहले अंतिम काम यह है कि इसे सेव करें! आपको अपने नए कॉलम को पुनः व्यवस्थित करने पर भी विचार करना चाहिए ताकि वे काम करने में आसान हों (यह एक सौंदर्यात्मक बदलाव है)। + +```python +# Reorder the columns (This is cosmetic, but to make it easier to explore the data later) +df = df.reindex(["Hotel_Name", "Hotel_Address", "Total_Number_of_Reviews", "Average_Score", "Reviewer_Score", "Negative_Sentiment", "Positive_Sentiment", "Reviewer_Nationality", "Leisure_trip", "Couple", "Solo_traveler", "Business_trip", "Group", "Family_with_young_children", "Family_with_older_children", "With_a_pet", "Negative_Review", "Positive_Review"], axis=1) + +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r"../data/Hotel_Reviews_NLP.csv", index = False) +``` + +आपको [विश्लेषण नोटबुक](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb) के पूरे कोड को चलाना चाहिए (उसके बाद जब आपने [फिल्टरिंग नोटबुक](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) को चलाया है ताकि Hotel_Reviews_Filtered.csv फाइल उत्पन्न हो सके)। + +समीक्षा करने के लिए, चरण हैं: + +1. मूल डेटा सेट फाइल **Hotel_Reviews.csv** को पिछले पाठ में [एक्सप्लोरर नोटबुक](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb) के साथ एक्सप्लोर किया गया है। +2. Hotel_Reviews.csv को [फिल्टरिंग नोटबुक](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) द्वारा फिल्टर किया गया है, जिससे **Hotel_Reviews_Filtered.csv** प्राप्त होता है। +3. Hotel_Reviews_Filtered.csv को [भाव विश्लेषण नोटबुक](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb) द्वारा प्रोसेस किया गया है, जिससे **Hotel_Reviews_NLP.csv** प्राप्त होता है। +4. NLP चैलेंज में नीचे **Hotel_Reviews_NLP.csv** का उपयोग करें। + +### निष्कर्ष + +जब आपने शुरुआत की थी, आपके पास कॉलम और डेटा वाला एक डेटा सेट था लेकिन इसका सारा डेटा सत्यापित या उपयोग नहीं किया जा सकता था। आपने डेटा को एक्सप्लोर किया, जो आवश्यक नहीं था उसे फिल्टर किया, टैग्स को उपयोगी चीजों में बदला, अपने औसत की गणना की, कुछ भाव कॉलम जोड़े और उम्मीद है कि प्राकृतिक टेक्स्ट को प्रोसेस करने के बारे में कुछ दिलचस्प बातें सीखी होंगी। + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/40/) + +## चैलेंज + +अब जब आपने अपने डेटा सेट का भाव विश्लेषण कर लिया है, तो देखें कि क्या आप इस पाठ्यक्रम में सीखी गई रणनीतियों (शायद क्लस्टरिंग?) का उपयोग करके भाव के आसपास पैटर्न निर्धारित कर सकते हैं। + +## समीक्षा और स्व-अध्ययन + +[इस Learn मॉड्यूल](https://docs.microsoft.com/en-us/learn/modules/classify-user-feedback-with-the-text-analytics-api/?WT.mc_id=academic-77952-leestott) को लें ताकि आप अधिक सीख सकें और टेक्स्ट में भाव को एक्सप्लोर करने के लिए विभिन्न टूल्स का उपयोग कर सकें। + +## असाइनमेंट + +[एक अलग डेटा सेट आज़माएं](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/5-Hotel-Reviews-2/assignment.md b/translations/hi/6-NLP/5-Hotel-Reviews-2/assignment.md new file mode 100644 index 000000000..f638997bc --- /dev/null +++ b/translations/hi/6-NLP/5-Hotel-Reviews-2/assignment.md @@ -0,0 +1,25 @@ + +# एक अलग डेटा सेट आज़माएं + +## निर्देश + +अब जब आपने टेक्स्ट को भावना सौंपने के लिए NLTK का उपयोग करना सीख लिया है, तो एक अलग डेटा सेट आज़माएं। आपको इसके चारों ओर कुछ डेटा प्रोसेसिंग करने की आवश्यकता हो सकती है, इसलिए एक नोटबुक बनाएं और अपनी सोच प्रक्रिया को दस्तावेज़ करें। आप क्या खोजते हैं? + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | ----------------------------------------------------------------------------------------------------------------- | ----------------------------------------- | ---------------------- | +| | एक पूरी नोटबुक और डेटा सेट प्रस्तुत किया गया है, जिसमें अच्छी तरह से दस्तावेज़ित सेल्स हैं जो समझाते हैं कि भावना कैसे सौंपा गया है | नोटबुक में अच्छे स्पष्टीकरण की कमी है | नोटबुक में खामियां हैं | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/5-Hotel-Reviews-2/notebook.ipynb b/translations/hi/6-NLP/5-Hotel-Reviews-2/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb b/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb new file mode 100644 index 000000000..59a63e2b3 --- /dev/null +++ b/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb @@ -0,0 +1,172 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "033cb89c85500224b3c63fd04f49b4aa", + "translation_date": "2025-09-04T03:10:09+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import time\n", + "import ast" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def replace_address(row):\n", + " if \"Netherlands\" in row[\"Hotel_Address\"]:\n", + " return \"Amsterdam, Netherlands\"\n", + " elif \"Barcelona\" in row[\"Hotel_Address\"]:\n", + " return \"Barcelona, Spain\"\n", + " elif \"United Kingdom\" in row[\"Hotel_Address\"]:\n", + " return \"London, United Kingdom\"\n", + " elif \"Milan\" in row[\"Hotel_Address\"]: \n", + " return \"Milan, Italy\"\n", + " elif \"France\" in row[\"Hotel_Address\"]:\n", + " return \"Paris, France\"\n", + " elif \"Vienna\" in row[\"Hotel_Address\"]:\n", + " return \"Vienna, Austria\" \n", + " else:\n", + " return row.Hotel_Address\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# dropping columns we will not use:\n", + "df.drop([\"lat\", \"lng\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Replace all the addresses with a shortened, more useful form\n", + "df[\"Hotel_Address\"] = df.apply(replace_address, axis = 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Drop `Additional_Number_of_Scoring`\n", + "df.drop([\"Additional_Number_of_Scoring\"], axis = 1, inplace=True)\n", + "# Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values\n", + "df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')\n", + "df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Process the Tags into new columns\n", + "# The file Hotel_Reviews_Tags.py, identifies the most important tags\n", + "# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, \n", + "# Family with young children, Family with older children, With a pet\n", + "df[\"Leisure_trip\"] = df.Tags.apply(lambda tag: 1 if \"Leisure trip\" in tag else 0)\n", + "df[\"Couple\"] = df.Tags.apply(lambda tag: 1 if \"Couple\" in tag else 0)\n", + "df[\"Solo_traveler\"] = df.Tags.apply(lambda tag: 1 if \"Solo traveler\" in tag else 0)\n", + "df[\"Business_trip\"] = df.Tags.apply(lambda tag: 1 if \"Business trip\" in tag else 0)\n", + "df[\"Group\"] = df.Tags.apply(lambda tag: 1 if \"Group\" in tag or \"Travelers with friends\" in tag else 0)\n", + "df[\"Family_with_young_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with young children\" in tag else 0)\n", + "df[\"Family_with_older_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with older children\" in tag else 0)\n", + "df[\"With_a_pet\"] = df.Tags.apply(lambda tag: 1 if \"With a pet\" in tag else 0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# No longer need any of these columns\n", + "df.drop([\"Review_Date\", \"Review_Total_Negative_Word_Counts\", \"Review_Total_Positive_Word_Counts\", \"days_since_review\", \"Total_Number_of_Reviews_Reviewer_Has_Given\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_Filtered.csv\n", + "Filtering took 23.74 seconds\n" + ] + } + ], + "source": [ + "# Saving new data file with calculated columns\n", + "print(\"Saving results to Hotel_Reviews_Filtered.csv\")\n", + "df.to_csv(r'../../data/Hotel_Reviews_Filtered.csv', index = False)\n", + "end = time.time()\n", + "print(\"Filtering took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb b/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb new file mode 100644 index 000000000..a0a918f7b --- /dev/null +++ b/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb @@ -0,0 +1,137 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "341efc86325ec2a214f682f57a189dfd", + "translation_date": "2025-09-04T03:10:27+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV (you can )\n", + "import pandas as pd \n", + "\n", + "df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# We want to find the most useful tags to keep\n", + "# Remove opening and closing brackets\n", + "df.Tags = df.Tags.str.strip(\"[']\")\n", + "# remove all quotes too\n", + "df.Tags = df.Tags.str.replace(\" ', '\", \",\", regex = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# removing this to take advantage of the 'already a phrase' fact of the dataset \n", + "# Now split the strings into a list\n", + "tag_list_df = df.Tags.str.split(',', expand = True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove leading and trailing spaces\n", + "df[\"Tag_1\"] = tag_list_df[0].str.strip()\n", + "df[\"Tag_2\"] = tag_list_df[1].str.strip()\n", + "df[\"Tag_3\"] = tag_list_df[2].str.strip()\n", + "df[\"Tag_4\"] = tag_list_df[3].str.strip()\n", + "df[\"Tag_5\"] = tag_list_df[4].str.strip()\n", + "df[\"Tag_6\"] = tag_list_df[5].str.strip()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Merge the 6 columns into one with melt\n", + "df_tags = df.melt(value_vars=[\"Tag_1\", \"Tag_2\", \"Tag_3\", \"Tag_4\", \"Tag_5\", \"Tag_6\"])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The shape of the tags with no filtering: (2514684, 2)\n", + " index count\n", + "0 Leisure trip 338423\n", + "1 Couple 205305\n", + "2 Solo traveler 89779\n", + "3 Business trip 68176\n", + "4 Group 51593\n", + "5 Family with young children 49318\n", + "6 Family with older children 21509\n", + "7 Travelers with friends 1610\n", + "8 With a pet 1078\n" + ] + } + ], + "source": [ + "# Get the value counts\n", + "tag_vc = df_tags.value.value_counts()\n", + "# print(tag_vc)\n", + "print(\"The shape of the tags with no filtering:\", str(df_tags.shape))\n", + "# Drop rooms, suites, and length of stay, mobile device and anything with less count than a 1000\n", + "df_tags = df_tags[~df_tags.value.str.contains(\"Standard|room|Stayed|device|Beds|Suite|Studio|King|Superior|Double\", na=False, case=False)]\n", + "tag_vc = df_tags.value.value_counts().reset_index(name=\"count\").query(\"count > 1000\")\n", + "# Print the top 10 (there should only be 9 and we'll use these in the filtering section)\n", + "print(tag_vc[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb b/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb new file mode 100644 index 000000000..ff63bc761 --- /dev/null +++ b/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb @@ -0,0 +1,260 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "705bf02633759f689abc37b19749a16d", + "translation_date": "2025-09-04T03:10:45+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "[nltk_data] Downloading package vader_lexicon to\n[nltk_data] /Users/jenlooper/nltk_data...\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import time\n", + "import pandas as pd\n", + "import nltk as nltk\n", + "from nltk.corpus import stopwords\n", + "from nltk.sentiment.vader import SentimentIntensityAnalyzer\n", + "nltk.download('vader_lexicon')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "vader_sentiment = SentimentIntensityAnalyzer()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# There are 3 possibilities of input for a review:\n", + "# It could be \"No Negative\", in which case, return 0\n", + "# It could be \"No Positive\", in which case, return 0\n", + "# It could be a review, in which case calculate the sentiment\n", + "def calc_sentiment(review): \n", + " if review == \"No Negative\" or review == \"No Positive\":\n", + " return 0\n", + " return vader_sentiment.polarity_scores(review)[\"compound\"] \n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "df = pd.read_csv(\"../../data/Hotel_Reviews_Filtered.csv\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove stop words - can be slow for a lot of text!\n", + "# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches\n", + "# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends\n", + "start = time.time()\n", + "cache = set(stopwords.words(\"english\"))\n", + "def remove_stopwords(review):\n", + " text = \" \".join([word for word in review.split() if word not in cache])\n", + " return text\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove the stop words from both columns\n", + "df.Negative_Review = df.Negative_Review.apply(remove_stopwords) \n", + "df.Positive_Review = df.Positive_Review.apply(remove_stopwords)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Removing stop words took 5.77 seconds\n" + ] + } + ], + "source": [ + "end = time.time()\n", + "print(\"Removing stop words took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Calculating sentiment columns for both positive and negative reviews\n", + "Calculating sentiment took 201.07 seconds\n" + ] + } + ], + "source": [ + "# Add a negative sentiment and positive sentiment column\n", + "print(\"Calculating sentiment columns for both positive and negative reviews\")\n", + "start = time.time()\n", + "df[\"Negative_Sentiment\"] = df.Negative_Review.apply(calc_sentiment)\n", + "df[\"Positive_Sentiment\"] = df.Positive_Review.apply(calc_sentiment)\n", + "end = time.time()\n", + "print(\"Calculating sentiment took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Negative_Review Negative_Sentiment\n", + "186584 So bad experience memories I hotel The first n... -0.9920\n", + "129503 First charged twice room booked booking second... -0.9896\n", + "307286 The staff Had bad experience even booking Janu... -0.9889\n", + "452092 No WLAN room Incredibly rude restaurant staff ... -0.9884\n", + "201293 We usually traveling Paris 2 3 times year busi... -0.9873\n", + "... ... ...\n", + "26899 I would say however one night expensive even d... 0.9933\n", + "138365 Wifi terribly slow I speed test network upload... 0.9938\n", + "79215 I find anything hotel first I walked past hote... 0.9938\n", + "278506 The property great location There bakery next ... 0.9945\n", + "339189 Guys I like hotel I wish return next year Howe... 0.9948\n", + "\n", + "[515738 rows x 2 columns]\n", + " Positive_Review Positive_Sentiment\n", + "137893 Bathroom Shower We going stay twice hotel 2 ni... -0.9820\n", + "5839 I completely disappointed mad since reception ... -0.9780\n", + "64158 get everything extra internet parking breakfas... -0.9751\n", + "124178 I didnt like anythig Room small Asked upgrade ... -0.9721\n", + "489137 Very rude manager abusive staff reception Dirt... -0.9703\n", + "... ... ...\n", + "331570 Everything This recently renovated hotel class... 0.9984\n", + "322920 From moment stepped doors Guesthouse Hotel sta... 0.9985\n", + "293710 This place surprise expected good actually gre... 0.9985\n", + "417442 We celebrated wedding night Langham I commend ... 0.9985\n", + "132492 We arrived super cute boutique hotel area expl... 0.9987\n", + "\n", + "[515738 rows x 2 columns]\n" + ] + } + ], + "source": [ + "df = df.sort_values(by=[\"Negative_Sentiment\"], ascending=True)\n", + "print(df[[\"Negative_Review\", \"Negative_Sentiment\"]])\n", + "df = df.sort_values(by=[\"Positive_Sentiment\"], ascending=True)\n", + "print(df[[\"Positive_Review\", \"Positive_Sentiment\"]])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Reorder the columns (This is cosmetic, but to make it easier to explore the data later)\n", + "df = df.reindex([\"Hotel_Name\", \"Hotel_Address\", \"Total_Number_of_Reviews\", \"Average_Score\", \"Reviewer_Score\", \"Negative_Sentiment\", \"Positive_Sentiment\", \"Reviewer_Nationality\", \"Leisure_trip\", \"Couple\", \"Solo_traveler\", \"Business_trip\", \"Group\", \"Family_with_young_children\", \"Family_with_older_children\", \"With_a_pet\", \"Negative_Review\", \"Positive_Review\"], axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_NLP.csv\n" + ] + } + ], + "source": [ + "print(\"Saving results to Hotel_Reviews_NLP.csv\")\n", + "df.to_csv(r\"../../data/Hotel_Reviews_NLP.csv\", index = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md b/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md new file mode 100644 index 000000000..5636c5da7 --- /dev/null +++ b/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/R/README.md b/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/R/README.md new file mode 100644 index 000000000..5209a4e26 --- /dev/null +++ b/translations/hi/6-NLP/5-Hotel-Reviews-2/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/README.md b/translations/hi/6-NLP/README.md new file mode 100644 index 000000000..abbece065 --- /dev/null +++ b/translations/hi/6-NLP/README.md @@ -0,0 +1,38 @@ + +# प्राकृतिक भाषा प्रसंस्करण के साथ शुरुआत + +प्राकृतिक भाषा प्रसंस्करण (NLP) एक कंप्यूटर प्रोग्राम की क्षमता है जो मानव भाषा को समझता है, जैसा कि इसे बोला और लिखा जाता है -- इसे प्राकृतिक भाषा कहा जाता है। यह कृत्रिम बुद्धिमत्ता (AI) का एक घटक है। NLP पिछले 50 वर्षों से अस्तित्व में है और इसकी जड़ें भाषाविज्ञान के क्षेत्र में हैं। पूरा क्षेत्र मशीनों को मानव भाषा को समझने और संसाधित करने में मदद करने पर केंद्रित है। इसका उपयोग फिर वर्तनी जांच या मशीन अनुवाद जैसे कार्यों को करने के लिए किया जा सकता है। इसका कई क्षेत्रों में वास्तविक दुनिया में उपयोग होता है, जैसे चिकित्सा अनुसंधान, सर्च इंजन और व्यापार खुफिया। + +## क्षेत्रीय विषय: यूरोपीय भाषाएं और साहित्य और यूरोप के रोमांटिक होटल ❤️ + +इस पाठ्यक्रम के इस भाग में, आपको मशीन लर्निंग के सबसे व्यापक उपयोगों में से एक से परिचित कराया जाएगा: प्राकृतिक भाषा प्रसंस्करण (NLP)। कम्प्यूटेशनल भाषाविज्ञान से उत्पन्न, कृत्रिम बुद्धिमत्ता की यह श्रेणी मनुष्यों और मशीनों के बीच आवाज़ या पाठीय संचार के माध्यम से पुल का काम करती है। + +इन पाठों में हम छोटे संवादात्मक बॉट्स बनाकर NLP की मूल बातें सीखेंगे ताकि यह समझ सकें कि मशीन लर्निंग इन संवादों को अधिक 'स्मार्ट' बनाने में कैसे मदद करती है। आप समय में पीछे यात्रा करेंगे, जेन ऑस्टेन के क्लासिक उपन्यास **Pride and Prejudice**, जो 1813 में प्रकाशित हुआ था, के पात्र एलिजाबेथ बेनेट और मिस्टर डार्सी से बातचीत करेंगे। फिर, आप होटल समीक्षाओं के माध्यम से भावना विश्लेषण सीखकर अपने ज्ञान को और बढ़ाएंगे। + +![Pride and Prejudice किताब और चाय](../../../translated_images/p&p.279f1c49ecd889419e4ce6206525e9aa30d32a976955cd24daa636c361c6391f.hi.jpg) +> फोटो Elaine Howlin द्वारा Unsplash पर + +## पाठ + +1. [प्राकृतिक भाषा प्रसंस्करण का परिचय](1-Introduction-to-NLP/README.md) +2. [सामान्य NLP कार्य और तकनीकें](2-Tasks/README.md) +3. [मशीन लर्निंग के साथ अनुवाद और भावना विश्लेषण](3-Translation-Sentiment/README.md) +4. [अपने डेटा को तैयार करना](4-Hotel-Reviews-1/README.md) +5. [भावना विश्लेषण के लिए NLTK](5-Hotel-Reviews-2/README.md) + +## क्रेडिट + +ये प्राकृतिक भाषा प्रसंस्करण पाठ ☕ के साथ [Stephen Howell](https://twitter.com/Howell_MSFT) द्वारा लिखे गए हैं। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/6-NLP/data/README.md b/translations/hi/6-NLP/data/README.md new file mode 100644 index 000000000..124f14bbc --- /dev/null +++ b/translations/hi/6-NLP/data/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/1-Introduction/README.md b/translations/hi/7-TimeSeries/1-Introduction/README.md new file mode 100644 index 000000000..25cbf3883 --- /dev/null +++ b/translations/hi/7-TimeSeries/1-Introduction/README.md @@ -0,0 +1,199 @@ + +# समय श्रृंखला पूर्वानुमान का परिचय + +![स्केच नोट में समय श्रृंखला का सारांश](../../../../translated_images/ml-timeseries.fb98d25f1013fc0c59090030080b5d1911ff336427bec31dbaf1ad08193812e9.hi.png) + +> स्केच नोट: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +इस पाठ और अगले पाठ में, आप समय श्रृंखला पूर्वानुमान के बारे में थोड़ा जानेंगे, जो मशीन लर्निंग वैज्ञानिकों के कौशल का एक दिलचस्प और मूल्यवान हिस्सा है। यह विषय अन्य विषयों की तुलना में थोड़ा कम जाना जाता है। समय श्रृंखला पूर्वानुमान एक प्रकार का 'क्रिस्टल बॉल' है: जैसे कि किसी चर (जैसे कीमत) के पिछले प्रदर्शन के आधार पर, आप इसके भविष्य के संभावित मूल्य का अनुमान लगा सकते हैं। + +[![समय श्रृंखला पूर्वानुमान का परिचय](https://img.youtube.com/vi/cBojo1hsHiI/0.jpg)](https://youtu.be/cBojo1hsHiI "समय श्रृंखला पूर्वानुमान का परिचय") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें समय श्रृंखला पूर्वानुमान के बारे में वीडियो देखने के लिए + +## [पाठ से पहले का क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/41/) + +यह एक उपयोगी और दिलचस्प क्षेत्र है, जिसका व्यवसाय में वास्तविक मूल्य है, क्योंकि इसका सीधा उपयोग मूल्य निर्धारण, इन्वेंटरी और आपूर्ति श्रृंखला समस्याओं में होता है। जबकि गहन शिक्षण तकनीकों का उपयोग भविष्य के प्रदर्शन को बेहतर ढंग से अनुमान लगाने के लिए किया जाने लगा है, समय श्रृंखला पूर्वानुमान अभी भी क्लासिक मशीन लर्निंग तकनीकों से काफी प्रभावित क्षेत्र है। + +> पेन स्टेट का उपयोगी समय श्रृंखला पाठ्यक्रम [यहां](https://online.stat.psu.edu/stat510/lesson/1) पाया जा सकता है। + +## परिचय + +मान लीजिए कि आप स्मार्ट पार्किंग मीटर का एक समूह बनाए रखते हैं, जो समय के साथ कितनी बार और कितने समय तक उपयोग किए जाते हैं, इसका डेटा प्रदान करते हैं। + +> क्या होगा यदि आप मीटर के पिछले प्रदर्शन के आधार पर, आपूर्ति और मांग के नियमों के अनुसार इसके भविष्य के मूल्य का अनुमान लगा सकें? + +सटीक रूप से यह अनुमान लगाना कि कब कार्रवाई करनी है ताकि आप अपने लक्ष्य को प्राप्त कर सकें, एक चुनौती है जिसे समय श्रृंखला पूर्वानुमान द्वारा हल किया जा सकता है। व्यस्त समय में पार्किंग स्थान खोजने की कोशिश कर रहे लोगों को अधिक शुल्क देना उन्हें खुश नहीं करेगा, लेकिन यह निश्चित रूप से सड़कों को साफ करने के लिए राजस्व उत्पन्न करने का एक तरीका होगा! + +आइए समय श्रृंखला एल्गोरिदम के कुछ प्रकारों का पता लगाएं और डेटा को साफ और तैयार करने के लिए एक नोटबुक शुरू करें। जिस डेटा का आप विश्लेषण करेंगे, वह GEFCom2014 पूर्वानुमान प्रतियोगिता से लिया गया है। इसमें 2012 से 2014 के बीच 3 वर्षों के घंटेवार बिजली लोड और तापमान मान शामिल हैं। बिजली लोड और तापमान के ऐतिहासिक पैटर्न को देखते हुए, आप बिजली लोड के भविष्य के मानों का अनुमान लगा सकते हैं। + +इस उदाहरण में, आप केवल ऐतिहासिक लोड डेटा का उपयोग करके एक समय कदम आगे का पूर्वानुमान लगाना सीखेंगे। हालांकि, शुरू करने से पहले, यह समझना उपयोगी है कि पर्दे के पीछे क्या हो रहा है। + +## कुछ परिभाषाएँ + +जब 'समय श्रृंखला' शब्द का सामना करते हैं, तो आपको इसे कई अलग-अलग संदर्भों में समझने की आवश्यकता होती है। + +🎓 **समय श्रृंखला** + +गणित में, "समय श्रृंखला डेटा बिंदुओं की एक श्रृंखला है जो समय क्रम में अनुक्रमित (या सूचीबद्ध या ग्राफ़) होती है। सबसे सामान्य रूप से, समय श्रृंखला एक अनुक्रम है जो समय में समान रूप से अंतराल वाले बिंदुओं पर लिया जाता है।" समय श्रृंखला का एक उदाहरण [डॉव जोन्स इंडस्ट्रियल एवरेज](https://wikipedia.org/wiki/Time_series) का दैनिक समापन मूल्य है। समय श्रृंखला प्लॉट्स और सांख्यिकीय मॉडलिंग का उपयोग अक्सर सिग्नल प्रोसेसिंग, मौसम पूर्वानुमान, भूकंप भविष्यवाणी, और अन्य क्षेत्रों में किया जाता है जहां घटनाएं होती हैं और डेटा बिंदुओं को समय के साथ प्लॉट किया जा सकता है। + +🎓 **समय श्रृंखला विश्लेषण** + +समय श्रृंखला विश्लेषण, उपरोक्त समय श्रृंखला डेटा का विश्लेषण है। समय श्रृंखला डेटा अलग-अलग रूप ले सकता है, जिसमें 'विच्छेदित समय श्रृंखला' शामिल है, जो किसी समय श्रृंखला के विकास में पैटर्न का पता लगाती है, किसी बाधित घटना से पहले और बाद में। समय श्रृंखला के लिए आवश्यक विश्लेषण डेटा की प्रकृति पर निर्भर करता है। समय श्रृंखला डेटा स्वयं संख्याओं या वर्णों की श्रृंखला के रूप में हो सकता है। + +इस प्रकार के डेटा का विश्लेषण करने के लिए विभिन्न विधियों का उपयोग किया जाता है, जिसमें आवृत्ति-डोमेन और समय-डोमेन, रैखिक और गैर-रैखिक, और अन्य शामिल हैं। [यहां](https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm) इस प्रकार के डेटा का विश्लेषण करने के कई तरीकों के बारे में अधिक जानें। + +🎓 **समय श्रृंखला पूर्वानुमान** + +समय श्रृंखला पूर्वानुमान एक मॉडल का उपयोग करके भविष्य के मानों का अनुमान लगाना है, जो पहले से एकत्र किए गए डेटा द्वारा प्रदर्शित पैटर्न पर आधारित होता है। जबकि समय श्रृंखला डेटा का पता लगाने के लिए प्रतिगमन मॉडल का उपयोग करना संभव है, समय सूचकांक को x चर के रूप में प्लॉट पर रखते हुए, ऐसे डेटा का सबसे अच्छा विश्लेषण विशेष प्रकार के मॉडलों का उपयोग करके किया जाता है। + +समय श्रृंखला डेटा एक क्रमबद्ध अवलोकनों की सूची है, जो रैखिक प्रतिगमन द्वारा विश्लेषण किए जाने वाले डेटा से अलग है। सबसे सामान्य मॉडल ARIMA है, जो "ऑटोरेग्रेसिव इंटीग्रेटेड मूविंग एवरेज" का संक्षिप्त रूप है। + +[ARIMA मॉडल](https://online.stat.psu.edu/stat510/lesson/1/1.1) "एक श्रृंखला के वर्तमान मान को पिछले मानों और पिछले पूर्वानुमान त्रुटियों से संबंधित करते हैं।" ये समय-डोमेन डेटा का विश्लेषण करने के लिए सबसे उपयुक्त हैं, जहां डेटा समय के साथ क्रमबद्ध होता है। + +> ARIMA मॉडलों के कई प्रकार हैं, जिनके बारे में आप [यहां](https://people.duke.edu/~rnau/411arim.htm) अधिक जान सकते हैं और अगले पाठ में आप इन्हें छूएंगे। + +अगले पाठ में, आप [Univariate Time Series](https://itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm) का उपयोग करके एक ARIMA मॉडल बनाएंगे, जो एक चर पर केंद्रित होता है जो समय के साथ अपना मान बदलता है। इस प्रकार के डेटा का एक उदाहरण [यह डेटा सेट](https://itl.nist.gov/div898/handbook/pmc/section4/pmc4411.htm) है, जो Mauna Loa वेधशाला में मासिक CO2 सांद्रता को रिकॉर्ड करता है: + +| CO2 | YearMonth | Year | Month | +| :----: | :-------: | :---: | :---: | +| 330.62 | 1975.04 | 1975 | 1 | +| 331.40 | 1975.13 | 1975 | 2 | +| 331.87 | 1975.21 | 1975 | 3 | +| 333.18 | 1975.29 | 1975 | 4 | +| 333.92 | 1975.38 | 1975 | 5 | +| 333.43 | 1975.46 | 1975 | 6 | +| 331.85 | 1975.54 | 1975 | 7 | +| 330.01 | 1975.63 | 1975 | 8 | +| 328.51 | 1975.71 | 1975 | 9 | +| 328.41 | 1975.79 | 1975 | 10 | +| 329.25 | 1975.88 | 1975 | 11 | +| 330.97 | 1975.96 | 1975 | 12 | + +✅ इस डेटा सेट में वह चर पहचानें जो समय के साथ बदलता है। + +## समय श्रृंखला डेटा की विशेषताओं पर विचार करें + +जब आप समय श्रृंखला डेटा को देखते हैं, तो आप देख सकते हैं कि इसमें [कुछ विशेषताएँ](https://online.stat.psu.edu/stat510/lesson/1/1.1) होती हैं, जिन्हें बेहतर ढंग से समझने के लिए ध्यान में रखना और कम करना आवश्यक है। यदि आप समय श्रृंखला डेटा को संभावित रूप से एक 'सिग्नल' के रूप में मानते हैं जिसे आप विश्लेषण करना चाहते हैं, तो इन विशेषताओं को 'शोर' के रूप में सोचा जा सकता है। आपको अक्सर इन 'शोर' को कम करने के लिए कुछ सांख्यिकीय तकनीकों का उपयोग करके इन विशेषताओं को ऑफसेट करना होगा। + +यहां कुछ अवधारणाएं दी गई हैं जिन्हें आपको समय श्रृंखला के साथ काम करने में सक्षम होने के लिए जानना चाहिए: + +🎓 **रुझान** + +रुझान समय के साथ मापने योग्य वृद्धि और कमी के रूप में परिभाषित किए जाते हैं। [अधिक पढ़ें](https://machinelearningmastery.com/time-series-trends-in-python)। समय श्रृंखला के संदर्भ में, यह इस बारे में है कि समय श्रृंखला से रुझानों का उपयोग कैसे करें और यदि आवश्यक हो तो उन्हें कैसे हटाएं। + +🎓 **[मौसमीता](https://machinelearningmastery.com/time-series-seasonality-with-python/)** + +मौसमीता को आवधिक उतार-चढ़ाव के रूप में परिभाषित किया गया है, जैसे कि छुट्टियों के दौरान बिक्री पर प्रभाव। [देखें](https://itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm) कि कैसे विभिन्न प्रकार के प्लॉट डेटा में मौसमीता प्रदर्शित करते हैं। + +🎓 **आउटलायर्स** + +आउटलायर्स मानक डेटा विचरण से बहुत दूर होते हैं। + +🎓 **दीर्घकालिक चक्र** + +मौसमीता से स्वतंत्र, डेटा एक दीर्घकालिक चक्र प्रदर्शित कर सकता है, जैसे कि एक आर्थिक मंदी जो एक वर्ष से अधिक समय तक चलती है। + +🎓 **स्थिर विचरण** + +समय के साथ, कुछ डेटा स्थिर उतार-चढ़ाव प्रदर्शित करते हैं, जैसे कि दिन और रात के दौरान ऊर्जा उपयोग। + +🎓 **अचानक परिवर्तन** + +डेटा अचानक परिवर्तन प्रदर्शित कर सकता है जिसे आगे विश्लेषण की आवश्यकता हो सकती है। उदाहरण के लिए, COVID के कारण व्यवसायों का अचानक बंद होना डेटा में परिवर्तन का कारण बना। + +✅ यहां एक [नमूना समय श्रृंखला प्लॉट](https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python) है जो कुछ वर्षों में दैनिक इन-गेम मुद्रा खर्च दिखाता है। क्या आप इस डेटा में ऊपर सूचीबद्ध किसी भी विशेषता की पहचान कर सकते हैं? + +![इन-गेम मुद्रा खर्च](../../../../translated_images/currency.e7429812bfc8c6087b2d4c410faaa4aaa11b2fcaabf6f09549b8249c9fbdb641.hi.png) + +## अभ्यास - बिजली उपयोग डेटा के साथ शुरुआत करें + +आइए एक समय श्रृंखला मॉडल बनाना शुरू करें ताकि पिछले उपयोग को देखते हुए भविष्य के बिजली उपयोग का अनुमान लगाया जा सके। + +> इस उदाहरण में डेटा GEFCom2014 पूर्वानुमान प्रतियोगिता से लिया गया है। इसमें 2012 से 2014 के बीच 3 वर्षों के घंटेवार बिजली लोड और तापमान मान शामिल हैं। +> +> Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli और Rob J. Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016। + +1. इस पाठ के `working` फ़ोल्डर में, _notebook.ipynb_ फ़ाइल खोलें। उन लाइब्रेरीज़ को जोड़कर शुरू करें जो आपको डेटा लोड और विज़ुअलाइज़ करने में मदद करेंगी: + + ```python + import os + import matplotlib.pyplot as plt + from common.utils import load_data + %matplotlib inline + ``` + + ध्यान दें, आप शामिल `common` फ़ोल्डर से फ़ाइलों का उपयोग कर रहे हैं जो आपके वातावरण को सेट करते हैं और डेटा डाउनलोड करने को संभालते हैं। + +2. इसके बाद, `load_data()` और `head()` को कॉल करके डेटा को एक डेटा फ्रेम के रूप में जांचें: + + ```python + data_dir = './data' + energy = load_data(data_dir)[['load']] + energy.head() + ``` + + आप देख सकते हैं कि दो कॉलम हैं जो तारीख और लोड का प्रतिनिधित्व करते हैं: + + | | load | + | :-----------------: | :----: | + | 2012-01-01 00:00:00 | 2698.0 | + | 2012-01-01 01:00:00 | 2558.0 | + | 2012-01-01 02:00:00 | 2444.0 | + | 2012-01-01 03:00:00 | 2402.0 | + | 2012-01-01 04:00:00 | 2403.0 | + +3. अब, `plot()` को कॉल करके डेटा को प्लॉट करें: + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![ऊर्जा प्लॉट](../../../../translated_images/energy-plot.5fdac3f397a910bc6070602e9e45bea8860d4c239354813fa8fc3c9d556f5bad.hi.png) + +4. अब, जुलाई 2014 के पहले सप्ताह को `[from date]: [to date]` पैटर्न में `energy` के इनपुट के रूप में प्रदान करके प्लॉट करें: + + ```python + energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![जुलाई](../../../../translated_images/july-2014.9e1f7c318ec6d5b30b0d7e1e20be3643501f64a53f3d426d7c7d7b62addb335e.hi.png) + + एक सुंदर प्लॉट! इन प्लॉट्स को देखें और देखें कि क्या आप ऊपर सूचीबद्ध किसी भी विशेषता को निर्धारित कर सकते हैं। डेटा को विज़ुअलाइज़ करके हम क्या निष्कर्ष निकाल सकते हैं? + +अगले पाठ में, आप एक ARIMA मॉडल बनाएंगे ताकि कुछ पूर्वानुमान तैयार किए जा सकें। + +--- + +## 🚀चुनौती + +उन सभी उद्योगों और क्षेत्रों की एक सूची बनाएं जो समय श्रृंखला पूर्वानुमान से लाभान्वित हो सकते हैं। क्या आप इन तकनीकों के कला, अर्थमिति, पारिस्थितिकी, खुदरा, उद्योग, वित्त में उपयोग के बारे में सोच सकते हैं? और कहाँ? + +## [पाठ के बाद का क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/42/) + +## समीक्षा और स्व-अध्ययन + +हालांकि हम उन्हें यहां कवर नहीं करेंगे, लेकिन कभी-कभी समय श्रृंखला पूर्वानुमान के क्लासिक तरीकों को बढ़ाने के लिए न्यूरल नेटवर्क का उपयोग किया जाता है। उनके बारे में [इस लेख](https://medium.com/microsoftazure/neural-networks-for-forecasting-financial-and-economic-time-series-6aca370ff412) में अधिक पढ़ें। + +## असाइनमेंट + +[कुछ और समय श्रृंखला को विज़ुअलाइज़ करें](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/1-Introduction/assignment.md b/translations/hi/7-TimeSeries/1-Introduction/assignment.md new file mode 100644 index 000000000..772b9ad57 --- /dev/null +++ b/translations/hi/7-TimeSeries/1-Introduction/assignment.md @@ -0,0 +1,25 @@ + +# कुछ और समय श्रृंखला का विज़ुअलाइज़ेशन करें + +## निर्देश + +आपने समय श्रृंखला पूर्वानुमान के बारे में सीखना शुरू कर दिया है, जिसमें आपने उस प्रकार के डेटा को देखा है जो इस विशेष मॉडलिंग की आवश्यकता होती है। आपने ऊर्जा से संबंधित कुछ डेटा का विज़ुअलाइज़ेशन किया है। अब, कुछ अन्य डेटा खोजें जो समय श्रृंखला पूर्वानुमान से लाभ उठा सकते हैं। तीन उदाहरण खोजें (कोशिश करें [Kaggle](https://kaggle.com) और [Azure Open Datasets](https://azure.microsoft.com/en-us/services/open-datasets/catalog/?WT.mc_id=academic-77952-leestott)) और उन्हें विज़ुअलाइज़ करने के लिए एक नोटबुक बनाएं। नोटबुक में उनके किसी भी विशेष गुण (मौसमीता, अचानक परिवर्तन, या अन्य रुझान) को नोट करें। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | ------------------------------------------------------ | ---------------------------------------------------- | ----------------------------------------------------------------------------------------- | +| | तीन डेटा सेट नोटबुक में प्लॉट किए गए और समझाए गए हैं | दो डेटा सेट नोटबुक में प्लॉट किए गए और समझाए गए हैं | कुछ डेटा सेट नोटबुक में प्लॉट किए गए या समझाए गए हैं या प्रस्तुत डेटा अपर्याप्त है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/1-Introduction/solution/Julia/README.md b/translations/hi/7-TimeSeries/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..44df0a34c --- /dev/null +++ b/translations/hi/7-TimeSeries/1-Introduction/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/1-Introduction/solution/R/README.md b/translations/hi/7-TimeSeries/1-Introduction/solution/R/README.md new file mode 100644 index 000000000..0a972cc5d --- /dev/null +++ b/translations/hi/7-TimeSeries/1-Introduction/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/1-Introduction/solution/notebook.ipynb b/translations/hi/7-TimeSeries/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..2648f0cdf --- /dev/null +++ b/translations/hi/7-TimeSeries/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,171 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# डेटा सेटअप\n", + "\n", + "इस नोटबुक में, हम यह प्रदर्शित करेंगे कि:\n", + "- इस मॉड्यूल के लिए टाइम सीरीज़ डेटा कैसे सेटअप करें\n", + "- डेटा को विज़ुअलाइज़ कैसे करें\n", + "\n", + "इस उदाहरण में उपयोग किया गया डेटा GEFCom2014 फोरकास्टिंग प्रतियोगिता से लिया गया है। \n", + "यह डेटा 2012 से 2014 के बीच 3 वर्षों के घंटेवार बिजली लोड और तापमान मानों का संग्रह है। \n", + "\n", + "ताओ होंग, पियरे पिन्सन, शू फैन, हमीदरेज़ा ज़ारेइपुर, अल्बर्टो ट्रोक्कोली और रॉब जे. हाइंडमैन, \"प्रोबैबिलिस्टिक एनर्जी फोरकास्टिंग: ग्लोबल एनर्जी फोरकास्टिंग प्रतियोगिता 2014 और उससे आगे\", इंटरनेशनल जर्नल ऑफ फोरकास्टिंग, वॉल्यूम 32, नंबर 3, पृष्ठ 896-913, जुलाई-सितंबर, 2016।\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import matplotlib.pyplot as plt\n", + "from common.utils import load_data\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "csv से डेटा को एक पांडा डेटा फ्रेम में लोड करें\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ], + "text/html": "
                                \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                load
                                2012-01-01 00:00:002698.0
                                2012-01-01 01:00:002558.0
                                2012-01-01 02:00:002444.0
                                2012-01-01 03:00:002402.0
                                2012-01-01 04:00:002403.0
                                \n
                                " + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "data_dir = './data'\n", + "energy = load_data(data_dir)[['load']]\n", + "energy.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "जनवरी 2012 से दिसंबर 2014 तक उपलब्ध सभी लोड डेटा प्लॉट करें\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhb5ZU/8O+r3bYkO7bl3YljZ3dCnJBASCCQFkqBgUDpBrRMZ6YLMJ2l26/TTjtDmelMp09nOtNOaUt31tKFtRToQAkpSUhIiJPY2Z14X+VFkiVL1vL+/pBkjHESL5Ku7r3fz/P4IbF07z1Gsa1z3/OeI6SUICIiIiIiIgIAg9IBEBERERERUfZgkkhEREREREQTmCQSERERERHRBCaJRERERERENIFJIhEREREREU1gkkhEREREREQTTEoHoITi4mJZU1OjdBhERERERESKOHDggFtK6ZruMV0miTU1Ndi/f7/SYRARERERESlCCNF2rsdYbkpEREREREQTmCQSERERERHRBCaJRERERERENEGXexKJiIiIiIgAIBwOo7OzE8FgUOlQ0sJms6Gqqgpms3nGxzBJJCIiIiIi3ers7ITD4UBNTQ2EEEqHk1JSSgwODqKzsxOLFy+e8XEsNyUiIiIiIt0KBoMoKirSXIIIAEIIFBUVzXqVlEkiERERERHpmhYTxKS5fG1MEomIiIiIiBRkt9tTcp57770X3/rWt+Z9HiaJRERERERENIFJIhERERERURaQUuILX/gCVq9ejTVr1uDxxx8HAIyOjuLd73431q9fjzVr1uDpp5+eOObrX/86li1bhssvvxwnTpxISRzsbkpERERERATga88242i3N6XnXFXhxD/fWD+j5z7xxBNobGzEoUOH4Ha7sXHjRmzduhUulwtPPvkknE4n3G43Nm3ahJtuuglvvvkmfvnLX6KxsRGRSATr16/HxRdfPO+YuZJIRERERESUBV577TXcdtttMBqNKC0txZVXXok33ngDUkp8+ctfxkUXXYSrr74aXV1d6Ovrw5/+9CfccsstyM3NhdPpxE033ZSSOLiSSEREREREBMx4xS/THnnkEQwMDODAgQMwm82oqamZ9ViL2eBKIhERERERURa44oor8PjjjyMajWJgYAA7d+7EJZdcAo/Hg5KSEpjNZrzyyitoa2sDAGzduhVPPfUUxsbG4PP58Oyzz6YkDq4kEmnQSGAcDpsZRoN2Z/4QERERac0tt9yCPXv2YO3atRBC4Jvf/CbKyspwxx134MYbb8SaNWuwYcMGrFixAgCwfv16fOhDH8LatWtRUlKCjRs3piQOIaVMyYnUZMOGDXL//v1Kh0GUFj2eMbznv3ZiZbkTP7pzA/JzzUqHRERERJS1jh07hpUrVyodRlpN9zUKIQ5IKTdM93yWmxJpzL///jhC0RgaO0bwgR/uRo9nTOmQiIiIiEhFMpYkCiF2CCGCQojRxMeJSY/dLoRoE0L4hRBPCSEKJz1WKIR4MvFYmxDi9innPeexRHrzRusQnjnUjbu21uLnf7ER3SNB3Hr/bpzq8ykdGhERERGpRKZXEj8tpbQnPpYDgBCiHsAPAXwUQCmAAID7Jx3zPQDjicfuAPD9xDEzOZZIN6IxiXufaUZ5vg13XVWHzUuK8finNiEck3j/D/Zgf+uQ0iESERERkQpkQ7npHQCelVLulFKOAvgqgPcJIRxCiDwAtwL4qpRyVEr5GoBnEE8Kz3usAl8HkaJ+tb8Dzd1efOn6lci1xHtS1Vfk44m7N6Mwz4I7frwXe1oGFY6SiIiIKPtouU/LXL62TCeJ/y6EcAshdgkhrkp8rh7AoeQTpJQtiK8cLkt8RKSUJyed41DimAsd+zZCiE8KIfYLIfYPDAyk8EsiUp5nLIxvvXgCl9QU4saLyt/2WHVhLn5z12UoyrPg/h2nFYqQiIiIKDvZbDYMDg5qMlGUUmJwcBA2m21Wx2VyBMYXARxFPIn7MIBnhRANAOwAPFOe6wHgABAF4D3HY7jAsW8jpXwAwANAvLvpnL8Koiz0nZdPYSgwjl/cuApCvHPsRZHdilsvrsL3XjmNfl8QJY7Z/aAgIiIi0qqqqip0dnZCqwtJNpsNVVVVszomY0milHLvpL/+QghxG4DrAYwCcE55uhOAD0DsPI/hAscS6cLpfh9+sbsVH964EKsr88/5vO0NFfjuH0/jd4d68JeXL85ghERERETZy2w2Y/FivjeaTMk9iRKAANAMYG3yk0KIWgBWACcTHyYhxNJJx61NHIMLHEukC//yu2PIsRjx+fe8o8r6bZaUOFBf4cTTh7ozFBkRERERqVFGkkQhRIEQ4lohhE0IYRJC3AFgK4AXADwC4EYhxBWJRjX3AXhCSumTUvoBPAHgPiFEnhBiC4DtAB5KnPqcx2bi6yJSWlOXB6+eHMCnty1Bkd16wedvb6jAoY4RnHX7MxAdEREREalRplYSzQD+FcAAADeAvwFws5TypJSyGcBdiCd8/YjvJ7xn0rH3AMhJPPYYgLsTx2AGxxJp2iN722AzG/DhSxbO6Pk3rq2AEMAzjVxNJCIiIqLpZWRPopRyAMDG8zz+KIBHz/HYEICb53IskZZ5g2E8dbAbN62tQH6OeUbHlOfn4NLFhXj6UBf+9t1Lpm1yQ0RERET6lg1zEoloDp58swtj4Sg+smnRrI7b3lCJMwN+NHVNbRxMRERERMQkkUiVpJR4+PU2XFSVj4uqCmZ17PWry2E2Cjzd2JWm6IiIiIhIzZgkEqnQvrNDONU/OutVRADIzzXjquUlePZwN6IxjgwlIiIiordjkkikQg+93ganzYQbL6qY0/HbGyrQ5w1h75nBFEdGRERERGrHJJFIZQZ8IbzY3Iv3X1yNHItxTue4emUp8ixGPM0up0REREQ0BZNEIpX51f4OhKMSd2ya2diL6djMRly7ugy/b+pBMBxNYXREREREpHZMEolUJBqTeHRvOzbXFaHOZZ/XuW5uqIQvGMGOEwMpio6IiIiItIBJIpGK7DjRj66RsTk1rJlqc10RFuSa8YejvSmIjIiIiIi0gkkikYo8/HobShxWXLOqdN7nMhkN2LykGLtPD0JKdjklIiIiojgmiUQqMRIYx46TA/jghmqYjan51t1SV4xebxBn3P6UnI+IiIiI1I9JIpFK7GkZhJTAthWulJ1zy5IiAMDu0+6UnZOIiIiI1I1JIpFK7GpxI89ixEVVBSk758LCXFQW5OA1JolERERElMAkkUgldp8exCWLC1NWagoAQghsWVKEPS2DiMa4L5GIiIiImCQSqUKPZwxn3H5sWVKc8nNvWVIMbzCC5m5Pys9NREREROrDJJFIBXafHgQAbK5LfZKYPOeuxDWIiIiISN+YJBKpwK4WNwrzLFhR5kj5uV0OK5aXOrC7hfsSiYiIiIhJIlHWk1Ji9+lBXFZbBINBpOUam5cUYd/ZIQTD0bScn4iIiIjUg0kizUgwHMWxHi9+d7gbD+xswcvH+uAeDSkdli6ccfvR6w1ic2JcRTpsqStGKBLDm+3DabsGEREREamDSekAKDtJKfHKiX48tq8DJ/t86BgKYLrml1ULcrC2ugAbFy3AbZcuhNVkzHywGre7Jb5XcEsa9iMmXVpbCKNBYPfpwbTseyQiIiIi9WCSSG8TjUk8d6QH979yGsd7fShz2nDxogXY3lCJJSV2LHHZUZ5vw6n+URzqGEFjxwga20fw3OEetA4GcO9N9Up/CZqz+7QbFfk2LCrKTds1HDYz1lblY1eLG5/H8rRdh4iIiIiyH5NEAhBPDn9zoAPf39GC1sEA6lx5+M8PrMVNDRXTzuW7ZHEhLllcOPH3e59pxs93t+JdK0qwdZkrk6FrWiwmsefMIK5eWQoh0rMfMWnLkmLcv6MF3mAYTps5rdciIiIiouzFPYmEPm8QH/nxXnzxt0fgsJnxg4+sx/995krcenHVjAe3/8N1K7CkxI7P//oQhv3jaY5YP472eDESCGNLGvcjJm2uK0Y0JrH3zFDar0VERERE2YtJos69enIA1//Pn9DYMYJvvv8iPPPpLXjv6vJZd9G0mY347w81YMg/jn986giknGYDI81acixFJvYJrl9UAJvZgF2nOQqDiIiISM+YJOpUOBrDN54/jj//6T4U26149m+24IMbqudV0ri6Mh+fuWYZfn+kF0+82ZXCaPVr1+lB1LnyUOq0pf1aVpMRG2sKOS+RiIiISOeYJOqQJxDGh364Bz94tQW3X7oQT396C5aUpGZI+11X1mFjzQL88zPN6BgKpOScejUeiWHf2SFsWZK5bqNblhTjZN8o+n3BjF2TiIiIiLILk0Qd+u4fT6GxYwTfuW0d/u2WNbCZUze2wmgQ+K8PNgAAPverQ4hONzeDZqSxYwRj4WhGR1Ikx2zsSYzdICIiIiL9YZKoM10jY3jw9Tbcur4KN62tSMs1qgtz8c83rsK+1iE8d6QnLdfQg90tbggBbKotvPCTU2RVhROFeRY8f6Q3Y9ckIiIiouzCJFFn/uelkwCAv79mWVqvc+v6KlQW5OA3BzrTeh0t2316EKsr8lGQa8nYNY0GgQ9cXIX/O9aHPi9LTomIiIj0iEmijpzq8+E3Bzpx56ZFqCzISeu1DAaBW9dX4rVTA+j1MNmYrWA4ioMdw9hcl/7RF1PdfulCRGMSj+1rz/i1iYiIiEh5TBJ15Ft/OIE8iwn3bFuSkeu9b30VYhJ48iA7nc7W8V4fwlGJdQsLMn7tRUV52LrMhV/u60AkGsv49YmIiIhIWUwSdeJg+zBebO7DJ7fWojAvM+WLNcV52FizAL850MG5ibN0pMsDAKivyFfk+h+5dCF6vUG8dKxfkesTERERkXKYJOqAlBL/8cJxFNst+MvLF2f02u+/uAotA340doxk9Lpq19TpQUGuGVUL0lsWfC7vWlGC8nwbHtnbpsj1iYiIiEg5TBJ1YOcpN14/M4S/eddS5FlNGb329WvKYTMb2MBmlpq6PVhTmQ8hhCLXNxkNuP2ShfjTKTfOuv2KxEBEREREymCSqHGxmMQ3XziO6sIc3HbJwoxf32Ez47rV5Xj2UDeC4WjGr69GoUgUJ/t8ipWaJn3okmqYDAKPvM7VRCIiIiI9YZKocS8296K524vPXrMMFpMyL/et66vgDUbw0rE+Ra6vNicSTWvWVCqbJJY4bLi2vgy/PtDJBJ+IiIhIR5gkapiUEv/7ymnUFufhprWVisVxWV0RKvJtLDmdoaYuLwAoniQCwB2bFsIzFsbvDvcoHQoRERERZQiTRA3bcXIAzd1e3HVVHYwGZfa2AfEB7e9bX4WdJwc4oH0GjnR54LSZUF2oTNOayS6rLUKdKw8Ps+SUiIiISDeYJGrY/a+cRmVBDm5Zp9wqYtKtF3Nm4kw1dXmwWsGmNZMJIfCRTYvQ2DGCpsRYDiIiIiLSNiaJGrX3zCDeaB3GJ7fWwmxU/mVeXJyHDYsW4DcHOjkz8TzGIzGc6PVlRalp0vvWV8FmNuCxfe1Kh0JEREREGaB89kBp8b0dLSi2W/ChjdVKhzLh/RdX4XT/KB7Z285E8RxO9vkwHo2hPouSxPwcM66tL8NzR3owHokpHQ4RERERpRmTRA063DmCnScH8FeX18JmNiodzoSbGiqwqbYQX3mqCZ986ADcoyGlQ8o6yZLObFpJBICbGyoxEgjj1ZMDSodC0+gcDuDh19vw6/0dCEeZyBMREdH8ZHayOmXE/a+0wGkz4SObMj8X8XxyLSY8+vFN+Omus/jmiydw7bd34uu3rMF7V5cpHVrWaOr2wGE1YVFhrtKhvM3lS4tRmGfBU41duGZVqdLh6F4kGsP+tmG8crwfr5zox8m+0YnHfvBqC7503Uq8e2VJVuxrJSIiIvXhSqLGnOrz4YXmXnxscw0cNrPS4byDwSDw8Stq8bu/uRxl+Tbc9fABfO5XhxCKcA4fABzp8mJVhRMGBbvRTsdsNODPLirHS0f74AuGlQ5H18YjMXzkJ3vx4Qdex093nYXLYcVXbliJlz57JX505wZICXz8wf247Uev40gnmw0RERHR7DFJ1Jjv72hBjtmIj21ZrHQo57Ws1IEn79mCe66qw2/f7MTTjd1Kh6S4cDSGYz3erCs1Tbp5XSVCkRheaOpVOhTdklLin55uwutnhvDPN67CwX96Dx75+CZ8/IpaLCmx45pVpXjxM1tx3/Z6nOwbxY3/+xq+8fxxpcMmIiIilWGSqCEdQwE8fagbd1y6EIV5FqXDuSCLyYAvXLscRXkW7GkZVDocxZ3uH8V4JIY1VdmZJK6rLsCiolwm9Ap6cE8bfvlGB/56Wx3+Ysti2K3v3DFgNhpw52U12PGFq7C9oQI/3NmCloHRac5GREREND0miRryfFMPojGJj22pUTqUGRNCYFNtEfa0DOq+4+mRRNOa+orsTBKFENi+tgK7Wtzo8waVDkd3dp12477fHcXVK0vxuWuWX/D5TpsZX/2zVbAYDXjg1TMZiJCIiIi0gkmihuw4MYDlpQ5ULciupicXsqmuCL3eIFoHA0qHoqjmLg/yLEbUFucpHco5bV9XCSmBZw9xNTGTWt1+3PPIm6hz5eG/P9ww4z2rxXYrPrihGk8c7ESvh4k9ERERzQyTRI0YDUXwRusQrlruUjqUWbustggAdF9yeqTLg/qK/KxrWjNZncuOi6ry8VRjl9Kh6IYvGMbHH9wPIYAf37lx2hLT8/nk1lrEJPDTXWfTFCERERFpDZNEjdh92o1wVOLKZepLEutceXA5rNhzRr9JYiQaw9EeL+ornUqHckHbGyrR1OXF6X6f0qFonpQSn/3VIZx1+3H/HeuxsGj2VQLVhbm4YU05Hnm9DZ4AO9MSERHRhTFJ1IhXTw4gz2LEhppCpUOZNSEELtP5vsQzbj+C4VjWdjad7Ma15TAI4KmDLDlNt5/tasX/He3Dl69fic11xXM+z11X1sE/HsXDe9tSGB0RERFpFZNEDZBSYseJAWxeUgyLSZ0v6WV1RXCPhnTbhTE5z04NSWKJw4YtS4rx9KEu3Sb1mXC4cwT//vwxXL2yFH85z2ZUqyqcuHKZCz/bdRbBMGeSEhER0fmpM6Ogt2kZGEXXyJgq9yMmTexLPDOkcCTKONLlQY7ZiFqXXelQZuTmhkp0DI3hzfZhpUPRJG8wjE8/ehAuuxXf+sBFEGL++1TvvqoO7tFx/PpAZwoiJCIiIi1jkqgBO04MAIAq9yMmLSrKRXm+Da/rtHlNc7cHqyqcMGZx05rJrl1dBpvZgGc4MzHlpJT40hNH0DUyhu/ctg4FuamZeXrp4kI0VBfgRzvPIBKNpeScREREpE1MEjXg1ZMDWFJiV93oi8mS+xJfP6O/fYmxmERztxerK7K/aU2S3WrClrpivHJiQHevV7o9tq8Dzx3uwefesyyle4yFELj7qjq0DwXwfFNvys5LRERE2sMkUeUC4xHsPTOEq1S8ipi0qa4Ig/5xnOzT177ErpExBMajWF6mniQRAK5aUYL2oQDOuP1Kh6IZx3q8+NqzzbhiaTHu2lqX8vNfs7IUda483L+jBbEYk3siIiKaHpNEldvTMojxaAxXLS9ROpR5e2teolvhSDKrdTCeZC0uzlM4ktlJ3ph45Xi/wpFox33PHoXDZsa3P9SQlnmZBoPAX29bgmM9XrzYzNVEIiIiml7Gk0QhxFIhRFAI8XDi71cJIWJCiNFJH38+6fmFQognhRB+IUSbEOL2Kee7PfF5vxDiKSGE+mZAzMOOEwPIMRuxcfECpUOZt+rCXFQtyNHdvMRWtzqTxOrCXCwtsU/siaX5cY+GsPfsIG6/pBrFdmvarrO9oRJ1rjx8+6WTiHI1kYiIiKahxEri9wC8MeVz3VJK+6SPX0x5/jiAUgB3APi+EKIeABL//SGAjyYeDwC4P91fQLaQUmLHyX5sriuC1WRUOpyUuKy2CHvPDumqFO6M248csxGlzvQlBuly1XIX9p0dgj8UUToU1XvpaB9iMt4UKJ2MBoG/v3oZTvaN4rkjPWm9FhEREalTRpNEIcSHAYwAeHmGz88DcCuAr0opR6WUrwF4BvGkEIgnjc9KKXdKKUcBfBXA+4QQjtRHn33Ouv3oGFL36IupLqsrwkggjGO9XqVDyZhWtx81xXkpGXOQaduWl2A8GsNunXalTaUXmntRXZiDVeXp35t6w5pyLC914L9fOslOp0RERPQOGUsShRBOAPcB+Ow0D5cIIfqEEGeFEN9OJIcAsAxAREp5ctJzDwGoT/y5PvF3AICUsgXxVcdlKf8CslCyzE8L+xGTLqtL7kvUT9LROhjA4mJ1dqbdUFOIPIsRr5zgvsT58AbD2HXajffWl2XkZoHBIPCZa5bizIAfT3OMCREREU2RyZXEfwHwEynl1EnOxwE0ACgH8C4AFwP4r8RjdgBTl5Q8AByTHvec5/EJQohPCiH2CyH2DwxoYw/VjpMDqHXlobpQnQnGdMrzc1BTlIvXdbIvMRyNoX0ogJoide1HTLKYDLh8aTF2HO/nKIx5eOV4P8JRifemudR0smvry1Bf4cR3/ngKYa4mEhER0SQZSRKFEA0Argbw7amPSSl7pZRHpZQxKeVZAP8P8RJTABgFMLX2ygnAN8PHJ1/nASnlBinlBpdL/eWZwXAUe88M4koNjL6Y6rK6+L5EPTTV6BweQzQmVde0ZrJty0vQ7QnqbnRJKr3Q1AuXw4p11ZlrQCWEwGeuXoa2wQCeeHPqvTsiIiLSs0ytJF4FoAZAuxCiF8DnAdwqhHhzmufKSXGdBGASQiyd9PhaAM2JPzcn/g4AEELUArAmjtO0vWeHEIpoY/TFVJtqi+ALRtDcPXWRWHvU2tl0suS/QZaczs3YeBQ7Tgzg2vrStIy9OJ93ryzB2qp8fOfl0xiPcDWRiIiI4jKVJD4AoA7xstIGAD8A8ByAa4UQ24QQi0RcNYBvAHgaAKSUfgBPALhPCJEnhNgCYDuAhxLnfQTAjUKIKxL7GO8D8ISU8h0riVpzsH0YQgAXL1L/6IupLqoqAACc0sHK1BkNJIll+TasLHdyXuIc7Tw1gLFwFO+tL8/4tYUQ+Mw1y9A1MobH93dk/PpERESUnTKSJEopA4my0l4pZS/iZaJBKeUAgHUAdgPwJ/57BMDfTjr8HgA5APoBPAbgbillc+K8zQDuQjxZ7Ed8L+I9mfialHa404OlJXbYrSalQ0m5YrsFADDoDykcSfq1uv1w2EwozLMoHcq8bFvuwv62YXiDYaVDUZ0Xm3qRn2PGpbXKjHi9cpkLGxYtwHdePgXPGF8/IiIiUmZOIqSU90opP5L4839JKSullLlSymop5d9OXgmUUg5JKW+WUuZJKRdKKR+dcq5HE5/Pk1Jul1IOZfrryTQpJQ51jGBtYsVNa+xWE6wmA9yj40qHknatg34sVun4i8m2rShBNCax65Rb6VBUZTwSw0vH+nD1ylKYjYr8OIYQAvfeVI8h/zi+8fwxRWIgIiKi7KLMuxKal87hMQz6x3FRtTaTRCEEiu1WuH3aX0k8M+BXdalp0rrqAjhtJu5LnKXXzwzCG4xktKvpdFZX5uPjly/GY/s6dDV+hoiIiKbHJFGFDnWOAAAaNLqSCMRLTgdGtZ0kBsNRdHvGVDv+YjKT0YArlrnwyokBjsKYhReae5FrMeKKpcVKh4K/v3oZFhbm4stPHkEwHFU6HCIiIlIQk0QVOtzpgcVkwPKyd4yD1IxiuxWDGi83bR8KQEp1N62ZbNvyEgz4QmjunjralKYTjUn8obkP25aXwGY2Kh0OcixG/Pv71uCs24/vvHxK6XCIiIhIQUwSVaixYwSryp2wmLT78hXbrXBrfCXxrAY6m06WnNn5R3Y5nZE324fhHg3hWoVLTSfbsqQYH7i4Cj/ceQZHmewTERHplvZaY2pcJBrDkU4PPrSxWulQ0qrYYcGgfxyxmMz47LhMSc5IrNFIkuhyWLGpthC/3NeOu6+qU6wRi1q80NQLi9GAbctdSofyNv94w0q8cqIf//DEYTxx92aY+DoSERGd15mBUfzxeD9CkRhCkRjC0RjGIzFYTAasKHNgVbkTi4vzVPU7lUmiypweGMVYOIq11flKh5JWRXlWRGMSnrEwFqh8PMS5nHX7UZhnQX6OWelQUuYTV9Tir36xH78/0oPtDZVKh5PVdp1249LaQjhs2fX6F+RacO9N9fj0owfxs12t+MTWWqVDIiIiykrjkRh+8GoL/vePpzEejU183mI0wGIyIBSJIhyN92qwJraKbawpxKe3Lcn697dMElXmcIcHADQ7/iKp2GEFALhHQ1n/TTRXZ93a6Gw62bblJahz5eGHr57BTWsrVD/aI11GQxGc6PPh2vrsKTWd7IY15fjVsk78cGcLPn7FYr6OREREUxxoG8I//PYITvWP4sa1FfjSdStQZLfAYjRM/N4MR2NoGRjFsR4vjnZ7cbTHi1/sbsVTB7vwTzeuyur3SupZ8yQAQGPnCBw2kyY6Yp5PsT2eGGq5w2nroF9zr6PBIPDJrbU42uPFrtMcpXAuhztHICXQsDA7b/YIIXDd6jK4R8cn9s4SERFR/EbvV546glu/vweB8Sh+9rGN+O5t61BRkAOryfi2pM9sNGBFmRO3rKvCP96wCo98fBOe/ZvLUVWYi7/7ZSM+9rM30DEUUPCrOTcmiSpzqGMEa6sKNLtPL6nYnlxJ1GaHU38ogj5vCIuLc5UOJeW2N1Si2G7FA386o3QoWauxI/vH2GysWQAA2N86rHAkRERE2ePeZ5rx6N52/OWWxfjDZ7Zi24qSWR2/styJJ+7ejH++cRXeaB3Ce769Ez/fdTZN0c4dk0QVCYajON7r0/x+ROCtJHFQoyuJrYPJzqZ2hSNJPZvZiL/YUoOdJwdwrIcdMqfT2D6CmqLcrC6lrnPZsSDXjP1tQ0qHQkRElBU6hwN46mAXPrZ5Mf7pxlXIs85t557RIPAXWxbj/z57JTbVFuLeZ4/iV290pDja+WGSqCLN3V5EYxIXZfHqQ6oU5JhhNAjNjsFodcdLC2o0uJIIAHdcuhC5FiN+xNXEd5BS4mDHCNYtXKB0KMnIF7IAACAASURBVOclhMDFixZwJZGIiCjhRzvPQAjgE1sXp+R8lQU5+NGdG3DF0mJ85akmHGzPnt+5TBJV5FCyRK1a+0miwSBQmGeB26fNctOz7lEA0NyexKSCXAs+uKEazzR2o8czpnQ4WaXbE8SAL6SK7+MNNYU44/Zr9mYNERHRTLlHQ/jlGx24ZV0lyvNzUnZek9GA7962DmX5Ntz18AH0e4MpO/d8MElUkUOdIyhz2lDqtCkdSkYU260Y9GvzzelZdwClTuucyxTU4K8uXwwJ4Oe7WpUOJas0tqvnZk9yX+KBtuy5s0lERKSEn+06i/FoDJ+6si7l5y7IteCBOy+GdyyCux4+gFAkmvJrzBaTRBU53OnRxX7EpGK7BQMabVyjxc6mU1UX5uL6NeV4dG87fMGw0uFkjYPtw7CYDFhZ7lQ6lAtaXZkPi8mA/a3cl0hERPrlC4bx4J42XLe6DHWu9PSTWFHmxH9+cC3ebB/Bvc8cTcs1ZoNJokqMBOKt6PWwHzGp2G6F26fVlUQ/al3aThIB4JNX1MIXiuDxLNuMraTGjhGsrnDCYsr+H79WkxFrq/LxBvclEhGRjj38ejt8wQjuuWpJWq9z/Zpy/PW2Ojy2rx2P7G1L67UuJPvfpRCA+CoioI4StVQptlsw6A9BSql0KCnlGQtjyD+u+ZVEAFhTlY/lpQ7sOu1WOpSsEI7GcKTLg4bq7G5aM9mGmkI0dXkwNq586QsREVGmBcNR/OS1s7hiaTFWV6a/ou+z1yzHtuUu3PtMM9oGlZtVzCRRJZJNa9ZU6anc1IpgOAa/xt6ctiaGk9cUaz9JBID6CieOchQGAOBErw+hSAwNC9Vzs2djzQJEYhKHOkeUDoWIiCjjfn2gE+7REO6+KvV7EadjNAj8x60XwWQw4JsvnMjINafDJFElDnV6UOfKg9NmVjqUjEnOStRayenZRJJYq5MkcWW5E33ekGZnXs5GsrX1OhVVBKxPjOrgvkQiItKbSDSGB3a2oKG6AJfVFmXsuiVOGz51ZS2eO9KjWPM4JokqIKVEY8cI1upoPyIAFNnjg8a11n7/rNsPIeKNXfRgVUW8QcuxHp/CkSjvYMcIiu0WVC1IXevsdCvItWBZqZ37EomISHd+d7gHHUNjuOeqOgghMnrtT26tRYnDin997qgiW6+YJKpAjycI92gIa1W0+pAKEyuJGutwetbtR0V+Dmxmo9KhZESyi+cxlpyisWMEDdUFGf9FM18bagrxZvswojFt7Q8mIiI6l3A0hv9+6SRWlDlw9crSjF8/12LC59+zHAfbR/D7I70Zvz6TRBVINq25SEf7EQHA5UgmidpaSWwd1Edn06TCPAvKnDbdJ4meQBhnBvxYt1A9TWuSNtYsgC8Ywck+rgYTEZE+/Gp/B1oHA/jCtcthMChzc/fWi6uwosyB/3jheMZnJzJJVIFTiTdmy0odCkeSWYV52is3lVLirFv7MxKnWlnu0H3zmsZE4xc1dijesKgQAPclEhGRPoyNR/E/L53ChkUL8K4VJYrFYTQIfPn6lWgfCuChPZkdicEkUQVO9o+iakEO8qwmpUPJKLPRgIJcMwY1VG46HAjDF4xgUZE+9iMmrSx34nT/aMbvgmWTxvYRCKHOioCqBTkodVqxX6HN80RERJn0892t6PeF8MXrVii+RWTrMhe2LnPhu388jZFA5t4TM0lUgVN9PiwtsSsdhiKK7VZNrSR2DAUAAAt10rQmaVWFE5GYxKm+UaVDUUxjxzCWltjhUGGHYiEENtQUYj+b1xARkcZ5AmF8f8dpvGtFCTbWFCodDgDgy9evgC8Yxnf/eDpj12SSmOUi0RjODPh1V2qaVJRn0VaSOBxPEvXS2TRJ781rkh2K1VhqmrRx0QJ0jYyhe2RM6VCIiIjS5vuvtsAXiuAL1y5XOpQJK8qc+OCGavxidyt2t7gzck0miVmufSiA8WgMS/S6kuiwaqq7afuQPpPEmqI85JiNuh2D0TYYwHAgjIZq9TWtSdqQuJvKklMiItKqXk8QP9t1Fjc3VE7c4M4WX7p+JRYX5+Guhw7gdH/6K7OYJGa5U4l/BEt1upLo0ly56RgW5Jph19n+UqNBYHmZA0d7PEqHoojGDvU2rUlaUeZAnsXI5jVERKRZ3/njKcSkxGevWaZ0KO+Qn2PGTz+2ERaTAX/x830YTPP7YyaJWS7Z2VS3K4l2C3zBCIJhbTQ86RwO6G4VMWlluRPHenyKDIRVWmPHCHItRiwrVe/3sclowPpFC7DrtBsxzkskIiKNOTMwisff6MAdly7K2vdq1YW5+PGfb0S/N4RPPLg/re+PmSRmuVP9o6gsyNHdylNSkT0+K3HQr42S046hAKoXZOcPnnRbVeGEZyyMbk9Q6VAyrrFjBKsr82EyqvtH7vaGSrQM+PHs4W6lQyEiIkqpH/3pLCxGA/562xKlQzmvhuoC/PeHGnCwYwSf+/WhtN24Vfc7Fh042TeKpSpefZiv4mSSqIGS02hMomtkDFWFOUqHoohV5fGS6WPd+mpeE4nGcKzHizWV6ht9MdX71lWivsKJ/3j+uGZW94mIiCLRGF5s7sU1q0rhcliVDueCrltTji9dtwLPHe7Bt/5wIi3XYJKYxaIxiZaBUd2OvwDi5aYANLEvsc8bRDgqdbuSuLzMCSH01+G0ZcCPUCSG1ZXZtQF+LgwGga/csArdniB+8tpZpcMhIiJKiX2tQxjyj+O61WVKhzJjn7iiFu+/uArff7UFQ2mouGOSmMXahwIYj8R027QGeGsl0e1Tf7lph047mybZrSYsKszFUZ0lic3d8WY9qyvUv5IIAJfVFeE9q0px/yun0e/TX+kwERFpz/NHemEzG3DlcpfSocyYEAI3N1RCyvTcgGeSmMWSTWv0vZIYTxIHNLCS2DEcny9XvUCf5aZAfF+i3lYSm7q8sJkNqHVp5/v4S9evxHg0hv/6w0mlQyEiIpqXWEziheZebFteglyLunqArExu5WGSqC96H38BADkWI/IsRgxqYFZix1AAQgCVOk4SV5Y50ToYwGgoonQoGdPU7cGqcieMBqF0KCmzuDgPd15Wg8f3d+CozvaYEhGRthxoH8aAL4T3qqjUNKnIbkWJw5qWKi0miVnsVJ8PFfk23XY2TSrSyKzEjuEASh02WE1GpUNRTHIw7YlefSQWsZjE0W4vVmugac1Uf/uupcjPMeNfnzuqy7EmRESkDc8f6YXFZMC7VpQoHcqcrKpwpuWGLZPELHaqfxRLdLyKmFRst2giSewcGkO1TjubJq2qiCeJR3t8CkeSGW1D8VVTrexHnCw/14y/f/dS7G4ZxMvH+pUOh4iIaNaklHihqQdblxbDYTMrHc6crCx3omVgFOORWErPyyQxS0VjEqf7R7FMx/sRk4rtVm2Umw7rd0ZiUnm+Dfk5Zt2UKDZ1xZvW1Gugs+l07ti0CLWuvLS13yYiIkqnQ50edHuCeO/qcqVDmbNV5U6EoxKn+lN7A55JYpbqHA4gFInpekZiUrFD/eWmoUgUvd4gqnTa2TRJCIFV5fppXtPU7YHZKLC0RJsVAWajAe+/uArHe30YCaj/Rg4REenL8009MBkErllZqnQoc5bcynMsxVVaTBKz1Kk+Nq1JKs6zYCgwjkg0tcvomdQ9EoSU+u5smrSy3InjvV5EY9rfx3a024vlZQ5YTNr9Ubu2qgAAcLjTo3AkREREMyelxPNHerF5STHyc9VZagrEm8nZzIaUV2lp952Lyp1MLBkvYbkpih1WSAkMqXilQu8zEidbWe5AMBxD66Bf6VDSSkqJpi6PJvcjTpZsynO4c0ThSIiIiGbuaI8X7UMBXK/CrqaTGQ0Cy8tSX6XFJDFLne4bRXm+DU6VbqJNpeSsRDXvS+wYZpKYlGxeo/WS025PEMOBMOo12Nl0svwcM2pdeWjs4EoiERGpxwtNvTAI4JpV6i01TVpV7sCxXm9Ku40zScxSJ/t9XEVMKMqzAICq9yV2DI3BbBQoc9qUDkVxS0rsMBmE5pvXJJvWrK7QZtOaydZWFeBQ5whHYRARkWr8/kgPNtUWoSixGKFmq8qdGAmE0eMJpuycTBKzUCzZ2ZT7EQHEy00BlSeJwwFUFORoaqD6XFlNRiwszEVbogRXq5q7PDAaxMSGci1bW5WPAV8Ivd7U/XIiIiJKl1N9PrQM+HGdyktNk95qXpO6G/BMErNQ5/AYguEYlnIlEYA2yk07hzj+YrISpxX9Gk8omrq9WOKyw2Y2Kh1K2l1UHW9ec4glp0REpAIvNPVCCODaem0kiSsSSWIqq7SYJGah5JwTjr+Ic9pMsBgNGFD1SuIYqgvZ2TSp1GlDn1e9r+dMNHV5NDsfcapV5U6YDAKH2LyGiIhUYF/rEFaWOVGikW1AdqsJi4pycayXSaKmneqPj79YotHZarMlhECR3QK3T50rif5QBEP+cTatmaTUaUO/L6jZPWz9viD6fSHNdzZNspmNWFHuYIdTIiLKerGYRGPHCBoWFigdSkqtKndyJVHrTvb5UOq0Ij+HnU2Tiu1W1e5JnOhsynLTCSUOK4LhGLzBiNKhpEVz4od0vQ6a1iStrSrA4Q4PYjqYf0lEROp1xu2HLxhBQ7W2ksSV5U60DQXgD6XmvRWTxCzEpjXvVGy3YNCv0iRxaAwAx19Mlizv0Oq+xOZEZ9NVOksSfaEIzmp8/iUREalbY0e86mWdBpNEKYHjvb6UnI9JYpaJxSRO9Y1y/MUURXarastNO4aSK4nck5hUmuhYq9V9iU1dXiwuzoNDR3NO1yZ+2bLklIiIslljxzAcVhPqXNp6r528MX00RR1OmSRmma6RMYyFo1xJnKLYbsWgP6TKPWwdwwHkWowoTMx7pPieRCC+d0+Lmro9uio1BeLzL3MtRnY4JSKirNbYMYKLqvNh0NhYsop8G5w2U8rGYDBJzDKnJ5rWaOvuxnwV2y0IRyW8Y+rbw9YxNIbqBbkQQls/jOajxKndlcSRwDg6h8ewulIfTWuSjAaB1RX57HBKRERZKxiO4niPT3P7EYF4o8dVFalrXsMkMcu0J0oTa4ryFI4kuyRnJapxDEbncIDjL6bItZjgsJrQp8E9icmmNXrpbDrZ2up8NHd7MR6JKR0KERHROzR1eRCJSTRUL1A6lLRYWe7EiV4foiloIsckMct0DgdgNRlQbGdp4mTJJFFtHU6llOgYCqCKnU3focRp1WS5aXN3vNxSb+WmAHBRVQHGIzGc7EvNpnkiIqJUSjat0eJKIhAfgzEWjqItBU3kmCRmma6RMVQuyGFp4hTFjnjSrLYkcTgQhn88ys6m0yh12jRZbtrU5UVlQQ4W6HAPavKXbvKXMBERUTY52DGCyoIcuBIN9LRmZXnqmtcwScwyncNjXHWahiu5kuhTV1LBzqbnVuq0aXIl8WSfDyvK9Nl4qmpBDhbkmtnhlIiIslJj+wgaFmpzFREAlpbaYTKIlDSvYZKYZbqGx1BZwIRiqgW5FhgNQnV7EjuGE0kiVxLfocRhRZ9XnR1rzyUWk2gd9GNxsT73FAshsLa6gB1OiYgo6wz4QugaGdPcfMTJrCYjlpTYU9K8JuNJohBiqRAiKIR4eNLnbhdCtAkh/EKIp4QQhZMeKxRCPJl4rE0IcfuU853zWLUJjEcw6B9HFVed3sFgECi2WzCgupXEMQBMEqdT4rRhPBKDZyysdCgp0+sNIhiOYbFLn0kiEN+XeKrfB39IfZ2IiYhIu7S+HzFpZbkTx3rm3xtAiZXE7wF4I/kXIUQ9gB8C+CiAUgABAPdPef544rE7AHw/ccxMjlWV7pF4QsEkcXouh1V9SeJwAAtyzbBbTUqHknVKNTgGo9Ud3yi+WMfdiRuq8xGT8Q5yRERE2aKxYxgmg9D8iKrlZQ70eoPwBud3Ez6jSaIQ4sMARgC8POnTdwB4Vkq5U0o5CuCrAN4nhHAIIfIA3Argq1LKUSnlawCeQTwpPO+xmfqaUqljmEni+bjsVvWVmw4FuIp4DqVOGwBoal/i2UQ3sRqdlpsC8ZVEADjcySSRiIiyR2PHCFaUO2AzG5UOJa3K8+Pvr+a7sJKxJFEI4QRwH4DPTnmoHsCh5F+klC2IrxwuS3xEpJQnJz3/UOKYCx2rOl2JJLGygEnFdFS5kjgUQDUbEU2rxKG9lcSzA37YzAaUJRJgPSq2W1FZkINGNq8hIqIsEYtJHO7waL7UFHir2aNqkkQA/wLgJ1LKzimftwOYesvZA8CReGzqzsvkYxc69m2EEJ8UQuwXQuwfGBiYQ/jp1zk8BrNRTLx5prdzOaxwj44jloIBoZkQjUl0jYyhqpArw9MpccQTqT6vdlYSWwf9qCnKg8Gg7xE2a6vzcYQriURElCVaBkbhC0XQUL1A6VDSLjneQxVJohCiAcDVAL49zcOjAKZOnXYC8F3gsQsd+zZSygeklBuklBtcLtfsvoAM6RoZQ0VBju7fYJ5Lsd2KaExiODCudCgzMjgaQjgq2a32HHIsRjhtJvRrKEk8444niXq3qCgPPZ4x1dzQISIibTuok6Y1QOqSxEx107gKQA2A9sSQeDsAoxBiFYAXAKxNPlEIUQvACuAkgBgAkxBiqZTyVOIpawE0J/7cfJ5jVadzOMD9iOcx8Y9+NIQie/avtvYnvjmTK2b0TvFZidooN41EY+gYCuDa+jKlQ1FcqcOKcDR+Q0cN36tERKRtjR0jcNhMqNVBz4D8HDPMxvmPjctUuekDAOoANCQ+fgDgOQDXAngEwI1CiCsSjWruA/CElNInpfQDeALAfUKIPCHEFgDbATyUOO85j83Q15VSnJF4fqmqsc6UZEOWEiffJJ9LidOqmXLT7pEgwlGp686mScmmRL0aeW2JiEjdGttH0FBdoItqPSFEvNmjGspNpZQBKWVv8gPxMtGglHJAStkM4C7EE75+xPcT3jPp8HsA5CQeewzA3YljMINjVSMYjqLfF0IVm5ycU3Il0a2SDqf93uRKIpPEcyl12DTTuOaMexQAdD0jMak00VmtXyOvLRERqdfYeBQn+ny6KDVNSkWzR0WGt0kp753y90cBPHqO5w4BuPk85zrnsWrS44nfcedK4rmlqsY6U5JllC4miedU4rSh3xeElBKJUnTVSs5I5J7Et1YStbJKTERE6nWky4NoTOouSewemd/v4IzOSaRz6xwOAOCMxPOxW02wmQ0qShKDKMg1w2rS9jye+Sh1JveuzW/gazZoHQzAbjWh2G5ROhTFJUvDtbJKTERE6tXYMQxAH01rklyO+c8WZ5KYJToTMxKrOHj9nIQQqpqV2O8NTbxZpuklV5yS+zfV7Izbj8XFeapfEU0Fi8mAojwL+jTwuhIRkbod6vSgakGOrhqpuexWDI6GEJ1Hl3EmiVmia3gMRoNAKUsTz8tln/+dkUwZGA2xac0FJPdramHFqdXtR40OuqbNVInTpqnxJkREpE5Hu71YXZGvdBgZ5XJYEZPAkH/uY+OYJGaJzuEAyvNtMBn5kpyP2lYSOf7i/LSyd208EkPncACLi1gJkFTqtLK7KRERKcoXDOOs24/VlVPHqmtbKvp4MCPJEl0jHH8xE2pJEqWUGPCF2Nn0ApI/xNS+4tQ+FEBMsrPpZFrqXEtEROp0tNsLAKjX4UoigHlV3zFJzBKdw2McfzEDLrsNw4EwxiMxpUM5L89YGOPRGDubXoDNbERBrnmiE6xasbPpO5Xm2+AeDSESze7vVSIi0q7mZJKot5VEe7xSiyuJKjceiaHPG0QlO5teUDLpGvRnd1KRTHpKnCw3vZASh1X15aZnE0niYu5JnFDqtEJKwD069/0QRERE89HU7UGJw6q77T/FjnindSaJKtfrCSImOf5iJtQyKzE5RJzlphdW6lR/WeLZQT8W5JpRkMvxF0mlDm3sNyUiIvU62u1FfYW+VhEBINdigt1qYpKodp0jiRmJ3JN4QapJEhOt/5kkXliJQ/1dMNnZ9J200pSIiIjUKRiO4lT/KFZX6ms/YtJ8ZyUyScwCEzMSuSfxgtSTJLLcdKZKnVb0+0KIzWOWj9LOuv1YzP2Ib1OaGP/Sl+Xfq0REpE3He32IxqQuVxKBxNi4ecwrZpKYBbqGxyAEUJbPhOJCiu3zr7HOhH5vCLkWI+xWk9KhZL0ShxWRmMRwQJ1718bGo+jxBLkfcYoiuxVGg0CfhyuJRESUec3dHgD662yaNN+JAEwSs0Dn8BjKnDZYTHw5LsRqMiI/xzyv5fNM6PcFWWo6Q2+VJWb3a3ourYOJzqZMEt/GaBBw2dXflIiIiNSpqcuL/Byzbnt+MEnUgK6RAGckzoIaZiX2+0K666Q1V8mS3L55lEQoqZWdTc+p1GlluSkRESniaLcH9RVOCCGUDkURLocV3mAEwXB0TsczScwC8RmJTBJnKl5jnd1vPAd8IbicXEmcieTeNbU2rznLlcRzKnGqvykRERGpTzgaw7Fen26b1gDx98sA4J5j9R2TRIVFojH0ejgjcTZcDuuc/8FnSr+X5aYzlWxG1K/SctOzA364HFbuP51GqZPlpkRElHmn+0cxHonptmkNMP9mj0wSFdbnCyESk+xsOgvZXm7qD0XgH4+y3HSGrCYjFuSa1VtuOuhnqek5lDpsGA6EEYrMrdSFiIhoLpq7vQD027QGYJKoel0T4y+4kjhTLocV/vEo/KGI0qFMK/nNyJXEmSt12lTbuIbjL84t2ZRIravERESkTk1dHuSYjbq+iTuRJLLcVJ06hwMAwMY1szDfGut0e2tGIpPEmVLr3jVfMAz36Dj3I55D8nuAJadERJRJR7u9WFXhhNGgz6Y1AFCYZ4EQXElUreRKYgWTxBmb7/J5uvUnyiZdXEmcsVKHdSK5VpNWd/wmj57vVJ5PcvarWleJiYhIfWIxieZuD1breD8iAJiNBhTmWpgkqlXn8BhcDitsZqPSoahGsT3Lk0RvstyUexJnqsQZTxJjMal0KLNyxj0KgEniuZQ6kkkiVxKJiCgzWgf98I9Hdb0fMWk+fTyYJCqsa4TjL2ZrvjXW6dbvC8FsFFiQa1Y6FNUoddoQjUkM+seVDmVWkiuJi4rYeGo6BblmWIwG1TYlIiIi9ZloWlOp75VEIJEkck+iOnUOB7gfcZYK8ywwzKPGOt36fUG47FbdDm+dixKVrji1DvpRWZDDSoBzEELEV4lZbkpERBnS1O2B2SiwtMShdCiKm89scSaJCorFJLpHghx/MUtGg0DRPP7Rp9uALwSXk6Wms1GaaHDSr7IVp9ZBP1cRLyDeuVZdrysREanX0W4vlpc5YDExzUmWm0o5++08/L+noIHREMajMVSy3HTW5nNnJN36vSGOv5ilEpWOSujzBCeas9D0Sp1WJokAxiMx/Pvvj+GKb/4RX3riMHafdiOqsj24RJQddre48b77d+Hzvz6kdChZR0qJpi4PVnM/IoB4khiKxOCbw9g4UxrioRnq5IzEOZtPjXW69fuC2FCzQOkwVCU51kRNXTBjMYl+XwhlXDU+rxKHDTtPupUOQ1EdQwF8+rGDONQxgksWF+Lpxm48tq8DLocVN6wpx63rq7Cmim9oiOj8Tvf78I3nj+OlY/3IsxjxZvsIrl5ZiveuLlM6tKzR7QliOBBGvc47myZNngjgtM2uVwaTRAV1jcSTRO5JnD2Xw4qTfT6lw3iH8UgMw4EwO5vOksVkQFGeRVUNTtz+ECIxyZXECyjLt2E0FMFoKAK7VX+/cp4/0oP/99vDgATuv2M9rl9TjrHxKF450Y9nD3Xj0X3teHBPK35792asW8ibS0T0ToOjIXz7pZN4bF8Hcs1GfPG9K/DRyxbh/d/fjXufacaWJUVwzDIB0KrmLg8AoL6SN96At27CD/hCqHPZZ3XseX9jCyEeAnDBehgp5Z2zuioBiJeqAeCbzDlwOaxwj8ZHJhiyaFBqcnUzOUScZq7EaUO/isoS+zzx17qUK4nnNbHf1BuEfZa/oNQsFIni688dw4N72rC2ugD/e9s6VBfG96/mWIy4fk05rl9TjmH/ON77Pzvxlaea8MynL9f14GcieicpJT72szdwtMeLOy5diL9791IUJd74f+PWi3DL/bvwrRdP4GvbVyscaXZo6vbCIICVZVxJBOY3W/xCexJPA2hJfHgA3AzACKAzcex2ACOzvioBiHdyzDEb4dDh3fX5ctmtCEclPGNhpUN5m2SSwz2Js1fiiM9KVIvexGvNctPze2tWonpe21S4/5UWPLinDZ+4YjF+/anLJhLEqRbkWfDVP1uF5m4vHn69LcNRElG2e7N9BEe6PLj3pnrct331RIIIAA3VBbhz0yI8+HobDrYPKxhl9jjd78OiojzkWNh1HEhjkiil/FryA8AyADdIKe+QUn5ZSvkRADcAWD77kAkA+nwhlDo5KmEusnVWYjLJYbnp7KmtwclEkshKgPOaaEqkolLi+RqPxPDI3na8e0UJ/vGGVRfssHfDmnJcsbQY33rxhK7+PxHRhT2ytw12qwm3rKuc9vHPX7scpQ4bvvTEEYSjsQxHl33ahwJYeI6bcnqUn2OG2Sjm9H55Nt1NNwF4fcrn9gK4bNZXJQDxlcQSrkLMSTJJdGfZytNEkshy01krddow4AuppuNjnycIo0Gg2M7X+nyS5aZqugEwX8839cA9GsKdm2tm9HwhBL52Uz1CkRj+7blj6Q2OiFRjJDCO3x3uwc3rKs65p9thM+Nr2+txvNeHH//pbIYjzD7tg0wSJxNCzHkiwGySxIMA/k0IkZO4aA6ArwNonPVVCUC8NJGlanOTrSuJA94ghACK8ixKh6I6JU4bYjK+QV8Ner1BuOxW7iG7ALvVhFyLEb0edbyuqfDQnjbUFOXiiiXFMz6m1mXHXVfW4qnGbuxu0Xc3WCKK+82BToxHYrj9kkXnfd619WV4z6pS/M/LJ9E+AeO7GwAAIABJREFUGMhQdNnHEwjDG4xwfvEUyVmJszWbJPFjALYA8Agh+hDfo3g5ADatmQMpJfq8oYm77DQ786mxTqeB0RCK8qwwGTmCdLZKHeoag9HnDaKUpaYXJIRAqdOmqs6189Hc7cH+tmF8ZNOiWTfVumfbElQX5uCrTzVhPMKyMSI9k1Li0b3tWL+wAKtmMM7ha9vrYTIY8Fe/eAMH2vS5P7FtyA8A59wDrldpTxKllK1Sys0AlgC4CcASKeVmKWXrrK9K8IUiGAtH2RlxjhxWE6wmQ9Ylif3eEJvWzJHa9q71eoIo402eGSl1WlXVuXY+HtrThhyzER+4uHrWx9rMRtx302q0DPjx49fOpCE6IlKLPWcGccbtxx2Xnn8VMak8Pwffu2M9fMEIbv3+bnzxN4cx5B9Pc5TZpX0ovorKctO3m+ts8Vkvd0gp2wHsA9AphDAIIbhkMgcTXTCZJM6JEGLOd0bSqd8X4n7EOXpr71p2vabn0sty8RkrddpU87rOhycQxlONXbh5XQXyc+c2s2zbihJcW1+K77x8SjeJNRG90yN721GQa8YNF5XP+Jgrl7nw8ueuxKe21uK3b3biXf+5A7/c146YSvb6zxeTxOm57FYMjs6+58OMEzwhRIUQ4kkhxCCACIDwpA+apeQbplKuOs3ZXO+MpFO/LzgxuJRmp9huhRDqaHASGI/AF4yw3HSG4kliEFJq+43Krw90IBiO4aObauZ1ni9fvxLjkRh+9CeuJhLp0YAvhBebevH+9VWwmWc3yiHPasKXrl+J5/72CiwrceAfnjiCL/72cJoizS7tgwEU2y3I42i5t3E5rIhJzHpleTargD8EMA7g3QBGAawH8AyAu2Z1RQIQL1UDOIh7PubarSldojEJ9+g4VxLnyGw0oCjPqopy0+T3L1cSZ6bEYUUoEoN3LKJ0KGkTi0k89HobNtYsmNH+ofNZVJSH7Q2VePj1dt2VixER8Kv9HYjEJG67dOGcz7G8zIHHP7UJt1+6EE8e7NLFz5L2oQD3I05jrn08ZpMkbgbwl1LKRgBSSnkIwF8B+NysrkgAMNHEgQnF3GVbuemQfxzRmOSMxHkocVjRr4KyxIkZiUwSZyR5M0zLzWtePTWAtsEA7rysJiXnu+eqOgQjUfz0Nba0J9KTaEzisX3t2FxXhDqXfV7nEkLgo5sWIRKT+N3h7hRFmL3ahwJYxCTxHeY6EWA2SWIU8TJTABgRQrgA+AFMP92TzqvfG4LDZkKuhUvic+VyWDEUGM+a4bHJFTA2rpm7UqdVFYlEsiSW5aYzk0wSkyuwWvTg7la4HFZcW1+WkvMtLXXgutVl+MXuVnjGuKuDSC92nhpA5/DYjBvWXMjKcidWlDnwxJtdKTlfthqPxNA9Msb9iNNw2eO/g9O5krgXwPWJP78I4HEATwDYP6srEoBE+3yuQsyLy2GFnEONdbr0J775uDo8d2ppcJKc+cfv4Zl5qymRNpPEtkE/dpwcwO2XLITFlLpebn+9bQl8oQge3N2asnMSUXZ75PU2FNutuGZVacrO+b71lWjsGMGZgdGUnTPbdI+MISY5/mI6xY747O50JokfBfBq4s9/D+AVAE0Abp/VFQlAMklkMjEfyQYx2VJyOpBIblhuOnclThvcoyFEsmR1+Fz6vEHYrSbYuTl+Rkonxptkx/dqqv3ucA+kBG6fx/6h6dRX5OPdK0rwk11n4Q9pdz8nEcV1DAXw8vF+fHhjdUpvOG1vqIRBAE8d1O5qYrKz6aKiPIUjyT65lvj7lbQliVLKESnlUOLPY1LKf5FS/n/27jy8zbPKG//31m7ttmXZlvclq90szdq00JbSBei0tEBLYYBSBjoF5jcsA7zDDMsLww868w4wzFtm2AtlK2UoOwUKbWmzJ03TJI0d77skW7K1Wvv9/iHJMSGJJevZZJ3PdeW6Umt57lSW9JznnPucj3DOZ4pcK0G2uyllIUqz2o24YsmXm9ZRuemqOXPZYZ9CssOXQhd5imPQqmGr0q7ZTOLZmSBaaqpE+Ux/zyu6sRBN4nuHxwR/bkKIsnz30BhUjOHNe4W94FRvNeDqbgcef2FqzXaZHqPxF5e1mokAxYzA0DLG/jdjbIQxFmOMDef+W1f0Sisc5xzeEJWblqohtx9sOrAo80qyvKE4rAZN0e2qyXlLDU4UHky4g7Gl3z9SmHqrXvGv62r1uUPY2FBaR9NLubK1Gtd0O/DVP40glkyLcgxCiPwWE2n88OgEbulpQKOtSvDnv2N7Eyb8izg2Ni/4cyvBhD8KnUZFfSEuITsRoLjv4GJy2f8K4JUA7gewFdnRF68A8GBRRySYjyaRTHOakViieosBOo0K476o3EsBkG1G5KTAvyTn964pIzt8KZ4AXeQpVrnsNy1WLJnG8GwYmxosoh3jva/oxlw4jkePToh2DEKIvH72whQCi0m89SphGtZc6OaeBlRp1fjJ85OiPL/cxn1RtFRXQaVici9FkVYzEaCYIPENAG7jnP+Oc97POf8dgDsA3FXUEcn5zoh0klkSlYqhtcaIUV9E7qUAyJab0hWs0pRDJjGT4fCG4jT+okhOi0HRr+tqDXrDyHBgY6M4mUQA2NNRg13t1fjvZ4Yom0jIGsQ5x8MHRrGxwYLdHTWiHMOk1+CW3gb88sWZNfk5MuaP0n7EyxA7SLxUaE4he5HyM9Yo61S69lojxpSSSQzFKUgsUa1JB8YAr4KDiblIHKkMp3LTIjXY9PCG4khn1tZ+mLMzQQDARhEziYwxfODGDZgJxPC53/SJdhxCiDyOjs6jzx3CvfvawZh4p9V3bG9CKJbCH/u8oh1DDpxzTPijtB/xMuosegRjqaIuEBQTJD4G4BeMsZsZY5sYY7cA+Gnu56QI3qVMIgUUpWqtMWHcH5V9IzbnHLMhKjctlUatgsOsV3QXTA+Nv1iVBqsB6QyHr8iN80rX5w7BoFWJfgX7qq5a3LuvHQ8fGMWzA7OiHosQIq1vHxiFrUqL27eJO3r86m4HnBb9mpuZOB9NIhxP0fiLy8gnMYqp6CkmSPwwgCcBPATgOID/RHYMxoeKeA6C8/utqAtm6dpqjYgm0kV3bBJaMJZCPJWhTKIAlN7gJF8JQOWmxWnINWKYCSj3tV2NPncQG+otUEuwD+Z/vWoj1jnN+IfHTmIhquwOwISQwswEFvHEGTfu3tWCKp24je/UKobbt7nwdL9XMTOmhTCW23bURkHiJTXZs9/BUwuFN3u8bJDIGHtF/g+AawA8DeBdAP4K2QY2T+V+TorgCcZQY9JBr6EumKVqq81+IMhdcuqhEmLB1FuU3eBkKUikctOi5INqt4IvAKxGv4idTS9k0Krxhbu3wR9J4J8eP11QBUUmw/HQU4PY+///Afd89RA+95s+PHF6BjMK6QpNSKX7/uFxZDjHW/aK07DmQndsb0Yqw/HLF6clOZ4U8jMSW2spSLyUxlyQOLNQ+HfwSpOgv3GJn+e/mVju750FH5HAE6S9a0LJl3iN+aLY1S7OZu9CuAOUXRKK02rAyckFuZdxSZ5ADGoVg8NM7+Fi5INq9xrKJM6G4pgLJ7BBxP2IF+ptsuH9N67Hvz7RjxtOOHHnlc2XvO9CNIEP/Ogk/tjnxVWdtYgkUvjGc8NIprNf4V11JvzwXVdRVQshMomn0vjBkXHcsNEpWankZpcV6+vNeOK0G2+9ql2SY4ptIhcktlRTkHgpjfmxcUVkEi8bJHLOO0pbErkYmpEonCZ7FdQqhnGZO5x6qARRME6LHr5IAsl0Blp1MRXx0nAHY6gz6yUpL1xLak06aNVsTWUS+9y5pjWN0gWJAHD/y7vwdN8sPvGzM9jdUYPmi5wYvTi5gHd/73l4gjF86vYevGVvGxhjiCXTODsTxPGxeXzm12fxyMFRfOCmDZKunxCS9asXZzAXTuBt+9olPW6Py4YjI35JjymmMV8UTote9HLdcmbQqlFr0mG6iAu1K2USiQg8wRg2SVSetNbpNCq47AaMKqbclK7Il6reagDnwFw4LspA4VJ5gjHUU6lp0VQqBqfFsKYyiX0zIQCQrNw0T61i+Pe7tuJV//Es3vO953HH9iZUm3SoNelRbdLi+bF5fPqXZ1Fn0eOxv92HbS32pccatGpsb63G9tZqHBr24buHx/Hu67th0NLJFSFSymQ4vv7sCDrrTLim2yHpsV12A9zBGNIZviYueI5TZ9OCNNoNwmUSifDSmWwXTOpsKpz2WhPG/PIGie5gDHajlk60BJB/b3iCygwS3YEYOutoFtNqNNjWVpB41h1EvVWPGpNO8mO31Bjx2TuvwAcfO4mTv3jpL26/bkMdvnDXNlRfZm33Xd2BJ88exs9emMLdu1rFXC4h5AI/fn4SL80E8cW7t4k69uJimuxGpDMcnmAMLrvyvmeLNeGPYm9nrdzLUDyXraqo2eIUJEpsLhxHhlODEyG11hjxq1Mzsq7BHaDh6kLJl2IrtcOpOxjDvi76MlqNBpsBL00H5V6GYPpmpGtaczF/tdWFV1/RiIVoAvPRBPyRJPyRBNQqhhs2OqFaIUNwVVctNjZY8M3nRnHXzhbJT1QJqVTheAr/9tt+bG+14/ZtLsmP77Kf359W7kFiPJXGTDBGTWsK4LJX4eCQr+D7K2/DzxrnWZqRSAGFUNprTViIJhGIJmVbA+0zFU6+qZNXgUFiNJFCKJaictNVarBmM4lyzzUVQjKdwaA3LPl+xAupVQy1Zj26nRbs7qjBLb0NuHFz/YoBIgAwxnDfNR3o94Swf7DwEwdCSGm+/NQgZkNxfPzWzbJcnFnNOASlmpxfBOegctMCuOwGhOIpBGOFnS9TkCixfGt/KjcVTv7q0ZhfvuY17kCMXlOB1Jr1UDHAG1LeGAzqYluaRpsBi8k0gospuZdSstG5CBLpTNnvL79tqwsOsw7f3D8i91IIqQgT/ii+/twI7tjehO2t1bKswbWGgsSl8RcUJK4ov4Wn0DEYFCRKjDKJwpN7VmIqncFcmMpNhaJWMdRZ9IosN3XT+7ck9WtoVuJZd7ZpjZTjL8Rg0Krx5j1t+GOfF0OzYbmXQ8ia99nfnIWaMXz4Fvm6Cpv0GtiN2qKamCjVuI+CxEItLzMuBAWJEvMGY1CxbDt4Ioz8B8O4TM1r5sIJZDioBFFA9VbDUtZdSbxLlQD0Wq9Gfk7TWggS+2aC0KgYuurMci+lZH+9tw06tQoP7x+VeymErGmHhn349Sk3/vbaLtkbs7lsVZiaXwNBoj8Kg1ZF814LkM8gTwcUFiQyxr7LGJthjAUZY+cYY3+T+3k7Y4wzxsLL/nxs2eP0jLFv5h7nZox94ILnvYEx1scYizLGnmKMtUn1b1oNTzAOh1kPjQLnv5Uro04Dp0WP0Tl5yk2XsksWChyE4lR4JrGBLgisylImscAvKCXrc4fQ7TRDpyn/z/I6ix63bXPhx8cnsRBNyL0cQtakdIbj0798CS6bAe96eafcy0FTdRWmCyw7VLL8+AtqvLUyp8UAtYopstz0swDaOedWALcB+BfG2I5lt9s55+bcn08v+/knAawD0AbgegAfZozdAgCMMQeAnwD4GIAaAMcAPCr6v6QEHmpwIgo5x2As7VOjwEEwTqsBswrdk2jWa2DWU2Po1TgfJCrvtS1W30wQG8u81HS5+67uwGIyjR8enZB7KYSsST8+PoEz00F85FUbFTH0vcletWbKTanUtDBqFUODtfBZiZIFiZzzM5zz/JkBz/3pKuChbwPwac75POf8LICvAbg3d9udAM5wzh/jnMeQDSi3MsY2Crp4AXmCcQoSRdBaa8RYEbNfhET7TIVXbzHAF0kgkcrIvZQ/4wlSg6JS6DQqOMw6uIPlfWISiCYxHYhhY2N5N61ZbrPLiqs6a/HtA6NIppX1viOknKUzHF9+ehD//NPT2NlWjdu2Sj/y4mKa7FUIxVMILMrXGb5UnPNcJpFmFxeq0WZQXrkpADDGvswYiwLoAzAD4NfLbh5jjE0yxr6VyxCCMVYNoBHAyWX3OwmgJ/f3nuW3cc4jAIaW3b782O9ijB1jjB2bnZ0V8p9VFC+dZIqivdYITzCOxURa8mN7gjFoVIz2mQoo/x6ZDSsr4+QOxihjXKIGm2Ep+16u+tzZWY9rKZMIAO96eSdmAjE8cnBM7qUQsiaMzkVw11cO4l+f6MeNm+vxtbfuVExZ5NL+tDLOJs6FE1hMptFaU96zHqXUaC+8zFjSIJFz/m4AFgAvQ7ZMNA5gDsAuZMtJd+Ru/17uIfmOAIFlTxPI3Sd/+/LbLrx9+bG/yjnfyTnfWVdXV/o/ZhXiqTR8kQRlnETQWpu9iiRH8xp3MAanRV/QXDJSmPx7RGn7Ej0BKhcvVYPVgJmyDxKznU03raFMIgBct6EO166vwxd+fw7eUHm/RoTIiXOO7x4aw6v+41kMeEL4jzduw0NvuhLVCrqYnO90Wc7Na8Zzo8/yo9DIylz27IXaTGblecWS77jnnKc5588BaAbwAOc8zDk/xjlPcc49AN4L4CbGmAVAvh/38m9iK4BQ7u/hC2678HZFye+xokyi8NqXxmBIX3LqCcaos6nA8l3KvArqcJrJcHhDNOqkVA02g+KC/2L1uUOwG7VwrrFueowxfPK2HsRTGXzu131yL4eQssM5x9P9Xrzxq4fwzz89jR1t1fjt+1+O27c1KSaDmNdUXVynSyU6PyORyk0L5bJVIZHOwBdZuUmZnG3ZNLj4nsR8aKvinM8jW5a6ddntWwGcyf39zPLbGGOm3HOegQLlW/o76SRTcG25Dwg5ZiV6ghQ4CC2frVNSNmMuEkcqw6nctEQNVgPmo0nEktKXhgulz51tWqO0kz4hdDhMeNfLO/GTE1M4POyTezmElIV4Ko0fHZvALV98Fvd+6yhG5iL49Gt78Z37dss+6uJSHCY9dGoVpsq43HTcl117c7Uy/x8rUTFlxpIEiYwxJ2PsjYwxM2NMzRi7GcA9AP7AGNvDGNvAGFMxxmoBfAnA05zzfBnpdwD8M2OsOteQ5p0AHs7d9jiAXsbY6xhjBgAfB/Ai51yRl0C9NCpBNDajFnajFmN+GTKJVIIouFqTDmoVU1TGyROgGYlCaMidMCnptS1GJsPR7w5hY8PaKjVd7j3Xd6PJXoVP/PwMUtTEhpBL4pzj2wdGcc2DT+HDP34RjAH//oateO4jr8Bb9rYpehuKSsXgshvKutx0Yj6KeqseBq383WLLRX5e8UwBGWSpMokcwAMAJgHMA/g/AN7HOf85gE4ATyBbInoa2X2K9yx77CeQbUYzBuAZAP/GOX8CADjnswBeB+AzuefdA+CNEvx7VuV8F8y1VaKkFG01RskziZF4CqF4igIHgalULDcrUTnlpkszEum1Lkn+/1+57kucmI8imkhjU+PaalqzXJVOjY/duhl97hC+Q01sCLmodIbjYz87jU/8/AzWOc145B278Zu/fxlet6O5bOanusp8DIY7EFNsplap8pnEqQKa10gy7CsXzF17idt+AOAHl3lsHMB9uT8Xu/1JAIodebGcJxSHVs1QbVTOxuW1pLXWhJMTC5Ie8/xwdQr8hZYNEpUTSJx/rSlILEX+vaKk17YYZ2eyW97XciYRAG7uqV9qYnPr1kY4qQKGkCWxZBrv++ELeOKMG/df24mP3LxR0VnDS3HZq/DcwJzcy1g1dzCG7jrzynckS6qNWhi0KswopdyUZHmCMTgthrL8ICkH7bVGTC0sSjrji2YkisdpNSw1e1ICTyAGtYrBYaYLAqXIl5uWaybxnCcbJK6rX9snJtTEhpCLC0STeOs3juCJM2587NbN+MdXbSrb87omexU8oZjiZhIXyhOgsVTFYozBZasqqGERBYkS8gbjcFKpqWhaa4xIZ7ik9fUUJIqn3qq8TGKdWQ91mZ4MKIVZr4FZrynbWYmjvggabQYYdZIU4siqw2HCO1/egZ+cmMKgV5FNwwmR1ExgEXd95SBOTMzjS/dsxzuu6ZB7SSVpsleB8/Ks7AjTdp9VcxU4K5GCRAm5gzHazySidkeuw6mEsxLduWYm9LoKr96S7YIZTymjCyaNOhFOg81QtkHimC+KtgqayfWmPW0AgGfOlW9JGiFCWEyk8eavHcbUwiIefvtu3LbVJfeSSpbfnzZZhs1r8t8htN2neI02g6Ia1xDkTjIpmBBNW430sxI9wRgseg1M+rWfVZBaPuuulFmJnmAM9WtsLp5cGqyGpT2e5WbMF0F7beXM5GqyV6HDYcKBQQoSSWX7wpPnMDwXwVfesgNXdzvkXo4glmYllmHzGqrkWr1GexW8ofiKZcYUJEokmkghFEtRuamI6ix6VGnVknY4peySeJxLsxKVEiTGae+DQMo1kxiOpzAXTqCtgoJEALi6uxaHhn2S7vcmRElOTizg688O457drWsmQATOj0MoxyBxKZNIQWLRmuyGgsqMKUiUSD4bQjMSxcMYQ1utUdJMojsYo5EmIsm/V7wKyDjFkmkEFpN0xVIgDVYDZsPxspvBl/9saa+gclMAuLrLgUgiLXn3aEKUIJHK4MM/fhFOiwH/+OqyaKZfMINWDYdZj6lyDBKp4/iq5ceGrHRxgIJEiVBaXBrZIFG6TKI3GKfXVCT54FsJG+rzF3mcVG4qiAabAekMx1w4IfdSipL/bKm0TOJVXbVgDNg/6JN7KYRI7qGnBtHvCeEzd/TCatDKvRzBNdkNZRkkeoIxWAyaimgiJrT8XtSVuoxTkCgRT65kjrJO4mqrNWHcH0Umw0U/VibD4aFmRKKpNuqgUbGl946cPCG6yCOk/Hum3PYljuYyiZXUuAYA7EYdrmiyYT/tSyQVps8dxENPDeL2bS7csKle7uWIItvpsvyCRHeAzr9Wy2XPlRmv0LyGgkSJ5EvmnPQLLarWGiPiqczSSb2YfJEEUhlOpQ4iUakYnBa9IvauUSWAsPLvGSW8tsUYm4uizqKvyEZV+7oceH58HpF4Su6lECKJVDpbZmqr0uITf9Uj93JE02SvwtTCIjgX/+K6kDxBmpG4WkadBrYqLZWbKoUnGINBq4LVUHknF1LKdx2UouQ0Hzg4aZ+paDrqTBiek26P6aV4glQJIKTzQWJ5Xb0e9UUqbj9i3jXdDqQyHEdG/XIvhRBJfHP/CF6cDOCTt/WgxqSTezmicdmrEEtmMB9Nyr2UorhpYkBJXPYqzKwwK5GCRIl4cnvXGKNB3GLqrMsGiX0zQdGP5aFN06LrrjNjyBuW/QqnNxiDTqOCrWrt7UeRQ41RB51aBbdCxpsUKjsjsbL2I+btbK+GTqPC/gEqOSVrXybD8V9PD+G6DXW4dUuj3MsRVX4MxlQZzUpMpTOYDcWp3LQELtvKe1EpSJSIOxijzqYScNmr0FxdhYPD4jdYWOqsRR9Soul2mhGOp2Tfu+bJdbGlizzCUKkYnFZ9WWUSFxNpuIOxis0kGrRq7GyrxnO0L5FUgLPuIOajSdy21bXmP/ebck1Myql5zVw4gQwHjSArgcteRY1rlMJL8/Qkc3WXAweHfEiL3LzGE4hBxQCHee2Wocit22kBAAx6w7KuwxOM00UegTXaDLIH/8UY91dmZ9Plru52oM8dwly4vDLAhBTr4FD2QvNVXbUyr0R8+U6X5dS8hi7Sl67RbkBg8fIlxhQkSoBznjvJpP1MUtjXXYtgLIUz0wFRj+MJxuEw66FR09tILN1OMwBgwCNzkBiivQ9Cq7cayqpxzejSjMTKDhIB4MAQjcIga9vBIR86HaaleXJrWbVRiyqtuqwyifnvDgoSV89VwO82nd1KIBRPYTGZppNMieSv/Ik908tNnbVE5zDrYKvSYnBW3iDRG4zDSU1rBJXPJMq937RQY7kgsbVCy00B4IomGywGDe1LJGtaKp3B4RE/9lZAFhEAGGNw2Q1llUlc6jhuo+/l1cpnkC+HgkQJnB9/Qb/MUnBaDFhfb8aBIXFPZDzUWUt0jDGsc5plLTcNx1MIx1P0Wgus3mpALJlZsdxFKUZ9UdSYdBXdvEitYriqsxbPDc6VTXBfaYKxJE6Mz+OxYxP4/O/6MeEXv9P3WnNqKoBwPIV9FRIkAuU3K9EdjEGjYnCY6Lx6tRoLSHLQPAYJnG+fTyeZUtnX5cAPj44jnkpDr1GLcgx3MIad7dWiPDc5r9tpxu9e8sh2fO/SjET6MhJSvozLHYzBblT+vt4xXwRtFZxFzLtmnQO/e8mDcX/ldnpVmlgyjQ/9+EUcHvbBG/rz/aJP9c/ifx7YB52GcgKFypdT7+2snCCxuboKv5egK7xQPIEYnBY9VKq13VRITA02A1bqyUSfGhKgQdzS29dVi1gygxPjC6I8fyyZxkI0SfXwEuh2muGPJOCPJGQ5/tJFHmpcI6iGXJnQSt3VlGJ0LlrR+xHz8vsSqcupcjxycAy/ODmNvZ21+MgtG/G1t+7EHz94LR5605U4NRXAl/4wIPcSy8rBIR82NljgMFfOhUGXrQpz4QRiybTcSymIm5pBlkyrVsG5Qq8UChIlkD/JXOnFIMLZ01kLFQMOiHQi46XssGTyzWvkKjn1hvLl4vRaCyn/3vGUQZAYT6UxHVikTCKATocJDVYDDoi855sUJhhL4qGnB/GydQ586Z7teOC6Lty4uR6ddWa8ZksjXr+jGV9+ehDHx/xyL7UsxFNpHBvzV0RX0+XysxLLpeTUHYzRRXoBrNSYiYJECXiCMVj0Gpj0VN0rFVuVFlc027FfpC58bsoOS2apw6k3JMvxPVRuKgqnJVvqUg6ZxAn/Ijiv7M6meYwxXN3twP6hOWREHjNEVvaVZ4awEE3iI7dsvOjtn/irzXDZq/D+R08iHE9JvLry88L4AmLJDPZ1OeReiqTOj8FQ/ucxkL24SOdfpWtaoXkNBYkS8ARj1LRGBld31eLkxIIoX4z5wIG6m4rPZathi8JhAAAgAElEQVRClVYtWybRE4zDqFPDTBd5BKXTqFBr0i+9l5Qs39mUMolZV3fXYiGaRL9Hngs3JMsbjOEbz43gtq0u9DbZLnofi0GLL9y9DZPzUXzqF2ckXmH5OTDkg4oBuztq5F6KpJrKaFZiKJZEJJGm8y8BrNS8hs56JOChUQmy2NflwJefHsLRET+u3+gU9Llpn6l0VCqGbhk7nOa72LKVdniTojXaDGWRSRz1ZTtEUiYxq8eVDUj63SFsarTKvBp59LmDeNs3j8AX/vO90nqNCp9+bS/uvLJZ9DV88Q8DSKU5PnjT+sveb1d7DR64rgsPPTWEV2x04pbeRtHXVq4ODvnQ22SruC7G+SYmk2UQJC5dpKfzr5KtNAaDgkQJeIJx7Kmwq1JKsLO9GjqNCvsH5wQPEt2BGKq0algN9BaSQrfTjEPD8uyB8gbjtJ9YJPVWAybnld+if8wXgdWggd1YWSeOl9LhMEGjYjhXoZnExUQaf/f9E0hngPuv7fyz2w4O+fDhH7+IOoseL1tXJ9oahmfDePToBN68p7WgLrN/f8N6PHNuFv/4k1Mw6TXoddlQbVJ+V2EpLSbSODExj/uu6ZB7KZLTqlWot5THrER3gHpCCOWW3obL3k5nuCLjnMMbilHTCxkYtGrsaK0WZV+iOxhDvVVP2SWJdDvNePzEFMLxlORln55QDFub7ZIes1K47AYcHvGBc67o99KoL4p2h0nRa5SSTqNCu8OEARnnl8rp0796CQPeMB55x+6/CASDsSTu+u+DeOC7z+NH91+FzS5xMq3//rtz0GtU+LtXrCvo/jqNCl+8ezte+9B+vOUbRwBkM/mbGq3ocVlx77521FZQN8+LOTbmRzLNK24/Yl5TdXnMSnTTdh/BrJRJpD2JIpuPJpFMc2p6IZN9XbU4OxOELxxf+c5F8AbjdBVLQvnmNUMSn5RyznPlpvT+FUNrjRGhWArz0aTcS7ms7IxEKjVdbp3TjIEKzCT+5tQMvn94HPdf23nRTKHVoMW33r4LZr0Gb3/4iCgn3ScnFvCrUzP4m5d1oq6IKodupxnPfeR6PPKO3fjHV23Eno4aTM5H8dBTg/jgYyfBeWU3Ijow5INGxbCrQucfu+xVmCqDIJHKTaVDQaLIaO+avPblZnodGha2/beb9plK6nyHU2mDxGAshVgyQ+9fkXQ4soHXyFxE5pVcWjKdweT8ItpqqGnNcuvqLRjzR8tmrpoQphYW8ZH/eRFbm2344I0bLnm/RlsVvvX2XYjG07j3W0cQWBTuIgjnHA8+0Ycakw7vfFnxZZF2ow4vW1eH+6/twhffuB2/e/+1+OirN+Hp/ln84axXsHWWowNDPmxrscOoq8wiO5fdgJmFmOK7FrsDMVgNGlTp1HIvZc2jIFFk1D5fXlubbTDrNdg/JNy8RM45zeiRWFuNEVo1k7x5jTdIMxLFlA8SRxUcJE7NLyKd4dTZ9ALr683gXL75pVJLpTN43w9PIMOBL92zHTrN5U+fNjVa8d9v2YHh2Qj+9pHjiKeECaafHZjDgSEf3nt9NywGYfbIvm1fO7qdZnzqly9VVNC/XDCWxKnJBeyrsPmIyzXbq5BIZzAncOWV0OgivXQoSBRZfui600K/0HLQqFXY01GDA4PCBYmz4TgSKcouSUmjVqHDYZL8hNSTe//WU+MaUbTUGKFWMUVnEkdz4y/aHVRuutz6egsA+eaXSu0//ziIo6Pz+JfX9hZcenx1twP/+votODjsw+d/f67kNWQy2Sxic3UV3ry3teTny9OqVfjkX/Vg3B/F158dFux5y8mRYT8yHLiqQvcjAuf3pym95DTfcZyIj4JEkbmXMhF0kimXq7pqMeqLCvbBd3x0HgCwteXic6mIOLqdZgzNSh0kUrm4mLRqFZqrqzDiU26QOJYbf0GZxD/XXpvtcDrgWfuZxAl/FP/5xwHceWUTXru9qajH3nllM964qwVf+9MwXphYKGkdvzw1gzPTQXzgxvXQa4QttbtmnQOv6m3AQ08NlUXzEqEdHPZBr1Fhe2vlNilzLc1KVPZYIneAKrmkQkGiyDzBGKqNWsE/0EnhrlmXvTL4TP+sIM93eMSPKq0aVzRV7peJHLqdFoz5IpKWQ3lCdJFHbO21JkWXm475ojDq1Kir8M6PF9Jpstn9cxUQJD4/Po8MB975ss6V73wRH33NJtRbDfjQYydX/fmVSGXw77/rx8YGC27fVlygWqh/es0mcHB85tdnRXl+JTs45MPO9moYtJV7rtZUnc8kKncsUSpXDkvlptKgIFFkHuqCKbsN9RZ0OEz4+ckpQZ7v0LAPO9qqV9yTQoTV7TQjw8+X/0nBG4zDYtBUbCMDKXQ4skGiUjsr5jub0viLv7Su3lwR5aZnpoPQaVRLDbSKZTVo8dk7r8CAN4wv/WFgVc/xw6PjGPNF8ZFbNkKtEud3sbnaiAeu7cavXpwRdIuG0iXTGZzzhLClwkcdWQ1aWPQaRWcSZ8NxZDiNv5AKneWKzBui2mm5McZw+zYXDo/4MRMorYxmIZpAvyeEPR01Aq2OFKq7LnuCJuW+RNr7IL4OhwmRRBqzIWU2Sxj1RdBOpaYXtc5pwbg/isXE2m52cmoygE2NVmjVqz9lum6DE3ftbMZ/PzOEk0WWnUbiKXzpDwPY3VGD6zb85dgNId1/bSeaq6vwyV+cQTKdEfVYSjHujyKV4UvfMZWsqVrZYzDcARp/ISUKEkVGM9aU4bXbmsA58PMXpkt6nsMjfnAO7K3gDmhy6awzQcUg6R4oev+Kr13BYzDSGY4J/yLNSLyE9fUWcA7J9wpLiXOO09MB9LqsJT/XP71mM+osenzoxyeL6nb6jedGMBdO4H+9aqPoGW2DVo2P3boZ5zxh/OT5SVGPpRT5C49dq8wUryUuexWm5pUbJFKfAGlRkCiidIZjNkTlpkrQ7jBha4sdj58oreT08LAfeo0KW5qpaY3UDFo1WmqMGJTwhNQTjKOeOhOLqiMXgElZRlyomcAiEukMZRIvYX19fn7p2i05HfdHEYql0NtU+me+rSpbdnrOE8b//eNgQY/xheP46p+GcXNPPa5slWbI+02b69FoM2D/oE+S48ltKUiso4tBLrsB0yVWXIlpKZNI5aaSoCBRRL5c7TTNWFOGO7a50OcOod+9+hOawyM+XNlaTY2IZNJdZ8aQROWmnHN4QzF6/4rMZTdAq2YYmVNes4TznU3p5PFi2h0maNVsTTevOT0VBABcIUCQCACv2FiP113ZjC8/PYQ/nPWseP+HnhpCNJHCh27eIMjxC8EYw/ZWO05MzEt2TDkNzYbRYDUINneynDXZjViIJhGJp+ReykW5g3Fo1Qw1Rp3cS6kIFCSKiGasKcutW11Qqxh++sLqsomBxSRemgliTyftR5RLd70Zw7MRpCTYKzMfTSKZ5lRuKjKNWoXWGqMiO5yen5FImcSL0ebmlw541m4m8fR0AFo1w7p64UoRP37rZqxzmvGObx/DRx8/ddET8mAsiQef6MN3Do7iDTta0O20CHb8QmxvqcaEf1Gxe4WFNOQNo8tJF4KA7EU7AIodg+IJxuC0GKASqXkT+XMUJIqIaqeVxWHW45puB37+wjQymeI7KR7N70fspP2IcumuMyORzmBCgj0T9P6VTofDpMg9icOzERi0Kio5vox1TssazyQGsKHBImj1iM2oxU/fczXuf3knfnBkHK/6j2dxbNQPINtp85GDo7ju357Gfz09hNu2uvDRV28S7NiFys8LLHW2o9JxzjE0G6GmNTnNS2MwlBkkugMxKjWVEAWJInLTSabi3LG9CVMLizia+0IuxuERH3QaFba1VHabbDnlW9BL0eH0fJBImUSxtdeaMOqLrOrijZgGvGF0O8101foy1tWbMTG/Njuccs5xeiqAXpfwe9ANWjX+8dWb8Oi7rgIHx11fOYiPPn4KN3/xT/jYz85gfb0Zv3jvNfj83dtgM0pfBtnbZINGxXBifG2XnHqCcYTjqVWPN1lrXHZlB4meYIw6m0qIgkQReYMxMAY4zFQ7rRQ3bq5HlVaNn66iy+nhET+2tdgretiu3PJf5FI0yvDmysWdlEUSXbvDhHgqs3RhTSmGvGHKMKxgLXc4nVpYxHw0iR6B9iNezO6OGvzm71+Ou3e14PuHxwEAX3/rTvzgnXtxhYwN0gxaNTa7rDgxvrYzieeb1tD7HMh+32lUTJHlppxzuGkslaQqMkiMJaW54ukJxuEw66EpYbYSEZZJr8FNPfX49akZJFKF72sLxZI4PRWgUlOZWQxaNNoMOFdC86FC5TOJTsokiq4jNwZDSfsSI/EUphYWKcOwgnyH03NrcF+i0E1rLsWs1+Czd27BU/9wHX77vpfjlZvrRR91UYjtLXacnFxAWmEZfiHlL27Q+zxLrWJosBkwvaCsC3YAEIqnEE2k0WCj72SpVGT0MuANYz6SEP04nhClxZXotdubEFhM4ul+b8GPOTY6jwwH9nZQ0xq5XdlWnZtXKe6JiycUQ7VRS51sJZAPEocVFCSeP3mUtmFIuWmrXbsdTs9MB6BWMWxskOZ3oMNhglZBF5W3t1YjmkivyQsAeYPeMCx6DeqoweASpc5K9ARoC5fUlPNpJLHnJaiz9wTjtJ9JgV7W7UCtSVdUl9NDIz5o1QzbJZpTRS5tX1ctZgIx0RudZN+/9GUkhQarAXqNSlGZxHwZGmUYLk+rVqHTYV6THU5PTQWwzmmu2C0G+eY1a7nkdNAbRpfTrIjMrVI02asUuScxvx2Bki/SqcggkQE4NiZ+kOgN0ow1JdKoVbh1SyOePOtFMJYs6DGHh/3Y2mxHla4yTxaU5OouBwBg/5C4g57p/SsdlYotNa9RikFvGBoVQ1stjb9YSXe9Geck2CcspaWmNSKXmipZa40RNSbdmm5eMzQbpgtBF2iyV8EdjEkyaqoY7lwmkbqbSqcig0SDVo3jo+J+6CVSGfgiCWqdrlCv3d6ERCqDx59fOZsYiadwivYjKkZbrRFN9iocGJwT9TieYJxmnEqo3WFU1BiMAW9YceV/SrXeacHk/CKiCWUO4F4NbyiOuXACvS6r3EuRDWMM21vsa3YMRjCWhDcUp6Y1F3DZq5DOcHgVNiOTxlJJryK//Ux6DU5OLhTVuKRYs+Hsm4vKTZVpW4sduztq8J9/HED4IoOMlzs2No90hmNPJ+1HVALGGPZ11eLgsE+0kQnpDMdsmMpNpdThMGPcH1XM1eshL2UYCrW+3pztcOpVTpBfqlOTAQCQtcOoEmxrsWPAG0ZgsbCqm3JCJeUX15Sblai0DqfuYAx2o7Ziy7/lUJFBolGnRjyVwZnpgGjHcNMGW0VjjOGjr96EuXACX/3T8GXve3jYB42KYUcb7UdUin3dtViIJvHSTFCU5/dF4khnOF3kkVCHw4hkmiuiq148lcaoL0InjwVaV59t7LKWGpycng5AxYBNjZWbSQSwtA//xcm1l00coiDxoprs2fNWpe1LnFmgZpBSq8gg0aTTAACOi7gv0Uvt8xVvW4sdr9nSiK/9aXjp9bqYwyN+bGm2wZj7vSHy25fbl3hgSJyS06UZifSFJJn22myH0xEF7EscnYsiw+nksVDttUbo1Ko1tS/x9FQAXXXmiv/c39JiA2Nrs3nN4GwYOrUKLbnMGcly2bP/P5QWJE4HYktrI9KoyCBRo2ZoqakSNUik2uny8OGbNyCVyeALTw5c9PZxXxQvTi5gD+1HVJR6qwHdTjP2D4rTvIbev9JT0qxEKkMrjkatQmedCQNraAzG6algRTetybMatFjnNK/J5jVD3gjaHUaaZX0Bo06DaqNWceWmM4FFNFLTGklV7DtjZ1sNjo3NizZrzROKQ6NiqDHqRHl+Ioy2WhP+em8bHj06/hct3EfmIrjrKwdh1mvwhh3NMq2QXMq+rlocHfWLsrfYE6Q9xVKrs+hh0qkV0bxmwBsCY6CGFkXodpoxsEYyibOhONzBGHoquGnNcttbqnFiYkH02bRSo86ml6a0WYnRRAoL0SRlEiVWsUHilW3VmA3FMSnSm8ATjMFp0UOlotk7Svd3r1gHk06DB5/oW/rZoDeMu79yEMl0Bj9411500smi4uzrciCaSOOkCHtlPMEYGAMcZgoSpcIYQ7vDpIggcdAbRku1kRokFGF9vQUT/rXR4fR0rl/BFZRJBJCdl7gQTWLUF5V7KYKJp9IY80XoQtAlNNmrFLE/PC+/FpedMolSqtggcWeuCcmxMb8oz+8NxlFPafGyUGPS4YHru/DkWS8ODftwzhPCG796EBkO/PBde7Gxga4mK9FVnbVQMWC/CKMwvKEYak16Gn8gsXaHMmYlDlJn06Ktr8/+/8qX6pazM1PZIHEzZRIBnG9es5ZKTsd8tO/4clz2KkwtLComezwTyCZ0Gm2USZRSxZ4Bra+3wKLX4JhI8xI9wRjNSCwj913dgUabAR//2Wm88auHoFYxPHr/3qWufUR5bEYteptsODAk/L5ETzBOpaYy6Kg1YXJ+EUkZx2CkMxzDc9TZtFj5jMzwrPxBfqlOTQXQ6TDBYtDKvRRF6HaaYdZr1lTzmvzFDMokXlyTvQrheArBmDIqA2bymUQKEiVVsUGiWsWwrdUuWvMaTzBGJ5llxKBV44M3bcA5TxgGjQqPvusq+vIoA1d11eLE+LzgJW6jcxHa+yCDdocJ6QzHhF++srYJfxSJVIaCxCK11hqhYsCwAsqFS3V6KogeKjVdolYxbG2x4cTE2skk5oPEzjqTzCtRJqXNSpwOLIIxoN5G59VSqtggEcg2r+n3hBCMCTskdjGRRjCWovb5ZeaO7U34l9f24kd/exXaHfTFUQ6u7nIgmeY4KmBFgDcUw/BcZKkknUgn3+FUzn2J1Nl0dfQaNZqrjRieLe9y0/lIAlMLi+ilUtM/s72lGmdnQlhMpOVeiiCGZsNosldV/IiTS1kag6GQ5jUzCzE4zHroNbRPXEoVHSTuaKsG58LP/6H2+eVJrWL4671taK42yr0UUqBd7TXQqVU4IOC+xCMj2X3KNPZEekoIEgcoSFy1zjpT2Zeb5l//jY0UJC63vdWOdIbjVG6/Zrkb9IbRRe/xS8o3iJkOKCNInA4swkV9PiRX0UHitlY7VAyCl5yeDxIpLU6ImKp0amxvtQu6L/HQsA8mnZoyCTKoNmphNWhkbV4z6A2j3qqHlfajFa3TYcbIXASZjDKaXaxG/nevvZYuFi63rcUOAHhhDZScZjI8O/6CtpRcksOkh06jwpRSyk0XFqlpjQwkCxIZY99ljM0wxoKMsXOMsb9ZdtsNjLE+xliUMfYUY6xt2W16xtg3c49zM8Y+cMHzXvKxKzHrNdjUaMVxgTuczgQok0iIVPZ1OXB6OoCFaEKQ5zs07MfO9hoasCwDxhg6HCaMzsm3J3HQG6Is4ip11pmwmEzDHVRO6/xijfui0KgYmmhP8p+pNetRZ9FjwFPe5cRANisVS9K+48tRqRhcNoMiyk0555gJxKhPgAykPAv6LIB2zrkVwG0A/oUxtoMx5gDwEwAfA1AD4BiAR5c97pMA1gFoA3A9gA8zxm4BgAIeu6IdbdU4Mb6AlIDd9I6N+WHSqZdKpwgh4rm6uxacZzOApZoLxzHoDWMvlZrKpt1hkm1fG+ccQ7MRyjCsUr4JSDmXnI76ImiqrqKLRBfRVWfCUJnvOQWWdzalc7TLaaquUkTjmuBiCtFEmmYkykCyT0HO+RnOeTz/n7k/XQDuBHCGc/4Y5zyGbFC4lTG2MXfftwH4NOd8nnN+FsDXANybu22lx65oR1s1ook0+tyh0v6ByxwY9GFPZy3NWCNEAltb7DDp1Hh2oPR9iYeHs1UFeztrSn4usjqbG62YDsTgDUmfjXIHYwjHU+im0Ter0unIjcGYK99AYtwfRVstBQ8X01VnxtBsRDGz81aLmlMVxmWrUkS5aX4NVG4qPUmjGMbYlxljUQB9AGYA/BpAD4CT+ftwziMAhgD0MMaqATQuvz33957c3y/52ELXtLM9ezIo1L7EqYVFDM9FsK+LMhGESEGrVuH6jU788sUZxJKldd47NOyDUadGL7W/l00+i5sP2KWUL6WjTOLq1Fv1MOnU5Z1JnIugrYb2I15MV50ZgcUkfBFhSvvlMjQbQbVRi1oz9Y24HJe9Ct5QHImUfHNrAWAm1zynkTKJkpM0SOScvxuABcDLkC0TjQMwA7iwXVYgdz/zsv++8Das8Ng/wxh7F2PsGGPs2Ozs7NLPXTYDGqwGHBMoSNyf67J4zTqHIM9HCFnZm3a3IrCYxK9PzZT0PIdHfNjZXkNVADLqcVlh1msEKR8uFmUYSsMYQ0edqWxnJS5EEwjGUmijpjUXtRbKiQFgyBumOcgFaKquAufnmzHKZTrX58NFmUTJSX4mxDlPc86fA9AM4AEAYQAXthG0AgjlbsMFt+dvwwqPvfC4X+Wc7+Sc76yrq1v6OWMMO9qr8bxAQeKBwTk4zDpsoHIlQiRzVVctOhwmfP/w+KqfYy4cxzlPmEpNZaZRq7CzvRqHR6TPJA7OhmE3auEw6yQ/9lrR6TCX7azEUV+2YRKVm15cPrAq932Jw3MUJBYi37xpUubmNTMLi9CoGOoslPmVmpyXyzXI7kk8A2Br/oeMMVP+55zzeWTLUrcue9zW3GNwuccWs5BdbdWYWlgs+YOPc479Qz7s63KAMVbScxFCCscYwz27W3BsbB7nPKvbX7w0H7GDSsXltrezFoPeMGZD8ZXvLKBBT7YtPn1+r15nnQlTC4sll37LYSw3/oIyiRfXZK+CXqPCkLd8g8RwPIW5cAJtDnqNV5IPEuVuXjO9sIh6qwFqFX0uS02SIJEx5mSMvZExZmaMqRljNwO4B8AfADwOoJcx9jrGmAHAxwG8yDnvyz38OwD+mTFWnWtI804AD+duW+mxBXn1lkaoVQw/OjZR0r9zIHdSc003lZoSIrXX72iBTq1adTbx8LAPVVo1tjTTfkS57enIZnMPj0hbcjo4G6ZS0xJ11pnBOWSddbla47lMYivtSbwolYqhs85c1pnEpQsBNZQtXklDbni97EFiIEadTWUiVSaRI1taOglgHsD/AfA+zvnPOeezAF4H4DO52/YAeOOyx34C2WY0YwCeAfBvnPMnAKCAxxbEaTHgho1O/M/xSSRLGIXxXK674tW0H5EQydWYdLi5twH/8/wkFhPFZzGy8xGraT+iAvQ22WDSqSVtXuMLx+GPJChILFGno3z3rY36omiwGmDQquVeimJlx2CU32ubN75UUkwXAlZi0KrhMOtl73A6E1ikzqYykeRsiHM+yzm/lnNu55xbOedXcM6/tuz2JznnGznnVZzz6zjno8tui3PO78s9rp5z/vkLnvuSjy3G3btaMBdO4A9nvav9Z2L/4Bzaa400hJcQmbxpdytCsRR++eJ0UY/zRxLo94RoPqJCaNUq7GyvkbR5DTWtEUbHUpBYftmmcX+EgocVdNaZMTkfLctyYgAY8+eyxfQ6F6SpWt4xGJkMhzsQg4vOq2VBl8xzrl1fh3qrftUlp8l0BodH/LiaSk0Jkc3ezhp01pnw/SPFlZweyZU1UtMa5djTWYMBbxhzYWn2JQ7OUpAoBJNegwaroWwziRQkXl5XnQkZDozlMnLlZswXRbVRC6tBK/dSykJ7rVHWPahz4TiSaU7lpjKhIDFHo1bhDTta8HS/d2kmSzFenFxAOJ6i/YiEyIgxhjftbsWJ8QWcnQkW/LhDw35UadW4osku4upIMfJZ3SMSdTk9NRmA1aChNusC6CzDMRjRRAqzoTh1Nl1BuXc4HfdH0EqvccF6XTZMB2LwyzQbMz/+gspN5UFB4jJ37WxBhgM/PjZZ9GOfG/CBsWwrfkKIfF53ZTN0muIa2Bwa9mFHWzV0GvpIVIormmww6tSSlZweGfVjZ3sNVNRBr2SddSYMz4bBOZd7KQUbo71qBcnPSizXDqdjvijaqDFRwXpc2SlzZ6YvHEkujZlcqWujjTKJcqAzomVaa43Y11WLR49NIJMp7stt/9Acel022I00X4sQOVWbdHh1bwN+emIK0URqxfvPRxLoc4eo1FRhtGoVdrRVSxIkzoXjGJ6NYHcH/Q4IodNhRjCWgk+m7MNqLAWJ1PXysow6DZrsVWWZSUykMpheWEQ7XQgoWI8r2+379FThlTlCymcSaU+iPChIvMDdu1owOb+Ig0WcmETiKZwYn6f9iIQoxJv2tCEUT+EXJ1duYJMf2k5Na5Rnb2ctznnC8Im8L/Fo7ndgVzsFiULIZ5vKaV9ifjQCNTRZWTmWEwPA1MIiMhxUbloEm1GLlpoqnJYxk2jQqlBtpD2kcqAg8QI39zTAVqXFD48W3sDmyKgfyTTH1d10kkmIEuxqr8bGBgsefKJ/xSveh4Z9MGhV2NJM+xGVRqp9iUdG/TBoVbiiiWZkCqHTkd23Vk4dTsf82YYmtio6GV1JV50ZQ97yKicGls1IpAsBRelptOGlabkyiYtw2arAGG0DkAMFiRcwaNW4Y3sTfnvajfkCS2UODM5Bp1HRVWhCFIIxhv/66x1gAN7y9cOXbEZ1bNSPn74whV3tNbQfUYG2NNtQpRV/X+LRUT+2tdjpd0AgTdVV0GlUZZVtGvNFqGlNgbrqTIgk0vAEpek8LJRxf76kmILEYvQ2WTEyF0EolpT82NMLMTRSZ1PZ0DfiRdy9qwWJdAaPn5gq6P7PDfqws62aBvASoiAdDhO+fd9uhGIpvOUbR/7ios9PT0zhTV87jGqjDp+6vVemVZLLyc5LrF4qCRZDKJbES9NB7O6gShChqFUM7bXG8sok0viLgpVrh9MxXxRVWjXqLHq5l1JW8vsS5cgmzgQWqbOpjChIvIhNjVZsbbbh0aMTK5ZTzIXjODsTpP2IhChQb5MNX3vbToz7o2+OHqYAACAASURBVLj34aOIxFPgnOPzv+vH+x59Adtb7Xj83fuWBoAT5dnbWYs+d0i0FuzHx+aR4cBuqgQRVKfDXDaZxHxDE8owFabLWb5BYmuNkUoXi9TTlO9wKm2QmExn4A3FqWmNjChIvIQ372lDvyeEb+0fvez9fvJ8dlzGPhp9QYgi7e2sxUNvuhKnpwL42+8ex//3wxfwpT8O4g07mvHIO/ZQR2KF25PrOHpkRJyS06OjfqhVDNtbaU+qkDrrTBj3RZFMZ+Reyoom56PIcFC5aYGcFj3Mek1ZNSYC8jMS6UJAsZwWA5wWveTNa9yBGDgHXDT+QjYUJF7C63c046bN9fjMr8/iwNDcRe/zVL8Xn/tNH27Y6MS2FjrBIESpbtxcjwdftwXPDszhFyen8ZFbNuJfX7+F9qCVgS3Ndhi0KhwaFqfk9OjIPHpdVpj0GlGev1J11pmRynBM5PaBKdmYn2YkFoMxhq46U1llEjnnGPfTjMTV6nFZJS83ncmNv2ikTKJs6AzpElQqhs/fvQ2dDhPe873n/+KL7qXpIN77veexqdGKL92zncoXCFG41+9oxn+9+Up8577deOC6LnrPlgmdRoWdbTWiNK+Jp9J4YXKB5iOKIF/CXQ7ZprG5fNdLyiQWqjPX4bRceENxxJIZuhCwSr1NNgx4w4gl05IdM99wjjKJ8qEg8TLMeg2++tadSGU47n/kOBYT2TeHJxjDO759FBaDFt942y66Ak1ImXjVFY14+fo6uZdBinTt+jr0uUPocwt7JfvFyQASqQx1phZBV35W4pzyA4kxfxRGnRoOM5WeF6qrzoTpQAyReErupRRkdC4/B5MuBKxGj8uKdIajzx2S7JjTC5RJlBsFiSvocJjwpXu246w7iI/8z4uIxFO47+GjCC4m8c17d6GBrnAQQoioXr+jGXqNCt8+MCbo8+bnL1KQKDy7UYcak648Mom+KNpqTVRdUIR8h9ORMmlONEbjL0qS73B6RsJ9idMLi7AaNDBTIkY2FCQW4PoNTvzDTRvw85PTeNV/PIuzM0H83zddic0uq9xLI4SQNa/apMPt21z46YkpBKLCzeo6MuLHOqcZ1SbKIImh02EqkyAxQsFDkcqtw+m4Lwq1iqGpmrJSq9FcXQVblRanp6TblzgTWKTOpjKjILFA776uC6++ogHj/ij+9209uH6jU+4lEUJIxXjrVe1YTKbx2PEJQZ4vneF4fmye9iOKqLPOpPgxGOkMx4R/kfaqFamt1ggVA4bK4CIAkM0kuuwGaNV02rsajLFc8xopM4kxNFK1nqzo3VIgxhi+cPc2/Py9V+MtV7XLvRxCCKkovU027GyrxncOjiGdufz82kKcnQkiFE9RkCiizjoz5sJxBGPCZX+F5g7GkEhnqGlNkfQaNVpqjGWUSYygnV7jkvQ22XDWHZJsrM1MYJH2I8qMgsQi6DVqbGmmUReEECKHt+1rx7g/iqf7vSU/F+1HFF9nrsPpoIK7YJ7vbEqZxGJ1lVGH0zF/FK1UUlySHpcViVRGkvfzYiKN+WgSTRQkyoqCREIIIWXhlt4GOC16fPtg6Q1sjo760WSvoj0vItrUmN23L/V8tWLQjMTV66ozYWQugowAmX0xBRaTWIgm6TUu0fnmNeK/n6dz4y+o3FReFCQSQggpC1q1Cm/e04Y/nZstqcyNc46jo37soVJTUeWbXUhxUrlao74ItGqGRhtdLChWV50Z8VQGUwuLci/lssZ92QsBrTVUblqKDocJRp0ap6fE35c4kx9/Qe9LWVGQSAghpGzcs6cFWjXDIyVkE0fmIpgLJ7CLgkRR5ZtdSNk2v1jjvihaqo1Qq2j8RbHKpcPpmJ9KioWgVjFsapTm/ZzPJLrslEmUEwWJhBBCyobTYsBrrmjEj49PIrzKQd77B+cA0H5EKfS4rOiTsNlFsUZ9UQoeVik/K1HJe06B7BxMALQnUQC9Litemg6KXmKczyTSLHJ5UZBICCGkrLx1XzvC8RR+8vxk0Y89NRnA537Th94mK7rqqPxMbD0uGxKpjCKzTZxzjPsi1Nl0lWpMOjjMevS5Q3Iv5bLGfVE4zHqYaCh7yXpcNkQSaYz6xB19MrWQfc30GrWoxyGXR0EiIYSQsrK9xY4tzTZ8a/8oYsl0wY8b80Xw9oePwG7U4Rtv2wXGqMRQbL1N2eY1Ug7hLpQvkkAkkaZMYgl6m6yS7FErxZg/Qq+xQHpy72ex9xmfngpiQ4NZ1GOQlVGQSAghpKwwxvD+G9djZC6Cj//sNDhfufRpNhTHW795BOkMx3fesRv1VipjkkKHw4wqrVqR+xJHcuMvaH7e6vW6bBjwhou6WCO1cV8UbVRqKoh1Tgt0ahVOi/h+DsdT6HMHsaONtgPIjYJEQgghZef6DU689/pu/OjYJH5wZOKy9w3HU7jv4aPwBGP4xr27lvZSEfFlm11YFNnhNF8mub7BIvNKyldvkxXpDEe/QktO46k0ZoIxtFImURA6jQrrG8yiZo9PjM8jw4GdbdWiHYMUhoJEQgghZen9N67Hy9fX4RM/P40T4/MXvU8ilcED3z2Ol2aC+PKbr8SVrXTiIbUel02SZhfFOucOwaLXwEXNMVYtPztPzMxSKSb8i+CcOpsKaXd7LY6OziOaWF3jsJUcG52HigHbW+2iPD8pHAWJhBBCypJaxfClN25Dg82AB777PGZD8aXbOOd4qs+L2x/aj2cH5vDZO6/AKzbWy7jaytXjsiIcT2E8N7heKfo9IaxvsNDe1BLkZ2Eqcc8pAIznxl/QjEThvHKzE4lUBs8OzIny/MfH5rGhwQqLQSvK85PCUZBICCGkbNmNOvzXm3dgPprA3/3geaTSGRwb9ePurxzC2x8+ikg8hYfedCXu2tki91IrVm9TNtukpJJTzrMlkuvrqdS0FIwxXNFkU2zzmvz4C8okCmdXew2sBg2efMkj+HOn0hmcGJ+nUlOFoCCREEJIWettsuGzd16BQ8N+3PTFP+H1/30QI74IPv3aXjz5gWvxmi2Nci+xoq2rN0OjYooqSfSG4ggsJrGR9iOWrKfJin53CImU8mZhjvmiMOs1qDXp5F7KmqFVq3D9Rif+2OdFWuAS8j53CJFEGjvbKUhUAgoSCSGElL07r2zG31zTAV84gQ/fsgHPfOg6vGVvG3Qa+pqTm16jxrp6ZTWvyTdaoUxi6XpdNiTSGQx4lde8ZswXQWuNkUqKBfbKTfXwRRJ4YeLie8FX6/hY9vl2UCZREejbkxBCyJrwz7duxomP3Yh3X9cNo44GZytJr8uKM1OBgsaVSCEfJG6gTGLJlsqJFbgvccwfpVJTEVy7oQ4aFcPvX/IK+rzHxubRYDWgyV4l6POS1aEgkRBCyJqhUlHGQIl6XFb4Igl4gvGV7yyBfk8IdRY9aqgMsWRtNUaY9RpFlRMD2c7G474oOhzUtEZoVoMWeztr8eRZYfclHh/1Y0d7NWV+FYKCREIIIYSIqmepeY0yAol+dwgbqNRUECoVw2aXVXHNa0Z9EaQynEqKRfLKTU4MesMYmYsI8nzTC4uYDsSoaY2CUJBICCGEEFFtarSCMWV0OE1nOAa8ISo1FVCvy4aXZoKCNzIpxTkP7TsV0w2bsiOF/iBQNvFYbj/izrYaQZ6PlI6CREIIIYSIyqzXoKPWpIhs04Q/ilgyQ5lEAV3RbEUsmcHwbFjupSw55w5BxYDOOio3FUNLjREbGyz4vUCjMI6P+mHUqbGpkd6XSkFBIiGEEEJE19NkU0QmsS/f2ZQyiYLpdWXLiZW0L/GcJ4z2WhMMWrXcS1mzbtxcj6OjfsxHEiU/17GxeWxrsUOjptBEKeiVIIQQQojoelxWTC0sYiFa+gllKc6XIZplXcda0llnhkGrwqlJ+S8C5J3zhqjUVGSv3FSPDAee6i+ty2k4nsLZmSDtR1QYChIJIYQQIroelxWA/PsS+z0htNYYaUyKgNQqhs2NVsVkEmPJNEbnInQhQGRXNNngtOhL7nL6wvgCMhzY0U77EZWEgkRCCCGEiK7HpYwOp/1ualojht4mG16aDiKjgOY1w7MRZDiwjjKJolKpGG7YVI9n+mcRT6VX/TzHxvxgDNjeahdwdaRUFCQSQgghRHQ1Jh1cNoOsmcR4Ko2RuQg1rRFBr8uGcDyFMX9U7qVgwJstKaaLAeK7cbMTkUQah4b9q36O42Pz2FBvgdWgFXBlpFQUJBJCCCFEEptdNlk7nA7PRpDOcGpaI4Kepmw5sRI62Pa7Q9CoGNprqbOp2PZ1OVClVePJVXY5TWc4TowvYGc77UdUGgoSCSGEECKJ3iYrhuciiCZSshy/P9fZdCMFiYJbX2+BTq1SxL7Ec54wOutM0GnoNFdsBq0a12+sw09fmMJcOF704/vcQYTjKZqPqED07iGEEEKIJHpdNnAOnJqUJ5Do94SgVTN0OCjDJDStWoWNjRacmZK/w+k5T4j2I0roAzeux2IijQd/01f0Y4+PzQMAdlBnU8WhIJEQQgghktjdWQONiuGZc7OyHL/fHUJXnRlamsUmih6XDaenA+BcvuY1i4k0JuajWO+kIFEq3U4L3nFNBx47PrkU9BWCc45fn5pBg9WA5uoqEVdIVoM+JQkhhBAiCatBix1t1XiqX74gkWbniae3yYqFaBKT84uyrWHQGwbnwIYGGn8hpb+7YR0arAZ8/GenkS6ww+33j4zj0LAf73lFNxhjIq+QFIuCREIIIYRI5vqNTpydCcIdiEl63FAsiamFRep4KaJeBYw56fdk951Suam0zHoN/uk1m3BmOojvHx5b8f4T/ig+86uzuKbbgb/e0yrBCkmxKEgkhBBCiGSu3+AEADxzzivpcc95wgBA4y9EtKHBAq2a4fnxBdnWMOAJQadWoa3GKNsaKtWtWxqxr6sW//bbfvgu08Qmk+H4h8dOQsUYHnz9FsoiKhQFiYQQQgiRzPp6M1w2A57qk7bk9JyHZueJzaBVY29nLZ58ySPbvsR+TwhdTjM0tO9UcowxfOr2HkQTaTz4xKWb2Hz74CgOj/jxsVs3oclOexGVit5BhBBCCJEMYwzXbXTiucE5JFIZyY7b7w7BqFPTSanIbuppwPBcBIPesCzHH/CEsb6e9iPKJd/E5kfHLt7EZmQuggef6MP1G+pw184WGVZICkVBIiGEEEIkdf0GJ8LxFI6N+SU7Zr5pjUpFpW1iumlzPQDgd6scrl6K/L5Tak4kr3wTm3u/eQT3P3IMjxwcxfBsGOlcmalOrcLnXkdlpkqnkXsBhBBCCKks+7pqoVOr8HT/LPZ1OSQ55jlPCK/cVC/JsSpZvdWAbS12/PaMG++5vlvSYw/kspcUJMrLrNfgm/fuwncOjuLZgTn89kz2gkG1UYv5aBJfuHsr6q0GeRdJVkRBIiGEEEIkZdJrsLujBk/1efHRV28S/Xhz4Th8kQTtR5TIzT0NePCJPkwvLMIlYXnvQG7fKZWbym+zy4rPvW4LOOcY90fx3OAc9g/OocFahddua5J7eaQAVG5KCCGEEMldt6EOA94wJvxR0Y91bDS7N6rHZRX9WAS4qSebsf29xCWn5zxhGLQqtFRTZ1OlYIyhrdaEN+9p+3/t3XmU3VWV6PHvTmUkEwkZCIGEKQMQmiGAIE8IIDg1zVOUp9KIz25A1O7WFlkuZwXn7nZoWxREBARFUZ8KikpAUEAlqCEMSRiSAGYmY2WqpGq/P+6viktIVZLKrXtvVX0/a9VK1W84v31z1q/q7nvObx++fv50Pnb24U4z7SZMEiVJUtWdNrW0FMZv53d9ldOZjy9j6MC+HDtxRJdfS3DI6CEcOmYIv3p0aVWvO3/ZeiaN8blTqRJMEiVJUtUdPGowE0buxT3zuna9xJaW5O55y5kxZQz9XBahal51xFj+uGAVqzc0Ve2a85etZ5JTTaWKqMpvy4gYEBHXRsSiiFgfEX+NiNcU+w6MiIyIxrKvj2537rcjYl1ELI2If9+u7TMiYm5EbIyIuyNiYjVekyRJ6ryI4LQpo7nvyefZvLW5y64z+7k1rGxs4pWHjemya+ilzjp8X5pbkrvmdu2HAK3WbtzKsnVbmGLRGqkiqvWRWl/gWeBUYDjwEeAHEXFg2TF7Z+aQ4uuKsu2fACYBE4HTgMsj4tUAETEK+DHwUWAkMAu4pUtfiSRJqogZU8ewaWszf1rQdUthzHx8OQ19glMnj+6ya+il/m7/4YwbPrBqU07nL28tWmOSKFVCVZLEzNyQmZ/IzIWZ2ZKZtwELgOm7cPqFwBWZuTozHweuAd5e7HsD8Ghm/jAzN1NKKI+KiKmVfxWSJKmSTjp4Hwb07cPdXTjl9M7HlzF94gj23qt/l11DLxURnHX4WO59YgWbmrpupLjV/KKyqdNNpcqoyeT8iBgLTAYeLdu8KCKei4jrihFCImIEMA6YXXbcbOCI4vsjyvdl5gbgqbL9kiSpTg3s18BJh+zDb+d1TfGa51ZvZO7S9U41rZGzjtiXzVtbuPeJri9ONH/pegb3b2B8FZfckHqyqieJEdEPuAm4PjPnAiuB4ylNJ50ODC32A7R+HLS2rIm1xTGt+8v3bb+//LoXR8SsiJi1YkXX/7KSJEk7d9qUMSxYuYEni+mCldT6PNwZh42teNvauRMOGsnwQf2qMuV0/rJGJo0d6vIKUoVUNUmMiD7AjUAT8B6AzGzMzFmZuS0zlxXbz4qIoUBjcWr5wkbDgNa/JI3b7dt+f5vMvDozj8vM40aP9rkESZLqwWuO3JdB/Rr48p1PVLztmY8v56BRgzlktFMQa6FfQx/OmDqGmY8vZ2tzS5ddZ1tzC48tWWfRGqmCqpYkRumjnWuBscC5mbm1nUOz+LdPZq4GlgBHle0/ihemqT5avi8iBgOH8OJprJIkqU6NGTqQi085mNseXsKfn1ldsXY3bNnGA089z+lTnWpaS2cdsS9rN23lwS4sTvSnBatYu2krM6Y4CCBVSjVHEq8CDgPOzsxNrRsj4mURMSUi+kTEPsBXgd9mZus00huAj0TEiKIgzUXAd4p9PwGmRcS5ETEQ+BjwcDGNVZIkdQMXn3Iwo4cO4NO3P05m7vyEXfC7J1bS1NzCGT6PWFOnTh7NoH4N3Prn57rsGrfPWcKgfg3MmGJfS5VSrXUSJwKXAEcDS8vWQzwfOBi4g9IU0UeALcBbyk7/OKViNIuAe4AvZuYdAJm5AjgX+DSwGngZ8OZqvCZJklQZgwf05f1nTuahRau545HKPL828/FlDB3Yl+MPHFmR9tQ5g/o38JYTJvDTvy7m2VUbK95+c0vyq0eXcvrUMQzq31Dx9qXeqlpLYCzKzMjMgWVrIQ7JzJsy83uZeVBmDs7McZn5tsxcWnbulsx8R2YOy8yxmflf27V9Z2ZOzcxBmTkjMxdW4zVJkqTKedNxBzBl7FA+d8dcmrbt2fNrLS3J3fOWM2PKGPo11KSQu8pcdMpB9Am4+t6nK972Hxc8z8rGJl575LiKty31Zv7mlCRJNdfQJ/jQ6w5j0fMbufEPi/aordnPrWFlYxNn+DxiXRg3fBBvnL4/t8x6luXrNle07V/MWcLAfn04barPI0qVZJIoSZLqwqmTR/OKSaP46swnWLOxqdPtzHx8OQ19wkImdeSSUw5hW3ML1/5+QcXabG5J7nhkGadPHcNe/ftWrF1JJomSJKmOfOi1h7Fu81a+dteTnW7jzseXMX3iCPbeq38FI9OeOHDUYM4+aj+++4dFe/QBQLk/LVjFysYtTjWVuoBJoiRJqhuHjRvGm6bvz/UPLOSJZS9Z9ninnl7RyNyl63mlVU3rzrtmHMqGpma+c//CirT3y0dKU01d5kSqPJNESZJUVy47awrDBvbjkhsfYt3m9pZVfqltzS184NaHGTqgL/9w1PgujFCdMWXfoZx5+Fiuu28hjVu27VFbzS3JLx9ZymlTnGoqdQWTREmSVFfGDBvI188/lmdWbeS93/8rLS27tnbi1+5+kocWrebK109j3+EDuzhKdca7ZhzC2k1bufmPe1acaNbCVaxY71RTqauYJEqSpLrzsoP34WNnH85dc5fzpTvn7/T4hxat4qszn+D1x4znnKMdRaxXx0wYwcmH7sM1v1vA5q3NnW7nF3OWMKCvU02lrmKSKEmS6tIFJ07kvOP257/vepI7HlnS7nHrN2/lvbf8lfEjBvGpc46oYoTqjHefdigr1m/p9LOJLcVU0xlTRjN4gFNNpa5gkihJkupSRPCpc6Zx9AF78+8/mM28pTsuZPPxnz7K4jWb+fL/OZqhA/tVOUrtrpMO3oczDx/LF+6Yy52PLdvt82ctWs1yp5pKXcokUZIk1a2B/Rr4xj9OZ/CAvlx0wyyuv38h9z25kmXrNpOZ/PSvf+PHf/kb/3L6oUyfOLLW4WoXRARfefPRTBs/nH/53l+Y/eya3Tr/F3OW0L9vH844bGwXRSgpMnftYfCe5LjjjstZs2bVOgxJkrSLHlq0mktunMXKxhfW2Bs6oC9NzS1MGz+cWy4+kb4NfvbdnaxYv4U3XHUfm5qa+fGlJzNhn706PH7Dlm3c8MAivnbXE5x86CiufttxVYpU6pki4qHM3OGNZJIoSZK6hcxk+fotPLW8kSdXNPLU8kaWrdvCh193GAeM7DjBUH16akUj5151PyP36s+PLn05Iwb3f8kxG5u2ceMDi/jmvU+zakMTp04ezRXnTNtpUimpYyaJ2zFJlCRJqg+zFq7ird/6I0eOH84V50xjzcYmVm1sYvWGJhav3cwPZz3LysYmXjFpFO995WSmTxxR65ClHsEkcTsmiZIkSfXjF3OW8O6b/8yO3paWksNJPnMqVVhHSaJ1gyVJklRTrz1yHLe+8+UsW7eZkYP7M3Jwf0bs1Z8Re/XzWVOpBkwSJUmSVHNOI5Xqhx/NSJIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2kRm1jqGqouI9cC8WsehLjUcWFvrINRl7N+ezf7t2ezfns8+7tns355jSmYO3dGOvtWOpE7My8zjah2Euk5EXJ2ZF9c6DnUN+7dns397Nvu357OPezb7t+eIiFnt7XO6qXqqn9c6AHUp+7dns397Nvu357OPezb7txfordNNZzmSKEmSJKm36ign6q0jiVfXOgBJkiRJqqF2c6JeOZIoSZIkSdqx3jqSKEmSJEnaAZNEdWsRMTIifhIRGyJiUUS8tdj+uoj4fUSsiYilEfGtiNhhiV/Vrw7697SImFP07/PFMeNrHa92T3v9u90x346IjIhDaxGj9kwH9/CMiGiJiMayrwtrHa92T0f3cESMjoibI2JtRKyOiJtqGat2Xwf374e2u3c3FffzqFrHrMrprUtgqOf4H6AJGAscDdweEbMpreFzJXAvMAC4Gfgi8M4axanOaa9/HwNelZmLI2IAcAVwFfAPNYtUnbHD/s3MRwEi4n8Bh9QwPu259u5hgMWZuX/NIlMldHQP/xh4EJgAbASm1SxKdVZ7/fsZ4DOtB0XEJ4BTMnNlTaJUl/CZRHVbETEYWA1My8z5xbYbgb9l5ge3O/YNwCcz88jqR6rO2NX+LZLETwDnZObhtYhVu29n/RsRfSm9wbwQmA1MyswnaxawdltHfQzcAXzXJLH72kn/3kWpIMYhmdlcuyjVWbvxNziApyi9x7q+JsGqS9TddNOIGF7rGNRtTAa2tf7yKswGjtjBsacAj1YlKlVKh/0bERMiYg2wCbgM+EL1Q9Qe2Nn9+z7g3sx8uOqRqVJ21sdjImJZRCyIiC8Vb0rVfXTUvycC84Dri0cCHoyIU2sRpDptV99jvQIYA/yoWoGpOuomSYyIQRFxLfB0REyodTzqFoYA67bbthZ40bOHEXEmpdGIj1UpLlVGh/2bmc9k5t7AKOAjwNzqhqc91G7/RsQBwCV4z3Z3Hd3DcylNXxsHnA5MB/6rqtFpT3XUv/sDZwF3A/sC/wn81GfWupVdeo9F6f3VrZnZWJWoVDV1kSRGxBBKzxONApZTer5I2plGYNh224YB61t/iIgTKT2P+MbtPg1T/dtp/wJk5irgekpvQHzOuvvoqH+/DHwqM9dWPSpVUrt9nJlLM/OxzGzJzAXA5cC5VY9Qe6Kje3gTsDAzr83MrZn5feBZ4OQqx6jO25X3WHsBb6L0N1g9TE2TxIgYFRH9ik8ffgJ8GDgHuCAiXl7L2NQtzAf6RsSksm1HUUwrjYhjgJ8B78jMmTWIT3umw/7dTl9K0122/4Om+tVR/54BfLGoTLy02PfAjqqfqq7tzj2c1MkH19plHfXvw5T6tJxFMLqXXbl/Xw+sAn5bxbhUJTUpXBMRBwKtpZDXAR8E5mXm5mL/NcBRmXlC1YNTtxIR36f0h+efKU1d+gXwciCAmcC/ZuYttYtQe6KD/p1C6Q/VE8A+lCqwHZqZx9YoVHVCB/27ghcnDEuAk4DZmbmp2nGq8zro4zHA08AzlKYm3kBp5On/1ihUdUIH/buEUjGT9wLfpZRMXA1MtgJm99Fe/5ZVoP418IfM9NGAHqjqn9pFxCDgW8BDwBsoDWd/AnhL2WHvBo4oXzMpIvyEUTvyLmAQpWnK3wMuLX55vR8YDVxbto6PhWu6n/b6dzyl6ojrgTlAC6U3Iepedti/mbm8mI64NDNbRxJXmiB2S+3dw8cA9wMbin/nAP9aqyDVae3dw6soLUl0GaXn2D5IqQK1CWL30t79S7E28emUPuBRD1T1kcRi2Po64J8zc25EDAP+DTgNuLi1xHlEvA+4PDPHFT8Pzcz1ERHpuh2SJEmS1CVqMToXlBZUXQuQmesoLbi6GLgUSqOGQZwyKgAACatJREFUmfklYFVE/CwiNgKfLY43QZQkSZKkLlL1JLGoMDmHF5c2n0tpusmBEXFwZrZExBhKCeWxwPsz8z3VjlWSJEmSeptaPef3OeD1ETEZIDObgceASbywJsts4M+ZuX9mXlWbMCVJkiSpd6nVmmJ3Fl83ACcW2x4p/h0OrAQmuTCnJEmSJFVXTZbAgLYFOGdTWofld8AFwCzgosxs6uC8ccBFwN2Z+TsL2UiSJElS5dRqJJHM3BgRZ1Na++o1wLeKYjU7szdwMhARMcuS6JIkSZJUOTUbSXxRELs4Gth6XERcCpwBfCczb+v6CCVJkiSpd6iLBep3J0EsfrwFaATOjIh9W/d3YYiSJEmS1CvURZJYrr1krxhBnBwRZ2TmKuBnwIHAq1v3Vy9KSZIkSeqZ6i5JLJLB9uI6D7g9IvoDPwEWAqdExOHgaKIkSZIk7am6SxIj4tXAlRGxX/HzKa37MvNKYDHw0WLk8BZgBKXCN44mSpIkSdIeqrskEWgAzgJOjojXAddExKll+/8N+EBETMjM+yktm3FsRJxWg1glSZIkqUepuyQxM28H/gS8EmihNK30PWX7f17s/2yx6fvAaGB6RDRUN1pJkiRJ6lnqKkkse6bwK8BhwETgAWDviHhb2aH3AG8uitg8BVyWmf+Rmc3VjViSJEmSepa6ShKLojWRmfOAX1NaC3Fr8f3FETG8OHQt8CBwcnHewwAdFLyRJEmSJO2CqNdaLxExFPgxcBfwG+AKYBylQjWzgLdn5vraRShJkiRJPU/fWgewIxHRJzPXR8QNwNspjRqeB/w90JyZP9ju2JbaRCpJkiRJPUvdjiS2iojvA88Dn8zM5WXbG3wGUZIkSZIqq26f4SsrYvPfwHTgwPLtJoiSJEmSVHl1myQWRWz6ZOZ9lOJ8Vev2nZ0bEQdHxLDi+9jZ8ZIkSZKkkrpNEgEysyUi9gI2AfN25ZyIeDfwCHBW0UZ9z6eVJEmSpDpS10li4X8Df6FU6XRXHAWsBk6IiEldFpUkSZIk9UDdoXBN7OIU04bMbI6ID1BaKmM68B3g5szc0sVhSpIkSVKPUPcjie0liBExoPi3oTiutZDNScB1wG3AOcBBVQhTkiRJknqEuk8StxcRIyLi28A34IXkMCJaX8uzwAHAtcBA4C0RcWVE/F0t4pUkSZKk7qRbJYkRcSTwE+B4YHJEvKHY3iczW4rDjgHmZeYqYCvwYeBI4OkahCxJkiRJ3Uq3ShKB/sCNwNuBmcBFEdG/qILavzjmj8AnI2IOMAz4PbAQGFz9cCVJkiSpe6nrJDEipkbEqRExptg0B7g1Mx8CfgUk8B6AzGwqppyOA44AvpyZpwKfB0ZWP3pJkiRJ6n7qsrppUYzmG8B5wEOUEr/LM/PnZccMAf4JOBe4IDMXFdsPApZl5saqBy5JkiRJ3Vy9jiQeARwKHAKcRWkpi69ExCmtB2RmI6Upp4uB95Wd+2xmbmwtZBMRUa2gJUmSJKm7q5skMSKGl1UoPRGYmJkrgZbM/DylZw0vjIiDy06bD3wPmBYRn4mI+4AzAFoL2ezKGouSJEmSpJKaJ4kRMSkifgXcBPwoIiYCjwHPRMTRZVVLPwscBbQtZZGZTUAzpaTyQuCazPxVVV+AJEmSJPUgNU0SI+KfgLuAvwCXUyow81GgL7CM0lRTADLzYUqFay4ozm2IiDOBW4GvZ+b4zPxOVV+AJEmSJPUwNS1cExFXAosy85ri5/2BucBkSsngscA3M/OuYv/ZwOeA44vnDscDGzJzTU1egCRJkiT1MH1rfP1vAFsAImIAsBF4ChgE/JBS4Zr3RsRTRfXS44Fft1Yuzcy/1SRqSZIkSeqhapokZuZzUKpAmplbIuJwSlNgny3WPfwqcCVwe0SsAaYA59cuYkmSJEnq2Wo9kgi8qALpDGBeUZCGzHwkIs4FjgGOyMzraxSiJEmSJPUKdZEkRkRDZjYDJwB3FNsupTRy+OnMnAXMqmGIkiRJktQr1EWSmJnNEdGXUnXTMRFxL3Ag8I7MXFHT4CRJkiSpF6lpddNyEXEkMJvS0hf/mZn/UeOQJEmSJKnXqacksT/wHkprHm6udTySJEmS1BvVTZIoSZIkSaq9PrUOQJIkSZJUP0wSJUmSJEltTBIlSZIkSW1MEiVJkiRJbUwSJUmSJEltTBIlSQIiYkJENEZEQ61jkSSplkwSJUm9VkQsjIhXAmTmM5k5JDObq3j9GRHxXLWuJ0nSrjBJlCRJkiS1MUmUJPVKEXEjMAH4eTHN9PKIyIjoW+z/bURcGRH3F/t/HhH7RMRNEbEuIh6MiAPL2psaEb+JiFURMS8izivb99qIeCwi1kfE3yLisogYDPwS2K9ovzEi9ouIEyLigYhYExFLIuJrEdG/rK2MiHdFxBNFe1dExCFFnOsi4getx7eOVEbEhyJiZTFyen51/oclSd2VSaIkqVfKzAuAZ4CzM3MI8IMdHPZm4AJgPHAI8ABwHTASeBz4OECR8P0GuBkYU5z39Yg4vGjnWuCSzBwKTAPuyswNwGuAxcU01yGZuRhoBt4HjAJOAs4A3rVdXK8CpgMnApcDVwP/CBxQtP+WsmP3LdoaD1wIXB0RU3brP0uS1KuYJEqS1L7rMvOpzFxLadTvqcy8MzO3AT8EjimO+3tgYWZel5nbMvMvwI+ANxX7twKHR8SwzFydmX9u74KZ+VBm/qFoZyHwTeDU7Q77Qmauy8xHgUeAX2fm02VxHrPd8R/NzC2ZeQ9wO3AekiS1wyRRkqT2LSv7ftMOfh5SfD8ReFkxRXRNRKwBzqc0igdwLvBaYFFE3BMRJ7V3wYiYHBG3RcTSiFgHfIbSSGBn4gJYXYxatloE7Nfe9SVJMkmUJPVmWaF2ngXuycy9y76GZOalAJn5YGaeQ2kq6v/jhamtO7r+VcBcYFJmDgM+BMQexDaimA7bagKweA/akyT1cCaJkqTebBlwcAXauQ2YHBEXRES/4uv4iDgsIvpHxPkRMTwztwLrgJay6+8TEcPL2hpaHNMYEVOBSysQ3yeLOF5BaWrsDyvQpiSphzJJlCT1Zp8FPlJMD31jZxvJzPXAWZQK1iwGlgKfBwYUh1wALCymj76T0lRUMnMu8D3g6WKa6n7AZcBbgfXANcAtnY2rsBRYXcR1E/DO4rqSJO1QZFZqpo0kSaonETED+G5m7l/rWCRJ3YcjiZIkSZKkNiaJkiRJkqQ2TjeVJEmSJLVxJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTGJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTm/wOL0q2viKFO9gAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "dddca9ad9e34435494e0933c218e1579", + "translation_date": "2025-09-04T01:51:29+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/1-Introduction/working/notebook.ipynb b/translations/hi/7-TimeSeries/1-Introduction/working/notebook.ipynb new file mode 100644 index 000000000..720f02a50 --- /dev/null +++ b/translations/hi/7-TimeSeries/1-Introduction/working/notebook.ipynb @@ -0,0 +1,64 @@ +{ + "cells": [ + { + "source": [ + "# डेटा सेटअप\n", + "\n", + "इस नोटबुक में, हम यह दिखाएंगे कि कैसे:\n", + "\n", + "इस मॉड्यूल के लिए टाइम सीरीज़ डेटा सेटअप करें \n", + "डेटा को विज़ुअलाइज़ करें \n", + "\n", + "इस उदाहरण में उपयोग किया गया डेटा GEFCom2014 फोरकास्टिंग प्रतियोगिता1 से लिया गया है। इसमें 2012 से 2014 के बीच 3 वर्षों के घंटेवार बिजली लोड और तापमान के मान शामिल हैं। \n", + "\n", + "1ताओ होंग, पियरे पिन्सन, शू फैन, हमीदरेज़ा ज़ारिपूर, अल्बर्टो ट्रोक्कोली और रॉब जे. हाइंडमैन, \"प्रोबैबिलिस्टिक एनर्जी फोरकास्टिंग: ग्लोबल एनर्जी फोरकास्टिंग प्रतियोगिता 2014 और उससे आगे\", इंटरनेशनल जर्नल ऑफ फोरकास्टिंग, वॉल्यूम 32, नंबर 3, पृष्ठ 896-913, जुलाई-सितंबर, 2016। \n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5e2bbe594906dce3aaaa736d6dac6683", + "translation_date": "2025-09-04T01:52:17+00:00", + "source_file": "7-TimeSeries/1-Introduction/working/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/2-ARIMA/README.md b/translations/hi/7-TimeSeries/2-ARIMA/README.md new file mode 100644 index 000000000..c3f9e94a8 --- /dev/null +++ b/translations/hi/7-TimeSeries/2-ARIMA/README.md @@ -0,0 +1,406 @@ + +# ARIMA के साथ समय श्रृंखला पूर्वानुमान + +पिछले पाठ में, आपने समय श्रृंखला पूर्वानुमान के बारे में थोड़ा सीखा और एक डेटा सेट लोड किया जो एक समय अवधि में विद्युत भार के उतार-चढ़ाव को दिखाता है। + +[![ARIMA का परिचय](https://img.youtube.com/vi/IUSk-YDau10/0.jpg)](https://youtu.be/IUSk-YDau10 "ARIMA का परिचय") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें: ARIMA मॉडल का संक्षिप्त परिचय। उदाहरण R में किया गया है, लेकिन अवधारणाएं सार्वभौमिक हैं। + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/43/) + +## परिचय + +इस पाठ में, आप [ARIMA: *A*uto*R*egressive *I*ntegrated *M*oving *A*verage](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average) के साथ मॉडल बनाने का एक विशिष्ट तरीका जानेंगे। ARIMA मॉडल विशेष रूप से [गैर-स्थिरता](https://wikipedia.org/wiki/Stationary_process) दिखाने वाले डेटा को फिट करने के लिए उपयुक्त हैं। + +## सामान्य अवधारणाएं + +ARIMA के साथ काम करने के लिए, आपको कुछ अवधारणाओं को समझना होगा: + +- 🎓 **स्थिरता**। सांख्यिकीय संदर्भ में, स्थिरता उस डेटा को संदर्भित करती है जिसका वितरण समय में स्थानांतरित होने पर नहीं बदलता। गैर-स्थिर डेटा, फिर, रुझानों के कारण उतार-चढ़ाव दिखाता है जिसे विश्लेषण करने के लिए बदलना आवश्यक है। उदाहरण के लिए, मौसमीता डेटा में उतार-चढ़ाव ला सकती है और इसे 'मौसमी-डिफरेंसिंग' प्रक्रिया द्वारा समाप्त किया जा सकता है। + +- 🎓 **[डिफरेंसिंग](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average#Differencing)**। सांख्यिकीय संदर्भ में, डिफरेंसिंग डेटा को स्थिर बनाने के लिए इसे बदलने की प्रक्रिया को संदर्भित करता है, जिससे इसके गैर-स्थिर रुझान को हटाया जाता है। "डिफरेंसिंग समय श्रृंखला के स्तर में बदलाव को हटाता है, रुझान और मौसमीता को समाप्त करता है और परिणामस्वरूप समय श्रृंखला के औसत को स्थिर करता है।" [Shixiong et al द्वारा पेपर](https://arxiv.org/abs/1904.07632) + +## समय श्रृंखला के संदर्भ में ARIMA + +ARIMA के भागों को बेहतर ढंग से समझने के लिए आइए इसे विस्तार से देखें कि यह हमें समय श्रृंखला को मॉडल करने और इसके खिलाफ पूर्वानुमान बनाने में कैसे मदद करता है। + +- **AR - ऑटोरेग्रेसिव के लिए**। जैसा कि नाम से पता चलता है, ऑटोरेग्रेसिव मॉडल आपके डेटा में पिछले मानों को 'पीछे' देखने और उनके बारे में धारणाएं बनाने के लिए विश्लेषण करते हैं। इन पिछले मानों को 'लैग्स' कहा जाता है। एक उदाहरण वह डेटा होगा जो पेंसिल की मासिक बिक्री दिखाता है। प्रत्येक महीने की बिक्री कुल को डेटा सेट में एक 'विकसित चर' माना जाएगा। यह मॉडल इस प्रकार बनाया गया है कि "रुचि का विकसित चर अपने स्वयं के लैग्ड (यानी, पिछले) मानों पर पुन: स्थापित होता है।" [विकिपीडिया](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average) + +- **I - इंटीग्रेटेड के लिए**। समान 'ARMA' मॉडल के विपरीत, ARIMA में 'I' इसके *[इंटीग्रेटेड](https://wikipedia.org/wiki/Order_of_integration)* पहलू को संदर्भित करता है। डेटा को 'इंटीग्रेटेड' किया जाता है जब गैर-स्थिरता को समाप्त करने के लिए डिफरेंसिंग चरण लागू किए जाते हैं। + +- **MA - मूविंग एवरेज के लिए**। इस मॉडल का [मूविंग-एवरेज](https://wikipedia.org/wiki/Moving-average_model) पहलू उस आउटपुट वेरिएबल को संदर्भित करता है जो लैग्स के वर्तमान और पिछले मानों को देखकर निर्धारित किया जाता है। + +निचला रेखा: ARIMA का उपयोग समय श्रृंखला डेटा के विशेष रूप को यथासंभव करीब से फिट करने के लिए किया जाता है। + +## अभ्यास - ARIMA मॉडल बनाएं + +इस पाठ में [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/working) फ़ोल्डर खोलें और [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/2-ARIMA/working/notebook.ipynb) फ़ाइल खोजें। + +1. नोटबुक चलाएं ताकि `statsmodels` Python लाइब्रेरी लोड हो सके; आपको ARIMA मॉडल के लिए इसकी आवश्यकता होगी। + +1. आवश्यक लाइब्रेरी लोड करें। + +1. अब, डेटा को प्लॉट करने के लिए उपयोगी कई और लाइब्रेरी लोड करें: + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from pandas.plotting import autocorrelation_plot + from statsmodels.tsa.statespace.sarimax import SARIMAX + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + from IPython.display import Image + + %matplotlib inline + pd.options.display.float_format = '{:,.2f}'.format + np.set_printoptions(precision=2) + warnings.filterwarnings("ignore") # specify to ignore warning messages + ``` + +1. `/data/energy.csv` फ़ाइल से डेटा को एक Pandas डेटा फ्रेम में लोड करें और इसे देखें: + + ```python + energy = load_data('./data')[['load']] + energy.head(10) + ``` + +1. जनवरी 2012 से दिसंबर 2014 तक उपलब्ध सभी ऊर्जा डेटा को प्लॉट करें। कोई आश्चर्य नहीं होना चाहिए क्योंकि हमने यह डेटा पिछले पाठ में देखा था: + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + अब, आइए एक मॉडल बनाएं! + +### प्रशिक्षण और परीक्षण डेटा सेट बनाएं + +अब आपका डेटा लोड हो गया है, इसलिए आप इसे ट्रेन और टेस्ट सेट में विभाजित कर सकते हैं। आप अपने मॉडल को ट्रेन सेट पर प्रशिक्षित करेंगे। हमेशा की तरह, मॉडल के प्रशिक्षण समाप्त होने के बाद, आप टेस्ट सेट का उपयोग करके इसकी सटीकता का मूल्यांकन करेंगे। आपको यह सुनिश्चित करना होगा कि टेस्ट सेट ट्रेनिंग सेट की तुलना में बाद की अवधि को कवर करता है ताकि यह सुनिश्चित हो सके कि मॉडल भविष्य की समय अवधि से जानकारी प्राप्त न करे। + +1. सितंबर 1 से अक्टूबर 31, 2014 तक की दो महीने की अवधि को ट्रेनिंग सेट में आवंटित करें। टेस्ट सेट में नवंबर 1 से दिसंबर 31, 2014 तक की दो महीने की अवधि शामिल होगी: + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + + चूंकि यह डेटा ऊर्जा की दैनिक खपत को दर्शाता है, इसमें एक मजबूत मौसमी पैटर्न है, लेकिन खपत हाल के दिनों की खपत के समान है। + +1. अंतर को विज़ुअलाइज़ करें: + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![ट्रेनिंग और टेस्टिंग डेटा](../../../../translated_images/train-test.8928d14e5b91fc942f0ca9201b2d36c890ea7e98f7619fd94f75de3a4c2bacb9.hi.png) + + इसलिए, डेटा को प्रशिक्षित करने के लिए अपेक्षाकृत छोटे समय विंडो का उपयोग पर्याप्त होना चाहिए। + + > नोट: चूंकि हम ARIMA मॉडल को फिट करने के लिए उपयोग किए जाने वाले फ़ंक्शन इन-सैंपल मान्यता का उपयोग करते हैं, हम मान्यता डेटा को छोड़ देंगे। + +### प्रशिक्षण के लिए डेटा तैयार करें + +अब, आपको डेटा को फ़िल्टर और स्केल करके प्रशिक्षण के लिए तैयार करना होगा। अपने डेटा सेट को केवल आवश्यक समय अवधि और कॉलम को शामिल करने के लिए फ़िल्टर करें, और डेटा को 0,1 के अंतराल में प्रोजेक्ट करने के लिए स्केल करें। + +1. मूल डेटा सेट को केवल उपरोक्त समय अवधि प्रति सेट और केवल आवश्यक कॉलम 'load' और तारीख को शामिल करने के लिए फ़िल्टर करें: + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + आप डेटा का आकार देख सकते हैं: + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +1. डेटा को (0, 1) की सीमा में स्केल करें। + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + train.head(10) + ``` + +1. मूल बनाम स्केल किए गए डेटा को विज़ुअलाइज़ करें: + + ```python + energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12) + train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12) + plt.show() + ``` + + ![मूल](../../../../translated_images/original.b2b15efe0ce92b8745918f071dceec2231661bf49c8db6918e3ff4b3b0b183c2.hi.png) + + > मूल डेटा + + ![स्केल किया गया](../../../../translated_images/scaled.e35258ca5cd3d43f86d5175e584ba96b38d51501f234abf52e11f4fe2631e45f.hi.png) + + > स्केल किया गया डेटा + +1. अब जब आपने स्केल किए गए डेटा को कैलिब्रेट कर लिया है, तो आप टेस्ट डेटा को स्केल कर सकते हैं: + + ```python + test['load'] = scaler.transform(test) + test.head() + ``` + +### ARIMA लागू करें + +अब ARIMA को लागू करने का समय है! आप अब `statsmodels` लाइब्रेरी का उपयोग करेंगे जिसे आपने पहले इंस्टॉल किया था। + +अब आपको कई चरणों का पालन करना होगा: + + 1. मॉडल को परिभाषित करें `SARIMAX()` को कॉल करके और मॉडल पैरामीटर: p, d, और q पैरामीटर, और P, D, और Q पैरामीटर पास करें। + 2. ट्रेनिंग डेटा के लिए मॉडल तैयार करें `fit()` फ़ंक्शन को कॉल करके। + 3. भविष्यवाणी करें `forecast()` फ़ंक्शन को कॉल करके और पूर्वानुमान के लिए चरणों (होराइजन) की संख्या निर्दिष्ट करें। + +> 🎓 ये सभी पैरामीटर किस लिए हैं? ARIMA मॉडल में 3 पैरामीटर होते हैं जो समय श्रृंखला के प्रमुख पहलुओं को मॉडल करने में मदद करते हैं: मौसमीता, रुझान, और शोर। ये पैरामीटर हैं: + +`p`: मॉडल के ऑटोरेग्रेसिव पहलू से जुड़ा पैरामीटर, जो *पिछले* मानों को शामिल करता है। +`d`: मॉडल के इंटीग्रेटेड भाग से जुड़ा पैरामीटर, जो समय श्रृंखला पर लागू *डिफरेंसिंग* (🎓 डिफरेंसिंग याद है 👆?) की मात्रा को प्रभावित करता है। +`q`: मॉडल के मूविंग-एवरेज भाग से जुड़ा पैरामीटर। + +> नोट: यदि आपके डेटा में मौसमी पहलू है - जैसा कि इस डेटा में है - तो हम मौसमी ARIMA मॉडल (SARIMA) का उपयोग करते हैं। उस स्थिति में आपको एक अन्य सेट पैरामीटर का उपयोग करना होगा: `P`, `D`, और `Q` जो `p`, `d`, और `q` के समान संघों का वर्णन करते हैं, लेकिन मॉडल के मौसमी घटकों से संबंधित हैं। + +1. अपने पसंदीदा होराइजन मान को सेट करें। चलिए 3 घंटे आज़माते हैं: + + ```python + # Specify the number of steps to forecast ahead + HORIZON = 3 + print('Forecasting horizon:', HORIZON, 'hours') + ``` + + ARIMA मॉडल के पैरामीटर के लिए सर्वोत्तम मानों का चयन करना चुनौतीपूर्ण हो सकता है क्योंकि यह कुछ हद तक व्यक्तिपरक और समय लेने वाला है। आप [`pyramid` लाइब्रेरी](https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html) से `auto_arima()` फ़ंक्शन का उपयोग करने पर विचार कर सकते हैं। + +1. फिलहाल कुछ मैनुअल चयन आज़माएं ताकि एक अच्छा मॉडल मिल सके। + + ```python + order = (4, 1, 0) + seasonal_order = (1, 1, 0, 24) + + model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order) + results = model.fit() + + print(results.summary()) + ``` + + परिणामों की एक तालिका प्रिंट की जाती है। + +आपने अपना पहला मॉडल बना लिया है! अब हमें इसे मूल्यांकन करने का तरीका खोजना होगा। + +### अपने मॉडल का मूल्यांकन करें + +अपने मॉडल का मूल्यांकन करने के लिए, आप तथाकथित `walk forward` मान्यता कर सकते हैं। व्यवहार में, समय श्रृंखला मॉडल हर बार जब नया डेटा उपलब्ध होता है तो फिर से प्रशिक्षित किए जाते हैं। यह मॉडल को प्रत्येक समय चरण पर सबसे अच्छा पूर्वानुमान बनाने की अनुमति देता है। + +इस तकनीक का उपयोग करते हुए समय श्रृंखला की शुरुआत में, ट्रेन डेटा सेट पर मॉडल को प्रशिक्षित करें। फिर अगले समय चरण पर एक पूर्वानुमान बनाएं। पूर्वानुमान ज्ञात मान के खिलाफ मूल्यांकन किया जाता है। फिर ट्रेनिंग सेट को ज्ञात मान को शामिल करने के लिए विस्तारित किया जाता है और प्रक्रिया को दोहराया जाता है। + +> नोट: अधिक कुशल प्रशिक्षण के लिए आपको ट्रेनिंग सेट विंडो को स्थिर रखना चाहिए ताकि हर बार जब आप ट्रेनिंग सेट में एक नया अवलोकन जोड़ें, तो आप सेट की शुरुआत से अवलोकन को हटा दें। + +यह प्रक्रिया मॉडल के व्यवहारिक प्रदर्शन का अधिक मजबूत अनुमान प्रदान करती है। हालांकि, इतने सारे मॉडल बनाने की गणना लागत के साथ आता है। यदि डेटा छोटा है या मॉडल सरल है तो यह स्वीकार्य है, लेकिन बड़े पैमाने पर समस्या हो सकती है। + +Walk-forward मान्यता समय श्रृंखला मॉडल मूल्यांकन का स्वर्ण मानक है और इसे आपके अपने प्रोजेक्ट्स के लिए अनुशंसित किया जाता है। + +1. पहले, प्रत्येक HORIZON चरण के लिए एक टेस्ट डेटा पॉइंट बनाएं। + + ```python + test_shifted = test.copy() + + for t in range(1, HORIZON+1): + test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H') + + test_shifted = test_shifted.dropna(how='any') + test_shifted.head(5) + ``` + + | | | load | load+1 | load+2 | + | ---------- | -------- | ---- | ------ | ------ | + | 2014-12-30 | 00:00:00 | 0.33 | 0.29 | 0.27 | + | 2014-12-30 | 01:00:00 | 0.29 | 0.27 | 0.27 | + | 2014-12-30 | 02:00:00 | 0.27 | 0.27 | 0.30 | + | 2014-12-30 | 03:00:00 | 0.27 | 0.30 | 0.41 | + | 2014-12-30 | 04:00:00 | 0.30 | 0.41 | 0.57 | + + डेटा को इसके होराइजन पॉइंट के अनुसार क्षैतिज रूप से स्थानांतरित किया जाता है। + +1. इस स्लाइडिंग विंडो दृष्टिकोण का उपयोग करके अपने टेस्ट डेटा पर पूर्वानुमान बनाएं, जो टेस्ट डेटा की लंबाई के आकार में एक लूप में हो: + + ```python + %%time + training_window = 720 # dedicate 30 days (720 hours) for training + + train_ts = train['load'] + test_ts = test_shifted + + history = [x for x in train_ts] + history = history[(-training_window):] + + predictions = list() + + order = (2, 1, 0) + seasonal_order = (1, 1, 0, 24) + + for t in range(test_ts.shape[0]): + model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order) + model_fit = model.fit() + yhat = model_fit.forecast(steps = HORIZON) + predictions.append(yhat) + obs = list(test_ts.iloc[t]) + # move the training window + history.append(obs[0]) + history.pop(0) + print(test_ts.index[t]) + print(t+1, ': predicted =', yhat, 'expected =', obs) + ``` + + आप प्रशिक्षण को होते हुए देख सकते हैं: + + ```output + 2014-12-30 00:00:00 + 1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323] + + 2014-12-30 01:00:00 + 2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126] + + 2014-12-30 02:00:00 + 3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795] + ``` + +1. पूर्वानुमान को वास्तविक लोड से तुलना करें: + + ```python + eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)]) + eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1] + eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h') + eval_df['actual'] = np.array(np.transpose(test_ts)).ravel() + eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']]) + eval_df.head() + ``` + + आउटपुट + | | | timestamp | h | prediction | actual | + | --- | ---------- | --------- | --- | ---------- | -------- | + | 0 | 2014-12-30 | 00:00:00 | t+1 | 3,008.74 | 3,023.00 | + | 1 | 2014-12-30 | 01:00:00 | t+1 | 2,955.53 | 2,935.00 | + | 2 | 2014-12-30 | 02:00:00 | t+1 | 2,900.17 | 2,899.00 | + | 3 | 2014-12-30 | 03:00:00 | t+1 | 2,917.69 | 2,886.00 | + | 4 | 2014-12-30 | 04:00:00 | t+1 | 2,946.99 | 2,963.00 | + + घंटेवार डेटा के पूर्वानुमान को देखें, वास्तविक लोड की तुलना में। यह कितना सटीक है? + +### मॉडल की सटीकता जांचें + +अपने मॉडल की सटीकता की जांच करें सभी पूर्वानुमानों पर इसके औसत प्रतिशत त्रुटि (MAPE) का परीक्षण करके। +> **🧮 गणित दिखाएं** +> +> ![MAPE](../../../../translated_images/mape.fd87bbaf4d346846df6af88b26bf6f0926bf9a5027816d5e23e1200866e3e8a4.hi.png) +> +> [MAPE](https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/) का उपयोग भविष्यवाणी की सटीकता को एक अनुपात के रूप में दिखाने के लिए किया जाता है, जिसे ऊपर दिए गए सूत्र द्वारा परिभाषित किया गया है। वास्तविक और अनुमानित के बीच का अंतर वास्तविक से विभाजित किया जाता है। +"इस गणना में प्राप्त मान का पूर्ण मान प्रत्येक भविष्यवाणी किए गए समय बिंदु के लिए जोड़ा जाता है और फिट किए गए बिंदुओं की संख्या n से विभाजित किया जाता है।" [wikipedia](https://wikipedia.org/wiki/Mean_absolute_percentage_error) +1. कोड में समीकरण व्यक्त करें: + + ```python + if(HORIZON > 1): + eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual'] + print(eval_df.groupby('h')['APE'].mean()) + ``` + +1. एक चरण का MAPE गणना करें: + + ```python + print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%') + ``` + + एक चरण का पूर्वानुमान MAPE: 0.5570581332313952 % + +1. बहु-चरण पूर्वानुमान MAPE प्रिंट करें: + + ```python + print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%') + ``` + + ```output + Multi-step forecast MAPE: 1.1460048657704118 % + ``` + + एक अच्छा कम संख्या सबसे बेहतर है: ध्यान दें कि यदि किसी पूर्वानुमान का MAPE 10 है, तो इसका मतलब है कि यह 10% तक गलत है। + +1. लेकिन हमेशा की तरह, इस प्रकार की सटीकता माप को दृश्य रूप में देखना आसान होता है, तो चलिए इसे प्लॉट करते हैं: + + ```python + if(HORIZON == 1): + ## Plotting single step forecast + eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8)) + + else: + ## Plotting multi step forecast + plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']] + for t in range(1, HORIZON+1): + plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values + + fig = plt.figure(figsize=(15, 8)) + ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0) + ax = fig.add_subplot(111) + for t in range(1, HORIZON+1): + x = plot_df['timestamp'][(t-1):] + y = plot_df['t+'+str(t)][0:len(x)] + ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t)) + + ax.legend(loc='best') + + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![एक टाइम सीरीज़ मॉडल](../../../../translated_images/accuracy.2c47fe1bf15f44b3656651c84d5e2ba9b37cd929cd2aa8ab6cc3073f50570f4e.hi.png) + +🏆 एक बहुत ही अच्छा प्लॉट, जो एक मॉडल को अच्छी सटीकता के साथ दिखाता है। बहुत बढ़िया! + +--- + +## 🚀चुनौती + +टाइम सीरीज़ मॉडल की सटीकता को जांचने के तरीकों में गहराई से जाएं। इस पाठ में हमने MAPE पर चर्चा की है, लेकिन क्या आप अन्य तरीकों का उपयोग कर सकते हैं? उनका शोध करें और उन्हें नोट करें। एक सहायक दस्तावेज़ [यहां](https://otexts.com/fpp2/accuracy.html) पाया जा सकता है। + +## [पाठ के बाद क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/44/) + +## समीक्षा और स्व-अध्ययन + +यह पाठ ARIMA के साथ टाइम सीरीज़ पूर्वानुमान के केवल मूलभूत पहलुओं को छूता है। [इस रिपॉजिटरी](https://microsoft.github.io/forecasting/) और इसके विभिन्न मॉडल प्रकारों में गहराई से जाएं और अन्य तरीकों को सीखें जिनसे टाइम सीरीज़ मॉडल बनाए जा सकते हैं। + +## असाइनमेंट + +[एक नया ARIMA मॉडल](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/2-ARIMA/assignment.md b/translations/hi/7-TimeSeries/2-ARIMA/assignment.md new file mode 100644 index 000000000..2dbcbd7a8 --- /dev/null +++ b/translations/hi/7-TimeSeries/2-ARIMA/assignment.md @@ -0,0 +1,25 @@ + +# एक नया ARIMA मॉडल + +## निर्देश + +अब जब आपने एक ARIMA मॉडल बना लिया है, तो नए डेटा के साथ एक नया मॉडल बनाएं (इनमें से किसी एक [ड्यूक के डेटा सेट्स](http://www2.stat.duke.edu/~mw/ts_data_sets.html) को आज़माएं)। अपने काम को एक नोटबुक में लिखें, डेटा और अपने मॉडल को विज़ुअलाइज़ करें, और इसकी सटीकता को MAPE का उपयोग करके जांचें। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | ------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------- | ----------------------------------- | +| | एक नोटबुक प्रस्तुत की गई है जिसमें एक नया ARIMA मॉडल बनाया गया है, परीक्षण किया गया है और विज़ुअलाइज़ेशन और सटीकता के साथ समझाया गया है। | प्रस्तुत नोटबुक में एनोटेशन नहीं है या इसमें त्रुटियां हैं | एक अधूरी नोटबुक प्रस्तुत की गई है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/2-ARIMA/solution/Julia/README.md b/translations/hi/7-TimeSeries/2-ARIMA/solution/Julia/README.md new file mode 100644 index 000000000..efcbdc440 --- /dev/null +++ b/translations/hi/7-TimeSeries/2-ARIMA/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/2-ARIMA/solution/R/README.md b/translations/hi/7-TimeSeries/2-ARIMA/solution/R/README.md new file mode 100644 index 000000000..8ed7102a6 --- /dev/null +++ b/translations/hi/7-TimeSeries/2-ARIMA/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/2-ARIMA/solution/notebook.ipynb b/translations/hi/7-TimeSeries/2-ARIMA/solution/notebook.ipynb new file mode 100644 index 000000000..6b4e08059 --- /dev/null +++ b/translations/hi/7-TimeSeries/2-ARIMA/solution/notebook.ipynb @@ -0,0 +1,1130 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "इसमें 2012 से 2014 के बीच 3 वर्षों के घंटेवार बिजली लोड और तापमान मान शामिल हैं। कार्य भविष्य में बिजली लोड के मानों का पूर्वानुमान लगाना है। इस उदाहरण में, हम केवल ऐतिहासिक लोड डेटा का उपयोग करके एक समय चरण आगे का पूर्वानुमान कैसे लगाएं, यह दिखाते हैं।\n", + "\n", + "ताओ हांग, पियरे पिन्सन, शू फैन, हमीदरेज़ा ज़ारिपोर, अल्बर्टो ट्रोक्कोली और रॉब जे. हाइंडमैन, \"संभाव्य ऊर्जा पूर्वानुमान: ग्लोबल एनर्जी फोरकास्टिंग प्रतियोगिता 2014 और आगे\", इंटरनेशनल जर्नल ऑफ फोरकास्टिंग, वॉल्यूम 32, नंबर 3, पृष्ठ 896-913, जुलाई-सितंबर, 2016।\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## आवश्यक डिपेंडेंसीज़ इंस्टॉल करें\n", + "समाधान के लिए आवश्यक कुछ डिपेंडेंसीज़ को इंस्टॉल करके शुरुआत करें। ये लाइब्रेरीज़ और उनके संबंधित संस्करण समाधान के लिए काम करने के लिए जाने जाते हैं:\n", + "\n", + "* `statsmodels == 0.12.2`\n", + "* `matplotlib == 3.4.2`\n", + "* `scikit-learn == 0.24.2`\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "source": [ + "!pip install statsmodels" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "/bin/sh: pip: command not found\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from pandas.plotting import autocorrelation_plot\n", + "from statsmodels.tsa.statespace.sarimax import SARIMAX\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape\n", + "from IPython.display import Image\n", + "\n", + "%matplotlib inline\n", + "pd.options.display.float_format = '{:,.2f}'.format\n", + "np.set_printoptions(precision=2)\n", + "warnings.filterwarnings(\"ignore\") # specify to ignore warning messages\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 18, + "source": [ + "energy = load_data('./data')[['load']]\n", + "energy.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                load
                                2012-01-01 00:00:002,698.00
                                2012-01-01 01:00:002,558.00
                                2012-01-01 02:00:002,444.00
                                2012-01-01 03:00:002,402.00
                                2012-01-01 04:00:002,403.00
                                2012-01-01 05:00:002,453.00
                                2012-01-01 06:00:002,560.00
                                2012-01-01 07:00:002,719.00
                                2012-01-01 08:00:002,916.00
                                2012-01-01 09:00:003,105.00
                                \n", + "
                                " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2,698.00\n", + "2012-01-01 01:00:00 2,558.00\n", + "2012-01-01 02:00:00 2,444.00\n", + "2012-01-01 03:00:00 2,402.00\n", + "2012-01-01 04:00:00 2,403.00\n", + "2012-01-01 05:00:00 2,453.00\n", + "2012-01-01 06:00:00 2,560.00\n", + "2012-01-01 07:00:00 2,719.00\n", + "2012-01-01 08:00:00 2,916.00\n", + "2012-01-01 09:00:00 3,105.00" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "जनवरी 2012 से दिसंबर 2014 तक उपलब्ध सभी लोड डेटा प्लॉट करें\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## प्रशिक्षण और परीक्षण डेटा सेट बनाएं\n", + "\n", + "डेटा सेट तैयार करना मशीन लर्निंग मॉडल के विकास में एक महत्वपूर्ण कदम है। यह सुनिश्चित करता है कि मॉडल को प्रशिक्षित करने और उसका मूल्यांकन करने के लिए उपयुक्त और संतुलित डेटा उपलब्ध हो।\n", + "\n", + "### डेटा को विभाजित करना\n", + "\n", + "डेटा को प्रशिक्षण और परीक्षण सेट में विभाजित करना एक सामान्य प्रक्रिया है। यह मॉडल के प्रदर्शन का आकलन करने में मदद करता है। आमतौर पर, डेटा को निम्नलिखित अनुपात में विभाजित किया जाता है:\n", + "\n", + "- **प्रशिक्षण सेट**: 70-80% डेटा\n", + "- **परीक्षण सेट**: 20-30% डेटा\n", + "\n", + "### डेटा विभाजन के लिए चरण\n", + "\n", + "1. **डेटा को लोड करें** \n", + " सबसे पहले, अपने डेटा को लोड करें। यह डेटा फ़ाइल, डेटाबेस, या API से आ सकता है। उदाहरण के लिए: \n", + " ```python\n", + " data = load_data(\"data.csv\")\n", + " ```\n", + "\n", + "2. **डेटा को शफल करें** \n", + " डेटा को शफल करना महत्वपूर्ण है ताकि यह सुनिश्चित हो सके कि यह यादृच्छिक है और किसी भी क्रमबद्ध पैटर्न का पालन नहीं करता। \n", + " ```python\n", + " shuffled_data = shuffle(data)\n", + " ```\n", + "\n", + "3. **डेटा को विभाजित करें** \n", + " डेटा को प्रशिक्षण और परीक्षण सेट में विभाजित करें। \n", + " ```python\n", + " train_data, test_data = split_data(shuffled_data, train_ratio=0.8)\n", + " ```\n", + "\n", + "### [!TIP] \n", + "यदि आपके पास सीमित डेटा है, तो क्रॉस-वैलिडेशन का उपयोग करें। यह डेटा को कई बार विभाजित करता है और प्रत्येक विभाजन पर मॉडल का परीक्षण करता है।\n", + "\n", + "### डेटा विभाजन में सामान्य गलतियाँ\n", + "\n", + "- **डेटा लीक**: सुनिश्चित करें कि परीक्षण सेट में ऐसी जानकारी शामिल न हो जो प्रशिक्षण सेट से संबंधित हो। \n", + "- **असंतुलित डेटा**: यदि आपके डेटा में वर्गों का असंतुलन है, तो विभाजन करते समय इसे ध्यान में रखें। \n", + "- **पर्याप्त परीक्षण डेटा न होना**: परीक्षण सेट को बहुत छोटा न रखें, क्योंकि यह मॉडल के प्रदर्शन का सटीक आकलन नहीं देगा। \n", + "\n", + "### निष्कर्ष\n", + "\n", + "डेटा को सही तरीके से विभाजित करना मॉडल की सटीकता और विश्वसनीयता सुनिश्चित करने के लिए आवश्यक है। हमेशा सुनिश्चित करें कि आपका डेटा विविध और संतुलित हो।\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00' " + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e5wtV1Xv+5tVtR792u8kEoMkIGAUJEjwwEE9IHh5eHzCiYr40XPPJSjnw8XrkQN6RRHPOXJ8AKLyFHzw1vBSQQnEhMBNQtgJeZNkJ+wk+5Gd/eze/V6rqub9Y9aomlVdtXqO2btXr+4e388nn97pXnNVrVr1mGOO3/gNpbWGIAiCIAiCIAiCIABAsNE7IAiCIAiCIAiCIIwOEiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDkSJAqCIAiCIAiCIAg5EiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDnRRu/ARrBv3z598cUXb/RuCIIgCIIgCIIgbAi33HLLSa31eXV/25ZB4sUXX4z9+/dv9G4IgiAIgiAIgiBsCEqph5v+JnJTQRAEQRAEQRAEIUeCREEQBEEQBEEQBCFHgkRBEARBEARBEAQhZ1vWJAqCIAiCIAiCsL3p9/s4fPgwlpaWNnpX1pVut4uLLroIrVbLeYwEiYIgCIIgCIIgbDsOHz6MqakpXHzxxVBKbfTurAtaa5w6dQqHDx/GJZdc4jxO5KaCIAiCIAiCIGw7lpaWsHfv3i0bIAKAUgp79+5lZ0slSBQEQRAEQRAEYVuylQNEwuczSpAoCIIgCIIgCIIwZKanp/Hud7+bPe5lL3sZpqen12GPCiRIFARBEARBEARBGDJNQWIcxwPHfeELX8CuXbvWa7cAiHGNIAiCIAiCIAjC0HnTm96EBx98EJdddhlarRa63S52796Ne++9F/fffz9++qd/GocOHcLS0hJe//rX48orrwQAXHzxxdi/fz/m5ubw0pe+FD/0Qz+EG264Ad/5nd+Jz33ucxgbG1vzvkmQKAiCIAiCIAjCtub3/+lu3HP07Dl9z++9cAd+7ye+r/Hvb3vb23DXXXfhtttuw3XXXYcf//Efx1133ZW7kH7oQx/Cnj17sLi4iGc/+9l4+ctfjr1795be48CBA/j4xz+OD3zgA7jiiivwqU99Cq961avWvO8SJAqCIAiCIAiCIGwwP/iDP1hqU/Gud70Ln/nMZwAAhw4dwoEDB1YEiZdccgkuu+wyAMCznvUsPPTQQ+dkXyRIFARBEARBEARhWzMo4zcsJiYm8n9fd911+PKXv4wbb7wR4+PjeP7zn1/bxqLT6eT/DsMQi4uL52RfxLhGEARBEARBEARhyExNTWF2drb2bzMzM9i9ezfGx8dx77334qabbhrqvkkmURAEQRAEQRAEYcjs3bsXz3ve8/C0pz0NY2NjuOCCC/K/veQlL8F73/teXHrppXjqU5+K5zznOUPdN6W1HuoGR4HLL79c79+/f6N3QxAEQRAEQRCEDeJb3/oWLr300o3ejaFQ91mVUrdorS+ve73ITQVBEARBEARBEIQcCRIFQRAEQdi2/Je/+Qae/pYvbvRuCIIgjBRDDxKVUk9WSi0ppT6S/f/zlVKpUmrO+u+XrdfvUUp9Rik1r5R6WCn1ysr7vTL7/bxS6rNKqT3D/kyCIAiCIGxOrrn3OGaX4o3eDUEQhJFiIzKJfwngG5XfHdVaT1r//W3l9T0AFwD4RQDvUUp9HwBkP98H4Jeyvy8AePd6fwBBEARBELYW29GjQRAEoYmhBolKqZ8HMA3gGsfXTwB4OYA3a63ntNZfA/CPMEEhYILGf9JaX6+1ngPwZgA/q5SaOvd7LwiCIAjCVmWpn270LgiCIIwMQwsSlVI7ALwVwG/U/Pl8pdRjSqmDSql3ZMEhADwFQKy1vt967e0AqNvl92X/DwDQWj8Ik3V8Ss32r1RK7VdK7T9x4sQ5+ESCIAiCIGwVphd7G70LgiAII8MwM4l/AOCDWuvDld/fC+AyAI8D8KMAngXg7dnfJgGcrbx+BsCU9feZAX/P0Vq/X2t9udb68vPOO8/7QwiCIAiCsPU4M9/f6F0QBGGbMT09jXe/269S7p3vfCcWFhbO8R4VDCVIVEpdBuBFAN5R/ZvW+pjW+h6tdaq1Pgjgv8NITAFgDsCOypAdAGYd/y4IgiAIgrAqkkkUBGHYjHKQGK3bO5d5PoCLATyilAJMBjBUSn2v1voHKq/VKILX+wFESqkna60PZL97BoC7s3/fnf0/AEAp9UQAnWycIAiCIAjCQAIFpBqYWZBMoiAIw+VNb3oTHnzwQVx22WX4sR/7MZx//vn4+7//eywvL+NnfuZn8Pu///uYn5/HFVdcgcOHDyNJErz5zW/GY489hqNHj+IFL3gB9u3bh2uvvfac79uwgsT3A/iE9f+/CRM0/ppS6gUAvg3gEQAXAXgbgM8BgNZ6Xin1aQBvVUr9XzCy1J8C8O+z9/kogBuVUj8M4FaYmsdPa60lkygIgiAIwqpMtCPMLseYXpQgURC2Nf/yJuDYnef2Pb/j6cBL39b457e97W246667cNttt+Hqq6/GVVddhZtvvhlaa/zkT/4krr/+epw4cQIXXnghPv/5zwMAZmZmsHPnTrz97W/Htddei3379p3bfc4YitxUa72QyUqPaa2PwchEl7TWJwA8E8ANAOazn3cC+L+t4a8FMAbgOICPA/g1rfXd2fveDeBXYYLF4zC1iK8dxmcSBEEQBGHzE4UKALDUTzZ4TwRB2M5cffXVuPrqq/HMZz4TP/ADP4B7770XBw4cwNOf/nR86Utfwhvf+EZ89atfxc6dO4eyP8PKJJbQWr/F+vfbURjV1L32NICfHvD3jwH42LncP0EQBEEQtgdZGQx6sbTAEIRtzYCM3zDQWuO3fuu38JrXvGbF32699VZ84QtfwO/8zu/ghS98IX73d3933fdnqH0SBUEQBEEQRonAxIhYliBREIQhMzU1hdlZUyX34he/GB/60IcwNzcHADhy5AiOHz+Oo0ePYnx8HK961avwhje8AbfeeuuKsevBhmQSBUEQBEEQRoFUm5+SSRQEYdjs3bsXz3ve8/C0pz0NL33pS/HKV74Sz33ucwEAk5OT+MhHPoIHHngAb3jDGxAEAVqtFt7znvcAAK688kq85CUvwYUXXripjWsEQRAEQRBGjn5igsNeIkGiIAjD52MfK1fNvf71ry/9/5Oe9CS8+MUvXjHuda97HV73utet236J3FQQBEEQhG1LHiRKJlEQBCFHgkRBEARBELYtcWL0plKTKAiCUCBBoiAIgiAI2xKtNeKsKFEyiYIgCAUSJAqCIAiCsC3pZ1lEAFiOpU+iIGxHtNarv2iT4/MZJUgUBEEQBGFb0rfMaiSTKAjbj263i1OnTm3pQFFrjVOnTqHb7bLGibupIAiCIAjbktjKJIq7qSBsPy666CIcPnwYJ06c2Ohd4bF0FujPA1OPc3p5t9vFRRddxNqEBImCIAiCIGxL+qlkEgVhO9NqtXDJJZds9G7wectO8/P3pgGl1mUTIjcVBEEQBGFbInJTQRA2Ncuz6/bWEiQKgiAIgrAtEbmpIAibmvn1k8lKkCgIgiAIwrakJ5lEQRA2I91d5ufCqXXbhASJgiAIgiBsSyiTGAUKyxIkCoKwWRjLgsT5k+u2CQkSBUEQBEHYllBN4ng7lEyiIAibh7Hd5ueCBImCIAiCIAjnFAoSJzuRZBIFQdg8UJAomURBEARBEIRzS5wauel4J0IvTlhjj04vYn45Xo/dEgRBGEzYNj/7i+u2CQkSBUEQBEHYllBN4ng7ZLub/vu3/Rt+4QM3rcduCYIgDCbNFrXipXXbhASJgiAIgiBsS1JtgsRu5FeTeMfhmXO9S4IgCKujKUhcXrdNSJAoCIIgCMK2JMnkpp1WgFQDaapXGVEeJwiCsCGkmdRdMomCIAiCIAjnliTLJHaiEADQT92yieKEKgjChkL3KskkCoIgCIIgnFtSK5MIFDWKq7HU55ncCIIg1LHUT3DVLYehNVOdMIRMYrRu7ywIgiAIgjDC5HLTiBkkMp1QBUEQ6nj3dQ/iXdccwHg7xMue/jj3gVKTKAiCIAiCsD6knnLT5b7ITQVBWDvLmSrh4Ml53kCpSRQEQRAEoY5/vesYzsz3Nno3NjXU9UIyiYIgbAT7JjsAgJNzzIxg6plJnH4EWDjt9FIJEgVBEARhk3F2qY9f/cgt+JW/vnmjd2VTkxvXZDWJfcdeiUuSSRQE4Rywa7wFADg5x1zw8+2T+M6nA+/8fqeXSpAoCIIgCJsMynjdeUT69K2F3Lgmk5vGjq0tlsW4RhCEc8jJWWZGkGoSEw81SW/W6WUSJAqCIAjCJiPOMl7Srq+gn6S4/zG3yQ+x0rjGMZMoLTAEQTgHUF00X24qNYmCIAiCIFToOQYz24m3f+l+/B/vuJ5lAFENEvvSAkMQhCFCt/JF7j3FtyaRgQSJgiAIgrDJcDVY2U7cc/QsAODgyTnnMVST2G2R3NTR3VQyiYIgnAPoHpRwZSG+NYkMJEgUBEEQhE2GazCzndgz0QYAnJ7vO4+RTKIgCBsJ1UW71kPnSJ9EQRAEQRCq9OJiQsFegd6i7B43QeL0gruRQ94nkTKJjjJe27gmleMvCIIndP/mZxKlJlEQBEEQhAp2JnFZevYBAHZnVvKnGb0jVxjXOE7U7BYYUh8qCIIv6VrlpkkPWCdliQSJgiAIgrDJsPv5LUvPPgBAKwv0zjAyiTQxo5pE1z6JdmAux18QBF+8M4naWhxMHCWnzGBSgkRBEARB2GTYtXOSyTLQJIuTSczlpnkLDLeJWi+WTK4gCGuHjGvYdeapdd9xlZym7vXagASJgiAIgrDpsDNePXHaBFDUBi4xMnt0GAu5qdtYW5bK2Z4gCIJN6l2TmADRmPl34hj8ub4uQ4JEQRAEQdhk2BkvyWQZKHBzlYwCdiaR5KZuEzV7QtcXp1lBEDyh25WXcU2LgkRH9QSZ3TgiQaIgCIIgbDJsian07DNQwMfJrObGNS3/TKL0rBQEwReSm6aa6ZSsE6A1bv7t2gZDgkRBEARB2NrYgckw5KZxkmKxN9oZSwr4lhiZVRrTDnl9EkuZRKkJFQTBEzswZNWXlzKJjjJSO0jUq9/rJEgUBEEQhE1Gf8iZxNd/4jZc+rv/uu7bWQu0Is+pEUy1hlJAm2lcYweJ7CbYgiAIGbFPkEiKB67c1A4mHbKKEiQKgiAIwiZj2MY1n7/zUQDAqTlHWdMGQCvynBrNJNUIlUIUKAC+clPJJAqC4EeqPVQhFOCxaxKtINFBoipBoiAIgiBsMvpDlpueP9UBANz/2Ny6b8uX2MfdVGsEgULElpsW23AdI9Rz6PQCrr33+EbvhiBsCLYqwfleTj0S2UGi3Vtx9TESJAqCsClZ7CV455fvF2dHYVtiZ7yGITd94nkTAIADx2fXfVu+FC0w3O8JaZZJbIVZJtExK1jKJIq76Zr4lb++Gf/5b77B+t6Gzen5Hv7y2gf4DpSCsApeQWKeScyMa3zkppJJFARhq/I3NzyEd375AP72hoc2elcEYejYk4lesv6T670TJpN4cs69Uf2woZpETtAcpxphoBAFQf7/LqTibnrOoMzvPY+e3eA9aeZPrr4Pf/zF+/Clex7b6F0Rthi23NTZBCutZBJjD7lpIkGiIAhbFDKaODq9tMF7IgjDJ/ZZfV7T9sw2RjnbQ/OrXpw6W8mnWZBImUTXSVos7qbnjEsftwMAcOfhmQ3ek2a6WR/Nh0/Nb/CeCFsNO5PovMBVDRJ9+iQ6BJYSJAqCsCnZN9kGAJxgGmn8fw+cxB/88z3rsUuCMDTiIbubUrZslNtgpB6TrUSbIFEphTBQ4m66AZyX1bsenV5kjbv67mO4+eDp9dilFVy4qwsAOMLcR0FYjZJxjeuCU16TSHJTx3lQYgWJkkkUBGGrQn3NTszygsRf/Kuv44NfOzjSGRFBWI3esPskZoHQ4ghfN3EpSHTbzyQFAmWyiFGgWJlEbvZRqKdwpeUdxys/fAuueN+N67FLKyD32yNnJEgUzi1rq0nk9km0axIlkygIwhaF6o9OMoPEnWMtAMDhITzse3GKV37gJtz6yJl135awvRh6JnETyE3tFXlXh1MjNzX/boUBqyaRJIhiZrI2fGpJhw2dF6fmeTW5n7rlMH77M3euxy4JWwR7jYlfk8g0rrHlpunqgaUEiYIgbEpoYnaSKTd93E4jGzp0ZuGc71OVgyfnccODp/DGq+5Y920J24t+kqLbMo/wYUyuqc3DKAeJiU8mURt3UwBQqhxoDiJONTotEySKcc3aSPJM4uieW3T+a8fzg/hv/3A7Pvb1R9Zjl4QtglefxGoLDAenUgAVuakEiYIgbFFoYsHtUZYHiafXP0ikDEXCnFgIwmr0E412GKAdBkORmyabQG6aeGYSg0xKGAbK2fAmSXUepPelBcaaiD3lpsOEMve+SeNRXlwRNhY/uWk1k+gqN43r/92ABImCIGxK6MbKlXrtHjeGN4/OrL8rKu2a68RTEFzpJylaYYB2NJwgkSbJXOOaWx4+jW+fmFuPXVqBfZ25TsrJuAYAQqWcg4A4TdGVTOI5Ia9J9AykuNk9H/qezxuCq3gZJp++9TAuftPnMb+8etAgnHvsxa2+6/lFQWLUzd7E8fyyJaYSJAqCsFUhiQa3kTWtWg/jgUiTd8kkCueaONFohQE6UTAUmV4hN+Vdby9/z4340T/9ynrs0gpinyAxteWmyvlaTVOgk7XhEeOatUH3cN9M4jCy27RI4uw+mUELEMeZtfPD5P3XfxsA8JC099gQ0lQX95L1Nq6xXydyU0EQtio0IeQu7CZ5kLj+EwuavIsaTTjX9NM06+8XDCVIoetmlGVzdibRVYaealtu6p6VKmUSmTehmQXHCd02gU7fZeYCBDE9hONJ3zE3a7973BilcV24fZhZ7OMFf3Id7j7K6zdJZm5yXm4MiRUkOi96U01i1AFUwDCuse7fkkkUBGGr4ivhpAn1Qm/9M4m0Mi7uh8K5hprAR6F7b7+1QHV3m6Um0TVwtjOJgVLO16pdkxgzgvTbD03jGW+9Gp+/41HnMVudJM8kup9bdjA/s7j+wQ2dT9wgcVdW3jCMTOI3Dp7GwZPz+JMv3scaRyUY00M4jsJKUq3zBaee672cArwgAsK2u3FNSW4qmURBELYovoFXLjcdQlPwZZGbCutEolFkEoewCEGBKCdIHHYtbpLqvH+qqywwSZFnEgNWTaJGJ2uBwTHPuvfYWQDAtfcddx6z1aHDx5Gb2vf/YQSJdP5zpd0TbXOODKO8YaobAQBml3jb2pVlO08z23sI54Yk1ei0uHLT7HUqBMKOp9xUMomCIGxRfJMnvjWJj5xawPGzPLMbWnUehrGCsL1ItUaggFaoWJksX2gbHLnp0pBbGpgVeV6dYKqLPolB4B7YJqlGFCiEgWLVRbczWdkwzIY2C4lHTaIdmA+zTyj3e6MFCF8pLYdWdm5xg8Qdmdx0lM11tjKJRt5z1flekmcSQyBsefZJlCBREIQtSmLdTDlZRZrscoPEH/nja/GD/+sa1hiRmwrrRZpqBEohCoZTkxjnNYmpcyA1jLpfmzgpZFs+clPjbsoIEkOFKODJfVuhn9nNLQ+fxus+/s0t6ZScZ+kYCxB2ptjXFZUDBaVc45rcuXUICyb0nJld8susSpC4MaR2JtH1XkI1iUFo5KbO7qZ2kChyU0EQtij2s5qzukuT3YUhyE17EiQK60SS1SS2QsWSOx6fXcJv/sPt7FYWJedQxwkvdxtrxa7t8TGuCZRyViiY4x9kxkHuxz/KtsXNSL3mw7fgn24/uiUn8hSYczKC9vHjBm4+0OJiP9GsQL2f8D+bL7TwwM0k0riZRWmBsREkJek6N5MYAWHk1ydR3E0FQdiq2Cv+rCBxqMY1mbupxIjCOcbITRWiMGDJHd/xpQO46pbD+OxtR1jbsycvrtfbQn+4k85Sg3sf45rAPZMYpxqhgjEOYhz/nmdGigxQTm3BurE45QdSPucjMbccs0sA7EUSzncXe5jy+JJnEpkqGcrk9oYsDxcMiS6k6+5BYvZdqdAEiqnjdyfupoIgbAdsiddy4v5wW2sLDE5NFtWhSCZRONeUMomx+/k1lmXa5pjZhiTVGM9MOJyDxCFnEhONIpPouI9xdhwBIFC8msQwCDK5r/vxp2PHzSztGhteK4Vh4yPJ9A0Spxd6eNrvfRHvuuYB9x1E5XnjoVwZRk2ir8uxb72lcG5IrXu583dIwV4QmUBRuwaJUpMoCMI2IPHMJPYtl0af4O3RGXfzGlpxFndT4VyTaJP5Mu6m7uf/JDkgemQbKEh0nSTbctNhmDel6epy05mFfqkeOS0FicyaxHxix5dJsvvtTZhMIjdIvPngadz07VOsMcOGAql+op3vyXaQyAna5rLv/sM3PczYw7KhCE+5Mny5KX+c3z7e8vAZfO3ASa9tCgWJzoLEIHDPUuc1iYF/JlHkpoIgbFXsFX/OQ9uehPhITh9jOJzS6vFWNJsQNhatM7kj0zhlqmOCRG4msZ+mGG+bsa6TUTuTOJS6sdTuN7Zye8txgme89Wr8n3/zjfx3NEEDqE+i+7bCMOtTybi+SdLn25Sd22/vivfdiJ9//02sMcPGvie7ZhN7sd/9n9YATs/zjqO96MCSmybDl5v6juMGiS9/zw141Qe/7rVNoYBMyFpRwMgkZvdvFRrzGtcgUYvcVBCEbUApk8h4aNtZFx9jDc6YXiaDjVP3FXJBcCGhiUXIczfNyu8wt+zugJimGlqjkJs6B4nFJGSpt/5BYppqdKPmmsQv3fMYAODrB0+XxgTkbhoo54xnkqYIPdxle7kBCu94kCvq8VleG57NQClIdJRlluSmnPt/9lru7dg3k9j3DMB88O2XSsdE5KYbA0neI5+axCACVMCUmyrr34ORIFEQhE1Jcg4yiT7ZDU4zcXvCM4yVZGH7kKS6kJsyzmOarM4x5Ka0sDLGrEm0F1SG0TMx0UVbirpjctZyb6TG4eVMors03J7YcRaAcrkp895Dn4ebAd4M+NyTfeWmnKxveXtre95waxJnFvus+ncAJdkzR71SSGLlGbURFPXljPpmuwUGV24aROY/kZsKgrBV8Q0S40R729ADPOOaci8vWaUVzh2pNq6cfLkj3yafJpETTLmpvaAyjHYYaSm7uvKY2L1V7zl6Nvsd8kyicTd131YUGHdZH+MaV2MdYpi1bcPGDsxdzy373sqrSfc7fnHit+DX95SbPuP3r8YV77uRNWbtDqx+x2YY9cZbGbqXm3ZGHpnEIHTKCppxcTamJX0SBUHYungHiWmaZ0RcJ3f2Q9A3kziMTIqwfbBXnzk1iTR55ARtNPkcYxrX2Nfo0DKJmZlM3T3Bvt7vPjoDwDRip7YZgVLOGRiqSWwxW2Ask9yUmdGi13OzS5sBe+HO9Z7cL7mNMs5laxwnuIlTv8XFtQT3dxyeYb2+5MDKWJSk69tXbroVFy6GSele7novyVtgBEx308QElWHLKfsoQaIgCJuSUh0Ly0igcGl0XbWzJyRLjIevPXnhjBOE1SjcTRUra5BnsjzMN7gtMOxrdBiZxDgxEtx2VC/Bpf2Z6ka451GTSVzqJ3lbkJDpbhoq09vMR27KzWhR5nHJc0I+yvVmqS4Mh1ydYu1MLHeRkOD1ZeS3gLG3N4zjX/5s/MDZN9ibZzolC2XS7F4ehUHJkGnwoOyYk3TUNbjUWZAYhCI3FQRh6+LbAiNOde7S6Dq5th++nJX8cnC59TIAwsZRuJsGrBYMNHnsMbKPlGko3E0dAynPa9SXQrZVHyTS5/j+i3bi3kdnARhlAAUoSrk7RFJmybcmkS03JUmg533Ex8l5WBhXWjMd9alJ9GmBBPDuyXGSYiJzBmYtSg7RuMa3l2MuifU8tzj1zcJKzIIT0OaoEko1iUGz3HTuBHD7JwtbX5GbCoKwHfBtgREnKbvhtu/EoiS3kyBROIeQu2nEacAMv0xW3zOTaF+jw5gkk2wrCtXAmsQnnTeJQ2cWoLXGUr+Qnxt309W3Q58rDAIEilcTSseSU8dov943kzg/hEyuL2mq0Ykok+h2XEo1iUwlCcFRd5jFRX4mnc6nYZjCeGcSSW7qWa/JqW8WVkImZBHHhMzOJA6Sm978fuAzVwI3vTsbl5jXhy1xNxUEYfTRWuNPr74Pdx3h1V/41iT27Ye9aybReh1r9Tn1m5AI24s/+eJ9+B//fA9rDE0s2iGjATP8gsQkzyTyZNqx5zXqS6oLx9e6Y0L78117xrHQS3B6vmcyiVFRk+jibkrvE2V9EjlOkra7Ka8mbm3ZnlGWBMapRqfV3LqkDgqax1ohq/6u760KSTFJmUTnxUU/aauvEYxvWQSdz/3Er1XTKJ9bm4GScY2z3JRqEsndtOE76M2Zn49kJkh5JjEEEgkSBUEYcZbjFH/+bw/gP72X5+SWpBqtMDMSYE541zLZ5RjX2PVNYlwjNPEX1z6Av/raQZzJ2jK44O1uSpksD4ketwXGRmQSoyxwrvt8JvsKPH7POADg2yfnAQDd7HMZd9PVjyVNpAOl2JlE+17FykDGfNmiHWyM8kTe9LfkmYnRvXuiE3lnElmtMxKrTMFxnP39cgJZ3566vu2dYk/pLiFy07VRaoHBNa6h+sImE5o50xsWi9PFuCAUuakgCJsDWs3lSl0Sy+zA9cGmtVkpHcvH8SYkAH+FtpNlKXwzAML24dZHzji/NpdWBkEma3OU6eWZLPeJKE0+qQWGa01WqSYxGYbczm6BUZ9JjIIAF+0eAwA8cNysslOAEii3/nKU1aOaRFezG6B8r2JJfj0yiXaQMr88uvefONWW4zTPFGm8HbLLDQieKiTFRIf3vKFtTbRDLMeJ8zXq28ux1KaD85zydIolJEhcG7YCwvmeUO2TqBvGzR03PxdOF+PI3VSMawRBGHU4mTmbcrDHW9nlTkjshygrk5jq3OxA5KZCE1mbPtY5Qo547Yhkem4Ty+U1yE3JXMQ1Czl0uWm+Il+f3TZb/koAACAASURBVIuTFGGg8LidJkh8iDKJJXdTl+2Yn2Fg3E05NaF29spZWobiHsSpSbSP+ShP5BPLuMbVuMM3SLRbj3BNyMbyTKLbuNzwqRMh1e7BX6m/LqcnY+oX7NnZK86CKyH19muDnJJbnPryUk3iIOMayiSeKcbljqjSAkMQhBGHrPG5dRip9qkt9KutKtWWeK4+y4NUaIL6r3Emdmnubkr95dzOZZ+aRMqU5Zl7x7FDl5vqQrZVN9mNU40oVNg11kKggCPTiwCAsbaZCinl5lRKk+oo9G+BAfDUEz4OlH3PrJkvWmvcd2yWPS7RhdzUVd1RLFyEzHYP1jFhnJNpqjHOPP/pecOtZbQDBU4GOPG83nwkuL01SlSFgsJwi1FfXqpJHCA3na0JEvM6RskkCoIw4vhmEuOkkJu6TpxolXqsxast8TUESFNLoicPUqGBKMgkyYxzpHA3zTIwTFdIn0wiN3OfpEWWdDjGNWZ7g/okRoFCECjsHm/jaBYkUoASBnCSjtLCVrcVGrkvR25q7ZePw6xvJtH3PsvhM988ghe/83pce+9x5zFUApD3SXTMJNL3NNYKvdo9AHwTMlKguEo5i7pJ5nPK2sc5hnOor1FOkupckeAacNvnljzb1kaqTX1zOwwYmUSSm2ZZwTp30zQBlmeAqAvEi0B/MatJjERuKgjC5oAe1Ipmk46k2kyS21HgXCPlm0m0Jy6cyZbJJJLcVDKJQj2UDeScI2lKdSxZJtFxcl1kEt3rGCkIakUBAuV+3aS6kIQPYyKpS30Sa+SmqUaYBeR7Jto4Or0EwDKuUW71hTSR7rZCBMxMov1aTpBIUsUk1c59Me1jvjiEFhgHshrPex496zyGDgfX3dSWQPOCbc92RtrUlyvF6a9bqeV1XZS0a0kZ/S1LGcF1d271M8kRVmIyieY54FWTqMJ6uWmSGaFNfYf5uThdMa4Rd1NBEEacxZ65KXLlpiTR6DRIy+qo1iS6mnfQA7EVKubEoghIpSbR8PCpeQmYK4QhyU0Zq/9WQATw5aZmjNv5n/cFVM1SzjriNC2Mm4bkbhoo1TjZShKdB+S7J9o4djYLEsm4xjHgo3vWWCtExAwS7Yk8K0i0gxsPSeAwMom0IMA1hAEKKbPrOZlYEmiO0YuvuQvVu7YZ5z/15eTLTf2ydLGv3NRy/HaWm9qyackkrolE230SGTWJKjDSiSAsCqVLb5wFiZMXmJ+LpwvjmqAhsKwgQaIgCBuKt9yUHtoRb9IKFJMZd+Makg1FvCAxTdEKA7TDQFpgwEy0/sMfX4fXfPiWjd6VkSKvSWTZ5Jughsa6ypRKxinMrA1db64TySQFojBgXaNrgcx8muoE6Z4BAHsn2vnvx6xMosta1VKeSQxMb0VmJrGQ4PrJVF3vQcOuSSTzGU7Wkua2RQsMXr1rJ2JI9FANpHiZRO75TxP+8TxIdP3e/DKCcZJighnsme2leZDoLFuXIPGckWbGNa5ydzMoMRlEoDngIzlpHiSeKYxrRlVuqpR6slJqSSn1Eet3r1RKPayUmldKfVYptcf62x6l1Geyvz2slHpl5f0axwqCMPr4Bomp9ggSK/3euC6NE21eT64kNRPrTiuQ7BmKie5X7j+xwXsyWtC8gG1cE4CdSbRf5xwk6qIvYLvBpn16oZe3lMj3MZv8dMLAy1qfg873McsI1ky2kjRFlGVt91hBIgU3oYJTfSEFQV6ZxDRlL1IBJgDgZmV7Q5ab5plEjpFMnknk1dbSoetEIdMAiF9frrWGzurGOpG7uUhhXMN14fYzN4pTzQ5IgbJTuLMiQYxrzhm0ABFyFpx0VlsImGCxriZxRSbxjGVcM7py078E8A36H6XU9wF4H4BfAnABgAUA7668vpf97RcBvCcb4zJWEIQRZ4ncTZnjyDa6zXho0ypdO+TVltgGBJwHYpKmCJVCtxWK3BRicNAELUJwjk+ayU0p6HGV3PnUEtktH5oWZa78u1vword/pfQ3mvx0WuufSaSPHygz2arrd2hnEi/ZN5H/vuiT6FaTSAtbVJPIkjt6TMgBE3BMMuubh21c08k+F8lxXbBdSgFOdjvNthk412gCfn0S7Ux6JwqdM/5Jbq7j727K6ndoyUa57VW4x9/XpVcoYy9ABEH9fasWqi0EmttZ1AaJqdUCY8SCRKXUzwOYBnCN9etfBPBPWuvrtdZzAN4M4GeVUlNKqQkALwfwZq31nNb6awD+ESYoHDh2WJ9JEIS14Z1JzLJ0vBqR4mHfYthNF4Y3ETNI1AhDhW4rYMmGtiqbZcX50OkFPP0tX1yRGVsv6LzkSZk1VBYQ2e+xGmlmwAG4139RZsPYtNcHRd8+aY7VNx85U9rHIDCLMuu9QJBamcSwIZMYJxqtzLjmPz3r8ZjqRHjy+ZO4aLfpm2gmaatva8kKEqPALbC094HbSoReO9nNgg3HwGHYQSKdi5xM4ooenIyaRLqPO9dxoTCFiQLlvJ90LuWLJEyZ9rinKyrAbWWRoh3yzKUAY3pVmLm5LjZJJvFcYM9JQlV/36qlFCQ2tMDI5abnm5+53DQEwmi05KZKqR0A3grgNyp/+j4At9P/aK0fhMkcPiX7L9Za32+9/vZszGpjBUHYBPjXJKZsuWk+kcwMb1xXW/0ziZncLgqlJhH+9v/D5ot3H8PsUoyPfv3hoWwv74HH7NsWZu0cAPcgMU5Sttw61ZWJTM22Ln+CqfT4xkOn89+ZlhMBOi3edeMD7aNSymQEazZnZxJ3jrdw3Ruejy+8/ofzNiKBGlwTdHR6EX/wz/fkjenH2iHCQLEyWYmd7WHW0o0x20T41DGuBZrgLjGkrf6ZROSZdK5sNwp46g463CS37rkGlxWjNFcJqG/dZD/RiMLAGKC4thJJTSYrb0EictOhYi9AhA0LcLWQbBRolpvGy+bn2C4jL12wjWtaI9cn8Q8AfFBrfbjy+0kAM5XfzQCYyv5W9VKmv602toRS6kql1H6l1P4TJ6QeRhBGBaqV0ZrncJpkJhW8lV3zM1QKrYZeanXQ6jO7JlHrbEISiNwU5cnELKP/17CZyjI2w9pHmkyy3U2DIpPoms1KUs02CbGvm6Z6P5oIn5zrlfYxUGBl+32hXQoyA4i6QNauSQSAvZOdvKYTQKPhDfHaj96KD37tIG552GRLu1Gw6pgqdr891yCdeglyW/fQMVdqODWJeUacaQgDFCUArkFKqk2WuhUEbLlvFJrWMa7bKibyYC1KJvlzg2cmY58X3PKGKFBoBcq5tjN3/GZmt0t9Ekd4wW/UsRcgmmTyOUduBW77uPm3XZPYmEnM7sVhBxjfUzauGSW5qVLqMgAvAvCOmj/PAdhR+d0OALOr/G21sSW01u/XWl+utb78vPPO430AQRDWDXuFm51JUTwpWyHtMO0sfNxN+4l2rhtIEmNt3Y3CdTfu2AyU2y+M7sRistMCAMwurb7Sula01kVNIqtPIgVEzEyiFaRwZXNBgIH1fgBwZsEKEhPbEZJ3/p+YXWYtGjnJTa1MYh1KKQw6jLcdmgZgMoqACYyjhm01kaQpO2tGGccJZisF+t6mOtFQ5Ka0PU5ASsFMECi0gsC5LRGpNFphgCR1vyf3kxStwGTbONsCkPfl5dbAj7eZ7qZraGURhbwFUNrHDlPuW5LEygKoN/YCRNN9K+cDLwA++6vm3yQbBVZ3Nw1bwNjuirtpBCQjEiQCeD6AiwE8opQ6BuA3AbxcKXUrgLsBPINeqJR6IoAOgPuz/yKl1JOt93pGNgarjBUEAcCdh2fYPQiHiT154fXXMo2xfVZ2wyDg9XuruKI6T67zTKIY1wCbxzad4ohhZBLtua1r/zuAMonI2yk4q5S0ZvekK8lNm9pLZNfEmYUisDaZRJ4jJGBqQp/9P7+M91//becxtnFN0BDIGvlrc5AYDjCuse+hD59aAGAMb1x7KxK2bNS9Kbt53Rjze6PAfbITse8/X7rnMRyfXWKNKWpreQZMAPXgZGT3UuotZ75PV3llnJhAqsmlt3YfS8Y1/OfNGLMmsdwnkRdwR4FCFLjXadI+diKe3NSupRPjGn+SpFiAoBY8qy54mBetLjfNM4ltK0hMTX/FEZObvh/AkwBclv33XgCfB/BiAB8F8BNKqR/OjGreCuDTWutZrfU8gE8DeKtSakIp9TwAPwXgw9n7No4d0ucShJHmhgdO4if+4mv42xse2uhdaaRsyc/IHKRmksx6aNuyoTBwlskULTD4GZggl5tKJrGXJNa/R3diQSv5wwgS7foyTiaRMimUGXOVm5oghdc2I58QUgDWkKUDTCsMIs0yG9w+iYfOmCDs2vuOO48pahL9M4mDahKnreD30ZkltKMg71PJChIT7R3s+daSTnZ5/V37SYpX/91+/ML7b3IeA/gZMNGhC/Nm4u6fzRjXZEEiw4QpCgNPuSmzT2jubsqUm9oOxMyFo4AbbGu/mlA6J8dboXONprAS+9yiBaxVlQn9hUomMQJ0ihVNXmuDRKtP4qjITbXWC1rrY/QfjEx0SWt9Qmt9N4BfhQn4jsPUE77WGv5aAGPZ3z4O4NeyMXAYKwjbmqMzZiX4jsPV0t3RwW4o7WrIAJSbG7Nlc5nhQeK82lpeyeesJEeBQqcVSpAIv0buGwFNwochN7UDDNdJpM4DIp67adWkghtsDGxUn32fp+fLNYnUpoblbuohfEita3twJrF52jMoK3h8drn0/3QvCDKJqqtaI7FrEpmZLG7rjNiSqXLkpvT+D56Ydx4DFOcgp0aQxihlen72HcfG2b2Vakpdg6J+otHKA1LHTLotN2UoUGjcONu4xs/dVFuOr67fAT0D2e6y1sLFKKtCRh06jtFqJmR2zeHybGFAAxQ/q3WJJblpVpNItYyBm9w0Yn2ac4TW+i2V//8YgI81vPY0gJ8e8F6NYwVhu9NmNl/eCEqZREZvpzSTm4bKPWizZXOuPdEA+4FobpnuTZHNym43ErkpsHnkpjRJOzuUTCI/SLSlXjSxcKnJ8jWpKGUSA4W6eWSRSeyXxgVMiZ4vhdy0CNxW7GOSIuw0T3tI7lVHVXo5s2g+Z2RN7GxTnCbiNGUHiXRsua0zKCMx2Ylw5Myi0xiAdx+u2x4ns2rfk1uhcl+4yO6t5EzrnElMKJPIWFystsBYd7mpX01ikmp0IrMAyv1s3pnEdjjSqpBRp7oAZ/+uxOyx4t9LZ4uMIGDko0AmObXub6VM4i7jbjp1QeZuGo2U3FQQhDXywj+9Du+65gBrTCcPEkc3i2WvmrrWlZhxmXGNT03iANlc07aAYkWYs5JM7qaj/B0Mi81iXEOGFq4T1rVgZ7Nd5aYl23RXiRKKyUeX2YKh3MurPiClie3ccpx/zySJbUchLyPi/MqCct1kfaASpzqXJ9YxyKn0+FmTSXzXLzwTAPLG9hSku2Ru0lQj1cjdZbkZKTIX4d7vuq2Qdb35TvppeyyXauuezMqAZdLhVkByU8dMIkmgmfWP9j46t5cgU5goRKA4clNPCbouDICcXWLpHIm4EnTzuu4Q2ttsZexza6AqZO6x4t/LsyZrqCy5KbBSPmoHieN7gHgRWJ4bPbmpIAhr58ET83j7l3ieTO1w9DOJJbkpoyaRshQst7ncpbFZNte0LYCfgaEaKDGuMdjHbZTPSQoOOa6VvvhkEm3b9IAhN61mErkOiIOuG/t304u9/Hdcsw/AL0gp9UlsqEmk/WlCDahJJLnpC7/nfNzwph/FVb/2XADlTOJqFFmbTCLpev/R1e+Nd98yQaL7uey7gEPb41w39rnFzYAFypabussrI7bcFPk+NvXgrN1W9jpzDbg7XNvnBeda0NosnLYi9xYYeQuSiFknm1iZxBG+l486SWVOAqD+/Fo8U/x7ecYEiXYLDGB1uSkALJzMjGuyFhirXKsSJArCFoYewCM9IfdssJ7qwgLdNeNjZ2CaZHODxo1xM4lajGuI47NLeOT0Qv7/nEnrsKHsNkc250viMSG0DZgo5nGZl6+sP3LNGpiflIGvCwLs7MqZeTM5IXMRbk0iyfIUVpdvEqU+iQPadAyqSRzkbnpybhljrRATnQgX7hrD93yH6b7FyeRWG8e7Zntyd2V2w/kiS8QJNtYcJHLkptaCRxS414mnWcBPEl9+cMmXZJo2Be6fzx7XablfA3RejLVCVnuJhCS4Ab9OP8qMU7jn1ng7kiBxDdjuvmGuSqg5nqUgkWoSs3sZBYtVh9OqcQ0RRMbdFFg1m7ghNYmCIAwHmogPK0j85DceQT/ReNVznuA8piQ35TSqz2RDYcOktWkMQBNJtzouoJhcjzObItvmCnGq83qY7ciL33F9qT3CKE8s6LpxlSOvBbu9AXeCxu2TWM1IcV2Bg6yXV924JNW59Jt6JcapRrelsl6m7osk9FrlHiM69UlcLZPYVMsIAGfme9gz0V7x+/z4OwQ3lCGiMgDXTGIuE/YMEsfaoXNACvhfm7Q9zgJQecGDUSeusxpByiS6SkDTwtxlftmt5rh6vbk+b2zDmxYjc1n0xeTJtFOSm4bumUQ7S9piuMvaC6dSk+hPXX157fllB4krahKbMokVuSlBfRKBItvYwPacrQjCJsO3zyE9OIc1IX/jp+7E73z2LtYY2ySBNbnIVk2b5G9aa9x88HTp2Ln0e6vdlsfkmpwkA6XyzA2nD95Www4QgRGvSbRq6tabYkU+dM6Ia11MPnO5qcM9wrffXt4nbsAkOU40zpvsACjaYJC5SKfFk5v6LGoVxjVFv7HqfTNO04F9Ege5m55e6GHv5Mog0dm2HkWGqBUGCBRDIukpd7eDy1S7n8/eNYmagkTeYh9gudIyArBAIV9048grw4AXtK0wPGOWKVB7g8S1l2P2uolOxFpcoWNiFiX5WdJWqNhS5vE2L5AVypSk/MpVblqtScxCuYFyUzuTGDbXMVaQIFEQNgH2M8n1AQUUN/JRNk3pJWmxss6ZXGQP+yCon1h8+tYjuOJ9N+Ifbz9ajHGQzdVuK3v45sYRDvtJ7x1lNYkAz4RgK1EntR3lIJEmWKle//20nSvZbqOlOhaG3NHTXTMKgsZJcpym2DdlgkRaEEh01gImNFI718UuryAx2yfqkwisDIqSZPU+iUD9otzp+R52j68MEgfa1lfIj2OY1cS5TuQ9jWuqmUtncxdPKXiRSeTV0QHFuez6eDMBf8CXm6aF3NSnTygnk5hYizlhoJwzx3kmsR3x3E01SXCD3Hxr1THZORgGASuTaEugOV4CQhl7TjJwwWnhNNAaB6CApWkgXgYic791k5tWMomOclMJEgVhE2CvCp5l9G7L5aYjbJoSp2ku43TtkQUU0rGo4eF7Ys4YTdxp9YgsisTNpMR10koGNO3QPZNoF6STm+F2zSQePrOw4nejvPpsT5LXez9tSWA/0U7nZGKvPrMyWVSj5tenj66bpkb1lEkkuWmSIjeXMttzDBI9FlNKNYkNxyROB7epGOQueHq+h701clOWcY0VbLcCvrlIKwwQetSNcWWqa61JdD2P7TEmk8io96Nzi5lJTK1MIru/LilQuBn4PJPIG8fN0qVUbxlwnFvNz9xd1ssUaXTv5aNOseBnLTjVfQeLZ4DxfUB3pwkYe3NAe9L8LZebVt1NKZNYlZuGIjcVhK2EfeOuyvYGjzM375GekMca41n/QU7LAbLXb5KW7R43K2VnKn3bgCIjwnloh9ZklxMkRoFCK8oK0rfpw/S+Y3MrfjfKEwv7+11vwyHbJRBwC6RSa2LHcTeljHtuwOTRJ85cNytfEycak50Q3VaAM/MUJKYIlXF25GzPT25aBLJBg2yLFnuayHtO1hzK0/M97K4JEn3cZSNPd2WqwfNxNwXcg3Tf1i9rMWEKVLMqpA4T7BVBOqedBTcgKpmLcBQoFaM0tpstN0hMC8dXbrAXBibD7dO7M041S+EkFKSlbLP5XWNN4vhuE+wtngZ680B7wvyt0d20B0CZv7fGgKhrfq9EbioIWwr74cKZtFJmrjfCctN+UjSXdq2jAIpMYpO0jAJPqo8CKiYJDHdTckXMg8Rk5fH8i387gN/69B24+eDpyrYUwoBpVJFqPHB8ZWC1WbnuvuPY0S37pI2ycY19HnImaV89cAKv/8Q3WduqTuQ5UuYwKKSVLvPWYmKXZfYcm6bb2Z6m2ipjJBVg93i7kJtWFldcM4R0zDnGQS6TrThJB7qb5sFlZdxSP8FCL6k1rqHMpMu1TRmCoiaOL3dshfXGQYPGceWm9jno0/PQbMv1Xmd+hllNlrNxTRbsUU0iJysYBp5yU2Zwn1avG+eg1PzstkJWVj3VyB1f2e1tlFmAcD+OabaP2bnFeHYLBSXjmkELTr05oD1lZKML1SCR5KaV7yDpmSwiOYCR5LQkN5VMoiBseuybBmfSSquro9xuoJekrCwKQe0lmqVl5rOftoJE+6HNcjfNahIHZRL/5Or78fGbD+GK992IfpKWJoQcSRoA/OW1D+BFb/8K7j121un1o843HjqN5z5pb+l3o5xJtIMnzqLML33wZnzutqOsjDGdp/k14GiKBBQSPYAnd+TKFlOHSXI/MaYwO7otzC5RCwyUM/CumcTsmHMWEkp9EhuCvSTVA41rKLisjiP5bL27aZC/92rQd21qEhlyUzuTGPGCS/u+5VOTyHre2EEio00QULibOgdg2f2fKzfNyxQYQbptLsLJdpaDy4C1SBgoE9xzTISSVENlxjXceldauHA9jnYmEeD1OBYK6koHas+veAmI2sD4XiuTSHJTunHVyE1D657VGjM/o7YxswGARDKJgrDpsSednJVFegAMw8rflzjR7P5fQDHha5KW0UR/ukZuynY3zbIkrSxrsFowe9O3T1UyiSSJctve/oeNk9mjM0tOrx915pYT7J3s4KcuuzD/3ShnEvul642/nwse1yjHudJe/We5myaWBJqTSbHkdkGDuQi1pJnsRpjLWgvEaZo1EqdMIk9uypkg0z4FypabVoLELLBoomkl/9ScCRLrjGsG1TFWia37T8QJGnR5Is9pXRIFQR5IubdgKN5/scdz16x7j9X2EciC+6DB2bFuXJ5JpHuy6/aKWkZ32a75mctNnWWjxbiIE1za/UUZ95+idzC/3jVgZiATK5AFRnvRb5SxnaOjQfOEuGfkouN7gPlTWWaxkkmsk5uGloJn/qT5ufe7RW4qCFsJezLBWdmlh+AIx4joW5lE1web1tr0hBrgCEYrqTOLVpBYmVy7PrTjrNYjbMhQAMDFe8fxI085DwBwx+GZFfbngHsmMWdI35tp17F+G1vqJxhrhXjnz12Gg3/4MgBwdt9bK4fPLLAmukDZQInjDEyqnoVl9zFxNUhk1Lty3U2LYCNgGXcUxjUmA9+cSQww2YkwtxRn4zIZGzeTmB1z7gQZKDelru5nqgf3XiwykOXfUyaxrgUGp0+lHaRHoXKW18drkKkGAdiBlP06TqBuP6e45xZ9b5wsHfUEBNxNz9JUI1TwkpsGWZlCqt1kuFXDJ86iQJDV8nKNa9hZ0pKUOXA+jlSCwZX7CmXq5Ka110CyXLiUnj0MQAOdLJMYNBjX2L0UAWA5M/E7/3utIFHkpoKw6Vmr3NS10J745zuO4rl/eI230QqrcXOS5vWDPi0AmhzBSO5kZ15dZHP120tzswl7+6XtJRr7Jts4f6qDgyfnV9imA7yay2HyxN/+Al79d7esy3trrbGYBYlKKSiqfRlSJvGH/ve1+JW/vpk1pl8yrnHfT1pEWOi5NekGyu6mgNtEPq2RKLn1SSyClDazcTZtp6mXIGX2J7sRZrNMopH2oTCucfzOKTjkmXaYn0o1N6XW2eS7CUoyVgPu0/MDMoke7qZhEBhXZm62R5HclKGAyBYEAEZNonXcfSS/Zlt8SSanLVGRNeO1T1qL3DQsLRQ6bMvKAHP6JOb9RaOA5SeQpOb8bwX8fod5nSaj3tUYKbmpa7YD/STFc/7XNfjCnY86j6m2SQEa7iXU8mLc6ndImURyN622wKgGia3s9XueaMlNJUgUzhHfevQs2+lvqZ/g7/cfWtcsxXbAfpj5GNckzEzR737ubjw6s8RyUrVhrT4nujCu8XBbJEf7Ort7oNx2ouo2594nsZy1qbuJx2mKVhDg4r0TePjUPMqZRPe6pY3iy996bF3et59oJGnxHQO8Vfy1QOf81zMzIVdKclPGJI2CkwVG5nJFJtHFuKbG3dStT2Ka72crDBjGNUUA3GQu0k81wlBhysokmuCyMHxyPZYUHLIaieeTrWJfq3NyrYtAsI6mmiAKEge2wHAK0ouaRE5GkD4HjeP1BISH3NRzUdJDblrIhHmN6qmdScQMgPM2EZnc1KnlTGlxsfw7m8NnFvCK99yAB0/MlV6T90lkyFvDQKHTCljHX5PjaxiwgmaAn6WOE53J1vk9jrcqZxf7OHZ2Cb/9mTudx9jGTU2LWwBMkBi2gZ3fVfyuXckkVo1rdFoEkADw6muAV3zIBIjSJ3HzsBwnePuX7mdLoobJ3HKMl/7ZV/Hrn7iNNe7PrjmA/37VHfji3eszAd0u+GYS7ZVLzkofTVg5Aan9sOXIxPpJionc3ZS/+tkUuNFEyg6Qy8Y1ylmGm2S1VQODxMRMWp6wdxwPnVqoZDvB+nz5e45wUOkK3dfI4AAAy3xjLfgev36q88DGL5PIWf2vGtes3GetNQ48Npufx7ZtfRHYrL6tUk1ixHNApHO4KQOfpBotkptWMokUpLjeu3K5KWuCbH4OcjdNtYZCc5SoGuo7z8z3EChg51hrxZh8YueQJbLb4nCUDBRcGgdKnkwyCoO1yU2ZLRi44+zWJWFDvWvTtuxyA86zw86AObnSljL3zQt+f/gv92L/w2fwtzc8lO8jUDiOskx5FNAJTZDo3HOyEgC7jin20V1umqQpwlCxs9TbAc68yXaqF4ndvAAAIABJREFUHliWkiybmsS93138Ls8kknFN5TtIkyKABIDzLwWe9nLz7yaJagUJEkeAq245jHddcwB//m8HNnpXGqFVomvvO84aR/2yaCVW8KNck8jIUlgPCk52j2ytZ5fcZXM+9Shaa8Spxpiv3NSSllVX/+Oa1fCytKn+Znzw5Dw+d9uR8ntVTHLqVvr6SYpWGOBxu8ZwYnY5f2iuJZM4DEnmemf5F7MH5ljLziQOR27qO3HpxymmOuac5FxvFLDNM+SmeYP7vHfhyu296VN34sfecT2uu+8EgKpxjXmNk9yxaoDC7C0HoNbdUWudT76nui0s9BIkqc7HdVru/UWB4l7iU5NY7pNY2U+4ZRKrl8Sp+R52j7drTW+Kid3q+1gyrmFMyNdiXBMo/kTetybRq0+ifS9vuCfXjssk0JxMOo0LAl4GMneqXqWX3R2HpwEY4zLA+r4V0900+2wdhroAoMxxJhtlupuyHb+1zg2wAKDnqErYytCx5CwsVheu7fcpEfeM3HTvE4vfVYPEWrlpiFpEbrp5oMnT0enFDd6TZmhVitvkmGu9LdRTCnhYWTr+yi5Q1EdRRsBtW5ZEz3Efaf/GmDba9PwzRhr1N1Z7f/LMRvYSCi7rbsav+quv4/WfuK20GkgP7UEmIfkkOQsuzmZtAErupswgkROg+OKbbZtfjnHF+27Etx4d3KYjDxLbxeOmHQ0pSPScuPSTFJNZX0fO9UYxBEcVssLdtGafb88mn7dkrrd0bnZbYeMiyaBtsWsS08IVtM7dkc6hVuZuCphrLk3LbQpcnx/0/pwaXrsFRl3GX2sNrYtsYR1NAffMYr82iwjAurY5mcQArUAxJIHIximWAUpSkQS6Zpd6npnEtbTACAKemViSOtRx1W0vLdcyuhyTUplCw/NmOU5w5IyZwx3LXKntzxaxauCLmkTA/TvQuliU1NrtmNgLEFzH79A6t0a13n6Y+DxL6/wVagP13LjGrklcTW6alOWmNtIncfOwO6tzODXC2TbfGwDdQEbZ7n4z4Nvc2x7HChKzCSv1O3PBnpC7Bjc0Se22AijFr0kcZCZjP/wLt0VL2tQwIaHj+/Cphfx3caLzZs9A/cOgnxYtAIDCVTUKbHdTt89H81jOiqQv3IUf4u6jZ3HzwdN406fuGPg6CpjsTGLEmOiuBV/HvX6qMbmWTCJjcYWOw/gA4xp637uOGnc6krOOt0OvFgx5TaJzc+/CuKZuIlm4bwb5IsnccpxnG7iTXXp/15oxs4/mZylwsMbSP93cTcvbTFKdP8uqcIKUkrogZAR7ltw0DNzr9ijbljuAOh5/+16+3sY1tikMJ0hMMylzfv473k5IFdJmSHBL2Z6Gifyh0wtINXDJvgmcXYoRJ2lu5gR4uJta1w1ncSVQQCsa/NkOnV7I72vV+mZnx++kGmzLHM+nV2StcU31O0gTkxWMOub/f+6jwFNfZuSjgCU3rWYSk7JxjU1T24zqy5w+hbCu0DPr5NwIB4mezlV5kCg3kDVhT0BYxjWemUSqH+NkEu3veLWH2kIvxs0HT+cPllYYoBUEzm0RYsuAo2mSFtdmEldfNf2uPabhLJkPAMUkOQgUVIMkJ07SvCYLKIJE++bPvY6GkUnk9N20oaDmW8dmB75usb+yJpFjGrQW7IkLx1ihH6f598iqScy+50WPPondAS0w6Ly568gMtNZ5kDjWDlnupoldk8iobYutya6ZSFb/TtexlUlcik3rmMBqgcEMEgH3YEPnk616uSn9a7C7ab3hDX2OQWOcatusTG4UcMxFzM/8vsVoE2Fne5zdTS3Jc538uQkf4xp6Gd0n2XLTvBzLPbhky01pUTJsnsgfPGkWFZ/5+F0AgOnFfqkvJ8/d1ARtbWaQSMFlK2j+bEv9BD/8R9fijVeZxT27vQc7kxgWfSpFbuqXTKk6rgM1C07xsvlJQeKl/xH4hY8DnSnz/6ohk1itSbSh/okiNx19aOXm5NzyBu9JM76rRNzJwUZxz9GzI+3O5es2l5QykO4Pe8r6nGXUJPYZQeJrPnwLrnjfjTiSSaxbkTFXcP0OckewAatv9v5QbWVV2lG3avr4PeMAgG9bQaI9SQ5rbNrT1PRttDOJ05kzbGQ9SLk1ib5ZPt9tuE60gOK+tdq1vVRTkxgFakXLkvXAPgc4Tr2JZyaRAob5NfRJrLvX0uTj5FwPj51dxmLfnM/j7YjnbupZ20YmIWZs3YJM8b6TeSaxn0v7OIEsUH5/14nXaplE2/20iab9tDNCTWNcMp55C5KQmUmsyB2dM4nVINFxnO/iYppqlksvjQGKHoSua0d0TjY50jaRZK0zBjYur46xMolN19vcsrm/XLzP1IlNL/Ty8x/gZRITMq7JWse4LuSRc2shW1z5Glr8/OxtR/MxtH+cxTvqk9iWTGKOj3u5XafcqApJstgg7NS/SVNNok6Kv1URuenmga6tUyMcJPpKw0jSMcqZxIdOzuNl7/oq3vYv9270rjRSdjf1M67hBByUJZrzDBIHTSzSVOOrB04CAG7NaqxaAbNJtOUI1vTQtidEttsiUPS7qrup00Pv2NmlYnt2TVbNw76fZ1IKuZ2dSeTY5AOFNI5TD+eLfV6wDFcc7wmLVtaL4PRDWwv2+XSWIZ1OtXE3DZSf5JfTJ5HO2+6AyXWcaly022S47zoyU5ab5pPk1bdl18RxHGYp2ADqs8BF8BPkiySzS3Ge7eEaN9nv796mw7xOWZlEe3t2zWIT9KcVJljW56/S1G5j0D5GQYAo4PQ7LGSqfplEntzUvn9zyxu6TJOicgDsfo90MROr3V46WIFSR7Vur2579KzdO2nKh84s9PNWFgBYNYmU7cxl2kyDqaa2UADwwPG50v/bvVPDNSxASE2i3zzZNiFrziRmKsNoZQseM7gpkxg3y03JuEbkpqMPnRBDKNHxxneViO5Rrg+njYAmXBS4jCK+NYl2oMQJ1EmKw6lJLE8smm88C9aqKBlxtMIgc2RzfEBZNVCNmURrf+hzVFtn1Pc7NL+zHXmrtSXVB6n9vhNZkEjOvu0wGGibXvv5stcNRW5qbYMjL3adTNS5m3LqqtaCLYGioN0Fkol1opD1HdA1xmqBkZ23FEQ3yU2fduFOACYTYAfeTWYrdRSr1mDb5OeZxJqJZN7/L1ClRRKtzXa4xk2px31LW5MtOib2LcGlJrGp3iwdkElsCizrKGoSefLDct2YW0BqxvnVjfnWsqfp4Ix47RirJrFp4a4OWrjjupumWS9BTgbSPv5N2R56n32TJttzer6Xt7IAzLPKuU9itriSy00dF6pSvXoAbAeJcZKuqLd0D9LTkimSyE09axJtdVNDTbRzJnG1Fhg29HuRm44+rjKJKtfddxyv/rv953hv6ilnpDg1ceakXRrCZNcXuhFzMg2AWdG/4n03smoEfbGPP2d7sWN2rwrduDgtMFxrEhesQOTmrMl5txWixWkAXJNJrHNc3D1uVstOZfW+qdZQymQTlFppdQ8U56wdJNqZBDORqY4pVmNJbndk2mQid4y1WNImwK9PnC/2BMS35ckgqV1dTWK0ATWJZxlBIsnEuq2AlUmka9PnWutGNLleeVz6SYpd4y20QoXpxX5Rk9gK83PZ5TlS1L8ErJrENK0Y1zRkUaKgkFsfzc7/yU5UZNIZNZAEtyl7U20P7bJTTWJ1IT/rkzp4zOrHn2TIE50ok9fzguYwZJqLeMpN7UPOWVyM0zRv5cI5twBzT2bJTXVFyswMnBXjeysZnjXVwKflIHF6oVfKwLMyido8Z3K5qcP9pAj2it6ddZ/txGyhWDs13ysFKWqVBYhvPXoW33zELOyuyFKPsFpsWPhkU0t1ymHDuZzXJHbr32SQ3LTRuMZNbtowWhgmvlLO//w334DWZmJiT8DWA/sG0E80Oo5nDhmRLDBqdIYN3Ug5k0gAeMs/3o39D5/BnUdm8OyL9ziPO3R6AbNLMb73wh3OY8p9EjkPbWtF3mPcepjkULYqChSOZlbh5+/oIAoVQ35VrH7SBLR6f+4lKXZPtLEcp3g0247d762uthAoJrzVTGIrk1EFNRkACm5bYYCpfJJs6i13jrXYNu30HQ8nk1h8FlYT4NJEXqMd1U+i6T3H2xXjmiFkEu37FjeTGDIziVrr/FhyJkx0/6EWIb2a7cWpcc7dOdbKP0fLamS9WgbmzHzPuAdbExJWn0RdTI4DZSbyWut8om3X2tEiCZ3/U90IIaNxOVA9t3gZKXuSXFeTOCCR2LjglKQ6X0yswpH70ne3c6xlMrmOk8pyvz1eU3bTOD4LEhk1qJ3INHJnLXhoq5UL814+qHdt0zgaY7bNk3IWGUGHbdXJTWuyzQCwN3Orn8mMa2yZNieTrhTy/qIu9yA7IzuoKbt9jz8xu1x211xlAeKlf/ZVAMBDb/vxXO4r7qYFSWW+1XTPsKm2gAFqgs08SGyQm+ZBYk0msakFhvRJ3Dz4yq7oYTzNMGTwxZ68s1wCs9dyap2GDV3Y8wyJGFBkRjg90QDgh//oWrzsXV9ljbFXmzh1ar6ZRBrHkra6ZhKz4/WcJ+7Nf3fBVBetwL1Gim6sUWBL2VYGbu0wwHfs7OKxrL7Qdpvjyk1JMlqXBbMnyRN5JtFMknd0rUyia5CYfcfDqEm0Jw0+GTBg8CSmriaRIytbC3YQxDFhSlMzaeJkEntJmmdBfBqQU9ag7hyJkxRREGDHWAszC30s9pKSfHeQ4cRiL8Ez/+BL+Pn331S0Ugh4fRKNSYj5d90k2V60mWib858WZqa6LVabjurruPcEZUkC+e6m5fci4lQ3juPIfWcW+2iFCmOtkGXelE/kA54zMEkyI2a2J9F6oPy5eXtp/lx0DUjt3rUcuSM5eapcgsuQcioF6mjC6S9K/XXrxtF1S5n0hV5SMnziyYtpkcq9vjOpCTbqzknbefnUfG+Fu6bLeZykusgkZvvo64C/lXBVQDw6s4g3XnUHTs0tl6XMTRng1eSmJB2tbYHRZFwjLTA2Db6TpTxIXFz/1hmlGgWfIHGEM4m+x58ehkORm2bHf7zNq5GKU42JtrtkxR5nxjAyibFbQEo95J77pCJIPH9HJ5ObOsqo8prEZmlNPzHZl8ft7OLRGROw2W5zTe6mdKzPLPTzB6jJQCIft1JummUSgwCtMEC3FWBmsQ+lTCYlz2w4ThJ85ab7HzqNf9h/iDVmuVRL6hskNo/L5aZRuSZxOJnEYhssuanlLuh6DdjHwDUjDhTHkVbkmxYuoqDIJC70Yoy3CznHIMOJq+85BgC499jsykwioyWFLTcFqpmbIkgMMsk1XXM7uhG7JjHROpexudY62XLSukC2CCKb36NpkjbI3XSQtI948MQc/vBfvoX3fuVB7BxrQSkTuLnKP9P8ewvY5iKRR5BYcill3RP4NYnaDoCVapSuL8dJ6W8lVQgzcA6DQm7KMa4ZlIGk92lHATpRgMVesuK6YfVJtGpJ3eSm5udAAxQAi/00L8M4aWUSBzl+m/cvfn90ehFxYtxNWyNuTviV+0/gtR+9ZSjbsucvg87/6+47gU/uP4TXfvTW0gJQY3Z7NeOaphYYA+WmFCRKJnHk8a3NGWYmMS5lEt33ly4UTt+wYeMr9yUXt2F8NjrmY+2QffzHs/OE1e8q+944E4RyTeIA45oss/SsJ+xGGCjsHm+h2wozuSlXWtb80O4nKVphgAt2dPHY2eX8NeXawma5aZLqvE41tjKJZlx5Y7ZkCgCecoHpXzTVMQEiO5PoKTd9xXtvxBuuGtzcfuW21p5JHLRQsthP0ImCUp+5oQWJ1ufhBIk0uWNlEu0g0aMBOU22miTQURhgVx4kJiX5bhis7F0IAP9272N4/SduW7Ffud29ax2XZVxT10uQtk1/M0FiVpPYjQbK32q3l+p8Ec69BYYlN61xvKT50yB308aaxKS4/pvGDHqMv/pv9+N9X/m2eS8r4HNV5ayQm3ICIlX0zeN83+0ogFLcrHjhbspxzgWK9hJ158hDJ+fxg//zGvzyX38jb01Uctxl1GnSuDzbzMwkUgayTpJMrxlvh5jvxaXrJgrcg/siSHR/bhQOrM2tXABgqZfgot2mzdOp+eWycc0AhccpS1lz8OR8lqXGwJ6Mo8Avf+hmfOHOY0NdzAcGXzekUpq2FqJNltr8fcV5EmdO69yaxDQWuelWwD4hOFLOiaHKTYv94gQptAo8yn0S15pJ9JUEcmTGtI9jrZBVHB0nRSbRpyaRJzd1yyxRTeLeiTaefP4kLthhbnxRGDCMFezVz/Lviv0xze3Pn+ri+OwStNYlt7kgm1hXV67tc52uLdvdMKzNJGYTv+yh/qwn7AaAPNuzWk3ib3zyNnz06w/n/0/Hz6f9Ahf7/OVmqYtxzfu51EtKUlOAt/K/FnxrEknKxskk2tczZ8JELyXZVt19oZ+maGU1iYfPLOCf73g0zzIAJjtWd2792TUPlP7/WLZYEgVmsus6sS4b12T7XVfvl11bk90onwhNdfk1uXaQyDWuKfXOs4bqPNvZ/B5Bw34OzCQ6yE3tY0WLFT7GNZRtY7mbZgsC5hxhZI6VkSRzF45INu3TAqNp8eiT+w9hZrGP6+8/gZf+2Vdxer63MkjkyE0DW9rnMCY//s0OlPbnGG9Hudw0v244fTHTausYhtxUDXZ8XYoT7J1soxMFODnXK7fAGLB4R8oAwGQSE51lEkdcbkrJFK7nhA/VOv0mjmflL3GaluYy9H2vOE+SLEBfTW5avZ8PdDelTOLgMgwJEkcA+wHCWbUjg4wZptz0riMzuPfYWdaYkgGKh9x0VFeZAP8gkWQ1vpnEBY4pTPaQ6LZCZ0MAwHxvY1mg4pMl8qljXG0c9ZCb6ET47Zddije8+KkATE9N9zoWa2LR8NCOM7np7vEW+onGfFX+05A1sM+HIpOYWpPklavWFLjTxP3fXWKMjKjXYuPNP+PT3zyC//czd+X/P8zr5pzITQcEs4v9cv0cMMQWGNnxCxS3T6IZ02FkEn3v43QutcP6bE+aamhtjtnOsRbOZAsX9z02m7+m7pwEgGdctLP0/4dOLwAoZHPOQZu2g8RsP637UCH1ND8nLWezqW5k6gQ5hisluaN79gUwgWp9IGt+DjauMT+rC0eJ1rn5zsoxq2ekOlGAx+8ZK+1HKwycgwY7+xgGjGDb+t4irtwxMC0YuPcEqnd1fU7Zmawmx2m6vzzniXuwHKe4/dB05Zx0y4prba4l2hbt86r76GBcU7RlUhhrh0Zuqv36JCa63MrCRb5ebWVh3mfluMVMhbBvsoOTc8srAuCmXTx+tnBFnVnsW865oy03naz0LV5PSjWJA66b45nD7NxyXDauqblvmV9QkNiqf8O8BUZdTeJq7qYSJI48pZ5QjBsyGQRwT/7/+Odfw0veyTNOKWUSGZksGjfKmUT78wyy8q9CshpfGcM8oyddbpPfClnZ5lTrXJbGqklM+JlE+8Y2KPuS28C3I/zIU87DCy+9AEAmv2KsdAPZ6ltY/9Amuenu8ay58XyvMrFA/bi0yL6eXYzz15QnJCsDUvMZzGue9937Sn93zaQcs1xY6TP4wBlnf1fr8X0v9GqCROU+YV0LNLnaMdZiZfwpk2Iyibxz0myXH2xHDRO7vrUAsXO8qEn59Rc9Of93U8BH991PXPkcAMBDp+bz1wcDAnWtNZb6CU7OkUzb7pOIFftZbVS/Y6yYzNBiJqcmK041W7ZY7pNYY1xjTcaaaDLYsevfqrjUJJ6a6+HyJ5QdsM3xYEppA14WPl7lvtVEcf67O+Ca/TTncTvimJAh378mx+lUa+wca+GPX/EMAMaVczlO0c2yWIFiykaDASYhteOyfbSMa5rMy0huWhjX0OcziwIucwytTQ183qjeJUi0FmryGuCacYv9BN0oNPXNC/1KANz8jJpdLuaZ04t9JNQnccTlphMd8+wZSpDoWJOYB4lLcVnK3JQBpuCvKSvY5G6qk+JvVYLA/E3kpqNP1TbXFbLXHe2aRH6wMWzs5zRn4kqyGt9MIqdxeV6T2ApZN+M4KYJEbr8rwL9GzcW4ZrxTvuG1IkZzb1vH3zCx6yfG/GJXVqQ/vdBHkhSTpqY+WXGSYs9kYWMOIJPWNE+2cuOa7KE+1W3hZ5/5nXjjS74HQBEA1F07dtBvT8oBdxv5Kpxm7v6ZRLdxdS16ht0CY7ITsXq1kk1+txVg2fH6tu8jPsY1ZOe/olG9tQDxuJ1FTcqvv+gp+b+bDCfmlmM8cd8ELnv8LgQKuPvoWShl7iNNE/K7jszgkt/6Ar7nzf+Ky//Hl/N9oIzBoB6EFEa94Knn5X+j+yTH3THVhWxxLXLTsnFNto8DahKLe0L599Q4vI4mRQKRpBpnFnq4aLfJJP7c5Y8HALQC0/LHJWiw73dqgLlLFVvuGAXumcskLRxwOc8A6kPL6cFZ1CQ2Z8Tp+O/N7suPnF6A1oWT6GoB8D/sP2T6FtYpUBiZxCBAY30tffYgMEFi1bgmb9Xk8BXQokyxAOogN01rPltdTWI/Qbcd5iZY1QC4aQGCFkyVMs/SOCmkzIEaYblp1zz/h5NJdKtJpF6V870kv74GZanzbF9TVrCxJnFAJhEw2UTJJI4+9rXlI/fiBBs2HPmVffJzgpQ8kziiq0yA/2ejuQZnQm7DySTGudzU3QEUKNf2cDMpAK9GzX4gDTqP53sJ2lFQqqkCaNLkOCG0JDLNzY2zTGLWt+pMNkmwHfGq+w2Yh92eLGND10iSWK0zarI2VeMaAHj7z12GX3v+k/L9bKoJsq8NamafZxI9F1c4bVl826TYX9VqxjUrahIZRhNrwQ4SOec/NepmZRKtz8Ptk6gUCklmzfkImJrdJ+wdr32Ppkzi/HKMiU6EbivExfsmABRmSk0T8ruPzpT+f6mfYCkuAv26zJntLAoAL3/WRbjs8bvww08uMurcTCLXJdMONmqNayjbOeA9Gt1NrcWlKvTrpvN5eqGHVJsa7IN/+DL871d8PwDzfdr7PYi4EgC4LrD4ZhJNf0WzEM0KEtPClZNjQkbnv2qotyQZ63g7wng7xMEsIz6VBQCDsqsPHJ/DG666A//t728vOYCqmnOkibpsz8rnTbGQON6OsNAvG9c0tWoCjJHJV+4/seLz0vu5LDrZmfJBypWlfoqxVhEklrLUA2o7Z7Nn4eN3j2Nm0dSERtbC0TBqzH2YzBajh5FMca1JnLXm3o/NLqEVmqx9Y3Y7d91qqi9saoERN2cfARNASpA4+pTkph4BmK/c8aGT84xtuZ38K8eNvtzUviB9zF18g3ROWxDa1lg7dG7ADGQudaGxqeadW1kmyzNoWC2TONFeeePiGDnYxfZ1E0J6TRCo3O77zEIvzxABzdKyOE2xd9IUiJ+tySTWrbZWjWvqaKoJsoMXenjQ+/tKeDjZ7bLhkPs410xitacfwDNxWAt0Hk51I7aUljKJrvdXX0WILWWsM+Ao6l0VLt47UfseTe6m88tJLrd6aua4uzO7Hpom5NWs77GZJSz2iiCx7rqxJ5qA6Q362f/6PHz4v/y7/DWsmqxU543EnWvbaibJ57JPYtO1nWcfGz4buULuneyUspgc4xSSLfrUdtL3FTHlraFS/CBRm/PDtFdx/66Lhbv6oM02Dto72c7nLlRvNsi45vAZU4d777FZK5NoHX+Hj1c2Sqv/vu2eiGPtEAvLSSWT2xy4vfajt+CXP3Rznu3S2XGkhQSX761kXNMQbGit8xrxnWOtTDZqBcADgr3ZpRidKMD5Ux2cmaeaxCA/LsOoMfdhw2oSBzy7l/opdmRZ8Eenl7Cj28qv7er7ALDkpg0h26AWGE2BJQCEkchNNwOJZ5BCF7evA+JjViHyatjZBk5N3GYwrrEDE+6qKcDLCNqwahKzfey2QvQdH75AxUjA49zykR+GgVrV3ZRkQjatMHAOgJNVJoRA8aDdlWUFpxf6pZrEoGGSEKcaU5ltf55JTMu1jHWBJX2GJpomd/axml2Kc6MSwP+6IXMgF3yDG1d308V+uiLw4PR6WwsUAE92Il5WPDWTLU4m0ZYAsmoStbVwUVfvak1Qv2NHvQW6qpGpAtm1lk2SSO441aHsS/2EvLpQc3RmEctxmgf6dQ6geU3igDxdyJI7WplE5+NvfpZqEq3N2S0ymhjkbtqUSVwt2Ds1lwWJE+UeZ6ohIK2jdN8aYC5SJU7T3HCHW5NYGNcwFo60aYvQbqhlPDK9iFe85wbcdaTIVqcapYW7erlpEYDtm+zg7qPGeM+WmzYdx4dPmSBxoVfUfwVWKwuX478UJ1lLkGZTmFImsWVqEqvmOvS6KofPGOdQkiHSceS0TqrPdpZf0090pi4KsGuc5KZWAKwUtK73Zji71MdUt4Vd4ya4NPeWYuFoGIt+Pvh6d/hQqklsuG9RoL5vyixEH51Zyuu2m0pn/OWmqchNtwK+kzRqF+CbSfSdELq2KQCKVeBRziQmjpPdKnRMvOWmjIk8bavLbIFBK7DcFWEK1nhBovk53hrcNmB2qZ9PVG1YEqXK6iew8qFNMqZdY0UmsbRqXWPAASBvErxjrJXXYZRlW8GqxjV1NNUE2d/L3HJckS36PXhZctNUZ/LfwcF9FTsoGVS3t1QnNx2SPCmXm3Zb7ExiGBh3U9dJMn2eDqO2Fihne+rqBPN618D0mvyjl38/Pvdfn1d6TdPxnO/Feauk86e6+WvzbdWcj3R/+dirTRbw6PRSKRtcV+9EbzMgSWcyiYya47X0SRzobjooSMz+uMJcUOvcoXjlmPL2q5yaNxN/UicQTUqGOlZbpGqCMntAlklkZGXzFhiMBQ+ti/5+dZPk+46dxf6Hz+An/+JrpW3RMVQNQUpqZXL3ThTHcYc1uW7aTTJrml2K8wXuMODJTRetvqRNE3n7O5roRHlQavdJBFB7DVA/Wj7xAAAgAElEQVTd/PHZwrgsUGpgLXsVbZ3fTXJTUph0WyF2jLXQi1Ms9OKS3L1uHACcXYqxoxth51gbMws98xzP5L7DqjH3gfaKSjnWk8ShJpGeQ/uy+8HR6cXc6IuO/4ognYK/1eSm1XFp3Jx9BDK5qWQSRx5fuSmdkEueARinuXrfYYWkdlz22jjVIytH8K0lWqsDJUemmmRyI5+MYOgRJPq0wKDjONYOB46bXarPJHImMXUuddWHlNbIiv8DTHUj07i2krWpG2dcURV2dKPCuMaepKmVE8KqcU0dzZnE4jqcXeqXF428M4m8msQoyLJmDFWCcyaxl2CsVT4uISNgWAv9JEWgsoULj5rEFqOOznYg5sq07ex2o3FNNkm+4tmPxzMev6v0mtVqEgHgvGzlms63Jtkc3esfnzXcfuzsUqmutP66KTI0TXBqElNttcBwDmyQ78Mgd9NBxjWN7qaJbvxsTdlHgjKJeyqZRJ67piVJHrDAshwn+Mw3D+P+rD2KLdMMQ2Ym0VNuOqgmkXY71cU9syw3ba73o9e85Se/N//9ZIeClObjSJnEONWYph6VAc+4Zn45yTNSjXWr1jNirB1isZ9ktZ10/JvbIO3MggRqM0HjBmUfq7g8EymhMJYZ1wDA6fl+yZQNqA+cZ5diTI21sG+yjRNzy1jqp5jqrJ7J3WiKns9+i/k+2wKaF3jpOUT345nFfk0msTIol5uukkms1iSuKjdtAYlkEkceX7kpnYTcTCKt2nFkiyW5qUcLDGB0zWt8J+VrDRJZRjLZSjan1xWQyY3oYc90RQXM8XAN7ul14+3BEr3ZbEWySothm17n5NbkNgcAu8fbKzKJTXUbVJC/d7JTyH/SsrtpNZitM66p0lSTVZWblnqS+hrXMO4JJJMy5winJtExSKzrk9jgrHmu6SUpojBgZQSpl5pZWQ+gtaMDYnYIui338xgoZ1JqjWuyN44GLEAMcjedXBEkZtmUplrebN+N4U2AmcU+FvtJXiNYd93YAVoTUejublpqgeF4DZT7JK68J1TNdepokoAOqklsyj4Sp+Z7UAp5bXSxLV5NXEmS2XA+/uNtR/H/fPJ2/PKHbobWujSO426apshko9wFj2wxs+F5Y2//geNzKz9bg3TXDrYu2l2YN+Vy0wFmPpRJBICT2f28VKbQcEg+dcth/M5n78RiL8FiPy4WSRom8kZ9QO7WEfqJxtxSXMrk0uetkgeJWSaRFqlUlk10KfGptrKgfbLJg8SWHSQu5+dwMOCcPPv/s/feQbdlV33g74R775df6he6X7ekDpJaCSGU0BiQhMCWisIYCxFcDBhmbMAe12AzpgjWmMwUEpjgGRMNA7YZwxQYDLKEJIJQtpAsulupWy11fvm9L990zp4/9ll773POWjvc773PUs1bVV3f63vvvmffE/Zea/1+67f2Z9hYKnH3yTXje1Jwk1JvfNhGa85hsNnawjX88WhvPr1uSwc2CJGVWAmLtsCo5wG66U0k8fPCWrStJOGIxYJEos1MUmoLIzIk7LjPgyBx0ZpEWoBTFx9yRFID0jxPC6T0OJ1BHhZptSWxUs7dOQIaSfEGiRNLU3GNJOGjjtXaEP1IIqAdtKt7Wu67K1zDoYJlnuPs0WU8cW0fSilM57Vx0jlHnp6PgUe4JhcCfPe6bI3dupn0BAS1xQnRTX/yv3wcb3vgHAAKinOMynwhBVwgrG661KGbanpS9KEWtnmlMMi1clxqv0O3B2dUJl85SGLis+3Wm3WHuiJNknFO8ryqMZ7VBgGhIJGulYSAmeMVGdaXdC+1qVOTyDnJtIf5qJyxSCLV5I4S1U25PolsL0fPd8SgRF2jl6Wkx+WdCY6tDHtBvkR356ybpJLGvO/hywCApzbHuO+JTUyaWjqaZzSS2ARlet9ITHjkMpLoHv89D10C0PQEbH6bGKQL6rIGgRHOSVUrPHZlz4g2kYiQDsD6cyJ7+8fO43t+96P4d+9/FL/+3s80SCLV5PLjtAKu/vfZo7r+95Ere+bzPnVT8snObVJS0iYRSo/I19XdKV7z03+OX3jng61epRySDlhfZVDkZj14anPcojIDEpKoEa+7T62Z1wzdNKC4+6o3/Rl+5V0Pi+/fSDOsqEPYcNoCj/zxaP2986QVIaP7OGvuy766KdFNJeEaX03iTXXTz3tbFEmk7FIykpgvfiwgtQXGwVGRG20L000N2paWQaMFfBEFxJTeWnpcbaT8F+15GOsk0MIWQhJ3xhbdcG1Q5NGiSK4AgYQI1koZh/DoyhDX9qa6Po4QkYCU+W1Hl/HU5j7GsxrzWpk5c0puNG+pbkm/xyMpbSTR0k1Te2ICmo4M+OmmO5M5fukvHsZ3/NZf6bnXtaUkJ/XSDD83Va0D7JVB+3qXh0RPIpRiaVBgPKvietJFJCCkYwHAUpl23driFn3HLqbeVSOJ7dfoviJEjmpgjjVCTlJARPfAINc07YtN704TJDJOMv0rWJOYGGwDB+uT2KabNu/7SnQYwRvA3ycxF5JNZFd2pz2qqZ5HAt20I1wjiYv81SNXce8ZHRA9dGGnhSRrJDF+fdXCTWlrAil8Dgu+LpfWjJPrI/zqX37G/DbTJiKi3s81QwEV0NUnr+1jVim86Gmank19aNtIYn/c+x++jOVBgXvPrOPdD15qahLteeTGuXWrdxzXaOe1vZl5zYckUqKQyhu0KirM8aQyjIcv7eDTF3fx02//lEnatOr0pQRQnuFpzRw/c2m3pa4szVG3zihxTytIDPepnFU1Pnt5Dz/+lo+z799oW6R0ZvFjOcl14XjUr/fE6tCwCzacpDmLiofoplILDBXok1gMcFPd9PPA3DU4JWtn6aZpNz8tWklN2Z2bNqVP3zziobme9rsfegzv/fSlpDGLCtcsgiQqpczmkkzjaTK09P8xRoIrwwQkxR2XMk8T3AwLUchEKaVrG7iaRMGx8B3LrS3p3s59JHGKHadGS1Q3rTSydvbYMmaVwsOXNC3KrRvoZnZdBUrJJCTFvS47k3nrPKYkBACLZPrUTf/68WvtubtoW0rdXkSQaGtg+jWJKSrJixrR1EZljlrFIYIuLdGqC4bnqkxwky5c4zrJonCNj26aMcFl5548vjrET3ztC/Cr3/oSMwZgAqLKouIbSwNDgVvuCHe06aaq9R5nseqmdP+PygVbYLh00+Q5tucA0JotP9tBuunOtKds6o6LozL3++11hyml8OS1fbzoacfMcV0kOb1PYhMkprbAyBvhGhZJ1K+95t5TOLc1xu5krtkdvd/GBWD2/P/I1zwP955ZbymHcr+NVEO/4PYmSGzopkVLAbc/7uruFCfWhjh7dBmb+zPsTudGuIbuke69TGwfwNbzAu1AihsH2D2AFM9deq1GEvlr4Pb+u9KgpNL9T3ME9N53ZmPJIMU9uq8wx9Egx5HlAU41KGQLSRQegD2n1VfKXna9jM73YfifMTWJxPJZHhRGzMplVnEJP6tuugDdVEIfgZtI4ueLLdqnb1G6aarzD7SdwKQ+fbUyi+thPKT//P/9a/y9X/lA0phF1WUXqUmsatveIClD22waRFmKdULrejF103llr1uquuPyoBR/G6FyLN20yOJbYDgOcC5QZDT1Sf/76MoQ13Zn2JvOHaeJHzevtXDN7Q1liEQgXGeL6z9F70km1iQ2gdmxlQG2HbrpqCQkJX5jpeP7xjzwhJaPp0xyVSsURYM2L5A48ql57js1MK6lyPgfxAiBp3MZkyhx6b6LIImjQYGqVkkiIV7hGof+KRlHQaTvcZ3rv/fyp5maLhFJdxQg15dKI6axVMrCNUZZ0fM7Y1U56dkqc0Kk0pBEiW4XczkyJnComPPomqGbCge4tDsxKK5rPpGQrrntFaTjXd2bYVYp3H1yFVmm200AMH0yfbTFrtFzkyx41tSBDwSBNUpAUDuWpzbHLdRMqtN06xYB4Fte8Qy89bu/zPy/tJ5s7uvA6a6G2nexERGidg/03V27sqfRX2o4vz+tsDJqi4t0n1NNCSbUfmjWvCMd5UrfHkCK5/o8hmtJ3SDxsaYfpIuScnX6QBMk5xluP66vg2UJyPfkZF6ZxM0zT2s00Q2ApWTHjpOwvNSc/8M0OgcpSfKDHgvwJU7166NBjqtNYP+Ku0+Y93Mv3VQKEov258jqyk83LW62wPi8sEWFU8ihPpQWGI4TmIYkuip18cd76MIO3v6x89GfP4i1H+y036bH3Hj6raGbNo5ibDBFiGAqbWhe2wx07DxbwjUCIkXN4qU+iUqlOZJ5npmNuer8Pv01hCQOsT2ZY3N/ZpFExkmoa4sa3NYEiZ88t9OaMxfsuVQ3yWQkUT+/t6yNNN2Ugu1hGt1OGwWJ8pjzWxoZoqnOGucmtScaCa4MPXWylDXt9kksE5QWD2JUI0WiK75WHWQu3TSpT9mCNMkW3Y4J9mi99SUguJqgELotoQazWmFQaNEMjSQ2QaKpyeo7kpbKeXAk0Z231EqBM1uTeAAFViZIpPlIvy2kUirSTQUklzO3rleiqRLie+bIEo4sD0yQ6NLkk9RNF6Cgq0ZwZSCMo+MTHfPc5tiItAC2TpMVE/PSrfnzT/TNs0eXUeYZSzflLtvV3SmOrQxxZEXX5O5O51jpBlIckthMMcsynN7QiYEjDaXQ1/KEKIgGSaxVS/BGYl1cc3r/PXZlzxzHR9t1fwMhnsea+9OHbk/mtalvveekDhKJJukT1NtzVNx3JnP81SNX8HPveJD97I2ww6SbRtUkzu2e+K++4QvxPV/5LLzszuPmfZ5u2nxXiG7KBZch4ZqbdNPPfXNviJQAzCCJiTc/LQCpQYNRm0us21teAEn8ip/5C/yD3/xQ9OcPYouqSdYLLD5ucJfWg1A1TlO64h8JEKQGpRZJjA9IAX9N4nazYXDqpoSUxNxf9JEW3bT36NhN+8Sa3gTPb01MZp1z7uj6DIoctx3V6mOEJK45waWUofX4MSjznG37QNflxNpQI4kVBRvpzxs5wj4qJ9GSKAtdNfVW2iFPS5KUee5Fe1zJdddCQgfXyyyS2ASJEfcyPdd5o25K3xMep/8ulWnXrXaQRFaAxrknJePQbat2yI8Tm4I3wk0AsLFsn9Nen8QWShdz/8epm7rnf1DGK3K6dcrcmmCRRvk7OHXHEJJo0cf+e7OqxrW9mVl/+GOFf9/eZN6qv3PnRUaI76n1JRxdHhiq5epITm5J1uqTuEALjJGwJtC1JCTxyc39FmrGJSBoXCi4534bBYlHVwY4e2wZn720az7vQ4AvN4H90WWdXNwez7Ey6vRJZBgobk06JRUJSfS1SjFIYkPNdGtQy0JuDbW5Z5E5ChLz3K/cDdhnn2ijRIeW1gQSbyNGxkvvPI71UYlb1ofmt0lJErfV1950jtf/m/fhX73jUwurwqeaaYFxCMermvp+QPavxw7d9MuedRL/5DXPbL2vUfFukBhJN3VrEpXS9FNfC4z8JpL4eWEu/zypTtBpVJ/Sg3ARjvasUqZwOwVtq9RiSOJhWrtPZboCaBKS6JzzRfodpqgt0ueIbhob7Cml9PUepQWJdB6HZS46g9TQlqtJHCTUytL3a+Ga9vHNfJTd0J9/9oh5nZwmztlyRULWlwbYWCrxyXPtIJHLyJv/9TigoZrEW9ZG2BnPzX21yHNjKNCe+4MU/rYakRxSDhwUeTKVPM918CIFlxLdtMjjaHYHNepBmEI3tagwDogkRgY3qtMnUUASk9VNjUPIj5GClFll2z24tPAeJY0JEn0PQAySNa/qFr22zOORLHPdcn5NcGtNJeOo6/Y8BoJ05rcRneyEh24aI1yz6zRzlxx5QnxPrY9wZGWIJxr6obtuxfephBWzWqAFhrQm0PU/e1QjWE9dG7eSJNI9WddyCxJADlI292co8gxroxJ33bKKB5u2G0UuB3uAgyQ2SZI95vz36aZttJlExI4uNwGYpwaSGBw7Bkm08xsUHrpp02MvyyyVs5UkCSCJpHAaQjtp3aRk21e94FZ86I1fYXxCXwsSV0Rtb1qZdYzaS91oWySZDwDX9qYmyRBr81rZJKGwJ7pIImdcyYGmkWZyhivL9PtuTWJI7AYAips1iZ8XVrk31oKiMAsJriQFpFYCPUVwYl4frCbxMAqdF0US6TQk0XYXpBYTJY3QhJhjkpR8nqcJENAUVxLpppT95PoIkhm66YivSQTingGXkiY5TW7/uefdtmE+t9qlzblBonFQ9Xk+e2zF0rZcJbcercOiGJIVApLSChKntk9iarAB2IDChzQTkqiU7n01rxUGRdODM5HJUOY5BiUvUgG0i/RdK/K8qc+9sc831aVaJDGCbsrdWxHnpTbXLQ1JrOra9klknK0Y4Zos6zONavM7EpHEujbHWndUiJe6qsAu3bT5G0YS+fOolMI3/vL78Dd/9l0tJHF4ULopK1wjf4cVobHjQkgifSfn/FNCxidcE4Pu7TtBihRIXW6olCfWhji6PMBWk5CjcWXzzMVY7dBN57WKSkKb859n4ppAa9vysMCxlQEu7oxbSRJJlEeXTXiCdCFIubY3w5HlAbIsw90nrSpnkecO3bQ9bjyrsDutcHx1gKMr9rqtDNsCNH1RmLYCLu0hR1fCNYlUp0aCY93eqT7hmuOrQ6wNS2w1e6ur7tsLEjv7FCGJNGtJzI18FVpHM6fOm8ZJy10bSawMtfVcU/Zwo82CImllWV/4I2/HC3/4T5LGVLXCsNT3VqgmkdbTrmlWSOfFOkAbBTSa6NYkGvQxIFxzk256uPYb7/kMPv7UVtKYWinTEyopAHMcl5S6xMVoksrU9aQKtSxCNyU7jGLjlnBQkpNcN2Pi5zhtIYlp14xqdIA0ZCNVuIau72qqcE2Npm5SRqR2PEgibaoxzwAttMuDQnS26trSmAZFbihOXSTR3ettKwuq2Vg27/laYFj0KRAkMpdt4khiU+AGOEHiAkkI3/1xeWdinIire1NTt1omiIQAbQq09AzsNetSt0+izapHH24hM3TTZu2KUYJu1bua5y1+HF23FFVgF0nsNel2kDXJOIpSCEmUUIN5Zeu/nnvbhnmdxFcKxpFUkUkS6b585PIe3v/wFTx8cddQ0ss8S+oL66qX+hRYQ2gngNY1oGvvqwnNBHXHyzueIDEJSZwb4RQpAJgZR74wgQngrHcJSGKlFIrM9l2N2eNcuq+EANOeWeYZTqyNcGl72gqIDAWUoUl6bv/mueGRRKJ7un3pWkhiZ5pUF7i+NDAIG6DFaOj3AQySqNr3CCGJlCDzXW+rblrZ30t0U0/y7lrz+9aWSoN6ucmtHgW9hvkMYGsRbd0z/ZYOkmjEVnj0y9fSyFXa3pvMcbwJvM9vHk6QaGoSD6lPYpHnorov4NTplwKSmDHodj33C9AA+n0XSQyJ3QAN3fRmkHio9kP/+WN43c/9ZdKYeaXMguKjifXGNVkLwELYMUY3YBq1tcaAbv7IOSqlFf6WE4UcXAs1Bb8e5i7AaUpu+u8iYjeLHMutSYwJpFy56xQBAhqXiiQSauPb1Hx005RngGiMozJ3nNb2OIU2O4PEI2wLDP06Ry0jh/yL77KqY2tOcNl1tmJQCglJtDWJ2gm/2tQKHoRuKo1RSuHy7hR33qIdJq2mamsSY51IOlaRZxjknppEEUlsz/dGWUXCNUQ3jUimuQqAC6mbJtYktlsA9B07E+wFArDuFC0iym/z5LR2/ZFZpcw68+pnn8LL7zyO/+lL7sQzmnuGcySNroJnjj4k0UUbnmhq6WxT9kj0y0nUcI68pZvK30HT59RNve1tsowVQLm8a9E9bow7b5/tTysjnOKr2wP0eb71SD+5FVsTCjjCNUVCLW8zHQpSOPTRZYDcsjbEpZ1Jq72HTzk0hCRKdNONJkg8sWopv26ZgtQmoiwynG3Ey77iOafxd150Vr8uUNDdejTAqsq664n+XH/+lCicVrUuH1L2OvtUaccNwrw2Kk1y0UUSe3NU7XvZ+BNOgO+eg+78aG3rWu5JQOw4LTB2pxWOrerrcf6QkMTDFK6pGmV0X+I0SDfNOLppoLYQ0EiiW5MYSzet/HTTAH5501IspS7QNaLp+VSsOJtXNdZGJa7Mp9H9zZRyWjAkqptSjUjsHOl0HARJ3J9VOJY8Ks1iGqD6xpHcvc+JIHMdxzTnv27ukfjMrus0DIsiiTYK2OsWi+YSalM2NRTKESQgI0rMOkM3NcI1EcebzCosDXK9kTYf725SSrWdVsrm0+LMbYjGIWzee81zTuFH/uhjACxti6sZoP/t/l7XJEoU1QRSxvtaI0ZAdJRFhJGkZ3Q8qzGZ13ja8RU8dGEHW+OZqUFLebYBq5yrqWX82ie2wEhAUQ5ipBKYVFvYQkTiKdD0WyhxF1//5ReucZFNyTKG7ti9l7tmUJsukljX5lnM8wz/zz/84tZ9bZ8be6/QsX2iMIWnKbhbt0SCK2UApe6aOwcOEYypSeTqxmKCxDzj93+LJPZrEqXzz9mu09/VCge1P1PVuv1Enmf4wjuYGuwEOjk9N6ZXZVSQ2D7/HLJKtO0yz3DL2gj3P7GJ46tDhm7KBYnysYs8A5dP3tqf4UiDXNH6CujgyDJJ5KTMs06v4wM/8BqcWh/1xHW4pIx7j/zw334+TqyN8CXPvKUZZz/Xtcms1n1q5zX2pvMWulp6knCzusbaoMTaUolPX9T1lnnmC7bbqPgLmlr913/R2dbr3fPfrUnsWiHc/4BFZgFgfzo3pSYXdw6nJvEwW2CQwJJPzI1qFYdSwM0K18TQTTtIYkjsBkBMn8SbQeJ1tBTRB9cslTCN7jWrFY4STTWxvxyQTjctC4LR4zYaK8DRIFILIImLtveYV7WhL4aMejsplU6lJZtVNYoQHQBdumkitS/LMCwbZzfiGrhIQgrd1G1lkTJPyj6XxkHriw0QYsC1wDB004h7eX9WtWg8nJNcK9Uilh1rnAWqi+Q2xK5D/vQTq3jT130BPvLYNadvVd8BUlFOMl9bQsEWnROiDaUi8FSDCsj3B53/W49o5VbqyzgcFCgTnm2gSVxk/nVrX1A3TQnaDmJW8Cke3TOoWJ6mbkpfTahlrEPuyvtzAhxRgiuZD0nkx8nqpu12A93Eh2k54wZg5rPiFL1I4q5DSXu8EVzRqswybatr7nniaIsxgawvceRvwSDQTXcnrQRQd0z3WJK1hVOaeTHBDc3xRU+zqVVSqE1pO0M18Cl00y7dl1vG20jiCJd2prj7ZB9J5GrpSg+SmGVC8DWvjd6Dew2OrQzlY3Wem9MbS6336Tbw9UkEdCuSn/jaF5j/l4Rr6lphWtW47cgSntwcY2cyN/s9oGv1petGz+raqOwhufxva8/ljuMr+Oz/8VW9OfaQxFkgSPQ8224LjN1pZZ7nw0D2AOtPLHq8WVV768Fdc3156XjTqmpdo64VTMmBppsG5tCjmzb/vkk3/dyxFAfLNaISpjtpyhFJiF/8yVKFawaJgaylLaYhUq7tLxgk7iWMI+GOIs+SAzey2HPZFq5JudZo9QSMUwCljCgM3TQG7aZxy4k1iYSI+BRYt8dzrA4LdoEcJgjX7E+rFjrF0Y1ItIfsNc85DcD2eOI2RPoKd3ZveMkdrc2eq3+JQimEjZTonkTBpdYUS6ZPYmxSJnw/En2bHJ/t8cwignkenWzS80YwuSX1SUwR7TiI1UbwKYE2aihZbjAb8bw140ZlfLLDzDECSfTxFDgkKxQkyuqmfqeIQ0SiahILWYBjn0ESc2IlJKBfepwObLvnhP7lVzfto0ShfpP0nRwofqVRyeRQYK4mumsXtsbY3Ju1BOAy4bq5SNbpjSX84jd/Ef7kn36ZSVoUCcI1tN8Mk5BE+7sk9WKaY5ZlOLk+ws5kjsu7U9teyIMk+ntw8nRT95wc7dQXSkH6oskVLinKjuscj9bq4w0leW9aGeEgGic9A7MmGe6Wb2SZ3BbKlqDwc5TOiaWb8gGHhBwDOjBcHhTIMh0w0l6xqL+cavRTFg0SUxRO68aX97FrNJ3ftwYxgo2qiqCbZgLd1DOuGATppjeDxOtoKVQt1zQnn6SO42mjrihMStaabCG6qadnj3SsReimVAsRIzTBWUotY9Vk43zFxuy4Bc4lff/SILX/lKbblJ5A6r9+9gq+8Ef+xEhLm82uyE0AliJ4s7yIAEeWeVtZbI9nLIoIICoAJkl5t7k0gKbvXvuzdYMQk732+WfwwR98DV7e1BlaJbd+kJjakyu6JpE5/RSkkRNIaF8qkuiuHdIzSojNmQ2LJM4rXUdRJDa4rxpa4tBTNzYWW2Dwju71NnISbYuh8PFcRCSlJpF+yyhRqdpFDbhEQmwCoudYO8JV0hj3c2TzSGe3jcDrvwsjiQ7aQHV8tCYnt8Bwz2Uykth8lkUSPYGzgGRd2pkawZPeGAERJDu/NcbLfuKd+Mf/4cMA0Go3ADC1q1UbyXrt82/Fs06vm//3NTzvGu03wyJ+D6Dfn2Uear0TtFEf2o89uWWCHKlO00XbOZOO5waJLSTRobh2T3+3bq9rnCgSHSsmAdG93rS+U6uMncnc9KkE4BWCm1U1hkVugmyad1Hw62ut/PeydG9NQ3RTz7M9q2qMBjlWBgX2ppX5rpSE5EGMjhOr0tu1a04vypARK81Hk5/Oa+PfcpZzIlj/HemmN4PE62iLqicZSlRCzYCRyS/TxC0WQb8ATaUdFPlCSOLSAsI1lGlZlG66lxIkKpfum4bkkkU78s33rw7LJHVTQzf10OYeeGIT1/ZmuP+Jzdb8ykTaHK3dqQhw1yHnjrUzmbd6r7kWcsh/5u2fwot+9O148Pw2xrOqpQ7GZd+6NYmAbjTdOx5LN+V/I43rB4nNPIJIYv9ckgNEgRSJ+ywlCtfMI+5Hei5OboyQZcBWQzfVSGIik0GRmq1HyW1WwVXlJTs0ukjtVbgAACAASURBVKmyAij6eDF0UxskpvQltTWJaUrVLkrCBXsxwU3G0k318SUERkJzZ1XtDYh8CPyi6qZ0Xw7LHFd3Z2beKftN9zx1BSAsJTwtALbKj+lI1pXdKStaQ/MD5PXudz/0GADg3Q9dAoB+n0QmAAjN0efIP+eNb8XvNMe05Q3xSKJygisuAae/17aJeO6tuh5uWtUmcWhowh6UlDNJ3dRtSr/iJBUHRe5VUqXfwR5LQnJVOJBlxzX/T7TgvUllBLdoHiLdtEnouHtq4SCJ3ectqHgsIolNkCi0bciFIB2wzITlYdmim6a0WzqIue2LFvHRSUguxqiWd1jkorbCrKrFekRASHjUVVjdtNsCQ0UI1+TlTbrpYdridFPbAy/aIazaKF20mIzzsWQkkTbtSMeOFqRF+iQOSLV1gdYeQDszHTLjJKe2AHCpu5G/jZzUlVGRtGCRA+ALpKj/3YMXtlvHcoU7YhqYd5HE1CDR1+9wezxvZT1d84mZKKXw8+98EADw0IUdXZPYQxL7TpOfotc/ly6KJBkfJMagFHwvKeoBRud7Z9KpSYw9/875lp5RkiNfG5VYG5bYHs8MZUlT+1KQ9NrU+0n3//60bqhG7RNzWMI1um7SBqVpdNPMqb+LGNdBEpNQmwgkMYSAcc29gTCS2I2b50E6FIckhpF0H5JIQeKZjSWTudeCW2lBYpbZILB7Lm0gK38H1wMyRriGC9IB3W7mOCNa436f1Cv0yU6LgJUAJXPe6dPXNY0k8ufywfN6Tf2pt35Sf3eTuDDMlRi6tZNcKZjzqOdog7a7T66aZ6VLN+XElLzqvpzYB9oofW8NCtQkBp+bzuHmVZgS6zveRhPo7UzmqGs7Py1cIwSJDXrcRRIpx8PVPwLy/ibdW1a4RqabSmv5rFHvXx0V2JvOzXfd6AQhmXsPLlLytJVAN43xJadzP52f9DFaFkM37dYkEkLoG3eTbnq4ltLPzDW3B148kki0RRKuiRvnPjBJIjnkSObxCqzdmsSkILF5iFJqEtuLQRpKtwjd1L1W8ZTA5pwMyuQgPRQkXmqCxIcuaJUztyeSGZfQFHyUGiQ2yQ6fAI0vi+aTCH/0yp7597mtsVCT2B6jEBL7aD7njIt5jLj6C4NSeMLSMudl4YnuTPRZ6pVl6aZxz/asRTf1I4nLgwLrS6URrikbhzCpBU9zT/oc+fG8YilKkkDC9TYSk7BU5vhgzyclz1lX3TSFcUHH0VSj9vsK4cQF3yex9o6TBVDSkcS4HoS5B0mcI8uAk+sjk7k3SOI8Pth2f2uRdemm+m/oPALtNSFE26Vjcc/2tf0ZjjKiNe6xpGfgwtYY955Zx0ufcQzroxLPOt2tpW5/PoS2+RApYp+c3tABLSUuBikMFDq/DpLIBUR0Hssix11NfbhFEgUKaA1DoUz5bbXnnEhBuvv8cyahnXUASfTRVAGYVh27RDdtHkEtXCOjUoMiM2MB4Jb1obi+hlFS+i3t18mf8u3dfiQxM/uNRRIPh266aInVImPcGni5JjGAJHL3ckyfxF4LjGbeQbqpPwi+qW56HW2RPoCApUSUCTWJBklMpHIuXJNY6+xymUDJdDPrWZYG9S9Sk9j+bfHOJ9US+DJ20jh6oGOPR9dtZVTgwnYaaun2/+IbN+taHgoS3SbQKU3B3UzqsMzjhWsc2jTA00mqWolZNJ9E+Hs/fdn8+9zWGPuzGsdX7eKXZby6qQ814APuSIe8cxpjUIqQuqmhmzYo+GiQHmyQyXRT/d2roxLrS4O+cM0C6LZvQ5wLG2JKrd9BrK71fWXu/4jfR9fSvZdj+stZddN4xxqwlFg6ptReJVTvJDmfUn2h5LROK4WlQToior9THBaoSaywOixxZHlgEoNFlmFQpiCJaKFN3VY1sQJAQPu3hWi7NI5Fsiq5vtO3lgPAhe0JTm8s4de+9SWolXXQpR6jXVXarvlqEj/21BYAm9Aln6TwrOVds+JFcisFYk2QHW965hGKJiUuqgCSmOe8cJCLXALA97/uXiNgk3uCbUB+brKMV9Oe134kUaKu0/9vNIHy3nRu9nvAL1xDdNMzjgLridWRTNsNMGVuhLopAQzHVoa4ujc1fmBKQvIgNq+1wON4Vi9EN01jfFkxN2mc24eWM7kFRihI7KqbNn5b5qudGQDVzSDx0OwgNYnUkysVNSB102gFuBaSmIIa6OxyiiS5zVrlGHooaZzRhpiCJLq/LUm5tcluDhMcEkAvuMuDAjuTeUJNaEM3Hcb3LQR0ADb0NI4HbE+uBy/sGGEjwC+Jzc7RoduNElpnuCq9AI++6AXbv0H1VUoVfuqtn8Dzz27g6u4M5zbHmHTophzdRSl4OXqckxbjkHPKfXHjeEoaCcAMmhYzO+M23TSaylyFn21CEleGBTaWS2ztzzW9MM9RFnp+dcDZMcerLQVdCr6kDfGwgsRK2d8GxDkmFklAkpNs1E0TEWBdx4LmmH1HPpbK3EdfQogIv5bMq4Cwgpdu6r//pftkfzbH8rBoqTSmC9e0haq6iL+l7YYDYE6UxxekSHRTX52aJJxCdr5BErutnHyIlB9ty0UmCZVnkOiZTq7YtTxl32jRTbtBSieQJTEeQzf1/bZAkM4F265yMAB8xyvvbo1x503WbSzPGUdvDYnrhOitJKyzPZm36ulDwjVlnuPWo/1aey6QDSaOBP8ihm4q3SPTud4DjiwP8PjVfStcc4hI4sqwxHg2xWQBjYvYHuR0rDzT/uuOUPI0CdBN2SBRRQjX5DnfAsOLJN5sgXGotmhNImXkh2V8Jp8eyOUD9ElMUZcyDbdT0E4XkUqotwSscE3KQ91CUhIDsKLIvDUb0vFSRXnoHlkZlknno5vZ5TZEqkncHs9xcXvSokmlCIW4dQvU4DfGSKWXqGrcvezbSKXAYVYpXN2b4W899wzOHl3GU5vjpk+iXb66NYluVlsyLuCOUillFvG4ZuJ+JBHQ9HHaXG6IcM3EBom3rI1wcWeij19YcZfYfq8kuDIoc7Gdy7ShGnXNdx9fT3NZAgBQxbSOMeJFaU5yV900ZU2m81HknCKh/huqSZQEOFKft7kH/QJ4uiP91FAgK51GjSQWBlECGrqpp5F41+q6TTftHi+ml6lBidw1oY5bSzgk0YcuSWgPAPzOf30M57cmvR59dCxunE7ayC5dWchIIq3xF0gZu6GbGlXgGMEnJ5i2wUb7M11kj5BLSvjJTeADVFqB7ujWJHaN2qR06aYhBVCa5yJ0X/f73XGA9gnyzAqX0efLPBODe6IuUt9b1zjk3iSORQo6vy5PA3RTqU8ooNfBYZEZJJF8oEMTrqmVTbguEJhOEtk1IcEtrUjrv09Y4ZpgC4wu3TQSSQzYzSBRsKpW+Nd/+iAuNRS+GHOdYqkYXToWiYtE90RrPreUmLV2KaApWfx5XeuMfMIcTSa7CYAXqklMUCltifIkIonUFDyVpmr6VCaIuwB6c5xV8ZLM5AD5EJire1PcdXIVgEYT6R5JbgreQhLjEc8Y4RqqY+NMkggnZ3tQ5rj92DIev7LXBIlFa6z702KRve7xYpzdrEFt3Gc8RjlRajDtBs7LgwI7jZOwPEylkrs1iSEkscTpjSWc3xyDFAd9NGH+eCooLjITsqY+RPx6Wkzvzt4Yx5FKSa7Qs0WOVAq7Q2rbAMBATYsgG/SdnEl0x1ld99Cr1jiGEhiHJMrrz950juVhaRQegQZJLOPr9CfzuqW+mHeCPWVe96Pk3eDSBunpdFNSO2THeBIlb7n/KQDAq559KnrcQWoSaY3fm1bYbZq5U5AOIKmWPctgkHGONuomILoK2qK4S6jej6FpA/2gtDeOCS7tvikOQ54LaGfgGdWfa79ukrlFhtVGTAxwgkRPrThRjF3VbjNH5rdZ9e7AmsAkINw5cb9NWstJ3fTYygCb+zMjRniYdNNFdDHIUntnG8VvwZcM1SR2fRkADd00EK6JdNNATWLAbgaJgv3Fpy7gzX/yKfzUWz8RPcYNTFJUlGzdTHzW1LTAWLAmcVSm1d9RdjmFktmtbUt52GitXVRtNLXfYZGn1b/QOHP+Ixc8+n6zaCVc7zKXaTyAvkbPuXUDgK5LtBnRxZzdPKOaxEThmlxGUnyOjCQRTottmWd4+olVPLk5xrW9WadPYjoiyG2IJBISQ0lrj/Mfi+bPXrfa1umsDAvsTrvCNenIvZT535vOMWpoy6c3lrA9mWNzf6bFXYq04MbUMnoo6FJjdkmi/Xqb2bQDwjUfefQqvud3PorN/VkrwZDUOkbZtVUfazHhmkVqEjMmAREKEr3qpgHURo/rB2BeJNGDNkwrTad3pfyPrw6TFL+n87pVM9UNimLWBKAveBPDSpBaANC6LR3H/X7Xnry2j7/53NN48dOPRY87iLqpW3d+rVFzdJHEFOEmX3lDN2gjpJR+k6Wbtr87CkmUgvRAcCkj8H7xJg7t9CHwRnFUQvfyDCujwiCJ9CxxawKgr7+uSbRlKM8/u2HneAAkUWLKSOfSV+86m+vzcnRlCKVsovKw6Kb1AkGi+2yliiCGkMSQuimbcIqhm/ZaYETQTSOQxJs1iYI9fHEXgOXMx5jrgIxnlQkgQkZ1MwXihVrmnWAjOvuvKNtdYH8a3yaCnL20Xo42Ozgs0+im9FGJxsaPcR/sBYLEBeimhlqWrPiq76tpVUfdJ7T4+JDEea1w25ElrC+VeOjCDl5wu+5D1R4XQRtqPmJrEtOEawpvTaKsnCg5CBTwDMscJ9etnPwtjrR8F0mx9M80+o8VoIkZZ1/rKitylgsbqYskuvdCKkvAZRf4+iTSmnHmCCkZ6my1TSTE0/sGg9yb3CLBq65J6ofX2/rPDT/Pb/jl92M6r/G655/BqpHjT+vn2A0SUxSnWz3RJCqz5zs42lxIlVMWCWmLi/THMUmSWLRTRERqDPIMx1dsT8Fb1kdJLTAm87pVM9VtSm0RQf/3dGu5TJAeCDZ6WhMOk4YdIyBLSik8fnUfX3LPyaRxMUhirfiaY3e/pBYkhSP4FMVAcZKLUiuFbrnBd77ybozKAl/34tubsWDHBRHBnG8v5PZJZMdljJKqCYjEYb17C7DUdskkKiet22WeYXVU4lqj7kuJLZZdALu+UELnw2/8yp7it9gDUghmJbTTJqr43yYhuYD2cdYHJY6ttgOSw2iBQYH0cmKQ6E4tBdxQSu8bvvKqWVWbPYYztp1LPV+gBQbRonx0U76Ha+trg5/4/6k91kjuc1xvyVzKYVLrhtoiMLHBRg9JTHDsAO3IpDyklBFNQTtdJDG5B2Hze1LGtEV5EummeZ4kt67nqJIdeUIcUzNbJEnu6y9Hzt09p9bw4IXt1vlPQhKdTTIFSTRCJrmMSPkcGUndlK7loMjx9BOr5vWvf8kd5t9ZL/tPr8vzZWurIlCDjHFkahWmsRUMRQloO0CuGA9RmVPovjROSuS4ySu33olaYNB8Yqz13FSKRUSkrGnpuY+vpxkpfw8FGrBJniu7U5s1z9KSK1bdNNyW6ONPbeHTF6lVjdMnkUGkYhIXktMKhIOUPnKp/A4yc+1iAjBWkKExYqrcfmzZvLY+Ks29FWOTTruVrlJsDCWcGxfHSuADG0AO0qX17ureDHvTCmedcxEzzodauvPgAo5pK0i0LUgskhhfk5h7GC9dddOlQYHvetXdjnJrf1xdKyglo1h6nET3DScu+mgbJbcDlEDmuQkdS3+/hNLpfoeXd3WJE63/Ek3YBJfNw3p8ddjuHczMMYQkSvdWSARLQnIBqknMcXSlHZAcBpJIP8P0fI72r+3nkuimjr6IiCQ2rAnJWFZClLpppyaRAsabdNMbY49f3QcQzjq65t4UKUW5VkpeFoDoWrcFRiqSmBwkVprWkJLZbdUkJqqb0ti05t7296T2trF94tIWhGSRCoMAl0nzpODK10uQ6Eb3nFzDQxd2WzSWJJVGZ0MYlXm0uhcVbfvaDcSo/fWcLSfT+pxb1/FNL7sDf/CP/waOrAxaY91hMY61FOy577HzZDb7rrIiZ2XO1wFXDk1sxdnkyzxP6t1pkSwZSXSD9FMOKusG9ynHKzKYInxuPZHqL/JcHnM9jX5v1gR80nNK6+il3UmLWnUgJNFzHn/g9+/DD/3hA3qODtohOZ+APyHM1bEsKlxTK+Xt98nd/1GBbDNHLpkwq3Uy4fZjK+a1rKkTr2rFPjddm8zaNYkagbHvx8yR3u+yBGg+vjGp9V9W3bQ97tzmGICcoJZUoMNIokydnsxrHF/VTjwFia2a3MQWGDF9EjnjEhAmaZlYkwuEKbh86xj7neLxmOetDgSyUoLX1vvp9Z9UyimZJ4nykK/CMTWAprxBYBcEKehdNkPtHychuYCmmw6KvLXfAIeDJPaYW4kJVyCdlZZnmTe5NQuqR/dLAKDqCLqpVJPoc2ZuCtcsbIQEpgQbLrycXBPXZLvjkUT9uUV7qQ0b4ZpYgR29iWdehTTpWLbfXkrgpv8uSjdNRRIpkE26bpVFElPquIBFkEQ0TYqbYzOLOG1Szzy9hks7E7PZtBGReGdXO8nxAkfufQzwdZqVR7hGyrTSczUsc4zKAj/5d78AL7zjaOszedYP2gA/RY8TT4kVoHGPoceFE0pi3ZJzTlp0oUQE3g1SpA3KDUiOu3Rdp01E9L1cWSQR4O/lmdC7Tao/vd5Gzw3gr5uh6315Z2quUZb43Nh67/CacHlnahKRLtrBZeQNKu45Nkc3DUn5S+0GiDIlGSv4ZJ4bzziBTg5YAY4zncBoUBICHH4GJvO285VnfJ1yKO/bXUtikdzu7woiiZJwUPNblwb8RfCq0nppwu15uTaZV7hlrQkS96dmfoRSpQieuS0wkmmjzLgQRRJomCQ9BF61nn/peH20rS2iw49j9uCALxVucN8gid0gUUASibkmI9VM4iICEWTnGAjUSybYNvOsagzKHLceWe68fnhB4nJHIClk7jOSCjiYfVsYp9k1oQRENwMx92cJAb34LtICI2A3g0TB6CKlBCnuTZ+SJaEMoG4vkRZs2BYYceMoQzFKGFc1dI8yzxtKrDxmazzDL7zzQcyquqWIlSpcQw/34nTTlPNfW0psCt3UQRJTxUXShWvqlnBNb2Nz6o/uObUGAPjk+W39WpEmQOBSUnRSID4B0VZS7Y+j5r+ciZlWgySGFMEcx45eT6wRMZSpACICtLN9KqImsSxkmXY6J0tskBj5bDcf81FdXAU+6stFczPCNQnXu8z995YoXJMQfB3E9O/V/5bqqZVS2Gvqs1t009wRYUpA4Ak59bEStsYzPHlt3/QzpVPEZeRJTCk1SKE1ItTMvS9SEZkk4ZIrPgRSoLIBlobYRZ1T0O1ppyax61xHI4l51gq4o+imOVMTGhmkc5RMPX+53QAg1ZKGrxt3/qfzGres6aSRSzdNa51kjyOqlAaQPY4pE6JIAn2KMGDXw9C4/nm070nGismouH3DJybjtsZadoJEqUwB0KrfnPFUWv3XF1gCMpLoQ8UlgGPa1BsfW+nUJB4C3ZT2stSew66a70LqpqXc3zWobspRd2PopnmBG9EC46ZwjWDkmCUhUgsiieRIDfJ4ahl9zsjkJyhQApYSVdUKId0UOpZWN/XP8f/804fwS+96GGePLeNMU/NU5jlGnuai7DwXCBIPKlyTSjed1ypdpGJB+gOhDfLma7Ot95xcBwB88tyWfq0J7oG4GjB3Q/DJpvfGKdUkEij7zwdEqUiirUkMOclpyIbP2fU5hDSN1JpEnwLiSnN93GbiFCRGq8sSkjUoxKDGbS7tXoelQWEEEKJb3Kh2704OFZw2WeSuHWaQaJDEgq/5nla1cSgv7UxadLMiQbiD7p1BAJFVSmGrUVG9tjdrobtcbVVU4iLzBBsSapD3HXKaXwwC746zSRl5nK+eeu700/zNb38ZTjSoVqiW1LXJvMKxVVv31BeuCa8JQB/NpdMaouBy7A7AhyTqv93TEaQJC4nCeV1jNPAIYnie00krSCQGinutY2oS7drpS/j5gi+uBCBEkaT3RJXS4L7Rfm0ehSTyvXK9+4ZwTtyyEFfQxEUSpQQcYBMp3PH64kb6BTHY8yCJ4fPBv0f+rZt4kn7T9Ta6bVdGiUGic41S1E0pweZtCyUkTsnYcxmlbtqlm96sSbyhRjdTShZh1goSU5AsjSQMCj9K1x0DILkFAy0SKQiYyVgVOrPuG0PzeuLqfotrny5ckx4kLipcQ9mfZLpprRxqWVpw3+0PFTXHPFzXUOYZzh5bRpFneOSyFl9qSZnHICKdmqyUvpgU2EjH8jV8lgIHV7hGMq2caP/fMC1ikMQWJU3/9TmEXCY/piaxyPvZfzo+OYRuM/EizzBcqCYxx6yuWSr5XKB/Pu34SnILDFMnKyAb9F1c/YVvzPU0Eq4B9PrFOSbjqT2/l3cskpiqbtoNmqUxO5O5uc+e3NxvNYHnsv9RCQ8GbQjJ1kvqpgrhgLQ7LkRjA2QHFCCGgZ7Qlz3rJJ53m1ZmtvdkHN3UJ1xjnu3Ac5p1nDQVcf67YwC0mDScyW0iGkc+GNz3g41QIAXwz9xkXmNjucSgyLC5b/v0+RJ+XWu1wBBq513WhG+O7nWrDJMkhOz1j0XvyeN44SZ3LtI8OQVQH7XVd04AHcyujaxDvzzMzfyVYujklR3HGYtuB4I9Trmb/t+PyMqJtHmlDG2c7DX3nkpSkl/U+khiXMDX0rdI8UEbP21Q5KgVf04mMS0wehcgQt201wLj+iCJN4NEwcgxSwkaXGpqCpQ+qxwkK5Z+6CycpQfq75pV4IuvNaDvLpu6JZ8TSV/32NW9Ftc+WbiG6L5JaqP23ynHIgpk6Le5RjSxJVMTGu9Y55k9/ymZrfbmK2Ujdc+kU+sjPNHUPNG9xY2T5gjAKO5G1yQ2m6RVyWSEazyOjBQA07n1LaxZtniNVFvcwmbDJeMRyDCSWOR8HbBbp7PhUkDztN6dtfNsK2GDkhT4nnFixVy3WDSdKNCSSiZAWdP+8XzUt+tp7v1WCHRTV4l6azxrBTyp6qZFpkVyfGvy1tgyKs5tjjXa2tzbnHCNqUkM3JNd359+q/i8CdctlPDIsoyp9wvP0RekzBpKWtd8ipxd67bA6KNL4aBBj+N/WyjhJAcboZY/aQiYNC6kbupF/Jtzt7E0wFVG3TR135CoxV11U3GOzrBQsK3fY+i35vzLc+aYMvOYoJQJwOoAAm/6JPaum00KuC3X6F4uhWtA40rhB/KKx/5gzyC53Xu59q8JRZ57eqDa9e3X//5L8eY3vBBHlgdJ4o6LGs1pkb7UZLHCfXQ8N1HO7d0huinL3qrrOLop1wLjZk3ijTFy3lNpo/bf8Q/AvK4xMFLyaTexCdwS6Y60AMXM0zrpDdrmcZgubGtltocv7rbQrcOoSVxUuIYy+WkiIfqvre2MRRI1kkaLROyiRXOUHK0uRenWI7pROoAOuhFPGypyTbdL6ZtXZA76wiKJck2KlGk1SYpABtrdtOlf/hoRO2/zG4yzm5ZtjUISBeEOt05no0M3TUG3Y/r0SUH6HcdXkpQMgWbfCiCJErXmMFtgWOEafu2iesSjKwNsj+ctJJ2uWay6Kd1TvjV5q0FqAOCRy3vYHs+NsiQvXBOJiCQjibzzGZPwKPN2/Tz9K7WWkUy6L/OEe3Iyq1rOV5feHRPs0fttUarm/Hv75snsDilI8fUS1ONkhEiPa78eRBI99zK1D1lfKrHpqJsaVkjU/a//Zpk/APYjgs3nmISfN7hk6+9inhtOpZSut38ch8B79w0hMUbHK/MMawzdVFKCNn6ZZz/lflscktg/l8EgXbhH3D3g1feewte9+PamldqNDxJpuT9QTeJCvmQmjp0J7BoytlWQim2BkUg3LW7STRc2urgptW1uXWAKlE49onzqe/0x1nEeBCigrtHNN0xBEp2MlUY75TEXtnWPnyt709Zmt2iQmHIe3QcrGUlssj/JPekMbTc2SK+b2s7FkETJ0erWUbhKYm6j9LiMsP5LEuixaA9liX0CKF4kkbKYnQWSnsUQj59TN/UhglxwE4ckghkXh1AAUnZdj1136aYZ3ZOR95YJEuWsKaG9ZF/xnNMAtENiRFoSkUQfjVDqk5hCfz6IuUI9A0E4iJDEU+sjbI9nLecyzzO23i94LM+a7AaJ9z+xCQCmHozLIhvn23Nsrt41hMBI6poxCY+8UzuZ8txwp3JWKRYRCSUT/vNHn8SzfvC/YGcyx7Rq003zrF3vF1uTqM+lO86+LlnG1ag57A7OgvTDQDKNRxL94l7u97vznDW929aXBlbdNE9D0pWy95tMpY1UN3XG2edRPjb9tpbgUOA86nH+0g3J+H6mcTWJEnJZ5JmpnQOs3oQUuHX7JHYtyxg/IVATKq0JlUPb50xq0wHoZ7vLJhkkJJ8PYpXj72ZZvL/lzi1Nld/2SQT6WiFVrRodkMQgMZpu6gaJES0wbiKJi5tFEv3OwcXtCX7t3Z+BUqqDJKYFKYMiT2pU36oTTKBJWiQxoSaxRW31t8642ASJ1/ZmrSAxpQckYBe31Ob2ZCnZH1tLtwAim9gCg6jFyUFi1an/CjgWbo+tk+ujYJ0U9115nlZgbvj4zbG4Z8dHiQqpm3qFa3K+t5lvgeSy3TFIIufIhEQLAOsschlvgyQu28xenkg3Var9bHP3JKG9ZL/0P74Yn/yx1wIIC650rWqQRE7tlYxzEAAZabjeFkM3HTdB4umNJdQK2G7ooHQ9u6iZ71hWJEdekx94csv8+z4TJGokkastpP8NKSd2T2UIkaLXu2u5Uv6aXKDvFNqkTBil4GsSeVpyaN363373o5hWNR69vKf7JEapm4pT1O93qIRRCSemJi6MJLa/vztOOpeZeXbar8ciiVISblQW2FguDd20yNKQ9G5yBeAYLwF1U2YPiEX2uIBD1gAAIABJREFU3Dm4cw6dEy5odr+TPR7zvNUqXLeaBRD/FpLYrONSgtcmT+XnO1VcJxfurdpZ29hxZg/on0suKAqp5F8vc6/lsMgxSWwVBySKICrLSgP6PpDRVyj9z0DvcYtRN+3VJEbQTW+qmy5u9ACGVEP/yW9/GO9/+Ape+ayTrSAoiW5a1aZIPB61IeQojabqZlaAuAy5Kxziqs0NmRv9yq7OQl7bm5px9NtSHEJa4JOCvQWRRFdwJfk8FjpDFZNppWMNitzQDaZVZCF1k8njUCygX390+zGLJK6PSpNhjrne3WbivsX8rx65gloBL33GcYN2Sr216lq3Ugln1oWFNVTs3UH26HV5TH9js+0G5HG8I+MPLPU4/Ze7dnROXOEaAEnCNabeeCCLfXQdSZ14aGpfkltgNEii8Lvou1i6qamRjTrUwlYre52l53tvqp/Bk02zZ1e4g/76ar5//p0P4hV3n2i1QdHtjPgxP/uOTwEAVocFHrywAwC4pTn2wsI1jPNpgkRhoHWs26+HEBEAvR5sLtXQN0Z/lrlPhB5/oZo4cuAu7050TaLTW1BSNw11Suyrm9L59yNS3T3frRNnxyxck9jMi2GTxARg3XNJNVejMsf6aGDpprlF0mMcehdxlRVYA8EGsweYfJ/n2C4rhJzaqOCS8UtikESOXRDTBol7vt1gdtWpSSQkUWyVEtgXOXZBKJEg3VtBwRsHgcydK0X0/u4cBwn72kGsy2aLrS9cuE9ijU6Q2B5rwB0P4s8hwFHqpou0wLiJJC5uFByGgpSHL+4C0Nlo15FIyZLMak037aIhXdufVnjksj7ezEH3knqpdZDEGIdw7mxavoJcpRS2xzOsDAvUCrjaSGlTL7UUMR/apA+jJpEWTuLJSyhpa0xlN6BBnkery87rukNHiEVt9Bw50Qh6H7COxZ0n18x7blPw1D6JRQBFef2/eR/e8IvvA9Cvm5QWyFCNTi9IdFBzyYpeHVHznVHIhn0tBUlsOzJ+0QJ9vBgkcdAcQ7+XVidLz7aPbio7MilKhoCljklOjGZX8NQaGnOjKUdVbXsQSnWC+1Oim2r0nYJEozia95UMyR66sIOfefun8L/+9kdajpSUXNmdzLE1nuO7XnU3XnrncfP6yYZuSntAq742JkhhKEqxtW19umlEm4h8gefNQ0ueNzT8rsXS5EkAyKduShYMgLOuuql93TdGqhMXW5AI5yNINxWCbWKbiHMUxpHE/7CpSaR1w63lja3JBfT5ldcEv3AKN8fY8w+02Qyh80/jpOcmtSYxJlGY5577pEM3XSrbdFMpuJRbrPT9yVh10/49GXi2BWG8mcACSmEoHcTc+vJRWUSDDvQ7dJlUfAsM2m+kmkTXb5SsL7gFHfAF6aYFjyR6axJvBokLm0ESAzfV1lg7FFv7s9Zn02oStXCNlMUBgMev7uFVb/4zvPJNf254zQA1wY7nd9ODmSZc09QkuvVmnAM0rVArLacP6J5jgEWkUpQMDd104SAx/li0cA6NKmdEIOUUm2tqWeT5b1oQUJAYS3/o9rfroVGdrPWdJ1Zb71tnK164Js+zpo6LH+P2vdwa235vA+E8hjLrkvNDCZvrXZPIobJxjbN5RyacRW6Ox2z2tMmSChvVlKbQtGtnYwP4Z7SqZQn6FAVcOp7bXkVSpeWU3KQx19uq1nPDO7v7hm6qAzViQ9D9poNE/hl42wPnAAC3H1tpOVJSQPrUphb2evbpdbz5DS80r5uaRIbupRAObKgFgxtcVrVGBCXHVUJ7FNIRkdg2HTSvrkmtWaTESve1J65pJWefumkMJZbm2aWS63GeMZxDHpkUk8eFEMj263PPsw3INZCExo7KvKWuvDIghoF8/7vmMlAkcZ1gL0Hmt7ktacRxTMIjlCSh46UG6fSdbCJHnqL5zkpAnLvCNd1+tt093/avFu4Tpt5y0URCsN5SYgEJe3dZ+MuWrpe5dNNRgi4Grd0rwyKZbupTNzVBa+Bc9msSK/8DAGiksXZ6kd9sgXHjjDLgQBhqHjfw9eb+rOXMxTdJV6iVXohdyL5rr37zn+P8ViMKszttt6UIUAK7xwPSWmAQHWt1VFi6KbNpkCDD0080QeJ205SXkMSEIJE+mxLsuRt7knBN1aZJxvWOtNnWlF6CtJGPClltq6oVfvSPPoaHGioavUb3h+4J5d/Yzjp0UyBNKKSNJMrX7b7HN1v/pjnKmU+6Z0OZ9fbrIalvgDZE+//GafVs2xwqG4fa0DHaxws58nKW1tLEbjuyjG99xdPxG9/2UgBIElOir/XVG1e1HAD4kB7OKLgN0YS5622TFlGHWthq57kZCGwGqkkkuun5LR3IUVafzew2RomwQZmZmlx9LB4BfmpTBzO3HlnCLWsjvOufvxo/9XVf4IhU6M91A7CYoA1oC7VUyi9kIt2PsYgIJ1wTajivv7/vgLp9Ettz1H99zcQBmHY/XXXTVrBHifUgksjXKYfUZXs96YLBHs1LSPiJNYn8uGBNoiCcRU4wIYlk7v2fpm6aiddaiyKF11Y2AeHrXcusQTFBIsfectEn3/H4eteI5IqnBvVuhwFkxkj7aaBWnws2QgI0Pgp0FALZDWQlumkCs+kg5l7LFPFEOtcrgyLJl1TN/S0h6eae9Lbz6tc3Q9VhJDEv2lC6uSkP1gLjZk0iYy5EHAtPbzZIIhXLR6uUOs595txYg851dYOQi9uT1riD1CTGjKPgb2Np4G2UToIPT29QrIsOksgVUUvmbn5JSKKD7iXJFiurbqqPGbEhNl9P41KQ3FYLDGYBuv+JTfzauz+Dt3/sPN71va+GUjqR4FLZpADMraP6qdd/AZ5z60br9ZgAwN1cfQjw5d2J+ffjV/dMcbso9d381LC0ezfY8G+GgN7c3ADA1LFEBG5dlVL9fZ4xzO+LcazJWeRqYOic5HmGH/6a55v3hmVCTaKhm8r3sU8C3Vczxhk1qhdpwp6aGTvmxkaJ7rmVxGRoLaU2FOcatI+QFB/ddKdZ867tzXDrEeuAScciJJGQ4qedWMHTmqQawF8DfW/5f6dNXNiaIC2k4xnjQQ2Cz43oJHvGBGhznJS/D0l099jHru4BQI9u2nq2QXMMBMALoKScKm2oT5/kWNMzUUjOv3DdQuqm0rmcO468q65MqFYsC8iiNvK1VoF7mWVpNH9D59+dAxAb7DHBdqC/KM3Tfbxj0GYax4m7AHrNWB31XXJpP7VJV0ndlBfl8VIdBZTaV6YA8PX9gLx3u4y0rq97Pc20CsyQ1KvbBImj0iQCY8eRKrx7/O73epViGQRYB4kBTK8rXBNTkxjRAuNmkMiY61z5HLSJw1W+1gSJK4MC25N5PP3QQUnovgj5aBe2x478cSZSmzhzudbu//uMgr+N5YFTt8QgiQ319nm36cDkU+e39RwJ7Yydo4o7/71xzfcvJWZ/yJG0ojzxSGKRparL1i26KTfPDz1yFQDw6JU9jGeVOeduIBHqkwgAX//SO8y/TQ+8qIywdYp8NYnuebq4PcF4XmNpkIeRRE/mkxtngo0AKsIHe2GHMLVxNk839Tvkeo76L0fDldDVlASQVTeVe3e6iHRvfgsgiW4LDDG45+imAmp8Pa2rUljmOfbm897n6PdSkPjktX2MSkut1wERP9HdqQ0SXQdM13H1x5xvgsTTR0bs93HXQEUkIFw1SdrUJTEY37HoeDGoeGqbiJB6sa8FBk9RtRN49LIOEl0krN/KIhzs0Tj3cDF9KrOMo5tS4i5VuEb/9dWaAVxwGYkkSjV4Wdbq00qN3Ys8TvPApZvSp/s9PyPRZobdEVNf3kquRCCJHEvAUgJ98+wq4Oq/qUlJoI8cv+OffRmeuDZujQG4gKP9Pnesri8Zqkmk+XPBpW9cKZSYuIw311xG2jJuXJToUsyHZR4NHtDavTIsosVuAPsMWg0IgW7qS94xwX1UkNgVromhm95EEhcz13H3CYvsTuwFISRxeaiDxFj6oStAQzd0dxHpBhJtJDEPiou45gZS7vG7n/kPH3wUUAp/+okLeOWzTgLQG7BPuMbSTVdx9ugyHm8oQPqh0UFwKJPlzlGan2R0/pYG8cgeHc99sOOypvqvRtvihYOoBQb9x6mbPvCEpXF+4DNX8MV3HTfHor8+hTTOUmrAqtZvk+st3Wfj0s4U+9MKy4NClPoO0X+CtBom2CDrOmmxDmEX4Y5Tkuxv2rVSwbYBco9Lq27atRSpcDpvpPAo0k0Tzz9nrlKtNI6OP2SSAhKKcj3NZRYAcp0gnd+TayNkma6tpoCR5ir5FtsGSZy2aKHSsSbz2ogocMadlxi1UbpfVecZWIQiFnUvd7LdsQqs+rPt1300dJ/AkevwPdkE3yQ+BDQZeSbYCCP+3TUBzTh5TJ5xdNPm+4SB0npQdVgh4jjmPPoVOfnn1GXFuDWJqw3dVCOJ4f3UDTbpke+hZoF72QbA7pj2e5xlTOAcou3SuH5wr5H0oHANizbHoNT94wH2et9zah33nFo374cDDuk+4emOMWtC715W/mDbtmXh/ZJuYtgkrQ+hTy6QXvJE45YH8WI3AIyatpQQsyi1r3SGYd2pKgJJFIRrDtgC42ZNImOuc+W7QXYd4Y7N/Rmmc2WEJ+Jl660jIy3iVCPzL77qOQA0jdNkaAq9IHNiN5zRQ7I0kJHEjzx6FW/8T/fjjX/wAP7skxdNsLe+VJqHnQuKDOK4VOIFZ4+Y13W9XzyS1QoSk1pZ6L/DQnasdyZz/NAfPoBv+/UP4uGLO+Z4ZZ4nISkuvTNFOEhTiXMzTw5J3JtWeNrxFQzLHO956JJDmWiCRG+xvRxsAJE1iU4mVTtM/P1Fz8b6qMT5rTH2ZxWWKfvMzDGkxkbBZXeDmlayE0nWfQaiRSo6m3ZUbRWTkVcIoy/SM+BDEjUCv2hNYv+aEUWUsxS6qZsRlcb56KYmQLmBUGJXpVBK5riJs+MrOjikdZzmKp0T2gN2pxXGs9qi/Vw2GIs1E48J2jg0l5SUJeMCSyDuXu7RTc13hlEiKQnEqpsWPIrijnONxIeAxajk9D7bpy+AZIn1R8GkTPv1UHCTm+u2WADQd+TtXnZsxSZHCEmMZSq5wZyPbupHm+lzaQkIi0Da17rPPz+Or+307TX0ndzzHaxJzPnjAfLeLQYcEckEtrYwgjbavSe1crk4jD3/dDxujpZuemPLDej5J+2IVD95dVTq8rEEf77I5SA4BkksmMQFVO0P9oC+cE1UC4ybdNOFzHXcfbTFnU6QOK9rs7BG1yQ6ClUK+t/dxf9C06D+7lNrWBuVuLg9MbUD1F4iliJmHCJSN2V2X1KKI3vkyh5GZY5RWXjpP0Q3XV8a4M6TVl1zWORiAMzOccHaQoukFOL5f/eDl/Ab7/0sAOBLn3kRd51cA4l5+NT3pGNZtC3u/FPdKkABQH/crKqxvlRiWK7gsSt7vYWF7e0UqKOQJKo5q53NlWgh3f5HNE8AuM1BjZcbhNov9R1QKRV+m0/dtOvIW6dVHNIcr0sbbV4P0EGAft1YTEAKdKmEyuvcaWXBuHur2wJDQhLFeySBAupeS2nczHNPWpGu8LEWNZf+BkB0ElwU/uT6CJd3p61+Zb4MtLsHnNsamwBdCixDzcQ5hdkY+ieHLlV1gGon3I+x9NZUtFNucSMLU0koCmDXhfWl0iQoT21YJHERKjnNk6u39A3LBIfc/Q294xhkVRgn9kkUgu1AcCPWijvPiYugU6IkuibROOQAaj6w0cI18nf4+iR6gxQmcWd+VyC4587/ouq+UckVie4r7DmSyFcMUt1DH4NJquZzzHWLoTKLVPJukNj8f2zrsEXNUI4zQhIjg71m3iQoNq1qr3CeOV7DJvFRwoGQD8T4aUpF0k3djDcpdX2eIIlZlv27LMueyrJsK8uyT2VZ9j83rz8jyzKVZdmO898bnXGjLMv+bTPuXJZl/6zzva/JsuwTWZbtZVn2Z1mWPf2gcyW1r7VR6UUEXSRxZzw3dFMgHkl0e8BJiz8FqktlgSPLutlt1WSJSUkplrZlkUQ9z64cMwDj8P/iN38RAODtHztvaj2kOgrAIonrSyVuPbLUfF7XP5qFLmKetTPHlJpE6yTnYubn4rbl+lPwTT26pNoqzlyqR5JwUK1M4MUVsQN6QRoUOW49soQnr+23aDxAAEmU2hsYZyt+s6c+ie73u2aDxCU8ekXXBJFjUWT93xbTpLhg6Dizqm6JIXDWLdKPqWMB+ghAjCMpoj0hJJERruFqSdtj4ikyvR6oAmoWEg6KeUZbDAhBNdGXITciRTfQSeiKBBQC4l85dEdSOHX7leUM2kC2M56b831ha2xVSjNGoQ7xSGLb2Q3fx1wtUTD7zwRtMQER0H++Q6qVNIY+65pJAvmSCdz605xgah+yNMhbLQS6SKJVyfRbF4GJqonjaIsBOmCIli/WJBpkyb7m0r8lM+MEJLfIM5xwgkS3BUxan0QXSWx/RiGANjN+QgyVk1uTQ8E2fSe3boWRxP4zqr/PO4zd821S3F+72l27bDKXPxaxgFpjlD8AJsVvDqWOovuKaHq/BQbA+5/X07p005R6e8CKl8UrjOtyDokBESNcw9JN6xi6aUe45jrVJB4m3fQnATxDKbUB4G8D+LEsy17svH9UKbXW/Pejzus/BOCZAJ4O4NUAvjfLstcCQJZltwD4PQBvBHAcwIcA/MeDTpSc39WRn49MWeSVYYGdyRyzucKw0DU6sciSW9ibMwsk4KqPZTi6MtCopdNXShcoxx2P6F3GkRSQxGMrA5w9alX3Lu3YdhYAv2mPZxWyTH83qfe5dXT6+OF5upTYWsWhX+6chqVco3lhe4I8A85sLOFCQ+Otaz9Fhp2js7GmCAdRuw0ayznk80rfR2ePLuPJzbFzjzjjehQlP/XE/raE2pI88waXhBSdObJsGpAvexQhQ/QYfUyGtljXXhQR0Ituux5L/w06u4Ijme5cR2SfSbjGeQbmAUemSKhJpOlQTSK3dvmEC6S+eZzNnXtEcv7tBt0fb+jPNzBINDRtem48FFBAX1eqaXORREmEBtB7ACXELmxPzP2fZXywHXJAOZGKWqlgZMPVEvmoxXqO/SCF/pWaXIlBO6X11Ye4+dZk2qdvWdOBzXJHJrEX7DV/Y4LZ9vm33ydZl5Gg5xxe73y0/BAC6V5rqfardSzBv6ic4O7Ict9p1HXR4X3DPU+SSE4IcaZz7A5TEeefu09iHHKuTcS8DusmLJJIoHmmIomicE0guMwYRKqq/b00AZ4qHwouxQSQUG/sa6V2Pc29txepSSS12RRV1MJBEjkkF/DTTbkWZ4sJ1yj7umSfS0iiUuoBpRRpyarmv7sjhn4rgB9VSl1VSn0cwK8A+PvNe38XwANKqd9VSo2hA8oXZll270HmSjfE6qj01sSRcM2ZjSXsjOcaAWpQs1hkyV3cuV5XQLtp6pHlAa7tz1rUEqn+xXe80aBo/b9rT1zdx9ljyzi+Nuy9JwWyAFrCJRZJzMzv08eL2Gw6aGfsuWwjiUKQuDXBibURbj261EYS80ThGocSWwo90TibOwEPV8QO6N9bFhluPbKMi9sT09ybKMZsk9zAhliYRSv+t7XEfJjzSYg7oS+ApWdwTlM8ktgJEucqGCR2M7sxjgW9z9Uy+rxyjtpX13Gqie1jRCCJKfWuHbop9wxQQoSzlPvfnbc0zt5HHiQxMrm1iHUbF0uoLKGrWZaZmrZWvz0m4QFox3BnMsdtR3VCbF6rVpJEorb60B6pV24sldk9ZBWJ7rECHN5RfSe5VvEKrAvVrnLnsrm/CUm84/hK6/28E+xZR947zV6AH5M44uu/9F+vmAyD9oTWcl9PwNRAyv3/ssjY4MhHed+dzPGrf/kwZlXdaoEhifLo+0ScoqU7Jt6TXAAcovvSexzaFkQSBSpz6vPmzlPWE5DAg3Bw2QUP5gFEUH8ff0/G1bv2x7nvk6VoJBzE2gKDKTWJeiD5M5OIIJFalbnJdY5urecTr9SuvzwiSOwK10TVJBYIrfaHKlyTZdn/lWXZHoBPAHgKwFuctx/JsuzxLMt+vUEIkWXZMQC3Avio87mPAnhe8+/nue8ppXYBfNp53z32P8yy7ENZln3o4sWL3nnSpqXppvJNRXTT0xtLGkmsagyLDMMiXu3ScrZzdoHU89H/30YSLUe627PHezwHpXOP79r2eIajy0Mj4gAA3/HKuwD40Yb9WWWcpDNNkHiqcbqSHFC1WJBoahLLQnSsL2yPcWp9hNPrSzi/NW71IExRXHSRlEGgBca8qs294tLNuCJ2QP/eQZHj1qP6HD54QQvskPLcQtnnPOO57o198tw2fvYdn2pq5GCOU3oyfnqeGY6v2GxUy0kWaGV+JJHbRP0CHADntMY5hBIFxe8Qto8BAArhzZerN7PXTXYQYhNAtgWGzBKgwnrOkoRrnPtfZkDIWdPUdhsp9kd//SSe8X1/jKt7bfaDP3DTn3n2Ga0qSP0MgbbytGvjWY1a2Z6HALA0dJB0Dkms/A4oRwkMKUICwj2p/LW1dDw2uRI4YB9JDM9Rql31oWB+JgPV8Ov/f+kzjnfm2KffAnHqpnx7g0CwJzAnUhHIeKVq+5pCeL2TnrlQgOmjvH//792HH/vjj+O9n77MJxc740KMCx8FOqZO3L1uLookGYe2hSjhNM9uTS4QkVzh9sXaf+2knrJuvR07jilDikH8WVRc+dcEju4OyIlhK4B4OEhikTesnMj9xijllylBov5L9Y9A37/27Ylk3RY8+ssj6KZd4RpTkxjqzeVHEw81SFRK/SMA6wC+FJomOgFwCcBLoemkL27e//fNkLXm76bzNZvNZ+h9973u++6xf1kp9RKl1EtOnjzpnadBEoclplUtUjmJbnrmyBK2xzPj3Kdk/y1KKAunuMIdR5YHuLbXRhJT1E2NcI0HSSRKwrKj8Pf9r9PKqr5gb39Wme89sTrE97722fi/v+1lzRzjkSz6vUtGyj/tt4XopqfWRzi1McL5rXEr05UirlM7i5+PjgYAb/yDB/C8f/k2fODhy5jOa5NF44rYAWBaaeSMlOYeaXqAERXI2yfRQyUpPYvkV//rd+Nn3/EgLu9OWwIEXrrXXN/vxxixAw7djpkjF1xSEO+zRRBBM082uExzZKKQFOYZuJ41iW6SBOApMj66qa/eWDpWq09igvOZkjRKtTe97ZMAgPubVjJG3VSghbsUUOrx+tlLu+b9XLgG1CPRVdQ0wk0cZQhhB9TQ9Dr3cujeyphrEKKIAXxtYYxxzcRj2mYAXBLUllz05udJXNA1+dovOovveOVd+Kdf+aze2K4CMRDjJEv1zb4xHLtD//Wudxy1z0G2OaOXuTYdiyCJLitGGic9p39831MAdGLZfd4l4Y5ahYK2vsJ1Sk2iG3MsvN9EBIl9lJpe9w4TkMTae72l5EoIKe3OEQgL0NDxeghwreBjqUrPqb0GfJ/EG1luADh1mw0FOr50Sf8lfyaGblo560TofISEa1i6aVDdtCtcE4EkAsG6xENXN1VKVQDenWXZNwP4LqXUz0PXEgLA+SzL/hcAT2VZtg5gp3l9A8DY+fd28++d5v9dc99fyCamJlGfnlmlMCz7T0gXSZzOKUhMQBJrCgDl2h6X131keYgtqkksbIY8mm5akSMpSxDPa1vL8tUvvA0vv9NmaKXFHwAmMyvck2UZ/tGr7jHvLULlXPKoNPrG+eimu5M51k+u4ejyoNXP0s1+xsT3rkx5WWTYn8m/66OPXQMAvPWBc9ibVlgbWQVQ1pGsagxLjRoDMKIwG8u2vYQso+3fELnzX9fKLIKPXdlr0Z0GntoxSoocdRBnQlJ8GdMQ3Y5zYkIZ2i5tKHbTzvNObzmqYws4MjQve7wwksIJ14RrSXV/0RDdR3+v/jss5WumxUzSnBHOXFGOMN20fzwSSLgRQSI1P/7Ueb0N0O8S21I4dcJ33qLzkq96tk0kSkk4WpdOrPWDRBFJbESyJOPW15jsP4cu1cpfj0Xj+Ocm5Ei2z0kcQtFHewB7DwyY8yJl5AHbHmljaWCSmN3jsZTAYDDL91wNBWDSvu1v+cCvkzHiRlxw76dyCv5Fh+Hx3u/78tZz4uvVOmioqJe2J0bZPc/tGeb6JIasn7jTf31XjUuuRFFwGZqw6//Ic+wG6c2xQsFlztXqhymx+nNSwCEFiTzdMaqXI/OMhmpr6ftdk1BxSze9sUiiuwf5kuS9cc3nLN2038+6ay67xqxb0jVLXEvi6KYd4Rqim4aCywCS+N+zBUYJvibRJPyUUlezLHsKwAsBvL15/YUAHmj+/QB0zSIAIMuy1eY76f2FbDzVJ5ec8llVt2pUyHamcwzLHMdWBqiVVvccFDkGeXxNoi1uz9mNXh+fNtEcR1cGmFY1ticz86Bx9RBkv/yuT+OeU2v48ntPA9AbV5ZZR5KTIHYXhF/4phe13vMFUhpJFGhzCS0YumhnfNGw/jss5RrBWRNcbywPoJRt26Gd3eZ7Ijay2ln8BoUfSbzQKKre9/gmdidzk3yQCqlnlUYbCTl87EobSeSCvZgMldSqg2h5APDY1f3W5uOrSZxWCsMyx1FH7MBVN5VrL9KcJoUwStelDcU7u1JTZM8YJkuokUTvoQyS4l6DmJpEgHre+Rf7rrop2wLDhyQm1AmapsAOapDaAkAKpA5iu5M5rjT384cf0ckZWkdKX+BGrIw8wwd/4DWtpuJlnntr4taXSvNMLreQ9P78wkgiFwDEoNT02fa9HLone89NBG2R5tlF0mNEO4D++uptleJjMjSvcQlcM0eOEhhKrPcCAHrdnzjq9ZbzJEnssbiEn79NinXI7WuGWRaFJPrnSTW27jhpf1sblRjPpri0M8Xtx2w9uphMjrlPeucyHOzxbYnC55+9brXyKqLSd3bvfyBMNy3G0Ln8AAAgAElEQVRYPYE6GDToz3XGBX6fxMoJJ04ZJDEQXMrqprxwjWmBcUjqpiRcE824a87bcoIPGkO3DokUAdROR69XmYbVmzdShWsiWmAAnxt00yzLTmVZ9o1Zlq1lWVZkWfa3AHwTgHdmWfbyLMuenWVZnmXZCQA/D+DPlVJEI/1NAP8iy7JjjSDNPwDwG817vw/g+VmWvT7LsiUA/zuAv1ZKfeIg8x03WYONRihEukGm8xpLZY61pj3Elb0phmWGgacFQ9dMAJhnIq/bpaQea9Clt9x3LogkKqXwE2/5BL79Nz6ET57TWfV5rTDIcxNgcs2sfVkjXyBFwjX8uHg1QxskpikgWuEO3qmj7y7zzFxbEoUp8zS6qZsh8/VJ3J9WRhn2/ic3cXVvamTaJbrprKGbUlD4aCdI5JICMaIwOovZv97UugTQASk5l5lTk8g5CboGN281YPapm8Zk1rnWAbH1ThxFKbkmq/nrDRJNJr87x7Dz484NCNdp+vqSds0g6R6adlWF1U3j7n+7JknOZ1BMKWHTjrW3PXAO03mN244s4X0PXwZgs8FFnrPJjq6YzKmNJRNYAvoeYoNEBwGjZ3ppYB1lrkzBpbZyxgnXqAgkXUa3Y5BExtmNQAV7NO1IJLFfTiEL15h9iqObemiqZo4LJo64YMOP0vWvt9QjrnUsJnERQrKMn9Bat8LBvbR3h2ogyyITnXl6/eL2pFUDKAvXxPTT7NJNYb5XMs4pjxEO4nQBopDEznND538x4ZrwHIH+dQshpRxzIn5NaL8WUkqWwANpfzMtMG4Ak8S1bluW1NINt09i7Jgiy8S91FK7w+JlZmiMAA3QF665TnTTw6pJVAC+C8DjAK4CeDOA71ZK/SGAuwC8FZoiej90neI3OWP/JbQYzSMA/gLAm5RSbwUApdRFAK8H8OPN974cwDcedLL7U6KxWCSRM0IYyUFQSl/8Ms+8TUI/+JkrpubFbCSFiyTym2iZ5/jK554xr/salwM2AAKAX3/PZwDYAFCCw93PcCYt/kC7JrFrKQ7oosI1FkkpMK8V66Tpnoi56fvoilv46l+kOdI46Xc9cU0HeK97/hkjdOEiiVKfxGGZtYLEMs86ARifsfNlTaX6NjdIfKLpy2h6y3mCFE2vznBs1RGuMXRTX32CLyPM1LFEKofyPdEiHMKWIxnOWnNOWgzaw6HpoXNC5z8m49pXNxWQRE/Q1p2fZO3Nt318c6wQkpjFb9qx9sCTW1geFPg5hwFB7SyK3FODnejIA+11mdBb3zMKhNVNubp0TeUMIYl9J82nZEvWdVpjpfw5xctYJDElwWXQd5ZxEX52WEqmd5Z9dCkmuOQSfjEURE6kIoRkcb3sYgIpae8OBRss/a0x2psv7Uxac5Ap6JFruXvdzPw8YxiUOkY4iEfbYltg2P+PTUBwTJmqrr3Ho/WCqxME/P00u5ctBvHn9uAg3VRgoUj7m08Q73qaEeEL+Gldo99h6Kaz+BYwWSbvpTHCNb1zGStA0xOuoZsyhCT6CaWHEiQqpS4qpV6plDqqlNpQSr1AKfUrzXu/rZS6Uym1qpS6VSn1LUqpc87YiVLq25txp5VSP9P57ncope5VSi0rpV6llPrsInO8vDPBM77vj/GnnziP8Yzopg2SKAWJc4UytwEHoLOhg0JGEt9y31P4+l96H17903+OT53fNg+Jr5k7bYbDIsfx1SG+5gtvA6Az3gBfowYA57cm5t8ff2oLAEx/RZ9DWCnZafKNG898SKKMSPWOb5DEVLppc55KOUtFgj90ba/tOXTTlEDWyZBJQTqg6ZsA8IaX3G5ec4NEnsama/2WBoX5LUeWByYI4dRso9pLCJs9UW4BTdernE3SRwuhmkRqzQHA1KX46KZe+hUTOMcoh3briOifIYdEog3FZK3TFSj791eoTnOQkHGlS+ulm3o2e6m5N9lkXuE/feQJjGdV634Tnc+Ak8wp2R7UZlWNpUFumAIAsDJykEQxcPM7aSzd0VGdHpog0VWcXiAg5YK9GCSdcdJi6KZdpzX2cvQc+Ui0H+gjzn51U5nxQvf3UPC4ZOGaUDDbCcAigpSMpY3Sb/AnxTgkK6oFQyLaac6lsC77xLOk57QVJDrnySLi7c/HrOXdgNsc2oeSMmuQGyBIljHBfQQojiJD7/4HImjazL4Yut6S6F9MP00ucRETpPfqhpU/2WHoppEJIKN1cKPppiaZT0nyNF/S0E1j+oQ610NMkgT2e4Ch7kYHiQUdpPn7+YUkfs7bx5og6hf/4mHsz+LoprOqxqDMsDayJ3lQZl56xrsfugRAL0Rvvf+cCTbKPBN53S61CwBONkIJp9ZtewnOITnfNIu/++QqzjX/ruoahROQSs3cRcfOM248q1qKqK6ZvjExohgmSJSdXc5c4RpAQA0qHdjTtXWRRE5+XpyjiyQKQTqge04CwHNvPWJeW2+CRKmWdNbMEYBBqd1ehJyQRkwAVuQ8LXbbCRL3plWjZEZIohykUJAIAB/8gdfgF77pRWa+PgXWEG0lVREP6DtbsYjIIs4WVzscg/bwlCi/g7ZIcsXUG3N9EgNZcqnhPAD84O/fj+/+j/8Nv/W+R/i61e49GaDbSa0lDmKzpjXQmpO4ozpZuSbR32C66xC64wD9jJB4zbJTk7uYumn/eseg1HxNVjqSSJFUOk01QhBDUDd16/K54wD9YANw90WZbtoNtoEFkKzmn6F6v+6tFYtkcUGb7x6xc7T/H6UAKp7/ULAhl7PQGnNpZ2r8pGGZ2/pmBkkMRWBZ1hYTUxE1idya7AYI4jjmOY1PSnL3iHcYmxgLKY5K180tC+GME+WJXUu44MarbhpAqbvPtiljudHCNQ5KzpXASNYNEqOEaxyfMNTbMoq6a5DEBLqp+3lVA8giMuU3g8QoI0SpqhUmswpZ1lY35WzaOMnkGAM6q+lrrn7f45v4G/ecwAvOHsF7HrrkKJc6dNPO0C6thhwSOm6W8cEXBYkvvOOorhmoFWa1DkDomeV8tDoCSQz1SeyN89S2dc0EiUbdNM6R7DvJTPa5URck9JeuewtdZU7KY1f28IO/fx++//fuw7yqe06yhCQ+fnUfgyLDqfWRcVZDSOK0ST4AljL83V9h5d05IQ2336ZknGoZAGw1dNNT6yPsTyu4amu+mkQSrgE0qv3VL7zNvOdTYPU6ydwGFRFILFpb1b0GKmIcTb9Lbw1mn5n7K6RuavrERTwDrpR9mfPiWS6VmDMfKv7hR68C0HV/7rWUas1CfcpSakRibVYpDDtrsqWb6mvNNZheCEl0kne3NqwOSppIa0JIlITrVakQI0DDJS5UsCa36zgtiojoJEn4WO4xyHyIm01AcEhiOAnhrlsxzzYg15v5fp9E0fPNT4/r003jauI6NZAmuJfHSPtbSOBFah3j7ssXtyfYawT/lgeFvJdGJtNSa0lNCYAb3EegNmz9XQRNuys4ZESRIpIynLqsv0ykr4oNhNfyrJMkaSYa9Zx2z0mYbtpffwAPkmjoptd3/e9az0+LRBLpXKe0wHADUqmdXYxwTY/RRkhisAUGZWYoSIzorQgEkUQvGTXLst+CZWmIppT6lvBMPrftyWsa8alqhfG8xlJZeIMNen1Y9Ommw0KWjP70xR1840ufhiu7E3zksWstypLE66bjE0TffeC4hQfQCzcAvODsEfzeh5/ApZ2Jaebso1b66mZ8gdT+VK5JXESAI7UmsVuTJWX/XbopBWGt3k7MuH/7ns/g33/gUQDAd77yrh7dTlp7Hr+6h9uOLiPPM6wMS+xNK6yO3FrS/ph5c18BwPe97l4oBbz2+bYWNc899V++PolMHRFgaxLPHFnC3nTeoo75rttsXvupXlwWGYEAjEOXVIQAjVjHEs4Iu9cgBoHk6JU3GkmMem5q66hwjp1SSqNLgSCdSwBVtcLjV/Qa+dePb5pnsoUkdp3PCITiegvXzCudBFp1GA0rToN7oI8cBtUkJeEaIzqW48wRHSRe3rHrCbcmhBxCjpIZV5Oo/3bRvfD93x8DRKANeR9ti3GQARlJ5OZq15/+97n9g9nj5W2VwDR2gf3/GCTRJybmrUlkardj1DX7DAj7umTS+Q/RFos8F2vnAc1yubg9wfntsU6SF7bVAJfwiwtSuHvSM4ZB0mNQmyyTETrvHDsJ15hAFtB78HjeT6bF1Ptx7RRC43h1U/8cNejAXbe0IF3/P58EPawWGG6iMk24Rv9NKXlikUQh4e1N5nfBoli6KYckhgJL4MA1iQ9Bi8Z8GrpJ/d8BUEAL0OQAvgbAtfAsPveNgsSre9Mm2MlNkDgR6aaqhyTqPoky93kyr7EyLLAyKrE7qVqUGZHXXemFlW4e+ku0SgmRmsx1k9bbj60AAM5tjk3W3FuTWCuRouGvSayDwjUxDylt/sl005qCRJ5uR/SYMs96wjVlIT/YQHuRuLY3i27S+vjVfZxtJMUpOLTqpjw9o1bW8fnOV96N73pVu1MMJ3gTVZMo0Ia29jWaenJthL1p1dp8fAJHMwfx7FqW9bORMVLmEpIY49gxifUIatniSnqp9V/c/RVy0Og+iHluamW/Z1D02Qz0FeFemv3Xz2+NMa1qPP/sBqZVjccbGjUJdXV/F2DXsUVqnRY1er5dCqKL3LvzItOBmx9tYGn5jgP05feeAgDcc3qteY1HwEPUVo5aFuu00mftuDhqWRs1o9fDx+srqfrHcAqsgL92zI8kkiqqfH/psao5rn49qgdk4m/TtdTt1+rA/a+PxQeXPicS8NBNA3N0P2vGhoLETFj/mz2RWmY8dmXPURLuJ9Lo2CExsUwMgOUxnF9i9ugQ3bRzPhTikiTtREL4/AN8YiwU7PkEh0LjFg3SObQ5JgERK0pl/IobXJPo3tsp+00XqJBigPYY/df11RcSrqGAm85ldG1hE4eQeE19CEiiUuqH6d9Zlr0NwFcppf7See1LALwxPIvPfXtqU1Mzn7o2NrRJA4l7kMRBkRknBNAbVlnk2J32Ocx1rVDVOrBcHRbYncxbMtkSr3vWKHKSfcNL78AnntrCd75SBw8s+gJLo6LaRU051Zl2n0hF5dmk5GywwrSqg8I1UaIwPSQxLfsjCdfQ/xZ5bnpOUnLAp8gG6ACY7Ore1Fn8ci/d9OL2BC+78zgAK+oy9AT3brsTyfhmt2F1U0m4Zns8x+qwwNpSif1Z1cpsSmIHNFe39qt9LD6LSfOXjGs2HJP97NK9XPVNn4l9Er3H6t8nSvnPvTSucu4jdn4eJ7lrleMAcEFiiNqq58ivCY9c1iq9X/rMk7j/iS18+qJWZ85z2fm01BoBSbwhQWLdQ5YoaSQGs3VI3ZRHUuYOC+QVd5/EB3/wNTi1rhFFqY5rXiusRMmft++tcPa/k31GpEMo3P+hqLQv+BR2/iW6qe++9CUX7Vop1CQ6Ca6ySHPk+6I84fVHcpBTHfm4msQuJdl+n2RBJFGkhUvCTfr8nz26hI8+plW43T65QD8ho7AIlbm5boF9o3u82FrGXpAYkxToJHgNkhhD706ku4uCQypcOrBITWLBJHjj6ab8HtAdm5L8PIi1Vejl1mi9cc3nfCKIXXOBAxFJrCPuya5YnVmTY4VrHCQx1CMRuK41iV8M4P2d1z4A4BUJ3/E5a0S5m1Y1zm2OtbJkc7G8wjWFRRwBfVMN8oyF0d0altWRdshJSXVU5mKQMm/qbMjWRiXe9IYX4tiq7k8nIUREoyJHfnc6x8xFicRx8qYozZEKe91z4Ron/y8ZOTqL0k0lmnA3AHv68RV8pmlFUuY5K/5ANm7qVAFgc3/WylK6VKauXdmd4nhznf6Hu08AgFED5YI9ovBINE6ADy5jC6K5zN3OZIa1pRIrQ41u1871p+vNXYPJvO+Qm2MJWUwgJArDBZdx9X5dxxqIcAjzrkPSvB7hkPSofREOAtBBEiP7JMYkSlxnlqX7UmlD4B7hnlGqb37FXfoefvjiTjO/3Js4AnzOp5xcWdS4IDHr3MucSqCfAso7M13hFAoQATlxFw5IGUQkAkmkr0wNLnvzdLLh4XHOMBXn/AN96qivJi7PM5b+BrT7VHJWdp7TyPi31zogLknFOOQxQSJzn8wDzdW5cZZq7h8D+Oqk5PMo1c4DwK1HNJL46JW9Vlsud16ADr5UTJDC3FtAXADcVpwOj+u2O6FxQeS+s3bFJiW7CDDN2V+nrP+yYjKBdlLdyxaH+HMIsJ82LYouCloJPq2D62mxjK+u0ed8IojSGLdOX1KkjemT2KtJjKab1vZvFJJ4/VpgfATAT2RZtgwAzd8fB/DfEr7jc9ZI0RQAHrmyi9EgpiZR9RySMqcWGFzmrQliityIKVxsalhWR6UTpLTHUZ2NZJJjR84PqWluj+eoKmVqGyWRinktH09CDUIbtk8lkzs+sFifxDyzc+A4/IB1Hu44vmLahLQpuP3vHs+q/4+9d421LcvKw7611t7nnHvuvdX16mr65Wrc3XQDbTcCxLOJTUMEthTkOIEIS8QojuNECkqIHVsxWIqFJVs4TqQosWKTOH+sOAgpOCFxlETmkcSY4E4cFAgY6AYaupuuoqpuVd17z2PvvVZ+zDVfY445xzf3PdWpNndKV/uevffcc+6155pzjPF94xtBnOKVBwJJrDjbD6/3uNgd8Mwd5yT+e3/og/jvv+cj+MJnb4cxC9qokWcD1Bww99iut1RXUz3ZjDg/mXBxvc8kuZs5iYd6TqJm/MTDvjpF9bstsA9tmaS/ENfDj6fmvzR2xmiQx+d6kJS8lte6jmqGbkcJjMy51xCKYIy356jtCS+tubsfeudbMA6OWuY/yzI+6zS2m0cS9/PS2IPWeR7KeVpiMq2cRFVwpYEkWk4DgCLfiUG/AC0nsd2vRBLzz6v3k44sQ9Fb31usE/fYFqDRrn8UfVPnKIICy9JWgwzzLL4bVzZgXnLqOhW4G0qaaioc1h6vL7hVQ3ssWuxYuf7ennn7mo+7LMjUzeVewjrp0klhEOBacAWwaKr69egVrmG3sWks1/++EZR3fco9wfez1tYxqRuanXCYDXVTC0kUnb0NyrLEjm1xP3M2aK1+tmz+PUwJqlcf7vAPP/5SUTsbUJztBFyotaLuMF0CQwjXzAcb2gZuFEn8bgBfD+DVYRg+C5ej+BEAn/eiNYBzAp5djfnffPkCt7ZjWCAW3TRtT98+cSUwlAjJPkGyfO2uF193Efpb20mNBgNORdJSrdTWcKC2rk7ig6t9ZqTURCrmxiFVjQYbBuFGHNitFvngbSRXNk+TjPQMQbcLKrHu9eefOQ+vuRs7fo5sl/sD3rYehvcudsWGoG0iXsTimRVJ3EwjPvTOWApDM8hjnk07sbkYjzBkaonbPgfm/GTCw90BF7sDznzZgIrD7ea6VJHjNpLYjkjq9B/rYCsNZIBAN45AEjXkjHFkVSSRVTel7pv4OVpuYUAMWihpZU94+cEVpnHAk7e2ePr2aRJcGU3jsy6I8cbQTWv0w7os+WzQvep0fkB38GvfzRTJURERzrBz743POefGRqR6c9tiv/S+4fYfoLz+Qbim5qRUHO7rhO7bHG9930w4275fNyK7vi4RSMBCYPTr0QoK+/Hkb+0/r9Zqe4lFi62tf38uP/fEWdhnz1MnUaBm/hModdNOB1gLsIf/N4bTEGAG7SxtLntvBfQzf56NEjyV382xV/rOUhYV1wJ+luAZgCLgUctJ/FyVwEgDlRtlj6z2W21JP+3W+fvtf+On8Z0/9DP47TVlbRxi6lgBVISATNueB5Iz4FFKYFB005Pmy7STuCzLry/L8nUA3gfg2wC8b1mWrzu2eP2brT28PuD5Z26Hv8+2UzDUa0mr1wrd7v1vu6PmAwGRnpGK3bzw2hXOTyaMYz0nbq84o2mrqu+tDuH5yYRhAO5f7bMDqCZS0aK7jBVHyhJOiflYTAkM93hMCYyUDy77xXIj7nUv6OOfqyWIA0659fbJBnfPNrj3cBeKO3tqgbaHeOXUp2+fli9CN8j9wduu23bc5m8ZrrdOJiwLcO/hdaANWTmJrehzgQiS0e6StkXWNlOcRMsslOqmPQIQUvCGyX8EajmJbUOXOUwPczTUa6qJ6WfWxqsFPJ46P8E4Dnj2zkmouzoNQzVwZKsmvjHCNX6vTINAbrxKbg9hpNWCK4B+4Nf2BLZOogxcMIqEgAyUMEGS/tw2oNyDFrIPoF1/99grcLRf95+aQS+DAkz9O0ARTpkZsY/1vZlzQyp5Kk4blZM49/1utfPNFK4ZK+kz63NnmzGccalwXU05l0G3ex3gsXL93Xjta3KcuEt5r1lj+dfV37uTSgt4dM84S5XvxqLiaVsWq9zGOqdKAEiurVbw+SZbWHMN+1prh9ld92Hwgjf6+fvgao9f/qxLvfj7v/iCG2sYIk2+Yie3AL4iNYsugeGFa3pLYNwc3dSNuyyfBPCzAH5rGIZxGJhZvPnbxe6QGRW3kpzEmpPi1B3zr//80+eOHmPQTb2IyQuvX4X/t6icbUW8Sk2uVelvGAbcOdngvkASR2URe5l8C0lki6b61rMp+M/yBw7LW/e0MY8kyN9AUvve9kR03qxNxCm3jnjq/AT3Hl4Hx8IjkFof7yR6uqlsLSSxNyfxGGqZb16W/3y93i/dvy7KBlQRyEZOYg1Zak1Tp5vy6qbeMGCorW68440tiaQwBqHsx0Tx0/e12rK0841T9LvWtDxZwNFNPSL+1rvxvrlztlENNMBO0tei+I/a9klO4v/yvX8Av/QD3xpeq0nJM3QvXbgmDzrlffQ9waS2VmijjGEHlDlg3cJN/v/EWi7FXYw5Vilp9RIYfqz6/tP63fKgwLzYwSZAc1IYJz13SF0/G8mtU/v6+nH53kYwp3H9WzmJJ5sx7AklkqjN0Q549OYWquwOMigptyCW3q1/t3Y/FUlc+gNH7m9rL9dyEpk8ZeUeNfaSGr2ytrYi3fRzhCQOfU5iqjFQ238AhNqgAPCx33h5fb/7W6PJz8a9BiT2RTfd1AvX7GM/qgTGDdFNh2F4xzAMPzoMw0sA9gB2yb/P+3Z5fcCTt05CuYKzEy4n0RvzT527C72ZRmw3o+pYpnRTX8frxdevYt08xUDw428NeFrjWacO4Z2zDe5fOjVV/1na5s8iGzXhlJuo9+bfc+ukk266UiKiYS2Ea8QcU6GJFEms0U3PthOevn2Clx5cZxGympMekMRz3UnUkthjbmebbiovozOACNSsZrhOQwhWvPzgOjjoMSex/A2c4pk+lra2KNrQWFJWqO8m6EaMsp02T8rYCusknSNnEAI1JLEWXOFzEtODXFuTLJKo002vQ7Dj2TvRSXzmzoktXFNzgCt1Ox+lpdT8k82YIRveadACXBYFVM+Jy4NOaasqThPlNtyc4nPHrH///27hGvF5bD9mjtY6aZ0dteBWUwBCBAWYexQ4PicRyOmmziBv9xuGslYuhyRKcRd7v/MfWdsXmsI1yhrxJTBOpjGk6vgzxH+e5rRRjpQIdlj9amJiQPs3kL81QAYl5foPomDNbmrwzl7HtfumTZNXz4Ajg8mHuU2b1ujufs7jUPb1SNsbXQJDq13IgA5poGYzDkUeu2/XyUb9mYRu6h/rpco6fm+2BIYUrrmhEhg9KODfAHAN4JsA3Afw5QD+OwD/esdnvCnbsix4uDvg1kksivzFX3A30Jba6qbuPT/xZ/4gfvbPfxMAYDsOqmOZ5pv5PMEX70cksUrbUgRy0lYXSYh0wNunm5VumtfAq9FGW7L1gBJpIlUaa0bhJ168Hw4DP6fTTrqpj8jVUEs/R3+DPpcgIq1kY8AFEc62E567e4oXXrvKKFK13E5PU67WjlSS2P1aa9KLtYNtsRVAa7klTvF2DHmyv3P/KtBN/TWpBT1qm52kcQJ8tLuQTSe+m6R7MUqebi79AhD+Ky+iH4skpuMxlMz0fa2WOgXammSENLToM5Cr9HqD8GQz4u7ppm7ELPl3KMfiixuzbX+YcVKp3VnNyTIct7GGJDYCOjWU1HRIVTo/g9K5x2MQyGMpgb05iVVhNuPMmcZRdVIsg1cGBTyzxmrSAViM3C83lnvsFfPRauXOhJNYQ9taww3DUNBUAZ+T3nYA9HSDdf1vRrz1Tkk31XI7AZgCX4UoT/J8dY5KACJek05Hambp1vFvH5Sk6isqQZK2kIkevD4sRsBPAQ8oUR7FTnC2VaNPJQDRqvm5XYVk3ogW2AN+b+lEEtMczBaSeJUIXr74usvT97a9RpNna3dm8wxIokU3lSUwFjIn8ebopl8H4F9ZluX/BrAsy/JzAP4EgD/d8RlvyrY7uPqFt7ZT2L6+4vmnA5W0LVzj3vPk+QmeW9UvN9NY4fB7o2II6OFhXgKqWKNttdRGXb9SWc31S5DEU083jZ+lRTospbN6raV2Ll3L2P0nv/06PvrXfgr/2U99ws1hfU93CYw1+uM3JRml2ok5PpMgIre2U3UzBoDLvaObPvfEKV54/TKjSGmOjZtPW5TkJoVrFnComXb9Q6mUdXObl0gbapUumRuH1DSU65GJJGs5IsvS3lTdZ+bzpOk/0kieiah1xSBhkcT0NziIPFnZgmND3ANp7lSLJdAyeGuo+MPrfVgfb1v3OZ+zUau5yqz/G6ebNoySqMKaX0vLcashKVZ9v2qeuFEDFSgdAFY4pcxJtI1d3bBudlPQHo7GBihOkXHm1CL5acCz1g+I95tVV843GWCZl+PUZemcxE76odaPCW75fqWzYYiSVM6N64MzRrfTiPc+dweAU/72rUbJNAMeRwQu9FxeIihZcaSsH1wikPT1H/TrzwiZaA6HmTpQ9AHx3fop0LV819Y9upn0XNdHbf/x3/8VvPfP/z3sDnMI5qcgACue6N+/mer1FT2S+OR5ROP8/zVVYEq4Rq7lYDhZRpCPXvfmJHTY2G4AACAASURBVN4ckniAo5kCwL1hGN4K4AGAd3Z8xpuy+fIXt042+Ev//Ifw7V/xLnzle56KdRI7SmAAWNVNtchbiSQCMfJQu9GuD/XcLyDJExRDHhIaw92zCpJYQxsMZKNMUI4Rm2Y/5bq8dN9FYH7s5z6dzeF0M2IYOkpgrIddrQaPpPal3/FD73yLkZN4wK3thOfunuGVhztc7qJxL/PhfGPEfGoGk6UkpuV/UQaJZriuEXZfvxGIUubB4TaQatlUZ+/I4sY96o6Bxr8+323sJvO3xjp0GoTaYW/WSezI5U0PNu2gD2qjRkReWyPpvvFFb7sLIC8bVKMotcZ7I4RrNDEx3yKbIX9+P89tx61iJIegnyZcUwncmeqmyh7Ul5MYn6PW5Fj2ST+vNV56SWYK7dfPDubMUYNbhjMlgwLzbCOCvp9EiXgnPT7H7FuDZsgTAaeauinlgCnOhrUml0VjvazrfxrwbR9+B4B8nzoGEfTj5d/NPfbSTSlWiHpOEdfRjyeDku1uhZowsOZEE8EOLTDfdNzEdQT4POUi5cOYo8aSAaJtobVaaZtHbX/nZz8JAPjHn7wX9ppxqOdNai11it3+o9ugV6sd+K6nboXnnlrTizTmVgzU1seW9V2juqm1KIVwzQ2VwGjjjHn7PwD8YQA/CuB/AvDDAC4AfKzjM96U7WJNPr21nfDBL3gCf/XbPwwAGAf3IzF007SdVJHEWHz5C544w+9962184sUHAVWsHqKHGdvmDeoeZdQmRRJvn2zw2dcusRnHYPhrIhUWbbTmyD5KTuJrly728JlXL7LPHscB22msOumyRSTRoy/5WP76p9/t3/zG9+EdT95ykaZKxG5ZFlcWYjuFBP3APx9zGkOKpIacrAa6WuYMrK8ZTopmWDCbv44kLjjdjrh7FreDIidR+Q0OjYNDQztn4tCu1YBkapsB8d6hjd3CILGNLS3/iDEIN8ohJcWUyj4dOYkJTaqFJFo5iTUEzM//S97xRPF6Lf+lNZ5bjzcbSd7PdSXoGEnuQxLrjnOdPZEG7tKXzTqJfg8Sxq6NUmMdL3cuGYM8DcKxNpsU5qGQxAYikr6uzVFDnNO6oFpTkUTGSRTnYs/+04sAa/cAQ68fhlIkZ32l2U+jwLHqmodlwZh8vl83p5sR7376HH/ru78SH3pHWuIpD0Cw7I4SpfP97Dl27+VJMGcI+/qC0TCu43jumgSH1LDJ1bqMhJMO6MI1TVZIsiaDIjfa1wOolGUxUPjavX1oBOBqVQAetX3pO96Cz7x6iZ/++O+E4LlXKQX4gKu/ZjUhSiACSO9+6hw//6nXAEQkUQtupUI6tTbKeT6KcM3nGEn8LgA/tf7/3wbwEwB+HsAf6/iMN2WLSGJ+OTxEzdBN07YZR8xLecOkdNNhGPAdX/luAMC9h077p3aj7Q+2uimg0718v+eeOMWn711mZQs0ZCnC4Zazlz9vilQ0jN17Dx1F5ZX1OoRk42FYHW7OcvFqXzX0SxNI+DPf8gH8sa/+PQAUmH9t14cZy4KQkwg4hza9jum8W+OlTXWIZvZgKw3yXtTMN5+TmDqJQd20gWS1jOuWuqn13Uon0TaaJN2LcUjdPI/IY/EOqejHXH8gv5Yscs8cps64Wec41nNC24ZFJZcuydvzwjVf9u4n4zwVR8pCSd8IJHHX2CvrEXmbtqgKdzS+n5aj5v9mDMKyTmK1C4C4XqWYBoNI5XPkgyulkmd7jrVIvhVgrCEOFt1UGtdpEKXVxkHmGx+n3MpekwLtgW3IS5pkRM3seWqKiy0kfaqkHMjUiI9+8G0h5cbPUat3SOXtdSOCKObIBiXTMXw/Zv0D8cxnlVtV4Roj2FGj81t5gpO2J5CBI42Cy6D2qjJ/7b6e6s7XozQ/3AuvX2WBoVoJJK1lwjUNgTWPJL7n2Vg+L9VzqFcBIAIe0km0lEqLOomHz21O4rIs95ZleXn9/8WyLD+wLMufW5blM+xnvFnbw2vned/alhdrUugBgDs4WnRToDTsZHmDb/7i5wAAv/Dp18JY7rPzz9vNdQoV0MoTjDfIh975Fty/2uNXX7wfNv1JMSStvCWJ2Mh+x+QkeucQcNc1NZy3U91Jl83LFtcKtbaKX6dzlBudp5aebka8Y1W//eTLDzNqH4CComE5AFoSO+OkqGUiFk5dU9vsPAUuo5sW6qalYTEvfQ5A+LPlJA7l+vfPt5pEuOmotZhnV1Hwol+7o3bYSwq0bNuKgaa1VN1UE8Sw6J+AgSQm983Hvv+b8V/9ya8W/cr5APXfTtt/HrXVAneAEqFdm+W4jaNOt9uHoJ9ONwV0o4lSN5VIYrXHOl4V3W73kygdH1wp8/aYPkB5dljqmu4eVZgMhsEr9y6Xw9WcopunuAcYIRONbsqgq8Og7K2EIS+de8aRAnRU1kISa2eAlT8vz7fF2A/CHAe5JrngYvpe+f9qP8WeOYbeHc5tazzVcWhT0AE9UHIw9hLpyPp59geO7IBTQC0Ve7IFHOxumEkCAK+vzLQHV3vMczyXayWQtJaWF9k0BHZ8Xu6XvD2ya8J4CnPrkCCbtVbYF91I4hz7MSUwbgpJHIZhOwzDXxyG4deGYbgchuET69+6vv/nUbsMSGJ5QZ1BXhehOdmUl3BbQV9SuikAvPetd/BHv/yd+I/+JU9vde9TkUQmYqo4bj5f5ve909FAliVu+qNiSFpR3ZZCmpuLlQ9UXst7FzHZ/XI3Z1L9PZQEH/2pXf8gWV+ZY01d1q+Ps+2Ed67c89965SIgKnGDrDjOjfE0Jc/0M9V+FQeMiSKrAhzr+jpPlOluecXdmmGdoL21sYp9laCA6hRcPifRXxc2sl4UBacMO2+Q9/UDysP+ptVN0zyKOt20/hkaAunGz+XWn71zmsvda5Fu40CcKsb/o7SWErRG9wUIx63i3BzmGcOg/3a1ckbHIIlcTlz8/NCPdNw0cREmULLPxiIM68b1N4WDlPVvCneIe4cVrnGKx8k4DJJYQW04JLHPIAcaNHmL7qg5AEs738x/N7kHRSXuyvlWoM3ukQl4qOyORs9aoDydvzqWGvA7ht5tn21+npqd1kJy/eeqojDNgGsZOGJR8QI8IFFLDaiol3e6eSYJALx+5UCH+5d7h4CGM7GNJP7FH/sFfOff/Bk8vN4HwMH1q8/T3wNfmCCJvk2TztRridb48fx7AYAvgSGEa9gSGDeYk/iDAL4KwJ8C8BsAngfwFwA8AeB7Oz7nTdcurt0PfUspVVCjusQoWnnH+U1TIlkp3RRwG9F/+B1fFl6v1ekzI0YSnl6bL5IOOIc0fqd6ncTooLWj3d3Uyoaxe+9BRBJfu9xlvO3tNIYEeat5lbYp0E0lkthWYK2py/qN4GQz4omzLZ442+C1yz3e8eRZ9t2q5UQqm7KWxE4hiSpFicuJ05FEhxKlhkJEEnWlWDPfUo2Qu0dLSKAUVuAQQeAI+k+BpNiHqO8no89MP/n9bHVT/fprzUVN4zi1HME2/arcR4DjZPIZ1b6bTkmp5YkDjYCH9d0SNDc9InaNfnpx78WmSCr9epCsYk0SqsAS/XKf1+6XOrPjOFDqyr7fMeqa6r61tGlbMijACtekdC/vjL1hOaEKvZtDsvIgVRROYZzLviB0Lbgi7RnZtDIpfg7tOeasnJ46ifl9wwVc3Rj5eGxQIJ43+fOt8bTgnRW8qPZrOvfxfb5xiL8muGXkJFaYE20kkWeJ9bT7K5LohBpTRLAeSACA//If/DoA4Kd/9aWcbjo2hGtW27AGMKlIopm36u+39Qm6BIYQrlkWjm46tt3AHifx2wF8eFmWl9a//8kwDP8XgJ/D57mT6CFjDRXUogFAm2rhkUIpuGLRM+KGpSEp9fnXoP79PON0pdCebEY8sxaCj0hivU5iuyaOVoPNlrsHdAP0lYcRSXztYpc5IF100/XG9je3NKwjksgbdunfvt+7njrH//uZ1/D2tzhUsS7/7GgkdSSl3FSjAmjtW9aRxGPyIdw8yyCEz8+dxmGlRNWUYmsOtx6xBtqRZM2IXGBTOTdiY/UfYZmEg3BUmOsIeOMu78ciiel1odWEK4fUqw93eO1yh3c/fZ7ljUzjUAhuMZS0WuBoMQzyWuDIUnFjlObY5qnqNlNA7gvtotStfla5jfRns+6ZtN8hW1sLJVsPlI4D49zI/EfX7L3EzdMJd/BBkvKcYoQ7aqV7mJzEfuGadV6LFyXhnG03pxyRsoaT+4+cQ32OuiqziVwqZ4BF25180Lt2LrbophqSSDhEaYA97FsMAt9JnQ6OlKRkNmeopDfMtiML6E66C6YR16T3d1OvCecA9zr3LUHD2ne7dTKFVJ6bbIFu6hHBdfiacJls96/2WYCnhSR6J/FkGvE/f+8/k/0etTPRCghE5F4aM73CNQd7QQLA1CaD9gjX1EYjZvHmbruG81BDEq8FdTRtXom05qRUOfwVuqOjP9TnX1e/yg/FUN8syUmsJ9YaSKLhSBV9KpQVIN7UwIokJlTGbrrpOITvV6V/Gk66doimr7/n2XMAUcCj1s8SxKgpeQIW/1+nqTLRfzXgoeRE3DmNFATtHrDoxVqEnHJSKtfE/G5iY2XKbQClo84oCwJaMWuunxSOOBiBi23Ib9YPqW/8az+Jb/jBn3CfNYuDrYYkGgGgWuCoWbuzSoeyjP+bMxIsZKNW85OlgKqFohtIuuwT7pmWSIgSTFvAI3uHDIEhkQ1BmwYxnkRu5gWUQaIHGO11Ug1uGXtJOkfGQAN0VgKL5KZLhEUgtTJIvarMrJqzljs8N9Yx0KYSpq9r/TRng3HANOXWZnBRsZ0Y6rQmFthD7/bdWCddzS082Ai3Rks+GL9bELNKr8lsB45KKvP6PHOvidu0Fcg5P9kEPZCbbN6evH8pSr41KMnpc8FJTBDIWrqHdxJPtyO+6G138b7nImNvGsv6rhb66/sBiV2ysHRTKVxD5iQadNMeJ/FHAPzYMAzfMgzDFw/D8K0A/u76/Od1awoQVNCXWCNLcSwD3TTvd92gqALReNOQFIZXbylLPXPHRQzONlF9qZc26vvVnYbad3O5jLUb1NMbX7vYh/eMo5dJ1m9Q2fzhWsstDDmhlTnWi4L7a+J+oG/7sCsNemdVA9USxAGsdSrbv1u1TmIzKKAYFgQlrRqRT2jJ7183uY+879msXzW/rTKkjnauh7aREye/m3PcyI3VCwl4QbBOdHUh+gAlIsjksfh5zprj0LhvAF2E4TAveHktXr0/zBmaqdJ2CUra0YpslTXSjD6PJW36UZp3OOtMDT0nxQzm+PtbCfr1lPyh9laFNkrVNlPODhY1mMU69s+3x8vXJRtcqSHVTce5yoBooxsyKGDl3vmmiZKw118GnKjAXRHMYejF/ahZbTxauKYSdGrtXVnQIszddrilKJLVT0sViY6bfW9nCDyREyrvb4bK719flnw8i8oPVBDg2UASgyOb39/U2lLYBa0p+utf1Io+1PfW2ycTHl4f1NeObZe7Q7Cz718dcnXThgjcvYTN9sDXEyeQRM/WOZ0Uuuk4VlLH2te/qOcb1E07hWvYnMS3f1nz5R666Z8F8P0A/lMA7wDwKQD/NYAf6PiMN2Vr5apV87g8AqAhiT76L6LkJt1UoQwB9qHRokmmC/JT91wdwq/6wqcA6A6wvxYWjaFwpAy5e/9arSj707dP8Kl7F3j1QuQkbvqRxJqzHZHEPoNESvl/y5e+Df/5v/yV+Jr3PhP6AHnEzn0vI9emgggCBNp2RB6L9rv5efo1+8N/6msxIOfYa+pekRKsr2WZ6wR0IIkKAsny+P367VE3zQ7Emc9JlMIdTD+5n/g1WzNKWnkUv/LC6+H/L7x+VSbbF8Em1yxWQomYtYMrQD0Hsu0Q1fNDfGuplZbvre/JQFk3zzcrIl9HEucm1Q5AJSDQUiSMc/LNIVLVLq6fQvfinJsKamPtJeLMsSTy034aImsjzuU6MUsAiKAAiyRKh69H7TL/3WznfqjcNwy9OC93Qv5uyrW0frtWkARo6RCUVEc3d3uOGUpKpGBo678rt1CyQohzw4/hHvPPq7XUudwkjCcGXdKCroxwU2/gSMvTB2x2E2DboGk7P9ngky8/bE+msz24ciji2XYM6qZ+bq2z9JXCSUSCJNbLsF3tnZN7ulVS1UbleixtfRFAuZasuumxJTCe/9rmy00ncRiGj4qnfnL9NyDaHB8B8OP2TN68LaKCek6injTvD/zy87xRI50bnm7a5wDU6vvJ/JyPfuA5fOLFX8NH3v/Wde66shpgR7ur1JNOtMHP2zuJmXDNOOCkIyfxsLhrUdSZWduOiORrCqASARiGAd/8JW9LvpcfXzE+O68Hg4Clkvx5kVz7oLHqjT19u+SnyxwR3wfgDQSAow3pYj68uuksDm3G2JX5KLQAR6dBDpSBGba4uva73U9o2p++d5FdJ00UhglA1GijgH1v66qhrT5j00n81L0LfP1f+XH84L/4+0NN2VaLJYYqyEbYX9N8p4UuS6EJg2lMEiAJHCmGfJMlUDV2+5ANPza1/gWS7uZooA0Cue+hcmoId1OAZhpCPbK0sXTTkJNoII9hjgLNZdCXWKcyPkc56cr9Brpf1mWdR7NbgRIBbbQHKANwvvn7qHZNS+Vcfo56PyJQXjhE3DqWlGvauUwCCW6O7X5pwMkb39Y+6fv10uR1xV37HpCBCyq4WwmktfKAz98AJNGjiM/cPsWn7l3gOsk3lznKaXs5EU+8f3XIAlCttIjrJCdRNu18c6yt9nco6aa9JTASdVNDlIZp1if8F5Xnw560/v/3PvJM/n9s+0MdSdQUioC4iWk3TohYi+jDrjEOUHf2rENKM0j856Q36J/7Qx/Ev/EH34s7p5vQr4YkWhGqmgPQUjPcVIzC/bzgmTW/77WLXYh2DUNfTqITrtENJve3/26tOZY88nBNDOOzV1q/Ke5CGJJeNML3Y6LdOnW6LsABOGS8pBfP2Vy0ORbrOJlHrenOJU//8fPkcxKVEgC2HYlJoKvM9dfGs2pk1ZQFgZgPAQCffvVS5CRquU7u0RSuWeS+ZQdXXL/8uTSKq/dpI4mfePE+AODv/uNPUU7i3kISA90omeM6PEMB1Sj21p5QrC3YzjYgjd1++htAUsskkh6iK81uRc7lPNtov59ngSQaTspYOYMt+qhGCWRA6ZBfGOimNpW2VricctrkfUOgPcNQQ+n6nQ3LmdIEUACYgivSTogqpcaaHGr9Gn2UfZJB4CN7Kz7H5CRKJD06Uu3xJJXZfwblJCr2nRXwk2OxgaNuuqlyHV3f+pq8fbrpchL3hxk//LHfxHd85burQIs/A95ya4tP3bvA65f7eCZWQBgAIW0DKOmmm2nAZUVh/3rv1LS1fUhXeOdTB8Kex5bAkMI184HLSTRa00lcluULH3mEz4MWECbNSaygX60Dv4YkhtqKhnCK5oA1o89VJDE3QLfTGJwxAIXUdPoZvYIrj4ok3tqOmMbB1UlMok+bacQDciOJdFP9Olr0GECnQ9momX79TdU+jVq5PrLIsZfkZwzCVgmMY/LN/Gu1OVZz4ozDphS8IYw0EZhhHKIwTzEem5MoxUXYnMQeJLEV/fRUFwD4zZcfZhFwzahgKGkaAhl/65ZwTemUUutKoT8f26ycYw0RYYNiQHl/t4Irmropg4iEvGiBJLLrv5tadgRqkI2XOGAaE0c2dX1ZSGJr32rMU+Yk0mindIAZRGp9uTv/S3XauNy2fYaIu0fr22m0cItuXaNp9wqz9cxRXkf/fKvJ/WQhgivht+5khUS6qe/DOcAa64hZl7UzuL2/5nPz82Xy+yUiDlgMlDintLXSNxySyAvX/J+/8Qq+70d/Hs8/fRsfef+z6nv8GfDkuRNjefVil9iS9bPU01S304D716VwTS2YebWfm/b8Mfe2P2fDGcCWwJB003kPbE7r7ydbj3DNP7XNI4naIVdDv9K8uaJPRZGQzUnUI4u2EaM5RVauzbHCNaUhaect1erNeGPr1nbCxe6QbX4n04DdnkMSvSS0pcbWuiaac0OXKZDXnzCSl0UWZbcjwlowgc01qCG5bSOhnpNYV3fUcwsBxkkpHWfG2AXyPCJrLN8vPxDf2JxEec9ZlKFhGAqRCt9SCt7HX7if3TcabZQJQGgIJJOTeJwR0y6B0es/BrqpUsoI0CPJzH5Xy2Vp0SQ1Y5BVdywcN/Drvzcnbhzz8ybuP+3x5JljyfGHeSrry14n9TOYKwIf85SpOoniuzlno91HDwqQqI0SFGaCAvnvls+j2U853xj7oqiVayHAo+4kHsXuAHcP5Oq+XOH4dIzwf6ufcIp6HOC0n/9/S7gJ0APzVn1RtSwLOJRau/7tc6N/j7x9usHusBSlmmrt4c45P69e7Krv8WfyU+cubea1xEmsMb6A1Lk8UYRr6jmJ1/u5ft7UUHuLbip/N5puKuokzvsbQRIfO4lIaUrlYm7lcQH6phwKYCvCNcNQdzYGsfH4Ns9o7j41NU+T7qhtPI3vFfoplEAp7qL3ayNZZ9sxOonrd9pOIy2TP6+f03LagDYltuU416J9tc3nMM+cIIaIYqafqfZTDcL+wvFxnkcUSicc55I2zTnAx0jCTyJKyDikbi79hrWfZ5rbxkQIY784nnWP+j46kujGf+eTt/CrL95fjdIh9KmWwDAoSlV131ZwRUMoDISoRuX37WI1ClhnMdJi+RI3LAMCUPaThrqpLq2fv1ZrMi+3J7dK5h9R1D5l/zHRBvH9LGpxNp6yvtrCNTpFbF5IVc5OJHEQ+zmL7Pk5+UYhiSpzwv7daoY8FShU9gULyU3H8I25v1VKrGXrrsHT2M892qUbtMAp+bulJgbxu8k9oSe9wY3HBwp9v1I/wmYqAWVZFoZKmwWuCZ0Ez4CQoouHuV5y43wVx2PRRB8UvX9VdxK9s/eWFUm89zA6iTVHNu331Pk2OIkcknjA6UZ3xKr3GrGOgeS86c5JTOok3kBO4mMnEVGFVEP4pDHoW6CbNpBE2W13aFNyagIJgJ3Hlc7JN8b41zZ+oF+4hjEkN+OgRmS8BPTZdsLl7pBFyHpKYPhDq+a0McIRGh3KQiBj5Lns159/RMxRiVovTNRacTYY4Y7NWIoHWTWy9LzV9TXDSSxpklz9Kfdeb9hxh7bMZZkJ1MCPJwueU0iiuHesMilAHXG7XJ2oD73zCfzqC/ezA0jNCSWi3ZpwE+tI9dZJ1FD7tHnjYQF3/0emhj6mVifRqlMJ1PfllhFaQ/sBDhHJBW/61UYBvgSDhnayCExwwAyHIfSr0B3bTkopJc/0k0ahhTzKfiGQT0T//cd25ySO5XnD/m6LsraYoEDBsKGFa/rtCxWRMgIQ41BB4Jn7RgZO211UxJ/Zy2MOng+S5M/XxyvPfEvd1/cr6m6b+yuKsdjv1muTaP0Ad+bU5nj7xDkwbDqRT69I62rL5q/Rk7eck/jC65e4fRJLvgFlsA8Arn2/85MoXOPP0qkuXNNi60ndAoClm4rzhi2B4esdHlYn+oaEax47iWjnqmmCDEAbSZE0F9+sw6ZNN63302gFgKPRvhG5hY9iSNYO+82UOInJ4bOdRpqO4KPZ0TgQry/MHOvOZc2RktST7Hu1rqMSxYxR02o3tVA3E7X29FYZxQSOoxL61/Q5NkR5GnN0yEb+3AICJQ33XDQI0+etfqmSIZ9bmCCJjYhp2U8YCJaTWEHcPJL4nmdu4+H1wSXpr0u0WYPTiv7XAkCdCDyDULRyEh9c9Snf+WtUr5NYGruxwH3juw1lP6DtpNTQfqCfbsesfy1vkkXAtDnawjW5E8zUaQUawYTO/Yfpp9VJfMNyEpVAIbcn95e8cnPU6abWt9NQkXmxnT1AT9+w7YRkjusj4+wdQ1OVTgqL5AIKAt+eYsIU8H04R1YGsC3bIu2nIYkM3TrSphcuT3MsUzD8860m6b6Ap8Tq7/dlti46kcSmkzh7RNDRTefF0VoBDkl88lZEEkMuYwNJbNW4nAY9sMgG/MJ5QyOJq5M4eyfxMd30xprPSdQ2vI2BJOp003Lj8X+3IXv3qBlbx6qbmuUe5IHN1DtsGJIW/aeWEzetOYmXuznPSdz0lMDwSGL8O20MbaVWx8vPX2vaQZN+r+pYrbwlA20DNJpktYvrJxwiP8f0M7W2mfpzEv1Bs4jDF7Bz4rTakUxkHcgRQT+PVpPGdU9uYRrZdYY81y9dJxYl2ffR7hsfWX3mjjsQX3pwHagvrZzQ1vfTnD2KSn4EQjEqyHbaLq576aZczndvTmJNuMaX3Gn1yRFBzpIfh+MQwWI8sl8uwLSeaywikjhg7H1TqOBatMVRj+QzdEcgDxyxaCcg2QWcs9G7J2voC6uKKnPN0nlU+yl7Cc14UYKn7eufG8lMuoGfY06R9P2a3VSl3l6nDSDVTUU9U9oBFmhWPH/b/TZKKTZTXVZ8N97ZRoHIAhzdV6Ob1tVN3VnFBgMZJNGzzjzd1I0T1fz9nIp+a8D1Lbe2LuUp2dtr6R5Aew/Scql7yhmFvZxVNw1Iolc33XN1Eo322EmEUzfdjHpBaw3mB2IESXOKQsT6IDd/m9ctb1Dfr9dpANoS7X7uNbppb2SXzfer5Xc6uumIi+tD5hRvRr4ExmGNZteuIyulreUW+vnXvpf/Htr3qo6lUsTy12pzBPrzLyaNbhfQlz7n3ioMruVDYD20TSddi74RimzpvBhqcdovFbw5JreQiVr7fhLJMpHEmpO4izWhAODF169CdLZWbxKwiyLXFI97qetMcKtFN33g6aadTmLN6fZ7U47k2uqm1aBf4/7WWAKskSavJbX+BbLh/m+j2yXd1D1aK7kQrqEdsHJfZpwUje11MNBLeW+3nPp8jtqe0O4T97u+Pbkm1NVbJoKmO2pnvuns1e0Lk12gOhvNKSp54ms/LBHg8QAAIABJREFU4gyQAVdGyAcQlMyZDwqkKF36fHU8cS0ju8lGErVALVMCxnc7Nm+VpqBra7nhRJ1tfU4i6yTaOYmSbgog0E1rAo9A1Au5c7ZxNui8BMZWC0lsiTdpudQM46KwJ1l1U08tPazlPB7TTW+uebqj1lpUF0CnCWtRXf83E2kqE9nbh1Rt8T+KIElr869RHwC0ndKxrEEIuBt0Gle66f6QCUL05CS6yGYyVhVJMebYiyQqB43vx0Roe2sStahsrab1s5w9P88aklgX81nfJ5DE3hxBYHXAyAK0h2AQ2sEOQDu0qTKJBVWSUST085FOup2TWCK5gDs0p3HAU7fjgXhr6/Mvyv2AcQC0g83nbFsBJ20veRS6qTceLvecEeH3iVrAoxUkYZBErVZotU6oxhKAfW+7vkoAwhT7cI9HCadojix937i/LaXF0K9y5ljrREMS0/1e77cKyPmyOInhZ80RiHsqdx3do9yTGSdd3gKUKuego22MfdEbzKyVDnBOSnuOcj365805KvcNgwrKGqhmsEMN5vA5iTGQAG6OYz4eiyRqdqGZ8y3W5Eze2zUxK8YB1sTLav1ON3qpuLT9xksP8IufeQ1AdBKbSOIcVUp980hiTaUacDmJ22kMZTlSBHQa6zZoiy2m5VKzecrZPFm66bR+5/lxTuKNt91hrgrK1PLoWsI1tURv5rAZVPqJ4dgoUWRGkERyz91nEE5KE0lsOUW6sRuRxAkX10K4ZjPgmkQS93PMwdRKALAO2DH5d0AZIT/MRk6oFsUkHdl0XgCfkyjH81RrqwSApFxb10TPkeKLUhcOGPvd1s08rmPWKXV/L4Rh58eTzgaDpMj1xamblmsL8MpqI+6cRifRK8ZNwxB+W98YSpq233GOFEoEcjEoqmOZI5s2L1xz/4rLWdmTdFM1J5FAUspc5brzptMP89dqrUCJiPUvHSLfzzY+S0aCm4PdD0gMUMNg9a0qXGMwJ9RArUE3HcUc2XvUT6WHShsUUZNpcs6GgjZQwTT93GAMUGnvtiiBQAwgaikmfUgit7acA3yMc1kGXFnnvlQFbs9RnsE9cwSSYGag8tsK173BFQ0RBzhnOx2qh+4rTeUWclarJ+7bZ169wB/4qz+J7/yhnwEAXK1Cba3zwO9/5ydTKE1xZ3USR2X/9213cPUOz082mBcXmMzVTfU5tvZYvQYqwfiSZwftJCp008c5iTfTWgpFrTw6oF42A9A2f4620pvsKg/D9P9tlVJ9ju4zjUO7OGg42pYG9Xta7K3thKv9nOU6nExjYezWWnq4apsqY6RpqpxR2IiX1vf9qE1cOUhbv7eGVDMKfBpyaTl7/jUZSbNyEtU5osNp60REpAM8E98LKI0E5joCa+1IYZBTVLYjkEStTiXgIqvOSYzRQo8kagEghpKmBVes9Q/ozmWrkDKgBwTS9nDNVXlI5qywJTDynFD7u9WKibfzUcqxjkV7loVBROKc0vF6xT7ifO1+6fvd3mtMEp462mfs1s5gq+xGoBd3UmL9e4JyZUeQSuZgc05b33kPaGweLiimiWlYdXKPEW4Cyu/Ws7Yy55IIXPt5yvqidHAxvd+InEQpVNTjAKfjMWryQC0Nwz6307l1OdvavsWo0nbYvJaT+I9+/RUArowFAFyuSOJrTXXTmHJwtjqJUrhGC0ruDzO2qw0KAA+u9mHdb6Z6TmIbSez/zdJ59pfA8HUSHwvX3HjbzzM2DUU8LScxblyKk1jh8FNRhFGTxOaQxPTGZgvHlxzy9bXmePpBk85F7TfWcxK34xhyElOa5nYaMS86RUD7HN9Poz4wRppWpiM4UjWRloqxy9B9Zb9HE67hNh8NSWnmJCpJ857+VRuzVtybMX6AHJWiEEhxTQLdtNe5JK4jsEbyJZJI9JOBEjYnUQuuXO1mnG4m3D1LnMQVSaypGAJ2AKKKJFp1EpXxmkaMQv9Mm89JfECq33lj42RTD/gBOdrG1ncFdCSlZ/0z9zZQ5h8xwRUtD9s5KfZYyxLntoTnm93K+20mgySFc0PkxNXODWt9KXsClzcp9wTG+I9z8o0SqRComevH0oTz3zqde3U8bV8w2Ax1zYM63RooA97RtmhOUUEg3SOnyimvf3us4+uL+vcu2SPrlPr3h3OUOAPU60/sWyFPv8ORlUEqgAxuKTZXbY7eSbyuUDl/7cUHAIAnVxGagCRe1nMSrwMzagy/xTlZAmOz0k3dGPvw/lZOopWXfhRQJM+bUALDcPiGwTmKvgTG4zqJN9dc/cJ6RLiVk6jdAHUkkUva7s1l1MbjkERdbAKw8pZ06sM4tDc7DbZfliUYCbfWnMR5iQa3FW1algX/z2+9GuYQ6KZKxDoYaY1vpxkxFpU23tT586z6nrYhtzaSqmw3e0CpSGILSWmom9Y2SOWaLMT613O57INN5huEII6JJObXZF7YnMSYb7AsizMkSZRin13/maqTqCOJB5xucyTxPBWuKe5t99hkJSgHGyPuUsuZsUSK/Pu0drEK87AlcPw8a6hgpEDHz2P2ybC2OoJAtdxagDOSS9pcu4/vVzopdh8gpc2RjqwSXKHopqPCQiH2ydoZbAUlgTwnkQoAiUDVstjCQVoJDNZJ1wxJzk7I+wCcIa+qcDf6afVF3d/2nqCKIpkBj1ysis3lLRxnQiREO0upmsPi3Ajfrd2tzIFf1xhzBhSqwJZwU3G2+etor+VFWVvMtexRNw05iZX9/dd+5z6AeE2ZnMR9kpfuh5V0Uw1J9HRTH2R9cB3pprU0KaAdKKkhiWw5r2DyBiSROATGrUASHzuJN9L2hzqSWC3k27hxak7iwhwayiZuRRa1aBgrSHIMkqjllVhKZ36eNZQuy0nMkET3WMtL/KH/7RP45/6T/x0f+/WXM0OlLVxTn6PuABuomeLY+O/GCGJodRK5nMS0H5/vpyGJN52TqNVyZIw0PZervx9D6wDK6OIC+zD0/fbCQGBzstJDyqIk+7H0nERHN72t0E115VD7sK/RAQE74KTtJYwRX6Ob+sgxq26826/zNJR68/Vvi/LUhGtaCFg0PuNzXWiPMNKYPFkNXeqladOOrKTNEYi466cjshbiXKWbtvZXsQfxSOL6+SmSaDG91MAdh2TNS05TpZDEUeat5nOvNS3gdDCQxJjLJc+AdvkeKYpE57sK+4JFEvX7xh4LyM9Sd/3b/UJt6nBu8A6YG8+9P+w/FAIsrv9iCTeVZyLTxkEi4n7uVj/dKardoxFJrDiJLz0EEJ3DqG5q10ncTCPe88xtADm7xr1HdxJTuikQbZg2kli3M7QSTz3odvgN2BIYADBtk5zEx0jijbXd3K9u2sp5qi1GKrJ7BEStHlCzvSFrDilLSes96AGjlMI04HTNSUwN54AkVqJNP/Kx3wIAvC4KoEqlM/fdEF6rNS3STddJlN/t0F8nkbn+miPFHGxa8KJVIzTtV3XujZzEPNeDN1plRNjygGV5gwOLvhTOpW1YuPHioX0gjZ/QL/m9D429J52jpu7onMSYoA8At05i/kUNSTxW3dfMP9L2LUP9ENAju0A0HuYFVF6yV7Y7aVhO8vuxDrA2z1bwonVv24hIiUAya1ITCmHQFyAGqlhHVjNAjxF88p9hB6n0QG3LuB6GIb9PDeQxnSOQ5nJ1CKAUezKHGkjkxpqlDAj0UJn1s7vep1YCZm8E/aRSsv8fcwb00kbd54rrT4ylqQL3pG6E+4YsQVIyXvLPq85T2DORgdUWJkzHAnlvSxuURRK1VCkXuNff7wGAWhDQ00qjk7jmqF8fqudBULgeB3z9+54J7weU65H1m1d10+hUpXUSD/NSoKRAm/KraXCw6SxZYJ4tgQE4pzBFEhnH0prLI3/CPwVtb6ib1gr5+te1PoBOG+UihPlzVj8tGjY35pf2qyGJlpNYyMGTiEirvERIGr6OfPBIN9UNyV95wVESQn3FcGPrRp353SqRbqCONtSQYxNJVJ09e0PW1hdXAFhxEhkkUc1JXK9JZcxaLUeGDgWU6BJ72Kd0Uy63MD/sGYPQ9/OOsx+TFa7JcuLmBeeUsl35vFc3TVsQrhlirllUXuQCEPU6iQ3na+g/EGvS+r75OpCAcxhrbA/fgsBO432bMS/DQ6mbNu5vE0lUjC0r4iEdKcbZAHIEZlkWirkinVkt91Vrkk7LKKkCOgulRUkDfJBEcRLnNgIM5AEuC3lM5+jnBfC0Uf9e3zgn3T0elgUjosPIlCBR0R4KbSv3ciYnsaz7TJTYUoIklgc8KAjkMQGIvhz4tB9BGxXOJa0cKs63iHzZzqWWg9rD1OhRKQXi2cEiueOIwpFq3dvb9eyqpRPskvN1d5iz8+DB1QFvOS/XbBSuGfE9H30/zjYT/siXvRNA3S53c3AlMDzqCCBjpfl5yN+ppeDt9p78uzEUaMAHXdc/WOEaYEUSH5fAuPHWUjd1qFn5fDAMG3TTclNleN2ac2MUwFbUTWdiP1bppiwlrdgM2knUgB4RTiWgb5+6G/T1y30YvxVtSj/r9ctdFinWhGtYURjNGPTz15qG5AJrlMmoGyn7cWhPPi+A23w0Bywigi0joeTkW0GIWr4lEyEHSuPaOtiOVzJE1s8VUja7ZVFCJiCj9fPzpPJRNCRxNwcU0Y9dJOmL6w9YdOvSQd+RaHNx31j7loEkXiX1ET2VtNX8PFsiTJICRDnANSexQV889vq714+rwZnmYbNOg3SIepwNQNxvpCHfTTetlmBoC6cAOb3YQh59k/mFPXXzSifFDgrr/aw5lg4pwOXEaYg/JbDWGRgu0c74fHOOYg9iWDL+c8t+/WfiQvxuJd3UP9+eo2QltOxIOc8UrIjpHu0+6XuDk0iglmm/GLhudlMDQK2Ax4kBAKQ239V+DogiALxWEa9JBRvPthO+55veHxw/DUxJx9puonANEK9fKy2iZfdOCuBzIJlKWdB16aCbjluHIAKPcxJvsjm6aV3GVi3keySSyGwimnNjIXtyPMYhGgcNtYyvNeeoGExUUXCxIfhru52GkGD8yoPrYOidNAqufubVi/D/1y8F3VQxRhYct9FZaEPNSbQcgJoCKNA+7DU11S6UrhdJVO4BqyxCTRCAUXEDlO9mCkes8+o1COWBCHssP8+9OOhZA1TmhHIIfPn8bl4C0v7WO6cAgLNtXcmNUeBr1Qm18mtLVoJRAqNx+AJ5rsrVwS6DEahGBpKo527zEXnfGCTxWLSnl7bo+3WjBoHumBuELAKTIfdUUKaCJBpMBqC/BIPrOyZ5kyTav74lzUk0g1vrkpMlMKzh/PzTS8I6N3oAwnZKy7SIdoC3JdxkBo4Um8S8JkOZb8kiiTK4SCOJvddfOHsMA8jPEcjTIgBbuEYyzKL92WZ3pGOxiGC0J5E99tJU/di1r2aJEmZO4u6Ay108A2p5iZFuWl6XFpLohGvynMSUbuq/i2wt8SaNhcgylbL7m1U3BYBpVTedZwAL18doj51EeLpp5bBXjB8gRiM0wzAgiYXRRG7iWjSmZWxpqI3/PAOR0qKKgEFJq6BttrGrU7bca9FJ/O3XLsP/W3TT33w5dxJTpFajxLK5BnXhDqtOYv685QBoUWTmsK+hFOzB1puTKCl66WdUi4n7DVmI8hwzRxeNbHYLv02gv5FGqzSSWUMyRcXDIdrZz43HqZtqSGLa9613nZPogysy1wwgRanC76YEEpq11Eoj0lK8bB2+gENK/aVhFE4jksij4v66HoOktNAzNbd2ad8zad+i3iHDNDpiTcrvxpwbab8UTT9GuAlw66Z2/qZzUUUxCCTRrwuWEisdAIuOmfXJnA0iuLW+3Isc1/LGjglCz8uRdOsGkg6sAddsju7RuibDIMqykEh6mcvIMbeAfuZKzZGigyvrPH2w1bpP5bkRg1v2HHsRQf8dJFPGDDiNuSqq79tyoqZxqO7t1/s5OG0eSfSgQU3hNK2TqI3n3lOeN/uDE148V+imMo80bS02g8ZCtO61tG90Ev3iYpHEXUQTHzuJN9NadFOphudblNgv+9Q2VVZIoEcgwc2hjJAwN7Ymk78Qm52Wf2TllQC6UmyKZN1Z673NC3DnbBueB3Qj8TdfeRj+H5HEdY7Kd6OcFKWfn2PtWh6rbqrVtwyHfWvzr1Kb6n3cPBUnkUESlWKysV/NcXaPvcZPzIeIzzGRZKncyioZankbVG7VmOc6ARwlaiPQdBpJVPaglO71de91SfqnG48kuveoSGJrLAUB4yiZY3kgzjZqmX6+bFf7OQSLapSktO0PM4bBMniR5yQSdRKrdW8bgQhpRLr/e0PeMlw145pYy0PqJHJOg1bKws3BHguIgbEDwRLwnyt/bkvgq41ktcfbTHnuMOPISirhTIwj+wDreUOqosoAby8iGAJABCJVBjPbgaqacc3k3GviOqwDlgYuGPRlGI5QN1XORHfeWGMhnyMRgEvHi0JR9vnrPzcPLi7h+VafdIweRDDvx+5bus3b6redhiqSeH2Yg014tZ9xvZ/x9PkJAOD+lU433TXsGS0gk461FUrhPthYC1L556paFUOJJLLCeCqS2JOT6Cmqj+mmN9N281yNPtcMtKZwzSNEPjVqmWUk606De7Roo7VagqYCovLdjjF2I5KY13vz/w81mpQb+9WHbqO4e7rB/atdZqho321eFtPW0tXf3CFa+w2q6qZGBLqdt0QEBToNC208LidRpxenn1nMsWL8sEWK82tCRNan/Joc2ARxMU/WkExpi9a1SJs8FKmcRIXGE/qu3/vf/ZYP4O/8ya/B73vXWwBUrn/P2uqmZPYHxSwk8Xo/4+4aLKKQxHmpCpD5Jmt+xvVvG8kqklLdE+J7fItISruVOd8ddRKDAJOfB2kQCnVT27l0j5Fu2kGJ1RBZBhGRTgrhmG7GMaje9lBigXgNmYBT7JPvW+yenNNUSRX0zgAQUC9n1LouNZqelZM4FXmT7rGb7jizStUoHGc2J/dYEbhe4RoZvGP2Vt8v1yCw+0madi8FvdcB1lJ15kVn2/m2ncZqCYzdYcHd4CQesJ9nPHXbOYktJNHVSCzHHIZB1fxwYzm6aYokPnErKoUDDSexdgaMZXkbxgcAxLUMJTCIm2DcOBQxIImPncQbaQ5q1n+Amvx26+ZuIYm2kyI3OvvGVqNhhEVSQ9uMblUFVmsNa7lt3mDejINwEqNKI6DfoH5zeebOiaObJjes6twvXBRTV387wog0jJ9jEeBq3h4bNe10AKRhDQCHQ5umV8uTpaPIhdHEGbuxdiFvWAN5ZJczJOM1iUgi4VwKVNZCUXyf6gG19t1MI752RRPd/MpAAqtu6vol4xi/tR9Po5v2qvT6tiwLrvaHYCRc72e88uA6y0OWbbefm6I1fkzNAT6ObopqFFkPHHHrRO5dh5mLPjsxkz6DUBqtbCkF+dtZNdvCHBUWCq2uKaPyREBnmyKJDac+Hy/Oy4/D0hZLRIpzUlJK4OKiacYcRU6i+Dy2nx+bQhIVe8ZKp9ByElmULkXAjglAUMwVlc3DM1dmcd/QTmkSlPRzb44nWFhMLmOp0svd2zJVhN9LBlXdtPXdTqaxKkp4mBfcXW3Cq92Mw7zgqXMXNKw6iXO7Xnet7rkvgTEMQ1h/PkDZyp3fN+4djabK2yXJ2dFTAsMjid5JZPoY7bGTCLdAakiKVhATSCI5jYiF7qT0GTEMIqg5G+E1g46wLGX00+o3Kd+NidpNYz23bRoj3RQA7pzmN6j23bza1VO3T3D/ap9FfDVjhM1JLGg1hIobUG4i+8Nslg0A8lxG6veuIMfHIYmcAyClnAMFt+YkanMk0AbNuF7AU5SC0WocTrGfe+xXaUzQxw4kcTOO3UiipBr51jqgtIPN/7f19TSaalrLtDVHTZWZCa5o++t+XhztfDUSrg8zvv+//Xl87V/+cfzDj7+kft5+rguQ+SbTB1ImgzXPku7YzkdJPx/oo3vJXF5qTSp00977LawRYiwgN0BZdVMteEo56fL6EwjfZhqDc8nuCX7P9nseM44ugNJfODuiNna/3uCin6eco3V21IIklkEu2Ty0I6s5N0yQZJBOac+ZGJ+zhAKBhF4c5rg+b8xRXkveSdQZQD0IMM8uQNaP3be0c2o2AlzbaVSVq/0ZmdJNd4cFT523kURny7dsZR1w2B2Wgk34xJmNJM6NPeXYgDcAfOMHnsOXvOMJ90evuunhOqKPN4AkPq6TCDsaoMHT1s2toS9sTqKakN7s49+bj5W+prV08fsbi3VKj8m3nBSHO43k310dQyBuDq28pav9ASebEXfPtnj5wRWWJfLIa5RYykA7EknsNZL10iXl96yO14vSKddyR+RkaXm5Vi7FsdLu6sY625LkMm/mQG7GGt2UE6AZgxHpvyJjJKfIBrCuLaJGli6/Xf+OmrPNOA5aACLsdYYhqSGJDGqpsgT2uZFwvZ/xy7/9OgDgb/6vH89Q09DnUE8bCGOOOd2uB0nsKd2gKhAHxLk5RUzjkFGwaBGm5DcIRmtn4IgpgST7sTUZ5Rx9o9U1RUSecQI2SdCPZwnkwQsmcKSzQniHyHfrcaS0AARTF1NNNzCYJOl7076Wk6JRYhkbKH1/+lyrTWMugsKdN/ncAK7kRumA9d03vcrY8vdm+sX7BtlcewMXPfnNZapU+97ZbvScRP+ctwmv9gcc5gW3TydsxqGak7hXnL201VI3rvfx7PBL4YlbAkmsBDNNJ1EEypl98q/8C78//hEcPhJJnPd9fYz2GEmEd5JqOYnO2ZMwulVzJqX+pH2YaIwaIWxtxhVkyX9etV8l0gHYwinld+tHSdM5b6YRZ9s4qKebykLgabvezzjdjLh7usFnX7sCEOvE1TYsJtJ3Y5Hu2cjJanw3K5fUfX4+x16DMP1/K/qm0R0tmqr23RbwyIbMpTMPqPX1XGyCNwh7VRrdWkYYCyDrKybIBuDQKEb+XFVka/RVkUT/eQwFVNlLLDS9l12wCWOVr3mWQBSumcP1/Qe/+pIauPP5KK2mqcsCBuI55Iadb609r3UdzZSDsQwUskhiKclv9JHr36utG+Ol8vUsGiLn6JuFpvuzL70H2DFTejfLEvDfLRWmsmvLIbzXNy4ojDA33yd9vtpvzPOd6NIlwnHjWAL5e30zfzfBVIqOrD1HQKQAEHtr6ZTa61izL3rSG2QuLyPel47HnL+As0PnuW/9x0BtHszszdOkHeABhZ1s5Q2fTCOuVCfRfY4PEl7uZnfeTSPunG0adNP2eVqrVrA7zDjZ5P2e8HTTRjCzqd6q2uXcWs5ajwiNpJs+zkm8mdZaWMGQEevDiuRIFUP/GYwhn47FUMRauW1MJF+TyW/NsuZIWZu/hkilkfz02hR004oheboZcfdsgxdfv1r7eQSyjPxTzsZY5ltaOTM14Rorct3KJWURYN96op9pP0ul1PUrAyWeNmw6KUciidmaBHfYTwlKdFh4o9WNFw0ZjpI2ZDS2dO5Wv90hXktG3VTW9vOtlRPXqsFJra3OvWQadeOfGUurQ+sRgVS4xhsG14cZv/PgqujTUqlOx9TXP2NsKUZy7fqrTjpvbKW/N6scmn431iCURjKLGqSiGD1062rOdytIpZxv7Jie3h1olcw9OuXrksll1EpgMOe9XFts3pgcj6cSDrqz0egn99a0b0+uPp3v6h3uZE1SKLVCpTXPm0qA3RrPvyzRNisAVEMS7QB77qQzZ44MJtOI4JEOsEo3NRx1RzetI4nennPCNa5Uzt2zDe5X6aZtJLF2lu6U1CBGuIZBEmcRzGf2yawF4RoCFXxcAuONaa1cqZohYx1SGmpG5SgMpfHvnmc2g7JfUxVVyT9iDBm9liODZI1KTqIeyQ9000p5CcAZjidTrop6fhpv7BLZIIq5D4ox2BA2Sufei6RIWgfQhwB3J9sr4zE5iVqgxEISR6UP46TXSjewkeRcbMLuI6XreZGQuL56cxKBeF2onEQluOL61oNbtTqVAJqGjJoTSkSSa3TT1v3WyqW+2ruDMQjXHGa8drHD88+cAwA+fe+y6MPQTSXlnTG2NCfF961dE/+0FvDrFRdhlUNTFgotNiEMybBEzIBfzNtjv1eYo7AJLYRPy11lAzOe3h3QcGKO/veOpTNs51JDpLjzfljfi+yR3ic7EUh5n7J7l1uT+XP7Rk5u+pky39L6BUq6o/29APeeR1X8Do6sMVaNgm7NM1JA3cVkgrRAiQAzv1v1+hMOKZCyC7i1paYhGefwyUYXrolBwihc40Xe7pxu8VpD3dRSqlZz4BXdiSfObF2MVqBE8x0YdLto8wHAEPOTWm3aAofH6qY33hjaVlkDrG04TaNWI4WIxoz9Cel6UXai37E0VS1iNDMHVElZ2QtE6sPvfhKAVhRcdxJPt1NAGwDg9klURT2mTqK20Zk5icHRyJ+3nBuJYvk+ACkuIn5vGklMJsrkJOqbnRuvXhYkvi+fox2NBDQE0t5Y0yg5L1wjo6asuEXukKZzb/Zb17U/GJlC3bW86HYU0z1m9wDp7Ml+zJ6gGf8s3VRTQJd008vdAQ+uD/jA2+4CAD5zr1Q53R/sEhjSAduF/YdR1xRO4lJX9Gzd24zjcAxFKaVW0oiU2EtYtGcb1vGSoCH2HMdBcbaX/iAcm8vltAFSSqw9R596konymPUOEd7rm0tvIK+/MOSZcyodz18aezxHAQ37JLH/A/7MV5BEQ8wKiHsri6RrYkrU/i+DK4yTPupOOk/JjGMx/YrceTLYIc8A5syJ5737AVgKelWUx7wmeX1j17d9nm6nUa2BWyKJjm66nVYksVYn0QjoawJrgLv/ZKqCzEnUA7X1AFeNldPrI2Le84jguHFIoldEfewk3kxrRQpDVLHYIN1jK4ogjR9K3GWoOYn2ZtCtinq0k6KgdFRtodHMbfuh7/oKfNfXPI8v/z1PZc9XhWtioWzSAAAgAElEQVRWjrpv5ycRSVTpn53X343djk75/E0tb5X53dLNhzHSdNluvraTWiidoHtJwRVOuTVfk+wcpZAAs7FmjhtxPdx47rFf3TQaWwGlIKzk7ZT/5gyS6Iry6gdUFUl8hABQ2c82LqaxRPut+83Po003dffzyw+uAQAf/ALnJH5KcRJ3hxnbTftaVnMSiTqJqnCNZSAo15+hXEtqJbO2Uuey39iV/dpjeUdqP8/9dFNh7C4LmoESTbgm5E5axvXk6N1Mbr8cz9dXtFSqAf33XhY7+C+vfz8CLJx7Y7wY0FyyR2sP2ij2jLV3yb2VzXeNZ4D7my0bUOo5dNTl7bz+o/xu5L0d6j4n+z/AOekZkk78bjJ4zez/ab8yJ7HZrUCpGeXc7TSodRL9cx4AuNofAtp397Sek7gz2CSa7Qrkwdpv+/A7ACSpSw0btBUoqacFdXqJy4F39oqcxMd00xtpTdqWYjQB8Sat3Tha5I3btPpVy2pCJoCdWwgIuimx2Unuv5+n9d00lcZAt1hvtOeeOMMP/JEP4Wwr6iQqUP/1fl7VTeMNdHsVvNHpb4BFJNE2ERpJLJxSi+6rOencZizHmwlH6vicxNKZdcp29bFG9bvZUTSd7shtrNMUAwOskyjHsxT7fNsk904PkpLT9BYK8dQCHkAbhdQDR/Y8WzRVaw/S8pQ5kZzyNU839Qf179x3TuK7nj7HZhzw0uo0pm1nBC78mHt1/dv3d9ovRPJr54Ya7LADQL5vavzT6388gm4q9gTWkAyO1GHpQtIlU0bu/2ofZX8NjqlllK/XkkUefR8gEa4hrn9dzZl00iUCTJxTwPEIZOmkGPfNVNoz+7l9f8vfjc+Jc4+p42ZdD6A8u4/JSaQDOYEm3Hf9i5xEMsAiz1O/NpuaB5O+ttg9IaKk+Ryqc6zYrlZO4rWWk7iWxciFa1xQwiGJjTqJRsCvphTu7/v/4Ns/jH/0fd8crkNLuKY/UHiEcM184Osdjl7d9HGdxBttLUNNRn5881zr2iGgIYnMpjWOudHEcOT9/i7RF8BApBRDnss/0vLvOLrjYRYCKCEnrm3sSpQOcNEmr27q2+31/zqtgKOfaLlHveqmTPStJm5xnAKobZBoEXmmUPpW0K+AVSSks7bcshD5KEpQgFGlBfJoay/dNKOWkcau78dSjQCdpmciiWM/kthSPG4ZXDWaqr1vlXvJwZD7buUbX+1yJPGl+06o5omzDU43umHBqJtKQ5Kh26nfzYjkt/LEKXERaaCRdOteZ68qd2+Mlaqb9iDpVSn/Rt+NQN/Zfq6vy3k6Jm8430vafVQ1Z8K5LJy99Xk64HfIfzfeAVidjXAdjX4Km4E9FwNtdH2+N1C4EIFTAEXeHnP9I93Uz5EM5BzpAMtyIoy6suun36fNnFAR3GIp6P7l3nxXp2ZbBiVba6u2l18Huqlzci52Lmi4mVzJs2adRMMu0WzX1F442Yx4693TrA9QcRKX3jOYC15nbe5BEjcrknhzdRIfO4loG5S1BWJRgNxizBc/e2hoyF7T2TiWIhYOtvhcNCTrTat1xURbNSdlbxhpcTMuX7vazaFOom+3E7ppMUdCAEJDRNiIqSZ33zLIa5TAYymZxziXjAR6LSexaVhrRjJFSfbXMj63gDSSEwf/sHDUMumUss5lpKEvtMEK5DQ95tr7z9WEolpzbeUptyhpR69JxblflrZxPQWDqWUkuHvbI4dPnG1xUjEsLKqRH1Nd/50siIAeW+dGJ5Lr+0oDjcmlSwOMbFkWmTsZDXl7TY6D2797kHRppO1nO0g1jWWQiqWPbtc8zWPyhn0dVEZdVmNbcCUw8v1u6aRkFnRHC4GUzg2LJFaCp8y5EdFO7jeQ59u8kDmJIjDcc/27adqj7OeDK33rxNs1jHhZOh5z5kjwoBftjKVLOOdS2lyH2e63UVKQgJiTeLaZsJ0GPFiRw2kccPu0rm7q6iS2HefCljeupWZvAZEqX01VUwAmtk5iPtDe5q2HyZ4Ah+vHTuJNt5bDt1E2f8A2Jp1RkT/HbloqRYwwyDUk0UIEAZ1uauUtHZPvNyrX0sqJa6qbHkq66flpIlxzTE6ogtosREDAfZe8j5tHeyw/r3SOPG00Psd+N9evNJIZdVNp3FFR5CXfIO0Dyj0erW6a1DazqGjZPBMEhis3EA3XA3GP+pZS2R4FSTQPtqP3BH1Nsvd2T9RUo8n75n/HW6sQ1b2H1+Hv080U6Khp2x3q9W59K3MS3XczqVRjRRW18v1agSMmmCONQVq4o5d+KAKFbL09YEXp5rkr30+mKjB5aloQlKWPulJUfbUcJXLp9hI2uNUXXPHT6aUJF2gbuN9N0slZJHEzlrVarfztkkoLbo6F49ZObfDNObLxb4buW+btkcGV4Eghe7R+N6lu2oskytIZbRu0FGBi5igDpz17iVZOzbKdtJx07ySebEacbqbgJG6nwQUJ13QN2Zxd0ihXpgQ7zJrPyZmt9evTBbBZCUXryUncnAH7KzzOSbzhNs8MktW5QSpIIpujoCJSnbRRZrN7FOEarbD0MXRH9karqptuRrzlVkQSz7c+J7Hsw8xRF7xpb5B+6qoiZGuDVIzkLkRQjPcowjWMEyyLWfd+t2NyEn1OVq+R3Es39b8XrSSZrGV/WPUU6t4dEiSxU5ET4A82DX1pzfLYumG6c2ncN4pKr2/++51tRwwDQg7KyWZsIoknRmRgHMqcRCuPESgDYxZ9MRr/8TlNQl0dayydBmYtp85ldNyMPoW6afwsq21Xx6En30+mKgQkkUGkFCeRFa5h3w+kecPrXmIECYHj9zuN7g70lzOiUSJxVrE5iTXV7540jF6ULr0HmJzEYVD2LaOP/9plbqHRT1xHxk4DSiTR2sd9Cw5fhyqqfynSTf3zZOBI1FdkrokU3LL6aWcbEJ3E7TTidDOG/X8a3d+Arja6M2rlyiAhEOds1nwu2HPtPUVShH2ffrrpns8t3JwB+4vHTuJNt1a9n1pOomUka5E3ZzS151LSTbkbtOi3PlISyXM5Xq/gSlcJhmSe+xBJa+ckahvJ1X7GyWYKtdOASOfT6KYLuENb9vNoQ60Ng6NedTvpng6S0RF6Cs7n41lbj4okrmu0VTqglhPULkAe3+fbgg7jRxitzL6aHjgHcjOWh70V/An9wmE/B8Owi8o2dyCJCkXGOthU4RT/GhFwKvJdmzOsOJfGWo41I8t723/Odhpxtpnw2oU79E43zki4UnMSbYdvI4J3h3mm6cWZA+CdjsoX1PdWNPukfWVuIau4WyJSnHPTi2QBbq/dHzqRRBHJ78lJ1JxEKwd160tgGPdL2qZxwDC4e5sVDhrXPunaYvsBCSXQP2+dARXaqNlP5Jeze5CkWzM01VIUhpyjRLeJPr5ftpcw1786x75+jEMEJI7DIf/d7NzaeN7k49X7SbukVzgopftaYwGlw8dcy1SRPG3X+7j/n25GPLw+rH8PSV6/cgbM7ZQDKa7j+rR/g5oNagIcSnCdCbgWrScncXPmOOv7Vf37Md300ZuX6a0vED1qYeVk1fKIeiF7+gYV9EoWEQRQOJf0AdUZIZEbJFDWSZTNVDedRgzDgD/9z34RvuH9z2b9JCLIonRFTcyFy0nppu1Wrz9n2EkDtNcBc/+fMQwG4qnkjpmKr5qTwtAWJdVFPN9qKcI9k0hiQYkygj++hQLrc4pqmN2CE+OQRI5q5JQFOw+2CrIBGHvCUP5uzL2tq6JaRdLdo1rcOLk25ycTXr1wdbG2UwNJnGdsN4xKYxqkskuQACUzxFLlHAbnNGjqpkxZhJBbO3OGHZAHE3qRjaIfgdxspwG7eaFLG/j3qOqmTUQkN5DTfuZeuf7efr2ckFwvb7z20FSnYSjORKuXTBVhkUR5v9G/tzg7/DVlHABNFbh1Ocs5+v7WGYxsjgxLxs+xoLtbgjziDO69b0Le3twWMpT9CiSxs5+/pi3UzPc7Nie0V5SnqPFN3DsacwtI6aYDTrdTgiQOkY2zV84No06ihlweWBtUAYrcZ+qLLNgInTZQ0eYDZ1wAwPbMPV4/cI834CQ++id8njc2t6eXblqjZDI5Cr2y9YBbQ6pB0qRJ5gayH68naXtld64Jue05TlPpcNNJwxUk8XTrPvN7vun9Rb/eum2un04r4JzLvt+tJjhkb8Yo+lFIrjLejjCSt+KA8p/BCNf00A+B8vfuQTZOphG71RhkaR3yQDwYjo3st0uQFI5uGqOLj4IkmgebukbW1wgKaDqcC640p1jQ2PxnULnUyr2dXptbJ1MQrjlpIIm7wxzWaq1pOYmWcBBQ7idUMetBGq0w+4SxApLe4aQo/exzQwRlvEFIBjz2mXKo3aeubmrXSdTORQs53o6ObhqcRCOIEMeU3429/vFvJigpgzk82uweYzCN+71rtQuZvOjDoe93q+kJ0GsyPQOI/b9wUshzG8jTG4AOFe71+rG1TIdhyBkv/joSiDiQOpe8cy8DQN3odge6mm7lzHibSUcSJd304fWakziOWFabU6uvaImXOdHF/LkoIMc7e0CaF10fK/189xlcwCNr874PSQSAq/vrJB4jiY/crEMgRnDK/MI2+qJTxCi6o+JsMKplmkHSiyQ6ONyeYzo3wFM5+6KYgB2RlzljabvaH6qRYZ2ix0Vai34zF+nrpVrotdQ6In2dDphMZPf/N5EshTZhIYm1pG12bRWS/MTG6hPaXX+S/iaQy8PM9dsqtNGeHMj9vJjKvr616ovWDjYVESRQqUdV3O35vVtU8hQpvbWNeRUnDSRxb+SjACik/FkkUd7fjPMgVaCZnFAgp0QFlLoTSaEd0sJIBjVHYDXwMnVT4n4bnSG5LPn3a6vgKvsPe++slNirXicxqKKu86avf64AzeaElkii0a+gSWLt1+cU0WyGccxz2Qn67qNSOcNwpGGt2UD29YjvTce0GS/uMTrbfK5ZCiCw+bxhrxQlT5hcWUlJZtdWN9106M8btnISN9OI0+2EB1eH8P6TJK9fNrNO4lAGJa1gbU24Jjr4hnNZgDDV6emtR7hme8s9Xq9OIhPtM9pjJ9Ew8FJamexn1ajRnBQmiqMpEjJQfzdqcCxtsWpItucYFbrSnCB/g+pLcRCbcdq8cI3WRoXGwNWp1G9s07kpqEZ+/u01ApSGtX1AVfp1ilQAq2S0lcelSjmTNbKWvrVVO7SZ83e71kTz82PUTeV3Y9XH8jpx9mEo+6WKi5ZjM44DliVfk+zBJnNCAY4C3au4e0zAoyYIkM57M444P4lO4nZVu9PVTZkSGEKA5kAKHNUQMOP+npXrT4lnrW/uUc5NnVI6/0usE7ZOHOAc9usUSSevo5uf+5sRb9LWJBuY2ayU2G4ncXQOMFOiI8xzkCkf/U4b66TIa8KcbWm/AskynUThADDF3MUc/bFvBwrXMZK1zBjW0uGgcqk11BL2/ebz/dJgB7P+gTwvmhau8Xl4QRV1nT9hT5aBhPb85D3Ks9kqyvyNfptxrArQAI4JcLoZg7rpZhqw3bgPrAYKm6yEsQB8QqCkcmG0/QewzwBZp9L3OaoERo9wDQBc3HOP3ml8hPbYSbSMLZEwHPvZXGvpJFJOioDsefqJfoMykfxctpiXuy/7cdGwtB+bW6U5fL4ERq1fIVxDOOnH5ltKp5Shex1TNgDQKbgUSqoY5Yd5Jur0lTRhhyQyogXxuR4HuDSaSKN17w/RPnXTrHA2MVaaW8hGyF2/OB6rbqqppFkIgKQRAsdToBeDNVHrdzB+bxpJPCmRRJ1uuphOoqQ30eqmoxSuyb9DrU++l/OO20Gsf4oCnTilMZeRdFK8U0oan0BEEnvW/yQCVQzlWt6jAIdkAatwzWEO+8Ipm5M4jTmSyOwlU44kHiPmRqubivuNOdu08WjKuzDmqfqWco7r8zQFNHMSiSDJMCA98hfY95rMHQ6OlDlajvjPC3fPADmSOJPXX7KAekpnRFEk7j4NKOkRKLWWcmOlZWn7f+qsZ07iOGYBWtlcoLA+XlpLNoxl7OXa/gPYe5Bmp7H3aTHBXrrpxcv534/QHjuJBlWmlpNoITc1umkvZM9KmZdUC3tDqNWks6mtWj+C7qg43AfjsKkZkofZqc7VjMJRGHVujsfWe7M343HIKbHMYaOjNnykT6rg9kZNAY5uF2v75QhwW7TAPcoN8tjILrOtbjcjrhM6DifjH5E9P98uuulh6TSs4wHHGmjammSjmDdTToeRktcDHhbSJvv45n+PzTjg/CQekCdrjooeRW4bCEBu2LmxOXVTSSVkaHpDbS8njC1pxNNIinA27LWVz409b9xnr8qhxhmaj5fvecx11PYt1kj2jrpHnn0Ou9UckpjkJDLXv2CTdOTErd3YoJiWt8esERmEYyiBwOpsKE66RbeWc2RaISbGdcM49Ad3AWSqqD1IukTuWds/zYtmkcQ0Bx5IgjlEPz9G79oqcxKb3Yr1z+wLTiCq3MvT8+10M+HBdaSbeptPy0ncz+1AoaZVYZXhqQrXGGi65lyyTKWszXtuQwaicM3FK+vfj44kPhau8YZaZYFotf3832aEREWy2vORtFHWsBgqCGSrV41uSkc/xTxtGknZb2fklmg0NoDJJQW0OpU0StdJt5O/d1QyZIzk+BxFyRzX6Gf6u6EDJU2dRIJupxtpBpKoIFkLeKPpGHXTY5BEjW5KIYJBhCkxkimaanQu2XwgWUg5/b+Vy1vQr9h7tPN3kzmQTH3L2r2dznuaYk7idhowjkMTSdxYSOL4CDmJWRCIuL8lu6ODblcINxFzTJWZg/pnJwLM5kgBq7rpYaFQVWu81m+g1tclcxL9/XaxGpknE0fb8ohzT76xDEwygVP/sUWZAmOssnQJX0sWSJBEMpjgcnnLNJGmcy/m6DdzRik8HYNVqi50AWbS2Utowj3MlXGI7++hm6aorHfue2tMs2JRKbpH00aDkw7Rz7ZLNBv0mJzENHiRBna20xDmsZMKNHBOdCt9QwYJ07HMlLOKDWqVwHjkOok9OYmb1Sl8TDe9uWYiiTUn0aBg6UgiRyNZskXlHm0qYYnaAH05A3683kgT26/G0QYaSGItimP024yjev2tVqv31q9u6h7bRrJ/b27IU6iBGrU2+lSRREMh8Ig6ifp15GjT7r3CaCKuyclmiJFWgiIJpLTRePgyh32s1RTpdpRTOpbOpYn2aFRO42DT1GUZqktNuObY+paW+qccyze/1rbjGOimPkLschJzJ3FZFlcCwzRAxyK308oJdf0EkkKgx5LdwQY80nu7RzhlMw5ZTq41P6Dcy7vW8pTXIKTUTQsk0R5vbJwbjHANgIBEdKmbzkuXky5rcB4TOI3ndm8/m0mS9vNONh1MGPPSUIyTXs33Y50U74CRe7KWE8ecG6kyfI+adnp/s3ME1nWSXP+eYKakqTKpCr200ZoCLqXMr96j7flpOYnp2ZjqTqRIoipcY6QcbMQaAewyPHXhmlVh1nAuU1VgNpiTtaNyElckcfPYSXzkxvKKCz6yUY9FSq0DfJ04FZGyDhvFabD6HVuCoZq3dKSTkr5W7VO5sVtGstx7GCNZR0k5Woe8Hm4ejT6V68/StmRxb2vz8cn2krZl11oqVVH389w0QPVAQj+StXQYySmSyPzWQHL4BuOa66cJ1/SUwNgdFhNFD3OsILnpa7LFdRyf6wkk9AYu5O/NFJfWKKq+pU6AF67xBr6jmx6K9y9LnX7umxMykfU+iZzEKpJS71MTcrCWiRcqWpalywHbbhTVxE4kMSogsk7pknwvu49/T0ApiHn6e1SjO7JUeS+h3ydcEwM5zL2dIlKAp9dzQZnSSekMyhB9gBIVsUrphH5Tvv4ZOnMZgHDP29ckH4MJQANlUCb9LKufpLZyzmW8vx9F3bQruCic+z7hml4nvS9QK9lUXMrTWIiyATlT7HSTCJdNYzxDK2WQrPzmqkpp5RyoC9e4x54a38fXSWTVTRMncRiBads5WNl+1zuJe5JXrCKJLSNZ2bBYARRJWQGIjXXUk4Z7848cJY2LPvc6N5pK5mF2N3VtzEIO2/czDGypxuY+o6O4rjDIe517351SdxQOaW8eBdDhFAkpcyaSqdEdrcNNDyR0yG8fgSSm6qaODm738d9tl0WE+X5pCQDKsE5oqmztNi+xrSOJtYNtfZ9Yk0wpHff58TkKARb9GASmRuUH4r68GSPd9GSKTqJEEiP91lY3ldfxqBIYRCS/QBJZByC5d3pEYeT69/NujiV+gx5EZLuWl2BRS6BUuGaQRI2BwuZy+aCBl9DnS2CMGd2UEq4Z5Z7cIdQlHalOJ9EXc7earN3G1oGU9kzP7xaonHQtx+O/27wkBe7ZgGtydi+E3ZTOM6VN00hiInDk9h97TUo9h1CnlbBn5Hej82QLdNvup9eKtgNARU3xOfYtkMSNnpO4LMtaAqNRJ3GoI4m1bjWgyKpVqQW3WPsua/MBGI9AEje3OMPJaL/rnUQrIqbVlgNsnrxWJJRZINMYb2agb2M9CKcB4IRT8vwjDrUEBEpE8P/rKpktZ9s9ak460OaDS/SRddLTz/f9KNl6dYOs95HKanGs5lBhvF4EGHCHisztYQopu/fmSEqT+x+ib/E5KrdNiZADJJK4yXMSGcMuFjdOnUvOIAcEkkhFhFen9LAEg75W69O3Zn1RI4qZ560ypSxQjMUhkHk/im5aYQm4z5kxDG4debqpf7+vh5nuk7H4sh3w6Nl/Qj+xnzMI31QJ+LF7kFPXPNJJZI1/iSwRNWF9OyZvr8iJC+u4swQGXSfRve7VEa17LfRbkcQeloBcW/PC0TiBxJHyTooxlkQpWOOzyG0jfztZq5XpJ/cS1gEu1yRfpiYdh70maYCd2bd8S39vCzTI5imQRMa3rOck2usrOtvuOZbNE68jZ4NK9pZf0xaY4t4r7Lskz/ksqZO7GdM6ibqz10o50NLAoghWRQRROUvTOVupUlK4phtJXDqcRJ+DePFKRBUfsf2udxJZuqMmf9vm44/FomIM+QKRCje2HX3O819s40LPP+o35H0/67uptDnDSakiuRaSIqJabo4dggCCNsQUu9WELbp/t4WkugwCpUN/HgXA0e2OQRL9S71RtKjc6vtwBxTgjGQfXbSUNdPma6LF6CznNABYjeR87tYcAeecs0iiVgLDUnfUhWt4GlupuEtGnwvaHNFHQxIThM/TTf13Od04ilJqJIS6WqZwjesbjeQ2PSn205HE1vUchjzg10Pb8u/3Q7J5sh6BZeYH6AgwLaS30rsjtbjfSaEQqQS19401kj1V7fXLHYAeJPE44Zru+roiL50NisXc7aQ/GVwESieRCRRm15/op4lZAf3F3FkHTF7LnmsiHSLm5JjGmFvIiusA+V5yMJCvdCwAxf3N0MmlY2mLICIbgw1uSfZWDJ7W+2i1s93YHqUDbiclkDZTvQRGYJ90qptatNGWeCWAagkxeZYyYm5qOyYncTncSD4i8NhJNHMiWk5KW5ShdCwZI03SOugozqgr6TGR/NIgtMeS/ag5DuWGYEXyNbTN9wPaOVmFuiz6k7b9/81C9YOk7frn7ahpyVlnDsQy34ntJ+m+Jvqi0B33BuKmoUSM0TSs1zmlDLkX7O92uulXNwU8ApPkf/UiiST1B8hpQ96htQzXgG4nRtreyCXS8iEY2pZKEyYQyFKkIp9Hu0/5Wvr73Tl1eRWyIHpKNwolM8y1nO9BjLov4JzL1Chh0OMqu6PjN4jOnjlFR/9c0UcW3Q7BHH+/GedaPp5zpPz36kESo7FL1NvTgosEAgkAd05dLs/LD52TeNqVk9gnXKMF/BhVcqAvuALo5xSbbgBoSGI/Tdvqp9FGASLgKgMX5F4+yL2LuP7AGnANhvz6HF0Cxjtg3PoH3DXz/fbk/RaCi/J3Y4LX8vqT6LY8gxm7MEP7Z9+v794GIggzDAPOT2M+3mYckrz+/ODwueYte0ZDEtmawwVQZPwGcq/rCfhlrScnMa2L+BhJvJlmJQDXKFEzgSTqOYnt+UyjKAjLRnEqzmWr27ElGOqF0jkDLVNJm2c7j2hQKAJGLuk4RPEH37pyRI5AV9Xr3x6uQDxZikw5Xn8eBfDG5SRqKHXf2ooHvfu8ZjcAOd3OISJkZHfNEenJP/L1FVPhDuZ380bq1S7JSSTKNgASSeSCW0W9w06qF0AGt8Qco4HQ6OMj1grddHeIuTrP3DkBENEgjw5d7aJ4zXWgm5KoeBKRZ9RN3RrRnPSbz0mMueJcXo9vIXAxz2YQoRgrQW14BH7MxF2Y203mpTP13oJjs+T7luvXHs87ia88uAbQQzd1yq1WMDJtKY0QIM97sd+xzCEtd5tikoi9nBVAkQEP5voXewJpy/iXszXZEYBIHW7mmuhlIrg9IeQIEgHQ0G8csrq87NoCYlCFRRLTHDxW7EkGGHtyGeW5AbTXlqZT4f6O/e6cTtn7fZCwyEsn9jzVljTu8WoJDAKoAFJKOL9PZq0nJ3F7K6KON1D+AnjsJJo320bcnGm/NpJSLnwmt20cdMjeRLLGiuBNy0hT8o84ldKyH+PcxANK5LYRhkxBETA2vBol9hgqLY0AC0TWzb3ZTclbInMLiw2ZNRLGwtlgcxIP8nczInaARFc7FHDDxuqeZ3MS5wXBcO2hm+4SRKRXFZWlvgEI+RWXuwPt2IzK9T9GFZhCBKsUdK5fzO2xr4lX29XopmmR+2dXJ9G/TUbVgWggsKh4qhJIqZuOQ0ZvDQaCkZcrWRqAvb7SoEBPvmtag5NWySyclL7gSorAc+IuEhGxa4WqebIkAnZ7NTBfenCNzTh0fbdMuOYNYnfIcg+9lOSI3Nu2Rd5PlEohcnm7kUTpyJKMC3l2sOh2sZaPCLgqW1G1pTmJc8d5kwYT6Jzo9T27Q/y9/Wc1+02l4jEjQJO+nwOUT14AACAASURBVN23pAPGnIs1JDGlvZ+f5EjiSZVu6tkkDeGasUxDOjrlzLie2j0KHEE37clJHAbg/Gn3/8d005tpbEReyubOc3uzk8Y4QKo7jtLZ4BaWFLwBkZOo002Xbtnu0M/4brWiyEwh3zJpmMzJEhRc+vAVjhTj3EiHCGCcy37Uxo9XIolmNxe8ELTF45FE20CQjnOvslpPjkikgLpcLj5HZBTOHtHHU17mfnGRaRxwuT8EJNGiwMX7Jj5n7VuqcE1HIOfYAFCvYZFSttK2n5fg9Dxz+zTvsz5/nUSSd6TDvRV0UyZI4j83R+Bt56bK7jDGStWje5yUWPNzphA6ORbAozaAQ9P383HqpjInsV1OSqe7W/2AHElk8xH957o8Zfc3m5MohWts5H59r7gH2H0ypUlSSK7YS3pKKfTmJJbOBufYlMIp/PUH8jxNZiXngit995t3THrSG/KcxJnqJ1M+WHXfNH2ph6IKRCSwL+Up/s0EPDTbAvB2ofvOt1MkcUxyEgWS6BXKW4FCKcAEwBTBqgrXdAIVPUHorPXkJALA+bPu8THd9GaaFe2wONO1ppdg4KIxalH2Zq8GktVyEiuUQBbt2Rf9uM2ncDbMOn1lzUNe3TE+55CUPicF4KiLko4TkVyinxiLPdhymjAXbS1LYMxmXo8WKHE5iY35KUgi891knprvzSKJgHMeXN1IswuANdp66DPIPd00q6VGGglnmxGXO74EhpbLa+Vk1ZB0Jkjl39vVTxitvGFR0nj8vAOSeDd3Ek8UJHFH0D8BnW7HUtl2WQ4kYSSP8h5dnyfRvVS4hqJAJ7maPeqHfiz3yBsx241DEtl1nI7XU6rDv5SfG+1C1r7d9jmJvU6iL4HREzgahwJJp/e7zvumQNsIhzQbzwdJWERKoKSW/D+QOMBrN1Y4xU8lpa4zW+sk+jHpDX6esgRJPwJ5pLrpwlGZN0fcN/71VCWW6ROuvwj4MSw4oESOrbSsdCzfUvbK7QRJnMZYAqNQN/VIYuMMSOtGhn7GPLUgbdqviiRWgiSkmRBbT04iAJw/4x4fI4k302i6qcJHbtZ/eYScxNxoYjfWfsEb3SDsr9HkP4M92GRE2DLshqHcROz6lu6xRLLIOXaie8OQO7JLx2EvkePjqE38gShpQ6bYh1K6xEIS/RzldWQPmmA0zXY00rcTjzCtRnKXummCCFLUvk2C2qxfkR3vbDtldFNW3TTP5TWCW8Fpi8+xQSoARQCC3RNkkfRedV/f0n0hVbcDEhQ3ddpmfy3b420TtA1wxjKHJOp14tqlGyrqpibdDuvcli7D4iShmzI0TqD8vdmadIDLDb1K1jEjClMgiYRz78vUzOr155zE68NM5yP6z83zLYk9eShpizzdtK+fPKcWMrgokZtDMKzt8TKU1CtCMikHYi8/hk3CnolAitywzmV/wXkgCjf5MWkkccqRRLYGpx8HSJgTHYJDrAiTXJO0LVMECvPP01oNSUyv5+1EuOb8ZApIoayTGAKFrTWpnDf+e9b2IC3dA4jrky2f1xOAyAfa83RTINJNHyOJN9NYuqm2sCzhDt1J5JyN5YhDQ8t/aXXTkUReybA3/0ItgUFsrqXjnN7Yel9dOIXPEZFztDdIiZrln9caT1ICOdrokB2G7rPsfjJ4kZYaqPaZyk2SymUcynxLa44yT62HopGqXvYd2o4215NbmOaILKTx75tzEudAl7EokrVcXjf3yvpXaGzM9Q/R4CJI0u4ngzJ+WIbuqDmJ6e8nHU1NAn1HRJHT+aS0LQ5JHIsgCWDkJA5lkMQ/32rpHsRSxIAK3ZSlOyZoA3vf3NpOuNzPuFwFhE63tiGzEShwuOcINknupHD36p3EwOxBEk83I672fTVQ0wAcuyfX6PWWxyfPKfZ309a/m7t9/Y+hW6djsXuCtC/Y7+a/Q2o7UeqmiX3B1hL08wwCWAuH9rt+Y+ZcUkiiKDq/P7i93PzdMrppfK7VJHjA5jdr9S2tfhLZ9i1l6p0nQcKnb58UgT7f/JpsnadyHbt+9j2u0VT3xveTudT+kfIRf+l/AH7grcBnfwFY5j4k8daT7vHsLXyfRvucOYnDMPztYRg+MwzDa8Mw/PIwDP9q8to3DcPwS8MwPByG4SeGYXg+ee10GIa/tfb77WEY/h3xudW+TLMO4VpOonVzSzU8gETpQhRn7RMWYrNbVUmvV354QQ/akEcWbbShpBbsDnYkX4v+sMnGpbpjcyjVkbUCAn68XiRX70cebMNxEaq0H8A76YAQCpltCq6kEnY5wOKAYvqluQpd6qajo8315hYCyGiqLJJ4uh1dTuLBFYxnhYM0uldXTi6x/9TopsfmkvYzJ1yTwYu//Se+Gv/jv/UNAJBIoKf7iO20pa/799M5ieOAvHQPIbhSYXdYo6W/d08JhpSGRYuEiN+tpyj42dYFnB5cOSeRQeqqxdwpxLkUbmLunVur89rjJN462eBid+h20gsUhb633d80JVka5J1oW5Tl566jDC4y16XuNLTnWDjA5F6uUd6ZpZyKwPn60gwrxwcXAazCNfZYgNtLUpXSnnxjT6ncEarwbo5DEZCh9wRvg3YGt7LanWj/3lUkMdFKSAM9w+DEp9yZfYS66VimLjFleGS+MZAgiZUfXqoyM2JuccAtcLgGdpdrTmKHq3bvk+7x+Y/wfVpTuZFP4dpfBvCeZVmeAPBtAP7SMAxfMQzDswD+GwB/AcDTAD4G4IeTfv8+gPcDeB7ANwL4s8MwfCsAEH3NZkWENQPN92vy8RXHpkc5VNJPmAR4WQDez6Pep2YQtueo5ZsxCOQxpRT8eHX5YSMnq9PYredy2RvkMYJDcp0sC1fMWqORMGeUdEqdk04Kp2TCBbZzX6Ck4A7EtJ/vTdFNJZJIGrtelKQHSZxGV7+zF4EEEpre3lHgWCpnj3BEDUk3HRQtAMQEt8R9Qwtu1eimh1zQ4SPvfxZf/PYnAJQGk/u/+wxbuEYIQBx4ddPuYuLjceqm6bVk6t36tg3odlyT1r1dGNYdSKJX6n31Yi1NsuVzEkOdShIRdGIf8e/gcBBz9XS1J29tzff6dms74eL6kDjbxL6l7cmmQ+QeexFImSfF/m7yXDxGACWdbx+S6GyE7r2E3MvleAvIPM0hZeW45zjHLUESO+6bdC/Zz3wJHv9+wO1bW/L3Ds42ybaQa5JX3F37iQBvOyexPNv8Z/jfM62T6Nt2GjPhMoATL5tEsC8d21rLVVVUEknsCeYHquj+oj8n8QN/2D2+96N8n0b7nDmJy7L8wrIsV/7P9d97AfxRAL+wLMuPLMtyCecUfngYhg+u7/3jAH5gWZZXlmX5RQA/BOC719esvmazIHEtH8v3s+BpuRgZlEgWhH2U3Darn17vsGMTT1EiYo41Kf9j6iTGnMTKWCJCDpA5carjTCIiYqx0Hq1+x+Qkpk5pD9qglsAgqF5Av3M/FY4zi3aWyfY96N7F9QHzwhfOntaoZC8iuJ1GXB/mLgQScAjM5W7G1X7uEvvQ65S1g1sHsSZZylBJ027PUVNbTJ+vNY3+A7RpoP53TnNSGGQvfT0VgODoXmOBpFvjFeyOgFK0x8qcxGBomVPMaLiRRtjuIwN+88IHOwon8YicRDYnbhxzJJFx0n3zddbe9dS5+V7fbp2MDknsCRwN6HY2SmpfX78oQMPS5EWeFOukT7k9w9CttcBRjwJuioD10E39NNmcxFSVszfguk++G7v/5zmJfSUwYnCLRBLHMaPEAv10016afHF2t+zkSp3EtBTPuUJjl0EjIGEXGCkAwiyn1rI2nhUoKXMSOVvedV5FZ3YX/TmJX/WvAd/3WeDOW/k+jfY5zUkchuGvD8PwEMAvAfgMgL8H4EsB/Jx/z7IsDwB8HMCXDsPwFIC3p6+v///S9f/VvuycaERKOokGBcLD2lK4gHE2/Hvdo3ueSTaW0X8AzXIWo4j8ABwiqKEUPTmJ0tlgKEPyBrWSjVVHlrn+quNsH241J93aD2T9qXnhDqjNlCrpuec4Kmf+uzE5WV444pj6loW6KTXH+Hv35AR5h+v1yz0ADtkAVgGCw9J1HYGVgnhYYq4Ha1xvnHDNjhTT0PYgc9+q3qPcWGWQpC/6z1LLak7iYV6qEeG0HmCcI+c0bGVEfrbVlf3nashlW0mvn93h5liqlDKIiEY3pRCYZO86kPcogEDj9E5iz1ouirkzdfo6giRpe+uqjvuup3i1v1vbCYd5weXOVvH0bUoomTTdWhjWNCVZnFOs4FD1+hP3tyqc1UU3JRG6QOX3VE72+rvHlPLLpmAUOfBkUCb9vXl10zHbJ9l7FIjXfTcvzVIPvqVgxbEUdDblSQbmmf1O1k31LQ0M+HX0x7/2+dhvOhIRHHObMB3bWstarXSgIXgz5J/fVSdxmzqJnUjiMNyYaA0AdIz86O3/Y+9dY23LsvKwb67H3udx3/fWs6u6u6qrmqYbKN79wNAQwGDAsUgHuR0S4SQGYhsbh6AkljAgISRH+EcUJYpC4jwcxxa2ZAs7kZFCTKxEUaTwAz+IiSPLEBv6XVX3cR57r1d+zDXWHGuudfb6xrr3nLvPuXtIpXtqnz3PmnvtueYcY3zf+EbTNH/COfenAHwcwLcCWAG4BuAL0VvvA7je/k7+P/4dJsb2zDn3IwB+BADe+973dq9PZVzPgsOnKBDaaZIMhZfln9iMB3xw8tBIhs3VAU64Zm4vtbmqqH2Vuuk+Qc7FPSAN6o5RADadocVgXEV8b2MCNPrvnX296HuDgSJjzPQB/QMK4JGUWDiCCS7jwJlBcoH20I6ykcxBupfFyAaXfcvafm8Mhao3LvV9sqzS1nt5goerwtNNLUjiCJJ1JpKeeDqs+Rk9I0liQb9kjH79LItp2mIMkjjWkmJ675Lsrk3dVNf26PFTSIqeI+ts6SDYEuz16KaGtawFpixNwTWSuMimadOAyq5X/eebQxKHSRJmru+5tY//C+/g7rXl5HvF9lvZ/Uergpof4B1Qs9hH9LyFRBV5Tql90oRIKSTdOaJ20vWdcopKOPhsXClFTK1kklvAMHltSkrGQToZuGlGwnJCWVksS+yqqKHlUjuO6G8MjNckMnuyf7//fxbdPitRuOkZHdOAAIb7/2//+e8djBvUCBIUe/F/tGI3s5ZH+ytOnMGxKrPFT+sFiU1l65P4hO3C1U2bpqmapvnfAbwC4I8DeATgRvS2GwAetr9D9Hv5HSbGxtf9xaZpvr5pmq9/7rkAw07K37bf52CBTFAgzqJkTq0P+b3m1fvXpzfxWCQE2Lz5n1l/t3mKZ8rkT+1Zj4UkDh7QzTSlmHoC2D5bfC+tAdHcmiwLRWYOjUFTogCPOjA1WXniejWJjJjPeC9HYo6JGxw0DJVWVNDeOV4D4OmmcpBaawvz1KGoG7rWRkzUTdcVGSSOJDyY+pKxtTXJEohqov04QwIoYkAw4+JaD2Bz8BaLz/j3N73fnWUhkApICutcx31C5fWzLHFnKU5PzFEFwayDBgQksawaOkgH0BOYstRW7S/89e6fFCZqNzCibjpxzfj+W4Lgj73u+4Y9f90QJLYB8KNWlIet9wuBjX+NDfbmthuwCg4l8f03JAk1M4pF0mVuci1LD9rCWO8X70FMwhvos7C6721yVL8tjk3dNLAS2M8mST/xewqivzEwrJsE+ER5UIkVX2Z6jv79oMeN9QAGOBCmioCbABycfb0YhAHYtTxkvDB13z65YvfTkOmaRCPd9AnbhSKJI9f+AIDfhK87BAA45w7l9aZp3nHOfQbAWwD+5/Ytb7VjsGksO4mpheWcaymB8SKegtGHjp0JpTMuLBc55My4sfo7Zo5jaBuD0o3dk6JqsJfbAilgmlow1ifR4uxaaXpxQMQ6d3HDbbonlHJA2aw1EFAzMRZJGUMSp4N7RHRTFu2ch5JKkPiuBIkk3VQOUmttoa/3sInkAKpPYvkYdNOm/7sxS2IkF8QzOpemGo2z1VIPXy83ZMrlnvXWMUk3zSLhGktNolW4Y0y4yb8+cS3lJE9lq/vjJACuJ5kW2uI+cXRtrULuLQkZQNckNt0cNs4xWsviXDOJmT/8Da/i1TsH+MQH7lJzBEIA/KilrrMsjTpa/3RSMgpSWFXUnriLAUmsjYGbRnx0Td2mdTkWyFI1iR2SXndzpertR6i7zFJOXDhnLAqUupWFRd10kSVdPfW6qnFtj3PDs8QnJYFWuIYSvEl6a8TPezq5C/T3ciYJKn829ks2InRn1CROa34kQySx+3ybkMTh3+/2cmN/RabuO07AATOQxLp6qkHihSCJzrnnnXOfds5dc86lzrnvAvBHAPwvAP4mgK9wzn3KObcH4KcB/IOmaX6rHf6XAPyUc+52K0jzwwD+2/Z3U2MnjXEMx+Rv/SI7+++e1UqBcZoAKCeZW1hjDjmwuSbxLIeQpZZZVVHPEkChatsiJHFqAzq7bnLzHJPo/svfsN5/3kmO7iNZf9FHEiff3lmWDhERTl2tf9g0ROZ0KFzDNXzWznVAGqbH7XdIotRIkXTTNOkpQtJIYuZbZxRVPamqqU2Ea9YlN268JnFa8CNWZDPtPzOTW1X0vVH9XUeRxLPXZTZCN2UP4Fi4xiOJXEa+GG3BsFlJLxZuAqadrUUW5mhxWnu1jAaHJN5L6NrahQ4SuWctnAE2ddO4drU0JGacc/imN+7RSD8QkMSjVUnND/AsDY3QMePG2jYA08HloN6PYHbo+eiaRCZJMkAgKWpfHGxwaFuX7FD3kvmuh6J/hqRk9L3R6qa1DREE2h6cba0rewb464UzuGRbYCSut9cBXEIG0IggeR8HdF//uhVM8WM3+1w+URH3SZz+fGPACMMKGdXFIM4ALRzEsPs6y2PhmqeH510U3bSBp5b+CwDvAPgLAP5M0zR/q2maLwD4FICfb3/3UQCfVmN/Bl6M5ncA/D0Av9A0za8AADF20pjDPhuBtqc25bniLrFCFCuBfhbdcdN6HKPE1o2lbkkHN0S95ciGMFvddOLBHgtkKWc3yn524xgnZsQhZK5nDdJlnFZxY64FtAGRMUgH+kgi3aMsHanTZD7bzEP7oK0jeufIRjcV2pAp0wdPiyqqmq4tFFtmKVZtn0RmXDbynFLqmgOUevrZdm6sltHQFse6b7mhAAGwOXgb65M4JSIQj9UULApJTBI0zUi9zcQZMIduHRS1azrYBoJwU6+WkXy2ZQ/xCbHpOQIKSTw2IIlxMoFEBOMgsSJq2R/HQk2iBInTY3SwHXrSTSdAASX20b5uPYPNiKCRyhkjkMz+M9YnkfnKpJarMgZggYWF7rpsUlILN8lrU6b9QgsCv8xSrBSSyJ4dOuArKpYB0WcJODe9JuVjaESQ+d7O6otpBVPk/6fqvYfAzbTC9WjpBjMumRmUuv59lNcmTeimxTGA5qnWJF5IeNoGc5/c8PtfBTDatqJtm/Fvtf+ZxjLGKD6N1cTVE5vyGIzOOGlnNSSd5IMPqE1ox00HsjECZnUI/bjpjTWWBPY/E/32RrI4U07a46KkVgTSubj+iPzekmEtKdsnca3qGvTcN5lX5OwjIiySUg6ut3lcTAlhJdDH2nswn21Qk0jSTYU2JM8cL1zjUVnLQQ94uumq4IPLsbYUVVdHwR1QAFeTCJyVuGCd1jBG5rDJxp5toM2UnzF4VLiG2MeBPpLSNA3vJHdiGjXSJO2uvTn7HLM7pu8joBDB0pa40HTTDhWf8byxtVWC3FvWf3f/jTWh8Zqsak5MZq7FSCJ7/+MkCatcGVAb7rmJEUGmRnxsnDUA68ZVdoecRTuBfi0djWQN1E35zybPs2yX7J5QGO8j4JOX69KzBFiFa8AnXTskkWSvZG0is5vjTESQE5wb910ZJDEO+Mop/zoZAgdyHDBtWUbbGU1dr3+5kIjb1DojDeU9LHAAwDuO2T6wPmoHXX0kcWuNRhLjBTkDSaRaMIzIOOu/d/a4WEnSgCTqbDdzrblUzvb3dpXMvrMLTNckjvZ7g6EmVNNNiSzhGLUPzPUi54duOD8jaw2M0E0rviZRrifB6VRNRJoM22awh3atDl+Ac7aWWQLnAt2UpcDlrZNgobbK31+VFVZFTSMpgO/btq5qPFqVs3rLARYk0ZbIAYa1jHXD0N/8v/Y+icNnG9hck9gJYM1CEhVKRyLiY9cUVGRKGCyuiWb8yFwFpOE+MuNC8FzVHGrg/3YI1C31tXsqCcMjiX3J+7rhmQwDJJEtApthQbjGQDdNxpQkp6+VuGF5CStu1GvmTlIyExcHbgbKe9xzb2L9yzUA8X+47yxPk44p4IO96TEDddOaD26GzJXp62n651RLNG2SUFmVNV2XLtfr0YTJFhjWOQ5pwqzgHLrrAJwPNAYcyNjNa2tYkyi+BhOU1nX/7JjaK8daYHBI4rCdF816z/eA1YP2D13xmsRttuBgn/2ecWh7OtOh/z7AZcSGvWa4hTXI/hMZaHkmhs3cJ641irYxyq1DESCqJtENaxKn6sfOqgllkcRS3X+2Jit2CAGutiS+jxz/f0jt40QBkq62qq4b1M20IiTgD+2uR1O7602hB7EiIS1AMJZZJ8Y553CQp0G4xqJuqhQh2dql/TzFSVFhZUQSbx4sAACfe3BKBbJBAa5/sE3R9MYo6NRhHyU8wKz/aN+qiX1VxsUOAuA/31lJiNAPcFiTOOXM62CP7dGn/26/lmvzh4vZHWxGPg729PU32UL1SbQEexrxrGoDkqiaXNPtZjqGTVsnRUr5P05N4hwT4ZoHp20LDMKR19+3RQSrP05e2zzGP/vhPtY1x0AB2uBGKIEVF4DF/gxTEx37MiwlFhDF6YCAsbWFQFynOX2tRKFEloRrqtg1bAIOCOfSuqpRVA1ysnVGnjoUZXhuqOSKQjvZ9jZScqDVTdl1LO8HAvjAJBJGNT+MSGLoVMAnLuRak6UzI+cU2zoj9uXZdYL8ADh+2/+8OOTGnIPtgkRGSj4ZiitMLaxEOSNijJMW01RlNKOSOSpcs2GYZBUH44hr+ffOQ8B6SCLRgiEZeUCnkIMxARpmIx/2Wuq/vmlc3G5Dz+Msi1uXmHo7xQ45gzaowI1VhIyvV3RI4kSQmA4DYO6QUtlIsrZNbH+RBSTRTDedzgxq21ukOCls2WAAuLWfAwC++GiNO4f55Pt1n1UxBoEfBinNRiErsWEt43R/s7OEa6ZbAAwTQPJ3zqxJjCTy9XWng8SAZFmQxIDc8HVSY+wOCqFQNZc25WIZV5uQDY1QsGgnEPokAtMJo3iOge7I1RbGfdFYKuFck8/2zpHfS3RAfJbpXmqW4D5VzwB73sv1CvW8sfdD7+VMssOP6SM+LJPBj0H3L0837SOJFnXTXr0rmXDtAiLDGTDod0gux2W7lrqSA1JgLU+DKmpJtsDINdppuv/9di6mIDHySzYNDcn8YfeAqbU1QBIn2GVjc/TXJvfyqCyCuV6aDNvi0EFitgccfdH/LEI2T8F2QWL7xW3OWgyh7amFFSNZgkhNBmARakDXKLjIIWn/pQQBjI7MeMNtLkseiwBtqj3ScxzQTScOqTEBmjnKrSFbNDUuphb7f5mM8BwkcZQiwzhbbQN4PY6uSZQeTaUfNxUkxpQQVrhAI1lWCujBIsX9EyPdtM1aWxw7ADjIU5ysS6xKG9301kEIDG8fLibfn0Z7AtA618yzHa1J5nxK3JhwjS1x1KlyTowbywgDm1UXg3DNsCZxMkhU8vqlYf3HQTCTyR8+22SfuF6fRP7Z1ghrRSINQITaGIKNZZZ0yRFrn8R+kGILpAAeSZlrIoL1diuCtUcknBJ1tlmUkudS0np0RwtKl+h6PxbJ9f/qlg/+9U0Ouf+3Rzclt8k8jXoJkglowH+m2nAmjvVJZEXgdJDIJmWWHd3Ui5exSOIiS/rCNSQDoqp9/bUlsRInoZlRMUrHrJG4RlmsnEgejbalI5E9PUd/relEyZhwTUX45nrfslCZAfjA8PhL7c8H5KAnb898kMgUnyZRAABMZ7eGfPz2b00hie1iDUGKf53JyMdKesz1BoI3DNoWcc/lelQAEAWlVd1M0r3GoP6pwvkxSixFG40CYJaCOEbtY8ZpqoufI38fB4GsMfvJiG/o61lrEuMAoCYP0t4BZaBtAUG8BrDVSZVVY1K2A7xwx0lRYV1WdEAKALf2Q2B454AIEkeQe8a5Tly8JlkBiGHiwqq2aEHg4wSc/J2pZ1sLMLFqnkGAxooktoFpF9xM18QNBYDYJt1KpZRIYopJwLZukUQWEc/TvrgFu/6dc7h3za9fvidpvybRUqcc16CyTvkcO1z65/lLRysAQcl1k+lErY1uOkyuMIh/lgbBFUsAoOuraOEg8UtiJHHD54uZSkxtv5hPXEhwwwd7fo62M7FX398Fl8QckxDIsqJsgA4SPZK4JDOgi9QL3gB+/2GEa3K1300FXtpidgGbXAS0cI28viFoO6tP4sR3Hu8HAKe6Psbw41kh/deEBTFV8hEDPnQrHh0k7uimT884ZaMzkMSJxSHvA3gaSZexq/qHxnSwF94LGIRTRrLdU0u4cwi1k0Y6oHHgUNYN8ilnNwHqGOqfcArj/lN+jtNIohwOwxqRaWd30O6BGJeqQzTMcd7BxiqyWXt5ASK/3Q8upyiWA+Ea8iDVNahWdG9/RpCYZ66rDwFCnzrmWidrewsMjSTeYZDEkYOtZpIrSbwm2ebSseKuvb9rcJKnx431SdzEMHDOYRG1cmHbsnRBSlV3a9PiJAtSxATpMd2arVvKFFJqyT53QWJZ0wkZoP9sW2mcz11fAuBR+wEtmcjiy7hecrE5XyRxmaV+jVUNFlnCJbfU921BEnt0Uzk36CBFBdsWJFEl4eYgiawwkv7ebHNsSwAMSRItnGKqLXSuu+8WNe0s9bXzdc2rJAPhXDpeVQCmGTlin+LqEQAAIABJREFUiyzBylqTmISEU0X2YPbj+v6FKUhv+s/AHHVTXz959rXivVXmCUwEl9Ec/bWng+cxJJETXRzWG9P71uIQOH3X/7xDEp+eMZtCvECY7FZMN+WlrWMk0RDsRagBQAreGOv2OkUq9YzSohgxBZGoSYw/m1zPz2Uz2lD30FXuPgJDha5puqm9T2U3rkcjZIVr5om7aEls+R6mEMF4nnRN4kgCwipSYUX3ekgiUUcEeJRgXdY4LfyhzTq8+4puahOumRckWpHEOPvZgEQ2krhOlhBgiujdbE3i2LMNEHR+JeLg58itE40kioNtQxJbxK3ihGuswllACPZ6NYmMk5b44HlV1ibaqKaxWRARIIgwvecWVzMzphI7W7jmHINEIKCJeyyVdqwEwFg6cBF0Rx2UlgRt3Y+RmsSAODPPjU6eNiQiCASULiQJp8foPchSy54kI+e9oQa4aqmcPN3Ur6uHrSgSe3YssoAkFmQLDK2U7BMC1KV65SVsQmZQqkMkeM9SN91Uk+7/Zj9JqP8GJVzT87mIYG+EzVYzZ7AL99GSlAQAHNwLP++CxKdnTPHp0Nn1/05J3wLDIHHaaWrnFWUfJhEwN8xa63mcOS4ZEbcwom1Sb8kgYGmCqCZxmls/JlwzWZM4QomllFvP+N4YJHFsjVAI5Fzabucg9Oe+yfK0n332f4uoSVT9frogceJwi4vLaUlyFdxYFcE0lZNFEkWk4uGpl7tnD21RN10baxKvL0PPI6omcSTbyhxsmuoFGBI58V5CiFLFIhWypKfnOI4kTjWL1mq7AOiATwuniMPFfN9jtXST1NYkTsBxjqQWoLGKKS2yBKuiNiEbfUTKQIdC6CP4xvPXqPcnSV+V00J37Dl2pCrq49i1Pf+c7pHJJp3wsPRc1UkZps5JbC7dcYBAGtZkr1WKNeFXc/sP0KpwGxWn9TNqqWXXa0v+5a6nUTo73fRh++ywSOIy08I1fE1iN0fDGolLPizCNRZg5CwksZoIaMdqEikkcSThyiQ8PCLYf41RWPb3Eb1r0vvWtefDz4tdkPjUjNmU4wCAyW4NVErJoCHO2FmQxLE+fZNI4sCR4cYAY/WWHJJldXZ1k+Ju3FSfxAjZADh1x1iAIwTp53j/jfcDGBeuoaTMVbDHUvTkPV1NYitcM0U3jZMrrCS5puAyMtra3nPbIxrO8bQOObRF8IZVKt1fpKgb30vNgiQ65/DyzT0AwEvtv5tsLPvJF9tHiCBdkxj+nwnu5VYPe2QR1zoTSTz78+Wp6xwm//6aor9puqmMZ747GRdq9+rp5FbSF+liEFkAbZ2Ln2Nl2FsBv5ZXZWVyWrVqogVtANC1m3n9Ob5mZqAKadx/AAkuz9d9OVzYg8SmaemHliDFBQfUUssYlw7QoiRp/+xggo0gqKeCe5LxUqkAmO+T6BEYi2OtS0wsSG7qhoENcz2N0lnuv+w3j4xJyV5NIpkkkdYtot5tQZt1IoFCjSPfyRK0jYnCTAE3cU2iBUm09+rul84AfMmHbvej5zBph8+Fn3dI4tMzpvh0KOU/vfjnqpTGGTu6lcJI1lrPY9M8e4I3BGowJ2Ok56kDvoJSN03OLFI+66Aac6w93WVifmd8tqlzdPb9j8bxDW/taCcgjeO9IIBkoWnhiPZ6oU+i7Xtjs91jdFPWcZXgi0W2geAEPjixtc4QWfx3jwtTCwwA+Ls/+a341Z/4Frx0c5qmF69J+ZlB6eI1SdUkJmPqppvHxCIVMlWKbloPX/fCDJuchKQnXMNmyUeRRANty4okameEbRPknEOeJFi3zynA1agBLdpQ1rDI3eda8dhYk/inv/1NADySCPSfb0bdGvBrua9mu3l9PAm73iKJTPsLQKnS1rUpSElc2OcsNdi5SrjWDU/l9BS4sI4t7VV0cEmjpIpxZFVgrSbOeW2hxKShqI5hXEASLT2HNUpXN5ZEjl9Pj1okkT07NN20rOuuFdAmC/tdbarjjWtJbS1I/P8z4EHcEkdsCr0cq0lkFK5j31V+tpZuyPUoJLEdZy2d6SGJTzFIzKbfcrWNOUxjBT5m4zpLpZQNwEIjWUxeS8b1+/T5f6eWo26kLONYalnsELJUKl003zTT9/+sxqnJBuRgXLiGUxsFRgIwYo2M3v+p4NINBW/YGpE5joVkFqs6NBNnMsn6O5hTk2ihJGsKrlXd9D237ZupyNtL42wLkggAJ0VFB5bhmineeP469d6zsp8cRSZKkrDZ/znjlGNBC9e4IW0ImHZC88z1+iSytMUk8cFsWTWdCISFbirX5FpgJOb9R0xaAFiCDcDX4a5Kn/jkg0QlXEMGDWJ/6Kvfgz/01e+h3w/0e+CxwWyeDhkX5ylcAwCHS0ESjT0gFU3SGkhZHEmP9ug2EdQ0+1RCtt5skCSpu7Nk8lrqnKIp0K3ibldbSCYyAf+cWfuLxklJ5hHQAQ5L5QdCEnJWTWIVUCkr3bQ0IInxPWETyQAG95ISeIxRwYl1GdPP9XWZ6+kjh0USx1puWMZ1wjXsg3q4o5tuhTH9xsZoc8BExiJSKWXph6FxNnrjJp2tBBFq0M5jKuCL0Aaql2AUgI01wz57nn35bYDot5cOof4pul0cyAJcvd8gY0rWRCSufx94evGwJQiHyA5FQrg+ieFgC/QM5rBPBuqmzPfWCX0YAtnHUTd98YZHEr/2vbeo9wMaSfSZXVbwRovksA2R51iM0gGBAbHJ4rXFOjIxus0Kruj6wrnqymJTQXCuBJgAXqURCA7oquSFinKVXJH5TQtuxUwGa01WbVLJBALd1CLsItcC7Oqmc0yfARWJJGqRFsDvQcy+9TgmQSK7H3TUPiMCNpYUYxN+c4RrdH9FlrY41qieRYADK4pHO/OWShsCjekx8qfN6qZpP3EN2BOulgB4bk2ippvahWuaVjGURxLntKmR9wOczxv7kmJltXk9xywNfd0pmmp8PV6ErP8a8+zErAn5W5TtkMTtsKqerl0a1PYQ2d0YSWwMrRSAsKBoummU/WeD0li4hkF7Ou559JDy2U9bADCGJPpDcfN1gKFwzVRN4ln1lhytYHj/p/bWGIG0UDsGTWspummorbJw5HWh+LrigvuxDC172KxKW7Ah9uGXb+CPf+sH8EMffz/1fiAgBdaaRF2rZKlJnGNxLS9zQI2qaxJVcTG6zTaBj0Uq5LWNc0yCSm93vY5hsKkmMYnoh7yTtt+ibXOEawJyM013lGy3p/m6traTmqL/fO19APj1L5S0LEnogHSh+yQaKIFzTTt47Pem1RYBv/7P+5m7vrTVJMZKkgCPgMWUNBZdnSNcEwcAXE1uPwCYEpYK10IvccSuSa+CXpmTi0Bf3ZSum1RKnuz1ArugNqmbzq5J7NFNbS0wKmPdZJYkHbrH1jfHvhMTcAuzY4wpNoUIjvqEbrP/Gphi/bNjupZ9KLDGIKxa3XRKkX9gz32Zmvj5JaGnbBck1jVV77cu+4sK2AwbD1RKWSSxo0xEzpYhcEsS19UfWSXoTeqaTezIc+O0/DbABelx1qicyP6Mcc8bYo4DKX+SNpc4L1rQOYQkAhmjDexhP7dPos72sfcf6IskFGQtlzSpB2ziRlrd1NICAPCf7z/47g9R7xWTRtkPTgs4x7UEAfq1SuftsMa1vMyBH4/xdEfuWvFzQ41zwz1h+hAdOgjM/pqlfeECC/3Qty6puj2dUaaVhIhWF2QcBMDf99TxNYn+er7Fh3xG1q9Ytr3UlpkFSdRIiiHTPdN0PZFFuEZ/30Xd4MBYB2w1QRL3SbqppoVbgg3NQrHQ6+egPYDcf1sNaowSlRVJN1V7gklMKfEBsGX/13O0qZvqhuf+Naq+P2Ll8Oqm/ZpE9rzpBYlVQ91/6UEtSrGWPonzkUQJitrXJ5l6Z/Qhn0QSh2I3k2JuUd2knydXujG4HnFfsjQkvM3CNTnXVui8bRckkgukhxIRG3msUiqj2Xq/GG1jauKANlsHxyvpDdAGy7gwRs9hk8XKdsA8JHGKFhXqE/rfGxM0+7mF6wCccJAf52sF5tJN6V6Cbl4dS9fvrQo1iVMKXcAZNYkTwjU9JJEMtgGMq5ueo+O6VMI1izSh68Zu7Id+h5YWGHNMI/CAYd/Sz00DOLLfWEydpvsrKoRI5jA15szakg1jBWnTY2gkcdG2LjGom8r3K04aE5Rqheu0RUz5INE7TuuqQpo4yiH08/SfzTv/3Jg8TbrEj58rNWy2aaeQRhLTpF+DWtWdA3xe9tz1JQDgtBhRVhoxzdKwCde4QVKSQhJVEs6CZGmNBWsAoL83ShU16VPQaUpsmwSyMEm0DoFJJVbP0XBOSYnBuqxNVFpJLnbMFQOSuGr3rIIUbuoFzjMTCRafxF8L3TUBu8I7c80zkcSJWym/12PZmsSY8UKLx0VAkSkJ9+m/Avzeb/DvPwfbBYkk1GytSTxTpZR4YPT76Yy8gvoz8FnruHE2P244RytKIYc+pW46QBs217KMZYwYZ1f+pLW9R3z/bXRT7ewa2hR02ef+HDZZkMQOjgyjkqaVSi01iZ0zYqTxxDTV8yw/6oRrTgoTIqjbV1xEkKgpMlQWM2JAVE1DftdDmqqVXcA6yWMJoIJAuAVpE7M4QHuqvyXA0Yvl+12VPJI4pgLN+gdZ2+JjVdR0M3eZ57sna1Owl6euC7it6qZzLKYlLwg6Z5721z8r3PE49lXvuQkA+Cefe0i9v6v3NgrX9Pe79jUmuEmdasli65OomUqWRunyfDPCTTJOn1PsPp6lSU8l1qxuarn/qT1xDYQ94Xhd0nME/HmzSBN8/sEKAF/esExFuZgT/AOU4m7bTmdOIoHvZRojidP0T2C8ncXUNcdqEqfYZX5cvwxM5jsbSTSAABahwM4+9L3+v6doO+EaYpMcZPGJjSs4CH0+MotkhU0Lk9fS16sVujdHyZBteK7HsfWWQJ+CGDZkW789GbuxBUn7Jwd9EiemGIuEWOim/npyrf7rZ9k4krj5WoBkaP3PFmqNVuCz1yT699tqEkP/NcCQWZ9RbznXOuGa05ISMRG7d23Z/Xz+NYn9Q5E6ENNhT1Ir3RfgaxL7IhVsAmjYJ3GqByogSFsUJJJrZD9PcKqCREaZdhEhiSUhnKLl5wEekQUEJao9dZSsiZN5iiNp6ZMowYbQ5c/TJAAGbEiWPoNZdc3Hsa98xQeJuvZ1k/UTcP41XrjG/xxqGaevN5duGusCcPt/y4wSdd+aEw7SfoIlAZG3c5yjbmrvkziC9hDXk3PjZF21158cAsD7GLcOcnz+YRskGpBEADgt/PUY4Zo+ksiJRAFDFhBLf/bv9/9P17JHCSDmmqmqmRTj1Eb9v3Pq+2MRbrq/YswKPOf99UnbM48kMn2CBrU9xMYVqEb+/2U4A737cfGmNTXO/6trgpi16Ole4f9t42IYnRmn6hosNYnRQT2VyYwznwBXkyhjzbVVI/cfIISDRsRFrE2KLQFYL7NoyGxphdmuT+IUkpiM1XpMXqqXWbdkhOeaHPaPViVuKgrplOk5ve8u30x8jo3V4Flp2jxtKEqu1KA46Fqkgk1AxEg6oDOuZ6+vLE1w1DpnQHs/2FrSha9JXJmQRL9GViUf3ARkw/+/BUmUFh+rsjKh1FKTaKL2RYm780zIAH2VRhbJyltkSaysm3Onm17fy/Effeor8darnFKyzEcrRzPBnmbl2IRrNN2Udz6z1HUUWr51DLr3A54FxNAd9b5lqYnL2t6dlgRoKLmxBXvZyHnPzFMYKLIPsc8bANw+WOD/aRFqWt0067dqYvaFWM3cIm6kz+A5aHNV8/d/rE/iRiQxHUESCcXvWHPCz7OZTBSOljwRlOtUJ7ytwjVbYs98kMh80XFhLbNxDfsdcojIoJk7GQDE1Kam4eifiRu2bmAd+XjxcxtCgpOq6s11+v6PIIlTnPUR4RoLImJtCj68/9z3liYx3ZTL5EuQ3qisKUc3DYeGOF20cIQ4CKXQTfnvzaRSN0JbPE90Q9P55tJGv8bQcmOOZUnsJNdY5pu37zQ6fC0qdfHzRmfkjXvCKJJYTx+mImwhNtUSR9t+nuLd48KkbhqQRL93MU5yYIUEIQdLTWJR1TgtamOQmGJV1HTwBfiA1IrsPY4tI5XGOcI1Pvt//kSoP/wN76Xfq/UETHRHN9wnWeSmRzclb8ciTbp2P94ZZ9RN+zQ9X3vPjSsVm8Qk3FTbEEG51XXdmJDcNEnQNPZxkjiy0k0B4OZBSEZeW3JuuCSzpJaRUd2V701QWZ7u67CSRMJEOwqxmG5qEkEc8e+mQIAhu8xQlqWRxLrB/pR/N0ZvZeimKpg1C9dsiT3zdFPmi47FFZiN6yyVUosACqACUpKmKgFHw0L90WdjaxL7FA3/GltLp7nueu5njhnJGk05QUl0/2WedL2fESWN73+4J9Pj9Gdj+73lap1YhGvk0CiquqNrMHVqWhK7qGo4x2zIiUIS+URC6vpiB/5vnT+SCNhpo7//wy/g5n6OG3s8AjnH8plIog6kmPproEW3Iwo0xxLQAhxhDpPXGskIA9N0U00DrMg5AqomcY5wTVV3/06NizPr3kkm55gJ2lnRLRgAT51dVzXFkBETaitgC2Tn2jJLux6VTL9PICSpJPnm+8Rtl7M1xtJglarn9EnM0z6Vk+9BGJ4d7/9Mj4nLYIqK+97y1HXaAxa6qZzB1tpOIIi0+Nemr6UTpyxzCwhI4rEgiYbn5rYKEm8fLqgxi6zfz3efCRJVWxbb/e+f3VSNbEQ3ZZOSZ6mbTvVJLAYU1eme52MMM0qELGITAiS99YJ9mfOwHZJIfNFjtC1g85ets4qArd8eMIIkssFll8m313+ZxqmHRg5uZunrOrWAGNih/qneNmNIorQFmbJRKX/j5mMRvOkVUZMbeZ6JQ9KYHQugrUk0IpDy/nXVICdUQPX3xt5HQNBt//OFqJs+BpL4X/wbX4fo7DgXy6IaPKZP1iAB1LCZ9b7gjalPYpcU4xoHx0i6HzuNJA7ot0SNpth+nuLUSDeVgFCy654GutlJGyT8DCjdwSLFZ+4XuFbakMRFmmDV1lte3+OO9zxNUDfonPLzVjddZEmHvljUTQFBsBytrnmRNh5sGJFEwz6pnWtLo3TdSqEikcQYJSrrpguSNs4x1UiigRKbJLOCbcDvV7NUUWubKqo8/0dtKwuL83/7wAeGeepwuOCSQLIHCZK4T4zTGgRsbaGM0/vWXs7ff90Cg+4TOnIGTPVJFPRXrsHWCMrf711rqnVGMl7yRMUOkXDNZQsSd0gi8UXHi5jZuFK1YQG8SmOXjVHjKIpexLVm61/iz1Y3DVd/pIVrojlsnKeiDbHwu2S1miZ2CqeRxP5nY+smh5LkLN00zhpNIomDmkRbbeG6V7fBZ1t13Qw7Tt5fVDXlWMsYTYmlhVMGCOTksNmWpUkXPFuRROecqRZlrmWJ67UAYA58aaPQjWmmJcKB8cSRVcyKCfTk92M0HmDzulykSYfqyRhagn4R1E0XGdfyJEscnFNIIhG8jbFCWCftYJnhpKiwKmqTmNIy9zWJpwWPQEpwI075eSOJiyx8dzWR7NBzDNQtTjjlIq3H0jAEN/0+lXxwqXvFWVCiRVu3CvgaW2bPi1Eilt6t9y2WkSBzlCb1AL//+DnagkTtc1mCdK2KDXACWGK32iDx1sGCLqXoahIlSLTQTbsEEI/kalEk0320CtdEZ0DTNJMBpvg/MQuLqRH0c7QhiVpcqhtHCeWomlyDD7RNtl277FMwFjKOlfSAzYs4pmewTnIc3FQ1n/0H+kgWsxTTyCEEGaT4AMD/bBGu0RkqVrgmUHfDa1N9wOIgHWiRROKuaMc1IIKbxwzvP/991014P0tJW0SOHXMtQG2uVR0EaEgnoVDCNZRogXoGTCp1ri/RLq+dp4lS6XmrlM61PE2GNXhETVwVHaJz1E3Z2hLNLpDxk/1dR2g8DMMgRhJZcQXAO1cnhadyLknYzDnXicIAaBvWTwSJI/XlNJKYpzhel36OBudzmaUo6wbHaz5IXCiapEXwZq4tsyTUO5FIVp70ncKy5oRTLtJkPn26I4kIVvZgr+slWDcm5dylCtLXpDBSjBL5IJ07b7rPZlj/Urdqae+kz2BrAhTwiWdLkL5Uqth+znwy54Ub/ryJEbRNJrXz7xyv/f8b6aZs2xIgYnwZgQrNFOMT0Jq5EuawaYxcQ4wtHfPX0OPqSdGzLD0D7ZzyXUfaq1w24Zrt9Igu0CiIOh0qgAIckmhVadT0AKB10Kjsv8wNahzjEAb1PZkn5xCGzyTXtFLS2GbusQAEMJ390QEKwGWnxHo1IuT3Ft9/9p7IGurolSzdNHLsmDkC/fsijgLblFfoHUXFyc+n2mnq5jg5bLQm9LwpGs/f8D0PLQf9RVqs5sYITmikAeDX1kDdtCF7oPaQRE4UKUbSgaCeO1WTGNNv2eBmL09xWtQ0iiKmVTlXxfTYGP2yBAD7ixTH68osXCPoxjvHa7q/ou7vdyHqpipIYQV2QvlGENM47xYYVhsTrqEQQV1bSCaF/bgERdWYmCRAvyZxXXHrKz5P2T6VuibRom66zDwFWmpXTeqmtf3+A96/qBv+Pi4j+idDvxX74AvXAQBvH63pMaK8/dn7p/T1ulpqUTwm778WamEEYYBxn5cFDuL2NvrvnTVGv1eux5w3eo7y85zaeYamqhNAcj8vgnn0JG27dtmnYEw2wDsyfYcE2BzcDLLIVgEahaRYePVaOMUatMk4ZgnH9RAA50iOKV5OCadkyfDBnnIKx+4HQKKyM9TmzqKbTiOQ6K7TNHxGuAsSS5siW6aCS7aVBdB3Elak45pHVBfAXu8a1tb5bqwvtpndA7I+5KItT/pCLWxN4kDsZo6YFelc6HY6tHBNhKTLPIHNyYtcBWwAT1sEQi3Pg5PCFCQu8yC4YqlJ1NR1mm66CMI1lj6Jh61S4sPTkkYS+wmn83didLDNBvd5x5zw97Ko63NvgWG1vnCNf40V/OgFUqwCZYvAWFAzINz/pmnoREm8lguyT2WmAlLL2urq/QyiMMF3stWy65pEiwDWMkvgXAgSLQnGN1+4Rr9XTCiqn33gg0SmJlG37rEguX0/bVoQBtBIrv9/C910tMWcAYQB+NIxIOqTSJyLWeQny7Wn8iQ9KnmzQxIvpTGO05gCJTCBJKb9RczWtg1oqqSy1NwsTpwhYdVNE4U2sCItfp7JjJrE4YM91Rg23A///7UZyZJx/l+rKq2Mm6xlVEkBCyIrwjXrqjY1YNbCNeuulYWhBUBV45RUXByl8ViDdAP68jgmh+mHX75x7teaY3P6JMY1iTXpkM8Vs0p77ALu+46RdICrScwjZJXpkSUmtTz3Twq7KExZo2yDKZZu2lMJZOmmC08bfbQqTXPUcvossiF7glBpzxtJlLpJgEcS+43qfTLtIlpgWKzXk85QS50lSV/cyCDuYm23AQThmrK9j1R9ebSW2e8tj5xkliEsa/dkzYvCyFs03Ze7/xLcNKY2HUJB72oSDc/pc215A9uDExgiiUxNYhDcqkwKuDpRaKGN+vfbhIriunSGdRQj2wCJJEbJDj/f6XG65Vh/HMHmEX/XmMzZFnvm1U1ZKfl4UQEcHB7qUTA5Rv9e17GYetT0KKDzsjiz20RQAdgwcGb6JALoWjDI2E33sjswoto2rgdh+EyhtnDzmLNrEifGqSxm4vhAtleTaHASJBhaKyQxJw43OZBO1hWNJMby2+wc+0Xz5++0AsAXHq4AAB968fq5X2uOxc3jy4kkCTBEBC0Jp1jMyko3ZRNAmUqmxXvf5prEqAVGzaubClr89tHaiCT64EYCnKlawVF1U3It7y/80fzOcWFCKA4WOki0IYnyuc7bh1mkaaSuyZ9vZdV03/vWqZsq4RomkSyWpqHeuyLPe0B6CdpEcgAfOJR1g9PC7ydMzWuc9C5JNeFevaUhAAs9CFu6KTHOOS8uVTfBmbck2CXgtjjxyyxVSCK/lzjn8H/8h/8SbuzzrZNutW0zPmMIEmVOq7I2KeD2lcltpSwdm4Qtb4jPqc6/3qQ5kfTeC/DsGpmbvh4reFM36BIdfu/aOCxS9+UT5dtk25WKewpG0U3PyHRs+rKTOPNGIlkxTXWuuilANjKNkUTSIdS91CxUQt1/h+GeA0A6omQ1lcl0zvkAOApkuZqsJ0c3ZZHjqrHVUcztySWHxmlRdRQnJpMsTutJ2zrAhCTWDUUhEVtkAW220K8ex/7s93wIH3/9Lj72+t3zv9gMi5vHs8mtfh0vX5OrD1GWAt0XruGSJEm03wFcgJm3FL1GJYHYoOFO25fst794ZOpvKTQ9tnXGMOHHq/RKIMuoqGo7XIbnklc3FdSm6v3/eVncgoFFpIC+KvNVEa7Jo4SrRYGyt7fSwaX/fh+1rRss5QYyT1q8TNckGgLgZdyDkL0n7dldGc7SrPe92Zz4vTwJQaKBFg4AL9/a7yH/09dKscgSfK6lm+5RdNNQkzi3TyLL0oiFa9izO1PsMj9e/JlNY4ZIIpNgGfrJvACNnhvgz7ipRIk+p2SuO7rpJTNWxnaMM80gicMaNRuSyG5aAySRHKfbDQC+nQUVXPYCMP8aKyUv90I2BlbddKBkRXxvRbdhta/R6o79z0Z/b0pd1o+buNZIsT0zxzHhGuZAFMdxVdaKbjo9rkMSiwqnBaeI11M3JYMGGdfVsRiyn49jX/XKLfzVH/lYD4nZJovppgWhVBfXJLIqpboBMMBT12PhmjRxRJLE/xtndoHNSFEsgW5BKSRIPFpX3c+MieKi1CVOOYXxnmBx0nRtLBvsAX26KRtcCitBggZrr1CribpmXTeUsiCgpPyrWp0b2+W+zBeuSXqUtNnCNeQ2Kd+v9PdbEEh1nPRm+1TmiUJSGh7tlDk+PJU5ct+1nN0WxW/92SxtOgD14AvOAAAgAElEQVT/bM5BEufarf28+w72iO8tSxOkicOqrFGUvCJwD0k00EYBVeJD7slnI4lnj9WlLHoc60vGNYlTe8lYMpMJSnV/V4ty7jbZdu2yT8H4jPwQSWQW8aD/0cRD45xD4vp0U4uyl7UmMW6BMadxNkutlHGx2hOrSBWrmzLfm2wigW5KzNENEUgrImIOLmvbwdb1SSxV1tqAJK6KqssGM8G9OK1elp9DNzQlxJJZz9LQF9PSW+4qW5YmXcIDaCXoJzYGfR8BI/0n2hM4mnak0mjKPutDm1C361q5hM/GZmh1YGgLEr1wjbRvMPdJNASymkpmQxLtdFOh9j089c7uebeB0fXNc5BEeQ62D0lsE3dGCqhG/C1tUkS4h1ED1raIAjBLwk/ORbZPpU5usX1a/ZykvUS7Jkl0W85um+K3/9t1G1za6KahvvZCgsSWcpomjl7/fo4VrSUgf1/ThJlnNG6TwiYFvLhLX6VU/72zxgB9n7Ak9tdRRJD0JYF+MpMp+YjrlC8bigjsgkTqAUiSIP/vx0z395Ngb9Dvjdy0NJXTwquXZ6Zu7LWFYdzksJ7gTYckkj0IYyrnlHDKmJIVmzWKg3QrR56tmxzefy4oTdTmY6ENLbKwSYYifSJIbGk8py2SyIjWAEFJTZBEqkdT0t8g2TnmapyFonSVbZH2KTkFkcmP+4uyQUriXK8tTkPuCTrhZN+3hnTTTc+3OEjSSoFRthObGyQKTVKuyaqbauo0jyQqRNAgrX84oyZRnNsHhqDhcUzXSbHIWZqEpEC3PrasBYZuX2Wpwe4FUoYgRT6/JC3YfVICLgtKJ3MqVIKX7ZOoWSF0TWIuc7S1lxDROYu6aYwA2+im8xD/uXZr3+9X+3lKK35LIMtqCQBxP2uj4I1KSlLnxhlIorVPYk2dicLAsgV7nZ+me/MSiVDtA1nu4zbZdu2yT8EYxynOIlhUOeOaRI4C2q9J5II99K7TgKwtTFxPWbAxBJe1uhZgQBIV111e22RxvzGA5ZEHqovl0Nbqjiy6N7j/VnXHGiba0Nw+iZ0kdlG3SCIZJGrhGhpJDJlFi5CACOmIKM9lUwM7D8uSfk1iWdWTrWMCm8GGUmhxKYCvSdRy32zQNiYkwKmbBvohYHOuNSXTSjcVZwuYdq41QtHNkRauCQ7ngakFhnZauWe7awp+cjFIouwdx+sSTcPVcskZUNRBcGvbsvK6vZBFpEK3k7IwJ7r7WLQKoOS4QU0i8X2LkufK2Keyl6g17OVyTt0/kbpJ7hmQxLxFTE+Xs9QGBVAAvZrmi0ASX7jp+/laAtJlluK0mIEk9r437lq9ceSePGDqEc/OWbTRSbXRNPgk+nqT6vXtr2Mkcbp1RjinLG2atsl2QSKxkGMlJdYp13V7srZoJNH4oHW1baomjms3EGVjZtUfCWo2E6Uj7iMQoQ0Ej7yv0PW4c7Rx1nm6qf9XC9dQYgc9uqlca3JYR1NZlRXWVUM7hIFuakcSi0rPkTs09Lgd3VTopmFN1s00Aq+RDeDx6KbM2tJy36xDOPZsMwyDsZpE1gHVe4AVSVzpmsRJuikGc2Qd0OevL7uf33P7gJ5jT92UVEUNSKK939scm0N3zDWSSLI7Ltp0sNEhWayTXNkSOUBA245WNnEXuf+PjMjxIku6BAmDvgD9ekubumm7JjtRGL4msW6MLZdUMs2SyAGA22r/sArXzLGXb+31/mVsmSc4WlVoGj64jH0gtv43LtU5v5rEfrmBjJvaEuJWLjJu0gdN+zGA/xmT9dS6v6ul3nibbBckUkGi/1cXbQNEcONcz0EAOEc+UYFb1dhqe/qNm4lrDeim3EJOkkCtZIM9eU+HyJIU0LlKVj2n1Ug/ib/rqT2yc3YHiq+bx/WEawzB9qhwDX0ApzhtkUS21mNPCddYkcSysvWt0igRW5N71S1PgyPJtgAY1kXzQg5D4RrOISyMyN7Yoc3VJPrfifjSuuKagou91GbkLUHifp52SDrABIktkqgz8uQz+vKt/e7n997hg0R9z1iHcK9DEi+GbrqIAgAL3dE78oIkbtfGMNonkUncpZpxxNcW7mWhThzgkcQuSDcgiYDU5NZtzR8XpOepw7ryTJKaTFwDAQV/eGoThYnVTU2JqnaOFubKnYOLRRJfafcFiyrzMkvM4jraT7ME91kSekyzCV6NpAMc6ytT+0E3jkASk8SXgQW/kPvO464D/mcCSYyEay4j3XQ7pfwu0Dh1034Wga0B62VjjGpnGklkEaLeHEnaRCxcU9UsvdX1HEI9h83jkq6+k0XpxnricNmfId2XCTg0lZae4xlIIt0Cw3iwhQyV6snFOhe5L2RnZcyBgCR6J7misqZCGy1rRYk1BcD2GpGralomXNb01HeXR9nPiqQNDZFENnHhejVLrLqynqP+edPzvYiQREvCAwD+1o/9Pvzl//N38I2v3aHH7C88bWvd9UmcqEmMAmAL2qnf98rt/Q3vPNtouukASTxvumkrlGNQU+2Ea6qmqyfaOuGaqE+ic+Rzo5xk9rwHQnDf9RI8ZyRR1H2DcBDzvSkn2UBbDMI1dnVTEaABbMyVsmq67401jSReBJXw1oG/HvtsA/5eds82jST2/TT2e/Ogg18fjYW5opOShD9ztgDN9BxF0A0IfiGtsN/E1+PGSenMjm56CY2pnYlbMLDIWRzsAZyTnEQIpEklsAnXm9U423C9mMpp6UlU1k2HjMxFEqfGxYevzHvKelRaMnATZyDQfY3BfZvFlOtPWa9PoiEAAwKSaBGuERqbp5vW2CMO7UUU7AG2NSKfbRckhsbZQKjDm06u9LOtNEtArX+pJWW+gTztP2/MgZhGz42fL+8kFB262tBrGQCeu77Ev/udHzS1PDlYpDhukyTAjD6JzTz580NDLzUAuNs6ruy19i64JnGOcEqnZltvbwsMjVJUBtRYzuDGqK6pazvl+ozJ/X+0stGLRSWTbV0FROiqhW6aR2izQd1UAlKAZGFFiVoTkqiCRFZI5nHszReuAQC++yteoscssiTQdlkkMULFpxC6blzSF65hfaBYpRTY7M/ELBm5HqW4qwLZAHBMI5AABi03LHoalnKDbbJnHklkHKckcrZYmqQO9roAgKRkzuF1A4FWyfQRBPoNsAFb3VJA29rXSAfUj+Gbi2oBFDGmJkLLOFsomX0qLRfIjqmbUm0DRummk8NCTWJl77+z7CGJNrTB0ji4l0UzBOla7t5So3OVTSsgirpmPnHg6wx50zQ2UaouSPSv0bShGfWPwFlI4nRNYhckGhIec21/keGkqHBSSJ9EW5DI1Mxo+zs//s34zP0T8zz/qx/6evz0L/8m3nj+GvX+ziG/oJpECUrvH6/p6+m1LMmSbatJBFSrGkNCII8ccp6S6e+b1CRa6aYW4Rp537pVpAVIxotGVw2iMLoFRpY4Wsl2jrppv58vfx8B4PYBT1d/EvahF2/g13/qO3Dv2nL6za0ts6RDZC01iYDU11qRRFtSLE3cIPiSv3WWZWewy9jrFRErZ9qXbK/RxEHpFMARSmfYViLbZs98kMg0hc2iAIClV+pgrzIEALGyFBcktnPTSCKZyY9bYJjRNsOhobnk3Tjy/sdFykwj07gmlHVcA5W2P4ezx7Tz6gkHTV6qhyRa5tihdKVdAVRqSyzCNUnisJ+neLdz7AiqkeqH1hgyu72N1VgjclVN6jaaJrQAyCfXZP+g169NjdMteABuLWu6Kc2AkL3VrG4qCYgQOOfZ+a6T/S644bLyMZJrzSR/+Us38OUv3TDP82veext/+0/9Pvr9UtsmNYnnjSSKAuvbRzy60WegCN10u5BEAL3evDySGEQ4LEkxoRx2NYnk7RgguYZE4aqsu8Qrc/8zRROuyTNRrgUAp0XdlTowliR9dVPW3wJaNo+RbmqpaX5SZgkQgfk1iYBdzKcnFkgixxp9BECVpowhiayYUq4YfvKsTpeOSVBqU0XVCSC2BGPb7JkPEpmFHDdzZx2uONhjxsh7NBw+S7iG5D+P0U2ZjbzfONv22fx1AiJipW3JzwyPfKA2aqTSskji2P23IInmmsRMo3S27OcyS3BaeNqQpY7rYJHi7aM2SCQykl3dWNV0dEULlXbd1vbsYsTosCH7xGkFUMvaci48L5bnRrfAYPetQOUPrwU67aYgMUISjTWJc0ycVXkGpqiqoU9lOAO2Ud0uTx2cAx6uLqYmUeiz77QJJ4puqhAptkzhaZj0BUwSR88vPNu2hN8yiwWHuGBqoC5L166mnm4q6AuB5GZqL69qnhKu16BlPYrGgqVOv0OlKhvdFwA+8rJP4rz1yk16zEXbMks7f8aKJEr9NUs3HZRKPY666Yb1Fc6NcHAwfQvleoEVyLXTOavkiUcSLy8r6pkPEplgaow2BHA1QbEACkt/ENCsMkD28RzZgEite54mpnsJGkRhMnUgFiWXER7rk8jQaTUiaEFE9PfGUmsG9UeGDdK/n++tCAzVTS3lOV64xgdglkbd1/YyfPHRCoAt+19Udfc5OSqtzj5fzo31SVumAu4gHMGuybpjQbAsAU13p+eYKHVTsh4liRJwAFQQfPYfEId4XdZgW4I8rknvwi91QeKEcE3EgLA6oBdl0gOvQ0gNe8Ick/v2joFuqvcE6dV3EWqSVhO0bZkldHIrVoG2KoDeN9aSSp/QLx35vZxGEvMER6uSpugBge0g4jrsHJ1zXQ2wBdmWBK+pL3L75610X8ALyfzWz313t+9to+nnmRcpikWRuGvpUgVfcjM95qw+iRSSWGmfcFpttLteTDc1stlEFXWyx7rq71peUrrp9u2yF2xVxdAW+wEAU1gLjCOJVOCmkMSarGOJhWv4LE74XFK3ZO1tM6cnUVU3WFcVUiLjOlfdNE9H0E7SSdabgZ73WTa8/2xWC924Ob0E15L9NCGJQje11XHdPljgs/dPAXAZyV4ga8nsKpEKi9N0la2r71TNxOk+iT2nafpamm5qaW+Tq7rJquJEBOJaXgCUeqI4O1JbO/X+J2ES3Hzp0RrO8XRTjSRuq3DBXp4GJclzvo8SpHSsBErdNOwlp63jamkoflG2l3sF3NpAk88U4m9JinW1nUYqoVAkf+9dv5ezipeLtE83pURC2s92tLKvrVv7vs2DpUZ2Tp9EXd/GKnJq28tTXDe0pLho0+uCfWZkjNRfs/uWBjj4XrnJaE2iXd10unRJxsq47uyY6rkdXY9XRVVI4hbv/5tsFyQSSOKgUTpZSxdnVfTf2mSaJkn3G2vf0zS2cUmv/qj/t6bGyftZZBXQ1F0vZc4cGmNQf0kgpWnSb+4t854yzVm3iuv0BYcmL9Wnm9a8I++cw6KlNllrnZZZglUr5W8LEnP8XhskXlvydNOimtfeY13uWmCI5QpJZNUFY4QC4PskNo3fSyzfm68BVkiiMUkixnw+yY6fFnUQ8jlnIZMuSDxaYT9P6fY2VvrV07Aeve+cgy+h6UqQyCBFISlQ47RVl93fwiBRkEQLbTTv1omt/muu4NDBIsVenuDtozXy1OGQrPlbtgwUoSBOCWcB4ZkURMqC/kq7ByvddE4NNhB0Aa7aeaNp8XRbnK7e1X9vLALWAzjIRIkuUwDCWbDpexinf7JIYoJC/DuCtQKouuEYdJhCIDsGxOUVrnnmg0Qm2Ih7pNCBgwvcZ6sCqM5YsI6dvg4dXLqhuA6zjrMer1sCsOlxPSSx5Pr0jambMhL7XuxDEFn/GkXlzPpNwQGuJyYQIbmGA0oX27OHVJ46FGVtpmTu5R5JLIwNyLWS2/PX9ybfr+mmXW2bgUrbOU2XcGN90qbvJYuc6ZpEi3CQfkYtGfk88apxTSP1F5NDBgk4AFTNmTjEq7JCQTa3f1yTLPyXHq0pMY1RddMtXcsaYThvJHGRJVikCd4lBYCAML9V6Vvw6Ne2yTok0RBs6GROXXPnKKBrEm00Yecc7h568ZPbBwu6dcMyS7Eu6+7+M0G6JI6PWnEdS1LyVtuo3nJGiQp0l/A2sHKquqbLey6T3VXiOny7k5Zu2iLA7FqOAQ5WTbuvi9H+rQ2+4Ri7jFX01y0wuppElpUT9waf+Hw95eJLmoB45oNEJtgY1pb4hTIpeJO4LmirDYGUD1ICBXSOuqlFgn6gZMjWMqp2D/K3pkzD9uuqxsIif65osX5DmKYIDPsdTl4Oeeo6dIKl28XOrqW2U8aZg8Qs6QQBLAjFwSLFo1VJI7lit1SQ+Nz1aYW1Mbopm4AApN/Y1Tu055iWkpfnYMrh0skVC5I4V3FXDlppb8OIHcSUTAAo6qYVU9kUJLbIUlGr5urnTTeVWq51V5+4yXJFNQJ45einYXI/nbuYJvUHy7SriWOQS612eVoI3XT73JcOSTQkBGKBKau6qZVuCgTKqUWd09NNqw7JZe6/nPfHK1tNIhCSkpbPtWzPxE7d1JC4llZBW9hZ5bHsnjqraSSx68EpNYkkkhj12GXupQYcgBC4WZFEujevYph1ZwcLAgz8yWmgws+zRRIv4eLavl32Aq0LNkjaUMiQ+NeZ4DJA77yztZgjJR+pa7JKSj1qmaVuL+lnyPlx4UBclzUWBiRRO1sAp0hVxHRTChEJSGJJOteD+iMya9S1ADBSZAAvXe/rX2x009uHC7x7vKaRXLE7h6Hu4i7hXOSabmr4bDq4LMg1ctVNS8kLcmYptq8MCaBe6wzDOC0wVZMOwqgAQVVPUtcDssQjq49rgh7ePylwkE9rvmkFYkD28vOb3+OY3M9FmlxIU/DDRdYhUlTJQZogSxxWZehTuc1IokUAJU7msOP8dwXcN6qbAiE4tPT5E7rpqeH+y/kiSKIlSLx5YK9JXGYpVkVt9EnUfndJ0Z5Npltm8EhiGyQWtiAxTsyzScm6waA0a9M1w7mhg0sSSVT0Vl4pvB+Udm1upnxQ1arpsrbA2NIj62KsCzbYjHxHJazhHEdBLKPMA0u3CyqB89RNmeA3HmcJZHNVf2RCEtX1WLpjLHcv12WyOHPEdfIsBJcskhgQQXTjLPejVPefDfj2FylOCjuSeOdggaJq8KWjlenQ1kgi09x4ob436/r34wRtfqa3KQDBuSqququnYNVNy7rpUH8b/co2rod2ssI1ktzSSGI1nXHVwjVdTeI5rxNNr6OQxGjfYus0n4bJ/bwoxdBDVdPMt2BIWiRx+9VNLXL3uuenpXRAVGlDTSJ/P+5em4ckarrpHhFwSFBi7ckIBOEay3PtA9nKVksd1yRu6TM61+5dC9+xiEZNmaD7Qje1IImdWGNNJhcH/rV/fdOZM4okks+O9BwGgkgaW5P4uMI121pusMm2b5e9QLMEGwB6srmss6WRJYB3ktdKXXOuuqkpuGyCQ8hkkvP2wADCfbHUOxVVTQun6KABCJz1SVXU1HWbgBXJErSGHSf+sG4LYm9l0c6blkBvs9akkqqYOAZF1ZhU2V64MV2HqK3LopV1aO9hQqTqFm1+prcpAMG5sqgLamTPqm4K9BFIU3ubdpy1RlmsrKf3hT7dVBCp8z2AtYPF1CRqBWKAb4vzNEwQpYtC57SYBvt8+1rqCquiwjK7GMTTarInSxsMxrQDak347eVpdw5bkmkffsn39ztuET7Ghkji9PX2FfpunaOsSTmLqTmqIB2w0eu7+v4tXFePYxpJZO//gG5qQMV7as4UmyQKwIjSrPFzY0ZNYkc3JWsSB3PkkMSy9onTXZB4yYxVCQyZPiMFVHGfHydIMQmgKMie4WcHmqriWRPrOE/noaSySa0rXjhFNxvW/zJ00zjzQ80xTXrBZeKmA+e5dF8dJFqEgwB/SAe6KTcG6GePr+/xrVK/9cueww983Sv48W9/k3p/aNvQUNlBsYBItZTkLUQMLtqWPXolV4MXpN1tTlNPkr/btzhKIOCzszTdPcoiA2hRyKnDN0GauL7a4jknE27u591nYkQ7nHNeXEohidvqJLz+3DUAwHvvHFzI9XpIosFxlZpEBsl9GqbnyAbcWpTKimQd5Pb7CADf9qHnAaBD4RmTpuwSWDKf77BNBtxve2JaEn7f+NodvPXqLfzrH3ufaY6+JtT/P/O8yd66bhO1lrP0MpjoB7z16i16zNwWGGnk81rZVDLOv372F6HPKMD7W03DAxVyhnYJV0PP4f4cJ2IHBTBts7r1JuM9xCtooZHm5l1BBzYA16MPkJq4IAcMcE7yIus3gbeKTQCcaqsfh26cVaSim6NhnDhXp2ufbWUcO/l+1kZ0L0uSbsMSH5TZ6zzdNwSXln5vQTiIrD/NAtoQxI1IummbtV5XNrTtdi9I5JHEPE3wCz/wFv3+XpuODkkkrqNquVhxo6tuC/UMhBo87mCz1oSGQzuI5FCCTwqBLOsGBxa6qcoIF1VD7QveIb+4PolJ4nD7IMcXH3HCNTKnsqpNPWifhr1+7xAAcEjS0R7XhLq+MCCCosqcOI7q+DRs2c7RgiT26N1GJOvGvm9LlCaOKgEQe/3eIX7++78C3/Lmc/QY8YPuG9RUBXF/59iOJL716i388p/8Jvr9QGjvFDQIpsfsKVGkq1iTuJen+Gs/+nF86KXr9BgJnKW/JY0kakX/hlM37RKFyucCNp85WRy0kfRPwO/JEvyypRuZOkv9dbmka48VVdW4ZkjKb4tdvhk/QaOzAVGQwgdgDidFvxiXUdvSNYksj3kUyTK1zmhMlEAJpHQvNeYB7YLEtgm2DUlsev9OB4m6BYkNyRXqz+MIB7EBKeCpLpY6CkAaYBdYFbVNtEDVFt44500ra9t0dC0YDM2Ny2pHNxUTh2xVVrRst65jnFOjY+2v2GV3K7twTUw3ZVTghFq2Ljlk9UnYncMFvki2wADCPmm5j0/Dnrvh0YbX2mDxvO3Flrq+ZwgaFm1SwGE7lU0BP69VUeG0qHqU2k2WKeaEtU3KrU7cxXY/nHP4wY/yCB0Qzu63j3zAxyCJ8py8O4NuOseEEls3DRzBAAKCKJKwcrYV7X8c+8bX7pjeL+vp0comOJSlDqsyBFJTqqFAPykJcKVZYz1oAV6/QxBEvnRjnBI7KR6n6o29n7ad+9Yme6aDRLYmUb5YjWSxUrtxD0KKbqeRLDKzNSbRy84RaNU1TZTM8JBaHlA5WE7WPgBgDlIdSMlc9dzPsrEWGFQArJAslkc+tyfaWE0i60h6JLHGqqxMh++da/PopnNMEh4WJ1kLOXgk8eod2lbrI4m25FZRhSCdc5rCs20TsxJ6Md8CYDRIJOimgFDLApJ4EetEqNpsAODry2tTbefTsE+++Rx+/vu/At//Ne+5kOu90AalN/Z5JoMgiQ7bqWwKBLrjaVHjziHvWAOCJNpa/tzat7eJmGs39v2a//yDUwAc5fogppued5DY0U3ttZ2nbTsdhjl01W0Zocbs86ZbYJRVQ6HbY76Tfn3MOiTRKDAo7+mEayoy2IuCUlb1PlP1luvKlszfFnu2g8QZzhYgtSUclSqu22MDh7WiqVrl5wH/8FiFayyBrEYNLOPkYDkpKt+njzg0dG0boGjCFJIodFN+jote4Gbsd9j6urOEa4w1ics8wcnaJpIA9AU4LHTTOZanSVuTaBGukXqDHZIoFtQ8627fmnp2OiSxtNWEaiTXtCfE9RfG/UesqDgauqAGF0U3BYKQwwee4xC3vEXSRWxrW5UTk8SOLD2OiQgWi8gCoQYb4HorPg3by/3ZfVJUtEMYzrcaZV2b+vTdmtEmYq7dbAP6zz9cIU0c9bzt5b5NR4cknvMz6tkFPEspHrcuq0uJ9jxpk/X0wNiDsx+AcS22huqm075yjCSyQRvQBw8EKLL0HAYCM5AVjyuquhPcumx2+Wb8BC1AxmRNoiCJZKY7VcIpFuGIQZ9E4tAIgU0ISi1007puTI5MR8HVKBGDJC5CQTTbp08EIMoqpo5OPdiJKqL2r1lbMJR1TQpw+H+twjUdQmSsGwN8wL0q2yBxptN0/kiid5Itmb4ekrgTrgEQDm1dk8gKbulnlFIpVQewLbgPB6KVph2r1DF00722J9pFBon/9POPAAAfe/0u9X5B0mtDkupZMFFc3CcRWUB64FU4XVcmmupFmnau2dYeuUq4sm0DxHRt53mbBImfe3BK33/nHA7yFO8ceSTxvJ/RZZaiqBocr20OuSCJu5ZL3vLUIXF2JHGR9XtMW/QcykFN4tnPgXNu1L/mkEQ1RxIoGiCJFXee6uSu99Mu39q6fDN+gsYiUsM+fXyWvFvEVuEURW21BG0huPQtIJg5Ai2SaKBEdXWCygFiHtCuCXYh2T422zpscD81T6/A2g8sGSbJHGd3KFxD0k0VtdVC9wX8vTxZV4+VoboQJLGqTTLtogi2KneHtthCHTZdkDiV3IoQcWBebSHA0uRVcMmyLYTuHiGJjHMhPdGkxcRFBIn/8ae/Bt/85j288fw16v156jySbqw3vur28q19AMB3feQFesyetGAoeeXQizaplbx/Upgca8AngNhSFjFBEnWS5bzsxl5AEi33/2CZ4UHbJ/G8kRRxwh+cliZ0dZknOC2rS1s39qTN9+BMu++NrQHut0bjEuyabq3/nTpzdB/yziekhBCDX84mGAeBLAlULNIEiYNqi7Od+9Yme6bpphVZk6gdNIAXk0kTZ4LQxTJVk8iqnaWJz/yEILHmxqlMvsWR7KNt/Gfr6KYtTZKln3gpebmX8r1NP9hB3dRG9wVsh3aMiLC1pLresjEGift5itO2BcD8IPECkMSWj+8cl0hIEofrexnePV6jqhss0su3sT5pC3XRVfe8TaHwY+1VrOqmYmyTYiDQVCnhmu65Ca+VVUMxDKTdgCTULoKW/J0ffgHf+WE+sJGEn4VJ8izYa/cO8b/9+9+GV27v02OWWdqJi2yrcI04gWXdmFp7AOiawJuEa1p0T2i452mCJN4/KfCeW/z3pinF51+T2AaJBk8rL7QAACAASURBVCQXCKyEXVIy2DJPgpItGdx4JDEEbsw+Ln5c186C1I/Q/Q4tZRFjweV0TWJ/jqxYo3MO+5LMN2pHbItdvhk/QQv9xiaCxIjKWRqEayq18Fm1rUXqsG7FJixqZ7qW0dLLEfB9Ek291KSOorI5QHmrJHbSIYn8Z5MAWNQMp5pnZ2mCsu4rsLJ9EoFWuMYoHKT7VFoccu/I9//WlO3lXoX10cqWNQWAv/LHPoo/+NbLuH7OkvfiJEttISt3f3M/xxcergBcDJVq262HJJacIptO5FiEm+YK12glNy/4NP29xTRtf10SSYyEa/ItFDgS+pWVSv4s2Kt3Duj9AAhI4oOTskO1ts32F2HdsmibppLX5Hkj9lIbrH2ppXOep2mRIUsApkWeLkK4BgAenBamxGnHStjVwHe2zJKuJtGCJK7KQOVkhGt0CxgZp18/y3SwZ1HYzxR4wKub9msS5V/mPN1fpDhalygqPnG0TfaMI4kkZDxQN60NUrtK7ZLc/LsahVbtjD1IF2mCQskPc2in/7dPNyUCKS2vbw5uFP+f3JCzVD3YNflgd1Q2vq8NEN1/sj4qCNfYvm/pJbiubHRfIDgh941ZUwD4xBv38Ik37pnGzDEJ7lfG2sJbByFIZLKRV930HiSo7DSS6LoxtSHTqgVo5JG2IPBl7RV3mTUZZ2gBH2Tu5Qx1PcHbR3XnlGyjc+d75dqC9J2NmyCJp0XdoVrbZncPl93PbC/HRVy3ZEj4ffMb9/Cvft0rePnmnm2iM2wvT7HIPJ3Q0qeyhyRegHAN4JFEVoEY8N/VaauTsEtKevNJuFX3MzcmJPOLuqZaYAQRmr4oDIckBqFGZgwQwAOAB4qGLTfCHKZsf5Hi3WMbIrtN9kwHiWxN4pDKySGJWeK6BV83PNUoVwGYR6SoYcjVA8rSVjRN0tQTTfd2MjSuBdpauqJCUXIqhkAfSWRli0Mz8RpS8mSR8l+XNV1/GhBZKaTm6h/lerpNgaUmEYBZ3fQizdeFivwzP8eb+zn++dsnAC5G3n3bLWv3IC+vX2E/TyeTRyEBEdqrWBBBLdpkYReUVYPToqYk8hOVpBIra25fOFhkOFqXOFr7upmLagRvMWF3CHN3J1wz3w4WKd49KdA02Nog8UUVrLGJO003ZZMrYkni8Bd+4C3bJB/DhOFhuf8SJDp3/ki6rkm8rfoBT9lenuDzDwuUNae4/iyY3k95JNF1ZTpNMw3AAEMkka9JVK3ijEiiIIFsz+G45YaMY87F/VwHiZdvbV2+GT9BY2sSAZ/ts1I5NRxeN40haFABmAmBDKqodW2jVpb1vEDKI4nemWQRz/2FlzK38P+llYJcU899ao79AJi4Vg8l5e9/4oJAkaW2JM/svQSBfp+qbc1QZW0hu5XGc2t/saObKnPOdXuQRbgjVpdllpZWcqsNLAFdA3laVJRjIc9Wj25Kqkdf28twtCpxtCqRJm4rD+BFlvgazS3vk3gZ7N61ZXdGiWDLtpm09gBAK4DKuj1e+7ZQFpTuou3F9vO9RraAAYKSraXcYK7NUZeVcQ87cZ3tvf8XaVqvwFKTuK5qFXxZkERe3RSIaxJ5X14z/Niewx3goEAAgPt8+3natYDZqZteMmMRKSBSbTIEibXKjrDBxkIFYDWpbgqIAmjIdHDtBkQ4xRhI9UQxbBny/TzFccvR5pHE0AKj46xPKlIF2ty8mkRbTWgsVMQGe4sWJQ2yynzdntg2OshAKy4iQaIFSTzIcdKKMeyCRG/SAuBkzaF0QEhAWFRKs5Hnhmqd0e5bpy0Czzi7cSNloFU3Jfbka8sMD09LHK0qHC6mkdWnYXkrQrYTrnl8u3c9IEM3thRJvLGn0RdSubtVQHxwYlOSfBomgjWv3+ODRBEn2jf0xJxruuWAJdjbyxM8OG17Oe7OGwD9tcz6F3nqdRLEV+b6JPq/HVNHp/ygUXVT0ueNW1lM+aGh5UYfgWT28708xf1jXzN8GRMQz/TTEHq3MSIJM5BEpwprDcGeDsBYkRwgiCQ0ja9lpFpnSK2TbsFgqj9qTCgp4B8aORDZzIpugVGQWaoO7azrWeqmgu4xDqv8bS1URNOL0wTrssGq9EER61zcPgxO07ZmqA4XGU7WpT1IVE7gTt3UWx9J5A9taw9OXaRv6+8a6oEAbh13NO0e3ZTrr3VtmWFV1rh/UuDaFlJNgcDu2AnXPL49dy2gdNtKN9WJCiuSdd/YuPxpmNBpLfdfAsvzVtIG+nuOtU+i7Fu7INGbtMdapAntu8q9O1l7X+ax+iROnDm5amVh2V99cBmCPZYGnUXMQHltyg4WKd45vrxraztP1gsya/ZB9y7k1E2TzslqjEED4NE9GyXTtaiB/39b4/KAPFJog4zr2kTYNuTPPzwFAFpdM9fSypWom04IDvVaWfjXOOGatiaxDdItgkOSQWPVTYEQ3IsAB+tc3FFB4jaKdgC+ruFoZaMWA0HaHbicG+t52DJr+8StebqpoNQmddOulrdBlhja2yyCkBLAISJxPQogqnjT15Oamc89OMXBlgaJWVuTuOuT+Pj23PUgCrOtQSLg23v8sy8emVDjRRaQrG3tAQkAf+Y73oRzwPd91cv0GOmJeX15/t/ZjX07+gX4ey5b0HJLz9KLNgnqLckO8UOOJEi09OruqJzcWdVTNzUIs+WtmFjTNJ7NRvquWeJCTaKB9bW/SDtW1DYngM6yyzfjJ2gCHTOQuK5J5Nsi9HnWlho1ADgpKlR1Q0PUIu5SWmotew23Zd4GtK2t97P4Pjf2cvzuu16U5BqZXfQPtgjXsEiiQgQ7J5m4lupdaAn2tLJXRdaE+uu5fpBIbiR3DjSSuJ2OxeHSyz+baxIPdkFibIs2SDxphWsY6xJHFnXTNNB/LDRtmdPbrRw/sybl7/bVTWvq4L6ugsRtFK0BQpC+o5s+vt27Fva7WwZRkou2H/u2NwDA1Kaj325gO/dywN/3n/mDHzFRR1+9cwAA+K6PvHhe0+pM33MLtU+fudvKyrlo64JEw32Us/q4FRMzIYlSX0i3D0u6oK0LEpn+uu3z5Vs1caUNMs8YSWTmORfd3hbbzpP1gqwwZAO0umZdN9RGosdYggapSXy08g+aRdxlXQWxCVMz9yr0JmOmuVCBlKVuDwDuHi5wWvhJstlF3QKjCxINrUssTrIWDvL93ngkUa8RWpVW2kQUFZzjUcHrM2oGLtoOFhmOV3ZpcY0U7FpgeFu0SPVpUdFBkawtE91UqQIv64QeJ4fhO239BePsxv1FAdAUb7kHn3+w6qlKbpN54SBbe6GdjZtWq3zxxnZ+3wDwqa97BV/93lumur1+4/Lt3Mvn2mv3DvF3/71P4v13+fsx155IL8cdkggg0E0bVQowZeI7nRiQxEGfRJK9pWmjFiRRnq/TsjKVc2VtvaXMUeYwZboFzGWsSXymg0RLTeIi7QvXHDBjMl8gW7X99ixBAwAcSZBIDly0lFiLHLBca102WGYWtCFkfywoKdCvpaORxDTBw8Lfj1BsvPmauv9UbUBE+sqttiCx66VpQY7b4F5aWbACHJqOsa2OxeEixbqqcbQucffacnpAazf3FUq6pZ/tom2Z+15eJ0WNO4cGtbmyMa3/UJPY0G2CgPA9idw3o+4Y9xcFWiSR2PNk73i4KnFo6Il2keZFEuzKxTsbWpI4/OpPfBJ3DhcXIoLyOPaB566Z3r9Ik05dc5uRxLn2uvF+zLXDRdppA1jOjduHO+ZKbJKEFp+GMfFVj9sgkUnwxnTTiiw3yFKnhBrt59SqqOmzRuY5CEoZuqlGEi8hSn35ZvwEzVSTmHlHHhCl0um/L1mDdRukWGsSBUlkF1aetSIJhsaiuQ72jDWaAFrk0hYk3lEbMlvMLs4WEJDEqYe7QxJ1ewnTZ/MBMFtvuVB1k7VV3XRGI2Vt25qhklqxd4+L2XTTba4/uki7sZfh0ar0fRJJJ1mQRAHqmKWs5b7ZxsaAF+3Yz1MTkpi0/R8l8QOAzu5eW4a/v610U0kcWVqJ7Oxse+P5a71a7KtiyywIp1xGR3JbzDnX+RSWYFuj1Lsg0ZsgiVJmxVge0U2pPolpP0hk9/9MCwUafFfxlVZlRde/A77kSc4pCZwZn2b/ktNNL9+Mn6BZahKXaYJ1qz7pW2BwiqhAK5zyGEEi61xLL8GgDsVfS8vkm4JLo7gL0N+QWbpprummkjWaQhKj2kKA3ETygECWRlXaTgHXVIMqNYmVeRP5o594P4AgM75tJo78O8dr02fTgeGLN7fzs1203djLcf+k8EEi6UgKA4KlaAPo6gErTVOle6CmuH9sq63K0qRTLAZEuIZRNw1r5HC5nUmSvM127/ok7myTLfMED1e7Pn1PwoRVYDlvLoMI3EXbay09+Ac/+j56zABJNJQ3hHYWNbX/Z6q8xwL4aP+uqGsaBEiVmqqAAUxC4bqqk7XUKW+LbWf69YLMUpO4yJJOoagmMx2B7liZ0DZZxFZJZlFgDUW8hEMojeONlLRecGkIpADgrhIgYJHETAVg0i9xStxCI4mdKI9BgON0XdHfNeBrSddKAdeiivrotMSqqM1Z5J/9lz+Cn/yuL9vaFgBS63G8rmzqpgpJ3NbPdtF2Yz/Hg5MSZV3TAVieOayKGqu2BphqcJ+GQ9vauqGPJJL7lsrQAr5lDZO4047dNiOJvgcqH6Tv7NkzHZhsc5/Ey2ASHFqCbX3ebKsI3EXbV75yE//wZ39/L8iZsmXWDxKZYC+N+iSWFedz5anrtC0sNd+yLk4LjySymgdZEvorsmw2AHjpVqiffmGLa6nPsmd6N7LUJOYqACjqmlNRUjVxVcM7WpIJe6drwMkGiVFPLmO7B2EVmFpgtFlyU03igd25045k94BO3Jd+Cww/lonbxAE/LaoWNSaDxKwvXGNDIJvZdNNtDqI0wmPJ0LLqnc+S3dzP8eCkwMnaom6adCg1wKF7knwpjXRTwCe43pmBJEoQVdUNmobbk3VLhDcuqObJalKXLk7TZaQb7ez8TQcmV7Em8SJNHHlLwnWHJI6bJUAEHk+4plQoHRN8ZYk6NwyAj0YSTwu+nZTugx2CxOnrSQsY4HJSmS/fjJ+gWSBqHQCsy5rqpRMLp7CMTFFDEmfL2gLDQm3SLTBC3Z59nIVu+ppSfTOhpF0LDK5IeVTdlKxJTBOH07JCVdez+iRWDX9PFi2V+bSw00233XqqcYbPxor3PEt2Yz/Dum2VQiOJbQJCMq7M+grNjW2JI6Af3O/R+5brKORse5vYPvb6XdP7L8rCXs63BdnZs2f6udwFiY9n3/LBewCAb3ztDj1mV5P4ZEzu3VHXAsMiXBMa3DP7fz4iXMMhiUG4RsQCGctUG7a1AUl8z63LXS6zvRDEBVhlyAboAICV89cFsrUhkDrsxD68Y2ELpBoVEDEIaQj2GgNkn8VBogFJvHWw6BoOs5alQRQmqJtu/nxagMZCNwW8MuPJut1EWNpcmnSKtFXNoy8HixTH68rk/F8WO5wZJALAp7/hVbz5wvUnPaVLa7pOk10niwhJZBJOOrNr6S8KREGi4bkpyn5tCUsB+k//ta/Br/yjz3a92LbN9hdBuAnYIYk7Gze9N+7WyOPZn/u+D+OnvvfDprNUv1czFHZmM9m3O7opI1wT1ySSdFNP/2yZWw3PCpTvelVWXgdiDpJYcj4oANwzqLpvoz3TQaIVSVyrLAIVJOYBybLQFoWiJ02pbX0Sa/W5uDEAeuIKTE1iT5THGCQCwN/58W/uJL8ZW2ZaOKiGc9PfWywcBHB0U8ALcJy26B6LiCyUAm7d8C1Pru/leHhazhKu2XbTtR7WIPHPf+qrnvR0LrXpone2dYwwIFZljcRxwZdWHLX0FwXQU11lD98sdcpBsNXufd9XvYzv+6qXqfc+DTuIekdeted7Z0/G9Blz1RKFF21zhX9++U9+E24fLHZq2o9hcsaLuumcFhhlzbWl0L2zLT6vLgM7LWqTLoZmvKSJo/zeNHH46Gt38G0fep66zrbZLkiEvU/iuqwp3rpQUldl7SmqpIOwSBNkiTNnnxepayli9p6Aum6PFa7JEoeTojK19xDby1PTYbjMEqzKEKQzm0hPuKZukDiexrjMfE+606KmERGhjQI24ZrrbWuD43WF569frUfyxZt7cA5oml2tx+Oadl5eILPdyyzByVqozCm9/rPU19JZ9kig7+CytbJ5MqSSs0jitpsk/Lq9fBcA7GzEXroZBC2Y/qI7e/L21qu3nvYULr3F6qYUK01q4BVTjC0LElVsC3tOC9esyhrPsaUbieuSmL6/In9G/dKPfpx+77bZM70bdcI1xJfdQxJZumneDxJZJMU5h4NFOgtJLKrGBL075zrBG0ubCMBTy07W85BEqy3zFKvSU2LLqqGklbVwTW0U19nLE6wKW2Gz5shbhGskk/X20frKyZ/naQLpk37v2tXrb3aRputmWJW0a0ufgLDQpgFPASqrUMvL0k3lWZGm1tS1ehlhqUm8GkfT/kwRsp09WyYtjNLEXZm1v7NnzzokcdW2wGDUTaM+iUXNtUDKkhEk0cCCW5U1VgYdiMUMoOIq2LPxKc8wWWCcCqivm6nb7LqlJnFd1jRFVexwmXWOBd0nsQ1ku89FXi5vUYPaKFKxt0hxYlQAnWt7undhxfXR6dp7tGI+FjGUvTzF8bo01QlqcSOLcI3QCL/4aHWlGyl/7ftuP+0pXGp7/71Qd8cGidf3chyvKxyteNo00B7AuucqnTjy65elwwJ9UaqSFKW6LDYUIbu6z/fO5tsrt/2zvVsfO7vMJuUGD079fjdH3bSsaq6/otKpENEbquuA8iUt/p0veQpI4rPCjHo2PuUZVta+TodBfARJFDSRCfh0n0SWoip2sEi7B4ClKIm4joU22htnrNvzaFtlRunmmKYIrEmJ5B6SaFRg3c9T3D+xSfn31E0NgbMgiUXVXEkn4YMv+PYEH3rxxlOeyeU2LUfOorKytr50ZEtAeLqpfS+RBveWtixxrQfAZaAvg4mQz7sdkni1mAI7ezL2cttLbaesubPLbNfb/V/o9QybTc6WTt20amh1U2GerA1lCp1wTWFTlF/oILHkfNCrYFerAMpoZd3QtTZC5ZSm1FRNopLatdBNgb6TxQaXgrZJ0TArIy+ZfEubCKClmxaVuQXGHIuRRE6RNtRb1oY+lf56KX7v3ZPetaevFyjJdWOhm6pGvlfQifyrP/wxfPHR+twTCc+SsZS0G20d4xcerkwJiKxVcrPuCXfb4NVygOpaj9JQAnAZTLfAcKRw0M6ePXv1zgG+4f238ae//c2nPZWd7Wy27eW+fZgk2DmV0qhPYl3jWj4dmvg+iX3BM5NfXtam3tSLLO38u6KqkWfPxl7+TAeJVc1lLICwsKT/iwVJFARyYQgA5vSXEyU9UQ1lingBL3jT769oCxJLEtl7HNtTSGJJfm/OOc8jr3xgaa1JfNeIJC413dQoXCN2aEBgLovdvbbE3UsuA70t9jf+xCe65AVjsra++GhFU1QBH+StFLuAXct326bUknFlTNckdn0S2SLILTfZx989KrDMkl3/z52NWp4m+Ov/ziee9jR2trPHMuccDhdpVyrF+GlJ4uBcEJ9hWViipQHo/ro8w2xV+BYYNmHCXU3iM2VFZWmU7t/3qO2Dx2UsAqxtpZuKKp7/O9w44YN3wQ0reJP1+yuy1LJlnnrlxLLqMubnZUKVOy1qn8WhA2D/YHvuOX//l3naUcRMSGIrrlM3fJ9EHSS+cGMXTO3sbPva9942tXyQtWVFEkW4KQjXcGv5ThskrgxBolapK6+YuqnsyQ9X5ZVkCexsZzvbmTapgwd4RkmWOFVywDH8dOukwlDL7pzDMktwvK7aEh9ec2K1q0k8H3POLZ1zf9E59zvOuYfOud9wzv2B9nfvd841zrlH6r8/F439r51zD5xzn3XO/UT0t7/dOfdbzrlj59yvOefeNzWff/yZB3hwWvi2FIYsAqCCREq4pg9rW+imdw9DsMAuxtC4ua1/sdTSqYbzLOC2n/s2ESfrCnvnHCQKkrgqq1Z+mOeRS584y/3fz9Pufuwb7mPdhA2LTUDcUqqVLxrQnp3tbMpEFKlubFTmZZZiVVZegMmAwAvd1BwkdnTTq6VuqpNnV7HeeGc729nOtOlSKXbPE2FIAHQ5UZYkqOoGTdOYa9n3F2knJsaCAL4Nmw9+iwtgz22LXRS3LQPwzwF8EsD/B+B7APw159xXqvfcappmrLv6zwJ4E8D7ALwI4Necc/930zS/4py7B+BvAPhjAP42gJ8D8EsAPrZpMmXd4HRdmfjIopR5ZAgSO7ppWWNdVlgYsuNvtmIfAJ/F35/ZuDlLHAoleGOhm362qHGyruhAaq4J5fO0qOnCZiAgiWvDd+2vF+4dG2zL931aSo8g7lq3VcP5F27ugsSdPTnTKLUVSTwtarNy8Z02uSX9QhnTUuZdn8QrUr+ap0nXGucqKxfvbGc72xnQV7ame+X2EoVcCwwJJIvKt0VLHO+73tzP8fmHpwD4czFWN70qbJcpu5BTq2mao6ZpfrZpmt9umqZumuZ/BPDPAHwdMfyHAPxc0zTvNE3zjwH8lwD+aPu7fwXAbzZN89ebpjmFDyjfcs59aOqPHndBog1JPDLQTbPEIXFtn0RjC4wPvnAdAHDDICUfgkRbLZ2gbdInkQ1K9/IEJ0WFk+L8g8RAN62wJltgAEGRalXyKlZAHz1kWwfIpnFaeAeZvY+6TslSN7aznU2ZFkVi9wN572lRmVWBhW7Krn3gjBYYVyhLK47Sjm66s53t7Kqb7Hf7eWrz07QoDNkCA/Dsk6K21Qje3M/x+QcrADY/eV35cqJ1uatJPFdzzr0A4IMAflO9/DvOuX/hnPtvWoQQzrnbAF4C8PfV+/4+gI+0P39E/65pmiMA/1T9Xl/zR5xzv+6c+3UAOCkqrIqKDtzkfSIKw4xzzmE/T3G8rszqpl/2og8Sf+DrX6XHdDWJRiRx0dJNOySRdAr32z6JJ0XVXfu8LNBNa6yKuuvHNjmuRUSsdNOb+9q5tq2R03Xbs8fgXH/guUMAwPPXdzWJO3tydnM/77KrliTJMktwWlaoapsq8I29DD/6ydfxl//tj9JjerUlHd306mRpdz3wdraznT0rJkHidQPA4RlfolTKMcWk/rCoGnNLih6SaCg5axqPdBZG0Ocy24VLKTrncgD/A4D/rmma33LOXQPwDQB+A8BdAP9Z+/vvAiCcy/vqT9wHcL39+RqAL0SX0L/vrGmaXwTwiwCwfOnN5qSobI3SYySRXCDX93K8e7JG3QCLlA+kXrixh1/7yW/Fe+8cTL+5tQ5JPLI1bl6KSEVXk8giiSmOVyVOC/4+zrU9hSQeFyWev84hbofLDEfr0oQaA/0gkQ2AZY2cFEI35R3dX/rRj+OffPbhM5Od2tnFWJo4vHB9id+7f2qqG97L03ZPaOgaZcAnxv7sH/hy0xz79ShCN706z8H77x3iH/7u/V2QuLOd7ezK26wgUSGJvsSBoZu2SGJVo6xt9M+b+3lg3BmEawBfPrarSTwnc84lAP57AGsAPwYATdM8AvDr7Vs+55z7MQCfcc5dB/Coff0GgFP188P250ft/2vTvz/TTta2RpqyIES4hh13Yz/DFx95ZM+aeXjt3qHp/bonF8DX0u1lvnF8oJty19vPUxy1Klbnrm6qWmAcG2ogDxcZjlYlqga4pQK/KbuhkURyE5FAWdqksME2ANy7tsS9N3Yo4s6evEmS432GhNNenrZIoq0mcY7laVC2K6urhyS+/66/77s+oTvb2c6uut3YlyCR97cWOlFIBnxyRgiyZylR0CAAjST2gsRdTeITN+cLr/4igBcAfKppmuKMt7Z4FpKmad4B8BkAb6nfv4VAU/1N/Tvn3CGAD6BPYx21E6lJNIqSPFr5oIhFBa/v5fjSo1Xvb5yXiTN439gCY9lSMq10U40enr9wTVCKPV3z9NaDhaf7WqjFQEw3tQWJxys7kriznZ2XiRz5G89fm3hnsGXW7glGddM55psit/Uo9dVqgQEAb7b15ayIw852trOdXVZ76eY+gKBUzVieuYAkki0whG1SVC2yZzintH+n1eU3mfiPojGyQxKfvP3nAL4cwHc0TdN1g3bOfRTAuwD+XwC3AfwnAP7XpmmEYvqXAPxUW0v4AoAfBvBvtr/7mwB+wTn3KQD/E4CfBvAPmqb5ranJCN3UjiT6AIwNOG7sZfjdd05MY+bavkIS08TRmZW9Vu5+XdamcT1K5rkL1ygkseD7MgrdNE8TE91Lbxz3rnGbiNx/QZst4h0729l5maxHS5Do6aYVquoCgsQ0qJt2SOIVopt+z1e8iOd/5GOdGNnOdraznV1Ve+W2DxLfPT4LBxqablTPonQdklh5JDGfCQI8d41jcEk5kSCJuz6JT9Da3oU/CuCrAXxW9UP8QQCvA/gVeIroPwKwAvBH1PCfgRej+R0Afw/ALzRN8ysA0DTNFwB8CsDPA3gHwEcBfJqZk0cSebqpBHhHgiQaahK/dOSRxOU5L6p91Sbi/2/vzoMkuasDj39fX3P03DPSwOhcSUggtCABkkBrc6wEmCtYEAiEECAsc8hgBwEGggUB5jCLN/AuYQ6DZS0IcZrDBmyFIYwIbwBhZHMYeWVAIHGIEbpmpkfTPdPH2z8yK7vU9MxU9XRVdlV9PxEV012VWfW6pjt/9fK9/P3amqRidLic3GW2rV/8bU1/XJ1eJ7F5zcl2ltxYOzbMvv2z7J9ubwmM5oNI68n2fVuSW1nYVeq0v3j+wzn/gUdXE6i0YtXoEFMzc0zNzHb8euPR4aFqwpr52U37529nZHiIR560tZr5VZL6VWOc2TPZepLYWKsbGktgtDe7aVF9bH3M2NS07NhRLU4W2ChUs0uoiQAAGwxJREFUHJidbXuinF7WlUpiZt4KHOp/8BOH2Hc/8OLyttjjXwUOu+TFQsXspq0nDo3kqTG7aavtUOtXj1Rrf3W6kjg6PFSsOTaX7c9k2KistrGWV3OFreOVxJHiZ9szNc3+mbmW200blcSIWHK7aasWtvs6UYVWgvNO2cZ5p2xra5/VI8McKE/ItHpN7lI11hGE+dlNB2UAlqR+ckxZSZzYv9iy54sbGxliYmqGzGR2rtV20/nZTdtt/zx+y/x8H+1OXlm1m470z4nMQxnYiySKdtPZtpc3mJhqbw3C5glQujFl7tqxYfZMzbS9Jtr+6caC820kiU1nYDo9cU1EsKFpbZuW203HRpianmM4Ztr62dpZn7KhkSjvLicO6nQFRuqUxsmi3ZPTLR8jl2pkaIjZuSQz5yuJVuElqedsXDPKxeccx9MesqPlfVaNDHH37Fy1FFIrx/+qkjibzLSZJJ6+Y+F8l63FCEW76dR050+erhQDmyQWk5m0XklsVA7vLCeh2dDizE3N0wB3o4d5y/gYe6baS4hWjxal/n0HZttqybxPu2kXEqINq0e4fU8xyW3Ls5uuasw4OttWlXRkeIg/euJp/FYbFZjGe7DLSqJ6XGMA3D05fZ8TXZ3QOLZOl9eWQOst3pKkleVPnvmQtrYfLa9JnL/c4PDH/0ZL6vRckVy2uwRGu5onrunG2uArxUAmiUMRbbdXNhKAnbunWDs23MbENd2tJG5bt4pb7trXVrLX2HZiarqtGJurbd2YuW/DmlF2NpLEsdZeb23Tdu1eE/r7jzulre0bvyON9Xfa+T+QVpLG7/LuyemWr9lYqvtcW9KHs5tKkg6usU7i/OUGhz/+N2Y3nZlNDsy0twQGwNWXnc3aNoob1QoHUzNkDk6n2EAmiRHF5CIHZltvr2xMOnDvgVnuv7G1hdwBdmya37adxUWXqlHda6dq1mgna7cCGRE86qStbFgzwqnbW585cak2rB7lJ3fcC7TRbrpqfrtWlztZqsaZpV3VOpVWQ9SbGseBXfumuzJxDcD0TPbl7KaSpIMbLddJbOdyg/nZTYuTi+1eFvG4045ua/tqTJxs75KzXjeQSeJQBLvbrPasHh1m3aoR9u6faatUfXzTAtYnbet8IrVtfZHMttMv3Vw1aPdavE+85JFtbX8kNqwZqWYObX1206ZKYocruY3ZTfdU61QOxkFE/adxTJic7vzspvMzF89WE9h4TaIkDYZGJXGmjcsNmme8n56d63gRZrzslru7XK2g09fqrxSD8VMuMBzBHeW1he0kDlvL2TzbuUanedr5jWs7e20PzFcS2zkR33gPdk+2127abc2tu632g29tmoG100niyPAQY8ND89ckDshBRP2nuQK/usN/N42ugH0HZpmZm2MoXGNUkgZFY53E6TYuN2h8BpycLk4udrr7pHFJ1V17i06xTs/ov1IM5KfY4aGoJkBp54P81rLldFMbSWK3S9KNM/CntbFwcyPGPZPTK/o6uubkvNVrIJsrud1IgFePDlWLyDpxjXrV+qYTMp0+hjUG230HZov1rpy0RpIGRqOSeGBmrvr+cBrjxuSB2WJx+w4vSdE4mdkoMA1KkjiQ7abDQ8GvdhdJYjstgVvGiypduzMjveMZZ7B1vLOTPzT8t7OO4Ve7p3jt77S+dGSjbL6/zSUwuq25Ffbko1pr3d3atID10etbv5Z0qVaPDvPrif3V11Iv2rhm/m+t020182eEZ5iezWr9K0lS/2tUEqskcfjwn50aSdrUzCwzs3MdrySOj923kjgon+8GMkkcGY7ql3HzeOsJXyPhaDdJvOTcE9ra/kgcu3kt73jGf25rn+bqYacndzkSxzVVBVttN42Y/8B59n/asuwxLdQc10pOuKVD6WYlsXHdcKPddNS/G0kaGKPDQ8xl0ToKrVUSV481VxKzrXUSl2JoKFg7Nlwtg2eS2MeGm85Ut1Phu+D07fzs7n089aGtLxLaC5orBd1Yy3GpnnD6/QA4adt4W/td9Ihj+emd93ZlmY7mFoSV3LorHUrzJACdTxLnB/tBWqRYkjSfFN5bTkzYTrvp1HTRbtqNZZPGV400VRJX7mfl5TTwSeK2NtYAe/zp23n86ds7EVKt7jMD6Ar+xV8zNsw/vOrRbVdy3/2sh3Yoot/UHJuVRPWq+57s6Fa7aXtr10qSel8jKZyYKpLEltZJHB5iZCiYnJ5lZi6rJTE6ad2qEX5+9z6g9W62XjeQSeJIBLPl183XrA2qLePdmwH0SJ3axoQ8ddi8tngvx4aHnKFRPau5TbtblcR9B2bZPz1nJVGSBshYmeA1Komtfg5dPTrM5IE5pmfmOt5uCsWs3zPlDKyDMk6t7IygQ4aHu/cBqBdsalqaYyUvgdELNpcJ90pPtqVWdXN206mZWSuJkjRAGpfmTEwVM8O3MnENlEli2YHSjc+u401dd4NSSRzI0bi5vVLFH+h4+QvvdXRHZks5EZLJtvrFeIcHw6rd9MCMlURJGjCNMWD3ZOvXJBb7DTExNc2B2TnWdeFzffO8FoMyTg3kJ9mRoeCZDzuGi885ru5QVozx8pffCtiRabSbHpidqzkS6chc8KDi+utHn3pUR19nbHiI4aEo2k2tJErSQGl0k+yaLCaFaTlJHB3m7nuLfdZ2YWLCdat7Y/6O5TSwJbX3XHRm3SGsKFn+240ZQPtZI0mcPDB7mC2lle39lzyMucyOt5tGBGtHh4t20+k5towPxuArSZq/Ln33vrLdtI0ksTHbaKc7XgCO2bQGKD4nD0pBxYxAANxRLgD/8BM21xxJb2tUZI9vWtNR6kXdbJleMzbMZFVJHIw2HklSc7tp45rE1ieu+eWuSaA7lcRTjl4HFB13zZO79bPBSIV1WI1f/tPvv6HmSHrb2Sdu5oIHHc1HXnxO3aFIPWN81Qj3HphhanpuYM7QSpLmk8RdbSaJa8aGubOLlcTG5+RBmrneSqIA+NRLHsnE1MxA/fJ3wtZ1q/jLF55ddxhST9mweoQ9UzPsn5lzxmlJGiBrR4tUpKokttFuWj1HFyauaSSJr378qR1/rZXCJFFAkdxsXbeq7jAkDaANa0bZPTldtJtaSZSkgVFVEtu8JrF5+bbxVZ0/ubh2bIRb3vWUjr/OSuJoLEmq1cY1o+yZnGb/9JzL8EjSAGkkiXsmpxkeCoZb7GhrTBQILm3XKSaJkqRabVwzyj37DnBgdo7VAzK1uCRpvm30wOxcy9cjAmwZn08Su1FJHESOxpKkWm1cM1q1GllJlKTBMTwUVYtpO7NqW0nsPJNESVKtNq6Zv7bEaxIlabA01kpsJ0ncsq45SfTkYic4GkuSatWcJDq7qSQNlrXlcb+tdtOmSuJoG/updb6rkqRaWUmUpMG1egmVxEa76fYNzszfKTbxSpJqdXTTIH//jatrjESS1G1bx8f4yR33tnWS8NjNa3jlfz2Fix5xXAcjG2wmiZKkWp20bV319QnbxmuMRJLUbffbuAa4h/u1cZJwaCh49RNO61xQst1UklSvzU1Tmd9/g5VESRokO8rk8NjNa2qORM1MEiVJK8ZQiwspS5L6Q2MJi3WrRg+zpbrJdlNJUu0+d8V5TE3P1h2GJKkm7Uxco84zSZQk1e5hx2+uOwRJUg0ufdQJ/PD2CS4778S6Q1ETk0RJkiRJtdgyPsb7LnlY3WFoAeu6kiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKkSmVl3DF0XERPAfyxh143A7hW+nzHWu18vxLjU/Yyx3v16Ical7tcLMS51v23AnV16raXu1wvv41L364UYl7qfMda7Xy/EuNT9eiHGpe5njPd1WmauX/SRzBy4G3DDEvf70Erfzxj92Qb5Z+uFGP3ZejPGI/jZVvx40wvvoz+bMa60/XohRn82Y2xhn4OOUbabtueLPbCfMda7Xy/EuNT9jLHe/XohxqXu1wsxHsl+3Xwt3//6Xqvb+xljvfv1QoxL3a8XYlzqfsbYokFtN70hMx9RdxySpP7meCNJWqkONUYNaiXxQ3UHIEkaCI43kqSV6qBj1EBWEiVJkiRJixvUSmJHRMSWiPh8RNwbEbdGxPPK+x8XEf8WEbsi4q5ym2PqjrffRMQrIuKGiNgfEf9nwWPnR8RNEbEvIr4WESfUFGbfOtj7HxGXRMTeptu+iMiIeHiN4faViFgVEVeVx52JiPhuRDxpke2uLN/7C+qIU+qUg42/5WOvjIifRsSe8hj1W3XG2o8Ocfw/sTzmNI8Bb6ox1L50qDEgIh4ZEV+JiLsj4o6I+ExE3L/umPvJ4cbgiLg8In5c/v5fFxE76oy3VSaJy+t9wAFgO3AJ8IGIeDDw78ATM3MTsAP4EfCB2qLsX7cBbwf+qvnOiNgGfA54E7AFuAH4VNej63+Lvv+ZeW1mrmvcgCuAnwD/WkOM/WoE+DnwGIopsN8IfDoiTmxsEBEnA88GflVDfFKnLTr+RsS5wLuAZ1H8bVwFfD4ihmuLtD8tevxvsqlpHHhbF+MaFIcaAzZTtBSeCJwATABX1xFkHzvo+x8RjwXeCTyd4jPoT4FP1BRnW2w3XSYRMQ7cA5yRmT8s77sG+GVmvr5pu1XAW4CnZ+bpdcTa7yLi7cCxmfmi8vuXAC/KzPPK78cp1i07KzNvqi3QPrXw/V/k8a8B12fmW7sa2ICJiO8Db83Mz5bfXwe8F3g/cHlmfrXO+KTlcqjxF/gO8OrMPKdp273Ajsz0hMkyW2T8PZHiQ/FoZs7UF9ngWTgGNN3/MODrebC18bQsGu8/8ChgTWb+fnn/Dopj0ymZeXONIR6WlcTlcyow0xigSt8DHgwQEcdHxC5gEngN8O7uhziwHkzxfwFAZt4L3Fzery4q23wfDXy07lj6WURspzgm3Vh+/2xgf2b+Xa2BSZ1xqPH374HhiDi3rB6+GPgusLP7YQ60WyPiFxFxddndow5aOAYs8OiD3K9lssj7H80Pl/+e0dWglmCk7gD6yDpgz4L7dgPrATLzZ8CmiNgC/B5gBat71gF3LLiv+r9RV70A+KfM/GndgfSriBgFrgU+kpk3RcR6ilaXx9cbmdQxhxp/J4DPAv+X4sPZLuBJaRtVt9wJnE2RmG+laAu+FnhinUH1s4VjwILHHgJcSdH6qA5YZAy+DvhkRHyQ4nKzK4EE1tYYZkusJC6fvcCGBfdtoBigKpl5N/AR4G8iwiS9O1r6v1FXvIDi918dEBFDwDUU12a9orz7LcA1mXlLTWFJnXaoY/zvApdRVBXHgOcDX+qViSN6XWbuzcwbMnMmM2+nOC49oTx5pWV2kDGg8dgpFJX1P8zMf6ohvL632PtfXtrxZoqTVbeUtwngF7UE2QaTxOXzQ2AkIh7QdN9DWbykPwIczW8OauqMGyn+L4DqmpSTsd2iqyLiv1BM3PTXdcfSjyIiKCbl2A5cmJnT5UPnA38QETsjYidwHMUF9a+rKVRpuR1q/D0T+FJm/jAz5zLzOorJm86rIU4VFRTw8+eyO8QY0LjU46vA2zLzmppC7GuHev8z832Z+YDM3E6RLI4AP6gn0tb5R7pMyuvcPgf8cUSMlx+Inw5cExHPjIjTImIoIo4C3gN8p6wqaplExEhErAaGKa5BWV1Waz8PnBERF5aPXwl830lrltch3v+GFwKfzUwruJ3xAeBBwNMyc7Lp/vMprn04s7zdBryUou1L6nmHGn+BbwNPiYiTovB4imuFVvwHtF5ysON/eS1o4/PPVorJs67PzN31RtyXFh0Dolhy7R+BP8/MD9YV3AA42Pu/OiLOKI8/x1PMNPu/M/OeugJtlUni8roCWAP8mmJ625dn5o3AMcB1FOXlfwPmgGfUFWQfeyPFxECvp2gpmgTemJl3ABcC76CYAe9c4Ll1BdnHFn3/oThIAhdhq2lHlGeJX0qRBO6M+fXILsnMuzJzZ+MGzAL3ZObeWoOWltfBxt+PAp8Erqe4bvG9wEs9SbjsDnb8P4n5zz8/APYDF9cUY9861BgAXE7x//CWpvs9/i+jw7z/q4GPU7TF/zPwTYol2VY8l8CQJEmSJFWsJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpEpfJYkRcUtE/Doixpvuuzwirq8xLElSnynHm8mImIiIXRHxjYh4WUT01bgqSRpM/TiYDQN/WHcQkqS+97TMXA+cALwLeB1wVb0hSZJ05PoxSfxT4DURsWnhAxFxXkR8OyJ2l/+eV97/nIi4YcG2r4qIv+1SzJKkHpWZuzPzb4HnAC+MiDMiYlVE/M+I+FlE3B4RH4yINY19IuLpEfHdiNgTETdHxO/U9xNIknRf/Zgk3gBcD7ym+c6I2AJ8GXgvsBV4D/DliNgKfBE4LSIe0LTL84CPdyNgSVLvy8x/Bn4B/DZFZfFU4EzgFOAY4EqAiDgH+CjwR8Am4NHALd2PWJKkxfVjkgjFQPzKiDiq6b6nAD/KzGsycyYzPwHcRNEutA/4G+BigDJZfCBgJVGS1I7bgC3AS4BXZebdmTkBvBN4brnN7wJ/lZlfycy5zPxlZt5UU7ySJP2GvkwSM/MHwJeA1zfdvQO4dcGmt1Kc3YWianhx+fXzgC+UyaMkSa06BhgB1gL/Uk5qswu4DmicuDwOuLmm+CRJOqy+TBJLbwZ+j/kk8DaKyQWaHQ/8svz6K8BREXEmRbJoq6kkqWURcTbFmPMFYBJ4cGZuKm8bM3NduenPgZPrilOSpMPp2yQxM38MfAr4g/KuvwNOjYjnRcRIRDwHOJ2i4khmTgOfoZj4ZgtF0ihJ0iFFxIaIeCrwSeBjmfk94MPAn0XE0eU2x0TEE8tdrgIui4jzI2KofOyB9UQvSdJv6tsksfTHwDhAZt4FPBV4NXAX8FrgqZl5Z9P2HwcuAD6TmTNdjlWS1Fu+GBETFJXB/04xIdpl5WOvA34MfCsi9gBfBU6DaoKby4A/A3YDX+c3O10kSapNZGbdMUiSJEmSVoh+ryRKkiRJktpgkihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSp0tNJYkSsioirIuLWiJiIiO9GxJOaHj8/Im6KiH0R8bWIOKHpsYsi4hvlY9cf4jVeEBEZEZd3+MeRJEmSpNr1dJIIjFCsT/UYYCPwRuDTEXFiRGwDPge8CdgC3AB8qmnfu4H/BbzrYE8eEZuBNwA3diR6SZIkSVph+m6dxIj4PvBWYCvwosw8r7x/HLgTOCszb2ra/nLg+Zn52EWe64PA94GLgI9l5l92/ieQJEmSpPr0eiXxPiJiO3AqReXvwcD3Go9l5r3AzeX9rTzXOcAjgA8uf6SSJEmStDL1TZIYEaPAtcBHykrhOmD3gs12A+tbeK5h4P3AKzJzbrljlSRJkqSVqi+SxIgYAq4BDgCvKO/eC2xYsOkGYKKFp7wC+H5mfmvZgpQkSZKkHjBSdwBHKiICuArYDjw5M6fLh24EXti03ThwMq1NQnM+8JiIeHL5/RbgrIg4MzNfcYj9JEmSJKmn9XySCHwAeBBwQWZONt3/eeBPI+JC4MvAlRTVwZugaikdpXgPhiJiNTBbJpkvAlY3PdfngL+mSEYlSZIkqW/1dLtpue7hS4EzgZ0Rsbe8XZKZdwAXAu8A7gHOBZ7btPulwCRFkvnb5dcfBsjMXZm5s3GjaGPdk5kLr3GUJEmSpL7Sd0tgSJIkSZKWrqcriZIkSZKk5WWSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIERMTx5Vq7w3XHIklSnUwSJUkDKyJuiYgLADLzZ5m5LjNnu/j6j42IX3Tr9SRJaoVJoiRJkiSpYpIoSRpIEXENcDzwxbLN9LURkRExUj5+fUS8PSK+UT7+xYjYGhHXRsSeiPh2RJzY9HwPjIivRMTdEfEfEXFR02NPjoh/j4iJiPhlRLwmIsaBvwd2lM+/NyJ2RMQ5EfHNiNgVEb+KiD+PiLGm58qIuCIiflQ+39si4uQyzj0R8enG9o1KZUS8ISLuLCunl3TnHZYk9SqTREnSQMrMS4GfAU/LzHXApxfZ7LnApcAxwMnAN4GrgS3A/wPeDFAmfF8BPg4cXe73/og4vXyeq4CXZuZ64AzgHzPzXuBJwG1lm+u6zLwNmAVeBWwDHgWcD1yxIK4nAg8HHgm8FvgQ8HzguPL5L27a9n7lcx0DvBD4UESc1tabJUkaKCaJkiQd3NWZeXNm7qao+t2cmV/NzBngM8BZ5XZPBW7JzKszcyYzvwN8Fnh2+fg0cHpEbMjMezLzXw/2gpn5L5n5rfJ5bgH+AnjMgs3enZl7MvNG4AfAP2TmT5riPGvB9m/KzP2Z+XXgy8BFSJJ0ECaJkiQd3O1NX08u8v268usTgHPLFtFdEbELuISiigdwIfBk4NaI+HpEPOpgLxgRp0bElyJiZ0TsAd5JUQlcSlwA95RVy4ZbgR0He31JkkwSJUmDLJfpeX4OfD0zNzXd1mXmywEy89uZ+XSKVtQvMN/autjrfwC4CXhAZm4A3gDEEcS2uWyHbTgeuO0Ink+S1OdMEiVJg+x24KRleJ4vAadGxKURMVrezo6IB0XEWERcEhEbM3Ma2APMNb3+1ojY2PRc68tt9kbEA4GXL0N8by3j+G2K1tjPLMNzSpL6lEmiJGmQ/QnwxrI99FlLfZLMnACeQDFhzW3ATuB/AKvKTS4FbinbR19G0YpKZt4EfAL4SdmmugN4DfA8YAL4MPCppcZV2gncU8Z1LfCy8nUlSVpUZC5Xp40kSVpJIuKxwMcy89i6Y5Ek9Q4riZIkSZKkikmiJEmSJKliu6kkSZIkqWIlUZIkSZJUMUmUJEmSJFVMEiVJkiRJFZNESZIkSVLFJFGSJEmSVDFJlCRJkiRV/j9YJ750IxgAtQAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                load
                                2014-11-01 00:00:000.10
                                2014-11-01 01:00:000.07
                                2014-11-01 02:00:000.05
                                2014-11-01 03:00:000.04
                                2014-11-01 04:00:000.06
                                2014-11-01 05:00:000.10
                                2014-11-01 06:00:000.19
                                2014-11-01 07:00:000.31
                                2014-11-01 08:00:000.40
                                2014-11-01 09:00:000.48
                                \n", + "
                                " + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.10\n", + "2014-11-01 01:00:00 0.07\n", + "2014-11-01 02:00:00 0.05\n", + "2014-11-01 03:00:00 0.04\n", + "2014-11-01 04:00:00 0.06\n", + "2014-11-01 05:00:00 0.10\n", + "2014-11-01 06:00:00 0.19\n", + "2014-11-01 07:00:00 0.31\n", + "2014-11-01 08:00:00 0.40\n", + "2014-11-01 09:00:00 0.48" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "मूल बनाम स्केल किया गया डेटा:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 24, + "source": [ + "energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)\n", + "train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAZ+klEQVR4nO3df5BV5Z3n8fdHoOjwKyq0ZFYGOroRGBEDNNHEgJg4cUdXolIzi8YVzRiyZq1UyspkslZQRl3N7jBOyk00YWOUKJgfikw07tRIIok6M2rjChFtpSxFWX8UkAnQ/Ea/+8c5rZdL3+5z6T739u3zeVWdou95zjn3e56+fb8853nOcxQRmJlZMR1V7wDMzKx+nATMzArMScDMrMCcBMzMCsxJwMyswAbXO4BqjBkzJlpaWuodhplZQ1m7du3WiGjuqqyhkkBLSwttbW31DsPMrKFI2lSpzJeDzMwKzEnAzKzAnATMzAqsofoEzKz/OnDgAJs3b2bv3r31DqWwmpqaGDduHEOGDMm8j5OAmfWJzZs3M3LkSFpaWpBU73AKJyLYtm0bmzdv5qMf/Wjm/Xw5yMz6xN69exk9erQTQJ1IYvTo0VW3xJwEzKzPOAHU15HUv5OAmVmBuU/AzHLR8s1f9unxXvv2eX12rHPPPZcVK1Zw9NFHV9zmuuuuY/bs2Zx99tlVH3/NmjUsWbKEhx9+ONP6IzFnzhyWLFlCa2trr47jJGBWAKVfyH35ZdpoIoKI4JFHHulx2xtuuKEGEdWfLweZ2YBx6623MmXKFKZMmcJ3vvMdAF577TUmTpzIZZddxpQpU3jjjTdoaWlh69atANx4441MnDiRT3/601x88cUsWbIEgMsvv5z7778fSKasuf7665k+fTqnnHIK7e3tADz99NN88pOfZNq0aXzqU5/ipZdeyhzr73//ey644AKmTp3K6aefzvr167s95p49e5g/fz6TJ0/mwgsvZM+ePX1SZzVpCUj6GPA74P6IuDRddwlwCzAGeBT4YkT8vhbxmNnAs3btWu666y6eeuopIoLTTjuNM888k2OOOYaNGzeybNkyTj/99EP2eeaZZ3jggQdYt24dBw4cYPr06cyYMaPL448ZM4Znn32W22+/nSVLlvDDH/6QSZMm8fjjjzN48GBWr17NtddeywMPPJAp3uuvv55p06axatUqfv3rX3PZZZfx3HPPVTzmHXfcwbBhw3jxxRdZv34906dP73WdQe0uB30PeKbzhaSTgR8A5wHPAkuB24H5NYrHzAaYJ554ggsvvJDhw4cDcNFFF/H4448zd+5cJkyYcFgCAHjyySf5/Oc/T1NTE01NTZx//vkVj3/RRRcBMGPGDFauXAnA9u3bWbBgARs3bkQSBw4cqCrezoTxmc98hm3btrFjx46Kx/ztb3/LV7/6VQCmTp3K1KlTM79Xd3K/HCRpPvAH4Fclq78APBQRv42IDmARcJGkkXnHY2bF05kYemPo0KEADBo0iIMHDwKwaNEizjrrLJ5//nkeeuihPrlbOo9jdifXJCBpFHADcE1Z0cnAus4XEfEKsB84qYtjLJTUJqlty5YteYZrVjgt3/zl+0ujmzVrFqtWrWL37t3s2rWLBx98kFmzZnW7zxlnnPH+F21HR0fVo3a2b9/O8ccfD8Ddd99ddbzLly8HklFDY8aMYdSoURWPOXv2bFasWAHA888//34fQm/lfTnoRuDOiNhcdhPDCGB72bbbgcNaAhGxlORyEa2trZFTnGbWx2o9Cmn69OlcfvnlfOITnwDgyiuvZNq0abz22msV95k5cyZz585l6tSpjB07llNOOYUPf/jDmd/zG9/4BgsWLOCmm27ivPOqO9/FixfzxS9+kalTpzJs2DCWLVvW7TGvuuoqrrjiCiZPnszkyZMr9l1USxH5fK9K+jiwHJgWEfslLQb+fURcKukfgCcj4n+WbL8TmBMRaysds7W1NfxQGbPqVRoi2pdDR1988UUmT57cq2PUQ0dHByNGjGD37t3Mnj2bpUuX9lmnaz109XuQtDYiuryhIM+WwBygBXg9bQWMAAZJ+hPgH4FTSwI8ARgKvJxjPGZmh1m4cCEvvPACe/fuZcGCBQ2dAI5EnklgKfCTktdfJ0kKVwHHAf8iaRbJ6KAbgJURsTPHeMzMDtN5nb2ocksCEbEb2N35WlIHsDcitgBbJP0XkstFo4HVwBV5xWJmtRERnkSujo7k8n7Npo2IiMVlr1cAxU7BZgNIU1MT27Zt83TSddL5PIGmpqaq9vPcQWbWJ8aNG8fmzZvxUO766XyyWDWcBMysTwwZMqSqJ1pZ/+AJ5MzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMcweZ9QN9+YQvs2q4JWBmVmC5JgFJ90p6S9IOSS9LujJd3yIpJHWULIvyjMXMzA6X9+WgW4C/jIh9kiYBayT9X2BbWn50RBzMOQYzM6sg15ZARGyIiH2dL9PlxDzf08zMssu9T0DS7ZJ2A+3AW8AjJcWbJG2WdJekMRX2XyipTVKbn1hkZta3ck8CEfEVYCQwC1gJ7AO2AjOBCcCMtHx5hf2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrIqIjItoi4mBEvANcDXxO0shaxGNmZolaDxEdTNd9ApH+6yGrZmY1lNuXrqTjJM2XNELSIEnnABcDv5J0mqSJko6SNBq4DVgTEdvzisfMzA6X5xDRAK4Cvk+SbDYBX4uIX0i6GLgZOA7YATxKkiDMrB8ovYMZfBfzQJZbEoiILcCZFcruA+7L673NzCwbX4M3MyswJwEzswJzEjAzKzBPJW1mPfJU1wOXWwJmZgXmJGBmVmBOAmZmBeYkYGZWYO4YNsuZO1WtP3NLwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCizXJCDpXklvSdoh6WVJV5aUfVZSu6Tdkh6TNCHPWMzM7HB5twRuAVoiYhQwF7hJ0gxJY4CVwCLgWKAN+GnOsZiZWZlcbxaLiA2lL9PlRGAGsCEifg4gaTGwVdKkiGjPMyYzM/tA7n0Ckm6XtBtoB94CHgFOBtZ1bhMRu4BX0vXl+y+U1CapbcuWLXmHa2ZWKLkngYj4CjASmEVyCWgfMALYXrbp9nS78v2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrgA5gVNlmo4CdtYjHzMwStR4iOpikT2ADcGrnSknDS9abmVmN5JYEJB0nab6kEZIGSToHuBj4FfAgMEXSPElNwHXAencKm5nVVp6jg4Lk0s/3SZLNJuBrEfELAEnzgO8C9wJPAfNzjMWsX8h7WmlPW23Vyi0JRMQW4MxuylcDk/J6fzMz65mnjTAzKzAnATOzAnMSMDMrMD9j2Kyfceeu1ZJbAmZmBeYkYGZWYE4CZmYF5iRgZlZg7hg2s6q443pgcUvAzKzAnATMzArMScDMrMAyJQFJp+QdiJmZ1V7WjuHbJQ0F7gaWR0T5oyHNLAfuhLW8ZWoJRMQs4AvAHwNrJa2Q9Ke5RmZmZrnL3CcQERuBbwF/TfKcgNsktUu6qKvtJQ2VdKekTZJ2SnpO0p+lZS2SQlJHybKoL07IzMyyy3Q5SNJU4ArgPOBR4PyIeFbSvwP+BVhZ4dhvkCSM14FzgZ+V9S8cHREHexG/mZn1QtY+gf8F/BC4NiL2dK6MiDclfaurHSJiF7C4ZNXDkl4FZgBrjyxcMzPrS1mTwHnAnoh4F0DSUUBTROyOiHuyHEDSWOAkYEPJ6k2SgqR18VcRsTV76GZm1ltZk8Bq4GygI309DPgn4FNZdpY0BFgOLIuIdkkjgJnAc8Bo4Htp+Tld7LsQWAgwfvz4jOEWi0eQFFvp778321d7HBsYsnYMN0VEZwIg/XlYlh3TVsM9wH7g6s79I6ItIg5GxDvp+s9JGlm+f0QsjYjWiGhtbm7OGK6ZmWWRNQnskjS984WkGcCebrbv3E7AncBYYF5EHKiwaVQZj5mZ9YGsl4O+Bvxc0puAgI8A/ynDfncAk4GzSzuUJZ0G/AHYCBwD3Aas8U1oZma1lSkJRMQzkiYBE9NVL3Xzv3oAJE0AvgzsA95OGgWQrnsPuBk4DthB0jF8cdXRm5lZr1TzPIGZQEu6z3RJRMSPK20cEZtIWg2V3FfFe5sNOHl3xLqj17LIerPYPcCJJKN53k1XB1AxCZiZWf+XtSXQCvxJRESPW5qZWcPIOhrneZLOYDMzG0CytgTGAC9IepqkoxeAiJibS1RmZlYTWZPA4jyDKCrf6ds4/LuygSrrENHfpEM+PxYRqyUNAwblG5qZmeUt6+MlvwTcD/wgXXU8sCqvoMzMrDaydgz/V+AMkhu7Oh8wc1xeQZmZWW1kTQL7ImJ/5wtJg/lgvh8zM2tQWTuGfyPpWuBD6bOFvwI8lF9Y1hfcmVk/vlvXGkXWlsA3gS3A70jm/nmE5HnDZmbWwLKODnoP+N/pYmZmA0TWuYNepYs+gIg4oc8jMjOzmqlm7qBOTcCfA8f2fThmZlZLWS8HbStb9R1Ja4Hr+j4ks77Xl53k7nDvmuulMWW9HDS95OVRJC2Dap5FYGZm/VDWL/K/K/n5IPAa8Bfd7SBpKHA7cDbJpaNXgP8WEf8nLf8s8D1gPPAUcHn6IBozM6uRrJeDzjrCY78BnAm8DpwL/EzSKUAHsBK4kuR+gxuBnwKnH8H7mJnZEcp6Oeia7soj4tYu1u3i0NlHH05HGc0ARgMbIuLn6fEXA1slTYqI9myhm5lZb1UzOmgm8Iv09fnA08DGrG8kaSxwErABuApY11kWEbskvQKcDLSX7bcQWAgwfvz4rG9nNVL0zsCin781vqxJYBwwPSJ2wvv/c/9lRFyaZWdJQ4DlwLKIaJc0guQO5FLbgZHl+0bEUmApQGtrq+crMjPrQ1mnjRgL7C95vT9d1yNJRwH3pPtcna7uAEaVbToK2JkxHjMz6wNZWwI/Bp6W9GD6+gJgWU87SRJwJ0nCODciDqRFG4AFJdsNB05M15uZWY1kaglExH8HrgD+LV2uiIibM+x6BzAZOD8i9pSsfxCYImmepCaSm87Wu1PYzKy2qrnhaxiwIyLuktQs6aMR8WqljdPHUX6Z5MH0byeNAgC+HBHLJc0DvgvcS3KfwPwjOgMzqxtPmd34sg4RvZ5khNBE4C5gCMmX9xmV9klv/FI35auBSdUEa2ZmfStrx/CFwFxgF0BEvEkXI3nMzKyxZE0C+yMiSKeTTjtyzcyswWVNAj+T9APgaElfAlbjB8yYmTW8rHMHLUmfLbyDpF/guoh4NNfIrKH5Ttq+5zq1PPSYBCQNAlank8j5i9/MbADp8XJQRLwLvCfpwzWIx8zMaijrfQIdwO8kPUo6QgggIr6aS1RmZlYTWZPAynQxM7MBpNskIGl8RLweET3OE2S9404/q4bv1LW+0lOfwKrOHyQ9kHMsZmZWYz0lgdJpH07IMxAzM6u9npJAVPjZzMwGgJ46hk+VtIOkRfCh9GfS1xER5Q+GMTOzBtJtEoiIQbUKxGqrUsdiaad0lm36s952nla7vztrrRFlnTvIzMwGoFyTgKSrJbVJ2ifp7pL1LZJCUkfJsijPWMzM7HDVPFnsSLwJ3AScA3yoi/KjI+JgzjGYmVkFuSaBiFgJIKkVGJfne5mZWfXybgn0ZJOkIJmd9K8iYmv5BpIWAgsBxo8fX+Pw6iNLB2OjdM5aMVV7B7zvmK+fenUMbwVmAhOAGSSPqlze1YYRsTQiWiOitbm5uYYhmpkNfHVpCUREB9CWvnxH0tXAW5JGRsTOesRkZlZE/WWIaOfdyP0lHjOzQsi1JSBpcPoeg4BBkpqAgySXgP4AbASOAW4D1kTE9jzjMTOzQ+V9OehbwPUlry8F/gZ4CbgZOI7kucWPAhfnHEvduNPrA64L61RpAIQ7lWsr7yGii4HFFYrvy/O9zcysZ74Gb2ZWYE4CZmYF5iRgZlZg9b5j2I5Qlk61RuWOQbPacUvAzKzAnATMzArMScDMrMCcBMzMCswdw0egUkfkQOuUbcRjZnmv7jqSB8Lv0KwabgmYmRWYk4CZWYE5CZiZFZiTgJlZgbljuJfckfiB3tSF67EY+uoz4jvD+45bAmZmBZZrEpB0taQ2Sfsk3V1W9llJ7ZJ2S3pM0oQ8YzEzs8Pl3RJ4E7gJ+FHpSkljgJXAIuBYkofO/zTnWMzMrEzeTxZbCSCpFRhXUnQRsCEifp6WLwa2SpoUEe15xmRmZh+oV8fwycC6zhcRsUvSK+n6Q5KApIXAQoDx48fXMkbrZxrlbmbrO/795K9eHcMjgO1l67YDI8s3jIilEdEaEa3Nzc01Cc7MrCjqlQQ6gFFl60YBO+sQi5lZYdUrCWwATu18IWk4cGK63szMaiTvIaKDJTUBg4BBkpokDQYeBKZImpeWXwesd6ewmVlt5d0x/C3g+pLXlwJ/ExGLJc0DvgvcCzwFzM85ll5p9A6qRo/fzPKR9xDRxcDiCmWrgUl5vr+ZmXXP00aYmRWYk4CZWYE5CZiZFZinku6G71DNl+uiGPrD77lSDJ6S2i0BM7NCcxIwMyswJwEzswJzEjAzKzB3DJfpD51Y9gH/Pqwr/lz0HbcEzMwKzEnAzKzAnATMzArMScDMrMAK2zFc2rHkuwar404566/8d109twTMzAqsrklA0hpJeyV1pMtL9YzHzKxo+kNL4OqIGJEuE+sdjJlZkfSHJGBmZnXSH5LALZK2SnpS0px6B2NmViT1TgJ/DZwAHA8sBR6SdGLpBpIWSmqT1LZly5Z6xGhmNmDVNQlExFMRsTMi9kXEMuBJ4NyybZZGRGtEtDY3N9cnUDOzAareLYFyAajeQZiZFUXdkoCkoyWdI6lJ0mBJXwBmA/9Yr5jMzIqmnncMDwFuAiYB7wLtwAUR8XIdYzIzK5S6JYGI2ALMrNf7m9nAlmV6E08z0f/6BMzMrIacBMzMCsxJwMyswJwEzMwKrLDPEzAzq6RIHcZuCZiZFZiTgJlZgTkJmJkVmJOAmVmBFapj2A9IN7PeyPod0kidyW4JmJkVmJOAmVmBOQmYmRWYk4CZWYEVqmPYzKySSp2+RzKgpNo7jittX4s7l90SMDMrsLomAUnHSnpQ0i5JmyRdUs94zMyKpt6Xg74H7AfGAh8HfilpXURsqG9YZmbFUM8HzQ8H5gGLIqIjIp4AfgH853rFZGZWNIqI+ryxNA14MiKGlaz7OnBmRJxfsm4hsDB9ORF4qaaB9t4YYGu9g+hHXB+Hcn0cyvVxqL6qjwkR0dxVQT0vB40AdpSt2w6MLF0REUuBpbUKqq9JaouI1nrH0V+4Pg7l+jiU6+NQtaiPenYMdwCjytaNAnbWIRYzs0KqZxJ4GRgs6WMl604F3ClsZlYjdUsCEbELWAncIGm4pDOAzwP31CumnDTspaycuD4O5fo4lOvjULnXR906hiG5TwD4EfCnwDbgmxGxom4BmZkVTF2TgJmZ1ZenjTAzKzAnATOzAnMSyEDSUEl3pvMb7ZT0nKQ/S8taJIWkjpJlUdm+P5K0Q9Lbkq4pO/ZnJbVL2i3pMUkTan1+R0LSvZLeSs/rZUlXlpRVPKeBWh9QuU6K+hkBkPQxSXsl3Vuy7pL0b2mXpFVp32BnWbfziXW3b6MorxNJcyS9V/b5WFCyfb51EhFeeliA4cBioIUkcf5HkvsZWtIlgMEV9r0FeBw4BpgMvA38h7RsDMkNcn8ONAF/C/xrvc83Y52cDAxNf56UnteMns5poNZHD3VSyM9IGv8/ped2b0kd7QRmk9wwugL4Scn29wE/Tcs+nZ77yVn2bZSlizqZA2zuZvtc66TuFdKoC7CeZO6jnv7A3wQ+V/L6xs5fEsl0GP9cUjYc2ANMqvf5VVkXE4G3gL/o6ZyKUB9d1EkhPyPAfOBnJP+B6vzCuxlYUbLNiSSTSI5Mz20/cFJJ+T3At3vat97n2ss6qZgEalEnvhx0BCSNBU7i0BvbNknaLOkuSWPS7Y4B/ghYV7LdOpLsTfrv+2WR3DvxSkl5vybpdkm7gXaSL7xH6OacBnp9QMU66VSYz4ikUcANwDVlReXn8wrpl1y6HIyIl0u2764uSvft97qpE4DjJL0j6VVJf69kgk2oQZ04CVRJ0hBgObAsItpJJneaCUwgafqPTMshaZ5B0nyj5OeRJeWlZeXl/VpEfIUk1lkkN/7to/tzGtD1ARXrpIifkRuBOyNic9n6nj4f3c0n1qh10alSnbSTTKX/R8BnSD4jt6ZludeJk0AVJB1F0hTbD1wNEMk02G0RcTAi3knXf07SSJL5keDQOZJK50dq+PmTIuLdSKYBHwdcRffnNODrAw6vk6J9RiR9HDgb+Psuinv6fHR3rg1XF526q5OIeDsiXoiI9yLiVeAbJJeaoQZ14iSQkSQBd5I8AGdeRByosGnn3XdHRcS/kVwSOLWkvHR+pA2lZWkT8EQac/6kwXwQe5fnVLD6gA/qpNxA/4zMIekHeV3S28DXgXmSnuXw8zkBGEoyl1hP84l1t29/N4fKdVIu+OC7Of86qXdHSaMswPeBfwVGlK0/jaQT8ChgNEkv/mMl5d8GfkMy8mMSyR9858iPZpKm2zySkR//gwYY+QEcR9LBNQIYBJwD7ALm9nROA7E+MtRJoT4jwDDgIyXLEuD+9FxOJrm8MYuk0/NeDh0d9BOS0TDDgTM4fCRMxX3789JDnZxFcqlQwB8DjwF31apO6l45jbCkv6AA9pI0vzqXLwAXA6+mf/BvAT8GPlKy71CS+ZF2AO8A15Qd+2ySa4J7gDVAS73PN0N9NKdfWn9Iz+t3wJeynNNArI+e6qSIn5Gy+BeTjoRJX18CvJ7Wxz8Ax5aUHQusSsteBy4pO1bFfRtp4dDRQdcA/w/YDbwB3EbJ6J6868RzB5mZFZj7BMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswP4/zu7dqmtpqTMAAAAASUVORK5CYII=", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAaCklEQVR4nO3de5RV5Znn8e+PSyjlIhEK1GBZagJeQBQL7ehSM9EWO2omhjjRqOOltaIOsTNZzdLJ0oTYtunOmpl0JEokbTAg2iRpcKKxXYKXVmNPQsE0ERQ0LsHQogIJSCF3n/ljn9JjUUXtU5x9Tp3av89aZ8m+nf285+B5ePfz7ncrIjAzs3zqU+0AzMysepwEzMxyzEnAzCzHnATMzHLMScDMLMf6VTuAUgwfPjwaGxurHYaZWU1ZsmTJhoio72hbTSWBxsZGWlpaqh2GmVlNkbSms22+HGRmlmNOAmZmOeYkYGaWYzVVEzCz2rJr1y7Wrl3L9u3bqx1KLtTV1TFq1Cj69++f+hgnATPLzNq1axk8eDCNjY1IqnY4vVpEsHHjRtauXcuRRx6Z+jhfDjKzzGzfvp1hw4Y5AVSAJIYNG1Zyr8tJwMwy5QRQOd35rJ0EzMxyzDUBM6uYxlt+Vdb3W/1355f1/To8x+rVXHDBBSxfvjz1MVdddRUXXHABX/rSl1Ktr0RMnXESMMuB4h/fSvxwWu3w5SAz67W2bt3K+eefz/jx4xk7dizz5s0DYPHixZx22mmMHz+eU045hS1btrB69WrOOOMMJkyYwIQJE3jhhRf2er89e/YwdepUJk6cyAknnMC9994LJCNzpkyZwpgxYzjnnHN45513uoztySef5KSTTmLcuHFcc8017NixA4Dbb7+diRMnMnbsWJqbm2l7+uOSJUsYP34848eP5+677y7XR1SZJCDpU5K2S3qgaN1XJK2RtFXSw5IOrkQsZpYfjz/+OIcddhjLli1j+fLlnHfeeezcuZMvf/nL/OAHP2DZsmUsWrSIAw44gBEjRrBw4UKWLl3KvHnzuOmmm/Z6v/vuu4+DDjqIxYsXs3jxYn784x/z+uuvs2DBAlatWsVLL73E7NmzO0wgxbZv385VV13FvHnzePHFF9m9ezczZswAYMqUKSxevJjly5ezbds2Hn30UQCuvvpqpk+fzrJly8r6GVWqJ3A3sLhtQdLxwL3AFcBI4D3gngrFYmY5MW7cOBYuXMjNN9/Mc889x0EHHcSqVas49NBDmThxIgBDhgyhX79+7Nq1i+uuu45x48Zx8cUX89JLL+31fk888QSzZ8/mxBNP5NRTT2Xjxo28+uqrPPvss1x66aX07duXww47jM9+9rP7jGvVqlUceeSRjB49GoArr7ySZ599FoCnn36aU089lXHjxvHUU0+xYsUKNm3axKZNmzjzzDMBuOKKK8r2GWVeE5B0CbAJeAH4ZGH1ZcAjEfFsYZ/bgJclDY6ILVnHZGb5MHr0aJYuXcpjjz3Grbfeytlnn81FF13U4b7f//73GTlyJMuWLeP999+nrq5ur30igunTpzNp0qSPrH/sscfKEu/27du58cYbaWlp4fDDD2fatGmZ322daU9A0hDgduAb7TYdD3zQp4mI14CdwOgO3qNZUouklvXr12cZrlnuNN7yqw9evdGbb77JgQceyOWXX87UqVNZunQpY8aMYd26dSxenFyc2LJlC7t372bz5s0ceuih9OnThzlz5rBnz5693m/SpEnMmDGDXbt2AfDKK6+wdetWzjzzTObNm8eePXtYt24dTz/99D7jGjNmDKtXr+b3v/89AHPmzOGss8764Ad/+PDhtLa28otf/AKAoUOHMnToUJ5//nkA5s6dW54PiOx7An8D3BcRa9vdxDAI2Nxu383A4PZvEBEzgZkATU1NkVGcZlYBlR6Z9OKLLzJ16lT69OlD//79mTFjBh/72MeYN28eX/va19i2bRsHHHAAixYt4sYbb2Ty5MnMnj2b8847j4EDB+71ftdeey2rV69mwoQJRAT19fU8/PDDXHTRRTz11FMcd9xxNDQ08OlPf3qfcdXV1TFr1iwuvvhidu/ezcSJE7n++usZMGAA1113HWPHjuWQQw754JIVwKxZs7jmmmuQxLnnnlu2z0htledyk3QiMBc4KSJ2SpoGfDIiLpf0f4BfR8T3ivbfAnwmIpZ09p5NTU3hh8qYla6zIaJZDx19+eWXOfbYY8v+vta5jj5zSUsioqmj/bPsCXwGaATeKPQCBgF9JR0HPA6MLwrwKGAA8EqG8ZiZWTtZJoGZwD8VLf81SVK4ARgB/JukM4ClJHWD+S4Km5lVVmZJICLeIxn6CYCkVmB7RKwH1ku6nuRy0TBgEXB1VrGYWfVEhCeRq5DuXN6v2LQRETGt3fKDwIOVOr+ZVV5dXR0bN270dNIV0PY8gY6Gtu6L5w4ys8yMGjWKtWvX4uHdldH2ZLFSOAmYWWb69+9f0lOurPI8gZyZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOee4gsx4g6yd8mXXGPQEzsxzLNAlIekDSOknvSnpF0rWF9Y2SQlJr0eu2LGMxM7O9ZX056LvAX0bEDknHAM9I+n/AxsL2oRGxO+MYzMysE5n2BCJiRUTsaFssvI7O8pxmZpZe5jUBSfdIeg9YCawDHivavEbSWkmzJA3v5PhmSS2SWvx0IjOz8so8CUTEjcBg4AxgPrAD2ABMBI4ATi5sn9vJ8TMjoikimurr67MO18wsVyoyOigi9kTE88Ao4IaIaI2IlojYHRFvA1OAcyUNrkQ8ZmaWqPQQ0X50XBOIwn89ZNXMrIIy+9GVNELSJZIGSeoraRJwKfCkpFMljZHUR9Iw4C7gmYjYnFU8Zma2tyyHiAZwA/AjkmSzBvh6RPxS0qXAncAI4F1gIUmCMLMeoPgOZvBdzL1ZZkkgItYDZ3Wy7SHgoazObWZm6fgavJlZjjkJmJnlmJOAmVmOeSppM+uSp7ruvdwTMDPLMScBM7MccxIwM8sxJwEzsxxzYdgsYy6qWk/mnoCZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeVYpklA0gOS1kl6V9Irkq4t2na2pJWS3pP0tKQjsozFzMz2lnVP4LtAY0QMAT4P3CHpZEnDgfnAbcDBQAswL+NYzMysnUxvFouIFcWLhdfRwMnAioj4OYCkacAGScdExMosYzIzsw9lXhOQdI+k94CVwDrgMeB4YFnbPhGxFXitsL798c2SWiS1rF+/PutwzcxyJfMkEBE3AoOBM0guAe0ABgGb2+26ubBf++NnRkRTRDTV19dnHa6ZWa5UZHRQROyJiOeBUcANQCswpN1uQ4AtlYjHzMwSlR4i2o+kJrACGN+2UtLAovVmZlYhmSUBSSMkXSJpkKS+kiYBlwJPAguAsZImS6oDvgX8zkVhM7PKynJ0UJBc+vkRSbJZA3w9In4JIGky8EPgAeA3wCUZxmLWI2Q9rbSnrbZSZZYEImI9cNY+ti8Cjsnq/GZm1jVPG2FmlmNOAmZmOeYkYGaWY37GsFkP4+KuVZJ7AmZmOeYkYGaWY04CZmY55iRgZpZjLgybWUlcuO5d3BMwM8sxJwEzsxxzEjAzy7FUSUDSuKwDMTOzyktbGL5H0gDgfmBuRLR/NKSZZcBFWMtaqp5ARJwBXAYcDiyR9KCkP880MjMzy1zqmkBEvArcCtxM8pyAuyStlPTFjvaXNEDSfZLWSNoi6d8l/UVhW6OkkNRa9LqtHA0yM7P0Ul0OknQCcDVwPrAQuDAilko6DPg3YH4n7/0HkoTxBvA54Gft6gtDI2L3fsRvZmb7IW1NYDrwj8A3I2Jb28qIeFPSrR0dEBFbgWlFqx6V9DpwMrCke+GamVk5pU0C5wPbImIPgKQ+QF1EvBcRc9K8gaSRwGhgRdHqNZKCpHcxNSI2pA/dzMz2V9oksAg4B2gtLB8IPAGcluZgSf2BucBPI2KlpEHARODfgWHA3YXtkzo4thloBmhoaEgZbr54BEm+FX//+7N/qe9jvUPawnBdRLQlAAp/PjDNgYVewxxgJzCl7fiIaImI3RHxdmH9uZIGtz8+ImZGRFNENNXX16cM18zM0kibBLZKmtC2IOlkYNs+9m/bT8B9wEhgckTs6mTXKDEeMzMrg7SXg74O/FzSm4CAQ4AvpzhuBnAscE5xQVnSqcAm4FXg48BdwDO+Cc3MrLJSJYGIWCzpGGBMYdWqffyrHgBJRwBfBXYAbyWdAiisex+4ExgBvEtSGL605OjNzGy/lPI8gYlAY+GYCZKIiNmd7RwRa0h6DZ15qIRzm/U6WRdiXei1NNLeLDYHOJpkNM+ewuoAOk0CZmbW86XtCTQBx0VEdLmnmZnVjLSjcZaTFIPNzKwXSdsTGA68JOm3JIVeACLi85lEZWZmFZE2CUzLMoi88p2+tcPflfVWaYeI/mthyOenImKRpAOBvtmGZmZmWUv7eMnrgF8A9xZWfQJ4OKugzMysMtIWhv8bcDrJjV1tD5gZkVVQZmZWGWmTwI6I2Nm2IKkfH873Y2ZmNSptYfhfJX0TOKDwbOEbgUeyC8vKwcXM6vHdulYr0vYEbgHWAy+SzP3zGMnzhs3MrIalHR30PvDjwsvMzHqJtHMHvU4HNYCIOKrsEZmZWcWUMndQmzrgYuDg8odjZmaVlPZy0MZ2q/5B0hLgW+UPyaz8ylkkd8G9Y/5calPay0ETihb7kPQMSnkWgZmZ9UBpf8j/V9GfdwOrgf+yrwMkDQDuAc4huXT0GvA/IuJfCtvPBu4GGoDfAFcVHkRjZmYVkvZy0H/q5nv/ATgLeAP4HPAzSeOAVmA+cC3J/QZ/A8wD/qwb5zEzs25KeznoG/vaHhH/u4N1W/no7KOPFkYZnQwMA1ZExM8L7z8N2CDpmIhYmS50MzPbX6WMDpoI/LKwfCHwW+DVtCeSNBIYDawAbgCWtW2LiK2SXgOOB1a2O64ZaAZoaGhIezqrkLwXA/Pefqt9aZPAKGBCRGyBD/7l/quIuDzNwZL6A3OBn0bESkmDSO5ALrYZGNz+2IiYCcwEaGpq8nxFZmZllHbaiJHAzqLlnYV1XZLUB5hTOGZKYXUrMKTdrkOALSnjMTOzMkjbE5gN/FbSgsLyF4CfdnWQJAH3kSSMz0XErsKmFcCVRfsNBI4urDczswpJ1ROIiL8Frgb+VHhdHRF3pjh0BnAscGFEbCtavwAYK2mypDqSm85+56KwmVlllXLD14HAuxExS1K9pCMj4vXOdi48jvKrJA+mfyvpFADw1YiYK2ky8EPgAZL7BC7pVgvMrGo8ZXbtSztE9NskI4TGALOA/iQ/3qd3dkzhxi/tY/si4JhSgjUzs/JKWxi+CPg8sBUgIt6kg5E8ZmZWW9ImgZ0RERSmky4Ucs3MrMalTQI/k3QvMFTSdcAi/IAZM7Oal3buoP9ZeLbwuyR1gW9FxMJMI7Oa5jtpy8+fqWWhyyQgqS+wqDCJnH/4zcx6kS4vB0XEHuB9SQdVIB4zM6ugtPcJtAIvSlpIYYQQQETclElUZmZWEWmTwPzCy8zMepF9JgFJDRHxRkR0OU+Q7R8X/awUvlPXyqWrmsDDbX+Q9M8Zx2JmZhXWVRIonvbhqCwDMTOzyusqCUQnfzYzs16gq8LweEnvkvQIDij8mcJyRET7B8OYmVkN2WcSiIi+lQrEKquzwmJxUTrNPj3Z/hZPSz3exVqrRWnnDjIzs14o0yQgaYqkFkk7JN1ftL5RUkhqLXrdlmUsZma2t1KeLNYdbwJ3AJOAAzrYPjQidmccg5mZdSLTJBAR8wEkNQGjsjyXmZmVLuueQFfWSAqS2UmnRsSG9jtIagaaARoaGiocXnWkKTDWSnHW8qnUO+B9x3z1VKswvAGYCBwBnEzyqMq5He0YETMjoikimurr6ysYoplZ71eVnkBEtAIthcW3JU0B1kkaHBFbqhGTmVke9ZQhom13I/eUeMzMciHTnoCkfoVz9AX6SqoDdpNcAtoEvAp8HLgLeCYiNmcZj5mZfVTWl4NuBb5dtHw58B1gFXAnMILkucULgUszjqVqXPT6kD8La9PZAAgXlSsr6yGi04BpnWx+KMtzm5lZ13wN3swsx5wEzMxyzEnAzCzHqn3HsHVTmqJarXJh0Kxy3BMwM8sxJwEzsxxzEjAzyzEnATOzHHNhuBs6K0T2tqJsLb5nmnPtq5DcG75Ds1K4J2BmlmNOAmZmOeYkYGaWY04CZmY55sLwfnIh8UP781n4c8yHcv0d8Z3h5eOegJlZjmWaBCRNkdQiaYek+9ttO1vSSknvSXpa0hFZxmJmZnvLuifwJnAH8JPilZKGA/OB24CDSR46Py/jWMzMrJ2snyw2H0BSEzCqaNMXgRUR8fPC9mnABknHRMTKLGMyM7MPVaswfDywrG0hIrZKeq2w/iNJQFIz0AzQ0NBQyRith6mVu5mtfPz9ZK9aheFBwOZ26zYDg9vvGBEzI6IpIprq6+srEpyZWV5UKwm0AkParRsCbKlCLGZmuVWtJLACGN+2IGkgcHRhvZmZVUjWQ0T7SaoD+gJ9JdVJ6gcsAMZKmlzY/i3gdy4Km5lVVtaF4VuBbxctXw58JyKmSZoM/BB4APgNcEnGseyXWi9Q1Xr8ZpaNrIeITgOmdbJtEXBMluc3M7N987QRZmY55iRgZpZjTgJmZjnmqaT3wXeoZsufRT70hO+5sxg8JbV7AmZmueYkYGaWY04CZmY55iRgZpZjLgy30xOKWPYhfx/WEf+9KB/3BMzMcsxJwMwsx5wEzMxyzEnAzCzHclsYLi4s+a7B0rgoZz2V/78unXsCZmY5VtUkIOkZSdsltRZeq6oZj5lZ3vSEnsCUiBhUeI2pdjBmZnnSE5KAmZlVSU9IAt+VtEHSryV9ptrBmJnlSbWTwM3AUcAngJnAI5KOLt5BUrOkFkkt69evr0aMZma9VlWTQET8JiK2RMSOiPgp8Gvgc+32mRkRTRHRVF9fX51Azcx6qWr3BNoLQNUOwswsL6qWBCQNlTRJUp2kfpIuA84EHq9WTGZmeVPNO4b7A3cAxwB7gJXAFyLilSrGZGaWK1VLAhGxHphYrfObWe+WZnoTTzPR82oCZmZWQU4CZmY55iRgZpZjTgJmZjmW2+cJmJl1Jk8FY/cEzMxyzEnAzCzHnATMzHLMScDMLMdyVRj2A9LNbH+k/Q2ppWKyewJmZjnmJGBmlmNOAmZmOeYkYGaWY7kqDJuZdaazom93BpSUesdxZ/tX4s5l9wTMzHKsqklA0sGSFkjaKmmNpK9UMx4zs7yp9uWgu4GdwEjgROBXkpZFxIrqhmVmlg/VfND8QGAycFtEtEbE88AvgSuqFZOZWd4oIqpzYukk4NcRcWDRur8GzoqIC4vWNQPNhcUxwKr9OO1wYMN+HF9r8tZecJvzwm0uzRERUd/RhmpeDhoEvNtu3WZgcPGKiJgJzCzHCSW1RERTOd6rFuStveA254XbXD7VLAy3AkParRsCbKlCLGZmuVTNJPAK0E/Sp4rWjQdcFDYzq5CqJYGI2ArMB26XNFDS6cB/BuZkeNqyXFaqIXlrL7jNeeE2l0nVCsOQ3CcA/AT4c2AjcEtEPFi1gMzMcqaqScDMzKrL00aYmeWYk4CZWY71qiSQdi4iJf5e0sbC6+8lqdLxlkMJbZ4qabmkLZJelzS10rGWS6lzTkn6mKSXJa2tVIzlVEp7JU2Q9KykVklvS/qrSsZaLiX8vR4g6UeFtv5R0iOSPlHpeMtB0hRJLZJ2SLq/i33/u6S3JL0r6SeSBnT3vL0qCfDRuYguA2ZIOr6D/ZqBL5AMST0BuBD4aqWCLLO0bRbwX4GPA+cBUyRdUrEoyyttm9tMBdZXIrCMpGqvpOHA48C9wDDgk8ATFYyznNJ+x38FfJrk/+PDgD8B0ysVZJm9CdxBMlimU5ImAbcAZwNHAEcB3+n2WSOiV7yAgSR/aUYXrZsD/F0H+74ANBct/yXwf6vdhizb3MGxdwHTq92GrNsMHAm8DPwFsLba8WfZXuBOYE61Y65wm2cA3ytaPh9YVe027Gf77wDu38f2B4E7i5bPBt7q7vl6U09gNLA7Il4pWrcM6OhfD8cXtnW1X09XSps/ULj0dQa1eWNeqW2eDnwT2JZ1YBkppb1/BvxR0guS3ilcGmmoSJTlVUqb7wNOl3SYpANJeg3/UoEYq6mj36+RkoZ15816UxJINRdR0b6b2+03qAbrAqW0udg0ku9+VgYxZS11myVdBPSNiAWVCCwjpXzHo4ArSS6RNACvAw9lGl02Smnzq8AfgP8oHHMscHum0VVfR79f0PX/9x3qTUmglLmI2u87BGiNQt+qhpQ8/5KkKSS1gfMjYkeGsWUlVZsLU5V/D7ipQnFlpZTveBuwICIWR8R2kuvEp0k6KOMYy62UNt8NDCCpgQwkmYWgt/cEOvr9gm7Ou9abkkApcxGtKGzrar+erqT5lyRdQ6GgFBE1OVKG9G3+FNAIPCfpLZIfh0MLIyoaKxBnuZTyHf8OKP6HTK39o6ZNKW0+keT6+R8L/6iZDpxSKJL3Vh39fr0dERu79W7VLoKUuaDyTyTd34HA6STdpOM72O96kmLhJ0hGFKwArq92/Bm3+TLgLeDYasdciTaTTJN+SNHriySjLw4huURU9XZk8B1/lmR0zIlAf+D7wHPVjj/jNs8C/hk4qNDmbwL/Ue34u9nmfkAd8F2SQngd0K+D/c4r/L98HDAUeIoUg0E6PW+1G17mD/Fg4GFgK/AG8JXC+jNILve07SeSSwV/LLy+R2EKjVp7ldDm14FdJF3JttePqh1/lm1ud8xnqMHRQaW2F7iB5Pr4n4BHgMOrHX+WbSa5DDQXeAfYBDwPnFLt+LvZ5mkkvbfi1zSS+k4r0FC07zeAt0nqILOAAd09r+cOMjPLsd5UEzAzsxI5CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5dj/BywbGaIaCXKXAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "आइए परीक्षण डेटा को भी स्केल करें\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 25, + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                load
                                2014-12-30 00:00:000.33
                                2014-12-30 01:00:000.29
                                2014-12-30 02:00:000.27
                                2014-12-30 03:00:000.27
                                2014-12-30 04:00:000.30
                                \n", + "
                                " + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.33\n", + "2014-12-30 01:00:00 0.29\n", + "2014-12-30 02:00:00 0.27\n", + "2014-12-30 03:00:00 0.27\n", + "2014-12-30 04:00:00 0.30" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "source": [ + "# Specify the number of steps to forecast ahead\n", + "HORIZON = 3\n", + "print('Forecasting horizon:', HORIZON, 'hours')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Forecasting horizon: 3 hours\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 27, + "source": [ + "order = (4, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)\n", + "results = model.fit()\n", + "\n", + "print(results.summary())\n" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " SARIMAX Results \n", + "==========================================================================================\n", + "Dep. Variable: load No. Observations: 1416\n", + "Model: SARIMAX(4, 1, 0)x(1, 1, 0, 24) Log Likelihood 3477.239\n", + "Date: Thu, 30 Sep 2021 AIC -6942.477\n", + "Time: 14:36:28 BIC -6911.050\n", + "Sample: 11-01-2014 HQIC -6930.725\n", + " - 12-29-2014 \n", + "Covariance Type: opg \n", + "==============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "ar.L1 0.8403 0.016 52.226 0.000 0.809 0.872\n", + "ar.L2 -0.5220 0.034 -15.388 0.000 -0.588 -0.456\n", + "ar.L3 0.1536 0.044 3.470 0.001 0.067 0.240\n", + "ar.L4 -0.0778 0.036 -2.158 0.031 -0.148 -0.007\n", + "ar.S.L24 -0.2327 0.024 -9.718 0.000 -0.280 -0.186\n", + "sigma2 0.0004 8.32e-06 47.358 0.000 0.000 0.000\n", + "===================================================================================\n", + "Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 1464.60\n", + "Prob(Q): 0.83 Prob(JB): 0.00\n", + "Heteroskedasticity (H): 0.84 Skew: 0.14\n", + "Prob(H) (two-sided): 0.07 Kurtosis: 8.02\n", + "===================================================================================\n", + "\n", + "Warnings:\n", + "[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "प्रत्येक HORIZON चरण के लिए एक परीक्षण डेटा बिंदु बनाएं।\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 28, + "source": [ + "test_shifted = test.copy()\n", + "\n", + "for t in range(1, HORIZON):\n", + " test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')\n", + " \n", + "test_shifted = test_shifted.dropna(how='any')\n", + "test_shifted.head(5)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                loadload+1load+2
                                2014-12-30 00:00:000.330.290.27
                                2014-12-30 01:00:000.290.270.27
                                2014-12-30 02:00:000.270.270.30
                                2014-12-30 03:00:000.270.300.41
                                2014-12-30 04:00:000.300.410.57
                                \n", + "
                                " + ], + "text/plain": [ + " load load+1 load+2\n", + "2014-12-30 00:00:00 0.33 0.29 0.27\n", + "2014-12-30 01:00:00 0.29 0.27 0.27\n", + "2014-12-30 02:00:00 0.27 0.27 0.30\n", + "2014-12-30 03:00:00 0.27 0.30 0.41\n", + "2014-12-30 04:00:00 0.30 0.41 0.57" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 29, + "source": [ + "%%time\n", + "training_window = 720 # dedicate 30 days (720 hours) for training\n", + "\n", + "train_ts = train['load']\n", + "test_ts = test_shifted\n", + "\n", + "history = [x for x in train_ts]\n", + "history = history[(-training_window):]\n", + "\n", + "predictions = list()\n", + "\n", + "# let's user simpler model for demonstration\n", + "order = (2, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "for t in range(test_ts.shape[0]):\n", + " model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order)\n", + " model_fit = model.fit()\n", + " yhat = model_fit.forecast(steps = HORIZON)\n", + " predictions.append(yhat)\n", + " obs = list(test_ts.iloc[t])\n", + " # move the training window\n", + " history.append(obs[0])\n", + " history.pop(0)\n", + " print(test_ts.index[t])\n", + " print(t+1, ': predicted =', yhat, 'expected =', obs)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2014-12-30 00:00:00\n", + "1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323]\n", + "2014-12-30 01:00:00\n", + "2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126]\n", + "2014-12-30 02:00:00\n", + "3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795]\n", + "2014-12-30 03:00:00\n", + "4 : predicted = [0.28 0.32 0.42] expected = [0.26812891674127126, 0.3025962399283795, 0.40823634735899716]\n", + "2014-12-30 04:00:00\n", + "5 : predicted = [0.3 0.39 0.54] expected = [0.3025962399283795, 0.40823634735899716, 0.5689346463742166]\n", + "2014-12-30 05:00:00\n", + "6 : predicted = [0.4 0.55 0.66] expected = [0.40823634735899716, 0.5689346463742166, 0.6799462846911368]\n", + "2014-12-30 06:00:00\n", + "7 : predicted = [0.57 0.68 0.75] expected = [0.5689346463742166, 0.6799462846911368, 0.7309758281110115]\n", + "2014-12-30 07:00:00\n", + "8 : predicted = [0.68 0.75 0.8 ] expected = [0.6799462846911368, 0.7309758281110115, 0.7511190689346463]\n", + "2014-12-30 08:00:00\n", + "9 : predicted = [0.75 0.8 0.82] expected = [0.7309758281110115, 0.7511190689346463, 0.7636526410026856]\n", + "2014-12-30 09:00:00\n", + "10 : predicted = [0.77 0.78 0.78] expected = [0.7511190689346463, 0.7636526410026856, 0.7381378692927483]\n", + "2014-12-30 10:00:00\n", + "11 : predicted = [0.76 0.75 0.74] expected = [0.7636526410026856, 0.7381378692927483, 0.7188898836168307]\n", + "2014-12-30 11:00:00\n", + "12 : predicted = [0.77 0.76 0.75] expected = [0.7381378692927483, 0.7188898836168307, 0.7090420769919425]\n", + "2014-12-30 12:00:00\n", + "13 : predicted = [0.7 0.68 0.69] expected = [0.7188898836168307, 0.7090420769919425, 0.7081468218442255]\n", + "2014-12-30 13:00:00\n", + "14 : predicted = [0.72 0.73 0.76] expected = [0.7090420769919425, 0.7081468218442255, 0.7385854968666068]\n", + "2014-12-30 14:00:00\n", + "15 : predicted = [0.71 0.73 0.86] expected = [0.7081468218442255, 0.7385854968666068, 0.8478066248880931]\n", + "2014-12-30 15:00:00\n", + "16 : predicted = [0.73 0.85 0.97] expected = [0.7385854968666068, 0.8478066248880931, 0.9516562220232765]\n", + "2014-12-30 16:00:00\n", + "17 : predicted = [0.87 0.99 0.97] expected = [0.8478066248880931, 0.9516562220232765, 0.934198746642793]\n", + "2014-12-30 17:00:00\n", + "18 : predicted = [0.94 0.92 0.86] expected = [0.9516562220232765, 0.934198746642793, 0.8876454789615038]\n", + "2014-12-30 18:00:00\n", + "19 : predicted = [0.94 0.89 0.82] expected = [0.934198746642793, 0.8876454789615038, 0.8294538943598924]\n", + "2014-12-30 19:00:00\n", + "20 : predicted = [0.88 0.82 0.71] expected = [0.8876454789615038, 0.8294538943598924, 0.7197851387645477]\n", + "2014-12-30 20:00:00\n", + "21 : predicted = [0.83 0.72 0.58] expected = [0.8294538943598924, 0.7197851387645477, 0.5747538048343777]\n", + "2014-12-30 21:00:00\n", + "22 : predicted = [0.72 0.58 0.47] expected = [0.7197851387645477, 0.5747538048343777, 0.4592658907788718]\n", + "2014-12-30 22:00:00\n", + "23 : predicted = [0.58 0.47 0.39] expected = [0.5747538048343777, 0.4592658907788718, 0.3858549686660697]\n", + "2014-12-30 23:00:00\n", + "24 : predicted = [0.46 0.38 0.34] expected = [0.4592658907788718, 0.3858549686660697, 0.34377797672336596]\n", + "2014-12-31 00:00:00\n", + "25 : predicted = [0.38 0.34 0.33] expected = [0.3858549686660697, 0.34377797672336596, 0.32542524619516544]\n", + "2014-12-31 01:00:00\n", + "26 : predicted = [0.36 0.34 0.34] expected = [0.34377797672336596, 0.32542524619516544, 0.33034914950760963]\n", + "2014-12-31 02:00:00\n", + "27 : predicted = [0.32 0.32 0.35] expected = [0.32542524619516544, 0.33034914950760963, 0.3706356311548791]\n", + "2014-12-31 03:00:00\n", + "28 : predicted = [0.32 0.36 0.47] expected = [0.33034914950760963, 0.3706356311548791, 0.470008952551477]\n", + "2014-12-31 04:00:00\n", + "29 : predicted = [0.37 0.48 0.65] expected = [0.3706356311548791, 0.470008952551477, 0.6145926589077886]\n", + "2014-12-31 05:00:00\n", + "30 : predicted = [0.48 0.64 0.75] expected = [0.470008952551477, 0.6145926589077886, 0.7247090420769919]\n", + "2014-12-31 06:00:00\n", + "31 : predicted = [0.63 0.73 0.79] expected = [0.6145926589077886, 0.7247090420769919, 0.786034019695613]\n", + "2014-12-31 07:00:00\n", + "32 : predicted = [0.71 0.76 0.79] expected = [0.7247090420769919, 0.786034019695613, 0.8012533572068039]\n", + "2014-12-31 08:00:00\n", + "33 : predicted = [0.79 0.82 0.83] expected = [0.786034019695613, 0.8012533572068039, 0.7994628469113696]\n", + "2014-12-31 09:00:00\n", + "34 : predicted = [0.82 0.83 0.81] expected = [0.8012533572068039, 0.7994628469113696, 0.780214861235452]\n", + "2014-12-31 10:00:00\n", + "35 : predicted = [0.8 0.78 0.76] expected = [0.7994628469113696, 0.780214861235452, 0.7587287376902416]\n", + "2014-12-31 11:00:00\n", + "36 : predicted = [0.77 0.75 0.74] expected = [0.780214861235452, 0.7587287376902416, 0.7367949865711727]\n", + "2014-12-31 12:00:00\n", + "37 : predicted = [0.77 0.76 0.76] expected = [0.7587287376902416, 0.7367949865711727, 0.7188898836168307]\n", + "2014-12-31 13:00:00\n", + "38 : predicted = [0.75 0.75 0.78] expected = [0.7367949865711727, 0.7188898836168307, 0.7273948075201431]\n", + "2014-12-31 14:00:00\n", + "39 : predicted = [0.73 0.75 0.87] expected = [0.7188898836168307, 0.7273948075201431, 0.8299015219337511]\n", + "2014-12-31 15:00:00\n", + "40 : predicted = [0.74 0.85 0.96] expected = [0.7273948075201431, 0.8299015219337511, 0.909579230080573]\n", + "2014-12-31 16:00:00\n", + "41 : predicted = [0.83 0.94 0.93] expected = [0.8299015219337511, 0.909579230080573, 0.855863921217547]\n", + "2014-12-31 17:00:00\n", + "42 : predicted = [0.94 0.93 0.88] expected = [0.909579230080573, 0.855863921217547, 0.7721575649059982]\n", + "2014-12-31 18:00:00\n", + "43 : predicted = [0.87 0.82 0.77] expected = [0.855863921217547, 0.7721575649059982, 0.7023276633840643]\n", + "2014-12-31 19:00:00\n", + "44 : predicted = [0.79 0.73 0.63] expected = [0.7721575649059982, 0.7023276633840643, 0.6195165622202325]\n", + "2014-12-31 20:00:00\n", + "45 : predicted = [0.7 0.59 0.46] expected = [0.7023276633840643, 0.6195165622202325, 0.5425246195165621]\n", + "2014-12-31 21:00:00\n", + "46 : predicted = [0.6 0.47 0.36] expected = [0.6195165622202325, 0.5425246195165621, 0.4735899731423454]\n", + "CPU times: user 12min 15s, sys: 2min 39s, total: 14min 54s\n", + "Wall time: 2min 36s\n" + ] + } + ], + "metadata": { + "scrolled": true + } + }, + { + "cell_type": "markdown", + "source": [ + "भविष्यवाणियों की वास्तविक भार से तुलना करें\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 30, + "source": [ + "eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])\n", + "eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]\n", + "eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')\n", + "eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()\n", + "eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])\n", + "eval_df.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                timestamphpredictionactual
                                02014-12-30 00:00:00t+13,008.743,023.00
                                12014-12-30 01:00:00t+12,955.532,935.00
                                22014-12-30 02:00:00t+12,900.172,899.00
                                32014-12-30 03:00:00t+12,917.692,886.00
                                42014-12-30 04:00:00t+12,946.992,963.00
                                \n", + "
                                " + ], + "text/plain": [ + " timestamp h prediction actual\n", + "0 2014-12-30 00:00:00 t+1 3,008.74 3,023.00\n", + "1 2014-12-30 01:00:00 t+1 2,955.53 2,935.00\n", + "2 2014-12-30 02:00:00 t+1 2,900.17 2,899.00\n", + "3 2014-12-30 03:00:00 t+1 2,917.69 2,886.00\n", + "4 2014-12-30 04:00:00 t+1 2,946.99 2,963.00" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "सभी भविष्यवाणियों पर **मीन एब्सोल्यूट पर्सेंटेज एरर (MAPE)** की गणना करें\n", + "\n", + "$$MAPE = \\frac{1}{n} \\sum_{t=1}^{n}|\\frac{actual_t - predicted_t}{actual_t}|$$\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 31, + "source": [ + "if(HORIZON > 1):\n", + " eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']\n", + " print(eval_df.groupby('h')['APE'].mean())" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "h\n", + "t+1 0.01\n", + "t+2 0.01\n", + "t+3 0.02\n", + "Name: APE, dtype: float64\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 32, + "source": [ + "print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "One step forecast MAPE: 0.5570581332313952 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 33, + "source": [ + "print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Multi-step forecast MAPE: 1.1460048657704118 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "परीक्षण सेट के पहले सप्ताह के लिए भविष्यवाणियों बनाम वास्तविक मानों का ग्राफ बनाएं\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 34, + "source": [ + "if(HORIZON == 1):\n", + " ## Plotting single step forecast\n", + " eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8))\n", + "\n", + "else:\n", + " ## Plotting multi step forecast\n", + " plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']]\n", + " for t in range(1, HORIZON+1):\n", + " plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values\n", + "\n", + " fig = plt.figure(figsize=(15, 8))\n", + " ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)\n", + " ax = fig.add_subplot(111)\n", + " for t in range(1, HORIZON+1):\n", + " x = plot_df['timestamp'][(t-1):]\n", + " y = plot_df['t+'+str(t)][0:len(x)]\n", + " ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t))\n", + " \n", + " ax.legend(loc='best')\n", + " \n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "No handles with labels found to put in legend.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHjCAYAAAB7INHwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xV9f348de592bvhDBkhhEggCICIqCCgoJ7K462Wm1rtV+7tFpb/XVpq6211tFaR93WPVBQQXAwFBXUMMLeSHZyM26Se+/5/fG+J+ecDJYhN+P9fDx45JxzRz6xac59fz7vz/ttmKaJUkoppZRSSqnuxxPtASillFJKKaWUig4NCJVSSimllFKqm9KAUCmllFJKKaW6KQ0IlVJKKaWUUqqb0oBQKaWUUkoppbopDQiVUkoppZRSqpvyRXsAh1uPHj3MQYMGRXsYSimllFJKKRUVn3/+ebFpmtktPdblA8JBgwbx2WefRXsYSimllFJKKRUVhmFsa+0xTRlVSimllFJKqW5KA0KllFJKKaWU6qY0IFRKKaWUUkqpbqrL7yFUSimllFJKqa6ioaGBnTt3EggEmj0WHx9Pv379iImJOeD304BQKaWUUkoppTqJnTt3kpKSwqBBgzAMo/G6aZqUlJSwc+dOcnJyDvj9NGVUKaWUUkoppTqJQCBAVlaWKxgEMAyDrKysFlcO90UDQqWUUkoppZTqRJoGg/u7vi8aECqllFJKKaVUN6UBoVJKKaWUUkp1UxoQKqWUUkoppVQnYprmQV3fFw0IlVJKKaWUUqqTiI+Pp6SkpFnwZ1UZjY+PP6j307YTSimllFJKKdVJ9OvXj507d1JUVNTsMasP4cHQgFAppZRSSimlOomYmJiD6jO4P5oyqpRSSimllFLdlAaESimllFJKKdVNaUColFJKKaWUUt2U7iFUSqluYv16+O9/ITsbfvxjiIuL9oiUUkopFW26QqiUUt3Es8/Cjh3wxRfw5pvRHo1SSimlOgINCJVSqhsIBGDzZvt84UKor4/eeJRSSinVMWhAqJRS3cCmTeDsX1tVBUuWRG88SimllOoYNCBUSqluoKCg+bX5891BolJKKaW6Hw0IlVKqG1i/vvm13bvhq6/afyxKKaWU6jg0IFRKqS4uFIKNG+1zj+Mv//z57T8epZRSSnUcGhAqpVQXt3071NXZ52efbR/n58POne0/JqWUUkp1DBoQKqVUF+dMF83IgDPPhLQ0+5quEiqllFLdlwaESinVxTkDwtxciImBk0+2ry1ZAhUV7T8upZRSSkWfL9oDUEopdfiYZvOAEGDGDHjjDQgGoaEB3n4bZs2C2lr7XyDg/mr9a2iAkSNh6tTo/ExKKaWUajsaECqlVBdWVATl5XIcDMp+wscfl8CuulqCxXAY1q2Dr78Gr/fA3nf7dhg8GI444vCNXSmllFKHn6aMKqVUF+ZcHSwpgS1bYPNm2LNHgrlQSFYR6+oOvrjMunVtO1allFJKtT9dIVRKqS7MCghNE3w+d8uJlBTo1UsCRa8X9u6Fk06ChAT7X3y8+7iiAl59VV5fUCDPV0op1T3V1Ei16pwcyM6O9mjUodKAUCmlujArIKythaQkOc7MhCuvlCCvoADuvtt+/vjxMHp06+8XCsG8ebKvcPdu8PslsFRKKdX9vPqqZIv4fHJfGTAg2iNSh0JTRpVSqouqqoJdu+TY74esLDkePhzS0yEuDsaMgb597dfMm7fv9/R6Ydgw+9yZkqqUUqr7qK6WSUWQPepPPy371lXnowGhUkp1URs22MdVVdKDEOxKowCGIdVFLV99JSt/++J8vQaESinVPa1dK9sRLLW18OSTMgGpOhcNCJVSqouyZm5DIUnn8fmkB+GgQe7nTZ7sTvvcX6P63FwJJAE2bpSZYaWUUt1Lfr59bO1PLy+Hp56SQmWq89CAUCmluihr9c7vl32DADk9/PjMBtfzYmOlL6Hl44/3PcObmAj9+slxfT1s29aGg1ZKKdXh1dRI1WqQycbvfU/uJSBVrJ97TiYjVeegAaFSSnVBDQ32zbqyMhIQLlxI7vWnyAbCX//aFfWdfLLc1K3Xvv/+vt9/+HD72FqJVEop1T2sWyc9bAGGDpUqoxdfbK8UbtoEr73mTilVHVe7BoSGYXgNw1hpGMbcJtfvMwyjynEeZxjG/wzD2GgYxieGYQxyPHZL5HqBYRintt/olVKq89iyRVI5TTNSUIZiWLaUYWaBTO3eeadUh3n0UQiFSEuT1FHLe+/tOxW0aUCoN32llOo+1qyxj0eNkq+5uXD22fb1VatgwYL2HZc6NO29QngDsNZ5wTCM8UBGk+d9HygzTXMo8HfgL5Hn5gGXAKOAWcCDhmF4D/eglVKqs7FW7QIBSeOJ37aeLErIpMx+0t69cPXV0mti8WJXcZmKCli2rPX379ULUlPluLRUehkqpZTq+gIB2T8OUnnaOUE4bpy7P+2HH8Knn7bv+NTBa7eA0DCMfsDpwCOOa17gbuCmJk8/G3gicvwScLJhGEbk+vOmadaZprkF2AhMPNxjV0qpzsbaP1hZGWk3sWEDubRSEnTVKpg+nf43nMeo3nZkN39+6yt/hqFpo0op1R0VFNj7A4cMkZ62TtOmyTyjZe5cqUiqOq72XCG8Fwn8wo5r1wNvmKa5p8lz+wI7AEzTDAIVQJbzesTOyDWllFIRpmm3nPD7ITOpDnbsYBiOPhRxcc1f+OqrzL73VPjic6ivZ/v2fd/Ene0nNCBUSqnuYfVq+zgvr/njhgFnnmlPGpomvPACbN/ePuNTB69dAkLDMM4ACk3T/Nxx7QjgQuCfh+H7/cAwjM8Mw/isSDtkKqW6md27pWFwKCRfs/xb8NHAQLayl55sy51JaO16mDOn2WuPDH5OnzUL4fXXYP165r/Vepm4IUPsQjTbtkkakVJKqa6rvt6ecPR4YOTIlp/n8cBFF9kVqa3G9cXF7TNOdXDaa4VwCnCWYRhbgeeBk4DVwFBgY+R6omEYkYxkdgH9AQzD8AFpQInzekS/yDUX0zQfNk1zvGma47Ozsw/LD6SUUh2VtVrn90vfweQdaxnMZh7lak7nLc6vfIwpcwZwcehZbr58Jw/n3MF7zGATg2kghlnMlyZSn37Cyj+9zZ7nFrf4fWJiYPBgOQ6H7T0lSimluqb16+2CY4MGSRui1sTGwuWX222PamvhiSegqqr116joaJeA0DTNW0zT7Gea5iCkKMz7pmlmmKbZ2zTNQZHrNZEiMgBvAN+NHF8Qeb4ZuX5JpAppDjAM0K2qSinl4No/mBHG2LSJNCp4jKvkgbR0gkEpC75gbV8ezryZW3Ke5+KYV5nKx/yT6/maMRSQy+6KRJ64dB51s8+ROuNN6D5CpZTqPpzpoqNHS7XR226DJ5+Eb75p/vykJPjud+UrSOP6J5/UxvUdjS/aA2jFo8BTkRXDUiSIxDTN1YZhvACsAYLAdaZpattLpZRysNpA+P3QJ6MYArWsZCwmBnh9kJzU5BUGZGZBejrhvXvZ8Y0PfziF8khCxpccyQvztzPgnQIGH7WHnIsnMvXUJI4+2r2PcMMG+b6G0X4/q1JKqfbR0GBPOBqG9B88+WTZMpCQIMVjJkyAmTPhqKPse0FmJlxxhXQ5amiQxvXPPy+rh17tFdAhtHtjetM0F5umeUYL15MdxwHTNC80TXOoaZoTTdPc7HjsT6ZpDjFNc7hpmvPaa9xKKdUZlJXJHo1AQG68WWUbSaSGBcyUJ6Slkp5uMHOmew8gAB4v9DkCRo8mJcOHgZQYNfFQSSo7zb58uCqFJ36znmvOLuSDxSbp6dKCAmS/4q5mSfxKKaW6gg0bZA8hwMCBsHChBIMg6aAbNsBXX8Hf/ga//CXMmyf3BYC+fd2N6zduhNdf1x62HUVHXSFUSil1CJzpoh4PpO/Ip5BsaonUBU9L59JL4apI9mgoBDt3SiP7zZutr7FsSRpI0pY6qooDEAxSSSppVGBYL9qxnb/9qJzjvsolN1daGoKsTlpFBJRSSnUdTauL3nef+/EdO2TVMD4eCgvh2WfhpZdgyhRZNRw+HM46C157TZ6/cqX0s50xo/1+BtUyDQiVUqoLsQJCvx8yEmoxi4v4nKmNj8dlp3LeefbzvV6Z6R04UHpHWcJhWLEijtt+G0vVthKqtpSS3VBENcmNweXugkqevXMb0783kI8+ktcVFEgKkVJKqa4jGHTvEx8yBD7/3D7PzJRJyNJSOOII+3p9PSxaJP9GjJDA8IQTpGE9wAcfQFqapJqq6Gn3lFGllFKHj9UwuLoasgK72M4Aqolk5CencMY5PtLT9/8+Hg8ceyycOM1g8MQeHHlBLhOmp/JswtXE0ND4vMfuLibRV9/YmHjPHlmdVEop1XVs2mQXgunfH774AkpK7MeTkyElBWpq4PrrYdKk5vsD162Df/4T3nhDAkzr/d58s8WaZaodaUColFJdRCAgjX/9ftmXkVm8gU0MadwLSFoal112cO85e3bkwOtla98pVP/1IebwXOPjNdUm//7OEoYNs19jrVIqpZTqGpzpoqNGSSqoJSHBDv4aGmDpUrjuOrj3XjjvPFkBdCovl3vV8uWyylhaKo3rd+w4/D+HapkGhEop1UVs3GhXFyUcomF3EWVkND5+wowYBgw4uPccOxZ697bP59WdxFUXVpFBWeO11xelELdna+O5tp9QSqmuIxRyr+ANGACfOpq+JSXZbSUAXn5ZCpylp8O550pgeN11uCYOPR7Zb15SImmjCxbAPffICqNqfxoQKqVUF7F+vQSElZWQGi5nnZlLPAF5MDaOy67PPOj3NAw49VT7fOVKqP7dX/lRqr1KaJrwxu9XysZDJLXIalyslFKqc9uyRaqIguwPXLcOiork3DBgzBjpNWgJBOCZZ+xzn09SSG+7Df7wB9lD6PPJquLgwdLAvqwM3n8fXnyx/X4uZdOAUCmluoiCArvdRELFXnbRFx/SqnVETh3jjjm0BoHHH2/P/pomvLMik3P+czpD2NT4nFUl/Ql8JFPGDQ2wdeu3+lGUUkp1EE3TRd94w24/kZAgAd5FF8keQssLL7S8n3zQILjmGqlQevHF0rZo4EAJLMNhWSlcu/aw/jiqBRoQKqVUFxAKScqo3w9gUlYUJM5aHQQuu8JzyA3j4+Jg+nT7/MMPoe6M8/n5SV+6nrf8oyChvcWAFghQSqmuIBx2B2h9+sCKFfZ5cjJMnSpfL7nEvl5TA8/ZiSTNpKTAGWdImuikSZCdLde/+UYCTk0dbV8aECqlVBewfbvM2FZWQqg6wJ5gVmO6aE9vCTN/Oupbvf/MmXbRgLo6KSF+7HM/5fj4zxqfU0kya19aDeFwY/qqUkqpzmvbNru5fO/esjWhsFDOPR7o0QOOPFLO58yBxET7tc89B1VV+35/jwcmTpT3jo+XVNSKCnjrrbb/WVTrNCBUSqkuwNluorZMAsE4JKfnkrEF+JLivtX7Z2ZKGwrLu+9CKKsnP73rCLyRtFQfQb4q60dgyeeUldl7TJRSSnVO+fn2cV6e7POrqJDzxEQ47jjZDwjSZP6ii+znV1VJ6uj+jB0rgWH//rIiWVQEX30Fa9a03c+h9k0DQqWU6gLWr5d00XAY/H6DOOoxMEmglnOuzNj/GxyAWbPs49JS+M9/oP+Pz+TCUZJPZAAGYb74sApKSrT9hFJKdWKm6Q7KsrKksJglORmmTHG/5rLLZJuB5Zln9p/+mZ4OOTmyV71nT0kbBelPqKmj7UMDQqWU6uRM0w4IqypCmKFQ4/7Bs3md1PNntsn3ycmRggKWJUvgkUcNrnllNqk+uWvHE2CtmUvZa4spWBtuk++rlFKq/W3fbqd8ZmfDhg125ofXKymekye7X5ORAeefb59XVLh7Frbm6KPla69esvXBNOV7a+po+9CAUCmlOrmiImn0W1kJ5SUhvASJpw4DkzlHrnE3EvyWrr1WigpYPvoIXvqoF9dcIxVrrDTVT/f0Z/vLKxpLlSullOpcnKuDeXkyCWgFhElJMHx4pBhMkw3j3/mOtJKwPP20VMDel3Hj5KvHIyuRVoVSTR1tHxoQKqVUJ2e1m6ishPq6MLHU4yXIdBbR97xj9/8GByEtDW65xR1jLl4M1eOmMqCXBKFx1LGDfmxbsJ6Ni3a06fdXSil1+Jmmu91EcrJkojQ0yHlSEkyZbMKNN8qy4IwZ0mUeKTRzzjn2a0tL4dVX9/39BgyQverWe2c4djpo1dHDTwNCpZTq5Kx00fIyE1+4nngCGMDlPC11vdtYRoYEhT172tc++MAg76IxmB5vY3XTT0LHsOaXjzU2rFdKKdU57NplF4/JzJS2RtbqoM8n+wQnBz+Av/5VnrhwIfzoR42v/+537WIzAE8+afcubIlhSHEZSzBo32OqqzV19HDTgFAppTo5qwx4dVU4ki4aYDT5jOlVZG/MaGOZmfDrX8tMsGVbWSqZw3sSRx0A5aTz2tphhB/692EZg1JKqcPDuTo4ciQsX+5OF01JgSPfu8f9opdekka1yF7AM8+0HyoqkpW+fbHSRkH2L06fTmP/XE0dPbw0IFRKqU7M74cdO2DPHiAUIoYG4qjncp7GOON02ZBxmGRlwa23yldLUu4R+BN6EYPkFS3nONbe+Jg0s1JKKdXhNU0XjY2VSUdrxTA5GSaN9uOd38Ky3U9/Kj2QgO99z30L+u9/7ZTTluTlufceFhXB8cfb55o6evhoQKiUUp3Yhg2yP6Oy0oRQiARqOILdTGfRYUkXbapHD1kptPZ7pKQYpOb0oAG5qweI45+1V8E112ineqWU6gS++QbKyuQ4LQ02bbJXB2Nj5d+UyvktbwdYuRKeeAKAvn3htNPc7/v2261/35gYGD3a/VbTp2vqaHvQgFAppTqx9eth82YwwyY+giQQYA7P4Y31ySb/dtCzpwSF6elynjs6loakdALEAzCfWWx/bx08+mi7jEcppdShc64OjhgBn33mThcFk8kf39X6G/z6141lQq+6yr1K+PjjjQuILXLucsjPl5jzvPM0dfRw04BQKaU6sfz8SBPfkLSbyKSUs3kdpk2TvJ520ru3FJpJS5PZ49wj46nzJFJHPHXEcRc3wi9+ATt3ttuYlFJKHZym6aKGIStzxcVynpQEIzIKydrymf2k2FhpSmjZuxfuvBOQ6qEzHa1wd+6Ed95p/fs7C8s0NMhY+vbV1NHDTQNCpZTqpOrrYdGiyJ6MUIg46riQF0mipl3SRZs64ggJClNSICfHICE1htpIQLiQk1lRmQs/+IGmjiqlVAdVWGgHfykpkoFSXi73mbg4Seuc4p/vftE558Avf+m+ds898mLg+993P/TYPopPp6fD4MH2+cqV8rVp6ujcuYfww6lWaUColFKd1KZNUgocTDDDJFPFHJ6XB08/PSpj6ttXgsLUVMgd4QVfLLUkUEYm9/BzwvPmS/1xpZRSHY4zHXPoUAnICgvlPDkZCAWZsuoB94uuugp+9SuZFbTU18NNNwES4J10kv3Q1q3SpaI1zrTRlStlDtHnk9RRK/306681dbQtaUColFKd1BtvyEyppIuGmcECerNXaoQ7p1jbWf/+cPPNUjEuIcULhodKUlnBMbzBWVKFbvfuqI1PKaVUy5zpouGwrAw69w+m1u5ldJ0jXbR/f9mvnpzcmCba6OWX4YMPALj6avdDjz7a+iqhMyAsL5cAEmTCcepU+zFNHW07GhAqpVQn9corkc35Iek/eC0PyQNRSBdtauBA+M1vYMgQA2JjMYFisvkDv6G6vB6uvVZTR5VSqgMpLpbtfyDB3+bNEAhIfZiEBPB6YVLle3hw/O2+8kp5AODyy2HCBPebRtpQ5ObCCSfYlzdubGxZ2MyAAe52RlbaKGjq6OGiAaFSSnVCBQVSYRRMCIcYxFbG8pU82AECQoCcHNlWkp7hAV8MIbxsJYdbuEOmdp97LtpDVEopFeFcHczJkXNnMRlqa5m65wX3i6680j72eODee92Pr1olDQhpvkr4yCMtzwsahru4jDMg1NTRw0MDQqWU6oQefBCCQSI5NyYXEblJp6fD5MnRHJrL9OkwezZ443yEjBhM4Dnm8DLnwk9+Yk9HK6WUiipnQFhfL7eXwkIJ0JKSgOJiJrHcftLJJ8OgQe43mTwZLrnEfS3ShiIvD447zr68bh0sXdryWJxpo1u32n0RQVNHDwcNCJVSqpMpLJSy3Va6aBx1fJ9H5MFZs2QKtYPIzpZGwxMmGBAbh4lBGC+383s+Ks2DW2+N9hCVUqrbKyuDPXvkOCFB0kXDYVkhTEgAjxEmr3wpmTgis6blQy1/+Yu7DUVhIdxxB3Dgq4R5edLNwuJcJQRNHW1rGhAqpVQn8+KLUFUVuYmGQwxlI72I7PrvIOmiFsOA3FyYNAmye3kIxyUCsIc+3M2N7H5svuS/KqWUihrn6mC/frLHr7xcMlGSk4HycqbUv28/KT0dzj235TcbMABuvNF97e9/h82bOeooGD/evvz117BiRfO3iImRyURL04BQU0fblgaESinVidTWSuG26mrADOM1g8zkXQyQO+OsWVEeYXMjRsjNe+pUSMqIw4jcwfMZxVxzNvz2t1EeoVJKdW/OgDAQkK+FhXJbSUgAiouZwhL7SZdd5l4FbKqlNhSRILGlVcKWjBvnHl99vftxTR1tOxoQKqVUJ/Lmm1BaajWjD5NKBdOQst5MnuwuzdZBDBoks705OdCzl0FKD0lprSCdF7iI8hffhS++iO4glVKqm6qogJ075Tguzm7zUFQEiYngCdaTVrmDPBxLcK2li1qSkuDPf3Zfe+UVWLyYY46Bo46yL3/xRcu3AGdhmYYGyM9v/pymqaPz5u17WKplGhAqpVQnEQ7Ds8/KDGgoBEY4SBalHM9H8oQoNaPfH59PGhwbBhx7LMRlJGN45fazljzmcroUHVBKKdXunKmW2dmwY4esEvr9kXTRkmIms9RuN3H00e6qL6257DKYONF97ac/xQiHDmiVMC0Nhgyxz1etav6cllJHm64kqv3TgFAppTqJDz+UWdzqagCT5HAluRSQSCS/p4PtH3TKzZWvPXvC6NEGyT3iAAgQz7/5IYF3FsPixVEbn1JKdVfOdNHaWvlaVCTtBePjTSguYTKOcqD7Wx20tNSG4ssv4fHHmTRJCsdYPv1UgrmmnHHnypUtF6Dp29cudhoK2Suc6sBpQKiUUp3EM8/I15oaIBwmgzKO4ku5OHAgjBoVtbHtjxUQWsc9+iU0VkNdxwhe5Ry45RZtVq+UUu3I74ft2+U4JsadLpqUBEaVH6M+wHEskwfi4uDSSw/8Gxx3HMyZ4752660Y/soDWiV0po2Wl7ce7A0dah9v3Hjgw1NCA0KllOoE1qyR2dFQCOrqINGoJZY6O130jDMkJ7ODSk2FPn3k2OuF8883SMyUggRhvPydnxNa/qlsklRKKdUu1q615+HS06GkxG43YfUeHMVq0qmQJ513HmRkHNw3+ctfIpVpIgoL4U9/4vjj3ZOFS5bA+vXulw4Y4N4a37TaqEUDwm9HA0KllOoEnKuDpmmSHiwmjnomEKnX3UH3DzoNH24fjxkDg0fEyZQ0sIkhPMsc6UsYCkVphEop1b04C7VYFTqtJvBxviCUlbmrix5ouqhT//7N21Dcey/G5k3N3q5pP0HDcK8StlZ/rHfvSACLrG5WVBz8MLszDQiVUqqDC4fh44/luKoKYr1hEkOV5LCFZGqkDNz06dEd5AFwBoRbt0qGaFy6PWt8NzcRyl8Nzz3X/oNTSqluprraTsH0+WDbNjluTBctKwXTtAPCQYMO/V5z002y2c8SaUMxfbp7BXD+/OZzgs59hNu2SaXtpgxDVwm/DQ0IlVKqg9u2zSokIzO4SR6Zxj2ayFTpjBn77gfVQfTta8/g7t0rFUePOTYGYmMB2EVfHuYHcNttWiZOKaUOM2e6aGKiTDiCZHQmJwPFxWRQxgjWyQNXXmmX8zxYLbWhePVVPB8scrXPLS2VAjNOeXmyddHSUrVR0IDw29CAUCmlOjgrpcfaPxhfX4mBY9a2A1cXdTIM936RDRvgjjsgJtVeJfwHP6VmyzetdypWSinVJpzVRa1Jx9pauc/EBmugpsZuN2EY8L3vfbtveOmlMhPo9LOfcdqp7iXBpr0EY2Jg9Gj7vLW0UWeLik2bJLtGHRgNCJVSqoOzAsLqatk/GF9XQTLVjLKaBJ92WvQGd5CcAWFBgewlnDnL1zj9W0Q293ID/P739icUpZRSbaqmBjZvlmPDsBvTFxXZvQcBe+Jx5kyp8PJttNKGIvfjxxg82L60aJHd/sLiTBtdvVqC1qZSUmQvIcjr9+z5dsPtTjQgVEqpDs4KCKuqIIYGvATpy06yKJG7pHNfRgc3dKidcbR5s5QRv/NOiHWsEj7K99mz14D77ovSKJVSqmtbt85eQYuNtQOswkJISgxDSQkewkxiuTxwKMVkWjJpkjSsdzB+cyuzT6xpPK+thQ8+cL/MWVgmGHSvbjpp2uih0YBQKaU6sEBAUitNU2Z048IybXoMn2NAp0kXtcTH2zfsYBBeeEHaUZx7gbdxH2QF6dzFjXDXXXa5O6WUUm3GGVBZewfDYbnPxFSVQyjEaPJJxS9VX84+u+2++Z13uttQFBUxa/XfXE95+233S9LS3Cmh2n6ibbVrQGgYhtcwjJWGYcyNnD9jGEaBYRj5hmE8ZhhGTOS6YRjGfYZhbDQM4yvDMMY53uO7hmFsiPz7bnuOXyml2ps1i9vQAA31JvH1fmJpYJxVUKYTtJto6rTTGuvIsGMHLFwIv/sdJGYmgGFgYvA6Z7OqfKAEhUoppdpMba3ssQOZbNy9W45LSyPZ+8WSLjqVSHnryy93V3X5tvr3l6qjDn0e+QPjhtq9IpYvb15N1Jk2unKlXRDHacAAqZgKsH17y6mlqrn2XiG8AVjrOH8GGAGMARKAqyPXZwPDIv9+ADwEYBhGJnA7cCwwEbjdMIyD7I6plFKdhzWLW1MD4VCYeGpIoZLhrIfsbJgwIboDPARZWXDWWfb5Rx9Jz6iLLvE0rhL6SeUubiR87326EUQppdrQujTM7GEAACAASURBVHV2awePxw6sioshKaYO/JUATGapPHDVVW0/iJtugn797POGBmZveajxNByGd991v8QZEFZUwJYtzd82Jka6Y1jv0dJzVHPtFhAahtEPOB1oLB1nmubbZgTwKWD9ZpwNPBl5aDmQbhhGH+BU4D3TNEtN0ywD3gNmoZRSXZRz/6ARChFHPT0opj87ZHXwUEuAR9lRR7lv7i+9BNdeCxl94sEwCONhBRN4K3AS/PGP0RuoUkp1Mc50Ub/fPg4EwFtWAkAWJeSyHsaPhyOPbPtBJCY2a0Nx8qd3EFNb2XjeNG20f393z0JNG2077flJ4l7gJqBZEdhIqugVwPzIpb7ADsdTdkautXa96fv9wDCMzwzD+KyoqKhtRq+UUlGQny+znIEAxIYDeAkxji+kDHgn2z/Y1BlnyCInSEHRjz6CCy70QEIiAJWk8U+up+bfT9n5TUoppQ5ZIGAHScGgFJEByUKprzcbq4s2tptoq2IyLbn0UikyE5GKn+NDixvP16yRPrwWw2ieNtoSDQgPXrsEhIZhnAEUmqb5eStPeRD40DTNj9ri+5mm+bBpmuNN0xyfbX3aUEqpTqa0VLIl6+ogWB8m3qwhGT95rJW8mJkzoz3EbyU2Fi66yN7vsXmztKHoOzgWPB6C+NjOAP4buhxuvz26g1VKqS7AmS5qmnaSSWkpJIX8UF8PRNpNxMfDJZccvsEYRrNVwtmbH4BQsPG8aU9CZ0C4bVvzfYYAPXtKCwqAkhKtTXYg2muFcApwlmEYW4HngZMMw3gawDCM24Fs4OeO5+8C+jvO+0WutXZdKaW6HGf/wVBDiHgCpFJJHmvghBMgNTW6A2wDvXu72ygWFMCUqR68SVKBroI0nuJydj+zCL7+OkqjVEqprsGZLlppZ2dKcFgqWXUewhzLJ3DBBZCefngHdMIJOJsQTmlYREpNYeP522+7i8eMHOmub7NqVfO3NAz3KqEmmOxfuwSEpmneYppmP9M0BwGXAO+bpnm5YRhXI/sC55im6UwlfQP4TqTa6CSgwjTNPcA7wCmGYWREismcErmmlFJdTn6+3Airq4FQmDgC9KCYwWzu9OmiTuPHw6hRcmyacrMfNDwOvF7qiaOSVO7jJ3DrrdEdqFJKdWJ1ddLGCGQhsLxcjsNhKC0KNl44ii9JoerwpotaDAO+853G01gamFk3t/F89273XGBMjGSSWL74ouW31bTRgxPtagT/AnoBywzDWGUYxm2R628Dm4GNwH+AHwOYplkK/AFYEfn3+8g1pZTqcvLz5abdUG/iMRtIo4JRrMFHqEsFhIYB55xjT0QnJ0NWD4O4VJkGriCNBcxg5Zs7YOnSKI5UKaU6L2e6qGGA1yvHFRXgqyxpXIqbzFJp+nfiie0zsCuucJ3O3vYQ1AUaz5sWl3E2qV+9uuXWEs6ehZs2SdCrWtfuAaFpmotN0zwjcuwzTXOIaZpjI/9+H7lumqZ5XeSxMaZpfuZ4/WOmaQ6N/Hu8vcevlFLtIRyWG10gAA11drroSNZCbq57+rMLiI+Hiy+W/SyGAT16QN/B8eD1UUsi9cTwN35B+OZft9x8Siml1D4500UDdryF12PiiRSTgcj+wSuvlD/G7WHwYJg6tfH0KL6kT71dTebdd6UXr2XsWHtowaD757IkJUGfPnIcCMAu3WC2T9FeIVRKKdWCbdskVbSmBsLBMHHU2QHh7NnRHt5h0a+fXSenf38wMUjpIR3sK0hjHSOY+1EqvKM7BZRS6mA400VDISm2YinbWSXd6oFsihhmbILvfa99B+hIG/VgMrvkGUAm/yorYdky+6lpaa5th5o22gY0IFRKqQ4oP19mPuvqTAiFSKKadMpl/+Csrtt+dcoUGDZMUplyciApKwHTF0M1yQTx8gDXUXPz7zX/RymlDkJBgdxTwE4VBYkD/dvtMpyTWYoxexb0bdbV7fC68EJXtZhZJU9DVXXjedO0UWe10VWrWk4c0YDwwGlAqJRSHVB+vqS5BOvCgElPCsllA774mPbb1xEFhgHnny8lw3NypIBASo84whhUkkoJWTz+5dHSyV4ppdQBcaZVOvfcxXiCeMvt5cIpLIGrrmrHkUWkp8PZZzeeDmYLw0P2oD/8EKqq7KePG2cfV1RI26KmBgyQewjAzp3uNFnlpgGhUkp1QM79gz6CZFEi6aInnggJCdEe3mGVlCTVzuPj5YaemB6HGROLn1TCGDzDZey+5Z/2dLdSSqlW1dfD+vVybJp2M3qAmk17GivNeAkxsccWOPPMKIwSV9oowGm7HoFIE4L6enj/ffuxfv0gK8s+b6n9hM8nE4sgSSUtBY1KaEColFIdTF2dpPcEAhAOmSRQSzJVEhB24XRRp8GDJfYdOlRmeJOz4gjixU8K9cTyj81nwH//G+1hKqVUh+dMF42JsSuNhkKwe72dljmWVSR/5zyIjY3CKIFTTpGu8tZp7Wt4Ksobz51po4bhThtdubLlt9S00QOjAaFSSnUw69ZJMZlggwnhEGmUk0Cgy+8fbGr6dMjLk0pxaVmxmDHxVJCGCSzkZL649eXGQghKqY7LNOHLL2H+fPD7oz2a7seZLupMrIitq8R05GFGLV3UEhMDc+Y0nmZTzISgXU3m889h71776c6AcNs2d6EciwaEB0YDQqWU6mAa9w8G5M7dkyKGsQHfwH4wfHiUR9d+PB646CIYPVpmgzN6xVJLAtUkAfC3wssJ3/9glEeplNqXDRvg97+HO++Ef/0L7r5bO8e0J2e6KLgDKrNJhDTlqGoYNaqdRtaKpmmjO/4NQek5YZruItMjR7rq0LSYNtqjB6SmynFZGZRq9/IWaUColFIdzNdfR/YP1ocxgD7sIY81sjrYXn2hOojUVLjmGtkrkpzuIybORzFZmEABw5n7h5VSk1wp1aF88w3cd58Eg/n5kvmwaRPMmwdvvhnt0XUfGzbYPfwSEhxJFeEw3xTYfzt7UsjgH3eADJSjj3YFpdPDC4irLGo8d6aNxsTAmDH2eUtpo4ahq4QHQgNCpZTqYD77TNJ6wkGTBGpIINCt9g82NWKEVB4F6NE3lhqSqSYRgPv936Hmwf9Gb3BKKRe/H556Cm6+GVaskH1qW7fa+9YCAVktnD9f60K1h/x8+9j63wAgruwbiuuSG8+nxnyCccnF7TiyVhiGa5UwkVqm1cxrPN+40e6nCO600dWr3RVULRoQ7p8GhEop1YGUlsL27RCqDwFhMignlnpyvDvgpJOiPbyo+dGPoHdviEv0kZIYZi+9MYFSMln47N79vl4pdXjV18PcufCLX8C770rwYZqwY0fzVZqqKgkaH3pI2gGow6OhwZ0u6qwuam7bjjPf5MTpXju3Mtouu8yVDXPa3sdc+8Xn2fEhY8faTw0G3QGwZcgQ+zmbN7sDYyU0IFRKqQ7E2j/YENk/mE0huazHN3VSx7lZR0FMDFx/vTRUzuwTS4B4SskEYOnqNHeDKqVUuzFNWLIEbroJ/vc/d52nigopCjVjhqT2zZwJGRnyWEEB7NoFDz8M772nq4WHw4YNEqiD3D7KrYKdpsnOLfWNz0vBz8SrRrf/AFvTt6/80kQcyydkVNszB/PnSxsJkJ9ryBD7pS2ljSYmwhFHyHFdnU5CtEQDQqWU6kA+/VRmdYMNJgYmvdjbrdNFnU47TWrq+BJiiTMaKCWTAHEsD08gtGBRtIenVLezejX89rdSLMZZ4dHjgaOOkq1gw4fLRM6MGXDDDTBokPwLhSR9zzSl6biuFrY952qZFUABUFlJcW1i4+k0z0fEzJ5Bh+JIG/UR4pSy5wGpRlRYKBVHLc600VWrWi5apGmj+6YBoVJKdSBLl0I4bBIOhYmlodv1H9wXqyJ5VhYkJpg0EEspmVSSwurnvor28JTqNnbtgr/+Ff78Zyn373TMMfCb30jAFxMj10aMgOOPh4EDYfJkSE+Xa6WlkhEB8iH/4Ycl3VRXC7+9hgZZhQVJlywuth8zdu10pYvOOKa042WgnHsuJCU1np5W+TxU2j1LnGmjzoCwosK9x9CiAeG+aUColFIdRDgsM+7BWvk0lEY5cdQzuFeNTLcrZsyAnBxIz/RiArUk0EAMSxYGtJa9UodJfb3sbS4pgUcfhVtukb6CTkOGSCD4k5/A4sV2FndmphSFsvZwXXAB+Hzyr29fCQ6TI7VNTBM++ggefFBXC7+tjRvtdNGMDKn6atm92c7rTcHPxEuHtfPoDkBSkvyyROSxhgEBe0PkwoV2AZl+/aBXL/ulK1Y0f7v+/SE2Vo537dIWtk1pQKiUcgmHpcrlCy/Ali3RHk33smGDVOgL1ln7B4sYTgHeWTO7XbuJ1iQnw7Rp0HtwIh7C1BFHgHiWluTqtK9Sh8HGjXD22TB9uqzEPPmkuyhHdjZcdx3cfrukh777rgSPYK/qx8fbz+/RQ/YSWtavl8/9Rx5pXysqktXCd97R1cJD5WxG71Tvr6Os3D6fxmJizj6tfQZ1sBxpowYwe+/jEJZfvupqmTwAuT1OnGi/7NNPm88Per0weLAcm6YUl1E2DQiVUo2sDf6vvy698J54Qv9otqcFC+RGFWww8RImkzJNF23B7NmQmuElMSaIiYGfZNYyktJXFkd7aEp1Kdu3ww9/KIU6ysvlQ3h+vqwA7t4tgdxdd8GkSfKhPD9f0t4tZ50l1YGbOussKfQBMgk5dy5ceCFceql7tfDjj2W1cMeOw/6jdinBoPR9tDibsRvf7HGli87M2SRpFx3RtGmytBcxu/516S4f4exJ6AwIS0ul52VTzrTRltJKuzMNCJVSBALSKPjf/5ag0BIKwbPPwp490Rtbd7JsGYSDIcImeAmRTjkjWeeeTlf07CkZtEnJ8rGmlkRMDJa/vGs/r1RKHai9e+HHP5ZJQauxOUjgFxcnH7r/+U9pH1FdLXsAX33Vft7EidISoCXJyXDmmfb5Z5/JB/SRI+H//s+dIV9UBP/5j6wWOsehWrdxo51OmZ3t3ue5d7NdkTkFPxMuGNjOozsIHg9cfnnjaT92cWTdZ43nS5bYlVMHDpSf1dJS2mjTfYS6y8CmAaFS3Zhpyj6Qe+91p1gkJMi+D5CbypNPuibl1GEQDsvserBWPvEkUkUqleRMzJYqKspl4kTo0UcqVtQTSx0xLFmZaFeoUEodstJSuPZaWSH0R+p4xMTIql7fvnJ/8Hrlw/gDD0gF4Ouvh8pKeW6/frKSvy+nnGLfZwCef17uQQkJsvJ42WW6WnionOmiPp99b6+pClNRYufgTmcRMeec3s6jO0hXXOE6nb3nscbNkaGQZNbAgaWNZmbKnlWQ4jPOyrjdnQaESnVThYXw2GPw0ksyu2sZN05Kg191lV10rKpK0kedz1Nta9MmmQkP1oXwYJJJObmsxzv7lGgPrUMaNw4yjkggzmjAxKCKFJYFxxP+8ONoD02pTq2yUvYEbtsmgaFpSjGO6dNlf+DFF9vVQ8FuPv/RR9KHcNUqCfZ8vn1/n9hYKTZjWb/e3UNuxAhZLXSuMhYXy2phS83HlQgGYe1a+9w5mWsWF+MJ2wHhjLTP4Nhj23F0h2DkSJgwofF0Ju/iLbNLpraWNlpc3LwOgmFotdHWaECoVDdTXy9NgB94ALZuta/36gVXX21Xek5Lg+9+V2ZrQWbSnnrKrlqm2tbChdJuIhh0povq/sHW9OkDQ4YYJMZLc60qkqkklTXProryyJTqvGpqJAjbsEGqMNbWSmA3caLU9xg5En79a9lnPmeOpI5WV9sVG4NBua9cdpnsLXRWtmzJ1Kmy4mj53//cBWsSEiRovOwySEmRa6Ypew6tlEjltmmT/d+mVy930FO82W7bkEolE87sLUu9HZ2juEw6FUypeRerJ+FXX9lbXXJy3Ak1n37a/K00IGyZBoRKdSNr18J990kTYKtJbWysxBzXXis5+E49e0r6vjXTu2sXPPec+4at2sayZRCuayCMgccKCFN3u2ZGldsJJ0BKunyYCZBACIOl7+kytlKHor4efv5zWX0zTZkE9HrlT9CIEe6tzD17wi9+IROLOTn2imFKigSJ9fVSqfqcc+APf2g9zdPjkRVHy+7dcn9qasQIaWdhtRZwVphUbs500fh4u0qr3w/+YjulvkNXF23qkktcS86zS5+R2YsIqydh07TRFSuap40OHmwX7d6yRT/PWDQgVKobKCuDZ56RAjEVFfb1UaMkPXTKlNYnCQcMkBu29Qd040Z47TXdjN2Wysrkv2swEMTAxEuIbArJOTW3c8zeRsn48ZDVPwEPYUJ4qCaJJbsHaQMzpQ5SMAi/+pUUdwG5T4TD0mQ+I8M9MWjx+6XQy/jx8nn99NPhiCOav+/rr8sq329/23LV6rFjJeCzvPJKy6t/CQnufYnOgiJKhELudFHn/T5UUYW33m6+N8O7WHJ7O4MePeQXLOIEPiSxwq529/bb9mcSZ0BYWOguqAPye9SvnxzX1+ueVIsGhEp1YcEgfPCBVIJzlqDOzJQMjEsusfcJ7suIEdKHyrJqlewlUW2joMDeP+glTCp+8liL97RToz20Dm3oUOjdN4ZEnxTi8ZPKGvIof21xdAemVCcSDsNtt9krbsGgBBJHHy2fw8eNgzG+tbJn4IUX4J13CC1Zzv/u3UPVHj/U19Ont8n998Nbb0nKqbNYjPU95s2Diy6SLBXnhKJhyL3IUl4O8+e3PNYhQ6TXoTXO995ru/8OXcGmTXZdrT59ZF+mpWSLHR2mUsnEExMO7ANAR+FIG42jnhnlL4EpqU7bt9uB8JAh7t+//aWNavsJoQGhUl3U5s2SzrNggV2q2+uVwgDXXw/Dhh3c+x1zDJx8sn3+8cfuflPq0H3+OfgrwgTDjnRR1sKpGhDui8cDxx8PiUmyfF1ttZ94Ydt+XqmUAgnM7rjDPcFXVgZjxkh6pq+8iMvmXQ55efKB/OKLYdYs3p36O7bd9gj8415i7vojc27sR3zfLBJHD+Y7fz+aNwMzuYm76LnnS/m0vmuXbCgsLeHJx4Pcf797HEOGuFd25s61q5s2deqp8v99kP1jmhBgc6aLJifbWZWVlVBdZK8OTmMxvrM7eHXRpk4/XZarI2bVvAIVlY3nVnEZw3DvtGip2qjuI2xOA0KlupjqanjxRXj8camyZRk6VPZgnHSSu0LcwTjxRPcf2nnz5IasDl1dnaRphevqCOPBS4g0yskbYcoUr9qnE06AtCz5hW4gljpiWfppjL1xRinVItOEv/9dtgBYAgEYNAj6xhXD++9z+txr6fneM67X5TOKpUxuPD+LN+gd3i0lSbdsgVWriPtoARd9/ite3z2e3xT9H/2+WQG7dsrjX+fzxD3FPP6Y+1P6hRfaGfKBgHtcTtnZze9DuoWhebpold1ukEBVAzE1dn7tDBa4G0F2BnFxrg2n4/mM7Cq7jOg779h/9p2TC3v3Nk8L7ddP3g6kz7JWUNeAUKkuJRSCO++ERx6RVJFgUDb5X3yxTO5+23Z2hgFnnCGTxZZXXpE0FXVoNm6UG1awNoiXMAbQi0IGnTkm2kPrFMaMgeyBCcQiy+CVpLKs7mjCy1vIE1JKNfrPf2RfucU0YXB6KQM2LIT588jYnc+ZvOl6TRE9eJVzG88nsIKxfNnq94ghyDm8zsuczxU8JRdDUor0gRvW88K9uxuf27u3ZLBYFi6UPWAtmT5dCqaALEA6V8a6qy1b7Gqvffq4t4mUb2uSLppXLdWAOhtH2qgHk1nFTzdGgWVldnrosGF2v0Fonjbq8ciqNMjvfUt7W7sbDQiV6kJeeQXefFMqta1dC19/Lfv/hg+3i8J8Wx6PzOQOGiTnoZB8qNi9e58vU60oKIDCQpNgfRgvIXwEOYbPdf/gAYqNhaPHeUiKl1JxVSRTRgbrnv0iyiNTquN65hl4+GHHhSo/UwtfIW3JW7BH/pjP4TnisPsM1Y07jueOvJP6QcOhzxH061nPadmf2Ust++AlzP9xHxfwkut73vXzPbx92TONVWTOOccO9EIhyXZpSVKSZKxYnKtD3ZWzN2NGht1/sLISaorsipzTWIzvzNl0SpMmufI9Z4fehLLSxnNNGz10GhAq1UXs3Qv332+3kxgwQG4KL74o5cEXLWq78so+n/SFskqA19fDk09KxpA6cOFwpKDMrgaCePEQIo0K8uK3wOTJ+38DBcje1sQUKYHY2H5iXsV+XqVU9/Tqq5IqCkCVH9YXcE7Bn6nbubfxObmsZxLL5WTyZMz57/DajUsoOutquPxyEn/yfS5Z/wd8hbslvzMQkJvQ+vWSA79wocxQPv443Hsv/O53GNdey03x/2Q28+zBmCb/79lhLBr2A/jgA9LS4DRHJ4Tly5s3F7dMmmRvKSsvl9Y93VXTdNFae7sg/sowsVUljeczea/zpYtaDMO1SjiMDQyptvetLFpk75t0po3u2dN80rppQNjd0441IFSqC7AKA1gBWWqqO12irAweewxuukkKwVhB47cRHy9/l9PS5Ly6Gp54wr1vQe3brl1ykwr46wEDD6YUlJmaJUtf6oBMngzpfeLxECaMQRXJLN16hHsTrVKKd9+FO+4wwV8ps1EFBZzpf5a+7KKaZAAMTL7Dk9RPOYndz3/Ilw98zOu1p5C/WtJMDEOqhVp/+wFZJezZU3L1jjlGNqufey5873vS2+i22+DBB/Gs/prbZy7jRD5ofGkYD7/e8SM+mXYTXHUVsyeWuN77+edb/rDu87nrbn3wQffdC7Z1qx0INU0X9e+pwgjLbHAqlUzI2iLRdGd1+eWNhwZwWslTUCelVevqYPFieSw31/07+skn7rfJyLCrkVZWSqXv7kwDQqW6gHfflZshSErntGkSII4b535eYSE89BDceqtUtvy2M2KpqfDd70pfH5CA9KmnWu4hpZpzt5uQG3Y2hQw69+goj6xzSUuD4aNjSfDa7SfyGUXl64uiPDKlOo4PPzD57Q0VmOsKZCWvys9JLORcXuF1zqaIHuykH77eWfzvB+/zx2kLeCj/eF562eDzz+33Oflke//VQRs8GN87b3HnU/2ZmGDnODYQwy/4G18+/jnxY0dwbvJ7gNyg1qxxp0M65eXBwIFyXFcH779/iOPq5Jz/fXr1khUxkECnttiOkqezCN/pp3bu/rY5OVJNLGIW86HEXgG10kY9HumRadlf+4nunjaqAaFSnZzfD3/9q50O2r+/VBMdMAB+9jO4/XZpQO+0c2djFg/5+d8uMMzOhiuusCuX7t4Nzz3XdumpXdm6dVC4J0gwaOKJBIQTWIF3didpFtyBTJ0KSYlyXEMSITwsf35rVMekVIdgmiy55xN+fvo6/Ot2UlllUEoGyVSRQC03cB+bGMKupOFUDhtPjytOx99zSIsbz0ePdn0WPzSGQezlF/HXDWczJtfeoxggnhv4BwXFmUz7yyx6f/iiRDS0vkpoGO5m9StWtF6IpqsKhyVotlh9CEGyg+L8drA0gwVSGa6zc6SN9qKQY/wfYE0gfPqpnRziTBu1MnKcNCC0aUCoVCd3113S3gkgMRF++EOp1mYZOhRuvhluucX9xw+kOuhf/iKVSb9Nc9b+/aWSqdUbatMm2T7S3XPy96W8XLbcFG2tJoQXD2HiCTCh7zeds/pblJ16KiRmSJptEB8B4li6zGib/GilOimzNsC/xj7EnF/0YVd1GmVk4CeFdCo4jmXsYADFSQNh8BDIGcyICSmNNWKSk6V42PjxMGsWXHmlpIq2VYGyxL4Z/GPFZIadPLCxkkwVyVzP/eygPxdtv1saEn79Ndu3hlrte9u3Lxx1VOTnNVtvat9VOdNFe/d2N6OvKg5g1EuEmEolE3yrukZ/2wsusKsPAadV/a9xv0o4LFtYQQrqpaTYL2u6Sjh4sP25ZevW7l2YSANCpTqx5cvlfglyk5482b0h3ykvT7Zx/PznEsA5rV0Lv/893HOPlPA+FMOHw9ln2+dffSWV31TLCgrk5lNUZGIgeyHSKWfEjH7RHlqnlJMD/YdJ+wkTqCSNpdVHEl6ljTJV9/XOd57hz1/NpgFf47VsipnJuxg5g1iTdyHxIweT1ieJ0aPl/vDDH8q2gl/9Cr7/ffm7PmWKfHhuq2DQkpoKD7yQzYBT8+CIvmAYlJHBj3mQvuxkaLgAvlwFc9/ixXt30dDQ8vvMnCl7CkEmN7/NBGdn40wX7d/fbqFQWQmBEntT/3QW4Zs2Vf6jd3ZpaVKSNmI6i/CV2kvD1mcPr3ffaaNxcfbnoYaGQ//80xVoQKhUJxUIwB//aM9o9e4tKaL72hpgGHD00fCnP8F117lXEgFWrpQPAg88YO9BOBjjxsGMGfb5kiXdu/LbvqxbByUlJg2BcGO6aDZFDLpwwn5eqVpiGDDhWA+JcXb7iVIy2fDsiiiPTKno2L6yhPte6UsdsuQXSz2D2czd4//H9/83i+G3z2Ho0SmMGCETKr/9rdSD6dfPtfhy2GVmwoP/8tBrbB/Z35CSSiE9uY4HOZXIJ/vKCkpeep/3zvxHi+Ws09Ikbdwyf373SA5omi7qDJiLiyGhugumi1ocaaOp+Dmu3P4f/auvJAMH3GmjO3bYGVUWTRsVGhAq1Undfz9s2ybHcXFw1VWyb/BAGIYUGfvzn+Hqq5s3rF++XGaHn3vu4G+qJ5wAxx5rn7/zzqEFl11ZXZ2UUi/aXEXQ9DQWlBnr/RrvSSfu59WqNSefDEkpMiNSTyz1xLBkblmUR6VU+6uuhmdu+IR14VwA4gkwyLeb199J5NQVfyJj+lgWL7ZX/CZOlCySaOndWwqeZfaJh9xhkJPDDl8Of+dnjMSOeN54J47qEce02KDw+OMlzRVkH6GzEE5XtW2bXVm1Vy/3yqi/PIhR7Qci6aKs6LztJloyc6bd+wo4pWGu7MWIeO89+TpypP17Ac1XCTUgFBoQKtUJrV0rm+wtxxwD559/FZMnqQAAIABJREFU8O/j9Upz37vvlkrOzkwS05RqXffdJ30GD5RhSNrq8OFybjUXbi3VpzvatEn+uxRu8mNiRFJGTU4YXWaXbFUH7fjjIb1PHB5MwnioJoll67Ok8pJS3UQ4DC88UsmXS6upJR4fITIo45zTG+hxipSefvZZO7skNhbmzInigCMGDJDslJQUAzKzYNRoNvU4lpWMIxT5uFpNEm8WHSubGa+4AirsfqOxsRIjWBYu7PoVr53pooMH270IKyuhvqxJddG84fKkrsJqiBxxIh8QW2b30nz3Xfnq9cpnJEvTgPCII+wV8T17um/rLA0IlepkQiGpHGrd6LKypPG8VeXzUMTEyD7zv/0NLrxQitNYPv9cis4czGdqj0daUCUlyXlRkT1bp2T/IMA39r2LZPyMPUP3D34bMTFw5Ph4Ejzyfw4/KXxpjsH/1odRHplS7WfRItj0/KesCQ3HADIoxevzctFfJXdu9WrpHW854wzo0SM6Y21q2DCZhExIQD7wDxzEluGz2JUwjHDkI+s7nEoJmfD003DkkXbPJWDsWHsrRHU1fNiF/6/fNF00HLYzevbuhcSAnVrbqZvR74sjbTSRWqZWvNU4+7xmjVRUB3fa6LZt7kq0Ho+7jcqmTYdzwB2XBoRKdTKPPWbPAsbEyCRpbm7bvHd8PJx1lqSSOtNPN26UFhV797b+2qaSkiQotCxb1r3TMSymKQFhrb+B8trYxnTRHhQz8JLjojy6zm/KFHtCo5Z4Gojh02f1F091DwUFsPitaopWbKOIHqRRTiwNTJ1i0ndoAqGQ9Iq19OgBp58evfG2ZMwYmZxsnORMTqFi2HhWZc8kbHgJ4uNhfkAt8VIFZPp0uOkmqKvD43G3oVi61JVF2KWsX2+vZvXs6Q5kqvxhPJXyg6dSyXg+61r7By1HHSWTAhGnmPNde0ytiehRo+wJapD2JE6aNqoBoVKdyrZt8Mgj9vmoUa6MiTaTkQG/+Y30nLLs3StB4cHMng0f7q7w9cordnns7mrXLpm5LlpdiIkHT6R30pjELXhHjYjy6Dq/GTMgOUM+SYbxUUMCSz8KaQ8U1eWVl8PLLwPLlrE6lEsiNSRSA74YLv7dSAAWLJC/QZZLL5VUy45m4kSZmLRaAvhiPNQm9+TLwedhpmWwhjz+xK2UkS7/3777btm8np/P4MEwIvKnNBi0Uwe7gvJyWfV84AF45hn7em6uFFKBSLpoZaCxGfBJvI8vKx2O66ITjo5Vwql8TEKZ/QtuBYRerxS9s3zyifstmgaE3fF2oQGhUp2EacL/+392QJWaCjfeePiqwSUkwC9/KfuyLH4/3HEHfPHFgb/P7NlSRc56/RtvdM8/tpZ16+Rr4YYKwtg13KeMD7R9TfduaMAAyMmT9hNhDKpIZln5CMz13agOvep2gkEpAlZbXE3tinx20o90KjCAgXlJTDw+Hr9fJuUseXnuCbuO5sQTZRLS+rOYng6lNfHkDzwNc0Qe2xjI77id3fSRJ3z5pWwWu+ceTp0Zbgwmv/5aqkt2Vn6/ZNg8/LCsnL73nrtSptcrQb2113/PHkiss1fJZrBANvbvqwR5Z3bppY0zB/HUcXz1fKiVD0rr10t/QXCnjW7ZYjevB/ndstKmq6oOLhuqq2jXgNAwDK9hGCsNw5gbOc8xDOMTwzA2GobxP8MwYiPX4yLnGyOPD3K8xy2R6wWGYXSB7ppKHZiXXrL3fXg8sqfekSlxWHi9cM017tTP+nq4916ZaW5NeTk8/risMn79texLtG7Oq1fLfbu7svYP7t5jB38+gky/uFcrr1AHwzBgwiQfibFSMaOaRL6hFxuf0v4nqut6+23YvRtYtowNoUGRYNCEmBguvnEAHo8U97ImFD0e2W7Q0eegZs+Gm2+WY49H9geWlHqYV3gM72VcxKveC5jBAn7Iv7iLG3m0/nJe+cXH5M/6JT1jSqmslC1lb73VuSYia2tl//7jj8vi59tvNw9qk5IkyPnRj9zVRSsrwRdJF02jQtJFu+L+QUufPnDKKY2np/CuFC6IsFaIR49210fQaqNuvv0/pU3dAKwFrFqGfwH+bprm84Zh/Av4PvBQ5GuZaZpDDcO4JPK8iw3DyAMuAUYBRwALDMPINU0z1M4/h1LtqqQE/vEP+3zYMGkY3B4MA847T4rXPPaYbFo3TXjiCZlhu/hi+0PFrl2SxvL663bRmw8+kFnpadPg/ffl2ty5MHCgpKZ2JxUVMrNrlpVTWJ+GB6kAkEkpgy6ZFOXRdR3Tp8PT93soL4EQMQRIYNmbxQz7Y7RHplTbW7UqsiequprQii8oZjI+ZEIkcUAPzjgv9v+zd97xUZVZH//eKZlk0nsBkpDQQXoXpSPoKlZ0UbGtrmVddXd1d33fXVdd17K6vupr3dXXCtjQdW10QUGa9JIQCC0kJCG9TcrMff84M3NnIDQNmZTn+/nkw9yZO5MTIPe55zm/8zvs2wfffGO8Z8oUmTfYHrjiCqnavPCCJIUJCbImVlXZaIxIobomko8briCeIkJxZ7ybwLXlIIWRwbhsdiwWqaCmpclalp4um6rJyQH90fxoaBB/gG3bJCFxNnNnGxwsld1zzhHDUJNJztu0SV6vrISmugaodwBud1GL5pcwdUhuukmGTwJjWU1oyUFqUrqAxcKiRbKxbbHIHOZVq+Qt69ZJ4dRDjx4ycgvk7993rmVnoNUqhJqmdQUuAv7lPtaAScBH7lPeAi51P57pPsb9+mT3+TOB+bqu1+u6vg/YA/gUgRWKjslf/mK4a9vtIhX1navjS02N6ON9XbRagvHjxc3UV6L6xRfw0kvSu/DHP0ol8YMP/K2+6+pkZ3r8eOMGpL5eel06w+BgXzzVwcodh2jC6hWM9oktxhwTGbC4OhqDB0NyWhAaOk5M1GBn1Y4ocDgCHZpC0aIUFooMH4DvVxPqrKAe90XaauXimxMICYG33zYqZOHhssnXnrjhBpm1C7IBGRvr3lDUTBAWjh4aTpGWRCXG7CSTq4nwsgNQXkZTo4u9e0Wh8u23Yqxz9dWBX4eamsQN8/33pWfyo49knfBNBq1WSQBnz5b5wJddJsmLR3WTnW2YyxQUQGij4aIzlcWy+EZ28PXlssu8NxhBNDLBtQyOSpVw/36j4ucrG927VzYWPKSnG5vbhw51vvuT1pSM/g/wAOD5K44FynVdd0/CIQ/o4n7cBTgE4H69wn2+9/lm3qNQdEgWLzZctTVNlB++g989NDTIInfxxXDXXbLzNWeOSE48GvrToqhINCpz5kgm56OzGThQZKCetaW4WOSjM2bI5tyJLqAffyyynSuvNJzjDhyA7747g7g6AN7+wd3lOH36B0cOUyKHliQyEnoPsWPX6tHRqCGUTc4B1CxaFejQFIoWo75eql6NjUBNNWk/fEIOPrq3pCSuvs7K6tX+ErirrvJ3XGwv3HEHPPusFIMuu0wcsUeNkk1Ss90GkZGUWBIpJQbPqhVKDRZHNRQX46yr95sxV1srI5Xuussttz0DamqMgfA/hupq+PRTSQLnzZN5gr6zes1mMca56iqRzM6aJQPWLc3o+n74wXhcVgbWqjKgk8hFPVitcPfd3sNpLJJ7GV1uSjzmMuec47+p7es2arMZI0saGvxUp52CVpGMapr2M6BI1/UfNE2b0Arf7zbgNoBUX+98haKdUV0tC5YnJ0tNhV/9yv8cl0v6C15++fhG6J075evFF2X3a+JE+erb95jeEV0X67JXXjGyN5AM8xe/kA9wW9GlpIhZ2aOP+l8wCwrkYmqxyO5taqohY6mogK++gksvlUT13/+W55ctk53OlJQW+etq0zQ0QG4u4HRy+IgJfBLCqXPakG6pgzBunMai+To1NdBAELXYWf/uD0y4ZHKgQ1MofjK6LlJ8T4UjdP0KBjeu5RXcZTSrlTEXxRIUJEPoPaSlScGoPaJpYnLma3QGkkw99xzU1Jipr4+gIesoPbJWM871DRVEsYu+rHaNwVEaQr2Wgi0mkfpGox6yfr1UC+++WzYtTScplRw4IMoYj0vlpElSbQ0PP/2fIzsbPvnk+IRS06B7d9l47dfPPYvxFOi6kRBWVoKryQnVMjR4Essw4+qY4yaa49ZbxYWotpaRrCOisYTKsjKIiWXRItlQsFrFbXT1annLunUwfbrxEV27yr0MSJUwsRO19rdWD+G5wCWapl0IBCM9hM8BUZqmWdxVwK6Axyv2MNANyNM0zQJEAiU+z3vwfY8XXddfA14DGD58eDtqI1Yo/Hn8cSPpCg4WyWZUlBzrulzUXnjh9Bqg9++XauH//Z/0YEyYABOHVzF065uYX3vZGG54LP/6F+TkUPPWRyxYGce8ebLxFhIiMXlUeI2N4ob2hz+IvKe0VHZwPVXDuXNh5kwxgcvOlmqZ0ykSGc+FuiOzd69bBpR3iFJXpDcdDDU5GDKrhQZJKryMGAFxCSaK94ELE7XYWb2ikQmBDkyhaAFWrzaGkms11Vy9/ne8zSzjhKQkJl9g4bHHJFHwMGfOyROe9siAAaJcefppKC/XsA/N5GjGHLI3wL1H/kAIdbzBzewnHUrgHHsFey/7HR+vSvJ+Rl0dPPWUmKX9+c/+/ZW6Ln/Xn38uyacvS5ZIT9rMmXDBBc1X8Dw0NsLChcePPEhNlcrVgAEnbgU5Efv3G5sCBQVgb6ryvjaFJbL76zt1vSMTHQ033ggvvYSVJiaxjE8LkyAmhrw8jV27JNEeMcJICHNypKrq8TPo1s2oGh461LZdeFuaVrks6Lr+R13Xu+q6no6YwizTdf1aYDlwpfu0GwB33YDP3Me4X1+m67rufv4atwtpd6AncIxPkELRMVi3ThYgD5MmSRIHsjjdfjvcc8/xyaDFIjuWkyadeCRF0b4aPnhqP3dMyWHaff14eNdVrOQ86jl+IFUxcTy/YiAX9tnLc0/UeXsTzWapCIaGyliJYcOkcrh2rSR7SUkSg4fcXPmZNE0qhR7JUnFxx5oTdSI8ctGmnH2UEuN9PjO+ArO1g92htQEyMsRu30ojLszSR1jUA/1gO/afVyiQKpXvNXPK4beIqj/CQtzG61Yrsb3iWLTIfyj7RRfJvLqOSFoaPPSQj9okKopdE+/i0VGfU0osM/hKXFeB7YciuPnlEbw87j1Skv1rBhs3wjXXSE9fY6OYjPzpTyLtPDYZ9FBXB/PnwwMPyBrXnJtpYaEIcHyTwYQEuPNOKWyNHn3mySD4y0VLSiCoRsZNdCq5qC/33ON9OI1FoguullKsRzY6cKDIQz34yka7+ZSc8vLOZqBtj9Z2GT2W3wPzNU37K7AJeN39/OvAO5qm7QFKkSQSXdd3aJr2AbATaALuUg6jio5IQ4Msbp7qWlKSGMnk5Yl680QjH6ZPlwXGsyjW18uCtnw5rFzupPJAqWRgPtPhK4jkP1zMf7iYEOoYw/dMTNlNGgf4MH8sXzGDJizgALJ2yZ12ZBSaJgnfdddJgvrFF8b3fOYZMQCYPds/1rlzpecjNFR6QN59VxbPFStkrmJUlNzAeL4qKiTBvfhi6NKOu4V1XeYhAZTsLqHR59I7dGgb931vp4SEwKDhQXy/qJKKRiv1BJNHF/a9t5qMP14d6PAUih9FdbUkK561oU9SOec9fT9vcjUN7g29+rgUnJipMopFXHSRyCI7MnFxkrz9z/+4DbzMZvJ6TuLhLpu5f82VDM7fzCaGoKPxVeNkbnjuOuZPfp//nf4uH3xtmNHU1srn/PWv4uh9bL9lVJRUA0tKpO3B829RXCyKnZ49Ze3r0UOu/WvWSALf1GR8xsiRsl7/VGWMZxRVRQW4nDpapbjPeeWinS0h7NVLJLKff84wfiCGUkoLCyEsjMWL4de/lu6XIUMMR9H16w0T1thYWTvq6kQJ5XCcvVnPbY1WTwh1Xf8G+Mb9OJdmXEJ1XXcAV53g/Y8Bj529CBWKwPPss8bulNUqydUbb0h7X3NW1CNHyoWuTx//5202GB+3g/Elr+Dc9C4bq3qwnIl8wwSKSDjuc+qiUliWcDvLwsNl9arM9fYjAOByEbRnJz+b7uS6V8aRmibJzMCBshh7nOxcLlGaXnKJyGE88tDPPxcpjsUiC9iWLbLb7XJJ4ti7d/OSm7174ckn26/U6fBhtwtcVRVlpS50jAHBE2Z3ggbKADF6NMyLgIoSj2w0lNWfFJLxx0BHplCcOS6XuDh7Er3oaLg8+3Fcjno+cout6i2hFLvi6B9nvG/mTBnd0NZnDrYEYWHixPnKK8acuTJ7Vx6dupJfHPkr2xc20oiVvWTyCZdx7tJVPLA5g8kPfsyflownO9vdi+dO8goLJcdIT5dNyQsvhHPPNdapqVOlOujplweRIT78sCQdwcFGTxqIAc5llx2/Vv8YjhyRtcXz2K7Vem8QprJYpDujO+E4o3vvhc8/x4yLySzlw/IYaKjnyBEb27bJ/cqIEUZCmJ0tG9BRUfI70rWrMdfx8OHOo7gNdIVQoVAcw86dssCALEoRETLaoa7u+HN795ZE8DjXUc9ch1deEY9twAyMYAMj2MD9/J1d9GU5E1kechH7owdLRmf1kYxarNCrJxw8CEePEkEls/iAWXxAzNdl8Jcb5fPd2ospU2T9efFFqXCC2KFXVPib3cybB/37y+OwMEl46+tFnpOXJ9KfY29cjhyR5HHIkB/1VxpwNm50P8jN5SjGnZrZojHx0g5uBx5AevWC7j0tHCrRcWKWPsItdq5rajp5s49C0QZZuhT27ZPHFgv8fHIRIWNeYBnjKSSRemwcsaXTNVnzVp4uv1wSkM6E1Srma++9Jz17AHXOIF5KeoRhN22kaO5SqHewiSFsYggJJUXU/vYL4noGURg+kvJyY8PO6ZS/87g4Ud+kpfl/r5QU+M1vZJzF3LmyXIIkle+8I2t4ZqZci/r0kcT8TAxomsPhkITFd65kURHE1olcNIpyhvEDXDi7c17nJk2Spsxt25jKYj7kKvkL6tqNRYskIRw0SCqFDQ2yib1hg9zDgMhGPQnhwYOdJyFsp/vtCkXHxOWS5vjGRkmk8vNFlnJsMpiSInKWd945JhlsaJAXunaFa6/1JoPHomka/Wakc9dn0/mochofrUrhrnuD6Nfv2BNNpIxJ4/4bivlCu5jbeZUYxNKaN9+EyZP9Bh4OHQoPPui/4CUl+Usu8vIME1OzWSqIngSwslIW4O7dJfmLjTXe59H/tzeqqnwSwr17KcSwLesSW/+j+kYUp0dqKqSdE0EI9bgwUYeNDQ3nULti/anfrFC0IbKyxAjaw89+BslvPwl1dcznGhzYOKKl4LIFk54u58ya1fmSQQ+aJu0Ms2cbzzmdsKZ+KM5f3AapqZQTxQaG809u5V2uY1eOmcQ93zGyTwV2u1TzkpPlKy8Pfv5zSTKbG6/Uv784b994o5iU5OaKyMblkj7/7GxJNOz2M/9ZqqtlDZk3T1pJfvlLMcDxVEArKiSp0So6uVzUg6ZJlRAYzGbiKYbio+BysmSJ/JvYbDKv1oPqI1QVQoWiTfHPf8LmzZIENjZKMuXb/BwZCbfcItbYQcf6v6xfL9rSE3W+A8THywfcdptkXW7S02W20003STVvxQpZxIYPh8mTNczmGTD7E7nDcC86gNirjRwppcCBAwHZTXvoIfjHPyShNZmk7XD3btmsNJvl5/jZz0SiERUlVdEffpCfKThY5kJFR0s++9pr8q22bRPpTfJpTmjQdZF77NghefKUKadn493SfP+9W8XjctF130qOcq73tYFDzCd+o+InY7HA8BEmvnrPRW0tuDBTQSQb3vqO8yePCXR4CsVpUVYmgg8PQ4fCsC5H4OWXyaEHqxnLERLRQ0KJjdUIC5Pk5cILAxdzW2HGDFlLXn1VEjSTCQ5VRBJzyfVs/+IQpfvKvTMLHQRzuCaIzO+X8fg1QRwaMIMFn5i8JjENDdLOsXSprHHHVguLi8Ws+5xzZK3JyZFqZWqqJIJvvikbmz//uSyXJ5LwlpcbTtzZ2eJ2eTIKCiDcVg/1Yvk9hSVy8bvggh/999bumT0b/vhHTEVFTGUxc12z4ehRjpoS2bxZfodGjDCS6l27ZEM6IsLfr+DQIXey3Qnk1iohVCjaCA6HFPeOHpVju92wQrbZpOA3Z04zTmR1dbI6PfPMiSfDjx8vtqSXX95MJulPYqLkfccxbZqI7i++2N/a9MABGDtWtk5nzvR+xt/+JqMnQkNlIb3oIpGGglxkZ8ww1Cz9+8simJcn53z0keSto0aJDMczTHjJErj++pOGT1ERbN0qX2VlxvMVFbJj3Jo4HMaCQ34+5roqnJ7LrqZx7iWxJ3yvomXo0we6dXFRnIMhG13u4PxAB6ZQnAZNTVIZ8oz3SUpyj5X7/VNQV8cL/EqSQc0MwTbS0uQa6THJUEgbXWSkmM14/NRKy010PTeNpJ6hlHy7i4q6ILqQRwa5hOgOsueBOaOUn193MUvWR/kKYdi6VZK622+XNUXTxD104UL597JY5Lpz6aWSZHz/veE8eviwjMcYMEBylq5dZQM4K8tIAI8cOb2fq1s3aRs5fBj0I2In65WLnj9BfujOSnCwzLN6+GFJCJkNhUWQkMDChRpDh0qF0GqVzXePbHTSJEnm4+Mlwa+rk3+fuLhTf8v2jpKMKhRthKeeMpJBk0kqYWazSH4+/VT6F45LBr/7TsTwf//78clgZKQ0GO7YIc0G11xzymTwlPTpIyvf5GOGe9fUSKBPPOFd+cxmuaja7VIFvOgi4/SiInE+9WAywVVXGeEdPCg/WlAQTJxonLdypXFj5EtZmbz2v/8rLm8rVvgngyALbWvLP9atM5Lg9JIf2EF/72smq5kJk1WF8GyTmQkZA8Ox0oQLM3WE8F1eGnpRcaBDUyhOyddfG6YkNpskItYSqQ6uZjTvcw06JgixExKi8cADKhlsjr59Zb5gTIz/8/G947j3neEsve5NHuIRMsn1vubM3U/Z3//FoJDd9Owp13LfauHzz8tG7TPPiMu2x0XUbpdk79prJSd55BH5/r5s3w7/9V8yJeG++6SCuWLFiZNBk0muZRdeKD2LL78sm64jR7rnTFZIQtjp5aK+3HEHBAUxgO0kUwAN9VBezrJlotoJDpbbJw/ezVs6p2xUJYQKRRtA10VO4sFuF7XH++/LohEff8wbqqsl2Tv/fKP72ZcbbpAmhuee4/jGwJ9ITAx89ZVkqMf+EH/8o5Qxm8narrnG/3jevOM/dsYM43jpUpGcTppkyDUcDkkUQXrzvv9eFtJ//EOkOL7mNSA5cWqqcXyicR1ng8ZGic/DeQfeZSNDvcfhkRo9erRePJ2V5GRI7xuC3dKACw0XJnLJ4OC8VYEOTaE4KQ0N/nPmrrjCndA89RSbHH34A0/KSCBNg2Ab118vrpeK5unSBf7yF0mi+vWTzol//AMuvCKEsHdeZtCHf+L2qPe5hdfpyy6ZW1hXh2XB+/TY/QVjRjTS1CT7n7ou69G334qMdNMmSTIyM8XQxjcBTE+XpfG++6TC60HXj9+49OCpMs6cKa6pr74qsf/859Jf79kcXrIEcDZBlchopuBe5FRCKFKl2bPRcLuuAhQWUVZmjOsYMcI4fdcuw8HXNyE8lWS3o6AkowpFG+CTT/x3BkeOFFlJs7r1JUtkku3+/ce/1rWrNN35ZlZnA6tV7ET795fE1HcWxrvviqT0k0/8Vr+MDBlc70mStm6VXdIBA4y3Dhtm9E64XCIdveMOeX7DBtmBfecdqSDu39/8AODQUPnMgQPlol5bK4t+Q4OMr9i/H6/pwtlk82ZD6poUXk3G1gXs5Vnv6737B7XbMRrtCU2T/w+J0Y1UFHtko6Gs+qiAtHtO/X6FIlDs3WtUnbp3dycZBQVseHEtL3APubj7wENCSE7W+MMfAhZquyE6Gu6++wQvXnkl2qhRpM+ZQ/o38yghhu8Zw0aG0rhxI4kHDnLhJZex8XASO3b4L3sbN4q88Nprm3cR1TTpWxs4UGYXfvKJsT6AVH979pQksHdvSSxPNaNQ191ma5WVgG7IRfv06TzWmKfi3nvhzTeZxiLeZo6M0aqtZdEiO6NGSXJtsRgGQD/8ABMmyK2Uh86SEKrbEYWiDfDkk0ZyExQkkpDjksGKCkkEp05tPhn85S9FHnq2k0Ff7rxTJu56mh09rFkjW2++w5nwd3wD6Q/0RdOk78IzCLi4WIqRaWli/b1jhyy869b5J4PBwbLY3ngjPPCA9Nh43EtDQ/1HMS1Z0nwi2ZK4XP4Gr+fp37KJIdThdrUxmxk1vpNMu20DZGZCjz4WNHRc7j7CVRtsJ+65VSjaAFlZxmNPxWntffN5oeE2CkimDjtoGvHdbMya1blbxlqMbt1kkXj8cWItlfyML7ifvzONRUSU5GJ56w1GOr/nogt177JntYqKp6JCjNmef95oFTgWi0UkvU8/LX3y114rlb9XX5VK4MyZks+dzsD6rCxR0VCu5KInZNAgmDiR3mTTDXdmV1jIsmWi4gkJ8frhAYZsNCHBaGEpLDRGaXVkVEKoUASY9evFZdND9+7+fXOATHTv31+mvR9LRoZsOb7yilhktTaTJklfYe/e/s/n5cG4caJ7dTN6tJ+5KUuW+E2tACSB87VKX79eqoMul5HI5ebKgulpzP/97+U9mZnND68fN85waz1wQHbezyY7dhhSoOhoGLDzA5ZgaLlMQRbGjTu7MSgMMjOh26AYQnDgxEQTZlY7BuNYtzXQoSkUzeJyiVrCQ58+sPqzo7z4YQIuTBwgHQ2dhAQICzMdJ8lX/ATMZvjDH2D1aujZkxAcnMd3/IZ/cJVrPilL3yZhyXtcOrmKSy8VZaIngXO54O23Rdq5efOJv0VoqFSipk+X65P5DNvJGxulyoiue52/lVz0BNx3HxowjUVyXFZKVWkDa9fK4ciRxqlgtL07AAAgAElEQVQ7d0rl1mQy3EZdLnfi3cFRCaFCEWCeeMKQBZlMonDwJjUlJWIZd/HFYiXmi2fWztatzWSQrUzPnlIVPNbmurZWmgcvuwzy8tA0WSg9uFzwwQfHf1zv3v7afk2TRVPTJOcNCpLd1auvlp3zU83eDQmBc41pDyxdevaqhLruPy9snGUNpg/msxZjYGRwmMVvV1JxdomOhm7pZqLtDeho6GhUEMkPb6qEUNE2OXxYetVAqhXbt8Mrf9iH7nJRTRglxJJgKSW0SxSDB8vgc0ULM2KESFJuuQUAMy4Gso3beYU79j3A3e+N5uWx7/DeOy769PF/68GDIuh56inD2fSnouuySfD00yIEWrAAqKkGp9OQi8bESG+GwuCii6BHDyMh1HUoLmaR+3DIECMhdzqNucGdrY9QJYQKRQA5eNDfbTMmRpIcQBro+vWTnrxj6d1b3FWefdbQVwaaqCipZN7TTGPWp59K5vb881x4gdOvkLlggfReHMv06SIV1TSpKt5+u6zPGRnGjMIzYexYYw5hXp7/7ntLsmeP0Q8aeng3Q+6fgu5wkIX7jkHTSOoWRELC2fn+iubp0QO6p8rOi1c2uqiF7tQUihbGVy7qcMA/n69FzxYDsUN0I4FC7ClRoJmMNUPR8oSFiTLno4+8rREakEIByWU7Yc4cet10Lm/9aj133+1v5K3rsuF59dV4q1E/htJSmer085+LxHT+fK9KFMqlOjiVxSIX9Z3npBBMJrjnHjLJJcPjIltczDfLnDQ0iInfOecYp3tko53NaVQlhApFAHnqKUObrmkifwypLJTJ81dddbye0iNl2bxZMpy2hsUiw55ee+34JojqarjnHoInjOaKkcZ2W2UlfPnl8R/lqQI+/DDcfLNU+CZNMl5fseLMdP02G5x3nnF8tqqE3urgnj2MffdOrA01HKQbR3HPHLTbGTpcXXpbm8xM6DEsEgtNODHRSBDL96W5DRkUiraFJyE8cMA9x277DnA5AR0XGnarE+LiSEgIvECkU3DFFbBli+g8j2XNGsxjR3HDyluY93yx3ygDkLEhd90l4ydO93LT0CBr1L33yubos8/6j//1UlHOUDbyC9ztJEou2jw33giRkUaVsKmJ2rxSVrnNpn1lo9u3S1XX11jm4MGz7z0QaNRdiUIRIKqqpHDmcSoLDobf9P5CqoIff3z8GwYOlG3Gxx+Xk9syt94qjX+jRh3/2oYNXPX3kZgPH3Tf4MgIiub8PTTN31zHd/xhdbX/WIfTYdQoo6B65Ij0+p0OxcUiI1m9Wiq6X30l/Rvz58Nbb4khwHPPwYMPSv/Iso9LWfZ+EXMbr+AX/JO7eFFmhdntmEKClaInAGRkQExaBOHmOlyY0YE99ODQB2f4n0ihOMuUlcleYEOD9DTZtVrYnUMQDQxiCyZ0SE4CzcQVV6iCUKvhMZx54onjZ/rqOrzxBmmTe/DPPs9w/31NXkWKh88+g1mzZDOzOXRd1qQnn5Qk8Pe/FyFQc2tjXBzMmVHMB45LeI1fEkup/Ec4tm1DIYSFwa23GgkhQGERixdJltecbDQszPDLq67u+HuHKiFUKALE88/7X2DGn1NC4m0zRR/ii9UqZbL162X+Qnth4EBYtQpeeuk4s5sE1xGmHHlHVr+KcvbvlxbEU5GU5D9IdvHiM9u1CwqC8eON42XLTm00uW0b3H+/7NC+/DK88Ya4oy5YIMOIlyyRRXvDBqkOlh6opHLXYYL1WmoIox4b5USBPRSCQwgORvUPBgC7XUwCusXVoQM6Jmqxs3r+wUCHplD44akOFhbKBpa2cwdmVwO/4++s5lywBkFcHFarvwGXohUwmyVT27lTLEGPpbIS0wO/4+pHB/D+L5f5VZ4Ajh6F3/5WNg89xmNFRbKxeNVVMkL4ww+bTz6CgsSh9PnnZe35dcy7ZLDPOOG886R1Q9E8d99NqjmfXuyWY0cdK/9TTl2dJH/9+xunNicb7eh9hCohVCgCgGeenqc6GGTV+fXh3/sPNgIYPlwG4/z5z8fvSLYHzGYZJLhrl6x2PsxmrmyB79kDuXuZ96/qE3yIP76Dlw8cgJycMwtpxAgjPy0uloTvRNTUiPr12H+W5nA4oCKvAg4cQMNFPMUAVBDJwejBEByMpsmO47EGBIrWITMTeve3oAFOTDiwsXxtSMfXAinaFZ6EMD8fIoPqYHcO/dlBGTEcJNVbHZw61T2oXtH6ZGaKxGfhQv8p9B6ys0m5fjIvHvgZf7ol3ztI3sOiRdIZcuedMibphReanyYFsoH44IPyrf72Nxg7Rse8c5s0Fvqi5KInJzUVrriCC1jofcpx6KjXj8A3ed+2Te7TOtM8QpUQKhQB4N13ZffXU53qGVnE+L1v+J/0+OOiifTtdm6vpKRId/1//iMXZaA/OxmI2+WxrIzv38oh95F3T5l9DRwoNt8eFi8+s1AsFv82kGXLTvwt33vPp3kfSeaSkmSwfZ8+Uq0cORLOPx+S6/bS6+Ay+rGTy/mEG3mLCCrYmzyOiJRwUlLkR+/fX6pVitYnMxO6DEkkBJGNgsaq6kHUbz/DXQWF4izhcEhi0NQkG1ZhB6V3cDgbeJ+rvdVBQI2aaAtMmya9hc8+2+wgSO3LL5h5TzofnvMI54/2b3qvqJBKVHMqlcRE6Z1fsEBUKZeff5Twz+dJL1yXLrIQ/vCD/5tUQnhq7r2XqfjcNFRWsHh+CeCv3Glqkt9DVSFUKBRnDV0X6aFn1ITF7OKGo89IX4iH2bPFPKajNYf87Gcitfnd78BsliqhB5eT+Q/tFPeYrSceB6BpMGWKcbx+vSG9OV2GDjWUNaWlzc+L2rzZ38l0wgSR6vz97/Doo/Bf/yU/xt13w6zgz4j+ci799O30Iptz2Mr/cC9r064mJCWG4GAxtbFYZHCxIjCkpYEtzEpiaBVO929cOZFsfH1ToENTKABRPLhcsmFot9Rj3rMbDZ1EjrCasd7q4IAB0m6uaANYreL+kpMj/fO+je8AjY3E/+9DPPNRGn+buJioqOYVCcHBcOGF0mXxnwWN3DlgJamv/bfIWhIS5L7grbfEpeZY+vYVK2XFyRkzhpRRqfTHMBBY9WU5NTWy4Rsba5yakwPJycZtWH6+cd/WEVEJoULRyixbJhcaT1UqyVTM5Q6f0RLh4ZJ1dFRCQ+Xn27CBicOrSaTQ+9Ln/IyKtbskY/v9741BXMdw/vmGgtbp9B/dcTqYzf6OpcuX+1/oa2pkV9ZDbKysxc3y0UesuvGfuHSoIpz1jOBxHuRo2nCIi/ee1q+frOXTpp1ZrIqWw2qVKm2PNM/4CRN1hPDtV1UBjkyhEDxy0YICiKjMA5eT3mTzNTPQrTZvdVCNmmiDxMdLj8GGDf6Db91ohUeY9vQ0PiyfxgXnGJPOhw6VrpBFr+7jkeSXGfm3SzHFx0rD+2OPyeedTNYeFCRaUsXpcd99frLRhqIKVvxHmjZ79jRO27NH7hVSUuTY6TRGSnVEVEKoULQyTz8tO8C6DiacTKn6mBR8dvwefti4AnVkBg/GvGYVV18XJHOCgAaCWMDlcuV96ikYMAC+/vq4t9rtMG6ccbxsWfM7d9XVstv65z9LE361T5vioEHeeysqKvzVN++95191vOUWjnOMA+CDD6i9+ibWuoaxmcF8xBXkkwJp6d4Pt9vhgQfgzTebbzVRtC6ZmdBrRJR7/IQZHRMLczKbH4apULQiTifs3i3rw5EjEFF2AIABbOPfzBQdoWYiJsZfJaFoYwwdKvKS994TeecxRP+whMfe7MJ/Mu5h4d2f81rQr7jktz2xD8iQpsJ//1tsyE+G3S4D159/XnaYL730LP0wHZDLL2dK8k7jWHex6AUZTOybEObkyH1aZ5GNqoRQoWhFdu6UzT6pDupENR3lKj7EKzAZMAB+9avABdjamM1c+uJUQob192o4P2AWjbg1Gvv3y6DdsWPhmWcgN9f7Vl9zGU8vhi/r18su+htvyJzDhx6S6txvfysN/Q6Hf5Xwm2+gsVHaQXylouPHn6CNc/58mD2bt12z+YBZbGAYVpoISu/iTQanTJEJIrNmeXNeRYDJzISQrrHEmCpxuZfAvXo6+Z/8hMnRCkULcPCgXJeKiyHI7CToqGwUlhJDDaEQJT1qV1xx/JhXRRvDM1g4K0v6C2y2405J/vB5Ym+8GF588QRDBo9h8GBRzixbJr0On38uPQvuvnzFaWK1knDvbAZj9IqsWW+msqTRLyEsK5O/5s5iLKNuURSKVuSJJyQZdDpBczYxrGkNQ3wuSrz4Yqdb6SMi4OIrbZDZAzJ7UGztwlIm+5/0/ffSsJeZKQODHn2UrhU76NfXkNF4zGUcDlGk3nGH9OH40tAgM6AefFASynfflWSyqUmqhytXwuuvG+fHxJxAKjp3LuWz7+TPzj/xKH+SsRJAWNcoiI0jJUU2bp94QlREirZDSgoEh2ikJ9TgcvcR1hLKpn+r8ROKwOLrLhrRVAq6i3T28RUXSkJhC8ZshssvD2ycijMgLAz++lfZDT7TGSEJCXDddTLctqAANm2SRWXixGYTTMUZcOutTAsyBkI2NbpY/thqUlP9Dd1zclSFUKFQtDBFRTKzzukE3eUitLGc6SwkGreN5fXXS3NcJ8TrlhcVBQP6M7fvo+jaCS5PmzeLBnTAAKa+eqUskiVH2bNH56uvJIF7//1Tf8/6eli6VL7ee08qhA8/LP9OHm655XhHUP2dd/nsug+4XP+ID5jlrTIFxUZgT4nm5pvFUHXs2DP+a1C0AiaTDKnv1Ufq8k7MODGzal0HM3BStCt0XRJCl8vdP1iVB0AU5eSSARFSHZw8WW0ytUsyMsQydPHiE7sBWa3iXvb44zIZvaBA5lNdf73YWytajuhoplyXhAnD4nXRu0WYTTrduxun5eTIpnV4uByXl/u3nnQkVEKoULQSTz8tSYjTCVpjIwPZwgjWy4sREdIz10lJTfXpCTSZ2WkfwbZ520+ZIA85+CmxO1bg+moh2e9v5o6rSzi4owp8HFtHjBAzl9/8RhS5xxIcLOqeXbtEZrpwoZicduly/Lqd+/QCbpvj4BH9v6kggmrcw6WiohkxIYx586QFJDj4x/9dKM4+mZmQ2DeWIBq8Cf36Q0nN+78rFK1AcbHI00pKJDkMKZL+wd30khMiZXiqGjXRzpkyRTY1n3sOeveWReZXv4LPPpP/AMuXi8P4kCGqz+AsE/P7WxmGYR6wvjiNsq/XHmcso2mdo0qotkQVilagvh4+/FAWemejE5urlqFsNKyPH3200+8Azp4N331nHL+3sS8DV6yQxppPP5Xd1W+/9btpN+OiL7v4NzOpbIxAa9SJrsrBbDFhiwnj1zdVcdVD/TCF2OjfX75Hfr5UahcuhOxsudiHhsLRo/KZ9fVyzqJFkiBOnixr+PoX1vD2u11wIv0adYTgxExwXARTLg3h1VfV+t1eyMgALSaGaO0gRXoc0MgeZ3cc2/cQPLBXoMNTdEJ83UUjg2rRqquIopy1jJKLVHg4ffp0jLG0nR6rFX79a/lSBI5evZg69EPWb5RDFyaWPbKCni+O9p5y4IC0mnTrJqpfgLy8jmkQpxJChaIVeOklqKwEp1OHhkZ6k80QNmOnTqah3nlnoEMMOCNGSOVm7145Xr5cbo6SU1ONxbOoSHZSFyzAtXgpbzf9nH9xC1WInkNHo4pwxjWt4pGiP5P65CF4OUIyuuhoCA4mxWZjTnAwc3rbOJgaz+L9PXl59UBoigZdQwfsWgOmmiYqak0seFdjwSs1cMi4XOpANeH06mtl5EVhzJ6tksH2RGwsREZpJIbXUlip4UKjjmB2/XsHQ1RCqAgA2dmyYVhQAMkO8bbXkZtUwsLAZGbWrONH3CkUih/PpD+P48lLnTgxA7BwTRRPW/YD6YAouvbtUxVChULRArhcxky7JkcjVhoYwQYGsUWefPHFjjeA/kfgMWV79FE5drmkF++ee3xOSkiAX/yCg9N+wV8ebGDr6iooKyO0vIZqwtBwkc5+XuNWgnDPoaislOpiM6QCIziHb7ifGBLYQX+cmGkqduEqLvTrL/AljhKGTI4leUw8ERGS0yvaD5ommw+pKU1srZSb7kaC2LCsgiF/CnR0is5GTY3cZJaXi0IhrEQMjg6QJidERBIc7O+srFAofjpRl5zPqNi5rC7pDcAmBlP/8hskJDzi9RPIyYELLpBNX5cLDh+WPzvaJnAH+3EUirbHggUiQXQ1OXE1NNGNgyRxhN5kww03+A/U6+RMn+6dPgHAJ59Aba1xrOsivZ09G7ZmBUFMLGT2IKJfV8Ljgzm360GSraVsYfBpfb9aQnidWwBIpIi+ZHEDbzGTTxnD96SQ73d+EA3cob3KzFsTSR4jnefnnivDaxXti8xMSO8Tgobu3R1evS0iwFEpOiOe6mB+PkSEuTAVFWChSWaaAkRGMGHCCWahKhSKH4+mMXV2gvdQR2PpW3n07ObwPpeTIypfT1dPQ4O/+VxHQSWECsVZ5vnn5U9nbT1mnIxiLf3ZgSUyDJ58MrDBtTFsNrjySuO4ulpGLYGMkPjVr+SvzGFcqzGZ4Jd3mJlzeygRE4bBVVey+Mb34LbbpKJ4EuYym1JivMe/4+8E0UgspSRSyHvM5m3mcBP/x3W8yweWa5n0yiwKEiXhDAmB4cNb7MdXtCIZGRCcnkQYxviJzSVd0R31gQ5N0cnwlYtGOEuhqQkdZD6txQohIUyfHuAgFYoOyoQ/nYfVR6S1qG4cPXO+9B7v2SO/nx19HqHSqSkUZ5G1a2HHDtAbGnA26SRQTAr5MhD1r3+FxMRAh9jmuPJKePNNmQ0IMv89NFRmCx5r99ytm4yKGDgQVq+Gl18GTGZ2NfXi0COv0u2ll+QfISdHtFj19ZJN1tez7WAkK1aNdQ+GdHFe7E6mp0VRnBPG7opEGp1NfBt8Gxfav6GfY7kMJXz4X7yVZ8xIHD3af2aRov0QFgbx3cOIs+RT1RSGjkYx8RQt30HijKGBDk/RSWhqkstTVZVIR9ObZNyEVy4aGUFkpMbo0Sf5EIVC8aMJjw9mzPBGVq6RGdBbGcgdnz4KEy8FzURlpbgAd+sG69bJew4dEt+DjoRKCBWKs8gTTwDo6DV1gIWRrCOSStIHRcHttwc4urZJXBxMmwZfujfoDh6Ehx46/rxZs+Duuw0Z1ciRMHeuDJoHcRK96SazDAQ8ZihgbS3864+A+74/Ohque2I02G9mcj7sflmeX2eew7n3QaSMACM/H/Z8I4+tVtRNWjsnLQ1Soh3sK5Y+wnpsbP38IFNVQqhoJXJzobFRri12O1h259GIlUoipEIYEcnUqarNXKE4m0z7dR9Wrs2VUiCwMz+S4OI8HAniKp6TA336GOd3xAqhkowqFGeJ/fth1SrA4aBJ1winkh7sZSBb0V5+Sa3wJ2H27BO/lpAgPjwPPODfU2OxwKRJxvF338mOe3PMny8jnzzcfLMxgD4lxbCUdjplYL2Hb781Hg8ffvzQekX7Ij0d0t1DiF2YcWHiu2/VLEJF6+EZN5GfD5HB9VBWhhMzXjPRiAglF1UozjLnz4zGFm/0kC9hKhmHjQU/J0dEQp41/+hRqKtr7SjPLiohVCjOEo8/LjMH9dpaXJgZzgZMuBh0TT8YMybQ4bVp+vSBoc0UaS68EN5/H0aNav59EycaBi8NDbBy5fHnbNsmIy08nHceDD7Gg2byZMPefeNGY2D0DvfYSJNJzGQU7Zu0NEjqHYmVRpzu5XDd3rgAR6XoLOi69A/W1IgZckRtPi40DuFuVrKHktTVolyMFYqzjN0O46YYO8y76EtM1ippM6H5AfV5ea0d5dlFJYQKxVmgshK++AKorcWFiWDq6M8OEkOqSHr+wUCH1y647TbD1jk6WnoIH3kEwsNP/J7oaH9d/5IlXgUIIDt6r79uHEdFwbXXHv85iYkwYIA8drkkgfzuO+OzBg0yZKSK9ktUFET1TiKacnRkHuHu2hQai8oCHZqiE1BQIGtFfr4YatmK8qghjEakl4nICK/dvUKhOLtMvbGL/CK6KXVGwIH9gLSuOBwd21hGXWYUirPAM89AXWUDNDTgxMIAthNEI4PuGAvx8YEOr10wfLiYyzz8MHz8sVT/TgffWV1FRbBli3E8b55U+jzcfLMY1jTHpElGlXDLFti0yXhNTQrpOKT1spEQXAVIH2ENoeR8tivAUSk6Ax65aEEBREboaEcKaMDqIxeNZMaMQEWnUHQuxp6rYY2P9h7vphfszQVkMzg3t2MPqFcJoULRwjidMPc9HWpq0QETToaxES0piYH/dXGgw2tX9OsHF10EEWcwHq5nT5ECeli8WP7cvt1fKjpuHAwZcuLPiYszpKS6Lv+uIP2Fp5hmoWhHpKdDt0SRBXkG1K//sjiwQSk6BVlZolooLYUIVznO+iYKSJYXzWYyB9rp0SOwMSoUnQW7HUZMNm42djCA2JJsqBSnupwc6NLF2CjOy/NXILV3VEKoULQwr78Opfl14HLixEwP9hBKDem3TCYyRk0wP9tomn+VcOtW2LcP/vUv47moKLjuulN/1sSJx8u1zjuvZeJUtA3S0iCjlwUNMZYB+O6H4MAGpejwVFZKZfDIETHECi3Lo4xoNNx3mOERTJ+hbtEUitZkwiURECZ9KS5MODF7q4Q5ORAcbIi8HA4xl+koqKuNQtHCvPpCvdd+SkNnFGth8BAGXZYR4Mg6D2PGyJw5D088cfpSUV+io2HYMOM4Pd1fMqJo/8THQ2yfBOzU4HLfjm/OT+hYW7+KNoevu2h4OGgF+TiwYfIkhO7+QYVC0Xqcfz4QF+s9LiIe9uWC7mLvXlkWOqqxjEoIFYoW5MsvYf/uBgB0IJkjxAbXYZk2kf79AxtbZyIoCMaPN45ra43H5557cqnosUyaBMnJIlu96KKWi1HRNtA0SBuRQBwyh8SFmYKmeEq3HQ5wZIqOTFaWGBgePQoRIY00FJdTRKL39UGjQ0hJCWCACkUnJC4OBoyN9EqDcsnAWeuAI4VUV0tFv6P2EaqEUKFoQZ797xKZdwCAJtXBSRPpPSSUYKVCa1WmTDG0/h4iI09PKupLWBjceSfcfz8kJbVcfIq2Q1qGmZTIagCcngH1C/YEOCpFR6WhQQwqCgvlOKK2gGLiseGQJ4KDmX5F2Ik/QKFQnDXGT7FClJjLuDBRTRjk7gVENtpRnUZVQqhQtBBb1tWzaYvxKxVDCV2TnSIXHRTAwDopcXHHzzK8+WZ/KalCAdJHmN61CZAbABcmVi3pYFOHFW2GPXvEpCo/X65H5iP51BLilYuaIiOYMiXAQSoUnZQJE/DKRjXAQTAcPASNjezZI20GnukUhYU+NYB2TqskhJqmBWuatk7TtC2apu3QNO1h9/OTNU3bqGnaZk3TvtM0rYf7eZumae9rmrZH07S1mqal+3zWH93PZ2uaphT2ijbD47/Yg+5yuY90BrMFbcYMQkJN9OwZ0NA6LTNninwUxCCmuWH3CkVyMqT2DcVCEy73bfnaXWdgbatQnAFZWdDUJGNxIiJ0HIdLKMOwux89Sic6+iQfoFAozhrp6ZDaLxyscvNQRCK6swkOHmD3blGTduki5+o6HO4g3QWtVSGsBybpuj4IGAxM1zRtNPAycK2u64OBucB/u8+/BSjTdb0H8CzwJICmaf2Aa4D+wHTgJU3TlG2jIuDUHSxmxTajETmKCnoNtkNKCgMGiIucovXp3h0eewwefBBuuinQ0SjaKmYzpI9KIgqxF3dhYldZAq6GpgBHpuhouFyQnS29SC4XRFBJfl0kdtyNzprG9BuVNl2hCBSaBuMnaBAr93SNWCknCvbmkp8vngQdsY+wVRJCXah2H1rdX7r7y7MNGwnkux/PBN5yP/4ImKxpmuZ+fr6u6/W6ru8D9gAjW+FHUChOypKnN9OAFZD/1P2sOZgnTwBQctEAk5QkswOP7SdUKHxJGxpLgtljLGOiSg8nd/HeAEel6Gjk5ckNZUEBhISA7Wg+1YRhRtQltshgJlxgC3CUCkXnZvx4vAmhjXoxfCoqRK+qZu9elRD+JDRNM2uathkoAhbrur4W+AXwpaZpecD1wBPu07sAhwB0XW8CKoBY3+fd5LmfUygCyldfuvyOuw2KhhA7UVGQmhqgoBQKxWmT3l2jW5xUaVyYacTKuk87iBZI0WbIypL+wcJCcS6uPlRGHXbv6+OH12C3n+QDFArFWWfgQIhODobQUEy4qCBSXsjNJSfn+ISwI0wparWEUNd1p1sa2hUYqWnaAOA+4EJd17sC/wf8oyW+l6Zpt2matkHTtA3FxcUt8ZEKxYlxOlmzz5D42Kklpr/sUwwapCpTCkV7oGtX6JEpq7qnj/DbVeqXV9GyZGVBcbH0EEaENXG42IqdGu/r0+ckBDA6hUIB0id43nl4q4T1BFFNKOTmsidHx26HmBg5t6YGyssDF2tL0eouo7qulwPLgRnAIHelEOB9YKz78WGgG4CmaRZETlri+7ybru7njv0er+m6PlzX9eHx8fFn5edQKDwULtrCYZckhDoQaypH6yIDpAYODGBgCoXitLFaoddw6eXSkaRwy4GYQIel6ECUlkoymJ8v/9/slUVU6BFYcAIQYatnzNVpAY5SoVCA2200JgY0DRv1FJII1VXsWVV43ID6jiAbbS2X0XhN06Lcj0OAqcAuIFLTtF7u0zzPAXwG3OB+fCWwTNd13f38NW4X0u5AT2Bda/wMCsWJWPSvAzQhrjEuTKQmOMBkIjkZEtRmr0LRbkg7L5U4SgD5XT5YG0t1Yc0p3qVQnB5ZWWIkc+SIyEXL95fh8rkNm3JOEdYgVZVWKNoCo0ZBcKgFoqII9iSEQN2ufRw+7J8Q5uUFKMgWpLUqhMnAck3TtgLrkR7Cz4FbgY81TduC9BDe7z7/dSBW0zgyv20AACAASURBVLQ9wG+APwDour4D+ADYCXwN3KXrurOVfgaFolkWrjQaPlyY6XWOGAIoMxmFon2Rfk44ScFlgCSE9djY9klOgKNSdBSysqCkROaWRURAfr7mLxedpUadKBRtBZsNRo8GYmOx0EgVEdRjgwMHyNleryqEPwZd17fquj5E1/WBuq4P0HX9Effzn+i6fo6u64N0XZ+g63qu+3mHrutX6breQ9f1kZ7n3a89put6pq7rvXVd/6o14lcoToSrrIIfjoprjA6EUo29TxqapuSiCkV7IzUVuifXA7K548TEt/+pCHBUio5AXR0cOCByUZMJwrQayupDsCKjTRIoZvAtwwIcpUKh8GX8eCAiEs1idbuNJkBjIzkfbSEx0RgpVlAgfcHtmVbvIVQoOhI731rvHSjsxEyyrRwiI8nIgPDwAAenUCjOiJAQGDIYzLjcc5E01mwJDnRYig5ATo64ixYUQFgYlO4txYQhcJrePRtTTFQAI1QoFMdy3nlgMmsQG4MNh1c2umfpAcxmY0C953e7PaMSQoXiJ7D0wxIa3fMHnZjJ6NYAKLmoQtFeyRiTSCRiGefCzM7CuA5hKa4ILFlZUFYGDgdERkL+IRehvnLRS4ICGJ1CoWiOqCgYPBiIjcVGPUeJpQkzBfvrqc4p6FCyUZUQKhQ/Fl1n6SZxIfTcL2YODkfTZBC6QqFof6RP7E4CMq7IiYnyplDyNh8NcFSK9ozTCbt3i1wUINTuorTKipVGADLIpefsEQGMUKFQnIjx44EQO7ZgMy5MHCUe0Nnz4kK6djXOUwmhQtFJqd68h+11GQDomIiigqDMVJKSIFipzBSKdklaLxvdIisBMZZpwMraD/YHNihFu+bAAakMFhSA3Q5l+ysJ0uvw+IlOD/0ObdjQgMaoUCiaZ/x4+dMUF0MQDYZs9OMtdOtqyEdUQqhQdFLWvbGdOsRh1ImJLhFVYLXSvXuAA1MoFD+aiAgY3KMakB5CHY1vlzUGOCpFeyYrCyorZYB1RAQc3t+AnVrv6xdMcYLZHMAIFQrFiejaFTIygNgYgt3GMjoaOXnBROT8QITbHLiiAqqqAhrqT0IlhArFj2Tlwloa3P2DLkz0yJCdovT0AAalUCh+MoPH2AmhDpDf7U27wwIckaK9ouuwa5chF7XboazCjA1xsx3IVrpcNjKAESoUilMxYQJgsWILtdCIlVJi2Esmzv97u8P0EaqEUKH4EeiOepbvTQU0dMCMk25D49A0lRAqFO2dtPHpxHoH1JvZVxGDo045yyjOnKIiKC+XhDAoCMqLGwlpqjTkonwN06YFNEaFQnFyJkyQP21xYh9fSAL12Mibu5JuSYaCRCWECkUn49CnP3DIlQKIrCzaVIk1OZ7ERLGuVygU7Ze089NIMomxjAsTdXoQO75uxyu9ImBkZUF1tUjJIiIgP9fhHUZvwsWU/kcgOTnAUSoUipPRpw/Ex4MlJgKz5vL2EeaUx9Ft91LveSohVCg6GWvm7cOBZH5OzHSNrQNNU9VBhaIDEBtvok9iGQAuNFyYWPlxcYCjUrRHsrMNuWhwMFSU6wTjAGAUa4m5aEwAo1MoFKeDyQTnnw+ayYTNbqYOO5WEs4ceJH/+T28LcH6+uAq3R1RCqFD8CL5drdGAzI3SMdGjj/QSqoRQoWj/aBqcN6wWEy5ANn2+X6ud4l0KhT/V1ZCXJ+6iZjNUVOiENFV45aIz+AqmTw9ojAqF4vTwyEaDo8VMsJBEcuiJ9avPSAoVN5nGRigsDFCAPxGVECoUZ0hjXiGrjvZ2OxBCEA0kDkoCVEKoUHQUep6bSCTG+IkdhyMDHJGivZGdDbW1MpA+PBwKDjQQ6pT/U0E0MMG+Hs49N8BRKhSK02HYMDGFskXawGSmkESKSKCyKYRue5Z7z8vLC2CQPwGVECoUZ8jWNzZQQRTg7h8MqiUoyk5CAoSGBjg4hULRIqRf0Jt4igBJCI/WhVGU1xDgqBTtiexsqQ4CWCxQXe4kxC0XHc8K7JPHiNOMQqFo8wQFyf5NUJCGFhxEJZE4CGYPPei28j3vee21j1AlhArFGbLmP8U4kMnzLsx0S5abRFUdVCg6DomDkugefASQhLARC2vePxDgqBTtibw8o3+wqgpCnFVuXYnbXfSCCwIYnUKhOFMmTJB+wqAwGyCy0d30olvWIrEURiWECkXnwOVi1dZw6pGLgYZOWl8pC6qB9ApFx8FkgnE9Crz9Xi5MrPiyOqAxKdoPtbVw9CiUlIDVCoUFLkLrSwGIoJKxrFb9gwpFO2PsWOkHttnNYLFSSCJ76EEU5YTu2gDI73xtbYAD/RFYTvaipmnvAKccvqTr+pwWi0ihaMOUrtzO1oZe3v5Bm1ZPXN94QFUIFYqOxvAxNoK211OPDRdmNu4IDnRIinZCUREcOSKD6V0uqKtqJB65S5zMUqyZaZCZGeAoFQrFmRAeLr2Ey5YBNhslTbFk0xsnZrpt/YKs86aDyUReHvTqFehoz4xTVQj3AHvdXxXApYAZyHO/dyZQfjYDVCjaEuve2uUdN6GjEWVvJCTUTFwchIUFODiFQtGidJ9oDKh3YmJvSSSNjSd/j0IBkhB65KLV1RDiqsWk5KIKRbtnwgQZIUOQFR2NfJI5SCpdK7ZDbi7QPmWjJ00IdV1/2PMF9AIu0nX9Wl3XH9R1/TrgIqB3awSqULQFvl/u8OsfTO0mC7yqDioUHY8u088hBbmrd2GipslK1vqqAEelaA/k50Oxe3RlRQXYG0QumkARQ9ik5KIKRTtl/HgxiTJbTBBko5AkMZbhEGzdCnTAhPAYRgNrjnluLaCmqio6BXpVNd8fSMbh7h+0Uk9KX3EbVf2DCkXHwxIdzvCYfd5jJxZWzD0cwIgU7YWsLLdUtA6a6p2ENMq4iQtYiMlqgYkTAxyhQqH4MSQmQp8+7iqhzUYx8eyiD104jJadBQ4HeXkiF29PnElCuAn4m6ZpIQDuPx8DNp+NwBSKtsaeuesoIAndLfwJNjuJ6x4OqAqhQtFRmTS4zDug3oWJ1d85AxyRoq2j67BnjzyuqgKLqx4z8v9mOl/DuHGqx0ChaMeMHw82G2C10GQKYjXnYqOBBGc+7NxJfb2hEGgvnElCeCNwLlChaVoh0lM4DlCGMopOwfcf5vn1D0ZEQEgIxMRARESAg1MoFGeFPuMTCUdkoi7M7NhnD3BEirZOdTUUFkpiWFsLNmctGpDOfnqxW/UPKhTtHG9CiAY2G7vpSRlR7Vo2etoJoa7r+3VdHwv0AC4Beui6PlbX9f1nKziFoi2xZoPZ2z+oA93SzWiaqg4qFB2Z1Av6kuAzoL6gKoyysgAHpWjTFBZCeTnU1ICu69jqRS46na9ljInqH1Qo2jU9e8q9n6YBQTaKSCSbXpIQ5h2C0tKOmxB60HX9ILAOyNM0zaRpmpplqOjwOLL2s6miu7d/0I6DhF7RgOofVCg6Mrah/elnygZkI6hRN7PmP+1MC6RoVQ4fhspKkYuaXE6CdAfglosmJcHAgQGOUKFQ/BQ0TdqAg4IAsxmHJYyVnC8JIcDWreTlBTTEM+a0kzlN01I0TftE07QSoAlo9PlSKDo0G1/fRA2huDCjA0E2jdgkK6ASQoWiQ2O1Mik91zug3omZbz4pDWhIirZNVhY0NYlcVHM2YKOeAWynK4dh2jR3WUGhULRnxo93G8sA2GysYDxxHCWGUnrv+pSBA1ztyljmpIPpj+FVoBaYDKwAzgf+AnzZ8mEpFG2LNV+X+8hFNcIiLYSFQVQUREYGODiFQnFWGTNWw5rbQANBuDCxcbO6oVecmOxsqK+XHkJrkxjKTGORvKjkogpFh2DIEPGQqKgAgoLYWTOAJizcx/8g42svBW1CYIM8A85E7jkWuFnX9c2Aruv6FuAW4LdnJTKFoq3Q2Mj3WVHehNBCEykZQWiaqg4qFJ2B7pMyiEGqgi5M7M6PwOUKcFCKNomuw7594HDIgc1VgwYMZrNUBqdODXSICoWiBTCbYdIk94FmojIoljWMNk54662AxPVjOZOE0IlIRQHKNU2LB2qALi0elULRhij88gdym7p5HUZDTQ7i0sVWVBnKKBQdn7Dxw8hA5hHqaFQ1WMnJUuMnFMdTXg4lJVIhNOlNBFOPhSZ6sAeGD4e4uECHqFAoWojp02VIPQA2G59xsfHiRx+Js1Q74UwSwrXAhe7HC4H3gQXAhpYOSqFoS6x5by9NWHBiBsBqDyIuXiRjqkKoUHQCundndLAxcteJmeXzjwQwIEVbJT9fJGQOB2jOJoKopxe7CaJRjZtQKDoYo0dDaKj7wGpllXWi8WJ1NSxYEJC4fgxnkhBej/QOAtwLLAe2A7NbOiiFoi3x/+zdd3Rc13nu/++eMw0DYNDZAHawiKJEioJIVavLkmwV21KsuMf2spO4XFtOu7lxHKfd6zT/YieOb/yLEjtOcZMsWbZkFauQkigWQSQBNoAESJAEARKVKDOYmbPvH2c4pLooETiYmeez1izOOVPwgLYIvHP2++7n1qdzy0VdDLGqMPG4t/dgZaXP4URk8hnD9ef3nLZBvcNzj4/5HEqmo5YWSKUgnbYEMikiTLCCnd6DKghFCkosBqtWnTwy7AstZ4DTBksUYkForR201vZn749ba//MWvv71truyYsn4i+39zibjs7NFYQljDFjQWmuf1DD4kSKw6qrqinFW/6TIcCOPRGfE8l0tHu3t1wU1+KQwiHtFYQVFd7lBBEpKKd/zpMOlfCLwK1w++1w333wgx/4F+wMncm2EyFjzFeNMR3GmIQxZn/2ODyZAUX8tPO7mxkmfqp/MJyhZo73i6CWi4oUj8orVzGHI4DXR9g1WMbIiM+hZNppa8sOlHEzlJDAgFcQXnvtac1GIlIo3vteCJysppwgP3/Pd7xi8PbbsxsV5oczWTL6V8B1wKeBVcBvAtcAX5uEXCLTwsafHiWNQzq7Q0uoLEpNjfeYBsqIFA+z9iIuoDl3PJEJsPGphI+JZLrJZODQIe8KobEuERJESbCQDrj8cr/jicgkmDED5s49dbx5W8T7UCjPnElBeCdwq7X2EWvtHmvtI8B7gF+bnGgiPrOW516M5paLBsgQqoxRWQnl5d7+MyJSJGprua5uW26DepcAT/7omK+RZHrp7YWBgexAGdebMLqMPTi4sG6d3/FEZJJccsmp+6OjsGmTf1neqjMpCF+rW0pdVFKQRjbvYsfY4lxBWMYoNXNLCQS8q4PqHxQpLldekiJICvAGy2x9XltPyCk7dsDEBGQyloB1iTDBubR6G5ZdcIHf8URkktx006n7ExPw2GP+ZXmrzqQg/BHwM2PMO40x5xhjbgR+mj0vUnA2/2sLLoFcQRgrDVBT5/0no/5BkeJTf9VSaugDvInDuw6WYK3PoWTaaGk5OVDGxck2G6xgJ5x/PpSU+B1PRCbJlVee2n7CWq8gdF1/M52pMykIfw94DPhHYCvwTbytJ353EnKJ+O65x0bIECCF1xTsVMRyewqrf1Ck+Jh1a1nGntzx0HiEAwd8DCTTyt69JwfKuERPHyij5aIiBa28HBobTx339norBvLJ6xaExphrTt6Ay4EngU8Bt+ANl3kie16koNjRMTbun5G7OhhhHFNWTlWV9ynQycJQRIrIBRdwBc/kDtM2wK/uP+FjIJlOOjpOXSGMMk4ZIzRwCNau9TuaiEyySy89dT+ZhCef9C3KW/JGM5D/5TXOn1wkY7L3F521RCLTQNdPNnHEnZUrCOPBBFWzIjiO+gdFilZJCTcvbecv97q4BHAJ8MzPB/j4/yj3O5n4LJGAnh5IJCzGzRAlyQp2EsDqCqFIEbjqKrjnHq8YPFkQfv7z+fP74usWhNZadUpJUdr4gwPAubmCMBoPU1Pr/Vet/kGR4nX+lVXE9o4xQhkuAba1nEnnhRSqHTu8otDNWAK4REhyDru8tWTLlvkdT0Qm2dKl3hYUXV3eFjT790NnZ/78zqifZCKvYuNGi0uACcIYLE5FufYfFBGcS9Yyn1ONg53Hy7xlglLUtm071T/o7Vyb9iaMNjV5U0ZFpKA1NHi3kzIZaG/3L8+ZUkEo8jKp/V1s6V9EgghgiDNEqiROdTXEYt4nQCJSpNaupYktucOJlOH5jRo1Wux27z69f3BCA2VEikwgABdf7BWFa9bA5z4H11/vd6o3b0oKQmNM1BizyRizzRjTaoz5ava8Mcb8hTFmrzFmlzHm86ed/4Yxpt0Ys90Ys+a09/qoMaYte/voVOSX4rLj37YyRiy3XLS8xKWi2iEUUv+gSNFbvpwbw0++ZIP6J+4b8DORTAP79p0qCCOMU8UAM+nRQBmRIrJ8ubfLzKxZcPCg32nOzBsNlTlbksA11toRY0wI2GCMeQg4B5gLLLfWusaYk9debgKWZG/rgH8C1hljqoGvAE14w2y2GmMesNbqp7GcNc892Ac0nJowWhXTclER8TgO11x0guAzaVIEcQmw6alxv1OJjzIZOHQIkgkL1iXGOCvY6X1ooCuEIkVjyZJT97u6vGXk0ah/ec7ElFwhtJ6R7GEoe7PAbwF/aq11s8/rzT7nNuB72ddtBCqNMbOBdwKPWmv7s0Xgo8CNU/E9SJHIZHiutRwXwwQRQqSw8QrtPygiOfHLz6eOHsD7QbZzf578xJdJsX8/DA97A2UMligJr3+wvh7mzPE7nohMkcZGqKz0Wofvuiu/NqefqiuEGGMcvA3tG4F/tNY+b4xZDLzfGPMe4BjweWttG1APdJ328kPZc691XuSsGHj8BXZPLCJJBIuh2gySCM6kutr7lGfmTL8Tiojv1q7lXHZyJPvjp380zJEj+t2/WG3bdmq5qEOGIGlvwqiWi4oUldJS+MY38rO1aMqGylhrM9ba1UADsNYYsxKIAAlrbRPwHeCes/G1jDGfMsZsMcZsOXbs2Nl4SykSz39vD0BuuWhppUN5uSES8a4OBjSGSUTWruUqnswdZjLw+C/T/uURX7W0nJowGskOlDmXVi0XFSlC+VgMgg9TRq21g8ATeEs9DwH3Zh+6Dzg/e/8wXm/hSQ3Zc691/uVf45+ttU3W2qa6urqz+w1IQXvuqQngVEEYqSnXclERean6et5dt4kA3nogF4f1Pxv0OZT4Ze/elw6UmUkP1QzoCqGI5I2pmjJaZ4ypzN4vAa4HdgM/Ba7OPu1KYG/2/gPAR7LTRi8Ghqy13cAvgRuMMVXGmCrghuw5kbfNDgyy8VADFkgSpYwRJkqrcgNl8mVzURGZZMaw5NIZlDIKZCecbc2jZhE5azIZb5pgMmEBlxIS3nYTxniNRCIieWCqeghnA9/N9hEGgB9aax80xmwA/sMY80VgBPhk9vm/AG4G2oEx4DcArLX9xpg/AzZnn/en1tr+KfoepMC1/8fz9FGT6x+siYyScCPU1EAk4o0RFhEBMOvWsuj+/WxjFQCdPSWkUhAK+RxMptSRI9DXBzY7PaKEMa8gXLECyst9Tici8uZMSUFord0OXPAq5weBd73KeQt85jXe6x7OUq+hyOk2/uQwUJNbLhqriZKOQUkJzJ+v/kEROc3atazj+VxBODERYMMGuPrqN3idFJSdO2F0FHBdAriESXn9g1ouKiJ5RL/iigBYy3NbvI/2E5QQIEOwRttNiMhraGridu7DYAHIWPj5fUmfQ8lU27HjVP9gODtQZjm7NVBGRPKKCkIRILF9Ly+OLM72D0aoNoOMRyrVPygir66igsuWDVCCtym9xfD0IwmfQ8lU270bkkkLrkuUBHPpIs4JXSEUkbyiglAEeOHftjFBmAnCuASoLk8znnSoqYFwGGbP9juhiEw34YvXsJj23HH7gZB3tUiKQiYD+/bBRNJCdkP6Fez0+gxWrvQ7nojIm6aCUATY+PAQcGq7idiMUqJRiMVg3jxwHD/Tici0dPXVXMvjucOJJPxSc6+LRnd3dqBM5mUDZdas0XQhEckrKghFkkk2tlUDXv9ghCTU1FBT400OV/+giLyqa6/lPfwUhwygPsJis38/DA0Bros5/QqhlouKSJ5RQShFb/TZbezPzMcCCSLUBocYpTQ3UEb9gyLyqhoaWL0smduPEOCZX6kgLBY7d8L4OOC6hEgRxGUZezRQRkTyjgpCKXrtj3UCkCKEi0N5HMbGDDU13qqf+np/84nI9BW+/kpW0Jo77joaZGDAx0AyZXbuzG5Ib10iJFlAJzHGdYVQRPKOCkIpem3P9wOn+geD8RjhMJSVwdy56h8Ukddx3XXcxEO5w1TK8POf+5hHpoTrwp49MDHhbTsSJeHtP1hbqz4DEck7Kgil6O3d7fX/nCwITXlprn9Qy0VF5HVddRXv5DHCpACw1vLzH4/5HEomW3c39PbiVYZACeNe/+C6dd4PDxGRPKKCUIpbKkV7d1m2fzBKlASJUDy3/6A+6BWR11VRwbnryihnOHdq87NprPUxk0y6jg4NlBGRwqGCUIqau3M3be4i0gTJEKQ8MMZYKkxNDQSD0NDgd0IRme6C11/NBTTnjnsGQhw65GMgmXT79sHICOC6BEkTJcES2jRQRkTykgpCKWpHntjDOCW55aLhUgfHgYoKrxgMBn0OKCLT33XX8W5+hsG7LJhJW+7/qS4RFrJduyAx7g2UCZNiKW3esuGLLvI7mojIGVNBKEVt74Ye4LSBMrGo+gdF5MxcfDGXRV8kQgIAC/ziRyf8zSSTxnWhpQVSE17/YIQE57ALGhuhutrndCIiZ04FoRS19u3jACSzBaEtKVH/oIicmUiEc66aSRWDuVM7dhgyGR8zyaTp7oaeHl4yUOZcWrVcVETylgpCKV7WsvdABBdDiiCGDJlIjMpKb6uJuXP9Digi+cK5/houZmPueOBEkN27fQwkk6azEwYHyQ2UiWigjIjkORWEUrw6OmibmEeKMGAoYQIbChOPe/2DoZDfAUUkb1x3HTfwCA7eZcFMxnLvj3SJsBB1dMDwMOC6OGQoY5RF7NcVQhHJWyoIpWiNPredw9QzQRiAcNQQjRqiUS0XFZEztHIla6v3U8J47tSj9434GEgmS1sbjI24gCVImhXsxAk5sGqV39FERN4SFYRStPY92QWQKwidaIh43HtMA2VE5IwEAiy/YR61HM+d2rsvwJj2qC8orgs7dkA67U2RjZBkJa1eMRiN+pxOROStUUEoRWvvVm8K4ARhLGAjESoqIBBQ/6CInLnA9dfyDp7KHQ+PB9m61cdActYdPQpHjpAbKBNl3JswquWiIpLHVBBK0Wpr98bDTxDGJUCoNEI8DvX1EA77nU5E8s511/EONhBmAgDrWn78n0mfQ8nZ1NEBAwOcNlAm6U0Y1UAZEcljKgilOPX00HZiFhmCuAQIksYp8a4Qqn9QRN6SefNomn+cGKO5U+sfTfgYSM62zk4YHrK5gTIVDDOXLl0hFJG8poJQipK7tZl2GnP9g6EgBBxDWZkKQhF565bc1MhMenLHXUcCHDvmYyA5q/bvh5ETJwfKZDiPHQQq4rBkid/RRETeMhWEUpS617czRoxktn/QCQcpL4dgEObP9zudiOSrwPXXchVPEsAbOjKaCPLMMz6HkrPC2uxAmZT3v22QFKvYDhdd5DWfi4jkKf0LJkVp78Z+4LT+wRKHigqYPRsiEZ/DiUj+uvpq1pmtRPCWilpr+cn3NWq0EHR3w+HDnDZQJts/qOWiIpLnVBBKUWrbmQJOFYThWJCKCm03ISJvU1UVTeclKePUHoSbn02drCEkj3V2Qn8/pw2USXgTRjVQRkTynApCKT4nTtDWG8fFkCaExRAujxKPq39QRN6+xe9azmyO5I57+xz27/cxkJwVHR0wNOiC9QbKVNPPbLpVEIpI3lNBKMVn2zbaWJLbfzAYsBAIUFmp/kERefu8/QjXEyQDQGLC4bHHrM+p5O3q6ICRYe9Sr0OGc2nFzJsHs2b5nExE5O1RQShFZ+z5HRyiIVsQBgiHLCUlXjEYjfqdTkTy3iWXcFFoOyV4vYMWy4M/GH2DF8l09sqBMhnW8IKuDopIQVBBKEWnfX034PUPZggQjgaIx9U/KCJnSTRK0zrnJX2EO3dkSGhLwrx19Kg3VMZmvCuEISa8CaMaKCMiBUAFoRSdtm3ep/YnB8pEsgNl1D8oImfLwltWMo8DueP+IYft230MJG9LRwf09QGuzQ2UWcFOXSEUkYKgglCKy8QEbQcjWCBJGBeHcHmYigr1D4rI2WOuv45LeJ4ISQCS6QC//EXG51TyVnV2wkB/BvAGytRxnNrAAKxZ43c0EZG3TQWhFJfWVva6i0kTxMXBwcUJB2lshJISv8OJSMFYtYoLy/YS49QehI/dP/I6L5DprL0dRoZODZQ5h12wciWUlfmcTETk7VNBKEXF3dpMO43Z/kGHSMjFceD88/1OJiIFJRCg6cpSyjmRO7V/f3bZoeSVkwNlMmmvIAySYRXbtFxURAqGCkIpKt3P7GeM2KkN6SMQj8OiRX4nE5FCM/+21czlIAG8QuLEaIDnnvM5lJyxnh7vZjPehFGHNOt4XgNlRKRgqCCUotK2ZQiAJBFcHCIljgbKiMikMNdfxzo2U4I3XjSZcXjk5xM+p5Iz1dEBA/0Wmx0oE2aC89mhK4QiUjBUEErxcF3a2ry7CaJYIFweZv58iMV8TSYihWjBAi6ceZjYadtPbHh0HNf1MZOcsc5O6D+eBiwOGWbSQzyWgRUr/I4mInJWqCCU4tHeTltyLi4BJghjgHBJkJUr/Q4mIoWq6doK4gznjo8e9XoJJX+0tcHI8MnlohmW0gZNTRAM+pxMROTsUEEoxaO5mTaWnOofdDJgDE1NfgcTkUI19/YLmcshgqQBGBsP8OST/maSN89a2L4d3NMGypzHdi0XFZGCooJQisbYphYO0ZDdfzBAJOwtFT3nHL+TiUihMtdczUVszW0/kXQd1IPfdQAAIABJREFUnnho3OdU8madHCjjZgfKBMhwEZs1UEZECooKQika+zYew2Ky/YOGcEmA+nooLfU7mYgUrJoaLlw8SNlp20+8sHGCZNLHTPKmdXbCwMCpgTLBkxNGdYVQRAqICkIpDtbS1uL9BjaOtwN9pDTIsmV+hhKRYtD0zhrKOYHJHg8MWF54wddI8iZ1dMBAbwqL1z84ix7KZ5bB3Ll+RxMROWumpCA0xkSNMZuMMduMMa3GmK++7PFvGGNGTjuOGGN+YIxpN8Y8b4xZcNpj/zN7fo8x5p1TkV8KQHc3bcMzsHhbTgCEy8KsWuVvLBEpfHNuX0sDRwhnt58YTwR44lfW51TyZuzZA6MnTg2UWUy7t1zUmDd4pYhI/piqK4RJ4Bpr7SpgNXCjMeZiAGNME1D1sud/Ahiw1jYCXwe+ln3uCuAu4FzgRuBbxhhnar4FyWvNzexlKROEyOAQDFgcx2jVj4hMOnP5ZTQ5L1LKKAATNsiGR8Z8TiVvJDdQJnNqoMy5tGq5qIgUnCkpCK3n5BXAUPZms8XcXwO/97KX3AZ8N3v/x8C1xhiTPf/f1tqktbYDaAf0L7O8IfuCN2F0nBIshkjIUlYGCxf6nUxECl5JCReuTFJ+Wh/h3p1p+vt9zCRvKDdQJjthNECGNbyggTIiUnCmrIfQGOMYY14EeoFHrbXPA58FHrDWdr/s6fVAF4C1Ng0MATWnn886lD338q/1KWPMFmPMlmPHjp39b0byTvdznYwRYxxvB/pw1LBggVb9iMjUaHrXTEoZJ0AGgJETrrafmOY6O2GwP4O1vHSgjPYqEpECM2UFobU2Y61dDTQAa40x7wDuBL45CV/rn621Tdbaprq6urP99pKH2pq9C9TjRAGIxBxtNyEiU2b2ey+hnsOUnOwjTDqsf8r1OZW8no4OGDyewsXgkKGW48xYWg2VlX5HExE5q6Z8yqi1dhB4ArgaaATajTGdQMwY05592mFgLoAxJghUAH2nn89qyJ4TeW2Dg+w9Wo4FJk4bKLNmjb+xRKSIrF5NU0krZXgfTk0QZNOTo1jNlpm2du2CsZFTA2UW0oG5WMtFRaTwTNWU0TpjTGX2fglwPbDVWjvLWrvAWrsAGMsOkQF4APho9v4dwK+stTZ7/q7sFNKFwBJg01R8D5LHXnyRNpbkBsoYYygrD7B8ud/BRKRoOA5NayzlDOe2nzhyMMPevb6mkteQGyiTPjVQ5hx2aaCMiBSkqbpCOBt4whizHdiM10P44Os8/1+AmuwVw7uBPwCw1rYCPwR2Ag8Dn7HWZiY1ueS/5mbaaWQUbwf6cNClvBwaGnzOJSJFpem2esKkCJICYGzU5fHHfQ4lr6q31xsoY08bKLOKbRooIyIFaaqmjG631l5grT3fWrvSWvunr/KcstPuJ6y1d1prG621a621+0977C+stYuttcustQ9NRX7Jb+ObW+hibm6gTCQC8+ZBNOpzMBEpKjPeeznz6CKGt+XEeMph44a0z6nk1ZzqH/QGyoSZYE1wB5x/vt/RRETOuinvIRSZavs29+NiSGQHyoRLHM491+dQIlJ8Fi2iqXJfro8wRYjtz4+RTPqcS16howOG+tJYAtmBMn3MWT0TwmG/o4mInHUqCKWwjY+zd79DBocUIQBKK4MsW+ZzLhEpPsZw4bogZYxg8IaVDB5Ps3Gjz7nkFVpaIDHm5iaMzqabskvO8zuWiMikUEEoha2lhXZ3EUkiuDiAoaYuyLx5fgcTkWLU9L75BMkQwbssOD5mtR/hNJPJwLZtYNPeiAKHDEvZg1mngTIiUphUEEpha25mL0sZI4YFgo63hZQKQhHxQ+17rmA+ByhlFIDxdJDNz2jN6HRy8CD09lrcjHcVN0ia89ihCaMiUrBUEEpBsy80s5clpwbKhC11dVBT43MwESlOtbU0zT5COScAr49w/84Ex475nEtydu2CoWMTuBgCuERIsrLsIDQ2vvGLRUTykApCKWjdm7oYJp7rHyyJGRobwZg3eKGIyCS58LIoJYzj4C1JHBtK8atf+RxKcnbuhKH+DJYAQdLUcpzZa2brB4eIFCwVhFK4MhnaW5NMECGDA0BFraPloiLiq6b3LyaApYRxAMbGYP16n0MJAK4LmzZBKukNlAmSpo5jzLhsid/RREQmjQpCKVx797J3Yj5JwtmC0FA7M6SCUER8VX3zxSwKdOa2nxh3w2x7fhxrfQ4mHDjg9RDaVBqbLQiX0EbJZWv8jiYiMmlUEErham6mjSUkKMHFYAKGuhlGBaGI+CsWo2lBH6XZ7SfSBDnWlaC11e9gsmsX9Pa4uK7N9Q9eQLMGyohIQVNBKIWruZlWVjCBt5FwNOQSjUJDg8+5RKToXXhVOREmCJEGYPxEmscf9zmUsGXLS/sHGzhE/UwX6ur8jiYiMmlUEErBGt/SSgcLyWT/b15ebpkzB8Jhn4OJSNG78APLMEDs5PYT47DxOdffUEXOdWHDBmBiItc/OJ+DzFijTxFFpLCpIJTCZC37XhgiQTQ3UKaqNqDloiIyLVRetZrG0AHKsttPjNsIu5oTHD/uc7Ai1tUFXV02WxAGCJGmgS5m3qLloiJS2FQQSmHq6qJteMZLJozWzI6qIBSR6cFxaFo2QhmjOGRIEyTRP8ZPfuJ3sOK1bRsc78lgXe9K7Sy6qQiMMuuuq/wNJiIyyVQQSmFqbmYHK0nj4OJgjKG6RgNlRGT6uPDaShxcSk8uGz2R4dFHfQ5VxB55BNzEBBmc3HLRhefGcKrifkcTEZlUKgilMDU38yKryeBggUh2oIwKQhGZLi786EoMlgoGMVjGkgHa9rh0dPidrPhY6+0/yEQKNztQZh4Habyx0e9oIiKTTgWhFCT7QjN7WZpbLhovcykrg8pKn4OJiGTFVy9iSewIpYzhkCZBFHf4BPfe63ey4tPZCYcOZrCZNBkcKhmkgkEWf/hSv6OJiEw6FYRSkI5uPcwQFa8YKGOMz8FERE4yhqZVEzi4lDFKGofEsRF+9SvIZPwOV1weeQSSIyksBgMsYj9VDeXUrJztdzQRkUmnglAKT18f247UkCZIBgeDpWpWiZaLisi0c83nVgJQzjABLMPjQQ7tS7B9u8/Bisxjj5GdLuoQJMU8DrL4ijn6EFFEioIKQik8zc08zzoAMjgEDMQrteWEiEw/q+46h3lVI5QyRpAUI5SRPjbA/ff7nax4WAsvvpCBVIoMAaIkmEUPjXes9juaiMiUUEEohae5me2cj0sAi8EJQlmZBsqIyPRjDNxyRzg7bXQEF8PoQIpn16cZG/M7XXFobob+3jQWcHGYx0GcyjiL3rnE72giIlNCBaEUnuZm2llyaqBMaYZQCOrrfc4lIvIq3vXlCwkEA5QzgkOGYVtGz55Bb+qlTLr77iM3XdRgaaSdOWtmESvVelERKQ4qCKXgHN+8n2PU5X64V1Y5zJ4NwaDfyUREXmnG3AgXr0oQY4wgacaJkjw2zM8esH5HKwpPPelCaiK73USKuRyi8ealfscSEZkyKgilsIyOsqF9FpZs/yAu8RkRLRcVkWnttrsX55aNGmB4IsK2pwfp7fU7WWEbG4O9rSmwlgwOMzhGJBqg8bZz/Y4mIjJlVBBKYdmxg81cBHgFoWMs8aqgCkIRmdauuGMm8doIZYzikOYE5fS2D/Pss34nK2wPPgipsZP9gwEWsY/w8oXMXaglJSJSPFQQSmFpbqaFc7EY7wphMEB5uQbKiMj0Fg7Dze+NZKeNpkkTZHQozUM/GcV1/U5XuB78mYXURHZFiWUZe1j4jnk4jt/JRESmjgpCKShjm1vpYl62fxCiEYhEVBCKyPR3691LCETClDLq7UlIOe3P9NDe7neywuS6sGl9ElwXlwBlnKDCGWPxrVouKiLFRQWhFJSO53vppzr7aW+GeAVUZG8iItPZ0mWGZSuDuWWjo5Ry9GCK59an/Y5WkFpaoP9YBvBaDOZyCBYtpPH8mM/JRESmlgpCKRypFM17S0kSzg2UKa/VQBkRyR+3fmYeMTNOiDQWw4lMCU/8+yHGx/1OVngefBAyyRQuBothCXuJr1pIba3fyUREppYKQikcu3ezNX0ekB0og0u8OqSCUETyxo3vjRGpqyDGmLcnIeV0beujpcXvZIXnkZ8lIJPBxSFImkV00HjzMoy2HxSRIqOCUArG+PPb2UcjAC4OJuhooIyI5JWKCrjy3WWUMopDhiQRDg2W8uxPuv2OVlC6u2H/nhQAGQLM4BiB+jk0NlX6nExEZOqpIJSC0bn+IH3UZAfKuARCDmVlKghFJL/c+okZxEoNQdLenoRUsOW+gxw75neywvH005AYyWS3m3CYzwHMsqUsXux3MhGRqaeCUApG5wsD9OUGyriUlXmj3GfP9juZiMibd/HFMGtJnBjjuT0JD7UnefGZUb+jFYxf3J8kk8rgZn8NWsZuZl++mJjmyYhIEVJBKIXBWva2G4aJZ/sHM8Srg9TXo/2kRCSvBALwrt+YQamTIEiGDAEOuPVs/M4O7Ul4FoyOwqanEoC3GX0pI9RUQ+Pls3xOJiLiDxWEUhASuzvZnZiP9RaLYoDy6rCWi4pIXrrldodYXSkBMtk9CSvYu6GX/fus39Hy3saNMDpwsn/QYTbdmGXLaGz0OZiIiE9UEEpB6Hy0jT5qcscm6BCvMCoIRSQvzZsHa66uyC0bHSNGx3AVzd/XuNG366lfZUiM22z/YIBF7Ce0Yglz5/qdTETEHyoIpSB0PtdNPzVYDBbACWrCqIjktVvvKqW03BDEG37SyQKa/3sviYTfyfKX68ITDwyRIYCLQ5gJ5pUcZ+EVDQSDfqcTEfGHCkIpCJ07TtCfHSjjYAlHDZGICkIRyV/XXQc188qzpUuGYeIc3DtOy+M9fkfLWzt2QE/Xqe0m4gwTXzqLxUv065CIFC/9Cyh5L5GAw50p+qnObTkRr3SoqoKyMr/TiYi8NbEYvPPOOCXBFA4ZUoTYw1Kav/Wc39Hy1tNPWRIn0oC33UQDh9Q/KCJFTwWh5L2DLxxndNSSJIzBegNlakK6Oigiee+WWw2lNREcMhjgIPPY+8Qhjh9O+h0tLz11/yAJN4SLweCyIHCI8vMXUlfndzIREf+oIJS8t+/xTvqoBsj2DzrEKwIqCEUk761eDUvXxAkADmlGKKNrvIYX/3GD39HyzqFD0NaSIIODS4AYY9QtKKXxnBDG+J1ORMQ/U1IQGmOixphNxphtxphWY8xXs+f/wxizxxjTYoy5xxgTyp43xphvGGPajTHbjTFrTnuvjxpj2rK3j05Ffpm+rIXW54bpz04YtQQgqIEyIlIYjIHb7whSUhbAwdtIfScraP7P3dqT8Aw9/TSMD3pXVjM4VDBEfEWDlouKSNGbqiuESeAaa+0qYDVwozHmYuA/gOXAeUAJ8Mns828ClmRvnwL+CcAYUw18BVgHrAW+YoypmqLvQaahw4dhqHOAfqpOzhfFBB3KylQQikhhePe7oXxmCQFcAlgO0UDvgVE6fr7T72h5Zf3Ph0lMeD8pLAHm0YVZuoTFi/1OJiLirykpCK1nJHsYyt6stfYX2ccssAloyD7nNuB72Yc2ApXGmNnAO4FHrbX91toB4FHgxqn4HmR6am0Feo7STw1B0higrNwQjcKsWX6nExF5+2bMgKtuiBIIBnFIM04J7Syh+e+f8jta3hgZga3rx0gQxSVAlHFm1FlmL45RWup3OhERf01ZD6ExxjHGvAj04hV1z5/2WAj4MPBw9lQ90HXayw9lz73WeSlC1kLLpjHS/UMMEcfgrZ8qrw7R0AABdciKSIF4z3sgVhEiSAaAVlaw86njJI8O+JwsPzz7LCT7R8gQxCVAKaPULq3RclEREaawILTWZqy1q/GuAq41xqw87eFvAU9ba9efja9ljPmUMWaLMWbLsWPHzsZbyjR05AgMNncwQBUOLhmCEHCIVzpaLioiBeXKK6FufhRjDA4u3cxmOB2l5a9+4Xe0vLD+kXESo14xfbJ/sGLVfBWEIiL4MGXUWjsIPEF2qacx5itAHXD3aU87DMw97bghe+61zr/8a/yztbbJWttUp1nSBau1FWhvZ4BqShgnRRjCIQ2UEZGCEw7D+94XwJREcEiTJsgOzqP5+61ouszry2TgmV8MkSCKBUKkmVU6QnhmtX5WiIgwdVNG64wxldn7JcD1wG5jzCfx+gJ/3Vp7+k+0B4CPZKeNXgwMWWu7gV8CNxhjqrLDZG7InpMiYy207HBhXzt9VBMmSZoghMLE4zB37hu/h4hIPnnf+yBWeWpPwt2cw4FjJfT/5Am/o01r27bB0JFRxrP9gzFGqZ1fxvz5EAz6nU5ExH9TdYVwNvCEMWY7sBmvh/BB4NvATOA5Y8yLxpg/zj7/F8B+oB34DvDbANbafuDPsu+xGfjT7DkpMt3dMNDaDWNjjFLmzRc1hnAsSCSiK4QiUniWLYNzVjqYcBiHNMeoZYg4zX/3K7+jTWtPP54iPTxKhiAZHMoYpfbcmVouKiKSNSWfjVlrtwMXvMr5V/362amjn3mNx+4B7jmrASXvnFwumsHhBOXectFQiHiFobYWYjG/E4qInH0f+hBsfT6KMzFCmiAvsIZ5Gx/gmv0dmEUL/Y43LT19Xx8JGwEggKU0mKRiyQwVhCIiWZrDKHnHWmhpAdrb6WY2ATJMZAvC6mpdHRSRwnXLLVBWGSQQMASwtLGEIeJ0fO2Hfkeblg4ehINtyex2E4Yo49TODFIeN8yY4Xc6EZHpQQWh5J2eHujvGoHuIxyjjhCpbEEYZsYMFYQiUrgqK+Ed7zCYkigOaYaJc4TZNP/nLkgk/I437Tz9pIsdGMztP1jKKDWLK2lsBGP8TiciMj2oIJS8410d3IcFjlMDwIRTQjQWIB5XQSgihe3jHwcTCeNk915t5gJaR+aR/P6PfE42/Tx97zHSGUuaIBZDzCSpXVGn5aIiIqdRQSh5xdpT/YNDVDBGjBQhbDjCyR1GVBCKSCG74gqYMTNAIOoVhR0sJEGE1q8/4ne0aWV4GF7cNJHbbiLCBKGKEiqqgyxe7Hc6EZHpQwWh5JXeXjjek4F9+zj+KstFo1HUFyIiBc1x4N3vBiLestEEUdpppHlnGDZt8jvetPHMM+AODJGgBEuAEsaoqY8yZw6UlfmdTkRk+lBBKHmlpQU4dAgmkgxSgQEmAiUEwg41NdDQoL4QESl8n/oUmKCDEwxggG2sopMFDPzdv/odbdpYf38/NpEgQZQMAUoZo3ZpjZaLioi8jApCySvectE2JgjTzWwsMB6ppKbGEAxquaiIFIfGRliyhOxwmQxHmMMYMTb/5CDs3Ol3PN+l0/Dso6OkCZImSJgJgqURaueEVRCKiLyMCkLJG729cOwY0NZOP1U4ZEgQZcIpyfUPrlrla0QRkSlzxx1AKIRjMqQJ0soKnk1fRO/7fgvGx/2O56vmZhjpHc31D0ZJEqwsp6ZGHxyKiLycCkLJG62twNAgHD/GKGUYYJBKCIWYMQPmzIELLvA7pYjI1PjEJyAUMjixEhwytLKSNA73716KvftLfsfz1fqHTsDISG67iRij1MwvY+FCCIX8TiciMr2oIJS8cXIzeovhIHNJEiERLKesPEAs5g1ZUP+giBSLykq48EIgEiYcgkEq6GUGB5nH5m9vgXvv9TuiL6yFp+/rByBBCQEyRKIBahpKtFxURORVqCCUvHDsmLdklLZ2RokxTgmDVOSuDtbUwCWX+J1SRGRqfeADAAZTVkrAeMNlLIZHuIHhj38BDh70O+KU6+yEQx2pXP9gCQmIx6mtRQWhiMirUEEoeaG1FUiloLOTJBFShBgjBuEwdXVw000QDPqdUkRkat15J5SXAyaAUxajg4X8khsYpJIHhy7HfuCD3oSVIvL0o0kYHmacKC6GSLZ/sKEBZs70O52IyPSjglDyQksLcPAApFMcYQ7DVIBxCEYc5s6Fq67yO6GIyNQLh+Haa737JhTEjZXRxTzu5T08yvXsfKYf/uzP/A05xZ764VGwLgmiAMSCaaobSryprGorEBF5BRWEMu0dPw49PUBbO2DpYAEjlEE4RF2d4cYbIRLxO6WIiD+++EVYtMi7b6MxJoIxxojxMO/kD/jfnPjTr8NTT/kbcoo8+yxsf9ECkCBKjDFMRTm1tUbLRUVEXoMKQpn2WlvxpgS0t+PiMEwFFgPhMHPmwPXX+51QRMQ/K1fC7/wOXHQRRCIGyspImBgAW2jiFu7n4Pt/F/r6fE46uVIp+JuvZWBokDRBUoSIMQbxcmprYfFivxOKiExPKghl2mttxftFZnCAw8zmBOXeA6Eg73sflJX5Gk9ExHe/9mvwrnfB5ZdD3YwAxEoYpwSAPSzjfT3/wM9v/kesa31OOnn+67/g4LNdkE6TIEoVA0QDKZzyMpYty/ZaiojIK6gglGmtvx+6u4H2diIk2cjFWAIQClFVFfA2ZhYRKXLGwKc/DStWeFcKz10Vxg2XkMRbT3+UWfzxppv58k1bGB31Oewk6O2F7/xFj9djACQJM4fDUFVJTa1h6VKfA4qITGMqCGVaa2nJ3mlvI0CaPmq941CISy/1tpsQERFvwMwXvwh1dV5P4RXXhHGdMCnCpAlygnIefjTAB9415K28KCDf+KNextsO544XcIB0NA4zZ1FTo+WiIiKvRwWhTGutrUAyCQe72M4qXBzvgXCYT37S12giItNORYXXTxiLQXVtgEuvCBAkQ4YgI5STsg6HN3bx8Y9l+O53wXX9Tvz2NW8Y5eHv9YL1vplyhqkzfYzOXQ4Bh5kzYcECfzOKiExnKghl2hoYgCNHgI4Oou4Im7jIeyDgMGOWwxVX+BpPRGRaqq+Hz38eHAdqGkppXBaggkECZBikEptMkOno4pvfhM9+NrfKMi+5Gctff7AZkoncuXfxC5Kr1mIjJTgOrFoFoZCPIUVEpjkVhDJtnb5cdJgKhqjyjkMhbrpJ+0mJiLyWc8+F3/gN737D6jpKq6PM4ijlnGCMUug7Dv19bNoEd90FGzb4m/et+smnHmbvwWjueBXbKL/0PE5UzQOguhqWLfMrnYhIflBBKNPWye0mbFs7m2nKnY+WOdx6q3+5RETywZVXwi23eFfHZl84h2Q4Th3HWMh+Mjhw4AAkEwwOwhe+AH/7tzAx4XfqN2/w8a3807+eKgYNlvcv2MSzCz/IiRPeudpatP+giMgbUEEo09LgIBw+DPT0MDgaoouG3GO1c8KsXetfNhGRfHHnnbBuHdTMCFK6vIHjzCCAy238lCr3OOzvyPXe/dd/wcc+BocO+Zv5Tenv51t3PM6wPbWXxLtDj/DQVf+HRCpIIgHBICxfDrNm+ZhTRCQPqCCUaenkclHb1s5RZjKAN040HDFcdnmAWMzHcCIiecIY+NSnYMkSmLu0FDNnFgeYzy7O4U/4KpeOPQqHj+Sev3ev9/zubh9DvxHXZfd7/5D7Bq/OnSpnmLK73k3vRBV9fd65VavgvPPUXiAi8kZUEMq0dHIket/uXo4wB4v3E72yymiYjIjIGQiH4e67Yd48mLmiBsrj7GQF/8mv87/5A+7u+T2Co4O55/f2wm//NrnCarqx/+dr/NVTa3M/FwAuv2iCh46sYudO6OmBuXO9m5aLioi8MRWEMu0MDWWXLI2N0dETY4RSAEKkiNWVqiAUETlD5eXwpS/BggWG6OJ6CIbYwOV8j4/wAf6Lf+t9F9Wlydzzu7q8onB42MfQr+bJJ3noj55hO+djgQnCBEpL+HnqBnp6IJ2G0lLv6mBVFZxzjt+BRUSmPxWEMu2cXC461NLFGCUcZwYAFeFxFiwJ09DwOi8WEZFXNWeOt3H9gsYQZt5cXBz+hU+ymQtZ3v8s/5D+TcrLbe75+/bB5z4HY2M+hj7d0aOMvv/jfN1+PvuzoY5jzCC9oJFU2vt1JhCAm27yeic/9zmIRt/gPUVERAWhTD8nl4u27UgQJE2SCA5pyqpCXH65v9lERPLZihXeHoU188pgxgyShPkDvsYgcZY++2/8/ep/o6Tk1PNbW70iMpl87fecEuk0w3d+gt/r/RK7WMEAVUwQoqKhjJSJYAxUVnrf2x//MaxZo70HRUTeLBWEMq0MDXlLlUZHXLp7A4xml4tWMIyprFRBKCLyNl1xhTc4JlRfB7FSeqnjbv6ONA7n/8On+NuP7XhJMbV1K/z+70Mq9frvay2Mjp7drSushYMH4Yd3/og/2nADP+V2Mid/dSktI1RZxsyZ3tLQm2/29l7UEBkRkTMT9DuAyOl27vT+bNs8SDzTzyEaCOBSHhglVlfK6tX+5hMRKQR33QW7dgW4b2wutLWzxW3i63yB30n/LWs/cxFfu+tb/E7Lx3CzxdeGDd6Vty99Cfr7vYEzx497t5P3+/ogkfCWaX7sY3DZZW89XzoNO3bAxo1w5Kk27E/beZYbcbODZIIRh/pzy1nc6C0TLSuD3/xN776IiJwZFYQyrbS0eL9QHGxLMpsxhqikkkEClXEuudRoCZCIyFlgDHz5y7B7d5hd4/XYgwf4MXcwnwOcm9yJ/e53eWd8hH+PfIJUKEY6bfjOd+Chh7ytHF5PIgHf/rY37fM97zmzK3ajo14RuGlTtndxaBDuv58DzOcI9ZQwTqmThIVLWNxocgXgJz/pDZEREZEzp4JQpo3hYW9p0P79YIaHGKcEgyXOMFTM03JREZGzKBSCv/97uPPOCobG6hg7fox7+Dh1HPeeMAzz2UxLaA3ESsFx6OryNnx/M9M777vPKwo/+ck37uc7ccK7Crl582lLU9Np+Mm9hBODtHMpMzmKg8vw7BUsmh/KFYPXXAMXXviW/xpERIqeCkKZNnbu9H4R6NgzQTzRw3HqKOcEDhmIx9/W8iMREXml2bO9K4V/+D9nMRGJ0H00QDCTpoIhAljm0UU6FWL30HKIlkDknzh1AAAeyklEQVRJlI6OAGVl8I53QE0N1Nae+hPgnnu8Ag/g2We95aRf+IK39cXLDQ7C+vVen2Im87Jsz93LJUe+yUbWkSKMg8vErLmEK2LU1XnPqa+HD35w8v5+RESKgQpCmTZaWqCzE1KDJ4gzzB6WM4tuKC1lxfkhqqv9TigiUnhuuAE2bzbce281qXgFB3urKOs7wEL2s5IWbuEBnuVSHkncQDBjCM6dzchIJcuXGz7wgVe+37x58Dd/A93d3vHevfAnf+L1H86Z453r64Onn4YXXwTXfenrlyyBK4d/xryn3k83s/l3PgKAjVfQ78xg3TLvecEgfOYzEA5Pzt+LiEixUEEo08KJE9DR4e17FTgxTIogURKESEPFDG1GLyIySYzxNqF3HOjrc4hE6gkcC8LDbYx1ldLDLO7gx9RynJ+m3gP790E8zt/95TxKS6PcdttL32/GDPjKV+Ab3zg1KKy3F776VfjQh+DoUW9gjLUvfd0558CVV0L9yB5o8irN/48vMEEYwmH6KxZRP9sQi3nP//Vfh7lzJ/kvR0SkCGgel19++ctXro8pYjt3ev2DiXGXipHD9FFHBYPegxUV6h8UEZlE1dVw993e9NH584GZM+EjH4Hbbqe3dBG/5EYmiDCfTsaJYoeHYWcrf/6bXTxy//gr3q+0FH73d70CD7wBMa2t8NnPwoMPnioGjfGG1Hz2s/CBD0B9/ATccQeMjLCJi/gV14AxjNUvIeU6LF7svW71arj++qn5uxERKXS6QjjVJia8XX6/9S34wz+Ev/gLvxNNCzt2QFsbMDZKhdvPAAuIMAGhEDVzYyxb5ndCEZHCFolAU5N3O3YMmpsNzeXnMbJ0KTz9NHbTJpbb3XQzh4PMo8SOETvax5fvPE7sjwa4/MtXv2SkaDDoLUfdtQseeeTU13nhBRgdTPHrl3RwZelWare+CN/f5T1x/35wXdI4/DW/C0C6fh7HR0pYtcq7illR4e2jqP0GRUTODhWEU+nwYe+Tz40bveO//EtYtw5uvdXfXD4bGfEGD4yOestFHTLY7F5TxCu47DKjvaVERKZQXZ1XzF13HbS1RWhecz27n14Fv3iYqw48yWNcRxcNjFBGOJXit77i8O0H/geX/ftvYZefQ2cnPPmEZf+OUWLHj3NR+Tgv7C3HTSSpTvUQaOniyAMbiPN/gVfueP8D3k8HC7GV1Ry3tVRWwqxZ3mOf/vSrD6gREZG3RgXhVAoEvKkpp/vwh2HLFq+Lvkjt3OkNHQCIjx4hRJooSe+ElouKiPgmEIBly7zb2K0z2PahD9P8/2/l2h89x8MjQY4yiwlCHKeWD2y9m8+f+49UrF7Igd4Sb7xoMgHAfNJcxiGeZy3jeE2Am1hLHzV8ka9TwXDua/ZRzf/l0xCJMlw9n8SQ4aKLvMduvvmN90EUEZEzo+suU2n2bPjhD2kPLOUBbvHODQ/D+97nXR4rUg8/DENDwESSyvGjwMlJA4ZgdTkXX+xjOBERASAWg0suNfz2PU18/oXf4H/d2sIsenOPTxDmm/a3aW524fAhSCYIM8EVrOdL/C2f4B7+kv9FPYdzr9nHYv6EP+EQ9blz34z/EWNV9SQXLGFgyGHBAigrgwUL4M47p/AbFhEpEsa+fMzXZHwRY6LA00AE76rkj621XzHGLAT+G6gBtgIfttZOGGMiwPeAC4E+4P3W2s7se/1P4BNABvi8tfaXr/e1m5qa7JYtWybnG3sLRkbgw5e207VjkFt5gN/na16v3Ic+BN/7XtE1RYyOwrvf7X2QHOg/xjVHvsezXEaGIJSXs/ZDy/jWt/xOKSIir+b4M3v44K3D7O2vIUkUC0RIUkM/MznKLI4SJEMAF4PFYMkQoIXz6QvPgnAYEwkTLAlxwfkutQvLeXpjGNeFI0e8K5RXXukVo3/+597nqiIicuaMMVuttU2v9thULRlNAtdYa0eMMSFggzHmIeBu4OvW2v82xnwbr9D7p+yfA9baRmPMXcDXgPcbY1YAdwHnAnOAx4wxS621eTGu01pvL6au8GKo2s8DA7eyh2X8Fb9H/fe/Dxdf7G2qVCSOHIFvf9srBgHiYz0sopP1ZMfSabmoiMi0VnvZMr6/y/LJdx3h4Iv9jKcdwFvn0ctMes1sKIlCNJrb2J5oFBuOkOgPeBvYW2AMjmyEmjaIx6G/H1IpOP98bzjNRz6iYlBEZLJMyZJR6xnJHoayNwtcA/w4e/67wO3Z+7dlj8k+fq0xxmTP/7e1Nmmt7QDagbVT8C2cFem0t+wFjLf2JRplD8v4EN9nA5d500efe87nlJMvnYbHHoN/+Ad49NHsSddlyfAW+jht93kVhCIi017dDMM/3V/PrKuXUza/lrKGagKNjV6z35oL4JwVsHCRV9FVVkG0BBMIUFPjbXdxur4+b5/CEyegshLq62HtWnjHO/z53kRE/l97dx4fVXX3cfzzS0ISthAggIRNQZbiBhoUrVallipVoGqBFtEWWpG61/Vxq6I+VlyxWoUqKGKtqBSx6qtUBOqDUAERlUU2o+w7BBQISc7zx7nDTDBRIMnMJPf7fr3mlZkz95577v0lDL85554TBnGbVMbMUvHDQo8GngJWANudc0XBJqth/00ELYBVAM65IjPbgR9W2gKYHVNt7D5Jr1Ytv1jv8cfDQw+lsq9dO1i8mJ0l9bmOx/ntvme5/KJfkDJ/nl8DqgZauxYmTvQf+B9+6IfQpqVBy1obGVTyPH/if/yG6Rm07pBJ69aJba+IiHy/3FwY9Wwajz7ahLVr/YiYkhL/M/IoKfHbxpY3bQrbt/t1aCPlRUXQsCGccALk5MDgwaG7m0JEJK7ilhAGwzq7mFk28A+gU1Udy8wuBy4HaJ1kGYUZXHghdOoEt9xSm3W7j4KVKwB4lt/y2bpjue+iIWRPn+QzpRqiuBimT4f//Md/6C9aBBs2+A/9Fi3gzDXv0YwNbKGx36FBA04/Xf8DEBGpLlq3hscfP7x98/Ph0Udh27ZomRkMG+YXuRcRkaoT91lGnXPbgWnAqUC2mUWynpawf+qxNUArgOD9BvjJZfaXl7FP7DFGO+fynHN5TZo0qZLzqKjOnWH8eDi1V0NodsT+8tl0Z+DMYSwc+kQCW1e51q6Fp5/2CWFJCaxeDV984UfNtmkD7Y92DP7iTmYSMz5Uw0VFRELjyCP9Pfax3+H27euXuxARkaoVl4TQzJoEPYOYWW3gJ8BifGJ4cbDZZcAbwfPJwWuC999zfjrUycAAM8sIZihtD3wYj3OoCg0awMiRcPkfm2P16+0v30AzfjvmVF6/aRZxmAS2yhQXw9SpMGqU7w0Ev7xEfr7vIc3O9pMHXPvTJaSvXsn/RRJCS6FOs3p07ZqwpouISJw1agR33eWX573iCvj5zxPdIhGRcIjXmMTmwAvBfYQpwATn3D/NbBHwdzO7D5gPPBds/xzwopktB7biZxbFObfQzCYAi4Ai4MrqMsNoeVJS4PJhqRzbqil3XLSFgsIMAPZRiwceTWHBN5u57ZEcMjMT3NBDtG5d9F7BiNRUf69Iy5bR19deC40nvclWGrKQY/wbWfXpfloqtWrFv90iIpI4GRnQs2eiWyEiEi5xSQidc58A3+rvcc6tpIxZQp1ze4Ayl591zt0P3F/ZbUy0085vxPhXM7il7+csdsEYmZIS3h6znqUbGjDi0VrVYoKV4mKYMcM/IhMIgB8i+/nnlOrxvPRS6NABeOstZvLD6BsaLioiIiIiEhdxv4dQypfbO4/nHivgQiZGC/fsYfl7XzFokGPGjMS17WCsW+fXFZw2LZoM1qkD/fv7WeNWrIhue/bZ0KMHvstw5szocFGABg344Q8REREREZEqpoQwyaRfcwW3XbKKP3IP6RT6wm3b+HrlRm64Af78Z98Ll0yKi+G993wyGDtE9Jhj4Jpr/ALDU6ZEyzt08L2DAEyZQlGxn0wHgMxMOnfJoHHjuDVfRERERCS0lBAmGzMYNYoLjvuS5/k1LSKTqK5eDbt28sILcOWVPslKBuX1Cvbr53sG16+HsWOj2zds6JPE/StqvP02H9OFrwnmFddwURERERGRuFFCmIzq1IGJE+nQYCMvMogzeB9wsGIl7Ctk7lwYOBA++SRxTXQO5szxM4iW1St43HF+RtGRI/1wUfBJ4HXX+dlVAZg9GyZM4H3OiFbQIFsJoYiIiIhInCghTFZHHw3jxpHFTh7hBn7PX0gp2gsrV4IrYdMm+N3vYMIE4r40RVERvPEGTJ4cHb4a2ytYt67fZuTI0osMDxkCbdsGL5YuhfPPh927o/cPpqbRqHVdOnWK6+mIiIiIiISWEsJk1rs33HYbKTgGM5YnuYrsXathtR9GWlwMI0bAvfdCYWF8mrRjBzz7LMybFy1r1w6uvtr3Cpr5BPX552H58ug2555LtOdv/XpfsGULq2nBl7Tx5S1bcvoZKaTot1JEREREJC70X+9kN3w4nHMOACczh5cYyLEbp8K26E2EkyfD5ZfDxo1V25T8fHj6aVizJlr2ox/5CWLq1YuWTZ1KqRlRO3eGAQOCFzt3ws9+Bl98QQnGG/Tx5c2bQ06OhouKiIiIiMSREsJkl5oKL79MZBHCZmzkr/yOi1aNhD2792/22WcwaFDV3FfoHHzwgZ8c5uuvfVl6uk/yfvITSvXoLVkC48dHX+fkwFVX+dNg3z64+GIKPlrGOAbRhzcYy2+gcWPIzSUtDU45pfLbLyIiIiIiZYvLwvRSQTk58NprfsxlYSG1KOJ/9g2n47atjMh9jCLnw7hli+8pvPVW6Nu3/OoKC2HzZv8oKfFDPuvXL3vbfftg0qTSiWbjxvCrX0HTpqW33bIFnngiel9hejr84Q9B3c6xrN/tvDKlG+9wF3vJ8BtlZUGbNoBxyin+/kMREREREYkPJYTVRbdufhHCoUP3F1249knatdjDTRmPs3WPz6SKivwo0w8/hAsv9Pf8RZK/TZv8zx07vl19mzZ+aGfnztCxI9Su7SeE+dvfSs8i2rEjXHwxZGaW3r+wEB57zI8IjRg6FHJz/RqFf79hDh993K/0TnXq+GzUUsjLg1tuqehFEhERERGRQ2Eu3lNUxlleXp6bO3duoptROZyDIUMoHDuezeSwiSZsJofl1p4xjW9mVUprilza/h66Ro2ga1fIyDi0w6Sk+KUhNm/2HXiNGvkhnz16wFln+YljDmzW00/DrFnRsh49/HavvgobPt0Iq74qvVNGBhnHd+S83un07w/t2x/y1RARERERkYNgZvOcc3llvacewurEDJ56iikz6vPKyph4Ojh68yz22C5Wp7eDOrXBUti6FWbOhJNOiln7L0Zqqv8ZSSDBJ3fr1sH8+dHlLGrV8olgQYGfObRt2+i+AO+8E00GCwpgzx4YPdoPN2X7tm8lg83Tt/CLe7vQd2g6WVkVvioiIiIiInKYlBBWN7Vrk/PY7TB4HmzZvL84hRKOdwvI2rudxXuPwdWujWVmUlycwoIF/p7CHj2gSRN/S2KTJpCd7Yd6Ll0KCxf6+wTffx+2b48eLjMTjjrKDzd97bVoWceOfnhp3brRYaX5+bBrlx8mmpIC7Nrp100M5DGXARmT+NH04aR0bxaf6yUiIiIiIuVSQlgNNTmmKZx7Lmlr8slZ8B4525aSw2Zy2EwTNrGOIxi5+1q+3puFNW8OjZswc2YqRx7p14KP7d3LyPDrBzZv7petOO00PznMpk2+h7BevdLbg+8BnD8fpk/3w0pXrfJlKSm+npQU/Ayoy5eT6XbTi7fpzyu0S/0SXn8Dup8cx6slIiIiIiLl0T2E1VBRkZ+8JTsbrLgIxo2Du+/2mVlgLc25kYdZSgdIqwW5fp2/k09J4YEHSg8hXbLE9/7t3etfm/nlJE4/3Q8BXbwYPv3UDz9dtswnjFu3lh5qCtCsmZ8nhn2F5C6bQb/dL9CbyWQRzDTz3HMweHCVXhsRERERESntu+4hVEJYU+zdC6NGwX33+e49YA8ZDOcuptDTb5OeAbm55B7biEceNY4+GqZN84+I2rWhf38/THT5cpg71z/mzfNrEBYVwe7dvkdw925KTWDToAGc3GUvA6ZdwekrXyCFmN+t4cPhzjvjdDFERERERCRCCWEYEsKIXbtg5Eh46CHYsQMHvMgg/szVOILpQTMzSW/dnDP6NiI93Zc559cNbNXK9wjOm1f28hSxnPMJYu3a/h7Ffn320vbK80pnmOAXR3zmmW9PTyoiIiIiIlVOCWGYEsKIrVthxAi/Uvzu3XzAqdzO/ezEr0C/jWy+ScumU+cUCus1ZNcuIy3t4HK29HQ4/njIy/OPY46BWqklcMkl8PLLpTe+4AKYOBHSdLuqiIiIiEgiKCEMY0IYsW6dH0Y6ejSrio7gBh5hJW0pJoVNNKGEVLKsgLq1werW8UtW1Knju/0sBfCTyhx7rE/+unXzyWB6+gHHuekmePjh0mXdu8PUqcGNhSIiIiIikghKCMOcEEasXAn33MM3417jLu5hOmdRSC0cRgaFpTZNoYQf2BLyjlhD3gn7OOHMbOqcchyccIK/WfBAjz8O119fuqxDBz8LTU5OFZ6UiIiIiIh8HyWESgijFi6k5I67GDOpIaMYisMwHO1ZRjfmkMdcujKfenxd9v6tW0PXrtCli/+5aZO/RzD296hZM79S/VFHxeecRERERESkXEoIlRB+25w55N/xLOtn59O5YFZ0aYiKqlcPZsyAE0+snPpERERERKRCvish1EwfYdWtG0f+qxtHOgerV/uV5j/+OPozP//Q60xLg9dfVzIoIiIiIlJNKCEMOzO/1kSrVtC7d7R82zZYsKB0krhokV9nojxjxkDPnlXfZhERERERqRRKCKVsDRvCWWf5R8SePT4pjE0SFyyAWrXgwQdh0KBEtVZERERERA6DEkI5eJmZfjiohoSKiIiIiNQIKYlugIiIiIiIiCSGEkIREREREZGQUkIoIiIiIiISUkoIRUREREREQkoJoYiIiIiISEgpIRQREREREQkpJYQiIiIiIiIhpYRQREREREQkpJQQioiIiIiIhJQSQhERERERkZBSQigiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERERERCSklBCKiIiIiIiElDnnEt2GKmVmm4AvE92OMuQAmxPdCPkWxSX5KCbJSXFJPopJclJcko9ikpwUl6rVxjnXpKw3anxCmKzMbK5zLi/R7ZDSFJfko5gkJ8Ul+SgmyUlxST6KSXJSXBJHQ0ZFRERERERCSgmhiIiIiIhISCkhTJzRiW6AlElxST6KSXJSXJKPYpKcFJfko5gkJ8UlQXQPoYiIiIiISEiph1BERERERCSklBAeBDMbY2YbzeyzA8ofMrMlZvaJmf3DzLLL2f/eYJuPzWyKmeUG5WZmT5jZ8uD9E8vZ/1wz+zzY7taY8qPM7L9B+Stmll6Z553skjguZmb3m9lSM1tsZtdU5nknsySISYWOXxMlcUy6mNnsoN65ZnZyZZ1zdVCFcelkZrPMbK+Z3fgdxz/JzD4N4veEmVlQ3sjM/m1my4KfDSvzvJNZssYkeO/qoA0LzWxEZZ1zdZAEcbnfzFaZ2a4Dyv9gZouCuqeaWZvKON/qIIlj0trMppnZ/KD+XpVxvqHgnNPjex7Aj4ATgc8OKO8JpAXPHwQeLGf/rJjn1wDPBM97Ae8ABnQH/lvGvqnACqAtkA4sADoH700ABgTPnwGGJfpaKS4O4DfAOCAleN000dcqDDGpjOPXxEcSx2QKcF5MXdMTfa1qSFyaAt2A+4Ebv+P4HwZxsyCOkViMAG4Nnt+qv5WkiMnZwLtARqS+RF+rkMWlO9Ac2HVA+dlAneD5MOCVRF8rxYTRBP8XBjoD+Ym+VtXloR7Cg+Cc+w+wtYzyKc65ouDlbKBlOfsXxLysC0Ru3OwDjHPebCDbzJofsPvJwHLn3ErnXCHwd6BP8M1hD+C1YLsXgL6HfnbVVzLGJXhvGDDcOVcSHGfjoZ9d9ZTgmFT4+DVRssYkqCcreN4AWHsQp1NjVFVcnHMbnXNzgH3lHTuIU5ZzbrZzzuG/wIp8fvTBf55AyD5Xkjgmw4A/Oef2Ruo7pBOr5hIZl2C72c65dWWUT3POffN9x6+JkjUmhPxzpSLSEt2AGmQw8Ep5b5rZ/cClwA78t0oALYBVMZutDspif8nL2uYUoDGwPeYPL7KvlBbvuAC0A/qb2c+BTcA1zrllFTiHmqaqYlIpxw+pRMTkOuBfZvYw/vaF0w6xzWFwOHE5GC3w8YqI/fxoFvMfrfVAs0OoNwwSEZMOwBlB3XvwPSdzDqXRIVBVcTlYQ/C9uhKViJjcDUwxs6vxieY5lVRvjacewkpgZrcDRcBL5W3jnLvdOdcq2OaqeLUtzBIYlwxgj3MuD/grMKaS6q32Ev23cjDHD5sExmQYcH1Q7/XAc5VUb42Q6L+VoH5HtEc49BIYkzSgEX6Y3E3AhNj7C8Mu0X8rZnYJkAc8VJn1VmcJjMkvgeedcy3xtyK8aGbKdQ6CLlIFmdmvgfOBgcGHJ2Y2NrhR9u0ydnkJuCh4vgZoFfNey6AsVnnbbMEP0Ur7jn1DK4FxAf/N7sTg+T+A4w/zNGqUOMTkkI8fdgmOyWVE/05exQ/DFiocl4OxhtJDuWJjtyEy9Df4GarhieVJcExWAxOD4dkfAiVAziGeQo0Uh7h83/HPAW4HekeG9IZdgmMyBD+/Bs65WUAm+ls5KEoIK8DMzgVuxv9DEBlHjnPuN865Ls65XsF27WN26wMsCZ5PBi41rzuwo4wx0XOA9uZnFE0HBgCTgz+yacDFwXaXAW9U8ilWS4mMS/DeJKLDH84Ellbi6VVLcYrJIR8/zBIdE/y9HWcGz3sAGlZNpcTlewVxKjCz7kFP06VEPz8m4z9PQJ8rQFLEZP9nipl1wE9ktrkCp1QjxCMu33P8rsCo4Pj64oTExwT4CvhxcIwf4BPCTZVUd83mkmBmm2R/AC/j74vZh/+mbkhQvhx/D83HweOZcvZ/HfgM+AR4E2gR+dIEeAo/W+WnQF45+/fCJxUrgNtjytviZyVbjv+GPSPR10pxcQDZwFvBvrOAExJ9rUIUkwodvyY+kjgmpwPz8DP0/hc4KdHXqobE5YigvgJge/A8q4z984L9VwBPAhaUNwam4hP0d4FGib5WignpwPjgvY+AHom+ViGLy4jgvZLg591B+bvAhpjjT070tVJM6AzMxH+ufAz0TPS1qi6PyD82IiIiIiIiEjIaMioiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERELHzFqb2S4zS010W0RERBJJCaGIiISCmeWb2TkAzrmvnHP1nHPFcTz+WWa2Ol7HExERORhKCEVEREREREJKCaGIiNR4ZvYi0Bp4MxgqerOZOTNLC96fbmb3mdkHwftvmlljM3vJzArMbI6ZHRlTXycz+7eZbTWzz82sX8x7vcxskZntNLM1ZnajmdUF3gFyg/p3mVmumZ1sZrPMbLuZrTOzJ80sPaYuZ2a/N7NlQX33mlm7oJ0FZjYhsn2kB9LMbjOzzUGP6MD4XGEREamulBCKiEiN55wbBHwFXOCcqwdMKGOzAcAgoAXQDpgFjAUaAYuBPwIEyd2/gb8BTYP9/mJmnYN6ngOGOufqA8cC7znnvgbOA9YGQ1XrOefWAsXA9UAOcCrwY+D3B7Trp8BJQHfgZmA0cAnQKqj/lzHbHhHU1QK4DBhtZh0P6WKJiEioKCEUERHxxjrnVjjnduB781Y45951zhUBrwJdg+3OB/Kdc2Odc0XOufnA68Avgvf3AZ3NLMs5t80591F5B3TOzXPOzQ7qyQdGAWcesNkI51yBc24h8BkwxTm3MqadXQ/Y/k7n3F7n3AzgLaAfIiIi5VBCKCIi4m2Ieb67jNf1gudtgFOCYZ7bzWw7MBDfOwdwEdAL+NLMZpjZqeUd0Mw6mNk/zWy9mRUA/4vv4TucdgFsC3ojI74Ecss7voiIiBJCEREJC1dJ9awCZjjnsmMe9ZxzwwCcc3Occ33ww0knER2eWtbxnwaWAO2dc1nAbYBVoG0NgyGtEa2BtRWoT0REajglhCIiEhYbgLaVUM8/gQ5mNsjMagWPbmb2AzNLN7OBZtbAObcPKABKYo7f2MwaxNRVP9hml5l1AoZVQvvuCdpxBn5466uVUKeIiNRQSghFRCQsHgDuCIZ4Xny4lTjndgI98ZPJrAXWAw8CGcEmg4D8YAjoFfjhpDjnlgAvAyuDoaa5wI3Ar4CdwF+BVw63XYH1wLagXS8BVwTHFRERKZM5V1kjaERERCRRzOwsYLxzrmWi2yIiItWHeghFRERERERCSgmhiIiIiIhISGnIqIiIiIiISEiph1BERERERCSklBCKiIiIiIiElBJCERERERGRkFJCKCIiIiIiElJKCEVEREREREJKCaGIiIiIiEhI/T/TYeQPsPM8oAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "c193140200b9684da27e3890211391b6", + "translation_date": "2025-09-04T01:49:30+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/2-ARIMA/working/notebook.ipynb b/translations/hi/7-TimeSeries/2-ARIMA/working/notebook.ipynb new file mode 100644 index 000000000..21a23c088 --- /dev/null +++ b/translations/hi/7-TimeSeries/2-ARIMA/working/notebook.ipynb @@ -0,0 +1,57 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "523ec472196307b3c4235337353c9ceb", + "translation_date": "2025-09-04T01:50:17+00:00", + "source_file": "7-TimeSeries/2-ARIMA/working/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "इस नोटबुक में, हम यह प्रदर्शित करते हैं कि कैसे:\n", + "- ARIMA समय श्रृंखला पूर्वानुमान मॉडल के लिए समय श्रृंखला डेटा तैयार करें\n", + "- एक साधारण ARIMA मॉडल लागू करें ताकि समय श्रृंखला में अगले HORIZON चरणों (समय *t+1* से *t+HORIZON* तक) का पूर्वानुमान लगाया जा सके\n", + "- मॉडल का मूल्यांकन करें\n", + "\n", + "इस उदाहरण में उपयोग किया गया डेटा GEFCom2014 पूर्वानुमान प्रतियोगिता से लिया गया है। इसमें 2012 से 2014 के बीच 3 वर्षों के घंटेवार बिजली लोड और तापमान मान शामिल हैं। कार्य भविष्य के बिजली लोड मानों का पूर्वानुमान लगाना है। इस उदाहरण में, हम केवल ऐतिहासिक लोड डेटा का उपयोग करके एक समय चरण आगे का पूर्वानुमान कैसे लगाया जाए, यह दिखाते हैं।\n", + "\n", + "ताओ हांग, पियरे पिन्सन, शू फैन, हमीदरेज़ा ज़ारिपोर, अल्बर्टो ट्रोक्कोली और रॉब जे. हाइंडमैन, \"प्रायिक ऊर्जा पूर्वानुमान: ग्लोबल एनर्जी फोरकास्टिंग प्रतियोगिता 2014 और आगे\", इंटरनेशनल जर्नल ऑफ फोरकास्टिंग, वॉल्यूम 32, नंबर 3, पृष्ठ 896-913, जुलाई-सितंबर, 2016।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pip install statsmodels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/3-SVR/README.md b/translations/hi/7-TimeSeries/3-SVR/README.md new file mode 100644 index 000000000..af0b98a02 --- /dev/null +++ b/translations/hi/7-TimeSeries/3-SVR/README.md @@ -0,0 +1,393 @@ + +# सपोर्ट वेक्टर रेग्रेसर के साथ टाइम सीरीज़ फोरकास्टिंग + +पिछले पाठ में, आपने ARIMA मॉडल का उपयोग करके टाइम सीरीज़ प्रेडिक्शन करना सीखा। अब आप सपोर्ट वेक्टर रेग्रेसर मॉडल के बारे में जानेंगे, जो निरंतर डेटा की भविष्यवाणी करने के लिए उपयोग किया जाता है। + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/51/) + +## परिचय + +इस पाठ में, आप [**SVM**: **S**upport **V**ector **M**achine](https://en.wikipedia.org/wiki/Support-vector_machine) का उपयोग करके रेग्रेशन के लिए मॉडल बनाने का एक विशेष तरीका जानेंगे, जिसे **SVR: Support Vector Regressor** कहा जाता है। + +### टाइम सीरीज़ के संदर्भ में SVR [^1] + +टाइम सीरीज़ प्रेडिक्शन में SVR के महत्व को समझने से पहले, आपको कुछ महत्वपूर्ण अवधारणाओं को जानना होगा: + +- **रेग्रेशन:** सुपरवाइज़्ड लर्निंग तकनीक जो दिए गए इनपुट सेट से निरंतर मानों की भविष्यवाणी करती है। इसका उद्देश्य फीचर स्पेस में एक कर्व (या लाइन) फिट करना है जिसमें अधिकतम डेटा पॉइंट्स हों। [यहां क्लिक करें](https://en.wikipedia.org/wiki/Regression_analysis) अधिक जानकारी के लिए। +- **सपोर्ट वेक्टर मशीन (SVM):** एक प्रकार का सुपरवाइज़्ड मशीन लर्निंग मॉडल जो वर्गीकरण, रेग्रेशन और आउटलायर डिटेक्शन के लिए उपयोग किया जाता है। यह मॉडल फीचर स्पेस में एक हाइपरप्लेन होता है, जो वर्गीकरण के मामले में सीमा के रूप में कार्य करता है और रेग्रेशन के मामले में बेस्ट-फिट लाइन के रूप में। SVM में, आमतौर पर एक कर्नल फंक्शन का उपयोग किया जाता है ताकि डेटा को उच्च आयामों के स्पेस में ट्रांसफॉर्म किया जा सके, जिससे वे आसानी से अलग हो सकें। [यहां क्लिक करें](https://en.wikipedia.org/wiki/Support-vector_machine) SVMs पर अधिक जानकारी के लिए। +- **सपोर्ट वेक्टर रेग्रेसर (SVR):** SVM का एक प्रकार, जो बेस्ट फिट लाइन (जो SVM के मामले में एक हाइपरप्लेन है) खोजने के लिए उपयोग किया जाता है जिसमें अधिकतम डेटा पॉइंट्स हों। + +### SVR क्यों? [^1] + +पिछले पाठ में आपने ARIMA के बारे में सीखा, जो टाइम सीरीज़ डेटा की भविष्यवाणी के लिए एक बहुत ही सफल सांख्यिकीय रैखिक विधि है। हालांकि, कई मामलों में, टाइम सीरीज़ डेटा में *गैर-रेखीयता* होती है, जिसे रैखिक मॉडल द्वारा मैप नहीं किया जा सकता। ऐसे मामलों में, रेग्रेशन कार्यों के लिए डेटा में गैर-रेखीयता को ध्यान में रखने की SVM की क्षमता SVR को टाइम सीरीज़ फोरकास्टिंग में सफल बनाती है। + +## अभ्यास - SVR मॉडल बनाएं + +डेटा तैयार करने के पहले कुछ चरण पिछले पाठ [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA) के समान हैं। + +इस पाठ में [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/3-SVR/working) फ़ोल्डर खोलें और [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/3-SVR/working/notebook.ipynb) फ़ाइल खोजें।[^2] + +1. नोटबुक चलाएं और आवश्यक लाइब्रेरी इंपोर्ट करें: [^2] + + ```python + import sys + sys.path.append('../../') + ``` + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from sklearn.svm import SVR + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + ``` + +2. `/data/energy.csv` फ़ाइल से डेटा को एक Pandas डेटा फ्रेम में लोड करें और इसे देखें: [^2] + + ```python + energy = load_data('../../data')[['load']] + ``` + +3. जनवरी 2012 से दिसंबर 2014 तक उपलब्ध ऊर्जा डेटा को प्लॉट करें: [^2] + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![पूर्ण डेटा](../../../../translated_images/full-data.a82ec9957e580e976f651a4fc38f280b9229c6efdbe3cfe7c60abaa9486d2cbe.hi.png) + + अब, चलिए अपना SVR मॉडल बनाते हैं। + +### प्रशिक्षण और परीक्षण डेटा सेट बनाएं + +अब आपका डेटा लोड हो गया है, तो आप इसे ट्रेन और टेस्ट सेट में विभाजित कर सकते हैं। फिर आप डेटा को टाइम-स्टेप आधारित डेटा सेट बनाने के लिए रीशेप करेंगे, जो SVR के लिए आवश्यक होगा। आप अपने मॉडल को ट्रेन सेट पर प्रशिक्षित करेंगे। मॉडल के प्रशिक्षण के बाद, आप इसकी सटीकता को ट्रेनिंग सेट, टेस्टिंग सेट और फिर पूरे डेटा सेट पर मूल्यांकन करेंगे ताकि समग्र प्रदर्शन देखा जा सके। आपको यह सुनिश्चित करना होगा कि टेस्ट सेट ट्रेनिंग सेट से बाद की अवधि को कवर करता है ताकि मॉडल भविष्य की समय अवधि से जानकारी प्राप्त न कर सके [^2] (जिसे *ओवरफिटिंग* कहा जाता है)। + +1. 1 सितंबर से 31 अक्टूबर, 2014 तक की दो महीने की अवधि को ट्रेनिंग सेट के लिए आवंटित करें। टेस्ट सेट में 1 नवंबर से 31 दिसंबर, 2014 तक की दो महीने की अवधि शामिल होगी: [^2] + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + +2. अंतर को विज़ुअलाइज़ करें: [^2] + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![ट्रेनिंग और टेस्टिंग डेटा](../../../../translated_images/train-test.ead0cecbfc341921d4875eccf25fed5eefbb860cdbb69cabcc2276c49e4b33e5.hi.png) + +### प्रशिक्षण के लिए डेटा तैयार करें + +अब, आपको डेटा को प्रशिक्षण के लिए तैयार करना होगा। इसके लिए आपको अपने डेटा को फ़िल्टर और स्केल करना होगा। अपने डेटा सेट को केवल आवश्यक समय अवधि और कॉलम ('load' और तारीख) तक सीमित करें, और स्केलिंग करें ताकि डेटा 0,1 के अंतराल में प्रोजेक्ट हो। + +1. मूल डेटा सेट को फ़िल्टर करें ताकि केवल उपरोक्त समय अवधि और आवश्यक कॉलम शामिल हों: [^2] + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +2. ट्रेनिंग डेटा को (0, 1) के रेंज में स्केल करें: [^2] + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + ``` + +4. अब, टेस्टिंग डेटा को स्केल करें: [^2] + + ```python + test['load'] = scaler.transform(test) + ``` + +### टाइम-स्टेप्स के साथ डेटा बनाएं [^1] + +SVR के लिए, आप इनपुट डेटा को `[batch, timesteps]` के रूप में ट्रांसफॉर्म करते हैं। इसलिए, आप मौजूदा `train_data` और `test_data` को इस तरह रीशेप करते हैं कि एक नया आयाम हो जो टाइमस्टेप्स को संदर्भित करता हो। + +```python +# Converting to numpy arrays +train_data = train.values +test_data = test.values +``` + +इस उदाहरण के लिए, हम `timesteps = 5` लेते हैं। तो, मॉडल के इनपुट पहले 4 टाइमस्टेप्स के डेटा होंगे, और आउटपुट 5वें टाइमस्टेप का डेटा होगा। + +```python +timesteps=5 +``` + +ट्रेनिंग डेटा को 2D टेंसर में बदलना: + +```python +train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0] +train_data_timesteps.shape +``` + +```output +(1412, 5) +``` + +टेस्टिंग डेटा को 2D टेंसर में बदलना: + +```python +test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0] +test_data_timesteps.shape +``` + +```output +(44, 5) +``` + +ट्रेनिंग और टेस्टिंग डेटा से इनपुट और आउटपुट का चयन: + +```python +x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]] +x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]] + +print(x_train.shape, y_train.shape) +print(x_test.shape, y_test.shape) +``` + +```output +(1412, 4) (1412, 1) +(44, 4) (44, 1) +``` + +### SVR लागू करें [^1] + +अब, SVR को लागू करने का समय है। इस कार्यान्वयन के बारे में अधिक पढ़ने के लिए, आप [इस दस्तावेज़](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html) को देख सकते हैं। हमारे कार्यान्वयन के लिए, हम निम्नलिखित चरणों का पालन करते हैं: + +1. `SVR()` को कॉल करके और मॉडल हाइपरपैरामीटर: kernel, gamma, c और epsilon पास करके मॉडल को परिभाषित करें। +2. `fit()` फ़ंक्शन को कॉल करके ट्रेनिंग डेटा के लिए मॉडल तैयार करें। +3. `predict()` फ़ंक्शन को कॉल करके भविष्यवाणी करें। + +अब हम एक SVR मॉडल बनाते हैं। यहां हम [RBF कर्नल](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel) का उपयोग करते हैं, और हाइपरपैरामीटर gamma, C और epsilon को क्रमशः 0.5, 10 और 0.05 सेट करते हैं। + +```python +model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05) +``` + +#### ट्रेनिंग डेटा पर मॉडल फिट करें [^1] + +```python +model.fit(x_train, y_train[:,0]) +``` + +```output +SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5, + kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) +``` + +#### मॉडल प्रेडिक्शन करें [^1] + +```python +y_train_pred = model.predict(x_train).reshape(-1,1) +y_test_pred = model.predict(x_test).reshape(-1,1) + +print(y_train_pred.shape, y_test_pred.shape) +``` + +```output +(1412, 1) (44, 1) +``` + +आपने अपना SVR बना लिया है! अब हमें इसका मूल्यांकन करना होगा। + +### अपने मॉडल का मूल्यांकन करें [^1] + +मूल्यांकन के लिए, पहले हम डेटा को अपने मूल स्केल में वापस स्केल करेंगे। फिर, प्रदर्शन की जांच करने के लिए, हम मूल और भविष्यवाणी किए गए टाइम सीरीज़ प्लॉट को प्लॉट करेंगे, और MAPE परिणाम भी प्रिंट करेंगे। + +भविष्यवाणी और मूल आउटपुट को स्केल करें: + +```python +# Scaling the predictions +y_train_pred = scaler.inverse_transform(y_train_pred) +y_test_pred = scaler.inverse_transform(y_test_pred) + +print(len(y_train_pred), len(y_test_pred)) +``` + +```python +# Scaling the original values +y_train = scaler.inverse_transform(y_train) +y_test = scaler.inverse_transform(y_test) + +print(len(y_train), len(y_test)) +``` + +#### ट्रेनिंग और टेस्टिंग डेटा पर मॉडल प्रदर्शन की जांच करें [^1] + +हम डेटा सेट से टाइमस्टैम्प्स निकालते हैं ताकि उन्हें हमारे प्लॉट के x-अक्ष में दिखाया जा सके। ध्यान दें कि हम पहले ```timesteps-1``` मानों का उपयोग पहले आउटपुट के लिए इनपुट के रूप में कर रहे हैं, इसलिए आउटपुट के टाइमस्टैम्प्स उसके बाद शुरू होंगे। + +```python +train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:] +test_timestamps = energy[test_start_dt:].index[timesteps-1:] + +print(len(train_timestamps), len(test_timestamps)) +``` + +```output +1412 44 +``` + +ट्रेनिंग डेटा के लिए भविष्यवाणी प्लॉट करें: + +```python +plt.figure(figsize=(25,6)) +plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.title("Training data prediction") +plt.show() +``` + +![ट्रेनिंग डेटा भविष्यवाणी](../../../../translated_images/train-data-predict.3c4ef4e78553104ffdd53d47a4c06414007947ea328e9261ddf48d3eafdefbbf.hi.png) + +ट्रेनिंग डेटा के लिए MAPE प्रिंट करें: + +```python +print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%') +``` + +```output +MAPE for training data: 1.7195710200875551 % +``` + +टेस्टिंग डेटा के लिए भविष्यवाणी प्लॉट करें: + +```python +plt.figure(figsize=(10,3)) +plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![टेस्टिंग डेटा भविष्यवाणी](../../../../translated_images/test-data-predict.8afc47ee7e52874f514ebdda4a798647e9ecf44a97cc927c535246fcf7a28aa9.hi.png) + +टेस्टिंग डेटा के लिए MAPE प्रिंट करें: + +```python +print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%') +``` + +```output +MAPE for testing data: 1.2623790187854018 % +``` + +🏆 आपके पास टेस्टिंग डेटा पर बहुत अच्छा परिणाम है! + +### पूरे डेटा सेट पर मॉडल प्रदर्शन की जांच करें [^1] + +```python +# Extracting load values as numpy array +data = energy.copy().values + +# Scaling +data = scaler.transform(data) + +# Transforming to 2D tensor as per model input requirement +data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0] +print("Tensor shape: ", data_timesteps.shape) + +# Selecting inputs and outputs from data +X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]] +print("X shape: ", X.shape,"\nY shape: ", Y.shape) +``` + +```output +Tensor shape: (26300, 5) +X shape: (26300, 4) +Y shape: (26300, 1) +``` + +```python +# Make model predictions +Y_pred = model.predict(X).reshape(-1,1) + +# Inverse scale and reshape +Y_pred = scaler.inverse_transform(Y_pred) +Y = scaler.inverse_transform(Y) +``` + +```python +plt.figure(figsize=(30,8)) +plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(Y_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![पूर्ण डेटा भविष्यवाणी](../../../../translated_images/full-data-predict.4f0fed16a131c8f3bcc57a3060039dc7f2f714a05b07b68c513e0fe7fb3d8964.hi.png) + +```python +print('MAPE: ', mape(Y_pred, Y)*100, '%') +``` + +```output +MAPE: 2.0572089029888656 % +``` + +🏆 बहुत अच्छे प्लॉट्स, जो एक अच्छे सटीकता वाले मॉडल को दिखाते हैं। बहुत बढ़िया! + +--- + +## 🚀चुनौती + +- मॉडल बनाते समय हाइपरपैरामीटर (gamma, C, epsilon) को बदलने की कोशिश करें और डेटा पर मूल्यांकन करें ताकि यह देखा जा सके कि कौन सा हाइपरपैरामीटर सेट टेस्टिंग डेटा पर सबसे अच्छे परिणाम देता है। इन हाइपरपैरामीटर के बारे में अधिक जानने के लिए, आप [यह दस्तावेज़](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel) देख सकते हैं। +- मॉडल के लिए विभिन्न कर्नल फंक्शन का उपयोग करने की कोशिश करें और उनके प्रदर्शन का विश्लेषण करें। एक सहायक दस्तावेज़ [यहां](https://scikit-learn.org/stable/modules/svm.html#kernel-functions) पाया जा सकता है। +- मॉडल के लिए भविष्यवाणी करने के लिए `timesteps` के विभिन्न मानों का उपयोग करने की कोशिश करें। + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/52/) + +## समीक्षा और स्व-अध्ययन + +यह पाठ टाइम सीरीज़ फोरकास्टिंग के लिए SVR के अनुप्रयोग को पेश करने के लिए था। SVR के बारे में अधिक पढ़ने के लिए, आप [इस ब्लॉग](https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/) को देख सकते हैं। यह [scikit-learn पर दस्तावेज़](https://scikit-learn.org/stable/modules/svm.html) SVMs के बारे में अधिक व्यापक व्याख्या प्रदान करता है, [SVRs](https://scikit-learn.org/stable/modules/svm.html#regression) और अन्य कार्यान्वयन विवरण जैसे कि विभिन्न [कर्नल फंक्शन](https://scikit-learn.org/stable/modules/svm.html#kernel-functions) जो उपयोग किए जा सकते हैं, और उनके पैरामीटर। + +## असाइनमेंट + +[एक नया SVR मॉडल](assignment.md) + +## क्रेडिट्स + +[^1]: इस अनुभाग में पाठ, कोड और आउटपुट [@AnirbanMukherjeeXD](https://github.com/AnirbanMukherjeeXD) द्वारा योगदान दिया गया था। +[^2]: इस अनुभाग में पाठ, कोड और आउटपुट [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA) से लिया गया था। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/3-SVR/assignment.md b/translations/hi/7-TimeSeries/3-SVR/assignment.md new file mode 100644 index 000000000..67d165d25 --- /dev/null +++ b/translations/hi/7-TimeSeries/3-SVR/assignment.md @@ -0,0 +1,29 @@ + +# एक नया SVR मॉडल + +## निर्देश [^1] + +अब जब आपने एक SVR मॉडल बना लिया है, तो नए डेटा के साथ एक नया मॉडल बनाएं (ड्यूक के [इन डेटा सेट्स](http://www2.stat.duke.edu/~mw/ts_data_sets.html) में से एक आज़माएं)। अपने काम को एक नोटबुक में एनोटेट करें, डेटा और अपने मॉडल को विज़ुअलाइज़ करें, और उपयुक्त प्लॉट्स और MAPE का उपयोग करके इसकी सटीकता का परीक्षण करें। विभिन्न हाइपरपैरामीटर्स को समायोजित करने और टाइमस्टेप्स के लिए अलग-अलग मानों का उपयोग करने का भी प्रयास करें। + +## मूल्यांकन मानदंड [^1] + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| ------- | ------------------------------------------------------------ | --------------------------------------------------------- | ----------------------------------- | +| | एक नोटबुक प्रस्तुत की गई है जिसमें SVR मॉडल बनाया गया है, परीक्षण किया गया है और विज़ुअलाइज़ेशन और सटीकता के साथ समझाया गया है। | प्रस्तुत नोटबुक एनोटेट नहीं है या इसमें त्रुटियां हैं। | एक अधूरी नोटबुक प्रस्तुत की गई है। | + + + +[^1]: इस अनुभाग का पाठ [ARIMA के असाइनमेंट](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/assignment.md) पर आधारित है। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/3-SVR/solution/notebook.ipynb b/translations/hi/7-TimeSeries/3-SVR/solution/notebook.ipynb new file mode 100644 index 000000000..e4e6a5291 --- /dev/null +++ b/translations/hi/7-TimeSeries/3-SVR/solution/notebook.ipynb @@ -0,0 +1,1011 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "इस नोटबुक में, हम यह प्रदर्शित करेंगे कि:\n", + "\n", + "- 2D समय श्रृंखला डेटा को SVM रिग्रेशन मॉडल के प्रशिक्षण के लिए कैसे तैयार करें \n", + "- RBF कर्नेल का उपयोग करके SVR को कैसे लागू करें \n", + "- प्लॉट्स और MAPE का उपयोग करके मॉडल का मूल्यांकन कैसे करें \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### डेटा लोड करें\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                load
                                2012-01-01 00:00:002698.0
                                2012-01-01 01:00:002558.0
                                2012-01-01 02:00:002444.0
                                2012-01-01 03:00:002402.0
                                2012-01-01 04:00:002403.0
                                \n", + "
                                " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAH1CAYAAABbUbvGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC4S0lEQVR4nOzdd7wU1d0G8OfcQu9dQUA6goI0RQXFimL3jb3FrjHRmNg19hJrYo29d8WKFQQFC0WlSu8gvVzqBe695/1jd/bOzk7vs/t88/GTy+7M7NnZmTOn/o6QUoKIiIiIiIgIAIqiTgARERERERHFByuJRERERERElMFKIhEREREREWWwkkhEREREREQZrCQSERERERFRBiuJRERERERElFESdQKi0KxZM9m+ffuok0FERERERBSJX375Za2UsrneewVZSWzfvj0mTZoUdTKIiIiIiIgiIYRYbPQeh5sSERERERFRBiuJRERERERElMFKIhEREREREWUU5JxEIiIiIiIiANi1axeWLVuG8vLyqJMSiFq1aqFNmzYoLS21vQ8riUREREREVLCWLVuG+vXro3379hBCRJ0cX0kpsW7dOixbtgx77rmn7f043JSIiIiIiApWeXk5mjZtmncVRAAQQqBp06aOe0lZSSQiIiIiooKWjxVEhZvvxkoiERERERFRhOrVq+fLcW6//XY89NBDno/DSiIRERERERFlsJJIREREREQUA1JKXHvttejZsyf23ntvvPPOOwCALVu24LDDDkOfPn2w99574+OPP87sc88996BLly446KCDMHv2bF/SweimREREREREAO74dAZ+/2OTr8fca/cGuO24Hra2HT58OCZPnowpU6Zg7dq16N+/PwYPHozmzZvjww8/RIMGDbB27Vrsv//+OP744/Hrr7/i7bffxuTJk1FRUYE+ffqgb9++ntPMnkQiIiIiIqIYGDduHM444wwUFxejZcuWOPjggzFx4kRIKXHTTTdhn332weGHH47ly5dj1apVGDt2LE466STUqVMHDRo0wPHHH+9LOtiTSEREREREBNju8QvbG2+8gTVr1uCXX35BaWkp2rdv73hZCyfYk0hERERERBQDgwYNwjvvvIPKykqsWbMG33//PQYMGICysjK0aNECpaWlGD16NBYvXgwAGDx4MD766CNs374dmzdvxqeffupLOtiTSEREREREFAMnnXQSfvrpJ/Tq1QtCCDzwwANo1aoVzjrrLBx33HHYe++90a9fP3Tr1g0A0KdPH5x22mno1asXWrRogf79+/uSDiGl9OVASdKvXz85adKkqJNBREREREQRmzlzJrp37x51MgKl9x2FEL9IKfvpbc/hpkRERERERJTBSiIREVECvPbTIrS/YQQ2le+KOilERJTnWEkkIiJKgOfHLQQArNuyM+KUEBFRvmMlkYiIKAF2VVQBAEqLRcQpISLKP/kcp8XNd2MlkYiIKAF2VaUe8qXFfHQTEfmpVq1aWLduXV5WFKWUWLduHWrVquVoPy6BQURElAAVlameRMGORCIiX7Vp0wbLli3DmjVrok5KIGrVqoU2bdo42oeVRCIioiTJv4ZuIqJIlZaWYs8994w6GbHCSiIREVHMtb9hROZv1hGJiChonNhARESUIHk4ZYaIiGKGPYlEREQxtbOiCss3bs96TbIvkYiIAsZKIhERUUzdOHwaPvh1WdZr7EkkIqKgcbgpERFRTH0/NzfSHuuIREQUNFYSiYiIYqqqKrdKmI/reBERUbywkkhERBRTlToVQtYRiYgoaKwkEhERxVRlJWuEREQUPlYSiYiIYoo9iUREFAVWEomIiGKqUm9OIkPXEBFRwFhJJCIiiqkqdhsSEVEEWEkkIiKKKZ2ORA43JSKiwLGSSERElCCsIxIRUdBYSSQiIkoQrpNIRERBYyWRiIgopoTOa6wiEhFR0FhJJCIiShB2JBIRUdBYSSQiIoopodeVyL5EIjKws6IKOyuqok4G5QFWEomIiGJK6Aw4ZU8iERnpe9c36Hn7V1Eng/JAaJVEIcQYIUS5EGJL+r/ZqvfOFEIsFkJsFUJ8JIRoonqviRDiw/R7i4UQZ2qOa7gvERFRvmEdkYiMbN5RwZ5E8kXYPYlXSinrpf/rCgBCiB4AngFwDoCWALYBeEq1z5MAdqbfOwvA0+l97OxLRESUV9iTSEREQSuJOgFIVfw+lVJ+DwBCiFsBzBRC1AdQBeAUAD2llFsAjBNCfIJUpfAGs32llJsj+C5ERET+0ZmTKNmXSEREAQu7J/E+IcRaIcQPQohD0q/1ADBF2UBKOR+pnsMu6f8qpJRzVMeYkt7Hal8iIqJE041bQ0REFLAwexKvB/A7UpW40wF8KoToDaAegDLNtmUA6gOoBLDJ4D1Y7JtFCHEJgEsAoG3btm6/AxERUaQ43JSIiIIWWk+ilHK8lHKzlHKHlPIVAD8AOAbAFgANNJs3ALDZ4j3YeF/9+c9KKftJKfs1b97c25chIiIKgd4SGKwkEhFR0KJcAkMiNZJmBoBeyotCiA4AagKYk/6vRAjRWbVfr/Q+sNiXiIgo0XSXwOCcRCIiClgolUQhRCMhxFFCiFpCiBIhxFkABgP4EsAbAI4TQgwSQtQFcCeA4elex60AhgO4UwhRVwhxIIATALyWPrThvmF8LyIiorCxJ5GIiIIW1pzEUgB3A+iG1DzDWQBOVALSCCEuQ6rC1xTASAB/Vu17BYAXAawGsA7A5VLKGQAgpZxhsS8RERERERE5EEolUUq5BkB/k/ffBPCmwXvrAZzoZl8iIqIk45xEIiKKQpRzEomIiMiE3hIYnJNIREGZt3ozpi/XLhxAhSjMJTCIiIjIAaHTlcieRCIKyuGPfA8AWHT/sIhTQlFjTyIREVGCsI5IRERBYyWRiIiIiIiIMlhJJPLJ4nVb8cmUPxzvd9JTP2DIQ2P8TxARJZ7enEQiIqKgsZJI5JNj/jsWf3vrN8f7/bZkIxau3RpAiogo7qSUeHHcQqzfujPqpBAREWWwkkjkk607K6NOAhElzIw/NuHOz37H1e9M1t+AXYlERBQBVhKJiIgi8vuKTQCA7+essb2PZHhTIiIKGCuJRD5jAY6I7KpToxgA0KJ+Tf0NmJ1Q2kWvTMTDX8+OOhlEVCBYSSTy2UWvTIo6CUSUEPVqppYr7tqqfsQpobgbOXM1Hv92XtTJIKICwUoikc9GzVoddRKIKF9wTiIREUWAlUQiIqKAfDx5OS54eaLh+0JY1AI53JSIiCJQEnUCiIiI8tVVb08GAJRt24WGdUp9OSbrjUREFDT2JBIREQWs911fR50EIiIi21hJpIK2bssOLF2/LepkEFGeMwp6bDnlkHMSiYgoAqwkUkEb+t+xGPTA6KiTQUQFznDlHI4tJSKiCLCSSAVtzeYdUSeBiMgRLsVKRHomLlofdRIoj7CSSEREFBGr4KYcbkpEdt328Yyc16SUeHzUXKwsK48gRZRkrCQSERFFTBqNK2WvYd56b9JSrN3C0SwUrFkrN+Phb+bgyjd/jToplDCsJBIBWLaBwWuIiCgcK8vKce37U3Hxq5OiTgrlkcqq3FYl5bVtOyvDTg4lHCuJRAAO+jeD1xBR+ATHkxakXZVVAIDVm9iTSP6p5IRl8hEriVSwynexVY2I4sGwbKdbh2RBkIhyVen0JCqYa5BTrCRSwXp05Jyok0BEZI4lOyKyyawnkWMWyKmSqBNAFJW1m3f6cpzv56xBw9qlvhyLiAqLZXRTykv83SkIVRxuSj5iJZEKlmE0QYfOfXGCL8chosLFsl1hkvzhiSimONyUChafzUQUe+xxyksi3ZXIxxD5SS8QVlH6WlP3Mj4/dgG63vJFaOmiZGIlkQpWWC24H/22HJvLd+m+t2jt1lDSQETxpBTpnKyTGOcGrvJdlfjHu1OwehMX7jbDuj8FQW8Yc1G6pK+uJN49YiZ2VFSFlCpKKlYSqWCFUc6avrwMV78zGTcMn6b7/v/976cQUkFEFI6vZqzEB78uw90jZkadlERwU+HfsNWf+fRUGKp7EnPf43BnMsNKIhWsMPLG7ellNlaV6beqbzLoYSQiSjIG0DDnJXDNlW/96l9CKK/oXVaZ0Qo69yRvUzLDSiIVLL/zRr2HfvVQMoN9fE4DESVMOhPIt8La4nXbok5CIrgJoLZq0w7sqqxC+xtG4D9cyok8YGMOmWElkQqW35mjWYWPQzqIqBDMX70FADBteVnEKYk3vQAjdkkpM6NUnh+70K8kUZ4yK33oDUElUrCSSIXL58xRqLoSf/9jU/o1849i3ZGInAo623hy9Dy0v2GEq333bdcYANBj9wZ+JilvuX0GmA0hpMIlbI5jVjZjTyKZYSWRCpZf6yTqOeaxsem/zDNsvQy6bPsuXPTKRKzdsiOAlBFRnCg9SnEqqj341WzX+yo5XpO6NfxJDOWQqA5GYve6WbJuG76cvjKwNFE82O2fVq6fu0f8HlxiKPFYSaSC5XcDWpHenMT0a78t2aifBp3X3hy/BCNnrsZz3y/wLW1ERE556aWy26NB7giHc1mP+s/3uOz1X4JLEMWW3jWilFde/3lJuImhRGElkcgnenNM1K+Up+eQqOkVwooshqgSUWGbuWJTKJ9T6WLCEvMte6ymIpiS6j/tHWG7zvOHiMgMK4lUsMJu6NYbWqpXBsvMFeCM8oJVUVnlqoBOySOsQiDr+NfHMwJJi5arSzC9D/sRzXk9P5lhyswmSI03HvmIlUQqWF6iyxkcMPclVU3U7sM8jnOUKDyPfjMHnW7+AvvfNyrqpFAI4limY1CL8Lg5xRIeeyIpb+nlJ3q9zb6XfygvsZJIhSv4OmLWa3Yf5k7nmlB++e+ouQCANZsZuIiiUZzOhNibHU/qaQp25o2+/8uyIJNDMTV69uqok0AJx0oiUYDUQ1rtBoFQeh/Zik9UOIKMtuyUl14q5Xswbo25f3+ZiiDr9jw5eTx8O2uVuw+hxFGPXvrzSxMjTAnlA1YSqWD5XYYp0nnaq4d02G2UZ9mKqHDEp2qYy1N0Ux/TkY8++DXVu+d2uGnmbxv7c2ghEbnBSiIVLL9DtPt1uEx0U/YkElEEvMyLZrbljJvnhvoc2zrdrCMWNCf35KpN5cElhBKHlUQin6ifw8qD300BoHq4qfc0EVEyxKlytbOyyvW+yvfgOonhqKyS2OXh96L8YvuuM9jwtpAiJyv63zMS170/JdTPJPtYSaSCFWQRRikouSn4Vc8HilGpkYgCFZe7/ZfFGzJ/e6m4soqY6/1fluHH+Wt9OZb6+fD82IWm2/K3KBxmbTPz12zFjgrz9TLDjoWwZvMOvDuJgZXiipVEKlh+N3RbtpzbnZMouP4VUaGI233+q6qS6KbmGrOvEyv/fG8KznxuvOfjaBsQN27b6fmYlL/UeczwX5ebbssRTKTGSiIVLL9bV/06nnIcZtZEFLYKjxmPMpeao02D47RhgUN/SWE9NNnZ8iqU31hJJAqLzed09fOcGTRRofhl8QZUxGBuWWVVdRo45J0oWawi2RYXmb/PxmlSYyWRClboras2M98iDjclKhjqitiIaSsiTEku5kHxJKWzCKfqJ907E5cEkSSKCb1ijTqPKU5vYFT6Ufce8v4nVhKpYMV1AE71cFPm0Em0s6IKm8t3RZ0MSqBdldHf814bz6q/QVxz2MKj/kmv/2BadAmhyBVZ9CRKg7+pMLGSSBQz6gf6hq070fGmz32LiEfBO+3Zn7D37V9HnQxKiM3lFZm/LcpvoVDnP14KiZwGRxQ/xRY3ZtTDTacvL8MZz/6M8l3mUVgpHKwkEsXMD/PWZf7+fcUmVFZJPPHtvAhTRE78tmQjAGDUzFXRJoQS4dLXfsn8fc278VovzE3gCg6ACJ/V78T6emFYvnE7Zq3cnPO6+vKwmpOYPdw0/Jv55o+m46cF6zBzxabQP5tysZJIhcuHJ+fcVbkZshG7QSA+mfJHansJ1CpN3aI/zl/HSGMJc+Erk6JOAiXcHxu3Y/OOCusNfVTkuQswHd3Ue1LIhJOnAaObFoY5OhVELcvhpg7mugaJpZ14CL2SKIToLIQoF0K8nv73IUKIKiHEFtV/56m2byKE+FAIsVUIsVgIcabmeGemX98qhPhICNEk7O9EyWQVBcyOYY+N8yElxkqKqm/Ruau3BPpZRBS9h7+enfl74qL1oX++OlfkcNPgrdm8A1tMGgKqqiQe/no21m7ZEWKqKF9lAtcY3J9Rx0JgtmHfmNmrA4+IHUVP4pMAJmpe+0NKWU/13yua7XcCaAngLABPCyF6AED6/58BcE76/W0Angr6CxApdgZ4g0pkt+pbr29EREn3eIyGlrspL3LAg75/fzkr8/eOiuz5Vp9M/sNwv58WrMPj385Dv7tHGm7z3NiFqDKZTMaCd2GwM1rJat5z1PevMhdx47ad0SYk5sbOXYPzX5oY+PMi1EqiEOJ0ABsBjLK5fV0ApwC4VUq5RUo5DsAnSFUKgVSl8VMp5fdSyi0AbgVwshCivp3jj1+wDi+OW+jwW1C+CH0FDIvMd+zcNVn/fv+XZY72JyLyymu+qGRTfozUyCdPj5mf+fus58ZnvWdWuK+0GUlEHQApB3+KglDlcztyFGUOZU7lKz8uxtotO2KxdmwcrdmcGlmweN3WQD8ntEqiEKIBgDsBXKPzdgshxCohxEIhxKPpyiEAdAFQIaWco9p2CoAe6b97pP8NAJBSzkeq17GLnTSd9uzPuPOz3x1+E8oXcXtuXmQxhy3qYSBElP/UlTt15eWn+euwZN22KJKUdyYt3pD1b7Os3ajSrp2jbnfOu9rMFZtQto3L9eQLP0oIRTGJVLJ+6070u3skbvloetRJiaWwOjnCvBzuAvCClHKZ5vVZAHoD2A3AoQD6Angk/V49ANoQR2UA6qveLzN5P0MIcYkQYpIQYtKaNWu0bxMFzk0Grn7wRx2amojynzCYlHjGcz9j8IOjQ09PoQuyR/bo/47FKf/7MbDjU7j8aEiOywgAZXrNiKkrIk5JYQulkiiE6A3gcACPat+TUq6UUv4upaySUi4EcB1SQ0wBYAuABppdGgDYbPN99ec8K6XsJ6Xs17x5c6zjJPCCF0ZLjJPW3R0VVbhV02qmzvPZk0hUWOJyy1/99m+2t1XSzMA19ml/5q07KnDxq5Owsqzc9nk07Y00KfjPY0C0vGEUAV3v5bhUBo0oS3VUxiUTjKmgz05JwMdXHAKgPYAl6VDM9QAUCyH2klL20WwrUV15nQOgRAjRWUo5N/1aLwAz0n/PSP8bACCE6ACgZno/Uzd9OM3VF6H84XcmaXWz6mXgQmRn4K/9vNjwmFwCg4iCpl4uQclxPjIJrGJ8HJ8SVAg0eftnU//AN7+vQuM6pTixd+uIEkVJY2e0kdUm6vvWzRBmvzEb0RdWJT+s4abPAuiI1LDS3gD+B2AEgKOEEEOEEO1Eyh4A7gfwMQBIKbcCGA7gTiFEXSHEgQBOAPBa+rhvADhOCDEoPY/xTgDDpZSWi8WU7+JkWAqenzcyh5sSUdCyRpu6iW4ag4Jl0hidMSlhWEr28yyzATI/+DLcNMTWHSX4ihmu8Wku6Fs3lEqilHJbeljpSinlSqSGiZZLKdcA2BfAjwC2pv9/GoC/qXa/AkBtAKsBvAXgcinljPRxZwC4DKnK4mqk5iJeYSdNvO7Ib3qXlLrA5GpOIh/eBWX15vKok0AxEkWFy3N0U2W4KfsAbNMuX6GcOwn759HLlaKNpE3JZNSQrJePxKEMPPA+44UOWPQxF9bvF9Zw0yxSyttVfz+C6kA1etuuB3CiyftvAnjTaRpicH9QwlRUVuHmD6fj0oM7oEPzer4cU8D84Z493NSXj6QYu+uzmVEngWIkiopWdtwa55lOZg8+ZN1TnTu9de2276rMfdGDiYvW40/99vD1mBQ+vxuVrQ737qSlqKySOGNAW1fHr7AxPIrZiLmgi4UxCXYbPjtd2Lsqq3DfFzNRtp0hovOR05aYacvL8M6kpfj7O5MDSY8edSZt5wGwdssOrN7E3qikYs8xqUXR2p81J9HD5cjCnX1mw031yirrt+YuNO4l72C2kx/srqnpl+ven4obhwcT34OXZDwUbiXRxjafTP4Dz3y3AL3u+JqFtzzk9CdV8t8ivabdAD4vvVfmr5ttrBfU7+6RGHCv8RAOireiOIwBotiI4nrwPtyUz0q11ZvL0f6GEabbaE+Z8hOY9eRKhlUgDaNbL4m3pKwet04RKtxKoo0Lr6KqOhdesp6LCBc6JdMKM89SZ+4MVZ7/WEekqBksk+j8OLyYAQA/zV9nuY32PKvPndFp/HJG9vpxCawHUATiXmFsUb8mAKD3Ho2iTUhCBN0oV7CVRDtFffV8kLjfWBQ8Zfx8SZH+bWO1no/+5HHz65CXHVH+mr/GvOEnkrVRs4abMgeK0ufTVujOSQSAbTuz5yU6qZKPmb3afaIocdZtzY0iGtcmnCFdWwAA9mhSB0B80xk1PxrhKqskllp0gBVsJdHW+c1aL4YKnTLev9jgqa19aPuBZbTCwuGmheWwh7+LOgk5eAX6y05hTlsZV/Yo31WFFWX+zzH/x7tTsGQdR0cVigtenhR1EmxTbhdtxF/S5+Us/XfUXAx6YLTpNgVbSSRySmbmJLo9gJvPZEZZSNwU0KWU2LgtN5AFJdf4Bevw9oQlkXx21mLarvKs9HH8SU5BUv8GO3xY01lbT5UABj84OuvfZuav2YLut35p2etA5BfWEc35kb/+NH+t5TYFW0nkA4zcCrPe5uSjrIauUfwN/225433eGL8Eve/8BvNWbw4gRRSF0579GTcMnxbJSIKbP7QOkGVGGVbPTvGUiQvXe9rfaMixk2tDu63Txsd3Jy3F9l2V+GzqCuuNKW9E2UZdnY8wIwmKnSWWCreSaOO6y5rAzx6dvJOEvMfJZXfuCxOCS0iBWrZhG35eYB14wg9uK3ljZq8BACxYs9XP5FAMWK1T+Pd3JuO0Z34KKTXOJCB7DcVrPy92vI/62WRUSI6iROJm3UwiNzIjEpiRmPMUXcx6k8KtJPIRVvDCrvfrfZzVVejkobyrkjHR/Tb4gdE4/dmfDd/fsHUnDn5wNOau8t6Lt7PC2wXJ4lv+scqjPvxtOcZ77Kny8vl+7UPZ7JRPnDRc6w039cPOiqrQ1+Yjb5LSQ8erypwfP5+dQxRsJdEO9U1UJYFHvpmDdVtyo0RRYYh5nhr79CWRVfln1KzVWLxuG57+br7nzzL6/Rau3YoFmqHEUkpsLt9luh+RV256jqp7APL7whw3dy3m+NA4BJj3NtqtDDr5pTZu25X17/d/WYZtOyscHCGlyy1f4JJXkxMUheJj8TqLkS9sbbJl4dpgRxAVbCXR6fPrg1+X4bFRc3HD8GnBJIhiZdHarfjvyLm+DjPWHmre6s2ZZTX8wMiYEQrweTbkoTE4VBMF85UfF2Hv279mIIk8l+RyUr7nRme/MB5HPvq9L8darIk0mhU8yJdPsLZms3EDuNKzqXc9jprF5TTyVZDDi697f6rFZ6fkez7ilnJP/r5iE1ZvdhcB2U6RkZVEm54ek+opKN/l/zIHFD8XvzoJj46cg+Ubtwf2GfeMmGm9kSaPvvDliZi4SH94GSuJ4YvqjH/9+yoAwBJWEhNl9SZnD/NI1klUSXIlNV8Y5THa38ZrXmT2W/PRkj/iEn3Y6HJT0lcoIxL8sGn7LuuNXCrYSqIdepdm1A9tCsf2dGNAlc40P7eXgLZVrkPzejb2yTZq1mpc/vqvutsyL02mnRVV+G3JBle/n/paZNbkr/Vbd7oagmfG6UiUqH9SN58fdZrzgbpg7PV8bi7fhfd/WebxKJQE+VQGYJCkeGAl0UQ+3XDkTlaUOb+P7XI/o4YK9iQG58o39Svmfrh7xO846akfMX917twCOwsK81cPRp+7vvFtOKGioIJL8cIM1akGUW4XrXU+2mDgfaNw84fmDRoVhXQtJ4TfDYWBNjwaHFspxlRlehRZWQzC6s3l+HmBddAzVhIB/DjPekFJBa/XwhDE7xx0pEDWEYNjtT6Y2c/065IN+HXJBsP3Z/yxCQCwYdvOnPfu/3KW6efurKzMDD0l/y3bENxwc1sift54KqDxWelaVlZucB61PS3zDZbAcfNcWFFWjjfGL9FPT9oRPjegEAE6w6hZsAnE9OVltrYr2EqiOsT0mc+Pt70fK4nkhNn1UlRkI8y5TgnBqODGnsTw2TnlJz/1I05+6kfjY5js+87EpabHvuBlRhbMZ1FPb+DjLhp2zntYl0ZllcRTY3KjNwcdVZGcS1IRwO5wUvYkplz19m+49r0pvh3P7jKABVtJtHOB6t1wHCdNflwD4+auxQQb65vp5Y9Gn56g5wOpmD3Y+YDML05/zsok//7MkALl95VhdLytPs/LpeA4yi5s3J+u5iTbXbLFYLNZ6WVlkpz1BeHjyX/gPT/nFtvMnwu2kmiH3Zo25a9Vm8pxxCPfYUWZu2FnRqHMz35hPCYv3Wi5v14+aZR5JqkVMR8NfmA07v7sd8f77apM/aC6v7XBPvq/NZ+qcee0ZzDqdco9FdR4OTqiLlyrb+84NUw/+NVsXOxiXcQZf5RhU3lwERjJviCvpslLN2LPGz/HKU8bj5wxS0f5rkpM0ZSL4nP1x8sTo+eF8jkFW0l0WwFk60ZhUB7Yb09cirmrt+DtCebD/oyP4086zLw9YQmG/7qMw019UlFZhR0V9pa6GTN7DYDU77Rk/TY8P26ho89qf8MI08aCzeXeW/F/XrAOX0wzn1NJ4dq6owIPfz3bcjunPcnTl5f5vHam8wyMuZA7Tp8Vdrf3+7HwjYs50MMeG4dzXpjgb0IoR9RFgO/npJ6Hvyw2noOv0MvbWL62b+aKTaF8Tkkon5JHeA0XBt2FXDUZcKXDZn43Qwf1exKrXy3fVZkJq9+lpfWSGmTtlKd/xJRlZVh0/zDLbT+Z8kcIKfLm9Gd/BgBb34eCpdy6j307F898t8ByezvRbdWOfXwcAPe/tR/DmwvhGTnCIpCVG07P2xfT7aXBy4ioMbNXo0+7xq73V9P2EFH+aVK3hm/HUnrQN27bhV2VVSgtLtg+rUDYzRV41k3otsoUwhOQbHlz/OLgP0RvTqLqtb+/MznzN3sS3Zm+vCyrcDxlmb2oX75jM2reUwo+uyrs/daJHm6ax9nRXwJYEsdoKLLRbzDVZj7l5bFwz4iZ7nemxHPaaNSpRaqheq/dGlgfW/c1/c/7/Y9wes0Kid2osawkqjz89Ww8GdI4X0oGs/toqcPw+K6WwLBolRg3t3r5FoaKdm7k76tw7OPj8N6k6Beb9lofYB0z/pTfyEZg49T2wSVF//M0H+jl84f/utxTWgpN1Pev7vA/l8cq274LW3cw4E2cBVFaUBqq69YsttxWNyif6jV1D3iiA3jFFHsSXXj823l48CvzeSJxmkROwVHyJCWjkjrv2RkKFkTBX/2SehkNVhGdW7QuFcZ9djqi2uJ17sK6M1cgO5TrxM7yNwCj2xYSo7KF17Y/z/u72KfXHV9j/3tHeftgsuXzaStQtj38oEB6gYiUa83tCIiscpbqX06H3ZM1u/lC4VYSTU7Q6k3l+GLaCuyoqMp5j8/swpDzwPaxldUJvbxRXXAsVhU2iwr3brZUtm0XHvl6ds48UqX3VRnqFcQwMqIMpfHJbk+iy0xm2rIyvDvJXbAtPz6f/OP1N3AyJ1FKiW0el7xYsi4VOGkzexIDt2TdNlzxxq+4+u3fbO/jpOHJbMur3rL/mXaPnZU21Z+sI0aHgWt0nP7cz1iwRr9HgddqYbCTj0ZVgFJ/bFYlkcNNDd3x2QwM/3U59tq9IYb2bJV5XTl9ym/p92/65vgltrdlgTz/KY1PdgvubkeuHPdEKoDNqf32cLSf9tMKceTMzwvWoXZpMXrt0SjqpADwXuaw3SAB4JUfF+H2T6uX8XHTkz34wdGO9yF3lCjcTqe+AN6np/wwf52n/S0b3lXJcxokkKzZfQax70HHsvXGNxyH/+QPO3nkqs3lAIAvpq/E4nXZoeXtFKC8Xi9W+wuDvylb+a7Uw7SiKnt0gHLOlJ5E9TUxdu4a28c3+pmeH2sdwdINvQyeOVP8ZYaxB9yTGKWk50OnP/szTnjyh6iTEYnPp68M9Phz0sP6yR/akTBh2qkz0k659+2Ue/R7EvU3iOL7xVX7G0bgl8XrPR+Hw029MDl5DA6SP+zkO6s37QAAzF29BTeml5pwsr+X7QEbGakKr01jmbmlmnOnnDPtHFQAvqzrFfWjbf6aLZm/35m4BO1vGIE1m3dEmKLClpmTaPNW9bsBvbJKmhbgtO/5lWcl0bsTvQ/XdcLoXHsfbhot9TV15KPfM6CNj5SRRFHM2atR4q36oHtd6482ZSVR45vfVxu+V7bNXtAoBq4JyC+LN6CiMrcFhfKLkiUN6twMAHDGAGfDtrTHcZ0O3cA1+ke1W/AsSOlz8+Toefh5QfUwmcxwU2UYoMtz+NvSDV5Sl0pDAA/CP780MfP3u+kIrm6D8xSqXT7m98pvbHeoj5+Fo9Wby9Hxps/R/56Rtvcp5LLZXSN+t94oIOp8yE2eJKXER78tx/adlf4lyid6sR7IHeX5FVQd0ez+b1yn1NuxdcoxRmWbfB1uumzDNrz0w0Jfj9nrzq9x8INjMGfVZl8aulhJdGHiIv0C4QUvT8TR/x0bcmooCJnMMZ0Jq+f7KW85LcC5m9+jk5HmZ34ZKOXXm7Vyc2ZxeUA9XCd7O6eWmgxRV3w+zf8FuNX0rot8fbiG6ZYPp/t2LKc9iX5auj41XH7tlp2G2/BqUYnwZHjN439esB5XvzMZd0dY0QWqg9hQMErSC8wr0yncNnLO+CO15mbZtl34fk7uNIu3JizB+AXZcxC9xkCwWgJDLV97Es95YQLu+PR3rN9qnCe7sXbLDhz56Pe47oOpno/FSqIOq0vfqLD/7azVmLmCi37mBzvzDUNIhcUSGBxhaq3LzV/gs6n6FTTl/GV68Xw+oerewWvenezbcfWSWSUlFqzZkikwGKbJt1QUhtGzjYf2OKVcDjsr7f0Kfg4jc3MoNw1b+ZIlqb95ZZWMZJkBAK6GZ25OL0+walO5p/mvdn99ox6Ls18Yz0bNACk/rZLnuz3XF7ycGnGy0GCUyY3Dp+E0VeOq+rMBYK6Luaa6kdvVf6u+TFWedj4recrHk52tKetLQDHOSQyQx99n5opNmLeaE7gTweS3ttO6lRXRuYDn90Rpp8lwQe1cxSALuOW7vD3pnvvePAjO7JWbcejD3+HKN72FJqdsxT52+yn3s93AA352BNta11Wa/9sOo4Jekt37+Uz0uuPr0ObTqSt2d4+Y6WL/cEOajZy5Svd1zj8Mll93V7FRAByTD1BfYyc99WP6tdS/Z610V741yi8q8yQf0VLO4B2f/o5py8oCmVu6elO5wWczuqlrVmPmJyzyFlno6P+OxeGPfO/pGBQuiznWgbniDZ11+/Izv4xEdU9i9r/1+BH0ZYyqV2re6i1Z71n9rPd8bl5YfGL0PADAD/PWukob6fO1iJ2+0OxWPP1cgiKKbCPJZTt1gfWTKX8AALZYVHoWrNmC92K0PqXT47i91jmiJRrKNZqZHePydyguVhpL7V8w6s/Srq25bWclVm/Wr5xk9td5zaiOlK/TJtTn8LgnxuGpMfPs7ejgdAy4d5SzRGkUbCXRS572n5FzfUsHRccsQ/VvnUT/Mzd1wdHJQsmUS3v2rM6mk6AfQO6vP2VpWebvwx/5ztGxAOCf701xtR+QP8MAw/ZHWblvc0aqpzrbDVzjy8emj2UnLL33D1R/syQX7bKG9SuvWXyhYY+Nw7XvT0VVlcS7k5ZGFuQuk16Px1mwZis2bvM2zFabBm1FZM3mHbju/SmWw+TJH3rXcLEmyrcd6vKT3m6bLIZn6ze8V786alZ1g2q+zknUmvGHvelqTs/GpvJdmLpsY9ZrXAIjYIMe+FZ3gi8lh62KoOn+TgPX+MNLfjlh4XrL1vBCNn9NdJE/7eTZ7/+yLKcHkoL3x0bni1XrUe7dIrtPXpOb/YNfljn8cPVh7WUihTzcVJ30zIgDi1x8e7qi8+6kpbju/al4YZy7yIVee+a8RkdVG+NhTu66rTstowPfPeJ3vDtpGb6YHmxgr7zm022mbZQyu96zgvnpBk1zkQDVcRaonsV52pEIt023z1pMPdG68OWJOP6JH7IarbgERsCWrt+Ouz6LNnIYBUf7YNVb5DWq8o/bj924bSdOfeYn/EVvCGvMbSrfhdd/XhxYoVNCYsrSjZEFpwjDpMWpqMwJLrdHxu9zdnj3lvY+1+S9f7w3xdFnqgtaRsO3zCKfupHkBim9AvI2m0tKbEj3vjnpgfbzGssJyGUvBQ5ete/tCUtsbcdRMc75nS9pe+xeNGnk0P+1ql+1GiKqt3+hPZr8GqZt1QOprMjgprLNSqIHhXZBFyKzFhs7Q7OyA9dEe8UoAVyUcNdJctPwabjlo+n4JV3RscvJEKalG/wP154bB4C5RhL5NdxJ+f1Li8N/9Kq/g1Fh4cD7v836t9n1+v4vy9D+hhFYu8V4nu4kg+WikkDvJz/s4dyh3qN0grb8OD81L9jtVeOl52T7zkps2VHp+Th+2WURyZeNVt45OYXf/J66XvXKI9qXHvvWeI6csKjhWOWZusNNDXaJuuwUFO0ZdPs1r3p7sq3t3JQ/WEkkcimqB7A6w3TSElXkYt5BXCgt8k4jhB7/xDhb24n0/4KWxHNP/jUIhh3KfUVZ9TBZ9XewW+k12+ytdA/RorXZQ7TVd1GSoxJmz0k0zhv+Oyo3RsHYualK4uZy+z2p6t/k6THzbe+nddC/v8Xf3vrN9f5aej+h+roCzM+PtmDa925n87rJmpNK1Aid9XqXbdju+DhBBCtiI6p7QURGBVhJjJRRaFqKI3c3oM4oVc/cHifB5TXXD6Q5q8zn772dXt8raQ8npRCqh5EGvdMWlqIKnLBhm7fhnwPvq+4ZVH+HIL9Osu4kEzpzEnU3s1GRtmPQA6Mzf7tdb3nrjgqsUw1xdTTY1EEvzvkvTrS9rRXmV965uefUPYEV6QqGk3qG5XribuYz503mYY+f1/75L+vfk2puzm/BVhL9mCvhtQv89Od+tt6IYiFOmZfbtCgVIT6Uq01eutHxPk7u+ygqn1bJy9ehO0Hy65wpR7F7D77+s/1KhuVnZw039f597JyTfMlqwvgefkTQvert7B5EKaXttBtdk3q/8sbt+mnVC9RjnR9ZJIwsuauQZe80fXmZz0vuOD9WoV0K2h54L+c/qECaBVlJ3FVZhTGzo49MunS9/3OgyD7zglryijeW2Utmg+R9N0WQlS67Bffpyzeh/Q0j8OsS6/lWS9dnD8sqtIdgvvBrJI9SMBs1033ESPefXf237eGmAOasyl4Y+5UfF5lWELOWcU9wi1TSRhcAwLTl0c439zIHNcGXSuT8uFa/nL7SUT5ntakfFVdyxur82Q28pVaQlcSdFbkTQ+K+WGdFZRV6/OtLvO807DkZcpIfZQWgUXrknO7n0yXm9mHqtBcjTuIU+W50OiT8yN9zA1ZYMitch/TDqD+nz13f4IQnfwjlc5NE+zP5Pd/j21nhVxLVX8HJ3MgjH/0+69+3fTLDdLizWnzuWueyl8CwP+fOi1+XbPBUUI5TPqmw+21YP3DO9agigx29jzDwNlrB65qcSWMaRd+F58aaL43R565vVJ9tL68oyEqinns/n+l4n/lrtqL7rV/mvB7EorBbd1Ri685K3PnpDN+PTdbcFASs1odyS8pUJn/HpzOwoqx6XqvdOQLxK0Yki3Ie3eTnFSaVjShaUddv3YkpLobcFhr/ehL9OY67z/ZvuGlFVVWmkKE9Ur6U9Z2cox0VlWh/wwjPn3nyUz/i48l/uN4/kGAiOqdh1SbjiLZ29idnKqsk+tz1DdrfMALbdXqDnJ5jve2FgK83r9NDjZu7FrVKi/1LQAL4fbsGMUKFlcS0r39f6Wq/7ToVwnNeGO81OYaY34bDjxaeN8cv0RT8/fv11mzegZd+WJT1mtXRlUJPEnsSFUEWOJyeFjdpeWrMfMNeqQmL1js/oI4k/75x5VdvUZRDGLN6Ej3eSEJU91mZHaperRJPnxMXVoFrynzsAVmwxjzYlhkvIfWNtn35x0Vuk+MI8y1jM/4oy8xZXaUT8NDp3ay3vYD3fMHLkl9Tlm309NlJlITh+KwkBmDiog3YXG790GALW7JZ3d/aHmU/h5gVFznPXDKVxAT2JQadl0pp/zMmLfZWmTN6EH8+zV1DFQXPr7w62jxf3ZNob48dJqNiitJ5kNlUjfoxriSe/uxPePZ746UmnBTgrvRxyYnFPsYqcNooofeVl3hMj1UaWAxyRr2sTObcOu5J1O9KtJM/zVq5yVY8DaejL1I9pIV9NcTx27OSGJC9b/8a60wWGaZk8ePmvffzWT4cJUUvAw4iJDXlUuZjue0V4s8Qf9rfyK8lMOLy29tt5T/tWeMI3Eo7lfZY6n/HOc/5ecF60zzZSU/IhIX+jAIA4HG4afZT4Id563Dow9/Z2vfcFye4/lyKmMNGVC89iUP/MzZruRbDz3B470e1zBCZK8xKos4NtarM/wrd2i3eQ1pnJK/zJ6+4DRgURLYnhH4Bxm60sQSMcDAU1GPE1TlxHTTA3X52uYlgRub8jm4ajeqL3PP3kUBR+qaJecw3X7hdJzFJ1PPbnfKyvNKnU1KV4nw5j0FQj/7RPcU+zUn0ei+rd3caDFKC14CRHRX+P9Pt3quFWUnUsTOgICNmvNwPqzeVBxIgp5C4jhIag4zMukKYuwVb6oylTo2zCyLO53PMbHdDmx/5Zo6rtSPzndvfWrseb6RVRNXl7ce1W1GZOsbaAhgxk5Qh+ss3brfeKABm58fupZbkxsugqc9NaXF1sd3/R5B/BzzD4TrgcX6eBmHasrKc+9XoFFzx+q+2junkDNo93QVZSYwiL9pRUelPtMv0Dzvg3lG45LVfvB+vgJndJGbXyKTFG2z9lqkeP+fpCsLGbTs9DWOiXK7Dj4dQVZjucr20x0bNxYlcEiO3kcXlT/aSdnHxCPMDdZ5WWSXx6ZQ/bE2JaFG/pu7rSqCl+75wHhk8acKuwOzesFa4H5gAqzeX44lv5xb8WnpFevEIHF6f67fuxKZyTQNW1Kc16s8P2fiF62xvOyqCJZMUBVlJDItSGPx1yQZ0veVLHP3fsabbX/TKJAy8b5Tue3oPqe/nrPGcRnJn644Ky9blIDNdp8f+61u/4dGRc4JJTIjOC3DeTFgFwcgfxuSYf9FNo6Oer7Z6czn++tZvuOx164bGFg1yK4nq8+FTfToxtOujBvF9T9y3dQBHtRZEj6lflbqr356Mh76eg2kuG8DyhW50bIeneLTOSBMlrJ1tesnw8FNXSeNctnCemeF9UbvlnfiGHssjJz/1IwBg3mrz0NYjZ7pYnJsiISXwzqSlUSfDkDZa5x+qYQ2Fk+Ea+993xlEN7YrzaTTtJeewrtDkLqUTj6tmy47UVAWrZxKgfy0p+wPxvg/8ov4ZL3p1UvCfl0f3qF+X/Nb0XGunc93ygdH1oD0Tdiv5ur+JlJFedzHJGhPNzwBaClYSffDl9JUY2rNV1MkgH1lllmXbrZc4ESLaddHUZNbf8UiTE36vJ/Ts9wsy60655Xq4acSnP+rPLyRxWgdLnZLvZqdGoWxwub7f31RLPuzfoamXZCVC2L9j0u5RP05PnO6VODO7Nuw+2/W2M9pzktH6vT7/XIUWuCbq693up4c+3FQI0VkIUS6EeF312plCiMVCiK1CiI+EEE1U7zURQnyYfm+xEOJMzfEM9zXi93VoZ8iObjoK6Y7IMxURt2ZaPQx+nL8Oxz0+DjsrcudOJiUIQ5C0996KsnLHZ8VtZTuMCfpe5zBUVklURBDMKy6C+oXiErjGz/0O794i+4UEP9aWbdBf/y3sZ3VS60t2071w7VYAyFlvr7JK+hO7Ic+oLz8/nh96hzA67DXvTjE4iN4xjNO2futOHPrwGMxfoz96odAC1+hRTsE3v69C+xtGYOM2H1dIcCmKOYlPApio/EMI0QPAMwDOAdASwDYAT2m235l+7ywAT6f3sbNvpPy85hesSWWqvI3iwfaQF81m/e7+xtZCtF5d/8FUTFtehhVl23PSkbSexN53fh34/Ntx89Zie0jRgiWAH+evDfQzJi/daHiN2inIHfHId+h08xc+p6rwaM91XApCPVs3AAC0b1rHctuYJDkUhz9ib01BNTb2VtOtfOhsp0Rf1i67cc4L49GZ+Y6prFFBmhNue7ip7mv617FfedZXM1ZiwZqtePa7Bfpp4m2U+QWe/T41HWb2ys3RJSYt1EqiEOJ0ABsBqKOznAXgUynl91LKLQBuBXCyEKK+EKIugFMA3Cql3CKlHAfgE6Qqhab7hvSVAvHl9BU5rzHiYLyMmOouUujaLTttLURrxSpDVR4eykNjQbrlNok2uhwS55TTJWXcDzeVuPuz6CJCSplKQ5nJeU3y9RIEt791nHrt1RVW5fvUqRHsjJOkFfzKd1X3YqmTzuGm5r6YvtLwPbNeK+1p/XF+KuLjNe9O9ill+UF9Ds0aJWw3AOsc48nR3ufpm1Eqm0p0Vu33kFImrgHbC70cRWT+P32OADw+am5YSdIVWiVRCNEAwJ0ArtG81QNApj9bSjkfqZ7DLun/KqSU6rCMU9L7WO2bWJfZXBOFgmNVuHvs23m2jhFVlqfMmYxi/U8ypxSEtMIsh743aRl63fl1eB+YMH4V0nMD1/hzXDfUeZqT3oGkDn1MsiQWlX//Y5Pu63oF/6pMI2Y19d/Df13uY8qSQ0qJqcs2mm6jN0BkZ2WVo/VKja4vr0N9za5bJd16K3hY7VuoVm0qx8PfRBuVPsyexLsAvCClXKZ5vR4AbUzjMgD10+9pcx7lPat9swghLhFCTBJCTCrbGE4I5SAKBNrWl0KeNxSUHRWVWLmp3HpDC0G2ilkV8pRIcB/9VpgPWyt6Z+/6D6aF8tmXGqxvWhRiafy7uVw+JwzaXzRuPUR2kuM0zfnSGyCl90Kzl89Omh0V9kdizF21BUvWbcPERRsyr5llf1VVMpknxaGXf1yE45/4AePmZk9HyL6npM5fwKK1Wz2PXAgycqxSdlWec9re+QL4eR2LwzkJpZIohOgN4HAAj+q8vQVAA81rDQBstnjPat8sUspnpZT9pJT9GjZq6Cj9dmjXTgKsW2Dd/P7aG8uPUP6UbcTU3OG+bjlp3bNLADjo3/aGrEYdYCdoOyoqM+tGrSjbjvY3jLA13y+sIaxO+P2A5lwp/1z4irtlD/SWwIgqhL9e5W3mik0FuaSAXW/8vDjqJCSKXplHLxt6Z9JSDH5wNP795Sxbx+1w0+eYsiz/10ecm16SZuE64+H+Rtm6H/fxrkpvxzB75CjpU3oStc+nKiljUSkK2sqycoyyudxdHEZxhNWTeAiA9gCWCCFWAvgngFOEEL8CmAGgl7KhEKIDgJoA5qT/KxFCdFYdq1d6H1jsG6q/vzPZ8T5+3BCrN/tfCSkURjdghceMMnN8CFz19mRfjqXmJHX5XFHYVVmFrrd8iXs+T83vU9YIemtCfNevVMQh89dyeq38sngDbvt4el5fY17ptezHIXqj+hfTi4Cs5uVaTUKv4rotO/DjvLW6QSK2hRTMSisJ500reSmOn+L0zValqfBlzUk02NdJHVF7fKvX/ZAZbmow3lTCOG9M4v1g5OSnfrBudAyhfGA3Xw9rncRnAbyt+vc/kao0Xg6gBYCfhBCDAPyK1LzF4VLKzQAghBgO4E4hxEUAegM4AcAB6eO8YbZvmNxewj/MW4sDOzUzfH/Zhm245aPpLo9OZozKtkH3vg3Ys0kgi57qimFlxC870oXbF8YtxEn7ts68zkpLypxV1gule3HK0z8CAG4/vofFlskTVKEkqCtTSuksuIoqIRVVVQCKTY7tPl1JcNOH0/DVDP2WfTvffVYQEQgjOuc/LdCfL+2F3YbszeUVvn920giDXjY19VQTt0tjuG0HX1nmfhqO9XBTieOfyP8AjX+kz2FSstVQehKllNuklCuV/5AaJloupVwjpZwB4DKkKnyrkZpPeIVq9ysA1E6/9xaAy9P7wMa+kfrWxlplE40WKk178KvZGDOb84fCVFkVbEu/0cRtu+zs3muPRgCA/u0slw1NLPV5GO1xXcB8dMxjYx1tn++VgTgI6hzbOW52b0T1P/wf5uzr4QK3fZd1fh92W1vCTqGptyYssbXdjcPDmRMeZ0oFSvv7Zy97ob+vk0rivZ+7i6598IPm01zMGte0wYpyo5u6SlKifD3DOApwXEWxTiKklLdLKc9W/ftNKWVbKWVdKeUJUsr1qvfWSylPTL/XVkr5puZYhvtG7cGvZltuM8MgIhhFJ+iexKAO/9uSjZm/pyzdaLhdvsgK6R9dMhLH7fDBdVt24KYPp+UEqCiEh7tbOXMSY9hDaVVJjOPQaKfem7QU7W8YoTu01nRJgYgubo6GqA66NlnzLAt7OZIoaG9JadB7qF7X00ljj9G2VhXNHRX6S8TYYTnctAAuebsjyLbvjGaYu55IKomRC/FifHeS+fyob35f5WmOSiHcWGHLp0AOepl+vlwz6vleUlYXHsL6etrCS1K4/f3v+2IW3hy/BJ9O8S+wU1y5PUc7KipN8w8ZUJBGp5UK9eZW+Z2X9MYhr6mqkrj2/akAqpcGsiuq9I/iyAhcnY7z8M5Eez2R+SDTk6jtZVP9bTRCxI9rVe8Qduvkn08zfy5k1kk0OKBZBTUO+Ygf1F/9rs9+N9xu2vJUkCanazcHoTAriSH6dEr2ouvrdKJdOhkmQMELvJIY4s9dKFdWFBPbk1pJ1LN43VbLM6jkU+zlMNb1li/xt7d/M3w/qHlXdn4Ro+AXXkdOXPv+1KyAF3G7OoarlgFymk9E9V0WrDGObhlXeoF//KCtVCj/mrpso+2hrElRPScx+3U7eW7Y5UhtVe+KN37Fui07DbdXklfI6yQ67QXfYRFUzBt7aSnMSmKEoxUuf/1XR9vn/8CK+Al+uGl42WE+l+ezhpuqvueIqSssIzYWMr3n1BnP/my9H6zny5D5Ejrbd1Vixh/+h/J3vJahg4AXVuWanRVVWLZhu7MEhGjjNuOCK5DfeWSYgppTqK0krihLXWvHP/FD3s1jzCwPoclV7VyjfjRuO7kX9DY1q9Qo6Xvlx0WOP7sARhjrCvZr2/uxC7OSGOFwnxWbch+mnobzsIjmmlHG41cY6ELN2KIgkZ2hrglgfcp8oZffbNtVaZmHFdL1HOQ6mr+v8H8euvMesurtreJ02Xk+1SjRL0q8+MNCJ8mKhNm5YwXSGa+Luesp1nQ9XeawoT1JlAqxtghip0jiR+Oz12Ns32k8UkI59laD+Xbmc4M9JSs2rO4O7bracfjahVlJDIDRhW9nzb0+d33jd3LIBm3Gs3pTORau9W+Yj1HGFocbPx9MVS+unBMpLd5nOdEVrnifWl8c8eh3Oa/5dU1FdWmqP1Zd6Hx+3ALPxy4t1r+gP578h+7rcWL2e7ARNnqJziud8jTctHoeZ1Q2mQynt6roxu1OW7R2q/9LlVlcy1OWlWHVpuplRoJ9VnC4aSzYWXdom04Fc/ivy2wdP+Zl4UQZcO8oDHlojGH0Lb9wDqo/Tn3mp8zfOUMgeYoNCQEsW78t53WrU2Z0V8S9Qu6G3txBv+YqR3W+3hi/WDcNr/60WG9zR9TfKNaXQ5zTRrqMAp3ko+oh/dkXqp2sx5fhph73b1DL/dLrcSsXHfLQmKwyhh/s9LSvUa0runuj2r5+vhusJMbUNe9OwdRlG6NOBnkQ12dbvLJif8Ts+RJrK8rKMWWZ+3lx2gLMywZzTEhfEI1Qdq5/9Xq76iH1bRpHXxAJklWwCNOeROW9mOblhUA73DSfGQausfHUNqpkOWmUirLBj8/wlGMfH5f5++JXJwX2OWc8Zx2HAGAlMda27sjtYdyyI5joeBSeOGWG23dW4sVxC32bhxmVpA0LC2Lujl1/e0s/+qbVdakuwPy2ZEPm9btHuFuYuVDFodCr/qkvGdzB+/EScvutKCvPeW3WSuM5ojLnDwpbXBtbg5AJXONioXlflsDweAwvu+fLLbZk3TaUbd+Fj35bjvY3jMC/v5yVeS9O17Ld4H6sJMbYVzNWWm6TLzdWnAR9I8dp6YSHvp6NOz/7HZ9PT/bad6l1ErP/HWdJq9SqCQGMnLkq6mSEzq9fLIr2GG2hU52Glg1qeT++6uyMivG1ccKTP+S8tsEsSFHcM5ICUBynknXAjALX6NHe034MN/U65NOssVn9K+r1WMZtuKlbgx8cjWGPjc3MD316zPxoE+QRK4kxxmFcpMfpWjtmlMWl9ebFJknusgz58cAJk9U5Uz/DR89aY7yhjrcnLMEXFostF4wACkPLNmzH4Y/kBttRaMtu6kLapa/94j0BquPn00LwVTIVcXCBjwHN8loA9bkCqiNmTp+dCtNFr9gbiugku/FazzTbXf07rtyU26NvtnPS6o9xXhLIKVYSY06vQrCjorpA/+b4/FpMNkxGD5+4T5TPx0AhXmlPyRGPfh9NQmJm+cZgHlZOl3G4Yfg0XP5G/oaudyKInsRXflyEeau3GL7vV9CdpNi+sxIPfz0bOyuqPNVbhAA+mxL/CK35LMqh+WFTynu50U1zt9U2xsThDh+/wF400IH3fZvzWpwadjeVB7MEUhKvZFYSQ+ZH+f41TTS6VXqtMmTJ6LdI4o3s1S+LNlhvFGPPj80O4293vD1VY9uDOTfnR6+R77ZPZviQGme0PRN+D+2K26Xz5Oh5ePzbeXhz/GLrjU1MSni+mHTvTFxSWD2JypxEF/v60XjsNcjNlzamSBkfz/Wuvrv2vSm+Hm/qso147efFibyWWUmMue/m5A7r2qEpAMfp5qJkemfS0qiT4ElFlcSCNckZEpbk1vEkpz1fWRU+7v9iVta//X5mxO0ZVL4rNdpmZ6W3xqKfFqzD7Z/+7keSCoPP18H1H0wrqNxGGC2U6EGUt+bslZszf1s9N+w0XC1etxVnPvez4wCOs1ZuwtcOKrArN+3IeW1XZRV63/k1Pp683NFnA8DxT/yAWz+a7ni/OGAlMSaMWnDWb91pvW/s2nGTza/WnrFz1/pzIMqxUidK4SPfzIkgJe4k5Z79Q2e4anlFsuevFiLt/PZ8H32axBZ7MlBAP6YS3fSxb+dlvW7neTF6tve5wE7qpnZiIxz1H/vTPuzkSQ9+NRs/zl+Hbx3Oex76n7G4xOPc643bdmHjtl246zP3jUZPjk5eEBtWEkNmdBM+/V3yLp585VdPiV4vsB/8DFyjNW/1Frw1wd95rs98Nx8/zPO3wuzk4RNH05c7m9MXtI3bdmGXTq/LIQ+NAQBMXLQec9Nz3v71cfjDJePAacW+orIqtKVlnHY8JCmS4KbyXbju/Sm+Lv9UaHM0QxNE4Br/DxlbXh7tn09zP9RT4SSP8zs2gpNlPqJYRUgpF63dsjPxS4Y5wUpiTLw9IdnD/fJJvjVc/roke16NWWZ87ONjcePwab5+/n1fzMJZz4/39ZhKVFbyj17jgDK380//+ylWS7ckQaebv8A9n4ezhuRrPzube6ct4D3w5SxPlbAge8af/W4B3p20DC//sNDW9l9OX4Hnxppv+6f//ehH0igE+fY8NhNEA3A+BbpTGreiCC6oHqn0kYshp3ExZvZqHPrwGNvblwSXFApKPt30FDyzqIfbNUtflO9KVQqqqiSKYrDoN4VH+e1JXz5nu0+NmR/bsO1OK6CXvV4dRVe7fqri1yUbPaaKwlJIc6CN6j5h5T1Bfo5Vvc7sfSVZSiUx6itio9naqjF3y0fTHeX17ElMIDvhkcmaUaYU5HDOsAmR26iwdssOvJ3uNRoR4tp1c1dttt6IIsN8pHDo/da6a5fFAK/LwjZ12caokxCaFRujvQeDvNUWWqw16mS4adhlNO1oLMXKsnK8m/Cgf1ZYSQxZUOuWkXOFUPiQUn9C+A0WQ0q9nJrPp63A8F+X5bx+p4cJ3xSd+76wHjI5f41xbzXFj9797WWenp95aWWVxJnP/Zwzj1lbMPx5wTosXb/Nvw+mWNKuB5jP9mxW1/djOrk19e7jpev9KbN++Fv2EM1ZK+03Gi9Zvw0/zluLr39fBSD8OYknP6U/PP3sF8bjuvenoixBPYtO69esJCZQAdRtIpU//YgpYQepuOKNX3HNu/6uM+QGh2U7YzSs75nvFui+rnbYw9/5nRwKkN6tYVRJDHtgxfqtO/Hj/HW46u3fABg/705/9mcMemB0eAmj2EhSodwJw+GmIX1+lFG3zfKZx0bNxZmquAZBz0m0e/S1W1JLZSQpEJjT4dusJMbEEraIUiBk3vWY6kXh1KMN+0/m8u06oRS7BeqKKv37Kuzr4kWbAWr0LF6XO6Qt3xr9CLj142SuOaf1/Zw1pjED/OCktz2oe/3dif4OySyKuOYiBDBn1eZEz020i5XEPHDJa5OiTkLiVFVJwwXk8y1ei5setTj3wh3z37G2tvtkyh8BpyS/vOShcK5Yun4bNpXn/4MzSf7+7uSc1/R6DHZVeBhu6nrPXE+PUZaDcp4RD0kv2ULRGDE1nDnuW31cDiVK5744AYc/Yj0Kw8vz+NAYjPK47oOpvh7P7ZzEt31c3mu0ahj0Z1OTU9bgcNMCoO3ajtuaa0nwzcxVhu/lU+AawHyR2holycsC5tpsec2vXzF4m8q9F7wGPTAaxz0+Luu1z1XBkX5esM7zZ0Qlxu0mpvR6EvS+y06bPfRB2lFRmfOa1Xmfvrws87edaZXKsi6UXAm9FcnEuvTQTTvcPtutYjG4dWuC1g52eu6SV0KkggoJbaR8VyWeHD3P9tBDLe3SD/lKSvNWyL5tG9s6ztRlG3HCE+NQvis55y3fKvtJsXhddqXkijeqlyS47PVfcrYv31WJKVyDMTB2G1XiMK/mnBcmGL5ndDsf+/g4LHAQOIkjb5Lv2wIIZhPFaB4nn+l36pwsS+NkTuK2nc4aP//61m95vSbw+q07HW3PSmICRTm5OC6eGj0PD341G2/bHOv+5fQVGK/qxVhr0mpV4SHKXxyt3ZKbKdQoTt36RgVD7au3fzIDU5aVZbXaOxX2M49VxPip0rm3bhw+DSc8+QNWxXQJBkU+5bt638TL/elXgXbCwvWZv7XlQLOPMCr46O0yZvYaFykjCpc6q8yfnMcfTiqJ/3LYy/dpnk9TcTpiiJXEAvXOxCWJbi3Zke5B3Gxz/tNlr/+K0579OfPvLi3rG257V54t1fDE6Hk5r11w0J4A7BcMlc20efOWHRW6BX8rr/+8GCc/9YPj/SjZ9C4VpRdxsw/DXcmmGPQaSinx1oQlvswvi/7bEPkrmp5E+9tG2QhbUmz/01eWZTc+qkefVVZJxz2NQOq7a8tCFTEYrh8EVhIT6MVx3gNMXP/BNJz4ZHIL6UpP2LxVWzBzhfmcTL1CSHG+RacxYJTnl6YzWaPeEeOHRfV5K9u+Cz1v+wqPfDMn85rdOWe3fDTddHjJknWpACj3fW69Rp9hSgvjJ06+zO/Eon5YdHsSQz7/P85fhxuHT7PdKOf2fuawc0oi9d24YmN2RSeoCqSjNRUDSYE9JQ7Kb9rb/45Pq3sWbxw+FXv96ytf0nTxq/k5jL0gK4nbEj4fzY8AE0mnPPiH/7YcR1tEuzz3xdx5LjFoSI8F9dpovyzeYLid3vnauC01xEsdRfRckzlFeoxa8QY/OBrHPz4Oz3xvvUafEc7djR+9X0R5Le73ZNzT54Tf38XN8bakG+/enrjUNGiFncrrpu2MqEv5RX1P3fRhMAFXzD7TinbuuZFpy9xPUTFSUuy+6jJ27loAqXS9O2kZAH8q3aPzdBh7QVYSV8Z87gvZ4OCm1qv8JLlx2UnSrU6TevjfaJNgAEbDTYHUGp8bbEyGlpB47adFWZ/T966RhtsvsvkQMpTg3zjpjnvcfpAj9vSEL6r5lT1v+wrPfDc/53W9dYK1V4VZo8+Fr+RnKz4VLrNAUkE1WAWRL7wxfrHvx3TSk6ilnLtx89ZmXut/zyhnx0DhNEIXZCWRkm/+mtxFk/UYzZdzMvE5n8msv6Xu32pGZ+2rGSstP+uHeetw68cz8OeXJ2Ze276rEr8sXm+yFyXRtOVlmPGHvRZk5ZrKs3hRsdGwdmnOaxWV0ZzsLTsqcN8Xs1ztKyHx0FezMXGR/fxixcbtrj6L8s+slZsw6IFvbTVoFqr/jJzr+zHjFghQKfqpyzhmgQx1j2Hw+pVv/mrwTnKxkpgnFq6trjTNWrkJve/8Gqs352+PaZHNlqRXf1oUbEISYO/WDXVfr6yS9pce0DRdbtlRgeUbqgtges8Bu9ffKU//hImL1mNnRZWjUPaUQDq3rd5DO47inTpjemuh6g3jDns47aWvVS+H8t9RJoXTdLoEBJ4YPQ9/+t9Ptj/jlZ8WJ3rUCPnniW/nYen67fh+bjKGBebL8PbKkCuJU5ZuxH9HzjWcyrLFh+laRqNfPpu6Qvf1JGMlMU8MeWhM5u8Xxy3Exm27TIcPJp3d5/6KPBxa7KRlTkKiY/O6uu8tWpfdG2vnoaRkjn/630848/nxmdczQ2NUP8xRj35vO52TFm3ALR9Nw6EPf+d4HR/DtPpyFHJr2QZ7vThKr77Z9Tdn1WbMs7neXxy4Xb81CHbvgygLpXrLUqzevANL128zHepuxzPfuZ/XTPknKcPbTYebhpgOr4LoSTTLq0548gc8OnIOznp+vG4ZeN3WnabxFygbK4kF7u0JS7J6IePq31/OwnMugpjU9DDBOV+4yaLVmXD7G0ZgimbyuTairJQSW3dUYGdFdeF4wzb7wSQkJH6cn4qM6kdLH4VPG6Dgqrcn52yjt8yFUmgzKxQd+ej3OPyR77wl0CMnwQ1e+XFRcAkpIOph7G4bj5ZzyCklUJIqgmbM8vUg/bZkY9bUFrVpyzbmVDRXlDGf0MMSdJ7ZWVGlithkvf0Nw6dl9ULG1dNj5uOez2diqU6AAzNGpyDuQ9v8YnQN6LWl2jkjZm2wz4/1tjSL38MOE9JgnDfemrjE1X5JiW7qRKFFoA7yt1Mq5896iHRM+euXxettlQuSlr2YNUpFsYaiW3FMq15vspORT3H8TkEpMXtTCPEabNxbUspzfUsReZLvraZnPPczxl1/qO3tC+heNuTncDPDYXRCoNLjyV66frvtdNhRKNHH4sLt76Y8r6NqcfZLVsEhRt9l9WZnQRmC4qZglZShgRSdM54bj50VVXjjov3Qv30TPP7tXFxxSCfUrlGcvWHujIhYU+6WpFdIgki+hMSuyip88MsyfPjbckgJvHvZQE/HdNKwN2VZGXrs3sDT5yWFVU/iPADz0/+VATgRQDGAZel9TwCwMbjkkRfTlvu/Pk3Ytu+sxOs/V4dQtjvPSWFUxpi0qHDGpBv2prrIvP/PJGiEl4dvEA8Sli/D5u5HnPFHaujyu5OW+pkY3zn5dh+r1g5NiqAaGNdt2YELX56IjQ6GnxPZpUxxmLliE94cvxiPfzsP174/xXD7uDSkf2KRR8h0e+x2naWEHvxqdhBJCkRQjX/Pj12IG4ZPw/iF6zHBQcRjp/TmNX742/LAPi9uTCuJUso7lP8AdAEwTEp5lpTyJinl2QCGAegaRkLJHnWr0xvj3Q3/ipP7vpiJWz6anvO63WxHW0846tHvUVkl8cg3czynLQmcZM+FMgSXglHlMVbLhIX5sxSK3YWm84VZ3vH8uIUYNWt1VmOfo2MzWyIbqqTEjnSF8bOpK/Ca5npTrtH7XS7B4re/vfWb6ftKevWW69KLThxXQQU33bDNfYA7Iez30L4zMd6Nl0FzMidxfwA/a14bD8BbHy+RCSfBT3RpMtjZqzbji+n5F6bYjXdM5pB95FNLmZsoj361PLInMVxef7ekr12ar5UZJyHs9cLOK+flYZcNc7NXbXa1HxUW7WV6q07jcpLkS34SxHBZJ4fMl/MYFSeVxN8A3CuEqA0A6f+/B8DkANJFLuXb/VCsKTc2rVsDgP2MR6/YuWpTPOboRO05baAZ1Sm9Yfg0R8cS0K+UPfHtPMfp8usa5pzEcHmdkxr3SuKM5Zsw9D/fY3P5LuysSM2HSfp8ITtmrbRfSbvJYb5hRQAYO3etr8ek/GTVQ6iOvB1X6uzkg1/zI38JqidRe27mh7zGclzmegfNSSXxfAAHAigTQqxCao7iQQAYtCYmKiqrsGNX/DNCJ7QFRyVbOKRrC1v765U7K2K0hlnQpJT4eLK9+VF28/IbHRQEV5Y5X6cyD56LZKJcZ44NAJRoW4Ri5t9fzsKslZsxafEGPDF6Hv7x3hSMmFY9KqGQL9u/pofOfWQzryEK08qycoycaX/d6LLtu7B6c7RrLN89Yia63PJFfgX0CtAx/x3raHuvySqUaMu2K4lSykVSygMAdAJwPIBOUsoDpJSLgkocOXPOCxNwzGPObpS4KyrKLjgqGWaphwJlEIu7FpK3JgQ71/Wn+ew5SCSbt5XReqd1tNEIY0YZdllSJDKt1pu2F9ZSF0amLkt+kDTKP+PSvdCL1jlbC/qA+0ZhwD2jgkiSrtWbUhVSbaP2rkqJ0bPWhJaOIARR3NI75A4HPcXxbo6MF8frJEoplwCYAGCZEKJICMG1FmPipwXrok6C70q0lUSHOY7ekMOKSlYS9Whb/EbNXOVof71z7SYYzq0fz3C8j56Yj17MO3Z/6Z0GPfkn79vGv8Q4MHHRenS86XOs22I+fEhpXCouEhgxNdWDOHc158tZYUAsiorSG+i03LB1p/5oh6Bc/8FUAPpBUnZWhpsWv4V594/TGZr+o8dG5/Vb3QfIyQe2K3hCiN2FEB8KIdYBqACwS/UfJcAP89a6Gv4XpeIi/eGmdukON/UahjEPvP/LspzXtMMvLnxlkufPsTukIx/mXhQ6L/OEgdxRAwqnBTw7pizdiD/970eU76rEs98vQGWVxKTF5sviKMPUi4XAkK7NAQA1SqofobyG7XNyrgZ1bhZgSiifaK8qpfc/7oOHdqUbrvXm/yZ9dkwQ+beRs18Yn/v5Bh9vN1VBLq+RBE56AZ8BsBPAYQC2AOgD4BMAlwWQLgrAWc+Px7GPJ2s4qrYn0Wk5TK/YuYs9ifjD58YC9tqR7Yn8qovlDxtrlm3RiZjp1a0fT8fERRswc8UmKFmM7UquEPht6UYAwDPfLcDTY+b7nr5898qPi2xtJwRb8sm9rTtSeUfc5/UZNZAB4VayghDEuffcIGdQYEn6uQ6Ck0riAQAukFJOBiCllFMAXAjgH0EkjPz13ZzUuPa1W5L1wC0uyr5Et+yoMAx8ccHLE3HUo99nvcbANQ629fA5N3+oH26cWW7h+HG+8+HuB9z/bQApsaY0PlVUScxckWq9tyofKEG0Kqtk1n317y9TURV5rRvQOTHz19ibI1ZRKTHjj00+J4gKxe2f/g4A2FQe7wFvJnVEz1Gjo5ak5L9ks/GqkJQ42LYSqWGmALBRCNEcwCYArX1PFfnuvBcnRJ0EV4p1mjG+naUfpczodS0GrgmGXoXc7mTyJD1IKPmUYeyjZ63GkvWphe+tWryFqsdROwyegrGLUwPIgUkGQwP/+d6UkFPizJjZawwbr52sUxpHce3F1UvWwrXhLqORBE56EscDOCb991cA3gEwHID3iUsUC19OX4F/vOt/Zrp2yw4sTRfEnNqu02voJNMUOjUXzkkMz6dTGBKf9H2uWj5Ca9Ki9Xhx3ELD971SegWf0hkq+vDXs3X3qVDNb9LWEd+ZGGzE33wzZ5W9gD9c65ScMFrmojwBS4MZ9a7HtZJlVxDJlx6Py1zFPieVxHMAfJf++2oAowFMB3Cmz2miiFz2+q/44NfcgCZe9bt7JAY9MNr2OPK5qzZjQ3oeygKdjLNKSt3Kn9ro2avx6k+LdN8rpOimTiILRvksSvqQGrJPiSJ6xRu/Gm7zf//7CXd+lhoqFsSlodcTqHzO49/O091n3upUK3OVlDnrt9704XT2hjvgdTTHR78tz3ltcnqeKJETb01YgiXr3DVi+0nJX7SSPk8uSdGNmYfncrJO4kYp5fr039ullHdJKa+XUho3B1Pird5cjkEPfIuFa52tM6RHWVvMyhGPfo9hJus92rmR//zSRPzr4xm6QyCZEejzmpl7aZ37z8i5nj6b4kmvYeiN8c563fzIe4DU3EGlIqFXSbTbYl+lM9w06UPCgqR3ZryO1tWbO3Tikz94OygVnIrKKtw4fBpO+d+Puu/b7fH2w1/e1G80S3qbdhyzxls+mp6oymuUnCyBUSqEuEMIsVAIUS6EWJD+d40gE0jR+nzqCixdvx0v/2A99Kt8VyV2VBiv6WMnXsy89LpjSvTNnq0b5mzjZPhFoQ9XWmM34iTyr/I8VmfNJAqX3lIrRoxGGjgt/G/dUZHT+i6lxNNj5meOpe0JdEJK/f3zcZ1aP0xYmDtPzO75//r3lbqvL/Kp4YAK100fTsusyWsUQfd/MYhcnPSldYKJbur7IcmAk+GmDwA4HMClAHohtfTFoQD+HUC6yEd2wsxbsXNPdrv1Swy8zzhaoZ3W49krs3sbm9bNbYNw0jKl25NYQC1I934+K+okUAH7LeQhgOW7KtHjtq9w14jfs17XFipm66xHZrfgUVklUaTz5Jy+vMxuMguK3jBQu3X035bk7gsAZdvjHa2S4u/N8Uvw1gTzUQ12Kzgv/7AQz3wXTIUy6aMUdgQ0HzTZZyU5nFQS/wTgeCnl11LK2VLKrwGcBOBUOzsLIV4XQqwQQmwSQswRQlyUfr29EEIKIbao/rtVtV9NIcSL6f1WCiGu0Rz3MCHELCHENiHEaCFEOwffKe9t3VHhKsz86k2pnjyruX9aZmta2TnU+IXZrfF6GYFVxm3V8sZWKH165+0TB4FnuFYiaVU6GCslhICU0vYaenq2pNdFe+mH7GNoU6E34sFu41GVlDisW8vc1xNemAuTXh58wcsTw08IkQm7d/Ttn/6O+74IpkE26fP1f18RzBI2Xk/LN7+vynltlk7jYaFzUkk0KgLaLRreB6C9lLIBgOMB3C2E6Kt6v5GUsl76v7tUr98OoDOAdgCGALhOCDEUAIQQzZCKsHorgCZIRVp9x2Z6CsLzY51HCDzs4TEYcO8ojJ27JvOa9obcsHVnZqFa+6wvlVd/Wmy5jZNKIOst9umd1Z8crH2X8GcZBcCogKM0QqlJmVoT77ZPZvjy2epKmzbP0BvuaPf6vWH4NOzeqFbO60kvzIVJ71TZXcKIyG9GvXVxuKXjkIa4sRvfwoze+qthzkFNCieVxPcAfCqEOEoI0T1dUfso/bolKeUMKaUyQUqm/+toY9fzANwlpdwgpZwJ4DkA56ffOxnADCnle1LKcqQqlL2EEN1sfqe856bgooRinrqszLB3aN+7vsHgB0Y7Oq5VT5Ne5U9vF6u5jRe8Ut0irT/clPQ46TUkssOod+2Qh8bovr5Tc3M7HWqlzkLULdjaoxSZRDe1YjRagh2J9u2wM0GdKCCjDRokpJR4d+LSzL/jsPxE0oebBuG696cGMm2I69/mclJJvA7ASABPAvgFwONILYNxrd0DCCGeEkJsAzALwAoAn6veXiyEWCaEeCndQwghRGMAuwFQL943BUCP9N891O9JKbcCmK96nzywypzWmQwt1aO+/aSUeGfiEmwu36V6zd5x9DLu1ZureybGzK7uAS30wDVO1KtZEnUSKM8YNVJt26kf4Ep7tz7wVfYQrh/n2Q9GdOzj4zJ/a5OhVxbwWuTgcFP7pnC5CorQiwaB+L7+fRWu+2Bq5t9md/TqTeWOGlbXbdmB35ZssL29Ig4V1ULB0mIu00qiEOJQ5T8ABwEYA+ASAMchFcBmdPp1W6SUVwCoD2AQUsNEdwBYC6A/UsNJ+6bffyO9S730/6sjApSlt1He10YLUL+v/i6XCCEmCSEm2U1vvlrgoqvej1YbIURm/cPflm7E9R9Mw00fTneeFp1M8+j/6C+ZwSUw7Ou5e24kWc4zJC+c3mvaOdDfz8muFFoNBzLKp9Sv76qsQrHucFOJmR7mz7AwR5QMemslby7fhW07s6fQmE1tOffFCfjbW79hU7l1EKUVZdvR9+6ROOkp/aU2zLDtSV8Q2e2GbQyIpWXVdfCCwevKzyPSf3ew+4FSykoA44QQZwO4XEr5GFJzCQFglRDiSgArhBD1ASi1mQYAylV/KyWFLel/q6nfV3/uswCeBYCau3Uu6Ntu0qLc1qxxBssFvPFzKvqXHz1y170/BRMXbcCEmw/LRLxapZqbpPej6AeuyW3xcdKrWUjRTZ2oqOIQMPKXo+Vq0oFr1HL+7fDzpZTp41a/tnzDdv3hpjDOB+1gYY4ouf47ci722j27OGmWfS1PR41fuMZ6OZabhk9znS6OUKAomfYkSin3NPivQ/q/PaWUtiuIGiXQn5Oo3BFFUsoNSA1L7aV6vxcAJbLBDPV7Qoi66WP6E/kgT+n1Dj3zfW74ZgFgdrrl3o9W8onpyunqTTsyY7+NMsD6JkMfqySreUHY5XHV3oe/meNTSihfOLmipJQ5DVjabMcqG9pcnt0T8PDXudfkP96bor9On9Sfq2hX0tczIyoUeiWIiiqZk7+YlXuUsoveEi9aK8qqG8OdzjHkCAWKkpM5ia4JIVoIIU4XQtQTQhQLIY4CcAaAUUKI/YQQXYUQRUKIpgAeAzBGSqkMI30VwC1CiMbpgDQXA3g5/d6HAHoKIU4RQtQC8C8AU6WUXBzOhJvIfm+MX+JbIUhKoDh95annLO1SBTOoU7PYcH9n6yQyco1d7Ekkv81xGFL8ns9nZv1bW0CyKjBpF79+buwCzPijDP/6uHpY+9otO3QDFEhIW2u5GmGACaL4cdITp51D/atqnc7yXZVZx9qanletXbYLSDUYPfHtXKzZnIrVqM5vXvtpke306KWJUtgoF45QKolIFcsvB7AMwAYADwG4Wkr5CVJDVb9EaojodKTmKZ6h2vc2pILRLAbwHYAHpZRfAoCUcg2AUwDckz7ufgBOD+H7JJreQtB6LWva+tXqdIZnZwy+mSopMxXV35ZsxB2fpjp++9090tb+Ukrbg1/1tmPWom/e6ty5qms379DZksieuTrXlBPaSuEPFoFrtOXByiqJs58fj3cnLcu8Vr9WCXq1yZ1/K3WGsTvBOiJR/CzbsD3nNaP6xV2f/Z71b6WSt21nBbrd+iUe+Gp2zj6fT1uZ89pvSzfioa/noP89IyGlRK3S6kbvlZucPVNZF6IohRLOMF2ZO9jgvbcAvGWy7w4AF6T/03t/JAAueeGA7lArHdpeOKXAVm4QmdAubcHvpR8W4bbjemQWwna6vxkGXrFvlc7Da9pybVwoovBo7/TRqsjFerT3u97Q9KoqoGm9mrqf5SUEOoeFEcXP4Adzl+pauyX3WSelzBmuDgA7K6pwXDpS8ge/LsMNR1sXN9W9XD8tWIcaxdUt8//7bj5qltjvn+GcRH08K+EIqyeRYkRvCKad8s3dn83E7JWbPQ9/8HpzO1liSy+pHKZgXwUfUBQS7RqJgPNW9Pd/WZb1b73L16gyVyUl5yQSFYD5OsFmjO7eyUs3Zra3mz2oG+K37ajMaXx6asw8ewcCh5sa4WkJByuJBUh3jTAbN9yIaStw1H++1w0f7YSU3iqKTlrs2brvTQUXvaaQfKqz5pgfFa+NmrDmRsNKpYTu0hh2FXphbun6bVEngcg1o9tX1QloO8p7qWqnKilzRjg4iRbPnkSKEiuJBUg3cI1Otc3r3ENj0nLIqt7Qx8zeEfdkFhKvDQJEdukVnIIoHxk1HEnYH4qvf1zXu+aFQQ/kDusjSgrjmOnVecLKTeXYWWHdcKquJOov7eWkodv2pgXlqxm5c0HJf6wkFpjm9Wvq9iT+vGB9zmvPfLfA9edMWrQevyzOPSaQyvSe/i53yQ2tsu36lVQnmaZegbDAG/wdYU8shcVuQK2znv8569/v/7IMPy/IjTBoxLDHj8NNiQqW0e2rbTd675elhseYvXIz/vLmr1mRwvV6Ap2UYQp9hIKR1QyqFwpWEgtMav1B/6K5/LExN3IYAPzf/37CKU//pPuelMBYG4tWGwWyeeSbOboTzPWwFc6brR6DFBF5obcqyw/zsiuE/3xvCk5/9ufcDR1K9SS6359LYBAl19xV+pGYtVnCbJNlfa5+ZzJGTF2RdSy9bMFJgxIbnyhKrCQWGgHsqPCv4D9q1mrT99cZRBHr1qq+5bFfNVlP6I3xiy33T32Wzmu29iSiMOk1/FgVkBavyw1AYWWBTtCK1GdxuClRoZqwSH/kkzbQ36s/GZc9StKtTOoROJVS4oCOzbK2c9STyIyFIsRKYr7TFrIkcNXbk3075LxV5otlT166MXd/ADVV6wYZ+W72GsMhIDP+2GS5f+qz9IabMtMlipupy3KXW7G6Uw9+cIxvny89Djfl0Gyi/OMkR1B6GV/8YWHmtaoqiab1arj+fMaOoyixkpjnfl2yMdDj92iduyi1ml65yW5hSi8kvlMstxEl14qy8tA+S8JbdFNGISQqDBu27tR9XSmzTF9e3YjttSeQjdoUJVYS89y4edlz/xa6GJ6lpe6de/SbOTnv3//FLKsD2Jr7I2XupHGn9DJYZrlEyTdrZfZogvlr9OcU2VUlgcZ1Sm1tu01nri7riET5R68Mcvkbv9je3+sIA45QoCixklhg/M5v9Fr6/6eKXKof/tneEI6Fa7dik0GEU7t0C27Mc4kSbfryMgz9z9is17Z7DLLkpMX+PyPn5rzGwhxR/tFbmsfJCAev+QJXoaIosZJIjjnJ83R78mTuZHCjAtpTY6yXyjD/fE+7E1EMLTeIquzFJ1P+8NR+xEoiUf7R60l0cq9XeBxi8OmUPzztT+QFK4kUKKOFZDs2rxvS5+sNN2VhjijJ9MpoO2wscm1GL3COE3rLdRBRsulWEh3c65yrTEnGSiIFauqyjTmvSQk0qpMd7euFcQtztvOD3rAwIso/Teq6jyCo8NIZWMFaIlFBcBKMprJKmi7nRRRnrCSSY07KUU+Ozh0uKgE8+/2CrNce0QmAExSOCiNKutyb2EtkUj+MnGm+ZiwRJY/enEQnw02rZHa0U6IkYSWRPBt43yhH2+tlsGHO52ElkSjZ1m/NDWjlRx2RQ9GJSG3jttzlLpyMIOVcZUoyVhLJsW07K7L+7XgtM921Ez0kiIgKyk0fTst5rcxjJGQiIq3Vm3fkvOYkErLXwDVEUWIlkRwr2+atMLZYZ63GMCd3s7eAKP/MWbXZ8zHWbsktEBJR4dIrL6zbmtu7COivs/r4KMZFoORiJZFMHbFXy5zXvNbntuouRM3hpkQUra+mr4o6CUQUI07KCwd3aZ7zml55hygpWEkkUxWVuRH7KnVyzclLN9o+5gadVrgwR2R8/TsLgkT5psKHVaeLi6INfkNE8eJoXejgkkEUCVYSyZTe2mN6vX5/eeNX28d8PqDlLoiocK3a5HButI4iVhIp5m48ulvUSSgoExett70tRylRvmElkUzpRQzUm7TtZCHrw7u38JIkIqIcDztYRmeRzrxoAChmHZGIVN6euNTT/t1a1fcpJUThYyWRTOmuEaRTH9ygEybaSMsGtbwkiYjIk20G84TYk0hxF/FyoOTQQZ2aRZ0EItdYSSTH9EZUVDqYVMgRGUQURyWsJBKRS0s3bIs6CUS+YiWRTE1YmDse32skUo7bJ6I4YuAaiju90T0UD78t2Rh1Eoh8xUoimdqpE900zDUNiYjCwwI4ERERwEoiucA6IhEl2Y/z10WdBCJXvMxJfOvi/f1LCBHlPVYSybHN5bs8HoG1TCKKn7cmLIk6CUSBGdixadRJIKIEYSWRHLvxw2lRJ4GIiIgo1kbPXh11EohcYyWRHPMaeIaBa4jM1Shh1kxElHTz1+ivyUqUBCyJUOi8Lk5LlO9qFDNrNjOwA4fNUWESXCiRiELCkggRESXKTwsYeIYKE6uIRBQWVhKJiGKGBUEi0sOORCIKCyuJRERxw4IgEelg1kBEYWElkYiIiCgBOCeRiMLCSiIRUcywGEhEerR1xMO7t4wmIUSU91hJJCIiIkoAbQPSg/+3D/Zu3TCStBBRfmMlkYgoZjikjIh0MW8gopCwkkhEFDMsBxKRHm3WwLyCiILCSiIRERFRArBSSERhYSWRiChmWA4kIj1Ckzto/01E5BdWEomIYubqw7tEnQQiCthZ+7V1vA97EokoLKwkEhHFzHkHtI86CUQUsA7N6zneh3VEIgoLK4lEREQxN//eY/Dcuf3Qv33jqJNCEcrpSWStkYgCwkoiERFRzBUXCRyxV0vs25aVxHzhpn7HOYhEFBZWEomIiBKCVYTC1rxBzax/252j+MJ5/QJIDRHlM1YSiYiIiELw6Gm9Mn+7CUJzUKdmrj53UOfmrvYjosLFSiIRERFRCKSs/ttpHbF5/Zo5r9k9hlGF9JZh3R2mgogKBSuJRERERCHIqiQ67EosErmVQqfH0Gpcp4an/Ykof7GSSERERBQCVR3R0XDTxnVK8a9je+S87nWOKtddJCIjrCQSERERhUCquhKd1M9++9eRGLbPbq4/V/msDy4fmP26zUQc12t3159NRMnESiIRERFRAmiHlzrtCey9h7slVNo1qeNqPyJKrtAqiUKI14UQK4QQm4QQc4QQF6neO0wIMUsIsU0IMVoI0U71Xk0hxIvp/VYKIa7RHNdwXyKiKLRuVDvqJFC+4vBAUrG7bqLR3EW7+5/Wfw/baSKi/BBmT+J9ANpLKRsAOB7A3UKIvkKIZgCGA7gVQBMAkwC8o9rvdgCdAbQDMATAdUKIoQBgY18iIiKiWCguUlXKXEwIzA1c421/u1o2qIWmdZ0FuWFjGVGyhVZJlFLOkFLuUP6Z/q8jgJMBzJBSvielLEeqUthLCNEtve15AO6SUm6QUs4E8ByA89PvWe1LREREFAttGlcP28z3TuFLBneIOglE5EGocxKFEE8JIbYBmAVgBYDPAfQAMEXZRkq5FcB8AD2EEI0B7KZ+P/23EuLLcF+/0vyvY/fy61BEVCAYMZCc6Ni8btRJoJAM2LMJTujtPgiMNm+xm9com2m3LyqyO1zV3ucQUf4ItZIopbwCQH0Ag5AaJroDQD0AZZpNy9Lb1VP9W/seLPbNIoS4RAgxSQgxyct3ICKyol4LjcjK0J6tbG9rdw4Zxc++bRsBAOrUKIk2IWktG9RE/VrxSAsRxU/o0U2llJVSynEA2gC4HMAWAA00mzUAsDn9HjTvK+/BYl/t5z4rpewnpeznKL1ONiYiIiKywU3vXE50U4eNBur9j9nb/ZIaVo71sFwHEcVDlEtglCA1J3EGgF7Ki0KIusrrUsoNSA1L7aXar1d6H5jtG2jKiYiIQnK0g55GSgJvzc//OKJL5m/bw011tnNSwXRanz2oUzOHexBR3IRSSRRCtBBCnC6EqCeEKBZCHAXgDACjAHwIoKcQ4hQhRC0A/wIwVUo5K737qwBuEUI0TgekuRjAy+n3rPYlIkqkvu3srWd27kCu+pPvnj67b9RJIB8pw9H9GDrs5QhBzzOUHHdPlGhh9SRKpIaWLgOwAcBDAK6WUn4ipVwD4BQA96Tf2w/A6ap9b0MqGM1iAN8BeFBK+SUA2NjXM87+ICKn/Ch8fXD5AZh2+5GW23VpmTMFm4gS4qZjvAVjN1r/0Na+Drd3UuVj9ZAo+UKZsZyuzB1s8v5IALo5ZXrZjAvS/znal4goCn610NevVYp2Tetg8bptgX8WEQWrxGYkUSfsHlGvMukk73BaGWW2RJR8Uc5JTAS2hhERUVywUSC5erVpBEA13NSH39LLMYQQqFlivxjo5KOKA6gQE1G4WEm0wGyOiOKMSyIQJcP1R2cPeor6zi0tFhjYoanh+/u0aZj1byeN5nbnVBNRfLGSSAWvZ2vtKipERET+Ki32v8glhIB0OebpikM6QQhhGIn0kC7Nqz/HwXHbNa2DDs3rWW9IRLHGSqIFDjclIqe89O79eusRPqaEkoC9wYXFbaWuen/Nv10erm7NUMJSEFFCsZJogY9uInLKyzyhJnVrONrea4GTkoXPpOQ7Yq/Uupe92zby1EBw6eAOvqSHeQgR6WElkYgowbgUGVGyHLFXS8y/9xh0a+VuqoNSrVSGr3rNA4z2V78sBNc9JCo0rCRaYJZIRE457RuoX8v9sC/mUUTJk4Ton9o6od28hnXJ5KvhIOot5S9eBRbin40TUdw4XVPs9P57uP6sejWLXe9LRPHVrVV9W9t5rZPpVeqeOadv1jBUIQQrf0R5poZFMC1WEi1wTSpyom2TOlEngRLIbeHrvpP3xrH77O5vYogoFjq31K8k5gauCaf2ZvdzvJSbju/F/IwoLBNvPtz0fVYSiXz0xVWDok4CFZAzBrRFaXERFt0/LOqkEJGPtGsUBkkvcI2U0Qw3bVSn1P3ORORIQ4v7reAriQPaNzF9nx2J5ARDihMRkVcP/amX7W2D6kjMOazmhRfP76e7n15P4lWHdcbHfznQl3QREXD90G6Bf0bBVxJf+nN/0/edzi0iIvIz12AORFR4Si3mCgH+TYfRq2SmoplqttNsc2i3lrrHq6fTWPrXQzuh1x6NLNPC/I7Inoa1g+91L/hKotOen78d2imglBBR3vCxpMNYEUT5y6ii17ZJHctsRKnEBbHOoV7F0e6cxGfPze1hZIM7kbFHTrU/ckARxvqmBV9JdOKF8/rhmiO7Rp0MIiIqUCxr5xe9etewvXdDcZEIbckJo921hVC7H9O6UW3XaWFlkig+WEl0gHkXBaFJ3RpRJ4F8VuLjGmjMdohIT5BlEiGQUyv0UhllPhae9y4bGHUSKAQihLuKlUSiiI265uCok0A+e05nuJVbR/VsFfpnElE4/Kjouam77dawlvkxpc5SGx6Gt9n9nlU6NdHdLdJK2fpbBGSk+Cn2sWHZT6wkEkWsMXsS8067pnV9O9Z1R9mLYHbEXvpBJCj+OEolfx3evYXjfZxWxlrUr+lo+3cvHYiPr1RFGjX4uO67pdZpfD7dAFW3hvvo3XaHkeoVlgd1bu76c4mSoFk9Z/cwwDmJscCHN4Xh4C58CBYys6w+ri2M5B8nw/jCGGJE1to1rRN1EjLXzRNn9nG034A9m6BFffPeuSIBnNi7Nb66ejAOTzdAvXNp8MMY/3po58A/oxCds3+7qJNABkb942Ds7mEeb5BYSSSKgRfP74+R1wyOOhmUIG2bRF9IJX+wHSB51D9Zg1pmPWzB/7he57Xr9Uh0360BhBDo2qp+5rVOLeq5Ov55A+1XUOrWLHb1GWSOazjHV8fm7u6rMLCSSBQDxUUCNYr5cCT7vrx6UNRJIL9wyArpMLoqlHl7fjUunNKnTda/595zNPZgIxRRaOL6BGAlkYgoJv4ypKPlNq9dOAAfXD4QdTzMD6J4iWsBgYyp59gFNTPIcGkK5Q2fGhdOH9A269+lxdEVDfWGU7MNxbsw5q9R/mEpwwLzJiIKS6Pa1sPGGMQh/xSxFJy3gvhpM3VE/w8dCFZPose5zPEW10cAexItMHPLf0nJPBvWLo06CUQUgJP7tMbvdx6FOjU45LzQ9G3X2PlOmeGm4T+72qcD9hzWzTpqq15ldux1Q/xPFLlyxoA9ok4CxRwriRp/Oyw7spY65HNSKhPkTFyGYajT0WP3Blnv3XlCD8/BCYgofprWrYE9mtRBnRoltiLZxrXFudA4nbM3qHMz3df3bdsYjeo4awB0OtrUTXh9IyOvORgz7jgKz9pYl1UZFqsemmt13vS+k5Pov2TffSfvE3USKGCXDO7gaX9WEjW0+VPP1g0jSQcVttP7Z7fwndafLX5BOWu/ttYbBWhoj1aZv4OuAAzmUitkU7N6bJQy8/jp+9redv69x+CVPw8wfL9WiX4PsjSoHWUqXzY//2+HdbK5pbWS4iLUrWmvQcNu3a5XG5azqLC56YSy03hySFdvz3xWEjW0Qz+6tqrPNewofJraAnuxg9OrTaNIP/+Cg/YM7bOasjeabBrMua+mGtrs/RNIRa8uchGK1KgQqEQ3tduoFPXTwyqd+6jyYL1NhQDevXQgWjUwX9uRzD12hv2GjbA0dtiLTtWs7quaJUU4oKP+CAa7WEnUULe0H7vPbhGmhMISy6EssUxUftIbbtzPzTwhl4QI7+c26pmgYLEHN1muOszhgu4h31bVw03t1hKjqSYq+Y0fjZwD9myClg1ZSSRSWN1XfmRLrCQ6EXVzHAWiyoc7qW+7xrj/5L29HyitRkn2rcl5SP54+c/9bW33wP+FN1eDP23+e/E86/lbAGw91e0M86P48JJ3G82Xt9PWc/eJPd1/sAMfXnGA5TZOzoHtii+ZOrlP66iTYAt/b/fCOHWsJDrhY2vh//VtY70RhcKP3pU3Ltovs9aU24nC6mQICNx0TDfVv8kPh3TNjcin1xrXoXm9zN9+lMn3bdvI8D0+I/Nficm6c05/f/W1GST2OUfP6NGkRME1i4ZbU9XQGFUWw4EL0Xno/3pl/Ts1YoU/SD4Jo72QlUQTQbZw7NHYWWQ0Cs7h3Vt6Pkat0uqH9U3HdPd8PABZi6WbFTIp/gZ1Mp4X0HuP8Ia2sogQH3pL2uzXoYnlfsdFNA2ifq3CWVY5Lg03RmX6SwZ3wLVHdcXZ+7cz3FcdDTuq76P0hDr5+Jic+sRzMweWkiWMWBUseZrIucd8/D06twynNZis/f2ILlEnQdfp/ffAzcd0x+y7hwJgK2BQolwCpW+7xhw+WKAuHpQbsOjxM/pY7hfW8Cztp9QsYXHBjSAKcrVKi/GXIZ1QatJ42KhOKY7cq2VgabCjegkMf45DROFirm8iyGz1mL0ZFCcu4lJI1z4HS4qLcPHgDqhpEB6d4u2Zc/qiZ+sG1huGiIWt+ND7LWqbDB8MW27y4pFPhsFppSqo28pbA5bI9CZG3TNq1bBRpbkZDu2WOy2A8pPelXHtUV1DT0ciWd3X6dvq1H7up7exkmjCKGO79yRvAUqizrCJKHhH9Wjly1BmIiPa9VSD1KB24Qw3dSqoR7qXRh0hVEtl+JQep+wmX72dEMBTZ2X3qLPMFJxR/zg40s/Xu0a4VJO+SwZ3QIv6NTP/tntbaJf2c4KVRBPKD6C9iM+MePFtKgB8KIbGr961R07tlfNa5tgxKeWwIzG/7NEkvLntr15gvBg8Ad130x814C26qXvqj40q+6mdnqtft4Z5A4M2D1bP8TfdkDzrGFIgLCPaS/OoHi1Rs5RVEz03HdPdcyeVU/wlTDA0L/nBqPAAABeGuJB6ITu1Xxu8f9lA3fesbnM7xZKhPVrh5D65QzqUeaRRjmhuwlZZ8kEbBlsz9eZF+/l+TG89iaJ6TmBErY5n7tcW1w3tiksPNo/4vbtq/UOzctfVMY0fQNkO7NTU9rba33u3hrX9Tk5eaaAKeBZGHaWgK4lfXT1Y93VljTTWEckPB5lkmGcMYK90GC4e1AH92ltHjnTq8O4tsOj+YfjfOX1131fW4Cy2yEyCDJ7z5VWDqj+HLfGxYfRLxGGo1fPn2lzXkVJEMNFfzZbOsVK/Vgl67J5qoGzXNJoKfmlxEa44pFNOz+Bz5/bDF6p86fJDOto63hCdJYzIvrCy/wM6Gkfz1mI529w/NA0jA/asLsdYT0n0/oMXdCXRMOPMtL6l/xnxuH4jtwzzZ6kFigd1AV7vWmPx3p3apcXo3LK+4ftuHpw3Z5Y5Mc8VLjhoTxzWrQXOGagfqt5unjL2uiH2E6fRokEt640odNXXXfZV8MMNh+LjvxwYenrUCmm5C78E0ap/+cH2Kk9aNUuK0LF5PZx3QHt8efUg7NfBfs9OGI7Yq2XWCBsu8VS44laujhu9YGZdQlwdgXemjsxkb83VG7fhp/Vq8kGeBH5dN9oIcGRPozq569E54eW0N6lbAy+c3x+N6njrHfJr7pnfV1BMAgPnlVqlxei1R6NQCwJaRUWCvc4eqAMKeXlOFxUJjPrHwXj9QmdDWQd1TvXkCCHQrVWwEZa9NEK1N+nhfPhPvTI9oZS/Ylasjh298qNe1nzD0d2Mj+GhKl7QlUSji1MZGlG/lrfCpVrH5nU9H+OdS/bP+jdvruTjbxi8IE5xlGsrmvn+2iEYd/0QvHXx/tYb++CCA/fEDzccGspnFZo6FsE+gOCGD1vdM1H3dMadOl+/9bi9PB2rY/N6OKiz/eF7qc8P78HSulFt9GrT0NW+I/42CJNuOVz3vVP6tsFZ++mPwCDnBOL53GpSt6b1RgXAyW+jbFmkqsGpo576qaAriUaO67U7bji6G/55ZGqtFqkZfuqGH5m2dshIVJPRyT8dmtlvPGDDfnwUpe/nGiX278GR1xwc+Nygtk3roE3jOhjYMfjhZQvvOwY3D+uO1o3yN9DA3w7rHNixlUKB0aNBud3NAl+5cf1Q4xZnhRDC9JnVa49GlscYEMAc4LC4KUwbna0GNhqb/S68N/Y4esKp3V3mAXVrlqBZPePCLRtRk8nJ7/bS+f2DS0iCGJXvdKce6WxcFNDNUtCVRKNKVnGRwGUHd8wZCxxlhqU7R4QZaOj+fYp/4YdP7tPasCBmd4gBWQuiVX1Itxa4eNCeuPOEnrb36dSiHhrWNi+8Bd4D4OM1ZFWRIH/ce5L9a8wvJT4MN90rwUMFw26ArfLxvrz9uL3wr+N6+HdAG/hsIrdaNeScecDZo1nZtljVldiwTilqBDC3t6AriXZlWnx9enD4laGyeBa+/+vrfPFqu7+T+rI4umernPcHd3E25IjsMbod37lkf3xypf6wumIhcPOwvUxbwXU/S/NhSh3Lj9EKFIy/DHEXPCRIx/XaHUBwhfN9XA4fzBfe2z68HaBPW/eLX59/4J6e5kH+X9/cpXysRD2M0U7PNtnPL7wOJ2ejgXNGjXJ6eZEyuqR/e1U+IYGJtxyOy1TBrvz4HQq6kqic/KfP6mO6XVVV9vZ2jfnnIbhKNVzpuqFdnR3AAlvxw1W3RjGK3UTqcLjLns3qoq7OQ/7OE3p6inJJ+ox+nv06NMU+bRrp7+Py1jMqTEmDYFl+i7owlzQCwB4BrQ9o+QDPXBO5F8V/TuuNWXcNDSBVwKHdWvDZ4oKXU6a+Fu4+sWek6+c+9KdekX22ltU9MvyKA/Cf03qbLjNFznmtdFd56BqXUrKSaeGh/+uF9y8biN0a1sbBXZpnXm9YuzQrgI1BAG1HCrqSqBjSzd7aO07Pc/tmdXHM3rtl9j13YPvU33z+Epz3TJcWF/kW5ZKqRfk80lZAgs4aBjpYv8qJ/57e23Kbs/bjmqB+KS4SOWvP+cXuNaj0ZpL3+/a6o6obkM/ev11BVtIfP2NfHKopi1WkW+hLDYbR9WnbGCfu29rX4brkHX8Oc91a5S7J5eSc1a5R7GjdZy8NnQVdSbQ/DND+zzfqHwfrf5bwGPjG5msUnKAf3MrE45olBX1bOvbA/+1j+r7Xn0290PMeTVIBGtwOPde2kN6dnm+mvBzUNXbXiT3x5wPb42wfKmpNXC723r6p9wjPUYhzgSeItNk95uNn7BvAp8eDADBY1UKvMFuKwsu9e2p/59MY8s1xvXbHi5ogJrsqU1ejupL4+d8G5ezLnid7wjpPXpfryvc2kncvGxjq53kJZMfSqA2Z693GhduxefbaVn7PZ1TL9xspXxQJgTMGWBcC2jetg78d2gnPndsvhFQlzyl99OfKBH0bqKNB+v2QVZY5yMxJDOjLnLN/O9x2XA9fKqFfXjUIH1we7kOuEDl47JDPhABO2je3p1S7FEUDvYByKLxnc1CVjwPTw0iP2bt6jr5eQKQoh+cmRZDPFq2uLXN7ypxQrqcTe+fnaAW9iMdG91CJT4sR7+UySnZBVxKdFpjcVPT0Cn8F9vzIG0a/2wUHWj+g7jt5Hyy6f5j58YXANUd29TSk9Nh9dnO9b9zZ6dG/9djcNcmsbnO/Czhmy1wYfVZUcwWP6tHS8T4tGtRC33bOlzfo0Tp50S6DLOwH/Yt3alHPeiPy5LtrU3PEtWWJPRPaa+6Weg6928Konm6tGmDR/cMsh9Y1r1/Tt8I02Xf90G6468Ts6MutG9XG0Xv7Uw4phGHXd55gHon4yB65QQzV9E7Rl1enetuP6O78+a5V0JVEhWUh0mS7ujXM54WoC4Verne9m6UA7p94MTjf/7JYLDnMoTBt83TO4msXDjAsVavvjVqlzrM0V2uiGVwLc+85GqOu0R9ybpqGCKKbfv33wXjmnH74/lr7wZBaNXAXrrxj87ro1ip5lcQwBPWbN3cYeZec0+YDs+8eitcv3M9Vz9Yxe7dCjwiXDRnU2f185dtVS24YRYSmcFxlsLbrgZ38n4+unoqhUCKzu31WFBolVoleAadGcRFaWpxHvfJlt1YNMPa6IXjMYkrA8TbmlbOSaEMm8qDOe1YtHVU6EeqctI6oIxXlfDb7JEkjn6dmGH039V2gl2EeuZd5S5yjNFic4NLiIpS4WKuoOgpZePd0l/SQoLYGPZ96w56N5lxb0a45W4isWoz9ZqfxY2CH3LkqfKqkntFuGvdqlhTjoM7NUOSiV+ups/pihM58u7C88ucBmH/vMa72bVinevicm/yP/NOigX7j0AFOg5blc2Eihtx2Jhh1Yu3RpA5qqOJb6BUtWEm0oD1nRuUzZc2i5vVzbz67jwIBd5W64nSilLT944gu1cfk0zxUPN3RsrOOkN49cdMx3S2O6yVVzlh9VJyusSP2yh2qorc0ix0MLKFuMU7z4aToHWLSLYfbXirnsO65kb2dpOqukCu+cZNP13VRkXC3xBMlhvpyfeWCAZm/7zmpp8628bi4/3pop6iTEAq3Z1tZbiSoe7egK4kKpfJWZFDruvaorvjq6sHo0Nz9HA+9OYk3mvQSKpRC2eXpBTIbpSMLdmxe1zAsNPlLyUDdtA5rvXAeg9K4ZRTyX31vdW6RO2HeKvOMw6Mw6MA1QSuEuSN+s7lMouNrolm9mtijSR3dCozRUDS3GtZxF+m2EJyzfzvm9yHyGlEzCf7mscLUXjVqpGHt6t7fIV1zG4uiXFZkUOfmqF1ajAsO3BN92jW23iGBXvpz/6ylo9xGtT9jQCpieVedZTX8EEotQwhRUwjxghBisRBisxBishDi6PR77YUQUgixRfXfrZp9XxRCbBJCrBRCXKM59mFCiFlCiG1CiNFCiNxQS4bp0vzbYLuS4qKcH2CYMjHX4gFePdzUXQGwtFhg0f3DcOnB2WO/99MZJkTOWQV6admgJo5KTxwu9qEgfJgPE4kLkZTAjQY9gsqY/b8f3kX3fVsHt72pt0XvjXpDq4e0+1fZGnvdEHz998G2ttVGkbtyiLPCiNH3UiS1DpnkIf16v4idOcvKN/ZSRoxybl1c3HViT+b3Icr/KiJQXycqppZZntWvfRPdOBp6584qTzf8fIssU5mzCAD1daIDS6RG7c28ayj2btPQVRqSYEjXFjihd+vMv9u5DHY1bJ/dsOj+YWhR33zuottncFhdUSUAlgI4GEBDALcAeFcI0V61TSMpZb30f3epXr8dQGcA7QAMAXCdEGIoAAghmgEYDuBWAE0ATALwjtPEZZapcHASnzhzX1w8aE+8c4m9UPB6N24hZGpxd9/Je5u+37F5PTSqXYp92jTEQ3/qFVKqgjPhpsOiToJr6pZPtQM6NsNbF++PK122srq5D/3uOftTv9TyHgf5GFxgjyZ1MvMOreybHlJ/7sB2WHT/MPxTtbi3Hwqgkd8xpYfby6WkHRLWulHtzN+DdK4lvyvrRgXJfxzpssEmRnjNOvOPI7pkXX9hMxoJlk/0vuLhOkPGzdiNenzzMPOAfH6wOyy+UDj9Lb2yk8WFUkmUUm6VUt4upVwkpaySUn4GYCGAvjZ2Pw/AXVLKDVLKmQCeA3B++r2TAcyQUr4npSxHqkLZSwhhPY4T1QW96mE99jMZIQRuHraX7po9amZDhrw+hPI/Swye2W9+zv7t8PRZfVFSXIRPrjwIQ7qlbuBbhpnPcYuzFnkWcUxpiRzYsSmKi4Tr1k+7gjp633ZNsOj+YYZBZCg6QV1SyggFo/D+btbY/eyvB2X+/ouN3mCzqNmF/HwpgPqG7/56WGf8cMOhkX3+x3850PEIiHxQsySYoGAXHrSn5bJdeqzK0er8tJ7OHPecvdlY4wu3z7FIJrUJIVoC6AJghurlxUKIZUKIl9I9hBBCNAawG4Apqu2mAFBmy/dQvyel3Apgvup9W2qWFGFoj1Z46fz+jr8LoB8F8E99Uz0DmeGmqveUe0i9QCwAnLRva/xlSG5IYYrGXSf2zIralgSF1vp9Wr89HO+jHVrp5py5LUN6/X2Caqn3WrkutOvOq26t6qP7bg3w5dWD8LDBCAVlkeo9mtj/zRvXrZ4jaGcOtf4W6cZTG5+XpLmoHZoHt3ZhHE7Dp1cehBfPL4w5kBcP2jNnFFDP1g3x9yOS34NtJqp8ttcejXw7lnr0g5J/PHpaL9X7hSvI3zcxlUQhRCmANwC8IqWcBWAtgP5IDSftC6B++n0AUPrFy1SHKEtvo7yvfk/7vvpzLxFCTBJCTNJ5D/87p6/rdWS0UQAX3T8MD6Yf/O3T44zPO6B99eelH8LtmtZFE9VD/dHTeuPao7I7QY0ewjF4JuWFfDiPb128f+ZvdQZ8u2b9xu4+LnIcV3bywYdP7Z29T4hPXjfrpynGXT8En18VTIh8JUiB2yFb6qAR56vyuqTzu/DftG52oJdurRoYBmQ6rX9bLLp/GBrFODhMmPeOZw6SmsS5qHu3aYhDuxXGHMibh+2VCdhBwfru2kPw5kX7Zf7d0aKxpXpOs9H8+9xth+1tshRD8m5FU+qoskkQaiVRCFEE4DUAOwFcCQBSyi1SyklSygop5ar060cKIeoD2JLeVV26bQBgc/rvLZr3tO9nSCmflVL2k1IG0tR2+SEd8YbqRlI0rlsDi+4fhpP7tNHdz8tDNkGP54KmzSz1llLxYmBHVRAj1UdpC5/vX2Zv/iwZ81omPrW/855PRZvGdQznZTpRotPDVOUxIM+ezaoLDt13y50HmaS6hNrhPgceefVCfwsIrnrBLX5js/fvO3lvy3ncQDwrWXeekBvm34zRqb3x6G544szUItWV6R+gEObDJUFB/go+fGmzcmi7pnWzlj76+MqDDLd1mh692ybnXkros8NIP5NorWZftVk9b+VGt6cxtEqiSHWJvQCgJYBTpJS7DDZVvkuRlHIDgBUA1ONxeqF6mOoM9XtCiLoAOiJ7GGsorh/azVVPZJRhhim4YUIjrzGOKnmtz0FB7HK7xl2+0f7kdm7Bz/56ED658sDqYyS4NDL6n4fgNU1lRRnR0EozZ9Vug8a+bRujWzoCdFBzZMJWJGA55zyJslryHV7HZwxom9genIM6+xMU6tKDO+LYfVI9H41ql2Lfto3w6Gm9fTk2eVOIxamz9gv3ftSbR6imNBAZ1TvVLysj5azWOi4UetFeAeCl8/vj078eqPueF3Y6qcLsSXwaQHcAx0kptysvCiH2E0J0FUIUCSGaAngMwBgppTKM9FUAtwghGqcD0lwM4OX0ex8C6CmEOEUIUQvAvwBMTQ9jTYTO6UhTI/6m3zpjGDIf2YVd7dBCCo76JzGKeNqkrr+9hXZlZ8CRJCFSblr07fTG9GzdEPu0aRSbBYa92KNJHQzq3DzrtZP2bY3/nt47Zzjso5qhuWY+vOJAfPbXg3QfdIV4LcaR3WWfgvisuOlr0qIvBHBgJ+tlpkqKi/DhFQfi4C7NLbel4BUJoG6NYtx1gqOwFIl2QEdnjR9un2ATbjoM319rHY1Uue/dfk7OKISY5yNOmeWLRqMdhnRrgd0aeotH4HbUYljrJLYDcCmA3gBWqtZDPAtABwBfIjVEdDqAHQDOUO1+G1LBaBYD+A7Ag1LKLwFASrkGwCkA7gGwAcB+AE4P4zt5orpInj+vH16/cD/02F1/PZjcrndleAtQW7XejR8LvRcir8OiDunqvnAQRCGqqsC7ps2Gchhx8jsc3yvVg2BnvaokEULghN6tUVLs/pFQu0YxerZuaBjJOVHz1xBMUJbK9P1ZUuzPsYM4o6cYTI3QU7dGfo5O6NS8HnZrWDvTiEvJIITAjDuH4pyB7Q23MRvlE3du42aoKVMLnK773KJBLc/Rt4dfcYBuo6w6JTlF2WQ9NiyZlTn9mE5ixO0ItlByeCnlYpi3B7xlsu8OABek/9N7fyQAW0texFGjOjVMh8Fo72OlDiAgslovE1b+yntRVdnV0Q3jOC8oaEVFAod0bY4xs9cYbuOl7H/D0d3x18M6Ww65KWRVVfqvVyasAUOp1PrZe6wM51UaG+JoaM9WOa/pRfAGgMNCXtcrLIeng9El64oltc/+ehCOfXxc1msjrxmMTi3srR0bR3vt3gCtG9XG8o3brTc2oOTPes/BejVLMP2Oo1wfG1AFrjG4eU7vvwdGzlxluH++d3g4Kn/4eCoOczm/PpIlMAqVcnG0d9Aak1tJrO5JFEKwpdMjNxWGRh6Xxdg9PWygY3Nvv13/9o0x/qbDsl67ZHAHT8eMKyeFNacNJk62Ly4SaJBnvYh+KzZ4yHsJ2LR7w/xY37NFg1r4/c6jcPEgf+7TP/VtgxY+B8LSM7iLfkOmECIzFzVf1GcDUF7o2Tp3dFYSKoin9tPvyf/Xsf5MKVIed+qyj1JxdFu2ee+ygTlLuhk9tQ/fy7yykvP0yO86o7mAW6nsHJ6VxBDVLCnG8+f2wxsX7W+9cZq2N6h/euFlbauAm8rOuQPbOd+JsoZjGZ12s9/joM7N8M4l++NSjxW6ejVL0FITaKRUPVywkDNXB9o24QL2RipdDFE4uEtz/PPI3PXKhBC4yMMSIGHza7jp13/PHt5Wp0aJb8feo0kdTLj5cF+OVYieT/eQZjXcqn4a9RDpmiUsLlHwtM90hdFSOU7t0TjVSK1u7FQa8P55pL0hiY+e1gsn92md+Xf/9k2wV3qJLSVrO6pH7ogE4/KS0P0bQKK78/U6hJIWCZlNZiGzakXRUs87BFKtYwvuPcaXLnn2QrpTVCTQuE4pNmwzCtBrbb8O1kERrKgzU6/pKSTah1DHFvXQoVldLFi7FX8+sD1O7N3aYM/Cc2DHpjhvYDv8ZUgn2z2BRUUCVx7aGQ99PSfg1CWDUc+qn64f2g1bd1RYbicgsobP2i1/5evQ9T3Ta75lFVINth39z0OCTxCRAbO6xah/HIzDHv4OgM6cPo2HTu2F8QvWYw9V42jtGsVYdP8w22k5ad82OGnf7B5PbXviHcf3wBvjl2S9Zqdx7NBu+TOEvYZOw1LC6oisJMZRn7aN0LddY+zeqDaO0BlHnO9jtsmem4d1z/z95dWDsXT9tuwNEtwC54Wbr92iQU0sWLsVR3RviV57NPI7SYlVUlyEOxyuL2fmgE5N8fy4hb4dj1IuP6Sjre3q1CjOKszlWwAmJ4TB32rqvGT3Rt6iC1J8Jb2RtWPzeph6+5F49Js5OHFf80bOBrVKcYTDzgonlAYlJ0HQ1PffgD2bGL+ZEOcObIdXf1qs22uYtK/D8RMxNPyKA3HzsL3w5wP3ZIUwYG5bdarH9esfIIxAQuo5jS0b1EK/9k1MtiYjwvAf5LdDu7XEftpCgA1BRBq1q4aHiK9AvC4pbeHwZJMCpZf1FLX7x1UmjVnrtMXpF6MwXHlo56iT4FmDWqW47bgevg1LdcrO7e7qztIc+MyQ14V06oFT9sHp/Y3T6Ch/CTgrspNHs5JI5EK7pqlhSkah7KtiUELKhzX9FEG3lcTg58o7XVpWN2KoT+8rFwzI2daqIhZlud2qZd5KXOagdGpRD0KIzDy7Kw7piKIigZYNrIcRx+Mb+E85F+rv9w/1fFrmCwUhyuV56tawV6lTrtGYZCc5TunbBrs1rIXT+u9huE1c0+6nU/vvkVX2Gn7FAfjf2X0y/05avw8riVTQ3M61een8/nju3H6GkS5ZtvCX0zWdnKruUEhYDh5jH/3lQN3X9Vq67zt5b9NjNa0XfARPI6XFRdijifuhhnEtGCnpOmd/6wBm+d67pv5+56rW2Lvq8OT3MFG8/XzTYXjyzD7WG6bFtUGzdaPa+OnGw7LmOtqVb9mL8hsJIdCnbWMM7blb5r2k5aWsJCacl/wiYcuWxUqTujVMx/XHYVH7uD5M3FAePEbrtak5bRUuLSnClUM6AUAmQht5V8fBQutWz83nzunrMTXO+fUoj7LhQT2012j9sisP7aw7hEs9GsLNN4iyd8YundGmWU5gEKu85KRSFrT6tUrR2OOyWklhNapCL4Kwen3dL68e5HuaghT/6qB1Hs1KYsLdMqw7Wjao6ar1Jt/Wt3JDybP2bFY36/X/nt7b03Eb1alhvVHA4l9Es2f3hrUy17ffE+4fOGUftG5UG4O7NMei+4ehYYE8rOPGqj7RwiAsfBLUqhHdY/a1C/fDhJsPQ8Papbjh6G4A9HvN7z0ptydXvTRMwhq/M1pZXDdKRTip34/c6dk6Xo2B+fKsNnNI1+bosXvqvH9w+QG44/gemfeEELh+aDd8cuVBOfvtld7nrP3aolurBq4rXrcM646R1wy23tCl64Z2xTuX2F/ezsjTZ/XBn/rqr5UZBVYSE+6Qri0w/qbDUVMzp6dj87oGe1TbrWFtLLp/WM6C7IXoq6sHY9ZdQ3HGgFSLeo/dcxfidaJGSRGuH9rNj6Tl+OyvB+GnGw91vf9/TuvtX2JC4LTCfc+J5kMXFbVLi3GqyfyJoOzTJnVt2RnmR9FRVxzcdoo1rlOKFvWjq+DWKClCi/q1MOW2IzNr61YPhTLf9+9HVM/NczNEKkkFXw4zLyyVmpE+UXd66/Xad9eManHTkNG3XWMPqfJuSNfmmb9f/vOATD7St11jnHdA+6xtLz+kI7rqdFzs3ihVTr0n3ZDl9qe6aFAH1K2pP7pljIPlbYbqrP944UF74opDOmWWNtPLY/WWw9Bz9N674Y4Telhv6AM78+VZScwT2oL0gZ2a2d7XaPHWQqDcIjVKilCrtBi3HbcX3r10IDr5sIak0hLfvql1hd2Jnq0bYreGxnOkzkoPHTN68LWwEagiydrqLGCrddeJPfHpX3NbLcMw/PIDMOfuo3HXif4tLZFv3vahRTYO4jhcUQmqYFU8KPUY1TXqgrcVIeKfRgqGWYH9FtXSUmHRuw4Nl2VxcNG+d+lAdwnyyUt/zg1SFqXdGtZGqSbY4LC9d0P7ZvbLaPu2bZT175l3DsWtx+6V9Vq7ZqkyyKUHVy9N9PnfDordM79hbeuRU6wk5om9dm+AeqpWknoGLSZkrlZpce46PS4ds3crvHvpQJwecm/V3Sf2xLx7jg71M5PmnP3b+dIQ4EZJcZHtVsWke/yMfV3tt3+6RRaIblh83vcuBTnGUsQruvL9BoGRlFNQWpLnvzVladO4Dv53dt9MhSHqa1Xdk9gw3eBvtF6vm5R2sDGyrFBccNCeWf9+1GBk1XfXHqL7uvb819aJTtugVikW3T8Mx/faPfNapxb1bY8eCuPZ89gZ+2Z6Ps2wJpFH9m3bCGPnrgUA/O2wznhqzPyIUxQfJ+3bGh/+tjzn9SAjTQkhfKtwOv3ckmKR9eA7yWMYfyI3tHN9rTSsXYqH/tQr67Uvrw5uHompPK03mHVEnNzHp3wiPvVDAMDgLqlhb69dOADnvDAh83rXlvVx6eAOOHv/dhDC+5qYFC992zXGL4s36L43tGcrjLv+UCxcuxVTl20MN2Ea6tuldaPa+OyvB6FLy/p4a8KSzOtKxcFJ73dRkcCrFwzIzOuLygEdrSsjYdlNM3LOqMG2nWYE2PArDsCkRevzJuCjugJrhjlinvK6oOqlB3fwKSXB+vvhXaw3Ilw3tGvUSXCNQSWSS2khtyp7K7/xPm0a+h6cKEqNYhgIySii56L7h+GRU3s7P55BoSmOQzkHdW6e9W8hBG48pjv2aFIHbRrXSXSAJMp18SDzckzLBrWwf4emWdeqMk/rSE0+dGeQ88Q090rP1g0NKy9O12Ae3KU5mkW4hNC024/Eyz4OO/VaHFAvcaM2/IoDTONz9GnbGJcM7hjLfC1IrCRSjssP6YhaJd4qmXFzyWD9h0U+1z8KITMzqkAWJ23F2jxVP72OaI/dsgNB9dHM64jjtWq0BqoTVxzSyYeU+CykiJ5R/6R+Be14/cL9YrVkAvlvSLcWmb+VR0dNTUO7NtiNn2xV/NLpivq+cqp+rdJYTa8oKhK6C9r3advYVnwO9TIduzcMplEpTg3j8fnlKFJ7t04V4jq3qIfrh3ZLXEZkRRsprBDE7Tfs1cZbxFgnfrrBffRX8s+ezerivcsG5kRrG37FgXjzov0cHevvh3fBX4Z0tFzWwA+n9dsD719WHfThvpP3dpWHxKlwpFDKul4D01iJsuJ/3dCu+ODyA3w51kGdm2HYPrtZb0ix1tlkDnqXlvXx4vn9sE+bhpnAZ600Ad6cBDdxyuheeeWC6h64gZrImUBuY1uhUpctTlZNrRnStTk6taiXs6SEcgof+L99HH/W2ap5hR/95UDH+ydN/J5gFAnlZklaD4yTCeeP6QTRiFOLTb5r61OUVztrEXHYWHz0b99Ed/j7AaoIzCXF1jfiVYd3xrVHuVtWpqRI4A0HldJ//98+WYXCQZ2b44urkrWQs5FLDu6AMwa0xZ8PbB/ch4jgWtnt4NxCUjtir5b45pqDTbc5tFtLfHLlQRjStQX+e3pv/POo7Ckafdo2zkQO95u6FKMugim94TVKilRrYVdv/ebF+REF2it1T7DafSfvg5HXHIwHNfPclYq2m1gNNUqKAh++q6QvqOL4Ww6uG+akBKB6KEXSKolO2J2omy+chMoOwlNnWQ/ROrx7S/z1UGdD8rpHPAmf/PPoab3QqE5pJhpzUIGkhHC2LJBddWoUY6RF4TNuGtQqxX0n7406NYKNW3f5IR2tNwqY2eVkZ40wSraKqioAzhoNhBA4oXdr1FRNuenVpqGt5QLcUvcINqtfXQFRrlB1saxLy+poz15jTySRXqnGaHRJK4uGKr0coEGt6nwxqoA7lemyW1B51EAH34uVRAIAdG1VH0f3bIWHT021uNSM4TApv117VNdAo5tGzWlkST+df0D7rDldtx67Fy4etGfOdoM6N0OL+s5a5epzeZe8cdK+bTD5X0dmHoZB3Y1BhRT/8YZDc5ZS+eDyaNcmi4uSAHrz2ttYAxWoHubbMz2NorZOYZqVxPynVOzUFSsnBmqWCPDa7HpUD/2gXE3r1cTsu4fipfP7o0/b3Lm06vzr6bP7ekxFsmnbvls1qIXTdJYZa26jXKGXB4y97lD8kJ6u4mfAHSeK0+lSpoFFKf9rAjr8CEiQb0qLi/D02X3RrVWql+bCg3IL9FGK49yeuNNG8jOinRumXWzWjd6aNZ4uPGhP7NOmke62VrT5uBACNxzdLfM3JZ8ybDywgQwmx92/g/1laq7VDEFrlF7TTK1vu/CXvUmq58/thwkmEQW1zjGITKh1ev/UsMBHTu2F9y4biMZ1c3+nIj5S8t6gzs3x6gUDcKXD0SqK64/OHt7udXBOh+bZDUrqXquaJcU5wyarZG6+GGSPZjJk/wg/3HAohBB4WDWk9JMrD7Q1PUCv+NCwTilaN6oNwKzcmU5DQM+r2jWK8f5lA/Hcef18Pa7TBnmgQCuJ7ZrWwZy782+x8RN6OxtfbTafr1ZpMerqLBIalYPSQ8Ue1owtP7onAwqYUYZhmD3cDtAMw/NjPs+JqrH+lkM2LCp6eb+oOaF5vdR1ql7Py8/8x68rSJ2+OK39FRS3EUL72dxvr90b5Mwf1vbMKt68eD/8+YD2lsds3ah2pnBXv1Yp+rfXr7SzJ7EwDO7S3LdpNEfspT/3za2PrzzI9H1lOOnNw/by9XOTTFuW0ftt92nTyHTeoLI0kdtGZmUNRb0RCn7p176J7x1a3/7zEEy65XBH+xRkJRHIz56p/+vbBtPvOAq/3XpE1Enx3X0n743zBrbDoC7ZFZqureqjfi3z4YePnFpdsSyEYbReHbuPs7mbn/3V/EGn9o8jste1FAKGNdibj+nuKB2UXHu3aYjhVxyQte7pN9ccjDcvdhYBVXGQpuFDKQv08DifdZDquBfpDJ9Wq5cHw6LfuGg//OrweXJQp2aZpU/cMGqkOqBjMxTpFAjd5hMchUBOHdrN3zVcraaElBYXYdH9w3BmQAFzkshquRA7nb0f/+VAPHCK88imiufO7YeXzu/vKZ+LQr2aJY6D7rDEnGfq1SzRHVqjx8mckTaNa7tNki9aNqiFO07oiRIbY4Q+ufLArNZodYvxb//Kvwq03+45qaejhoaeDsbN//Wwzln/FkIYZurKkgNmZTkW8/JHn7aNs/Kk3RvVxgEd3QWb6dA8u/Cl9EZfdrC3YColxUU4pGvuMO6R1wzO+vd/T++NEX+z33gSV7VKi9HE4nly9N6tbB/PbpCq/57eGz1bW1foG9QqwcUGa+BayeMYbUR5y6gR20mwl3ZN6+JUnXmMdjWpW8Mwomq+YSUxj1mNyW7uoEXh1QsG5MzHiQ1NLWOfNo1w94k9LXezOyQq31hFRCspLrLd0KBHKUQrw5nN8uxiIXQ7Ev/Utw3qmfQQx3HxdYov5Rr047LRu5x3b5TdiHZC79aZIUn57m+HdrbeyKETerfGoV2tC2Fe1kK84/ge1hsR2XDvSXtHnYSCMbiLfqyFqkyE/jBTk/94OvOYdvHnq1S9OEf3bOVoyG2H5vXwlyHuJn8rtAuamnlcZ01DILuAdmN6UrlVwU9dSVHPb9uvQ/7PKaoOCFL9vXu7DCCj5/lzcydW/y8dfU0Zr9+mkXFEwgM6NtVdquPaodUNEqbtguwNIB3aS0pkXmfrgt+KigSuPaqr71GHq2z8VEbzF+0olEo8Bc9oGssNmsA3dqPzknOH79USuzWshYsHuRtZYOTdSwfi87/lxxq5brCSWEDCmIJx23F74VODydjaBU2NXDmkE0ptNAcpPWLqgl/bJsyE1ZSClnpoVVGRwK3HOp8IP0RnmN2h6SEX6uHIyu/St11j/Oe03rjdoMW+daPaaN+sru7coBb1a5kW6JWIlAcbtCpS4WpUp9RyfSzy11+GdMKTFuuitmxQE5cM7oCvrh5sOje8ab3UKAazwGpAqkdBL++oWWr+7GjftA7OHdjOdBsiQDX/zaLwNGwf/QB6dTUNJ6f22wNvX2J/IXOyr1m9mvjpxsPQ2eVyJ0YG7NkkK2BZoWElsYA0chk6+dlz7K/L8+cD98TebarnqC26fxgePa1XzpwdM5cd0hFG/YNZvYI6Q8jeT69RZrSMQ6HFKlCGYGgLUxcc2N7Rcb75+2C8eH7/rNf2aFI7E0hiuM6wLyEETty3NWobRKlUkqS3xhFQ3fup1+O9b9vGWHDvMa7nrFFyWQUueOz0fXGpZp6acv3r7ao0SHnJGxiB1/r8jb/pcNSvVYqureqjQfpZpBeZ8L+np0aRFKsO2LpR7px4ozmFL5zXX/+NtDHXDsGdJ1hPRyDKDGG0uLaLiwR6aZZ9ApCT4QghsL8PI5jG33QYxl43xPNxkur241KN3COvOTjilOQ/VhILxC3DuuPs/Z21niq9UAd1dlcQP65XaoLxSfu2QacW9lp3SosF6tUsycpbXzpf/6FfPYSs+rUW9VM9CHoL0hai24/vgSZ1a2RCPiuEEHjyzD44y2bUNCFS+3x1dXVlX10w1oaxd6JWabFuIXDv1g1x+SEdM4VGLb1Ih2ov/7k/PrnyQNfponjSDkM8vHtuxEFtUC6jK+XSwR3w0J964YcbDsWkm52FBqdsTkby3nbcXmhat0YmKM47qt4V5bVLVUGG9AqD6iH06nlKVhEjiexqn76WrMpORiOf1K/bfdba0bJBLexRwKOmzj9wTyy6f5in4eZkT/JjdJMtF7kYp6202LtpJZ9+x1Go5WG5CXV5wyyASWrb3NKJEALH9dodn075w3Ua8sFxvXbPVNa1hu2zm+EwGSNdW/k3lMNqiYCiIoHrh3Yz3cbMITYCX1DytG5UC2u37Mj8u2ndGqhfswSbd1QY75QZdZCdV9zo0zIrhTZCwakLD8peLuTYfXbPilKoNz+8bs0S1Cgpws6Kqqzze+ngDnjm+wU4qkd148AL5/VD55u/8D/hVNCa1auJRfcPM93mSpNYDW2b1MEhXZtjzOw1jhvpieKAPYlkSClOuSkA1atZ4miJDYVSITVqlc7qRUgnrD0DEPjmUFVY5w4WLfJeC8YvqHqIrYYQEile0IwsOKx7C4z6p/mwo4dtzoe+ZHAH1DUYHq1Q8iAOMc1mlh/cMsy/NU9vPKY7fr/zKJzWv7pnxs4cdqIgGE2nULz85wH4/c6jsgIJPnJqL9x/MiOiUvwxZy1Qdgr4FxyYav0N8gGsjcBq1OKvqFuzWLspXr/I3YLblOuF86qjlV5zZBeTLd178fx+ePuS/bOGmNpZ24gIQM5iwEf2aIUW9Wthvz2bZL0+/IoDsrYBgGP2Nu85v+mY7phx51DTbZQGDfVw51qlxbjqsM749h+FO0dGeU5oh7YD7heulwZrn9WpwUFQFI3rhmYvBabtJVdrnQ7opr1eT+7TBqcP8G/4KVFQWEkkQzcc3Q0L7ztGN7gAkBpm8fFfvM35+uKqQVnrFerNM1SrWVKMM9KZq1Ju0BYaFXq9UyXp73K8wRDMQmdcmMt9XfvKjzccip9uPNTyMw7t1jJn8v4rFwzAX4Z4W+icCpuSTykVCr15yTVLirF364Y5rztRmQlmkX0H/P2ILujQvHDnyOy3ZxPcfEx33OtjD4mylq/RM4gobFccUj28tKRIVK87rClv9GnbiMusUOKxkkimzFqAD+veQj+il4lDdJZReOWCAarPS/2/+eBDe0MTa6RbttWLx5cUF2HR/cPwmME6jIWqY3Orh1nuOb9JM59r90a1sVvD3AA0dnRqUQ/XHuV+/iHRnSf0xOHdW6Bfe/OgVUrj0WHd3M1ZzVQSWXHJIoTAxYM7oEEtd1G09bx72UD857TePNeUOC09BHMjiguO2ShQUU0Bu+6obhgze03Wa+q1hJR5Pt1NAqRIm3OC/nXsXtitYS3d6IeU7b3LDsCidVuzXquoNL9IlCF8RHHQqUU9PG+x/AFQPafw70e4G069355NMH7heuzGtRgD16ZxHbRpXLhRHCm5jtiL5Q5KPvYk5rmz92+rO4zP7RQwo+Uo7LJaIFlJV+eW9dHDYAHTiwZ1QJvGtXFkD/NMuHHdGrhuaDe2QtvQpG6NnOF5Q3uyEkj5x2iem11XHd4F3117SCY8PhEVpscNRiTNvHMoTu7TJuTUEPmPPYl57u4T9eeHuA0koLewuRNWPZhPntUn87d6mKhapxb1MO767LlvU28/ErLKU9JIo1ZpMTo2r4v5a7Zab0wUgZzAVxoHd2mek2cpeVCRy6ysuEhwrlEAztyvrWVEZTN/PrC94fx0oiAcrQqEpRRtPvrLgZYRT4mSgpXEAhVVNEmrSuIQ1dp2ytwfO2n1cx4MVevUoh7mr9mK2owmSDH0zqX7m76vnu+sqPLYk0j2PXduP3w8ebmtbe89yVvAm9uO6+FpfyIv+rRtjKnLytC0bo2ok0LkGw43LVAn92nt27GchH2vWZq65Pq0bWS5SG1FVaprsLSYhbmoPHxqb7x6wYCs5SoAoFYpsw6KnpvGIWURd/Y6Be+IvVriiTP7WG9IlHA3D+uOr64ejD2acA4t5Q92DxSY58/th84t6/k6XMpJ2PcuLevjoT/1whE2gskM7NAU05dvQov6DBARlXo1SzC4S3ZE2gk3HYaaJRxOQ8n010M74cJBe6JeTT7+iMgfpcVF6GoScI8oifiULDCH+xhxq62qxWzfto0ya1pZ+b++9iZ0Xz+0G84d2B6tGEUwVlowtDdF7L+n90b5rkpX+xYVCVYQiYiILPBJSa4M2LMJmqoqhR9ecaDvn1FSXMShG0SU44Te/g2XJyIiolycWESulHBZCSIiIipAnJdPhYA9ieSKVZRSIiIionwz886hrteaJkoSVhLJEa9rjBk5e/+2KGauS0RERDHGdRCpULCSSI4EtcbY3Sd6WyOLiIiIiIj8wUHV5IhSSRTs9SMiIiIiykusJJIj3Vo1AACc2s/eMhZERERERJQsHG5KjrRqWAuL7h8WdTKIiIiIiCgg7EkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIsoIpZIohKgphHhBCLFYCLFZCDFZCHG06v3DhBCzhBDbhBCjhRDtNPu+KITYJIRYKYS4RnNsw32JiIiIiIjImbB6EksALAVwMICGAG4B8K4Qor0QohmA4QBuBdAEwCQA76j2vR1AZwDtAAwBcJ0QYigA2NiXiIiIiIiIHAgluqmUcitSlT3FZ0KIhQD6AmgKYIaU8j0AEELcDmCtEKKblHIWgPMAnC+l3ABggxDiOQDnA/gSwMkW+xIREREREZEDkcxJFEK0BNAFwAwAPQBMUd5LVyjnA+ghhGgMYDf1++m/e6T/NtxX5zMvEUJMEkJMWrNmjb9fiIiIiIiIKE+EXkkUQpQCeAPAK+nevnoAyjSblQGon34PmveV92CxbxYp5bNSyn5Syn7Nmzf39iWIiIiIiIjyVKiVRCFEEYDXAOwEcGX65S0AGmg2bQBgc/o9aN5X3rPal4iIiIiIiBwKrZIohBAAXgDQEsApUspd6bdmAOil2q4ugI5IzTXcAGCF+v303zOs9g3oaxBRgC4d3AEvnd8/6mQQERERFbQwexKfBtAdwHFSyu2q1z8E0FMIcYoQohaAfwGYqgo88yqAW4QQjYUQ3QBcDOBlm/sSUYLceEx3DOnWIupkEBERERW0sNZJbAfgUgC9AawUQmxJ/3eWlHINgFMA3ANgA4D9AJyu2v02pILRLAbwHYAHpZRfAoCNfYmIiIiIiMgBIaWMOg2h69evn5w0aVLUySAiIiIiIoqEEOIXKWU/vfciWQKDiIiIiIiI4omVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDCGljDoNoRNCbAYwO8CPaAigLEHHDeP4PHb+HZ/H1tcMwNoAjx9E+pN6HSY13UEfO+jjJ/XYQR8/yXlLEu/RpB476OMz7eEfO+jjB3nsrlLK+rrvSCkL7j8AkwI+/rNJOm4Yx+ex8+/4PLbh8ROXvyT1Okxqupl2nheXxw8sb0niPZrUYzPt+XfsJKfdLF/hcNNgfJqw44ZxfB47/47PY0cjiPQn9TpMarqDPnbQx0/qsYM+fpLzliTeo0k9dtDHZ9rDP3bQx48kbynU4aaTpJT9ok4HEeUf5i9EFATmLUTkN7N8pVB7Ep+NOgFElLeYvxBREJi3EJHfDPOVguxJJHJLCPEygGVSyluiTgsR5Q/mLUQUBOYt5Fah9iQSZRFCjBFCXBR1OogovzBvIaIgMG+hoLGSSERERERERBl5WUlk6wq5JYQ4XwgxTvOaFEJ0iipNFC/MX8gN5i1khXkLucG8hYKSl5VEIiIiIiIicievK4lCiMZCiM+EEGuEEBvSf7dRvT9GCHGXEOIHIcRmIcTXQohmUaaZiJKB+QsRBYF5CxHFQV5XEpH6fi8BaAegLYDtAJ7QbHMmgD8DaAGgBoB/hplAIkos5i9EFATmLUQUuZKoExAkKeU6AB8o/xZC3ANgtGazl6SUc9Lvvwvg+PBSSDG0FUAd5R9CiFYRpoVijPkLOcS8hWxh3kIOMW+hQOR1T6IQoo4Q4hkhxGIhxCYA3wNoJIQoVm22UvX3NgD1Qk0kxc0UAD2EEL2FELUA3B5xeiimmL+QQ8xbyBbmLeQQ8xYKRF5XEgH8A0BXAPtJKRsAGJx+XUSXJIoxmW6ZvRPASABzAYwz34UKGPMXsot5CznBvIXsYt5Cgcnr4aYA6iM1ln+jEKIJgNsiTg/FVwMA6wBASnkPgHtU772u/CGlPD/cZFGMMX8hO5i3kFPMW8gO5i0UqHzuSZQA/gOgNoC1AH4G8GWUCaJ4EkL0ANAdwG9Rp4USg/kLWWLeQi4wbyFLzFsoDEJKGXUafCeE+BXAnVLKj6JOC8WbEOLfAM4G8G8p5WNRp4fij/kL2cG8hZxi3kJ2MG+hsORdJTHdujIJQDcp5eKo00NE+YP5CxEFgXkLEcVNXg03TbeufA3gemayROQn5i9EFATmLUQUR3nXk0hERERERETu5VVPIhEREREREXnDSiIRERERERFlJLqSKISoKYR4QQixWAixWQgxWQhxtOr9w4QQs4QQ24QQo4UQ7VTvnSqE+DH93hjNcbsIIT4WQqwRQqwXQnwlhOga4lcjoogFmL80E0L8IIRYJ4TYKIT4SQhxYIhfjYgiElS+ovmMc4UQUghxUcBfh4jyWKIriQBKACwFcDCAhgBuAfCuEKK9EKIZgOEAbgXQBKmoYe+o9l2P1FpE9+sctxGATwB0BdASwAQAHwfyDYgoroLKX7YAuABAcwCNAfwbwKdCiJJgvgYRxUhQ+QoAQAjRGMBNAGYEkXgiKhx5F7hGCDEVwB0AmgI4X0p5QPr1ukgtTLuvlHKWavuLAJwtpTzE5JhNAKwD0ExKuS7A5BNRjPmdvwghigAMQ6pRqqWUcnWw34CI4sbPfEUI8T8AUwGcCuB1KeXzwX8DIspHSe9JzCKEaAmgC1ItaD0ATFHek1JuBTA//bpTgwGsZAWRqHD5nb+kC4blSFUQn2cFkajw+JmvCCEGAOgH4H/+p5SICk3eDG8SQpQCeAPAK1LKWUKIegDWaDYrA1Df4XHbAHgSwDW+JJSIEieI/EVKuY8QohaAkwDU8C2xRJQIfuYrQohiAE8BuFJKWSWE8D29RFRY8qKSmB6y9RqAnQCuTL+8BUADzaYNAGx2cNzmSC1w+5SU8i0fkkpECRNU/gIAUspyAG8JIWYKISZLKadY7kREiRdAvnIFgKlSyp99SyQRFbTEDzcVqeayF5AKMHOKlHJX+q0ZAHqptqsLoCNsTuZOT/7+GsAnUsp7fE00ESVCUPmLjlIAHTwklYgSIqB85TAAJwkhVgohVgI4AMDDQognfE08ERWMxFcSATwNoDuA46SU21WvfwigpxDilPSQrn8h1co2C0gNzUi/XgKgSAhRKz30A0KIBgC+AvCDlPKGML8MEcVKEPnL/kKIg4QQNYQQtYUQ1yNVWBwf5hcjosj4nq8AOD99zN7p/yYhFQzn5uC/DhHlo0RXEtPrB12KVIa4UgixJf3fWVLKNQBOAXAPgA0A9gNwumr3cwBsRyqzHpT++7n0eycB6A/gz6pjbhFCtA3jexFR9ALMX2oiNc95HYDlAI4BMExK+UfgX4qIIhVUviKl3CilXKn8h9Qw1k1SyrKQvhoR5Zm8WwKDiIiIiIiI3Et0TyIRERERERH5i5VEIiIiIiIiymAlkYiIiIiIiDJYSSQiIiIiIqIMVhKJiIiIiIgog5VEIiIiIiIiymAlkYiICIAQom16zbriqNNCREQUJVYSiYioYAkhFgkhDgcAKeUSKWU9KWVliJ9/iBBiWVifR0REZAcriURERERERJTBSiIRERUkIcRrANoC+DQ9zPQ6IYQUQpSk3x8jhLhbCPFj+v1PhRBNhRBvCCE2CSEmCiHaq47XTQjxjRBivRBithDiVNV7xwghfhdCbBZCLBdC/FMIURfAFwB2Tx9/ixBidyHEACHET0KIjUKIFUKIJ4QQNVTHkkKIK4QQc9PHu0sI0TGdzk1CiHeV7ZWeSiHETUKIteme07NCOsVERJRQrCQSEVFBklKeA2AJgOOklPUAvKuz2ekAzgHQGkBHAD8BeAlAEwAzAdwGAOkK3zcA3gTQIr3fU0KIvdLHeQHApVLK+gB6AvhWSrkVwNEA/kgPc60npfwDQCWAvwNoBmAggMMAXKFJ11EA+gLYH8B1AJ4FcDaAPdLHP0O1bav0sVoDOA/As0KIro5OFhERFRRWEomIiIy9JKWcL6UsQ6rXb76UcqSUsgLAewD2TW93LIBFUsqXpJQVUsrfAHwA4E/p93cB2EsI0UBKuUFK+avRB0opf5FS/pw+ziIAzwA4WLPZA1LKTVLKGQCmA/haSrlAlc59NdvfKqXc8f/t3LFqVGEQhuH3K9QmGsUuiIJg0AsQsRCsLGwsFAtD+qS3EhsbxSuwsFVEbCziBWztDaQSgxA2VUIiWAiOxflz3GK32Syo2feBA2fhMDPtMB9bVQPgE/AQSZImcEmUJGmynZH3H2N+L7T3S8CNFhHdS7IHrNBd8QDuA3eBrSSDJDcnNUyynGQjyTDJPvCc7hI4zVwAu+1qeWgLWJrUX5Ikl0RJ0jyrGdX5Bgyq6uzIs1BV6wBV9bmq7tFFUT/yJ9o6rv8rYBO4UlVngCdAjjDbuRaHPXQR2D5CPUnSMeeSKEmaZzvA5RnU2QCWk6wmOdGe60muJTmZZCXJYlX9BPaBXyP9zydZHKl1un3zPclVYH0G8z1rc9yii8Z+mEFNSdIx5ZIoSZpnL4CnLR76YNoiVXUA3KH7w5ptYAi8BE61T1aBry0+ukYXRaWqNoF3wJcWU10CHgOPgAPgNfB+2rmaIbDb5noLrLW+kiSNlapZJW0kSdK/JMlt4E1VXfjLo0iS/iNeEiVJkiRJPZdESZIkSVLPuKkkSZIkqeclUZIkSZLUc0mUJEmSJPVcEiVJkiRJPZdESZIkSVLPJVGSJEmS1HNJlCRJkiT1fgOD879bTFUuuQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7gkyVUmjL+RmVV1bdvpHitpRiOLJCQhCdCHkxAsEny4FQiz2mXNhzD74yfWsAgjFrMLfBghBAtIeCuMkLBCFllkRjNyYzTe9vS073v7+qrKjO+PyBMZmRURGSdv3+rb3fE+Tz/3dt2Kyqw0kXHO+573CCklIiIiIiIiIiIiIiIiIiIAILnQOxARERERERERERERERGxexCDxIiIiIiIiIiIiIiIiAiNGCRGREREREREREREREREaMQgMSIiIiIiIiIiIiIiIkIjBokRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNDILvQOXAhcccUV8vrrr7/QuxEREREREREREREREXFBcMstt5ySUh6y/e2yDBKvv/563HzzzRd6NyIiIiIiIiIiIiIiIi4IhBAPuf4W5aYRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNCIQWJERERERERERERERESExmVZkxgRERERERERERERcXljNBrhyJEj2NzcvNC7sqOYmZnBddddh16vFzwmBokREREREREREREREZcdjhw5gsXFRVx//fUQQlzo3dkRSClx+vRpHDlyBDfccEPwuCg3jYiIiIiIiIiIiIi47LC5uYmDBw9esgEiAAghcPDgQTZbGoPEiIiIiIiIiIiIiIjLEpdygEjo8h1jkBgRERERERERERERETFlLC0t4Td+4zfY4772a78WS0tL53+HDMQgMSIiIiIiIiIiIiIiYspwBYnj8dg77u1vfzv27du3Q3ulEI1rIiIiIiIiIiIiIiIipozXvOY1uO+++/Cc5zwHvV4PMzMz2L9/P+68807cfffd+KZv+iY88sgj2NzcxKtf/Wq86lWvAgBcf/31uPnmm7G6uoqXvexl+NIv/VJ85CMfwbXXXou//du/xezs7Lb3LQaJERERERERERERERGXNX7q72/HHUfPndfP/Lxr9uB/fv0znH//+Z//edx222349Kc/jfe///34uq/7Otx2223ahfT3fu/3cODAAWxsbOAFL3gBXv7yl+PgwYO1z7jnnnvw5je/Gb/927+NV7ziFfjrv/5rvPKVr9z2vscgMSIiIiIiIiIiIiIi4gLjC7/wC2ttKt7whjfgbW97GwDgkUcewT333DMRJN5www14znOeAwB43vOehwcffPC87EsMEiMiIiIiIiIiIiIiLmv4GL9pYX5+Xv/+/ve/H+95z3vw0Y9+FHNzc3jRi15kbWMxGAz072maYmNj47zsSzSuiYiIiIiIiIiIiIiImDIWFxexsrJi/dvy8jL279+Pubk53HnnnfjYxz421X2LTGJERERERERERERERMSUcfDgQXzJl3wJnvnMZ2J2dhZXXnml/ttLX/pS/NZv/Rae/vSn46lPfSq++Iu/eKr7JqSUU93gbsDzn/98efPNN1/o3YiIiIiIiIiIiIiIuED43Oc+h6c//ekXejemAtt3FULcIqV8vu39UW4aERERERERERERERERoRGDxIiIiIiIiIjLFv/pDz6BZ/3kOy/0bkRERETsKkw9SBRCPFkIsSmE+JPy/y8SQhRCiFXj33cZ7z8ghHibEGJNCPGQEOI7G5/3neXra0KIvxFCHJj2d4qIiIiIiIi4OPHeO09gZXN8oXcjIiIiYlfhQjCJ/wfAJxqvHZVSLhj//rDx/iGAKwH8GwC/KYR4BgCUP98I4N+Wf18H8Bs7/QUiIiIiIiIiLi1cjh4NERERES5MNUgUQnw7gCUA7w18/zyAlwN4rZRyVUr5YQB/BxUUAipo/Hsp5QellKsAXgvgXwshFs/7zkdERERERERcstgcFRd6FyIiIiJ2DaYWJAoh9gD4aQD/1fLnw0KI40KIB4QQv1IGhwDwFABjKeXdxns/A4C6XT6j/D8AQEp5HxTr+BTL9l8lhLhZCHHzyZMnz8M3ioiIiIiIiLhUsLQxvNC7EBEREbFrME0m8WcA/K6U8kjj9TsBPAfA1QC+EsDzALyu/NsCgHON9y8DWDT+vuz5u4aU8k1SyudLKZ9/6NChrt8hIiIiIiIi4hLE2bXRhd6FiIiIywxLS0v4jd/oVin3+te/Huvr6+d5jypMJUgUQjwHwFcB+JXm36SUx6SUd0gpCynlAwD+B5TEFABWAexpDNkDYCXw7xERERERERERrYhMYkRExLSxm4PEbMc+uY4XAbgewMNCCEAxgKkQ4vOklF/QeK9EFbzeDSATQjxZSnlP+dqzAdxe/n57+X8AgBDiiQAG5biIiIiIiIiICC8SARQSWF6PTGJERMR08ZrXvAb33XcfnvOc5+Crv/qrcfjwYfzlX/4ltra28M3f/M34qZ/6KaytreEVr3gFjhw5gjzP8drXvhbHjx/H0aNH8eIXvxhXXHEF3ve+9533fZtWkPgmAH9u/P+/QwWN3yeEeDGA+wE8DOA6AD8P4G8BQEq5JoR4K4CfFkL8P1Cy1G8E8H+Vn/OnAD4qhPgyAJ+Eqnl8q5QyMokRERERERERrZjvZ1jZGmNpIwaJERGXNf7pNcCxW8/vZ171LOBlP+/888///M/jtttuw6c//Wm8613vwlve8hbcdNNNkFLiG77hG/DBD34QJ0+exDXXXIN//Md/BAAsLy9j7969eN3rXof3ve99uOKKK87vPpeYitxUSrleykqPSSmPQclEN6WUJwE8F8BHAKyVP28F8P83hn8/gFkAJwC8GcD3SSlvLz/3dgDfCxUsnoCqRfz+aXyniIiIiIiIiIsfWSoAAJuj/ALvSURExOWMd73rXXjXu96F5z73ufiCL/gC3HnnnbjnnnvwrGc9C+9+97vxwz/8w/jQhz6EvXv3TmV/psUk1iCl/Enj99ehMqqxvfcMgG/y/P3PAPzZedy9iIiIiIiIiMsEZRkMhuPYAiMi4rKGh/GbBqSU+JEf+RF8z/d8z8TfPvnJT+Ltb387fvzHfxwveclL8BM/8RM7vj9T7ZMYEREREREREbGbkKgYEVsxSIyIiJgyFhcXsbKiquS+5mu+Br/3e7+H1dVVAMCjjz6KEydO4OjRo5ibm8MrX/lK/NAP/RA++clPTozdCVwQJjEiIiIiIiIiYjegkOpnZBIjIiKmjYMHD+JLvuRL8MxnPhMve9nL8J3f+Z144QtfCABYWFjAn/zJn+Dee+/FD/3QDyFJEvR6Pfzmb/4mAOBVr3oVXvrSl+Kaa665qI1rIiIiIiIiIiJ2HUa5Cg6HeQwSIyIipo8/+7N61dyrX/3q2v9vvPFGfM3XfM3EuB/4gR/AD/zAD+zYfkW5aURERERERMRlCx0kRiYxIiIiQiMGiRERERERERGXLca50pvGmsSIiIiICjFIjIiIiIiIiLgsIaXEuCxKjExiRERERIUYJEZERERERERclhiVLCIAbI1jn8SIiMsRUsr2N13k6PIdY5AYERERERERcVliZJjVRCYxIuLyw8zMDE6fPn1JB4pSSpw+fRozMzOscdHdNCIiIiIiIuKyxNhgEqO7aUTE5YfrrrsOR44cwcmTJy/0rvCweQ4YrQGLVwe9fWZmBtdddx1rEzFIjIiIiIiIiLgsMSoikxgRcTmj1+vhhhtuuNC7wcdP7lU//+cSIMSObCLKTSMiIiIiIiIuS0S5aURExEWNrZUd++gYJEZERERERERclohy04iIiIsaazsnk41BYkRERERERMRliWFkEiMiIi5GzOxTP9dP79gmYpAYERERERERcVmCmMQsEdiKQWJERMTFgtl96ufaqR3bRAwSIyIiIiIiIi5LUE3iXD+NTGJERMTFg9n96ud6DBIjIiIiIiIiIs4rKEhcGGSRSYyIiLh4QEFiZBIjIiIiIiIiIs4vxoWSm84NMgzHOWvs0aUNrG2Nd2K3IiIiIvxI++rnaGPHNhGDxIiIiIiIiIjLElSTONdP2e6m/9fP/zO+47c/thO7FREREeFHUSa1xps7tokYJEZERERERERcliikChJnsm41iZ89sny+dykiIiKiHZKCxK0d20QMEiMiIiIiIiIuS+Sl3HTQS1BIoChky4j6uIiIiIgLgqKUukcmMSIiIiIiIiLi/CIvmcRBlgIARkUYmxidUCMiIi4oaK6KTGJERERERERExPlFYTCJQFWj2IbNEc/kJiIiIsKGzVGOt9xyBFIy1QlTYBKzHfvkiIiIiIiIiIhdDC03zZhBItMJNSIiIsKG33j/fXjDe+/BXD/F1z7r6vCBsSYxIiIiIiIiImJnUHSUm26Notw0IiJi+9gqVQkPnFrjDYw1iRERERERERE2vOO2Yzi7NrzQu3FRg7peRCYxIiLiQuCKhQEA4NQqkxEsOjKJSw8D62eC3hqDxIiIiIiIiIsM5zZH+N4/uQX//vdvutC7clFDG9eUNYmjwF6Jm5FJjIiIOA/YN9cDAJxaZSb8uvZJfP2zgNd/ftBbY5AYERERERFxkYEYr1sfjX36tgNtXFPKTceBrS22onFNRETEecSpFSYjSDWJeQc1yXAl6G0xSIyIiIiIiLjIMC4Zr9iur8IoL3D38bDFD2HSuCaQSYwtMCIiIs4DqC6aLzeNNYkRERERERERDQwDg5nLCa979934V7/yQZYBRDNIHMUWGBEREVMETeUb3Dmla00iAzFIjIiIiIiIuMgQarByOeGOo+cAAA+cWg0eQzWJMz2Smwa6m0YmMSIi4jyA5qCcKwvpWpPIQAwSIyIiIiIiLjKEBjOXEw7M9wEAZ9ZGwWMikxgREXEhQXXRofXQGrFPYkREREREREQTw3G1oGBnoC9R7J9TQeLSeriRg+6TSExioIzXNK4p4vGPiIjoCJq/+UxirEmMiIiIiIiIaMBkErdizz4AwP7SSv4Mo3fkhHFN4ELNbIER60MjIiK6otiu3DQfAjukLIlBYkRERERExEUGs5/fVuzZBwDolYHeWQaTSAszqkkM7ZNoBubx+EdERHRFZyZRGsnBPFByygwmY5AYERERERFxkcGsnYtMlgItsjhMopab6hYYYQu14TgyuREREdsHGdew68wLY94JlZwW4fXaQAwSIyIiIiIiLjqYjNcwOm0CqGoDNxnMHh3GSm4aNtaUpXK2FxEREWGi6FyTmAPZrPo9Dwz+Qt9XIgaJERERERERFxlMxisyWQoUuIVKRgGTSSS5adhCzVzQjaLTbEREREfQdNXJuKZHQWKgeoLMbgIRg8SIiIiIiIiLDKbENPbsU6CAj8OsauOaXncmMfasjIiI6AqSmxaS6ZQsc6A3p34PbYMRg8SIiIiIiIhLG2ZgMg256TgvsDHc3YwlBXybDGaVxvRTXp/EGpMYa0IjIiI6wgwMWfXlNSYxUEZqBomyfa6LQWJERERERMRFhtGUmcRX//mn8fSfeMeOb2c7oIw8p0awkBJCAH2mcY0ZJLKbYEdERESUGHcJEknxwJWbmsFkAKsYg8SIiIiIiIiLDNM2rvnHWx8DAJxeDZQ1XQBQRp5To5kXEqkQyBIBoKvcNDKJERER3VDIDqoQCvDYNYlGkBggUY1BYkRERERExEWG0ZTlpocXBwCAu4+v7vi2umLcxd1USiSJQMaWm1bbCB0TYccjZ9bxvjtPXOjdiIi4IDBVCcFzOfVIZAeJZm/F9jExSIyIiLgosTHM8fr33B2dHSMuS5iM1zTkpk88NA8AuOfEyo5vqyuqFhjhc0JRMom9tGQSA1nBGpMY3U23hX//+zfhP/zBJ1jnbdo4szbE/3nfvXwHyoiIFnQKEjWTWBrXdJGbRiYxIiLiUsUffORBvP499+APP/Lghd6ViIipw1xMDPOdX1wfnFdM4qnV8Eb10wbVJHKC5nEhkSYCWZLo/4egiO6m5w3E/N7x2LkLvCdu/NK77sIvvvMuvPuO4xd6VyIuMZhy02ATrKLBJI47yE3zGCRGRERcoiCjiaNLmxd4TyIipo9xl+zztrantrGb2R5aXw3HRbCVfFEGicQkhi7SxtHd9Lzh6VfvAQDcemT5Au+JGzNlH82HTq9d4D2JuNRgMonBCa5mkNilT2JAYBmDxIiIiIsSVyz0AQAnmUYa/3LvKfzMP9yxE7sUETE1jKfsbkps2W5ug1F0WGzlUgWJQgikiYjuphcAh8p616NLG6xx77r9GG564MxO7NIErtk3AwB4lLmPERFtqBnXhCacdE0iyU0D10G5ESRGJjEiIuJSBfU1O7nCCxL/ze98HL/74Qd2NSMSEdGG4bT7JJaB0MYuvm/GtSAxbD/zAkiEYhGzRLCYRC77GGFH5UrLO46v+uNb8Io3fnQndmkC5H776NkYJEacX2yvJpHbJ9GsSYxMYkRExCUKqj86xQwS9872AABHpvCwH44LfOdvfwyffPjsjm8r4vLC1JnEi0BuambkQx1OldxU/d5LE1ZNIkkQo5nJ9tCllnTaoOvi9BqvJvevbzmCH33brTuxSxGXCMwcE78mkWlcY8pNi/bAMgaJERERFyVoYXaKKTe9eq+SDT1ydv2871MTD5xaw0fuO40ffstnd3xbEZcXRnmBmZ56hE9jcU1tHnZzkJh3YRKlcjcFACHqgaYP40Ji0FNBYjSu2R5yzSTu3muLrn8ZeH0Q/ttffQZ/9vGHd2KXIi4RdOqT2GyBEeBUCqAhN41BYkRExCUKWlhwe5TpIPHMzgeJxFDkzIVFREQbRrlEP03QT5OpyE3zi0BumndkEpNSSpgmItjwJi+kDtJHsQXGtjDuKDedJoi570oa7+bkSsSFRTe5aZNJDJWbju2/OxCDxIiIiIsSNLFypV7755ThzWPLO++KSrsWuvCMiAjFKC/QSxP0s+kEibRI5hrX3PLQGdx/cnUndmkC5n0Wuign4xoASIUIDgLGRYGZyCSeF+iaxI6BFJfd64JRx+cNgat4mSbe+skjuP41/4i1rfagIeL8w0xujUKvLwoSs5nyQwKvL1NiGoPEiIiISxUk0eA2sqas9TQeiLR4j0xixPnGOJfopQkGWTIVmV4lN+Xdby//zY/iK3/5AzuxSxMYdwkSC1NuKoLv1aIABmUbnmhcsz3QHN6VSZwGu01JkmD3yRKUgDjBrJ2fJt70wfsBAA/G9h4XBEUhq7lkp41rzPdFuWlERMSlCloQchO7uQ4Sd35hQYv3qEaLON8YFUXZ3y+ZSpBC981uls2ZTGKoDL2Qptw0nJWqMYnMSWh5PXBBd5mALt8tZgKCsDSF40nnmMva759TRmlcF+4uWN4Y4cW/9H7cfpTXb5LM3OJ1eWGQG0FicNKbahKzASAShnGNMX9HJjEiIuJSRVcJJy2o14c7zyRSZjy6H0acb1AT+CwN7+23HVDd3cVSkxgaOJtMYiJE8L1q1iSOGUH6Zx5ZwrN/+l34x88+FjzmUkeumcTwa8sM5pc3dj64oeuJGyTuK8sbpsEkfuKBM3jg1Bp+6Z13scZRCcbSFI5jxCQKKXXCaRg6l1OAl2RA2g83rqnJTSOTGBERcYmia+Cl5aZTaAq+FeWmETuEXKJiEqeQhKBAlBMkTrsWNy+k7p8aKgvMC2gmMWHVJEoMyhYYHPOsO4+dAwC8764TwWMuddDh48hNzfl/GkEiXf9cafd8X10j0yhvWJzJAAArm7xt7SvZzjPM9h4R5wd5ITHoceWm5ftECqSDjnLTyCRGRERcouhKnnStSXz49DpOnOOZ3VDWeRrGChGXFwopkQiglwoWk9UVtA2O3HRzyi0NVEaeVydYyKpPYpKEB7Z5IZElAmkiWHXR/VJWNg2zoYsFeYeaRDMwn2afUO55owREVyktB73y2uIGiXtKueluNte5lJFL6J6rwXOJZhJTIO117JMYg8SIiIhLFLkxmXJYRVrscoPEL//F9+ELf/a9rDFRbhqxUygKiUQIZMl0ahLHuiaxCA6kplH3a2KcV7KtLnJT5W7KCBJTgSzhyX17aTezm1seOoMfePOnLkmnZM3SMRIQJlPc1RWVAwpKucY12rl1CgkTes6sbHZjVmOQeGFQmExi6FxCNYlJquSmwe6mZpAY5aYRERGXKMxnNSe7S4vd9SnITYcxSIzYIeRlTWIvFSy544mVTfz3v/oMu5VFzTk0cMHL3cZ2Ydb2dDGuSYQIViio45+UxkHhxz8rt8VlpL7nj2/B33/m6CW5kKfAnMMImsePG7h1ASUXR7lkBeqjnP/duoISD1wmkcYtb8QWGBcCeU26zmUSMyDNuvVJjO6mERERlyrMjD8rSJyqcU3pbhpjxIjzDCU3FcjShCV3/JV334O33HIEf/PpR1nbMxcvoffb+mi6i85ag/suxjVJOJM4LiRSAWUcxDj+w46MFBmgnL4E68bGBT+Q6nI9Ela3xuwSADNJwjl34w6mPF2hmUSmSoaY3OGU5eERCrmspOvhQWJ5rkSqAsUi8NxFd9OIiIjLAabEaysPf7httwUGpyaL6lAikxhxvlFjEsfh19dsybStMtmGvJCYK004goPEKTOJuUTFJAbu47g8jgCQCF5NYpokpdw3/PjTseMyS/tmp9dKYdroIsnsGiQurQ/xzP/5TrzhvfeG7yAaz5sOypVp1CR2dTnuWm8ZcX5QGHN58DmkYC/JVKAoQ4PEWJMYERFxGSDvyCSODJfGLsHbY8vh5jWUcY7uphHnG7lUzJdyNw2//hfIAbED20BBYugi2ZSbTsO8qSja5abL66NaPXJRCxKZNYl6YceXSbL77c0rJpEbJN70wBl87P7TrDHTBgVSo1wGz8lmkMgJ2lbLc//HH3uIsYd1QxGecmX6clP+uG77eMtDZ/Hhe0512mZEhVyWQWKShLPUuiYx6c4kRrlpRETEpQoz4895aJuLkC6S0+MMh1PKHl+KZhMRFxZSlnJHpnHK4kAFiVwmcVQUmOursaGLUZNJnErdWGH2G5vc3tY4x7N/+l34j3/wCf0aLdAA6pMYvq00LftUMu5vkvR1bcrO7bf3ijd+FN/+po+xxkwb5pwcyiYOx93mf8oBnFnjHUcz6cCSm+bTl5t2HccNEl/+mx/BK3/34522GVGBTMh6WcJgEsv5W6TKvCY0SJRRbhoREXEZoMYkMh7aJuvSxViDM2ZYymDHRXiGPCIiBDktLFKeu2lZfofVrXAHxKKQkBKV3DQ4SKwWIZvDnQ8Si0JiJnPXJL77juMAgI8/cKY2JiF300QEM555USDt4C471AYovONBrqgnVnhteC4G1ILEQFlmTW7Kmf/L93Kn465M4qhjANYFXful0jGJctMLA5K8Z11qEpMMEAlTbiqM3/2IQWJERMRFifw8MIld2A1OM3FzwTONTHLE5YO8kJXclHEd02J1lSE3pcTKLLMm0UyoTKNnYi6rthS2Y3LOcG+kxuF1JjFcGm4u7DgJIC03Zc499H24DPDFgC5zcle5KYf1rW9ve88bbk3i8saIVf8OoCZ75qhXKklsfEZdCFT15Yz6ZrMFBldummTqX5SbRkREXKroGiSOc9nZhh7gGdfUe3nFLG3E+UMhlSsnX+7It8mnReQ8U25qJlSm0Q6jqLGrk8fE7K16x9Fz5WvQTKJyNw3fVpYod9kuxjWhxjqEada2TRtmYB56bZlzK68mvdvxG+fdEn6jjnLTZ//Uu/CKN36UNWb7Dqzdjs006o0vZdBcrtoZdWASkzSIFVTjxuWYXuyTGBERcemic5BYFJoRCV3cmQ/BrkziNJiUiMsHZvaZU5NIi0dO0EaLz1mmcY15j06NSSzNZGxzgnm/3350GYBqxE5tMxIhghkYqknsMVtgbJHclMlo0fu57NLFADNxFzonj2puo4xr2RjHCW7GRbfk4naC+88eWWa9v+bAykhK0v3dVW56KSYuponaXB46l+gWGAnT3TRXQWXaC2IfY5AYERFxUaJWx8IyEqhcGkOzduaCZJPx8DUXL5xxERFtqNxNBYs10ExWB/MNbgsM8x6dBpM4zpUEt5/ZJbi0P4szGe54TDGJm6NctwVJme6mqVC9zbrITbmMFjGPmx0X5Lu53qyQleFQqFOsycRyk4QEXl9GfgsYc3vTOP7178YPnLsGe2tMp+SIOopyLs/SpGbI5B9UHnOSjoYGl7IMEpM0yk0jIiIuXXRtgTEupHZpDF1cmw9fTia/HlxeegxAxIVD5W6asFow0OJxyGAfiWmo3E0DA6mO92hXVLIte5BI3+Pzr9uLOx9bAaCUARSgCBHuEEnMUteaRLbclCSBHeeRLk7O04JypVXL0S41iV1aIAG8OXmcF5gvnYFZSckpGtd07eWoJbEdry1OfXPEJFTCCehzVAm1msTELTddPQl85i8qW98oN42IiLgc0LUFxjgv2A23uy4sanK7GCRGnEeQu2nGacCMbkzWqCOTaN6j01gkk2wrS4W3JvHGQwt45Ow6pJTYHFXyc+Vu2r4d+l5pkiARvJpQOpacOkbz/V2ZxLUpMLldURQSg4yYxLDjUqtJZCpJCBx1h0ou8pl0up6mYQrTmUkkuWnHek1OfXPEJMiELOOYkJlMok9uetObgLe9CvjYb5TjcvX+tBfdTSMiInY/pJT45Xfdhdse5dVfdK1JHJkP+1Am0XgfK/tcdFuQRFxe+KV33oX/9Q93sMbQwqKfMhowo1uQmGsmkSfTHne8R7uikJXjq+2Y0P48/sAc1oc5zqwNFZOYVTWJIe6m9DlZ2SeR4yRpupvyauK2x/bsZknguJAY9NytS2ygoHm2l7Lq70adVSEFFohJDE4udpO2djWC6VoWQdfzKO/Wqmk3X1sXA2rGNcFyU6pJJHdTxzkYrqqfD5cmSJpJTIE8BokRERG7HFvjAr/2z/fiW3+L5+SWFxK9tDQSYC54t7PY5RjXmPVN0bgmwoVff9+9+J0PP4CzZVuGEHR2NyUmq4NEj9sC40IwiVkZONu+n2JfgccdmAMA3H9qDQAwU34v5W7afixpIZ0IwWYSzbmKxUCO+bJFM9jYzQt51d+SZyZGc/f8IOvMJLJaZ+RGmULgOPP8cgLZrj11u7Z3GneU7hKi3HR7qLXA4BrXUH2hy4RmVfWGxcZSNS5Jo9w0IiLi4gBlc7lSl9wwOwh9sEmpMqWzehxvQQLwM7SDkqXoygBEXD745MNng9+rpZVJUsraAmV6mskKX4jS4pNaYITWZNVqEvNpyO3MFhh2JjFLEly3fxYAcO8JlWWnACURYf3liNWjmsRQsxugPlexJL8dmEQzSFnb2r3zz7iQhuM0zxRprp+yyw0IPFVIgfkB73lD25rvp9ga58H3aNdejrU2HZznVEenWEIMErcHUwERPCc0+yRKx7jVE+rn+plqHLmbRuOaiIiI3Q4OM2eiHuzxMrvcBYn5EGUxiYXUZgdRbhrhQtmmj3WNkCNePyOZXtjCcmsbclMyFwllIacuN9UZeTu7N84LpInA1XtVkPggMYk1d9OQ7aifaaLcTTk1oSZ7FSwtQzUHcWoSzWO+mxfyuWFcE2rc0TVINFuPcE3IZjWTGDZOGz4NMhQyPPir9dfl9GQsugV7JnvFSbgSYr399kBOyT1OfXmtJtFnXENM4tlqnHZEjS0wIiIidjnIGp9bh1HILrWF3WqrarUlHbPP8UEa4QL1X+Ms7Artbkr95cKu5S41icSUaeY+cOzU5aaykm3ZFrvjQiJLBfbN9pAI4NGlDQDAbF8thYQIcyqlRXWWdm+BAfDUE10cKEcdWbOukFLirmMr7HG5rOSmoeqOKnGRMts9GMeEcU0WhcQc8/qn5w23ltEMFDgMcN7xfusiwR1uU6IaUaEy3GLUl9dqEj1y0xVLkKjrGCOTGBERscvRlUkc55XcNHThRFnq2R6vtqSrIUBRGBK9+CCNcCBLSkky4xqp3E1LBobpCtmFSeQy93lRsaTTMa5R2/P1ScwSgSQR2D/Xx9EySKQAJU0QJB2lxNZML1VyX47c1NivLg6zXZnErvMsB2/71KP4mtd/EO+780TwGCoB0H0SA5lEOk+zvbRTuweAb0JGCpRQKWdVN8l8Thn7uMpwDu1qlJMXUisSQgNu89qKz7btoZCqvrmfJgwmkeSmJStoczctcmBrGchmgPEGMNooaxKzKDeNiIi4OEAPakGryUAUUi2S+1kSXCPVlUk0Fy6cxZZiEkluGpnECDuIDeRcI0VBdSwlkxi4uK6YxPA6RgqCelmCRITfN4WsJOHTWEjKWp9Ei9y0kEjLgPzAfB9HlzYBGMY1Iqy+kBbSM70UCZNJNN/LCRJJqpgXMrgvpnnMN6bQAuOessbzjsfOBY+hw8F1NzUl0Lxgu2M7I6nqy4Xg9Ndt1PKGJiXNWlJGf8saI7jjzq3dTHIiJqGYRPUc6FSTKFK73DQvjdAWr1I/N5YaxjXR3TQiImKXY2OoJkWu3JQkGgOHtMyGZk1iqHkHPRB7qWAuLKqANNYkKjx0ei0GzA2kKclNGdl/IyAC+HJTNSbs+td9AYVbymnDuCgq46YpuZsmQjgXW3kudUC+f76PY+fKIJGMawIDPpqzZnspMmaQaC7kWUGiGdx0kAROg0mkhADXEAaopMyh12RuSKA5Ri9dzV2o3rXPuP6pLydfbtqNpRt3lZsajt/BclNTNh2ZxG0hl2afREZNokiUdCJJq0Lp2geXQeLClernxpnKuCZxBJYNxCAxIiLigqKz3JQe2hlv0QpUi5lw4xqSDWW8ILEo0EsT9NMktsCAWmh9xS++H9/zx7dc6F3ZVdA1iSybfBXU0NhQmVLNOIXJ2tD9FrqQzAsgSxPWPbodkJmPq06Q5gwAODjf16/PGkxiSK5qUzOJieqtyGQSKwluN5lq6Bw07ZpEMp/hsJa0tq1aYPDqXQcZQ6KHZiDFYxK51z8t+Od0kBh63roxguO8wDwz2FPbK3SQGCxbj0HieUNRGteEyt3VoFwxiIA74CM5qQ4Sz1bGNbtVbiqEeLIQYlMI8SfGa98phHhICLEmhPgbIcQB428HhBBvK//2kBDiOxuf5xwbERGx+9E1SCxkhyCx0e+N69I43+f15MoLtbAe9JLInqFa6H7g7pMXeE92F2hdwDauScBmEs33BQeJsuoL2HfYtC+tD3VLCb2P5eJnkCadrPU5kHofS0bQstjKiwJZydoeMIJECm5SgaD6QgqCOjGJRcFOUgEqAOCyssMpy001k8gxktFMIq+2lg7dIEuZBkD8+nIpJWRZNzbIws1FKuMargt3N3OjcSHZASlQdwoPViRE45rzBkpApJyEkyxrCwEVLNpqEieYxLOGcc3ulZv+HwCfoP8IIZ4B4I0A/i2AKwGsA/iNxvuH5d/+DYDfLMeEjI2IiNjl2CR3U+Y4so3uMx7alKXrp7zaEtOAgPNAzIsCqRCY6aVRbopocOACJSE4x6co5aYU9IRK7rrUEpktH1xJmVf90S34qtd9oPY3WvwMejvPJNLXT4RabNn6HZpM4g1XzOvXqz6JYTWJlNiimkSW3LHDghxQAccCs7552sY1g/J7kRw3BKZLKcBht4tym0lwjSbQrU+iyaQPsjSY8c+1uU53d1NWv0NDNsptr8I9/l1deiPqMBMQSWKft6yg2kLA3c7CGiQWRguMXRYkCiG+HcASgPcaL/8bAH8vpfyglHIVwGsB/GshxKIQYh7AywG8Vkq5KqX8MIC/gwoKvWOn9JUiIiK2ic5MYsnS8WpEqod9j2E3XRneZMwgUSJNBWZ6CUs2dKniYsk4P3JmHc/6yXdOMGM7BboueVJmCVEGROZntKEoDTiA8PovYjaUTbs9KLr/lDpWn3r4bG0fk0QlZXY6QVAYTGLqYBLHuUSvNK751uc9DouDDE8+vIDr9qu+iWqR1r6tTSNIzJKwwNLcB24rEXrvwkwZbAQGDtMOEula5DCJEz04GTWJNI8H13GhMoXJEhG8n3Qt6SQJU6Y919EVFeC2sijQT3nmUoAyvarM3EKTTZFJPB8w1ySpsM9bVtSCREcLDC03Pax+arlpCqTZ7pKbCiH2APhpAP+18adnAPgM/UdKeR8Uc/iU8t9YSnm38f7PlGPaxkZERFwE6F6TWLDlpnohWRrehGZbuzOJpdwuS2NNIrrb/08b77z9GFY2x/jTjz80le3pHnjMvm1p2c4BCA8Sx3nBllsXsrGQsWzr+U9QlR6fePCMfk21nEgw6PHumy6gfRRCKEbQsjmTSdw718P7f+hFePurv0y3EUmEvybo6NIGfuYf7tCN6Wf7KdJEsJis3GR7mLV0s8w2EV3qGLcDWuBuMqSt3ZlEaCadK9vNEp66gw43ya2HocFlwygtVALatW5ylEtkaaIMUEJbiRSKydItSKLcdKowExCpIwFnBclGAbfcdLylfs7uU/LSddO4prfr+iT+DIDflVIeaby+AGC58doygMXyb00vZfpb29gahBCvEkLcLIS4+eTJWA8TEbFbQLUyUvIcTvPSpIKX2VU/UyHQc/RSs4Gyz+yaRCnLBUkS5aaoLyZWGP2/po3FkrGZ1j7SYpLtbppUTGIom5UXkm0SYt43rno/WgifWh3W9jERYLH9XUG7lJQGELZA1qxJBICDCwNd0wnAaXhD+P4//SR+98MP4JaHFFs6kyWtY5ow++2FBunUS5DbuoeOuRDTqUnUjDjTEAaoSgBCg5RCKpa6lyRsuW+WqtYxoduqFvJgJSVz/dzgmcmY1wW3vCFLBHqJCK7t1I7fTHa71idxFyf8djvMBIRLJq/x6CeBT79Z/W7WJDqZxHIuTgfA3IG6cc1ukpsKIZ4D4KsA/Irlz6sA9jRe2wNgpeVvbWNrkFK+SUr5fCnl8w8dOsTa/4iIiJ2DmeFmMymCJ2WrpB2qnUUXd9NRLoPrBvJcWVvPZOmOG3dcDKi3X9i9C4uFQQ8AsLLZnmndLqSUVU0iq08iBURMJtEIUriyuSSBt94PAM6uG0FibjpC8q7/kytbrKRRkNzUYBJtEELAdxg//cgSAMUoAiowzhzbciEvCjZrRozjPLOVAp23xUE2FbkpbY8TkFIwkyQCvSQJbktEKo1emiAvwufkUV6glyi2jbMtALovL7cGfq7PdDfdRiuLLOUlQGkfB0y5b00SGxOgnWEmIFzzlsZvvxj4m+9Vv5NsFGh3N017wOz+hrtpBuS7JEgE8CIA1wN4WAhxDMB/B/ByIcQnAdwO4Nn0RiHEEwEMANxd/suEEE82PuvZ5Ri0jI2IiABw65Fldg/CacJcvPD6a6nG2F0yu2mS8Pq9NVxRgxfXmkmMxjXAxWObTnHENJhEc20b2v8OICYRup1CsEpJSnZPuprc1NVeorwnzq5XgbViEnmOkICqCX3B/34P3vTB+4PHmMY1iSOQVfJXd5CYeoxrzDn0odPrAJThTWhvRYIpGw1vyq7eN8s8bxS4Lwwy9vzz7juO48TKJmtMVVvLM2ACqAcng90rqLecOp+h8spxrgIpl0uvdR9rxjX8580ssyax3ieRF3BniUCWhNdp0j4OMp7c1Kyli8Y13ZFTkqSct6REe8JDvaldbqqZxL4RJBaqv+Iuk5u+CcCNAJ5T/vstAP8I4GsA/CmArxdCfFlpVPPTAN4qpVyRUq4BeCuAnxZCzAshvgTANwL44/JznWOn9L0iInY1PnLvKXz9r38Yf/iRBy/0rjhRt+RnMAeFWiSzHtqmbChNgmUyVQsMPgOTaLlpZBKHeW78vnsXFpTJn0aQaNaXcZhEYlKIGQuVm6oghdc2Qy8IKQBzsHSAaoVBKEpmg9sn8ZGzKgh7310ngsdUNYndmURfTeKSEfw+tryJfpboPpWsIDGXnYO9rrWkCzO8/q6jvMB3/9HN+I43fSx4DNDNgIkOXaqbiYd/N2VcUwaJDBOmLE06yk2ZfUK1uylTbmo6EDMTRwk32JbdakLpmpzrpcE1mhGTMK8tSmC1KhNG6w0mMQNkgYkmr9Yg0eiTuFvkplLKdSnlMfoHJRPdlFKelFLeDuB7oQK+E1D1hN9vDP9+ALPl394M4PvKMQgYGxFxWePossoEf/ZIs3R398BsKB1qyADUmxuzZXOl4UEenG2tZ/I5meQsERj00hgkolsj9wsBWoRPQ25qBhihi0ipAyKeu2nTpIIbbHgb1Zfn88xavSaR2tSw3E07CB8K4972M4nuZY+PFTyxslX7P80FSSlRDVVr5GZNIpPJ4rbOGBsyVY7clD7/vpNrwWOA6hrk1AjSGCFUz89R4NhxObdSTWloUDTKJXo6IA1k0k25KUOBQuPm2MY1JpMYft9Iw/E19BzQM5DtLmskLnazKmS3g45j1mZCZtYcbq1UBjRA9bNZl1iTm5Y1iVTLmITJTTPWtzlPkFL+ZOP/fwbgzxzvPQPgmzyf5RwbEXG5o89svnwhUGMSGb2dilJumorwoM2UzYX2RAPMB6KaMsObIqvM7kwW5abAxSM3pUXauakwifwg0ZR60cIipCarq0lFjUlMBGzryIpJHNXGJUyJXldUctMqcJvYx7xAOnAve0juZUNTerm8ob5nZizsTFMcF8ZFwQ4S6dhyW2cQI7EwyPDo2Y2gMQBvHrZtj8OsmnNyLxXhiYtybiVn2mAmMScmkZFcbLbA2HG5abeaxLyQGGQqAcr9bp2ZxH66q1Uhux3NBJz5Wg0rx6rfN89VjCCg5KNAKTk15rcak7hPuZsuXlm6m2a7Sm4aERGxTbzkl9+PN7z3HtaYgQ4Sdy+LZWZNQ+tK1LjSuKZLTaJHNufaFlBlhDmZZHI33c3nYFq4WIxryNAidMG6HZhsdqjctGabHipRQrX4mGG2YKj38rIHpLSwXd0a6/NMkth+lvIYkeB3VqjXTdoDlXEhtTzRBp9T6Ylzikl8w3c8FwB0Y3sK0kOYm6KQKCS0uyyXkSJzEe58N9NLWfdb10U/bY/lUm3MySwGrJQO9xKSmwYyiSSBZtY/mvsY3F6CTGGyFIngyE07StBlZQAU7BJL10jGlaCr981Mob3NpQzz2vKqQlaPV79vrSjWUBhyU2BSPmoGiXMHgPEGsLW6++SmERER28d9J9fwunfzPJn66e5nEmtyU0ZNIrEULLc57dLols25tgXwGRiqgYrGNQrmcdvN1yQFhxzXyq7owiSatukJQ27aZBK5Doi++8Z8bWljqF/jmn0A3YKUWp9ER00i7Y8LwlOTSHLTlzztMD7ymq/EW77vhQDqTGIbKtamlEiGzj+yed5485YKEsOv5a4JHNoe574xry0uA5YIU24aLq/M2HJT6H109eC0bqt8n7oHwh2uzeuCcy9IqRKnvSy8BYZuQZIx62Rzg0ncxXP5bkfeWJMAsF9fG2er37eWVZBotsAA2uWmALB+qjSuKVtgtNyrMUiMiLiEQQ/gXb0g79hgvZCVBXoo42MyMC7ZnG/cLJdJlNG4hnBiZRMPn1nX/+csWqcNYrc5srmuyDssCE0DJop5Qtblk/VHoayB+kkMvC0IMNmVs2tqcULmItyaRJLlCbTLNwm1PomeNh2+mkSfu+mp1S3M9lLMDzJcs28WT7tqjxrDYHKbjeND2R7trsxuOF+xRJxgY9tBIkduaiQ8siS8TrwoA36S+PKDS74kU7UpCP9+5rhBL/weoOtitpey2kvkJMFN+HX6WWmcwr225vpZDBK3AdPdN9WqBMvxrAWJVJNYzmUULDYdTpvGNYQkU+6mQCubeEFqEiMiIqYDWohPK0j8i088jFEu8covfkLwmJrclNOovpQNpY5Fq2sMQAvJsDouoFpczzGbIpvmCuNC6nqYyxFf8ysfrLVH2M0LC7pvQuXI24HZ3oC7QOP2SWwyUlxX4KTs5WUblxdSS7+pV+K4kJjpibKXaXiShN4rwmPEoD6JbUyiq5YRAM6uDXFgvj/xuj7+AcENMURUBhDKJGqZcMcgcbafBgekQPd7k7bHSQDVEx6MOnFZ1ggSkxgqAS0qc5e1rbCa4+b9Fvq8MQ1vegzmsuqLyZNpFyQ3TcOZRJMl7THcZc3EaaxJ7A5bfbn1+jKDxImaRBeT2JCbEqhPIlCxjQ5cnquViIiLDF37HNKDc1oL8h/+61vx439zG2uMaZLAWlyUWVOX/E1KiZseOFM7diH93qzb6rC4JifJRAjN3HD64F1qMANEYJfXJBo1dTuNKiOfBjPiUlaLTy03DZgjuvbb033iPIvkcS5xaGEAoGqDQeYigx5PbtolqVUZ11T9xprz5rgovH0Sfe6mZ9aHOLgwGSQG29ajYoh6aYJEMCSSHeXuZnBZyPDruXNNoqQgkZfsAwxXWkYAlgjopBtHXpkmvKBtwvCMWaZA7Q3y0F6O5fvmBxkruULHRCUl+SxpLxVsKfNcnxfIRtRRk/KLULlpsyaxDOW8clOTSUzddYwNxCAxIuIigPlMCn1AAdVEvptNU4Z5UWXWOYuL8mGfJPaFxVs/+She8caP4u8+c7QaEyCbs26rfPhq44iA/aTPzsqaRIBnQnApwSa13c1BIi2wCrnz+2k6V7LdRmt1LAy5Y0d3zSxJnIvkcVHgikUVJFJCIJdlC5hUSe1Ck12dgsRyn6hPIjAZFOV5e59EwJ6UO7M2xP65ySDRa1vfgD6OaVkTF7qQ72hc02Qug81dOkrBKyaRV0cHVNdy6ONNBfwJX25aVHLTLn1COUxibiRz0kQEM8eaSexnPHdTSRLcRJtvtY4pr8E0SVhMoimB5ngJRNRhrkm8Caf1M0BvDoAANpeA8RaQqfk2TG7aYBID5aYxSIyIuAhgZgXPMXq3abnpLjZNGReFlnGG9sgCKulY5nj4nlxVRhO3Gj0iqyJxtSgJXbSSAU0/DWcSzYJ0cjO8XJnEI2fXJ17bzdlnc5G80/tpSgJHuQy6JnMz+8xissogMWMa1zTuG1ejemISSW6aF9DmUmp7gUFih2RKrSbRcUzGhb9Nhc9d8MzaEActclOWcY0RbPcSvrlIL02Qdqgb48pUt1uTGHodm2MUk8io96Nri8kkFgaTyO6vSwoULgOvmUTeOC5LV1C9ZcJxblU/tbtsJ1Ok3TuX73ZUCT8j4WQ7BxtngbkrgJm9KmAcrgL9BfU3LTdtupsSk9iUm6ZRbhoRcSnBnLibsj3/ODV57+oF+Vhiruw/yGk5QPb6LmnZ/jmVKTvb6NsGVIwI56GdGotdTpCYJQK9rCxIv0wfpncdW514bTcvLMzzu9OGQ6ZLIBAWSBXGwo7jbkqMuzZg6tAnTt03k+8Z5xILgxQzvQRn1yhILJAK5ezI2V43uWkVyCYO2RYle1zQPScth/LM2hD7LUFiF3fZrKO7MtXgdXE3BcKD9K6tX7ZjwpQItyrEBhXsVUE6p50FNyCqmYtwFCgNozS2my03SCwqx1dusJcmiuHu0rtzXEiWwimiQlFjm9VrzprEuf0q2Ns4AwzXgP68+pvT3XQIQKi/92aBbEa9LqLcNCLikoL5cOEsWomZG+5iuekor5pLh9ZRABWT6JKWUeBJ9VFAwySB4W5Krog6SMwnj+ev//M9+JG3fhY3PXCmsS2BNGEaVRQS956YDKwuVrz/rhPYM1P3SdvNxjXmdchZpH3onpN49Z9/irWt5kKeI2VOk0paGbJurRZ2JbMX2DTdZHtctVXKSCrB/rl+JTdtJFdCGUI65hzjoJDF1jgvvO6mOrhsjNsc5Vgf5lbjGmImQ+5tYgiqmji+3LGX2o2DfOO4clPzGuzS81BtK3SuUz/TsiYr2LimDPaoJpHDCqZJR7kpM7gvmvdNcFCqfs70UharXkhox1d2exuhEhDhx7Eo97G8thjP7ogKNeMaX8JpuAr0F5VsdL0ZJJLctHEO8qFiEckBjCSnNblpZBIjIi56mJMGZ9FK2dXd3G5gmBcsFoVA7SXc0jL13c8YQaL50Ga5m5Y1iT4m8ZfedTfefNMjeMUbP4pRXtQWhBxJGgD8n/fdi6963Qdw57FzQe/f7fjEg2fwwhsP1l7bzUyiGTxxkjL/9ndvwt9++iiLMabrVN8DgaZIQCXRA3hyR65ssQhYJI9yZQqzZ6aHlU1qgYE6Ax/KJJbHnJNIqPVJdAR7eSG9xjUUXDbHkXzW7m6a6M9uA51rVZPIkJuaTGLGCy7NeatLTSLreWMGiYw2QUDlbhocgJXzP1duqssUGEG6aS7CYTvrwWXCShImQgX3HBOhvJAQpXENt96VEhehx9FkEgFej+OICrbSAev1Nd4Esj4wd9BgEkluShOXRW6aGnNWb1b9zPrKzAYA8sgkRkRc9DAXnZzMIj0ApmHl3xXjXLL7fwHVgs8lLaOF/pJFbsp2Ny1Zkl7JGrQFsx+7/3SDSSRJVNj2bn7oLADgseXNoPfvdqxu5Ti4MMA3Puca/dpuZhJHtfuNv5/rHe5RjnOlmf1nuZvmhgSaw6QYcrvEYS5CLWkWZjKslq0FxkVRNhInJpEnN+UskGmfEmHKTRtBYhlYuODK5J9eVUGizbjGV8fYxNiYfzJO0CDrC3lO65IsSXQgFd6Cofr8jSHPXdP2GW37CJTBfeJwdrSN00wizcmh26tqGcNlu+qnlpsGy0arcRknuDT7izLmn6p3ML/eNWEykLkRyAK7O+m3m2E6R2e+dcJ4qOSicweAtdMls9hgEm1y09RQ8KydUj8PPinKTSMiLiWYiwlOZpcegrs4RsTIYBJDH2xSStUTyuMIRpnU5Q0jSGwsrkMf2uOy1iN1MBQAcP3BOXz5Uw4BAD57ZHnC/hwIZxI1pnTeVLuOndvY5ijHbC/F67/tOXjg574WAILd97aLI2fXWQtdoG6gxHEGJlXP+lb4mHEzSGTUu3LdTatgI2EZd1TGNYqBdzOJCRYGGVY3x+W4UsbGZRLLY85dIAP1ptTN/Sykv/dixUDWXycm0dYCg9On0gzSs1QEy+vH25CpJgnYgZT5Pk6gbj6nuNcWnTcOS0c9AYFw07OikEgFOslNk7JMoZBhMtym4RMnKZCUtbxc4xo2S1qTMifBx5FKMLhy34g6bHJT6z2Qb1UupeeOAJDAoGQSE4dxjdlLEQC2ShO/w59nBIlRbhoRcdFju3LT0EJ7wj989ihe+HPv7Wy0wmrcnBe6frBLCwCXIxjJnUzmNUQ2Z99eoc0mzO3XtpdLXLHQx+HFAR44tTZhmw7wai6niSf+6Nvx3X90y458tpQSG2WQKISAoNqXKTGJX/r/vg///vdvYo0Z1YxrwveTkgjrw7Am3UDd3RQIW8gXFolSWJ/EKkjpMxtn03ZcvQSJ2V+YybBSMolK2ofKuCbwnFNwyDPtUD+FcDelluXi2wUiGZsB95k1D5PYwd00TRLlysxlewTJTRkKiDIhADBqEo3j3kXyq7bFl2Ry2hJVrBmvfdJ25KZpLVEYsC2DAeb0SdT9RbOE5SeQF+r67yX8foe6TpNR76qMlMLUNZcDRnmBL/7Z9+Lttz4WPKbZJgVwzCXU8mLO6HdITCK5mzZbYDSDxF75/gNPNOSmMUiMOE/43GPn2E5/m6Mcf3nzIzvKUlwOMB9mXYxrciZT9BN/ezseW95kOamaYGWfc1kZ13RwWyRHe5vdPVBvO9F0mwvvk1hnbWyT+Lgo0EsSXH9wHg+dXkOdSQyvW7pQeM/nju/I545yibyozjHAy+JvB3TNf7w0EwpFTW7KWKRRcLLOYC4nmMQQ4xqLu2lYn8RC72cvTRjGNVUA7DIXGRUSaSqwaDCJKrisDJ9CjyUFh6xG4nqxVe1rc00uZRUI2uCqCaIg0dsCIyhIr2oSOYwgfQ8ax+sJiA5y045JyQ5y00omzGtUT+1MMmYArNtElHLToJYzteRi/TUTR86u41t+8yO47+Rq7T26TyJD3pomAoNewjr+khxf04QVNAN8lnqcy1K2zu9xfKni3MYIx85t4kffdmvwGNO4yZXcAqCCxLQP7H189Vq/wSQ2jWtkUQWQAPDd7wW+5fdUgBj7JF482BrneN2772ZLoqaJ1a0xXvarH8IP/vmnWeN+9b334H+85bN45+07swC9XNCVSTQzl5xMHy1YOQGp+bDlyMRGeYF57W7Kz366AjdaSJkBct24RgTLcPOytsobJOZq0fKEg3N48PR6g+0E6/vpz9zFQWUoaF4jgwMALPON7aDr8RsVUgc23ZhETva/aVwzuc9SStxzfEVfx6ZtfRXYtG+rVpOY8RwQ6Rp2MfB5IdEjuWmDSaQgJXTu0nJT1gJZ/fS5mxZSQsAdJQpHfefZtSESAeyd7U2M0Qu7AJbIbIvDUTJQcKkcKHkyySxNtic3ZbZg4I4zW5ekjnpX17bMcgPOs8NkwIJcaWvMvTvh93P/dCdufugs/vAjD+p9BCrHUZYpjwAGqQoSg3tONgLg0DHVPobLTfOiQJoKNkt9OYCzbjKdqr1lKfmWqkk8+KTqNc0kknFN4xwUeRVAAsDhpwPPfLn63SVRbSAGibsAb7nlCN7w3nvwa/98z4XeFScoS/S+u06wxlG/LMrERnRDvSaRwVIYDwoOu0e21iub4bK5LvUoUkqMC4nZrnJTQ1rWzP6PLdnwurTJPhk/cGoNf/vpR+uf1TDJsWX6RnmBXprg6n2zOLmypR+a22ESpyHJ3GmWf6N8YM72TCZxOnLTrguX0bjA4kBdk5z7jQK2NYbcVDe4170LJ7f3mr++FV/9Kx/E++86CaBpXKPeEyR3bBqgMHvLAbC6O0op9eJ7caaH9WGOvJB63KAX3l8UqOaSLjWJ9T6Jjf1EGJPYvCVOrw2xf65vNb2pFnbt+1gzrmEsyLdjXJMI/kK+a01ipz6J5lzumJOt40oJNIdJp3FJwmMgtVN1Sy+7zx5ZAqCMywDjfAumu2n53QYMdQFAzHEpG2W6m7Idv6XUBlgAMAxUJVzKoGPJSSw2E9fm59QwHiq56cEnVq81g0Sr3DSFFVFuevGAFk9HlzYu8J64QVkpbpNjrvV2hB21gIfF0vEzu0BVH0WMQNi2DIle4D7S/s0ybbTp+aeMNOwTq7k/mtko30LBpW0yfuXvfByv/vNP17KB9ND2mYToRXIZXJwr2wDU3E2ZQSInQOmKrmzb2tYYr3jjR/G5x/xtOnSQ2K8eN/1sSkFix4XLKC+wUPZ15NxvFENwVCET7qaWff5Mufi8pXS9pWtzppc6kyS+bbFrEovKFdTm7kjXUK90NwXUPVcU9TYFoc8P+nxODa/ZAsPG+EspIWXFFtrgCriXN0ZWFhGAcW9zmMQEvUQwJIEoxwmWAUrekASGskvDjkzidlpgJAnPTCwvAuq4bNsr6rWMIcekVqbgeN5sjXM8elat4Y6VrtTmd8tYNfBVTSIQfg6krJKSUoYdEzMBwXX8To1ra7fW208TXZ6lNn8Fa6CujWvMmsQ2uWlel5uaiH0SLx7sL+scTu9itq3rBEATyG62u78Y0LW5tzmOFSSWC1bqdxYCc0EeGtzQInWml0AIfk2iz0zGfPhXbouGtMmxIKHj+9Dpdf3aOJe62TNgfxiMiqoFAFC5qmaJ6W4a9v1oHcvJSHYFN/FDuP3oOdz0wBm85q8/630fBUwmk5gxFrrbQVfHvVEhsbAdJpGRXKHjMOcxrqHPve2ocqcjOetcP+3UgkHXJAY3966Ma2wLycp9M9FJktWtsWYbuItd+vzQmjG1j+pnLXAwxtKvYe6m9W3mhdTPsiY4QUpNXZAygj1Dbpom4XV7xLZpB9DA42/O5TttXGOawnCCxKKUMuvrP3A6IVVInyHBrbE9joX8I2fWUUjghivmcW5zjHFeaDMnoIO7qXHfcJIriQB6mf+7PXJmXc9rzfrmYMfvvBlsxzVel16RVuOa5jkocsUKZgP1/2/7U+CpX6vko4AhN20yiXnduMaEq21G821B3yJiR0HPrFOruzhI7OhcpYPEOIFsC+YChGVc05FJpPoxDpNonuO2h9r6cIybHjijHyy9NEEvSYLbIowNAw7XIm1sZRLbs6aPP6AazpL5AFAtkpNEQDgkOeO80DVZQBUkmpM/9z6aBpPI6btpgoKazx1b8b5vYzRZk8gxDdoOzIULx1hhNC70eWTVJJbneaNDn8QZTwsMum5ue3QZUkodJM72U5a7aW7WJDJq28bGYlctJJt/p/vYYBI3x6p1TGK0wGAGiUB4sCH1YssuN6Xf/O6mdsMb+h6+MUG1bQaTmyUccxH1U89bjDYRJtsT7G5qSJ5t8mcXuhjX0NtonmTLTXU5VnhwyZabUlIydS/kHzilkorPfdw+AMDSxqjWl5PnbqqCtj4zSKTgspe4v9vmKMeX/cL78MNvUck9s70Hm0lMqz6VUW7ajUxpOq4DloTTeEv9pCDx6f838B1vBgaL6v/CwSQ2axJNUP/EKDfd/aDMzanVrQu8J250zRJxFwcXCnccPber3bm6us3lNQYy/GFPrM85Rk3iiBEkfs8f34JXvPGjeLSUWPcyZa4Qeg60I5gn+2buD9VWNqUdtqzp4w7MAQDuN4JEc5GcWmzai0L1bTSZxKXSGTYzHqTcmsSuLF/XbYQutIBq3mq7tzctNYlZIiZaluwEzGuA49Sbd2QSKWBY20afRNtcS4uPU6tDHD+3hY2Rup7n+hnP3bRjbRuZhKixtoRM9bkLmkkcaWkfJ5AF6p8fuvBqYxJN91MXXPtpMkKuMSGMp25BkjKZxIbcMZhJbAaJgeO6JheLQrJcemkMUPUgDM0d0TXpcqR1IS9bZ3gblzfHGEyi635b3VLzy/VXqDqxpfWhvv4BHpOYk3FN2TomNJFHzq2VbHHyPZT8/JtPH9VjaP84yTvqk9iPTKJGF/dys07ZqQrJy9ggHdg/xFWTKPPqb01EuenFA7q3Tu/iILGrNIwkHbuZSXzw1Bq+9g0fws//050XelecqLubdjOu4QQcxBKtdgwSfQuLopD40D2nAACfLGusegmzSbThCOZ6aJsLItNtEaj6XdkmdXroHTu3WW3PrMmyPOxHmkmp5HYmk8ixyQcqaRynHq4rzOuCZbgSOCdsGKwXgdMPbTswr6dzDOl0IZW7aSK6SX45fRLpup3xLK7HhcR1+xXDfdujy3W5qV4kt2/LrInjOMxSsAHYWeAq+El0kmRlc6zZHq5xk/n54W061PuEwSSa2zNrFl2gP02YYBnfvwlXuw3fPmZJgizh9DusZKrdmESe3NScv7nlDTNMk6J6ABw+R4aYiVm3V/gVKDY06/Zs26Nn7cEFVT50dn2kW1kAYNUkEtupZdpMgylXWygAuPfEau3/Zu/UdBsJiFiT2G2dbJqQuZnEUmWYTbbgUYNdTOLYLTcl45ooN939oAtiCiU6ndE1S0RzVOjD6UKAFlwUuOxGdK1JNAMlTqBOUhxOTWJ9YeGeeNaNrCgZcfTSpHRkC3xAGTVQTibR2B/6Hs3WGfZ+h+o105G3WVvSfJCanztfBonk7NtPE69tuvX7le+bitzU2AZHXhy6mLC5m3LqqrYDUwJFQXsISCY2yFLWOaB7jNUCo7xuKYh2yU2fec1eAIoJMANvl9mKDVXWGmybfM0kWhaSuv9fImpJEinVdrjGTUWHeUsaiy06JuaUEFKT6Ko3KzxMoiuwtKGqSeTJD+t1Y2EBqRrXrW6say17UfgZcesYoybRlbizgRJ3XHfTouwlyGEgzePvYnvoc65YUGzPmbWhbmUBqGdVcJ/EMrmi5aaBiapCtgfAZpA4zouJesvwIL2omSJFuWnHmkRT3eSoiQ5mEttaYJig16PcdPcjVCbRxPvvOoHv/qObz/Pe2FFnpDg1ceqi3ZzCYrcraCLmMA2Ayui/4o0fZdUIdoV5/DnbGweye03QxMVpgRFak7huBCI3lU3OZ3opepwGwBYm0ea4uH9OZctOl/W+hZQQQrEJQkxa3QPVNWsGiSaToBYyzTFVNpbkdo8uKSZyz2yPJW0CuvWJ6wpzAdK15YlPamerScwuQE3iOUaQSDKxmV7CYhLp3uxyr81ktLiePC6jvMC+uR56qcDSxqiqSeyl+loOeY5U9S8JqyaxKBrGNQ4WJUsqufXR8vpfGGQVk86ogSRwm7K7antol4NqEpuJ/LJPqn9M+/EnGfL8ICvl9bygOU2Z5iId5abmIeckF8dFoVu5cK4tQM3JLLmpbEiZmYGzYJy3muGZqwa+qAeJS+vDGgPPYhKles5ouWnAfFIFe1XvTtt3O7lSKdZOrw1rQYpoSUB87rFz+NTDKrE7wVLvYrXYtNCFTa3VKaeOa1nXJM7YP8QnN3Ua14TJTR2jI6aJrlLO//AHn4CUamFiLsB2AuYEMMolBoFXDhmRrDNqdKYNmkg5i0gA+Mm/ux03P3QWtz66jBdcfyB43CNn1rGyOcbnXbMneEy9TyLnoW1k5DuM2wmTHGKrskTgaGkVfnjPAFkqGPKrKvtJC9Dm/DzMC+yf72NrXOCxcjtmvzdbbSFQLXibTGKvlFElFgaAgttemmBRL5JVveXe2R7bpp3O8XSYxOq7sJoA1xbyEv3Mvoimz5zrN4xrpsAkmvMWl0lMmUyilFIfS86CieYfahEytGxvXCjn3L2zPf09ekYj6zYG5uzaULkHGwsSVp9EWS2OE6EW8lJKvdA2a+0oSULX/+JMhpTRuBxoXls8RspcJNtqEj1EojPhlBdSJxOb4Mh96dztne0pJjdwUVnvt8dryq4ax5dBIqMGdZCpRu6shIc0Wrkw53Jf71rXOBqjth0ecNdbJwVsyyY3tbDNAHCwdKtfLo1rTJk2h0kXArq/aMgcZDKyvqbs5hx/cmWr7q7ZkoB42a9+CADw4M9/nZb7RnfTCnljveWaM0w0W8AAlmBTB4kOuakOEi1MoqsFRuyTePGgq+yKHsZLDEOGrjAX7yyXwPK9nFqnaYNu7DWGRAyomBFOTzQA+LJfeB++9g0fYo0xs02cOrWuTCKNY0lbQ5nE8nh98RMP6teuXJxBLwmvkaKJNUtMKdtk4NZPE1y1dwbHy/pC022OKzclyaiNBTMXyfOaSVSL5D0zBpMYGiSW53gaNYnmoqELAwb4FzG2mkSOrGw7MIMgjglTUahFE4dJHOaFZkG6NCAn1sB2jYzzAlmSYM9sD8vrI2wM85p812c4sTHM8dyfeTe+/U0fq1opJLw+icokRP1uWySbSZv5vrr+KTGzONNjtelovo87JwhDEsh3N61/FmFcSOc4jtx3eWOEXiow20tZ5k16IZ/wnIFJkpkx2Z5cSq/82b29Qj8XQwNSs3ctR+5ITp5CS3AZUk4hQB1NOP1Fqb+ubRzdt8Skrw/zmuETT15MSarw+s7cEmzYrknTefn02nDCXTPkOs4LWTGJ5T52dcC/lBCqgHhseQM//JbP4vTqVl3K7GKA2+SmJB21tsBwGdfEFhgXDboulnSQuLHzrTNqNQpdgsRdzCR2Pf70MJyK3LQ8/nN9Xo3UuJCY74dLVsxxagyDSRyHBaTUQ+6FN1ZB4uE9g1JuGiij0jWJbmnNKFfsy9V7Z/DYsgrYTLc5l7spHeuz6yP9AFUMJPS4SblpySQmCXppgpleguWNEYRQTIpmNgIXCV3lpjc/eAZ/dfMjrDFbtVrSrkGie5yWm2b1msTpMInVNlhyU8NdMPQeMI9BKCMOVMeRMvKuxEWWVEzi+nCMuX4l5/AZTrzrjmMAgDuPrUwyiYyWFKbcFGgyN1WQmJSSa7rn9sxk7JrEXEotYwutdTLlpLZAtgoi3Z/hWqT53E190j7CfSdX8XP/9Dn81gfuw97ZHoRQgVuo/LPQ5y1hm4tkHYLEmkspa07g1yRKMwAWwild3xrntb/VVCHMwDlNKrkpx7jGx0DS5/SzBIMswcYwn7hvWH0SjVrSMLmp+uk1QAGwMSp0GcYpg0n0OX6rz69eP7q0gXGu3E17u9yc8AN3n8T3/+ktU9mWuX7xXf/vv+sk/uLmR/D9f/rJWgLIyW63Gde4WmB45aYUJEYmcdeja23ONJnEcY1JDN9fulE4fcOmja5yX3Jxm8Z3o2M+20/Zx3+uvE5Y/a7K88ZZINRrEj3GNSWz9Lwn7EeaCOyf62Gml5ZyU660zP3QHuUFemmCK/fM4Pi5Lf2eem2hW26aF1LXqY4NJlGNq2/MlEwBwFOuVP2LFgcqQGQziR3lpt/yWx/FD73F39x+clvbZxJ9iZKNUY5BltT6zE0tSDS+DydIpMUdi0k0g8QODchpseWSQGdpgn06SMxr8t00mexdCAD/fOdxvPrPPz2xX9ruPrSOyzCusfUSpG3T31SQWNYkzmRe+Zt1e4XUSbjwFhiG3NTieEnrJ5+7qbMmMa/uf9cY32P8u//wZrzxA/erzzICvlBVzoTclBMQiapvHud897MEQnBZ8crdlOOcC1TtJWzXyIOn1vCF//u9+K7f/4RuTVRz3GXUadI4zTYzmURiIG2SZHrPXD/F2nBcu2+yJDy4r4LE8OdG5cDqbuUCAJvDHNftV22eTq9t1Y1rPAqP04ay5oFTayVLDW9Pxt2A7/q9m/D2W49NNZkP+O8bUiktGYloxVKrv09cJ+PSaZ1bk1iMo9z0UoB5QXCknPNTlZtW+8UJUigLvJv7JG6XSewqCeTIjGkfZ3spqzh6nFdMYpeaRJ7cNIxZoprEg/N9PPnwAq7coya+LE0Yxgpm9rP+WrU/qrn94cUZnFjZhJSy5jaXlAvrZubavNbp3jLdDVMrk1gu/MqH+vOesB8ANNvTVpP4X//i0/jTjz+k/0/Hr0v7BS7M65fLUlfj3Pu5OcxrUlOAl/nfDrrWJJKUjcMkmvczZ8FEbyXZlm1eGBUFemVN4pGz6/iHzz6mWQZAsWO2a+tX33tv7f/HymRJlqjFbujCum5cU+63rd6vvLcWZjK9EFqc4dfkmkEi17im1jvPGCo12+n+jMSxn14mMUBuah4rSlZ0Ma4hto3lblomBNQ1wmCOhZIkcxNHJJvu0gLDlTz6i5sfwfLGCB+8+yRe9qsfwpm14WSQyJGbJqa0L2CMPv5uB0rze8z1My031fcNpy9m0Wwdw5CbCr/j6+Y4x8GFPgZZglOrw3oLDE/yjpQBgGISc1kyibtcbkpkCtdzoguadfounCjLX8ZFUVvL0PmeuE7yMkBvk5s253Ovuykxif4yjBgk7gKYDxBO1o4MMpaZctPbHl3GncfOscbUDFA6yE13a5YJ6B4kkqymK5O4zjGFKR8SM7002BAAUOdttgxUurBEXeoY28ZRD7n5QYYf/dqn44e+5qkAVE/N8DoWY2HheGiPS7np/rkeRrnEWlP+42ANzOuhYhILY5E8mbWmwJ0W7l90gzIyol6Lzsm/xFs/9Sh+7G236f9P8745L3JTTzC7MarXzwFTbIFRHr9EcPskqjEDBpPYdR6na6mf2tmeopCQUh2zvbM9nC0TF3cdX9HvsV2TAPDs6/bW/v/ImXUAlWwuOGiTZpBY7qcxD1VST/VzwXA2W5zJVJ0gx3ClJncMZ18AFajaA1n1029co342E0e5lNp8Z3JMOyM1yBI87sBsbT96aRIcNJjsY5owgm3jvGVcuWOiWjBw5wSqdw19TplMlstxmuaXL37iAWyNC3zmkaXGNRnGikup7iXaFu1z6z4GGNdUbZkEZvupkpvKbn0Sc1lvZREiX2+2slCfMzluo1QhXLEwwKnVrYkA2LWLJ85VrqjLGyPDOXd3y00XGn2LdxK1mkTPfXOidJhd3RrXjWss85Z6gYLEnv0DdQsMW01im7tpDBJ3PWo9oRgTMhkEcC/+//vXPoyXvp5nnFJjEhlMFo3bzUyi+X18Vv5NkKymq4xhjdGTTtvk91IW21xIqWVprJrEnM8kmhObj33RNvD9DF/+lEN4ydOvBFDKrxiZbqDMvqX2hzbJTffPlc2N14aNhQXs44qKfT23MdbvqS9IJgNS9R3Ue77kSVfU/h7KpBwzXFjpO3QBZ5x5rnbifK8PLUGiCF+wbge0uNoz22Mx/sSkKCaRd02q7fKD7cyxsBsZCYi9c1VNyg9+1ZP1766Aj+bdP3/VFwMAHjy9pt+feAJ1KSU2RzlOrZJM2+yTiIn9bDaq3zNbLWYomcmpyRoXki1brPdJtBjXGIsxF1wGO2b9WxMhNYmnV4d4/hPqDtjqeDCltAmPhR+3zFsuVNd/uAOu2k91HfczjgkZ9P65HKcLKbF3todf/JZnA1CunFvjAjMli5UIpmw08ZiEWMeV+2gY17jMy0huWhnX0PdTSYGQNYaUqgZeN6oPCRKNRI2uAbaM2xjlmMlSVd+8PmoEwO5n1MpWtc5c2hghpz6Ju1xuOj9Qz56pBImBNYk6SNwc16XMLgaYgj8XK+hyN5V59bcmkkT9LcpNdz+atrmhIHvd3V2TyA82pg3zOc1ZuJKspiuTyGlcrmsSeylrMh7nVZDI7XcFdK9RCzGumRvUJ7xexmjuber4HQu7Ua7ML/aVRfpL6yPkebVocvXJGucFDixUNuYASmmNe7GljWvKh/riTA//+rnX4odf+jQAVQBgu3fMoN9clAPhNvJNcJq5d2cSw8bZWvRMuwXGwiBj9Wolm/yZXoKtwPvbnEe6GNeQnf9Eo3ojAXH13qom5Qe/6in6d5fhxOrWGE+8Yh7Pedw+JAK4/eg5CKHmEdeC/LZHl3HDj7wdT3vtO/D8//UevQ/EGPh6EFIY9eKnHtJ/o3mS4+5YyEq2uB25ad24ptxHT01iNSfUX6fG4Ta4FAmEvJA4uz7EdfsVk/htz38cAKCXqJY/IUGDOd8Jj7lLE6bcMUvCmcu8qBxwOc8A6kPL6cFZ1SS6GXE6/gfLefnhM+uQsnISbQuA/+rmR1TfQpsChcEkJgmc9bX03ZNEBYlN4xrdqingFFBSpkqABshNC8t3s9UkjnLM9FNtgtUMgF0JCEqYCqGepeO8kjInYhfLTWfU8386TGJYTSL1qlwb5vr+8rHUmu1zsYLOmkQPkwgoNjEyibsf5r3VRe7FCTZMcORX5sXPCVI0k7hLs0xA9+9Gaw3OgtwEh0kca7lpuAMoUK/t4TIpAK9GzXwg+a7jtWGOfpbUaqoAWjQFLggNiYy7uXHJJJZ9q86WiwTTEa+534B62B0oGRu6R/LcaJ1hYW2axjUA8Lpvew6+70U36v101QSZ9wY1s9dMYsfkCqctS9c2KeapajOumahJZBhNbAdmkMi5/qlRN4tJNL4Pt0+iEKgkmZbrEVA1u084OGf9DBeTuLY1xvwgw0wvxfVXzAOozJRcC/Lbjy7X/r85yrE5rgJ9G3NmOosCwMufdx2e87h9+LInV4w6l0nkumSawYbVuIbYTs9nON1NjeRSE/Sy63peWh+ikKoG+4Gf+1r8v9/y+QDU+TT324dxIwAITbB0ZRJVf0WViGYFiUXlyskxIaPrXzjqLUnGOtfPMNdP8UDJiC+WAYCPXb33xCp+6C2fxX/7y8/UHECF5Rpxwcb2TD5vqkTiXD/D+qhuXONq1QQoI5MP3H1y4vvS54UknUym3Kdc2RwVmO1VQWKNpfbUdq6Uz8LH7Z/D8oaqCc2MxNE0asy7YKFMRk+DTAmtSVwx1t7HVzbRSxVr72S3teuWq77Q1QJj7GYfARVAxiBx96MmN+0QgHWVOz54ao2xrbCLf3Lc7pebmjdkF3OXrkE6py0IbWu2nwY3YAZKl7pU2VTzrq2SyeoYNLQxifP9yYmLY+RgFtvbFoT0niQR2u777PpQM0SAW1o2LgocXFAF4ucsTKIt29o0rrHBVRNkBi/08KDP7yrh4bDbdcOh8HGhTGKzpx/AM3HYDug6XJzJ2FJaYhJD59euihBTymgz4KjqXQWuPzhv/QyXu+naVq7lVk8tHXf3lveDa0HeZH2PLW9iY1gFibb7xlxoAqo36N/85y/BH/+nL9LvYdVkFVI3Eg+ubbMsks9nn0TXva3ZR8d3I1fIgwuDGovJMU4h2WKX2k46XxlT3poKwQ8Spbo+VHuV8HNdJe7sQZtpHHRwoa/XLlRv5jOuOXJW1eHeeWzFYBKN4x/w9epGafbzbfZEnO2nWN/KG0yuO3D7/j+9Bd/1ezdptkuWx5ESCSHnrWZc4wg2pJS6RnzvbK+UjRoBsCfYW9kcY5AlOLw4wNk1qklM9HGZRo15F1ywmkTPs3tzVGBPyYI/trSJPTM9fW83PweAITd1hGy+FhiuwBIA0izKTS8G5B2DFLq5uzogHjcKkdtgsg2cmriLwbjGDEy4WVOAxwiaYNUklvs400sxCnz4Ag0jgQ7XVhf5YZqIVndTkgmZ6KVJcACctywIgepBu69kBZfWR7WaxMSxSBgXEoulbb9mEot6LaMtsKTv4IJrcWceq5XNsTYqAbrfN2QOFIKuwU2ou+nGqJgIPDi93rYDCoAXBhmPFS/UYovDJJoSQFZNojQSF7Z6V2OBetUeuwW6sMhUgfJeKxdJJHdcHBD7Yl+QNxM1R5c3sDUudKBvcwDVNYkeni5lyR0NJjH4+KuftZpEY3NmiwwXfO6mLiaxLdg7vVoGifP1HmfCEZDaUJu3POYiTYyLQhvucGsSK+MaRuJIqrYIfUct46NLG/iW3/wIbnu0YqsLiVrizi43rQKwKxYGuP2oMt4z5aau4/jQaRUkrg+r+q/EaGURcvw3x3nZEsRtClNjEnuqJrFprkPva+LIWeUcSjJEOo6c1kl2trP+nlEuS3VRgn1zJDc1AmAhIKXdm+Hc5giLMz3sm1PBpZpbqsTRNJJ+XdDVu6MLajWJjnmLAvUrFlUi+ujypq7bdpXOdJebFlFueimg6yKN2gV0ZRK7LghD2xQAVRZ4NzOJeeBitwk6Jp3lpoyFPG1rhtkCgzKw3IwwBWu8IFH9nOv52wasbI70QtUES6LUyH4Ckw9tkjHtm62YxFrW2mLAAUA3Cd4z29N1GHXZVtJqXGODqybIPC+rW+OGbLHbg5clNy1kKf/1B/dNmEGJr25v0yY3nZI8SctNZ3psJjFNlLtp6CKZvs+AUVsL1NkeW52grndNVK/JX3j55+Nv//OX1N7jOp5rw7FulXR4cUa/V2/Lcj3S/PJn361YwKNLmzU22FbvRB/jIekUk8ioOd5On0Svu6kvSCz/OGEuKKV2KJ4cU99+E6fX1MKf1AkEl5LBhrYklQvE7AElk8hgZXULDEbCQ8qqv59tkXzXsXO4+aGz+IZf/3BtW3QMhSNIKQwm9+B8dRz3GItr126SWdPK5lgnuNOEJzfdMPqSuhby5jmaH2Q6KDX7JAKw3gNUN39ipTIuS4Tw1rI3IY3r2yU3JYXJTC/FntkehuMC68NxTe5uGwcA5zbH2DOTYe9sH8vrQ/UcL+W+06ox7wLaKyrl2EnkATWJ9By6opwPji5taKMvOv4TQToFf21y0+a4YuxmH4FSbhqZxF2PrnJTuiA3OwZgnObqo4AMiXVc+d5xIXetHKFrLdF2HSg5MtW8lBt1YQTTDkFilxYYdBxn+6l33MqmnUnkLGJsLnXNh5SUKIv/EyzOZKpxbYO1sY1TrqgCe2ayyrjGXKSJyQVh07jGBjeTWN2HK5ujetKoM5PIq0nMkpI1Y6gSgpnEYY7ZXv24pIyAYTsY5QUSUSYuOtQk9hh1dKYDMVembbLbTuOacpH8ihc8Ds9+3L7ae9pqEgHgUJm5puvNJZujuf5xZcPt4+c2a3Wl9vumYmhc4NQkFtJogREc2EDvg8/d1Gdc43Q3zaXzu7nYRwIxiQcaTCLPXdOQJHsSLFvjHG/71BHcXbZHMWWaacpkEjvKTX01ibTbhazmzLrc1F3vR+/5yW/4PP36woCCFPdxJCZxXEgsUY/KhGdcs7aVa0bKWbdqPCNm+yk2RnlZ20nH390GaW8ZJFCbCRrnYx+bCHkmEqEwWxrXAMCZtVHNlA2wB84rm2MszvZwxUIfJ1e3sDkqsDhoZ3IvNKqez92S+V22BbgTvPQcovl4eWNkYRIbg7TctIVJbNYktspNe0AemcRdj65yU7oIuUwiZe04ssWa3LRDCwxg95rXdF2UbzdIZBnJlJlsTq8roJQb0cOe6YoKqOMRGtzT++b6foneSpmRbKLHsE23Obm53OYAYP9cf4JJdNVtUEH+wYVBJf8p6u6mzWDWZlzThKsmqyk3rfUk7Wpcw5gTSCalrhFOTWJgkGjrk+hw1jzfGOYFsjRhMYLUS01l1hNIGeiAWB6CmV74dQzUmRSrcU35wZknAeFzN12YCBJLNsVVy1vuuzK8SbC8McLGKNc1grb7xgzQXMjScHfTWguMwHug3idxck5omuvY4JKA+moSXewj4fTaEEJA10ZX2+LVxNUkmY7r8e8+fRT/5S8+g+/6vZsgpayN47ibFgVK2Sg34VEmMx3PG3P7955YnfxuDumuGWxdt78yb9JyU4+ZDzGJAHCqnM9rZQqOQ/LXtxzBj//NrdgY5tgYjaskiWMhr9QH5G6dYZRLrG6Oa0wufd8mdJBYMomUpBIlmxhS4tNsZUH7ZEIHiT0zSNzS13DiuSbPbYywZybDjYcW9NqTghtOvfG0QXPONNRsdeMa+/bo2XzlYlU6sIcYWZcqoWsLjGLcIjeNTOJFgZpsi2Uc0S1IJNnMFqe2MCBDYh13EQSJXWsSaQLmTj60EOEGpEnCC6TUOJVB7qe82pJQK+fmPgKKSfEGiVuVTMUEWcIHbav2QPQziYBaoJ1dV3bfTeMaGyuYJQmu3TeLR5c2IKXEcFzoRbptIU/3R89jXJM4AnzzvJzbNOtm+AkIaovTJjf9uX/6HN55+zEAFBQnGGRJJwdcoN3ddKYhN1XypOBNdcY4l+glyjmO2+/Q7MEZlMmXBpPIvLfNerPmUNOkyQXbInmcF9gcFZoBoSCRzpWLAdPbSwUWZ1QvtaFRk2hbJNMzzCflDGUSqSZ3wHQ3tfVJtPZy9HxGCEvUBL3sSnqcXt3C/rn+RJDvkrvb0ExSucZ89P7TAIDHljdx66PL2Cpr6Wg/g5nEMihTzw1mwiNxM4nm9v/l3lMAyp6A5XdzBukOd1nNwDiOSV5IPHJmXZs2kYmQCsAm94nw7juO47/91WfwJx97GL//kQdKJpFqcu3jlAOu+v3afar+96Ez6/r9PndTWpMdW6akZJVEyDwmX2fXhnjJL78fv/bee2q9Sm1MOlCtVXppoueDx5Y3a1JmwMUkKsbrxsML+jUtN21x3H3RL74Pv/3B+51/30loVdQUHjh1g0f79mj+veFQZUJG17Eor8tJd1OSm7qMa3w1idHd9KJHVyaRsktsJjHpvi2A2wJj+6zITqOz3FSzbbwMGk3gXRwQOb211LhCW/l37XkYukigia2NSVzdrNgNE700CTZFMg0IXIxgIaVeEO6b62Npfajq44gRabEyv2bfLB5b3sDmqMC4kHqfbU5utN+uuiX1NzuTUmcSK7kptycmoOTIgF9uuro1xhs/cD++549vUfteFJUkmdVLs/2+yQsVYM/16uc7m5I8iViKmV6KzVEe1pMuIAHh2hYAzGS881Y3t5hc2IXUuyomsf4aXVfEyFENzP7SyMkVENE10EuUTPtk2btTB4mWRTL91lqTyAy2ge31SazLTcu/+0p0LIY3gL9PYuJINhHOrA0npKZqPxhy04Zxjctc5JaHzuJpV6mA6N4TqzUmWTGJ4fOrMm7izQnk8NlP7XW5NGccWhzgdz70gP5uuk1EQL2fCS0BdbCrR5c2MMolnvv4fQCqPrR1JnFy3MfuP43ZXoqnXbWID99zqqxJrI6jbZxZt/q4A4rtXFof6dd8TCIlCqm8QbmiQm/PVYZx/6lV3HdyDb/87rt10qZWp+9KACUCjy/38YFTazV3Zdc+qtYZGZ5UCxLb+1SO8gIPnl7H/37756x/32l0KZ3pvi0jue7YHvXrPTjf1+qCPUbS3MqKt8lNXS0wZEufxLSH6G56EcCcgzlZu0puyrv4adJiNWU3LlpOn75xwE1zPvFXNz+Cj9x3ijWmq3FNFyZRSqkfLmwZT5mhpf+HgAxX+gwmxRzH2U8d3PRTp5GJlFLVNthqEh0LC9+2zNqS5uU8ySQOsWrUaDndTXPFrF27fxajXOL+U0oWZdYNNDO7pgOlCy4mxTwvq1vj2nHkJASAisn0uZt+9shSfd9Nto1TtxcQJFY1MJM1iRyX5K4gmdogS1DIMEbQlCVW7oLt+yp1cMM3rjEXyU7jGp/cVFiCy8Y1eWC+j5/95mfhd77r+XoMYAmI8ooV3zPT0xK42YZxR11uKmt/syHU3ZSu/0HWsQWGKTdl72N9HwCas933dqvcdHU44WxqjguTMk/222sOk1Li6NIGnvv4/Xq7JpPM75NYBoncFhhJaVxjZRLVay952mEcO7eJta2xUndMfDdbAFYd/5/+xmfgaVct1pxDbd+NXEM//7p9ACq5aVpzwJ0cd3ZtiIMLfVy7bxbLGyOsDcfauIaukea1TGofoKrnBeqBlG0cUD0DyPHclNcqJtF+Dszef2dKltR1/dM+AurZd9WeGc0UT8h9Hfs46CXYO9vD4ZKFrDGJjhtg3Wj1xXmWnS/Q8Z7G+jOkJpFUPrO9VJtZmcoqW8KvcjftIDd1sY9AZBIvFnTt09dVbspd/AP1RSCrT18h9eQ6jZv0h97yWXznb3+cNaaru2yXmsS8qNobsDK05UODJEuhi9Ci6OZuOs6r88Z1d5ztZc7vRqycVW6aivAWGMYCOHFIZJT0Sf2+b66PpbUR1odjY9FkHzculHHNdaVkiEwgzMWWrf8U/c0FZ01iGZjtn+thxZCbDjJiUsIfrLR935jbH1X28ZRJzguJNC3Z5g6JI5+b54ZRA2OCY+O/HRADT8cyJFFiyn27MImDXoq8kCyTEK9xjSH/dMEmQaTPMRfX3/lFj9c1XU4m3XCAXJzJtJnGTOY2rtHOip7vGerKSfdWlhAjxWMSXXK7kNMhLIFDbjmOJrTc1LGBU2tbmsU14TMJacJsr+Da3tn1EUa5xI2H5iGEajcBQPfJ9MkWm6D7hm14VtaB9xwGa5SAoHYsjy1v1lgzV52mWbcIAP/uhdfjHT/45fr/rvlkeUMFTk8spX0nSxMhavdAn93EmXXF/lLD+Y1hjrlB3VykeZ8qSTCx9n095+1tOFf6ngHkeK6OY3stqRkkPlL2gzRZUludPlAGyYnAdQfUeahUAu5rcmuc68TNk69UbKIZALuSHatGwvJUefynCToGnCT5drcF+BKn6vVBL8HZMrB/4Y0H9d8Tr9zUFSSm9fcRitwvN01jC4yLAl2NU2hBPZUWGMYikMckmi514du798Qq3n3H8eD3bwf1G5v33dSYnZffarlpuVAMDaaIEeTKhsZFlYEO3c+acY2DkaJm8a4+iVLyFpJJIvSDOW98P/UxxCT2sbI1xvLGqGISLYuEoqhYg2vKIPGuY6u1fbYFe6bUzQU3k6ju3ysWBkpuSsF2nye3U6Ag0T3m+DnFDNGujsrFDbcnGhmu9D11spQ1bfZJzBhOi9sB1UiR6YqvVQfBlJuy+pR1lEnW5HaWYI/mW18CwlYT1MZuu1iDUSHRS5VphmISyyBR12RNLiQrKef2mURzv12tFGyoahK34cBqCRJpf1zfrc2l1Ck3dTC5Nph1vS6ZKjG+V+2dwd7Zng4STZk8y920gwRdloYrPcc42j7JMY8tb2qTFqCq07SaiXnl1vbjT/LNa/fNIkuEVW5qO21n14bYP9fH3jlVk7s2HGOuGUjZmMRyF4UQuHKPSgzsLSWFvpYnJEHUTGIha4Y3LtXFktH775Ez63o7Ptmu+R2I8dxfXp8+dntrXOj61icdUkEiySR9hnrrhov76tYYtzx0Br/6nnus790JTFNuGlSTOK6eib/ybc/Bf/vqp+ALbzig/26Xm5af1SY3tQWXbcY1UW66+2FeEJwATDOJzIufJgBu0KDd5ph1e7MdmMSvet0H8N1/dHPw+7eDrm6SRYfJxwzueD0IZblo4jv+kQEBNyitmMTwgBTw1ySulA8Mm7spMSUh1xe9pSY3nbh1qof2wQX1EDx+bktn1m2LOzo/vTTBNfuU+xgxiQtGcOnK0HrWMciSxNr2gc7LwYW+YhJzCjb49xsthH1STpIlURY6L+ut1IKclyTJksTL9piW6ybajA7OFyomsQwSA65luq+T0t2UPqd9nPo5k/HOW2EwiVYDGuOadMHGblduh/ZxzqbgpXETAOyZre7TiT6JNZYu5PoPczc1j38vC3fkNOuUbXNCxTS6P8Pm7tjGJFbs4+TfRnmBpfWRnn/s22r/futb41r9nblfBGJ8Dy/OYN9sT0st5wfu5JYLtT6JHVpgDBxzAp1LYhKPLm/UWDNbAoLGtQX3tu9GQeK+uR6u3T+LB0+t6ff7GODTZWC/b1YlF1c2x5gbNPokWhQoZk06JRWJSfS1StFMYinNNGtQs9TdGmp5vWLmKEhMEr9zN1Dd+yQbJTm0a04g8zZSZLzghgNYHGS4YrGvv5srSWK2+lofjvHy3/wofuU9d3d2hedCt8CYwvbysr4fcK+vNw256Zc/5RB+4CVPrv1dseLNIDFQbmrWJEqp5Ke+FhhJZBIvCpj6c1adoNGontODsItGe5RLXbjNYdty2Y1JnCbqfSr5DqAsJtE45l36HXLcFul9JDcNDfaklOp8D3hBIh3HfpY4F4PU0NZWk9hj1MrS5yvjmvr29f7I6oH+zGv36tdp0WRbbJkmIYszPeyZyXDXsXqQaMvI6/96FqBtNYlXLAywujnW11WX+0ZLoD3XBzn8nStNcsg5sJcmbCl5kqjgxRVcuuSmaRIms9suqAchR25ascLYJpMYGNzIRp9EB5PIdjfVC0L7GFeQMsqrdg+mLHxCkmYJEn03QAiTNc6Lmrw2S8KZLH3eEvucYNaaumCTrlfHsSVIt3w3kpMd9MhNQ4xr1oxm7q6FPDG+hxcH2DvXx6Ol/NCct8L7VKIys+rQAsM1J9D5v3afYrAeW9qsJUlc12RRuFuQAO4gZXljhDQRWBhkeOIV87inbLuRJu5gDzCYxDJJsm45/pNy0zrbTCZi+2bLAMxTA0kKjlXNJFb710s9ctOyx54QlZSzliRpYRLJ4bSN7aR5k5JtX/esq3Hza79Krwl9LUhME7X1Ya7nMWovtdPokswHgKX1oU4yhGJcyCpJ6HgmmkyiDbaSAyUjFe4MlxDq72ZNYpvZDQCksSbxokBuXlgdTWE6Ga6wAtLKAp1jODEutleTOI1C565MIh0Glmy3o7SYJGnEJoRsk6zkk4RnQEC7OMeUm1L209ZHkKDlpgN7TSIQdg+YkjTXosnsP/eMa/bo9803ZXNmkKgXqOo4X7t/rpJtmU5uE7KOisVwIXUwKbUgcVj1SeQGG0AVUPiYZmISpVS9r8aFRC8te3AylQxZkqCX2U0qgHqRvok0Scr63J29v6kutWISA+Smtmsr4LgU+rzxmMS8KKo+iZbFVohxjRCTSqNCfw8mk1gUeluLhgvxTNMV2JSblj/bmUT7cZRS4tvf9FH8q9d/sMYk9rcrN7Ua17g/ozKhqca1MYn0mbbFPyVkfMY1IezehhGkuAKp06WU8uBCH/tmezhXJuRoXFbecyEoDLnpuJBBSWh9/BPhnBNobpvtp9g/18PJ1c1aksRlyqPKJjxBuiNIWVofYe9sD0II3HiocuVMk8SQm9bHbY5yrA1zHJjvYd9cdd7mjJp0wGYKU3fApWfIvrn2mkSqUyPDsWbvVJ9xzYH5Phb6Gc6Vz1bT3XciSGw8p4hJpL12mbnRWoXmUWHUedM413RXZxJzLW09VpY97DQqUoRXlvWcn343nv1T72KNyQuJfqaurbaaRJpPm1CqkMaLRYtsFFBsolmTqNnHFuOaKDedLv7gXx7A5x47xxpTSKl7QrECMGPhwqlL7CaTlLquh2vU0kVuSphGsXHNOIi1SC7KMeH7OKwxibxzRjU6AI/Z4BrX0Pmd5xrXFCjrJt2M1KqHSaSHasg9QBPtbC91LraKopIx9dJES5yaTKL5rK9aWVDNxqz+m68FRsU+tQSJltO2ZVhiU+AGGEFihySE7/o4vbqlFxFn14e6bjVjmIQAdQm06x5YL+elZp/EKqsevLlO0HLTcu4KcYKu1bvq+y18HJ03jiuwySRONOk2mDUXbBKlNibRxRqM86r+6/Ou2aNfJ/OV1LKQlIFJEtd1+dDpdXzs/jO4/+SalqRniWD1hTXdS30OrG1sJ4DaOaBz76sJFQ53x9OrniCRxSSOtXGKKwAY6YV8qgMTwJjvGExiLiVSUfVdDXnGmXJfFwNMz8wsETi4MMCplWEtINISUItM0nP5l/eNnUkkuafZl67GJDZ2k+oCF2d6mmEDlBkNfT/AwiTK+jVCTCIlyHznu3I3zavvS3JTT/Juqfx+CzOZZr3M5NaEBL2Afg9Q1SJWdc/0XRpMojZbsbNfvpZGptP2+tYYB8rA+/jydIJEXZM4pT6JaZI43X0Bo04/czCJwsJuF2O/AQ2g/m4yiW1mN0ApN41B4lTxk39/B172qx9ijRnnUk8oPpnYxLgyawFUFHYI6ALkSVsL9OjiD9xHKZXD3yzTyMFEW1Pw8wFzAuY5uamfXcxuumzLrEkMCaRMu2uOAQGN4zKJxNr4Hmo+uSnnHiAZ4yBLjEVrfZxEXZ1B5hFVCwz1uk1aRgvyL35i5Tq2YASXzcVWCEvhYhKrmkS1CD9b1gpuR27qGiOlxOm1IW64Qi2YlJtqVZMYuoikbaWJQC/x1CQ6mcT6/u4UcjKuIblpQDLNdADs5G7KrEmstwCYXNjpYK8lAGvuYsWI2h/ztGhtrkdGudTzzIufehhfdMMB/KcvvQHXl9eMbSGpfRU8++hjEk224dGylq5qyh7IfhmJGttCvpKbuj+Ddt/mbuptbyOE1QDl9FrF7tnGmPvtw8Yw18Ypvro9QB3nq/dOJrdCa0IBw7gmZdTylrtDQYqNfTQVIFcs9HFqdavW3sPnHNrGJLrkpnvKIPHgfCX5NcsUXG0islTg2tK87KuefiW+6bnXqtcdEnSzHg2oXGXN+US9b3L/KVE4zAtVPiSr8+xzpd0sGeaFQaaTiyaTOLGPsn4t6/WEEeCbx6C5fzS3NZF4EhCrRguMtWGO/fPqfByfEpM4TeOavHRG9yVOW+WmwiY3baktBBSTaNYkhspNc7/ctIW/jOCAUxdogmR6PhcrG8Z5gYVBhjPjYXB/MymNFgxMd1OqEQndRzoc22ESN0Y59rNH8RDSANU3juzufYsIgrlw5C3+i/IaCc/smouGfpqyZKNAdd5C2VxibbKyhkIahgQEksQsWuSm2rgmYHtboxwzvUQ9SMu3Nx9SUtYXrZTNp8nZ9kDUC8Lyby95+mH89D/cAaCSbdlqBui/ze9rwiWJoppAyngvlWYEJEfpYozkukc3RwW2xgUef2AO955YxbnNka5B49zbQOWcq6Rl9rnP2QKDwaJsB+QSyKotrDEi4RJo+i6UuAuv//Ib15jMpgvCIndsXstNaNamySQWhb4Xk0Tgz1/1xbXrurpvqmuFtu0zhUk9TcHNuiUyXMlaWOomzH2wMYIhNYm2urGQIDER9ud/xSRO1iS6jr8Na0Z/18o4qP6evFDtJ5JE4DmP26tfrzGJjNZJpuFTUHlD4/jbmFWSbWeJwBULA9z26DIOzPctclNbkOjedpoI2PLJ5zZG2FsyVzS/Aio4qpQk7qTMU65cxMd/9CU4vDiYMNexJWXMa+SnvuGZOLgwwJc++YpyXPW+JrZGhepTOy6wPhzX2NXMk4QbFQUWehkWZjLcd1LVWybCF2zXWfFnlbX6L/+Ca2uvN49/syaxidRx/QMVMwsAG8OxLjU5uTqdmsRptsAggyWfmRvVKvZdAbfVuCZEbtpgEtvMbgCE9EmMQeJ5BMf0wUQlJeTJvUaFxD6SqTL7ywF8uWmWEo0e9qCpDDhKRqoDk9i1vcc4L7R8sQ3U20lKvpSWMMoLpG1yADTlpkxpnxDoZ+ViN+AcmEwCR25qtrLg7CdlnzO9QJs0GyDGwNYCQ8tNA67ljVFek/HYFsmFlDVh2f5ysUB1kbYHYnNB/oSD8/jFb/l8fOqRJaNv1eQCSAYtku21JRRs0TEh2RCXgacaVMB9fdDxv3qvcm6lvoz9XoqMcW8DZeJC+OetDYe7KSdo2w4qw6dwdk+zYgnP3ZQ+mljL0AW5ae9vM+AIMlwRPibRPs7tblpvN9BMfOiWM2YApt/r3EUvk7hmSNKOlIYrypXZLdtqwjxONtliSCDrSxz5WzA45KZrW7UEUHNMc1su1I1Tyv2yBDe0j899fJVaJYdaTtsZqoHnyE2bcl/bNF5nEgc4tTrEjYcmmURbLV3mYRKFcARf40L7PZjnYP9c372txn1z5Z6Z2t/pMvD1SQRUK5Kf/eZn6f+7jGuKQmKYF7hm7wyOLm9idWusn/eAqtV3nTe6VxcG2QSTa/9u9X153IE5PPjzXzexjxNM4qglSPTc22YLjLVhru/naTB7QLWe6Lq9UV5468FNmGt51/aGeV47R02klpIDJTdt2YcJuWn5e5Sb7h5wFlgmSErIX6RJwyQhfPIncI1resxAtpIt8hgpExsdg8R1xjgy7kgTwQ7cCKHHsm5cwznXqPUEDHMApYwotNw0hO2mcbPMmkRiRHwOrCubY8z3U+sE2WcY12wM8xo7ZZMbkWkP4SVPvxJA1ePJ9kCkjzD37luf/7jaw95W/xLEUjgepCT3JAkutaaY0X0SQ5My7dcjybdp4bOyOaoYwSQJTjap/UZrcsvVJ5Fj2rEdFNrwiSEb1ZIsM5gNuN/KcYMsPNmh9zGASfTpFGxMVluQ6HY39S+KbIxIUE1i6jbg2LAwiQmpEhjslxqnAtvmMaHf/O6mkyxRW79J+kwbKX6mdMm0scC2mugmTpzbxPL6qGYAJxznzWSyrtwzg9965RfgXf/ly3XSImUY19Dzps9iEqvv5XIvpn0UQuDQ4gCrW2OcXhtW7YU8TKK/B6ddbmoek32N+kJXkN41uWJLilrHNbZHc/WBUpK8Psy1cRCNc90DozIZbpZvCOFuC1WVoNj30XVMKrmpPeBwMceACgxneymEUAEjPSu6rpe5oK/SNUjkOJwW5Vrep65Rcn7fHGQxbJR5gNxUOOSmnnFpr1VuGoPE8wiOVMuE0uST1XG4bNQ0heFkrQmd5Kaenj2ubXWRm1ItRIjRhA2cWsa8zMb5io2t4zocS/r8mR63/5SS22SeQOoTD57Bc376XdpaWj/s0kQHYBzDm9kuBhxCeFtZrGyOrCwigKAAmCzlzebSAMq+e/X3FiVDTHjpM6/CTT/2EnxRWWdYOblNBoncnlzBNYmWw09BGi0Cie3jMonm3OG6R4mxuWpPxSSOc1VHkTIb3OelLLHvqRvbdLbAsC90zzdokVi1GGrfnsmIcGoS6bsMmE7VJmtgSySEJiAmFtaGcZVrjPk+wjhwsVtn4NXPzkyiwTZQHR/NyewWGOaxZDOJ5XutTKIncHYwWadWh9rwZGKMgxEkHD+3iS/82ffiP//ZJwGg1m4AsNSu5nUm66XPvBpPuXJR/9/X8LwJet700/BnAH1/ITzSeiNooz60dxw9p4McV52mybbb4NqeGSTWmERD4to8/M26vSZspki0rZAERPN80/xOrTJWt8a6TyUArxHcKC/QTxMdZNN+p6l9fi2k/1p2XVvDNrmp594e5QUGvQRzvRTrw1x/FichuR3QdkJdeptYMnpRtoFUaT6Z/HBc6PWtDYnNBOsCyk1jkHge0dU9SUuiGDUD2iY/45lbdGG/ACWl7aVJJyZxpoNxDWVauspN1zlBojTlvjwmlxC8kC8/f76fsdxNtdzUI5u7/dFlLK2PcNujy7X9y5iyOZq7uQxwc0Fu29bq1rjWe81E24L8de++G8/9mXfjnuMr2BzlNXcwW/atWZMIqEbTE9uzyk3t35HGTQaJ5X60MomTx5IWQBRIkbnPDNO4ZhxwPdJ9cWjPAEIA50q5qWISmUoGSW62Hie3UQ7TlZcwNbmprAxQ1PZC5KZVkMjpS1rVJPKcqk2WxBbshQQ3wio3Vdt3MTAuNneUF96AyMfAd3U3peuynyU4uzbS+8153jSPU9MAopKE8wLgyvmRz2SdWRtaTWto/wD3fPdXNz8CAPjwvacAYLJPoiUAaNtH30L+6a99B/6y3GZV3hDOJEojuLIl4NTnVm0iPu/qveqz80InDrVM2MOS2uByNzWb0s8ZScVemnidVOl7WLflYnJleyBrHVf+n2TB61u5Ntyi/XDKTcuEjvlMTQ0msXm/tToeO5nEMkh0tG1IHEE6UCkTZvtZTW7Kabe0HZjti7qs0clILgRUy9tPE6e3wigvnPWIgCPhUeTt7qbNFhgywLgmyaLcdJroLjeteuAFLwjzOksXbCZjvI3NJNJDO3BhRxNSlz6JPXJt7dDaA6hnptugF8ncFgCmdDfwu9EidW6QsiYsWgD4Ainqf3fPiZXatkzjjpAG5k0mkRsk+vodrmyOa1lPEz4zEykl3vDeewAA955YVTWJE0zi5KLJL9GbPJYmi+SCPUgMYSnsvaSoBxgd79WtRk1i6PE3jrfrHiU78oVBhoV+hpXNkZYsKWkfh0kvdL2f6/rfGBal1Kh+YKZlXKPqJquglCc3FUb9XcC4BpPIYm0CmMQ2BszW3BtoZxKbcfO4VQ5lYxLpvnHvo49JpCDxqj0zOnOvDLd4QaIQVRDYPJZVIOv+DFsPyBDjGluQDqh2MwcspjXm57l6hR5ttAiYa5Fkjht9+ppQTKL9WN5zXM2pv/COu9Rnl4kLrVwJkVsbyZXUchzVPlZB242H5vW90pSb2syUvO6+NrMP1Fn6iTmopSax9b5pbG6ct0tifdvbUwZ6q1tjFEW1f8q4xhEkluxxk0mkHI+t/hFwP99c11ZlXOOWm7rm8lHp3j8/SLE+HOvP2ukEIcG8BruUPJ1jyE1D1pLDsV/OT/4YNYTITZs1icQQ+sZFuel0welnZsLsgRfOJJJskYxrwsaZNwzLJIcWkkm4A2uzJpEVJJY3EacmsT4Z8Fi6LnJT81yFSwLLY9LL2EF6W5B4qgwS7z2hXM7Mnkh6HKMp+IAbJJbJDp8BjS+L5rMIf/jMuv792LlNR01ifYxEm9lH+T5jXMhtZKu/0CyFJyzNErstPMmdST5LvbIquWnYvT2qyU39TOJsL8XiTKaNa7JyQchqwVNek76F/OY4t0qUXAYJ5xtkJlFJmcODPZ+VvA1Nd1OO4oK2o6RG9b9LtCcu7H0SC+84twEKn0kM60GYeJjEMYQADi0OdOZeM4nj8GDb/K6paMpN1c+24wjU54Q22S5ty3ZvL22MsM9iWmNuy3UPnDi3iaddtYgXXL8fi4MMT7myWUtdf38b2+ZjpEh9cuUeFdBS4qLHUaDQ8TWYRFtARMcxSxM8sawPr5hEhwS0gJZQcr5b4TkmriDdvP9tcLGdRQuT6JOpAtCtOtZIblregsq4xs1K9VKhxwLAFYt95/zazpLSd6m/Tusp37PbzyQK/bypmMTpyE27llh1GWPWwLtrEluYRNu1HNIncaIFRrnfrXJTfxAc3U3PI7r0AQQqSUTGqEnUTCJTytm5JrFQ2eWMIck0M+tC8Kj+LjWJ9e8WvvikWgJfxs41jm7o0O3ReZsbpDixwmMtzf5f9sbNqpaHgkSzCTSnKbiZSe1nSbhxjSGbBuxykryQziyazyL8I/ed1r8fO7eJjVGBA/PV5CeE3d3UxxrYA+7ABXnjMIawFG3uplpuWrLggx4/2CC45abqs+cHGRZnepPGNR3Ybd8Dcex4IHJq/baDolDXlb7+A74fnUvzWg7pL1e5m4YvrIFKEkvbdLVXaat3ci0+XfWFrkXrMJeY6fEZEfWZzmEtNYk55vsZ9s72dGIwFQK9jMMkosY2NVvVhBoAAfXv1ibbpXFWJit313f65nIAOLGyhSv3zOB3v+v5KGS1QHf1GG260jbhq0m847FzAKqELq1JUs9c3kRlXuRupUCqCcKBsmcesWiuxEXewiQmid04yGQuAeBHXvY0bWCTeIJtwH3fCGF30x4XfibRJV2n/+8pA+X14Vg/7wG/cQ3JTa8yHFgPzg/cst0WpcxOuJsSwbB/ro+z60O9DuQkJLeDcaEMHjdHRSe5KU/xVZm5ucaZfWhtcLfAaAsSm+6m5bpN+GpnekAeg8SpYTs1idSTi8sakLtpsANcjUnksAYqu8yxJK+yVgn6HkmaDfRA5DCJ5ndjObeW2c0+Y0ECqAl3tpdidWvMqAkt5ab98L6FgArA+p7G8UDVk+ueE6va2AjwW2Jb99GQ2w0YrTNMl17Azr6oCdv/gJp0KZX4hXfciWdeuwdn10Y4tryJrYbc1CZ3kRJejZ5tkRayILc594WNs0vSyACmV7aYWd2sy02Dpcx5+71NTOJcP8We2QznNsZKXpgkyFK1f0XLYkdvr6gk6K7gy/VAnFaQmMvquwFhC5OKSQBrkazdTZkMsKpjQbnNyYV8qJR5kn1pY0Tsc8k4bzFW8MpN/de/6zrZGI0x209rLo1845q6UVWT8a9ku+0BsM2UxxekuOSmvjo1l3EK4XjJJDZbOfkYKT/bljiVJFSeQaZnKrlSzeWc50ZNbtoMUhqBLJnxaLmp77u1BOm2YNt0DgaA7/mKG2tjzP0mNBvL22CTt7aZ67TJW8lYZ2VrXKunbzOuyZIEV++brLW3BbKtiSPH+iJEbuq6RoZj9QzYO9vDkbMblXHNFJnEuX6GzdEQWx08LkJ7kNO2EqHWr6uOkqetFrmpNUiUAcY1SWJvgeFlEmMLjKmia00iZeT7WXgmn27I2W30SeS4S+mG2xy202SkGPWWQGVcw7mpa0wKMwBLU+Gt2XBtj2vKQ9fIXD9jHY9mZtf2QKSaxJXNMU6ubNVkUhyjELNugRr8hoBcekmqZruWfQ9SV+AwyiXOro/wNZ93Fa7dN4vHljfLPonV9NWsSTSz2i7YAu4gl1LLJB7WTNzPJAJKPk4Plx0xrtmqgsQrFgY4ubqltp9W5i6h/V7JcKWXJc52LsNSatSE7zo+nzBVAgCQh7SO0eZFvEVy092UMyfT8UgTmyOh+tlWk+gy4ODeb2MP+wXY5Y70VdsCWddhVExiqhkloJSbehqJN1EUdblpc3shvUw1S2TOCUXYXGJjEn3skovtAYC//MQjOH5ua6JHH23LNk4lbdxLuix1M4k0x58gZ+xSbqpdgUMMn4xgugo26u9pMnvEXFLCz90EvkVK65A7mjWJTVCblKbctM0BlPazi9zX/HxzHKDWBImojMvo/VkinME9SRep760JG3OvE8dOCbp9Xh62yE1dfUIBNQ/2U6GZRFoDTc24ppBVwrVDYLrFVNe0GW4pR1r/dWI1rmltgdGUmwYyiS2IQaIDeSHx6/98D06VEr4QmItiVzG6a1tkLhLcE6183wwza21KQDlZ/HFRqIw8Yx91JrsMgDvVJDJcSmumPEwmkZqCc2Wquk8lw9wFUA/HUR5uyUwLIB8Dc3Z9iCcemgeg2ES6RthNwWtMYjjjGWJcQ3VsNrgswmmx3csSXLd/FkfOrJdBYloba361UGavub2Qxa4oWRvzHg9xTnQ1mDYD59leitVykTDb50rJzZrENiYxw5V7ZnB8eRPkOOiTCdu3J1vNRUaOrKmPET+fCOndOTHGWEhxkit0b9FCiqPucLVtAKCppi7MBn2mDS6546goJtir2jiLJDCMSXTPP+vDMWb7mXZ4BEomMQuv098aFzX3xaQR7En9up8lbwaXVZDOl5uS26F1jCdR8vbbHgMAvOiph4PHbacmkeb49WGOtbKZOwXpAFi17EJAM+M22aiZgGg6aDvNXdrq/SwybWAyKJ0YZwkuq+emcxiSxMF2ttyj6n3113UyNxWYL83EACNI9NSKk8TYdO3W+2j5bpV7d8ucYElAmPtk+26uuZzcTffP9bC8MdJmhNOUm3bxxSBwe2drx2/HWrKtJrG5lgFQyk1bwjWn3LSlJrEFMUh04AN3n8Avvetu/MI77gweYwYmHBelqm4mPGuqW2B0rEkcZLz6O8oucySZzdo2zs1Gc21Xt1Fuv8M04dW/0Dh9/AMnPPp8PWkxzneWuGU8gDpHT796DwBVl1hlRLstdhNBNYlM45rEzaT4FjIui3CabLNE4AkH53F0eRNL66NGn0Q+I2h7IJJJSIgkrT7Ovy3af+t5K6o6nbl+irVh07iGz9y7Mv/rwzEGpWz5yj0zWNkaY3ljpMxdUl5wo2sZPRJ0V2N2l0X7+YZ+aLcY13zq4bP4b3/5GSxvjGoJBlbrGFnNrWpb3YxrutQkCksCoi1I9LqbtrA2atxkAOZlEj1swzBXcnrTyv/AfJ/l+D0cF7WaqWZQFDInAJOGNyGqBFcLAJq3XdsxP9/E0aUN/KvPuxLPe8L+4HHbcTc1686XSjdHk0nkGDf5yhuaQRsxpfSdKrlp/bODmERXkN4SXLoZeL95k43t9DHw2nHUxe4lAnODVDOJdC/Z5gRAnX9Vk1iVoTzz2j3VPm6DSXQpZVzH0lfvOhqr47Jvrg8pq0TltOSmRYcg0by3uCaIbUxim7upNeEUIjedaIERIDcNYBJjTaID959cA1Bp5kNgLkA2R7kOINpAdTMpwo1axo1gIzj7LynbnWJjGN4mghZ7vF6OVXawn/HkpvRWl4zNPsa8sTsEiR3kplpaxnZ8VdfVMC+CrhOafHxM4riQuGbvDBZnMtx7YhXPum4vADTGBciGyrdUNYk845rUW5Podk50LRAo4OlnCQ4tVnbyVxjW8k0mpZJ/8uQ/lQFNyLjqtaazog2J40FqMonmtcBVCZjqAl+fRJozrtpLToYqW10lEsLlfb1e4k1ukeFVEy73w/ONyfvGvp/f9qaPYTgu8LJnXoV5bcfP6+fYDBI5jtO1nmguKbPnM2yyuTZXTrdJSN1cZHKcJUkSynY6GZECvUTgwFzVU/CKxQGrBcbWuKjVTDWbUleMoP9zmrVcOkhvCTYmvCYMJY11jINZklLiyNkNfOmTDrHGhTCJhbTXHJvPS2pBkhqGT0EKFCO56Gql0Cw3+N6vuBGDLMW3PO+6ciys41oZwcTeXsjsk2gdJyxOqjogcg6buLaAStrugkvKSfN2lgjMDzIsle6+lNiyqgtQzS+U0Pnka796wvHb2QPSEcy62M4qUWX/bi4mF1BrnMVehv3z9YBkGi0wKJCeZQaJ5q5xyA0p1XPDV141ygv9jLHB2s6lGHdogUGyKJ/c1N7Dtfaxre+4TPFIablv03q7YEoOWa0bioqBCQ02JphExsIOUAsZzk1KGVEO22kyiewehOX34Yypm/Iw5aZJwrJbV/so2Qt5Yhy5mS2yJPf1l6PF3ZMOL+CeEyu1489iEo2HJIdJ1EYmiZuR8i1kXO6mdC57aYInHJzXr7/i+Y/Tv4uJ7D+97t5fa21VAGsgLAuZQrbL2FKLRAmoL4BMMx6SMnPkvjTOlcgxk1dmvRO1wKD9CUHtvsmllRFxZU0zz3V8PqGt/D0SaKBK8pxZG1ZZc8FLrlTupu1tiT732Dncd5Ja1Rh9Ei2MVEjiwrVoBdqDlEnmUvoXyJZzFxKAWQ0ZSpBS5br9s/q1xUGmr60QbDXarTSdYkMk4bZxYaoEe2ADuIN013x3dn2E9WGOa41jETLOx1qa+2ELOIa1ILFqQVIxieE1iYlH8dJ0N53ppfi+F91oOLdOjisKCSndLJYa55L7ticuJtk2Sm63SAIt903bttTnu1g61e/w9JoqcaL53yUT1sFlebMemO/Xewdb9rGNSXRdW20mWC4mF6CaxAT75uoByTSYRPoauudz8Pq6eh9Lbmr4iziZxFI14YJVlRDkbtqoSaSAMcpNdwZHzm4AaM86mjAvCk5RbmUl7zaAaKLZAoPLJLKDxFzJGjiZ3VpNItPdlMbymntX34fb26bqE8ebENgmFZoBzlj7ScGVr5cgyY2edGgB955Yq8lYWC6NxgNhkCXB7l5UtO1rNxDi9jex2DIyrU+/ehHf8YWPw9/+5y/B3rlebaw5LGRh7Qr2zL9Z99PysG86K9qQJfY64NyQic0ZD/ksSVi9Oysmy80kmkH6YYOVNYN7zvZSAV2Eb5tPXPUXSeIecz5B31eUAZ/rPqV59NTaVk1atS0m0XMcf/Rtt+In/+52tY8G2+FafAL+hLCtjqWrcU0hpbffp+36Dwpky320JRNGhUomXLd/Tr8myjrxvJDW+6aJrVG9JlExMNXfQ/aR/t5UCdD++MZw678qd9P6uGPLmwDcCWqXC3Q7k+iWTm+NCxyYV4t4ChJrNbnMFhghfRJtsCUgdNKSWZMLtEtw7a1jqs90bs9yvxUtgawrwVvV+6n5n1zKKZnnMuWhtYpNqQGU5Q0OdUGrBL2pZij841xMLqDkpr00qT1vgOkwiRPKLWbCFeCr0hIhvMmtUat79GQJAGQRIDd11ST6FjPRuKYziAnkBBsmvcyuiSuz3eFMonpf115q/dK4JtRgRz3EhdchzbWtqt8eJ3BTP7vKTblMIgWyrPOWV0wip44L6MIkomxSXG7bMonTQ+rJVy7g1OqWftjUGZHwxa5aJIcbHJnXMWCv08w9xjWuTCvdV/0swSBL8XP/+vPx7Mftq70nEZNBG+CX6NnMU0INaMxtqHHtCSVn3ZJxTGpyISYDbwYprgeUGZAcMOW6RpuI4Gs5r5hEwH4tjxy921z1p+cbdN8A/roZOt+nV4f6HAnmfVPVe7fPCadXhzoRabIdtoy8ZsU927bJTdus/F3tBkgy5YLV8EnfN55xDjk5UBlwXNUIjHoZMcDt98DWuL74SoS9Trkt79ucS0KZ3Ob3amUSXcZB5Xed6dlPgteV1isTru+Xia1xjisWyiBxY6j3j1gqjuGZ2QKDLRu1jGuTSAKlkmSCgZe1+9+1vUm2rW6iYx9neQa3rKXaG9yXTGIzSHQwiaRcczPVlsRFACNo3ceWQD2zBNt6P/MCvSzB1XtnG69PL0icbRgktcG8R7iEg35uO8YpdU1bAqKZgRj7s4SAmny7tMBoQQwSHaCTxAlSzIuekyWhDKBqL8ELNqoWGGHjKEMxYIzLS7lHliSlJNY95tzmCL/23nswyouaIxbXuIZu7u5yU87xLypJLEduajCJXHMRvnFNUTOumXiwGfVHTzq8AAC46/iKei3lGRCYkhSVFAhPQNSdVCfHUfNfG5yZVs0ktjmCGQs7ep1ZI6IlUy2MCFDP9smAmsQsddu00zGZsQaJgfd2+Taf1MV04KO+XLRv2riGcb6zxH9tOY1rGMHXdqC+r/rdVU8tpcR6WZ9dk5smhgkTg4En5tSnSji3OcLRpQ3dz5QOkS0jT2ZK3CCF5oi2Zu6TJhWBSRJbcsXHQDqkbEAlQ2yyzhx2e9ioSWwuroOZxETUAu4guWliqQkNDNJtkky1/+52A4CrlrT9vNmO/3Bc4IoFlTQy5aa81knVdpwupS3Mnk0p0yaRBCYlwkA1H7aNmzyO1d9csJrJyLDnhs9MxmyNNWsEia4yBUC5fttgl9Kqn77AEnAziT5W3EVwDMt64/1zjZrEKchN6VnG7Tlsuvl2cjfN3P1dW91NbdLdELlpkmInWmBE4xoHaGHGYqQ6Mom0kOol4dIyep+2yWc4UAKVJCovJNp8U2hbyt3Uv4//55/vxRs/eD+u3T+Lq8qapyxJMPA0F7XuZ4cgcbvGNVy56biQfJOKjvIHYhvcD98q2/qkQ4sAgLuOnVOvlcE9EFYDZj4QfLbpE+OkLBMJlP23B0RcJrGqSWxbJPOYDd9i17cgpN3g1iT6HBDnyvNjNhOnIDHYXZaYrF7qDGrM5tLmeZjppdoAIbjFjaz37rSxgsMyi9zENINEzSSm9prvYV7oBeWp1a2a3CxlGHfQtdNrYWSllDhXuqgurY9q7K6ttioocSE8wYaLNUgmF+S0fyEMvDmuSsq4x/nqqcdGP80/+o9fiIMlq9VWS2pia5xj/3xV9zRpXNM+JwCTbC4d1jYJrk3dAfiYRPWzeThaZcKOROG4KDDoeQwxPPfpVi1IJAWKea5DahKrudOX8PMFX7YSgDaJJP3N6VLa+tyovzYOYhLtvXK9zw3HMTHLQkxDE5NJdCXggCqRYtvepLmResEZ7HmYxPbjYf8brW/NxJPrO51v0GU7N2AGicY54ribUoLN2xbKkTglWI9lkLtpU24aaxJ3FHQxcbIIo1qQyGGyFJPQS/0sXXMMAHYLBpokOAyYzlilKrPuG0P79ejZjZrWnm9cww8SuxrXUPaHLTctpCEt4wX3zf5QQfuYtNc1ZInAtftnkSYCD51W5ks1K/MQRqRRk8Xpi0mBjWtbvobPrsDBNK5xQTknVv/XSosQJrEmSVM/fQtCWyY/pCYxTSaz/7R9WhCazcTTRKDfqSYxwagorFLysUP++fgDc+wWGLpO1sFs0GfZ6i98Y84nyLgGUPOXbWGyOayO7+nViknkups2g2bXmNWtsb7Oji5v1JrA27L/QQkPC9vQZlvvcjeVaA9Im+PaZGyAewEKkMJA7dCXP+UQnnHNXgAwrskwuanPuEbf2y33qWgs0mTA8W+OAVBT0tjgbhNRLuRbg/vJYKMtkALs99zWuMCe2Qy9VGB5o+rT50v4NVFrgeGonTdVE759NM9brpUkbcze5Lbob+5xduMmc19c+2lzAPVJW33HBFDB7MKgWtDP9hO9/1Ja5OR5Nc4GK7vdEuzZnLvp/35G1p1IG+dSy8YJL3naYZaTfFdMMolhAV/N34KzBi3Xab00QSHtx2QrpAXGxAkIcDedaIFxfpjEGCQ6QAszTtBgSlM5VPooN5isUPmhMXFmHqq/icqBL7zWgD47K+uWfItI+rhHzq7XtPZs4xqS+7LcRqvfOdsiCWTbdzNBMrEZXRMavrBORHX8OZmt+sPXlY1UPZMOLw7waFnzRNeWbZxrHwFox93gmsTyIVm5ZFqMazwLGVcATMfWN7EK0b1Gqm5uUWXDXbAzkO1MYprY64DNOp09pgQ04fXuLIx7WzoeUC4HvusPzunzFsqmkwTa5ZIJUNZ0cns+6dv5hHm9pQ65qelEfW5zVAt4uO6mqVAmOb45+dxmpag4tryp2Nby2rYZ1+iaxJZrsrn2p+/qvN8c560t4SGEsNT7te+jL0gZlZK0JnyOnE00W2BMskvtQYMaZ/9ubQknd7DR1vKHx4C5xrW5m3oZ//LY7Znp4azF3ZT73HBJi5vups59NIa1Bdvqbxb5rT7+7n22KWXGIUGpJQArWhh43Sdx4rxVSQGz5Rpdy5njHNC4zPEF7Y7H/mBPM7nNa7nwzwlpknh6oFbz2+//+xfgl7712dg722OZO3YF7VOXvtSEUOM+2p6ZKLc9u9vkplb1VlGEyU1tLTBiTeLOgBbvXNlo9Xv4DTAuCvS0lTzvItaBG1PuSBNQyH5Wi/SSbfMsmE6sKGe2+0+u1ditadQkdjWuoUw+zyRE/axqO0OZRMWk0SQROmnRProWWk2J0tV7VaN0AA12I1w2lCZKbsfpm5cKg32xMonumhRXplUnKVoy0OZDm37z14hU+62/g17s8rKtQUyiw7jDrNPZ05CbctjtkD59riD9cQfmWE6GQPncamESXdKaabbAqIxr7HMX1SPum+thZXNcY9LpnIW6m9I15ZuTz5VMDQA8dHodK5tj7SxpN64JZETYTKJ98RmS8MiSev08/catZSS4rsuEcU1ujfLa4qsp7w4J9ujvdVOq8vh7++a51R2uIMXXS1CNczNEalz99VYm0XMtU/uQxZkMy4a7qVaFBF3/6qcQ/gDYzwiW77Mk/LzBpbX+LuS+sbmU0vn2j7Mx8N7nhiMxRtvLEoEFi9zU5QSt12We56ntu4UxiZPHsjVId1wj5jPgxU87jG953nVlK7WdDxJput9WTWKntaRwjh051DUEa6sgGdoCgyk3TaPctDPo5HJq28y6QA6VTj2ifO57k2OqhXOvRQJqgi6+PodJNDJWiu10jzmxonr8nFkf1h52XYNEznE0byw2k1hmf9g96bRsNzRIL8razm5Momuh1ayjMJ3EzEbpYRlh9ZMs0EPZHsoS+wxQvEwiZTEbEyTdi206fpu7qY8RtAU3YUwiLOPCGArAlV1XYxdNuamgazLw2tJBojtrSmwv4auefiUAtSDRJi1MJtEnI3T1SeTIn7cD06in5zAOIibx8OIAK5uj2uIySYS13q91W5452QwSb3t0GQB0PZgti6wX355t2+pd2xgYl7tmSMIjadROcu4b26Ec5dLKiLQlE/7+M0fxlB/7J6xujTHM63LTRNTr/UJrEtWxNMdVr7sgbDVqhrrDhlb5YUsyzc4k+s29zM8393NU9m5bnOlV7qYJj0mXsrre3FLaQHdTY1x1P7q3Td+tZjjUchzVOH/phgv2fqZhNYku5jJNhK6dAyq/CVfg1uyT2IQQlnVCS02oa07IDdm+Da42HYC6t5tqkh4j+bwd5MZ6V4jw9Za5bzxX/qpPIjDpFZIXsvQBYQaJwXJTM0gMaIERmcTuqJhE/+Lg5MoWfvfDD0BK2WASeUFKL01YjeprdYIMmWTFJDJqEmvSVn/rjJNlkLi0PqoFiZwekEA1uXGb2xM42Z+qlq4DI8tsgUHSYnaQmDfqv1oWFmaPrUOLg9Y6KdtnJQmvwFzr8ctt2e4dnySqzd3Ua1yT2Hub+SZIW7Y7hEm0LWTaTAuAarFoy3hrJnG2yuwlTLmplPV723ZNEttLeOO/fR7u+l8vBdBuuNJEXjKJNrdXgm2BALiZhvONELnpZhkkXrlnBoUEVko5KJ3PJmvm21ZlkuOek28/ek7/fqsOEhWTaKstpP+2OSc2D2UbI0WvN+dyKf01ucDkorBKyrSzFPaaRLssuW3e+u9/9RkM8wIPn15XfRKD3E2du6j+3pASBiWcLDVx7Uxi/fOb41zHUuh7p/56KJPoSsINshR7ZjMtN00Fj0lvJlcAm+Klxd3U8gwIZfbMfTD3ue2Y2IJm8zOt27Pcb4Vsr1sVLYx/jUks53FXgrdKnrrvb665TuK4tgpjbrOO08+AyWNpC4raXPLPF8xz2U8TbDFbxQFME0RZqdKAyTWQ9lfI/PfAxO0W4m46UZMYIDeN7qbdQTdgm2voD7z5k/jY/WfwFU85VAuCWHLTvNBF4uGsDTFHPJmqmVkBwjLkpnGI6TbXt1zoZ9ZUFnJpfajH0XfjLAhpgmcFex2ZRNNwhX0cU5WhCsm00rZ6aaLlBsM8sJC6zOTZWCxgsv7ouv0Vk7g4yHSGOeR8N5uJ+ybzWx46g0ICL7j+gGY7Xb21ikK1UmnPrDsm1rZi7wazR6+7x0w+2Kp2A+5x9oWMP7BU49RP27mjY2Ia1wBgGdfoeuOe2+yjuZBUiYey9oXdAqNkEh3fiz7LKjfVNbJBm+qMQlbn2XV/rw/VPXiobPZsGnfQT1/N9xveew9eeOPBWhsU1c7IPub177kbADDfT3HPiVUAwBXltjsb11gWnzpIdAysFtb119sYEQATPdhMqaFvjHqv5Tpx9Phrq4mjBdzptS1Vk2j0FnS5m7Z1Spx0N6Xj72ekms98s07cOqZzTWK5XxY1SUgA1jyWVHM1yBIsDnqV3DSpmPSQBb3JuLodWFuCDcszQOf7PNs2VSG0qA0KLi3rkhAm0aYuCGmDZLu/zWB23qhJJCbR2Sql5bloUxe0JRJc11ar4Y3BQCbGmSJ5f3Mfe4zn2nbQVLOF1hd27pNYoBEk1sdqcsfD+NsY4CB30y4tMCKT2B0UHLYFKfefXAOgstHmQoKTJRkVSm7aZEOa2BjmeOi02t7IYPdYvdQaTGLIgnBsPLR8BblSSqxsjjDXT1FI4GxppU291DhmPvSQnkZNIk2cpJN3saS1MXn1AOolSbC77LgoGnKEUNZG7aPNNIL+DlQLixsOLei/mU3BuX0S0xYW5eW/+VF86299FMBk3aRrgmyr0ZkIEg3W3IV0oo6o/MwgZqN6jcMk1hcyftMCtb0QJrFXbkP9jVcnS/e2T27qXshwnAyBSjrmWsQodYVdWkNjdlpylBdVD0JXneDGkOSmin2nIFE7jiaTToaEe0+s4nXvvhuvfvOnagspV3JlbWuMc5tjfN+LbsQLbjigXz9Uyk3pGVCrrw0JUiwSpdDatkm5aUCbiKTD/eaRJY9LGX4ToTJ5MgDyuZsSWgNg0XQ3rV73jXHViTtbkDiOR6vc1BFsk9rEuY+OcWTx3y9rEmneMGt5Q2tyAXV83XOC3zjFto+hxx+oqxnajj+Nc9033JrEkERhkniuk4bcdCary01dwaW7xcrkejLU3XTymmy5tx3GeCOHCoijUNoOzPryQZYGkw70PVSZVHgLDHreuGoSzXWjC5OGW1ABX6vcNLUzid6axBgkdoZmElsuqnObakFxbmNUey+vJlEZ17iyOABw5Ow6XvRL78NX/OL7ta4ZoCbY4fpuujF5xjVlTaJZb2ZbAA1zFFLZ6QOq5xhQMVIcJ0MtN+0cJIZviybOvnblDAikjGJzJS0LPP5lCwIKEkPlD83+dhNsVCNrfcPB+drfq8VWuHFNkoiyjss+xux7eW6z6vfWcxzHtsy6a/FDCZvzXZNoY2XDGmfbFzLtWeRye5aHPT1kyYWNako5Mu3CeLAB9ns0L9wW9BwHXNqe2V7F5Uprc3JzjTnfyGv3jX2xu6HlpipQIzUEXW8qSLTfA++8/RgA4Lr9c7WFlCsgfWxZGXs99cpF/NK3Plu/rmsSLXIvifbAhlowmMFlXihG0LVwdbE9EnxGJLRNB+1XE67WLK7ESvO1R5eUk7PP3TREEkv72ZSSq3GeMbYFeWBSzD2ujYGsvz723NuAuwaS2NhBltTcled6pDBwX/8mTAWKy1yntZeg5buZLWmc4ywJj7YkCW2PG6TTZ1oTOe5d1J+ZOxjnpnFNs59t85lf9a92XCeWesuuiYTWekuXCsjx7M5Sf9nS+YIpNx0wfDFo7p7rp2y5qc/dVAetLcdysiYx998AgGIaC6MXeWyBsXOgDDjQTjVvlvT18saotpgLb5IuUUg1EZuUfRMv/qX34/i50hRmbVhvS9EiCWxuD+C1wCA51vwgreSmlocGGTI84WAZJK6UTXmJSWQEifReTrBnPthZxjV5XSYZ1juyyrZyegnSg3yQut228kLiZ/7hDtxbStHoNbo+VE8o/4PtWkNuCvCMQupMovu83XpkufY77aM780nXbFtmvf56m9U3QA/E6v960ep5bNtY2TDWhrZR317bQt6dpa1kYtfsncV3vfAJ+IP/8AIAYJkp0cf66o3zwh0A+JgeGyi4bZMJ2853lbQI2lRnFMZ903OoGagmkeSmx8+pQI6y+tbMbglKhPUyoWty1bbsDPBjyyqYuXrvDK5YGOCDP/Ri/MK3fL5hUqHe1wzAQoI2oG7Ukku/kYnregxlRGzGNW0N59XnTy5AzT6J9X1UP33NxAHodj9Nd9NasEeJ9VYm0V6n3OYuO9GTrjXYo/1yJPycNYn2ca01iQ7jLFoEE5NIMK9/nrupcJ5rZYrUPrdaExC+3rWWOSgkSLSpt0z2ybc9e71rQHLFU4N6o6EA0mNcz9OWWn1bsNFmQOOTQAcxkM1A1iU3ZSibtgPzXHLME+lYz/VS1lpSlte3i0nX16S3nddkfTNk0c4kJmmdStcX5fZaYMSaRAtMijiUnl4umUQqlg92KTUW98K4sHqN82oGISdXtmrjtlOTGDKOgr89Mz1vo3QyfHhCyWKdNJhEWxG1C+bDj8UkGuwey7ZYVu6mapsBD8Ty42kch8mttcCwTEC3PbqM3/3wA3j3Hcfxwf/xYkipEgmmlM0VgJl1VL/w8s/H06/eU3s9JAAwH64+Bvj02pb+/cjZdV3c7rT6Lr9qu7V7M9jwPwwB9XAzAwBdxxIQuDVdStXnecZYvl/IwpoWi7YaGDomSSLwU9/4TP23fsaoSdRyU/d17LNA99WM2UCN6p0yYU/NTDVmZ6NE89i6zGRoLqU2FMdKto+YFJ/cdLWc85bWR7h6b7UAc22LmERiih9/cA6PL5NqgP0cqGvL/z2rxEVVE6SMdDxjPKxB633jXCR7xrTI5mxW/j4m0XzGPnJ2HQAm5Ka1exu0jy0BcAeW1OZK29anz7WwpnsidS3+Heetzd3UdSzHxkLedFcmVitUBVSxNu5zLVuuZatKo/zZdvzNfQBCgz1LsN3SX5T207y9Q9hmGmczdwHUnDE/mFySu56nVdLV5W5qN+XxSh0dLLWvTAGw1/cD7me3qUhrrnXPJ3SrQAFWr24dJA4ynQgMHUeu8Ob2m5/rdYq1MMAqSGzh9JrGNSE1iQEtMGKQaIG5uPIt0LYMrfJSGSTO9VKsbI3D5YcGS0LXRdsa7cTKpmF/LJzSJhtMrbX5fx8o+Nsz2zPqlixMYim9fcY1KjC5+/iK2kdiO0P3UYYd/4lx5efPMLM/tJCsTHnCmcRUcN1li5rc1LafNz90FgDw8Jl1bI5yfczNQKKtTyIAvOIFj9O/6x54QRnhalHkq0k0j9PJlS1sjgvM9JJ2JtGT+bSN08FGCytiD/baF4Tcxtl2ual/Qa72Uf20yXBd7ConAVS5m7p7d5qM9MT+dWASzRYYzuDeJjd1sMbnE02XwixJsD4eT7yPvi8FiUeXNjDIKmm9CojsO7o2rIJEcwGm6rgmxxwvg8Qr9w6sn2c7BzIgAWG6SdJD3WUG49sWbS+EFee2iWhzL/a1wLBLVKsdePi0ChJNJmyylUV7sEfjzM2F9KkUwiY3pcQd17hG/fTVmgG24DKQSXTV4AlR69NKjd3TJMzzwJSb0rsne34Gss0WdUdIfXktuRLAJNpUApUk0LefTQdc9ZOblAQmmeP3/Ncvx6NLm7UxgC3gqP/dtq3mWrKtJpH23xZc+sZljhITU/FmwlSkzWLnokRTYt7PkmDygObuuX4abHYDVPdg5QHhkJv6kneW4D4oSGwa14TITSOT2A3mwt1nLLK2VZ0QYhJn+ypIDJUfmgY0dEE3J5FmIFFnEpNWcxETZiBlbr/5nj+76WFASvzznSfwFU85BEA9gH3GNZXcdB7X7pvFkVICpG4aFQS3ZbLMfXTtnwt0/GZ64cwebc+8scOypuqnYtvCjYOoBQb9s7mb3l7a4gPAxx84gy9+4gG9Lfrpc0izgVMDlte+m7ve0rw3Tq0OsTHMMdtLnVbfbfKfVlmNJdggNBdpoQvCJsMd5iQ5+dAupGxtG+DucVm5mzbBsQqn40YOj065KfP422A61brG0fb7lqSAi0U5nzCVBYC7TpCO76GFAYRQtdUUMNK+utYWK5pJHNZkoa5tbY0LbaJgg+24hLiN0vUqG/dAF4lY0LXcyHaHOrCq99Zf98nQfQZH5oLvaBl8k/kQUGbkLcFGO+PfnBNQjnOPSYRNblp+nmOgaz7IG6oQ5zjLcfQ7ctrvU1MVY9YkzpdyU8Uktj9PzWCTbvkJ1qzlWq4CYHNM/W82CEvg3CbbpXGTwb1i0luNa6xscwhLPbk9oDrfTzq8iCcdXtR/bw84XNeJXe4YMidMXMvSH2xXbVns65JmYlgnrafQJxfglzzRuNleuNkNAO2m7UqIVSy1r3TGorqTeQCT6DCu2WYLjFiTaIG5uPJdIGuGccfyxgjDsdTGE+G29dVCxjWJU43Mj3/d0wEoGafO0KRqQraZ3dhAN8lMz80kfurhs3jt39yG1/7t7XjfXSd1sLc4k+mb3RYUacZxJsOzrt2rX1f1fuFMVi1IZLWyUD/7qXthvbo1xk/+3e34D79/E+4/uaq3lyUJi0kx5Z0c4yAlJU70ftqYxPVhjscfmEM/S/Av954yJBNlkOgttncHG0BgTaKRSVULJvv1RffG4iDD8XOb2BjlmKXss2Uf29zYKLhsPqCGuXsRSWjeA8EmFY2HdlBtlSUjL9HOvrjuAR+TqBj4rjWJk+eMJKI2cOSmZkbUNc4nN9UByg5SiU2XQlcyx0ycHZhTwSHN47SvrmNCz4C1YY7NUVGx/bZsMLo1Ew8J2mxsLjkpu2ALLIGwa3lCbqo/s50lciWBrO6mqZ1FMceZIPMhoJuUnP5u7dPXwmQ5649akzL119uCm0Sft24BwORCvnqW7Z+rkiPEJIYqlcxgzic39bPN9D5eAqJiIKvXmve/fZy9ttP3rKHPtN3frTWJiX17gPvZ7Qw4ApIJ1trCANlo85pUzuXOYdbjT9uz7WMlN93ZcgO6/8k7grtOnh9kqnyMsZ5PE3cQHMIkppbEBWThD/aASeOaoBYYUW7aCebC3SdbXG0EieOi0BNrcE2i4VAloX5vTv4nygb1Nx5ewMIgw8mVLV07QO0lQiViekFE7qaWpy85xREeOrOOQZZgkKVe+Q/JTRdnerjhUOWu2U8TZwBs3ceOtYUVk5I6j/+H7zmFP/jIgwCAL3vySTzx0ALIzMPnvufaVsW2hR1/qlsFKACYHDfKCyzOZOhnc3jkzPrExGLt7dRSR+GyqLahMB6uJAtp9j+i/QSAawzWeLZkqP1W3y0upY7v5nM3bS7kq0Wrc0i5vaZstHy9RQ4CTNaNhQSkQFNKKL2LO+UsGHZtNVtguJhE5zXCkICa59I1buS5JiuTrvZtdYUpfwPgXCSYLPyhxQFOrw1r/cp8GWjzGXDs3KYO0F2BZVszcZvDbIj808Yu5UWL1M5xPYbKW7lsp7vFTfUMnNhHB4sCVPPC4kymE5SH91RMYhcpOe2nrd7SN0w4FuTmd5jYjmZWHeOcfRIdwXZLcOOsFTfuE5NBp0RJcE2iXpADKOyBjTKucX+Gr0+iN0ixJO7092oJ7m3Hv6u7b1ByxSX3dTxzXCZfIUz1BPvYmqQq32c5byFSZqeUvBkklv8PbR3WFVpyLIhJDAz2yv0mQ7FhXniN8/T2SjWJTxIOtK2BLOs0KQPlpmbGu/z9YmmBIYT4EyHEY0KIc0KIu4UQ/0/5+vVCCCmEWDX+vdYYNxBC/F457pgQ4r82PvclQog7hRDrQoj3CSGesN19JbevhUHmZQRNJnF1c6zlpkA4k2j2gHNN/hSozmQp9s6qZrd5mSUmJ6VQ2VbFJKr9bNoxA9AL/t965RcAAN59x3Fd6+GqowAqJnFxJsPVe2fK96v6Rz3RBexnYewjpyaxWiQnzszPyZVK60/BN/XoctVW2WBKPVjGQYXUgZetiB1QE1IvTXD13hkcXdqoyXiAFibR1d5AL7bCH/bUJ9H8fBNVkDiDh8+omiBaWKRi8ruFNClOLXKcUV7UzBBsaBbph9SxAJMMQMhC0sn2tDGJFuMaWy1pfUy4RGaiB6qDNWszDgq5R2sKCIdroi9Drk2KdnCR0DQJSB2Mf27IHcnh1OxXlljYBsLq5lgf7xPnNiuXUmFxqEM4k1hf7LZfx7ZaotbsvyVoCwmIgMn7u821ksbQe03oJJAvmWCbf8oDTO1DZnpJrYVAk0msXDL9aDIwQTVxNtliixywTZbvrEnUzFL1min/dkGPczC5aSJw0AgSzRYwvD6JJpNYf49EC9tsWSeESDltc3JbsE2faZu32pnEyXtUfZ53mPWZXyXF/bWrzbmrSubat0UqoNoY6Q+AyfHbxlIHyX2dbPpkCwzAvv48n2jKTTn19kBlXhbuMK7KOVwKiBDjGqvctAiRmzaMa85TTeI05aY/B+B6KeUeAN8A4H8JIZ5n/H2flHKh/Pczxus/CeDJAJ4A4MUA/ocQ4qUAIIS4AsBbAbwWwAEANwP4i+3uKC1+5wd+PTJlkef6KVa3xhiNJfqpqtEJZZbMwt7EMkECpvuYwL65nmItjb5SqkA5bHsk79ILSQeTuH+uh2v3Va57p1ardhaA/aG9OcohhPpscu8z6+jU9tv305TEFjKM/TL3qZ+5azRPrGwhEcBVe2ZwopTxFoVfImPdR+PByjEOonYbNNa2IB/n6jq6dt8sji5vGteIMW5CouSXnlTfjVFbkghvcElM0VV7Z3UD8lmPI2SbPEZt0yJbLAoviwioSbdej6V+ti52HQtJ/uI6IPtMxjXGPTBuWcikjJpE2h2qSbTNXT7jAlffPBvGxjXiWvxXD+jJ8Vr+vINBopZp033jkYAC6rxSTZvJJLpMaAD1DKCE2ImVLX39C2EPttsWoDaTikLK1sjGVkvkkxarfZwMUug3bnIlhO10za8+xs03J9Nz+ooFFdjMNmwSJ4K98mdIMFs//tXnudBUJKh9bp/vfLL8NgbSPNeu2q/athzri9wI7vbOTi4aVV10+3PDPE4uk5w2xpmOsTlMBhx/23USsiC3tYkYF+2+CV0SCbSfXCbRaVzTElwKCyOVF/5emoBdKt8WXDoTQI56Y18rtfMJ89ruUpNIbrMcV9TUYBJtTC7gl5vaWpx1M66R1esu7CYmUUp5u5SSvGRl+e/GgKHfBeBnpJRnpZSfA/DbAP59+bd/DeB2KeVfSSk3oQLKZwshnradfaULYn6QeWviyLjmqj0zWN0cKwaoZM1CmSVzcrf1ugLqTVP3zvawtDGqSUtc9S++7Q16ae3/Jh49u4Fr98/iwEJ/4m+uQBZAzbikYhKF/n5qewEPmwbbGXos60yiI0g8t4WDCwNcvW+mziQmTOMaQxKbOXqi2TA2Ah5bETugvm+WCly9dxYnV7Z0c2+SGFub5LY8EFM9aYV/t5qZj+V4EuNO7AtQyTNsi6ZwJrERJI5la5DYzOyGLCzo77ZaRt+q3CbtK4ow18T6NgKYRE69a0NuarsHKCFiA+f6N/fbNa66jjxMYmByqwuajYtdrCyxq0IIXdNW67dnSXgAamG4ujXGNftUQmxcyFqSxCVt9bE9rl65oVJmc5N5ILtnNeDwjppcJBcy3IG1U+2q7ViW1zcxiY87MFf7e9II9qqFvHc3JwL8kMSRvf5L/fSayVjYnra53NcTkBtImf/PUmENjnyS97WtMX7nQ/djlBe1FhguUx51nTh3sZI7Mq9JWwDcJvelv9nYtlYm0SFl5t5v5n66/QRc5EF7cNkkD8YtjKD6PPs1GVbvOjnO/DuB45GwHdQNBjk1iWogrWe2AoJEalVmJtdtcmu1P+FO7erDA4LEpnFNUE1iirbZfqrGNUKI3xBCrAO4E8BjAN5u/PkhIcQRIcTvlwwhhBD7AVwN4DPG+z4D4Bnl788w/yalXANwn/F3c9uvEkLcLIS4+eTJk979pIeWkpu6LyqSm165Z0YxiXmBfirQT8PdLivNdmKdINX+qP/XmcRKI93s2ePdnsHSmds3sbI5wr7ZvjZxAIDv+YonAvCzDRujXC+SriqDxMPloou1AJXdgkRdk5ilzoX1iZVNHF4c4MrFGRw/t1nrQchxXDSZlF5LC4xxXuhrxZSb2YrYAfV9e2mCq/epY3jPCWWwQ85znbLPibBr3UvcdWwFr3/P3WWNHPR2Mk/GT+2nwIG5KhtVWyQ7ZGV+JtH2EPUbcAC2RWvYgtAlQfEvCOvbAACJ9oevrd6sOm/uBUJoAqhqgeFWCVBhvQ0s4xrj+ncrINxZU267DQ7+4bNHcf1r/hFn1+vqB3/gpt7z1KuUqyD1MwTqztMmNkcFCln1PASAmb7BpNuYxNy/ALVJAtscIQHHNSn9tbW0PWtypWWDk0xi+z66ald9LJhfyUA1/Or/L7j+QGMfJ+W3QJi7qb29QUuw51BOcBnIcKfq6jWJ9vnOdc+1BZg+yfuPvPVW/K9//Bw+ct9pe3KxMa5NceGTQIfUiZvnzWSRXLCxbW2ScNrPZk0uEJBcsT0XC/+5c/WUNevtrOMsZUghjL+VFZf+OcEmdwfcieHKAHE6TGKalKqcwOeNdsrPOEGi+kn1j8Dk+tr3TCQ0W/CoDw+QmzaNa3RNYltvLj+bONUgUUr5/QAWAXwZlEx0C8ApAC+AkpM+r/z7n5ZDFsqfy8bHLJfvob+bf2v+3dz2m6SUz5dSPv/QoUPe/dRMYj/DMC+cUk6Sm161dwYrmyO9uOdk/yuW0G2cYhp37J3tYWm9ziRy3E21cY2HSSRJwqzh8PcjL1POqr5gb2OU6889ON/H/3jpU/GH/+ELy30MZ7Lo+85oK3/ed2uTmx5eHODwngGOn9usZbo45jqFMfn55GgA8Nq/vR3P+J/vxMfvP43huNBZNFsROwAMc8WckdPcQ2UPMJICefskeqQkmWeS/Ppf/zBe/557cHptWDMg8Mq9xup6328xO7Cx2yH7aAsuKYj3oQsjqPfTGlzyFjJBTIrlHjifNYlmkgSwS2R8clNfvbFrW7U+iYzFJydpxMUvvvMuAMBtZSsZ7W7qkIWbElDq8frgqTX998RxDqhHoumoqY2bbJIhtC9AtUyvcS23XVvCcg7aJGKAvbYwBLZm4iFtMwBbErQquZjYP0/igs7JN3/Btfier3gi/stXP2VibNOBGAhZJLvqm31jbOoO9dM739mkfQazbQO9bGvT0YVJNFUxrnGu+/Qfb30MgEosm/e7y7ijkG1B26TDNacm0Yw5Oj9vAoLESZaaXvcOczCJhfd8u5IrbUxpcx+BdgMa2t4EA1xI+FSqrvu0Ogf2Pok7WW4AGHWbpQQ6vHRJ/aT1TIjcNDfmibbj0WZcY5WbtrqbNo1rAphEoLUuceruplLKHMCHhRCvBPB9Uso3QNUSAsBxIcT/D8BjQohFAKvl63sAbBq/r5S/r5b/N2H+vRO2dE2iOjyjXKKfTd4hTSZxOKYgkcEkFhQAumt7TF333tk+zlFNYlplyIPlpjktJN0WxOOiqmX5+mdfgy+6ocrQuiZ/ANgaVcY9Qgh8/4uepP/WRco543Fp9I3zyU3XtsZYPLSAfbO9Wj9LM/sZEt+bNuVZKrAxcn+vzzyyBAB4x+3HsD7MsTCoHECtC8m8QD9TrDEAbQqzZ7ZqL+G20fY/EG3HvyikngQfObNekzv1PLVjlBTZZzDOxKT4MqZtcjvbIqYtQ9uUDYU+tJOk0VuO6thaFjK0X9X22pkUm3FNey2p6i/aJvdRn6t+9jP3OVNmJrzFiA2mKUe73HRye2SQsBNBIjU/vvu4egzQ93K2pTDqhG+4QuUlX/TUKpHoSsLRvHRwYTJIdDKJpUmWC7b5NST7b2OXCumvx6Jx9vumbSFZPyZhDMUk2wNU10DPclxcGXmgao+0Z6ank5jN7Vklga3BrL3nalsA5npu+1s+2OfJEHMjW3Dvl3I61hcNhcdHXvOVtfvE16u1V0pRT61saWf3JKmOsK1PYhsmE3fqp++s2ZIrQRJci0zYXP+497EZpJfbagsuE1utfrskVr3PFXC4gkS73DGol6PlHm2rraXPN+FixSu56c4yieYzyJcknxhXvq+Sm072s27CVNfoect1zphzSZjctGFcQ3LTtuCyhUm8kC0wMthrEnXCT0p5VgjxGIBnA3h3+fqzAdxe/n47VM0iAEAIMV9+Jv29EzaH6uDSonyUF7UaFcLqcIx+lmD/XA+FVO6evTRBLwmvSayK2xPrg15tnx6iCfbN9TDMC6xsjfSNZquHILzpg/fhSYcX8JVPuxKAenAJUS0kbRbE5oTwa9/x3NrffIGUYhIdsjlGC4Ym2xleNKx+9jN3jeCoDK73zPYgZdW2Qy12y88JeJAVxuTXS/1M4onSUfXWI8tY2xrr5IOrkHqUK7aRmMNHztSZRFuwF5KhcrXqIFkeADxydqP28PHVJA5ziX6WYJ9hdmC6m7prL3iLJol2lq4pGwpf7LqaInvGWLKEikn0bkozKeY5CKlJBKjnnX+yb7qbWltg+JhERp2gbgpssAbcFgCuQGo7WNsa40x5PX/yoSUA1TyS+QI3UmUkAjf96EtqTcWzJPHWxC3OZPqenK0x6ZP7184k2gKAEJaa3lu/ltuuyYn7JkC2SPvZZNJDTDuAyfnV2yrFp2QoX7MlcPU+2iSBbYn1iQCAXvcnjiZ6y3mSJNW2bAk/f5uUakFevaaVZUFMon8/qcbWHOd6vi0MMmyOhji1OsR1+6t6dGcyOeQ6mTiW7cGevS1R+/G3nrdCeh1R6TOb1z/QLjdNrX4CRWvQoN7XGNfy/VyqnPbEqYVJbAku3e6mduMa3QJjSu6mZFwTrLgrj9ssYw0aIrduMykCqJ2Omq+EotXLP3CNa2hS2F6QOBW5qRDisBDi24UQC0KIVAjxNQC+A8B7hRBfJIR4qhAiEUIcBPAGAO+XUi6Xw/8IwI8LIfaXhjTfDeAPyr+9DcAzhRAvF0LMAPgJAJ+VUt65nf3dLLMGe0qjENcFMhwXmMkSLJTtIc6sD9HPBHqeFgxN6AAwEU5dtylJ3V+yS2+/9VgrkyilxM++/U78xz+4GXcdU1n1cSHRSxIdYNqaWfuyRr5Aioxr7OPC3QyrIJHngFgZd9gXdfTZWSL0uSVTmCzhyU3NDJmvT+LGMNfOsLcdXcbZ9aG2aXfJTUel3JSCwocbQaItKRBiCqOymJPnm1qXACogpcWlMGoSbYsEVYOb1Bow+9xNQzLrttYBofVONokSuyar/OkNEnUmv7mP7Ysfc9+A9jpNX1/SJjST7pFp53m7u2nY9V/NSa7FZ6uZEuOhHYp33n4Mw3GBa/bO4KP3nwZQZYPTJLEmO5pmMof3zOjAElDXkDVINBgwuqdnetVC2VamYEpbbbAZ18gAJt3NbocwiZbFbgArOCHTDmQSJ8sp3MY1+jllk5t6ZKp6HzsmjmzBhp+lmzzfrh5xtW1ZEhdtTJZeJ9Tmrfbg3vXsbquBzFLhXMzT6ydXtmo1gG7jmpB+mk25KfTnumBblIcYB9l8AYKYxMZ9Q8e/m3FN+z4Ck+etjSm1KSfC54T6a21OyS7ywPV80y0wdkBJYqLZloVbumH2SQwdkwrhfJZW0u528zI9NMSABpg0rjlPctNp1SRKAN8H4AiAswB+CcAPSin/DsATAbwDSiJ6G1Sd4ncYY/8nlBnNQwA+AOAXpZTvAAAp5UkALwfwv8vP/SIA377dnd0YkoylYhJtIIaRFghSqpOfJcLbJPSmB87omhf9IElNJtH+EM2SBF/9eVfp132Ny4EqAAKA3/+XBwBUAaCLDjffY4Nr8gfqNYlNcBagXY1rKiYlxbiQ1kWa6omY6L6PprmFr/7FtY80zvW9Hl1SAd7LnnmVNrowmURXn8R+JmpBYpaIRgBmz9j5sqau+jYzSHy07Muoe8t5ghQlrxbYP28Y12i5qa8+wZcRttSxBDqH2nuiBSwIawvJ9qy1bZEWwvbY2PS2Y0LHPyTjOulu6mASPUFbc/9cqD9869vX22pjEkX4QzsUtx89h9leil81FBDUziJNPDXYzIU8UJ+Xib313aNAu7uprS5dSTnbmMTJRZrPyZbQXLSGWvnbHC9DmUROgkuz71bFRfu9Y5Vkevdykl0KCS5tCb8QCaLNpKKNybL1sgsJpFzP7rZgwyp/K0HP5lOrW7V9cEvQA+dy87zp/fOMsbDUIcZBdrYttAVG9f/QBIRNKZMXhXd7NF/Y6gQBfz/N5mkLYfxtz+BWualDheJ6vvkM8c4ntAlfyzqtCfoeWm46CmES1U8h3M/SEOOaiWMZakAzYVxDF2Ubk+gXlE4lSJRSnpRSfoWUcp+Uco+U8llSyt8u//ZmKeUNUsp5KeXVUsp/J6U8ZozdklL+x3LclVLK1zU++z1SyqdJKWellC+SUj7YZR9Pr27h+tf8I/75zuPYHJHctGQSXUHiWCJLqoADUNnQXupmEt9+62N4xRs/ihf/8vtx9/EVfZP4mrnTw7CfJjgw38c3PucaACrjDdhr1ADg+Lkt/fvnHjsHALq/om9BmEv3osk3bnPkYxLdjNTE9jWTyJWblscpc2epyPCHzu3SuiE35QSyRobMFaQDSr4JAN/6/Ov0a2aQaJexqVq/mV6qv8ve2Z4OQmxutkHtJRwPe5LcAkqulxsPSZ8shGoSqTUHAF2X4pObeuVXlsA5xDm0WUdEv7YtSFyyoZCsNd+BcvL6aqvT7DEyrnRqvXJTz8Pe1dybsDXO8TefehSbo7x2vTkXny2LZJuT7XYxygvM9BKtFACAuYHBJDoDN/8izSp3NFyn+zpINB2nOwSktmAvhEm3LNJC5KbNRWvo6ZhYyAey/cAk4+x3N3UrXuj67jtWXG7jmrZgthGABQQpwiobpe/gT4rZmKygFgxMtlMfS8e87DPPct2ntSDROE4VI15/f8hc3gy49aZ9LKllDjIDBBeEJbgPIMWRCkxc/0CATNvyXGw73y7Tv5B+mrbERUiQPlE3LP3JDi03DUwAaa+DnZab6mQ+Jcl5a0ktNw3pE2qcD2eSpOV5D1iku8FBYkobKX9eXEzirscdZRD1Wx+4HxujMLnpKC/QywQWBtVB7mXCK8/48L2nAKiJ6B23HdPBRpYIp67blHYBwKHSKOHwYtVewrYgOV42i7/x0DyOlb/nRYHUCEhdzdydCzvPuM1RXnNENaH7xoSYYugg0b3YtcE0rgEcrEGuAns6tyaTaLOfd+6jySQ6gnRA9ZwEgM+7eq9+bbEMEl21pKNyHwFoltrsRWgz0ggJwNLELotdMYLE9WFeOpkRk+gOUihIBICbfvQl+LXveK7eX58Da5tsheuIB0wutkIZkS6LLVvtcAjbY5dE+RdoXZIrut7Y1iexJUvuajgPAD/2ttvwg3/xafzxRx+y1602r8kWuZ2rtcR2MCpbAy0YiTuqk3XXJPobTDcXhOY4QN0jZF4za9TkdnM3nTzfISy1vSaLzyRSJMWXqQYYYjjcTc26fNt2gMlgAzCfi265aTPYBjowWeWvbfV+zUsrlMmyBW2+a6Tax+r/QQ6gzuPfFmy4y1lojjm1OtTrpH6WVPXNFiaxLQITom4mJgNqEm1zshkgOMdZ7tPwpKTtGvEOsybG2hxHXefNLAuxwWbKEzqX2IIbr7tpC0vdvLd1GctOG9cYLLmtBMaFZpAYZFxjrAnbelsGSXc1k8iQm5rvlwUAEZApj0FiEIhRyguJrVEOIerupjYMy0UyLYwBldX0NVe/9cgyvuRJB/Gsa/fiX+49ZTiXGnLTxtCmrIYWJLRdIezBFwWJz37cPlUzUEiMChWA0D1rW6MVAUxiW5/EiXGe2rYmdJCo3U3DFpKTi2RL9rl0FyT2l857jV21HJRHzqzjx952K37krbdinBcTi2QXk3jk7AZ6qcDhxYFerLYxicMy+QBUkuEf/KrK3t1mpGH223TB5loGAOdKuenhxQE2hjlMtzVfTSIZ1wCK1f76Z1+j/+ZzYPUukm0PqIBAomttVfMcyIBxtPtNeWtr9tlyfbW5m+o+cQH3gGllnyV28yxTSmyDjxX/5MNnAai6P/NcumrN2vqUcWpEQjHKJfqNObmSm6pzbWsw3YlJNJJ3V5eqDkqauOaENlMSW69KiRADGlviQrbW5DYXTl0ZEZUkad+WuQ2Cj3GrEhA2JrE9CWHOWyH3NuCuN/N9P5dEz7d/atyk3DSsJq5RA6mDe/cY1/OtzeDF1TrGfC6fXNnCemn4N9tL3c/SwGQat5ZUlwCYwX0Aa2OtvwuQaTcNh7QpUkBSxuYu6y8TmXTFBtrnctFIkpQ7GnSfNo9Ju9x0cv4BPEyilpue3/m/iYl1WiCTSMea0wLDDEhd7exCjGsmFG3EJLa2wKDMDAWJAb0VgVYm0StGFUL8MSqVhhNSyn/Xvie7G0eXFOOTFxKb4wIzWeoNNuj1fjopN+2nbsvo+06u4ttf8HicWdvCpx5ZqkmWXLpu2j5R9M0bzjbxAGriBoBnXbsXb/3kozi1uqWbOfuklb66GV8gtTF01yR2MeDg1iQ2a7Jc2X9TbkpBWK23k2Xc7/3LA/jTjz8MAPjer3jihNzONfccObuOa/bNIkkE5voZ1oc55gdmLenkmHF5XQHAa172NEgJvPSZVS1qknjqv3x9Ei11REBVk3jV3hmsD8c16ZjvvI3GhV/qZcsioyUAs7FLMsCAxlnH0p4RNs9BCANpk1fuNJMYdN8U1ULFtrCTUip2qSVItyWA8kLiyBk1R372yLK+J2tMYnPxGcBQnG/jmnGukkDzhqJhzmhwD0wyh61uki7jGm06luCqvSpIPL1azSe2OaFtQWiTZIbVJKqfTXav/fqfHAMEsA3JJNsWskAG3EyibV+r+Wfy88z+wdbtJXWXQJ66oPp/CJPoMxPz1iRaardD3DUnFRDV6y64jn+bbDFNEmftPKBULidXtnB8ZVMlydOq1YAt4RcWpNiuSc8YC5MewtoI4WbovPvYSLiGBLKAegZvjieTaSH1frZ2Cm3j7O6m/n1UpIPtvPGCdPV/exJ0Wi0wzEQlz7hG/eSUPFmZREfC25vMb5JFoXJTG5PYFlgC265JvBfKNOY+qCb13wQghTKgSQB8I4Cl9r3Y/aAg8ez6sAx2Eh0kbjnlpnKCSVR9Et3a561xgbl+irlBhrWtvCaZceq6czWx0sVDP0lW6WKktsaqSet1++cAAMeWN3XW3FuTWEinRMNfk1i0GteE3KT08GfLTQsKEu1yO5LHZImYMK7JUveNDdQniaX1UXCT1iNnN3BtaSlOwWHlbmqXZxSyWvh871fciO97Ub1TjM3wJqgm0SEbOreh2NRDCwOsD/Paw8dncDQyGM8mhJjMRoZYmbuYxJCFnSWxHiAt6+6kx63/sl1fbQs0ug5C7ptCVp/TSyfVDPQR7b00J18/fm4Tw7zAM6/dg2Fe4Egpoyajrub3Aqp5rEutU1fQ/W1KEE3m3twvggrc/GyDVZZvLIC+8mmHAQBPunKhfM3OgLdJW23SstBFK723GhcmLauzZvR6+/YmnVT9Y2wOrIC/dszPJJIrqvv6UmNluV31elAPSOZ3U7XU9deKlutfbcseXPoWkYBHbtqyj+Z79di2IFE45v/ymUgtMx45s244CU8m0mjbbWZiwhkAu8fY1iX6Gd0mN20cD4mwJEk9kdB+/AF7Yqwt2PMZDrWN6xqk29jmkAREqCmVXlfscE2ieW1znjdNosIVA9THqJ/mWr2TcQ0F3HQsg2sLyziEzGuKKTCJUsqfot+FEO8E8HVSyg8Zr30pgNe278Xux2PLSpr52NKmlk1qStzDJPZSoRchgHpgZWmCteGkhrkoJPJCBZbz/RRrW+OaTbZL1z0qHTkJ3/aCx+HOx87he79CBQ9W9gWVjIpqF5XkVGXafSYVuech5c4GSwzzotW4JsgUZoJJ5GV/XMY19N80SXTPSUoO+BzZABUAE86uD43JL/HKTU+ubOELbzgAoDJ16XuCe7PdiQv2Zrft7qYu45qVzTHm+ykWZjJsjPJaZtNldkD7atZ+1bdlz2LS/rtgazYckv1syr1M900fnH0SvduavE6k9B9717jcuI6s++dZJDeRGwsAW5DYJm1V+2ifEx46rVx6v+zJh3Dbo+dw30nlzpwk7sVnJa1xMIk7EiQWE8wSJY2cwWzR5m5qZ1LGhgrkhTcewk0/9hIcXlSMoquOa1xIzAXZn9evrfbsfyP7jMAFoeP6b4tKJw2f2hf/Lrmp77r0JRerudJRk2gkuLKUt5CfNOVpn39cC2TuQj6sJrEpSa4+z4VWJtEpC3cZN6njf+2+GXzmEeXCbfbJBSYTMhJdpMzleWt5bjS3F1rLOBEkhiQFGglezSSGyLuZcnen4ZBsLx3oUpOYWhK84XJT+zOgOZaT/NwO6i707tZoE+PK9/lMEJswiQMnk1gEXJNNszo9J4ca1xhMYluPROC81iR+MYCPNV77OIAXMj5j14Ikd8O8wLHlTeUsWZ4sr3FNWjGOgLqoeomw0uhmDcv8QC3IyUl1kCXOIGVc1tkQFgYZfvFbn43986o/nYshIhkVLeTXhmOMTJbIOc79UHTtIxX2msfChM3+3wVa6HSVm7pkws0A7AkH5vBA2YokSxKr+QNhs6xTBYDljVEtS2lKmZo4szbEgfI8/V83HgQA7QZqC/ZIwuOScQL24DK0INqWuVvdGmFhJsNcX7HbhXH+6XzbzsHWeHJBrrflyGICbaYwtuAyrN6vubAGAhaESXNBUr4esCCZkPYFLBCABpMY2CcxJFFiLmatcl8qbWi5Rmz3KNU3v/CJ6hq+/+RquX+JN3EE+Baf7uRKV9iCRNG4lm0ugX4JqH0x0zROoQARcCfu2gNSCyMSwCTSR3KDy4n9NLLh7eOMYTJs8Q9MSkd9NXFJIqzyN6Dep9KGrHGfBsa/E60DwpJUlgV5SJBouU7GLc3VbeMqqbl/DOCrk3IfR1ftPABcvVcxiQ+fWa+15TL3C1DBlwwJUizXFhAWANcdp9vHNdud0LhW5r4xd4UmJZsMMO2zv05Z/bSaybS0k2qetjDG38YA+2XTTtNFh1eCz+vgfCJU8dUEvc9ngugaY9bpuxxpQ/okTtQkBstNi+pnEJN4/lpgfArAzwohZgGg/Pm/AXya8Rm7FuRoCgAPnVnDoBdSkygnFiRZQi0wbJm3MohJE22mcLKsYZkfZEaQUh9HdTYuuBZ2tPghN82Vzf+PvT+NtmTbzsLALyL23qfLzJuZt3vvvr650tN7T3pCEtJTh1os0ckGWbRFQRmQjI1MW1AYYfCQGaYQrqrhYVcVyOAqFwUlMwYYsA1VBgRlG1OgKiMjGdGo19Nr7715sztnNxFRP1bMWE2s5ptxmnsyc88xcpyT++y1Y+1o1ppzft/85g5t24+1jSmRil2XPl4KNSht2DmVzNjxgXl9EuvKziHG4Qes8/Cuu8djmxCfgjv97LNtO4pTvPEoQBITwfbjzQ6n2xbP3zBB4h/8JR/Cf/ndX4P3vXAyHnNCGy3U2QCpAMz8zPdbSquprhY1jlcNTjc7T5I7W5PYpmsSY86P3eyTU4x+tx7lTTss0u+J8yHHi9a/ZFZG65Db1zRIit/La7iPUo6uogWGF9zHEIrRGc/PMbYmvDbU7n70Hc+hrgy1TD6r5HymaWwXjyTuuj6zBg3zbKfzLInJ5GoSo4IrGSSxFDQAmNQ7MegXEKtJzI+bIon+56XHhYEsQ9Eb3ju5T8zPvABN7Pxb0bfoHIOkQN/n1SDHeU6+G9c2oOt96jqVuKumNFVXOCx/PF1yK4X2lGixdeL8iz/z9qEet+/hqZuHawkbpIdBCoMAp5IrQImmGj8fWuEadhlr6un9v8sk5c2Y6Zog40r31pzSjZif0HYFddMSkhgMFh+UZYnNNbueGR801T87NHkP04Lqzcdb/A8//tqkdzYQCbYdcCFlk77DdAuMQLima8vQNnChSOJvBvDVAN6squrTMDWKXwPgiRetAUwQ8MLgzP/s66c4WtbjDVKim7p292RlWmBEMiQ7B8mS3l2ffWAy9EfLJpoNBoyKZEm1MnYPj9TWIUh8tN55TkpKpKLLbFLJbHDBIVwEG3bOLB88j+SGJjRJS88I6HajSqz5+3uePx7/Zh5s+zmhne1avDxshvdOt5MFIbaIiIjF8wOSuGhqfPQdz3nHDI9l62zyhc2T4xGOTKpwW2pgjlcNHm9bnG5bHErbgETAbebaJ5HjPJKYz0jG6T+ljW3qIAMEujEDSYwhZ0wgG0USWXVT6rmxnxOrLRwRgxxKmlgTXn+0RlNXuH20xN2TAye5Uhedz7QgxuXQTVP0w7QseVege6Xp/EA8wE99t6JIThQR4Rw78177mgluyoiUtrbNjnOfG279AabnfxSuSQUpiYB749B9s8cb3tcRwbaMUyOyw99DBBIoITDx85FLCsvxwmstn5ey1FpSosWm7n/Zl1+6dTius8dukBigZvIJlLqpMgCOJdjH3zOHiyHADNo59bnKaysQ3/O7rtCCJ3HdDHtFt5eyqHgs4VcSPAMwSXikahKvqgWGm6hcRNbI5LjBl5Rp5/bf7/hTfw+/7vv/Pj41lKzVlS0dmwAVY0Im788Dzh5wnhYYFN10lf0zHST2ff9Tfd9/FYAPAvg2AB/s+/6r5javv272eNPiPc+fjP8/XDajo54qWt1E6HavvnwjWg8EWHqGK3bzmftrHK8a1HW6Jm4XCUZdS6rvDQHh8apBVQEP1ztvA0qJVOToLnUikCoJp9h6LKYFhvk5pwWGywcPx9l2I+bvIugjr6UKxAGj3HqyWuDm4QL3Hm/H5s5CLYitIaKcevfkYPpHxB1y2XjzfdvmLf4lx/Vo1aDvgXuPNyNtqFSTmMs+TxBBMts9pW2Rvc0iQWLJLQzVTTUCEKHgDVP/CKRqEvOOLrOZtp111FOqie5npo6XSnjcOV6hriu8cGM19l1tqiqZOCqrJl6OcI2slW4SyBwvUdtDOGmp5AoQ3/BTawLbJzFMXDCKhECYKGGSJPraNmC6BvXkGCB2/s1PrcDRblh/Ug59mBRg+t8BEeGUjhH7GN7rBTekkmckaKNqEjvddUvtb0XhmjpRPjO8drioxz3OFa5LKecy6LY2AK4T598cL39O5om7TJ+10rHk79HrraTSAoLuFfbSyHdjUXHX+r7UbmOYUyIBFN5bueTzRdp4z2X865i1nTnvVSWCN/H999F6h3/2aVN68bf+yWfMsarK0uQTfnIO4JuUZtEtMES4RtsC4+Lopua4ff8zAP4BgJ+rqqquKmYW199Ot63nVBw5NYmpIMWoO/pf/z13jw09pkA3FRGTzzxYj7/nqJx5RbxET65B6a+qKtxYLfAwQBLryE0sMvklJJFtmiqmWRTks2TDYXnrQhsTJCG8BiG17+VbNngrLSJGubXGneMV7j3ejIGFIJCxMRIkCt00tBySqK1JnEMtExNZ/uPhfL/2cDNpG5BEIDM1iSlkKTfNON2UVzcVx4ChtprjzXe2QiSFcQjDcUwW331fzvo+X2/sot8pi9XJAoZuKoj4izftc3PjcBF10IBykX4si39e2zk1if/N7/46/Nj3fuv4t5SUPEP3igvX+Eknf0x8TShSWxO0UcaxA6Y1YGrhJvmduJen4i6FOSYpaekWGHKs9PqTu25+UqDry8kmIBakMEG6H5CacWUkN03t043j6r0LyZzM+c/VJK4W9bgmTJHE2BzLCQ9tbWGU3UEmJcMliKV3x79bflwUSez1iSPz/9JaHqtJZOqUI89oYS1J0StT95alm14RkljpgkRXYyC1/gAYe4MCwA/99OvD+83/YzT5rvCsAY5/oaabinDNzo6jWmBcEN20qqpXqqr6y1VVvQZgB2Dr/Hvi7WzT4vbRamxXcLjiahLFmb9zbE70oqmxXNTRwNKlm0ofr88+WNu+eREHQY6/LMDTMZ61GxDeOFzg4ZlRU5XPii3+LLKREk65iH5v8p6jlZJuOlAirGMdCNcEc3SFJlwkMUU3PVw2uHuywmuPNl6GLBWkj0jicTxIjBWx29rOPN00PI3GASJQs5Tj2lRjsuL1R5sxQLc1idNrYBTP4seK3VsUbaieUlao7xbQjRhlu9g8KWdrvE/cOXIOIZBCElPJFb4m0d3IY/ckiyTG6aabMdnxwg0bJD5/Y1UWrkkFwIm+necxl5q/WtQesiFBQyzBVaKAxmvi/KSTa0nFaaLdhpmTfW3O/S+/q4Vrgs9jxzFzLN0nub0jldzKCkAESQHmGQXm1yQCPt3UOOT5cVU17ZXLIYmhuEt5vZOPTK0LWeGayD0iLTBWTT2W6sgeIp8XC9qoQCpIdpTGpcTEgPw1CK81QCYlw/t/FAXLDosm78r3ceq5ydPko3vAzGRy2+Vp0zG6u8y5rqZjBWm77BYYsd6FDOjgJmoWdTWpYxfbOAv1Jx26qfxMtypTXG+2BUYoXHNBLTA0KOCfArAB8E0AHgL4EgB/FcC/rviMa2l93+PxtsXRyjZF/oK33RxpS3l1U/OeH/x9X49/8G9/EwBgWVfRwNKtN5M6wc8+tEhikrYVEchxLS2SYOmAJweLgW7q98BL0UZzsvVAJNNEqjSmnMKf+OzDcTOQOR0o6aaSkUuhljJHeUBfchCRXLExYJIIh8sGL908wGfurz2KVKq2U2jKyd6RkSJ2udey9OLYxtaXFUBTtSVG8bYe62Q/93A90k3lnKSSHqnFLqRxAny2eyKbTny3kO7FKHmauegFIOQr98E4Fkl0j8dQMt335cwNCmL3JCOkEcs+A75KrziEq0WNmweLtBPT+99heiy+uTFru7bDKtG7M1mTVQjc6hSSmEnopFDSYkAapfMzKJ35OQeBnEsJ1NYkJoXZCntOU9fRIKXk8IZJAWHWlCwMAPpC7Zc5lvmpFfOJ9crtiCAxhbblDldV1YSmCkhNej4AiJcbDPf/osaLN6Z001htJ4CiwNdElMd5PTnHSALCnhNlINWxdGv7f0lKUv0VI0mSvJBJPHnd9oWEXwQ8oER5In6C8a0yYxIJiFzPz+UgJHMZNrIHZG1RIoluDWYOSVw7gpeffWDq9MW3j9Hk2d6d3jxHJLFENw1bYPRkTeLF0U2/CsC/1vf9PwLQ933/wwB+C4Dfq/iMa2nb1vQvPFo24/L1pe+5O1JJ88I15j23j1d4aVC/XDR1gsMvTkU1oodt14+oYoq2lVMbNeOmympmnIMkHgjd1H5WLNNRUjpL91rK19LlnN1/+qkH+Mb/4O/i//x3f8LMYXiPugXGkP2RRSnMUm2DOT7vICJHyya5GAPA2c7QTV+6dYDPPDjzKFKxwMbMJy9KcpHCNT041Cx2/sdWKcPi1vWWNpRrXdJlNqmmmt6PTCY5ViPS9/lF1XymP0+a/hM6yR2RtU44JCyS6F6DNqiTDW0MbIhnwK2dyrEEcg5vChV/vNmN98fLwzonNRupnqvM/X/hdNOMU2JVWP1zWQrcUkhKqb9fsk680AMVmAYArHDKtCax7OzGHevssAjaw9HYgEhQVNhzUpl8N+GZGgfY563UV04sTLB0/Tx1WbomUUk/jI1jklsybhpsFERJEvvGpjXO6LKp8YGXbgAwyt9iKUpmMeExI3ERr+UlkpKJQKp0wUMEkj7/Vfz8M0ImsYCjWDowGQPiu+kp0Kl619wzumjita7ntf/wb/1zfODf/q+xbbsxme+CAKx4orx/0aT7KwqSePvYonHye0wVmBKuCe/l0XEqOUGSvdbWJF4cktjC0EwB4F5VVS8CeATgHYrPuJYm7S+OVgv8e7/yo/iOL30nvuy9d2yfREULDACDumks8zZFEgGbeUg9aJs2XfsFOHWCwSFbh8Zw8zCBJKbQhgKyMS1Qthmb7LjIeXntocnA/LUf/nlvDgeLGlWlaIExbHapHjwhtc/9jh99x3OFmsQWR8sGL908xBuPtzjbWuc+rIcTY8R8Ug5TSUksVv9FOSQxx3XIsEv/RsBKmY8BdwGpDi0a7M1sbqxRdxxp/MPramfXmX/pWK3SIYxt9sU+iYpaXndji230o9poISMfu0fcdePzXr4JwG8blKIo5Y53GcI1MTExMctm8F/fdV0+cEs4yWPSLyZck0jcFdVNI2uQribRvkbdk/V0jPt5ueO5p6Sj0P743sHsOdHkViGYCpMCXVdGBGVciBLxQbp9jVm3qpgjTyScUuqmVAAWCTZK92Tfx1gvw/3fVPi2j70CwF+n5iCCcjz/u5mfWropxQqJ7lPEeZTjhUnJ/LCJmjAw1EQTyY5YYj4buAXnEeDrlCclH4U5xlgygPUtYpZqbXNe+wv/4GcAAP/jz9wb15q6StdNxswNis36E/dB14Mf+M47R+Nrd4byohhzyyZq08cO+7taddPSTRkI11xQC4w8zujb/wfALwXwlwH8PwH8AIBTAD+k+IxraadD8enRssGH3nYL3/cdHwMA1JW5SAzd1LVVEkm0zZffdusQ73/xBD/x2UcjqpjcRNsOy+wDan6GWRsXSTxZLfDp+2dY1PXo+MdEKkq00VQge56axPtnJvfwyTdPvc+u6wrLpk4G6aFZJFHQF/9Ycv7d7/Y7vuGDeOX2kck0JTJ2fd+bthDLZizQH/nntU9jcJHUsSYrg65OawaGvxWClJhjwSz+cSSxx8Gyxs1DuxxMahIj16DNbBwxtFP+W6INzXOahjkN55N2dicOSdnZitUfMQ7hIrJJhWJK0zGKmkSHJpVDEks1iSkETOb/4VduTf6eqn/JHc/cjxebSd51aSVom0nWIYnpwDnNnnATd+6fi30SZQ0KnN0ySo3heH5wyTjkbhKO9dlCYR4KScwgIu7fY3OMIc5uX9CYRZFEJkgM9kXN+qNFgGPPAEOvryoEcxzTYtlxMQocq67Z9j1q5/PlvjlY1HjX3WP82d/8ZfjoK8/ZcUECgmV3TFE6GVeeo3otd5I51biu96gLzrU9njknY0Ba8MmjfRmJIB2IC9dkWSHOPTkqciN/PoBEW5YCCp96tttMAi7VBeC89pFXnsMn3zzD3/vxz43Jc1EpBfiEq5yzlBAlYAGkd905xo984j4AiyTGkluukE7K6nCe5xGuuWIk8TcC+LvD778LwA8C+BEAv17xGdfSLJLonw6BqBm6qWuLukbXTx8Yl25aVRV+9Ze9CwBw77HR/kk9aLu2rG4KxOleMu6lWwf4+XtnXtuCGLJk4fBSsOe/XhSpyDi79x4bisobw3kYi42ragi4Oc9F1L5S6FdMIOH3fcvn49d/xbsBRGD+wTZth77HWJMImIDWPY/uvHPHcy0aEHXsxjZ1yLWomZjUJLpB4qhumkGycs51Tt209N2mQWLZaQrpXkxAauY5o45FAtJgHHP+Af9cssg9s5ka52aYY52uCc07FolaOqduT4Rrvvhdt+08I4FUCSW9DCRxm1kr0xn5Mm0xKtyR+X6xGjX5P+MQTvskJocAsPdrKKbBIFL+HPnkylTJMz/HVCa/lGBMIQ4lumnoXLtJlJzVVVhvPE+5lT0nE7QHZUc+pEla1Kw8z5jiYg5JbxIlB2FpxDd+6OWx5EbmGOt3SNXtqRFBTObIJiXdY8g45v4H7J7PKrdGhWsKyY4Unb9UJ9jE1gQycRSj4DKofVSZP/VcN+ng6zwmh/vMg7WXGEq1QIqZJ1yTEVgTJPG9L9j2ea6eQ7oLAJHwCIPEklLppE9ie7U1iX3f3+v7/vXh99O+77+37/s/0Pf9J9nPuK72eGMi76Pl9GQ1EXoAYDaOHN0UmDp2YXuDb/6ClwAAP/rz98djmc/2P2/bpSlUQK5O0D4gH33Hc3i43uFffPbhuOg3EUeyVLcUIjbhuDk1iRIcAua8uo7zskkH6aGJbHGqUWuu+bU7x3ChE2rpwaLGK4P67c+8/tij9gGYUDRKAUCsiJ0JUqJtInpOXTO22AkFzqObTtRNp45F1+sCgPG/uSCxmt7/8nrOQoSbzloH81Q1BZ+Myw+MbfYhBTq0ZcJBi5mrbhoTxCjRP4ECkug8Nz/0Pd+MP//bviIYN50PkL52sfXnvJZK3AGRDO1gpcCtruN0u92Y9IvTTYG400Spm4ZIYnLEcLwkup0fF6J0fHJlWrfHjAGme0dJXdM8oxEmQ8HhDdcuU8OVnaKZZ/AMMEImMbopg65WVWRtJRz5MLhnAikgjsqWkMTUHlCqnw/3t76wHoxzrMJ7kksuuu8Nf0+Oi/gzc+jd475dOl40cMhT0IF4oqQtrCVhICvz1CeOygmnEbWM+JM54GB7wUwSAHgwMNMerXfoOrsvp1ogxcxtL7LICOxIXe6H327ZNePxIsyt1kE2UzbxL9RIYmfHMS0wLgpJrKpqWVXVv1tV1U9WVXVWVdVPDP+P6/s/QXY2IonTE2oc8rQIzWoxPYXLBPri0k0B4AMv3sCv+pJ34H//az4GIJ4NA/K8biCPZEm9zBe+4zkAZjORz6ojjmQpq5tTSDNzKdUDTc/lvVNb7H627Typfg0lQbI/qfM/StYn5phSl5X743DZ4B0D9/zn3jgdERW7QCYC58zxYkqe7mdGxyUCMCaLHBXgGO6vY0eZ7kgUd1OOtYP2po41WVcJCmicgsvXJMp5YTPrk6bglGMnDrluHDDd7C9a3dSto0jTTdOfEUMgzfF9ufUXbhz4cvexTHdhQ2wSzv95LKcEHaP7AkTglghu2q5DVcWvXaqd0RwkkauJs58/jiMDt5i4CJMo2XnHIhzrzPkvCgdF7v+icEfw7LDCNUbx2DkOgyQmUBsOSdQ55ECGJl+iO8YCgD5fbybfLVyDrBJ3Yn+boM3mJ5PwiLI7MiNTiXJ3/tFjRRN+c+jd5b1N5hnz03JIrnxuVBQmm3CdJo5YVHwCHpCoZQyoSLd3ungmCQA8WBvQ4eHZziCg456YRxL/3b/2o/h1f/rv4/FmNwIOZlx6nvIMvM9BEsWaJs7Uy4nWyPHkvQDAt8AIhGvYFhgXWJP4JwB8OYDvAvDTAN4D4A8DuAXgdys+59rZ6cZc6KNIq4IU1cVm0aZPnCyaIZLl0k0BsxD97371F49/T/XpK2aMQnh6MGmSDpiA1H6ndJ9EG6Dls91qamXG2b33yCKJ98+2Hm972dRjgXzJRKWtGemmIZKYV2BNqcvKQrBa1Lh1uMStwwXun+3wyu1D77sl24kkFuVYETuFJEYpSlxNXBxJNCiR6yhYJDGuFFust4xmyM3PkpDAVFiBQwSBGfSfCZJS3kRlXJh9ZsaF36+sbho//zEzWVN7nFSNYJ5+NV1HgHky+Yxq30WXpKTqxIFMwqP03Rw0190itplx8ebefZkiGRmnQbIm9yShChyiX+bz8uPcYLauK0pdWcbNUdeMrlt9nrYVJgVY4RqX7iXB2KXVhEbo3RyS5SeprHAKE1zqktCp5Eroz4QWa5Mic8jP0WflaPok+s8Nl3A1x/CPxyYF7H7jv547Xix5V0peJMdlg3v7PjEO8Y8JbhVqEhPMiTySyLPENPZwQBKNUKOLCKYTCQDwn/73PwUA+Hv/4jWfblpnhGsG3zAFMEWRxGLdqjxvwwt0C4xAuKbvObppnQ8DNUHidwD4WN/3rw3//6dVVf3/APwwnvAgUSDjGCoYywYAeaqFIIWh4EqJnmEXrBiSkp5/CurfdR0OBgrtalHj+aERvEUS030S8z1xYj3YynL3QNwBfeOxRRLvn269AERFNx0ebHm4Q8faIom8Y+f+X8a9884x/udP3sfbnzOoYlr+2dBI0kjKdFG1CqCpb5lGEufUQ5h5TpMQUp/b1NVAiUopxaYC7njGGshnkmNOZI8ylXMRLKzyESWXsAoCFeY8AuLc+eNYJNE9L7SacGKTevPxFvfPtnjX3WOvbqSpq4ngFkNJSyWO+oJDnkoclVTcGKU51oSqXmYKhOtCvil1blyp3YZ72UrPjDuu9e6tnpKtB6aBAxPchPWPxspriZmnEe7gkyTTfYoR7ki17mFqEvXCNcO8ehEl4YJtMycfkSodLlx/wjmk5xhXZS4il5E9oETbbSTpndoXc3TTGJJIBERugn1ctxgEXkmdHgOpkJKZnWGkvKErB7JAPEg3yTTinGivW/SccAGwNrjPCRqmvtvRqhlLeS7SRrqpIILD4VPCZaE9XO+8BE8OSZQgcdXU+H/97l/kXY/UnlhKCFjkPnRmtMI1bfmGBIAmTwbVCNekjkbM4nrbNhM8pJDETUAddU2USFNBSpLDn6A7GvpDev5p9St/Uxz7mzk1ienC2gKSWAikJmMSlBXAPtTAgCQ6VEY13bSuxu+XpH8WgvTYJur+/b0vHAOwAh6pcSVBjJSSJ1Di/8dpqkz2P5rwiNRE3DiwFITYM1CiF8cy5FSQkjgnxe8WLKxMuw1gGqgzyoJArJk1Ny4UjmgLiYvlWN8c36S+4T/4O/jaP/GD5rO6YGNLIYmFBFAqcZTt3ZmkQ5Wc/4tzEkrIRqrnJ0sBjTaKziDp4ZjxmcmJhESSaT14ZK/1EBgS2Qho0yCOFyI3XQ/KIYknGMv3STK5VVhL3DkyDhoQZyWwSK57i7AIZKwNklaVmVVzjtUOd5n7GMhTCd2/x8bFgg0mAIspt2aTixHfiaFOx8QCNfRuGcYG6dHawraMcMdoyW3huo1iVu456cqJoymVeXidedaCxzSXyDleLUY9kIs08ScfngUt3zKUZPe1MUh0EMhUuYcEiQfLGp/38k188CXL2GvqaX/XEvor4wDHL+lZumkoXEPWJBboppog8S8C+GtVVX1LVVVfUFXVtwL4L4bXn2jLChAk0BfbIysSWI50U3/cJkNRBazzFkNSGF59SVnq+RsmY3C4sOpLWtqojEsHDanvZmoZUw+o0Bvvn+7G99S1yCTHH9DQZHNN1RaONaGJOaabgss5MRfo2z5mWoPeGNRAYwXiAIY+lfnrluyTmE0KRBwLgpKWzMg7tORXh0Xuaz74gjcuWd+WOGQc7Rw27UJNXPjdTOBGLqwiJCCCYEp0tSfGAFNEkKljkXl2scAh89wAcRGGtuvx+tC8etd2HpoZpe0SlLTZimyJeySbfa6ntOnzmAScaaZGvCalmMyR5zuS9NO0/KHW1ghtlOptFtk7WNSgC+5jeT1/PP++ZJMrKaQ6GzgnGRB5dCNMCpRq78RioiTs+Q8TTlTibpLMYejFetQsdTxauCaRdMqtXV7SYpx7OeAORZFK42KlIjZwKz/bHgJP1ISGzzdD5Ze/971/vBKVH0ggwF0BSRwDWf/5pu6tCLsgN0U5/5Ne0W16bT1ZNXi8aaN/m2tn23b0sx+uW1/dNCMCd89hsz2SfuIEkihsnYMmQjet60TpWP78T/r5juqmSuEatibx7V+cn0/5E0b7/QC+B8B/DOAVAJ8A8P8A8L2Kz7iWlqtVS9ZxCQIQQxIl+x9kyYt00whlCChvGjmapHtDfuKe6UP45e+7AyAeAMu5KNEYJoFUQe5e/pZqyn73ZIVP3DvFm6dBTeJCjySmgm2LJOocklDK/1s+8jL+k//ll+HjH3h+HAP4GTvzvQq1NglEECDQthl1LLHrJvOUe/YHvusrUcHn2MfUvSwlOH4vh7VOgAJJjCCQLI9f7l+Nuqm3IXZ8TWIo3MGMC9cTuWdTTkmujuKff+bB+PtnHqynxfaTZJOxEithipjlkytAugYyHxCl60PEcmql0/em12Rg2jdPrJSRTyOJXZZqByCREMgpEto5iRlEKjnEjIvQvbjgJoHalNaSYM8pSeS742KIbBlxnt4nxRYAQVKARRLDgE+jdulft3JwXyWeG4Ze7Lc7Ia9b5FyWrl0uSQLkdAimVEcz9/IcPZSUKMGI3f+q2sKQFULsG3IM89P/vJS5weXCYTwx6FIs6coIN2kTR7E6faDMbgLKPqhrx6sFfub1x/nJKO3R2qCIh8t6VDeVueX20jcmQSIcJDHdhm29M0HuwTJSqlZHzkef1xcBIueSVTed2wLjPV+Z/XM2SKyq6huDl/7O8K+C9Tm+BsDfLs/k+ppFBeM1ifGiednwp58nTk0Y3PB0U10AkOrvF9bnfOPnv4Sf+OxP4mtefXGYe1xZDShnu5PUEyXaIPOWINETrqkrrBQ1iW1vzsWkz8xgWyKTH1MADRGAqqrwzR9+2flecvyI86k8HwwC5kry+01yyxtNqd/Y3ZMpPz2sEZExAO8gABxtKC7mw6ubdsGmzTi7YT0KLcChdMiBaWKGba4eu24PHZr2z9879c5TTBSGSUCkaKNA+dmOq4bmxtTZIPET907x1X/8b+NP/KtfNPaUzZltMZRANsb11a136um2FDFhsBiTBHASRxFHPssSSDq7OmRDjk3d/wGSbuZYQBsC5F5D5Ywh3FkBmqYa+5G5xtJNx5rEAvI4zjFAcxn0xfaptK9RQXrkeQM9zhsyzCM7bIISAXm0B5gm4MTkOUqd06lyLj/H+DgiUT4JiLj7OKRc08Glk0gwc8yPcxNO4nyX1kkZp6XJxxV3y89AmLigkruJRFquDvj4EpBEQRGfPznAJ+6dYuPUm4c1yq697ognPly3XgIqVxaxcWoSQ4vtb4a1lf8OU7qptgWGo25aEKVhrPQJfybx+rgmDb+//9wzeQtt16aRxJhCEWAXsdiDM2asg+zDNnMcIB3slTapmEMin+M+oH/gl3wIv/3rP4AbB4txXApJLGWoUgFATs1wkXAKd12P54f6vvun2zHbVVW6mkQjXBN3mMz/5bvl5jjlkY/npOB8aqX1s+IuhCMpohEyjsl2x6nTaQEOwCDjU3px580lNsfJfezMI2Xx4JKn/8g8+ZrESAuAsh+JJkBXmfMfO16pR1ZKWRCw9RAA8PNvngU1ibFaJ/OzKFzTh+tWOblixvmvuVnc+Jg8kvgTn30IAPgv/sdPUEHiroQkjnQjZ47D4RkKaIxiX1oTJvcWysE2EDq7evobQFLLQiR9zK5kh01qLruujPbLPCdIYiFIqRN7cIk+GqMEMqD0WF840k3LVNpU43IqaAufGwLtqaoUSqcPNkrBVEwABUBRcCX0E6xKaeGerFLjMmMi6ySDwFv2ln2NqUkMkXQbSOWPF1KZ5TOoIDHi35USfuGx2MSRmm4aOY9mbPqePDlYqILEXdvhB37oZ/Grv+xdSaBF9oDnjpb4xL1TPDjb2T0xAcIAGMs2gCnddNFUOEso7G92Rk07tg7FFd750oFxzWNbYITCNV3L1SQWLBsk9n3/vnMf4QmwEWGKBYkJ9Cu34aeQxLG3YkE4JRaAZbPPSSTRd0CXTT0GYwAmUtPuZ2gFV86LJB4tazR1ZfokOtmnRVPjEbmQWLpp/DyW6DFAnA5VRs3i57+o2hejVg4/WeRYJPkZhzDXAmNOvZn8LTXHZE1cYbOZCt4QTlqQmGEConGewfHYmsRQXIStSdQgibnsp1BdAOBnX3/sZcBjTgVDSYshkPZa54RrpkEpdV9F6M9zrVRzHENE2KQYMH2+c8mVmLopg4iMddEBksje/2pq2QzUwDueE4DFmDihRe+vEpKYW7cy8wxrEmm0MwyAGURq+LO6/isatHG1bTsPETc/S98uRgsv0a1TNG2tMJtmjuF5lNdzFq4nPZFcGa+1khVi6aYyhguAY6wj5r5M7cH59dWfm8yXqe8PEXGgxECxc3ItV75hkEReuOb/+9Nv4A/95R/Be+6e4GtefSH6HtkDbh8bMZY3T7eOL5neS4WmumwqPNxMhWtSycz1rsv683Oebdlnxz2AbYER0k27HbA4SL+fNI1wzVNrgiTGNrkU+uXWzU3GJBQJ2ZrEeGax7MTEgqJSrc1c4ZqpI1muW0r1mxFn62jZ4HTbeovfqqmw3XFIokhCl9TYcuckFtzQbQrC8084yX0fNmUvZ4RjyQS21iCF5OadhHRNYlrdMV5bCDBByjRwZpxdwK8jKh1Lxvkb4uXWJIbPXIkyVFXVRKRCzKXg/fhnHnrPTYw2yiQgYggkU5M4z4nJt8DQxo8j3TTSygiIZ5KZ9S5Vy5KjScacQVbdcRK4gb//tTVxde3vN3b9yR8v3HNKcvzjPCP3V/k+Se/BXBN4W6dM9UkMvpsJNvJj4kkBErWJJIWZpIB/3fx5ZMdF9jfGv5j0yi0hwHU8SJzF7gD3DPjqvlzjePcY4++lcUFQpAmA3XHye064CYgn5kv9RaNtWcCh1LHzn9839GvkycEC27aftGpK2eOtCX7ePN0m3yN78p1jUzZz3wkSU4wvwA0uVxHhmnRN4mbXpfebFGpfopuG142mmwZ9ErvdhSCJ+yARLk1pejPn6riA+KI8NsCOCNdUVTrYqIKFR6zrkF19UmqeRbpjbOHJfK9xXIQSGIq7xMflkazDZW2DxOE7LZualsnvhs/JBW1AnhKbC5xT2b7U4tN2HSeIEWQx3c+Mjos6hPrG8XaeMxqlE4HzlDbNBcBzJOGbIEvIBKRmLnrHWubp1rYxGUI7zh6v9IzKmDiSaI7/jttH+BeffTg4pdU4JtkCo0BRSqr75pIrMYSigBClqPxip4NTwAaLlhbLt7hhGRBAZD3JqJvGpfX9v6UsrMvV1FaF9UcUtS+y/hTRhuD7lajF3vEi91deuCZOEet6UpVTiSRWwXrOInsyJzEKSYwyJ8rXLeXIU4nCyLpQQnLdY4gxz3eUElvydYfkqR1nfpZbN8QSp+R1c10M4rqFa4KmvMEcj08UyripfkSZqQRM27IwVFovcU3oJAgDIhRdbLt0y43jQRyPRRMlKfpwnQ4SJdh7bkAS7z22QWIqkHXH3TlejkEihyS2OFjEA7Hks0bcx4Cz36hrEp0+iRdQk7gPEmFVSGMIX+gMio100wySGA7btnlKTkogASjXcblzEmOc/9jCD+iFaxhHclFX0YyMSEAfLhucbVsvQ6ZpgSGbVipoY4QjYnSoEgJpM8/Tcfr6I2KOkax1z2StI8EGI9yxqKfiQaUeWfG61eFvhSBxSpPk+k+Z94pjx23aYS1LR6AGcryw4TmFJAbPTqlNCpBG3M6GIOqj77iFf/GZh94GFK0JJbLdMeEmNpDS9kmMofauifPQg3v+LVMjfsxYn8RSn0ogvS7nnNAU2g9wiIgveKNXGwX4FgwxtJNFYMYArBAwjOMSdMd8kDKVkmfGhU5hCXkMx42JfCL7Lx+rrkmsp/sNe936yL3FJAUmDBtauEbvX0QRqUICoq4SCDzz3ISJ0/yQKOLPrOW2Bk+SJP7r6eNN9/ySuq+Mm/TdLq6vmByL/W5anyQ2DjB7TmqOJysTwLDlRFJe4fbVDk3O0e0jEyR+5sEZTla25RswTfYBwEbGHa+scI3spU1auCbH1gt1CwCWbhrsN2wLDOl32A5B9AUJ1+yDRORr1WKCDEAeSQlpLmKlzSZPN02Pi9EKAEOjvYzawvM4kqnNftE4QaKz+SybmqYjSDbbOgfB33tmjungMhVIhdQT73vlzmMki2mzpslh0UbdTNZa6K1hFhOYRyWUv8XnmBHlyczRIBv+az0IlHR85qxD6L5eGucqGfK1hQ6SmMmYTscFDkIpSEwgboIkvvf5EzzetKZIf7hFsz04S9n/VAJIicAzCEWuJvHRWqd8J+co3Sdx6uzaBveZ71ZNxwH5ICWF9gN6uh1z/8fqJlkELDbHsnCNHwQzfVqBTDJBuf4w42J9Ei+tJjGSKOTWZH3LKzPHON209O1iqEjXl4M9IF6+UfYTnDkOP5lgbw5NNQxSWCQXiCDw+Sk6TAEZwwWyYQK75Fu442JIIkO3trTpnqvTrKclGPJ6zkK6LyCU2Pj7pc3WqRJJzAaJnSCChm7a9YbWCnBI4u0jiySOtYwZJDHX47Kp4olFNuE37jc0kjgEiZ0EiXu66YWZ1CTGFrxFAUmM002nC4/8Pw/Zm58xZ2uuummx3UO4YTP9DjOOZIn+k6qJa4aaxLNt59ckLjQtMARJtP93jaGtpPp4yfxjFtto3O+VPFaubqmAtgExmmRyiBkXBEQyR/czY7Zo9DWJstH0weYLlGviYr0jmcw64COCMo+chc61prbQzewaR54b594nJUqyjIk9N5JZff6G2RBfe7QZqS+5mtDc94sFexSVfAZCUUeQbddON1q6KVfzra1JTAnXSMud3BgfEeQ8+bqahwhOjkeO8wWYhn2NRUScAIx9biYquCXaYh3P5DN0R8BPHLFoJxCyC7hgUa45QgAA3VBJREFUQ7smx9AXVhU1rDVz55EcF1lLaMZLJHmaP/++k8yUG8gcfYqkjMsOiyr1aoM2gFQ3DfqZ0gFwgGbZ/Tc/bhFpxVZUlw2+Gx9sY4LIAhzdN0Y3Taubmr2KTQYySKKwzoRuao5j1fxlTpNxQ8L1uaOlKXly1vZUuQeQX4NitdSadkbjWs6qm45Ioqib7rg+iQXbB4kw6qaLOt7QOgbzAzaDFAuKxox1Gy7+ZV53+IDKOG3QAOQl2mXuKbqpNrPL1vul6jsN3bTG6ab1guJFzbfAaIdsduo8slLasdpCmX/qe8n3iH2v5LGiFDH/b6k5Avr6iyZGtxvRF11wX2oMHquHwLBpF4P0WPaNUGRz58VQi91xruDNnNpCJmst40Ikq4gkpoLEre0JBQCffbAes7OpfpNAuSlySvFYS11nkls5uukjoZsqg8RU0C1rk4/kltVNk0m/zPMdYwmwTlp4Lqn7P0A2zO9ldHtKNzU/S3fyRLiGDsCm6zITpMTYXm0BvQyf7VxQ788xtibkx9j1Trcmp4S6tG0iaLpjbM8vBntp/6LILogGG9kpRurEh3HEHhAmXBkhHyCgZHZ8UsBF6dzXk8cLzqVlN5WRxFiilmkBI8Pm1q3SFPTYvZwJog6XUpPIBonlmsSQbgpgpJumBB4Bqxdy43BhfNCuHxlbOSQxJ94Uq6VmGBcTf5JVNxVqaTu089jTTS/OhO4YsxzVBYjThGNZXfk/k2maFrLnN6nUzX8eQZLc4p+iPgDIB6X1tAchYB7Qph7oprvWE4TQ1CSazKZzrCSSUpijFkmMbDQyjsnQansS5ahsOYuNKwV7Ms8UkpgW8xneFyCJ2hpBYAjAyAa07egQlpMdQGzTptokTqiSjCKhzCcM0ss1iVMkFzCbZlNXuHNiN8SjpdRfTNcDJgCIbWxSs11KOMXWkvPQTcV5ONtxToSsE6mERy5JwiCJsV6hyT6hMZYAys+2GRtJQBTFPszPWcIpsUCWfm7M/0tKi+O4xJ5Tuk9iSKK73sfHDQJy0hbHcfxKcwTsmsqdR/MzXJOZID18BChVziqOtjH+hTaZmWodYIKU/BzD+1FeL84x8twwqGDYA7WY7Igmc/iaRJtIADfH2j8eiyTG/MJizXdwT3bks50Ss2IC4Jh4WWrcwSLeKs61n37tEf7JJ+8DsEFiFknsrEqpmCCJKZVqwNQkLpt6bMvhIqBNnfZBc2yxWC01W6fszZOlmzbDd+72NYkXbtu2SwrKpOrocsI1qUJvZrOpovSTQmATySIzgiQh99x8BhGkZJHEXFAUd3YtktjgdBMI1ywqbEgkcdfZGsxYCwA2AJtTfwdMM+RtV6gJjWUxyUDWnRfA1ySGxxOqdakFQEi5Lp2TeI0U35R6EoCx321YzO19zAal5v894djJ8cJgg0FSwvuLUzed3luAKKvVuHFgg0RRjGuqary2YgwlLbbecYEUpghkX6Co1tMaWddEuObhmqtZ2ZF002hNIoGkTGuV08FbnH7o/y1lE5SIuP/DgEjGlZ3PKSPBzKE8DnAc0ILDKpYUrikwJ6KJ2gLdtA7myD6jMhUNlXZURHWmyQUbEbSBSqbF9w3GAQ393RwlELAJxFiJiQ5J5O4tEwDPCS6nCVc2uJ+qAufnGO7BmjkCTjJzpPKXFa61yZUYIg5wwbZ7KA3dN3SVc8hZqp+42CffPMXXfd/fwa/7/r8PAFgPQm25/UDWv+NVM7amuDEEiXVk/Rfbtqbf4fFqga43iUlf3TQ+x9waG++BSjC+wr2DDhIjdNN9TeLFWE6hKFdHB6TbZgCxxZ+jrWiLXcPN0P09r1Ian6P5zMKmPdloONpWDOoXWuzRssF613m1Dqumnji7KXM319iiyjhpMVVOK2zES+vLOGoRj2ykuesdQ6oZBb4YclkK9uRvYSatVJMYnSMUQZsSEQkD4I74XsDUSWDOIzD0jgwccorKNgNJjPWpBExm1QSJNlsoSGIsAcRQ0mLJldL9D8SDy1wjZSCeEHDt8VCr8pisWWFbYPg1oeXvlmomnq9HmR5rLtrT9wwiYufkHk8r9mHnWx7nvt+svYVJQqijOmc3tQeX2m6M9GIlJVbeMypXKpJUYQ02F7Tp9nsgxubhkmIxMY1Sn9w5wk3A9Ltp7i0vuCQS1zLPsL8onVx0nzeiJjEUKtIEwO7xGDV5IFWGUd633bmpgu3YusWo0ip83lKQ+A9/6g0Apo0FAJwNSOL9rLqpLTk4HILEULgmlpTctR2Wgw8KAI/Wu/G+XzTpmsQ8kqi/Zu489S0wpE/iXrjmwm3XdVhkFPFiNYl24YoEiQkOP5VFqGOS2ByS6D7YbOP4KYd8+Fv2ePGNxp1LdFydrklc1vVYk+jSNJdNja6PUwRinyPjYtQHxkmLtekYA6mUSEvC2WXovuG48wnXcItPDEnJ1iRGiuaF/pU6Zqq5N+P8AD4qRSGQwTkZ6aba4JI4j8CQyQ+RRGJcmChhaxJjyZX1tsPBosHNQydIHJDElIohUE5AJJHEUp/EyPGyTkyE/uma1CQ+ItXvxNlYLdIJP8BH29j+rkAcSdHc/8yzDUzrj5jkSqwO2wQp5WP1vZ1bP76eHTZ93joySTIJboiauNS+Ubq/ImsCVzcZrgmM82/nJEaJVASomRnH0oT9a+3OPXm82LpQYDOkNQ/SdGtgmvC2vkV2ihEE0vzkVDnD858/1vz+ovLe3vvJBqXy/nEfJfaA6Pkn1q2xTl8RyIZJKoBMbkV8rtQcJUjcJKicP/nZRwCA24MIzYgknqVrEjcjM6oer8Ux2QJjMdBNzTF24/tzNYmluvRZQFG434wtMAoBX1WZQFFaYOz7JF6cmf6F6YxwriYx9gCkkUSuaFtbyxg7HockxsUmgFLdUpz6UFf5xS4G2/d9PzoJR0NNYtdbh7uUber7Hv/4594c5zDSTSMZ69FJy3y7mBNTotLah9p/nVXfiy3IuYUkKdvNblBRJDGHpGTUTVMLZOSc9MT9H6/lKm9sYb3BmMQpIon+Oel6tibR1hv0fW8cSRKl2Hnnv6P6JMaRxBYHSx9JPHaFaybPtvmZZSVENjZG3CVVM1MSKZL3xex0EOZhW+DIPFOooKVA289j1snx3lIkgVK1tQDnJE9pc/kxMm4apJTHAC5tjgxkI8kVim5aR1goxDqZ2oNLSUnAr0mkEkBBoqrvy8JBsRYYbJAecyQ5P8EfA3COfFSFOzMu1l/U/L+8JkRFkYoJD1+siq3lnQTOhEhIbC+leg4H+8b43fLDpjXwwz3G7AETVeCScNNkb5PzWL6X+8i9xZxLjbrpWJOYWN9/8nMPAdhzytQk7py6dDlsSDeNIYlCN5Uk66ONpZumyqSAfKIkhSSy7bxGl3dEEolNoF4GSOI+SLwQ27VpJDHZyDfz4KSCxJ7ZNCKLeCmzGMuGsYIkc5DEWF1JSelM5plC6byaRA9JND9TdYnf/9/+BH7Ff/Tf4Yd+6nXPUckL16TnGA+AC6hZJLCR78YIYsT6JHI1ie44vt4vhiRedE1irJcj46TFa7n04xhaBzDNLvYob4Yybhc4CGxNlrtJlSjJcqx4TaKhm55E6KZx5dDyZp+iAwLlhFNsLWGc+BTdVDLHrLrxdjfMs6DU69//ZVGelHBNDgGzzqd9TYX2BE4aUycbQ5e0NG06kA1pcwQibsbFEdkS4pykm+bW12AN4pHE4fNdJLHE9Iom7jgkq+t9miqFJNZh3ao/95TFEk5tAUm0tVzhHpBv3xOKItH1roF/wSKJ8eemfCzA30vN+c+PG3tTj/sGH4CZ45n3j+sPhQAH578vCTdN90TG6ipExGXupXHxoCj1jFokMREkvvYYgA0OrbppuU/ioqnx3udPAPjsGvOeeJDo0k0B68PkkcS0nxFr8aRBt8drwLbAAIBm6dQk7pHEC7Ntp1c3zdU8pW5GKrM7A6KOblBdeUGOBaQsJU270QOFVgpNhYOhJtF1nEckMZFt+os/9HMAgAdBA9RQ6cx8N4x/S1ks0033SQy/W6vvk8ic/1ggxWxsseRFrkeoOy4Z3BdqEv1aD95pDTPCpQg4bG/QsujLJLgsOxbmeHbTbknnZxznXO82s/a4c4ypO5og0RboA8DRytZfpJDEueq+xfqj2LpVUD8E4pldwDoPXQ+qLlmU7VYZzyn8fmwAHJtnLnmRe7bLiMgUgWTuyZhQCIO+ADZRxQayMQd0juCTfEY5SRVP1Oac66qq/Oe0gDy6cwTcWi6FAMpkTeZQgxC5Kc0yTAhoqMzxvTs9JtUCZldI+oVKyfIbswdoaaPmc4PzTxwrpgqsKd0YnxuyBcmU8eJ/XnKegT9jGVh5YUL3WCCf7dAHZZHEWKmUSdzH3y8AQCoJKLRSGyQONeqbNrkfjArXdYWv/uDz4/uByPnwxnWDuqkNqtw+iW3XT1BSIE/5jWlwsOUsXmKebYEBmKDQRRKZwLI0l3N/wlNgu4K6aaqRr/w9NgaI00a5DKH/WmlcLBvWZebnjkshiaUgcSIHTyIiufYSY9HwxvLBLd007kj+888YSsLYX3F8sONOXfG7JTLdQBptSCHHRSQxGuyVF+TY/cU1AI4EiQySGK1JHM5J4pipXo4MHQqYokvsZu/STbnaQn+zZxxCGSeBsxyTFa7xauK6HseUst30dVE3dW0UrqlsrZlVXuQSEOk+iZngq9JviClpfTHpAwmYgDHF9hAbBXYy71vUfhseSt0083wXkcSIs1XKeISBFBNsAD4C0/c9xVwJg9lY7WvMQjoto6QKxFkoOUoaIEmSSJDY5RFgwE9wlZBHd44yL4Cnjcp7xbgg3fxs+x41bMDItCCJoj0U2jZdy5maxGnfZ6LFViRJUoqAqwgCOScBoauBd8cRtNEguKSVQ4P9zSJf5eAyVoOqYWpoVEoBu3ewSG5dYxJI5Z7t5bB3pcoJts7+um07bz94tG7x3PH0nrXCNTW++xtfxeGiwb/yxe8AkPbLzRxMCwxBHQF4rDSZR3idcgreZu3xvxtDgQYk6Tr8hxWuAQYkcd8C48Itp25qULPp66NjmKGbThdVhtcdC24KDbAj6qYdsR5H6aYsJW2yGOSLqIF4RtiVgD45MA/og7PdePxctsn9rAdnWy9THBOuYUVhYs6gzD9mMSQXGLJMhb6R4TgO7fHnBXCLTywAs4hgzkmYcvJLSYhUvSWTIQemznVpY5uvZAhvnGmkXBzmZQmZhExsnMyTqkeJIYnbbkQR5diTIv3g/AMluvU0QN+SaPPkuSmtWwUkce30RxQqac5knjkRppACRAXAqSAxQ1+ce/7N3+f14HTrsNmgIQyINMEGEDxvpCOvppsmWzDkhVMAn15cQh7FwvpCTd+8aZBSTgrHx5XmOA1IAa4mLob4UwJrysTwFO20r2fnGKxBDEtGPnc6Tr8n9sR1m9JN5fX8HENWQs6PDOfpghW23CM/xn3vGCQSqKU7ziaus8OiCaBcwmNVAABcn2+960ZEEQDuJ8RrXMHGw2WD7/6mV8fALwamuMdaLqxwDWDPX64sIuf3NhHApyWZSl7StVfQTeulQRCBfU3iRZqhm6ZlbKONfGciicwiEgtuSsheeDwmIKqrGGpp/5adY8RhopqCBwuCnNtlU40Fxm882oyO3irTcPWTb56Ovz84C+imEWekx7yFroQ2pILEUgCQUgAF8pt9TE1VhdJpkcTIM1Bqi5ASBGBU3IDIdysKRwzz0jqE4YaI8rFknrtgo2cd0LAmlEPgp69vu35E2l+8cQAAOFymldwYBb5cn9BSfe2UlVBogZHZfAG/VmXdlttgjFSjApIYr93mM/JiDJI4F+3R0hZlnBo1GOmOvkPIIjAeck8lZRJIYoHJAOhbMJixtVM3SaL9w1vcmsRicmu45cIWGKXDyfzdU8IGN/EERDkonZZF5BO8OeGmYuIo4pMUz0k1rbdkkcQwuUgjidrzHwR7DANI5gj4ZRFAWbgmZJhZ/zPP7nCPxSKC1p+E91NLU5Vjp75aSZTQCxK3Lc62dg9I1SVauun0vOSQRCNc49ckunRT+S6h5cSbYixElqnkPd+suikANIO6adcB6LkxBdsHiRC6aWKzjzg/gM1GxBzDEUmcOE3kIh7LxuScrRhqI59XQKRiWUWgQElLoG1lZzdO2TJ/s0Hip+6fjb/n6KY/+7ofJLpIbYwSy9YapIU7Sn0S/ddLAUAsi8xs9imUgt3YtDWJIUXP/YxkM3FZkANRnjlzNNnI7LDx2oz0N9JpDZ1k1pF0UfFxE1WOM8fj1E1jSKI79sWbJkiU5EpYawaQolTjdYskErK91KZOZEnxMrf5AgYplVPDKJxaJJFHxeW8zkFScuhZtLa2zz8z7thJv0OGaTTjngy/G7NvuONcNH2OcBNg7pvU/uvOJSqKQSCJcl+wlNgwACjRMb0xXrBBJLeGP2uR41Td2JwkdNfPpFtnkHRgSLh6czQ/S+ekqoK2LCSSPq1l5JhbgJ65kgqk6OTKME9Jtpae03DfsMmt8hy1iKB8h5ApU0w41b4qqozNBVFNXSXX9s2uG4M2QRIFNEgpnLp9EmPHM++Z7je71ggvHkfopmEdqWs5NkOMhVh61tyxNkiUm4tFErcWTdwHiRdjObppqIYnZiX2p2NSiyorJKARSDBzmGZImAc7JpPfE4tdrP6oVFcCxJViXSTrxtDvreuBG4fL8XUg7iT+7BuPx98tkjjMMfLdqCAlMk7mmDqXc9VNY/0tx80+t/gnqU3pMWaekSCRQRIjzWTtuFTgbH5qnR9bD2FfYzLJoXIrq2QYq9ugaqtqv9YJ4ChRiwBNp5HEyBrk0r2+6gOmSP9gIUiieU8UScwdK4KAcZTMerohdmXU0v380Na7bkwWpShJru3aDlVVcnjh1yQSfRKTfW8ziYjQiTS/iyNfclxjzjVxL1dukMgFDbFWFmYO5WMBNjHWEiwB+dzwcpcEvvJIVv54i8avHWYC2ZBK2BHHCccAw35DqqKGCV4tIjgmgAhEaprMzCeqUs41U3MfE9dhAzA3ccGgL1U1Q900siea/aZ0LPhzJBJw7vGsUFR5/5XP9ZOL/fh6box7DA0i6I9j1624z5sbt2yqJJK4abvRJ1zvOmx2He4erwAAD9dxuuk248/EEjLusZaBUrgkG1NJKnktqVVRTZFEVhgviiRqahKForqnm16MbbsumX1OOWhZ4ZpzZD5j1LKSkxwPGszPEm001UuwqIAY+W5znF2LJPr93uT3sUdT5MF+87FZKG4eLPBwvfUcldh36/q+6GvF1d/MJpq6Bkl100IGOl+3RCQFlI5F7HhcTWKcXux+5mSOCeeHbVLsnxMis97456RlC8SDebKOpEtbLJ0L18JNkapJjNB4xrHD9/5ff8vn4y/8to/jC9/5HIDE+dfcW2pKpj4pVkISN7sON4dkEYUkdn1SgEws7Plp7/+ykxxFUpJrgn2PmEVS8jat+Vb0SRwFmGQepEMYqJuWg0vz09JNFZTYGCLLICJhkEIEpou6HlVvNZRYwJ5DJuFkx/jrFrsm+zRVUgVdmQAC0u2McuclRdMr1SQ2k7pJ81NNd+xYpWpMAme2JneuCJxWuCZM3jFrq4zzNQjK40KatpaCrg2AY6U6XR9n24ktmzrZAmPb9rg5Boktdl2HOycmSMwhiaZH4vSYVVVFNT/MsQzd1EUSbx1ZpXAgEySm9oB62t6GiQGA4FyOLTCIh6BeGBRxRBL3QeKFmIGa4xcgJb+de7hzSGI5SAkXuvKDHc2GER5JCm0rDEsqsJbu4VhtmzjMi7oKgkSr0gjEH1BZXJ6/sTJ0U+eBjQb3PZfFjKu/zXAiC87PXAQ4WbfHZk2VAUDoWANA2+Zpeqk6WTqLPHGaOGfX9i7kHWvAz+xyjqQ9JxZJJILLAJUtoSgyJrlBDWMXTY2vHNBEM79pIoFVNzXjnOMUrrUcL0Y31ar0ivV9j/WuHZ2Eza7DG482Xh1yaNtdlxWtkWPGAuB5dFMks8jxxBF3n4RrV9tx2WcjZqJzCEOnlW2lEF67Us+2cY4RFgqtrhlm5YmEztJFEjNBvX88Oy85DktbnCJSXJDiUgJ7k00rzDGoSQw+jx0nx6aQxIg/UyqniNUksiidi4DNSUBQzJUom4dnrnTBc0MHpU5SUuaePV7AwmJqGacqvdyzHZaK8GtJFVU3zX23VVMnRQnbrsfNwSdcbzu0XY87xyZpmAwSu3y/7lTfc2mBUVXVeP9JgjJXO7/LPDsxmirvlzh7h6YFhiCJEiQyYwq2DxJhbpAUkhJriAk4mZxMxiIepOicGAYRjAUb498KdIS+n2Y/S+OayHdjsnZNna5ta2pLNwWAGwf+Axr7bqJ2dedkhYfrnZfxjTkjbE3ihFZDqLgB00Vk13bFtgGAX8tIXe8EcjwPSeQCgFDKeaTgpoLE2BwJtCHmXPfgKUqj01rYnOw481Ov0uigjwokcVHXaiQxpBqJ5Tao2MYmv+a+Xoym6vYyzc0xpsrMJFdi6+uu6w3tfHASNm2H7/krP4Kv/Pf/Nv6HH38t+nm7Li1AJhaWD7hMhtI8p3THfD2K+/mAju4V1vJS92SEbqp93sZ7hDgW4DugrLppLHlKBenh+ScQvkVTj8EluybImi1rHnOcuACKvnG2RW3K47TJRZlnOMfS3pFKkpQc8pDNQweyseCGSZJUYVCq2RPtayWhQMChF49zHF4vzDE8l3yQGGcAaRBgnl0Abxy7bsX2qa6Q4Fo2dVS5WvZIl266bXvcOc4jicaXz/nKccBh2/YTNuGtwzKS2GXWlLkJbwD4hs9/CR9+5Zb5j1bdtN1Y9PECkMR9n0SUswExeLr0cMfQF7YmMVqQnh0j7/WP5f4tZu7NLw8WG5TOqbdsIgG3m8m/OQSGgF0ccnVL612L1aLGzcMlXn+0Rt9bHnmKEks5aDORRK2THG9dMv2eyeNpUbrIudwSNVmxutxSLcVcaffowtqVJcnDupmWXIxjdFNOgKYenUj5ioyT7CIbwHBvET2y4vLb6e8YC7aZwCGWgBjXuoIjGUMSGdQyyhLY+U7CZtfhn33qAQDgT/+/f9xDTccxbbpsYDxm7dPtNEiipnVDVIF4RJyzU0RTVx4FixZhcq7B6LQqE0dMC6RwHNuTMZyjGK2uGWTkmSBg4ST9eJaAn7xgEkdxVggfEMkwTSAVS0AwfTGj5QYFJon7XndsKUiJUWIZH8h9v/tazpraF0Hh9ht/bgDXcmMagOmeG60ydni9mXH2uYE3V23iQlPfPC2Vyj87y0W8JlFeE59wvWvRdj1ODhos6ipZk7iLBHuupUo3Nju7d8itcOsoQBITycxikBgkypl18o9/+xfZ/4wBH4kkdjvdmILtkURIkJSqSTTBXgijl3rOuNQfdwyTjYlmCHOLcQJZks9LjktkOoCycMr0u+lRUnfOi6bG4dIeVOimYSNw1za7DgeLGjcPFvj0/TUA2ycutWAxmb4Ly3R3hZqszHcr1ZKaz/fnqHUI3d9z2bcY3bFEU419tx48shHW0hU3qOHvvtgE7xBqVRrNvYzxWADZX9FBNgCDRjHy51FFtszYKJIon8dQQCNrSQlN17ILFuOxpn8TloAVrunG8/vf/4vXook7qUfJWUxdFiggnpXv2Inl1rzceSyWHNTTRCGLJE4l+Qtjwvtf1NYLx3Pl61k0JJyjWAlNl73PfQbYY7r0bpYlIN/NFaYq95bD+F4xLimMcW4yxn09Oa72653o1iVB4MaxBPz3ihWvW8BUsoFseY5AUAJArK3ToLR8H8f8C015Q1jLy4j3ucdj9l/A+KFdp7v/baLWT2Zq6zTpALjCxE8u1Q2vmhrraJBoPkeShGfbzux3TY0bh4sM3TS/n6a6FWzbDquFP+6W0E0zycysemvUL+fuZc80IjQh3XRfk3gxlruxRkcmuD9KmZxQxVA+g3Hk3WMxFLFcbRuTyY/J5OdmmQqkSot/DJFyM/nuuZnQTROO5MGixs3DBT77YD2MEwRymvmngo16Wm9ZqplJCdeUMte5WlIWARbTZD/dcSWVUjNumigR2nAxSJmJJHr3JLjNvnFQorbnnVZzPOvIcJS0yqOxuXMvjdu29lwy6qZhbz+xXE1crgcndW8p15Kmjjv/zLFifWgFEXCFa8Qx2LQdPvdoPRmTU6l2jxm//xlnK+Ikp85/NEjnnS33erPKoe53Yx3C0ElmUQNXFENDt07WfOeSVJH9jT2m0LtHWiXzjDb+fcnUMsZaYDD7fXhvsXVj4fF4KmEVDzYy48K11R2rqdWn610l4HbuSQqljlBpi/tNIsFeOp78OUTbSgmgFJJYTrD7QTqz54TJZBoRnBkAR+mmhUDd0E3TSKL4c0a4xrTKuXm4wMMk3TSPJKb20m2kNIgRrmGQxC5I5jPrpGejcA2BCu5bYFyO5WqlUo5MaZOKoWZUjUI1df7N68xiMB2XVUWN1B8xjky8lyODZNWRmsR4Jn+kmybaSwDGcVw1virq8YF9sKfIBtHMvYo4gxlhI3fuWiQlpHUAOgRYXWwfOR5TkxhLlJSQxDoyhgnSU60b2EyyLzZRHhNK1/MiIfb+0tYkAva8UDWJkeSKGZtObqX6VALIOjLRmlAik5yim+aet1wt9XpnNsZRuKbtcP90i/c8fwwA+Pl7Z5MxDN00pLwzzlYsSJGxqXMiL8cSflpxEVY51GWh0GITgSM53iLFhJ+t22O/1zjHwCcsIXyx2lU2MSP07hENJ+Yo19u2zigHlzFEitvvq+G98H7S66QSgQyfU3btMvek/9ouU5PrfmZYb1m6AlO6Y/l7AeY951X8HgPZwrFSFPTSPC0F1JxMJkkLTBFg5rolzz8RkAIuu4C7t6JlSIV9eLWIC9fYJKEVrhGRtxsHS9zPqJuWlKqjNfAR3Ylbh2VdjFyiJBY7MOj2xLoWQGXrk3LWLIF2r2564cbQtqY9wPKOU1PHeqQQ2ZhaX5Aeb8pOjJtLU41ljDpmg5pSVnYBIvWxd90GEGsKHg8SD5bNiDYAwMnKqqLO6ZMYW+iKNYljoOG/XgpuQhRLxgCkuEhwvWkk0ZkoU5MYX+zM8dJtQez7/DmWs5FADIEsL6xulpwXrgmzpqy4hR+QunPPjhvua9kYmUbdqbrofBbT/PSeATLYC8cxa0LM+WfppjEF9JBuerZt8WjT4vNfvgkA+OS9qcrpri23wAgDsO24/jDqmkGQ2KcVPXPPNhM4zKEoudRKGpEK1hIW7VmO93HvoCHlOdZVJNju9Uk4tpbLaAO4lNjyHKX0xBPlKfY7xPheMVPeQJ7/wJFn9in3eHJqysczFNBxnSTWf0D2/AiSWBCzAuzayiLpMTElav0PkytMkF7Hg3SekmmPxYyb1M6TyY5wD2D2HLvfmwvAUtCTojzFc+L3NzZj8/vpsqmjPXCnSKKhmy6bAUlM9UksJPRjAmuAef7CUoWwJjGeqE0nuFKsHG2MiG7HI4L1wiCJooi6DxIvxnKZwjGrOFkgzc9cFiF0fihxlyoVJJYXA7Uq6uwgJYLSUb2F6mJt2/f/xi/Fb/z4e/Al777jvZ4Urhk46mLHK4skRumfyvNvjp3PTkn9Zqxulblu7uLDOGlx2W6+t1O0UTpB9woFVzjlVv+eZOcYCgkwC6sXuBHnwxzP/NSrm1pna0QpCC952fjXnEESTVPe+AaVRBLPkQCajis7F009RftLz5vMI083Nc/z6482AIAPvc0EiZ+IBInbtsNykT+XyZpEok9iVLim5CBEzj9DuQ6plcy95QaXemc3HJc/lgRSu67T000DZ7fvkU2UxIRrxtrJknPdGHo3U9sfHk/6K5ZUqoH49e77cvI/PP96BDgI7gvHswnN3vtZWoMWEX+mtHaFaytb72r3APN/tm3AVM9B0ZdXef7r8LuRz/bY99lZ/wEuSPeQdOK6hclrZv13x01rErPDJig1o5y7bKpon0R5TQCA9a4d0b6bB+maxG2BTRLzXQE/WfttH3sFgFO6lPFBc4mSdFmQMkrsWz7Ym9Qk7ummF2JZ2lbEaQLsQ5p6cGKZN27R0quWpYRMgHJtIRDQTYnFLuT+yzxL3y2m0jjSLYYH7aVbh/jef+WjOFwGfRIjUP9m1w3qpvYBOhkEb+L0N6BEJIktIjSSOAlKS3TfWJDOLcbh8ToikJpfkzgNZo2yXfpYdfS7lbNocbojt7A2jU0MsEFieLySYp/Ywnl2NEiKT9PrKcQzlvAA8ihkPHFUnmeOplpag2J1ypxIzvRvQjeVjfpzD02Q+M67x1jUFV4bgkbXtoXEhRxzF73/y8+3O27M5Kf2jWiyo5wAkrGu80/f//UMummwJrCO5BhItb0KSQ+ZMuH6Hx0TWV/HwLTklA/nkkUeZQzgCNcQ5z+t5kwG6SECTOxTwHwEchqkFJ6bZurP7Lr88x1eN74mzvx0A7fS+QCme/ecmkQ6kTPShHXnf1KTSCZYwv1U7s2s5kETv7fYNcGipP4cknNM+K6lmsRNrCZxaIvhC9eYpIRBEjN9EgsJv5RSuDz3f/I7PoZ/+Ie+eTwPOeEafaJwhnBN1/L9DmtRN933SbxQyzlqYeZHTLjWqU0ghiQyi1Zd+04Tw5GX9T1EX4ACIhVx5Ln6o1j9HUd3bLtAAGWsics7uyFKB5hsk6ibip0Mv8dpBRz9JFZ7pFU3ZbJvKXGLeQqgZYcklpFnGqUvA/oVMIiEKHvL9T1RjxJJCjCqtICfbdXSTT1qGensyjiWagTEaXpFJLHWI4k5xeOcw5WiqZbXrela0hbkvnP1xuutjyS+9tAI1dw6XOBgEXcsGHXT0JFk6HbR71bI5OfqxClxkdBBI+nW2mAvKXdfOJarbqpB0pNS/pmxiwB9Z8eZsabmaU7dsL+W5MdE1ZyJ4HIS7A2v0wm/1r9ufAAwBBvjeSyMi7AZ2H1xpI0Or2sThT2ROAUwqdtjzr+lm8ocyUTOzAA4bCfCqCubcfHnNFsTGiS3WAq6/Flb72rUbKdJydy9lVrLNyPd1AQ5p1uTNFw0puVZtk9iwS+J+a6uv7Ba1Hjx5oE3BkgEib12D+aS1551GiRxMSCJF9cncR8kIu9Qpm6QEgXI3Iz+zc9uGjFkLxtszKWIjRubfc06kmmL9bpisq2xIGVXcNLsYjz923rbjX0SxU4cuulkjoQARAwRYTOmMbn7nEOeogTOpWTOCS4ZCfRUTWLWsY45yRQlWc6lfa0H6SQ7AX7bc9SyMChlg0tLQ+9phxXwaXrMuZfPjQlF5eaaq1POUdJm35OR4L7v8851MzpMOSfBPNuCHN46XGKVcCxKVCM5ZvT+V7IgRvS4tG8okVwZGzpoTC2dm2Bk27KEtZPWkS/fk3Vl1m8Nkh46abuunKRq6mmSiqWPLoc6zTl1w9IHlVGXjbEtuBYY/nrXKymZE7pjCYEMgxsWSUwkT5l9w6Kd3DUI97euJ2sSg8Sw5vyradp1OE6SK7r7RPwaRrzMPR6z54TggRbttK1LuOAy9LnarjxuESlBAmxN4uGiwbKp8GhADpu6wslBWt3U9EnMB84TX75wLmP+FmCp8slStQjAxPZJ9A+0K/PWx8mugHazDxIv2nIB3yKy+ANlZ9I4Ff5r7KIVpYgRDnkMSSwhgkCcblqqW5pT71dHzmWpJi6rbtpO6abHB45wzZya0Ahq0xMJAfNd/DFmHvljybzcOfK0Ufsa+93MuKmTzKibhs4dlUXu/QWyvEGZn7PVTZ3eZiUqmjdPB4Hh2g1Yx7UlnlExl8p2HiSxuLHNXhPi9yT7bGuypjGavJhcx6NBiOre4834/4NFM9JRXdu26X63YtOaRPPdilSqOqGKmvh+ucQRk8wJnUFauENLPwwShWy/PWBA6bpOVe8XliowdWqxJChLHzWtqHS9HEPk0qwlbHJLl1yR6WhpwhO0Ddx1C+nkLJK4qKe9Wkv121MqLbg5TgK3fGmDmAlk7f8Zuu+0bo9MroyBFLyfpesWqptqkcSwdUbeB50KMDFzDBOnmrUk1k6t5DvFatIlSFwtahwsmjFIXDaVSRIO5RqhGb8k064skuwo9nx29uzYOJ0uQJmVMDFNTeLiENitsa9JvGDrOgbJUi6QESSRrVGIIlJK2iiz2J1HuCbWWHoO3ZF90JLqposazx1ZJPF4KTWJ0zHMHOOCN/kFUqYeVYTMLZARJ1mFCAbHO49wDRMEh82std9tTk2i1GRpnWQt3VSuF60k6dzLsllpGnVvWwdJVCpyAvzGFkNfcrOc2zcsHlwWnpuISq+YfL/DZY2qwliDslrUWSRxVcgM1NW0JrFUxwhME2Ml+qJ1/u1rMQn16LHqadDA3MtucGkDt8KYibqp/aySLYfAQVPvF5YqjEgig0hFgkRWuIZ9P+DWDQ9rSSFJCMxf72J0d0DfzohGiYK9iq1JTKl+a8owtCid+wwwNYlVFVm3CmPka09rCwvjgvPI+GnAFEksreNiY8CnUEWVP1m6qbxOJo6C/orMOQkFt0rjYnsbYIPEZVPjYFGP639Tm/8DcbXRbaFXbpgkBOyciz2fJ+y5/JoSUoRljJ5uuuNrCxeHwO50HyRetOX6/aRqEktOcizzZpym/FymdFPuAZ2MG35SEsnd9HhawRVVCwZnnrsxk5avSYwtJOtdh9WiGXunAZbOF6Ob9uA27XCcoA0pqypDvVIH6UIH8egImobz/vFKS08USRzu0VzrgFRNUL4BuX2fWA+F8xM4rcy66m44LbkYh5t9Kfkzjhs3+250DFVUtk6BJEYoMqWNLSqcIn8jEk6TetfsDBPBZeFetj0jp8+2fM6yqXG4aHD/1Gx6BwvjJKyjNYnlgG8RJO/arqPpxV4AIEFH4gvG11Zkx7hjw9pCVnF3ikhxwY0WyQLMWrtrlUhikMnX1CTGgsRSDepSWmAUnhfXmrpCVZlnmxUOqocx7r3FjgMcSqC8XtoDErTR4rigvpxdg0K6NUNTnYrCkHMM0W1ijIzz1hLm/CfnqBvHBESAEzi0/nUr19ba/cY/Xnpc6JdohYNcum/pWMA04GPOpatI7tpmZ9f/g0WNx5t2+H/l1PVH9oAuX3IQiuuYMflrkPJBiwBHJLnOJFwnpqlJXBwazvpuUP/e003PbyLTm75B4lmLUk1Wqo5IC9nTD2hAr2QRQQCT4JLeoJQZknCBBKZ9EkMrqps2Naqqwu/9xZ+Hr331BW9ciAiyKN2kJ2bP1aSoabvJ8885dqEDqg3AzO8dqqqAeEZqx4qKr7EghaEthlSX4PWcuQh3RyKJE0pUIfkjNjZY71xUozhsDGIMkshRjYyyoHJjSyAbQGFNqKbXjXm246qopSbp5me0ubFzbo5XDd48NX2xlk0GSew6LBeMSqObpCq3IAGmzJCSKmdVmaAhpm7KtEUYa2s7zrED/GSCFtmYjCOQm2VTYdv1dGsDeU9U3TSLiPgOsjuuuFYO11vulxXJ9RLnVUNTbapqsieWRoWlIiySGD5v9PUO9g45p0wAEFMFzp3O6RxlfGkPhjdHhiUjc5zQ3UuCPMEerH1uxrq9Li9kGI6bIInKcXJOc6iZjJtbE6oV5Zn0+CaenRhzC3DpphUOlo2DJFaWjbOL7BuFPokx5LJlfdAIUGQ+M36TjT6C0geaWNdyzgUALA/Nz80j8/MCgsTzf8ITbmxtj5ZumqJkMjUKWtl6wNxDUYckS5P0HWQ5nqZoe2B3DgW5+Tk2zTTgpouGE0jiwdJ85nd/06uTcdq+bWZcnFbABZe665YSHCovxpiMo5DcyPG2hJO8DDYo+QxGuEZDPwSm11uDbKyaGtvBGWRpHeGG2BYCm3Dc1kFSOLqpzS6eB0ksbmzRe2T4G0EBdQ9nkivZKU5obPIZVC115Nl2z83RqhmFa1YZJHHbduO9mrJYTWJJOAiYridUM+sqdFpRHDMea0TSFUFKZFx53wiSMuIQkgmPnaccWh6TVjct90mM7Ysl5HhZG7rpGCQWkgj2mOF3Y8+//T+TlAyTOTzabH7aZBp3vVO9C5m66LbVXbeUngB9T7p7ALH+T4IUct8G/PIGQKHCPZw/tpdpVVU+40XOI4GIA25wyQf3YQJIjW4r0FV3KWeOt2jiSGJIN328GWoS6xr94HPG+iuWxMuM6KL/mhWQ44M9wK2LTh/L/XzzGVzCw7Nup0MSAWD9cJjEHkk8t5U2AZvBmdYX5tGXOEWMojtGgg1GtSzmkGiRRAOHl+fozg0QKqcuiwmUM/JhzZhr612bzAzHKXpcpnUyruMyfVqqRbyXmiLTpwzAwkJ2+b2IZEVoEyUkMVW0zd5bE0l+YmGVgnYznqS/Bchl23HjlhHaqKYGctf1RWVfsVx/0dTGFkUECVTqvIq7muudo5K7SOnR0tZVrDJI4q5QjwJgIuXPIonh880ED6EKNFMTCviUqBGlViIpdEA6cZJBzREYHDxP3ZR43mrjSPa9//3yKriR9Yd9dgZK7FobJI6qqMO86fPvK0CzNaFTJLEwbkKTxDBOFxTRbIa69mvZCfrueamc4+FIxzrmA5XPh32ve8wy48X8tME2X2vmAghsPe+4VgYtT5ha2ZCSzN5barpppa8bLtUkLpoaB8sGj9bt+P6VU9cfWrFPYjVNSpaStSnhGhvgF4LLCQiTnF7cNMI1yyPzczMEiUy2r2D7ILHg4Lm0snBcqUdNLEhhsjgxRUIG6lejBnNpi0lHMj9Hq9Dl1gTJAxq/FatgMXZNhGtiVkdoDFyfyviDXQxuJlQjmX/+HgGmjnV5g0qMU4pUAINkdKmOKyrlTPbI6nX3VmrTZvbf5dATTebHqJuG341VH/P7xJU3w3Ccq7hYCmzqukLf+/cku7GFNaEAR4HWKu7OSXikBAHceS/qGscrGyQuB7W7uLop0wIjEKBpSYGjFAJWeL67yPmnxLOGN2uUc92glK7/Cu4Ttk8cYAL2jYukk+fRzM/8nxFvit2TbGJmMVBi1UFibQJgpkXHOM8qLPnQB21skBKeE2Zvc8dNkKxikBgEAEwz92COsu2XE4XDMZx7mXGsw4CDqqWOoZYoP29S7+cmO5j7H/DromnhGqnDG1VRh/kT/uQ0kZCfX/iM8my2hDJ/ZtyirpMCNIBhAhws6lHddNFUWC7MByYThVlWQj0BfMZESeLExNYfoLwHhH0qZcysFhga4RoAOL1nfkrQeA7bB4klZysoGLbjylzrMEikgpQAsufpJ/EHlMnk+7LFvNz9dByXDXPHsbVVsYBPWmCkxk2Ea4ggfW69ZRiUMnSvOW0DgDgFl0JJI05523VEn74pTdggiYxogX1NEwBPnSbSad3JJqpTN/UaZxPHcmsL2Qy5GWePx6qbxlTSSghASCME5lOg+wJrIjWuLVxvGklcTZHEON20LwaJIb2JVjetQ+Ea/zukxvhrOR+4tcH9T1GgnaDU1jKSQYoEpaTzCVgkUXP/N0GiiqFch88owCFZwCBc03bjunDA1iQ2tY8kMmtJ4yOJc8TcaHXT4Hlj9rbY8WjKe+DMU/0twzkOr9MUUC9IJJIkVQV3y+9RftbC2uExkCoezUf8u557ZgAfSezI8x+ygDStM6woEvecjijpDJQ6VnJTKsuKrf9usO4FiXXtJWhDM4nC9PHcXrLjsQpreWz9AcprUMxPY5/TyQS1dNPT1/3/n8P2QWKBKpOqSSwhNym6qRayZ6XMp1SL8oKQ6klXprbGxhF0x0jA3RY2m5Qj2XZGdS7lFNaBU2fmOLffW3kxriufEstsNnHUhs/0hSq42qwpwNHtbG8/HwHOixaYn+ECOTezyyyry0WNjUPH4WT8LbIn81XRTdte6VjbDY510GL3JJvFvJh2OoyUfDzhUULawjFicj0WdYXjld0gV0ONSjyLnHcQAN+xM8fm1E1DKiFD06tSaznhbIVOPI2kBMFG+d7y58buN+azB+XQwh7qH89f85jzGFu3WCdZAnVBnqWGvWQGSXRqEpnzP2GTKGrihmFsUixWt8fcI2ESjqEEAkOwEQnSS3TrcI6MTcTEuGGoK31yF4CniqpB0kPknvX93bpoFkl0a+ABJ5lDjJNjaO+taU1idtjk/mfWBSMQNV3L3f3tYNHg0cbSTcXni9Uk7rp8ojCmVVFqw5MUrimg6bHgkmUqedbtuAUZsMI1p28M/z8/krgXrhFHLXGDxHr7yf+LGZIokpWfT0gbZR2LKoFA5kal6KZ09jOYZ5lGMh23LdSWxGhsAFNLCsT6VNIonZJuF15vq2TIOMn2NYqSWQ/ZT/e6QYGSukEiQbeLO2kFJDGCZPXgnaY56qZzkMQY3ZRCBEcRJsdJpmiqNrhk64HCRsru76Va3gn9in1GldctrIFk+lumnm133k1jaxKXTYW6rrJI4qKEJNbnqEn0kkDE8x2yOxR0u4lwEzFHV5l5VP9UIsBsjRQwqJu2PYWqlo6XuwbR/rpkTaI8b6eDk7lqONqWIM6aeuMwMckkTuVjJ20KCseati7he8kCDpJIJhNMLe+0TCQb3AdzlMWcUQp3j8EqVU90AToy2HNowhrmSl3Z92vopi4qK8G9tsc0Kxblons0bXQM0hGMK/slMR90Tk2im7xwEzvLphrnsQ0VaGCC6Fz5RpgkdI9VLDlL+KClFhjn7pOoqUlcDEHhnm56cVZEElNBYoGCFUcSORpJ791U5meZSjhFbQBdzYAcT5tpYselONpABklMZXEK4xZ1HT3/JUv1e9Orm5qfeSdZ3us78hRqEM1aF8YkkcSCQuCMPonx88jRps17A6eJOCerRWUzrQRFEnBpo3bzZTZ726vJ0u2ooLSeBpdFtCdG5SxsbDF1WYbqkhKumdvfsqT+GR5LTO61ZV2PdFPJEJuaRD9I7PvetMAoOqD1pLazVBNqxgVICoEeh+wONuHhPtsa4ZRFXXk1uaX5AdO1XHUvN34PQkrddIIklo9XZ/YNRrgGwIhEqNRNu14VpIc9OOckTu2+rR1XZpK44yTIppMJtd8aignSk/V+bJAiARi5Jsdq4ph9w1WG16hpu883O0dguE+c869JZoY0VaZUQUsbTSngUsr80Wc0P79YTaK7N7q6Ey6SGBWuKZQcLIJ7BCi34UkL1wwKs4Xg0lUFZpM5ns2qSXxj+P8+SDy3sbziCR+50I8llFoH+D5xUUSqtNlEgobSuLktGJJ1SzODFPdvyTGJBzvnJIdrD+Mkx1FSjtYRng8zj8yYxPlnaVthc+/S4iPF9iFtq9xraaqKuuu6rAMaTyTokaxe4SS7SCJzrQFn8x2da25cTLhG0wJj2/ZFFH2cYwLJdf8Wmr2P7WuaRII2cRFeb6a5dIyiKuYGASJcIw6+oZu2k/f3fZp+LmaETMJ+n0RNYhJJSY9JCTmUbhMRKur7XhWALRcR1UQlkmgVENmgtHe+V3mMvGdEKYh5yjMaozuyVHmR0NcJ19hEDvNsu4gUIPR6LikzDVKUSRliDDBFRUqtdMZxjX//M3TmaQLCvF4+J/4xmAQ0ME3KuJ9VGhdSW7ng0j7f51E3VSUXg+BeJ1yjDdJ1idqQTcWVPNUTUTbAZ4odLBzhsqa2e2iiDVKpvjmpUprYB9LCNeanpsf3/D6JrLqpEyRWNdAslQeb2jMfJO5IXnEUScw5yZEFixVACSkrALGw1vGiYW39kaGkcdlnbXATU8lsO/NQp445kcOWcQUHO1RjM5+haK4bOOTa4F6GU+qOQUCqraMAFEFRIGXOZDJjdMfS5hZPJCjkt2cgia66qaGDl8fId9t6GWF+nNsCgHKsHZoq27tNJLbjSGJqYxveF9yTTCsd8/n2NQoBDsYxCEyKyg/YdXlRW7rpqrFBYogkWvptWd00PI+zWmAQmfwJksgGAM6zoxGFCe9/mXf2WME10CAiy6G9BItaAlOFawZJjDFQ2FouSRqIhD7fAqP26KaUcE0drskKoa4wkFIGidLMvWRh7za2D2Toz2iu20jlpHs5zv9uXe80uGcTrs7e3RN+kztPlzZNI4mOwJFZf8r3ZKjnMPZpJfyZ8LvRdbITdLs8Lt4rupwAmvQU7+zYCZK4iNck9n0/tMDI9Ems0khialgKKCr1qowlt1j/zrOuBeoZSOLiiHOcCvbMB4mljFistxxQ5snHmoQyN0hT24cZ0C2sbRA0AJxwil9/xKGWQIASEfz/tEpmLtg2P2NBOpDng4foIxuku58v4yjZ+ugCmR4TKqvZY2UPNR5PiwADZlMJa3uYRsrmvT6SkuX+j9k3+xpV2xbJkAMkkrjwaxIZx842N3aDS84hBwIkkcoID0Fp248OfarXp1i2v2ghi+nXrTKtLDA5FodA+uMoummCJWA+p0NVmftI6KbyfumH6a6TtvlyOeGhWX/GccF6ziB8TSLhx65BRl1zZpDIOv8hskT0hBWbU7c3qYkb72NlCwy6T6L5u6gjlp61cdyAJGpYAuG91fUcjRNwAikJUgrHClEK1vmc1LaR1y7s1cqMC9cSNgCe3pN8mxr3OOw5cRPszLol5l7vEmjgzTNAEpnYMl2TWL6/bLBtXmPZPPY8cj5oyN6Se7oEppj3Bv6dU+d86PTJXdRun8R4sJcrOYiVgVkRrIQIYmQvdedcKpUKhWvUSGKvCBKlBvH0DYsqntOe+SCRpTvG5G/zfPx6clMxjvwEkRof7HL22a9/KTsX8fojvSMv40rfLUqbKwQpSSS3hKQEWS0zR4UgQEAbYprdxoQt1NetJ6kuVYDSQV9HAXB0uzlIovxJm0Wzyq0yhtugAOMkS3axpKzpmvREs9lZLmgAMDjJ/txLcwRMcM4iibEWGCV1x7hwDU9jmyruktnnCW2OGBNDEh2ET+im8l0OFoai5DoJY1+tonCNGWud5Dw9yY6LI4m581lVfsJPQ9uS98sh2TpZQWCZ+QFxBJgW0hvo3ZZarA9SKETKQe3FWCdZqGoPzrYANEjiPOEadX/doC6dTYrZ2m1nPJlcBKZBIpMo9M4/MS4mZgXom7mzAVh4LjXnJAyImJ2jqW1tISuuA/hrSVtAvtxjAZg83wydPAwsyyKI8I7BJrdC9pZNnqbHxHpnm2MLSgecOC2QFk26BcbIPlGqm5ZooznxSgDJFmLhXsqIuUVtTk1i315IPSKwDxKLNRG5ICUvyjANLBknLaR10FmcOq6kx2Typw5h+VjhOGqO1XRBKGXyY2ibjAPyNVkTdVnoi7bl92Kj+iqk7crr5azplLPObIjTeid2XEj3LaIvEbrjroC4xVAixmmqhvPsUobMH8rf7WChVzcFBIFx6r+0SCJJ/QF82pAEtCXHdUS3HSdtV6glitVDMLStKE2YQCCnIhX+PPJjpn9zr9+NA1NXETZEd+lGY8uM4r3sr0GMui9ggkvXKWHQ4yS7Q3ENbLBXnKKhfw7oI4tuj8kced4K+5p/PBNIyffSIInW2SX67cWSiwQCCQA3Dkwtz+uPTZB4oKpJ1AnXxBJ+jCo5oEuuAPF9ii03AGJIop6mXRoXo40CRMI1TFyQa3kVrl3E+QeGhOvoyA+v0S1gJADj7n/AnDMZtyOftzG5GF43Jnkdnn8S3Q73YMYv9ND+Tsbpnm3AgjBVVeH4wNbjLerKqev3Nw6pNc/5MzEkke05PAGKCtcgXOs0CT/PNDWJbl/EPZJ4MVYqAE5RojoCSYzXJObn09RBQ1g2i5MILnPD5rZgSDdK5xw0TyWt68p1RFWEIlCoJa0rK/4gpqoRmYGuRs9//nATxJOlyEyPp6+jAC6vJjGGUuvuLbvRm8/LDgPg0+0MIkJmdocaEU39kfRXdIU7mOsmTup669QkEm0bgBBJ5JJbk36HSqoXQCa3gjlaByEzRjLWEbrptrW1Os/fWAGwaJCgQ+utFa/ZjHRTEhV3MvKMuqm5R2JB+sXXJNpaca6uR2xMXHRdMYkwOZaD2vAIfO2JuzCPW1iXzvR7GwOb3l+3zLj88SRIfOPRBoCGbmqUW0vJSNdcGiFA7vfBescyh2K12xSTJFjLWQGUMOHBnP/JmkD6MvJn755UJCDcgJs5J/E2EdyaMNYIEgnQcVxdeX152XsLsEkVFkl0a/BYsacwwaipZQz3DSB/b8V0Ksz/7bgbB433fkkSTurSiTUv6ksWnvFkCwwCqABcSji/TnqmqUlcHlnU8QLaXwD7ILH4sC2Ch9Mdl0dSpjc+U9tWV3HIvohk1QnBm5yTFqk/4lRKp+OY4MZuUEFtG+HITCgChQUvRYmdQ6WlEeAAkTVzzw6L1C2RtYWTBZl1EupJsMHWJLbhdStk7IAQXVUo4I4Lq3mdrUnseoyOq4ZuunUQEa0qKkt9AzDWV5xtWzqwqSPnf44qMIUIJino3Dhb21M+J6K2G6Obuk3uXxiCRHlbmFUHrIPAouKuSiClblpXHr11dBAKdbkhSwMo319uUkBT7+r24KRVMidBii654iLwnLhLiIiUe4VG62RJBOxkcDBfe7TBoq5U380TrrkkdkfY7kFLSbbIfdm38McFrVKIWl41khgGsiTjItw7WHR7ci/PSLhGlqKkuTWJnWK/cZMJdE308J5ta6+3fFZ2XDNVPGYEaNz3s+tWGIAx+2IKSXRp78crH0lcJemmwibJCNfU0zKk2SVnhfMZe0aBGXRTTU1iVQHHd83ve7rpxRibkQ9lc7suv9iFzjhAqjvWYbDB3Vih4A2ImsQ43bRXy3aP4wrfLdUUmWnkOy0aJmuyAgouvfkGgRQT3IQBEcAEl3rURo43RRKLw0zyIqAtzkcSyw5CGDhrldU0NSKWAmpqufgakToI9ogxQnnp9OIiTV3hbNeOSGKJAmefG/taad2KCtcoEjlzE0Bax8KlbLm26/ox6Hn+5MAfM7y+cTLJWzLgXgZ0UyZJIp/rI/Dl4CbJ7igcy1WP1gQptudnRyF04bEAHrUBDJq+6+apm4Y1ifl2UnG6e2kc4COJbD2ifK6pUzb/Z2sSQ+GaMnI/vDd4Bth10qVJUkhusJZoWiloaxKnwQYX2EyFU/jzD/h1msyd7Auu6J43CUw05Q1+TWJHjQtLPlh1X7d8SUNRBSwSqCt5sv9nEh4x3wIQv9B85xMXSaydmsQASRSF8lyiMBRgAlAUwUoK1yiBCk0S2jNNTSIAHL9gfu7pphdjpWxHiTOdsngLBi4bE23Knh2VQbJyQWKCEsiiPbvJOG7xmQQbxT59056HvLqjfc0gKbogBeCoiyEdxyK5xLjgWOzG5tOEuWzrtAVGV6zriSVKTE1iZn4RJJH5bmGdmoxmkUTABA+mb2RxCIAh29rqHHKhm3q91Egn4XBR42zLt8CI1fKWarJSSDqTpJL3qsYFTivvWExpPDLvEUm86QeJqwiSuCXon0CcbsdS2bZeDSThJNfhMzq8TqJ7rnANRYF2ajU16odyLPOTd2KWC4MksvexezxNqw75k79v5BtZi51ITaI2SJQWGJrEUV1NkHR6vVM+NxO0jQhIveNJkoRFpAKUtCT/DzgB8DCMFU6RqbjUdWZpbYJxTHmDzDNsQaJHIGeqm/YclXkx47mRv7sqscyY8fwHCT+GBQdMkeNSWZZ7LDGXvXLiIIlNbVtgTNRNBUnM7AFu38hxXGGesSStOy6JJCaSJKSbYE1TkwgAx8+bn3sk8WKMpptG+MjZ/i/nqEn0nSZ2YdUL3sQdQn2PJvkMdmMLM8Ilx66qpotIub+l+TlFssg5KtG9qvID2V6x2YfI8TxqE78hhrShothHpHVJCUmUOYbnkd1oRqepK2cjxVaCMA1Oskrd1EEEKWrfwkFthq/IHu9w2Xh0U1bd1K/lLSS3xqDNvsYmqQBMEhDsmhA2Sdeq+4q564Krbgc4KK4btHVyLvPHWzpoG2CcZQ5JjPeJy7duSKibFul2GObWqxyLlUM3ZWicwPR6sz3pAFMbunbuY0YUZoIkEsG9tKnpouefCxI3bUfXI8rn+vWWxJpcTWmLPN1UNy7cp3oyuRgiN+3oWJeP56GkogjJlBwEa/kcNgm7JwIucsMGl/qG84AVbpJj0khi4yOJbA9OOQ7gMCcUgkOsCFN4T9K+zCRR6H9ezFJIons+TxzhmuNVMyKFYZ/EMVGYuycj+418z9QaFCv3AOz9ybbP0yQg/APteLopYOmmeyTxYoylm8ZurJJwRzxI5IKNfsamEat/yQ2LI4m8kqG2/iLaAoNYXKeBs/tgx8fGhVP4GpFwjuUFMkTN/M/LHS+kBHK00crbDM1nlceFyQu31UByTDNdJKlaxmpab1maY1inpqFouKqXuk3b0OY0tYVujUhPOv9iJkjsRrpMiSKZquU1c0/c/xEaG3P+x2zwJEmSHxcmZeSwDN0xFiS61y8MNGMS6Fsii+zOx6VtcUhiPUmSAIWaxGqaJJHXc+auQSxFDEjQTVm6o4M2sM/N0bLB2a7D2SAgdLAsOzKLAAUenzmCTeIHKdyzesNxMDVI4sGixnqn64HqJuDYNTlFry9FfOE+xV632P1v5l4+/3Po1u6x2DUh9C/Y7ybfwfWdKHVTx79gewnKPEcBrJ5D+8242gsuKSQxaDq/a81aXrxuHt3UvpazEDxg65tj/S1L40JkW8xl6h07ScK7J6tJok9M7sncfhrex2Zc+RmP0VR3he8X1lLLTypG/LH/CvjeF4FP/yjQdzok8ei2+Xn4HD8mY1cWJFZV9eeqqvpkVVX3q6r6Z1VV/Vbnb99UVdWPVVX1uKqqH6yq6j3O3w6qqvqzw7hPVVX1e4LPTY5lrLQJp2oSSw93qIYHkCjdmMUZxow3YnZYUklPKz/cQ4M2+JnFMtowpRZs23ImP5b9YYuNp+qO2UNFA9lSQkCOp0Vy4+PIja2al6FyxwF8kA4EQiFdmYIbUglVAXCwQTHj3FoFlbppbWhz2tpCAB5NlUUSD5a1qUlsTcN4VjgoRvdS1eQS60+Kbjq3llTPnDAWJi/+3G/5Cvz13/m1AOBIoLvrSDloc/8u76drEusKfuseQnAlwe4oHc293poWDC4NixYJCa6bpin44dIknB6tTZDIIHXJZu4U4jwVbmKenaMheNUEiUerBU63rTpIn6Ao9LNt/k9TkkOHXIm2WVl+7jyGyUXmvKSDhvwcJwEwuZbHKO/MreyKwEl/aYaVI8lFAINwTflYgFlLXJVSTb2xUCq3hCq8mWM1ScjQa4L4oMrklte7E/nrnUQSHa0EN9FTVUZ8yuzZM9RN62npEtOGJ6w3BhwkMXHhQ1VmRszNHnAJtBtgezbUJCpCtXs/Y36+52v4MbmpXMincPbvA3hv3/e3AHwbgH+vqqovrarqBQB/CcAfBnAXwA8B+AFn3B8F8CqA9wD4BgC/v6qqbwUAYmzRShnhmIMm47J8/Ehgo1EODeknTAF82ABe5pEek3II83OM1ZsxCOScVgpyvLT8cKEmS+nspmu5ygvkHMGh8D7pe66ZdYxGwuxRYVBqgnRSOMUTLigH9xOUFNyG6I6T0RTdNEQSSWdXREk0SGJTm/6dWgQScGh6O0OBY6mcGuGIFJJeDFBiCSAmuRU8N7TgVopu2vqCDl/z6gv4grffAjB1mMzv5jPKwjWBAETLq5uqm4nX89RN3XPJ9LsVW47otr0nS8/2xLFWIImi1Pvm6dCaZMnXJI59KklE0Ih92P+PAQcxV6Gr3T5aFt8rdrRscLppnWCbWLdia3IxIDI/tQhkWCfFXrdwX5wjgOLOV4ckGh9BvZaQa3l4vB5knWblsnLMa1zg5iCJiufGXUt2Hd+CR94PmHVrSV7vMdgm2RbhPckr7g7jggRvviZxurfJZ8j1dPskii2b2hMuAzjxsiZI9rnHLt3LSVVUEknUJPNHqujuVF+T+Pm/1Pz8wDfyYzJ2ZUFi3/c/2vf9Wv47/PsAgF8F4Ef7vv+Lfd+fwQSFH6uq6kPDe38TgO/t+/6Nvu//CYDvB/Cbh7+VxhatBInH6rFkXAmeDm9GBiUKG8Kep7atNC7e71CxiLsoETHHlJT/nD6JtiYxcawgQw6QNXHRwJlERIJjufPIjZtTk+gGpRq0IdoCg6B6AfrgvpkEzizaOS2216B7p5sWXc83zm6GrKQWEVw2NTZtp0IgAYPAnG07rHedSuwj3qcsn9xqg3uSpQxNadr5OcbUFt3XUxaj/wB5GqhcZ7cmhUH23L+7AhAc3aueIOml403YHSNKkT+WFySOjlZxih4N19II82PChF/X88mOSZA4oyaRrYmrax9JZIJ0Memz9s47x8X3ih2taoMkahJHFdTBxpTapxtnBWhYmnxQJ8UG6Y3vzzB061jiSKOA6yJgGrqpTJOtSXRVObUJ153z3dj1369J1LXAsMktEkmsa48SC+jpplqa/GTvzvnJiT6Jbiue4wiNPUwaAQ67oFACELjl1L0cO14pUTKtSeR8eTN4EJ3ZnuprEr/8O4E/9Gngxov8mIxdaU1iVVX/x6qqHgP4MQCfBPBfA/gIgB+W9/R9/wjAjwP4SFVVdwC83f378PtHht+TY9k50YhUGCQWKBACa4fCBUywIe81P83rTLFxmP0HkG1nUQeZH4BDBGMohaYmMQw2GMpQ+ICWio2jgSxz/qOBc3lzSwXppfUg7D/V9dwGtWhcJT3zGkfl9K8bU5MlwhFz+ltO1E2pOdrrrakJkoDrwdkOAIdsAIMAQdurziMwUBDb3tZ6sM71wgjXbEkxjdgaVFy3ks8od6xpkkSX/WepZakgse36ZEbY7Qdo58gFDcswI9+V1ZXlc2PIZV5JT8/uMHOcqpQyiEiMbkohMM7a1ZLPKICRxilBouZenjRzZ/r0KZIkrr04qOO+8w6v9ne0bNB2Pc62ZRVPscahZNJ068CxpinJwT7FCg4lzz/xfEeFs1R0UxKhG6n8QuVkz7/56VJ+2RKMSQ08mZRxrzevblp76yT7jAL2vG+7PtvqQcwFK+ZS0NmSpzAxz6x3Yd9UMTcxIPfRb/rK99hxzUxEsPZ9QvfYpXs51isdyAjeVP7nq/okLt0gUYkkVtWFidYAgOLI57e+7/+Nqqq+G8BXAvh6AGsANwB8NnjrmwBuDn+T/4d/Q2GsZ1VVfSeA7wSAd7/73ePrpYxrCg4vUSBcp0kyFEaWv7AYT/jg5KZRT5urA5xwzdxeanNVUX2VunKfoKoKe0Aq1B2DAKycocVkXEtct5gAjft56eMF1w0Kiowy0wf4GxTAIymhcAQTXIaBM4PkAsOmHWQjmY30cBEiG1z2bTH0e2MoVN64xvTJ0kpbHy5rPFhvDd1UgyRGkKwkkl4bOqz6GU0kSTTol4xxX09ZSNMWY5DEWEuK8tol2V2duqlb2+OOLyEp7hxZZ8sNgjXBnkc3VdzLrsCUpim4iySuFmXaNOBk11v/+eaQxGmShJnrO24f4R/iDTx/46D4XrGjQXb/4XpLzQ8wDqha7CN43myiitynnHVShUg5SHpVEbWTle+UU1TCyXfjSilCaiWT3AKmyWtVUjIM0snAzWUkHBSUlcUWtV4V1bZcGsYR/Y2BeE0isyab95v/s+h2KlGYe0ZjGhDAdP3/qT/+yybjJjWCBMVe/B9XsZu5l6P9FQt7cKjKrPHTvCCxb3V9Ei/YrlzdtO/7tu/7/w7AOwH8dgAPAdwK3nYLwIPhbwj+Ln9DYWx43D/d9/2X9X3/ZS++aGHYovztcD0nN0iBApGiZJbuD/m7y6s3r5cX8VAkBMgv/sn6u/wUkzL5pTXrXEji5AHN05RC6gmg+27hudQGRHNrsjQUmTk0BpcSBRjUganJWtaVV5PIiPnEezkSc6yryUbDUGlFBe2NxxsAPN1UNlJtbeGyqbDterrWRkzUTTctGSRGEh5MfUns3iqyBIKaaDNOkQAKGBDMuLDWA8gHb6H4jHl/7/0tZTaQskgK61yHfULl9ZTVVUpxujBHJwhmHTTAIom7tqeDdACewJSmtupoZY735ulWRe0GIuqmhWOG518TBH/8/aZv2Es3FUHiEAA/HER52Ho/G9iY19hgb267Aa3gUB2ef0WS0GVGsUi6zE2OpelBu1XW+4VrEJPwBnwWlmVglc1ti6NTN7WsBPa7SdJP/J4t0d8YmNZNAnyi3KrEii9TnqN5P+hxsR7AAAfCtAFwY4GD9PFCEAZg7+Up44Wp+zbJFb2fhoVbk6ikm16wXSmSGDn2BwD8KEzdIQCgqqoTeb3v+zeqqvokgI8B+G+Gt3xsGIPcWHYSpRurqqqBEhjexCUYferYqVA65Y1VBQ45My5Wf8fMMYa2zaGkAWYjOFzqAimgTC2I9UnUOLtaml4YELHOXdhwm+4J5TigbNYasKiZGIukxJDEcnCPgG7Kop3zUFIJEu9JkEjSTWUj1dYWmnoPnUgO4PRJ3J2Dbtr7f4tZHSK5IJ7RuTTVYJyulnr6+i6TKZdz5t3HJN10EQjXaGoStcIdMeEm83rhWI6TXMpW++MkAO6KTAvXwj5xdG2tg9xrEjKAW5PYj3PIzjG4l8W5ZhIzv+YXvgvvunuMr/rA89QcARsAPxyo6yxLowvufzopGQQprCqqJ+6iQBI7ZeDmIj5uTV3uvowFslRN4oikd+NcqXr7CHWXuZXryu4zGgVKt5WFRt10tajHeupN2+HGIeeGL2qTlAQG4RpK8Kb27hEz73JyF/DXciYJKh8b+iVZhC5Rk1jW/KinSOL4/XJI4vTzx7Vc2V+RqfsOE3DADCSxa9/SIPFKkMSqql6qqurXVlV1o6qqpqqqbwHw6wD8LQB/GcBHq6r69qqqDgH8OwD+p77vf2wY/p8B+J6qqu4MgjS/DcD/ZfhbaWzRGMcwJn9rbrL056ZaKTBOEwDHSeZurJhDDuRrElMOIUst06qipgRQqNq2AEksLUDpusn8HOvg/MtnaM8/7yQH55Gsv/CRxOLbR1s0U0SEU1fzN5ueyJxOhWu4hs+uc22RhvK4oxFJlBopkm7a1J4iJI0kLkzrjG3bFVU1XRPhms2OGxevSSwLfoSKbKr1Z2Zyqw2uG9XfNYokpu/LRYRuym7AoXCNQRK5jPw22oIhr6QXCjcBZWdrtbBz1DitXi2jwiEJ1xK6tnblBoncs2b3AJ26aVi7ulMkZqqqwld/8AUa6QcskvhovaPmBxiWhovQMeNibRuAcnA5qfcjmB3ufNyaRCZJMkEgKWpfGGxwaNuY7HDOJXOtp6J/iqRkcN1oddNOhwgCQw/OodaV3QPM8ewevGNbYNSVt9YBXEIGcBFB8jxO6L7mdS2YYsbmfS6TqAj7JJa/XwwYYVghUV0MYg9whYMYdt9oy1C45q3D866KbtrDUEt/DsAbAP4kgN/V9/1f7fv+swC+HcAfG/72FQB+rTP2j8CI0fw0gL8L4Pv6vv8bAECMLRqz2S8i0HZpUZ4r7hIqRLES6Cm6Y+5+jFFiu15Tt+QGN0S9ZWRBmK1uWniwY4Es5ewG2c9xHOPERBxC5njaIF3GuSpuzLGAISBSBumAjyTSPcqaSJ0m891mbtrHQx3RG490dFOhDakyfTC0qG3b0bWFYgeLBuuhTyIzbhF5Til1zQlKXX62qypWy6hoi6Ndt6qpAAGQD95ifRJLIgLhWJeCRSGJdY2+j9TbFPaAOXRrq6jd0cE2YIWbvFpG8tmWNcQkxMpzBBwk8bECSQyTCSQiGAaJLVHLfh6zNYkSJJbHuMG27UlXToACjtjH8Lp2D1YjgkoqZ4hAMutPrE8ic8mklqtVBmCWhYXxuGxS0hVuktdK5vqFGgT+YNFg7SCJ7N7hBnzblmVA+CyBqirfk/I1XESQuW6pvphaMEX+X6r3ngI3ZYXraOkGM66eGZRW/nmU14omdNPtYwD9W1qTeCXh6RDMfV3m738TQLRtxdA2418b/qnGMsYoPsVq4rrCohyD0RknLdWQtMgHn1CbMIwrB7IhAqZ1CM248sIaSgKb34l+e5EsTslJOy9KqkUgqyqsPyKvWz2tJWX7JG6cugZ37jkzipw+IsIiKbvJ8fLjQkoIK4Eea+/BfLdJTSJJNxXakDxzvHCNQWU1Gz1g6KbrLR9cxtpStGMdBbdBAVxNIpBKXLBOqx0jc8hZ7NkGhkx5YnBUuIZYxwEfSen7nneSRzGNDk3djMfOZ59Ddkf5PAIOIrjTJS5cuumIis943tjaKkHuNff/eP6VNaHhPdl2nJjMXAuRRPb8h0kSVrnSojbccxMigkyNeGycNgAbx7V6h5xFOwG/lo5Gsibqpvx3k+dZlkt2TdgqzyNgkpebnWEJsArXgEm6jkgiyV5ZDInMcY4zEUFOcC7uuzJIYhjw7Ur+dT0FDmQ7YNqyRNsZlY7nH84m4nKtMxpb3sMCBwCM47g4AjaPhkFPP5J4bY1GEsMbcgaSSLVgiMg4u5+XHhcqSSqQRDfbzRxrLpVz+LteJdN3doFyTWK03xsUNaEu3ZTIEsaofWCOFzg/dMP5GVlrIEI3bfmaRDmeBKelmoimnrbNYDftztl8Ac7ZOljUqCpLN2UpcMvBSdBQW+Xz17sW621HIymA6du2aTs8XO9m9ZYDNEiiLpEDTGsZu56hv5mf+j6J02cbyNckjgJYs5BEB6UjEfHYMQUVKQmDhTXRjB+5dAJSex6ZcTZ4bjsONTCfbQN1TX3toZOE4ZFEX/K+63kmwwRJZIvAZpgVrlHQTeuYkmT5WHU1LS9hxY28Zu4kJbOuwsBNQXkPe+4V7n85BiD+D3fNlk09MgVMsFceM1E37fjgZspcKR/PpX+WWqK5JgmV9a6j69LleB5NmGyBoZ3jlCbMCs5hPA7A+UAx4EDG5u+taU2i+BpMUNp1/t5RWitjLTA4JHHazotmvS8PgfX94YOe8prE62zWwU6/Jw5tlzMd7ucDXEZs2muGu7Em2X8iAy3PxLSZe+FYUbSNUW6digBRNYnVtCaxVD+WqgllkcSdc/7ZmqzQIQS42pLwPHL8/ym1jxMFqMfaqq7r0fVlRUjAbNpjj6Zh1SuhB6EiIS1AEMusE+OqqsLxsrHCNRp1U0cRkq1dOlo2ON22WCuRxOeOVwCAT98/owJZqwDnb2wlml6Mgk5t9kHCA8z9H6xbHbGuyrjQQQDM90slIWw/wGlNYsmZd4M9tkef+7l+LVf+y4XsDjYjHwZ77vFztnL6JGqCPRfxbDsFkug0uabbzYwMm6FOipTyP09N4hwT4Zr7Z0MLDMKRd6+3RgTLHyev5ceYZ9+ex67jGCjAENwIJbDlArDQn2FqokNfhqXEAqI4bREwtrYQCOs0y8eqHZRIk3BtHHYNm4AD7L60aTts2x5LsnXGsqmw3dnnhkquOGgn295GSg5cdVP2Ppb3AxZ8YBIJUc0PJZJoOxXwiQs5VrF0JrJPsa0zQl+evU+wPAYev25+X51wYy7B9kEiIyVfT8UVSjdW7TgjYoyTFtJUZTSjkhkVrskMk6ziZBxxLPPeeQiYhyQSLRjqyANaQg5iAjTMQj7tteS/nhsXtttw55GysHWJqrdT6JAzaIMTuLGKkOHxtiOSWAgSm2kAzG1STjaSrG0TO1otLJKoppuWM4OuHa4anG512WAAuH20BAB87uEGd0+Wxfe7fVbFGAR+GqT0WSErsWktY7m/WUq4ptwCYJoAks9J1iQGEvnucctBokWyNEiiRW74OqkYu4NCKJyaS51ysYzrVMiGi1CwaCdg+yQC5YRROEdLd+RqC8O+aCyVcK7Jd3vjkVlL3IA4ZW4vNU1w3zjPALvfy/G2zvPGng93LWeSHWaMj/iwTAYzBuNPnm7qI4kadVOv3pVMuI4BkWIPmPQ7JG/Hg+FeGksOSIG1ZWNVUXdkC4yli3aqzr/fzkUVJAZ+SW6oTeZPuweU7q0Jklhgl8XmaI5NruVBWQRzvKaetsWhg8TFIfDoc+Z3EbJ5C2wfJA4XLp+1mELbpRsrRLIEkSoGYAFqQNcoVIFDMvykBAGUjky84TaXJQ9FgHK1R+4cJ3TTwiYVE6CZo9xqs0WlcSG12PxkMsJzkMQoRYZxtoYG8O44uiZRejTtzLhSkBhSQljhAhfJ0lJAj1cN3jxV0k2HrLXGsQOA42WD080O652Obnr72AaGd05Wxfc3wZoADM4182wH9ySzP9VVTLhGlzgaVTkL42IZYSCvumiFa6Y1icUg0ZHX3ynu/zAIZjL502eb7BPn9Unkn20XYW1JpAEIUBtFsHGwqMfkiLZPoh+k6AIpgEdS5pqIYL0+iGAdEgmn2tnbNErJcylpHt1Rg9LVbr0fi+San27LB/N6ziE3Pz26KblMLpuglyCZgAbMd+oUe2KsTyIrAucGiWxS5mCkmxrxMhZJXC1qX7iGZEC0nam/1iRWwiQ0MypE6Zh7JKxRFtsVkkfRtnQksufO0RyrnCiJCde0hG/urlsaKjMAExg+fm34/ZgcdPH2zAeJTPFpHQQAQDm7NeXjD59VQhKHm9UGKeZ1JiMfKukxx5sI3jBoW8A9l+NRAUAQlLZdX6R7xaD+UuF8jBJL0UaDAJilIMaofcw4l+pi5sifx0kgq8x+MuIb7vG0NYlhANCRG6m3QSloW4AVrwF0dVK7tlcp2wFGuON022Kza+mAFABuH9nA8O4xESRGkHvGua6r8J5kBSCmiQut2qIGgQ8TcPI5pWfbFWBi1TytAI0WSRwC0zG4KdfETQWA2CbdjkopkcQUk4BtMyCJLCK+bHxxC/b+r6oKL9ww9y/fk9SvSdTUKYc1qKxTPsdODszz/NqjNQCr5JozN1Gro5tOkysM4r9orOCKJgBw66to4SDxS0IkMfP9QqYSU9svZhIXEtzwwZ6Zo25P9Or7x+CSmGNtA1lWlA1wg0SDJB6QGdBVYwRvALP+MMI1S2e9KwVeroXsAja5CLjCNfJ6JmhL9UksXPNwPQA41fUYw49nhfivCQuiVPIRAj50Kx43SNzTTd8645SNEkhi4eaQ9wE8jWTM2LX+plEO9ux7AYVwSiTbXbqFR4fQddJIBzQMHHZdj2XJ2a2BLoT6C05h2H/KzLGMJMrmMK0RKTu7k3YPxLjG2UTtHOdtbKwim7aXFyDy235wWaJYToRryI3UrUHVontHM4LE5aIa60MA26eOOdbpRt8Cw0US7zJIYmRj65jkSh3ek2xz6VBxV9/f1TrJ5XGxPok5hkFVVVgFrVzYtixjkNJ2472pcZIFKWKC9JBuzdYtLRykVJN9HoPEXUcnZAD/2dbSOF+8eQCAR+0ntGQiiy/jvORif7lI4sGiMfdY22O1qLnklnO9NUiiRzeVfYMOUpxgW4MkOkm4OUgiK4zkXjfdHIcSAEWSxBVOUdUWVtV43jVq2ovG1M53Ha+SDNh96fG6BVBm5IitFjXW2prE2iacWrIHsxnn+xeqIL33n4E56qamfjJ9rHBtlXkCheAymKM5djl4jiGJnOjitN6YXrdWJ8DZPfP7Hkl864xZFMIbhMluhXRTXto6RBIVwV6AGgCk4I2ybm9UpHKeUVoUI6QgEjWJ4XeT45m55NGGzkNXufMITBW6ynRTfZ/KcZxHI2SFa+aJu7iS2HIdSohgOE+6JjGSgNCKVGjRPQ9JJOqIAIMSbHYdzrZm02Yd3iOHbqoTrpkXJGqRxDD72YNENuqwTpYQYAro3WxNYuzZBgg6vyPiYObI3ScukigOtg5JHBC3lhOu0QpnATbY82oSGSetNsHzetepaKMujU2DiABWhOkdt7mamZhK7GzhmksMEgGLJh6yVNpYCYCydOAq6I5uULojaOtmjNQkWsSZeW7c5GlPIoKARelskrA8xl2DNLXsdR3Z7xU1wO1A5eTppua+ejCIIrF7x2phkcQt2QLDVUo2CQHqUF55CZuQmZTqEAnelLppribdfKafJHQ/gxKu8XwuItiLsNk6Zg+u7HnUJCUBAMcv2N/3QeJbZ0zx6dTZNT9L0rfANEgsO03DvILsQxEBq6ZZa3ceyXF1RNxCibZJvSWDgDU1gprEMrc+JlxTrEmMUGIp5dbEdWOQxNg9QiGQc2m7o4Pgzz1ny8bPPpvPImoSnX4/Y5BY2NzC4nJaktwJbrSKYC6Vk0USRaTiwZmRu2c3bVE33ShrEm8e2J5HVE1iJNvKbGwu1QtQJHLCtYQQpQpFKuSWLs8xjiSWmkW7arsA6IDPFU4Rh4u53rFauiK1tQ4TcJwj6QrQaMWUVosa622nQjZ8REpBh4LtI/jBl25Q769rX5VTQ3f0HDtSFfU8duPQPKeHZLLJTXhoeq66SRmmzklsLt1xgkAq7kmvVYo24ddx6w8wqHArFafdZ1RTy+7eW/KTO56L0unppg+GZ4dFEg8WrnANX5M4zlFxj4QlHxrhGg0wkkIS20JAG6tJpJDESMKVSXgYRNB/jVFYNucR3jHpdevGS/b31T5IfMuMWZTDAIDJbk1USsmgIczYaZDEWJ++IpI4cWS4MUCs3pJDsrTOrtukeBxX6pMYIBsAp+4YCnDYIP0Sz7/yfABx4RpKytwJ9liKnrxnrEkchGtKdNMwucJKkrsUXEZG27V33DGIRlXxtA7ZtEXwhlUqPVo16HrTS02DJFZVhVeeOwQAvH34mbNY9pMvtg8QQbom0f6fCe7lVE97ZBHHSiKJ6e+3bKrRYTLv7yj6m0s3lfHMtZNxtnavKye3al+ki0FkAQx1LmaOrWJtBcy9vN61KqfVVU3UoA0AxnYz73+Rr5mZqEIq1x9AgsvLdV9OVvogse8H+qEmSKmsA6qpZQxLB2hRksbfO5hgwwrqOcE9yXhpnQCY75NoEBiNY+2WmGiQ3KaaBjbM8VyUTnP+Zb15qExKejWJZJJEWreIercGbXYTCRRqHPhOmqAtJgpTAm7CmkQNkqjv1e2XzgB8yYfb7sedQ9FOXrS/75HEt86Y4tOplH/55p+rUhpm7OhWCpGstTuP3Dw9wRsCNZiTMXLn6QZ8W0rdtE4WKac2qphjbeguhfklvltpH519/oNxfMNbPdoJSON4IwggWWhaOGI4nu2TqLtubLY7RjdlHVcJvlhkG7BO4P1TXesMkcW/93iraoEBAH/79309/ubv+UV4+3Nlml54T8rvDEoX3pNUTWIdUzfNjwlFKmSqFN20m75uhBlyTkLtCdewWfIokqigbWmRRNcZYdsEVVWFZV1jMzynAFejBgxow66DRu5+6SoeK2sS/61vehUAjyQC/vPNqFsD5l721Wzz98dF2M0BSWTaXwCOKm3XqYKUurLrnKYGe+kkXLuep3IaCpy9jzXtVdzgkkZJHcaRVoG1LezzrtkSk56iOtpxFknU9Bx2Ubqu1yRyzP30cEAS2b3DpZvuum5sBZQzu951qjresJZU14LE/J8BD8KWOGIl9DJWk8goXIe+q/yuLd2Q41FI4jBOWzrjIYlvYZC4KL/l6TZmMw0V+JiFK6VSygZgtpEsiseScX6fPvOzdDu6jZRlHEstCx1ClkrlFs33ffn8pxqn1hnkIC5cw6mNApEAjLhHoue/FFxWU8EbtkZkjmMhmcW2s83EmUyyew3m1CRqKMkuBVerbvqOO/rFVOTtpXG2BkkEgNNtSweW9pgNPvjSTeq9qewnR5EJkiRs9n/OOMexoIVrqiltCCg7octF5fVJZGmLdW2C2V3bjyIQGrqpHJNrgVGr1x8xaQGgCTYAU4e73pnEJx8kOsI1ZNAg9i9/8TvwL3/xO+j3A34PPDaYXTZTxsVlCtcAwMmBIInKHpAOTVIbSGkcSYP2uG0iqGn6VEK23mySJOnGvaR4LGefoinQg+LuWFtIJjIB85xp+4uGSUnmEXADHJbKD9gk5KyaxNaiUlq66U6BJIbnhE0kA5icS0rgMUQFC/dlSD93j8scz91yWCQx1nJDM24UrmEf1JM93fRaGNNvLEabAwoZi0CllKUf2sbZ8MYVna0aAWowzKMU8AVoA9VLMAjAYs2w0/P05bcBot9eM4X6S3S7MJAFuHq/ScaUrImoK/888PTiaUsQDpGdioRwfRLtxmbpGcxmX0/UTZnrNgp9KALZ86ibvu2WQRK/5N23qfcDLpJoMrus4I0rksM2RJ5jIUoHWAZEzsJ7i3VkQnSbFVxx6wvnqiuLlYLgpSPABPAqjYB1QNc7Xqho6SRXZH5lwa2QyaCtyepUKpmApZtqhF3kWIBe3XSOuXtASyKJrkgLYNYgZt06j0mQyK4HI7VPiYDFkmJswm+OcI3bX5GlLcYa1bMIsGVF8WjncqDS2kCjPEY+Wq1u2viJa0CfcNUEwHNrEl26qV64ph8UQ3kkcU6bGnk/wPm8oS8ptmvz93PI0nCPW6KphsfjRcj815hnJ2RNyGdRtkcSr4e1Xbl2aVLbQ2R3QySxV7RSAOwNRdNNg+w/G5SGwjUM2jNyz4OHlM9+6gKAGJJoNsX8cYCpcE2pJjFVb8nRCqbnv7S2hgikhtoxaVpL0U1tbZWGI+8Wim9aLriPZWjZzWa90wUbYh9+5RZ++9d/AL/pK99LvR+wSIG2JtGtVdLUJM6xsJaX2aCi6ppEVVyIbrNN4EORCnktO8faqvSOxxsZBrmaxDqgH/JO2tGAts0RrrHITZnuKNluQ/OthtpOaorm+w3nAeDvf6GkLeqaDkhXbp9EBSVwrrkOHnvdXLVFwNz/l/3M3TzQ1SSGSpIAj4CFlDQWXZ0jXBMGAFxNrh8AlISl7LHgJY7Ye9KooLfq5CLgq5vSdZOOkid7PMsu6FTqprNrEj26qa4FRqusm1zU9YjusfXNoe/EBNzC7IgxxUqIYNQnrPL+q2WK+XtHuZZ9KrDGIKyuumlJkX9iL36+M/HLS0KXbB8kdh1V77fZ+TcVkIeNJyqlLJI4UiYCZ0sRuNV1NdYfaSXoVeqafejIc+Nc+W2AC9LDrNGukP2Jcc97Yo4TKX+SNldXRrRgdAhJBDJEG9jNfm6fRDfbx55/wBdJ2JK1XNKkHtCJG7nqppoWAID5fn/gWz9EvVdMGmXfP9uiqriWIIBfq3TZDmtYy8ts+OEYQ3fkjhU+N9S4aromlDfRqYPArK+Lxhcu0NAPTeuSdlzTGWVaSYi46oKMgwCY895UfE2iOZ5p8SHfkfUrDoZeagcLDZLoIimKTPdMc+uJNMI17vXedj2OlXXAWhMk8Yikm7q0cE2w4bJQNPT6OWgPIOdfV4MaokS7lqSbOmuCSkypNgGwZv1356hTN3UbnpvXqPr+gJXDq5v6NYnsfuMFiW1PnX/pQS1KsZo+ifORRAmKhteLTL1EH/IikjgVuymKuQV1k2aeXOnG5HjEeVk0NuGtFq5Zcm2FLtv2QSJ5g3goEbGQhyqlMpqt9wvRNqYmDhiydah4Jb0J2qAZZ8e4c8hZqGwHzEMSS7QoW5/gXzcmaDZzs8cBOOEgM87UCsylm9K9BKt5dSxjv7fW1iSWFLqARE1iQbjGQxLJYBtAXN30Eh3XA0e4ZtXUdN3YrSPb71DTAmOOuQg8oFi33OemByqy31hInab7KzoIkcyhNCZZW5IZK0ibO4ZGEldD6xKFuqlcX3HSmKDUVbhuBsSUDxKN47RpWzR1RTmEZp7muxnnnxuzbOox8WPmSg2bba5TSCOJTe3XoLbd6ABflr148wAAcLaNKCtFzGVp6IRrqklSkkISnSScBslyNRa0AYB73ShV1NqnoNOU2CEJpGGSuDoEKpVYd46KfUpKDDa7TkWlleTiyFxRIInrYc3aksJNXuA8M5Gg8UnMsTAeE9ArvDPHTCKJhVMpf3fHsjWJIeOFFo8LgCJVEu7X/nng5/8R//5LsH2QSELN2prEpEop8cC476cz8g7UvwCftQ4bZ/PjpnPUohSy6VPqphO0IV/LEssYMc6ufKS2vUd4/nV0U9fZVbQpGLPP/hxyZiWxrSPDqKS5SqWamsTRGVHSeEKa6mWWH43CNadbFSLotq+4iiDRpchQWcyAAdH2PXmtpzRVLbuAdZJjCaAtgXAL0iamcYAOnf6WAEcvluu73vFIYkwFmvUPFkOLj/W2o5u5yzzvnW5Uwd6yqcaAW6tuOsdCWvKKoHMuG//+Z4U7zmNf9I7nAAD/7NMPqPeP9d5K4Rp/vRteY4KbpnJasuj6JLpMJU2jdHm+GeEmGefuU+w6vmhqTyVWrW6qOf+NPnEN2DXh8WZHzxEw+82qqfGZ+2sAfHnDQSPKxZzgH+Ao7g7tdOYkEvhepiGSWKZ/AvF2FqVjxmoSS+wyM84vA5P5zkYSFSCARihwtA/9MvPvLbS9cA2xSE6y+MTCZR0En4/MIll20ULxWO7xOgfdm6NkyDY8d8ex9ZaAT0G0C7Ku356MzbYgGT5y0iexMMVQJERDNzXHk2P5r6csjiTmjwVIhtb8rqHWuAp8+ppE835dTaLtvwYoMusz6i3n2ihcc7ajREzEXrhxMP5++TWJ/qZIbYjNtCeplu4L8DWJvkgFmwCa9kks9UAFBGkLgkTyHjla1jhzgkRGmXYVIIk7QjjFlZ8HeEQWEJSoM9RRsiZO5imOpKZPogQbQpe/TJMAGNAhWe4ezKprnse+8J0mSHRrX3PmJ+DMa7xwjfnd1jKWjzeXbhrqAnDr/8CMEnXfjhMOcv0ETQJiOcxxjrqpvk9iBO0hjif7xummHY5fHALA+Bi3j5f4zIMhSFQgiQBwtjXHY4RrfCSRE4kCpiwglv5s3m/+T9eyBwkg5piNUzMpxqmNmp9z6vtDEW66v2LICrzk9fWi7ZlHEpk+QZPaHmLhslQj838ZzkDvZly4aJXGmZ9uTRBzLxq6l/2/blwIozPjnLoGTU1isFGXMplh5hPgahJlrLq2KnL+AUI4KCIuom1SrAnAvMyiIrPlKsyOfRJLSGIdq/UoHsrLrGsywnNNNvuH6x2ecyikJXPn9J7n+WbicyxWg6elafO0oSC50oHioLsiFWwCIkTSATfjmr6/Fk2NR4NzBgzng60lXZmaxLUKSTT3yHrHBzcW2TD/1yCJ0uJjvWtVKLXUJKqofUHi7jITMoCv0sgiWcsBWRLbdf2l001vHi7xv/32L8TH3nWber/Mx1WOZoI9l5WjE65x6aa887loqpFCy7eOwfh+wLCAGLqju25pauIWQ+9OTQLUltzogr1FZL9n5ikMFFmH2OcNAO4cr/BPB4SaVjdd+K2amHUhVDPXiBu5e/ActLnt+PMf65OYRRKbCJJIKH6HmhNmnn0xURgteSIo142b8NYK11wTe+aDROZCh4W1zMI17XfIISKTZu5kABBSm/qeo3/W1bR1A+vIhzc/tyDUOG1bb67l8x9BEkuc9YhwjQYR0TYFn55/7ro1dUg35TL5EqT3TtaUo5vaTUOcLlo4QhyEndBN+eumUqmL0BYvE91w6XxzaaO/QNFyY44t6tBJ7nCwzC/fTbD5alTqwueNzsgr14QoktiVN1MRthArtcRx7WjZ4N7jrUrd1CKJZu1inGTLCrFCDpqaxG3b4WzbKYPEButtRwdfgAlItcjeeewgUGmcI1xjsv+XT4T6Nb/w3fR7XT0BFd2xmq6TLHLj0U3J07Fq6rHdj3HGGXVTn6Znau+5cTuHTaISbup0iKCc6q7rVUhuU9foe/04SRxp6aYA8NyxTUbeOODccElmSS0jo7or101QWZ7uW2EtiYRCOwqxkG6qEkGM+HclEGDKLlOUZblIYtfjqOTfxeitDN3UCWbVwjXXxJ55uilzoUNxBWbhSqmUagRQACcgJWmqEnD0LNQffDe2JtGnaJjX2Fo6l+vuzj05JpI1KjlBdXD+ZZ50vZ8SJQ3Pvz0n5XHud2P7vS2d+0QjXCObxrbtRroGU6fmSmJv2w5VxSzItYMk8omEpvLFDsxnXT6SCOhpo//Sh1/Gc0dL3DrkEcg5tpyJJLqBFFN/DQzodkCB5lgCrgCHnUPxWJGMMFCmm7o0wJacI+DUJM4Rrmm78WdpXJhZN04yOceFoJ0t3YIBMNTZTdtRDBkxobYCukB2rh0smrFHJdPvE7BJKkm+mT5x18vZirE0WKXqOX0Sl41P5eR7ENpnx/g/5TFhGcy25a7bsqlG7QEN3VT2YG1tJ2BFWsxr5WO5iVOWuQVYJPGxIImK5+aOEyTeOVlRY1YLv5/vERMkOm1ZdOff37upGtmAbsomJVPqpqU+idsJRbXc8zzGMKNEyAI2IUDSW6/Yl7kM2yOJxIWO0baA/MV2s4qArt8eEEES2eByzOTr679U45yHRjZu5tZ369QsYqCH+ku9bWJIorQFKVlUyl+5+GgEb7wianIhXy7EIenVjgUw1CQqEUh5/6btsSRUQN3rxp5HQNBt8/uVqJueA0n8U7/xSxHsHZdii6AGj+mTNUkA9Wxm3Re8UfVJHJNiXOPgEEk3Y8tI4oR+S9Roih0tG5wp6aYSEEp23dBA807aJOGnQOmOVw0++eYWN3Y6JHHV1FgP9ZY3D7ntfdnU6HqMTvllq5uuFvWIvmjUTQFBsCpaXfMqLR5sKJFExTrpOteaRuluK4WWRBJDlGjX9WOQlJ1j4yKJCkpsXc8KtgGzXs1SRe10qqjy/D8aWllonP87xyYwXDYVTlZcEkjWIEESj4hxrgYBW1so49x163DJn3+3BQbdJzSyB5T6JAr6K8dgawTl871jlVpn1PGSJyp2CIRrnrQgcY8kEhc6vImZhatxFiyAV2kcszHOOIqiF3Ct2fqX8Lt1fc/VH7nCNcEcsvN0aEMs/C5Zrb4PncIykuh/N7ZucipJztJNw6xREUmc1CTqags3Xt0Gn21162bYcfL+bdtRjrWMcSmxtHDKBIEsDptti6Yeg2ctklhVlaoWZa4t6sprAcBs+NJGYRzTlyXCgXjiSCtmxQR68vcYjQfI35erph5RPRlDS9CvrLrpasG1PFnUFarKQRKJ4C3GCmGdtOODBU63LdbbTiWmdLA0NYlnWx6BlOBGnPLLRhJXC3vtOiLZ4c7RUrc44ZSrNI+loQhu/D6VfHDp9orToESroW4VMDW2zJoXokQsvdtdt1hGgsxRmtQD/Ppj5qgLEl2fSxOku6rYACeAJXZ7CBJvH6/oUoqxJlGCRA3ddEwA8UiuK4qkOo9a4ZpgD+j7vhhgiv8TsrCYGkEzRx2S6IpLjeMooRynJlfhA10nu16r7FtgLGQcKukB+Zs4pGewTnIY3LQdn/0HfCSLuRWbwCEEGaSYAMD8rhGucTNUrHCNpe7a10p9wMIgHRiQROKsuI6rRQTzY6bnn7/eXW/fz1LSVoFjxxwLcBbXtrMCNKSTsHWEayjRAucZUKnUVb5Eu7x2mSZKpZetUjrXlk09rcEjauLaYBOdo27K1pa47AIZX+zvGqHxMAyDEElkxRUA41ydbg2V84CEzaqqGkVhAAwN6wtBYqS+nEYSlw0eb3Zmjgrn82DRYNf1eLzhg8SVQ5PUCN7MtYNFbeudSCRrWftO4a7jhFOu0mQ+Pt2RRARbfbA39hLsepVy7oETpG9IYaQQJTJBOrffjN9Ncf9L3aqmvZO7B2sToIBJPGuC9ANHFdvMmU/mvHzL7DchgpYzqZ1/4/HG/F9JN2XblgAB40sJVLhMMT4B7TJX7BxyY+QYYmzpmDmGO64rip4tmgTaWfJdI+1VnjThmuvpEV2hURB1M1UABTgkUavS6NIDgMFBo7L/Mjc44xiH0KrvyTw5h9B+JzmmlpLGNnMPBSCAcvbHDVAALjsl5tWIkNctPP/sOZF7aKRXsnTTwLFj5gj450UcBbYpr9A7ti0nP9+4TtM4x+KwaE3oZVM0Xrpleh5qNvqrtFDNjRGccJEGgL+3JuqmPdkD1UMSOVGkEEkHrHpuqSYxpN+ywc3hssHZtqNRFDFXlXO9LY8N0S9NAHC0avB406qFawTdeOPxhu6v6Pb3uxJ1UydIYQV2bPmGFdO47BYYWosJ11CIoFtbSCaFzbga27ZXMUkAvyZx03L3V7ifsn0q3ZpEjbrpwcJQoKV2VaVu2unPP2D8i67nz+NBQP9k6Ldin/fyTQDA64829BhR3v7Um2f08cZaalE8Js+/K9TCCMIAcZ+XBQ7C9jbu56XGuO+V4zH7jTtH+X1O7TxDU3UTQHI+r4J5dJF2vVbZt8CYbIBxZHyHBMgHN5MsslaAxkFSNLx6VzhFG7TJOOYWDushAM6RjCleloRTFvX0wS45hbHzAZCo7Ay1uRTdtIxAYjxO3/MZ4TFI3OkU2RZOcMm2sgB8J2FNOq7LgOoC6Otd7b11uQvr24bM7jFZH3LVtqx9oRa2JnEidjNHzIp0Ltx2OrRwTYCkyzyBfPJi6QRsAE9bBGwtz/3TrSpIPFhawRVNTaJLXafppisrXKPpk3gyKCU+ONvRSKKfcLp8J8YNttngfjkyJ8y53HbdpbfA0JovXGNeYwU/vECKVaAcEBgNagbY89/3PZ0oCe/lLdmncuEEpJp7a6z3U4jCWN9JV8vu1iRqBLAOFjWqygaJmgTjqy/foN8rJhTVT903QSJTk+i27tEgub6fVhaEAVwk1/xfQzeNtphTgDAAXzoGBH0SiX1xEfjJcuxSnsSjkvd7JPGJNMZxiilQAgUksfFvYra2bUJTJZWl5mZxwgwJq25aO2gDK9Ji5lnPqEmcPtilxrD2fJj/d2okS8aZn1pVWhlXrGV0kgIaRFaEazZtp2rA7ArXbMZWFooWAG2HM1JxMUrj0QbpCvTlPCab6YdfuXXpx5pjc/okhjWJHemQzxWzajx2AXe9QyQd4GoSlwGyyvTIEpNanjdPt3pRmF2H3RBMsXRTTyWQpZuuDG304XqnmqMrp88iG7ImCJX2spFEqZsEeCTRb1RvkmlX0QJDY15POkUt9aKufXEjhbiLtt0GYIVrdsN5pOrLg3uZvW7LwElmGcJy755ueFEYeYtL9+XOvwQ3vapNh1DQx5pExXP64lDewPbgBKZIIlOTaAW3WpUCrpso1NBGzft1QkVhXTrDOgqRbYBEEoNkh5lveZzbcswfR7B5xN9VJnOuiz3z6qaslHx4UwEcHG7rUVAc4/7drWNR9ajxKKDzsjiz20RQAdg0cGb6JAIYWzDI2Ny5HDeMoLaN60Fov5OtLcyPSdckFsY5Wcy64gNZryZR4SRIMLRxkMQlsbnJhnS6aWkkMZTfZufoF81fvtMKAJ99sAYAfOhtNy/9WHMsbB6/KyRJgCkiqEk4hWJWWropmwBaOMm0cO3L1yQGLTA6Xt1U0OLXH22USKIJbiTAKdUKRtVNyXv5aGW25jceb1UIxfHKDRJ1SKJ8r8v2YVZNE6hr8vvbru3H637t1E0d4RomkSzWNLbeuyX3e0B6CepEcgATOOy6Hmdbs54wNa9h0ntHqgl79ZaKAMz2IBzopsS4qjLiUl1vnXlNgl0Cbo0Tf7BoHCSRX0uqqsLf+998I24d8a2Tbg9tMz6pCBJlTutdp1LA9ZXJdaUsI5uELW8I96nRv85pTtTeewGeXSNzc4/HCt50PcZEh1m7ssMCdV8+UX6d7Hql4t4Co+imiUxH7mLXYeaNRLJCmupcdVOAbGQaIomkQ+j2UtNQCd3+Owz3HACaiJJVKZNZVZUJgINAlqvJuji6KYsct72ujmJuTy7ZNM627UhxYjLJ4rSeDq0DVEhi11MUErHVwqLNGvrVeewP/tIP4Svf/zw+/v7nL/9gMyxsHs8mt/w6Xr4m191EWQq0L1zDJUnqYL0DuABzOVD0eicJxAYNd4e+ZD/1uUeq/pZC02NbZ0wTfrxKrwSyjIqqaycH9rnk1U0FtWm9/1+WhS0YWEQK8FWZnxbhmmWQcNUoUHprKx1cmuv7cGjdoCk3kHnS4mVuTaIiAD4IexCy52TYu1vFXrrwrpvOiT9c1jZIVNDCAeCV20ce8l8+VoPVosanB7rpIUU3tTWJc/sksiyNULiG3bsXDrvMjBd/JjdmiiQyCZapn8wL0LhzA8weV0qUuPuUzHVPN33CjJWxjXGmGSRxWqOmQxLZRWuCJJLj3HYDgGlnQQWXXgBmXmOl5OVcyMLAqptOlKyI67YdF6zhNVrd0f9u9HVz1GXNuMKxIsX2zBxjwjXMhiiO43rXOXTT8rgRSdy2ONtyinieuikZNMi4sY5Fkf08j33RO2/jL3znxz0k5jpZSDfdEkp1YU0iq1LqNgAGeOp6KFzT1BWRJDE/w8wukEeKQgl0DUohQeKjTTv+zpgoLkpdYskpDNcEjZPm1saywR7g003Z4FJYCRI0aHuFak3UNbuup5QFAUfKv+2cfeN6uS/zhWtqj5I2W7iGXCbl+kp/vxWBVIdJb7ZP5bJ2kJSeRztljg/OZI7ctZa9W6P47X43TZsOwDybc5DEuXb7aDleg0Piui2aGk1dYb3rsN3xisAekqigjQJOiQ+5JqeRxPRYt5TFHcf6kmFNYmktiSUzmaDU7e+qUc69Tna9Vtm3wPiM/BRJZG7iSf+jwkNTVRXqyqebapS9tDWJYQuMOY2zWWqljAvVnlhFqlDdlLlusohYuikxx2qKQGoREXVw2ek2trFP4s7JWiuQxPW2HbPBTHAvTquR5efQDZcSosmsLxrbF1PTW+5ptkVTjwkPYJCgLywM7nkElPSfYE3gaNqBSqMq++xu2oS63djKxX43NkPrBoa6INEI10j7BnWfREUg61LJdEiinm4q1L4HZ8bZvew2MG598xwkUZ6D64ckDok7JQXURfw1bVJEuIdRA3ZtFQRgmoSf7Itsn0o3ucX2aTVzkvYSwz1Jotuyd+sUv81nd0NwqaOb2vraKwkSB8ppU1f0/W/m2NJaAvL5Lk2YeUbDNilsUsCIu/gqpe7npcYAvk+4I9bXKCJI+pKAn8xkSj7COuUnDUUE9kEi9QDUtZX/N2PK/f0k2Jv0eyMXLZfKqeHVyzPT9fraQjuuOMwTvBmRRLIHYUjlLAmnxJSs2KxRGKRrOfJs3eT0/HNBae0sPhra0GphF0lbpE8EiQON52xAEhnRGsAqqQmSSPVoqv0Fkp3j0hmnoSg9zbZqfErOlsjkh/1F2SClriqvLU5Prgluwkm/bk3pprnnWxwkaaXAKNuJzQ0ShSYpx2TVTV3qNI8kOoigQlr/ZEZNoji39xVBw3nMrZNikbOmtkmB8f64Zi0w3PZVmhpsL5BSBCny/SVpwa6TEnBpUDqZ09ZJ8LJ9El1WCF2TuJQ56tpLiOicRt00RIB1dNN5iP9cu31k1qujZUMrfksgy2oJAGE/a6XgjZOUpPaNBJKo7ZPYUXuiMLB0wd7op7m9eYlEqOsDac7jdbLrtcq+BcY4TmEWQaPKGdYkchRQvyaRC/bgHacHWVtYV56yYK8ILjvnWIACSXS47vJazsJ+YwDLI7dUF82m7ao7suje5Pxr1R07qGhDc/skjpLY225AEskg0RWuoZFEm1nUCAmIkI6I8jxpamCXYYvar0nctV2xdYxlM+hQCldcCuBrEl25bzZoiwkJcOqmln4I6Jxrl5KppZuKswWUnWsXoRjnSAvXWIfzWNUCw3VauWd7bAp+ejVIoqwdjzc79D1XyyV7wLazglvXLSvvthfSiFS47aQ0zInxPG4HBVBy3KQmkbjeouS5Vvap9BK1irVc9qk3T6VuknsGJDGvEdNzy1k6hQIoAK+m+SqQxJefM/18NQHpwaLB2XYGkuhdN+5Y3jhyTZ4w9YhnJ0UbLaqNNtYncY9XVK8f/hwiieXWGXaf0rRpuk62DxKJGzlUUmKdcrduT+4tGklUPmhjbZtTE8e1GwiyMbPqjwQ1m4nSEecRCNAGgkfuK3Sdd446zjpPNzU/XeEaSuzAo5vKsYrDRprKetdi0/a0Q2jppnokcdu6c+Q2DXfcnm4qdFN7T3Z9GYF3kQ3gfHRT5t5y5b5ZhzD2bDMMg1hNIuuAumuAFklcuzWJRbopJnNkHdCXbh6Mv7/jzjE9R0/dlFRFtUiivt/bHJtDd1y6SCLJ7rhqc4ONEclineRWl8gBLNr2aK0Td5Hz/1CJHK8W9ZggYdAXwK+31KmbDvfkKArD1yR2vbLlkpNM0yRyAOCOs35ohWvm2Cu3D72fjB0sazxat+h7PrgMfSC2/jcs1bm8mkS/3EDGlZaEsJWLjCv6oI0fA5jfUayndvu7auqNr5Ptg0QqSDQ/3aJtgAhuqspzEADOka+dwK3tdbU9fuNm4lgTuil3I9e1pVaywZ68Z0RkSQroXCUrz2lV0k/Ca11aI0dnd6L4mh/nCdcogu2ocA29ATc4G5BEttbj0BGu0SKJu1bXt8pFidia3Kfdlo11JNkWANO6aF7IYSpcwzmEWyWyF9u0uZpE8zcRX9q0XFNwsbcPGXlNkHi0bEYkHWCCxAFJdDPy5DP6yu2j8fd33+WDRPecsQ7h4YgkXg3ddBUEABq6o3HkBUm8XgtDtE8ik7hrXMYRX1t4uLB14gCPJI5BugJJBKQmtxtq/rggfdlU2LSGSdKRiWvAouAPznSiMKG6qSpRNcxRw1y5e3y1SOI7h3VBo8p8sKjV4jqun6YJ7he17THNJnhdJB3gWF8LZz0YxxFIYl2bMjDrF3LXPOw6YH4nkMRAuOZJpJteTym/KzRO3dTPIrA1YF42Rql25iKJLELkzZGkTYTCNW3H0lsrzyF055AfV4/1nSxKF+uJw2V/pnRfJuBwqbT0HBNIIt0CQ7mx2QyV05OLdS6WppCdlTEHLJJonOSWypoKbXTXOZRYVQCsrxF5Ws2VCZd7unTtlkH2syVpQ1MkkU1cVF7NEquu7M7R/T33fK8CJFGT8ACAv/o7vgZ/7u//NL78fXfpMUcrQ9vajH0SCzWJQQCsQTvd973zzlHmnWmj6aYTJPGy6aaDUI5CTXUUrmn7sZ7o2gnXBH0Sq4p8bhwnmd3vARvcj70ELxlJFHVfKxzEXDfHSVbQFq1wjV7dVARoAB1zZdf243VjzUUSr4JKePvYHI99tgFzLsdnm0YSfT+NvW4GdDD3R69hrrhJScKfSQvQlOcogm6A9Qtphf0+PB43Tkpn9nTTJ9CY2pmwBQOLnIXBHsA5yXWAQKpUAnt7vFmNsxXHC6mcmp5Eu64fkZG5SGJpXLj5yrxL5lFpycBNnAFL91UG90MWU45fMq9PoiIAAyySqBGuERqboZt2OCQ27VUQ7AG6e0S+2z5ItI2zAVuHV06u+NlWmiXg3P9SS8pcgWXjP2/MhtgEz42ZL+8kbEd0tafvZQB48eYBfvcv/jxVy5PjVYPHQ5IEmNEnsZ8nf36i6KUGAM8Pjit7rMMrrkmcI5wyqtl217cFhotStArUWPbgXqmu6dZ2yvEZk/P/cK2jF4tKJtu6CgjQVQ3ddBmgzQp1UwlIAZKFFSRqVUiiEySyQjLnsVdfvgEA+NaPvp0es1rUlrbLIokBKl5C6MZxtS9cw/pAoUopkPdnQpaMHI9S3HUCWQtwlBFIAJOWGxo9DU25wXWyZx5JZBynOnC2WJqkG+yNAQBJyZzD6wYsrZLpIwj4DbABXd2SRduG10gH1Izhm4u6AihiTE2EK+OsoWT6VFoukI2pm1JtA6J00+IwW5PY6vvvHHhIog5t0DQO9rJoiiDdlbvX1Og8zeYqIIq65rKw4bsZ8r7vdaJUY5BoXqNpQzPqH4EUkliuSRyDREXCY64drRY43bY43UqfRF2QyNTMuPbXf+fX4pNvnqrn+Z/8pi/Dv/NXfhQffOkG9f7RIb+imkQJSt98vKGP597Lkiy5bjWJgNOqRpEQWAYOOU/JNOdNahK1dFONcI28bzMo0gIk48VFVxWiMG4LjEVd0Uq2c9RN/X6+/HkEgDvHPF39IuxDb7uFH/qeb8YLNw7Kbx7sYFGPiKymJhGQ+lotkqhLijV1NQm+5LNStkiwy9jjbQNWTtmXHI7Rh0FpCeCwpTNsK5HrZs98kMg0hV0EAQBLr3SDvVYRAITKUlyQOMzNRRLJTH7YAkONtik2DZdLPo4jz39YpMw0Mg1rQlnH1VJp/Tmkxwzz8oSDiofykETNHEeUbqdXAJXaEo1wTV1XOFo2uDc6dgTVyOmH1isyu97CqqwReVpN6jb63rYAWBbvSX+jd18rjXNb8ADcvezSTWkGhKytanVTSUDYwHm5uNz75GgMbrisfIjkajPJX/D2W/iCt99Sz/MXvPsO/tp3fw39fqltk5rEy0YSRYH19Uc8uuEzUIRuer2QRABeb14eSbQiHJqkmFAOx5pE8nRMkFxFonC968bEK3P+Fw5NuCP3RDkWAJxtu7HUgbG69tVNWX8LGNg8Srqppqb5okwTIALzaxIBvZiPJxZIIscu+giAKk2JIYmsmNLSYfjJs1ouHZOgVKeK6iaA2BKM62bPfJDI3MhhM3fW4QqDPWaMvMeFw2cJ15D85xjdlFnI/cbZuu9mjmMRES1tS35neOQTtVEllZZFEmPnX4MkqmsSFy5Kp8t+HixqnG0NbUhTx3W8avD6oyFIJDKSY91Y2490RQ2VdjPU9uxjxGCzIfvEuQqgmnurquzzonlu3BYY7Lplqfz2NUunzQWJAZKorEmcY+KsyjNQoqraPpV2D7iO6nbLpkJVAQ/WV1OTKPTZN4aEE0U3dRAptkzhrTDpC1jXFT0/+2zrEn4Hi1BwiAumJuqydO1qY+imgr4QSO7CWcvbjqeEu/eg5n4UjQVNnf6ISrU6ui8AfOQVk8T52Dufo8dctR0smtGf0SKJUn/N0k0npVLnUTfN3F9237AbB9O3UI5nWYFcO51UyROPJD65rKhnPkhkgqkYbQjgaoJCARSW/iCgWauA7MM5sgGRc9/zNDG3l6BCFGbhbIjbHZcRjvVJZOi0LiKoQUTc68ZSayb1R4oF0ryf760ITNVNNeU5RrjGBGCaRt03Dhf43MM1AF32f9t24/fkqLRu9vnJXFgv2hZOwG2FI9h7shtZECxLwKW703OsHXVTsh6lDhJwAJwgOP0B4hBvdh3YliDnNeld+NoYJBaEawIGhNYBvSqTHngjQqpYE+aYnLc3FHRTd02QXn1XoSapNUHbDhY1ndwKVaC1CqBvKmtJpU/oa4/MWk4jicsaj9Y7mqIHWLaDiOuwc6yqaqwB1iDbkuBV9UUePl5L9wWMkMyPfe+3juvedTT3eeZFikJRJO5YbqmCKbkpj0n1SaSQxNb1Cctqo+PxQrqpks0mqqjFHutOf9fdE0o3vX6r7BVb2zK0RT8AYAprgTiSSAVuDpLYkXUsoXANn8Wx30vqlrS9beb0JGq7Hpu2RUNkXOeqmy6bCNpJOsnuYuDOO2XT889mtTCOm9NLcCPZTxWSKHRTXR3XneMVPvXmGQAuI+kFsprMriNSoXGanmYb6zudZuJ0n0TPaSofy6WbatrbLJ26ybblRATCWl4AlHqiODtSW1t6/0WYBDevPdygqni6qYskXlfhgsNlY5UkL/k8SpAyshIodVO7lpwNjqumofhV2eHSKOB2Cpr8wkH8NUmxsbZTSSUUiuTP3zNrOat4uWp8uiklEjJ8t0dr/b11+8i0edDUyM7pk+jWt7GKnK4dLhvcVLSkuGpz7wv2mZExUn/NrlsuwMH3yq2jNYl6ddNy6ZKMlXHj3lHquR0cj1dFdZDEa7z+52wfJBJI4qRROllLF2ZV3M/KmUuTpPuNDe/pe9242qs/8j+rNE7ezyKrgEvdNVLmzKYRg/p3BFLa1H5zb5l3yVzOulZcxxccKh7Kp5t2vCNfVRVWA7VJW+t0sKixHqT8dUHiEj8/BIk3Dni66bad195js9u3wBBbOkgiqy4YIhQA3yex781aorlupgbYQRKVSRIx5vtJdvxs21khn0sWMhmDxEdrHC0bur2Nln71VphH77vk4EtouhIkMkiRTQp0OBvUZY+uYZAoSKKGNroc7xNd/ddcwaHjVYPDZY3XH22wbCqckDV/BwMDRSiIJeEswD6Tgkhp0F9p96Clm86pwQasLsDTtt+4tHi6Lc5Y72quG4uAeQAHmShxyxQAuxfkrkOc/skiiTW24t8RrBXAqRsOQYcSAjkyIJ5c4ZpnPkhkgo2wRwodOFSW+6xVAHUzFqxj5x6HDi6rqbgOcx8vPF63BGDlcR6SuOP69MXUTRmJfSP2IYiseY2ici78puAA1xMTCJBcxQblFtuzm9SyqbDddWpK5uHSIIlbZQNyV8ntpZuHxfe7dNOxtk1BpR2dpidwYb1oc88li5y5NYka4SD3GdVk5Je1UY3re6m/KA6ZJOAAUDVn4hCvdy22ZHP785pk4V97uKHENKLqptf0XnYRhstGEleLGqumxj1SAAiw81vvTAse97XrZCOSqAg23GRO13H7KODWJOpowlVV4fkTI35y53hFt244WDTY7Lrx/DNBuiSOHw3iOpqk5O2hUb1mjxIV6DHhrWDltF1Hl/c8Sfa8I67DtzsZ6KYDAszeyyHAwapp+7oYw2dlfMMYu4xV9HdbYIw1iSwrJ+wNXvh+nnLxE5qAeOaDRCbYmNaWmBulKHhTV2PQ1ikCKROkWAroHHVTjQT9RMmQrWV02j3IZ5XMhe03bYeVRv7cocWaBaFMEZj2OyweDsumGtEJlm4XOrua2k4Zpw4SF/UoCKBBKI5XDR6udzSSK3bbCRJfvFlWWIvRTdkEBCD9xp6+TXuOuVLy8hyUHC43uaJBEucq7spGK+1tGLGDkJIJANuuH8RUckHigCxtO6e5+mXTTaWWazPWJ+Zs6VCNAF45+q0wOZ9VdTVN6o8PmrEmjkEuXbXLs63QTa+f+zIiiYqEQCgwpVU31dJNAUs51ahzGrppOyK5zPmX/f7xWleTCNikpOZ7HQx74qhuqkhcS6uga9hZ5Vz2grNX00ji2INTahJJJDHoscucSxdwAGzgpkUS6d68DsNs3DtYEGDiT5aBCjPPAUl8Am+u67fKXqGNwQZJG7IZEvM6E1xa6J13tlZzpOQDdU1WScmjlmnq9mo/Q86PsxviZtdhpUASXWcL4BSptiHdlEJELJK4I53rSf0RmTUaWwAoKTKAka439S86uumdkxXuPd7QSK7Y3RNbd/E84VwsXbqp4ru5weWWvEeednOl5AU50xTbt4oEkNc6QzHOFZjqSAchKkDQdkXqukWWeGT1vCbo4ZunWxwvy5pvrgIxIGv55c3vPCbnc9XUV9IU/GS1GBEpquSgqbGoK6x3tk/ldUYSNQIoYTKHHWeuFfCmUt0UsMGhps+f0E3PFOdf9hdBEjVB4nPH+prEg0WD9bZT+iTOeveEoj05c1tm8EjiECRudUFimJhnk5Jdj0lpVu6Ydt9wg0sSSXTorbxSuB+Ujm1uSj6o06rpSW2BcU23rKuxMdhgM/IjlbBDVXEUxF2QeWDpdlYlcJ66KRP8huM0gezSqT9SIYnO8Vi6Yyh3L8dlsjhzxHWWCxtcskiiRQQxjtOcj51z/tmA72jV4HSrRxLvHq+wbXu89mit2rRdJJFpbrxyrpv2/jfjBG1+ppcpANa52rbdWE/Bqpvuun5E/XX0K904D+1khWskueUiiW054+oK14w1iZd8n7j0OgpJDNYttk7zrTA5n1elGHri1DTzLRjqAUm8/uqmGrl7t+enpnRAVGltTSJ/Pp6/MQ9JdOmmh0TAIUGJticjYIVrNM+1CWRbXS11WJN4TZ/RufbCDXuNRTSqZILuC91UgySOYo0dmVyc+Nfm9dyeE0USyWdHeg4DViSNrUk8r3DNdS03yNn1W2Wv0DTBBgBPNpd1tlxkCeCd5I2jrjlX3VQVXPbWIWQyycthwwDsedHUO23bjhZOcYMGwHLWi6qoTTUuAlokS9Aadpz4w25bEH0ri2HetAT6kLUmlVTFxDHYtr1Kle3lW+U6RNfGLNqus+09VIhUN6DNz/QyBcA6Vxp1QRfZ06qbAj4CqWpvM4zT1iiL7bryuuDTTQWRutwN2HWwmJpEV4EY4NvivBUmiNJVoXOumAb7fJta6hbrbYuDxdUgnlqTNVnaYDDmOqDahN/hshn3YU0y7cNvN/39Hg8IH2NTJLF8vCMHfdfOUe5J2YupOTpBOqCj14/1/dfwvjqPuUgie/4ndFMFKu6pOVNskiAAI0qz4vvGjJrEkW5K1iRO5sghibvOJE73QeITZqxKoM30KSmgDvf5PEGKSgDFgewZfralqTo8a+I+XjbzUFJZpDYtL5ziNht2fzJ00zDzQ82xqb3gsq7KgfNcuq8bJGqEgwCzSVu6KTcG8LPHNw/5Vqlf//kv4ju+9J34nd/0KvV+27ahp7KDYhaRGijJ1xAxuGo78OiVXA2elXbXOU2eJP+4bnGUQMBkZ2m6e5BFBjCgkKXNt0ZTV77a4iUnE547Wo7fiRHtqKrKiEs5SOJ1dRLe/+INAMC77x5fyfE8JFHhuEpNIoPkvhXmzpENuF1RKi2SdbzUn0cA+IYPvQQAIwrPmDRll8CS+X4nQzLgzaEnpibh9+Xvu4uPves2/hcff49qjqYm1Pyfed5kbd0MiVrNXvokmOgHfOxdt+kxc1tgNIHPq2VTyTjzevpCuHsUYPytvueBCtlDx4SrouewP8dC7OAATNdZ3TpnvIf4FJptpJlfFdzABuB69AFSE2flgAHOSV4t/CbwWrEJgFNtNeMwjtOKVIxzVIwT5+psY7KtjGMn12ejRPcWdT0uWOKDMmudofva4FLT780KB5H1pwuLNlhxI5JuOmStN60ObbvjBYk8krhsanzfd3yMfr/XpmNEEonjOLVcrLjR024r5xmwNXjcxqatCbWbthXJoQSfHARy1/U41tBNnYzwtu2pdcE45FfXJ7GuK9w5XuJzDznhGpnTru1UPWjfCnv/CycAgBOSjnZeE+r6SoEIiipzXXFUx7fCDoY5apBEj96tRLJuHZm2RE1dUSUAYu9/4QR/7Fd+FL/o1RfpMeIHvalQUxXE/Y3HeiTxY++6jb/yb341/X7AtneyGgTlMYeOKNLTWJN4uGzwn3/XV+JDb79Jj5HAWfpb0kiiq+jfc+qmY6LQ8bmA/J6zCIM2kv4JmDVZgl+2dGPh7KXmuFzS1WNFtR1uKJLy18WevBlfoNHZgCBI4QOwCqdbvxiXUdtyaxJZHnMUyVK1zuhVlEAJpNxeaswDOgaJQxNsHZLYez/LQaLbgkSH5Ar15zzCQWxAChiqi6aOApAG2Fust51OtMCpLbx1yYvWYmjTMbZgUDQ33rV7uqmYOGTrXUvLdrt1jHNqdLT9FcfsbqsXrgnppowKnFDLNjsOWb0Iu3uywufIFhiAXSc15/GtsBdvGbThfUOweNn2toG6fqgIGlZDUqDC9VQ2Bcy81tsWZ9vWo9TmbOEwJ7RtUm6P4i6681FVFX7DV/AIHWD37tcfmYCPQRLlObk3g246x4QS2/U9KoIBBFhRJGHlXFe0/zz25e+7q3q/3E8P1zrBoUVTYb2zgVRJNRTwk5IAV5oV60EL8PodgiDypRtxSmxRPM6pNzZ+2vVct3L2TAeJbE2iXFgXyWKldsMehBTdzkWyyMxWTKKXnSMwqGuqKJn2IdU8oLKxnG5MAMBspG4gJXN1556yWAsMKgB2kCyWRz63J1qsJpF1JA2S2GG9a1Wb790b8+imc0wSHhon2RVyMEji07dpa81HEnXJrW1rg3TOabLPtk7MSujFfAuAaJBI0E0BoZZZJPEq7hOharMBgKkv71S1nW+Ffd2rL+KP/cqP4lf+gndcyfFeHoLSW0c8k0GQxArXU9kUsHTHs22Huye8Yw0Ikqhr+XP7SN8mYq7dOjL3/GfunwHgKNfHId30soPEkW6qr+08G9rpMMyhp90OAtSYfd7cFhi7tqfQ7Zjv5L4esxFJVAoMyntG4ZqWDPaCoJRVvV849ZabVpfMvy72bAeJM5wtQGpLOCpVWLfHBg4bh6aqlZ8HzMOjFa7RBLIuaqAZJxvL6bY1ffqITcOtbQMcmjCFJArdlJ/jygvclP0OB193lnCNsibxYFnjdKMTSQB8AQ4N3XSOLZt6qEnUCNdIvcEeSRSzap7duG6Vnp0RSdzpakJdJFe1JoT1F8r1R2zbcjR0QQ2uim4KWCGHD7zIIW7LAUkXsa3rqpxY13pk6TwmIlgsIgvYGmyA6634Vtjh0uzdp9uWdgjt/tZh13WqPn23Z7SJmGvPDQH9Zx6s0dQV9bwdLk2bjhFJvORn1LALeJZSOG6za59ItOeiTe6n+8oenH4AxrXYmqqbln3lEElkgzbABw8EKNL0HAYsM5AVj9u23Si49aTZkzfjCzQLGZM1iYIkkpnuxhFO0QhHTPokEpuGDWxsUKqhm3Zdr3JkRgquixIxSOLKFkSzffpEAGLXhtTR0oNdO0XU5jVtC4Zd15ECHOanVrhmRIiUdWOACbjXuyFInOk0XT6SaJxkTabPQxL3wjUA7Kbt1iSyglvuM0qplDobsC64txuilqYdqtQxdNPDoSfaVQaJP/6ZhwCAj7//eer9gqR3iiTVs2CiuHhEIrKA9MBrcbZpVTTVqzTXuWZbeyydhCvbNkDMre28bJMg8dP3z+jzX1UVjpcN3nhkkMTLfkYPFg22bY/HG51DLkjivuWSsWVToa70SOJq4feY1ug57CY1iennoKqqqH/NIYnOHEmgaIIkttx+6iZ3jZ/25N1bT96ML9BYRGrap4/Pko83sVY4xaG2aoI2G1yaFhDMHIEBSVRQosY6QccBYh7QsQn2VrJ9bLZ12uC+NE+jwOoHlgyTZI6zOxWuIemmDrVVQ/cFzLk83bTnylBdCZLYdiqZdlEEW+/2m7bYytlsxiCxlNwKEHFgXm0hwNLkneCSZVsI3T1AEhnnQnqiSYuJqwgS/w+/9hfga199AR986Qb1/mVTGSRdWW/8tNsrt48AAN/ykZfpMYfSgmHHK4detUmt5JunW5VjDZgEEFvKIiZIoptkuSy7dWiRRM35Pz5Y4P7QJ/GykRRxwu+f7VTo6sGyxtmufWLrxi7aTA/OZrxubA2w3xqNS7C7dGv3Z2nPcfuQjz4hJYRo/XI2wTgJZEmgYtXUqCs4bXGu57qVs2eabtqSNYmugwbwYjJNXakgdLGFU5PIqp01tcn82CCx48Y5mXyNI+mjbfx3G+mmA02SpZ8YKXk5l3Ldyg+2VTfV0X0B3aYdIiJsLalbb9krg8SjZYOzoQXA/CDxCpDEgY9fVVwioa4r3Dxc4N7jDdqux6p58hbWizZbF92Oz1sJhY+1V9Gqm4qxTYoBS1OlhGvG58a+tmt7imEg7QYkoXYVtORf/OGX8Ys/zAc2kvDTMEmeBXvfCyf4b3//N+Cdd47oMQeLZhQXua7CNeIE7rpe1doDwNgEXiVcM6B7QsO9TBMk8c3TLd5xm79uLqX48msShyBRgeQClpWwT0paO1jWVsmWDG4MkmgDN2YdFz9ubGdB6ke4/Q41ZRGx4LJck+jPkRVrrKoKR5LMV2pHXBd78mZ8gWb7jRWCxIDKuVMI17TOjc+qba2aCptBbEKjdubWMmp6OQKmT6Kql5rUUbQ6B2g5KImdjkgi/90kABY1w1Lz7EVTY9f5Cqxsn0RgEK5RCge5fSo1Drlx5P3PKtnh0qiwPlzrsqYA8Od/61fgV3zsFdy8ZMl7cZKltpCVu3/uaInPPlgDuBoq1XU3D0nccYpsbiJHI9w0V7jGVXIzgk/l6xbStM1xSSQxEK5ZXkOBI6Ffaankz4K96+4xvR4AFkm8f7obUa3rZkcre9+yaJtLJe/I/Ubs7UOw9tpA57xMc0WGNAGYK/J0FcI1AHD/bKtKnI6shH0N/GgHi3qsSdQgieudpXIywjVuCxgZ576eMjfY0yjsLxzwgFc39WsS5Seznx6tGjza7LBt+cTRdbJnHEkkIeOJummnkNp11C7JxX+sURjUztiNdNXU2DrywxzaaX76dFMikHLl9dXBjcP/JxfkReM82B35YI9UNr6vDRCcf7I+ygrX6K639BLctDq6L2CdkDeVWVMA+KoPvoCv+uALqjFzTIL7tbK28PaxDRKZbOTTbu4aJKhsGUmsxjGdItPqCtDII61B4HedUdxl7skwQwuYIPNwyVDXa7z+qBudkuvo3JleubogfW9xEyTxbNuNqNZ1s+dPDsbf2V6Oq7BuSZHw+9oPvoB/9UvfiVeeO9RNdIYdLhusFoZOqOlT6SGJVyBcAxgkkVUgBsy1Oht0EvZJSWMmCbcef+fG2GT+tuuoFhhWhMYXheGQRCvUyIwBLHgA8EDRtOWGnUPJjlYN7j3WIbLXyZ7pIJGtSZxSOTkkcVFX4w3f9TzVaOkEYAaRooZh6TygLG3FpUmqeqK5vZ0UjWuBoZZu22K741QMAR9JZGWLbTPxDlLypJHy3+w6uv7UIrJSSM3VP8rx3DYFmppEAGp106s0Uxcq8s/8HJ87WuJnXz8FcDXy7tfdFsMaZOT1Wxwtm2LyyCYgbHsVDSLoijZp2AW7tsfZtqMk8msnSSW267h14Xi1wKPNDo82pm7mqhrBa0zYHcLc3QvXzLfjVYN7p1v0Pa5tkPg2J1hjE3cu3ZRNrojVdYU/+R0f003yHCYMD835lyCxqi4fSXdrEu84/YBLdris8ZkHW+w6TnH9WTB3PeWRxGos0+n7MgADTJFEvibRaRWnRBIFCWR7DoctN2Qcsy8eLd0g8cm7t568GV+gsTWJgMn2aamcLhze9b0iaHACMBUCaVVRu05Hrdx18wIpgyQaZ5JFPI9WRspcw/+XVgpyTHfupTn6ATBxLA8l5c9/XVmBIk1tyXKh7yUI+H2qrmuGajEUsmtpPLePVnu6qWNVVY1rkEa4I1SXZW4tV8mtU7AE3BrIs21LORbybHl0U1I9+sbhAo/WOzxa79DU1bXcgFeL2tRoXvM+iU+CvXDjYNyjRLDlupm09gBAK4DKfft4Y9pCaVC6q7a3Dd/vfWQLGMAq2WrKDebaHHVZGfdgFNe5vuf/Ks3VK9DUJG7azgm+NEgir24KhDWJvC/vMvzYnsMj4OCAAAD3/Y6WzdgCZq9u+oQZi0gBgWqTIkjsnOwIG2ysnACsI9VNAVEAtZkOrt2ACKcoAylPFEOXIT9aNng8cLR5JNG2wBg560VFKkubm1eTqKsJDYWK2GBvNaCkVlaZr9sTu44OMjCIi0iQqEESj5c4HcQY9kGiMWkBcLrhUDrAJiA0KqWLyHNDtc4Y1q2zAYFnnN2wkTIwqJsSa/KNgwUenO3waN3iZFVGVt8KWw4iZHvhmvPbCzctMnTrmiKJtw5d9IVU7h4UEO+f6pQk3woTwZr3v8AHiSJOdKToiTnX3JYDmmDvcFnj/tnQy3G/3wDw72XWv1g2RidBfGWuT6L57JA6WvKDouqmpM8btrIo+aG25YaPQDLr+eGywZuPTc3wk5iAeKafBtu7jRFJmIEkVk5hrSLYcwMwViQHsCIJfW9qGanWGVLr5LZgUNUf9SqUFDAPjWyIbGbFbYGxJbNUI9rZdbPUTQXdYxxW+WxXqIimFzc1Nrse650Jiljn4s6JdZqua4bqZLXA6WanDxIdJ3CvbmrMRxL5TVvbg9Mt0tf1d7X1QAB3H480bY9uyvXXunGwwHrX4c3TLW5cQ6opYNkde+Ga89uLNyxKd13ppm6iQotkvalsXP5WmNBpNedfAsvLVtIG/DVH2ydR1q19kGhM2mOtmpr2XeXcnW6ML3OuPomFPWfptLLQrK8muLTBHkuDXgTMQHmtZMerBm88fnLvreu5s16RabMPbu9CTt20Hp2sXhk0AAbd01EyqwE1MP/XNS63yCOFNsi4sU2EbkH+zIMzAKDVNZeutHIr6qYFwSGvlYV5jROuGWoShyBdIzgkGTRW3RSwwb0IcLDOxV0nSLyOoh2AqWt4tNZRiwEr7Q48mQvrZdjBYugTt+HppoJSq9RNx1reHota0d5mZYWUAA4RCetRAFHFKx9PamY+ff8Mx9c0SFwMNYn7PonntxdvWlGY6xokAqa9x09+7pEKNV4tLJJ1XXtAAsDv+uZXUVXAL/+iV+gx0hPz5sHlX7NbR3r0CzDnXJagg2u6l161SVCvSXaIH/JIgkRNr+6RysntVZ66qUKYbTmIifV9b9hspO+6qCtbk6hgfR2tmpEVdZ0TQCl78mZ8gSbQMQOJuzWJfFsEn2etqVEDgNNti7braYhaxF12mlpLr+G2zFuBtg31fhrf59bhEp+4Z0RJbpDZRfNgi3ANiyQ6iODoJBPHcnoXaoI9V9mrJWtCzfEqP0gkF5K7xy6SeD0di5MDI/+srkk83geJoa2GIPF0EK5hbEwcadRNG0v/0dC0ZU6vD3L8zD0pn+urm3bUxn3TCRKvo2gNYIP0Pd30/PbCDbve3VaIkly1/Y5v+CAAqNp0+O0GrudaDpjz/kd+xUdU1NF33T0GAHzLR952WdMazT3nGmqfu+deV1bOVdsYJCrOo+zVjwcxMRWSKPWFdPuwegzaxiCR6a87PF+mVRNX2iDzDJFEZp5z0e3rYtdzZ70i2yqyAa66Ztf11ELijtEEDVKT+HBtHjSNuMumtWITqmbure1Nxkxz5QRSmro9AHj+ZIWzrZkkm110W2CMQaKidYnGSXaFg0y/Nx5JdO8RWpVW2kRsW1QVjwrenFEzcNV2vFrg8VovLe4iBfsWGMZWA1J9tm3poEjuLRXd1FEFPuhqepxshm8M9ReMsxv2FwVAU7zlHHzm/tpTlbxOZoSDdO2F9hY3V63ybbeu5/UGgG//0nfii999W1W35zcuv55r+Vx73wsn+Nu/9+vw3uf58zHXLqSX4x5JBGDppr1TClAy8Z1OFUjipE8iyd5yaaMaJFGer7NdqyrnWgz1ljJHmUPJ3BYwT2JN4jMdJGpqEleNL1xzzIxZmALZdui3pwkaAOCRBInkwNVAidXIAcuxNrseBwsN2mCzPxqUFPBr6WgksanxYGvOhy02zh/T7T/VKRARX7lVFySOvTQ1yPEQ3EsrC1aAw6VjXFfH4mTVYNN2eLTZ4fkbB+UBgz135KCk1/S7XbUdLE0vr9Nth7snCrW5Xa+6/21NYk+3CQLsdRK5b0bdMewvCgxIIrHmydrxYL3DiaIn2lWaEUnQKxfvbWp1XeFv/p6vw92T1ZWIoJzHPvDiDdX7V009qmteZyRxrr1feT7m2smqGbUBNPvGnZM9cyU0SUKLT8OY+KqPhyCRSfCGdNOWLDdYNJUj1Kjfp9bbjt5rZJ6ToJShm7pI4hOIUj95M75AU9UkLowjD4hSafnzJWuwGYIUbU2iIInsjbVcDCIJisaiSzfYU9ZoAhiQS12QeNdZkNlidnG2AIsklh7uEUl020uovpsJgNl6y5VTN9lp1U1nNFJ27bpmqKRW7N7j7Wy66XWuP7pKu3W4wMP1zvRJJJ1kQRIFqGNuZVfum21sDBjRjqNlo0IS66H/oyR+ANDZ3RsH9vOvK91UEkeaViJ7S9sHX7rh1WI/LXawsMIpT6IjeV2sqqrRp9AE2y5KvQ8SjQmSKGVWjC0DuinVJ7Hxg0R2/V+4QoEK31V8pfWupevfAVPyJPuUBM6MT3P0hNNNn7wZX6BpahIPmhqbQX3StMDgFFGBQTjlHEEi61xLL0GrDsUfy5XJVwWXSnEXwF+QWbrp0qWbStaohCQGtYUAuYgsLQK5U6rSjgq4qhpUqUls1YvIb/6q9wKwMuPXzcSRf+PxRvXd3MDwbc9dz+921XbrcIk3T7cmSCQdSWFAsBRtAGM9YOvSVOkeqA3efKyrrVo09ahYDIhwDaNuau+Rk4PrmSRZDtnufZ/EveXsYFnjwXrfp+8iTFgFmv3mSRCBu2p730AP/g1f8R56zARJVJQ32HYWHbX+L5zyHg3g4/p3266jQYDGUVMVMIBJKNx06mQ1dcrXxa5n+vWKTFOTuFrUo0JRR2Y6LN2xVaFtchNrJZlFgdUW8RIOoTSOV1LSvOBSEUgBwPOOAAGLJC6cAEz6JZbELVwkcRTlUQhwnG1a+loDppZ04yjgalRRH57tsN526izyH/22j+D3fcvnX9sWAFLr8XjT6tRNHSTxun63q7ZbR0vcP91h13V0ALZcVFhvO6yHGmCqwX1jN21t6wYfSSTXLSdDC5iWNUziznXsrjOSaHqg8kH63p49cwOT69wn8UkwCQ41wba731xXEbirti9853P4x3/0X/KCnJIdLPwgkQn2mqBP4q7lfK5lU43aFpqab7kvzrYGSWQ1Dxa17a/IstkA4O23bf30y9e4ljplz/RqpKlJXDoBwLbrOBUlpyau7XlHSzJhb4wNONkgMejJpWz3IKwCVQuMIUuuqkk81jt3riM5PqCF8+K3wDBjmbhNHPCzbTugxmSQuPCFa3QIZD+bbnqdgygX4dFkaFn1zmfJnjta4v7pFqcbjbppPaLUAIfuSfJlp6SbAibB9cYMJFGCqLbr0ffcmuy2RPjgFdU8aU3q0sVpehLpRnu7fHMDk6exJvEqTRx5TcJ1jyTGTRMgAucTrtk5KB0TfC1qZ99QAD4ukni25dtJuX2wbZBYPp60gAGeTCrzkzfjCzQNRO0GAJtdR/XSCYVTWEamqCGJs6VtgaGhNrktMGzdnn6chm76Pkf1TYWSji0wuCLlqLopWZPY1BXOdi3arpvVJ7Ht+XOyGqjMZ1s93fS6m6cap/hurHjPs2S3jhbYDK1SaCRxSEBIxpW5v2xzY13iCPCD+0N63apGCjnb3ia0j7//edX7r8rsWs63Bdnbs2fuc7kPEs9nv+jzXgAAfPn77tJj9jWJF2Ny7h6NLTA0wjW2wT2z/i8jwjUckmiFa0QskLGF04Zto0AS33H7yS6Xub4QxBVYq8gGuAEAK+fvFsh2ikDqZBT7MI6FLpDqnYCIQUhtsNcrIPtFGCQqkMTbx6ux4TBri8aKwlh10/z3cwVoNHRTwCgznm6GRYSlzTX1qEjbdjz6crxq8HjTqpz/J8VOZgaJAPBrf+G78OrLNy96Sk+suXWa7H2yCpBEJuHkZnY1/UWBIEhUPDfbnV9bwlKA/qNf/wvwN37kU2MvtutmRysr3ATskcS9xc1dG/f3yPnsD//yD+N7ftmHVXup+16XobA3ncm6PdJNGeGasCaRpJsa+ufA3Op5VqBc6/WuNToQc5DEHeeDAsALClX362jPdJCoRRI3ThaBChKXFsnS0BaFoidNqXV9Ejvne3FjAHjiCkxNoifKowwSAeCv/86vHSW/GTtYuMJBHaqqfN1C4SCAo5sCRoDjbED3WERk5Sjgdj3f8uTm4RIPznazhGuuu7m1Htog8Y9/+xdd9HSeaHOL3tnWMcKAWO861BUXfLmKo5r+ogA81VV28100leMg6Gr3fvkXvYJf/kWvUO99K+w46B35tD3fe7sYc/eYpy1ReNU2V/jnr/ybX407x6u9mvY5TPZ4UTed0wJj13FtKdze2Rqf1y0DO9t2Kl0Ml/HS1BXl9zZ1ha943118w4deoo5z3WwfJELfJ3Gz6yjeulBS17vOUFRJB2HV1FjUlTr7vGqqgSKm7wno1u2xwjWLusLptlW19xA7XDaqzfBgUWO9s0E6s4h4wjVdj7riaYwHC9OT7mzb0YiI0EYBnXDNzaG1weNNi5duPl2P5NueO0RVAX2/r/U4r7nOy8tktvtgUeN0I1Tmhr7/F42ppdOskYDv4LK1sst6SiVnkcTrbpLwG9fyfQCwt4i9/TkraMH0F93bxdvH3nX7rZ7CE2+huinFSpMaeIcpxpYFiSq2hj3nCtesdx1eZEs36mpMYpr+ivwe9QPf9ZX0e6+bPdOr0ShcQ1xsD0lk6aZLP0hkkZSqqnC8amYhidu2V0HvVVWNgjeaNhGAoZadbuYhiVo7WDZY7wwldtf2lLSyK1zTKcV1Dpc11ltdYbPLkdcI10gm6/VHm6dO/nzZ1JA+6S/cePr6m12luXUzrErajQOTgNDQpgFDAdq1tpaXpZvKsyJNraljeRlhqUl8Oramo5kiZHt7tkxaGDV19dTc+3t79mxEEtdDCwxG3TTok7jtuBZIizqCJCpYcOtdh7VCB2I1A6h4GuzZ+JYJkxuMUwE1dTPdkF3X1CRudh1NURU7OViMjgXdJ3EIZMfvRR5uOaAGnVKk4nDV4FSpADrXDt3ehS3XR2ds7zGI+WjEUA6XDR5vdqo6QVfcSCNcIzTCzz1cP9WNlL/kPXfe6ik80fbeF2zdHRsk3jxc4vGmxaM1T5sGhg3Y7blKJ47M/cvSYQFflGpHilI9KTYVIXt6n++9zbd33jHP9v7+2NuTbFJucP/MrHdz1E13bcf1V3R0KkT0huo64PiSGv/OlDxZJPFZYUY9G98yYbvO1OkwiI8giYImMgGf2yeRpaiKHa+a8QFgKUoirqOhjXrjlHV7Bm1r1SjdHHMpAhtSItlDEpUKrEfLBm+e6qT8PXVTReAsSOK27Z9KJ+HzXjbtCT70tltv8UyebHPlyFlUVu6t1x7pEhCGbqpfS6TBvaYtS1jrAXAZ6CfBRMjn3ogkPl1Mgb1djL0y9FLbK2vu7Um2m8P6L/R6hs0me8uobtr2tLqpME82ijKFUbhmq1OUX7lB4o7zQZ8Ge7oKoJS263q61kaonNKUmqpJdKR2NXRTwHey2OBS0DYpGmZl5CWTr2kTAQx0022rboExx0IkkVOktfWWnaJPpTleg5+/d+odu3w8S0nueg3d1Gnk+xQ6kX/ht30cn3u4ufREwrNkLCXt1lDH+NkHa1UCYjEouWnXhOeH4FWzgbq1HjtFCcCTYG4LjIoUDtrbs2fvunuMX/jeO/i3vunVt3oqe9vbbDtcmvZhkmDnVEqDPoldhxvLcmhi+iT6gmcqv3zXqXpTrxbN6N9t2w7LxbOxlj/TQWLbcRkLwN5Y0v9FgyQKArlSBABz+suJkp6ohjJFvIARvPH7K+qCxB2J7J3HDh0kcUdet6qqDI+8NYGltibxnhJJPHDppkrhGrETBQLzpNjzNw7w/BMuA31d7C/9G181Ji8Yk3vrcw/XNEUVMEHe2mEXsPfy80NTasm4MubWJI59EtkiyGtuso7fe7TFwaLe9//cW9SWTY2/+K9/1Vs9jb3t7VxWVRVOVs1YKsX4aXVdoaqs+AzLwhItDcDtr8szzNZb0wJDJ0y4r0l8pmzbahqlm/c9HPrgcRkLC2tr6aaiimc+hxsnfPAxuGEFbxZ+f0WWWnawbIxy4q4dM+aXZUKVO9t2JotDB8DmwTbcc/78HyybkSKmQhIHcZ2u5/skukHiy7f2wdTe0vYl776javkg95YWSRThJitcw93Ld4cgca0IEl2Vut1Tpm4qa/KD9e6pZAnsbW9725trUgcP8IySRV05JQccw89tnbRV1LJXVYWDRY3Hm3Yo8eE1J9b7msTLsaqqDqqq+jNVVf10VVUPqqr6R1VV/ZLhb++tqqqvquqh8+8PB2P/bFVV96uq+lRVVb8n+Oxvqqrqx6qqelxV1Q9WVfWe0nz+ySfv4/7Z1rSlUGQRACdIpIRrfFhbQzd9/sQGC+zNaBs3D/Uvmlo6p+E8C7gdLU2biNNNi8NLDhIFSVzv2kF+mOeRS584zfk/Wjbj+ThSnMeutwsWm4C47ahWvk2B9uxtbyUTUaSu11GZDxYN1rvWCDApEHihm6qDxJFu+nSpm7rJs6ex3nhve9vb3lxzS6XYNU+EIQHQ5USLukbb9ej7Xl3LfrRqRjExFgQwbdhM8Lu9AvbcdbGr4rYtAPwsgK8D8DMAfimA/7yqqi903nO77/tYd/U/CuBVAO8B8DYAP1hV1f/c9/3fqKrqBQB/CcBvBfDXAHwvgB8A8PHcZHZdj7NNq+Iji1LmI0WQONJNdx02uxYrRXb81UHsA+Cz+EczGzcv6gpbR/BGQzf91LbD6aalA6m5JpTPs21HFzYDFkncKK61OZ49d2ywLdf7bCc9grhj3XEazr/83D5I3NvFmYtSa5HEs22nVi6+OyS3pF8oY66U+dgn8SmpX1029dga52lWLt7b3va2N8BXtqZ75XqJQq4FhgSS29a0Rasr3nd97miJzzw4A8Dvi6G66dPCdinZlexafd8/6vv+j/Z9/1N933d93/+XAH4SwJcSw38TgO/t+/6Nvu//CYDvB/Cbh7/9KgA/2vf9X+z7/gwmoPxYVVUfKn3o4zFI1CGJjxR000Vdoa6GPonKFhif9/JNAMAthZS8DRJ1tXSCtkmfRDYoPVzWON22ON1efpBo6aYtNmQLDMAqUq13vIoV4KOHbOsAWTTOtsZBZs+jW6ekqRvb295K5ooiseuBvPds26pVgYVuyt77QKIFxlOUpRVHaU833dve9va0m6x3R8tG56e5ojBkCwzAsE+2na5G8LmjJT5zfw1A5ydvWlNOtNntaxIv1aqqehnA5wH4Uefln66q6ueqqvpPB4QQVVXdAfB2AD/svO+HAXxk+P0j7t/6vn8E4Medv7vH/M6qqn6oqqofAoDTbYv1tqUDN3mfiMIw46qqwtGyweNNq1Y3/fy3mSDxO77sXfSYsSZRiSSuBrrpiCSSTuHR0CfxdNuOx74ss3TTDuttN/ZjK44bEBEt3fS5I9e51t0jZ5uhZ4/Cuf7AiycAgJdu7msS93Zx9tzRcsyuapIkB4saZ7sWbadTBb51uMB3fd378ed+y1fQY7zakpFu+vRkafc98Pa2t709KyZB4k0FwGEYX6JUyjHFpP5w2/bqlhQekqgoOet7g3RulaDPk2xXLqVYVdUSwP8dwP+17/sfq6rqBoBfCOAfAXgewH88/P1bAAjn8k3nI94EcHP4/QaAzwaHcP8+Wt/3fxrAnwaAg7e/2p9uW12j9BBJJG+Qm4dL3DvdoOuBVcMHUi/fOsQP/r6vx7vvHpffPNiIJD7SNW4+EJGKsSaRRRIbPF7vcLblz+NcO3SQxMfbHV66ySFuJwcLPNrsVKgx4AeJbAAs98jpVuimvKP7A9/1lfhnn3rwzGSn9nY11tQVXr55gJ9/80xVN3y4bIY1oadrlAGTGPuDv+QLVHP061GEbvr0PAfvfeEE//gTb+6DxL3tbW9Pvc0KEh0k0ZQ4MHTTAUlsO+w6Hf3zuaOlZdwphGsAUz62r0m8JKuqqgbwfwOwAfA7AKDv+4cAfmh4y6erqvodAD5ZVdVNAA+H128BOHN+fzD8/nD4v2vu35N2utE10pQbQoRr2HG3jhb43EOD7GkzD+974UT1frcnF8DX0h0uTON4Szfljne0bPBoULG6dHVTpwXGY0UN5MlqgUfrHdoeuO0EfiW75SKJ5CIigbK0SWGDbQB44cYBXvjgHkXc28WbJDneo0g4HS6bAUnU1STOsWVjle127dOHJL73eXPe931C97a3vT3tdutIgkTe31q5iUIy4JM9QpA9TYmCCwLQSKIXJO5rEi/cKlN49WcAvAzg2/u+3ybeOuBZqPu+fwPAJwF8zPn7x2Bpqj/q/q2qqhMAH4BPY43aqdQkKkVJHq5NUMSigjcPl3jt4dr7jMsycQbfVLbAOBgomVq6qYseXr5wjVWKPdvw9NbjlaH7aqjFQEg31QWJj9d6JHFve7ssEznyD750o/BOaweLYU1QqpvOMdMUeahH6Z6uFhgA8OpQX86KOOxtb3vb25Nqb3/uCIBVqmZsuagskki2wBC2ybYdkD3FPuX6d666fM7EfxSNkT2SePH2fwLwBQC+ue/7sRt0VVVfAeAegH8O4A6A/xDA3+n7Xiim/xmA7xlqCV8G8NsA/K+Gv/1lAN9XVdW3A/ivAPw7AP6nvu9/rDQZoZvqkUQTgLEBx63DBT7xxqlqzFw7cpDEpq7ozMrhIHe/2XWqcR4l89KFaxwkccv3ZRS66bKpVXQvd+F44Qa3iMj5F7RZI96xt71dlsn9qAkSDd20RdteQZDYWHXTEUl8iuimv/Sjb8NL3/nxUYxsb3vb296eVnvnHRMk3nucwoGm5jaqZ1G6EUlsDZK4nAkCvHiDY3BJOZEgifs+iRdoQ+/C7wLwxQA+5fRD/A0A3g/gb8BQRH8EwBrAr3OG/xEYMZqfBvB3AXxf3/d/A///9u48SLKrOtD4d2rprVq9S4LWOpKQQGhAAiSBxmYZCTBbMCAQCCFAWGaRwQ4CDAQDAsxiBk/gGcIsBssaEGI1iw3YCkMYEZ4AwshmMfLIgEBiES20dXepu7q7ljN/vKVSRS+Z1ZX5KjO/X0RFV2W+l3kqO+vdPO+cdy+QmXcAFwLvAO4BzgWe205MRSWx/XbTKsHbVVUSO7gm8a5dRSVxZZffVKtblonoaJKK8dFycpfZjt74W1r+uLq9TmLrmpOdLLmxZsUou/fOsne6syUwWg8i7Sfb921JbmdhV6nb/uL5D+f8Bx5VT6DSjpXjI+yZmWPPzGzXrzceHx2pJ6yZn910cP52xkZHeORJm+uZXyVpUFXjzM6p9pPEaq1uqJbA6Gx206L62P6YsaFl2bEj25wssCpU7Jud7XiinH7Wk0piZt4KHOx/8BMH2Xcv8OLya3/3fxU45JIXCxWzm7afOFTJUzW7abvtUEesGqvX/up2JXF8dKRYc2wuO5/JsKqsdrCWV2uFreuVxLHid9u5Z5q9M3Ntt5tWlcSIWHS7absWtvs6UYWWg/NO2cJ5p2zpaJ9VY6PsK0/ItHtN7mJV6wjC/OymwzIAS9IgOaasJE7u3d+y5/u3YmyEyT0zZCazc+22m87Pbtpp++fxm+bn++h08sq63XRscE5kHszQXiRRtJvOdry8weSeztYgbJ0ApRdT5q5ZMcrOPTMdr4m2d7pacL6DJLHlDEy3J66JCNa1rG3TdrvpijH2TM8xGjMd/W6drE9ZqRLlHeXEQd2uwEjdUp0s2jE13fYxcrHGRkaYnUsyc76SaBVekvrO+tXjXHzOcTztIVvb3mfl2Ah3z87VSyG1c/yvK4mzyUyHSeLpWxfOd9lejFC0m+6Z7v7J0+ViaJPEYjKT9iuJVeXwznISmnVtztzUOg1wL3qYN02sYOeezhKiVeNFqX/3vtmOWjLv027ag4Ro3aoxbt9ZTHLb9uymK6sZR2c7qpKOjY7wR088jd/qoAJTvQbbrSSqz1UD4I6p6fuc6OqG6tg6XV5bAu23eEuSlpc/eeZDOtp+vLwmcf5yg0Mf/6uW1Om5IrnsdAmMTrVOXNOLtcGXi6FMEkciOm6vrBKAbTv2sGbFaAcT1/S2krhl7UpuuWt3R8lete3knumOYmyttvVi5r51q8fZViWJK9p7vjUt23V6TejvP+6Ujrav3iPV+jud/B9Iy0n1Xt4xNd32NRuLdZ9rSwZwdlNJ0oFV6yTOX25w6ON/NbvpzGyyb6azJTAArr7sbNZ0UNyoVzjYM0Pm8HSKDWWSGFFMLrJvtv32ymrSgV37Zrn/+vYWcgfYumF+204WF12sqrrXSdWsaifrtAIZETzqpM2sWz3GqUe3P3PiYq1bNc5P7tgFdNBuunJ+u3aXO1ms6szS9nqdSqsh6k/VcWD77umeTFwDMD2TAzm7qSTpwMbLdRI7udxgfnbT4uRip5dFPO60ozravh4Tpzq75KzfDWWSOBLBjg6rPavGR1m7cox79850VKo+vmUB65O2dD+R2nJEkcx20i/dWjXo9Fq8T7zkkR1tfzjWrR6rZw5tf3bTlkpilyu51eymO+t1KofjIKLBUx0Tpqa7P7vp/MzFs/UENl6TKEnDoaokznRwuUHrjPfTs3NdL8JMlN1yd5erFXT7Wv3lYjh+ywVGI7ijvLawk8RhczmbZyfX6LROO79+TXev7YH5SmInJ+Kr12DHVGftpr3W2rrbbj/45pYZWLudJI6NjrBidGT+msQhOYho8LRW4Fd1+e+m6grYvW+Wmbk5RsI1RiVpWFTrJE53cLlB9Rlwaro4udjt7pPqkqq77i06xbo9o/9yMZSfYkdHop4ApZMP8pvLltMNHSSJvS5JV2fgT+tg4eYqxp1T08v6OrrW5LzdayBbK7m9SIBXjY/Ui8g6cY361REtJ2S6fQyrBtvd+2aL9a6ctEaShkZVSdw3M1f/fCjVuDG1b7ZY3L7LS1JUJzOrAtOwJIlD2W46OhL8akeRJHbSErhpoqjSdToz0juecQabJ7o7+UPlv511DL/asYfX/k77S0dWZfO9HS6B0WutrbAnH9le6+7mlgWsjzqi/WtJF2vV+Ci/ntxbfy/1o/Wr5//Wut1WM39GeIbp2azXv5IkDb6qklgniaOH/uxUJWl7ZmaZmZ3reiVxYsV9K4nD8vluKJPEsdGo34wbJ9pP+KqEo9Mk8ZJzT+ho+8Nx7MY1vOMZ/7mjfVqrh92e3OVwHNdSFWy33TRi/gPn2f9p05LHtFBrXMs54ZYOppeVxOq64arddNy/G0kaGuOjI8xl0ToK7VUSV61orSRmR+skLsbISLBmxWi9DJ5J4gAbbTlT3UmF74LTj+Znd+/mqQ9tf5HQftBaKejFWo6L9YTT7wfASVsmOtrvokccy0/v3NWTZTpaWxCWc+uudDCtkwB0P0mcH+yHaZFiSdJ8UrirnJiwk3bTPdNFu2kvlk2aWDnWUklcvp+Vl9LQJ4lbOlgD7PGnH83jTz+6GyE16j4zgC7jN/7qFaP8w6se3XEl993PemiXIvpNrbFZSVS/uu/Jjl61m3a2dq0kqf9VSeHkniJJbGudxNERxkaCqelZZuayXhKjm9auHOPnd+8G2u9m63dDmSSORTBbft96zdqw2jTRuxlAD9epHUzI04SNa4rXcsXoiDM0qm+1tmn3qpK4e98se6fnrCRK0hBZUSZ4VSWx3c+hq8ZHmdo3x/TMXNfbTaGY9XumnIF1WMap5Z0RdMnoaO8+APWDDS1LcyznJTD6wcYy4V7uybbUrl7ObrpnZtZKoiQNkerSnMk9xczw7UxcA2WSWHag9OKz60RL192wVBKHcjRuba9U8Qc6Ub7hvY7u8GwqJ0Iy2dagmOjyYFi3m+6bsZIoSUOmGgN2TLV/TWKx3wiTe6bZNzvH2h58rm+d12JYxqmh/CQ7NhI882HHcPE5xzUdyrIxUb75rYAdnqrddN/sXMORSIfnggcV118/+tQju/o8K0ZHGB2Jot3USqIkDZWqm2T7VDEpTNtJ4vgod+8q9lnTg4kJ167qj/k7ltLQltTec9GZTYewrGT5by9mAB1kVZI4tW/2EFtKy9v7L3kYc5ldbzeNCNaMjxbtptNzbJoYjsFXkjR/XfqO3WW7aQdJYjXbaLc7XgCO2bAaKD4nD0tBxYxAANxRLgD/8BM2NhxJf6sqsse3rOko9aNetkyvXjHKVF1JHI42HklSa7tpdU1i+xPX/HL7FNCbSuIpR60Fio671sndBtlwpMI6pOrNf/r91zUcSX87+8SNXPCgo/jIi89pOhSpb0ysHGPXvhn2TM8NzRlaSdJ8kri9wyRx9YpR7uxhJbH6nDxMM9dbSRQAn3rJI5ncMzNUb/5u2Lx2JX/5wrObDkPqK+tWjbFzzwx7Z+accVqShsia8SIVqSuJHbSb1o/Rg4lrqiTx1Y8/tevPtVyYJAookpvNa1c2HYakIbRu9Tg7pqaLdlMriZI0NOpKYofXJLYu3zaxsvsnF9esGOOWdz2l68+znDgaS5IatX71ODunptk7PecyPJI0RKokcefUNKMjwWibHW3VRIHg0nbdYpIoSWrU+tXj3LN7H/tm51g1JFOLS5Lm20b3zc61fT0iwKaJ+SSxF5XEYeRoLElq1PrV43WrkZVESRoeoyNRt5h2Mqu2lcTuM0mUJDVq/er5a0u8JlGShku1VmInSeKmta1JoicXu8HRWJLUqNYk0dlNJWm4rCmP+x21m7ZUEsc72E/t81WVJDXKSqIkDa9Vi6gkVu2mR69zZv5usYlXktSoo1oG+fuvX9VgJJKkXts8sYKf3LGro5OEx25czSv/6ylc9IjjuhjZcDNJlCQ16qQta+vvT9gy0WAkkqReu9/61cA93K+Dk4QjI8Grn3Ba94KS7aaSpGZtbJnK/P7rrCRK0jDZWiaHx25c3XAkamWSKElaNkbaXEhZkjQYqiUs1q4cP8SW6iXbTSVJjfvcFeexZ3q26TAkSQ3pZOIadZ9JoiSpcQ87fmPTIUiSGnDpo07gh7dPctl5JzYdilqYJEqSJElqxKaJFbzvkoc1HYYWsK4rSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmomiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqJomSJEmSpJpJoiRJkiSpZpIoSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmqRmU3H0HMRMQn8xyJ2XQ/sWOb7GWOz+/VDjIvdzxib3a8fYlzsfv0Q42L32wLc2aPnWux+/fA6Lna/fohxsfsZY7P79UOMi92vH2Jc7H7GeF+nZeYR+70nM4fuC7hhkft9aLnvZ4z+bsP8u/VDjP5u/RnjYfxuy3686YfX0d/NGJfbfv0Qo7+bMbaxzwHHKNtNO/PFPtjPGJvdrx9iXOx+xtjsfv0Q42L364cYD2e/Xj6Xr39zz9Xr/Yyx2f36IcbF7tcPMS52P2Ns07C2m96QmY9oOg5J0mBzvJEkLVcHG6OGtZL4oaYDkCQNBccbSdJydcAxaigriZIkSZKk/RvWSmJXRMSmiPh8ROyKiFsj4nnl7Y+LiH+LiO0RcVe5zTFNxztoIuIVEXFDROyNiP+z4L7zI+KmiNgdEV+LiBMaCnNgHej1j4hLIuLelq/dEZER8fAGwx0oEbEyIq4qjzuTEfHdiHjSfra7snztL2giTqlbDjT+lve9MiJ+GhE7y2PUbzUZ6yA6yPH/xPKY0zoGvKnBUAfSwcaAiHhkRHwlIu6OiDsi4jMRcf+mYx4khxqDI+LyiPhx+f6/LiK2Nhlvu0wSl9b7gH3A0cAlwAci4sHAvwNPzMwNwFbgR8AHmgpygN0GvB34q9YbI2IL8DngTcAm4AbgUz2PbvDt9/XPzGszc231BVwB/AT41wZiHFRjwM+Bx1BMgf1G4NMRcWK1QUScDDwb+FUTAUpdtt/xNyLOBd4FPIvib+Mq4PMRMdpYpINpv8f/FhtaxoG39TCuYXGwMWAjRUvhicAJwCRwdSNRDq4Dvv4R8VjgncDTKT6D/hT4RDNhdsZ20yUSERPAPcAZmfnD8rZrgF9m5utbtlsJvAV4emae3kSsgy4i3g4cm5kvKn9+CfCizDyv/HmCYt2yszLzpsYCHVALX//93P814PrMfGtPAxsyEfF94K2Z+dny5+uA9wLvBy7PzK82GZ+0VA42/gLfAV6dmee0bHsvsDUzPWGyxPYz/p5I8aF4PDNnGgxt6CwcA1pufxjw9TzQ2nhaEtXrDzwKWJ2Zv1/evpXi2HRKZt7cYIiHZCVx6ZwKzFQDVOl7wIMBIuL4iNgOTAGvAd7d8wiH14Mp/i8AyMxdwM3l7eqhss330cBHm45lkEXE0RTHpBvLn58N7M3Mv2s0MKk7Djb+/j0wGhHnltXDFwPfBbb1PMrhdmtE/CIiri67e9RFC8eABR59gNu1RPbz+kfr3eW/Z/Q0qEUYazqAAbIW2Lngth3AEQCZ+TNgQ0RsAn4PsILVO2uBOxbcVv/fqKdeAPxTZv606UAGVUSMA9cCH8nMmyLiCIpWl8c3G5nUNQcbfyeBzwL/l+LD2XbgSWkbVa/cCZxNkZhvpmgLvhZ4YoMxDbSFY8CC+x4CXEnR+qgu2M8YfB3wyYj4IMXlZlcCCaxpMMy2WElcOvcC6xbcto5igKpl5t3AR4C/iQiT9N5o6/9GPfECive/uiAiRoBrKK7NekV581uAazLzlobCkrrtYMf43wUuo6gqrgCeD3ypXyaO6HeZeW9m3pCZM5l5O8Vx6QnlySstsQOMAdV9p1BU1v8wM/+pgfAG3v5e//LSjjdTnKy6pfyaBH7RSJAdMElcOj8ExiLiAS23PZT9l/THgKP4zUFN3XEjxf8FUF+TcjK2W/RURPwXiomb/rrpWAZRRATFpBxHAxdm5nR51/nAH0TEtojYBhxHcUH96xoKVVpqBxt/zwS+lJk/zMy5zLyOYvKm83ofpigqKODnzyV3kDGgutTjq8DbMvOahkIcaAd7/TPzfZn5gMw8miJZHAN+0Eyk7fOPdImU17l9DvjjiJgoPxA/HbgmIp4ZEadFxEhEHAm8B/hOWVXUEomIsYhYBYxSXIOyqqzWfh44IyIuLO+/Evi+k9YsrYO8/pUXAp/NTCu43fEB4EHA0zJzquX28ymufTiz/LoNeClF25fU9w42/gLfBp4SESdF4fEU1wot+w9o/eRAx//yWtDq889mismzrs/MHc1GPJD2OwZEseTaPwJ/npkfbCq4IXCg139VRJxRHn+Op5hp9n9n5j1NBdouk8SldQWwGvg1xfS2L8/MG4FjgOsoysv/BswBz2gqyAH2RoqJgV5P0VI0BbwxM+8ALgTeQTED3rnAc5sKcoDt9/WH4iAJXIStpl1RniV+KUUSuC3m1yO7JDPvysxt1RcwC9yTmfc2GbO0xA40/n4U+CRwPcV1i+8FXupJwiV3oOP/Scx//vkBsBe4uKEYB9bBxgDgcor/h7e03O7xfwkd4vVfBXycoi3+n4FvUizJtuy5BIYkSZIkqWYlUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1UwSJUmSJEk1k0RJkiRJUs0kUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1QYqSYyIWyLi1xEx0XLb5RFxfYNhSZIGTDneTEXEZERsj4hvRMTLImKgxlVJ0nAaxMFsFPjDpoOQJA28p2XmEcAJwLuA1wFXNRuSJEmHbxCTxD8FXhMRGxbeERHnRcS3I2JH+e955e3PiYgbFmz7qoj4296ELEnqV5m5IzP/FngO8MKIOCMiVkbE/4yIn0XE7RHxwYhYXe0TEU+PiO9GxM6IuDkifqe530CSpPsaxCTxBuB64DWtN0bEJuDLwHuBzcB7gC9HxGbgi8BpEfGAll2eB3y8FwFLkvpfZv4z8Avgtykqi6cCZwKnAMcAVwJExDnAR4E/AjYAjwZu6XW8kiQdyCAmiVAMxK+MiCNbbnsK8KPMvCYzZzLzE8BNFO1Cu4G/AS4GKJPFBwJWEiVJnbgN2AS8BHhVZt6dmZPAO4Hnltv8LvBXmfmVzJzLzF9m5k0NxStJ0m8YyCQxM38AfAl4fcvNW4FbF2x6K8XZXSiqhheX3z8P+EKZPEqS1K5jgDFgDfAv5aQ224HrgOrE5XHAzc2EJ0nSoQ1kklh6M/B7zCeBt1FMLtDqeOCX5fdfAY6MiDMpkkVbTSVJbYuIsynGnC8AU8CDM3ND+bU+M9eWm/4cOLmhMCVJOqSBTRIz88fAp4A/KG/6O+DUiHheRIxFxHOA0ykqjmTmNPAZiolvNlEkjZIkHVRErIuIpwKfBD6Wmd8DPgz8WUQcVW5zTEQ8sdzlKuCyiDg/IkbK+x7YTPSSJP2mgU0SS38MTABk5l3AU4FXA3cBrwWempl3tmz/ceAC4DOZOdPjWCVJ/eWLETFJURn87xQTol1W3vc64MfAtyJiJ/BV4DSoJ7i5DPgzYAfwdX6z00WSpMZEZjYdgyRJkiRpmRj0SqIkSZIkqQMmiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqfZ0kRsTKiLgqIm6NiMmI+G5EPKnl/vMj4qaI2B0RX4uIE1ruuygivlHed/1BnuMFEZERcXmXfx1JkiRJalxfJ4nAGMX6VI8B1gNvBD4dESdGxBbgc8CbgE3ADcCnWva9G/hfwLsO9OARsRF4A3BjN4KXJEmSpOVm4NZJjIjvA28FNgMvyszzytsngDuBszLzppbtLween5mP3c9jfRD4PnAR8LHM/Mvu/waSJEmS1Jx+ryTeR0QcDZxKUfl7MPC96r7M3AXcXN7ezmOdAzwC+ODSRypJkiRJy9PAJIkRMQ5cC3ykrBSuBXYs2GwHcEQbjzUKvB94RWbOLXWskiRJkrRcDUSSGBEjwDXAPuAV5c33AusWbLoOmGzjIa8Avp+Z31qyICVJkiSpD4w1HcDhiogArgKOBp6cmdPlXTcCL2zZbgI4mfYmoTkfeExEPLn8eRNwVkScmZmvOMh+kiRJktTX+j5JBD4APAi4IDOnWm7/PPCnEXEh8GXgSorq4E1Qt5SOU7wGIxGxCpgtk8wXAataHutzwF9TJKOSJEmSNLD6ut20XPfwpcCZwLaIuLf8uiQz7wAuBN4B3AOcCzy3ZfdLgSmKJPO3y+8/DJCZ2zNzW/VF0ca6MzMXXuMoSZIkSQNl4JbAkCRJkiQtXl9XEiVJkiRJS8skUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCQJiIjjy7V2R5uORZKkJpkkSpKGVkTcEhEXAGTmzzJzbWbO9vD5HxsRv+jV80mS1A6TREmSJElSzSRRkjSUIuIa4Hjgi2Wb6WsjIiNirLz/+oh4e0R8o7z/ixGxOSKujYidEfHtiDix5fEeGBFfiYi7I+I/IuKilvueHBH/HhGTEfHLiHhNREwAfw9sLR//3ojYGhHnRMQ3I2J7RPwqIv48Ila0PFZGxBUR8aPy8d4WESeXce6MiE9X21eVyoh4Q0TcWVZOL+nRSyxJ6lMmiZKkoZSZlwI/A56WmWuBT+9ns+cClwLHACcD3wSuBjYB/w94M0CZ8H0F+DhwVLnf+yPi9PJxrgJemplHAGcA/5iZu4AnAbeVba5rM/M2YBZ4FbAFeBRwPnDFgrieCDwceCTwWuBDwPOB48rHv7hl2/uVj3UM8ELgQxFxWkcvliRpqJgkSpJ0YFdn5s2ZuYOi6ndzZn41M2eAzwBnlds9FbglM6/OzJnM/A7wWeDZ5f3TwOkRsS4z78nMfz3QE2bmv2Tmt8rHuQX4C+AxCzZ7d2buzMwbgR8A/5CZP2mJ86wF278pM/dm5teBLwMXIUnSAZgkSpJ0YLe3fD+1n5/Xlt+fAJxbtohuj4jtwCUUVTyAC4EnA7dGxNcj4lEHesKIODUivhQR2yJiJ/BOikrgYuICuKesWlZuBbYe6PklSTJJlCQNs1yix/k58PXM3NDytTYzXw6Qmd/OzKdTtKJ+gfnW1v09/weAm4AHZOY64A1AHEZsG8t22MrxwG2H8XiSpAFnkihJGma3AyctweN8CTg1Ii6NiPHy6+yIeFBErIiISyJifWZOAzuBuZbn3xwR61se64hym3sj4oHAy5cgvreWcfw2RWvsZ5bgMSVJA8okUZI0zP4EeGPZHvqsxT5IZk4CT6CYsOY2YBvwP4CV5SaXAreU7aMvo2hFJTNvAj4B/KRsU90KvAZ4HjAJfBj41GLjKm0D7injuhZ4Wfm8kiTtV2QuVaeNJElaTiLiscDHMvPYhkORJPURK4mSJEmSpJpJoiRJkiSpZrupJEmSJKlmJVGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1f4/WCe+dKm1/scAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "अब, आपको अपने डेटा को प्रशिक्षण के लिए तैयार करने के लिए फ़िल्टरिंग और स्केलिंग करना होगा।\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                load
                                2014-11-01 00:00:000.101611
                                2014-11-01 01:00:000.065801
                                2014-11-01 02:00:000.046106
                                2014-11-01 03:00:000.042525
                                2014-11-01 04:00:000.059087
                                \n", + "
                                " + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.101611\n", + "2014-11-01 01:00:00 0.065801\n", + "2014-11-01 02:00:00 0.046106\n", + "2014-11-01 03:00:00 0.042525\n", + "2014-11-01 04:00:00 0.059087" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                load
                                2014-12-30 00:00:000.329454
                                2014-12-30 01:00:000.290063
                                2014-12-30 02:00:000.273948
                                2014-12-30 03:00:000.268129
                                2014-12-30 04:00:000.302596
                                \n", + "
                                " + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.329454\n", + "2014-12-30 01:00:00 0.290063\n", + "2014-12-30 02:00:00 0.273948\n", + "2014-12-30 03:00:00 0.268129\n", + "2014-12-30 04:00:00 0.302596" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "हमारे SVR के लिए, हम इनपुट डेटा को `[batch, timesteps]` के रूप में परिवर्तित करते हैं। इसलिए, हम मौजूदा `train_data` और `test_data` को इस प्रकार पुनःआकारित करते हैं कि उसमें एक नया आयाम हो, जो timesteps को संदर्भित करता है। हमारे उदाहरण के लिए, हम `timesteps = 5` लेते हैं। तो, मॉडल के इनपुट पहले 4 timesteps के डेटा होंगे, और आउटपुट 5वें timestep का डेटा होगा।\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=5" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1412, 5)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0]\n", + "train_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(44, 5)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0]\n", + "test_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 4) (1412, 1)\n", + "(44, 4) (44, 1)\n" + ] + } + ], + "source": [ + "x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]]\n", + "x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]]\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5,\n", + " kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Fit model on training data\n", + "\n", + "model.fit(x_train, y_train[:,0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 1) (44, 1)\n" + ] + } + ], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = model.predict(x_train).reshape(-1,1)\n", + "y_test_pred = model.predict(x_test).reshape(-1,1)\n", + "\n", + "print(y_train_pred.shape, y_test_pred.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)\n", + "\n", + "print(len(y_train_pred), len(y_test_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)\n", + "\n", + "print(len(y_train), len(y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:]\n", + "test_timestamps = energy[test_start_dt:].index[timesteps-1:]\n", + "\n", + "print(len(train_timestamps), len(test_timestamps))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABasAAAGDCAYAAAAlN0y0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9eZxtV13m/aw9n7GmOyY3E4QhITIHERkUacjbIrZt+wrd7dCKgratre3Urd2grSD42ohoMwiKAxAwKCAaDGMSEkJIIGRO7s2dx5rrjHtYe6/3j7X2ObvqVtU5dc+vbt3K/X0/n3xy65xTq/Y5Z++113rWs56fUEqBYRiGYRiGYRiGYRiGYRiGYbYSa6sPgGEYhmEYhmEYhmEYhmEYhmFYrGYYhmEYhmEYhmEYhmEYhmG2HBarGYZhGIZhGIZhGIZhGIZhmC2HxWqGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhthwWqxmGYRiGYZgLGiHEzUKIn6B+7agIIZQQ4urz8bc2m+J7EUK8TwjxP8+xnZYQ4im0R8cwDMMwDMNcLAil1FYfA8MwDMMwDPMkQwjRKvxYBhABSM3Pb1JKfeT8HxUtQggF4GlKqQMDXnclgEMAXKWUPB/HtlGGfS8rfucrAP5WKfXBTTswhmEYhmEY5qLC2eoDYBiGYRiGYZ58KKWq+b+FEIcBvFEp9YWVrxNCOBeqgLtd4c+UYRiGYRiG2a5wDAjDMAzDMAxz3hBCfI8Q4rgQ4jeEEKcB/KUQYkII8VkhxIwQYsH8e1/hd74ihHij+fdPCiG+KoT4/8xrDwkh/p9zfO1VQojbhBBNIcQXhBB/JoT423WO/deEEKeEECeFED+14rnvF0J8SwjREEIcE0K8tfD0beb/iyYm47uEEE8VQnxJCDEnhJgVQnxECDG+zt9WQohfFEIcNK//QyGEVXifdwgh3iWEmAPwViGEb973USHEGRPtURryvXxYCPF7hZ9/UAhxn3lvTwghbhBC/D6AlwH4U/Oe/rRwnHmcyJgQ4q/N93pECPHbK455ze+GYRiGYRiGuThhsZphGIZhGIY53+wBMAngCgA/Cz0m/Uvz8+UAugD+dJ3f/04AjwHYAeCdAD4khBDn8NqPArgbwBSAtwL4sbX+oBDiBgC/CuBfAXgagFeteEkbwI8DGAfw/QB+Tgjxb8xzLzf/H1dKVZVSXwMgALwdwCUArgFwmTmG9fghAC8E8HwAPwigKDJ/J4CDAHYD+H0AfwDg6QCeC+BqAJcC+F9Dvpfi+34RgL8G8Gvmvb0cwGGl1G8BuB3AL5j39Aur/Pp7AIwBeAqAV0B/Pv9pxTEP+z0yDMMwDMMwFwEsVjMMwzAMwzDnmwzAW5RSkVKqq5SaU0p9UinVUUo1ocXWV6zz+0eUUn+ulEoB/BWAvdAi7dCvFUJcDuB6AP9LKRUrpb4K4DPr/M3/F8BfKqUeVEq1sUJYVkp9RSn1gFIqU0rdD+Bj670HpdQBpdTnzWcwA+D/DHjPAPAOpdS8UuoogD8G8IbCcyeVUu8x8R8h9CLAL5vXNwG8DcDrh3kvK/hpAH9hjjVTSp1QSj064DghhLDN3/vvSqmmUuowgD/C8gWBjXyPDMMwDMMwzEUAZ1YzDMMwDMMw55sZpVSY/yCEKAN4F4AbAEyYh2tCCNsImSs5nf9DKdUxZtzqKq9b77U7AMwrpTqF1x6DdjivxiUA7i38fKT4pBDiO6HdzNcB8AD4AP5ujbYghNgN4N3QURo1aBPJwlqvLxxf8e9fssZzO6GLWt5bMCoLAPYw72UFlwH45wHHtRo7ALgr2j4C7fDO2cj3yDAMwzAMw1wEsLOaYRiGYRiGOd+oFT//NwDPAPCdSqk6+rEZmxkJcQrApBHKc9YSqvPXF5+/fMXzH4V2Zl+mlBoD8D70j3/l+wW001kB+A7znv8jBr/flX//ZOHn4t+YhY5SeZZSatz8N1YoejnovRQ5BuCpazy32vsqHkMCHe1S/Dsn1vkdhmEYhmEY5iKHxWqGYRiGYRhmq6lBi6uLQohJAG/Z7D+olDoC4B7oYoSeEOK7APzAOr/yCQA/KYS41gjcK4+xBu3UDk3O878vPDcDHX3ylBWvbwFYEkJcCp0JPYhfM8UoLwPwSwA+vsZ7ywD8OYB3CSF2AYAQ4lIhxGuGfC9FPgTgPwkhvk8IYZl2nmmeO7PiPRWPITV/5/eFEDUhxBUAfgXAmgUsGYZhGIZhGIbFaoZhGIZhGGar+WMAJWg37l0APnee/u5/APBdAOYA/B60+But9kKl1M3Qx/klAAfM/4v8PIDfFUI0oQsZfqLwux3oHO47hBCLQogXA/gd6EKJSwD+CcDfD3G8n4aO77jP/M6H1nntb5jjvEsI0QDwBWj3+jDvpYdS6m7ooojvMsd6K/pu6XcD+HdCiAUhxJ+s8uv/Bbrw5EEAX4V2n//F4LfJMAzDMAzDXKwIpdbbvccwDMMwDMMwFwdCiI8DeFQptenO7o0ihFAAnqaUOrDVx8IwDMMwDMMwmwU7qxmGYRiGYZiLEiHE9UKIp5p4ixsA/CCAT23xYTEMwzAMwzDMRYuz1QfAMAzDMAzDMFvEHuj4jSkAxwH8nFLqW1t7SAzDMAzDMAxz8cIxIAzDMAzDMAzDMAzDMAzDMMyWwzEgDMMwDMMwDMMwDMMwDMMwzJbDYjXDMAzDMAzDMAzDMAzDMAyz5VzQmdU7duxQV1555VYfBsMwDMMwDMMwDMMwDMMwDLMO995776xSaucobVzQYvWVV16Je+65Z6sPg2EYhmEYhmEYhmEYhmEYhlkHIcSRUdvgGBCGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhtpwLOrN6NZIkwfHjxxGG4VYfyrYmCALs27cPrutu9aEwDMMwDMMwDMMwDMMwDMNsP7H6+PHjqNVquPLKKyGE2OrD2ZYopTA3N4fjx4/jqquu2urDYRiGYRiGYRiGYRiGYRiG2X4xIGEYYmpqioXqERBCYGpqit3pDMMwDMMwDMMwDMMwDMNcMGw7sRoAC9UE8GfIMAzDMAzDMAzDMAzDMMyFxLYUqy8UPvWpT0EIgUcffXTd1/3xH/8xOp3OOf+dD3/4w/iFX/iFc/59hmEYhmEYhmEYhmEYhmGYCx0Wq0fgYx/7GF760pfiYx/72LqvG1WsZhiGYRiGYRiGYRiGYRiGebLDYvU50mq18NWvfhUf+tCHcOONNwIA0jTFr/7qr+K6667Ds5/9bLznPe/Bn/zJn+DkyZP43u/9Xnzv934vAKBarfbauemmm/CTP/mTAIB//Md/xHd+53fiec97Hl71qlfhzJkz5/19MQzDMAzDMAzDMAzDMAzDbAXOVh/ASLzpTZvT7vvfP/Aln/70p3HDDTfg6U9/OqampnDvvffi7rvvxuHDh3HffffBcRzMz89jcnIS/+f//B98+ctfxo4dO9Zt86UvfSnuuusuCCHwwQ9+EO985zvxR3/0R1TvimEYhmEYhmEYhmEYhmEY5oJle4vVW8jHPvYx/NIv/RIA4PWvfz0+9rGP4dChQ3jzm98Mx9Ef6+Tk5IbaPH78OH70R38Up06dQhzHuOqqq8iPm2EYhmEYhmEY5pyQErj9duA7vgMYYMRhGIZhGIY5F4YWq4UQNoB7AJxQSr1WCPFhAK8AsGRe8pNKqfuEEALAuwH8awAd8/g3TRs/AeC3zet/Tyn1VyMd/RAO6M1gfn4eX/rSl/DAAw9ACIE0TSGEwPXXXz/U7+uPSBOGYe/f/+W//Bf8yq/8Cl73utfhK1/5Ct761rdSHzrDMAzDMAzDMMy5cfvtwI03Ap/8JPCnf7rVR8MwDMMwzJOQjWRW/xKAR1Y89mtKqeea/+4zj/0/AJ5m/vtZAO8FACHEJIC3APhOAC8C8BYhxMQIx75l3HTTTfixH/sxHDlyBIcPH8axY8dw1VVX4TnPeQ7e//73Q0oJQIvaAFCr1dBsNnu/v3v3bjzyyCPIsgz/8A//0Ht8aWkJl156KQDgr/5qNB2fYRiGYRiGYRiGlNOn9f+TZGuPg2EYhmGYJy1DidVCiH0Avh/AB4d4+Q8C+GuluQvAuBBiL4DXAPi8UmpeKbUA4PMAbjjH495SPvaxj+GHfuiHlj32wz/8wzh16hQuv/xyPPvZz8ZznvMcfPSjHwUA/OzP/ixuuOGGXoHFP/iDP8BrX/tavOQlL8HevXt7bbz1rW/Fj/zIj+AFL3jBwHxrhmEYhmEYhmGY88rYWP/fWbZ1x8EwDMMwzJMWoZQa/CIhbgLwdgA1AL9aiAH5LgARgC8C+E2lVCSE+CyAP1BKfdX87hcB/AaA7wEQKKV+zzz+PwF0lVL/34q/9bPQjmxcfvnlLzhy5MiyY3nkkUdwzTXXnPMbZvrwZ8kwDMMwDMMwzNDcfDMe//CdeNrYNMTbfp9zqxmGYRiGWYYQ4l6l1AtHaWOgs1oI8VoA00qpe1c89d8BPBPA9QAmoQXpkVFKfUAp9UKl1At37txJ0STDMAzDMAzDMAwzKlGEN93+H/FEYydw5sxWHw3DMAzDME9ChokB+W4ArxNCHAZwI4BXCiH+Vil1ykR9RAD+EjqHGgBOALis8Pv7zGNrPc4wDMMwDMMwDMNc6EQR4szGA/OXsljNMAzDMMymMFCsVkr9d6XUPqXUlQBeD+BLSqn/aHKoIYQQAP4NgAfNr3wGwI8LzYsBLCmlTgH4FwCvFkJMmMKKrzaPMQzDMAzDMAzDMBc6UYQkF6tnZ7f6aBiGYRiGeRLijPC7HxFC7AQgANwH4M3m8X8G8K8BHADQAfCfAEApNS+E+N8AvmFe97tKqfkR/j7DMAzDMAzDMAxzvohjJJmN++cvBToPbPXRMAzDMAzzJGRDYrVS6isAvmL+/co1XqMA/Oc1nvsLAH+xoSNkGIZhGIZhGIZhtp4oAgAcbOwEut0tPhiGYRiGYZ6MDJNZzTAMwzAMwzAMw1zsRBEEACEUi9UMwzAMw2wKLFafA7Zt47nPfS6uu+46/MiP/Ag6nc45t/WTP/mTuOmmmwAAb3zjG/Hwww+v+dqvfOUruPPOOzf8N6688krMcqYcwzAMwzAMwzCjEEUQQsERGWQ72uqjYRiGYRjmSQiL1edAqVTCfffdhwcffBCe5+F973vfsuellOfU7gc/+EFce+21az5/rmI1wzAMwzAMwzDMyJgYkLITo91It/hgGIZhGIZ5MsJi9Yi87GUvw4EDB/CVr3wFL3vZy/C6170O1157LdI0xa/92q/h+uuvx7Of/Wy8//3vBwAopfALv/ALeMYznoFXvepVmJ6e7rX1Pd/zPbjnnnsAAJ/73Ofw/Oc/H895znPwfd/3fTh8+DDe97734V3vehee+9zn4vbbb8fMzAx++Id/GNdffz2uv/563HHHHQCAubk5vPrVr8aznvUsvPGNb4SOEWcYhmEYhmEYhhmBOAYAVNwInSaL1QzDMAzD0LOhAovMcqSUuPnmm3HDDTcAAL75zW/iwQcfxFVXXYUPfOADGBsbwze+8Q1EUYTv/u7vxqtf/Wp861vfwmOPPYaHH34YZ86cwbXXXouf+qmfWtbuzMwMfuZnfga33XYbrrrqKszPz2NychJvfvObUa1W8au/+qsAgH//7/89fvmXfxkvfelLcfToUbzmNa/BI488gt/5nd/BS1/6Uvyv//W/8E//9E/40Ic+dN4/G4ZhGIZhGIZhnmSEIQDjrG6xIYZhGIZhGHq2vVh9ww0AZRzzjh3A5z63/mu63S6e+9znAtDO6p/+6Z/GnXfeiRe96EW46qqrAAC33HIL7r///l4e9dLSEvbv34/bbrsNb3jDG2DbNi655BK88pWvPKv9u+66Cy9/+ct7bU1OTq56HF/4wheWZVw3Gg20Wi3cdttt+Pu//3sAwPd///djYmJiQ58BwzAMwzAMwzDMWeTOaidGJ7SAJAFcd4sPimEYhmGYJxPbXqweJCxvBnlm9UoqlUrv30opvOc978FrXvOaZa/553/+Z7LjyLIMd911F4IgIGuTYRiGYRiGYRjmLLJMi9MAyiWFtvSBbpfFaoZhGIZhSOHM6k3iNa95Dd773vciMQO6xx9/HO12Gy9/+cvx8Y9/HGma4tSpU/jyl7981u+++MUvxm233YZDhw4BAObn5wEAtVoNzWaz97pXv/rVeM973tP7ORfQX/7yl+OjH/0oAODmm2/GwsLCprxHhmEYhmEYhmEuEoyrGsJCpZyhIz0tVjMMwzAMwxDCYvUm8cY3vhHXXnstnv/85+O6667Dm970Jkgp8UM/9EN42tOehmuvvRY//uM/ju/6ru8663d37tyJD3zgA/i3//bf4jnPeQ5+9Ed/FADwAz/wA/iHf/iHXoHFP/mTP8E999yDZz/72bj22mvxvve9DwDwlre8Bbfddhue9axn4e///u9x+eWXn9f3zjAMwzAMwzDMk4woglKAEgLlEtBOWKxmGIZhmFtv3eojePIhlLpwC2O88IUvVPfcc8+yxx555BFcc801W3RETy74s2QYhmEYhmEYZiimpyF/6y14yT/9Fn7kBQdxWecxvP5PXwrwfIJhGIa5iLn6auDAga0+igsHIcS9SqkXjtIGO6sZhmEYhmEYhmGY9YkiJJkN11EoV9DPrCbgiSeAN72JpCmGYRiGOW8oBZw4of/P0MFiNcMwDMMwDMMwAzl5Evi939vqo2C2jDjWYrWrUKlapJnVi/c+gf13nNFFHBmGYRhmm9DpAGHYqz/MEMFiNcMwDMMwDMMwA5mZAW6/fauPgtkykqTvrK5aaBOK1fFHb8LpEylw990k7TEMwzDM+WBuTv8/DLf2OJ5sbEux+kLO2d4u8GfIMAzDMAzDbAQpgTNntvoomC1DSi1W2wqVmnFWxzFJ03Fq41RnDFhaImmPYRiGYc4HuVjN9YZp2XZidRAEmJubY7F1BJRSmJubQxAEW30oDMMwDMMwzDaBxeqLnDQtZFYLtBMfiCKSpqPMwWJcQZjYJO0xDMMwzPlg7owEwM5qapytPoCNsm/fPhw/fhwzMzNbfSjbmiAIsG/fvq0+DIZhGIZhGGabIKWOAskywNp2lpeLDyl1hmapRNRgHgPiFpzVFGJ1liFO9bT09LyHK0dvkWEYhmE2n6NHMfdHtwB4I4vVxGw7sdp1XVx11VVbfRgMwzAMwzAMc1GRJECa6i2vO3du9dEwg7j5ZuBrXwPe9jaiBnvOavQzqyliQLpdxJkRq88IFqsZhmGY7cHtt2OuW4ZAhjDkVXxK+NNkGIZhGIZhGGYg8r4HAQBnjtJEPzCbSxQBjz9O2KCUkJkFx1GojNl0mdXtNuLURtUNcer06M0xDMMwzHlh927MRRXsLjURtuRWH82TCharGYZhGIZhGIYZiLzlSwCAM5/75hYfCTMMaQrs30/YYF5g0QHKdRdt6ZOJ1VHm4IrqHE5Pc2Y1wzAMs01wHMyHFVxaWUR4dHqrj+ZJBYvVDMMwDMMwDMMMRGYWSnaM6YPtrT4UZgjSMzM4sD8DWV36XKx2gUrdpiuw2G4jTh1cUZ3H6dltl1LJMAzDXKxIibmogn2VBYRHuAI1JSxWMwzDMAzDMAwzEKksXFpZwJmT6VYfCjME6T/8IzpdC6cfmqNpsCBWl+oubQxI5mAqaKHVFqO3xzAMwzDnAykxF1a1s3q2tdVH86SCxWqGYRiGYRiGYQaSZDYurSzizPTFKyjeeSfw0ENbfRTDkSoLjkix/6tEbq+8wKIL2CUPmRI0YnWngyh1UHdDhF0qGzjDMAzDbDJSopkE2Bk00W1nW300TypYrGYYhmEYhmEYZiASLnYGLSx2faDb3erD2RJuvx34xje2+iiGI1UWrqrP4uDDIU2DBWc1fF8/RhED0mohzmzUvRAh1+5kGIZhtgtSQioLNS9E2GGxmhIWqxmGYRhmizh6FLj55q0+CoZhmCHIMkgJTAUtLMUlYHFxq49oS5AS6HS2+iiGQCnIzMLOoInFU0QLC7lY7QHwPAih6GJAUgc1NyTRvhmGYRjmvJCmkJmFqhOxWE0Mi9UMwzAMs0Xcc8/FLVa320BIZPhjGGaTiWNIZWPKb6ORBBetszpJtslbzzKkysKk30FjmtpZLQDP049RqMudDuLM0c7qxNYrAgxDxPw8cOONW30UzLC0WsD09FYfBcMMSZIgVRbKTswxVsSwWM0wDMMwW8TMzDYRPTaJP/9znkAyzLYhjpFkNnbkzuoLvPNSCvj85+nb3TbOaimRKgsTfhuNxQzICBxfRWd1HgMSx/rDHoUwNJnVXUSpu00+YGa7cPTo9hlrSAn84R9u9VFsLbfcAvzZn231UTDMkKS64HTgJCxWE8NiNcMwDMNsERe7WB2GwNzcVh8FwzBDEYaQmc5l7EjvghcUowh49auB97+ftt0kueDfusaI1eNeF42YyAkvJaSy4bgCsG0IAWSp6k3WR2m3l1mdOhf3jfEiJ4qA7/5u2jaTZPs4dcMQeOc7R1//2c5ICSwtbfVRMMyQSAkBoGSzWE0Ni9UMwzAMs0Vc7GJ1kgALC1t9FAzDDEUcQyoLrmWEyQu880oS4OlPV/jMZ2jb3V7OaoEJv4Nm4uvcpVFJU+OsFgCAwEkRpc7oudVJgjh1UPeMs5oiB5vZlnz0o8Cdd46+/lFESj3e2g4kCTA7C5w5Q9vu4uI26bfAYjWzzTCxVYGdIIzEFh/MkwsWqxmGYRhmi5iZoc9s3k5Rn1LqLEmGYbYBUQSZ2XCEiZO40MXqL38VU41DaJyhPc5tk1ktJdLMwoTfQSMu0YjVvRgQPYUM3BRdSSAuS2liQIyzmsXqi5YbbwSe9jSdW0yFlNvHWZ2P4e6/n7bdD3wA+Nu/pW1zs0hTFquZbUQuVjsJwtiiidxiALBYzTAMwzBbxmY4q3/914GPfIS2zc2CndUMs42IIsjMgmNlEACy9oWt2MqbPoUxt4POEVqVans5q01mdRIQi9X6x8DLEKbu6EUWkwRx5qBcsyEzm8Xqi5hOW+HyyxWpWJ0kQKNBUwt0s8nF6gceoG03joGHH6Ztc7NgsZrZVvSc1VIv3nLleDJYrGYYhmGYrWB2FnPHOuRidbMJ/M7vbA+HdZKws5phtg1RhCSz4YgUVTdEayHZ6iNal2TPZXCFyRIgnDxut8zqmhuhTRUDkovVvg0AKPmpFqspYkAyG17VqOAsVl+cnDoFeeAQxjunyJ3VwPaIAkkW27hib4QHHqDNvpWSxer/8B+4TgqzCeQFFu1E3w+3xdar7QGL1QzDMAyzFbzzncDsLOJFAgGhQD4pO3yYtNlNgZ3VDLONiGNIZcO1Uox5XSzNE4bKbgJJUOvnaz/xBFm7281ZbeexLRQH3XNWm8zq3FlNlFnt1Xz9M4vVFycPPIA0ExifP4jWHJ0NOjHrattBrJY3/QMuV0dx5gH6HSHbRazerMzqI0eAb32Lvl3mIqeYWc1iNSksVjMMwzDMFqAWlyCEonG7FUgaXeyYSNFskja7KXBmNcNsI/IYkGqgxeqFCzuXMQlTOJY+RtWg6xC3k7NaZlqsJrvX5AUWfSNW+0pvex41X0FKRJkWq4VQ2yOvgaGnVEKmLNS9EM27HyFrVsa6H9gOudXywccwFbSwdILQWg493jp1anvEa2yWs1pK4JvfpG+XuchZJlY7HANCCIvVDMMwDLMFNJIAdTekdZAtLEDe9yAmpx/ZFmI1O6sZZhsRRZDKglMvY8wLsbRIu02dGhmlcK0UJTtBtECnLku5TYxTxlndE+ybBOJXkiwrsFjyFamz2h8L9M/srL44kRIKQM0N0Tq+SNZs8k+3YMpvYWY/XZsAoDahC0x2XYqqEyFKnb4lnAApgac+FXjsMbImN43NFKvZWc2QY/qtUt3V90MWq8lgsZphGIZhtoDZZBw7ghaUzOhmPDMzSDIbk24TzTMXuPVPKSQP70dzKePC2QyzHcgzq+tl7awmFBP+/M/po4uSKINrpah7XTSm6SaP2zEGJLATRA0Ct3LurA70FDIIQFhg0e7HgBA6q9/yFuDb3yZrblORshd/enFixNmqG6G1RPdByEPHcEllEdP3HCVrEwB+8RfpxU/plvrxRVSdolKQ334Qe5yZbbGbLU31ehW15pdl20OsZ7YZubN6zOcYEGJYrGYYhmGYLaBbmkTZMe6xxUWaRpWCVBYm/A4aj52iaXOz6HQgz8xiwmuhsXRhOzQZhoGJAbHh1ksY87poNAVZ03fdBdx/P1lzAIAkSuFYKWpuhMYsnVN3O8WApErAtpT+DOYIXJomWsTxdIHFwM90DMgoCqtSOgYkdeCNlfRDEd33deQI8NWvkjUHQL/dP/gD2jYB4E//FPjEJ+jb3TYY0afqhmg16cYFUtnYW17CzCxdnwUArRZw4ABpk8vii8i2yLVaSE7OYqJzAs35C7swLtCvvULtrhZC/8cwpEgJAcAfCxBKFqspYbGaYRiGYbYAmSg4VqrzOakmJHGMJLMx4XXQfOICD2fsdpFkNnaXGpg/vh2UH4a5yIljLVSOV7WzumVTNo0TJ8iaAwDIWPWd1RRCbd5uO0QSbQP7q5RIMwt2taQ/g3lJ0qbOrDbO6jwGZBSxOk3NQqsNu+zDs1LEHYJjNcQxcM89ZM0B0FrE7/1eX1Sjot0GTp6kbXNbkSQQAKpORBpllmQ2pvw2+cK4lMDx46RNQsYZHCuFIzIkTSJrcZJAZsbIcITWWv3KV5I2B0B3CZZFLFa328DcLBwZkl+3zEWOuf85YxWkyuIYEEJYrGYYhmGYLSBJANdKYYsMskm0Ch/HkJmNyaCN5gzdYEkp4Kd+CvjlXyZrsidW7yo1sXCSxWqGueAJQ51ZPVbRzseuBaoMnyShF6t7MSBuSCPUAjoK5dGDcFvbIGw/jwGpllB3QzSXCL6rFWJ1L7N6FPXH/K4QAsL34NsJojadmpQkwL33kjXXa7PdBh54gL7dM2do29xW5JnVXohWm84Cmwu11LU8pASOHSNu02Ttj/sdLE0TxeEkid5153XQPEZrV370UfromjRJMTmpaMXqL3wBaLdRmT1MXdecuchRiblfVSpQABcIJoTFaoZhGIbZAmSi4FoZSk6C7iLdhCTJbEz6HRphwhDHehs16cS800GS2dgZNLF4ml0IDHPBY3ZuOCUHpQDoSo9sUkYuViuFJMrgiAx1L0Rjkag/XFrSgr1IoeQF7q7OxepaWX8GDZo2dWZ1HgOiEKbOaGpVXkROCMDzENgSYYfo+1IK8fEzWJhJSKNbcm3+zjvp2gT0RzF9gW+K2lTyzGonohOrs8yMi9potmmlj80Qq/N+a8zrYnGOqI8pGhlOERRaLRBFdEl2Oemtd2AymSaNb8r7qKoToUX4ERw7Bvzu79K1x2w/0kTvhkClAgFwgWBCWKxmGIZhmC0gSQBHpAjsBGGDaGATx5DKwqTfRqMJssKNcQzs2AHSAT46HcjMxpjXRWeOxWqGueBJU8jMhuPZKJWgs4qJxGryGBCTrayd1V0aoRYAmk0kmY2yEyNZoBV9yMkzq8u+/gzaBLEtvQKLfbG6K73RxOpc+RUAfF8Xg6RyVj/6KOITM7hCHcHMDE2TgL5/79sHfP3rdG3m7V7UYnUvszpCs2PTjGGiqDcuanZtUtfjpjqrvS6W5oiuAzM2nPA6pLvuAP0ZzM2RNgk538Ck38bSfsKLoV4HYIp3nqbru6engc9+lqw5ZhsiY73AhEpFP8AxIGSwWM0wDMMw5xulejEgJTtBd4lQrM4dRJFHVgUsmV1COV5AEhPmPZoYkLoborPILgSGueCRElJZcH0LQQAd/0DkICJ3VhsXuOsJ1P0QjRZRZEmjYRbZQnRmLvC95Lmzuuyj5kVodJzRPwOzeycXq0sljB4DssJZ7VM6q1stxKmDcb9D6qxOEuDyyxSpAA7oj/GijgHJndVuhFZCtHMjinQtD7+DZhyQ2oCThDhjXCmTWZ1h3OtgcYFozGXGhhN+B03CeBVAn7Ozs4QNKoXULC4snSYsVFc8t56gu8jiGHjoIbJELGYbktcg6sWAsLOaDBarGYZhGOZ8k6Y911/JidFtEBX/ygss5pMyosC/5G9uhDt9AlgkzGk1MSB1j8VqhtkW9JzVFkplgW5K56xOWhG6VAIl0BNVHVegXlVoxD5IgkobDSSZjZobojt3gWftSwmZ2bA9G/WyRCMJRp9Er+Kspo8BSRCFRCKdbSM2O3jI4rYAJLfeicmTD6A5QyimgZ3VkBICQM0N0UoCmms2DCEzGyVH9wno0n1nUupCgAlV/VYTs+OIVBexXaQUq01ud4euMC6g3zupszpNkSqBqaCFpTOEDlXT91XdCK3DdOp6kmhfyOHDZE0y2wmlIBMFWyigXIZrpUg6dAWdL3ZYrGYYhmGY800+IbEyBLakE6vNjKnudbUwQSVWP3YQniVBWp3IOKvHvC46DS7NzjAXPCZaw/FtLVZLj8ZBND2N5ImjGO+cpCt8ZcQZ1xOojwk04hJNjlGjAQUteHTmaYVKcpIEqRJwPAv1Sqo/g1G2J2cZkGWIMweer92ZQZ5dTuCsVrDondVhqJ3VXhedM3T3r+Sz/4K620X3xDxZm0BfrCZK8Np+mAKL2lnt0+wOC0O9wGKZBRVKsTrJcOmlim6BIYoglW0KLHaxuETkgs5jQPyO3nU3yvW6AnJndRwjzSxM+p1NEqtDtGbp2s1vgQ89RNYks53IMshMwLEyoFRCxYnRblzg9Sy2ESxWMwzDMMz5Ji9SZZzVYYsul1ABqLkRmpRi9diO/kSPim4XUlna8dZksXo78MEPAkeObPVRbC0/8RNbfQTDc//9oxlezyJfZMud1VSZ1SdOIM5sXBrMY/oMnZMwyWy4ro4qbcQBjUhlwq9LTozOPJ1Td1NIUx0D4tmoV1J9Txji+/rCF9bQsszJ1E4DVKp9sTpMXXJnNVnkp1kUrbm0sS1S6Z1RlKIfoD+Kchl0GevbjUJUQzMJyMRqmemiqEIoOrG61YJ87CB2tI9SDbX6RWzzGJAGkVTTiwFp032u0OtXShE7q5MEUuk4u6VZQodqLlY7EVpLdDfGJAGuvhp48EGyJpnthJRIMwuOnQG+j4oTod26WFcb6WGxmmEYhmHON3n2a55ZTSXWmsF4pazQkR5ZNmNSn4JrpXBEhuQMkZOsFwPSRafJLoTtwF130ReT2m7cfvtWH8Hw/Nf/CnziE4QNpqnutwIbQcXWIiWFWG3bSDIbO4IWlo4sjt4esDyzug6904RQrC47MTrzF3gRJTOJtl0L9ZrSgv0QKvDbfzfGmQ/+I3D69FntAUAn9VAu64dKZTF6DIiUSDMB21aA78O3JaIukbPafOdlJyaNbUnqhQVcKhu0UkgefAz7qosXb261Oce8soModWhE1YJbGQBUh0isfuIJSAlMdk+gsUh0vpodIY4rdAxIiyiywzirx72udqwTCfb5Wg25s1oJLVYvKbrrKx8fuzFaTToxMf7Gt7EvO4LZ02y6uChJU0hlwzH3r7ITo9NmsZoKFqsZhmEY5nzTiwFJUXISdFtEYq0ZjItdO6GUoBOrQ12dvupGaO8nqiZkJqF6YMeVabYDUcRFzjsdspjmTUdK4I/+iLZBmdn9GBCqAovdLpQSGPc6WDpIZNGLYz2B9CzUxu3RIzByGg0I6H6rvUCbtf+qV5E2Z2JAtLO6VlVasB908jabkAeOoPnlbwB/93fLnzPKVFv6qFT0Q0EAhHJ0Z3WS2fActSnOasDcZ2YJxWq/CkdkEABdwb5GA8ncEi7BCUyfvvDvifPzwMGDtG2qWDtpxVhdu6AJY0AcK6O9bj0P0hQCbBwhqucRRXpBsOphzOtiseXQtGuc1YGt+wSqvCUpdZFVUmd1HgMStLEUDbcbZNh2AR0D0iYUE5Pb78J4No/OwdODX8w8+cjj0YxYXXHZWU0Ji9UMwzAMM4D3vIdsbK8xk3PXSvXEnMpFlm+nnpzU/yfa6tkXqwmz/ooiQoe2Oj2zOcQxi9WSOLp9M5FSz/MzKt3LOKsd30ap5uisYgohwfQFY14XjaOLo7cHFJzV0JnVyXCu4oEYZ3XNjdBapHXSHThA2lw/BsS1+rndgz6Dxx6DzMxrH3xQK5I5RqyOUheepx8KypZetBglDkNKRJkDz83oCyx2uxBC6UVhygKL5p7oWCniI6doGjXn7KTfRmuWNg99M5zaX/kK8Cd/QttmlugdXBgb0w9QDLyiqFfQuuaGaM4TRUtEEaT5vhoHiEKr8xiQkouKl6AT2zRRM4V4EQBkY0PZTbB7IsbsNG1x3FSZzOq4RBdZEsawhNIxIC26MWdewLVDZTphthdmp6xj68XWihOjzXMaMlisZhiGYZgBfPKTwDe/Sdhg7lC0FEpOjC6VyyOOtdOrVtM/EymLcaR6zmoysbrorA7FRVxRavsQRdvHVbxZbDexenyc8HjTVAsevo2g6pA6qwGg7oVYOkFQBBEoiNUWahOOzmml6A/Nh1lzQzQJc08BrctRfJw9pESqhM6szgX7QRewcWA2kwDHW+PAHXf0nzOLocLS8dKAdlVSZFaH0kXgqX6BxZjonlBcFF2iy79Noqwvfs7QLeAmma2LQRLmawPADTeQNgdA9y/79xO3GaWwrQyoVvXuMIoLouCsrrshmgu0NULG/S6ds9pcf65voVy1dJwbRWSHiQFxRKrHiFQxIJ/+J+yRxzH3KFWFSRSKQbb1ohmVsB5KOCLT41hCMbF3zdJt3GC2E/l8zgYQBHr3BovVZLBYzTAMwzADiCLgW98ibNCIPm7J0ZnVHSKhNndW1+vwbImoRTM51y6yTDtS5onUlKKIkHhkExJm8+AYkO0lVqcpMDVFWKytEANilzxkSpA7q5fm6SKRZGbB8SzYZV8fK4VAUywAt0S7wCYl/Q6eXgzImIXmMJnVxiXWKO/Biz/9m1C3f7Vvzc/7aKs/fQxKgkSs7kgP5SAFhEDgZYhSt38/GwXznZfsmO4+i76zuuZGaM4R3RONqDrmddGmWhQ2zMzQrwen6SaI1XGmndXVKhwrRdIm+GzzaI2xMmoe4SKT6fvqbheNWaJzoNdv2SjXHS1WU4yN8naNs1q1iGJAvn6vPl8pi82aGJDA1n0RqVidmy46dBJYnDraWd1lgfKiJI8BMTFWFTfS5wIbcEhgsZphGIZhBhCGxGJ1HgNSdvX25C5tARnU69gRtDA7RzN4zl1kVTdCc4HInZaL1RWzjZxUpWE2gzhmZ7WUQIvI/Hs+GBsDlpaIGssLw5YcwPO0Q486BqRNNDXJndW+pe2/wOgrLUr1hNuaG6JJfB6Qn1tSarHad+BWdL7ucM5qC3MTV+NEewKHj9nAww/r5/KDs/pF34KyhS5BZrUWq/Vn63uZLtpIEX9gvvOyE5OKSTJK+85qKrE6d1b7HXQWaDvaMKRfaJQSOHSI5mvqtZlkcKwUKJdRcyO0GwTCcu6sHqvoxQWqRSYz3qp7IRpNonMrj+vwLFRqxllN8cXFse4L6hWdqUskLsugCtcybm0q8mMVxJElRWd1OGJ0Ua9RiThzMO51WKy+WCkWWLQsVPwU7cSjWWxlWKxmGIZhmHVRCipO8OADhJl8+Up82TOTaItmFd5sS0W9jp1BCzMLBMV5lEISF2JAFmmLQZZ3lPWEjMXqCx52VmtNjtpZff/9wKc+RdsmlILqdFEvJXRidZoiUwKW5wC+rx+jdlZTFRTLFwQDS1cBBEY/eQviRs0N0aIS1g1JQixWp2nPXY4g0LEKgz6DJIFUNo7M6yip++Yu09nVQO/gVNFZXba0s3oU4acnVut7YOApXbSR0lntJOiGRGKSUkgSwLEy2gzkMITMndXExTuThHCHhSFN9dd++DBhm1Hac1ZX3RCtBsG4y2RLO+MV1NwQjUWisVxPrO7SidVRBKlMDEjurCaKAQEAMTGuz1miKBQZaAc8qYd0s8TqKDXO6hAt6dN8rlHU2w3BtVcuUpIEMrNgmzXccpChLX12dhDBYjXDMAzDrMdDD8GePgl5mrDcuZQ911+1nKFN6J4BANRq2Bk0MbPkjd6mlEhSqy9WU2yhVaonbrBYvX242J3V+WlLLVYfOADcfTdtm3j0UWBmBmN3fx6NaaIVhlyQtG3A97VAQZRZLYRC3etiqU0kVvccijZQKsEWGWRrxM8hF0+F0IJP1yHd6kvurC7EgAy9uGAm3odnqxirpVqsfuwx/VyrhSSz4Hp9Ucb1LSSZPZqzWkp0Uw/lUu6sVogyGme16nShlOjXRqAgd+1bqY6VoCq0aZzVY14XnUVasVpKerFaSr1zgzIKRCZKZ1ZXKnonV4Pg+gpDXWBxooa616Xrv3sxICEaHXvAi4ck77fyugDEYjXGtVjdmKNZYJFeWS8uAHR9YRzrrH2hd/TFS0T52qHU49iyQishEqu7XcSpjYobQyaKox8uRvLC02boUillek5zMQ+WCWGxmmEYhmHW42tfAwC4cWuk+fgypNTuGReoVoFWEpDmqaJex85SC7NL7uhtGueIZ0ntSGkSDMZ7H6RAMB6wWL1NuNid1Xl0L7VYnSRk9a76LOiCX3W3i6U7Hxq9PaX6161tA55ZCCNyVisltLO6Q9BnAb0iXa6vXcV1L0RzaURHpRFPlRCoVhSaiU92QeQf72bFgCAIYAmFrDOEszqzcWS2jFd8j8C35q8ATp7USmerhY70UCn37wHCsXt/65zJndUmrSXwjbOaQKxOuzEcK9WFjCMiQdHcE3uZ1VSxEgWxmiT+osBmLLKlKXDVVcDx43RtFjOrq05Ecz3kAnAeA9KiW7QATAxI16OJlcizpX0bokwUX2TaBWDE6ogst1sKF46VDte3DIspMulYmb4nzBG5wI1rv7KjpMfcFI5tEzHjWRJQ2SbcyJkLHimRZhbyW2GlrHQMCIvVJLBYzWwJr33tVh8BwzBPRrJs82LCAlvSjUONs9pxhRGraVweWZTo7MBqFTuCFmaawehOj3xi7ig9eaQQq/NJnRCw6lW9PZ1QpZmZIWuKKRDHF7dYnZ+21KKPlJswx01TCKF0DvQMwaRJ5a4xoQvs+T4EABUSZ1ZHXn9VYBQKu1cQBNr9OOr2fxODIoRArS50wUKiLy5fB6COAUmzvrO6NkysQpJAKguHp8t43vMtHEt268cPHgRaLbQTH+VKQezL7WQjOqu1WG1iQHzjrB71Zp5liLsSnpVqZ3Vs05xbRWe1S7AIkhOGkMrSzuoWvVi9GTEg1Sph36UUpFT9zGovpLke8qz98Qqqbog2VVxDLla7XSwlJZoF9xWLbAA2QawO0SSKQkkivbhQshN0Ty2StNmLAXH1tbA0SzCoV0ofq5X1d/NROaszB65lrtftUn2ZocOYj/JbYbkMjgEhhMVqZkt4/HGa8SLDMEyRW24Bfv/3iRsVemJTcmK6SVmep+oJVOuWFqsJJiRpmOhBs+9jZ7WLmW519G36+cS86ukYkDZBlevednoAlYr+N6Gz+tWvJmuKKRBFF/f4e1uJ1eYaG/O6NJnVvQUm87PnwbcTRJ3RRbWsG8EywvpSXKIRZ4pidamkc2VHFetMRIbrZKjVhc49JcpTzbvETYsBCQL9GQwSqYyz88Ssj6kpwA0cxKmt3dW5s7pamD7mQZ2jiNVhqMVqI4L7Pmic1cap7LkK5bKg25odRfo8yMVqqv7AnPcVJybdaJRl+j/yfutr30B15hDCLtGETkrtqLUVEAR0zurcHDBWQdmJ0e4SjGGA5c7qOKAZw5ixoePb/cKwmxADQrXAIkMJx8r0rrsTRMURkkTHgIzX9D1hgeBY0xQy1TnzVr2qI6wondW27P3MXGTkNYjyGJCq0NGOF/NgmRAWq5ktIYq4SCrDbBc+/GHg535ueywwdTrA9DRxo2ZSU7IThB3KSZnO/qzUbRpntVJI4ky7kjwPO8djzITV0QfPUYQ4s+H6NqoVk/U36iBfSmPSFJsiVs/OcnTgZsDOav3/7SJWKyW0kEJR/KuwGwIA4Pu6aF179D4xaUVwrRSlAHSCYppq4csVQBCg5kZojPq9GYemYynUxiw0qeKb0P94SdOQ0lSLPj1ndYSlxoBzwQjcWSYwOQk85coMB5s7emJ1W/oo1wrTx3yGPoqwbETw8phuKwhA46yOY8SpA8/NUKpYOv+XSKxOMhtOVbvVyWIlzLlEWnQZ/XUEcmf1gUOoxvPonqYUKS0tVnt6cbxJkQVtRHC37KLspejENBEziCIoJRDYiS4ySqGsm37L9cTmOas9unM2L1pYcWK0zxDdGHNnNaVYnUeLONDWV4BMrI7NLgulBFSHY0AuOvLMapNgVqkozqwmhMVqZktgsZph6FFqE4p0QYu/n/gEcNtt9G1TkyTA/Dxtm7LRgS0y7ayeo3HRIU1N8S8L1TGbpjJ5PiGzM0AI7ByXmOnWRp/o5M5qXx9rM/FHn5TlrkdbF1ISQpGqNFHE0YHkfP7ziNrJRT3+TvXudFr3K3S/Rb4IUHRWNwmG+0bxUiiI1XaCbmdEQU0pxB1d+EpMTujHiPL7lzmr3S4ag4RaAP/4j+vc6/I+1slQrjtoUxXpQl87Iz23smxZgcWKE6E7KF4iSVB2tLA1MQE841kOHl/cvcxZXa4VimDato5xGsVZ3ROrdQ46mbM6jhFnDjxHoVwxzmqKCy2PxqqVtPDXJhKWe87qCO3EJTu38vkW+SKbslF1I4RNogKTZhHftgH4vt7J1SHou3JndeDoPFmqLfpGABaeUakoxjC5S9Prx4BkbWpnNV1utwylzoF2I7TniYqC5sLyeBX1YaKLhm7TuF8pHev57g0rhWdLJM2LeDX/YiXfEdKLARF6bEBRfJoZXqwWQthCiG8JIT5rfr5KCPF1IcQBIcTHhRCeedw3Px8wz19ZaOO/m8cfE0K8hvzdMNsGFqsZhh4pgZe/XLtKqdvds4deoNkMkqRXV4yMaClEYEstzFCJ1YUYkMqYQ+OszosIGSPSzgmJmZBQrPYExsaF3qY/qiPF5KK6juo5q1WLTqzejGJSFzVLS8BNNyFuS7rdBdsQKbWAty2c1b0t6l0stZ0BLx6CnnDYF6sDO0E4agxIFCFJLXhOBpTLunUKQdEsCLq+zteueyEabXugqPjo/TEevm+NSWYuetmAVS3rreQXslhtBGTh2IDrInAShPGAqV+SoObqz39yEnj68yp4fGk3cOYMsLSEduKhMrZcrLaEQpqM0C/kYvWED0BrdGHqjj5RSBLEqa2d1VUb3dQlc6kmmQ237KBWStGMicTPorNaemQnQ35ukTurlUDNDdGlEqvNuMAxYnXNDWnEauN8dH0L5TLQkS6Zwx6AvikAZGJ1bmRAqYSSEyNsEkyY41gvKo2N6d0ARAssMtY50FUnQmuR6DyIY70jZKKm3fUU99sk6ecK+7qfIam3EIaIU51ZXXZidBYu4tX8i5VeDIgeG1Uq0DEgFLs3mA05q38JwCOFn98B4F1KqasBLAD4afP4TwNYMI+/y7wOQohrAbwewLMA3ADg/wohiMoyM9sNFqsZhh4p9bX1F39B3261uj12NElJ76yOFrvw7QSBk6A7T6Qo5QV/fAtuLYDM7NFFjzxP1daiQS8Le9QvLneR+RbGxkCTKdsTfRRQrcK3JaIlOkeKlNtjcWXbYBYnMgiEs9vjg73vPuDAAdo2pQQmxlI0KYqMrmiXXKyWsl9gsUsgVufCZz5z8Dy926Q94mdhMj9dR/Ucb6pLk1ktM0tnvzoO6qUYjchff/CZZZD/8kU0bvyn1fu4PL6pcKyUmdUenT6pyTItUFkWYNsIbIkwGuCojGM4VobAz7RY/SwXj0VX6JO00zEOaLf/ettGyYkRxSM4NY1YXRo3YnVJIEqd0Sf7SdJzVlvlAJkSpDEgrmfpQpuJTyNUmk6g4kvt/iVaFduU+KIsQ5pZqLgRwhals9qG46i+szocvMA0kDwHOnBQqRJml+fOyclJAEQL7vnYMNA582UnRqdJUGwzP1bfR62S6XOW4KYjoxSOSFFxY7QblGK1BXu8buqk0LQpMwuui96uIJJFgG4XcWbDs6T+rhbZTXvRYQos2svEap/FaiKGEquFEPsAfD+AD5qfBYBXArjJvOSvAPwb8+8fND/DPP995vU/COBGpVSklDoE4ACAFxG8B2aboZSeA/DuCIahRUrg6quBW2+lbTdJtFi9HbJqyWNAlELYiPvO6gWiD2GFewYASQxIkk/0AIgSUd5hQawen7S0WE10rLmzmnqQz2I1Md0ulAJ8SyKa2x4f7C23AF/5Cm2b8p77MDF/EM3Dc7Ttbqaz2g2xFBJMnFY6q11X94nRiM7HYl8QBLpoY4NASCoWWARQL0ndd60nUnW7SDoJGqEP3Hzzmm06jurnnhI6qycmNsdZDVsL9oGdIBwkKpvvuV7VYvU11wCPZM/oPd2p7UZlRWZ1YCcbv80sLOh7k1J9Z/WUvhf6PqGzOrN7AhUAshgQqWy4gY36mKDLLjfH5u2e0GI9obO6ViN2VhunatWJ0KUSq82Cu2MDsCxUA4lmHIzed+X59b6NchlkW/SzKNERZhMTqDgxOvN0hWEdVwClkh4bjSoCK9XvCxwH9ZrSn+uoC21KQUYpXCvV0TUNAlEd6IvV9You3EiRWx7H2rXvAAgCVNyIJl4kX2wNbP1dLbET70Lna18DPvpRwgbzhXFX31tLZUETY8UAGN5Z/ccAfh1AflVPAVhUSuXfwnEAl5p/XwrgGACY55fM63uPr/I7zEWElPq+yc5qhqFFSmB8nF702G7OatIYkDBEFAG+nehiYsRidZ6nCmCoL+7b315nwpmmepujbVxIVMV5CpnV5TGXJqc1SUy+thGrbdpBfpJwDAgp3S6kslB1Q4SL2yMMXEpgcZG4zX++BRN+G80TtPvpk2TzCizW3FCLaQRFUQH0tGo4ju4T4xGFhNz96mZAEOg2F+nF6mopHex2MoJGM/GBu+5atU2p+i5wAaI8WfTv39RitRBquVg9aHEhX+SoKYyP63t/x64jfdPPA69/Pdrf9wM9nR5Az7G9oUWLY8eA3/5t4L3v1Sd+lqGjSijX9LkUlC1dYJEiszp14HmKvFhdYsRP7awOaNo1bYhdO/XPhM5q8vgiKZEqgaoboduiKzydKqvnUKyWM5rdYblbueSgXLXQSWmc1Wk3hmulwMQE6l4XjXkCcaogrPfE6lGd1UoBSunauJZFVxw2TbVIZ2XaAd0g2nGU50uPV3W8SEiwMyjPwTYLV1WHTqyOUwfeZJVmYYHZdI4eBe65h7DBvMCiOU39QOjFVharSRg4shBCvBbAtFLq3vNwPBBC/KwQ4h4hxD0zMzPn408y55l8fMBiNcPQIiVQr5PtSu6x3ZzVi4tARhWr22wiTF3jrI4RNojcv/l2V1NERwg11MThAx8AvvnNNZ7sxYBsjljtlWyIMrULHHpC5sZ6F/UoRboMSm0vZ/V737sNri0zIRvzutti0QrQfcHSEm2bsj6Jkp0gTgkmz8V25SacA2aiZFtKxx+MGlOQX5vCqNW2bZy6I2af5vn9xvEWUG3PNgKV42sBtOyn6Ep3/T7GHEsjLukbycovpZBZjVJJu/6IclqTToJxr00joOTkN8Jlzur1p35ZLCEA/M2fNnqT76uvBp6oPgf43u9FR/p5mYFe2yUnHhwvUuDRP/4cfvOOH8Cxe84Ac3qXQgflngjuB8aZRuKsduC56N8PKWNAAlsLfzGtWI0dO/T/idTlJNFJFeTO6swUWOwSnbN5ZrXZHVarKjKxOlMClufoLfoUbSKPwMiAeh11N0RjkeBzyOt5+FY/BmTUqKUk0V20uUR7YvWo94Qo0t9X7qxuEYnVSaIXLaol1LwIzWhAvz0MvTGnADwPVTdCu0nwfZkCi+5EVbvrKSJbmE1FSuLaTkmCtOCstjxHj7lYrCZhmGXw7wbwOiHEYQA3Qsd/vBvAuBAiH63vA3DC/PsEgMsAwDw/BmCu+Pgqv9NDKfUBpdQLlVIv3Llz54bfEHPhw2L15nDHHeuIWMxFgZTapEt9bcn9h1BdOrEtRKok0boJmUjVaiFKnb6zukH04eYCTaDdM66VIm4NFsLXdWCagmL5RA++D0soZB2iGJCAPrLEdRQgBMYrCU3hRvT1me0iVn/848CJs0ZDFxjdLqLUQd0LEY7qpD1P5AtXlKS1cTiWOcEIFlZyNiMGJAtj2FZhMk7grM6UgJXPHIRAyZVaAB5ldXBFDEjJTtClEKuLBRYBlPxMZ9Wud4M07rtGbITN06eXP58vCLraWV1zIzQXaCak8ubPY3zhMFr7T5G0B6B/jprMat+WA8XqNJJwrBQvfnH/sec+V2fAA1rfWuasHlIE77G4iI98+RKc7tbxP+95HfDQQwCALoK+WF22aZzV5j7reYo2BiTfbVRy4FR8pMoavd18lRXoF+yjigE5ehITzSNoThN2MsYFXXUjdKkMErmr2KgL1SrQkjRiNQDAceBVPR2xQiFWh/paQa2mndUUiwH5OM7XmdUVJ0ZnVOd6miJTArZlFgHGLJrM6tytLDKdWU1VIzuPAQlcVCt0Cxa6CB6AINBOcIrLK18QGy/T5Yszm0qaEovV+a5WI1bDcbQBiYUuEgaOLJRS/10ptU8pdSV0gcQvKaX+A4AvA/h35mU/AeDT5t+fMT/DPP8lpZQyj79eCOELIa4C8DQAd5O9E2bbwGL15nDXXcCXvrTVR/HkJE3pq6hvBlKiN8gnI4qQHDiC6tGHEXZpi4ptBlJq4x9ZbnUU9Z3VToxuh8hBVBRSSiXt8lgaPDE3Na7WfFIqSzsUgZ5LMWqN7k7Tx6onT5ZQo299z9t09Tk1WZOYjyokk/P83rJdxOokAaant/ooBtDtIs4c1NwQsRyhkNp5RMpNcFanQosTANQZui9tM8TqnusvV5dHFavzLd92/z5QciW66YhV702usGcE4JITo9skEICLC4IAyiWlxeoBMSBJZqORBDjeGkd2coVYXdwRUi6jRuislvfch3Gvg9YM4YlQFKuHFJV7543bL6L4nOf0xepOB6vHgAy7iHX0KGbCKn7+2lvx+NJunLlDV0HtZKVeu7ZnI80sGmd1asPzAAQBHJEhaRPsjsrPLU/QObazDCoz9td6XT9GFQPysb/DZDaLxv7Tg188LGbhpuqG2lU/ahFEYLmgCC1WN5OAVKwWvqeFpFEzq7MMMlF68bJS0bUBGgT3RrPrLh8blp1Yd92jfL4mvsjJxepJlyYaKo/rcIXeZdImGhsUnPBarA5G/77yz8BBv3gnkVidZDa8CVN7hSoSh9k0pARIwxtWZFb3OjBCQ8PFzChVUX4DwK8IIQ5AZ1J/yDz+IQBT5vFfAfCbAKCUegjAJwA8DOBzAP6zUoq/xYuQfMzBBRZpSZJt4M47D2yGqHzrrcDv/i59u9QksYKTxQAIRWUzGK26EV0EhuEd7yBtDoC+DqamCHOrw9A4q6WekFPpCPngxhRYHDY/b11n9YoCi3BdBE6CcFSBXUrEqdObPNXcEI2F0bdkyqwvrE+NScyFldG3paI/L90umdVxvA3E6sJ1kGUgzNnZPDbDWS1DCUfofM72E3TCz2ZkVssohS0yYGxMZyu3RndW6y3fBbHaGyJaYxDFhSvfR2BLhBRide7SDHQnUw4ydNPBMSAy01vkf/HO1+Obd54dA9LLpjSLjE2inFaZWah5oT5GKooxILat7wfJ+qKyjDO9ION5vceuvRZ45BFtgv7MZ/TPPSxLi+DSHk5QO3oUM90adu5QeN7UMRx8QPf5nczvi+C5UE7grI4zB54nAN9H2Ylpdkfl96/ApnNs59EHlgJqNbhWimSJxrIsWyEqToxYjlgMdVmjxlntRLoPoHAg9epu6B/LVUu3PYpYXXSsOw7g+1BKjC6A50KtDSAIUPdCNJpUYrWJL3IclD2JTmyPdi3kbZqFxtK4rxfuSGJAbDhlDxUnRrtDJFYXCsNuirPa97W4TuastuGOs1i9XSB3VufjAq8vViuOASFjQ3ctpdRXlFKvNf8+qJR6kVLqaqXUjyilIvN4aH6+2jx/sPD7v6+UeqpS6hlKqVXKbDMXA9vNWf2e99C7szYDKVmsBoBXvIK+zdWiKy9E5L98Ee7D99GGVhunWdWNEDVoP4Q/+zP6c1ZKYNcuWmd1lDkIAoWSHdMJSkmCRPVjQKpDViYf6KzOt9MDfSfdqF9bz1mtxeoxr4ulhREH5KbN3IAwOaG0s5pQrKZ2VifJ5ri1t5Oz2rfMh7sNOsRNEaujFI6VYtJvY/4I3WqIlHrRgnINID9WjI2h4kbozI/4na1cDAMQeNnohYRWZFbrHSw0Ls1lzupguBiQxMSAnOqM4dj+1TOrXSNW19yQTKxOMlsXa6NCqWWiT+6AjpL1M8b1ebPcWX355boo1V/+JfC2twFPeUrhF0wcTDjsosXRo5gJa9j5wy/Hnj3Aqc4YAKAj/V7KFNk26jjWrn3jrC47Mbotgs84vxZMzQkAUF2a68u1M6Bc1uLfELuthmraCeBYKUj3xBix2rV0xATJPSFNkSrRK7DoVxxE6YhitTknFYTedpcvwlCI1Xm+tu/rGJA2QUSWlEiU3c/aD1Ldb41yvLmYZsRqstojuWBfclHxJdox3aKFAADH6bvrSZzVxv2aF1jsECzerHRWE9cMYujZHGe1yUMH+s7q7SJ0XeAQLrEyzHBsN7H65pvphYQkAb7+dfo2WawGDh+m33nTbG6P81V+5atwRAY1T2UrRm9AXnVDcme1lMDdxGFQSaLFajJndRwjlC78sqMzq7t02xxlpqvT6/y8EK3mYNFjOGd1vwCab8nR41uKok8QYNzvYGmRqE2jh0xOgkys3qwYkFtuAf7wD2nbBC5wZ3WS4Ja/b+F3b3waotSBZ28fsXpTYkCMs3rSb2NumjazWhDpPTlpbETHsTEtqs6PeBNLU0SpC9/tK+okzuq8L/AA+L7OrCYUFHOxulSCFn0GOauVhUZaweluHceOrFg9yCelruiL1URrFjKz6MXqHKGFusBN9eLCWp9Bluk4sWJ8DLTWDQD33gu88IVn/9rAdoscPYq29FB57tOw9/WvwOnrfwB4+cshy7W+Pk7prE4deIEWKUtUzsf83DJF8EpOjM7SiNdXbyEk67nAqVya0tERKKRBbrlTNc/Fp1jJ74k++kfhe1oIH0WoXFkYliq2xRSYdGxosdoNacRqE7fUW2Tz0sHxRYPIP9c8wimvkDqqsmrqmTiehWpNaAc0xXlQdFbn7ZI4q82YM48BoRCr852HkzWUHcLcbmbTSFM91SDfKWsWmOC6EEJBJeyspoDFaua8k0/GtoP4B+h7OfWx3n038Na30rYpJXD8OG2b24041k466oiZbSNWw4FjZXBVQne8ubPaiRBRFL0qkCTAN75B2iTk/kPY2T6MxQWiaVkYamd1xUbJienEpFxY9u1eZfJWd/BEZ11ndZ4pW3RWO5vkrB5CrP7iF4GvfW3tNqUqiNU7LMxHZRKFWUod+UkdAxJF9E5dYPOc1V/+MvC+943WRvvPPoxv/+EteOShDHGmC7QB2BZi9WbFgNhWhqmgjfkZWrG6WqWNAullD9dq2kW2NHp0T1e6KPv9dkp+pjOrR4wBiVMHnhERAjuhqY+QZ/iXTAzIhjKrSzjVGcPR0ysE2HyR0YXOrPZCNFs0C5gys7SgqIgWRI1NXxX8tD0n/FrflxHrHVP4tsiVVwKHDunF4JUEbqrjSwYJaq2WXkkWFsTuXdh7icAp61I88Oz/ADiF+BMqZ1oxBsTztADcJnTtG7G65oZoLo5+ffWc1b6v2yQ6txLL74vKVOSxJcK0S3FPWJFZ3fvHiEItUDidPU9HrHRGX1zoRWsEAca8LhodGmf1svgiPx28yDaIXr0B811RFcrO3eWeQKVmoS09mp2daaoXVhwHbsmBVBZdDIi5z1SGHHMPJL8OJuqoOBFdFAqzaeTdCVkUiIkvsgtGIc9KkUQcCUMBi9XMeWe7Oas7HXrx88476fMpkwQ4eXJbRIluGvmNh6DI9zK2jVg9sROOldJuRTPVvqtuhLBNu0pcLtOL1cnBo6g1jiOcJ/oAokg7q6uudvxFRLfN4mTXdVFxYrTCAdUxswzJ4ePo7l9jVaq4nR4w274TXfxoFIqFyoxYvdgY/Dncdx/wrW+t8WQu1puCJJM7bcyHFZKJjpTAxAS9s1rKzcnE3yyx+m1vAx588Nx//+8/FuFVb/8+PLawC0eWxrWr1pJa+tomYjW1szqN+s5qsqgh6GOt14nF6jx7uFbTi2GjitWpFk3K/irOaooYEJMrrHewjHaoAHqij+3rDrFUArpDxIDIzIbMLOwst3GsObF8v3Cv3wLguqh5pt8myKZc5lKlYKWjFEPEtpj376yi4TzjGcB1163+a4GXDhcDcuwYZGbB8h1ACOzZo8etL3kJMDdXeB2ps9rcZz1P38MpImaKC7hBgBpFdnnv/q1jJXaWmphe9Ab/3hBI4cKxUl0cOSYaxxWc1UIoMketVHZ/3SKPgyEQq3vXgREqO02CuhvKuJV9X2dWdwjy5osRM9DxRa0kIOlje9e16+pio+GIn0HeX3g2qnVLO6ApJh/5e7ULmfAUYrWy4bh6zF11Td896qQ5jqEAiGoFVS9GK7Qv7on4NiBN9QYLMrG6WIMI6EUwUus8FyssVjPnHRarN0esllKP70lzmLYZueBz0TqrgyockWmxeppIqevFgESI2rT5Kjt2EGZLG5IY+lhbRF9YnlldNTEghGK1zGzt+hNCi0mxt/4g99AhJLMNdO59ePXM0VUmeoEtEYWEMSClEsa9Lpaagz+HJOmLu+997wp9c0UMyNRuB3NRhcxZvRlidZpuTtFGy6Lvt48f18XQRpk3/s5bUizGJTwwfynmwwriVGe/KmBbiNVS6nOQPgfaiNULdA4qKYFajV6sto2zuuaGQ2Xir9+gREd6KBXE6sBXo2dW92JAcrGaLrMaAIRZvbM8R0cKDIgBSTIbk9UY1181h+PtceB0oZCmETxcV8dqVCtK56kSfHHkmdXmfRbPUv19OWt/BisKsRW57jrg+utX/7XSsDEgR49iLqxgalL/uHevHg9XKn0TLQAtUgJQMUVmtQPPLzirKdax83O25PRd0EujX1+9gn2+jz2lBs4sBQQHq/sCNzcynKHKrZHLndVUYnVmLYsyyx8/Z3p9k2nTnAftJtH35SjAtlH3IzSiEeM68naVBbesB0fVQKKdjNhuPjYsFN+ueQQRRnlmtWehOu7ovpDIWS2A5WL1qBO7NO0vNAqBajlDS/okWdgA9A7JcoY2RWQJs6lIqe89ZONu0xf2xOq8uD3FDjGGxWrm/BNFelBKLShuFu027bEqBTzxBH2R2CTR2zQv5iiQXKy+aJ3ViYJjGbH60BmaRgsFFsMOrVtgnRpP54bJ26w6EcIW0QWWO6vrent6Nya6bZqtg5ZnxOog0a6U9SZlSkEqS28JXc0y2tui3i/yMUyBRaWAD3xg/WNd6axeag3ePhlHGRpL+kt+17v0FvKz2jTVsyd2ezqzmkL0SYDx8c1xVm+GWD0+Tpixblhc1EXQznXeGIZAJW3gZXsO4Fh7AmNeF80kgF9xtDuvc+GL1UkCTE3RuuFlnMERKSaDNuYWCbYQ5+1KhWpFka4B6GPNgHodVTca/dzNndVBwVkdqNEzq3tRDehnVocECwFFdx4wXKSAWZydqiV4yuVSO7FXiNXFHSG1KpFYnWWQqYAjjPs1Ihhw5Ks0hY8y8JV2QK/nrFb2cuHY8IY3AL/1W6v/WuBnw8WAmOKKuy7R38muXcBjjwFvfjPwe79XeJ3rwiNcaPUC46x2EnQJI2byAosk2eU9Z3UGeB52lxo43SiTrLblWfsVJ0LrNNGN0YxhHLPAMnKBSaAvgBcKlalBC0xDtAmgfx2YQpsj54HnfYENQAjUqxkacYlE/OxFxAGollItqo6cWW31i2+7Lk3MjBHBXRcoj3t6bEqcWQ3f1+cASca41eu7qxWlheVRb7r55NB1USkrmnxtZlNJU2DPHlqxeqWzukRR3J4BwGI1swVEkXYQUYt/d9wB/P7v07YJ0DurpezHhVEiJXDJJYTbWrYh+Y3nonVWRykcYdwzc0QWvV4MSIioe4FvbQtDJJmNihsj6hA51HJn9ZguzkTmrM5db8b1V/WlHuQO2KKeZLYWUA4fPvv5XoFF8/OQMSBpCrz73eu8IJ/wl3S+9pgfYqk7IENRKSRf+ioan70V8vffgUMHMxw7trzN4sTBr7qIU4fkQpOzi5hoHkVznrYjSNPNiQHZDPJYiXMt9tO4dz/q8Ry+c+9RPO2pGS6rzuOJxk54VQ++JRE1L/zVZin17g2yKJA07S0ITvltzDcIxeqHHkdt+gl0m0SLbEr1CyxWq3rnxhAFXNc/SIlu6i4Xq4cVKddjRQzIMAtsA1GqL/IVxOqBkQKmj52sJ9hzmY5OkCcKC7+56GMW2Wp1QeMm7HR6kQqBnSBaJBR8ijEgg5zwuaDjnH2uCIFVRWwACNxs6BiQmbCKnZfpQbDjADt3As99LvD61xdely+0jrpAHseIC2K1dlbTLIT0FnB9nya7vFdgEYAQ2F3v4ky3TjKgzXeEVN0I7WmiCnDmWrCFgm9LxE0Cga7nrDY/UzqrRd9ZXXFitFsj9odpavLd9Y/1aoZGEowuVK4cG5YzPTYcVaxW1rIYkJobotkecTzbE+kERKWsHxu1L8wyQCm9g8vS161nS8St0RcBpLJ0DAi0WN1KRnRWK7VMrK5WoRcWWKy+oJGS2NDS29W6MaMQMxwsVjPnnc0Sq2+9FThxgrZNgF6sjqL+riZKkoR+G/F2Y3paj20uWmd1nPWd1QtEH0KhwOLI2ccFlKnfJOiaBMLQRJaEdGJ1GJrMag8llyCfNSdvw8x0qoHUg9z1JmVRBJnZ2r1y5MiqbUrVF1J6BRYHfG9JMmDQliSI84m52freGuRIiSIkSx00Ih9HHmxAphaO3nt29mvxWHsHMyLy7/4B9eZxdI7QZmtslrM6h3KnQV5k8lznjY2vPYQxr4t/9R934/U/7uOK6jz2L+2CXzPbGxsXvlidJFqsJiuyGEWQZtv7pN/GfJMmTxYAksUW6lYL3aNE52yaQmZCF9Qql3UMSHtwZ3vmDPDOd67d5urO6tELLJ6VWT2qs7rophQr+phBzurMxmQ9xd4rfewtL+HkocK9dKWzui7QTPzRB16djhZSrFRfXxQ1F1Zx5A4lVhcEuGEp+QOysAH93MwMZsI6dl5R7j28Zw/wnOeseK3ratF+1GFMXryz56yOyVz7PbE6z6weVfgoZlYD2D0eabGaYECbhNrIUHFitGeI6nkUCiwGdoLuEsE9Ic8VzscFtq0XjKLRxGqlsCyzmqTQZpLovOZcrK4p7aweRaFShcU0I9T3oiU2MO787GdXdMl50caCs7pOIVb3BHvRd2GNKlavXGQzMTsjx1ilqf4Mcmc1hbCcLyyY+0y1Chq3NrOppClxQet8kXdlZjXFvYZhsZo5/0SR7iSoxb977qG/PyhFL1bHMfR2V2LyzMuL+R45Pa1zqLaLs/oDH6AVv5Io6xdYXCI64GJmdUJ3401TwBEpFKVCZ5zVNTdCeI5i9dwc8Pa3Fx6I435mdVnoCTnFCZafUAWxeuCEJIqMs9oFjh49+/kVQgpsG74lEcbrf29SDhare/mc0AV/2kMUKksyG80kwP6l3bh24iSO3lrIAVkpVrsuBNH29+TUrM5+Jc5a2pTMaqWAOILnZuQ7eMbGzn3euHSmi7rXxeUv3IWf+29lXHlNCY+lV8OreNox0rzwV++SxTZ2lNp0zmqzWOSUXEwGHcy1fZpAbCMk1NwQ3RbRIlteXNAGEAQ6BmQIsXp6WmcIr9VmR3oolfp9NmVmdZ4rXHJiHbc0ymdrjkcVpzkmUkAl6xyr6eue94wOrnlegMsqCzh2VC17vpeBDPSLihGI1XlmdWAnCJdoXKqZEssWhAdmVueCzgY3DfTOg/UWLWZngSzDjLUbO/f0/8CHPqQj7JbhOPBtOXrmZ5IgSp3erqCyE6MTEkx9i9FYeQxIa3SXarGOw56JCKc7BGJ1lvWMDBUnQmuBqO/OnapWqqN7KHaFrJJZPXLdjXwRP89h9zxUnGj0aOXesep2yzVbj4sIxE+g7+ToZStvoI/99V9f4Wfo5Wv3x1s1L0SzM+LuoLy/8CxdMR0YvS8sCsAA4Ps0BYKNoJiPOStVsytmlElzPgY2B1upWeys3gbIKEWtJOnE6nzRxu/v4tJGIaL2L3JYrGbOO2G4fcTqONbzpW3hrI4y1GvqondW79tHP05oNDZHrH7nO5fHYY6KTFS/iE6DSKgzomPFjRBJuirXyR13wzl+CE5riU5TzGNAnAjROU5yH3wQ+NSnCg/kmdUVB6WKpYViihNMSr3N0cxMq6V0cAyIcXZ2Uk+r6isxEwe3WGBxSGf1unERxWJSACpBOlhYN+dNQ9Vx4JU/g++79FEcO5Iuq7DbkV5vfgPX1YUbh8jCHoTMLNpCZXm7m+CsVvd9G+LMaVTnj51zZMdq5HFT59pvNWZi1N1QV6oUAs/46Zfi/oXL4JcsncV3oYvVSQJ58Ah2PPF1LC4QLYhFkc5o9W2MjyksxSUaa45x1da8EN15yvgms+3biNWtznBFUddcuOo5q/ufZylQJDEgcWrD9S1ACAQ+dKTEKAOvlTm1QE8AjbvrF1iUysJ/ff1pPP8VNVxencex025/24OUaMQB6jX9c23cpsmsbre16GNcquEiwWA2TZEqAdvqf1++j/UXF7JszQKL6xF42cDs8uzkaZxoj2uxemf/8Re+cJUdVoTO6rb0UakJwHVRdmJ0KXaIFe+JQYC61x1d+OuJ1fqz3zWRYDqsjT7eMIYDx0pRcQkKC+YkCdLMgh2YBUyK3TZGWLbdvkPRt0csVNbLljZtmMzq9qhidV5s1TirRUCQrbxKdE9vJ9swfaxSyB5+FAcPquU1QlYWWHQcvRuA4JzVcW4AymXYIoNsjtgXrlIQs+pEaDYoYlvsnvu1XCUYz68Qq6s1cdFmVn/4w8A73rHVRzEc6W1fRfWbt9LFruU7F87KrGZnNQUsVjPnlyxDtP8oqkFCKgBPTwPBiAukq5GvvJM6q7/xbfj7H4RIYrpt31mG5FsPonbf7Re1WD0zo8Vqamd1u00vVs/O6kKblGMamSg4wsSANInEOiN6eJZ2aVFdZPJTn4VjZSg1z9Cds8b5WHWjc87XfuIJLM9WDkNEmQO/4sAvWXqiTyRWA+hv9cyL6AyIAUkzM8BerSKfcXstz02TCAfkbCeJfktrzoVWOKsrpUxHkQzhrG4kAfYfK+GVz53H0caErqYFaNEnCVCvm9e7ro5WaGxw//kqyMzSheWIyTOrKTcDJPd8G66VohIvkIvVrnvux9qYlxjzujrYD8B11+n7rFeyaRfDNotuF0lmY0fQwtJJomDCKOrlc1YnXC1SUnxpnY7ut5yIxlEL9IufOeg5P1tDCBNJArSb6ervS+qCg+V+ggNKJZAUWEwyI1bnbabeaDfyVUQfOI4WKzvrXBSm33LLLuB5uGyqg2ONsf4qlZRYiku9fqs24dCI1csyqyXNeZBlWkwsdP9DidXK3rhYHQx2Vj92bwu/cMfrMZNNLROrVyV3Vo863IhjtBIftTHtrC7ZCTqhPXonnosTgRarK06MdmiN1m4xsxqAV3GRZPbo440w1IvYVoqqG+rrmwJTDNGpBjq6h2JXSJoiXZFZHYx6HuTfVcFZrQttjh41tCxf2/d1Jv4o39cqi2zlkkJ7GGe1UsDf/i1Ove0vEUUCh/YXXt/Lojc/e57eDdAlEKuV3YsBqbkRmvMjTpZMH6IKMSAlJ0HYHvH8WlEEL6g6o4/nV4jVXtXTtVcuQrH6+HFdJPfBB7f6SAYj2xFqboTuLG1+/zJntZ0M3NXKDAeL1cz55ZvfRHTHPagee5RU/JudBa64YnuI1dFHboKXdhEsnqY73m5Xb2tJ5um2EW9DOh1tBKQeJ9g2vVh99936/2THqtTyzGpSsdqGnYt/RMqyLNfhWqmZNJA02XNWV93onK+tJ57Qua29a944q4O6BxH4vcdGRko9H8ljQIYpohNFcK1UD7DD8OzvIt+W6ha30CYD41vkKZ2T255b40Nb6awuK73ddRhndRzg8GHg+d87jvmo3BerkwRLcQljY+b1uVjddNdqcWiksnVhOWKk1PMoyvtM4pS0WO1G5GK1I86xD0gSLDUt1H2T2QUdrzQxAfgVLfh1Wtuj2OqOoIXFo0R2eLOzwfEsWJWSdtFRfGntNpLMRt0L0V0kuiHkW/QdaGeaG6EZugN3xiRf+wbaB04B/+N/nL0gZmJAyoUYEC1WD+gLhjjWYiRQqSy0AD7gQssy4Jd/ee02AawqVq+7/T93pJd0P3TZpRmOtSaA+fleu8V+qzLh6V0mo2YKmPO1FwNC4VJNU50pXHBWO76NNLMGxIBs3FldGiIOJjo1r53V8dhgsZrQWd1MAlTHbMC2UfYSdJN1YlCGpXhPtCxdaHTU3QD5ok1+C/S1U1eNupc8DHsLuBUnRnvUQqs5uQu6XtHnbJumlkfR/dobw4wYA1LMAofj0BTL7hXs64uqAIjE6n6/Zbm2NooM6GNn7z2CxpfuwRONnbi6fgYHv1iwVhezpYF+gcXuiOOtvL8wMSB1r4vm4ujX1jLyorsbKLaaJMA//MPZD+b3bwAQnqvv4aNM7pLkrDz0kRcsCtx9N2ERwE1GSuDSS/X86UInzSwdu0bprF6xIyRwEnQpIqcYFquZ88z0NKLUQc3uIInp7Gl5ccHtIFbHmXaMlNChE+mMMFRzQ5rto9sUKXVsGrWz2qZLv+hx993AJZcQnrP5oFGktGKS+TB7Y2eikzYpj/W3PFN9BkZMqrohoujc+pcnngCe8Qzg5Ml+mx3poVR3+5ORUU8wU0RnWQxIINFKgoECsBD6fd03uw9q/mwxSarlRQsDOxnsrP7YTQCA1nv/Zo0XmEJKgT7WSikb7PSJY8SZjUbk49QpYO+1E7CFQnxmoXesjYJDEa6LyYBGrE5S69yF2nXI9Q3KKJDYCuBZKapOhNYinVtZfvFWOF/5AoQ8h3N1YUFHHYxbvQtfCO2u9sraWd1uXOCLosZNuCNoYfEkUUGxPLPas4FKRT9GJFZLZWHC76C5QBff1Cv+lRdFlYMLPyWPPIFW4qPVVJj77NeWP9np6L6w1t/94HgWpFpH/ByGPAc6MI638nA7WJIE+NKX1nhSSiSZBdcu3AeNSLVuYbU4XtbXXXa5wNHWZF+4NztCxib0sVqVkhaSRr0v5iKd0GI1lUtVKksX2cyxbX0PWavvVsqIWucYA7LOQEnON7RY3SkP76weNbIjSdBKfC1WAygF0LuCRr2Hm/u35Zk6DiU1ersrMqvh+6i40ej1R0yti15mNZX4lY8L6hVtOqAwSKxccM/HMCOK1R3poeynvTZLdoJuQhGBYS9zVo8cA7LaIlt+QgwQq//yT5r45KHn46C6Eq+69FEcOlD4PlYeq+MYsXrEnWx5H+OKXiHf5tLohRABQBQE4I2K1fffD/zWb61yrCuiGop/75zIF5jyxb38HCCa1Pzf/ws8/DBJU5tOXrTwgq+bZeJgyMXqfKcNUNjVys5qClisZs4vExOIUgdVN0TSouvR4njzxGohiJ3VIoBnS5REROoolcqsFFI5s7YhUmoNgfL7ynd1Um79B4BTp4CnPY3QWZ1v88ud1aNWOs9Z+WFSOauDar8wz3rbsjdC7qx2onP+XA8dzPDyF7T7USBRhNmoih17XRrnDKBPpvyEsvRtuFrFYGd1oYN7w5feiIXDKyrH5dmMK1xJ4YBJWTKthZjWI8dWf4E5JuEWnNVDZla3Y09HUuyawPN2HMW9D5rPMHdWj/edPpN+B/Pt0QP9pdIORQHa61ZK/XU1GnRtJu3YOKtjtM/QWWiSbz0IJ4tXzzYfxOIiGkkJ9Ynl58111wF+HgMy6hbqzcYsXO0IWliaJupkTQyIXRSrR67ShV4ExI6gRZevbe4HtrMiS3OQWB3phaibDj4fN/zadyDuFK7xRkOLPhOFa9Rx9A6RESf8UerAL5sYkNxZPeBGLuU6b8cIVBWvcPy2PnfXvYXlLjtTBfuSKz2c7Iyd5ayuj5nzv1TS4u+o50G+jdjKdJ2BFsEkuhcDUjinBgk0vQKLGzsPXRcDFy2SKMPp7hjmG25/kXKdBkeOfwC0WC191Cb6ovLIETOmXQC9z7McZHqHwSjXQb5g4a4Q6UZ12YdhbyGkSrmDJz9n6+UNi4lrkoufhTGMjoMZ4X6Ti9VBX6zWW/SJ8poLYrUlFNLO6GK1KuaAmKi4QedWcvwMFqMSnpj6Trzy0kdx+Ezp7GPNF0LyAouRRxJdkzura25EJlb3PgLP21ix1UcewV2//VkcO5otf2urjI/XXbgbhnyh1TXvmWqOgH4z1OarzULKbSJWJwlSJVB1I3Spaq+YXUzLM6vjgXMvZjhYrGbOL1IiyhxU3QjJzNLg1w9JkuhOkjr+odMBxsaIxeryBHxLouQkdIKicU7U3BDdpe1xZzt+fEU28KhkGeRiExWrS3oehKHOQ6cmivS5RSpWmyI620KsNkXwSk6M7gyRSFeMATmXLZ5RhPj4NK7efzOO3X1Ku8SSBHNhFVN73J6AMfKXZia6ouCeCQIMLlRmvgsFgcPNKZw5uGLWaSYkRWe1b0uE8fqfhbzkcgDQ0R4r9/BlGZCm2i1iJk2eLxClzlBitetk+mObmMDL9+zH7Y/s6B1rz70LAK6LKb+FuRaBWG1EH99Ozjm7fDXSVEc4Uzqrk5aOdqk4EdrTdDkguTjhJF0knQ0OyBcX0YgDjO30lj38i78IvOw7Y92/XOjbG82MadzvYHGWaEISRf0t6pUKbCuDbBCI1aa43pTfwhLVsKiXJap/rNWFzlYeMJOMwwztxMNCXEEjdHHjHxZu0s0mutJFeaogguRCygYn/MtuI6YIXrVqYkCqtu4LBxyrlOt0xVKinfgoF8VqU2BvUAxI/lpAL7LJzD47BmS8Lygu+71zpRDbEtgSYYco/1ctz6zunRADCyxu7E85rtD5ygPE6kxZWGxaZxdUXEke/zBq5meSoBkHqIzr77NUAjqjxnUA2lmtRO88KfmmjsOIwtcyZ3UQILAlotaI/VceAxI4tHFTJrPaHqvqAq4UwzjjUMwX2fq7w0YTq9vSQyUXq4VAyZUDdwIMdazKhuMtX1yImqNl7WuBdXl8EQCoeJ3zIAwhGx0syCoOxZfimp1zOi837+xyoTb/XC0LNT9BMx5QJ2WI4+25lUsl7awedXyU6vo4oiBWb2gH5nveg7sO7EBJdZbfT1dkVg/rWC/y7W8DP/dzhbnryogZ34dtZaMtWBQIw+0Tf71txGqz66zmhuieww7kMAR+/udXPLhaZrXDmdVUXOCzDeZJR5oiSl3U3AjJPN2MP471nIHa/dpua3GCNAbECuDZRqSbI9qebAajdS+kceScBz7xCeAznyFs8O67Ic/Mo3zrzaTfV7OpXfvURBFQrxMORPJt375D63zMoydKRqCgigGJMhMDIhHOEPUF5jqoutE5TXI7n/48KlkLl1UXcOz2Q70LX8K4nahcE6ts9RSOrSe/AzKrlRLoqDLC1MPpIyuOY6VzJJ/oJQNiQKQ+jlYS6ByUtY41j4RwBwgeQE+snqzE2LsXwNgYXn7pE7jt8GX696TEUlLqbafvxYB0hl8ZOnkS+LM/W/Fglulzy0q1UL9AV3FWSnqxOm7F8CyJihuhdYZQrK5N9HdZHJ3d2C8vLmr36M7lCwfPfCawa4+1bZzVADDmdekE4DRFqkRvy3PdDdGcJejAOx1IZWEqaGOxSTQsl1Ifq7lUh3ZWxwptGWDh0uvwA1fcj298frH33KGjto4BmSpUWBwkfq5CGALPec7yY20lPip1E9VQsbRLdUA/O5Sz2i8cl9n+v+65mw8e8oXJyUk4Vgo5u9hrtxGXMDZpJqWuCwEgi0ccd+WiR9nVjqw2wSJblmkx0V7FWb1uDMjGndWOJ7Sov55YbaL/JieGaDt31I7qTDP3Ia+8Iq5jlJzaLNOTDYHezqiyn+p2R3RWF7Pb4ft6wXXULGiz89Kt+qg4MVoduj5GZjaceln3sy0CF2FetLFYd8MZMbs81d9NJTDXVFGsHtUJny3PgS458fAO4NUwu0wCt3BcZhwXh+v0CWahY1HWMD1rYc8VPlwrRXLsdP9Yi659ALVyikYSjHYtFDOri2L1iG7tZbn55hwYZLoAoLe9pSkeXLgE/+qSh3D8YGEyuEoeulJiQ+fA3/0dcPvtwH33mQeSBF3pouSZ7yYItPGAKCaNndWbQNFZfQ67QWZngfe+F3jggcKDUiJMXXil/rggsCW6o+7eYACwWM2cb6TsxYDEbboeODl6Cu7RAwBo1epOR4sTlMX1olDBtxO9HfXEPFGjkSnQ1KXLYNpkTp8mLlpoQoZ9FZKuRDcfOopq8xSoz61crCa7secxIGUXZTdBJxoxRzQnHymNjelJeZvIWR1KHQPixOhO0xVASzIbJSdGLDcupi3un8G438FVtVk89qgCjh8/q3iKJRTSLoUrC8vMM0O5PMyJXSoDAhlOH1txAUmptyT6yyd6gyb8MtR/s514hbDufpsAIIqjhWGO1YgEO+oR9u0DYFm4Yl+KE+1xYHERaLe1szoXRC1Lx4CE5aHdTrffDnz2syse7Hb1xDwvVEYoVqepLjK4GTEgVSdCe5ZQWE8UHCtFxYnRmd9gJ9NqoZEEqE+tkh/uujpHdbs4q70uFjseTVxH7iJzBVCpoOaGaMwR3MSM1XHc62Cp7dCsuq/IKPWrrs6BHrDYmET62jtduhLfc8l+3PdETZ/4SuGVH/1ptKSP8s5K/xfOIffzyBFg/369u0r/0UQ7H2sms7rq6GMdMQakLf1+Ti3QiwFZV6xeEQOCiQnsDFqYPW7+UKeDtvRQHjfPuy6qbohWe3QHsMxsOGVP99lEkQpnOasHOeFz8WmDUbauM0QMSKwgkGHnjiEatG14luwtpG6EhQXgb/4G+j4ipV5szx3QZaEXQkYshAgsjxUuBWrwzqgh2j1brJaji9W5kaHiayGtS9R3G9HHrpUx7nWw2Box/xjon39+McpsxDiYJNG7LIL+NRV4me5jRo5tWZmvPeKxpila0kc1KNxXHGewc90cy0JcwcICMHHVOHaVmph+dL7XrsysvmsfWqxujipWm7/renqXQS1I0IxHvL5W9lvmc42GafKBB6AUYAmFK6tzOHZnYWdQvvMw6LtfLaGQRsNfXwsn2njetRFOmzUAxDFaiY9ayXyGvq+/qwbNjr7t5qyuVLaBWF10Vp/DkHtxUdeb+vM/LzwoJeajCiZ3mT7QshA4EuGouzcYACxWM+cbKRGmjnZWR3QXcPyxm+AdfIy8bG4uVpM6q8MUXp7Vu0DUq5tiUjU3QpfCkXMeIBerJycBAL4tEXfpin9F7/0LBNNHgRad6xEAolNzGFOLpM7qxBT/qtWAZhzQCDQFsdq3E8RNmgOWsXZWl+yEeIeBDUdkfffTBliaiTHmdfGCZ4W4Z+YKyBtv0gPRcj+PrmQnoy8I5Q6qFYWv8ufWJIoghEK57uK6yZM4fWjF55ZnM1YKYrUtEQ3KrDZ9cUv6Z4vV5iJVq2xLHUasnqonuPRS89jkpG5lehpYXEQ39RDsndDPCYHJaoz5qDx0x3DvvehPGnJMpELPtU9YcFZKLVaTO6ttqTOrF+huNDJRcIRxVi9s8JrtdLR7dEUMCADA0Ts32uEF7hgxM6Yxr4uluATMzIzeZjH3s1xG3euiOU9wEzP9dO9YKQYc5ljz7fSiZHYsDCpaaNyvJ2Z8XL43QSvxkE7PQXW6ONEex7HOFMpjBcXD9FsqGb5PPPRQB4Gf4WtfTXvH2k58VOt6SuKWXR0pMcgFnqwfA7IspxboxYB018u/XemsnpjQos9JvRtE2/QFxKTptxw9nm22RhSr83Or7JkYECqxWpzlrLaEQhqvMUbKsl4cyUZwPGtwDEgC7C0vDS6uCGix2pZ60XmD9/H3vAd4xzuAY/cv4O4zV+hzNHdAVwRJIUQAy9TqckAQAyIl4tTuLzb7PnxLImyPOJ7NBeCKFtLaVAuNUiJTFqxaBeN+F4tdf3RhppdZbe4ved2NATvlokiPB9Zqsy19VMr986jkZ0TOanu5C9xORnNW532hv0KsHlQY0yx2LcZlZBlgX7Ibe0oNnNnf6B9rUVgHUCvJ0cXqFUULa1Wl5x6j7MDMxeq833LdoQqFAwDm5xGmLkp2gn3VBRx7uOAsyD+DgrN6Q074dhsLtz+Ea458DmdOZ702m0mAasmcR76vjQdEzurtJlZvH2e13oHbPYcdgouLwA/+IPDVr5oHzFxzKS7sFAVQ8lKEqUMsdFycsFjNrEu7Taz/Soko1U6UJKJzqiaZLqhF3atvhlgdhVpQLTlEFd+BXjGpqhvSTHJWQB2vAmyCWG0mDp4lEc3RnbR5trJICM+tgwcRHZtG/d4vEWdW23A9LagtxOVNEKvl6MV+DDJK++5XquiaMIQQSidWmJ83wtKcxJjXhf3D/wav2LsfX/pagOmwhl27zQs8TzvBCcRqqax+BXFAFyoTav3t5LmzetzDd+09gtPT9nLl1Gx37YnVeQyIHCxWC2Q6BmQNZ/UyG5kpTLNuhmIcI84cTI1J7awGgIkJfQ499ET/PRdsf1qsrmxIrD5LOO529aKNlen3vkR33aaxxHg1oc2szgssOhFaLbqOViYKrsmv37AI3m6vGgMCoJ/7G13gYrW5Vhwr0/EEVGK1MrmflQpqboTGIsH91jir616oxWqK2Z6peF8s/gVg/baV6l16x08KjF1SwdPHprH/niUsnWghyRzsX9qFciEFBI6jt5sPaz44dQqH3vNZvO7Sb+LOvz+lHzNF8Cpj+mBF4Ot9TEM6q1cdn+Rb/1c4q0tOsv6ugLy/yz+4ceNQnBG9c0gVxE94HupeF43WiNOp/P5d2WA+63r0CiwWHsuzoNfK8s+ycyuwOGQMyNVjM9h7yRACgWXBs1PE6cZ2GnS7wE1/p2AhxU1/ehofOfAi9KvKmYiZIVz767JKEbxSCSTiZzMJUKv2828DJ0E0an55Hg9W1rtiWiHR7o3cYe46GK8kWIzLNNntRQE4r7sxQKjcvx9429v0v9/7XuD971/eZkd6KJcKYrWXju6E7y1erhhvjXLt5pFI/vIYkGGc1UlmYzE2cX0TE9hdauD0if6C4LLPFUCtkmlhedTPQPWzems1aAF8lLlHvshmFWJAhigUDgBotbBoRMPLKgs4fqgwlsw/g0Ku8IYKvB84gIW4jGvGTuL0Y0YETxK0Eh/VgqGlQpXfjm0WA7LUQtVqk4vr7343bXv5LmTPknptbYMLbAt3PIyd930eOzCDU6fQvx8I0RsWAGb3xqj3BAYAi9XMAP7mb4C//mvCBvMYECdCEhM6q1MHni3JOwVysVopxJGCZ0mU7BjdUR0TOWZ0VLITdEdZ1V+F+Xng1a8mbRIAcOoUsVidJFAwzuo5OjVJC18p7VaeVgtR6qDuhvQxIJ6NiQlo0Y8iX7ogVo9cPKaAzhXOyBdtlNKDcQVs7P1nGZbmU4x5XeDZz8Z/fPlRfPixl2CmW8POfUboyZ3Vo4rrSYIodeE6hXPKdXVkw3oFP8wosFyx8F3XNXG6UwcOHuw/LyU60kW5WtxCmyBM1p+cyki/72/P7cM7vvyi5Z9bkiDNlg/C4Lp6e/J6k2jjrH7V8xfwgheYx6amMBW0sHDr/frnFfa9yZouZjlMx6CUzo4bG1txaXY6+joQeiEkatCNnOWtd6D28N10RWyVQtJJdAwIZeErAFKqfmb1Rp3V7baeME+tkh/eE6sv8OHjyo6VQqw2DkXb1QUW614XzUWCvstM7B1Li4sks708s7ogpABYf4xkrlkAOHlSYPzyOp42No1DD3Uwc0Qf41y30itfAKDnThs44ZcSuPFGHHvLB3Fofgz/7in34lv3mXPIbNPPxephawPkGsuq3UWSoJ14y7b+w3F0tES8zrHmnYnV70N3TSSY7laBgwd1VHGx+qDrou6GaLRHXLzJBcWKbwQvgnHcSoci0BPU1vy+egUWN5hZnRdYXGecJBOFG/Y91BMVB+E5CnHmbGhc/+m3P4zXuTfjGZ378MnP+jjSnIJX6vdVQdkaPQZklQVc27ORKmvkGJBmEqBeM5+958G3BtxnhyFfuPIdVAJdQJVk8C2lHme5LsZrKZbiYPS+q9jHAkMX2kyWOph/5DTwvvfh7i828b9/N8NsXqrB9AWV0ioxIBv4vtIUuOWWFceq7LPytUcadpv4omppedZ+1Y3Wjxoy4/+Tzbrun8fGsKfc6NfLlhJxVigGCcAtOTq6Z8hzodEAbr11xYPFaCwYZ3UyorNaSqTFIq+9QuFDLHI1m9rhusvXtWeOF8YpqxTBKznx8Ie6fz8WojKeOX4apw8YNdostNbKBWe1S2c82DbO6iiCvPd+VO+4hdxZ/fa3E5sm41jn4luZ7r82eMCL9z6BCSzgFfYduPUTZwp9yPLzM/AVuumIu20YACxWMwOYnSXuKNMUUaZvvAnhamHPWd2rpEwDuVhtimfkzupOk0gAzR2XToIusYhw443AoUOkTQLYBGe1acyzJaJ5OtWnf24RitW2jTB1UffC0fMIc+K4t82vFwNCceLGsRaAN8FZ3cusphKrVw46NuLuaDaxFAUYq2aAbeNFP/YMHGzuwEMLl2DXU0yFTd/X2wZHjdpZrfiXbaPqhmivM8jNwhiWUPhvvxjjVa8CTnfryy/O3EGUi9VCIHDNVrR1RIQkVpjwO/jSmWvxvkdeDnWqkK1h3F71oPC9O47OvlxvQG6Er3//6llcc4157MUvxqTfxtwZqau9rxCrg5JANOS2ufkv3YedncOYrESYL0b/t9vaoWilOvuV6HwFgDSSqHkhumeIKvZFEeLUgmec1e1Rc29zsgxSCjhCO6s7SxvsaM11I6qVs58zMSCdmCCfdDPJBy6XXAIAUDMbLDK5Gkb8czwLKJd1/EODYMCR99O5+EUx21uRWb2R6B7fTjA/D9Qun8DOoInpg03M/M3n4Nv6PAqKaxi2Pdwi+YMPAl/+Mr7/k/8Jnzz0fDxv6hiWlpRedUoSxJkNr+IOf6yFp/OP633vAz79afNkvsskWL4g6FjZ+t3LSrEawK5dwHS3Dhw4YOIECq93HNS9EM3O6GJ1HtWgxWqCvmC1zGrHgbeeEz7LjAC3sT/lemL9zOosQyIFPDvtF6EagOdkiNP13dor+euP+/iJp38Nzxw/ja9PX4X9jV2o1vqfpRWYeJcRxeo4teEVF5vzGK8RndWNOEC9bn7OF4VHnYPlWb2eQLUm0JaDC60ORX4hOQ7G6xkWozJJ8em04NTtLbhH618P8jP/jIXpBPjWt3DgjtP4lSv/Hh/4H4f1k/kui8LtrBQovWixge/r3e8G3vzmwgMmY3x5QesRM6tzZ3Ww3FldcQaI1Wax6/DiGHbsAFCrYU95Cadn+vFy7cTHslt63s8OeS3ccYd2ra/8u0UBuFbJaKJFlH12DMgwxepaLSxGZYzvLeGKySYOz9V6O5dWusB739ewBq/9+5FkNi6rLuD0KXPtJwmacYBqHjETBDoGhGgKum2c1VHUK24fEhmacqQEHn6YsMEkgVQWbGG+w41csGmKhVMhxr0OXrz7EO7+WtozYXrO8r4k8BXHgBDBYjWzLvPzxB2lEWurbkSbA53pAbinIrp+IcvQueNbGF88THesUaQHuZYczo00LKazHfqGvgE+/vGzDJAjkyR6IYT03JISAoBvScQtwuxXZZkMZELXfhwjUwJlJ0a0RLQMnRdo8m2IYIgt38OSf0n1uj6/mjQXmEwyEwNCkMmYkx+r6+o17o24OxYXtSNj3GS8Xv9C/MyLH8TbH/wB7LrCWAl9X1d4HlWs7m1RX8U9s46DIOlKOCLDK77PxSXfMYXZsLo8tHmlWK0PeaCDKIkyjHtdPDy3G7NhFU/cV9iZYNxetRUFfypOvP6A3JzjdqmQe3zJJZjcV8HjS7vxO/e+FrX6it9xXe10GKITb33qC6jLBew59S2cOVX4PsygWceASLLzFQBkZqPqROiu537fCO12bzGs4sZod4jE6tylaWWoOBE6jQ0uiOVf7LK8B0PPWX2Bi9V537dvn15gOrUwepvFbd+VCupuF40mwXeWX5tGTVEhjbN62RZ1W+e4y/V2tJnonomgi1oNsHbvxM5SEzP3n8bMmQzfMXkCZU8uSwTqb30f8DksLgLQO34OtXbgsr0SdiYhT04vixPIjzV/DwPeIgD9VaepdmD1JrXGoVh0U8LW19q6zebild0fR+3aa2O6WwMOHND3iLHC611XF9qkEKuVBbcWaHcmUQyILpZYGGfaeqfYmudBz1m9sT9luTYyJdYW//I6DY5aHim1Dp67QWd1luH0goenjU3jmonT+I7JE5ju1lAbL/RVeRb5KBOFfOu/t/yeCGDkSIVGUkLNrI3D87RBYNTdkoWs3nLNRjshEqvNmBuui7G60jEgQ4jV/+7f9bqDdY8VQCGzen25QjY6WIj0/aqZBHjTM27Fxz/l6VMnL7ZajAHxMy0kbUCs/su/1LfEniFqlRiQkh0PFNbXxeRrV1f0W1U3QquzzmdgBLhMWVqsrtexu9TEmfl+Mey29FGtFs6lYQplF3j44VW+t17GuD62sVqGxWjEugtmV1CvC87d9XIIySp3Vu9wMP6USR2rdeJEr90odeEFyzOrh5omZBlw9CgAoOpGej0/y3rO6mqlH91TcWO02jTy2rZxVpvzr+JECKlqcRmk1GvdZMSxdu5b5yBWnzyJxa6Pcb+DHUELC3PaJDkXVjBVWn4i9RbE2Fk9MixWM+syN0e8KJSmiFIHNTckbTeBq4UvK6YTJ44eRefwNMYf+zrikM4BHWXaWV12YrpiiIV8zjRbZ8JwDrTbWOZIoGB6Wm/f3xxndYqI6vtC31ltZSndx2q+r8BO6ArAxbGJARH9bdQEqwG9wln1us5oXaJZYEkiZQosEi7ayP6xKmBjzuqlJSzGZYxN9l0XP/bx1yKtj2PnLjP5yDOrR71u8y3qxVxC112/iI5SkKHULn/Pg3XJHiSZjcaRggi3ilitV/fXyU1TCjLOMO53kGYWfvxpd+GWLxSGBkmi3V6lFWK1O9hZDaAvDhimXvQU3HrqafiD+16D+viKIUi+yDCMWI0qqm6I3eUGTn+zkLOdu53yPHSqhRClkCqhndVU/XangyTTBbWqbohWl2ih0UwcnDyzeoPFfpJGV0cfrdbx587qAdEyW04+AdmxQxcunCc4D4rbvstl1LxQF9Yb9XMoiNUlJ6bJWTf52nmBxd73tt5Ci3FWj5cijI8D2L0bu4Imprs1zIRVPG/qGMrlFe/VcfSOrkF9+OIi0kxgT6mB//v2Bvxrn4pLKws4+aVH++8/F09MP5Al639nycFjAIDoyGn882/ehslsBjPTqvf+V+bUwnHgiBQyWeNYlep/lwVBddcVJUx3a1BnpnGsNbGsiFIvs7qzQSvySvIFpmqgF9lGEbxyejEghcccRy9arPUZnGOBxd4fWWsHj+mX3Q18TJ6TIR6Qg72MkychVAbs2IEXvesN+H+feg8m/A6qE4U/mi+IjiimtaR/1gJu/tywHDiwouvIndXjfaeub0tEo0bCFIrgWSV/4xFp67QLALBt1OsYOm9/ZgZYWGvtcEXBvn4ExPpyRRIrzEcVtH7pt1B9xj5UqgLPqh/Ho/e2gUZDmwMm+mORIMCGhKQ0TuFnXezcoXSN1fxYVwrrDlFm9YrCsFqsXt9ZLTMbFS/uO6tLSzi9VNLXZJrqdiuFNjYw3gKARx5ZQ6wu5EBPjme6Xs4o11eaLs/adxz9uSb24Httq6XF6ikX2L0bjpUiOWkiwKREM/FRm3B67epdQUMc0+IiVKp3XWJsTOcMLiyY72t5znzZiUnKBQF6qrgtxGpz/lXdCCGVAavfNB56iLDBUZzVR45gMS5jwuvoceWiAqTEfFTBVGX5ieS6Wj9gsXp0WKxm1oXcWd0rsBghkYLmIlYKsdRh+YEtaRxUho70UPdCxHONwS8ehijq5WsPfZMcst2cc8lgWo/N0CNOnQIuu4xYrDbnkmdJxITFO6URq13EdMdrvi/flmQZ0HmBJsezAd/Xg7T2iG0rhTTJtHBVq2HC72Bxicb9KeNCZjWhWC2EAup1WEIha5+Ds3qqP0v3Agsf+YjAy19uHsgzq6liQIoTEttGxY21+LUaSYIkteDYmd6ivns3fut5N+PnP/l9/UmjlOiudFZ7SkdrrNXXGpFkPAhhWQo/cMX9eOKQWPZ8IymhviJDsTyEsxrAWWL15GVV3GtdDyUsjF1aW/47rqu/v2HE6khnfO8uNXHmUGFmkDsUqcXqfDDuROeUWZ6mqxSKCUPEqQO34mmn+nqF3zZCvstCZIMFylUOdL7hYDLorMh7MAiBip9qd96FXDgmvydOTuKS8hL2nyRYcTV5qo5n6azikkQjGjH/1rQLAKhWMeZ1sThLMC5axfVXGZSLXhCrx8YA7N2LnVMZZsIaZro1PPcN16BUW6E25u60Qc7qhQU9oXtKHW/+jTHghS/ElbU5HP7M/XqQUSxaaNoc5CiV934bABD+6QfxV5+s4Nef/mlMHzJvsNvVfWy1cFyOo2NA5BrHqpTOpAaWi9X/+oWYzqbwwPyleNlnfg31qcJn4OjaE43uiGJ1fs1WAxN7YI0++Mqys2NAbL3jQkZrx3Usi48Zlvy7W6tPyMVqb/jxg+cqXWBxyH4mfPQwAjsBrroKVz+7jN/85Rh7d0hUdxVC1vP70SgKkBGoqsHyeyKADfWJP/zDK0SYJEEjCVAfM5+RiT8YlNc8zPEmea5wEOhYNwoFrCBW2yVPO+uHaFfKdTJo88xqb0UMyCBndawLRD96tIyrnyaAffuwr7KAUw/M4vN31dCWHsq7qr3Xl/xMF1gc8vuav+lLmGocxCXp0X4NanPN9s7pPFZilIUmI1b3CvYBgK134647LDLX185aqMVqx8HuHSnOdEwMhpRoS29ZJE5v5WiYic3Jk3jkznl02iv6pBXRGhPjakNFslclj9ty+guHgTtEsTqlTIHFMsZ3ecCuXbi8Oo+jD7d6x9pMguVi9bDRmXNzZqeOAnbv1uPfQ9NAHKOZ+Kjmp5bZebbROM5mE/ipnzr78TDcJjEgRgDWYjXtAY+PEzurk8RkVqd6UXwj88RTp7AQlTH+1CktVi8JoNXCXFjBZHX5Oe96gsVqIlisZtZlfp5eUFTQgmKibJrVfSmRpH1xIlogWtI0A7yqGyKepROro9SBb+nMajKxeqU4Tdbw5jAzA1x66eY4q32bVqxOhAfH0pEVSUhXCBAAfDtB1CL6EPICi74F+D4m/A4WZkevIi8zC66dAaUSJvw2FhoE7k+lIBPVFxSp1lak1BOxWk0XJtrICv/SEpbikh7kFnjJS4Ddu80Pvk9z3ebbUldUfPftZO0s0Xyyn+f4eR5+9EWH8PD8HvQqCUmJMHXhV/pKQ29r/VqD/DiGVFqguvLSBJdV5jE9XZjQJAmaiY96uTDgyotBrtfVriVWTwL3PVHHD/+IjfGpFeeSmTz13Pzr0G5mqLoRdpcaOHN8lYrvgUsrVpuiLFU3QngOGevz88Cv/Mry1JZcHHTLDipegna8sYJPa5L3BabAYnsjYnWng7moiqlKuOZ2/XKQoSOJinRtEirPUZicxBuf+VW8567rR280n5jnxaTqQtcGGDWgsuCsHid0gadquVhdduKzxYYi5nycKMfaWS0Edl27wzira7jmJRN46lNX/M6QOa3TxyKc7Ixj925zPNddhysmmjgyW9H59W5BHc1jhgbE4shQf26nF3wcaU3hVZc+gpnj5kBaLS1QjS0XlteNAcldxfby62XnVVVM15+Gx596A37yX53AT/1yIQfE1bUnmqE7mricLy6UHJQCE1FAsAhylrPaddePAckXZM7VWT0gBmQjWdgbjQFpHJhG3QuBK67QD7z+9djzgktRqxemuhuMPlgV49BcJlabmJ1BY8S/+zvgC1/Qp8qBA8Btt61styBWmxiQaNTxbH5ueRZ61VGJnNUK0N/9kEVRoRRks4PmyTWKoEupd5+W+s7qwEkQJQOc1eZWdM+DAa6+GsC+fbiksoSTjzXxho++Fs04QGV3X6x2fUsLSUOeWzOfugM7gxb2Nh7DqRPm2smvlQ3maxeZnQUef7zwwGrxRfki23qFYc29qSdWA6jv8LTbvdHoO7arZ4vVKh6ioPUf/R+0p9twuyvqdaxwwgcVW5sjRnRWyxX9lu+pwQUxu11dKD2r6R2Su3bhqtocDj2e6AsuTdGVHkrVYmb1kPOP2VksRGVMjGfA7t3YW17CqUeXgDjWC1f5qZXfZ6ONzZNuuQW4+eazH9+WzmrC6D1A14zoFUulwCwy2ULp738jdW1aLSzGJUw8fSfqbhdLLRuYm9Nj5h3Lr/teH8Ni9ciwWM2sy2Y4qwFo4S8jEqtNzqJnG+FrgUioNYPrihMjphIUo6h3rCV7A1WIh2h3GdTleImJY6Ba3TxnNeXNXWZ6IcS1UiSEDnsAepJ/Di7NVckLLBpn9YTXwcL86JMcHamgtFjtdbDQJBCr80G+SGkXbQoxIL69QbF6fh5LcYCxvavk9Ob4Pk1sSb5FPVgxIRHrTEjyLad24fk9e2AJhfTE6V67AJYLP4NEBCNQ7am18eLrM+wqNTG9UPh9KdGIS/1q5+ZYK4OKyKwVAzKltb3f/E3gf//vFb/j6jinpDv4mmi10Beri5nVeQxI2dNbRztEkR0mZqfqRuieQ5tzc9p8d+ONhQeTRN8PPIFq3UIrCWjuifkuC5Gi7oVoraELrEq7rfP3amvf+Hti9QU8CJfdREfmjI/jxXsO4+DiJNqjFjQ2EzLbCMD1OtBICMTq/NqsVOgiS1ZzVg8SgHNndSXp5TLveNFTMBtWMd2tYddeG1/+8orfMTnQg+7lv/OPz8NH9r8Iuy4x/ZHr4sprSrh39gocbk6hVCocl23rCX93gFht3MH3ZM/Hd+06iEm/jfkZ89k1m7qPnfD7v+A4Wqhd67TNhRdr+XnieUAoHTwx+SK88icvxwtfVJg6WRZqXoRGHKxbxHYg+Y4Q30ZQtrWLcNSBTJqa6I0VmdXrZZcrpfsOarG6FwMyvJDX20Y9pKC4dHgBY263V1QVAPbuRV9IMsc5TMTMuuTO6hW7jYapQ3PoEPDEE3rRcudO4PbbC0+ayK3aWDECI0E0aiRMfm55AiiV9O4l4hiQXKwemLf/6KNITs6i+e6/0LkSq7TZkR4qtWJmtUQ4QKzOz+e77/N6YvXe8hIevuU45roVHGtPorKnv5NL5KHsw9zDlpZ0/1dqapHy3pO9310WtWTE6o24aj/6Ue2w7x1Gu62d1ePLF+8cK4Ucwlm9oxb3xGoxVtfftRGr24l/lrPatdLeot96zM1m2Bk0z47Wy+cIfr9fB0ATA1KYavTi7Nb7vlotPLywFwtqTC+27tyJq2qzugZ5fq4KQFj976vkxOgOc33NzWlH7bjoO7Yf6wKLi2glPmq7zC60cyxA/Y//qIcRxa7ORGJvG2d1qnScXdimGxeq4UscDE8cI1X9AuTdjTjBWy19Hjx9F2xLIZMpMDuL+aiMyV3Lv3N2VtPBYjWzLpvhrAa0WB2nDlkBuDxXOHASmrxHoDfAqzgRhlh4Ho7cWe0YkY6i4jvQ/xzNQPxCd1ZLqQuVUBfvVDDOaqp2lUKSAI4wYnWD6HMtOqupbuzFyuS+j8mgPbpYbUQv18mAINBu7bY32qQc6F2zjie0+Eux5Rnoj/RqNVMMcgMnwtycjgHZV1v7NZ439HXbaAAf+cgaT5otmZUVearugMJX2lldGM3u3q0LoD02r3/O37+zfKKT/81VMd/F3rEOPvJxHf8w1/T7rzcFFuuVFWK1G6O9npi0jrMaAK66Sm/vW4b5DJLOgA43y9DqCFScCHvKDZyZKQxlcpGu4sO3JMIukVhttg7W3BDd9dypazA3B7z61Vgu9hW2xns1n24B1zir3aqPca+DxdYGFpg6HcxFFUzV1+6XgpLQW6gvYGd10kl0YdwgAEol7Co10JoZ8bNNUz3JMVvUx8cUFqPhioqtS8FZPeZ1sbhA0BeulVk9YDdEktmYqCa9a9P9nu9GMjaFmb3Pxs6dq/zOoH7LEHUyfOnkM7FrX188vub5Jdx06Pn4n/e8brmIMsxiGPpi9fQlz8XYDS/Wk8cw7m0Hbyc+KpMrxGqRrX3aKmXGkme/l127gDvuwNnOcgD1ss4aHrVoXy76BCWhhZlRz6ssOztuqid8rbMouhnOarNNfEOZ1a5CnG5ArD7W0M7q9cRq46Ycya1sXKq10vIYr2Hq0EgJtJoZ9t94L37gukN46H7ZH07lu4JK5kPyPH0PGxCBMZCi+7Vc1tcAxVh2hVhd80K0FgeMZxsNSGWhlfhofvyf8aY3rRj6GbG6XOu7lX3b5BWvQ37pfeNbjharn/lM7C0v4WvTTwEAPNHahXJ9+SK+UkNGUT74IGbCKnYGRqx+zJhWpERXuihVCi5wO0G4gdiWb39bRyL+1V+ZB5aWdFzHZGHcNGhHiDkWmdn42VcewItfbB6r6wrWaqnRy1nvLQIAPbE67gz+DObDCnYELQSqu3zanpsoAvPZmvHeMG7tnCgCvud7gHvu6b8XvSOk/zkGXrZ+nB0AtFr4z199A74xfYVebN21S4vVJwq7wMTy+0zJTtAdJn7NiNUTO2xg925cXp3HkccjYG5O77LYa6qFWxbKboJO4m5onnTffcB3f7eu55STd//bwllt3MpVJyL1ymUZNn4vGkTurLYyvVjR2MB9u9XSUTJX7dALM5kCjh/HXFjF1CX+spf2xOoLOS5vm8BiNbMmSm2Cs9pctJ5N7ay2TWY1YcE6s2JcdmLECZGobJzVfk0XautQidX53Wx8HAqA6tCK1ZY1uj5ZREq9G3FTnNW2HD3jL8cU1HKtFK5IETeJRg25WG0RFM/JMYNV17cAz9Mu6MURP4d8Am0DsCxM1CQWosroi0x5MUjXQlC29JZnihFOfkLVatpZvZHtXblYffnY2q/xfd3HDMhSBYCTJ4FPfnLt41zVWb3eVs88S9Ra7qzeW1rCqf39TL68rWK7y55bSeG7gOPA3r1DZ0+e7LuHGvEqYrUTob1edfp1xOrJyd48ajmuC2+YuJ1uV7uEjLP69FxBAckXWCrGWU3VFZqdC1U3Oqfb1tx0imfsXsRCUYjMF1o9XbBvw0VB1yIvsFgrYdzvYrG1gYiCdhvzYQVT42t/B8LbQNblFpF0TTHSIADKZS3Uzo0uVhe3PE/W5ej5nCjE3lQqOld6VAc40F+08ftCir5mh3BWV2XPWQ3LQlap49RiqefYW0ZetHA9vSPUBbW/OXsZdu/rX6vXvGwH7njdO/HQwiWojC3vs4ZxVuf9xMySh/rush5UZBlUqw20WrqPnSzkrueiz1qndi7U2md//i94AfAv/7KGWF1JtcN+lPMgFyp9G0HFphGrc+EvWMVZvVkFFikzq70NxIA0m2gsKYyV42WroK95DfCKVyw/zpITIxxld9RqucJG+Fo3Zgf6FGk9cgwHPvUgnr7wdbwsuAf/8umw/6RpC4DOrHaS0cWqYq5wqYSqG6E9T5tZDV8vjA7cFWLGG80kwG1f9/DhDyt88YvLj7Wd+H2xOo8ZStY/IWWiYIsUDz8q9DW6axcu+e2fwjemr4QtUhxpTCyvF7yRjPEHHsB0t45dlwe4pLyEk8f6NULaRQE4LwQ4jLO63Qb++q/x4D8fwXuvfQ8+9D4zXlpaQisJUNlRyFkftMgG9O75L7lmod9Pj4+j5oZoHpkHUl1noroiEsez5VDxhotqDONeF+NuBwszhc5+ZRSK56HuhmguDX8Pe8cvn8Z1e2bxX39J9dpcllkN9BfwBojVSWbjzqP79P2rXMZTdrdxcGFCuwUAmIoEGpNZPVRsy+wsFuIyJnZ7wNVX44r6Ao4elMCZM7rA4r7+vKHsy43FpEUR7LCFS/ZkOHWq/3AYArXaNhGrTR9TdSO6+bdudnmMFQV5ZrUj9GLFBsVqABC1as95ox56GDNhFVP7SsteymI1HSxWM2vSbAKV0edhy8md1SWHVKzuOattSZeXlMeAuLRidZQ68OrBORVhWK9dAMD4uBZ7WnR3NyHMdkzC82AzxOosSmCLDL4l9fdF4dTtxWCYzOpRCxYa0m4MSygzsCU6t4q5hHlm9ahidZ5Z7eiB50Q9xUJUHv26LbisSlVbV2UnEOmUTHsFFjeUB64UsLCAZhKgetnE2q/LM6uH+M6kXEd/NxOHSnkVZ/U6IoJ2VhcmAXv24JLKEk4djvR7WDnZBYaOAemJCE/RTiR14An9c6eDRhKgNrZ8kO8N2sGwhli9Y8fqgk/+WtdKEXcHi9Uts6V1R9DCbNPvX+8FZ3Vgy6EWFoYiSZBmxll9DouMczd9GZc/8jm0ZwvXThwjTm14gaDNEi1EoYyXYyyGGxDS2m2dvzexzmRz0ALIBYCMdZ8N1wUqFS0kLYzugNZRS/q+PT6msBCXR7uRKQWZ6t1mKJdpCriaY80nZACGE4DN+fh9z57Bb/xG/+FqVQt+1mrDlbxg31r9FgAsLiLJbChY2LW78PevuAKXVhZxYGnn8m3vpthsO1x/lpq7uWcWHb34NTWFmhuidXS+L1ZPrRB9rAxyrQKLeR+7irP6BS/Q6x75zpAi9bLU2eWjitXKgltyUKpYWuwYdQG3J1avdFavEwNyrgUWhxWr/Y0UWATiYSf7p05hKS6hPukuc08+97nA85+//DgpiuA1kwDV0vLPtTxEDIiMM7QePIwDjV24uj6Nn3vKv+C9f7Con8zHQOVyr03fkgPzmgeSL7K5elG04kSDHdBDtisA/d0HwXC7QsyYupkE+OKJa/B7L/4n/Pmfxcuel8qCGyx3Vq/7GSiFRAI7ghYmJoAJM4Tb+6xJdFMPz548gUxZvY81b1cINfjckhJ4+GEdA/LSp2tn9RnRe65VjNawbZSGKAYJALjxRiS3fw1SAlc0H8Qlrcdx/7d1ZEc78VDduVq/tX5m9bI4DgC4+mpM+h3M33cUSJK1ndWDxlsAFsMA434H434Hi48X7L/5faYgVk/6bczPD/4IAADHj+PWTy/id/y3wV88o38vL7JZdFb7Spta1htzhCGkstCJ3d561RXXVnCkNQU8+qhu01q+cKdjW4boC+bnMR9WMLnXByoVXPHsMRxpTOjM6jRAdXd/JaQcqA3FpKlbPg/MzWHv8W8sE6ujSJs6tksMiMxsVNxI74KgmH9Df4TkzmpjPLHrFT2fa26gL8y3e1UqwNVX64XPRoxvzFyJ571khVi9wRgrZm1YrH4S8fa307Y3Pw/s2bM5mdVWraJdZFTO6lSLJ4FNGwPSd1YTXSphiDiz4Y8FelJKJFarMNJb2sbG9LYW4mq85GL1Q4+hdORRJOtNcDfaZpzBsTJ4dopIEhQnAvpibZ5ZTSRWR20J39L/ka1CF90zuVjdGPH8KjqrYba9xyUSsTqvTl+qOehKd/Q2s6wv+lSrG1u4WlrSxYIsG1bgrf26PLM6HBxbkiTraA15ZvWKGBBHpOtnVmcW3ILbBHv26MnTMQk0m8gyQNhiuRVhGGe1srQjHwCuvhrjfgdLDxzVP8/PoxkHqO8826G4bsGfNcTqeh34/OfX+J283UGZ1e02WlLnOjr1MtJM6O8Q6J9bFd9s916/qaEpVDsfanJTZH4ec08sYspvA8VdLz23YaHwFZWz2jiAx+sZFuMNRFXklc13rNN3uK6+31zIzupYwbFSff4bZ3V3cXSnatFZ7fg20swavZhUvmMiCLTTiyK6Jne8ef3s14o7XGZ1rQbs29d/eN8+4Ed/dI3fGRQrAQBRhCSzETgJdu0qPF6pwPFt7AhaqEwt71+GyqyOU3hWgul5B7UagKkp7AxamHmi0SuwWNlZUKjyPnYdsVoqe1Vn9QtfCFx99er5mbVKtmFn9WOP6ZzS/pvpO6srNQtt6ZHFgCxzVg/6vrLs3GJA8pWMtbbgmfG06w0/JvE86LjAYSb7J0+ikQQY2x2s/7q8CN4o6wBJcrazesic9WR2Ca0mcCi+FFf91PfiusmTOH5K55qmSy1YltJ2SqBfYHHU+UdRyCyX9e6NRYK+e4WzuuzEg3eFmILOzUufia8uXIufueoLOPJo4Z63MsrMZOLLbJ3PNcsgUwu7Sk1cfXX/dZUKUPMjvHj3QVgi69WAzNsfKgbk4EEgijBj78bO5+3DvsoCjs3qHRx5nFvPrdyLARni+3riCTy+uBvPeEEVCAK8oLYfj307RLLQ0qLyroINvGdkWKe9PPorKIz9nvEMTAVtzO+fA+bndQTleEFQc114lhwsVicJFjo+xr0uJrwOFk+u8315HiaDNuYXhzxnjx/HfFTGVNDGU50jOLBfrVoYdqjManOeA+jtDAqe8wwdH/Ltb+v4hqBwr85z5ocphtjpYDasYsclejx7+fc+FUdaU/jogevRzKrLYqzKvl4kHFakDO9/HIGdYG/3IE4f7ndMYajHy9vCWW3Gx4Gt58xUB70pYnWSIFMC1lhNf//DFkxP0/6u9XIZeOYzMeZ1cbpTR1e6mHra8pVszqymg8XqJwlSAn/2Z7Rt5mI15Xy0t901H4xRiNVmIqSd1QldwTozeQjsBJkCTYcTxz1ntXZo0uxvSeNUT8zrdS2CE4nVSgHIMj1pINS/5R1fR+nY40gadOFWMkrhiAy+nWg3DkWsRM9ZnertcpRitS3NRITSWd3PrB73OlhojHh+5S4XI5BOTIDGWR3HPadPqeagkxI4q/PvylZAubwxZ3VuA7EHjIosCyU/0+L6gP5gXWd1kujto6s5q9dq1rj+lgkp9Tr2jnVwcrEEHD+OMHVQ8leIEEM6q3ui1tVXY1fQxPSD07oDWFxEIwlQ37Nc9BlYVG21SBJDL2JgJXmBxSFiQFpJoF1CU1MAgGx2vvd3pbLg1gJ9P6Aa6McxUmWh5MRIUmtj94OvfQ3zUQVTQRtQhe/PfPaeL8w5KxEtEtwTexEQNsbqZoFpI2J1VMHU7nWuhfw7vVDF6ixDklraIWtZ/RiQxRH77+LuFaC/EDPK2CBv0876i2HnkIl+FnmRTa8vpJSdGJ318jnzXRbB8vvGX/818NKXrvE7JlZi0Bb1JLPxhuc8giuvXPHc296GK59dR2WisKhl2zqypDugqFqUoeLGmJmztbN6xw6d4X9gCQhDdKS/3FltWUb4WmOxcbXdK4YrrwRuuWX146iWMzQ3KFa/+93AO95ReCBfZAsceFVPT3KpYkBKy92Eg2NA7H5hzmHZlBiQjTurxy6prP+6XFDc4I6bU6cKebK5o7ay/P5dchJ0BjmrFxpoJT4W7Km+uJFIqMUltKSP/5+9946XZDurQ1fl6nj65Mkzd8LNSVlXCIEEKBAkFDEPMGCEn8A8kgFjwGCDwAEeGQuEJWEZkBA85CeCJYEkJF3JQlfh5jgzd/LMOXNip8pV74+9d1V1n67au6pr0J37zvf7zW9mOuzeXb1rh/Wtb612zU+Af0WBofiEqTiteWdIE9K1GjFa7VbA9hsDq2uKxwd+KKjaDRoIGjPoGFZiYB9FyfdMXQNFiuAHOeOGjq2l+oDoVadi32ENL371LOoNaTTRpJB9PdO9zwwqh7YaLWHpIAGRh54GrK3F42DEDFL1uGaQke3gvseauGTP4eCdc8DyMubNAdbP9vG69387vrR2aISpy02yAZOZ1bUa5pZVrFl1nN9sIoIMqZPafInutwYDbDk1zBpDIit2JbWxZWufkmZWD4XB6v6ZNTRUsi4fMy/i1Je7iWa1mnxf1VBI4ooDVgPA/tlBIvly++1oaA76j5wl2tLmmCmqCGksIoakV+0WFveTdWruZbfjkc19+I6PvxUXBp0RTkZsQC24HgzkFhqqS4gn96/EjztXNtFuBNcRs1qGKtGxVAXpAglYrfGPXOJBL6jUbonNWSwGA9iBhpoekqz1TTdhRrfw4Qu34Z7jaxjNhgGyrhJS5i6zeurYBaufJdHtApub1ba5sQEsL1cMUnoRYT62WiSrXaHBom7IZKNQsQyIKtOJpqK+ujS7XVNcWG4FYHUUwXPC+LoSY7lqrkHwufugXjwDbXutWmZ1KKOmevAEXKiF23RDAirLAcmkVwhWx8xqHuNTMJxhAEPxCDjlVmQumC5RpyyXqS8BO0BTsLozJxOWZhUyICFxp2/PKqSEeto2498qBGo1cm2HgpsEBlar/PuxZkYErOYACblgNWNWp8tSRTSrIwWaknpekrD3kIbLwxngscd2tknbjTs0KRhAxZjVe/ZgacbG1dWInM43N9F1a2jtTblU8SRLAAR+BEUKM7QDMoIdnhzOwXw4JKWybRmYm8O82cfG09vx9/RDBWqTgtVV+QIwtrJE+1YESDp3Dut2A/NGH2rgJnOp58EN1RhEaGk2ehsVTLSULa/qMrS6Br9I8q7fJ2Yxe3Kc0DQNshQhdJ+hjJEYAKbjk4HV21NeW2ompWh0TGsaVBFDUE6b3hizuhJ/ZFZKrSVgNRcAzgCr9ZxiE5G5gM3Nv/LNn2W5pSTabRw+ru8wwaurLgYOR6fWDdFUHVxdl2IZkOVaDytPdXGuP4s1t416I3X/SxJUlew/Jh4gGatYnvxddvSdhmxo4mZtILfivfcSXC6WUmXrt6kmh95pF/CYWb3TGyEvKXqtDBZHkqICQQwWxZnV224N7f05Bsm0n2Xk197zHpK0AQB0u+j7Blqzo9I1RAYkvx1vgzBnt4IWZo4RceEZuYfuWbLOtpup7ypJMI2IbyzHi7QJXr2Opuagvz0lgBKGQBQRMEaWE4k0noQRnQvOrTcwv5esMbo/JN4t7HeWpKSEQVGgSgGpnsraJ1Mz2RfuPY/v/M7Rp37iJ2W84K13odEY+70VRWyuvXoVALBqt4jB7N69JCnx5AUKVptozozra+fvI52zV/DWT30Xtmp70ZmVgKUlLJh9rD/dxdPdOZzqLo0awzKppbwhwPYnxuhnzx1o4MPnb8cPf/bbAE0dLQ1RFOiyABg6HGLLraOjD4lh8yp9QxSNJiwAQNOIDMi22Nn2yYdd3DhDANrj7VWc+sJmSr4oGUuSJiA9Rp/7x7f/ffI19+3DDXNdPLm9hE2ngdZMql9Ms5rHhLcsIIqw5s1gYYm8VmrUMT/j42v3PkGA6VTUaxEh4Ajes4N1G03NwZ7aNi5fCuPPtH/td9G+8sT1waymCQZZovdoxWC1WcERMY6Ut1FddTHoC56/+31qrEt/15kZzByawV+v34OXve3Wna/nrYm7IRy7YPWzJLa3ydxQJbA8GBAmZZUgpW1FMBQfcdqzilmYGixqs7T0f1Ads5oBlQAqA6udMMWs5piGCAUr95Wj5FDereYa+H/+QahSCH31QrVJi4jKq0zjyD7eJmVWEzaOWpn2qx/JUKVqNasJWE2Z1YFazU3GQDpTBXRqLjctUMfaZBWZDZOY71XArCYHVwlq04QfyZWA1T5jVtdqdC4Q2yS8+09N9FwjAWxzolYDLAHzK89LXvLgg8CpU6N9HXj6DsMfEc3q8RL1fbd2cGnQAT76UWJMNE4sEzJYTIEIkoSlQzX86ckX4sInTxEZEM8cBQE0jcumdD2JzJ1lwGoRZrVvkEMiA6hOUy05Boo0zYTlVIU7rOsiiCQoUkh0OousXZcuEbayOUBH7mJ7Kxrpq2bIgGmirdnoblXQ15QMSAx8FWVW781BKEXlWr5SwdZuqrVfGVgd63MmYPWcMcTmxnRmbSQJFVKw2q3mUMb6WoZZXSuwLxEEUvKAyiNHsGMubGhOfl+jCJ4boanZ6HalmFm9v7GJi6dsfOfHvw9fd/zsDnMmVcsxPcphVueGphH9W8F1/OGHgRfc5eA1XzNIJJEY+7WmFr9nsyKTWR3A93I0qyMZak6uamIoCiQQ34iJkZ7rBEM3JHGDxUuX0HVrmDmS4zlB+2kqfuHt/LlzwOOP0/90CTu6uTAqXSNimu5vE8DDlQzoLQPodLBodnH1gUvouiZazdHXGwam3yOmq+5qNZK0mtbENQgQRSnskxIkuHMX3W88eamJPQc1oNPBwdoaLnz5KuD7FI8eTTApCkjClZMIOTa/hVe/evSpt76VyBg1JuyLhPwBKJ2+75kkoXbLLTjaWsPTHzudkA7aatymqXhcEpJ/4Qo2nAY2jT1EX3t5GfNGH2tnB/BCBYoUjJIO6L4od45NJ7tSMXe4if+9chTn+3OQxjNQbB3nkQMGA2y5tUSzeo12JN5XpZILTLO6K7aGPPGkhJs7V4AXvhDH2ldx8okA8H2S3O+kvjDTGBdhVi+l7hVJwg2HAnzLh/8V3vHoy9CaS01sTLOaRxqjg3rNbZOEBY0PvKuHn/vae9Fsjc5pMbNaEKzur9loqA5hVq/SvmxtwQlUzGgWnKowjWsZdH6K54OKkGV/4EAdbMHUw0ogGADJXNpuo63b6PUE3zcYUPmnZB6aecFN+IezR/GiV0yo6NkFqyuLXbD6WRJMrpP9XUXYPQ9tw6kUpHRcCYbsJwYiFYHVXqhAn20QJl0V5kTATrC6Qn1to21AVSKiwzYtkJI+mJsmWro9PWuChqfVoTJWcYVJCy9UUFNceBWC1UyjVGk3iI5o5czqcDoGXSqcYQBD9iFLlJlSUV/9UCblu6YpbCL00ENEP3NisAMm23dWZQIXl6gryVwwbSaeMhQ1NSRgvSLOnnr/38/jVHdxRHcuK8yaBNvXuJnBNLP6T/+UMLPi8DxyyEmzfaiWaK6eaiiPMqsBHHjzPTjVW8Sfn34ufuJzb0K9ObasixospkCE5311HQ9v7sP/+B8Aej0iA3KgPdJX3pzg+RSsLmLlTTUUuWD1cEjKbzsaMDeH5VoXK+foWsLuA1OFaYr9VkLBAGC5ILPacYCrV4lp4VyEjjbA1lm6UNNEq15TAF1HW7fQ3a6+ygJAIWZ13zPQ2pNTTi+aVPhKRQwA02vZIEY6wyJGOpOC6UsbdEKkLLL1jenM2mIWOCulr6IaYFyyhALAuaaFZcFqKUAWRsn6MomxzeKrvxq4447UAyLMaqYhr5N7mzGrDzS2cOGqgb5n4Lfe8pkdb9M0kOToJCCBAbUlwOookoTnmY2/+yIWH/4Env/Ie/HgfU7MUIyZkaZZTeUhA6vHgC9iiJnxHmawqBU8HspyvhY2nT8LgdW6oEFVrwf0+9gOmmjva+a/lsmAFGRWj4DV29vEYHFpVBqrrroY5mnCex68vou+bwIaTQZSVu3aw1fQ9Wpoz4y+vxKwmjGrY83qAmzCnDaDKGVYZxgk0Tbk3DuehwjAU5fq2LtXAo4excHmJs59aQ0IArihCl0Z/b1VXUYQZVRDAEmiR5v8nZpN4G1vG3uQaZdz5GB+/38dxunuAqCpBIh77nNxtH0VT39hHbBton2rq6NtckhI3sVVrNtNbCoLBKymY+DKWRtzxgDvestHR7dNVLIkVwaEgYXa6GfPH5vFl9YO4lx/FpK+E6zWFZ9PGhoOseXU0dEtdHQLWxv0N/Z9BOGYvApbE7sC2a4owslzOk7MrAK33YZj7as4dckEggAbTgNzM6mxpGnxZ2aG75M0xxgof/NthEX/xbXDaC3uTDBZHCY8O5tcdVpYWEgevu0bD+Oe//Z9OHbz6Het1SAOVvs+Bts+GpqDeXOATcZId13YgYa2bsGtUC7zmsX4d62IWR387UegnHsatavnqmNWs3W61SLVjH3BtaBPqmLS8k8zM+TP/v0TXn8dGJFfL7ELVj9LgoHUW1vVtWn9yV+i9dkPV3ogdRwQZnW9TlgIvQradhy4gQptrkk2CrzNkmgw7dNrwayuq0lt7bSAPQP+KKO0pTnodity4tVqUOWwWrA6imIZkFx364LhuyEp0a9SD50eIGMZkIruBccKyX3ADqVV9DWtWcfAWgHzxr//e+DjH89ukwDg9P+1GiQA4aA6GRAGgEeDKTc3rE0lSjbMA0NIYsV3AlwadhKjnJyoNWRhZjWbMs6eBT6Txk0GAwIizKZKPXnMaiYXMAZWK3sWcefRAX7uvtfhMyvHUG+OUwkFZUBSQNJrvm8fPvD1f4i/+9Ic/t+n78S54cIoCM7T146iBKye5EiWFbRd1+bLgPQ9E82OmoDVF+kERUEszVRgNhRiylPR3B1EMhQpJAkm0Xn7yhUgitCNWmgfmcOsMcDm6c24r/G113XCrO5O39UYGKqpNHFVwMeg3wcASOMUv3Q805nV4/cKM1icdr+RNrEFAE0jBlabU4DLDEhSUzIgJcDqzU3gN35jvK8TNKvzfDKmYlbz9VSz9Iq//uuBV75ytM0Gr6+OAz9U0DTIfd9qAdizB/v3A0/3Foh828GDO95GZEAyAFCW8FQK7ktEgJRUrH/pLOb0AY7XL+Hkg4P4fU6okWtkGJCkCKFVkcFibdQI8JoYLDItbJdjsFgQrBbSrL58GQDQVTqY6XDuHQYoipjgpWJlBcnczJjVY7rCuhzAzdsnOw78UEbPr0GSaT+Xl7Fo9rHyyBr+ywOvxNe+YDDyFsOUyBo2zQY8XdlQr6Op2WyaLx8UrI4lc3SdJNo4BpPwPDRUF92Bij17ABw8iEPNDZx7tB8zlRv66HdVVZpg4knMZCRYJAn4yZ8ce5ABlXka42GIL5yexQPrBxLG8sICjh708R/+8VX4rS+/LOlg3KYH2+cwqzd7sAIdl4cz6HQALC1h3hzg8a09WDT7+O7XrI6+QVXJvcVJCAJI5iIaczfMwA01BJE8arRK29V5RtlAwqxeNjBnDLC2Qa9zEMAONNS11O+l6yQZwvEbAECIEJaGmXYEHDiAlu6gPyS/87rTwPxs6guLAH80ETI+eX3bd6j461f/Lh7e2IfWcirBpChkzLqcyY6ez9xIG5clRr2+8/yk6AqpQBVZD7pdYgSsumhqDnpDOf5MJ1DR1mw4vetAtNrzyFmWRVXM6ocfhyqFMHur14RZ3dJs9AaCa0G/j55rotlMvufMDPDCF2Ycc3aZ1ZXFLlj9LAkGVlepW233fbQ1G26/OsEkAlZ7QKNBSrfXKtBsZszqdg0Nw0fProhJx8A/plFakayEE6gwmlp1pZ4M8FAiWkpuodutRqfVV00iraH41THs6eFck4NKJ/FYD71NGaBVrGxsE8wA+6qY1QysZk5zFYHVac1Lwh7iT/G+j2yAjCZC0szqtm6huzElSMXkVTQp1lAcTGt+lgaoZBl7mn2sDNtCG0bPDnF5OINmh88GqdUAy9cLaVafO0cOu/F5s9cjBovzoywPVQrh5QHAoRKbXabjNa8Kocohtt0a6jNj30GAWT3CwASATgfLr34O+p6BX3vwG3DvD/zpqJoH09fOAqhYX+WwFFjNPTxZFga+juasBszPk/LJy/RzWMmzoRAWfFVgNRuzlFkdWYJtXrxI/tY0SIsLhJl0kQISbO2qyZRZXaAkMS/SppmGQUp31wXn2l6PHDqaOWC1qLb4VyriihA6jmo1AtROa1zIJLfYvcL0OQXNpCZG2hiWGSyW8LI4exaJpARt1w9lKHqip9pQXQzyAGDfJ8xGs8D3iVl/Oa8pKgERM6vzgXU/lNHQyQe32+R9B37q/8Dnt05g/2EVeO1rdzbNZECymNUTEoLcoDIgUS5SmcTGBjBvDnC4uY4zTyfyISFkMl0zhn13eo31oa+hnvKYjIGvPM1qtjYXCTYOsubudGJOMHRDEtKs/sTfDLFuN7AdzcTbv8wQZFZHEfD5zyf/DkNgaYn46mF7myRL96TmSF4SAIjXkKtWMy5Sw223YdHs4W/O3YGG6uLNrx3dVximJMystm3g7W+fkJ9npAtTSQwWhzka0CLBNPEZWE2BWq5ZneehpZO1c+9exGD1+dNeUgkwBlYrmpytMw8kxKIi0jUUqMzdGmxtwQ8kPDg4hoXF5Hsdu1HBo5t78cT2ctwW+1uEWc0SOqev1Amz+sABzB+fxRPbe7F88yzwpjeNviEmB+QnBKNI2gHUzs1LUOUAL1k+PaqDnWpXiFnt1tE50sGeehcrm/RCT/q9dB26LHhetCxYvoZai5AOAEAKfESejw27gbnOaJKN6wvAxsfYQJBvOIwbWutwAnW0YkzTiBSjzxmzA7pfE5W0U1VxD4OtLQw8YrYuSxEiP6ncswMNLd2GW9G585pG6rtKAMJ+RZrVrVmockATYZU0mcylzSYBq4eCa9JwSJjVqWn/4EHg5S/PeP0uWF1Z7ILVz5LY3iYC9FUyq+1AQ0uz4VUtA0KZ1cu1LlbWK9Bsdl1iUlVTsW/WImZjVciL0AkmxloqNFjU6wRQlOhjUwVjlKoRBRNtdKsAPMCY1RXLgDAwSQ6ShbmKZp2AAEmMWV2htEalBotRlFQYzMwQHbaqwGoGCBgGdZHnT/GelyMfxICUFLN6RrfQ25zyOrB2qYZiRx9ia2161mMaoFpuW7hizQjdX74b4NJwBs25PCcxErWmIsSsToPVlgW8+MXAAw/QJ/t9sslfHHN8zyvPZgzMCUDK679/Ae/+mv+OG2dWUJ/ZWeopAdlmeEyndRxI+tZvxS980xfwJ694F/Y/d3lHm7lzQlntV1GwmjKwak2iWX1Dew2nL9fI4ZslmAwFRkMlv1VVzOqQMKsL6dezDLJKgPWOMcTmJStu0w1UaLQaoqXZ6PYr2JaxiggqKTBSupsXYZgczHaIfKbiOmBWx2siAOg6Aat5rL9UTEz8p6UaAMqs7mN9a4qkOwOSlIiwE1UPVkHWJ0AA0BG2JJsvGLBODeBy2crsvs1gQE8MWabgZz6QMklPNTOoGeQwj/HmuvAjBU3Th64nuf/O8QVctmZx6CUHsYMGByoDkmOwOKJ1LhpMU1bEMDoMsd5VMWcMoCsBvIGHiCH9bLNpmkSypQJd4R0yIIwJn8usVqCoxcHq3GqbEprViibnM2ppvO+vmvjc6g3YDhpx/j+vnyIGi54H/Mt/Sf69vU38e26+GXj4oShhVu9N+TjQJEDAAau9UMHqsEUYtQBw111YXJbw9xdvxlftOYkRnQGQc50TioHVa2vAv/t3wC//MnDmTOqJ9P0ny2jUQgw8fsI9Nxizmq3xqiqWaPM8GLIPVY1iZvWJmRU89rQJeB7x8tBHB5GqSUQGJGtwMYmuIgkWVYWpevnM6l4Pfqjggc1DWFpKHn7pV0X4+Df/Oq5aLQJIyckcayoebF/NTQSwJO+piwYBqzUN2i/8DLS6hqXnThDYpvesF/BlQHYwq+eAG24AbvjqA6OVALRdXfbFmNUOAauXa12sbJvk+/k+rEBDTUv9LrpOAGBP4LdwXfL+GggLxDDQUGwMN2ysOw3MdVL9ot8rysuKZsiAoNOB8R1vwoFlD61OanyyOSvvugKAZcENFPFkSBH5h60tQlxZpJN0GJBrS5nVpuJfH2AnG3+1GkzFq0y6xG/NEma1ypfsEW+U/i7NJlq6je5QcF9i24l2PY3Xvhb4kR/JeP0uWF1Z7ILVz5LY3gYOHaoQrA5D2IGKpubAy9t8FYy0ZvVyLZWhnSYYO62uYt+cjYuDTjVg9XhZS5VM3bpeObOayYC0dQvdXjW3NmNWCwFIosHYaVJIFuaKwveIZjWaTcJyGlYoraHL1cmAuC5h12shUK9XKgMSl6hrGkyVupJzNNF9L0L3S0/hj3/u8ZgEGgdLhLBDQK2GtmZje3P6Q7TPQJF6XRxMywumU0sBqj0dGytWiw9WWxb8QMJle47ISnCi1pAJs5rTLjNYdF1A0yLceCLE6dP0SQpW1xZShwe6cc7TrM5iVjcOL+BFR1Zx08wK6gs7DySKFCJwM8ZuEIxctzjqdXzTu9+EQ7/7b4DXv370OZ7hD+3ruPYkN0TBatdFFEmQdA2o13Fsfhunt2bJHM1YVjUVjZZMtAMrWg+YDEgh1mO3Sw46hgTMz2NWH2Jr1Y3bjGUXKLO6ErCascANhTCr9aHY/WVZ8AKJSFLkaY0/05nVbN5OgdUi5mcs1teJNMWkdv0oxVamBouiZlJZfSWyC1FSmu7mgx2TYnMzyTOwdoMxFnjcdlaUAavjA3/OazL0VPPaJMzqnP2h48ALFTRr/gibVpKIfuThw5PfpupyvmZ1ODkhmBv0fnCHYmXfG3YD820PkGUsqetYPe/AC1PAn2GgWYUJHpMBSYPVqko0xrMk2JgUSgmDRVXOMd0tAVaLHvb9vo0zvQVYoQHTzH1pYrDISQj5PuIql3MPbOLQ4DF8R+tD+I1f8/EPF47Dk7RRuRyWbOaZ4IUELI/BalnGwre8BE/3FnHXW24Gjh4deYtRk4WZ1ZYFvOpVBLT+9V9PPcGqzmiSrdGU0PeN6XRlx5nViiLErA4dD7IUoVUPCLN6Zga3HujhkbUl4MknqZfH6HsUVco3WOTIDE0MNm/lnW9puw+sLI8Y60nLS7i5cwUXhx0Y9dT3lSRiBMepBoiZ1QysprGwgBFQPA5ZJvdsKGevC75PiC9jQO3yMvDz/17BgTvnduaf2bzFy7sPh2Q/tziD2ZkQG3adDDaWDBsDqwmzWuC3cBxYvo5aQyYT99wc0W8/N8SG08D83KgxrKH4+XsOJgMyae/y8pfj6M1GzGVibapyAC/Iua70+6/ZTSzMCO75ioDVvR5JfM3pJDMVRUQS0bZhBxpMxZuuAuKfKth3bbcJsNythuXoyzpUmey57dUqNPKQ3Jv0PNuzNbFrbNvktxLwNgKQjINdsHrq2AWrnyWxtUUc1SuTAXEc2L6GmuoBQUUH0igaZVbXu1jZ5DMZuUFNqrS6hr1zDi4NxdiU3GCTL939VgJ+0n5Jhh5rVkfOlH2NS+CYDIiN7qACeRUQBpIqB0SLr18RxZ5pbMshpKom8SgiYLUUAo0GmppTjckkA0AbenVgteMQsNqIEsPCyljgCtSaRjbNTAKBB6pudNE9vYa/+FMH73vv2GYs1gKk/2eAWm9KmRkKgqsagFoNs8YQm1tTtjkGUC13HFwRmQvW1+GFCi55i2g0+X2ImdUCBotBADz9Px/AwY0HceDB/4UL5+mGqN9HBECeSe2cmVFZXnl2Xon629+Om954O+qdsTmVlSdnaYmGIQFKJrGSJIlQyia4yKtSPrDulmFWaxphG/LA6jSLSJKwZzkiFTW93ogMSKOtoO8ZlTGrI5BLUlNd2D3Bg8v2NrbdGjozAObm0DEsbF714+/hpQ0WNas6sDpUYkmgjmFha1NgM97roeeaaNU4h6zrwGBxxBg2ZlaLXdtuF7j/fuyUZEmNLdburDHAZneK9ZZpSysAJAk1E0Lzy3jsYFaPs5lFWGQlwWoRzWoAO1h/maGqaGguhnnl9FQGpFkLdkg/HDiQA1arOaZ9cUVIcbBalwO4lsD90O1i3W5gfq8OzM3hePsqTn5xG5tOA3M1Ok8xZnV3yvtrErM6BlU5Ek5FxgBAxpeUb7BYVAZEFKz2+jYe39qDWktgfAlqVqfB6rN/8GEc9E7jno2/wd7+SfzOwy/HX33Hn+1oNzcJAMTEmo7pjICUi887BAC443uet0M2q4hmtWUBe71z+DHpN3HhTGoO9/0RI8BmExh404PVxGCR/j9OhnH0mh1SpdhsRASsliQot9+COWOAJ//481i1W6i3RtsgBotSrmb1DikzXigKFCniy7aEMk5vzI6CyIuLaGs2Lg1m0GyP9lU3JDiBJgRW2448UgkwP0/A5R0hSbQiJAewz2BWaxrwnd9J5Ap2KHsphFDAXWpY24YBudMmBJvt7Xh+qempPsXMaoHfgjGr63TMz81h3hhg/ZKDdbvJlEFIMPmeQc5cwFlnjh7FKFgtE4+b3CQAEIPVi7OC8zHdL+eywFk4DtGsbkrAzAxamo3+pW7MrDYU//oAqz2PJEvabfI7bVcjH0sqpgPiu3J5q5I243Gi62jVA/Q8Q2y/RcHq1ozgPMPWr12DxaljF6x+lsT2NgGrK2NWU72kmuJWx34NQ9i+ClMlxnLLtR5Wtng0CIFIMavNukw07iqSAZGkCGg2yeJbhckBmxA1LdEVnjYDyQBFFQSs1gtoMHHCd4KEWd2ryN0gZlZXqFkdH/gjWvY+xOZGBQs8A0AbRnXgjOfBCVUYOgDTrJQFni77NmsSbF9ArmKzj65bw7pVxwffN/Ybx4kQupnUNAKoTZsMYUwfTabM6uH0c5fvEwYrxTc67RBbbo2/CdnchB/KuGx1cmV6WRgmva48thfdnzz+7s/icG0VB/qP48IpJ6FcS9JomTpjVmeBSTnMagBAo4FvfnMN99wz9jgFJwIvD6wux0rK7GtsVHbtZEAAxIcSqd2CLEUItvvJfFjTINcMcrCqqCoGQKIn2xPcgHa72HLrmJmVgYUFzBoDbLHKBFplwQx320VKEjl9TTOr25qVLfWTjn4fPc9Eq86Z59jv9AxmVsemhUAMVnP1VGn0eqQg5XOfG3siCODSvQYAQFVhyP502w02F9Ima3VJqHJjPDY3J4DVoQKFmY7FJl0CYHVB9qsqcUBwdu+IuvYxZrWbAz66LvxIRrMWjgIQAI4dA06cmPw2zZCzQZ8wTPYRRUJVoSu+2P5ge5uUuC+pwMICbmit4cxjRHN5rkHnKcMgusKD/Ka4MYlZzZKXPGZ1CbA6l1nM5mVRKRjaJutTZvR68JwIH798M47dJLAvYaAXB6z2POrlsbWFx0/ruLlzBQDw+zf/Jv6fV/4B9h8ce78Is5rOy7N1O2FWA1hcJGN2fBwDgGYqJLkiAFYPrw5Qu3Iae3tP4uKp1J6SdUpJMas9oyIZkBSzWvG4YLXnhFDlAN/6ymHyfb/6q/Hipafxoj96G/7g0ZehMea7Iav0ns2RAfFKyICoeckVIF5HAIwwq7G0BEkiSa9GZ2dfI/rerGD7m2YjHMFVM5nV4CTZ0p+XMce+4AXAK16xs1EhiUfGWNY0oN0mbOS1bSID4uuop2VbqA60m5e8ZOE4BOxu0HtpdpYwq+0GAXBbqXtM06ArPuxhzp6Dcw1+8ieBl7xk9DFVk/LHFgAMhzjdW8CeRXGw2lB8seSl4xDNagpWd3QLWxf6MQZz3TCr2SCamYGpeBh2qwFofTdMZEDWpnWFpcHuIUVBqxGi55licyFjVrcLgtW7zOqpYxesfpbE9jZhklQNVptVMqt9n4B0WgAYBpEB6db47+MF0/1kOtBShNCuAFhmk2+rhRndwvZ6BZMvO4DqelKavD2lGDTTKlZJu23DQdfWK5kgfZcYt+myX5kGVQwkyGGsMTt1xIA9MamaNSoAP4GEodekYLVTlQyIBkOPYuOvwWY1lQB+mDDpDINqHXKyut5mH13PxNDX0Q428Mgj6SfHDgGahhm9AvYnSy4wzWrDwtb29MzqgW+gYZLvKxmUYcwDfWg5+aVeUwisllSxbDk7kJzensf+xhYONDZx4ckh0OvhdHcBgaSOsqh4DEVaoq5p2RvXF7wAO8FqhZjE5jGr/RRYJhSMWZtlTFNWs1qwLDWuRqHVKWi1cKCxiYunUjIgphJXxVQlAwIAaDZJubMoWM2Y1Qsq0OlgqdbH5Q2TzM+eh223hpk5yqzWrcQNfsq+xgxgwyBA7UDgtxgOKVjNee11IgMSAwGaRvWaxa5tvw/s2wfce+/YE8zHgs0Buj69n0MQwA5UmJSdZtak0szqcRmQga+jwZh/DEzLA5WDgFR8KMWZ1bl6qkWZ1YpCNKs9Pfug7jjwQwWNerSDWf2Hfwjceefkt6kacg0WcxOCWaFp0CRxZvWG08DcXgOYnyeGZeccUvbeGGNWTwtWBwHsQINRS4372GCRkxQtWvQoy/n3wrViVm9uwo9kPLqxF8ePC4zbAsxqxwG8k2fx6OZe3PocA/j2b0/W7Jtu2tEuMVjMb9QLFXTq7ghYvbwMvOMdk98i6fSeEWFWf/4h1BSPVCel/QTY9aOLfKcVYMutT7f3ZjIgDKxmBos8c0FKgPntt/eS7c+JE3jjXSfxxhu+jEc29+2oDovn21yDxXIVIUEeE54mbhQ5HAWR6UZx3hygOT92owiU/vtOgJriYnZmdP08cSK/IiRXv53JVmbMscePA294w85GRcwQA8eHLEWk7ZkZLNV6uHrOSrxDjFSfVBW6EsARkCCE6yYyIACwuIh5c4B1m1xfaf++5LUCsi2Rl6FZTeOWW7BjrVB1OXs9YO0OLfz6g9+A73uDYOk6NQge9gX2R7ZNzi0tGZibw4xuYevcGLM6vI7A6lYL88YAGxvVNBu4QSK9J7rn5jaazIetFsTBaschBoszgmuYohASTZYE424Ixy5Y/SyJawNWU3H/qpjVQUBAOi1KwOpeBWA1Y5GZGqDrWDT7uHqlgj4HAVn8m03C/BQpo+ZFGqxmIELBCTgMgZ//+dQZLs2sliS0myG6nlkJm9B3w8RcsCpmdcpgEUClRoiqAgJW6xXISqTbbZoERLOrGQNOoMZg9ZwxwKaAuWAUAT/90/l9DSIZskE2q4quIMwrnWRv6w6x7ZL78Odu/HP8u58ZLR/1QwWqnoDVbd3G9mBK9iczQNMlKgMywGZvyjYpONOs0e+r61ClkG+ER4G9K926EFgNRSEVF7zr+o9fBACs2i10jhHA+sK5EGG3j1f+7Y/gtbecHH0Dc3znsJVVueAY5MmAlGHSxcAXJoNJ15hZ7dkBdMVPDiWtFo6113DqySApCa5pCXO9IhkQ9lk11YXVF1hjogj/8eMvwvn+LDqLGqCqOHHIwVPbi4QK67rYcuvozDMGtI3usAIfh3hNVAHTJCCCiDmN4xCwuiEIVj9TZUCYJv64DIgjNsf0+8A3fzPwoQ+NYca+T/YEbNxR2Rp3GrCastNqBrnmZkMhlRslmNWDQep29H0Cii6kmdUcBnQUke+Xp1c+Hmx+CaRsYLkos1qSUDcCDPycpDuVAZlpBXxTvVSoeaZ9TLO6KFit69BFmXTb23ADFcZ8E1hYwHKtiyuXIvJbNehvXhWzOgggIQX2AXwGNAOri7BU43ZzwCRq+FmUtS/R92YGBYBlKcTx42JtmqoYWA0Avfsex+Nbe3DzC9vA134t8Ku/Cvyn/wR84zeOvkFViaxE3nbedeGHCmYbo2C1LAPf8A0Z79EKgNXn11BXyRjSAyuZQsYYp4uzPtbs5nRyiROZ1S4sT0wGZARUlSQ876tM/NRdH8HJ7iLqs2PGqGzPxWNWF5EBUdX8fRFt1w8V7O8MRsFqSQK+53uwsN9Ec7E++h6B0n/PA5brXczOjN4rv/VbwI03Tn4PVwaEwyqeGILMantIwEIGVi/XSIINQQDL11BPy4BIEgxTghuqQkQRK9BQa9E+HztGmdVNQFYwcpOwvubsOTyHnFeLXANN4yQBADx5Rse82ceJmwTHVxGw2nHQ9wySVN6zBx1jiO3z26Oa1eCfN77ikdKsXqr1sLJeQYUgEsKcqXiw+xWB1WwfpyjFqkwsixgsCngbAUgqUJ+ppI7rKHbB6mdJbG9HOLwwwGYVgCowWoJSJbM6oMxqXScLXn/c8aFEMPMegwDA+xubuHSpGgkIAIkBXLcC8JPpOlGwuqZ4sApOwO9+N/BLv5TS04xN8Mh/2zMSum6tEtM+slBQsLpfJVhNDBYjoLISfVL2jVijdXO7gumNMfTqGjQlhOdjev0pz6Oa1aBg9VAoC+37BDzJfQFSJlaCJh9e1yJgtarhq5aewuqZIdbWkr4OfB11llPSNGLgOa1UQfpwUauR+6uvTFfu5vuknM6k8xWdY1avcOYvOnb8QBYDqwVNM7wV8qNeXbgF7RfchJpKNluP3u/iBYtn8Ivf+qXRNzCzlxwtUT8qaXyVx6wuo1EqSeR+CDN+M9amWhKs5hyehpZEDuXsYjBm9fkwke6hQK0qB/AHFTCr2cGr2aTztliJ58fPH8cDW4cJexpA49A8Br6B6Nz5+P5qzJJKm5Zmo2tXAFazecskIHhNdWGJyJPaNnqewQerReVavlKRTuACpIpJ8TDklKiz6PeJxufrXw/80R/RB0NaCSQhYVcy0N6bYm9AD/w1nVxz4YqQsdjYIJqn8ZkrCNB1a2jPJeuBCLMaAEHPREOSoMmkOiPP/AuAOLMaRPvVDXIqgxwHfqTgyB4H73mPeHc1PafsO06ylZABEb0fmB7PzAywsIA99W1cWZWJDEgzDVY7GEwhKQxgpNw5jrRsy6Tfi/oN6EYJzeq8uZtd26oNFimgeKjTEwOrVULCsXmgKh0e3U8/QAC1m4iuNFotjAhOp9rN9ZxgfY1kdOrexCYmRgGwetgLiM8QgH3qVVy6EMbzlgTE9/VMi0qkTcus3qFZzWdWMxmQHXPBkSM41NxAEClozI/JQ/L2XPRMUXRscZMLdB2948Am9u8fe+6ee7Bw88JOnxOBfbfvhlgye+h0xOcZVZO4MiASYz8LN0rki1zO+mUNI9TYfqvdxp5aF1cu+IlmtTG6X9BNagrKW8NcF2EkQTFpn48cwbzRx7n+HBr1aLTykJl651S3svNqEbBa1WWiWZ3ze1k9H3PGIPEY4gWt5BI6glPN6uaMTMBq3cLWhQFgWWRfQJNPlfhwXctIMauXaxX5kSH5TWsqR6+8UKNJYkeqFai+pPvj5qy498Yzep98HcUuWP0sie0zmzjy3l/E5vmKNH1cF7ZPweqqmNUxWE3A2qbmYOjyXVjDEDh5MucFYzrQ++rbuHixQmC5XicGcN3pM4W+7UORQtJXXafl5MWu73vfC7zylcDly6xRf8QEr9VCpcxqVQoJe6wKzW4gxRClG5wKzQU1jcmADLDVraicnupA6wbdLE67aXBdUpprImZWbwjoa3seJ/+QyhYDEAOrPQ++7ePSsIPWHsIQefmex/HpTyfPr9lNLM7T30rTKPuzAmY109dWVXQaHrac+nRyDUwGpJaA1Uu1HlZXOe+jwBYwwYBmUtDryzNP8alG9Eq0jPbxJUDTIHsOPvkxHy/dc2rnh/EM0Ma0bYVDkPFWSO8RZArLLJ+cllnNOUNbw4gwfZgMCK1+2V4j+n5WoMOsSYmG/1Y1WvMAKLPaE5PV6HbhhQoe6x9AZ5Ze36NHsWT2cPX+i6OJVqZZbVewyU9LApkmAdcFD04910SryZmPnukyIGz8pYxh66qLoSvIrN7y0Vo/g2/cdz/u+3wUtxmx8/MOsHqKvvo+rEBHzUz0tQEIrTOf/3xSab2xQQD2mI07ZqoWzwN5ZlJhSPY8RcBq0BL1ML9EPa88O6vR3AoW6lWimQoWFgo0mwf6RFGS9C4SikJAH4e/jgdbPVJS32oRGRBaYbjhNDDfoX0yTTQ0F4NpJYEsixAC0iCLJEHVcn6vMh4GQJIU5TG2qwar6f73x1/+Zdx+u1ibpuJxwWoGMDyyuReH2ls7ZT8mtKvKYX4Om/b1+N4+DhwQ6CtQjFk9CInPEICD9TWcf5joCgehBDlVkSUbGtkrTglWB2kZEEmiYHX+mY6dKSaB1abqY299C/WFDLZyzvxSilktBfkyIFRS7AM/9GliBjkWi4sT9owiMiBehEPNDRw9UgCsFpABGfl8kWAJJg6YZlkYZVbXu1i5HMZrV90Y7ZNhAK6Izjrb77MKOE3DgtnHl9cPYnlmbMNC55e8Jsswq+P1gKMxrslBsjbzgnouDAcCv69tE5LNjAYsLxMZkCs2YNs4P5jFgcYWkZKwriOwut7FyraR/3rBiDWrFcE9Ny+iCBEjYMoykY4FxGVAPAPNOXE5s12wuprYBaufJeGu99AxLFgr3WoaHGFWVw1Wh4AsQ9I1spHmLGinTxNjhMxg76c60HPGAJuC0lK5wb53rUZkQHpT3i5BgIGroqm5ZPPFGG8iDL1U9PvArbcCV67QBzxvhHHZaCukrKUCZrXnRlBlarBoVVeC40fEYFECEFkVMavHZUCmlZUAEoaiIScu39Pq38bMagKmzRkDbGzyx5bncczbx9lrIk7EdJNv+TrmDjYBWcbX6P8bn/qYF7933W5ifjYBq2d0C11rSvYnSy7Qg+vsTIhNpz7dmPV9DDx9BKyuqQIMWM+DBGp4IwhWG4oPx8rfOPlOiLrqYHVDxcyCBtx0E/bUt/Hu99fw0j0nd4rnyaTawMsCk5hmddESdQHN6hFgTzByy1Jpm3rRvlINRS5YbYEwq9mhpN0muufrVFNYkgieaBiErbxVwSY3LQOiuLCGYixKP1Tw2OaepKL16FHc1FnBE1/oAq6b6EzSBG7fqQCs9jwiCaSrdJ3xMLQEwCfbJjIgE4y+RoKBtM/UTTjba7DzkqqirlEghaejCaD36fvR/NKncOCTf0J05gFqrkj0OOOItdunSI4z3c9URQgAIbD6Z34m2QdsbxOd7X4fZP4YM1WDJEFVpXzAI0wd4goEAVIEStSLTDK89YvKgKhGMbNfWVeJPFZekq3EvKXJgRBY3e0CM7pFAGSq0bpmNwmz+iCtNNR1wqy2cxILE+Kznx0z2WQbhvoo+KcqFPjK0+0uZbCYz6wOIykx/BRsEwAinw9W//N7nkJDpFCTGSzymNWXSJb7/sEJHH/d7XxWJZOV4DGrQxk//8ZH8cIXCvQVKAxW11UXWFjAgcYWLjw1TJJhaqpjdI6JvR/KRBBQM1L6f0lCzQiJ3j6HVbxDBgQADhHm+pHW+g7Nai5YzXwqihrDyiHfYJF5P0yIhQXsHHMiMiAuAavf8wfi11/LSzABCL2AJMEKJgR1OYCb5T1Cw7Kwk1m9KqfWrtFrGJ+VeFWo7CyVAoHn3/J1+PjFm/Ca7xzLQIrIgDBQucA1UDQZQdZcyNr1AE0OxeWxVJX4UYmA1ZRZ3ZhRgaUldAzqj9Xv4+neAo601oiueP+ZDVaHLtULb7WwXOthtWvy3iIUvhclMiAiUna8YOuQHI2a3BeRAZkTBOJFDUx3gxu7YPWzISjF1lA8OFIFGtDAqMFiWJFeEjNY1IsxiFx31DjoHe8AHnhg7AUAWaB0XQhIEu1vFElEBsSwsDUt+Om6ZKIzklLPWsls4d69KWZ1XPJMDhcS02yoQgbEi6BKAQGQqtInjTWrKQjer6BEnxn2aVIiA9Kvppzepwe3hZYzvc4fkGhWm0Svec4cYGObvwnKZVaH4U5WHDsM8EpoIxkNzcH8sgrccgvuWTyJez9mx8+v2U0szEdxm23dxrY1JaBGNasZE2ZuNsK63ZgerPYNUj4IEB1RWUBH1PPQ1sn3FZUBISXa+Yd5z43Q1BysrisEl77jDvz8c/8GP3z7x3HH/o2dtuSSJAQAl2H9KXmHMmqwWBSciN3pM0AfN1BLGyyKyIDUVHcHs3prg34e+yqmibZmo7ddzXrAPqupORj0BTbO/T78SMYTa/OJru4NN+DmzhW89xOHcK7XIZtmWabszABukAP6FeyrpFGwWnFhOQK/L9OsbnNeyzbhz1Rmte/DDVUYRsL600xFjO0FoH/VQlNzSGUG87+gB/O6lnq/ppE5pgIZkHqKWS1JkdDhyfcpOPnUUwhXr2Km7pL/hyTppSnBSCk1t+R5CrA6t0S9DOuPVxnEkt5F2JS03UzGNjObvYYyIIN+hIbqkLmr1YK8MIcokgiz+jjVhpAkNGoh+qLGTyCX6Z/9MwJYswj6FgGwxoBWVZNy15kgkouBygBlkeUzq6NIKja2KAAeeBxd4ahA0oIyq7lGgE89DQB4wj+OffsF7u/YuDLnNa5LkohagQRLERkQi7CbsX8/9jc2cfFpL5EZ0lIdo3JuU62LQYAgkhJmNUDA6jydeTAZkHAnS9UwgF/5FRx56cGd0hpszFTJrOZVnAFJ1WpGu8vL2KmXL8isVuUJ7PKc4MmAeG5EGOuFwWoxcsAOzep1FRgMyNrVHL0+uiGRtZYHVrvJWZjFwqufD1mR8brvnRt9raZxNcY9Jyx8DWLZxLwx65JzsHC7RZL5jkPOLR3iadKZV7Dl1ICLF9F1TcyYLgzFhzt4ZiOegRsQCZZ6nWhW95uV4EYMg6ipnhhBhNsg8XZSWKWJYUCRQr5UYBQBto2+Z6C1IAhWKwo06Rm8T76OYhesfjbEo49CAggrbwry6x//cYp0lDJYlKQI0VQOQjSYwaKeTBLss/LC80bB6s99jrCtR14AxDrQVYHVoeunZEAG04OfnkdKSAz6IzHGm4gJA43hkJw7xsHq2KwOSA4mVcmAUFBZyDxIqFHKgoi1sCsAqxmzmmpWzxoDbA2q035VDQXLsy5WrVYlYLUV6ITsxDSrpwWr2aYwrfFWgFk9Xxtibg7A856HhubiBuMyPv95JGA1IzmoKtqaNb1UwdjhYn4uwrrT4FDHR+PDH8ZoBUVADLnSYLWh+HCGfLC6pniQ5agAWO1y9UR9L0JTdbC6JhGw+gUvwAtfouK7v82B/NM/hUl1wLmgD2O8lWD9qVKO6z0DwYvKgOj55fTTMBR565hlS8nhCQBaLXSMIba6ErwwZfpkmoRZvV0NIwMAUK+jqTnoDQS2TzTZ5fpKwqxuNPC655yD5Wt41+MvRcek87QkQTINwvGfdo5Jmy3RdcayBforClZfJ8xqPe3hVUALut+L0NRsyFKE0PHjNgeejoY+ClZXway2Aq2UDIjnUe+KX/s1YGihcfEpslfyfWw6Dcyao3sAWVMQXitmdQ7rL5ZMKqinCiC3r37J5F2UxawuO8cqCklaCNy2wyGtCtF1sl7ffDMUOcSl4Qzmbk5c3Br1CANPFwarP/hB8pXOnEkes3o++axxZrUaZSct6BgYMWUUCaqFnXkvsLFV0LyTy1hPVb+JtmmqHmyfA1ZTZvWT20sTJSB2hIgmPEsi6gXuA02DBCC0OYMrCMi6qHrA3r1YrvWwcilI5hd9FKxeMPtYW59u3gpYNSMNXUc+SBkQmTNNCSbPMfPzeO2bdJw4Mfa4CLOaeTSIBjPEzAOrPQ8RkEgpjcX3fR/wPd+T0dc8drlXEPwEJ8FEP06Vg2L3F6sI4WlWs3FFweo99S6ubOrAYEASuDOj3yMGgEXB6lTiYnYW+J3fIf4LI8HTxAe5rhNZ+3khojHug7RbgFldBKzuexSsBjBzaAb3rhzHvVeOkc+cmYEuB3D6z2ywOpb30XUsz3lYsdrVYBBeBKViZrUfyVAZkcYwyH5+kzNWfR/veezFODeYQ71d0GDxmbpPvo5iF6x+NgSt+5MkCJW4TooPfxj4ru9KmfY5Dixfh6l45GYbVFCC4nkEANeTSSKKJO6hbFz+4MqVxKMmfgEQl1Ibig/Hnh6sjsvVmAHctOCn6xKw2kzA9boqWE5OY+W8iz3+eezF5Qma1XTDYdLymyoWCj9KDBYrZ1ZXCFYzlpWGRAZkWJ32q2YqWOq4WKkCrPY8wnSpS4lmdY8/tjyPbJom7qnogxFSm05VJRljm6NZHSqYr9tkc/ic5wCKgh878kH81q+RD1yzm1hYTDRa27qNrjOlHhndMLADZq0hww40YQ3Fv/1b4M1vBj7xidHvMvAMNOtJOb1Q4opq07frvrAMSENz0O/nbPAjcghqajaGQ4mwbxoNomf0trch6/SrMRAhi/VXQltaRLO6sJYoOC7qTF+7BENRkwO4bv53HNryqAxIq0VNOjUC0tXo3Mc0q/N+K9Fg37PRIHIdA4E2KesPGDW2P3BzE//ips/gwY396NRS83QBoDI3xsDquurCckTBagOtGc5racn7M3YTzmRAzFGDJpH9BgD0B0BTJeuSGVkkSRgEhAE1CazOA6h4EQSw/FHNakUK4Q/5/WTMai+UocoBmvYa+n3gIx+O8Ndn78BcbSyjxg7bWfNsSbA6ngsy9p+BQ706CuqpAshlgZMkfaGu5gNftM3CAHgBGRBiVpbS2z90CAtmH6e6izj2goRN2GgAA98QBqvvv5+siTFY7XlkntS8HeANkYPJABXZbygVHNMyISBkYj5lzDsVhcgU5F3XoqxaWYapBgSszjkvMTbcE+frYmA1M67kyIAAENe+BQBVJVWzvLFlWQQ4bEjA/Dxhv64gmV+01HjXdSyafVxdnwICoDIgafwuBuGzLgJjwedgfv/sn6E4WF2WWS0FXI3xWKZrQhjGCCl4tK9Z1yCK4PlSMfATqTk2o90YqC1y36pE1oorA2LTSjZVBZpNLDf6WOnVgc1NkghpjV0fjTMOaISWQ04sqYsoy8AP/MDkvmpymMtSjWVACibEAOQzqz0Ukxdh/jM5LPA4bJsk1lvkGtzwvDnIiPDWT/5zHGxsAu02uf+vA7BaodUCnZmIGLhWgEEEbgBVCinhopp9fBCOMqvbusX3tbFtvOeJl2Bvsyc+vAQSLLshFrtg9bMgvL5DDgIApKgcSPvbvw3ccQfR0wNAndblaqUaXJcwq9kBkm3YCjKrV1ZS/aTtxu3pOpnYq5BBZgtfvU5KzKcFP2Owmk6KrDy7CFj94S9juX8Kez70Tly5Qt/neURLk633tRoB6barYFZH1GBRzDxIKJgEhFTh2EpLoTAZkKFZSO9xYvg+vIhsghfnAly1q2FWx4cKplnd548ttuBNZFczxo40ClabPLCWMasbFgGr63Xg1lvx4qXTeOTLTlwN0GjJcZtt3ULXNaa7tuNagGwTKLiqf/azwFveAjzySOrBICB9ZYAzkwHhJa7oZ7bqgZjmpaKgqToYWDnLJzX/ahkuJGmCrmFGqLqczVYuq6fKNKvzZEBKgOC5faVtlmdW5ycCLEdOmD5Aolnt1rDp1DFbT4x7WpqNbq9CsLpeR1Oz0RcxP6Mmd8AoWI29e3GouYEH1w9gtpGaT3SdHN6qAqs1LdZP5JW9A0gMFjuc3fgznVkdBFSzOtU/0URAFKE/kNGi0kAH9BVcPB8CQYChr6ORZijqemlmddoI0fJHmdVCWvugYHUvwmObe3HTzAqaUQ/9XoQ/+3MZf3zyRZirje0BBNjKhaUaAKhKlMv6i/dSVTLeYlmkgteeIwNSmlmt8BmKwBizGgBe+ELsmXXxfd+8AklO3t9sRBj4uvCB37aBW25JgdXDIc705rGv3d8BYBGWZnZSlH2nQsE0gHNkQAq3K2JcSQFF2RAfW6YekuR4nlSDG6KlEfk/UWa1wmNWpyULRUNVadKdMyaHQwIcNmRgbi6RamDzyyRm9caUYHUoQ03fKzygNt6nF/wsIWa1XIxZLaJZzT6vjHxRrr42vQYFgGVFV/Ln2ICcqcowq3nrV1zJRqtBZpZNYoh+/jw5y8yOIfaC+3l7SBizQskbTSPJII4MSFHNapG+el5BLWxNI5XugsxqCYBUIySzoy87gL95ze+ioTm4YXYTaDaJDMiwIs+oaxQxs1pVIdVMso+oQorUR6JZLSJlJ9Ag0dpPwOqWZqPX5ZwTbRteqODj3/ke8c/aBasri12w+lkQg20fDY0ezksCSFeuAHfeOQpWs9DloBq9pLRWLyBs8jEOVucyqw0DhuzDsfnX4eLFfJw8zayeNYbYHE7HJv2Pv1nDpWEHzRrdbLBDaYH5/MqpAfbUuthb38blp2nnfR/bbg0zraT0va3Z/EyhQDBttUqZ1YxdIYcETKxibDHwU5MARcFs3SG6X7wyNKF2ySZYrWkIQrkiGRDKrDZNzJlDbAxNblUED6wm8gepNigjxx7wNavnGg6RAQGAO++EJAFzShfr22RzFjNmJAmaoXDds7nBmLcMrKYgXeiIjQXLAp7//DGwOtasRtymCLOaSRztmfe5HkoAiAyI5uZrVjsO/FBGU/fQboufSXLZylOUvauygMFiQc3qWAYkQ7PaLykDois+YapmrWVM41f3ElBNVdFeMrFNwepOjd6jVAZESLKDF2mwWnXQtwQOhQGpHpltOKPalnv34kBjE0/35tHZmyrRr4pZndYIVlXijSACVjODRR5YTQ+5uQf9r2QwfwwjNaaZFjTv2g6H6LkGmi0Z6HSwv7aJi4916fyio26k7k06Xl1fEd57Pfgg8P3fDywu0q4wAzQ29+g6+b0EweremoMvXD2M5y+eRUOxMVjp44v3y/jcytEkaZPqb/zGCREF5YDKXPATJUEEEWZ1yUqTzHaZaVwJZrUu+0LghGWPgdX1On7h/30u3vYHzx15XasZoeeawglc2wZuugk4e5Y+MBzik5dvxMuOXpzU3VyDRQCFExbxwTwL+AqCUU8NwTa58irpKhLBMI1ICKyeNUhlwr59Yn1VpRB5XpA8pu7EoIaQ3DONZcHyddRbBKyeNwdY76rJ/JJmVjOwerNgQiIdrNLEHJ0Po0jKZUCX2heIMKujbCPEiSFoiClJUWEAGEA+uzyUCxtaS6pCJMIyZNf8UC7OrJakxCcj5/wxTg6QFqhGx9mzhLXfyQCrOWcEqx8QxvYOevqEEJQBUYsmRYWY1RLRGL9GMiAAkmtA5QG/8/g/4raXLwGGQWRABtcBWM3W+FqN3Fv9KQlzUUTAaomME9vNrt4S76hPtPZTzOqG6mLY5TOrvVCBVi82dz+jSR3XUeyC1c+CGHSDuGQ1CorfFOyM1emkQOAUiqvJAbxhBYCi5xGwukaHnWGQAy9H2N73CRvFdYlMydWrKVA9COgBi4CUMAzoSsAvmQPwn//zqBnNju4yw4p6neih2tOB1R/+BwOPbu5NwGrDIIy3AjpMK+ccLNe6hI17iaKWnocNp465WTqJmyZhv25MubixklgpqNZMiwJZcbuCEjO///s5ksZjut21hkxcyStgKMagahUO6rSvlq8TBowkYa7tY8NpcBlUbJM28Rr4PracOjq11L2kKDAVP1/nizJd3vriR/DSl9LHjh8HANzVOo0HLsyTzXp688f+Pc21ZQkLVrapaZjRLWxvio0xyyLJtZMnUw9SMClmMVNmNe+QFzg+VCnEJ/7gSbFztKIQg0UOs9qPZDRNf6cBT04IaVYXVSPiyYCEISmLK2ioRXRq8zWrC8uASBK0PONGIK5MqOmjY0VdmkMQyYRZzdjKhkFka6oGqzUHfUcAHKE37UtvXh9l1+/dC1P1sVTroXM0ZSSk69VrVssyahoxB+Ru9B0HG04DnQXOdxM0wvynih398P3RKi5AfP7udtH3DTRnNWBxEfsbW7j41JCAM56BhpEal5IETctJ2kyIX/gF4DWvAV72Mqq5zwzQ0mC16gqB1Z4H9K/08cW1w3je4lk0NQcrj22gphKQZa4z1gYHRChVSg6+wWIMVj9DNKsz251Ca19XBDWrLXnUHBbAkSM7PBAx0wqx7dUKgdWzShdDZthtWfjU5RP4mptXdnaX6d9mAPYASsmA5IJ/ZUBwKgOSe9hPV5EIBmFWq7n3rOeEmDMGqJkh8ZwQ6KsqhwjymNWlZUAECDjDIVkXmyowNwdZihD5QcKsNkbB6sVaD1c3pzCNDwKi4W+m1pTriVnNNKs5yQUA1YKf7ExR4hpIWe2yKpOihtbU1DvXHDeKYLkKakpKdm1+nsx3fVolOmeOvkcUrB6ECWObFwJgdWG5DtougPzE1bXSrPZ92I4EQ/WTPlMdlB/9xTl8z6/eHleLP9OZ1YGXMrc0TbQ0B/2N6fexfkgS0mZDheVr07O1Gf6Q8rWpqy7fMJ2ezxkDXih2Nasri12w+lkQg26QYlYXBxRXV4HlhQDtVpSAwKldty5XVILCmNUMrNZ1YnTSy9+MM2b1Bz8I/PAPE+OFGFSnoJfGFmkmAyJQLsJA8LzPHdGstsVkJVZXJz++3ZVwureQaOoaBmFQieow+T6uXAywp96FJBFGaBSRjm46DczO0L7VamhrNrpbU4LLzLRQDgm7vgLZcgCJvrQuF0qE/OVfElZ9dpvJBlAyqR76tJpZdHOtmQSs7hhDbK1PeS8wGZAW2fi0ZyR0PVMYrM5iVm86dcymwWrKyOGB1X6o4PlHN7C4SB/buxeo13Fn4xQ+9dAsOro1ulkvINnhuiTJsCMY87amxm3Om32sr3ObBEDuW3aAjLvh+wRMaiXziyEgX+PZxMW60RbfiDY0J59ZTbPwTdMXO+jS0DRkgwhMo7UMWC2F8HMMFtnrioSs5TB9aIlwYdAHSA5PWQcdZhhljM1v1JFn002B1YxZPZyCQcaCfc9ajYDVtsZfD+h7PvSz/ziK/dC68kPNDXROLCSPC0pjcWOMbVgzQpK84xweI8vGmd48Dh4RY1Y/Uzbhr3kNsLGRemCSZrWuE6NRi7OQ9XpErmtOB+bncaCxiQun3UQGxBi9hppJK00EF8izZ4Fv/VZgYYH22SeJhB3M6gF//fZ9oL86xP3rB3D3/AU0VAf3fgZ47uEN3Dp7GbP7Ro31eCCCF8jFNT9Bwc8c48ZYBqRMeXbVzOq8dpm0QQm2tohRGaIIQ0sizGrORN5uhth2a8Ljyl7rw/z934TZXYVlAdFgiHP9WRzZv3Odjpnwk64Bm9NKyIDE+u2T5sVpZEDyLgFjvxYYW4omI8gzGgVJ3MwZQ+xdDMRwe6ZZHeZUBZXoK1QVhuzzt7KWRUDpFgGLUK9DiiKEG1vUYDE1n+g69XiYDqwe+jrqabCajukoyyE5bYReJNiYyUq2jsvKCbapSgGCvCWxBGtfiFkdlbsGmfstRiySi5/5dC0ipphZ+/lYRiaVxJyfx5LZw6rVImvX3FimTRSsHtfvzwuezBCmXGfymNVMY1y0XdHKM8fBlltPPFZY3H03pG/4eiILxZjVPKP4r2SERP5IlUMCttdqhNCzOT2xi90rjbZCPBymBat9H0EkQ2HoJ/V0Gfb5RA4AiSeYSMTVRqV6uhup2AWrnwUx6EdoqGRSKKNZfebzqzhy6bNon30oAattO7ZqKwIo/uzPjkl0pMN1SWluilltKh63vMXzyJ8rV4APfQi48UaMgOpuoEJTEwDYkH2hs34QcMDqlM6iqsvZIFIqogh45SuT9v/n/ySeaqdPA9s9Gae7iyMGcEQGRPBgdPEiVoZNLNfIl59Tu+Sw63kEqJylr6MAzYiud5lgoDIzQhQxixBtN1SgtmqFxhYzkwLIdY7NQIFkE6wnYwtAJaCPHypQTZW4HNe6WFmZUjfL8xJtQQBSvSak78X2kl/8Iin3vffe0X5uuvXRsm9WPiqgWT1iridJwLFjuGv+PP7qzO2Yrw2RINmI3elFmITr68Dv/u6EJ1IJCwCArmPeGGB9Q+zaWhZQWz2LN36jhTe/mZ4NJzCrRRhJvhMUY/0pChqqi4GdczByXfihgmYtKARWq4ylmceeKXHIUaQQftZtVpZJl7fJL9tXcORFAGIcNi7HAMRjdNNpYHaRfjBlVvcsberywdAPybhXVTRrRB+dCyRlHXYNA/jX/xqHnreIzkJq3FE5nKmrN8Y+1zAAh8MkBICTV5o4MbPKZ48wZvUzZBP+1FNjSWLfhxsqo9XFug5d8fnltP0++p6JxrwJzM8TZvX5MJYZGh93qi4ToFYgeWfbxERV/uy9RP5pA4RZzWShaD9rqisGVts++p/+MixfR/O2w2hqDv72S3vxDdaHcNvsJcwdbo2+QYBZrcpBcYNFlaNZPY2WKIdZXVS+SGTeKpwQVFXCAOaBE0EAy1dR13wuaGvWZdg+P8EEAIgi2E+egwkbN2un8chDIbZXHSyYg52UbXCSC2WMEAFAkqDKdBxMmmuDoLgeOjNY5MiARJFUmE3J28P4XohZY4C9y4IgkSQl1UZZa01aslA0CjCrrUBDfYa2vbhICABPrpNKPmMUVObKq4zF6urY12IyILVRZrWep6/refCjctVh7DMnRhkpMwHwsxRYrSiQpQihm51sL1shByDHI0RJSFsFIt5v5Uis7CAHzM9jT72LK9YMLgw62HdsbI4RNFgkYHV1MiCEYFbSyDeHWR4T1wowq1VZQLPacUZl6yaFqFH8VzKYfFaKrdzUHPS3pid2EXlPYLYTYcOpV8Sslkc0q+uqi+FAjFktNFZZxMzqcl3djSR2wepnQQz6UcKsDqPCstVnPvhlHGlcxcz5hxKg2U2Yabmbj7G47z5gbS3jSdel8gd0QyHC/ESyv7t0iTCRbtrfH2FW9z0DTSMprzMEyzF5zOq4JFbThLVEgwAxO/SDHwTe8x4C3n/uc8B2X8HTvXk0G8kkWVNcDG3B2/DqVWzYDczdeQCQZRw1L+P0kz7g+0QGhFWTqyotfZ+STUhZt6pOdAO9qgwWGVDJwGpLbGx5HgGogwD49m8nf0b6mmZZGYaYPqnAh/qRDLWmUbC6h5XVKcHqMWZ1nKkVZFafOgU897kkCRLf675PQLrGGFitCjCrI5mA8em49VbcPX8Bd81dwJ7lMSYQY8+4fHCm2yXa8DuCGqDpNSVuc94cYGNT7NoOrw5Qf8/v4d9K/wmWFRHXe9+HHWgw6wkArgskrnwnIIwA0dODqvJlQByHGCzWg0IyIFzN6qgkszrPSGgKQ60okvK1X4vKgIBcAzcPWGXriDnW9sICGqqLi4MOZm+ljliShFY9IJULU84FgRcSI2NFQbMRoe9PAVYDwI034ugdTSykiNUMUJ1Kxz8Md/ymkibGdLr36X146Z6T/A15zKwu382qIgjIHLO+TuZEAAmzupa6R9mhjwdWd7uIACgzTQpWb+LiZZlWbuijGq1I6fkLgIpPPgncpJwE/sf/wNylh8lewffJeE6D1YonZLzsDV2sWi1y4P+Wb0HT8NDQHHzToYfwb+/+MF72jc3RN/DAalbuXNRgUZRZXaacnmuwWKir+e0ytnaJNnXZ5zOrmYSRyQce4nElIgPS7cIeBDAVDy9ZPoXPfLiHq5d9LJo9Ypo8FrkyIGU1qwGoKpFRmQjWlmVWXwPNahE2pe8BR1rr+PbXixMeYi3wHOAPQDnNal43mAxIm7a9sEDIFU91qQzIKLNaV8SrJft94EUvGpNNDAJCDkiD1cwfIWvuiiUwymlWR1maHey+1QuMWSZbkyfbUnJsqVKORwg7V1UphcI8YOTi+y1di/L3W0y2MD1+5uawp76NC4MO/FCBPjvmIK6qQh40lgUiA1IArM6TGYrZ5QUTYgC4iRBVicQJHWx/xJu6bZswqxt8sNq1nsHMaibXkQKrG5qDwdaUOnGMBa3KUJsmqYapAKwOIjlZhgyDXykLlJu7dw0WK4tdsPpZEP0+Yma1JnmFS3PPnFdwpLVOpCO2yXtDyyFgX6tVGFBMmyGOhOuSzU2TDjsRTV0kc8TFTzyJQ8113Hjmo+h2o7jNnmeiNQZWO+6UMiBRBM+nZS2SJAxW+z6wtUX+/cADwFvfCtxzDzlIdwcKVqyZBKzWddRVF5YreBuur6PnmWgfbAOLizjavopP/k0fv/ShuwhQOUe/s6YRzer+lLd3SgdOU0K4fgXmBrRdL1SgtuuFEiGeR8b6+94HLC2BAJQjfVVGmNVVyYBEkUTAHsPAUq2H1bVi17XbBX7gB1IPMDmcJl30ajVIUoRoKMasvnRqiLvuItLSMbuayYA0UquiqpL7K+8SpGVO0nHXXZClCO/6mvfiv7zt9OhzmkY2+ZYYWL21lTDi05/rjoPVRh/rm2LX1rpEdFlx5QqOtDaIqRTdxcbAnKgMiEO11oowqzUOs5oZLDai6pjV7EBSouxdlQMEOTIghY2vAD7oE8rQtBKHJ53KgHDKUuvjgE+ng44+xNO9eczecSB+uN0M0ROQ2cmNKELgU9YpA6unYVbTePvbga//+tQDuk4qg6Yx02GfKUnJ4UpAlxEA7r+8B89bOMsvdYyZ1RW4s08Zly+Tr3XhAvDOd9IHg2CnZrWmiV3bXo+sHa0WMD+PffVtXLyq0/3LGJMQKCSL9Mhnt3Fb+BAAYH77dCwDYgUa6o0UWK2KgdW+G+Lp3gKWblsCbrwRx9/yXPz8c/8GuhLgps4KOreOOcNxxsFIKW+BiMHPayADkikpMK3BYh6zuoRmtSYHcHn7TpaoHk+0ZbQJQAystm2SqFU8fNWeU/jsp3ysrQRYMPuTwWpWDZBxDQCUAqs1Jco02oyBxoJAksZjVqfNZAu0CyC/9N+NMKsP8a++Xzwjl+vjAEzHrBYAqy1fR22GnlUWFwm54sltAmI3UtedMqtFQZTf/32CJ545k3qQafjXR5nVpuplSxYwQLEoj4ZWhwVexvmD7Y2KgNWKQjWrBTTGC44tVQ6yweqUDm+h4Gjt+6E8HbM6F6zWRskBCwt47sI5/Nmp5+OG9trO8cw0/O38/lgWCsqA5AB/7CyjFrwGvKQoJVcVWhNEwWrKrJ5t5ryQkW6eycxqRkBjYHWtRkzIeaaFvGAV05qUVAhVIANCpIjGmNU5xEX2PgCF5+5nyj75eo9dsPpZEIMB0KAGi7ocwO0VkD6wLJy8YOKG1hpmdAvdVXKgdwY+TMUD2m3SpmBWjwtWpzVlRZnVFHy/eCHCj97+MbzywKOJzrXnEbC6RicSwyAbOx7DBRywmpVqqRSs1jQC6HBWHyZVEQTAww8Dt99OpFTPn0e8kWgu0CyyaZJDqcO/DVdWgLWne+h6JtoHZoC9e3FDax2/954a/uqhw9h2a5iZTa5rW7PRHU6hRwckZiiaRHU55enBXyApw2nXocmhsAwIA6t/+7eBn//5sT0b6+uYDEhkTykDwjQGKbu+oTr8cqGxeOc7gXe9K7XGMgBcT8DquupiuJnf1xis/uRJdDZO43WvAz71KfokA6ubqYOVopD7a5gvAxKEMmR9bKxQ/V9JAswTB0ef0zQyJwgkGZhUyw52Nfvx2MJPmdXrWwKnGMvCcMslup8ADrtPxWA1k2lgbYokrgrLgFBmdd/Oub8chxgsNqJiBotMbihTl7CkwaKUU+4ahsXLs2m7khRxDH8K9hWAZshCMiA7qtuPHUNnUcXTynHMLieHn1YL6Lq1qcFqP5ShSIRdY9QV2IHGlxnigNW6PnbZKTDBWxOFPhOpcS+iIRkEsDwVTd3lH86fQQaL586RW/eRR0hybDhEzKzWzQnMap72I9vANBrA3BxqqkeGTrdLNKs7YzegYMkzAJx8yMKJGaJXMmcOsXE1SAwWGbOaGS/zwGrXhe9FON1bwNINBJC84bteiv/r3m8DvvZrgW/+5p1JB87B3PdBqgdKgNWZjFqUZFarKhQpROhxgK+i2xwGgk9iaZadY1WVMFUFmNUTq0ImhaYROQEOOxEA4DiwA7KfvrlzBY8/pWBtDdlgdY4pKDEsRzlmtRLBjyavX4VNygA+m5I1DJQz78yVASk+ZhVVygTrAUwFVgtpVgcazHYCVt/QWsPJMyqsQEe9kwIENY2AiYLz98oK8PKXE739OGLN6tRYpqziwM1nQBdOBjHzyiywms47klIMrFalID9/yyRmCv5eqhTCd7LHAJEsEW8SgBizugRYresgmtV5YHUwNmfNz+NrDp/FB888B7d0JhgJUZ31XIA1imDZEjFuFAGrY+Av4/n4zM5vaiR4iSt6bQutCQU0qzedOjqtnEHISDf2M5hZPcG0sKk56Hcr8M2KErDaVDxYm1NiEOOa1apKzt88HMb3iWZ8wcTVM2WffL3HLlh9vUcUYWBJaGoO0GoRc8FuAYDu0iU8vLEPt81eQlu3sb1CJgI7DVYrfmXM6hH5AwamceYeb41oflwazuC1Rx7AcxbOJ5qeE8FqD44AWzkIcvrKFj4lYUEDfC1Rtt53u4SFcHi/j/kZH6dPA8cWiYh0c5mW5qoqAas9lctY/rM/A/78Y3MEpNk3C+zbh6OtqzhzycDl7TrCSIJsJMAf0WmdUgaEmRZqEvSaQkrFptWApu2GkQyl3SATueAi7PsE/PR9Yk4lSanLNs5WMAzC8OhPuUqkDxe6LpRcGY/3vQ9485uBhx6iDzCaENugMcM2jnOyd3kNuuzh8nAGnS9+DCfmN/DUU/TJGKxO3acsGcRhVgOpkuN0/NzPAW98I6n/TAc96IjMCUw3/S//Evid30k9wW4UtlHUNKKvuC0wZvt9AkTJpI3DwWlyiHJdsplg11Ulr3G8/Lkg1mktwKxuag6XWe2FCu440sNrXyvWLMAxLWQAcAlGTq4MSFmNUo72aynJEggYLLruzsMTfePNb7gNmJ3DkSPJw+0ZCT3PmA6sDgIEkRQfBiXTiPuSG0XLiFnJN0+flPOZUQREUkGwmo5ZzVT45a6yTBKNQUXVNlPEuXPAbbeR5DCAWBJokgyIiFl0zOTVdWBuDpAkKKGH4OoGBr6O+uxYybKgmRQADDZdtDQyDuf0PtbPDyfKF5mKzycQnTmDMJJwureIpb2p8SVJRCPrW75l53s48gdBAFJlUrUMiFeCWc3mrSzQhwLLhdiUrN0sQC2eY4s1yeQquAwqtgeuCdzfuk7MYbsCr3UcUkmg+JClCHNaDyfPKLlgdZYMSGwmVoZZzWRAJoyDWPe1ILM6d+2iDRc2LRRgVvteWEweDOS65hk3xtJpZZjVPNY+3cvJJt3/LCzgxcun8b9Xj5JkWCc1b9FkIze5QsOygJtv3glWD3wDjfoYWJ3HKk5LKhQJ5ruR0y6AcmMr7/jBfseCCRY1D6iMz1UlK9ly9lulZEAMSUAGZIxZLUmY/fHvxa2dy7j1zgn3nQizmiVpdV/sd2OJq6wjXcyY5Tc13ldZirKTojEIXoxZrUoCnh7MYLGV88KYWf3MMLOeGONs5VqNSGtUAVazNb5ex4LZx/rKlDrYQTAq9cXA6rzzHO0Le71wiDLsd4Mbu2D19R6um+go1mpkU9MTL1sL1rdgByoamou2ZqG7Rt5rD0KYih/LgIgyq103H6y2AupWDcQlY1xm9aWrUKQAFwcddHQr+SAAv/qOJnqegVY9YVcYsg/H5w/tXGZ17Fodxe3qcgC3LwZWX/mP74HZvwr5p38Kc+//rzh9OsKJDhHzbu6nVEtJQq0GWL4uJi+yTn4DaXEBeNGLcLS9hhvaazjU2iSZcbYBVlXyWw5LIEXpSJXgaDWVHEKmLcEBkotUrxcCqz0PWH16gJriAE8+idnZCJubqb5GKaNAKrEy7E2ZjU6zdhgAXgBIYprSX/3VwJe+RB9kvzX7vWo1cijdzF+E3YeewIxu4fKwjY5h4dh978fJk1Hcz013rJysAFg98fB08CBxCx0HrthBR5BZfegQ8F//K/CZz6SeYBvuFAu6pgiajdIvJO3fB9RqOKxewNmnHETbFBlvUVMxRSGMBA6A4NllDBYdDBwOszpUcGS/h2/6JrFmWdsAqjX/ogyiTCwtishhv4RmNYB8pk8Zg0WDU5bq+xj62iQMBj/zM8QfIDabBdBoSuhPq1lNmSMxG0NQFmpHUoYXdMwWKfl88kkigRGH5yFIl2QCfEkFAHAcuKGSSPPkhSQlSYWv8E78/HngOc9JkoFXroCA1WGGZjWHWe3ZAQzFJ/OBqgKLi1iqdbHyhfOkMmx+jK1cAKy2ex4hAQCYMwfYuGzH908sX6RpqCkuLF5uZXsbTc2B7WtYWuJ+9Ghfc2VASmpWZzFKwxCeL0NTCrbLYyiyhFgJg8VMQC2WLyrWZAzOCDGrJ89dk9ps6xa2twT2GzRRKy2TgXCktoL7Hq5jsdYn6/h407qc+XuVApWTLme3y0DwMsAfh1ldmP0qBFaD3AsFFjHCLM8GqwPHLyY5BlCwWkCzetxocnERd85dxAPrB8i5azY1b+k6NQQV9AgZErD63Ln0lwnI2XMcrOaAyn4ZzWpZJgmmHCkz9jrhYAB4zv4wcsslQlSZp1ldznsEQH7VXVEJDFByQEY1BIDEYHG8ku3mm/ETvzyLl/3cyyY2ymVW+z4hX2mCZzSaZMxMCJYBlVPtZv5eZfayMUjJTzBxmdWsWnwaAsO1jnGPGl0nMiA8HWhejMmALJh9rK1MeaYPAgRhSrNaVdFQXQwczrpUpoKHMat3ZUCmjl2w+noPy6K6YREBq2W/ELP65CNOXJY6o1vobvjEWZyatTAZEC/rwDAWucxqxuI0EuajIfPL27zLRKJk4JuYee3XAABkz0UYAr/yznlsOg206kkG3FB8OD5/ZeGB1SMlRcz4igPQsfns8/cBN8lPAYMB5gfn8PTpCHv1NdRVB80Dnfj1tboES6Cc3PdSwOz8PLBnD+afcwhffP0v44h5hSQWUsBfW7fRtSoAq6MxsLoKGZBxsFpQY90bODj//3wes6tPAP/3/41lbTPRrWaZXcayUhQCfg6mz+wCiJnVIuM1Hf0+0GwSQ8QYrGZtMsDLMMjCznFO9gYu2rqNFXsGnVaA5qkHMNgm7xn0QsKsbqfuU2awWBaszgrmJC+QwOp2gVtvJTIg588njztWSACh1JgVzkCzL1SrAQcP4nBzA+eecuBsWaRNBlYzRhKPWe1SzeoC7NeG5vLB6kjeqQXOizzTwrIardSZPPPAPy2zOlOzusTBAYCmc2RAWCl9Xew6yIZG2OpTgtUEAKbzCbt3OfN2DA4XkJgxBKo3oogYDgPAH/8x8Ed/lHqSeQ2kS4LZpjkvMWjbk/XrM4KrdflPFOfOkfn11CmCy125Ajh2RJjV9dR3YWA1JxEwHEREYoiN70OHcKCxhYuPEu3XxsLYqb0IWN2nYLVpYt4YYGPVj2Wh4nZoxZXNK0v1vJilLQxWC8iAlGFWa3qOZjXbSxUxqKJ9FWJplij7VuUQnjMZrCbM6uKsR00OiK9HXjCDxXHgZ1JoGtmTdwVey+ahvXsBRcER4zK+cH4JC/UhcODAjpfHTPjrgVkt5TOr4zm2SoPFKEr6W5BZnadZ7bthsSou2ldTYB+zA0yZm4NqqujoFs7351CbSw06tocrwKw+fBhYXR39vIFvjCZe2D2bWw1RVgYkfy4AUGxsyTJlVmdfg3hvWBCgUvP0tZlnT4mKEAD5VXfTMKuzNt/MYHHCnPV//J8tHDg+wd+CJe/yzgiMsW2Ig9W5wB8Dq0sZkOecQ6kfUqF2RUFKz8OWWxs9t41HLAPyDNesTmvRszPScEqIkZLQVF2mYPUAa1enBO1ZZUOKiEhkQDjrRxmz1V2wurLgjiRJkkxJkj4vSdIDkiQ9IknSf6CP/5EkSU9LknQ//XM3fVySJOm3JUk6KUnSg5IkPTfV1ndLkvQU/fPd1+xbPcvjne8E/uRP6H8cB33PQKMBwDDIAsFh/6bj/gdl3DV3Adi/n8iAbEekLNVTYGp+DCi6gkwvzyMAcBgCf/EXY0+Oyx+IgGkAvK6Fjm6hWQ+hfsPLAQAtqYfLlyJs9VSc7c2hVU82K4biwwmUhNaaEUFA+hpFwJveBGxvj/aVLHxJplDEnMnbIkj9Ixv7cOhWAprNGQNsbcuYibawaPZHwWojxNDXIF1fVwABAABJREFUuQddr2dj0zbJZow5J995J2aNIQ43NzBnDkjJMpAYLE4LVjPTQk2CXlfhhtXJgAAA6nVafiNzfysA8C0P5/qzmNVJhmGPtJKA1QxYZxtAtgAV1JfeEWzMqiopzxYYr+lYXSVAwp13AvfdR75mLCXD7gNNQ0u30R9wGMCWj7ZmIwhldG4jxlkteYhuF3jjvzmGj1y4bXTToygEXM/7yUpqKOqCjPhuF7jlFgImpRNDfUdDU7MngNViJc8AiB7rwYPYV9/CpQsRBlse0e5PMatFZEA8xqAS0c0DqOO9C8vjy4Co9YLChAJs5bKb8cxy17KGWlymT4mSTBDgy81j7FKmj1ApPZCM7WkYwFRnX2GHQcOALEUIrPy1NvQCogEseiFYspXDonnqKeBHfoT8+/LlsaoFthkfY1bXFA9WP//wWAisfoYwq69eJay/KALuvhv4yEeA7/3jr4M7zqxmGvacazsYgIDVbD44fBjH26v48c+9GZ++chz1xcboGwoY4dn9AKbqATffjDljgPW1KHGfbdB2FYVoVguA1bocQFVCLC5yPzpuW87RgY4NFgtWWciqTOQPJknCxCBCScZb1ppAE2KKXjAhmKcnSkuEyxgs6iKHUiYD0hA4vGoaZnQb212B17J9imnGWsVPbS9j4Uhz4tyjGXKmDIjry9CLMqBpqCoymcXlmdU5iVYAgRsUZkBzTdXY+iUXMx6OkwBZ2u12UFhahKwJXv4+DiCeHWkWsCQB+/bhpXtO4qMXbkFtITVvseo4gQpUgIDV9Trdv7Jbg2pWN9LToQCzupSXBTNDzJkLAJRIhAQI8si/blhKvkjJm7eYGV3FxrClkgBIJZ3zmNW+BrNWoL+MKJK31jL5K12wzzz9+imY1VpegqUMCC4wbwGImdU8sFqXn+HMajam2W2ikfNdvwqwOpShaHLCrF6fEvilkn5pZnVddTF08yelyBvzRBKJXbC6shAZSQ6AV0RRdBeAuwG8WpKkF9PnfjKKorvpn/vpY68BcIL++ZcA3gEAkiTNAfgFAC8C8EIAvyBJUqpYdzdE4uRJIiUbszQti+iGNSXANMkCUUCn96mnVdzUWQFuuIEAnH1iojfwDdT0MNF5FMzqMWb1vfcS2cRPfCL15DhYrSgwFQ6YBmLOM6Nb6MyEBIgyTbSVAR79EkENz/bn0WrQ/kkSDD2CE2i5JX5Awqy+7z5y2P/P/3n0i4wsUIyVxQGr/ZNnAACP+cex71V3AC9/OVQ5RFuz0NZs/J+3fhq1ZjIpEhkQgb4OXawM29DTJa/HjwMAjrTWSdk7ozhoGlqag65T1MFjLFgJji5Dq2vVM6tVFQda2zg/mBNipXlOiPP9OczeRGhky+FlUvId91UZZVaLmFTR+PjHgfe+F3jiCYwymdJsFZawKIDXr6wAy8vkDHn0KPDoo4Brh0mZOQCoKpqqg96AA6o6IdpUBqdzG2FLHW+t4ORJ4NJVDRcHs5idSd2nDADOw9PKgNW6Tg46AnNCrwe87GVEr1pJnY17loqW5oxoVhdmVhsGcPAgFDlCYDm43G1guTkcua5EBiR/ExIfSArIgKhyiCDPRZ7KgKi1gsgy1/G9HCOHHPQynp/CYBFAtfraAHSTw6xm5aMNwf6KSnbkBTVlSZc5NlQHw22O4a4TFAP/NI2w6ByONJaXzFOXLxO95rR+vxOo0NMlwapK5sO8ShPfhxuo0A2x3+yZwqy2rETp4O67iT7+xkAn3yUtaUI17Hnz1nBIwWo2Hxw6hB+/8+/x3q99D37p+R/CDbeNaTgUMFi0hyEM2QdOnMCMbmGrqyRgdTPlZaF4sDiHp9AhJepN0y8kA5KpAx1F8ANqsFiEAQ1ibJaptc+SbCV0anlsyggEKC/cbhagFkXl5i02tgTAaivQxKpCNI3IufUFvh/blBgGsLyMI611AMDCTfOTuyvCrC44BmiXrwGzOv+wX9ggmbabOV5pZ0c8UAQjVw4HJfYaQCKpwPHhibwxGRAA2L8frzzwKC4NZ0fBal0nhqAFwOoaLCwuRAm7OggwmARW50lghCGR6yvJrM5kK5fWlg7hB9lkmZgJX5C1n8suZ2dLo/i8JSHDGJZJVcglDBZNWcBgcYIMSF7Q5J2bt4+h+5SaIdhnVhGTw6wmSYAC/WTtisiAFJkLYjNIERmQBjozOdeJMaun2L5e82AyeePSGvb0YHUQjcmAbEzZpu/DCTTENk2U2DZw8gdO4BYkngCjYLUAIW83soP7q0ck6G4aGv2Td9VfB+C99H2fA9CRJGkvgFcB+LsoijaiKNoE8HcAXj1d9///F7//+8CP/Rg5oAKgwLKOZktKZEAKaFYPuj4pJT1yBBozMrFtbDk1zDbdBKQtCFa/733AH/wB8B/+Q+rJca3e2GAxf0L33RAdY0gmdEkClpawaPZx36cIcHe2P4dWMxmSsUkZ5/DIwOq/+Auiqfu3fzv6RUipiBT32VA8rt6lf5qIuj26sQf79oGUZQKYN/uY0S3825d8cuQMoOoywoxDw0i7QxfnB7NoN1Kvo+WdN7TWML+QupWZZrU9ZgRVNNIGiw2tOs3qlF7x4bkezvbmhLRfPQ8415/D7K17AUnCsnseK5eCpK+hDNVQ4rbrqpst8zIWDz4IfOxjwC/9Ekm0xDFusKh6sB3+puX3fg947DHKrJ4PgCjC618PvOMdwFpXH2XuUcM+Xhbac0K0adl3567DAIBj8tM4dQpQIx/fdvQ+tPakTg4i2f2yMiCKL8ysXtY2cI/yeezbF5F5KwzRd3ViCssOrozpwzMRAhAxMVfTBPbsAQAsK2v4zJVjOLGUKo9g7I68A1kQUDZhAQZVzFTOB6u9UIFWrxCsZqBPUY1Wjut9GESQpWIMMgCJDnLG4cmPSrDAQVh/uYxdJgMiClZrGjmMWBUyq3VdyO28cBkxZdE5vGojjySCADLH3HNPysDV97HhNDDXSGXV2HzYzweri4yvGKz+CjOrLQuYlzZQ1z085+Aarl4FejaZW2MdaECYWR2D1exQcvgwVBW4ob2Otxz7IvTFmdE3iDKrowi2FRJm9YkTJMnmBckPmZIvqql8sDpwfGhygFatAFjNAWqDkJTGFwYqReatqrVEw4SgUCgomDSx7JseugvPsZIETQlJYjTvUMqY1U2BuYvKgGz3xMBqCSB7ikYDR1rEH2Xha2+f+HLVUDLlKqaRASGa1dntFtZDF9jDeG5ExmyVzGoKKBatDMr7/nFfSwAeInJmDptb0m3Pz+PFy6fR1OxRzWoqAyIKogzXh6j/8s/iTvkhPPAAfTAIiATlDrA6P8FUquKKx1Yuw6yWCLsylwlfcmzlVoSkKlYLRV7yLoroebVYkwA5g+YmnZkMiKDsGmmU6qwLMavFweprKgMySRaqbLsFZEB6noF2O+c1VIK0iqJmFmEI/N3fVdfeDnNLTSP7Y6vEgJzUrpFiVm9N3+a2W8NMIyHNNVQHQy+/3djbqMhNJhM5Pi8nIbYbYiE0s0uSpEiSdD+AVRDA+R/pU79MpT5+Q5IkhoztB5BSJ8UF+ljW4+Of9S8lSfqCJElfuHr1arFv8ywPzwM++lHgrW9Fwii1bbJhaEpUBiSAOxA/PA57IRqaAxw5AoACD7aNLbeOTsMHdJ0cnARBPwZWf/azwHd/N/n/xgZ5zrc8kplKy4AIGId4boSObmGGnRGXlvCchfP40Ic1zLY8nO3Nj4DVse4rh63MZEA+9Sng1a8mc1D8Fpb9ZocWlt3kaVYPyJd5eqU+BlYPSP+/67tG3yBg9AIAnuWNMsgBsjE7ehSv2Pc43v7LqUWRykqIMqv7fSKDsvNDE3ZJY0ZFzzOqlQFRVRye7+NMf54PVl+6BD+Use40Mbe/Buzdi2VzGysnu3FfvVDZAVaLYuuXLhHW8wMPpORgwpCytyjrVNcJ61EAUH3kEVIFsfqlC1j6xPuBH/9xvOHu0/C9CD/9qW9EbQysbmm2ILPahmFEMI/tB3QdB5RLOHfShRx4eP/X/zfIy6l68Lxy57jR8jIgIgaL3c0ArT/6HeBd78LB5hbRrfZ99DwTLSP1mzMAXICk6fTcWPcVy8sAgBtbV/C352/H8X2piYrJgOQxq8scSlWVMJXzwGrmOG0UYPrQtgHkalaX24xnH/g9Nypens3azTJAC0N4ZWVADP7haejrqImYlAGArqOl2+h1p9gsxprViQxIU3XQ3+YkL72IADSi11bQx8H3E2a175P5+8/+jD7peVi3d4LVNcXLrzTxPGKweB0yq2sf+O9Y1Ldx55f/O9ptwPaSdSAOUbDakkaZ1bUacOxY8oJxuSBVJZIwDuc6DIewPRVmXQHZHABa6GA4CIkWuknBJEUhMkMcsNqzA6hSiMUZF/OTCbQ7I09TlrIeVaU4O0/IGLZouzyjsjAkAG2JeStzXSyrgy1J0LWISKXl7eVook1cBsTCtgizmu2fDAO49Vbsr29hrm7BuO34xJerusxnVpeUAcliVvtBORmQ3NJ/kH1RYRBBVcnYyfqtKFGjaNJC0eRcg0XfR/FrwM5JnH3nYCgRGbT0BmF2Fpoc4p+f+BzmF1Lvl4lkhJsn/8DC82CfW0UtGuJ5/ufxxS/Q+zEIYAVj8hACCabSOvN5OtAlpcxUhVSrZYHVMWu/jMFiLlgtl6qQy7y2NJleeI4FIKn8xI0VaOLkACBea3OPdQysNgT3Zew8k7XvjpOi4t0caTfr92LX9hqB1X3PJGTDrChR0cuLwQD4qZ+qrr1JOtBNzeabFvKCkQY1GajXsWD2cXWrOAPmscdSt3gQYNutodNKzM/rqouhp2XOA0BqnSl4AMvzcdgN8RCafaIoCqIouhvAAQAvlCTpdgD/FsDNAF4AYA7Av6miQ1EUvTOKoudHUfT8RWEhvv9/xBNPAHfcASwsAFtb9MHhkJRitRUqA8Jn/8YRRRgwM6HlZaBWg4wIweo6ttwacajVdXJwEgT9XJeAn6pK9mOvehUB2GlX0RgD6UyFz1T1PGL+2OnQ1y0t4QWLZ/CPj7Rw1w1dwqxupd4gCAD7PjDY9uE6IWo1cgliDeRYs5r+n7pnc5nVboiGaiOKJHIePXAAkCTM1WzMvO3biXhvOgTNmXyLlAu1W2NP/Kt/BeWnfxJz99yUPKYohCUfimXz1teB+++f9KGJtlqtrcEOtMplQPbPWbg46PDB6rU1Mk4BInmyfz/21rdx+ZyX6usoWF1TPGFm9eXLBFx+7LHUvcWAXEkif3SdaAcKgNW+T67rygNXsGx2geEQ9U/8DX7ih2w8sr4HNT21AVZVMWa1G6GtWyMVBgcaW3jgCy4WdIpcLSwkb2Asl6rBasaC5kgVAEDv9GosXXJQOh+D1X3PQNNIJdViGRD+tR1ue2QsmCaRvmm3cePMCv7+4i04fnAUoItlQLLuA+bMXoT1F2sdcsDqEmXE10Rag8MEL82kY0DCpMMTM1ichlmdc3iKACimoMyRppFk0PYUBjU0+aCwS2QYQszqwkCKoGa17xNCbkCr9V/3OuCv/5peMsqsnm+m5lRFIUnnPBkQdtgTLE/mMuD/icIeBKidewJ/8op345B3Er/wb2wgikh1VRoUYtVRnPl7aE0Afb7ma7LfwEp+eZUmtg07UGG2ddJ2u42jrTU8srGPSK4xhjBjVnOYPr7tQ5UDfOK/fEEc+2KashlAbazTWzRoiXrVzGoemzICSs1budcgkoszq0G2tdzkDTNYbAr8YMwou89/rT90CRHEMIDnPx/Kj/5feOe7sydfwqzO0JZmch1lZEB0kHbHr0EUwQtkaEVZ+2ztyrmkhQ2SabvXQgYkBv6ymNVl2OUU+LPzPDLAwGp39Do8//nAiRP4vV+zRraGAJV/yDPWY7G1hTCSIEsRnrdwFl/6LN1j0e8opQWoeTIgZTXheQBwWbBaBYIcYpPnodTYymWXTyEDkmlIH2uBl5i7eTJWBb0sAMSEltx9jOfBDtTYgokbPEmgKRMhecmFwsxqdvbKI7QAgOcRybZ6TqcZUa7CbZbnAWtr1bVHZPKkEWZ1Q3XRt6f0zWLnKGqw2NGH2B4UZ8C84Q0EP2Ntbrs1zDSTyqy6yfcOK8WsBqBp0TOC1HG9R6HZMoqiLQCfAPDqKIouU6kPB8B7QHSoAeAigIOptx2gj2U9vhuCsb1NPPRG9nqDAfqeicacQcBqARPAOIZDDF0N9QZhjaLTIWZlj25hy6mj0yabX1P1hMFqzyMs1VmqRv6KVxDmMu3qDvkDEVmFGKyeo8N1eRl3zl2AKgW4a+Ys7EAfBat5Tt80/KGL4anLwMWLwP/+3zh0CARMox9KmNX0/xSo5IPVAebNAWQ5IqW59Trw9rdj/oXH0J6Z8D0FwWrPIs+3xyqQ0WyOsr4AMkAK6GhubRGwdgeeR0tiVUNJWF8VgdURQA75Ji1H5YHVnkfkakDH1sICDjQ2ceGiFD8/SQbE4kjMsLh0CbjrLvJzpcHqKEJywxkG0VjnaAfSt2JjPcLqORtLNVrm/cgjODB4Ak91l4i8eAqcaGk2+haHSeeEVLudPrC4iAONTXzpfhlL6nr8WBwMmLgWMiCyoAzIuhdLl+y3T+PSJQBBQJjV5iizmjAR+B9v9XzUGLMaAJaXcWNnBUPfwPEbUn2SJBhaCCdQszPmzJizKLNaDuHngdVU+7TMgQRAvolOKRmQ7HHg+yh+gGbtZpVPUtCnjGa1oiv50khFx6ymoa3Zo1r0RSMIiERCSrO6ztOABmVWFznsMukaDqDKZEDW1sgtbxjAi15E/Bfg+1i3G5hvpe4vplmdt46zQ5koWP1MYFZHEcK1dchShK/acwqaHOLHg18FAtqndI061X7lJdmGtjzKrAYI6PPd3w389E/vfAMDq7PKiFm4LmGS1en1XVjAjZ0V3L9+EDUz9V7mt8ABpxjrr90pcN/mlenTe1YpCVZngn+MWV3CtJAkW/8JZUCm0drXonztVyAhQYjIQzGj7CEfJLIH1LhT18n1uO02vPHbsuccVc82WPRCeQpmtQQ/msAii3XLS7DrOXuYuDKoYHUYgFxfhMpN8JBiVheUQollQHLIJwNLJlWy6eug68BP/ATwmtfseL1qKIQFzgOrbUK+AYDjM1fx1BMJs5r1L2lUhSrlECSY78Y1SFwBKAVW58m2xJVRVcuARCWZ1Zy5u4zBIpfcRceHpBe7v7jM6iCA7RdgVstkXsqUVGASTqXWmXDyegDE+6JCvxdLLAR8k2RJikblysaDyYAIkKREw3WnA6vf8Y4xKIBhBWpypm1qDgZOBTIgKc3qtm6jOyzW5uoq8PjjxJSctUnA6mS8G6ZEyHh5YHWZCh4AWk610W6IB/fukyRpUZKkDv13DcA3AHic6lBDkiQJwLcCeJi+5UMA/rlE4sUAtqMougzgIwBeKUnSLDVWfCV9bDcEo9sF2nUf2N6GaVL54H4fXc9Ea8FIDBZFwWrLIvp5LbpYdTo43NrAuSeGRAZkJqLMak8Y9AvDCGcf7WPBuwScPInFxQT8GwxANlMjMiAc8C8M4fnAUq2HpWXah8OHYao+7l44j7vlBwEArZlUG4pCXLE5h+igb2HbNdFUbOC//3cc1Fdw7hx9MmZWJJq6hsI3Z/KdEAtmH8vzfjKnLSzg+39Qwx13THiDquYzPFi7FBgc+Z55IaqjCZIEGQ4T6czkQ1M6VHRs2d0KXB5SzGroOhqag/4WZ8y6LkzFhyyFMVg9ZwywsSknfY3kBGih7DRRZvXmJvDSl5I/sQwIM3dgh3dNI+WYHO1A9hU3zvaw0jWxvEcCvuqrgCiC+b73oK66qDVSG3yqWd3jgdVuhLZmo8NsaZeWsL+xhceeNrGsbxHwlpl00WtADEnyGi2rWS1osNiX4yRDZ3AR26tOilmd6lgMVvOv7bAXEDCJUTL27MGNM6vo6APM7R2laeg64IQqnzVS1OlbosY8WUFlIwqbf+Ul2sKQtKmVkOuQw+qZ1XkgHTOlKbNXFWD6jLyOF7pOmNXTyIDQyo34XE7lsYYiYHWRDa6gNBZjVl++HMu244UvBL74RfLkutPEXCs197PEVRbbC4jnO0UXG1/PCGb1+fNUB6QGvO1tBKi7cCE5zKaz2KoKXQngcJawiWC1JAEveQlwww0738CSdwJgtRuoyRo1P4+bZlbwJydfiNsOjGrtE4NFvoaiKhfQQwfyS8nDcDQhUySuqWY1B6AqCqrmlX2zipASzGpNA2GqcsBqSYp2Sslk9NOQfSEfB7vvE2ksQZqioiuTZUCiCF6gTG+wON7utFIwOQzFUiACBT9DL98ErwygCCDTINkLZZK8LHJtZRmGGpCkOw+sHmdW50QMPgqA1XFXpAgHW5t4/HFkg9UcZrWXBrVEgxks+tlSDaSDxX4vRZXyZVvcchIzuRWNVLO6DJEhk10+DbNaIHEz8jrBNnWedIXvwwnVmHPCDUmCpmFyMgwonxTNk4UCynnF8IB1FiJ7WSoD4gpUnYqG55HbWvR8PB7veheReo1jgmZ1Q3XQnxasZiC4TsDqlmajV5Ct/elPA8ePA08+mbS55VDlABpxsiAPrGZJ0cJg9a4MSBUhMlvuBfAJSZIeBHAfiGb1XwP4E0mSHgLwEIAFAG+nr/9bAKcBnATwhwB+EACiKNoA8Eu0jfsA/CJ9bDcEY3sbmHnks8C/+3fYu+ASs7J+H5avoTZfB0wTuuLDFWA8AgAcB0NfJ3rXANDp4FBzA2dP+eRm7kSJZrUjtrDWNQ9nTodYWHsC+NVfRevx+2JGGymvLSgDQpkoX33wDH711+jr9u4F3vY2fPybfh03d4h4d+toilEqKgNiueh7BpZaFhBFODh4PGFWMwaMnmQKDVmgPNuLsGD2sW9pdNJ7+csTtvlI0PLZ0OXIgNg+WpqF9qzgwUzTSFmuAJDAkgmXLo1/aIppZxhYMntYvVrBgpne5Oo6Djc3cPZM/nWNHHLIa5o+uY7z82S/H/hkL+B5sH0NRiOR1qirLiwBM0QW//pfEx2vNLOabH7CuE1SjslfrHwf2DizjRWrjaW79wHf8i1kQ2LbONjYHC0DZjIgeWYUASl/m6sNk6TN0hKamoO27hD29sLC6CEo3oRlNxu5JLNflJVEzBA5rwuJxqAiR8CePWhrFrZX7Vizummmxryui2m8AbD6AWpqill9++042NjAD9z6KUhjOjm6IREAIbfctyCoKhMTsiDKMSeieqqSUvxAIklRJugDAJJc8B6k/fXDyUZCpbREaV/zylLLyoDECbysucvzCNOrALO6pdvo9qaYu4IAQSQll8gwiDxWngY0CPu1ELOasuh41Ua+T/6c+ccV7L30ReD978fznxfhC18AlQGpY34mdX/xQATWKCB8XblyLf8UwTYXR48Cz3kO0R0DYS960EfBCyYDwrm2A1sZNVjkBZsPLc6+i06YkkH3PwsLuKmzgk9evglveFFq8ZVlsufytdyDbjy2ioLVWeOAmqKq8jXSrFbLAZWZABXTrK5SBmSKJJtuSPxD6bjJeF6wpLAAP8AeBIXA6szDeVlQmYaqSZPlRaYBqyWODAhLCBa8DxQpypVqKLV+cSujqCZ8wUSAqdMKsZz9/MBWiHxRgXkriiT+/O04IwmWf3HL5/Cud2EyWM2TwGDVYaWY1VEmoBgEBEgvuodRVSDIkMMhiRuJzLEFddZVKX/eKitXoUn5+61S5AAeWO15ZJ4tCFYbCqeKiZ7ZhJnVANQ84I/NMWUNFnOY1YW9YiQJmorcRAiA5H7OS16qKnQ1gONla6sXDbamlGVXd7vA3/996gG2d2DXSNMICU3QNyszKAiuaArRwTZ99FyjEEHi3nuB7/3eFFjNmNXt1O8tQO5znSnB6l0ZkKmCu8uLoujBKIqeE0XRnVEU3R5F0S/Sx18RRdEd9LHvjKKoTx+Poij6V1EUHaPPfyHV1rujKDpO/7zn2n2tZ2d0rzpob58HHAd7lau4fBnYWPEwawwJo5LJgAwFJzTHwSDtTN7p4HBzHWfPyYRZ3ZFizWre4RkAwiBCS+rjqt3G4iyVrfjYB9HdCok+9lAalQGhLLJcZjUDjQ15dL9w991otSXMGQMAQPOWlMIMz+mbRuS4qKsulu4k1LSD9lMTZECkuE0RVpbvhjjY2MSbXj3IfyELWp5tDzgGi06ARbOP1pw4QAMQMJIX29vk5Zcvjz2RLler1bBc62J1rbhD/I5Ib36oiVB3i8NQtH1ocoBmLYiZ1QAwq/awuUm+5xWrTVjMtO2a4mJo5fe31wN+71eHqIUDzD76Gez3zyZgte/D8jWYWrIpNxWPGPZxtMA9D1i/YKPrmmjdfYxkKu6+GwBwqLmBeju14DGDRTtnEXQceKGCA50BPvCBBKwGgAP1DSzVujtZf6wkM++gVwbwoKyJzM0di+1tABHQbgPz8+R33ghiZnWrNsr81OQArgizuh+OMqvvvhvKD/xL/MoPXtihCS+rMgE+c1gjhQ8OkkSMlLIOOcBUeqoSMJnxxcZcifJsRUGuRmlhtheQz9adopw+TrRVyKxuazZ6/enAattPOddTGZAhZ5r3PBDwr6gMiACzGgCe/OPPY+/gKeATn8Dt3c/i4YdBDRabmJ9J3V8M9BEBqwXHl8bAua8ks5rpmtRq5G/qNNjSbMjj7D2WcOZc24nM6rxgVSECzGoAyf7nxAncOLOCA40N3HNXiuIkSagZIaxAyz3oxuZfBefuTNZfFFF2VAl2HpvnJh2myxpfMeCLV/pfdN6iIPjEYRtFoxVaBUJIBqRIQogmcEUYdQSs9oXB6kyAKgaVy7HAtCzAfhoZEB6zugzjLU8OB0gqK6tkVjOgtkQyyDDALVMnMiDFkmwAxJnVN94ISBK+ufEJ/N1HI/h9m+wb2NxL28yVwGAmriV9N7IAYN+LSlWHqVoOs5oxoNWCeyOWGM4z7CspMZPHrCZJgBJgpiizuoRUYK50BTNYrIlfByKpkPF7MX3jsprVnGqAotU2qsaXSfNtn3gN5HVakmAYEklWiWQuBYLd8uvr5d4vScA//EPqgXFmtapS36wpyW2+T6qbdRmQJMh1k5yrRHVpQXCNr/96IgPiOEjA6lbq99Y0buKulNwUUnJ5u8zqqaIC5Gk3/qli++kNzFCzsn24hAsXgCfPGrhpZoVoMzIZEB7Dh4Vtw/J1mE06w8zN4VBzA+c2W8RgcU5OmNUiOr2Pn0JH6QMAFv7Z1wGHD6Nhr2OwYaO3FWDVaqGhe8mGgjGr89qmIN0OcweqyzxnDtBQbcgzo+W+shQhcHOuw/Y2pMBHXfOxeMsCYBg4FDyNc6fpLD5ugqGqhJXFkWz2vQgdY4if/qF+/gtZKAop+eWVk1N5kfa8YKZSVaFIIQJHTLP6xInJzGqflUKaJpZqPayuT+nuCyDyg7iPzDyCpwXuWQSsbjGwenYWkCQcMK7ix380xJ88eAc2nAbmluhYZg6/dv64vXgR+KGfqmNf93Hgve/FzAf+EFtbdDPoebg07GD/DEWkJAmGHpFDAyfD7XsRrl6NoEgRpFtuJg8eOQIAONjcQG0m9TsyZrUAWK0ZclI2t2cPuQbNTSzfsUxcJNLBNs15eo9lSmgZsMwDZ9hOaH4emJlBW7exvRnGmtVNM/WbUwNTj2dIAsAahKgxg0UWz30u8P3fv7N8gadfHzt9FwNoFFVCkKerXFJDMde0MAjIhqpom6DajBmHslgGpHJmdTmjMt7hybP8Ykw6ZrAoCFb/zd8ADzww9mAQwAp01Jl0DVsXLX6lTaH7i60zAprVAPDk1VnsrRMJCe1/fQi6HmHYD4lm9Uzqt9a0/AM0APh+IQaVZihfebCaASlsLpibAwC0NGcnbkelvLgGi45SDKwuoFkNIAGrb7oJbd3GY2/595C9UQS9ZoSEWc3RUCzDKM08mI+biBaJPIPFaTSr80AElhCsUgaEMatLJNk0XYIb5lTxAMWqQmhSWAistiLCrBaRFwGypZZisLqcZJLKZBUy2i0sUxCbA2e/pLAvAGtXCuE7ORVXJUFVAPkGySVY67H3Rs7YGjhqMWa1pgnJJfp9m7CW221g3z5okg8dDrauekTWsd1OXswDasuyimWZaFbn+W5IYbWa1SxhUfTIw0uyUd3uUt4jOZrVZGwV7CvAB6snMegF2uRqVlOwWthgEWTayvy9pmBWa3kmrozQUnAuiCWR8u7ZAdAc15mfEIYpkURoRWD1tMzqRoNs++KtH/0tdTam2feJIi6xi0UUYaevDEvssKQhS4wVAKu7XeDQIeDpp4GbbiJtxjK3LAQSd54TQlf8EgaLAsbLu8GNXbD6OoruuS20KVj9Mv1z+OhHIjx5oY4bZ1YSZrXCl6qIg1KMJJOuFvPzONxax9n+HDFYnFdIubPqCsmAuGtdNDUHshRiYVEGDh2CJBFw8t3/LcRvPPR1aKQBKmawKMis3hGdDjq6hbY+hiArCmFQWTmbwl4PUSShUQuwtEcGDh/G3vo2rpylszgzXtPlkTa5PoBOQWdyEeMrEBbVUq2H1qKgwBdje1n8CXJ7G7j1Vg6z2jCwVOthZXNKd18Q1micTRY0rmRg9du/5yRZr1QV6HRwsLGJP3mfhEdWiQxMXN6qaVS+hg/6HGhu4fY5gtTPhJvYXvfjJy8MZnFgNkk8mEYEm6dLCcDvWXhkfQ/2ztpAp0MepGD1oeYG6rOpQyVlVguB1emkTbsN/MAP4GVvWsKJH/lG4g6ZDmYklSOt4bsU8BA95NJ2dYWvpRmtrRMAY34eaLUwo1uEbM2Y1fVRME1I4w0ErK6Pg9VZwauyYEyfgpt8Sc05lNJ2AVRuWliqTeSXu/qBVNpgMROsZpvMa1CWag2jwszXtm6j2xf7fp/9LPCRcTeNIMDQ11FjzGq2LlocuY5SmtV8QJVdmqe6S9jzspvIHLO1hRv3D/HkWR3rTgNzM6NrbS6TkDYaAdeVDEjQt8gcw+YCmqxqaTYMYyezWlc44F8YYuhphKEoej+oKkm0CYDVI5JLqgq02+SwyoTHaRCwWucyq8vJgOSYdJXVPc0zWJxGs1oO4eeU0wMoPcdmMRSjSCruNQCyhPI0qwM3gCJaaaFp0BVfyHTYHoaFZEAyD+dlGdA0MllkLClclPkpSYk/xCSCQBjCCyTCBC9oWqjKAYIs804GUBnFE7gAspnVUblraxjgy4A46k6DxbwQlAGxul6y36J72P2tLp68UCOPp30BWAVPHrM6LCipELebLa3h+eX2MIomZzOrWeKqRIJFkaLsy1o2IcaSopn7rZKya5w9clydW1SzmreP8X3YgVqIWR2zlfPWmYLEk9jbh2OwWLTaRgSs7veBpupwz1+6KcMJtMrB6jLMap/itTfcAJw5Qx8MAnKma6S04/OqrSbEffcB3/EdOz8sJswBQK1G9nsFwOpejxyVf+M3yDbZsSPCrJ5JvUjTyJ7AvobM6l2weqrYBauvo9hesWJm9UtmHsF9n/PxyMUObuwkYLUu+3ALgNWSFCUb3IUFLNd6uDycgRVoMNs6AVO1AJbHB+i8oQdd8VE3AiwuAvFsEAS4uhLgi2uHUTdSEzcty7XzDOsYSFebsFB+7/dC3b+M7/vnY/1ipdR5ACidret6QNQUDh0i4Gbfj58fWaCYIze3PDsqZnrEzJTymNVRBM+L8FN3fQSveI34YUSTA3hDMc3qW27JYVZrEmCaRAZkq0AaPCNigJSC1brMN+vzLB+qFOJNX7eZPHjwIA40NrFv3sFja4swFD+57jGzmm9a+OoDD+MXnvfXwNGjhA0wTIPVHRyYS0q0VY0yajklPV7fxqrVxuGDqe91kEjVvP7I/fimV43eB03NQc/O2bBkVRjcdRf+7a8v4dixCe/hMQZATLrKlJLreRpvNNyVTZKJjpnVFtEN9n30PAPNWuoayETmJ8jQVU7HcBChpnhiYDWPNVJWT1WgXQDVMqvDkMzXpZnVEzZMUQQvkMsZauUZ00wjAyIAVtdUr7jB4lDsug2HwIMPjj0YBMQbwkjA6rrqYshLMhZl/SkKDF61EZJL88TWMva+8CCYe+9NjQt44oyJLbeO2ZnUGIrLswVkQESZ1WZ5ZvVv/uaYQU/JsPv+aJVFGqw2x8aeppEkdh5Y7XnEdNosUPodV5pw9l3jzGoA+PmfB97yFuAVrxjtqsABJ15Hi8qASBkHc2rg+swyWMzxXCgrA8KuwaR2p0gIxprVOb9ZnGgTBavlAK6AobM9DGGqJZjV4xchiqbTrNblyczHsoxtSUrWrgz2a9xukXEgpFldojJIiFldrEmAgtV5rP0ooszqAjIgPCNjGlbXS/ZbrDpQX8W9Zw/hUGtrpwzItWBWx4mryU/HvhslmNWZ+3kGAJfR2hcA7EvLVeQaLJa4b5lkZEb5wsh5TTTYGSFvaPk+nKIyIHkAcLyXF+8mAL4uPjX5KwNWZ7LAafQGMklWc66tUZMrZVZ79HYuw6xm4O/x48DJk/RB6kPUqo9Ka4j6ZgHEF/vTnx67XEzahYHVmgZFCoVwDRbDIZmiXv960ucLVw24oQKjlvo9mcdV7xoYLO4yqyuJXbD6OopuV0Jbs4E9eyBLEb71RVfwt6duxHPmz4/KgIiC1bZNMuvsoDc/D1mK0NIc9DyTMK4lCbW6RFg+nInSG7jQ5AANwyeSwpRRKgUB1ld89D0TjdaoARxhVufs3hhoPA7SAcD+/cC///f4pXcsjD5OD/y5zGqPGMvVDQpW0/LheKYclwFRFH6mGIDvRlClYkw6Uk6e8xrXhR/KODzbRaMtbrCoyQE8AbPN7W3gzjuBU6fGnmA6VKaSyIBsVwBWexTQpwaLIjIgE/U5b7sNL9/3BH73jf+Af1w5jL217eS6s8WHUxHg9hxosk/ugf37yYNeCqzuz+LAfOrH4YGUrL9DF/NGH0eOpj7fMIA77sDRQz5uetly8jiVw7G8nN/WceCGCvRagZOOplFWUg6zOv1biIagweLw6oAczGdmgHabaJh5YWpjM/qbS7qWb6xHw7IhzqzmyYCwg0OJUk9euwBKm39lgUml2gQrd+UYX5UBfbIYKVMaLALIHAeWBXJ4LsCsbmoO+kOxH9myJoPVBMRMJIxqigfLyW+zDLOaC6iCzId11cGKNYO9LzgA3H47AOCm6HE8cb6GIJShmKnrw0CEvARTURkQBlaX2IR/8YvAlSuF37YjrG2XjAUGmNC/W7oNQx/7rrEMSM794/sJWC0agjIgkTMBrG61gK/7up3XXGCd8d2wpGZ1Bls5ngvLa1ZPBDzixFXBNvM0Wmm7En1doWC/VwZYXcprAKTSwOWAE8NhgbmL7uFEfBxsG9VoVseJhSkNFrPkRUrooatqlO0PwQgVRQGqPO121m4kV8usZuzyEoCiaUSEWZ0j1dD3DCKzWCDJJiIDQgyt6X5r714AwMHgDD568Vbcsmdz9PN41zUMy1VcKQqRAclo1/NLGCEitS/KYu2HClS5bEVIxvNhCC+aQgYkR7NaHfdpEGxXk4NMSRzHjggRqIxUoACzegQ05ISmRpNlhoCp9NAzSRe0n9dKs7o/kAhYzWNW15RKNatdl9zKZZjV3S7Ztpw4QXSgAcTSjq1mMWmNdFy+TPbeDz2UenC8wl3X0dYt9LYK6D9HIaRP/gOwtoaDB4HzV02Ce6XnCro3tHP83jwP5cDqXWZ1JbELVl9HsT1QCbP6zjsBAL/4VR/BQ2/6RexbcMmNx8BqDvs3DvZCtsGl0govXHoaEqKYpVRryMTsh9OwZ/nQpAANMyRgNWVW65KLyxdDaLKPxsyosZzG06l1HAJ6TGJWZwVjQeeB9lQ7sFXzSQUuBavVyMOlS8CXn2pi260lcmwMROCWZxdkVjMG8CAfRPDSpTAiwQ5kAmD11hbwnOeQkp6RdSU2AiGa1YtmD6u9WkYr4uG7YVK+zGRA8hILyGAA3347buqs4FvU/wUJEdFuZQsQlVcZcsAkr2uRdptNYJkCyIzK5ftEBmQhNe55ICVrd+hhud7F4VvGpDl+8AeB//gfRw+VqgpJArnnssK2s5M2WRGbE+X005egSQX1imMtzfyXWUPKgNb1RNcwCIDhEFetFqm+SEcW22u8XQviJc9CMiAlDk/XQuePtpvHVi7VJnI0q9khp+iBjPYjT7O68JzFgjF9Mmg5wyGKyYCwhBhn7mZhWWQuHDkXBAGsQEONOdfTeTs3GRaG8AJ6bUXBL7Z2cZjV3noXc8YALd1GY84Ajh4FANwUPIoHT9Oy7PSgVtV8thdQmFmtGgoZUyWY1efOFarkzAyrN8aspsBJS3NgaGNjnYHVeeCf52HgG6jXCtwPggaL7tAnh34R9isvyYaU5FgpGZAMwGMKZrUqhZNlFaZhvOVUBoVBBLmETm1uOf0UCcFYGirnUDq0pILMaj9XxotFrFktClZnrbXstyphAgjky4CUZWyrSrbfQmlwPW+8ApRZXb0MSGnNap7Boudh4OujMou8EASTrJ5P9nGGEcsVHVQv49OXj+OWg2PePKyCJweoLZXEpnvZrOkw9oYomHAnyZVspm6p5J0IYB+WM1jMS7L5kVwqGcRLtjp2BEMuCFbHc1fOa5h5XoF7jC8DUlJiRg7h5RhiltnLCsmADGUxzepatTIgnkfA6jLM6m6XHOdGwGoq7dhspK6hYOUGi8uXgde8Bvj4x1MPUla7oitxm23NRndLcA4NQ2B1FXjf+4Df+i0c3Bfg/BrFMMb2xzy8pDSzehesriR2werrJYIAXUtD23CA224jjz38MPm72SR/UxkQx4GQqH0wsIl+XnqDa1l40dLT6OgWqZkABat9LTEzyghv6EGTA3Sao8zqljLE0+cUvGDxDOpjxnKqFCLIA6vzmNVZwYDlPGkJuuL/t+/6JBHdp8D8vN7HBz4A/OHHj2Fl2Mae5Shpk6d3CcqsLsikq6kurGE+sF64DKkgs7rTAV7ykrHS7PSG3TSJ5rCtCxsmZIXvg1wjRUlKXTkl1J4d7NRWXlggf2wbR1rr2NvqJ5tVynwc5rH2AXg9G7ockMoEClbroUPuIaZZvZgCq0V0/qIIvu1jyezh8F2d0efSWl4s2AEn77rmyeFkBQOo8jSrfRQvn1RV6ErGpjkVw0FKWzgGq0Og2yWaYUtjB2u2ucnbkEURbFsiJc9VyICUPUSLMqtLSGuoObqEAMoxq9mhLNNQqwQ4kcdIoYmusgaLeYcnywYBKAswq0WSK3H7FlHVYMsrgBSzOoz7WFM9DN2c+9H3i5cRM0CVU/rvr21h1hhiT4euye020G7jmHEB/+/n9+ANN3x59Pqww36W/i+QgBaCa5ek0bmwBFh9/jx3OyEUVj/YKQl0/Dhamg19YWb0xYpCx0GOLn5aBkQ0qD4nTxbJHgTiJni8JBtYeXZxsDovGeaHCpQpEldZxo1lja8yy95Bhp0ql6gIYVrQFcuAxHuDHHDCsgrMXXSddQV8HGxHKmawmAVUTsGABug6k2OwWI5ZnW+qRtjKxQFFJc+8k1VWViwD4kflEsOGKeUzq30fA89AwygAiKgqJAChm/+eYS9IKtmaTaDRwIHmJtxQwy037PQLEpIBKTEX5DKrAzk5UxRpNk+zuiwAzOYtHmBfhlnNkwEp6RGSJ8VYllmtKxwJo4LJcUBQBqQUWJ0jNzWtZnUes9pS0NRsvgxIXancYLEsWJ2WAUmD1T3PGJGvj0knghvvy5eBH/5h4L3vJfgya3ekwoX6z/S6gqaNT59JSJarqzjUfRinVxo7DeVZJYCVA1YXNUun8Uzwdnk2xC5Yfb1Ev4+uZ6I9qxDdMEVJqEmNBvlbUWDoEdncCtwYVj/YWU5fr+OepdO4YbEfb9gJWK3zmdUUrP7of7mf7JkpWN2W+7iwquPr9z+OhT1jbC85X6agFEjH2Gl5bF1qdhQzpylYvaht4gtfAC5tmrhitbG8lDDpRNh5sSt1Uc1qO19Hc6QURiQKGiy228ArXwl87GOpJxiz2iAA60zDR9c1p1swoyhhVqtqwnrkSNfEMiDjhzGqoXekScFqFgxA4JTQej07YVZT1khH7uJ97wMC28NVu4mFTuoaisiAdLvwfeBfv+BTuP3FzdzPH2kz7xKUBKt5lQvEmKYgO02kxA8pfc4Us1qJPPjbAwCA1Bq7NiKZ+DCEE6gwVUGAXVHyD2TMVKxqZnXZEnUOmASgWhkQpstYBqymDKJMpk+oQClTlqqqMBQv8/A0tOTCBosibGUWlgW8+c3AX/5l6sEggOXrqJlJ8rKmuLDykmFMRqnIEKCSQLk+DgD89W3MGkPsXUyNv4MHYao+Xnf4fvzQbZ/ASOkCj+2FlIRDgUQrAG6VyXgEAdEnrAysVr1R3dQf/VG0vu0bYcw1Rl8sSTD0iGi/5jAUh75ejFktKItUCKxmJfp5BotlZUCygBSmWV0GqOQk2cqDCDk6tWyvVXSOlWUKAis7y/+nAasVhSurUIhZLUnQNL5pI6IItivDVAsASllr7ZRgdXwwz2JWlwarqzfBU5ks2aSgmtWVGyyWvAbEYDGHWe37hFldK5Fk45wRrEFI5ljTJImhPXtwsLGJlmZh34Gx+4RXwVNWrkImYHQms7oM6QLI96CZcmwFAYepW4JZnTkfTjG2citNQI79huKVkwHh+EOw1wo3m8eEpyzcayED4kdycbDayEmE0OhbipDBolrTyLxaIbN6bg4YDIq/lzGrl5dToDKVARlnVov6ZgEErL71VuD7vx/4wAeSdoMxsLpVgFntbA7JnovGwf5jeOTSLNq6NTruBMh9notdg8WvYOyC1ddL9HpEh3KGGCkyKRAAMWAHkAycE/BZ0AAw6FKwOs2s/r7vw4Hn78H7/yFxp9fqGpl0OWC1O/ShKz7ml+kk0GwCsoy21IeCAP/h+X+Fl3916oZl2XIBZrVqlgGr80ueo0hKJp5WC5BlLCqb+MJ9ES5t1rFmN7G4PGawmAfQRRFlDRcz1OJqVjOWRxF2uWBpMkD0lbUPfgDHDjg4dy79BHPiJZ/baMnoe+Z0KEO8AaSMKCYDwjNYdDIO5ocPAwBeuuckblu+mjzO5BQ4OArRrKZg9eIiMZLU1vGzPxPiH77QRBRJkI1RhiIPRECvhyCS8c3Pu4x6Q2DjFI8VAWZ1vYQ+aZ5mdRljGioDwmVWD1MssnodUBS01SE2zvUJCybOFCXtSkD+os507sb1aHP6mgd8TmN2AyCXWV1K+/QaaVYrqjR540wNtcqW/pOy1Ml9jQDIajmGoi4HmQksy5aKaVazhBinKiZu3yKed3/1VylCI2NW1xKwuq66AszqguAfreBx8vTrkciA7N2Xur7UwPUvvuGd6BgWcODASLt5LFUgNccWWLsAFAarV1bIYSm9jEQR8Hd/V6gZAGN6qiw0Da397YmKCDFDMWvyomB1ozH56YnBOeyzIGC1oAwIvbZZUjikq1Fxg0UGeGQYuJbS70+3mwGklAIqOcCXH0jk+5cxQ1QjuJOSFmXlmwChRLZlS4USbbpJdbDzFlu6Jpp6ARmELGZ1QEB8XSvJrDaUfIPFkmA1l01ZojJKlQMEWfNhGYIIbRfgaLeXWGtlXUWYV9HneYRZXUQGhFUccfbe1iBETUnNsXv2YF9jC9994+cgzezcw/H0mv2opFRDVpKNmkSrUvEqi1hjPS+5UGZs5RnDRlHpscU1tC7NrPYzq1tLM6uZhFFWVQj7MQsMBjFmdZl1JsyWW2IgeMHEVa5kCQ3CrObLgEiGTvCKCpnVnQ45oxWN7maA1pWnIG2kBK+pDMg4s1pX/Fy2cjquXiVH8L17CYGOtTtusNjWbXS7Yn3trTloaQ5w7BgA4ODgcfyvRw/huQvndxjD8vASz5emkwEpUYG4G0nsgtXXS/R65G82G9xzT/Lcq18d/5NoG6lCgpDDXoC6MnbQO3EC+LEfG2Vlsed5zGqmK8xOibIMtNto6zbmDcp6nUmV5rINYyjArC4C0rFy3zxpCTbps4OjLAOzs1gw+3jiSQlrfYMsUDVtpM3c8mw6sWpqAWdyxtDjgNUjE7Zgu6IyIFi7CnzsY1j61F9gZSX1+FgJjlwzCAA3JVjtRynTEl0XlgHJY1b/4G2fxItuTq1gDJzJS4QA8PopsFqSgEOH8O6veS/+8GfP4od+6zi+4cBjoxsJulDlgQjxolRAt5w0WrEMiERY05kGMmyTX1TrjzJyeJI4I9rCkgTMzmJGs3DygQGWaj2M7mwgpqHoebB9DaYueIBgwGeWgecUQAqAa2KwmFVOHwVTMKuzGERTaIkm+toTnptCXzseXxlzgmVLhOlVWAZEnFk9N7ezzNHytYRZzZKMeaAyS/YVZFbrss81VfMtD4ebG7j9ttQ1SiWtUaslpsFAAiLkgdVsji3KrC7IGDl3jhSxpNc8xwF+4icKNQOAACmTzFZbrcnyvSIMxbLMai5YzXSFBZnVOqcs1Wea1aLSD0AKSMmW7plGszqr3bKSCjxmdRmdWgCUsTxZFglAqTZFZECGtkwSbYL3mG4IsLJ8n6yJWjG5IfbekWDEiLLM6iwWWQymFW9X0wA/ypEBicpVRuXJSpT2XFAUyFKE0KvWYDGutMhlVhto1EtUhHDApBFmNQDccgs0OcTvfNX7d0qxsQqerOE6BatYyQGr4+qwgvetrOQwq8tqVvMMFqdgAOdXspXQwabtankyIA6Ka1bLMnQ1JIm2SWcPIBnLBfaImZUbQAqsLsmszvq9fB8RUp4Eos3qSn6CCUDfVtESkAGJ13hhQ7L88DwCxZRiVj90Bu0n7gN+5mcAROTYygwW00c6ti8SqO4GyDBRFLJ3i8FotodmiQJdR1uzhMHq7rpHWNT79wOtFvbgCv7LC/8Cv/KCD8aV1CN9zcJLogiuJ+2UDxEIzZDhRbvM6mljF6y+XqJPwV42G9xxB/CqVwH/4l/EEhYAcY11Q0VoUhv2QzQ0h2/Kwp7naVZb/k5Acf9+tDQb8wpNlaXBalWFIkXw88BqplldkFEqYrAoSdHoItHpYLHWg2mEmDVt8jzb1ItoVlON0kIbZ0WBqXr5l7aM2QtzkhfJatJJdOHxe7G2Fo087qU/l21MpwGrY0CfbmBiGZD8t3lZB/NDh5IN6pvfnDwemwtywOqBC132EymdI0cgSxFesedRXFgz8dab792h/arzkgClweqc15TRTZMkvoFMJBMzpYJgtSYHcDnGTzEDlv1mc3No6zaeOiVhudZNtPZZaBq5BJyDuROqMA3BAwTPbLXsYZejKRsGEZQy5l+x2cvOp8qWugI55ZNlD2Ssr1KGMc0U+trQNBg5ycahXVAGJGZWi/XFtsmSd+utwBNP0AepwWIMYmoa8RrwcvrA5s8iY0tEGgvEUOrFS6fxcz+akj66/fbk3+HYPR3r12e36TkhdMUvNG9xq0wmxLlzJCeeXkZcF9jcLNQMgJSJ6xho8oIXAN/7vTtfb5hSPlPVdeGWqGLSRcDqYUjAakG94prqwhpkHPRpFVdhpk8e8zGKiHRPaWZ1MFlWoWxCkGOw6AdSORkQALoWZYKq7LMLh4DOeDx3Cf5mqqHwWVm+DzsokMAFsvVEyyYWaKh6Ruk7k5sqwfwUkQEpx37N0ayexgiQYzRalv0KgG+wWEQGhPnFcJjVMemAnQOf//yksveGG0ZfzNNrpnNMaYPFSZ4L6WrNghEDkHmGmCUSIWpeVWcYIoyk4lVnedc2vr/KyYBkaviDyYAUBKvBEoL5Ouvs84W7qmVUCALl5y5eNQD7rKIDgVd5FkXoO6oQsxq6TvZaFTKrm81y2HfvyhBtnWzeGmGPkA58H26gQq+l1s0CUqS+n1yudjvhZiZSpGOa1b2JzeyI7maAtmaTyt7DhyFLEX7g1k9BadVHz5+8SnR2/lZROCGWm2DZDeHYBauvk3DWeuQgycBqWQbe8AbgRS8aed3MDLDl1IUAxWF/MitpR5gmYYzwmNWWT4CvdHvf/u1oN0PMmxnMaukaMKvp4sMzk4oiaRT8XF7GgtnH4YUhlhs9zBmDZBFhoFce4MEY0EUyuzE7kWOwGMlQjGJuzCIyIIHjQ5HIZ6tyiGCY+o19H056AaK/a2RPkd1lbG22pmkakQHhrMGZ+pymCfzIjwA/+qMgTpk0GDgjAFbHzGoglhUxL57CI7/1MZyYWd3BrDYUD/aQb95ZRLccAKI8ZjU78BfciGlqxGUilHE71+UAHo9ZbY2VPM/PY0a38OTWMpZrvYkyIACEWGRFZEB0OacUrWzpoKLkGm3G5l9lmdUT5gPPLw/OZB74KzBYnDgOpjQq03MSDJYjk7LkoprVPt+ojIUkkekkDVYP05rVikJkQDw1t8zVL+pOH8sXCXgjyGPJO01LAOs77hh9A8/4CoDrRMWYI6qA2eyEOHOGXNv0FsXzgK2tQs0AoGD1uGY1SP7+Oc/Z+XpdR75RGd0XSHqx/YaQZrUVEWNYQRkQM2+dSSdCCiYaMwFgpg9ZBkyLK0IqZlbnmar5U8iAaFQGZILBIIDS8xaAfINFp1iiTdIE18QSYLUxqXqFHcqLgok0rokMSB5ANVUiJJ9ZXVaqIdMbgCbGCxnusuDtjZjBYkFmta743DNCbArKznWSBPzgDwJvfztwyy072hSRASlzXTMlI2OTzXJ7GADZGshl/DwUhZCwssgc01bdTRpbUQSvLLOarV9ZMiCuVAqs1vV8g8HQ9YnsXxEZkDz9Xza2yjDWpSBbBqQEA3zk9VnrQRCg7xpoGh5/LLA9Q4Wa1bperoCIAMCkLK4jdQnJYFLiQVWhSWJg9fo6sLBA/t1u72RWK/qYZnVPrOPdDZ8A6/U6cPRo8sTy8ugL2Zk2ay6kFUd6keolGjFYvSsDMlXsgtXXSXRXbczo1s7S+bFYnnWxYrWFboxBP0Jd9cSZ1UVlQABgcRHtl9yOeYPWm4yB1QqPRea6RPvULFbqmuv0DUwGFO+5B4tmH4e1i9hX38KeWjdZJBSFgKo8sLroYS82PMoHq4HUwUWwXRGwenBuHQ11FKBO67S6gQqjQT9X12EqHpz+FJNuXBo/LgOS/7ZMzWqAbJizNs1B/hTnDogpaMysptpWOHkSh4yVuI/pdk3Fhz24RszqLOCrpNM1j4lQSpOvCLM6LdcwP4+2buGp7hKRARlnVouA1Z5XmFmtyhlMJ6C84Q8HmCht/pVjWui50XTM6knjoKzjPZACqyc8Nw1DkTG+Ju3LwxBDV0Vd88TbVhRSkhqohdgN42C15esJJirLqKk+MR7OA6uLsvYZmJiXwAUZCxP1ir//+0kS+9u+bXK7HGa1JhWTASnDrD51imDpaRkQ1yVsmkK4dxRRZrVAwp0G0azWsvdHvj9aUSUSbK3lLIuEWS2oWU33BYGbcW1ZYrxERUgmADxNlYUsZ+t+lly7eNVR8RxbVgYkj1ld0mAx7lhGDB0iH1RYaidvcAUBAatF10TarjnJ2HtKsFpSlcnVUWVNNsESrXmmaiVMQekZIZPQwqQayt5fGZrwXlFZKBYCYLUVaOM5O26bIsxqy8LO6hVJIlKR4/deXMHDMRcsc12zCEjsusrl9jCsXzuC+XmUYVbnVTFNAVarcsYcy/byZe5bBtRlVAbZTjmwOp5jM+YuooVdzLhR0WQEvCqLEusMkQHhaGsXHQi85CXVeW7UBPZPFYPVrltMPSwd3c0ALcqs7qh9QjKYBOgX8M3qdoF2tAW8971oXXgsAauDgOA/uhq32dJs9AZi905vOyQyK7XaKHshLXML8PGSNLO6YGimsmuwWEHsgtXXSXTXXFLOwAGrzbqcbyCUih3lXVlBn48sjgwIAxTHZsHWHUcwf+sSOUSnJ3yagQ7CHMYb+x5FdRnlIBugAil/3HEoPXECt9wc4a3H/wH7lBUs17sjMiA6D6BjbKeCzGrC8Mh5TQkjCtGFov/0VVKGRGPWsJJybHbt2QKk62jrNrbXp5h0Y0ZYAlZzjSvBwJkC+pwM9OOA1bF0DQOrZ2dJ1tVxgM98hjxG2dYAYsabY1XIrJYkQJbJeMzSd2MbsYKO1DwDmfLMar4G8HDcTGpuDnfOXcTfXbiF3FsTwGoJQOhwSp59DYYpeI9pGgHpshJXZXVaOUCd55XUU81hzxA2bUmwWpfJgT8DRCgFUMUsqskHSAClGYoTWX8A4HmwAh21ImZiEDDWSwVrdhKzul5PXsd1+WbmMEWAFCatEuSzwGOgblKlyateNbFqIbc8G/QAU1AGRJFC+E4xsPrkSUIAH5cBASCsRcjeNPR11AzxCgYRg0UA1wastiGuWZ1nhEj76UdTAMAZRoiFk+0j7WZrYZcGq3NAHz+UyZ6gjAyIPrlEPfRDwvYrOW/l6goDsFylkAxIprZ0OjyPGiwWSDqrKmoKlZ9LzzPsUF4SyMgE7KdlVnP2MFqJ9ZvHrC6rWZ3LrE5L4BXsLwCupEIM6gi2madVDIAkBB1KOuCdE2mbZH7JWJuZDEiJKotcZnVUnlkdRdLkfTdLhFStWT0NWJ01H05rsKj4mTgokQEpBioDRG8/TwbEsSOSvC3Sbl5yoWT1afJ7ZRssAigvA5I1EFyXJhkF2tLLGSx+8YvEKHw8PMohEiw0HInudkSwKACzSpeA1ZOuUQEZkG4XaK2eBj7zGbT/9PfR2/LjjkaRlFzLrIqgvL7qFgGr9+1Lnhj/LVlfs/ZbUyRxY2b1Llg9VeyC1ddJbG8EhFmdPi1PCl0nBM1xLboJMbQkwqrlsZIMgwCKHEata4dE/3esvRe9WMJrf/wEOUSnQ5IgKxJhYuSAdACKHUg45aMAENjezsO+JGHueTfgzUe/hAONLeyrb0+QAcnpB9OWLgJWxxsQPrO61AGax6y+sIkm03QCsFzrJiaL7NqzzzUMtDUb3c0ptJeCgGjr6QkATxjrfLB6osFiVjBwJsxxo6bt6spYuzffPNLOiHEZBdJsq/rfC0D2glZyIxZrFWeVzZUpn1RV6EoAjyNVEJc8pzSr33jDl3D3/AUcWrB2btapezRPD9wONFEiZTIXZAFqU2xwAWT+Xn5AS9SLAimaRsDKCSyX2I26YmZ1aUOtPBmQaTSraTJkYgJr3OhQMIyaDGdS2f+kiCLgz/8c7VNfxtYW8IlPINasTjPXuCX6ZcA/SUqYhFlrIgDfj7IrTSYFrzwbqWSzaIcVBQ3VxcAq9htvbpJzw7gMCHtOOByHjIUCbEKuBjB7vKAOtC5na36yKGSwyECvrHmLlqWqRQ9Peaw/qtNbSrOarbc5jNLKDRa98pUmWSXq0/gCxHJeWWK1UUSY1UoBsJpJ7fCY1X5BZrUsw1TJXDqyJsSH8nKa1ZlswmnAahW5MiClEix5RqOpdksngzLug9LJIAGWZhRJ5eatvDNCEGDo6ajrvtg9weatrC0cIweUNBec+PXLki5ou6xfk9otVXUWX4NsGRBJiorPMUwirOpEo5pvEOy4UnGDRfDNYePkbUGwOpMkQtevsgmmTBmQsntZjlQgq8QWWhfpJuf/Y+/Pg23Z7rtO8Jtz5h7OcMc3T9KTLdmSLEtGtrEtY4XBZUDF4HZB0w4bUy6qu6MKKNu0HQW0C6q6mKEg6KKhKLo6gDDNFBDuCgzYBhuwMMaWZcuy9aSn4Q333fkMe++cM/uPtVbu3JlrZe71W3n87kPnF/Hi3XvuuXny5s5cudZ3fX+fb73SS0T8kR8BfviH+18nO6vrGucrNMzqI5zg4UPhki921zsazurzkxLL4gEAYOGlOBcaQ1eD4GvEfTX7szMwYV1MEr/ne5gZ7Vu+Zfcb93VWE8TqfYI2L2u8LsXqt0idnVtsgBgbYTiAfnUy/mBsNthvxzwIWNjPaviYzWK3c7y3vQ34+q9X/KU9RDoAei8KdyTpG0CRlnBsiTONB4Z85zt+Gv/nd/2r7fXmrOK0GDgP4aSb2llNET+bncLhidbqzgZzNwPe8Q4AwE3vQSNWV3kJ26p3nNWHfozTE8KkUFRRYJWHWITbtiHfLoeDK6tqu4jcdyVtWbAcu/n7qspziejT5r0+/ngvYHGQJcoOyv5PEatVi5GqQlnbcDRxFZ43vNCjOqsZBmTMWe3ssoWvXoVlAf/8N/9FfO1XbJTHHdyJ5xz1vcVqgT8YWpQS21IBtTBBFj3EeCBZ7BYlXax2PO6sljBaSSgYYD8MiImzWjYh5W7aWah3vrbv7u9MOT0F/sW/AP7qX8Uf+oM1/vP/HFJnNVx3OBCU6PrzfL6xMDC5bZjVGi7o0YDFrIavI1a7LuZeivVm/zEpTdkrNQzlzmotbnWSaLe+NxsMUzqrRZjxyIarlrN6SPzl50nCF405qylIhfZxp3RWi7FbJvrUNXdWE7pXwJ3VVd/113SvEAMWBzdGxRgSaJzzvjkOOhu4vCKf/b2dY5cl0srdPxOiWyrxzwQDMhQSLY6re8+6I7k24lkgiKrKtUfTxaR3SADjOBhZYPxYCeFnyKWY52xDMNjzfdt08KiFWjIGRDiru+YTgWwhzmGGxE/Sudo2XLtmWUyytUdVsbkIcW6omm+RMSAja7A0t/tC5B7l+ZZ0jBXVbN5qbrAoBWBTDIhqc4FimGt//8AG097dG4eHWHgp1vfi8e9t1cc+xv77gR8AfuZntl8XzmpvgIgmrbMznKUBDg7ZxtiRdYqTewXO1zYzvcmc1UPmI17nr55i6bIJoW3V23WVwLK1NIh98kGa467AMCBi4v6BDwB//I8DN27sfmMjrKtRMGQ81j7dUZc1Wpdi9VukTs9t5qweE5Y9DzejM7xxd/yjjVOLiUlji6cwROTkiM8HBp26VmJABmsPkQ6A3ot9jzCpIimYs7p7rhzCHzgFouuLXWa1XSAtRpzVNQUDMiwiXKSzerVmO5miReaGdRd37vA/29hsoBefke/jwI9xdqq/kPnX/5rPMTmnaxltOWD7ONabF4VmmBSAwZdElll9sfrLvxz48IfZrzsBpoL1OCkGBNgrjAPAVoDfs1xvwN1ADZCxbfgO45kPbQRsMnfXWX31KnDzJtzHr8P6P/2e/l8Qos9QWyp3Vu+NARFYBdVz0Ag0+x2uqRGmbBOGSHTPSJnVOZGDDeYolQqgzYKMIE7wz0slfAGgiT5Dbal5zgRKTWf1XqIPgHyTw12dNL//vR+5j6MjtnGXlS68sPXv2ePdRdkIadreVeda18gLG64OX9rzRp3VWQaas1pDrP7c54Dnn0gQru/3mNWAplidprsc8X3K8wZRDc28QPNdGzjFuFidsnnF3mL1EL6ocWXtf5oAtq4/xTNbtsOPdWoIt2QasCg7V8GTtYnMat9CVvY378j4JmDUoci4wlys3vtE+f06pChQAhYBhF7FxOr2sYtC/5lql2qcNcAU7BWwSBConKGsGB42arsUVMMQE57YxSRc+/kwBkR/jVCNi9Wlv//7dqyDR3TzaeLsYFlwbLZB1ROr+caVNgoGGHdWU7sBnBpFrd5g2fnZ+9aQa108XwYBiyoEQhOwqPmQ7eWs1uH3A/thQHTvrWYjBPIuXKqzegQViCzb/3wPD3Hkb3ByeyTcqVOf/SyLCfubfxPbjmlsndWz2W52yGg9eICzLMLy8QVwdITjYIOHr8dcK0h3P0sxjx9h4gPA+asnTGsQVbJ7phGtxXGH8mxkx13ZjK899kIbe3e3NQjd2nPtcVnDRWkauaw3oc7WDktg3cNZ/Vh0hjduH+DFoe+rKqSFg0M/GR+EubN6MFSuZFgAz9Xc3d9TpNPGgNglykI9SJZZKQ+ounJla/v6nb9zu2hxHCbQDYnVwlmt04Y0tCATRWxN3sdZvV6BoWCuXwdcFzftu7j9Wg7Aw+nGY7wn8XODAIcaYvXpKfv/YgF85CPAK68A86LAeR5isdi+hAInH3bp8pe69kSs/ZJQbPLkOeAFnfvAsoBv/3YmWF+50jtm4BQ7rkDpQQGaWD3WYaA5wW0ctVM6q9Fpo5aNSWWJOHcRea32UccBfuiH2PWViQHinh3aiS8KJOUMYbS/M82zSxQqJnpVIa88eJ4m2kaEw6al9CXaYEB0J7iexxywMmd1QRdS/FDBTeP3wILYPupaJTYyHcUEA8InpFIMSJ4zd2J0MWL15tYpIru1IHjpJRwcXMNqw/4dVlvJcxzGt1UJSZx5GWg+X7Zro1SJM/znNe+Zfe+FsfZstFBLGs7qmZthnew/Jr386QovfPbHEf3ZH0WS/EWAXcHmEmqJ1VmGB+kch4vT/f+OGJMVn1m8rtgCWtNZ7TvFKMoqSSzG/twXA2JVKFS5G032g/47UTnfaFrJCZivkS4LIwyIilNb2bRQNQw4q/Naf7Oidb6D7y8+du3tUgU0nNXu/u9EXqFfMgxIR6xOdDqXujXgrC4qAlYD487qgjKHaQwtij/nopWlu3MzlJdjsjEsNsfzSr5op6wRPA++vR4WqwV2a9971mabqI2o3H0/8Q0x7U0AMAG4zPh7sT2vMMndEMcZYlZTNlhcbDnr3ZveAAPCxm7JPWnwfAkcjCqDpnFW62JA/JGAxRT6eJEhJzwP49M19DAnfIW8dJT3rPjZWrWHtrE3tuTwEEfBKzi5V+CpPX/8yQmLLnn3u4GPfpRdb1F5DnjIMJv52Gz6ESfKWq+xKQ4QHYdAbuPI3+DV2ynOa4eJzc7x9ns9D55d7eesfn3VEavZ38nSDl7E8/ZCromKY2B2mI2L1WOd6E2WwwXkDVzWXnXprH6L1OnKYc7qfcTq2Rlu3xsZWDnnLvAlg3O3goA5q1cDg06aXgj7lY4BqQfRGkVawpEtSiwL+K//a+C7v5u1jLTOk2FAxpzVRAzIELNaXBtNxzpbPI5gQNYWc1b7PnDlCo6DDU5usZfG2cZlvKeWWH3gJTjdMwTrL/0lRhf5n/4nxiJdrdA4qxfRVqz27XIYr5JlNH7gHi+JPAfjrMsmTFev9p8Nx2Fc5SHHOtEJb4E5OKVFbB20PYehCpTOEVrgD2vxGwiNEKJiF9dgDwhsrgvPGher09Ld31ntjgcp0ZmXame1CQZE6awu6YFiXmDLw26oIULAdoI35Kw2wYDkkpbfPKc5//ZsxYsfxIjclm3jU5/C0RFwcs6vefva78GoLWp9N+EoC1uHdSiq2RRV/50s5wGLOhgQN8Um2f8zvvtqipuzM4ROgWS9HRsyjvHVYlZnGf7dnefw/ucf7P93PG+QI5lsKtaarDN22zaCPTpN0szSw4DYFQrVe0YsdCnj1qAATA/pGnKUkuaGgq+tDFUjtv5D7fprNmyIHSFj3MtN4elttO3DrBbOah1mNYDIL/sYEFNntUqgoTqgcUHOan5vqXQkE07tsLPahkd5vvhGSBarkQIAtOecvlMMG1p0N4ctazQQEyAIigAcV527UdQOLbhyD6cuWaweuGdJGJChjJC6Rq7b1ds6WSVaoa65WJ3rY0BCZzBg8SKc1QBIc07Pw+g9q/1OGEKWAHrYksUCR0HCDGB7ip6f/CTwZV8GfMd3AL/n9+yK1dmnPgv/r/0VzOo11joYbH4QKwwaZ/XJ3Qznsct0hI6zem9m9Z2YYW45jtStCxQFsElsRG1UjOcx0+CeYnWSWizEcyzrbczcZ4CxuhSrp6lLsfotUmcbhz3M+2JAxsTqokBauQj3cRSGIWZuhs16YMKSJOQFCYDpndUjoYVFWqqZn297G8M/tEU112UYkHLMWa15DfZgiVI5mmwiOvxt69jeitXLJWNS32cnc5YwRvUuBiTB2fl+/77zc+CP/lHGywoC9ntwZ3WDAdkzuJKUUL+PWC1ERd3gxoFNgCbcVNNZ7VgVynTCTRtg+PlqnNV6hwTUAVVNZZk2T3avQI48Z63qwZ4nLRylqnZ6EyFlgIXdYEAIE1yVuG4S/qVMpDYJWBSu9aIvKldFxTyzFLHasjhmRuKmEwxNXTFlzwljfJIydM1iwb7w8Y/j8KDGyVmrO6B1zNDJ1R1HwvFFQMwMnqsI19Pp4BH31UAoak7BgHh6AYsPXk9w7G9YgGZLeMky1tyj46y++0aJmZthfqDxjI2wXxuxWtdF5tVIy4EAz7pGllv7bwbsMW4x4YvA6lXNN/jGFTlgcYxZrTvGWtb2nu1uWlHDgXn5gXyz1YhZvUcrcazrrPY82FaNKtuDWa3trK4RdzEgkiBZrVLNN0zF6gEhifQciM6ogU1sADSxWnVcA/Fz6/yT3ztlWrB8Gc3uS98u98CA6GG3GqFWEeoNgBYS7dQoZfeBwTx2PGCRiAEZ6gYwvbeU3G4CYx3gmxaKrpiyZOYQVx+3NIoBEULiVNk+FZ9zUjB5LpTYliovaXPZkVwbFMX+JizLwuGywkkWbVuWR+rsDDg+Br76q5mcseOsvn8O384xL06wkcQHKStNmbM9CIDjYxz5Gzy8V+HBysdxsJEHLI50dwPA+VnNnNXPPgsAWLobnJ8Dceaw+XhLrGb5IHt8FnmOJLcRenvcYwMmIQBAWSKr3Eux+k2sS7H6LVKnG39vZ/XN6Ay37488VUXBnNUj2jcAwGcD0cPzgYlQmiIrXfghbUAfZVZrsopZeIr6W8pUwaweOE9HhGbIuFbAbnv2vtWwRAf+fSYYkJEdyNXGZhgQzwMWCyZGPyyBusZZzMI6ewGL5/tNBjYb4P3vB/7H/5GF765WAMqSOatn/HP1PIYBKS8YA6I6dG73mdVDNZT2zqvKCrlrf+RcXbtUi9VlSWsdHOpc4MnslMm472PQNUHCNQinz5BYresgGttcoDoUXR7iKrsP6ppjQAg8VTHBkzmrCyJaBC2xWhawSFyQCReVbEFiJPoA8P0aqSycJ8+xKf1Ro0SvNMTqyMmBF19kqeGrFY7qhzhZ8b/fEatZ8PAQs5omKAIYZB2y9lHCpugIBkQ7YNFNsU73f3ge3M5xJVyzx6L178tzlnmjI1b/y48G+KYnflWv42iEAZxsKvb5a65KggDDnSa6i/6xcYuKFLAsuE6FQhb+VddsI9AACSQ1CJiI1SqHouiIIWJAVJ0m2iicdgnn40ArMfmdOIbGKggBi0GFpIsB4ZkQJhgQi5/TTpkELPoDKDPqhuCQAxowFBQVm9giI4QYYMruA/ncKEsqdYegqoYctaKE015HrBZCrUKsJrmKMSAommxcXaSzWpU7QcWANOOh6hrQAxaVAcHC1EbAHzi+IieFFxOrJ3RWG6DnXFdtvmlMIkTGuBQJBGzHrj3XtUdHNU7SGU5eXe31/avV1nMRBB1nNc8Xm9UbLbG6TlL2/AqxOohxclLjM3cP8LaDu7vzJh1n9YZjRG7eBAAs7TXOTqpt7pGYM/k+R9bscc3imL0X5+74nGusE/3SWf2m16VY/RYpJhzuIVb7PkuNjUceTh1nteviWrjCvbOBny3CAi4KA0JgVg8GLAoMyL4vSotNsKz2OfUOWrDWVF1m9UUGLI7saq7azurFgonRJ4wJdpaHOAjS7UAfBFh6Cc5W+/371mvWffO938s2TIWzekes5knUaeGqNwGoSbxjok9db53VGgKNa5VqliiAPCn1BHB+XMeqB510AKblphkwq73A3gsDouXQcoeDXgAARcGwJhruT+Z0GnAo6qJ7WseVYkB4+BeJL+2qA1dNnNV24LHrpgq+okzCwNPEJSJ4kdfkcwWAwKuZmNQVFQ2c1dJ/f6fi0wyRm7OBi2Ogjjav4+HK200lBwDH4TiLAbGaiJjB0LnyTVFv3+4CfsyxTdEsl4TNjhxz7qVazOoHd0tcCfjqqDUmZRlbp+iI1V94zcWLh3e0xWpAHVSWxLU+sxrsFNIuUqFdfL4V+JpBZUPO6prArLYsuA7k4h/fvKS685QM4KpCDZA5tdJzNXh3AS3XX3fcKkAOsd3LWV1qYkA4o1OJfwAY0k8ndJhX6Fd9DEjJONbRjHAPAOqx61HDgDQuVcWfU8Vq2x5kwpOd1UJYVrigs7jUD8HjrOIxDEhc6t0PgwHBBs5qp82B7hyTfF1HAxZpm3eOo3bq1qUBrsKtBzvkSGO34ADL5gZFgbT09n9vtWoMZ5Zk9rRitUGot+fWyu6NPAfNJLIHFkonEPLo2Mar62P8J99xba/vX62A+Zz9uitW5ykzJsyqcy2xOjnPGSaPi9XXwhVu33fx0u0lXjy8zdIcRe2pQQBcrPYT4LHHAAAHOMf5Sck2d/18u44Sm7dD5j5RWcY2Xmd7XN9GrB7KNnK0pprtYwO4FKsN61KsfitUXeM02dNZ3UxARo6p46wWYvVqwG7RTBqnDb4iteA4DhP+hjons4q9gHRGnz1FBO32bGu4PZuKAdnHWb2OmeAA12XOai/GGReVz7IIB2HrRvJ9FrQ5FC7Yqs1m+7JcLDoYkPl2whZ4FWuhVonVdc1Tuff7uU2Jz2sgAK1Z6OwrKg4tynkVSaFGzAycK9uFH8HhUJ3VA+FEFKeP5w+3+ImWZy0HrFiQxXs4q3U3F1QTJpPF7hCbsiZyoB0HnlhEt5+HukZeEtEigHqcFc8AUfRpxOquQ1FgUIhidYNVkDmrCx/RXH8TwEIL0aMoJlZnbODiLYlH1QO88cDvO249b9g5Q2UA74EBKWrCe8YumaNWVnXNQnd0HESOg7lmwOKD+zWOAw5JLHbF6uvX9ZjVaczdhJQsh3iAo0lxVvs1w9YMfGZai37hhB/sCKF1xbgDog8prI4fVDnfoKDcxGFVwldzrtNiQKZxVg8xq2kbuJnCUSuOW9UWbF/vnKNQggERTlqqWK0yCFDd9cC2e2cA1UDtjFJ2XxqYA5wRZrURBkQhfDFnteZ9K/ivI87qjeY8bmxzgeQqBuA6kAcPiw7BqZ3V4rgm6BqFU5c6N3JVbGU+56Q8X7AseE7Fulu7RiyREUMQq8eQW02GA0WsVnSKAqBfV4ULvJkXERnjyg1n8Q7f8zM7uubgFx88idVqv89i2FnN3nOz4lyLWX12UrFu6zAEjo+x8FLE6wqffPAYXrx5LndW7yFWn8Uull4KHB0x3Ki7wdntmL0v24ZK32fvw33Eap0uobGuqLJETpxvjT0Hl7VfXYrVb4UqCpxlIQ6iYnzAFA/z2HOhE8oixOr1wCxbTEYJ7Djx92WVF5Z+Cw5f6JUDzOoyK/VT38eQJZxBpe+sVjgxeFVpznh0FGf1GAYkdrBwO87qMzYZOs0iHEStA/hMsEnS/V6uwlkNAMtlJ2Bxtn2B267NXI9jorLuvSWu10A7vfZu6RhLFJyHruPa58d1rAqFqt1XCJdTMqu5A5iSTu/4DqqBFj9kmfYiZy/GWZ6zzSsdsXosYJGImHGsCkWqcuQ48Jw9ula6xVs9ewJw+xnQdWvz8wXQ/7zqmp4iD9GibcsdigbOat+rkSkwIGVtwws1V/zckTEo+gCIz3ImSs9mwJUrAIDD6iFu3fOYiL1cbr9ZbFjI7gGALk7ssSmaV87+3HZ+zMFN0apCVjF25d6fGQED8vAEUmd1ngMvvAB89rN7HwppUjE3oaazOnDUTtUkrvU5muDOatn9Kkp30b/HuGUW/iV35xWVDcejhaIqu9lMOLUjrf9UDIgfWn0MSBvfRAyGZYLiCLNaA6nAXI8jrdRFwQRAzZshDOo+BoS7/bTGlnY5Diyr7gdFXxQGxMhZPYBFMglYHGBWU8XPMTGl2bgjrBEGxeo81wu0xsVhQBxXwS5v5rHahwQchzHhZSYRwzFWKqyDuKYVx3UUoio/V0e30wZgGSFuJd8QEu8tzfBWAKOh1klqsfe35jrJtmp5R6PJe2ZgQ6zpEiRhQCrkqvmhLgbkqotffPAEkmS/7x8SqxnyrcA8fzicRdap89MKB17CJjxHRwCAdx98Ab9w/ynceKLzOeo4q2OPYUDCEDg4YB3ct9bcWd26f/j7MCv2ZFaX7n5ZDuJcVSK4wWbraIf3Ze1Vl2L1W6GyDKdZhMPFHjf7PrvlQOsltMfP52L1/c0ezmqqi0zxIJNa38VCb8RZ7ei6X8cGHYqI4A4k3ovDJgRhfU+xep3yFF/OrA6cgjmn8xxnWYjDqPWG832ETo443e+zaDurl8uOs7ql+YxeV2rL75joUxTISnfvNiwAWyf8wEZIznlguo4/x6oH+WYASBMmKUOSH5PqztvH/ZlVDrxQ71nw7Gp0YV4DmozxAYeiEQZE4aoV9yuVp+rxNv2OiEB2PQKjzmrSQg8th70KA0JkVgd+LcfM5Dlb7Oqu+F0ekDvk2gcQnxcMAxJFLJ0GwFFxDy+9sWQi68HBzjFdu1SL1eLa6n5mLk+RH3jPFLoBi7bN295teQcLBbXkMp6gFrP61Nk6qzsYkKtX2amdn+93rCytWWDhXpOY7Tn7A/cB2VkdQI6tEVWWyHQ2RvcJWKxt0kbjkLOazKxub4ZIwhDF90x5roz/S3NWe77d3wxrukwIWQP8ZAfnXPzdZQeaqIaBzRVxXPG9OsWc1f7uNeDCt0VKq4OatU5FIgHbc1F2hxEE4OY8FX9uyKyWDt2GGJChMMQsrfUxIAIxM8R/5feG5e9/3DFnNQDyxpXSWU0NiR7rkLuAUNAir9lGPmGMUXY08k0ACmoJYLeN9P3VbLISDjqyRqBiQLyBTdGaf49uea4CjYXW5gLRWa3cvCxLlLUNx9/vfI+u2vjkyeNIMw2x+tZLwA/8AIL//R9txeqybJBvMyvB5sGerdJgzuqll7AJz8EBYNv46psv49nlfVjHR7vfzOdao8ZJAOeptz3ucomr4Qr3XokZNqsnVu+JAeGbw1pi9UDAokkQvQUMhyRf1mhditVvhdJxKYqHeWyA4Jy7fZ3VV8M17q0HTqARq6cVFEkOPeFSHcOATO2sFmFtOsKXENaH1iJpqd+aOrZTyGuVugwDwsVqywKsuuTM6ggHs9aJBQFCN0ey58uy7axeLDoBi/PWfTImfF4QYkZsLmiJ1U3A4jAP3dVlVgtxYsClCYA0YaqBEWa13iEBjF9bvlums8jZx1ndYBy0MCDjDkXKYtex6uF2X6KwLA0tbCZLNHFG2YpGHbd5qRZPeW7AfgVr05cygClIJGAr+myGJ4yb8xKRwzEg8zngeTiyTvDTrz6Fdx3f2lpV+DFdVcgmwJyaNcGNsScGRGsjaCisjv+svHLgexr3l+Ng7mXYZPu/l/IM8Gz2M6yqaHTNLGMf6dd+LfDTP73fsdIECHQxINxZnSby+50qVrP7dThwVttZPTSHaYQUAlZB3AcyZzVVrLbZeFeUkuBGw+ArZcCiwRjrh3Z/3BKdccSxcJ+Axbq2tFENjFW8BxpLc6wNQyDpClRlSdsMFKW6BuI9Q3Gm7ZO7QdhsdqxKbXYzEasHmNXkELwRl2IaV2zjTnONEDjFsPhF2BxunNWyRSg1KByKeRFgxq8Xa0XZO1yMMZQxdkCwJwf2QWzeya8B9boCrJNN6azWyVroniw/Rq/qGklus3wIzXvWtSr5c2CEAVFvLpDnsq4LzxpGSwDYe2Pw8NhBXrlI9wkXBLA6LbD4lz8CPHyI4PXPbuc8mw2b6zklZm6Gzd39OSBn59YWA2LbwOEhPvT4S/jamy83TuummjFr5KBVhTj3MPP4vOvgAE/MTnHrFY4gCnbFaoYB2eOacXrAvobMQb3E5P01xi6/rL3qUqx+K1TKElitcI+nTjzMYwMaXzztxfMRGJB4rv6esmRtxLqC4hgGhPKiEOFnKvdrzRys2oLimIjAXR5ak5umHVH9dxq+9kVgQBKPYUC4WA0AKKsWeqZ1gCBgGJBsv2GjaBk9Gmc1D2zZ2e3cQ6xmDuC9fuz+xxVitaabcJAlipYTXnMS5liKwD4AdUGciI0w3sjp9O5IYJ248TTd5WOBP3la6TmIRCveIAZEE93THFdxH4jrSuSpel7dR2sUBe0Z2B60Oc5OmQhUaC3KVM5q4oF9H4wBLAlYBKAvpnjefs7qVbkNWLQs4MoVHPoxPnt+HV92o5927toDGBDxPiCMW5ZVD+KLCkKr/mB7dlkiKzXHAoEByTQ+i9a/KUDauH3ynH3mH/oQ8D3fA/wv/8v4obKsZtgSHWf1yH0QxyAFLAahJcfWiBJBVfu2049hQKiufbTuAxWzmooEUuFFjJnVFxCwGPKA4I5Qa8LvH51z5Tl7rrVD8Epkis0VAGRndRiCYUA6gj0A8iajMjDcpI16hCtM2my1bbgOe/dLA9MNmNVsviH5M822/50aEauzpGIbd5r31j5itfjevQ8r0GAK9BwAuqCo2mSrbH0zCz8P11YgIw26zhpRWeHUpaKGlKKqQfcKMIBdE85qzfBWdrK8Q0yBg0kKD6Gr3zXt2SVyGS6xqlgXKfE9o8KAkLEt/FyV73DNsfboKvu+JN/v+1evnGBhM+Ra4BRIhVFjs0FWsXObuRnW9+K9jgcAZ2fAgRdv51zHx3jX8S385V//wwNi9chzyUOwrDBgc+7lEo/PTnHrVs3F6tZn4jhwHKCsJZvi3crz/TuZxCbrmLOa8v7aB295WaN1KVa/FUowPfYRfjyPpaWOidUiQXyfdZ7j4NCPcZKG6hA8A4eiOB9ZkTEglmTCLIqLCI4Nbcf20LkyJ52mWO2OByzmKXeBazrI2E7h8LetMw9zL2uY1QBgVSWqrMCDdI6j+S6zOnRyxJnGS/vOHeCHfgiLT3+MidViN7mtuu2xCUCaNLou45ulw2K1H06MmBFCnebCwbUqJQakKms4lFCWvZjVeofcOe6YWE1hKKra5gAk65ItyrSc1aW63Ve0kBLbiFXsPBMhxXUlDiLBEjXFgKic1ZQ2TwBeYEsxICxBXXPDplVBACWzmv1gAgZkwFErKl5XmLnZtiXk+BhHPpvMv+uZ1e4374uYmToYloKbwkh7diP66J3n3ONitWpe0KqqAux6+3mGVoaYr5My/gr61m8F/vJfBj760fEfnyZA4OTTOqszizGrNT+0IABzVg9gQLSc1WMBi4auP5VDsahsOA4tXM9za+VxAVwABsTAWT1z+8zqsmQCiqeY343VRTirxQbuPs5qXQzIzGIYkM6mKIV/3ZRKoLhAZzUJ4wVs+b+K8RCAPqpBPLdKZzWRWS1a6gcwIDRndY40H5hTivtB11mtyjOZYuNK6azWPuQwY5yv58icdcU1KEp6+LQq0Jp8v4rj+pY8ILgs9YKB26WacwKNYzv0NQ0dQgCWOOHJhh5w9J7KCS/Wc0R+/Zizet9n4fAqu57H0X7YjtXrZwzxCS5Wr/nPW6/ZutcumNngfjKq+4o6X4E5q8Wc6+rV7R92xWqhQYx1+QvHgnBOHhzgidkJXr/tsIDF9j1itbo8xg6ss9EmznUg04WaubDFwVw6q03qUqx+K1SWsQnDPouyfdNSxctiH2e1xVhYgxxNaoAKZ+qqeD4N30vTWe3YAwJwnnPH27QucDMMyICz2gADkg1NRKsKq9xnYrXjNGL10t1gdVrilfUxnrqy2X6/7yNy8713dgEAf+7PAbduYflvf7QJWBTn1z5XAGrh0wADMpjGLLjK2hiQYWc1FQPiDLg0GQ6H0IommNVDvEcDDtekzuo9dqDTpNZzPop7YKCd3qSNWMouN2xR93yLORQ7rr+iJjwDogaY1QUla6B1rnJmdaU/brfK9yHFKpQJIWwWAByHBeuNBSxuaoaBEGL1lSs48jdwrRIvPtvpZxzDgAin6sQ5DgID4mqGTA65vZrOKB3MjGVh7hdYF/64ywXA2WmNQ3f7PonsBEnM7meBAXFd4Ou+br+gxSwDfEI2wFDQZpJYZAyIlLEuir9r/EDTWT2EAalpY7fvKwQPA+EPGBCWDdqzHVexwdKE2NLGQ8d3+mJSUSAufUQ+Uazeg1kNQJ8r7KhFSoDNNxzdTi60MCCta1DnBEG9XSoGsEHA4j4YEMpmq+Oox8OqrGkuTcHUVYjVJuaAQQxIUrOxUNdZbReDYrU2dg0YDcQEYMZrVvHrifeWEhNn4qxWdYSAaMBqH1cmgtc1e24NnNXSd4LAV2k0LzXleUy3kD0MRYGkIIjgLssJkQl/JqHeQ11nxszqicRqbxHgWniOq1G8jzcAq5O8JVbnSDf85202bN3LndV/5u8/j7/wF/Y6BZytHBz48VZY/oZv2P5hO88FGHcri0pT1qUrbrKDAzw+O8Xr94K+sxpg9xWA0WA2nfetONcLCli8dFab16VY/RaoOuE7T/ssykTb4JBICWxfFhptqQCbzEqrqpBThC/BjlPgD/KC70LrTG6E61GFARFBQrrv9X1wFbqLPdvmAYuK4CsYYkCGNi14UJcfWOz6RhFg2zhw1ji9z7EDbSHX91kAY+7u5aRDngEnJwCApZ82AYvi/Joa2wQwCO90rQpFMiGzeowlCpa0THZWK+7ZogDNjcFxHbUMik4ValvHVV2IKsnYhIKwwTI0uUkEp3bf4wrnzIjo43j619W1K5QKZrUJX1rqfBTOakraOz9fcRzZuVK1CS+wpZP8IqdzGQGBVegfN9lUiNyMhAHx7XFndRLXWwwIAFy9igM/wVfd+By848XuNwtBUfHuIl9b3hGiDGThm61azGoMu72oYtI8LLHOA/U7sVUPXk9YuGIYNl06yRlbcAhnNcByLR8+HP/ZaWYxJJCus3rgPkhSi3R/BaGCsS5KFwOyj2uf+NwqhXUe+GRgqpUigcxZomoXOHVDsOns6orVhYfIH7+X5Sc7sigVGBDtd2I1uMmWJjWpGyCaWYgLf2fRX2SVEb5JGYB2Uc7qZtyidBjwwD6Z+9XQTanMsiA6dcfmRlnG3JNan5voMhlYK+ZxoT2XbeYvkpMtS7DNZkoInmJj3CgkWpgOBgIWycxqFQO5sOiiqmojwGCMBbizWoUBqVwEEeG43NAiXdvnOcvMIjqrlWI1MSdlDANCMl7sgZZgP3zPGzcM8Ve/7m8jsPNRnRYAVrGLhZcAV68idAqk8VaszisH/tzD+669gv/q634er7++3ymcrR0svXQrLL/jHcCv//VsvvzCC7vfvCeKtIpTtlYUx1wusfRTrDY24sLHLOx81p43jKAUlefsuPuMXWN6CTdzXGJA3ry6FKvfApVvcjZh2NNZ7duFup1BlAiT2ZfV6rpY+glWJ0NcYcKLne+UqsRqkqNUTBhV10CwRHWZsnuIqtpIgbHgKzAMCEX8bAZflbDMmU7NfWVZwMEBDv0Yn//kBsfBZvdFatuwPQdVbY224NQ10PR4A1i4CVbnbFOiN1l1R9JyuXOCem8NOavzytETfYYWI7yo4Z3KoBewxRMJA8KPK722ZcndeQRRdSQYNVmXTPTRdD2yyc0ABiSu9RLExT0wIPoAgOVMyKw2bFH3PO5Q7LSoZ6VmAF67VJuNJu1tYIsnJQaE4PYTxZjV/cXTZl0zTMdFYEDqGnFisYDFKGJfe8c74NoV/s1H/jQD73eO6VoD44voXNCd4Aq318i4pY0BUTlf+blS2K/zoMC6CNTvxFY9fCNl75TZDAhDhE6B+IRtxOf57mvIVmjq7cpywKcGLKbyP04ymwl/mveXFzpyZ5oowf7c16HmjgTDGvBvVc8W6poszgADbkITDIhnMUFR4aakaqrSzbuyRFx6u23HOjXiziI5oN3xHIdkU+m9E3mFc6cXsBjHYO9tKrNaOB+708OqYrk7FFbDGAaEKig66vGQ7NIU/37ZPWBwrqwjRJ1FlKU1Gwt1xi3bRuAyPJGqM6Z53+o4qwNneqQCxMb4QNgqpUOQz+Ok+D2DzQXHVYufDQaEItirMCAXFbAo8FUUZzXvYpLypXn43V6d3Z1jqjjQjUloYgwI2Vk91tmri8QJQ/zOF34egZ0p5y/tWqUe5m4GXLnCnNUip4OL1e6zT+JquMb/8YWP4v79/U7hbOPsMqsB4Du+g3VQHx7ufnODIh0e79KzlL2/Ws5qAEBZYl34mEWd6zeEl2mXDjKw0UsUn/EUzuoxh/llDdalWP0WqHSVs13zfd4YTVrquLMa6LCDR4575G9wcn9iDIjrwrFqtUhHaZkSwt9A0ndRO9DVp+A4wzt6xDbawfZsEMVP24bnKCYgomQ7j8fHOPASfOxnMjy/vLd1GIoKAjYpGtnaTVMgKLYpw0svwfmDAus1WKBjBwPiOwWyeOjeIrj2xYJfFYBGZVYP8dAhnPD6YrVrqzsMyqKmLZ5GnD5kt65oxVJciHhdIdJtp2+caepvoWBABp3wYpFG2gRQjFuGLepSAVi0qAdEIcXz4MscKUJQJYrVUpGuro0S7wEWgJZWfQZwvKnZfaUjUAKNWJ0NceOqCnHuIvJaDjXuFrEs9O/1xlk9wqymbrKpxq0sQ1nb+wXHtA87FLDYdANoitVRxTAgezirNw/TLQ88ihC5GTYnW2d1+x586ing1VeHj5dm9v7zIlEjmxZMrNbHgFge7zRRrUiEQ003YFF1WQ14qsxFJ3coToIB6aJ7iprsphwKFDNl+NfdTfeyZG3HoSkGRIFqiCuS+3UMA5IkIInV0dzuOauZWK1/rKZsmwk0ZcckYeL83MtZrX/YxiQyJVd4QEwzcgCPYUBEl4nmwQO/HmTtN+9bXWa14j1D7hCEouMMaCGRtA/JO1sVgZgGnYdeYKsFezE3IqBQmu4o1YagkbN6AANCDFhU8vaLAklJY1a7ViU9JjkIEcPoGvZ50RCM0o279oH59+1VXNkPrHxcrK5rlBU3+h0f73aTrdm63Hr2GQDAtex13Lu733v0PHYZs7o95xLugm7tKdIm5znbIBU7F9wUcujHeGNziFl3zTOy9myKJFYPM6t1lx07x750VhvVpVj9Fqh0XbDW9z0DFvcSq3VbUER7n2oBTd2FFjvbKmd1SWjBEW7tAVh+WVskZ7Vt1ajyIWc1QaxWTUB45VlN4hU3bXM6IXjHxzj0Y3zsF208v7zPerLb5ftskTfyttycFZgXp+w3N29i4aU4Py1x78TFlWDdE6sDe0CsprY8C/erame7KFhrj46zekxEAB0DMuisLi0ys1q5u0/pBGidr21VyvDKzYoH1Wm6Hlk4rPpbtDEge7BfAdAcVJYiRd4UreFLuIRNizrdWe3ZZb+dXCyg9+2wkZ1r1Wn9b4QkTXxTq4KZw9yfnU2xzUbf6QWgWTilQ9k0ec6clWHrM23/nK6zemx8MWBWqxZkALYbzb6mWD30niFuWnged+nu4axOVzlzLUcREIZYuCnWJ+y+yTpDxfPPj3Ors9wiOauHgsoasZpwfwEYdVbvvTHaBLWpndVUl6Yf2sMBi0TUkMr1Z+J4U4aCGmJAmhu9N8b65s5qxfsrWZf6GyFi3B7YwE0SsA1cXWf1wkVSejtjLFX4bsqy4MpMEibBjXsELFIcb45roVShGnLQWv/F2C0bBsQG0wW485qARV18USDPhhAVr/WxW0POahMEhnI9Y8gCV5o5RJ4H4fNSOqBhgJVAy9ikCrGlOqsDxbUtS1S1DccnmA5Uc06gwWKFgeb4PYBUaPKtTDZCpnRWT8ysFmJuaKVIxjIWswwWeLbLfL67QS/+8sEBcHCAq94Z7t/Zb4P2LPYYs3ofg4AwoY04q5NzPi8Ux+QO7cdnp3jp9AaiWefvj821eBVJwe6HfQYG24bnMJSttMvk0ln9ptelWP0WqHRT7s9m9Dw4dj2OFM5zvSCVMZcqdfE0FHCBVju5prN6zE1ZUNKjx9p6iG1+g+3ZaO3ETy1WZxlzg7Unoleu4KnFQ/zoJ59hzuorVzoHlSzyJLW+vcLMSVlC8LPPMldjXOLzdyI8t7wvdVY3bUrdom6EeN6w6JNlqGoLTqAxy22C9RR/XtdkxrhrK8RP8IkY0emjRAo0zhG9QwIAHEfu1OW1Wdf67Nd9Fuappbcwb0QfxZ9T0+mHRHCBGbKJzGpfIiaVJWub1J3ct85XOnEuCuS1Jre9fdjAQd4NgxQtnh7RoQjAjxzm9OncDPEGNGb1PhiQPGdiVdfJ8Sf+BPDhDwPf+q29Yw6iGgyc1YPvmYzz4DVtHo6rDn2iuv6azqw9xOrkLNuGV4YhFl7aYMXyrIafnDVuzGefBb7wheHjpbmtz6wW94Fsr7Wuyc7qfcTqurZg+7qbbMNOH4pA4weWHAMisjyozGqPB8N2xWoDfv24m5I+HlpWvXvfliXbEDToXmGLUvlnlia1vvvV5Rk0+zirNa9vtOAYkLazOrGYk5bMVwFcp+477CnhkqL2CFgkYUBcsPt1yhC8xlkt+TMDdI/YbFViQHKLBSwSnNXJAGs/jqF9P9iuzTYBFM5qEwyIepONGD495IQX72/Co6AMg6zZs0F1Vg9dA5OARc9XvBNkGUN7H1TRzcePm1Ac20MYEKqoDIVBpHVc16JtXO3FrN73uFzMDaxsNHulmeCEITCb8bkv/zMx3vs+R4QU2/DFoSoKnKUhlv6emKjm3z8iVot5oRCruZnh6x77NP7dnecxuz7vHXewi00cV+Cx9nznDG0woSzZ/M0lrJN4t1FeKoTwy9qrLsXqt0AxDEi+326W47CXYF0PPxi6zmrPg2tXcv4U0OKG7Xe4plwXjj3sKKVjQIaZ1Y49MVaCOHEeSo4GiO5yjAy+wHawby/2j4/xX3zpT+E73/FR/Lobn+s7q8e43bzW9xPGy5rNtoJ3UeKzt2d9sZoLn8oXppGzehgDAkB78Tjo1OXIEtfW5McNYSXQYihSW9FkE0bhpqS400R7siL4Kd4Q2MKiK2RgctOESelgQOxhJBAAMgtcusipa3o6PQAv4ONBFwNSdFy/WgflrvWuWC2EdaqzWmBAOu30SekipPK1AfgzlwXWdVTFZvGs24/HWcVDoo+4xj2O4o0bwLd/O3p/0Liy1JtsJEFROLYHxq3eJuMeZfsDoahEZvUYu75dyTnHmQlntZdifcr+XvaZL8D7638F+MEfBF57DYsFsNkMHy8rbOYmpDCrMzlTNi74JovueDC2iSucpfuO33sFLNIwICxgUS5WFwQWuigVBqQRqwkiQuP4kzqrJ2BWd8bYjSzQad8aYVancaXXFQQ0nQBj3UYUznq4cPsYkIQHjBqI1Q1+rnNtAdDEtH0wIATH21AIHhlXweeceReDAhh3sg0iZlIesKh7D4TDzurNBtrzOGl4KbZfomJAGrSG0llNC+90Ve5XEwyIyigkNix01568GK5Ccs+K3xM72ZTOah2UQreEs1Y25zJgVqvWM0aboqrrWtfGzmrl1IhvYO891loWEASMP30+krAo3NNBsBWrxVS6LVYfHbFf72E2QJriLA8ZUnqf+0yMWSP5acmqYKKyuBksC7h2Db/3S/4troRrzB476B0XwOick4nV+4+JY2I1APpmkCt5J16WVl2K1W+B0nJWW9Z+D7PujumeGBDSwtxSs3pNAhaV469wEOmKdGMiAmc+Op7eY6VsdeXFdnb1J3hjzuoqzRlLsoMBcewa//1X/WO8eHinL1ZzR1IvqK1Tm5OMTXKjCLh6FQBglQVeurVgYnX7Z3KRciyobHKHorguOmLHmFO3KNiChMDXdqxKHvQCoCgNFk8Daedkp48QlhXols0GJGZ1MOAeAoA41WzTF8/sQJeFBZAXpVInvFiQkJnVEg50WZoxq10XniVxrRcFW+wTndVSsbookBQeIn9cwFRVMHfZIrqHAQENA+I4DAMyRC+SYUCGSvDrB9o8SW3EQ90Q/DzF92nVRbBfhUN1H7FaLEo4s3rhpVidsXPJ7q+YM/DhQ+Cv/BWETt7O55VWLriyU4nVeU7vXtjDWS1+/r7HG+0O0wnIbpUX2HI+aaEZut2pZh6jwoBQAsUCe0BYJ4aqAYDn9ZnVprkAI9zLxlmt+U70nT0wIARntTvz2efVxoCkFlvgUwMWAbgirKx90iYOzdGARdo967g8vFOJaiDMt2wW3F7IXHQm862ReyvLeNisrrM6AMuGGHJW62SE8HMFMIzAoKAaZB1ngFnuxpizurJJc6PGAS1zVtcGc0PFGFuV9FwAYJhZzb6BJlZ7qq4Qo4BFOWPcZFNU2cEjjCcUpJ1AAin0ySov9TawASAIEDoFkrNhsTo7T9l8KgyBKIJt1ajFeNQ2qXGx2qmL8SlcmuI8C7Gc7/l+HONA80pWBeuWbZsxr15F5Ob4Nx/503j2yxa947oDCMrmuHGttVZUdkMARiHRAOB9yfPIf9NvMXqvfrHXpVj9FqjGkbHvC0NwhQd2cRqxcd+Hh+9oDguKBPbpkEMRQF7arAVH5wUkzrVSt9AWVLF6SETgrVi2o/dSczxbHXyFCTAgivugYaF3xOqdkjirA6dAthnBgJxkmHspE6u5s/rdN27jRz7+DJ5b3ttNDt53I4QaVDYm+mjjOgZEhKKgLaKHghABFNRJ/tC1NUg7b1r8FJ0WjbNas0U/dHOkA2L1amNj4aX7L8oa0Uc9FtQAmVk9tMihi9W2tI06LjxEEemQagyIEFQNMCC9cxXIEgNndbRwEHd4qoBw/tEDFqUipSi+gNr7Go88s4JRSkJj2QP4IjFxnlispo6xymN2ijGr2xiQBKsz9m/JNzkTWwDg/n1ED18bFqvrGqhrtn7UFqtzufiX56wjQHcBDciduu3SdVE1HSHq7jAyBiSUBLjyY5aVDdsjOqt9+TwmLyx4unM4Xo3o0z3XhotPOtXtPdO+EQQGhNq90jir0XfVQn/xDKDVbaT+FiYwE9AdkmsQp7a5s9rjXN2pxGr+d2pZe1RZoqxtkgYwhN8zwlW4tRSHI+YapFZyx2Eu1dyW3lsNEonKrFYFLMbQvx8G3gmkTlleF8KsviAzh+M7qGQGpKabkTY3UmFATHjNAHsnZJJAa2Nntcq1zg0NNLFaPu9uQlEJg4HjO2zjShHkS/q8RjIMipywiRuGbB67Gnborh5kWHhJ46wGsJ03Zhmbi3heI1ZfiWI8fDjys9OUrRdn+2+4s/ehfMwSxbIcit3OxWvXAABvP7wL6/q13b8wYpRqjjsxBgQAXax+5gnk73yP0Xv1i70uxeq3QDUp4vu+MMT3DdgxirTUC+QQ/N8BDAhpwiBYvTJndV1vg+V0djUFUmEgYLGoHP1xZ49ALfF9OmW5AyIC9RpggG/Gq9nR7DCrd0q0CYlyXeZ62wwv6DanBRMrWxiQD177DH7pzg08u3iwK1YPtHYBMA4qm9ShKO6BgXuLTW70xepBZzW1fVII9hflrFZgQCjto8JZnWSOcnKzTh3M3VQbAzKU8gyAhgFRbVoY8lSlAk1R6Ll+uzXErDYJWFRgQOLS0096bx935vUFDwCbxNa/r4Cto3bMWV34+19jzxtGNVA7QkSnycBxSd0AQ+5fMW4RApKVx+xUs3iIIuasdlOszpjonMUFW7j9ht8AAAjvvTYcIiTuC8/Tey/yBbR006LZrKBhkQYT6nUxCGMtxMR8DIDz4If4pNQFmSpgUbRRU5zVoaTLBOBjrAEGxPfh2BXKuCNW62xWdcuyeEiTI0XwkZ3VdoFsYJONGrCoFKtNmdWuxCShu1nTriEkDr/OFmHXomGsK0RVegieGgFB5grbDNeWl3Lhpwmb1XVWh9ZwwKJgmOvcswPvBGqXKDA2FhBNF2JjWMEYLyqHFjir2hhuNtkMnNUysdpgcwVovRM6F6JKc3owqhi7ZM7qPEdaEZjVngfXkgvAJs5qy3XYsynZXCB/XmNidVax89W5tmG4FwZk9TBnGE7urAawI1YD2BGrr4Ur3L8/8rOFyL2vOcC2mQteFVrIK17zeWH7uLwbm51cR6wWeJkxsTqu+/rGQA12ohsGmHreJQHEtC7F6rdApSm0hWXLqgefjiTmE2fdxdOQs5oyYXBdJiyr2K9iF1pnQWozN3ZZSbhxQCtIiMisHhOrCcIXAKVYzcRP/UAOpSuJV7op+87qw0Pg5s3+uYniYnWyHmFWnxbsZdlyVn/1/OO4EqxwEKQsibh1zNHgShNntUr0obgGBLZmADHDFtGEe8suURZDzGqCa4Cf79BknNo+6dsDzGpK+6htI/Aq1paquMCr2NVzVgtsy8DmgvjZWiVa0WQYEBOnD7hDsdvqWZYMrWHIrJZhQIraJnNqncDtL56Ea8anByxKnY8A4oTg9AKa+3XcWe3qOavHAhapocMj4yGpG+AiMCCOYpEnqWRdssVDO2BxBeD8HFluw1/4wLvfDQCI7n5h2Fnd5i7qlNi0kHVvCAyI7gIaaHAoVTbCrNbCgJSDrH2qQNO4yCTOau225FapGMAmIoLj2ahk95do0adiQIKAsaDb5gtTZjWG3VkNV1iXWT3SEcJCQfWFyqbtuocBMROrPZ87ljuudbLoNbT2MBARWEejOgiQLKp6Cse2qeCh4p5WFef364vrzFmtVlIaxIzmBosKDdXMY4kYEGm2zwR4FdVGiGXVsByaEx6AfNyqGSqGUm7gSJGRJpsAABBEttRh33SDUF40wtCicFZrBQ6LEgKw5JgmAYvKz0vMi4jO6qEu3Dyr9Z3gYcgwIKthc0DTxSYRq/OkZNephQG56p3i3r2Rny3LuBqpMRQp0LrH2sdt/7prv+ddvXuJ1TrO6iFzn6mz+lKsNq5LsfotUFmiiQFxXbaAHBgg0rjSm5SKttQhVAMRA+LapdxRKlqTdV8UljUcWigcbyRn9a+xWF2WTPwkBHKMvSjSTdl/SVgW8H3fB7zjHcBHPiI918jJkcQjzuqzYsus5onE7z56Ff+Xd/0rYLncvUaC7TXmrKaIPkOBmFSxep/2bN2d+GbTRv7HRQE4ZGf1xTCrfadQfmaNA1ZTTAr8enDxtE4cJlbr7O47TNiQ7u6bBizKbi0RpHQRzuoZLUCncTl0WZp8zGlCkTTL8vmz02VWlx6d/QqoxerUoQUscvbr4IQxz1HWNuxAM7xTtmEB0J8vMR4OsLAB0N8zisk4la+tPGankg2fx+yI1TVw/z7yyoF/7QB429sA20Z471UkQwn14r7YJ3S6XY7DnEm5pHsjz9kmC5FZPbR5R8kIYffWcAcPVaDZOSdRuqHb3cP6NnOqdh4yk+ArJV6FmpEiKgj6rcRlqddZIalGrJbM5Vg4sL7wFzoF0lz9rJtgQCwAddpyVmcO22Q2YVYLZ3Fr7C6Sgs1fqM5q1aaggVvZdSFv/YchW9mFUlS2LM3g7Vb5PuT89qJgLlW/1ja02IGnDt0F22DRdu0PvBNMMCCNUCsbCwxMFyqnrhGnVnUNxLkSndVKDEgBIwxIENnMJNK5EPG60nfWixJzLpkJuCjYfUcwHajWM829Rfy8LKuedlNUdDMq5pykLAfhrB7BgGTrnBkc+dobAFCxf8N6VTNEZ0usvmY/HHVWV0nGuOhTi9WyDbF3vIP9v+2wFiWuq0ovEMeNa61N3MFzLUt2v16K1W9aXQJU3gKlnfTsSQSETiVxrZdMLtpvhgRFIp/TUbmVDbiEjtsKouj+G/m5OlMHLFInoyMBMtQ2pO3ERt4ylKxLBE7Vv68ODoDv/V75QTlXOF4PvyjiVckckDPuoL5yBe7mVfyJr/onwNEzvWMyd4PiXqTyVD0Prp2pHwMqs3rEqcu6ASg8dMWmDVptqSRmda58vkyY1Z4dqzEgicU+f12GomhLzXPILK6r1MP8SAMDgpbjr5CE1Aqkgu4kpJk0S/6s4cnSZiduKHErcyGFJKTx2nFmCZHPsPVf2sUjmNW+wexMfE4dbscmtfEYBQPCxcTBCSNFULRK5QaTyTvRVT2z/LjUexbA8HuGEJC8d8BiXG2d1WnKxOr7NnD/PrIqgnf9iC2uDg8R3UkRn+UAFP9GqrPashD42La+t+8jHrAZzggLfsFET2rIMJxlVrCFnpY5YAADQs0I4ccGoBarp3ZWG2BAms9HIfqYYECazIWai3ymG4JojbGSDy5JLZKzmm2uDIjVmU0KWITvY+49wGZdY86/1DCrSZMCfsq+haLcFWvZcXPA1XxeAf4sqOcwAMihakPOajJbWQRMTu2sVm2EFAWy0oXvTR8Mm2S2nlGqfcyhTQDCWNBsqKtQDURmtRK3ZPJ5jWJAaBv5ju9ITVimGBAn9FgHS1espjDLRfF1nZRGSmXYc7e2DOuX53TXftMhpuKha+6Ji2M2zGZJNZxxzYDFwC6QrofnW9k6Z/dDEABzPrpX7J5ZbWws3BTwDhqx+ggPcfKwBjCQF3RSYOklWnMu34ccOdaqBmPVHmNu3gT+2B/rY0iBcWOAOK7YxNVlVitMgwAuxeo3sS6d1W+B0har+S5hE6KoOKbWjvmYq5jK5xxqpxduL8KLfdBZXVUoKc5qgQEZaPsGML2zurLhuYRrIMMJtCrdlPoMxT2d1cmG78gLwbHNwu6+gPYIFGOhhfuf5va4EwcsjjmrG8cXwVk90DJWlsS21BHeI5lXzNmvUh4dgJjIFh4M/KlrrFJPDwPCTlX5HFQFfYPJtUs5/YDji6hCitRZLXiqBkKK71V9IUU408gnKxGTeBikibAuxPS26w9oiR4UsVqGQWmX7njgecMBi1Se6lBrMj/uhWFAqM7qfQIWk3obpCMCFjdCrHbgX+c5BlGEyM0QrwbeeWITQ9dZDcD3amWYVFa68EKaM8sfYPinuuYAMdcYeM+Qw9ou1FndH2dNMCBDDkUT1BJsG75bIitb52sasIgRZzUFA2LbCJwSaSHnYAP6i/KmfB8HXoKz1fZzWWcee2+bOKu9vrO6cc8RRS/l2sPArex4tlxUhllYW/Pvl9yz7AcbMuFl41blUoZC9WYQryS19J3VAx08jaiq6QAHoB4LeJCx9ruLH1P5Dqd2MAGDWAmSmYWX7TlSJ3ye07E1AJQGt3hT053Vnsd5+5I/E+eve1zbhueU/Q5BAHlp0zdFLwgDMpQ7QXVWh26OZDN8PiywutxiQCwLdVUDVYX1Gtvu1DAEfB9hnYwK4GcnFROrNT6z/Z3VEh3iySe3Qnu7xFx+TKzWRBg1eLRLZvUjWZdi9VugmmAWjYWOY1Uo0+EBQnfxNMYVLmtbf/EkgspUzs/KJrmKWYufgqVJDecZEv74ccX36R4XwMC52iQMSNOir5qIUnhk7n4BizthWsBuO087XJEfc5RZTWynHxJ9mnR5nc9rLGCxwYDonWrDwh50VtOZ1arJOLl9cg8MCGWSG4ZAUnrycNiiwLrwMQ/1FjtDG1cmwZWOVcsfLY7u8ShOJ7TaXbscaJPwLwCeUyOT8KUB0MUJWZt+46w2w4BEbrbbwVHX2KQuE1MI7aOeXSKTsYpF6YrVYiwYcL8C0F+Y75uNQHVWqzAgxMwJ8ffHKkm5AzQImFjtpljFNnB+zjAgVxbsG2czxmUcWpBRndUY2BDjXGkSEkc4YBP5M58lFWvL3fe+tdh4P4QvqmuLtnhSCVSGY4HrD7WoE4UUFdKOuoHdKt+tmetL3Et8jA0i+rJonFmt/04M/Fraoi8qyWwmKOp+bp6HpZfgbM2ROHWNW6slHp+dGjGrGVt4l1ndBPURW/SVcxjxHBBFZSkGxCDUXBxXFoJHfh/w8r0aWSl3VqelSxkKR53VaaYQkojHLCqbvAkwtMlGRiI17lfJnwlMFNWpy8+te0yTgEXVNTDBqwDYfr5d7NqmppkD+DGVBoGiYB5ewjjjOpB2ROQm7nLRIaZwwlMxIK4ld4EDzFmtHbDoshB61TxDVLYpthgQywJmM9bBfrrGamMzDIgIp44ilkN1Pqymnp1UOPD1nNV7idW6GCtuDNjJm5BUnFhaAYvNvE8xPyZ1M/K6FKvN61KsfguU9iSXA+jzeARqrzPB9Ty4imADAM2kUTuMQoh0Q0FlFLFahHEo+Zy2/rgjJs0qDAh1MroPBoSydlDxHnmlccU2QXRmuRwDkoy8LJuWb6GuPfvs9g+7ipt4qQ/cW2Vt6zuAR5zwZV7pT5yF+DuIASFMbvgGkzJotORMOorwpUo7N2RWe0PO6ozIrB5Kp89zrPIQi0gvuO9C2n0FtqVEn31rgC8CWqn3HQ50RQmkaR/Xk7Soi+A3U2e1TKyW8RD2Ld/H3M2wXrWurXA++oTPS0xwVc8toN+aKsYX1WvWQFRWPrMAqpxPnC/AWU3JnAAw2MUlKsms7ftmNmMYkI0DxDFzNC+4NXA2Q+RkiAfE6jLOGAN3SrGa0mkjaqTTRNtwYFmsI0QW1AaYOX1U8wLTVtdAPucywoAMsV+pCCtennDYCzWFL0i1OyF2jjkgVmcWKQixCcEbQDVoC4oA4Dg4CFKcpQH77MsSr68P8eTijCyoAhwDUkvEaipeRCBxZPNuA/erMrBPCIpEsdrzFfMNMU+gPl8q4SfPWWdKYOBWVm2EiA3GKZjVdY28tMnXdZQDTWVW26U8G8DEWa3axBUZRNRgWMVx87ymmVlEKTYwGwwIUawO7KJLctv9OYR5p3SMbTaY6GK1NChabOJTPq9mI0R+rzdueJ3PzPcb3NhQZZuCOatFu8V8zv7eww3WMceAiLlTGDKxeiS08ey0xoEfX4hYrXWPibXnXhgQPUMmAOm5lnkF26Bz4VKsNq9LsfotUGlmkVzQQ2mpzTG10ukvxu2lFOnEi50gVjfM6iG3MolZPdD2TZ2MjjneqG1InjcYtNmI1ReCAeFtz0KY/uqvBp56iv26LVwD423vfMJA2lwY+LyyjBD8NOZ4a8I7afdWWSrE6oqHbBI2QobSzk2Y1f7A5lXjgNV1kYmgF5kdI8uwLnwsZnrPQoMBmTJIybLgOrX8PhDccqKQ0jCrOwIw1YkiynP7k/xG+KQeV7bYLQokpWscsDhzM6w3rfs9z7EpfNpxBecuUz8/dZaza6HzThwJWARA5Myrx8OypG+wNAeQHJSKARmcF7SqYet6HrBcInJzxKkNJAkb3+d8dyOK2IbowDsmXfE2V5JYzZ2qEtGnri2yoDa0iEwTTQwI+CbbwBzGsurJHYoAjJzVcsfbBMFXUzOr0XKqCjWFGvrVqmZxLvnMksxmphNdsdqv1WgsAElu0zAgAA6iDGd5xN63aYrXN0d44kqifZx2NQ77qZzVnqcOnDV4DpSb2GJeROQKKzEgJuInBjZCOLM6CCcUgHklua2/RhDdEKqwOkfPbDB6riamC5s5vfPSkpoOAJhhJRQdIVQMiOq4Rc7NLNSxy/fZZ9aZd29i/txSjut523d859qWKd0koRKr88qBZ7oRomSMEz4vm2FJ8rL/7weIGBDPY8LymFgdl+zYwjGyWDRiNXNWt9ZmQqweCrQGcH5W40CTWa0KBG1XIyprzLv3woDo4rGGWPsmIdG4FKunqMuAxbdApZmFA82ARd8pBsXqBmq/78MnFtADzGo6+1XtrKYm8TYtfgr+UElxVvO2b6UDWPBfJw5YLCqblEujXOjx2mJAFlrHDJ0ccTw8IUgSIFy0nNWWBfzgDwIvvwy8/e29Y7p2PMisrmoLtkdwKFpq0Yc0WbCsXRGh+1lT28aaTRvJnzUCOI2b5lrqABnSdQW24p/CSbjJHNY+qOusjmz1wrwosMoDzCNNsVrVlgsDDAjYbVPk/D5o30MNt1z7kAAAbxGw+6ttSRFCigFLlIkzu9eWcYSJIgKw/XzbixzeTm/urE6xXre+xgPwZhFh4SDcGIqwG4AFzupObscCFgGQXOBDuKlcLExtfW43gOFNUV2xWswLkgJjZ5MKUc33gSiCbdWoywpYr5mjdcbfFVGEyMkRx+pjZZtCvyuIlx/YvecAwPb3RK7u0HhI4RUPjVvkuQY/VwC/dszqwqBFfcRZbSJWz8MS6yLYjrOGYj0w7qxe6obVQaCx1CFVSeaQedAHUY7zPGDjd1HgQTqTZlrpVOOwbz1fDaqE+Gx5qnm3gQCsZFaL8FKiWN04yycOWPQDi3UCSDbZjDEgSsQM4d7iSIU6L3bj2gR+kYA03DlXyXWtaovG77cseG69ddi3/52GAYuW4lzzyoE/NQYkJ6xlZMeVBiwSMSCWhdAvt2NX6xhpXJHHLNcFisTePddm3UU0SKiCosUmvkdQGsW9VUvuLYiARU1ndbMpPvxteVLAt6uts3o2Yy73+yusc577I35uEDBzwHpYrD47g3bA4t4YkLk+OSBLh+eqaQrMdXQzcT0kYyFJK2iV5zFN5LLodemsfgtUmukHLI4xfdIUzJm078uCh0nlU/Oahxbm3FFLwoAokunFueaUtrERrMRFBSySd3bHeHSiNVnXWT3iegNaoQlt5IfrAu94R//6jDmrjUQf9edFfQGx9mx1eCedhz6waUOd5A91A5g4fYT4J2MAlyXi3MPMy7WP3WBAZM7qPMe6CDCb6Z1qs7kwJQYEgOsBpcKZZRL+ZUcBS2Zvq3WGQhIgF1Li1EBEAORidVkiLnyzgEXfx9xLsY5bn0ue4zwPtZ31ALgbQ92SCTA+Iyl0eAAJBIA2bg28Z4q8pnE/BbKjUL8TSQHJdqneaBRV10hyZ7sZ4DjAfM42YO7fZ/8XuxuzGRen1IdLVzljMhJSxVQYkDLO4Ng0tEiziJS1PAPI0hq+rrNaYECmDvwZYFZT+b+AWly/KAyIUcAigEVUYSWEWmCaMXbAWZ0KDA7JWa3AgFQVksJF4NLeYctZibOMO6v5+6bZNCLWoLOauhGkYt8aPAfKLAsRkGyg+0mDEKcI6VJiQIjOas9jJgkZYqWutxuMms5qX/ZOMHGpAmoxyaTLBK3PSxWIacBArjLVJtu0zuo843MCg3mc2GBoF3tuCRkhvKKgRlz4vfl8Y5SaylnddCAbXtcpmdUY6LIA0a3LMSBjwmcWV/CdFgZEOKvvr7DKw93cnzDkGSHD/8azc4sxqzXGgia0cMBWvNNxt08NbV62ir1v9VjYAC6d1Y9oXTqr3wKVZhaCSM9ZPcb0yTJNp49wkQ24igGQhFrHqpWs3rxyEBFeFI6n4NHxcyW9gBwHnp2jUIV0XYRYzYXKiLJj7CrCiXg1rkpdZrUTj74s0xS7AYtDJRzrYw5F4kaI6rh5DiZ4OHoW0MH2bLG5oDuyCme1wgFNDRodvAaGgofvKCYMAtcQ6p8vc1YrFuZZhqq24AR6F1fJpkTLpUppI3awdU20y4ShCGyfmY6zGoCZ68+3kK93RYQkAW/P1hf9APDJcNY716QMEEZ07mnDrE54C6VlAXmOu/ES1w8UiuBQCTTWgLM6Xld6oaAN71Lx5waBu0PMahZYR+WsVyizsj/xM8CADHZcicpzFl4XWttF0sEB+/+dO+z/4RYDYlmQY5Z4pZuSYTUoGJDQkmJAms+fIlYPhUnBwFk9hgEhupVtfh+078yqqGCbiD6hK12YNwu9ifnapNDlVi1n5Y5Y3ThBL8hZnWQ2whkBAyI2cGUDQp4jKV22MUhofz+YlThbhUCW4fxugqWH/eZsA+UFNtJuwKLotJrYWV0VFfkzU7aoNwYRorM6kM836tJQrFa5FEXAIpFZHfAw215/ZVWxe8vTfHbFuzatsTOSNggMovt1gAMNgMxZ99waRSp32AMgi9Xint2ZWYm5oamzunOujemC3M7nMTFzU6K9GopTm+6sBhCFNe6e+r2xizmr9Tfu+Kn2n4OpNkIUXRbUsHTPrZWbl6SARY4BUW2Ki2oQl+Jzm89ZAPS9c6xzH4tl63yCAKFzNhxoDSZWH2o6qy3PlQeNtirONLn4rgvf3iBLh5/LLLcQeHomTwDDGws27fn67b99cDp7WXvUpbP6LVCpYN1pOauLQWd1lkHP6dNwNEeY1dSgMpmj1GC31PFsedI3sOVb6b5/R5jVzWKPKlYrnDNkl8dYi1+iv4BuMCDJwMSw7aLbx/nWOKvViBkApHBBb0BMIjGrsYezurL1JzeOA2cgaJTaYQDHYS6XixCr7QKZ7LhZxnANmg5oALBDn7mKZaqP+CA1H9whd4NJirrjqpmXRq4/Idq1nNVVRk9PF+UHkDreqA4XAEAQ9FmHPGCRslnRlGVhHhRYt52PfBNkPiccz7bZ/Vo6ylljvK5Y0IvWBu5AwCJ1sduMW4qOECpWQYjrMmG5LFGDEC7Hu1fGktmFWL2zgbFcAuB7EcBWJOMDRz0wu8/WORkDohL/NuclibMPgIk+qjApXAAGhAdaU93Kss67JOFhWgYBcD1xXTjTHKJY7XmwrRpld24ggq8C+hJmMa9wnofNRlueVmat9Bhue04p/F/wTgAZ/gFgG4OFR+5iOZiXDbP61qsFnpidGIvVbtBxVtf11j1HvF89xRyGtdLT7i0/ULjguUGEKiiq5humqAY/tJENBSyGtOcrdHKksWSsFRuMuvvY3Anf21wwmcfy40rNNyZsafD5fD3grJ7ynjWdGyoENWa6MAtYDOyidx/EiUV/JwKIggpJ6fWd1QnoGBAP/ffiBBgQW+GEZ58XfSNEJVaTjDIjHVyistxi+o449myGx6IzvPr5EqsiYM5qUYJZPdItHcfA3Eu1zW0WMIwByR3W0ajFrC6RjTmrc5u5y6cUq4nP13IJHB6S/upl8boUq98CleaaAYvC5TPkrM41F08CA6JqzaUunlwXjj3iKCW82G3PYTt6Ct4jWay21KKqieMNULRnU13gAOB50tYuUWwBrekkcxy1o1YUD1jb2+3DRZ+he0v8bK3iTsIh9itJrB5xVhe1rY/sEMgS2UfFN21I70nhcpF1A0wwGZcG1glnNWXN63LOusJFBkBfrPYVbErwgEUis9p1Id8QE+MW1fUnxOpW+0LTqWDUom4z5mWbJSqSuA3aR22rRpV2AxY9M2c1GFN2024hFedNcb5a1lacUEyc4xgEZ3WlRosYbuCqWNgNZ53o2Ja+v6i8XnfPgMUsQ1q6u/fEwQEiJ8df+cQ3snu7hQEBMOqs9qnOakX3RryujMRqtoBSnO/UzmoTN6GYH3b42pvEZv9+KrM6cPrBsEXB5y/EcxUOxS5SQOQ4+PQlzHJe7zirNxsY/fuBlltXgpZIC4eGARE5DrJxS2wCEfMBDhYVzjLmrH7tlRpPzE9hFjYABJGzG5Jc14gLDxEBCwag2XDPin6YsQlixvMtufhr0skGqNntOchzDWAkYJGKAXEHgmHznLYR4jhyfr+p+1UlJhl2namua2M+Mhm3ZII9MYcJgNxZXdd8TmCw0eZ5jFvc6Zhlzmq6WB2GQCwTq2MCgrI5Vck8TqyTDZzV0hBXk/U3+AauAkdKGrsEBmQgKBwA8rxmXcPi+i4W+PrHP42f/PgR1nmARdR1Vo+L1QxlpiH+AqOGOUBw8XUxtwWyoZDJumbOap01k+MoO9FNmdWXZV6XYvWjXnWNNHe0mdWiDUtVWWbpOaublufpMSCuVaEs5AtotqtJc5TunFe7TJjVtiIEDwb8W47B6LmH+LmSg4TE7n6iEKsz6L0k+DGVgX2ixAJq30nuCFuaLPrwDRbVuZLFasESHbi3tIVK4ayWGRRNFk9i0qwIbgRggAEp5MfNc8RUsVqIT7IDiwmv5oPreWr2K9tgIorVKi6+cP1RFyQSsZoF3dBdjwDgCbG2jQERSdwGwTzNokw8p2VJb0tuVROAxs83W2VGra6NOKHqNNlQnNXl9MxqsTGsGLfI96wQlmV86bJkDhiqC3wPsTqvHLhB6z5bLvHCwV18bnUV//Rb/9IOBgTAoFidxSXZWR1FPLCus4DerGv2+ZOZ1TlSxSKy2RjWEasFvkj2AqtrOqeVO6t7YnXqMLGW6lCc82DYTtiqyWJ/O4fpjLFFwTAgBmL1YoEdZ3Uzxk6cCwCgGRMDr9IWv1SMdQDGYbYHy7q5Br/8KRcvHt42dlbPFvYup5YH40Y+0fXIg8oG3cqE97cXOkpntYmo2mBAuudqkI+xc74SZ3VSeDRntegIkTmriwJp5erfW42RofP1plOWjgGRul9Ng2EV8/nGyEAZD1VidVnSMm1axwWwew/UNdLSQegV5HurcVZ3BMA4tfU28DsVRWBjQWfsMnFWN/P5TsAi1dgGoNXdK99gITOrVTx0ENEtohNiRKxm+k7r2PM5vv6xl/CTn7rJQupnrX9PGEo3KvrHrPUNAqp8DFHtLmwN46RyTStKrEEcjXmyOFfJIjzLDXI3LmuSuhSrH/WqKqSloxegwtNSBzEgucVaJHQxICpHLTXkgot0UgFYBMtRxod9xGoCs1oZBgmGFCA73lTuNCoDGdguShU7kElikZzVzpCwDOgvoMSC9KIcigNitU91Vg9iQAj3Ft8MUuFwSmr75EALrWmADGMAW31RKc+ZWBsRbloxYZCccBaX+jv7GBZ9jDAgglktCfwhbViIaocW8mtrFFDFy+u2Z6PlnKEe17Lguezf2/Qm8qA2yzOLxJjPKqzzrehx73aJ69E5WUxpnNWKWW5zjTXSw4c2w4zGLXvEWW2wKToYtkrNBRgLWOSfoRW03jUHB/j//Ib/N/7sV/8DFpopfnYjVqvHuzSu6AGLkc1ak7sYkJWBs9rzWEiRIqG+2RTSEatdKINhUZbMBUTkQMvMDOvEMXNWRx4TETr8+rjwEPkjmBhVCdxU13jBRXAjZ/WCO6v5+W5iy0isB1pjbHeMaXebaRbD1ihyHASzmihWLxd146z+F//+AB9+4lfMxeqlzTpixDXggbvkewBQitUmbmUlKtAg2B3ANmBSimqgi9V+aCOTbVoUBZtvhbSNq0FnNWUjRGCGumtFEVxpunHVPa64zgZitXQjxGRzwXXhWXJn9SQYkE73SlJ4CF368yVE0K671og1DyFWS961YqylYEB8SfdK46ymY0Ckc6MG60g7bLN5qcKA6OoF4nkdE6uFuNoSq69HK5xtXDxI51jMd8XqwB4PbUxTMM1IUy8AoBarOTIw9DXGcI4ZGjJjNt0mOtNDrm2UqRwD4huM3ZdlXpdX/lGvPEeqyw3bx1mdazqrPe/C+JyuPcDqpb4oBvhDRs7qAawEmZ83xBKlip/8uIGKRwce3KlzD4hzHbgGALbtg/tOcpu294ld+0NoDRgwq0eCr0gICBE0KnNp1jV98TS0C20iVlsWfA9s8dS9wEQH9M7fkfTTr08LLDQDPgDenj6EASFOQlzPQllb6oBF3bA6UVZLhOIzyDgG47oZCCl+YDFm85TOaoAFTbZFqrKkuz5bNY/qHWf1nVslboTn5DZ19u9XtNMDiDc1u8YaG7iuXaKoLAZe7lQTqEUQgD27hIwKBRgE1g1tihqE2O7rrK5ra/fZ5cxqALsCGceAuCjUY3dSkQMWG8G8M8bEm5otoCnOat9H5GRKsfo09nDoxwRntXzcqkuzgEXf7odBbjJDZ/XMZwvz9qq36bKiuynVDkUzDMhiaTFXsdgMO/VwNVhPI1ZL3K/a83heduCxHAeFWJ2aOKsPLZzlIYpVgs+8FuHFwzsTOKudXXyTMC9QndUAfK9mCKuuAGyAAWk2U6UYEIPW/0COAWnETwNmdVpJxGoiHg3AVvxSOKuTwtPHiziOPGy2Ca7UP01xrqqxQPxcSnkepPPDPKPz0JUdjaYYEP4Z19muWB2XvtHz1QQsdljIcWYjcgwwIJElZVafbxwsvYTmrJblAhjiOhoUZffzMjGLQb3JBhDHA99H4ORIsvFwwR19h8+13nP8Kv7dned7YnXo5khGQxsJ5rYhHQagbbYKE94+zmqd7KgGL9J/jkyZ1ZdlXpdi9aNeec7aB3UmDGLnaYRZ7euIFILPqRogqMKX6zJntWxhbuJwGHJWmzCrB8RPcnu2OK5SrKZjQJSuCQBJZjFxRvPl49oKXIUoEcwS7d8JMNjWI4QgqutPcVzqC4gF6ymc1dRJE0cKSK8rb5+kitUsCFEyfhhO8n0fcheZyeLJ85ioJfnQVmcV5gQ3xlBQWcP/JTqzpMc1QfeIEq3iLbHa3FntyJ3Vjmnre717XEOnk6j5rMa68BsR/O6dGtejFVlM8QJ7EAOi7ay2LLgDY0GZV3As/bb/LWtf/sdFZdM6eIY2RQ2Z1aPOahlvvJ04016t8M83stN2xuhOpZuSuXwo6p8vF6s3G01mebs48zPObOnGxcnGx5G/oWFAFPcWmX/L54fdz2yTmInVzjxkTlWZs5oYADjkpiy6WBnNWiytHWb13VMfN6Jzo3HLjxyl+zUtXQQ+zXSgzHHgjm0SrxjAwc0IZ1mEj/9Cjfc9c48NVcbO6r5YbeSuR0v06VwDk4BF5RrBlFmtCFhsnJQUBjKAaGYhKSQO+8IgfNnzmKFFJlTlOVIKC1uFARHBlVRBUWwOd99fvJOL7KxWzA+NnNUDYrWRs9r3GTaz7f4UXRsGz1fjrG67a+saceaaOatnFmNWdy7Eam1h4aVksbrX0VgU7N6iGkSazvF+NkJuYDyRhg7zYkYZzXkc7+BKR8TqPMdu5zyfa33F1Vfwq6eP7YaUhyHvChsTwLm7eEoMCKV7Q+gFqowrftyscvTet1wvkYrV1FDzy5qsLq/8o15ikquzJhMYkIEQvCy39VrqxWCucL+SXWRcqFU5q8nt9EPtJ1Rn9QhWosGAUB1vivZs8uSGc8hUDvs0s5k7TedCjLmgASDPUQOwfR2H4gW49m0WdFhUElQF6K6cJrxT5aymCJUCrzJx0ChsG55TIS/74URGzmqw20bmdjJyVvOJUC3ZNl+twCa4EwYsmridGmb11BgQoOesNg5CBOCFfQxIk8RtclwhJLSc1aSw3U7NlzbWeQCs1wCAO3eAG9EZ3VkdKlr0ecUJ2MJM4/5qeJdDiBmSqKwObiQLNCPvGfE9+uc68j4AgCxjglt7ofPEE9tftwUy/uvQSpWtqVla67t8RCm4+E3AHmXcsixEfiXlcwLA6YY7qzXOt+ngUdxbLtXpw+eHfWe1yzYDic+tFfJJalesLn1EF+CsrgFYZJsmsDxydpjVd058XA/PjcatYGbvhguKEqYTwt7KoDstzxkijCjaLx5f4jwPceuVAk8fnLEvGgYszg5ctskonoOiYMzqkChSorUhOqGzekisNmJWh470ncCeWSIDGYAbutObA4ShRSZWFwWq2oITaM4NVBgQge6hTjUakap/XJNOLhVnnox1BIad1QaIGfg+M+C0EZ9lyTpZTZzVvo/Q7WxaiOc2MNtg2eHX8zqPXbKzWroZZOiAHsKAGDGrxblKxWrC2kNsLuUjwnJh953Vto33XXsFANuobSoI4Nt7oEVEzhklYHFKsVo4oGUGLFFcN9PKzVFkeQCG75nLmqQuxepHvcTu9tQYEDGY7fvwed6gUEt2+ghmtWxhLgI5iAgMcYxemQYsDjqrDViiKmd1TThXoHFQqZzVaWbpJzILYXloE1/XWTnEVQbooioP5lG50xiHioBA2IOHri1Ucoei0lldE4NGLWs7GZeIqgDoDEUfDCuhWjxRhCQR3Cjh7a/PK8zdVPu4tuco26jz0qYHLPo2c3ioMCBEzh2A7flwa2nj+jXBgIRyZ7UpBsQTbN2pndVHHhM9NhsAwN17Fq6HK7KYwpzVAxiQRN9l3jhnZIJiXtPuLdvmGBD5JptRNoItSbwHfk0wIAB23zVXr/b/nB8TjoPIyRCfK8KBk1rf5SNK4ayOY9AxIADCoJaysAHgNA70MSCBM/juoo5bUudjVWGTe5h5Gd09FCjE6sK7ELGa7CbltTiwd53V5yFzVhuMhY4K2SFQGBFB9BnIcTASKgHYV45QA7h/u8C14Jx90dRZfeD2MSCGYhpDjg0ELFLEtCFnNXXODXVHhEkYJNDClqjmW1Rnta0Qq/Oc5lhWiUllaRaCpxCAy7wyGgtUQdlGjHHVmsZ0bsgF+533LR9bTDoX4LKgzSRtIc1EUDp17EbLWd15164S18hZnXc3g/KctqYXxTfyZRiQoraNnNVSDEhVoSht/fFAZGMUw++oHrPasoDDQ7z3KhOru85qywJQD3/OTc6ZZie20+0EaBfvitjb2MaP6TvlsFhdlsh0O5kuMSCPdF2K1Y96UTAgvPVf6ayua6S5rRewOOL2ativRGeWVKQzcZTuE7Co+wIaCVhs0qMpbOWBgEVyKIngkKkwILnNUng1d0qHwr8A6C+gxDGnDirDsPORnPA7tFssNlh0J022zXE4Ev5t05aqeUxeKudIVfBJPhUDogisK+IctlWT2+kDp0C67l/bxllNWDyxE5s2YDHwa6QyBjIfXxzP4PXawYCcbHwc+DQniigvdJhYKxYOPIk7csxCxVxxf/EVb11MxKw+8rDKQ/bBA7hz32HOR6KYYvuuEjEDAElKcFZfBGLGsti4JdsIgUFLIp+MS+cFJrkAlkIAb1Wd8nuuvdBpC0z37u3+hSBgbcln8l7PJAHbaCWK1RaAKu04qxNL+/NvVxTWLEyq66qta5wIsVrjfB13YCPEMPyrx5QtS2wKHzNP9RLeoxRidVJ6dP1zLFTNYIxZHrtYFUEzxt458VmAq4mzWLERQjKdiBpxVgMg37M4PgYA3Ltb46rPndWGYvX8yOtjQC7QWU12v6quq5hzUzEgArfVec+Y5GMAUG5a5EnJxoKpndXUe0uEb8vE6tqA16zYGE2Tmq1jiHMjpbN6CgzI1AGLvs/MQkkXA+IhpCCGRFkWQr9kXSHiOhQFNoVv9NyGc4eha7oYkI3NnNWE9zfrXOh8Xty1b4wBUTirycxqVcAi1QneYB0H7sm6ZmbEbqDz4SEO/QRf99hL8KLW18VLSYIva1eac4Ojplg9iKSljDGKzI3ucdNK01nNjVKDGJBLsfpNq0ux+lEvEcyizawecFZXFbLKge9qtPeIiYIM1wED14AIllPgD8jt9BcRsCjaqIcwICbOapkI3rQkap4r0OyWSwf1ukaaOyRntfLzEqXr9GgCxRSfc0UXVVkrtVxMIr+ARjZCipoQsMgFKmk6vWHroIotbcR7hBoDEq8rukNROH0kGyzrNQ0DohwLarYAdm1am2MQWkys7ll9WIu67dAxIJZtM4ceF1I+c/cALxzcNXNAd53VNRPXQs+MxeZ1xOo0rowWj6KuPebiXrJoMCBfuBPgmcUDupg05FAEd1ZrYiD2QjWYbLIp0DUkV62KJQoYYUDYIm/ElbPO5U5osVDqfia+j8jNlc5qxnCnjzEzN8Nm1WE2x7aZszqENEwKRYHTLMLRLNMaZ5rNlYlZ+02bfo7tAlWI1b6BWN0WasVxubM6NGVWdx/ZCbo35lcC5qwWnRtnPgtw5QGfpFJlLgh3McVZLf6NCma1+LmkOjrC3M3whTshrjqn7GuGYnV06DOxWiigRcEcmgail69wKBqxRAed1USDCKAMdDYSPwHA86Ts8s2aB8NSnoVGrJb8WwVegzDf8p0SeXc9IzAgVDyacL92DB1pahY+reqQI2Md+bkOBiwaOKubjIjW2M1CbA3EagCBV+8Ky3mOszzE4YL+TghntrTb6DzmzmrCu9ZVBCzGhcGGmKprmmpsE4f1FJkmvFvWczVd654HywLqIWGZC+G+W+/ON46OAAA/9ZE/K88LkXTxtSvLLX2DgJhzDojVNaA3xggckMI4CQAoCuas1tHNfJ9hQC6Z1Y9kjV55y7JCy7J+xrKsX7As6xOWZf13/OvPW5b17yzL+rRlWX/Xsiyffz3gv/80//PnWsf6Qf71X7Us6zdd2L/qP6YiBiwqF6VA8yDrJqUOuV+LgtjyzBnIZQm5o5S6Ez8WsEgJY9gnYNGIWa3CgBDbkPikUcWjS0uXtWbqnC8PAtwLA6LjrLYq5IrrWuUlbOKkcchZfSFitQE7Temk462DJrv70hZaw8WTylkdnxf0xZPvK9PpVyuQMCDKz0s4qGxam2MjVktEcBPHOtC6b4VYff8Ibzu4a+asjtxeEGJSeohM3JRoidX8uHFiGaNFAODa4x7utsTql2/P8cLBPbqY4nlsYqwSqwUSRQfVoFqMoBWoRRy3lCnyBpuiPUctr7pgGyxUvnYx4qxON6W8i+e3/3b2/2/6pt2vBwEiN0N8Kp/ExInFxhhiwOLcS/tidWLTmdVgt2UscZEhz3GaRTicaz5nAyizpkWd8ozZrKsuK1v3bVliXQSYBQat5LYNvpKezlWrEqvFeRuMh+7Rgm0Oi86Ns8gowBWAekNMtKkHhHctF8Br2QTJBAEBAIsFrkVrfOr+FVyt7rKvGYrV3iJg4l+WsfMrywmc1XxjvLvhbpA5ocy1MTGIoIXrUAUsmkzkJMc1Yu03YrVkfUG9txxn6/5sr+moXYeiLAueW/WcqklqGW2Oq9YIDWppSmY1d5eTmdWOA8/hxh5xDZqARQNmNYDQr5izusWaP8tCHMzo7wQ79JnpoocBcchitedLskfynG22hsRrwA1jMtyUCV7EC+wRZ7Xmul6cyNDtUxTMjNi9tFysBgC87W3bX+/jrBZubQKzWsWBBkB3VjsjzOqSdQlo3V7iuPFAN+Ols/pNq31mTimAb6rr+r0AvgLAt1iW9dUA/hSAv1DX9dsBPATw+/j3/z4AD/nX/wL/PliW9S4AvwvAlwH4FgD/T8uyLj/5sSoK9nLTCVAZw4DwwUyX58MERUXoE7Udz7LgOjWbLHR39vjk5sIwIBRmtaXe0SMHqAgRXNGeTW5Dct3BpO+k9PTX+lycKPdxVuuGdyrvLTqfc8j5SN4tHXNWEyc3jmuhlLkpuahKfU823LRu+6iBmAawwLpMctzNumZ8Zaqz2smlzmpygviAs5pthhHF6gBsci/5vAAY7cKHQc1Yf0KsfmAuVvszh4nrHbE6NGASAsCNoxy3NweNky6JzdpyRdkHC+ZS5GJ1nDoM02DqrFYxq1POrNbGgEwcsMhPVTpu1TXyyqZxWpvg5f7n3WROEDFeyrwBXsm6ZO637pjwjd8I/Lf/LfBt37b79SBgbMaV6rMyQHb4PmZOhs16d4xpBHDiyjSMLLmzOstwQhGrB0KiTTcaPbfe7YrhLd9GzmoAsPj5dF21VP3T8+DJOOsTYECwWLD/c7H6/ibE1WBl7KyWuV+NHNB8EZ3Hks/G1FltWbh2mONXTx7D1foeu5/EdaGWZaG2+eeyWm1d5QZ0FRWqgaE16B0GAKbPnFDMN4q82uXI6pZiI8TcWa1eI9S1pX9vcVE564p0RWHGrAbgOXVvLpskYPMNasCiwrVvgohrxOrummaC8G3X4XMDcQ1EwKKps9rvO6ur2tYP2GyXIsz4PPHMMCDtfz/QbIqSh+5mDdr5uhgLqMxqxbjVYEt0jXj8WbTqSi0uczNi77FtD8DPP9/7ujXkrC5LJoB7mni/AQ40ANqGmBDAh8TqPKc7qyU6zKVY/ebX6Chcs1rx33r8vxrANwH4+/zr/xuA38Z//Z/y34P/+Ycty7L413+4ruu0ruvPAvg0gF83xT/iP+riD7Pl6+08MWaY4s+Fs1pz12lQUDRACjiOYmHetONpH3LQlURu7dkjYJEkIoxgQMgTZ44BUU1E09JFEBGRJSpkBxiz2LEqTWb10EaIgUNRlhwNMNGn5Nz2ycVqGy5hctMgSySLp5L6HKC1uz+lKwlskp9JMBgNBoTIrA6dAkkswYBsLMwpbgyV6CM2gmzaJH8IA7Lzcwn12NUMb2wOm4DF2+dzPBadGfFUD48dnOXhVkwTrZOGjpznHk/xudXV5rirDXeomk7sZjPmdDjZ4PQUOPDZtTARqy1A7azOuBiu46z27ZGARSIGRMXCFl0Wdq3/nhHzAsn7IM9qMr9fynrsVLwqEch4h5YFPPNM/+cGwWDAItu4ICI7fJ9hQDpi9SZ16GgRcGe1AgNSVA68kJiNoELBmGw0dsNxBQbExFkNADa/J8U14JviZLHaZuzNrNw1M+RZTXeWi2qL1XmOqgLLGTBJxlU5qwVSgRqCp8geKRODfAhe166U+NzqKq6Ga+C552jdCt0SYvXZ2STM6gZl1hWrDQVFAOqOK6r7VSFW5znRzNI6rmtVKNLd8zVyVnPsWpL1r1+VFezeItyzvithjJclssqlc4XB2OVFJyQ6STmewCRgUYJteSQDFgG4bkew58+XqVgdhth1Vpvy8Pnftax6951Y11ilHh0DErr99Qx/f5HHmKa7We6sJq+9xEaIYozRFqttG7BtZqxWictFgUzmKm6fQ3sOLb6xrlFXivPJMqYZhYSclCFmtRgfCGiRfECDaJBDBJNnJunqzQr7Uqx+k2uvO8+yLMeyrI8BuAPgnwP4DICTuq7Fm+hVAE/yXz8J4BUA4H9+CuBq++uSv9P+Wf+FZVk/a1nWz969e1f7H/QfXZm0SQxhQAgtEq5dKfEPzeKJyBWWOkpNdqEHXEkmAYvS3VdeRUlszW1Y2HJnNdmN4Hms3Vd2H/BFpLbuIybMAwYs1vKt0S40wqxmzmrai0Ip+oiJs0PgFQ/dWwIxQ7hnHQcoZYxSk00bqJ0jRpNxqDEgm1VFF5KEs1qGAdnYWLgGzGqFg4q6KA0iG2npSe+tnZ9LqCdvFHhtfQRsNijyGnZdstvUwPV35ZqN+8mi76yeQqw+v9a4KV+/H+DJ+YmxsxqLBW5GZ3jjtoXPfAZ42wEP4aMqX0PsVwBxRmBW+7Y6YNGAealkVjdhq4R7Vjg0p3SO7BmwGG9qvY2mIEDo5kjWkglHXSPOHda9QUQNzdxMoIqb2mSOGbM6spgzTeKstqx6uk02mIe1NeJfywE9iVjdCYZthBQKq5mXJxG+GLPcsHvD95kLOC9QPzxhLtLZjJRfsD1ZPnZIAhYB0N2vihyHKfIBrj2/BAAWAPolX0I+zk45/L7kzuq48BHNDO4B32JO3R7KjBjsDgCuC9uqUWade76uUdQGIXhKsRpwLTNndejmiDe798F6Y5kzq7P+Z6NEN+1zqm7NjAzt99cEbGXXtXZRZjDHgDRmjl9LZ7WJu9zFrmAv5nEGnQuA3FnNfuAEm3ft8bAocJ6FWEYF6dr2cHb8XDeFb+Ssdu1Kim0xwYAozQwmIvhI9ooQanvTjW/+ZuDpp4Hv/u7dr3MB3LPL3kZY+5hpqRlYCGzzMRTzwyLO2RyZErBY2Gp3OR93LB2Wk9BLusiSukZeWiyw0mRucFlGtddIUdd1Wdf1VwB4CswN/aUXdUJ1Xf+1uq4/UNf1B65fv35RP+atU5Q2P97um0kmIOKYUqbRUI0gMEyEL8bqVe0+El8UfPJay9R16guocRVL/qxmO/6uRRM/mbNa8meGIZPKFr8sY24X3QWEQJYMrGmTjeYCymbc4LzjnhJV5DVZ9Bna2Sa1YQH7OasJn1ezaSOZ2Jgwq/1ghPdIbSUPHekCMt7UdKePYFZL7tnVxp4WAyLCbhwiBiSymbO6ex9M0KL+5FNgYvX5OV55KcHTIljQAC1ydM3FaRb1ndUGjjcAeO6pAp87v9oIX688mLHzNXUhzOd4YnaKW3ddJlYv77CvGzCrAQyI1a42vqZZjMi4wgYt6sqOEB7MQxKreTCNbPOS7AJvOq6Gv61pVd/32vo+IidHvJK/v+PCR+QTupiAbcBiR6yOU8eMWT23mbNawismtdMPhERPkTeQVe5WrC5LbAoP89BMrK67GBAxxpgIlRKxOkkto1A1UZFfISk9vP5LD3BzdmbMaxbdG1XWb/sGYOaslmzgNnMtA0Hp6q97O64Ea+ainUistoRYfX7ewk0ZMKsvKGDRG+DUGovVnXdCmlnanTs75XmInLzXdbaJDfBFnofQyZHm/evXoJsozmqv7odvlyVjK0+Bg2m9xNLcNsrIUOVOGHWvcPEvLzuCGjWAvVW+V+129E2EAekGBKfrggl0hhuCvcDZLMMqD7CY087XC52eu15siM3m9PBOJQaktuH6xDWSilktnL+US+v7gx2CyHOm73SF5cND4I/8EeCDH5QeM3RyJOfqY5KugzBOKpjVpDHGsnhnmCQvqHW+4ufvXcJZ3Z0fC3OjQ+hmvKzJSuvOq+v6BMBPAPgaAEeWZYk74SkAr/FfvwbgaQDgf34I4H7765K/c1mqIjJ9AqeQTkAAMFep7i7ZHu5X6qTRdWu1o5Qo/MFx4FhV3zXBj1vVFmv51DwmcxVLzqdpHSQIX6oWJH6uRU1MjxaOHBnbiS+gbV9f+HOsahADQllAKRmtYF9yiKKP7/UZdwAuTqw2CVj0FMKXeA7Izmo5BsSYWR05bMLQebtvNtz1ZtCWKhOr14lthgFRdW5QndVBp21SlIkwwevJpx28tjkCzs7wiz+X491XXjMWUnphNxM5q599qmRiNT/uK/fneHr+cBJn9eOzU7x6L8Tf+Ts1PnD8GfZ16mp3yFld10hyW5uD3Cx0JcdsOkIo45ai7b2ZOFPGLeFykfzzTTAgrq14d7WqEav3vbZhyBZPMmd1UTABlMpalzmr6xqb3GVho8T7VsWsTlc5W/RP1RECs042oOVU3RGrDQKqRHXF6jxnCCviYh9gTsILcVYDePJ4jc+eX8OP/4sK3/j4p8x41QDfbO13BlVpzgQGimtfmA4kzmo21zITlK49GeDqYx7wW38r8KXT+JCYuGwje8Cc1TWgP9dslaqLyzRgUY1qIAa78+MC6J1rktlGuAohLHed1Y1YbeSs7v9REtcM3USYxzXz7vb7S4S6m2xaSMTqi3JW56VNx7ZY1naTreMuN2EgA8A8YGN1Lyjb0HQQiEwTjp47vV+wbgvD3QXbqlGlu2K1SbeNG3l9ZzV/f5FPlZvxZGI1oOnQbZXj2WzOrTBLaeWGtc4VAGoV51Uwq3XCfHnXhiojRFwYLRwtsOVLD4nVhLWi76O/GdYu/s7RNnnKhPVGKzCcG12WUY3ezZZlXbcs64j/OgLwzQA+CSZai1Sc7wTwj/mv/wn/Pfif/3hd1zX/+u+yLCuwLOt5AC8C+JmJ/h3/8RalFUe1Q9Q6JslZbatFyqblmfBidxz5zrZAKlBdxa5docwlA4xw7xJcZEpXsWgdJLZnKxf8wlVLvAYMA6IQqwH9xRMP1CoHxOo0rrQn5UonIcza6ZmDTO2s9ikvoH0CFonM6lLJbjfgpimY1UauJDCxOq8dqVhtxFBUOatj1wwD0l2V8utKXZQ6occmoioMiImz+oUAr66O8Tf/1Qv4uf9Q431XXwHmc/LxAPTDbiZgiQLA4sjdWTy9ci/C04uHZoscAPA8PL5c4Qc/+hG868UCv+mJX2TX1DSgSoHviQsPoaf3PAw5q002cH1fHd5ZVHwRrVsDzuo8J4o+ouNqJGCR5KyWtLyLkzW6b4WzOm6N0VmGB+kcx7OU7J6JFg7iwu+NM6cPKxz5sf64NYoBMQzHLbvOanOx2hLM6hZeBICR81fprJ5ArP7Ql9zGv7r1In7s30b48JO/Momz2rfLHqOTuigHsBUUlWK1mbP62jXg6hMh8Ft+y2TOsdkM2BQ+fvcffyd++dN8k9Tgs2ryMdrPQlUhF2OhibNaJlYbYNekm0xVhbRwmIuQ2h3leYjcrCHsiNoktnknm4RZ3SBmKBgQjzPxe85qM1xFE2gsE6uNnNX9eXdRmofY9sRq4ag1cFbPwgrrItjpkEsMUUsAEM4dttnKd3FP7uY49GKzMVE4djet8ZCftxXQcFvezOuvZ/h6lrwh1u7ubTvhTcPSVd1RZcmwGh6tQy5wcqQrxaRLrG11Li/fCFOK1VSMldCiVGI18f2lDK4URVmDNUSCztdNDCKXNVnt8wQ+DuAnLMv6OIB/D+Cf13X9IwD+bwD+G8uyPg3GpP4b/Pv/BoCr/Ov/DYAfAIC6rj8B4P8L4JcB/FMA/9e6rg0BeV8EdVHO6krfWe3aJXIFJ4i1EdNbnssBRykVA+JaFYpsQKwmsaUV7vJGRKA5dYcCFsmTG/FSk90HVB6ZuK5Dzuq41ndW+4oNC5g7FKXtQjzd+EIwIMQ2P8dVXANTZ7WKyVeAPbNUR0rkSp3VcQw6+1UsniQL83XiYO4RHESKRHIjHjygnoiKXX0TZ/XbI/yz196F3/ePfyt+5J8H+MprX5jI9VdsFw6moTSigoCJoGt2fV95MMfT8wfmwg+AJ66m8O0CP/T7b7EvhCFdUPE81m2TyKzFOUNLaJ4yY1YrOkIMNnCV41YjpFCd1QVyyfy+yGvawnxfDIhw/2kwqyM3Q7yWvL8FA9fUWZ20/q15jvvJAlcPRlT3gfIil22MdsbD0wclc6gRNoYBTL4RArScqi2xel0E5s5q22LTw65YbSJUShamccr58oYYkA+9+wF+5PPvwc9+aon3XZ1gjFUgO+JVqc3D3zmmglmdGAiKoh5/HHjiCfJfl9ZsbmGdB/jYywf4+KdCY/e3FAPSON6IBxXs066QYjLnBuScXiEoegbPl+sidArEye55GTmrHYfdr4XTQ/AlcW2OAekyqwvPKL/T8yXO6twxC1gMnP6Gc10zHro1gVjduWeL2tZzvXZqHlXMHNAyHSSGjnUACJberrNavLdMPjDfZ+/x9qaz+OyI2RBe5LLPq4MBsQD6OGhZ8JyqnxNC1QpEDYS4ZpVLc1aLNdJaLSxLMSBDNSZWUzedHUedmwWhFeh3bzQmtF8LDIh4z1ADdy9rkhr9JOu6/jiA90m+/jIYv7r79QTA/0FxrP8BwP+gf5pfvFVlhEGYT5izQvFCpMDyLQuug+1LvTMIFCU96MRxeJiUzPlo4Cp2VGI1dbe04TVbTLBviyYmSIEGLyL5MzG5McCAnKdR/3zznPZyH3HYA3y3lNBOr3RWC2Y1RfRRvdRMgjNEG1ZRoncVBAaE0PbMNm3kTt1JAhbzeOfreVoZJRyHc4cxWrvO6tjSxik0JUSqpP+MrRIXCy/Rd+yqWMXc5bKYWKxu7gsDIeXxt8/x0ukSH7zxMl569Rk887UPgOjp8b84VL6Pq+EKD849PAEARYE78RLXD2RQe42KIjwxP8Hrtyw8B+DW2QyPTcF/BfAbv+IO3h/9RXh3fgf7gmFLqsddj70zE25dzVO2fRfVAL6IuoEbBJCPW8070YRZ3R+7GyQQEQOSqzbGeW1iSw/bEAQInaLHZxUnS/msmmrE6tb4lOcMDRbQBTXLZ7zinlh9UuNgYmd1M98ycFaftZnVImDRUKx2XTDsx5RitVsjT2XOajqnVtS73lHg5+49g7/wn/wzOHY9kVjdR3bE60qbh9+U67IW7aT/R3EMJtQZiNXPPAP88A+T/7q0Zgsbd5MlPntvgZ/4uUM8t3zd6B7wQxt5ZQNF612V50YByUpntWFGCPuMy57zk4nVBv4s7qyOd6dx2KQO5pSOMwCwLIYzEwzkljB5IRiQypRZbSHPO2J1Zk+PAanr7XqOuDnejFs9DIgNN6CPW7Owwvq8K1ZP4KxeeEhKAJs1AOD0pGJitck8zvMQOonEWe2SxWoVBqQGjN4HrltvUZTdjWKqs3pQrHbgU/YBhBlR5awuCmSVDz/UxIA4hRy7BvB7zSflBQ11+VOd1Y2ZYyBkEgABA1L2u3pNkKGXNVnRt/cu69ek8rTSDzngA4TSWc2ZRrrJrqPuVyKqQemsFiIdkVnt2qUcAyKc4brnallwHRak2AsCFI43qlgtSyLmxyW7PGwbvluxdrzO+dZpps90EueqcpfzouyWDjKrDRbmfiBpHwWMmdWuNYyYaQKGdA476Kw2CFiM5EGIjWOdeOBg7rJFjspZTVk82TYOwgxnWdCbiKwSjgHRdXqI0KtU4qyuDdiUCrGaNGZ3KpzZuBat8P/6+r+N7/qmL7D1kikGxHFwNdzg/iZk95jgJxq4fAAAyyVuRme4fZv9tiy5SDuBWO09cZ0J35/4BPvC0ZHBwTiTLpZMyLmYoH3KQ6iG0iY7s3wfSEtvWma1bTOXi+R90CCBCGK1lrN63zEhCBA5GWKZWC2c1dSOAN/H3Nt1Vtepmdtr5+92xq3z0woHXjJpwGJe0F37AAuHTSQYENMuizCometvSrHa7/OKG2e1IQbEWi7wyW//v+N33fhx9oUJMCAyjFW8qekbuCJ7ROKsPl/ZOPAT4+tgmoXbrdnSwX+4+wxevPoAP/GxIzy/vG90bb3A7s9hGsOBoVjdDVg06egEtqFyPWe1a5YPwZ3VSgwIdR7XFqvbx92AfM82THwZBsRE+/QtFHWrI6SqkJYOQrcgi8rSgMWiMOOWYwQDYsDwn8/qXWY1z6AyEcABIFj6OxgQtslKMIfsHDToOauLTQbHqsjvWif0WBB9ZzMIgNE46Lry7g0A5hgQScAiw4AQjilc0BvFWCKY1TooSnFMlVhNdVaLObdCrI7XFek9Ln0ftIuCAfF9Jqx3M75M3zOXNUlditWPeKVxxXa3dR463tqVKZAdKApSsuuQ+9WEoej4jtJZTU7MFS5oBQcaADEMEvK2byEokgMW1RgQk0COwK/ZRLQrqMUFfLsktSY7doWimhYD4vpyVAVgthHih7Y8iEFwvSgvIIFtGULMUO4t35Yzq7kbw3GJDg8Vs1qEqhEneFbIReOuszq1ETlEDAiAg1mJsyxCd8W/Tl22KCM4q0NZQJVwwVPbfRViUpyYMRRF/dPv+Dt479VX8ed+y79kXzB1/VkWrswSPEjmrFVwUxg565s6OMDN6By379o4uVdg6Sbs/jcR/kTduMH+/7GPsf+b9KuLgMFEMiHPMlSUwFkxxnUXI3XNN9lMxi05a58F+Wofkh1XETjbYEB07wXbZmNhZfU3cFulzVUNAuYmjSV/ludMWKWKHo7DnNW515zz6qTAwiO6E0XJ2v8BnK+ApZeQ3rU1MLCBS2dWLxbAeRbuCB6loeMPAK4f5biXLCAUtSYEysRVKzace5xac2c1Dg9xFMTbe3cKZ7VEWI7XlXmOg6Qj4nTlMPejyX17ATU/dPEzd5/DR972Cbz0+gLPL++xm45Y0jkMF/5MMCAXwqyWdXIVBZLCMMzY89gGXrr7zG9Sh35vAQhCSxoUvd5YzLFNwYAI52NHqE0KD2FIdwA364Q2r1lkTVAd0KGjFpUN9oBUAYtlbcPx6NLLLKoZs7rlrAYAi/wgsFoeu1jlQUushnnAYhQhcnLEq+01WJ/ydy11fij+Xut90HQzGuKmemHZU2FAZBjK0qURVnyfvWM2amFZm999UcxqEbB4ARgQ2TxWVJnksK1a73yFua/oo2CM3jOXNUlditWPeKVJrd/mZ1ncmaVISyW+3JowKckAwficNOHD9fhuubLl2QADohCAARicq5qvTWdWD2NAqIJa4FXS+yBelbQJrutyZrV66EgSaLflNa79iRfmQxiQrHTpPHR7Yh46WHJ0j5kG8PBO+j2gYlZnuWUkVjeTxo6ovIkNAn8AHC5KnHbF6rpGVYG1ahOc1aErcSIUhVm774BYrYU8UNT7v5S1YzaWZVMhBcDVeYL76QJIU9y6BTw+OzU+TywWzFn9wMO/+YkMX3PzZeaimyKs6+ZN9n/xzjERqwUGQxb2kufMDTcVqqGumTPLpi2ig2CIWU1vffd8OV4kF8gS3XHLsraOJBnDn1ecao4Jvs8WuRL0gXAlBVTRw7Iwi3bdafdul7genpuJfpJFNACcn4EmhLsubKvud4TAnFm9PLCwKoJGVJ4iFBYAblwtcSdeNsfNUsL8tVNel68NIM4ctiFqOnY93UErTcWs7jirN+uazqwWbd8SWtPZysaB9+iJ1bOjAD9560V8y42fR+AWeG5536gziGFA+q7H1MStLJzVRWccMTHJAIDvw7Gr3eeWIzBIjFpRYh6TdpjVQqymOqtDS9oht16DZYRMhQERaxmDDbFmLBDnKhAYBpsAzbpWxpY2cVaLkMmOWF3XlpGwPJ8D67azWpy34dh99TEP99P5lll9Zk0iVs+9FOvV9jqenfBOIwOx2rLqHR2iQRoaOaslOFID8xGAQQxIWrm0SyDeBypmNaWbib+3htza4vu0ynGGMSAEYxsg1vUKfQtAllQkhFHD2pduil46q9/MuhSrH/FK4woBQfhgzEsF04fYmskERYmYBrPFE2vzlLuVawC2R3gJj6Aa6toycFYrUA01HSshdXjw41a1RbsGAIJAMvgC2Kwq2uKJo1DKWu2ka8RqirN6KGCRyqwewoCYhHdO7doXGyGSIMDShFkdudJd6DTjoip1kqsQZ1iLNj306WBe4iwLd8XqogDAd8oJAYuhI2F+ilZP6jpfIVYnqTVJizoOD9n/33iD/X8Ksfogx/2ELUhee7XGU/OHZosRAPA8PHYY4431Aj/14zm+4fFPTYIAAbB1Vot6/HH6sUSASiIZt8SzQQ3BUwUhEkVlP+BuN8l7hpyNAMAXYXXdLovCJrvsPbdWbjSK0nb/hSEiN0ccSwRpfu4WqYeWVVesvnunxvXo/GIwIOfcWU1poZUFwMEMMQMAy0N7x1ldZQUTAAwFj+vXatxNlo3gEW9qI54sAHiB0xOrk9whh7/t1JNP7l5DE8wQwFqJHf6Ztboa4xhmzGqnL1ICwNnGZYKS6XWYuGZLB6f5HB+6+St47vDE3FkdOv15nKlQKTptpBgQejcjfB+uVe128EzmrM77zurMNXNWBxw51V0jJDaZhc0wIG5PAAZgNMZ4XWc1vwcCg+BKN3D67y9TIwPU3G4ARtdgPu9gQAo+dhuOAQfXA2YSEc7qc9ucWR0EOA5iPDx3m/Xi3Ts1roUr+rvW83qYnc2qMtqwARSd46Z4kTFnNTFgcQwDAkDvnMV7S4bIg0GHFOdA99AavJKEJlZ7gS1f1/PK0pqhGDWfM9YR0u/gSQrPbKPxsozrUqx+xKtxVmsOEvs4q3WP6fr2gPuV6MyC2NnvT5aMeFEXhWoQgqLUBU5nVksdHoAxM8v3Lel90LzcKWK12IFWOOmSBNoLScaikzOry9IAA6LgNRuL1XaJIpX8+w2c1V4omTQD24kzkXPXtDl2ni/TYBrG+Cp7O/ymbamHy6rvrBZKM6VvjjM/e5M7nshtIlbbVo0y270PGAZkghb142P2f/Fvn0CsvnJU4UE6B9ZrvPZqjSfnJ5Mc9+a1Erc3B/g3P23j19/8zCTHZAe+uft7U7HaKZCncrHasurpuMImWCi0Ntkk70STDRbPlzu285y+2TyEBxOl7f4TCzIJ+qC5JgZuUiZWb+ccd98ocT1cGQd42laFMumI1SsLS5/GrA6cAmncuYe4a9+1K3L3wvLQxnm+3RC8/8DC1WBtLlZft5izmgse8aY22xAF4AlXbdtZndrGx2UH93Y/l3e+0+x4to3AKZEWu1z4OKbzf1mwXl+kBIDTtcu4so+Ys3q5BH7fB34Brl3hh977j5izegoMSEf4iwsPYWDmrJYxSo0wIILjn1Xbe0Dwmk32hR2Hj4m7eMdGrJ7aWR3bmHt0DIiS/2u0ccW7D9sYEENnteVJcEsCEUcN7wR7JGXXwHRTcDa3sc5bGJAJrisA2IsZE4H52P35uzMc+Ruzd6Jl4eo8YXNOPo+9c9fCDZONYYlJJk4sY7G64aF3hMq6tujHVTGrRcCiTghic6KefF4giqLvCFyHzMgBIItLhg0lzGGkHGheScy1As3j2r4akQYIk6e+biY1eRYF4tLDfHYpVr+ZdSlWP+KVpmDtDLoPnYJDBoAsVjueAgPS8DnpLc9SYd1kJ9514Vj1xbhflc5qGy7FWS3YeTKx2rANKQhqaXiKCUOxcSIoeFENT3JKZjWVh+7ZyvBOMrNaoFAmvrcaTq2CWe0SnT5u6PavbVUhKXgwDbXFzfex9BKcn+9+Oc64MEVlVh9aOMs7zmrxa8rE2fel7bNioUMOFVMEX00V/oW3vW339xMIwNevVribLIDVCq++bjNn9QQu6Js3anxudRXppmQM2Kmc1WEIPP88+/WVK1u3OaUEBkQ2IRcLnwnF6rxyaFgoDDCrTR3bsgU0zLpXGOtRvtEoapNpbmCJYCaJQDeFk2wW1WzB33VWm9y3vs8C0DqbYquNhSWF0SkWpV3WvgiAc+hi9eLI3RGrb9+1cTM6M8eAPGaz8YULHkkCOv6CV89ZXdfMWT2FWA1sx5TlchLOfuBVvbm3Ueiw6yJyMoWz2sHBI+is/i//S+CP/rZfBAD8rrf/LJu/mWBAIge5REhiQiXx/W1Z8JySdXW2uwSFOYCKq+DdhzsGgQlwFbAsREGFuPS3Y21VYZN7mHn0ZyGYOex+7Yzf69jGnHjPss3WPgcagNEz64qxoOUqTksXYWAgJMk6BCc4bhMMK3NWGzyv8zmYs7rDrDYeC8W7b7PB//q/ss//a26+bNx5d+WgYGI177a5e89iyC1DsbpOs2bThoWBGjqrJRiQMivh2JW5WC0xIKWlZ4YBGWBW7/zsfcr3Wc7ZgFhN6fCH6zLHttJZDaYVEI4LYNhZTcGACGxo5z2zKXzMQoOx+7KM61KsfsTLxFmtbJMgisBN262MqSsW5hSxWuzsq5zVRLHat4t+ix+AqqjIu9uuCzmuoiy314BwUGkqOWAc8BD4kLKdNuua3Jbq+I6SXQ6wNaVua0+DmFExq6ktz67LdsYl91Zm6qwe4qETxWpph0ETiEq7ByzPZeEj7eNOEEwD38eBH/fE6k3mGAkUjbO6tXjIzhLm/KQ4q1UBi0WBhBpyAmwnjZ3jJimmcVa/+OLu7w8OzI4HRtW4Ey+Zs/q2O5mz+rHHLfzYa1+KDz79OvvCVGI1AHzf9wHf+73sPxMOtmj7ljirq6xgzwiVWa3IMKBy7hqmpcqxTUUCifbsHgbEImNAlJkTrdqkmu6/IGDCr0ysnsBZvZxXbEOsLVaHK2OxOnIzxOvd++t8ZdMwIIrNMFMUDAAsjxyc58FWrL7n4ObszFj0vP6Eh7ttZ7XAX5g43gTGqiVWx4WHyMvpG63t+r2/l22I/YE/YH4siFBrrydWRw7xncg3W6XO6o3HWvXJL7GLqfkc8K51NhZNnNUzrxeyabzZbFnwHHkInlHwMjgaqbY7uArXmLgVBRWS9lopz3GWh1hGBfndGIQWksKTO6uJAYsXhgEJJAGLppsA4t8ncVOGvjqHYfRcfUkI3AQu6NnC3mFWV7l5uCA78Ixxi89z/IN/APyZb/z/wXfK6cXqBw6uRwYYENvG0k+xyvzmem42MMeA+P0Q16YzyBADUhdyZzU1YDF0ciSxYtyjoEuGEHlgDGi6s3oAA5JaJAyI9JltVZqC6WYkDEhnfswDvWfRpbP6zaxLsfoRr+ahI7QzKDEgVA7TAH/JZPEURLYclm/yYucCsIz32PC1CZM75qxWhOBVxNZB31czq00xIIECA7KhO32aTYtBZ7XeC8j2HOaAHgpYJG5aAFA6q0lcQsGsnjhgsUGWSFv/DRZPsnT6KSb5vo+ll+J8tXte68xjjhwTZ3UWoQ2ZXp/k7JiUibPnMeGry6wWAU1U94zrInDyXvBVnNjThH9F0fYaXrkCPPOM2fEA3Hzcxu34AFiv8enXIrxwcG8SYXlxPYJt1fiGm7/KvjClWO26wDveAVy7ZnYcjgGRhb0kq4KNWVMxq8uSByHSW9TFcXaqSSYnOqtl7dloYUBMNnBVYnVd63NVgwCRkyHO+udT5+butMODegc1dPc+d3sZO6v7i8jzjUNmVkuD9Qzd9QAQHvhISm9XrI7OzZ3VT3q4Ey/x+TfYKrzBX5iI1WHHWT2FS7VdL7wA/MAP9MMWiRX4VQ+rsEksdh0o70QRNioRq89izyys7CJLYKwAdu8bnGNvwwLY3gcm7len6ovV3BzghQYOYLeWOIDNuaehXyEuWs7qosDDdIbjhXwuvk81zurOvHOdOCxgkfC5+YHEVTyBWB3MbDZudTcBpnBWy8wcBp+Xylld15YZs/rA2WFWNyF1Ezirr4Yr3Lnv4LXXajwb3m6+blJXjiqWkyIwIPcd3IjOjMaDK1HMBHD+mTUBzgbvGd/vIyDY+8ugM8h14VgVyrQ/P0xLF35AWNONYUB4iKfWOfO5cW9jnFcWl4wBTXFWCwxI3T82WawW3z8QsOgTAjeb4MZOl8Wm8CcjG14WrS7F6ke8yGJ1ZMuFL4AuAqt2sxpeM53PKXVWm7Q3CT6pxK1ssjBXspUbcYIwufE8uAMBiyaTG9WmhQkGRCp+tipJLXbPahxb6SQ0RMwMiUlmzOpq8s2FZhNAxqw2SVF3Od+rs1uclNxZTa0gYBiQdevfWpZY5z7mPt315i0C9oy1FqZ3bxVMTDJwVqswIGTjiHBWd8XqzGHCxBQt6t/1XcDb3w78oT9k5irmdfUxD/eTBbBe4/N3IzyzeDCNsLxc4rHoDF+/+Hn2+0dxZicwIJINzHhV0tpIVeOL2Lyk3gJDIjh1UxQimKazgK5rhgGxaBuCQ10xAFireuEj8jSQQ0GAyM2R5P3vz+OCvb8NnNWLYw+rPATWawDAZ14N8bzpxo0QFTddsdrAWS3rCOGblx51IwSAFQbMjSfE6vsuHotOzZ3VTwX493efw2/4W98NQPD7J3ZWc1ZxZPLuusAKJHkxcWLTRQ/H4c9Cv6PvLPaZs/pRF6sNXNUA4M89tp7piAimQqXnSZzVPHiZmhECAK7DQ2d3HMAuwsjsHR6FNRNrW85qUxa2Gzgo2xxoXuvEYc5qiljto4e0m2KT8fiKjZN2190U4Wee1+885BshEZWHjpYLvHXcupiAWb2wsS62zOokrqcJm3UcXIkS/ItXvxTv/4qycUIbO6uP611n9YnHuphMxOoZ52Dz+2ATW8YdPGGI3a4FTNAZxIXl3pyzKFDWxDFG0dHZPjYAvXvM8xBchLPasuC7FROAJRlXCaELG8AoBoQRCfSP2+CLOhtMl87qN78uxepHvJqHTpcv7audquRJg2o3iwu1HtVZrWCmGfG9RPuJxEXXtDxTmNUu1Mxqk4BFp0ZRWVIHMAA6s1qwy7vO6tgyCvwBoBarKcF9Kge0aZjUiFhNmi/tgwExcYGrnNXUxZPsuRVCraEjZeklON+0/q15jlUeYDEzc2wD2Fk83Xq9xmOzM9rE2WFs7iR3emzKpDC4BqJNvyNWGwdXtuv97we+//sZv2OCspdzVLWF9CSGbxWwrXoaYfngAP/8N/9FPGZN48a5kPI8hgGRDFvxumLolkmd1Qbu16HgxpqOAZG5h5qNO4eWCzAasEhpo/R9uHaFouyP+fG6Ml6Y2gdcPOMMo8/dDvHc4r7ZfRsEjI2/3n2HnccuFkRmtW+XUme1KQYEvs82MLsYEEPR8+qTIT51egNvrA9QlxVi4Sg2cbzN3F230xTvrgus5hlrB4AJ5x9lvmVZCEMwVnFn8DpNAhaw+CiK1VeubH9twKsGAHfm74q/AN+08I20NN+t+7hELiTZvsEGi+Df7jiAze/ZMGAInB6v2CRg0/eZgNp1VqcuC1gk3Fte6LDr2prP51nNBC8Dofb4ioWH6WzasUDReRgbHtcP+yiULAPJ8dmu+aHLnNV87Gbc32nmm1eXGf7J59+Lr//KDTtv2zY+7pUrwIN0thWrTz268UQcc57uOKs3sXnAYhhxHI7MWW3ArPbtsu+CNukaFx1c3U5RXnWW62d6eB58R66XACyw0Cdkp/HT7QvAvJLUJgUsjmFAmudMFwMSqp3V0czcLHRZ9LoUqx/xogYsDgmKeVIysZaKAZlSqMUws5qcxCtaviUuujyrjfic0oW5WEDSN2D7fDN+XMuqjTAgPQYTgI0I/KEscvYVq3VeQGPizNQOxYrt9lIxIJ5KrBbPBkVYV11XIXxRxWpXwqwWriQDJh98H0u/I1ZnGdsEiAxcxWIS25qN3bpV4/HZKW2Ca1kI/bLnmhALSGNm9UU6q6eu+Ry2VeNXP+PixSv32NemEJaffpohRUQ9omI1c1b3N1KSTUVzPorv787yDdFYQ/gik3ettD27KIzQIspuI1F5jrj0tMVqAKgr7G4wgYvVhqF9WC6ZWLtaIc8Bu67g2LXZfTubIXJybM77YjXdWa3AgBjcAwC2m35dDIjhxpXj2bgWrfHM4gHO7iS4fRqylm+TgMXQYSF44n3AhSQT1+NFlizUOk648494HaKQi5Ttcaausc495n41eRYuqtoBwa+9ZnQoK+CbKz1mtRkH2nMlGBC+7mi6/QjVoJG6YrUps7rjrK4zItKxXYp55zp1yTg3GW5qClzFlevOjqO2CUI0ua6yd7ipkQFAENq9cSBNzK9BdBwysboVYjtV2OyV4xo/9vqX4oNPvMJ/WGTc0Xd81WafGR+/754GZsxqCLF6u2nBQs3NBPsowm7XAlrjtpGzOu/rECZInCZ4Wf7+K9KSdcnpvBN8f5RZrdstvT10Lce8gn1uFxGwSM56CyREgjxHVdtwiJlRlzVNXYrVj3iluU166IYe5iytzI4pw4AYuMiaNk+Js5rcMjUA9m+c1RRmtQhhkAn2JtdAFsbBjwuAjgGJbKWz+sIwIJmt35Y2wEM3QcyMYkAMmNW5RKyuiooJw1M6q3lbKvllqXJWGzL5GmZ17Gx5ZHmuz0vrVhjCsSoUm5az+g2bidXEVUno1z3XROPKobbmKpiycTYRs/oiaj7HlWCNf/PJY7zr+A32tSmE5eee273nH1EMiG8XyLriHzgGxICd14gGogSqgfoYqMZDwaymjFvgGBCJWF1UNh3L6FnM9agSq7mgoMVntKztxlRnI8A49AgAlksAQH2+wqc/Dbz96gP2dZNnIYpwHGzw8MzZ4TOuE5exX6nM6qxz3fgGLnVzAQBzrlsV8ph9ZrcfuLgZnU3y3P7Y7/4b+MprX8Ctz6V45eECT88fmgWKHXo7jNZGSJqKWT1xNSJV68XQbGBSxWohpLSfBf4us3xvEkTU5OV5wFd9Ffv1299udixJt1WDaqAGLIIFIfbWHmKOYCD+NQJNywGdFAZzDV5hiB1nNfm9tXuy7P/tuVFdc7GathHih33RJ0ktY1zF8TXnQpzVPUyeaXgn5CasBpFocG85B6w7TiCsXn8Qso3GCeabVx7zYaHGl9S/wr5gursCIDgImGEqjvH93w+sEoddAxOxepnjQdLCgCTmzOowstgY295gSQ07g4SzWoLyAmAgVudIFc5qEhbGdRmzWjI3BjgGhKIZAfC9PhKoOVeKsY2fLwA1szoDSVz3Q7tv7jPp8L+syepSrH7Ei8qsHgLQZ0lNa+kYwoAYuIobB0NHpGsSdE0CFmUYEENmtVKsrhy4xDmj53ecGKIMMSDN5LbLrDYUq+vaUovVucN2SzUDHgAonNU2XHvidnpDZrVnl8gl91ZRgPG1KZ/XyPPleIYYEAmz2oj15zhYBhnO0nB7n4qfYbh4OvATnJ1uz+3WHcdQrK56rokmYJG6gHScvphU1+z+f1Sd1YsFbkTn+NFPPI0vP2y5Z0zL83bH6S//cvNjTl2+v91c6IS9rFZgLc+6963vM+dM3HkfCO4pdX472Gliw6UGLAaSTdGiwLoIMAsUYvPYqYoN3AFnNdBi8u99shKBClysNhD+AACLBeNL39/gk58E3nnlDvu6ybPgOLg2j1mYVGvVV9c1w+0QmdUyV5axszoIsPQTrM7ZMd54GODGBM5qAHj3c+d4bHaGN17JmVi9eGg0Fh4c2SxwV1zTR91ZHXGxWjBfAWxSh21gEgWaMLL6zmrx60cRASLqO78T+B2/A/iO7zA7ju8zE4BErDYRgD3hgO44qy3K89qq5azEeR7uOoArF0FoJlbP5tbOxs3DeyWOg800zurOtV0XAeYhbS7rzbxeO33TJWwwFhxdc/Gw46w2dqzLxPqiYBgQg+M2RiGZs9rk8xJIHS5W/8rrB3jn0a1pMCBPhvjA9c/DfvnT7AtTzA35MdYPM/z5Pw/EKf/8DdBAV5b5LgZkIrE67mJAEmIAoCgVs9oEA6IKjOdF4mz7PmNWKzAgWVrTmNUQGBC5szrJiFkOwiSSy+ecaWYxjUsbAyJxVk+BWros47oUqx/xSjP9sDoAg0yfZuCZCgPShD4RF08KkS5PKzrjjLvoZHqqCbO6Cc1QOICp3G7PuxhntRe5fdYfgE3K3Z8X4azOHf0X/ICTsDBpp3ccWFaNKlMwqylpzI1Y3T+nIqcjZoac1ZZV09tShXOk10Jr3pa6jAqc58H22DnnpZksoIMAh16Ms5OtGHHrnkfHgAAI/LovVpsuIEUAWlusrirEhY/ILR5Nt9tshpvRGX785WfxTdd/sfnaJPWN38j+/1VfBRwcTHPMKctxsAhyrDK/9w47PweWRK5w6BRI4n6AjglbWowfvcm4GA9dA2e1hNH6MJ3heC4fz0ePORawSJ3sS3BAAOt+NuJIAsByiUM/xt/9qSfw/d8PfPjpT7GvGy7Orx7muJcsdoRKq65ox+ahR2m3O0wgZkzWTmHIumJWQLIu4Vv5dPz62QyPz05x65Ucr5wu8fT8gdFC7/Cai9Ms2t4HE/F/L6qCuctEqtY9EOcO3RwAIJpZiDvO6jrh4r0B+/XCy/OA3/SbgJs3zY7jSzAgE7iVpc7qojAKNQeAo0XJ7tmWA7iqLdie2Qb2/MBh4Xr83nr4oMZxsDYTUmTz+SzDuvDJeqI/64SigjurDYVaJ/KZq3hHrHbNHgFZwKLoPDSYH4eRxFmdmTuru2L1J28d4p3Hb0wiVr/4ngj/6bO/ALz8MvuC6XMLAFEEy6rxqc96+LZvA/7I1/4Y+7pB6OqVg2IHB3OeeFh4yTTO6i4GxNhZLXEsU0IQRQlntUJYZpv5mvOjEWY104wMmNUqZzXF2AY0ZsQiUYjVRJOnHzl9Z3Wes3fPpbP6Ta1LsfoRLyZWE1x6wv0qdVbzlg7dYw6IabnBAlp1XKPgCMdhg29u9Vx0jbOaGCYl5XPWtZE44QaOVKxu3OVEZ3Uzi+u8LTexbcSslgWyAACqCmnBAu20zlnFaOV8TvLcToSqdTm1ZYmsJDKrxYtSggEpCjBe2MTOagD0CW6HTyp+BmNWm7nTlrMS59nWQVQlGZv4G2JADvwEp6fbL92675k5qwOJWM0XkBYViC7EpLZYXRSIi0fX9Sec1d/85C9jYa3ZPTWVY+A3/2bgu78b+K7vmuZ4F1CLqMQqD3rj4fnawoEXk5zVoZMj3ijcrx4dMePLNsSEUEkNWAzt/nsmZy6l47lipTJS+zqrKWK1ZdWoO6uyeFMbCX8AgMUCh36Mn/jkY/hTfwr49denEauvHRa4n853hMq6JIrVglmd2btzmKJAUdvwqPcWANg2Fnzs/pWf2+BLr9xlXzcMwgMARBETq1+vcetsYTRuA8Dyit9zqT5I5zgibq5cdPkzF2npbe+BskSce4h8erhcNLN6GJD4NKPP4d5q1Xa/imeBb7ibuJX9oM9WJgfQt+pwUeIkjfpBiIaCBxOr/a1Yfb+azlndEatNske8uc9En9b9miQw7zgT90GryyI1vAeUzOrSM8vbjeweViJN+Xre5PPyfQBcsM9z/MobR/jSo2nE6vd/0yH+wLt/fPuFxx4zPibCEId+jH//K0u8973Ad73wU+zrHMVFqSuH5Q6z+tbZnL1nTJjVc4lYnRoi/fg7vCcCG2JAQqdAmsrveZJuIhB5qoDFFPCdC3BW50QMiMifUTC21wltc7gJWGzdA8374NJZ/abWpVj9iFeaW7SAxSFmtUhKpYZJyVzFJgxFxXGNGGeWBd+tpGB/E2e15fNdeBVbmWp+VTCry6Kmi5+AupU6M2ibGnJWc7xEGELPWaraCOH3lmsTxT/HYUGbkslCDdCcLp4H15Yzq/PcDANiAajS/jUAQJ8wBQFsq0YVtwS6qZzVi3pHSIjPcvMFtO8z9uvp9ho+OPNwJViTXWRhiH7Aoul1bWNAOgvoR5WnCt/Hb3zbZ/CH3/uj7PcTBOg0FQTABz/4SDsQlrMSqyLojYfnKxtLnxCC53mI3KzvrG7cr3TEjO8UfdYh37wjd6UqmNUP0xmuLGhi9T4BiwD074sgYB0sq92NhdOVjQNDFxWWSxz4MX7p1lU88wyasCpjZ/VxxZzV/HhlycIbAei7li0LgVcxd14nb8AEOSZqOWdj9yd+LsWXHb1GO0dZzWZ4LDrFG7dqVFXN1uMGx7WjgDmbWgLVeRbiYPFojrHBwkNWOtt7Ks9xmkU4mNEwOwAQzmzEbW43gNMHJXsOvhjEasuCJd5TLQGYPIfj5Xl9cSKJCc7ETh0tS5xks50NFgDmYvWhyzZbeZfBw3sljv2N2XPr+7CtGmWyK1aLP6OUHXYc0GDGK+MgwDBk57pJ2ZxL3AO+wXUV3Zdlve1k5agho4DFmSNlVoemzmrLguVY7PpuNnj9ZIYnZifTjN3Xru2e2xRidRThy49fx9/+t8/hHW8r2b1r20bvWiZWb53Vt84XxmJ1OHN6awTj4EbBgu7mTkzArE4UYjUJA+J58vPklaU1eZPFDyx5wGJdI8ldmiGRs8B7JjRem9RhvH1dDEjksvlxa9zKk5JGIrisSetSrH7EK81sGgaEu197wU9gAw8JVaBCNQg+J3VhrhDWTVOOfa/u84fQEquJLwp2EEXIJFWsDmwprsOIgQyondUpD/whOqsByMVqKkNO5aw23AQQbVi9HViTyQJ3VuddDhmAojS4t/jEpuemNG1LDUN2vvFuiFBausat1AeLakesXj3MGfvXpC8zCHAjOsPtB60xr66Ypkp1VodgbrcOBoQchgkAto3AZdzrZpHDWYeRXw7/3TerLAvv+3UePnjjc+z3j2IQ4gXWotMJIOp8bTEMCOE9GzpF31nduF+JJ+q6jCHYHWMM3zOMyafAgCzpzOqhgMUyyWndFkGA0MmRnO++Z85WNg59ggu+XcslDv0Ev3z/Bp5+omT3QzvUkVjXrta438KArB7mWLgxe78RzlcqVue5WScbr+USTKz+pRpftvwC++IUzuo5c7l95mXuSosi+vwFAIKAvf/4HCaLS/aOfUQXj8HC28WAZBnuJQtcWyrSq/aoaG4zIaU1bj28V7IN3C8GsRpALcTqCQXgBuvXuq6bxMbcVKw+rHYxIBOJ1d4yRFnbW7FaOKtNNtlEh9imNWcx5aH7Puu+bDurJwgXhOviKIxxmvDuqLI0RrbAsuA7Fdtgagdilh6imYFrX/KuTXOLlkHVqVlQIS48rO5sENkpmxtPMZdzHOCd79z+/vHHzY955Qr+s7f9LH7y00/iHU8ydAkWCyOTxJUrYGI1fye8vlriCWOxuu+EZ8G4hs5qyTyuzCs4VkUXq7sdna0ioUv4MSVyEYAJmNUyxKno7g1q/XuBr5V782Ne68Rhoda6GJCZ29tg2mxgzEO/LPO6FKsf8Upzm/ZyE6iCtC+axDGR+ei6bFc7lTmrDQRFhfjZMM6oYrWi/cTEWT0oVhu0Z3si+Kp7rlnNXMXUyZhYfPeY1a5RwCI7OZWzmiCCDgQhGt1bfAd26jYszy7l//zMwAnPW7HSeFdYz7PabHEuHIpx0XcAG6bTHy1Lls7OJ43r04LtaBvB/li6+Z0TtlA6PwdbPALkCXnjrO60egIwWuj0xCTOOjRJkb/wev757a+Pjt6003gzajGrmbO6hwFxsPRozurQyfthNwIzRNVTRUeIZJOtMHBse6EEN1UUeJjNcLwgMqtlbu1WxauS9q7xfURujvhs97xOzx0mVhu2vh9GGaraws3ghH1tgi6Dq1ex46w+eSPBkR+Tjx34dS+kS4zdpqih5YGFVR7goz/n4SsPP8PeWVPwj4+O8MziAX7hM3M8u3hgxCYF0Ntw//wXLDy7vP9oBtiCi9XtgEW+ueCFBu+ZmdPbbH1wr8KV8ItHrMavkVi93vDwcYP76/AAOOkwq402xkWJedUOs3oCsdqZWKzubDABLVexoehzZZ4xoXKzQZEUjLVv6lj3c8YCb4nVaenSMm142UE/iD7NbHN3OYDHj2K8tj7CP/vRGt/0+K+wL05lPPiqr9r++sYN8+PduIGvufkyvuzK63j7jTP2NcN3wuKKz0wHnNt9lgZs/mYiVs+dXvdKnDnMpWwQsOg7ZU9YThNibhg/Zujm/SwLXiQ2fMOsVjirM5CZ1Z5vMR2ma0Rrd2HrljChdYPNea2Fs5ogVneDYTer6lKsfgTqUqx+xCvNbVKqqRDpdiYgvOLEoj18IrSw23ohmNWGzupumJTp5MbzIEVrmDCrh8VqE2e105s0A2w+Tj5XAPB9OHa12+IHYJ26bDAnitXdSVhT/AWkzZBTBYqVJUpDZ/VgGrOBs1rFrDZx7QcSgWoTW8ytTJ3gWhY8p94NvJkopOrKcc0WDlytW58WWHiGYjUPAbz9kC2UPv1p4O1H95o/o1QYAkkn6VugYEwmIYFf74rVIkX+UcWAALti9dd93Zt3Hm9CLRe13Fm94WK17uKcC6q9lsyiwKbwMY+I94F4f3cXD1Vl9K5VBSyeZRGWc9q5zmbApvDVYvWaONkPQ6mz+nTtmjurARwe1Hhq/hD2nTfYFwwRIABweMVhjkouJt1+JcNjs1PyuMXGF6/3eSWla4xwevG5HP/gs18JpBkem51NhwQ6OsLST/HJ7/xT+J+//m+bu7X54jyJWZv+Z19x8fzy/iO7eAyWPvvMWhgQAEaishX0AwYf3K9wJdh80YjVlt0Rq00xXlA4q2Pi+qhVR0fYdVZPFdIVRWzuLcTqh2BitSEGJHDynf3bOuXZIwbOagC7YvVEQu3xImcGifUar9128dT8ofEx50HOWODiWeWObXKoOSBdK07iLgfw4uMrvHR2A//kn/r4yNM/z4431Tjwvvcxkfqd75xm8zIMYR8s8Au/449jdo938BjwqgHAmvP7PY6ZAUeYcw2eLyZUtvSCuubOajMMSODkPbMUw2oQ7wPugk4yuSZAdVb7dsEyviSVZgbM6sCSmxmKAnHh03jzfA2udFanHlsza56vE/koK3v3fXDprH4k6lKsfpSrqpCWDm1Q41wjGYB+E1v6TCNgu4CO+26vxCRUTIh/2e7fn8RZLWNWl/bFiNWGGBCVsG7ErA4CRE6O+Hz3GpylPg4ojFZg1FmdVw7cgHK/SnZKi4Ixqw02QqTBEYbOateSO6sZtoX4eQkXeOcFPIXTx/d4m6OwgIq0c0NndXAQsIkIX5ivTkvmgjZRUpZL3IjOcfskAOoaL70EvHjABSWi8CFL+p5isRsEYGJ1axMgLvxHN2ARAN72Nvb5HB0BH/jAm302v6a1WEDurI5dI2d1K0+PFRerZxFxM0gschQYEKpO64QeE006WAkT7ud8DuZKU4jVm3MDZ7WTI17tvhPONi793dWqwxs+nlk8AD7xCf6FQ6PjAYC9mLHry2+IN17J8Vh0RhbCm/Gl66wuzPMGvu03nuHjD57Et73rl9kXpkCAAE23hnf+AId+Yn5cy8JBkOEsZ+LfZz9v4/nlvUd28bi84uEsC5t7IDnPWfaKyf0qyR55cB9fVBgQy7ZQVtbOuxaA0byo6Whst31PIFYfHlk4aQXAlXk5iQO4eej5PO7l1wM8Fp1O7qxOznO29poQA5Jm0wi1xwesEwibDT73mofnJti4WgQFVp0QV8uqzc5Vsk5indKGAYsA3vF0jF85eQw/9wkfH7j+ebZZMWX2yH/33wF/8A9OczwAuHEDjl0DL7/Mfm/abSM2ZzYbnJ+ULG/Eto2ugeV3srPKkoWlewX9uI7DNJPC2aICwbEaJmK1UyDNB8Rq3VBIwaxWHDMRx6SgzEKrj2AEgDxHVjk0sVoVQM6LmfFoc04AO+uDOIZ5oPdlGdelWP0ol0g69olMH5mwDBYaQJqMiUCxbuiTaVibGHw759rsxBNf7L5XM4GuhwExc7+yg0yLAXHHnNXUSZPvY+Zm2Kxa17aqcJ6FWPpEty53a/eCAIHmumg7EsRu8UbW9m6IAbkgZ7XsRZkXllHAYuDkvedrkxiEYW4PveusFg54U+OEECK4WL0+K80xIL6Pm4cJ7myYY/ull4AXZ6+zP6M6qyVidZmVdG4cryAAa9NvhX9N4Vi/0JrPgT/2x4A/8kce2Vb6iyrB6e2Os2cblxywGMrCbsqSidUzuljNnNWdr4v3jGk+RAcDAoA8GXcCl4U9qcTqdU2b7AcBFl6K89Pdd8LpxjPHgAA4eGKBp+cPgZ/9WfaFJ54wOh6AZnyq12w8fOO1krmWjZzVfWb1FGOMc3yA//1b/jK++/mf2Dl34+qihSYQwQ+jlDlVkwQvf46L1Y8ob//JZ128tjlqxOq7b5S4Hp5PL1Y/tL6oxOpFUOyM3U0XnombMnTYGqHLrPb0W8jbdXRsMQwIH2fTuDZayzQVRaxTcp3g1VeBT78+Z2LlBMzqNspqfVaya2CAAQGYQ1uU6XpO1NXDEnfjJROrX3WZWG24czcPCqzzvrPa6FwlaEN2DSZwVj+X4e+//H6894m7bBNk6rHQJGNAVjdvsv9/5jPs/4bOasxmiNwM8UmK1z+X4fHo1NwF3l3bFwXi0tB4wkOSuzpEmoLWMc/PM3RyJJn87yapxTZHde5d32fM6kKBFsls/WPyimYW4m53GEDXCoDtul5ixkRdY525tDWz5D176ax+NOpSrH6Ui4egBT5hUSLwBypnNcXpoRDTjJEC3P3aMbsZDZBAK4W2F7B4Mc7q3IRZLViinQHdOGDR99lLfd26D7IMWeXAjxzajrHrwrUqKQ+dLHyIVl+ZWH0RzGqT0ELBrJa82E0xIDJndRP4Y+IgcrlY3XJW12BcPaOazWABqM4ZO259XjEMiOHE8cYN4E58AJyd4VO/WuHF6FV2rxIXZUys3h0L0qQ2XjiEEceLtBw5celNQRS42Lp61XzB8BasxZJxensYkMRlAYu6963D2kSTwt1xzjTOaiq7XDCru5lsYjykitVexz0ElnbuWpVRq2v3mO1qmH8Esfo42ODhg91r2IjVhk6Xd38gxO984eeA01P2hSnE6ihim8Mn7P564w3gZmQgVquc1RPkDWC5xFOLE4QnvGvlosRqUxcdgINZydzKmw1eu+3g6cXDSbAtF1HB8WyHWX33To3r4erixOopWvXfAvXU8RqvrY+aa5CnFZ37ykvKrE4ccwzIFZttrvBFTRMWP4GzeuZm2JwV+Ft/C/j9X/NxNoU3eRZ8v2cWun+vxrFvgJjxfczdTCCFAQBJPg0G5EufjfHJk8eB9Zo7q+8ZjwWLqGQdVy2hEoCxs7oGLsRZ/eILFT565wV8+OmX2Bem6oq5qLp+nf3/dW46MX0nRBGuBBs8uFfh1udSPDE/Nb8G3Y38PGfOasMuSd/juROt+ZExBsQpkBYKZ3Vq63O2XZcxqxXHTDKOZKVgQGYuQ891F+F5ztbgxO5uT7auBxqjyDws9fUNmVgtOm0undVval2K1Y9y8ZAH0lxUhLVJxGqys1oIf91jtlNdKcWF9a4I3jCrjTAgMmf1BQQsGooIjVjdGX0bDIhBwOLMzbBZt66tOHeysu7BtUsUiUScEMcmtN+Eio0QUyeh7/RZXI0rh/ICEtiaAtvAwu3p0rEt4jnoCFRTLJ48Hz1mNQBzZ+18jkM/xuk99rmvzmvmyDF0ugRX5khLF//V9wf4yZ8E3n5416jVMYjsnrOa8QPNFg6zmYW49Hec1VNMcC/rYipaOIyv3BOrPYYB0X3ZWhbCoEbc3rAAWs5q4omKFHmJs9pkU7T5i60DnzyscRRsLk6sFs5q3eMHAa4Eazw82X3mzxIPB565s/r5D1zFb3vuF7ZfmEisfmF5Dz/1i0cAgNt3YOasFp0bMma1affGwcHu7ycQlQGwd2r73zuFs6WmeKMAAGnCSURBVHpRMvFvvcbd+w5zKj+iYjWiiC2kV+wZu3u7wvXI8HzFPKUtVp/aX1QBi09djfHq+ri5BlMIwLJ5d9PJZrKJfRSysDa+YZHG1SSOWkQR5m6K1XmNz30OeOfxBLz9KGJOzfXWfPLq6zbbEDJwVi+8BOer7didZjYT6AzH7fd+SYxfuP8UsNngs7dCPLe4b7zRNg9LrPNdsdoyxbZ0xc+6RlK47D4wDfJ9eobjYI3fMPt37AuPaJdJU089tft703fNfI4rwRoPHgCvfi7Hk/OHk2Qj7GQxCeOJ4Vw+8OteTkiaWUYBiwwDIh9LSJxt32e4TKVY7ZDHWsv3enkLAOhaAdBoUVIMSJ5jnQdMrNYt34drl8jj7Wc1BRbqsszrUqx+lEuI1QbO6jTp/9EmsWn8IbED3w1tLEvEhW+GAbH7qIYkpw+QAEuhlbmVL4xZXTn00ODARlHbveMWeW2GAeFidbyRiNUGrglnwFltAbR7yy5YiFK7OAaEPMfnzLDuvZVuSkTUF5BlwRVOZclGiGvkrO4LVMxZbRCwiBa/veWsBmD+Ap7N2KTxLjveeg1zZjUALJfIKgcf/Q8e/rPfGjO3tsFkNJw7fbE6NndWRzOLiZ+tTYCUEjB6Wb8mZYVcjO4yqxOfFrAIIArKPg9dOKsNxGrfKXsbV2I8JJs8JM6RhycWc9FdtFhNdFY/6IjVpxufOatNRbrHH9/9/UQYkD/5wX+IP/z3PoA8B9644xgxZZmzus/an8RZffPm7mfytreZHa9dbXf1FGL1QY2znDmrH5y5zFH8qAo0UYSn5id47R7LXLh7u2TOakP3q23VO0HZD06dL6qAxSevJTvO6iSuWeelybwocnrdl5vUMXfSiXuTW4vjxHxjHAAQhlh4KdZnJV59FXgquLv784jneujHODvbfum1Nxw8OT8xWiMsvRSrjd0YOh7EIQuDNBTsn37GxhdWx8Bmg8/cnuP5A3Mk0DyqWO4Cvw+qfIL5sefBQssYU5ZsPe9VxmK19cTj+Eff/D/jWc8Mj/drVi++uPtvfuEFs+NFEVt3PLTwmU/XeGF5bxKxGsCuWF34iKjdcbx8r+51R2UZ2HhAxFCGDu/mq/vnlqScL61zbMGsLhz5McVG04QZV6aGMWkWFf856yKghZv7Pq6FK9w72T73U2A4L8u8LsXqR7mKAmll4KxWYEDIzmqRGq1gVpMHdYWj1DQ92g8stqMpCS00ZVbXWUesLgrGVvZpj5QXudKAxSKvmfhJHSh5SJUIpgfYuZMEZVGuC9dWiNVU1zbHgPQY6/wZILvIhADc2TFerS1aAMP2sPLPqwA8g4BFqbM6NXdWL2YV4z22mNXGTD5g63C4V6GqgPWqZsKyqVh9cIDjYIPv+PAt/Mk/dJt9zWBCHs4dhutoXdw0hXFbajSzmKu2JVbXACz3i4sF/ZYpiVgLAHlpsbRzwss29CXOau7KIQuKjiNPZ69rlLUN26NvXta1tStWPwRzaBqI1bZVo8zkThYy88/3mbP6dPffukq9acaYMATe9z7262vX+k5jSi2XeHx2hndffwOf+hTwxn0PN02d1SpmteE/H74PvPOd29+/612GB2zV8fH21xOI1QcHaJzVZVGzsK5H1VntOHj64BSvnB8BWYa7d4Br4cpMUOKdZ233ayPaf5GI1U9dz3ac1XFs7qyeL22sO502m9Qxxq5hPmfOXC5Wv3YvwBOz00mY1XM3w3pV4403gMfsO83XTY55FMQ4Od8KVa++4eKpuYGz2raxDFKcZ34zdt1aLfH47NRYrLbmMxwHG7z6hQppZrEQV1MMyKzcwYNNMTdscIEJf2aF+cyboOvu8cfxoSde2v7+URero2hXBH3mGbPjzWa4Eq7x4NTBZz5r420HdycRq22r3oqoRTFJl2Tg12xDrI0BycGc1ZT7y7KURjyAOau1A31tG64DFJWzNTK1qkH4UMYv32d6Q2fOnawKZhgz6G5Wi9U+Way+Hq5w92R7Tpdi9aNRl2L1o1zi5UZx6fE24p4zC8Amc2nMat8fxoBQF+airaV9rnXNBl0TsVqGAalrxg0zCDdwrApl2nlJmGJAFGJ1ntVmPFHhrI63X9qc5mbOEc+Da1VScaIR8Sd0Vhu59h2Hsbg6L7XVCkzwoLr2vQFntUV37fsO3y1uTew2qWvclvrE1Yy5ki7AWX01XOP+feBP/2ngT//4+80DFgFgucTveO7n8W3v/2wT3mjkrF64zP3auhGS1HyxO5tbu1iJqa7rZV1MycTqooCFmj2zhGcsDOq+s5oHNJHCY4Bt5kRXrOb3l+XQMwwA7GJATi0zBrTr9lFTrYpj0BYlgll93rmGdcVMWlOwen//7wf+6B8Fvu/7jN1uABrB+z2HX8DHP84clTM3p4vVoSVlVqelyzInTOvFF7e/FlzRKeo979n+egK8yOGRhbMsYsGVNZ9/PsICzdPHK7zC3Z9371kMW2IoVkcdsfrhuYcjE67wW6yeupH1MCCRqVi9sHbxDwDWKTGcq12LBVyrQn7GJt4vvbHEi4d3JnFWz90U6zVQVTWclM+NTMRa28bRLMNpujUzvHrXNxOrASzDAucZD8Ssa9xaHbAuE1MUymyGD1z/PP7Y3/0yfMPTn2u+ZlLzqGabFnw+n8S1PkqhWyLjSaxrRUeMP4FYHUW73SuP8FjY1Fd/Nfv/V36l+bt2NmPM6jMXL7/i4YWDaZzVO2a8ifJnfL+fO5GmFnwDJI4V+HK0BjgGhDAuWgF/1rtd43WN1KTL3Zcfd31Wsk1ByjEFYzuVzDmLAnnlwAsJ44zv43p0jrun23HvEgPyaNSlWP0ol2gpp6zJxGJX8jDHmU0TK4WorHBWk/Up12Uviaz1AhPH9AiQfF6Ns7rDe4xLH5FPPG53t7x1vkXlwA1oEzE3kDOrGwyIibPa3XVWnz0scWAiTnCuk8xZnW0K1t5EDVjsYmvKkm2EGLj2G4diSwBexzYWXmLkrC4qCbalNOCh2zZ8hydHt8LaNqmDuWcmVj95I8frm8MLYVaLdryf+AnAQcWY1aZC0nKJP/SeH8MT/r3GnWQyIfcXPtu4at1gSWrOUIwWDku6bjGrAVxObB7VCgLmAo5b46wYc4OA9E6IIkgxIADozxd3Vu+8E4HtuGCAhQLQSzsnLxoAwHWZgLKRX7vGWU0Qq68Eazw4a51XVbFx3LKmEeksi/E0205gk+LC7HuWn8XP/1y9/byoGBAhVnfmMMBE3Rsf+hDwwQ8C3/M904j13eMul31eKaGuXbfw915+P37hlxwsXD6GP8ICzdM3Evzgz/x2/D/+pIV//UuHeM/V14wxIN2g7KriDvMvFrH6sQKvtjEgqWXurD5wpM5qY3EiinAlXOP+CZvLvXT7gInVpvMtx8E8KHB3M2fdhmLeYWgOODoocZJFjTHg1bsBw4AYoFCWYc66+bhY/UZ8gMfnZ/SweFHzOf7we/8Z/vHHnsE3P/nL7Gumzup5jZU4V7Rc+yafl8v41I0BZ0pnNbCLsXrUAxYB4Hf/buDbvx34zu80P5bj4MoixYNkhrUwHpm+DzwPoVNskZl5zjAghmJ1EKDvrM5AN8wBfR56q+LcpW20SAJBAexmZBA1E9m5rs/5WpGIFgmdHEl3ftz+OZTjCmf12Xb9eh6z+e1lwOKbW5di9aNcfGdvFhJeboJB1HVW1zV3VlMxIGqxOqA6qzksf+dcJ9iF9kO7x6Mzbu3h7Sd52neXX4izOgdcewJndbplx509LMl8VgAMA6JgVifrknGACfdWKLtfBTeMigGxLPhuyYTKVnuTKQbE9W2ps7oo+OdFnIQEXtXbhZ8CA/LkzQKvrY8bsbbIKjO8jCjOrL536uL2beDHftdfx9c99ulJnNUAgLOzrVhtMCGXsYqbgCaDBclsYbMgJb7IqXPObDddlF7WxZTvY+GmWJ9vx+864fcEcYNFFbAIwCjE1ndKpbOavOAXY37rOTB2jrgua01XidXU4wtn9Wo7Ru98VlOKq1OV6wKzGd5z/Ar+2l8HPvT859nXie7iILJZwKJsI2SKDbEgAL77u4EPfMD8WO2yLHbcP/NntmO5QX3rN6zwbS/8B/z5f/gcrkcr9sVHFQMC4EPvfog//zV/D3/nH4a4Md8w4c8YA1LsZI/UVd382RdD3bhe43Z8sBuwaMisXhy5OyIlAGxyz1ystm08c3iGL5wfA3HMxerbk3xWi1mFXz25iaeup2xOH4bGAvDhssZJOmvE6jcehnhsdmrmrJ6VW/RcniMpJkAXAcBshhvROX769/9v+PDNX2q+ZlLzWY117jfj7BThnRfqrAaAp5/e/voR3rhrKgyBD3/YfG3A68pBiS+srmDu8LbhCZzVodMyTBWFGd6UV+DXvQ3nNLcZdo46dgm0RhcDUtdICgehW+iPCao8Ln4dyPetyLiKd4+7OqvoJgnPYwaJWHL9xDUhitU3onPcOd/OLR6sA1w1weRd1iR1KVY/ylUUyEoX///23jxOsusu737OrbvW1vsy+6qRZrTLkmxJ3mQJy6uIwME2tvEbDMbBBpPYway2QgIkL2sSIASIX3jBsYHYscEYG294xbKFF0kjaSTNPtMzvXdX176d/HHuraW7ZyTdc1pd3f18P5/+VNXtrtu3q8+995znPOf5uX7M/NvVAugbDZTqDpJOjItZVDF2uVu7XkdTCiTi5mgmEkoEr3c4SnUvkFDO6hWCom6FX9e9tFjdTMTOrE4ELpqdlYhDtPOSEgkETg3Fqt0SOpbm68g65fidBsdRzurqys+wXJKxndVe4lLOar1OrmuH1Zg7xeqiZSYGpPP/JaVegUWoYhwrCv5U9WNAdmxrqhiQsOfcKi5oILN6yC/gSyf34MgR4MrUObXsXbdDGi1xnJszEgPSEiI7xeqqpT3YDTJ2V4HFQl4qtwA7Nr2J6yLtVJDPta9dpcWqWjYZc2Du+2vjrPYStZVidXR/1BCrbavRVagtdqZ0hG0j5VzGWR2J1c/2842KKOXb7yvNl9W+TESArBWZDLYnF7B9tI6fu+ULrW1xuJyzekNcYwxNKFiZFF69+2F84ZERjHhhJbgeFqvHd7t43f5v47+880m8/54H1EYDzurIpVkqAZ4VnsO9fC4YxEoFKm8/zLRTzmq9PoybcpSRIRooNZso1hy1kk1TAN49VMCZ/CBQKOD0XBp70nNGRMVUCji2OIadWXPnQX8/sFBNtj7beiOsvWJIrJbFksrwNnHOhtfSQ4njsKtFdY3R7G+mM0C+o8BiK2JGM7O6y9wVOavjGm+W833fB9x5p6q7cMMNZva5gRjsb+KrFw9gfzosMqorVnteuy6AlO04CU/vOuB6YkUcabUm4hdYBNou6OUCT8vcFaOIZ1gQdIVYrTvR5DhqVVC+29xWWGqq1c1x7l+OmlAsllf538StmwWEzuolTOfbGetzRbXCj87q9YVidS8TLfeMk3sZOrNWc6oW41a4XS1buuM4Y194hYDnhPEH0b6i+AcNsdrxLHWTWOGsduPv93IxIDJ+gcVVZzWlRKESLkHRydX1ZZeglpurI6NTlMR1kRDy8s7qGJnVqzqrw8kVzXHeCgG4UBJKrI4bA7JagQspUW8KOImYBRax+ix8oepot4Ht29GVWV0pNfWdIwDgujg8OInFioc3v6HejtnQFavHx9XjxYvA0pJ6rjPQ83010O0ssFjVH+wujwHJ5aAmguis7k08Dxmn3GpSAJCbralYpJiiT5AUK8TqZrWuBucak4yu1UClZnUXJtIVKsO6E521AYw5q0urX/OKJcQTq5NJ9b8qt49rcaamN9H6XJDNQgjgkU+cwFjzQmtbHLzAQmWVPHQAG0OsNkUqhX2ZWcwXPYw4C2pbL7sJ+/oAAHcdPI3rBs6qbTrHG66QK+TVeXvsGHDlYCjSGMgE3xCkUrCtBmqLavJ6ctFXKwQ1zgPhLut3Nxoo1FwkvdWLxT4b9oyWcDo/CJkvtFfcmRCrR5J4aG4n9ljnwg36ERD9AwKLVR8oFjE3B6SdUATTEGjSyWaraOHCZAX9bsmMWD04qPpXuVCs933tSbFUqju7vFQWysigc41dXjcqMt6YmlvKZoE3vAF4xzt6+1q4RmwfraPatPHeI59SG3TPg0QCgddAuW6rcUxULD1u3ZEQz5Mr7uHVmohfYBG4dAxIrabMeG6M69fTOavjTrKEUaSdq4KAMAYkTr8wPNaUU0WhYnf3j6HqZonwZ541QmAkXcJ0Od3qa88VfSVWb6X+Vg9CsbqXCS+WcQPo/UQN5cqym3iYw5QMYlx4ohiQVQTF6HfGxXOa3ctd63U1m6cbA7LclVSr6S3tuVQMSKOBmkZmdevC2jlTGrk83JqWyyPwJUqNdlTB0kJDDfjjOnJs+7LOaj+Oszp015dr3XnNrRuljrPahZoI6Wi4+ZKtZnXjOqtdgbq0VkyE1JsJ6ESJrnBWh20g6dS0OuR9QzYWq0HbWW0gAgMAIAQO7Sjgc6/+XbzqjkX1v0sk9G/s6bTqfJbLwGOPqW2jo/H353kQQqJZ6nBWVzTdDQC8tKMmFzrFarfEjk2vEjqrO8Xq2akGBr34hcr8QKgYkI5rgXbxL8tS8UWNlddDAFqxUFm3hKVC+37SEqs1CiyqJZmXEqut2GK1EB1xBwAmztTV8vReFqtD55+VW1ARRkLEjwG5nLN6K02IJZOwhMTVI9MYsRfUtl5uA9HKoMXFlltVS1BKpTDkFTA7r86xRx8FjvSdV9/bQmL1iJ/HzFQTUgJ/8I0b8ZYrvqF3r11ecDY08xgRq7dVcXppCB/7RAK3jx5XG02I1eMZPDi9F3eLz6sN0cS+Bv0DQsWAlEr43OeAu/afDH9ZfAEwk5atzOoLZw1ety2ruxisic80Y7WEdaDDta/prPbtcAwuZaswrucaclZvcXbs93D0X/57XJcJ26qBduB74Sq5YlHpL1JoO2pdV3Qb8QBUagKupWGUiVzQy2NAIt0kzml2qczqUDPx48a8hvEqK8TqvEZ9I8tCyq2pegON7mt1OV+Pp0GEjGQrmC5lWteC2WISg4wBWXcoVvcyOgPTaOlFZdm/OOqMxczB9hK1VaNFYh9niOdBzT52dBrNZFav5qzWiAGJnNXVlVEojaaFhKspVi871kLdQ9Ktr/6eZ0gyCJ3V4WebW5TIajqrbdFEo7byMywVY4rVQsB3myuX04duBC1ndZRd3iFWF0qW+czqcNmYbcfvjK5wVjcaKNZdpLy6llgdZTbLknI+X5xzMeznzdyAoyXuk5Pq0cSARIj2ICza75498ffneeh3S1hYbH+GJgYkrSzs6Nyis7q3CXOQF3Lt++LsdBNDfj5+ZnXkrF5WtFA3usezmysK82iL1YkE+twyFotOSwQvlQ04q53LOKvLMcVqz1PCRFO2/u6jjwpcPXCht6MPIhf1xIR6TKfjr7RJ2WoSv+PeJWsbKAbEFKFodk3/WQz7S0ZyeteU0FmNxcV2jJVOJyaZxEiwhJkF5SR77DHgcCp0bG+E4momCLOKp6eVWD/oF3Gwb1pbUASwUqyOY+ZZxu7tdZxcGsav/eEgfvmGv1Xt1URm9Y4+HMhO4YgXCuCdhfZi0j+UUDEghQI+8xngnt2hQUBbrPZaYvW25KK56J6xsfZzA/tM99so1L3WxFKpLBAk9HPLvYQSqNFsqhiQJsVqY3RmdgNGroO+D2U8KBZRL9WQ0KkXFeL5Qt3DO8XqqmZmteMo801lmbDcaChndcyV8wBWjRZpFViMg+siSNS6VvMBQH4J8Z3VAJJ+s0vXiGgVboz5fxvpq2K63BarcxVPjem2Un+rB+nh3h6RVY3sHdtGkKitFKujZSJx7u/hEuJKVay+NFlnYO5B3dSjGIHWkqn4N3Y3SFw6szqus/pSmdWNhlr2rVEwAUD3hbdeRyESKjUIkqHzLxzwLuWkWj6pm1m9SgxIPg8VMRKjzfpeKNQu+wzKDVvPWR1lhnUEYudLCb0YkNUyq6OMM02jT9cES6OBQk1/wgLpNPq9Iuan1X4eP5/B4YGLZm7A0cDh1Cn1aMrx1ukY6utrCwBx8DyVRTbf/nvLtYR+FMqyLOzcQlPv3CJri6smaWZy7Q7y7HQTQ14hfgxIIFQUTGfOvG60BtThlBuOWVetEMgGVbXKIrzOatdFiJzV5dWPKbZYLQSQTMJN1FFdUILf0ccTuHpgorfPr2jy7vz57tcxsAJPubs67om1SlMtId5Kg6dQiHjHFV/Ai8ef7Om8agDte9XCQlus1nH+OQ6GU2VMF1NAtYpHH2niSOaMagO9PHFjklQKI/4SpmYTOHYMuHE0nAzScT6G1yRZaYvVSzUfaV+zvwVgxw7g8+evwh1XTGE8mVP/fwMZ7vtu6MOPX/XV9q62b9feZ3LAQ6HuopEv4ZvfBG7JHlPf0BGrM8BSVWVWP/6EhYPZaXPX7U6x2oSzelD9/VEx76WSrcYHmqaDroLpjYZyvZrKrN7qrIVYHYiWs3pmVmDEX9K+z7qeUCu8l9UhStka7ctxVMRMYdl1Klw5H1esFujQnTr2WW448WqnhfsN7GprgVFEoQD1GcQUq1NBsyu6p7XfKF4k5n0hnYa6FoR9LimlutZupf5WD0KxuoepFOrw4uT/AuEFYnWxulh34/X1w2zpFctSI2e1xo3d9a2u5fRGRMrIUbtKZnXssU4UA7LcWa3rLl+lAFzk8kj5eksSW87q5VEFcT/c0FldrzZW5EXlC0DajicCe55c1VndlBYsV6OITpBAuUOsB4B8xdGLAfFWcVZHEyxO/P+X50F1bCJxInRWx1oJ0Uk6jRuHzuLBJ9Ug+vGJLK7qNyRWR86exx9v/S4jdIrVOq5qQInVQR7Tix3F2qoGxOqooxVNBC029VYtkLUlCJRYvdD+n8/OQlX7jhsDkrRWOKtLJQPO6miVxbL7l+7S1L6g1hUJZESsdi4tVpeqMcVqQDlK/TwmT6uJxqNPOjiyUZzVZ892v47DaoVhowinrTR4CgLAsnDr6CnsTC/0/vU1igGZnzdWx2FkoK4cX4UCTp1sYm96Vgk0hopY9jyhs3pq3sGJE8D+9JTarnn/TnYKKY0G5iopDGWWLx999th9KYwnF/GuFzyoNhjKFb7+pQN43+1faW8w4KwWKXVsX/xWGi+8QyJRyqtvaPTlMgO2igHJ5/HZrydx947H1sbIYOBakBpwVQxIOLF0YSFQTnBdV+0ysTpf95AKNPvyRLFzZ/v56KjWpHBEELRjQCanLYwF+mK1qjuxrA5RRfWZtMTqRB2V4rKxpk5spuvCTdRRK62MFpFSxB+Dh87qFTEgBagJIR2xuu6uFKvzUqs/Kzy3bRBoNiEQHjdXy64rFKt7GDVDFPNkdl0EidVjQJpSIOHFO5E9D93VswHUq03YQm+5jOcLJSwvd1brFFgM7JWZ1VEMSFxn9WViQADEv6B53XEC0T4LNU87P69VBC7skeeWgIxTid9xtCzYNlBvWCtuFEt5S8NZjRWij4mImXSqW6wHgEI5oTX76ngW6qYjZqCE9eWTNrmaj4xfu/wbn450Gi/a9iS+clwNbB6/2IfD/RfM3IAjZ8+x0I0zNKS/TwC4/vq20HP4sN6+wirPM0tea4Ll4lJKOZ50PoOO8/bECWBuXuhNBJG1JRKrO53Vc8CQFz8GJEhZajLMsLPa91deD5u1BiydFTwA+pK1bmd1JYHARIHFSzmrK2qVV6xrbTKJA9lpnHhC3V/PTTrYmZrv7fMrcv0tLKhHTbFaAl2rgkolqOJfW2nwZFnAlVe2X+/evX7H8kyI/uedReA0Y0uGhyRmyilU5wuwZBMJS26dCBAASKWUWL3g4sRxiX3eRGt7bFwXKbuKfDH839RqaEoByzFwbqXT+NZ9v45DeEK9NlUETwjgla9sv9ap5RERCr7//xd34a1vrKjYCs/Tun9lRnzkax5qc0s4NeHiQHba3CTTvn3t58sdtjGw+1JoSKstVudSRsTq1j28VALqdcxXkuhP67v2CbonUl72MiOTdi3jQbGIyZkExoKcGWf1MtNcvuIoU5dGgUUvUVvprA7rnMW6ftk23Eu4tQHEN0hEBRaXO6uLIn5mNVbGm7b2m5dKN9M4XgBAtYryUq1tGN0qk8I9yhayZmw8tJYz2DYCp45SLRRru6rHOrEvwK4n2tnSYSexXJLagycvsLCwwlmtl1UsHFsN9JYVWCzpFOyLnNU1KNEruoBFjjddZ3XHoDTKrNZ2Vve76qKeV26J4xdSeMuBWa2OY8IOCwxWuidT8kVLw1mNVZ2E6hfGb1uptEC+7nU7q6uOVgzIpTKrSw0H2zRiW9wggWpTdk3azFVSGExrOn1SKdwxdhz/9ZGXAc0mTkxnsPfmWTOiz3JnjymxemwM+PVfBy5cUGtqdbBtjKSKahl1XXU+zub6cN+OOQNidROyXMH73gfYp0fw8uQTve/826oEAYa8PGbyfuv6PTtv4Sa/ALj9sXbpp8LJwM7Mal23MtSpuTwWqVSUesIyQrG60OGsriSMFFg8W7mEWF1NxHdWp1I4kJ3GU09ehZsLQMqtqVtuLzurly/L1xGro+tzp7M6KmK8lZzVAHDDDe1iu7fdtq6H8rTYNjA8DMzMqNcGhMqRoSamSxk89VgNV+wKR/5bpbgiAFgWRrNlPH5mHCefrGP/tkl1TdGJAXEcFWFUVNGGtXIDtqmInZERtWLnrIqWMCZWA8Ddd6taHkNDZiatwgKmj53L4PlHQle15kRIZjyFpZqP7zxs4+YD8+q6bapftH078IEPKFFdt28IhP+bapdYvX14QT8GJGmhUreBQgGyVoeAGpcSQ7zznSp+8CUvMbK7dFYgN+sDhQImZzJKrNYssOglE93O6mYThZqLlKOx8s5x4CfqK3KglQ5hx7t+hTGv1dJKt7YQUqsYpKqf1i32FopCK7M6lZSrxoAUC1J9tgbE6vkLZQx6BY7negA6q3uYQl6qmac4J50QK7KKAWjPkq0mKLYGTxo39lZWVCTSRVVtdfK9LlG0UEsEFwKOLVfkFcu6ZhRKZ2Z1FK1Rr6NYd7SXjY1uS+Bisa8lVh+7mMWV/ZNaQqXtCDSaVnfbArBUCJ3VMdpXqw0sc1ZLQKttpbNhpe+obUlpLgZktYgZDWd1a8lYx3nQaFqwXc1LtWVhZKiJXDXA4sUS0GzCtppmBlBjY92zzqbEakD9f3btMlJMayRTVsuowzZ7dqkPu9Lz2suIvUQdlVIT09PAt08PIeuU2LnpVSwLw9kqZkqpVjuYnU9oFVi0U566FnRMNLac1dr3xGVidcXSE5YB9KUbK5zVRgosVlZ/f7Fqa8WAHMxO4fgJpVMe3tHhVO1VMplugdpEDEhH29qSMSAAcNNN6vPYtq3bZd2rdLo/Bwe1dzc8amG6nMFjjwFHdunHNGxERocamC6nMXmhoYQkXWe5ZSHtVVGouUCjgcmLUi39NyEAL3c8mxSrLQt4y1uAV73KzP76+tDnlvCvrv82RMGMWJ0eS2GxGuDYCQdXb5tXG01et7dvV1EQJhyP0f8mFKsncmkzMSBJW/XnCwVMTwMjBmIlSAfXXQfce6+xYrujI1BjhGIRk1MCY8mcdl9exZF2GJtqNeRrHtJBI37bdRzlrF4lBgRAvDYWRousEKt1ndWOo2JASt1/a75k6WVWp6CKoq4SA6LrrLaERKNUxdyFihKrTV67SSwoVvcwxXxTa+YpSIaFnzrdutGJHfOG2RKrOwbQ5YrQHjylM0IJipH4GcWA6PRtXBcCWKVgn55j23FWitXVilTLRTQG/BCiVTU6OtZCzdPOKx7c5mGukgSWVCX1Ib+olpJritV1mVixBCdfSsR2VvuBWOmsNhEDkrXUDGxH2yrUPFW4MmZn4VKZ1doxIElbLRnrOFYAZjq46TRetv1x/OzPCbx0x1Nqm4mbsON058eZFKsNMtJXxXQprT5bKTFXTqqOiKazOmlXUSo0MTMDPDndrzKre1lM2+IMDzQwU0m3YpFmF22tAosi8NV9plOsNuCs9nyxIsO/WIKK1NCJAVkuVlcNiNV2BYXK6tf8aj0Bx2poxYA8dcrB0aNoix697KwGgJGR9vPOa+OzxfeREE3Ui8v7Wxp9jY1KNgvcfz/w3vdujCW5+/e3n197rfbu/H4flYaNR49ZOLxtQW3cSjEgUO7yi8U+iHq4wsLA359y62rsUa3iwgUYESkBqH5Qp4jWy4LHyAjec+1n8SO7vtgqMqg7EWIN9CFhNfHY2TQODIbX7V6dxE8m4VgNVJdU33CqkMSov2TGVdtUYvXZ003sTs/17mdAMDomMFXKdMSALGlfY5QBqaMfV62iUHeRSuoZ8bxEHZXysrGmjgvaceBaq4jVOgI4ALgu/MTK+mmFUkI5oGP25VIpqBXjy8XqKF5EQ6xOO2UUFmqYm6xh0Cv29rV7i0CxuodpVUuNedIFKQulZVm9rQtPzH22ihZ2itXlcACt0cHL9gG5sHI0AKDRQLWZgONpNNFLFC1sSgHLi98JWc1ZXS5DLc/WEb6EUKbq6LONYkA0ndUik1YdsYUivvUt4NbxM+obumJ10+qeCAGwVErEdlZ7HlY4CWVNPwYknbW6Y0DqdeTrHtIa8SqOn1B//3JndSNmJeaQ1pKx8HOtFBtqEsSE0yedxn37vos/+vMkXr/3AbXNVMe5M1O6V8Xq/lrLWR21K+HYesJHWDykWJCYmwOkFMg4FKt7mf4BgflKsuWims3ZWgUW4ftq9UfHfaYlVus4q5PWyhgQA1nYfVm5TKy2tcXqpF1FsbrK+xsNABIiYcX7LJJJ7M3M4vSFUKwen1Xbe/386utrPz9yJP5+PA8ZpxItigIAlCvQXsm2YRkc3Dhu4k5n9fXX6+8vFE0eO+7hyGgYL7JRPgtDjIwKfO78VXjhwUm1wYCIkPIbyqFXqeDipMC4KbE6keietOplwSOdxiuveArp+gIwNdXapkU2i32ZGXz2iT042B+21169bjsORpIFTOWTQLWKZkOqTHjN/5mfCou7Fwo4c1ZgV2qeYnUPMzputcXqWdvI6g0n5XavvKtWka/5SKf0xGo/UUO5uFoMSMwC3I4Dd7WijSac1XYN5arVXjUOVTcq7ZRj97udwF5RPw2IdDON/mwQIONUsDRbxexkHQMUq3sCitU9TKEANfOk46yudzur66WaVjHE1ZzVpbLQzqzO9lvI1fyu+IOmFBC2geJny3KgAWh1Rh0bK1y1pbK+u9xOSJUDHR1vrYai7gwsAGQy2JOew+kzAn/918BdO8NCeDpitWupY13urC6Gzuo4BRZXiQGpVZpwrYZeZnU20R0DEi3DSsafBLBdCzW5MrO63LC1xGo35XQVWJydkRj288bE6uePnsTb75vGLQNPqX3GFeiW07ksu6fF6jRQLmN+oqQ6IboDB99H4NRRLEgMDTZhiaZyVnNA0rNYqUB16EOxulBKqEnhuG7dVe4z2tEa6Lgedjqry5Z+ZnW22TUxXKtbcCyNAsm2rZaPNroHIwDa13LXjTcplEzCTTRQqQg88ABwZCgUqXpV9Ii4917lpv2lX9KbDPM8ZJwylpbam8oG+hrkOWDXLuWqP3wYGB/X318qBcdq4KHjKhon2raV8Ps8fOKeP8DvvvbzaoMBsT6dVBmyKJVw4aIw56wGuqNAelnwEKItrJ86pR5121Ymg6v6J/HtqR3YH1xQ23q4XzSWKWGylEV9eh62aKh7lm4MSNppO6snEnRW9zijOxxMlTP4L5+6Al88ts2IWC0Cv7tIcuSs1tlt2OeqlLrHsLIWOqvjjBfDuI7lOdj1cl1LM4JlIXAbKNXtrvHyUtlWWkHcFY3uKjGvUM5qrai8dBppp4z8bAXfeySBqwcmeM72ABSrexhdZ7WftlUMSIfjq1WgKW5mdZSp2+kqjmJAdMTqPgtLtfYAulIKRUqdzsIqjjfUakqo0DhWxxVKrF4m2Osuz245tjscwIW6q9/HTadxIDuNj39rB86cAe4afVht1ymw6Fiodx5ryFLJVs7qGCLoam2rVIK2OJPqd5DvaFuo1VS2tE4UTGBfMrNaR0fJDiTUeRB2bGZmoPJ0DcWAWELif/z4g0o/SSbNLac+eFA9Dg/3rJA0OAjMVVRW8dkTNeVy0T1Wy0IyLXCxmMVofxW7M/PMrO51wv+NLIZFymRTr2if76uVK4X2tSBXCgu46sSABNaKybtSWSBp6wmVfVl0OatbAnPczn1Yx6HaSKgYq050XTnhiO59r3wI3/sesCO5QWJAtm0D3vUuJVjqEInV+fZ1ulwJzQEUq3sb2wZ++ZeBn/kZY7m6ezOz+JV/8R04uXCFQX+//n43EqkUXr7zMYiLF1qvDexSOauLRVyYssyK1Z3F/3pZrAZWitW6EwGWhSvHF7EjuQB/4aLa1qN9QwAY6ytjspTF5LEFFf9g4P/lpZ22s/qCQ7G6xxna5mK2nMKHHzyI//HaTyqjkG47iP7fXc5qT+/SFRZYXC5Wl/P1+BPZrqtWyOWX7bPYVP0NjUicwGuqVf4d4+XZQqC3onG1mmSICjdq9L2z2Zaz+sv/nMKLxp/ccpPCvQjF6h5GN3snSCfUBaLD8bW02ERGY5+tYgFdmdXQzlDMDtrIVYPWsZ46m8C+zIx2niwAozEowCViQCr67vKWYzv6bBsNbVEVQEusfv9nX4j/9OsSohp+HhoDftu1VAzGMrE6rzFb6qcSK5yEJiZCEkkPTSm6XPsSelW51yqzemDIUvnia+SsBtBe5mly8OT7wG/8BvALv2Bun4ZJBG6rKOiJJxvYk541MnAIMg7O5AcxnCzizQe/oTpgPTwo2/IEAdJOBYW5CnI5wBHhORz3fPA8DPt5zMy1u1PTSz5GfL1CXa0lxB332mJFPwu7rw9YrHWI1ZHArNEhd12g2uh2zgAAqlWV5x13QBJes9549UN46CFAFMM81V4Xfkzheci4oVgdTiqUq9bWzKze6qRS+PBdf4IfOPI4MD2tti0v4rfZ2b5dPV4IxWoTMSApqJV3xSIuRs5qU4Liy18OXHON6g/v3Wtmn2vF8LB6vBgKywYEmqt2F3Cwb0q5LoCeFmrHBquYLGXx2c8C1wyeN9K2skMOlmo+GktF/OMjQ7h+6FxPfwZbHbs/jXozgUpV4FU7HzaTix+NBTrE6oa04AQa9++wwOJyF7Qyd8UUlm0bgV2LFhy2KBca8Cy9/kbgN9Uq/07dqJ5Qx2pYrC6WLZVIoOWsrmBuqo75nIWx5BLP2R6Avd0eRs0QacSApEPxr0NQnJsXGPAK8WNAlhcLAFCuWNqCYrrfxlJHEbzjZxwcyF7QG5B5HgSK5mNAXIFa+RLOap39RoUbO+IqJADL0RQq02ncMHQWb77yQdxy3Y1qm+dpuX0Gs3XMzKRXOqvLjnJWxxGrowKLXRmt+nno8H21NKrDWQ1Ab8LicpnVGve1/mEbC9Vk21k9J1TxN5Ni9WS4lN70DTibNbs/03ieqvJcrOALX3Fw37YnjXwGyX4HZ6cGMDy4gP9w89+otm+oOjlZA5JJjAU5XJxo4pPfA9545CG1Pa6TzPcx4p/HzHwCoZSC6UISo2NLejEgSUstIe6KAUkgSOiJ1Zk+S8WAVKvqfiibqr1qTLC4bkc0Vse1v1Gqqmtv3AFJ5BxdWMDu3eqxa/tmx7aRdmtYqrgq/9u2jUzgkg3I4KAqjD052Rb/OjORtwKdRSsBI4JqOmth9pwHlEqYnLYwumsJSB3Q3i8AdXw/9VNqQrDX+wTLJz50CsOGXH9VFf9l5i/bG3p4En9ssI6Hz47gbz8yji/f+d+BpP7fPzhmY66Swke/vg0vOXBeGRkofPUu/f2oNWew3V1Aq1CEKbE6LOitxreuXgSj48Cz6suH3ygVmvHHy66LpJ1Hsdh9jpZLUvU3dJzVPlBqdDirpWyv6Iv7OYTvk5XQEBFSKFlIuRoFFjMZpJ1JfPXRIdy4e05t2yrmiB6mx++eW5tCydKKAXHTrnJBd4i18wtCZbXqxoB0OasNuF9TPpodec1PnfVwsG9aW6QEAFluX9Gb1brq8OuIypGrtuNOUa5aapbQRBZ2R4FF9Q29itRIJnHL2Bn88R1/2r4Ba3aYDu0q4cnc6MrM6ooT21ntpewVy95NONbheSr6Jfx/yaq+WG17iZXO6jAGROejbbnAI2f1rFDOat02ALQFnnPn1ONWW9rk+xgJljBzoYavPujhjvHjZpzV/b5yVsvp1u8hPUwyicMDF3D08QT+/M+BH73ya2q7hlg97OcxvdA+R6cKSYwEes5qN2mvnLwz4Kx2kk47wqkQOpVTKa3JS9eFKry8zFldytXU8cYdkAwMqEdVvXTridUAMkG9KyJNOasZA7Ll2LFDCZ4TE+qakEptvUH0jh3dfSETmdVZSxllikVMzyUwGiyZ7xv1ulANADfc0P06inbTwD60H9cOTrQ39HCfc2ykiY+evBEvv+IU+tyykXNrcNzDbDmFrx0bxr1XhrWCKFb3Lp6HoVQZh7KT6n6rOYkPoP3+SC+I+nM6YzrHgW/XUCl3O6vLxWb8voHjIGlXW5p61z41tY3Al8pZHYrVzWodAqEOE/fa6DiqVkqpuyBkoWypRALNGJDvnhnEoeFQrO7h69ZWYQPcQbcuhZKlVWBR+CtjMOYXBAY1xGo3ubICqwmhdnlkx/FzLg5kNcXqsLptrdJsLXVuzRKaEKs7JgFKBtzltoPuHGgDLnAASoRY7qrV7Igd2lvFEwtj3c5qKVGuJ+Al6rHabCsGpHMSoKKfBd6atCip/1dxqaFXLRhhpMTyApP1OkoNB0FSI59y2ZKxmammcmOYGJRGS2ijz3erdZr7+rAtWMRXv+li13BZtVMDwnIwGCixunI+3LDFPteNRhDgmoEJ/MO3BjA8LJGthfmvcTukoVg9k2tf86YLSYxoZs0L11GTbF0xIPqFGzudPvXFAhKiqS36uJ5Q/YJlYnUxV9cTqzMZde0vFID5eeUuTibNTN5tEDLJRlcdA4rVWxTH6S7UuNUiQADV5nfvbr820C/aNtbERKEfKJXC6MXq1hQnstm2c/2668wI7IcPt58fOtTTfaOxbRYeX9iGFw8dVRsMtK2hHT7mKilM51yMuWG9hR7+DAgw2l/Fob6OcbJuvYEggEBHjZTOotNxsW14Vr1r0TjQUZNMQ6wulrr/3kpZ31ntB0LVTwv/9sXpKvrckra7PGlXUcgtE6tLCTW+1yyweHRyCHsyoVjNc3bdoVjdwxTKCS1n9YqsJABziwkVAxLXWZ1MrBIDYqA6/bJjfeqsp8RqnQ6DEPDsZpcAWio0tQv2OX5ihbO6VLHUfnUyqx2BqVLGvFgNtCMajh9Xj4ODWrvbsa2Jc4WBbrE6vBEJ14l1g/eynso97ZwEKBtoW56nZmCL6vNcmGui340/YQN0TAR19hYaDdSaCTiuRucmjKpoltTnOjMDDHkGinwAwNhY9/9lq7my+vownszhb782iNuuNNcJGdiZxPdmd2LECkVPOqt7myDAtYPn8aGv7MJttzTUddbVWJbpuhgJ8pjOB+1J0bqtP4EbHU+ns7oa5vzpTN6l0xBCorGYR2mmoMRkTXHGccWqmdXFXB3JhIZYLUTbRR0V/tpCrmqgQ6wO77Un5gewMz1PsXor0inUbkWxGgDuvLP93ICovHePxKn8EFAsGsnv39C84x3A3XcDb36zmf11ttebbzazzzVibH8KAk280H9QbTDQBjJjSeRqPqZyAUYTYf+QwldPs2O0hiMD5gq4wvO6Chc2SlW1uls3BiSxSgxIUcaPAXEcBKuI1crgp5dZnU6HdQHC8fLsxZqKt9QplO26SNmV1uLAiEJk6NAQqzNOBScXB7EnWIP6TiQWFKt7mEJZ86RbRayezyUw4BbjZ1YnE2ppcqegWE3oZyh6HhKiiXpJieATMx62Jxe0b+x9QRWLHYUbWxdzzbziFTEgtYT2Bd1xgRf/7XsxcV4t7WlU9CNLWmzbph6Phq4BTbHa8l1YQqJe7HAWR59HzBuQCHxIoKttlStCX5zxPKSdcisBZXG+iX4v/jkAYNVzKxJqdAo3wveRdcrI5dTL7zyRxNWDE2Zulq4LDA21X2+1G3B/P7YlF/HZR8Zx7Q5zYvXbfiqFF28/rmKLDO2TrCFBgIN9UyhVE7jturCnq+MsFgLDmQpmyun29SDK49O5brmuynvuyPkr1pSbRGu/mQxG/DxmJhsozpaMiNUqBmQVZ3W+qdeHAdpRICdOqMetJlanml0DvS+d3Y8Xjz9JsXorsmdP+/mOHet3HOvJLbcA//JfKvfvvn3auxvbYWOymEUtV4IdFdvdqmJ1X5/6bPv6zOzPsoA3vEEJ1bffbmafa8TAvn785JEvqZhMwEj/WKSSAATmSx76q6Hwxf5hT/Off+xJvGz74+qFieuA7yPjtIskF3INFZWp6az2E7UVYnW5JONHdlzCWV024KweGLJULaaweuPsVANDfl5bsE91TAJEFMq2nsnTspDOCEhY2NM8qbZttbFyD8Lebg9TqNgqeyfuSeetEgOylMAhP76z2u0L1KC0I9houhDgKn9SO6oh685jaQnwS4CfqCkTqOaNfSBVwXwliV2Rs7oE7fyllli9LAYkSGg6q12BYt3D3KzEdgDFglQXXZNideRO0xSr4fvYl5nB6QkHrVI0kQMw7mzp8kIUAEomikn5PtJOBYW8xBBU7GmfW9YTUIIAQNN48U74Pga8AuYWExCLQK0KDJuKAQFUFEhUnGmr3YD7+jCeXMTEYhrXbZsCJmFk4OD5Ah/64b8DLoRuDA5GeptUCo7VxEv3n8Xzr7KAz0M7BmMkW8HMCVVwtmIFcK3wWqApVgNoi9X1Oop1F4Hb0Fuamk5je/IcJi4I9M+VkbQT2n9/wrNVLNLyyuxLDb0YEKAtVp8MBw5bTazOoOWsnp0FXKuGjFthgcWtyB13qA7M0FDPi39ryt13qy8DKEERmJ4Ghj1DRdVImzvv7HbD9yhiZBi/98Lfa28w0Y+zLMC2IWt1WJWSuf2SNcMdH0SrYp+JMZJlIe3VsFT1MF6pIJ9rKl3HgLO6XO32m5ZKiG/Gc10lVpe791kshoYxJ34fsW/IxkIlCRRUFM7sVF05q03EgKxwVtsqykljfJ/ps+BaNYzXz6m2sNXGyj0IndU9zHzRUy7ouCf0sqxeAJjLOVrOajvtq0FpOEMGAJNLKYwnc9pRDRmnglwOeOIJtIPtNS8SA6ka5ivJdgxIdDE3HANiIrf74M4KXjB6olVDqlCAdrZyi0isjtAVq10XezKzOH2xLUzX8hXYohm/vQaBymjtclYbyEP3faTsqnJWS4mFBaliQExkrJsWqz0PA14R80sJfP7zwF1XGi6G2FnhfavdgPv7MR7k0OeVsCtpOIusc0l2lA1OepNwdcGnf+CP0G+FSxgyGa1dDvfXMV3OAOUyZiYbKq/asvRyP51lmdVhJn7Sa1z+fU9HOo1tyUVcmEpg+kIdGaeifX0R3srIEoBitQnSaagCcJUKvvJliZeMP6G+QbF66+F5wA/8APCSl2yp3PY1JQgwlszh6MkkRrzwfkCxeusxPNz92lAb8Dtr2CQSXBHT63SuPjW0wiAT1FqrowpLTX1ntePAT9RQrnSbFlTMaS3evsO4klK5e5+5vIWsU9Jqt16fr0yOoW40NyNVLSadGBDHQSo0oXVSqoaJBBpxjOl+G7vS82plO8D7QQ/Aq2YPM1NMYtjPa8WAOFYDtUIV0aVrPu9gYEgjrzcSuDrcrxfzaYwFOQPO6jJySwKPHW3i8JCZJVP96Trmq8l2DEgJYWZ1fKHOCSJndVuwL9VsZG09AfT9/+osGo8WMT+v8qWnZhPq/2+ic7NcQNMVqz0PQ14BcwvtG0J+voa0U4l/AwoCSKjJleh2aSRixrKQ9uvIV12gWMTCglAxIDqDPd8HUFqRWQ1A71htGwN+GfNFHw/8UxMv23UaaMCcsHz33eo45+aAm24ys8+NQjqN7alFXNN/HqIQOqjWQqw+eNDMPsnaMDQECAExPwcsLqptms7i4cGmigGpVDB1roIRf0n/nF2eWR06q7XF6kxGidWzLj7xd+N4/YFPAukrzR5rSKlgIAYkEhGi6+sWE6szGWCpqpzVRx9u4rqhc6pPoFv4iRACJJPYmz6Fbx4fwmhUBG+rTeQTdY/q70fLLWSoDQwOClQqHf1NXrd7myNH1AoWxwFe8Qoju+wskpxfksac1ZVV86VjitWRs7rSPX5dKlrI6K5Ejs6lKAZkRmJQ11ntuioGZNlnIJtSicwaQnhm3xD2pEND0+goV0P0AHRW9zDlegK+XdeKAQkSNZTy7cHtfN7Ru0gsu+gAwMVCRt9ZbVnIpurIVX089r0qDvebWVI/kG1gvpIy66wOnG5ntZQo1cKCWjodEc9Dv1vEwqLax/HzvioyaUKsHhnpdvl1zh7HwfMw6BUwl2vf2E6fktidntOKARnyC5ifb28qVw0UWASQjnI/CwUsLAr0u3ozxatlVsuamYKYg6kK5qtJnDzexP5UR1VqE6RSypn1Yz+29WaLLQv7d9Xwkbv+GJgynB/YKaAZyNEka4htK7eulMCZM2qbpljd3ycxX0li4kwd//4/JjAamBGrHavRquOAeh2luovAl5d/3zPY7/ZsHo/PjeLBJzK4Z+dR/WtBdM1f7qwuSH1n9fJJtauuir+vDUhmwFYD3UIBjx9t4Kr+ixTTCDFFEGBvZhYPnBrFiL2g+skUJ7YmneMiQ/3jwdGwPwCwXW0EbBv4kR8B3vjG9qouTTLJplodVS6jkJfK1GXAWV2pLnNWR2a8OGNw10WQqK2IAckVbGSdst64doVY3VTOap1+TBQDUuz4DKQEZJhhreGsPvDC7fjlm/5OvaD5qCegWN2rNBqAhBI/4zo1fR+BXe0Sq+fyjiogEfemGUU1dDir8zVXXXw1l6VmswK5qo8Hv9XEdX2nW79PByVWt2NAphddjAQabnUATmB3i9WNBsoNB77b1BarB7wiFnLqtDx+ITAnVtu2mi2O0HWneR6G/AJmc+3P8YknBQ71TWo5q7cnFzAx076JzxQC1V4121Y6FVYjzuexmBPoc0vanQUAKvojdPzVKg24VkP7/zWQqWO+klLiv3tRbaQ4YQTR34ed6QXgYvi5anRouhgfbz83tU+ydoyMqMcoWkJTrBaB+p9/858TSLp1vO2qr+kPdqNcwlIoTjcaZpzVALaN1PHh47fglXseU7cs3WONrqXLKv4UCzL+stSITKYtWN94IzA2Fn9fG5DMsKfE6lwOTz4FXJGd4v2AEFMkk3jtnofwmRNXqLFBMkn361blllvUvfDmm7uLmWowtM1ri9VbzSBCAKgiyUtV5axeWBRmCizatZWZ1UWpzHg6zurqMmd1KYGMo+msTqVUbMmCMnedO29hPFjUOx9cFym7gkKns7rRULXNNeN2vCMH8NLtYdyaoesA0YNidY9SK9bgWA110YnbcfJ95awutKul1moCbqIRXwROJiGERCMfitXNZltU18nnBJDtEzhf7MfkJLDPm1AbdcXqfuV4ixywp2dSyv2r46xOOt0FFut1lOqOKnylQxCg3ytifjESq1PmxGpAVeV+0YuA175W+38VOatnc+2b4hMnbCVWa2Ssb08uYmKuLfadnB/AvsyMtlidygg8Mr8DzVweC/NNlVmtI1B1tvcoYqYYRcxoitXDCcxVkqiWGvCqYSeX4oQZovgbGQqAppwuV18NvPWtwAc+YGZ/ZG2JxOrT4aRoNqu3P9/HgFfEd486uOfWeVzRZ0BQdF3VwS+G9+9aTd1ndJ3VALaPNXC+MIC7+x9UGzTF+suJ1cm4Tp9O3vQmtSLkrW/V288GJDOWRK7mQy7mUClJtdqO9wNCzBAEODJ4Eb9w46dxZGCCguJW5s47gd/+beDHf9zYuGtwdxojuwNg927g1a82sk+ysUinpJpwLpXwDw+P4yXbn9CPAbHqKNe6x/HlCrRjQEpVuz0+ApArOsi6+s7qfreEhVklJj/4eAo3Dp/V68fYqpBisdNZHWkyuv3NVKodP3fkiN6+iBEoVvcosxdrGNLJqwYA34dvd8eAaC+RCALsSs3j3JS6GJbmSvDtmtqfphvhRdcv4v0P3otX3jzdvugYEKsXqm1n9em5NPakZzVjQFY6q0sNA2J1Oq0u6Dn1OT510bBYbdvAm98MvOY1+vtKpTDkFzC31OGsPuXiUL+Gs9pxsD2dw0Qu3SpWeGqxX4nVmp/BG140ga9cPIj/83dumFld0h+URO29Mw9dN18bwP79wIPTe1SuWRS3wwGUGQ4d6n5tSqwWArj9dhZX3ChEYnWErnsilcKu9By+9GAS+4YNuaiiIjqdzuqGi6TfvPz7ngHj2wSSdgW3jR5XG3SXu14qBqRoSKxOp4F77tmSy6iDkTTKdQdPHrewYzjsc1CsJsQMiQSwcyc+8LxP4vmjp7ZcJj5ZW66+1sK177gD+MVfBK67br0Ph6wDmaxa2VsvVPCPx7bhZduP6ceA2DWUa91jzVJZxF/JJgSSgUSx4Xb145ZKthFndb9XxMK8xEMPAVdvX4BtNfX6yL4fOqvbMmajUFZ51SZWt77vfcp81FmPiKwbFKt7lJnJBkZ0xeogaDurpUS1CiRkKKjGPZldF/v7ZnB8bgCo1zF5poLxIGdkEHnb82r4/Ts+jB+99RE1s+d52g7ggQF0O6vnMtiT0RSrlzurGw2U62EMiA7pNAa8IuZz6thmljy9AptrSTKpnNUFrzUL++QZDwez0/FvwkJge38R5wv9rYmAqWJaLaHTFIB37QJ+/oZP4wsPpLCQs/Sd1cBKZ3XJjLP6ppuAf5rcj339C0q0t+3ebAMbkcOH289HRjgw3ars2tV+7jj6kwyDg9idnsM3Hs1ib5+hIl2uC9+uoVIOxeqowGKg76z2+gP842t+C14izNk3EAslpVjprC5CP7N6q5PN4vt2PoZ3fvgOvOQ6FoAjxDhXdhSYpaBIDHLffWb8QWTjkslaWKr5+NLXHbxw7zkl1GpnVtdRWeasLpUtNQaNue9kSqBY7xarc2XXmLN6fk7iYx8DXntNGL+nI1YHwYrM6sJ8FSm7YkaszmZpPuohKFb3KNMXG0qo1Mw1Gk/n8aePvwCNcg1PHJO4IhNmtcYVl4XAgeEcTiwNA6USJs/XMZ5cNON46uvDffu+i32N43rH2EH/oNUlVk8sprE9uah14bWTbrezul5XzmpPX6zud4tYKDgoFSXcREOZd005q01i2xjM1jFXVq51KTtmdTVcdDsGS5go9gOlEppNAFKqz0BTrEY6jVtHTuIbR9M4M5NUOdiaYrVlCTSaYqWzWvP/ZY0M4e4dj2OvFxYZpTBhjs5s6bvuYjblVmV5kT7d68vwMHan51BvCGwPQkHRQA60Z3VkVkdxUybMxX19uGW0IwJF9x4T9VNWOKuFGWf1ViabxQ/s+zaemu7Du15zSm3jPYEQc3TeD268cf2OgxCy6ciM+Fiq+fjwZwbwxmseURt1tJ1EAl6ihnLdVlGsIaWKgJ+ox953kFwpVi+VQ2e1Th8uqcbcU/MOPv5x4L6rHmttj00QIOVUVhGr2d/cjFCs7lFmppsYCZa0HZX3v+SLeCo3gmMPVXD0oQauHphQA1ONwen+0TyO50aAYhHf+67EvsysmZmsyN11UVNQ72Bg3MN8NQkUCgCApoSa1dT4XAdHbUwU+7rE6nLDge9pOt5cF/2pGhbKPr78hRpu3xvmdusKKWtEss9BoeYBhQJmZ4GRrH5e1Pbhqvpsy2VcvCCxLVhU3zAgVvt2HRm3ihtHz6tKxJpikuPILod9qSxUJI6u8DM0hHdd/UW8dujr6jUjQMwhBPDud6vc9pe8ZL2PhqwXiURboLj+ev39hc7qXX052BV1rzHlrI4W8KBeR0NaSLgG7gedjpEox10Hz4NtNdAoLROrSxSrtclk8PzRU3j4h/4jgjprGBBinEOHgG3blFA9NLTeR0MI2URkxpKYqyTxzWN9uGPbCbVRR6wWAr4HlBtOKzITAMoVC0EivrPa8l00l62Qy5VcZN2Stljd7xbxZw/fhFe+QiKo5dR2nbGt5yHl1FCsJFqC/fSFutLNWOR+0/G0YrUQYpcQ4otCiEeFEEeFEO8Ot98vhDgvhPhu+PWqjvf8vBDiKSHEMSHEPR3bXxFue0oI8XNr8ydtDqanoO+sBmCnPBzITGN+stoWqzVF4APbSziRG0FjqYj/8eEM/tWVXzPmrAYAzM6qRwMDMn84jUrDBnI55HJAxg4LQ2pcePcf9jBXSWFyLhS8Gw0s1Xykk5rOaiGQGXSQq/n4zN818Ir9T6rtPZrTKdLhjSafxxNPAIfGQmFZ47MdH65jotAPlEo4eayq8qo9T98BG7qoP/jDn8PvvPCjapumCJxN1rvy0EtlYSSzGkNDuGX0NG7tO6ZeMzPLLEeOqHWZukVGycbmJ34CuPdeVXhWl6Eh7E7PYV9qujUxasJZ7dt1FQNSr7cHJSZW2nSK1bp51QDgunCtBqqFWtfmUoVitTaeB3ge0qJgtG9ECAnxPOD++4F3vGO9j4QQsslIj6XwxYkr8YIdZ2HVwwl9TW3HD4TSNjrE6lI1ET+zOjwmAbSd1VJiqeIibVf0+nCWhf5UDZ84fT3e+vqymVpMQiCZBAp1Vy1rBnDuHLAztUCxehPyTEbrdQDvkVIeAfACAO8UQkTlMX9HSnlD+PUpAAi/9wYAVwN4BYA/EEIkhBAJAL8P4JUAjgB4Y8d+yDJmpqXKrNYd5Pk+Bv0C5qdqeOQRiWsGz2uLn3u2VXFscQx/9+kEbr86h2G/YEZQXe5oMLHPTEY9Li3h0aMdMSg6F0nHwVuueAAffvxGNaPXaGCmnMZwuvz0730arEwKDWnhi19O4MWjj6uNutnKa0X4GcpCUYnVI+Hyd42bsJdxUW0mIEtlHP1uDVf2T5oZmIfHuj+4AK8ciuqan+vukRLO5gdazup80ULaqeiLSQMD3ULq/v16+yOErCSZBF796vY9Qod0GlcOz+GDL/r/gJmZ9v51EAK+L5R7pliErK2RWJ3N6u/P8+Am6qiWuosMF8sWM6tNELXRaNUZxWpCCCGk58ns7MPJpRHcMXysLdRqCqpeYKm+YeSClhKlagJ+Qk+sBtAWq+t1NKVQq/k0zT39fRLXDJzH4R25tqFDsx+TylhqdXcoVp+fAHak5mmO2IQ8beuTUl6QUn47fL4E4DEAOy7zlu8H8BEpZUVKeRLAUwBuDb+eklKekFJWAXwk/FmyCrdcsaCEZd1BSRBgwC1ifqaBU6eFiuzQFIG9rIebhs7gp39tDD/5mjOt36NNNgscONB+3ZkvG5dMBiN+Hk+dcfE3/6eBV+98SEWA6MSrCIFbdkzg0fltSqis19FoWrBdA07NdBq5qo87b84hKIfirwkxYS1IpZBxy8hPl5RYPTSntuvcKHwf25OLmDjbwAPfFHj+6EkzbSsSpmdm1ASD52mLPnvGKjiTH2zdKCfmA2xPLug7qxOJ7kKA+/bp7Y8QsrYIATEyjD2ZOWXvAIzE93iRWF0oYGFeot8tmYmF6rz/LcuZjoXnwbEaqBbrXZuL5YQq+MPBgx7RqjOK1YQQQsiGIbNDjeFvzzyihFrb1jZJWIGnIjuinLhGA+W6jcBtxO8jui4k0O4TRo8G+m83HSnj/ud9EpieNuOshhKri53O6gsJOqs3Kc9KXRNC7AVwI4AHwk3vEkI8JIT4oBAiWku6A8DZjredC7ddajtZhVdeP4ED2RkzYrVXxNxME7IhYQmpfyInk3jv9Z/FrYcWcXgsFChNXRxuuaX9/O679feXyeAnDn8Zv/XV5+Mz/wDcs+uokYHezqESzhX6gUoFzVoDQkgzjrdMBu++5gv4lTc/qS7oltW7A9NUCtuTC3jqSanE6r5JtV2nLQQBjgxcwKOPCXzvkQSuHzpnJrM5GuzPhxMABtzqu7fVlFgdzmyfm09hZ3peO2ceAHDbbe3ne/bo748QsrYMD6vHyOliIsYqaDurp6YFRoOcmesLAIyNqccrr9TfVxgDUistE6urCcaAmCD6X0WDvF7tExBCCCGkRbovgdHkEg5mp9SGwUH9aEvfV5EdoVCLahWlhmYB7tBZLSuhSB0J4QZWxu2/ysV9+74LnD+vokt0TYMAkpkECvW2s/rcRZvO6k3KMxarhRBpAB8F8DNSyhyA/w7gAIAbAFwA8FsmDkgI8XYhxINCiAenp6dN7HJjYmjmKRKrz01YSPn11jYtBgZwZOAC/urdX2tfKE3lKt92myp49aY3mcnS9Dy89orH0WgAP/zKBSTtmhHxc3S4iclSFigWMTcrMeQVzDje0mm8+9ovIJ0LiyumUvo3tbUilcJPHP4KfuWDO/Doo8AeJzxmHSd4Xx+ODFzAA99x4SYa8BJ1M20rlerej4E2sHt7HafzQ+0lSAsp7DDhrAaAG25QItKLXsRZYkI2Anv3dr82MCHmpxIoN2wgn8fUbAKjwZK5grvvfS/w9rcDz3++/r5cF65VR7XcXbehWLUpVpvg2mu7X1OsJoQQQnqeRAL46js+1B7Kmyhq7fvKBR0JytUqSnUHQVJDL/A8ZTooKLG6UaoiYTXN9N+i2ksnT6pHA32YVJ/dlVl9ftqls3qT8ozEaiGEAyVUf0hK+TEAkFJOSikbUsomgD+GivkAgPMAdnW8fWe47VLbu5BS/pGU8mYp5c0jIyPP9u/ZPJhy0AQBBr0Cjp10MdYXOr50T+QoW3pmpn2hNCVW+z7wkz8JvPjFZvYHwO5L4Y9e/Bd4z2vCgnUGLpJWJgUpBVAoYHJKYCzImXFWRwLHhQvq0USe6lqRSuGl25/Ajmwe738/YBfCLGidY+7rw5GBCfz2J/bj3tsNZb8CSvDvLFRowlm9RyhndZi/dW4hrZzVJtqB4wD/9t8Cb36z/r4IIWvPwYPt52NjRq7dgwMSs+U0UCgoZ7W/ZOb6AqhJxec9z0yh0dUyq6Vsi9XMrNbj8OHu/xPFakIIIWRDcMXhjn7b8vpccYg0lw6xutxw4Cc1+nOui5RTQSGn+nFLczVknLIZsTrS8556Sj0aMIy5GQ+1ZqIlVk8vOBg2UeuN9BxP26qFEALA/wTwmJTytzu2b+v4sfsAPBI+/xsAbxBCeEKIfQCuAPBNAN8CcIUQYp8QwoUqwvg3Zv6MTYhBsXrAK+Kx0wHG+wy5oKML7eyseWf1WhCJBpNhTIWJgV4yiaRdRWGmhIsTTYwlDS3PjuIqTp9Wjz0uVgPA773hq3jD6yWwtKS2a4rV1w+ew2/e+xW87wfDm5qpttU5+WXAtb9zn6OiYPJ5AMBkPqnEJFPOR0LIxqEzW/6aa4ysiNm1vaGKuBaLmJpLqPuMKbHaJK6rMqs7xepaDdWGDcfTL86z5QkCNbEAqLiZqJ9ACCGEkN7miivaz02I1ZHpsEOsrjZsOL7G+NN1kXXKWFpYA7E6ijKLdILOIt9xibSBUIeSTUNRt6TneCajnjsAvAXAw0KI74bbfgHAG4UQNwCQAE4B+AkAkFIeFUL8FYBHAdQBvFNK2QAAIcS7AHwGQALAB6WUR439JZuNqFqqoRiQExeTGMucb23TIsrmnJ1tC5O9fHGIYikisdpEBnIqhZ2peZw/JTB5UWI8yJkRwXeEMe65nHrcAGI1CoVWoUl4np6Lrr8fvl3Hjx75BlC+QW0z5SLrdFZ3FjCMiTOYQaVhIz9TRhqqbmPCkuYyZQkhGwfPU9eVxx5T8T0G2LVT4mxhAChcwNS0hRv9JSDoN7Jvo4TLR7tiQKLsbrqqzfC2twE/9EPqvssJUUIIIWRjcNVV7eeGYkAAdGVWAzaEp9Hfcl1k3RJyixIAMD/TUEW9TfThIt0owkQtpg6xem4O6PNC4b6X9SgSi6cVq6WUXwWwmkXoU5d5z68C+NVVtn/qcu8jHRh1VhfQlBbGU8oBqn0i9/WpwVIu1xZVe9lZHUU+XLyoHk2In2kV+XDu7AAmJ6FiQJL60RLYsUM58qS6WfS0WN1ZtNCEq7pznwsL5otJdbrRjhzR3186jX93/afwjr++C3/87wBfhEUpuESbkK3J29+uJu8MRZjt3JPAucIAkH8SUzMCo8klM5OtpgljQGqVtlhdnK8gYF61OYTQqwdBCCGEkOeeTrOUiT5cEEAAaJYqsBAVRbT1hGXPQ9YpI7eoVsJdvAhsSy6a6cO5LrB/P3DihHq9e7f+PjvE6ocfBq4bCwtYUqzedHBtZq9isMBikKjBs+sYc2bVNt0Bj2W1ZwbPnWv9np4lOlaTYnUyiZ2pBZw9JzA5LdTybBP7dd32chnASLbymtGZXR6J1bptK5tVg/J8vhWvYaxtRQXQkkkznYVMBm++4gE8NdOHRx9pYmdyVh17L58LhJC1I5k0JlQDQHrYR77m4fx54PhEoAos9uI9wbaVs7oKtcQEwMXzDbXiiGI1IYQQQrYqQgD/+l8DL3uZionTxffhJ2qo5NQKtuJiDSmnotffcl1k3TIWc8qfevEiMJ402Ie7/fb2cxNidShKy2IJDz0EXDsYpgf0Yh+ZaEGxuleJYkB0BdBkEkIAA0EZ440Jta1zhi8ukVBZr6vHXp7J2rmz+7WhGJAjAxN45HiAY6cDHMhOmxMpd3XUIe1lJ1U6rW5ipVJ7IkDXWW1Zah9Smp1cAJRY/Z73AB/4gJn9BQEgBF40+gTe+54mXr7z0dY2QgjRJpWCJSTe8IcvhSeqyuXSi85qIeC6EtWmHS5HVWK1MVcOIYQQQshG5YYbgNe/3kwND9+Hl6ijkq8BAGampSouqO2sLrUWzF+csjAeGOzD3XorMD6uxHoT4/ogUJ/BUlU5q7On1HaK1ZsOitW9iqkIhPFxAMCAk8d4JSzaZ0Ks7iwmlUj0dsGfTvEXMHORTKVw68gpfOOJQRy/mMT+zIw5UfWGG9Tj/v3A9deb2edaIEQ7h+rkSfVoQlyP2lIkVpt0Kh86BPT3m9mXZQGpFO7a8Ti+/o0EfnDfdxgBQggxRyqFsSAHS9bxiTf+JQK71rMdcccRqDYSrYI/FyakcuUws5oQQgghxAyhs7q8ZFCsDp3VuaXQWT2dMNuH8zzg/vuBn/opM/tLpZCyK/jmYxl85zvA1UEYMdKjfWQSnx4sK0/QaKjiREKYyZdOpXDn+OMYE1NqfyZO5KuvBv7+79Xzq67qbffU0JD6u6OquYac1f1eCXN5B4fGFpSZ1pRQefPNwHXXbYxB/vAwcP58O4fKRMb24CBw9my7QFcvC8CZDF687Qn8zk+fxMBSEUiZiwAghGxx0mnsSp3Gke0n27FIveisBuAGCeWszueB/n5cvCDprCaEEEIIMUkQKLG60ACg0jhHdMXqdBpZt4QLOVUz6+KsjW3bFs2unDe58ri/H++57mP406++CC+/p4HUfAGwNXO7SU9CZ3Uv0umq1j2xhQB27MDvv/DD8O26ytM0cbHYv7/93ESxurWk0wEMqCKGuoSCwa3bz+GOXWfUNpMO4I1ysY0+1/NhVpQJZ/UVV3S/7mWxOp1G0q7hJ+/4nnrdy8dKCNlYDAzgZ2/8LH50z+eBxUW1rVfF6mQCtWaiVb/gwqSFcYrVhBBCCCHm8H34dg3lvIpinZmBclbrCMvptCqwGGVWz7mqD9erekR/P16x6yg++OI/xa++L8wuSacZxbkJoVjdi5gqrhjRmdlsIgIEUNEf992nhMU77jCzz7Xk5S9XIvW/+TfAwID+/sL/zc/e9Hn8yJEH1batKFR2TgIAwLXX6u/z6qvbz5NJc7Eda0G0SmFyUj32qJBECNmAWBYO7G0g45RVfYgeLuDqplxUmwlEgYcXpyzlrO7VgQ4hhBBCyEbD9+FZdVQKhsXqjhiQxYKNrFPuXcNBKqWc1OWy+gAARoBsUhgD0oukUsAP/ZC5Qd6ePe3ny4sN6vCKV6ivjcDzn6++TBGKkof9k4AVXhy3olh97bXAX/6ler5790rxOg7btrWf33OPuhn1KsvF6q3YBggha8fQEDA7q56nUj3rGnFTDqpTdkusPnHOxc7rFoDklet7YIQQQgghm4XIWV1sAgBm5hO4ws/rmRnSafS5JeQKCUBKyKZU3c1eFauFUGa2mRng3Dm1jWL1pqSHVaAtTDoN3HWXuf3dfDNQKinx+5ZbzO13K+O66qtaBebn1batKFSOjKhiCR/9KPCDP2hmn0IAP/MzwPHjwPd9n5l9rhWDg+pxYkI9bsU2QAhZO4aG2s97eOWGk3JRbdp44MEEGimgWpEYDZZ4TSSEEEIIMUUQwE/U22L1QgLD/ZpiteMgm2pgseJh/kJZFfQGelesBtRKeYrVmx6K1VsB2wbuvHO9j2JzIQQwNqYKAUave/mCvpZcc436Msnhw+qr1+l0gQM9LSYRQjYgnWJ1D3fE3YyHUjOBX/urg/jH/wTc/9pT6hu8JhJCCCGEmMH34SVqqBQbgJSYXnAwMr6kXQwxO2gjVw3w8z8PvPO276iNvRzlFsWEUqze1DCzmpC4dAqVQdCzy7PJGrJcrKaLkBBikg3irHYzHgo1F6enA/yv/wX8yPOOqm/wmkgIIYQQYgbHge9KlKsWUK3i/FwS48mcdk2TzKCDM/lBfOd7Am88+K1wY8bAAa8RFKu3BBSrCYlLp1DJAfnWZGQEsDouo2wHhBCTjI+3n3cWn+0x3KyPL104hNu2n8GrXw0MiTn1jR4W2AkhhBBCNhp+0kKp4aK5kEOlJlRsh6az2u1P4nR+EHffsgiRW1Qb+/oMHO0aMTCgHuuq0CT7m5sTxoAQEpdOESHKLiZbi0RCzeSGRcU4q0sIMcq+fcBb36omR/ftW++juSRONsDnJ67Cl1/6hwCeBxSL6hucwCOEEEIIMYaXsvGjn/kRnPytPPZlwyLcms5qZDLIumW87Mgk8HhBmbF6eVy7f3/361271uc4yJpCZzUhcel0Vr/iFet3HGR9ufJK9Tg+Dhw8uL7HQgjZXAgB3H57TwvVAPC8Fwb4+Mv/O25NPQpICRQK6ht0uhBCCCGEGOP7bpjGb77gf+O3/qQP1/SfVxs1ndVIp3EwO4XbBx9Xr7PZ3o443bu3+zXH4JsSOqsJicv4OHDzzWqJTA8vzyZrzA/+oCoGeeut3ZEghBCyRdi938buq88CuSawsNB2VlOsJoQQQggxxtWHajgy9TX82rHX4ZrsGbXRgLP6q/f+BsTkAfW6lyNAACWk33038LnPqcdeFtZJbChWExIXIYAf//H1Pgqy3gwMAHfcsd5HQQgh68vIiIpEmpwESiW1TXfwRAghhBBC2mSzEAL45dc9ihcuPQHYtvrSYWRE6b3Hj6vXvS5WA8B99wEHDgDXXbfeR0LWCNoACSGEEEKIHiMj6vHMGRUFEgRcbUIIIYQQYpJMBgDw9hsfxLZkzowxoDPeFAD6+/X3udbYNnDTTfpCPelZOIoghBBCCCF6RGL16dPqkcUVCSGEEELMEorVmJxUj7p51QAwOgokEu3XG8FZTTY9FKsJIYQQQogekVh96pR6ZF41IYQQQohZIrF6ako9mnBWJxLA2Fj7NcVq0gNQrCaEEEIIIXqMjqrHmRn1SGc1IYQQQohZsln1WKmoRxPOaqDbZHDokJl9EqIBxWpCCCGEEKLH2Fh3NfZIvCaEEEIIIWYYHOx+baqY9e23q37cm97U7bImZJ1gGjkhhBBCCNEjmQQOHgSefFK9vvba9T0eQgghhJDNRhAA27cDExPq9d69ZvZ7++3AzTcDrmtmf4RoQmc1IYQQQgjR5+qr28+vumr9joMQQgghZLNy8GD7+eHD5vZLoZr0EBSrCSGEEEKIPnfcAQwNAXfeyQEPIYQQQshasH17+/mePet3HISsIYwBIYQQQggh+mSzwK/92nofBSGEEELI5uXWW4GvfQ248UbAov+UbE4oVhNCCCGEEEIIIYQQ0uukUsAv/dJ6HwUhawqnYQghhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsO0JKud7HcEmEENMATq/3cTyHDAOYWe+DIJsSti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7TJ5fe6SUIzo76GmxeqshhHhQSnnzeh8H2XywbZG1gm2LrBVsW4TwPCBrB9sWWSvYtshawbZFyNrRa+cXY0AIIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSre4s/Wu8DIJsWti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7eur8YmY1IYQQQgghhBBCCCGEkHWHzmpCCCGEEEIIIYQQQggh6w7F6ssghNglhPiiEOJRIcRRIcS7w+2DQojPCiGeDB8Hwu1XCSH+SQhREUK8d5X9JYQQ3xFCfPIyv/PTQoiF5T8jhHiXEOIpIYQUQgxf5v37hBAPhD/7l0IIN9z+YiHEt4UQdSHE6+J+JsQMm6xt7Q7/lu8IIR4SQrwq7udC9NmgbWvVnxNCvFQIsSiE+G749f44nwkxwwZtWx8SQhwTQjwihPigEMIJt78pvF49LIT4uhDi+rifC9la9Nh5sGr7XuX9l7p/s2/YQ2yytsW+YQ+xQdsW+4YbgA3attg3JBsCk+eXEOJU2La/K4R48DK/8xXh+fGUEOLnOrY/53okxerLUwfwHinlEQAvAPBOIcQRAD8H4PNSyisAfD58DQBzAH4awG9eYn/vBvDY0/zO3wDwllW2fw3A3QBOP837/zOA35FSHgQwD+Bt4fYzAP4fAP/rad5Pnhs2U9v6JQB/JaW8EcAbAPzB0+yHrC0bsW1d7ue+IqW8Ifz6lafZD1lbNmLb+hCAqwBcCyAA8GPh9pMAXiKlvBbAf0CPZbSRnqaXzoNLte/lsG+4MdhMbYt9w95iI7Yt9g03BhuxbbFvSDYKps+vO8Pr5s2rfVMIkQDw+wBeCeAIgDeGvw9YBz2SYvVlkFJekFJ+O3y+BHXh3AHg+wH8WfhjfwbgX4Q/MyWl/BaA2vJ9CSF2Ang1gD95mt/5eQBLq2z/jpTy1OXeK4QQAF4G4H+vcmynpJQPAWhebh/kuWEztS0AEkA2fN4HYOJy+yJry0ZrW8/m58j6skHb1qdkCIBvAtgZbv+6lHI+/LFvRNsJeTp67DxYtX0v+x3sG24QNlPbAvuGPcVGa1vhz7FvuAHYoG2LfUOyITB5fj1DbgXwlJTyhJSyCuAj4e9aFz2SYvUzRAixF8CNAB4AMCalvBB+6yKAsWewi98F8LNY2wHBEIAFKWU9fH0OqjGTHmYTtK37AbxZCHEOwKcA/NQaHgd5FmyQtvV03CaE+J4Q4u+FEFev43GQDjZa2wqXeL4FwKdX+fbbAPz9c3EcZHPRK+fB07Rv9g03IJugbd0P9g17kg3Stp4O9g17kI3Wttg3JBsJA+eXBPAPQoh/FkK8/RI/swPA2Y7Xz7bPaLTPSbH6GSCESAP4KICfkVLmOr8XzsjJp3n/awBMSSn/ee2OkmxENknbeiOAP5VS7gTwKgB/LoTgtWWd2SRt69sA9kgprwfw3wB8fB2PhYRs0Lb1BwC+LKX8yrJjuRNqQPK+5/BYyCagx86DVds32ZhskrbFvmEPsknaFvuGPcgGbVvsG5INge75FfJCKeVNUBEf7xRCvNj8kZqFnYanIZxx+yiAD0kpPxZunhRCbAu/vw3A1NPs5g4A9wohTkFZ6V8mhPgLIcTzRbs4xL0xj+8z4fv/BMAsgH4hhB1+eyeA83H2S9aeTdS23gbgrwBASvlPAHwAlwzdJ2vPBmtbl0RKmZNS5sPnnwLgXK6gA1l7NmLbEkJ8AMAIgH+77Gevg1pq+v1Sytk4v49sTXrpPFitfbNvuHHZRG2LfcMeY4O1rUvCvmHvsRHbFvuGZKNg6PyClPJ8+DgF4P8AuFWoAo7R+fUOqHv4ro63PW2fcS37nPbT/8jWRQghAPxPAI9JKX+741t/A+CtAP5T+PiJy+1HSvnzAH4+3OdLAbxXSvnm8Ns36ByjlPKeZcf8RQCvg7rIP+2xkfVhk7WtMwDuAvCnQojDUAOSaZ3fTeKzEdvWpRBCjAOYlFJKIcStUBOs7DiuExuxbQkhfgzAPQDuklI2O7bvBvAxAG+RUj6h8zvJ1qKXzoNLtW/2DTcmm6xtsW/YQ2zEtnWZ97Nv2ENsxLbFviHZKJg6v4QQKQCWlHIpfP5yAL8ipTyLjvMrFJmvEELsgxKZ3wDghy+37zXtc0op+XWJLwAvhLLUPwTgu+HXq6CyWD4P4EkAnwMwGP78OFQuSw7AQvg8u2yfLwXwycv8zq9AdeZK4fvvCbf/dPi6DlWk5E8u8f79UIUCngLw1wC8cPst4fsLUDf0o+v9+W7lr03Wto5AVYf9Xvh3vHy9P9+t/LVB29aqPwfgXQCOhm3rGwBuX+/Pdyt/bdC2VQdwvON43x9u/xOoCtXR9gfX+/Pl18b46rHzYNX2vcr72TfcAF+brG2xb9hDXxu0bbFvuAG+NmjbYt+QXxviy9T5BXWv/l74dRTAL17md74KwBPhOfKLHdufcz1ShG8khBBCCCGEEEIIIYQQQtYNZlYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYQQQgghhBBCCFl3KFYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYSQLY8QYkgI8d3w66IQ4nz4PC+E+IM1/L0vFULcvlb7J4QQQgghZCNhr/cBEEIIIYQQst5IKWcB3AAAQoj7AeSllL/5HPzqlwLIA/j6c/C7CCGEEEII6WnorCaEEEIIIeQShM7nT4bP7xdC/JkQ4itCiNNCiB8QQvy/QoiHhRCfFkI44c89TwjxJSHEPwshPiOE2BZu/2khxKNCiIeEEB8RQuwF8A4A/yZ0cb9ICPFaIcQDQojvCCE+J4QYe5a/+1TH9m8KIQ6uywdHCCGEEEJIDChWE0IIIYQQ8sw5AOBlAO4F8BcAviilvBZACcCrQ9H4vwF4nZTyeQA+COBXw/f+HIAbpZTXAXiHlPIUgD8E8DtSyhuklF8B8FUAL5BS3gjgIwB+9pn+7o6fWwy3/x6A3zX89xNCCCGEELJmMAaEEEIIIYSQZ87fSylrQoiHASQAfDrc/jCAvQCuBHANgM8KIRD+zIXwZx4C8CEhxMcBfPwS+98J4C9DN7YL4OSz+N0RH+54/J1n/RcSQgghhBCyTtBZTQghhBBCyDOnAgBSyiaAmpRShtubUEYQAeBo6JS+QUp5rZTy5eHPvBrA7wO4CcC3hBCrGUf+G4DfC53RPwHAfxa/O0Je4jkhhBBCCCE9DcVqQgghhBBCzHEMwIgQ4jYAEEI4QoirhRAWgF1Syi8CeB+APgBpAEsAMh3v7wNwPnz+1pjH8PqOx3+KuQ9CCCGEEEKecxgDQgghhBBCiCGklFUhxOsA/FchRB9Uf/t3ATwB4C/CbQLAf5VSLggh/hbA/xZCfD+AnwJwP4C/FkLMA/gCgH0xDmNACPEQlBP7jbp/EyGEEEIIIc8Vor16kBBCCCGEELKREUKcAnCzlHJmvY+FEEIIIYSQZwtjQAghhBBCCCGEEEIIIYSsO3RWE0IIIYQQQgghhBBCCFl36KwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLuUKwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLu/F9cCxj9aYoWTAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(25,6))\n", + "plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for training data: 1.7195710200875551 %\n" + ] + } + ], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAADSCAYAAAAL37fDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABSYklEQVR4nO3dd3hU1dbA4d9Kofei0qSJ9B6KKIiIgKCoIIoFbAjYr+Varvez92vFhogNRJCqgCC9inRCB+kSpPciqfv7Y53AgAmkn0my3ueZh5kzM2f2HJKTdfZee21xzmGMMcYYY/wV4ncDjDHGGGOMBWXGGGOMMUHBgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwRSHJSJSKiILBOR8d7jb0Vki4hEercG3nYRkX4islFEVohIo4B93CUiG7zbXRn+bYwxxhhjsqmwVLz2MWAtUCRg27+dcyPPet21QDXv1gz4HGgmIiWAF4EIwAFLRGSsc+5gWhtvjDHGGJNTpCgoE5HyQCfgdeCJ87z8BmCQ06q080WkmIiUAVoDU5xzB7x9TgE6AEOT21GpUqVcpUqVUtJEY4wxxhhfLVmyZJ9zrnRa35/SnrIPgaeBwmdtf11EXgCmAc8656KBcsD2gNdEeduS256sSpUqsXjx4hQ20RhjjDHGPyKyLT3vP29OmYhcB+xxzi0566nngBpAE6AE8Ex6GhLweb1FZLGILN67d29G7NIYY4wxJuilJNH/cqCziGwFhgFtROR759xOp6KBb4Cm3ut3ABUC3l/e25bc9jM45wY45yKccxGlS6e5B9AYY4wxJls5b1DmnHvOOVfeOVcJ6A5Md87d6eWJISIC3Ais8t4yFujpzcJsDhx2zu0EJgHtRKS4iBQH2nnbjDHGGGNyvdTMvjzbEBEpDQgQCfT1tk8AOgIbgRPAPQDOuQMi8iqwyHvdK4lJ/6kRGxtLVFQUJ0+eTEfTTb58+Shfvjzh4eF+N8UYY4wxgOgkyeAUERHhzk7037JlC4ULF6ZkyZJoJ51JLecc+/fv5+jRo1SuXNnv5piz7NsH4eFQtKjfLTHGGJMaIrLEOReR1vdnu4r+J0+etIAsnUSEkiVLWm9jEFq7Flq2hCfOV3jGGGNMjpPtgjLAArIMYMcw+MybB7ffDqNGwcaNsH693y0yxhiTlbJlUBYsfvrpJ0SEdevWnfN1H374ISdOnEjz53z77bc8/PDDaX6/8dnBg7B6NcTEJPuSsWPhX/+CceOgVi145RV44YWsa6Ixxhj/WVCWDkOHDuWKK65g6NBkFyUA0h+UmWwsPh7eew/69YMnn4QBA2DJEoiOPvWSL7+EDz+ESZOgfHndduWVcPgwREb60mpjjDE+sKAsjY4dO8bcuXP56quvGDZsGADx8fE89dRT1KlTh3r16vHxxx/Tr18//vrrL6666iquuuoqAAoVKnRqPyNHjuTuu+8GYNy4cTRr1oyGDRvStm1bdu/eneXfy2SwefNg717N3I+J0YBswAB48klc/y94pc8Ofp0Qz4QJULz4mW999VX473/9abYxxpisl56SGP7r0ydz9vvFF+d9yc8//0yHDh249NJLKVmyJEuWLGHhwoVs3bqVyMhIwsLCOHDgACVKlOD9999nxowZlCpV6pz7vOKKK5g/fz4iwsCBA3nnnXd47733MupbmawWFwcTJuj9u++GypVh2TJYsoT4jVt4qF8NQmUDw698i9BvakHjxlCvHuTLB0CTJpAnj8Z1LVr49zWMMcZkjewdlPlo6NChPPbYYwB0796doUOHsmXLFvr27UtYmB7WEiVKpGqfUVFR3HrrrezcuZOYmBgrV5HdzZ0LBw5A2bIacIlA27b8fXlbbu8WQ0Tz7fyn+ihkc4yOU0ZGQlgY1K4NrVpBnTq8+io8+ihMnapvN8YYk3Nl76AsBT1ameHAgQNMnz6dlStXIiLEx8cjIjRp0iRF7w+c+RhYluKRRx7hiSeeoHPnzsycOZOXXnopo5tuskpsLEycqPc7dz4VUR04AF26QM+eebj33qrA03Do0KkeNDZuhOXL9XbTTdRu356yZYWpU+Gaa3z7NsYYY7KA5ZSlwciRI+nRowfbtm1j69atbN++ncqVK1O/fn2++OIL4uLiAA3eAAoXLszRo0dPvf/CCy9k7dq1JCQkMGbMmFPbDx8+TLly5QD47rvvsvAbmQw3Z44GWxUqQIMGAGzfDh06wL//DffeG/DaYsXgqqvgqafg7bfhuus0iBszBoYO5aUXEnjpJQjiOs/GGGMygAVlaTB06FBuuummM7Z17dqVnTt3cvHFF1OvXj3q16/PDz/8AEDv3r3p0KHDqUT/t956i+uuu44WLVpQpkyZU/t46aWX6NatG40bNz5v/pkJYjExp3vJrr8eRFi1Su/26wedOp3jvUWL6gt799ahzFmzqDr5c+rVjufnn7Ok9cYYY3yS7ZZZWrt2LTVr1vSpRTmLHctMMmUKjBwJFSvCc8+xcZPQrRsMGwbVq6diPxs3wmefwfHj7ChehxsnP8j8RaGEhmZay40xxqRDrltmyZigFh2tBcfgVC7ZoEHw3HOpDMgALrkEnnkGSpak3MFVXJlnHsO+OJzhTTbG5C779uk8pIEDYcUKv1tjAmXvRH9jgs2MGXD0KFSpArVr4xyMH6+xVZpceCE8+yx88gnPnhzDNS9V5pY2+wivUTVDm22MyQEmToTffoOePYmveilbt8K6dXpbu1b/PXYMSpWCmjXh4ou1pvWUKX433CSyoMyYjHLyJEyerPe9XrIVy6FaNShYMB37LVIEnnySUgMG0HlVJF/3PUqfD45Aw4YZ0mxjTA6wcSNHR/xKn9l3sH5Aflzpk1SukY+aNaFGDV0lpHp1KFz4zLdNnKiTkCpU8KfZ5kwWlBmTUaZNg+PHNQqrUQOAH3+EW27JgH3nzQsPPcQTeUfQ6rkr6PnpO+S/o4vO2jTG5G4xMfDdd0z8szblS59k0FVvEJY/HB57DKqeu1f9zjthyBDtkDf+s5wyYzLCiROnxwC8XjLn9Cq0Y8cM+oyQEIrefwt33niMz1e30pkDI0darQxjcruff4Y9exi7pzndP7qMsMuaaH5rv36wZcs533rzzXYaCSYpDspEJFRElonIeO/xEBFZLyKrRORrEQn3trcWkcMiEundXgjYRwfvPRtFxOJyk3NMmwZ//609ZJdeCmg92Jo1IX/+DPwcER76uCbf7evI0bj8GggOHKjFao0xuc+mTTBtGnGEsTK2Bg2bhOuybk2aaErFhx/C1q3Jvr1IEZ1TtGxZVjXYnEtqesoeA9YGPB4C1ADqAvmBXgHPzXHONfBur4AGdcCnwLVALeA2EamVnsb7JTQ0lAYNGlCnTh26devGiRMn0ryvu+++m5EjRwLQq1cv1qxZk+xrZ86cybx581L9GZUqVWLfvn1pbqM5j+PHdR0k0F4yz48/wq23ZvzHFSgAfR4vyIcFn9d1Mhcvhk8/1bU2jTG5R2wsfPcdOMdvFbrTonUeXTwkJEQrVDdurIHZRx/Bn38mu5uePWHQoKxrtkleioIyESkPdAIGJm5zzk1wHmAhUP48u2kKbHTObXbOxQDDgBvS1mx/5c+fn8jISFatWkWePHno37//Gc/HpfGP48CBA6lVK/k4Na1BmclkU6boia927VP5G85pZYz27TPnI3v1gtFzSrO/1zN6qbt2LXzzjY1BGJObjB0Lu3dDmTKMO3A5118f8FxICNx3n04IOnECPvhAM/qT0K4dTJ9uHe7BIKU9ZR8CTwMJZz/hDVv2AH4N2HyZiCwXkYkiUtvbVg4I/ImI8rZlay1btmTjxo3MnDmTli1b0rlzZ2rVqkV8fDz//ve/adKkCfXq1eMLb51O5xwPP/ww1atXp23btuzZs+fUvlq3bk1isdxff/2VRo0aUb9+fa6++mq2bt1K//79+eCDD2jQoAFz5sxh7969dO3alSZNmtCkSRN+++03APbv30+7du2oXbs2vXr1IpgLBGd7R4/q2QwIPCMuWgR162pHVmbIkwcefxze+b6srlie2GP2448WmBmTG2zerBeEInD33UyfGUKbNme9JjRUr+Dq1z8dmO3Y8Y9dhYXB1Vefnjxu/HPeoExErgP2OOeWJPOSz4DZzrk53uOlQEXnXH3gY+Cn1DRIRHqLyGIRWbx3797UvDXLxcXFMXHiROrWrQvA0qVL+eijj/jjjz/46quvKFq0KIsWLWLRokV8+eWXbNmyhTFjxrB+/XrWrFnDoEGDkuz52rt3L/fffz+jRo1i+fLljBgxgkqVKtG3b18ef/xxIiMjadmyJY899hiPP/44ixYtYtSoUfTqpSPIL7/8MldccQWrV6/mpptu4s9zdFubdJo8WRNq69aFypVPbR4+PHOGLgPdcYemsu0MqwAPPqhn1hkzTi/xZIzJmQKGLWnXjvXRlahYMZmLwLAwXbatbl1NtfjgA/jrr3+8rEcPGDw485tuzi0lJTEuBzqLSEcgH1BERL53zt0pIi8CpYE+iS92zh0JuD9BRD4TkVLADiCwEkp5b9sZnHMDgAGgyyydr3EdOmh14oxSqhT8+uu5X/P333/TwFtkumXLltx3333MmzePpk2bUtn7wzx58mRWrFhxKl/s8OHDbNiwgdmzZ3PbbbcRGhpK2bJlafOPSxuYP38+rVq1OrWvEiVKJNmOqVOnnpGDduTIEY4dO8bs2bMZPXo0AJ06daJ48eKpOgYmhY4c0SAIzsglS0jQC9jXX8/cjw8N1ZUCXn8dPvmkug5VDBigM7GKFIErrsjcBhhj/DFuHOzaBRddBNdfz9gPzzgF/VNYGPTpA59/DqtXw/vva9XYgLWXGzbUOQOHD+sSvMYf5w3KnHPPAc+BzqwEnvICsl5Ae+Bq59ypYU0RuQjY7ZxzItIU7Y3bDxwCqolIZTQY6w7cnt4vcL4AKjMk5pSdrWBAhVDnHB9//DHtz0oqmjBhQoa1IyEhgfnz55Mvs8bIzLn9+qtesTZooKWxPQsWQKNGWloss3XpAu+9p+fZ2o0awe23a9Gh77+HQoW0bcaYnGPrVu2hF4G77oLwcMaPhxEjzvO+8HB44AGdFLR2rQZmTz2lq4agu0ssj3HffZn+LUwy0lOnrD9wIfD7WaUvbgZWichyoB/Q3ZsPEAc8DExCZ3EOd86tTsfnB7X27dvz+eefE+tlTv7xxx8cP36cVq1a8eOPPxIfH8/OnTuZkdjTEqB58+bMnj2bLV59mQMHDgBQuHBhjh49eup17dq14+OPPz71ODFQbNWqFT/88AMAEydO5ODBg5nyHXO1Q4dg1iy9f0Z2rQ5dZkjB2BQQ0YoYPXrA3r1Aq1baHufgyy9hw4asaYgxJvPFxsK33+rv9zXXQJUq7NunvfMXXJCC94eHa6pDjRra0//eexCQ13zHHXpNZ/yTqqDMOTfTOXeddz/MOVf17NIXzrlPnHO1nXP1nXPNnXPzAt4/wTl3qfe+TB7c8VevXr2oVasWjRo1ok6dOvTp04e4uDhuuukmqlWrRq1atejZsyeXXXbZP95bunRpBgwYQJcuXahfvz63eslJ119/PWPGjDmV6N+vXz8WL15MvXr1qFWr1qlZoC+++CKzZ8+mdu3ajB49mosDenFMBpk4UUtQNG4M5U9PPE5I0Dyvq6/OuqbUqgVvvqmBYHQ00KmTBmdxcXpVHBWVdY0xxmSeX36BnTu1d8sbr5wwIZUFqvPk0cDs0kt1rPL993USAHoqCws7Z1kzk8kkmGfmRUREuMTZiInWrl1LzZo1fWpRzmLHMo0OHID/+z+Ij4cXXoCyZU89NXeuXsgOHJj82zPLp5/qrM9vvgFxCdpTtnSpJog8/bQmTBpjsqetW+Gtt/T+009DlSoAdOsGL72kFXlSJTpaA7KtW6FlS11vCZ0/sH07/Pe/GdXw3EVEljjnItL6fltmyZjUSuwla9LkjIAMMnCtyzR46CFNI3v7bU7XKKpeXa+GP/pIy3cYY7KfuLjTsy3btj0VkEVHa4bCOcpbJi9vXq38HxoKc+acSnXo0gVGj7bKOn6xoMyY1Dh4EObN02SuTp3OeCo+XtPMkphQm2U+/FDbMHo0Og7x4INQoYLmjXz8sRa5NcZkL7/8omUsLrwQbjhdc33WLGjdWk9HaVKmDFx7rd4fPBji4ihcWIO8hQvT3WqTBhaUGZMaU6acziW76KIznpozBy67TGMhv4SF6Trlb74JS5aghYsefRRKl4Zt26B/f1uOyZjsZNs2nekdMNsy0dix5ymFkRLXXqvB3u7dp2oc9uxpNcv8ki2DsmDOg8su7BimwZEjMHu23k+8ugyQlbMuz6VoUR1Gve8+r3h3kSLw2GOnl2NKnL1ljAluicOWCQnaBe8t4wb6KzxnjqaDpUtYmE7fBg3Kdu7k6qv1VBcTk859m1TLdkFZvnz52L9/vwUV6eCcY//+/VbfLLWmTtUp6fXrnzHjEvTcOXcuXHmlT207S5Uq8MknmgR8/DjaU5a4HNOiRbowpzEmuE2dqldWpUvDjTee8dSKFTrMGNBxlnbVqmmx6fh4GDKE0BBH+/a2OIgffBxoSZvy5csTFRVFsC/BFOzy5ctH+bMCC3MOx4/DzJl6P4n557Nm6TnNz6HLs11xBfTtqyMew4dDSIUKcP/9mls2aZImo1hgbkxwOnHi9MXTHXdoKYsAY8f+o0Ri+nTtqpHehg0wdy49erTklVfOSGEzWSCI/oSkTHh4+Knlh4zJMtOn61SnWrWgUqV/PD18uBbTDzY9e8K6dVrB4/XX0XnzVavqeiqzZ0O7dn430RiTlKlTNTC79FIt9nqWiRM1/z/DFCigC/Z++SWMGkW9l+uxfXtRDh4EW6kv62S74UtjstzJkxqUQZK9ZLGx8PvvwbvU5GuvaWA2aBBnzhqdMkUbb4wJLseOaVAGOmx51vTKv/7STu4MD5YaN4Y6deDvv2H4cG65RS84TdaxoMyY85k5U69Yq1XT21lmzNCRwNDQLG9ZioSEaEDWv7/mvVGrFlSsqBMX5s71u3nGmLNNmqQ983XqnJHcn+iXXzJ46DKRiHb558kDixdze8O1tuxSFrOgzJhziY7WHiX4R12yRH4WjE2pggV1weKHH4bNW+T07NFJk6xEhjHB5PBhvdKDZOtdZHg+WaCSJU8lkpWZMogC+RLYtCmTPsv8Q7bLKTMmS82dq0MJlSolmdcRE6OTGb/8MuubllrlysHXX0P37jBrZgPyly2r4yALFsDll/vdPJPdOafrMq5cyfqZO4ncVJgLi0VzQdFoLigRR4mi8YTkDdfpguHh2hsTeL9KFf09S3Ml1Bxi4kRNK2jYUHu0z3LihP7aXnJJJrahTRs9L/z5Jz1qLGLw4Ga89FImfp45xYIyY5ITGwuTJ+v9Tp2S/GORuPh4SDbpc27USEsSvfqa8MaN18JXX+kfgcsuyz5fwgSP6GhNWFy5ElatgoMHWbG/HD1n3sOtVRaz8GRpdv9dhD1/F+ZAdEESCxmVyHucC/Mf5YL8R7kg/xEuyr+bJqXnUKt6PHJZc2jWLHeu1XrggBYfE0m2K2zqVF1pKVOFhOiJ4o03uPH4EK6Y1pAXX8yT6+PlrGBBmTHJ+f13OHRIa5LVrZvkS378Efr0ydpmpdeDD2o9tZW3RlC39FjYuxcWL4amTf1umgl2zsGuXbB6tQZiGzZobSvPmphL6LnwPkZ8+RfVIiL0wiYmRv+N3Q+xsSScjOHgAceefSHs3leQPfsK89fui3llcQPWTi9Fg+HbuabcWK6+/CRl29fV5PMCBXz80llowoTT6+qWK5fkS8aN0yUrM93FF8PVV1Nw6lTq513LvLl1ubylXbhlNgvKjElKfLwubQI64zKJS8ToaFi2DJo3z+K2pVNoKHz2GTz4UAgzX7+W0CGD9I9BkyY2dGSSFhWlPTgrV8L+/ae3i+iwY926/FGgAbf/qwxDJwnVapZIdlchQEnvVjNg+78SEkhYvZbIEbuZMrUEd317KQe/KMgVZefT9oporryjPIWb1gyuYoAZac8e+O23c/aSJSToqGL//lnUps6dYdkyepadxuC3SnB5ywpZ9MG5Vw796TYmnRYs0D8+F12kuR1JmDwZrrkme8Yx9eppGln/yOY8VHyc5gJFRib7XU0uFhUF77yjVyEAhQppvbu6dXUmb8GCbN4Mt3TRWb41a557d8kKCSGkbm0a1a1No/+c5JmlS/l7zlR+m5PA1N9q8NrIguQN30ab5ifo2KMkTTqXyZ6/fMn55ReNulq00LUok7BokaYgZNlM77x54fbbab3vE/41OoSTUfvIVz4XDitnoRT3RYpIqIgsE5Hx3uPKIrJARDaKyI8iksfbntd7vNF7vlLAPp7ztq8XkfYZ/m2MyQgJCafXF7n22mRzrYJlrcu0euEFGPhNKDsaeVflEybYmpjmTAcP6goQ0dG6vNhzz8H//gf33qs9qwUL8uefWgz+66812M8Q+fJBixbkf+ZR2g6+i7feFuY/OJhRV39KrcPzeOmR/Txx+QJip87SOoLZ3c6deiEYGgrXXZfsy8aNy4AFyFOrTh1CmkbQqcIKfnlhgZ0jMllqBogfA9YGPH4b+MA5dwlwELjP234fcNDb/oH3OkSkFtAdqA10AD4TkSCt7GRytSVLdCihVKlk86xOntSRnCZNsrhtGahAAXj7bXjkh8ugcGH4809Ys8bvZplgcfKkLqB66JDW5+vdW2dHBlyk7NihtU3799cenExRvDi0bw8vvECp1x6nW+8SjO/2HWUSdtCu50X89eBr8P33+vObXY0bp8FOy5ZakiIZkyf7tAjHLbfQo+5yBk0vp/mnJtOkKCgTkfJAJ2Cg91iANsBI7yXfATd692/wHuM9f7X3+huAYc65aOfcFmAjYJnFJrg4pz1GAB06JNtL9uuv+nciu4+etGsHBQuH8FPBO3TDL7/YlbDR3uIvv9ShywsugAce+Ecu1+7dWs6qXz+dLJnpRKBCBejWDXn7Lf79SUVevCGSjmP7MOvHXbqO2Jtval5W4lBrdrB9u14Ihoefrh+YhK1bNV4rVCjrmnZKkSLU6n0Fe/4uwr6vx2oPqskUKe0p+xB4GkjwHpcEDjnnEqtORgGJU0XKAdsBvOcPe68/tT2J95hgEh+vZ4B583RmXjLi4vTidN48nYU4dmzWNTHTLF+uRYCKF9cyEckYPlyXicsJ3n8fXhxTnyOhxXVNzA0b/G6S8ZNzMGyYlrgoVAgeeUSrDwfYt09z0d95x6flxcLCICKC1p/fyoSpeXlpc0/+t6YTbstWTWx75hn9Dn/95UPjUinxxHnllVCsWLIvGzcuEwvGpsTll3N36618uqgpDBhwxqxbk3HOm+gvItcBe5xzS0SkdWY3SER6A70BLr744sz+OAN6Vbl5M2zcqLfNmyEmht0nCrPp6AVElWnC9gsaE3WkCNu365BFdLSeF8uW1YoRFSro8pCxsZpfki0F9pK1b5/sLK+oKC3NlFNy4kuXhsefCOH5UX34uOxbegwuvdTvZhm/TJsGs2bpz/+DD2pPWYADBzTt6dVXtcao38o2uIDJkfDMvzvRNfJyvrlqEEX/WqdV8WfM0KHXVq10fDXYZm5u3gwrVmhCfYcO53zpuHFaVtA3ItzzeVOa1zzMA6tnccGYMXDzzT42KGdKyU/o5UBnEekI5AOKAB8BxUQkzOsNKw/s8F6/A6gARIlIGFAU2B+wPVHge05xzg0ABgBERETYOEpmOHr0dAC2YYN2nydoJ+j+kwUZsbk5w7a3QMLDqZV3ExV27qdCoZFENChFhX9FUDaiLPny/XO3ffroSbp27SSL3we/NWtg2zbNr0rm8v/wYQ06P/00+w9dBrrrLvj+u4tZcKg6zdau1Z7SSpX8bpbJasuWwUgvK+Wee/6x7uLhw5po/vzzet0SLMLD4f0PQxkxoiRt3nqcb97cRb290zR5fsMGvQ0frr/X58nbylKJvWRt2uh5JxlHjuixr+BzRYo8JQrx7PPHePXLTnycf5gGvPXr+9uoHEZcKvJHvJ6yp5xz14nICGCUc26YiPQHVjjnPhORh4C6zrm+ItId6OKcu0VEagM/oHlkZYFpQDXnXLJ9oBEREW6xJRWmn3N6RTZ/Pqxfr8kgAU7E52XcsasYsrEZe2OK0u22UG7tmU9rF+7fr+sj/vbb6TUS69TR2l1JLJS7YgXcd59eoPqS+5BWzumssk2bNOpKIps2JkZ7CPr2hS5dfGhjJvvjD+hx3QHmXvk84Q3rai+JyT22boV339Xu7htv/Ed+09Gj+vP/6KPB3Ru+bp0Wo3/0UejR7SQsXKg9f1FR+gIRLefRurWW9PDr6uqPP+C99yB/fnjjjXMWyB0xQkeTX345C9uXjIQEuKLuIQbX+x9VLzqhEXpuXH0hGSKyxDkXkeb3pyMoqwIMA0oAy4A7nXPRIpIPGAw0BA4A3Z1zm733Pw/cC8QB/3LOTTzX51lQlk6HDumV4m+/nRmIhYcTV7Eq005cxpClNVixtQjXdw7h9tvPUWPo0CFdmHv2bI1OAKpX1+CsevUzTmzff69d7cOGZaPepMQTZMGCeoI8qyvQOa2i3agRPPaYP03MCq/9XzTh0ybyTN2J8H//p2PTJufbtw/eeksjr8sv16gm4Jf3+HHtIevVC267zcd2ptCxY3D//Zqi9eGHkDePd2E6c6Ym1SfmQ5UurUObl1/+j7y5TOWcBsAbN+qB7dTpnC/v0UPPOxFp/lOfsaZPc3z5zEaGNn5X1+d8+ungGxr2SZYGZVnNgrI0iIvT7qp58/TSKvH/t0gRXLPmLAptzpAZZZgxM4Qrr4Tbb9eK9CkOno4e1eSx6dNP1weqUkWvquvWPbWjRx7RzY8/nvFfMVN88IFeYidzgvy//9M/TO+/70PbslBMDFxe8wDDmr5H1TaV9C+bydlOnNCM/Z079arskUfOqE66fr0GBf/6l54vsgvntKLHsGHwww8Ba3sfPQpz5+oF5oEDui0sTOvbtG6dNcP2q1frtNVkLgIDxcXpxWBkZHAtT3ttu3heK/c5jfOshKuugu7d/W5SULCgzKioKA3EFizQy0TQ3+D69aFFCw6UrUO3W0MoUwbuuEMXtA0PT8fnnTihV51Tp2q0Atqr0rIlREQQk6cQ7drBK6/ohWjQSkjQk/PQoXpifPPNfwwjDByoJTCGDw+uk2JmmffrEV7uHcWv1/ZDXnk52eriJgeIi9PgYP16nbXz9NM6nOb58UetZff119CggX/NTI958zSgrFQJevbUXLjwcPR3f9UqPY+tXn36DRUrnp4YkBlrbjqn55lt25JNlQg0ezYMGQJffJHxTUmPyEh4+pG/mVTnSSQhXi/ggqUrz0cWlOVmJ05ovsRvv51ZOLFcOV2qo1kzKFyY7ds1B+qll87bS5560dG6Jt7kyZqJChq51K3LX1Vb0vHpOkyYKJQtm8GfmxE2bNC/Otu9Si033KDDsQEmTtQ/ShMnnvG3Ksd74Oo/uNzN5c67QnUWgMl5nNPyEfPmQZEiWq2/hK5ZGR0NTz2lnWdffQVFi/rc1nRyToOIQYN0cunVV+uP9alAc88ePY/99tvpi8zQUO05bNJEL24z6gSwfLkuPlukiNZWy5PnnC9/6intiMrwc3cG6NEDetSNpN2mz/Wi9j//yfUXcRaU5VY7dmiyxJEj+rhAAa0+36IFXHzxqWHE1au1Z6x//0xeODs2VmduzZ+vsxi9n6tZB+ry4qpuTB51lDw1qwZHktn+/TB69OnK1MWL6xVrRMQZ7Vu6VC/+Jk8OnslaWeXQxn1c2ewk067/kFLvPZf7DkBuMGEC/PyzBgVPPXVqfG/bNj1n3Hyz5jEFw69sRoqN1Z7vQYP0u956q37fiy7ynly8+PSkqMS/j2FhOq08IkLXkjrHcGOy4uI0t/err/T83b27RlvnsG2bXicuXhycF4Vbt0L37o55d39JyLIlOlry7LPpHIbJ3iwoy422bYOPPtIrukqVdCyyQYN//CLMmwcPPaT5FGleJDgtjhzRHrz582H7dt5f0ZZtx0rwUefpGhk2a/aP2kdZIjpaz8ZTpujJNzxcxzLat//H1eq2bdpxNmpUkpNMc4WRD07nl2n5+ObFrdkrmcic35IlWgBURKv1e2UNJkzQzo7PPtPru5zuwAHtLP/hB+246tlTf+/z5UNzz5Yu1Yhow4bTAVp4uObPRkToTPS8ec/c6cmTsGuXdjMm3nbt0kLcifsoXhxee+2cyfEjRmhH2qef6jyEYPX449Ckfgy3b3pVexyvuEK70HIpC8pym82bNQfk77/1iq137ySvSsaO1d/50aN9nkD311+43+fT/fmq3FBuEbdfski3V6miJ7WKFbWBabnyTCnnNEgcPVpnkYIOSXTtqifHsxw8qGken36a7NKXuYL7ayc3ttjNY/Vn0ea7u85ZbdxkI3Fx8N//6g96t27Qti1xcfDiixqDDB6cOyscrF+v333cOL12vPde/f0XQVMzli6FRYu0bE6iPHn0PFykyOkALPEcczYRne1ZpozWFkmmOPrx45oDd+SI5pEF+6/dvn3aL7BgVBR5339Tf77uuSeTh2aClwVluckff+h0ouhoTUK9774kr7S++krLUowenWTM4YujhxNoc0U0X98yibp7p/9zbbrSpU8vDZD4b/Hi6R872bpVL4U3b9bHFSvqeEUy3V/R0Tpc8NhjOhEzt9v+xmBu+ehyfv96bXAmtZjU++03HbsrUwZefJFdu4U779Tc9uefP2PiZa6UkKB1Fr/+WgO17t214+dUqtTBg9rTuHgxbNnyzx2EhelY6EUX6TFOvF1wwXnLRixfrqf1Bx7QoDC7DB2//rrWpXys8VyNbPPk0S7XMmX8blqWs6Ast1izRscUYmN1+O/uu/8xFdA5nV29aJFOJgy2HIR16zR3Y9qEaIptjdQNUVG6Pl1iYdpABQqcGaiVKKF/MUJD9buffT9w28mTMH68DqGCXsnedJOuZ5nMmS4hAe68U3vfrW6qZ/VqulwXwyvt5lKn/8PZ56+ESVpCgnaJ7dkD997LrJPNePRRLdHXtq3fjQs+hw5pSY3Bg/W68d57tfrPqcGJ/ft1BkF8/OkgrGTJVE/Tdg4+/liHUb/9NvutiHL8uA53z57lKDrmWz3vlimjk0fOHt7N4Swoyw1WrNB+7Lg4TS64885//NLHx2uXd3S0xm7BWsdv1Ci9SB8zJuArxMdrAuz27Rqkbd+ut8TSHukRFgbXXKPryp1niPTZZ/Xk+Pbb6f/YHCMhgVE3fc/iP0vz5ugaULmy3y0y6bFoEQwciCtZineKvMrEX0MYMkQnbJtzW7kSvvlGqwC1b68BWkbk6u7dq/u65BKt35tdY5gBA/S0/ep/o7Xkx86dOoR599256mLOgrKcbulS+PJLvcJt3Vr70s/6AY+O1u71GjV0GY5g//l/+mnNk/jPf87xIuc0jyMxSIuK0iSLhAQN4hL/Tep+4q16dc0bO0eCjHM6EWrIEL3gHTIkd9QiS42TQ0bR7NGmLOs3l5A7skE5d5M053QV8R07mF7zIT6eVY/hw3P1RLk0iYmBX37R4c2DB7W0RocO2pmf2nPv1Kk68fWNN/5RjSfbiYvTQZzx46EMO/VLxcTo7IlgnqmQwdIblAVpf4oBtBDsN9/oybRdOy02dtZv/ZEjGnd06aJ5CNnBG2/oEEChQnqFHhZ2+hYamnhfCA0tRlhYMcIuqkNoOS1+XaKE1kxKbeCUkKCl3NasOX1bt07nS5QrBw0b6rCBBWT/lK9VU5qU3sbcn/fT6ta44O2GNee2YoVegRQrxvtT6vDGmxaQpUWePJoJcdNN2hk0eLCmO0RF6ZriderorW5dvSWVqB8bq6uELFumNRBzQupVWJjmJL7yCnz+uVel/JtvtOp27drBP2MhSFhPWbD67Tf9bXdOE6yvv/4fAdmmTTqS+eSTWlMoO9m7V39fY2O1gysuTm+B9wMfx8ZqrdwDBzTPwzk9HGFhOh+gRIkzb8WK6Sz0NWs0WTc2VnP8a9U6fatePXMKduc4zjHznu8YuqAKXwwreqp8gslGnNOxsa1bWdvsbv7142VMmuR3o3KeI0d0kYCVK/W2apX2ppUrdzpIK19eJ7/ecIOeu3PShaBzOmFk4ECofqmDzz/X2Qv162uvQbAP42QA6ynLiWbO1Ex9gBtv1G4lz549Wr/mxx81kf+dd3Rlo+ymdGkdxkyv2Fg96R04oLfE+wcPavpTp05QrVrmVtzI8URo1b0sj42rTPTsieS1oCz7WbdOZyIXKsQHvzXliSf8blDOVKSIJrwH1nhzTucyJQZqs2bpUrtNmvjXzswiojMxn38eRo4UrW+4fr0GZsuWadUAc04WlAWbKVNg5Ei9f8stcPXVHDkCP/2kcdrRo7p5+HCvAnUuFx6uM839qEWbm4Q0b0qHCguYOMFx430nrIsxu5kwAYA9ER2J/CCULwb63J5cRER7ysqV09yznK5VK/jf/3QCZvPmxTS35ocf9A9YjRp27jiPHNRxmgNMnXoqIDt5852MOXI13bpBmzaa6/7JJzB3Ljz6qAVkJosVK8Yd7fby/fqI08tTmexh0yatcZg/P5+tapVbRpGMj958UydyOYdGaVWr6tju6NF+Ny3oWVAWLI4exf30M1OjanDvjldo9lRLFizQZNBFi7Q7OLcu92OCQ70ul7DtWEkOzVjmd1NMani9ZH+3uJox48NtxSyT6erU0RzeiRPRK4AePTQBeM4cvUAwybKgLFhMn86YP2rz7uYu3PvshSxbpnm59erZVa0JEg0bcvMlyxk1vbjO1DDBb/t2zTbPk4fBu67hlluybx0sk728/DK89JJXF7xMmdO50YMHazKwSdJ5gzIRySciC0VkuYisFpGXve1zRCTSu/0lIj9521uLyOGA514I2FcHEVkvIhtF5NlM+1bZzcmTMGMGn69pxSefaEX5nDQjx+QQefNyW5doftjYVMu1mOA3cSIACVe04ovv8tG3r8/tMbnGxRdr/nOfPt4wZocOULaszlb75Re/mxe0UvKnPxpo45yrDzQAOohIc+dcS+dcA+dcA+B3IHCweE7ic865VwBEJBT4FLgWqAXcJiK1MvC7ZF+zZrF+ZxHCCuXnkqsr+t0aY5J1cae6OCBq8hrvTGuC1q5dWnw6LIwJ7lqaN9cVgIzJKk8+qXUln30WHb7s0UOHfiZN0sJu5h/OG5Q5lbjeTbh3O3U2FpEiQBvgp/Psqimw0Tm32TkXAwwDbkhLo3OU2FiYMoX+a1rR96FcvhKwCX7Vq3Nb3dUMXVj19CLvJjj9+qsGzi1a8OHAQjz+uN8NMrmNCLz7rl4fvPsuUKWKrkyTkKDDmAkJfjcx6KRokExEQkUkEtgDTHHOBY5d3AhMc84dCdh2mTfcOVFEanvbygHbA14T5W3L3X77jRMHTzJ9X1069a3gd2uMObeQEG6+LZwRmxudXuzdBJ/9+3WIOSSEpRd1pHBhXVvRmKwWEqLFZOfM0VVTuPFGrfi9dSvMmOFv44JQioIy51y8N0xZHmgqInUCnr4NGBrweClQ0Rvu/Jjz96CdQUR6i8hiEVm8N6cnE8fHw6RJ/LipCTffGE9YuGX0m+BXvG1jyhc8xMpfd3hZvCboTJqkvRBNm/Le18V58km/G2Rys/BwGDYMvvsOfp6Uj1NTgH/+WS8gzCmpSid3zh0CZgAdAESkFDos+UvAa44kDnc65yYA4d7rdgCBXUHlvW1nf8YA51yEcy6idOnSqfs22c3ChXDgAAM3XUWv/8sBi5+Z3KFcOe5svpEhK+tpiXITXA4f1mXagO11O7JtW65aD9oEqfz5YcwYrWE262A9iIiA6GgYMsTyUwOkZPZlaREp5t3PD1wDrPOevhkY75w7GfD6i0S0iIOINPU+Yz+wCKgmIpVFJA/QHRibgd8le0lIgIkTWbL3YspWK0iZstZLZrKPjj1KMnF7bRLm2RBm0JkyRXswGzak348X8uijVlbHBIdixTQwe/xxWFbjNq3uv3q1FuM0QMp6ysoAM0RkBRpYTXHOjfee686ZQ5eggdoqEVkO9AO6e5MF4oCHgUnAWmC4c251RnyJbCkyEnbv5vPN7XjguWJ+t8aYVMl3eWOaXrCNOVNOwvHjfjfHJDp+HGbPBuDIFR2ZMkVXuTEmWJQpo+s33/NIITY2v1M3/vgjHDt27jfmEimZfbnCOdfQOVfPOVcnscSF91xr59yvZ73+E+dcbedcfedcc+fcvIDnJjjnLnXOVXXOvZ6xXyUbcQ4mTuRQdH6WnajBVW1t1qXJZooW5Y62uxmyPsKucoPJtGk6JFS7Nl9NuZi77tJKBMYEk6pVNb/slrcbsbNsYw3IRozwu1lBwUqU+mHNGvjzTwZtb02PPgVsaMFkS63uqMD8PZWJ/s3WwgwKXhFqgLh2Hfn2W7jvPn+bZExy6teHjz4Sbvz5Hg7GF9HZ3GvW+N0s31lQ5oeJE3EOBm2/irvutV4ykz2FNGrAtZXWMWFWQdi92+/mmJkz4cQJqFaNUcsvoV07KFLE70YZk7yWLeG/L4dz08LnOBEXrkn/0dF+N8tXFpRltY0bYcMGZh2oS73LClK8uN8NMiaN8uThjptOMMSWXfJfTAxMnQqAu7Yj/frBo4/63CZjUuD66+HeJ4px69xHid1zAH76ye8m+cqCsqzmrUX3+a6beOBhS/Yw2Vu9my9l27GSHJoZadPa/fT773D0KFSsyNz9NalUCSpYLWqTTfS8O4SrbilNr9l34aZNh3Xrzv+mHMqCsqy0fTusWsWu2JJsj72IJk38bpAx6VS9OjfXWsuoJZW0F9j4Y543n6ptW957X6xYrMl2nni1OAnlyjN2W32dBfD33343yRcWlGWlX3Wi6ld/38Z9vS2XzOQAItx+h/CDDWH6Z9cuXbImXz42FGzA0aPQqJHfjTIm9d4dUpYXV3blxJ6jMHy4383xhQVlWWX3bliyhHgJY/jKWnTv7neDjMkYFa6rjwO2z9gIsbF+Nyf3SVyDtHFjPvg0jy08brKtC8uE0Ovh/Ly+/Hrt/Y2M9LtJWc6CsqwyaRI4x4QCN9P66lAKFvS7QcZkkDJluL3pJoauqgsrVvjdmtzFuVM9lPurt2DBAujY0ec2GZMODzxThOknmvPHoQvg++81VzIXsaAsKxw4oIm4IvRf2YK+ff1ukDEZ6+a7CzFyS6PTvTYma2zYoOeXEiX4fHJV+vSBEDurm2wsNBQ++KoIjy6/D3fkKAwenKsmEdmvb1aYMgUSEthSsTXRLi81a/rdIGMyVrE2jahQ6BArZx3IdVe2vvr9dwBiIy5j+AihRw+f22NMBmh+mVCh6UWMjGoOy5fnqos9C8oy29GjMGcOAF9EdaRPH5/bY0xmKFyYO9rsZMgfTWCxVfjPEjExsHQpAOMOt6J9e8if3+c2GZNB3nw/H69tuIWjMXlh2DDYv9/vJmUJC8oy27RpEBtLdM0GTJxbhBtv9LtBxmSOjvdcyMTttUmYl3uuan21fLkurVSpEgOGF+P++/1ukDEZp1QpeOipArwSda/+nH/3Xa4YxrSgLDP9/feptehG0YXOnSE83Oc2GZNJ8jWtR9My25kzPxyiovxuTs7nDV1uqdia2Fi49FKf22NMBut1v/D7sTqsjr4E1q+H6dP9blKms6AsM82erRF+9eoM+OlCevf2u0HGZKLwcO7oclJrlk2Z4ndrcrYjR3Tx5pAQBi5rbL1kJkcKCYGPPgnjkTV9tZNszBity5eDWVCWmRYuBGBlxesoWtSWPTE5X8uH6vH7nirEz18EBw/63Zyca+FCcI7YWvUZNykPN93kd4OMyRyNG0PNJoX5Qe7QOohffw3x8X43K9NYUJZZdu/WIZz8+ek/9RIeeMDvBhmT+UIvLMVltY8y968qmk9pMoc3dDkuuh3t20PevD63x5hM9Npr8M7vV3C4QBnYtu3UGtI50XmDMhHJJyILRWS5iKwWkZe97d+KyBYRifRuDbztIiL9RGSjiKwQkUYB+7pLRDZ4t7sy7VsFA29W1NFLGzNvfgjt2vncHmOySNf7SzByS2OddZxL16/LVFFReitQgAFTKtnQpcnxiheHJ54M4YX9j+mGX37R4CwHSklPWTTQxjlXH2gAdBCR5t5z/3bONfBukd62a4Fq3q038DmAiJQAXgSaAU2BF0WkeEZ9kaCzZAkAQ/66ittus4KOJve4qvuFzDpQh4S/ozWv0mQsr4L/louvJDYuxBL8Ta7Qowcs/7M4kVW7QkICfPNNjlzW7byhglPHvIfh3u1c81JvAAZ575sPFBORMkB7YIpz7oBz7iAwBeiQvuYHqb17Yft2XN58fDO5LPfc43eDjMk64eHQuFkYC/ZU1iHMuDi/m5RzJCScCsoGbrjSeslMrhESAv36waPj2pJwYRnYuRN++snvZmW4FPXfiEioiEQCe9DAaoH31OveEOUHIpKY1VAO2B7w9ihvW3Lbcx5v6HJFyauoWCmE0qV9bo8xWazrvcUYtbcVHD58asKLyQDr1sHhw8SWuJBxc4tZgr/JVerVg8YRIXxb+GGN0qZOhbVr/W5WhkpRUOaci3fONQDKA01FpA7wHFADaAKUAJ7JiAaJSG8RWSwii/fu3ZsRu8x63tDl0K2XcdttPrfFGB9c006YureeTmOfPDlXFH3MEt5yM+NDOtOunViCv8l1Xn4ZPvq+FAdad9ENAwfmqJneqcp0cs4dAmYAHZxzO70hymjgGzRPDGAHEFj8oby3LbntZ3/GAOdchHMuonR27GLavx+2bcPlycuvSy/g2mv9bpAxWS9vXqjVOD/LYmrrMMOqVX43Kfs7eRKWLQNgwPx6VvfQ5EpFisCzz8LzM9pC7dpw7BgMGJBj0iRSMvuytIgU8+7nB64B1nl5YoiIADcCiWfdsUBPbxZmc+Cwc24nMAloJyLFvQT/dt62nMUbuvy94NU0bCTky+dze4zxSdebQxgVc50+mJTzftWz3LJlEBPDlhKNiSGPJfibXKt7d9i4SVhUv5dOzdy8GUaP9rtZGSIlPWVlgBkisgJYhOaUjQeGiMhKYCVQCnjNe/0EYDOwEfgSeBDAOXcAeNXbxyLgFW9bzmJDl8YA0KEDTFxbCZc3H2zYAFu3+t2k7M0buhy4o4Ml+JtcTUST/vs+UYCdNz4AoaE6qcj7+5udpWT25QrnXEPnXD3nXB3n3Cve9jbOubretjsTZ2h6Q5oPOeeqes8vDtjX1865S7zbN5n3tXxy4ABs2UJcWD5mrS5FmzZ+N8gY/xQsCFWqhrC6yvW6wXrL0u7gQVi/nljJw7il5S3B3+R6NWvCBx/AdQ9VZEfrO3Tjd99p4fZszKpnZSQv32Nm+DW0bBVCWJjP7THGZ127wqjdl+uV7LJlsGeP303KnhYsAOcYL9fTrkOIJfgbA7RqpT1m17/Vgu1VroToaOjfX//Npiwoy0iJQ5dbmtnQpTFAp07wy7T80KyZzsCcOtXvJmU/zp0auhywsrkl+BsT4PLL4bPPhM5Du7M1b3X46y/44YdsO+PbgrKMcugQbNpEdEh+Fm8pSYsWfjfIGP8VKQIXXggbLvGmIc+bB0eP+tuo7ObPP2HnTrYkVCQmT2FL8DfmLM2bw4AvQ7hp+iNs/ruMXsTMnet3s9LEgrKM4g1d/koH2ncIsWWVjPF07Qqj5lwAdevqsigzZ/rdpOzF6yX7av8N9LpffG6MMcGpSRP4alA4Xeb/m42HS8OwYdlyfUwLHTJK4tDlxiY2dGlMgM6dYexYoH173TBjBsTE+NqmbCM+HhYtIjYhhLFrq9Gli98NMiZ4NWoE340oyM2/P8H6fSXhiy/gxAm/m5UqFpRlhCNHYONGjrsC/LGvOA0a+N0gY4JHiRJQuDBsDbsEKlWC48d1GNOc3+rVcPQo449cSbuO4Zbgb8x51K8Pg38qwq2zH2LtxnBduDwb5ZdZUJYRli4F5xgbdy2dbwhBbITBmDN07Qqjx8jp3rIpU3RxbXNuiQn+m6+mdx87sRiTEnUbhvHDqLzcNqM3q2buy1bleCwoywheFf+hGyJs6NKYJNx4I/z0E9CgAZQuDfv2ncrDNMk4cQKWL2frsVLEFChmCf7GpEKtFsUY9tVx7pxxLyu+WgR//OF3k1LEgrL0OnoU/viDA7GF2RNdlOrV/W6QMcHnggsgLAz+2hUCbdvqRluo/NyWLIG4OAbu6UyvvuF+t8aYbKdG50sZ8co6es64m2Wv/QKHD/vdpPOyoCy9IiPBOUb/fS1du4X63RpjgtZNN8GYMUCLFlCokC67tGGD380KXvPna4L/ljqW4G9MGlXrezWjek/m3gldWfzC2KBPm7CgLL28WZc/bmzMrbf63BZjgliXLt6awXnywFVX6cZslOuRpfbsgY0bGb+jEe2uy2sJ/sakVUgIVZ/txpiuQ4jbvhO2bPG7RedkQVl6HDsG69ez62QxYvIW5uKL/W6QMcGrXDld/WTvXqB1awgPh1WrtAK3OdP48QAMiLqW+x+w9dqMSZciRaj09C00f/dmqFrV79ackwVl6bF8OSQkMPxYR265zYYujTmfUwn/hQrp+iiguWXmtKgoWLiQrcdLE1PsQstTNSYjVK0KVar43YrzsqAsPbyhyxEbG9Ctm89tMSYb6NrVG8IETfgX0bIPllt22s8/g3MMOHY7vR6wBH9jchMLytLq+HFYu5Ytx0pT8IKCXHCB3w0yJvhVrqzLxB48iJbG6NBBZ2B+9VW2q7ydKTZuhBUrWHakKtN3VKdrV78bZIzJShaUpZU3dDns8LV0v8NyPoxJqeuvh3HjAh5UrqxR2uDBubtEhnMwejTHYvNy/+LefPd9KHny+N0oY0xWOm9QJiL5RGShiCwXkdUi8rK3fYiIrBeRVSLytYiEe9tbi8hhEYn0bi8E7KuD956NIvJs5n2tLOAVjB2zqS433uhvU4zJTrp2hVGjvAehodCrF+TLp79TuXn5pZUrYdMmHll4J488U8ByyYzJhVLSUxYNtHHO1QcaAB1EpDkwBKgB1AXyA70C3jPHOdfAu70CICKhwKfAtUAt4DYRqZVh3yQr/f03rFnDmkNlKXdJfooV87tBxmQf1avrhMujR70NpUrB7bfr/WHDYNcu39rmm4QEGDOGHzY2IfaiCvS8z7rIjMmNzhuUOXXMexju3ZxzboL3nAMWAuXPs6umwEbn3GbnXAwwDLghHW33z/LlEB/P0APtua2HJeIak1odO8IvvwRsaNZMbzExMHAgxMX51jZfLFrEpnUxvLv6Wj4fUdrWzzUml0pRTpmIhIpIJLAHmOKcWxDwXDjQA/g14C2XecOdE0WktretHLA94DVR3rbsZ+lSnIPxW2tz3XV+N8aY7OfmmwOGMBPdfrv2mm3f7pX+zyXi4ogZPZ6eM+5hwBv7KVzcclSNya1SFJQ55+Kdcw3Q3rCmIlIn4OnPgNnOuTne46VARW+482Pgp9Q0SER6i8hiEVm8d+/e1Lw1a5w8CatXs3hfJWo3ykuBAn43yJjsp04d2LTprAmX+fJpfllICEydCqtX+9a+LDVnDs//2pIu9TYRcXed87/eGJNjpWr2pXPuEDAD6AAgIi8CpYEnAl5zJHG40zk3AQgXkVLADqBCwO7Ke9vO/owBzrkI51xE6dKlU/dtssLKlRAXx7D919C9h+V9GJMWItC+fRKrLFWuDJ076/1vvw1IPMuhTp7k1082suZgGR5/+yINSI0xuVZKZl+WFpFi3v38wDXAOhHpBbQHbnPOJQS8/iIRzYgQkabeZ+wHFgHVRKSyiOQBugNjM/j7ZL4lS0hwwtSoGrRr53djjMm+zpiFGah9e7j0UjhyRAOzHFwmY9fIuTw7qwPf3DWTkAb1/G6OMcZnKbksKwPMEJEVaGA1xTk3HugPXAj8flbpi5uBVSKyHOgHdPfmA8QBDwOTgLXAcOdc9hqfiI6GVauYs/MSmrUMtxpCxqRD48ba8RwdfdYTISFw771QoICujTl9ui/ty2wJh49y9/PleLfZSC7o2QHL7jfGnDej1Dm3AmiYxPYk3+uc+wT4JJnnJgATUtnG4LFsGcTGMnRvW257Iq/frTEmWxPRlZZGjIA77zzryeLFoWdP6N9f12WqXh3Kn2+Cd/byvwe30LDEDtp2CINq1fxujjEmCFgCQ0olJMDEicQmhDBvXzVatfK7QcZkf88/D59+ChOSulRr2BBatdLyGF9+qeUycogFkw/zy4wCvBIxFqs+bYxJZEFZSi1ZArt2MeVwM9p0yk9oqN8NMib7K1FC65W99tpZdcsSdesGZcpoQdkRI7K8fZnh8GHoe38c3135NeHNI6BChfO/yRiTK1hQlhIJCTB+PABDj3TkttvtsBmTUUqU0F+v118/9Wt2Wp48WiYjLAxmz9YUgmzMOejT82+eu3Q0lYsdPD3T1BhjsKAsZbxessUx9fjzRGmaNvW7QcbkLImB2RtvJBGYlS8PXbro/UGDdPHybOrrr6Hw/i3cUmWxDs0GY9kfY4xvLCg7H6+XLCY+lAcX9GTAl2KTpIzJBIlDmW++CePGnfVkmzZacfbECejXD/bs8aWN6bF8OfT/6CQfVf9MewA7dfK7ScaYIGNB2fksXgy7dvH6uq50u6sg1av73SBjcq7ixbWn7K23YGxgFUMRuPtuuOgiXc38zTe1XEY2cPgwPP009O3rGNRhKAXCYnXaaZEifjfNGBNkLCg7F6+XbPn+8kw70oQnnrLDZUxmSwzM3n4bfv454InCheG556BBA+0x++QTnbYZpMVl4+NhwAAdpaxRA+Z+sYaah+dDwYJY5WljTFIsyjiXxYuJ3bmXvvPv4ovvC9qMS2OySPHiOpT5zjtnBWb58kHfvnDDDfr455+1ltnJk760MzkzZkCLFrBlC8ydC/feepzQn7zlCzp0gPz5/W2gMSYonbd4bK7l9ZK9E9me6zo6ateziMyYrFSsmAZm112njxPjMESgY0ctJfHVVxAZqcOZDz4IF17oU2vVpk3w739DaCgMG6ZLebJ1K3zxBRw4ACVLwlVX+dpGY0zwsqAsOYsXs3ptCON3NmL2nHJ+t8aYXKlYMR3KvO46HaU8o85q3brwn//A559rntkbb+jyTPXrZ3k7jxzRWmuzZ+uw65VXog2eMVPrq8XHa4R2//0QHp7l7TPGZA82fJmUhATixk6gz5w76f/afsLzWS+ZMX5J7DF77z0YM+asJy+4AJ59Fho10iHMzz7TqZtZlGcWH6+LDbRsqStB/fabF5CdPKlPDBumL2rTBp56SnvKjDEmGeKCNEkWICIiwi1evDjrP3jBAv73WBTHwovz8swrsWQyY/x3+DB07aqrLtWpox1l9erp/cKFHEyerFGbc/rEPffoouaZ0I7ISFi6FH78UUcjn3suYDJlVJQOV+7ZozlwPXvq6uvGmBxPRJY45yLS+n4bvjxbQgLrv5vPiM2dmTt8pwVkxgSJokVh6lStHbtqFaxcqbVkV66EY8eEiy9uT90yjakbNYF6Bzdz6V9vE/ZQHyhbNs2fuWePLiKwdKn+u2GDTgJt2FBvw4fDxRcHvGHePPjhB4iN1aK3vXv7nudmjMk+rKfsLPHzFnD1zcV4t8M0Ir7sY0GZMdmAc/DnnxqgrZx/nJVjt/DHzsI4CaFQ6XwUvLAQBUvmo1AhoWBBKFSIM/5NvB8fDytWaBC2bZuOjjZqpAFYo0ZwySUQklTSR0wMDB2qQRnA5ZfDbbdZ/pgxuUx6e8osKAuUkMBH1/7Krj3Cm58U0ROrMSb7iYmB778n/veFnIjLw/G4vBwvXp5j1RpyvEodjoWX4PhxOH4cjh3j1H3Qkc+GDbUHLEWrd+zercOVO3ZoEHbHHXDZZZn69YwxwcmGLzPQpjErGLy0NnPv/Rqav+B3c4wxaZUnD9xzD6EtW1J44UIKL1kCx9fAqjWwCqhYEZo0gdYRWhQtrRYv1jHU6GgdpuzTB8rZbG1jTNqct6dMRPIBs4G8aBA30jn3oohUBoYBJYElQA/nXIyI5AUGAY2B/cCtzrmt3r6eA+4D4oFHnXOTzvXZWdlTlhCXQLtLt/BqvZFc9nRLrfxojMkZ4uNh7VpYtEiTw6KjdbuIjkk2barjk4UKnX5PQgIcPar1Lg4f1n8Tb4cPa3Lbpk362ogI6NFDE/uNMblWVvSURQNtnHPHRCQcmCsiE4EngA+cc8NEpD8abH3u/XvQOXeJiHQH3gZuFZFaQHegNlAWmCoilzrn4tPa+Iz0xX+2Ub/QZi6rfQSaNfO7OcaYjBQaqtM069SBO+/U5LOFC/XfDRv0NnQoVKqkQ5+HD+u45vnSO0JD4ZZbtA5GisY6jTEmeecNypx2pR3zHoZ7Nwe0AW73tn8HvIQGZTd49wFGAp+IiHjbhznnooEtIrIRaAr8nhFfJD22bUngy8F5mdvxZ+h0uyX3G5OThYdrr1hibbPISA3Q1q6FzZtPv05Ep1oWKaK3okXP/LdIEShTRh8bY0wGSFFOmYiEokOUlwCfApuAQ865OO8lUUBiIkU5YDuAcy5ORA6jQ5zlgPkBuw18j2+cgz63H+HDJj9Q4KKi1ktmTG6SLx80b663o0e1xlihQhpwFS6czFRLY4zJHCkKyrwhxgYiUgwYA9TIrAaJSG+gN8DFZxQAyhxfD0ygWvw6WpXZAJ3usl4yY3KrwoWhZk2/W2GMycVSdRnonDsEzAAuA4qJSGJQVx7Y4d3fAVQA8J4viib8n9qexHsCP2OAcy7CORdRunTp1DQvTeqGrObNOj9AqVLWS2aMMcYY35w3KBOR0l4PGSKSH7gGWIsGZzd7L7sL+Nm7P9Z7jPf8dC8vbSzQXUTyejM3qwELM+h7pE1CAk23DqdQeDR06mS9ZMYYY4zxTUqGL8sA33l5ZSHAcOfceBFZAwwTkdeAZcBX3uu/AgZ7ifwH0BmXOOdWi8hwYA0QBzzk+8zLyEhdR6V0ac0pMcYYY4zxSe6u6J+QAEuWaKHJ+vUz73OMMcYYk+NZRf/0CAnRqt7GGGOMMT6z+d7GGGOMMUHAgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwSCuiSGiOwFtvndjnQqBezzuxFByo5N8uzYJM+OTfLs2CTNjkvy7NgkLy3HpqJzLs3LEQV1UJYTiMji9NQsycns2CTPjk3y7Ngkz45N0uy4JM+OTfL8ODY2fGmMMcYYEwQsKDPGGGOMCQIWlGW+AX43IIjZsUmeHZvk2bFJnh2bpNlxSZ4dm+Rl+bGxnDJjjDHGmCBgPWXGGGOMMUHAgrIAIvK1iOwRkVVnbf+fiKwTkRUiMkZEiiXz/le910SKyGQRKettFxHpJyIbvecbJfP+DiKy3nvdswHbRUReF5E/RGStiDyagV87RYLg2KTr8zNTEB+bBiIy39vvYhFpmkFfOUUy8bjUEJHfRSRaRJ46x+c3FpGV3vHrJyLibS8hIlNEZIP3b/EM/NopEqzHxnvuEa8Nq0XknQz6yikWBMfmdRHZLiLHztr+hIis8fY9TUQqZsDXTZUgPjYXi8gMEVnm7b9jBnzdVJHk/34+7G1zIlLqHO+vLCILvNf+KCJ5vO2tRGSpiMSJyM1p+Pwk95ss55zdvBvQCmgErDprezsgzLv/NvB2Mu8vEnD/UaC/d78jMBEQoDmwIIn3hgKbgCpAHmA5UMt77h5gEBDiPb4gNx2bjPj8XHpsJgPXBuxrZg45LhcATYDXgafO8fkLveMm3nFMPBbvAM9695/NYT8z6T02VwFTgbyJ+8uFx6Y5UAY4dtb2q4AC3v0HgB/t2JzaPgB4wLtfC9iaxcflXH8/GwKVgK1AqXPsYzjQ3bvfP+D7VALqoX+Db07D5ye53+Ru1lMWwDk3GziQxPbJzrk47+F8oHwy7z8S8LAgkJiwdwMwyKn5QDERKXPW25sCG51zm51zMcAw732gJ4BXnHMJ3ufsSf23Sx+fj026Pz8zBeux8fZTxLtfFPgrBV8nw2TWcXHO7XHOLQJik/ts7zgVcc7Nd3o2HATc6D19A/Cdd/+7gO1ZJoiPzQPAW8656MT9peZ7ZQQ/j433uvnOuZ1JbJ/hnDtxvs/PTMF6bPD5XMM5/n4655Y557ae681eT3EbYKS36dR5wTm31Tm3AkhI7eefa7/JCTvXkyZJ9wI/JvekiLwO9AQOo1dWAOWA7QEvi/K2Bf5wJ/WaZt79qsCtInITsBd41Dm3IR3fIbNk1rHJkM/3mR/H5l/AJBF5F01VaJG6JmeJtByXlCiHHq9EiccO4MKAPyy7gAtTsd+s5MexuRRo6e37JNprsig1jc4imXVsUuo+tIcxGPlxbF4CJovII2iw1zaD9ptS5/r7mRIlgUMBgW3g70R6Pj/V+7WeslQQkeeBOGBIcq9xzj3vnKvgvebhDProvMBJp5WFvwS+zqD9Zhgfj02KP98vPh6bB4DHvf0+DnyVQfvNEH7/zHj7d5zumQwaPh6bMKAEOkz1b2B4YL5ZMPD750ZE7gQigP9l5H4zgo/H5jbgW+dceTRVYrCIWHyRBnbQUkhE7gauA+7wTuSIyDdewuSEJN4yBOjq3d8BVAh4rry3LdC5XhMFjPbuj0HHt4NGFhybVH9+sPD52NzF6Z+bEWgXe1BI53FJiR2cOYQTeOx2Jw4De/9m+RDdufh8bKKA0d6Q+UJ0yCbZ5OislgXH5nyf3xZ4HuicOMQbLHw+NvehuVM4534H8pG1PzepPleKyCTv2AwE9qPpIYmjh6k91yb3+anerwVlKSAiHYCn0V/ExJwCnHP3OOcaOOc6eq+rFvC2G4B13v2xQE9RzYHDSYzLLwKqeTM18gDdvfcB/MTpbuYrgT8y7tulTxYdm1R/fjDw+9igeR1XevfbAEEx5J0Bx+W8vON0RESaez09PYGfvafHogEr3r8/J7ELXwTBsfkJ71wjIpeiSctBsVh1Vhyb83x+Q+AL7/ODLZD39dgAfwJXe59REw3K9mbQvlPiXH8/k+Sca+8dm15eEDsDSJxdmdrzQpKfn6b9uiyePRLMN2Aomq8Ti14x3udt34iOF0d6t/7JvH8UsApYAYwDyiVesACforMzVgIRyby/IxpwbQKeD9heDPjFe+/vQP1ceGzS9fm59NhcASxBZwItABrnkONykbe/I8Ah736RJN4f4b1/E/AJp4tllwSmoUHqVKBEDvqZSe+xyQN87z23FGiTC4/NO95zCd6/L3nbpwK7Az5/rB2bU8emFvAbeq6JBNr5cGyS+/v5qNfWOPRCdWAy76+CzkreiI4sJM5AbuK9/zja87U6lZ+f5H6Tu1lFf2OMMcaYIGDDl8YYY4wxQcCCMmOMMcaYIGBBmTHGGGNMELCgzBhjjDEmCFhQZowxxhgTBCwoM8YEBREp6RVzjBSRXSKyw7t/TEQ+y8TPbS0iwbgElTEml7G1L40xQcE5tx9oACAiLwHHnHPvZsFHtwaOAfOy4LOMMSZZ1lNmjAlqXk/WeO/+SyLynYjMEZFtItJFRN4RkZUi8quIhHuvaywis0RkibecSuKySo+KyBoRWSEiw0SkEtAXeNzrlWspIteLyAIRWSYiU0XkwlR+9taA7QtF5BJfDpwxJtuxoMwYk91URZeN6oxWn5/hnKsL/A108oKjj4GbnXONga+B1733Pgs0dM7VA/o657YC/YEPnC65MgeYCzR3zjUEhqHL16ToswNed9jb/gnwYQZ/f2NMDmXDl8aY7Gaicy5WRFYCocCv3vaVQCWgOlAHmKJLOxKKLk0DurzMEBH5CV3nMSnlgR+93rU8wJZUfHaioQH/fpDqb2iMyZWsp8wYk91EAzjnEoBYd3qtuAT0QlPQ9ekaeLe6zrl23ms6oeuJNgIWiUhSF6YfA594PV190MWVU/rZiVwy940xJlkWlBljcpr1QGkRuQxARMJFpLaIhAAVnHMzgGeAokAh4ChQOOD9RYEd3v270tiGWwP+/T2N+zDG5DI2fGmMyVGcczEicjPQT0SKoue5D4E/gO+9bQL0c84dEpFxwEgRuQF4BHgJGCEiB4HpQOU0NKO4iKxAe9ZuS+93MsbkDnK6990YY0x6ichWIMI5t8/vthhjshcbvjTGGGOMCQLWU2aMMcYYEwSsp8wYY4wxJghYUGaMMcYYEwQsKDPGGGOMCQIWlBljjDHGBAELyowxxhhjgoAFZcYYY4wxQeD/AfLJXGzTpAfQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,3))\n", + "plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for testing data: 1.2623790187854018 %\n" + ] + } + ], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor shape: (26300, 5)\n", + "X shape: (26300, 4) \n", + "Y shape: (26300, 1)\n" + ] + } + ], + "source": [ + "# Extracting load values as numpy array\n", + "data = energy.copy().values\n", + "\n", + "# Scaling\n", + "data = scaler.transform(data)\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0]\n", + "print(\"Tensor shape: \", data_timesteps.shape)\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]]\n", + "print(\"X shape: \", X.shape,\"\\nY shape: \", Y.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "Y_pred = model.predict(X).reshape(-1,1)\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = scaler.inverse_transform(Y_pred)\n", + "Y = scaler.inverse_transform(Y)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrgAAAHgCAYAAAD+LG2qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5jcxN3Hv7pzBVNsmumYEjoYQkvoEFog1FDCGwiEmkACISSU0EIvCYRuG0wHUwwGA8bYuIMx7r33frbvznfnO1/Z1bx/bNNqVUbS7Eq7+/08zz23K41mZlVmRr+qCSFACCGEEEIIIYQQQgghhBBCSLFQEXYHCCGEEEIIIYQQQgghhBBCCPECFVyEEEIIIYQQQgghhBBCCCGkqKCCixBCCCGEEEIIIYQQQgghhBQVVHARQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiop2YXfAie23317stddeYXeDEEIIIYQQQgghhBBCCCGEFJhJkyZtEELsYLUv0gquvfbaCxMnTgy7G4QQQgghhBBCCCGEEEIIIaTAaJq2zG4fQxQSQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiopI5+AihBBCCCGEEEIIIYQQQgiJKm1tbVi5ciWam5vD7kpR06lTJ+y2225o37699DFUcBFCCCGEEEIIIYQQQgghhPhg5cqV2GqrrbDXXntB07Swu1OUCCFQXV2NlStXokePHtLHMUQhIYQQQgghhBBCCCGEEEKID5qbm7HddttRuRUATdOw3XbbefaCo4KLEEIIIYQQQgghhBBCCCHEJ1RuBcfPOaSCixBCCCGEEEIIIYQQQgghpMj5/PPPoWka5s6d61juf//7H5qamny389Zbb+HWW2/1fbwqqOAihBBCCCGEEEIIIYQQQggpcvr164cTTjgB/fr1cywXVMEVFajgIoQQQgghhBBCCCGEEEIIKWI2bdqE77//Hn379sWHH34IAIjH47jzzjtxyCGH4LDDDsOLL76IF154AatXr8app56KU089FQDQpUuXdD39+/fHNddcAwD48ssvceyxx+KII47Ar371K1RVVRX8dznRLuwOEEIIIYQQQgghhBBCCCGEFD033ZSfenv3di3yxRdf4Oyzz8bPfvYzbLfddpg0aRLGjx+PpUuXYurUqWjXrh1qamrQrVs3PPvssxgxYgS23357xzpPOOEEjBs3Dpqm4fXXX8fTTz+N//73v6p+VWCo4CKEEEIIIYQQQgghhBBCCCli+vXrh9tuuw0AcMUVV6Bfv35YsmQJbr75ZrRrl1AFdevWzVOdK1euxOWXX441a9agtbUVPXr0UN7vIFDBRQghhBBCCCGEEEIIIYQQEhQJT6t8UFNTg+HDh2PGjBnQNA3xeByapuHoo4+WOl7TtPTn5ubm9Oe//OUvuOOOO3D++edj5MiReOihh1R3PRDMwUUIIYQQQgghhBBCCCGEEFKk9O/fH1dddRWWLVuGpUuXYsWKFejRowcOP/xw9O7dG7FYDEBCEQYAW221FRoaGtLH77TTTpgzZw50XceAAQPS2+vq6rDrrrsCAN5+++0C/iI5qOAihBBCCCGEEEIIIYQQQggpUvr164eLLrooa9sll1yCNWvWYI899sBhhx2Gww8/HB988AEA4MYbb8TZZ5+NU089FQDw5JNP4rzzzsMvf/lL7Lzzzuk6HnroIVx66aX4+c9/7pqvKww0IUTYfbDlqKOOEhMnTgy7G4QQQgghhBBCCCGEEEIIITnMmTMHBx54YNjdKAmszqWmaZOEEEdZlacHFyGEEEIIIYSUK1VVQH192L0ghBBCCCGEEM+0C7sDhBBCCCGEEEJCoKEBeOCBxOeQkmETQgghhBBCiF/owUUIIYQQQggh5ci6dWH3gBBCCCGEEEJ8QwUXIYQQQgghhJQjsVjYPSCEEEIIIYQQ31DBRQghhBBCCCHliK6H3QNCCCGEEEII8Q0VXIQQQgghhBBSjlDBRQghhBBCCCliqOAihBBCCCGEkHKithZYuRKIx8PuCSGEEEIIIUQBlZWV6NmzJw455BBceumlaGpq8l3XNddcg/79+wMArr/+esyePdu27MiRIzF27FjPbey1117YsGGD7z6moIKLEEIIIYQQQsqJu+8GHnkE2Lgx7J4QQgghhBBCFNC5c2dMnToVM2fORIcOHdCrV6+s/TGf+Xdff/11HHTQQbb7/Sq4VEEFFyGEEEIIIYSUI599FnYPCCGEEEIIIYo58cQTsXDhQowcORInnngizj//fBx00EGIx+P4xz/+gaOPPhqHHXYYevfuDQAQQuDWW2/F/vvvj1/96ldYt25duq5TTjkFEydOBAAMHjwYRx55JA4//HCcfvrpWLp0KXr16oXnnnsOPXv2xJgxY7B+/XpccsklOProo3H00Ufjhx9+AABUV1fjzDPPxMEHH4zrr78eQgglv7WdkloIIYQQQgghhESX2lpg8mTghBMy2zZvDq8/hBBCCCGEEOXEYjF88803OPvsswEAkydPxsyZM9GjRw/06dMH22yzDSZMmICWlhYcf/zxOPPMMzFlyhTMmzcPs2fPRlVVFQ466CD88Y9/zKp3/fr1uOGGGzB69Gj06NEDNTU16NatG26++WZ06dIFd955JwDgyiuvxN/+9jeccMIJWL58Oc466yzMmTMH//73v3HCCSfggQcewNdff42+ffsq+b1UcBFCCCGEEEJIqfPMM0B1NfDxx2H3hBBCCCGEkJJG09TX6ebwtHnzZvTs2RNAwoPruuuuw9ixY3HMMcegR48eAIAhQ4Zg+vTp6fxadXV1WLBgAUaPHo3f/e53qKysxC677ILTTjstp/5x48bhpJNOStfVrVs3y3589913WTm76uvrsWnTJowePRqfJSNInHvuuejataun328HFVyEEEIIIYQQUupUV4fdA0IIIYQQQsoCRdH3PJHKwWVmyy23TH8WQuDFF1/EWWedlVVm0KBByvqh6zrGjRuHTp06KavTCebgIoQQQgghhBBCCCGEEEIIKWHOOussvPrqq2hrawMAzJ8/H42NjTjppJPw0UcfIR6PY82aNRgxYkTOsccddxxGjx6NJUuWAABqamoAAFtttRUaGhrS5c4880y8+OKL6e8ppdtJJ52EDz74AADwzTffoLa2VslvooKLEEIIIYQQQgghhBBCCCGkhLn++utx0EEH4cgjj8QhhxyCm266CbFYDBdddBH2228/HHTQQbj66qvxi1/8IufYHXbYAX369MHFF1+Mww8/HJdffjkA4De/+Q0GDBiAnj17YsyYMXjhhRcwceJEHHbYYTjooIPQq1cvAMCDDz6I0aNH4+CDD8Znn32GPfbYQ8lv0kQY/nKSHHXUUWLixIlhd4MQQgghhBBCipubbnLe37t3YfpBCCGEEEJIiTFnzhwceOCBYXejJLA6l5qmTRJCHGVVnh5chBBCCCGEEFLuRNjwkRBCCCGEEEKsoIKLEEIIIYQQQgghhBBCCCGEFBVUcBFCCCGEEEJIuaPrYfeAEEIIIYQQQjxBBRchhBBCCCGElDsMUUgIIYQQQohvBNfTgfFzDqngIoQQQgghhBBCCCGEEEII8UGnTp1QXV1NJVcAhBCorq5Gp06dPB3XLk/9IYQQQgghhBBSLPBlnBBCCCGEEF/stttuWLlyJdavXx92V4qaTp06YbfddvN0DBVchBBCCCGEEEIIIYQQQgghPmjfvj169OgRdjfKEoYoJIQQQgghhJByhx5chBBCCCGEkCKDCi5CCCGEEEIIKXeo4CKEEELCYeVKYNmysHtBCCFFCUMUEkIIIYQQQgghhBBCSBg88kji/8svA+0oqiWEEC9IeXBpmrZU07QZmqZN1TRtYnJbN03ThmqatiD5v2tyu6Zp2guapi3UNG26pmlHGur5Q7L8Ak3T/pCfn0QIIYQQQgghxBP04CKEEELCJRYLuweEEFJ0eAlReKoQoqcQ4qjk97sBDBNC7AdgWPI7AJwDYL/k340AXgUSCjEADwI4FsAxAB5MKcUIIYQQQgghhBBCCCGkbKGxCSGEeCZIDq4LALyd/Pw2gAsN298RCcYB2FbTtJ0BnAVgqBCiRghRC2AogLMDtE8IIYQQQgghRAW6HnYPCCGEkPKGCi5CCPGMrIJLABiiadokTdNuTG7bSQixJvl5LYCdkp93BbDCcOzK5Da77YQQQgghhBBCCCGEEFJeGJVaVHARQohnZDMXniCEWKVp2o4AhmqaNte4UwghNE1TMgonFWg3AsAee+yhokpCCCGEEEIIIU5QqEYIIYSEC72pCSHEM1IeXEKIVcn/6wAMQCKHVlUy9CCS/9cli68CsLvh8N2S2+y2m9vqI4Q4Sghx1A477ODt1xBCCCGEEEIIIYQQQkgxQAMTQggJhKuCS9O0LTVN2yr1GcCZAGYCGAjgD8lifwDwRfLzQABXawmOA1CXDGX4LYAzNU3rqmla12Q93yr9NYQQQgghhBBCvEMBGyGEEFJ4jF5bnIsJIcQzMiEKdwIwQNO0VPkPhBCDNU2bAOBjTdOuA7AMwGXJ8oMA/BrAQgBNAK4FACFEjaZpjwCYkCz3sBCiRtkvIYQQQgghhBDiDwrVCCGEEEIIIUWGq4JLCLEYwOEW26sBnG6xXQC4xaauNwC84b2bhBBCCCGEEEIIIYQQUkIYDUxobEIIIZ6RysFFCCGEEEIIIaSEoVCNEEIIKTxUcBFCSCCo4CKEEEIIIYQQQgghhJBCE5ZSa8oU4OOPs3OAEUJIESKTg4sQQgghhBBCSClDq3FCCCGk8ITlwdWrV+L/nnsCxx5buHYJIUQx9OAihBBCCCGEkHKHCi5CCCGk8IQ9/1ZXh9s+IYQEhAouQgghhWXNGqCpKexeEEIIIcRI2AI2QgghpBxhDi5CCAkEFVyEEEISbN4MvPwyMHVq/tqoqgIeegi45578tUEIIYQQQgghhBQDVHARQkggqOAihBCSYMgQYPp04NVX89fG/PmJ/83N+WuDEEIIKWUWLwaefTbhEa0SCtUIIYSQwsP5lxBCAkEFFyGEkASbN+e/DV3PfxuEEEJIKfPUU8C8eZnk8KqggI0QQggpPGF7cHH+J4QUOVRwEUIISaBpYfeAEEIIIbKsXRt2Dwgh+aa5mQZihJQ6VDARQkggqOAihBCSwKjgamzMTxtcvBNCCCHRhHM0IdGiuRm47TbgwQfD7gkhpFDQg4sQQjxDBRchhJAERgXXHXcA69eH1xdCCCGEOLP//mH3gBCST1asSPxfty7cfhBC8kvYIQoJIaTIoYKLEEKINVOnqq+TC3ZCCCEkMR/GYsHrUAnnaEKiBcOHE1IecP4lhJBAUMFFCCEkQYVpSggqeCOEEEKINU8/DdxyC9DSEnZPMlDARki0oIKLEFIIOP8TQoocKrgIIYQkML9E86WaEEIIyQ+LFyf+v/VWIs+OH+jBRUhpw7U4IeUH52JCCPEMFVyEEEISFELBxQU7IYQQkmHyZOD998PuBSGEEEIIIYQUJVRwEUJI2EyeDMyZE3YvCmMlSgUXIYQQko3fNQA9uAgpbejBRUj5EcZczPmfEFLktAu7A4QQUtY0NwO9eyc+v/IKUFkZXl8YopAQQggpHqjgIqS04VqckPKgtTXzmXMxIYR4hh5chBASJm1t1p/DgC/RhBBCSOGhMIsQYgXX5oSUPvX1wP33h9sHrkMIIUUOFVyEEBImup75HI+H1w+AHlyEEEJIGERFsBSVfhBCCCHlwtSp2d/t5uIFC4DHHgNWrMh7lwghpNiggosQQsLEqOAyfg6DQii4KDwjhBBCsvE7N3JOJSQabNoEvPwyMHt22D0hhBQbsu/c//kPsHw58Oqr6vvA9QQhpMihgosQQsLEqNR6912gpSW8vhBCCCEk/0RVkBTVfhESdb74Apg+HXj++bB7Qggpdtzm4uZm9W2GbWhLCCEBoYKLEELCxBiWcNo04JtvwuuLGYYoJIQQQtRjFiT5FSwpUkhpfXpjSf12VHAR4pfNm8PuASGkVAhjLub8TwgpcqjgIoSQsGhpAfr2zd5WWxtOX4DCLGy5eCaEEFLuqLKU9jinPj7lHNww+veW+zY0d+EcTYhfKivD7gEhpFjxOvdyriaEkByo4CKEkLAYNQpYujR7W6l7TXFBTgghpNwxem8DBZv7X551Ml6feyK0Pr1z9lVonJ8J8U2pr98JIYXD7X2Z4QQJISQHKrgIISQsmppytxXyBbmqCnjhhVwlW4oKThGEEEKIclQpuBQajVDBRQghhBQBNBglhJAcKL0khJAoUUgFV//+wKxZwBNPFK5NLsgJIYSUO2br6wh4f1RqtAgnhBBCQieIB9fGjUAsprQ7hBBSDFDBRQghUaKQQq716533R0DgRgghhJQcZg+uCKDRg0sOGuoQQghRiXlecZtn7PZXVwN33QU8/LCafhFCSBFBBRchhISF1eK0kIITvwmxN2wAXnsNWLnS23Hz5gGffeavTUIIIaRUMM/1IYQo/NOYK/HdygOU1VcW6Drw2GPAO++E3RMSNWgURggpFHYeXAsWJP5XVRWuL4QQEhGo4CKEkChRDMKlvn2BiROBp5/2dtyzz+anP4QQQkgxE4KCq9eck/Ha3BN9H1+WLFsGrFgB/PBD2D0h5UifPkBLS9i9IISoxqsHl52Ci4p2QkgZQwUXIYREiSgpuCpspoiamsR/vmQTQggh3gljrndpUwgtWmuQKELhIQmTSZOA777L3rZyJdDQEE5/CCHRgnM4IaSMaRd2BwghpGyxWoQ6JY3NN7KLYjvFFyGEEEK8E4IHFwB8vPgojHp3v0RVoPLGE0JQ4UUKj1GZtW4d8Mgjic+9e4fTH0KIevzO7UHkCFSOEUKKHEopCSGEeIMCHUIIIcQ/qnJwKaBq8zahta2EhobCebAYr1PKm50QoHDPcDye+bxmTWHaJIQUFjdlE9/FCSEkByq4CCEkSoRpPWVu+/33gfnzw+kHrcgIIYSUCyF5cBU9QgB33pn4K/S5oICRhE1lZdg9IISoQNX8ZayHqQQIIWUGFVyEEELs+e9/c7flU4gkBPDMM8Czz+avDUIIIaQUUD0fF7PCjAouQoLT3JwIdzh9etg9IaR88TufGY/761+BtjbXQ2J6BVrjVJYTQoofKrgIISQsrBavxSBcMvZx2jS1dcfjwKJFCc+xYjgXhBBCSDHgMqcW5ZRr7HQsVti2qeAipcjQodBuvgmj/jUk7J4QQuywm3/ME/nata5V/d/w67D3h48p6BQhhIQLFVyEEFKuqJBmvfJK8DrsKLSwihBCCCkCnpx6Fir6vOr5OCedjIAGDBgQoFchoOuZz1wzkDJkSf122NjSWV2FjY0AgOk1u6mrkxDiDRUeXED2HGnDpA17YFVjV3/tEUJIhKCCixBCokQxmFDnO0RhColFOSGksCya04q+z9UDs2Yxvj8hfgk4j07esAcEKtTPx3PnAuvWqa0znxh/f6HXTxV8jSbhs/eHj+P/hl8XdjcIIUFIzl+//uZWPDHlbP/zmfndWaKeCq0IZA+EECIBV+aEEBIWYSuzzKbcYfcHyF6YR6E/hJAsnrxiKq6/Y2sse+y9/HpwElJORGm+KybFdaEVXFG6TiRaaBoW129f2FskuY6vbd1CTX31SeMVQkhhSQ4c36w4FP0WHe0+18iGKJRAA+c1QkhpQAUXIYSERdiCkrDbtyJMa2xCiDutCeH3Xv2ewIKfakLuDCElgsf5Li3a8nycRPmZMz3VGSqF9vo2tkcPLmJE17HPh4/h25UHh90T/9x/f9qDkytwQgqIYf6K6RXAf/+b8Ki2Q6GCS8mxhBASAbgyJ4SQKFEMi8tChSgshnNBSBnTHG8XdhcIKVqmVe+GNU1b+zo2rajyMk+6lE3vnTLFV59CgR5cJAp8/jkwdiwAoKGtY37byuM9WL2xEv8af0He6ieE2GB4ruMiKaLt0ydQPZbfLWCIQkJIqUAFFyGEhMyMml1Q39op8aUYhCdUcBFCCCGB6Pnp/bjsuxt9Hav5FEjZ2HwDAITQUh981R0KRq+tQntwFdN5Ivnlm2/SH+N68YpXhqw8CI9P/XXY3SCk/DDMX2kFlx8vYR8KLoYoJISUCsW7AiOEkGInueg8rP+DuOuni0PuTESg8IgQQkipk5zfWnx6QaYtrj16cEkpxo4/3lefQoEeXCRi6I5qZAUYQ5PZhSlTQGNbR1RV5a16QogRq7nFyWhDVYjCXr3yOYwUjro6oKEh7F4QQkKGCi5CCIkAzfH2YXfBmi0sElfTg4sQQggJjJ6y1Pabg8ujZMrJUlukat1yS091hoYQwIwZ2d8L0SYhDqQ9IRVy8ZCbce/4C50Lvf460NKirM17J1yE7t2VVUcIcUKVB7IXDy4hgClTit+DKx4H/vlP4M47w+4JISRkqOAihJAIUKElF7ZhCk+EwNyNO+W9mf9MOwOt8UrbPlh+JoQQQkqF5PxW6FlOSh9WLHPv1KnAm29mvhciRCEpb1pagCeeAIYNsy2i50HBNWDpEXh/4TG5O5IP9I9V+0C74Xpg+HDlbRNCCouUkrytDfj4Y6uD5RuKxQA4hy4uCpqbM5+LZf1CCMkLVHARQkhYGBZhHyw8Bl3feja09lMc+PHD2NjS2bFM0MXjP376LeZulDAL5SKVEEJICePX2yOvFtfFMvfOm5f9nR5cJN/88AOwdKm1YDlJvkIULt+0Hfb78GHne7CpKVAbvLsJCQk/c4uDol2K1lYA/nN6Roakog5AwpuLEFK2+Av8TgghRCnN8Q5ojncIV3iStARt1V2mBgV9lFpMU5BESOQoektPQiJE3vP1mJBSjBXL3GsWZBXag6tYzhNRh43wVAhgScP2eW9+Yb1LlAXek4QUPYGeYrObttOYUCrKoLa2zGd6chNS1tCDixBCwiIP3lGB2k9+jxstyvPUnwq75TtDFBJSNOQj1wgh5cS06t2x1ZvP+5/vqqqAgQPlygrhqE4ruinXLJwruh9ASoVvVhyCfT58DEB5zIvV1cDq1WH3gpASx2OOTctjnObFpDKo6HNwJT3RAHAdQEiZQwUXIYSQLOK6y9SgYPFYUezhEAiJADU1wLp1YfeCEBKETW2dPB+T5QX99ddK+pFWfxWLgMgYlggojOV2sZwbUjC++w6YvGGPsLsBAHh31B5BoxTmYuHlcdppwK67Km6HEJKNCgWXE8n5zE8zkYIeXISQJFRwEUJIuWLrwZX/qUHThLugyLxI3biRwiVCDJx4bCt22qkEXk4JKTds5t98U1Lhgc0KLubgIvnGYrI94wzg/okXhNAZ5PTn6peOwTffKG5jxYqcTTSsIUQxYcwtpTKfyUR/EYLKL0LKACq4CCEkLKIWojC1GRpWbOqK3w//o6fjvDUtIZE3tjN7NnDXXcBHHwVum5CSIB7H6uVt7uUUsvPOwNvzjytom4QQEytX5m6rrZU6tOhDERmhsIqEwMK6HRDXNQgBHH987n7nQKBy1NQYHKc8rrkL+Rqxfn3h2iKkZInFgAUL8lO304CQ8uBKrQuKVeFl7LfduuDFF4G//S07nCEhpOSggosQQkgWQgDfrToQ7y881lEJd+e4S7CxpbO/NqwEAG1twDvvWB8weHDi/4gRvtojpOQwv8StXZv3JteuBVr19nlvh5Cyw4tg6ZFHcrfdfTewaJHzcU1Nct6epSDkKkQbxXqeSCD2++hRvDHveOg6MHZsftrYbruEPDYSONznO+5YwH4QUqq8/z4wb56aurzMS2kFV5Ejo+CaNQtobgaWLi1Ilwgh4UAFFyGElCNjxyaS01sgoElZef93+pkYs3Y/X80LgdxF+OTJwIwZme/GRWplZebzZ5/5apOQksZOOUwIKTksBVKff+4s3PrnPx3ndqprCJGjavPWtvv6Lz4SL78U/GlatSpwFWqwGFMYFpkQhSQ15Vqf3gCcvUD7LTw6XS4wpWik4fabSvE3E0LSSCu4NE2r1DRtiqZpXyW/v6Vp2hJN06Ym/3omt2uapr2gadpCTdOma5p2pKGOP2iatiD59wflv4YQQoqdQi283n7bvgseqtFlQg1atmFxnDmov/FctGuX+fztt77aJKSksUgETwgpTSxzac2fD0yd6rvORyafiz9//7viFQAVImRhsZ4bEhwhgMZGAIm1r52SZ9CKQ3HrXzT/90qyjbSGy6keapoIKV0snu+5G7s7HyMEZtbskvXdqWyimRKa19zWAZzDiZnx44Hvvgu7F0QRXjy4bgMwx7TtH0KInsm/qclt5wDYL/l3I4BXAUDTtG4AHgRwLIBjADyoaVrXAH0nhJDiJuwcXDZtC6E5L3YNfYwLf47AAsgVyPNFnRBCSDkQcK63nS1HjfJ3HICvlx+GV2efUjwCoDDWDAxRWL689RYwaFD6q+vl37jRXztDhybqnzULeO457/fZlCn+2rXhvc+7KK2PEOKM0yPfvsL07mxR+ND+D2Jpw3bulZVKiEIjbgquOWZxNil7+vYFPvnE/5xNIoWUZFLTtN0AnAvgdYniFwB4RyQYB2BbTdN2BnAWgKFCiBohRC2AoQDO9tlv4sLLLwOnHtMI3HcfY80SQixZv7mLZZiD8wbfiocnnZf44vJi7duDS2jA3/+eSKxrx3PPZSxZmUyekJLhqquAjz4KuxeERAiPQmzbUINOcyokLbWLVXFTrP0mxcG4cemPTiHE0rg8i7YY17tz5wLLl9uXtVLyjh/vr10brvq7c6Kt004DPv5YaZOEEBsqNbn34ZZ4O/dCpfJu7cXwJJXTu6EB+PHHRP5vQgCgpSXsHhAFyJre/w/APwGYR8HHkmEIn9M0rWNy264AVhjKrExus9tO8kD//sDICVsC69cntF2EkOKggAKaplgHy+3z6rpjccMO9gcq8eDSEguJNWty9n29/BBMWLcnUFsLfPllTpuW3wkhRcN77wFvvBF2LwgJEc5hwZH14Fq6NDHg1NcHb5PXjaQYMcJ5v9+wwcacs4Dne64gd2hba/rjiBHAgAGFaJSQMsNijstRcNm8Hw9deSAGrziYIQrtePHFhFfuF1/ktTukiOD6riRwlUxqmnYegHVCiEmmXfcAOADA0QC6AbhLRYc0TbtR07SJmqZNXL9+vYoqiV8LMkJIftE0NLZZK5kKQYdKibEhT2EUszy/TPWdN/gvuHL4dYkvTU3JA0rEyowQVQiR/e4bwsJ87eat4XepxvcIQgx49eCyE0i5KH1sPb+KEfNvtTqHDQ3AE08AP/1EKTwJxIpNXdNRD4asPBD//VeNmordnv0CTpZCIirDd98BsU3NBegNIeVJ2kPUYj6vkFRG/WXs73DON391aSgVorCE1gWy4+WyZYn/M2bkry+kKHhx5qnFnX+WZCFjen88gPM1TVsK4EMAp2ma9p4QYk0yDGELgDeRyKsFAKsA7G44frfkNrvtWQgh+gghjhJCHLXDDg4eBMSZdesyn/mwEhJJ2mIaurz5YvbGAj6vlVoq55b3YxfW7eD7WMBgYdrcDNx9N9CvX1ZlMZG0YE1ZwJobosKLkNA5a9DtOPZYNXWtWcM0fITIknpU3l9wjKPBSM5xMs9Ysb43WPX7zjsznzdtUtLGmDX7oq61U/GeJ+KL5Zu6pT+PrdoXd42/xPkAmfvjgw+Ae+5xDo0UgftMCGDgwMT4ccYZwPrmrcPuEiFlSY6CK8j4YM7BFYGxxhfGfnuVD/j1tCUlwwszTy2u/LPEEVcFlxDiHiHEbkKIvQBcAWC4EOL3ybxa0DRNA3AhgJnJQwYCuFpLcByAOiHEGgDfAjhT07SumqZ1BXBmchvJA9pGg1WZz4f1sMPotUtIPpGK4Z/P9pNDQ5temb3BheUNXbHfR48GbDv526dOTST1HDkya39MT05PdgtVLkJIuRORZ8CvB5dZ0F6jyBiekHIg5cH1+xHXYXXjNpkdbgquUrLUTg4iM2p2weL67d3HRBUadCFw0pf/wKOTzw1eFyGjRiXCcU+fntmWvE9jemUij86SJZ6qlPHCssPOM1QIYN48f3XW1tJJghCvNMXaW273rOAqhxCFXnJwEWIiZfBN4+nSwF/ylATva5o2A8AMANsDSEk7BwFYDGAhgNcA/BkAhBA1AB4BMCH593ByG8kju7//hG/DhBkzgCFD1PaHEJLBcg0WwsIsreCSpDWeKe9XSZc+zphrwOjB5aZ04yKEkEjg24uT76CEeMdscQ3TPOyq4JJvo1g4rP+DOO5zi0j55nWCwt9VXGeIBEFF6jZX2toyn5MKrudnno5ubz8LTJhgf1wRuD3/+c8Jo1k7hABOP71w/SEk6izftB22fOMly30V5hxcZrzkrC4FD66mJuCrrzLfKR8gHkk/U8V4/5McPCm4hBAjhRDnJT+fJoQ4VAhxiBDi90KITcntQghxixBin+T+iYbj3xBC7Jv8e1PtTyFWrGzshljc/+J3wgTgoYfU9YcQUiCEcJ2oU0KxtHAsT/m2LNtOVVthPQ3F3SxQuQghpLA0Niqtbvly4MknlVZJSPHgRQhlJCm8MXpiCQAT1++ZyA9kV08pzpkG4X5zvH3ubzQqDQA1gq9SPI/EkW22AX79a+Bhr157Cu6VpljHwHWoIMhPaXZJ1xWLAcOH+6+fkJLFKgeX2bwiYIjCVY3bYnPc2lvMb50F5aOPgLlz/bfPOb3sqSx2D0aSRRAPLlIGTJgA/PvfYfeCkNIkb2sqXU9Ijvv0cW4/VdxjOBNNZIREfn+CpeeX4YTEBUMUEhIWq1cDL5mNR01hRM0MGpSINirLvHmJ1COEEA+kFFyGF3IhNCyo2zFrvx1FH4rISEUFbh97GYDkmsK8LjCHsOC6gfjkm2+AISsPDrsbAIC1Gzvl5VZuaAA2xzqor9gBXWcKHEK8kBOi0IyXwUEI7Pb+U5hWvXuwTqUYOhT45z+BDRvU1CeDOYQrPbiIR9IeXCF4RC9dyqWpaqjgItY0NeVsmjYN+OyzooiGQEhRkLcQhWvXJmbMyZNd2k95cHlr2m8Oj+emn479Pnw4q027N9uYW9jEWMxXH7LYsCERh9Vs5U2IQhQ7PtmjcIX82mvAX/7i7ZhzzwUefhhYvFhZNwgpH2Sf3+ScaQ5RmDZUUeHBVSxv25qG52cmYptJradUe3AVy3kikeXDhUdhyzdeyN7o8qK9819+iw8+UN+X3XcHrh99teW+fN3qt9wC7LSTe7lVq4ApU4BHHslPPwgpFpTm4FIdxrd//0RM1y++CFaPD/b78GH8bwZjnRLvpKfcENZ0PXoAX35Z8GZLGiq4iDXDhmV/13X07AlcckkovSGkJAlbNpLyotKFw1TgFubQg/fXyDU/w8L6nbKPMyqqDG3pTmETAeDvfwcWLJBu25IXXwQ+/RQYMCBYPYTYMHUq0KVLniov9AAiYd3y3HPAPvsUoC+ElCsWShohXEING47za6ASScwhjt3CPiocM2nrVyb88IP/YyXutx/X7e0ehrBj7v71M9YkPljMy35z49bV2e/L13Jj4sRMjjOnNnbbDTjySOCBB/LTD0KKBc8KLify9WAX8v0k2dbC+p0wbNUBvo8nJCwaGsLuQWlBBRexxuxVsWhROP0gpIQReuFyXlm2L6z/u/XHr4Ds6+WHpj+7hUVMN+t0Pj780Fc/0qxdm/i/cGGwegixYf36AjaWx7FD14HPf5QwsyaE+MNrDi4t2yAkPae6hPUtqSgMbj8mHwouCsPKixA8EcwsWr9V7sbRYwrfkYBoGrBpk/1+PlqEuJMOp2aHF8/lUlBwGWSWUvKJvfbKX18IIaFDBRexxmwVyXi2hBSGQiq4Uh5c0DwFAc5Obm+R98KGuMiEHUxbmNoIqBpjnaD16Z2p26qcijCFhOSRoMLk++7LWDd7RdfVTd3z5gEXPfpzy32NjcF/Z2MjLdhImeFnrt+8GXj9dQCmEIVGgxGXEIVSAqBikTQb3lUENPdwSwp/l1BcH4koQSY3D/fHwhcGJeLwWbS574eP+e+DIsTUaf6PNZwGp5DNfJwIMWEefxYtQoV5DlfpwVWMD6Fh3tc04f4bevTI/l6Mv5mUBqkUGQXLZVAeUMFFrHEL+0EICYzfMCKuGIU8Ds9uxklKA554AqLOpyRdcnz400Ej058vHPInXD3imuzFuxBoirWXr1tVZuqSMmknpcRjjwHff+/v2OOPB847T21/8sUppwC/+EXYvSAk4nz1FTBnDoBcQ5P0d1cFlwTFsuY3KrisvMLNCi+FObjiOl+hS52aGmDqul0K0tZ+Hz2KaXe+6/3AQj2rH32kpBqn7hbLsENIPpC6/59+OjdEYZCKS+GhM6wDnNY3G1s6Y1H99rk7SuEckOJk0KDEfybhUgpX5yVKtmWnjwqo4CIk7+TtsXJLgp7clhIIpRVttbVS1WsiIyQSAtJCo207bE5/3tC8FT5Z/HOgogIPTTwPVU1bAUJgyzdecqyjTa/IhGLiuEQijnkq9YPtbe5y/48bB4wa5b29p57yd5xfNC2RhyMNPcZJOeBn/jIkyTHZhmSEXql6N2wAHnkEmDIla7vmVTgWVVpbgeXL018L7VEVd8pdSkqCv/4VOOKt23wf/9ubunkq39zsELEgZERLq+djUjZoTj8naxwbWcCFByERQ9botTIZovCiITdjbdPWwXJP5suDq5Dv55Lj5Z+/vzLhDUvZATERWm7aVIoMenAphatzQggJCdmcV55x82wytZFSGEnn4PKZ4Na8gEi1++/Jv8EXy3o69lUI4I25v8TWbz6PO8f91lO7lrz1lv9jCZFEhZyq0Pqeu+8GRowwbSxkHs7vvitcW4REBZn5zFAmx4MrNS+nBozhw4GVK4FevdLbn59xGiZv2NN732pro6d4fuklYPHi9FdL4WA+BFkpDy4quEqe+AY5oy87Ph20haKehI/XiBPz5gHt2nls5OOPPR5ASOkg+w6eMmb5fOkR+LFqb/d5rtQ9uCRpaOtkvaOMzgGJFq2610mSyMDVeRmgJAxa1F5sCSkB8ramMj6vVs9ucltqbAjcDcnxwRxWQUADhgxJfBawPiHJbfXNHXDd6D+gOd4B49ftlbXPFz/+6P9YQmRZswZAQtHVr5+/Kvx6cCnlnXcK19bs2YVri5AixWhoImCI3JAaF8we2ULg+ZmnyVVuHFtmzUpovV97zW9X88O8eVlfLdcQybXJ8k1dccIX/1AzZibriDFEYcnTfvHcgrZnGWbTVz1KqgnEunWJ/6efDowZI3fMZ4t7YsaM/PWJkCijS8rrjO/SMStDCy9eWfmS74XkweXkyW3boygMmCQaFPBe+PproOM//XuIE3u4OieEkCihUADjxIcLj8LLs04BAOjJBbKsMlzLWkxq8h5cJgWXLkz1WHmeJetujVemN9WnrLC4KCURYuFCoKkpe5vW74P051mzfFQIQIyVVMZaPA9F+YgUZacJKQBZHlzGzYYcXCmBVceOOcf6MngbPTrxf/Jk78cWGhvB3vh1PfBD1b5Km4qJCo5VJU5lWOE8vbh+F+gedB07bCJHDB8OVFcb6nHo7hXDbsCf/+yjc4QUObrQsMQqP5QFRgVXXA84D5kVXMU4pxllEg5GArb7ivE3k7yw6zGFybkJAEuXFqypsoMKrjJAybhtrmTTJl/VHHooUFWloD+ElAB5W1MZXzRtGrntx8vxn+ln5rcfRtracl6PjS/MutCAWCz3uJS3maGPbXpS2eW34/mKOU7Kmv32A+65x36/59ssmXxWnzzVd5+8EIsB++9fkKac8XiiYjFgwoQ89YWQAnHL6Muwfr18+dwQhakvNnl8hPA31VnNyxHE0tgmlXdMZX4Frhciz4Rek/DEFdOica1WrXLcHb1sWw44uVdNm+arSothyh1DaFJCSoFPFv8c+3/8SO4OyxCFGaVUTFTm7M/ByUur2CM0DRyYcReFN6NbUj5cey0wZ457udVV7XItVUnRQQVXiRI4ibSL9djQJyf50nHNnAnMLWzEB0Iii6+cEUOGAE88ATQ325cxLlht6mtfkVGCpcIi+MkJJj3S3HprbohC88GSgrS0FVaqAq8LdCq4SJ6oq8v+niWE9nCbtbQA01bvACDb0/G997JlOyoFt5s3A/PnK6rMaLJtxvAyaonH57FfP+CYYzwdQkj4mO7zV2aenJv7zkxybV7dvGWWYEs3enDZPT9+5zm3nJ4RwdI6m3N7WfL008C9Hx2eyEEXNqkceAVESWoCc50C0ObPsy8Q96cI95WndNkyX20RElU2tnSWLlthWPfHgnpw5Wt+L9Tc+/XX0kUZorB8eestYMAAycLvv5/PrpACQAVXGTBq9X7BhVYmYfqZj52MF1/0VxXnEUIS+HoWPv004df8/ff2ZdwUXEJkKbi8xv3PqdLth2zeDCBXGC8MU5CABrRvb9uY8YVdGPf16wfcdhtQXy/T9QSlEJKBFJxhw9zLqMrl/MILQM+nfgcgOy7/VVcBDz8sX09otLTY73NxU5m/bltpA7rTTwfuustDvwiJMGKe3GJ9+3eexUuzTs0cB0PYIjsPLi+GIMbBqkgUXAAsjVfu/ukivDrnZOVtqMqXRPKI0zwkgRIDksbG4HVY4LSeGLn6Z/jsM8XteVSa+VJcgctxQtzIycHlZrTp5aEq0gewtmULAM5Gt+kxTMsY9U5Yt2fR/mbiDenLPM/BkCNPBHZMIVlQwVUG/PqrP+Pyy7O3tbQAXbt6qMTCs4LzASHBELq18kmKtjb7fRIeXB0qMs90ykNE+gVWMt51mqSAzOzBZUQXGtDZwoLNQliX7qcQwMiRQGsrMG6cez/s4GBGXGhqAn71K/dyZhmyUcgj4vIC5qROOHGc6RlLt1GI+1ZRG62thi8ukq/9n74O996b+Lxxo3O9w4cDa9YE6hopR4QAxo+P3s0zapTzfptn54WZp+HS725KfLF7ZuNx+Tm+COdEy+Tyuo6npp2NYasOVNiQsP5MokcUwm/5uUcktUNCAOfdlJszpM/ck3DJJR7bzJMizozb6Vi1Cnj88YJ0hZDoYzHfaOYcXF7q8LKvSKhr7YRubz8HwFsOrs+X9sQxn99bEueAuBOF5UAWxWQ8VmRQwVWm1Ne7C47yhV+rLkKIAacHyWOIwrTQSzKufY6QzG1xKJEHQwDWk33aWtqiOYnfacfqxm0wdOWB0Pr09nQcIV7IClE49kfp4yocVme2i/R8vKQ55dxw4PTLumXZxXTsCHz7bfKLxCKgoSHxv2tXJuIleWDRIqBvX+Chh8LuSRauj7DNs7NiU7fMl9QAoWnY0Lxl1nZfXkcVFfhu5QGRlwFJhXxW+CPyEQaOBEfTgGGrD0h8iYAAydKQzQ3JF2VdB74e2cV7/VasXeu4u1DP/7JlwL/+ld82Zs/2aORLSJ6xfeSND56u44Jv/4SLhvw5vSkmKqXfwaVQ9aAXcMHQGm/nq+3qli3dC5GSwe62+P57IC5CUIkMHlz4NssEKrjKhfo61yK/+x1QW5tQfp12d/4SWkT9JZmQQhHoWVCo4Ep7cEn2J0vZ5EHIY9XlIz/9V7JOTdq8JrBgSQicMPAfOHPQ7envhDjhpHAy4mgo2SCfuDLL8ws2Hlwy6AEFfDU1vg4b/kOnHIPw5cv9daFAhuWknKiqCrsHlvid23bqbAjRa/B63uGdZ/HdyqSw36/5qqbhjEF/w8L6Hf0dXyCEQF4VWuY6uWpQz+bNwIYNweupjZDgsmgUoZWV7mXygcwzqjiX2pQp4Rn5EmJFpWY9P2c9HkJg6MqDsvbHrDy4QswzHdMrMHXDbgVrD8j2aHMOUZhN2vuNMoCywM7Y5MQTgRk1hb1nAWSl1nhq6lm4+mreh6qggqtEyfGUMGe+t+DDD4GpUxOGrSOmb2eqsEgW6IQUEZZrKtmFlouC64kpZ2NR/fYOIQotPLgk8fvCbuXBNaV6j0ydkh5ci+p3THheBViU1rcawiFycUtckJ0CzbdS9otXMGWwXRuWpEKYxgIquCIX04EQBUTAs8PqQXZ9tG0GhpjR+tRU74bmpIdHPC6vlLHoW5sekgBcEgGJXCQq2xMa1w6KueYaYIcdwu5FBiV5McK8R7y07WLF4/Vn2K1hBgwwpRBeIWH5smqVt8YJKTLaVVivSXSj17XFejxulYMrRN6ZfxyO+Oz+0Prk5T1LLxbjAxKM5PyhjxsvVdyX17UPjDKx6TW74913uaZUBRVcZUJgC7KIKbgWLOAYQIofqZA6rpWI3Bx5uo57J1yEXrNtEqsLkR2iUCT+amStXrNycDmUmzABeO45YPp0ABI5uKwqc2qgqcmtp7ZkCS44mJQ9jzwCbLONezmVkUCccFRwpV5ynRpTpZjKh4JLYj0R9Dw2Nwc7npQ4xaq4tXl2Plh4bOaLIUQhYBDi6Lq/d4Gk4LsopskCenC9vzB/kS7KFb9evlEmX8+NgOZet5fGXeZlVb/j1luBq64yNCtjbGDuW8RkEoQEpdLm/dis4DKXiukShh1O6x3Fc2ZjrKNzAV0HhgwBqqsDtWOHbRjmn37K2detY1PqoLz0hUSECRMAAGL9eqnioXpdR8H4rgSggqtMcVobWu6L2GLyZz8Dvvgi7F4QEgwlIQr79AFuuSXbSzO5mG3TK20XtlkhCqHhrfm/xK7vP51TrrGtQ26/sz47WJy8/jowdy7wzjuJLjvYj+tCA0aOzN2R8uDSXKYrtxhypiReWX3h4rbsGTcuK1qALUEUXF7uMsvbORm7SZ8+y3vjMuT5OUhVv2Rl+7y209QEdO7sXo6UMVEY8608uPzkyJKoF0DCgyvAzy5Ka+c8Xue4iLZHG0EknnNfwjLJd27XnxdRRb7UZVmxIvNZtQwiJeiM6Pkh5UeFTYjCrFvUwkglFrF5yDWX0WuvAZ9+Ctx7r7I2jesmy6GlrQ14442cfbtvWZOqQFlfSATRUmk4LOYRC0WrrmIdTkKFCi6ShYoxvrY2eB0ybJJPZ0JI6TJ5cvZ/IP0g24YUMnlwPT7lHPxx1B8si65q3Db3cMPU4Ulo7+bBZYXLoKQLDc2xds4vwC0twP33A/37+2qDlCarVgE77ZT4LCs/sZKH6LrB4KK1xf5YD0lsK9auzt04f36inpbWxHeJ+3ZzvIP0b9M++lC2e75pagL2PmOf/FTe0AAgE52REFsiaiVpKQzfuBF46ilg0iS5gco0LqRf6r38ZmMdTsKBlhbg8cfTXtqhU0APLpI/ImZTGQiv4Y7mzgV2uOwURY2ru1cLbtU+c2b+6h44MPE/K1YiIeHRzk7BZZx3LZ5nSw8uM46Wd2rns3iqv3b1GmUVisiRH7h4sDU2J2QjqXnm+u+ukMnkQoqVpMWo8T5Ztiwpr07NBUa4xit6qOAiclg87FOmAO+9l1u0Wzdg8OAC9ImQIsfyxVfhxNqmV1rXN2hQloLr0yVH2taxyS3cgCTLN3VFtUMIRDfrcLvTcu/4C9H5jZftJSJNTcD//pew2Bw6NF1ZKQlQiD/mzwfWrfN2jNV9uGgRcOGFic+tk2dhzZrMPr+3mfbj2Nw206HC8nTz/vhj7jaF45Fmk2ZPGV99lW6HkGLE8nEbOBBYvDjhra1pifyTMpWkQhSmxgu/3gopBZfVaNa7d0JS8PLL/uoOQHOsHeZv3NG5UAFzcpEIYLawDHi9VUwlXhVDU6YAG+pyIydY1j1nrnMBm2e+uhr4xS88dStSHHD1MaipcS4zYYLEWkAyZBUh+abSRsEV100hCk1DmqUha5B5L+CY6cWQTwUxvQLN8UxUCEtj2eRvSuUjzTqnAPrO/gWmvD87f50k4ZJ6dzbMxXvtBVx6qXVxLhOLHyq4iG/698+Oo23Eac0Yi+WmDCKkHPFjEbm2aWs8P+M0i8psksKbt69bBwwebMrB5a0fxn7LJlrf84Mn8eTUc2z32y6KXYRyM2p2TXywC1HYr19COGiCIQpJpeG90FUQkoxfKBpyXYfbGyLufbb0SOyyi3UV3tJhZAr/bvgNOOUUmU76p60N2BzLb+jAvJN03aKCixQrlmsC44JZ5ua2y9Gn61jd1FWyI1YeXBblOqoxgPHDE1PPwf4fP5K90UvuEb8Irh0Kga9TmzJiKmJk56/X5p6A/7uw0bmQzUmcPTsRltkLbtfDtzGPQ2QHO+at2MJqWZ9m6lSmMSDFhV2EEzcPro2tWxQuObAE8QKHd/v98D9ir35PpL/bpU2ob+2E2bU7A7AWF+iDaJkfJVpb7YPueMZmUq2pgXt6i0LDNaUSInZViSpcp5fRoxP/582Tq9DlgauvT0QqkeGMM4rbcowQVVg+Vi7P2r8mXIDbf7zc+ThjiEJzfc3NALJzcDm1aDWW5GP+dYt5bCX4i+sGNZXdImW2tVVW1eZtDJVzQVGOtGsnX1a88SYAQO/7Zs6+9pJ6odQ9PHJkItF6r172Zc13+6hRsFykG7e0xf0v6f7wB2Cnd5/xfXwkSD7HVHCRUuOJKWcnQvH6ID13+nWfdPLg2n57f3UqoL61U+5GC8v1Si2PbqN9+uSv7jLH17IsgoO/198h+xPmbtwZ/Zf83HN/amsTUU+9kq/fIVWBRWVO/TniCOCxx5JfnJTcXPuTiNCuwl8OrriMkWkBPbjieoWSemSZtGGPrO+WBru6jpO+vBOteuJlLSU5yBKbFGOO0RLm229zPaySaai9k17DWmAhO3K7F+bOBfr2td7X2AisXeuxf0Q5VHCVK198nvj/8cdKqttmG+Dqq+XLT5wYvE2uS0mxYzmJutzYb8w7Qbp+SwVXcrVstBZzUi5Z6uA0Yw4uOQ8uN/zk4Gr3ei9MTi1u7d6mrRLyMGwRQbYHlysLFgAA9Lm5RiHarBm527RcT+bUXXbqqYmIXv/7n4f2U5U60OGR+20X3W7MmJGdW6+YiaCMk0QNTcOqxm3DTSZtMe/YzUT3TrgIU6t393Vzp+sMGKKwKBJvWyq4dPv9AdtoWUZJRqSI4ODv7vlU2PVnz57A+edbdcT53P17/Nn4ZsUhSvvSowcwcf2eruU2Nwe4rqNG+T+WEJXMnQu8+aalRbhdiELduC63GEzSCqUoMGqUu6Jo662VvnKbhy3LqoXAwrodco4x9rUo1jdlTF0dsMMO7uVkyBJ9e/TgisWAhx8Grr8+8f3ZZ4F33snsv+46YOedA3SO8iglRGhUJKGQeuFNBbOuqoLWvNlXVQsXZj4X4vmsrQVWr85/O4TkjSAPisSLvGVs7rSCK7OYjgeImb2pTU2IIjcFl92pSnti2ZwPEdfx+dLDcdXwa/H+gmOsy3hMAk6Kn/p6oHH6IgDAb89vcc97nA7TlX2fjRgBfPnINMtDzFZcL8w8HdtIOg5aCr3MnhQWFcyYWt7xf//7X+CKKxKf+Z5AnNjt/afw1rxohROwtD5OzYHQpOb9HJsWP/O7VYhCK8GVuT8tLcB//pNwU80zUroMIVDpIwSaW50pThp4JweaPKHEgytoDi4F907BPZ9cGl++3F9Vz089BcNXHyB/QDJahBNLlwJtuo1navJErFsHbHFirqea9HldtEiyICF55rnnErFBLRLV2ym6zTm4zMREhbvRZqG8GD/4IGM8a1fvIYeg4rXemFUTRAuQwXzenHJwpY+xcvKigivSWNkq++XyZBAku1vU6ZFo3z6R+SLF3/8O3Hln5rsxB7cvuJ5UAhVcZYLt85IKWfJmMuzS++8Db73loYLwuO02YNddw+4FIf5R8VjN27gT/jjyasvKWvXK3IVtspzRgysu7F1Z3EIU/n2cTZZOAK/OPgk9P70PG1s625ZJodtZfcmeJBupQLPoiIuG/BnvLTwOfecdb90EQxOUFTfeCOy2G3D6jfsAAD79sqO0sYT5Xrn4YuDm739vXdbi1k2m8rLdn8LqdtaOPsq9fz+Ndy3jCYVzfyGipLzxBvDVV8HqIOVDbesWobZfYbLadvLq1oU/BVf6u98HwikHF4AmY+6+sWMT3q5GCUCesBQIWvx48zlWyfj1PfKT56tc2VgrVeyHH4CqKosdHrVD8+YBDQ2Z7/feC9x3n6cqXInCPNTcnG2EWhA++sh2l5dz0miTZsy2jlq5eyhVySOP2OcTJyQveIgRag5RaM7VZWnAEmTQ8Xts8jg7T7Q0yTG6avPW/toxV2fuhlVUGSFMucNTZU3HkciiwvBDCC3rgVI1N7e0AIMGJT576acKAxpiDRVc5U7q6TZOtj6DnEZhEU9IMeEnB9cNB4zJ+v7pkiPx5vzjE2/8QOLlLjXTWpHy4AoQFkV2ITho+aGYVr07ur79P/c63XJwuXVXYgBKt2Eqq8c5eJUTr72WLdRy49NPgUcm/RpA7m3mtJjNd97nufMtlnCb/Xlg54sNG4BHHw1Wh+x5iuta1vUQcQqeiQ3JGyXIPKikGx7al7UwzjHeDiq4cfLgqqjAlm+8hNFr9kt8j4XsQWphua48ap0X63jiCa22Jv3Zadw/4YREHsvcCrxd7AMOAG6/PfF5jz2AJ54AHn/cUxWu3Dvu/PTy3C1XtXIha/IkPv44sN9+aqs2M379Xrjppsx3rUpN+E7Pz6/HMeid11vw3ntqPQQIsWLFpq7Y84PHLe9Ru2c/K0ShrluvWfL9siFDdTUAw5rGrs3kA61EuC8E5tV1z9ok48GV2Zyr9CLRYtSoxNisbB33xRfZ363yO3qch+vrgXPPTXz2GPEwF96ISqCCq0xJPbpvTTsCAwYAj4w5JczuEFKW+JnHOlRkL4zTdaRcUJ57Ltu01UYYU2mT0Danj1YbFYeBAfzl4JIhy2rLa9uEAHjoIeDxKecAyF34ui26nQTYxlt7/PiEIk3quOT/A4/uguqWLu6Vh8gXXwD335+nyk2/sd0fr8asWYbdAz7PU8OkVDBbQxeaHOtjh+7IhijUTYYcqkIUOs2Ta5qcQwVbsnAhfndpDD/95L17iabkrl3elZhUcDnSqxfwyis+Dhw92nG35bPiQwqW8qpesSK73uXLbcJ8e+T56afixRcTnzt1CsGTCon8JflmUf2O6NNHXX3PfbanJ0MkO4569AIMH26zU4i0gW+HDsHbIsSJmTW7YPmm7Tytz83zrqVHchQUXMmkxq5rqjwbF1kay0rM0YENgUheOOUUU86soJgnAwUKLqvqvv/edxVEAVRwlTnXfnkxLr4YeGDU6flvzGKCveWWhGCPkHJExZqzvi0Z/u/4ZPg9c9wWm3hFsotLK+FYPtbKcVGButZOuTuM+Ud8oGsZAYVd7iLKp0gai5vBuP71ogxdtw72Cihk34bXXQf89rfGNv09ZHaekJqWrUCz2p9v1q3zJ9wbNw7WOdLMSc5MiNFjHPcTUqGJhPdzGJOAEDnPuZ2XFAC0xNt5U3DZfJftWxqnNv0OHLNmAc88gw/7t8MnTy32V4cVFuudLGMeFYsXt3wnJIs//SnxrucVMeibwG1XHHaw72P33BN4e/4vA/cByL5FamrsywGFmYvTRMzj28gdfQ7Ad9/5ONB0Aict2wHffmtd9K73D0Nty5Y+GiHEO2nlj8V6wy2TSKKQ8GeU45RsyLyO9jufJX+T5paDK+3B5a8ZM2fuNivru2WrQlh6axnXW74MgUj+WDA//TEWU+AZheT1bpfJ+ej5Vp8/371MkhNPdPfYtoTrSSXwaSY5SMW194OFJuuVV4C337Y/pK4OWLIkeNOEFA0uz5pZAPb0tLMSHzpZKIes6hMC8zbuhNVN2/rujtDUTx1vz/8Ftn3refsO+FwNG8M72An/qeAqD2bOBB5/zGUumzPHcbcXD64zzwTO/9ZesuckQ3a624XQfIUCmzrV8yGBMf7G++8HjjxS7jjj+bjhBuDkk10qt9pNi0xiR8qKWBPAO+8AP/4YSjfM+Sos7+jkm31TrIPUPW2r4FLoDW2LpqGxrQPiuktZwzirL8yjgssupJPiNoh6VISYFULLuVxLlyLb07fA8iS39pQquNwa++ILNDYmzkkhWb4cOOggubJ250NsbrbcfvUtuUZFDQvXWhrXPD3wAEcjJEJU4qT8sX0/NYlqLRVcpvqEbirz8cfWwvlJkzJJa53o1w+46SbnuU42/UFyPeMlPLMtQqCdaQ2liwpLuYdbRghGcokYQ4amPwoRcF405pGV0JTZrnXNBuQWCSKN/cxSTstCBZcSqOAickg8cK6Dzxhv1tSaBmy/PbD33p4OI6RosJpEXSMNmL63r3ARdFtUeMDHD+PblXKWrX766Ie1m7ex6YCQa9OmQJaCy+ZQV2EcKQleegn4130u19piRZqV18lDDi4veK7nGxfrdovnoU+fRO6SYkAIAM3N2d89QrkzcSMtZFm1qvCNC+GekB0w5MCSew5EPJ41jgVW9CYFAk65LdIhCgF0efNFPDDxfOc6x40zV6EGC8GWZUgnlVAgkR9cBvAfxui44ALv1ZxyCnDIIf675QdPt0hTU976kUN1Nf76V6BHj8I1mcLFlsgV8fEnltvf/TjX2O/Vz7rnPQcZIW6kZ1AvIQqN45eFB5d0Ta++mrvNKo6aVd9Gjkz8f+89+/pTCq5U/2bPBqZMyS1nNC5SgNT5kMnRraQ3JB+IhYvUVZZjTWqxrrV7ITd4fwGwvK+8KLgoecofVHCVKEqSNxpYvKpj8EpMA8a++7ofYmmk7svnk5DoYbXm8mpFdMtBIxMfbM0cg40FUglb8y3gEcJ3EgFLDy5ziEJaboXOgAH5D82jIsTBru8/hYcfznwP0ufUbbj77sD06R4P9uGOtW4d0snuC4JdXCAZGhqAT6wFWISoIr1WNr+4FohKs3DGai4yhBEzW3NboYsK4N//Nnz34cFlZWHuUK45njx/tbUAgIX1OzrXb0iu41cBJ3uU8nmFHlwFwdaDa948AMDadRUYONC0zyqfhulytbU57w8b7dP+hWtM111DJkaWVN7hAjJmDNCtW8GbJSVC2qDGMkShjQeXOQeXhCpGekzzOndNm2a/Lx7HFd9djxdmnpbZ1qtXbrlUiEII5/okMXuCCaG5yiisQhTaedCR8NHH/ACtbmPii4XXlCvJe25R/Q4YujRj6WD3nDwy7lfWObRM64s9922fvb+tjR5cEYEKrjLFzjW477zj8ers3FhA+1z2c0/1jxoFfPihc5lFSYW852f56689HkBINPGj4DIvwnLe581S/DyEJSpo6C9dB955B2JtlXtZq8PNHlzJ87Fth8wiifKp8Jk9O/9tSCm4XCyymuMdspyRgwhP9Vhi9btyZe4+p/Adq5u2wRdz97fcZ5dnzpVNNtncA4wfQXKoNE+dgyUTq50LuZx8p65feGEw/RspcpL3TjrvwoIFPt9Gg2H2LrKcWysNeSQlwrZtaO6SCKWS/I3xoLklzOfKiPEhGzMGGJoIKxPT5dv0a2AiFU5diCyB4IjFe/pqyxEuIArLihWeihsvz7Bhmcd83pzEjuWz6vHWW9nHXHFFgP5ZYLwtXadUlR5cycbspsqaxo55G/ZUhCBzCk2VDzmgW50//pjW4RPimfS9bBmi0PoYc4SRnDWDhELHFq9zV/v29vt0HR8tPhqLG3ZwriN5EpZt2g4tL/YJ9iBb5DHVrdZQQtjIMgzHUcEVWQQA9O6d+PyWQ14bFz5beiTO/PSm7I0WE8yT40/H7bcnHBY1zT6E7/Iqk/PHoEFZX0N4pSBJqOAqU+wE1B8sPBa95lglu3AgudoThknqjTeA3/3Od/ek2iOkFPG6yEq/RKbCCOmA1qd3pkBAbyvLHFzmbXm2OBE/jMXXyw/1dWy2gkszJMI1lKF8qizwq4wyH6fqdhe19l6JTn2dsL4HLvzgMjWdSOHTQ9INv+fqw0XHYO8Xbs9b2198AXz0UaDqSQmQnm8XL07cFAVGamxJh+nVpOaq9ZuTOWVGjw7WuRTG/AU2feu53cqs8EWfLZVMtof8G8xUVmRO2qp6Bfl26MFVEJTNs4Z6fvWrTBqNAw5KrA0nztsa116bfUw+54aC5uByqXu7e27El18WoOE8kI9xwzVEfMoSy+BVS4gsTh5cduR4cMnk4DIVOX/wn20saj3OXb/4hf0+2bqS48yVw6/H0QPuCaYFELmjgF3UmayfP2YMMHdudhEGjIssQmhpj119gcJwhQ737KRJwFVXJT7L5qjsfOm5GDEi813UbvTdNRIMKrhKkIJrjFMKJ58eFp4pskU4IV5w9eAyfTdbL7XFXYZ1j1IDS2uoQiIElm3aDn8Z66Ixt/ldQjOFKNT1HKtuz/KpZcuATz8FWls9HkjsKIRXvpQHl8XN4DTlaHGXHHg+UZKAOWQaYx3DfUQY6oG4kHWHjB0bVjekEJBTcG3XKTuEi6/HQIhEKIb33zfkALMfCM1tHLfjYuf6t946bYij1HLaxYMrL1baVHA54veVzfZ+81hhFC6P0zOYkxJE5dxfAnOg0lf+tEebz/MyJykUN+QQJESW9H1nGQJYIkShdA6u7K1fLj/cukNWAsNNm3I2/fn73+Hnn93r6sElg9HodEbNbsoHaJm0CkIAeO65rIg49OCKFsZ58JXZJ+PMQbcBUKuIFKvXSE0w6dvHpWxzW7vs1Dp9+/roVPHP2VGACq4SpF07YMjKg7O2mQcEpY/PwoWJ/xT2EuKJQCEKNS37mUuHETIdb148evbgKkyIwp232Gi7L8jCM6evKQWXIcyD5/X1448DQ4YwxplKUmGH8mihIaPg0o48IifNo+OatslHPPAk+VjGph/vCCySd3v/Kdx6q5q6GhuBnXbydozbOBWBU0RCRggNrfFKnP7V38JoPDd/hNU9u/vuqeLQ4+43rXm+9B229IMPEl5gybHZ8ujk5Gnu9xHbL3eu25DzzNdjOG2a9bhs8Ruz5nq7tYQQCTNdc4Imu7JGpkxxP4ZIIaXc8ZhMM+oKLuO+q0Zci8em/Dr/HSoBfI0bVvGgjXW6eXD5aZOQJOnZxzIHlzX+PLgkcmfb9ANz5sCc3HDYqgMweYNLeF9TXV8uOwzNsdzcpuaQi0EHaPP50K1CNpra+O13N2FzrH3WuoUKrmhhvDZTq/fAT+v2TmzXCz8K+31XPK3P5Xj00QI1RrKggosEpq4xnOTcslxwATBypPfjhgzJ1dnNnAkce6ySbhHiKQ63JX/9a444bGNrZ+djPC4mpXJwRWFCtumDcdEqbMr5zlGyfr2/40gO2uRJiQ8TJ+atjYrNcsooYw7bt9+2j9738stAc9zBotEFJwWMXwtjHVrJRs9Zt05tfVEYtkhIGAxCNjR3wfDVB0TihrDsQSr8sKQH17Tq3bCmaWvnOl07kps0yCkJu2fhkC6hdLJDCOCVV+z3mTAKwGx/w6hRwBNPAH36eOsLkCMMJGqwfRzNmk03pcV3w9R0KAANDYmQR4DzMLOofkdMchMk54n11WpFQr69pAw8+ijwpz9Z73Maj2xxG0CjoA0lJUuFgweXHTk5uKxm9Ndf97d+sbvfTbnuLZVqLnWd/+0t+GjxUTnFchRcgUMUmhVc1rlCje9bQ1YejJWNXbOLhB2thkgRxnXyOy3MqNkN/fur7QuRgwquMqFNr8zyqPe1MLRh24tPkytoYwYfj3vMqesxXsHAgcANN3jPCXbWWcDHH2dvGzUKGD/eWz2E2OHLg8tojW1c3CWfi08Xm3JfBMzBZdUf2Sq8tORkWR3kNVlUVGa3kVyprG/OCABlrOIt4cuwepqb81a19uMPno+55hpgkSnkd+r+v/VWoK51C9/9cQxb5LPOV2efgi22ACq3lu9XlUt04WeeAe6dcKHPHoWHqzV2+PoMEhbJi69DS8+pYViGmnGyvJbNwfXb727GlcOuT3/XRUWwmz3pbWUpWEidx2S/F9TtmO4rvvnGvl3DdkuBlBPJY42eWU4YhXO25+/HHxP/p0+Xbt+9UhIIu3vH/A64Zo1jNfrn4Ssghw4FjkrKemtrgY0bkzuWLPFvYCWDh+d+x8N3zl8/fDJlSo6sXQl2MhAx6Bu54wLGTdR1YMaMQFWQIsQpB5fdPWlelpjnPSE0YNUqYMECwzaLiqzereLx7JzdNvhRcAFAdXNuzsscfZbi+TMu671m2tzQ1klpP0ieUPjiJgClIQqt4PIwHKjgKhPmbtzZMTdkmPTpA2y5ZX7bWLgQ+PBD78eZPbgoECP5JqibvKt3ldcQhYF6I09Mr3Qv5ITdAtZwPgQ0y9WG7ncq5ICgHp5TJehmK0kHundPxsK34dFHgc+XHqGiWwWFCi7ixquzT8YpX94BIBovok7WqfeMv0haCTe2au/sDUOGeOtIWxuOGXA3rh5xTTrvhuXzklK+QYMQwM8+eiT5HcDnn9srjLbbLlOFt56lJWSVMkI3U86SvIQh8hgyj8ghnYMr5pwHM2rD/HnnAT//efLL6tV4cZakkahPFiwANq2ozWsbkcHNQMpl0hdjf3Ter8h74PPPgcMOU1IVKSL85eAyzC8WObjSjB6dVc7M8zNOw5CBpudDctFTKWNMYlFXbUuuoV1O1wKGpTd7itp6cLmkW/jz9x6t4Eko+DJEs1FMyY7nQd4VPd/efDFVAlflpUaID8a8up1w1lnB61m2DDjgAA8H1OZv4S4Tjp8Qv/jx4EqTnLA3xTpmVRbTTcN6UAVXgXJwtdkpuKTdxdxDFCY26DllvQo259R2R49+j3Ehkg/yeE5l79r5812NwpVg9Rxdn3S8UJpovlzh80nsSN4bi+p3xML6RHK3giu4hNxMeuHDCeXy4oYdpKtu1dunLbOFAPDZZ5l8uTLU1GDC+h4YtuqAtBe07uLBZbl2SbuqmNh1V0MVHtcTLS14ceapmFGzi21/jBhDOilRcJnboIJLinwZWdY3FF9oqcWLkx8KMEf97GdA38+6uhcsBT74INjxBVozeIpaQ0oPD4uNrJB+FgquxlhHzN+4I1BdnSlmMVff/uPl+Me17mH1jeGNU1Rtzt2Wg8WzYxWm1DIvdgDMv1SHRQ4uieeaObiihd07sN2qOT2nJhk9Wt1wTg+u4oOr8lJj7FjXIiNGAO8tUJ9IqinW0dlIVHJgmDoVmDdPvt0HH+sgX9gjUQhZQ8oL9xCFGZpi7bGsYbus/XttVW06oAAhCq3qlBTepbBVcEFSAGbnwRWLG4rYeHB5WNgKAQxffQCWNmxPAXpA2tospoUInNNf/AL4dQHyvFvdd3375r/dYmbiREjnGHMbgUSbteX/0qWuTgGk2LEYZ6LwIprTrQ0b8MWPO2X2+1iT6kgqn1atkj/IoLRJ9cnOMjqxT0NMZObwxfU74IWZp0qGKPQoNKiqwl/HXoGBy3o6l1u0CHjllayQTkIA+OknoFevHAs2rU9vLK7f3r19Krh8YQyTL4PsUmCbs47Dhg1O9URYcBkw1F2UCeWXzZ4d6HBpr2/TdXvuuYTsghAn0sYWHvJvm+dHs4JrwNIjsP/HjwBHeI+y0BbLfUp3ee8ZTFi3Z9a2dT4VXMfvtMiioIkgCy8hLDy4rA1xrE6vMWf5o0eHH8qWZPAiQZo7F9hnn+xtJ58MLFmSMFjVzjrT/mCZEIWN/i0S4i32L5M0ZM0fXJWXGvPnO+8XAjfeCNwx7rLC9CfJTz8Bv3n9AtdyCxdKvIObBqOH/5uH+IZJDZv2/WiXgoSoRXqtJwSuHnEtBq04NPE1KfjaeYu6nHL+Gkge7vc11aOiIuaQhyCIx5he15D5LCwsu+DtlHzwAXDrD8lQBiUsnCgERiVCVm65CNDYaL9PmVWYlaVhksjcWhG5HimOPhp49lnJwnYncfXqxP/Jky139+gBvPSS976RIsJqHojAK1HOXPfGG9n7fTyO94y/GId88oA3RUyyoZZ4+/QmJ0WUDi3Le3zoqoNw29grpBRcnuf3Dg5Gbcb2nnsOAHJDFL7xRiK5z6RJmbLJsWK9Rc4QVyIzWJcWXu6LtNGDxbUIIym9NPm+dyI2f6vE8rq6nc/k+bDyLDHu99QmgDvuAJ56yrlpIHA0NhJlqqtd75/U7SniFjm4bEMUmhRcdkJx470vEbIfAOpbOlqWa4xZb1eB0hCFdoa0c+Zkf9+wAXGRbUT7yORf47Lvbkp/36KdKScJiSRWt7ad0aOu53p2GVnW0A039znSvkCqzU8/A+DT8LGm2r1MVmOlO2cXkvDf5oha3BZ3M2cWph8mPv8c+Gr23q7l9tsPuOWW/PfHle+/T/xfvsJyt6Yl3o8JCYKfEIVpa9RPPkl4EZnqyjk+4GQpgITbZ9Y2iTY8ths40baxvaoq4N57gR9+gNg1k1tIAJYhCuMe8hWlZOMAKNjKB1zcAYiWZVfUbvOWFrlyZm+XxkagoQEJsz6L/UaqPb6TkCIjCh5clnk4TDQ0ZO/3OSzM2bgLsPvu8gckhU7VLV3S873l2iR50oTQrOdwu5MaxINL8kKJ1jbcP+H8rNVKVlvmJLvw6S0etQEyYng5PVJFLSqMgvelLyoD5p51g+spT1gpHrL2O+yTuc/btQPq6tzLkSJi3DjgppsS75wuyd47VCQk5LVN8gqkXA8um3vUwuvaDTulmq/3cb9jTeAQhdnttsbboe6r0dlWihZGMV8tz06Cx6EyOkybBqxq3NZyn5frJATQ0eFRa4x1Qu+h7rJpUVOLpUuB9r88Wr7xJJ7f5XkjKoEKrlLDbYW1cmVh+qGYX/0qei8wASMhEGKJlxCFWZ9TCi435ZOfHFymRbtUFTYhAeywDH8En2FCv/02IaF+5x3reN8+c3Bt3myy4KFgSwktLZn7vs9Xu+Qt96GXhWYh1pjrNm8NrcL6HrK1MFbBpk3yZYWAs1gnupif/VNOAQ4+GHLx+CO23iD5J5LX3OR1Vf/jLP91eRnULE6GkyfM2/N/gR/W7pO7w846O8uDy2PfPFh8PzrlXDTGMsItXWgYtXo/vDjz1OyCQebynXf2f2xZ4G/+CHi7+qqnkJx2Gko6vGW+jXRWNm7rKeqqDNL3SoDxornZ96Ekgog33sTYtXsnPJhHjnQsm1rXt7TlPvd2t55bDi5D5Vnl7Duc2ZeTs1vicCONjS5NWawZzOVjrQEVXKbzsaKxG7Z96/ns9xwLQ4LaluzoT5H29C0zevYE/vT9/1nu83KdhFAjprn0uxt95xDlfRUOpbuyKlck3fOLjWHDDO+0Fr/xwAMZUogUH5aOTx4mQ6MyzDFPRtZB3haTljm4zH3s1cs5plsAdKHJDVvG39U5E1c76xzBJgeX5FS49dYJI700JSycKCRbbgk8OOl8AMBNzx+EGTPy0w71kUnK0D1J0xL5u1YYnLKdhhWGEipxouDBhVzhTI4HkWnQ+vmAf/lvzMsPNCqg7LzDDTsHrTgUvx78V8d6sjbrxvqt52WZvuUwdWrGq8xKuAbgXxMuxF/HXpG9w4snjbn9gw6SP7bciMcL8t4pJWRdsCDv/fDCiBHgoiQA/zf8ehx+uGljnmUgKvK58ZKXFgvqdsTxA+9C+9dfxfTqXaWO8bK+NM+7trePlisPcGvczoB0ty617h1raUGXLsB7z613L2vA3Lf2e8mdM7vKbM+H8SQXqeyTBEOVgqsp1hFr1wavhxQOSudIXqmpkS87Zozzfqf5ae5cYOhQ+bacGDkS0K6/Tk1lhHhENkSh1qc3plbvkdm+bDnQ2Jh1/JQNFiGJPC70hq46CHWtnWz3/2aPacDy5cCXXwZqxw6/1i9an94YV9UjqxtCwFrBFZfra078Zb6pKsH8smcROargLFyYUGhaUfTvSh4Cie9/w4moqyvO+9ztMjkJq4zDxJo1wLp1avpEIoLFQ+wlVG2+cJvvzFbH3ir36SWVHC88hxIEbBVXxs26jeGJVN9MvNJ/x0TIKFgr5nRdQ/uK5PHG85FUcEmtN4p+AiggmzZJe/IsXJgdGsvWe99jiMJ0LcOHS/WjoOQ5RKHWddu81m/FnrvHsWFDYdqqlZDDe8Ht0U6PDxb3YCyWiI5OyosWvV36c9Vmm5eGJKk1p1UIQLv1qPmetA1RaLgnf/u/45064dhHq75c87OxuYWGDQMALO/3g209a5ucz4cKbKNdZCV5lvjNivpD8kvJL79K/gcWBiq4Sg03jwIhoG1uKkxfAGy3XeK/jBz4pJOCtaVqTJjlEAGG4w5RiZ8cXLZ1zV8A3HVX1vGrm7qits40Jni8iZ+b8StcP+rq7CoMQqDtOyXDAJhyhQAOyXA9IIQPoVPy86zaXbKFW6IiWaEpRKFfq0x6cOUFpxCFa9YUTohgcUsXjPBF7Qnmr+oSdhdySD++eVQwGwWm++wDHHts3poiYWDlwSVp6KCKWQs6YEPzVlnbEhFB89QPL0okQ9nLe5+W2ORnnrT5LcauCKF5NGm3/x23/HBlTlbxZZsyuUp14aLg8nHqy/W9YPFiYK+9XAq1a2e7q1ev7Mu+337AuHWZfBieohk43NpXjfgj3nwT0TRIKsE15PKVlXjjDWD02v0K33jAa/zilBMwerTNTpcUD598AnTv7t6GppXvmFGKvDr7ZOmyqTHNyphGdryrlAhR+PUUa6+oGTW7ZQ2Wdvehea5vV2ExP2/cmN2sRWXXjromZ5vqe1/Kg0sCFd6ZJP94WRf84x/Af5/MU84DEmlKb2VFnBEC2BSi1K4IcFwf19fLlSPEJ+45uKz3d+z7CuItsZzju/28h6kC76vL/kt+bluFgJbwFLOQMKjII6Tr/hVQFZqAqDeNd1YeXH4XthwECs7++wNHHRVuHwohnMhn/gptX4tcOUVE+vy7XAi7F9ZYm8NxqVCrS5ekN23ejIJZpJPwKGiIwrY2HHLuntb78jXAeM3OneSzpUcmNvlRu0t4cAmHcpa4Ca6SCeWt+pul4DLiZS73mcOz1JgyBVi2LHHqvv3WppDDef3Tn4DVq+3rn13THeutol9Z1Dl3rr3+YfCKQ/Daa859CY0SVHABwF13AXeOuzTv7XgeKl0OuGvMefiXXRTYKVPw0KTfeGwwl+OOA26+OXA1JCKs2NRNumzq9rPy4HI7JvXFNgeX7MNgDFFoM6ebt6fX0sY2kmOX07vKEdstl+vTwoVy5cwIYd++h0gVJEJ4yRHtwpdfAl8Obq+sPlI8lObKqpyJ4gJeNXn6jam0JI7vG4MG5aVtUp748eByWsI2xTokwv2Y2bzZuVEXurQ3ZUU21PFj1d448rP7ch8cp4W4B+qaO8oJ1rJNwtP/RENmsWQnSIvLKLhoclk4HASYDQ3A+vXZuZRS3Hqrcy7GfCc9J4VF22Vnx/1240b70060PygVxsqUr6UcllZlhZUHVyEteOfOtdwskEfzfg+amMbNuQthlR5cxiFeFxWZDTNnAq+/DrS02Nfp9jtSObj2zfUgEQIZBZcxLnpSse1LiVemawPjz545U339x3/2d1x+uVzZCy4ATj/dfr8QiKYyKYp9KjIMdqfuRGAiX7wYaEoF0mkqXEQdkh+Mo7+sgapl/m07vZVpTrI1HE1VMH26Yx+s8muambRhD/z0U+a75e9KKbgc3vOv3T83tKFlmwHyI9q27zEHl990CCTB7NmKKnKJO1vyy62S/4GFgSsrUjJYjgmrVkkfv/32idBYEVj/kjImiJCtRW+XEBaZSSbDi8eBb8d5j4l98V5Tsr4bF4Lz6pIxOSxe1FU8SiNW7Ov9nCQHg9rWLbCycdvMZkOuj0O6ZsYGy3NmZsYMb30g/nExJGhpAfbYI3f7yy8Dzz+fpz4VmHzPQ+XqdUAIgPAVXDaC7RwjDJUvux7qWlW7BXbsnC05tjw/bgOVVw+uF18EJkxwzpckOXiJrbfJPVRoGcMbg8vP4pptAQCXfnejRMXZ55GCsfzhRf5vtOOyJIovd1RwBUIIYJvcx9z5ABWoupe++05NPSQ0jJEC2nS5nHpWc4atN5XJg8vVUO+zz5z3Syh+rhl5LY47zrma1DOQ7nWQNZXHcIJphMPs6zlEob8ukAQHHww0N7uXc2PA4M6O+9+fd5Q6ZVoU4Y2oBK6syo1ye3DmzfNUXNez3zei+D5EShvHBaHL89tr9smOllY/fl6Fs+88NEj3Et2wWlJWVOC11wyPnBD2yXA90L4iLrdItjg3d467FGcNuj27iK4DQmC3LhkrIV1mKnSVnhCv2N7ONt4N5US+vc3KIXqHiuXOxImJ/1wLlBgWN4eXsEGBsVNwCZMHl8o1uwettoZcQZqld7jPNo2bdaHllnPSbLj9jtQ5swlHXN/WKfHlrLMSMfbmzcM+zyRihq1p2ta5bmP9JFLoOjBr+VaW+4QAB/FyII/XeMZS63srEOWwECtxjLNBS9w+56Cx7KTVztEH7FsAtu1g8y4qMb/v1LkOF1yRUSDIGmekyxmfr7SCy34+tFTk6R7c16T6ZreD83Sh8XvKR47MRIe/+MbtHcv+edTluOcef+2Q8oEKrnJDxvojorgNnC0twV1khXBeHxfnmSNRxWqh53ifC+GYCPWbFQc736PvvC3dNycs+1hRgRtvBJ58MrNJxatmlw6t3gWPNicxvdg259AwntM2+YSktY0dvPWL5B2n50dFTjgAGDUq/7IyVX21w6/BZBSQfYlS4Vlx9NHyZdescT6vzz4LXHll4C6RPFFQDy4bjF7GiQ3heHBpeu6NbOXp7FqlTYHsn5j5zY1tHbBu81b2CZUA98ErFaLQouljd1uFDhVJoXJlJfD44xD/fda5PhcoRyswNpPvqlXAIX851fNxocKbpzgQAof99ZTM9yjeSyQUjOvM7ls4x8tMvb//X/+LsHixuR7nY9w74j6WVG3eBgO/yeQkcj3E7JJjPCCl4NIs9iWRXlPJGN/YvJvbRmDJ1zqKKOfUU4FnnpEvn3M5izQkCaeR/CEtNdQ0rVLTtCmapn2V/N5D07SfNE1bqGnaR5qmdUhu75j8vjC5fy9DHfckt8/TNO0s5b+GRBYVD7Hb/DR0aMJF1q3hRYvsIxcKwYgRJFzcFoROgu+YXmm92EtO/hX5VNFqubHFVeTg6tKuWUrBta7WkEjUTsFlOLfGz+lzPmlSIpHT6NE5x7a25tY3fNZOrv0iDhTporQU4PueR4T7vbrLLsCrr9rv79sX6NdPYZ+IfywegJdmnYoRI0Loi4G0l3EKlWOkFw8ui/vdcszwubjP+okGpd7/Db8OO737H6C9Q2Jwt8HLkIPTTIfKODqkcnAlF/uBFeEcTO2RPTeFyEVEaVLpo+AaazELQbpNkrmWFuAPVyiIy0WKFuO7ZKdKZwNJ41xj1tfYKbKy5ifFc43r3Dd/vv0+KQ8ui21WHlwua5NB/xyJe475Dli92lSZsG/d49qpFEMNT58OPPVU2L2wZ8aMzJDtJbxhzmPw2aeJ/9OmKelXqHA9qQQvovzbAMwxfH8KwHNCiH0B1AK4Lrn9OgC1ye3PJctB07SDAFwB4GAAZwN4RdM0uWC1hPjFNFBoGrDvvsAJJ1jPfUIAWL++MH0jZY/VgsotRKHTEsw2/vfGjQD8K5yMSrWffkok/7ZDjJ+Q/KAmROEN316CqdW7uffRuMy19eCyJn3O330XA5b0hP7eBzllRk72nruMOCM+/Eh5nRs3Ap9/rrzaglLQ9e3y5QVsrLCc/83NeFuN0yq0Frm3L7vlw6RJnpxDSb6xeMj+M/1M/POf4bUPJNcE+QpR6MWDS+iobu6Stc0qRKFfoZDRCcsYovCLZT0TGw85xFe9iU7ZK7gAoENl0oNL0zB34074ernHsM0UQKhn4EDLzap0UpG9ZJHtWJEicT5/+1ug79wT7AtszihbdT05b9tYxa5eDbzzUSevvSQRZ8IEoHdv78fJ5uACPEQikB0i/BjDBBl/kgYiTka3Vko7yzWDS9+feW9nPDn1HFhZINl6uHlcR5XiSPzcc8Ddd4fdC3uM+spAU+HcZG6MMWOweXMi8nRUKNaoacWOlIJL07TdAJwL4PXkdw3AaQD6J4u8DeDC5OcLkt+R3H96svwFAD4UQrQIIZYAWAjgGAW/gZQJKt8Dli5NRCexbGPQIKk6aAxI8kGQHFw6NOsiHyQUNpVBFE5JF6ZRo2z2//BD4r8hprwKD67Ztbvg3QVu2W6BdhXuvy0tPDSdpLSHmBC4eOifMLs2Nz56xYZ1ch0ucu65p4ApsMaOVV5ldTVw0UXKqy04+Z5e0o+A7QMdXZ56Cth7b/dy46r2xvvvB2jIh8DAbl1w1FHAggUB+kLUYuvlW+B+mNvP2RBeiMKYyF4kW4YodBupJEIUDlzWM+dZO+rGI6X66dimxfMrdJHxZNc0XDfqapz/7S3+24KNRTrxRr11aC+VXoOEAMCnnwLDVx9gX8Bwz/35z8BOOyH3nrOIWEFKh3vvBW6+Wa6s8RZ4bMqvncsaCuuN2bm0CupBlLTEcr1/rQRlKczPhGyIQqtGXdbaaVmChWe3qhxc0qEgiTI6dvR3nO2l1XXccw+w115+e6Qeu+f6hReASev3KHBvygdZD67/AfgngNQItB2AjUKIlCRzJYBdk593BbACAJL765Ll09stjiGq4MI/G8kJLlWsuhrYHGdeHVIYrAQj7h5c9vf0MTssxe+GX5+7o6YGcx/+GIsbdvDTzWTHdOM/W95Z8Iv0Z1WjUatL4l4gswDWdaBqo/WqKcugy7A9dc5bGhNTWsfK3MTPFVMmOVdo4txzgQsucOl0BHnySSjzenHDbuFntz3o9FYss6MQ+bf6EmvW5rX+fBKPA0uWyJUNJIAyeBXQCo8UAiGyPbiUKk+8KGwtykoLq2SqN9dlqmfSvGzvMU9tpjy4bEb8tLBMCPv8HRL1lzvG09CvH3DTTdbljFfhgguAMWOsCuV3dhYi/22QCKA4H8LEiUBtbW69Hw/bLki1aZau28JzPST/aI2bpMsaFSOLG7Z3LmscDU2x4+ymFWnFl5d56Ztv5A5JKrgs17/pEIUOXbLy+rZq02VtMq8umQ6gnUkW4JSXnCEKSxbb+zYeR3V1Qbvim9tuA/rMPSl3B9eXSnBd2Wuadh6AdUIIC+meejRNu1HTtImapk1cz1BxxEAhnvk99wRu/eF3Dn3ITID932nEf/6T/z6R8sJWwaXrCe2DA9+tOgBNMQvljq7jwAcvwxXDbgjQMfvE7QCg9emdXVZRiEIAaJFQcKU61vflZnS/9bfWRZIL2BWrKlDf2jm9PXXOU7+to0UcdStvNKchadAg4Kuv3LtNCkcxKSnyLovzE3+ljHhj3vHY4lJna1wrKEMtEmylSQXKCygZonDuum6F6Y8Elvk0fA6pObKn2lp/FTlUbqccTM3lIhZH3GK9VV8np0BLf6VgDJMmAX36uJcbOBD47DOLHXYDZ31doH6liKzMKLIdK1+0OsNY1NCQ3Jh9fz76diJsupfLJ9pyDed+ee/JnvtH8k/FimSMs2R4fyfO2T2Tn83V9sLwuTUuF84wq0qnBrwodIwxgp2w8eCaORPQLjgfgPN7lVtO8UxB576vauya+NC5c84+q9DJ5jpf/7SrXD9KjGKaXvz09frrgTrTEqHo38GK6aJFGBnTteMBnK9p2lIAHyIRmvB5ANtqmpaSOu4GIBWgeBWA3QEguX8bANXG7RbHpBFC9BFCHCWEOGqHHQJ4GxBrwnhwZs1SVpUQQGOLhLDbR71e+WzwlvjHP5R3hZQ5tgvCRYuweWkVYg4Wx3E/1sgS1LZkrAxFnXUomSyWLIFbvjBP7be6WzmmhFnrvxpnW2ZR/Y6AENijZzeMW5eJcWZeIMf13PNoqeBiSINAKJ2OWlqyvmpaIoFtMVKIaVo0yFuoFjNO51IAaGoybUy+HdW2bInNMe/e3EX/clUu2N0Yy1dYby8Q/5pwYdb3WSu3UVe5h4HFyovZ0ttJ0psqp664abtVaPDp0z3VKYNR6XXwX07FhPU9cspssy0fYmUEncxUmmNzcC57vh2dKyDPwZAsU9TUJD6YFgp+bmvxQb+cbWtqO+Onn7zXRfJLOq9USsHpwK5bbkx/9vLW+9KsU7O+20a0kH3PdPFcziKZSsD1Pq6wliksXZr57DSsqvLgsu2PkweXoaEbHt7duoxbv0gg3ngDeOUV+/1Z944Hp5bUterbF5gyxV/fSGnjKg0VQtwjhNhNCLEXgCsADBdC/B+AEQBSZvJ/APBF8vPA5Hck9w8XQojk9is0TeuoaVoPAPsBGK/sl5DoMmCAkmr22gvo0QPocuOVSuojJGysFn+2Cq54HNu+9RzeNYQAlD42IAOX9cwsnocNdz8guQhVkYMLAJa6hH3Ianpjjef6U4K7zm+8DABYvinXar6dlmvxlq/zTeQYOdKg1zKbcSFaiWajRrm8zLW2AvPmWe/7cNEx2HLL/Pfhlcc3Kq1PCHkDXGKD0wMQy1XuFBRD35R6nXrJwWXRrtV859uDyyVEIQBguMRaw4rUWsWiyufHH5f22pqzcmtf1WsXZsceZg4ub/zvf8A2WycFmlVVif8SyqdFixJ/fhRVDFFIAODsP+7iqXxaeJ4z4drfS6efnmNvlajrB+ucs+NNkrBYDFi40EMniXLS85+E4sX4Hr9th8225aZOTeSUTtHQ1slUjwQSE67UnOzi5exWuWUbQXJwNTZ664cMqWsnm6qEnti+sTvFf/4zcItFitOffrI4ZvJkf4YDpmM4zRNAPgeXFXcBuEPTtIVI5Njqm9zeF8B2ye13ALgbAIQQswB8DGA2gMEAbhFC8BU9BAr+7CuSpK1fnz+BpZhmbSlaTCGtSGlgu8iKxdCq5yZYNZJXhUvyObYNB2CkQ8LzQVWIQhlSw0ylm1LNZhE+eXLm+yNTzs0p061T7gKcgq1g2Obakhx3Tz0VeOcd+/0eQ7BHhkLk4CoXDdeYMcABDvnkZZF9abIqN27A6uAdMHDvvSiIYq4cEUD4Ci4DQsuPV7ZruxbDg6WCy209YDPOxHVrwdfle0/IfG9tda7bDgfh3YC5B2Ftk0KvOOLIF19VWq4Z6xuS9/Wbbyb+SwywBx2U+PNFg0TkAVL0qBZS262SZi7ewnaaGD48IcA1ernE48DRA+6xLG++9V97DdhvP89dJQr5aV2uZ68dxnnx1oNH2JY74gjgpjG/T3+XXYHL3tMff7s19LjI9Y62QssOy2/fuE0o5dVrMlUZfonZEHRja67HpGWVk5yz4HSqtF8L2P6E1AsgXSTzTuqamq+t2eFu0ybg+++B445L/Nc2ZzxjX5h1Gk44wVt7OW1qWvEruMrk3TzfeHpzEkKMFEKcl/y8WAhxjBBiXyHEpUKIluT25uT3fZP7FxuOf0wIsY8QYn8hxDdqfwoBEEnVdSweTp9qaoD9/mDv7ZJFr1757QwhFlgJYGyVVBJCN7uE6deNuspTvyxJW25JPM9CKA1RKEWyf5U+lGpxUYF6g/wjZhGiEFuUtkR52bLoTB9e7hynx4KWXfZwDe2NIArH9g3evUqdmDTJ2kKcyNPn2z0tt0+v3k2Je5wQwJo1LgUsOLH7gvw9nB7qlVVw+cWyrngcndsZ8l/a5kmTM2KxKyZlpOOBY/5+otL6osCgQe6PgcztdOHvOtuuSwFkctxITM6trYm/pmbvSl9RU+teKAw4EatFwfm0nOst6v36K2Hb3MknA4cdlvn+r38BU6v3kGpfIu0TyTM1LV2kyxrnsutHX4ULL5Q7zhwK3+7dWvaWvvyFE7Dy5S/kDPtS463PEMOWiRQtyv53+pkSnXHPR/b3w76z3uEYgzy5zy6Eg7m4VCnixrBhmdvLrOB65hngxORyKRYD8P776X0t8fYYa+3kmkNVFdAvGfFVCGBzLGP8zfd8AgTz4CLFSAiL6fb/vg+PP17wZrFkCbBwlXvuHoCuySQ6pBbLmzcDzz5r2CEh0bQT3LwxT9IsRgIpIVdynFEVolAK2TYtQiHoqMjK9xHTcxfbYptt7ZosCZYsyXwu1AJR9vSNGwfceKNNHRLvN8VGQXJwiUSqiXlr/IXpIiZqkwJUg9n21KkJxbHqcbBY7+socVOvIyy3x0SlkhM8YgSwi7doWACA7lvUYcKkzKvZVh2aA/cljZffZVHWMp+GmxezXQ4u8zpip50AXc+eE/y64NqZEyfp3tnem+dXu8723NyMZaU3hp57bmLeTbHffsAXX9iXLyRbnnqM52OE0CIp+XrmTffw207eCyQb9R5c9vWJWNxxSG02DN3zpstbpHB+D5+9t0rmA5K4GMa5rDnewXqctHjvbF8hZ0hjvgedetQwZip+XL6rVL2AvAdXOidZyvPLw3N22WXAr3/t3OaCuh0d60hFg/l+5rbS7abXD8UayqOIMC655s9PfP7Zz3Jv+xyDVIvUAjJMmQJcmcxWs24d8KfvM6lrIjjNkxCggouULCoGuYa2TtiwIXg9hFjhZCU9dizw978bdkhYlZstwpTiJYFtckFZyBCfmRCFLovZmTNzNulCQ8vgTGiJmIXFsaW3nUtTXGip4e23E2FbvGJ8vnbcEXhj3i/VdSqf+Fz0e0IIvPQScMBdF7iXJdjYuoWtkhUA8PXXAABt+rT0piOOAM45B6hQPA5SAJZnFJzgmlWbfdX1yeKjcMzpW6W/b9UuHAWXdIhCn6cqp66ePRMKLuP2gAouO+Xbjp0bbA+1Mm4hiZxAOSnRli8PpS9+iOqQ+c/ndnYt06myzbUMSVLARbemO7+TZXVl0ya5cuD8HgX26JL0upfJeSXzTpwygDJwyd6Ts75L1ePSn3snXIhT3r/BvZ6UosqrgUpaDmDYZOi3VW2ffAJ88w3gJExrc5l3Uy2ceOexjuWy8KjgkopOU0RoWuLdOfW5qcm5vGoWLChMO1deCUyv2T3xJaVdK2Y4ASiBCi5Scsyb5318sJvk/z7uUnTvbihHTy+SZ1KCn5z3NBlLsnzenxYLW8eyQoTiweWHuNDw78nnGb5bTI2SFu2lQCwGNNjIAJub1elfVLxQOF1243vN+vXAmqZtA7dXCETfNzIWk/lqA/bXuOxocxcg6qLCWclq8xI9Zw7QZ+5JPjtmDd9/8oyKE/zJJ4n/U6cG60pYc4xdwnhFN5/l46LYg8vu3Dn9hJFr9k98cIwvWfykTu38+cCECdZl6upcwqUNHqy6WznoQsOKFYnPQXQXWtAKQqRU15l+2dJK6e83X58FxrPtNFZowtmDK4sK+WsoFi5KfFD4m4g30u+uEnOQZVQTifjoZsMn24i8rj3IMLV6dw+l5T24zHyz/JD05/Tvd6lM9O6T+G8hb4vt6OzubmssKxPCQ/IhLfVxNp92kx5Pdf6Ix4t1ms8Q+kksDajgIiXHAQcA48erq09BOgZCpLFVcPldaKvCSw6ulAdXARVcqTWBpXJKgo0tmWS4Vp5wVovyUl2HPPMMsLVN1KWrrwa23bag3XFE1xMKuV0P385yX1FSAMt4oRetvE89EycGryN5MmW8VmVzNNhRquNOFNi2Q6OSEyw2Jz24JPM/5LByZbIihRc7qAeXVYhCN6GQbIhCAIjHs/I1TZpiM5e7/Y7UwG9TTmqN8Pnn7mWKkBdfTEQGqEwazJ9xBnCMTcS/c89NONYVBJvJaML6HthDLnWRIxwyS5xBgwConxtT45H220ty9rktn7JvafvSOR5cqSgTP/3k3kGSF1Ih8byGKMxsNL18WIxvxrlz40Zgft1OlvV7MQRcvin3PciSVHIknzm4vq/aN1NErkW0rd9oW6Xbujnr9KXWRg79A+C6Dih3mprCt+PJR5SfSL7X8h4sOFRwkZJk82Zvg1ypW26QaGI155329h+wcqU/Dy6/yh0pku27KdE6VrZlPLgKKVaQ7J8dxvOdDk9hxEJb4nZJ4nGgutpXd5Tz6KPAzTfb75ddfy1apKY/gLpxt6UFWL3WIm9aka4pCzIfCRHNF4EwMFqx+L1pNBvDBAuC5rIp1vs6Mji4pWzRrjU0pVIWScmDykvda/RB0mWtum0laHMNcWTB2rXAqIUWeUJ0PWv+PmrAvzzXneiUc4hCqXWShFdnFionRh+0tQE1FssWM3/9aya3669+5W5LsWxZ5nOOIL7A702B5ytOeCWB5WUMQVLrdjtl7XcomxuiMLmB1rWh4cmDy+rimo773+tb5hQxzk433aDjqWlnW9afNc4qXvx59eDSfnMeBg8GZtdmPK50SbmD3pBIyLSpuV3OPlcFl3H/wIGmLto8XEL+GqaLm36vn4hQfpg/Pyt9b14wjzM33eQvT6wVqXP0wAOZ4AWEhAkVXOVGGUlGZN5lzjkHmDbNvRwhhWTCBECrSWpGUpmKJRZpec3BlcRNqCEE0n0taIjCJH7yFZgXyGfsNie3jE8Prr339tydvPDii0Dv3onPCxda5jzOIWzrLhmEsB/ry2i688zYdftg1aqwexENBv3YlfdKGbHpmVdt97WviCsZOH5a18O5gE/L6SD8qV+wUJm+QhRalL/tNuDW/qdYNKDniLlSjnBudVo2bbNWkTKCmTVLqo00IUt17rsP2E7SeD/FsGFy5YIq5FVB/RSxJfnOoVLp+tBDwOqmbWz3a8L5nUzWg8vMg5POT3yooIguLNK5nKUip1hcJ5Ny8m8P5t5HxvfO+okFzh2UysHlwwP7nHNci1iypGF7NDUBB9x9Yc4+N1mBcf8RD18oF6XJaw4u5K5vDjgAOOoo4KqrpKrwzf77A8d6SC/mRkuLxcZ167K+5uP9/rnngBEj7PcXYg4v+nUCX0aVwNmzhBACaGzJtYwwFypk2LCoM3hwIjd8Y6xj2F0hZYjdPBabMQfa228lvqSslfxakqki2b6bcMi4SAwjRGH3LeqdC0qsfuJWluo+f0q9S3fCYL/9gDvvdC+3yy72VuEqFpEq1nGlqOASev5t43/zzS3o1SvPjRQJ5/7zYM/y7Bw8hCgMSuq+1jSm6fBD68p1zgUUxDbdodOmYBV4CQmcB6wMOixDFPq43SvX2UhWdD1HWNinj/f63fJB9J13gvdK3fDq8aUYo6cVkPAcv+MONXUHDakaGYpU8hXWGBBVLOdYhdc29d7y738DNS1dHEoK+fHPgwcXCZ+0QkXiAlsWkVhDGFf5Wtx+/siq36U/O3WWTLQke9PJ/P7U7xDCUWE2o2ZX+2nSpR3jMz+1apcs4wzbNhWFKJw8GXjvvUBVSNHWpkbptHw50KmTxY6UhWse8HOKBw4E+i85Um1Hfv5zoMUiR2PYFKswooihgquEGDgQ6HLtpY5lJizsmt8wZkXIww8D3d56VqosxyhSCMToMRnrwNWrE//DzsGVxE303qa3w73/7ZZY7BbyxVw2RKHVyk/TsrzfLD3hfIQojAo//3mO8VaO4s3ut5hfSArxm1vi7dKOi24UbZ4tF6Zs8JYsmgSjWJ5lILuvlh4uxJE2PTecaRYKboaOlbHEB7/a95BvyHk1O+RsMyqfGhqAFSuAqjorSYoB0+9YtgzQl6+0LWeev/1E6VKyDtoyN6SUIyFrms23y8iRCWvqUoKKAOJGIYdNDYD4ZrD9ftn71a7TvOFDIx1eX1GIQitk71Uv5m5e5z4Vz4tsmy1xewN8x35YhFNPl1eYg0sky771FjBlitQhSqmtVRMy0DYCt09r2+Zm93WYn/vof/8DXph5uq8+2bLrrtAmTFBbp0Luugs47TQAmwIawBFXqOkoIVZavDOaOeauU7HAJpFlKeFk1W/G0pWXkALgtCbIcdn3m+xWFWmLcveiT/TZPn/9sCH1EuB6DiqtczXdeOCY9HcrIwCr310sypXJkzOfHdLPeKZPH2DUKGDqVH/H2724/fqbv+Dgg+XrKTU5gICGZ6afFXY3yorAL/rpHFz5lbAtWpStdC61e78QFELBFdiTLw8ht7xwVv8bcrYZQxRecw2wxx7APv+42FO9e+0FfLT4aNv95rNmOce6XJ/UGiDQZfR6cMj5cgoh2M/XWNPUBLz1/b55bV9AK9rBsr6tc9hdiBQNETkf2uYm4MexsqXtdxkHOeODXKT3aymgefDgMnsdb9uh0bMHl3M5eaQN2GVDFEr8ju/XJsduiXNld0t3ahezP8ii3qxHxu44jyEKdVEBCIFrrwXuvlvqkFBYvBgYM0bt8PC3vwFvv229r3PnRL4uR71RnYvnYAEtDwoRRcMvgwYlQzguXGhfqJisLSMMFVwlBNdCGaZNyxbqFjuy3gykNNA0kZvkNmwPrpSCS1bgtnJlKMI5t3PwxGc/s9y+ZbuMpjtm9ZJgseiwXYbU1jr24ccfgfXrHYt4ZvZsIObwjpCia1d1bd50E3DKKcARR6irEwBiohKLF8uVdVoLFus6UTDuXMFRpazO94i3776J8SPdHtd9nmnV7S2JNQ1qFFxuik63NpIKkyiNYcauVFXJdWz+mq0kK095cGXPvZN/8j4Wpg23gzyN225rvb2hwXp7AS6UrtvLkcK4TyzblEnuaeLrr4Fr+7qHjQwy1hUiPy0Jl1WrgJHLC5f0Vvt8gPN+4/0qG6LQmFyIk3s4CIv3bwfM75wCWvZxNsYPxuHTMo+XD5QruFLpBhyKDFpxqFSTTm1NXbOT/Rym6znnWGa9Xr+pQr4wkj81SgsuC2bPTuRAOylYOtUsvvwy4U3Vq5e9o0TfvsAxx9jXIV5+xbkRGeGECiI4Zi5r6Iabbk58TttXO/Uz4vdgscAVXwkRwec6NP72N+CPfwy7F+ro3Llw8wOJBhXmJLdSFmF5HNLTCi5JCq1hllTA3fvuQTnb/jf9VLwy++T0dythiFW9tiEYXay5f/lL4PbbHYt45uCD7S2wgpDPtZaKqh37VywudiaYc6N4OPJI4IorgJ73nONemESC1gJ4cFXYjG4//ggsWSLRRiyGTz8FTvlKIlligUhZOAOAWL5C6phVNR68LYTIEWT1699B/vgkSjy4Tj7ZevsXX1hvL4BQ4uWX7fVu5uZDk5FE1BpvY2tnviSXOH/+M3Dmh8Ff/GXvEq3VOfxL9u0m6cG1dq1k6ySfpK+WhGdujvJFmBRcqTzaJozrfCfDzKz3AUnv5SjipD+68rPfYqydM6QQaF+RfR3i1RvT++zel1as65guI9c/Q060iJ7Ggw8G5s9XW+f55yf+jxsH7O4SGV/TgKoqix1uIcTKWGnTqrdHn9dMMqWo3mAlBBVcJQSflzwSgcH5/fcTExApHYSN/F0ILSMgSy2wQwyBs/82a9O5XqQtzTStoI9Nqi0/C/xxVXtjek1mZScbojDI78uHwrqpyf+xERjilCOGfhd2F3wRVliyckaYhltZpkwBPvoImLY8uGvkhg3e13Fc93mnICEKba7LL38JXHaZRBu6jvFjo2XVtLAuk5dLtNplizfh8VyqmIaUCPna2Xj52SW9K8AEKhOG/r77EgIoO0ezIFTPXZflYGJJHs9DuYYoJHIovbwSxlGa5pxn2OjF69Q3baFBYs0QhZEgbWAqMZ6Z1+s5Ci4bzY3xOMcUVB7eBzx7cLn9PF3H8uXAovrcnJw5uFS2Y6cGiGXLbfc/8YR9HzpUZK+FxPffu7fpMURhXFQUrVGkEencbj6n6urqXPlFlN5Z8x0mPggc0gsHFVzElU6VDJeEmhr7fQVyrbrmGuCWWwrSFAkZAS0TIiECCq55dd2xxV47AvCwKCq0xsQmSb0fckJOCOC1abn++bY/USZuex7W0eW4eBJLl9qf7hX2L1NRphSVjVFH14Hp04F2F/1G+hirmPR3j/eWkyhFfT0wd27m+9y5wEsv+aqKuNDqkOwcgBoPLs1lgHdp45y7D4c+anTgfqjkvYXHpT//WLWP1DFeT6WUAY2bFXvy1TaQ0MWuDZvtIp5/wViFw6lJdeuxx4Du3fMTweLdwTvi2GPV1yt1j+g6gqg/OaeWOJqmdv2bEqA7Nemyv6FBw5VXuhfWjNEuSkDAXvQIw8zhI0RhXFRkv6/X11set7JxW0Md9oN7jneuw80kreCSqCvFsccCI9fs76leK7p2bIJ4403b/XPm2OywSg+QPOfHnbU1vljW0/owXT7MJADEI+z9pgJVU+DZZ8P7OkAInHQS8Mar0fTwLjgyizkSCCq4iCtR0syHhsOAc+ElFZg2LWHVUOCmSZFjd211oaWtUNKCk4jcCLrseKDrBR070h5ceWgzFgNemfKL3DbdOmP3HWr0lZdfDjz0UPB6gLByeAS/VmLCJNsXyGKFc27hEcIm9IYDTjHpvXLSScCJJyY+//OfwG9/C/zlL+7HlaNSOyiOObgg1HhwOeyTyfUweOL2iLdGT9i5ZLHwdM9lCf+c3IpsDFTO3n0mHnnESw8VhSj0eLCTDO3bbxO584JSDDKR4aNcvCP9MnFiIGNCzqkljmoF16xZ7k1KiIz79cuUloIeXJEg9f6tHX0U9JjzPGyes2J6pZRS5Z7xF2PRIus6/OK1Htd5QwhPaRUdcyJDg15rk0QSQLzRRvlhIUtIff9pUnv7BnVvspOYXhnKRDpqZEQmb0lWrMjNQOH6C4TAmDHAmppO+epWmqIYNTm25x0quEoIPi/5x+ol6YuBFejZE7j55jy1WVxzH1GAcZGaVoRE4UbQdXmlhK4rsxjyghKliek5t1NG3fzBybjqqtztw8eYFt1tmXBOqXFaVsF1112JsENWfPxxfvJuGcnXvFJVBczZuLNc4XXrbHcJAeC119R0ipQ1Uvd6i3PeDekyJhYvznx+5hkp+RrxSXNBPLiEbV2bN8u1sX5zl8D9UM2atQEEaAMGuBY2n5XBKw7BAw+Y0phEMA+JU5vDhiEtyPTL6acD771nvz8Ky0MAOP23wUO1WrJxY6DD1zRti2Xrt1DTFxI9hDfFuyuSlUkrTmX7RgVXJDDm0Gz57GvHsjkRP4BsBddOO9keu+++AGIxR8NM4z02e0F7VDdvaVvWa4hCV4SAkJlcZEI5ChdFSOMm6+0WsgSp+S6VL1TSuzpmyL1dWwt89pnUYYE55dTsa3HZZcC0aXLHLlsmH46YuZ3Dh0N64aCCq4Tgg5NHJGbT1jxFcozKiytRj5MHV4oQIxPmMm6c/AtdSKE28iHcim+0X0FaCZ1yhDwWAm+xbr1U208/DTz1lFRRPPYYcMopcmX79QO6dTNsmD5d6ji/49EbbwBDhmS+X3QRcPKXd0odq82d7dynJUustxfpgn7d5q3C7kL5sXSpo4dEmm+/dS2yse+nrmXmzMmOfMx5vnA8MeUc5wJ5DlE4e7ZcG8aQgFFBxmvBSNbP9KH4TXHBBbapTHJIG27nw5bX5ro5rdOCLIV0PWG/MXw4sDwZcddK1yNWrPDfiE9cz6/ED5e+mxQ8k2c+elLgOkhECWEC9SZzsS9845ir0jZwH/2wq98GiCqEyMrjo//wo3Nxtxxc22zj3N6IEY7vKsY7++DzemBq9R62ZaVzZKeUP25juBDK0hIIaC6/Mzc1QCwGfPJpBT5f2tOxrCXJa5AOVehWHJnrNn48cMklUocp55NPgM8/lyu7117ATTdlbws8FPrwlHZ91y6gPCjKObhST/OgMdbv+Cd0X8CXQUVQwVVC5Gst1BJ3cAEuF4TA1KnAKkPMZDNO51/XgTp7z2y3pkmZYVwIxmP2luAFp7FRvhvxeEEVDPkMURh/uVfACnKlX2L1GunDHcM+GPatXQuMGiVfZ22t4fuw4dL98cN11wF/+lPme1OTmnrfXXAc7vjxUjWVRYT9Pno07C6UHx98ILeGkvAkqJ8wz7XMQQclnokUURjey4XL9pnoXCBfIQqN9RZprhVt5Ajfx26usLc8B+B63ueOtvfkNaIkRKFHnC5nkH6sWwfceGP2tq5dgRkzTG1syFOM9CB8951rESE0T9b4QYjpVBiULELIGahIICsg1eBB+O9CczI62xX/y4RCX1vTAQDQ2AjsuaeadogEQmQ8sAHE23V0LJ7rwVXhaX7/7b8PxcT19hc4n+/RbvdvY5OP0Jp2ReDNAPXpp4H27YHLrtkC36/dL6cuWfS4XOkg53m9nL2qNF7kucb3eCekDX5kLYmS3HcfsN07zzqW0bYsnPd0pGf51asBAOf+yVpJvU2HzXwZVAQVXCUEjX3yyxFHAM/OOMPXsb17A9tu61xG04ANG6TS95ASYXmttRWH8ZKndCORuA8qKjzl4AoDaQs2B8ynOr5idbAKLc5FGGGU/KDyvsuHN+LM2l3Re87J6ismZYcqAZns2KdCyRuJeaHI6NLOxZNIwdxVYSUkXbYs89kQtraY0KZM8lTeeH9ucf2VruW7tLe/Nt1G9M+t1IK0giuIqMOuDTsPLgflSZBntNImpZVZqBVJb+UpU9TVpWKgi1Q4BKIUXS+4DMSTp4APB4edf30Err4auOOOjPcmKQzGy6VXOIc0tnyXM1xQNw+iT3/ojs3xDl66FxzJ8bTLyT9HY6MaJZcQmuOcbJ7DZs50rku2P8MWymmHheEYL4wfD+y4o+fDlOF33LP9qV6SriGhD6MjhBxa3Nk7LpLruCKFCi5CCoBRruHE3nsn4u8aoQCrNHnnHeC3b/zacp8uKtILwUi9k1dWyk/A8XhBc3ClnpN8PC/xoIsOi7fXDc1d8OCDcoe7LWCLxRmgWPpJyhNlCi7JQcj4XHOeLxxOQhYNUOTBZVGHcQAsUgWXZ2TPZbJc50r787LLFnJhEELJwWW4tOvWAUuXZr7nQ8FVKkgrIYXwHB4zp4qWPMWRJ6Gz38NXYfBgNXXF9QosXO8SVg4ePQWqnL1P7caId98F+vRxr37evEARYMuOmhrnSGzGEMPpKCo2WBp9GhVcAZcTazdvnbd3p7yE8bVBF5rj3PyLnRbb7rOqSxZP59/HxTKGGldFPpT1OT+taq1kweIi6DqBlAZUcJUQ9OAqfhoagNGjs7cV+VxTFPzrX8DXznlkPTN0aDKZvA3jx9vvEyJz3edt2A6xWETug4oK6YWl20tBvlARotCsxIvpclKmzZuT+VXMWGgpx6/vgYcf9tO7bJYtKx4hWKEVXIV8eSPFj6c11LBh9vUIuRtdhYLLy3GqBIClTIWmK8rBZVFHe4OVa6QsV+TxOqKmTuVXX0mWd9hnTALvhJIQhR4PNnpwnXkm0KOHXFXTpwPPP2+/307pnhPpQebKRGIRmc3Gls5oHP6Te0FaxxAHFm7YFg32qXI9MXLN/tjvgd+5lvMkSHXJURB0OjjgAOCZZ4LVUU5st51DbmORPZr6MpgwXNCg7yF3jrsUffsGqsKStjZg7Oq91FSWzullP0fHRCVa4vbecMfumJ1L2WGJLXVOv5i8GwBgi0o5za8w506TJB9TUzyeCVvqFelpXiLcutL2iOtd69eLkORCBRchinASjgUZrzjW5Z/HHweefFJtnWeeCbzxhv1+x7xKhmnwuHf+jP/9z+WAQlFRIb1Yn7xsu8K6WyfPj4oQhWbiknU++ihw8MEWOwKugAtx6QtxdxWpTJeUAZ6fsYEDbXd9uqgnUO2eE6fQHlznnFM+jkNOOJ1qTYPSi5FVlXEALNLB0Kt1bOr3u6ZjMlr12BATcpYca+q2yGpbKTaVGvN8pMIHbtqU3Ocw/T/5JHD77Qq6JVNonntuQOVtunDEZ/fjuj7HSjQWvDUavBCVaJq6eyq+aGngOurrnffrOtC9e+BmSoYNG+z3ZeXgcjHWtHzPNQz6KhQg+fAS6tcP+MtoRfmLhYB2nPM4/quv/4a9P3zcdv/fx12aNcy3OjjcyswG933SE3PnAttvIRcLXEBzDqtbQBnMv/8NdO4sV7atDZg/372c9FgVEW+JLu19aviKGK5R1EEFVwkRkTGJKCYKeo1ywClcQT7qdLquuilWdXU1sL7eOdFtQdDkxVtusYZVk8+FgWyIQlsL0gJbHzt5DnrloYeAt99WU5fxNBR0XFuxooCNkWLkbz9ehn//W6KgxI37tx8vA9bahP9QzMEHA7fc4l4u1e18zHPFhpPhhQZ3RYsXsqy/jQNgkXqkeH3PSM3Lk3+S06w6XZuvlh2aKuRYxwNfHZPVtiqqqoALXj3bcp/V5dwqmWLV0Zgpue+TT4A5c3LDmcumApMyJpJdGDhJfpPMnAksqd9erj4FfPL9ztKe9HbwXYqoRINQZhim93ldUU32xOOJMazsSVr5bFFvv0Yzvum6TdVu84yKkLmVG6qUG944KZDC4mRDOmUtZt9BITSp87F2LSBaPVh1paxSJNC0hGxG5rK4KZ+D8N13wP77q69X14Gn78tjx13YZYuNvo6jLJwAVHCVFHyo84jEDFZfDwwfnr1t2jTpw4M0TRSwerWaeoRIePIAzsJEfZV9g+YF8TPPAN2vP09F9wIj65WlLV9WWGuUVIgEBc+Lud+L6ncIVqHDG1I+PCq22ML7MXbXtXdvKAmlCBR+jkrfC6tWFbZhUnT8ULWvu5eJEbeBxmNCL+FT4bFiBTBypHu5VPX04CpMDq5UDVmXtcgVXFfu+5PvU1O5bo1UOadr03vOSZJ1KMDih44bBwyc0cOicHaIwlzlk3szl10GHHQQcMIJ/rpn18TPfpbotxszZhi+SMTDOvRQ4L6JF1rumz9fSkfmicuePkrag88OWkeTqKI3e9c26Lq/aaTsZQqjRgEA2k+dYL3fdIJ8OVsb6hC6gpDH348GFsvnqHJDF5ra+0BRZWPGZD5rLfYePLrQHCxKsxFxuYfENTycxb7f/z4j72lszC0Sjyfm1m22SXjMqZIz+aGutbMX/R3q6oC7Hts6fx1yoVW3D2dZqsgqbok7VHCVEFRw5RGJAWf4cOD00zPfa2qAnj3z0/Rf/0pLLNUsX574v88+Uu/3trS2Avffn/jstDDuPXAX2326KRBQZKIZCRFKAncZUs9JPoQYp331d7nG7XB4C+3QITfa2fz5wLXXZr5rVvlcCoiquSW0dRsnRxJB0rdlWxtETGKQD+AVRg+uDE7jUIXmU2pow4TF22W+JOs9uOuqolRwCaF5znGZEu5pzcHdik/dZV6qI85tqsjBZVmv/T477+Tnnwcm2MhRreo0K6BFo4fwShYsWGAQGjrMg4cdZviSirHok/33TyjsCCllVK7L/bxXnXIKcNZZHtrQs/+XLY2Nnoq7vX9bzguGjcremRW6XAldRF6OXunwfMm+58c3NkiX9ZNSYfDgjAFJly650U4++igzt155JbDrrp6b8IzddT20/4M49VRjOeffG/b9sbTBn4e41zDakSPsE18iUMFFiATazt4DVxsFSao9uF58MTenQXMzMGuW/3bKFtMJXrwY+PZb/9WpCMNW1bQ1jvv8Hv+dyBe6Lr1Y1DR14TsKjfG6KQn3l7wp7O6HJdm5dfH558BbbwGHHpo4IBbTsOWWCvpRbARc6KXvVY/eNIQUlFhMblwdMsRys4z+Vt+YCDWi1zonuy8HHD24lCnzExUd/9AZGQfSpKRM95nMPGz6LToGfedKuhglSZ3rCs0tzlMiNKTTiP+bPadLtZkSKAYxdnn5812xcKF8eaMHl5HbbwfGj7c/zjzFme8/8eZb8p1QhYKHwKMMuSAUNCcsKXlU3k1xUZEbn9SFMWPSzkgA3JfLqf2RMZiMKkKgU7uMpYGvEIVGDy5Vd4ri0MlR9OAyUllhf+Jdva2S6K/JWysLAA2N1u+KGuQMn8yPsNU8mDW9qnZ1BoDRo213eVnTyFKq+pgt26nPAeZmFFGipzIUKPUpIWikHh3Gjwe+/lqu7OTJwOP2eTdtJw/z9X76aeCQQ+TaJAYM2oXUOf3mG//VGV8e9GX2uX+6drSXAMyv28l/B/KJrktbo4U1HKleIPzhDwoqcVFwmUmVmzkzcxab5Ay584JxrLELtzF3bqLf9fUK5yIhsO++wLsLjgtUjZ3wkZC8IfEQpIpMm67l3TNWvJ540dffVJRQr4hxGoZVWX8ahVrpNUGRhygEgNfmnujrOBXnNabLvbKquIK3vvAzPPecfHnj8ys7z59yioQxlaRESkp5IzEm6TqwsUUyu32wpggpajQIqefulFOA0Wv2cyyjC82Xh7aX5yw1LhXp1FNQjNfVSSF44YUCD0+2SB+g2INL9XutritWTORBy3HgtvZhjXVRIdVmXFRId21zrAO2vuLXlvuEpLjc/Dy6PmuvvSZVryfG2Cu4/IwXTvz0k9qc3ypQ5Vnr5EHol6L3LisiqOAiJA/87nfAH/+Y+e40Ufz3v8C//mW/XyywfsE1OyV4ia1bbmyzjUMeAouL49fCbcSIhHdduuqJk2zLtjkkzI5qGEBPi9jOnQtqMZsvK6KlS533X7HPeOkQhVG2dJK2MlxjHUT8wAOBoUOBdetkG5Q4GbqORYuATW2dJCvNZe1aoN1xR/k+nhAjQ2d2x7RpwLtzj3Yu6OFNsudxnRCXyS8TwBPxd71PAeBsdOHEl18mBHWlTj5mrPRQl5oHoCHeVh5SRpH88bttuVGmsOOa4ebvf58u51xN4UMUxn0ouEaNyk0+n+PBJdkXpya9nIeXXgK6PveA/AGElCmyU/yoUUB1SxfHMjr85V7xIrBOCds/+8xzMyVJi12OH5MnsZOS4osv3C+AihxcqimGfIS/2nWu7T4hIPW86EKT/q1OMplMo854VnDlw4NLgpNPBsav3ytwPccd5+yhHgaq7uzGWAdFNcnDHFzqoIKrhKDFXHTwkmTatS6DxiQWA6Yno7TwestTX++QB6FD7iQWj/kTPp12GnDvvZnvdoqqeBy4ej/7zN9e81wUDF2Xtj/R9HDiYKhQqnlZ/HfrKOFalQpN1WZ9TnKEWgrWN17rcCqf1T+HFbvRkuvMMy0KxA1xW1evsijgoVOS1DEiG1HImf85Cz17AlcPvcq5oAcPrqDY1fPgg8CwYYnPA5YeAcC/8cQ332SHQypmXOcIBeOOsQqzgksXGtpdfkngNooBkZwuju+eh9g4NqgIUei9zczrdJDbJ3ctoC5/yCV/38u1zAp/+m9Cyg4NQtkYE5f0Ts3pgw+PjP/7v0RKg3Lnyann2O7L8uDyEwHC8J6kxINLsbFoMYQodPJ2EZAL89ylfYt011RcJ8/v8l6M1iR/iMy9Mno00BTraL2ziIWLKm9DKaNDL5itmSygaksdVHCVEmvt3XlJ4dC03Jw6dqxenZtU2oxxspo+HTj88Ew72eU8dLIMGTMGeP11ix0WCq6OaFHSpt2CqV07YHXTNp6PCx0hsgQ5TuhxeWWYCna/7WI88EA+hFpyv+L554Fp0+yqSNQhPukv12IJPMtDhxq+pBZ2hjiLUr8xcA6uol6rkxJnzhzghhvyV//DDydCFxuJS47fZkopB6DrHKF4ALZScJUbsr9YxZlPne9CzqMy11Qm2qDsfOXFgyvFZ8Ps15yEkPDwa9QYjwMDBiQ+jx4N3H+/fVnjmHHddb6aK3piMaDv0D1cyxnXCHo82ESiJkShYgWX4hCFWmf/UTZykOiYAKRC7XSsdBGwZdWpXsGlNByorYAhm6C/4+d/+QXmzQtURXgIEd0wgGPHRtV0vSShgquU+GZw2D0gFnz6KTJJxk3suivwySfOx9stjvxGKxo7VnqeLCk++cRGmGixmLrhgO+VtOm0sF3VuK3tPr9CyLzjIXbjy9NPLHhS70ceUVNPVgJbmbcAIXD77Q65XZPnTYyyj41tqs6SF15wD5noVocftE3ulkdWfP01cPPNSJuLtsYrMWKEh3Y7Bg8RQAUXCYWqKtciixbZGF3Y4eNmNh/ywszTPNcBAO3b+zoskjh7q6rPwZUmOQ/EVFuGRpgLXvwV3nvPXch32T17K2szdQWrm4LlkvJiRNZnzomu5fbbzz2cT26IQuvzdsstwE03uZcjGVQ924Sopq7Vfaxavz53W1sbcPHFic/jxwOPPmp/vFHYvmCBxw6WCHPnAte/fIRzISGy5qtY3GZsdZgQup5wUKaYgrFZebhdaJEMnQggE/HE4bzpQpOSRzwx5Rwl5//q/X70dRGUXrepUwNXIfMKMXnhNhg7tjgNbSPdZwltp/AZqpbkElEpKvFDZLXWZc5vfwt89JH/4+0mZ7uX786dgZUr7es7/nib8GHlisVk0rmdvNWPE49MOde+WbfFWxSJx6XHmeUNXfPcGWuUvwjIvARI5uCyu66ygrTbbgNefdW9O16ZMQOYvXFn2/1a0vOqRcKx0dj3Pn2A3r2R/oEbW7fEaf7k64QUFdpJJ7oXUtWWw3Rh3vfq7JPy25kiwGnuzYdRRmpM3P+SQwAAMZ/hqIqVXr2AdhXOL/efDNsOI39ojw8XHeNa3/g5Lvlsktfw2OevlO9kQJ6dcUb6s9NywC0hu+xaYN68xPyaKafmvi1l2UqhDa5I6aPqeTnu83tcy+y4Y7A2xA9j05/dIseUKrLXy1jszbm/sC7koGDZ2JDJ76UrELWqFnzrOiDG/qisPqUkf6dT2E4hqeBq0dv5uuZmtmovF9NT1oNr9epkQJOITrjFahgaWaUtIO/OF9F7otgor7esEifsAamL5ARQzjz/lPdzZDfU2V3v5uaEZXi509bmPwyaKgWTLiowYwZw8MFW+5wUXBEdmj14cFU3d0F1S+HjWt0x7jK1FbrcQ1JLkeTCRnbZIp0Py2cdZg47DLhz3KUObSYq69QJmFa9u3S9lZrK+AyEEBmamzPjhGaSA/i1Zi2ldy7Xn6IiB5fhcyoc0PzliTA+rsnMS4wffgC2bOduHXHjnVtJ1XfsLUc77heq84t4RGr+Xr3aen9jg682J67f03efPLNhg2uRsN9HCck3iWBYxXOji48z4WLK9fk0joMX7zXZskz1BoGphvec03eZY11ZLGa93dymFr33eSEAsWx52N2wJrlg7b6FfeQQHXIKrpheIf2Mzq/bybmAxCSao+CqWmdZbtddk9FNXNh7b+nbDACwaRNQ3xo8XKTU+BDRl4LIjm0yHlw0wlFG9EZd4ht6cEWf2+/uJOUFYcRuwHMbxNeujfBAXwA6dADuu0+ioMUk/YRD8lmvHHYYMHt27tzmpOCK6pM8Ye5WWNko55k1pXoPDFzWM78dyhNCKHYTTym4ZBcvra22u9KhSRsbA3Yqwc72jlueMY83FevWWu8oEEJoZT0GkvLAfI8bE8h/800i52MK38Yb1dWJ/x6MHEqVn37yVl6sWJk1ncTKTMEFyClWFyyzSXruEV2Rgsvv3CHV9tix1ttNc7+scK6+LVg4Rk9s3Fi4thTCEIVENUrvqDwJjP/xD+C114AhKzNh88p1XWw8xZ8tPRK3355b5qa/dsDkDRmDAWNEl3ffNdQhqXlQk4NLLbqIsMQwucbsUGF/fmU9uLwYC8/faK/g8qPIvv9+YOh79qHK161zf+SXLDF4fUuMDyeeCJz+9R0eemmNVqSR8qJucMA1SOGggosoozVefi/tfvAsHLELUVi30fE4pzCF5cLjjwNY7mKlpGoWFwK/2Mnedc6ss5habZ/oNqpWHMf88xSMXLN/2N0oKG63h9S1cglRmFPnkKG2+9Ivpi6xjoQAli0D7v2Ls0X42rXu/fH7KlSxeZPtvkLd4+X6Ik9KhBUr0h+HTO9uWcT8fDqNWb49uMZPSHywE8x75J57gEmTlFTlGaexx/gC+vzzwK23Zu9fvRo47jj3vhvbEL16Z6Vkay1HBVcB3+sFFCd3LyA5z7LEMS3N7qWUnn/ZRKARY/mm7cLuAikhhIjuu5qR//wHuPFG4IphmSTUKtbF69cDDf4cTkNj4cLs788/n1umpSX75Jw56HZcey1w6KHA1VcbDIgk4zxG0YMr4VUe0Xs3HfHEvn9rN28tpeDae+v10nOfU84vWYzP1aOPAt+sONSxrMx63MuzOm+efNnAbUZRAyZEpJ093E5rVv53EojojbqkaGnVSygLeR6p8PjU2Y11Wv9PbMtVVdlGQCk/vvoq62uszXRCVU0mLostB6ecHFQstIh/PAuB3e6h5L0hnU8vZn8veQlR+OGHwBMvyYV9UoXxVFTSWomQYNTVpT8OnWnjbrm5Sbq6wNbE9fZhY7zw5JOJ3ExBeeopYMwYb8fI5uC6/Xbg5Zez96cUJ2ecAUeMbejQMHduZl9DIb1tIsLvht/gXkgRQuTH0VA6l0eAac+P4LlTZ+eDlBt5SGgPaVhCiDfGzZAP6T5zZrC2VDyfO+4InHde8HoKSd++7mWExQD+1lsW51zypV6JB5diZVSkZejp92V7vl5+mNQkf8wOS30ZdbU3eY/Jni6vz5Wn61Dgi+baXAStiCJ9X3NRVFCo4Coh6PpYHFR6NN61FYq3mUKZGC7/5ZcDF1zgtWelycgFu2Z9z/F8k5gRGxqAqVNdCrlYjngJTakqBxgJQPq+cL4/pEbdZF3SObgcFuTpNVIBV3Ke1mUGV4V0F8MKUQiGKCRFjsxLpGkscPTgcsr9qEt4mCt8oFRUdffdSU9tD7gOnQ4FUn328m7/zfJD8NBD8uVJMHShKZG9+A9R6H7/2N1jud6Yap43lcuFleslQ0ly8iUlTHO8PRpjasKqAkBTs7tILqVTef+9aMh7ytGQNq1XWbNGqryKuUh16LVEiMKIjs+yJ0xCwdWmV/rKfW057xoLrLPOreVlytM0uZ8axjSqbawtfKOKiKwsXGIRFlmvyiKECi5CCkyFx8HXrjTfHR0wTCSn/i9b06fpcduydjzwAHDEES6FXFYqaQWXMUGKXVWc5CKD24JDCA3fDXO5XimLNJu6zBbnUknqXe7bRPgU527lhZdeMvYihA4QUkIY5hU7AwovITmcvINHjkyE37MiH8KQoGsYu/GtXTvgiSccjnP7LRIKCre+G6u4Y9xlGD3auTyR45rfu4eFqtBEqKnixGb3NZ4d5ttKxXO3fDkwblzgatLs/vuT5QpG2pyakGCcO/hWnPzlncrq69DOXdqdzist8R7phNYS7Ph0PUX2qipSuUSdysgF5AAGDHAumAzlqmIMX7Gpq9LxdG1dZ9S1RtSTXDZntaSCSxZhEImb18k5fXn1Vcs6vCq4VK6rBw92PyVCAJgxw7UubcBn7g1GcH4XemTVtgkjeBf5L0MUqoMKrhIisg81yaJyU517IQN2k3xMr0BTk7FckF6VGA45AnLOk8WJ+799s83Y7d4lNmwwyB9158CCrVVJi5gvv3QolSDuITEqUY8QMNwXzg/W8sZuOOOcdlL12iku//pXoLshvY6UB1cBkRWg2/YtLA8uUXwv4IRkoTgMiNM6wcnLOB/ri6DP5scfW2+Px4Hx4+2PC/JTjH1WFK2ReODt991Dod9y8qy8RM9xegaeObZ/plw8WqF7XnoJOOEEubJ8jyBEjuZ4B6X1dWznLrAfMiSh5Hry+YDKibVy3kdueE25EDoSXlczZzv/qLQSYc89nSuaPRuAGoPVXnMkjQokOeKhC/DQpN8orVMZLiH900iEiIyJCl9eMa7zoI2i1MuadsIE4Iz+N7mWk63znHPcT0k8DmDiRIk2uRBQjqzVFRdhSii2qYmQoqdi6WLH/Tn5eGwm+Uu/uxG77+6vD5oGrF3r79iiwCn5q3mSsZhMzAJ9uwXGDjsYcnTouuOioOXtDxMfNmyw71u6S5TKFwsxXW4abWkB1m7exna/xG0BwFsOrjDIGq9sQhT+6lfA3I3dUQio4CJFjeEGtlU0e0grKRyW/U7HLajfMac/YWOOElNfn+me07tkkPk1Vf/GjcA22wAPPmjTBk3OQmOLDjHoLe6eXp4xe/8b6Nwu2Z7LxOv2+JjXkMUq69Dq6yI1VhASdTqM/961zLRpwGOPBW9L1ZNZbI+4zNy/fIWkguvQQ90aM/4jsshapzS5555NhCj0oeAyrZOb4+3xt39kDFmFHvyirl8PjF61j3tfhPmDf+JxSD20mkxzmzYF7o9qhPAW0aKgyIQo5HuDMqjgIqTAVA7+2nG/eQy0GxPjohI1Ne7lrKiqAna2yVefL267DTj//MK2acVxv+6avcHixJknGaf1QDoGuYsHV8uqpAZDwuTNuSYSJaQWJELgjjuAgz95SLJOezRR+NhLqu/GYcOAmPCYjJCQMsduHsrN26O+7c+XusXo9U5Q4Vgqn+ngwQmj1IaGzL5AIeqcFmG12bkJHn44kZ9z8+YA7RHlxEe5C4vdyBGUfOW8dk8h9fzJ5uAq1rXghvVh94CQoqKQeW9UeWgUnQeXBVdd5a289NoiOcYrSzlQLpqydEh/l3KxmGtVbXqlktO2oG5H/O8lg4LLpk5t5YrgjeURiVOWwbigtmLYsEB9KTvyEVaA2FICUxNJEVmtNcmiQvM2yOXzBXf48IQRRiHyFbzwglR0Pk80NgJ/+pPFjkp74fnEaaawEhYrlfcXHpv13UkQlz7cZfJq1du59i0Fc3CFi4CWvrCTpzmHH5S6VkJg1SoP7TvUWfHj2HSdLk0qex/y/TJcLi9khBQCm+dpyqKts5yW/T52UscpNNkOWlU7w9A8fLh7+ZUrgcMPBx6adJ5r2X7vG+Zzw9wu+n2YU/aII3KFZBz5wkMIQB/4VfCKZs3K/u4Q3spoZR0kxLB5P9eChJBCMGWK92O0NvcwcVEibjGevvce8PbbCY8aqTpWJK1a3QTWKQ8uVTKccnmfkghR2LVjo3OkniRecnA5IZHZAgCg/aQw2aW5LQXXPxaDpAeXAHr1ciyjt4WY6NSGSD8iuu4qpxdCi/iPKB6o4Cohis1VvFypcBngckMU5o/TTwe22grYbrs8NpJHZs2ymYMllEhpPEwmVh7ZsgquRfU7JD4kTd7aV9ib0jAHV/EgK4BSpmyqrXEvpJgZNbtJzS85ZVIPTEgLNgGN8yIpC6qqPBS2eR7tHtPLLjN8CcFk+/rrgR9+yN1uVHDlOF1ZhJDp0QOYPh1Y37y1a5v/figxn1doeraCa/ESy/LLl5vap2IiVJSsodZlP1RSs5gQyq79xx8D/5l+ppK6Ck0Yd3+HijyEpSSkQKjOe7NiBfAbmzRL5udz2TLgyCMTnxsbgZkznetePimhDdICempedpnHtUtAYjYKj2uuAV57Ta6O+FvvJj5IvtcoiGbnqb2iR2GuIr8hCnOaMtVh997/6ZIjcO21gZvLbV8Aq2q3UFKPDJoGiKp1jmXeGb1X4P4oR4jovvO7RHkiaqEUlZACU+GyiM2NjpP/IbGuLnfb3LnR9qitqlLUPyGw3zbOK+zUhDljhuXhCVw68++U1XhSQOikGKFwLFy8vEbILp69vJs4WoBL9k6lB5cXrJpsnu2cdzCfRHaxS4gEk2Z3Tj/HWmuL1DGqPbg++cTwReED9e67UnnC0bcv8M47uduNdiw5fV+4MKe8THiWVr0SG2oq0gOZEMgSuNjN2xMm2OfjIoVF6CI0z6fp04Sll4Asxvn9rruAl2adqqJbBaeutTO+X7JrQdvssVV1QdsjJMqMGgV8JenIatQpPPSQe3qphjUJ4zWniDS1tYl8YR99lMiPacUnnwDjDE4v990HvPhi8HcXXbeuY8v29muojz+Wqzu+KRmP2K2TqRCFuqK5KMoCGZWkPbjs0SD3gquLCiXvwWaZjN07+tiqffHWW1D68h2PA59+Cuz2zysD16XrQEubu+hfg3CVNGxsbB+4P6qJtA5Y4vmNcveLDSq4SgiGKCwOKt1CFJpc/vMhQJfhwAOBzz93LlNVJZXn0xMPPADsv79zmdWrge7dHeYLT9oE97JOMr2RI+XqueeIbxIfkgquOHMQlQSyIQq93JJOdabuxVMu6mpbJmp0PvGosLtASFFy1O8PwPz5yS8O1tLG8cVprLn5wFGZ8KuTgfvv99ghhR5cmzYBX3zhGPkNf/xj4n9rKzBiRPa+yok/pT+3tZki1rQ0++rT/Lru2OHkg7BiTWJ+FqjIkv45rccefhhS5Uj+UaHgmrR+T+myqet9+M/boTHWyb5gyprM4SF1856wo3tnC0u1kJhZuytO7PV/BW2Tb8CkmDmsv1oLCad1gNlbzOiB7JZ6B8gsA6bX7G7rgfX11wmF1RVXJIxZ7PuS+fzYY8Bf/wqMHu3eBye6dQPuvDN3+95bbbA9Zto0ubrTywEXgXXKi5whCr0hYqkcXC7nTVLhJ3v+nTyAZUMUpkkv2oOz7bY2qTh80ukG96RzMt6kUbwdBbTil4VH8cQWIVRwlRCq3dtJfnA1gG7OFsyEOdZZheQz0r17RgClimHD3NcGqYTugwYl/j/yiCldguKTpunZpt9z5mSu44QJyY0ui632FclVsUT4xCAWwEQR0uEnCnutUou3UT92cCxnFaKr0FDIS0hwZCK27LFH4n9bW84SIotuHRvTY9vLLwOPPprxoip0Di4gEaLokENytz/6KLDzzsCbbya+v/cecNpp2WXazZ6e/vzAA4kQhKpoasr8zqNPzCgswh9ViQwqQhQubtg+67sKz3rtw36O++fXdU97T0g9aoaHtrIiuIU/ZSuElAZeHH5OTTqKrl0LtEg4ihvtXB54wL19J7sYq3FOIr2SI3V1wMSJudvP2G1OsIphWI+5DJZzlm8JQOE7YmOjmnoizpwFidjTrvmzJG7w6TW74sQP5LRD3bewcTOEhQeX2zwZ9AY2scFeL5s33Nc7EVwsCBFdWfhOO7kWYQ4udVDBRUgIrFolLycKy4NLts6VK73VqcLLPnXuHnss8f+BB0y5uNw6vi47trCbxYeWjKGgVSdWGRbRjwBdd6xFTwlcJCzgmYMrXLwsMvITotAe2cWb+HqQfIMligBDFJLiJ3UPy9zKV18N7LWX/X4duWNbx47AvfdmQuwNHizRmQAsWpT9vcYireDo0QlhWwqr8IJOAn2VyvWJUzKCFlklB99Rw2Pxhq0xv85dmOCGa7QFA9KXO+nBtWD1lq5FpR61n35yL1Mm0KCGECSSb8HFg8tmxNp5ZyRCrCGRk8ouQssB52SsSazGqblz092wLeOEivnTqk3XeiUajqdCDrqUFUlhhzJjQxnNYwkgYnHMmAHc8oN9SD4NkBImrWrcVrpdJ7mL+Qq6Ki2LfAGowX0+FRGMmCkE8MHCY8LuhjVdu7rKb4r7rokW7dyLEEJUIoRzSJ6c8h7qVY2MMsqrwirVz7q6hADLLRyhFa6LZbdODRyYyFwvSUVrwiS+esZq4Lztrdt3aTO9IJJQcIWVP4IkeHbGGai8N4an/+teNh8hCp2EqNJ3xpAhED3OlW9UAbqencQ5Cos1KrhIsePlHnYLs2McW4z1PvFE5vM55zisJwI+UIsWAfvu615OZrxs50EBQcqHu774JYBfBq7HnC9XlQJl1izgkDvOcy0n9aitWAHguET5SMy44cF1MyFA85padNp9dxcFlzs33gjssgtwruE1YtYsYNIkU10WlR14oHsZmX1e+e4751dxobm8f7e1AXCOjpGu3zUHV7K8qnGpTHJwaULHqFESBSUWiV68rh3zohuemLo6YMb63aXrLUY+WHgMBq84OOxueEcILN+0Xdi9sKbIlZ7FBt0ESggu7UsD8xgoPUFnxehTg8x66scfvdX54ouJMIS33AIccIC/frkuiN0mEmPMJ2EjtjDUkRIcnHfvYZg3z0ZHpVDBRQ+u8Hnm2XZy1nwFvlayQizXF7k8cPHFQM9P70t/r27uUvA+EFJqZDy4gsfF14OGwJDMwTVvnvX2VHhhFXjxsFGFtMcuV+RFj/l5cxSASa7TNU0+b61XwW+533EqQkgSUuz8u3d3AGr0IZ1M6QTvvRf4wx+yt8mMU3fcYR9C2JenlQ1nnAGcdZb9fqFAyJx+53M7wUJxDq5yUXDpcTz5pES5iy50LaN7OPdO88fE9XulP999N3Di5393q0y63SgyYOkR6DvvBMcyKp4l1USwS54QFhE2iD8oRS0hyt16r1hwW+ysb94aY8bIl0+Xq1rnXsgjytZThor+9rfEAsEuv5fMYjmwB1cq6YgDd91lbC/zbNXWZrd/yj7J7LxC5Fj8ZnUptXiSysHFoblYkBKqePXgcnjmpYVeIbguxeNAXGTu7+GrfWqwFUGBFykF/vCHROJ1GVwVXB6FLRs3mjZoGl55Bfilg4PMpk32xit2/TMPVzLjpYqcQ4TYsWzT9jjGEO1GlSW+UvmF4cEJnHuiuto98W6E4RswIUBtfWIN7jTO/FC1r1SaILM9i1Wdr77qXk9TE7B0qf3+trZE3k2VWCvOXMZwXUf7Cot4yAbSObJdF1uJ9Qk9uLyh6RJJZyXxcu5lc5875bhNUw5KijL4iaqhRKJwUIpKSAi4zX0nnSRf1hMSip28YFqYBZW9Wx2ftU0IdKx0WL0bY1nbJKV8+hmD4MCwva0te9HfqTWTmLR7Z/skpWnBoowHl86hORJIPHyyC2jZd5PmZufkutIeXFx8AmCIQlL8/PQT8Oab7uWWLpXx4PI2t4wYnl2hdtKJuP9+Z89tq3xZXpFScIWQTFp2XOXwWxpMmJD4v3Spcz4PWUO0Sk2Xvodk5q7Rs7eXq0yCd/86AXMGL1VWHyGk8KTeSdzGmY8+cq/LPAZ9+aXPTjkQjydCF99/v9p6R45M9N+os3cdp4VA147OLrZCUsGV2q0qBVe5KLgqoLvOfdK5qD2FKKTcxQt3fnhU2F3IIdJyD8UhNYkzzMFFSIHxOv5+ufwwZW2vmFgFQD52sDLhsGlgF8LZmitFPG7t8CQTorBjRQwt8faWux8afBweutO9/XR7hqt28slAO8PIqUsudtOLJwkF17y67vKdI/lD1+FmB+LVI8KNLl2AePxXtvudvASN7Pv+Q6gOSZ8dKVasgJcxj5AosmkT8PjUXzuWsQsBZMQYolBmfm+3aSOArlnbamrcj7NDWkEkUc5bXkP5so71SAjIoGl8US0xEs/WJYHr6TX7JDT8J3A1aU5+8JT056BRPK7+4OyAvQkXhgUlBIjrcgqudLhgh/ecfBqIpTIFXHyxVWoG62Pq6hI5zL2kN9h118RxTvWm0d0NEGTf+VMKKRVrgRO7L8hOrVDCVAj339nY1lGqLi8zouy7fKSVKKT44Q2mBKqrSwhaqpcejzwC3DnuUtdyP/0EVG3e2rXcstXWCh9fbNggX9ZkeTRxIjBtmvMhsVi2IsmI6/jvUqDP+MOzvrsJBozPlhDICu1g9OBxqsVLDi4SEYTAVu2dk8ZIrUU8hCh0e4fZ2NoZM2e617Nu89bl8j7kiPbSi2F3gZDIIABPL1DtNO+DiFP1Kt/dnATaZqFSwYyfZeI+kaKgQ4X8tZS9r9+cfzz691dYIUmjLBQYIUVMymPIbQi58cbkB4fILvmUK/Xqlfgfj+fOz2LWbMtj/vxn4MADvel66g2BVVyV4LruWmZd81ZS7WY8uIKfRAGUjQeXttk9SeXmeAepurwYPcheJ07N4WMXRjTS18YmWlRWkWQ5EhxXSaumaZ00TRuvado0TdNmaZr27+T2tzRNW6Jp2tTkX8/kdk3TtBc0TVuoadp0TdOONNT1B03TFiT//mDTJCEljRdrnqFD5coddxzQf8nPrXcaFkWVFXID54ABif+Oi9uqKrnOAb4G7NQC1nxodTWwetp61/acWlzTILdATVHhkMw+vYASwvHaesnBRSKCEK4LZJmwBgdecwyGDJFozxg604ZHJp+HQw+VqIvQopsQE17DsMiuGYyk5uw//hE5wnzZpcD337uX8ZRfQZGyX3Tt5lwgqeDi2FP8pK7h+PEhND7bWsDrhKzQr1Sh1yQpVs7bY7qyuvSkB5e0PsRhUvaj4Pr2W7lyjiKE777L2fTAA8CkSYnP553nvV+AhEePy3s8AFw7Uk58qdLAUAitbBRcFUMGK1OselkjKjWQoJKCkFCRedNtAXCaEOJwAD0BnK1p2nHJff8QQvRM/k1NbjsHwH7JvxsBvAoAmqZ1A/AggGMBHAPgQU3TsuOekEAEDU9BCkdB575hw9If7TyizIz7MdnBRkUJp30szNLWT6ZDzzgD+MX5OzgeO2t+ezS0dZZuyDXes8M+6RxMqXJ0tSweJDyvZB7lucu3lGtPQsFF5Bmx+mdo1RmJmZAUxkTaUiEKAzw+b74JvP66fPnRozOfZRyhvCiRAgubUtK47i7hg8PKc0ryxrHHhtDorFkQHpPZrZOI4lDK8A2YFCsqhesrqxKRWqTlDA7v5xXw/u4uk34AcA51bNX3Rx4B5s1LfB482N+rtKsSXNddx5H0O4V0iEK5vjkhgLIJUdi+Iq5MTOItB5dCDy4quPKK3XUVyhLe5QEhXOX0NNJRh6uCSyRISbnbJ/+crtAFAN5JHjcOwLaapu0M4CwAQ4UQNUKIWgBDARR3wG9CfFBwy965c9MfZZ2Htli3BACgDRxoX8hLqD0fk/30pEGbeU23aJH7sYdcsr90O7MWdMC6zc4eXU6TknSIQoOnFykSVq509XhQavVF5adSPlx0DD5ZbOPZSki5kpyDZKaidpX+PbiA3DWHU5v/z95Zh8lRpH/8WzOz7prsJht3d3dPiId4QgTiOZwASZCgh7veoXf84LAD7rA73B0O9wQICZIQ192Z/v3RPT3dPS3VMrrv53nyZLu7uqpmprvkVbtW2XZCFbs2fn75ZbFKqw20pOCiaT71sbNWj8m6fudO7+tMY7YesPCuJIgkxctcvi+8nYc//vBGwcUE+xMn7zbmppuMr8VKTsKTQ9OqDK8xeW6mPQMFMwTUHw8uxrxbP9l5r7iisbQHPvvMTY+IWJLU626OzlGIQu/gklAzxvyMsY8A/AZRSfW2dOliKQzhNYyxcMa/RgB+Uty+VTpndJ4g6hfdu8d3/FJoiHitsXP3SyEAzcyoDVaxR44AS5bwdk6n2t27AESsZrUKLq8NpDtNaYkdRjG1pR/KbMHOG/LJbmgoIgnYtctyK0O/a3LjJIcQQaQrSgtBs3XI3o++BwD4X3nRVv333AOcfnrk2I6Cy64Dq2kOLkAlEArWuhQOSYsAq7Xb79u9E2oRiaUuxB9OOiQwLuMrbhijMJcEUU/w2nI/GPRIweXALzKZ00xbfiehkGUZv0UeHbmtoPi9vr+1AVd5S+qJBxcA/PSTdRkegiH+hzHI8Q5++SXwwQcclZGSIjEkcRSczvO74Js9lYnuRr2B680XBCEoCEI3AI0B9GGMdQJwNoB2AHoDKAVwphcdYowtZ4y9xxh77/ffLfLsECqsktcRyYGdeS+8QHIDO+Vk3Hef+DevB1d2QBTSHP/KIhw0yvdpsIrduhW4+271uWAd/4d+7TN15NKtW9XX4+rk8r0o5DPPwQXxR+XNwUWkDn6/pZDJ01GXPLg8x0fzIkFEcfQo8OOPxtevvl60hqnbbE/ScNll6vl/61bg8sv5+2QHszlVm7Mi+MST9ip3yI5fRSEUKSfqF3/7pi9atfKwQloLEES9wev9oS0vGDMF1zdfO2rbS+6+G8jjifLOoQAym5fbF2/j8uBqXfQbR2fEr/Wbb4A1/xzFVd6M+pSDS+jjXUxgOx5cR0MZnrVLxBajoU34zH7u0njx6fe52HbQPDMT7Ru8w5adhSAIuwG8CGCcIAjbpTCERwDcBTGvFgD8DKBGcVtj6ZzReW0btwuC0EsQhF4VFeZ5dgg19FqkITZj8Bvxdtjn8kk+IY9yHbXIKJ+qchWrCIM4dGh00U2XmCwcdu827UubNupjIyWd3UX1rl0chQ4csCwSEhjXwpoUXClIZqbl7+bl73r2+fU7SXwsoAUjQUQIbwyzsoD//tesoFhy2L9PNylkeJvMhx8CZ55pfN02Ci2YpQeXYl4OvfCSq2Y/3FJi2SYAoK4O334rKjyI+sOuI5x5NnlhjPIxEEQ9wcsQhYBof3riibyNmyi4/m2SpsDoHs6P0rZ8h+E15TLh7rthbGirZPt2yyJmy4/irENAKGS5p5vd8j2pMot8OiHBKxFOlEd6OvPOTxZ5Tm2QKLlLOA8eEWe8euESCXn/eYKlgosxVsEYK5b+zgEwGsCXUl4tMMYYgKkAPpVueQLAcUykH4A9giBsB/AsgDGMsRLGWAmAMdI5wiOcuJIT8WfiNSN0lUB6CB4taMILztDWKJ2yLsFQZFHw8MMGzlqKkzffJODDD8W/f9Zp4utvTYaaPXvkP0dxGDp5Ff6glCdcf4a4SDELQxcSfLIgzUz4JS+0aPJKHXw+SyGTlyEK/3wVKbgIgogdt30xFG+8ab3p50nWvHat+ri6WmXrol+vy+mPZWXi1Vet69LmrAi6HKf/2M85NtfWYtMm4KOdTVy1R6QWsVjV0UqRIOoH7/7WzNP6bBl8mhho/uuHrvLfFraoMlx7awBtC3/hKielv7SGQzhgtp8TBIYnnrE2agyHslt0eUfTcp7ro+qJgmvGlQM8q8vtus8pNRM6J6Td+oKRrE2oS+0wnoLgYQK6eg7Pm18F4EXG2McA3oWYg+vfAO5jjH0C4BMA5QAukso/BeB7AN8C+AuA1QAgCMIfAC6U6ngXwAXSOYKoV2zZUZCwMLG8wvgqQa2l0h1vFSvoNTe2x6ZNZu2aNKao/PnnrftmFi7QczJFoZZZbGZuDy7yJEk9QiHrHFz0uyY1tFYkCDVXXMMRq5jjxXnsMfUxhwG1J+/j11LUJFMPLm2IQpfLhrDQyzIBfZ1J3lIibfHaUnz3wUzyPiaIesLe2hxP67NlCGqiOLn4wwny3716mSXt3GujQZEPfq02vObIe5VDq2c2pn67twJTFhXjQF22aR3hvE73Pmfcf0A0EvIqXKPAKWcg1Px2qDDRXSAIIgEErAoIgvAxgO4650cYlBcArDG4dieAO232keCEQranI9Y/Ks+aJ7zY5RUuCbv3WBfSrKDNFtSmhkc2rZLY4UMAPA4HY4T0hZklKg2ByRl9zb5eLz19iDgRDMY1RCHhPSQkJAg1PFMujweXkzXnypX27zHCbOx9YVs7ILRXUdbd/Btuq90F88wLBoMkh6qHeL2+Kzlukqf1EQRB6MK5B//uO5MJ/4kngAULAJivC66/PhI60ZP8uHv3AoWSEoPLg8v42o7DBVxN8noFfbG9GF24SloT0nikEwQRTarv98ke1ztI4koQKU7AUk2tCFHIOfhzbdY1q1htbixlfo+QmcDHroIrnlOAtBquzNlnWCSksBQ3szoz8wIjkpRQCILFNEkKLoIgUgkeQxeBo9DWrfbb/uAD+/c4RqFpcjv/BoOceTsFAc8956opIgUhwQRBEClHKGS5Bz/lFOtq2MIFuPde6e/33zMs94Qipdf8Vu8YluMWVPOEfQGAw4ft1WsC757vwqd6uG5L3TApuAgCMJFRepXDJEFQiELvSO0ngSDSHK/HOVPFlaIxvQXcunXAAw/olweAQ4eAb7+NHI8Zo2zXpFMefcjrrwf27/ekKplwerCcgHHYITkUksXnkL97mrxSB44NRapbDPFQnHkg0V1wDL1tBKGGS07C+eLsM7b9iDmWY68qRKG77Q537mpB4FIOEukFGboQBJEscE9Bb75pGQbm2mv5qvrsM+mPt982LKNMz5AXMM7VMPlZ3UBQ0fz2W+Rvs4WNtJn3YmZ+5ZfWcphkM7xcBggCw1fbKdweQZgh+DjCrycxtHPwDlJwpRFx9WwhUoqws5XpgkuxUNTbrF9xhfjPiCefBFq31r9mKlCzswoUBFOh1ldf8VfFw8dfZISbNeTDnU0AQUCncY3x+A/dDMuRACQF4ZAE14ff1UzBm+w4iuVPEGnMk89Yu33zhCgEYmOvEdrrjaXKVTdm4eBBqU6XhghHa/mMQ1koSDYs9ZD6YOhCEESKwDsJ/fabZ5N4WM5wJGS8vlDq0rxIqyEok2uafY5QCIcOAYtfWuK6zf9s7YjZszn65uE64EBdpnV4ZIKo51TcckGiu+AKWkd6Bym40gjmRTxjIql44/0sT+rhClFYGxFiGwntnS5I3ebguvlm6Q+LFWOvXvx94oI3JIAg4LNvMs2rEni0jERSwZFMpT4ouAiCqF/c91I1mje3Lse7Jjh6lL/tw3c/YF0I1lPp6efn4403xL/denBt25nNN3XT/F4voXUAQRDJgvDFl1zlXvuiTOVV5QUrXl1geE3pCe3FmBkKKuZbs/26IODnn103ZwtBYJ4o8QD+vF8EQaQuggDaQ3gEjZgEUQ9g+8Vk63uP5pgUiqzEjBRhysVaOHyfFaEQ8OSzGeYFLHjwQfH/3X+EsOtIHl/DXiBIubWsrCo4JiQSgKQeZ97Q2LJMfbC4SWUvqPrw+xCE12z5NRdbtliX4xXgZGUBH33EV7Z280+etKmk7YMX2r9JwUl/64Vnn+UoSHky6iU0zxAEkSwc2X2Iq9zgDUNw54P5luVOPtm6rvC8bLZHDyu4gkFg874y60rDLtgGLPnbiMhBMIge5T/oFxSEuMuNvWyPIjQRRPojgHJweQUpuAiiHsAOi4vdSWZxrZUKLgNrIaVgqdmQGq62X3nFogCHQOjll8X/L/0zV5P81JqHXmO8wiqeUHYkAEk5Lr+vkWWZ+qC4TOXlVn34fQgiUYTXBMr8m0Yo02WYwatQ51Eq3HYbX5s87NzJUSgBgjQi8dA8QxBEstBielfusjzbXMt9vIK8wGHDa+GgGHfcAdz51SDryt57z/Tyc19FjBBvvDsfH+xoql/Q40l51y5PqyMIgkhpY+JkgxRcaQS9FoQR4WfjSNDEk0oBT4jC3Xv5kjkOH25RwMbCM2QdMc4eVqtU2YPLAi4PLhpu05H6INhKZet0snwkiNizeLF1GV7PKy9lURbyMVsowysZwQTy4KqPkGCCIIhk4dARvv05wDcv8+SfDHNOj6cMr9XVivPjH39wVmbRue17I95nV99RaFzQY8OTHwwcxVRNetdcSu/BCILgg6QV3kES1zSCBHmEEX/s8eOtt8zL3PdoJHyh1zm4TJFWnVx1ey082rbN9DITBGzfDvzjO4vkXnZCFJJ5d1pRLxRc9MgSBGECjwDsjjv46nr86/bmBfbtA8C3GfRyzcKRkhEIhWi8rIeQhz5BEKmIz8exf+XYejMG/O9/wFnvTDcsU2ceNCUaG5o10z5yTd7e4uU6oD7sM4nY0yiPXA+TmZBAIQq9ghRcBFEP+Otj5ejf37zMaRdErJ+MFlNvv23D8oqTYC2/0spz42iL7Lo7d/tx6aXAG7+2Mq+HY0I6GvJTeo40pD5Y1qXyZ0zlvhNEqsAjh/rHP/jqWvLMbPMCQQ5XKom4K7hoc1ovIQEkQRCpCM/I9b//8dVlFcb3629tih1tTOBWCq5UzsFFHsKEF9DyNLkheYV3kIIrjYiJdw2RUFoX/Rq3tn793S+npDKzRv37371t98AB/knX88nZbx7GYcoZbXDDDRz1cHTs+k9H4owzOPtFpAz1QbC143BBortAEEQSEp76fCyO1htCuG3rsbeuDti925tmX3ie4zOSFUtakZ9hnE9GCQkgCYJIRXzMOw8uHt55B9j6E+dm3oZgy3QbnhAPLu+8Mb7fV+FJPUT9Zl9tdqK7QJhA60jvIAUXQSQx8ba2CC9izfJF8eShsENdXQKtSrKyvKmHU6j14YfeNEckD14puPpVfu9JPQRBEPHGt3NH/BqzsWD48UegpMSbZp9+hmPL5HGuDyKxNMjZy1WOQhQSBJGKeGkczVNX377ATTdzFKyrs9U5Mx3WZ1/6sWcPd1WeIAAQ/vPf+DZKECbsq82xLkQkDAEgNzuPIAUXQSQp558P/Li/NK5thsdVM6G9HQXX1q3WZR5+rthTD67fvt7NVxngnVUX5wcQBP6yRGpgpgy2A+OwoiQIgkg2vvwSeP6TSk/qsmMpnpThPMiDK63gtaitD57cBEGkHzbSXJnCmMeRhL78kqvC/fvF/0Mh47LfbA7guuu86hgnAhB67Y04N0oQRKoigHJweUUg0R0gvINxpdwmUoVNmwAgI65tRjy4jBeKv/3GX19NjXWZzT9ncsuEeMb9Bm2L+SoD4q7gItKPQ8FMT+oJhsjehCCI1EIQgNde866+a6/lKBQK4fBh4L9b23vXsEe0XTUi0V0gPIR3ZUehZQiCSEW8lB15uRXetiMTS86yFiIUFIjtmjVde1SIexqP7/4owc7DefFtlCCIlIVEid5BErU0gjwACLfweHBddZW3bWYEQjY8uDx+xj1ScB0+wFePIACf/5jvSZtEekEhjmIDzYoEEUM8Dsl3zz08bYbw4IPAvd/0965hgtDh5wPFXOXqBPN8rgRBEMmIVx5cgLeprlpPaIX/vF3EXT504JDhtWBdYnYCH+7ksPIlCIIA0KbIhgcBYQopuAiCkAl7UsUz9E+XFgc8DVFoC48SiuV0aM5VThCAjn8iC28iGvLgIggi1RBq6zyNyvfxx9Zl9uxh2MuXGokgXHE0FN8oCnZokr8z0V0gCCLF8dKDy8sc3QcP2dsTmYaJDYXi7sEFeBfCnqjflGfvS3QXiDjw5Iw7gYqKRHcjLaAQhQRByCQifURl8dHEpa3w0tyMg1deiWtzRApBHlyxgb5VgogdQ3vtxw97SuLa5imX0AaQIDJ9HkqTPSbLX4sjweRVDhIEIbLozIae1MMO7kdtbWIilIjKK+O2hWBihAyUm5HwAgqBXE847jigRYtE9yItIAVXGkHDH+GWYBD4z3+As96ZHr9GOUMcffYZsGu3x095nBVcBGHEnqM5ie5CWkIhCgkidny0Jb7KLbtkBoI4Wkfh44j0I56RFuxCuSQIon7BDuxHgwbJGYI/FIx/Di4AOBIkMSvhHppOCcIeNPKmEWOeOjnRXSDSgK++inODO3dyeXB16gQAmZ42feOjVZ7WRxBO2bKvPNFdIAiCSCv8QhAAKbiI9IO8AwiCSCZy4myn17HkZ3y2q5FlOSEYQtu2ceiQhvXvTot/o0TaQXM9QdiDgsMSBJFQhPfeT5i1559uSMCKlyAIgiCImMMY2b4SRLxJ5txlBEF4D0P8PTe5vVhDIbTL3hLTvhBErEhmb22CSEZIwUUQhEyiFE2JaDfTVxv/RgmCIAiCiAsH67IS3QWCiAkk9CIIIlk4eNiHH36Ib5uf76rmKicEQxCeeTbGvSGI2EA5uAjCHqTgIghCBU+c6mee8a49AYwrRCFBEIRdgiFa5hAEQRDpBYU1JggiWbjy3kpMnpzoXugjhATKY0SkLPTsEoQ9SPJDEISMEOKbRseP97hdmr0JgogBG9+bmuguEARBEARBOCbAgtj8/h+J7gZBpBw1+bsS3QWCcAx5axOEPUjBRRBEhARomp7YPwLr1sW9WVowEGlPjv9oortAEARBEARBuIAxAc2akjUgQdil9JOXKcwbQRBEPSGQ6A4QBJE8CMEQ4q33vual7sBLcW0SAMU0JtIfEoUQBEEQBEGkD9W5u7DtYEnM2ynLOYCdh/Ji3g5BxJKgwFAb8ie6GwThiP212YnuAkGkFOTBRRBEhFCIKwdXOhAkBReR5pCXIkEQBEEQRHpQVwdMa/ZR1Pnzp/3P03buvkvA1yuu9rROgkgEPR/diAUvHp/obhAEQRBxgBRcBEHIiB5c9QOBhj8izaHcdgRBEARBEOmBX8cRxcdCOG/6JwCATF+tJ+0EMhgy/PVnT0gQBEEQROpDEl6CICKEaDNDEARBmNO/9e+J7gJBEB7hZ0HdvwmCSCKkEBtm3vk3DnwAX8w613VTRUVA5tIFrushCIIgCMKC+hJCKw6QgosgiAi//ELjK0GkCSGBpngiNrxx3n8S3QWCIDyiUd5u+W8/I0Mngkg2GARDAZggQHbZ9zH3wak3n34TjjkGyOrQEj9+ssdlbQRBEARBEPGBpF8EQcgIt9ya6C4QBOERdQIlVSZiR+O8P1CevS/R3SAIwgXC1degOpeE2ASR0kjKLx9zH5u6WckeWZdWU+O6OoIgCIIgiLhACi6CICKEQintwVWYcSjRXSAIgqgXfP3hQTw6mowiCCJdWNvxxUR3gSAIC7QqLOW+jUEAKy+La38IgiAIgiCSAVJwEQQh4z6wRWLZW5uT6C4QBEHUC3JaN0amvy7R3SCSnExfbaK7QHByw+AHE90FgiCM4LBA9MKDy26bBEEQBEEQyUAg0R0gCCJ56PDQ+ah9LNG9IAiCIAgiHTgaykh0Fwhexo0Dbk90JwiCsIOg0GmJObg8VnIRBEEQBBE7yJjEM0jBRRCEzK4jecCRRPeCIAiCSAVoOU4QBEEQsUUp+xIEnZnXJwbl8bFQ7BomCIIgCIJIYihEYbpQSyFgCIIgCIIgCIJwAAmzCSJ5MXg/GYtcy/bX0WtMEARBEES9hBRc6UJtLY5t/n6ie0EQBEEQRD2BQiERBEEQRPzQzrqCACAkem5l+2tpXiYIgiAIol5CCi6CIAiCIIgUZduCMxLdBYIgUhhZHE6uHwSRvJi9n8OGAQDyB3aNX5sEQRAEQRBJBCm40gVBIHstgiAIgqhnVOXujX+jUlZ7kn0RROoTFGg7SBBeUJBxKDENFxfj9dcEDN4whOZlgiAIgiDqJbSjIQiCIAiCIAiCqG8IAmpDfvFvH20LCcIph49fg/4Nvo9J3UeCGfLfgqDWYIUVWgMGMu+VW6QtIwiCIAgiRaCdTLogCFELXrc0yNmD1R1e8rROgiAIgiDSA8r1QRApDmOoC9F2kCDcEvP50EDZJAjqa677IdC8ThAEQRBE6kE7mnRBECDAWwVXr4ofcNOg+z2tkyAIgiAID+nePf5tklU3QaQN+2uzEt0Fgkg5dv71n+oTVVWeG5uGyfLXyn97vd8nCIIgCIJIB0jBRRhCy2eCIAiCSHJat45bU2Mbf4bgspVAhhguiTGy9CaIVOOa/g9iY/cn5ePSrIPICxwGQMJzguCltKA26lwsZsRs/1HcOug+7vKe2p/EyZjlzSl/xpSmH8WlLYIgCIJIKshw1DNIwZUuCILni2ofC3lcI0EQBEEQnhLHRbGPheBjQmK8xgiC8IRRjb7Ayg6voFnBDgDA8xOvwZZ56xPcK4JIbfw+AUJNE8/rvXHgA1jc9s2kFIDdN+KvnqQzaF30m7i2IAiCIIj6BoUG9gxScKURXodFSL5lNEEQ8WL7gjNwepf/JLobBEFYEUehFwOA886TvcZonUAQqQeDgEadS7F57gage3eUZB1EefYBIBCgvHoEwYtm7vUxAUJuvvfNaN5J3TfUoxxc387ZoP5cFuuLea3eRbviXxy3F8bPQjTyEARBEAThikCiO0B4RAw8uBhZaRNEvaUg4zCy/HWJ7gZBEEkEYwJQWZnobhAE4ZaTTgJ++AFo0waoqwO+/RZo25ZCFBIELz61nXCsbE1kzyazBpQKLhf9aFm4A0Ce6lzzgt+xeV+F80o5CPhCMctfRhAEQRBJTRJ6aKcq5MGVLui4NY5q9LmrKn0Q6GUjiHoK5dYhCEILAzyzFCcIwh39Kr/HrBbv2b6PMQDZ2UDbtuLBqFHAypW05icIOwSi7YRjEWVIXo/7/VIbFu+p205IOTalxvH+9Etwi0kOMC9CC/pZCKE4Krh+WXA6RlR/Gbf2CIIgCIKIPaTgSiO0C97/HnOdq/pIwE0Q9RsKB0wQRBQkBCeIpGB2y/dwbo9/276PFNME4QGdO6uPBSEm6+aavF3iHzoKNT1cv98LF6oOS7IOoix7v2FxL3J2+1kIoTh6jzbI3UdyDoIgCIJIM0jBlS4IgudhRUiERRD1F3r/CSK1yPTVxrwNreCMdF0EkTg8F6bTC00Q/DRrpj5mzPN38tDSNRjR6CtgwQJDBZcXHlQy55wDNGwYdVpvZHhv2sVAx45ixBeX+FkIQSF2YqkMn3HIdWH5ipi1SxB26d/gu0R3gSAIImUhBVca4fU+19MFM0EQulTl7k7KzRUrLEh0FwiC4EESSucE4qDg0qwLPt9VFfM2CYIwxolOijwXCMIDdF4+rVOXU4ozD+CcCe8jOyApZgYPlq8dCaoVXVGhg30eKqpNBpieExoAJ5zgibzAxwRkmSih2hT9gq9nn+O4/qMnrIGfBfUvcnrGEUQ8eGPK5YnuAkEQRMpCCi7CEAphQhCxJ2nfsxh4hRIEETuaF+yIeRvaEWH7wSIAQHXurpi3TRCEGs/naPLgIgjnMIZrrwV+3XiD66r6Vm7BBZPe1b3292/7qY6jQgS6cSPTjgFS3i9dhgwBcnM9UXAxBlw74EGc3e1p3euFmYfRuug3V21ox0s5tcO0aa7qJQiCIAgiOSAFV7ogCNFJZydMcFWlnoXnwaVrXdVJEERqwCAkq+qNIAgNvx93Kk7p/HzM22FMUAnAxtV8BgDYMm895rZ8J+btEwShxomRTG3IRGhNEIQp1bm7cOyxiFYGMQa/H8gKGHsi2WLIEPH/3r1Ni0V1w83q3Y6CS8KTiC9VVWhWsBOX9HlMvw0IQLt27tshCIIgiCTh+Lav4ZvZGxPdjbSCFFzpguC9MFpvwRqPEEgEUe/o2zfRPYiCCe6TRhMEEQd8PpRnH4Dfg0TvVmj9O8qyxMTzfiagzkb+jPbF25IyNCtBpBIMApCVZfu+w3UZMegNQdQPJjT5FA89ZHydeZWIq1Ur4MorgeOPV52e3uwDdXuxNEdjDJg40bSNKA8yJ6xaZXrZ7wsBRUW2qy3MOIR+ld9HX+jUSXX43DHX4MROsTcSIghLGjdOdA8IgogThZmH0arodyBEcjevIAUXYQgFKiGI2EMRgQiCcEVxcdya0gq5wiF/fEwgrxCCiDMBn7MNcXXeHo97QhD1B18c4hvI3tIFBVEbhRaF6nDEPo1ntef7ikmTVIcntHsVj46+JdK+y++juKAOaNDAtIzTNs7u/jTenHoZMHSo+oLmSxrZ6Es0yt3tqA2C8JQePRLdA4Ig4oS8r/bKMIawVnAxxrIZY+8wxv7HGPuMMbZJOt+cMfY2Y+xbxtg/GGOZ0vks6fhb6XozRV1nS+e/YoyNjdmnqo/EIF+OJxZZBEGkJOTBRRApQk4OsHGjblhhr9GGKKwLRZaRpOAiiPjiZyHb3hvC8hVolLdb/yJj0eHOCYJQYRiST5obY51bV1s/g0bB5WWIQh16lP+Iac0/ko/thCgslby+lex6+RPxj/HjDe9zGgYxP3BE/EPnc8k1kmCRSCYSYPn68Khb494mQRAKaB7yDB4PriMARgiC0BVANwDjGGP9AFwG4BpBEFoB2AUg7D9/PIBd0vlrpHJgjHUAMAdARwDjANzMGCNpiIdEbUpdTpC0xSWI+gtjOmMKQRDJB2NATU18mtIcl2fvR/8G3wGwp+DSLk+mNP3IXccIop5Rk/cHBkjvHkEQ8WFOy3cwr1Uk3+RnM8/HX4fcG9c+6KT+SgxSSCVe5dO/xt6If429ybjA1KnAuHG6l5yEYP7k2E1Y0eEVICMD6NYtSn4YCu9xcnMBwHNDYYJIFWa0+DDRXSCIeolsnJpBocO9wlLBJYiEzW0ypH8CgBEAHpbO3wNgqvT3FOkY0vWRjDEmnX9AEIQjgiBsBvAtgD5efAgC+jm43Cq48vOiT44Z46pOgiBSgwAL0maPIAgVWi+x7EAd3phyOQCbCi7FiuXi3o/h4dG3edNBgqgn/Dj/bHQr3+p5vfHwBCWIVOX+kXdgcNW38nGHku1oVrBTPAjvu+Nsia0N3+dq+89xc5avTvxD+py8yqfcwFFk+oPmhQIB3dNOPLg6lW5Dhi8EXHcdkBct0wiF84aWlwOLFtmunyDShjiGOicIQkOrVkCHDonuRdrAlYOLMeZnjH0E4DcA/wXwHYDdgiBIKxxsBdBI+rsRgJ8AQLq+B0CZ8rzOPYRbYrCY9nXpZF2IIAj3JGMirjht0DN9tehVsSUubREEETvchCgM+EL4bs4GD3tDEPWAtWvl5cOqDi9hfqu3XVdJntsEYcGaNZG/zzsvslyWXkYvls/asINKMsMKJol4pBRQdiU7UCv+kZMjtc//gZ1+N64+o19cm6i+TkFAUFAoJAcMiENmNYJIUvqQzwFBJIwzzpDnKcI9XAouQRCCgiB0A9AYotdVu1h1iDG2nDH2HmPsvd9//z1WzaQlXm5Kx9V8imUruB4PgiBcEOtY/U54Y8plcVO69WuwGS9OvDoubREE4Y7N+8oNr5kpuMY2/gwbuj8lHzMAGDYMgOgtCgAtCnd40UWCqB906AB07iwfrmj/KtoU/equzmQ0tiGIZMLnA7p0iRxXV0dFOzgajK2g6sxuz+L1yZfJx4wB8czBBUCcv5s2BeA8P5YMh9bLdRuM6YQoVMs5nMpRijIPojp3l9OeEYSaRMzDNPcTBJEm2NJgCIKwG8CLAPoDKGaMhf3IGwP4Wfr7ZwA1ACBdLwKwU3le5x5lG7cLgtBLEIReFRUVdrpXv9ELUeiC6/r/A/37e1ghQRDGJNnCsn+D73U3g7GAQUhKJR9BpAxxDIf03u/NDK91Ld2K3HBCdw3dy3/Enzq+IB8zFrFOD/hib31OEGlH+L2nxNQEITOh5hPsXnxS7BrQWa/LuZykayXZh3Bpn0e5q5zW7EMw8M+D+ceOw4CG30e6lIg19Ny58ufNM5j3tXCFPzUYz5zk4AIArFpleCmoUWjxhGXvXbEZWf5a1bmN3Z/C+9MvcdY/gkgGfGTUThCJwE9hwT3HcjRjjFUwxoqlv3MAjAbwBURF17FSsUUAHpf+fkI6hnT9BUEQBOn8HMZYFmOsOYDWACJZWgnvcSE0N7w1yQTxBJEW1GMBFY0oBJEGZGTglsH/h98Wnm5YxGj5kOGzyMlBEIQhYeG2LSF39+4GldGMTKQ2Gb4gijIPx7VNrWLE7xNwVrdnue9/dMytqMlXewAxwPh9nDABaNFCPmxVqI54E+scXNoSYxp/jo+P3cRVfbviXzCrxXu2u+XIg6thQ6BbN8PLWg8uHt6Z9meUZe1XnfOzEBnqEakNKbgIIiFkawwmCPfwjGZVAF5kjH0M4F0A/xUE4d8AzgRwKmPsW4g5tu6Qyt8BoEw6fyqAswBAEITPADwI4HMAzwBYIwgCSTW8QhC4LI94oYUaQcSXWS3eQ1HmwUR3I0KcBF2U0J4gXCJtTGOROyc/w0JQOGqU+P/IkfAxAZn+OvPyEso1RsAXBM47D2jf3mk3CYLgpXt34PjjDS/TnEykMrF8fv8z4VouD65w+F07OJ2/n51wLZ6feI13IQodwBjQuXSbdTkABZlH8I9Rf7HdhmMPLrlxBkEj9ory4HKcH4zGTCLFIeMWgkgIpODyHksFlyAIHwuC0F0QhC6CIHQSBOEC6fz3giD0EQShlSAIMwVBOCKdPywdt5Kuf6+o62JBEFoKgtBWEISnY/ex6iGC4Klwiza4BBFf/jHqLxha9XWiuxE3BjT4Vv7baLwp1VhJEgQRe5rk78S3tz2PPYtPwqCGkfc0238UT467QV14xgxgwwZgyhRg7FhTMxul0E25l87wBYHqamDePI8+AUHUP7jX7c2bAxkZhpdjoSgniHgRy6d3dOMvdM/Lb154YhswAPjTn1y1pQzja0ZR5iHkZ2hCBMY4KkSBleGLAVyKN4O+O1IiWXwPsmLSzvd1zDFRp/wsRPoBwjs8epiE5Svi3iZBxIqXJl6J+0b81ZO6CjMOyX9PbvoRdp+buFzwWZyGoQQ/5I+aRni5nLWa5rqW/WRt2U0QROqyerWpV2iGz92E/PqUKwAYjzWDG36DAQ2+N7hKEISMxxvTbH8tWlYdRKEmzNOWuesxocmn6sI+H9Ckifj/9OnwtWllu73ybHeKbFubeIJIM0guRRARfCykCt/nOYFA1KkopTBj4rxoA603kW2UHlwxDFG4ee56HNPkExcN6GChYFrf7Slc0vsx7uoCLIjgspWWYde0IQq5IuEwphOSkvKIEikOhSgkkhBlONhGebtRlHnIpDQfT467Ac8dc4187GNCQpVMAQrT7zk0mqULHltrGVpZSQvf7mU/Yd+Sk1ReGPGmOneXdSGCSHKU26SksZzeuBFo1cpUaX5ipxewfcEZtqu+uPdjYpgXCcb0t5SvTL4STfN32q6fIAh3GFlK81hQM5/+GMag9jAJrzG+nn0OJjX52H4nCYJQ4cnqgbRlRIpjmrvKC1q3jjqlu4q12QfdfFAcdXi+bzBoMzxnNyvY6e7r9ftt37Kg9dtoX/ILfxO+kLheUbal7bQgRJSKkgzFqSTFzwQgP9/h3QShIRHzMGPo3+C7+LfrMb8sMM4DTKQW70y9BDNbvC8f+wzkRXbJ9NWpcj8netXrp6hpnkMKrjRC14LMIVa3+qRY2GEvjHhzSufn8L9jL0xI2wThOR06JLoHcaNn+Q+qMC9mIUu8zCtIEAQfRu8kl4KL85UNF2td9Bv8PlrcEwRBEO4xC9VZknUAgxt+47zyXr2AJUuiTru2MW3dOsqDy/bqV+GBEfc82gbhGFe2fxkjGynW+wzA2WcD5eW2qrebNsEX/vwDByoriSoX5cHFoyxkLKqcj4XAMqI9+wgiZfD58OqkK/DYmJsT3RNXNMjdl+guEB7RtOAP1UzmZyFP5jbG1NOBgMTadrnOL0lEQQqudEEQPA5RaO7BlQwJVUn0TaQNbdqIXlPJAsdM7+n717697unEjzIEkQJ4vDJnTL9Ot/M+q662LHN2t6dx/4i/4LOZ57tqiyDqC+H1etyF2gSRhPhM3oM/dXwRr0y+0nnlxxwD5OVFnR5c9S1O6vQ8EHQYaqikBEE9D65kZf589XGnTsDYsVHFNvZ4Cu2KNJ5XNTXAwoW2mpN/U05Not8XAtasAYYPNy3nOixkuD3OfGkEEVemTuUvyxj8PoGE7URSoTQm8Er27NN5xkMJjKCUDDL1dCOFVlOEKYIQ7e3gyoPL/GUz20DEC9rME2lFTU2iexBBGjusrBmdvIPascVAlg4gsQsOgkgZvFZwQdCNx+9jIeCUU5xXrBBOMabThiDgkj6PYU6r99ChZLvzdgiiHvHLwULvKiMhLZHiMBNlg5M16/UDHrDMOV2SdRDXDnhQrYCx+S7pKrgcvo+xzMGFqipgyBC+qpzs03WUWIwBWCHm2nxv2sXoVbHFtAo/CwHNm1t+FtmDSw5RyPfFaXvoZyHbbnwfH7sJNXl/2LqHqF/4mcvcPHaeSWk9btdbMhXJDRyR/17c5g1c1ueRBPaGMIJBQEgxJvtZyJMlKkP03JTB6tAkf6f7d84meYHD6G0xnxH2IQVXOuNGwWVxPdHaZlJuEelIMoTkK8vaH1Mhl1ZpZraYTpqcZASRAng1fvgUAkLlXOvzMaBdO8f1Rs3b2lwcTuM8DR3q7D6CSAPalfwKgHRTBAF4H93jT51eRJbPIgF9OApBr17OGmEsyqCLd58rgAHnn++s3RgTbdBm8Jks5n4fCwE9egCMoWfFj5bfjU9PyakzQDry4NKpx0norM6l20iSQejDGOpOWIn13Z82LLKs3at4dfLlnrZZX2hWEMnvPaz6K8xv/U4Ce0MYwZgQ5cHlSYhCnToCfgE/zFvvum677Fx0GrqX/xT3dtMdUnClC4IQLQzWscDmxWoASYZFWT2ai4l0J0ke5rO6PY2vZp/L3R9WWmK7jbqwxeSiRWIdRgUrK5NC4UcQSY/J+/rpsefbrw4CkJ0ddd5N6BI/CyHTr0nqG9DkrHCq4EqS8ZMgEkHAJ76Xnhh+0bvEzd+G35noLhA6mHpwxerxXrVK9G4ePdpxY65CFFZVqQ5djQWG351get1o/lYWL8064KxLNsvzrlVO7/JfnNzpOfmYawmi8/nDYzBBeILPB7/PfAdclHkI7Yt/MSkBIGTjufT5LEN6pgP/m3EBVrZ/RT7W8+YhkgMG9bzoVfhMMQeXEH2SSBtIwZVGRA3PjGHz3PV4b9rFmNL0I1t1Gb7n0gV5wOnd21a9XkGCbyIdSfQSqzDjMMqy+TagTheEdSE/MGUKUFkJAPh+XzmtKwiCE4YQfllwOnf5jqUOQ/317Al07ao6xeW5bfAy+1kI2f5aRTGBy4OrOJNvPFrT4UW0LvqVqyxBJBMvTbwSp3X5j+P7Ex1Rob6yoPXbie4CoYNZCH0GAWjc2Hadco1Gi9WsLNG72YVhqZchuRMisNULLajoy4Gla9FxQXf5WlXubu6q5c/D+f0GWIhLYLm200u4ZsBD8rET2cLK9i9jbOPPuPYxNwy4HwtbvykeDB1KsgzCMVzCfrtGY3PmpP0TWZR5KGrNVB/CMqYqQa0Hlwe/FYMAZjCXxHtMJuVqbCAFV7qgN4n5fGhWsBM9K37EY2NvsVWd2Qs3oeYTTGv2kdxGomA50RbmBJHKJDrnlKy4lt7rWEz0tSE/MGGCPGZ9s6eBYVma9glCDWNAg9x90Sc9xMcEICMDWL06+rxD/L4QAn5FDi4IQH6+6T2hZStQlbuHq/4bBz2ALqVbHfePIBLF0OpvcHHvx/HFrHMd3R9ehnslpKF5l0hlzDy4AAAFBbbrjIfQy58VsC4UDzxcTzAI8rohd9xQ0bhNYtuCM9GnYjNXPT4r7zEFl/V5BK9P0QndZnavnIOLD+XzsKH7UyjOOsR139pOL0XCozHm2GmdSE/O6PIsHh9zE5diims9bseDq55AyqzUgZWWyHKpO4bcg9KsA2mngKXnMTaQgitd0AtR6CYHl8kL9+T4GzGhyafiQVmZ4zYIglATchOixANkBVduLgDrNbaTIaY2pPbaMNvgJlrhRxApgccKLqaoU1mzKwVXVC4OAAMHAn37ysnjtesJ7o9FLqBEipPlr0PT/D8c3Rt2hKS3AGiQw6cQJ9IX5fwVdc3hHBYPRcRH//Ph8Yl/kY/dCL5i2l8bIQoZUxjM6hi06HZTpx7ZW0Vq22yv1Ln0Z7Qo3GF4XRdpEK3T7E900Xx+xgCccw53U8FQpO/kwUUoGdTwW0xu9jHXCxwUfGBFheaFBAF5gcO2+pDyHiVDhti+hd7C5IT5ffJ4ubTdG55t9ZgmlxcDoiOKxAkGABs3JqTtdIYUXGlE1JSUkeE4ITzXGDJxIjBggKP63cIgkEyLSAuUm9hELyuDAgPWrOGycHX6/rULxwwPb1TBDBfUUUp7gqjnaN8Vn0cxyVVtGAjW3Ci4AiwYfdLvB5YuFZPHA2KYp8suA664AmjRQuqL4yYJIqVwKlgKvyMNc/fwCUzNhGeMpaywR1i+AoMbfpvobhAJxtKDK34d4S87ZgxatQLalvwWuZ3zVr3X2ZXixGMPLrO+8LbkD+e4ysgAYG78Jndf+zm0x8ovThJuXvnxaFii8bxieblA48bc43edEBGk0h6H0KWBcWSTMFzPmyBg1+JTcFKn5z3oVIpgEVmKIXrMTHmlXprCWHRuylj8VgIAtG/veb08sHZtgZqahLSdzpCCK10QDBaRp5ziyMvKMLavcoE4aVJCQxQSRNogvVf/2drR02qXtn3NlgA8GPIBXbpwl7e70BCWr0D38p9U58w2qmTdSBDmXNL7MXn80JVbz5hhu07DFJwuNhZhAdVNA/9PrMtICFlcDBQWyjn6uEgGYSZBuMTpY5yZIWBxmzdQlGnPUtsIEvUQqYzZa+ToFcvOjqxFPQ8HHEKjRpG8YE7mWD3Dk4R4cOkVLcjHgbpMk6qkjmo6LCxfgXE1n8rHsgf4mDFAWZnptyR/hwb9DLAgDh+/RjwYMUI0pmnVCgBQG7IfJtLWI+HzoS5EchPCgiZNgJUrDS+/NPFKrO/+tPWzl5eHDF+IFDgW0BYieanTKrg8+K2UuSFlxowBjjkm7mFj6d2MDTTL1gdOPx2oqrJ1S4ZPx9oa0DF7SNysQIMCQZhzx9C/oSiTLzY8EG0pE1MFE2PoXvYjRjf6wjjiSexaJ4iUZ1m7V3Fmt2fleTmk9746mKOVyielNxdvVf834q/RdUr/r+74surYE4IG6xWCSAXKy13d7vMBdw27h/+GJJHmVGTvxRV9H050N4g0g8EbD66K7L14ZdIVQJs2MfO0mVDzKbZujdTtpNu6Cq4YrN0rsvebFzAIUTi/1TtY0f5l3VvMeqkM5Scb3ZaVARdeyBe+PKBRVinWNFn+OvHc7NnAmWfaNtZ1/P36/ZF9FiMpBqFG9f537274fAxs+B0KeQxamjYFJk605dmdJMsD53B8AGUReguTFwZBNQ9g1CjP6lUfQ/Ti7d/fcZ0ndnoeJ7R71X5fUv19S1JIwZUu6OXgClNaCowfb6s6QwVXmzbi/1L4IIIgPCBJZrhXfmkd1/Y+mHEx/tz3n4bXKXwHQajRfSPCCi69vBROFFxuNnyMYW6rd6NOv/1bc+d1WtG1KwAaL4gUpVDMo+H4vbMbSSHeJqoGNM7bjdO7/jfR3SDSDLMQhXbesaLMQxhcJYa8jNUbE5VDx8G76bkHl8F3N7Dhd/hj0Smma4rL+jyC9sXbVFUNq/4atw7+PwMFmF58RfGc0uBOFVWGMdMcXIwJYm5PKZyhSUHz65z3hQ+5cqb5/eTBRbgmPI4ZyurkggyYNIlUOAoYhGhb/ZLihPSFMIcxRBS5kyYBxx7LPYczmEcvUg7jgt5Jm/y5zz/RpfRn2/clifgv7aBZNl0QBNsT2KhGn6NTif7LGPAZDAwFBcC11wJnnCEeJ9KDiwYFgrDEzob+3d+aqY7Ncu7EIw8eLcoJggNpt+aV3NoXgxwm81q9Ey2I57G05BkFysvFdQlBpColJc7v9fJdZQxBITHJtr2A1gyE2fxl51WRyzoNxW/R2PDqL7HqsmbqW5SJ7zlzXuqFIY+FggsASrIOGt8nCFjX7T/IDdRad0Q67wt/XuV3LLUfVBisaNMm6Hqrh28HxNyehteNQxhe1Osxw/ss6+PB71eF3KIw7IQunGNObkateQF5b8DxnCVIqJbps/gMcYC8uJITBgG3DLoPm+euB/LzxRyxLnJBy/Uynd/c5fMf8AVxNJS6a+d0gxRc9ZiHR9+ma2kNmFiFMAbk5CRF7i2akIh0INHPcfOC33Fx78cAAOf1/LfqWkz7ptj4GrVDHhkEocbM4tlM6GOrDbEhZzdrwwIBeHnSlZjU9GPVusFyk1Jrc9Obk2OvPEEkC4wBF1wAluvwGfZyPU6WY/xkZSW6B4QODPDknZCVL0Y5ri07Yn7PTQPvtxtcRRefzvrZJyQgbG9YmK44pfoKQqGovxe1eRPTm32g/r2kv3MUijK/xujWLESh4b5FDlGo1zmR3MBRw3oN27PzaFRVqTzTksSZlkgSGAQxTFpRkXk56ZkzM0J11Yc44vf6M1i8kLqX6UVMWgoyj6BZwU71/MGB9nfO8NUZlvUpwhoLDlUjfibgSNDCa5iIG4nXUhDeYBai0IAMX9BwkegzSPzqllM7/xePjr7F0zoJgnBOadZBrO/+NAD7C1tHsrDzzhP/5xhbzIQKtw3+Oz6feZ6DDkT4/bhTMbuFvpKfIJIRBgGYODFyomVLMSE1vFMIq/Ju2b25Q4eoU70qtohrCqWCy2qsmTDBbssyKw3yfRBE0pKZKeaXcYLHHlzxIhYipbgaxUybFr+2CG4YBKCwECvav6zyDtjY/UnRk5gT2TNq6NC4yT+9ysFVnnsQ70272IMeKQh3rrKS/xajt1wSVi5r/xoeGXObuI7R8Lfhd+KNKZcB0AjBGePLwWXZOechCvXGGbOwiTInnIA6svInDGBMABYvti4HThmdrHROXg8uPQ/UeMIY2fUkK6rfRdo/8v5U2rlnUpOPcWbXZ+Rrut7SLh4EHxNwQrvXcOdQG/lwiZhBCq40wu76O8MXRFHmIXs3aV9+m4NB59Kf0aP8R3ttcnaFIAj7KIXZ5Zok0mZeFo7cxEeNAqqrxb85rHG0m9jwQvjXhafjhHavqSw8nVCefSDKMpSovwjLV6BPxWbTMp1Lt8apNyYoJ7916+SFf3gTe2jpGjTI2RNdlrd6hTWbapPAU9ewYWLidlV9Enas6hs3Bq65xtHG/JbB/4dNPZ/AvFZv87dHEAmG18CkffE2/G/GBZETXnpwxTE6g+fW5y1bUsivNEGevxzAmACMG4dbxz2OTH/Ek+mCXk+IluCc+JgAnH8+0LFjTJ4rvTW0cgzQ88zSQ/c9Ki9HzwqHe22jef6cc4AhQ4C5c/Wv6+bYUhwo1/xKD5Urr5TzEAIA/KICqDz7ANoXbxdPaUMUmnlwGV3Srml0CnItlzSfM1xfMCPb+t6SElXfabwi3PLz/HW65xvl7ZLn8/d3NIlnl2zh+TrA4iXWjiVA4iPpEPqofhfJsMLpb1WSdVDO+a6de716Bitz9mFJ2zc8qYtwBym40gUHIRT8TMCqDi+LsU1N6k1G8jKOJLoLBOEd0oJserMP4t502BJx24IzsKz9a6prvBtsbpQLT4W1utF6VBvPuEPxdgjLV6AyZ19MQjMQhNlT9ftxp+L2wX+PW1/0MNu7hQUn2YE6V4ITwxwmPNIfnw/o1cuyGFfv/H7HS5Bzez6JxW3edHYzQSQxjAFdyn5Wn5BQvi/ti7fhpE7P26s8jgouBojhmFIVsrKLGZ/PPB8PjbrN0b0+JojCsE2bVMoExqBWpPDUU1wMIDaegVY18q5xdcstWWLbI7Qsaz9mtnjPuECjRsD8+WIubhOU35WhgUyTJsCiRcCZZ0bXN2IE0KyZ6pRWKG22vuEWgLrwwFSFYQwruOYuML3nlyffj7qXwrATSri9UxiASy8FAFTn6RsDzGz+vvz3m79Ge0ga4ZXStTJnL1c5z98Ai3lZLwULTeXJCWMANmwQ55327SPneO5V/L2h+1M4s9uz0XVLKEMUOkYnPD+ROEjBlS44kAL5mICAL2Ru0ebxqC/AmwSBuYGjZHFBpB2eW/ONGsVdY1Xu3qiNstXr7+odLC8HTj8duDg6jMqQqq8BAD3KfwKDsYcVjQFEPCnIOIJADDz+svy1OKvb0/w3GLyYX+5uKP/tNITPk+NuwP0j/qrIV6F4xxxqm7TvqZ8F0an0Z4PSasjCmagv2F5uh5VRCqWUMg/flf0ewdK2rzurMw4wJgB5ea7rqcrdjS9mnSuGDjMos6bDi67bIeJDaNkKlGYfRLbfvof+9GYfYFm7iKFWlALhoou469JVHNmZA516T5u1r4NuiK+yMmDVKltt3zXsHjw46i+e7vsZA5AteTa1bau+OGAA0KJF9E25ucDZZwOIzP/aLpl7cHF8b5dcAlRVRd/Ls6fQdIb5xONgZXR9ShqUiTlgSKlFGKF9/jJ1lDEAgDZtgNJSw3f13B7/xjUDHpKvdyrhW297xTPjr8M/OdOReCETBIDjWr+JncedYjl+BYy+UyI5adJE9By2MS+VZB1Ah5Jt8vEJ7V5D66Lf5GMGqOZyMphOP0jBlUaYLpo0i/KyrP0GBTUToXazG0czh0Z5u3BVv4d0r2X7jZMFEkQqoXylPJ9iXb6vnsS5V6IVDrRuLSq6FP1kCOHlSVcBjOHsbk+j9oTV8ga+jifGve0u0WaT4CPA+DZGOf6jaCiFWPpx3ll4cNRtWN3hJcPyQxp+g0v7PMZVd6avzvC9fmRzd/lv+d21KbDuW7kZjfN361/s3l3/PC+SRfm+JSfhxn825rqF6/2UkwOry3o+fhFELJDmRdsGG+FxQDEeBEM+TRGbdfp8OKPLsyjJOmDvvgTCIKBd8a+GuXEA4MZBD6gEHt40TONLLHDztV7e7xF0L/9JPlYqfJGfD2RlcdflZyHF3CLhYVQTq/fdcjyQ+mIYacHii2xd9CuKMg/Kx/J86fQH6Nw5ugsQgAsvFI3Z2rSxXWVQ731mDOf0eApzWvLnUwvfJ/YJhuui49q8hbuG3m1ej0HEnLIyoF1ra9mE8l4SqxJmnNL5Obw6+XLjApZWqFJ0mOYfetgrc35beBrG1nyObM4UAl4pF3IDR1GafdByz6PrwUVvYlKi97vw/FZ/LDrV1HmDQVC9Ol7k4HK8NqB1ZEwgBVe6IAi2hucdi04zvPbJTHVs/7enXmrsauzIQo2PSU0+xqldntO9lu2vpTGBIDxALx51GKsxxat3UHfB4vOBMcDvExBcJlqiHg2SCziROHxM4FpcHzz+T+hQIuaOqMnfhZktPkBHj4Srmb6g4YtXqwjp6VS5I1s36rWxcCFfJXr3hnNzDRyInPPPRKAtR8gUxtQCSr0iCBl+H/H2/upW9iPO7/mvuLZJuOeZ8ddhcZvExM3/cta5XPkodQkLcpQGIm4fecZweb9HcW6PJ11WxNGUF2FhCMIEN/oopeBVnkucvqs6WEUBthT8hhVcDgXEX88+F1ObfSQfuzYI6dQJOE0tW2AQxLCQrVs7qjJkYNS2pO0buLDXE7rXrD6FmdK/JOsgFrfVD208t+U72L/kTzrtifXl5ABfvKkfLk6J/D0LAv44km9Znqg/aMeEvIyj6FbmIu+vXi5di7JudfgVOcYG9HroKZxcYeXBpZeDizx4khL9OZLvtzIzjtTWy4wa4+QfI28Hgg6f4yRNBZTqkIIrjYiJJ4Lfjz6VWxxbiNnhwl6P474Rf7Usd1GvxzC75Xs0KBBph9b62jUc72fAFzSMqX9ej3/jvWnRIQQBMYdfLJC7rNP3IyG1giscGsQNNIrUb8Y0/gxtin6xLCcsXwHGbCyuo47tP6vNCnaIiaIV+JixQufsbs/IfxsJhqww3WxmcyRR14E1qQHmzBHHmeOOA2pqOG9kltO8ygpP863He4lwUqcXsKL9K/FtlHBNx5JtKE2Qx1Lb4l9lobnt5XQ45n/Ys7JFi+hcNXb3BXEMUQjAWwWXSYhCALhr6D04rwcpoNOB4dVf4qd5Z0adVz1NjKnnXZvPmnLfK88ldiYVB++S8gnmWWuc0+PfaGqWZsAC5fjg2oMLAFq18nRNbeY1b/T9WAnz8x3m8M701yEv4ygAYNeRSGhVu2Gr5e/ZQ2Upkb648i6S3uVEhGDjGUXennopOnlk/Me7N9O+r+S9lby4+W2Uz7yVJ5gc5tfh3Der5fvWhYi4QgqudMGpJGfgQPPr0gJdrt3lZtTHQoYDVuui39AsP7JQN/pEazu9iJKsgzQpEemD9F71rtwSg6rN35OALwSMHat7rSDziOyJEnUfZ7g2FQbjlO67nJurOpzR/H3MaqFYRJxxhv32CULDP8fcgr6Vmz2pa0LNJ/hj0SkA7AmWGROABg2izm+euwG9K7aozvmYsddDA4WntZXnkx4lWQeQE857ogznA+DK1d/brk+Fw7WDlWJQJYTUlI23BxdZgaYm/hjk1bMFp6BzfM0n6hOjRkkXxov5dv70J5WnKIN+KC1Twmt+xaN859B78PwxV9urhwPP306TEIUA0KdyS1xDNRGxI8MXROP83fjg3MfQVmGgolpLap8Hm/tkpphrT+r0gv08boEARjf6HCOqv9SvX2/dq8wLwhGi8IJe/0KG0fjFMecqW5DXDAHvIiW41V+XZh/Ez/PXAYMHu2+TMcxo/j5O7/Jf40Lr1hnWq+f5AZhHwdBDHpPJSJfQYFuuZbWnlvYVybo27eOhzEN+oy3eKz1lH/mRJwcndnoehRmHTMtw/VZt25oqdbXvmWe/vxNPZYpiEBNIwZUu2AxRKLNwobmSq6TEaY908WninirRxkQ1Ilwky1+H2wf/zbO+EUTCkB78c3o8hQ+m8yfB9oIAC5lamhotuHnDtang3dCVlwOLFqlOPTz6dlzd/yGgqAi44AKgVSt7bevRtKn7OoiUxs8EQ8GFHkZT1MOjbsX9I/+Kkiwxp4X2Sbd8Vxo14m/fIOwIcy7LAyDGLTeag0+bYyNJtTYJuwtjFCtFITNS+FVWJsQEhuXmJKBVwg2WguRYY5GDa3LTj/DutEvw1PgbIyf//GegStXMAAAApaxJREFUpRTmMxAAunUDcnMxq+X7CC5bqa2aH521AIOA8mx7YYd48EroZub1Has2idhjppwNzwvdm/6h+k21j4ATQ48wSgHZ5f0exY2DHpDzSHLBGP7zTjHOUnhWqy/rCFoV3Y2l4v2xMTcD0Hpw+YD27YGMDFd1K383V4aol14KnHIKqtctAGbOjLps+5dlDA+Pvh1ndP2PcZmWLYGRI3UvyYqszEz1eZ9aqWrWPuCdwTCRfuiPCQ7foUsuAfJET0OuNU4insfGjT1bfcljjYPNDxnMJwfXDXgQOYGj8rFuiEKe3yovL7rc1Knyn4eCGdh+sEjRjke//8knA4358kvLkKFDTCAFVxrhyFqZMTFwtJaw98TYseLGWVneBVqNeoeSbeYJNHUID1qMAcvav+aqP06ItwKCSG+iLUk8nOx4QxTGa2HLMZEzCMCZZwKVlfoFLrtMYZXmRZdok1mf8bMQrhnwID6beT4wfLh54fXrDS/V5O9CYeZhR30wewJ1n08DhfTUZh/hibE3AVCEKHTykvTrZ/+eGGE1YmT5dZK6l5QAp5ziOEyjU3yanEKdS7di+wLyNE12EhG+R4WFB1fT/D/Qq+IH9UmNh7OS8OfRfTeskKM2iM/x8navYFSjL+zXw4HbvAdh/Cwkhj+dM8fWPqhZwQ5MavI/5w2TgDo28AqICgqAyZOj18wLFsh/usrBpaz3oouAjRtN3ztdqqttrehtrf/txO/VMKWZ+Nwr35eQwEQBnZvnWhNW2NUrUloKtGsHdOkCZGVFN2XwXdnJN6SL4gNU50ZCRAd8IaBDB2DgQNw++G9yuFO7IQrXdnwJZ3R5Vvx8BKFA76k0fYUmTDC+plDG21njeBX5gPc99GoPzhiAqiqgb19n9xJJhxt5WJ1i/8cyAmKkg06dAABHghmq6CjyXM/xIHQq+RnC8hXRFwYMEI3NGjZ03GfCO0jBlS44WcV37Kh/b1YWcNJJkb81nhQqGEOP8h/Qo/wH4zIKtF4fZVkHMKjhd1JVOh4hOl4aiZ6Iupf/lNgOEOmHl0nibWLlwWWEn4U866utenQKfz9nPW4d9HdvOkOkPWd3exovTbwSgPgcF2UeFkNxanN2KJk6FWja1Fqowhiwdq39TaLBS1Ab8gMAXpx4FQB1Di6t1VmWvw6Tmn4MQG25PrTqK/Rv8B1/X5YsUXTLwdpC68HldJxgzDLxfX4gkk9D7unkyUBpadwN48QcbZHjDF8QDXP3Gt9AJAUJV3DF6EHNDRzVH4fM2tO8rLcNuQ+N83d72zG5Kfefe1qzD3Fej3+L1uo6YV7N6FSyDU+Muxl+J+GWAbK8jRUGHjRKGBPE37ykJNpjSBHOTjAQc8xq8Z5lG6pwwBUV/LkjNRgZWujObIpnKh5bgU6lEc9sq7mWF+XnTYRnBNd4zqHg+s+Ea/HomFvl0wFfUJSNZGZiWfvXMK35RwA0IQo5FjtDrpiEy9ftiISYJQgJ7vclPE4MHQqceGJ0PUx7nLxzlaceXOefr5sreG3HF/HtnA0etUTEC10PLs5p6tweT2JF+5d1r4UEhuxAnZzH0877oVt26lRg/nzuOjQVOruPMIUUXGmErb1Wu3ZizH49Tj4ZaNaMu6r3p1+CGwc+wFXWz0Kuwx/IyQBd1kMQyYinG0Kfz7S+pvk7MLXZR6bvkt7cu7zdKziuzVvc3eha9hP2Lj6Ra5AKCn7uCT/82QoyDzuzVifqJW2KfkWnUjFXjepRKy+3vNcwxG74/M03A50727dK1FT89PjrAQBHQmI+jGHVX0cVM/f8ivz90qSr0b5YP5desmOmKOxVsQWX931EbzdveW+iOHqCwbqLSBh+Fkrss6KMksALxxzZKG+3faG1Qb2xEJB5sda5ot/DWNruDflYW+Owqq9U1rbKT3egTgw1Vrdstet+EB7i8wHXXce3p9UYQaieU5N35B+j/mLdDYUxiRuMPode7iZbzblVsA4fjjO7PotaaU4Kh1d2BVO/1bGU3RnVbZgTi9eQT/pecwJHVeGr/ZoxMPz12/6MbduKwlCSYRAaHIVk4/AEjPvqxiKPX17gMB4fI0ab8MxjjBm/kH4WQqbP2JCFQhQmlm5lP+I7TgUk72/Vs+JHrOn4ku618JohbLxl5wnUNaBo3Vr1zD886laUZ+/jq5AMpWICKbjSBcFmMumePSOLKzsvlwchCpWDkyp2Om8Xwn+0aeOqL47p0SMx7RLpCzPYoHtQr9m48NbUy8Qwn336iBO0Tpx7PdZ3fxo1+busC4a7AQEFmUesC2rhsOR1SzIKwYnYkumvUwt+160DxowRrSGNsJgnGQSga9doIcqECfZjcgMYV/MZAOBIUL1RZBCsBTXdukVZjcc7XJ8KFwt4M0Xhhu5PYWGbt+VjuaQ0nnplkc6LONqar2kyYphXhXCGjwlxf1ZkxowBJk3iK6sMvWOxFheWrzCeoznW8amy5VaFltEJd2S2ngomckwkzNGxwo9Ceo6DKo8h7/DKs9MoD5heaDvlOGTZuo0QhUvavK6+Nm0aMGMGGBP78cuC0zG+5lOrFrnwLAeXGVdcYfjxDX835bqJM0Sh8rMENJ6etscPstQnAFze9xH8U8qBZwlXYnrrMj3Kf+Sux/Ubm5cHbNpk2q3irEOY3EyMNhGPNAEMAmryd+GrWedEX3OST5zwlCx/HVoU7og679Xvoq1HO3bbmet58tnNaPEhd31EbKDVfbogCOaThNlCWBBQk/eH8XXGjDcNOoK2woxDmNfqbZ3CBoOIZH2S7a/lEjLIA9X8+XI81VgwruZT/GPk7TGrnyBklAqueDYLAZg3T1R2n356dMiMRo3075PeY88WhUYr4VmzRGtHq9thLsgCxLjJBAEAVbl71HNNy5bAjBmWVoeASd4HJgCrI54AcqmmTcXcHU5o1AgV2fs17cMwRKES+UrHjkDHjqrPW5hxiLsL8rrChXDG8TjBOO802JjHW3nNmKD6mnwsFAkFTSQtDAlUcHXrZjnuyO+5wXxshtN3IB4KcQa4tl7lHpaqqqQ2FcJrt785CaxjCu+zq/Lg8lBQ6ZWCy+g50/M0Ohr081esk5dKj0Z5u3DnsHvVJ7t3V3kQNcjd59njHBeD9MJC1An635VXHlyaP+HXKCR1FVw2w703yd+Jhjl7bN1DpDbl2fvRrvgX3WtR49dll4FlZbpuc3TjL/TzBsWC4cMto2EoQ7p7tfbimc/bFP/m6D4ithiN2fohCm2EE9Q516rwV1VoXrGcuTsuQ6R/lusCadLgNoCgdWRMIAUXAQD4cf7ZaGyi5DJ8ncMJqRUFVnd8CX8d8jf94iyksXAWxHCJEDX4UQOCzkpZHgtyc0WhZAx4fMxNeGT0rZjV8v2Y1E8QRnhqScSYaX2MwdxrZf16sMqK6PvsdsNmeRV5eZG/+/TR1Mv3Xc1u8S4+mnGh7jWy26pf7Fp0MoZXf21oVW31TNn2sNQmZjKq06DMvcPvwvYFZwAAzuz6DM7u/nREwWXSprxp9PuBE0+U59ZjmnyMnMBR486sXas6dLT59HDBHhZyvjxJzJk2r9XbCC5bydV+3HNwaRrVhjRSbpKI5GBJm9eRE+AzrkooTZpwGXtocfQOrFiBoNYTykE18UArmNB+XLnfHToAZ5+tutaldGtM+0bEB8N3123EERjPy3YwUtTpCfW0HtumLFokRjI5/XTTYqZrGg6jHruovJ5i6LFs9LsbCiD9CoWYhQfXxb0fQ8/yH9Gj/Ec5lFpA83uF9Ix/fD5k+03WVxq+mnUuHhsb7c1D+YLqJ1H7i6IisDatrW6KXYdcYCp7kP/wTuJRF5YfOvg+yIMrsSjnCSsPYCdPu/KR+GbOuWiiiW5gFt7ytsF/x+/HReZYQwOKMCHxOveegkIUxgRScKULgiAPAw1y9uDeYXfKLxkA8wFfulYnJbM3ymehey2s4FINSMbounZKdWb7a1EbsrZei8dENLnZx8gN1OpfpMGI8BClRwYuuMDjyl0ufAMBoKQkulrpHeSt3vYbo6x49mzRC+KUU4Djj9fUK5azWnBoPStUdSS7YJPwlOIs0XvJ6Hd36vGgvUtbv+ViVxDwztRLok7nZxxBw9y9AIA/9/0nVnV4RaHgMnizMjIgQL3ZC7f/73E3Gfdh2TKgc2d1v12ItvMzDiu7YB+Fom5I1Tfy6SgBlkEDcffg0oQoDGhi/iepHKJec+ewexHwhVw9567gfSg2bJCF0YJgcp/GW1T3HbBaw/boER8PLg88ZGSFgM8Hq5DMytzCP847C9cOeNBd47QXSCyS8YgqRKHZ62Txe63q8BJWd3hJPvbOg0v/vN66VRnKuyrXwrOnQQPgtNPE8OJ6cOz7cdFFaiMyD1CufWI55xlZyLsOUcgY1nd/GjmBWvh9ghxKLUcjE9Bt3+/HrkWn4Iq+D5v2PUx2oC5KcQYALXXCdRHpASlT1AoFr9YawRBnPV26qA59JvIBIj4o50Ivl1VR75rBD200Z7wz9RIsafs68gKRedly3SpFJaMQ2ImFvv00Iryx61z6s5iXQjlKmI0YYQFYeGOoMwCYWYqLbWvL67ennUiU9Wb56yIWGCYwJkRZYlpxXo9/2SpPEAmhQQOwfHebzRcnXoVTO/+XqyzPQltvPeDVxp+L4mLgxBNlT08l4QWEn5mLJ2ntSmjxSpEVOW/+TpgtdsP39q78Qe3lY7TrkkMUas4ffzxQUwNMnRp1i9M3VtdK2YpAAB8fuwkPehDiV6so1FVMGoQFeuu35q7btwNjUH1PfhZSHTMIlqFbiMTQsWR7orvgDTU1qrlS+d5PafoRnj/maq5qHviul6tubJO8Ts0IvxmmIdItEEz2LSqCQVWxvMCRmHqXEO4xm7OUv7ZhiEKL+VNL74ofcEGvJ+Rjn5WlNidGq1O9dXST/D8QWrYC383ZgPN7/ttdwzxzdkkJ0Lu3u3Y0xGt3oPUyDeM6RKFOuanNPsSUph9p2tepLxBAdqAOfSq3cHtsJ733MOE5xvsIvXP23yhtvrhEYKYIkMc+n8+z5z/I48HVo0eUoayPcnAlHHnMrqxUKTx1QxS6+a0MZOFGT0zvyh+i8ib7mGAeen7SJGD4cP7nmrSrMYEUXOmCXlJUzYvcseRn/dwb4US9JtYPgqasTEYGkKmOD8xgbA2hKxiXCucGjqr6YGRhz0pLI5aYHANDt7IfcX4v/o3C+9Mv4i5LEJ6gFYK6YECD73BFv0ewf8mfYjZxhheuyve5JOsAhlR9HVX2lM7P4eLej8ekH1V5omeLNjY+QVhRXXIIz4y/zrP6tK+ads588Pue5hVIHteCclmmDKkzfbp1J/r0ET04SkpwQa/HcVGvx+RLKit365oi3XJiheb3o3PpNlTm7LN/r4YXJl4te7at7vASlrV/NbqQViAlhyiMvweXclOjXe/4mACMGRPXPhF8rO7wEn6Yd1ZiO+GV6apiMFK+A/kZRzCi0VdcVWw7UBw5OPtsy3WJNu9uleR1at5Nsc4f55+tu3bgQTvOat95WcimCcXmydKIPLhiCk9EDwAagZjJbxKeJwxyV2k9cH0moYPtYDQPGRmKMQa0KNyBLH+d67YBg/le+bk8fo5VxkMxfEeMZBZcHlxmoRl1FFz/HHMrOpaqjSB0BZiZmcDKlRhS9Q1Cy1fh6Amr0KX0J+O2YKAoo3VC2mLXc9mJTCBDEz0Aa9ZwNOTRutkqhDoUn8nDEIVmRoTymDB+PJCd7VGLhFfIv0+TJoaGC04IT3PyUzZunPj/qFGqucnKaDtUFcl/64Ngng83JweYM4ffg4vWkTGBFFzpgiBEvyOaRdqnMy9Ax9Jt0fdKCiozDy7TGOdXX809IWo3EIwJgCDg9cmXoWPJtuiksYKAq/uJYUTC1nR29xt2rEMYQuhRbr4YJQjP8VDB5WMCfExAXsZRbdU6zXK0pZcHT/pfaSlZnbsbL0+6Kqrs6V3+gwlNPg03aNlcTd4f3C952ALbb2GBxUyu09Ii8ZRn70PnOOdDYQX5GFvzubgYtXMf5xOj9RD7aX+pSZ0Rnhp3PZ4ad714UKHIf1dSInpmTZ1qHaKQMZzT4yls6PG0vA5QzoN2nnlH74fUZnh8cTymMYb2Jb+gd+UPAICbBt2P4dU6gnA5F6h6DTOx6cem1bco+J27KzxlGRNUgoWAxoOrb+VmstZLUhgDSjIPJrobuvgUwiAZnvBjUAt9ZI+UkLVByLdzNuKvQ+4Fhg1ThfbTcna3p/HFrHNx34g7LeuM6qYHsy/X3qN1a1mwIYdXVrZtZo1r3riz+wguDtZlWhdizL5ATCcagFiV+vdsnLeL3+vHBCNvcV2hWgyeKeXnKs/eh6rc3eoCHOOBHeL1WhgJEA09uJRjpt9Eear8zRcsMCxWnr1f/0L37vKfGb6QpaCTJ3INkdy8OPEqvDAxev9rhNHc55W6J0qW1qUL0LWrJ3XzwpWDKzfXsxCFdSZG+owJwAkniLlMNfx3a3vy4Eow8v5UEGIbHrt1a+C664CZM1WntblcteRm1uHZCdcC4I9gxB0yk4gJ9O2nEeFFtPyiFhYqLpq8kH36ADBXYpkOOBkZ2uKmoR30JpIBDb8HY/ohB07p8jxennQl/j78TsP7zfA8DwdjGNjgW7QrTpOQNkRSYVf++c3sjcjyR2LDqzZ3jNlLWq3XHyH6XWYQgNWrVRO9UbflMpWVovWUCc8dcw0+mbmJu2/hui1zcHHXSCSCFgU78PGxF8a30VWrxATtp52mOm1lEGEY9chE2QSoc0iZMb7JZxjf5DOgRQtgzpzIhaZNxfdH8Q5xKag5rCnNcBQ+xCsljkU98lUDa+yWheZKqe/mbjS8VpJ1QPW3WVllf4qzD0NYvgKA5FkqfYY3p/wZL0y8GgiF8PbUSzGt2YeW9RH1AI53RZ5DHSi4lF4w8lkOgXZx1iEc3+51y+Y6l/6MdsW/WtZniEtpuHZ9r1vb6acDBQWqU6qx0+V41SBnj6v7CX0sBV1yfkmb3slDhgCTJ5tViW/nbMC1/R/0ZC4zmkO9CoFoiMYQ5s99HsX3czZg89wN6s8V9DacWbxyX7Yo3IGuZdEGqYYCSMZEy/3hw809uJQ5yQYPBlav1i3WqXQbtnOEYjVVcDVooC8IJUOYlKI48yAKpZyzbtANyWb1KNgxSrfbuAvMEgcwJoh7mnnzPAlRuL7bU1jd8WXD6z4IhqFYj4b8unIOIn7Ic7ggeJoPV3dfHvbgq6yMlFPMGVW5u3VDfI5p/AUA/nmb+3PQWB8TSMGVRoQtGQUwcQGvsCLSllFRVQVccQVemXQl3pp6qe6GM6ixjLbCX1Gme54xtTBaW1udQUiKIVXfoGn+TukemwouG5Mnb0z+16ZcgYdGuc8vQhAAXHlwtSpSC3G1r+ieo7mG9/ocWi2x4iKga1f4fRpvTL02wucvvBAoKjKtNy9wBEWZh/knfEGAsHwF5dJIccLPyOI2b6BZAV9y7XuG3YWFrd901mBmppir5rTTxP8VON1saZ9/7bxTrbWa1tKjh/p48WJRKHvllcA554gJ5SOVW3UmquxNg+7H21MvBYqLbW0f3AirwnfGdP0+d25UmOQwTfJ3ycomO5ze5T/4Y9Gp8jHvOKkdu/0sJAvSyrP3i7HcQyH0qdyCnMBR2/1S8tGMOCuE6wEJ2WfaUXDxEvZIqqxEqUJRK49RHgu0naL85E7DIlVk7wPOMg4tqX0nddcpGRnoV/m9rrDclFAIvy08DRu6P23vPoILXt2nUpDElYPL5wP69Ys6nacYkxvm7EV2wJsQgUYKDt15xak3oRWFhTiz27MoyDwihj5UGqaahVtyAHdoJpeUZB3ERzOiUwqYCiBnzlQbDukxcqTo8bJ8uXist7447jgAQMPcvZZjuJlnCdav1xeEktAzpWCMf61sVoo3LKsVbvJk630Os3X0l7PO1T1v9lkYBODUU4HSUk8UGhf3eRz9G3wvVR5dn/b7EFRzBpFInhp3Pe4adrd4kJdn6fnEvSc9/3z5T93h9MQTxRzvALJ8kbn+uzkb8aCJfJcBXIsTbk80igQQE0jBlS5oX5BZs3TfaMPXqLAQXcp+Rt/KLQYKLv4BRxuGUItPm3hV0c+jSmtTk/jk+gf68EyejaUk11aeIHKb55xDLs1ETHCyr7HyHjHCae6q8GKRZxFtx0o1ZFORrhyrTA3adfICDq3iy0VCxJ7wWH/XsHtEgSUHx7V5CzV5u5w1eKGxcsDSg8swtIjRDQrDE8MiAtCrF7BhQ+Rk+NkuKAAaN7bXJgB06iQq7yRP7sqcfehTuQXo2TPqE0xv9oFheBXH1pWLFzu7zwYCIIZQk2B6ni4GzGrxHnc7TsbJIVVfY1aL94GMDPyx6JSIIYL0e7gVZHQti29ITyJx2BZWDR8OrFwJrFuHLoMKcWipmH9DFqh7GJLMzTpYucZ3UouwfAUqcvYDzZvbbzv8R5MmwOTJeHPqZbisz6O266nI2R+d74TwBMu9m07+aO71s6bg5zPPw/TZGfLz7EZArMUohKJuG4sXi8oVr2nZMvL3jBlqY7Nhw0SZwQUXeNLUln3lntTjFNehobKyxJxFPaW8qXrj5cCB3NVFhYtTkp0NIaCjQNN5kE/p/Bz+MZIMa5MRu/Og0Th1WCfiipM5VveeGAnS2xp4cBsZrAPqsS8e8v1oBVeEloW/kzwvgQyp+gZN8neJThnHHONa4dmqUHoeq6rMC1ZUAPPm4dwe/8bycG5nnw85gVpTo2kv1wZE7CAFVxoRfuV0B2o7ySO1sw1jlkKuqFtMJotc/xFF1YLqZr9q0mNA//7mfeXYzSg180b8NP9sAJqBq7paP/cAY6LA0WbuFoIwxGUOLqfLAR7PBL3+KF+7a/o/aHE/P7Ii3YGCy7QPOguSlyZdLVVB9luJJlMxRtux/tWW7VL6E16ZdIX5TS1ayFZbejiN/619T7RPHNeTqowPz5H7w3SsWLtWVJhp3yUd743WRb/p57aCCwVX//6RfDdevGJLlkT+lnKoaAXL5/Z4EjcOvJ+rOjthlJVeMOZ1RtYzL0+6Cse1eQvIyEBJlpTb6dJLZU88x8pZot6h+6yavVQ+nygsKCgAVq5E9ogB0i0OPLis8v25pU4c+72ah+3kAwYgjpHSfMCV80lJOPefvbsITnjnYkMPLi0mIT7b9yuC74Slcng6L593o8+hKyjLyxND4g0eDCxa5K5ho887Zoy6XCAgei0pvcRd8MWsc3FBr8c9qcsUg5xC8nzrFRaRJ3T3IUuXisYs552HXuU/mObw1LU30Bnfu5f9iGnN3Yc2jnlozHqIjwncihozAbne/OVk/ezI6MJjr0HevVw8Qppqv/OwEvz96RfhnB5PUojCBCL/NitXArm5lgYKZs9VRfZefDMn4lHIE8Z/U69/RQwQ9ULXbtggj/Ezmr+PRW0cRo4xgrx1YwIpuNIFQZAFUbqThfRycs2/OslXrQTPvBNUSdYBZPqDandnxarg2Obv45NjN0lNCcCgQeJC0SGvT74MT46/gbu87MHVty+wfj3AGGpPWKVblsYkwguUeVoA/udqUMNv8PiYm8wLxciDS7n5P7nz8wCA/bVZumV5rV0YQmhWsFM6iEHs4m7ddE/HK18AYUymYjNmGs5F4qlx1wOIXugWZBzB4KpvzW+2eGYME9YLYWUN3/MsaLwR9TauU5p+ZNwvt8ntGdP/rOXlUU+8/A7o7NA9SfjrxkRz+XIx0XvfvsD06cApp8iX8jRh/rqX/4Q1HV/SrWZD96dw5PjVuKrfQ+ha9hMm1HwKANi24Ax0LPnZtAtDq/SVf1q0BjsAItb45eVAaanoVTdrFv7c91HsWXwSV71EjJk3L3Ft84QotEiAbUp2tiwIfuNXyYvDQ5Np7fzerexHbiUzA4ChQ8UuedQfbT3ab0wVNnX4cPFA2vMcCmbAFpq8XoS3mBlXKOdhw3J25tCwIleqyscEy5yxvNjy4Ap3YsECYMAAdw0rP5Pb9YQN2hX/ivE1n8W+oSVLgH798Mz46zCpyf8AKLw6vaRxY2DZMmCjdR5Omb59gSuuAKqr8cDIv+DL2fph3AB+h1q/z30wt0+O3YRFTkN7E4YwCNx7SbNIQV7kzirL2o+BDb+LLsc577teHkj9yTUJw62N+uQpuiEK1d95+E3qUf4TGNOJLEV4xosG0UHCaOdBq1HuaNB+9AvDZ0z7sEtrQfl0u3ai4al04uHRt4uGi0TSQwqudEHQTK7aAZ5nxpo8WYxLrrQil+qyM+kyJuhOML8tPE0MgagsC40Hl09Ap9JtAKRBz+eTBUROBNEdSrajKnevqCjTYWjVV/j9uEiuDT8LiUK0RYvkGOVRrqqk2SI8RLvY5V3s5QWOYnKzj80L6XkgKvDCgyvMEZ3QCoC0sJSEWIYIAkLLV6Emf5dxA7qdi5QzG+LojU1uMv11QEkJAD6rv/FNPosqe/vgv5nGzebFSqFj9CxpH9kuZVuR449s8PTm0MfG3mLckI6hiYysbDMuEsXGjcDUqcDAgcZvvY5nh5sE0J4oj3v2FK3ZGQPGjhU3HNLnDxhZqep8MX4WQqY/iFO7PIePZlyEhW3eBgBxfWBy+yfHbsJNnAJ7ANHSqi5dgNNPV4efHDkSGb4QCjOdJSWvUuRzK83yWJhX3zjnHHl+SniYGkHA34ffEXU6ajnv8L36cneVaKE6YoStPpmhXR+Pq/lMVDJzCOcFQAwjc/XVUdfmtXobj442GR9dwrKzIrl4JOF/JWd4XJnSUmDhQo97lp4cXLrW9j2jG3+Oac1MPFbCIQoVc7bKAMVsDjVCacgydar9+3UwskiP63iTa5yLNxZwhft3S04OMHgwxtZ8jsbhvUOs6NUrKl8rL36fIObfNEAI6TwHOgpJM4UBIHovWNGi8HduIy2CHztrcR8zTuOhJ9y3K3Lasei0SD4qDooyD6Ig45BpHwCgUd4uZPv5c8d2LduKn+ev070WEiIGeJ6FfJs71/CS9hNp93mMAaFl9vP1EtYMM4gOEkY1VzBmuQe3o+a3LGmg4IrCJOoLkZyQgiuNCAuizBbNZpbaOOYY0SJKZza19uDSnhCiklLKVlXatg0sy2ThuwvLM3ngNNikZ/nrUJ6tTMINcWPuZGNEEA7wM2ceXJablI0bgepqDGxg7NHCtbDUeXfkMUa6dmzz9zG75ftiWE9tGxCsLeS1QuFYeHDF4n7CEzJ9QaB3bwDmcdu1KL29upZtRXXeHtd9cWojq513bxn0f/hj0SlyyCOlUPqMLs/i1cmXK+5VMHiwqBThWFB3K/uJv4M1NaJFutncpqPgcrP1dKMc4yFgJESz+V6bGRnkBI7C7xOPh1nk7fvlYJFuiGe0bu2ZgPHqfg9i6/yzAADbF5yBP3V80ZN66y0ZNr12Ysz81u9EndN6tWrXDLa4/nrRm5AXaUwwWm8EmHrMkMP8VVbytxEIRCntWhTswLTmH/HXIWGl/NPdH0lj4qjGX+Lw8WvsNWhgPEeoyQnU2r6nZeEOPDrmVstyNw/8P5zV7WkAmtBcjOHuYXdhdYeXom/Svj+aNSiP8Rcv4TXFG1MuQyNFaNq4Lj/HjgU6dxZzS8WBbmUc4aI9JNZrDVNc7leMPLiaK8IafjD9Ikxu+rGhfOe6AQ/g05nWOdR8ebmu838S0YgeXHyYff+OIia4DOk/q8X72LvkZNHbGwYK+VGjsHX+Wbiy3yO2uma0JxMEJsv2eN/ci3s/hpGNvtC/WFkZycer68Gl8RLSjhdCdJ5uIj7EI6cVtzGJUc7shQvtrWkhelISiYMUXOmCIkShLpmZUjFnI3jQLEmqBjstMABo2lRxInK3WVJIvfJ62B04lVYlhsQ6JwFRr3DqwWW6AV+6VBRoM4bXplyB+0b8NapIcNlKZPqdJUeX3yvpXXho9O24uv9DkaTMemXNUC68mzXTj4OsR6dO4v/t25sKtvwspL+490V/i+XZ+3DDAGuPjePbvhafPANpTpfSnzCn5bvyZscwRKAOSsttq6cs238UW+aebR2i0CJEotH7qRUABxbNR/bw/vL8lheI5J7sWrYVg/RCiABiaKI1ayz7KSxf4SxUAmPRIQrDXdeRtITs5sVTYCefmi0EAWd0eRZdyrZy32I2rmq9UJS/pTxCjBqFFydFe5oo+W5vRbQHvMcwFhlTG+bupU25V5x3XmLa5fgBtWsEV94RvMZbYQV769amxeTuz5mDhjl70Kv8B+6uhBRhXJX7l8v6PIKVHV7hq+TEE1WH2j2OkWJO9bUrDrL81jl7ieRiabs3sLrDywDU4Y7BGBa1eQuTm/5PPjZEmvs8zRspEV5T9G/wvTondOPG3jWih/Qh/CwE5OeLeTnDIXNjDGMQw0WPGhXbhqTFiyehlJ3i0iBWd+/StCm+mHW+nOO4+9x2ouePwXPpZwJXbi0GAeNrPjM1fCTsw5jALV978sdOuvNSw5w96FJqvaY9qdPz3mvHw4Z1iOG6XUEIEVnbP0b9BQ+M/IvlPas7vGTfy1pCu2biCYVPxAfV3owj+pjZe6a9PVx3VCSuMHr5FYcMid4tlpUBF1wghvvmnNO+nH0uXlMYshLxhd7wNCK8SBIUE4dM9+5Au3aRl9bm5PiXIffinmF3GbetGHBMk1sOGhQ9YA0eDMyfD1x4IbAu4s4sC8YzM4G2bQ0HtaVtX8PYxvrxvrWCeC3y2fHjsbL9y+ImiVPBRRBe0LroN0ceXE/91Fn8o0cP9WRcXi7GfwciSdB13h3+3FgmHlxadBYjtq1zzjqL/0tYvFgMM7RsmamCP9NIaKXT34rsfVjb6SXLpntXbMH8VtHW9oQ9/jPhOsxq+b5uuCErlMow+RmfMkW3rI8JaFrwh+Wz5T7LgcSgQaKySmpvQ4+n8Omx58t9SRjMRNXjcYhCwxCCHnB5v0eRa+QVoPMbm/3sdwy5Fxf3fkw+fvj7HvLfcp7CwkLLPh3b4n1gxQqgY0fLsvIY7RSpPwm1XE8Hwg9GdTVYzx7mZWONgYW11vvF9vjhZM16zjmi8qhPH/Oqw6NJTg62L1wnh/7k6pZB/1Z3fBmN8nZbVzB/vuW7ZvTJjRRcRGqgncXCx6b7T7PfOfzuhUMUemjAqHxfHxt7Mx6efK94cNJJnrVhhqGnc6yZM0f0HIsDdgyjkg3tHD5t1F6gc2dk9esOf9tW4sljjzWtg/d5ZQyY2+pdvDYlft519QGfjRxci9vo50DbvnAdWhX9rntNybUDHrTVNysEQNyrSIalumtKD/N2Dq36Cuf3/Jc8Hrcu+s0yOgIgKhEv6v24o9DF2vdjb22OuoCHn4+wh960nOGrE6OA6RhdVuUaR2oxGgcNjcKaNwcmTQJOPjlybv58fXkzY8Dq1cDMmQBEI1OzEPHl2QdQknXQ8DoRW0jBlS5oPbi0I0YgAJxySlTiey4YwwntXhetxQ1DFGrV5jrlmjcXJ9EGDdTnfT5gyBDR/bNFC1FABI1ySpFYXtvOHUP/JgqWdJAFAxyT1y2D/w+X9HmM+7thvtRdUBPJwSOjb8Xdw+5RnbO9sdY+28pjDxNLM0USVvkV4XhXuD6PchFjZ2zKzRUTxUth4IwIW/UKy1eoQyoJ0VZ3ZgKSHuU/4E8dXwAA/HrIWuBNWKMyZACngmv9egDqcIYNcqT8Ay6taa3yHBg9nlZPbW6gFh1LtwNQfGYL7whDXG7GtPny5Pk7Jyeq7MhGX6J98TZH7eRZfJeO4R0jFGsN3XFICmnSrXwrJjaJ5DNsV/yrmOsL9kJVlWfvBwoKgBkzrAsvWSIaHjll1Spg1ixScKU6ymdZ573+YPpFOK3Lf1Xn/HYVXE7Gi/x8UXkkRyzQhzEBuOIKR0oiv8Kq1ml0CS1WnzTcTS8VGF71neBHa8gZNkzRE2QZCZ5Xtn8Z/SqlXDXSGjRc1kud56KlftmSu3PpNgz9q5S3jcNowgv8PhchTd3QqFHc2k2IB9f8+er/rTBYm4ZyIvuX1R1ewqP/LRS/txNOQKib2ujCLIIAzzdNkWdiA2NA26JfMIDDM85qj8GFk729IOCCXo+jUJFvSzytfnLM9mC6nk8VFQCA3hWb8fKkKy3f+U09/4VFJvJEIxiAFoUGoYttRnMa1PBb9b6GFFxJhZlzQvuSX6JS4BgRvt3Qg4sxYOJEoH17J910FhI7qhJ69mIBKbjSBSFiPWKegyu2PD3+eqzt+KL+5JuVJQ4ma9bIyVr9JolXtYkHdQeScFgrM3fjcBgzM2wq/AjCC5oX7EB+xhHVOd7H65we/xb/MArgDniaS04pVJPHGEkpEbnA8MO8szCq0efyKS5rc96QhCaYLTSUHlyq3tj0OGtZ+DuuH/gPAECn0m20WfQAOVTHiBFAx454YuzN1uEq8vKAm27CrJbvYX6rtyEsX4HmhTvFawbPvPxbWbxgx7V+C/kZh+18BHX9RjRrJv/pYyHg5puBadMAOAg5ZvbOc3A4qM47JACioljKg6bkkj6P4fNZmxy107xgB1bp5T9xi9HmvmtXcSyRlFM4/XRuJaJyUz+8OmJNyustc2DpWrQs3CEeSLkMTGFMXBPZRB6y6uqAkSO5rYYJA5J8Pde9/KcoDy5TLxUTYhGWqjDjsGNBvXLcU75lXs6r2lBQ4fcnKhThtdd61ibhEZrwk4YMHiwbu3C/zj4fbhn8f3h50pV4a+qlEQVXDJZ0mYvmYuBxLeXjuI3Z0pfhZT4xJ+3Hg4R4cA0ZAtx4I5/HNmCs4Dpmkvy3duzjXeoxQNdAKapcck93KQuDgNLsg3idwzPOx6mMlLEalBjDjObvY1zNp5ZVndPjKWT51euJqPB9ZgouvWuDBwMAKrL3Y0jVN5Z9sGMgq7rPZh4lJdp1/KSmH0f2NfPmkZIh0axdK/7PGHpXbMaQht/Ix3YwKm2o4DKA9w01fWxW8CnhaFCODaTgSiPClrxcL6adF4rDUiT8ko+r+QzFWYfkhVyGMt54uM0GDYDjjgMAZPsNQgxZXJPhEeCvXWv9eZX1cFrGxFu43aLA2nWdSC1shf9TsH3BGTinx5PigXaGVT7r4RCFLjbU4f4o47vLTRx/fCTxppS4vkn+LtVigktAPHcuUF0NrFzpuJ9mC40MX1AuoPouGjaMKmvWX+VGoHvZj/Y7SUQhC1+ys4ETT0TXsq0YWvW1YflMnzQvBAIY0/gL/H3EnZoKLcZvi7ngzG7P4sWJxrmWjJ4zyyn11FPFZxzSIlwx59hWcOmEEuSGsSgPLgBiOCEPPT4BINMfxM2DrPPZ2cboy161Crj++oigp7BQDgUoC7qHD9etR2mZqszZZxXmOIwqXGJZmai8XLaM48M4pFZsL5VDMyUFybS5tOqLIKBFwe8YzyHI0qs32yikJ08VOuuSH+edJebZkfqmoqAAT467AWd3e1q3vn+NvRF3D7tbPvZK6K+1RtcK95sX7sBV/R6K/qo5hMOECwxCB+sSfpY6dgSmTtUtonoeFyxAXXa+ZXXqCsQHINMfRN/KLVEeXJ7CGFBaKh96YM9ls3khMeNcPNqUc7cmSJyVkWFdJpzP0CDnWqi0XP5b+5V17qw4GDnSJIKAwLV3ZEKCwlWmOUa5HnXLeiE70nh+Pzz6dhzf9nWuW7VjXLQRiM5DJkVJUUbN0PZFDkke3kf066fbvixLsJmawUhJISxfYduDS2bgQGDoUOvGidgRCKgGujenXIanx18vHjidQzSTrKu8tXpoI5Hp0aOH5bjw9exzPOoQoYUUXOmCVYjCcLHwxBZrjyUp9M/2BeuwvttTOh0RX3pHCi6dEGxmnmBgzNo6w0iwp3dfAjYKP847C8vavxr3don4w7P4bZi7Fxk6z/zBpWvVz7KVAnj0aO5+KReI8t+NGom5866/HjjvPPm6UljMpeCqrBTvdxGyS5k7qUn+TsxtGcmPpUw8Lr/SbdoAs2dH5QkqzTpg2EbYi21eq7dRnbcnqWSjqYqPCbY8AHIDR43H4PXrrcdnp2E19RSkVvcoycoSw/Qi+p2wnVNH4Q3mhPtH3iHGwLdDMj3shlIeFj3myTlVJAYNEsetzp1lpTygFpApfw95HWLXG3bcOKBXL3v32EHqe0JCM6UpCXnEmfW6Xcl3czfi3J5P2m7m0dG34PoB/7B9nxk1+bv0L4wfD3TpgglNPsWI6i91i/Rr8D2qcqWwsoyphGp2hIVarO7M8IVwapfnHNcfpip3t6LNJBobE8CZXZ/BY2NuTmgfdENnAWL4zDDK90vrZSsZnwgsRuOpou2SEmDr1tg0o9cmQ4IUXPHwipCiSHQs2R4553J95DkbNwIXXKBScipRiTQ0gthRoxTXZ80CmjbFkjbRigzen5cx8EW1IWxh5+0yXe/ref/r/bjKh0ZWzlugHA9M+hNWBrw77RJ8PvM8PDL6VnHQWrFCf5yVZA5yrr9wJIjjjhPDv2m7AajPn3aaVc8BAJk+g1zaAIeCy0LBQR5cSYPfJ8Dvk34PKcoJL6qIMIg863Y9uCwdLPr2BUaPjqz9HEYxaF30m6NIHoQ1tDNOI3g2WfIY7rGCK6rtoUOBk09GWfaBSLxhnXqa5v9hWKfW2lR3/pGETgtavY0nx92gutRc4/EkLF+BAk3sYZk2bSJ/K/tZpzOhykH847hhyM5GrZ7lDJF2WOV2m99Kk8SdMTncTk6gVq3gMntG58zhyxUjobSAiRLmZ2WJG02p7WOafIpGebv0y8YIZZjSmwf9Hzb2iCjWlQtjITztzZoF5OWpEnA/O+Fa/MMkPF74O7hvxJ3RIY4IRzAmAJdeqj5n8sx0LjXJB9W0qUk70h8uw/t58TRrN1u2rctatRLzUl52mf3GGcPslu9hdst37d+bLNjxNJMVXAIwcqSo3DrnHDFU8rBhojAekdAr81q9jQlNPgEEAbsXnyR6pE+dKluw/rHoFLw08UpvPofTTfXpp8sWhLQvd4lyPEj0l8nhweWUac0/QgelENhrlH2bOlV+R3lzFqbSY/yXIfdiy9z1ie5G0tC66DeMbKSvyIwXhvsjI8FTRgawYYPo9Tt2LDB7NoAYDgHhHB9SvppGjWLUjg4Js01RGJDEjMaNge7dcXa3p3H0hFWicuvkk2Pfrh0KCkwt/qVHAj4WQp+KLeZ1MYY7h90bddrHQly/s88HMapNjx6WZes7V/Z7CENMokko0e5Z5EgTOoghCg0GmnPPjT6nNyh17Rp1ytLYKayI0gj7tV7O1Xl7AAC9Kn5A+5JfML35h2IfevRQjbO3Dvo7XpkUyb8Z8IWAK68UIxgAonyuSZPojwMAkyJhOdGmDVBUZN53AP7iAuOLFoZChmFaw3uJRK/90hkrhbpO1CEAolGAzXGKQRANCiRjUrlam0ZToxp9gYdG3Wb8XGRmAscei9xiKU1HOJJRVH8syMiQ1x6Et5CCK10IhWQPrpgKlA2Eg/0qv8eZXZ+JnGBMtogLGXiNbV9wBi7o9UR0ZdKAkqONE+yLdmsOK7iyA3WY0EQdtuX7uRvV/TFi3TqgZUv9ax06qA7HNP5M/lvPkqVhzh7jdlzAhJC+aziR0ug9llbvb1RINkHAB9Mvxlezzomu1Oy5r67m2/lK76MqB5fFbSd3fh5vTrmMq6xXKD24GICdhyOJm5sX7pDDujGoxxGl92fzgp0ozT5o2IbW24tycLnHB4E7Zs9V/R6KhC4wwmqj0ratZTtOPAi47gmHvdM8N6YeyEa0axcJfeMS3ZAk0YWcN+BSqRiFnUElvJ4I1IpKbcYi/wIBOQRWaZb43t834k45l1ZRppSLTfJIQYMGKMk6iN6VW/TbuvhiJ5/GPoq8YqE4eI+MafwZdh53SszbqffMnGl+PYFCGMtXTjsWWdygnTtVHlyAvZB2yno074PhN6bXPxMDCSV+JiDT7yJMbBrRNH8H+lV+H7sGOJ/5diW/4txwXlptFUZjZJMmQLduwPTpsgFDKFZikQYNgEsuUUU6iCvx1HJdeilw9tmi10esYQxYuRKMid6Z6NQp5cKNDhkC7P3kBwSXrcL81u+YFzZ4H5jJtejCLOW+o0SwtuNLkVxAFmgF6GYGkDVGht0DB0aUQ2bMmiVHSQIgv9shq3V8vhjGVZvDUzs0jGz0Jf5YpL/eqxMicqg2xb+KIYrDkZRYiCv/bFBHdsY1PNlY/7Qv3qbKOWpZvySvJNzRsvC36JOqOKsWKBVcTscoxX1OowFk+oM4tsUHlg/OW+8G8K1JalvLd/Kssww9ewl3kIIrjRBkBResQxQ6zbUhhQPQUpB5BH/u+0/1SXnS9amOwzTM3Wu4SZzb8p0ohZXsCaYkKyti/uSUli2NB7HJk+WNdrOCHXh2wvXyYKSn4Nq+cJ0675iHkAdX/SD8KK7t+CKWt3vF+oZQCC0Kd6BN8W/qCrwirODymXhwhVGE8Yq3KE5pvcYg4Pt9ovXo3sUnYm7Ld+X497KiThtWAdYKq94VP3jZZQIGSl6DR7g48yDyMkxCFJq1A0FUVIwbZ/teJUbKIDchSjyPD24GU6wTJLhCbLnJz+W1YN7m7//M+OuwssPLpmU6lGwXQ7yG0fY5N1e0KDSiVy9XFusV2XuxrJ39MMTxCFGY7a81VfynNIrfOeEhCtu3B665xrhsMlsZt2snCt7WrROPLcYL1RjI1DOvLzMATJjgyMuAS1lvxEknqZTHhDVb5m1Ax9Ltjo19nOYW1v7KWYEgNvWyCLvL8YKXNM6LjpLgFWVlfDmbvMIgJFnMKS1NvjCBSU5BPudvZGAsZBq+TUkyhZpOMNqoP1rsrMsZE1Q51owUXMLyFajK3av/M/DO7+3b60ZqUQnTL7ww+r7p04G2baMUXHrh+0qyNOs9qQ11rlpBdS3gC3I9XzExytIY9n4+axM2dI9EcTEMURiO0nTCCRQqziWfzzwPtwz6v+gLTsccG3tOYfkK3fOxdgxo0sTYPwIguW0iIQVXuiAI8qRhprEe2/hz9Ch3IKQ96SQxlEO+cSJfI8bXfIqhVV+pT5pN5Izh/0begWYFO1WnZat3Qb0x1gqd/CyICTWf6FatFeTpLmCU3gQZGXKS+gALin+PHQsAqA3qvz6uNtgGMB8zjjFPpCx6G8/wuSVtX496B6IIBMQYxccco6gg+vkLevBMKr1ODNcrgwYBNTUAYvMemKFc3Ad8EY/HgswjYn+POQaYOjXKE9Sn8kwzHpd+XXg6VrRXKxzd5AohRPQ2HkYCGfm505s/li61bqxvX9cZ3h3n4FLgOgeXByj7y7WvdqPg8tqDiyfBbxhBwNiaz5EbsIipDsnLK0ytcXndJ8Ch8uHZCdcCEMPC3D7k75blozxU4vDopKtIzCyMUNzQTqYZGeJa00vi8pAwMQRoeLcvjRdGTTMmqEKJKZ9rLz+/ofJebxGTlwf07YsDS9diXM2n0dfDt5Lntid8fOwm3Dfijpi3Y+fXCsyYgr9PfABYuTJm/Ykn7Yu3ieEjSbGR1lTm7KPf2CZaI2otPiZw51dkAHDqqbLBNbfC0QskjxV5D9yhg37ItIIC4KSTVEadgEn4PiXSRK4U2MvyM+m50yrOlBzX+k38uc+jAAw8uHj6EAoBK/QVGXrPvvK3i/qM/fqJ/w8eLP5fWQksXGjdB8IQHxOsPZZ4GDRIzMeel2ddVg/Fs9Cq8Df8fbiDNUbY66x/f2d9kLBUcNGYHTMsJRaMsRrG2IuMsc8ZY58xxk6Szp/PGPuZMfaR9G+C4p6zGWPfMsa+YoyNVZwfJ537ljF2Vmw+Uj1F4BtYruj3CN6ffon9l6pDBzGUgxGTJ0efk9roU7kFL026mr9Ngx2xoRBQIXg7od2r2DJ3PZ4cf6NpEzcMuB+ARsF1+eViaAVtMnllfOE5c2QvtqOhiKB0Qs0n+Gb2RsQMQSBLgHRFM4mHF3pci84bbxStxpTvn8575sWzo/TgMnwX8/LE+MfgcM32mKDCkyHgC+rnCRszJmpRXpgZyctn1uOoGPdDhrjsMQHoPOdSTiRTtM/4vHmyIYIXmD0HXsiKk8GDS9U+T4jEZPLgmjgRGD1aHmtct63dNOfmRt7vcMLsGDGm8RcAIu/BVf0eQvtikzxzGoJx8OBKhAI2HmT6g94rXzm5tv8/8O60S3Sv/Xbc6Vjf7Snda47w4DOGXyPuZzNsVW5oEIBIXiLGVK+p1fM2utHneO4YfU837ifVZD+SG6i1Frg1aCAb8xDOjH18EKzv4507vJpj2rUDrr5aFLClOpInw5X9HnE3f6cSCRrPXePiOf95/jqMafw5356LBKpc9KrYYmvd42OCuP/t1QtAdJ6rTF9txGPMruBe+5trf8O8PGDlSj5lHGM6Hlz8n7NOsd6U75PCKvqZYPh8tSv+BWd2exaAizWrlAdMVk4p0aQT0RL1GRcvFsd5M/cbwhZZ/jr9MUjzTNw48H45nYuwfEX03LRwoWhgYjRWrTfOf6q9xe8TrMO+6rFypZir2aVcgRRciYNnlKkDcJogCB0A9AOwhjEWHkmuEQShm/TvKQCQrs0B0BHAOAA3M8b8jDE/gJsAjAfQAcBcRT2EWwTBnseE1y/VMceI+SfKyoxj57tsk2cD9Zchf0fj/N2W5dZ2egmARrBXVGQYC/WZ8dfhgZF/VZ3rVLoNf+r4AgAgL+MIWhWJoTZi4X7NIKhiHxNpxOWXqw7Dr4mZNVRUYUDOJYNp06KKuQpjJQiY0/IdlVU1j7VVvOdtlQcXC2FczWfRhRiLUnBd2uefeHHiVQAUi2CdsKdy7aWlwKZNwLx5aevZEE+inpOpU8EK9ZMJy89deEF89tliKKuBA63b0W3MPoYeXHamX837kxAPLkV/TZXpBdJv4WYj6LWCKysLOPZYPgEzT9vaUGiXXgoMGACcf76uZ6Du+Ofy2Qo/A6d2eU4Mw8lJPJSjhuFdUpgr+j6MD6dflLCwfx1LtqGXQcjbkqyD+iGOtMZXvHgg9D0iGXR9PmsT3w1SX/WstQGdHFzKHJoWr1Kzgp3cXimG+yKj3106byks3LRJDjeXzJEj44WfYw7rXvajKoS79udrV7wdV/V7yFkHTH4E+RngHaPTRejEm483HQgLIrt0SWw/nMI7RivSRIxu9DkeHHUbqvP2gDGbhow0aJny7rRLbZXP8UtrtrBBtGbNVJO/S/QYKywENm2y5wXM81t1785tVBqWLYTDunUp26ouoCfUlz7XuT2elI1L/Cwk5hAqKgIQnaNaiXKPo9tPi8/48bGbVO9IOPIBAFHhpTTyDXuPG7QPQPw8Tj2ECF2y/bX6ykvN3LOm40sozT5geN2Spk2BKVPw3DHXYExjHTmPFwQCovG4y3mzLg4GiIQ+lt+8IAjbBUH4QPp7H4AvADQyuWUKgAcEQTgiCMJmAN8C6CP9+1YQhO8FQTgK4AGpLOEFyhCFPOVjsdgtLxeT6E6QnPnMNuNBE+G9Qd9kIZyLvmvnUC4vGcYwtuZzdC3bqmq7MOsIrh/4D7GIoniscmLUUojCtIMxISpkWnjha6rgatsWWLBAfW78eOCGG8Qky0quu0713F/Y63F8OetcW+/R/SPVLt48t8oL/jihDVFoJPjVKrhyA7VoUSgqp+VNh5l31qWXAg0bAoxRqCIP0BWem212BgyQN1Ro1kw0qOANO8j5zJv9rsrnbEjV17JVppsQhdkmCak9Rycvh6kH1yWXAJdd5i5hfCKFKXbb9vvFRNmMAVVVsbV8V/RNfg9atLDl/ZqfccTrXkURfl7P6fFvZPmTIKyfB7Qr/kU2SgoTz/Hcaig6vt3ruH7AA+JBONyQU4GMBwquRrm7MajhNwCAJW1ej1ww8qL0+4GTTzb24NKctmOgZ/Y7aesJz+06BU3PW/ZH8QF4w1ilLYsXI8tfh63zzzQt9sGMi7Gu63/kYx9TPx1Tmv4Pp3Z5Tv3b+Hy4f8Rf0Ltis3kfSGAfjVOFeCqycKG4TmnePNE9cQbvfuy44+RcnwUZhzGzxQfypQzGsY5Md0VngsgOh7eW1ouGa+r27SNGYxCNp2e3eNeTPvCuG0c1+gKtCn8FICq5FrV5S11g8WLgoouA226LnJOem7LsA6JxCYAGOXtV71uAhYzld0oFl858afVYdi7dphrjw5EPAABDh6pzG0r7QeUcnq5RCJKJTB+fBxegma4dzt0jG30ZpUhmMPAiTND6QM/ooGPJz5EDGo9jhq2dO2OsGYDuAMIZWNcyxj5mjN3JGAtLPxoB+Elx21bpnNF5wgsEge/97dtXFA527BjzLiEnxzjMg1kydoMPYpp/xSgZ9bBh4v8DBgBAlBdUZc4+436YdkLdDx7ByHdzNthrS4NyoLx+wAN4ZPStruojkhNLD65LLhFjfYdjRytRWPfJZGerFpTVubvRtvhX2xOrXSFOg9x9eGuqPSs4N6hCFLIgKnP24Z5hd0WVm9DkUwyr+kpXcE05teKP3lNl9GgyJgCLFsV2UVhcbHpZ+Zz1rdiMMY0/j/SNE+W8M6L6S8xo/oFJ6dhjauiRmWn5nRhSVSX+n2ZhQDx7/BSKB9kDomFDW8L++a3fxvFtX+Mq62dBjGr0ua0uApHn44Je/4q74UKskN/XBG18fRpDCxmpP43yduNPnV4UQ+Gdd554rahIFD796U/2GmvSRPxfKQSySWn2Qbw6+UoAENcPgJhzy8yLsn17w3WMyrCBaVbQFi+Y2VirvPLa5Mtx3YB/GBS08uDip16vGpo3F/NUZGWhUd5u43I6yhYG9d5JVwjp82FOq/eQG7AYd0jBFU1enrgHnjDBsmjKk5HhfJ2SDNTUiP238kCrqhKj5SB6HCzLOYhdi06OTf8IU7LCnqnS3FWZzSdbGlvzOe4cdg8+PfZ8/sYM5seAz2BNoeHyfo/imznnGhfw+aKjmGhyegnLV6BpwR/67eugHOeNvLo9IxAwlgkSMSM3cFQla+pdsRl/GXKvZX40N+O21mPMMFKLmVNFDNFbt3w68wIw8L2rhHO4RxnGWD6ARwCcLAjCXgC3AGgJoBuA7QCu8qJDjLHljLH3GGPv/f67geUdEY0goCTrIAALQduSJcCf/yzmmIg1jKkT9SoHmKIiMfzPlVdG3xe2CNFYq7Yo+B2rOryk39by5dFxeSdNAmbNEv9u2RK48kocCUY2+F/MOhdX9nuY73NYFrHeXLUo3GHdlkkXVnd4GRu7PwkA6Fz6M1oU0PuRjig9uLyyDG5esDNSP9P+YdUhsZyTnFp9K7fYvscpWg8uxoDjwpZpkyaJ/zOG+0bciRcm6ucEZACwQV8RrafE5vkKx9d8giFVX1sXrKd4blnn9+OliVdirF7oAp4fTBIeGFGn2Jwp+/77If2wilp+WXC66A0MAIKA5ydeg2HV8X8+lHNWzKwbTz4ZmDEDmDs3NvXzYNd7xYbHVuO8P6wLmaHom4+FRM/RmTMRlMayt3UMBLSeqe2Kf8Vfh/6Nq7kGOXvx32Ous91N5fORdt4qCsF4PPNGGiqVtUqooiK1h2r//tFe2laUlwPnnit6OHjASZ2exztT9fOHack0UHBpv2k7zxVvyaLMQ8gwErpZKETsKJlthYdPN3gVSzpzb8AXVIfK1ZuHJMXYy9vbOukdAMWzVR+FSXPnGqcNIJKHjAwxOsTq1c7rYAzFWYcMLweXKfLaeKQQLudU5KQknAYhL028En5fJHx63Qkr0bzAQN4jrfmUY11uoBYdS7cbN2CVg0tiSNU3GNjgW/PO2h0DzzxTjBZjZqQW9u7K2h9dv87ndZyDS2ctz6DjNcZYVF5dsn+ILcLyFcgO1GFE9Vf465B7AYgeVie0e93Ag0s6V1wMrFplv0GpTjkEYLt2+uXChjUJegD6Vm7R9WwXwuqX+rgmiRNcowxjLAOicus+QRAeBQBBEH4VBCEoCEIIwF8ghiAEgJ8BKE36GkvnjM6rEAThdkEQegmC0KtCJw8KYYAg4Kf5Z1uXYyz+yWaPO050yT72WPX5qiqVq7ZMaSlwwQWii7SC7EAdbh50v34bjImxjZU0a6a2GpTayvSJruTtin+1letCbkeHeLg/96z4ERf2fgKAKOSKRa4vIvEoPbiCnO7eVoyr+Qy1J4iLCFlRwzvhS4ngbQk2Bw2y0z1PUAonVZbEJSXAxImqsozBQMElRKzd9Tj99OjyFjw1/kbU5O2yLFdf0fsOXUXUCgQwtPob56HUAgHTV8ynUQyF+1+evd+67rIyNMjdF3n2EpUQ/corVVaUMcvjVFwMjBkjenMnihjE2Q//5l/NPhfn9/yXeNLJBkoZ3sUXAubNA3JzZW/tPjoGAma/1QntXsX0ZsbegDkBZ++ESsGVbsJ8Rd7VnMz4WXkajjGMiaGGvaZRI8/ehexAHXpX/sC1Fsn06YfNisrBZeP1MffgsghLtGaN+D0YCZI5PLi07aed0tcJc+aYX8/OVh2+PfVStCzcoQ6VGx7bNCEKuVi9Wvxd16yJulSdu9teXQSRCHw+5wLPmhrLQVQ1HoZCcg4mp/Rv8B1+P+5064JJiDKntCGcv8XQ6m9U9/h9gvGcIP1GjfN24fXJ3hichGlWsBOvTbnC0zrRooV+tBhAlNNJfDtnA85QhJ+VkT5veJxvU/QLupX9FF2OByFadmG0lxevmYdFJLynMPMwjm8nhrCWv3HG8N8J1+CEdq/K5eTfY82aSKQPB8j7WGVoWuXzUF0tdUwjH44jpp7tRMywXO0xxhiAOwB8IQjC1YrzyidyGoBPpb+fADCHMZbFGGsOoDWAdwC8C6A1Y6w5YywTwBypLOEFNsPlxZWBA4ErrogMNDw0aGDsZWa0SdEu7nSUZ+NrPlHFrObCaJGj+s5ji/Y39bNQzHJ9EYlF6cHlpSt/OHyAvOjj3exPnAjMmGHPun3hQpu9c0/YKkxYvoIv9Kjiva6TBMpm+xm/LwS0bq06xysw1n53fp7NVT1BN1y2mxFVJ/66U3Yedwqaazxle5T/KHsvMAiylWfD3L3WFY4YAfTpEwkxligFV0GBKlxvWsen79dPXINYWQmGDaoaNDAv17u3/KcPAs7q9gy2zD3b2W85YgQwdy5OaPcqVrV/WX4ZlJ7mWsx+q+XtXsX67k8bXs9xqPT1sZCceDytnpR4RTPQQV7T6T03ylDDiRojeOAQAHYr/wnX9o8OE5jpV8yBNoW6ZqWV477uXqhLF+Cqq8Q8prqVW/dFO7fE0/MvaRkwIBJKUw9pfA1vm/SU9/LYpnLr4lyntmsn/q46Id56ru6LoyesAmbP5quLIFKJ6mrgrLP4ytrw4Bpe/SWKMw+46FhysqnnE9i9+GSusrbtlqTxyvC2/v0BiD/DgIbfu2zMAV55jEyapFortyzcoZ7TNYTH9q9mn4fmhTujrh8NcuQL1FFwATD8TEeDEc/3xvVYyeBWka3HnUPvsSyjnM9HNf4SNw/6P3w9+xyxT24fdWmNrPUGDGgjBqxcKe7ZTjnFZYPe4zPJWUe4hycz+0AACwF8whj7SDq3HsBcxlg3iOP4FgArAEAQhM8YYw8C+BxAHYA1giAEAYAxthbAswD8AO4UBEEnhhDhiGT3v/XyJTaqq3HjyN+zZwNNm0YVeWr8je7aM7IUgQDceCPw1VfA7fabsIvfF6JNdRpg9guKHlyRyTvbfxRl2Qe8eZd69hQts3gIBIAhQxASOBIYJyPKsdHgXd5xOF88ZSK+9esIlvMCRxx1qVfFD3hr6mVgt99mXbge4mpskxROWos9xgySz+oQfg6KMg9h8z61JzljEL0XIHlwVYj5JLksQnNzgeOPjxwncN4O1pcEzH6/6EVuxYknAk89BRxzjHm5448H+0hcuvqYgEx/UMxFEGxsfp8egQAwbBj+cs87gK+7fPpw0HhpbvZbGSY2l8h26MGlfGvSylulpCRhTWeHlY1WCqwUV3DlBmpxUucXcPKbauWC9jlWPVcWQlizeVqZ28vwXTF10Q0LKPmfc1qLS2RlGV8z+M5DqnlI51k3yBet68Vn9LuOGoWMoUNd5aAjiKSjRPI+PvZYcS1hZ29o4VUvLF+BYIjhH9/3wvwXTtAtk3TG1Jxk+IJ80XsYsx9OT/oNdA3sLrwwKpeVCqO5nlOhExfOOw/44ANg7Fj96xwhCvVomLsX/xp7IyY9u9a4UDjUKuea6LBkKHZw6VrH0QsIfZa0fQNLX15kWsan8cjO8IXQuug36ZrLsWPQIOCzzxB8XP28ReWBKy8HTtAfvxKNae5rwjWWI7cgCK8JgsAEQegiCEI36d9TgiAsFAShs3R+siAI2xX3XCwIQktBENoKgvC04vxTgiC0ka6ZJ7og7BFHb6KEY2TR16sXMHw4sG6daBlthlU4DZ62FYkRGZMs+Vu1clavTfxMoKExTVGGKFRu/u8dfhc2z13vun5BYGLOOpuL5HDYLG7ivAgvyDisf8FIiaDoXzg0jqnwWEf4kukPyiFPzaB31R5GAkOuJ6pLF6BFC/0Npl1PAYvi2nCFtjHb7MaYoEEusXpLZSWweHF0cm0tjMmCUtWY4CaJcZ8+4vpFom3xr6jJ+0PMX6bB6Ld6cNRt6Fq61bQZpx5cjAmR0G3p/KjE8cPJAhcrYY3f5rwbazSh5pzw+3GnRp2zoySS3wGdvCAZCgteRwJYSfBr1h8KUajA5pyq/a7ChiglWQcwoIHk0VBeHilQUQFccQXaFZvkqOGBlFtEmtFuXDMxr2JYCcyT1iMst5g82TKXo98npF9IYiWLF5tfD4VU+977RvwV67o+a36P5BmsO/MoxzU9ahOkhLETXam6WozqohxPzdZN0rXSLHNPQMaAiU0/MS5w4oliuHNAtWZiMDZcnNbsQzw6+hbXyq22Rb+4uj9d2dTzCYxq9LnhdVmBo/N85AZspofRkpUFnHhiRAEtPQMBFkwur6hp0wwvkQdXbKEYZ2mIWXz6tCYQEBVXZskww9iJxa4cgJTChlWr5M1+rAWE2jGQQhQmN7NavIef5kUnluRBGaJQKQwIsJCYMN3lhOh0fJjZ4n0MaviNdcFIQ47acUqU90KzZuL/HKGIwu+vmUAsyvVd4sgJJhZnhCNcWcQHAsCZZ3oSc131PBjkbPMxAW9MuczZ415WBpx6KnD++Y776BRliMKY5eBKc7Q5LbziqXE34MvZ5wI+Hy7u/RjGNI4EOzD6rWa2+CCS6FyHGwbcj/tG3OGoP4LAVAo4ALim/4OO6koWdF9XQZBzVcaanPAG32gtGo5A0LVrXPrDjVJYYUMh2K8yEo6pPJsz7JWUJ+atqZdGh8Q57zxdwZzSgpcxACNHcvcRgOjd3qePdTkFaa301RAOMSTDEeECgPwlqTwi8vJkAfofi07FyEZfAvPnA23aqO8tLCQvOYJQcPAgsOkCpjK0xfLl5vlsiooi3gz5+ZFQ2SaYKe9T3jDKauBu316l4BrV6EsMbPCtftlwRJSmTYFzz3VmYGdiJPX7caciwyCfpe12wkydKoZp3riRr7yT9rKz8eO8szC31bvu2igtjbSjCBNu1n52oA7Tmn/kqtkPpl+Evwz5m6s6Ug3eFArn9nxS9sgyRec982o2jw5RmGRKo3HjgKVLdS/5bESVIexDEvJ0IZnDmHhFeCAoK3Nflx0Fl1KppRyMGjSQExozvetaPExyKCq4aGBMVooyD6Fx/m7LcnoKlfCGQkxUqyjr0WbC6VNzx9C/4aWJV+HsbsY5XlSEFc1Nmjhs0R4ZWgXU2rWiwnvePP0bwu/qkiXyuyQrRXQWZHohCnlJayvIGBD1W0rYscjXjo927q2TFs2q4VznmQgLU/s3+D7qGjdt27pKsuuUehOiMAaEx2jV8+HGg0tDdqAOuYFaICcH67s/jTkt35OvRf1WGgtBI8OXAQ2/Q03+Lued6tIFOO88+bOf3Pl553UlAbrPvCBEhziJEbIFq1JAqeTkk8X1pV0FTayYO1f9P2BLs/Pm1MvQNH+H4fXwczWk6uuo+vtWbsGStm/IuSRCAjO0Oj+72zM4vu1rACQL2VmzuPso3uQDjj/e1pxdnzy4TAVaZvsfKdfdLZ8PEY+zs4GNG6O/uyFDdG+vT98xQViRk6Pj3FteDqxebXzTmjV8Xl6AHF3AbIgPpLNhVMeOwOLFKgVXgAX1x6GuXdXKwkaNoopwrbHrDBRYgoDy7AP6OQrd0LOnGKbZrZe4WX86dULN2A7wLV1s7jFox0qke3d1vkevvg+pD4MbfiMbcBVkHK5Xc88vC06PeFJLTGzyMT6cfqF83LroV/lvs3WS/L011oRv79fPEwNUAKjT5KlPyjGpoEB9XFMDgPbdsYYUXETqsGGDmOjcyq2cBzsKLmXCby2CteeHjFXYRBMYBJWVjY8JpOBKYtx4RCgn7GObf4A5Ld8BoJi4nZgLn3GG/GeLwt/t388iSrdL+jzGd8+yZcD48eYbLg9Z0uYNvDDxqsiJggIxZKlRrPnworhfPwQLigGow7ZpcbMY0S6Q6c01p0HuPnw/x104TjchCr/a3VD+e0bz98MViv9LYWjntXobM1u8L1rCAqLnWAqhDlGYhJuCJCaQ6UObcNiS1q3F/3v08K6BGTNEhZIkEFAm4I6aW8aNA/r1kw9jti5golIhXZT1WQ7DNdphUMNvMLnpR7rXijMPAevXR29+w+Tmis+AnbVqLBk2DLj+eqB//8g5m2PewTqTtbTEy5OusixTmGkQjhjAyEZfYlOvfwFwN8/aEcDQWpyDpk2BGTOwr1Zajw0fDpSWcn93T467Ec9OuDZ2/SOIdMArYb8krzAT7vt9IXFeSDH8ir30RzMuxLCqr6ILjRgB5OWpFFx+X0hf0tO1q6zAD6P93vzacGR6kYaMFFwSDXL2oiJ7r/VvzKvE9CoHaWWl6GHVvn30NcbEHLj9+pmvZTp3NrwU5VHEjA1cvKBv5Wac3Pl57F18IloVOZCXuOSyPo84jgBkRFHmQeRy5AxvkLsvak4uzDyEbuVi+PP3p1+Er2efK1/rUGIcOlgAxJQx2t9KEDC35buY2ORj7v4bERWi0JdkIQr16NIFZ3R5Fuf2eDL5+5rCJMnOiXBNfcjBVVMjunoaWbzaQbMYMSUQEENIXXihYREu7xq3A1lNjRxruzp3t/3kp0TcKM46yFVO75EozDyMEdVfAgB6VvyI+0eKYaUqcvaJBZwouFq1AkaMgLB8BQY1/M7+/U4oKhJDIHi1iLYgO1CH4dVfWxcMo0iI3qL4DwDR7u5eof3FSKFggSCgeeHOqNN2hlDbOeMUDKmSQnEWF2NI1TdomLMn4iW9ejXQrRvuG3En2hb/CixZIoZUWptaoSr7VG7B/434KwB33on1Ed+qFfhqzQ1iXoA//Qk47TRvBT1jxojW1pJlrfJZtlK08wqMV7R/Wd5Ef3LsJqzq8JJ8rTjTOIScV5aXiSZTz0tUMbeWZe3HK5OucNXGpX3+iSv6PhLdzPIVYl6IcBjCVCE8Z4aNtQy8bYxY0PodzG/1tu61gF5YHIPIFNkWysmwwVm8LGTrk4V3FDqTcstCAy+vMWMiHnrSfbzjVeui39C3cnPkhNYqnCCIKITlK0wF22VZ++W/N89dj87hPJ6SR7rZCJqqoa3leaFhQ3Qt24rZLd8zzPGnXHvl2cgbFL3n05xZuRKYMEGdl8tig/PO1Evx6cwLjAusWwcMHCjuu8249lrgyiu9y0uYkQFcfLG4HnbK7Nm6OWdXd3gJfxt+l+4t7Yu3oXPpz3xGQJwyv+PbviavUQoyxfcm3iGIG+XtRkXOfuuCNvj5yf/h/3RClC9s/WbUuahnVzpzcqfn0L5YnY9sbccXcdQgrHdI8ImKXO1zHQrhzG7P4l/jbuL/AAbcM+xu/GvsjXIbRtFfkgrGcHm/R3Fmt2dJwRVDSEKeLqgUXCSsMiTsit2li+gNNns2331VVbLLvgrZg4sDFwOZcnEkLF+B0uyDUa65APD8MVc7boPwjmw/Z6xsHTL8ITw/8RrVuZ/nr0Pfyi3iQSISPmif3WRPOjFpkvG1uXPFsEWKxX15jijQlRVcMf58pFCIPad2eQ4buj8lH9sZfhvl7ZZDMpzY6UVsX7gu8kzk5ak8ZlBWJio49KwXk5iALyTHxc/xu0z4W99o1kzc0HfsKAr927SJzUZFqlOt4NIRKilCvxgJjOWzUk6nAAuhKPMQAKBN0a8ozxY31LUnrELPih/l+woyDqGfImRJuqwvs/TmaMW4n5dxBIOrDPJt1HdmzwZuvtl2uPCr+z+Ev4+4UzyQ8teGyfTrCCZ0vNtenXw5TuvyX6723DyrdjwVyYMrwr4lJ+Kqfg8bXm+lUX45Vg6WlDq7jyDSGZ11iDw+6exrvp+7AfcOE8fkZgU7I7KGggKgSxfTcdDPQsm/F9TBz0LAOefI89fKDq/gi1nn65YNr71enXw5Ar4Q97ygLRelDCwsBKZMEdeRK1eKMiaLcPoNcvehMmzoqkfLlqK3lGZujSInx9hz3Ck+n7WiyWyNnJUle4ev7/YUXpSisRzX5k1xn6Jz73vTL8HrUy7n69/FF1uXYQx/Hfo32VspTPVwgzzeHvH65Mtw86D7AIhKZqf5yh4dfQseHHVb9IVJk5A3qr9uHvF7h98NAGiYs0f2ZNSGOQ+PCdcMeEg0zALkZ5UxiLnhAdEob9kysd5hd2JtxxcdfQ47dC//CRObfiIfJ10OLitSqa8pRmrF1CGMScFFRkK49lrxu/L7DRP/2cLnw1+H3IuhVV8DGGQ+WHmh4FLUoedtMqKRjqs9EXd6lv/g/Gad56Q6b0/kwOm77ibUkfZeD/PNeE7btsDEicbXDTwtupf9iAY5e8UDve/Ywfs7vdkHUnXqe5PFgysvcBgH6iw2Q4nA4Lu2I7Cc1PRjTGr6MS7+cIJlvXp0K98KCEWRE2ma5/KD6RehU+nPABYkuiuEFmkcUim49N6Bnj1FT/Nbb7X2sFKEmPNLG1Nl3qmAL5Lfc3j1l3hBNraYL7afJsp53RCFinDUmbwJ3U34cX8pGpgJpFIZN3k7srNVYZMBjeVtOG/WjBnAoUPARx/Jl+x4oLvJW2p2p/YdTI83wgMYQ37GEV1BWhh5LSTNxUEbykFlSUlPTxCEEp29i6xE1ln/FmYejgitoQhdzRiwZg2Eh+4xbCpVDfV8TBA9QHdZ5yTNzxC9eMLzDq9CXvvNmO5duncX/xmh3X+nqlCcQwF25PjVCPhC8jrT7JPmhp9bq++jcWM+Dy6DelqfMhFC9xfBRgy3rsMBpdkHZO/AZgVi5BKevW7fyu/x/d5y/H64UKwn6wD2HDVIyQDj/LwA0KdyMx4fe4tUTiuv0OmL9rc8+eSIkefvv2PhY49Frmm/1+bNgXclJZ7HsuukzMGl/fyp+v6mGOTBlS6QgouPzExVaDLXMIbj270e8zi9svWPYmDsXv4TxjT+LKbt1jeiYj07QFi+QmVRYobuIiZWk5+b0J6ppOByIngTBHww42LkZRyVj5UsbvOG7SrbF2/DI2NuAwoKrMNVJIj9S0/SDw0VJ3YtOln/QgzyzjAI9t8t5XNg9HeK0738p4gFHpFcSF6mx7d7Xbay9uv9Vj6fKCBZt87QwphBEDf5incg/JePCSphVbiOFzSexEB0UudURTdE4YwZsqd+WLDlhunNPiTvHj1WrYoKMScrFNesAQYNEv8uKBDL2iSs2NJVBnNi6rmgeQfTJS+dFR1KtrmuQ6uAP1ynCJNVau6VFV4vH1q6xixiPEHUX3TWpiHBWMEFqJUxdZqcNmZL3ZT24AK4ZEFX938I383ZIB/zftxoDy4X31Oy5OF0y5gx4v8jRxoWyfQHVftjrr2y1b6Od99n9D0z5r3HmwI/ExytVN6aehlOV3izZ/qDUfPr17PP4QoH3LboV/lvbR26BrnK72rdOnUEE+337feLRscDB4qeX8NjoChMpRxcSlKprylGmoyaBDp1ki1A3FgtEjbh0Mz3rtiMZ8Zf50opoKfgqszZh2cnXK8uqAi5OKP5+3hv2sWeJHKsDwjLV6Bb2VbrgrHGSkHj1JNk2DBgwAAxZ4xdtM+1RTLchOJkwWCxa7lr2D2265UX5hUV1uEqEkgiZ4virEP6F6R34PXJl+H4tq/Jp91Z5Lt8LtLUg4tIYrKygLVrUZZ9AAvbiHkBTIX2LVuaP+dXXin/6WOCymtG+bfZW3Y0lOGJIUii0Q1RWFICnCnmJVNatTtBWL4C2YE6HHWRCzCtUApEdOZbWeGYY2yBbBc3sgM7Hly7jtjI6ZuinNL5OXw2c1O0cFLnSzb72rVroeHVX+GuoXeLB5s2Gd+oUIhm+evSRuZLEF7z2czzcVa3p+VjKwVXO0VeHa0BS3g9ISxfga9nn4P3p1+Ef465GUBy7WPsIO/NcnPF/fC6dWI+LB3yM46gReEO+Zh3H3E4qM5v5Uouly6DXYsWwPXXRzy0tWiez009n0Cnkp+t67Wa6HmNXvXqCStuHChyBzb4Fr8tPM2yXIAFMa3ZR7hFClMI8D9np3X5L/YsPgmA+D4q59dWhb+iddFvCm9p9XMUzs23a9HJ+HPff0batmuw07Kl+ljve5w0SQyfOXSo5VrQDUnpwaWFlFpxIU1GTQKNGonCayK+cCw8upf9hLE1n7tSCnB7fEgDZ/OC3/Hw6NvRs+LHhOXM6Fr2U0LadUNx1kHvKnOaQN5KEWoVX9uIjAxg0SJVvhZutBNyMntweaHg4l10mbRl9s7S8kaBXu6qBWK4vAENv0eFyxBfV/Z7KHLgxoNLKXht0UL8X5kgmiBiQefOqkOn3p+/HipUbfQzfEExp8TyFQCAEzu9gOeOET22osIfa5J/J7Ngq03RL/hi1rmW5eRwtFqkMcKrz6j0UJnY5GMcWrrGk3pThlatxP+VihEdYwHD3wMALrpIzJvLydGgGH3fVQ4uk1la68H1168GOW6Hl9zAETTN32FdMEb4WEhcO06eDADIzzjMJbzTov1FsgN1WNz2TdF7SxEiNIqzzpIty0k+RBDGdCjZjlLFXtZUWL5gATqXbpPXAXWCtEYIe3ApirYu+g09yn/C1Gb/AyCNg6nswQWIY5pWQG8C76c9pFFwuYrakS4hCgFzrznNuuDcnk8iOyDJzczkZ1YKLLN5xaR9DBzoyIM8TIYviIqc/ZblAr4QCjMPY2WHV+RzvK+V3yegMPOwVE8QHUu2oTp3FzJ8dWha8IeqrNKD69TO/8Xvx4m5o4uzDkWezzZtop5x3dCGZt+5HYWsV4ajUpsp4cGl7F+y9zWFIQVXOiFYx6wlPKa6WlQcVFWJxzqDlV7+LLvIC7JevcT/O3aUQ+mI14P65RHtbhwPOpb8jI9mXBT3dt3yyOhbsX3BGdYFeeCwGtK16grH4u7RIyqMD5YuFZPTJgJlDOtkVnA1aGD/Hh4Fl97727GjYZXyex8KRW0wQ2DOFZUek9D5omlTYPny6POdOiEcg0hpTeakr6d1eU6618EG0+cTE0B37QqMGhU5X1wMXHWVucU5QcQAXc8jBeGh6/s56zGj+fvy+fYl21XlAhohfX7GEYxs9CUA4ECtRggRDi0D4ImxN+GJsTcDCxbg2zkbcErn5+x+hJiS5a9Du+JfTcsIy1cYe2hJG2W7Y83T46/XPX80FEl17GehiMCmvrBmDXDCCcCUKZE1q47xz1+G/A3fz1mvX0dFBbB6NTB3LleT4Zx1Wit6O5hZMWs9uD6ecQHO6/Evx23xMLz6K2yZt8G6YIzwQRC9HSRhIYMgCu9s7mvO7PosrhvwQPQay6qejAyE/JyCSoKor0jvlTK3XUgTdlDF4MGqQ60HV1AvJHFAnNPMjEBO6/If7FtyIk+P445umGdJ0K6bmzPMeeep5oWTOj1vaLByz7C7xcg9Em7C5aaVgssMIyVWu3aiEb+WQYPEvVlZmf59K1eKMroFnPmFa2oif48aJd4XVsjFUJEb8AWBU08V971z5wIXX4zsBkV4aeKV0WVZECOqv0TdCSujrlXl7kGb4t/w84Kz8OvCM/C45Gmp58GV6a8Tc5hpDUwLC6NCGermo+3UCWjTBhg7NvqanefT7fc6YIC4H5cMATNM8n8mDaTgigsB6yJEqkEhCuNIdjZw+eURCxEdpQZjgphUccgQx834fdJv2qePOGE3bAjs2QPcfjuE5Ssw87/L8fDmnpHyimcgyho7DiTLkN2j/Ad8sEMtTCnP3ocdh/XjKRdlHkaRZA2j5cyuz2BUoy8w+qlTPO+nihkzxIVDx47i5HfXXcAHH4jX+vaNbdtmXHaZs/CG8WLjRuCtt0RXeLvwhDDQW4gsXaoK+6UqHt7Q6Czg6kK+iLI6wSR0tujd2zj5r/SbOM5hM3Ys8OyzDjsmkZdnnAA6P99d3Ymma1fgf6IlruEGkUgqXp98Gfo12GxaJqxMb164E03zIxac2hwQhqFfxo/HnvuNw8RNahoOedwDLQt3xGVD2bP8B/Rv8D1u/Mw6dr/rECWSMEk374AJ42r086EqQxSq1uanxHgdkSzk5orjPACcfz5w5IjumF+QeQQFmSZ5zxgDioqs21u9GsFLHgEAFGYahMDlwDREoeZdal64E+f3+jc2fcC39nhx4lUY/m973k+J9pqUFeKyZ4c0LyvXThzCqo6l29GxdDsgjLfdh0TsZQgiFZEVU61bY0T1l9JYWGF+U00NHh19K3YdzQUgeqXqGgmcfDJwszTXGrzzfiYgL+A+j2Us0FU2SZ/jjiH3SnP5UvX1CROA6mp53Lu492NY2PotQ4OVmvxdqs/vyoOrb1/gww8jx+kqFM/LUx83bQqcfbbx51240Lw+o72bEZWVotFiYWH0GsWGImbr/DPR+L7LRMWVwhBdyQW9HsfC1m+j+f2XiGvztm3Ff2EyMzG0+puo++4dfhdmt3wPvnWniwbQmzcD114re2CGKdGJRhTSMxbt0AF49FHx7+7dgdmzUXheJGTpixOvQvfyH0UP+o+ltf+cOeL+9zSDNYwdA+iASzXEcceJ/+8Qvdv7Vm4BWAd3dcYa5ZrJSc54ggtaLaYhlNQ6zuTmRgZpPQ8uCMBZZwG5ubhp4P9hebtXospYofICq6kRvcbKy+WcW0GNhZbSQknXAivGJIuS9f3pl6iOt8w9G1Oa/s9RXW2KfkUHjRW8KRYLounNPlAJIGUyMkTvrawsUXG6dCkwfjywIXHWuwDEvrRpI/7dpEli+6JHTQ0wc6Yzz6hweNfwYph3MZuXp/bsUaDc0Ghrq7OZl6Uo08PQmUpikezVDhwbNUe5swBg+vSIZ62N9gCIC/fmzfW9y9KF448H1q4FzjtP/EckPQMafm8pKFFevbD34/hpnphTSikg37v4RCxo/bY6xObGjcC4ccAxx6Bd8S9oUfC7eWc4ktB7xeyW7+GGgQ9wlW1d9JvhtcENv8H+JRZGGrKCi++DFWUeRH6GvlEMIIaoXtbuVfXJqVNFq+T6ht9vbNAQxuyB4nnYunZFXYkoyC3PPmCjc9qmnIUf5mFY9de279EqqONBfsZhWXCmVbDJ+wqlUDLGwpqCzCNomLMnpm0QREoje3BJ72d+Pp475ho8OvpW6/VvRQV6V/6AMY2/kE8tbfs6Hgt7ggDAJZfIxl1m46CPhcAYogTvyYCuB5f0vWX7a1GmN29oQqmt7/40avJ3cbU3sMG3WNr2ddv9lOneHThXEXY5w7lnclKTmQn8+c+R44KC+CvzGja0XqMYcG3/f2D34pPQKG83AOC5nztER+GRKM06iGYFO/HkuBtQka0Thv+EE3SVYxm+oPjelZWJso727cVQimZI76vSQEQAxHxoBQpj75UrgcJCPDr6Vnw3R5Q3dS79WTT6XrVKNHC+5hpruUE4sk11tXGZ8ePF59qtLIkx+V/tCatwepf/uKsvhrQr3o4XJl6lPkkKrphBCq4042/D78TFvR9PdDcIBfL87PdjdceXMUqxeOTFakN9df+H8OyEawEAzx1zDf4x8i/ihVatcMvg+3D/iL/YbtMNRuHATuvyH/Qo/yGufVHStOAPVx4r3ML29u0BQYCwfAUaGGzIHxlzG18i+4wMUSCWDEqlZctES7bVqxPdE2+ZOFG0SlwqWe3pCdJyjL0a9JDf2T59ooRltSE/t2TYz4LYvdietf9nM8/HjQPv1732yqQr8M3sjfhm9sao0Bd3DLkHS9u+hprC3Zja7EPd++OG9P24EusxjcUa72apTRvRKMFsgZ7qZGWJYR2qq83j4hOJ55xzHN2WG6hF4/zdANRriILMI+KroFRw1dQA06YBGRl4bOzN+HzW+eJ5I69hrSeHQ3gEYO2L+QxLXp18Oe4edrfh9YAviLyMo+aVSBvOHLNQRRI3D7oPP8w7G78uPN2wTHHWIdw+5O8AksezPWXhtAxuUrgbfSu/d9WU2bzz1m/NHder9Axc1eElvDDxKvSpMPfK1N4XL5TGktqQprJ1+qxZkZPSu8MVDjgspA2HlA7najMhKxDE9oXrrOsmiPqKtKZXhsYNy4ANWb8e6NdPHQJW2u8UZB7BlGYKo1CFt3+d4EvKHFw3DrwfXUqNc4DrenBpcwFpP5e0VnLycR8ZfSuWtX/N/o1KlHsR3pxSqUhJSeTvZPJU4/jhM/11hhGAlJzY83VMafoRAGBCk0/1P2bjxsDZZ+Pg0rW4sFdEputjghj2Wfk9ma2LRo4U320AhRkaj/asLN17y7IPoEXhDnQp/QkFYeMtn08MS8ij/GvcWFSErzcIOQ2IMq2VK737jX0+BHyiUj2pnhuJwoxDmNbsIwwPGzfNmiXmM02SVBXpCCm40owFrd9Gp9Jtie4GoUDemDIGjBvnLhazFmlR1qxgp2x1NbLRl5FnoEsXtCzcgfFNPvWuTQ6M5pc/9/knupUZLzzjgW7CzDAdOojxfHVgjHNxW1kJnHSSfPjV7HNx97C77HUyWSksFHNpKBdX6YDfLyolwxsHvR96/nzu6kY3+hwnd3peXIiOGKF64+8f8RfcNEhf+aSHE2vx5gU7kG0goB1c9S1aFf2OVkW/R72oS9u9gTuG/g0/nnQ1/jnmVu72hOUr0DhPxxtRh6fHX4/pzT7gqFRScKnCKtj8LhS/o67VJkGkAo0bc3tbluqEJgGgPx7MmSN6Ep15pup0hi8k5voaPDgSAsSAWIu3Di5di4lNP+Eq2zBnr8poZGP3J/Ha5MvlY65tL2P45NhNuGf4XcDcuXhn6iWGwrJVHV5BUeZhMZcBT9XhbyuZc1gmGjPhRNga2iKsTUHmEbw19TJX3TBT3B6uc25BH1Dky21d+BuGV3+Nt6f9GRf3fgz/HHMzHh6lP+86Cb0pLF+BwQ2jwxzxUpolejL4WAh9KyUlHGPoU7FZzNd32mnq9XJuLtCli3ne35kzRWFteDw78URR0DNvnnWHyNqZIMwpLwdatsS4mk8xvkYzbxqNrU2bAkuWiPu7FSvEqBQdzMN8PTP+OlzW59FIVA8N8rp95kx8euz5OLfHv+1+Eses6fgSbht8H24edJ/udTMPrqjjjRtFwx/JS6ZF4Q7ufoS/bk/CODMmjp2zZqWvB1eYsBK1U6fE9sMmBRn6ITn/N+MC5AUiiq/rRv1LNjwzJTMTOYHaiJIJ0hqySxd1OW0kBqXhquJ5mdT0Y/ww7yypHonSUlH2ocnFBwD/O/YiZPodPrtlZfF9TrV56pKM3YtPxsW9H4ucGDkSOOaYhPWnPkA5uAgixqiWlNOmYcpTq/DetIvR658ehJzTCkqUVkjLlomh7h59NO6Ww0aCaD8LmYZ+iQcNcvYaXGgghuwysTrhygHg96u0YUWZh9GphJTOKc2qVUC3btzFbxl8H1oW7gDazI9aeM1p9Z74h6CTNFcH20od2NtQ6QryOBaLC1u/iU/+aISPdoqehbyhccfVfIZHN0uhIM2EmR55iIQRBYskICNSFE7T4a5lW7Fn8Umqc/uX/Enfc6mqyjwXVKtWlsoEu+FW7aJUWGX46lAbMu6PNoxaWfYBtCn6VT7m8oJhLGIgFAqhd+UPrkPSRaqW6iGrTWPM5p6qKtGb0crAxgOvgqNB4+fajbGE0hNKOf2t7/604T2PjbkZvSu2WNbdqeRnfLqrERrm7JE9nZyGrH909C2yUiu4bJXq2ltTw2GkNEpExoA1a1Dx3KXGFY8apQ7rXF7OL+jJzQUOOc+rRhBpj88HrFuHQStW4KnxNwJQ5CDi8Wzo0UP8Z8HYms/FP/r0wbZnPsYvtz+Bj3bWYOnLiwBI487GjUDjxuj40EP4U+4L2HUkFzd8NsKy7i6lP+HjP2qs+2pCvwab0aviB6x+Ldow0cyDq2GuJB8Iy1ZqasR/En0qt9gOu+hZnlKDcPhpx1lnAd98Yy9/VqzRevhp+G7OBjQr2Kl7rUvZz+oQw7wGToEAMGcOVgUfwqhGX6DTw+frr0XHjQMOHAB69hSf1ZNPBq6+OqoYY0ATbVhNxsTyqY5y3ZiEHlxJ2KW0J7lVnoQ9ktBVnIj2wAj4QuhZ8aM3lWt/86wsoGVL0fqqV6+EWTVoP3NYsMSYdwJrXtZ3ewrruz0lH1/Q6wlsX3BGdMH8fFMLUQbBnqBr6lT5z54VPyK4bCX/vURiEQSc0eVZVOdKi0Gz90hn3A0ovTZhnM/j1cmXo9JI4eoC7oT0Rp/LwnoTAK7t/yBGVH8lHx81ETxrORzkKCv1bUT1l2gtCaltLxIV8c/9TKBVJpG6VFgkiA8zdCgKMw/L+TkBWIflM8LsfZGEPrUxVnApOXrCGtPrWsVDpq9OlQ/Udh4jaWznVRK8OPEqtaV6ixbRhXr1AoYMsdeP+oTVGN24cXQy+hhwOBixPn5/+kW4YUDE63pc489s1cUQeS6VczNv2MFjmnyC6rxIqOs5Ld/RDUH8ycwL8M3sjXhnWkTBZOpNJfHtnGhjuxaFO1RtKtfGViHPeldskUOme8ry5eK4c4bO+p0gCHOceFT07m1+3edD1dgu6F7+E4Yr9gPNCnaK76o0UJRnH8D1A/9h2dxfh9yLlyZFC+e9xMhA4dDSNRjY8DvxwEgJoTfwGQyGYeNEbXhXwoLCQlFZk+ReOUpaFO7Qlw/16QNAM9fX1Ymfj4fhw5HpD6Jj6XZk+WvRUc9YOiNDjMbQujV3f20ZzqbCvpm8uwkNqTN6ENaQgispyfTVcZcd3ehznNjpef7Km+vkAjjjDDHshwInXiBuUE6Hfx9+B16ddEXC+nJxn8dxZrdn5eNMfzBipaWHwXvEmICa/F3YMvdsADDMrSXToQNwVSShpFdW4ER8uLzfo8gNcAiGdZ4X2WJPWqAbKXUHNfwO/5txId6eamzx7MT6z/V6dPJklYLWso1hw3CgNpLH6d/jbsCSNuqkysWZB2TLRy6vD2kzPrHpJ/h69rkWhQ2YPRsYMECszisrSoJIBMOGifkPzeLaA+JG97zzuEMamqI3F7ZuLYYfqa4Grr8eR03e5U4lP2NVh5fc9aF9e+6iWsvsTL967cWYICbAbtwYOP5444pKSsRwtVIeEl6jnGHVX6MmXwrVWlEhhnBT9o8Jomd9OufQcIsXYW082Asdqov8RhXZ++W1gLB8BUY1/pK7nhM7PY+6ZWLO0juH3oPHxtwiX+MNO6hUih3X+k3cNPB+TG76P92yrYp+R43CSttIOXvb4L/LireWOmG35DZnzAAuuEDXItwIxiCHTPeUZs1ErxCOfF0EQWgoKrJ/z9KlEQ+Prl3F/w3G6PCwe2DpWqzq8LL9tmBPXmJFWNYwpOprOczwXUPvxjFN9EMeZwcUbRt57GzYEJ2PuW1b/falPT/tPdIAQcBNA/8PFdlq2dGEmk8iHn0nnigq5yR6V2wW35nzz0dFzn5VXVi2DDjhBPGY01Pt8PFr0WqZB+t6ACUGocwBANOnq4+vucaTNmOKUiCR7Ao5Wv/HBVJwEUQMWdbuVSxs/RZX2U4lP2Nlh1dw3YAH+RvIzgZuvDFyHDatNBngCzIOYVGbN/jbcIDSaros+4AqzNAV/R7B65Pd5Ufgpl07AEBh5mF8P2c9/r+9O4+Tojr3P/59elYYBhj2QYYdQRBkU0GFACK4gAsKroDgLipuUVzBuPyMGpNoEhOTeNUbE5NobhKNiZrExOQmmrhdjRrXaJS4xIgLLiDM+f1xqnuqu6uXmemZnh4+79eL13RXVVdVD9PVp85zzvOotjavl5014b60ZfHf6JDad9V43An611Hn6uOVp+hX+3xVPSs/atow3DDu1s3X5EJpCe7UXvygf4tenhixl0izFyEIfg3o+oEGdE0Pln5wtA9St/TmKCqQfENqTvqGhuiAc3W171DPsf/tat7zTwYO1OBu76ouqNkxvd/Lqg2K7T666DJJLXgftbXSwoVJi57eUN/8fQSN9fLY1o7f8AUyKS/39Q+HDMm+XSzmg09m0rp16etb2/l/1lm+w7u8XKqq0uYsszGXjHhEX57+48h1M+uf1wWT7olcl+T00/Ouf5g+g2uruoRqj8XkfCfERRclRtZGuuIKf1MfXC9um/Nd/Wqfr6ZvN3p0WorHxIy2AQPS0jsWtP5qZzNjhg9cbJdf6t6sChHgCs3g6l75SV4zoaKUW6Ni5vTtmbfq6O3/pDnbNc1yyHemdfhr65bZN6tX9cdZA8thqQGuLmU+UHf8Dn/QESP/qoWDowNlCePH+/TdpNUESo+Z/y67+uqWDR6Ixfwgk699zadql3xa0fnzpcMPT9o0PhCka/lnsl6hNLLNCI5Xlm1NqlNYCHfu9U1dMvUuSdLRo/8cXTMzdbZQpu+QhgYfnIi78sqmmlEpupX7mkxl1phW5xSl5+Rxv08aPCKF+rp22MEPngp8ZfoP9aVpd/gn9fX6w8Kr9c8j1uiZxWt9bW4zPzvyssv8zOR8jBzpaze10iuHn6fV47MMpJ8/P7muV2pAtyMKz+DqaDP/wg24+npp2rTincs2pIP9FQCl74tflL4w9WeSpBtnfk/jer2R1+seXXS5Fg17vPkHzKPRGr6+Tui1XjfPuqX5x2mGcKd5mTUm3WT3rv5Iuw14WXfM/aZ6VGYZRVIIobROw7r/J6+aP5J0zbQ701YnRmYHm8bMqUv5Z5rf8ExidO/6I8/x08/DLrkk8zHnzcvxBlAULWggnb7jr/XnA3xtisQNWra/t9AxoraqrYzfHPnP0q79XlZDzbsRW3rnT7xHjxx0eWI0WVSH3IljH/QPhg71o8emTk3clD4WBKKaTsrUUPOuzppwnzYsPz1p1X6Dn1Rtxadava5O//7hb6UZM/TQgVfq6cXr/FsLBbgn93lNvao2amxd03UwsTZXwGnBguzrm4FRlNjm1Nf7ovGSNCeofdHazn+zpMBNthSFMbmMM7bPGP9rXbbzz7Ie6td3BoH/mTPTC2tHSKQgDNK/VMS2qqZis54/9CJ/PvnOoo7Fkt7j+F7/StQceeqQS/TPI9boi7vc6YONY8b47/igrZH2+wil02MWdxZHHeWzDxSic6IAAa5+XT5Uj8qPtXHFqepR+am2NmY5rywp8+JBrGPH/G/a111ranllCyxLSgQKU+vGTuv/cqKN8L05N+nne38j8uX8pQKdQEWFr10XmlnS4v2EL2CLFqUNgku6Zlx6adPjPFPKrptyl+YPelq1lZuaXecqm6rYFjXmqp+9667Jz7P9vsLfL1nqQZbFnNzxJ/hfW1S6YpSODG2KxKCleEAo2G71+N9qRv2Lic9M/64fqqHbBu1ww2nJqQT79s2/zZNvuybT3+7220vyg7QrOlvazPDvsCOnK1y3jsFC7YQAV2fC6PQO4ZxzpHN2ui+5FkMeWtX5MWuWn60wcWLk6kydTEO6vaNlo/6sO+Z+M23drbNuih61nEE4x7BJ0uzZmlX/nHbq/XraTbYkHTw8ezCvR+XH6l6Ru6B0mW2NrGVw1MiImXMZGghHjHy4aV3ENh+uOE2zBz6f8Rzi729gzfvpubsjGi8LB/+ftGJF+lRwdAz1fqbQQwf+P31n5q3Zt3VOnx6zStdO/7Gm9fdF2VNzrkfW4MqzURv/237owC9qfK/1Gbfboe7NpNp+GTuey8ul887zo8fMNLH3a9qxbr0m9fEpPHTUUf5nZaX+ueqLumbanepZlfw5vHvvr6ss5lQ2f676LJkjxWLqWfWJ+lT7NAxVKanBXj78At2zz/Xp55LPd9b++0uShtX+W6eM+13u7TMco4IZXNgWTZ7sR28vWeKfFziVddYAV5Y2TaJjYMkSPbvkYp067rdp2+w5M2KkdRaJdsCIEZKa0h2N6vF28vp8RXQUlMe2qqHbBp1zWfemGaYDBiTSOKWlXz3zzMTDvGsjouj+sPBqvXjYhYn6dVlncI0cmTElaLYgVrk1+s9nXH2OGcqhWYeje76ln+x1Q+ZtzzpLGj487/pxqRJtlmzfmXmk2rlo8t16tg2yFQLIQyFmxOZj6tTk+5wWzBZbO+XutHuNbMb3el1njr8/fcXAgdK55yYuXZVlW3NfB4cMka65Rjr5ZGmffRLZX1rs5JNb93p0LEG7OfVe3sz57/6DDvILcvXptCa4kW/bvb5eWr5cOvvs5OUnneRnZHdGpZSiEO2CAFdnMmhQsc8AgaqyLYkp8fnK1BlUm0eQR4cf7juxunZNX7d4cdLT+A335Tv/VC8cdpFumX1zZLCpZ9Un+dUgkvSNPW7ThuVnqDpIf+IkqbZWDyy8Vv26fKgt4dGvQeeTlKHjP/DYosv1pQzpjcK2HHeyXjj0Iv1+4TWJZYNq3tV/z/kv/yScTqCx0Td+U9w256amJxGjP7pVbMp+DuFOrUzFaQOXTv2ZHzVbW8sXcUe1887SEUdo136v6Jgx/5tz86qyLUn/leWxrdL06Ym/pVc39kp+wdln5x3gMpOvvaP00dhhvas2Jj0fGEp7OKDL+zpuzB/8k5Qg+B/3v9oXpW9o8NNPZ8zwK2Ixn4qsGeI1RVJnS/Wo/NSnBenvUz5m+9yn2W8/afp0vXz4herX5cNmnY+k5AAXsC3q3r3puyZTbYkoeVyjsgW48grolJVpTM+3VJPyHVvWgjRFZeakq65KdAR0SUlF1OxBRGPHps0iTcwS22uv5A7+4He1JXWmz6BB0okntuz4aJnUWfQt0Kv6Y/Wpbko9nbNuZIbOp8g6W0Ha6pg5n35z7lz/Xbtunf++yyT0eYyZ00HDnsi8bXW1dO65aR27O0YVqY8671ijrw3SPyJN87Jl/ryj7jdS7Nb/5Vb3FQNopnPP9RlCCpDSLC/HHitX3b6pzGYPfE5fmn5H9MrhwxMDBipjW/IL9NfW+ppJBx6Y/d48nzbUTjvlHrCAkjas9t/a+/jBvu5tfJbibrslp6OM/x2tWOH76fKczRipOW333XZLnikm+e/rqVPze32BB8K1ufJy3yZZvrzYZ5IuyyxPtB0CXJ1Jnz7+wnr55cU+E7Qgx2qmWVYfrDg9vy+bTA2yuXNlQwYnnlbGtkhLl+r8Sb9smqacIYd0rkZhPCVZddkWda/8VJ8cc6qkHJ0BZ56ZCMZmGxVbHtuqZaMe0h/3vyrrOUjS8O7vaFSPtxLPkzrWwl/osZh0/vm+Mz9V/PcXBBOiTyo6LczW8O9p+vSs55r4f84RCEMRmUmf+1yLX15ujdLRRyeeP70hZRTlqFFJnVXZPmfh68KWDAGu1488V3s3PN20YMgQ7T/k//TRylMkSTfMuE03zvyef0/LloV2bupS/pnvCD7xRKlnz+QdV1UlHj635CLVd30v43kGu9PfDlmXNoMt4Ygjsr4+o1amrRpXt97/fggoY1vXnELzedSsPHDoE76YdoSYuaR6nGGJj2IwonXT1uQR32mf1Ayf3XN2uld/PegKScH3fvD+/rD/VZo/6OmkbZtdA8ssrQ5gmTX6zqsM57fFRbd9DhvxFx016uHmHR8ts+OO/mcBIytJgcsc7fuu5Zu0cYVvC0d+FwaDTJzk67QuXtwUSDLTj+d+S0Nr35GkpvbvpZfm/v5assR/vy9blhhcEx4U8+GK03RtfNBYuF28fLmOGPmw9h/yRGJRdVnQJog65u67+7ShOWxYfnpyuwRA+xg+XDr44Iz3rAVnlr2bIkN2mUi9euXeRrm/z2Pm9N7Rq2UmfRpuX6xcmf+5RBkc9Kek3i+h84rP4AotevnwC3XS+RF/q926pS+bNi1nXeucWhMca654n2Aeg1g6jJkzfWCvo+nf39dZO++8Yp/JNoUAV2czfHhycUAUx5FH+pQ1xx4bXeg9cPyYB/X4Ip+rOuu9a3NGbkSI19k5eezvdNqOD/gvgRUrmjaIT68OKbPGnIW143V1UoNzvauTZ5NM6L1ehw7/q39SXp4YwZqtQVxujaos26rdB7wUuT5mjTp8xF/8KOu0dSk7Xr3afy5OPtmnTgiOH2nGjPSp3XEZGsaJTq0DD/T/UoXT0CRe1PpRxmgnedZuk6Sder+W1qk1uc+r6a8L5WQvL8v8QbDQMVJnB4zv9bo2LD9d29W85ze5+mo/42DVKpkpUUw5cSP4uc8lBa2SZPowBh1Z2/d8O2MQPixrzcHBgxOzGZqllQGuvy3+gr7QzBm1QKc0apR0yCE+hVkmxx7rZ5XkESA4evSf9cCC6CLyMXMZWxD9u3zgjzFypKTMA3wSFi+O7FBqqHlXU4Lra2IPjY3aY8BLKosl77PFM6hCQa4ya4xOPxSkZGqMSu3WpYt+sOd3tdcgcrW1i8MO80GeEwpXxyXRxtt556TBK1HKrFE1FZt18tjf6dARf/V1NiLa2JlmMh8y/DF1CbIhJNq//frl11m9++7+XyA8eKZbxaamtomZbytMmyYNHKjb5tykGQNelCQ9s3ithnd/J/excmhOujEApS3rd/gxx/hZzxEm9v5ncs2tTPcoKarLc6cw7lH5qSSpZ7ze98CB6fW2mqtnT+nKK5PrjKFzC+5Bp/T5Z44N1er71TSrV/v6WUuXFna/2Rx9tB+sfc457XfMzmzKFF/7HO2GABfQFiorpR128DfDWaapD+/+jkZ0/3fu/bXyCzM+Wejre/xAC4c86fcXHoUakUu/zBpzF2aVdMfcb2rJiEcSz9cfeY7u2OtbSdt0q9ik2+d+p2lB0JmeabSzlGHka8jeg57W9/f8buJ5uKsgLTXS2LF+ZmNEoVdTyrZmUt++emzRZbp615T0B1OmSF//uu9AGDYssThRgHzMmOgClytXptdoIMDVOaR8Np84+LK0jtRf7nN9er2MyZN9+swrrtB23d7XC4demLw+GIVu5hJpPVNThppccidS96AuTMosjcT5ZOsgyxTgOuIIn+pEBZgAVV0tTZqUCLjnvcPWXP+YtQU0MfMdTUHB6Ug77+wDSi347PTv8r7eXX6GJH/dKa+M6Z1lZ+q7M2/RPg1PSZI2rjhVu/R7JSl98ropdyUG+/jXpnwv9+0rXXaZduv/onqF0rGa+X9f2/0Hqo2nOcxwLcs0myynBQsS6V4ypl3s1k06+ujoLr7Ro32nWrwOGtpWdbVvoxVw9HFiln5FRc7PRUO3DZJ8e3tMz7ekyy6T5s9v2qCxUSfu8HvNG/RM805i4ULfQRuehS1p8fBHdO++X4l8ScY2/OzZfn+hgW7x7+Ud6t5s3nkB2OaVZ0srHPSJjOz+VtqM76T7pfjs2xweOehyXTjpnrzPbeGQJ/XJylV5b59TXV1eNQjRSQQDsW6c+T39fcnF7XvssWP9gLT2THXXu7cPcpFmEyWKABfQ3k47LfEwZk5JY5yrq32B01SHHtqqQ9ZWbdaP534rfcWee0oTJkTWpYqZS/QT7bXdM/r1fl/W84delLbdwcMfT8wUUc+eGljzvh81lUdaxePG/DEpLUpYamM5PqJVks6feI8unnK3fxJ0NoSPlnOkdujcKsuC40yalLTJpD6vaVDNhogTK/cdDGvWJNLYbWrMMbK2okIaOVKXTf2plm7/kF9Gw6F0ZPtbjkpHkKJflw81uNu7yQvNfJqgIBXAyB4pge66Ot251zf1/Tnf9aO3167V92bflPQZTOpni/gMN20XnH+2FAeZZomatSgVR9ro9CuuSASqPr/Tfbpi5//Jf2eFGhEXFXwG0CrhwFHMnOqqPg4eN0qDBql39UdaOeZPmt7/ZUlSTUUoUB9cW2srN2lin9eT9hPlj/tfrR/PvbHp2ME3/6pxv4t+TSjY3+wUhRHKsg28mT5dO/d9NXrQzMqV7VcPBa2Xkuo93xpcn59wr/64/9Xp68Nf1lu26IYZ39fAmvfTt4sSf22PHtLatUkztCRpdI+3NC/D7MBbZ/+X7pj7TY3v1fTZ0jXXJNXCbdN6GxEz1wB0PlVluQdtvnDYxWmzYBJXxoYG6ZRT8krfP6XvP5PbEfK1tz89JjqIZSZVlzOoFC00YIC0dq1i5lTf9X3VlH+aeduOXL+qS/vWyQOKhQAX0N7GjUsULo9ZY3KXyzXXpNe9WL487Ya2ucx82pM0S5ZIq1ZFjkiNmUukKLxvv69qz+3+rlE93s5+oHB6vqgv+fhxgjy51+9+u67Y+aeRuwrP4Nq44lQtGPJk4vnp43+jXfu94p9MmCBde626VzQ1OPJJRfTFXe6UFNQkO/jgyM6n/l0/yL6T4P00upjKso1eC1ww+Zca3G2DdMYZ0XXA0DFlC7CMHetna+aQV5HjFIuGPa5ZA5/3f2cDB6pX9cdJn8FEh21DQ8b8zj+a+y3NGficTw2YLRgX1MKJFPVZjgrEZ7J8eVKdv6l9X9V5k36V/41AoQJchU4dASBJ+Ls3Jpf0Gd/aGPH5i7gGrJtyV3TaQzOZJV9LI5Mghvd54YWJ0bdZg1O5BPvMFSTbu+FpNR5/UsuPg44hntJakhYuTEsPnCb4++hd/VEiwJtRHgMtMif3TBefMRZll36v6ODhj+vJQ4LZkfPnp99jxAeJFbpfbtw4ae+9C7xTAB3RwG4f6MlDLsm5XWot4cQAmW7d/LUozxSFOvdcqbxc39jjNt025zu6edYtPsgWv75mm6XeHlpZWgIdTDCItHvlp9q4cnXm7erq/N9xhtr2RTV+fHqJEqATaqfqkwCixFJvYysq0u8y27OwZEjMGrUly8wkU6N08cXS/ff7BmnPnsk1OyZOlO6+WxoyRPrPf6SNG5tmgkyYIF1yibR2bcY0heHRYDUVm5NmhCSCX6tX+2PGYqqpjckdf4Lsxm/lDnCZ6ZyJ92lTY7nqKj+WdpqTHOQLHs8e+LzeWpqhHleK6rLc+cATClj8HO0gW2CkosLX28tR7yOffPEDu27Qvz6OSEOQITBl5nxw69RT09NlVFdLn36qxfHAdsoMxYTDDpM++CD7LK3Ua9KyZfkXc12wIPO2+d4Ajh0r/eY3LSvqHP6/I8AFtKlwACh1QExSTc+gtl+8dlXYvEHPaFr/f6Qtj9sa6iDb6swHI94J1QwKX6+6d/epEM9RM0IGmbW4jhdKz047SdddJ1VVac8br9bPX90pZ3rC/l1SBkXNmdP0+KSTpPfekzYnzzzIKcv33jvLzswdUAtbtCh9WfCetuaRkjwvkydLjz3m69kC2DY0Nmp8r3/l3ixlsF9a7a5jjpG+/OWkRY8uukyL7jtRr24M1ZgfPlwaO1YnbXkw+fXxdv7ChU3pai8O0srlU8ewUEaMkN56y7dP0Pl07x69vLxcuv76jpkxJBbzA06BTo4AF1BEZn40yOOLLm3qoG7r6c2hgulh29VsULfyTXru/QGSpLLU9ImSD1oFqsu2+M6pcMHtDaGRpA0NvhBrba30+uvSnXdKhx/etH6AP07UyNjG407w99zr1kl//7t0++1JTeDK2BZpjz18x3dc6PeWqJMRUXNLUuKG/qLJ8Rzec6K3k08vJ0k6OyLQFYw0m97/JZ/O0GjIdkr5BEYuvVS6KD2FZ9z4Xv/SS4ddEL0y+Ntdf9QaHf/gUfr232f4ZVdcIW3alHF2lUnS5z8fPeJx1SrpS1/Kfd6pteGynF/iRnTgwPSOvj339EGotJMsQLfyuHH+fbYkrWc48EeAC2hT8dpZW4870QeD3ODEukQ9oHHjpCOP9I/r6nyb5K67JEn/PGJNdGpgKTRjuumaEpNLvz727Zv13FokOHaXPAYqoBMJvltn1L+oxw6+XFL2bAp9qoP6cFdckT6CO95+vidL7ZigU2zmgBea/s5Dac1T9a7+qOnJ6NFZzy2j4Htxc3hA2zHHtGxfkq8tumFDxxzBDqBt5FlXOjWQnvg2j7fV6+ulc87Rlb//iR7412jd+/o4Te7zmvp3+VCvbuwjd3xoMGFUf0m/fv5nbW16QL89A1yHHCL16tXqDDzoQEaPlp57Tho0SDr22MzbRQzcAtB+6O0BiihmjdK6dZr4uR6+A1dKb7AVooM4PFMiSI+Y6vUj12jpqIeSzi0trZpzunXWTerf5X2N6/Wv9HNLLepdV+cblEOH+iKZEXWCUtMVSKHd1tdHNmArYlulpUuTF4beY8ycH6UyfXraa5MPkOF5quHDE0Xmk8yfL02YoD8dcJV+NPfbHTv3MpqvVy//c/Dg7NtJ/qYqniYwQ8284d3fiVwe/rtJPIqnOAh/ZlauTHqZmcv8t7v99oUbQZ3PNWjJkvzzey9e7APg+d74mfk0Yy2ZzRqL+c/pvHmFuZYCSBL+VMVnOMXM+TpG4RSF8fZEaidTqE3S0G1D5o9psCK+fvseb2pG/Yu+o6G+viml3JQp/hpzQfKAgr7x4ENLOKfNx56kbhWb8tue9ESdU6Y2nnN6d/kZ2m/wU/55tg6u+GzqqNTGs2ZJgwbpWzNv03OHrvUzw6Pqa555ZvLzCy/0nW4tEcwQO3jYYzpm9B99bdBddmnZviT/nUtwC9i2zJ3rf2aqNRlcO9NmcJnz167Fi5OWnzvxXk3p82ri+c/mf0MvH3Z+8j7rUjJeTJ2aPJA2VXvOqqmp8YN34veRKH2nny5ddZUfzEoddaDDYgYXUERl5vyXZJYRmgXplM0z8BJOIVRmTqN7vtm08vzzpV/8Qku3f1j7D/0/f+52cfIOqqqkNWuaNVOiIpajdlVw7uEUhZGvCb1Hk/OdXJl+d7l+p/mef02NnymTIz1ds/aJjuPSS306odTAbSZDh0o33ND8/2uz/D6ju+4q/eUviVScY3q8Kdl2zTtWSwSfl9p4nbvWXpPmzm26GW4PUWmZABTcPz4MZk8NHepT8yxY4K+Jkk8H3BrBdTU+Q/u5Q9f65fX1frZ3nFny9eWzz/TqEWvUr/pDSXu1+PAVzanhledodpSYLIHLRKpAs+z1Luvr/ezqqHZF166+8yxXm3L0aH/fcN11/nmmmq4HH+yzJ8RfE6W2Vjr7bO14zTX6zuf+W9LU7McGgFQHHeTvuzMNCAyunakzuGLmfIA+4r4i3CcxIKom9oEHSh9+KD3+uH++fHl6uvawjpg2DqUjFpN69Cj2WQDIgQAXUESRKXOc028XfEmfbKnU25/USlaAm81co4kTI6uaGp5l1qgR3d/x6QB69vS1tILtelRm6egeNqxZpzax9+u6a/7XtPDeU7JuZ6HaF5H960mzYHJ0wOf6fbR0enm2/RLgKj3l5c1PaZHr/3mffdKXnX56Ws75XEGkD44+zdepy3Z92JojeJyv4IbxNwu+rE9GTpCGHBW9HbMWgG3LqlXSV29MPB3f63X/YOed/c+JE6Vrr5XOPFNnTPi1Fg55UlL/3PutqkofnR2Y2vdVLR315/zPccAADe62oXXpiZo7O5sAV+eUz3fc9dfnbgdkC4AV0rx5fkbF00/7Wd2ZhDMUMNMZQHPFYn5gSybB/Uh4BlfPyo80vd/LklLKCcTrAkaUMEhSUyOdeKL0xhs+nXum4NaKFT7QnzJLDADQ+dDjChRRLLW4qiQ5p9kDn9e+g/+mo0f/uTA3m/F0IxMmRK+PSB0QM9d0kx4fadoGKfhi5rRgyFPpK+I33MGIq3jwbfn2f4reUejcGp1l/72lpm5LHdVVXZ1cqyzf/4NsAYV3MqSnw7Zj3jzpgAPSl48Z42dISprc55+qjOWu81JbuUmVZTkCWP3z6EjOx/Tp0tixqj9uoYavXdrymZEAOpcJE2QjR0iS3jzqbD15yKXS8cdLc0J1LWtqpLVrVRFr1A51b0bvJ16TK+7aa6NHW0+dqrqqj3Xr7JvzP8faWl8PNJ+ahJnk2/aJ1yRtTQ0jdFyZ0vCG/z4KWX+jEN+pZWW+7Z+hlicAtLmIwa9vLztbXzrvnYzXudTZXgmheuCS/KzYbMG1adN8armWpnEFAJQMAlxAEeWaiSSpMDN/5s/3NbCOOy56fUTqgDJrlM4913e+x1/XFueWom/1B75GwamnBgt8yqMu5ZslSTfPuiX6hcG57NL3H9q34W/ZDzJmjHTJJU3PozrSMtQqy+qzLIGJsWObvz90LvX1OTusThr7oDYdm302Y9723NMH1Naubd1+Kiqk1aulmTOzb3fKKf7zetZZrTsegJITr7+lsWPT2wbhOkJR7YaZM307JS7TbKtMbZhc6urap4N/+nTpW9+i7kZnc+KJvmZW1ACVYqGQPYBS0bOndNVVSZliYnLRNbOC+6SFQ57Unts9K02e3LRu/nw/I6u5GIAHANsEUhQCxRB08ESmKExViEZZLJY9PUmmGVxDh0pnnNH642cydqz0zDOJpxdPvlvnTfylNGqRT1EU3+aww3T9p7fr4sm/yLyv4Pf08EFXBs8zFLqN69ev6XGuQF2+/wfZUiANHOjzjNPxte3Klrs79W8w37+5bDnlKyqkfffNbz+FMGqUdNllwZPX2++4AIoukUY407Xr4IOlu+4qbJCgvWr5kX512zZpkv+XSRtkN8hp1Chfl7OZacFzKsZ7AdD59eihJcMf0YefVemXr41vGhSTKmhDzBr4vGYNfF5SKMC1++7MRgUAZESACyiiHpWf5N6oPUYdde8uKTnAVZahPlhBnXaaHxkbGNXjbVWXp9SuMJNmz1av229Xr+osReqnT5cefDD/Y4cDCrlqc+QKgC1YIL30UnIdgyiZCoGjczv1VP/3kW0WX2oHaj6f++uu6/ijEjv6+QEoiMQnPdNnft48aa+9Mq9vbhCpV6/2q6kxcqT0yivJA2OAuLb6nss2gMVMWrmyfY8JAK1w8PDHdfDwx7NvlO0alG2gIABgm0eACyiGXXfVi4ddoGGzI0ZepgaR2qODuKZGWrNGjQc+n1gUObKq0AGu0Hv7aOUp6lL2WdryvC1Z4msO/fjH+b+mrk765JPMdRXq6qQNG3xqmmzC9bqAVDvu6P9l09Dg/732Wv77jc9yBIAiiX9dJ9oM2QaEZPtu37Il87oobZAiOaP99/fpV1NrfwBtqRjBJgJcANrDfvtFL09Nvzptmv8O3ryZ2VsAgKyowQUUQ58+GnHzxYodF1GIvFjpQYYNU2PTGGz1rtqYvk0bBt+6ln/WtLtcI7mXLk1fVlEhjR/fvHO7/HJfeD7TtmvWSMuW+ZHnQFuKxaQLLsi9HemDAHRApuDalGtGdCY77+x/jhlTmBMqpKoqadYsX0cESFXo7+UxY3y7dMSIwu43m3i6z/ZK+wlg27Xnnj5oFSUc4Lr0UmmnnXwN4yFD2ufcAAAlixlcQLFkmn2ReqPcjrUf4sVf3fEnRG/QrVv7nMjIkZnXLVok7bFH9LrwiO58RqHm2qZnT5/vG2gP4UBrXV30Nlu3ts+5FAopCoFtgpmTTjih5Z/5ESOkK6/MPwUR1xZ0FPPmSf/7v9I++xRmf6ef7r/rWxosbonFi6WDDmrfYwLYNmXLQBG+N+/bt+3PBQDQadCKBTqarl2Tnw8Y0G6H3upydBgtWSJt2iQ9+aR/XogUQd26SRuD2WLnn+/3ma1WVbab73AwkM4vlKLPf1569FE/ujHKkCHS3/8u1da273k1kxOfP2BbYI0+6B6TkyZPzrF1DpkC+2E77CA9+2zrjwUUyoAB0g03FC5tpllxAk0EtwAUm5l00kl+wC/38gCAZqAlC3Q0M2ZIL73kO3FGjWrXlDjbdX0v+wbdu0urVvlR2lJhbobPOEO6+24/MyufAu7ZGruZamkBpWLkyOwzGBcs8NeEDl4LhkyKwDYimFXabv1QJ57oA1zhlMRAsbVnTTgA6Mw6+D0OAKBjIsAFdDQVFdJxxxXl0GdNuF8njf29fzJ0aO4XFKLY66BBvsMqX9k6Ebp39/vq3r315wV0RJWV0pw5xT6LnLY6OvuAbcIRR0gXS3b08vY5XnW1NGlS+xwLAAAUFjOzAABtgAAXgISymFNt5SZfA+OMMzJveO21Ph1gRxyxSscXUHQEuIBtQ8XwBs2YIVXtNqXYpwIAADq6jth/AAAoeQS4AKTbYYfss7NqatrvXFIx6gvo8HLW8wPQKZhJDz5Y7LMAAAAlYcSIYp8BAKATIsAFoLSUlRX7DADksKWRzykAAAAASVdcIa1f7wfSAgBQYMwPBpCuI6YOiDeGd9yxuOcBIKfN8QAXMy4BAACAbVvv3tKECcU+CwBAJ8UMLgClYfVqafNmqaqq2GcCIIfNW2leAAAAAAAAoG11wGkaAIquI866MCO4BZSIzY0EuAAAAAAAANC2CHABaDJokP85cWJRTwNAafuMGlwAAAAAAABoYwyxBtDknHOkt96SGhqKfSYASthmAlwAAAAAAABoYwS4ADSpqpIGDy72WQAocdTgAgAAAAAAQFujBwoAABTUkhGPqEflJ8U+DQAAAAAAAHRi1OACAAAFddqOD+gX+3yt2KcBAAAAAACATixngMvMGszsATN7xsyeNrPVwfJeZna/mb0Q/KwLlpuZXWdmL5rZk2Y2ObSv5cH2L5jZ8rZ7WwAAAAAAAAAAAOis8pnBtUXSWc65sZKmSVplZmMlrZH0G+fcKEm/CZ5L0j6SRgX/jpd0g+QDYpLWStpV0i6S1saDYgAAoBNqbCz2GQAAAAAAAKCTyhngcs694Zx7LHj8oaRnJW0n6QBJtwSb3SLpwODxAZJudd5DknqaWb2k+ZLud86965zbIOl+SXsX8s0AAIAOZOvWYp8BAAAAAAAAOqlm1eAys6GSJkl6WFJ/59wbwao3JfUPHm8n6bXQy14PlmVannqM483sETN75N///ndzTg8AAHQkzOACAAAAAABAG8k7wGVm3STdKel059wH4XXOOSfJFeKEnHM3OuemOuem9u3btxC7BAAAxcAMLgAAAAAAALSRvAJcZlYhH9y6zTn3k2DxW0HqQQU/3w6Wr5fUEHr5oGBZpuUAAKAzIsAFAAAAAACANpIzwGVmJum7kp51zl0bWvVzScuDx8sl/Sy0fJl50yS9H6QyvFfSPDOrM7M6SfOCZQAAoDPZf3+ppkbaa69inwkAAAAAAAA6qfI8ttld0lJJT5nZE8Gy8yVdKelHZnaMpFclLQnW3SNpX0kvSvpY0gpJcs69a2aXSvprsN0XnHPvFuJNAACADmS//aR995XMin0mAAAAAAAA6KTMl8/qmKZOneoeeeSRYp8GAAAAAAAAAAAA2pmZPeqcmxq1Lq8aXAAAAAAAAAAAAEBHQYALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSQoALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSYs65Yp9DRmb2b0mvFvs8SkwfSe8U+yQAbLO4BgEoJq5BAIqN6xCAYuIaBKCYuAahrQxxzvWNWtGhA1xoPjN7xDk3tdjnAWDbxDUIQDFxDQJQbFyHABQT1yAAxcQ1CMVAikIAAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuDqfG4t9AgC2aVyDABQT1yAAxcZ1CEAxcQ0CUExcg9DuqMEFAAAAAAAAAACAksIMLgAAAAAAAAAAAJQUAlydhJntbWbPmdmLZram2OcDoPMws1fM7Ckze8LMHgmW9TKz+83sheBnXbDczOy64Fr0pJlNDu1nebD9C2a2vFjvB0DHZ2Y3mdnbZva30LKCXXfMbEpwXXsxeK217zsE0JFluAatM7P1QXvoCTPbN7TuvOB68pyZzQ8tj7xHM7NhZvZwsPyHZlbZfu8OQEdnZg1m9oCZPWNmT5vZ6mA5bSEAbS7LNYi2EDokAlydgJmVSfq6pH0kjZV0uJmNLe5ZAehkZjvnJjrnpgbP10j6jXNulKTfBM8lfx0aFfw7XtINkr8Zk7RW0q6SdpG0Nn5DBgARbpa0d8qyQl53bpB0XOh1qccCsG27WdHXhS8H7aGJzrl7JCm47zpM0rjgNd8ws7Ic92hfDPY1UtIGSce06bsBUGq2SDrLOTdW0jRJq4LrB20hAO0h0zVIoi2EDogAV+ewi6QXnXMvO+c2S7pd0gFFPicAndsBkm4JHt8i6cDQ8lud95CknmZWL2m+pPudc+865zZIul/cRAHIwDn3oKR3UxYX5LoTrOvunHvI+WK0t4b2BQCZrkGZHCDpdufcJufcPyS9KH9/FnmPFsySmCPpjuD14esZAMg594Zz7rHg8YeSnpW0nWgLAWgHWa5BmdAWQlER4OoctpP0Wuj568p+4QGA5nCS7jOzR83s+GBZf+fcG8HjNyX1Dx5nuh5xnQLQWoW67mwXPE5dDgC5nBKk/7opNAuiudeg3pLec85tSVkOAGnMbKikSZIeFm0hAO0s5Rok0RZCB0SACwCQyx7Oucny08pXmdnM8Mpg1J8rypkB2CZx3QFQBDdIGiFpoqQ3JH2pqGcDoNMzs26S7pR0unPug/A62kIA2lrENYi2EDokAlydw3pJDaHng4JlANBqzrn1wc+3Jf2P/DTzt4LUFgp+vh1snul6xHUKQGsV6rqzPnicuhwAMnLOveWc2+qca5T0bfn2kNT8a9B/5NOHlacsB4AEM6uQ71i+zTn3k2AxbSEA7SLqGkRbCB0VAa7O4a+SRpnZMDOrlC/s9/MinxOATsDMasysNv5Y0jxJf5O/xiwPNlsu6WfB459LWmbeNEnvB2k07pU0z8zqgmns84JlAJCvglx3gnUfmNm0IP/7stC+ACBSvFM5cJB8e0jy16DDzKzKzIZJGiXpL8pwjxbMunhA0iHB68PXMwBQ0D75rqRnnXPXhlbRFgLQ5jJdg2gLoaMqz70JOjrn3BYzO0W+8VIm6Sbn3NNFPi0AnUN/Sf/j2zcql/R959yvzOyvkn5kZsdIelXSkmD7eyTtK19U9GNJKyTJOfeumV0q38CRpC845/It3g5gG2NmP5A0S1IfM3td0lpJV6pw152TJd0sqYukXwb/AEBSxmvQLDObKJ8S7BVJJ0iSc+5pM/uRpGckbZG0yjm3NdhPpnu0cyXdbmaXSXpcvhMJAOJ2l7RU0lNm9kSw7HzRFgLQPjJdgw6nLYSOyHzQFAAAAAAAAAAAACgNpCgEAAAAAAAAAABASSHABQAAAAAAAAAAgJJCgAsAAAAAAAAAAAAlhQAXAAAAAAAAAAAASgoBLgAAAAAAAAAAAJQUAlwAAAAA0Axm1tvMngj+vWlm64PHG83sG2143Flmtltb7R8AAAAASkl5sU8AAAAAAEqJc+4/kiZKkpmtk7TROXdNOxx6lqSNkv7UDscCAAAAgA6NGVwAAAAAUADBDKu7g8frzOwWM/uDmb1qZovM7Coze8rMfmVmFcF2U8zs92b2qJnda2b1wfLTzOwZM3vSzG43s6GSTpR0RjBbbIaZLTSzh83scTP7tZn1b+axXwkt/4uZjSzKLw4AAAAAWoAAFwAAAAC0jRGS5kjaX9L3JD3gnBsv6RNJ+wWBpuslHeKcmyLpJkmXB69dI2mSc26CpBOdc69I+qakLzvnJjrn/iDpj5KmOecmSbpd0jn5Hju03fvB8q9J+kqB3z8AAAAAtBlSFAIAAABA2/ilc+4zM3tKUpmkXwXLn5I0VNJoSTtKut/MFGzzRrDNk5JuM7OfSvpphv0PkvTDYNZXpaR/NOPYcT8I/fxys98hAAAAABQJM7gAAAAAoG1skiTnXKOkz5xzLljeKD/Y0CQ9HczImuicG++cmxdss5+kr0uaLOmvZhY1OPF6SV8LZmCdIKm6GceOcxkeAwAAAECHRoALAAAAAIrjOUl9zWy6JJlZhZmNM7OYpAbn3AOSzpXUQ1I3SR9Kqg29voek9cHj5S08h0NDP//cwn0AAAAAQLsjRSEAAAAAFIFzbrOZHSLpOjPrIX9/9hVJz0v6XrDMJF3nnHvPzO6SdIeZHSDpVEnrJP3YzDZI+q2kYS04jToze1J+xtfhrX1PAAAAANBerClTBQAAAABgW2Fmr0ia6px7p9jnAgAAAADNRYpCAAAAAAAAAAAAlBRmcAEAAAAAAAAAAKCkMIMLAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpPx/Taa0BNrWmiUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(30,8))\n", + "plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(Y_pred, color = 'blue', linewidth=1)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE: 2.0572089029888656 %\n" + ] + } + ], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं।\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "f8f3967282314d3995245835bdaa8418", + "translation_date": "2025-09-04T01:54:58+00:00", + "source_file": "7-TimeSeries/3-SVR/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/3-SVR/working/notebook.ipynb b/translations/hi/7-TimeSeries/3-SVR/working/notebook.ipynb new file mode 100644 index 000000000..5a6750891 --- /dev/null +++ b/translations/hi/7-TimeSeries/3-SVR/working/notebook.ipynb @@ -0,0 +1,687 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "इस नोटबुक में, हम यह प्रदर्शित करेंगे कि:\n", + "\n", + "- 2D समय श्रृंखला डेटा को SVM रिग्रेशन मॉडल के प्रशिक्षण के लिए कैसे तैयार करें \n", + "- RBF कर्नेल का उपयोग करके SVR को कैसे लागू करें \n", + "- प्लॉट्स और MAPE का उपयोग करके मॉडल का मूल्यांकन कैसे करें \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### डेटा लोड करें\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                load
                                2012-01-01 00:00:002698.0
                                2012-01-01 01:00:002558.0
                                2012-01-01 02:00:002444.0
                                2012-01-01 03:00:002402.0
                                2012-01-01 04:00:002403.0
                                \n", + "
                                " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "अब, आपको अपने डेटा को प्रशिक्षण के लिए तैयार करने के लिए फ़िल्टरिंग और स्केलिंग करना होगा।\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "हमारे SVR के लिए, हम इनपुट डेटा को `[batch, timesteps]` के रूप में परिवर्तित करते हैं। इसलिए, हम मौजूदा `train_data` और `test_data` को इस प्रकार पुनःआकारित करते हैं कि उसमें एक नया आयाम हो, जो timesteps को संदर्भित करता है। हमारे उदाहरण के लिए, हम `timesteps = 5` लेते हैं। तो, मॉडल के इनपुट पहले 4 timesteps के डेटा होंगे, और आउटपुट 5वें timestep का डेटा होगा।\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [], + "source": [ + "x_train, y_train = None\n", + "x_test, y_test = None\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [], + "source": [ + "# Fit model on training data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = None\n", + "y_test_pred = None" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = None\n", + "test_timestamps = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(25,6))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(10,3))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [], + "source": [ + "# Extracting load values as numpy array\n", + "data = None\n", + "\n", + "# Scaling\n", + "data = None\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=None\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = None, None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = None\n", + "Y = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(30,8))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "e86ce102239a14c44585623b9b924a74", + "translation_date": "2025-09-04T01:57:36+00:00", + "source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/hi/7-TimeSeries/README.md b/translations/hi/7-TimeSeries/README.md new file mode 100644 index 000000000..39b28c9fd --- /dev/null +++ b/translations/hi/7-TimeSeries/README.md @@ -0,0 +1,37 @@ + +# समय श्रृंखला पूर्वानुमान का परिचय + +समय श्रृंखला पूर्वानुमान क्या है? यह अतीत के रुझानों का विश्लेषण करके भविष्य की घटनाओं की भविष्यवाणी करने के बारे में है। + +## क्षेत्रीय विषय: विश्वव्यापी बिजली उपयोग ✨ + +इन दो पाठों में, आपको समय श्रृंखला पूर्वानुमान से परिचित कराया जाएगा, जो मशीन लर्निंग का एक अपेक्षाकृत कम ज्ञात क्षेत्र है, लेकिन फिर भी उद्योग और व्यापार अनुप्रयोगों सहित अन्य क्षेत्रों के लिए अत्यधिक मूल्यवान है। जबकि न्यूरल नेटवर्क का उपयोग इन मॉडलों की उपयोगिता बढ़ाने के लिए किया जा सकता है, हम इन्हें पारंपरिक मशीन लर्निंग के संदर्भ में अध्ययन करेंगे, क्योंकि ये मॉडल अतीत के आधार पर भविष्य के प्रदर्शन की भविष्यवाणी करने में मदद करते हैं। + +हमारा क्षेत्रीय फोकस दुनिया में बिजली उपयोग पर है, जो एक दिलचस्प डेटा सेट है, जिससे यह सीखने को मिलता है कि अतीत के लोड पैटर्न के आधार पर भविष्य की बिजली खपत का पूर्वानुमान कैसे लगाया जाए। आप देख सकते हैं कि इस प्रकार का पूर्वानुमान व्यावसायिक वातावरण में कितना उपयोगी हो सकता है। + +![electric grid](../../../translated_images/electric-grid.0c21d5214db09ffae93c06a87ca2abbb9ba7475ef815129c5b423d7f9a7cf136.hi.jpg) + +फोटो [Peddi Sai hrithik](https://unsplash.com/@shutter_log?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) द्वारा राजस्थान की एक सड़क पर बिजली के टावरों का [Unsplash](https://unsplash.com/s/photos/electric-india?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) पर। + +## पाठ + +1. [समय श्रृंखला पूर्वानुमान का परिचय](1-Introduction/README.md) +2. [ARIMA समय श्रृंखला मॉडल बनाना](2-ARIMA/README.md) +3. [समय श्रृंखला पूर्वानुमान के लिए सपोर्ट वेक्टर रिग्रेसर बनाना](3-SVR/README.md) + +## श्रेय + +"समय श्रृंखला पूर्वानुमान का परिचय" को ⚡️ के साथ [Francesca Lazzeri](https://twitter.com/frlazzeri) और [Jen Looper](https://twitter.com/jenlooper) द्वारा लिखा गया था। ये नोटबुक पहली बार [Azure "Deep Learning For Time Series" repo](https://github.com/Azure/DeepLearningForTimeSeriesForecasting) में ऑनलाइन प्रकाशित हुई थीं, जिसे मूल रूप से Francesca Lazzeri ने लिखा था। SVR पाठ [Anirban Mukherjee](https://github.com/AnirbanMukherjeeXD) द्वारा लिखा गया था। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/1-QLearning/README.md b/translations/hi/8-Reinforcement/1-QLearning/README.md new file mode 100644 index 000000000..76e98f2e0 --- /dev/null +++ b/translations/hi/8-Reinforcement/1-QLearning/README.md @@ -0,0 +1,256 @@ + +# परिचय: रिइंफोर्समेंट लर्निंग और Q-लर्निंग + +![मशीन लर्निंग में रिइंफोर्समेंट का सारांश एक स्केच नोट में](../../../../translated_images/ml-reinforcement.94024374d63348dbb3571c343ca7ddabef72adac0b8086d47164b769ba3a8a1d.hi.png) +> स्केच नोट: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +रिइंफोर्समेंट लर्निंग तीन महत्वपूर्ण अवधारणाओं पर आधारित है: एजेंट, कुछ स्टेट्स, और प्रत्येक स्टेट के लिए एक्शन का सेट। किसी निर्दिष्ट स्टेट में एक्शन को निष्पादित करके, एजेंट को एक इनाम दिया जाता है। फिर से सुपर मारियो कंप्यूटर गेम की कल्पना करें। आप मारियो हैं, आप एक गेम लेवल में हैं, और एक चट्टान के किनारे पर खड़े हैं। आपके ऊपर एक सिक्का है। आप मारियो हैं, एक गेम लेवल में, एक विशिष्ट स्थिति में ... यही आपका स्टेट है। दाईं ओर एक कदम बढ़ाना (एक्शन) आपको किनारे से नीचे गिरा देगा, और यह आपको कम अंक देगा। हालांकि, जंप बटन दबाने से आप एक पॉइंट स्कोर करेंगे और जीवित रहेंगे। यह एक सकारात्मक परिणाम है और आपको एक सकारात्मक अंक प्रदान करना चाहिए। + +रिइंफोर्समेंट लर्निंग और एक सिम्युलेटर (गेम) का उपयोग करके, आप गेम खेलने का तरीका सीख सकते हैं ताकि आप जीवित रह सकें और अधिकतम पॉइंट्स स्कोर कर सकें। + +[![रिइंफोर्समेंट लर्निंग का परिचय](https://img.youtube.com/vi/lDq_en8RNOo/0.jpg)](https://www.youtube.com/watch?v=lDq_en8RNOo) + +> 🎥 ऊपर दी गई छवि पर क्लिक करें और Dmitry से रिइंफोर्समेंट लर्निंग के बारे में सुनें + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/45/) + +## आवश्यकताएँ और सेटअप + +इस पाठ में, हम Python में कुछ कोड के साथ प्रयोग करेंगे। आपको इस पाठ के Jupyter Notebook कोड को अपने कंप्यूटर पर या क्लाउड में कहीं भी चलाने में सक्षम होना चाहिए। + +आप [पाठ नोटबुक](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/notebook.ipynb) खोल सकते हैं और इस पाठ को पूरा करने के लिए इसका अनुसरण कर सकते हैं। + +> **नोट:** यदि आप इस कोड को क्लाउड से खोल रहे हैं, तो आपको [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py) फ़ाइल भी प्राप्त करनी होगी, जिसका उपयोग नोटबुक कोड में किया गया है। इसे नोटबुक के समान डायरेक्टरी में जोड़ें। + +## परिचय + +इस पाठ में, हम **[Peter and the Wolf](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)** की दुनिया का अन्वेषण करेंगे, जो एक रूसी संगीतकार [Sergei Prokofiev](https://en.wikipedia.org/wiki/Sergei_Prokofiev) द्वारा लिखी गई एक संगीत परी कथा से प्रेरित है। हम **रिइंफोर्समेंट लर्निंग** का उपयोग करेंगे ताकि पीटर अपने वातावरण का पता लगा सके, स्वादिष्ट सेब इकट्ठा कर सके और भेड़िये से बच सके। + +**रिइंफोर्समेंट लर्निंग** (RL) एक लर्निंग तकनीक है जो हमें कई प्रयोगों को चलाकर किसी **एजेंट** के **वातावरण** में इष्टतम व्यवहार सीखने की अनुमति देती है। इस वातावरण में एक एजेंट का कुछ **लक्ष्य** होना चाहिए, जिसे एक **इनाम फ़ंक्शन** द्वारा परिभाषित किया गया है। + +## वातावरण + +सरलता के लिए, आइए पीटर की दुनिया को `width` x `height` आकार के एक वर्ग बोर्ड के रूप में मानें, जैसे: + +![पीटर का वातावरण](../../../../translated_images/environment.40ba3cb66256c93fa7e92f6f7214e1d1f588aafa97d266c11d108c5c5d101b6c.hi.png) + +इस बोर्ड में प्रत्येक सेल निम्नलिखित में से हो सकता है: + +* **जमीन**, जिस पर पीटर और अन्य जीव चल सकते हैं। +* **पानी**, जिस पर आप स्पष्ट रूप से नहीं चल सकते। +* एक **पेड़** या **घास**, एक जगह जहां आप आराम कर सकते हैं। +* एक **सेब**, जिसे पीटर खुशी से खोजेगा ताकि वह खुद को खिला सके। +* एक **भेड़िया**, जो खतरनाक है और इससे बचा जाना चाहिए। + +एक अलग Python मॉड्यूल, [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py), इस वातावरण के साथ काम करने के लिए कोड को शामिल करता है। चूंकि यह कोड हमारे अवधारणाओं को समझने के लिए महत्वपूर्ण नहीं है, हम मॉड्यूल को आयात करेंगे और नमूना बोर्ड बनाने के लिए इसका उपयोग करेंगे (कोड ब्लॉक 1): + +```python +from rlboard import * + +width, height = 8,8 +m = Board(width,height) +m.randomize(seed=13) +m.plot() +``` + +यह कोड ऊपर दिए गए वातावरण के समान एक चित्र प्रिंट करेगा। + +## एक्शन और पॉलिसी + +हमारे उदाहरण में, पीटर का लक्ष्य सेब को खोजना होगा, जबकि भेड़िये और अन्य बाधाओं से बचना होगा। ऐसा करने के लिए, वह सेब को खोजने तक इधर-उधर चल सकता है। + +इसलिए, किसी भी स्थिति में, वह निम्नलिखित एक्शन में से एक चुन सकता है: ऊपर, नीचे, बाएं और दाएं। + +हम इन एक्शन को एक डिक्शनरी के रूप में परिभाषित करेंगे और उन्हें संबंधित समन्वय परिवर्तनों के जोड़े से मैप करेंगे। उदाहरण के लिए, दाईं ओर बढ़ना (`R`) `(1,0)` के जोड़े से मेल खाएगा। (कोड ब्लॉक 2): + +```python +actions = { "U" : (0,-1), "D" : (0,1), "L" : (-1,0), "R" : (1,0) } +action_idx = { a : i for i,a in enumerate(actions.keys()) } +``` + +इस परिदृश्य की रणनीति और लक्ष्य को संक्षेप में कहें: + +- **रणनीति**, हमारे एजेंट (पीटर) की **पॉलिसी** द्वारा परिभाषित की जाती है। पॉलिसी एक फ़ंक्शन है जो किसी दिए गए स्टेट पर एक्शन लौटाता है। हमारे मामले में, समस्या का स्टेट बोर्ड द्वारा दर्शाया गया है, जिसमें खिलाड़ी की वर्तमान स्थिति शामिल है। + +- **लक्ष्य**, रिइंफोर्समेंट लर्निंग का उद्देश्य अंततः एक अच्छी पॉलिसी सीखना है जो हमें समस्या को कुशलतापूर्वक हल करने की अनुमति देगा। हालांकि, एक आधार रेखा के रूप में, आइए सबसे सरल पॉलिसी पर विचार करें जिसे **रैंडम वॉक** कहा जाता है। + +## रैंडम वॉक + +आइए पहले रैंडम वॉक रणनीति को लागू करके अपनी समस्या को हल करें। रैंडम वॉक के साथ, हम अनुमत एक्शन में से अगले एक्शन को यादृच्छिक रूप से चुनेंगे, जब तक कि हम सेब तक न पहुँच जाएँ (कोड ब्लॉक 3)। + +1. नीचे दिए गए कोड के साथ रैंडम वॉक लागू करें: + + ```python + def random_policy(m): + return random.choice(list(actions)) + + def walk(m,policy,start_position=None): + n = 0 # number of steps + # set initial position + if start_position: + m.human = start_position + else: + m.random_start() + while True: + if m.at() == Board.Cell.apple: + return n # success! + if m.at() in [Board.Cell.wolf, Board.Cell.water]: + return -1 # eaten by wolf or drowned + while True: + a = actions[policy(m)] + new_pos = m.move_pos(m.human,a) + if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water: + m.move(a) # do the actual move + break + n+=1 + + walk(m,random_policy) + ``` + + `walk` को कॉल करने से संबंधित पथ की लंबाई लौटनी चाहिए, जो एक रन से दूसरे रन तक भिन्न हो सकती है। + +1. वॉक प्रयोग को कई बार (कहें, 100) चलाएँ, और परिणामी आँकड़े प्रिंट करें (कोड ब्लॉक 4): + + ```python + def print_statistics(policy): + s,w,n = 0,0,0 + for _ in range(100): + z = walk(m,policy) + if z<0: + w+=1 + else: + s += z + n += 1 + print(f"Average path length = {s/n}, eaten by wolf: {w} times") + + print_statistics(random_policy) + ``` + + ध्यान दें कि पथ की औसत लंबाई लगभग 30-40 कदम है, जो काफी अधिक है, यह देखते हुए कि निकटतम सेब तक औसत दूरी लगभग 5-6 कदम है। + + आप यह भी देख सकते हैं कि रैंडम वॉक के दौरान पीटर की गति कैसी दिखती है: + + ![पीटर का रैंडम वॉक](../../../../8-Reinforcement/1-QLearning/images/random_walk.gif) + +## इनाम फ़ंक्शन + +हमारी पॉलिसी को अधिक बुद्धिमान बनाने के लिए, हमें यह समझने की आवश्यकता है कि कौन से कदम दूसरों की तुलना में "बेहतर" हैं। ऐसा करने के लिए, हमें अपना लक्ष्य परिभाषित करना होगा। + +लक्ष्य को एक **इनाम फ़ंक्शन** के रूप में परिभाषित किया जा सकता है, जो प्रत्येक स्टेट के लिए कुछ स्कोर मान लौटाएगा। संख्या जितनी अधिक होगी, इनाम फ़ंक्शन उतना ही बेहतर होगा। (कोड ब्लॉक 5) + +```python +move_reward = -0.1 +goal_reward = 10 +end_reward = -10 + +def reward(m,pos=None): + pos = pos or m.human + if not m.is_valid(pos): + return end_reward + x = m.at(pos) + if x==Board.Cell.water or x == Board.Cell.wolf: + return end_reward + if x==Board.Cell.apple: + return goal_reward + return move_reward +``` + +इनाम फ़ंक्शन के बारे में एक दिलचस्प बात यह है कि अधिकांश मामलों में, *हमें केवल खेल के अंत में एक महत्वपूर्ण इनाम दिया जाता है*। इसका मतलब है कि हमारा एल्गोरिदम "अच्छे" कदमों को याद रखना चाहिए जो अंत में सकारात्मक इनाम की ओर ले जाते हैं, और उनकी महत्वता बढ़ानी चाहिए। इसी तरह, सभी कदम जो खराब परिणामों की ओर ले जाते हैं, उन्हें हतोत्साहित किया जाना चाहिए। + +## Q-लर्निंग + +एक एल्गोरिदम जिसे हम यहां चर्चा करेंगे, उसे **Q-लर्निंग** कहा जाता है। इस एल्गोरिदम में, पॉलिसी को एक फ़ंक्शन (या डेटा संरचना) द्वारा परिभाषित किया जाता है जिसे **Q-टेबल** कहा जाता है। यह प्रत्येक स्टेट में एक्शन की "अच्छाई" को रिकॉर्ड करता है। + +इसे Q-टेबल कहा जाता है क्योंकि इसे अक्सर एक टेबल या बहु-आयामी ऐरे के रूप में प्रस्तुत करना सुविधाजनक होता है। चूंकि हमारे बोर्ड का आयाम `width` x `height` है, हम Q-टेबल को `width` x `height` x `len(actions)` आकार के साथ एक numpy ऐरे का उपयोग करके प्रस्तुत कर सकते हैं: (कोड ब्लॉक 6) + +```python +Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions) +``` + +ध्यान दें कि हम Q-टेबल के सभी मानों को समान मान के साथ प्रारंभ करते हैं, हमारे मामले में - 0.25। यह "रैंडम वॉक" पॉलिसी के अनुरूप है, क्योंकि प्रत्येक स्टेट में सभी कदम समान रूप से अच्छे हैं। हम बोर्ड पर टेबल को विज़ुअलाइज़ करने के लिए Q-टेबल को `plot` फ़ंक्शन में पास कर सकते हैं: `m.plot(Q)`। + +![पीटर का वातावरण](../../../../translated_images/env_init.04e8f26d2d60089e128f21d22e5fef57d580e559f0d5937b06c689e5e7cdd438.hi.png) + +प्रत्येक सेल के केंद्र में एक "तीर" होता है जो गति की पसंदीदा दिशा को इंगित करता है। चूंकि सभी दिशाएँ समान हैं, एक बिंदु प्रदर्शित होता है। + +अब हमें सिमुलेशन चलाने, अपने वातावरण का पता लगाने और Q-टेबल मानों के बेहतर वितरण को सीखने की आवश्यकता है, जो हमें सेब तक पहुँचने का रास्ता बहुत तेज़ी से खोजने की अनुमति देगा। + +## Q-लर्निंग का सार: बेलमैन समीकरण + +एक बार जब हम चलना शुरू करते हैं, तो प्रत्येक एक्शन का एक संबंधित इनाम होगा, यानी हम सैद्धांतिक रूप से उच्चतम तत्काल इनाम के आधार पर अगले एक्शन का चयन कर सकते हैं। हालांकि, अधिकांश स्टेट्स में, यह कदम हमारे लक्ष्य को प्राप्त नहीं करेगा, और इसलिए हम तुरंत यह तय नहीं कर सकते कि कौन सी दिशा बेहतर है। + +> याद रखें कि तत्काल परिणाम महत्वपूर्ण नहीं है, बल्कि अंतिम परिणाम है, जिसे हम सिमुलेशन के अंत में प्राप्त करेंगे। + +इस विलंबित इनाम को ध्यान में रखने के लिए, हमें **[डायनामिक प्रोग्रामिंग](https://en.wikipedia.org/wiki/Dynamic_programming)** के सिद्धांतों का उपयोग करने की आवश्यकता है, जो हमें अपनी समस्या को पुनरावर्ती रूप से सोचने की अनुमति देते हैं। + +मान लें कि हम अब स्टेट *s* पर हैं, और हम अगले स्टेट *s'* पर जाना चाहते हैं। ऐसा करने से, हमें तत्काल इनाम *r(s,a)* प्राप्त होगा, जिसे इनाम फ़ंक्शन द्वारा परिभाषित किया गया है, साथ ही कुछ भविष्य का इनाम भी। यदि हम मान लें कि हमारा Q-टेबल प्रत्येक एक्शन की "आकर्षकता" को सही ढंग से दर्शाता है, तो स्टेट *s'* पर हम एक्शन *a'* का चयन करेंगे जो *Q(s',a')* के अधिकतम मान से मेल खाता है। इस प्रकार, स्टेट *s* पर हमें मिलने वाला सबसे अच्छा संभावित भविष्य का इनाम `max` + +## नीति की जांच करना + +चूंकि Q-Table प्रत्येक स्थिति में प्रत्येक क्रिया की "आकर्षकता" को सूचीबद्ध करता है, इसे हमारे संसार में कुशल नेविगेशन को परिभाषित करने के लिए उपयोग करना काफी आसान है। सबसे सरल मामले में, हम उस क्रिया का चयन कर सकते हैं जो Q-Table में सबसे उच्च मान से मेल खाती है: (कोड ब्लॉक 9) + +```python +def qpolicy_strict(m): + x,y = m.human + v = probs(Q[x,y]) + a = list(actions)[np.argmax(v)] + return a + +walk(m,qpolicy_strict) +``` + +> यदि आप ऊपर दिए गए कोड को कई बार आज़माते हैं, तो आप देख सकते हैं कि कभी-कभी यह "अटक" जाता है, और आपको इसे रोकने के लिए नोटबुक में STOP बटन दबाना पड़ता है। ऐसा इसलिए होता है क्योंकि कुछ स्थितियों में दो अवस्थाएँ एक-दूसरे की ओर "संकेत" करती हैं, जहाँ Q-Value इष्टतम होता है। इस स्थिति में एजेंट उन अवस्थाओं के बीच अनिश्चितकाल तक घूमता रहता है। + +## 🚀चुनौती + +> **कार्य 1:** `walk` फ़ंक्शन को संशोधित करें ताकि पथ की अधिकतम लंबाई को एक निश्चित संख्या (जैसे, 100) तक सीमित किया जा सके, और ऊपर दिया गया कोड समय-समय पर इस मान को लौटाए। + +> **कार्य 2:** `walk` फ़ंक्शन को संशोधित करें ताकि यह उन स्थानों पर वापस न जाए जहाँ यह पहले ही जा चुका है। यह `walk` को लूपिंग से रोक देगा, लेकिन एजेंट अभी भी ऐसी जगह पर "फंस" सकता है जहाँ से वह बाहर नहीं निकल सकता। + +## नेविगेशन + +एक बेहतर नेविगेशन नीति वह होगी जिसे हमने प्रशिक्षण के दौरान उपयोग किया था, जो शोषण और अन्वेषण को जोड़ती है। इस नीति में, हम प्रत्येक क्रिया को एक निश्चित संभावना के साथ चुनेंगे, जो Q-Table में मानों के अनुपात में होगी। यह रणनीति अभी भी एजेंट को पहले से खोजे गए स्थान पर वापस लौटने का कारण बन सकती है, लेकिन जैसा कि आप नीचे दिए गए कोड से देख सकते हैं, यह वांछित स्थान तक बहुत छोटे औसत पथ का परिणाम देती है (याद रखें कि `print_statistics` सिमुलेशन को 100 बार चलाता है): (कोड ब्लॉक 10) + +```python +def qpolicy(m): + x,y = m.human + v = probs(Q[x,y]) + a = random.choices(list(actions),weights=v)[0] + return a + +print_statistics(qpolicy) +``` + +इस कोड को चलाने के बाद, आपको पहले की तुलना में औसत पथ लंबाई बहुत छोटी मिलनी चाहिए, जो 3-6 की सीमा में होगी। + +## सीखने की प्रक्रिया की जांच करना + +जैसा कि हमने उल्लेख किया है, सीखने की प्रक्रिया समस्या स्थान की संरचना के बारे में प्राप्त ज्ञान के अन्वेषण और उपयोग के बीच संतुलन है। हमने देखा है कि सीखने के परिणाम (एजेंट को लक्ष्य तक पहुँचने के लिए छोटा पथ खोजने की क्षमता) में सुधार हुआ है, लेकिन यह देखना भी दिलचस्प है कि सीखने की प्रक्रिया के दौरान औसत पथ लंबाई कैसे व्यवहार करती है: + +## सीखने का सारांश + +- **औसत पथ लंबाई बढ़ती है**। शुरुआत में, औसत पथ लंबाई बढ़ती है। ऐसा संभवतः इसलिए होता है क्योंकि जब हमें पर्यावरण के बारे में कुछ भी पता नहीं होता, तो हम खराब अवस्थाओं, जैसे पानी या भेड़िया, में फंसने की संभावना रखते हैं। जैसे-जैसे हम अधिक सीखते हैं और इस ज्ञान का उपयोग करना शुरू करते हैं, हम पर्यावरण का अधिक समय तक अन्वेषण कर सकते हैं, लेकिन हमें अभी भी सेबों का स्थान अच्छी तरह से पता नहीं होता। + +- **पथ लंबाई घटती है, जैसे-जैसे हम अधिक सीखते हैं**। जब हम पर्याप्त सीखते हैं, तो एजेंट के लिए लक्ष्य प्राप्त करना आसान हो जाता है, और पथ लंबाई घटने लगती है। हालांकि, हम अभी भी अन्वेषण के लिए खुले हैं, इसलिए हम अक्सर सबसे अच्छे पथ से दूर चले जाते हैं और नए विकल्पों का अन्वेषण करते हैं, जिससे पथ इष्टतम से लंबा हो जाता है। + +- **लंबाई अचानक बढ़ जाती है**। इस ग्राफ पर हम यह भी देखते हैं कि किसी बिंदु पर लंबाई अचानक बढ़ जाती है। यह प्रक्रिया की अनिश्चित प्रकृति को इंगित करता है, और यह कि हम किसी बिंदु पर Q-Table गुणांक को नए मानों के साथ अधिलेखित करके "खराब" कर सकते हैं। इसे आदर्श रूप से सीखने की दर को कम करके कम किया जाना चाहिए (उदाहरण के लिए, प्रशिक्षण के अंत में, हम केवल Q-Table मानों को छोटे मान से समायोजित करते हैं)। + +कुल मिलाकर, यह याद रखना महत्वपूर्ण है कि सीखने की प्रक्रिया की सफलता और गुणवत्ता काफी हद तक पैरामीटर पर निर्भर करती है, जैसे सीखने की दर, सीखने की दर में कमी, और छूट कारक। इन्हें अक्सर **हाइपरपैरामीटर** कहा जाता है, ताकि उन्हें **पैरामीटर** से अलग किया जा सके, जिन्हें हम प्रशिक्षण के दौरान अनुकूलित करते हैं (उदाहरण के लिए, Q-Table गुणांक)। सबसे अच्छे हाइपरपैरामीटर मानों को खोजने की प्रक्रिया को **हाइपरपैरामीटर अनुकूलन** कहा जाता है, और यह एक अलग विषय के योग्य है। + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/46/) + +## असाइनमेंट +[एक अधिक यथार्थवादी संसार](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/1-QLearning/assignment.md b/translations/hi/8-Reinforcement/1-QLearning/assignment.md new file mode 100644 index 000000000..b2d185436 --- /dev/null +++ b/translations/hi/8-Reinforcement/1-QLearning/assignment.md @@ -0,0 +1,41 @@ + +# एक अधिक यथार्थवादी दुनिया + +हमारी स्थिति में, पीटर लगभग बिना थके या भूखे हुए घूमने में सक्षम था। एक अधिक यथार्थवादी दुनिया में, उसे समय-समय पर बैठकर आराम करना होगा और खुद को भोजन देना होगा। चलिए हमारी दुनिया को अधिक यथार्थवादी बनाते हैं, निम्नलिखित नियम लागू करके: + +1. एक स्थान से दूसरे स्थान पर जाने से, पीटर **ऊर्जा** खोता है और कुछ **थकान** प्राप्त करता है। +2. पीटर सेब खाकर अधिक ऊर्जा प्राप्त कर सकता है। +3. पीटर पेड़ के नीचे या घास पर आराम करके थकान से छुटकारा पा सकता है (यानी बोर्ड के उस स्थान पर चलकर जहां पेड़ या घास हो - हरा क्षेत्र)। +4. पीटर को भेड़िये को ढूंढकर मारना होगा। +5. भेड़िये को मारने के लिए, पीटर के पास निश्चित स्तर की ऊर्जा और थकान होनी चाहिए, अन्यथा वह लड़ाई हार जाएगा। + +## निर्देश + +अपने समाधान के लिए मूल [notebook.ipynb](notebook.ipynb) नोटबुक का उपयोग प्रारंभिक बिंदु के रूप में करें। + +ऊपर दिए गए खेल के नियमों के अनुसार पुरस्कार फ़ंक्शन को संशोधित करें, सुदृढीकरण सीखने का एल्गोरिदम चलाएं ताकि खेल जीतने की सबसे अच्छी रणनीति सीखी जा सके, और यादृच्छिक चाल के परिणामों की तुलना अपने एल्गोरिदम के साथ करें, खेल जीते और हारे जाने की संख्या के संदर्भ में। + +> **Note**: आपकी नई दुनिया में, स्थिति अधिक जटिल है, और इसमें मानव की स्थिति के अलावा थकान और ऊर्जा स्तर भी शामिल हैं। आप स्थिति को एक टपल (Board,energy,fatigue) के रूप में प्रस्तुत करना चुन सकते हैं, या स्थिति के लिए एक क्लास परिभाषित कर सकते हैं (आप इसे `Board` से भी प्राप्त कर सकते हैं), या यहां तक कि मूल `Board` क्लास को [rlboard.py](../../../../8-Reinforcement/1-QLearning/rlboard.py) के अंदर संशोधित कर सकते हैं। + +अपने समाधान में, कृपया यादृच्छिक चाल रणनीति के लिए जिम्मेदार कोड बनाए रखें, और अंत में अपने एल्गोरिदम के परिणामों की तुलना यादृच्छिक चाल के साथ करें। + +> **Note**: इसे काम करने के लिए आपको हाइपरपैरामीटर को समायोजित करने की आवश्यकता हो सकती है, विशेष रूप से epochs की संख्या। क्योंकि खेल की सफलता (भेड़िये से लड़ाई) एक दुर्लभ घटना है, आप अपेक्षा कर सकते हैं कि प्रशिक्षण समय अधिक लंबा होगा। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | +| | एक नोटबुक प्रस्तुत की गई है जिसमें नई दुनिया के नियमों की परिभाषा, Q-Learning एल्गोरिदम और कुछ पाठ्य स्पष्टीकरण शामिल हैं। Q-Learning यादृच्छिक चाल की तुलना में परिणामों को महत्वपूर्ण रूप से सुधारने में सक्षम है। | नोटबुक प्रस्तुत की गई है, Q-Learning लागू किया गया है और यादृच्छिक चाल की तुलना में परिणामों में सुधार करता है, लेकिन महत्वपूर्ण रूप से नहीं; या नोटबुक खराब तरीके से प्रलेखित है और कोड अच्छी तरह से संरचित नहीं है। | दुनिया के नियमों को फिर से परिभाषित करने का कुछ प्रयास किया गया है, लेकिन Q-Learning एल्गोरिदम काम नहीं करता है, या पुरस्कार फ़ंक्शन पूरी तरह से परिभाषित नहीं है। | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/1-QLearning/notebook.ipynb b/translations/hi/8-Reinforcement/1-QLearning/notebook.ipynb new file mode 100644 index 000000000..dbd5848c9 --- /dev/null +++ b/translations/hi/8-Reinforcement/1-QLearning/notebook.ipynb @@ -0,0 +1,411 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "17e5a668646eabf5aabd0e9bfcf17876", + "translation_date": "2025-09-04T02:55:49+00:00", + "source_file": "8-Reinforcement/1-QLearning/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# पीटर और भेड़िया: रिइनफोर्समेंट लर्निंग प्राइमर\n", + "\n", + "इस ट्यूटोरियल में, हम यह सीखेंगे कि रिइनफोर्समेंट लर्निंग को पथ खोजने की समस्या पर कैसे लागू किया जाए। यह सेटिंग रूसी संगीतकार [सर्गेई प्रोकोफिएव](https://en.wikipedia.org/wiki/Sergei_Prokofiev) की संगीत परी कथा [पीटर और भेड़िया](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) से प्रेरित है। यह कहानी एक युवा पायनियर पीटर की है, जो साहसपूर्वक अपने घर से बाहर जंगल के खुले क्षेत्र में भेड़िये का पीछा करने जाता है। हम मशीन लर्निंग एल्गोरिदम को प्रशिक्षित करेंगे, जो पीटर को आसपास के क्षेत्र का पता लगाने और एक आदर्श नेविगेशन मानचित्र बनाने में मदद करेंगे।\n", + "\n", + "सबसे पहले, चलिए कुछ उपयोगी लाइब्रेरीज़ इंपोर्ट करते हैं:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## सुदृढीकरण शिक्षण का अवलोकन\n", + "\n", + "**सुदृढीकरण शिक्षण** (RL) एक शिक्षण तकनीक है जो हमें किसी **पर्यावरण** में एक **एजेंट** के इष्टतम व्यवहार को कई प्रयोगों के माध्यम से सीखने की अनुमति देती है। इस पर्यावरण में एजेंट का एक **लक्ष्य** होना चाहिए, जिसे एक **पुरस्कार फ़ंक्शन** द्वारा परिभाषित किया जाता है।\n", + "\n", + "## पर्यावरण\n", + "\n", + "सरलता के लिए, चलिए पीटर की दुनिया को `चौड़ाई` x `ऊंचाई` आकार के एक वर्ग बोर्ड के रूप में मानते हैं। इस बोर्ड की प्रत्येक सेल निम्नलिखित में से कोई एक हो सकती है:\n", + "* **जमीन**, जिस पर पीटर और अन्य जीव चल सकते हैं\n", + "* **पानी**, जिस पर आप स्पष्ट रूप से नहीं चल सकते\n", + "* **एक पेड़** या **घास** - एक जगह जहां आप आराम कर सकते हैं\n", + "* **एक सेब**, जो कुछ ऐसा है जिसे पीटर खुद को खिलाने के लिए पाकर खुश होगा\n", + "* **एक भेड़िया**, जो खतरनाक है और इससे बचना चाहिए\n", + "\n", + "पर्यावरण के साथ काम करने के लिए, हम एक क्लास `Board` परिभाषित करेंगे। इस नोटबुक को बहुत अधिक जटिल न बनाने के लिए, हमने बोर्ड के साथ काम करने वाले सभी कोड को एक अलग `rlboard` मॉड्यूल में स्थानांतरित कर दिया है, जिसे हम अब आयात करेंगे। आप इस मॉड्यूल के अंदर देख सकते हैं ताकि कार्यान्वयन के आंतरिक विवरण के बारे में अधिक जानकारी प्राप्त कर सकें।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "आइए अब एक यादृच्छिक बोर्ड बनाएं और देखें कि यह कैसा दिखता है:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 1" + ] + }, + { + "source": [ + "## क्रियाएँ और नीति\n", + "\n", + "हमारे उदाहरण में, पीटर का लक्ष्य एक सेब खोजना होगा, जबकि भेड़िये और अन्य बाधाओं से बचना होगा। इन क्रियाओं को एक डिक्शनरी के रूप में परिभाषित करें, और उन्हें संबंधित निर्देशांक परिवर्तनों के जोड़ों से जोड़ें।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 2" + ] + }, + { + "source": [ + "हमारे एजेंट (पीटर) की रणनीति को एक **पॉलिसी** द्वारा परिभाषित किया गया है। चलिए सबसे सरल पॉलिसी, जिसे **रैंडम वॉक** कहा जाता है, पर विचार करते हैं।\n", + "\n", + "## रैंडम वॉक\n", + "\n", + "सबसे पहले, चलिए रैंडम वॉक रणनीति को लागू करके अपनी समस्या का समाधान करते हैं।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "# Let's run a random walk experiment several times and see the average number of steps taken: code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 4" + ] + }, + { + "source": [ + "## रिवॉर्ड फंक्शन\n", + "\n", + "हमारी पॉलिसी को और अधिक स्मार्ट बनाने के लिए, हमें यह समझने की ज़रूरत है कि कौन से कदम \"बेहतर\" हैं दूसरों की तुलना में।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 5" + ] + }, + { + "source": [ + "## क्यू-लर्निंग\n", + "\n", + "एक क्यू-टेबल या बहु-आयामी ऐरे बनाएं। चूंकि हमारे बोर्ड का आकार `चौड़ाई` x `ऊंचाई` है, हम क्यू-टेबल को एक numpy ऐरे के रूप में दर्शा सकते हैं, जिसका आकार `चौड़ाई` x `ऊंचाई` x `len(actions)` होगा:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 6" + ] + }, + { + "source": [ + "Q-तालिका को बोर्ड पर तालिका को देखने के लिए `plot` फ़ंक्शन में पास करें:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "name 'm' is not defined", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mQ\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'm' is not defined" + ] + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## क्यू-लर्निंग का सार: बेलमैन समीकरण और लर्निंग एल्गोरिदम\n", + "\n", + "हमारे लर्निंग एल्गोरिदम के लिए एक छद्म-कोड लिखें:\n", + "\n", + "* सभी राज्यों और क्रियाओं के लिए Q-टेबल Q को समान मानों से प्रारंभ करें\n", + "* लर्निंग दर $\\alpha\\leftarrow 1$ सेट करें\n", + "* सिमुलेशन को कई बार दोहराएं\n", + " 1. किसी भी रैंडम स्थिति से शुरू करें\n", + " 1. दोहराएं\n", + " 1. स्थिति $s$ पर एक क्रिया $a$ चुनें\n", + " 2. क्रिया को निष्पादित करें और एक नई स्थिति $s'$ पर जाएं\n", + " 3. यदि हम खेल समाप्ति की स्थिति पर पहुँचते हैं, या कुल इनाम बहुत कम हो जाता है - सिमुलेशन से बाहर निकलें \n", + " 4. नई स्थिति पर इनाम $r$ की गणना करें\n", + " 5. बेलमैन समीकरण के अनुसार Q-फंक्शन को अपडेट करें: $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$ करें\n", + " 7. कुल इनाम को अपडेट करें और $\\alpha$ को कम करें।\n", + "\n", + "## एक्सप्लॉइट बनाम एक्सप्लोर\n", + "\n", + "सबसे अच्छा तरीका यह है कि अन्वेषण (exploration) और दोहन (exploitation) के बीच संतुलन बनाए रखें। जैसे-जैसे हम अपने परिवेश के बारे में अधिक सीखते हैं, हम अधिक संभावना रखते हैं कि हम इष्टतम मार्ग का अनुसरण करें, लेकिन कभी-कभी अनदेखे रास्ते को चुनना भी महत्वपूर्ण है।\n", + "\n", + "## पायथन कार्यान्वयन\n", + "\n", + "अब हम लर्निंग एल्गोरिदम को लागू करने के लिए तैयार हैं। इससे पहले, हमें एक ऐसा फ़ंक्शन भी चाहिए जो Q-टेबल में दिए गए मनमाने संख्याओं को संबंधित क्रियाओं के लिए संभावनाओं के वेक्टर में बदल सके:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 7" + ] + }, + { + "source": [ + "हम मूल वेक्टर में `eps` की एक छोटी मात्रा जोड़ते हैं ताकि प्रारंभिक स्थिति में, जब वेक्टर के सभी घटक समान होते हैं, शून्य से विभाजन से बचा जा सके।\n", + "\n", + "वास्तविक लर्निंग एल्गोरिदम जिसे हम 5000 प्रयोगों के लिए चलाएंगे, जिसे **epochs** भी कहा जाता है:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "# code block 8" + ] + }, + { + "source": [ + "इस एल्गोरिथ्म को निष्पादित करने के बाद, क्यू-टेबल को उन मानों के साथ अपडेट किया जाना चाहिए जो प्रत्येक चरण में विभिन्न क्रियाओं की आकर्षकता को परिभाषित करते हैं। यहां तालिका को दर्शाएं:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUxd7H8c9sS7KbShJCL1IEBAURFEUBxXoVVFBARS7YQETgiooFsaGAXgUsIGIDHzuCXiuKICDKpYoiHUJJAmkk2Wzfc+b5YzcRrgSQZHM2ZN6+8kr27ObMlyX8nMyZmSOklCiKoig1h8noAIqiKMrfowq3oihKDaMKt6IoSg2jCreiKEoNowq3oihKDaMKt6IoSg0TscIthLhCCLFVCLFDCDE+Uu0oiqLUNiIS87iFEGZgG3ApsB9YDQySUv5R5Y0piqLUMpHqcXcFdkgpd0kp/cAHQN8ItaUoilKrRKpwNwT2HfZ4f/iYoiiKUkmWCJ1XHOXYEWMyQog7gTsBrFZr5zPPPDNCUSrP5/PhdDpJS0szOkqFioqKsFqtOBwOo6NUKCcnh7p162I2m42OUqG9e/fSpEkTo2NUKBgMkpeXR/369Y2OUqHS0lKCwSDJyclGR6lQXl4eiYmJxMTEGB2lQps2bcLj8RytloKUsso/gG7At4c9fgh4qKLX161bV0az7du3y9mzZxsd45gWLFggV65caXSMY3rqqadkYWGh0TEqpOu6vOeee4yOcUwFBQVy0qRJRsc4phUrVsiFCxcaHeOYZs2aJbdv3250jGMK18Wj1sxIDZWsBloJIZoLIWzAQODzCLWlKIpSq0SkcEspg8A9wLfAZuAjKeWmSLSlKMqpZf369Xi9XqNjRLVIjXEjpfwK+CpS51cU5dSSlZXFq6++SkxMDPPnz6dVq1YMGTLE6FhRSa2cVBTFcFJKcnJy2LZtG8OHD6d79+589NFHZdfIlP+hCreiKIYLBAJMnjyZF198kX/961+cccYZDBgwgLfeesvoaFEpYkMliqIoJ8pmszF+/Hhuu+02OnTowMcff8z333/PV1+p0dajqXE97l27dvHRRx8ZHUNRlCrWtGlT+vfvj9lsZsqUKdx7771GR4paNarH3adPH2JjYzn33HPp0KEDS5YsiepFMYqinLj09HTuuOMO9u3bx6JFi+jVq5fRkaJWjelx79q1i9jYWGbNmkW/fv24/PLL+f33342OpShKFWvcuDHffPMN/fv3NzpKldu0aRO6rlf6PDWmcK9du5auXbtSUlLCW2+9Rb169Vi+fLm66qwop6D4+HjOPPNMVq1aZXSUKrNkyRLee+89NE2r9LlqzFDJDTfcQIcOHThw4AD169dn3Lhx5OTkIMTRl/IrilJzORwOLrjgAn744QfOPfdco+NU2s8//8zPP//MuHHjsFqtlT5fjelxQ+j/WFdffTUul4sDBw4wfPhwioqKjI6lKEoExMTEIKXE7/cbHeWkSSnZsmUL8+bNY/To0aSkpFTJeWtU4U5LS6Nnz55MmDCBjIwM3n77bSZMmMCOHTuMjqYoShW75JJLcDqd/PLLL0ZHOWmrVq1i2rRpvPLKK1W6c2eNKtxlyoZHkpOTGT16NPPmzSMzM9PYUIqiKIdZsmQJ33//PS+88EKVD+nWyMJ9uJYtWzJ06FAee+wx3G53xNurigsLkSSlrJKr1pFUEzLquq4ufEeB4cOH8/rrr1fLv+2qIqVkw4YN/PDDD4wcORK73V7lbdT4wg3QrFkzZs2axa233kpOTk7E2snKyqJfv35s3ryZgoKCiLVTGevXr+eOO+5gy5YtUfnDHgwGee+993jhhRfYsmVLVBZwp9PJxIkT+fLLL9m1a5fRcaJWdnZ2xMefmzZtihCC3bt3R7SdqrRlyxamT5/OhAkTqmxM+3+dEoUbwG6389JLL/HSSy+xffv2iLTx+eef89JLLzFmzBhmz54dkTYq6/PPP2f06NEMGDCAdevWGR3nL9xuN4WFhTRt2pSLL744Krfv3LFjB927d2fDhg1cd911RseJOkVFRcyZM4eXXnqJ2bNn88UXX0S0vbfffptbbrklom1UlWXLljFnzhzeeOMNbDZbxNqpMdMBT0T9+vUZOnQob7zxBmPHjiUjI6NKzz9ixAjGjBmDpml88sknbNmy5aTPFRcXx8yZM6t87Ou+++5j1KhR6LrOpEmTqFu37kmfq127djz44INVmA4SExPp3r0706ZNQ9M07rzzzkrdyuy6667j2muvrcKE0KlTJ95//322bdtGVlZWpbcWHT9+PG3btq2idMY7cOAA8+bN44033uC///0vzz33HFdffbXRsQy3fPlyVq5cyWOPPYbJFNk+8SlVuAFatWrF2LFjGTFiBPPmzavSK7kej4dRo0bx9ddfk5mZyV133XXS5/J6vXTu3LlKxlHbt29Pv379gND42vjx45kyZQqXX345nTt3Punz/v7773Tq1KnS+QAGDx5cnq9x48Y88MADbNy4kQcffJDY2NiTPu/HH3/ME088USUZp02bBoSGc3r06EGbNm1Yt24djz76aKXO+8QTT7BpU9XcR+STTz6p8LnS0lIuuuiiiI/Ne71ecnNzueGGG1iwYAFms5mXX36Ze+65JyLtCSGYPn06DzzwAFOnTo1IG5UhpWTz5s0sWLCAxx9/nMTExIi3ecoVboCMjAzmzZvHPffcw2OPPUbz5s2r5LzPPvss7du35+OPP+aOO+6gVatWJ30uKSVr1qypklwQGiIBGDlyJD169GDXrl20a9euUhlbtmxJ3759qySfEIJJkyZRVFTE1KlTSU1NJTk5mVatWlWqcD/00EOMHz++yjJ+8skn/PLLLyxfvpxNmzbRuXPnSr2HAHPnzq2SfMAx1y04HI4q/ZmqyJYtW7j//vuZM2cO27ZtY+bMmSxZsiRi7QkhqFevHgcPHoxYG5WxYcMGXnrpJebMmRPxnnaZU7JwQ+iH+LHHHuOdd95h8ODBtGjRotLnfPLJJ3nppZdYunRppYc4hBARWfU5a9Ys5s+fz48//ljpc0UiY0pKCqNHjyY/P59JkyZV+nxVmbGsp9q9e3ecTie33HILjRs3rvR5q+sfc6R+pv5Xeno6HTt2ZPbs2QQCAW6++eaIt1unTh2aNWvGhg0b6NixY0Tb+jt++OEHli5dyqxZs6rt7xlO4cIN0Lx5cwYPHsxzzz3HlClTSEpKqvQ5R40aVQXJIsfhcHDrrbcaHeOYasJ475VXXml0hKiVnp7OpEmT2LhxIy1atKjS4ciKpKWlcdppp7FmzRrOOussw7e6kFKyevVqVq5cydixYyN6IfJoTplZJRVp0aIFU6dOZciQIVE7hU9RaqIzzzyzWop2mQEDBrBmzZqoWCm9detW5syZw3333RexKX/HcsoXbgjNZHjzzTd5+umnIzZVUFGUyIqNjSUYDBq+CO7nn39mxowZvPbaa8TFxRmSoVYUbgiNkY0cOZJ58+axd+9eo+MoinISBg4cyNy5c6t94dbzzz+PpmksWbKEJUuW8Nxzzxk6XFNrCjeEZknccccdjB8/PipXFSqKcmy9e/fmm2++qbbtCL7++mvOPfdcTjvtNLp168a3337LiBEjqnWI6GhqVeGG0N013njjDYYOHcr+/fuNjqMoyt/UsmXLahnn9vl8ZGZmMnbsWFq2bEkwGERKWa2zRypifAIDxMXF8cILL7BixQqjoyiK8je9/fbb3H777RFvx+l0sm/fPjp06MDXX3/Nl19+icPhiIp9U2pl4QZo2LAhAwcONDqGoih/k81mY9CgQbz33nsRbSctLY0zzjiDf/7zn9xwww0MGzaMoqKiqJhHfkrP41YU5dRjsVjo2LEjn332GTfddFNE2+rbty8XXHAB9913Hy+//LIhU/+ORhVuRVFqnKSkJKxWK3l5eaSnp0esnfj4eOLj48v3iDF64U+ZWjtUoihKzXXGGWeQkJBQbbc1q67tBE6U6nErilIjDRgwwPBpeUapVOEWQmQCTkADglLKc4QQdYAPgWZAJnCjlPJQ5WIqiqIcqVmzZkZHMExVDJX0klJ2lFKeE348HlgspWwFLA4/VhRFUapIJMa4+wLvhL9+B6ja25MoiqLUcpUt3BJYJIRYK4S4M3wsQ0qZAxD+fPL3zlIURVH+orIXJy+QUmYLIeoC3wkhTvgmjOFCfyeEptxE8659+/fvp6ioKKoz5ufno+t6VGd0uVzs3r2b/Px8o6NUyO/3R/V7WFJSgsvliuqMBw4ciPp/L0VFRezbt6/a9jw5GcfaSKtShVtKmR3+nCuEWAB0BQ4KIepLKXOEEPWB3Aq+dzYwGyA1NVUuXbq0MlEiqqioiP379xPNGXfu3Indbo/qPcfz8/NZuXIlMTExRkepUGlpaVT/PXu9Xn7O+5nPln5mdJQK2XPsXOK5pNp38Ps7srKyWLt2bVTs7V2RY75/UsqT+gAcQMJhX68ErgCeA8aHj48Hph7vXHXr1pXRbPv27XL27NlGxzimBQsWyJUrVxod45ieeuopWVhYaHSMCum6Lu+55x6jYxxTQUGB7DypsySK/6u3op5cuHCh0W/VMc2aNUtu377d6BjHFK6LR62ZlRnjzgBWCCF+Bf4LfCml/AaYDFwqhNgOXBp+rPyPyy67LKp7JIqiRK+THiqRUu4CzjrK8QLgksqEqg3y8vKMjqAoSg2llrwriqLUMKpwK4qi1DCqcCuKotQwqnAriqLUMKpwK4qi1DC1snB7vV42btzIU089hdvtVtPyjqK0tJShQ4caHUNRaoTdu3fz8MMPV1t7tbJw9+jRg+eff5527drRvHlz9u7da3SkqKNpmnpfFOUE+f1+Dhw4UG3t1brCvXjxYi677DImT55MQkICL774Ip9++mlU71mgnNreeust9fNXw1X331+tK9wZGRlkZWXx8MMPU79+fbKysmjcuLHRsZRaaOHChVxzzTWYTCb69OlTfl9DRTmeWnfrsiZNmpCZmUkwGOSXX37hlVdeYfny5VF1Pznl1Fe2C+FNN91Er169cDgcbN++Hb/fj81mMzqeEuVqVY87OzubyZMnM3v2bObOnYumaWRmZqoet1LtMjMzKSoqwm63M3HiRLp3747b7Y7q3eqU6FFretzFxcW8+uqr9OvXj5YtWwIwfPhwg1MptVVsbCw//fQTzzzzDNu2bePuu++ma9eutGvXzuhoSg1QKwq3pmkMHz6cJ554gtatWxsdR6nlPB4PDz/8MJMnhzbOfPjhh3nggQdo0qSJwcmUmuKUL9x5eXk8+OCDTJs2jYyMDKPjKLVcdnY2Y8aM4e2338ZutwPw7rvvRvXNJaKBz+cjPz+fhg0bGh3lqKr7GtkpPcadk5PDq6++yr/+9S9VtBUgNG1r/vz51d5uSUkJs2fP5pVXXuHFF18sL9qAKtonYM+ePdW6wOXvUtMBq4jX62Xy5Mn06dOH9u3bGx1HiQIfffQRQ4YM4cCBAwwePLjablEmpWTChAnExcUxZMiQqO01KjXHKTlU4vF4GDx4MNOmTaNRo0ZGx6mRhBDExMTg8/mqrUdYWloa0Z7LqlWr6NmzJ9deey1+v5+tW7dy4YUXYjabI9amz+fj7rvvZty4cbRt2zZi7ZzKpJR4vV7i4uKMjlIhk8mE2WwmEAhgtVoj3t4pV7hzcnKYOnUq06ZNi+qeTceOHfn111/p1KmT0VGOKiEhgfvuu49nnnmGJ554olraHDFiBFlZWRE7/86dO1myZAlLlixh6tSpPPfcc2RlZUXsomBhYSHTp09n5MiRtGnTJiJtnOp27dpFZmYmw4cP57XXXiMnJ4f69esbHesvWrVqRbdu3fi///s//vnPf0a8vVOqcOfn5zN79mxuvfXWqO9pz5gxgz59+rBkyRKjoxyVEAIhRLWO3c2bNy+i53/ooYfIz8/nqaeeYuTIkVx55ZURK9ozZsygqKiInj17cvbZZ0ekjdrg9ddfZ//+/ZSUlPDiiy/Sp08fbr/9dqNj/UXZxcnq+vdyyoxxa5rGuHHj6N+/f9T2YhVjDR06lH79+nH//fdz5513csUVV1R5G1JKJk2aRIMGDbjqqqvo1atXlbdRW/z3v//Fbrczbdo0GjRowMyZM9m8eTP79u0zOprhToked1FREXfffTcvvviimj2iVKh169blv9ImJSVV+fn9fj9vvPEGbdq04dprr43o2Hlt0LFjRxYuXMjy5ctZtGgRH374Ia1ataJBgwZGRzNcjS/cWVlZzJo1i8cff1wVbeW4hBARKdqLFi0iMzOTmJgY+vXrV+Xnr41sNhvt27fn/fff5+DBgyxbtoy77rpL/Q+RGj5U4nQ6eemll7juuuvUikjFMB9//DEbN24kMTGRYcOGGR3nlHLTTTfxwQcfkJSUxIcffsjFF19sdKSoUGN73MFgkNtvv51nnnmGFi1aGB1HqaUWL17Mvn37uPvuu49YVKNUHSEEAwcONDpGVKmRhTs3N5dHH32U6dOnU69ePaPjKLVYz5496dmzp/r1XalWNa5wHzhwgNmzZ3PPPfeooq0YThVsxQg1rnBbrVb69OnDmWeeaXSUU9qoUaP47bffyMvLY+vWrbzxxhvEx8cbHUtRoo6u6/zzn/9ky5YtACxZsoS3334bkylylxBrXOFOTU0lNTXV6BinNJfLxdq1axk1ahSrVq1i27ZtFBYWqsKtKEfhdDrZsWMHN954I0II5s+fj9PpjMjspTI1rnArkffyyy8zbtw4mjdvTiAQ4JZbbuHJJ59kzpw5RkdTlKjz5JNPMmnSJPx+P0IIzj77bJ588kn+/e9/R6xNVbiVv3jwwQdp27Yt999/P82bN2fAgAGsWbPG6FiKEpWmTp1K8+bNmT59OlJKxowZw+7duyPa5nEHYYQQbwohcoUQvx92rI4Q4jshxPbw55TwcSGEmCGE2CGE2CiEUJs01FBvvvkmAD/++CNz5sxRwySKUgGTycS8efPIzMxk7969zJs3L6Lj23BiPe63gZeBuYcdGw8sllJOFkKMDz9+ELgSaBX+OBeYGf6s1DDdunWjS5cuBINBYmNjjY6j1DDVfUcYIwkh6NGjB926dQNCKz4j7bj/W5BSLgMK/+dwX+Cd8NfvANcednyuDPkFSBZCRN8ejMoJsVgsqmgrJ6W67wgTDWw2W7UUbTj5Je8ZUsocgPDnuuHjDYHDt+7aHz6mKIqiVJGqHog52u9HR/1frxDiTiHEGiHEGo/HU8UxottDDz3ERRddxNq1a+nUqRMrVqwwOpKiKDXIyRbug2VDIOHPueHj+4HGh72uEZB9tBNIKWdLKc+RUp4Tzbckqmq5ubk4nU7mzZvH2WefzciRI9mxYwfBYNDoaIqi1BAnOx3wc2AIMDn8+bPDjt8jhPiA0EXJ4rIhlWPRNI2FCxeeZJTIy8/PZ+fOnVWS8ZdffiElJYVNmzZhs9lIS0tj9uzZ2Gy2Sm1S9Pvvv7Nnzx4OHjxY6YyRcuDAAb755puovndgSUlJVP8sut1uHDkOTlt4mtFRKpSQmcDvrt+jepx7165dWCwWfv/99+O/2CCaplX43HELtxDifaAnkCaE2A9MJFSwPxJC3AbsBW4Iv/wr4CpgB+AGhp5IQL9fMGJE9O6lbbfrDBlir5L9vvv27Vv+ddm9HCdMmFDp8+7Zs4dZs5IoKore97FlyxiuvTYdh8NhdJQKWSyWqN7XvbS0lC4xXZicMdnoKBXacmgLTpMzqt9Hu93OM3WewZ3hNjpKhfzCX+Fzxy3cUspBFTx1yVFeK4GRJ5ys/PtMHDjQ7e9+W7VJStpB/foF5dN9otHBgwcpKsqI6vexUaPFdO7cGZvNhtPpJKVOMgcPZZPgSKIkkMuiQ3PZ5d6EKWAhRsQjdDM5zmzOS7mCy5oPxO/20Si9CSUlJTgcDg4dOoTdbicQCKBpGg6HAyklcXFx5Uv0y5Yelz32+XwkJSXh8/mQUhIbG4vJZCq/v+Z7771XJX/Puq6zaNEi9uzZw4ABA3A6nbzwwgs888wzlfqNo7CwkNWrV0f1z6Ku6+Tn50d1xo0bN1LQoYDilsVGR6lQvKnitRM1+kYKSs0jpU5BIJstrl9YVfgVM7Lv5MPsKXx28DU0P7S2nYtdT6e01EdD2+mcl3oFiTEp3L/kZiavu5/Nub/h1/0EAgFMJhO6rgOhRRCapqFpGj6fDyEEmqYhhCh/bdljv9+Ppmnouh6xawtut5vPPvuMXr160a9fPywWC02aNGHp0qURae/vWrZsWVQPZSjHppa8K9VKIlmfu4rp6yeR4cigSVJTioMBft39B5nZ+2jXsjHWgI1tu3aQ37qI5kltEewnRiYSJxJ5f8ObnF6nA5e3vIZYWxxCCMxmM7qulxeiQCCA1WpF0zQsFguaphETE4MQAovFUl6spZQEAoGIzL2Nj4/nuuuu47bbbmPv3r08/PDD+P1+xo4dW+Vt/R0//fQT//nPf0hISOCrr77isssuU3eVqYFUj1upViZh5py0i6kf6MymrYVs3JTH+o05lGTbiHHXw7XPTtY2P5vW57Fq/Xo27VrNsnVL8biCrNz5M7nOAmatfIVCXz5OpxMI/Wru8XiwWCyYTAK7PQ6v14PVasXn8xEbG4vL5SrvbTscjvIiHsm71nTt2pXJkyeTlpbGoEGDmDhxYsTaOhFSStauXUtCQgL33nsvGRkZrFy5UvW8ayBVuJVqpes6DpOdGdfMoHlqcxbv+I5PNsznxx0/sjFrI1+tXkrdpMbcdulweqXdQANPV9xuF96SAvILD7E9ZyfBgJm+M69Bs4V6zjabjZSUFHxeD+u/fpJ5Dzfhs8kdWPvFYyQmJuJ0OklNTUXXdeLi4sjPz0fTNPx+P4WF/7souOokJydzwQUXkJyczLnnnmv4fVG3bNlSfpu1Sy+9lGHDhuH3+1m3bp2huZS/TxVupVqZTCZiYmLwlnp4rd8srmrzDyxmM6eln8Z5Lc/jzGbt2ZO3h01Zv1PgLCSnIAdHQVNcW5PokNgWT3E+6F60YsHtM25HCIHX66WwsADnwU3s3LSCQyVeGrbvQ3KDjjhLSoiPjycvLw8hBC6Xi7S0NCwWCxaLheTkZKPfkmrTtm1bGjduzCOPPEJWVhaPP/44NpuNzp07Gx1N+ZvUGLdSraSU+P1+UlJSCAQCzOz3Ko/GTeDTtZ9SVFqEw+zALuLwCT+5BVsoPlRMgjWRvt36UuosJY46FOTlYkrJxn8wgKYFsVqtLFkwjdzMnziUs49OF4/lwj5jCQZDz3k8HlJSUtA0DbvdTnFxMWazGSklpaWlEd3wPtr07t2bhIQEPvjgA77//nveffddoyMpJ0H1uJVqZzKZMJlMSClJiavDk5c/yYBzBlEacLErbze/Z/3B6t2r2XtoH6c1akGTBk3YlbMLp9dJgkila5OLyF/jI6btAd5aOIeA38vqpfPx+iz0vetNulx6Z/n5y6b5ld0bsuxxmdq0ix1Au3btGDp0KIsXL6Zhw4acddZZRkdSToLqcSvVzmQyUVpaisPhwOVykRiTyOR/PMOTV07kuleu51DJIXbs20XdhDQKSwuItybgdXshIMnLKyDe6uDSzn3Yv38by+UCfhnxFima5Ipet9C0bTesVitut5uYmJjyi5OlpaXYbDb8fj92u718OqDVajX67TBE06ZNjY6gVIIq3Eq1klLi8/lITU2lsLCQ5ORkXC4XNqsNf6mfL0Z+QWZhJv9Z+x9cXhemoAmHzU5JUQlIgcftJcZsY0DvAZxz1jks27iI11c+Ro9/DOCs865G0zRKS0upU6cOJSUlJCUlUVRURFpaGk6nk7i4OAoKCrDb7UgpcblcUb3CL1JiY2M555xzWLlyJeeff77RcZS/SRVupVoJIYiJiaGwsJC4uDiKi4uxWq0Eg0Hi4+ORUtKybktGXToKKSU2i5kDK77nwH8/xR4TS2qvK0nudgnWmBgOHTpE4EAQT5Hggt79sNlsSClJTk4mPzOT1W+8TOH+vaS0aEvnIXeQXDe9fLxb1/XyWSa1kd1up3v37vzwww+qcNdAqnAr1aqsx52UlERxcTGJiYm43W4sFkv5XGz8Xkw+L1seG4X0e2l03c2c89Cz6MKE1Wxi9+wpFPy6lqCmsyO/iJi8XHy/r2bNT8vI3biOgKbRdsAwOl0/EL/Pi+b18f6dgyktKaXPY0+Q2LwFGY2bYDKZcLlcxMTEGP22KMrfogq3Uu3MZjOBQKB8FWPZhUSz2YzmLCZ79nO49u6g7b+exJqQSKDoEN5d20GAT0LD62+h6a0jCbqcNPxxMeds20zBT8toduHFdLjpdoJBP65Dh/A7i9Ek6Ej6PPI4QU1n+f/NZeOKFdw1521OO7tz+UXL2igjIwNN08jLyyM9Pd3oOMrfoAq3Uq2EEEfsI1K2daWUEoJB9sx8Fu1gNqfdPBx/3gGCeQcQSMomfwgJ/r278UqJDiSe3pbkjp3R/EE8RQWU7NmJJiWaBE1KdCnRdNClJKhLzr66DwFd5//G/YuBz06l1bm195aonTp1Yv78+fzxxx/06NHD6DjK36AKt1KtpJQEg0FSUlKOuDhpsVjYt+BdPDs20/yW4RDwInQQIvxxxDlCBRwkmtuFX8pQsQ4XaE2X6JLy4h3UJJrUCYZf0/6iXvi8fmaNuIuxH35M27PPNujdUJSTowq3Uq1MJhOxsbHk5OSQmppKfn4+DocDn9tF4fefc/rNI9HcxUgTIASmcA/dFK7cUspQ71wSquBlRVqX6LokKHU0XaJpEAwX7oCuE5QQ1HU0XaDpOm3Pv4Dc/fvx5OdH/M+s9gJRqpoq3Eq1Kutxx8XFEQgEyi8MFqz4HpsjHm9+FmaTwGQOrQ0TZjAfVrh1GepVS12ApqNLHSlB6uGetl5WoCUBPTQ8EtQlQUmogOuhYZRAUCe1UVNeHX0vr2/6AxHBse5oXuTTtWtX1qxZQ7du3SJ6h/Lvv/+eHTt20LBhQ6655pqItVNbqMIdhSZOnMiECRNCMyxOQWWFrOyzlBLnupXYm7VE87gQJoE0mULrek0CYRKYw5Vb6hIhJVIHqcnwtD7Cn0PFW9NDRQuL1LoAACAASURBVPrPwq0T0P8s3AEt1Atv0KoFW1avMuptiAp9+vShV69e3HnnnREt3LGxsSQkJLBr1y5uvvnmI54bOnQovXv3jljbp6JTszLUUF9++SXjxo1j2rRpdOnShWuuuYYnn3zS6FhVqmz/bKfTid1ux+VyYbfbMZtNSM2P5nFhMgl0kwlpIlTAzaHiDYS73ICuo5cVbglBLVSUg1qoxx0M97gDuiQQ1AhKiV+XBDRBQNPCRZzyGzEokdW9e3e6d++Ox+OhT58+Rzz32muvMW7cuCOOzZ8/n7S0tPLHJpOJhISEaslaE6jCHWF5eXn89ttvJ/TaVatW0bt3b2w2Gx9++CFz5szh4MGDp9TKPl3X8fl8JCcn43a7SUxMxO/34/f5kQUHiQnvYyLMApNJIMwCYTIR6n5LgoCm66HirMlwgQ59HZDh3rQWKtj+YKg4l5QUY7Y78GtlxTv8fHgRTm3XqVMn1q5dS8+ePSPeVlxcHM2bNz/i2LPPPsuzzz57xLGBAweSf9j1hzp16jBixIgjXtOkSRNatmx5Qu1mZmaSkJBAamrqSSaPLqpwR1hBQcEJ367qjz/+wOVysWzZMm6//Xbsdjt5eXmnVOE2mUzYbDYKCgpIT0/n0KFDJCQkEJuYRM6P32AzmSA5GcLFG1NoSknQ70PExKFTNvwBPpcTd34efk3HF9Tx6xKfpuMLSjSTBUtaBgEExdn7sddriF/XCWjg0zSCOuTlHMDv9Rr9lhju+eefp3Pnzqxfv96Q9o92DeDDDz884nFBQQHTp08/4ljZZmWHGzZsGI0aNSp/7PP5mDJlCrquI4QgKSmJMWPGVGF6Y6jCHWFt2rQ54eGOjz76iIkTJ/LCCy8waNAgzjzzTNq3bx/hhNVL13X8fj/p6aHl58nJyfj9fupffyt5Py2maOtvaA2b4Eiri24S6CZBUEBw306sjVsgAc/BbAIlxXh9PrylpXiDGn5N4glKfEENr6bjR6Dv24sfM3GNm1Cck4NwOAho4NV0igsL2bXpDzpefS1E8cVDJSQ1NfUv/452797N9u3bjzj2yCOPkJOTU/44GAxSUFDAJ598QklJCYMHD2b06NHVkjmSVOGOItdeey2XXnopd999N5988gnx8RXf5bkm03W9/D6RZdusxjRogm6xEXC5Yfd20DRs8fEEpIYZ8JcUIzb+NzRXW9MIaDp+Tcev/Tk8EpR6eO42BDQNb1EhvqBOQX4+noCGH0Fi42YcOnSI3KwDeP1Brh4xIqpnfVSXtLQ0CgoKatRQQvPmzf8y7HLeeeeVL+oCuOqqq9i5cyf9+/fn1VdfZdasWTzwwAMnPMQSrVThjiI2mw2bzcb7779vdJSIEUJgs9lwOp3ExMTg8XjKi7gWE4dfl8iAhrmkmKAWQMveF54OKBCAhixfZOPXdYKawK8fPnatl495B8MzTIJaAE2DQFDDU1pKYc5BdAkIE3HxDqPfEsOZTCZmzpzJ2LFjmTt3rtFxKiUxMfGIx4sWLeK8885j3rx5FBYWMmLECDZv3sxrr71mUMKqoW6koFSrsjvgJCcn4/F4SEhIQNd1LBYLzW6+HV94nNpVWIi71IlP0/FqOh5Nx63peIM6nmDosV8DX7jXfUTPW9dDKyZ1WT67JBiefVJSeCh0R3iTiS79rkfE1s7dAWuLmJgY7r77bhYsWMCqVasYP3680ZGqhOpxK9WqbFvX/Px84uPjKSoqwmazEQgEaHDBpazXQZc6ugygO90Q1EPXJ0WojyGlHl6EA8HwYht/+GKlXy+bLSLxa6HnA2UFXEpEbCxejy/0Gi1Ix549aXLaaQa/I0ok2Ww2Ro4cycGDB4mLi/tLj7ymUj1upVpJKQkEAqSlpeF2u0lKSiq/E43T5Sahy0WhXnZQo9RZijsQ6mG7A3r4axnqcQd1PEENT3hGiTeo4Qtq+DQNf1Di1zT8mn7YXG4dV6kbv89PQno6lw+/C3NsXETv8l6TxMTEkJiYeMQUvFNJRkbGKVO0QRVupZqVLcBxu91YrVa8Xm/5LoFxCQm0vuk2vEEZLtAa3vBsEW9QwxvUDivaoSEUb1CWD6/4NIkvPFzi1wR+HfyaPGK+d0BKMlq1oqTwEN2u6VNrb6Twvxo3bkzXrl1ZsGCB0VGUE6AKt1LtpJTl27qWLYCRUmKxWEhpeTqNLusTLtThXnUwNLb95/i2xBMIPe8Lv84XnmUSCBfv0HCJFiriusSvh1ZXtruoJ5qwcH6//lgsllp7z0mlZlOFW6lWZUXbbrcTCASIi4srv4mCx+PB5IgntX1H/JhCvW4tNDTiDmq4y4t4MHSxsvxxqDfu1UJzuH26xBsMLbbx6xq+cG9bFyZSGjbE6Syhw0UXoWkaLpfL6LckathsNoLBIMFg0OgoynGowq1Uq7JtXXNzc3E4HBQUFJTfESc5OZm4uDhaD7iVjPMuDA2N+DXcAQ13UA99BHTcfokvKPEGZXi4JNQL9wbBo0l8wdCUQG94+CSgaUiLlfYXX8rqxUt5dsFCYmJjsVqtNWrecqQNGDCAdevWsW3bNqOjKMehCrdSrcouTsbHx+Pz+XA4HOULcrxeL36/H5MQtO3TH80ai0cLj20HNDyBP3vX7sPHvLU/i7gvPGxy+DTBICYan9mJAIIL+/dDs/7ZsywtLTX6LYkaaiFSzXHcwi2EeFMIkSuE+P2wY48LIbKEEBvCH1cd9txDQogdQoitQojLIxVcqbnMZjOapmG1WgkEAuWrJy0WS/k9IJtcfDn2NmfgDUrcQVne4y6/MBk+Xjb+7QuExrt95Rct/xz3rtuyNfaUOmRu+oMOvXrhiI8v3+fiVN0692SV/V2omz9EtxPpcb8NXHGU4y9KKTuGP74CEEK0AwYCZ4S/51UhRO29G6vyF2X3nPT7/Ufce1JKecSmQbqu84+nnseUknpYwS4bMpG4whclvYE/i7lHA0+4aHs1Dd1iJbFRUyzxCRQXFnL96Hs5vWtXzGZzeQ51cfJIM2bM4K677jpi2bgSfY5buKWUy4ATnezaF/hASumTUu4GdgBdK5FPOcX871CJ3W5H13VMJhMej4dAIACELpQ1aNmKga++SUKTZngCevgjNETiK5vfXT7GrZfPRPEFQ2Pgfinw+gOUFB6iU+9L6T10KLFxcTidTjRNUxcnjyI2NhaPx2N0DOU4KjPGfY8QYmN4KCUlfKwhsO+w1+wPH/sLIcSdQog1Qog1gYD6QaktylZOFhUVERsbS0lJCRDaxc3hcBATE4OUEq/Xi9PppGXX87j6yWfpdP2N+KQon2XiN1tofmHP8imC3qBGbFpd4us1wKtpoeXwvgA2u53rRo3i0mHDEELg9XpJTk7GbDZjsVjU5vxH8eijj/5lu1QlupzsAN9M4ClCt2x9Cvg3MIwjb8Zd5qiDZVLK2cBsgISEDOnznWQSpcax2WzUrVsXs9lMenp6+UWxsmJhsViw2+3lxzpfegXtu3XnmvtD+0xICcIksCcnU3rYykeLLQaEOGKPbVtsLHWbNEEPTzmMi4tDCFG+8EZdkPur6667zugIynGcVOGWUh4s+1oI8TrwRfjhfqDxYS9tBGSfdDrllHT4WPbRenbm/7lxr8lkwpqSQnxKyl9em5JR74TaLDtjWXvVWbDVhT6lqp3U70NCiPqHPbwOKJtx8jkwUAgRI4RoDrQC/lu5iIpSs914443ld7NXlKogjtcbEEK8D/QE0oCDwMTw446EhkEygbuklDnh1z9CaNgkCIyRUn59vBBJSXVk69b/Otk/Q8RZrS7OOCOfpk2bGh2lQgcOHODXX2Pwev/aK40WKSnb6NateVTP5Pjtt9/o0KGD0TEqFAgEyMzMpFWrVkZHqVBhYSF+v5969U7styEjZGZm8kf6HwQcAaOjVGjbC9soLiw+6q+Gxy3c1SEhoa70+7caHaNCiYmZNGjwE1u23Gx0lAo1bfoNr76aTufOnY2OUqFp06YxdOhQkpKSjI5SoUceeYRJkyYZHaNCRUVFzJ07l3vvvdfoKBVas2YNBQUFXH559C7jmDdvHhdddFFUd8ZOP/10cnNzj1q4o2T1gcDvj96eYiBQgKbFRHVGTYvD4XCQcpRx4GhhtVpJSkqK2oxle6ZEaz4IZbRarVGd0W6343a7ozpjTEwM8fHxUZ3xWNdh1JwfRVGUGkYVbkVRlBpGFW5FUaKalJLdu3cbHSOqRMkYt6Ioyl+tXr2aX3/9tXy2z4UXXsjpp59udCzDqR63oihR69NPP2XXrl089thjrFq1iuXLlxsdKSqowq0oSlRasWIFDoeD8ePHM3ToUCZPnsxvv/2mhk1QhVtRlCh1wQUX4HK5ePvtt9m8eTP//ve/6dChA82aNTM62l+43W62bq2+tShqjFtRlKgkhKBXr14sXboUp9OJEIKOHTtG3cZgc+fOZc+ePQSDQWw2G8OHD4/4LfFUj1tRKqEm3C2mJmSsyGWXXcbTTz9N/fr1mTRpEuecc47RkY4gpWTOnDmcd9553HHHHSxdupS8vLyIt6sKt6KcBCkl2dnZfPjhh8yaNYusrKyoK47BYJD9+/fz6KOPsnz5cnJzc42OdMqZPn069957L02bNmXKlCm8+eabjB8/Hl3XI9quKtyKcpK6dOlCVlYWVquVTp064ff7jY50hOzsbLp160b37t1ZuHAhV1111fG/SflbxowZw4wZM/jss8/YtGkTt956K5MnT474jShU4VaUkzBr1iwef/xxLr74Ylq3bs20adOYMWOG0bHKSSmZPXs2s2fPxuVyMWbMGAYNGsT8+fONjnbKGTVqFEVFRbjdbq699loyMjIi3qYq3LXEU089Rc+ePfH5fDXmRrCBQIDvvvuO9957j0AgEFVDEb1792bRokU0atSIzz//nOnTp9O7d2+jYx3h4osv5scff+Scc87h3nvvZcWKFVG9e2RNdcMNNzB48GDatWvH6NGjq2XjKlW4a4nx48fz2Wef0aNHD5544gl+/fVXgsGg0bEqJKWkZcuWfPfdd2RlZdGgQYOoGopo2bIlubm5TJw4EQCfz8fTTz/N/v37DU4WIoSgbdu2LFq0iIULF6LrOpmZmcyaNYuioiKj4ymVpAp3LVG2peovv/xC9+7dee2113j11Vf55ptvjI52VF9++SW33nord911Fw6HgyFDhvDpp58aHaucEIIff/yR22+/nauvvpoNGzYwbdo0XnvtNXbs2GF0PADq16/PunXrqF+/Pq+88grr16/niiuuYObMmZSWlhodT6kEVbhrocsuu4xXXnmFRo0a8ccffzBo0CB27txpdKwjxMfH43Q6sdlspKSk4HQ6mTp1qtGx/uLss8+mZ8+eADRu3JjBgwczc+ZM8vPzjQ12mAEDBtC4cehWsD179uTCCy/koYceiqqhJ+XvUQtwaikhBNdffz0ul4vrr7+ecePGsWPHDq655hruu+8+EhIS/nLT3urUo0cP7rzzTnRdp27duvznP//hnXfeoWPHjkyYMIHevXuTmJgYdYsxWrduzfjx4xk4cCDNmjXj5ZdfJjY21uhYR+jevTupqal06tSJ2267jREjRmCxqFJQGdX9c6h63LWcw+GgWbNmfPzxx6xfv55zzz2X/v37s3DhQtatW2dYLiEEW7dupX///rRt25asrCx69+7N+vXr2bJlCzfffDOLFy9m165dhmWsSHp6Ot999x3Dhw9n6tSpFBYWGh3pL9q0acP69euJj49n3rx5UX29oyao7t9eVOFWgFChFEJw9dVX8/3337N//34+//xzJk6caNgwihCCiy66iH79+pXnE0LwyCOP8Mknn/DTTz8xd+5cHn/8cbxeryEZKyKE4JxzzuHCCy9kxowZUZlPCMHQoUMRQvDKK68YHalCQghuuOEGFixYYHSUCqWlpdGkSRPWr19fLe2pwq0c1ejRo7n33nu58MILmTx5MjfddFP50uloGBuNjY1l4sSJ3HrrrXTv3p3+/fvzzDPPRE2+Mr169eKaa65h5MiRUZetzJAhQ2jSpAlTpkyJyoxCiPLfAqNVWeHesGFDtbSnCrdSoTp16tC7d2+mTZvG448/TqdOnejUqRNLliwhKyvL6HgAnHbaaVxyySW89957nH766XTq1ImlS5eSnZ1tdLRyZ599Nvfffz+dOnVi9uzZUTWtEUKFsU+fPjRv3pxOnTqxYsWKqCveypFU4VaOy+Fw0Lp1azZs2MCGDRv47rvvePrpp3nvvffYu3fvEa9dvHgxgUCgWvMJIUhMTKRfv35s2LCBb7/9lqeeeuqo+YwghKBNmzZs2LABi8XC3LlzI76Xxd9lNpu58cYb2bBhA19++SXffvut0ZGUY1CFW/nbnn32WZ588kmKi4t59dVXGTduHJs2bWLEiBGsW7eOsWPH8s477xiWb/LkyTzxxBMUFxdX+/9Ejue2227D4XDw/PPPGx2lQk8//TR//PGHWh4fxVThVk5Keno6I0aMYMSIEVx//fX07dsXs9nMsGHDuPrqq1myZImhS+vr1q3LiBEjaNGihWEZKjJgwABOP/10unTpwnfffRd1wxIWi4Xhw4eza9cuunTpQk5OjtGRlP+hCrdSKU2bNuWMM87g/PPPp06dOlxzzTV07dqVzp0788UXXxgdLyqZTCb69OnDypUr+f7771m2bFnUFW+73c59993HypUrGTt2LNu3bzc6knIYVbiVSktKSuKmm25izZo1fPjhh7z88susXr2avn37Gh0tagkhsFqtTJkyhVWrVhkd56hMJhNWq5XXX3+dH3/80eg4ymHUcimlSnTs2JFhw4bx7LPPctFFF3HllVcaHanGeOCBB4yOcEwJCQncfvvtRsdQDqMKt1Il6tWrR//+/enZsyd16tSJ+EbyihJtYmNjq23puyrcSpVKS0szOoKiGGLQoEHV1tZxu0VCiMZCiCVCiM1CiE1CiNHh43WEEN8JIbaHP6eEjwshxAwhxA4hxEYhxNmR/kMoiqIYrWwbgepwIr/PBoH7pJRtgfOAkUKIdsB4YLGUshWwOPwY4EqgVfjjTmBmladWFEWpxY5buKWUOVLKdeGvncBmoCHQFyhbZfEOcG34677AXBnyC5AshKhf5ckVRak1bDYb9erVMzpG1PhbV5CEEM2ATsAqIENKmQOh4g7UDb+sIbDvsG/bHz72v+e6UwixRgixJhDw/P3kiqLUGs2aNWPKlClGx4gaJ1y4hRDxwHxgjJSy5FgvPcqxv6wukFLOllKeI6U8x2qNO9EYiqIotd4JFW4hhJVQ0f4/KWXZjf8Olg2BhD/nho/vBxof9u2NgOjZqk1RFKWGO5FZJQJ4A9gspXzhsKc+B4aEvx4CfHbY8VvDs0vOA4rLhlQURVGUyjuRedwXAIOB34QQZbuEPwxMBj4SQtwG7AVuCD/3FXAVsANwA0OrNLGiKEotd9zCLaVcwdHHrQEuOcrrJTDy70eJrk12ji76M0bbZkVHE+0Zoz0fqIxVpSZkPBoRDcGTklJkx463GB2jQmazn6SkUmy2OkZHqVAwWEJysgW73W50lArl5uaSmppq6N3jj2f//mwslgZGxzgGjYApG2tdq9FBKqS7deKD8SQmJhodpUKFhYXEx8djs9mMjlKhd999l0OHDh210xwVhTshIUOWlh40OkaFkpJ28NxzS7jjjjuMjlKhhQsXkpGRwbnnnovP58Nqtf55lxWTzgHfHg4FDyJ1iQUbIPAE3NjNibRIPAOhm7HZrGiahhCCYDCIEAKTyUQwGMRms5V/Ljt/MBjEbDYf8dqy1WPBYBCrNVRcylaTPf3004wcOZKUlBSD3qVjk1Jy44338sknLxkdpUIxMYW0f+wy1j681ugoFar3Uz1m5c+K6t0hX3vtNS655BJatmxpdJQKZWRkcPDgwaMWbrVXySlG0zQKCgqITbDx30NfUDe2KUGTl52lv5Lj34PTW4rTW0yDuBZ4/B7qWhuxPXYzuwt2cM+5j+D3BRBCUFpaihCCmJgYSktLSUtLo7S0lDp16lBcXEydOnUoKSnB4XBQVFSE1WrFZrNhs9mwWCyUlpZGbYFWlKqWm5vLkiVLGDBgQLW0pwr3KWZH0a/MP/QiolhwwLcHq4wlGJQ4SCEtpiHJpFDkduHRA9SJaQS6la93fkqcJYGnfniAge1vo4G9MQkJCUgpCQaDpKam4nK5iImJIT8/n/j4eEpKSoiLi8Pn85GcnIyUEk3TcLvdQGilW0FBAcnJyVgs6sdMObUVFhby7bffqsKtnJx0e1M+WLyeOrF1ODP9TE6r24Zd2Zm8s+J9WrZOIt0Rz/aNOZgbBrmg3UWYg7HEWZIpdOYTY0/gzf/O5B9tr+WMlLOwWKxYrVby8vKoW7cuLpeLOqmpFBYUkJSURHFxMQ6Hg5KSEqzW0GsdDgcmkwmXy0VKSora3lWpFaprc6ky6l9VNdF1nU8//fT4L6ykOOzM/seb6Jrgyz++ZvoPL7Poj0VkpNTDn5eM70A9WtU9j9iihmhFOitW/Mzu/E2s3bmeLdk7WL13HfM3zMer+7BYLAghiI+Px+/343PmsO2Xuexe+wF7f/8PVmtoTDw2Nra8V+33+/F6vZhMJrxeb5VdtV+4cKGh97BUlGOp7muFqnBXE13XeeaZZyLejslkonWdljx68SOYLIKdBTs55DlEfKwDt9+NO+Cicd3GtE3rSKKnJc0S2+HcJhF+HTM+9uZm8+1vi5n0xdNA6AdS13WQGll/fMvSD8aw9qtHWbvo3wj5559N1/XyH16TyYSUskp+mFevXs3gwYPZt28fw4YNM/Tu8Yrx5syZQ3a2WoitCnc1io2Nxev1RrQNq9VKwB+gW6NuzL9pPmnxqZjMZoq8xVhtFnyanz/2byLPmcfWvVtYvuZnmtrb0ydjML8u3kqXNo2xO818/PXHBIIBAJwlReTuWc2yL1+iyB1Dl/5vcOmw/yOghWaV+P3+8hksZRcpdV0nLi6uUr9C6rrOzp07adWqFTfffDODBg1izZo1BAKBKnmvlJojMzOTNm3aoGkad9xxBzfccMPxv+kUpgp3NTGbzcyaNYvRo0dHtJ3i4mLq1q2LkIK29drx070rSHYkk+M8wIGSg2QX57Dv0H5+3vYzy7csJy0lHU1qHMzNp8/ZA3BsbkVSjIW6SXHs3LcNKSU/LnieOZOHEZvciktueYX2Xa8miAO73Y7X66VOnTrY7fby2ShFRUXYbDby8/MrNbxRWFjIsmXLGDp0KP/4xz/o0qULTZo0Yfny5VX4jinRTkrJhg0bGDJkCD169GDu3LnY7XZ27txpdDTDqMJdTcrmN0d6LKzsYqEQAq/XS4a9Hm8OepO7e9yNXw+QWZDJlpwt+HU/rRq2Jq1OGrlFuRwqLSQrLxu3101CYTPiEgVPfDaGT/8zh22bN5Jcrx3X3Dad9l2vwuv1Yrfb8fv9WK1W3G43fr8fgLi4OOx2O5qmkZCQUKmLk2lpaVx88cXcddddXHrppUycOJHdu3dz8cUXV9XbpdQQv/32G2eccQbPP/882dnZtGzZkh07dhgdyzBqVokBpJQRuwrt9XqJi4sjEAiUL8I5Pb01rXuNpWvDLhx0HeSZT54hKz+bXQd3Uic2FRs2CvLz8bkDeEs9jLh2BKPOv4di+37efnEKKbka9z31OinpjXG73cTFxeH1eomJiSlflFM2zl1WwMsKekxMTKX+PBdeeCEJCQm8++67/Pzzz3z++edV8TYpNYgQggEDBtCrVy+EEGzatAmTycSECROMjmYYVbirUZs2bejYsSMfffRRxOZ76rqOxWLB7/cfcZFQSuh2Wjdi42K5ot0VWG1WSp2l2MyCrF3bSE9KxSfBXiedWFssKckplJQcYmvzDfQa9g+ateqIEAJN0zCZTJTm5xGwmAloOqkNGmIymcqLN1D+2sr+hpGRkcHll1/Oeeedx6ZNm3jrrbd47rnnquKtUmqQFi1a8Msvv/D4449z991306pVK6MjGUoV7mpkNpvLi2qkxMbGls+r9vl85e0CxMTE4Pf7SYhNIH/NSmIDHpy5B0nI3kNJ0SGSO3QiseN5lGbuYLfHw74Dufy2/CfOO7s7gay9ZG/fQmxcHCXxKexZvpi9v/9KfHp97Ke1Jj41jYZnnEFGq9PLl8EnJSVV2TzupKQkGjZsiMViYe/evTRp0qRKzqvUDGazmR9++IFu3brRuXNno+MYThXuU4zL5SI1NZXS0lJiY2PRdR2fz4cQAo/HQ6zHye7/m4UjJRV/nJ2k9Hoknt8DKQQC8OzfgywuJEYP4ti9jfN9buTiL8jOykSYLBwK+Imr25DWl1xBi0suR2o6W39axoHff2Xv+rU4PV6ufXgCKWlpFBcXk5qaWmXFu2nTpjRu3JiffvpJFW6lVlOFu5pdf/31TJw4kZ49e9K4cePjf8PflJiYGNqrJDYWt9uNyWTCarUipcRhNbNh1B0kndaKlIsuw2S2gNTwZ+0NbdwrJWazhaSWbdClxNG4BS2vH4im6fjcJVji4tGkTiAQxFNciC5B0yWN2p9FfSkpLijg8+kv8Mbdd3HP2++SnJxc5TsB3nDDDUyYMIEePXrQoEE07+KnKJGjZpVUs7S0NEpKSsqHMapaSUkJaWlpSCmx2+2hed2BAN5DBay6/VrsDRpS/8p+6M5i9OJCpLMY4S1FeErB60K6StAK8wgW5qG7nASLC9CchxB+P/6iQgKHDhF0lhB0uQi6XQTcLvylTnyloeGZvmPuo/RADi//81b27dxZ5asd09PTSU5OZuvWrTV2L2VFqSzV4z7FxMbG4nK5EEIQCASQUmI2m8n5z0fUadyCBpf3IZCfgzk8PdEkwnfJEAIhJbqUIAUCCbqOlKBJSVAHTdfRpUSXhB9LNF0SkBJN6gR1ga5Lzh94E9+99SablvxA89NPr/I/4+TJk+nYsSPr51Q7CwAAIABJREFU16+v8nMr0amoqIj9+/fTq1cvo6NEBdXjPsXY7XaKiooA8Hg8oVkePg/ObRtJbtOeYP4B8LrB60b4XJh8bsx+N2afG5Pfg/C5ET43eFxIrxvpdSHdbqTHheZxE3S7CLpcBFxOAq5S/O5Sgi4X/lIXfpcTn9uJCWjW4SxWffYZxXl5xr4hyikhNzeXbdu2cf755xsdJSqowm2AadOmMWLEiD9vdFCFiouLycjIQEpJfHw8FouFnKXfgs+PrgXQPC6kJ1SYhdeNyevC7HNj8bkweV0I3/+zd+ZxTlbX/3/f7DOZZFb2fVMRFEUQgUIFVERxq7VudbdqrbYI6qB+RbG1isoiboigIra/Qq1KXepSRS2KqIAiiGwCOjIDwyyZ7HmW+/sjyeOMggyQITNw369XXkme58l9TrZPTs4995yUWMeiyEgEMxzBjIYxokHMSFK8tegPYRItHCIeCREPB0mEQ8RCYaKhOtr27EmwuppQTU3GnyPAwoULufjii5tkbIWiuaNCJVmguLiYnTt3NsnY+fn5bN++HZ/PRzgcxm63k+t2EnTZMRMxTB2kzQY2kDYBNoHNbkMIkCYIU4IpkabENAxMKyRiYpigG8nQSMKU6IZEN000EzTTREvdT5ipsImuQRPFodu3b4/X62XTpk306NGjSc6hUDRXlHAfZESjUXw+H4C1ajEWi2HGY0nP2QZ2mx3TBqZdYNpsmDaBDYEpU4JtmhimxDSkJdq6KZMCbSRv60ZSsBOGmRJriWaAZsqUiJsYTVgMKi8vj/PPP5/nn3+eu+66q8nOo1A0R1SoJEvMmDGDCRMmZHxcu91OJBKxutdIKXHYnQQ3rCVevRMjHEaPhNDT8epICC0cIWFliYTQIxGMSAgtEkILh9DCye1aKEQilAyJJMIh4qEQ279eQ7S2hlgoSCwUJBoKJsMlwVCTV/Hr378/UkpWrFjRpOdRZBfTNLnnnnuYOHFitk3ZLekSFgcq00l53Fmif//+3H333RkfN503nS5oZZom7pJW4HRRt/ZLRI9eSLcbabMh7QIpJIlwEOHOBacTQ9fREjrxWITar9eQ0HViuiRuSmK6QcwwiRvg69UXw+XCmZtLLBxBFwLNkMSNZMhk27dbCVRWIpqwo3tRUREFBQVs3ryZfv36Nevu8Ycama7Fs2bNGnr37p3RMTNJz549GTx4MH//+98PyNyLEu6DjHRZ12AwiNfrRdd1OPp4igePZPt/XsCIhino2gMjNxfDJrALibH9e4TDDS4XiWCA+M4dJIxkHDtumOiGJKFLNMNA1yWaYfL9qk+J6+AoaUNc08GbBy4PCSmo3VnN1g0bOPHK31HUrl2TPt9x48Zx0kknMWrUKAoKCpr0XIrGc6jl2Nvtdqs2/YFAhUqyhNvtZuzYsSxatCij4+bm5hIIBKyyrrqebHYQjSfQTUk8Eia4fRuxUB11326mbss3hGtqCX3/LXWbNxLekRTttOesGZJEatJRNyW6KTFkesLSILDtewIVFVSsX09NeTk7tm6h/JtNmCZ0P+pocvLyMvr8dsW4ceOYOnVqk59HoWguKOHOEi6XiwEDBvDpp59mdNxEIoHX60VKicvlwm63J7vRdOiAbneS0E2iwSDhQC3hqkrCVZVEIlGiuklMN4kZBlHdIG6YxI3kpGMilTGimaBJMzkxmV6EIyUGyUnMeCxGNBjGFAJ3np9YPN4kKY8/5vTTT+eVV15p8vMoskMikcDlcmXbjGaFEu6DkPTf1Pp/V7v/9npsJW2JGAaRSIxwIEBUM4hqJlHNJKKbRDSDiG4S1SVxHeK6SVw3SeikskaS2SKaKTH0H7zwhGFiIgjXhYlGo+i6Sb/TT2X4xRcdsOfcq1evQ7qw/sHM6aefzltvvZVtM5oVSrgPMlwuF9FoFCEEuq5jmmayLrewYStohW4kJxkjoUhStA2TqG4Q1c2U1y2JGaZ1SXrdqeuUBx43zWTKn0wKumGCDhgkQyhHDB2OHRu5npyMVQb8OYQQPPjgg0yaNKnJz6U48BiGoSaef4QS7izSp08fnE5nRmtuxGIx/H4/kKxb4nA4knnZhkHXS39P3BDEdJNoLJEU7pRgRzUjGSrRDWJa6tqQxI2kkCf0lHjrJrouSZikFtyk4uCaTiwWw+5xY3M7OfWaa6mrq8t4kand0bp1awYMGMAbb7xxQM6nUGQTJdxZpKSkBLvdzvbt2zM2ps/ns1ZlhkIh4vE4drsdp9NJt0FDMXPziKXCIsl4tiSa8q6juklEk8lwiSGJ6kkxjxsmMTMp4gkD4iYkTIO4kVx0o5smCUMiHU4Gn3cBNTur6NK3L61atcLhODCJS7m5uXTp0oUNGzYkM2kUioOYPQq3EKKTEGKxEGKtEGKNEOJPqe13CyG+F0J8nrqcVu8xtwkhNgoh1gkhRjflE1A0JBQKkZ+fj5QSj8eD0+nEMAxM0ySiaYx8+BkrHztiJGPbUc0kkopzR1OTkz944CYxzSChGz+ESgyThJ5e3m4QN0E3TI4Y8guWL17MDU/OxuVyEQqFDsjkZJpf/epXfPXVV3z11VcH7JyKpuXrr7/msMMOU6GSH9EYj1sHJkgpewMnAH8QQhyZ2jddSnlM6vI6QGrfBUAf4FTgcSGEetV3w8iRI1myZAmRSCQj47lcLmKxmNXzMR3jFkLgcrlwt25D26EjU4Kc8rJ1g6iuW5kl6fBITP9h0U3ykgqbGKaVMhg3JJpp4PbnE40lGHTaabTt0gXDMHA6nU3WFHlXCCE4++yzeeGFFw5YiEbRtMybN4/f/va35OTkZNuUZsUehVtKWS6lXJG6HQTWAh1+5iFnAf+QUsallJuBjcDxmTD2YGTIkCF89tlnxGKxjIzn8XgIBoMIIUgkEpimaS0OyM3NxVFQRPvjhxDXZSqrJOlZR3WZvE5lmUR1k7hhpMSa1OUHsY6bkriRrF1iCgd9Rp5ENJFgyJln4/P7MQwDr9d7QIUbYPTo0bz55psqXKI4qNmrGLcQoitwLLAstekGIcQqIcTTQojC1LYOwHf1HlbGzwu9AtiyZUtGxqmrq6NVq1aYppkUaocDTdPQNI2amhq8ubn0ueAyOo44haiZ9LDDmkE4YRBJpQdGUqGScErAY5pBTNeJawbx9MSlnvS8DbuTw3/xS6p3VtH/pJPp0LcvtbW1OJ1Odu7cmRXP96233mL0aBWhOxgoKSlR3vYuaLRwCyHygH8B46SUdcATQA/gGKAcSC9d25WL9ZP1r0KIa4QQnwkhPtO06F4bfrDw+eefU1ZWxkknncTcuXP3Oz7r9/uprq7GZrMRiUTQNA2n04nT6aSgoIBIJILd6aTzyaehO3OsvO2okZyUjBip+7r8IePEShOURNMxblOCx0PrHj2RDjuRugAdjjgCf34+BQUFaJpGUVFRVmKTubm5nHzyyQf8vIrMM2HCBAYOHJhtM5odjRJuIYSTpGj/TUr5IoCUcruU0pBSmsBT/BAOKQPqd8HtCGz78ZhSytlSygFSygFO56H7i/rqq68yevRovF4vy5cv55133tmv8SKRCH6/35qcdDgc6LqOrutW53cpJcefcx7DbypNetn6DxcrJdAwf5icNGRKuA3iejLerUuBy18ILjflm7fw27vu5oSxpxONRgmHwzgcDoLB4AGdnEzjdDq54447Dvh5FYoDRWOySgQwF1grpZxWb3v96kHnAKtTt/8NXCCEcAshugG9gE8yZ/LBw/Lly0kkEkyaNIkOHTpw7733snXrVtauXbvPY+bk5FBXV4eU0qpVYrPZsNlseL1eYrEYUkrq6ur45ZXXcsr/3Y1udya96VQ+d1Q3SQh7KiUwleNtmCSkjZhuENclcQSRaIyKLd9yyV2T6TVoULISoduNx+NB1/WsxLgVikOBxiTZDgUuAb4UQnye2nY7cKEQ4hiSYZAtwLUAUso1QoiFwFckM1L+IKVUU/y7oH///vznP/9h7ty5vP3228yYMYMuXbpwxBFH7POYdrsdh8OBw+Gwlrynb9ff53A4cLndDL74cnoedwJvP/EodTuT/SElMPiii/nf355HSjBNiSMnl05HHcXapUsxJUgERe3acvHtt1PUqRMOp9MaN31Oh8OhhFuhaAL2KNxSyiXsOm79+s885l7g3v2w65BACMGQIUN46623mDlzJuFwmFGjRu2X2NlsNkpKSna7Pz8/HwCv1wskVxy2bt2aPsOH/+TYU664ep/tcDqd+/xYhaIlYZom06dP5+OPPwagurqam266qUnLPah63Flm5MiRjBgxgiVLljBs2LBsm6NQKPYSKSWzZ89mzJgxCCGYPXs248aNa9JzNhPhlrjd1dk2Yre4XHXEYjGqq5vOxj59+uzX+JFIhFAo1KQ27i+aplFbW9vMi+wbzfqz6HbXYtfsuKvd2TZlt7hCLiKRSLP+LMZiMerq6jJi4xVXXMGLL77I+++/jxCCq6++ml/96lc888wz+zXuz31PRHP4EhUVFcmbb74522bslnA4TGVlJV27ds22KbulvLwct9tNUVFRtk3ZLevWraN79+7NOozyxRdf0K9fv2ybsVs0TWPJkm+oqTk826bsFo+nmmOPjdOuibsf7Q+bN2+mdevWVsiwOfLQQw9RXV2967iplDLrl9atW8vmzIYNG+Ts2bOzbcbP8tJLL8mPPvoo22b8LH/+859ldXV1ts3YLaZpyhtuuCFj43399dfyzTfflFJKuXPnTjl//vz9HrOqqkoed9y9EmSzvbRtu0S+/PLL+/1c0zzyyCMyFotJKaX8xz/+ISsqKvZ7zFmzZskNGzbs9zhNSUoXd6mZqjqgQtEE1NXVcd9999G7d2+uv/56AGpra3n55ZezbFnL4oknnqCwsJDy8nImT57MgAED+NOf/tQsa9G88sorB6wTUzOJcSsUBxc+n4/zzz+fqVOnsnz5ct577z2WLVvGddddl23TWhRXX301Y8aMwe12s2LFCtauXcvtt99+QBp07C2VlZUHLP21+T17heIgQAhBly5diMVilJWV8dprrzFixIgDVp/8YMHpdDJmzBj+9a9/8fXXX1NQUEDr1q0P+fUB6lOkUDQRRx55JLNmzWLDhg1Mnz7dyqFX7B0TJkxg/fr13HvvvcyaNSvb5jQLlMetUCgULQwl3AqFQtHCaFHCrWnafie1KxQKRUunxQj39OnTOeussxBCcMopp/DRRx9l2ySFQqHICi1icjIcDrNx40buuece2rVrRyAQYPPmzQwaNEg1EVUoFIccLcLjXr58OZ07d6ZLly7cd999tGnThs8++4xgMJht0xRNSDQa5cMPP8y2GQpFs6NFCPfw4cPZuHEjN998MxdddBEXXnghJ554IgUFBdk2rUl46KGHDvlmt48//ji33XYbH3zwATfccAPffvtttk1SKJoNLUK4ASZNmsQNN9zAo48+ysqVK3nttdcoLy/PtlkZxTAMpkyZwuGHH94sV4YdKHRd5/XXX+e8887jd7/7HcFgkPLy8mZeVVChOHC0GHXo1KkTAwYM4LnnnuOYY47h8ccfZ9y4cWzatCnbpmWMl156idzcXE4//fRDWriff/55zj33XLp3786dd97JH/7wB2bMmIGmadk2TaFoFrQodRBCNGiNNWfOHObMmcPy5cuzbNn+EwwGWb9+Pf369TukRRvg8ssvZ+HChSxcuJBRo0YxaNAgOnXqdMi/LgpFmhb9TfD5fNx444289NJLrFu3Ltvm7DNSSkpLSxkxYgTDd9FC7FDk9ttvp7CwkA8//JCFCxcyYMAAbr/99mybpVA0C1pEOuDP0b59e26++Wauv/56pk+fTps2bbJt0l4RjUa58cYbufXWWznssMOybc4+YZomNTU1QPJHaOzYsUSjUSZNmsS55567T2MOGzaMIUOGcPrpp1NcXIyUkvbt2zNp0iTuuOMO3O7m2wFGoWhqWrxwAxQUFDB//nyuvvpqJkyYQN++fbNtUqOZOnUqv/71r+nVq1e2TdkrAoEAS5cuBZJtoNLFf4QQvPvuu+Tk5Oz3Oex2O8XFxda4Q4cOpaamhlmzZtG3b19Gjhx5yFeJUxyaHBTCDckv+YMPPshjjz1GIpGgf//+2TZpj2zevBld1+nVq1ezF6Da2loefPBB677NZsPj8QDg8Xj4z3/+0+TPQQjBGWecwUsvvcTSpUvZunUrV155ZZOeU6Fojhw0wg1QUlLCNddcw5QpU2jVqhUdO3ZstoIYDoe55557mDRpEt26dcu2ORbp1kgAK1euJN0LND8/n5tuusk6Li8vj+OOOy4rNp5zzjmcccYZzJ8/n2effZbLLrus2b7PKoVx/0l/Jpvreww/vM8HysaDSrgB2rVrx3333ccll1zCjBkz6NixY7ZN+gnbt2/n97//PfPnz2/SZqVSSsrKyujUqdNujwmFQlRUVFj33377bWbPng1A//79+fe//w0kP5B5eXlNZuve4nA4uOSSS3jsscd4+eWXOfPMM5tl+YN7772XW265Bb/fn21TWixSSq644greeeedbJuyWzZs2MDSpUt5/PHHD8j5DjrhBsjJyeH5559n4sSJXHbZZRx77LHZNsli/fr1zJ07lyeeeKJJRXv58uWsXr2aTz75hEGDBjFkyBB69uwJwOrVq1mxYgUAO3bsYNWqVdbjRowYwcqVK5vMrkzicDj405/+xJQpU5g3bx69evVi2LBh2TarAfF4HLfb3ay9xZZANBrNyLxJU2GaJoZh4HQ6D8j5DkrhhmTctbS0lNmzZ+N0OpvNhOV7771H3759mzz75Z///CcAkydP5uabb2bu3LlW1kq7du0sL7xfv35WOKSlcuutt/Lcc8/x4YcfYhgGJ554YrZNUiialINWuCEpUNdffz2lpaX89a9/pW3btlmzRUrJ2rVrWb9+Pf/3f//XpOdasmSJleN+2mmnUVZWxrZt2ygtLaVr164UFxe3uLTJn0MIwWWXXUYgEODee++lpKSEPn36KC9XcdDSohfgNIZWrVrx1FNPcdNNN7F+/fqs2fHll1/ywAMPMGXKlCYvjjV06FCCwSALFizgtdde46KLLuKJJ55gzJgxHHnkkQeVaNcnPz+f+++/n2nTprF06VK2bNmSbZMUiibhoBduSKYKzpo1i+eee+6ALo8Ph8O89NJLvPfeeyxYsICnnnrqgEygCSEYNmwY69ev5/HHHyeRSHD00UcfEh6ozWZj9uzZLFq0iGeeeSarP9YKRVNxUIdK6pOfn8/111/Po48+Sn5+vjVR11T85S9/YfXq1QwdOpRbbrmF559//oBNXACcfvrpnHbaabz//vuHXMzX4XAwZcoUNm3axMyZM5k0aZK1kEehOBjYo8cthPAIIT4RQnwhhFgjhJic2t5NCLFMCLFBCLFACOFKbXen7m9M7e/atE+h8bRv357bbruNO+64o0EKXKYJh8OsWrWKSZMm0apVK4LBIKFQ6IDn9AohDjnRrk+PHj2YPHnyQVu3XXHo0phQSRwYKaXsBxwDnCqEOAGYAkyXUvYCaoCrUsdfBdRIKXsC01PHNRt8Ph9/+9vfuPPOOxukwWWSN954g+HDh1NUVMSmTZt49913WbhwoSpLmgUKCgqaZX63QrE/7FG4ZZJQ6q4zdZHASOCF1PZ5wNmp22el7pPaP0o0s+Cqw+Hg3nvv5eWXX+bzzz/P+Pjnnnsub775JjNmzODss8/m8ssv58orr8TlcmX8XAqF4tCjUTFuIYQdWA70BB4DNgG1Usp0f60yoEPqdgfgOwAppS6ECADFwM4M2r3ftG7dmmuuucaq751pHnjgAb799ltmzpzJww8/TJ8+fZrkPAqF4tCjUaolpTSAY4QQBcBLQO9dHZa63pV3/ZPgrhDiGuAaSIYvskFT5nX37t2bI444ghNPPFGVIFUoFBllr9IBpZS1wHvACUCBECIt/B2BbanbZUAngNT+fKB6F2PNllIOkFIOaM5LWfcHIYQSbYVCkXEak1XSKuVpI4TIAU4C1gKLgV+nDrsMWJS6/e/UfVL735WqRJpCoVBkjMaEStoB81JxbhuwUEr5qhDiK+AfQoi/ACuBuanj5wLzhRAbSXraFzSB3QqFQnHIskfhllKuAn5SXk9K+Q1w/C62x4DzMmKdQqFQKH7CIbHkXaFQKJqK5557jieffJIvvviCe++9l6qqqiY/pxJuhUKh2EeklMyZM4cePXpQXFzMe++9R2VlZZOfVwm3QqFo9rRu3TrbJuyShx9+mD/+8Y+MHj2avn378vTTTzNx4kRM02zS8zaLIlOmafLhhx9m24zdUlFRQXl5ebO2ccuWLdTU1DT5B2Z/qK6u5tNPP23Szj/7SyQSyej7HAgE2LBhQ8ZWzYZCITyeatq2bb6fxcLCdWzZEszo6zhp0qSMjldeXs6qVavYvn37fo0zcOBAJk2axB133MG5555LaWkpF198MUuXLt1vG3/uu9wshFtKeUDiQvtKIBAgGo02axvD4TDPPGMjGGy+NnbunGDQoBpisVi2TdktNTU6l1ySydfwJF59FSAzYzocEdqd+ik5t76YkfGaAtdmP+Hwb5r19yUWi/F/tf9HzJGBz+Kf4OrQ1RACLoCP+Tgjb3dcxne7r1kIt91u58wzz9zvcaSUvPzyy7hcLkaPHs2XX37J0qVLue6667DZ9j0qtHHjRgzDyIiNTYVpmuzY0YaKisHZNmW3FBev4pRTTqGwsDDbpuwSKSXz57/N5s3N9312u6vxt32IzWduzrYpu6Xth23ps7PPfn9fTNPk8ccfZ+jQoRx11FG8+eabJBIJzj777P2uLV9eXs624dsI9Azs1zhNSZ599825D6oY99atW3n//fet5rjdu3enqqqKjz/+ONumKRSKvWTp0qXU1tbSvXt3hg4dyqBBg3j//ffZunVrtk3LOgeVcHft2pW+ffsyfvx4ysvLufvuu4nFYgwZMiTbpikUir1k6NChhMNh7r77brZt28b48ePp27cvXbt2zbZpWeegEm6AESNGMGbMGOx2OwMHDuT888/PtkkKhWIfueCCCxg4cCB2u50xY8YwYsSIbJvULDjohLtHjx5ceOGFFBYWcsEFF3D00Udn2ySFQrGP9OvXjwsuuIDCwkIuvPBCevTokW2TmgUHnXArFArFwY4SboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWHHC++uorPvjgg2yboVC0WJRw7ydSSkzT5IEHHmDLli2N7vmYftzuLuvXr+fEE09scHnuueea+Nk0PTU1NcycOZM333yTESNGNOs2ZgpFc6VZtC7LNBUVFbRr1+6AnGvTpk0MHz6cadOm8cc//pFwOMw777wDwDfffIOu67t8XCwW4/LLL0dKucv9vXr14tVks0KLTDWczSYFBQX85S9/oaKigtdff53169fj8XiybZaFYRjZNkGxC9q1a0dFRQVt27bNtinNgoNSuEtLS3n44Yf3q89kY5BSsnjxYiZPnkznzp0ZO3YsDz30EPPmzQNgyZIlJBKJXT42JyeH5cuX73fvvJaGEILvvvuOGTNmsG3bNh544AHsdnu2zbIIh7NtgeLH2Gw2ZsyYQWlpqfXdOtQ5KIX7QGKaJg6HA9M0LW8t7WXPnDmTnJycbJrX7Kirq2PJkiWMHTuWt956i9mzZ5Obm5tts4DkD/FvfvPHbJuhUOwRJdz7gRCCUaNGMWzYMB5++GHeeOMNOnbsyFVXXZVt05otubm5FBUVsXXrVhYvXtyswiQKRUtBCfd+0qNHD8rKynjwwQeZMWMGXbp0ybZJzRqHw8FFF12ElLLJQ1kKxcGKEu79RAiB3W5n4sSJ2TalxSCEOORi+wpFJtmjyyOE8AghPhFCfCGEWCOEmJza/qwQYrMQ4vPU5ZjUdiGEmCmE2CiEWCWE6N/UT0KhUCgOJRrjcceBkVLKkBDCCSwRQvwnte8WKeULPzp+DNArdRkEPJG6VigUCkUG2KPHLZOEUnedqcuuk4+TnAU8l3rcx0CBEOLAJFUrFArFIUCjZoeEEHYhxOfADuBtKeWy1K57U+GQ6UIId2pbB+C7eg8vS21TKBQKRQZolHBLKQ0p5TFAR+B4IURf4DbgCGAgUASUpg7f1azTTzx0IcQ1QojPhBCfRaPRfTJeoVAoDkX2Kh9LSlkLvAecKqUsT4VD4sAzwPGpw8qATvUe1hHYtouxZkspB0gpB6hFKgqFQtF4GpNV0koIUZC6nQOcBHydjluLZF7X2cDq1EP+DVyayi45AQhIKcubxHqFQqE4BGlMVkk7YJ4Qwk5S6BdKKV8VQrwrhGhFMjTyOXBd6vjXgdOAjUAEuCLzZisUCsWhyx6FW0q5Cjh2F9tH7uZ4Cfxh/01TKBQKxa5Qa44VCoWihaGEW6FQKFoYSrgVCoWihaGEW6FQKFoYSrgVCkWzx+fzMWiQKnmUplmUddV1nSeffDJj40UiEV588UUKCgoyMl4gEKCsrCyjNmaab775hs6dcykpWZVtU3aL37+F+fPn43a793xwltD1avr2bb7vs90eI39zPn2f7JttU3ZLbnkuS2NLqaioyOi4drs9Y9/B1atX0yPQg0T+rlsLNge+1b/d7b5mIdx2u51Ro0ZlbLxMjgVQVlaGzWbL+LiZxOFwcMIJRRx11FEZGU/XdRyO5MfDMIyM9IWcO3cLf/7zMDTNt99jNRUnn7yCl15qvu9zXV0d//rXDq4YtevlERKJxERKiUhVn5CpihM2Ybe2NSWrVq2itraW4cOHZ2S8+p+/TH0WA4EAU4+fSseOHfd7rKZisG3wbvc1C+EWQtCzZ89sm/GzbNiwoVnbuHr1atq0aZMRG7du3crtt9/OnDlzCIdjCDOLAAAgAElEQVTD/PWvf+XSSy9l4MCB+zWu1+slGOxKPF643zY2DRKbzZXR97m8vJy8vDx8vsz8WFVXV+P1eunWrRtVVVXJjTkadeFa8vML+GLHYj6MvEowVoOpC7y2IsLxMJF4mKu6T8bjzKFdXkcKvcUEAgGcTiehUIiSkhJ27tyJ3+8nEolQUlJCOBzGbrejaZolmOFw2NqXn59PZWUlJSUlAFZHo+3bt2O32zPyOm7bto3S0lJmzpxJXV0dCxYsYMCAAZxyyin71YwjPz+fjh070qlTJ0KhEDk5OYTDYZxOJw6Hg2g0is/ns/bF43GEEDidTiKRCH6/n2AwSE5ODpqm4Xa7SS5hAZfLRSgUIi8vj3A4TG5uLrquY5ombrebYDCIz+cjEong8XgwTdNylDwej/W8fq5DVLMQbkXzYvHixfzyl7/k008/5f333+ekk07i1Vdf3W/hPhR5/PHHGTlyJCNGjMjouFE9xJfR9wjpAcrq1lAVq8BT7UOYDlrbutEh5yi+2vkpDruPvr5jsOXZ+aJ6Ka9uXMDoLucxqstY2ng6IKXE4/EQj8ctEUmLk2malhilRSR9rBCCSCSCy+Wyrl0uV0afI8Cnn37K0UcfTXl5OVOmTOGyyy7jrbfe4uSTT85IF6VQKER+fj6hUIjCwkJ0XUfTNIqKiqipqaGwsNASYSkl8XickpISampqKCoqIhKJkJubSzQaRQiBaZrWmFVVVeTn5xMIBHA4HNhsNqqrqykoKKCqqgq/309dXR1CCNxuN9FoFLfb3ajnpYRb8RMuv/xyDj/8cNq1a0dlZSWzZ89m7dq12TZLUQ+bsDHzk8fQjDgd/R3pXtgdt93Ls+/Ox+9zcViXdlRtDVMVX0O/vrUUuVqjGSbtcnqwpmIV6A5audsw+rAzASzRSd+22WyYponNZkPX9QbnTreeS4u5zWZrslZ0Z511Fr/85S95++232bBhA//73/94/fXXM9avNCcnh1AohMPhoK6uDrvdjs1mIxAIcOONNzJgwACuvfZaIpGI9Zxra2vxeDzU1dXhcDiIxWJWWNFms1k/bvn5+SQSCbxeL6ZpMm/ePN555x2efPJJ8vPz0TTN2ielbLRogxJuxW5YvHgxH3zwAR9//DHjx48nPz8/2yYp6uG25/KXgY9z9oKz2OEy2OioJlfkUiS6kBtzE9mSx87vo3xdsQN37pd4qoqoKdqJ11GEw+YiUBcjlkhwQsfhOKQTr9dLOBxGCJH86++UJGJhnA47CA+mlNjtduLxOF6vF13XcTqdhMNhfD5fk/YQXbhwIV9//TWPPPII06ZNo127zPVlCYfDFBYWUldXR15eHoZhoGkafr+f119/nUWLFmEYBpdeeikFBQXE43H8fr/lcYdCIVwuF7FYDMDyuAsKCqitrSU/P5/vv/+ed955h9LSUuLxOM888wy1tbX4/X5CoWSPmrTY5+TkKI9bse+0b9+e1q1b4/f76dy5c7bNUfyIWCxG91ZdWfibhVz4z/NZvmU5Tt1BsasImQAzYXLfhffz8ZdL6ezvzJtr3qRDp0K2fFuJ25dHeWUVsYTOfW//lbvGTiYcDuP3+4nH4zhljOfvPA5Tj4GQ/OqWleQUtMU0TQoKCgiHwzgcDgKBALm5udTU1JCbm0tubm6TPNc2bdoQCATwer0Z/yw6nU50Xcdut2MYRnJSt14z62g0SmlpKXfeeSdvvfUWxx57rBWP1nUdm82GlNL615EOe0gpcblcrFq1ilNPPZVAIAAkkwjsdrsVVnI6ncAP/3KUx61QHMTk5uZSWVlJB297nvjVLG5ceCM7anbQs7gXdmnHTBj888MFeO1eorEILoeT7Z84OKLLALbt2ERd8Q5KtE78vzcXcErXUzlt0GlUVlbiccHyNx8mENJo3XkAvY45CeHMJR6PY7fbqa6utiYni4qKqKyspLi4uEk97qbE4XCgaRo2mw1N06zn8fTTT1teNEAikeCiiy7ikksu4ZxzzqFr165MmTIFKSWGYVgC7HQ6+d3vfsf27dv5+9//zj/+8Q9LtCGZFTN79mx+97vfYZomDofDmkfYm2wZJdwKRQskEomQl5cHwADPAP7fJX/nrKfO5usd6/A5fOSIHOIiTmV8JxWV5VTvrOb0gWMpcbXHxM7ReQN464v/UOR24LY5CQaDBHZs5JV/z2DH1s9o3aE/w34zlYLWXbEJgd1uxzRNiouLLY+7qqoKn8/X5B53UxKNRikqKqKurg6/34+u6yQSCf7+97+TSDTM8d62bRtTpkzhtddew+v18tlnn2EYRoNjbDYbr732GlJKVq5c+ZPzSSmZPXs2F1xwAQUFBYRCIYQQeDweEomE5fHviUN25WQ8Hmfnzp3ZNkOh2CfS3pmUEpuw0bOoF+9c9w492x5GXayOdRXr+WzrClZ9twpfnp+BfQYS1aJ8u30rwmGj7vsEJ/YYQ16ugzufv4HN2zby7cbVfP3lcoadeRvn3jCf4rbdEST/xqcFJZ0WKITA4XBgmiZ2u/0n3mJL8cDTPzxut5vq6moikQgAmqZZx0ybNq3BGo7Vq1ezbNmyn4g2JGPcK1asaCDabdq0Yd68edZ9h8NBq1at0DSN/Px8vF4vkPwXpUIlP8Prr7/O1q1b+e677zjyyCM5++yzLe9FoWgJ2Gw2YrEYIuUNa5pG2/y2vHHtq7z25Wu8+uXrLF3zERVV24kkwlSZduL2BGbCBB3WrvuKUwaOZnjJr2k9WHDjtAs5vNLOMQNGcdhxY8jNy7dEOp31IIQgkUjgdDoxDAOXy2VNUv5YcNJ//5s76TTAuro6ioqKLI87HfqApIi/9NJLFBYW7lKs98SoUaMa/BDous7OnTspKCggEAhYHrdKB9wDkydPZty4cQwfPpzLL7+cX/ziF0q4FS2KWCxmhSai0Sher5fa2lp8Ph8je47i3IG/5o0Vb1ARrCARS+Dz5BGNRIlHEyAF+gidzm06MfL4kRQVFuGvKOK7j77g5F/9gZLW7amqqsLr9aJpGg6HwxLpdH6yx+OhtrbWWrjj8/maJI+7qUmnAzqdyXBReoKwvkDn5OSwrw3Nr7zySh544AHeeusta5vdbsfv9zdIB4Tkwh3lce+GqVOnUlpaSq9evXj11VdZsGABEyZM4IUXXmgxf+8UitzcXOrq6oDkFz69Gi8dsw2Hw4w+djSB2lpyXS6itVV8O+9RYhvX4mnXgSNu+jMJpxM7sLOinIqV23B7W9Opc0/qqqsp9PlIaBobX3mR5f+cj3B6OOLM39DjxJEUFhdjGAYlJSWEQiGKi4utPOaWRjweJy8vj0gkQk5OjrWK0ePxWMckEgncbreVebI3nHXWWQANJjqllITDYbxer7Xd5XI18Mr3RMt8tfeDcePGMXjwYDRN4/XXX+fKK6/k0UcfzbZZCsVeEQ6HrdV80WiUvLw8K284fb195TJE2Wa2vLYQZ46XoydPB5sTYbdh7Kxg7Z0TMYQNM2Zirv2S1kf3Z8sLz/LdB4uJBOvI69SNw8++kDPumYqpa3z17ts8f8WFuPILGfnH8eS1bU+XXr0IBALk5OS0yH+t9eP3UkorxPPyyy/Ttm1bgsEgW7duZcWKFT9ZiNQYNm7cyHHHHcfGjRut851zzjnWnED91MO9cRwPOeH+3//+x8iRI5FS8tRTT9G7d28KCwuVt61oUbjd7gYx7kQigcfjQdM0PB4POz94k61T76TTBVfT59a/IgSE160l/TGXQtD3zmlIAbGKcgo/XkIikcAubAy44VZwOIlHIySiESJVOzClpMtxA+l83PEEqqv516Q78HfqzGUPzSDH72+xHrfT6SQej2Oz2ayl/EKIBh7yI488wiOPPLJP40+YMIFt27YxdepUIDk3MW7cONxuN6Zp4nK5rB+LvXkNW+arvY8sXbqUjz76iNLSUmw2G5s3b+aYY47JtlkKxV6TzuaAHyrmpReSVL73Bt89eT89LroWb9cexL/fgkBgQyIEqVqBguimrzGlxARaHz8YE0hEIkQrKzBN0KXElBIDMEyJYYIpk+f95SWX8v78+cy5/vdc+/QzDSbzWhLpglrplYzpycmpU6fuc1z7x6RFG5Lv25133smdd95pTYqml8knEolGZ5YcEsItpWT9+vXMnz+fBx54wPpLp0Rb0VJJZ3UIIayVfJFIBFG1ne0vP0/nsy/GXVSCGajChg0hUisCAQGYSDCTtzEliUgIQ0p0MynSppSYMnlbT1+bEgMTzQCXO4dfXPRbFj08nUevvIKb//7/svuC7CPp5esej4eamhqklDz22GM89NBDDUIjhYWF2O32BmmRNTU1uxwzPz8fp9OJaZpWDZj0sVJK5syZg91u56677rIyVQzD2Kt0wEMij/uTTz5h2rRpPPbYYy0yDqdQ/Jh0TDtdeS4QCFCQn0/Flyvxl7TFW1CMGaqFWAQRD2GLR7DHw9jikeQlFkbEwhANQywE0TBmJIyMhDAiIfRICD0cJBEOoYWCJEJBEuEg8WDyOhaqw9Q1Tr7qamrKygju2JHtl2SfCAaDFBQUkEgk8Pl8PPnkk9xzzz0NFt8ceeSRrFixgrKyMjZt2sSOHTv47LPPdlkts3fv3rz77ruUlZXx5ZdfUlZWxieffEK/fv2sYwzD4PHHH+eBBx5g27ZthMNhIOn9NzaN8qAX7nfffZe3336b6dOnqzi24qAhXZDI7XZjGEYyrS1QS+37b2DL8aAFayAWQUYjEEsKtS0ewREPY49HELEIxCPWMUYkjIxGMKNhzGgEMxJBj0TQIyG0SJhE+jocJhEOkQiHiIdDaLEETm8e7/2jZXrcOTk5RCIRHA4H27dvZ9KkSQ329+nTh1mzZlFUVGTFwuvq6mjVqhVTp06lV69e1rFut5ubb76ZXr16EY/H8fl8aJpGmzZtmDt3Lscff3yDsadOnUo4HLY6Qql0QJJ/ST7//HPef/99xo0b1yKW40oprZzONJMnT2bx4sUAXH311Vx22WXZME3RzEiHRiD5hU8kErhtgtg3X1E8aixmNIxhs2G3iaR7ZgO7zY7NBqYEYUowJdKUSNNEGhLTBMM0k/FtU6KZEk2aaEYyhKKbZnKbKdGN1G0Jbbt2QctQPPhAo2kaubm5xGIxrrvuOiu7JE15eTm33norhmFwxBFH8Oijj+LxeIhEIhx77LGccsopbNiwAYBTTjmFESNGkEgkrB+Eu+++m5UrV2KaJlu3bm1wbiEEf/jDH3jxxRdxuVx7lWp40Ar32rVreeSRR5g1a9YBWRhQUVFBYWFho/spmqbJhg0bGnxIli1bxsMPP9zguMmTJ1NaWgrQYieAFJmnfvqaldJmE0jTwIxF0G1gs9kxbQJpE2ATSLuAtDCZIM2ko2AayWvdBN0w0SVouokuk3HthGEmhdww0U2ThCnQDIlmmmiGSSwcyvbLsc+kGxg4HA7mzp3L+++/z0UXXWTtr66u5uOPP6ZHjx7cf//92O12IpEIbrebeDzeIBPE5/PRqlUrK8vH6/UyadIkxowZw4oVK35y7pkzZ3LhhRc2aGDRWA5K4f7ggw9YtGgRc+bMyVjB9d0RCAR44YUX2LRpE+3bt6dLly6cccYZPznulVdeYUe9OKBhGCxbtqzBMQMGDNjlG5wNEokEn3/+Of3798+2KYpdkEgkLIfEMAw8Hg+xQC1GOEJs+zZy/PkYNjs2u0DYQNgFCBsmNkwkupQYZlKQdSPtVUt0aZIwQEt71EZyMjIajRLXNHDnkDBlSrhBMw3ikQhNucBdSsnixYsz1sPyx2OnwxN2u50PPvjgJ8f07t2bBQsWkJeXh8Ph4O2332bHjh0UFBTQr18/LrvsMnRdZ9CgQSxbtowtW7aQk5PD2WefjcfjYdGiRYwdO5Yvvviiwbiffvop5513nuW87U2ZgINOuD/44AM++ugj7rrrriYXbUj213vmmWd4+umnWbFiBVOmTMFut/PPf/6zwXHHHntsg76DbrebOXPmNNu4ezQa5bXXXuOdd97JtiktmnPOOYf58+dzwgknkJOTk7FxPR4PO3bsQAiB1+tN9kH05WFKqPt6DfZeRyByPGCzpTztVCaJpiPcHgxpJoVX1wlv+45YOEzMMEkYkrguiZsGcR2cxW3A5ycWiRJPJBC6QSJ1nGZKErrB1tWr6Tnw+D0bvY9IKZk1a9Yuq+1lgnSnn1AoxKxZszjzzDNZt24d69ats84/depUHnzwQYQQVFVVMX78eIYMGcILL7zAOeecY5Vnvfbaa3nhhReYNm0akKxLcueddzYQ5Q4dOjBq1Cief/55SktLyc3NbXRVwDQHjXBLKVm7di2LFi1i0qRJ+P3+Jj+naZpMnDiRv/3tb8ybN48XX3yRjRs3smzZMiZOnNjg2M6dO2f0i6toGfTv359bbrnFintminSz3vRiEZ/PRzAU5MjSe1kzeRzGl2FKDu+LdLswbAJDgIhHMGtrsLdpj6kbBDeuwdAlsXicuKYRN0ziOkR1g7huEjNMtIptaNiR3nzs+QXISAzd7kAzIGGYbPxyFTZXLkf+YljGntuBJN3Y1+Px4PF4+OSTTygpKeG3v/2tdczXX3/NunXr+OCDDzj//PO56qqrKCoqstL9DMOwmicYhkFeXh5nnHEGTz/9NNOnT2fLli0N5q4KCgqYPn06N954I926dbO6Dh2SC3C++OILHn74YebOnXtAPG1Ixhnvu+8+rr/+eubMmcOIESO47bbbDpi3rzi0MQzD+pwlvUY7wleIppvYwmGqv/qc/J5HYDN07KaB0OJold9DeVkyV9sEzTRJmEkPOqEnvWiDVO62hEQ8QUwziAWCxL/7jphhojvdeNu2Z9uWrQSDEboefxh9myCMcSBIN/aNx+MUFRVRWFjId999RywWs/puQtIx3Lx5M/fffz9r1qzh3//+N8888wxSSnJycqz0wb59+3LzzTczceJEFixY8JPwh81mIxqNUl5eTu/eva1FPk6nk1gs1ug5skYLtxDCDnwGfC+lHCuE6Ab8AygCVgCXSCkTQgg38BxwHFAFnC+l3NLY8+wLixcv5t133+XJJ588oIIphKC4uJijjjqKp556ilgsxkUXXaREW9HkpJdqp8U7XV41BJgeD4l4DDSdcG0NhOsQoSA2m8CGQCIxpIkpk8Ktm6Ri1j/ErvV0/NtMxsNNU2LI5OpJQ9MI1dQSi0Sxuz1I2XLqb/+YvLw8qxt7bW0tLpeLTZs2MWTIEEaPHk1dXZ01gTlr1iyklLzyyisMHjyY0tJSq9u91+tFSsmECROYP39+A9G+4YYbLI88XRxs48aNtG/fHr/fj2EYe/2PbG887j8Ba4F0DGIKMF1K+Q8hxCzgKuCJ1HWNlLKnEOKC1HHn78V5Go2UkmXLlvHhhx8yfvz4rJSVLCkp4f7772fVqlV0795dLfBRHBDi8bhVwS4SiZCbm5sss9r7KAp/cQrb33wZEx1ZVYVDmNh0E2ETiJRwm7KeEEuZjG0bsoGA6/UmL3WZnLA0pETXJPGaAKYEu8fDGbfeYtVIaWmkQ06JRIL8/HyklAwbNoyRI0cSi8Wspeg2m41evXoxfvx4AGbMmMFNN91kpRMmEglrleS0adMs0b7rrrv4/e9/j8fjsVa5ejweYrGYVdURsLrFN1bDGuUaCiE6AqcDc1L3BTASeCF1yDzg7NTts1L3Se0fJZro53j9+vU8++yzjB8/nsLCwqY4RaM5+uijlWgrDhher5dQKNSglnR+fj5xYcffpSe6CXHNJBqJEo0miBgmUd0koievo7pJTE+KdVSTyYlJ0ySRSv/TpCRuSnRDoktBIuVxa6aJzZuXDCW4ctB0ncEnj24R6yR2RW5uboPXMB3yqKurIycnh7q6Oqu7fe/eva3H6bpu9ZKMxWI4nc4GTYDT9OrVi8LCQpxOJzabDb/fTzQaJT8/36rHnfa098bxbKzHPQO4FUinRRQDtVLK9GL+MqBD6nYH4DsAKaUuhAikjs9on7ClS5cyf/58nnjiiRb7N02h2FcikYiVpZS+HQgE8Pl82Lr2wtaqPbGKMjSZwI7AbiNVGTDpq0nZ0OtOL66xskUMA81IinfCTOdzS3QDYjW1mAKOHjUCT1ExlZWVFBQUNMiaaimk67yk86jTYU6Hw2E1AZZSYrfbG0weCiGsvOt0DZP6lzTpbvDpbZqmWXne6RBXOo7+48V3P8cePW4hxFhgh5Ryef3NuzhUNmJf/XGvEUJ8JoT4bG+rcC1evJjFixdb6TkKxaFGOu4ajUatCa/03/ouQ0/E06EzUcMklsoOSXrYJjFdJ6brRHWDqG78sN8S6dREpSGT+dxpMU/leWtmMoRS0rUb36xew9jrb8Dv97fI7jfwQypgWpzr53SnKzBKKbHZbHTr1q1BY4T//ve/AFaIJB3/rqqqApIty/r27WvtS2ed2Gw2DMNo8DjIfB73UOBMIcRpgIdkjHsGUCCEcKS87o7AttTxZUAnoEwI4QDygeofDyqlnA3MBmjTpk2jLV6zZg3//e9/ufnmm60mmwrFoUb6i5/+8qczINKCM+CWe3jlt2cQjYawC5GcmJRYZV1NwExXAUSi68lMkqQ4m+gGJMykmGummco+SQq42+endc/DadWzJ0Xt2lntvloi6SbBfr+fQCCAy+XC6XRanYSqq6vx+XxEIhEKCgoYNmwYixYtIhwOc8MNN9CpUydL2AHKysqsSoDHHXcc7dq1s+qkp2vK1NTUWJ3l063LEolEZtMBpZS3AbcBCCFOBG6WUl4shPgn8GuSmSWXAYtSD/l36v7S1P53ZQY7h/bu3Zu7775bLf9WtBiaonGuYRjWFz39lz4SieByuYhGoxR070Fu527sWPM5NmHDbpV0NZHYkCLlAaYmJ5P1tpMrJ5P1SITlaWumScxIhkwSpoHPX4DN5aJbv374CgqsmtIt0etOVweMxWIUFBRgmiaGYVBUVGS1ZYtGo/h8PqSUVn0YgMrKSiorK3c7dvpfUCAQwG63Y7PZqKmpwev1Ul1dbcXQ02GXdLPgxrA/eWulwHghxEaSMey5qe1zgeLU9vHAxN08fp+w2WxKtBUtiqbwRr1eL8FgkFAohMPhsPKRI5EIxcXFRCIRxjz2DHHNJK4bRDUjFR6RyeuESVRLhk/i6TCKIYkaENMFMd0kYZjEjeR2zTBJ6AaFHTrTa+gwPLleTrngAoLBICUlJS12ctLn81FTU4PL5aKmpsbKq043QN65cyd2u526ujoikQgDBw6kU6dOexy3bdu2jBgxwvpBcLvd2Gw2qx9oSUmJlcmSjhzszWu4V8ItpXxPSjk2dfsbKeXxUsqeUsrzpJTx1PZY6n7P1P5v9uYcCoViz0SjUXJzc8nJybGK8KdXAAYCATweD9Lhot8lVyeF2kgKd0T7IbadzC4xkvFvQ9YT8eSy9rhuErfi3RJ/2w50H3A827Zs4aQrriAQDJGTk0NtbW2DVl8tiUgkYnVc9/v9VkpjQUGBFR4xDAOv14vH42Ho0KHMmzePgoKC3Y7pcrmYM2cOJ554Im63m2AwiKZpSCmtbJWamppk3n0oZP1Y7M1rqFaKKBQtELfbjaZpVpZCNBq1VvDl5eUlGwMUFlEyeDi2Vu2I6pKIbhIxkimBP6QFyh9uGyYxzUh62XoyRTBuGCRMicufT+uevajasZ1IMET3Y47B5/MRj8fxer0t9l+wx+MhHA7jcDgIh8NWOmD6RzAYDGK324nFYlZPyt69e7Ny5UqeffZZ/H4/Pp8Pv9+P3+9n+vTprFu3jsGDB+Pz+ax2ZA6Hw6orky5RoOs6ubm5DepxN5aDZsm7QnEoUX8pdjojon7tjPSkZbfjBzPg0qt5d/qDaJGw9XiZWogjZXKS0iAd7072mtStBTgmnqIS8tq0IxKN4nZ7mPL2W5YN9SdFWyL124ulqd+erP6+dPlcm81G69atGTNmDN9++y26rlsrIwFrviFdX9s0TSt7pP57BMn5ifpZJ41FCbdC0QJJNwhOi0G6WbDNZkPTNOva5XIx7KrrMKTk1b9MRjYQqGSGiSFJ5nSnl7XLH+py61JgMySBmhq6tmvH1Q8+iC1VCS8ej1s5yUKIFtnpvb7oplc3QtITT5fLhYbecHpf/YUz9VP6NE3D6XRamSKaplmPTSQS1r70e1b/h6KxqFCJQtECSedsx2Ixq7h/elteXp61BD0YDGKz2Tj+okv59UMz6XjswGQ8O3XpMOB4PG3aEjPM1EXSa/iJxE2SS+BNiEWi9D/5JK647z5yU81CTNMkLy+PeDxOXl5ei8woASxhTS+GSYtnfdFNL1VPe+DpSn7psEo6N1sIYSVPpJs5m6aJw+Gw9judTnRdb7Av/YO3N/9aWt5PpELRQohGo1RWVhKLxSgrK0PTNEpKSjI2flFREZD8C5+Tk4MQwtpWWFiIEIL27dtb+0deejnDzjsfo54HaHc6MU0D0/jBE3e4XGj1muUCuDweXB6P5R36/X6ryFpLzeGG5A+g2+1u8BrCD+GS9L76pLux72pfmp+LW+9LTPvHKOFWKJqI//3vf0yYMIEdO3YwYcIEiouL+dvf/pax8etXoUwLyJ6u7Y2sp+PZzeK23Y3bUkkvYkrfrr/9x9sas+9AoUIlCkUTEIlEeOedd3j66afp27cvTz31FH369GHJkiXZNk1xECCaYlXX3lJYWCgvueSSbJuxW+LxuLWKqrkSCARwOBwZKwNgGAZbtmyhR48eGRkPkm3etm8vQcrmm4FQUPA9Xbp02POBe8AwDLZu3Ur37t3ZtGkTXbt2pa6uDtM09+tzZBgGVVVVtG7der9tbCrC4TCGYWS0C9X69es57LDDMjZeVVUVeXl5jV6pmA3mz59PTU3NLt36ZiHcQohKIEyGKwhmkBKUbfuCsm3fULbtGwebbV2klK12taNZCDeAEOIzKeWAbNuxK2bvclkAAAUsSURBVJRt+4aybd9Qtu0bh5JtKsatUCgULQwl3AqFQtHCaE7CPTvbBvwMyrZ9Q9m2byjb9o1DxrZmE+NWKBQKReNoTh63QqFQKBpB1oVbCHGqEGKdEGKjECKjTRf20Z4tQogvhRCfCyE+S20rEkK8LYTYkLo+IC3lhRBPCyF2CCFW19u2S1tEkpmp13GVEKJ/luy7Wwjxfer1+zzV8i6977aUfeuEEKOb0K5OQojFQoi1Qog1Qog/pbZn/bX7Gduy/rqlzuURQnwihPgiZd/k1PZuQohlqddugRDCldruTt3fmNrfNQu2PSuE2FzvtTsmtT0b3wm7EGKlEOLV1P2med1+3J34QF4AO7AJ6A64gC+AI7Ns0xag5EfbHgAmpm5PBKYcIFuGA/2B1XuyBTgN+A/JZs0nAMuyZN/dJNvb/fjYI1Pvrxvolnrf7U1kVzugf+q2D1ifOn/WX7ufsS3rr1vqfALIS912AstSr8lC4ILU9v/f3tmEalGFcfz3LLQiI1FCxLsoQ1AIsUgJFBGTyAqvwl0IQS4EwWohLQQR3Lms3IiC9qF9KWmhuDK6iisx/Eiv+NGFgsSLd6XpxtL+Lc4z3uH1fV8VmznzwvOD4T1zZmD+/N85z8x5zsyc7cBaL78PbPfySmBvBm1fAgNt9s/RJj4CvgUO+XolvuW+454HDCvNpvM3af7K/sya2tEP7PLyLmB5HQeVdIz7J1rupKUf2K3EcdJkzlMz6OtEP7BH0m1JvwPDpP+/Cl0jkk55+SZwAZhGA7zroq0TtfnmmiTplq+O80XAYmCf17d6V3i6D3jdrJqPeHTR1ola24SZ9QFvAzt93ajIt9yBexrwZ2n9Ct1P4joQcNjMTprZGq+bImkEUsMDcr5v3ElLk7z80Lumn5fSSln0eRf0ZdLdWaO8a9EGDfHNu/tngFHgJ9Jd/nVJd9pouKfPt98gzUFbizZJhXeb3btPzax4j71u77YA64HiU4uTqci33IG73RUm92Mu8yW9AiwFPjCzhZn1PCxN8XIb8CIwBxgBPvb62vWZ2QRgP7BO0l/ddm1TV7e2xvgm6a6kOUAf6e5+VhcNtepr1WZmLwEbgJnAXGASaSLzWrWZ2TvAqKST5eoux38sbbkD9xWgPGVyH3A1kxYAJF3131HgR9KJe63oYvnvaD6FHbU0wktJ17xx/QvsYKxbX6s+MxtHCozfSPrBqxvhXTttTfGtjKTrwFFSfniimRWfgS5ruKfPtz/Lw6fP/g9tb3r6SUoTln9BHu/mA8vM7A9Syncx6Q68Et9yB+5fgBk+8jqelKQ/mEuMmT1tZs8UZeANYMg1rfLdVgEH8iiELloOAu/5SPprwI0iLVAnLTnEFST/Cn0rfTT9BWAGcKIiDQZ8BlyQ9ElpU3bvOmlrgm+u4zkzm+jlp4AlpDz8EWDAd2v1rvB0ABiUj7jVpO1i6WJspBxy2bta/ldJGyT1SXqeFMcGJb1LVb5VPcr6oIU08nuZlEfbmFnLdNII/q/A+UIPKff0M/Cb/06qSc93pG7zP6Qr9OpOWkhdr63u4zng1Uz6vvLjn/WTc2pp/42u7xKwtEJdC0jdzrPAGV/eaoJ3XbRl982PNRs47TqGgE2ltnGCNDj6PfCE1z/p68O+fXoGbYPu3RDwNWNPntTeJvy4ixh7qqQS3+LNySAIgh4jd6okCIIgeEQicAdBEPQYEbiDIAh6jAjcQRAEPUYE7iAIgh4jAncQBEGPEYE7CIKgx4jAHQRB0GP8B3ecKdiRIWmrAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## नीति की जांच करना\n", + "\n", + "चूंकि Q-Table प्रत्येक स्थिति में प्रत्येक क्रिया की \"आकर्षकता\" को सूचीबद्ध करता है, इसलिए इसका उपयोग करके हमारे संसार में कुशल नेविगेशन को परिभाषित करना काफी आसान है। सबसे सरल स्थिति में, हम बस उस क्रिया का चयन कर सकते हैं जो Q-Table में सबसे उच्च मान से संबंधित हो:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "# code block 9" + ] + }, + { + "source": [ + "यदि आप ऊपर दिए गए कोड को कई बार आज़माते हैं, तो आप देख सकते हैं कि कभी-कभी यह बस \"अटक\" जाता है, और आपको इसे रोकने के लिए नोटबुक में STOP बटन दबाना पड़ता है। \n", + "\n", + "> **कार्य 1:** `walk` फ़ंक्शन को संशोधित करें ताकि यह पथ की अधिकतम लंबाई को एक निश्चित संख्या के चरणों (जैसे, 100) तक सीमित कर सके, और ऊपर दिया गया कोड समय-समय पर इस मान को लौटाए।\n", + "\n", + "> **कार्य 2:** `walk` फ़ंक्शन को संशोधित करें ताकि यह उन स्थानों पर वापस न जाए जहाँ यह पहले ही जा चुका है। यह `walk` को लूपिंग से रोकेगा, लेकिन फिर भी एजेंट ऐसी स्थिति में \"फँस\" सकता है जहाँ से वह बाहर नहीं निकल सकता।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 5.31, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "# code block 10" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 57 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5wU5Z3v8c8vEk1islETkuPtlcFdT3LMvjbRsF5iTnajibdkQ5KjOeRKjKsnWT3rms1mwVw8q/EWL6gJXlAwxBsqQSWCIgJeuDPc5TrDfQBhhoFhYBiYgef80U8PPT19qe7p7qrp+r5fL5jup6qrnuqq/tVTTz31POacQ0RE4uE9YWdAREQqR0FfRCRGFPRFRGJEQV9EJEYU9EVEYqRf2BnI5aMf/airqakJOxsiIn3KggULmpxz/TNNi3TQr6mpoba2NuxsiIj0KWa2Mds0Ve+IiMSIgr6ISIwo6IuIxIiCvohIjCjoi4jEiIK+iEiMKOiLiMSIgr5IlXr1nW007T0QdjYkYhT0RapQy/4OfvLkQn78x/lhZ0UiRkFfpAp1HjoMQMOu/SHnRKJGQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYCBX0zu8HMlpvZO2b2jJm9z8wGmNlcM6szs2fN7Gg/7zH+fb2fXpOynGE+fbWZXVyeTRIRkWzyBn0zOxn4V2Cgc+5vgaOAwcCdwHDn3OnALuAq/5GrgF3Oub8Bhvv5MLMz/Oc+DVwCPGhmR5V2c0REJJeg1Tv9gPebWT/gA8A24AJgnJ8+BviGfz3Iv8dPv9DMzKePdc4dcM6tB+qBs3u/CSIiElTeoO+c2wLcDWwiEexbgAXAbudcp5+tATjZvz4Z2Ow/2+nn/0hqeobPdDGza8ys1sxqGxsbi9kmERHJIkj1zvEkSukDgJOAY4FLM8zqkh/JMi1bevcE50Y65wY65wb2798/X/ZEpACz1+7k0bfWhZ0NCVG/APN8GVjvnGsEMLPxwOeB48ysny/NnwJs9fM3AKcCDb466MNAc0p6UupnRKQCvvPoHACu/uJpIedEwhKkTn8TcK6ZfcDXzV8IrACmA5f7eYYAL/nXE/x7/PRpzjnn0wf71j0DgNOBeaXZDBERCSJvSd85N9fMxgELgU5gETASmAiMNbPf+rRR/iOjgCfMrJ5ECX+wX85yM3uOxAmjE7jWOXeoxNsjIiI5BKnewTl3E3BTWvI6MrS+cc61A1dkWc6twK0F5lFEREpET+SKiMSIgr6ISIwo6IuIxEigOn0R6du27t7PrLU7w86GRICCvkgMDB45h03NbWFnQyKgqqt3duxp56xbprBme2vYWREJVWPrgbCzIAENHjmb+1+vK9vyqzroT1m5neZ9B3l85oawsyIiEsicdc0Mf31N2ZZf1UFfRES6U9AXEYkRBX0RkRhR0BcRiREFfZEq1GOgChFPQV+kimUauUjiTUFfpIqpxC/pFPRFqpBK+JJNTIL+kfLOV+59k/ELG0LMi4hIeKo66FuG8k7djr387LklIeRGRCR8VR30RUSkOwV9EZEYUdAXEYkRBX2RGHBqvCmegr6ISIwo6IuIxIiCvohIjMQq6Dunek2Jp0zPrEg8xSLoK9aLiCRUddA3FW5ERLqp6qAvIiLdVXXQV7WOiEh3VR30k1TNIyJRc+iw47/+spyGXW0VXW8sgr6ISNQs3ryLx2du4IZnF1d0vQr6IiIhSFY/H65wNbSCvkiVeLuukUfeXBt2NiTiAgV9MzvOzMaZ2SozW2lm55nZCWY2xczq/N/j/bxmZg+YWb2ZLTWzs1KWM8TPX2dmQ8q1USJx9INR87j9lVVhZ0MiLmhJ/37gVefcp4DPACuBocBU59zpwFT/HuBS4HT/7xrgIQAzOwG4CTgHOBu4KXmiqBS15hGRuMsb9M3sr4AvAqMAnHMHnXO7gUHAGD/bGOAb/vUg4E8uYQ5wnJmdCFwMTHHONTvndgFTgEtKujVZKNhL3OiQl2yClPRPAxqBx81skZk9ZmbHAh93zm0D8H8/5uc/Gdic8vkGn5YtvRszu8bMas2strGxseAN6r6sXn1cpM9L/gTUn74kBQn6/YCzgIecc2cC+zhSlZNJplDrcqR3T3BupHNuoHNuYP/+/QNkT0REggoS9BuABufcXP9+HImTwHZfbYP/uyNl/lNTPn8KsDVHuoiUicr3ki5v0HfOvQtsNrNP+qQLgRXABCDZAmcI8JJ/PQH4oW/Fcy7Q4qt/JgMXmdnx/gbuRT5NREpMNZuSTb+A8/1f4CkzOxpYB1xJ4oTxnJldBWwCrvDzTgIuA+qBNj8vzrlmM7sFmO/nu9k511ySrRARkUACBX3n3GJgYIZJF2aY1wHXZlnOaGB0IRkUEZHS0RO5IiIxEqugr5taIhJVlRrONRZBXw9nSdxpjNxo++sbJ/Gth2ZVZF1VHfR1mItIVKWWRQ8ddizatLsi663qoC8iIt0p6IuIhCCsmggFfRGRGFHQFxGJkaoO+mq0IyLSXVUH/SR1sSxx5Zzj91Pr2N9xKOysSETEIugnVerhB5Go2NXWwT1T1oSdDYmQWAV9kUrae6CTZQ0trNy2hzteWaVCh0RC0F42+zT91iQMV4+pZfa6nRzT7z0c6DzMtV/6az70vveGnS2Juaou6asqX8K0cNMuADoPJ0odpptLEgFVHfRFRKQ7BX2REL2xegf7D5a2ZY3uHUguCvoiIVn9bis/enw+v3rxnZIu97ZJK0u6PKkuCvoiIWlt7wBgw859JV3uk3M26cFEyUpBX0SkAhpbD1AzdCK1GxJDg4d1Yo5V0FfpRyopebwl2+yorj3e5q1PBPvRM9d3S690m65YBX2RMKilpkSJgr6ISIgqff0Xi6DvVLEjMaOLi+jTICploMtqEZHuqjroi4hIdwr6ImWmRjsSJQr6IiIxEqugf+iwilxSebq3JFESq6B/9+TVYWdBpAc9tCWVFKug/+ryd8POgkgXXQFIGKo66KsAJVFWruNTJ5PqsHPvgbIst6qDfpLpURWpgB2t7cxZt7Pgz5V6RC0VdqIt1/7pPHS463W5bkHGIujriVyphG+OmMXgkXPCzob0YXe+uqrs6wgc9M3sKDNbZGYv+/cDzGyumdWZ2bNmdrRPP8a/r/fTa1KWMcynrzazi0u9MT3zXO41iByxZff+nNNV9BA4EpcyHQ9zfU+cienlOWIKKelfD6QOyXMnMNw5dzqwC7jKp18F7HLO/Q0w3M+HmZ0BDAY+DVwCPGhmR/Uu+yIR5n+zql6UXCLZtbKZnQJ8FXjMvzfgAmCcn2UM8A3/epB/j59+oZ9/EDDWOXfAObceqAfOLsVGBKWSv4RCx50UI+Q6/fuAXwDJuwwfAXY75zr9+wbgZP/6ZGAzgJ/e4ufvSs/wmS5mdo2Z1ZpZbWNjYwGbIiIi+eQN+mb2NWCHc25BanKGWdMHCkqfluszRxKcG+mcG+icG9i/f/982SuIWjVI2DoOHWZWfVPY2ZAIyRqWynSFGKSkfz7wdTPbAIwlUa1zH3CcmfXz85wCbPWvG4BTAfz0DwPNqekZPiNSvVJ+1fdOWcN3H5vbNU5qqbR3HCrp8qT88sb0sKp3nHPDnHOnOOdqSNyIneac+x4wHbjczzYEeMm/nuDf46dPc4nnzCcAg33rngHA6cC8km1JACrpS5gMWLtjLwBNew+WdNnN+0q7PCmf1vbOrNMqcfunN+30/xP4mZnVk6izH+XTRwEf8ek/A4YCOOeWA88BK4BXgWudcyqexMg9r61mWUNL2NkI7K7Jq3hhUUPJlucobeHtF+OWUDN0YgmXKJXwdl336r0FG3dVdP398s9yhHPuDeAN/3odGVrfOOfagSuyfP5W4NZCM9lbyRK+Wu+E6/fT6vn9tHo23PHVsLMSyIjpawH45pmn9G5BeY67Yjtce642+wkp6BI7Dh3m1y++w79eeDonHff+ovIh5VGuiomqfiJX7aMlalKPyPRCyN4DnSzc1PtSXyGFm7frGhk7fzM3vrCs1+uVvqGqg75I1OQqvV371EK+9eAs9rR3VCw/SSoeRUPq8VGufaKgLxICs54NC5ZtSdzv6Og8nOET0tcVWr2s6h2RKpIa8EvRy6buV1WHqLfeEYmFGXVN7G7rO00inVN1TRRFpcm4gr5IHt8fNZerxtT2ejmpP/rmfQfZvKut18sslYjEo9hbktKkuVwnCQV9kQDWbG8t+rOZSt03vrCMG55dknH+Yn7rqQFif4Cncy9/aJbPm64JwhLWiVZBXySICvxCexN+t+bpyz9dbYUfCJLCles+jYK+VESxDyBFRVGl7wqW5fIN4CJ9j6p3eiH53fXxuBOqhZt20XGo+psSjphezx2v9ByyrvNwdW67hhINx4qte3hyzsZQ1l1QNwx9jqorS2Lltj1868FZXP0/B/DLr54RdnbK6q7JqwEYeumnuqW3dwQP+sPGL2XHngNd74OGVYXf+LjsgbdDW3d1B/20X5HaMhenaW8igK3cVvzNzGp36PCRg+2ZeZszzpPt+OvrVV9SHlEYI7fPUqyXchs2fmmg+XLF9zCO02ufWhTCWiVMsQj65eacU2kt5nL1eJkUtUPkzTWNgZp3SjjK1Zw2VkG/HD+6toOdDBg2iT9Mqy/9wiNGN/2KU4qf7oqte/iHu6bT0pa5M7b0Y3vKiu15l7moBD16SnCF972j6p1I2u1/hE/P2xRyTnqvdkMzO/ce6JGuB3h6pxQ/3Qem1rFxZxuz1gYbX/eXL76Td577Xq/reh21qxApHwX9Eho+ZQ33vLY67GwU7fKHZ3PFI7NLvtz7X69jwLBJJV9utSpFAFZ1o2QTq6Bf7tY790+t4/d9vJpnXeO+ki9zzOwNJV9mNUn2sqnWZZJKD2dJn1Xtpc69B7IPdF1q2b5J3W+Jvqj8DGIR9CPyXcdWNX//k5Zt429vmlySZeVszlnmATh0lRE96nunGClf2uHDrixn2moOaNLTo2+t4+a/rOh6/9aaxuAfDniwhBGAo1IKlSMmLXu3LMut7qCf4rQbJ2XslOqRN9fy0uItgZbxz2Pm89mbX8s4bVtLe6/yJ6WxoWkfNUMnsrRhd1mWf+uklYyeuR6APe0dge6BFBrDcwXgbNPS0xXE+75bXl6Rf6YixCboZ3P7K6u4fuziQPO+vnJHVxPNOEoGknELGlj17p6M83QeOsySzd0DbiUD0LRVOwAYvzDYiTyb1G4Vsvn2w7OZt6G5wCVnX25qCb9ue2ugtvYihYp90O+tOFSFplc3/Pz5JVxyX+YOo+5+bQ2DRsxk+daWjNP7iuZ9+YdHXPVusL6IijnnfWX4W1z9p56jdanuXXpLQT/mWto6WNu4t6jPDhk9r0fVWDLYN+3tO2PKVox1/ddNtbdukmhR0I+5r4+YwYX3vFlU4HlzTWPgqrFstu9pp2V/6arMol8S7l2AL9f5Qaed+FDQ76W+/mPZuDP44NzFBpxcJ5RzbpvKF+6cVtyCC9TecYimvQdoj3gnY+lt7mfUNfUYo7fQ4RFFkqq7P/0y29kHAkhQ5axhyLfo1vbgDzftbjvIuAUNXPWFAV1PsmZcZ4YN+tSvXwXg7075MBOu+0LgdZaMSzQGyC7z9nx/1NweaZ+/o/uJUjVE0fDtR2bzoWP6MepHf99jWlSuQhX0e+Fzv32dE449OuxsVEwUDtrP3jwl8ffU4xhYc0KP6UGyuLShuJvM/3DX9KI+F4GvLa++kMe+YN76QltzVV4sqnfKWQoK0sqjL0j9ivpC1cHBEMbrLaQqLFXwwy//nOpuQXqrqoO+Si+5ZRvoPL3qIKnok2c54lQBy2xsPcDztZmHMIyChZt2d6uzT+3KumboxIrkQaeS+FD1Toz95qUjfa7nutlazMkzSs0Q/88TtSzcVJ4ndEvlouFv8dEPJqoKc5Xms41tEJ1vW6Kuqkv6kluuJz63tezPWHUVpWCeS2oud7T2HBgmmvKfXh2OXwcYIEUSxs7bxKvvlKcPm0JF5aeTN+ib2almNt3MVprZcjO73qefYGZTzKzO/z3ep5uZPWBm9Wa21MzOSlnWED9/nZkNKd9mJUTkO+4T0r+r826fxlm3TOkx33MBq0neWH2kI7JK1u7katFTDa57ehFPzNkYdjb6jKHjl/GTJxeEnY1ICVLS7wT+3Tn3P4BzgWvN7AxgKDDVOXc6MNW/B7gUON3/uwZ4CBInCeAm4BzgbOCm5Imi3MKIA+ffMa3qSmQOR932zE/vvrx0K7tSrgz+OGtDhXIVfQc7E/dOdBNWoiBv0HfObXPOLfSvW4GVwMnAIGCMn20M8A3/ehDwJ5cwBzjOzE4ELgamOOeanXO7gCnAJSXdmgppyjCObLotu/cXVCL77csrutWxl0vDrjbWbG/11TRHzoa9ufTc1rKf655exE+fCl6iembeJs7M0mNpKaRuT5UX/gGYsGRrrz7fm2q78++Yxr1T1hT12T3tHRVvLfbKsm1sbk60xNqyez81QyeyMEaDxBdUp29mNcCZwFzg4865bZA4MQAf87OdDKTWATT4tGzp6eu4xsxqzay2sbGAvsorKFlyK6XHZqznT7PLf9n+hTunc9Hwt3hm3mYKrXgxLGMATX4fW3cH71562Phl7Cqwx9Ig33scAnwmBfXrX2Jbdu/ngal1+WfM4OLhb2VtLVYuP31qIZfdn+gwcEZd4nsbO29TSdfR0tbB6BnrI3kPLHDQN7MPAn8G/s05l7lfXT9rhjSXI717gnMjnXMDnXMD+/fvHzR7FRW93RjM9FVHngZNDxLlrHoo1YG/cluuwy65rpKsiu17QhwfIYQDLKx7IWGNQ9Fa5iEuh72wlJtfXkHtxuhdQQQK+mb2XhIB/ynn3HifvN1X2+D/JiNKA3BqysdPAbbmSC+7CJ5sQzFtVXoXAIX90B2uqOBQlhu5Zd6nC8rwY83W3DLdna+uLvm6o6alrYPdbdXxYGMmyaveYh/oK6cgrXcMGAWsdM7dmzJpApBsgTMEeCkl/Ye+Fc+5QIuv/pkMXGRmx/sbuBf5tLJJ/sTmbdjZq+V0HjrMw2+u7XofxUu2pBcWNXDFw7MK/lzOTUqJVZm2PUpfRzVU7/x5YUPF17k6y6A45fKZm1/r6lIjTOU6dhf7gYTumryqKy0qx2aQh7POB34ALDOzZD+6NwJ3AM+Z2VXAJuAKP20ScBlQD7QBVwI455rN7BZgvp/vZudcRTqq2Nxc/I2izkOHOfu2qX2mu4Ubnl2SdVpqFc6ry4O1XT4cYASpsI2esZ7jj30v3zzzlK601G3NVsLuOHSY68cu4voL/zuf/G8fKns+o2z7nr7yLEPpjJm1gZsmLC/rOqJUIErKG/SdczPIXg9wYYb5HXBtlmWNBkYXksGwvbmmMWPAzzZcYLVJ7+MmU/VOvhJM+oH/qxeX9TZb3dzsxxL95pmn8Nry4EMMrti6h0nL3qVh1/6K9Lp54FDuHlmDtAqrViOm1/P9cz7Bhz/w3oqt8+m5pb15m0lUSvep9ERuHpnGSnWOijzl19rewYqtxZ1cnHPM39DM7LW9q9pKDdj5Si2bmttYmFYXvqe9g/1p3U8/Oafnj62zRB2ozahv6vb+3ZZ2NjX3rFd1zvGbHKW8Fxf3bozdTK4e03P4w1LoC1djSTv3HmBHa8+bt3dNXs2vKtBkWRT08ypFq4ZtLfsZMb2+4HsBVz4+n8seyDwWbT7OwRUPz+Y7j84JPH82qdUj+b6NfQe7B/gfPz4/y5zdFTp6Vr7WRsnt+drvZ2Sc/lzt5h4DuKdaVIa+epYU2aVzPoWMR1Col5duZUPTvkDzBjn5fO63r3P2rVMzTmsrc4uaMESxekdBv0hBW2IA/PTJhdw1eTV1Owobi7Y3zb0OpRxt+w/2bqCXoAE2k8U5AmsQW3bv59aJK4ouzWarMvnPP5e2iilMo2asK9uyr3t6ERfd91bZlp8qzPhYyO+5EBGM+fEN+hOXbqvYupJB93CRp/1iWgulVkt9+5HZrGvcmzM4z12fvxrIrPCD+D0Br5Q6DmVe8vXPLOLRt9ezpKH7yeOFhVtwzmUthT5V5vraJ2ZvKOvyC/HAtPqyLr8cDyNWQiGNL54tU9fbhVSPVkpsg/61Ty+s+DorudNTb8Au29LCBfe8yZYcj7v/KEA1jHMw8q2epcpccf09AY+wc2/vfsm/o7Wd7Xva6chSwh+/aAuTl7/LzLVNGaeX269fKm+rj76ot4f37raD1AydyMtLjzy+s2Z7K/uKrPZpzNC76gV3v1Fs9qpGbIN+ujezPMZeiou+Qm4LzN/QsxVr0JPFz58/0lwzU510as+XhejNpW/Qkn6q1vYOzr51KufclrnuN6llf0dkSk/VYH3Auvtsevv8yjq//lEz1nct76Lhb3HVmGD3hQpZRy6z1jbxwqLKPytRKQr63pDR8zI+hZkpZjlXmqZYre0dfOvBmaxrPFLXf8XDs3uUyA8eOsyNLyzLe7k6bsGRA/W495em6Vtqff7qlNGdgiom6N82aVX+maTkdgZsMvrioi3UDJ3Yo6O0XCF/4859jJheWDVU8hwyZ11xj/PkuxeV7Xj+7qNzuz3v8vLSrTya4Qq3r6rqoF9oy5v/9dCswKWVl3I06UvvtyVZJ/r4zPXd0qet2sHCTbsZ/nr3zqrOT+uAasLirTw9dxO3T1oZKG8Ag0bMDDxvLtv3HGCXf1x+d5YO0nK2/Cni5Higo+eN50zNLqF7oPl/RT5ok8zijLpwqoqiImg5PfnEcCENE74/ai53Tc7dvUSxFwqz1jZ161eq1K57ehG3FvDb6y56l6JVG/Snr97BnHWFt1F/fkH+yzqHY21j9svE9GqJPe2JYPlcbXGXjMkbwNkasMysb6LtYHmau33p7jf4l6eKv/9RTEk/U23S9WMX93hQbOe+g7yR8mNP78O/vsDWUoti1L1uPqve3ZO1yjOb13OMxBakBVl6s90g4XJ90z6+++hcrvxjzyqgYk4iuQpzNUMnsnFn4ne/YGMzNUMnUuevFkZMr+ebD5amoFVuVTtG7pUB24enW76lBQaemn/GgvSMYm0HO3lweqI/n3yllGxx0znHym2tfO+xuXz9Myf1OpfFSg/G5XLFw7O7vf9dno7Jvnzvm+XMTlW75L78z4ekH5Y/fWohG+74Kks272bnvgNc8KmP9yoPQa66v5RyY3b+hmb+vuYEnHNFD5F5/djFOacvbWjhEx85lr8sSbT+e6uuidM//qG8VzEQnadzq7akXyrFPhGbz/Apa7rqFPfmaZ2Q7dj/3eTVXQ9vFfoMQCllC77rGvcW9NDVlBXbmVvE1VmpRO9CvLJyxdgOf2Lfvqedt/NUgw0aMZMf/zHx9PH6pn28sXpHUaXu9I+s3LYnY0OHpCsens3m5jYeeWsd59w2tceN6VJ0lJhcwtKGYM+fpK4yW/VopVVtSb9YyX00d91OTj3hA9yTYUSgH4ya16t17G47yMz63gW3WfVNPPTGkZ4/g/Q1Xy6vr8x8WX/BPYWVtK/+UyJQfOusI2Pr5HpqtpSmrNjeZ9ujV8L3HpvLoM+elHW4zKT2tPsxXyphE8lL/cAntwz6ND84rybjPHvaO7ruzWxOuQ/0wqIGBn2mx5hNef3kicyjwS30reMKOZFsbO5d66hSUdDP4n+PzN59Qbabipn8/PklPZ4KHTxyDqveLbwljMOxo7WdptaDLNtSnkf6o6C3TQcLtaShpeuEE2cz6xNNFedv6HlvY976Zuat717KzlRd8alfv1qSvHz/sbl8+qS/yjjtpgnL+d45n+A97+mZgQUbd3XlMzUc3/DsEv7p7wqvAg3SG+2yMnWvUS4K+mlKXe02Lu3G8KX3vx0o4Kc2H92YcpL5x7veoO3gIf7j4k+WLpMRU45+byS/sfM3RaaL5Rn1Td06z0ttrnzYwR2vrmJthirN3+R4aK5c1Xf/9IfM/TtBorEBJJrD5rtKqhQF/TRjZm8sawdWQathxqS0REmtxmnzrSCC3DgSKUSh3RuVq7+aTM66pfuAK5meDM9nXY4Wd5DorqRQnQG/tC/f+2bBY0KXS6xv5KaXwpPGLyp9t7oiUVfojc58fUlNydGEsxLS85evSW569VUmvxy/jJqhE7veBy18RSXgQ8yDfmq3BVGT2v9Il7g3L5Gyatpb2Ohw/zEu9++n2PskpareS29VVujPZ1tLz76q0gdUzzTeRtTFOuhHWR88liRmolL/H1ShLTbPu31a/pn6IAX9PkTVTiLFu/GFcMZQuPkvK0JZbzYK+iJStFINc1nNRqf1uRU2BX0RKdq/R/i+mGSmoC8iRXtpcYYGBxJpCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxoqAvIhIjCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxUvGgb2aXmNlqM6s3s6GVXr+ISJxVNOib2VHACOBS4AzgO2Z2RqnX07I/OkOTiYhESaVL+mcD9c65dc65g8BYYFCpV7KuMRqjzouIRE2lg/7JwOaU9w0+rYuZXWNmtWZW29jYWNRKPnvqccXnUEQkAp695tyyLLdfWZaanWVI6zZypXNuJDASYODAgUWNFGtmbLjjq8V8VESkqlW6pN8AnJry/hRAozCIiFRIpYP+fOB0MxtgZkcDg4EJFc6DiEhsVbR6xznXaWbXAZOBo4DRzrnllcyDiEicVbpOH+fcJGBSpdcrIiJ6IldEJFYU9EVEYkRBX0QkRhT0RURixJwr6vmnijCzRmBjLxbxUaCpRNnpC+K2vaBtjgttc2E+4Zzrn2lCpIN+b5lZrXNuYNj5qJS4bS9om+NC21w6qt4REYkRBX0RkRip9qA/MuwMVFjcthe0zXGhbS6Rqq7TFxGR7qq9pC8iIikU9EVEYqQqg341Db5uZqea2XQzW2lmy83sep9+gplNMbM6/y+8XRcAAAQhSURBVPd4n25m9oDf9qVmdlbKsob4+evMbEhY2xSEmR1lZovM7GX/foCZzfV5f9Z3zY2ZHePf1/vpNSnLGObTV5vZxeFsSTBmdpyZjTOzVX5fnxeDfXyDP6bfMbNnzOx91bafzWy0me0ws3dS0kq2X83sc2a2zH/mATPLNFBVd865qvpHosvmtcBpwNHAEuCMsPPVi+05ETjLv/4QsIbEoPK/A4b69KHAnf71ZcArJEYpOxeY69NPANb5v8f718eHvX05tvtnwNPAy/79c8Bg//ph4Kf+9b8AD/vXg4Fn/esz/L4/Bhjgj4mjwt6uHNs7Bvhn//po4Lhq3sckhkldD7w/Zf/+qNr2M/BF4CzgnZS0ku1XYB5wnv/MK8ClefMU9pdShi/5PGByyvthwLCw81XC7XsJ+AqwGjjRp50IrPavHwG+kzL/aj/9O8AjKend5ovSPxIjqk0FLgBe9gd0E9AvfR+TGJvhPP+6n5/P0vd76nxR+wf8lQ+AlpZezfs4OV72CX6/vQxcXI37GahJC/ol2a9+2qqU9G7zZftXjdU7eQdf76v8Je2ZwFzg4865bQD+78f8bNm2vy99L/cBvwAO+/cfAXY75zr9+9S8d22Xn97i5+9L23sa0Ag87qu0HjOzY6nifeyc2wLcDWwCtpHYbwuo7v2cVKr9erJ/nZ6eUzUG/byDr/dFZvZB4M/Avznn9uSaNUOay5EeKWb2NWCHc25BanKGWV2eaX1ie71+JKoAHnLOnQnsI3HZn02f32Zfjz2IRJXMScCxwKUZZq2m/ZxPodtY1LZXY9CvusHXzey9JAL+U8658T55u5md6KefCOzw6dm2v698L+cDXzezDcBYElU89wHHmVlypLfUvHdtl5/+YaCZvrO9kMhrg3Nurn8/jsRJoFr3McCXgfXOuUbnXAcwHvg81b2fk0q1Xxv86/T0nKox6FfV4Ov+bvwoYKVz7t6USROA5F38ISTq+pPpP/QtAc4FWvwl5GTgIjM73peyLvJpkeKcG+acO8U5V0Ni301zzn0PmA5c7mdL397k93C5n9/59MG+1ccA4HQSN70ixzn3LrDZzD7pky4EVlCl+9jbBJxrZh/wx3hym6t2P6coyX7101rN7Fz/Hf4wZVnZhX2To0w3Ti4j0cplLfDLsPPTy235AolLtqXAYv/vMhL1mVOBOv/3BD+/ASP8ti8DBqYs68dAvf93ZdjbFmDb/5EjrXdOI/FjrgeeB47x6e/z7+v99NNSPv9L/z2sJkCrhpC39bNArd/PL5JopVHV+xj4L2AV8A7wBIkWOFW1n4FnSNyz6CBRMr+qlPsVGOi/v7XAH0hrDJDpn7phEBGJkWqs3hERkSwU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEb+P5qkdQkuhnG4AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "## अभ्यास \n", + "## एक अधिक यथार्थवादी पीटर और भेड़िया की दुनिया \n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/1-QLearning/solution/Julia/README.md b/translations/hi/8-Reinforcement/1-QLearning/solution/Julia/README.md new file mode 100644 index 000000000..d50c6d1a9 --- /dev/null +++ b/translations/hi/8-Reinforcement/1-QLearning/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/1-QLearning/solution/R/README.md b/translations/hi/8-Reinforcement/1-QLearning/solution/R/README.md new file mode 100644 index 000000000..773b487b2 --- /dev/null +++ b/translations/hi/8-Reinforcement/1-QLearning/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल दस्तावेज़ को उसकी मूल भाषा में प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb b/translations/hi/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb new file mode 100644 index 000000000..78e696330 --- /dev/null +++ b/translations/hi/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb @@ -0,0 +1,452 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "eadbd20d2a075efb602615ad90b1e97a", + "translation_date": "2025-09-04T03:04:06+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# पीटर और भेड़िया: यथार्थवादी वातावरण\n", + "\n", + "हमारी स्थिति में, पीटर लगभग बिना थके या भूखे हुए इधर-उधर घूम सकता था। एक अधिक यथार्थवादी दुनिया में, उसे समय-समय पर बैठकर आराम करना होगा और खुद को खाना खिलाना होगा। चलिए हमारी दुनिया को अधिक यथार्थवादी बनाते हैं, निम्नलिखित नियम लागू करके:\n", + "\n", + "1. एक स्थान से दूसरे स्थान पर जाने से, पीटर की **ऊर्जा** कम होती है और उसे कुछ **थकान** होती है।\n", + "2. पीटर सेब खाकर अधिक ऊर्जा प्राप्त कर सकता है।\n", + "3. पीटर पेड़ के नीचे या घास पर आराम करके थकान से छुटकारा पा सकता है (यानी बोर्ड के उस स्थान पर जाना जहां पेड़ या घास हो - हरा क्षेत्र)।\n", + "4. पीटर को भेड़िया ढूंढकर मारना होगा।\n", + "5. भेड़िया को मारने के लिए, पीटर के पास ऊर्जा और थकान के निश्चित स्तर होने चाहिए, अन्यथा वह लड़ाई हार जाएगा।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math\n", + "from rlboard import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "## स्थिति परिभाषित करना\n", + "\n", + "हमारे नए खेल नियमों में, हमें प्रत्येक बोर्ड स्थिति पर ऊर्जा और थकान का ध्यान रखना होगा। इसलिए, हम एक ऑब्जेक्ट `state` बनाएंगे जो वर्तमान समस्या की स्थिति के बारे में सभी आवश्यक जानकारी रखेगा, जिसमें बोर्ड की स्थिति, ऊर्जा और थकान के वर्तमान स्तर, और यह कि क्या हम टर्मिनल स्थिति में भेड़िये को हरा सकते हैं:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class state:\n", + " def __init__(self,board,energy=10,fatigue=0,init=True):\n", + " self.board = board\n", + " self.energy = energy\n", + " self.fatigue = fatigue\n", + " self.dead = False\n", + " if init:\n", + " self.board.random_start()\n", + " self.update()\n", + "\n", + " def at(self):\n", + " return self.board.at()\n", + "\n", + " def update(self):\n", + " if self.at() == Board.Cell.water:\n", + " self.dead = True\n", + " return\n", + " if self.at() == Board.Cell.tree:\n", + " self.fatigue = 0\n", + " if self.at() == Board.Cell.apple:\n", + " self.energy = 10\n", + "\n", + " def move(self,a):\n", + " self.board.move(a)\n", + " self.energy -= 1\n", + " self.fatigue += 1\n", + " self.update()\n", + "\n", + " def is_winning(self):\n", + " return self.energy > self.fatigue" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(state):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(board,policy):\n", + " n = 0 # number of steps\n", + " s = state(board)\n", + " while True:\n", + " if s.at() == Board.Cell.wolf:\n", + " if s.is_winning():\n", + " return n # success!\n", + " else:\n", + " return -n # failure!\n", + " if s.at() == Board.Cell.water:\n", + " return 0 # died\n", + " a = actions[policy(m)]\n", + " s.move(a)\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 5, won: 1 times, drown: 94 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " elif z==0:\n", + " n+=1\n", + " else:\n", + " s+=1\n", + " print(f\"Killed by wolf = {w}, won: {s} times, drown: {n} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## पुरस्कार फ़ंक्शन\n", + "\n", + "### परिचय\n", + "पुरस्कार फ़ंक्शन वह है जो आपके एजेंट को यह तय करने में मदद करता है कि कौन से कार्य अच्छे हैं और कौन से बुरे। यह आपके एजेंट के व्यवहार को आकार देने में एक महत्वपूर्ण भूमिका निभाता है।\n", + "\n", + "### मुख्य विचार\n", + "- **स्पष्टता:** पुरस्कार फ़ंक्शन को सरल और स्पष्ट रखें ताकि एजेंट आसानी से समझ सके।\n", + "- **संतुलन:** सुनिश्चित करें कि पुरस्कार और दंड संतुलित हैं। बहुत अधिक दंड एजेंट को हतोत्साहित कर सकता है।\n", + "- **लक्ष्य-उन्मुख:** पुरस्कार फ़ंक्शन को आपके एजेंट के अंतिम लक्ष्य के साथ संरेखित करें।\n", + "\n", + "### उदाहरण\n", + "नीचे एक साधारण पुरस्कार फ़ंक्शन का उदाहरण दिया गया है:\n", + "\n", + "```python\n", + "def reward_function(state, action):\n", + " if action == \"desired_action\":\n", + " return 10 # सकारात्मक पुरस्कार\n", + " else:\n", + " return -5 # नकारात्मक पुरस्कार\n", + "```\n", + "\n", + "### सामान्य गलतियाँ\n", + "- **अत्यधिक जटिलता:** बहुत जटिल पुरस्कार फ़ंक्शन एजेंट को भ्रमित कर सकता है।\n", + "- **असंगतता:** यदि पुरस्कार फ़ंक्शन असंगत है, तो एजेंट अप्रत्याशित व्यवहार प्रदर्शित कर सकता है।\n", + "- **लंबे समय तक प्रभाव की अनदेखी:** केवल तात्कालिक पुरस्कार पर ध्यान केंद्रित करना और दीर्घकालिक परिणामों को नज़रअंदाज़ करना।\n", + "\n", + "### सुझाव\n", + "[!TIP] पुरस्कार फ़ंक्शन को बार-बार परीक्षण और सुधारें। यह सुनिश्चित करें कि यह आपके एजेंट के प्रदर्शन को बेहतर बनाने में मदद कर रहा है।\n", + "\n", + "### निष्कर्ष\n", + "एक अच्छा पुरस्कार फ़ंक्शन आपके एजेंट को सही दिशा में मार्गदर्शन करने में मदद करता है। इसे सरल, संतुलित और लक्ष्य-उन्मुख रखें।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def reward(s):\n", + " r = s.energy-s.fatigue\n", + " if s.at()==Board.Cell.wolf:\n", + " return 100 if s.is_winning() else -100\n", + " if s.at()==Board.Cell.water:\n", + " return -100\n", + " return r" + ] + }, + { + "source": [ + "## क्यू-लर्निंग एल्गोरिथ्म\n", + "\n", + "वास्तविक लर्निंग एल्गोरिथ्म लगभग वैसा ही रहता है, हम केवल बोर्ड स्थिति के बजाय `state` का उपयोग करते हैं।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " s = state(m)\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = s.board.human\n", + " v = probs(Q[x,y])\n", + " while True:\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " if s.board.is_valid(s.board.move_pos(s.board.human,dpos)):\n", + " break \n", + " s.move(dpos)\n", + " r = reward(s)\n", + " if abs(r)==100: # end of game\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUVd7H8c+Zmt5J6CC9qVQpKoqIoggIuouCoojCIkXQXUV3F0XEh10bYAFBUQFBwRXXroggIjYiKkWE0EsI6Zle7j3PH5mMsBBqkjsJ580rr2Tu3Mz9zoT8cubcc88RUkoURVGU6sNkdABFURTlzKjCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs2owq0oilLNVFrhFkL0FUL8LoTIEkJMrqzjKIqinG9EZYzjFkKYge1AH+AA8CNwq5Rya4UfTFEU5TxTWS3uS4AsKeUuKaUfeAsYWEnHUhRFOa9UVuGuB+w/6vaB0DZFURTlHFmMOrAQYhQwCsBqtXa66KKLjIpySj6fD4fDQVpamtFRylVUVITVaiU2NtboKOXKzs4mPT0ds9lsdJRy7du3j4YNGxodo1zBYJDc3Fzq1KljdJRyOZ1OgsEgSUlJRkcpV25uLgkJCdjtdqOjlGvLli14PB5xwjullBX+AXQHPjvq9sPAw+Xtn56eLiPZjh075Lx584yOcVIrVqyQ69evNzrGSU2bNk0WFBQYHaNcuq7LcePGGR3jpPLz8+X06dONjnFS69atk++9957RMU5q7ty5cseOHUbHOKlQXTxhzaysrpIfgeZCiAuEEDbgFuD9SjqWoijKeaVSukqklEEhxDjgM8AMLJBSbqmMYymKopxvKq2PW0r5MfBxZT2+oijK+UpdOakoilLNqMKtKIpSzajCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs3U2MK9cOHCsqs2FaXKeb1eli9fbnSM0/L222/j9/uNjlGut956K6LzGaHGFe6VK1cycOBAgsEggwYNYvHixYbkkFJy3333GXJsxVhPPfUUw4cPJzc3l4EDB7Jp0yajI53QTz/9xMCBAyksLGTo0KHMnDnT6EjHyMzMZODAgRQVFTF06FBmzZpldKSIUaMKdzAYJCsrixtuuIF+/foxatQotm3bhs/nq9IcL7zwAq1ateKWW26hZcuWzJkzp0qPX9mklBQUFBgdIyK53W42bdrEI488wk033cTFF1/Mnj170HXd6GjH0HWdPXv20LlzZwYNGsTkyZPZvHkzbrfb6GhAab7du3fTtWtXBg0axIMPPsjmzZvxeDxGR4sINapwHz58mF27dtG3b1/69u1Lly5dsNlsbN68ucoyFBQUUFRUxKJFi/D5fCxcuJCCggIKCwurLENlW716NdOnTzc6RkRavXo1HTt2JD09ndtvv52hQ4fy0Ucf4fV6jY52DJfLxRdffMGQIUO45ZZbqF+/Pq1bt2bdunVGRwNKZxhcvXo1f/rTnxgyZAiNGjWiVatWfP3110ZHiwiGTetaGerXr0/Lli0ZPXo0hw4dYvz48TRt2pROnTpVWQaPx4OmacTFxfH999+zb98+4uLi8Hg8JCcnV1mOyrJixQq2b9/Ov//9b6OjRKR+/foxZMgQfv/9d6644gruuusupk+fTkxMjNHRjhEfH8+AAQMYOXIke/fu5aGHHkJKyQMPPGB0NAASEhLo168fI0eOZM+ePTz44IMAEZPPaDWqcAP079+fNm3acOeddzJ+/HgaNGhQpcevV68eMTEx/OlPf2LZsmVcdNFFNG7cmMGDB5ORkRHRc1GXR0qJrut8+eWX7Ny5k3HjxlXJ8whPYWmqXm8Mp02bxv79+5k4cSLdunWjY8eORkc6oa5du/Kvf/2LcePGcfvtt9OoUSOjIx2je/fuzJgxg3HjxvHll1/y5ZdfGh0pYlSv34jTkJGRQY8ePYiNjaV79+6GTIo/ceJEfvjhB6ZOnYrD4WDTpk38+9//ZtCgQWRnZ1d5nnO1f/9+rrzySj7//HPuu+++KlmsYf/+/Xz33Xfce++9bNu2rVr1bbZo0YKrrrqKWbNm0aBBAyyWyGwfJScn06NHDxITE+natSvNmzc3OtIxyvKtW7eOtLS0iMhXUFCAw+EwOkbNa3FHAqvVitVqZdmyZeFtixYt4uDBgzz//PM0adKEP//5zyQkJBiY8vT89NNPvPnmm3z66adVurrOqFGjaNq0Kffccw8333wzr7/+Op07d66y458rIQRXXXUVq1ev5ocffqBXr15GR6q2oqKijI5AMBhk4cKFHDx4ELvdTt26dRk2bBhCnHiBmsqmCncVqlevHnfeeSfffvstjz76KM8++6xhP/jTsXXrVt5//30eeOCBKi3aH3zwAX369GHo0KE89NBD6LrOY489Rmpq6nH7Dho0iBtvvLHKsinnp2AwyIwZM3jzzTdxOp2MGjWKYcOGHbPP119/zSuvvHLC7+/cuTPjx4+vsDw1snA/+OCDzJ49OyKLYosWLWjRogVdu3Zl5MiRzJo1i+jo6Ih7O33kyBFmzJjBc889d8KCWZkuvfRSlixZwk033cTkyZN54oknuPnmm2nXrt1x+y5fvpypU6ee9PE+++wz0tPTKyvuSU2cOJHRo0fTuXNn4uPjDclwKgsXLuTWW2/lww8/NDrKCQkhmDVrFg8++KBhJ8VHjBjBf//7XzZs2MCzzz7LgQMHjjt30atXL/7xj3+c8Pvj4uIqNE9kVYsKkpOTQ+3atSOycJdp2bIl48ePp3///gwfPpzbb78dq9VqdCwAtm3bxrRp01i0aJEhJwZTUlKoX78+48aN4/rrr+fAgQO0adPmhH2cDz/8MJMnTz7p4xn5/yA1NZXCwsKIG8d9tHr16nHw4EGjY5RLCEHt2rXJyckxLMOrr75K9+7deffdd+nQoQM333wzmZmZx+1XVb8vNbJwVwdCCDp06MCaNWt4/fXX+de//kWbNm0YPHiwYZmOHDnC/Pnz8fv9PP/884aO5njqqacoKSnhww8/5Kuvvip3PyFERP+BBhg6dCiLFi1i3LhxRkdRzpLVamXAgAHhqTSGDx9u6P89VbgjwB133MGqVavCfcr9+/evkv8QUkrWr1/PkSNH6N+/P5MnT+ZPf/oTF198MSkpKZV+/FNJSEhg6NChRsc4ZyNGjKBjx46qcJ8jIQRSSkOKpdVqZdq0aezevZuYmBgyMjKqPMPRatxwwOpICMHVV1/N6NGjyczMpFOnTpX+1lVKSZs2bVi6dCnr1q2jXr16/N///R/XXXcddevWrdRjn2+EEKSmpqppAs5B06ZNueyyy3jzzTcNzXHBBRcYXrRBFe6IYrfbmTp1Kj/88APPP/98pR5r/fr19O7dm4cffpioqCh69uzJxo0bK/WY5yshBPPnz6/QUQXnG7PZjNVqjbipA4xSI7tKhg0bRq1atYyOcdYsFgszZsyo1GPk5eWRlpaGx+Ph5ptvZvXq1eTm5lbqMc9nqamp3H777UbHOCEhBH/729+MjnFKXbp0UVM1h9TIwn3NNdcYHSHiDRgwgAkTJuDxeMjIyODJJ5/kwIEDRseqsRITE+nbt6/RMU5ICFEtziW0adPG6AgRo0YWbuXUhBDs2LGDNWvWkJOTw8GDB7HZbEbHUhTlNKjCfR6z2Wzq3YmiVEPq5KSiKEo1owq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXNOo0qEEHsAB6ABQSllZyFECvA20BjYA/xZSllzVspVFEUxWEW0uHtJKdtLKcuWJ5kMrJJSNgdWhW4riqIoFaQyukoGAm+Evn4DUMuTKIqiVKBzLdwS+FwIkSmEGBXaliGlLFsR9zBg/FRaiqIoNci5Xjl5mZTyoBAiHVgphNh29J1SSimEOOGsMKFCPwpKl/XZsWPHOUapPAcOHKCoqCiiM+bl5aHrekRndLlc7N69m7y8PKOjlMvv90f0a1hSUoLL5YrojIcPH47435eioiL2798f0ZNWnWzVpHMq3FLKg6HPR4QQK4BLgBwhRB0pZbYQog5wpJzvnQfMA0hNTZVr1qw5lyiVqqioiAMHDhDJGXfu3ElMTAz5+flGRylXXl4e69evx263Gx2lXE6nM6J/zl6vl29zv+W/a/5rdJRyxWTH0NvTO6KXazt48CCZmZlkZWUZHaVcJ339pJRn9QHEAvFHfb0e6As8BUwObZ8M/PtUj5Weni4j2Y4dO+S8efOMjnFSK1askOvXrzc6xklNmzZNFhQUGB2jXLquy3Hjxhkd46Ty8/Nlp+mdJBH8r/a62vK9994z+qU6qblz58odO3YYHeOkQnXxhDXzXFrcGcCK0DJCFmCJlPJTIcSPwDIhxEhgL/DncziGoiiK8j/OunBLKXcBF59gez7Q+1xCKYqiKOVTV04qiqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDM1rnBLKZk5cyaHDh2K6AlkFEVRzlaNKtw7duzgggsuIC0tjbvuuosbb1RTgSuKUvPUmMItpeSHH37gr3/9K23atGHx4sXUqVOH3377zehoNcaBAwfYtWuX0TEU5bx3rvNxRwwpJYcPH6ZBgwbMmjWLBx98kJSUlIie5rS6kFIyZcoUpJSYTCZ8Ph9PPvkkZrPZ6Gh89tlnNGnShObNmxsdRVGqTI0p3CaTiX79+tGrVy80TeOXX34hOTmZJ5980uhoQGnx03U9IordmdJ1nXfffZcVK1ZgsVgYNGgQU6dONfS5OBwOrrnmGq677jqWLl1KcXExK1asMCyPolSlGtNVAtCiRQt27drFNddcw+LFi/n000+NjgSUrgiyadMmhgwZwpYtWygqKjI60hmZMGECc+fO5euvv2bDhg0sWrSI0aNHG5pp586dtG7dmrvvvptnnnmGYDDIgQMHDM2kKFWlRhVuk8lEdHQ0ZrMZu90eMSutPPXUUzz22GM888wzjBkzhg8++MDoSGfk+uuvp2/fvqxcuZJ69eoxaNAg5s+fb2imd955h5tuuomXX36ZjRs30r9/f0P/UGuaxiuvvMI333xjWIaaYNOmTRF/HuXzzz/H5XIZmqHGdJVEqszMTJKSkpgzZw6PPPIIl156KZs3byYnJ4eMjMhfR3nFihXs3buXuXPncvjwYb766isef/xxLBZj/+uUnYSuVasW69evZ+/evWzfvt2wPEIIoqOj+eqrr5g7dy6xsbHMmTOH0EIjyikEAgHuuece6tevj9frxe128+KLL0bU67dz504ee+wx2rdvz7Jly2jdujUPPPCAIVlqZOGOjo7G6/UipTT8B9+qVSuWLVtGVlYWkydP5r333uOpp55i9erVrFy5MvwuwehC+L+klHz11Vds3bqVSZMmERMTg8PhQNd1EhMTjY5HfHw8q1ev5sUXX6Rbt25ceumlhuYxmUwMGzaM4uJicnNzcblcdOzYEYCZM2fSsWNHLBYL0dHRuFwuNm/ezJdffsm4ceOIjY3FZKpRb37PmNPpZMeOHTz55JO4XC4GDBiAw+EI//7u37+fYcOGnfB7V61aRUpKSqXmk1Jy8OBB4uPjueOOO9i6dSvTp09n1KhR4X0+/vhjZsyYcdz3pqWlsXLlygrNE1nVooLMmTOHTp06sWHDBsMLd2xsLI0aNWLKlCmMHDmSjz/+mEWLFnHZZZcxYMAApJQMHTqUtm3b0r17d0OzHm3t2rV88MEHPP300+HXMD4+3uBUfzCbzRw4cIDU1FRuvfVWw3/OZRITE0lMTERKSWZmJlD67mDq1Km0a9eOwYMHc/fdd9OnTx969epF06ZN+fnnn6lbt67ByY01efJknn32Wb799ltefPFF9u/ff8x1GPXq1Qu/nv+rKn72gUCAV199lX/84x/Mnj2bL7/8km3btjFw4MDwPtdee225GStajSzcQoiIumry3nvv5S9/+Qsvv/wyq1evDm9ftWoVAG+88Qbr1q2LiML9008/8fHHHwMcU7QjUdnPOBIzCiHCuZ599lkAfvnlF0aMGEHv3r2pV68eycnJzJw5k6VLl3L//fdH5POoKrNnz6Zly5bMmzePe++9lz179rBq1aqIeU1sNhv33nsvd955J6+++ipRUVEkJiby0UcfGZKnRhbuSGQymRgzZswJ77vjjjuqOM3xpJTs2bOHpUuXcvXVV3P55ZdHzC9NeSI93/+6+OKLWbx4MTNmzKBTp040aNCA9evX06lTJ6OjGc5qtTJ//nw2bNhAfHw8r776qtGRjtOqVSumTJnC888/T+/evenbt69hWVThVoDSUREPPfQQr732GrGxsUbHOS09e/akR48eRsc4I23atCE7O5sFCxbQs2dPFi5cyF/+8pdq90eooplMJvr06cPll1+OyWTCZrMZHek4iYmJXHvttfTo0cPw8xKqcCsAWCwWli1bZnSMM2K1WrFarUbHOGMrV64kKyuL9evXs3PnTqPjRJSoqCijI5xSJJzrUYVbUQzQrFkzmjVrZnQMpZqqsWOQlixZct6//VQUpWaqsS3u1q1bGx1BURSlUtTYFreiKEpNpQq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXPKwi2EWCCEOCKE2HzUthQhxEohxI7Q5+TQdiGEmC2EyBJC/CqE6FiZ4RVFUc5Hp9Pifh3434vyJwOrpJTNgVWh2wDXAc1DH6OAORUTU1GU6kRdQ1G5Tlm4pZRrgYL/2TwQeCP09RvAjUdtXyhLfQckCSHqVFRYRVGqh0ianbMmOts+7gwpZXbo68NA2VIu9YD9R+13ILRNURRFqSDnfHJSlv5pPeM/r0KIUUKIDUKIDR6P51xjKIqinDfOtnDnlHWBhD4fCW0/CDQ4ar/6oW3HkVLOk1J2llJ2jo6OPssYiqIo55+znavkfeAOYEbo83+P2j5OCPEW0BUoPqpLpVyapvHee++dZZTKl5eXx86dOyM64+bNm9m7dy85OTlGRynX4cOH+fTTT4nkP9QlJSUR/XN2u93EZsfS5L0mRkcpV/yeeDa7Nkd0P/euXbuwWCxs3rz51DsbRNO0cu87ZeEWQiwFrgTShBAHgEcpLdjLhBAjgb3An0O7fwxcD2QBbmDE6QT0+wVjxkTuiucxMTp33BET0auy7927l8TExIjOaLfbqVWrVkQv1GCxWCL6NXQ6nXSxd2FGxvGL0kaKbYXbcJgcEf06xsTE8GTKk7gz3EZHKZdf+Mu975SFW0p5azl39T7BvhIYe9rJwt9n4vBh49dbLE9iYhZ16uRHxJqQ5cnJySEjI+OsM0op+f777xk8ePAx20ePHs3DDz9cISuSrFq1ik6dOmGz2XA4HCSnJJFTeIj42ERKAkf4vHAhu9xbMAUs2EUcQjeT7ThEt+S+XHPBLfjdPurXakhJSQmxsbEUFhYSExNDIBBA0zRiY2ORUhIdHU1BQQFxcXE4HA4SExPDt30+H4mJifh8PqSUREVFYTKZwuuULlmyJKJ/zgUFBfz4448RnVHXdfLy8iI646+//kr+hfkUNys2Okq54kxx5d5XY6d1VU5fMBhk/fr1XHPNNfh8vmPue+yxx7BarUycOJGYmJhzPpaUOvmBQ+xybcGEzvvZL9EstiN+3Y+NaFrYunLIt49iTxGtkjrQKPUiEqzJ/G31MOKtqYzt8A9q2epgC9gwmUzoug6ULn2laRpSSnw+H0IINE1DCEEgEAjfL4TA7/eH34YGg8GIXCZLUU5GFe7znKZprFixgokTJx5XtMs8+uijFBcX88QTT5zzUmESycYj3zNr43QyYjNomNiI4mCAX3ZvZc+h/bRp1gBrwMb2XVnktSjigsTWCA5glwlEiwSW/ryAlikXcm2z/kTZohFCYDab0XU93KcaCASwWq1omobFYkHTNOx2O0IILBYLwWCwNIuUBAIBVbiVakfNVXKeE0Lw3XffkZ1d/jnkYDDIO++8UyGLo5qEmc5pV1En0Iktvxfw65ZcNv6aTckhG3Z3bVz7Yzi43c+Wjbl8v3EjW3b9yNqf1uBxBVm/81uOOPKZu/5FCnx5OBwOoPStucfjwWKxYDIJYmKi8Xo9WK1WfD4fUVFRuFyucGs7NjY2XMQr4l2EolQ11eI+z2VnZ/P777+fcgRASUkJGzZsoGvXrud0PF3XiTXHMLv/bO5aMYJPNn+M7oNoGYVN2vgpS+NPl9zEyD5dKHYVYfPYOOD+BG9JPnkFhezQdhIMmBk4pz8rx68GwGazERUVhdfjZvOqGWT9uJhgUKN19zvodMPjOBwOUlNT8Xq9REdHk5eXh91uJxgM4na7SU1NPafnpChVTbW4z3Nms/m0ugpOd79TMZlM2O12vE4PL980l+tb9cNiNtOkVhO6NevGRY3bsTd3L1sObibfUUB2fjax+Y1w/Z7IhQmt8RTnge5FKxbcPftuhBB4vV4KCvJx5Gxh55Z1FJZ4qdduAEl12+MoKSEuLo7c3FyEELhcLtLS0rBYLFgsFpKSks75OSlKVVMt7vNcrVq1aNCgwSn3s9vttG3b9pyPJ6XE7/eTnJxMIBBgzk0v8Y/of/Ju5rsUOYuINccSI6LxCT9H8rdRXFhMvDWBgd0H4nQ4iSaF/NwjmJIP4c8JoGlBrFYrq1fM5MiebyjM3k+HqyZx+YBJBIOl93k8HpKTk9E0jZiYGIqLizGbzUgpcTqdJCYmnvPzUpSqpFrc5zmTycSIESNo1qzZSfd76qmnsFgq5u+8yWTCZDIhpSQ5OoXHr32cIZ1vxRlwsSt3N5sPbuXH3T+yr3A/Teo3pWHdhuzK3oXD6yBepHJJw57kbfBhb32Y1957hYDfy49r/oPXZ2Hg6AV06TMq/Phlw/zMZjNA+HYZNYudUh2pFvd5TghBu3btuOyyyzCZTGzfvv2Y+zMyMmjUqBG9e/eukJOTUFq4nU4nsbGxuFwuEuwJzOj3JI9f9yiDXhxMYUkhWft3kR6fRoEznzhrPF63FwKS3Nx84qyx9Ok0gAMHtvO1XMF3Y14jWZP07XUbjVp3x2q14na7sdvt4ZOTTqcTm82G3+8nJiYGTdPQdf2cR8mcqaysLOrUqRPRFyEpkU8VbgWz2cycOXO4++67ycrKCo+NBmjYsCHz588nJSWlQo5VNs46NTWVgoICkpKScLlc2Kw2/E4/H479kD0Fe/gg8wNcXhemoIlYWwwlRSUgBR63F7vZxpCrh9D54s6s/fVz5q+fwhX9hnBxtxvQNA2n00lKSgolJSUkJiZSVFREWloaDoeD6Oho8vPziYmJQUqJy+Wqkiv8ioqKmDt3bvgPSoMGDRg+fHilH1epmVThPs9JKZFSMnnyZJYuXXpM0Qb48ccfGTVqFCtXriQuLu6cuxaEENjtdgoKCoiOjqa4uBir1UowGCQuLg4pJc3SmzG+z3iklNgsZg6v+4LDP7xLjD2K1F7XkdS9N1a7ncLCQgKHg3iKBJdefRM2mw0pJUlJSeTt2cOPr75AwYF9JDdtTac77iEpvVa4v1vXdXRdr7J5UwoKCvjss894/fXX2bFjB//85z+5/fbbVVeNclZU4T5PlRXs/fv388gjj7B8+fLjinaZ77//ni5duvD666/TuXNnzGbzWRecshZ3YmIixcXFJCQk4Ha7sVgs4bHY+L2YfF62TRmP9HupP2gYnR/+P3Rhwmo2sXvev8j/JZOgppOVV4Q99wi+zT+y4Zu1HPn1JwKaRushd9Fh8C34fV40r4+lo27HWeJkwJSpJFzQlIwGDTGZTLhcLux2+7m8lKf1nCdNmsQbb7zBrFmzGDlyJA899BDPPPMMf/3rXyv12KcjPz+f5OTkCusKUyqfKtznISkluq7z7rvvsnz5ct59992TzkQG8Pvvv/OXv/yFUaNGMWTIEFJSUs66eJvNZgKBQPgqxrITiWazGc1RzKF5T+Hal0Xr+x/HGp9AoKgQ764dIMAnod7g22g0fCxBl4N6X62i8/bfyP9mLY0vv4oLh95NMOjHVViI31GMJkFHMuDvjxHUdL5+cyG/rlvH6Fdep0nHTuGTlpVJCMFzzz3HbbfdRvfu3Vm7di1vvPEG3377baUf+2RycnL45ptvWLlyJVdeeSVNmzalc+fOhmZSTo8q3OeZspb2vHnzuP/++8OTLZ2OX375hbFjx7J+/XoWLFiA1Wo94+IthDhmHpGyPxhSSggG2Tvn/9ByDtFk2F/w5x4mmHsYgaTsMEKCf99uvFKiAwktW5PUvhOaP4inKJ+SvTvRpESToEmJLiWaDrqUBHVJxxsGENB13vzr/dzyf/+m+TleUHS6UlNTadiwIZmZmaSmpjJhwoQqOe7JbNy4kVdeeYWXX36ZBQsW8NFHH7Fw4UKjYymnQRXu84ymabz66qs8/PDDeL3es3qMJUuWoGkar732GlFRUWf0vVJKgsEgycnJx5yctFgs7F+xGE/Wb1xw218g4EXoIETo45jHKC3gINHcLvxSlhbrUIHWdIkuCRfvoCbRpE4wtE+7nr3wef3MHTOaSW8vp3XHjmf1OpyJsvHiEyZMoF27doZfal9SUsLbb7/NvHnzmD59Ok888QRLlizh/fffZ8CAAYZmU05NFe7ziK7rvPXWW4wdO/aUXSMnI6XkP//5DykpKTz55JNndAGLyWQiKiqK7OxsUlNTycvLIzY2Fp/bRcEX79Ny2Fg0dzHSBAiBKdRCN4k/ji2lLF0sT0ooK9K6RNclQamj6RJNg2CocAd0naCEoK6j6QJN12nd41KOHDiAJy/vrF+H0yWlZMeOHcTFxXHJJZdU+vFOR3x8PDfffDPPPPMMmZmZrFmzhszMTMaMGWN0NOU0qMJ9HlmyZAnDhw8/pmuk7GKYshnzymMymcJ901A6A99LL72Epmk8/fTTxMWVP3fw0cpa3NHR0QQCgfCJwfx1X2CLjcObdxCzSWAyl54oE2YwH1W4dVnaqpa6AE1HlzpSgtRDLW29rEBLAnpp90hQlwQlpQVcL+1GCQR1Uus34qX7JjB/y1ZEJfZ1SymZOHEiP//8c6Ud40wJIWjcuDEej4eDBw/y8ccfc+WVV1bYRVZK5VKnkSPQo48+espCehHdQoQAACAASURBVKYWLFjAhAkTjuvP7tKlC/369TtlX3VGRgZjxx6/Rsb8+fO57777zmiZqrJjlX2WUuL4aT0xjZuheVzoHhfS7QKvCzxuhNeN2efB7PMgvKW3pdeF9LrRPW50txvd7UJ3u9DcTjS3m4DbddSHE7/rjw+vw4HX5aBu86ZovrPrLqoJ2rZty9y5c2nRogUzZ87kzjvvNDqScppU4Y4gH330Ea1bt6ZHjx506dKFKVOmnPNjlnWP3H///RQWFoa3R0VF0aRJE959911atGhxyseJi4tj2rRprF+/njZt2hzz+G+88QYjRow4rT82ZfNne71eLBYLfr8/tM2E1Pzhwq17XEiPC+lxQ6hYC2/p13g8cNR+utdF0BP6cLsJup0EQ0Xb73bhczrxuxz4XE68TjdepxOv04mnuLjcIZAV6bbbbuPtt9+u9ONUZw6Hgx9++IEnnniC4hP8XDRNo7i4+JiPOXPm0L59e3r3Pm4xrhpPvS+qZLm5uWzatOm09v3++++5+uqrsdlsvP3227zyyivhJcnOhpSSnJwcXnrpJYqL/1iiqW7duvzrX//ixhtvPKNLr+Pi4ujWrRvLly/n1ltvZdOmTUgp0TSNL774gk8//fSUrXdd1/H5fCQlJeF2u0lISMDv9+P3+ZH5OdhDXTfCLDCZBMIsECYTpW0MSRDQdJ2grhPUSrtBAqGvA1IS0EIfusQf1AnqUFJSjDkmFr8m8etH3R+6CKcy7dq1i+joaOrXr1+pxzkXHTp0IDMzkyuvvNKwDD179qRr16706dOHFi1a8Pzzz5OWlha+v6CggDlz5hzzPUOGDGHjxo1VHTUiqMJdyfLz81mzZs1p7bt161ZcLhdr167l7rvvJiYmhtzc3HO6JFvXdQKBQHhypfT0dKZMmcKgQYPOar4MIQStW7fmhRde4K9//Ss//PBD+D6/v/zFTcuYTCZsNhv5+fnUqlWLwsJC4uPjiUpIJPurT7GZTJCUBKHijal0SEnQ70PYo9Ep67cGn8uBOy8Xv6bjC+r4dYlP0/EFJZrJgiUtgwCC4kMHiKldD7+uE9DAp2kEdcjNPoz/LEfWnK7XXnuN2267LaLnJnn66afp1KmTYUXwo48+YtCgQdx1110sWLCAtLQ07rzzzmMuTkpNTWXVqlWG5ItEqnBXslatWvH444+f1r7Lli3j0Ucf5dlnn+XWW2/loosuol27dmd9bCEE6enpTJs2jb/97W9kZWXxn//8hw4dOpxTIRFC0L17d1577TXGjRvH999/z6OPPkrv3r1P2Veu6zp+v59atUovP09KSsLv91Nn8HByv1lF0e+b0Oo1JDYtHd0k0E2CoIDg/p1YGzRFAp6cQwRKivH6fKXdHkENvybxBCW+oIZX0/Ej0Pfvw4+Z6AYNKc7ORsTGEtDAq+kUFxSwa8tW2t9wI1TSZeeZmZlYLBYuvvjiSnn8mqJJkyYsX76cmJgYunXrxsqVK3n88ccZPHiwmhKgHKpwR5Abb7yRPn36cO+99/LOO++c9kiNk7FarfTq1YvVq1cTDAZJTU095peh7CrKUymb26PssmiLxUKbNm147733wl0fpzvTnq7r4XUiy94J2Os2RLfYCLjcsHsHaBq2uDgCUsMM+EuKEb/+UDpWW9MIaDp+Tcev/dE9EpR6aOw2BDQNb1EBvqBOfl4enoCGH0FCg8YUFhZy5OBhvP4gN4wZU2nFIT8/H5PJVGETdNVUrVu3Jjs7m3vuuYdevXqRnZ3NpZdeqor2SajCHUFsNhs2m42lS5dW6OOazeZyV3rRNI1GjRoRHx9PSUlJuY/RsWPHY4bvlUlISDijLEIIbDYbDocDu92Ox+MJF3HNHo1fl8iAhrmkmKAWQDu0PzQcUCAADRm+yMav6wQ1gV8/uu9aD/d5B/XSC26CWgBNg0BQw+N0UpCdgy4BYSI6rnK6MPx+P7///nuFLD5xPvjss8/YtWsXX3/9NVlZWUbHiXhqVMl5zmKxMHjwYBo2bFjuPkIIHnjggQqZjKlsBZykpCQ8Hg/x8fHouo7FYqHxsLvxhfqpXQUFuJ0OfJqOV9PxaDpuTccb1PEES2/7NfCFWt3HtLx1vfSKSb3s5GXpNl1CSUFh6YrwJhNdbhqMiKqc2QFdLhcffPABgwcPrpTHr4maNGnCHXfcYXSMakG1uJXTmu2voiZjKpvWNS8vj7i4OIqKirDZbAQCAepe2oeNOuhSR5cBdIcbgnrp+UlR2saQUg9dhAPB0MU2/tDJSr9eNlpE4tdK7w+UFXApEVFReD2+0n20IO2vvJKGTZpUyPP6XyNHjjxuFESkEkLw1ltvGR1DOQOqxa1UKSklgUCAtLQ03G43iYmJ4ZVoHC438V16lraygxpOhxN3oLSF7Q7ooa9laYs7qOMJanhCI0q8QQ1fUMOnafiDEr+m4dd0AqFiHgjquJxu/D4/8bVqce1fRmOOiqagoKDCn+OuXbuA0hZkdSCEoGXLlkbHUM6AKtxKlSq7AMftdmO1WvF6veFZAqPj42kxdCTeoAwVaA1vaLSIN6jhDWpHFe3SLhRvUIa7V3yaxBfqLvFrAr8Ofk0eM947ICUZzZtTUlBI9/4DKmUhhYcffpiZM2eqk2tKpVGFW6lyZRftCCHCI1qklFgsFpKbtaT+NQNChTrUqg6W9m3/0b8t8QRK7/eF9vOFRpkEQsW7tLtEKy3iusSvQ1DTadPzSjRhocdNN2OxWCplzclJkyYdc/GIolQ0VbiVKlVWtGNiYggEAkRHR4cXUfB4PJhi40ht1x4/ptJWt1baNeIOarjDRTxYerIyfLu0Ne7VSsdw+3SJN1h6sY1f1/CFWtu6MJFcrx4ORwkX9uyJpmm4XK4Kf47dunUzfNpWpWZTJyeVKlU2reuRI0dITU0lPz+fuLg4AoEASUlJaJpGiyHD2bluDXvXrkIgwnNyA0gpwhNaBeUfQwMDUhLUQicjQ5e0+8r6uDUdabHRrmcvfly1hhe//QZbVBRSyjMezqgokUC1uJUqVXZyMi4uDp/PR2xsbPiCHK/Xi9/vxyQErQfcjGaNwqOF+rYDGp7AH61r99F93prEG5Slre1Qt8nRwwSDmGhwUQcCCC6/+SY0q41gMEgwGMTpdBr9kijKGTtl4RZCLBBCHBFCbD5q22NCiINCiJ9DH9cfdd/DQogsIcTvQohrKyu4Un2ZzWY0TcNqtR4zj4rFYgkPO2x41bXEtGqLNyhxByXuoI776BOToe1l/d++QGl/ty980vKPfu/0Zi2ISU5hz5atXNirF7FxceF5yNX800p1dDot7teBvifY/pyUsn3o42MAIUQb4Bagbeh7XhJCVP5qrMo5OZO5tM9V2ZqTZdO5lp2klFKGiymUXhbfb9rTmJJTjyrYWqiAS1yhk5LewB/F3KOBJ1S0vZqGbrGSUL8Rlrh4igsKGHzfBFpeckl43LoQolJOTipKZTtl4ZZSrgVOd7DrQOAtKaVPSrkbyAIiY60mpVx2uz1cMKG0RXx0QZNSVtiwuf/tKomJiQnPgeLxeMIr7NhsNuo2a84tLy0gvmFjPAE99FHaReIrG99ddjWlpodHoviCEl9Q4pcCrz9ASUEhHa7uw9UjRhAVHY3D4UDTtEo7Oakole1c+rjHCSF+DXWlJIe21QP2H7XPgdC24wghRgkhNgghNgQCnnOIoZyrpKQkkpNLf4Rms5nRo0fz/PPPhy9xj42NpXbt2hVyrLIrJ4uKioiKigrPjxIMBomNjcVutyOlxOv14nA4aHZJN254/P/oMPjP+KQIjzLxmy1ccPmV4SGC3qBGVFo6cbXr4tW00svhfQFsMTEMGj+ePnfdhRACr9dLUlISZrMZi8VCfHx8hTwvRalKZ9vBNweYRumSrdOAZ4C7zuQBpJTzgHkA8fEZ0uc7yyTKORNC8Prrr+NyuRBCULduXeLi4rjiiivCJw7PZEHgU7HZbKSnp2M2m6lVq1b4QpWjZx4sG05nMpno1Kcv7bpfRv+/TQZCq7ybBDFJSTiPuvLRYrODEMfMsW2LiiK9YUP00JDD6OhohBDhdxDqIhmlOjqrwi2lzCn7WggxH/gwdPMg0OCoXeuHtikRTAhBo0aNjtveqlWrSjne0X3ZR3fRlPnfeVFMJhPW5GTikpOP2zc54/TeCZQ9YtnxVMFWqrOz6ioRQtQ56uYgoGzEyfvALUIIuxDiAqA58MP/fr+iKIpy9sSpRhQIIZYCVwJpQA7waOh2e0q7SvYAo6WU2aH9/05pt0kQmCil/ORUIRITU2SLFvef7XOodFari7Zt807YKo0Uhw8fxm63h/uqI9H27du54IILInokx6ZNm7jwwguNjlGuQCDAnj17aN68udFRylVQUIDf76+w8yKVYc+ePWyttZVAbMDoKOXa/ux2iguKT/jW8JSFuyrEx6dLv/93o2OUKyFhD3XrfsO2bcOMjlKuRo0+5aWXatGpUyejo5Rr5syZjBgxokL7yyva3//+d6ZPn250jHIVFRWxcOFCJkyYYHSUcm3YsIH8/HyuvTZyL+NYtGgRPXv2jOjGWMuWLTly5MgJC3eEXH0g8Psjt6UYCOSjafaIzqhp0cTGxkZ0i9tqtZKYmBixGcvmTInUfFCa0Wq1RnTGmJgY3G53RGe02+3ExcVFdMaTnYdRl7wriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnCfpzZv3hyeiU9RlOolQsZxK1Vl//79LFy4EJ/Ph81mo1WrVtx8881Gx1IU5QyoFvd5RErJ3r17+eWXXxg3bhwtW7Zk6dKlVbqQgqIo504V7vOI1+tl9uzZzJo1i8cff5zWrVtz/fXXs3jxYqOjnRWv1xuez1tRzieqq+Q8Eh0dzYQJE7j33nt56aWXuOiii7j88st59913jY52xj755BN27dpFbm4uF154If3798dmsxkdS1GqhGpxn2eaNGnClVdeyezZs3n44Yfp3Lkza9asMTrWGbv//vupU6cOffv25ZFHHsHtdhsdqVwvvPACHk9krvL00UcfkZWVZXQM5Qypwn2eqVu3Lvfddx933XUX48ePZ8yYMXz++ef8+uuv1aav+5///CczZ86kfv36/Prrr6xYsYJ7773X6FjlWrFiBX6/3+gYJ/Ttt99y8GDkr3Wyb98+HnvsMaNjlGvPnj1MnTq1yo6nCvd5qnnz5uFZ5h5//HGee+45tmzZYnSs0zJlyhQmT57Mxo0b2bhxI6NHj2bWrFlGx6qWateuzeHDh9E0zegoJ+X1etm9e7fRMcrl9XrZu3dvlR1PFW4Fi8XCK6+8wsKFC6tFt4nVauWGG27g448/JjMzk4suuojY2FijY1VL48aNY+7cuRHd1aQcTxVuBShd5/GRRx7hu+++Y926dUbHOaVp06Yxfvx4+vXrx4svvhheXFhRzgeqcCthSUlJjB07lmXLlrFt27Zq0+etKEar6sWnVeFWjhEfH8+sWbN46qmn+Omnn4yOoyjVQlU3clThVo4jhODFF1/kww8/ZPXq1UbHKVeTJk2QUrJr1y6jo5Tryy+/pGfPntjtdqOjlOuOO+5gwYIFRscol5SS5cuXM2jQIKOjlCstLY2GDRuycePGKjmeKtzKCUVFRTF+/HjWrl3Lhg0bIrLbpDoU7tWrV9OzZ0+ioqKMjlKu4cOH8/rrrxsdo1xSSt555x1uvPFGo6OUq6xw//zzz1VyPFW4lXKlpKTw0EMPMXfuXLZt22Z0HEVRQlThVk4qKiqK+fPnM2fOHL755huj4yiKgircymkQQjB9+nTWrl1bLcZ5K2cuNzeXN954w+gYx3nvvfcYO3YsBw4cYMyYMRHZeNB1nYkTJ7Jo0SIWLVrExIkT0XW9Uo+pCrdyWuLj4xkzZgyffPIJmzdvjsg+70hSUlJChw4dePXVVxkzZgzXX3+90ZHKdffdd5OXl8cDDzxAhw4d2Llzp9GRgNKC+P3333PJJZeQmppKgwYN2Lp1a6UXxTPl9/tZs2YNvXr1olevXqxZs6bSpzhQhVs5bUlJSTz55JM888wzbN682eg4ANSrV4+EhASjYxxny5Yt9OjRgxEjRjB79myio6Mj8iTqwYMH8fl8rF+/nuuuu47Bgwfz22+/RcQf5u+++47Y2FgGDRpEp06duPvuu9myZQv79u0zOtoxJk2axLx582jfvj3t27dn3rx5TJo0qVKPqQq3ckbMZjPz589nyZIlEdFtMmrUKC655BKjYxzniy++oHfv3lx66aU0btyYK664IiLf5v/yyy9cdNFF1K5dm759+9K9e3fWr18fEYW7R48euFwupkyZwnPPPcekSZNo164djRs3NjraMV544QWGDBlCdHQ0drudIUOG8MILL1TqMdV83MoZs1gsPPjgg8yZMwe73U737t2NjhRxxo0bR+vWrXn++ed58803Wbp0Kdu3bzc61nGuv/56/v3vf7Nr1y5uvfVWRowYwUcffYTJFBltumHDhrFt2zb+/ve/h1vekcZkMvHcc8+FhwI+99xzlf76qcKtnJXk5GQmTJjAQw89xAUXXEDt2rWNjhRREhMTyczMZNGiRXTr1i2ip51955132LNnD0uWLGHdunWkp6cbHSmsXbt2tG3blp49e0ZUrqMJIbjxxhvDE3VVxbw5qnArZy0uLq7S3xJWVyaTiXr16vHQQw8BVT+XxZlIS0sjNTWVTp06RWROIUTEFu2jVeVEZ6dszwshGgghVgshtgohtggh7gttTxFCrBRC7Ah9Tg5tF0KI2UKILCHEr0KIjpX9JBTjCCEi8pc9UlSX16e65FRKnU5HTBB4QErZBugGjBVCtAEmA6uklM2BVaHbANcBzUMfo4A5FZ5aURTlPHbKwi2lzJZS/hT62gH8BtQDBgJlI/bfAMomEhgILJSlvgOShBB1Kjy5oijKeeqMTn0KIRoDHYDvgQwpZXborsNARujresD+o77tQGjb/z7WKCHEBiHEhkAgMhdSVRRFiUSnXbiFEHHAf4CJUsqSo++TpYM+z2jgp5RynpSys5Sys9UafSbfqiiKcl47rcIthLBSWrTflFK+G9qcU9YFEvp8JLT9INDgqG+vH9qmKIqiVIDTGVUigFeB36SUzx511/vAHaGv7wD+e9T24aHRJd2A4qO6VBRFUZRzdDrjuC8Fbgc2CSHKZgl/BJgBLBNCjAT2An8O3fcxcD2QBbiBERWaWFEU5Tx3ysItpVwHlDfAs/cJ9pfA2DOPYvzcCKcW+RkjYY6JU4n0jJGeD1TGilIdMp6IiITgiYnJsn3724yOUS6z2U9iohObLcXoKOUKBktISrJU6dVbZ+rIkSOkpqZiNpuNjlKuAwcOYbHUNTrGSWgETIewpluNDlIu3a0TF4yLyFkbyxQUFBAXF4fNZjM6SrkWL15MYWHhCRvNEVG44+MzpNOZY3SMciUmZvHUU6u55557jI5Srvfee4+MjAy6du2Kz+fDarX+MW+xSeewby+FwRykLrFgAwSegJsYcwJNE9oidDM2mxVN0xBCEAwGEUJgMpkIBoPYbLbw57LHDwaDmM3mY/YtuwIvGAxitZYWl7Ir8p544gnGjh1LcnKyQa/SyUkp+fOfJ/DOO88bHaVcdnsB7aZcQ+YjmUZHKVftb2ozN28uAwcONDpKuV5++WV69+5Ns2bNjI5SroyMDHJyck5YuNVcJTWMpmnk5+cTFW/jh8IPSY9qRNDkZafzF7L9e3F4nTi8xdSNborH7yHdWp8dUb+xOz+LcV3/jt8XQAiB0+lECIHdbsfpdJKWlobT6SQlJYXi4mJSUlIoKSkhNjaWoqIirFYrNpsNm82GxWLB6XRGbIFWlOpOFe4aJqvoF/5T+ByiWHDYtxerjCIYlMSSTJq9HkkkU+R24dEDpNjrg27lk53vEm2JZ9qXD3JLu5HUjWlAfHw8UkqCwSCpqam4XC7sdjt5eXnExcVRUlJCdHQ0Pp+PpKQkpJRomhaeIc1ms5Gfn09SUhIWi/pvpigVSf1G1TC1Yhrx1qqNpESlcFGti2iS3opdh/bwxrqlNGuRSK3YOHb8mo25XpBL2/TEHIwi2pJEgSMPe0w8C36YQ7/WN9I2+WIsFitWq5Xc3FzS09NxuVykpKZSkJ9PYmIixcXFxMbGUlJSgtVaum9sbCwmkwmXy0VycnLEzOusKDWJKtw1TDQxzOu3gAc//xsfbf2EzzZ/gV23kZFcG3+uHZ8jjebpjThUtButSOfbn7+lfrsUsg4folmqnyJ3MV6fRtMrWpFkiUYIQVxcHH6/H58jm+3b3sdR4iAlvS5pTXqjaRpRUVHhfuyytfZMJhNer5fo6Gg165yiVDDVHKphTCYTLVKa8Y+r/o7JItiZv5NCTyFxUbG4/W7cARcN0hvQOq09CZ5mNE5og2O7RPh1zPjYd+QQn21axfQPnwBKT9jpug5S4+DWz1jz1kQyP/4HmZ8/gwid19Z1HV3Xw0OrTCYTUspqO9RKUSKdKtw1jNVqJeAP0L1+d/4z9D+kxaViMpsp8hZjtVnwaX62HthCriOX3/dt4+sN39Ioph0DMm7nl1W/06VVA2IcZpZ/spxAMACAo6SII3t/ZO1Hz1PkttPl5lfpc9ebBLTSUSV+vz88gqXsJKWu66q1rSiVRHWV1DDFxcXh/ujWtdvwzYR1DH7lZrLzs7FLGzZpJwo7ufm5SL9ORnJtNKmRcySPAR2HUPRbEYn2InyJ0ezcv51WF7TlqxVPsy3zQxpc0JrLrh5Fu0tuoKSkhLiYGLxeLykpKWiaRiAQwOl0IqUkJiaGvLw8UlNT1clJRalg6jeqhik7WWixWPB6vWTE1GbBrQv4YNMHzPlyDocKssEvibfE06ZeG2zCxpGiI8RYonGUOBAaxBc3xpFQxNT/TuRPTYeQ9duvJNVuQ/+RM0nNaITX6yUmJga/34/VasXtdofHb0dHl870qGka8fHx6uSkolQCVbhrmLITgoFAIHwRTstaLWjRaxKX1OtCjiuHJ995koN5h9iVs5OUqFRs2MjPy8PnDuB1ehhz4xjG9xhHccwBXn/uXyQf0Xhg2nySazXA7XYTHR2N1+vFbreHL8op6+cuOzlZVtDtdrvBr4ii1DyqcNcwuq5jsVjw+/3HnCSUEro36U5UdBR92/TFarPidDixmQUHd22nVmIqPgkxKbWIskWRnJRMSUkhv1/wM73u6kfj5u0RQqBpGiaTCWdeLgGLmYCmk1q3HiaTKVy8gfC+6gSlcq6OHDlCWlqaevd2FFW4a5ioqKjwuGqfzwcQnhvEbrfj9/uJj4onb8N6ogIeHEdyiD+0l5KiQpIu7EBC+24492Sx2+Nh/+EjbPr6G7p1vIzAwX0c2rGNqOhoSuKS2fv1KvZt/oW4WnWIadKCuNQ06rVtS0bzluHL4BMTE9Uvm3LWsrOzWbt2LWvXrqVHjx40a9aMrl27Gh0rIqjCXcO4XC5SU1NxOp1ERUWh6zo+nw8hBB6PhyiPg91vziU2ORV/dAyJtWqT0OMKpBAIwHNgL7K4ALseJHb3dnr43MhVH3Lo4B6EyUJhwE90ej1a9O5L097XIjWd379Zy+HNv7BvYyYOj5cbH/knyWlpFBcXk5qaqoq3clY2btzIm2++yZw5c1iwYAGff/65KtwhqnDXMAkJCaVzlURF4Xa7MZlMWK1WpJTEWs38PP4eEps0J7nnNZjMFpAa/oP7SifulRKz2UJis1boUhLboCnNBt+Cpun43CVYouPQpE4gEMRTXIAuQdMl9dtdTB0pKc7P5/1Zz/LqvaMZ9/pikpKSKm0mwEAggMViUcMNa6iioiKWL1/OnDlzmDp1KjNmzGDx4sW8//77DBgwwOh4hlNNoRqmpKSEtLS08JA8q9VKIBDAW5jP93ffSEzdetS57iZ0RzF6cQHSUYzwOhEeJ3hdSFcJWkEuwYJcdJeDYHE+mqMQ4ffjLyogUFhI0FFC0OUi6HYRcLvwOx34nKXdMwMnPoDzcDYv3Dmc/Tt3omlahT6/vLw8Nm7cyC233MLPP//M4cOHK/TxlciQmJjI4MGDefrpp/npp59YuXIlGzdupF+/fkZHiwiqcNcwUVFRuFwuhBAEAgE0TcNsNpP7wTJSGjSl3rWDCORlg9eN8Loxed0Irwfh82LyehAeF8JTeh8eJ9LtRHM7CHrcBN1Ogh4nuidUtJ1Ogk4nPpcTv8uJz+Ui4PHS45ah5OzeyZbVX1Z4i3jZsmU89NBDzJo1i6lTp/Lyyy9X6OMrkUEIQZMmTQgEAhw6dIjRo0dz1VVXRfRc7lVJFe4aJiYmhqKiIgA8Hk/pKA+fB8f2X0lq1Y5g3mHwuksLt8+FyefG7Hdj9rkx+T0Inxvhc4PHhfS6kV4X0u1GelxoHjdBt4ugy0XA5SDgcuJ3Owm6XPidLvwuBz63AxPQ+MKL+f6//6U4N7fCntvevXvZv38/r7zyCrNnz2bu3LlIKdm0aVOFHUOJHG3btuWFF15g0aJFNGjQgNtvv93oSBFDFe4IIKWkqKiIFStWsHTp0nN6rOLiYjIyMpBSEhcXh8ViIXvNZ+Dzo2sBNI8L6SktzKUtbhdmnxuLz4XJ60L4QsXa60G63eguN7rHheZxoLtLi3fA80c3ScDlxOd24nM58LuceJ0uPM4SajdrhqOgAGdhYQW9SlCnTh1q167NunXrGDFiRPhEVfPmzSvsGErk6dWrV7W8+tbr9VJYWMjgwYMpLCzE6/VW2GNXv1ejhtm5cydZWVm89NJLXHLJJTzyyCPn9HiJiYnk5OQQHx+Py+XCbDYTY7fisJnR/V70IEiTCUwgTQJMApPZhBAgdRC6BF0idYmuaeh66QlITdfRdAhqkoCU+HVJUJMEdZ2ADgFdJxC67dd1grpADwagAsdx22w2mjRpwgsvvICu66SnpyOEICoqqsKOUNx5nAAAIABJREFUoSgVZebMmSxfvpzly5dz1VVXMXz4cCZNmlQhj60Kt0F8Ph/Tp0/HZDJh/n/2zjxMiur63++t3qene1b2fTMoRECWQNxQIqIRlyRuuH0JKjHiL0YFJLgnGjdcokYkiiARxYhbNCFxjcEFRVAEkQAyyLDNMHvvtdzfH91dzigDA0zTPXjf5+mnq6uqqz59u/vUrXPPPcfh4Nlnn7Wnix8I0WiUQCAAYM9ajMViWPFYsuesgUNzYGlgOQSWpmFpAg2BJVMG27IwLYllSttoG5ZMGmgzuWyYSYOdMK2UsZboJuiWTBlxC1PXD/jzfJvx48czfvx45syZwx//+Efee++9Vj+HQrE/rFixghdffNF+/f7773PYYYfx/PPPs3DhQhYtWkR5eTldu3Y94HMpw51B0rMWH3vsMY4//nj69+8PwF133cW7777L1KlT6dmzJ7179261czocDrs6TXpg0ulw0bB+Lb5AAcLnw3BoCEey1y00AcKBACySRtewwLRMdFMmH5ZElxa6AQnTxJBJg50woWLzJvLad0TXHOgmyZ64BQkjmXQqU1x++eVUV1ezdOlSVqxYwVFHHZWxcymyixCCm266iTvvvJPrr78+23K46aabdtthGDRoEOPHj7df79y5k549e3L00UdTWVmJx+NptQLKynBnkIqKCgYPHsytt97Kr3/9a1avXk3Xrl2ZOXMmV155JYFAoNWjLtKj7kIIO5e2p7QduNzUr/0c0acf0uNBahrSIZBCkgg3IDx54HJhGgZ6wiAei1D75RoShkHMkMQtScwwiZkWcRMC/QZiut248vKIhSMYQqCbkriZdJls+3ozdZWViAxGARQXF1NYWMimTZsYNGiQijjIIVrzdy2EYMCAAbz00kutdswD4frrr99tp8Ttdje5a163bh0PP/wwo0aNYsqUKVx77bXKcLcF3njjDaZNm8bQoUNZtWoV/fv35//+7/8YOXJkxs6ZTuva0NCA3+/HMAw4cgQlo05k5z+fx4yGKezZBzMvD1MTOITE3LkV4fSA202ioY74rgoSZtKPHTctDFOSMCS6aWIYEt202LrqY+IGOEs7ENcN8OeD20tCCmp3VbN5/XpG//Iyijt1ythnBbj66qv5yU9+wpgxYygsLMzouRQt51DOUZOXl9ei/X71q18xefJkZs6cyZo1a1pVg4oqyRBSSjuDXiKRYObMmQQCATt7XqbIy8ujrq4OIQSxWAzDSBY7iMYTGJYkHgnTsHMbsVA99V9vor7sK8I1tYS2fk39pg2EK5JGO91z1k1JIjXoaFgSw5KYMj1gaVK3bSt1O3aw43//o2b7dio2l7H9q41YFvT+4ZH48vMz+nkhabxnzZqV8fMoFPuKEII77rij1Y+retwZQgjBaaedxg9/+EPuvvtuHn30UdasWcM999yT0fMmEgny8/OJRqO43W5M08Q0TXxdumA4XGDoiIYGpNuNrKrEIS2E0JIz3gFTJgcm9bSv2pIkUhEjugW6tFKRJSR94VJikhzEjMdiRENRLCHw5AeJxeNYlpXxXCU//elP7fEDxaGJpmlomoZhGG0yNLC1UT3uDNK+fXu2bdtGXV0d1113HcuWLTso503fpja+Xe194a/RSjsSMU0ikRjhujqiuklUt4jqFhHDIqKbRAyLqCGJGxA3LOKGRcIgFTWSjBbRLYlpfNMLT5gWFoJwfZhoNIphWAz66TiOu2DCQfm8Qgj69u17UM6lyA59+vTh+OOP56mnnsq2lJxAXboyiBACp9PJb37zm4N2TrfbTTQatXsn8E3xXq2wHcbXm5DSxAxF0EwLh5AIJKQHMwFLymTMtmXZPe94ymgnrORApW5Z6DJp0E0LDMAk6ULpf/RxONDI8/pUZkBFq5CusJTO9/59RxnuQ4x0Dch0WlfDMNB1Hcuy6HnxFXz824/RLAvDSqAhcGiSZELXJBYyOelGSgxJKn5bohvJiTUJ08IwIWGRmnCT8oNbJnHDwuH1oHlcjLt8MvX19Xi9XmW8Fa3C6NGjD+lBz31BGe5DjEAgwK5du/B6vYRCIYQQuFwuHA4HvX50NMvy8kk01KEJcGoCzRIIIdNZXTFlssdtkexxmxYYqZmSycHKpNFOWCZxE3QzuV/ClEinix+ffR7rVn5Kj4ED8fv9yh+paDV69OiRbQk5w167QkKIbkKIt4UQXwgh1gghfpNaf4sQYqsQ4tPU49RG75khhNgghFgnhDg5kx9A0ZRQKERBQQFSSrxeLy6XC9M0sSyLiK5z4oNP2vHYETPp247qFpGUnztqmkQNk6huEjOs5EM3SRhmctJNKkQwYaSnt5vELTBMi/4/PoZP3n6bKY/Nwe12EwqF1K2tQpEBWtIdMoBrpZQrhBAB4BMhxOupbfdLKe9tvLMQ4gjgPGAA0Bl4QwhxmJSydRMzK3aL2+0mFos1qfmYdlW43W487TvQ8egT+fq/b6Kl/IaCpJ9boiGRqZ530ndtWhaGlN9Mebe+CRFMWBZxM+nv9gQLiMYS/OjUU+nYowemaeJyuVShA4UiA+y1xy2l3C6lXJFabgDWAl328JYzgGellHEp5SZgAzCiNcQq9o7X66WhoQEhBIlEAsuycDgcyWRTeXk4C4vpPOLHxA2ZiipJ9qyjhkw+p6JMooZF3DSJmZKYSeqR7G3HzeQAZdJVYmEJJwNO/AnRRIIfn34mgWAQ0zTx+/3KcCsUGWCfRo2EED2BIUA6rm2KEGKVEGKuEKIota4LsKXR28rZs6FXtCL19fW0a9cOy7KShtrpRNd1dF2npqYGf14eA867hK4njCVqJV0hYd0knDCJpMIDIylXSThlwGO6ScwwiOsmcd1KulqM5ECl6XDxg2OOp3pXFUf95CS6DBxIbW0tLpeLXbt2tXoFHIVCsQ+GWwiRDywGrpZS1gOPAn2AwcB2YJ+mrgkhLhdCLBdCLNf16L68VbEHgsEg1dXVaJpGJBJB13VcLhcul4vCwkIikQgOl4vuJ52K4fLZcdtRUyZjuc3Ua0MSNSz7ETMkMVMSTfu4LQleL+379EU6HUTq6+jSvz/BggIKCwvRdZ3i4mKVP0ShyAAtGvIXQrhIGu2npZQvAEgpdzba/hfg1dTLrUC3Rm/vmlrXBCnlHGAOQCDQQcbj+yNf8W0ikQjBlKsiXeU9Hc+dSCTwer2YpsmIs84mWl3Fq7fcQFNvxjfx3KYlkwWBU1PcDZnMHKhbFlI4yA8WgdvD9k1lXH7PPQw49lii0agdv97Q0EAwGFTGW6FoZVoSVSKAJ4C1Usr7Gq1vnD3oLGB1avkV4DwhhEcI0QvoB3zUepIVe8Ln81FfX2/nSjEMw54u7Pf7icViSCmpr6/n+F9OZuwNt2A4XMnetGEl/d6GRUI4iDZaFzMtElIjZpjEDUkcQSQaY0fZ11x08630+9GPkpkIPR47flz5uBWKzNCSHvfRwEXA50KIT1PrfgecL4QYTDLFRRkwGUBKuUYI8RzwBcmIlCtVRMnBw+Fw4HQ6cTqd9mSF9HLjbU6nE7fHw6gL/o++Q0fy+qMPU78rWR9SAqMmXMB/n/4rUoJlSZy+PLr98Ies/eADLAkSQXGnjlzwu99R3K0bTpfLPm76nE6nUxluhSID7NVwSymXArv79/1jD++5Hbj9AHQp9hNN0ygtLW12e0FBAQB+vx9I5lNp3749A4477jv7jp146X7rcLlc+/1ehUKxZ9RcZIVCoWhj5Mh8ZInHU51tEc3idtcTi8Wors5djZFIhFAolNMadV2ntrY2x/NNmDn9W/R4anHoDjzVnmxLaRZ3yE0kEsnp32IsFqO+vj6nNe7pfyJy4U9UXFwsr7vuumzLaJZwOExlZSU9e/bMtpRm2b59Ox6Ph+Li4mxLaZZ169bRu3fvnHajfPbZZwwaNCjbMppF13WWLv2KmpofZFtKs3i91QwZEqdThqsfHQibNm2iffv2tsswF7n33nuprq7e/SBRuqBtNh/t27eXucz69evlnDlzsi1jj7z44ovy/fffz7aMPfL73/9eVldXZ1tGs1iWJadMmZJtGXukqqpKDh16u0ymBMvNR8eOS+VLL72U7abaI7Nnz5br16/Ptow9krKLu7WZysetUCgUbQxluBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrWhCKBQiHA5nW4ZCodgDOZKrRJFtLMti8eLFbNy4EafTSa9evfjZz36m0rIqFDmI6nErADBNk+nTpzNy5EgGDRrE1KlTsy1JoVA0gzLcCgAmT57M4sWL2bVrF7qu88wzzzBlypRsy1IoFLtBuUoUADzyyCOMGjWKSy65BI/Hw/Tp01mxYkW2Ze2Vbdu2kZ+fTzAYzLaU3bJt2zYCgQCBQCDbUhSHEKrHrQDA7XYzZswYqqurmTt3LkcffbRdhiyXeeyxx/joo9wtafroo4+yfPnybMtQHGIow60AkrUqZ82axcSJE/H5fEybNk0NTCraBLW1tdx1113ZlnFQUYb7IGIYBqFQKNsy9kjv3r156aWXuOyyy3K8Uo1CARMnTuT000+nT58+9OvX76C597JdyUkZ7oPEhx9+yKJFi7j11ltZsmQJkUgk25KapaSkhD59+vDxxx9nW4pC0SxfffUVPp+Pq6++mt69ezN16lQ+//xzTNPM2DnLyspYsmQJU6ZM4V//+hdfffVVxs61J9q04Q6FQixYsGCv+0kpuf3225k5cybvv//+QVD2Xa655hpqa2uZMGECM2bMYNu2bVnR0VLuueceZsyYkW0ZCsV3SCQS3HDDDVx66aXs2rWLL774go0bN9KtWze2bNmCZVkZO/cLL7zAggULmDVrFgsXLuS5557L2Ln2RO6PPjXDzJkz+eyzzzj99NMZPXo0Dz30EAMGDLC3X3zxxWzdutV+PW3aNPLy8ujevftB1/roo49y5ZVXMnLkSC699FK2b9/OZZddxhtvvGH7kYUQOedTFkIgpcw5XWnSt6q5qk9xYKTLdAGUl5dzySWXAOByuZgxYwYnnXQSv/vd74hGo4wePZoJEybwt7/9LWM1TdeuXUtlZSUPPPAAV1xxBf/73/947733+Ne//gXAuHHjdjv/IRP/7TZpuGtra/n666958MEH0XWd9957j5EjR9K3b180LXkTsXDhQrp27Wq/x+/329sONhMnTuTUU09l2LBh/PWvf2Xy5MnMnDmT4cOH2z/Md955h4KCgqzo2x3BYJBrr72WO+64g5kzZ2Zbzm75z3/+g6ZpHH/88dmW0izFxcVUV1djWVbWfn9tidraWnbt2gXAypUrueOOOwDo2rUrr7zyir1ffn4+Qghef/11Kisruffee1mzZg15eXkZ03bYYYdRUlLCSy+9xJw5c3j66aeprq7mmmuuAeAf//gHQ4cO/c773nrrLYqKilpVS5s03B988AGDBw8mPz+fqVOnsmLFCkaPHs0LL7yAx+PJtrzv4PV6Of7443nwwQfp1q0bxcXF9O7dO6fjpIUQeDwe4vF4tqU0i2EYADkdtvjb3/6WMWPG8JOf/CSnLsy5hmmaLFy4kM2bN/O///0PgEGDBrFy5co9vi8vL48ePXrw0EMPZVyjw+Fg4MCBLFy4EF3X+fjjjznnnHPsGP1zzz2Xc889N+M6oI0a7lNOOYXZs2ezYcMGrrnmGi655BJmzpyZk0Y7zc0330xNTQ2rV69uM77j/v378+677/LFF19wxBFHZFuO4hAnkUgwZswYbrjhhmxLaZZx48Yxbtw4Fi9ezPz587PmpmuThhvg4Ycfpry8nEceeYRnnnmGnj17ZlvSXikqKuLYY4/NtowW07lzZ9xuN2VlZRx++OE55UuOxWIkEgl0XScajeL1enNKn2LfcDgcTJo0KdsyWszPf/7zrJ6/zRrubt260bVrV0aMGIHD4ci2nEOW66+/nlNPPZVRo0a1up/uQDjyyCNxu93U19fz6KOPsnHjRgoLC7Mtqwm1tbV8+eWX1NXVsXz5cnr06EHfvn2zLUtxCNBmDTck/bDKaGcWTdMyGl61P7z66qtMmDCBY445hvfee4+OHTuyaNEiJk+enG1pTfjoo4+47bbbqKio4KmnnsIwDJ5++ulsy1IcAqhhbsVeueWWW3IqsqRjx45s27aNI488knPPPZetW7c2iSDKBUKhEC+99BJPPPEE/fr1484772To0KF26JhCcSDs1XALIbxCiI+EEJ8JIdYIIW5Nre8lhFgmhNgghFgkhHCn1ntSrzektvfM7EdQZJpRo0bx5ZdfZluGzbBhw1i5ciVTp07l73//O/PmzeOYY47Jtqwm5OXlMXbsWBYtWsTChQvZtm0bq1evblNjHIrcpSWukjhwopQyJIRwAUuFEP8ErgHul1I+K4SYDUwCHk0910gp+wohzgPuAg5OjIwiIwghePPNN7MtowkfffQRq1at4osvvmDz5s05NzCpaRo9evRg7ty5tG/fnjfeeINRo0ZlNM5Y8f1hr4ZbJmeIpDMjuVIPCZwITEitnw/cQtJwn5FaBngeeFgIIaTKWNSmyTXDKIRg0KBBDBo0KNtSmmXIkCG88sorLFq0iKeffjqnw1UVbYsW+biFEA4hxKdABfA6sBGolVIaqV3KgS6p5S7AFoDU9jqgpDVFKxRtiXPPPVcZbUWr0iLDLaU0pZSDga7ACKD/gZ5YCHG5EGK5EGJ5NBo90MMpFArF94Z9iiqRUtYCbwOjgEIhRNrV0hVIZ3TaCnQDSG0vAKp2c6w5UsphUsphPp9vP+UrFArF94+WRJW0E0IUppZ9wEnAWpIG/Bep3S4BXk4tv5J6TWr7W8q/rVAoFK1HS6JKOgHzhRAOkob+OSnlq0KIL4BnhRB/AFYCT6T2fwJYIITYAFQD52VAt0KhUHxvaUlUySpgyG7Wf0XS3/3t9THg7FZRp1AoFIrvoGZOKhQKRRtDGW6FQqFoYyjDrVAoFG2MnMgOaFkW7733XrZlNMuOHTvYvn17TmssKyujpqYm5zL5Naa6upqPP/4Yv9+fbSnNEolEcvp7DoVCeL3VdOyYuxqLitZRVtaQ0+24fft2Vq1axc6dO7MtpVn29F/OCcMtpaSq6juh3jlDXV0d0Wg0pzWGw2GefFKjoSF3NXbvnuBHP6ohFotlW0qz1NQYXHRR7rah0xmh07iP8U17IdtSmsW9KUg4fE5O/19isRg31N5AzJm7v8W4bL5sYE4YbofDwemnn55tGc2yYcMGTNPMaY2WZVFR0YEdO0ZlW0qzlJSsYuzYsTlVkKExUkoWLHidTZty93v2eKoJdryXTadvyraUZun4XkcG7BqQ0/+X7du3s+24bdT1rcu2lGbJd+Q3u035uBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrVAoFG0MZbgVCoWijXHIGO5Zs2aRSCSyLUOhUCgyTps33O+88w5HHXUUPXv2ZPTo0dxyyy3ZlqRQKBQZpU0bbl3X2bhxI//v//0/jjjiCObNm0dNTQ27du3KtjSFQqHIGG3acMdiMTZu3MjAgQP597//zWuvvUa7du346quvsi1tryQSCZ5//vlsy1AoFG2QNm24A4EAI0eOZOLEiZx00knMnDmTsrIyRoz4TinMnCMej/PII49kW4ZCkXPce++9VFdXZ1tGTtOmDTfA2LFjWbJkCX/4wx946aWXsi1HoVDsJ6tWraJPnz50796dn/3sZ1x00UXZlpSztHnD7fV66dKlC08//TSHH344hYWFlJeXZ1uWQqHYByzL4tNPP2XatGn07duX5557jvz8fDZu3JhtaTlJmzfcaYQQdOvWjf79+/Pmm29mW44iy5SXl/Pqq69mW4aihViWxdatW+nSpQtlZWU88MADlJaWUlFRkW1pOckhY7jT/PSnP2XFihWq1/09ZuLEiUybNo01a9Zw/PHHqyijNoDT6WTs2LFcccUVFBcX89RTT/Hoo48yY8YMPv3005yupZoNcqJ0WWvSqVMnvF4vmzZtokuXLgghsi1pt2zZsoUuXbpkW0ab4euvv25xrcrly5czb948OnXqRFlZGZs2baKkpCRnfwuKJIMHD2bt2rXceOONLF26lNLSUgCmTJlCRUUFDzzwAB06dKCgoCDLSrPPIWe4Ae666y6GDBnCJ598krN/1gsuuIBPPvkk2zLaDHPnzmXTppbVWdy+fTsPPvggJ598Mueccw7PPvssw4YNy7BCxYHicDjIz8/n/vvvb7J+3rx57Nixg+nTp9O/f3+6devGhAkT0LRDzmHQYg5Jww0wffp07rnnHqZPn55tKYpWYF9mxA4ZMoTevXvTvn17fvnLX7J06dKcvYArWkbHjh2ZP38+S5cuZe3atVx22WWMGzeOs88+O9vSssIhe8k67bTTeOONN1T+ku8hL7zwAiNGjOCdd97hn//8J+3bt8+2JEUrccwxxzBp0iSmTp1KWVkZ7777brYlZYVDtsft9/u54YYbuO222/jDH/6QbTk2O3bsYOPGjYTDYd5//326detGjx49si3rkKJXr1707NmTcePGfa9vpw9VNE2jf//+HHbYYd/bO6lD9ledDg90Op05NQX+lVde4Y9//CN1dXU88sgj/OUvf8m2pEMSIYQy2oc4mqYpw90cQgivEOIjIcRnQog1QohbU+vnCSE2CSE+TT0Gp9YLIcSfhBAbhBCrhBBHZfpDNEfv3r1xuVysW7cuWxKasHnzZjZs2MDs2bPp3Lkzf/rTn3C73axYsSLb0hQKRRuiJV2SOHCilHIQMBgYJ4QYmdo2VUo5OPX4NLXuFKBf6nE58Ghri94Xrr76ahYvXkxNTU02ZQDQpUsXevTowZIlS1iyZAnLli1D13UGDBiQbWkKhaINsVcft5RSAqHUS1fqIffwljOAp1Lv+1AIUSiE6CSl3H7AavcDv9/P448/no1Tfwen00nfvn3585//jKZpvPLKK5x99tl4PJ5sS1MoFG2IFjkBhRAOIcSnQAXwupRyWWrT7Sl3yP1CiLT16QJsafT28tQ6BXDyySfz8ssv43Q6efHFF7nggguyLUmhULQxWmS4pZSmlHIw0BUYIYQYCMwA+gPDgWJgnwKmhRCXCyGWCyGWR6PRfZTd9rn44ou/twMrCoXiwNinYXcpZS3wNjBOSrldJokDTwLpJNhbgW6N3tY1te7bx5ojpRwmpRzm8/n2T71CoVB8D2lJVEk7IURhatkHnAR8KYTolFongDOB1am3vAJcnIouGQnUZcu/rVAoFIciLZmA0wmYL4RwkDT0z0kpXxVCvCWEaAcI4FPgV6n9/wGcCmwAIsDE1petUCgU319aElWyChiym/UnNrO/BK48cGkKhUKh2B1qaplCoVC0MZThVigUijaGMtwKhULRxlCGW6FQKNoYynArFApFGyMn8nEbhsFjjz2WbRnNUldXR3l5eU5r/Oqrr+jePY/S0lXZltIswWAZCxYsyOncLIZRzcCBufs9OxwxCjYVMPCxgdmW0ix52/P4IPYBO3bsyLaUZlm9ejV96vqQKMjdQitfG183uy0nDLfD4WDMmDHZltEs5eXlaJqW0xqdTicjRxbzwx/+MNtSmuWJJ8r4/e+PRdcD2ZbSLCedtIIXX8zd77m+vp7FiyuYOGb30yMkEomFlBKBsNcBaMJhr8skq1atora2luOOOy7j59pf6urqmDViFl27ds22lGYZpY1qdltOGG4hBH379s22jD2yfv36nNa4evVqOnTokNMa/X4/DQ09iceLsi2lGSSa5m7VNty+fTv5+fkEAq1zsaqursbv99OrVy+qqqqSK3069eFaCgoK+azibd6LvEpDrAbLEPi1YsLxMJF4mEm9b8Xr8tEpvytF/hLq6upwuVyEQiFKS0vZtWsXwWCQSCRCaWkp4XAYh8OBruuYponD4SAcDtvbCgoKqKystKuxpwtX7Ny5E4fDkdO/xYKCArp27Uq3bt0IhUL4fD7C4TAulwun00k0GiUQCNjb4vE4QghcLheRSIRgMEhDQwM+nw9d1/F4PCSnsIDb7SYUCpGfn084HCYvLw/DMLAsC4/HQ0NDA4FAgEgkgtfrxbIsDMPA6XTi9XrtHEZ7KgSSE4ZboThU+fOf/8yJJ57ICSec0KrHjRohPo++Q8ioo7x+DVWxHXirAwjLSXutF118P+SLXR/jdAQYGBiMlu/gs+oPeHXDIk7ucTZjepxGB28XpJR4vV7i8bhtRNLGybIs2xiljUh6XyEEkUgEt9ttP7vd7lb9jAeDUChEQUEBoVCIoqIiDMNA13WKi4upqamhqKjINsJSSuLxOKWlpdTU1FBcXEwkEiEvL49oNIoQAsuy7GNWVVVRUFBAXV0dTqcTTdOorq6msLCQqqoqgsEg9fX1CCHweDxEo1E8Hk+Lks8pw61QtEE0ofGnjx5BN+N0DXald1FvPA4/895aQDDg5rAenajaHKYqvoZBA2spdrdHNy06+fqwZscqMJy083Tg5MNOB7CNTnpZ0zQsy0LTNAzDaHJuIUST0nBtuYSYz+cjFArhdDqpr6/H4XCgaRp1dXVcddVVDBs2jMmTJxOJROzPXFtbi9frpb6+HqfTSSwWw+lMmlJN0+yLW0FBAYlEAr/fj2VZzJ8/nzfffJPHHnuMgoICdF23t0kpW2y0QRluhaJN4nHk8Yfhf+bMRWdQ4TbZ4KwmT+RRLHqQF/MQKctn19YoX+6owJP3Od6qYmqKd+F3FuPU3NTVx4glEozsehxO6cLv9xMOhxFCJG/9XZJELIzL6QDhxZISh8NBPB7H7/djGAYul4twOEwgEGizhjscDlNUVER9fT35+fmYpomu6wSDQf7xj3/w8ssvY5omF198MYWFhcTjcYLBoN3jDoVCuN2O+SXYAAAgAElEQVRuYrEYgN3jLiwspLa2loKCArZu3cqbb77J9OnTicfjPPnkk9TW1hIMBgmFkjVq0sbe5/O1qC1VOKBC0QaJxWL0bteT5855jnq9lrc3vMO/1/6bL3as4eOvVvD6Z+9wyUmXcsbgczg2eD7VO6Czv4ianZXUh+r4onwdX5Sv54+v34Hm1QiHwwSDQUzTxCVj/PXGH7D4D0fw7K2HoYercLvdCCEoLCwkHA7bvdK8vDxqampsw5Vp1qxZYxu71sDlcmEYBg6HA9M0k4O6qTsKgGg0yvTp0+nRowfLli1DCGH7ow3DQNM0pJRomobD4cDhcNj+brfbzapVqxg+fDhXXHEF4XAYSAZjpN1KLpcLl8tl9+ZVj1uhOITJy8ujsrKSLv7OPPqz2Vz13FVU1FTQt6QfDunASpj87b1F+B1+orEIbqeLnR856d9jGNsqNlJfUkGp3o1n/rWIsT3HceqPTqWyshKvGz7514PUhXTadx9Gv8E/QbjyiMfjOBwOqqur7cHJ4uJiKisrKSkpyXiPu6qqigceeACn04lpmnTr1o3LLrvsgI/rdDrRdR1N09B13f4cc+fObXIxSiQSTJgwgYsuuoizzjqLnj17ctdddyGlTF7sXC4gaYgvu+wydu7cycKFC3n22Wepq6uzj2OaJnPmzOGyyy7DsiycTqc9juBwOFqu+4A/uUKhOOhEIhHy8/MBGOYdxjMXLeSMv5zJlxXrCDgD+ISPuIhTGd/FjsrtVO+q5qfDT6PU3RkLB0fmD+Pfn/2TYo8Tj+aioaGBuooN/P2VB6jYvJz2XY7i2HNmUdi+J5oQOBwOLMuipKSEcDiM0+mkqqqKQCBATU0NeXl55OXlZeSzSimpqqri448/Zu7cuaxfv54bbriBSy+99IAvGNFolOLiYurr6wkGgxiGQSKRYOHChSQSTWO8t23bxl133cVrr72G3+9n+fLlmKbZZB9N03jttdeQUrJy5crdfpY5c+Zw3nnnUVhYSCgUQgiB1+slkUjYPf69oVwlCkUbJN07k1KiCY2+xf1481dv0rfjYdTH6lm3438s37yCVVtWEcgPMnzAcKJ6lK93bkY4Neq3Jhjd5xTy85zc+NcpbNq2ga83rObLzz/h2NNn8PMpCyjp2BtBcjAybVDSYYFCCJxOJ5Zl2S6CxrRmD1xKyfTp05kzZw533HEHHTp04De/+Q0PPvjgAR87feHxeDxUV1cTiUQA0HXd3ue+++5rModj9erVLFu27DtGG5I+7hUrVjQx2h06dGD+/Pn2a6fTSbt27dB1nYKCAvx+P5C8i1KuEoXiEEbTNGKxGCLVG9Z1nY4FHVky+VVe+/w1Xv38H3yw5n12VO0kkghTZTmIOxJYCQsMWLvuC8YOP5njSn9B+1GCq+47nx9UOhg8bAyHDT2FvPwC20inox6EECQSCVwuF6Zp4na77UHKbxuc9O1/a33Wu+66iwsuuACHw8Hzzz/PkiVLWLp06QEfOx0GWF9fT3Fxsd3jTrs+IGnEX3zxRYqKinZrrPfGmDFjmlwIDMNg165dFBYWUldXZ/e4VTigQnGIE4vFbNdENBrF7/dTW1tLIBDgxL5j+PnwX7BkxRJ2NOwgEUsQ8OYTjUSJRxMgBcYJBt07dOPEESdSXFRMcEcxW97/jJN+diWl7TtTVVWF3+9H13WcTqdtpNPxyV6vl9raWnviTiAQyGgcd4cOHbjwwgtZsGABpmly3XXXtcpx0+GALlfSXZQeIGxsoH0+H/tb0PyXv/wld999N//+97/tdQ6Hg2Aw2CQcELAHgFvCIWe4DcOweyEKxaFKXl4e9fX1QPIPn56Nl/bZhsNhTh5yMnW1teS53URrq/h6/sPENqzF26kL/X/7exIuFw5g147t7Fi5DY+/Pd2696W+upqiQICErrPh7y/wyd8WIFxe+p9+Dn1Gn0hRSQmmaVJaWkooFKKkpMSOY84UBQUFdOzYkXPOOYfJkye3Wr6beDxOfn4+kUgEn89nz2L0er32PolEAo/HY0ee7AtnnHEGQJOBTikl4XAYv99vr3e73U165XvjkDHcUkqWL1/OBx98gKZpjBw5kqFDh7bZ+FKFYk+Ew2F7Nl80GiU/P9+OG04/71y5DFG+ibLXnsPl83PkrfeD5kI4NMxdO1h74/WYQsOKWVhrP6f9kUdR9vw8trz7NpGGevK79eIHZ57P+NtmYRk6X7z1On+deD7ugiJO/H/XkN+xMz369aOurg6fz2cPlmaK2tpa8vLyWjVJWWP/vZTSdvG89NJLdOzYkYaGBjZv3syKFSu+MxGpJWzYsIGhQ4eyYcMG+3xnnXWW3bFsHHq4L7bqkDHclmVx1llnMWvWLHt58+bNynArDkk8Hk8TH3cikcDr9aLrOl6vl13v/ovNs26k23mXMmDaHQgB4XVrSf8dpBAMvPE+pIDYju0UfbiURCKBQ2gMmzINnC7i0QiJaIRIVQWWlPQYOpzuQ0dQV13N4ptmEuzWnUvufQBfMJjxHnemcLlcxONxNE2zp/ILIZr0kB966CEeeuih/Tr+tddey7Zt25g1axaQ9NdfffXVeDweLMvC7XbbF4t9acNDJqrkxhtv5PHHH6ekpISOHTvy2GOPcdNNN2VbVpslEolw8803Z1uGohnS0RyNJ4BYloUQgsp3lrD+gVvoOWEywd6HEd9aRrx8MyIWRsTCEAtDNEx045dE1q/FaKil/YhRdD7meAq69yJauYPw1i3EqnZhhMMY0Qh6JEK8IUSsvg6Hw8HxF11M/ZYtPP7rK+wwtrZIOqwy7W9OG9JZs2btt1/726SNNiS/txtvvJG6umQ7hkIhotGonQelpe3YNi+Tu+Hqq6/m/PPPZ/z48TidThYvXsxzzz2XbVltFl3XW2XUXpEZ0lEdjWfyRSIRRNVOdr70V7qfeQGe4lKsuio0NIRIzQgEBGAhwUouY0kSkRCmlBgWmJbEkhJLJpeN9LMlMbHQTXB7fBwz4UJefvB+Hv7lRK5b+EzGP28ikcDn87XqcdPT171eLzU1NUgpeeSRR7j33nubuEaKiopwOBxNwiJramp2e8yCggJcLpd9IbUsy95XSsnjjz+Ow+Hg5ptvtiNVTNPcp3DAQ6bHXVpaSmFhIU8++SRXXXUVPp+PkpKSbMtSKDJC2qedzjxXV1dHYUEBOz5fSbC0I/7CEqxQLcQiiHgILR7BEQ+jxSPJR7r3HQ1DLATRMFYkjIyEMCMhjEgII9xAIhxCDzWQCDWQCDcQb0g+x0L1WIbOSZMupaa8nIaKiox+3o0bN7J06VIuuOCCVj1uQ0MDhYWFJBIJAoEAjz32GLfddluTyTdHHHEEK1asoLy8nI0bN1JRUcHy5csZPnz4d453+OGH89Zbb1FeXs7nn39OeXk5H330EYMGDbL3MU2TP//5z9x9991s27bNngofiURa3OM+ZAy3pmksXryYp556iqOOOooHH3xwj/lsc5WXX36ZrVu3ZluGIsdJJyTyeDyYppkMa6urpfY/S9B8XvSGGohFkNEIxJKGWotHcMbDOOIRRCwC8Yi9jxkJI6MRrGgYKxrBikQwIhGMSAg9EiaRfg6HSYRDJMIh4uEQeiyBy5/PO89mtsedprXHrHw+H5FIBKfTyc6dO7/jXh0wYACzZ8+muLjY9oXX19fTrl07Zs2aRb9+/ex9PR4P1113Hf369SMejxMIBNB1nQ4dOvDEE08wYsSIJseeNWsW4XDYHmz9XocDDho0iIEDc7esU3Ps3LmTn//855x55pk888wzeL1e5s2bl21Zihwl7RqB5B8+kUjg0QSxr76gZMxpWNEwpqbh0ESye6aBQ3OgaWBJEJYESyItibQspCmxLDAtC8sCw5LolkSXFrqZdKEYlpVcZ0kMM7UsoWPPHuit5A8+2Oi6Tl5eHrFYjF/96ld2dEma7du3M23aNEzTpH///jz88MN4vV4ikQhDhgxh7NixrF+/HoCxY8dywgkn2C6dSCTCLbfcwsqVK7Esi82bNzc5txCCK6+8khdeeAG3271PoYaHnOFuK1iWxfr16+0fyY4dO/D5fIwbN45LLrmESZMmsXPnTjp06JBlpYpcpHH4mh3SpgmkZWLFIhgaaJoDSxNITYAmkA4BacNkgbQklmVhmclnwwLDtDAk6IaFIZN+7YRpJQ25aWFYFglLoJsS3bLQTYtYuPWy9R1s0gUMnE4nTzzxBP/5z3+YMGGCvb26upoPP/yQPn36cOedd+JwOIhEIng8HuLxeJNIkEAgQLt27ewoH7/fz0033cQpp5zCihUrvnPuP/3pT5x//vlNCli0lEPScB933HG8/fbb9O3bN+vhgJs3b+aNN974znrTNFm2bJn9OhwOs2HDBu6//35uuOEGTj75ZN54441W9+kpDg0SiYQ9U9E0TbxeL7G6WsxwhNjObfiCBZiaA80hEBoIhwChYaFhITGkxLSSBtkw071qiSEtEibo6R61mRyMjEajxHUdPD4SlkwZbtAtk3gkQiZjSqSUvP322xmpYdk4qZPD4eDdd9/9zj6HH344ixYtIj8/H6fTyeuvv05FRQWFhYUMGjSISy65BMMw+NGPfsSyZcsoKyvD5/Nx5pln4vV6efnllznttNP47LPPmhz3448/5uyzz7Y7b/sSmXNIGu5JkyYxZMiQVskedqA0rhTSGI/Hw+OPP27r27JlC8cddxznn38+Tz75JK+99hqffPLJwZZr4/P5GD9+PC+++CJnnXVW1nS0dc466ywWLFjAyJEjWzUiwuv1UlFRgRACv9+frIMYyMeSUP/lGhz9+iN8XtC0VE87FUmiGwiPF1NaScNrGIS3bSEWDhMzLRKmJG5I4pZJ3ABXSQcIBIlFosQTCYRhkkjtp1uShGGyefVq+g4fsXfR+4mUktmzZ+82215rkK70EwqFmD17Nqeffjrr1q1j3bp19vlnzZrFPffcgxCCqqoqrrnmGn784x/z/PPPc9ZZZ9npWSdPnszzzz/PfffdByRnct94441NjHKXLl0YM2YMf/3rX5k+fTp5eXktzgqY5pA03LlE9+7dmThx9xW5G9OxY0eWLFnCvHnzGD16NJMmTToI6prH7XZz5JFH8s477yjDfQAcddRRTJ06tdVD2dLFetOTRQKBAA2hBo6Yfjtrbr0a8/MwpT8YiPS4MTWBKUDEI1i1NTg6dMYyTBo2rME0JLF4nLiuEzct4gZEDZO4YREzLfQd29BxIP0FOAoKkZEYhsOJbkLCtNjw+So0dx5HHHNsq322g0m6sK/X68Xr9fLRRx9RWlrKhRdeaO/z5Zdfsm7dOt59913OPfdcJk2aRHFxsR3uZ5qmXTzBNE3y8/MZP348c+fO5f7776esrMzORwJQWFjI/fffz1VXXUWvXr3sqkP7MgFHGe4cweVy8YMf/IDbb7+9yTRYhaI5TNO07+aSvUYHIlCEblho4TDVX3xKQd/+aKaBwzIRehy9citsL0/GalugWxYJK9mDThjJXrRJKnZbQiKeIKabxOoaiG/ZQsy0MFwe/B07s61sMw0NEXqOOIyBGXBjHAzShX3j8TjFxcUUFRWxZcsWYrGYPakJkr3uTZs2ceedd7JmzRpeeeUVnnzySaSU+Hw+O3xw4MCBXHfddVx//fUsWrToO+4PTdOIRqNs376dww8/3J7k43K5iMViLZ7O32LDLYRwAMuBrVLK04QQvYBngRLgE+AiKWVCCOEBngKGAlXAuVLKspaep7W44IILeOaZZ9qcj7gthjAqDj7pqdpp451OrxoCLK+XRDwGukG4tgbC9YhQA5om0BBIJKa0sGTScBsWKZ/1N75rI+3/tpL+cMuSmFJiWmDqOqGaWmKRKA6PFylbP0zvYJGfn29XY6+trcXtdrNx40Z+/OMfc/LJJ1NfX28PYM6ePRspJX//+98ZNWoU06dPt6vd+/1+pJRce+21LFiwoInRnjJlit0jTycH27BhA507d7bLxe3rHdm+9Lh/A6wFgqnXdwH3SymfFULMBiYBj6aea6SUfYUQ56X2O3cfztMqTJ48mfHjx7c5w50rTJo0iTVr1lBVVcUnn3xiD84ocoN4PG5nsItEIuTl5SXTrB7+Q4qOGcvOf72EhYGsqsIpLDTDQmgCkTLclmxkiKVM+rZN2cSAG40GLw2ZHLA0pcTQJfGaOiwJDq+X8dOm2jlSMsGMGTO4++67M3LstMspkUhQUFCAlJJjjz2WE088kVgsZlem0TSNfv36cc011wDwwAMP8Nvf/tYOJ0wkEvYsyfvuu8822jfffDNXXHEFXq/XnuXq9XqJxWJ2VkfArhbf0tS4LereCSG6Aj8FHk+9FsCJwPOpXeYDZ6aWz0i9JrV9jMjC5VgIoWZO7ic1NTVs3LiRadOmccYZZ+D1etmxY0e2ZSka4ff7CYVCTXJJFxQUEBcOgj36YlgQ1y2ikSjRaIKIaRE1LCJG8jlqWMSMpLGO6jI5MGlZJFLhf7qUxC2JYUoMKUikety6ZaH585OuBLcP3TAYddLJGStbBrBs2TJGjRqVkWPn5eU1acO0y6O+vh6fz0d9fb1d3f7www+332cYhl1LMhaL4XK5mhQBTtOvXz+KiopwuVxomkYwGCQajVJQUGDnR0n3tPcln3lLe9wPANOAQOp1CVArpUxP5i8HuqSWuwBbAKSUhhCiLrX/rharagXy8/NZvHjxwTzlIcP8+fO5/PLL6du3L4lEgjPPPJMHH3xwvzOkKVqfSCRCIBBoslxXV0cgEEDr2Q+tXWdiO8rRZQIHAodGKjNgsq8mZdNed3pyjR0tYproZtJ4J6x0PLfEMCFWU4sl4MgxJ+AtLqGyspLCwkJbT1sineclHUeddlWmixK7XC6klDgcjiaDh0IIO+46ncOk8SNNuhp8ep2u63acd9rFlfajNx7A3Bt77XELIU4DKqSUrRqbJoS4XAixXAixvLWycClah6uvvprbbruN//73vxQVFXHhhRdy2223ZVuWohFpv2s0GrUHvNK39T2OHo23S3eipkUsFR2S7GFbxAyDmGEQNUyihvnNdttIpwYqTZmM504b81Sct24lXSilPXvx1eo1nPbrKQSDwYxWv8kk6VDAtHFuHNOdzsCYzr7Yq1evJoUR0vMz0i6StP+7qqoKSJYsGzhwoL0tHXWiaRqmaTZ5H7R+HPfRwOlCiFMBL0kf94NAoRDCmep1dwXSCTa2At2AciGEEyggOUjZBCnlHGAOQIcOHdpmTshDmEWLFrF69Wo+/PBDnnvuuTbZmzqUSf/x03/+dARE2uAMm3obf79wPNFoCIcQyYFJmex1S8ACrHQWQCSGkYwkSRpnC8OEhJU05rplpaJPkgbcEwjSvu8PaNe3L8WdOtnlvjL1OTM5YJ8uEhwMBqmrq8PtduNyuexKQtXV1QQCASKRCIWFhRx77LG8/PLLhMNhpkyZQrdu3WzDDlBeXm5nAhw6dCidOnWy86Snc8rU1NTYleXTpcsSiUTrhgNKKWcAMwCEEKOB66SUFwgh/gb8gmRkySXAy6m3vJJ6/UFq+1uyrSbr/R6Tzvmyr1NxFd8lEz9/0zTtP3r6lj4SieB2u4lGoxT27kNe915UrPkUTWg47JSuFhINKVI9wNTgpGnJVArXdD4SYfe0dcsiZiZdJgnLJBAsRHO76TVoEIHCQurr69E0LSO97ltuuYUbbrjBroTe2qSzA8ZiMQoLC7EsC9M0KS4utsuyRaNRAoEAUko7PwxAZWUllZWVzR47fReUzr2taRo1NTX4/X6qq6ttH3ra7ZIuFtwSDuRSNh24RgixgaQP+4nU+ieAktT6a4DrD+AciizicDiU0W4FMtEb9fv9NDQ0EAqFcDqddjxyJBKhpKSESCTCKY88SVy3iBsmUd1MuUdk8jlhEdWT7pN42o1iSqImxAxBzLBImBZxM7leNy0ShklRl+70O/pYvHl+xp53Hg0NDZSWlmZscDLtg85Ujz4QCFBTU4Pb7aampsaOq04XQN61axcOh4P6+noikQjDhw+nW7duez1ux44dOeGEE+wLgsfjQdM0ux5oaWmpHcmSvijtSxvuk+GWUr4jpTwttfyVlHKElLKvlPJsKWU8tT6Wet03tf2rfTmHQqHYO9FolLy8PHw+n52EPz0DsK6uDq/Xi3S6GXTRpUlDbSYNd0T/xredjC4xk/5vUzYy4slp7XHDIm77uyXBjl3oPWwE28rK+MnEidQ1hPD5fNTW1jYp9dWWiEQidsX1YDBohzQWFhba7hHTNPH7/Xi9Xo4++mjmz59PYWFhs8d0u908/vjjjB49Go/HQ0NDA7quI6W0o1VqamqScfepCjjAPrWhmu2hULRBPB4Puq7bUQrRaNSewZefn58sDFBUTOmo49DadSJqSCKGRcRMhgR+ExYov1k2LWK6mexlG8kQwbhpkrAk7mAB7fv2o6piJ5GGEL0HDyYQCBCPx/H7/Rm7M5s6dep38li3Jl6vl3A4jNPpJBwO2+GA6YtgQ0MDDoeDWCxm16Q8/PDDWblyJfPmzSMYDBIIBAgGgwSDQe6//37WrVvHqFGjCAQCJBIJ8vLy7LuGdGX3QCCAYRhNih9nIhxQoVDkEI2nYqcjIhrnzkgPWvYaMYphF1/KW/ffgx4J2++XqYk4UiYHKU3S/m6S6VztCTgW3uJS8jt0IhKN4vF4uev1f9saGg+KZoLi4uKMHDdN4/JiaRqXJ2u8LZ0+V9M02rdvzymnnMLXX3+NYRj2zEjAHm9I59e2LMuOHmn8HUFyfKJx1ElLUYZboWiDmKZph6qlDadhGGiahq7r9rPb7ebYSb/ClJJX/3ArsomBSkaYmJJkTHd6Wrv8Ji+3IQWaKamrqaFnp05ces89aKlMePF43I5JFkK0yUrvjY1uenYjJHvi6XS50LQ3nN7WeOJM45A+XddxuVx2pIiu6/Z7E4mEvS39nTW+ULQU5SpRKNog6ZjtWCxmJ/dPr0tXLU/f6muaxogJF/OLe/9E1yHDk/7s1KPLsBF4O3QkZlqph6TfcaOJWySnwFsQi0Q56qSfMPGPfySvqAiPx4NlWeTn5xOPx8nPz2+zcdxpw5qeDJM2no2NbnqqeroHns7kl3arpEMW0ymcXS6XXczZsiycTqe93eVyYRhGk23pC96+3LW0vUukQtFGiEajVFZWEovFKC8vR9d1SktLW+34aTeCEAKfz4cQwl5XVFSEEILOnTvb20+8+P849uxzMRv1AB0uF5ZlYpnf9MSdbjd6o2K5AG6vF7fXa/cOg8GgnVairSaYguQF0OPxNGlD+MZdkt7WmHQ19t1tS7Mnv/X++LS/jTLcCkWG+O9//8u1115LRUUF1157LSUlJTz99NOtdvzGE1PSBmRvz44WJgrzNhM33dxx2yqNUyg3/ix7+ny58NmVq0ShyACRSIQ333yTuXPnMnDgQP7yl78wYMAAli5dmm1pikMAkQuTGouKiuRFF12UbRnNEo/H7VlUuUpdXR1OpzNjM8xag507d7JzZylSZiYCoTUoLNxKjx5d9r7jXjBNk82bN9O7d282btxIz549qa+vx7KsA/odmaZJVVUV7du3P2CNmSIcDmOaJsFgcO87Z4mqqiry8/NbPFMxGyxYsICamprddutzwnALISqBMAc5g+A+UIrStj8obfuH0rZ/HGraekgp2+1uQ04YbgAhxHIp5bBs69gdStv+obTtH0rb/vF90qZ83AqFQtHGUIZboVAo2hi5ZLjnZFvAHlDa9g+lbf9Q2vaP7422nPFxKxQKhaJl5FKPW6FQKBQtIOuGWwgxTgixTgixQQiR9aILQogyIcTnQohPhRDLU+uKhRCvCyHWp56LDpKWuUKICiHE6kbrdqtFJPlTqh1XCSGOypK+W4QQW1Pt92mq5F1624yUvnVCiJMzqKubEOJtIcQXQog1QojfpNZnve32oC3r7ZY6l1cI8ZEQ4rOUvltT63sJIZaldCwSQrhT6z2p1xtS23tmQds8IcSmRm03OLU+G/8JhxBipRDi1dTrzLTbt6sTH8wH4AA2Ar0BN/AZcESWNZUBpd9adzdwfWr5euCug6TlOOAoYPXetACnAv8EBDASWJYlfbeQLG/37X2PSH2/HqBX6nt3ZEhXJ+Co1HIA+F/q/Flvuz1oy3q7pc4ngPzUsgtYlmqT54DzUutnA1ekln8NzE4tnwcsyoK2ecAvdrN/Nv4T1wALgVdTrzPSbtnucY8ANshkNZ0EyfqVZ2RZ0+44A5ifWp4PnHkwTiqlfBeobqGWM4CnZJIPSRZz7pQFfc1xBvCslDIupdwEbCD5/WdC13Yp5YrUcgOwFuhCDrTdHrQ1x0Frt5QmKaUMpV66Ug8JnAg8n1r/7bZLt+nzwBghMpPEYw/amuOg/ieEEF2BnwKPp14LMtRu2TbcXYAtjV6Xs+cf8cFAAv8WQnwihLg8ta6DlHJ7ankH0CE70vaoJZfackrq1nRuI7dSVvSlbkGHkOyd5VTbfUsb5Ei7pW73PwUqgNdJ9vJrpZTGbjTY+lLb60jWoD0o2qSU6ba7PdV29wsh0vPYD3bbPQBMA9KpFkvIULtl23DnIsdIKY8CTgGuFEIc13ijTN7b5EQoTi5pacSjQB9gMLAdmJUtIUKIfGAxcLWUsr7xtmy33W605Uy7SSlNKeVgoCvJ3n3/bGn5Nt/WJoQYCMwgqXE4UEyykPlBRQhxGlAhpfzkYJwv24Z7K9C4ZHLX1LqsIaXcmnquAF4k+cPdmb7FSj1XZE9hs1pyoi2llDtTfy4L+Avf3NYfVH1CCBdJw/i0lPKF1OqcaLvdacuVdmuMlLIWeBsYRdLNkE4D3ViDrS+1vQCoOojaxqXcT1ImC5Y/SXba7mjgdCFEGUmX74nAg2So3bJtuD8G+qVGXt0knfSvZEuMEMIvhAikl4GxwOqUpktSu10CvJwdhR0Bo5UAAAF0SURBVLAHLa8AF6dG0kcCdY3cAgeNb/kQzyLZfml956VG03sB/YCPMqRBAE8Aa6WU9zXalPW2a05bLrRbSkc7IURhatkHnETSD/828IvUbt9uu3Sb/gJ4K3U3c7C0fdnoYixI+pAbt91B+V6llDOklF2llD1J2rG3pJQXkKl2+//t2z1uwkAQhuG3g5qOlgNQpUxBC9fIMZByi5wgkVJwBeAANBAgRX5ukibFDIIGJBf2stL7SC7ASPtphEfyjt3GZLXJQUx+v4l9tHnhLCNigv8BfJ7yEHtPK+AHWAKDjvK8E7fNf8T+2NO1LMTk/CXreAAeCuV7zfX3+eccXvx+nvm+gGmLuR6JbZA9sMtjdg+1u5GteN1yrTGwzRxH4Pni2tgQw9EF0Mvv+/n5N8+PCmRbZ+2OwBvnJ086vyZy3Qnnp0paqZtvTkpSZUpvlUiSGrJxS1JlbNySVBkbtyRVxsYtSZWxcUtSZWzcklQZG7ckVeYf2tkbinO+r1AAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## परिणाम\n", + "\n", + "चलो देखते हैं कि क्या हम पीटर को भेड़िये से लड़ने के लिए सफलतापूर्वक प्रशिक्षित कर पाए!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 1, won: 9 times, drown: 90 times\n" + ] + } + ], + "source": [ + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAcD0lEQVR4nO3df3BV553f8fdHPxHCQgJkIEACrIkd4raxrcZksrOTCVmM3UzwH04Gz86azXrDtHHa7HZnEryZ1tMknkna7XrDrONdN2aDM1kTrzetaYpLKHYm05nasRw7trFNkLExkrGRkQAbJPTjfvvHeSQuQjrge4UkxOc1c9E53/Occ5/nHul+OD+kq4jAzMxsLBWT3QEzM5vaHBRmZpbLQWFmZrkcFGZmlstBYWZmuaomuwPjbd68ebF06dLJ7oaZ2UXlmWeeeScimkdbNu2CYunSpbS2tk52N8zMLiqSDoy1zKeezMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4NihOO9/Tz6XMdkd8PMbMqYdr9wV66vP/I8j734FlcuuIyrFjRMdnfMzCadjyhGePNYLwA9fYOT3BMzs6nBQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0ExhpjsDpiZTRHnDApJWyQdlvTiKMv+XFJImpfmJWmzpDZJz0u6tqjtBkn70mNDUf06SS+kdTZLUqrPkbQrtd8lqWl8hnyO8U7Ek5iZXUTO54jih8DakUVJS4A1wBtF5RuBFemxEbgvtZ0D3AVcD3wcuKvojf8+4EtF6w091yZgd0SsAHaneTMzm2DnDIqI+CXQNcqie4CvceZZmnXAg5F5EmiUtBC4AdgVEV0R0Q3sAtamZQ0R8WREBPAgcHPRtram6a1FdTMzm0AlXaOQtA7oiIjfjFi0CDhYNN+eann19lHqAPMj4lCafguYn9OfjZJaJbV2dna+3+GYmVmO9x0UkmYCfwH8x/HvzujS0caY15cj4v6IaImIlubm5onqlpnZJaGUI4rfAZYBv5H0OrAY+LWkBUAHsKSo7eJUy6svHqUO8HY6NUX6eriEvpqZWZned1BExAsRcXlELI2IpWSni66NiLeA7cBt6e6nVcCxdPpoJ7BGUlO6iL0G2JmWHZe0Kt3tdBvwaHqq7cDQ3VEbiupmZjaBzuf22IeA/wdcKald0u05zXcA+4E24L8BXwaIiC7gW8DT6fHNVCO1+UFa51XgsVT/DvD7kvYBn0nzZmY2warO1SAibj3H8qVF0wHcMUa7LcCWUeqtwNWj1I8Aq8/VPzMzu7D8m9lmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBMYYY8xO6zcwuLQ6KEaTJ7oGZ2dRyPh+FukXSYUkvFtX+i6RXJD0v6b9LaixadqekNkl7Jd1QVF+bam2SNhXVl0l6KtV/Iqkm1WvTfFtavnS8Bm1mZufvfI4ofgisHVHbBVwdEf8c+C1wJ4CklcB64KNpne9LqpRUCdwL3AisBG5NbQG+C9wTEVcA3cDQZ3LfDnSn+j2pnZmZTbBzBkVE/BLoGlH7eUQMpNkngcVpeh2wLSJORcRrQBvw8fRoi4j9EdEHbAPWSRLwaeCRtP5W4OaibW1N048Aq1N7MzObQONxjeKPgcfS9CLgYNGy9lQbqz4XOFoUOkP1M7aVlh9L7c8iaaOkVkmtnZ2dZQ/IzMxOKysoJH0DGAB+PD7dKU1E3B8RLRHR0tzcPJldMTObdqpKXVHSHwGfBVZHDN9M2gEsKWq2ONUYo34EaJRUlY4aitsPbatdUhUwO7U3M7MJVNIRhaS1wNeAz0XEyaJF24H16Y6lZcAK4FfA08CKdIdTDdkF7+0pYJ4AbknrbwAeLdrWhjR9C/B4USCZmdkEOecRhaSHgE8B8yS1A3eR3eVUC+xK15efjIh/HRF7JD0MvER2SuqOiBhM2/kKsBOoBLZExJ70FF8Htkn6NvAs8ECqPwD8SFIb2cX09eMwXjMze5/OGRQRceso5QdGqQ21vxu4e5T6DmDHKPX9ZHdFjaz3Ap8/V//MzOzC8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMyZ+RZGYGDoqzaLI7YGY2xTgozMws1zmDQtIWSYclvVhUmyNpl6R96WtTqkvSZkltkp6XdG3ROhtS+32SNhTVr5P0Qlpns9Jnq471HGZmNrHO54jih8DaEbVNwO6IWAHsTvMANwIr0mMjcB9kb/pkn7V9PdnHnt5V9MZ/H/ClovXWnuM5zMxsAp0zKCLil0DXiPI6YGua3grcXFR/MDJPAo2SFgI3ALsioisiuoFdwNq0rCEinoyIAB4csa3RnsPMzCZQqdco5kfEoTT9FjA/TS8CDha1a0+1vHr7KPW85ziLpI2SWiW1dnZ2ljAcMzMbS9kXs9ORwAW9l/RczxER90dES0S0NDc3X8iumJldckoNirfTaSPS18Op3gEsKWq3ONXy6otHqec9h5mZTaBSg2I7MHTn0gbg0aL6benup1XAsXT6aCewRlJTuoi9BtiZlh2XtCrd7XTbiG2N9hxmZjaBqs7VQNJDwKeAeZLaye5e+g7wsKTbgQPAF1LzHcBNQBtwEvgiQER0SfoW8HRq982IGLpA/mWyO6vqgMfSg5znMDOzCXTOoIiIW8dYtHqUtgHcMcZ2tgBbRqm3AlePUj8y2nOYmdnE8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQjCEu6EcxmZldPBwUI2Qfi2FmZkMcFGZmlstBYWZmuRwUZmaWq6ygkPRnkvZIelHSQ5JmSFom6SlJbZJ+Iqkmta1N821p+dKi7dyZ6nsl3VBUX5tqbZI2ldNXMzMrTclBIWkR8O+Aloi4GqgE1gPfBe6JiCuAbuD2tMrtQHeq35PaIWllWu+jwFrg+5IqJVUC9wI3AiuBW1NbMzObQOWeeqoC6iRVATOBQ8CngUfS8q3AzWl6XZonLV+t7BajdcC2iDgVEa8BbcDH06MtIvZHRB+wLbU1M7MJVHJQREQH8JfAG2QBcQx4BjgaEQOpWTuwKE0vAg6mdQdS+7nF9RHrjFU/i6SNkloltXZ2dpY6JDMzG0U5p56ayP6Hvwz4AFBPdupowkXE/RHREhEtzc3Nk9EFM7Npq5xTT58BXouIzojoB34KfBJoTKeiABYDHWm6A1gCkJbPBo4U10esM1bdzMwmUDlB8QawStLMdK1hNfAS8ARwS2qzAXg0TW9P86Tlj0dEpPr6dFfUMmAF8CvgaWBFuouqhuyC9/Yy+mtmZiWoOneT0UXEU5IeAX4NDADPAvcD/wvYJunbqfZAWuUB4EeS2oAusjd+ImKPpIfJQmYAuCMiBgEkfQXYSXZH1ZaI2FNqf83MrDQlBwVARNwF3DWivJ/sjqWRbXuBz4+xnbuBu0ep7wB2lNNHMzMrj38z28zMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMYQk90BM7MpwkExgia7A2ZmU4yDwszMcjkozMwsl4PCzMxyOSjMzCxXWUEhqVHSI5JekfSypE9ImiNpl6R96WtTaitJmyW1SXpe0rVF29mQ2u+TtKGofp2kF9I6m9Nnc19QrQe6L/RTmJldVMo9ovge8L8j4irgXwAvA5uA3RGxAtid5gFuBFakx0bgPgBJc8g+TvV6so9QvWsoXFKbLxWtt7bM/pqZ2ftUclBImg38HvAAQET0RcRRYB2wNTXbCtycptcBD0bmSaBR0kLgBmBXRHRFRDewC1ibljVExJMREcCDRdsyM7MJUs4RxTKgE/h7Sc9K+oGkemB+RBxKbd4C5qfpRcDBovXbUy2v3j5K/SySNkpqldTa2dlZxpDMzGykcoKiCrgWuC8irgFOcPo0EwDpSOCC/5JzRNwfES0R0dLc3Hyhn87M7JJSTlC0A+0R8VSaf4QsON5Op41IXw+n5R3AkqL1F6daXn3xKHUzM5tAJQdFRLwFHJR0ZSqtBl4CtgNDdy5tAB5N09uB29LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVW62+m2om2ZmdkEqSpz/X8L/FhSDbAf+CJZ+Dws6XbgAPCF1HYHcBPQBpxMbYmILknfAp5O7b4ZEV1p+svAD4E64LH0MDOzCVRWUETEc0DLKItWj9I2gDvG2M4WYMso9Vbg6nL6aGZm5fFvZpuZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMIS74H0c3M7s4OCjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxylR0UkiolPSvpZ2l+maSnJLVJ+kn6mFQk1ab5trR8adE27kz1vZJuKKqvTbU2SZvK7auZmb1/43FE8VXg5aL57wL3RMQVQDdwe6rfDnSn+j2pHZJWAuuBjwJrge+n8KkE7gVuBFYCt6a2ZmY2gcoKCkmLgX8F/CDNC/g08EhqshW4OU2vS/Ok5atT+3XAtog4FRGvAW3Ax9OjLSL2R0QfsC21NTOzCVTuEcVfA18DCml+LnA0IgbSfDuwKE0vAg4CpOXHUvvh+oh1xqqfRdJGSa2SWjs7O8sckpmZFSs5KCR9FjgcEc+MY39KEhH3R0RLRLQ0NzdPdnfMzKaVqjLW/STwOUk3ATOABuB7QKOkqnTUsBjoSO07gCVAu6QqYDZwpKg+pHidsepmZjZBSj6iiIg7I2JxRCwluxj9eET8AfAEcEtqtgF4NE1vT/Ok5Y9HRKT6+nRX1DJgBfAr4GlgRbqLqiY9x/ZS+2tmZqUp54hiLF8Htkn6NvAs8ECqPwD8SFIb0EX2xk9E7JH0MPASMADcERGDAJK+AuwEKoEtEbHnAvTXzMxyjEtQRMQvgF+k6f1kdyyNbNMLfH6M9e8G7h6lvgPYMR59NDOz0vg3s83MLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkoxpD9dREzM3NQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlKjkoJC2R9ISklyTtkfTVVJ8jaZekfelrU6pL0mZJbZKel3Rt0bY2pPb7JG0oql8n6YW0zmZJKmewZmb2/pVzRDEA/HlErARWAXdIWglsAnZHxApgd5oHuBFYkR4bgfsgCxbgLuB6so9QvWsoXFKbLxWtt7aM/pqZWQlKDoqIOBQRv07T7wIvA4uAdcDW1GwrcHOaXgc8GJkngUZJC4EbgF0R0RUR3cAuYG1a1hART0b29zQeLNqWmZlNkHG5RiFpKXAN8BQwPyIOpUVvAfPT9CLgYNFq7amWV28fpT7a82+U1CqptbOzs6yxmJnZmcoOCkmzgH8C/jQijhcvS0cCF/yv60XE/RHREhEtzc3NF/rpzMwuKWUFhaRqspD4cUT8NJXfTqeNSF8Pp3oHsKRo9cWplldfPErdzMwmUDl3PQl4AHg5Iv6qaNF2YOjOpQ3Ao0X129LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVV6rtuKtmVmZhOkqox1Pwn8IfCCpOdS7S+A7wAPS7odOAB8IS3bAdwEtAEngS8CRESXpG8BT6d234yIrjT9ZeCHQB3wWHqYmdkEKjkoIuL/AmP9XsPqUdoHcMcY29oCbBml3gpcXWofzcysfP7NbDMzy+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgGMMF/wNVZmYXCQeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgfFGArhG2TNzMBBMab/+vPfTnYXzMymBAfFGJ450D3ZXTAzmxKmfFBIWitpr6Q2SZsmuz9mZpeaKR0UkiqBe4EbgZXArZJWTmQfBgtT+1rFwGCBvoHC+1pnsBDEJXQNJuLSGu9oLobxXwx9vFSV/JnZE+TjQFtE7AeQtA1YB7w03k+0efc+Hn2u44zaVf/hMXr7z34TvuLyWWfVRn6THzrWS0//IALmN8xgRnUlFcr+hlQEvPbOCQCWzatHQHt3D32DBRY11tFxtIfFTXVUV1Yg4GTfIDNrK6nU2R9Rvu/wewDMm1XL7Lqq4b9RNdQy0j9Kz10oBK8fOQnA7zTXD2+nkNoMtR3p1c4Tw9M1lRX0DRZYPi9bv79QoL27h4UNM6itrkSCrhN9HD3Zz4KGGdRWV9A3UODQsV4AFjTMQILKCtHe3TO83eWpP719g7yZ2i6fV4+Uhduxnn7m1NecHleaCLKbDw6kcS2dOxOACgnpdN+XN2evdSGgQiCJUwODHOw63Ye59TUcOdE3vJ3uk/3MrqumQtA3UKDrZN/w98TyefVUVJz5YrWl/TE0lo7uHhrqqmmYUdqPmkbbGTkKEezvPEF1pVjUWDe8rwEuq62iqb6GqgpxaqBA57un6BssUFNZweKmOoJsnxQiOPJeH8d6+gFY1FhHbXXF8Is+UAj6BgrU11ZSCHi3d4BZtZWcGijQ2z9IVWUFM2sqqa48+/+hEcGrnSe4bEYV82bV0j9YoLJCw/uuvqaSGdWVw/sAsp+RUh3v6efIiT5m1lTSN1BgoBDMrqumb6BAT//gcLs59TXMrqtGguM9A0DwzntZHySYXVdNY101kqgs2ucDg9l2evsLzK2vQYI3j/ayYPYM3u0d4J33TgHZz5okIrLv41MDBebNqh3e1pH3TvFu7wAfnDuT4z39w889ZOHsGcysqSTIfrbf6DrJ5ZdlP1uQ/Vyf7Btk863XsGr53JJfr7FM9aBYBBwsmm8Hrh/ZSNJGYCPABz/4wZKeaH5DLVctaOCNrpP0DwZz62uoqhS9/aeQsh+W9u4eFjXW8eH5sxCj/AAXlWZUV7LnzeME2ZvGrNoqqioqUHqDmlVbxQsdx1j5gQYEvPNe9kP7sSWNdBztYW59DUvmZG94zxzoZs7MGi5vqD3rKdu7e+jpH6SupoKrFjScmRA63a1I8xUSrx85ycqFDSxrrh/9rx/mBMW/XNpE32Dwm4NH+UjquyQOdvXwobn1zJ2VvZGf7Bvk8VcO87EljdRWVzBYCH72/CEAPrakkRnVFQwGw0Exb1YNH1nYMPxDMBQUH1l4ekyvdZ5gyZw6qtIb0FA3h95MD6RxrZg/iwjoHyxQIfFq5wmuuHwWVy64DAIqKkQhHSkOFuKMoLjuQ038/KW3uX7ZHN463svcWTU0zaxhUWMW3Md7+3nu4FE63z3F/IYZw8E1ZOiNeuXCBgI4drKfmsoKrlrYMMoLfQ4l/gd7f+cJls+bxfLm+uGgqKmqYFFTHR+efxmDEVRI/M/fvAlA32CBD8+/jKpKMfT/nc53T/Gr17uA7GfjA411w13qGyiw66W3uemfLUASz7cf5YrLZ6XgLXDkvVO8ffwU1y+bPWr/Xu08wbu9A3zqysuprhADheDNoz3MqKpkUVMdr3a+N9x2xeWzsu+BEh3v7ecXezupTM8DWRj29A8yt76GhY0zeLHjONcsaaS+torBQnC0p4/X3zkdsBFZP4719PPh+ZdRiDjj5//p17s41tPP714xDwQLZs/g7eOnuHLBLN5py4LiqgWnx/D28V5aD3RzxeWz+MDs7HVt7e1noBCsXNjAqfT6DrnuQ010dPec/h5K4VyIGH5tKiXqqitpnFld8muVR1P5cE/SLcDaiPiTNP+HwPUR8ZWx1mlpaYnW1taJ6qKZ2bQg6ZmIaBlt2ZS+RgF0AEuK5henmpmZTZCpHhRPAyskLZNUA6wHtk9yn8zMLilT+hpFRAxI+gqwE6gEtkTEnknulpnZJWVKBwVAROwAdkx2P8zMLlVT/dSTmZlNMgeFmZnlclCYmVkuB4WZmeWa0r9wVwpJncCBElefB7wzjt25GHjMlwaP+dJQzpg/FBHNoy2YdkFRDkmtY/1m4nTlMV8aPOZLw4Uas089mZlZLgeFmZnlclCc6f7J7sAk8JgvDR7zpeGCjNnXKMzMLJePKMzMLJeDwszMcjkoEklrJe2V1CZp02T3p1SSlkh6QtJLkvZI+mqqz5G0S9K+9LUp1SVpcxr385KuLdrWhtR+n6QNkzWm8yWpUtKzkn6W5pdJeiqN7SfpT9UjqTbNt6XlS4u2cWeq75V0w+SM5PxIapT0iKRXJL0s6RPTfT9L+rP0ff2ipIckzZhu+1nSFkmHJb1YVBu3/SrpOkkvpHU2S+fxebtDHzx/KT/I/oT5q8ByoAb4DbBysvtV4lgWAtem6cuA3wIrgf8MbEr1TcB30/RNwGNknyy6Cngq1ecA+9PXpjTdNNnjO8fY/z3wD8DP0vzDwPo0/bfAv0nTXwb+Nk2vB36SplemfV8LLEvfE5WTPa6c8W4F/iRN1wCN03k/k3008mtAXdH+/aPptp+B3wOuBV4sqo3bfgV+ldoqrXvjOfs02S/KVHgAnwB2Fs3fCdw52f0ap7E9Cvw+sBdYmGoLgb1p+u+AW4va703LbwX+rqh+Rrup9iD79MPdwKeBn6UfgneAqpH7mOzzTT6RpqtSO43c78XtptoDmJ3eNDWiPm33cwqKg+nNryrt5xum434Glo4IinHZr2nZK0X1M9qN9fCpp8zQN+CQ9lS7qKVD7WuAp4D5EXEoLXoLmJ+mxxr7xfaa/DXwNaCQ5ucCRyNiIM0X9394bGn5sdT+YhrzMqAT+Pt0uu0HkuqZxvs5IjqAvwTeAA6R7bdnmN77ech47ddFaXpkPZeDYpqSNAv4J+BPI+J48bLI/isxbe6LlvRZ4HBEPDPZfZlAVWSnJ+6LiGuAE2SnJIZNw/3cBKwjC8kPAPXA2knt1CSYjP3qoMh0AEuK5hen2kVJUjVZSPw4In6aym9LWpiWLwQOp/pYY7+YXpNPAp+T9Dqwjez00/eARklDn+JY3P/hsaXls4EjXFxjbgfaI+KpNP8IWXBM5/38GeC1iOiMiH7gp2T7fjrv5yHjtV870vTIei4HReZpYEW6e6KG7MLX9knuU0nSHQwPAC9HxF8VLdoODN35sIHs2sVQ/bZ098Qq4Fg6xN0JrJHUlP4ntybVppyIuDMiFkfEUrJ993hE/AHwBHBLajZyzEOvxS2pfaT6+nS3zDJgBdmFvyknIt4CDkq6MpVWAy8xjfcz2SmnVZJmpu/zoTFP2/1cZFz2a1p2XNKq9BreVrStsU32RZup8iC7e+C3ZHdAfGOy+1PGOH6X7LD0eeC59LiJ7NzsbmAf8H+AOam9gHvTuF8AWoq29cdAW3p8cbLHdp7j/xSn73paTvYG0Ab8I1Cb6jPSfFtavrxo/W+k12Iv53E3yCSP9WNAa9rX/4Ps7pZpvZ+B/wS8ArwI/IjszqVptZ+Bh8iuwfSTHTnePp77FWhJr9+rwN8w4oaI0R7+Ex5mZpbLp57MzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCzX/wfjiuCHCiJzlAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/1-QLearning/solution/notebook.ipynb b/translations/hi/8-Reinforcement/1-QLearning/solution/notebook.ipynb new file mode 100644 index 000000000..4653a9a64 --- /dev/null +++ b/translations/hi/8-Reinforcement/1-QLearning/solution/notebook.ipynb @@ -0,0 +1,577 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "488431336543f71f14d4aaf0399e3381", + "translation_date": "2025-09-04T03:01:47+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# पीटर और भेड़िया: रिइनफोर्समेंट लर्निंग प्राइमर\n", + "\n", + "इस ट्यूटोरियल में, हम सीखेंगे कि रिइनफोर्समेंट लर्निंग को पथ खोजने की समस्या पर कैसे लागू किया जाए। यह सेटिंग रूसी संगीतकार [सर्गेई प्रोकोफिएव](https://en.wikipedia.org/wiki/Sergei_Prokofiev) की संगीत परीकथा [पीटर और भेड़िया](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) से प्रेरित है। यह कहानी युवा अग्रणी पीटर के बारे में है, जो बहादुरी से अपने घर से बाहर निकलकर जंगल के खुले क्षेत्र में भेड़िया का पीछा करने जाता है। हम मशीन लर्निंग एल्गोरिदम को प्रशिक्षित करेंगे जो पीटर को आसपास के क्षेत्र का पता लगाने और एक आदर्श नेविगेशन मानचित्र बनाने में मदद करेंगे।\n", + "\n", + "सबसे पहले, चलिए कुछ उपयोगी लाइब्रेरी आयात करते हैं:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## सुदृढीकरण शिक्षण का अवलोकन\n", + "\n", + "**सुदृढीकरण शिक्षण** (RL) एक शिक्षण तकनीक है जो हमें किसी **पर्यावरण** में एक **एजेंट** के इष्टतम व्यवहार को कई प्रयोगों के माध्यम से सीखने की अनुमति देती है। इस पर्यावरण में एजेंट का कुछ **लक्ष्य** होना चाहिए, जिसे एक **इनाम फ़ंक्शन** द्वारा परिभाषित किया जाता है।\n", + "\n", + "## पर्यावरण\n", + "\n", + "सरलता के लिए, चलिए पीटर की दुनिया को `चौड़ाई` x `ऊंचाई` आकार के एक वर्ग बोर्ड के रूप में मानते हैं। इस बोर्ड की प्रत्येक सेल निम्नलिखित में से कोई एक हो सकती है:\n", + "* **जमीन**, जिस पर पीटर और अन्य जीव चल सकते हैं\n", + "* **पानी**, जिस पर आप स्पष्ट रूप से नहीं चल सकते\n", + "* **एक पेड़** या **घास** - एक जगह जहां आप थोड़ा आराम कर सकते हैं\n", + "* **एक सेब**, जो कुछ ऐसा है जिसे पीटर खुशी से ढूंढेगा ताकि वह खुद को खिला सके\n", + "* **एक भेड़िया**, जो खतरनाक है और इससे बचना चाहिए\n", + "\n", + "पर्यावरण के साथ काम करने के लिए, हम एक क्लास `Board` परिभाषित करेंगे। इस नोटबुक को बहुत अधिक जटिल न बनाने के लिए, हमने बोर्ड के साथ काम करने वाले सभी कोड को एक अलग `rlboard` मॉड्यूल में स्थानांतरित कर दिया है, जिसे हम अब आयात करेंगे। आप इस मॉड्यूल के अंदर देख सकते हैं ताकि कार्यान्वयन के आंतरिक विवरण के बारे में अधिक जानकारी प्राप्त कर सकें।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from rlboard import *" + ] + }, + { + "source": [ + "अब चलो एक यादृच्छिक बोर्ड बनाते हैं और देखते हैं कि यह कैसा दिखता है:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "source": [ + "## क्रियाएँ और नीति\n", + "\n", + "हमारे उदाहरण में, पीटर का लक्ष्य एक सेब ढूंढना होगा, जबकि उसे भेड़िये और अन्य बाधाओं से बचना होगा। ऐसा करने के लिए, वह इधर-उधर चल सकता है जब तक कि उसे सेब न मिल जाए। इसलिए, किसी भी स्थिति में वह निम्नलिखित क्रियाओं में से एक चुन सकता है: ऊपर, नीचे, बाएँ और दाएँ। हम इन क्रियाओं को एक डिक्शनरी के रूप में परिभाषित करेंगे और उन्हें संबंधित समन्वय परिवर्तनों के जोड़ों से मैप करेंगे। उदाहरण के लिए, दाएँ (`R`) की ओर बढ़ना `(1,0)` के जोड़े से मेल खाएगा।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "हमारे एजेंट (पीटर) की रणनीति को एक विशेष **पॉलिसी** द्वारा परिभाषित किया गया है। चलिए सबसे सरल पॉलिसी, जिसे **रैंडम वॉक** कहा जाता है, पर विचार करते हैं।\n", + "\n", + "## रैंडम वॉक\n", + "\n", + "सबसे पहले, चलिए रैंडम वॉक रणनीति को लागू करके अपनी समस्या का समाधान करते हैं।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "18" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(m):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(m,policy,start_position=None):\n", + " n = 0 # number of steps\n", + " # set initial position\n", + " if start_position:\n", + " m.human = start_position \n", + " else:\n", + " m.random_start()\n", + " while True:\n", + " if m.at() == Board.Cell.apple:\n", + " return n # success!\n", + " if m.at() in [Board.Cell.wolf, Board.Cell.water]:\n", + " return -1 # eaten by wolf or drowned\n", + " while True:\n", + " a = actions[policy(m)]\n", + " new_pos = m.move_pos(m.human,a)\n", + " if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water:\n", + " m.move(a) # do the actual move\n", + " break\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "source": [ + "चलो रैंडम वॉक प्रयोग को कई बार चलाते हैं और लिए गए औसत कदमों की संख्या देखते हैं:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 32.87096774193548, eaten by wolf: 7 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " else:\n", + " s += z\n", + " n += 1\n", + " print(f\"Average path length = {s/n}, eaten by wolf: {w} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## पुरस्कार फ़ंक्शन\n", + "\n", + "हमारी नीति को अधिक बुद्धिमान बनाने के लिए, हमें यह समझना होगा कि कौन से कदम दूसरों की तुलना में \"बेहतर\" हैं।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "move_reward = -0.1\n", + "goal_reward = 10\n", + "end_reward = -10\n", + "\n", + "def reward(m,pos=None):\n", + " pos = pos or m.human\n", + " if not m.is_valid(pos):\n", + " return end_reward\n", + " x = m.at(pos)\n", + " if x==Board.Cell.water or x == Board.Cell.wolf:\n", + " return end_reward\n", + " if x==Board.Cell.apple:\n", + " return goal_reward\n", + " return move_reward" + ] + }, + { + "source": [ + "## क्यू-लर्निंग\n", + "\n", + "एक क्यू-टेबल या बहु-आयामी ऐरे बनाएं। चूंकि हमारे बोर्ड का आकार `width` x `height` है, हम क्यू-टेबल को एक numpy ऐरे के रूप में `width` x `height` x `len(actions)` के आकार के साथ दर्शा सकते हैं:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "source": [ + "Q-टेबल को बोर्ड पर तालिका को विज़ुअलाइज़ करने के लिए प्लॉट फ़ंक्शन में पास करें:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhU5f3+8fczk8m+BwIYBGQRZIkoiKIsIm6tuwVEZSkiqC1SXHAB259VYhUVqrUVUURA3FGwFLQKrsAXxJZNBQIkICEEkpBl9plznt8fmaRESEBJODPh8/LKlcmZ5dwkmduT5yyP0lojhBAictisDiCEEOLnkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMI1W3EqpK5VS25RSO5RSDzXWeoQQ4lSjGuM4bqWUHdgOXAbsBb4BbtZaf9/gKxNCiFNMY21x9wF2aK13aa39wFvAdY20LiGEOKU0VnFnAT8e9vXe0DIhhBAnKMqqFSulxgPjARwOR6/s7GyrohyTz+ejsrKSZs2aWR2lTmVlZTgcDhISEqyOUqfCwkIyMzOx2+1WR6nTnj17aNOmjdUx6hQMBjl48CCtWrWyOkqdnE4nwWCQ1NRUq6PU6eDBgyQnJxMTE2N1lDp99913eDweddQ7tdYN/gH0BT4+7OuHgYfrenxmZqYOZ7m5uXr27NlWx6jXBx98oFevXm11jHo9/vjjurS01OoYdTJNU0+YMMHqGPUqKSnROTk5Vseo19dff60XL15sdYx6zZo1S+fm5lodo16hXjxqZzbWUMk3QCel1BlKqWhgOPBhI61LCCFOKY0yVKK1DiqlJgAfA3bgVa31d42xLiGEONU02hi31noZsKyxXl8IIU5VcuakEEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsI02eLOy8urvhZ4WDIMgz179lgdo14ul4uDBw9aHaNeBw8exOVyWR2jXnv27MEwDKtj1ElrTV5entUx6uX3+9m3b5/VMepVVlZGWVnZSVmXZTPgNJZt27bx1VdfsXnzZnr06EHPnj3p3bu31bFq+fzzz9m2bRvbtm2ja9euXHnllbRu3drqWLW8/fbbFBQUUFFRQevWrRk5cmRYzRbi8/lYsGABe/fuJSkpiaysLIYPH251rFoKCgpYvnw533//PZ07d+bMM89k0KBBVseqZf369WzYsIFNmzaRnZ1Nv3796NKli9Wxalm6dCn5+fkUFBTQoUMHhgwZElaz62itmTdvHoWFhQC0atWK0aNHo9TRJ69pCE1ui/urr75i7dq1/OlPf2LXrl188MEHVkc6wpw5c3C73TzwwAMsX76cLVu2WB3pCI899hjdunXjhhtu4K9//Stut9vqSLV4PB5mzpzJ9ddfT/fu3XnsscesjnSE7777jmXLljF58mS8Xi+vvPKK1ZGOsHjxYnbt2sWjjz7KunXr+Oqrr6yOdISnn36ajIwMxo4dy4IFC9i/f7/VkWoxTZNp06YxYMAA+vfvz7Rp0zBNs1HX2aSKOy8vj82bNxMTE8O1117LQw89RGxsLKtWrbI6Wo1FixbRt29fPvroIx555BH+/ve/s3DhQsrLy62OVmPKlCn85S9/4aGHHmL16tUsXryY22+/3epYtdx+++1MmTKFMWPGkJqayt///ncefvhhq2PVqKioYP78+XTv3p2rrrqKkSNH0q9fP9577z2ro9VYvXo10dHR7Nq1i9GjR/Pkk0+yZcsWdu3aZXW0Gs8//zx33XUXzz33HPPnz2fBggVMmTIlrIaexo8fzzPPPMOECRMoLS3lvffeY/z48Y26ziY1VNKuXTt69OjBzp07Wb58OfPnz8fr9XLhhRdaHa3GjTfeyOjRo7ntttu4/PLLeeCBB7jllltITk62OlqNadOm0bNnT+bNm0daWho33XQTy5aF15wYL7/8Mpdffjnvv/8+FRUV3H777WzcuNHqWDWSkpIYNWoUb7/9Np9++ikrV65k1apVLFiwwOpoNfr27cuyZcu48MIL+e1vf8tTTz1F9+7dOeOMM6yOVuPuu+9m0KBBPPnkk3Tu3Jnx48fz1FNPYbOFzzbnSy+9RHZ2Nu+//z5Q9R7ftGlTo66zSRW3UoqePXuSl5fHc889h9fr5eKLL27UsaafSynFNddcw8aNG9m2bRuZmZl06NAhrDLabDZGjRrFBx98gM1m49JLLyU+Pt7qWLXExsZy+eWXM2/ePEzTZNSoUWH1ZlZK0b59e1q2bMkLL7yA3+/n2muvDaufs1KKgQMH8vnnn/Pcc88B0LNnz7DLeOutt/Lpp5/yxRdfkJ2dTfPmzcMqo81mY9iwYbz55psADBs2rNF/F5tUcQP07t2b3r17s2rVKi688MKw+gFXGzp0KDfccAPffvst559/vtVxjur++++npKSE0tJSOnXqZHWcI8TFxZGTk0Nubi5paWk0a9bM6khH6NixIzk5Oaxbt45zzjkHh8NhdaQjXHbZZVx66aWsXr2aiy66yOo4RzVu3DhcLhc7d+4kOzvb6jhHsNlsPProo+zduxfgpBxo0OSKu1q4/hJWi4qKCtvSrpaRkUFGRobVMeoVjv9T+ak+ffpYHaFeSqmwf78kJCSEZWkf7mQeGRY+f1sKIYQ4LlLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWFO6JR3pVQ+UAkYQFBr3VsplQ68DbQD8oFhWutDJxZTCCFEtYbY4h6kte6pta6eZuYhYIXWuhOwIvS1EEKIBtIYQyXXAfNCt+cB1zfCOoQQ4pR1osWtgX8rpb5VSlVP+dBCa10Yur0faHGC6xBCCHGYE72saz+tdYFSKhP4RCm19fA7tdZaKXXUqdZDRT8eIDExkdzc3BOM0nj27t1LWVlZWGcsLi7GNM2wzuhyucjLy6O4uNjqKHXy+/1h/T2sqKjA5XKFdcb9+/eH/fulrKyMH3/8Ea2PWk9hob55K0+ouLXWBaHPB5RSHwB9gCKlVCutdaFSqhVwoI7nzgZmA2RkZOjPP//8RKI0qrKyMvbu3Us4Z9y5cyfx8fGUlJRYHaVOxcXFrF69Oqxmi/8pp9MZ1j9nr9fLmoNrWPL5Equj1Cm+MJ7BnsGNPmHuiSgoKODbb79lx44dVkepU73fP631L/oAEoCkw26vBq4EngYeCi1/CJh+rNfKzMzU4Sw3N1fPnj3b6hj1+uCDD/Tq1autjlGvxx9/XJeWllodo06maeoJEyZYHaNeJSUluldOL00Y/9fy65Z68eLFVn+r6jVr1iydm5trdYx6hXrxqJ15IlvcLYAPQlODRQFvaK0/Ukp9A7yjlBoL7AaGncA6hBBC/MQvLm6t9S7g7KMsLwEGn0goIYQQdZMzJ4UQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3IsWLQrraYn8fj9Lly61Oka9CgoKWL9+vdUx6vXtt99SUFBgdYx6LV26FL/fb3WMiFZeXh7WMxMBbNu2jW3btp2UdZ3onJNh5/PPP2fOnDn07duX0aNHc8011zB06FCrY9Uya9Ys1q5dS8+ePRk5ciSTJ08mOzvb6li13HvvvRiGQVpaGs8//zwvvvgiCQkJVseq4Xa7ufPOO2nfvj1lZWUopZg5c6bVsWrZvHkz06dPp3fv3txxxx306dOHu+66y+pYEScnJ4c9e/bQvn175syZw1NPPcVpp51mdawapmkyfvx4mjVrhtaakpISZs+ejc3WeNvFTWqL2zAMtm3bRteuXbnpppu4+uqr2bhxI8Fg0OpoNfx+P2vXrmXo0KGMGDGCrKws8vPzw+qvA4/Hw9dff81dd93FnXfeWTP5azipnux1zJgx3HvvvaxatQqPx2N1rBpaa3bv3k2zZs24+eabue222/i///s/2fL+mXw+H1988QXjxo1jzJgxKKUoKioKq/eL2+1m48aNjBs3jokTJ7J582bcbnejrrNJFXdBQQHbtm2jqKiIUaNGcemllxIdHc1//vMfq6PV+Pe//03Pnj2ZM2cOjz/+OHfeeSf//Oc/qaystDpajRkzZnDPPffwu9/9juXLlzN9+nSmTp1qdaxapk6dyogRIxgzZgwHDx7kj3/8I88++6zVsWo4nU4WL15McnIyw4cP56yzzqJXr158/PHHVkeLKPPnz+fmm29m6tSpvPrqq0yZMoUZM2aE1UTEU6dO5Z577mHcuHFs3ryZZ555ptHfL01qqKRNmzZ07dqV5cuXM2fOHB588EEyMzPp06eP1dFqXH311YwcOZJOnTpx5513cvvtt3P//feTnJxsdbQaU6dO5ayzzmLKlCm0bduWoUOHsm7dOqtj1TJz5kx69+7Nq6++yg8//MC0adPYunWr1bFqJCUlMWzYMKZPn86rr77KjBkz2L17NxMnTrQ6WkQZN24cAwcO5IYbbmDQoEGMGDGC119/HbvdbnW0GjNmzKB9+/a88MIL+P1+7rjjDnbt2tWo62xSxQ1w5ZVXcvrppzN58mRuvfVWOnToYHWkIzzwwAPk5+czbdo0Jk+eTK9evayOdISXXnqJ7du3s2LFCl544QUSExOtjlRLQkICf//731m5ciVZWVnMnj3b6khHOPfcc5k8eTI5OTlce+21DB8+3OpIEenpp58mLy+PefPmkZOTQ+vWra2OVIvNZmPOnDls2rQJgDlz5jTq+DY0weJu3bo1rVu35oILLiA5OZnQLPRhpUePHnTv3p2BAweG1Zb24QYMGEDfvn0JBoPExcVZHecIDoeDK664ggEDBhAVFYXD4bA60hGaNWvGFVdcQd++fUlKSgrL38VI0KdPH3r16sVVV10VdhsQAEopLr30Uvr37w9ATExMo6+zyRV3tZSUFKsj1EspFbalXc3hcIRlIR4uHP+n8lPh/nOOBHa7PSxL+3Ano7CrNamdk0IIcSqQ4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCHLO4lVKvKqUOKKW2HLYsXSn1iVIqN/Q5LbRcKaWeV0rtUEptUkqd25jhhRDiVHQ8W9yvAVf+ZNlDwAqtdSdgRehrgF8BnUIf44EXGyamECKSyOn9jeuYxa21/hIo/cni64B5odvzgOsPWz5fV/k/IFUp1aqhwgohIkM4XS+7KfqlY9wttNaFodv7gRah21nAj4c9bm9omRBCiAZywjsnddX/Wn/2/16VUuOVUuuVUuvDaeYSIYQId7+0uIuqh0BCnw+ElhcApx/2uNahZUfQWs/WWvfWWveOhCu8CSFEuPill3X9EBgNPBn6vOSw5ROUUm8B5wPlhw2p1MkwDBYvXvwLozS+4uJidu7cGdYZt2zZwu7duykqKrI6Sp3279/PRx99FNaXYq2oqAjrn7Pb7SahMIH2i9tbHaVOSflJbHFtCetx7l27dhEVFcWWLVuO/WCLGIZR533HLG6l1JvAxUAzpdRe4P9RVdjvKKXGAruBYaGHLwN+DewA3MCY4wno9yvuuqvFsR9okfh4k9Gj42nRInwz7t69m1mzUigrC9+MHTvGcP31zcNqtvifioqKCuufs9Pp5LyY83iyxZNWR6nT1kNbqbRVhvX3MT4+nifSn8DdonEn9T0RflX3xNLHLG6t9c113DX4KI/VwO+PO1nN82zs39/35z7tpElJ2UGrViX07Ru+GYuKiigraxHW38fWrVfQq1cv0tLSftHzg8Egs2bN4oknnqi1fPbs2fz6178+4emitNa88cYbYf1zLi0t5ZtvvgnrjKZpUlxcHNYZN23aREmPEso7llsdpU6JtronjmiyM+CIpsXv9/Pqq68yceLEI/4Ev/baa/nwww+58soriYqSX2nR9Mkp7yLsBQIBZsyYwaRJk446bqq1ZtSoUSxYsIBgMGhBQiFOLiluEfZsNhuLFy/G5/PV+ZhDhw6xcuXKRp9dW4hwIL/lIuxt2bKFgwcPHvNx+fn55OXlnYREQlhLiluEPYfDcVxj18f7OCEinRS3CHudOnUiKSnpmI9r0aIFWVlyhQXR9Elxi7Bnt9vJycnB4XDU+ZjmzZszadIk7Hb7SUwmhDWkuEXYs9ls9O/fn/PPP/+oW9Tt27fnwgsv5Nxzz5XLiYpTghS3iAhxcXHMnz+fDh061CpnpRTdu3dn3rx5Mr4tThlS3CLsaa0JBoOMGzeOL7/8stax3FprPvzwQ+6++2601mF9fQwhGooUtwhbWmsMw2DDhg1cdNFFrFixos7HvvHGG1x33XXk5uZimqYUuGjS5G9LEZa01rhcLt544w1ee+011q9fX+/jDcNg2bJlaK256aabuPnmm7Hb7TLmLZokKW4RdrTWmKbJww8/zAsvvHDczzNNk2XLlvHRRx9RUFDA5MmTsdlsUt6iyZGhEhF2/H4/d999N7NmzfrZz60eXnn88ceZPn26XLtENElS3CKsuFwuHn74YV566aUTKl23280TTzzBnDlzCAQCDZhQCOtJcYuwEQgE+POf/8zMmTMxTbNmeVRU1HFdPCoqKqrWCThOp5O77rqLWbNmyc5K0aRIcVvE4/GQk5NjdYywMmXKFJ599tkjlo8YMYIzzzzzmM/v378/gwcPPmJM+6GHHuK5555rsJw/1xNPPIHbHb4zrWitmTJlitUx6rV///5fNHTWVElxW+Dee+/l4osvJjs7m7POOosvvvjC6kiWCgaD3H///Tz//PO1trTj4+O5/vrrmTFjBunp6fW+hlKKNm3asHDhQpYtW0Zi4v9mD3G73TzyyCP8/e9/r/X6je2rr76iS5cudO/enUsuuYRJkyadtHUfr2effZbs7GwuvfRSunbtyltvvWV1pCPcdNNNjBkzhujoaDp37szOnTutjmQ5Ke6TrKCgAMMwmDx5MllZWUyZMoXt27efsuOwWmvWrFnDhx9+iN9fNceeUorOnTuzcuVK3nrrLVJTU4/79Zo1a8Zll13GG2+8Qdu2bWu2vl0uF6+99hq5ubknZdgkEAiwbds2br75ZhITE3nnnXcwTZOCgoJGX/fxKikpoby8nHvvvZfY2FhmzpxJQUEBLpfL6mg1du7cSXx8PBMnTuSCCy5g3LhxbNiw4ZQf+pLiPskKCwtJS0tj8+bNbNiwgbZt27J3795T+uiHQCBQa0u4R48e/PWvf6V3797ExMT87MP57HY7l112GTk5ObRp06ZmeTAYrHfm7IYUDAb58ccf0VrzxRdfEB0dTXp6OoWFhSdl/cejtLQUm81Gfn4+69ato2XLllRWVoZVce/atYt27dqxZs0atm7dSufOnfnhhx+kuK0OcKrp3bs3u3btYs2aNZx77rmMHTuWvn37EhcXZ3U0Syil6NOnD48++igZGRmcc845LFiwgEsuueSErvQXGxvLjTfeyDvvvEOLFi3o1KkTjz32GO3btz8px3XHxcVx0UUX8frrr3P99dczevRocnNz6d27d6Ov+3h16tSJYDDI8uXLufrqqxkxYgRZWVlkZmZaHa3GZZddxsqVK8nPzycxMZG77rqLIUOGnPIzHckJOBZ48cUXKSsrY8qUKaxbt67WeOypKDExkZtuuqlmst+fDo2YpnnMsenqk3a01jXFHBcXR58+ffjuu+9QSpGcnHxSL0Q1aNAgvvnmG+69917mzJnzi2e3b0xTp07lnnvuYfz48Xz55ZfEx8dbHekIS5cuJT8/nwULFrB582aSk5OtjmQ5KW4LJCQkkJCQwLx586yOEjYcDgfNmjU76n3BYJCzzz6bdevW1VngsbGxNVuQP71ud0ZGRoPnPR4Oh4O0tDTmzp1ryfqPR1xcHHFxcSxatMjqKHVKSkqiR48eTJ8+3eooYePU/ntDRITo6GgmTpxY79Zyeno6o0aNqneyBSGaCiluERGONcShlJLZb8QpQ4pbCCEijBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhDlmcSulXlVKHVBKbTls2aNKqQKl1IbQx68Pu+9hpdQOpdQ2pdQVjRVcCCFOVcezxf0acOVRls/UWvcMfSwDUEp1BYYD3ULP+YdSSg6uFSfsWBcVOtUvOiROLccsbq31l0Dpcb7edcBbWmuf1joP2AH0OYF8QgAccQ2NqKioWifl2Gw2YmJiTnYsISxxImPcE5RSm0JDKdVXz8kCfjzsMXtDy46glBqvlFqvlFofCHhOIIY4FWRmZtZcjMvhcPDUU09x//3315R3SkqKZdckEeJk+6UXmXoReBzQoc/PArf9nBfQWs8GZgMkJbXQPt8vTCJOCQ6HgzVr1hAMBlFK0bFjR/x+P6NGjUJrTWxs7Em5XKsQ4eAXFbfWuqj6tlLqZWBp6MsC4PTDHto6tEyIE2Kz2Y6Yd9LhcHDWWWdZlEgI6/yioRKlVKvDvrwBqD7i5ENguFIqRil1BtAJWHdiEYUQQhxOHWtvvFLqTeBioBlQBPy/0Nc9qRoqyQfu0FoXhh4/laphkyAwSWu9/FghUlLS9Zln3vtL/w2NzuFw0a1bMW3btrU6Sp3279/Pxo0xeL3hd7H+amlp2+nb94ywvvTq5s2b6dGjh9Ux6hQIBMjPz6dTp05WR6lTaWkpfr+fli1bWh2lTvn5+Xzf/HsCCeE71+v2GdspLy0/6vjfMYv7ZEhKytR+/zarY9QpOTmf005bxdatt1odpU5t237EP/7RnF69elkdpU5//etfGTNmDCkpKVZHqdPUqVPJycmxOkadysrKmD9/PhMnTrQ6Sp3Wr19PSUkJV1wRvqdxLFiwgAEDBoT1xljnzp05cODAUYs7TGbAUfj94bulGAiUYBgxYZ3RMOJISEgIy+mxqjkcDlJSUsI2o9Yau90etvmgKmP1zDrhKj4+HrfbHdYZY2JiSExMDOuM9e1sl1PehRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLjFUVVUVLBy5UpmzJhBWVkZpmlaHakWrTVlZWXMnDmTFStWUFFRYXWkIwQCAcrKyhgzZgwFBQW4XC6rIx3B6/Vy6NAhhgwZQllZGT6fz+pIR3A6nWzZsoUHH3yQsrIyDMOwOlItWmvKy8t58803efPNNykvL6exZxaT4hZH1bt3b5YtW0bz5s3p2LEj5eXlVkeqpby8nI4dO5KRkcFHH30UllO2ff755/Tu3Zu7776bMWPGcMcdd1gd6Qg5OTlcfvnlPPnkk/Tr14/58+dbHekIV111FU8++SSXXHIJ3bp1Izc31+pItZimSadOndi7dy979+6lU6dOjb6hI8UtjrBo0SJuueUWEhISaN26NTNnzmTu3LlWx6pl7ty5TJgwgZ07d3LnnXcyduxY3nvvPatj1fB4PKxatYoRI0bw4YcfMn/+fDp27Mj69eutjlZjx44d2O12rrrqKv71r3+xcOFCCgoKOHDggNXRanz66acMGjSIDh064Ha7efHFF1m0aFFY/QX42muv8bvf/Q6n08mll17Kn/70J1577bVGXacUtzhC586d2b59O/369aNNmzZs2bKF7Oxsq2PVkp2dzY8//kj//v1JTU3l+++/p0uXLlbHqhEVFUXr1q1RStG/f38CgQCHDh2iVatWVkerkZaWhmmatGnThvPOO4+ioiKSkpKIj4+3OlqNdu3asWfPHs4//3zOPPNMtm/fTufOneudj/Fky87OJjc3l/79+9OiRQs2btzY6O8XKW5xhO7du1NQUMD8+fN57733eP/99znvvPOsjlXLeeedx5dffsn69eu55557yMvLo3v37lbHquFwOOjcuTNvvvkmLpeLoUOHopQiKyvL6mg1MjIySElJYebMmXi9XiZNmkRWVhaJiYlWR6vRsWNHXC4Xf/vb31i7di0vv/wy55xzTlgVd69evdi4cSPLly/nmWeeYc2aNY0+dBcms7yLcPPFF1/w3Xff8cMPP4TdmCJAcnIyubm5vPfee1x99dVhVdrV+vfvz9atW8nJyWHlypVhtSVb7b777uPee+9lypQpfP/991bHOaq3336bwsJClixZwrZt26yOcwSbzcaWLVv4/PPPUUoxY8aMRl+nFLeoU7du3ejWrZvVMeo1ZMgQqyMc09SpU62OUC+lFH/5y1+sjlGvVq1aceedd1odo14XX3zxSVuXDJUIIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMMcsbqXU6Uqpz5RS3yulvlNK/SG0PF0p9YlSKjf0OS20XCmlnldK7VBKbVJKndvY/wghhDiVHM8WdxC4T2vdFbgA+L1SqivwELBCa90JWBH6GuBXQKfQx3jgxQZPLYQQp7BjFrfWulBr/Z/Q7UrgByALuA6YF3rYPOD60O3rgPm6yv8BqUqp8LlAgxBCRLifNcatlGoHnAOsBVporQtDd+0HWoRuZwE/Hva0vaFlP32t8Uqp9Uqp9YGA52fGFkKIU9dxF7dSKhFYBEzSWte6ar2uumr4z7pyuNZ6tta6t9a6t8MR93OeKoQQp7TjKm6llIOq0l6otX4/tLioeggk9Ln6Ir4FwOmHPb11aJkQQogGcDxHlShgDvCD1vrwy159CIwO3R4NLDls+ajQ0SUXAOWHDakIIYQ4QcdzdcCLgJHAZqXUhtCyKcCTwDtKqbHAbmBY6L5lwK+BHYAbGNOgiYUQ4hR3zOLWWn8N1HXV8sFHebwGfv/zozTu5JoNI/wzNvYkpQ0h3DOGez6QjA0lEjIejQqH4CkpabpnzxFWx6iT3e4nJcVJdHS61VHqFAxWkJoaFZYX66924MABMjIysNvtVkep0969+4iKOs3qGPUwCNj24ch0WB2kTqbbJDGYSHJystVR6lRaWkpiYiLR0dFWR6nT66+/zqFDh4660RDZX9YAACAASURBVBwWxZ2U1EI7nUVWx6hTSsoOnn76M8aNG2d1lDotXryYFi1acP755+Pz+XA4HP+bUNVmst+3m0PBIrSpiSIaUHgCbuLtyXRI7oYy7URHOzAMA6UUwWAQpRQ2m41gMEh0dHTN5+rXDwaD2O32Wo9VStU83+GoKpfqaaamTZvG73//e9LS0iz6LtVPa82wYRN5772/WR2lTjExpXT/0+V8O+Vbq6PUqeWqlswqnsV1111ndZQ6vfTSSwwePJiOHTtaHaVOLVq0oKio6KjFLTPgNDGGYVBSUkJsUjTrDi0lM7YtQZuXnc6NFPp3U+l1Uukt57S4Dnj8HjIdrcmN/YG8kh1MOH8qfl8ApRROpxOlFDExMTidTpo1a4bT6SQ9PZ3y8nLS09OpqKggISGBsrIyHA4H0dHRREdHExUVhdPpDNuCFiLSSXE3MTvKNrLo0ExUuWK/bzcOHUswqEkgjWYxWaSSRpnbhccMkB7TGkwHy3e+T1xUEo+vfIDh3cdyWvzpJCUlobUmGAySkZGBy+UiJiaG4uJiEhMTqaioIC4uDp/PR2pqKlprDMPA7XYDEB0dTUlJCampqURFya+ZEA1J3lFNTPP4try14r+kx6aT3Tyb9pld2LUvn3lfv0nHM1NonpBI7qZC7FlBLuo6AHswlrioVEori4mJT+LVdS9y1VnX0y3tbKKiHDgcDg4ePEhmZiYul4v0jAxKS0pISUmhvLychIQEKioqcDiqHpuQkIDNZsPlcpGWlobNJhegFKKhSXE3MXHEM/uqV3ng35P51/fL+XjLp8SY0bRIa4n/YAy+ymZ0ymzLvrI8jDKTNRvW0Lp7Ojv276Njhp8ydzlen0GHgV1IjYpDKUViYiJ+vx9fZSHbt35IZUUl6Zmn0az9YAzDIDY2tmYc2+/3A1UzX3u9XuLi4mruE0I0DNkcamJsNhtnpnfkkUumYotS7CzZySHPIRJjE3D73bgDLk7PPJ2zmvUk2dORdsldqdyuUX4TOz72HNjHx5tXkLN0GlC1w840TdAGBd9/zOdvTeLbZY/w7b+fRYX2a5umiWmaNYdW2Ww2tNYRe6iVEOFOiruJcTgcBPwB+rbuy6JbFtEsMQOb3U6ZtxxHdBQ+w8/3e7/jYOVBtu3Zylfr19A2vjvXthjJxhXbOK/L6cRX2nl3+bsEggEAKivKOLD7G778198oc8dw3pA5XHbbQgJG1VElfr+/5giW6p2UpmnK1rYQjUSGSpqY8vLymvHos1p2ZdXEr7nxlSEUlhQSo6OJ1jHEEsPBkoNov0mLtJYY2qDoQDHXnnsTZT+UkRJThi8ljp0/bqfLGd344oNn2PrtUk4/4yz6XTqe7n2upqKigsT4eLxeL+np6RiGQSAQwOl0orUmPj6e4uJiMjIyZOekEA1M3lFNTPXOwqioKLxeLy3iW/Lqza/yz83/5MWVL7KvtBD8mqSoJLpmdSVaRXOg7ADxUXFUVlSiDEgqb0dlchl/XjKJoR1uYscPm0ht2ZVrxv6VjBZt8Xq9xMfH4/f7cTgcuN3umuO34+KqrvRoGAZJSUmyc1KIRiDF3cRU7xAMBAI1J+F0bn4mZw66hz5Z51HkKuKJ956goHgfu4p2kh6bQTTRlBQX43MH8Do93HX9Xdx94QTK4/fy2synSDtgcN/jL5PW/HTcbjdxcXF4vV5iYmJqTsqpHueu3jlZXegxMTEWf0eEaHqkuJsY0zSJiorC7/fX2kmoNfRt35fYuFiu7HoljmgHzkon0XZFwa7tNE/JwKchPr05sdGxpKWmUVFxiG1nbGDQbVfRrlNPlFIYhoHNZsNZfJBAlJ2AYZJxWhY2m62mvIGax8oOSiEanhR3ExMbG1tzXLXP5wOouTZITEwMfr+fpNgkitevJjbgofJAEUn7dlNRdojUHueQ3PMCnPk7yPN4+HH/ATZ/tYoLzu1HoGAP+3K3EhsXR0ViGru/WsGeLRtJbN6K+PZnkpjRjKxu3WjRqXPNafApKSkyVCJEI5DibmJcLhcZGRk4nU5iY2MxTROfz4dSCo/HQ6ynkryFs0hIy8AfF09K85YkXzgQrRQK8OzdjS4vJcYMkpC3nQt9bvSKpewryEfZojgU8BOXmcWZg6+kw+Ar0IbJtlVfsn/LRvb891sqPV6un/JH0po1o7y8nIyMDClvIRqYFHcTk5ycXHWtkthY3G43NpsNh8OB1poEh50Nd48jpX0n0gZcjs0eBdrAX7Cn6sK9WmO3R5HSsQum1iSc3oGONw7HMEx87gqi4hIxtEkgEMRTXoqpwTA1rbufTSutKS8p4cPnZjDnd3cw4bXXSU1NDesrAQoRqWRTqImpqKigWbNmNYfkORwOAoEA3kMlrL39euJPy6LVr36DWVmOWV6KrixHeZ0ojxO8LrSrAqP0IMHSg5iuSoLlJRiVh1B+P/6yUgKHDhGsrCDochF0uwi4XfidlficVcMz1026D+f+Ql747Sh+3LkTwzCs/pYI0eTIFncTExsbi8vlQilFIBBAa43dbqfwn++QfnoHTrviWgLFhdhDh+/ZVGiWDKVQWmNqDVqh0GCaaA2G1gRNMEwTU2tMTehrjWFqAlpjaJOgqTBNzYXDb+GTua/y3WcrOaNzZ6u/JUI0OVLcTUx8fDyFhYWkpKTg8XiIjo7GFvBRuX0TLc7qSbB4PzabqipqG9hC5U1VVaNNE7QKlXboiBSj6tT3qqI2MU0ImCaGCUGtMUJfB7XG0Bob0K7H2axdsoT+vxlCesuW1n5ThGhipLgtorXG6XSSlJTUoK9bXl5OixYt8Hg8JCYmYpomBZ98CD4/phHA8LhQNhsoUPaq0rbbqnZMGpqqLWoTtAnaMDHNqq1wQxuYhgptfWuChknQhKBpEtAQMAwMDQGz6nbLjh3ZnZuL89ChRi1uj8dDVFRUzaQNomkyDAOv10tCQoLVUepUfRTXyTh3QYrbAps3byY/P58lS5YwdOhQevXqRbNmzRrktVNSUigqKiIpKQmXy4Xdbic+xkFltB3T78UMgrbZwAbapsCmsNltKFVV1srUYGq0qTENA7NmSCS0hW1UDY34TU3Q0FXFHdriDoS+9puhYZNgABrpOO5AIMDKlStZs2YNWVlZdO7cmQEDBjTKuoS11q1bR15eHmvXruWKK67goosuIjEx0epYNbTWrFixgk2bNgGQnZ3N4MGDG/U6PbJz0gLTp0/n66+/5pFHHuHpp59m/fr1DfbaHo+nZis+Jiam5tR30+fF9LgwPC5Mj7vqw+vG9HowPW60O/TZ4z7scR4MjxvD4yLocRPwuAl4qnZKBl1OAm4XPpcLv6sSn8uJz+XC63Ljc7nxOisxAoEG+3f9lMvl4ve//z2DBg0iNjaW8ePHN9q6hLUmT57Mvn37GD16NFOmTGHv3r1WR6rFNE3Gjh1Lx44d6dixI2PHjv3ftIGNRIr7JFu6dCm9e/dmx44dPPfcc7zyyissWrSIioqKBnl9u92O2+2umb1Ga02U3UFl7g/4SosxXC6CbidBj7uqgN1OAi43/pqjRJwE3W4Mt5OA20nA5STgqloecDrxOyvxu5z4XU58TidFW7/DU3YIr7MSr7MSj7MSr9OFp9JJoBGL+5577uHhhx/mscceo1u3bkyfPp2cnJxGW5+wxiuvvMJvf/tbPv74Yz766CNef/11cnJywupopfvuu4+//OUvPPfcc0RHR/P6669z3333Neo6ZajkJLv88su54447uP322znvvPOYMWMG11xzTYONdVcfN62UqrmWdkyz5uCIpuKHzagOndAxMWibDW1XaKXxuypRMfHgcGAEgwT8QXxeN2Vbv8MfDOINanymxhs08BomPgOSOnXHiI7GER+P1+UmqBQBQ+MzqoZM9u3ZTfnBg6hGOo572rRpjBw5krlz52Kz2bjrrrv47LPPGmVd4udrqGGCESNGcN1115GTk0ObNm144IEHuOeee8LqpK7HH3+cwYMH8+abbxIbG8tvfvMbPvnkk0ZdpxT3SRYdHc3555/P22+/TW5uLnv27GH48OEN9otefVnXyspKEhISCAaDkN2HjL6XULT8PQyPi9R2HTDi4zFsCrvSGEUFqKgYiI7GX1mOr/gAfqNqHNtnmAQNjT+oCRgGwaAmYJgUbPoGXxCimrXAFwhCQiJEx+LXirLiUnbn5nLxbeNIb9WqQf5dP5WWlkZWVhZz587l0KFD9O3bl/j4+EZZl/j5GuoaNbGxsfTv35+XX36Z9u3bEwwGadmyZVhd5z0hIYEePXowe/ZsALp169boO1GluC1w5513ctttt/Hxxx8zceLEBn3t+Ph4ysvLsdvteL1eoGor3OPzEzQ1PreLyqJ9xDfPxFNWil2b4HWD34dJ1Y5IU4cK24SAofGHdjoGzaojSgz9vx2Wrn0F+AyNxzCJyWiOy+enpOggpgnte2QT10g7keLj41mwYAHr16+nVatWZGVlNcp6hPUeeeQRysvL+c9//sODDz5odZwj2Gw25syZw9atW1FK0fkknLsgxW2R6OhorrnmmgZ/Xb/fT2JiYs0x3IZhYBgGcVlZBO0OCAZQlZXo6Gh0yUHs2kQpW9UZ74ChzaqTasyqk278psYfOmIkYEJAm6EjS0In4WiNQdUx3j6vF4/Tg6kUMYnJeH0+TNNs1D9re/fu3WivLcJHSkoKgwYNsjpGvbp06XLS1hU+A0WiwVT/mXr4n6vtR/wOW7OWuA0Dt9uLq7wcT8DAEzDxBEzcQRN3wMAdNPEENb4g+IImvqCJP1hV4AHDrPowNUbwf1vhfsPEROGqcOHxeAgGTc6+6koG3HqLVd8CIZo02eJuYqKjo/F4PNhstqrxbf43ea8ttTnBPXlobWA43dgME7vSVedMVu/MpOokHKP65JrQlrcvVNp+s2pHZSB04o3fDD0WMKgaQuly0QDs2IiPjQurnUhCNBXyrmpivF4vycnJQNWOnaioKEzTxDAM2o26C5+h8AZNPF5/1dZ2MPQRMPAGzaojRwKhz4bGZ2i8hok/aOILfQ4GNf7Q+HfQ1FXj4IEgXq8Xe2wMthgHV46/g4qKirA6bEuIpkK2uJuYpKQkiouLiY2Nxel0opTC4XBgt9s54/yLWBufiL+yHJuCKJvCZiqU0tVXdf3fae9UbXFXX4/EHyrogAF+E/ymgc+AgFH1OL+h0VEOLhw6nG3/3UDb7t1JSEiQiYKFaATH3OJWSp2ulPpMKfW9Uuo7pdQfQssfVUoVKKU2hD5+fdhzHlZK7VBKbVNKXdGY/wBRm9PpJCUlBa01sbGxOBwODMPANE3cgQCXPDe35nhst1E1tu0JmLhD49wew8ATNA7bAjfxBgz8QQN/9VCJYeIPVp/ebuAzIWiYdLmwH99+9hkTXppNdHQ0Tqez0c8gE+JUdDybQ0HgPq31f5RSScC3Sqnqo8tnaq2fOfzBSqmuwHCgG3Aa8KlS6kyttfzNfBJER0fj9XprzflYPc4cHR1NTGYLWl50CXu+WoEtdGlXRdU4t8aGRtdcytUIXco1GLqwVNU1SXTNIYJ+08RnVI13xySn4PH6Of/Xv6Zl27YYhoHD4Qir422FaCqOucWttS7UWv8ndLsS+AGo76DZ64C3tNY+rXUesAPo0xBhxbHFxsZSWVmJUgq/349pmtjt9qqLTcXHE5Wazml9LsQX1KGjSqq2rD1BXfU5dJSJJ2jiM6rGub0GoY+qrW2fUbWDsmqoxMRUUXS75FI8fj8XXns9ScnJGIZBQkKCFLcQjeBn7ZxUSrUDzgHWhhZNUEptUkq9qpRKCy3LAn487Gl7qb/oRQOqqKigefPmmKZZVdRRUQQCAQKBAIcOHSIhPp5uw0fTetDleMyqoRBXwMDlN3CHDg90h4ZKXKEC9wYMvMEgvoCBr3rHZdDEb5gYdged+w2ktLiEcy+9jKzu3SkrK8PhcFBcXCw7J4VoBMdd3EqpRGARMElrXQG8CHQAegKFwLM/Z8VKqfFKqfVKqfWBgOfnPFXUIzk5mdLSUmw2G263m0AggMPhwOFwkJqaitvtxu5w0OayXxN0xNUct+0xdNWx3Ebo66D+3xEnQRNvUOM1NJ7qMW5TQ2wsmR06oqPsuCvKyerSheSUFFJTUwkEAqSnp8uck0I0guPa5a+UclBV2gu11u8DaK2LDrv/ZWBp6MsC4PTDnt46tKwWrfVsYDZAUlILHboGuThBbreb5NBQRfUs79XHc/v9fmJjYzEMgz43DMVTWsLSRx+h9mjG/47nrjr9nZpT3IM6dBq8aaKVncTkNIiOoTAvn/FPP023/v3xeDwopYiKiqKyspLk5GQpbyEa2PEcVaKAOcAPWusZhy0//OpBNwBbQrc/BIYrpWKUUmcAnYB1DRdZ1CcuLo6Kigq01ni9XoLBIDabDZvNRkJCAl6vF601FRUVDLztDi5/5FGCdkfV1nToeG5P0MSv7HgOW+Y1TPzahjdo4AtqfCjcHi/78/cw8v/9mU7nn191JcKYGGJjYwkGgzLGLUQjOZ4t7ouAkcBmpdSG0LIpwM1KqZ5UXeIiH7gDQGv9nVLqHeB7qo5I+b0cUXLy2O12oqKiiIqKqjnlvfr24fdFRUURHRND31t/S8deF/DJiy9QUXwQqPqB9r3lVr5a+Dpag2lqouLiOb1HD35YswZTg0aR3qolt06ZQvrppxPlcNS8bvU6o6KipLiFaATHLG6t9deEJgL/iWX1PCcHkKvaW8Bms9U7DVpKSgpAzWUnMzMzyczMpNtRpv26fMztvziHzAEpROORU96FECLChMn5yJqYmFKrQ9QpOroCr9dLaWn4ZnS73TidzrDOGAgEKCsra7CL7DcOI6x/F2NiyrAH7MSUNv5M4r9UtDMat9sd1r+LXq+XioqKsM5Y3/tEhcObKD09Xd9///1Wx6iTy+Xi4MGDtGvXzuoodSosLCQmJob09HSro9Rp27ZttG/fPqyHUTZu3MjZZ59tdYw6BQIBvv56F4cONf7F+n+p2NhSzjnHR6tGmv2oIeTl5ZGZmdnoM9WciGeeeYbS0tKj7yTSWlv+kZmZqcNZbm6unj17ttUx6vXBBx/o1atXWx2jXo8//rguLS21OkadTNPUEyZMsDpGvUpKSnSvXjm66pJg4fnRsuXXevHixVZ/q+o1a9YsnZuba3WMeoV68aidKWPcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwTba4V69eHdZTZAWDQdatW2d1jHqVlJSQm5trdYx67dixg5KSEqtj1Oubb74hGAxaHSOiuVwuNm/ebHWMeu3du5eCgoKTsq4wmXOy4axfv54PPviA2NhY/vWvf3HxxRdz2WWXWR2rlnfffZeNGzcSHR3NkiVLGD16NGeeeabVsWp55plnqKiowGazEQgEeOSRR4iLi7M6Vg2Px8O0adNwOByYpklSUhKTJ0+2OlYtO3bsYO7cucTExLBkyRKys7MZNmyY1bEizssvv8zu3btxOBy89dZbTJo0iebNm1sdq4Zpmjz22GM1G4pKKf70pz9hszXednGT2uLWWrNhwwZM0+QPf/gDLVu25PPPPw+rLW+tNf/85z/p3r07d999N0VFRezatSvsMs6bN48bbriB3/72t3zyySe43W6rY9Xi9Xr597//zejRo7nxxhuZP39+2H0Pd+3axf79+5kwYQJnn302H374YVhljARaaxYuXMill17K+PHj2bhxI8XFxWH1fTRNk7fffpvhw4dz8803884772CaZqOus0kVd35+Pps2baKyspJf/epXjB49mtjYWFavXm11tBrvv/8+F1xwAXPnzmXy5MlMmzaNhQsXUlFRYXW0GlOnTiUnJ4fbbruN5cuX88YbbzB+/HirY9Uybtw4Jk2axI033ojP5+P5559nypQpVseqUVlZyfz588nKymLw4MEMHjyYiy66iEWLFlkdLaL87W9/48477+Shhx7ixRdf5B//+AdTp05t9GL8OcaPH8+TTz7JLbfcwvbt20/K+6VJDZWcccYZZGdns27dOv75z3/y1FNPAXDRRRdZnOx/fvOb3zBy5Eh+9atfMXz4cCZMmMDtt99OSkqK1dFqPPHEE3Tr1o0ZM2bQsmVLbrjhBr788kurY9Xyyiuv0K9fPxYuXEhRURGTJk3i+++/tzpWjeTkZEaNGsVLL73EsmXLeP3111m7di0LFy60OlpEmThxIgMHDmTSpEmcd955jBw5kpdeegm73W51tBovv/wynTt3Zt68eQAMGTKEbdu2Neo6m1RxA/Tr1w+tNX/+85/p3r07PXv2tDrSEcaOHcvWrVt5+umnueKKK+jWrZvVkY7wxz/+kS1btrBmzRomTpxIfHy81ZFqiYuL4w9/+AMffPABSUlJ/PGPf7Q60hG6du3KlVdeyTPPPEOnTp24/fbbrY4Uke6//37y8/N55ZVXGDFiBC1btrQ6Ui02m42pU6fyxRdfoJRi6tSpjTq+DU2wuLt06UKXLl3YtWsXZ5xxBkopqyMd4eKLL6Z///78+OOPtGvXzuo4RzV8+HBcLhcul4vMzEyr4xwhJiaGcePGceDAAeLj40lMTLQ60hFat27NuHHjyM/P5/TTTw+rrcRIcs011+Dz+SguLiYrK8vqOEdQSjFmzBjKysoASE1NbfR1Nrnirta+fXurI9TLbreHbWlXS0hIICEhweoY9QrH/6n8VLj/nCNBTExMWJb24U5GYVdrUjsnhRDiVCDFLYQQEeaYxa2UilVKrVNKbVRKfaeU+nNo+RlKqbVKqR1KqbeVUtGh5TGhr3eE7m/XuP8EIYQ4tRzPFrcPuERrfTbQE7hSKXUB8BQwU2vdETgEjA09fixwKLR8ZuhxQgghGsgxi1tXcYa+dIQ+NHAJ8F5o+Tzg+tDt60JfE7p/sArHQzuEECJCHdcYt1LKrpTaABwAPgF2AmVa6+or5+wFqnf5ZgE/AoTuLwcyGjK0EEKcyo6ruLXWhta6J9Aa6AN0OdEVK6XGK6XWK6XWezyeE305IYQ4Zfyso0q01mXAZ0BfIFUpVX0ceGug+nqGBcDpAKH7U4AjrruptZ6tte6tte4dTledE0KIcHc8R5U0V0qlhm7HAZcBP1BV4ENCDxsNLAnd/jD0NaH7V+pwupSXEEJEuOM5c7IVME8pZaeq6N/RWi9VSn0PvKWUmgb8F5gTevwcYIFSagdQCgxvhNxCCHHKOmZxa603AeccZfkuqsa7f7rcCwxtkHRCCCGOIGdOCiFEhJHiFkKICCPFLYQQESYsLutqmiarVq2yOkad9u/fT2FhYVhnzM/P59ChQ2E1pdNPlZaW8s0334T1pWLdbndY/5ydTiexsaW0bBm+GdPStpGfXxnW38fCwkI2bdpEUVGR1VHqVN97OSyKW2tNSckRh3qHjfLycjweT1hndLlczJ1ro7IyfDO2aePn/PMP4fV6rY5Sp0OHgowcGb7fw6goN62u/Ia4B963OkqdovOScbmGhfX7xev18kjZI3ijwvd30ad9dd4XFsVtt9u59tprrY5Rpx07dmAYRlhnNE2TAwdasH9/X6uj1CkjYxOXX345aWlpVkc5Kq01CxZ8Ql5e+P6cY2JKSW75DHnX5lkdpU4tV7WkW3G3sH6/FBYWsm/APso7llsdpU6J9rpndZIxbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3M8//zxaa6tj1Mnn8/Hyyy9bHSPiffrpp+zYscPqGKKRFRcX8+6771odI2w0ueJeunQpAwcOpEWLFgwaNCgsyzEnJ4drrrmG6OhoBg4cyNq1a62OFHGcTicDBw5k1apVPPHEEwwbNszqSKKR3H333dxxxx3s27ePgQMHsnv3bqsjWS4spi5rKH6/n/z8fG644QbOOeccHnvsMf7973/jcrnCZoLa8vJy9uzZw7333stZZ53FoUOHyMvLo3fv3tjtdqvjRYz8/HyaNWvGkCFDaNmyJbfeeiuFhYW0atXK6miiARUXF1NQUMCDDz5IVlYWBQUF5OXl0aZNG5RSVsezTJPa4q7+Ie/fv59nn32WTp064XA42Llzp9XRavz3v/+lffv2LF68mDfeeINBgwaxbt06PB6P1dEiyoIFC+jXrx/Tp09n//79DBs2jCVLllgdSzSwzz77jAEDBvDSSy+xfPlyrr/+ehYvXhzWw6AnQ5Pa4j7ttNPo0KED8+fP5/XXX2fcuHGcffbZZGdnWx2txsUXX8ycOXMAuOGGG7j11lvJyckhMbHuiUHFkR5++GG6devGP/7xD5YvX87s2bPZvn271bFEAxs6dCgDBw6kT58+dO3alTFjxrBkyRJstia1zfmzNaniBhgyZAj9+vVj0qRJTJ8+nebNm1sd6QhPPfUURUVFTJs2jYULF9K6dWurI0WcpKQkVqxYwaJFi+jcuTPLli2zOpJoJPPnzycvL493332XJUuWcMYZZ1gdyXJNrrhTU1NJTU3l3XffxWazheU42GmnnUarVq2YP3/+Kb/l8EvZ7Xa6dOnCww8/jFIqLH/OomG0bduWNm3aMGDAAHm/hDS54q4W7jv6pGwahryRTw3yfqntmL/1SqlYpdQ6pdRGpdR3Sqk/h5a/ppTKU0ptCH30DC1XSqnnlVI7lFKblFLnNvY/QgghTiXHs8XtAy7RWjuVUg7ga6XU8tB9k7XW7/3k8b8COoU+zgdeDH0WQgjRAI65xa2rOENfOkIf9R2Lcx0wP/S8/wNSlVJycK0QQjSQ4xogVErZEnWskwAAIABJREFUlVIbgAPAJ1rr6lP9ckLDITOVUjGhZVnAj4c9fW9omRBCiAZwXMWttTa01j2B1kAfpVR34GGgC3AekA48+HNWrJQar5Rar5RaLyefCCHE8ftZu+S11v+/vTOPs6OqEv/31tvXfr1kIwtJSIyBsCeRiCAkEMBBFmUUdYAfi6BjQAWGwDgBZUYENBBxcADZQhBBkQgCKkhAPsPIEgJkkURCSEhn6e708paq9+rVcn9/1EJ3yNKJSV4/qO/n8z5Vr+7tqtP3vXfq1LnnntMDPA+cLKXc5LpDdOA+YKrbbQMwstefjXCPbX2uu6SUk6WUkxOJxO5JHxAQEPAxpD9RJYOEEDl3PwGcCKz0/NbCidE5A1ju/skTwLludMlRQF5KuWmvSB8QEBDwMaQ/USXDgPlCiBCOov+1lPJJIcQiIcQgQABvAt9w+z8NfA5YDWjA+Xte7ICAgICPLztV3FLKpcDh2zg+fTv9JfCtf1y0gICAgIBtESw7CwgICKgzAsUdEBAQUGcEijsgICCgzggUd0BAQECdESjugICAgDpjQKR1NU2TO++8s9ZibJd8Pk9ra+uAlnHNmjWMGpWkpWVprUXZLtnsWhYsWEAsFtt55xphml1MmjRwP+dQqELDew1MunNSrUXZLslNSf5a+SubN2+utSjbZfny5RyQP4BqQ7XWomyX9833t9s2IBR3KBRixowZtRZju7S2tqIoyoCWMRwOc9RRTRx88MG1FmW73HPPWv7zP4/BMDK1FmW7nHjiEhYuHLifc6FQ4Le/bef8GdteHiGRSGyklAiEfwxAESH/2N5k6dKl9PT0cOyxx+71a+0u+XyeuVPnDujqU9OUadttGxCKWwjBuHHjai3GDnnnnXcGtIzLly9nyJAhA1rGVCpFsTgaXW+stSjbQaIo0QE9hl1dXaRSKcaMGUNnZ6dzMGFQUHtoaMjxVvvzvKQ9SbHSjW0KUkoTqq6i6SoXjv0B8UiCYekRNKaayefzRCIRSqUSLS0tbNmyhWw2i6ZptLS0oKoqoVAIwzCwLItQKISqqn5bQ0MDHR0dtLS0AB8UtWhrayMUCg3ocWxoaGDEiBGMHDmSUqlEIpFAVVUikQjhcJhyuUwmk/HbdF1HCEEkEkHTNLLZLMVikUQigWEYxGIxv4BxNBqlVCqRTqdRVZVkMolpmti2TSwWo1gskslk0DSNeDyObduYpkk4HCYej/sFI3ZUJGRAKO6AgIBdo2yWWFZ+gZKZp7Wwgs7KZuJdGYQdZrAyhuGJg/nbltcIhzJMyhyGkg7xVtdfeXL1I5y0/z8zY/9TGRIfjpSSeDyOruu+EvGUk23bvjLylIjXVwiBpmlEo1F/G41Gazkku0WpVKKhoYFSqURjYyOmaWIYBk1NTXR3d9PY2OgrYSkluq7T0tJCd3c3TU1NaJpGMpmkXC4jhMC2bf+cnZ2dNDQ0kM/nCYfDKIpCV1cXuVyOzs5OstkshUIBIQSxWIxyuUwsFutXpZ9AcQcE1CGKULjt1dsxLJ0R2RGMbRxLLJTi/kULyGaifGL/YXSuU+nUV3DopB6aooMxLJthiQNYsXkpmGEGxYZw0idOA/CVjrevKAq2baMoCqZp9rm2V0bMU+YDtbZrf0gkEpRKJcLhMIVCgVAohKIo5PN5Lr30UiZPnswll1yCpmn+/9zT00M8HqdQKBAOh6lUKoTDjipVFMW/uTU0NFCtVkmlUti2zfz583nuuee48847aWhowDAMv01K2W+lDYHiDgioS2KhJP815eec8cjptEctVoe7SIokTWJ/kpUY2to0WzaUWbm5nVhyGfHOJrqbtpAKNxFWouQLFSrVKkeNOJawjJBKpVBVFSGE8+gfkVQrKpFwCEQcW0pCoRC6rpNKpTBNk0gkgqqqZDKZulXcqqrS2NhIoVAgnU5jWRaGYZDNZnn66ad5/PHHsSyLc889l1wuh67rZLNZ3+IulUpEo1EqlQqAb3Hncjl6enpoaGhgw4YNPPfcc8yePRtd17nvvvvo6ekhm81SKjk1ajxln0gkAos7IOCjSqVSYeyg0fz6S7/mK7/5Mq+vfZ2IGaY52oSsgl21+dFXbuTlZX9lVHYUf1rxJ4aPbGTt+x3EMmk2dXRSqZr86NkbuO7UH6CqKtlsFl3XicgKD845EtusgJB84d/eIJEbim3b5HI5VFUlHA6Tz+dJJpN0d3eTTCZJJpO1HpZdJhKJYJomoVAIy7KcSd1ehYnL5TKzZ89mzpw5PPPMMxx++OG+P9o0TRRFQUrpP3V4bg8pJdFolKVLl3LyySeTz+cBJ4ggFAr5bqVIJAJ88JQTWNwBAR9hkskkHR0dDE/tx/984Q4u/fWltHe3M655PCEZwq5a/OalR0iFUpQrGtFwhLZXw3xy/8lsbH+XQnM7LcZIfvWnR5g5+mQ+96nP0dHRQTwKr//pp+RLBoNHTWb8YScgIkl0XScUCtHV1eVPTjY1NdHR0UFzc3PdWtzhcBjDMFAUBcMw/P/j3nvv9a1ogGq1yle/+lXOOecczjzzTEaPHs1NN92ElBLLsnwFHIlE+PrXv05bWxsPPfQQDz/8sK+0ASzL4q677uLrX/86tm0TDof9eYRQKNR/uffEPx8QELBv0TSNdDoNwOT4ZH51zkOc/oszWNm+ikw4Q0Ik0IVOh76FzR2b6NrSxT9NOZWW6H7YhDgkPZln3voDTbEwMSVCsVgk376a3z8xj/Z1ixk8/AiO+dJccoNHowhBKBTCtm2am5t9i7uzs5NMJlPXFne5XKapqYlCoUA2m8U0TarVKg899BDVat8Y740bN3LTTTfx1FNPkUqlWLx4MZZl9emjKApPPfUUUkreeOOND11PSsldd93F2WefTS6Xo1QqIYQgHo9TrVZ9i39nBCsnAwLqEM86k1KiCIVxTeN57hvPMW7oJyhUCqza/HcWr1vC0vVLyaSzTDloCmWjzPtt6xBhhcKGKscdcArpZJg5D87ivY2reX/1clYue51jTruGL85aQPPQsQicx3hPoXhhgUIIwuEwtm0TCoU+ZC3WiwXu3XhisRhdXV1omgaAYRh+n1tuuaXPGo7ly5fzyiuvfEhpg+PjXrJkSR+lPWTIEObPn++/D4fDDBo0CMMwaGhoIJVKAc5TVOAqCQj4CKMoCpVKBeFaw4ZhMLRhKH+85EmeWvYUTy57mr+u+D82d7ahVVU67RB6qIpdtcGEt1f9jZlTTuLYlrMYPE1w6S1fYUJHiMMmz+ATR55CMt3gK2kv6kEIQbVaJRKJYFkW0WjUn6TcWuF4j/8DHS8MsFAo0NTU5FvcnusDHCW+cOFCGhsbt6msd8aMGTP63AhM02TLli3kcjny+bxvcQfhgAEBH3EqlYrvmiiXy6RSKXp6eshkMkwfN4MvTjmLPy75I5uLm6lWqmTiacpaGb1cBSkwjzcZNWQk06dOp6mxiezmJtb/31uc+IVv0TJ4Pzo7O0mlUhiGQTgc9pW0F58cj8fp6enxF+5kMpm6jOP2wgEjEcdd5E0Q9lbQiUSC3S1ofsEFF3DzzTfzzDPP+MdCoRDZbLZPOCA4C3cCizsg4CNMMpmkUCgAzg/eW43n+WxVVeWkw08i39NDMhql3NPJ+/P/m8rqt4kPG84nv/ufVCMRQsCWzZvY/MZGYqnBjBw1jkJXF42ZDFXDYPXvH+P13yxAROJ88rQvccBx02lsbsayLFpaWiiVSjQ3N/txzPWGruuk02k0TSORSPirGOPxuN+nWq0Si8X8yJNd4fTTTwfoM9EppURVVVKplH88Go32scp3Rn2OdkDAxxxVVf3VfOVymXQ67ccNe9u2N15BtL7H2qd+TSSR4pAf3ApKBBFSsLZs5u05V2MJBbtiY7+9jMGHHMHaR+9n/YvPoxULpEeOYcIZX+Hz18/FNg3+tuhZHjz/K0QbGpl+2eWkh+7H/uPHk8/nSSQS/mRpPdHbfy+l9F08v/vd7xg6dCjFYpF169axZMmSDy1E6g+rV6/myCOPZPXq1f71zjzzTH9OoHfo4a7MCwSKOyCgDonFYn183NVqlXg8jmEYxONxtrz4J9bNncPIsy/ioKtuQAhQV72NpxukEEyacwtSQGXzJhpf/l+q1SohoTB51lUQjqCXNaplDa2zHVtK9j9yCqOOnEq+q4vfXvs9siNHcd5P5pHIZuvW4o5EIui6jqIo/lJ+IUQfC/lnP/sZP/vZz3br/FdccQUbN25k7ty5gDM38Z3vfIdYLIZt20SjUf9msStjGESVBATUIV40R+8FILZtI4Sg44U/8s687zP6q5eQHfsJ9A1r0VvXISoqoqJCRYWySvndlWjvvI1Z7GHw1Gns95nP0jBqDOWOzagb1lPp3IKpqphlDUPT0IslKoU8oVCIz55zLoX167n7X7/ph7HVI15Ypedv9hTp3Llzd9uvvTWe0gbnc5szZw75vDOOpVKJcrns50Hp7zjW520yIOBjjhfVIYTwV/JpmobobKPtdw8y6oyvEWtqwc53oqAghLsiEBCAjQTb2ceWVLUSlpSYNli2xJYSWzr7pre1JRY2hgXRWILPfPVfePynt/LfF5zPlQ/9qrYDspt4y9fj8Tjd3d1IKbn99tv5yU9+0sc10tjYSCgU6hMW2d3dvc1zNjQ0EIlE/Bupbdt+Xykld999N6FQiOuuu86PVLEsa5fCAQOLOyCgDvF82l7muXw+T66hgc3L3iDbMpRUrhm71AMVDaGXUHSNkK6i6Jrz8qzvsgqVEpRVbE1FaiUsrYSplTDVIlW1hFEqUi0VqapF9KKzrZQK2KbBiRdeRHdrK8X29loPyW5RLBbJ5XJUq1UymQx33nkn119/fZ/FNwceeCBLliyhtbWVd999l/b2dhYvXsyUKVM+dL6JEyeyaNEiWltbWbZsGa2trbz66qsceuihfh/Lsvj5z3/OzTffzMaNG1FVFXCs//5a3IHiDgioQ7yERLFYDMuynLC2fA89f/kjSiKOUeyGioYsa1BxFLWia4R1lZCuISoa6Jrfx9JUZFnDLqvYZQ1b0zA1DVMrYWgqVW+rqlTVElW1hK6WMCpVIqk0LzxcnxZ3IpFA0zTC4TBtbW1ce+21fdoPOugg7rjjDpqamnxfeKFQYNCgQcydO5fx48f7fWOxGFdeeSXjx49H13UymQyGYTBkyBDuuecepk6d2ufcc+fORVVVvyLUroQDfuQUt5c74IILLvCTlw80bNumWCxy2WWX+YltBhqWZfHaa69x9913D1gZBzred/Hb3/42hUJhj34XvSRHXqKjarVKRBFU1vyNaHMLdlnFKmuORV12/NqhSplQtYyiawi97Cjtiuq8XIvb0pytqakYmopR9pS25ihsTUVXVfRSiUqphF7RGDp6f4w95A/eFrZts27dOn74wx/u8e+iYRhEo1Fs2+Yb3/jGhxTnpk2buOqqqzjhhBOYNWuWn7/cNE0OP/xwZs6c6fedOXMmxx9/PNVqlXA4jK7rXHPNNZx88snMmjWLdevW9Tm3EIJvfetbfhjgroQafuQU9/z585kwYQKXXXYZhxxyCNdff32tRfoQF198MSeccAJf+tKXGDt2LH/+859rLdKHOOyww7jzzjvRdZ1hw4bR09NTa5HqjkWLFjF27FjOOussZs6cyUUXXbTHzu2Fr3l+VD+kzbawKxpmueQo47JjSVMuIysqlDVk2du6FrbmbM2yo7DNsoqheu4Sz8IuopeKVEsFV2mrVEolKoUCFbW0x/6vbeEpvgkTJjBy5Ej+/ve/77FzewUMQqEQ99xzD7/85S/7tHd1dfHyyy/T1dXFjTfeSCgUQtM0YrGYvzjJI5PJMGjQIJLJpD/Zee2111KpVHj55Zdpa2vrc+7bbruNxx57zI8Z771ac2d8pBR3T08PGzdu5MILL2Tp0qUsXLgQKSWtra21Fs1n5cqVtLS0cO6555LP57n99ttZunQpuq7XWjSfF154geOPP55p06Yxbdo0Zs+ezdNPP11rseoKXdd56623uOCCC3jnnXd47LHHGDx4MCtXrtwj569Wq0SjUd9VEo/HqZQrWKpGpW0jlqo6L011FHC5hKGqGCUNU9UwNdX1ZTvthqpiqk6/qlrC0JxttVTEKKlonZ2UOtpdhV10XyoVtYSuaeyt57HFixdz0EEHcdpppzF48GBuuOEGnn/++T329NI7qVMoFOLFF1/8UJ+JEyeycOFC0uk04XCYv/zlLzz44IM8++yzHHrooZx33nl87Wtf46ijjuKVV17hoYce8hNNxeNxHn/88T4+bo/XXnsN0zT9J4hdeZL4yEWV9K7OMRAf7z3rSFGUD6WSHCj0rn7S25oL2DV61w70FnfsqXGMx+O0t7cjhCCVSjl1EDNpbAmFlSsIjf8kIhEHRUGGBAg3ksQwEbE4lrQxbDBME3XjeiqqSsWyqVoS3ZTotoVuQqR5CGSyVLQyerWKMC2qbj/DllRNi3XLlzNuytSdC70b9P69eBEae/q76H3XS6USd9xxB6eddhqrVq1i1apVAH544I9//GOEEHR2dnL55Zfz6U9/mkcffZQzzzzTT896ySWX8Oijj3LLLbcATl6SOXPm9NFFw4cPZ8aMGTz44IPMnj2bZDK5y9+Nj5TFncvlGDZsGL/4xS846KCD+MIXvoCiKAOqkvOECRPo7OzkvvvuI51Oc+mll3LwwQf7ExQDgWOPPZYXX3yRl156iZdeeombb76ZU045pdZi1RWxWIxDDjmEe++9l7Fjx/LFL36Rjo4OJkyYsEfO7xXrbWhowDRNMpkMRb3KgbN/iNbVwZZlr6Pn875PuqKqaF1bKK1/D62Yp9zTQ/eSl8gveZnSujWom1rRNrWibtxAceN6iq2tFDa8z+YVb7D+5f9ly7ur0QoFSp2daMUi5WIJrVBk5Ssvo0SiHPiZY/bI/7U1Rx55JG+//TYLFy6kra2N//iP/+C4447bYSHdXSEajfo+6Xg8zquvvsq8efNobm72+6xcuZIHHniAT33qU9xwww189rOfpampyb+JeMm4vCXx6XSaz3/+89x7771MmTKFBx54gKVLl/rny+Vy3HrrrbzyyiuMGTPGT9K1KwtwPnIW93nnncc555zDxRdfzNKlS/fYB7wnueuuu9A0jX//939nzZo1A1LGN998kyVLlvDWW2+xadOmASnjQGf69OmsWbOGK664gmeffdZP37mnsCzL/1wcqzGEyDRimDaKqtL1tzdpGPdJFMskZFsIQ8fo2ACbWp1YbRsM26ZqOxZ01XSsaAs3dltCVa9SMSwq+SL6+vVULBszEiM1dD82rl1HsagxeuonmHTssXv0f+vNH/7wB1pbW1mwYAHr16/fo99Fr7Cvrus0NTXR2NjI+vXrqVQq/pMnOFb3e++9x4033siKFSt44oknuO+++5BSkkgk/PDBSZMmceWVV3L11VfzyCOPfOipX1EUyuUymzZtYuLEif4in0gkQqVS6bcB12/FLYQIAYuBDVLKU4UQY4CHgWbgdeAcKWVVCBEDHgCOBDqBL0sp1/b3Ov8o3hLge+65Z19dcpdRFIV0Os1tt91Wa1G2i6IoTJ48mcmTJ9dalLrF+y7Omzdvj5/bW6rtKW8vvWoJsONxqnoFDBO1pxvUAqJURFEECgKJxJI2tnQUt2mD4bo+nC2Yto3pLroxpcS2JZaUWDZYhkGpu4eKViYUiyPl3s2/rSgKo0aN4nvf+94eP3c6nfarsff09BCNRnn33Xf59Kc/zUknnUShUPAnMO+44w6klPz+97/35368avepVAopJVdccQULFizoo7RnzZrllzPzkoOtXr2a/fbbj2w2i2VZVKtVEolEv+XeFYv728DbQNZ9fxNwq5TyYSHEHcCFwP+4224p5TghxNluvy/vwnUCAgJ2gq7rfjSCpmkkk0knzerEg2n8zEza/vQ7bExkZydhYaOYNkIRCFdx27KXIpbS8W1bso8C95W3ZWNKMCzbWV1pSPTuPLaEUDzO56/6Nz9HSr3huZyq1SoNDQ1IKTnmmGOYPn06lUrFr0yjKArjx4/n8ssvB2DevHl897vfxTAMkskk1WrV98HfcsstvtK+7rrr+OY3v0k8HvdXucbjcSqVip/VEfCrxfc3NW6/njmEECOAfwLudt8LYDrwqNtlPnCGu3+6+x63fYYIZrYCAvYoqVSKUqnUJ5d0Q0MDugiR3X8cpg26YVPWypTLVTTLpmzaaKazLZs2FdNR1mVDOhOTtk3VllQtG0NKdFtiWhJTCqquxW3YNkoq7bgSogkM02TaiSfVZdkycNLj9h5Dz+VRKBRIJBIUCgW/uv3EiRP9vzNN068lWalUiEQifYoAe4wfP57GxkYikQiKopDNZimXyzQ0NPghg56lvSv5zPtrcc8DrgIy7vtmoEdK6S3mbwWGu/vDgfUAUkpTCJF3+2/pt1QBAQE7RNM0MplMn/18Pk8mk0EZPR5l0H5UNrdiyCohBCEFNzOgY6tJ2dfqNm3biRLxokUsC8NylHfVdZlULYlpQaW7B1vAITOOJ97UTEdHB7lczpennvDyvNi27StXcCxgrwiwlJJQKNRn8lAI4cddezlMer88vIVS3jHDMPxsjp6Ly/Oj70qI404tbiHEqUC7lPL1fp+1HwghLhZCLBZCLN5TWbgCAj4ueH7XcrnsT3h5j/X7H30c8eGjKFs2FdOmYnkWtk3FNKmYJmXTomxaH7T7StqdqLQkVYsPlLnlKG/DdlwoLaPHsGb5Ck7911lks9m6rH4DH4QCesq5d0y3l4HRC0ccM2ZMn8II3sI5z0Xi+b87OzsBp2TZpEmT/DZvJa2iKFiW1efvYM/HcR8NnCaE+BwQx/Fx/xTICSHCrtU9Atjg9t8AjARahRBhoAFnkrIPUsq7gLsAhgwZMvACrgMCBjDeD9/78XsREJ7Cmfxv1/P7f/k85XKJkBDOxKR0rG4J2IDtZQFEYppOJImjnG1MC6q2o8wN23ajTxwFHstkGTxuAoPGjaNp2DA/xroe8YoEZ7NZ8vk80WiUSCTiVxLq6uoik8mgaRq5XI5jjjmGxx9/HFVVmTVrFiNHjvQVO0Bra6ufCfDII49k2LBhfp50L6dMd3e3X1neK13mhST2l532lFJeA1wDIIQ4DrhSSvk1IcRvgLNwIkvOAx53/+QJ9/1f3fZFciCuhAkIqGMsy/J/6N4jvaZpRKNRyuUyubEHkBw1hvYVb6IIhZCf0tVGoiCFawG6k5OWLd0Uro7LxLCFb2kbtk3FclwmVdsik82hRKOMOfRQMrkchUIBRVHq0ur2sgNWKhVyuRy2bWNZFk1NTX5ZtnK5TCaTQUrpV4EH6OjooKOjY7vn9p6CvNzbiqLQ3d1NKpWiq6vL96F7bhevWHB/+EcCImcDlwshVuP4sL34u3uAZvf45cDV/8A1AgICtkEqlaJYLFIqlQiHw348sqZpNDc3o2kap9x+H7pho5sWZcNy3SPS2VZtyobjPtE9N4olKVtQMQUV06Zq2eiWc9ywbKqmRePwUYw/+hjiyRQzzz6bYrFIS0tL3U5OZjIZuru7iUajdHd3+3HVXgHkLVu2EAqFKBQKaJrGlClTGDly5E7PO3ToUI4//nj/hhCLxVAUxa8H2tLS4keyePH9uzKGu6S4pZQvSClPdffXSCmnSinHSSn/WUqpu8cr7vtxbvuaXblGQEDAzimXyySTSRKJhJ+Ev1Qq+RZePB5HhqMces5FjqK2HMWtGR/4tp3oEsvxf1uylxJ3lrXrpo3u+7sl2aHDGTt5KhvXruWE888nXyyRSCTo6enpU+qrntA0za+4ns1m/ZDGXC7nu0csyyKVShGPxzn66KOZP38+uVxuu+eMRqPcfffdHHfcccRiMYrFIoZhIKX0o1W6u7uduHu3Ag6wS2MYLIcLCKhDvOx0XpRCuVz2V/Cl02mnMEBjEy3TjkUZNIyyKdFMG81yQgI/CAuUH+xbNhXDcqxs0wkR1C2Lqi2JZhsYPG48ne1taMUSYw87jEwmg67rpFKpXcpsN5CIx+Ooqko4HEZVVT8c0LsJFotFQqEQlUrFr0k5ceJE3njjDe6//36y2SyZTIZsNks2m+XWW29l1apVTJs2jUwmQ7VaJZlMEg6H/bwylUqFTCaDaZokk8k++bj7y0duyXtAwMeB3kuxvYiI3rkzvEnLMVOnMfnci1h0648xNNX/e+kuxJHSmaS08PzdYEo3ftu2MW2beFML6SHD0MplYrE4Nz37jC9D70nReqR3eTGP3uXJerf1Tng1ePBgTjnlFN5//31M0/RXRgL+fIOXX9u2bT96pPdnBM78RO+ok/4SKO6AgDrES2zkKYNQKOQXVTAMw99Go1GOufAbWFLy5H/9ANlHQTkRJpbEien2lrVL/NWSphQoliTf3c3oYcO46Mc/RnEz4em67sck72qSpIFCb6XrrW4ExxL30uVCX2vYa+u9cKZ3SJ9hGEQiET9SxCuUAE46Xq/N+8x63yj6S+AqCQioQ7yY7Uql4if39455Vcu9R31FUZj61XM56ye3MeLwKY4/230NnzyV+JChVCzbfUnGH3scuo2zBN6GilbmiBNP4Pwf/YhkYyOxWAzbtkmn0+i6TjqdrsuIEsBXrN5iGE959la63lJ1zwL3Cih4bhUvNttLJx2JRPxizrZtEw6H/fZIJIJpmn3avBverjy11N8tMiAgAICmpibAeYRPJBIIIfxjjY2NCCHYb7/9/Pbp5/4/jvnnL2P1sgBDkQi2bWFbH1ji4WgUo1exXIBoPE40Hvetw2w2ixCC5ubmuo3hBucGGIvF+owhfOAu8dp641Vj31abx4781rvj096aQHEHBNQpvdObegpkZ9tQOt2vc8e3k4J2e+etV7xFTN5+7+NbH+tP274icJUEBAQE1BliICxqbGxslOecc06txdguuq77q6iTozRIAAAFj0lEQVQGKvl8nnA4vMeT9e9J2traaGtrQcqBG4GQy21g//2H77xjjbAsi87OTgYPHlxrUbaLqqpYlkU2m9155xrR2dlJOp0eUJWntmbBggV0d3dv06wfEIpbCNEBqAzcDIItBLLtDoFsu0cg2+7xUZNtfynloG01DAjFDSCEWCylHJDlVgLZdo9Att0jkG33+DjJFvi4AwICAuqMQHEHBAQE1BkDSXHfVWsBdkAg2+4RyLZ7BLLtHh8b2QaMjzsgICAgoH8MJIs7ICAgIKAf1FxxCyFOFkKsEkKsFkLUvOiCEGKtEGKZEOJNIcRi91iTEOJZIcQ77rZxH8lyrxCiXQixvNexbcoiHG5zx3GpEOKIGsn3fSHEBnf83nRL3nlt17jyrRJCnLQX5RophHheCPE3IcQKIcS33eM1H7sdyFbzcXOvFRdCvCqEeMuV7wfu8TFCiFdcOR4RQkTd4zH3/Wq3fXQNZLtfCPFer7E7zD1ei99ESAjxhhDiSff93hm3rasT78sXEALeBcYCUeAt4MAay7QWaNnq2M3A1e7+1cBN+0iWY4EjgOU7kwX4HPAHQABHAa/USL7v45S327rvge7nGwPGuJ97aC/JNQw4wt3PAH93r1/zsduBbDUfN/d6Aki7+xHgFXdMfg2c7R6/A/imu/+vwB3u/tnAIzWQ7X7grG30r8Vv4nLgIeBJ9/1eGbdaW9xTgdXSqaZTxalfeXqNZdoWpwPz3f35wBn74qJSyheBrn7KcjrwgHR4GaeY87AayLc9TgcellLqUsr3gNU4n//ekGuTlHKJu18E3gaGMwDGbgeybY99Nm6uTFJKWXLfRtyXBKYDj7rHtx47b0wfBWYIsXeSeOxAtu2xT38TQogRwD8Bd7vvBXtp3GqtuIcD63u9b2XHX+J9gQSeEUK8LoS42D02REq5yd3fDAypjWg7lGUgjeUs99H03l5upZrI5z6CHo5jnQ2osdtKNhgg4+Y+7r8JtAPP4lj5PVJKcxsy+PK57XmcGrT7RDYppTd2P3TH7lYhhLeOfV+P3TzgKsBLtdjMXhq3WivugchnpJRHAKcA3xJCHNu7UTrPNgMiFGcgydKL/wEOAA4DNgFzayWIECIN/Bb4jpSy0Lut1mO3DdkGzLhJKS0p5WHACBzr/pO1kmVrtpZNCDEJuAZHxilAE04h832KEOJUoF1K+fq+uF6tFfcGoHfJ5BHusZohpdzgbtuBhThf3DbvEcvdttdOwu3KMiDGUkrZ5v64bOAXfPBYv0/lE0JEcBTjL6WUj7mHB8TYbUu2gTJuvZFS9gDPA9Nw3AxeGujeMvjyue0NQOc+lO1k1/0kpVOw/D5qM3ZHA6cJIdbiuHynAz9lL41brRX3a8B4d+Y1iuOkf6JWwgghUkKIjLcPzASWuzKd53Y7D3i8NhLCDmR5AjjXnUk/Csj3cgvsM7byIZ6JM36efGe7s+ljgPHAq3tJBgHcA7wtpbylV1PNx257sg2EcXPlGCSEyLn7CeBEHD/888BZbretx84b07OARe7TzL6SbWWvm7HA8SH3Hrt98rlKKa+RUo6QUo7G0WOLpJRfY2+N296YWd2VF87M799x/Gjfq7EsY3Fm8N8CVnjy4PiengPeAf4MNO0jeX6F89hs4PjHLtyeLDgz57e747gMmFwj+Ra411/qfjmH9er/PVe+VcApe1Guz+C4QZYCb7qvzw2EsduBbDUfN/dahwBvuHIsB67t9dt4FWdy9DdAzD0ed9+vdtvH1kC2Re7YLQce5IPIk33+m3CvexwfRJXslXELVk4GBAQE1Bm1dpUEBAQEBOwigeIOCAgIqDMCxR0QEBBQZwSKOyAgIKDOCBR3QEBAQJ0RKO6AgICAOiNQ3AEBAQF1RqC4AwICAuqM/w9pIihoDh14YgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## क्यू-लर्निंग का सार: बेलमैन समीकरण और लर्निंग एल्गोरिदम\n", + "\n", + "हमारे लर्निंग एल्गोरिदम के लिए एक छद्म-कोड लिखें:\n", + "\n", + "* सभी राज्यों और क्रियाओं के लिए Q-टेबल Q को समान संख्याओं से प्रारंभ करें \n", + "* लर्निंग दर $\\alpha\\leftarrow 1$ सेट करें \n", + "* सिमुलेशन को कई बार दोहराएं \n", + " 1. किसी भी रैंडम स्थिति से शुरू करें \n", + " 1. दोहराएं \n", + " 1. स्थिति $s$ पर एक क्रिया $a$ चुनें \n", + " 2. नई स्थिति $s'$ पर जाने के लिए क्रिया को निष्पादित करें \n", + " 3. यदि हम खेल के अंत की स्थिति पर पहुँचते हैं, या कुल इनाम बहुत कम हो जाता है - सिमुलेशन से बाहर निकलें \n", + " 4. नई स्थिति पर इनाम $r$ की गणना करें \n", + " 5. बेलमैन समीकरण के अनुसार Q-फंक्शन को अपडेट करें: $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$ \n", + " 6. $s\\leftarrow s'$ \n", + " 7. कुल इनाम को अपडेट करें और $\\alpha$ को घटाएं। \n", + "\n", + "## एक्सप्लॉइट बनाम एक्सप्लोर\n", + "\n", + "सबसे अच्छा तरीका है कि अन्वेषण (exploration) और दोहन (exploitation) के बीच संतुलन बनाए रखें। जैसे-जैसे हम अपने परिवेश के बारे में अधिक सीखते हैं, हम अधिक संभावना से इष्टतम मार्ग का अनुसरण करेंगे, लेकिन समय-समय पर अनदेखे रास्ते को चुनना भी महत्वपूर्ण है। \n", + "\n", + "## पायथन कार्यान्वयन\n", + "\n", + "अब हम लर्निंग एल्गोरिदम को कार्यान्वित करने के लिए तैयार हैं। इससे पहले, हमें एक ऐसा फ़ंक्शन भी चाहिए जो Q-टेबल में दिए गए मनमाने संख्याओं को संबंधित क्रियाओं के लिए संभावनाओं के वेक्टर में परिवर्तित कर सके: \n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "source": [ + "हम मूल वेक्टर में थोड़ा सा `eps` जोड़ते हैं ताकि प्रारंभिक स्थिति में, जब वेक्टर के सभी घटक समान हों, शून्य से विभाजन से बचा जा सके।\n", + "\n", + "वास्तविक शिक्षण एल्गोरिदम जिसे हम 5000 प्रयोगों के लिए चलाएंगे, जिसे **epochs** भी कहा जाता है:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " m.random_start()\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " m.move(dpos,check_correctness=False) # we allow player to move outside the board, which terminates episode\n", + " r = reward(m)\n", + " cum_reward += r\n", + " if r==end_reward or cum_reward < -1000:\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "source": [ + "इस एल्गोरिथ्म को निष्पादित करने के बाद, Q-टेबल को उन मानों के साथ अपडेट किया जाना चाहिए जो प्रत्येक चरण में विभिन्न क्रियाओं की आकर्षकता को परिभाषित करते हैं। यहां तालिका को विज़ुअलाइज़ करें:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXwURd7H8U/NmUzug4Rb7kMRQW4RFRFFlwVdXFRUdlFRQTxQ8FgUFVRQ1xMeZBE8F0VXF1R0PUCUS+VQhKDcoCQkQO7MPdNdzx+ZzMJKAMlMepLUm1deyXSa7u8M5Jea6qpqIaVEURRFqTtMRgdQFEVRfh9VuBVFUeoYVbgVRVHqGFW4FUVR6hhVuBVFUeoYVbgVRVHqmKgVbiHEECHEdiHELiHE/dE6j6IoSkMjojGOWwhhBnYAg4FcYD1wjZTyp4ifTFEUpYGJVou7N7BLSrlHSukHFgHDo3QuRVGUBiVahbsZsP+Ix7mhbYqiKEoNWYw6sRDiZuBmAKvV2qNr165GRTkhn89HRUUFmZmZRkepVmlpKVarlYSEBKOjVCs/P5+srCzMZrPRUar166+/0rJlS6NjVCsYDHL48GGaNGlidJRqOZ1OgsEgqampRkep1uHDh0lOTsZutxsdpVpbt27F4/GIY35TShnxD6Af8NkRjx8AHqhu/6ysLBnLdu7cKefNm2d0jONavHixXLt2rdExjmv69OmyuLjY6BjV0nVdTpgwwegYx1VUVCQff/xxo2Mc1+rVq+WSJUuMjnFcc+fOlTt37jQ6xnGF6uIxa2a0ukrWA+2FEK2FEDbgauDDKJ1LURSlQYlKV4mUMiiEmAB8BpiBV6SUW6NxLkVRlIYman3cUspPgE+idXxFUZSGSs2cVJQo0HWd9evX8/rrr6PretW1HkWJCFW4FSUKunbtyrx58yguLqZJkyZUVFQYHekomqZx4MABo2Mop8iw4YCKUl99/fXXDB48mMmTJ1NYWIjP5+PTTz9l5MiRRkcDKvPt2rWLnJwcunfvzsUXX0zjxo2NjqX8DnWuxb1nzx7effddo2MoSrWCwSAWi4WcnBw++OADrFYrgUDA6Fhhs2fPxul0cvfdd/POO++wfft2oyMpv1OdanEPGzaMuLg4+vTpw5lnnsmKFStielKM0jANGjSICRMmsGTJElwuF4FAgN27dxsdC4BFixYxePBgrrjiCqZMmcK8efOYPHkyPXv2jOnJW0eSUuL1elm4cCGtWrWif//+xMfHGx2rVtWZFveePXuIi4tj7ty5jBgxgksuuYScnByjYynKMeXk5DBr1ixuueUW8vPzSUpKMjoSACNHjmTZsmUsX74cv9/P1KlTGTt2LA6Hw+hoJ83j8dC8eXN8Ph+fffYZnTt3NjpSraszhXvjxo307t2b8vJyXn31VRo3bsyqVavU1XolJpnNZkwmEyaTCYvFghDHnrlc20wmE0OHDuX777/HarWyfft2WrZsGTP5Tsbbb7/No48+Sq9evbj11lu58cYbWbx4sdGxalWd6Sr585//zJlnnklBQQFNmjRh0qRJ5Ofn16n/cErD0q1bN9asWcOWLVs488wzjY4TNnr0aPx+P0888QSnnXYabdu2NTrS79K8eXNeeuklCgoKmDBhAnl5eVx88cVGx6pVdabFDbBixQqGDh2Ky+WioKCAW2+9ldLSUqNjKcoxZWVloes6hYWFRkf5DZvNxvnnn4+UEr/fb3Sc32XAgAF8+umnBINBpk6dyjfffEOfPn2MjlWr6lThzszM5IILLuChhx4iOzub1157jYceeohdu3YZHU1R6pyBAwfi8/n45ptvjI7yu/Xq1YtevXpx0003sWnTJqPj1Lo6VbirVHWPpKamcuedd/Lmm2+yb98+Y0MpilIr5syZw6233sqIESPo3bt3g+wurZOF+0jt2rVjzJgxTJ06FbfbbXQc5RQsXbqUAQMGcPHFFxMIBNA0DU3T1IXnWmAymerUlPwZM2bQoUMHRo0aZXQUQ9X5wg3QqlUr5s6dy+jRo8nPz4/qufbu3RvT/8mDwSD79+8/8Y4xZMiQIXz22We89dZb9OvXj169etG7d282bNjAtm3b2LZtGx6Px+iY9dKDDz7IjBkzcDqdRkc5obKyMg4cOECXLl0aZCv7SHVmVMmJOBwOZs2axaxZsxgzZgzt27eP+DmWL1/OBx98QNeuXenVqxdnnXVWxM9RU2+99RabN2+mU6dODB06tE5MZbZYLFgsFhwOBxs2bAAqJ1lMnDgxXFDOPPPM8ASRgQMH1rmRELHKZrPF1KzO6pSVlTFnzhxGjhxJmzZtDMuxZcsWkpKSaNWq1Unt/9lnn7F//35atWrFRRddFLEc9aZwAzRp0oQxY8awYMECJk6cSHZ2dkSPbzKZeOSRR3jsscc4fPhwjQq3x+Nh3LhxEWm9t23blqpbv6WmpnLXXXdxyy230KlTpxoV7p9++oknn3yyxvmgslX9ewgheP7558OPly5dSlFREQD/+Mc/OHjwIABXXHEFl19+eUQyKrHr4MGDbNu2jQceeMCQ8wcCAW655RaaNm2K1+vF6/Uya9aso1r+q1atYv78+Uf9vbPOOouMjIyI366vXhVugPbt2zNx4kTGjRvHm2++GdFpvAMHDuTiiy9m9+7deDyeGq2ZEh8fz2uvvRaRt3xxcXFs3LgRqBwqdeGFF3LgwAFuuOGGGj3/Ll26MHXq1BrnA0hLS6vRtO+hQ4eGvy4oKAivtvevf/2LRx99FICLLroonNdsNh93NmBVK9NqtZ5yppNR9Uu0Z8+eMTN78n+98cYbXHPNNSxdutToKMek6zp33nknr732mmEZKioq2LFjB4899hgul4sBAwawbNmyo6baDxw4kAcffPCov9e0adOoLCVQ7wo3QHZ2Nm+++SYTJkxg6tSptG7dOiLH/emnn3j//feZM2cOmqZx//331+h4QoiI9dVVFe49e/bwxRdfcMcddzBu3Dj69+9fo+OaTLF3GaRx48bhdxIPPPBA+N9h+fLl/PGPfwQqf2BuvfVWoLI49+3bFyEEUkrWrl3Lhg0b0HWdXr160b9//6j1mWZkZFBSUoKu61E5fiQ0a9aMvLw8o2NUa/PmzWRnZ0f8HfTvcd999/H888+zevVq5syZg9PpZPTo0cycOfOo/Wrr56VeFm6AhIQEpk6dyuuvv871118fkT7RTZs28f777+P1ern44otjsqgtW7YMn89H69atadmyZUxmjKQjf/kNHjyYwYMHA5CXl8ecOXPC+3z55ZdAZd/57NmzmT17NmazmVGjRrF3796YvvN8Q7ZixQpWrFjBP/7xD0NzzJo1i06dOjF//nwmTJjAvffey5NPPmnYRdJ6W7gBWrduzfXXX8/TTz/Nk08+SUpKSo2ON2rUKFavXh3VFlpNTZw4kc2bN9OzZ0+joxiqWbNmPP744wD4/X6WL18OwL333ktFRQULFiwIv/2+9957eeaZZ4yMayghBFOmTOHvf/87kyZNMjpOmJSSzz//nEsvvRS73W5oFqvVyty5c1m3bh3Jycm8/PLLhuap14UbKi/cPfXUU4wePZoFCxaQkZFRo+Ode+65EUoWHTabrcEX7f9ls9m49NJLAejbty/9+/fnxRdfJCkpiT//+c988MEHBic0lhCCbt268eGHHxodJUzTND766COaNm1Kv379jI6D2WxmyJAhnH/++ZhMJsN/kdT7wg2QnJzMK6+8wvTp0xk/fnxUhgoqdUNKSgrdu3dn3rx5CCFo0aIFqampRsdS/kdJSQnz5s3jk09i637jsbLud4Mo3ADp6encdtttvPHGG9x00020bNnS6EiKAUwmEwsXLuSnn35CSskZZ5xhdKSYkJmZSceOHfnmm29iooU7e/ZsbrnlFqNjxKz6feXqf7Rr146xY8dy//33q+nxDdzpp59ea0XbbDajaVqtnOtUpaam0qJFi5i4OUkwGOTDDz9k2LBhRkeJWQ2qcAO0aNGCBQsWMGbMGHJzc42OozQAS5cu5ZJLLjE6Rp3x4IMP8tFHH8XsAIBY0OAKN1T2Uz377LOsXr3a6ChKA2CxWOrEtPKOHTty6NAhiouLDc0xc+ZMmjVrZmiGWNcgCzdUDhe7+uqrjY6hKDGjT58+7Nu3j4KCAqOjKCfQYC5OKopyYjNmzCA5OdnoGMoJqMKtKFEmhKgzt9bKzMw0OoJyEhpsV4mi1BYhhOFTtpX6RRVuRVGUOqZGXSVCiH1ABaABQSllTyFEOvAO0ArYB4yUUpbULKaiKIpSJRIt7oFSym5SyqoFMu4Hlksp2wPLQ48VRVGUCIlGV8lw4PXQ168D6vYkiqIoEVTTwi2Bz4UQG4UQN4e2ZUspq+7YWwAYt/q5oihKPVTT4YDnSinzhBBZwBdCiG1HflNKKYUQx7ypYqjQ3wyQmJjIzp07axglenJzcyktLY3pjIWFhei6HtMZXS4Xe/fupbCw0Ogo1fL7/TH9GpaXl+NyuWI6Y0FBQcz/vJSWlrJ///6I3PM1Wo5316QaFW4pZV7o8yEhxGKgN3BQCNFESpkvhGgCHKrm784D5gFkZGTIr776qiZRoqq0tJTc3FxiOePu3btxOBzhG+rGosLCQtauXWv4WsbH43Q6Y/rf2ev18s3hb/jgq9hdQ9yR72CQZ1BM364tLy+PjRs3smvXLqOjVOu4r5+U8pQ+gAQg6Yiv1wJDgKeB+0Pb7weeOtGxsrKyZCzbuXOnnDdvntExjmvx4sVy7dq1Rsc4runTp8vi4mKjY1RL13U5YcIEo2McV1FRkezxeA9JDP9pvLqxXLJkidEv1XHNnTtX7ty50+gYxxWqi8esmTXp484GVgshfgTWAR9LKT8FZgKDhRA7gYtCj5X/4XQ6ufLKK42OoShKBOzevZu777671s53yl0lUso9wFnH2F4EDKpJqIZAShnT3RqKopy8QCBAaWlprZ1PzZxUFEWpY1ThVhRFqWNU4VYURaljVOFWFEWpY+pV4c7Pz+e1114zOoaiKEpU1avCXVZWpu4jGSFOp5MxY8YYHaNeCwQCBINBo2ModZC6A45yTJqm8euvvxodo17SdZ1vv/2WVatWkZaWRrdu3ejVq5e6q3kdVtv/dvWqxZ2enk7Tpk3JyckxOoqiVMvv93PVVVdxxhlnEBcXx1VXXWV0JKWGZC2veVKvCndWVhYtW7Zk48aNRkdRlGrdd999LFy4kGAwSPv27XnhhReYNm2a0bGUOqReFW5FqQvuv/9+rr76atasWUPr1q156qmnuPPOO42OpdQhqnArSi1LS0sjEAhgs9l44oknaNOmDSkpKUbHUuoQdXFSUWrZ7Nmzef755+nYsSMpKSm0b9/e6EhKHVPvWtzDhg1j48aN7N+/3+goSh2gaVqtXVjSdZ0nn3ySDh06MGrUKHr27KmKtnJK6l3hzsrKoqysDK/Xa3QUJYaVlpaydetWRo4cSU5ODgUFBVE9n9/vZ8GCBbRq1YqhQ4eqoX/1jBoOqCi14IMPPmDcuHE8++yzTJ06leeeey6q56u6g9JVV12FyaR+7Oqb2h4OqPq4lQbj3Xff5aOPPgJgz5496LrO9OnTmTt3LvPmzWPTpk1ROa+UkhdeeIFx48ZF5fh10cyZM9m6dWv4sdVqZd68eVgskSlJK1aswGq1cu6550bkeLGmXhbu+Ph4vF4vUsqYfUvqdruJj483Oka1hBDY7XZ8Pl+t3yPS5/Ph9/tPat9XXnnlpNenGTVqFA8//DAA//73v3G5XFx33XXs3LkTt9tNhw4dTjVytXw+H+PHj2fSpEl07tw54sevq0aPHo3b7Q4/DgaD9O3bF03Tjrl/8+bNeeutt6o9nsViIT4+Hk3T6NatG0OGDMHv93P77bezcePGqL/LMZlMmM1mAoEAVqs1queCelq4X3rpJXr06MGGDRtitnBfeumlrF+/3ugY1UpKSuKee+7hiSee4NFHH43KOaSUrFq16jc3RV21ahUrVqw4qWOMHj36pCdcCSHC/x+6du3Kk08+SadOnZg/fz4jR47E4XD8vidwAsXFxbzwwgvcdtttdOrUKaLHruuaNm161GMpJevWrat2/7y8PIYPH17t9zt27MhVV12Fpmn4/X4uu+wyOnXqRHl5OT/++CPdu3ePWPZjad++Pf369WPhwoX89a9/jeq5oJ4WbiFErfc5/V6x/G4A/lvkovk6SilZsWIFgUDgqO3nn38+Dz30UNTOCzBkyBCGDBnCnDlz+OKLLzCZTBF9rh6Ph9mzZ3PBBRdw9tlnR+y49dWRv1SPpUWLFnz55ZfVfv/nn39m4cKF6LpOeXk5y5cvJy0tjZ49e7Jx48aoF+6q7LVVd+pl4VbqBpPJFO66MMr48eOjclyPx8Pq1auZOnVqVI6vHK1z58489thjBINBXn75ZTIzM/n888955plnyM/PNzpexKnL24oSYYWFhdx444289957RkdpcMxmM9u3byc9PZ2WLVuybdu2mH5ne6rqbYv7wgsv5KuvvuLCCy80OorSgOzcuZO5c+fy8ssvk5ycbHScBkcIQXp6OqNHjzY6SlTV2xb3I488olZcU2pVbm4ub7zxBrfeeiuZmZlGx1HqsXpbuBWlNkkpKSgooLy8XE1jV6Ku3naVKEpt+vnnn5k1axYLFiwwOorSAKgWt6JEwCeffMKCBQsiNvNPUY6n3v4vi4uLY+TIkSxatIirr77a6Dh1zu23386WLVs4fPgw27dvZ8GCBSQmJhodK2ZNmjTJ6AhKA1JvC/dFF11EXl4eFRUVTJkyhfXr15Oenm50rDrB5XKxceNGbr/9dr777jt27NhBcXGxKtyKEiPqZeHesmULrVu35tFHH+WLL74AYN26dQwZMsTgZHXD7NmzmTRpEq1btyYQCHDdddcxbdo05s+fb3Q0RVGop4V7z549tGvXjlatWnHRRRexf/9+fv75Z1W4T9J9991H586dmTx5Mq1bt+aqq65iw4YNRsdSFCXkhBcnhRCvCCEOCSFyjtiWLoT4QgixM/Q5LbRdCCFeFELsEkJsFkIYskjD8OHDWbhwIc8//zx5eXncfffdXH/99UZEqbNeeeUVAL7++mvmz5+vukkUJYacTIv7NWA28MYR2+4HlkspZwoh7g89vg+4FGgf+ugDvBT6XOvWrVvHpk2bWLduHbt37yYpKcmIGHVWv3796NWrF8FgkLi4OKPjKHVMfZxmHktOWLillCuFEK3+Z/Nw4ILQ168DX1FZuIcDb8jKJbK+FUKkCiGaSClrfZWXpKQkBgwYwIABA2r71PWGxWJRw9uUUxLrq3PWdaf6U5l9RDEuALJDXzcDjrxLb25oW/1bnusUrVq1in/+85/s37+fcePGcdlllx13nWFFUWKbruvceeedbNmyBYDvv/+eF154Iao3b6jxkUOt69/961UIcbMQYoMQYoPH46lpjDpB13W2bt1K27ZtyczMpF+/fqxfv77au34oihL7fD4fq1evZtCgQVx00UWsXr0an88X1XOeauE+KIRoAhD6fCi0PQ9occR+zUPbfkNKOU9K2VNK2TOWb+EVSfv27WPHjh389a9/pVevXlx++eXYbLaYvhOOoijHd8899zB37ly6detGt27dmDt3Lvfcc09Uz3mqXSUfAn8BZoY+f3DE9glCiEVUXpQsO5n+bU3TWLJkySlGib7CwkJ2794dkYw2m41Zs2YxYsQIFixYQF5eHgUFBTU+dk5ODr/88gsHDx6sccZoKSgo4NNPP43pe22Wl5fH9P9Ft9tNQn4CbZa0MTpKtZL2JZHjyonpfu49e/ZgsVjIyck58c4nMHjwYCZPnszdd98NwOTJk5k4cWKN/x8d7534CQu3EOJtKi9EZgohcoGHqSzY7wohbgR+AUaGdv8EuAzYBbiBMScT0O8XjBuXfeIdDeJw6PzlLw6ys2ue8cj+7OzsbM4555waHxPgl19+Ye7cFEpLY/d1bNfOzuWXNyIhIcHoKNWyWCwR+XeOFqfTSS97L2ZmzzQ6SrW2lWyjwlQR06+jw+HgifQncGe7T7zzyXgSxjEu/PV4an5nJb+o/obZJzOq5JpqvjXoGPtK4LaTThb+eyYKCvr93r9Wa1JSdtGkSRH9+sVuxoMHD1Jamh3Tr2Pz5svp0aMHNpuNiooK0tJTOVhygKSEFMoDh/i85A32uLdiCliwi0SEbia/4gB904Zwceur8bt9NG/UkvLychISEigpKcHhcBAIBNA0jYSEBKSUxMfHh6foV1RUkJKSEn7s8/lISUnB5/MhpSQuLg6TyRS+v+Zbb70VsX9nv99PIBCI6C+q4uJi1q9fX+OMuq7z6aefkpuby8iRIykvL+fFF19k+vTpNX5HpOs6hYWFMf3zsnnzZorOLKKsXZnRUaqVaKp+7oQa66XUKil1igIH2OPaigmdD/Pn0C7hbPy6HxvxdLD14YDvV8o8pXRK7c5pGV1JtqYxecW1JFkzuK37gzSyNcEWsGEymcJ3iDeZTGiahpQSn8+HEAJN0xBCEAgEwt8XQuD3+8NvQ4PBIDabLeLPc/ny5ezcuZODBw/So0cPLrnkEqxWa8TPc6pcLhcfffQRd999N1dccQVvv/02TZs2ZeXKlVxyySVGx1NOQC3rqtQqieSHQ98xbcMDvLThRczOZpSVBfh280+88ekS1uz4mtxf89j43Y+s3ruCX4p/IefgFuwymXiRzNubXuGzXR/i9FZgs9kQQmA2m4+6S3sgEMBqtaJpGhaLBU3TsNvtCCGwWCwEg8HKLFL+5g7zkTJ+/HhSU1O58MILueuuu3C7I/SWPEKSkpIYPnw4N954I3v27OGBBx5g06ZNdaJo+/1+5s6da3QMQ6nCrdQqkzDTM/NCmgR6sHV7MZu3HuaHzfmUH7BhdzfGtd9B3g4/W384zHc//MDWPetZ+f1XeFxB1u7+hkMVRcxd+38U+wqpqKgAKt+aezweLBYLJpPA4YjH6/VgtVrx+XzExcXhcrnCre2EhIRwEXc4HBF/jg8//DDPP/88bdq0YdeuXbz//vvcfvvtET9PTfXp04cZM2aQkZHBqFGjeOihh4yOdEIzZ85kyJAhJCUlce6557J69WqjIxlCdZUotUrXdRLMDl7844vcsHgM/8n5BN0H8TIOm7Tx/S6NP/cewY2De1HmKsXmsZHr/g/e8iIKi0vYqe0mGDAz/KU/8sXtK4DKkTpxcXF4PW5yls9k1/p/EgxqdO73F3oMnUZFRQUZGRl4vV7i4+MpLCzEbrcTDAZxu91kZGRE9Dn+7W9/o3///owfP54ff/yR119/nXfeeSei54iEtLQ0+vfvT0pKCn379o35ZSHKysrIzc3lxRdfJCEhgbKyMvbu3Uvfvn0b3Axf1eJWapXJZMJut+N1evjHiLlc1ukPWMxm2jRqQ992fenaqgu/HP6FrXk5FFUUk1+UT0LRabi2p3Bmcmc8ZYWge9HKBDe9eBNCCLxeL8XFRVQc3MruraspKffSrMswUpt2o6K8nMTERA4fPowQApfLRWZmZng6f2pqasSfo91uZ+DAgbz77rusXr2atm3bqju+R0BOTg5NmzYN38X93HPP5ccff4y5bqja0LB+TSmGk1Li9/tJS0sjEAjw0og5PBj/EP/e+G9KnaUkmBNwiHh8ws+hom2UlZSRZE1meL/hOCucxJNO0eFDmNIO4D8YQNOCWK1WVix+nkP71lCSv5/uF05kwLCJBIOV3/N4PKSlpaFpGg6Hg7KyMsxmM1JKnE4nKSkpEX+eTz/9NJ9//jnfffddneiCqAv69+/Pq6++yq233sqOHTu44YYbePjhhxvkL0VVuJVaZzKZwhcT0+LTmXbJNKzCzr/WvcvB4kMQABEAoQm6N+9OvDmePfl7iLfEk2TNoG3LTrz9+eu0ubiAV5fMZ/TQv7D+q/fJbtKc4be8QnarruHjVw3zM5vN4VElR04MUavY1S2PPfYY/fv3p23btrz66qs0a9bM6EiGUIVbqXUmkwmn00lCQgIul4tkezIz//AE0y59mCv+70+UlJewa/8espIyKXYWkWhNwuv2QkBy+HARidYEBvcYRm7uDlbJxXw77lXSNMmQgddxWud+WK1W3G43drs9fHHS6XRis9nw+/04HA40TUPX9agO0UtNTUXXdUpLS6PSJdMQNW7cmJSUFL7++uuYGl5Z21ThVmpV1TjrjIwMiouLSU1NxeVyYbPa8Dv9LL1tKfuK9/HRxo9weV2YgiYSbA7KS8tBCjxuL3azjasuuoqeZ/Vk5ebPeXntVM7/w1Wc1XcomqbhdDpJT0+nvLyclJQUSktLyczMpKKigvj4eIqKinA4HEgpcblcUZvh17t3bz766CN++OEHBg4cGJVzNFTRXHmvLlCFW6lVQgjsdjvFxcXEx8dTVlaG1WolGAySmJiIlJJ2We24ffDtSCmxWcwUrF5Gwbp/47DHkTHwUlL7DcJqt1NSUkKgIIinVND/ohHYbDaklKSmplK4bx/rF8ymOPdX0tp2psdfxpKa1Sjc363rOrqux/S6KcpvvfDCC0yePFkVbqMDKA1LVYs7JSWFsrIykpOTcbvdWCyW8Fhs/F5MPi/bpt6O9HtpfsW19HxgBrowYTWb2DvvSYp+3EhQ09lVWIr98CF8OevZsGYlhzZ/T0DT6HzVDXT/09X4fV40r4+3b74eZ7mTYVMfJbl1W7JbtMRkMuFyubDb7Ua/LMpJ2rJlC5MmTWrw1yZU4VZqndlsJhAIhGcxVl1INJvNaBVlHJj3NK5fd9H57mlYk5IJlJbg3bMTBPgkNPvTdZw2+jaCrgqafb2cnjt+pmjNSloNuJAzR91EMOjHVVKCv6IMTYKOZNiURwhqOqsWvsHm1au5Zf5rtDm7B2az2eiXQ1F+N1W4lVolhDhqHZGqNUOklBAM8stLM9AOHqDNtbfiP1xA8HABAklVA0tI8P+6F6+U6EByx86kduuB5g/iKS2i/JfdaFKiSdCkRJcSTQddSoK65OyhwwjoOgsn3c3VM56ifR9DbomqnIJ169Zx2mmnkZWVZXQUw6nCrdQqKSXBYJC0tLSjLk5aLBb2L/4nnl0/0/q6W5oHB38AACAASURBVCHgReggROjjqGNUFnCQaG4Xfikri3WoQGu6RJeEi3dQk2hSJxjap8t5A/F5/cwddwsT3/kXnc8+26BXQ/k9fv75Z5o0aUJ6errRUQynCrdSq0wmE3FxceTn55ORkUFhYSEJCQn43C6Kl31Ix2tvQ3OXIU2AEJhCLXRTqHJLKStb55LKCl5VpHWJrkuCUkfTJZoGwVDhDug6QQlBXUfTBZqu0/mc/hzKzcVTWGjky6Eop0QVbqVWVbW44+PjCQQC4QuDRauXYUtIxFuYh9kkMJkrRw0IM5iPKNy6rGxVS12ApqNLHSlB6qGWtl5VoCUBvbJ7JKhLgpLKAq5XdqMEgjoZzU9jzp138PLWnxCqrzumlZaWkpeXx/nnn290lJjQsMfUxKiHH344vPRofVQ1IqDqs5SSiu/X4mjVDs3jQve4kG4XeF3gcSO8bsw+D2afB+GtfCy9LqTXje5xo7vd6G4XutuF5naiud0E3K4jPpz4Xf/98FZU4HVV0LR9WzSf18iXQjlJhw4dYvv27fTv39/oKDFBFe4Y8vHHH9O5c2fOOeccevXqxdSpU42OFHFV62d7vV4sFgt+vz+0zYTU/OHCrXtcSI8L6XFDqFgLb+XXeDxwxH6610XQE/pwuwm6nQRDRdvvduFzOvG7KvC5nHidbrxOJ16nE09ZWfhGDIpSl6iukig7fPgwW7ZsOal9v/vuOy666CJsNhvvvPMO8+fP5+DBgzF9777fS9d1fD4fqampuN1ukpOT8fv9+H1+ZNFB7KF1TIRZYDIJhFkgTCYq2xiSIKDpOkFdJ6hVdoMEQl8HpCSghT50iT+oE9ShvLwMsyMBvybx60d8PzQJJ5ratGnD3r17GTBgQMwuPdq9e3c2btzIBRdcYHSUY5JSsnXrVk4//XSjo8SM2PyfVI8UFRXx1VdfndS+P/30Ey6Xi5UrV3LTTTfhcDg4fPhwvSrcJpMJm81GUVERjRo1oqSkhKSkJOKSU8j/+lNsJhOkpkKoeGOqHFIS9PsQ9nh0qvqtweeqwF14GL+m4wvq+HWJT9PxBSWayYIlM5sAgrIDuTgaN8Ov6wQ08GkaQR0O5xfg90a3q2TMmDEMGjSIESNGRGUVwkj4+9//To8ePfjhhx+MjnJMUkqmTZsWs/mMoAp3lHXq1Ilp06ad1L7vvvsuDz/8MM8++yzXXHMNXbt2pUuXLlFOWLt0Xcfv99OoUeX089TUVPx+P03+NJrDa5ZTun0LWrOWJGRmoZsEukkQFBDcvxtri7ZIwHPwAIHyMrw+X2W3R1DDr0k8QYkvqOHVdPwI9P2/4sdMfIuWlOXnIxISCGjg1XTKiovZs/Unug29HBr4LDyl7lGFO4ZcfvnlDB48mPHjx/Pee++RmFj9XZ7rMl3XMZvN6LoeXmbV3rQlusVGwOWGvTtB07AlJhKQGmbAX16G2Lyucqy2phHQdPyajl/7b/dIUOqhsdsQ0DS8pcX4gjpFhYV4Ahp+BMktWlFSUsKhvAK8/iBDx41r8NOnY92hQ4fq1bvOSFCFO4bYbDZsNhtvv/220VGiRgiBzWajoqICu92Ox+MJF3HNHo9fl8iAhrm8jKAWQDuwPzQcUCAADRmeZOPXdYKawK8f2Xeth/u8g3rlhJugFkDTIBDU8DidFOcfRJeAMBGfmGD0S6KcwNVXX83SpUuNjhFT1KgSpVZV3QEnNTUVj8dDUlISuq5jsVhode1N+EL91K7iYtzOCnyajlfT8Wg6bk3HG9TxBCsf+zXwhVrdR7W8db1yxqRedfGycpsuoby4BF3XkSYTvUb8CRGnVgdU6h7V4lZqVdWyroWFhSQmJlJaWorNZiMQCNC0/2B+0EGXOroMoFe4IahXXp8UlW0MKfXQJBwIhibb+EMXK/161WgRiV+r/H6gqoBLiYiLw+vxVe6jBel2wQW0bNPG4FdEOZ5gMKgWAjsG1eJWapWUkkAgQGZmJm63m5SUlPCdaCpcbpJ6nVfZyg5qOCucuAOVLWx3QA99LStb3EEdT1DDExpR4g1q+IIaPk3DH5T4NQ2/phMIFfNAUMfldOP3+Ulq1IhLbr0Fc1w8xcXFRr8kynE88sgjPPjggyQkqC6tI6nCrdSqqgk4brcbq9WK1+sNrxIYn5REh1E34g3KUIHW8IZGi3iDGt6gdkTRruxC8QZluHvFp0l8oe4Svybw6+DX5FHjvQNSkt2+PeXFJfT74zB1I4UYp2kaZrNZXUD+H6pwK7VOShle1rVqAoyUEovFQlq7jjS/eFioUIda1cHKvu3/9m9LPIHK7/tC+/lCo0wCoeJd2V2iVRZxXeLXIajpnH7eBWjCwjkjrsRisTTo+xYqdZcq3EqtqiraDoeDQCBAfHx8+CYKHo8HU0IiGV264cdU2erWKrtG3EENd7iIBysvVoYfV7bGvVrlGG6fLvEGKyfb+HUNX6i1rQsTac2aUVFRzpnnnYemabhcLqNfEqUaX375JUlJSfRRa6b/hircSq2qWtb10KFDJCQkUFRUFL4jTmpqKvHx8XS4ajTZfQdUdo34NdwBDXdQr/wI6Lj9El9Q4g3KUHdJZSvcGwSPJvEFK4cEekPdJwFNQ1qsdLlwMOuXf8WMxUuwx8VhtVrJyMiI+nPu2bMn69ati/p56puqbjR1a7nfUqNKlFpVdXEyMTERn89HQkJCeEKO1+tFSolJCDoPu5I936wh4HUf0br472qCOqGbJoQm3ISXbz1iCKA/tCZJEBOtunYngGDAlSPQrDaCwSBSSpxOJ0lJSVF9zjNmzODss89m06ZNUT2P0nCcsMUthHhFCHFICJFzxLZHhBB5QohNoY/LjvjeA0KIXUKI7UKIS6IVXKm7zGYzmqZhtVoJBALh2ZMWiyU89KvlhZfg6HQG3qDEHZThFnf4wmRoe1X/ty9Q2d/tC1+0/G+/d1a7DjjS0tm39SfOHDiQhMRETKHFrGJ14aeGrqysjMWLF3PttdcaHSUmnUxXyWvAkGNsf05K2S308QmAEOJ04GrgjNDfmSOEUIMwlbCqe05WLedadZFSShkuplA5Lf4P0/+OKS3jiIJd1WUicYUuSnoD/y3mHg08oaLt1TR0i5Xk5qdhSUyirLiYP915Bx179w6PUhBCqIuTMSoQCJCXl0fLli2NjhKTTli4pZQrgZMd7DocWCSl9Ekp9wK7gN41yKfUM//bVeJwONB1HZPJhMfjIRAIAJXT/5u2a8/Vc14hqWUrPAE99FF5IdJXNb473Meth0ei+IKVfeB+KfD6A5QXl9D9osFcNGYMcfHxVFRUoGmaujgZw+x2O4MGDTI6RsyqycXJCUKIzaGulLTQtmbA/iP2yQ1t+w0hxM1CiA1CiA2BgKcGMZS6pOpiU2lpKXFxcZSXlwOVM+QSEhKw2+1IKfF6vVRUVNCud1+GTptB9z+NxCdFeJSJ32yh9YALwkMEvUGNuMwsEhs3xatpldPhfQFsDgdX3H47g2+4ASEEXq+X1NRUzGYzFosl6v3byqlJSkrinnvuMTpGzDrVDr6XgOlU3rJ1OvAMcMPvOYCUch4wDyApKVv6fKeYRKlzbDYbWVlZmM1mGjVqFJ5cUdVNYrFYcDgc4W09Bg+hS79z+ePk+4HQXd5NAkdqKs4jZj5abHYQ4qg1tm1xcWS1bIkeGnIYHx+PECI88aY2JnYIIXj//fejfh6l4Tilwi2lPFj1tRDiZaBq6a48oMURuzYPbVOUsCP7sqs+H+l/16YwmUxY09JITEv7zb5p2Y1P6pxVR6w6X23OxBNC0LZt21o7n1L/nVJXiRCiyREPrwCqRpx8CFwthLALIVoD7QE1gFVRYpgQgtGjRxsdQ/kdhJTy+DsI8TZwAZAJHAQeDj3uRmVXyT7gFillfmj/KVR2mwSBu6SU/zlRiJSUdNmhw92n+hyizmp1ccYZhZx22mlGR6lWQUEBP/5ox+v9bas0VqSl7aBfv9YxPZJjy5YtnHnmmUbHqFYgEGDfvn20b9/e6CjVKi4uxu/307jxyb0bMsK+ffv4qdFPBBICRkep1o5nd1BWXHbMt4YnLNy1ISkpS/r9242OUa3k5H08/PCaGo8pPXTo0FGPrVYracd4+38qPv30Uxo1akSPHj0icrxoeP755xkzZkzM3nsRYMqUKTz++OMROZbf7ycQCJCQkBAewZKcnFyjY5aWlvLGG29wxx13RCRjNGzYsIGioiIuuSR2p3G8+eabnHfeeTHdGOvYsSOHDh06ZuGOkdkHAr8/dluKgUARdru9RkX266+/ZvDgweHhbgBnnHEG7733Hp06dapxxvj4eBISEiL2iyAQCLB+/XrOOeeciBwPKn9RpaSkRCxjpFWtmRKJfH6/n0WLFpGenk6LFi1o2bIlL7zwAnfccQetWrWqUcZI/sKPBofDgdvtjumMdrudxMTEiGV0Op3s3LmT7t27R+R4cPzrMGqtkigLBoN8+OGHXHvttUcVbYCtW7cyduxYtmzZQiy88zmS2+3moYceMjpGnaXrOsXFxWRkZPDQQw+FW96lpaVGR1OiIDc3l1mzZtXa+VThjiIpJV9++SW33noreXnHHlyzZs0a/vznP/+mG0Wp2+Li4ujduzdjx45l48aNjBgxgn379tGtWzejoyn1QIx0ldRPUkpKS0uPW5SllOzZs+c3rXGl7rvwwgvZunUrl112GYsWLYrprgOlblEt7ijy+XysWbMGTdOOu18gEGDZsmW1lEqpLWazGYfDEZ74o5YnVSJFFe4oslgstGvX7oSTPcxmM6effnotpVIUpa5ThTuKzGYzTZo0OeFdqi0WC82aHXNJF0VRlN9QhTuKhBAMHjyYUaNGHXe/5557juzs7FpKpShKXacKdxQJIUhKSuJPf/oTN9xww29mDDZp0oRx48Zx3nnnnbBVrig1oWkar732mtExjuk///kPBw8ePPGOSpgq3FEkpUQIwdChQytvtxW6o3kVt9vNmWeeSefOnQ1KqDQEc+bMYfjw4UgpufTSS1m1apXRkQA4ePAgl156KVu2bGHSpEkxPRs01qjhgFFWXl7Oo48+yptvvvmb0SVlZWVMmjSJjIwMhg4dGl7KVFEixe12s2PHDh544AFat26N0+lk79699OvXz9Dbtkkpyc3NpXnz5owePRpN07jxxhspLS0lNTXVsFx1hWpxR4mu6+zbt4/x48fz/PPPEwwGj7mf2+3mmmuu4bnnnqO4uDjmZlAqddsPP/xAdnY2HTt2ZPr06TRp0oQffvghJmZwzp8/n7Fjx/Lhhx/yn//8hxEjRrB48WKjY9UJqsUdYVVdIvPmzWPp0qV89tlnJyzGuq7z5JNPkpOTw9ixY7ngggvC90RUlJro378/b7/9NhMnTuT222+nT58+vPvuu2RmZhqaSwjBfffdxyWXXMKCBQsYP348NpuNDRs2GJqrrlCFO4KqivYrr7zC/fffH74t18moqKhg0aJFrF69mo8++oiuXbuqwn2EYDAYvsmv8vvce++95Ofn89xzz3HvvfcipQxffzFSkyZNWLhwIe+88w6PPfYYmqbxzDPPMHHixGPeYEP5L1W4I0jXdV599VXGjRt3wtmS1cnNzeWcc85h7dq1al0LKpcx3bdvHzNnzmTSpEk0btyY5s2bGx2rTmnZsiUtWrTg9ddfx2w288ADD9C4cWMGDBhgaPG22+307NmTbt26hQv1W2+9xWuvvUbv3r0544wzDP/lEqvUr7UIevPNN7n55ptPuWhX8Xg8XHPNNaxcuTJCyequZcuWMWHCBGbMmMFzzz3HE088YXSkOkkIgc1mw2w289RTT7Fs2TKWLl164r9YCywWS/h2dtdddx2apjFv3jw+/vhjo6PFLFW4I2TBggXcddddR/VnCyFwOBwnbDUIIUhISDhq27Zt27j55pv57rvvopK3LiguLmbt2rUsWLCAl19+mcTERFq0aMHatWuNjlbnTZkyhT179sTkxcCxY8fy9NNPs3v3bj744AOj48QkVbhrSNM03n77bSZPnkxZWdlR32vVqhWzZ88+YX+d1WplyZIlpKSkHDVJZ/v27Vx55ZXs2LGjQY42SU5O5qyzzmLZsmWMGzeOyy67jBdffJFdu3ZRVlbWIF+TSLHb7XTp0oWcnJxqRzwZyW63M3bsWDZv3szKlStj/t+6trt0VOGuASklK1eu5Prrr6ekpCS8vXHjxvTv359vv/2WzMzMk/pHPfvss/n111+55557jmp95+bm0q9fP/Lz86PyHGKZxWKhdevWLF68mBUrVjBnzhzuv/9+9u/fz7XXXsvy5cvZs2eP0THrrAsvvJDmzZvz5ptvxmTxdjgcPPjggyxZsiTmuw1r+xeLKtw1oOs6f//734/q027atCnTpk3jk08+oVGjRid9rKrp8ZMmTeK22247agnQiooK5s6dG/Otjmg477zzWLZsGX6/n48//pg777yTKVOm8N5777FmzRreeOMNHnnkEbxer9FRj+nLL7/kvPPOi8klXYUQjBkzBiEE//d//2d0nGMSQvDMM8+wZs2amOzWqZKZmUnLli354YcfauV8qnDXgBCCVq1ahdcZsVqtTJ8+nVGjRpGcnPy73z4JIcjIyOC+++5j/Pjx4e12u73WR1IkJCQwatSomFnf4qabbjpqpl9cXBwPP/wwo0eP5txzz+XKK6/kiSeeCA91ixUrVqzgvPPOIy4uzugo1frLX/5Cy5YtefLJJ2PqtasihOCuu+7il19+4ZNPPonJjFWFe9OmTbVyPlW4a0AIwfTp05k8eTJt27Zl/fr1jB49+jcXGn/vf7S0tDRmzJjByy+/TJs2bZg9e3a4ZVRbqropYr0rok2bNgwaNIi33nqLjh070r17d7766isOHDhgdLQ6QwjBsGHDaNSoEW+88YbRcY7J4XAwfvx41qxZw9q1a2OyeNcmVbhrQAhBWloajz/+ONu2baNr165HtQqllAQCgZOaOXnkrcuEENjtdm644Qa2b9/O6NGjDV1XItYJIUhOTmbEiBFs2rSJzz77LGbf+scqs9lM+/btyc/P/81F9lhhs9l4/PHH+fDDD/n888+NjmMoVbhrSAiByWTCYrEcs0Xctm1bevTocdxjXHHFFcfsAz3yuGoiwsmbOXMmjz/+uNEx6pwBAwbQt29fHn/88d+sZBlLHnvsMbZu3cq4cePYvHmz0XEMoQp3FAkhaN269QlvSzZo0KDfdK8oihEuuOACRo8ezU033RSTI02g8lrSLbfcwrhx43jxxRcpKCgwOlKtU4U7yk6mtaxa1EosOeOMM7jpppv429/+ZnSUaiUkJNC1a1fmzp3LXXfdxc6dO42OVKtU4VYU5ShCCJo2bUpcXBy7d+82Os5xWSwW5s2bx6uvvsrGjRuNjlNrVOFWFOU3WrVqxXXXXceLL74YE2t3H09ycjITJkxg8eLF7Nixw+g4tUINVVAU5Zg6dOjA1KlTSUpKMjrKCTVt2pTJkycTHx9vdJRaoQq3oijVysjIMDrCSUtJSTE6Qq05YVeJEKKFEGKFEOInIcRWIcSdoe3pQogvhBA7Q5/TQtuFEOJFIcQuIcRmIcTZ0X4SiqIoDcnJ9HEHgXuklKcDfYHbhBCnA/cDy6WU7YHloccAlwLtQx83Ay9FPLWiKEoDdsLCLaXMl1J+H/q6AvgZaAYMB14P7fY6cHno6+HAG7LSt0CqEKJJxJMriqI0UL9rVIkQohXQHfgOyJZSVq01WgBkh75uBuw/4q/lhrb977FuFkJsEEJsCAQ8vzN23XEyix7put7g115QFOXknXThFkIkAu8Dd0kpj7oLrqysOr+r8kgp50kpe0ope1qt9fdKcFxc3FGzIs1mM/Hx8UdNuMnIyFA3R1UU5aSdVLUQQlipLNoLpZT/Dm0+WNUFEvp8KLQ9D2hxxF9vHtrWIFksFrKzs0lOTiYxMZG//vWvbNq0ibPOOguHw0FGRgYZGRlq5qSi1FFSStxuN36/H7/fj9vtjvo76BMOBxSVFWUB8LOU8tkjvvUh8BdgZujzB0dsnyCEWAT0AcqO6FJpcIQQPPjgg0yZMiX82GQysWHDhvA+sdja3rhxIzk5Oezfv581a9bQp08ftUKhohyDruu0atWK1NRUhBA89NBD5Ofnh9fpj4aT+UnsD1wPbBFCVK0S/jcqC/a7QogbgV+AkaHvfQJcBuwC3MCYiCauY6pbhySa/6iRcO2119KtWzf279/Pddddx/fff09aWprRsRQl5ixatIh7772X9PR0hBAUFRWxaNEirr322qid84SFW0q5GqjuffygY+wvgdt+f5TYvzhXFy4gRiLjs88+y7Rp08jIyODrr7/m0ksv5W9/+xtz5syJQMLYfx0jme/aa68lMzMz4s851l9DaDgZTzvtNL799ltGjhyJEIKnnnqKvn37RvX5i1h4cVNS0mS3btcZHaNaZrOfJk2cpKenGx2lWuXl5VgsFhwOR0SOlZCQgKZpBAIBEhISKC4urvHzP3ToEBkZGTH9biM39wAWS1OjYxyHRsB0AGuW1egg1dLdOonBRJKTk42OUq3i4mISExOx2WwRO17Vz0ckflYA/vnPf1JSUnLMRnNMFO6kpGzpdB40Oka1UlJ28fTTKxg7dqzRUaq1ZMkSsrOz6dOnDz6fD6vV+t/F8E06Bb5fKAkeROoSCzZA4Am4cZiTaZt8BkI3Y7NZ0TQNIQTBYDDcHx8MBrHZbOHPVccPBoOYzeaj9q3qGgoGg1itlcWlqqvoscce47bbbovZLhcpJSNH3sF7780yOkq17PZiuky9mI1/i92V8BqvaczcwrkMHz7c6CjV+sc//sGgQYNo166d0VGqlZ2dzcGDB49ZuNXVpnpG0zSKioqIS7KxrmQpWXGnETR52e38kXz/L1R4nVR4y2ga3xaP30OWtTk7435mb9EuJvSZgt8XQAiB0+kM30LN6XSSmZmJ01n5rqOsrIz09PRwy7y0tBSr1YrNZsNms2GxWHA6nTFboBUlGtatW4cQgl69ekX9XKpwG8TlcjF58uSI9RtX2VX6I++XPIcoExT4fsEq4wgGJQmkkWlvRipplLpdePQA6fbmoFv5z+5/E29JYvqX93J1lxtp6mhBUlISUkqCwSAZGRm4XC7sdjuFhYUkJiZSXl5OfHw8Pp+P1NRUpJRomobb7QYq7w9YVFREamqqGo2iNAg5OTmqcNd3uq7z888/R/y4jRynsWj5D6THpdO1UVfaZHViz4F9vL76bdp1SKFRQiI7N+djbhak/+nnYQ7GEW9JpbiiELsjiVfWvcQfOl/OGWlnYbFYsVqtHD58mKysLFwuF+kZGRQXFZGSkkJZWRkJCQmUl5djtVbum5CQgMlkwuVykZaWFpNDHRWlrlOFu56Jx8G8P7zCvZ9P5uOf/sNnOcuw6zay0xrjP2zHV5FJ+6zTOFC6F61U55tN39C8Szq7Cg7QLsNPqbsMr0+j7fmdSLVUzvBMTEzE7/fjq8hnx7YPqSivID2rKZltBqFpGnFxceF+bL/fD1SOTfd6vb+ZJaooSs2p5lA9YzKZ6JDejgcvnILJIthdtJsSTwmJcQm4/W7cARctslrQObMbyZ52tEo+nYodEuHXMePj10MH+GzLch5f+hhQecFO13WQGnk/fcZXi+5i4ycPsvHzZxCh69q6rh+13orJZDqpNVoURTk1qnDXM1arlYA/QL/m/Xh/1PtkJmZgMpsp9ZZhtVnwaX5+yt3K4YrDbP91G6s2fMNpji4My76eH5dvp1enFjgqzPzrP/8iEAwAUFFeyqFf1rPy41mUuu30unIBg29YSECrHFXi9/vDI1iqLlLquh7x1ramaVRUVDBp0iR27twZ7k9XlIZGFe56pqysjKysLIQUdG58OmvuWE1qQir5FQUUlB/kQFk++0ty+WbHN6zatorMtEZoUuPgoUKGnX0VCT+3J8VuISslnt37dyCl5OvFf2f+zBuIS23PoOv+jy69hxIkAYfDgdfrJT09HYfDER6NUlpais1mo7CwEE3TIvbctm7dSufOncMTgmJ5uJmiRJMq3PVM1cVCIQRer5dsR2NeueYVxp8/Hr8eYF/RPrblb8Ov+2nfrAOZ6ZkcKj1EibOYvMMHcHvdJBW3Ij5Z8OgHd/Hvj+az4+fNpDY+nT/e+AJdel+G1+vF4XDg9/uxWq3hBXYA4uPjcTgcaJpGUlJSxC5OaprG0qVLeemllygvL2fWrFmcc845rFy5MiLHV5S6RF2crGeqLggGAoHwJJyOjTrQYeBEejfrxUHXQZ547wnyCg+w5+Bu0uMysGGjqLAQnzuA1+lh3OXjuP2cCZQ5cnntuSdJO6Rxz/SXSWvUArfbTXx8PF6vF7vdHp6UU9XPXVXAqwq63W6PyPMSQtC6dWv27dvH2rVrad++PQcOHKBZs98s9a4o9Z4q3PWMrutYLBb8fv9RFwmlhH5t+hEXH8eQ04dgtVlxVjixmQV5e3bQKCUDnwRHeiPibHGkpaZRXl7C9tabGHjDH2jVvhtCCDRNw2Qy4Sw8TMBiJqDpZDRthslkChdvILxvpC5QmkwmunXrxrBhwygsLOTTTz9lyJAhtG3bNiLHV5S6RBXueiYuLi48rtrn8wH/XYnQbrfj9/tJikuicMNa4gIeKg4dJOnAL5SXlpB6ZneSu/XFuW8Xez0e9hccYsuqNfQ9+1wCeb9yYOc24uLjKU9M45dVy/k150cSGzXB0aYDiRmZNDvjDLLbdwxPg09JSYnoOO7OnTuzc+dOXnjhBZ566ineeuutiB1bUeoSVbjrGZfLRUZGBk6nk7i4OHRdx+fzIYTA4/EQ56lg78K5JKRl4I93kNKoMcnnnI8UAgF4cn9BlhVj14Mk7N3BOT43cvlSDuTtQ5gslAT8xGc1o8OgIbQddAlS09m+ZiUFOT/y6w8bqfB4ufxvD5GWmUlZ2Fk8WgAAIABJREFUWVlU7u5z55138uqrr0b0mEr9smbNGqxWK7179zY6SlSowl3PJCcnV65VEheH2+3GZDJhtVqRUpJgNbPp9rGktGlP2nkXYzJbQGr4836tXLhXSsxmCyntOqFLSUKLtrT709Vomo7PXY4lPhFN6gQCQTxlxegSNF3SvMtZNJGSsqIiPnzhWRaMv4UJr/2T1NTUqK0EWNWqr1rISlGg8iL2gAED6NevH4FAgEmTJvHVV1/Vuxm89evZKJSXl4fXf3Y4HJXjugMBvCVFfHfT5TiaNqPJpSPQK8rQy4qRFWUIrxPhcYLXhXSVoxUfJlh8GN1VQbCsCK2iBOH34y8tJlBSQrCinKDLRdDtIuB24XdW4HNWds8Mv+senAX5zP7raPbv3h3R4YBH+vTTTxk2bFhUjq3UXTt37iQrK4trrrmGBx98kKysLHbt2mV0rIhThbueiYuL+3/2zjs+qir9/+9zpyaTmRRClw6KgFJl7QUUddfG7irY145tXQUEf2tdtwgK2MWGuigKVlx1LevqV3HXgqAUhSU0qSGkTDJzp9xyfn/MzDVR0AAJMwnn/XrNa+6ce+fcZ24yn3nuc55zHqLRKEIIDMPAsixcLhcV/5hHSZdedD5xNMb2LRDXEXEdLa4j4jFEIo4WjyFiUUQstY9YBKlHsPQ6zJiOqUcwYxHsWFq0IxHMSIRENEIyGiERjWLE4hw+9hzK165m+Qf/brbp7pkfJIWiPhdffDGHHXYYTz/9NOvWrePUU0/lrbfeyrZZTY4S7lZGfn4+NTU1AMRisVSWRyJG3f+WUNR3AOb2rRDXU8KdiKIldFxJHVdCR0vGEAkdkdAhFkXGdWQ8itR1ZCyKFdMx9ShmNIoRrcOIRkjqEcxolGQkSjJaR0KvQwO6HzSQz+bPJ1xRkd0Lotgn+OKLLxgzZgznnnsu99xzDwcffDCff/45kydP5ve//322zWtylHC3MsLhMO3bt0dKSUFBAW63my0fvgOJJLZlYMWiyFhKmFMedxRXQsediKLFo4hEWqzjMaSuY0d17FgUK1aHrafE24h9HyYxohESeoREtI5kNEI8EiUWqaVD797UVVURqa5uls8ZCoW46qqrmDFjRrP0r8htTNOkurqaK6+8koEDB/L4449z9913c+mll7Jo0SKEEASDQWeN7NaGGpxsZRQWFlJeXk4wGCQajeJyucj3eajzurCTcWwTpKaBBlIToAk0l4YQIG0QtgRbIm2JbVnYdmoA0rJtLBtMS2JISdKWmJbEtG0MGwzbxki/Tto2pi2wTQOaaaEpTdMIhULU1tY2S/+K3GT58uVs3LiRLVu28Pzzz3PHHXc4a9pnBLpLly5ceumlDdpaG0q4WxmxWIxgMAjgzFqMx+PYiXjKc9bApbmwNbBdAlvTsDWBhsCWacG2bSxbYlvSEW3TlimBtlLbppUS7KRlp8VaYlhg2DIt4jaWikErmojKykruvfde3G43mqax33778c477+z0+NYq2BmUcGeJ6667jmnTpjV5vy6Xy6lOkxmYdLs81K36lrxgISIvD9OlIVwpr1toAoQLAdikRNe0wbItDEumHrbEkDaGCUnLwpQpwU5asG39WvLbdcDQXBgWKU/chqRpNfvg4ZAhQ1iwYAGLFi1iyJAhzXouxd6l/rLAN9xwA5s2beKqq67igAMOoFOn3Cvm/N1337F06VJuvPHGvXI+JdxZYvHixQwaNKjJ+83kTQshnLW0faVtweOl9tuliF59kD4fUtOQLoEUkmS0DuHLB48HyzQxkiaJuE7NiuUkTZO4KUnYkrhpEbdsEhYE+wzA8nrx5OcTj+qYQmBYkoSVCpls/m494YoKRDNWdC8pKUFKSVVVVbOdQ7F77InHW15eztatW7nwwgsBeOCBBxg0aJBzJ5mL6LpOOBymY8eOe+V8SrhbGZllXevq6ggEApimCQcPp81hIyj/50tYsShF3Xth5edjaQKXkFjlmxBuH3i9JOvCJLZvI2ml4tgJy8a0JElTYlgWpikxLJtNS74gYYK7tD0Jw4RAAXj9JKWgZnsV61et4tiLL6NkL/0jK3KLXV2jxrIs5s6di23bfPXVV0SjURYvXtzqQx67ixLuVkZ+fj7hcBiXy0U8HgdSXngskcS0JQk9Sl35ZvLbtiNWU4VL2qn0wGQCm9RApC3Tgm2DYUmS6UFH05aYtsSS3w9YRjdvImFJYpaNr01bookkleUV2Db0POhg8goKmvXznnrqqcydO5fDDz+c/Pz8Zj2XonmYM2cOH330EYMGpRYyu+qqq+jZs2e2zcpplHC3MpLJJAUFBcRiMbxeL5ZlYVkWeZ07Y7o8YBqIujqk14usrMAlbYTQUjPeAUumBiaNTKzaliTTGSOGDYa005klpGLhUmKRGsRMxOPEIjFsIfAVhIgnEti23azTjYcNG8bkyZNJJpNKuFsQyWSSTZs2ceaZZ3LBBRdw7bXX0q9fP+VhNxIl3K2QzG1q/dvVnuddxYa3/4G+aR2WHsdyhxGGhUtKhABE6ngLmU4BpEG2SOo5lS1i2GCZ33vhScvGRhCvjRJLJDBNm6GjT+Loc8/J0hVQ5DoTJkxg48aNfPrpp2ia1urWEmlulHC3MrxeL7FYDE3TUvFtvi/eqxW1xfxuLVJaWBEdzbJxCYlAQmYwE7CldIQ743kn0qKdtFMDlYZtY8iUoFs2mIBFKoTS94ijcaGR78/bK1/I3/zmN8ybN4/LL7+82c+laBruv//+bJvQolE/c62MeDxOKBQCUuuWuN3uVF62ZdH9gitJWIK4aROLJ4kZNjEz/TAs4qadyhwx0s+WJGFJ4pZN0rRJpJ9NU5JMx79NO5UymDRM4vE4Lr8PzefhpMuvoLa2ttkWmarPuHHjnEkYCsW+gPK4WxnBYJDt27fj9/uJRCIIIfB4PLhcLnr84gg+yy8gWRdGE+DWBJotEEJmVnXFkimP2yblcVs2mOmZkqm8bkjakLQtEhYYVjqkYkmk28PhZ45l5eKv6DZgAIFAALdb/YspFE3Nz3rcQoguQogPhBDfCCGWCyGuS7ffLoTYJIT4Kv34Zb333CSEKBNCrBRCnNicH0DRkEgkQmFhIVJK/H4/Ho8Hy7KwbRvdMBhx31NOPrZu2eimTcyw0Y30tmURM616HrhN3LBImlZq0k06RTBpZqa3WyRsMC2bvocfyZcffMA1jz6G1+slEok4pcyam2HDhrFo0aK9ci6FIts0JlRiAuOllP2AQ4GrhRD90vtmSCkHpR9vAaT3jQX6AycBDwshmm8WhqIBXq+XeDzu1HzMZHUIIfB6vfjatafDESPSgpwKk+imRcw0iaWFOhMeiZvfT7pJPdJhEyvlYSes1LGGbeELFRKLJ/nFL39Jh27dsCwLj8ezV7IEhBDcfPPN3HPPPc1+LoUiF/hZ4ZZSbpFSLkpv1wHfAj9VWvt04AUpZUJKuRYoA1pn/aAcxO/3U1dXhxCCZDKJbdu4XK7UYlP5+biLSug0/HASpiRmfO9Zx0yZejZsJ/adsKy0WJN+fC/WCVumQyU2tnDTf8TxxJJJDj/tDIKhEJZlEQgE9mp6l8pMUGSLvZ3GuEv/6UKI7sBg4LN00zVCiCVCiFlCiOJ0W2dgQ723beSnhV7RhNTW1tK2bVts204JtduNYRgYhkF1dTWB/Hz6j72Q/Y4bRcxOedhRwyKatNANKxU2SYdKomkBjxsWcdMkYVgkMgOXZsrztlweDjjyGKq2VzLk+BPoPGAANTU1eDwetm/fvlcGJwG6du3Kk08+uVfOpVD8kF2dKbqnNFq4hRAFwMvAH6SUtcAjQC9gELAF2KUVk4QQlwshFgohFhpGbFfeqvgJQqEQVVVVaJqGrusYhoHH48Hj8VBUVISu67g8Hrqe8EtMT14qrm1KYpZEN1Nx75gp04/vs07ipiRuSWKZGLctwe+nXa/eSLcLvTZM5759CRUWUlRUhGEYlJSUNFvNyR+iaZqzGqJC0dpp1JC/EMJDSrSfk1K+AiClLK+3/3HgjfTLTUCXem/fL93WACnlY8BjAMFge5lI7I75ih+i6zqhdKgiU+U9k8+dTCbx+/1YlsXw0WcSq6rkjdtvpuFd3vf53Knp7zhT3E2ZngZv20jhoiBUDF4fW9au4/K776b/UUcRi8UQQuB2u6mrqyMUCu018VYo9hUak1UigCeBb6WU0+u11189aDSwLL39OjBWCOETQvQA+gCfN53JLRvDMIhEIliWRTQaJZlMNmn/eXl51NbWIqUkHo9jmqYzMy0QCBCPx5FSUltbyzEXX8Gom2/HdHlS3nQ6nztm2iSFi1i9trhlk5QacdMiYUoSCPRYnK3rvuP82+6gzy9+kVqJ0OfD7/djmuZej3ErFPsKjfG4jwDOB5YKIb5Kt/0/4GwhxCBSS1ysA64AkFIuF0LMA74hlZFytZRy7wQ6WwBPP/0006dPZ8OGDRx55JGcdtpp3HnnnU3Wv8vlwu1243a7nbhbZrv+Prfbjdfn47Bzf0fvoYfy3iMPUrs9VR9SAoedcy4fP/csUoJtS9x5+XQ56CC+/e9/sSVIBCUdO3Du//t/lHTpgtvjcfrNnNPtdivhVrR6lixZwrJlyygvL2fBggUMGTKk2dfN+VnhllIuAHb07dtp6WQp5V+Av+yBXa2SiooKtmzZwnPPPccll1zCSy+9xOzZs1mzZk2TrYamaRqlpaU73V9YWAhAIBAAoF27drRr147+Rx/9o2NHXXTpbtvh8Xh2+70KRUvi6quvpnfv3mzYsIErr7ySF198kb59+zbrOVX+1F7E7/eTl5dHTU0N999/P7quY9t2Ti8Qr1Aods5TTz3F7373OyZMmMCwYcN49tlnufvuu5t94lmOzEeW+Hy5W8XE660lHo83SaUVn8/HmDFjmD9/PqNGjeKCCy7A5XLtcd+6rhOJRHK6GoxhGNTU1Oz11Kldw8rp/0WfrwaX4cJXlbsZNN6IF13Xc/p/MR6PU1tbu8c2Hn/88YwbN44TTjiB2267jalTp3LOOedQU1Ozxzb+1PdE5MKXqKSkRE6YMCHbZuyUaDRKRUUF3bt3z7YpO2XLli34fD5KSkqybcpOWblyJT179szpMMrXX3/NwIEDs23GTjEMgwUL1lBdfUC2Tdkpfn8Vgwcn9loZr91h7dq1tGvXzgkZ5iL33HMPVVVVOx4kyhTlzOajXbt2MpdZtWqVfOyxx7Jtxk/y6quvyv/85z/ZNuMnufPOO2VVVVW2zdgptm3La665Jttm/CSVlZVy6NC/yNSSYLn56NBhgXzttdeyfal+kpkzZ8pVq1Zl24yfJK2LO9TMVhnjvuOOO9iwYcPPH6hQKBQtkFYp3GvWrHHqLSoUCkVro1UKt0KhUOxtVqxYwYoVK/bKuXIkq0ShUChaJrZtc+mll9K2bVsgNV/jiSeeaNbVKpVwKxQKxR4QiUT45ptveOWVVwD49a9/TSQScUoINgcqVKJQKBR7wK233srUqVN55513ePfdd5k6dSq33nprs55TedwKhUKxB0ybNo2ePXsyePBghBAsWrSINWvWNOs5lcetyDkyuarjxo1zthWKXEXTNGbNmkXv3r3p1asXs2bNavZqTEq4FTnH9OnT6du3L5deein7778/M2fOzLZJCsVOEUIwcuRI+vXrR//+/Rk5cmSzr4qphFuRU2zbto1oNMrcuXPZvn07zz77LFVVVTm97oVCsbdRwq3IKUzTREqJx+Nh/fr1zJ49u0EVH4VCoYRbkWN06tQJn8/Hb3/7Ww499FAef/xxCgoKfnKNcYViX0MJtyLnmDhxIl9//TVTp06lrq4O27Z5/fXXm32N4+Zg8+bN1NXVZdsMRStDCbci53C5XHi9Xp577jm8Xi/jx4+nrKyMOXPmZNu0XeaRRx5h4cKF2TZD0cpQwq1oEdxwww0kk0meeOKJbJuiUGQdJdyKFoGmaZx33nmYpsmLL76IZan604p9FyXcu8gnn3yS0xNCkskkX375ZbbNaBa8Xi9XXHEFq1ev5vXXX8/pv4PixxiGwdtvv+08DMPItkktFjXlfReYM2cOq1ev5q233mLUqFEcc8wx2TbpR8yYMYNEIsErr7zC5ZdfTrdu3bJtUpMihGDy5Mk8+OCDPPXUU1x88cXZNknRSCzLauBULFiwYIc/vmeffTYDBgzYm6a1OJRw7wIDBw7k1FNP5aGHHuKTTz7hqKOOyrZJDpkvwMiRI+nevTu///3v+e677+jSpctu97l48WKaqhboWWed1ST9ZBg3bhyzZ8/m6aef5sILL2z2mWqKPcfv9/PHP/4RSP2//uc//9lhfv7DDz/Mt99+26Ctc+fO/P3vf//RsUKInf7tpZREo1Fuvvlmpk+f/pPH7imZ79/e+j9slcLdvn17ysvL6d27d5NeyP79+zNq1ChWr15NLBbjxRdfbLK+95SCggKmTp1Kr169GDFiBJs3b+aLL76goKBgt/scMmQIr7/+epPY5/F4uOeee5qkLwC3283555/PQw89xGuvvcZpp52Gy+Vqsv6bipKSEqqqqrBtu9nXr2hJCCE44ogjdrhv+PDhPxL0DRs2MHTo0B8dO3ny5B22h0Ihbr75Zr766ivuueceevbsyRNPPMHxxx/fNB/gB6xatYr//ve/PPzww83S/w9plcI9depUBg8ezJdfftmkwv3hhx8yd+5c/vznP1NaWspNN93UZH3vKa+99hqQuv38xz/+wbhx45g8eTJHHnlkli1rPtxuN9dddx1TpkzhpZdeYsyYMdk26Udcf/31jBw5kuOPP57CwsJsm9MiyMvL+1Fbv379WLx48Y/aZ8yYwZtvvvmj9s6dO7N8+XLOPPNMYrEY9913H0uXLuWoo47C5/M1uc22bWNZFh6Pp8n73hGtUribC9M0uf322xkwYACHHHJIts3ZIVVVVdx3332cfvrp9O7dO9vm7BVuvPFGHn/8cR5//HEuu+yybJuj2Itcf/31O2xfsWIFH374IYZhYBgGbre7VWUiKeHeBY4//nh69OhBz549czameu6557J582a6du2abVP2GkIIfve73zF79mzmzJnD2LFjVVhiH6dv377069eP+fPnc8wxx3DOOefwxBNPNIu3nQ3Uf/cu0qtXr5wVbUiFD/Yl0c7g9Xq56KKL2LRpU85Mj6+pqeHTTz8lHA6zcOFCysrKsm3SPsVjjz3Ge++9x/PPP8/q1aubLb6dDZRwK1oNmqYxceJE1qxZw7PPPpttc/j888+ZMGEC27Zt4+9//zu33XZbtk3ap3C5XIRCIR588EHcbndOO1y7ihJuRavjuuuuw7KsrE6Pj0QivPbaazz55JP06dOHu+66i6FDh/LOO+9kzSZF6+FnhVsI4RdCfC6E+FoIsVwIcUe6vYcQ4jMhRJkQYq4Qwptu96Vfl6X3d2/ej6BQNMTlcnHeeedhGAYvvfRSVgal8vPzGTVqFHPnzmXOnDls3ryZZcuW5VTuv6Ll0hiPOwGMkFIOBAYBJwkhDgWmADOklL2BauCS9PGXANXp9hnp4xSKvYrH42HcuHGUlZUxf/78vT49XtM0unXrxsKFC3n11Vf529/+Rv/+/cnPz9+rdihaJz8r3DJFJP3Sk35IYATwUrr9GeCM9Pbp6dek948UrSm4pGgxZKbH19bWZuX8gwcP5vXXX6e4uJjnnnuO8ePHZ8UOReujUTFuIYRLCPEVsA14D1gN1EgpM9ObNgKd09udgQ0A6f1hoE1TGq1Q7Aq/+93vsjowNWbMmFaThqbIDRol3FJKS0o5CNgPGA703dMTCyEuF0IsFEIsjMVie9qdQqFQ7DPsUlaJlLIG+AA4DCgSQmQm8OwHbEpvbwK6AKT3FwKVO+jrMSnlMCnlsB1NcVUoFArFjmlMVklbIURRejsPOAH4lpSA/zZ92IXA/PT26+nXpPf/W6qFkxUKhaLJaMyU947AM0IIFymhnyelfEMI8Q3wghDiz8Bi4Mn08U8Cs4UQZUAVMLYZ7FYoFIqcoWfPnvztb3/ba+f7WeGWUi4BBu+gfQ2pePcP2+PAmU1inUKhULQAvF4v7du332vnUzMnFQqFooXR6oT77bff5uSTT2b16tX86le/4plnnvn5NykUCkULolUJt2EYrFmzhrPOOotu3bpx3XXXsWrVKuLxeLZNUygUiiYjJ9bjtm2bTz75ZI/72bRpE//5z3+48sorCQaDFBQUEIvFePLJJxk0aNBu97t161a2bNnSJDY2F+vWraO6ujonljPdGVVVVXzxxRcEAoFsm7JTdF3P6b9zJBLB76+iQ4fctbG4eCXr1tXl9HXcsmULS5Ysoby8PNum7JSf+i7nhHBLKams/FGq9y7j9/s566yzqKysZPLkyVRVVTmV2Pek/3A4TCwWaxIbm4toNMpTT2nU1eWujV27JvnFL6pz+g6outrk/PNz9xq63TodT/qCvBtfybYpO8W7NkQ0elZOf1/i8Tg319xM3J27/4sJmdjpvpwQbpfLxWmnnZZtM3ZKWVkZlmXltI22bbNtW3u2bj0s26bslDZtljBq1CiKi4uzbcoOkVIye/Z7rF2bu39nn6+KUId7WHva2mybslM6fNKB/tv75/T3ZcuWLWw+ejPh3uFsm7JTClw7L/TdqmLcCoVCsS+ghFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4s4SUkkQiwWOPPcZHH31EIrHzdQkUCoWiPkq4s0QkEqFTp05YlsXLL7/MgAEDsm2SQqFoIeTEIlP7Ii+++CK33347Q4YM4eSTTyYUCvHmm2/yq1/9KtumKRSKHCcnPe7Fixfz0ksvZduMZqVt27ZUVFTw3nvvsWLFCrZv306bNm2ybZZCoWgB5JxwDx8+nAceeIBVq1bRo0cPIpFItk1qFo477jgeffRRqqurefbZZ/n000859NBDs22WQqFoAeSUcC9atIiDDjqIKVOmMHDgQILBIB9//HG2zWoWAoEA8+bNY/78+Vx//fUsWrQo2yYpFK2eWCzG4sWLs23GHpNTMe7169fTo0cP6urq+Prrr4lEIpxzzjmMGzfOOaZLly5cddVVWbSyaUgmk/zrX/9i1qxZDB06NNvmtDo2btzIV199xSmnnJJtUxQ5wqxZsygrK8Pv97NmzRoYmW2Ldp+cEu7Ro0czYcIEwuEwBxxwAOFwmOeff578/HznmI0bN3Lsscc2eN8VV1zBmDFjGrQJIRBC7A2zd4tkMsmCBQu48847s21Kq+Oiiy4ikUgwcOBA7r77bl5++WVKS0uzbZZiD5BSIqXcoz7mzZvHDTfcwKBBg3jooYeayLLskFPCDbBkyRI+/fRTVq5cyfr16wkEAg0EeEclxB555JEfea333XcfHTp0cF673W569uzZvMbvAhs2bKBz587ZNqPF8N133zW6VuXChQt5+umn6dixI+vWrWPt2rW0adMmp3/IWyNSSsrKyvZYcCFVsPu6667boz5Wr17N5s2bOemkk+jVq9ce25RNck64A4EAI0eOZOTIHd/HuFwuCgoa1mKbOHEiEydObNB24403Nqjg7PP5OOKIIxocc8ABB2RtQPDcc8/lyy+/zMq5WyKzZs1i7drG1VncsmUL9913HyeeeCJnnXUWL7zwAsOGDWtmCxU/xLIspkyZgmEYe9xXhw4d9jg2fdJJJzF27FiOPfZY7r33XhUqyUWmTp3a4HU0GuWFF15o0Pb+++/z+OOPN2gbP348/fr1a3b7FLvG7bff3uhjBw8eTM+ePWnXrh0XX3wxCxYsUN52FnC73TzxxBPZNsPh+uuvZ82aNTz88MNNcheQTVqtcP+QQCDAJZdc0qCturq6gVcO8Ne//pVly5Zx0kkn8de//rVZbJk0aRL33nuvEpNm4pVXXuHbb7/lww8/5J///Cft2rXLtkmKHODEE0/EMAy2bdvGG2+8kW1z9oh9Rrh3RHFxMcXFxQ3ann76aaSUzSqqmzdvpnPnzkq4m4kePXrQvXt3TjrpJDQtpzJeFVnG4/G0irGlfVq4d0Rzf9G/+uorunfv/qMfDEXTkutZRQrFnvCzKiWE8AshPhdCfC2EWC6EuCPd/rQQYq0Q4qv0Y1C6XQgh7hdClAkhlgghhjT3h2hJfP755+y///5qertCodhtGuNxJ4ARUsqIEMIDLBBC/DO9b6KU8oeLipwM9Ek/fgE8kn5WAOeff362TVAoFC2cnxVumRp+zSwY4kk/fmpI9nTg7+n3fSqEKBJCdJRSbtlja1sBeXl52TZBoVC0cBoV0BVCuIQQXwHbgPeklJ+ld/0lHQ6ZIYTwpds6AxvqvX1juk2hUCgUTUCjhFtKaUkpBwH7AcOFEAOAm4C+wCFACTBpV04shLhcCLFQCLEwFovtotkKhUKx77JLKRRSyhrgA+AkKeUWmSIBPAUMTx+2CehS7237pdt+2NdjUsphUsphKnygUCgUjacxWSVthRBF6e084ARghRCiY7pNAGcAy9JveR24IJ1dcigQVvFthUKhaDoak1XSEXhGCOEiJfTzpJRvCCH+LYRoCwjgKyCz9upbwC+BMkAHLmp6sxUKhWLfpTFZJUuAwTtoH7GT4yVw9Z6bplAoFIodoeYDKxQKRQtDCbdCoVC0MJRwKxQKRQtDCbdCoVC0MJRwKxQKRQsjJ5Z1NU2TRx99NNtm7JRwOMzGjRtz2sY1a9bQtWs+paVLsm3KTgmF1jF79mx8Pt/PH5wlTLOKAQNy9+/scsUpXFvIgEcHZNuUnZK/JZ//xv/L1q1bs23KTlm2bBm9wr1IFiazbcpO+c78bqf7ckK4XS7XTmtM5gIbN25E07ScttHtdnPooSUcdNBB2TZlpzz55DruvPMoDCOYbVN2ygknLOKNcU+HAAAgAElEQVTVV3P371xbW8vLL2/jopE7nh4hkUjsVDEQhNMGoAmX09acLFmyhJqaGo4++ugm6c+yLFwu14+294RwOMy04dPYb7/99riv5uIw7bCd7ssJ4RZC0Lt372yb8ZOsWrUqp21ctmwZ7du3z2kbA4EAdXXdSSRytYiERNO8TXoNt2zZQkFBAcFg0/xYVVVVEQgE6NGjB5WVlanGPIPaaA2FhUV8ve0DPtHfoC5ejW0KAloJ0UQUPRHlkp534Pfk0bFgP4oDbQiHw3g8HiKRCKWlpWzfvp1QKISu65SWlhKNRnG5XBiG4QhmNBp19hUWFlJRUUFpaSnwfRGS8vJyXC5Xk1zHzZs3M2nSJO6//35qa2uZO3cuw4YNY9SoUXtUKKOwsJD99tuPLl26EIlEyMvLIxqN4vF4cLvdxGIxgsGgsy+RSCCEwOPxoOs6oVCIuro68vLyMAwDn8/n1LH0er1EIhEKCgqIRqPk5+djmia2bePz+airqyMYDKLrOn6/H9u2MU0Tt9uN3+93PtdPFXXJCeFWKForDz/8MCNGjOC4445r0n5jZoSlsQ+JmGE21i6nMr4Vf1UQYbtpp/Wgc95BfLP9C9yuIAOCg9AKXHxd9V/eKJvLid3OZGS3U2jv74yUEr/fTyKRcEQkI062bTtilBGRzLFCCHRdx+v1Os9er7dJPyPAF198wcEHH8yWLVuYMmUKF154Ie+++y4nnHBCk1Q4ikQiFBYWEolEKC4uxjRNDMOgpKSE6upqiouLHRGWUpJIJCgtLaW6upqSkhJ0XSc/P59YLIYQAtu2nT4rKyspLCwkHA7jdrvRNI2qqiqKioqorKwkFApRW1uLEAKfz0csFsPn8zXqcynhVihaIJrQuP/zhzCsBPuF9qNncU98rgBP/3s2oaCX/bt1pHJ9lMrEcgYOqKHE2w7DsumY14vlW5eA6aatrz0n7n8agCM6mW1N07BtG03TME2zwbkzZeEyYq5pWrOViTv99NM55phjeO+991i1ahUff/wxb731VpOVGMzLyyMSieB2u6mtrcXlcqFpGuFwmGuvvZZhw4ZxxRVXoOu685lramrw+/3U1tbidruJx+O43Skp1TTN+XErLCwkmUwSCASwbZtnnnmG999/n0cffZTCwkIMw3D2SSkbLdqghFuhaJH4XPn8+ZCHOWPu6WzzWpS5q8gX+ZSIbuTHfejrCti+KcaKrdvw5S/FX1lCdcl2Au4S3JqXcG2ceDLJofsdjVt6CAQCRKNRhBCpW3+PJBmP4nG7QPixpcTlcpFIJAgEApimicfjIRqNEgwGm7W+57x581ixYgUPPPAA06dPp2PHjk3WdzQapbi4mNraWgoKCrAsC8MwCIVCvPXWW8yfPx/LsrjgggsoKioikUgQCoUcjzsSieD1eonH4wCOx11UVERNTQ2FhYVs2rSJ999/n0mTJpFIJHjqqaeoqakhFAoRiaRq1GTEPi8vT3ncCkVrJR6P07Ntd+adNY+zXxzDl+u+xGO6aeMtQSbBTtr87ey7+HTpf+ka6so7y9+hc5di1n1XgS9YwJaKSuJJk7+991duO+UOotEooVCIRCKBR8Z59pah2GYchOTXExeTV9QB27YpKioiGo3idrsJh8Pk5+dTXV1Nfn4++fn5zfJZ27dvTzgcJhAI0LVr1ybt2+PxYJomLpcLy7JSg7r1Ck3HYjEmTZrELbfcwrvvvsvgwYOdeLRpmmiahpTSuevIhD2klHi9XpYsWcJJJ51EOBwGUkkELpfLCSt5PB7g+7sc5XErFK2Y/Px8Kioq6BzoxCO/nsm1865lW/U2erfpg0u6sJMWL34yl4ArQCyu43V7KP/cTd9uw9i8bTW1bbZRanTh+XfmMqr7SfzyF7+koqICvxe+fOc+whGDdl2H0WfQ8QhPPolEApfLRVVVlTM4WVJSQkVFBW3atGlWj7s5cbvdGIaBpmkYhuF8jlmzZjleNEAymeScc87h/PPPZ/To0XTv3p0pU6YgpcSyLEeAPR4Pl112GeXl5cyZM4cXXnjBEW1IZcU89thjXHbZZdi2jdvtdsYRdiVbRgm3QtEC0XWdgoICAIb5h/H8+XM4/fEzWLFtJUF3kDyRR0IkqEhsZ2vFFqq2V/GrQ06h1NsJGxcHFwzj3a//SYnPjU/zUFdXR3hbGf94/V62rV9Iu85DOOqsaRS1644mBC6XC9u2adOmjeNxV1ZWEgwGm93jbk5isRglJSXU1tYSCoUwTZNkMsmcOXNIJhvmeG/evJkpU6bw5ptvEggEWLhwIZZlNThG0zTefPNNpJQsXrz4R+eTUvLYY48xduxYioqKiEQiCCHw+/0kk0nH4/851MxJhaIFkvHOpJRoQqN3SR/eH/c+vTvsT228lpVb/8fC9YtYsmEJwYIQh/Q/hJgR47vy9Qi3Ru2mJMf2OpmCfDe3PHsNazeX8V3ZMlYs/ZKjTruJ31wzmzYdeiJI3cZnBCWTFiiEwO12Y9s2LpfrR95iS/HAMz88Pp+PqqoqdF0HwDAM55jp06c3mMOxbNkyPvvssx+JNqRi3IsWLWog2u3bt+eZZ55xXrvdbtq2bYthGBQWFhIIBIDUXZQKlSgUrRhN04jH44i0N2wYBh0KO/D2FW/w5tI3eWPpW/x3+X/YWlmOnoxSabtIuJLYSRtM+HblN4w65ESOLv0t7Q4TXDv9bA6ocDFo2Ej2H3oy+QWFjkhnsh6EECSTSTweD5Zl4fV6nUHKHwpO5vY/18mkAdbW1lJSUuJ43JnQB6RE/NVXX6W4uHiHYv1zjBw5ssEPgWmabN++naKiIsLhsONxq3RAhaKVE4/HndBELBYjEAhQU1NDMBhkRO+R/OaQ3/L2orfZWreVZDxJ0F9ATI+RiCVBCszjTLq278KI4SMoKS4htLWEDf/5mhN+fTWl7TpRWVlJIBDAMAzcbrcj0pn8ZL/fT01NjTNxJxgMNksed3OTSQf0eFLhoswAYX2BzsvLY3cLml988cVMnTqVd99912lzuVyEQqEG6YCQmrijPG6FohWTn59PbW0tkPrCZ2bjZWK20WiUEwefSLimhnyvl1hNJd898yDxsm/xd+xM3+vvJOnx4AK2b93C1sWb8QXa0aVrb2qrqigOBkkaBmX/eIUvX5yN8Pjpe9pZ9Dp2BMVt2mBZFqWlpUQiEdq0aePkMbc0EokEBQUF6LpOXl6eM4vR7/c7xySTSXw+n5N5siucfvrpAA0GOqWURKNRAoGA0+71eht45T9Hy7zaCsU+TjQadWbzxWIxCgoKnLzhzHP54s8QG9ey7s15ePICHHzHDNA8CJeGtX0r394yGUto2HEb+9ultDt4COteepoNH32AXldLQZceHHDG2Zz6p2nYpsE3/36PZy86G29hMSN+fwMFHTrRrU8fwuEweXl5zmBpS6J+/F5K6YR4XnvtNTp06EBdXR3r169n0aJFP5qI1BjKysoYOnQoZWVlzvlGjx7tjAnUTz3clXGBFi3cf//73zn//PNbzECIQtFU+Hy+BjHuZDKJ3+/HMAz8fj/bP3qH9dNuocvYS+l/418RAqIrvyXzVZFCMOCW6UgB8a1bKP50AclkEpfQGHbNjeD2kIjpJGM6euU2bCnpNvQQug4dTriqipdv/SOhLl258J57yQuFWqzH7fF4SCQSaJrmTOUXQjTwkB944AEeeOCB3ep//PjxbN68mWnTpgGpsYk//OEP+Hw+bNvG6/U6Pxa7cg1bZFbJ/PnzGT16NKZp8utf/5rXXnst2ya1OnRd57bbbsu2GYqdkMnmqD8BxLZthBBUfPg2q+69ne7nXEGo5/4kNq0jsXE9Ih5FxKMQj0IsSmz1CvRV32LW1dBu+GF0OvIYCrv2IFaxleimDcQrt2NGo5gxHUPXSdRFiNeGcblcHHP+BdRu2MATV13ppLG1RDJplZl4c0ZIp02btttx7R+SEW1I/d1uueUWwuHUdYxEIsRiMWcdlMZexxb3M2kYBv/73/8488wzOf744/H7/axcuRLDMBqMBCv2DMMwWLBgQbbNUOyETFaHEMKZyafrOqKynPLXnqXrGefiKynFDleioSFEekYgIAAbCXZqG1uS1CNYUmLaYNkSW0psmdo2M8+2xMLGsMDry+PIc85j/n0zePDii5gw5/nsXpDdJDN93e/3U11djZSShx56iHvuuadBaKS4uBiXy9UgLbK6unqHfRYWFuLxeJwfUtu2nWOllDzxxBO4XC5uu+02J1PFsqxdSgdscR73mjVrqKmpYcSIEdx8883O8oqZGJJCsS+QiWlnVp4Lh8MUFRaydeliQqUdCBS1wY7UQFxHJCJoCR1XIoqW0FOPjPcdi0I8ArEoth5F6hEsPYKpRzCjdSSjEYxIHclIHcloHYm61HM8UottGpxwyaVUb9xI3bZt2b4ku0VdXR1FRUUkk0mCwSCPPvoof/rTnxpMvunXrx+LFi1i48aNrF69mm3btrFw4UIOOeSQH/V34IEH8u9//5uNGzeydOlSNm7cyOeff87AgQOdYyzL4uGHH2bq1Kls3ryZaDQKpLz/xnrcLU64DzjgAEpKSrj66quZNGkSp556Kp988kmLnLWlUOwumQWJfD4flmWl0trCNdT839toeX6MumqI68iYDvGUUGsJHXciiiuhI+I6JHTnGEuPImM6diyKHdOxdR1T1zH1CIYeJZl5jkZJRiMkoxES0QhGPIknUMCHL7RMjzsvLw9d13G73ZSXl3Prrbc22N+/f39mzpxJSUmJEwuvra2lbdu2TJs2jT59+jjH+nw+JkyYQJ8+fUgkEgSDQQzDoH379jz55JMMHz68Qd/Tpk0jGo06FaFafTrg2LFjOfTQQ7npppuc2/k//vGPQGrAsqmWfMx1bNsmkUhwww03MGrUqGybo9iLZEIjkPrCJ5NJfJogvuYb2ow8BTsWxdI0XJpIuWcauDQXmga2BGFLsCXSlkjbRloS2wbLtrFtMG2JYUsMaWNYqRCKadupNltiWultCR26d8Noonjw3sYwDPLz84nH44wbN87JLsmwZcsWbrzxRizLom/fvjz44IP4/X50XWfw4MGMGjWKVatWATBq1CiOO+44ksmk84Nw++23s3jxYmzbZv369Q3OLYTg6quv5pVXXsHr9e5SqmGLFO7OnTvTuXNnhgwZQl5eHgBDhgxh7dq1TJw4kcsuu4yePXu2yAkBu8J1113HggULmDlzJhMnTmTKlCnZNkmxl6ifvuaktGkCaVvYcR1TA01zYWsCqQnQBNIlICNMNkhbYts2tpV6Nm0wLRtTgmHamDIV105adkrILRvTtknaAsOSGLaNYdnEo5FsX47dJlPAwO128+STT/J///d/nHPOOc7+qqoqPv30U3r16sVdd92Fy+VC13V8Ph+JRKJBJkgwGKRt27ZOlk8gEODWW2/l5JNPZtGiRT869/3338/ZZ5/doIBFY2mRwp0hI9qZ7X79+nH66adz9913M2TIELp3786vfvWrJj3n888/73g62Wbp0qWMHj2a8vJybrjhhmybo9iLJJNJxzGxLAu/3088XIMV1YmXbyYvVIiludBcAqGBcAkQGjYaNhJTSiw7JcimlfGqJaa0SVpgZDxqKzUYGYvFSBgG+PJI2jIt3GDYFgldpzlzSqSUfPDBB01Ww/KHfWfCEy6Xi48++uhHxxx44IHMnTuXgoIC3G437733Htu2baOoqIiBAwdy4YUXYpomv/jFL/jss89Yt24deXl5nHHGGfj9fubPn88pp5zC119/3aDfL774gjPPPNPx8HclM6dFC/eOOProozn66KN5+eWXWbVqFS+//DK/+c1vmqx/TdNyKhSTsSczbbapyMvL49RTT+XVV19l9OjRTdr3vsTo0aOZPXs2hx56aANHY0/x+/1s27YNIQSBQCBVBzFYgC2hdsVyXH36IvL8oGlpTzudSWKYCJ8fS9op4TVNops3EI9GiVs2SUuSMCUJ2yJhgqdNewiGiOsxEskkwrRIpo8zbEnStFi/bBm9Dxn+80bvJlJKZs6cucPV9pqCTKWfSCTCzJkzOe2001i5ciUrV650zj9t2jTuvvtuhBBUVlZyww03cPjhh/PSSy8xevRoZ3nWK664gpdeeonp06cDqXVJbrnllgai3LlzZ0aOHMmzzz7LpEmTyM/Pb/SqgBlanXBn+M1vfoOu6zzwwAMMGTKEN954g06dOu1xv2PGjGkC65qGxYsX8/LLL3P88cdz4403NmmoxOv1cvDBB/Phhx8q4d4DhgwZwsSJE524Z1ORKdabmSwSDAapi9TRb9JfWH7HH7CWRik9YADS58XSBJYAkdCxa6pxte+EbVrUlS3HMiXxRIKEYZCwbBImxEyLhGkTt2yMrZsxcCEDhbgKi5B6HNPlxrAgadmULV2C5s2n35FHNdln25tkCvv6/X78fj+ff/45paWlnHfeec4xK1asYOXKlXz00UeMGTOGSy65hJKSEifdz7Isp3iCZVkUFBRw6qmnMmvWLGbMmMG6desaOFZFRUXMmDGDa6+9lh49ejhVh3ZlAk6rFW5IrecwceJEJkyYwAUXXMCVV15Jjx496Ny5c7ZNaxLuvfdeEokE48eP5/rrr8+2OYq9jGVZzt1fymt0IYLFGKaNFo1S9c1XFPbui2aZuGwLYSQwKjbBlo2pXG0bDNsmaac86KSZ8qIt0rnbEpKJJHHDIh6uI7FhA3HLxvT4CHToxOZ166mr0+k+fH8GNEMYY2+QKeybSCQoKSmhuLiYDRs2EI/HG9zJSilZu3Ytd911F8uXL+f111/nqaeeQkpJXl6ekz44YMAAJkyYwOTJk5k7d+6Pwh+aphGLxdiyZQsHHnigM8nH4/EQj8edDJOfo9HCLYRwAQuBTVLKU4QQPYAXgDbAl8D5UsqkEMIH/B0YClQCY6SU6xp7nqYm84/9yCOP8Ne//pW8vDyuuOIKOnTokC2TmgxN08jLy+Phhx9Ws0f3MTJTtTPinVleNQLYfj/JRBwMk2hNNURrEZE6NE2gIZBILGljy5RwmzbpmPX3sWszE/+2U/Fw25ZYUmLZYBkGkeoa4noMl8+PlC1n/e0fUlBQ4FRjr6mpwev1snr1ag4//HBOPPFEamtrnQHMmTNnIqXkH//4B4cddhiTJk1yqt0HAgGklIwfP57Zs2c3EO1rrrnG8cgzi4OVlZXRqVMnQqEQlmXt8h3Zrnjc1wHfAqH06ynADCnlC0KImcAlwCPp52opZW8hxNj0cVmPL4RCIe666y6++eabJr1lba1ccsklLF++nMrKSr788ktncEaRGyQSCWcFO13Xyc/PTy2zeuBBFB85ivJ3XsPGRFZW4hY2mmkjNIFIC7ct6wmxlKnYtiUbCLhZb/DSlKkBS0tKTEOSqA5jS3D5/Zx640RnjZSWRibklEwmKSwsRErJUUcdxYgRI4jH405lGk3T6NOnj5MEcO+993L99dc76YTJZNKZJTl9+nRHtG+77TauvPJK/H6/M8vV7/cTj8edVR0Bp1p8YzPhGjXKJoTYD/gV8ET6tQBGAC+lD3kGOCO9fXr6Nen9I0UO/Rz369ePwsLCbJuR01RXV7N69WpuvPFGTj/9dPx+P1u3bs22WYp6BAIBIpFIg7WkCwsLSQgXoW69MW1IGDYxPUYslkS3bGKmjW6mnmOmTdxMiXXMkKmBSdsmmU7/M6QkYUtMS2JKQTLtcRu2jRYoSIUSvHkYpslhJ5zYYifA5efnN7iGmZBHbW0teXl51NbWOtXtDzzwQOd9pmk6tSTj8Tgej6dBEeAMffr0obi4GI/Hg6ZphEIhYrEYhYWFzvooGUdyV9KXG+tx3wvcCATTr9sANVLKzGT+jUAmcNwZ2AAgpTSFEOH08dsbbZUiqzzzzDNcfvnl9O7dm2QyyRlnnMF999232yukKZoeXdcJBoMNtsPhMMFgEK17H7S2nYhv3Yghk7gQuDTSKwOmfDUpG3rdmck1TraIZWFYKfFO2pl8bolpQby6BlvAwSOPw1/ShoqKCoqKihx7WhKZdV4yedSZ0Krb7XaKAEspcblcDQYPhRBO3nVmDZP6jwyZavCZNsMwnDzvTIgrE0fflcywn/W4hRCnANuklF82utdGIIS4XAixUAixsKlW4VI0DX/4wx/405/+xMcff0xxcTHnnXcef/rTn7JtlqIembhrLBZzBrwyt/XdjjgWf+euxCybeDo7JOVh28RNk7hpEjMtYqb1/X5HpNMDlZZM5XNnxDyd523YqRBKafcerFm2nFOuuoZQKNRiJ7tlUgEz4lw/pzuzAmNm9cUePXo0KIzwr3/9C8AJkWTi35WVlUCqZNmAAQOcfZmsE03TsCyrwfug6fO4jwBOE0L8EvCTinHfBxQJIdxpr3s/YFP6+E1AF2CjEMINFJIapGyAlPIx4DGA9u3bt8w1IVsxc+fOZdmyZXz66afMmzevRXpTrZnMFz/z5c9kQGQEZ9jEP/GP804lFovgEiI1MClTXrcEbMDOrAKIxDRTmSQpcbYxLUjaKTE3bDudfZIScF8wRLveB9C2d29KOnZ0yn21RDJFgkOhEOFwGK/Xi8fjcSoJVVVVEQwG0XWdoqIijjrqKObPn080GuWaa66hS5cujrADbNy40VkJcOjQoXTs2NFZJz2zpkx1dbVTWT5TuiyZTDZtOqCU8ibgJgAhxLHABCnluUKIF4HfksosuRCYn37L6+nX/03v/7dsqYv17sMMHDjQ8RbUcrl7RnP8+1uW5XzRM7f0uq7j9XqJxWIU9exFftcebFv+FZrQcDlLutpINKRIe4DpwUnLluklXDPrkQjH0zZsm7iVCpkkbYtgqAjN66XHwIEEi4qora1F07QW6XVnVgeMx+MUFRVh2zaWZVFSUuKUZYvFYgSDQaSUDWZNV1RUUFFRsdO+M3dBmbW3NU2jurqaQCBAVVWVE0PPhF0yxYIbw55MAZwE3CCEKCMVw34y3f4k0CbdfgMweQ/OocgiLpdLiXYT0BzeaCAQoK6ujkgkgtvtdvKRdV2nTZs26LrOyQ89RcKwSZgWMcNKh0dk6jlpEzNS4ZNEJoxiSWIWxE1B3LRJWjYJK9VuWDZJ06K4c1f6HHEU/vwAo8aOpa6ujtLS0hY7OBkMBqmursbr9VJdXe3kVWcKIG/fvh2Xy0VtbS26rnPIIYfQpUuXn+23Q4cOHHfccc4Pgs/nQ9M0px5oaWmpk8kSCAQAduka7pJwSyk/lFKekt5eI6UcLqXsLaU8U0qZSLfH0697p/ev2ZVzKBSKnycWi5Gfn09eXp6zCH9mBmA4HMbv9yPdXgaef2lKqK2UcOvG97HtVHaJlYp/W7KeiKemtSdMm4QT75aEOnSm57DhbF63juMvuohwXYS8vDxqamoalPpqSei67lRcD4VCTkpjUVGREx6xLItAIIDf7+eII47gmWeeoaioaKd9er1ennjiCY499lh8Ph91dXUYhoGU0slWqa6uTuXdpyvgALt0DXNn0Q2FQtFofD4fhmE4WQqxWMyZwVdQUJAqDFBcQulhR6O17UjMlOimjW6lUgK/TwuU329bNnHDSnnZZipFMGFZJG2JN1RIu959qNxWjl4XoeegQQSDQRKJBIFAoMXemfn9fqLRKG63m2g06qQDZn4E6+rqcLlcxONxpyblgQceyOLFi3n66acJhUIEg0FCoRChUIgZM2awcuVKDjvsMILBIMlkkvz8fNxut7OuTGaJAtM0yc/Pb7Aed2Np1VPeFYrWSv2p2JmMiPprZ2QGLXsMP4xhF1zKv2fcjaFHnffL9EQcKVODlBaZeDep5VydCTg2/pJSCtp3RI/F8Pn8THnvXceG+oOiLZH65cUy1C9PVn9fZvlcTdNo164dJ598Mt999x2maTozIwFnvCGzvrZt2072SP2/EaTGJ+pnnTQWJdwKRQvEsiwnVS0jnKZpomkahmE4z16vl6MuGYclJW/8+Q5kA4FKZZhYklROd2Zau/x+XW5TCjRLEq6upnvHjlx6991o6ZXwEomEk5MshGiRld7ri25mdiOkPPHMcrnQ0BvO7Ks/caZ+Sl+m/m0mU8QwDOe9yWTS2Zf5m9X/oWgsKlSiULRAMjnb8XjcWdw/05apWp651dc0jeHnXMBv77mf/QYfkopnpx+dhw3H374DcctOPyR9jj6WhE1qCrwNcT3GkBOO56K//Y384mJ8Ph+2bVNQUEAikaCgoKBFZpQAjrBmJsNkxLO+6Gamqmc88MxKfpmwSiY3WwiBpml4PB6nmLNt27jdbme/x+PBNM0G+zI/eLty19LyfiIVihZCLBajoqKCeDzOxo0bMQyD0tLSJuu/pKQESN3C5+XlIYRw2oqLixFC0KlTJ2f/iAt+x1FnjsGq5wG6PB5s28K2vvfE3V4vRr1iuQBevx+v3+94h6FQCCEEbdq0abE53JD6AfT5fA2uIXwfLsnsq0+mGvuO9mX4qbj17sS0f4gSboWimfj4448ZP34827ZtY/z48bRp04bnnnuuyfqvX9AjIyA/9+xq5EJh/nSK2g/ZWb8tlcwkpsx2/fYftjVm395ChUoUimZA13Xef/99Zs2axYABA3j88cfp37+/U9xaodgTRC5MaiwuLpbnn39+ts3YKYlEwplFlauEw2HcbreTzJ+LlJeXU15eipS5m4FQVLSJbt32vNCGZVmsX7+enj17snr1arp3705tbS22be/R/5FlWVRWVtKuXbs9trG5iEajWJZFKBT6+YMbyf/+9z/233//JuuvsrKSgoKCRs9UzAazZ8+murp6h259Tgi3EKICiJK7KwiWomzbHZRtu4eybfdobbZ1k1K23dGOnBBuACHEQinlsGzbsSOUbbuHsm33ULbtHvuSbSrGrVAoFC0MJdwKhULRwsgl4X4s2wb8BMq23UPZtnso23aPfca2nIlxKxQKheV94zkAAATgSURBVKJx5JLHrVAoFIpGkHXhFkKcJIRYKYQoE0JkveiCEGKdEGKpEOIrIcTCdFuJEOI9IcSq9HPxXrJllhBimxBiWb22HdoiUtyfvo5LhBBDsmTf7UKITenr91W65F1m301p+1YKIU5sRru6CCE+EEJ8I4RYLoS4Lt2e9Wv3E7Zl/bqlz+UXQnwuhPg6bd8d6fYeQojP0nbMFUJ40+2+9Ouy9P7uWbDtaSHE2nrXblC6PRvfCZcQYrEQ4o306+a5bj+sTrw3H4ALWA30BLzA10C/LNu0Dij9QdtUYHJ6ezIwZS/ZcjQwBFj2c7YAvwT+CQjgUOCzLNl3O6nydj88tl/67+sDeqT/7q5msqsjMCS9HQT+lz5/1q/dT9iW9euWPp8ACtLbHuCz9DWZB4xNt88ErkxvXwXMTG+PBeZmwbangd/u4PhsfCduAOYAb6RfN8t1y7bHPRwok6lqOklS9StPz7JNO+J04Jn09jPAGf+/vbMJsaoM4/jvWdgHJYkRMngXqQgtQlQUikRkRGk0kmAWQaCLoE0uWgkiuHNpH4toUSloodCY6NKPEVqFYY02MlaCQg2jA4qjbaSPf4v3OTOHy9xLszjnPQeeH1zu+bhwfvzvPc+97/Pee08dB5X0HXD/f7rsAo4p8T3pYs4DGfx6sQs4KemxpFvATdLzX4XXlKQfffkRMAEspwHZ9XHrRW25uZMk/emri/wmYBAY8e3d2RWZjgBbzar5E48+br2o9Zwwsw6wE/jC142KcstduJcDv5fW/6D/i7gOBJwzsytm9p5vWyZpypfvAMvyqPV1aVKWe31oeqTUVsri50PQdaRPZ43KrssNGpKbD/fHgGngPOlT/gNJf8/jMOvn+2dI16CtxU1Skd0hz+4jMyt+x153dh8D+4Dirxafp6LcchfuJrJJ0npgCHjfzDaXdyqNbRrxVZwmuZT4DFgFrAWmgMO5RMzsWeAU8IGkh+V9ubObx60xuUn6R9JaoEP6dP9SLpduut3M7GVgP8lxI7CUdCHzWjGzN4BpSVfqOF7uwj0JlC+Z3PFt2ZA06ffTwGnSC/duMcTy++l8hj1dGpGlpLt+cv0LfM7csL5WPzNbRCqMX0v61jc3Irv53JqSWxlJD4BLwKukNkPxN9Blh1k/3/8ccK9Gt9e9/SSlC5YfJU92rwFvmtltUst3EPiEinLLXbh/AFb7zOsTpCb92VwyZvaMmS0uloHtwLg77fGH7QHO5DGEPi5ngd0+k/4KMFNqC9RGVw/xLVJ+hd/bPpu+AlgNXK7IwYAvgQlJH5Z2Zc+ul1sTcnOPF8xsiS8/DWwj9eEvAcP+sO7sikyHgVEfzdTldqP0ZmykHnI5u1qeV0n7JXUkvUiqY6OS3qGq3KqYWV3IjTTz+yupj3Ygs8tK0gz+VeB64UPqPV0EfgMuAEtr8jlBGjb/ReqPvdvLhTRz/qnn+DOwIZPfcT/+NX9xDpQef8D9fgGGKvTaRGqDXAPG/LajCdn1ccuemx9rDfCTe4wDB0vnxmXS5Og3wJO+/Slfv+n7V2ZwG/XsxoGvmPvmSe3nhB93C3PfKqkkt/jlZBAEQcvI3SoJgiAIFkgU7iAIgpYRhTsIgqBlROEOgiBoGVG4gyAIWkYU7iAIgpYRhTsIgqBlROEOgiBoGf8BWrDWh9zMdxMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## नीति की जांच करना\n", + "\n", + "चूंकि Q-Table प्रत्येक स्थिति में प्रत्येक क्रिया की \"आकर्षकता\" को सूचीबद्ध करता है, इसे हमारे संसार में कुशल नेविगेशन को परिभाषित करने के लिए उपयोग करना काफी आसान है। सबसे सरल स्थिति में, हम बस उस क्रिया का चयन कर सकते हैं जो Q-Table में सबसे उच्च मान से संबंधित हो:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "def qpolicy_strict(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = list(actions)[np.argmax(v)]\n", + " return a\n", + "\n", + "walk(m,qpolicy_strict)" + ] + }, + { + "source": [ + "यदि आप ऊपर दिए गए कोड को कई बार आज़माते हैं, तो आप देख सकते हैं कि कभी-कभी यह बस \"रुक\" जाता है, और आपको इसे रोकने के लिए नोटबुक में STOP बटन दबाना पड़ता है।\n", + "\n", + "> **कार्य 1:** `walk` फ़ंक्शन को संशोधित करें ताकि पथ की अधिकतम लंबाई को एक निश्चित संख्या (जैसे, 100) तक सीमित किया जा सके, और ऊपर दिया गया कोड समय-समय पर इस मान को वापस करे।\n", + "\n", + "> **कार्य 2:** `walk` फ़ंक्शन को संशोधित करें ताकि यह उन स्थानों पर वापस न जाए जहाँ यह पहले से ही जा चुका है। यह `walk` को लूपिंग से रोकेगा, लेकिन एजेंट अभी भी ऐसी स्थिति में \"फंस\" सकता है जहाँ से वह बाहर नहीं निकल सकता।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 3.45, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 15 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de3xcdZ3/8deHVlBxf1ykPxYBN3XF9Yd3rAKL666i3HdxFRV+/rCrII+foj9FH6th2ZW7UAEREAqFVoHl0gqVFgK9t/RCL6T3W9qm1zSkbdqkSZu0uX5/f8x3kkkykzmTzMyZzHk/H488cuZ7zsx8z5yZz/me7+2Ycw4REYmGY8LOgIiI5I+CvohIhCjoi4hEiIK+iEiEKOiLiETI8LAz0J9TTjnFlZSUhJ0NEZEhZfny5fudcyOSrSvooF9SUkJ5eXnY2RARGVLMbGeqdareERGJEAV9EZEIUdAXEYkQBX0RkQhR0BcRiRAFfRGRCFHQFxGJEAV9EQlswZZadh5oCjsbMggFPThLRArLteOXAbDj3stDzokMlEr6IiIRoqAvIhIhCvoiIhGioC8iEiEK+iIiEaKgLyISIYGCvpndZGbrzWydmb1gZu82s5FmttTMKs1sopkd67c9zj+u9OtLEl7nZp++ycwuzs0uiYhIKmmDvpmdDvw/YJRz7uPAMOBqYAzwoHPuw0A9cJ1/ynVAvU9/0G+HmZ3tn/cx4BLgMTMblt3dERGR/gSt3hkOvMfMhgPvBWqALwMv+fVPA1/zy1f6x/j1F5qZ+fQXnXMtzrntQCXw+cHvgoiIBJU26DvnqoH7gV3Egn0DsBw46Jxr95vtBk73y6cDVf657X779yemJ3lOFzO7wczKzay8trZ2IPskIiIpBKneOYlYKX0k8AHgeGLVMznhnBvnnBvlnBs1YkTS+/qKiMgABane+Qqw3TlX65xrAyYDFwAn+uoegDOAar9cDZwJ4NefABxITE/yHBERyYMgQX8XcJ6ZvdfXzV8IbADmAlf5bUYDU/zyVP8Yv36Oc8759Kt9756RwFnAsuzshoiIBJF2lk3n3FIzewlYAbQDK4FxQBnwopnd5dPG+6eMB541s0qgjliPHZxz681sErETRjtwo3OuI8v7IyIi/Qg0tbJz7lbg1l7J20jS+8Y5dxT4ZorXuRu4O8M8iohIlmhErohIhCjoi4hEiIK+iEiEKOiLiESIgr6ISIQo6IuIRIiCvohIhCjoi8iAHG3r4NDRtrCzIRlS0BeRAbnwgTf5xG0zws6GZEhBX0QGpPrgkbCzIAOgoC8iEiEK+iIiEaKgLyISIQr6IiIRoqAvEhGfu3sW4+ZvDTsbEjIFfZGIqD3Uwm9erwg7GxIyBX0RkQgp2qD/y5dW8/Ly3WFnQ0SkoBRt0J9Uvptf/Hl12NkQESkoRRv0RUSkLwV9EZEIUdAXkUHp7HTc8eoGquqaw86KBKCgLyKDsqGmkQmLtnPj8yvCzooEoKAvIoPiXOx/Z3xBCpqCvohIhCjoi4hEiIK+iEiEKOiLiESIgr6IdGlqaef6p9+mpkG3QixWCvoi0qVsbQ2zNu7jgRmbw86K5IiCvohIhCjoi4hEiIK+iGSFxmYNDQr6IjIoZmHnQDKhoC8iEiEK+iIRN2vDXta/0xB2NiRPFPRFIu76Z8q5/OGFg36d9e80crilPQs5klxS0BeRrHl9bU3YWZA0AgV9MzvRzF4yswoz22hm55vZyWY208y2+P8n+W3NzB42s0ozW2Nm5yS8zmi//RYzG52rnRKR/FGvnaElaEn/IWCac+6jwKeAjUApMNs5dxYw2z8GuBQ4y//dAIwFMLOTgVuBc4HPA7fGTxQiIpIfaYO+mZ0AfBEYD+Cca3XOHQSuBJ72mz0NfM0vXwk842KWACea2WnAxcBM51ydc64emAlcktW9ERGRfgUp6Y8EaoE/mtlKM3vKzI4HTnXOxSvw9gCn+uXTgaqE5+/2aanSezCzG8ys3MzKa2trM9sbERHpV5CgPxw4BxjrnPsM0ER3VQ4AzjkHZKVmzzk3zjk3yjk3asSIEdl4SRER8YIE/d3AbufcUv/4JWIngb2+2gb/f59fXw2cmfD8M3xaqnQREcmTtEHfObcHqDKzv/NJFwIbgKlAvAfOaGCKX54KfNf34jkPaPDVQNOBi8zsJN+Ae5FPE5EhTNMwDC3DA273E+A5MzsW2AZ8j9gJY5KZXQfsBL7lt30duAyoBJr9tjjn6szsTuBtv90dzrm6rOyFiIgEEijoO+dWAaOSrLowybYOuDHF60wAJmSSQREZvLqm1vy8kfrsFzyNyBWJgB88Ux52FqRAKOiLRMDu+uawsyAFQkFfRLJqxa56Gprbws6GpKCgLyJZ9fXH3uI745eEnQ1JQUFfJAKM/ParXFfdmNf3k+AU9EVEIkRBX0QkQhT0RSJAo2YlTkFfRCRCFPRFJJCfvbgy7TZOQ3ILnoK+SAQMtHZnwZZafvJCLNi/suqd7GVIQqOgLyIpXTt+Ga+uVrAvJgr6IhFgaskVT0FfRCRCFPRFJGuc2nELnoK+iAxK4xFNrjaUKOiLSMZmrN/TtVw6eW2IOZFMKeiLSMZueHZ51/Kuuu65+lW7U/gU9EWkj5b2TqrqdOOVYhT0xugiEiGvrn5H/fOLlEr6IpI1ib13Nu05FF5GJCUFfZEICGNs1hWPLMj/m0paCvoikhNtHWrWLUQK+iIiEaKgLxIBmnpH4hT0RUQiREFfRLJGN1EpfAr6IhFgA76NSozTTGpFQ0FfRCRCFPRFRCJEQV8kAtR7R+IU9EUka1T1X/gU9EVEIkRBX0QkQhT0RUQiREFfRNIKWlevKv3Cp6AvEgF567yjltyCp6AvIt1SxOw9jUfzmw/JmcBB38yGmdlKM3vNPx5pZkvNrNLMJprZsT79OP+40q8vSXiNm336JjO7ONs7IyK58ff3zgk7C5IlmZT0fwpsTHg8BnjQOfdhoB64zqdfB9T79Af9dpjZ2cDVwMeAS4DHzGzY4LIvIkFY0NFZGsRV9AIFfTM7A7gceMo/NuDLwEt+k6eBr/nlK/1j/PoL/fZXAi8651qcc9uBSuDz2dgJEREJJmhJ//fAL4FO//j9wEHnXLt/vBs43S+fDlQB+PUNfvuu9CTP6WJmN5hZuZmV19bWZrArIiKSTtqgb2ZXAPucc8vzkB+cc+Occ6Occ6NGjBgx6Nc72NyahVyJDG35qrWZWF6VfiMJVZCS/gXAv5jZDuBFYtU6DwEnmtlwv80ZQLVfrgbOBPDrTwAOJKYneU7OrKw6mOu3EBFvXXVj2FmQNNIGfefczc65M5xzJcQaYuc4574DzAWu8puNBqb45an+MX79HBe7A8NU4Grfu2ckcBawLGt7IiIiaQ1Pv0lKvwJeNLO7gJXAeJ8+HnjWzCqBOmInCpxz681sErABaAdudM51DOL9RSQo9coRL6Og75ybB8zzy9tI0vvGOXcU+GaK598N3J1pJkUk90pKy/i///i3YWdDckwjckWky9pqtYEVOwV9kQhQ7Y7EKeiLiESIgr6ISIQo6ItIl/2HNJix2Cnoi0iXTXsPhZ0FybGiD/pqwBLJYJZNKXpFH/R1Hx8RkW6DGZErIkPYC8t2cYwuACJHQV8kApLF9psnr817PiR8RV+9IyIi3RT0RYpce0cn2/c3hZ0NKRAK+iJF7rfTN9HeqS4NEqOgL1Lkxs3f1ietpuFICDmRQqCgLxIx9U2tnH/PnLCzISFR0BeJmMajbWFnQUJU9EFf3ZBFRLoVfdAXEZFuRR/01WdBRKRb0Qd9ERHppqAvEjGmlq5IU9AXiZjaw0fDzoKESEFfJGK+MXZx2FmQECnoi4hEiIK+iEiEKOiLiERI0Qd99VMQEelW9EFfRES6KeiLiESIgr6ISIQUfdDX3Dsi4SkpLWPmhr1hZ0MSFH3QF5Fw3Tx5TdhZkAQK+iJSMK54ZAGvrKwOOxtFTUFfRArGuupGfjZxVdjZKGoK+iIiEaKgLyI5piGShaTog76+biJhUx+6QlL0QV+kmIydt5XyHXVhZ0OGsLRB38zONLO5ZrbBzNab2U99+slmNtPMtvj/J/l0M7OHzazSzNaY2TkJrzXab7/FzEbnbrdEitOYaRVc9bjmw5eBC1LSbwd+4Zw7GzgPuNHMzgZKgdnOubOA2f4xwKXAWf7vBmAsxE4SwK3AucDngVvjJwoRKWaqZC0kaYO+c67GObfCLx8CNgKnA1cCT/vNnga+5pevBJ5xMUuAE83sNOBiYKZzrs45Vw/MBC7J6t6IiEi/MqrTN7MS4DPAUuBU51yNX7UHONUvnw5UJTxtt09Lld77PW4ws3IzK6+trc0ke0mpCUlEpFvgoG9m7wNeBn7mnGtMXOecc2QpvjrnxjnnRjnnRo0YMSIbLykiIl6goG9m7yIW8J9zzk32yXt9tQ3+/z6fXg2cmfD0M3xaqnQJ2a4DzextPBp2NmQA5lbso76pNexsyBASpPeOAeOBjc653yWsmgrEe+CMBqYkpH/X9+I5D2jw1UDTgYvM7CTfgHuRT5OQffG+uZz7m9lhZ2PIOHC4hY/c8gbLd9aHmo+GI218709vc/0z5aHmQ4aWICX9C4BrgS+b2Sr/dxlwL/BVM9sCfMU/Bngd2AZUAk8CPwJwztUBdwJv+787fJrIkLJsex2tHZ08OX9bqPlo7+gEYPv+plDzIUPL8HQbOOcWkrrP1YVJtnfAjSleawIwIZMMDpY6i4kUp4o9jXz0r/9H2NkYcjQiV2SAXIH0DYuVswqX5aDkNW1dDZf8fgGvrn4n+y9e5BT0RRK0dXRy8+Q1vHPwSMptchHEBsIKJSMh2Lz3sP9/KOScDD0K+iIJFlbu54VlVZROXpt227AL2IVewk9Ue6iF+6ZX0Nk5dPJcrBT0RZKIbhk6N0pfXsOjc7eyeNuBlNsM5CQ2hM57BUNBXySJoRBLhlL1Tkt7rKdRZ5ai9NDZ88KTtveOyFBV03CEdw8fxknHHxto+zte3cDra2vSb1hgIWconKDislUyP9rekZ0XiqCiL+kPpR+EZNf598zh3HuCDzqbsGg7e4bQyOTCOvWkVnuoJeuN34/O3ZrdFywADUfaKCktY/KK3Tl9n6IP+ku2pq5DlOLX6qsV0mkZQMmxd4Gis9PRoYbKotbW0Unj0bYBPW9pP+0ZAFV1zQA8tWD7gPIWVNEH/flb9oedBRkCWgKeHHbXN6dscPw/45fyt//x+oDev2xNDWOmVQzoub2t3FUf+hQR+ZLvsRI3PreCT942I+PnPTBjM98et4RVVQdzkKvMFH3QHyqXwEFtqz3MjPV7eHPz4KedHgp2hDTFQLLAXlXXzBfGzOXBWZuTPuetQVxV3vj8CsbOy06Vxb8+9hbfGPtWVl4r2/oL0YXQE2f5znpKSsvYdyh5Nd+MDXsBOHS0jYbm4CX+LX48wf5DLYPP5CAVfdAvNl9+4E1ueHY5oycsY9Oe4ANTnHM8MGMTW2sP5zB3PTU0t/GRW97gra0Du9qasqqaf7p/XsGc4Pb5H2x8YFCuTHq7ig3vNKbfMI343DyFqqbhCCWlZazYlf2rkpLSMq5/OvOJ6CYsilWtLNnWc1qwlvYO5id8Dz9zx0w+dUfmJf4COK8Vf9AvhA85Vw5lULdYe7iFR+ZUcu1TS3OYo57WVB+ktaOTR+dWDuj5a3c3ALA5g5NbEB2djvumV3DgcOpS1xr/3v3JVcn0ly+v4bKHFwTePlU+CqlRuq2jb5fNBb7q9fmluwb12gcOt9BwpO9vYdbGvUxZVU1JaVngm8nHawZ6X+nd/uoGvjthWdfj9iHcdlP0QV88/x1t7cjfl9X8T2iwwTFZvW1bRydH2wbWbW9h5X4enbuV//hL6lG38SCyac8hLnxgHg3NbRn3QIn3xphbEbvVREt7BzN99UBQN09ew6i7ZiZdly4/zsGsDN8vV+Il55fK+/ZMSfX9aO/opLqf6TDiPnvXLM65M/ln9PNJqwEC30z+mBQf6vo0V15XjX0ra9VzuVb0QX9jzeAvk4tCnho3nHNdpaT472egQb+/oHbxg/P56H9Ny+j1SkrLKCkt66r2SGy8TZXHh+dsYWttE/M27+Prj2VWTx6vfntsXuxKZ8wbm/jBM+Us2x58RvEXllWx/3Dym6QE+VyXpOkxkm+JJfJ0X8k7X9vABffO6feKLP4ZDLTX1KGjbT16bsW/cw/P3pLR65TvrO+3Ib6QxtEVfdCX/Lr0oQV85D/fALp/1Iu3HehRH5oN2wbRwJvs0vxIa/KrhncPHwZAS9vg6sedc131xfXNrextPNrVRS+I3fU9tx1K8+4kSnbV9vKK3Un3J96W03i0fcDvly7WfuK2GVw1tvsqIL791tqe369sxexddc2hF0QV9CWrKvYcoq3D0dreSVtCcE2sDy00zjn+9NaOPul/mLOF494V+4mk68e/Jclsj4mBrLVXo+q5v5nNP/x2Lm+sraEuwO0Oxy/czrZejfDJSo/J6raHghW76lO2v8U/x6q6ZtZV92xraU5xsu56bpK0zk7X4yS6NuE1X1mV+VTN//lK+sn54u58bQOXPhS8vSYXFPSLRF1TKyWlZUxZle62w/kpIZ5z50xGZynQ57JQe8G9c/jof03j8Tf71sfeP2NzmhJed8a++uD8wO+5NKFnyA+fW8H1T7/d9ThVT6U/LtrRI1ik+kxqE7oaPrlgG0OlvfHWqetZVdWzF0/vuYX+4bdzueKRhT3SEk/W2/c3sbhXt9lk1T6Pz9/KF8bMpXJf/72w9h9uCdRu9N9LBtcQvXjrAfb3U4WVbQr6Q1ji1zleCnxm8c5+n7P/cCt3l21Iuu7f/7w6W1njcMvAL8lTmblhL+ffMzvQKNsgU/g6B9UHj/Q7MOtQvGphAJWyiUHLEk4f8WqeuMTGyv5OlIn5vPyRhXz6jljjpXOO7fub+lwxPLN4Z5/3ClviySrx81lX3cg3xqZubA1SnfWl++dxzZNL+p0/6WhbB1NWxkrz6RqJR901i+//6W2f17RvD8SutJLnNfULXPPkEr71xOKuE8xARvxmQkF/CHs2SYAP8uN4MsUw7z8v7+5Z8Vbl/gH3jgni7F9P46kFmd1j9rap66lpOJpy4EyilVka+Tg1fmemJJ9rPCnV55TLevfe9cJfun8eX/ztXAp9OGLQj+QXk7oLII5YQ2lQyX4XcT/87+Vs8lVxQY5PpgPuPnX7DMYmuWpMJd7Yv622iReWVQGwuz59j6XBUNAP2Z/Lq3qMADx0NNbN7y8r00+6NDXhVnHpSiKWQTCo2NPI/35qKXe8lvyKIG5ddQMlpWVU7Mm8Yaq5tYO7yjb2SX9m8Y6uElj85NT7pxkscKTeKNux+N43evbaONjcmlFj3d7G7Fza5+LqKiwvr9jddcP3xiNtVGTweaaavrmj0zF3U3Y7FCQb7Pj62hpeXf0Ozjne3FzLj59fweyKnl1ndx5oYuy8rfwhYQxLR2f3ldwbgWZ7HRgF/ZBNKo+d3edv3k9JaRlPvBkr/T4+L7NScDLlO+oC1PH3ddAPL09X5zlt3R4AZq7PTl/w/Ydb+PWU9fzbhGVZv8roWbebedQ/mqT3jhlcPW5xn0bgrz26iEsfWjDo+e57108Xg4F8JKUvr+XY4cFDVaqj+9XfvZnyOQP9rL/9RN8qqXXVjfzkhZXc/uoGRk9YxmtravoUNK4dv4wx03oOEEzc5IfPrRhQfoJQ0A9ZvAQeH3Y/ZXUsSMd/HLVp5uroXXed+Oiqxxfz0xdXJX3ehnca09ZpLtte1+/8Isf4PAZtLDzgG8ZSXVbHA3PDkTb+/aU1XekT367qdyqGICXcB2Zs6loeSEl/x4G+XUSd6ztcP7ZtrGfI7xPm6Pn62EUZv+c1Ty7J+DmF1B88mR51+gGfU9fcyruGdYeq/u5fHHuT5Mm9u/kmbpbus06V11RjKAC27Es9knxXku66+Tp0kQ76902v6Cqthq3dX9ol/ijmVOzlc3fP6jfg9a6CWbkrWF32ZQ8v4IJ756Td7kfPL2f5zjqfN9czYPsI8+CszYG6HX72rllcO35pj32ctWFv12CpxPTVCXXy2/c3pWzg3LTnEB+/dTpXj1tMSWlZV5fFHz+/ssd2Cyu75/8ZyF2ckp3YZvuRtqkk1gevq85P3+yFBT6rbKdzTCqv4puPv9U1l1E6HZ2OYcd0h8S/T/O9zdbdufIhjJN0pO+cFb8Rw457Lwdi9emfuG0GY77xCb79uQ/mJQ/L/JwgvXvd1DW18vLyWKl/1a6D/ONHRiR9/p/e2sEFHz6Fk49/V1eac65P1UImX67EYLWo8gCLKhez497LueeNCsbN38bW31zGsGOMhN8h5TvquuZS6c/bO+p7/Civf6acn154FjsPNHGMf0Gz5PlNlhZvT4iXuG+auIpLPvbX1DT0bOwdnpDZ219dDxAov73fpxAlhrhbp64PLR9BLN1ex1I/IvntHcEaZ48x65rKIoigIb8+QEFlMIKcexZVdv/W+rZd9f0dZ0OkS/q9xQNFupsYHDjcQklpGTPWd18lHGzu7iff2t5Jc+vgGtX2HWqhLGBjzg+eKSfx4vCuso18NmEukoPNrSlHnCaTagj6hIWxzyVeDdN7npJnl/TfXTSu95e7qr6ZV1a9w+QVvmorgwvd3tVXcyr28cuX1/RIe2T2lh4/nvoMpsSNC3oFJdl3jGU2aCrovQR+Pil7XZSTybTnT++TRK4uWBT0gR8/v4LW9s7AH3KF72b1u5nddbbxngYTFm7n2+MWc/avpw8oLwM90A1Hukst4xdu50BCKebTd8zkn/+wMNnTAnt0bmWfkvZAyyB9Bsz0ehhkIrFMPDAz3SCr3Eo3anSwDg1imoKhIGg1UC7l4yb0fUr6OXqfyAb9xMag19bUUL6zrmtekKDHtyJhyt/EL0W2S4VB7g70/T/1P3f4wRSl29518akGhvxx0Y6u5U/ePp3New91VcfE8hjczyf1LJ33fm5Nw9GkQbrQGylTSTdDoxSG+6YnnzDtD3O2hHInslyN84hs0D/ST5dAw7i7bENXcFr/TgOXPbSAppZ2rnx0Ed9JMid91zzcad73wOEW7nljI3sakg8wStYItauuOdAI04HoPSVtqlvB7T/cQpuflvloWyfP9arKGTc/eBfT19f2bDwP2vAW78Y8kFvkZTK4R6Ip1c3W75+R/E5p2fbq6p5VWLkq6UeqIXfsvK3s2N/EmKs+2e/lfuPRtq6BQb/71qe5/OFY1cijcyt79CpJFHQa4V+9vJZZG/fyxJvbWPirL/VZ37sBEmDyimr+5uTj+fQHT+z/xfMssU5/MCWhZJ9ZssvpeLXQr6cUdmOlSDaoTj8LxkyrYKIfDJVM/ENOFngBHgtwk4T+SqGdnY5ZG7sHMn1hzNy0rxe3dPuBrE1glg2O7M3VHvS7He/WWii3TxTJpVzd9D0SQT9I3VjZmuQ9ZUpKy/p9XlNLO00t7fxrkhts3DRxFfdNr8A5R0enY9r6gY8JGMxNt3NhTsW+rAXfPQ19B9tsTzJf/kBvlCEyFOWqpB+p6p24+Ztr+wSV55buYuQpx2f8WjdNXMU1536wKyAlDsL5y8pYF8QPnPgebvnLuiHbEJlMNieFCtpfeyBdLUWkp0gE/abWDt53XPeuprqhR7IJwNLZuKcxbXfAW/6yDsjtvPAiUlxyNbI4EkH/47dO54pPnpaT166qy+00qCISTWrIHaTXUtTZZ8OOQdyvVUQkmVyV9CMT9HPptlf7n3deRCRTN01MPkPuYCnoi4gUoFkbg08ylwkFfRGRCMl70DezS8xsk5lVmllpvt9fRCTK8hr0zWwY8ChwKXA2cI2ZnZ3PPIiIRFm+S/qfByqdc9ucc63Ai8CV2X6T3fV9b0UmIiL5D/qnA4mT3+z2aV3M7AYzKzez8tragQ3zz/ZNtUVE8u0r/+vUnLxuwQ3Ocs6NA8YBjBo1akAdVT/8P/+q6xaIIiLSLd8l/WrgzITHZ/g0ERHJg3wH/beBs8xspJkdC1wNTM1zHkREIiuv1TvOuXYz+zEwHRgGTHDO6Y4YIiJ5kvc6fefc68Dr+X5fERHRiFwRkUhR0BcRiRAFfRGRCFHQFxGJEAty0/CwmFktsHMQL3EKsD9L2RkKora/oH2OCu1zZv7GOTci2YqCDvqDZWblzrlRYecjX6K2v6B9jgrtc/aoekdEJEIU9EVEIqTYg/64sDOQZ1HbX9A+R4X2OUuKuk5fRER6KvaSvoiIJFDQFxGJkKIM+sV083UzO9PM5prZBjNbb2Y/9eknm9lMM9vi/5/k083MHvb7vsbMzkl4rdF++y1mNjqsfQrCzIaZ2Uoze80/HmlmS/1+TfRTc2Nmx/nHlX59ScJr3OzTN5nZxeHsSTBmdqKZvWRmFWa20czOj8Axvsl/p9eZ2Qtm9u5iO85mNsHM9pnZuoS0rB1XM/usma31z3nYzCxtppxzRfVHbMrmrcCHgGOB1cDZYedrEPtzGnCOX/4rYDOxm8r/Fij16aXAGL98GfAGYMB5wFKffjKwzf8/yS+fFPb+9bPfPweeB17zjycBV/vlx4Ef+uUfAY/75auBiX75bH/sjwNG+u/EsLD3q5/9fRq43i8fC5xYzMeY2G1StwPvSTi+/1Zsxxn4InAOsC4hLWvHFVjmtzX/3EvT5insDyUHH/L5wPSExzcDN4edryzu3xTgq8Am4DSfdhqwyS8/AVyTsP0mv/4a4ImE9B7bFdIfsTuqzQa+DLzmv9D7geG9jzGxezOc75eH++2s93FP3K7Q/oATfAC0XunFfIzj98s+2R+314CLi/E4AyW9gn5WjqtfV5GQ3mO7VH/FWL2T9ubrQ5W/pP0MsBQ41TlX41ftAeJ3UU61/0Ppc/k98Eug0z9+P3DQOdfuHyfmvWu//PoGv/1Q2t+RQC3wR1+l9ZSZHU8RH2PnXDVwP7ALqCF23JZT3Mc5LlvH9XS/3Du9X8UY9IuSmb0PeBn4mXOuMXGdi53mi6LvrZldAexzzi0POy95NJxYFcBY59xngCZil/1diukYA/h67CuJnfA+ABwPXBJqpuR29Y8AAAHSSURBVEIQxnEtxqBfdDdfN7N3EQv4zznnJvvkvWZ2ml9/GrDPp6fa/6HyuVwA/IuZ7QBeJFbF8xBwopnF7/SWmPeu/fLrTwAOMHT2F2IltN3OuaX+8UvETgLFeowBvgJsd87VOufagMnEjn0xH+e4bB3Xar/cO71fxRj0i+rm6741fjyw0Tn3u4RVU4F4K/5oYnX98fTv+p4A5wEN/lJyOnCRmZ3kS1kX+bSC4py72Tl3hnOuhNixm+Oc+w4wF7jKb9Z7f+Ofw1V+e+fTr/a9PkYCZxFr9Co4zrk9QJWZ/Z1PuhDYQJEeY28XcJ6Zvdd/x+P7XLTHOUFWjqtf12hm5/nP8LsJr5Va2I0cOWo4uYxYL5etwC1h52eQ+/IFYpd/a4BV/u8yYvWZs4EtwCzgZL+9AY/6fV8LjEp4re8Dlf7ve2HvW4B9/ye6e+98iNiPuRL4M3CcT3+3f1zp138o4fm3+M9hEwF6NYS8r58Gyv1xfoVYL42iPsbA7UAFsA54llgPnKI6zsALxNos2ohd0V2XzeMKjPKf31bgD/TqDJDsT9MwiIhESDFW74iISAoK+iIiEaKgLyISIQr6IiIRoqAvIhIhCvoiIhGioC8iEiH/H6G+/rPuz7xgAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "जो हम यहाँ देख रहे हैं, वह यह है कि शुरुआत में औसत पथ की लंबाई बढ़ गई। इसका कारण संभवतः यह है कि जब हमें पर्यावरण के बारे में कुछ भी पता नहीं होता - तो हम खराब स्थितियों, पानी या भेड़िये में फंसने की संभावना रखते हैं। जैसे-जैसे हम अधिक सीखते हैं और इस ज्ञान का उपयोग करना शुरू करते हैं, हम पर्यावरण का अधिक समय तक अन्वेषण कर सकते हैं, लेकिन हमें अभी भी यह अच्छी तरह से पता नहीं होता कि सेब कहाँ हैं।\n", + "\n", + "एक बार जब हम पर्याप्त सीख लेते हैं, तो एजेंट के लिए लक्ष्य प्राप्त करना आसान हो जाता है, और पथ की लंबाई कम होने लगती है। हालांकि, हम अभी भी अन्वेषण के लिए खुले हैं, इसलिए हम अक्सर सबसे अच्छे पथ से भटक जाते हैं और नए विकल्पों का अन्वेषण करते हैं, जिससे पथ इष्टतम से अधिक लंबा हो जाता है।\n", + "\n", + "इस ग्राफ पर जो हम और भी देख सकते हैं, वह यह है कि किसी बिंदु पर लंबाई अचानक बढ़ गई। यह प्रक्रिया की अनिश्चित प्रकृति को दर्शाता है, और यह कि हम किसी बिंदु पर Q-Table गुणांक को \"खराब\" कर सकते हैं, उन्हें नए मानों से अधिलेखित करके। इसे आदर्श रूप से सीखने की दर को कम करके न्यूनतम किया जाना चाहिए (यानी प्रशिक्षण के अंत में हम केवल Q-Table मानों को एक छोटे मान से समायोजित करते हैं)।\n", + "\n", + "कुल मिलाकर, यह याद रखना महत्वपूर्ण है कि सीखने की प्रक्रिया की सफलता और गुणवत्ता काफी हद तक पैरामीटर पर निर्भर करती है, जैसे सीखने की दर, सीखने की दर में कमी और छूट कारक। इन्हें अक्सर **हाइपरपैरामीटर** कहा जाता है, ताकि उन्हें **पैरामीटर** से अलग किया जा सके जिन्हें हम प्रशिक्षण के दौरान अनुकूलित करते हैं (जैसे Q-Table गुणांक)। सबसे अच्छे हाइपरपैरामीटर मानों को खोजने की प्रक्रिया को **हाइपरपैरामीटर अनुकूलन** कहा जाता है, और यह एक अलग विषय के योग्य है।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "## अभ्यास\n", + "#### एक अधिक यथार्थवादी पीटर और भेड़िया की दुनिया\n", + "\n", + "हमारी स्थिति में, पीटर लगभग बिना थके या भूखे हुए इधर-उधर घूम सकता था। एक अधिक यथार्थवादी दुनिया में, उसे समय-समय पर बैठकर आराम करना होगा और खुद को खिलाना भी होगा। आइए निम्नलिखित नियमों को लागू करके अपनी दुनिया को अधिक यथार्थवादी बनाते हैं:\n", + "\n", + "1. एक स्थान से दूसरे स्थान पर जाने से, पीटर की **ऊर्जा** कम होती है और उसे कुछ **थकान** होती है।\n", + "2. पीटर सेब खाकर अधिक ऊर्जा प्राप्त कर सकता है।\n", + "3. पीटर पेड़ के नीचे या घास पर आराम करके थकान से छुटकारा पा सकता है (यानी बोर्ड के उस स्थान पर चलकर जाना जहां पेड़ या घास हो - हरा क्षेत्र)।\n", + "4. पीटर को भेड़िये को ढूंढकर मारना होगा।\n", + "5. भेड़िये को मारने के लिए, पीटर के पास निश्चित स्तर की ऊर्जा और थकान होनी चाहिए, अन्यथा वह लड़ाई हार जाएगा।\n", + "\n", + "ऊपर दिए गए इनाम फ़ंक्शन को खेल के नियमों के अनुसार संशोधित करें, सुदृढीकरण सीखने का एल्गोरिदम चलाएं ताकि खेल जीतने की सबसे अच्छी रणनीति सीखी जा सके, और यादृच्छिक चाल के परिणामों की तुलना अपने एल्गोरिदम के साथ करें, खेल जीतने और हारने की संख्या के संदर्भ में।\n", + "\n", + "> **Note**: आपको इसे काम करने के लिए हाइपरपैरामीटर को समायोजित करने की आवश्यकता हो सकती है, विशेष रूप से epochs की संख्या। क्योंकि खेल (भेड़िये से लड़ाई) की सफलता एक दुर्लभ घटना है, आप अपेक्षा कर सकते हैं कि प्रशिक्षण का समय काफी लंबा होगा।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/2-Gym/README.md b/translations/hi/8-Reinforcement/2-Gym/README.md new file mode 100644 index 000000000..4fc776c7e --- /dev/null +++ b/translations/hi/8-Reinforcement/2-Gym/README.md @@ -0,0 +1,333 @@ + +## आवश्यकताएँ + +इस पाठ में, हम **OpenAI Gym** नामक एक लाइब्रेरी का उपयोग करेंगे जो विभिन्न **पर्यावरणों** को सिमुलेट करती है। आप इस पाठ का कोड स्थानीय रूप से (जैसे Visual Studio Code से) चला सकते हैं, इस स्थिति में सिमुलेशन एक नई विंडो में खुलेगा। ऑनलाइन कोड चलाते समय, आपको कोड में कुछ बदलाव करने की आवश्यकता हो सकती है, जैसा कि [यहां](https://towardsdatascience.com/rendering-openai-gym-envs-on-binder-and-google-colab-536f99391cc7) वर्णित है। + +## OpenAI Gym + +पिछले पाठ में, खेल के नियम और स्थिति `Board` क्लास द्वारा दी गई थी जिसे हमने स्वयं परिभाषित किया था। यहां हम एक विशेष **सिमुलेशन पर्यावरण** का उपयोग करेंगे, जो बैलेंसिंग पोल के पीछे के भौतिकी को सिमुलेट करेगा। रिइंफोर्समेंट लर्निंग एल्गोरिदम को प्रशिक्षित करने के लिए सबसे लोकप्रिय सिमुलेशन पर्यावरणों में से एक [Gym](https://gym.openai.com/) है, जिसे [OpenAI](https://openai.com/) द्वारा बनाए रखा गया है। इस जिम का उपयोग करके हम विभिन्न **पर्यावरणों** को बना सकते हैं, जैसे कि कार्टपोल सिमुलेशन से लेकर एटारी गेम्स तक। + +> **Note**: आप OpenAI Gym द्वारा उपलब्ध अन्य पर्यावरणों को [यहां](https://gym.openai.com/envs/#classic_control) देख सकते हैं। + +सबसे पहले, जिम को इंस्टॉल करें और आवश्यक लाइब्रेरी को इंपोर्ट करें (कोड ब्लॉक 1): + +```python +import sys +!{sys.executable} -m pip install gym + +import gym +import matplotlib.pyplot as plt +import numpy as np +import random +``` + +## अभ्यास - कार्टपोल पर्यावरण को प्रारंभ करें + +कार्टपोल बैलेंसिंग समस्या पर काम करने के लिए, हमें संबंधित पर्यावरण को प्रारंभ करना होगा। प्रत्येक पर्यावरण से जुड़े होते हैं: + +- **Observation space**, जो उस जानकारी की संरचना को परिभाषित करता है जो हमें पर्यावरण से प्राप्त होती है। कार्टपोल समस्या के लिए, हमें पोल की स्थिति, वेग और कुछ अन्य मान प्राप्त होते हैं। + +- **Action space**, जो संभावित क्रियाओं को परिभाषित करता है। हमारे मामले में, एक्शन स्पेस डिस्क्रीट है और इसमें दो क्रियाएं शामिल हैं - **बाएं** और **दाएं**। (कोड ब्लॉक 2) + +1. प्रारंभ करने के लिए, निम्नलिखित कोड टाइप करें: + + ```python + env = gym.make("CartPole-v1") + print(env.action_space) + print(env.observation_space) + print(env.action_space.sample()) + ``` + +पर्यावरण कैसे काम करता है यह देखने के लिए, चलिए 100 चरणों के लिए एक छोटा सिमुलेशन चलाते हैं। प्रत्येक चरण में, हम एक क्रिया प्रदान करते हैं जिसे लिया जाना है - इस सिमुलेशन में हम बस `action_space` से एक क्रिया को रैंडमली चुनते हैं। + +1. नीचे दिए गए कोड को चलाएं और देखें कि इसका क्या परिणाम होता है। + + ✅ याद रखें कि इस कोड को स्थानीय Python इंस्टॉलेशन पर चलाना बेहतर है! (कोड ब्लॉक 3) + + ```python + env.reset() + + for i in range(100): + env.render() + env.step(env.action_space.sample()) + env.close() + ``` + + आपको कुछ इस तरह का चित्र दिखाई देना चाहिए: + + ![non-balancing cartpole](../../../../8-Reinforcement/2-Gym/images/cartpole-nobalance.gif) + +1. सिमुलेशन के दौरान, हमें निर्णय लेने के लिए ऑब्ज़र्वेशन प्राप्त करने की आवश्यकता होती है। वास्तव में, स्टेप फंक्शन वर्तमान ऑब्ज़र्वेशन, एक रिवॉर्ड फंक्शन, और एक डन फ्लैग लौटाता है जो यह संकेत देता है कि सिमुलेशन जारी रखना समझदारी है या नहीं: (कोड ब्लॉक 4) + + ```python + env.reset() + + done = False + while not done: + env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + print(f"{obs} -> {rew}") + env.close() + ``` + + आपको नोटबुक आउटपुट में कुछ इस तरह का परिणाम दिखाई देगा: + + ```text + [ 0.03403272 -0.24301182 0.02669811 0.2895829 ] -> 1.0 + [ 0.02917248 -0.04828055 0.03248977 0.00543839] -> 1.0 + [ 0.02820687 0.14636075 0.03259854 -0.27681916] -> 1.0 + [ 0.03113408 0.34100283 0.02706215 -0.55904489] -> 1.0 + [ 0.03795414 0.53573468 0.01588125 -0.84308041] -> 1.0 + ... + [ 0.17299878 0.15868546 -0.20754175 -0.55975453] -> 1.0 + [ 0.17617249 0.35602306 -0.21873684 -0.90998894] -> 1.0 + ``` + + सिमुलेशन के प्रत्येक चरण में लौटाए गए ऑब्ज़र्वेशन वेक्टर में निम्नलिखित मान होते हैं: + - कार्ट की स्थिति + - कार्ट का वेग + - पोल का कोण + - पोल का रोटेशन दर + +1. इन मानों के न्यूनतम और अधिकतम मान प्राप्त करें: (कोड ब्लॉक 5) + + ```python + print(env.observation_space.low) + print(env.observation_space.high) + ``` + + आप यह भी देख सकते हैं कि प्रत्येक सिमुलेशन चरण पर रिवॉर्ड मान हमेशा 1 होता है। ऐसा इसलिए है क्योंकि हमारा लक्ष्य जितना संभव हो उतना लंबे समय तक जीवित रहना है, यानी पोल को एक उचित वर्टिकल स्थिति में सबसे लंबे समय तक बनाए रखना। + + ✅ वास्तव में, यदि हम 100 लगातार प्रयासों में औसत रिवॉर्ड 195 प्राप्त करने में सफल होते हैं, तो कार्टपोल सिमुलेशन को हल किया हुआ माना जाता है। + +## स्थिति का डिस्क्रीटाइजेशन + +Q-Learning में, हमें Q-Table बनानी होती है जो यह परिभाषित करती है कि प्रत्येक स्थिति में क्या करना है। ऐसा करने के लिए, स्थिति को **डिस्क्रीट** होना चाहिए, अधिक सटीक रूप से, इसमें सीमित संख्या में डिस्क्रीट मान होने चाहिए। इसलिए, हमें किसी तरह से अपने ऑब्ज़र्वेशन को **डिस्क्रीटाइज** करना होगा, उन्हें सीमित सेट की स्थितियों में मैप करना होगा। + +हम इसे करने के कुछ तरीके हैं: + +- **बिन्स में विभाजित करें**। यदि हमें किसी मान का अंतराल पता है, तो हम इस अंतराल को कई **बिन्स** में विभाजित कर सकते हैं, और फिर उस मान को उस बिन नंबर से बदल सकते हैं जिसमें वह आता है। इसे numpy [`digitize`](https://numpy.org/doc/stable/reference/generated/numpy.digitize.html) विधि का उपयोग करके किया जा सकता है। इस मामले में, हम स्थिति का आकार सटीक रूप से जान पाएंगे, क्योंकि यह डिजिटलाइजेशन के लिए चुने गए बिन्स की संख्या पर निर्भर करेगा। + +✅ हम मानों को किसी सीमित अंतराल (जैसे, -20 से 20 तक) में लाने के लिए लीनियर इंटरपोलेशन का उपयोग कर सकते हैं, और फिर उन्हें राउंडिंग करके पूर्णांक में बदल सकते हैं। इससे हमें स्थिति के आकार पर थोड़ा कम नियंत्रण मिलता है, खासकर यदि हमें इनपुट मानों की सटीक सीमाएं नहीं पता हों। उदाहरण के लिए, हमारे मामले में 4 में से 2 मानों की कोई ऊपरी/निचली सीमा नहीं है, जो अनंत संख्या में स्थितियों का परिणाम दे सकता है। + +हमारे उदाहरण में, हम दूसरे दृष्टिकोण का उपयोग करेंगे। जैसा कि आप बाद में देख सकते हैं, अपरिभाषित ऊपरी/निचली सीमाओं के बावजूद, वे मान शायद ही कभी कुछ सीमित अंतरालों के बाहर मान लेते हैं, इसलिए उन स्थितियों के साथ चरम मान बहुत दुर्लभ होंगे। + +1. यहां वह फंक्शन है जो हमारे मॉडल से ऑब्ज़र्वेशन लेगा और 4 पूर्णांक मानों के टपल का उत्पादन करेगा: (कोड ब्लॉक 6) + + ```python + def discretize(x): + return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int)) + ``` + +1. चलिए बिन्स का उपयोग करके एक अन्य डिस्क्रीटाइजेशन विधि का भी पता लगाते हैं: (कोड ब्लॉक 7) + + ```python + def create_bins(i,num): + return np.arange(num+1)*(i[1]-i[0])/num+i[0] + + print("Sample bins for interval (-5,5) with 10 bins\n",create_bins((-5,5),10)) + + ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter + nbins = [20,20,10,10] # number of bins for each parameter + bins = [create_bins(ints[i],nbins[i]) for i in range(4)] + + def discretize_bins(x): + return tuple(np.digitize(x[i],bins[i]) for i in range(4)) + ``` + +1. अब एक छोटा सिमुलेशन चलाएं और उन डिस्क्रीट पर्यावरण मानों का निरीक्षण करें। `discretize` और `discretize_bins` दोनों को आज़माने के लिए स्वतंत्र महसूस करें और देखें कि क्या कोई अंतर है। + + ✅ `discretize_bins` बिन नंबर लौटाता है, जो 0-आधारित होता है। इसलिए इनपुट वैरिएबल के मानों के आसपास 0 के लिए यह अंतराल के मध्य से नंबर (10) लौटाता है। `discretize` में, हमने आउटपुट मानों की रेंज की परवाह नहीं की, जिससे वे नकारात्मक हो सकते हैं, इसलिए स्थिति मान शिफ्ट नहीं होते हैं, और 0 का मतलब 0 होता है। (कोड ब्लॉक 8) + + ```python + env.reset() + + done = False + while not done: + #env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + #print(discretize_bins(obs)) + print(discretize(obs)) + env.close() + ``` + + ✅ यदि आप देखना चाहते हैं कि पर्यावरण कैसे निष्पादित होता है, तो `env.render` से शुरू होने वाली लाइन को अनकमेंट करें। अन्यथा, आप इसे बैकग्राउंड में निष्पादित कर सकते हैं, जो तेज़ है। हम अपने Q-Learning प्रक्रिया के दौरान इस "अदृश्य" निष्पादन का उपयोग करेंगे। + +## Q-Table की संरचना + +पिछले पाठ में, स्थिति 0 से 8 तक के दो संख्याओं की एक साधारण जोड़ी थी, और इसलिए Q-Table को numpy टेंसर द्वारा 8x8x2 के आकार के साथ प्रस्तुत करना सुविधाजनक था। यदि हम बिन्स डिस्क्रीटाइजेशन का उपयोग करते हैं, तो हमारे स्थिति वेक्टर का आकार भी ज्ञात है, इसलिए हम वही दृष्टिकोण अपना सकते हैं और स्थिति को 20x20x10x10x2 के आकार के एक ऐरे द्वारा प्रस्तुत कर सकते हैं (यहां 2 एक्शन स्पेस का आयाम है, और पहले आयाम ऑब्ज़र्वेशन स्पेस में उपयोग किए गए प्रत्येक पैरामीटर के लिए चुने गए बिन्स की संख्या से मेल खाते हैं)। + +हालांकि, कभी-कभी ऑब्ज़र्वेशन स्पेस के सटीक आयाम ज्ञात नहीं होते। `discretize` फंक्शन के मामले में, हम कभी भी यह सुनिश्चित नहीं कर सकते कि हमारी स्थिति निश्चित सीमाओं के भीतर रहती है, क्योंकि कुछ मूल मान बाउंड नहीं हैं। इसलिए, हम थोड़ा अलग दृष्टिकोण अपनाएंगे और Q-Table को एक डिक्शनरी द्वारा प्रस्तुत करेंगे। + +1. *(state,action)* जोड़ी को डिक्शनरी की कुंजी के रूप में उपयोग करें, और मान Q-Table एंट्री मान से मेल खाएगा। (कोड ब्लॉक 9) + + ```python + Q = {} + actions = (0,1) + + def qvalues(state): + return [Q.get((state,a),0) for a in actions] + ``` + + यहां हमने एक फंक्शन `qvalues()` भी परिभाषित किया है, जो एक दिए गए स्थिति के लिए Q-Table मानों की सूची लौटाता है जो सभी संभावित क्रियाओं से मेल खाती है। यदि Q-Table में एंट्री मौजूद नहीं है, तो हम डिफ़ॉल्ट रूप से 0 लौटाएंगे। + +## चलिए Q-Learning शुरू करें + +अब हम पीटर को बैलेंस करना सिखाने के लिए तैयार हैं! + +1. सबसे पहले, कुछ हाइपरपैरामीटर सेट करें: (कोड ब्लॉक 10) + + ```python + # hyperparameters + alpha = 0.3 + gamma = 0.9 + epsilon = 0.90 + ``` + + यहां, `alpha` **लर्निंग रेट** है जो यह परिभाषित करता है कि हमें प्रत्येक चरण में Q-Table के वर्तमान मानों को किस हद तक समायोजित करना चाहिए। पिछले पाठ में हमने 1 से शुरुआत की थी, और फिर प्रशिक्षण के दौरान `alpha` को कम मानों तक घटा दिया था। इस उदाहरण में हम इसे स्थिर रखेंगे केवल सादगी के लिए, और आप बाद में `alpha` मानों को समायोजित करने के साथ प्रयोग कर सकते हैं। + + `gamma` **डिस्काउंट फैक्टर** है जो यह दिखाता है कि हमें वर्तमान रिवॉर्ड की तुलना में भविष्य के रिवॉर्ड को किस हद तक प्राथमिकता देनी चाहिए। + + `epsilon` **एक्सप्लोरेशन/एक्सप्लॉइटेशन फैक्टर** है जो यह निर्धारित करता है कि हमें एक्सप्लोरेशन को एक्सप्लॉइटेशन पर प्राथमिकता देनी चाहिए या इसके विपरीत। हमारे एल्गोरिदम में, हम `epsilon` प्रतिशत मामलों में Q-Table मानों के अनुसार अगली क्रिया का चयन करेंगे, और शेष मामलों में हम एक रैंडम क्रिया निष्पादित करेंगे। यह हमें खोज स्थान के उन क्षेत्रों का पता लगाने की अनुमति देगा जिन्हें हमने पहले कभी नहीं देखा। + + ✅ बैलेंसिंग के संदर्भ में - रैंडम क्रिया (एक्सप्लोरेशन) चुनना गलत दिशा में एक रैंडम पंच की तरह काम करेगा, और पोल को उन "गलतियों" से बैलेंस को पुनः प्राप्त करना सीखना होगा। + +### एल्गोरिदम में सुधार करें + +हम पिछले पाठ से अपने एल्गोरिदम में दो सुधार कर सकते हैं: + +- **औसत संचयी रिवॉर्ड की गणना करें**, कई सिमुलेशन के दौरान। हम हर 5000 पुनरावृत्तियों पर प्रगति को प्रिंट करेंगे, और उस समय अवधि के दौरान अपने संचयी रिवॉर्ड को औसत करेंगे। इसका मतलब है कि यदि हमें 195 से अधिक अंक मिलते हैं - तो हम समस्या को हल मान सकते हैं, आवश्यक गुणवत्ता से भी अधिक। + +- **अधिकतम औसत संचयी परिणाम की गणना करें**, `Qmax`, और हम उस परिणाम से मेल खाने वाले Q-Table को स्टोर करेंगे। जब आप प्रशिक्षण चलाते हैं तो आप देखेंगे कि कभी-कभी औसत संचयी परिणाम गिरने लगते हैं, और हम प्रशिक्षण के दौरान देखे गए सर्वश्रेष्ठ मॉडल से मेल खाने वाले Q-Table मानों को रखना चाहते हैं। + +1. प्रत्येक सिमुलेशन में सभी संचयी रिवॉर्ड को `rewards` वेक्टर में एकत्र करें ताकि आगे प्लॉटिंग की जा सके। (कोड ब्लॉक 11) + + ```python + def probs(v,eps=1e-4): + v = v-v.min()+eps + v = v/v.sum() + return v + + Qmax = 0 + cum_rewards = [] + rewards = [] + for epoch in range(100000): + obs = env.reset() + done = False + cum_reward=0 + # == do the simulation == + while not done: + s = discretize(obs) + if random.random() Qmax: + Qmax = np.average(cum_rewards) + Qbest = Q + cum_rewards=[] + ``` + +इन परिणामों से आप क्या देख सकते हैं: + +- **हमारे लक्ष्य के करीब**। हम 100+ लगातार सिमुलेशन रन के दौरान 195 संचयी रिवॉर्ड प्राप्त करने के लक्ष्य को प्राप्त करने के बहुत करीब हैं, या हमने वास्तव में इसे प्राप्त कर लिया है! भले ही हमें छोटे नंबर मिलें, हम अभी भी नहीं जानते, क्योंकि हम 5000 रन पर औसत करते हैं, और औपचारिक मानदंड में केवल 100 रन की आवश्यकता होती है। + +- **रिवॉर्ड गिरने लगता है**। कभी-कभी रिवॉर्ड गिरने लगता है, जिसका मतलब है कि हम Q-Table में पहले से सीखे गए मानों को उन मानों से "नष्ट" कर सकते हैं जो स्थिति को खराब बनाते हैं। + +यह अवलोकन अधिक स्पष्ट रूप से दिखाई देता है यदि हम प्रशिक्षण प्रगति को प्लॉट करें। + +## प्रशिक्षण प्रगति का प्लॉट बनाना + +प्रशिक्षण के दौरान, हमने प्रत्येक पुनरावृत्ति में संचयी रिवॉर्ड मान को `rewards` वेक्टर में एकत्र किया। यहां यह कैसा दिखता है जब हम इसे पुनरावृत्ति संख्या के खिलाफ प्लॉट करते हैं: + +```python +plt.plot(rewards) +``` + +![raw progress](../../../../translated_images/train_progress_raw.2adfdf2daea09c596fc786fa347a23e9aceffe1b463e2257d20a9505794823ec.hi.png) + +इस ग्राफ से कुछ भी बताना संभव नहीं है, क्योंकि स्टोकेस्टिक प्रशिक्षण प्रक्रिया की प्रकृति के कारण प्रशिक्षण सत्रों की लंबाई बहुत भिन्न होती है। इस ग्राफ को अधिक समझने योग्य बनाने के लिए, हम 100 प्रयोगों की श्रृंखला पर **रनिंग एवरेज** की गणना कर सकते हैं। इसे `np.convolve` का उपयोग करके सुविधाजनक तरीके से किया जा सकता है: (कोड ब्लॉक 12) + +```python +def running_average(x,window): + return np.convolve(x,np.ones(window)/window,mode='valid') + +plt.plot(running_average(rewards,100)) +``` + +![training progress](../../../../translated_images/train_progress_runav.c71694a8fa9ab35935aff6f109e5ecdfdbdf1b0ae265da49479a81b5fae8f0aa.hi.png) + +## हाइपरपैरामीटर बदलना + +सीखने को अधिक स्थिर बनाने के लिए, प्रशिक्षण के दौरान हमारे कुछ हाइपरपैरामीटर को समायोजित करना समझ में आता है। विशेष रूप से: + +- **लर्निंग रेट के लिए**, `alpha`, हम 1 के करीब मानों से शुरू कर सकते हैं, और फिर पैरामीटर को धीरे-धीरे घटा सकते हैं। समय के साथ, हमें Q-Table में अच्छे प्रायिकता मान मिलेंगे, और इसलिए हमें उन्हें थोड़ा समायोजित करना चाहिए, और नए मानों के साथ पूरी तरह से ओवरराइट नहीं करना चाहिए। + +- **epsilon बढ़ाएं**। हम `epsilon` को धीरे-धीरे बढ़ाना चाह सकते हैं, ताकि कम एक्सप्लोर करें और अधिक एक्सप्लॉइट करें। यह शायद कम `epsilon` मान से शुरू करने और लगभग 1 तक बढ़ने का मतलब रखता है। +> **कार्य 1**: हाइपरपैरामीटर मानों के साथ प्रयोग करें और देखें कि क्या आप उच्च संचयी इनाम प्राप्त कर सकते हैं। क्या आप 195 से ऊपर प्राप्त कर रहे हैं? +> **कार्य 2**: समस्या को औपचारिक रूप से हल करने के लिए, आपको 100 लगातार रन में 195 औसत इनाम प्राप्त करना होगा। प्रशिक्षण के दौरान इसे मापें और सुनिश्चित करें कि आपने समस्या को औपचारिक रूप से हल कर लिया है! + +## परिणाम को क्रियान्वित होते हुए देखना + +यह देखना दिलचस्प होगा कि प्रशिक्षित मॉडल कैसे व्यवहार करता है। चलिए सिमुलेशन चलाते हैं और प्रशिक्षण के दौरान अपनाई गई वही क्रिया चयन रणनीति का पालन करते हैं, Q-Table में संभाव्यता वितरण के अनुसार सैंपलिंग करते हुए: (कोड ब्लॉक 13) + +```python +obs = env.reset() +done = False +while not done: + s = discretize(obs) + env.render() + v = probs(np.array(qvalues(s))) + a = random.choices(actions,weights=v)[0] + obs,_,done,_ = env.step(a) +env.close() +``` + +आपको कुछ ऐसा दिखाई देना चाहिए: + +![एक संतुलन बनाता हुआ कार्टपोल](../../../../8-Reinforcement/2-Gym/images/cartpole-balance.gif) + +--- + +## 🚀चुनौती + +> **कार्य 3**: यहां, हम Q-Table की अंतिम प्रति का उपयोग कर रहे थे, जो शायद सबसे अच्छी न हो। याद रखें कि हमने सबसे अच्छा प्रदर्शन करने वाले Q-Table को `Qbest` वेरिएबल में संग्रहीत किया है! `Qbest` को `Q` पर कॉपी करके उसी उदाहरण को आज़माएं और देखें कि क्या आप कोई अंतर महसूस करते हैं। + +> **कार्य 4**: यहां हम प्रत्येक चरण पर सबसे अच्छी क्रिया का चयन नहीं कर रहे थे, बल्कि संबंधित संभाव्यता वितरण के साथ सैंपलिंग कर रहे थे। क्या यह अधिक समझदारी होगी कि हमेशा सबसे अच्छी क्रिया का चयन करें, जिसमें Q-Table का सबसे उच्च मान हो? यह `np.argmax` फ़ंक्शन का उपयोग करके किया जा सकता है, जो उच्चतम Q-Table मान के अनुरूप क्रिया संख्या का पता लगाता है। इस रणनीति को लागू करें और देखें कि क्या यह संतुलन में सुधार करता है। + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/48/) + +## असाइनमेंट +[माउंटेन कार को प्रशिक्षित करें](assignment.md) + +## निष्कर्ष + +अब हमने यह सीख लिया है कि एजेंट्स को अच्छे परिणाम प्राप्त करने के लिए कैसे प्रशिक्षित किया जाए, केवल उन्हें एक इनाम फ़ंक्शन प्रदान करके जो खेल की वांछित स्थिति को परिभाषित करता है, और उन्हें खोज स्थान को बुद्धिमानी से एक्सप्लोर करने का अवसर देकर। हमने Q-Learning एल्गोरिदम को डिस्क्रीट और कंटीन्युअस वातावरण के मामलों में सफलतापूर्वक लागू किया है, लेकिन डिस्क्रीट क्रियाओं के साथ। + +यह भी अध्ययन करना महत्वपूर्ण है कि जब क्रिया स्थिति भी कंटीन्युअस हो और जब अवलोकन स्थान अधिक जटिल हो, जैसे कि एटारी गेम स्क्रीन की छवि। इन समस्याओं में अक्सर अच्छे परिणाम प्राप्त करने के लिए अधिक शक्तिशाली मशीन लर्निंग तकनीकों, जैसे कि न्यूरल नेटवर्क, का उपयोग करना आवश्यक होता है। ये अधिक उन्नत विषय हमारे आगामी उन्नत AI पाठ्यक्रम का विषय हैं। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/2-Gym/assignment.md b/translations/hi/8-Reinforcement/2-Gym/assignment.md new file mode 100644 index 000000000..c62219ea7 --- /dev/null +++ b/translations/hi/8-Reinforcement/2-Gym/assignment.md @@ -0,0 +1,57 @@ + +# माउंटेन कार को प्रशिक्षित करें + +[OpenAI Gym](http://gym.openai.com) को इस तरह से डिज़ाइन किया गया है कि सभी वातावरण एक ही API प्रदान करते हैं - जैसे कि वही विधियां `reset`, `step` और `render`, और **क्रिया स्थान** और **अवलोकन स्थान** की समान अमूर्तताएं। इसलिए, यह संभव होना चाहिए कि एक ही सुदृढीकरण शिक्षण एल्गोरिदम को न्यूनतम कोड परिवर्तनों के साथ विभिन्न वातावरणों में अनुकूलित किया जा सके। + +## माउंटेन कार का वातावरण + +[माउंटेन कार वातावरण](https://gym.openai.com/envs/MountainCar-v0/) में एक कार एक घाटी में फंसी हुई है: + +इसका लक्ष्य घाटी से बाहर निकलना और झंडे को पकड़ना है, प्रत्येक चरण में निम्नलिखित कार्यों में से एक को करके: + +| मान | अर्थ | +|---|---| +| 0 | बाईं ओर तेज करें | +| 1 | तेज न करें | +| 2 | दाईं ओर तेज करें | + +हालांकि, इस समस्या की मुख्य चाल यह है कि कार का इंजन एक ही प्रयास में पहाड़ पर चढ़ने के लिए पर्याप्त शक्तिशाली नहीं है। इसलिए, सफल होने का एकमात्र तरीका यह है कि गति प्राप्त करने के लिए आगे-पीछे ड्राइव करें। + +अवलोकन स्थान में केवल दो मान होते हैं: + +| संख्या | अवलोकन | न्यूनतम | अधिकतम | +|-----|--------------|-----|-----| +| 0 | कार की स्थिति | -1.2| 0.6 | +| 1 | कार की गति | -0.07 | 0.07 | + +माउंटेन कार के लिए पुरस्कार प्रणाली थोड़ी जटिल है: + + * यदि एजेंट ने पहाड़ के ऊपर झंडे (स्थिति = 0.5) तक पहुंच बना ली है, तो 0 का पुरस्कार दिया जाता है। + * यदि एजेंट की स्थिति 0.5 से कम है, तो -1 का पुरस्कार दिया जाता है। + +एपिसोड समाप्त हो जाता है यदि कार की स्थिति 0.5 से अधिक हो जाती है, या एपिसोड की लंबाई 200 से अधिक हो जाती है। + +## निर्देश + +हमारे सुदृढीकरण शिक्षण एल्गोरिदम को माउंटेन कार समस्या को हल करने के लिए अनुकूलित करें। मौजूदा [notebook.ipynb](notebook.ipynb) कोड से शुरू करें, नए वातावरण को प्रतिस्थापित करें, स्थिति विवेचन कार्यों को बदलें, और मौजूदा एल्गोरिदम को न्यूनतम कोड संशोधनों के साथ प्रशिक्षित करने का प्रयास करें। हाइपरपैरामीटर समायोजित करके परिणाम को अनुकूलित करें। + +> **नोट**: एल्गोरिदम को अभिसरण कराने के लिए हाइपरपैरामीटर समायोजन की आवश्यकता हो सकती है। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | --------- | -------- | ----------------- | +| | Q-लर्निंग एल्गोरिदम को सफलतापूर्वक CartPole उदाहरण से न्यूनतम कोड संशोधनों के साथ अनुकूलित किया गया है, जो 200 चरणों के भीतर झंडे को पकड़ने की समस्या को हल करने में सक्षम है। | एक नया Q-लर्निंग एल्गोरिदम इंटरनेट से अपनाया गया है, लेकिन अच्छी तरह से प्रलेखित है; या मौजूदा एल्गोरिदम अपनाया गया है, लेकिन वांछित परिणाम प्राप्त नहीं करता है। | छात्र किसी भी एल्गोरिदम को सफलतापूर्वक अपनाने में सक्षम नहीं था, लेकिन समाधान की दिशा में महत्वपूर्ण कदम उठाए हैं (स्थिति विवेचन, Q-टेबल डेटा संरचना, आदि को लागू किया)। | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/2-Gym/notebook.ipynb b/translations/hi/8-Reinforcement/2-Gym/notebook.ipynb new file mode 100644 index 000000000..80d3bca79 --- /dev/null +++ b/translations/hi/8-Reinforcement/2-Gym/notebook.ipynb @@ -0,0 +1,392 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.4 64-bit ('base': conda)" + }, + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "coopTranslator": { + "original_hash": "f22f8f3daed4b6d34648d1254763105b", + "translation_date": "2025-09-04T03:06:41+00:00", + "source_file": "8-Reinforcement/2-Gym/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## कार्टपोल स्केटिंग\n", + "\n", + "> **समस्या**: अगर पीटर को भेड़िये से बचना है, तो उसे उससे तेज़ चलने में सक्षम होना होगा। हम देखेंगे कि पीटर स्केट करना कैसे सीख सकता है, विशेष रूप से संतुलन बनाए रखना, Q-लर्निंग का उपयोग करके।\n", + "\n", + "सबसे पहले, जिम को इंस्टॉल करें और आवश्यक लाइब्रेरीज़ को इंपोर्ट करें:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 1" + ] + }, + { + "source": [ + "## एक कार्टपोल वातावरण बनाएं\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 2" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "यह देखने के लिए कि पर्यावरण कैसे काम करता है, चलिए 100 चरणों के लिए एक छोटी सिमुलेशन चलाते हैं।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "सिमुलेशन के दौरान, हमें यह तय करने के लिए अवलोकन प्राप्त करने की आवश्यकता होती है कि कैसे कार्य करना है। वास्तव में, `step` फ़ंक्शन हमें वर्तमान अवलोकन, इनाम फ़ंक्शन, और `done` फ्लैग वापस देता है जो यह संकेत करता है कि सिमुलेशन जारी रखना समझदारी है या नहीं:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 4" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "हम उन संख्याओं का न्यूनतम और अधिकतम मान प्राप्त कर सकते हैं:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "#code block 5" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 6" + ] + }, + { + "source": [ + "चलो बिन्स का उपयोग करके अन्य विविक्तकरण विधि का भी अन्वेषण करें:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "#code block 7" + ] + }, + { + "source": [ + "चलो अब एक छोटी सिमुलेशन चलाते हैं और उन विविक्त पर्यावरण मानों को देखते हैं।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -2, -2)\n(0, 1, -2, -5)\n(0, 2, -3, -8)\n(0, 3, -5, -11)\n(0, 3, -7, -14)\n(0, 4, -10, -17)\n(0, 3, -14, -15)\n(0, 3, -17, -12)\n(0, 3, -20, -16)\n(0, 4, -23, -19)\n" + ] + } + ], + "source": [ + "#code block 8" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 9" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 10" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 22.0, alpha=0.3, epsilon=0.9\n", + "5000: 70.1384, alpha=0.3, epsilon=0.9\n", + "10000: 121.8586, alpha=0.3, epsilon=0.9\n", + "15000: 149.6368, alpha=0.3, epsilon=0.9\n", + "20000: 168.2782, alpha=0.3, epsilon=0.9\n", + "25000: 196.7356, alpha=0.3, epsilon=0.9\n", + "30000: 220.7614, alpha=0.3, epsilon=0.9\n", + "35000: 233.2138, alpha=0.3, epsilon=0.9\n", + "40000: 248.22, alpha=0.3, epsilon=0.9\n", + "45000: 264.636, alpha=0.3, epsilon=0.9\n", + "50000: 276.926, alpha=0.3, epsilon=0.9\n", + "55000: 277.9438, alpha=0.3, epsilon=0.9\n", + "60000: 248.881, alpha=0.3, epsilon=0.9\n", + "65000: 272.529, alpha=0.3, epsilon=0.9\n", + "70000: 281.7972, alpha=0.3, epsilon=0.9\n", + "75000: 284.2844, alpha=0.3, epsilon=0.9\n", + "80000: 269.667, alpha=0.3, epsilon=0.9\n", + "85000: 273.8652, alpha=0.3, epsilon=0.9\n", + "90000: 278.2466, alpha=0.3, epsilon=0.9\n", + "95000: 269.1736, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "#code block 11" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "इस ग्राफ से कुछ भी बताना संभव नहीं है, क्योंकि स्टोकेस्टिक प्रशिक्षण प्रक्रिया की प्रकृति के कारण प्रशिक्षण सत्रों की लंबाई में बहुत भिन्नता होती है। इस ग्राफ को अधिक समझने के लिए, हम प्रयोगों की श्रृंखला पर **चलती औसत** की गणना कर सकते हैं, मान लीजिए 100। इसे `np.convolve` का उपयोग करके आसानी से किया जा सकता है:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "#code block 12" + ] + }, + { + "source": [ + "## हाइपरपैरामीटर्स को बदलना और परिणाम को क्रियान्वित होते देखना\n", + "\n", + "अब यह देखना दिलचस्प होगा कि प्रशिक्षित मॉडल वास्तव में कैसे व्यवहार करता है। चलिए सिमुलेशन चलाते हैं, और हम वही कार्रवाई चयन रणनीति अपनाएंगे जो प्रशिक्षण के दौरान अपनाई गई थी: Q-टेबल में संभावना वितरण के अनुसार सैंपलिंग।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 13" + ] + }, + { + "source": [ + "## परिणाम को एनिमेटेड GIF में सेव करना\n", + "\n", + "अगर आप अपने दोस्तों को प्रभावित करना चाहते हैं, तो आप बैलेंसिंग पोल की एनिमेटेड GIF तस्वीर भेज सकते हैं। ऐसा करने के लिए, हम `env.render` का उपयोग करके एक इमेज फ्रेम बना सकते हैं, और फिर उन्हें PIL लाइब्रेरी का उपयोग करके एनिमेटेड GIF में सेव कर सकते हैं:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/2-Gym/solution/Julia/README.md b/translations/hi/8-Reinforcement/2-Gym/solution/Julia/README.md new file mode 100644 index 000000000..42f4219d2 --- /dev/null +++ b/translations/hi/8-Reinforcement/2-Gym/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/2-Gym/solution/R/README.md b/translations/hi/8-Reinforcement/2-Gym/solution/R/README.md new file mode 100644 index 000000000..837070572 --- /dev/null +++ b/translations/hi/8-Reinforcement/2-Gym/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/2-Gym/solution/notebook.ipynb b/translations/hi/8-Reinforcement/2-Gym/solution/notebook.ipynb new file mode 100644 index 000000000..83347b37c --- /dev/null +++ b/translations/hi/8-Reinforcement/2-Gym/solution/notebook.ipynb @@ -0,0 +1,524 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "5c0e485e58d63c506f1791c4dbf990ce", + "translation_date": "2025-09-04T03:09:16+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/notebook.ipynb", + "language_code": "hi" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## कार्टपोल स्केटिंग\n", + "\n", + "> **समस्या**: अगर पीटर को भेड़िये से बचना है, तो उसे उससे तेज़ चलने में सक्षम होना होगा। हम देखेंगे कि पीटर स्केट करना कैसे सीख सकता है, विशेष रूप से संतुलन बनाए रखना, Q-लर्निंग का उपयोग करके।\n", + "\n", + "सबसे पहले, जिम को इंस्टॉल करें और आवश्यक लाइब्रेरीज़ को इम्पोर्ट करें:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: gym in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.18.3)\n", + "Requirement already satisfied: Pillow<=8.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (7.0.0)\n", + "Requirement already satisfied: scipy in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.10.4 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.19.2)\n", + "Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.6.0)\n", + "Requirement already satisfied: pyglet<=1.5.15,>=1.4.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.5.15)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n" + ] + } + ], + "source": [ + "import sys\n", + "!pip install gym \n", + "\n", + "import gym\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random" + ] + }, + { + "source": [ + "## एक कार्टपोल वातावरण बनाएं\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env = gym.make(\"CartPole-v1\")\n", + "print(env.action_space)\n", + "print(env.observation_space)\n", + "print(env.action_space.sample())" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Discrete(2)\nBox(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)\n0\n" + ] + } + ] + }, + { + "source": [ + "यह देखने के लिए कि पर्यावरण कैसे काम करता है, चलिए 100 चरणों के लिए एक छोटी सिमुलेशन चलाते हैं।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "for i in range(100):\n", + " env.render()\n", + " env.step(env.action_space.sample())\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/gym/logger.py:30: UserWarning: \u001b[33mWARN: You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.\u001b[0m\n warnings.warn(colorize('%s: %s'%('WARN', msg % args), 'yellow'))\n" + ] + } + ] + }, + { + "source": [ + "सिमुलेशन के दौरान, हमें यह तय करने के लिए अवलोकन प्राप्त करने की आवश्यकता होती है कि कैसे कार्य करना है। वास्तव में, `step` फ़ंक्शन हमें वर्तमान अवलोकन, इनाम फ़ंक्शन, और `done` फ्लैग वापस देता है जो यह संकेत करता है कि सिमुलेशन जारी रखना समझदारी है या नहीं:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " print(f\"{obs} -> {rew}\")\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[ 0.03044442 -0.19543914 -0.04496216 0.28125618] -> 1.0\n", + "[ 0.02653564 -0.38989186 -0.03933704 0.55942606] -> 1.0\n", + "[ 0.0187378 -0.19424049 -0.02814852 0.25461393] -> 1.0\n", + "[ 0.01485299 -0.38894946 -0.02305624 0.53828712] -> 1.0\n", + "[ 0.007074 -0.19351108 -0.0122905 0.23842953] -> 1.0\n", + "[ 0.00320378 0.00178427 -0.00752191 -0.05810469] -> 1.0\n", + "[ 0.00323946 0.19701326 -0.008684 -0.35315131] -> 1.0\n", + "[ 0.00717973 0.00201587 -0.01574703 -0.06321931] -> 1.0\n", + "[ 0.00722005 0.19736001 -0.01701141 -0.36082863] -> 1.0\n", + "[ 0.01116725 0.39271958 -0.02422798 -0.65882671] -> 1.0\n", + "[ 0.01902164 0.19794307 -0.03740452 -0.37387001] -> 1.0\n", + "[ 0.0229805 0.39357584 -0.04488192 -0.67810827] -> 1.0\n", + "[ 0.03085202 0.58929164 -0.05844408 -0.98457719] -> 1.0\n", + "[ 0.04263785 0.78514572 -0.07813563 -1.2950295 ] -> 1.0\n", + "[ 0.05834076 0.98116859 -0.10403622 -1.61111521] -> 1.0\n", + "[ 0.07796413 0.78741784 -0.13625852 -1.35259196] -> 1.0\n", + "[ 0.09371249 0.98396202 -0.16331036 -1.68461179] -> 1.0\n", + "[ 0.11339173 0.79106371 -0.1970026 -1.44691436] -> 1.0\n", + "[ 0.12921301 0.59883361 -0.22594088 -1.22169133] -> 1.0\n" + ] + } + ] + }, + { + "source": [ + "हम उन संख्याओं का न्यूनतम और अधिकतम मान प्राप्त कर सकते हैं:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "print(env.observation_space.low)\n", + "print(env.observation_space.high)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def discretize(x):\n", + " return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int))" + ] + }, + { + "source": [ + "चलो बिन्स का उपयोग करके अन्य विविक्तकरण विधि का भी अन्वेषण करें:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "def create_bins(i,num):\n", + " return np.arange(num+1)*(i[1]-i[0])/num+i[0]\n", + "\n", + "print(\"Sample bins for interval (-5,5) with 10 bins\\n\",create_bins((-5,5),10))\n", + "\n", + "ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter\n", + "nbins = [20,20,10,10] # number of bins for each parameter\n", + "bins = [create_bins(ints[i],nbins[i]) for i in range(4)]\n", + "\n", + "def discretize_bins(x):\n", + " return tuple(np.digitize(x[i],bins[i]) for i in range(4))" + ] + }, + { + "source": [ + "चलो अब एक छोटी सिमुलेशन चलाते हैं और उन विशिष्ट पर्यावरण मानों को देखते हैं।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -1, -3)\n(0, 0, -2, 0)\n(0, 0, -2, -3)\n(0, 1, -3, -6)\n(0, 2, -4, -9)\n(0, 3, -6, -12)\n(0, 2, -8, -9)\n(0, 3, -10, -13)\n(0, 4, -13, -16)\n(0, 4, -16, -19)\n(0, 4, -20, -17)\n(0, 4, -24, -20)\n" + ] + } + ], + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " #env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " #print(discretize_bins(obs))\n", + " print(discretize(obs))\n", + "env.close()" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "Q = {}\n", + "actions = (0,1)\n", + "\n", + "def qvalues(state):\n", + " return [Q.get((state,a),0) for a in actions]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# hyperparameters\n", + "alpha = 0.3\n", + "gamma = 0.9\n", + "epsilon = 0.90" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 108.0, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v\n", + "\n", + "Qmax = 0\n", + "cum_rewards = []\n", + "rewards = []\n", + "for epoch in range(100000):\n", + " obs = env.reset()\n", + " done = False\n", + " cum_reward=0\n", + " # == do the simulation ==\n", + " while not done:\n", + " s = discretize(obs)\n", + " if random.random() Qmax:\n", + " Qmax = np.average(cum_rewards)\n", + " Qbest = Q\n", + " cum_rewards=[]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "इस ग्राफ से कुछ भी बताना संभव नहीं है, क्योंकि स्टोकेस्टिक प्रशिक्षण प्रक्रिया की प्रकृति के कारण प्रशिक्षण सत्रों की लंबाई में बहुत भिन्नता होती है। इस ग्राफ को अधिक समझने के लिए, हम प्रयोगों की श्रृंखला पर **चलती औसत** की गणना कर सकते हैं, मान लीजिए 100। इसे `np.convolve` का उपयोग करके आसानी से किया जा सकता है:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "def running_average(x,window):\n", + " return np.convolve(x,np.ones(window)/window,mode='valid')\n", + "\n", + "plt.plot(running_average(rewards,100))" + ] + }, + { + "source": [ + "## हाइपरपैरामीटर्स को बदलना और परिणाम को क्रियान्वित होते देखना\n", + "\n", + "अब यह देखना दिलचस्प होगा कि प्रशिक्षित मॉडल वास्तव में कैसे व्यवहार करता है। चलिए सिमुलेशन चलाते हैं, और हम वही कार्रवाई चयन रणनीति अपनाएंगे जो प्रशिक्षण के दौरान अपनाई गई थी: Q-Table में संभाव्यता वितरण के अनुसार सैंपलिंग।\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "obs = env.reset()\n", + "done = False\n", + "while not done:\n", + " s = discretize(obs)\n", + " env.render()\n", + " v = probs(np.array(qvalues(s)))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + "env.close()" + ] + }, + { + "source": [ + "## परिणाम को एनिमेटेड GIF में सेव करना\n", + "\n", + "अगर आप अपने दोस्तों को प्रभावित करना चाहते हैं, तो आप बैलेंसिंग पोल की एनिमेटेड GIF तस्वीर भेज सकते हैं। ऐसा करने के लिए, हम `env.render` का उपयोग करके एक इमेज फ्रेम बना सकते हैं, और फिर उन्हें PIL लाइब्रेरी का उपयोग करके एनिमेटेड GIF में सेव कर सकते हैं:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/8-Reinforcement/README.md b/translations/hi/8-Reinforcement/README.md new file mode 100644 index 000000000..d50728361 --- /dev/null +++ b/translations/hi/8-Reinforcement/README.md @@ -0,0 +1,67 @@ + +# परिचय: रिइनफोर्समेंट लर्निंग + +रिइनफोर्समेंट लर्निंग (RL) को मशीन लर्निंग के तीन मुख्य दृष्टिकोणों में से एक माना जाता है, अन्य दो हैं सुपरवाइज्ड लर्निंग और अनसुपरवाइज्ड लर्निंग। RL निर्णय लेने पर आधारित है: सही निर्णय लेना या कम से कम उनसे सीखना। + +कल्पना करें कि आपके पास एक सिम्युलेटेड वातावरण है, जैसे कि शेयर बाजार। यदि आप कोई विशेष नियम लागू करते हैं, तो क्या इसका सकारात्मक या नकारात्मक प्रभाव पड़ता है? यदि कुछ नकारात्मक होता है, तो आपको इस _नकारात्मक रिइनफोर्समेंट_ से सीखना होगा और अपनी दिशा बदलनी होगी। यदि परिणाम सकारात्मक है, तो आपको उस _सकारात्मक रिइनफोर्समेंट_ पर आगे बढ़ना होगा। + +![पीटर और भेड़िया](../../../translated_images/peter.779730f9ba3a8a8d9290600dcf55f2e491c0640c785af7ac0d64f583c49b8864.hi.png) + +> पीटर और उसके दोस्त भूखे भेड़िये से बचने की कोशिश कर रहे हैं! छवि: [जेन लूपर](https://twitter.com/jenlooper) + +## क्षेत्रीय विषय: पीटर और भेड़िया (रूस) + +[पीटर और भेड़िया](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) एक संगीत परीकथा है जिसे रूसी संगीतकार [सर्गेई प्रोकोफिएव](https://en.wikipedia.org/wiki/Sergei_Prokofiev) ने लिखा था। यह कहानी युवा पायनियर पीटर की है, जो बहादुरी से अपने घर से बाहर निकलकर जंगल में भेड़िये का पीछा करता है। इस खंड में, हम मशीन लर्निंग एल्गोरिदम को प्रशिक्षित करेंगे जो पीटर की मदद करेंगे: + +- **आसपास के क्षेत्र का पता लगाएं** और एक आदर्श नेविगेशन मानचित्र बनाएं। +- **स्केटबोर्ड का उपयोग करना और उस पर संतुलन बनाना सीखें**, ताकि वह तेजी से घूम सके। + +[![पीटर और भेड़िया](https://img.youtube.com/vi/Fmi5zHg4QSM/0.jpg)](https://www.youtube.com/watch?v=Fmi5zHg4QSM) + +> 🎥 ऊपर दी गई छवि पर क्लिक करें और प्रोकोफिएव द्वारा "पीटर और भेड़िया" सुनें। + +## रिइनफोर्समेंट लर्निंग + +पिछले खंडों में, आपने मशीन लर्निंग समस्याओं के दो उदाहरण देखे: + +- **सुपरवाइज्ड**, जहां हमारे पास डेटा सेट होते हैं जो उस समस्या के संभावित समाधान सुझाते हैं जिसे हम हल करना चाहते हैं। [क्लासिफिकेशन](../4-Classification/README.md) और [रेग्रेशन](../2-Regression/README.md) सुपरवाइज्ड लर्निंग कार्य हैं। +- **अनसुपरवाइज्ड**, जिसमें हमारे पास लेबल वाले प्रशिक्षण डेटा नहीं होते। अनसुपरवाइज्ड लर्निंग का मुख्य उदाहरण [क्लस्टरिंग](../5-Clustering/README.md) है। + +इस खंड में, हम आपको एक नए प्रकार की लर्निंग समस्या से परिचित कराएंगे, जिसमें लेबल वाले प्रशिक्षण डेटा की आवश्यकता नहीं होती। ऐसी समस्याओं के कई प्रकार होते हैं: + +- **[सेमी-सुपरवाइज्ड लर्निंग](https://wikipedia.org/wiki/Semi-supervised_learning)**, जहां हमारे पास बहुत सारा अनलेबल्ड डेटा होता है जिसे मॉडल को प्री-ट्रेन करने के लिए उपयोग किया जा सकता है। +- **[रिइनफोर्समेंट लर्निंग](https://wikipedia.org/wiki/Reinforcement_learning)**, जिसमें एक एजेंट सिम्युलेटेड वातावरण में प्रयोग करके व्यवहार करना सीखता है। + +### उदाहरण - कंप्यूटर गेम + +मान लीजिए आप कंप्यूटर को कोई गेम खेलना सिखाना चाहते हैं, जैसे कि शतरंज या [सुपर मारियो](https://wikipedia.org/wiki/Super_Mario)। कंप्यूटर को गेम खेलने के लिए, हमें यह सिखाना होगा कि गेम के प्रत्येक स्थिति में कौन सा कदम उठाना है। हालांकि यह एक क्लासिफिकेशन समस्या जैसा लग सकता है, लेकिन ऐसा नहीं है - क्योंकि हमारे पास गेम की स्थितियों और उनके संबंधित क्रियाओं का डेटा सेट नहीं है। हालांकि हमारे पास कुछ डेटा हो सकता है, जैसे कि मौजूदा शतरंज मैच या सुपर मारियो खेलने वाले खिलाड़ियों की रिकॉर्डिंग, लेकिन यह डेटा संभवतः पर्याप्त संख्या में संभावित स्थितियों को कवर नहीं करेगा। + +मौजूदा गेम डेटा की तलाश करने के बजाय, **रिइनफोर्समेंट लर्निंग** (RL) इस विचार पर आधारित है कि *कंप्यूटर को बार-बार गेम खेलने दें* और परिणामों का अवलोकन करें। इसलिए, रिइनफोर्समेंट लर्निंग लागू करने के लिए हमें दो चीजों की आवश्यकता होती है: + +- **एक वातावरण** और **एक सिम्युलेटर**, जो हमें बार-बार गेम खेलने की अनुमति देता है। यह सिम्युलेटर सभी गेम नियमों, संभावित स्थितियों और क्रियाओं को परिभाषित करेगा। + +- **एक रिवॉर्ड फंक्शन**, जो हमें प्रत्येक कदम या गेम के दौरान हमारे प्रदर्शन के बारे में बताएगा। + +अन्य प्रकार की मशीन लर्निंग और RL के बीच मुख्य अंतर यह है कि RL में हमें आमतौर पर यह नहीं पता होता कि हम जीतेंगे या हारेंगे जब तक कि गेम समाप्त न हो जाए। इसलिए, हम यह नहीं कह सकते कि कोई विशेष कदम अकेले अच्छा है या नहीं - हमें केवल गेम के अंत में रिवॉर्ड मिलता है। और हमारा लक्ष्य ऐसे एल्गोरिदम डिज़ाइन करना है जो हमें अनिश्चित परिस्थितियों में मॉडल को प्रशिक्षित करने की अनुमति दें। हम एक RL एल्गोरिदम के बारे में सीखेंगे जिसे **Q-लर्निंग** कहा जाता है। + +## पाठ + +1. [रिइनफोर्समेंट लर्निंग और Q-लर्निंग का परिचय](1-QLearning/README.md) +2. [जिम सिम्युलेशन वातावरण का उपयोग करना](2-Gym/README.md) + +## क्रेडिट्स + +"रिइनफोर्समेंट लर्निंग का परिचय" को ♥️ के साथ [दिमित्री सॉश्निकोव](http://soshnikov.com) द्वारा लिखा गया है। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/9-Real-World/1-Applications/README.md b/translations/hi/9-Real-World/1-Applications/README.md new file mode 100644 index 000000000..1c237131b --- /dev/null +++ b/translations/hi/9-Real-World/1-Applications/README.md @@ -0,0 +1,159 @@ + +# पोस्टस्क्रिप्ट: वास्तविक दुनिया में मशीन लर्निंग + +![वास्तविक दुनिया में मशीन लर्निंग का सारांश एक स्केच नोट में](../../../../translated_images/ml-realworld.26ee2746716155771f8076598b6145e6533fe4a9e2e465ea745f46648cbf1b84.hi.png) +> स्केच नोट: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +इस पाठ्यक्रम में, आपने डेटा को प्रशिक्षण के लिए तैयार करने और मशीन लर्निंग मॉडल बनाने के कई तरीके सीखे। आपने क्लासिक रिग्रेशन, क्लस्टरिंग, क्लासिफिकेशन, प्राकृतिक भाषा प्रसंस्करण और टाइम सीरीज़ मॉडल की एक श्रृंखला बनाई। बधाई हो! अब, आप सोच रहे होंगे कि यह सब किसके लिए है... इन मॉडलों के वास्तविक दुनिया में क्या उपयोग हैं? + +हालांकि उद्योग में एआई, जो आमतौर पर डीप लर्निंग का उपयोग करता है, ने बहुत रुचि प्राप्त की है, फिर भी क्लासिकल मशीन लर्निंग मॉडलों के लिए मूल्यवान अनुप्रयोग हैं। आप आज भी इनमें से कुछ अनुप्रयोगों का उपयोग कर सकते हैं! इस पाठ में, आप देखेंगे कि कैसे आठ अलग-अलग उद्योग और विषय-क्षेत्र इन प्रकार के मॉडलों का उपयोग अपने अनुप्रयोगों को अधिक प्रदर्शनकारी, विश्वसनीय, बुद्धिमान और उपयोगकर्ताओं के लिए मूल्यवान बनाने के लिए करते हैं। + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/49/) + +## 💰 वित्त + +वित्तीय क्षेत्र मशीन लर्निंग के लिए कई अवसर प्रदान करता है। इस क्षेत्र की कई समस्याएं एमएल का उपयोग करके मॉडल और हल की जा सकती हैं। + +### क्रेडिट कार्ड धोखाधड़ी का पता लगाना + +हमने पाठ्यक्रम में पहले [k-means क्लस्टरिंग](../../5-Clustering/2-K-Means/README.md) के बारे में सीखा, लेकिन इसे क्रेडिट कार्ड धोखाधड़ी से संबंधित समस्याओं को हल करने के लिए कैसे उपयोग किया जा सकता है? + +k-means क्लस्टरिंग क्रेडिट कार्ड धोखाधड़ी का पता लगाने की तकनीक में उपयोगी है जिसे **आउटलायर डिटेक्शन** कहा जाता है। आउटलायर, या डेटा के एक सेट के बारे में अवलोकनों में विचलन, हमें बता सकते हैं कि क्रेडिट कार्ड सामान्य रूप से उपयोग किया जा रहा है या कुछ असामान्य हो रहा है। नीचे दिए गए पेपर में दिखाया गया है कि आप k-means क्लस्टरिंग एल्गोरिदम का उपयोग करके क्रेडिट कार्ड डेटा को सॉर्ट कर सकते हैं और प्रत्येक लेनदेन को क्लस्टर में असाइन कर सकते हैं कि यह कितना आउटलायर प्रतीत होता है। फिर, आप धोखाधड़ी बनाम वैध लेनदेन के लिए सबसे जोखिम भरे क्लस्टर का मूल्यांकन कर सकते हैं। +[संदर्भ](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.680.1195&rep=rep1&type=pdf) + +### वेल्थ मैनेजमेंट + +वेल्थ मैनेजमेंट में, एक व्यक्ति या फर्म अपने ग्राहकों की ओर से निवेश संभालता है। उनका काम दीर्घकालिक रूप से धन को बनाए रखना और बढ़ाना है, इसलिए यह आवश्यक है कि वे ऐसे निवेश चुनें जो अच्छा प्रदर्शन करें। + +किसी विशेष निवेश के प्रदर्शन का मूल्यांकन करने का एक तरीका सांख्यिकीय रिग्रेशन के माध्यम से है। [लिनियर रिग्रेशन](../../2-Regression/1-Tools/README.md) यह समझने के लिए एक मूल्यवान उपकरण है कि कोई फंड किसी बेंचमार्क के सापेक्ष कैसा प्रदर्शन करता है। हम यह भी निष्कर्ष निकाल सकते हैं कि रिग्रेशन के परिणाम सांख्यिकीय रूप से महत्वपूर्ण हैं या वे ग्राहक के निवेश को कितना प्रभावित करेंगे। आप अपने विश्लेषण को मल्टीपल रिग्रेशन का उपयोग करके और भी विस्तारित कर सकते हैं, जहां अतिरिक्त जोखिम कारकों को ध्यान में रखा जा सकता है। यह कैसे काम करेगा, इसके एक उदाहरण के लिए, नीचे दिए गए पेपर को देखें जो रिग्रेशन का उपयोग करके फंड प्रदर्शन का मूल्यांकन करता है। +[संदर्भ](http://www.brightwoodventures.com/evaluating-fund-performance-using-regression/) + +## 🎓 शिक्षा + +शिक्षा क्षेत्र भी एक बहुत ही दिलचस्प क्षेत्र है जहां एमएल लागू किया जा सकता है। यहां दिलचस्प समस्याएं हैं जैसे परीक्षाओं या निबंधों में धोखाधड़ी का पता लगाना या सुधार प्रक्रिया में पूर्वाग्रह को प्रबंधित करना, चाहे वह जानबूझकर हो या नहीं। + +### छात्र व्यवहार की भविष्यवाणी करना + +[Coursera](https://coursera.com), एक ऑनलाइन ओपन कोर्स प्रदाता, का एक शानदार टेक ब्लॉग है जहां वे कई इंजीनियरिंग निर्णयों पर चर्चा करते हैं। इस केस स्टडी में, उन्होंने एक रिग्रेशन लाइन को प्लॉट किया ताकि यह पता लगाया जा सके कि कम NPS (नेट प्रमोटर स्कोर) रेटिंग और कोर्स रिटेंशन या ड्रॉप-ऑफ के बीच कोई संबंध है या नहीं। +[संदर्भ](https://medium.com/coursera-engineering/controlled-regression-quantifying-the-impact-of-course-quality-on-learner-retention-31f956bd592a) + +### पूर्वाग्रह को कम करना + +[Grammarly](https://grammarly.com), एक लेखन सहायक जो वर्तनी और व्याकरण की त्रुटियों की जांच करता है, अपने उत्पादों में परिष्कृत [प्राकृतिक भाषा प्रसंस्करण प्रणालियों](../../6-NLP/README.md) का उपयोग करता है। उन्होंने अपने टेक ब्लॉग में एक दिलचस्प केस स्टडी प्रकाशित की कि उन्होंने मशीन लर्निंग में जेंडर पूर्वाग्रह से कैसे निपटा, जिसे आपने हमारे [परिचयात्मक निष्पक्षता पाठ](../../1-Introduction/3-fairness/README.md) में सीखा। +[संदर्भ](https://www.grammarly.com/blog/engineering/mitigating-gender-bias-in-autocorrect/) + +## 👜 रिटेल + +रिटेल क्षेत्र निश्चित रूप से एमएल का उपयोग करके लाभ उठा सकता है, ग्राहक यात्रा को बेहतर बनाने से लेकर इन्वेंट्री को इष्टतम तरीके से स्टॉक करने तक। + +### ग्राहक यात्रा को व्यक्तिगत बनाना + +Wayfair, एक कंपनी जो फर्नीचर जैसे घरेलू सामान बेचती है, ग्राहकों को उनके स्वाद और जरूरतों के लिए सही उत्पाद खोजने में मदद करना बहुत महत्वपूर्ण मानती है। इस लेख में, कंपनी के इंजीनियर बताते हैं कि वे एमएल और एनएलपी का उपयोग कैसे करते हैं ताकि "ग्राहकों के लिए सही परिणाम प्रस्तुत किए जा सकें"। विशेष रूप से, उनका क्वेरी इंटेंट इंजन ग्राहक समीक्षाओं पर एंटिटी एक्सट्रैक्शन, क्लासिफायर ट्रेनिंग, एसेट और ओपिनियन एक्सट्रैक्शन, और सेंटिमेंट टैगिंग का उपयोग करता है। यह ऑनलाइन रिटेल में एनएलपी के काम करने का एक क्लासिक उपयोग मामला है। +[संदर्भ](https://www.aboutwayfair.com/tech-innovation/how-we-use-machine-learning-and-natural-language-processing-to-empower-search) + +### इन्वेंट्री प्रबंधन + +[StitchFix](https://stitchfix.com), एक बॉक्स सेवा जो उपभोक्ताओं को कपड़े भेजती है, जैसे अभिनव और तेज़ कंपनियां सिफारिशों और इन्वेंट्री प्रबंधन के लिए एमएल पर बहुत अधिक निर्भर करती हैं। उनके स्टाइलिंग टीमें उनके मर्चेंडाइजिंग टीमों के साथ मिलकर काम करती हैं। "हमारे डेटा वैज्ञानिकों में से एक ने एक जेनेटिक एल्गोरिदम के साथ प्रयोग किया और इसे परिधान पर लागू किया ताकि यह भविष्यवाणी की जा सके कि आज मौजूद नहीं होने वाला एक सफल कपड़े का टुकड़ा क्या होगा। हमने इसे मर्चेंडाइज टीम को दिया और अब वे इसे एक उपकरण के रूप में उपयोग कर सकते हैं।" +[संदर्भ](https://www.zdnet.com/article/how-stitch-fix-uses-machine-learning-to-master-the-science-of-styling/) + +## 🏥 स्वास्थ्य देखभाल + +स्वास्थ्य देखभाल क्षेत्र एमएल का उपयोग अनुसंधान कार्यों और लॉजिस्टिक समस्याओं जैसे रोगियों को फिर से भर्ती करने या बीमारियों के फैलने को रोकने के लिए कर सकता है। + +### क्लिनिकल ट्रायल प्रबंधन + +क्लिनिकल ट्रायल में विषाक्तता दवा निर्माताओं के लिए एक प्रमुख चिंता का विषय है। कितनी विषाक्तता सहनीय है? इस अध्ययन में, विभिन्न क्लिनिकल ट्रायल विधियों का विश्लेषण करने से क्लिनिकल ट्रायल परिणामों की संभावनाओं की भविष्यवाणी करने के लिए एक नया दृष्टिकोण विकसित हुआ। विशेष रूप से, उन्होंने रैंडम फॉरेस्ट का उपयोग करके एक [क्लासिफायर](../../4-Classification/README.md) बनाया जो दवाओं के समूहों के बीच अंतर कर सकता है। +[संदर्भ](https://www.sciencedirect.com/science/article/pii/S2451945616302914) + +### अस्पताल पुनः प्रवेश प्रबंधन + +अस्पताल देखभाल महंगी है, खासकर जब मरीजों को फिर से भर्ती करना पड़ता है। यह पेपर एक कंपनी पर चर्चा करता है जो [क्लस्टरिंग](../../5-Clustering/README.md) एल्गोरिदम का उपयोग करके पुनः प्रवेश की संभावना की भविष्यवाणी करती है। ये क्लस्टर विश्लेषकों को "पुनः प्रवेश के समूहों की खोज करने में मदद करते हैं जो एक सामान्य कारण साझा कर सकते हैं।" +[संदर्भ](https://healthmanagement.org/c/healthmanagement/issuearticle/hospital-readmissions-and-machine-learning) + +### रोग प्रबंधन + +हाल ही में महामारी ने यह उजागर किया है कि मशीन लर्निंग रोग के फैलने को रोकने में कैसे मदद कर सकती है। इस लेख में, आप ARIMA, लॉजिस्टिक कर्व्स, लिनियर रिग्रेशन, और SARIMA का उपयोग पहचानेंगे। "यह कार्य इस वायरस के फैलने की दर की गणना करने और इस प्रकार मौतों, रिकवरी, और पुष्टि किए गए मामलों की भविष्यवाणी करने का प्रयास है, ताकि यह हमें बेहतर तैयारी करने और जीवित रहने में मदद कर सके।" +[संदर्भ](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979218/) + +## 🌲 पारिस्थितिकी और ग्रीन टेक + +प्रकृति और पारिस्थितिकी में कई संवेदनशील प्रणालियां होती हैं जहां जानवरों और प्रकृति के बीच का संबंध ध्यान में आता है। इन प्रणालियों को सटीक रूप से मापना और यदि कुछ होता है तो उचित कार्रवाई करना महत्वपूर्ण है, जैसे जंगल की आग या जानवरों की आबादी में गिरावट। + +### जंगल प्रबंधन + +आपने पिछले पाठों में [रीइन्फोर्समेंट लर्निंग](../../8-Reinforcement/README.md) के बारे में सीखा। यह प्रकृति में पैटर्न की भविष्यवाणी करने की कोशिश करते समय बहुत उपयोगी हो सकता है। विशेष रूप से, इसका उपयोग जंगल की आग और आक्रामक प्रजातियों के फैलने जैसे पारिस्थितिक समस्याओं को ट्रैक करने के लिए किया जा सकता है। कनाडा में, शोधकर्ताओं के एक समूह ने उपग्रह छवियों से जंगल की आग की गतिशीलता मॉडल बनाने के लिए रीइन्फोर्समेंट लर्निंग का उपयोग किया। एक अभिनव "स्पेशली स्प्रेडिंग प्रोसेस (SSP)" का उपयोग करते हुए, उन्होंने जंगल की आग को "परिदृश्य में किसी भी सेल पर एजेंट" के रूप में देखा। "आग किसी स्थान से किसी भी समय उत्तर, दक्षिण, पूर्व, या पश्चिम में फैलने या न फैलने की क्रिया कर सकती है।" + +इस दृष्टिकोण ने सामान्य RL सेटअप को उलट दिया क्योंकि संबंधित मार्कोव निर्णय प्रक्रिया (MDP) की गतिशीलता तत्काल जंगल की आग फैलने के लिए एक ज्ञात कार्य है। इस समूह द्वारा उपयोग किए गए क्लासिक एल्गोरिदम के बारे में अधिक पढ़ें नीचे दिए गए लिंक पर। +[संदर्भ](https://www.frontiersin.org/articles/10.3389/fict.2018.00006/full) + +### जानवरों की गति का पता लगाना + +हालांकि डीप लर्निंग ने जानवरों की गतिविधियों को ट्रैक करने में क्रांति ला दी है (आप अपना [पोलर बियर ट्रैकर](https://docs.microsoft.com/learn/modules/build-ml-model-with-azure-stream-analytics/?WT.mc_id=academic-77952-leestott) यहां बना सकते हैं), क्लासिक एमएल अभी भी इस कार्य में जगह रखता है। + +फार्म जानवरों की गतिविधियों को ट्रैक करने के लिए सेंसर और IoT इस प्रकार की दृश्य प्रसंस्करण का उपयोग करते हैं, लेकिन अधिक बुनियादी एमएल तकनीकें डेटा को प्रीप्रोसेस करने के लिए उपयोगी होती हैं। उदाहरण के लिए, इस पेपर में, विभिन्न क्लासिफायर एल्गोरिदम का उपयोग करके भेड़ों की मुद्राओं की निगरानी और विश्लेषण किया गया। आप पृष्ठ 335 पर ROC कर्व को पहचान सकते हैं। +[संदर्भ](https://druckhaus-hofmann.de/gallery/31-wj-feb-2020.pdf) + +### ⚡️ ऊर्जा प्रबंधन + +हमारे [टाइम सीरीज़ फोरकास्टिंग](../../7-TimeSeries/README.md) पाठों में, हमने स्मार्ट पार्किंग मीटर की अवधारणा को शहर के लिए राजस्व उत्पन्न करने के लिए आपूर्ति और मांग को समझने के आधार पर लागू किया। इस लेख में चर्चा की गई है कि क्लस्टरिंग, रिग्रेशन और टाइम सीरीज़ फोरकास्टिंग ने आयरलैंड में स्मार्ट मीटरिंग के आधार पर भविष्य की ऊर्जा खपत की भविष्यवाणी करने में कैसे मदद की। +[संदर्भ](https://www-cdn.knime.com/sites/default/files/inline-images/knime_bigdata_energy_timeseries_whitepaper.pdf) + +## 💼 बीमा + +बीमा क्षेत्र एक और क्षेत्र है जो एमएल का उपयोग करके व्यवहार्य वित्तीय और एक्चुरियल मॉडल बनाने और अनुकूलित करने के लिए करता है। + +### अस्थिरता प्रबंधन + +MetLife, एक जीवन बीमा प्रदाता, अपने वित्तीय मॉडलों में अस्थिरता का विश्लेषण और प्रबंधन करने के तरीके के बारे में खुला है। इस लेख में आप बाइनरी और ऑर्डिनल क्लासिफिकेशन विज़ुअलाइज़ेशन देखेंगे। आप फोरकास्टिंग विज़ुअलाइज़ेशन भी खोजेंगे। +[संदर्भ](https://investments.metlife.com/content/dam/metlifecom/us/investments/insights/research-topics/macro-strategy/pdf/MetLifeInvestmentManagement_MachineLearnedRanking_070920.pdf) + +## 🎨 कला, संस्कृति, और साहित्य + +कला में, उदाहरण के लिए पत्रकारिता में, कई दिलचस्प समस्याएं हैं। फेक न्यूज़ का पता लगाना एक बड़ी समस्या है क्योंकि यह लोगों की राय को प्रभावित करने और यहां तक कि लोकतंत्र को गिराने के लिए सिद्ध हुआ है। संग्रहालय भी एमएल का उपयोग करके लाभ उठा सकते हैं, जैसे कि कलाकृतियों के बीच लिंक ढूंढना या संसाधन योजना। + +### फेक न्यूज़ का पता लगाना + +आज की मीडिया में फेक न्यूज़ का पता लगाना बिल्ली और चूहे का खेल बन गया है। इस लेख में, शोधकर्ता सुझाव देते हैं कि एमएल तकनीकों के संयोजन से एक सिस्टम का परीक्षण किया जा सकता है और सबसे अच्छा मॉडल तैनात किया जा सकता है: "यह सिस्टम डेटा से फीचर्स निकालने के लिए प्राकृतिक भाषा प्रसंस्करण पर आधारित है और फिर इन फीचर्स का उपयोग मशीन लर्निंग क्लासिफायर जैसे Naive Bayes, Support Vector Machine (SVM), Random Forest (RF), Stochastic Gradient Descent (SGD), और Logistic Regression (LR) के प्रशिक्षण के लिए किया जाता है।" +[संदर्भ](https://www.irjet.net/archives/V7/i6/IRJET-V7I6688.pdf) + +यह लेख दिखाता है कि कैसे विभिन्न एमएल डोमेन को मिलाकर दिलचस्प परिणाम उत्पन्न किए जा सकते हैं जो फेक न्यूज़ को फैलने और वास्तविक नुकसान पहुंचाने से रोकने में मदद कर सकते हैं; इस मामले में, प्रेरणा COVID उपचारों के बारे में अफवाहों के फैलने से हुई थी जिसने भीड़ हिंसा को उकसाया। + +### संग्रहालय एमएल + +संग्रहालय एआई क्रांति के कगार पर हैं, जिसमें संग्रहों को कैटलॉग और डिजिटाइज़ करना और कलाकृतियों के बीच लिंक ढूंढना तकनीक के उन्नति के साथ आसान हो रहा है। [In Codice Ratio](https://www.sciencedirect.com/science/article/abs/pii/S0306457321001035#:~:text=1.,studies%20over%20large%20historical%20sources.) जैसे प्रोजेक्ट्स वेटिकन आर्काइव्स जैसे दुर्गम संग्रहों के रहस्यों को खोलने में मदद कर रहे हैं। लेकिन, संग्रहालयों का व्यावसायिक पहलू भी एमएल मॉडलों से लाभ उठाता है। + +उदाहरण के लिए, शिकागो के आर्ट इंस्टीट्यूट ने मॉडल बनाए ताकि यह भविष्यवाणी की जा सके कि दर्शक किसमें रुचि रखते हैं और वे कब प्रदर्शनियों में भाग लेंगे। लक्ष्य प्रत्येक बार जब उपयोगकर्ता संग्रहालय का दौरा करता है तो व्यक्तिगत और अनुकूलित अनुभव बनाना है। "वित्तीय वर्ष 2017 के दौरान, मॉडल ने उपस्थिति और प्रवेश को 1 प्रतिशत की सटीकता के भीतर भविष्यवाणी की, एंड्रयू सिमनिक, आर्ट इंस्टीट्यूट में वरिष्ठ उपाध्यक्ष कहते हैं।" +[संदर्भ](https://www.chicagobusiness.com/article/20180518/ISSUE01/180519840/art-institute-of-chicago-uses-data-to-make-exhibit-choices) + +## 🏷 मार्केटिंग + +### ग्राहक विभाजन + +सबसे प्रभावी मार्केटिंग रणनीतियां विभिन्न समूहों के आधार पर ग्राहकों को अलग-अलग तरीकों से लक्षित करती हैं। इस लेख में, क्लस्टरिंग एल्गोरिदम के उपयोग पर चर्चा की गई है ताकि विभेदित मार्केटिंग का समर्थन किया जा सके। विभेदित मार्केटिंग कंपनियों को ब्रांड पहचान में सुधार करने, अधिक ग्राहकों तक पहुंचने, और अधिक पैसा कमाने में मदद करती है। +[संदर्भ](https://ai.inqline.com/machine-learning-for-marketing-customer-segmentation/) + +## 🚀 चुनौती +एक और क्षेत्र की पहचान करें जो इस पाठ्यक्रम में सीखे गए कुछ तकनीकों से लाभ उठाता है, और जानें कि वह क्षेत्र मशीन लर्निंग का उपयोग कैसे करता है। + +## [पाठ के बाद क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/50/) + +## समीक्षा और स्व-अध्ययन + +Wayfair डेटा साइंस टीम के पास कई दिलचस्प वीडियो हैं जो बताते हैं कि वे अपनी कंपनी में मशीन लर्निंग का उपयोग कैसे करते हैं। [देखने लायक](https://www.youtube.com/channel/UCe2PjkQXqOuwkW1gw6Ameuw/videos) है! + +## असाइनमेंट + +[एक मशीन लर्निंग स्कैवेंजर हंट](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/9-Real-World/1-Applications/assignment.md b/translations/hi/9-Real-World/1-Applications/assignment.md new file mode 100644 index 000000000..7de52ad57 --- /dev/null +++ b/translations/hi/9-Real-World/1-Applications/assignment.md @@ -0,0 +1,27 @@ + +# एक एमएल स्कैवेंजर हंट + +## निर्देश + +इस पाठ में, आपने कई वास्तविक जीवन के उपयोग मामलों के बारे में सीखा जो क्लासिकल एमएल का उपयोग करके हल किए गए थे। जबकि डीप लर्निंग, एआई में नई तकनीकों और उपकरणों का उपयोग, और न्यूरल नेटवर्क का लाभ उठाने से इन क्षेत्रों में मदद करने वाले उपकरणों के उत्पादन में तेजी आई है, इस पाठ्यक्रम में शामिल तकनीकों का उपयोग करके क्लासिकल एमएल अभी भी बहुत मूल्यवान है। + +इस असाइनमेंट में, कल्पना करें कि आप एक हैकाथॉन में भाग ले रहे हैं। पाठ्यक्रम में आपने जो सीखा है उसका उपयोग करके क्लासिकल एमएल का उपयोग करके किसी समस्या को हल करने का प्रस्ताव दें, जो इस पाठ में चर्चा किए गए क्षेत्रों में से एक से संबंधित हो। एक प्रस्तुति तैयार करें जिसमें आप अपने विचार को लागू करने के तरीके पर चर्चा करें। बोनस अंक यदि आप नमूना डेटा एकत्र कर सकते हैं और अपने विचार का समर्थन करने के लिए एक एमएल मॉडल बना सकते हैं! + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | ------------------------------------------------------------------- | ------------------------------------------------- | ---------------------- | +| | एक पावरपॉइंट प्रस्तुति प्रस्तुत की गई है - मॉडल बनाने के लिए बोनस | एक गैर-नवाचारी, साधारण प्रस्तुति प्रस्तुत की गई है | कार्य अधूरा है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/9-Real-World/2-Debugging-ML-Models/README.md b/translations/hi/9-Real-World/2-Debugging-ML-Models/README.md new file mode 100644 index 000000000..55877ef39 --- /dev/null +++ b/translations/hi/9-Real-World/2-Debugging-ML-Models/README.md @@ -0,0 +1,172 @@ + +# पोस्टस्क्रिप्ट: मशीन लर्निंग में मॉडल डिबगिंग का जिम्मेदार AI डैशबोर्ड घटकों के साथ उपयोग + +## [प्री-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/) + +## परिचय + +मशीन लर्निंग हमारे दैनिक जीवन को प्रभावित करती है। AI स्वास्थ्य सेवा, वित्त, शिक्षा और रोजगार जैसे महत्वपूर्ण क्षेत्रों में प्रवेश कर रही है, जो हमारे व्यक्तिगत और सामाजिक जीवन को प्रभावित करते हैं। उदाहरण के लिए, सिस्टम और मॉडल रोज़मर्रा के निर्णय लेने वाले कार्यों में शामिल होते हैं, जैसे स्वास्थ्य देखभाल निदान या धोखाधड़ी का पता लगाना। AI में प्रगति और इसके तेज़ी से अपनाने के साथ, समाज की अपेक्षाएं और नियम भी बदल रहे हैं। हम लगातार देखते हैं कि AI सिस्टम कई बार अपेक्षाओं पर खरे नहीं उतरते; वे नई चुनौतियों को उजागर करते हैं; और सरकारें AI समाधानों को विनियमित करना शुरू कर रही हैं। इसलिए, यह महत्वपूर्ण है कि इन मॉडलों का विश्लेषण किया जाए ताकि सभी के लिए निष्पक्ष, विश्वसनीय, समावेशी, पारदर्शी और उत्तरदायी परिणाम सुनिश्चित किए जा सकें। + +इस पाठ्यक्रम में, हम व्यावहारिक उपकरणों पर ध्यान देंगे जो यह आकलन करने में मदद करते हैं कि क्या किसी मॉडल में जिम्मेदार AI से संबंधित समस्याएं हैं। पारंपरिक मशीन लर्निंग डिबगिंग तकनीकें आमतौर पर मात्रात्मक गणनाओं पर आधारित होती हैं, जैसे कि समग्र सटीकता या औसत त्रुटि हानि। कल्पना करें कि जब आप इन मॉडलों को बनाने के लिए उपयोग किए जा रहे डेटा में कुछ जनसांख्यिकी, जैसे जाति, लिंग, राजनीतिक दृष्टिकोण, धर्म, या असमान रूप से प्रतिनिधित्व करने वाले जनसांख्यिकी की कमी होती है, तो क्या हो सकता है। या जब मॉडल का आउटपुट किसी जनसांख्यिकी को प्राथमिकता देता है। यह संवेदनशील फीचर समूहों के अधिक या कम प्रतिनिधित्व को जन्म दे सकता है, जिससे मॉडल में निष्पक्षता, समावेशिता, या विश्वसनीयता की समस्याएं उत्पन्न हो सकती हैं। इसके अलावा, मशीन लर्निंग मॉडल अक्सर "ब्लैक बॉक्स" माने जाते हैं, जिससे यह समझना और समझाना मुश्किल हो जाता है कि मॉडल की भविष्यवाणी को क्या प्रेरित करता है। ये सभी चुनौतियां डेटा वैज्ञानिकों और AI डेवलपर्स के सामने आती हैं जब उनके पास मॉडल की निष्पक्षता या विश्वसनीयता का आकलन करने के लिए पर्याप्त उपकरण नहीं होते। + +इस पाठ में, आप अपने मॉडलों को डिबग करने के बारे में सीखेंगे: + +- **त्रुटि विश्लेषण**: यह पहचानें कि आपके डेटा वितरण में मॉडल की त्रुटि दरें कहाँ अधिक हैं। +- **मॉडल ओवरव्यू**: विभिन्न डेटा समूहों के बीच तुलनात्मक विश्लेषण करें ताकि आपके मॉडल के प्रदर्शन मेट्रिक्स में असमानताओं का पता लगाया जा सके। +- **डेटा विश्लेषण**: यह जांचें कि आपके डेटा में कहाँ अधिक या कम प्रतिनिधित्व हो सकता है, जो आपके मॉडल को एक डेटा जनसांख्यिकी के पक्ष में झुका सकता है। +- **फीचर इंपॉर्टेंस**: यह समझें कि कौन से फीचर्स आपके मॉडल की भविष्यवाणियों को वैश्विक या स्थानीय स्तर पर प्रेरित कर रहे हैं। + +## पूर्वापेक्षा + +पूर्वापेक्षा के रूप में, कृपया [डेवलपर्स के लिए जिम्मेदार AI उपकरण](https://www.microsoft.com/ai/ai-lab-responsible-ai-dashboard) की समीक्षा करें। + +> ![जिम्मेदार AI उपकरण पर GIF](../../../../9-Real-World/2-Debugging-ML-Models/images/rai-overview.gif) + +## त्रुटि विश्लेषण + +पारंपरिक मॉडल प्रदर्शन मेट्रिक्स, जो सटीकता को मापने के लिए उपयोग किए जाते हैं, मुख्य रूप से सही बनाम गलत भविष्यवाणियों पर आधारित गणनाएँ होती हैं। उदाहरण के लिए, यह निर्धारित करना कि एक मॉडल 89% समय सटीक है और इसकी त्रुटि हानि 0.001 है, इसे अच्छा प्रदर्शन माना जा सकता है। हालांकि, त्रुटियां आपके अंतर्निहित डेटा सेट में समान रूप से वितरित नहीं होती हैं। आप 89% मॉडल सटीकता स्कोर प्राप्त कर सकते हैं, लेकिन यह पता लगा सकते हैं कि आपके डेटा के विभिन्न क्षेत्रों में मॉडल 42% समय विफल हो रहा है। इन विफलता पैटर्न के परिणामस्वरूप कुछ डेटा समूहों के साथ निष्पक्षता या विश्वसनीयता की समस्याएं हो सकती हैं। यह समझना आवश्यक है कि मॉडल कहाँ अच्छा प्रदर्शन कर रहा है और कहाँ नहीं। डेटा क्षेत्रों में जहाँ आपके मॉडल में अधिक त्रुटियां हैं, वे महत्वपूर्ण डेटा जनसांख्यिकी हो सकते हैं। + +![मॉडल त्रुटियों का विश्लेषण और डिबग करें](../../../../translated_images/ea-error-distribution.117452e1177c1dd84fab2369967a68bcde787c76c6ea7fdb92fcf15d1fce8206.hi.png) + +RAI डैशबोर्ड पर त्रुटि विश्लेषण घटक यह दिखाता है कि मॉडल विफलता विभिन्न समूहों में कैसे वितरित होती है, और इसे एक ट्री विज़ुअलाइज़ेशन के माध्यम से प्रदर्शित करता है। यह आपके डेटा सेट में उच्च त्रुटि दर वाले फीचर्स या क्षेत्रों की पहचान करने में उपयोगी है। यह देखने से कि मॉडल की अधिकांश त्रुटियां कहाँ से आ रही हैं, आप मूल कारण की जांच शुरू कर सकते हैं। आप डेटा समूह भी बना सकते हैं ताकि उन पर विश्लेषण किया जा सके। ये डेटा समूह डिबगिंग प्रक्रिया में मदद करते हैं यह निर्धारित करने के लिए कि मॉडल का प्रदर्शन एक समूह में अच्छा क्यों है, लेकिन दूसरे में त्रुटिपूर्ण क्यों है। + +![त्रुटि विश्लेषण](../../../../translated_images/ea-error-cohort.6886209ea5d438c4daa8bfbf5ce3a7042586364dd3eccda4a4e3d05623ac702a.hi.png) + +ट्री मैप पर दृश्य संकेतक समस्या क्षेत्रों को जल्दी से पहचानने में मदद करते हैं। उदाहरण के लिए, ट्री नोड का गहरा लाल रंग त्रुटि दर को अधिक दिखाता है। + +हीट मैप एक और विज़ुअलाइज़ेशन कार्यक्षमता है जिसे उपयोगकर्ता एक या दो फीचर्स का उपयोग करके त्रुटि दर की जांच करने के लिए उपयोग कर सकते हैं, ताकि पूरे डेटा सेट या समूहों में मॉडल त्रुटियों के योगदानकर्ता का पता लगाया जा सके। + +![त्रुटि विश्लेषण हीटमैप](../../../../translated_images/ea-heatmap.8d27185e28cee3830c85e1b2e9df9d2d5e5c8c940f41678efdb68753f2f7e56c.hi.png) + +त्रुटि विश्लेषण का उपयोग करें जब आपको आवश्यकता हो: + +* यह गहराई से समझने की कि मॉडल विफलताएं डेटा सेट और कई इनपुट और फीचर आयामों में कैसे वितरित होती हैं। +* समग्र प्रदर्शन मेट्रिक्स को तोड़कर त्रुटिपूर्ण समूहों की स्वचालित खोज करें ताकि लक्षित सुधारात्मक कदमों की जानकारी प्राप्त हो सके। + +## मॉडल ओवरव्यू + +मशीन लर्निंग मॉडल के प्रदर्शन का मूल्यांकन करने के लिए उसके व्यवहार की समग्र समझ प्राप्त करना आवश्यक है। इसे त्रुटि दर, सटीकता, रिकॉल, प्रिसिजन, या MAE (मीन एब्सोल्यूट एरर) जैसे एक से अधिक मेट्रिक्स की समीक्षा करके प्राप्त किया जा सकता है ताकि प्रदर्शन मेट्रिक्स में असमानताओं का पता लगाया जा सके। एक प्रदर्शन मेट्रिक अच्छा लग सकता है, लेकिन दूसरे मेट्रिक में त्रुटियां उजागर हो सकती हैं। इसके अलावा, पूरे डेटा सेट या समूहों में मेट्रिक्स की तुलना करना यह दिखाने में मदद करता है कि मॉडल कहाँ अच्छा प्रदर्शन कर रहा है और कहाँ नहीं। यह विशेष रूप से संवेदनशील बनाम असंवेदनशील फीचर्स (जैसे, रोगी की जाति, लिंग, या आयु) के बीच मॉडल के प्रदर्शन को देखने में महत्वपूर्ण है ताकि संभावित अनुचितता का पता लगाया जा सके। उदाहरण के लिए, यह पता लगाना कि मॉडल एक समूह में अधिक त्रुटिपूर्ण है जिसमें संवेदनशील फीचर्स हैं, मॉडल में संभावित अनुचितता को उजागर कर सकता है। + +RAI डैशबोर्ड का मॉडल ओवरव्यू घटक न केवल डेटा प्रतिनिधित्व के प्रदर्शन मेट्रिक्स का विश्लेषण करने में मदद करता है, बल्कि यह उपयोगकर्ताओं को विभिन्न समूहों में मॉडल के व्यवहार की तुलना करने की क्षमता भी देता है। + +![डेटा सेट समूह - RAI डैशबोर्ड में मॉडल ओवरव्यू](../../../../translated_images/model-overview-dataset-cohorts.dfa463fb527a35a0afc01b7b012fc87bf2cad756763f3652bbd810cac5d6cf33.hi.png) + +घटक की फीचर-आधारित विश्लेषण कार्यक्षमता उपयोगकर्ताओं को एक विशेष फीचर के भीतर डेटा उपसमूहों को संकीर्ण करने की अनुमति देती है ताकि ग्रैन्युलर स्तर पर विसंगतियों की पहचान की जा सके। उदाहरण के लिए, डैशबोर्ड में उपयोगकर्ता-चयनित फीचर (जैसे, *"time_in_hospital < 3"* या *"time_in_hospital >= 7"*) के लिए स्वचालित रूप से समूह बनाने की अंतर्निहित बुद्धिमत्ता है। यह उपयोगकर्ता को एक बड़े डेटा समूह से एक विशेष फीचर को अलग करने की अनुमति देता है ताकि यह देखा जा सके कि यह मॉडल के त्रुटिपूर्ण परिणामों का प्रमुख प्रभावक है या नहीं। + +![फीचर समूह - RAI डैशबोर्ड में मॉडल ओवरव्यू](../../../../translated_images/model-overview-feature-cohorts.c5104d575ffd0c80b7ad8ede7703fab6166bfc6f9125dd395dcc4ace2f522f70.hi.png) + +मॉडल ओवरव्यू घटक दो प्रकार के असमानता मेट्रिक्स का समर्थन करता है: + +**मॉडल प्रदर्शन में असमानता**: ये मेट्रिक्स डेटा के उपसमूहों में चयनित प्रदर्शन मेट्रिक के मानों में असमानता (अंतर) की गणना करते हैं। यहाँ कुछ उदाहरण हैं: + +* सटीकता दर में असमानता +* त्रुटि दर में असमानता +* प्रिसिजन में असमानता +* रिकॉल में असमानता +* मीन एब्सोल्यूट एरर (MAE) में असमानता + +**चयन दर में असमानता**: यह मेट्रिक उपसमूहों में चयन दर (अनुकूल भविष्यवाणी) में अंतर को शामिल करता है। इसका एक उदाहरण ऋण स्वीकृति दर में असमानता है। चयन दर का अर्थ है प्रत्येक वर्ग में वर्गीकृत डेटा बिंदुओं का अंश जो 1 के रूप में वर्गीकृत किया गया है (बाइनरी वर्गीकरण में) या भविष्यवाणी मानों का वितरण (रिग्रेशन में)। + +## डेटा विश्लेषण + +> "यदि आप डेटा को लंबे समय तक यातना देंगे, तो यह कुछ भी स्वीकार कर लेगा" - रोनाल्ड कोस + +यह कथन अतिशयोक्तिपूर्ण लगता है, लेकिन यह सच है कि डेटा को किसी भी निष्कर्ष का समर्थन करने के लिए हेरफेर किया जा सकता है। ऐसा हेरफेर कभी-कभी अनजाने में हो सकता है। हम सभी मनुष्य हैं और हमारे पास पूर्वाग्रह होते हैं, और यह जानना अक्सर कठिन होता है कि आप डेटा में पूर्वाग्रह कब पेश कर रहे हैं। AI और मशीन लर्निंग में निष्पक्षता सुनिश्चित करना एक जटिल चुनौती बना हुआ है। + +पारंपरिक मॉडल प्रदर्शन मेट्रिक्स के लिए डेटा एक बड़ा अंधा स्थान है। आपके पास उच्च सटीकता स्कोर हो सकते हैं, लेकिन यह हमेशा आपके डेटा सेट में अंतर्निहित डेटा पूर्वाग्रह को प्रतिबिंबित नहीं करता। उदाहरण के लिए, यदि किसी कंपनी में कार्यकारी पदों पर महिलाओं का प्रतिशत 27% है और पुरुषों का प्रतिशत 73% है, तो इस डेटा पर प्रशिक्षित नौकरी विज्ञापन AI मॉडल वरिष्ठ स्तर की नौकरी के लिए मुख्य रूप से पुरुष दर्शकों को लक्षित कर सकता है। डेटा में इस असंतुलन ने मॉडल की भविष्यवाणी को एक लिंग के पक्ष में झुका दिया। यह एक निष्पक्षता समस्या को उजागर करता है जहाँ AI मॉडल में लिंग पूर्वाग्रह है। + +RAI डैशबोर्ड पर डेटा विश्लेषण घटक यह पहचानने में मदद करता है कि डेटा सेट में कहाँ अधिक और कम प्रतिनिधित्व है। यह उपयोगकर्ताओं को डेटा असंतुलन या किसी विशेष डेटा समूह के प्रतिनिधित्व की कमी से उत्पन्न त्रुटियों और निष्पक्षता समस्याओं के मूल कारण का निदान करने में मदद करता है। यह उपयोगकर्ताओं को भविष्यवाणी और वास्तविक परिणामों, त्रुटि समूहों, और विशिष्ट फीचर्स के आधार पर डेटा सेट को विज़ुअलाइज़ करने की क्षमता देता है। कभी-कभी एक कम प्रतिनिधित्व वाले डेटा समूह की खोज यह भी उजागर कर सकती है कि मॉडल अच्छी तरह से सीख नहीं रहा है, जिससे उच्च त्रुटियां हो रही हैं। डेटा पूर्वाग्रह वाला मॉडल न केवल एक निष्पक्षता समस्या है बल्कि यह दिखाता है कि मॉडल समावेशी या विश्वसनीय नहीं है। + +![RAI डैशबोर्ड पर डेटा विश्लेषण घटक](../../../../translated_images/dataanalysis-cover.8d6d0683a70a5c1e274e5a94b27a71137e3d0a3b707761d7170eb340dd07f11d.hi.png) + +डेटा विश्लेषण का उपयोग करें जब आपको आवश्यकता हो: + +* अपने डेटा सेट के आँकड़ों का अन्वेषण करें और विभिन्न आयामों (जिन्हें समूह भी कहा जाता है) में डेटा को विभाजित करने के लिए विभिन्न फ़िल्टर चुनें। +* विभिन्न समूहों और फीचर समूहों में अपने डेटा सेट के वितरण को समझें। +* यह निर्धारित करें कि निष्पक्षता, त्रुटि विश्लेषण, और कारणता से संबंधित आपकी खोजें (डैशबोर्ड के अन्य घटकों से प्राप्त) आपके डेटा सेट के वितरण का परिणाम हैं या नहीं। +* यह तय करें कि किन क्षेत्रों में अधिक डेटा एकत्र करना है ताकि प्रतिनिधित्व समस्याओं, लेबल शोर, फीचर शोर, लेबल पूर्वाग्रह, और इसी तरह के कारकों से उत्पन्न त्रुटियों को कम किया जा सके। + +## मॉडल व्याख्या + +मशीन लर्निंग मॉडल अक्सर "ब्लैक बॉक्स" होते हैं। यह समझना कि कौन से प्रमुख डेटा फीचर्स मॉडल की भविष्यवाणी को प्रेरित करते हैं, चुनौतीपूर्ण हो सकता है। यह महत्वपूर्ण है कि यह पारदर्शिता प्रदान की जाए कि मॉडल ने एक निश्चित भविष्यवाणी क्यों की। उदाहरण के लिए, यदि एक AI सिस्टम भविष्यवाणी करता है कि एक मधुमेह रोगी को 30 दिनों से कम समय में अस्पताल में फिर से भर्ती होने का जोखिम है, तो इसे अपनी भविष्यवाणी के पीछे सहायक डेटा प्रदान करना चाहिए। सहायक डेटा संकेतक पारदर्शिता लाते हैं ताकि चिकित्सक या अस्पताल अच्छी तरह से सूचित निर्णय ले सकें। इसके अलावा, यह समझाने में सक्षम होना कि मॉडल ने एक व्यक्तिगत रोगी के लिए भविष्यवाणी क्यों की, स्वास्थ्य नियमों के साथ उत्तरदायित्व सुनिश्चित करता है। जब आप मशीन लर्निंग मॉडल का उपयोग ऐसे तरीकों से कर रहे हैं जो लोगों के जीवन को प्रभावित करते हैं, तो यह समझना और समझाना महत्वपूर्ण है कि मॉडल के व्यवहार को क्या प्रभावित करता है। मॉडल व्याख्या और समझने की क्षमता निम्नलिखित परिदृश्यों में सवालों के जवाब देने में मदद करती है: + +* मॉडल डिबगिंग: मेरे मॉडल ने यह गलती क्यों की? मैं अपने मॉडल को कैसे सुधार सकता हूँ? +* मानव-AI सहयोग: मैं मॉडल के निर्णयों को कैसे समझ सकता हूँ और उन पर भरोसा कर सकता हूँ? +* नियामक अनुपालन: क्या मेरा मॉडल कानूनी आवश्यकताओं को पूरा करता है? + +RAI डैशबोर्ड का फीचर इंपॉर्टेंस घटक आपको डिबग करने और यह समझने में मदद करता है कि मॉडल भविष्यवाणियाँ कैसे करता है। यह मशीन लर्निंग पेशेवरों और निर्णय लेने वालों के लिए एक उपयोगी उपकरण है ताकि मॉडल के व्यवहार को प्रभावित करने वाले फीचर्स के प्रमाण दिखाए जा सकें और नियामक अनुपालन सुनिश्चित किया जा सके। इसके बाद, उपयोगकर्ता वैश्विक और स्थानीय व्याख्याओं का अन्वेषण कर सकते हैं ताकि यह सत्यापित किया जा सके कि कौन से फीचर्स मॉडल की भविष्यवाणी को प्रेरित करते हैं। वैश्विक व्याख्याएँ उन शीर्ष फीचर्स को सूचीबद्ध करती हैं जिन्होंने मॉडल की समग्र भविष्यवाणी को प्रभावित किया। स्थानीय व्याख्याएँ दिखाती हैं कि किसी व्यक्तिगत मामले के लिए मॉडल की भविष्यवाणी को कौन से फीचर्स प्रेरित करते हैं। स्थानीय व्याख्याओं का मूल्यांकन करना किसी विशेष मामले को डिबग या ऑडिट करने में भी मददगार होता है ताकि यह बेहतर समझा जा सके कि मॉडल ने सटीक या त्रुटिपूर्ण भविष्यवाणी क्यों की। + +![RAI डैशबोर्ड का फीचर इंपॉर्टेंस घटक](../../../../translated_images/9-feature-importance.cd3193b4bba3fd4bccd415f566c2437fb3298c4824a3dabbcab15270d783606e.hi.png) + +* वैश्विक व्याख्याएँ: उदाहरण के लिए, मधुमेह अस्पताल पुनः प्रवेश मॉडल के समग्र व्यवहार को कौन से फीचर्स प्रभावित करते हैं? +* स्थानीय व्याख्याएँ: उदाहरण के लिए, क्यों एक 60 वर्ष से अधिक उम्र के मधुमेह रोगी को, जिनकी पहले अस्पताल में भर्ती हो चुकी है, 30 दिनों के भीतर अस्पताल में फिर से भर्ती होने या न होने की भविष्यवाणी की गई? + +मॉडल के प्रदर्शन को विभिन्न समूहों में जांचने की प्रक्रिया में, फीचर इंपॉर्टेंस यह दिखाता है कि समूहों में फीचर का प्रभाव किस स्तर तक है। यह तुलना करते समय विसंगतियों को उजागर करने में मदद करता है कि फीचर मॉडल की त्रुटिपूर्ण भविष्यवाणियों को प्रेरित करने में कितना प्रभावशाली है। फीचर इंपॉर्टेंस घटक यह दिखा सकता है कि किसी फीचर में कौन से मान मॉडल के परिणाम को सकारात्मक या नकारात्मक रूप से प्रभावित करते हैं। उदाहरण के लिए, यदि मॉडल ने एक त्रुटिपूर्ण भविष्यवाणी की, तो घटक आपको यह जांचने और पहचानने की क्षमता देता है कि कौन से फीचर्स या फीचर मान भविष्यवाणी को प्रेरित करते हैं। यह स्तर न केवल डिबगिंग में मदद करता है बल्कि ऑडिटिंग स्थितियों में पारदर्शिता और उत्तरदायित्व प्रदान करता है। अंत में, घटक निष्पक्षता समस्याओं की पहचान करने में मदद कर सकता है। उदाहरण के लिए, यदि जातीयता या लिंग जैसे संवेदनशील फीचर्स मॉडल की भविष्यवाणी को प्रेरित करने में अत्यधिक प्रभावशाली हैं, तो यह मॉडल में जाति या लिंग पूर्वाग्रह का संकेत हो सकता है। + +![फीचर इंपॉर्टेंस](../../../../translated_images/9-features-influence.3ead3d3f68a84029f1e40d3eba82107445d3d3b6975d4682b23d8acc905da6d0.hi.png) + +व्याख्या का उपयोग करें जब आपको आवश्यकता हो: + +* यह निर्धारित करने के लिए कि आपके AI सिस्टम की भविष्यवाणियाँ कितनी भरोसेमंद हैं, यह समझकर कि भविष्यवाणियों के लिए कौन से फीचर्स सबसे महत्वपूर्ण हैं। +* अपने मॉडल को समझकर और यह पहचानकर कि क्या मॉडल स्वस्थ फीचर्स का उपयोग कर रहा है या केवल गलत सहसंबंधों का उपयोग कर रहा है, डिबगिंग प्रक्रिया को अपनाएँ। +* संभावित अनुचितता के +- **अधिक या कम प्रतिनिधित्व**। विचार यह है कि किसी विशेष समूह को किसी विशेष पेशे में नहीं देखा जाता है, और कोई भी सेवा या कार्य जो इसे बढ़ावा देता है, वह नुकसान पहुंचाने में योगदान देता है। + +### Azure RAI डैशबोर्ड + +[Azure RAI डैशबोर्ड](https://learn.microsoft.com/en-us/azure/machine-learning/concept-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu) ओपन-सोर्स टूल्स पर आधारित है, जिन्हें प्रमुख शैक्षणिक संस्थानों और संगठनों, जिनमें Microsoft भी शामिल है, द्वारा विकसित किया गया है। यह डेटा वैज्ञानिकों और AI डेवलपर्स को मॉडल के व्यवहार को बेहतर ढंग से समझने, और AI मॉडलों में अवांछनीय समस्याओं की पहचान और समाधान करने में मदद करता है। + +- RAI डैशबोर्ड के विभिन्न घटकों का उपयोग करना सीखने के लिए [डॉक्यूमेंटेशन](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu) देखें। + +- Azure Machine Learning में अधिक जिम्मेदार AI परिदृश्यों को डिबग करने के लिए कुछ RAI डैशबोर्ड [उदाहरण नोटबुक्स](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks) देखें। + +--- +## 🚀 चुनौती + +यह सुनिश्चित करने के लिए कि सांख्यिकीय या डेटा पूर्वाग्रह शुरू से ही न आएं, हमें: + +- सिस्टम पर काम करने वाले लोगों में विभिन्न पृष्ठभूमियों और दृष्टिकोणों का समावेश करना चाहिए +- ऐसे डेटा सेट्स में निवेश करना चाहिए जो हमारे समाज की विविधता को दर्शाते हों +- पूर्वाग्रह का पता लगाने और उसे सुधारने के बेहतर तरीकों को विकसित करना चाहिए + +उन वास्तविक जीवन के परिदृश्यों के बारे में सोचें, जहां मॉडल निर्माण और उपयोग में अन्याय स्पष्ट है। हमें और किन बातों पर विचार करना चाहिए? + +## [पोस्ट-लेक्चर क्विज़](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/6/) +## समीक्षा और स्व-अध्ययन + +इस पाठ में, आपने मशीन लर्निंग में जिम्मेदार AI को शामिल करने के कुछ व्यावहारिक टूल्स के बारे में सीखा है। + +इन विषयों में गहराई से जाने के लिए इस वर्कशॉप को देखें: + +- जिम्मेदार AI डैशबोर्ड: Besmira Nushi और Mehrnoosh Sameki द्वारा व्यावहारिक रूप से RAI को लागू करने के लिए एक-स्टॉप समाधान + +[![जिम्मेदार AI डैशबोर्ड: व्यावहारिक रूप से RAI को लागू करने के लिए एक-स्टॉप समाधान](https://img.youtube.com/vi/f1oaDNl3djg/0.jpg)](https://www.youtube.com/watch?v=f1oaDNl3djg "जिम्मेदार AI डैशबोर्ड: व्यावहारिक रूप से RAI को लागू करने के लिए एक-स्टॉप समाधान") + +> 🎥 ऊपर दी गई छवि पर क्लिक करें वीडियो के लिए: Besmira Nushi और Mehrnoosh Sameki द्वारा जिम्मेदार AI डैशबोर्ड: व्यावहारिक रूप से RAI को लागू करने के लिए एक-स्टॉप समाधान + +जिम्मेदार AI और अधिक भरोसेमंद मॉडल बनाने के बारे में अधिक जानने के लिए निम्नलिखित सामग्रियों का संदर्भ लें: + +- ML मॉडलों को डिबग करने के लिए Microsoft के RAI डैशबोर्ड टूल्स: [जिम्मेदार AI टूल्स संसाधन](https://aka.ms/rai-dashboard) + +- जिम्मेदार AI टूलकिट का अन्वेषण करें: [Github](https://github.com/microsoft/responsible-ai-toolbox) + +- Microsoft का RAI संसाधन केंद्र: [जिम्मेदार AI संसाधन – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- Microsoft का FATE शोध समूह: [FATE: Fairness, Accountability, Transparency, and Ethics in AI - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +## असाइनमेंट + +[RAI डैशबोर्ड का अन्वेषण करें](assignment.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/9-Real-World/2-Debugging-ML-Models/assignment.md b/translations/hi/9-Real-World/2-Debugging-ML-Models/assignment.md new file mode 100644 index 000000000..842a78bad --- /dev/null +++ b/translations/hi/9-Real-World/2-Debugging-ML-Models/assignment.md @@ -0,0 +1,25 @@ + +# जिम्मेदार AI (RAI) डैशबोर्ड का अन्वेषण करें + +## निर्देश + +इस पाठ में आपने RAI डैशबोर्ड के बारे में सीखा, जो "ओपन-सोर्स" टूल्स पर आधारित घटकों का एक समूह है। यह डेटा वैज्ञानिकों को त्रुटि विश्लेषण, डेटा अन्वेषण, निष्पक्षता मूल्यांकन, मॉडल व्याख्या, काल्पनिक/क्या-यदि आकलन और AI सिस्टम पर कारणात्मक विश्लेषण करने में मदद करता है। इस असाइनमेंट के लिए, RAI डैशबोर्ड के कुछ नमूना [नोटबुक्स](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks) का अन्वेषण करें और अपने निष्कर्षों को एक पेपर या प्रस्तुति में रिपोर्ट करें। + +## मूल्यांकन मानदंड + +| मानदंड | उत्कृष्ट | पर्याप्त | सुधार की आवश्यकता | +| -------- | --------- | -------- | ----------------- | +| | RAI डैशबोर्ड के घटकों, चलाए गए नोटबुक और उससे प्राप्त निष्कर्षों पर चर्चा करते हुए एक पेपर या पावरपॉइंट प्रस्तुति प्रस्तुत की गई है | निष्कर्षों के बिना एक पेपर प्रस्तुत किया गया है | कोई पेपर प्रस्तुत नहीं किया गया है | + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/9-Real-World/README.md b/translations/hi/9-Real-World/README.md new file mode 100644 index 000000000..18923644f --- /dev/null +++ b/translations/hi/9-Real-World/README.md @@ -0,0 +1,32 @@ + +# पोस्टस्क्रिप्ट: क्लासिक मशीन लर्निंग के वास्तविक दुनिया में उपयोग + +इस पाठ्यक्रम के इस भाग में, आपको क्लासिकल मशीन लर्निंग के कुछ वास्तविक दुनिया में उपयोगों से परिचित कराया जाएगा। हमने इंटरनेट पर खोजबीन की है और ऐसे श्वेतपत्र और लेख ढूंढे हैं जो इन रणनीतियों का उपयोग करते हैं, न्यूरल नेटवर्क, डीप लर्निंग और एआई से यथासंभव बचते हुए। जानें कि व्यवसाय प्रणालियों, पारिस्थितिक अनुप्रयोगों, वित्त, कला और संस्कृति, और अन्य क्षेत्रों में मशीन लर्निंग का उपयोग कैसे किया जाता है। + +![chess](../../../translated_images/chess.e704a268781bdad85d1876b6c2295742fa0d856e7dcf3659147052df9d3db205.hi.jpg) + +> फोटो एलेक्सिस फॉवेट द्वारा अनस्प्लैश पर + +## पाठ + +1. [मशीन लर्निंग के वास्तविक दुनिया में उपयोग](1-Applications/README.md) +2. [मशीन लर्निंग मॉडल्स में डिबगिंग, जिम्मेदार एआई डैशबोर्ड घटकों का उपयोग करते हुए](2-Debugging-ML-Models/README.md) + +## क्रेडिट्स + +"वास्तविक दुनिया में उपयोग" को [जेन लूपर](https://twitter.com/jenlooper) और [ऑर्नेला अल्टुन्यान](https://twitter.com/ornelladotcom) सहित कई लोगों की टीम द्वारा लिखा गया है। + +"मशीन लर्निंग मॉडल्स में डिबगिंग, जिम्मेदार एआई डैशबोर्ड घटकों का उपयोग करते हुए" को [रुथ याकुबू](https://twitter.com/ruthieyakubu) द्वारा लिखा गया है। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/CODE_OF_CONDUCT.md b/translations/hi/CODE_OF_CONDUCT.md new file mode 100644 index 000000000..c39a1aa0e --- /dev/null +++ b/translations/hi/CODE_OF_CONDUCT.md @@ -0,0 +1,23 @@ + +# Microsoft ओपन सोर्स आचार संहिता + +इस प्रोजेक्ट ने [Microsoft ओपन सोर्स आचार संहिता](https://opensource.microsoft.com/codeofconduct/) को अपनाया है। + +संसाधन: + +- [Microsoft ओपन सोर्स आचार संहिता](https://opensource.microsoft.com/codeofconduct/) +- [Microsoft आचार संहिता FAQ](https://opensource.microsoft.com/codeofconduct/faq/) +- प्रश्नों या चिंताओं के लिए [opencode@microsoft.com](mailto:opencode@microsoft.com) पर संपर्क करें + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/CONTRIBUTING.md b/translations/hi/CONTRIBUTING.md new file mode 100644 index 000000000..ee6b66003 --- /dev/null +++ b/translations/hi/CONTRIBUTING.md @@ -0,0 +1,23 @@ + +# योगदान + +यह प्रोजेक्ट योगदान और सुझावों का स्वागत करता है। अधिकांश योगदानों के लिए आपको एक Contributor License Agreement (CLA) से सहमत होना होगा, जिसमें यह घोषित किया जाता है कि आपके पास अधिकार हैं और आप हमें अपने योगदान का उपयोग करने का अधिकार प्रदान करते हैं। विवरण के लिए, https://cla.microsoft.com पर जाएं। + +> महत्वपूर्ण: इस रिपॉजिटरी में टेक्स्ट का अनुवाद करते समय कृपया सुनिश्चित करें कि आप मशीन अनुवाद का उपयोग न करें। हम अनुवादों को समुदाय के माध्यम से सत्यापित करेंगे, इसलिए केवल उन्हीं भाषाओं में अनुवाद के लिए स्वयंसेवा करें जिनमें आप दक्ष हैं। + +जब आप एक पुल रिक्वेस्ट सबमिट करते हैं, तो एक CLA-बॉट स्वचालित रूप से यह निर्धारित करेगा कि आपको CLA प्रदान करने की आवश्यकता है या नहीं और PR को उचित रूप से सजाएगा (जैसे, लेबल, टिप्पणी)। बस बॉट द्वारा प्रदान किए गए निर्देशों का पालन करें। आपको यह केवल एक बार सभी रिपॉजिटरीज़ में करना होगा जो हमारे CLA का उपयोग करती हैं। + +इस प्रोजेक्ट ने [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/) को अपनाया है। अधिक जानकारी के लिए [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) देखें या [opencode@microsoft.com](mailto:opencode@microsoft.com) पर किसी भी अतिरिक्त प्रश्न या टिप्पणियों के लिए संपर्क करें। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/PyTorch_Fundamentals.ipynb b/translations/hi/PyTorch_Fundamentals.ipynb new file mode 100644 index 000000000..b55d9a24b --- /dev/null +++ b/translations/hi/PyTorch_Fundamentals.ipynb @@ -0,0 +1,2828 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "authorship_tag": "ABX9TyOgv0AozH1FKQBD+RkgT2bV", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU", + "coopTranslator": { + "original_hash": "0ca21b6ee62904d616f2e36dc1cf0da7", + "translation_date": "2025-09-04T01:01:27+00:00", + "source_file": "PyTorch_Fundamentals.ipynb", + "language_code": "hi" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EHh5JllMh1rG", + "outputId": "f55755ad-c369-414c-85ec-6e9d4f061a02", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.2.1+cu121'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import torch\n", + "torch.__version__" + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"I am excited to run this\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UPlb-duwXAfz", + "outputId": "cfd687e4-1238-49f4-ab6b-ee1305b740d2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "I am excited to run this\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "print(torch.__version__)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "byWVlJ9wXDSk", + "outputId": "fd74a5c4-4d4a-41b2-ef3c-562ea3e4811f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2.2.1+cu121\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "Osm80zoEYklS" + } + }, + { + "cell_type": "code", + "source": [ + "# scalar\n", + "scalar = torch.tensor(7)\n", + "scalar" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-o8wvJ-VXZmI", + "outputId": "558816f5-1205-4de1-fe1f-2f96e9bd79e6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(7)" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mCZ2tXC4Y_Sg", + "outputId": "2d86dbdc-56e1-45c6-d3dd-14515f2a457a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ssN00By0ZQgS", + "outputId": "490f40d1-5135-4969-a6d3-c8c902cdc473" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "7" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# vector\n", + "vector = torch.tensor([7, 7])\n", + "vector\n", + "#vector.ndim\n", + "#vector.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Bws__5wlZnmF", + "outputId": "944e38f9-5ba1-4ddc-a9c6-cfb6a19bb488" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([7, 7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "vector.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9pjCvnsZZzNG", + "outputId": "e030a4da-8f81-4858-fbce-86da2aaafe52" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([2])" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Matrix\n", + "MATRIX = torch.tensor([[7, 8],[9, 10]])\n", + "MATRIX" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "a747hI9SaBGW", + "outputId": "af835ddb-81ff-4981-badb-441567194d15" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[ 7, 8],\n", + " [ 9, 10]])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XdTfFa7vaRUj", + "outputId": "0fbbab9c-8263-4cad-a380-0d2a16ca499e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX[0]\n", + "MATRIX[1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TFeD3jSDafm7", + "outputId": "69b44ab3-5ba7-451a-c6b2-f019a03d0c96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Tensor\n", + "TENSOR = torch.tensor([[[1, 2, 3],[3,6,9], [2,4,5]]])\n", + "TENSOR" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ic3cE47tah42", + "outputId": "f250e295-91de-43ec-9d80-588a6fe0abde" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]]])" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Wvjf5fczbAM1", + "outputId": "9c72b5b8-bafe-4ae7-9883-b051e209eada" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([1, 3, 3])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mwtXZwiMbN3m", + "outputId": "331a5e36-b1b0-4a5f-a9b8-e7049cbaa8f9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "3" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vzdZu_IfbP3J", + "outputId": "e24e7e71-e365-412d-ff50-fc094b56d2f3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]])" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "A8OL9eWfcRrJ" + } + }, + { + "cell_type": "code", + "source": [ + "random_tensor = torch.rand(3,4)\n", + "random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hAqSDE1EcVS_", + "outputId": "946171c3-d054-400c-f893-79110356888c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.4414, 0.7681, 0.8385, 0.3166],\n", + " [0.0468, 0.5812, 0.0670, 0.9173],\n", + " [0.2959, 0.3276, 0.7411, 0.4643]])" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "g4fvPE5GcwzP", + "outputId": "8737f36b-6864-4059-eaed-6f9156c22306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XsAg99QmdAU6", + "outputId": "35467c11-257c-4f16-99aa-eca930bcbc36" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.size()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cii1pNdVdB68", + "outputId": "fc8d2de6-9215-43de-99f7-7b0d7f7d20fa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_image_tensor = torch.rand(size=(3, 224, 224)) #color channels, height, width\n", + "random_image_tensor.ndim, random_image_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aTKq2j0cdDjb", + "outputId": "6be42057-20b9-4faf-d79d-8b65c42cc27e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([3, 224, 224]))" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor_ofownsize = torch.rand(size=(5,10,10))\n", + "random_tensor_ofownsize.ndim, random_tensor_ofownsize.shape\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IyhDdj-Pd6nC", + "outputId": "43e5e334-6d4d-4b67-f87d-7d364c6d8c67" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([5, 10, 10]))" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "UOJW08uOert_" + } + }, + { + "cell_type": "code", + "source": [ + "zero = torch.zeros(size=(3, 4))\n", + "zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGvXtaXyefie", + "outputId": "d40d3e28-8667-4d2f-8b62-f0829c6162ad" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "zero*random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OyUkUPkDe0uH", + "outputId": "26c2e4be-36ba-4c6c-9a90-2704ec135828" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones = torch.ones(size=(3, 4))\n", + "ones\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "y_Ac62Aqe82G", + "outputId": "291de5d9-b9df-49de-c9d1-d098e3e9f4d8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1., 1., 1., 1.],\n", + " [1., 1., 1., 1.],\n", + " [1., 1., 1., 1.]])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TvGOA9odfIEO", + "outputId": "45949ef4-6649-4b6c-d6af-2d4bfb8de832" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones*zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "--pTyge-fI-8", + "outputId": "c4d9bb7e-829b-43db-e2db-b1a2d64e61f0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "qDcc7Z36fSJF" + } + }, + { + "cell_type": "code", + "source": [ + "one_to_ten = torch.arange(start = 1, end = 11, step = 1)\n", + "one_to_ten" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "w3CZB4zUfR1s", + "outputId": "197fcba1-da0a-4b4a-ed11-3974bd6c01aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 27 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ten_zeros = torch.zeros_like(one_to_ten)\n", + "ten_zeros" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WZh99BwVfRy8", + "outputId": "51ef8bfb-6fa0-4099-ff66-b97d65b2ddea" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "pGGhgsbUgqbW" + } + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor = torch.tensor([3.0, 6.0,9.0], dtype = None, device = None, requires_grad = False)\n", + "float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JORJl4XkfRsx", + "outputId": "71114171-0f49-481f-b6fc-6cb48e2fb895" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3., 6., 9.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6wOPPwGyfRLn", + "outputId": "f23776a1-b682-404a-9f67-d5bcb0402666" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor = float_32_tensor.type(torch.float16)\n", + "float_16_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tFsHCvmZfOYe", + "outputId": "d3aa305a-7591-47f5-97fd-61bff60b44bd" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float16" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TQiCGTPuwq0q", + "outputId": "98750fce-1ca3-4889-e269-8b753efdea96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor = torch.tensor([3, 6, 9], dtype = torch.int32)\n", + "int_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5hlrLvGUw5D_", + "outputId": "41d890a0-9aee-446c-d906-631ce2ab0995" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9], dtype=torch.int32)" + ] + }, + "metadata": {}, + "execution_count": 33 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ihApD9u3xTNW", + "outputId": "d295eed0-6996-4e0f-8502-ff4b55cd1373" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(0,100,10)" + ], + "metadata": { + "id": "utKhlb_KxWDQ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p78D74E9Rj7Y", + "outputId": "781a1614-a900-41f5-9e5d-358f0b2390aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])" + ] + }, + "metadata": {}, + "execution_count": 36 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.min()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4BcSs5NeRkcj", + "outputId": "3f24a8dc-58e9-4a5f-9834-e85856a34f9d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.max()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hinqvXVLRm4q", + "outputId": "5c7d8a53-3913-4ac1-bba3-5ba8ff68250a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 38 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mean(x.type(torch.float32))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "k7okc0_vRpnB", + "outputId": "91e5494f-dc57-417c-ea4d-25dbc547c893" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 39 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.type(torch.float32).mean()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "29QcDTjHRq10", + "outputId": "62937c6c-78e0-49f2-dde3-1543ee8f7907" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 40 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.sum()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wlpY_G_sbdKF", + "outputId": "475d8258-af65-4011-a258-b93d4d8142d4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(450)" + ] + }, + "metadata": {}, + "execution_count": 41 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmax()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GT6HJzwhbk4n", + "outputId": "2e455c20-c322-4bcf-d07c-1259d3ccefc6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmin()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "egL3oi2Mb19P", + "outputId": "f71fb32f-6338-44a3-b377-75bea0a3ab54" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 43 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p2U8DZKib3DP", + "outputId": "b9f613b9-74e9-45f4-ed01-05babb6a6793" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 44 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[9]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "24qBFlGYcABe", + "outputId": "5813cfcb-7f63-4bd7-ee46-f95ccbfda939" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 45 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(1, 10)\n", + "x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0GPOxEzkcBHO", + "outputId": "aefbd903-4f4c-4d2c-c90f-eccd682fe018" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([9])" + ] + }, + "metadata": {}, + "execution_count": 46 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped = x.reshape(1,9)\n", + "x_reshaped, x_reshaped.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "spmRgQjwddgp", + "outputId": "85a7c55c-2909-4ea2-fc68-386dddc65742" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]]), torch.Size([1, 9]))" + ] + }, + "metadata": {}, + "execution_count": 47 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped.view(1,9)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tH2ahWGydqqP", + "outputId": "65d92263-4fc4-434a-c06d-c5e08436f7fe" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 48 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked = torch.stack([x, x, x, x], dim = 1)\n", + "x_stacked" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jgCeJcaud_-1", + "outputId": "7f293a37-6ef1-43b6-aee5-9d6d91c94f9e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 49 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XhJHIK6cfPse", + "outputId": "06c47b89-3a9e-453e-bcc3-00cbcb0b8b49" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 50 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ej2c3Xxzf0tq", + "outputId": "94024061-eb37-446d-c4a8-e4d16cb6de81" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 52 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4DJYo1a0f5M0", + "outputId": "efca2b47-1b14-44de-9a9a-2c83629d153f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 53 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=-2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "J4iEjn2ah2HL", + "outputId": "22395593-7c16-4162-beae-dd2bbe7bda35" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 55 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "tensor = torch.tensor([1, 2, 3])\n", + "tensor = tensor - 10\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cFfiD7Nth7Z_", + "outputId": "1139e1f8-fc1a-46ca-d636-f2bc4fd2eef6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-9, -8, -7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mul(tensor, 10)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dyA7BM_GHhqE", + "outputId": "0e3b9671-d9e8-4a32-87bb-59bc05986142" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-90, -80, -70])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.sub(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "owtUsZ1KNegI", + "outputId": "189b7b23-0041-4e09-b991-cd209a48506a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-109, -108, -107])" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.add(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "K5STXlQONsyc", + "outputId": "00cbb79a-0a1d-4e21-86ec-5c91c37a2d01" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([91, 92, 93])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.divide(tensor, 2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xqMGnzIUNvp0", + "outputId": "c894cf3e-f148-45f8-cfc8-d78740735306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-4.5000, -4.0000, -3.5000])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(tensor, tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ruGzKpV8NyBc", + "outputId": "fddb63bf-006f-48b6-ae28-287fbcda8bc5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8GS3r9yTeGfD", + "outputId": "c80b12ac-30b5-4f3d-c38c-9e41ba511b0e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "QmuYHqXTemC0", + "outputId": "402fe3ba-70b5-4bb2-c83b-254db84ff810" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 622 µs, sys: 0 ns, total: 622 µs\n", + "Wall time: 516 µs\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "torch.matmul(tensor,tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dGr1fzdNepd8", + "outputId": "97bd6c91-bc25-4b38-cdf5-f22dcdef243e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 424 µs, sys: 998 µs, total: 1.42 ms\n", + "Wall time: 1.43 ms\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.rand(3,2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pGYDoK2gevfo", + "outputId": "2c8783d5-0453-47c5-c7ed-af10d25d6989" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5999, 0.0073],\n", + " [0.9321, 0.3026],\n", + " [0.3463, 0.3872]])" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(torch.rand(3,2), torch.rand(2,3))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KGBGQoB8e2DP", + "outputId": "4c2ef361-a2d0-41ee-c328-3992cbbc138d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.3528, 0.1893, 0.0714],\n", + " [1.2791, 0.7110, 0.2563],\n", + " [0.8812, 0.4553, 0.1803]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch" + ], + "metadata": { + "id": "ib8DMtkBe_LJ" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x = torch.rand(2,9)" + ], + "metadata": { + "id": "nJo8ZBdrQY1b" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wi6oRv4MQfgf", + "outputId": "55c99f55-31f6-4cf5-ba4e-19a47c3a0167" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5894, 0.4391, 0.2018, 0.5417, 0.3844, 0.3592, 0.9209, 0.9269, 0.0681],\n", + " [0.0746, 0.1740, 0.6821, 0.6890, 0.0999, 0.7444, 0.2391, 0.4625, 0.8302]])" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "y=torch.randn(2,3,5)\n", + "y" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zpx8myAUQgoc", + "outputId": "07756d70-56bd-437c-c74e-9aecc1a77311" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[ 1.5552, -0.4877, 0.5175, -1.7958, -0.6187],\n", + " [-0.3359, -1.9710, 0.0112, -1.7578, -1.5295],\n", + " [ 0.0932, 1.4079, 0.9108, 0.3328, -0.6978]],\n", + "\n", + " [[-0.9406, -1.0809, -0.2595, 0.1282, 1.6605],\n", + " [ 1.1624, 1.0902, 1.7092, -0.2842, -1.3780],\n", + " [-0.1534, -1.2795, -0.5495, 0.9902, 0.1822]]])" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original = torch.rand(size=(224,224,3))\n", + "x_original" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "s4U-X9bJQnWe", + "outputId": "657a7a76-962c-4b41-a76b-902d0482266c" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[0.4549, 0.6809, 0.2118],\n", + " [0.4824, 0.9008, 0.8741],\n", + " [0.1715, 0.1757, 0.1845],\n", + " ...,\n", + " [0.8741, 0.6594, 0.2610],\n", + " [0.0092, 0.1984, 0.1955],\n", + " [0.4236, 0.4182, 0.0251]],\n", + "\n", + " [[0.9174, 0.1661, 0.5852],\n", + " [0.1837, 0.2351, 0.3810],\n", + " [0.3726, 0.4808, 0.8732],\n", + " ...,\n", + " [0.6794, 0.0554, 0.9202],\n", + " [0.0864, 0.8750, 0.3558],\n", + " [0.8445, 0.9759, 0.4934]],\n", + "\n", + " [[0.1600, 0.2635, 0.7194],\n", + " [0.9488, 0.3405, 0.3647],\n", + " [0.6683, 0.5168, 0.9592],\n", + " ...,\n", + " [0.0521, 0.0140, 0.2445],\n", + " [0.3596, 0.3999, 0.2730],\n", + " [0.5926, 0.9877, 0.7784]],\n", + "\n", + " ...,\n", + "\n", + " [[0.4794, 0.5635, 0.3764],\n", + " [0.9124, 0.6094, 0.5059],\n", + " [0.4528, 0.4447, 0.5021],\n", + " ...,\n", + " [0.0089, 0.4816, 0.8727],\n", + " [0.2173, 0.6296, 0.2347],\n", + " [0.2028, 0.9931, 0.7201]],\n", + "\n", + " [[0.3116, 0.6459, 0.4703],\n", + " [0.0148, 0.2345, 0.7149],\n", + " [0.8393, 0.5804, 0.6691],\n", + " ...,\n", + " [0.2105, 0.9460, 0.2696],\n", + " [0.5918, 0.9295, 0.2616],\n", + " [0.2537, 0.7819, 0.4700]],\n", + "\n", + " [[0.6654, 0.1200, 0.5841],\n", + " [0.9147, 0.5522, 0.6529],\n", + " [0.1799, 0.5276, 0.5415],\n", + " ...,\n", + " [0.7536, 0.4346, 0.8793],\n", + " [0.3793, 0.1750, 0.7792],\n", + " [0.9266, 0.8325, 0.9974]]])" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted=x_original.permute(2, 0, 1)\n", + "print(x_original.shape)\n", + "print(x_permuted.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DD19_zvbQzHo", + "outputId": "1d64ce1b-eb48-47e3-90b6-7f1340e7f2b2" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "torch.Size([224, 224, 3])\n", + "torch.Size([3, 224, 224])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NnPmMk4ZRF7w", + "outputId": "2cd5da7f-4a23-4a76-8c4a-bb982113f2a4" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z0ylNoAARgTo", + "outputId": "ddca0298-cddf-4048-9b71-a791655e5bed" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]=0.989" + ], + "metadata": { + "id": "RXw0xXsDRi4L" + }, + "execution_count": 13, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1sFdV6wzRo3f", + "outputId": "1cf87d2c-6d88-453a-d136-0f625a2800f1" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xTX-hx2SR1wp", + "outputId": "0d4908c4-c3bc-44e3-8ec6-1487104cc209" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x=torch.arange(1,10).reshape(1,3,3)\n", + "x, x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mZomOe7gR4Q8", + "outputId": "0b3c922f-ec11-46de-b8a5-9f9533d866ad" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]]]),\n", + " torch.Size([1, 3, 3]))" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3y7v4SQvSBs1", + "outputId": "8c53307d-e628-404d-db66-56c6bdffab7c" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hf9uG4xLSNya", + "outputId": "3075bc42-9ffa-426b-8a86-95628ffcd824" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zA4G2Se4SRB3", + "outputId": "324312d2-ed0a-49eb-f81f-e904e53992fe" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(1)" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][2][2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Mwy3zmKKSdbk", + "outputId": "d35172c3-b099-40a6-ddf1-a453c2adfa44" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[:,1,1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fE3nCM1KS7XT", + "outputId": "01f5d755-9737-4235-9f73-dce89ff6ba16" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([5])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,0,:]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "luNDINKNTTxp", + "outputId": "091195ef-2f71-4602-e95f-529a69193150" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,:,2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KG8A4xbfThCL", + "outputId": "5866bc41-9241-4619-be7b-e9206b3f80ab" + }, + "execution_count": 26, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np" + ], + "metadata": { + "id": "CZ3PX0qlTwHJ" + }, + "execution_count": 27, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array = np.arange(1.0, 8.0)" + ], + "metadata": { + "id": "UOBeTumiT3Lf" + }, + "execution_count": 28, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RzcO32E9UCQl", + "outputId": "430def24-c42c-461f-e5e7-398544c695d3" + }, + "execution_count": 29, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1., 2., 3., 4., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.from_numpy(array)\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JJIL0q1DUC6O", + "outputId": "8a3b1d7c-4482-4d32-f34f-9212d9d3a177" + }, + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1., 2., 3., 4., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "array[3]=11.0" + ], + "metadata": { + "id": "j3Ce6q3DUIEK" + }, + "execution_count": 33, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dc_BCVdjUsCc", + "outputId": "65537325-8b11-4f36-fc73-e56f30d6a036" + }, + "execution_count": 34, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 1., 2., 3., 11., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VG1e_eITUta2", + "outputId": "a26c5198-23b6-4a6d-d73a-ba20cd9782b8" + }, + "execution_count": 35, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1., 2., 3., 11., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 35 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.ones(7)\n", + "tensor, tensor.dtype\n", + "numpy_tensor = tensor.numpy()\n", + "numpy_tensor, numpy_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Swt8JF8vUuev", + "outputId": "c9e5bf6a-6d2c-41d6-8327-366867ffdd2d" + }, + "execution_count": 37, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(array([1., 1., 1., 1., 1., 1., 1.], dtype=float32), dtype('float32'))" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "random_tensor_A = torch.rand(3,4)\n", + "random_tensor_B = torch.rand(3,4)\n", + "print(random_tensor_A)\n", + "print(random_tensor_B)\n", + "print(random_tensor_A == random_tensor_B)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGcagTteVFTD", + "outputId": "49405790-08e7-4210-b7f1-f00b904c7eb9" + }, + "execution_count": 38, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.9870, 0.6636, 0.6873, 0.8863],\n", + " [0.8386, 0.4169, 0.3587, 0.0265],\n", + " [0.2981, 0.6025, 0.5652, 0.5840]])\n", + "tensor([[0.9821, 0.3481, 0.0913, 0.4940],\n", + " [0.7495, 0.4387, 0.9582, 0.8659],\n", + " [0.5064, 0.6919, 0.0809, 0.9771]])\n", + "tensor([[False, False, False, False],\n", + " [False, False, False, False],\n", + " [False, False, False, False]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "RANDOM_SEED = 42\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_C = torch.rand(3,4)\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_D = torch.rand(3,4)\n", + "print(random_tensor_C)\n", + "print(random_tensor_D)\n", + "print(random_tensor_C == random_tensor_D)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HznyXyEaWjLM", + "outputId": "25956434-01b6-4059-9054-c9978884ddc1" + }, + "execution_count": 46, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[True, True, True, True],\n", + " [True, True, True, True],\n", + " [True, True, True, True]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!nvidia-smi" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vltPTh0YXJSt", + "outputId": "807af6dc-a9ca-4301-ec32-b688dbde8be8" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Thu May 23 02:57:59 2024 \n", + "+---------------------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |\n", + "|-----------------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|=========================================+======================+======================|\n", + "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", + "| N/A 60C P8 11W / 70W | 0MiB / 15360MiB | 0% Default |\n", + "| | | N/A |\n", + "+-----------------------------------------+----------------------+----------------------+\n", + " \n", + "+---------------------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=======================================================================================|\n", + "| No running processes found |\n", + "+---------------------------------------------------------------------------------------+\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "torch.cuda.is_available()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "L6mMyPDyYh1j", + "outputId": "279c5dd8-c2a8-4fbd-f321-2f5d7c6e90e6" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "device" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "oOdiYa7ZYytx", + "outputId": "d73b04fc-8963-4826-9722-08d118d5ab91" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'cuda'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.cuda.device_count()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vOdsazLqZFM5", + "outputId": "8189cd6a-9017-4663-a652-3e15c517d9c3" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.tensor([1,2,3], device = \"cpu\")\n", + "print(tensor, tensor.device)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cdik9Vw3ZMv0", + "outputId": "044a68fd-83a1-409d-8e3b-655142ca0270" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([1, 2, 3]) cpu\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu = tensor.to(device)\n", + "tensor_on_gpu" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zmp835rrZp-z", + "outputId": "37fa3413-18a3-47bf-ae51-5b36ff85a3ef" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3], device='cuda:0')" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu.numpy()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 159 + }, + "id": "jhriaa8uZ1yM", + "outputId": "bc5a3226-1a12-4fea-8769-a44f21cdc323" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "error", + "ename": "TypeError", + "evalue": "can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtensor_on_gpu\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first." + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_cpu = tensor_on_gpu.cpu().numpy()" + ], + "metadata": { + "id": "LHGXK3GgaOzL" + }, + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "j-El4LlCajfq" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/hi/README.md b/translations/hi/README.md new file mode 100644 index 000000000..0c34036ed --- /dev/null +++ b/translations/hi/README.md @@ -0,0 +1,177 @@ + +[![GitHub license](https://img.shields.io/github/license/microsoft/ML-For-Beginners.svg)](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE) +[![GitHub contributors](https://img.shields.io/github/contributors/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/) +[![GitHub issues](https://img.shields.io/github/issues/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/issues/) +[![GitHub pull-requests](https://img.shields.io/github/issues-pr/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/pulls/) +[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) + +[![GitHub watchers](https://img.shields.io/github/watchers/microsoft/ML-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/ML-For-Beginners/watchers/) +[![GitHub forks](https://img.shields.io/github/forks/microsoft/ML-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/ML-For-Beginners/network/) +[![GitHub stars](https://img.shields.io/github/stars/microsoft/ML-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/ML-For-Beginners/stargazers/) + +### 🌐 बहुभाषी समर्थन + +#### GitHub Action के माध्यम से समर्थित (स्वचालित और हमेशा अद्यतन) + +[French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](./README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md) + +#### समुदाय से जुड़ें + +[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr) + +# शुरुआती लोगों के लिए मशीन लर्निंग - एक पाठ्यक्रम + +> 🌍 दुनिया भर की संस्कृतियों के माध्यम से मशीन लर्निंग का अन्वेषण करें 🌍 + +Microsoft के Cloud Advocates ने **मशीन लर्निंग** पर आधारित 12-सप्ताह, 26-पाठों का पाठ्यक्रम पेश किया है। इस पाठ्यक्रम में, आप **क्लासिक मशीन लर्निंग** के बारे में जानेंगे, मुख्य रूप से Scikit-learn लाइब्रेरी का उपयोग करते हुए और डीप लर्निंग से बचते हुए, जिसे हमारे [AI for Beginners' पाठ्यक्रम](https://aka.ms/ai4beginners) में शामिल किया गया है। इन पाठों को हमारे ['Data Science for Beginners' पाठ्यक्रम](https://aka.ms/ds4beginners) के साथ जोड़ें। + +हमारे साथ दुनिया भर की यात्रा करें क्योंकि हम इन क्लासिक तकनीकों को विभिन्न क्षेत्रों के डेटा पर लागू करते हैं। प्रत्येक पाठ में प्री- और पोस्ट-लेसन क्विज़, लिखित निर्देश, समाधान, असाइनमेंट और बहुत कुछ शामिल है। हमारा प्रोजेक्ट-आधारित शिक्षण दृष्टिकोण आपको निर्माण करते हुए सीखने की अनुमति देता है, जो नए कौशल को बनाए रखने का एक सिद्ध तरीका है। + +**✍️ हमारे लेखकों को हार्दिक धन्यवाद** Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu और Amy Boyd + +**🎨 हमारे चित्रकारों को भी धन्यवाद** Tomomi Imura, Dasani Madipalli, और Jen Looper + +**🙏 विशेष धन्यवाद 🙏 हमारे Microsoft Student Ambassador लेखकों, समीक्षकों और सामग्री योगदानकर्ताओं को**, विशेष रूप से Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila, और Snigdha Agarwal + +**🤩 अतिरिक्त आभार Microsoft Student Ambassadors Eric Wanjau, Jasleen Sondhi, और Vidushi Gupta को हमारे R पाठों के लिए!** + +# शुरुआत करें + +इन चरणों का पालन करें: +1. **रिपॉजिटरी को फोर्क करें**: इस पेज के शीर्ष-दाएं कोने पर "Fork" बटन पर क्लिक करें। +2. **रिपॉजिटरी को क्लोन करें**: `git clone https://github.com/microsoft/ML-For-Beginners.git` + +> [इस पाठ्यक्रम के लिए सभी अतिरिक्त संसाधन हमारे Microsoft Learn संग्रह में खोजें](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +**[छात्रों](https://aka.ms/student-page)**, इस पाठ्यक्रम का उपयोग करने के लिए, पूरे रिपॉजिटरी को अपने GitHub खाते में फोर्क करें और अभ्यास को अकेले या समूह के साथ पूरा करें: + +- प्री-लेक्चर क्विज़ से शुरू करें। +- लेक्चर पढ़ें और गतिविधियों को पूरा करें, प्रत्येक ज्ञान जांच पर रुकें और विचार करें। +- पाठों को समझने के लिए प्रोजेक्ट बनाने का प्रयास करें बजाय समाधान कोड चलाने के; हालांकि वह कोड `/solution` फ़ोल्डरों में उपलब्ध है। +- पोस्ट-लेक्चर क्विज़ लें। +- चुनौती पूरी करें। +- असाइनमेंट पूरा करें। +- एक पाठ समूह पूरा करने के बाद, [Discussion Board](https://github.com/microsoft/ML-For-Beginners/discussions) पर जाएं और "लाउड में सीखें" द्वारा उपयुक्त PAT रूब्रिक भरें। 'PAT' एक प्रगति मूल्यांकन उपकरण है जिसे आप अपनी सीखने को आगे बढ़ाने के लिए भरते हैं। आप अन्य PATs पर प्रतिक्रिया भी दे सकते हैं ताकि हम एक साथ सीख सकें। + +> आगे की पढ़ाई के लिए, हम इन [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott) मॉड्यूल और लर्निंग पाथ्स का अनुसरण करने की सिफारिश करते हैं। + +**शिक्षकों**, हमने इस पाठ्यक्रम का उपयोग करने के तरीके पर [कुछ सुझाव शामिल किए हैं](for-teachers.md)। + +--- + +## वीडियो वॉकथ्रू + +कुछ पाठ छोटे वीडियो के रूप में उपलब्ध हैं। आप इन सभी को पाठों में इन-लाइन पा सकते हैं, या [Microsoft Developer YouTube चैनल पर ML for Beginners प्लेलिस्ट](https://aka.ms/ml-beginners-videos) पर क्लिक करके देख सकते हैं। + +[![ML for beginners banner](../../translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.hi.png)](https://aka.ms/ml-beginners-videos) + +--- + +## टीम से मिलें + +[![Promo video](../../images/ml.gif)](https://youtu.be/Tj1XWrDSYJU) + +**Gif द्वारा** [Mohit Jaisal](https://linkedin.com/in/mohitjaisal) + +> 🎥 ऊपर दी गई छवि पर क्लिक करें इस प्रोजेक्ट और इसे बनाने वाले लोगों के बारे में वीडियो देखने के लिए! + +--- + +## शिक्षण दृष्टिकोण + +हमने इस पाठ्यक्रम को बनाते समय दो शिक्षण सिद्धांतों को चुना है: यह सुनिश्चित करना कि यह **प्रोजेक्ट-आधारित** है और इसमें **बार-बार क्विज़** शामिल हैं। इसके अलावा, इस पाठ्यक्रम में एक सामान्य **थीम** है जो इसे एकजुटता प्रदान करती है। + +सुनिश्चित करके कि सामग्री प्रोजेक्ट्स के साथ संरेखित है, प्रक्रिया छात्रों के लिए अधिक आकर्षक बन जाती है और अवधारणाओं की प्रतिधारण बढ़ जाती है। इसके अलावा, कक्षा से पहले एक कम-जोखिम क्विज़ छात्र को विषय सीखने के इरादे की ओर सेट करता है, जबकि कक्षा के बाद दूसरा क्विज़ आगे की प्रतिधारण सुनिश्चित करता है। यह पाठ्यक्रम लचीला और मजेदार बनाया गया है और इसे पूरे या आंशिक रूप से लिया जा सकता है। प्रोजेक्ट छोटे से शुरू होते हैं और 12-सप्ताह के चक्र के अंत तक धीरे-धीरे जटिल हो जाते हैं। इस पाठ्यक्रम में ML के वास्तविक दुनिया के अनुप्रयोगों पर एक पोस्टस्क्रिप्ट भी शामिल है, जिसे अतिरिक्त क्रेडिट के रूप में या चर्चा के आधार के रूप में उपयोग किया जा सकता है। + +> हमारा [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), और [Translation](TRANSLATIONS.md) दिशानिर्देश देखें। हम आपकी रचनात्मक प्रतिक्रिया का स्वागत करते हैं! + +## प्रत्येक पाठ में शामिल है + +- वैकल्पिक स्केच नोट +- वैकल्पिक पूरक वीडियो +- वीडियो वॉकथ्रू (कुछ पाठों में ही) +- प्री-लेक्चर वार्मअप क्विज़ +- लिखित पाठ +- प्रोजेक्ट-आधारित पाठों के लिए, प्रोजेक्ट बनाने के लिए चरण-दर-चरण गाइड +- ज्ञान जांच +- एक चुनौती +- पूरक पढ़ाई +- असाइनमेंट +- पोस्ट-लेक्चर क्विज़ + +> **भाषाओं के बारे में एक नोट**: ये पाठ मुख्य रूप से Python में लिखे गए हैं, लेकिन कई R में भी उपलब्ध हैं। R पाठ पूरा करने के लिए, `/solution` फ़ोल्डर पर जाएं और R पाठों की तलाश करें। इनमें .rmd एक्सटेंशन होता है जो **R Markdown** फ़ाइल का प्रतिनिधित्व करता है, जिसे `कोड चंक्स` (R या अन्य भाषाओं के) और `YAML हेडर` (जो आउटपुट को PDF जैसे स्वरूपों में गाइड करता है) को `Markdown दस्तावेज़` में एम्बेडिंग के रूप में परिभाषित किया जा सकता है। इस प्रकार, यह डेटा विज्ञान के लिए एक उत्कृष्ट लेखन ढांचा के रूप में कार्य करता है क्योंकि यह आपको अपने कोड, उसके आउटपुट और अपने विचारों को Markdown में लिखने की अनुमति देता है। इसके अलावा, R Markdown दस्तावेज़ों को PDF, HTML, या Word जैसे आउटपुट स्वरूपों में प्रस्तुत किया जा सकता है। + +> **क्विज़ के बारे में एक नोट**: सभी क्विज़ [Quiz App फ़ोल्डर](../../quiz-app) में शामिल हैं, कुल 52 क्विज़, प्रत्येक में तीन प्रश्न। ये पाठों के भीतर लिंक किए गए हैं लेकिन क्विज़ ऐप को स्थानीय रूप से चलाया जा सकता है; `quiz-app` फ़ोल्डर में निर्देशों का पालन करें इसे स्थानीय रूप से होस्ट करने या Azure पर तैनात करने के लिए। + +| पाठ संख्या | विषय | पाठ समूह | सीखने के उद्देश्य | लिंक्ड पाठ | लेखक | +| :-----------: | :------------------------------------------------------------: | :-------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------: | +| 01 | मशीन लर्निंग का परिचय | [परिचय](1-Introduction/README.md) | मशीन लर्निंग के पीछे बुनियादी अवधारणाओं को जानें | [पाठ](1-Introduction/1-intro-to-ML/README.md) | Muhammad | +| 02 | मशीन लर्निंग का इतिहास | [परिचय](1-Introduction/README.md) | इस क्षेत्र के पीछे के इतिहास को जानें | [पाठ](1-Introduction/2-history-of-ML/README.md) | Jen और Amy | +| 03 | मशीन लर्निंग और निष्पक्षता | [परिचय](1-Introduction/README.md) | मशीन लर्निंग मॉडल बनाते और लागू करते समय छात्रों को निष्पक्षता के महत्वपूर्ण दार्शनिक मुद्दों पर विचार करना चाहिए? | [पाठ](1-Introduction/3-fairness/README.md) | Tomomi | +| 04 | मशीन लर्निंग के लिए तकनीक | [परिचय](1-Introduction/README.md) | मशीन लर्निंग शोधकर्ता ML मॉडल बनाने के लिए कौन सी तकनीक का उपयोग करते हैं? | [पाठ](1-Introduction/4-techniques-of-ML/README.md) | Chris और Jen | +| 05 | प्रतिगमन का परिचय | [Regression](2-Regression/README.md) | प्रतिगमन मॉडल के लिए Python और Scikit-learn के साथ शुरुआत करें | +
                                • [Python](2-Regression/1-Tools/README.md)
                                • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html)
                                |
                                • जेन
                                • एरिक वंजाऊ
                                | +| 06 | उत्तरी अमेरिकी कद्दू की कीमतें 🎃 | [Regression](2-Regression/README.md) | मशीन लर्निंग की तैयारी के लिए डेटा को विज़ुअलाइज़ और साफ करें |
                                • [Python](2-Regression/2-Data/README.md)
                                • [R](../../2-Regression/2-Data/solution/R/lesson_2.html)
                                |
                                • जेन
                                • एरिक वंजाऊ
                                | +| 07 | उत्तरी अमेरिकी कद्दू की कीमतें 🎃 | [Regression](2-Regression/README.md) | रैखिक और बहुपद प्रतिगमन मॉडल बनाएं |
                                • [Python](2-Regression/3-Linear/README.md)
                                • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html)
                                |
                                • जेन और दिमित्री
                                • एरिक वंजाऊ
                                | +| 08 | उत्तरी अमेरिकी कद्दू की कीमतें 🎃 | [Regression](2-Regression/README.md) | एक लॉजिस्टिक प्रतिगमन मॉडल बनाएं |
                                • [Python](2-Regression/4-Logistic/README.md)
                                • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html)
                                |
                                • जेन
                                • एरिक वंजाऊ
                                | +| 09 | एक वेब ऐप 🔌 | [Web App](3-Web-App/README.md) | अपने प्रशिक्षित मॉडल का उपयोग करने के लिए एक वेब ऐप बनाएं | [Python](3-Web-App/1-Web-App/README.md) | जेन | +| 10 | वर्गीकरण का परिचय | [Classification](4-Classification/README.md) | अपने डेटा को साफ करें, तैयार करें और विज़ुअलाइज़ करें; वर्गीकरण का परिचय |
                                • [Python](4-Classification/1-Introduction/README.md)
                                • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) |
                                  • जेन और कैसी
                                  • एरिक वंजाऊ
                                  | +| 11 | स्वादिष्ट एशियाई और भारतीय व्यंजन 🍜 | [Classification](4-Classification/README.md) | वर्गीकरणकर्ताओं का परिचय |
                                  • [Python](4-Classification/2-Classifiers-1/README.md)
                                  • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) |
                                    • जेन और कैसी
                                    • एरिक वंजाऊ
                                    | +| 12 | स्वादिष्ट एशियाई और भारतीय व्यंजन 🍜 | [Classification](4-Classification/README.md) | अधिक वर्गीकरणकर्ता |
                                    • [Python](4-Classification/3-Classifiers-2/README.md)
                                    • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) |
                                      • जेन और कैसी
                                      • एरिक वंजाऊ
                                      | +| 13 | स्वादिष्ट एशियाई और भारतीय व्यंजन 🍜 | [Classification](4-Classification/README.md) | अपने मॉडल का उपयोग करके एक अनुशंसा वेब ऐप बनाएं | [Python](4-Classification/4-Applied/README.md) | जेन | +| 14 | क्लस्टरिंग का परिचय | [Clustering](5-Clustering/README.md) | अपने डेटा को साफ करें, तैयार करें और विज़ुअलाइज़ करें; क्लस्टरिंग का परिचय |
                                      • [Python](5-Clustering/1-Visualize/README.md)
                                      • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) |
                                        • जेन
                                        • एरिक वंजाऊ
                                        | +| 15 | नाइजीरियाई संगीत स्वाद का अन्वेषण 🎧 | [Clustering](5-Clustering/README.md) | K-Means क्लस्टरिंग विधि का अन्वेषण करें |
                                        • [Python](5-Clustering/2-K-Means/README.md)
                                        • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) |
                                          • जेन
                                          • एरिक वंजाऊ
                                          | +| 16 | प्राकृतिक भाषा प्रसंस्करण का परिचय ☕️ | [Natural language processing](6-NLP/README.md) | एक साधारण बॉट बनाकर NLP के बारे में मूल बातें सीखें | [Python](6-NLP/1-Introduction-to-NLP/README.md) | स्टीफन | +| 17 | सामान्य NLP कार्य ☕️ | [Natural language processing](6-NLP/README.md) | भाषा संरचनाओं से निपटने के दौरान आवश्यक सामान्य कार्यों को समझकर अपने NLP ज्ञान को गहरा करें | [Python](6-NLP/2-Tasks/README.md) | स्टीफन | +| 18 | अनुवाद और भावना विश्लेषण ♥️ | [Natural language processing](6-NLP/README.md) | जेन ऑस्टेन के साथ अनुवाद और भावना विश्लेषण | [Python](6-NLP/3-Translation-Sentiment/README.md) | स्टीफन | +| 19 | यूरोप के रोमांटिक होटल ♥️ | [Natural language processing](6-NLP/README.md) | होटल समीक्षाओं के साथ भावना विश्लेषण 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | स्टीफन | +| 20 | यूरोप के रोमांटिक होटल ♥️ | [Natural language processing](6-NLP/README.md) | होटल समीक्षाओं के साथ भावना विश्लेषण 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | स्टीफन | +| 21 | समय श्रृंखला पूर्वानुमान का परिचय | [Time series](7-TimeSeries/README.md) | समय श्रृंखला पूर्वानुमान का परिचय | [Python](7-TimeSeries/1-Introduction/README.md) | फ्रांसेस्का | +| 22 | ⚡️ विश्व ऊर्जा उपयोग ⚡️ - ARIMA के साथ समय श्रृंखला पूर्वानुमान | [Time series](7-TimeSeries/README.md) | ARIMA के साथ समय श्रृंखला पूर्वानुमान | [Python](7-TimeSeries/2-ARIMA/README.md) | फ्रांसेस्का | +| 23 | ⚡️ विश्व ऊर्जा उपयोग ⚡️ - SVR के साथ समय श्रृंखला पूर्वानुमान | [Time series](7-TimeSeries/README.md) | सपोर्ट वेक्टर रिग्रेसर के साथ समय श्रृंखला पूर्वानुमान | [Python](7-TimeSeries/3-SVR/README.md) | अनिर्बान | +| 24 | सुदृढीकरण सीखने का परिचय | [Reinforcement learning](8-Reinforcement/README.md) | Q-Learning के साथ सुदृढीकरण सीखने का परिचय | [Python](8-Reinforcement/1-QLearning/README.md) | दिमित्री | +| 25 | पीटर को भेड़िये से बचाने में मदद करें! 🐺 | [Reinforcement learning](8-Reinforcement/README.md) | सुदृढीकरण सीखने का जिम | [Python](8-Reinforcement/2-Gym/README.md) | दिमित्री | +| Postscript | वास्तविक दुनिया के एमएल परिदृश्य और अनुप्रयोग | [ML in the Wild](9-Real-World/README.md) | क्लासिकल मशीन लर्निंग के दिलचस्प और खुलासा करने वाले वास्तविक दुनिया के अनुप्रयोग | [Lesson](9-Real-World/1-Applications/README.md) | टीम | +| Postscript | RAI डैशबोर्ड का उपयोग करके एमएल में मॉडल डिबगिंग | [ML in the Wild](9-Real-World/README.md) | जिम्मेदार एआई डैशबोर्ड घटकों का उपयोग करके मशीन लर्निंग में मॉडल डिबगिंग | [Lesson](9-Real-World/2-Debugging-ML-Models/README.md) | रूथ याकुब | + +> [इस पाठ्यक्रम के लिए सभी अतिरिक्त संसाधन हमारे Microsoft Learn संग्रह में खोजें](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +## ऑफ़लाइन एक्सेस + +आप [Docsify](https://docsify.js.org/#/) का उपयोग करके इस दस्तावेज़ को ऑफ़लाइन चला सकते हैं। इस रिपॉजिटरी को फोर्क करें, [Docsify इंस्टॉल करें](https://docsify.js.org/#/quickstart) अपने स्थानीय मशीन पर, और फिर इस रिपॉजिटरी के रूट फ़ोल्डर में `docsify serve` टाइप करें। वेबसाइट आपके लोकलहोस्ट पर पोर्ट 3000 पर सर्व की जाएगी: `localhost:3000`। + +## PDFs + +लिंक्स के साथ पाठ्यक्रम का पीडीएफ [यहां](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf) खोजें। + +## 🎒 अन्य पाठ्यक्रम + +हमारी टीम अन्य पाठ्यक्रम भी बनाती है! देखें: + +- [Generative AI for Beginners](https://aka.ms/genai-beginners) +- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet) +- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript) +- [Generative AI with Java](https://github.com/microsoft/Generative-AI-for-beginners-java) +- [AI for Beginners](https://aka.ms/ai-beginners) +- [Data Science for Beginners](https://aka.ms/datascience-beginners) +- [ML for Beginners](https://aka.ms/ml-beginners) +- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101) +- [Web Dev for Beginners](https://aka.ms/webdev-beginners) +- [IoT for Beginners](https://aka.ms/iot-beginners) +- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners) +- [Mastering GitHub Copilot for Paired Programming](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming) +- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers) +- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/SECURITY.md b/translations/hi/SECURITY.md new file mode 100644 index 000000000..4a9e19a8f --- /dev/null +++ b/translations/hi/SECURITY.md @@ -0,0 +1,51 @@ + +## सुरक्षा + +Microsoft हमारे सॉफ़्टवेयर उत्पादों और सेवाओं की सुरक्षा को गंभीरता से लेता है, जिसमें हमारे GitHub संगठनों के माध्यम से प्रबंधित सभी स्रोत कोड रिपॉजिटरी शामिल हैं, जैसे [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), और [हमारे GitHub संगठन](https://opensource.microsoft.com/)। + +यदि आपको किसी Microsoft-स्वामित्व वाली रिपॉजिटरी में कोई सुरक्षा कमजोरी मिलती है जो [Microsoft की सुरक्षा कमजोरी की परिभाषा](https://docs.microsoft.com/previous-versions/tn-archive/cc751383(v=technet.10)?WT.mc_id=academic-77952-leestott) के अंतर्गत आती है, तो कृपया इसे नीचे दिए गए निर्देशों के अनुसार हमें रिपोर्ट करें। + +## सुरक्षा समस्याओं की रिपोर्टिंग + +**कृपया सार्वजनिक GitHub मुद्दों के माध्यम से सुरक्षा कमजोरियों की रिपोर्ट न करें।** + +इसके बजाय, कृपया इसे Microsoft Security Response Center (MSRC) पर [https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report) पर रिपोर्ट करें। + +यदि आप लॉग इन किए बिना सबमिट करना पसंद करते हैं, तो [secure@microsoft.com](mailto:secure@microsoft.com) पर ईमेल भेजें। यदि संभव हो, तो हमारे PGP कुंजी के साथ अपने संदेश को एन्क्रिप्ट करें; कृपया इसे [Microsoft Security Response Center PGP Key page](https://www.microsoft.com/en-us/msrc/pgp-key-msrc) से डाउनलोड करें। + +आपको 24 घंटे के भीतर प्रतिक्रिया प्राप्त होनी चाहिए। यदि किसी कारणवश आपको प्रतिक्रिया नहीं मिलती है, तो कृपया ईमेल के माध्यम से फॉलो-अप करें ताकि यह सुनिश्चित हो सके कि हमें आपका मूल संदेश प्राप्त हुआ है। अतिरिक्त जानकारी [microsoft.com/msrc](https://www.microsoft.com/msrc) पर पाई जा सकती है। + +कृपया नीचे सूचीबद्ध जानकारी (जितना संभव हो सके प्रदान करें) शामिल करें ताकि हमें संभावित समस्या की प्रकृति और दायरे को बेहतर ढंग से समझने में मदद मिल सके: + + * समस्या का प्रकार (जैसे बफर ओवरफ्लो, SQL इंजेक्शन, क्रॉस-साइट स्क्रिप्टिंग, आदि) + * समस्या के प्रकट होने से संबंधित स्रोत फ़ाइलों के पूर्ण पथ + * प्रभावित स्रोत कोड का स्थान (टैग/ब्रांच/कमिट या डायरेक्ट URL) + * समस्या को पुन: उत्पन्न करने के लिए आवश्यक कोई विशेष कॉन्फ़िगरेशन + * समस्या को पुन: उत्पन्न करने के लिए चरण-दर-चरण निर्देश + * प्रूफ-ऑफ-कॉन्सेप्ट या एक्सप्लॉइट कोड (यदि संभव हो) + * समस्या का प्रभाव, जिसमें यह भी शामिल है कि हमलावर समस्या का कैसे लाभ उठा सकता है + +यह जानकारी हमें आपकी रिपोर्ट को अधिक तेज़ी से प्राथमिकता देने में मदद करेगी। + +यदि आप बग बाउंटी के लिए रिपोर्ट कर रहे हैं, तो अधिक विस्तृत रिपोर्ट उच्च बाउंटी पुरस्कार में योगदान कर सकती है। कृपया हमारे सक्रिय कार्यक्रमों के बारे में अधिक जानकारी के लिए [Microsoft Bug Bounty Program](https://microsoft.com/msrc/bounty) पेज पर जाएं। + +## पसंदीदा भाषाएँ + +हम सभी संचार अंग्रेजी में करने को प्राथमिकता देते हैं। + +## नीति + +Microsoft [Coordinated Vulnerability Disclosure](https://www.microsoft.com/en-us/msrc/cvd) के सिद्धांत का पालन करता है। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/SUPPORT.md b/translations/hi/SUPPORT.md new file mode 100644 index 000000000..1ecc8f7ff --- /dev/null +++ b/translations/hi/SUPPORT.md @@ -0,0 +1,24 @@ + +# समर्थन +## समस्याओं को दर्ज करने और सहायता प्राप्त करने का तरीका + +यह प्रोजेक्ट बग्स और फीचर रिक्वेस्ट को ट्रैक करने के लिए GitHub Issues का उपयोग करता है। कृपया नए मुद्दे दर्ज करने से पहले मौजूदा मुद्दों को खोजें ताकि डुप्लिकेट से बचा जा सके। नए मुद्दों के लिए, अपना बग या फीचर रिक्वेस्ट एक नए Issue के रूप में दर्ज करें। + +इस प्रोजेक्ट का उपयोग करने से संबंधित सहायता और सवालों के लिए, एक Issue दर्ज करें। + +## Microsoft समर्थन नीति + +इस रिपॉजिटरी के लिए समर्थन केवल ऊपर सूचीबद्ध संसाधनों तक सीमित है। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/docs/_sidebar.md b/translations/hi/docs/_sidebar.md new file mode 100644 index 000000000..931f333d7 --- /dev/null +++ b/translations/hi/docs/_sidebar.md @@ -0,0 +1,57 @@ + +- परिचय + - [मशीन लर्निंग का परिचय](../1-Introduction/1-intro-to-ML/README.md) + - [मशीन लर्निंग का इतिहास](../1-Introduction/2-history-of-ML/README.md) + - [मशीन लर्निंग और निष्पक्षता](../1-Introduction/3-fairness/README.md) + - [मशीन लर्निंग की तकनीकें](../1-Introduction/4-techniques-of-ML/README.md) + +- रिग्रेशन + - [उपयोग के उपकरण](../2-Regression/1-Tools/README.md) + - [डेटा](../2-Regression/2-Data/README.md) + - [लिनियर रिग्रेशन](../2-Regression/3-Linear/README.md) + - [लॉजिस्टिक रिग्रेशन](../2-Regression/4-Logistic/README.md) + +- वेब ऐप बनाएं + - [वेब ऐप](../3-Web-App/1-Web-App/README.md) + +- वर्गीकरण + - [वर्गीकरण का परिचय](../4-Classification/1-Introduction/README.md) + - [क्लासिफायर 1](../4-Classification/2-Classifiers-1/README.md) + - [क्लासिफायर 2](../4-Classification/3-Classifiers-2/README.md) + - [एप्लाइड मशीन लर्निंग](../4-Classification/4-Applied/README.md) + +- क्लस्टरिंग + - [अपने डेटा को विज़ुअलाइज़ करें](../5-Clustering/1-Visualize/README.md) + - [के-मीन्स](../5-Clustering/2-K-Means/README.md) + +- प्राकृतिक भाषा प्रसंस्करण (NLP) + - [NLP का परिचय](../6-NLP/1-Introduction-to-NLP/README.md) + - [NLP कार्य](../6-NLP/2-Tasks/README.md) + - [अनुवाद और भावना विश्लेषण](../6-NLP/3-Translation-Sentiment/README.md) + - [होटल समीक्षाएं 1](../6-NLP/4-Hotel-Reviews-1/README.md) + - [होटल समीक्षाएं 2](../6-NLP/5-Hotel-Reviews-2/README.md) + +- टाइम सीरीज़ पूर्वानुमान + - [टाइम सीरीज़ पूर्वानुमान का परिचय](../7-TimeSeries/1-Introduction/README.md) + - [ARIMA](../7-TimeSeries/2-ARIMA/README.md) + - [SVR](../7-TimeSeries/3-SVR/README.md) + +- रिइनफोर्समेंट लर्निंग + - [क्यू-लर्निंग](../8-Reinforcement/1-QLearning/README.md) + - [जिम](../8-Reinforcement/2-Gym/README.md) + +- वास्तविक दुनिया में मशीन लर्निंग + - [अनुप्रयोग](../9-Real-World/1-Applications/README.md) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/for-teachers.md b/translations/hi/for-teachers.md new file mode 100644 index 000000000..644883f23 --- /dev/null +++ b/translations/hi/for-teachers.md @@ -0,0 +1,37 @@ + +## शिक्षकों के लिए + +क्या आप इस पाठ्यक्रम का उपयोग अपनी कक्षा में करना चाहेंगे? कृपया बेझिझक इसका उपयोग करें! + +वास्तव में, आप इसे GitHub के भीतर ही GitHub Classroom का उपयोग करके इस्तेमाल कर सकते हैं। + +इसके लिए, इस रिपॉजिटरी को फोर्क करें। आपको प्रत्येक पाठ के लिए एक अलग रिपॉजिटरी बनानी होगी, इसलिए आपको प्रत्येक फ़ोल्डर को एक अलग रिपॉजिटरी में निकालना होगा। इस तरह, [GitHub Classroom](https://classroom.github.com/classrooms) प्रत्येक पाठ को अलग-अलग पहचान सकेगा। + +ये [पूर्ण निर्देश](https://github.blog/2020-03-18-set-up-your-digital-classroom-with-github-classroom/) आपको यह समझने में मदद करेंगे कि अपनी कक्षा को कैसे सेटअप करें। + +## रिपॉजिटरी का वर्तमान स्वरूप में उपयोग करना + +यदि आप इस रिपॉजिटरी का उपयोग इसके वर्तमान स्वरूप में करना चाहते हैं, बिना GitHub Classroom का उपयोग किए, तो यह भी संभव है। आपको अपने छात्रों को यह बताना होगा कि किस पाठ पर एक साथ काम करना है। + +ऑनलाइन प्रारूप (Zoom, Teams, या अन्य) में, आप क्विज़ के लिए ब्रेकआउट रूम बना सकते हैं और छात्रों को सीखने के लिए तैयार करने में मदद कर सकते हैं। फिर छात्रों को क्विज़ के लिए आमंत्रित करें और उन्हें एक निश्चित समय पर अपने उत्तर 'issues' के रूप में सबमिट करने के लिए कहें। यदि आप चाहते हैं कि छात्र खुले में सहयोगात्मक रूप से काम करें, तो आप असाइनमेंट्स के साथ भी ऐसा कर सकते हैं। + +यदि आप एक अधिक निजी प्रारूप पसंद करते हैं, तो अपने छात्रों से कहें कि वे पाठ्यक्रम को पाठ दर पाठ अपने स्वयं के GitHub रिपॉजिटरी में फोर्क करें, जो कि निजी रिपॉजिटरी हों, और आपको एक्सेस दें। फिर वे क्विज़ और असाइनमेंट्स को निजी तौर पर पूरा कर सकते हैं और उन्हें आपके कक्षा रिपॉजिटरी पर 'issues' के माध्यम से सबमिट कर सकते हैं। + +ऑनलाइन कक्षा प्रारूप में इसे काम करने के कई तरीके हैं। कृपया हमें बताएं कि आपके लिए सबसे अच्छा क्या काम करता है! + +## कृपया हमें अपनी राय दें! + +हम इस पाठ्यक्रम को आपके और आपके छात्रों के लिए उपयोगी बनाना चाहते हैं। कृपया हमें [फीडबैक](https://forms.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR2humCsRZhxNuI79cm6n0hRUQzRVVU9VVlU5UlFLWTRLWlkyQUxORTg5WS4u) दें। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/quiz-app/README.md b/translations/hi/quiz-app/README.md new file mode 100644 index 000000000..f2bf644bc --- /dev/null +++ b/translations/hi/quiz-app/README.md @@ -0,0 +1,127 @@ + +# क्विज़ + +ये क्विज़ ML पाठ्यक्रम के लिए पूर्व-व्याख्यान और पश्चात-व्याख्यान क्विज़ हैं, जो https://aka.ms/ml-beginners पर उपलब्ध है। + +## प्रोजेक्ट सेटअप + +``` +npm install +``` + +### विकास के लिए संकलित और हॉट-रीलोड करता है + +``` +npm run serve +``` + +### उत्पादन के लिए संकलित और संक्षिप्त करता है + +``` +npm run build +``` + +### फाइलों को जांचता है और सुधारता है + +``` +npm run lint +``` + +### कॉन्फ़िगरेशन को अनुकूलित करें + +[कॉन्फ़िगरेशन संदर्भ](https://cli.vuejs.org/config/) देखें। + +श्रेय: इस क्विज़ ऐप के मूल संस्करण के लिए धन्यवाद: https://github.com/arpan45/simple-quiz-vue + +## Azure पर परिनियोजन + +यहां एक चरण-दर-चरण मार्गदर्शिका दी गई है जो आपको शुरुआत करने में मदद करेगी: + +1. एक GitHub रिपॉजिटरी को फोर्क करें +सुनिश्चित करें कि आपका स्थिर वेब ऐप कोड आपके GitHub रिपॉजिटरी में है। इस रिपॉजिटरी को फोर्क करें। + +2. एक Azure Static Web App बनाएं +- एक [Azure खाता](http://azure.microsoft.com) बनाएं। +- [Azure पोर्टल](https://portal.azure.com) पर जाएं। +- "Create a resource" पर क्लिक करें और "Static Web App" खोजें। +- "Create" पर क्लिक करें। + +3. Static Web App को कॉन्फ़िगर करें +- #### बेसिक्स: + - सब्सक्रिप्शन: अपना Azure सब्सक्रिप्शन चुनें। + - रिसोर्स ग्रुप: एक नया रिसोर्स ग्रुप बनाएं या मौजूदा का उपयोग करें। + - नाम: अपने स्थिर वेब ऐप के लिए एक नाम प्रदान करें। + - क्षेत्र: अपने उपयोगकर्ताओं के सबसे नजदीकी क्षेत्र का चयन करें। + +- #### परिनियोजन विवरण: + - स्रोत: "GitHub" चुनें। + - GitHub खाता: Azure को आपके GitHub खाते तक पहुंचने की अनुमति दें। + - संगठन: अपना GitHub संगठन चुनें। + - रिपॉजिटरी: वह रिपॉजिटरी चुनें जिसमें आपका स्थिर वेब ऐप है। + - शाखा: वह शाखा चुनें जिससे आप परिनियोजन करना चाहते हैं। + +- #### बिल्ड विवरण: + - बिल्ड प्रीसेट्स: वह फ्रेमवर्क चुनें जिससे आपका ऐप बनाया गया है (जैसे React, Angular, Vue, आदि)। + - ऐप स्थान: वह फ़ोल्डर निर्दिष्ट करें जिसमें आपका ऐप कोड है (जैसे, / यदि यह रूट में है)। + - API स्थान: यदि आपके पास API है, तो उसका स्थान निर्दिष्ट करें (वैकल्पिक)। + - आउटपुट स्थान: वह फ़ोल्डर निर्दिष्ट करें जहां बिल्ड आउटपुट उत्पन्न होता है (जैसे, build या dist)। + +4. समीक्षा और निर्माण करें +अपनी सेटिंग्स की समीक्षा करें और "Create" पर क्लिक करें। Azure आवश्यक संसाधनों को सेट करेगा और आपकी रिपॉजिटरी में एक GitHub Actions वर्कफ़्लो बनाएगा। + +5. GitHub Actions वर्कफ़्लो +Azure स्वचालित रूप से आपकी रिपॉजिटरी में एक GitHub Actions वर्कफ़्लो फ़ाइल बनाएगा (.github/workflows/azure-static-web-apps-.yml)। यह वर्कफ़्लो बिल्ड और परिनियोजन प्रक्रिया को संभालेगा। + +6. परिनियोजन की निगरानी करें +GitHub रिपॉजिटरी में "Actions" टैब पर जाएं। +आपको एक वर्कफ़्लो चलते हुए दिखाई देगा। यह वर्कफ़्लो आपके स्थिर वेब ऐप को Azure पर बनाएगा और परिनियोजित करेगा। +एक बार वर्कफ़्लो पूरा हो जाने पर, आपका ऐप प्रदान किए गए Azure URL पर लाइव होगा। + +### उदाहरण वर्कफ़्लो फ़ाइल + +यहां GitHub Actions वर्कफ़्लो फ़ाइल का एक उदाहरण दिया गया है: +name: Azure Static Web Apps CI/CD +``` +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened, closed] + branches: + - main + +jobs: + build_and_deploy_job: + runs-on: ubuntu-latest + name: Build and Deploy Job + steps: + - uses: actions/checkout@v2 + - name: Build And Deploy + id: builddeploy + uses: Azure/static-web-apps-deploy@v1 + with: + azure_static_web_apps_api_token: ${{ secrets.AZURE_STATIC_WEB_APPS_API_TOKEN }} + repo_token: ${{ secrets.GITHUB_TOKEN }} + action: "upload" + app_location: "/quiz-app" # App source code path + api_location: ""API source code path optional + output_location: "dist" #Built app content directory - optional +``` + +### अतिरिक्त संसाधन +- [Azure Static Web Apps प्रलेखन](https://learn.microsoft.com/azure/static-web-apps/getting-started) +- [GitHub Actions प्रलेखन](https://docs.github.com/actions/use-cases-and-examples/deploying/deploying-to-azure-static-web-app) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं। \ No newline at end of file diff --git a/translations/hi/sketchnotes/LICENSE.md b/translations/hi/sketchnotes/LICENSE.md new file mode 100644 index 000000000..f94da1570 --- /dev/null +++ b/translations/hi/sketchnotes/LICENSE.md @@ -0,0 +1,116 @@ + +अट्रिब्यूशन-शेयरअलाइक 4.0 इंटरनेशनल + +======================================================================= + +क्रिएटिव कॉमन्स कॉर्पोरेशन ("क्रिएटिव कॉमन्स") एक कानून फर्म नहीं है और न ही यह कानूनी सेवाएं या कानूनी सलाह प्रदान करता है। क्रिएटिव कॉमन्स सार्वजनिक लाइसेंसों का वितरण वकील-ग्राहक या अन्य संबंध नहीं बनाता है। क्रिएटिव कॉमन्स अपने लाइसेंस और संबंधित जानकारी "जैसा है" आधार पर उपलब्ध कराता है। क्रिएटिव कॉमन्स अपने लाइसेंस, उनके नियमों और शर्तों के तहत लाइसेंस प्राप्त सामग्री, या किसी संबंधित जानकारी के संबंध में कोई गारंटी नहीं देता है। क्रिएटिव कॉमन्स उनके उपयोग से होने वाले नुकसान के लिए किसी भी प्रकार की जिम्मेदारी से पूरी तरह से इनकार करता है। + +क्रिएटिव कॉमन्स सार्वजनिक लाइसेंस का उपयोग करना + +क्रिएटिव कॉमन्स सार्वजनिक लाइसेंस एक मानक सेट प्रदान करते हैं, जिसे रचनाकार और अन्य अधिकार धारक अपनी मौलिक कृतियों और अन्य सामग्री को साझा करने के लिए उपयोग कर सकते हैं, जो कॉपीराइट और नीचे दिए गए सार्वजनिक लाइसेंस में निर्दिष्ट कुछ अन्य अधिकारों के अधीन हैं। निम्नलिखित विचार केवल जानकारी के लिए हैं, संपूर्ण नहीं हैं, और हमारे लाइसेंस का हिस्सा नहीं हैं। + + लाइसेंसदाताओं के लिए विचार: हमारे सार्वजनिक लाइसेंस उन लोगों द्वारा उपयोग के लिए बनाए गए हैं, जिन्हें कॉपीराइट और कुछ अन्य अधिकारों द्वारा प्रतिबंधित सामग्री को सार्वजनिक उपयोग के लिए अनुमति देने का अधिकार है। हमारे लाइसेंस अपरिवर्तनीय हैं। लाइसेंसदाताओं को लाइसेंस लागू करने से पहले इसके नियमों और शर्तों को पढ़ना और समझना चाहिए। लाइसेंसदाताओं को लाइसेंस लागू करने से पहले सभी आवश्यक अधिकार सुरक्षित कर लेने चाहिए ताकि जनता सामग्री का अपेक्षित रूप से पुन: उपयोग कर सके। लाइसेंसदाताओं को स्पष्ट रूप से किसी भी सामग्री को चिह्नित करना चाहिए जो लाइसेंस के अधीन नहीं है। इसमें अन्य CC-लाइसेंस प्राप्त सामग्री, या कॉपीराइट के अपवाद या सीमाओं के तहत उपयोग की गई सामग्री शामिल है। लाइसेंसदाताओं के लिए और विचार: + wiki.creativecommons.org/Considerations_for_licensors + + जनता के लिए विचार: हमारे सार्वजनिक लाइसेंस में से एक का उपयोग करके, एक लाइसेंसदाता जनता को निर्दिष्ट नियमों और शर्तों के तहत लाइसेंस प्राप्त सामग्री का उपयोग करने की अनुमति देता है। यदि किसी कारण से लाइसेंसदाता की अनुमति आवश्यक नहीं है—उदाहरण के लिए, किसी लागू अपवाद या कॉपीराइट की सीमा के कारण—तो उस उपयोग को लाइसेंस द्वारा नियंत्रित नहीं किया जाता है। हमारे लाइसेंस केवल कॉपीराइट और कुछ अन्य अधिकारों के तहत अनुमति प्रदान करते हैं, जिनके लिए लाइसेंसदाता को अधिकार देने का अधिकार है। लाइसेंस प्राप्त सामग्री का उपयोग अन्य कारणों से प्रतिबंधित हो सकता है, जिसमें अन्य लोगों के पास सामग्री में कॉपीराइट या अन्य अधिकार होना शामिल है। एक लाइसेंसदाता विशेष अनुरोध कर सकता है, जैसे कि सभी परिवर्तनों को चिह्नित या वर्णित करने के लिए कहना। हालांकि हमारे लाइसेंस द्वारा इसकी आवश्यकता नहीं है, आपसे अनुरोध किया जाता है कि जहां उचित हो, उन अनुरोधों का सम्मान करें। जनता के लिए और विचार: + wiki.creativecommons.org/Considerations_for_licensees + +======================================================================= + +क्रिएटिव कॉमन्स अट्रिब्यूशन-शेयरअलाइक 4.0 इंटरनेशनल सार्वजनिक लाइसेंस + +लाइसेंस प्राप्त अधिकारों (नीचे परिभाषित) का उपयोग करके, आप इस क्रिएटिव कॉमन्स अट्रिब्यूशन-शेयरअलाइक 4.0 इंटरनेशनल सार्वजनिक लाइसेंस ("सार्वजनिक लाइसेंस") की शर्तों और नियमों से बंधे होने के लिए सहमत होते हैं। जहां तक यह सार्वजनिक लाइसेंस एक अनुबंध के रूप में व्याख्या किया जा सकता है, आपको इन शर्तों और नियमों को स्वीकार करने के बदले लाइसेंस प्राप्त अधिकार प्रदान किए जाते हैं, और लाइसेंसदाता आपको इन शर्तों और नियमों के तहत लाइसेंस प्राप्त सामग्री उपलब्ध कराने से मिलने वाले लाभों के बदले ये अधिकार प्रदान करता है। + +### अनुभाग 1 -- परिभाषाएं + + a. **अनुकूलित सामग्री** का अर्थ है वह सामग्री जो कॉपीराइट और समान अधिकारों के अधीन है और जिसे लाइसेंस प्राप्त सामग्री से व्युत्पन्न या आधारित किया गया है, और जिसमें लाइसेंस प्राप्त सामग्री का अनुवाद, परिवर्तन, व्यवस्था, रूपांतरण, या अन्य प्रकार का संशोधन शामिल है, जिसके लिए लाइसेंसदाता द्वारा रखे गए कॉपीराइट और समान अधिकारों के तहत अनुमति की आवश्यकता होती है। इस सार्वजनिक लाइसेंस के उद्देश्यों के लिए, जहां लाइसेंस प्राप्त सामग्री एक संगीत कृति, प्रदर्शन, या ध्वनि रिकॉर्डिंग है, वहां अनुकूलित सामग्री हमेशा तब उत्पन्न होती है जब लाइसेंस प्राप्त सामग्री को एक चलती छवि के साथ समयबद्ध संबंध में सिंक किया जाता है। + + b. **एडॉप्टर का लाइसेंस** का अर्थ है वह लाइसेंस जिसे आप अपनी अनुकूलित सामग्री में अपने योगदान के लिए इस सार्वजनिक लाइसेंस की शर्तों और नियमों के अनुसार लागू करते हैं। + + c. **BY-SA संगत लाइसेंस** का अर्थ है वह लाइसेंस जो creativecommons.org/compatiblelicenses पर सूचीबद्ध है और जिसे क्रिएटिव कॉमन्स द्वारा इस सार्वजनिक लाइसेंस के समकक्ष के रूप में अनुमोदित किया गया है। + + d. **कॉपीराइट और समान अधिकार** का अर्थ है कॉपीराइट और/या समान अधिकार जो कॉपीराइट से निकटता से संबंधित हैं, जिसमें प्रदर्शन, प्रसारण, ध्वनि रिकॉर्डिंग, और Sui Generis डेटाबेस अधिकार शामिल हैं, लेकिन इन तक सीमित नहीं हैं, चाहे अधिकारों को कैसे भी लेबल या वर्गीकृत किया गया हो। इस सार्वजनिक लाइसेंस के उद्देश्यों के लिए, अनुभाग 2(b)(1)-(2) में निर्दिष्ट अधिकार कॉपीराइट और समान अधिकार नहीं हैं। + + e. **प्रभावी तकनीकी उपाय** का अर्थ है वे उपाय जिन्हें उचित प्राधिकरण की अनुपस्थिति में, 20 दिसंबर 1996 को अपनाई गई WIPO कॉपीराइट संधि के अनुच्छेद 11 के तहत दायित्वों को पूरा करने वाले कानूनों और/या समान अंतरराष्ट्रीय समझौतों के तहत दरकिनार नहीं किया जा सकता है। + + f. **अपवाद और सीमाएं** का अर्थ है उचित उपयोग, उचित व्यवहार, और/या कॉपीराइट और समान अधिकारों के लिए कोई अन्य अपवाद या सीमा जो लाइसेंस प्राप्त सामग्री के आपके उपयोग पर लागू होती है। + + g. **लाइसेंस तत्व** का अर्थ है क्रिएटिव कॉमन्स सार्वजनिक लाइसेंस के नाम में सूचीबद्ध लाइसेंस विशेषताएं। इस सार्वजनिक लाइसेंस के लाइसेंस तत्व अट्रिब्यूशन और शेयरअलाइक हैं। + + h. **लाइसेंस प्राप्त सामग्री** का अर्थ है वह कलात्मक या साहित्यिक कृति, डेटाबेस, या अन्य सामग्री जिस पर लाइसेंसदाता ने इस सार्वजनिक लाइसेंस को लागू किया है। + + i. **लाइसेंस प्राप्त अधिकार** का अर्थ है इस सार्वजनिक लाइसेंस की शर्तों और नियमों के अधीन आपको प्रदान किए गए अधिकार, जो लाइसेंस प्राप्त सामग्री के आपके उपयोग पर लागू सभी कॉपीराइट और समान अधिकारों तक सीमित हैं और जिन्हें लाइसेंसदाता लाइसेंस देने का अधिकार रखता है। + + j. **लाइसेंसदाता** का अर्थ है वह व्यक्ति या संस्थाएं जो इस सार्वजनिक लाइसेंस के तहत अधिकार प्रदान कर रही हैं। + + k. **साझा करना** का अर्थ है किसी भी माध्यम या प्रक्रिया द्वारा सामग्री को जनता को उपलब्ध कराना, जिसके लिए लाइसेंस प्राप्त अधिकारों के तहत अनुमति की आवश्यकता होती है, जैसे कि पुनरुत्पादन, सार्वजनिक प्रदर्शन, सार्वजनिक प्रदर्शन, वितरण, प्रसार, संचार, या आयात, और सामग्री को जनता के लिए उपलब्ध कराना, जिसमें वे इसे अपनी पसंद के स्थान और समय पर एक्सेस कर सकें। + + l. **Sui Generis डेटाबेस अधिकार** का अर्थ है कॉपीराइट के अलावा अन्य अधिकार जो 11 मार्च 1996 को यूरोपीय संसद और परिषद के निर्देश 96/9/EC से उत्पन्न हुए हैं, जैसा कि संशोधित और/या प्रतिस्थापित किया गया है, साथ ही दुनिया में कहीं भी अन्य समान अधिकार। + + m. **आप** का अर्थ है वह व्यक्ति या संस्था जो इस सार्वजनिक लाइसेंस के तहत लाइसेंस प्राप्त अधिकारों का उपयोग कर रही है। "आपका" का समानार्थी अर्थ है। + +... (अनुवाद जारी रहेगा) +अधिकार, फिर वह डेटाबेस जिसमें आपके पास Sui Generis Database Rights हैं (लेकिन उसके व्यक्तिगत सामग्री नहीं) को Adapted Material माना जाएगा, + +जिसमें Section 3(b) के उद्देश्यों के लिए भी शामिल है; और +c. यदि आप डेटाबेस की सभी या अधिकांश सामग्री को साझा करते हैं, तो आपको Section 3(a) में दिए गए शर्तों का पालन करना होगा। + +स्पष्टता के लिए, यह Section 4 आपके दायित्वों को इस Public License के तहत पूरक करता है और उन्हें प्रतिस्थापित नहीं करता है, जहां Licensed Rights में अन्य Copyright और Similar Rights शामिल हैं। + +### Section 5 -- वारंटी का अस्वीकरण और दायित्व की सीमा + +a. जब तक Licensor द्वारा अलग से Undertaken न किया गया हो, जहां तक संभव हो, Licensor Licensed Material को "जैसा है" और "जैसा उपलब्ध है" के आधार पर प्रदान करता है और Licensed Material के संबंध में किसी भी प्रकार का प्रतिनिधित्व या वारंटी नहीं देता है, चाहे वह स्पष्ट हो, निहित हो, वैधानिक हो, या अन्य। इसमें, बिना किसी सीमा के, शीर्षक, व्यापारिकता, किसी विशेष उद्देश्य के लिए उपयुक्तता, गैर-उल्लंघन, छिपे हुए या अन्य दोषों की अनुपस्थिति, सटीकता, या त्रुटियों की उपस्थिति या अनुपस्थिति शामिल है, चाहे वह ज्ञात हो या खोज योग्य। जहां वारंटी के अस्वीकरण पूरी तरह या आंशिक रूप से अनुमति नहीं है, यह अस्वीकरण आप पर लागू नहीं हो सकता है। + +b. जहां तक संभव हो, किसी भी स्थिति में Licensor आपसे किसी भी कानूनी सिद्धांत (जिसमें, बिना सीमा के, लापरवाही शामिल है) या अन्यथा किसी भी प्रत्यक्ष, विशेष, अप्रत्यक्ष, आकस्मिक, परिणामी, दंडात्मक, उदाहरणात्मक, या अन्य नुकसान, लागत, खर्च, या क्षति के लिए उत्तरदायी नहीं होगा जो इस Public License या Licensed Material के उपयोग से उत्पन्न होती है, भले ही Licensor को ऐसे नुकसान, लागत, खर्च, या क्षति की संभावना के बारे में सूचित किया गया हो। जहां दायित्व की सीमा पूरी तरह या आंशिक रूप से अनुमति नहीं है, यह सीमा आप पर लागू नहीं हो सकती है। + +c. ऊपर दिए गए वारंटी के अस्वीकरण और दायित्व की सीमा को इस प्रकार व्याख्या किया जाएगा कि, जहां तक संभव हो, यह सभी दायित्वों के पूर्ण अस्वीकरण और छूट के सबसे करीब हो। + +### Section 6 -- अवधि और समाप्ति + +a. यह Public License यहां लाइसेंस किए गए Copyright और Similar Rights की अवधि के लिए लागू होती है। हालांकि, यदि आप इस Public License का पालन करने में विफल रहते हैं, तो इस Public License के तहत आपके अधिकार स्वतः समाप्त हो जाते हैं। + +b. जहां Section 6(a) के तहत Licensed Material का उपयोग करने का आपका अधिकार समाप्त हो गया है, वह पुनः स्थापित होता है: + +1. स्वतः उस तारीख से जब उल्लंघन को ठीक किया गया हो, बशर्ते कि वह उल्लंघन की खोज के 30 दिनों के भीतर ठीक किया गया हो; या +2. Licensor द्वारा स्पष्ट पुनः स्थापना पर। + +स्पष्टता के लिए, यह Section 6(b) Licensor के पास आपके इस Public License के उल्लंघनों के लिए उपायों की मांग करने के किसी भी अधिकार को प्रभावित नहीं करता है। + +c. स्पष्टता के लिए, Licensor अलग-अलग शर्तों या परिस्थितियों के तहत Licensed Material की पेशकश कर सकता है या किसी भी समय Licensed Material का वितरण बंद कर सकता है; हालांकि, ऐसा करने से यह Public License समाप्त नहीं होगी। + +d. Sections 1, 5, 6, 7, और 8 इस Public License की समाप्ति के बाद भी लागू रहेंगे। + +### Section 7 -- अन्य शर्तें और परिस्थितियां + +a. Licensor आपके द्वारा संप्रेषित किसी भी अतिरिक्त या अलग शर्तों या परिस्थितियों से बाध्य नहीं होगा जब तक कि स्पष्ट रूप से सहमति न दी गई हो। + +b. Licensed Material के संबंध में कोई भी व्यवस्था, समझौता, या समझ जो यहां नहीं बताई गई है, इस Public License की शर्तों और परिस्थितियों से अलग और स्वतंत्र है। + +### Section 8 -- व्याख्या + +a. स्पष्टता के लिए, यह Public License Licensed Material के किसी भी उपयोग को कम करने, सीमित करने, प्रतिबंधित करने, या शर्तें लगाने के लिए नहीं है जिसे इस Public License के तहत अनुमति के बिना कानूनी रूप से किया जा सकता है। + +b. जहां तक संभव हो, यदि इस Public License का कोई प्रावधान अप्रवर्तनीय माना जाता है, तो इसे लागू करने योग्य बनाने के लिए न्यूनतम सीमा तक स्वतः सुधार किया जाएगा। यदि प्रावधान को सुधार नहीं किया जा सकता है, तो इसे इस Public License से अलग कर दिया जाएगा, बिना शेष शर्तों और परिस्थितियों की प्रवर्तनीयता को प्रभावित किए। + +c. इस Public License की कोई भी शर्त या परिस्थिति माफ नहीं की जाएगी और किसी भी विफलता को सहमति नहीं दी जाएगी जब तक कि Licensor द्वारा स्पष्ट रूप से सहमति न दी गई हो। + +d. इस Public License में कुछ भी Licensor या आपके किसी भी विशेषाधिकार और प्रतिरक्षा को सीमित करने या माफ करने के रूप में नहीं माना जाएगा, जिसमें किसी भी क्षेत्राधिकार या प्राधिकरण की कानूनी प्रक्रियाओं से छूट शामिल है। + +--- + +Creative Commons इसके सार्वजनिक लाइसेंस का पक्षकार नहीं है। इसके बावजूद, Creative Commons अपने प्रकाशित सामग्री पर अपने सार्वजनिक लाइसेंसों में से एक को लागू करने का विकल्प चुन सकता है और उन मामलों में "Licensor" माना जाएगा। Creative Commons सार्वजनिक लाइसेंसों का पाठ CC0 Public Domain Dedication के तहत सार्वजनिक डोमेन को समर्पित है। Creative Commons की नीतियों के तहत अनुमति प्राप्त सामग्री को साझा करने के सीमित उद्देश्य को छोड़कर या अन्यथा creativecommons.org/policies पर प्रकाशित, Creative Commons "Creative Commons" ट्रेडमार्क या किसी अन्य ट्रेडमार्क या लोगो का उपयोग बिना पूर्व लिखित सहमति के अधिकृत नहीं करता है, जिसमें, बिना सीमा के, इसके किसी भी सार्वजनिक लाइसेंस में किसी भी अनधिकृत संशोधन या लाइसेंस प्राप्त सामग्री के उपयोग के संबंध में कोई अन्य व्यवस्था, समझौता, या समझ शामिल है। स्पष्टता के लिए, यह पैराग्राफ सार्वजनिक लाइसेंसों का हिस्सा नहीं है। + +Creative Commons से creativecommons.org पर संपर्क किया जा सकता है। + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/hi/sketchnotes/README.md b/translations/hi/sketchnotes/README.md new file mode 100644 index 000000000..2f82887cb --- /dev/null +++ b/translations/hi/sketchnotes/README.md @@ -0,0 +1,21 @@ + +सभी पाठ्यक्रम के स्केच नोट्स यहां से डाउनलोड किए जा सकते हैं। + +🖨 उच्च-रिज़ॉल्यूशन में प्रिंटिंग के लिए, TIFF संस्करण [इस रिपॉजिटरी](https://github.com/girliemac/a-picture-is-worth-a-1000-words/tree/main/ml/tiff) में उपलब्ध हैं। + +🎨 बनाया गया: [टोमोमी इमुरा](https://github.com/girliemac) (ट्विटर: [@girlie_mac](https://twitter.com/girlie_mac)) + +[![CC BY-SA 4.0](https://img.shields.io/badge/License-CC%20BY--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-sa/4.0/) + +--- + +**अस्वीकरण**: +यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \ No newline at end of file diff --git a/translations/ja/1-Introduction/1-intro-to-ML/README.md b/translations/ja/1-Introduction/1-intro-to-ML/README.md new file mode 100644 index 000000000..fceb85621 --- /dev/null +++ b/translations/ja/1-Introduction/1-intro-to-ML/README.md @@ -0,0 +1,159 @@ + +# 機械学習の入門 + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/) + +--- + +[![初心者向け機械学習 - 機械学習の入門](https://img.youtube.com/vi/6mSx_KJxcHI/0.jpg)](https://youtu.be/6mSx_KJxcHI "初心者向け機械学習 - 機械学習の入門") + +> 🎥 上の画像をクリックすると、このレッスンの短い動画を見ることができます。 + +初心者向けの古典的な機械学習コースへようこそ!このトピックが初めての方も、機械学習の経験者で特定の分野を復習したい方も、参加していただきありがとうございます。このコースは、機械学習の学習を始めるための親しみやすい出発点を提供することを目指しています。ぜひ、[フィードバック](https://github.com/microsoft/ML-For-Beginners/discussions)をお寄せください。評価し、対応し、コースに反映させていきます。 + +[![機械学習の紹介](https://img.youtube.com/vi/h0e2HAPTGF4/0.jpg)](https://youtu.be/h0e2HAPTGF4 "機械学習の紹介") + +> 🎥 上の画像をクリックすると、MITのJohn Guttagによる機械学習の紹介動画を見ることができます。 + +--- +## 機械学習の始め方 + +このカリキュラムを始める前に、ノートブックをローカルで実行できるようにコンピュータを設定する必要があります。 + +- **これらの動画でマシンを設定する**。以下のリンクを使用して、[Pythonをインストールする方法](https://youtu.be/CXZYvNRIAKM)や[テキストエディタを設定する方法](https://youtu.be/EU8eayHWoZg)を学びましょう。 +- **Pythonを学ぶ**。データサイエンティストにとって有用なプログラミング言語であり、このコースで使用する[Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)の基本的な理解を持つことをお勧めします。 +- **Node.jsとJavaScriptを学ぶ**。このコースでは、ウェブアプリを構築する際に数回JavaScriptを使用するため、[Node](https://nodejs.org)と[npm](https://www.npmjs.com/)をインストールし、PythonとJavaScriptの開発に使用する[Visual Studio Code](https://code.visualstudio.com/)を準備してください。 +- **GitHubアカウントを作成する**。ここ[GitHub](https://github.com)で私たちを見つけたので、すでにアカウントを持っているかもしれませんが、まだの場合はアカウントを作成し、このカリキュラムをフォークして自分で使用してください。(ぜひスターも付けてください 😊) +- **Scikit-learnを探索する**。これらのレッスンで参照する[Scikit-learn](https://scikit-learn.org/stable/user_guide.html)という機械学習ライブラリに慣れておきましょう。 + +--- +## 機械学習とは? + +「機械学習」という言葉は、今日最も人気があり頻繁に使用される用語の一つです。技術に少しでも関わりがある場合、どの分野で働いていても、この言葉を一度は聞いたことがある可能性が高いです。しかし、機械学習の仕組みは多くの人にとって謎のままです。機械学習初心者にとって、このテーマは時に圧倒的に感じられることがあります。そのため、機械学習が実際に何であるかを理解し、実践的な例を通じて段階的に学ぶことが重要です。 + +--- +## 流行の曲線 + +![機械学習の流行曲線](../../../../translated_images/hype.07183d711a17aafe70915909a0e45aa286ede136ee9424d418026ab00fec344c.ja.png) + +> Googleトレンドが示す「機械学習」という言葉の最近の流行曲線 + +--- +## 謎に満ちた宇宙 + +私たちは魅力的な謎に満ちた宇宙に住んでいます。スティーブン・ホーキングやアルバート・アインシュタインなどの偉大な科学者たちは、周囲の世界の謎を解き明かすための有意義な情報を探求することに人生を捧げてきました。これは学習という人間の本質です。人間の子供は新しいことを学び、成長するにつれて年々自分の世界の構造を明らかにしていきます。 + +--- +## 子供の脳 + +子供の脳と感覚は周囲の事実を認識し、徐々に人生の隠れたパターンを学びます。そしてそのパターンを識別するための論理的なルールを作り上げます。人間の脳の学習プロセスは、人間をこの世界で最も洗練された生物にしています。隠れたパターンを発見し、それを基に革新を続けることで、私たちは生涯を通じて自分自身をより良くしていくことができます。この学習能力と進化する能力は、[脳の可塑性](https://www.simplypsychology.org/brain-plasticity.html)という概念に関連しています。表面的には、人間の脳の学習プロセスと機械学習の概念の間にいくつかの動機的な類似点を見出すことができます。 + +--- +## 人間の脳 + +[人間の脳](https://www.livescience.com/29365-human-brain.html)は現実世界から物事を認識し、認識した情報を処理し、合理的な決定を下し、状況に応じて特定の行動を取ります。これが知的に振る舞うということです。この知的な行動プロセスを機械に模倣させることをプログラムする場合、それは人工知能(AI)と呼ばれます。 + +--- +## 用語の整理 + +これらの用語は混同されることがありますが、機械学習(ML)は人工知能の重要なサブセットです。**MLは、特定のアルゴリズムを使用して認識されたデータから有意義な情報を見つけ出し、隠れたパターンを発見して合理的な意思決定プロセスを裏付けることに関心を持っています**。 + +--- +## AI、ML、ディープラーニング + +![AI、ML、ディープラーニング、データサイエンス](../../../../translated_images/ai-ml-ds.537ea441b124ebf69c144a52c0eb13a7af63c4355c2f92f440979380a2fb08b8.ja.png) + +> AI、ML、ディープラーニング、データサイエンスの関係を示す図。 [Jen Looper](https://twitter.com/jenlooper)によるインフォグラフィック。元の[グラフィック](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)に触発されています。 + +--- +## 学ぶべき概念 + +このカリキュラムでは、初心者が知っておくべき機械学習の基本概念のみを扱います。主にScikit-learnを使用して「古典的な機械学習」をカバーします。人工知能やディープラーニングの広範な概念を理解するには、機械学習の強固な基礎知識が不可欠です。そのため、ここでその基礎を提供したいと考えています。 + +--- +## このコースで学ぶこと + +- 機械学習の基本概念 +- 機械学習の歴史 +- 機械学習と公平性 +- 回帰の機械学習技術 +- 分類の機械学習技術 +- クラスタリングの機械学習技術 +- 自然言語処理の機械学習技術 +- 時系列予測の機械学習技術 +- 強化学習 +- 機械学習の実世界での応用 + +--- +## このコースで扱わないこと + +- ディープラーニング +- ニューラルネットワーク +- AI + +学習体験を向上させるため、ニューラルネットワークや「ディープラーニング」(ニューラルネットワークを使用した多層モデル構築)の複雑さ、そしてAIについては別のカリキュラムで扱います。また、データサイエンスに焦点を当てたカリキュラムも今後提供予定です。 + +--- +## なぜ機械学習を学ぶのか? + +システムの観点から見ると、機械学習はデータから隠れたパターンを学び、知的な意思決定を支援する自動化システムの構築と定義されます。 + +この動機は、人間の脳が外界から認識したデータに基づいて特定のことを学ぶ方法に緩やかに触発されています。 + +✅ ビジネスがハードコードされたルールベースのエンジンを作る代わりに、機械学習戦略を使用したい理由を少し考えてみてください。 + +--- +## 機械学習の応用 + +機械学習の応用は現在ほぼ至る所にあり、スマートフォン、接続されたデバイス、その他のシステムによって生成されるデータが社会に流れているのと同じくらい普遍的です。最先端の機械学習アルゴリズムの膨大な可能性を考慮して、研究者たちは多次元および多分野の現実の問題を解決する能力を探求し、素晴らしい成果を上げています。 + +--- +## 機械学習の応用例 + +**機械学習は多くの方法で使用できます**: + +- 患者の病歴や報告書から病気の可能性を予測する。 +- 天気データを活用して気象イベントを予測する。 +- テキストの感情を理解する。 +- 偽ニュースを検出してプロパガンダの拡散を防ぐ。 + +金融、経済、地球科学、宇宙探査、生体工学、認知科学、さらには人文学の分野でも、機械学習がその分野の困難でデータ処理が重い問題を解決するために適応されています。 + +--- +## 結論 + +機械学習は、現実世界や生成されたデータから有意義な洞察を見つけ出すことでパターン発見のプロセスを自動化します。ビジネス、健康、金融などの分野で非常に価値があることが証明されています。 + +近い将来、機械学習の基本を理解することは、広く採用されているため、どの分野の人々にとっても必須となるでしょう。 + +--- +# 🚀 チャレンジ + +紙や[Excalidraw](https://excalidraw.com/)のようなオンラインアプリを使って、AI、ML、ディープラーニング、データサイエンスの違いを理解するためのスケッチを描いてみましょう。それぞれの技術が解決に適している問題のアイデアも追加してください。 + +# [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/) + +--- +# 復習と自己学習 + +クラウドで機械学習アルゴリズムを使用する方法について学ぶには、この[学習パス](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)を参照してください。 + +機械学習の基本について学ぶには、この[学習パス](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott)を参照してください。 + +--- +# 課題 + +[準備を整える](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/1-Introduction/1-intro-to-ML/assignment.md b/translations/ja/1-Introduction/1-intro-to-ML/assignment.md new file mode 100644 index 000000000..fc6f0e794 --- /dev/null +++ b/translations/ja/1-Introduction/1-intro-to-ML/assignment.md @@ -0,0 +1,23 @@ + +# 起動と準備 + +## 手順 + +この評価対象外の課題では、Pythonの復習を行い、環境を整えてノートブックを実行できる状態にしてください。 + +この [Python学習パス](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott) を進めた後、以下の入門動画を視聴してシステムをセットアップしてください: + +https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6 + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当社は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/1-Introduction/2-history-of-ML/README.md b/translations/ja/1-Introduction/2-history-of-ML/README.md new file mode 100644 index 000000000..a2745d6a3 --- /dev/null +++ b/translations/ja/1-Introduction/2-history-of-ML/README.md @@ -0,0 +1,164 @@ + +# 機械学習の歴史 + +![機械学習の歴史の概要をスケッチノートで表した画像](../../../../translated_images/ml-history.a1bdfd4ce1f464d9a0502f38d355ffda384c95cd5278297a46c9a391b5053bc4.ja.png) +> スケッチノート: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/) + +--- + +[![初心者向け機械学習 - 機械学習の歴史](https://img.youtube.com/vi/N6wxM4wZ7V0/0.jpg)](https://youtu.be/N6wxM4wZ7V0 "初心者向け機械学習 - 機械学習の歴史") + +> 🎥 上の画像をクリックすると、このレッスンの短い動画が再生されます。 + +このレッスンでは、機械学習と人工知能の歴史における主要なマイルストーンを見ていきます。 + +人工知能(AI)の歴史は、機械学習の歴史と密接に関連しています。機械学習を支えるアルゴリズムや計算の進歩がAIの発展に寄与してきました。これらの分野が独立した研究領域として結晶化し始めたのは1950年代ですが、重要な[アルゴリズム、統計、数学、計算、技術的な発見](https://wikipedia.org/wiki/Timeline_of_machine_learning)はそれ以前から存在し、重なり合っていました。実際、人々は[何百年も前から](https://wikipedia.org/wiki/History_of_artificial_intelligence)「考える機械」というアイデアについて考えてきました。この記事では、「考える機械」という概念の歴史的な知的基盤について議論しています。 + +--- +## 主な発見 + +- 1763年、1812年 [ベイズの定理](https://wikipedia.org/wiki/Bayes%27_theorem)とその前身。この定理とその応用は、事前の知識に基づいてイベントが発生する確率を記述する推論の基礎となります。 +- 1805年 [最小二乗法](https://wikipedia.org/wiki/Least_squares) フランスの数学者Adrien-Marie Legendreによる。この理論は、回帰ユニットで学ぶデータフィッティングに役立ちます。 +- 1913年 [マルコフ連鎖](https://wikipedia.org/wiki/Markov_chain) ロシアの数学者Andrey Markovにちなんで名付けられたもので、前の状態に基づいて可能なイベントのシーケンスを記述します。 +- 1957年 [パーセプトロン](https://wikipedia.org/wiki/Perceptron) アメリカの心理学者Frank Rosenblattによって発明された線形分類器の一種で、深層学習の進歩の基礎となっています。 + +--- + +- 1967年 [最近傍法](https://wikipedia.org/wiki/Nearest_neighbor) 元々はルートをマッピングするために設計されたアルゴリズム。機械学習の文脈ではパターン検出に使用されます。 +- 1970年 [バックプロパゲーション](https://wikipedia.org/wiki/Backpropagation) [フィードフォワードニューラルネットワーク](https://wikipedia.org/wiki/Feedforward_neural_network)を訓練するために使用されます。 +- 1982年 [リカレントニューラルネットワーク](https://wikipedia.org/wiki/Recurrent_neural_network) フィードフォワードニューラルネットワークから派生した人工ニューラルネットワークで、時間的なグラフを作成します。 + +✅ 少し調査してみましょう。機械学習とAIの歴史において重要な日付は他に何がありますか? + +--- +## 1950年: 考える機械 + +Alan Turingは、2019年に[一般投票](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century)で20世紀最大の科学者として選ばれた非常に優れた人物であり、「考える機械」という概念の基礎を築いたとされています。彼はこの概念に対する批判者や自身の経験的証拠の必要性に取り組む中で、[チューリングテスト](https://www.bbc.com/news/technology-18475646)を作成しました。このテストについては、NLPのレッスンで詳しく学びます。 + +--- +## 1956年: ダートマス夏季研究プロジェクト + +「ダートマス夏季研究プロジェクトは、人工知能という分野にとって画期的なイベントでした。」ここで「人工知能」という用語が初めて使われました ([source](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth))。 + +> 学習や知能の他の特徴のすべての側面は、原則として非常に正確に記述できるため、機械でそれをシミュレートすることが可能です。 + +--- + +主任研究者である数学教授John McCarthyは、「学習や知能の他の特徴のすべての側面は、原則として非常に正確に記述できるため、機械でそれをシミュレートすることが可能である」という仮説に基づいて進めることを望んでいました。参加者には、この分野のもう一人の著名人であるMarvin Minskyも含まれていました。 + +このワークショップは、「象徴的な方法の台頭、限定された領域に焦点を当てたシステム(初期のエキスパートシステム)、および演繹システムと帰納システムの対立」などの議論を開始し、促進したとされています ([source](https://wikipedia.org/wiki/Dartmouth_workshop))。 + +--- +## 1956年 - 1974年: 「黄金時代」 + +1950年代から1970年代半ばにかけて、AIが多くの問題を解決できるという希望に満ちていました。1967年、Marvin Minskyは自信を持って「一世代以内に…『人工知能』を作る問題は実質的に解決されるだろう」と述べました (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)。 + +自然言語処理の研究が盛んになり、検索が洗練されて強力になり、「マイクロワールド」という概念が生まれました。ここでは、簡単なタスクが平易な言語指示を使用して完了されました。 + +--- + +政府機関による研究資金が豊富に提供され、計算とアルゴリズムの進歩があり、知的な機械のプロトタイプが構築されました。これらの機械には以下が含まれます: + +* [Shakey the robot](https://wikipedia.org/wiki/Shakey_the_robot)、タスクを「知的に」実行する方法を決定しながら移動できるロボット。 + + ![Shakey, an intelligent robot](../../../../translated_images/shakey.4dc17819c447c05bf4b52f76da0bdd28817d056fdb906252ec20124dd4cfa55e.ja.jpg) + > 1972年のShakey + +--- + +* Eliza、初期の「チャターボット」で、人々と会話し、原始的な「セラピスト」として機能しました。ElizaについてはNLPのレッスンで詳しく学びます。 + + ![Eliza, a bot](../../../../translated_images/eliza.84397454cda9559bb5ec296b5b8fff067571c0cccc5405f9c1ab1c3f105c075c.ja.png) + > チャットボットElizaのバージョン + +--- + +* 「ブロックワールド」は、ブロックを積み上げたり並べたりするマイクロワールドの例で、機械に意思決定を教える実験が行われました。[SHRDLU](https://wikipedia.org/wiki/SHRDLU)のようなライブラリを使用して構築された進歩が言語処理を前進させました。 + + [![blocks world with SHRDLU](https://img.youtube.com/vi/QAJz4YKUwqw/0.jpg)](https://www.youtube.com/watch?v=QAJz4YKUwqw "blocks world with SHRDLU") + + > 🎥 上の画像をクリックすると動画が再生されます: SHRDLUによるブロックワールド + +--- +## 1974年 - 1980年: 「AIの冬」 + +1970年代半ばまでに、「知的な機械」を作ることの複雑さが過小評価されていたことが明らかになり、利用可能な計算能力を考慮するとその約束が過大評価されていたことが分かりました。資金が枯渇し、分野への信頼が低下しました。信頼に影響を与えた問題には以下が含まれます: +--- +- **限界**。計算能力が不足していました。 +- **組み合わせ爆発**。コンピュータに求められることが増えるにつれて、訓練する必要のあるパラメータの量が指数関数的に増加しましたが、計算能力と能力の進化が並行して進みませんでした。 +- **データの不足**。アルゴリズムのテスト、開発、改良のプロセスを妨げるデータの不足がありました。 +- **正しい質問をしているのか?**。研究者が取り組んでいる質問そのものが疑問視され始めました。以下のような批判が寄せられました: + - チューリングテストは、「デジタルコンピュータをプログラムすることで言語を理解しているように見せることはできるが、実際の理解を生み出すことはできない」という「中国語の部屋理論」などによって疑問視されました ([source](https://plato.stanford.edu/entries/chinese-room/))。 + - 「セラピスト」ELIZAのような人工知能を社会に導入する倫理が問われました。 + +--- + +同時に、さまざまなAIの思想が形成され始めました。「スクラフィー vs. ニートAI」([source](https://wikipedia.org/wiki/Neats_and_scruffies))の対立が確立されました。_スクラフィー_な研究室では、望む結果が得られるまでプログラムを何時間も調整しました。一方、_ニート_な研究室は「論理と形式的な問題解決」に焦点を当てました。ELIZAやSHRDLUは有名な_スクラフィー_なシステムでした。1980年代には、機械学習システムを再現可能にする需要が高まり、結果がより説明可能な_ニート_なアプローチが徐々に主流となりました。 + +--- +## 1980年代 エキスパートシステム + +分野が成長するにつれて、ビジネスへの利益が明確になり、1980年代には「エキスパートシステム」の普及が進みました。「エキスパートシステムは、人工知能(AI)ソフトウェアの中で最初に成功した形態の一つでした。」([source](https://wikipedia.org/wiki/Expert_system))。 + +このタイプのシステムは実際には_ハイブリッド_であり、ビジネス要件を定義するルールエンジンと、ルールシステムを活用して新しい事実を推論する推論エンジンで構成されています。 + +この時代にはニューラルネットワークへの注目も高まりました。 + +--- +## 1987年 - 1993年: AIの「冷却期」 + +専門化されたエキスパートシステムハードウェアの普及は、残念ながら過度に専門化される結果を招きました。パーソナルコンピュータの台頭もこれらの大規模で専門化された集中型システムと競合しました。コンピューティングの民主化が始まり、最終的にはビッグデータの現代的な爆発への道を開きました。 + +--- +## 1993年 - 2011年 + +この時代は、以前のデータ不足や計算能力不足によって引き起こされた問題を解決するために、機械学習とAIが新たな時代を迎えました。データ量は急速に増加し、より広く利用可能になりました。特に2007年頃のスマートフォンの登場により、良い面も悪い面も含めてデータが急増しました。計算能力は指数関数的に拡大し、アルゴリズムも進化しました。この分野は成熟し始め、過去の自由奔放な時代が真の学問分野へと結晶化していきました。 + +--- +## 現在 + +今日、機械学習とAIは私たちの生活のほぼすべての部分に影響を与えています。この時代は、これらのアルゴリズムが人間の生活に与えるリスクと潜在的な影響を慎重に理解することが求められています。MicrosoftのBrad Smithは次のように述べています。「情報技術は、プライバシーや表現の自由といった基本的な人権保護の核心に関わる問題を提起します。これらの問題は、これらの製品を作るテクノロジー企業に対する責任を高めます。我々の見解では、これらは慎重な政府規制と許容可能な使用に関する規範の開発を求めています。」([source](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/))。 + +--- + +未来がどうなるかはまだ分かりませんが、これらのコンピュータシステムとそれらが実行するソフトウェアやアルゴリズムを理解することが重要です。このカリキュラムが、より良い理解を得て、自分自身で判断できるようになる助けとなることを願っています。 + +[![深層学習の歴史](https://img.youtube.com/vi/mTtDfKgLm54/0.jpg)](https://www.youtube.com/watch?v=mTtDfKgLm54 "深層学習の歴史") +> 🎥 上の画像をクリックすると動画が再生されます: Yann LeCunがこの講義で深層学習の歴史について語ります + +--- +## 🚀チャレンジ + +これらの歴史的な瞬間の一つを掘り下げて、その背後にいる人物についてもっと学んでみましょう。魅力的な人物がたくさんいます。科学的な発見は文化的な真空の中で生まれることはありません。何を発見しましたか? + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/) + +--- +## 復習と自己学習 + +以下の項目を視聴・聴取してください: + +[Amy BoydがAIの進化について語るポッドキャスト](http://runasradio.com/Shows/Show/739) + +[![Amy BoydによるAIの歴史](https://img.youtube.com/vi/EJt3_bFYKss/0.jpg)](https://www.youtube.com/watch?v=EJt3_bFYKss "Amy BoydによるAIの歴史") + +--- + +## 課題 + +[タイムラインを作成する](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/1-Introduction/2-history-of-ML/assignment.md b/translations/ja/1-Introduction/2-history-of-ML/assignment.md new file mode 100644 index 000000000..24f558d21 --- /dev/null +++ b/translations/ja/1-Introduction/2-history-of-ML/assignment.md @@ -0,0 +1,25 @@ + +# タイムラインを作成する + +## 手順 + +[このリポジトリ](https://github.com/Digital-Humanities-Toolkit/timeline-builder)を使用して、アルゴリズム、数学、統計、AI、またはMLの歴史のある側面、またはこれらの組み合わせについてのタイムラインを作成してください。一人の人物、一つのアイデア、または長い思考の時代に焦点を当てることができます。マルチメディア要素を必ず追加してください。 + +## 評価基準 + +| 基準 | 優秀な例 | 適切な例 | 改善が必要な例 | +| -------- | ----------------------------------------------- | ------------------------------------- | ------------------------------------------------------------ | +| | GitHubページとして公開されたタイムラインが提示されている | コードが不完全で公開されていない | タイムラインが不完全で、十分に調査されておらず、公開されていない | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤訳について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/1-Introduction/3-fairness/README.md b/translations/ja/1-Introduction/3-fairness/README.md new file mode 100644 index 000000000..5f4d15829 --- /dev/null +++ b/translations/ja/1-Introduction/3-fairness/README.md @@ -0,0 +1,154 @@ + +# 責任あるAIを用いた機械学習ソリューションの構築 + +![機械学習における責任あるAIの概要を示すスケッチノート](../../../../translated_images/ml-fairness.ef296ebec6afc98a44566d7b6c1ed18dc2bf1115c13ec679bb626028e852fa1d.ja.png) +> スケッチノート: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/) + +## はじめに + +このカリキュラムでは、機械学習が私たちの日常生活にどのように影響を与えているかを学び始めます。現在でも、システムやモデルは医療診断、ローン承認、詐欺検出などの日常的な意思決定タスクに関与しています。そのため、これらのモデルが信頼できる結果を提供することが重要です。ソフトウェアアプリケーションと同様に、AIシステムは期待を外れたり、望ましくない結果を生むことがあります。そのため、AIモデルの挙動を理解し、説明できることが不可欠です。 + +使用するデータが特定の人種、性別、政治的見解、宗教などの属性を欠いている場合、またはそれらの属性が不均衡に表現されている場合、どのようなことが起こるでしょうか。さらに、モデルの出力が特定の属性を優遇するように解釈された場合、アプリケーションにどのような影響があるでしょうか。また、モデルが有害な結果を生み出した場合、誰がその責任を負うべきでしょうか。これらは、このカリキュラムで探求する質問の一部です。 + +このレッスンでは以下を学びます: + +- 機械学習における公平性の重要性と公平性に関連する害についての認識を高める +- 外れ値や異常なシナリオを探求する実践を通じて信頼性と安全性を確保する方法を学ぶ +- 包括的なシステムを設計することで、すべての人を支援する必要性を理解する +- データと人々のプライバシーとセキュリティを保護することの重要性を探る +- AIモデルの挙動を説明するための透明性のあるアプローチの重要性を理解する +- AIシステムに対する信頼を構築するために責任が不可欠であることを意識する + +## 前提条件 + +前提条件として、「責任あるAIの原則」学習パスを受講し、以下のトピックに関するビデオを視聴してください: + +[学習パス](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)を通じて責任あるAIについてさらに学びましょう。 + +[![Microsoftの責任あるAIへのアプローチ](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Microsoftの責任あるAIへのアプローチ") + +> 🎥 上の画像をクリックしてビデオを見る: Microsoftの責任あるAIへのアプローチ + +## 公平性 + +AIシステムはすべての人を公平に扱い、似たようなグループに異なる影響を与えないようにするべきです。例えば、AIシステムが医療治療、ローン申請、雇用に関する助言を提供する場合、似たような症状、財務状況、職業資格を持つすべての人に同じ推奨をするべきです。私たち人間は、意思決定や行動に影響を与える先天的な偏見を持っています。この偏見は、AIシステムを訓練するために使用するデータに現れることがあります。このような操作は時に意図せずに起こることがあります。データに偏りを導入していることを意識的に知るのは難しいことが多いです。 + +**「不公平」**とは、人種、性別、年齢、障害の有無などで定義されるグループに対する否定的な影響、つまり「害」を指します。主な公平性に関連する害は以下のように分類されます: + +- **割り当て**: 例えば、性別や民族が他の属性よりも優遇される場合。 +- **サービスの質**: 特定のシナリオに対してデータを訓練したが、現実ははるかに複雑である場合、サービスの質が低下します。例えば、暗い肌の人を感知できないハンドソープディスペンサー。[参考](https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773) +- **中傷**: 不公平に批判したり、何かや誰かをラベル付けすること。例えば、画像ラベリング技術が暗い肌の人々の画像をゴリラとして誤認識したこと。 +- **過剰または過少な表現**: 特定の職業に特定のグループが見られないという考えであり、それを促進し続けるサービスや機能は害を助長します。 +- **ステレオタイプ化**: 特定のグループに事前に割り当てられた属性を関連付けること。例えば、英語とトルコ語間の言語翻訳システムが性別に関連するステレオタイプによる不正確さを持つ場合。 + +![トルコ語への翻訳](../../../../translated_images/gender-bias-translate-en-tr.f185fd8822c2d4372912f2b690f6aaddd306ffbb49d795ad8d12a4bf141e7af0.ja.png) +> トルコ語への翻訳 + +![英語への翻訳](../../../../translated_images/gender-bias-translate-tr-en.4eee7e3cecb8c70e13a8abbc379209bc8032714169e585bdeac75af09b1752aa.ja.png) +> 英語への翻訳 + +AIシステムを設計・テストする際には、AIが公平であり、偏ったり差別的な決定をするようにプログラムされていないことを確認する必要があります。AIと機械学習における公平性を保証することは、依然として複雑な社会技術的課題です。 + +### 信頼性と安全性 + +信頼を構築するためには、AIシステムが通常の条件や予期しない条件下でも信頼性があり、安全で一貫性がある必要があります。AIシステムがさまざまな状況でどのように振る舞うかを知ることが重要です。特に外れ値の場合です。AIソリューションを構築する際には、AIソリューションが遭遇する可能性のあるさまざまな状況に対処する方法に十分な焦点を当てる必要があります。例えば、自動運転車は人々の安全を最優先にする必要があります。その結果、車を動かすAIは、夜間、雷雨、吹雪、道路を横切る子供、ペット、道路工事など、車が遭遇する可能性のあるすべてのシナリオを考慮する必要があります。AIシステムが幅広い条件を信頼性と安全性を持って処理できるかどうかは、データサイエンティストやAI開発者が設計やテスト中に考慮した予測のレベルを反映しています。 + +> [🎥 ビデオを見る: ](https://www.microsoft.com/videoplayer/embed/RE4vvIl) + +### 包括性 + +AIシステムはすべての人を巻き込み、支援するように設計されるべきです。AIシステムを設計・実装する際、データサイエンティストやAI開発者は、意図せずに人々を排除する可能性のあるシステム内の障壁を特定し、対処します。例えば、世界には10億人の障害を持つ人々がいます。AIの進歩により、彼らは日常生活で情報や機会により簡単にアクセスできるようになります。障壁に対処することで、すべての人に利益をもたらすより良い体験を提供するAI製品を革新し、開発する機会が生まれます。 + +> [🎥 ビデオを見る: AIにおける包括性](https://www.microsoft.com/videoplayer/embed/RE4vl9v) + +### セキュリティとプライバシー + +AIシステムは安全であり、人々のプライバシーを尊重するべきです。プライバシー、情報、または生命を危険にさらすシステムには、人々は信頼を置きません。機械学習モデルを訓練する際には、最良の結果を得るためにデータに依存します。その際、データの出所と整合性を考慮する必要があります。例えば、データがユーザーによって提出されたものか、公開されているものかを確認します。次に、データを扱う際には、機密情報を保護し、攻撃に耐えるAIシステムを開発することが重要です。AIが普及するにつれて、プライバシーを保護し、重要な個人情報やビジネス情報を安全に保つことがますます重要かつ複雑になっています。プライバシーとデータセキュリティの問題は、AIにとって特に注意が必要です。データへのアクセスは、AIシステムが人々について正確で情報に基づいた予測や意思決定を行うために不可欠です。 + +> [🎥 ビデオを見る: AIにおけるセキュリティ](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- 業界として、GDPR(一般データ保護規則)などの規制によって大きく促進されたプライバシーとセキュリティの分野で大きな進歩を遂げました。 +- しかし、AIシステムでは、システムをより個人的で効果的にするためにより多くの個人データが必要であるというニーズとプライバシーの間の緊張を認識する必要があります。 +- インターネットによる接続されたコンピュータの誕生と同様に、AIに関連するセキュリティ問題の数が急増しているのを目にしています。 +- 同時に、AIがセキュリティを向上させるために使用されているのも目にしています。例えば、ほとんどの現代のウイルス対策スキャナーは今日AIのヒューリスティックによって駆動されています。 +- データサイエンスプロセスが最新のプライバシーとセキュリティの実践と調和して融合することを確保する必要があります。 + +### 透明性 + +AIシステムは理解可能であるべきです。透明性の重要な部分は、AIシステムとその構成要素の挙動を説明することです。AIシステムの理解を向上させるには、利害関係者がその機能や理由を理解し、潜在的な性能問題、安全性やプライバシーの懸念、偏り、排除的な慣行、または意図しない結果を特定できるようにする必要があります。また、AIシステムを使用する人々が、いつ、なぜ、どのようにそれを展開することを選択するかについて正直で率直であるべきだと考えています。さらに、使用するシステムの限界についても説明する必要があります。例えば、銀行が消費者の貸付決定を支援するためにAIシステムを使用する場合、結果を検討し、システムの推奨に影響を与えるデータを理解することが重要です。政府は産業全体でAIを規制し始めているため、データサイエンティストや組織は、AIシステムが規制要件を満たしているかどうかを説明する必要があります。特に望ましくない結果が生じた場合には。 + +> [🎥 ビデオを見る: AIにおける透明性](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- AIシステムは非常に複雑であるため、どのように機能するかを理解し、結果を解釈するのが難しいです。 +- この理解の欠如は、これらのシステムが管理、運用、文書化される方法に影響を与えます。 +- この理解の欠如はさらに重要なことに、これらのシステムが生成する結果を使用して行われる意思決定に影響を与えます。 + +### 責任 + +AIシステムを設計し展開する人々は、そのシステムの動作に対して責任を負うべきです。責任の必要性は、特に顔認識のようなセンシティブな技術において重要です。最近、顔認識技術の需要が高まっています。特に、行方不明の子供を見つけるなどの用途でその技術の可能性を見出している法執行機関からの需要が増えています。しかし、これらの技術は、特定の個人の継続的な監視を可能にするなど、政府が市民の基本的な自由を危険にさらす可能性があります。そのため、データサイエンティストや組織は、AIシステムが個人や社会に与える影響について責任を負う必要があります。 + +[![主要なAI研究者が顔認識による大量監視の警告](../../../../translated_images/accountability.41d8c0f4b85b6231301d97f17a450a805b7a07aaeb56b34015d71c757cad142e.ja.png)](https://www.youtube.com/watch?v=Wldt8P5V6D0 "Microsoftの責任あるAIへのアプローチ") + +> 🎥 上の画像をクリックしてビデオを見る: 顔認識による大量監視の警告 + +最終的に、AIを社会に導入する最初の世代として、コンピュータが人々に対して責任を持ち続けることをどのように保証するか、そしてコンピュータを設計する人々が他のすべての人々に対して責任を持ち続けることをどのように保証するかが、私たちの世代にとって最大の課題の一つです。 + +## 影響評価 + +機械学習モデルを訓練する前に、AIシステムの目的、意図された使用法、展開される場所、システムと対話する人々を理解するために影響評価を行うことが重要です。これらは、システムを評価するレビュー担当者やテスターが、潜在的なリスクや予想される結果を特定する際に考慮すべき要因を知るのに役立ちます。 + +影響評価を行う際の重点領域は以下の通りです: + +* **個人への悪影響**: 制限や要件、サポートされていない使用法、またはシステムの性能を妨げる既知の制限に注意を払うことは、システムが個人に害を与える方法で使用されないようにするために重要です。 +* **データ要件**: システムがデータをどのように使用するか、どこで使用するかを理解することで、考慮すべきデータ要件(例: GDPRやHIPPAデータ規制)を探ることができます。また、データの出所や量が訓練に十分であるかどうかを検討します。 +* **影響の概要**: システムの使用から生じる可能性のある害のリストを収集します。MLライフサイクル全体を通じて、特定された問題が軽減または対処されているかどうかを確認します。 +* **6つのコア原則に基づく適用可能な目標**: 各原則の目標が達成されているか、ギャップがあるかどうかを評価します。 + +## 責任あるAIによるデバッグ + +ソフトウェアアプリケーションのデバッグと同様に、AIシステムのデバッグはシステム内の問題を特定し解決する必要なプロセスです。モデルが期待通りに、または責任を持って動作しない理由には多くの要因があります。従来のモデル性能指標の多くは、モデルの性能の定量的な集計であり、責任あるAI原則に違反する方法を分析するには十分ではありません。さらに、機械学習モデルはブラックボックスであり、その結果を導く要因を理解したり、誤りを説明するのが難しいです。このコースの後半では、責任あるAIダッシュボードを使用してAIシステムをデバッグする方法を学びます。このダッシュボードは、データサイエンティストやAI開発者が +このレッスンでは、機械学習における公平性と不公平性の基本的な概念について学びました。 + +以下のワークショップを視聴して、さらに深く学びましょう: + +- 責任あるAIの追求: 原則を実践に移す方法 + 講師: Besmira Nushi、Mehrnoosh Sameki、Amit Sharma + +[![責任あるAIツールボックス: 責任あるAIを構築するためのオープンソースフレームワーク](https://img.youtube.com/vi/tGgJCrA-MZU/0.jpg)](https://www.youtube.com/watch?v=tGgJCrA-MZU "RAI Toolbox: 責任あるAIを構築するためのオープンソースフレームワーク") + +> 🎥 上の画像をクリックして動画を視聴: +RAI Toolbox: 責任あるAIを構築するためのオープンソースフレームワーク +講師: Besmira Nushi、Mehrnoosh Sameki、Amit Sharma + +また、以下も読んでみてください: + +- MicrosoftのRAIリソースセンター: [責任あるAIリソース – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- MicrosoftのFATE研究グループ: [FATE: AIにおける公平性、説明責任、透明性、倫理 - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +RAI Toolbox: + +- [責任あるAIツールボックス GitHubリポジトリ](https://github.com/microsoft/responsible-ai-toolbox) + +Azure Machine Learningの公平性を確保するためのツールについて読む: + +- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott) + +## 課題 + +[RAI Toolboxを探索する](assignment.md) + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてお考えください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/1-Introduction/3-fairness/assignment.md b/translations/ja/1-Introduction/3-fairness/assignment.md new file mode 100644 index 000000000..617b24914 --- /dev/null +++ b/translations/ja/1-Introduction/3-fairness/assignment.md @@ -0,0 +1,25 @@ + +# 責任あるAIツールボックスを探る + +## 手順 + +このレッスンでは、責任あるAIツールボックスについて学びました。このツールボックスは「データサイエンティストがAIシステムを分析し改善するのを助けるためのオープンソースでコミュニティ主導のプロジェクト」です。この課題では、RAIツールボックスの[ノートブック](https://github.com/microsoft/responsible-ai-toolbox/blob/main/notebooks/responsibleaidashboard/getting-started.ipynb)の1つを探り、その結果を論文またはプレゼンテーションで報告してください。 + +## 評価基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | --------- | -------- | ----------------- | +| | Fairlearnのシステム、実行したノートブック、そしてその結果から得られた結論について論じた論文またはパワーポイントのプレゼンテーションが提出されている | 結論を含まない論文が提出されている | 論文が提出されていない | + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてお考えください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解について、当社は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/1-Introduction/4-techniques-of-ML/README.md b/translations/ja/1-Introduction/4-techniques-of-ML/README.md new file mode 100644 index 000000000..341ebdcd4 --- /dev/null +++ b/translations/ja/1-Introduction/4-techniques-of-ML/README.md @@ -0,0 +1,132 @@ + +# 機械学習の技術 + +機械学習モデルとその使用データを構築、利用、維持するプロセスは、他の多くの開発ワークフローとは大きく異なります。このレッスンでは、そのプロセスを解明し、知っておくべき主要な技術を概説します。以下を学びます: + +- 機械学習の基盤となるプロセスを高いレベルで理解する。 +- 「モデル」、「予測」、「トレーニングデータ」などの基本概念を探る。 + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7/) + +[![初心者向け機械学習 - 機械学習の技術](https://img.youtube.com/vi/4NGM0U2ZSHU/0.jpg)](https://youtu.be/4NGM0U2ZSHU "初心者向け機械学習 - 機械学習の技術") + +> 🎥 上の画像をクリックして、このレッスンの短い動画をご覧ください。 + +## はじめに + +機械学習(ML)プロセスを作成する技術は、以下のステップで構成されています: + +1. **質問を決める**。ほとんどのMLプロセスは、単純な条件付きプログラムやルールベースのエンジンでは答えられない質問をすることから始まります。これらの質問は、データの集合に基づいた予測に関することが多いです。 +2. **データを収集し準備する**。質問に答えるためにはデータが必要です。データの質や量が、最初の質問にどれだけうまく答えられるかを決定します。このフェーズではデータの可視化が重要です。また、データをトレーニング用とテスト用に分割してモデルを構築することも含まれます。 +3. **トレーニング方法を選ぶ**。質問やデータの性質に応じて、データを最もよく反映し、正確な予測を行うためのトレーニング方法を選ぶ必要があります。この部分は専門知識が必要であり、しばしば多くの試行錯誤が伴います。 +4. **モデルをトレーニングする**。トレーニングデータを使用して、さまざまなアルゴリズムを用いてモデルをトレーニングし、データのパターンを認識させます。モデルは内部の重みを利用して、データの特定部分を優先することで、より良いモデルを構築することがあります。 +5. **モデルを評価する**。収集したデータセットから未使用のテストデータを使用して、モデルの性能を確認します。 +6. **パラメータ調整**。モデルの性能に基づいて、アルゴリズムの動作を制御する異なるパラメータや変数を使用してプロセスをやり直すことができます。 +7. **予測する**。新しい入力を使用してモデルの精度をテストします。 + +## どのような質問をするか + +コンピュータはデータ内の隠れたパターンを発見するのが得意です。この能力は、条件付きルールエンジンを作成することで簡単に答えられない質問を持つ研究者にとって非常に役立ちます。例えば、保険数理のタスクでは、データサイエンティストが喫煙者と非喫煙者の死亡率に関する手作りのルールを構築することができるかもしれません。 + +しかし、他の多くの変数が加わると、過去の健康履歴に基づいて将来の死亡率を予測するためにMLモデルがより効率的になる可能性があります。より楽しい例としては、緯度、経度、気候変動、海への近さ、ジェット気流のパターンなどのデータに基づいて、特定の場所で4月の天気を予測することが挙げられます。 + +✅ この[スライドデッキ](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf)では、天気分析におけるMLの使用に関する歴史的な視点を提供しています。 + +## モデル構築前のタスク + +モデルを構築する前に、いくつかのタスクを完了する必要があります。質問をテストし、モデルの予測に基づいて仮説を形成するためには、いくつかの要素を特定し設定する必要があります。 + +### データ + +質問に確実に答えるためには、適切な種類の十分な量のデータが必要です。この時点で以下の2つのことを行う必要があります: + +- **データを収集する**。前回のレッスンで学んだデータ分析の公平性を念頭に置き、データを慎重に収集します。このデータの出所、潜在的なバイアス、起源を文書化することに注意してください。 +- **データを準備する**。データ準備プロセスにはいくつかのステップがあります。異なるソースからのデータを統合し正規化する必要があるかもしれません。[クラスタリング](../../5-Clustering/1-Visualize/README.md)で行うように、文字列を数値に変換するなどの方法でデータの質と量を向上させることができます。[分類](../../4-Classification/1-Introduction/README.md)で行うように、元のデータに基づいて新しいデータを生成することもできます。[Webアプリ](../../3-Web-App/README.md)レッスンの前に行うように、データをクリーンアップし編集することもできます。最後に、トレーニング技術に応じてデータをランダム化しシャッフルする必要がある場合もあります。 + +✅ データを収集し処理した後、その形状が意図した質問に対応できるかどうか確認してください。[クラスタリング](../../5-Clustering/1-Visualize/README.md)のレッスンで発見するように、データが与えられたタスクでうまく機能しない場合もあります! + +### 特徴量とターゲット + +[特徴量](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection)はデータの測定可能な属性です。多くのデータセットでは、「日付」、「サイズ」、「色」などの列見出しとして表現されます。特徴量変数は通常コード内で`X`として表され、モデルをトレーニングするために使用される入力変数を表します。 + +ターゲットは予測しようとしているものです。ターゲットは通常コード内で`y`として表され、データに対して尋ねようとしている質問の答えを表します。例えば、12月に最も安いカボチャの**色**は何か?サンフランシスコで最も良い不動産**価格**を持つ地域はどこか?ターゲットはラベル属性とも呼ばれることがあります。 + +### 特徴量変数の選択 + +🎓 **特徴量選択と特徴量抽出** モデルを構築する際にどの変数を選ぶべきかどうやって判断しますか?特徴量選択や特徴量抽出のプロセスを経て、最もパフォーマンスの高いモデルに適した変数を選ぶことになります。ただし、これらは同じものではありません。「特徴量抽出は元の特徴量の関数から新しい特徴量を作成するのに対し、特徴量選択は特徴量のサブセットを返します。」([出典](https://wikipedia.org/wiki/Feature_selection)) + +### データの可視化 + +データサイエンティストのツールキットの重要な側面は、SeabornやMatPlotLibなどの優れたライブラリを使用してデータを可視化する力です。データを視覚的に表現することで、活用できる隠れた相関関係を発見することができます。また、偏りや不均衡なデータを発見するのにも役立ちます([分類](../../4-Classification/2-Classifiers-1/README.md)で発見するように)。 + +### データセットの分割 + +トレーニングの前に、データセットを不均等なサイズの2つ以上の部分に分割し、それでもデータをよく表現する必要があります。 + +- **トレーニング**。この部分のデータセットはモデルに適合させてトレーニングします。このセットは元のデータセットの大部分を構成します。 +- **テスト**。テストデータセットは、元のデータから収集された独立したデータ群で、構築されたモデルの性能を確認するために使用します。 +- **検証**。検証セットは、モデルのハイパーパラメータやアーキテクチャを調整してモデルを改善するために使用する、より小さな独立したデータ群です。データのサイズや質問によっては、この第3のセットを構築する必要がない場合もあります([時系列予測](../../7-TimeSeries/1-Introduction/README.md)で述べているように)。 + +## モデルの構築 + +トレーニングデータを使用して、さまざまなアルゴリズムを使用してデータの統計的表現であるモデルを構築することが目標です。モデルをトレーニングすることで、データにさらされ、発見したパターンを検証し、受け入れるか拒否することができます。 + +### トレーニング方法を決定する + +質問やデータの性質に応じて、トレーニング方法を選択します。このコースで使用する[Scikit-learnのドキュメント](https://scikit-learn.org/stable/user_guide.html)をステップごとに進むことで、モデルをトレーニングするための多くの方法を探ることができます。経験に応じて、最適なモデルを構築するためにいくつかの異なる方法を試す必要があるかもしれません。データサイエンティストがモデルの性能を評価するプロセスを経る可能性が高く、未使用のデータを与え、精度、偏り、その他の品質を低下させる問題を確認し、タスクに最も適したトレーニング方法を選択します。 + +### モデルをトレーニングする + +トレーニングデータを用意したら、モデルを「適合」させて作成する準備が整います。多くのMLライブラリでは「model.fit」というコードを見かけるでしょう。この時点で、特徴量変数(通常は「X」)を値の配列として、ターゲット変数(通常は「y」)を送信します。 + +### モデルを評価する + +トレーニングプロセスが完了すると(大きなモデルをトレーニングするには多くの反復、または「エポック」が必要になる場合があります)、テストデータを使用してモデルの性能を評価することで、モデルの品質を確認できます。このデータは、モデルが以前に分析していない元のデータのサブセットです。モデルの品質に関するメトリクスの表を出力することができます。 + +🎓 **モデルの適合** + +機械学習の文脈では、モデルの適合とは、モデルの基礎となる関数が未知のデータを分析しようとする際の精度を指します。 + +🎓 **過学習**と**未学習**は、モデルの品質を低下させる一般的な問題です。モデルがトレーニングデータに対して適合しすぎたり、適合が不十分だったりすることで、トレーニングデータに対して予測が過度に一致したり、逆に一致しなかったりします。過学習したモデルは、データの詳細やノイズを過度に学習してしまうため、トレーニングデータを非常によく予測します。一方、未学習のモデルは、トレーニングデータや未知のデータを正確に分析することができません。 + +![過学習モデル](../../../../translated_images/overfitting.1c132d92bfd93cb63240baf63ebdf82c30e30a0a44e1ad49861b82ff600c2b5c.ja.png) +> [Jen Looper](https://twitter.com/jenlooper)によるインフォグラフィック + +## パラメータ調整 + +初期トレーニングが完了したら、モデルの品質を観察し、「ハイパーパラメータ」を調整することで改善を検討します。[ドキュメント](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott)でプロセスについて詳しく読むことができます。 + +## 予測 + +これが完全に新しいデータを使用してモデルの精度をテストする瞬間です。「応用」MLの設定では、モデルを本番環境で使用するためのWeb資産を構築する場合、このプロセスにはユーザー入力(例えばボタンの押下)を収集して変数を設定し、モデルに推論または評価を送信することが含まれるかもしれません。 + +これらのレッスンでは、準備、構築、テスト、評価、予測の方法を学び、データサイエンティストとしてのジェスチャーをすべて体験しながら、「フルスタック」MLエンジニアになる旅を進めていきます。 + +--- + +## 🚀チャレンジ + +ML実践者のステップを反映したフローチャートを描いてみましょう。現在プロセスのどこにいると思いますか?どこで困難を感じると予測しますか?何が簡単に感じられますか? + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8/) + +## 復習と自己学習 + +データサイエンティストが日常の仕事について語るインタビューをオンラインで検索してみましょう。例えば[こちら](https://www.youtube.com/watch?v=Z3IjgbbCEfs)。 + +## 課題 + +[データサイエンティストにインタビューする](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/1-Introduction/4-techniques-of-ML/assignment.md b/translations/ja/1-Introduction/4-techniques-of-ML/assignment.md new file mode 100644 index 000000000..caa8179ac --- /dev/null +++ b/translations/ja/1-Introduction/4-techniques-of-ML/assignment.md @@ -0,0 +1,25 @@ + +# データサイエンティストへのインタビュー + +## 指示 + +あなたの会社、ユーザーグループ、友人、または学生仲間の中で、プロとしてデータサイエンティストとして働いている人に話を聞いてください。その人の毎日の業務について短い論文(500語)を書いてください。彼らは専門家として働いているのか、それとも「フルスタック」で働いているのかを調べてみましょう。 + +## 採点基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | ------------------------------------------------------------------------------------ | ---------------------------------------------------------------- | --------------------- | +| | 正しい長さのエッセイで、出典が明記され、.docファイルとして提出されている | 出典が不十分、または必要な長さに満たないエッセイ | エッセイが提出されていない | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解について、当社は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/1-Introduction/README.md b/translations/ja/1-Introduction/README.md new file mode 100644 index 000000000..34908c0c7 --- /dev/null +++ b/translations/ja/1-Introduction/README.md @@ -0,0 +1,37 @@ + +# 機械学習の入門 + +このカリキュラムのセクションでは、機械学習の分野の基本的な概念、それが何であるか、その歴史、そして研究者がそれに取り組むために使用する技術について学びます。一緒にこの新しい機械学習の世界を探求してみましょう! + +![globe](../../../translated_images/globe.59f26379ceb40428672b4d9a568044618a2bf6292ecd53a5c481b90e3fa805eb.ja.jpg) +> 写真提供: Bill Oxford on Unsplash + +### レッスン + +1. [機械学習の入門](1-intro-to-ML/README.md) +1. [機械学習とAIの歴史](2-history-of-ML/README.md) +1. [公平性と機械学習](3-fairness/README.md) +1. [機械学習の技術](4-techniques-of-ML/README.md) + +### クレジット + +「機械学習の入門」は [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan)、[Ornella Altunyan](https://twitter.com/ornelladotcom)、[Jen Looper](https://twitter.com/jenlooper) を含むチームによって ♥️ を込めて書かれました。 + +「機械学習の歴史」は [Jen Looper](https://twitter.com/jenlooper) と [Amy Boyd](https://twitter.com/AmyKateNicho) によって ♥️ を込めて書かれました。 + +「公平性と機械学習」は [Tomomi Imura](https://twitter.com/girliemac) によって ♥️ を込めて書かれました。 + +「機械学習の技術」は [Jen Looper](https://twitter.com/jenlooper) と [Chris Noring](https://twitter.com/softchris) によって ♥️ を込めて書かれました。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/2-Regression/1-Tools/README.md b/translations/ja/2-Regression/1-Tools/README.md new file mode 100644 index 000000000..68e0f956d --- /dev/null +++ b/translations/ja/2-Regression/1-Tools/README.md @@ -0,0 +1,239 @@ + +# PythonとScikit-learnを使った回帰モデルの入門 + +![回帰の概要をスケッチノートで表現](../../../../translated_images/ml-regression.4e4f70e3b3ed446e3ace348dec973e133fa5d3680fbc8412b61879507369b98d.ja.png) + +> スケッチノート作成者: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/9/) + +> ### [このレッスンはRでも利用可能です!](../../../../2-Regression/1-Tools/solution/R/lesson_1.html) + +## はじめに + +この4つのレッスンでは、回帰モデルの構築方法を学びます。これらが何のために使われるのかについては後ほど説明します。しかし、何かを始める前に、プロセスを開始するための適切なツールを準備してください! + +このレッスンで学ぶ内容は以下の通りです: + +- ローカルで機械学習タスクを実行するためのコンピュータの設定。 +- Jupyterノートブックの使用方法。 +- Scikit-learnのインストールと使用方法。 +- 線形回帰を実際に体験する演習。 + +## インストールと設定 + +[![初心者向け機械学習 - 機械学習モデルを構築するためのツールを設定する](https://img.youtube.com/vi/-DfeD2k2Kj0/0.jpg)](https://youtu.be/-DfeD2k2Kj0 "初心者向け機械学習 - 機械学習モデルを構築するためのツールを設定する") + +> 🎥 上の画像をクリックすると、コンピュータをML用に設定する短い動画が再生されます。 + +1. **Pythonをインストール**。コンピュータに[Python](https://www.python.org/downloads/)がインストールされていることを確認してください。Pythonは多くのデータサイエンスや機械学習タスクで使用されます。ほとんどのコンピュータシステムにはすでにPythonがインストールされています。一部のユーザー向けにセットアップを簡単にするための便利な[Python Coding Packs](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott)も利用可能です。 + + ただし、Pythonの使用方法によっては、異なるバージョンが必要になる場合があります。このため、[仮想環境](https://docs.python.org/3/library/venv.html)を使用することが便利です。 + +2. **Visual Studio Codeをインストール**。コンピュータにVisual Studio Codeがインストールされていることを確認してください。基本的なインストールについては、[Visual Studio Codeのインストール手順](https://code.visualstudio.com/)に従ってください。このコースではVisual Studio CodeでPythonを使用するので、[Python開発のためのVisual Studio Codeの設定方法](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott)を確認しておくと良いでしょう。 + + > Pythonに慣れるために、この[Learnモジュールのコレクション](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott)を試してみてください。 + > + > [![Visual Studio CodeでPythonを設定する](https://img.youtube.com/vi/yyQM70vi7V8/0.jpg)](https://youtu.be/yyQM70vi7V8 "Visual Studio CodeでPythonを設定する") + > + > 🎥 上の画像をクリックすると、VS Code内でPythonを使用する方法の動画が再生されます。 + +3. **Scikit-learnをインストール**。[こちらの手順](https://scikit-learn.org/stable/install.html)に従ってインストールしてください。Python 3を使用する必要があるため、仮想環境を使用することをお勧めします。M1 Macにこのライブラリをインストールする場合、リンク先のページに特別な手順が記載されています。 + +4. **Jupyter Notebookをインストール**。[Jupyterパッケージ](https://pypi.org/project/jupyter/)をインストールしてください。 + +## ML作成環境 + +Pythonコードを開発し、機械学習モデルを作成するために**ノートブック**を使用します。このタイプのファイルはデータサイエンティストにとって一般的なツールであり、拡張子`.ipynb`で識別されます。 + +ノートブックは、コードを記述するだけでなく、コードに関するメモやドキュメントを追加することができるインタラクティブな環境です。これは実験的または研究指向のプロジェクトに非常に役立ちます。 + +[![初心者向け機械学習 - 回帰モデルを構築するためのJupyterノートブックの設定](https://img.youtube.com/vi/7E-jC8FLA2E/0.jpg)](https://youtu.be/7E-jC8FLA2E "初心者向け機械学習 - 回帰モデルを構築するためのJupyterノートブックの設定") + +> 🎥 上の画像をクリックすると、この演習を進める短い動画が再生されます。 + +### 演習 - ノートブックを操作する + +このフォルダには、_notebook.ipynb_というファイルがあります。 + +1. Visual Studio Codeで_notebook.ipynb_を開きます。 + + JupyterサーバーがPython 3+で起動します。ノートブック内には`run`できるコードの部分があります。コードブロックを実行するには、再生ボタンのようなアイコンを選択します。 + +2. `md`アイコンを選択して、以下のテキストを追加します: **# Welcome to your notebook**。 + + 次に、Pythonコードを追加します。 + +3. コードブロックに**print('hello notebook')**と入力します。 +4. 矢印を選択してコードを実行します。 + + 以下のように出力が表示されるはずです: + + ```output + hello notebook + ``` + +![VS Codeでノートブックを開いた状態](../../../../translated_images/notebook.4a3ee31f396b88325607afda33cadcc6368de98040ff33942424260aa84d75f2.ja.jpg) + +コードとコメントを交互に記述することで、ノートブックを自己文書化することができます。 + +✅ データサイエンティストの作業環境がウェブ開発者の作業環境とどのように異なるか、少し考えてみてください。 + +## Scikit-learnの準備 + +Pythonがローカル環境で設定され、Jupyterノートブックに慣れたら、Scikit-learnにも慣れていきましょう(`sci`は`science`のように発音します)。Scikit-learnは、MLタスクを実行するための[広範なAPI](https://scikit-learn.org/stable/modules/classes.html#api-ref)を提供します。 + +[公式サイト](https://scikit-learn.org/stable/getting_started.html)によると、「Scikit-learnは、教師あり学習と教師なし学習をサポートするオープンソースの機械学習ライブラリです。また、モデルの適合、データの前処理、モデル選択と評価、その他多くのユーティリティを提供します。」 + +このコースでは、Scikit-learnやその他のツールを使用して、いわゆる「従来の機械学習」タスクを実行するためのモデルを構築します。ニューラルネットワークや深層学習は、今後の「AI for Beginners」カリキュラムで詳しく扱う予定です。 + +Scikit-learnを使用すると、モデルを簡単に構築し、それらを評価して使用することができます。主に数値データを使用することに焦点を当てており、学習ツールとして使用できるいくつかの既製のデータセットが含まれています。また、学生が試すための事前構築されたモデルも含まれています。まずは、事前パッケージ化されたデータをロードし、Scikit-learnの組み込み推定器を使用して最初のMLモデルを作成するプロセスを探ってみましょう。 + +## 演習 - 初めてのScikit-learnノートブック + +> このチュートリアルは、Scikit-learnのウェブサイトにある[線形回帰の例](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py)に触発されています。 + +[![初心者向け機械学習 - Pythonで初めての線形回帰プロジェクト](https://img.youtube.com/vi/2xkXL5EUpS0/0.jpg)](https://youtu.be/2xkXL5EUpS0 "初心者向け機械学習 - Pythonで初めての線形回帰プロジェクト") + +> 🎥 上の画像をクリックすると、この演習を進める短い動画が再生されます。 + +このレッスンに関連する_notebook.ipynb_ファイル内のすべてのセルを、ゴミ箱アイコンを押してクリアしてください。 + +このセクションでは、Scikit-learnに組み込まれている学習用の小さなデータセットである糖尿病データセットを使用します。糖尿病患者の治療をテストしたいと仮定します。機械学習モデルは、変数の組み合わせに基づいて、どの患者が治療により良い反応を示すかを判断するのに役立つかもしれません。非常に基本的な回帰モデルでも、視覚化することで、理論的な臨床試験を整理するのに役立つ変数に関する情報を示すことができます。 + +✅ 回帰方法には多くの種類があり、どれを選ぶかは求めている答えによります。例えば、特定の年齢の人の予測される身長を知りたい場合は、**数値値**を求めているため線形回帰を使用します。一方、ある料理がビーガン料理と見なされるべきかどうかを知りたい場合は、**カテゴリの割り当て**を求めているためロジスティック回帰を使用します。後ほどロジスティック回帰について詳しく学びます。データに対してどのような質問ができるか、そしてどの方法が適切か少し考えてみてください。 + +では、このタスクを始めましょう。 + +### ライブラリのインポート + +このタスクでは以下のライブラリをインポートします: + +- **matplotlib**。便利な[グラフ作成ツール](https://matplotlib.org/)で、線グラフを作成するために使用します。 +- **numpy**。[numpy](https://numpy.org/doc/stable/user/whatisnumpy.html)はPythonで数値データを扱うための便利なライブラリです。 +- **sklearn**。これが[Scikit-learn](https://scikit-learn.org/stable/user_guide.html)ライブラリです。 + +タスクを助けるためにいくつかのライブラリをインポートします。 + +1. 以下のコードを入力してインポートを追加します: + + ```python + import matplotlib.pyplot as plt + import numpy as np + from sklearn import datasets, linear_model, model_selection + ``` + + 上記では`matplotlib`、`numpy`をインポートし、`sklearn`から`datasets`、`linear_model`、`model_selection`をインポートしています。`model_selection`はデータをトレーニングセットとテストセットに分割するために使用されます。 + +### 糖尿病データセット + +組み込みの[糖尿病データセット](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset)には、糖尿病に関する442件のデータサンプルが含まれており、10個の特徴変数があります。その一部は以下の通りです: + +- age: 年齢(年単位) +- bmi: ボディマス指数 +- bp: 平均血圧 +- s1 tc: T細胞(白血球の一種) + +✅ このデータセットには、糖尿病に関する研究で重要な特徴変数として「性別」の概念が含まれています。多くの医療データセットには、このような二分分類が含まれています。このような分類が治療から特定の人口を除外する可能性について少し考えてみてください。 + +次に、Xとyデータをロードします。 + +> 🎓 これは教師あり学習であり、名前付きの「y」ターゲットが必要です。 + +新しいコードセルで、`load_diabetes()`を呼び出して糖尿病データセットをロードします。入力`return_X_y=True`は、`X`がデータマトリックス、`y`が回帰ターゲットになることを示します。 + +1. データマトリックスの形状とその最初の要素を表示するためにいくつかのprintコマンドを追加します: + + ```python + X, y = datasets.load_diabetes(return_X_y=True) + print(X.shape) + print(X[0]) + ``` + + 返されるのはタプルです。タプルの最初の2つの値をそれぞれ`X`と`y`に割り当てています。[タプルについて詳しく学ぶ](https://wikipedia.org/wiki/Tuple)。 + + このデータには442件のアイテムがあり、10個の要素で構成された配列として形作られていることがわかります: + + ```text + (442, 10) + [ 0.03807591 0.05068012 0.06169621 0.02187235 -0.0442235 -0.03482076 + -0.04340085 -0.00259226 0.01990842 -0.01764613] + ``` + + ✅ データと回帰ターゲットの関係について少し考えてみてください。線形回帰は特徴Xとターゲット変数yの間の関係を予測します。このデータセットの[ターゲット](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset)をドキュメントで見つけることができますか?このデータセットは何を示しているのでしょうか? + +2. 次に、このデータセットの一部を選択してプロットします。データセットの3列目を選択するには、`:`演算子を使用してすべての行を選択し、インデックス(2)を使用して3列目を選択します。また、`reshape(n_rows, n_columns)`を使用してデータを2D配列に再構成することができます。パラメータの1つが-1の場合、対応する次元が自動的に計算されます。 + + ```python + X = X[:, 2] + X = X.reshape((-1,1)) + ``` + + ✅ いつでもデータを印刷してその形状を確認できます。 + +3. データがプロットの準備が整ったら、このデータセットの数値間に論理的な分割を決定するために機械を使用できるか確認します。そのためには、データ(X)とターゲット(y)の両方をテストセットとトレーニングセットに分割する必要があります。Scikit-learnにはこれを簡単に行う方法があり、指定したポイントでテストデータを分割できます。 + + ```python + X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33) + ``` + +4. これでモデルをトレーニングする準備が整いました!線形回帰モデルをロードし、`model.fit()`を使用してXとyのトレーニングセットでトレーニングします: + + ```python + model = linear_model.LinearRegression() + model.fit(X_train, y_train) + ``` + + ✅ `model.fit()`はTensorFlowなどの多くのMLライブラリで見られる関数です。 + +5. 次に、テストデータを使用して予測を作成します。これにより、データグループ間の線を描画することができます。 + + ```python + y_pred = model.predict(X_test) + ``` + +6. 次に、データをプロットで表示します。Matplotlibはこのタスクに非常に便利なツールです。すべてのXとyテストデータの散布図を作成し、予測を使用してデータグループ間の最適な位置に線を描画します。 + + ```python + plt.scatter(X_test, y_test, color='black') + plt.plot(X_test, y_pred, color='blue', linewidth=3) + plt.xlabel('Scaled BMIs') + plt.ylabel('Disease Progression') + plt.title('A Graph Plot Showing Diabetes Progression Against BMI') + plt.show() + ``` + + ![糖尿病に関するデータポイントを示す散布図](../../../../translated_images/scatterplot.ad8b356bcbb33be68d54050e09b9b7bfc03e94fde7371f2609ae43f4c563b2d7.ja.png) +✅ 少し考えてみましょう。たくさんの小さなデータ点を通る一直線がありますが、この線は一体何をしているのでしょうか?この線を使って、新しい未知のデータポイントがプロットのy軸に対してどこに位置するべきかを予測できる方法が見えてきませんか?このモデルの実用的な使い方を言葉で説明してみてください。 + +おめでとうございます!初めての線形回帰モデルを構築し、それを使って予測を行い、プロットに表示することができました! + +--- +## 🚀チャレンジ + +このデータセットから別の変数をプロットしてみましょう。ヒント: この行を編集してください: `X = X[:,2]`。このデータセットのターゲットを考慮すると、糖尿病という病気の進行についてどのようなことが発見できるでしょうか? + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/10/) + +## 復習と自己学習 + +このチュートリアルでは、単回帰分析を扱いましたが、単変量回帰や重回帰分析ではありませんでした。これらの手法の違いについて少し調べてみるか、[この動画](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef)を見てみてください。 + +回帰の概念についてさらに学び、この手法でどのような質問に答えられるのかを考えてみましょう。[このチュートリアル](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott)を受講して理解を深めてください。 + +## 課題 + +[別のデータセット](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/2-Regression/1-Tools/assignment.md b/translations/ja/2-Regression/1-Tools/assignment.md new file mode 100644 index 000000000..f180cfee2 --- /dev/null +++ b/translations/ja/2-Regression/1-Tools/assignment.md @@ -0,0 +1,27 @@ + +# Scikit-learnによる回帰分析 + +## 手順 + +Scikit-learnの[Linnerudデータセット](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html#sklearn.datasets.load_linnerud)を確認してください。このデータセットには複数の[ターゲット](https://scikit-learn.org/stable/datasets/toy_dataset.html#linnerrud-dataset)があります。「フィットネスクラブに通う20人の中年男性から収集された、3つの運動(データ)と3つの生理学的(ターゲット)変数で構成されています。」 + +自分の言葉で、ウエストサイズと腹筋回数の関係をプロットする回帰モデルを作成する方法を説明してください。このデータセット内の他のデータポイントについても同様に行ってください。 + +## 採点基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| ------------------------------ | --------------------------------- | ----------------------------- | -------------------------- | +| 説明文を提出する | よく書かれた説明文が提出されている | 数文のみが提出されている | 説明が提出されていない | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当社は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/2-Regression/1-Tools/notebook.ipynb b/translations/ja/2-Regression/1-Tools/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/ja/2-Regression/1-Tools/solution/Julia/README.md b/translations/ja/2-Regression/1-Tools/solution/Julia/README.md new file mode 100644 index 000000000..66e3035c3 --- /dev/null +++ b/translations/ja/2-Regression/1-Tools/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb b/translations/ja/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb new file mode 100644 index 000000000..911280560 --- /dev/null +++ b/translations/ja/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb @@ -0,0 +1,447 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_1-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "c18d3bd0bd8ae3878597e89dcd1fa5c1", + "translation_date": "2025-09-04T01:32:04+00:00", + "source_file": "2-Regression/1-Tools/solution/R/lesson_1-R.ipynb", + "language_code": "ja" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "YJUHCXqK57yz" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 回帰の入門 - レッスン1\n", + "\n", + "#### 視点を広げてみよう\n", + "\n", + "✅ 回帰にはさまざまな方法があり、どの方法を選ぶかは求めている答えによります。たとえば、特定の年齢の人の身長を予測したい場合は、**数値的な値**を求めているので `線形回帰` を使用します。一方、ある料理がビーガン料理と見なされるべきかどうかを知りたい場合は、**カテゴリの割り当て**を求めているので `ロジスティック回帰` を使用します。ロジスティック回帰については後ほど学びます。データに対してどのような質問ができるか、そしてこれらの方法のどれが適切かを少し考えてみてください。\n", + "\n", + "このセクションでは、[糖尿病に関する小さなデータセット](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)を使用します。糖尿病患者に対する治療をテストしたいと想像してみてください。機械学習モデルは、変数の組み合わせに基づいて、どの患者が治療により良く反応するかを判断するのに役立つかもしれません。非常に基本的な回帰モデルであっても、視覚化することで、理論的な臨床試験を整理するのに役立つ変数に関する情報を示すことができます。\n", + "\n", + "それでは、このタスクに取り組んでみましょう!\n", + "\n", + "

                                          \n", + " \n", + "

                                          イラスト: @allison_horst
                                          \n", + "\n", + "\n" + ], + "metadata": { + "id": "LWNNzfqd6feZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. ツールセットの準備\n", + "\n", + "このタスクでは、以下のパッケージが必要です:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) は、データサイエンスをより速く、簡単で楽しいものにするために設計された[Rパッケージのコレクション](https://www.tidyverse.org/packages)です。\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) フレームワークは、モデリングと機械学習のための[パッケージのコレクション](https://www.tidymodels.org/packages/)です。\n", + "\n", + "以下のコマンドでインストールできます:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\"))`\n", + "\n", + "以下のスクリプトは、このモジュールを完了するために必要なパッケージがインストールされているかを確認し、足りない場合は自動的にインストールします。\n" + ], + "metadata": { + "id": "FIo2YhO26wI9" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse, tidymodels)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "id": "cIA9fz9v7Dss", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2df7073b-86b2-4b32-cb86-0da605a0dc11" + } + }, + { + "cell_type": "markdown", + "source": [ + "では、これらの素晴らしいパッケージを読み込み、現在のRセッションで利用可能にしましょう。(これは単なる例示のためであり、`pacman::p_load()`はすでにそれを行っています)\n" + ], + "metadata": { + "id": "gpO_P_6f9WUG" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# load the core Tidyverse packages\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# load the core Tidymodels packages\r\n", + "library(tidymodels)\r\n" + ], + "outputs": [], + "metadata": { + "id": "NLMycgG-9ezO" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. 糖尿病データセット\n", + "\n", + "この演習では、糖尿病データセットを使って回帰スキルを活用し、予測を行います。[糖尿病データセット](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt)には、糖尿病に関する`442件のサンプル`が含まれており、10個の予測変数(`年齢`、`性別`、`体格指数`、`平均血圧`、および`6つの血清測定値`)と、結果変数`y`(ベースラインから1年後の疾患進行の定量的な指標)が含まれています。\n", + "\n", + "|観測数|442|\n", + "|----------------------|:---|\n", + "|予測変数の数|最初の10列は数値型の予測変数|\n", + "|結果/ターゲット|11列目はベースラインから1年後の疾患進行の定量的な指標|\n", + "|予測変数の情報|- 年齢(年単位)\n", + "||- 性別\n", + "||- bmi 体格指数\n", + "||- bp 平均血圧\n", + "||- s1 tc 総血清コレステロール\n", + "||- s2 ldl 低密度リポタンパク質\n", + "||- s3 hdl 高密度リポタンパク質\n", + "||- s4 tch 総コレステロール / HDL\n", + "||- s5 ltg おそらく血清トリグリセリドレベルの対数\n", + "||- s6 glu 血糖値|\n", + "\n", + "> 🎓 覚えておいてください、これは教師あり学習であり、'y'という名前のターゲットが必要です。\n", + "\n", + "Rでデータを操作する前に、データをRのメモリにインポートするか、Rがリモートでデータにアクセスできるようにする接続を構築する必要があります。\n", + "\n", + "> [readr](https://readr.tidyverse.org/)パッケージは、Tidyverseの一部であり、Rに長方形データを高速かつ簡単に読み込む方法を提供します。\n", + "\n", + "では、このソースURLで提供されている糖尿病データセットを読み込みましょう: \n", + "\n", + "また、`glimpse()`を使ってデータの健全性チェックを行い、`slice()`を使って最初の5行を表示します。\n", + "\n", + "さらに進む前に、Rコードで頻繁に遭遇するものを紹介します 🥁🥁: パイプ演算子 `%>%`\n", + "\n", + "パイプ演算子 (`%>%`) は、オブジェクトを関数や呼び出し式に順序立てて渡すことで、論理的な順序で操作を行います。コード内で「そして次に」と言っているようなものだと考えることができます。\n" + ], + "metadata": { + "id": "KM6iXLH996Cl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import the data set\r\n", + "diabetes <- read_table2(file = \"https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt\")\r\n", + "\r\n", + "\r\n", + "# Get a glimpse and dimensions of the data\r\n", + "glimpse(diabetes)\r\n", + "\r\n", + "\r\n", + "# Select the first 5 rows of the data\r\n", + "diabetes %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "Z1geAMhM-bSP" + } + }, + { + "cell_type": "markdown", + "source": [ + "`glimpse()` を使うと、このデータには 442 行と 11 列があり、すべての列がデータ型 `double` であることがわかります。\n", + "\n", + "
                                          \n", + "\n", + "> `glimpse()` と `slice()` は [`dplyr`](https://dplyr.tidyverse.org/) の関数です。Dplyr は Tidyverse の一部であり、データ操作の文法を提供します。一貫性のある一連の動詞を通じて、最も一般的なデータ操作の課題を解決するのに役立ちます。\n", + "\n", + "
                                          \n", + "\n", + "データが揃ったので、この演習のターゲットとして 1 つの特徴量(`bmi`)に絞り込みましょう。そのためには、必要な列を選択する必要があります。では、どうやってこれを行うのでしょうか?\n", + "\n", + "[`dplyr::select()`](https://dplyr.tidyverse.org/reference/select.html) を使うと、データフレーム内の列を*選択*(必要に応じて名前を変更)することができます。\n" + ], + "metadata": { + "id": "UwjVT1Hz-c3Z" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select predictor feature `bmi` and outcome `y`\r\n", + "diabetes_select <- diabetes %>% \r\n", + " select(c(bmi, y))\r\n", + "\r\n", + "# Print the first 5 rows\r\n", + "diabetes_select %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "RDY1oAKI-m80" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. トレーニングデータとテストデータ\n", + "\n", + "教師あり学習では、データを2つのサブセットに*分割*することが一般的です。通常は、モデルをトレーニングするための(一般的に大きな)セットと、モデルの性能を確認するための小さな「保持」セットに分けます。\n", + "\n", + "データの準備が整ったので、このデータセット内の数値を論理的に分割する方法を機械が助けてくれるかどうか確認してみましょう。Tidymodelsフレームワークの一部である[rsample](https://tidymodels.github.io/rsample/)パッケージを使用して、データを*どのように*分割するかの情報を含むオブジェクトを作成し、その後、作成されたトレーニングセットとテストセットを抽出するために2つのrsample関数を使用します。\n" + ], + "metadata": { + "id": "SDk668xK-tc3" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\r\n", + "# Split 67% of the data for training and the rest for tesing\r\n", + "diabetes_split <- diabetes_select %>% \r\n", + " initial_split(prop = 0.67)\r\n", + "\r\n", + "# Extract the resulting train and test sets\r\n", + "diabetes_train <- training(diabetes_split)\r\n", + "diabetes_test <- testing(diabetes_split)\r\n", + "\r\n", + "# Print the first 3 rows of the training set\r\n", + "diabetes_train %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "EqtHx129-1h-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. Tidymodelsで線形回帰モデルをトレーニングする\n", + "\n", + "さあ、モデルをトレーニングする準備が整いました!\n", + "\n", + "Tidymodelsでは、`parsnip()`を使って以下の3つの概念を指定することでモデルを定義します:\n", + "\n", + "- モデルの**タイプ**は、線形回帰、ロジスティック回帰、決定木モデルなど、モデルの種類を区別します。\n", + "\n", + "- モデルの**モード**には、回帰や分類といった一般的なオプションが含まれます。一部のモデルタイプはこれらの両方をサポートしていますが、片方のみを持つものもあります。\n", + "\n", + "- モデルの**エンジン**は、モデルを適合させるために使用される計算ツールです。これには、**`\"lm\"`** や **`\"ranger\"`** のようなRパッケージが含まれることが多いです。\n", + "\n", + "これらのモデリング情報はモデル仕様にまとめられます。それでは、モデル仕様を作成してみましょう!\n" + ], + "metadata": { + "id": "sBOS-XhB-6v7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- \r\n", + " # Type\r\n", + " linear_reg() %>% \r\n", + " # Engine\r\n", + " set_engine(\"lm\") %>% \r\n", + " # Mode\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Print the model specification\r\n", + "lm_spec" + ], + "outputs": [], + "metadata": { + "id": "20OwEw20--t3" + } + }, + { + "cell_type": "markdown", + "source": [ + "モデルが*指定*された後、通常は式とデータを使用して、[`fit()`](https://parsnip.tidymodels.org/reference/fit.html)関数を使ってモデルを`推定`または`訓練`することができます。\n", + "\n", + "`y ~ .`は、`y`を予測される量/ターゲットとしてフィットし、すべての予測因子/特徴量、つまり`.`によって説明されることを意味します(この場合、予測因子は1つだけで、それは`bmi`です)。\n" + ], + "metadata": { + "id": "_oDHs89k_CJj" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>%\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Train a linear regression model\r\n", + "lm_mod <- lm_spec %>% \r\n", + " fit(y ~ ., data = diabetes_train)\r\n", + "\r\n", + "# Print the model\r\n", + "lm_mod" + ], + "outputs": [], + "metadata": { + "id": "YlsHqd-q_GJQ" + } + }, + { + "cell_type": "markdown", + "source": [ + "トレーニング中に学習された係数をモデルの出力から確認できます。これらの係数は、実際の値と予測値の間の全体的な誤差を最小化する最適な直線の係数を表しています。\n", + "
                                          \n", + "\n", + "## 5. テストセットで予測を行う\n", + "\n", + "モデルをトレーニングしたので、これを使用してテストデータセットの疾患進行 y を予測できます。[parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html) を使って予測を行い、データグループ間の線を描画します。\n" + ], + "metadata": { + "id": "kGZ22RQj_Olu" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\r\n", + "predictions <- lm_mod %>% \r\n", + " predict(new_data = diabetes_test)\r\n", + "\r\n", + "# Print out some of the predictions\r\n", + "predictions %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "nXHbY7M2_aao" + } + }, + { + "cell_type": "markdown", + "source": [ + "やったー!💃🕺 モデルをトレーニングして、予測を行いました!\n", + "\n", + "予測を行う際、tidymodelsの慣例では、標準化された列名を持つ結果のtibble/データフレームを常に生成します。これにより、元のデータと予測結果を使いやすい形式で結合し、プロットなどの後続の操作に活用することが簡単になります。\n", + "\n", + "`dplyr::bind_cols()`は複数のデータフレームを効率的に列として結合します。\n" + ], + "metadata": { + "id": "R_JstwUY_bIs" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Combine the predictions and the original test set\r\n", + "results <- diabetes_test %>% \r\n", + " bind_cols(predictions)\r\n", + "\r\n", + "\r\n", + "results %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "RybsMJR7_iI8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 6. モデリング結果のプロット\n", + "\n", + "さて、これを視覚的に確認する時間です 📈。テストセットのすべての `y` と `bmi` の値を散布図で描画し、予測値を使ってモデルのデータグループ間で最適な位置に線を引きます。\n", + "\n", + "Rにはグラフを作成するためのいくつかのシステムがありますが、`ggplot2` はその中でも最もエレガントで汎用性の高いものの一つです。これにより、**独立したコンポーネントを組み合わせる**ことでグラフを作成することができます。\n" + ], + "metadata": { + "id": "XJbYbMZW_n_s" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plot\r\n", + "theme_set(theme_light())\r\n", + "# Create a scatter plot\r\n", + "results %>% \r\n", + " ggplot(aes(x = bmi)) +\r\n", + " # Add a scatter plot\r\n", + " geom_point(aes(y = y), size = 1.6) +\r\n", + " # Add a line plot\r\n", + " geom_line(aes(y = .pred), color = \"blue\", size = 1.5)" + ], + "outputs": [], + "metadata": { + "id": "R9tYp3VW_sTn" + } + }, + { + "cell_type": "markdown", + "source": [ + "✅ ここで何が起きているのか少し考えてみましょう。一本の直線が多数の小さなデータ点を通り抜けていますが、具体的に何をしているのでしょうか?この直線を使って、新しい未確認のデータポイントがプロットのy軸に対してどの位置に収まるべきか予測できる方法が見えてきますか?このモデルの実際の用途を言葉で説明してみてください。\n", + "\n", + "おめでとうございます!初めて線形回帰モデルを構築し、それを使って予測を行い、プロットに表示することができました!\n" + ], + "metadata": { + "id": "zrPtHIxx_tNI" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/2-Regression/1-Tools/solution/notebook.ipynb b/translations/ja/2-Regression/1-Tools/solution/notebook.ipynb new file mode 100644 index 000000000..0631943c9 --- /dev/null +++ b/translations/ja/2-Regression/1-Tools/solution/notebook.ipynb @@ -0,0 +1,677 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "糖尿病データセットの線形回帰 - レッスン1\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "必要なライブラリをインポート\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from sklearn import datasets, linear_model, model_selection\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "糖尿病データセットを読み込み、`X`データと`y`特徴量に分割\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 10)\n", + "[ 0.03807591 0.05068012 0.06169621 0.02187239 -0.0442235 -0.03482076\n", + " -0.04340085 -0.00259226 0.01990749 -0.01764613]\n" + ] + } + ], + "source": [ + "X, y = datasets.load_diabetes(return_X_y=True)\n", + "print(X.shape)\n", + "print(X[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "この練習のためにターゲットとする機能を1つだけ選択してください\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442,)\n" + ] + } + ], + "source": [ + "# Selecting the 3rd feature\n", + "X = X[:, 2]\n", + "print(X.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 1)\n", + "[[ 0.06169621]\n", + " [-0.05147406]\n", + " [ 0.04445121]\n", + " [-0.01159501]\n", + " [-0.03638469]\n", + " [-0.04069594]\n", + " [-0.04716281]\n", + " [-0.00189471]\n", + " [ 0.06169621]\n", + " [ 0.03906215]\n", + " [-0.08380842]\n", + " [ 0.01750591]\n", + " [-0.02884001]\n", + " [-0.00189471]\n", + " [-0.02560657]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [ 0.01211685]\n", + " [-0.0105172 ]\n", + " [-0.01806189]\n", + " [-0.05686312]\n", + " [-0.02237314]\n", + " [-0.00405033]\n", + " [ 0.06061839]\n", + " [ 0.03582872]\n", + " [-0.01267283]\n", + " [-0.07734155]\n", + " [ 0.05954058]\n", + " [-0.02129532]\n", + " [-0.00620595]\n", + " [ 0.04445121]\n", + " [-0.06548562]\n", + " [ 0.12528712]\n", + " [-0.05039625]\n", + " [-0.06332999]\n", + " [-0.03099563]\n", + " [ 0.02289497]\n", + " [ 0.01103904]\n", + " [ 0.07139652]\n", + " [ 0.01427248]\n", + " [-0.00836158]\n", + " [-0.06764124]\n", + " [-0.0105172 ]\n", + " [-0.02345095]\n", + " [ 0.06816308]\n", + " [-0.03530688]\n", + " [-0.01159501]\n", + " [-0.0730303 ]\n", + " [-0.04177375]\n", + " [ 0.01427248]\n", + " [-0.00728377]\n", + " [ 0.0164281 ]\n", + " [-0.00943939]\n", + " [-0.01590626]\n", + " [ 0.0250506 ]\n", + " [-0.04931844]\n", + " [ 0.04121778]\n", + " [-0.06332999]\n", + " [-0.06440781]\n", + " [-0.02560657]\n", + " [-0.00405033]\n", + " [ 0.00457217]\n", + " [-0.00728377]\n", + " [-0.0374625 ]\n", + " [-0.02560657]\n", + " [-0.02452876]\n", + " [-0.01806189]\n", + " [-0.01482845]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [-0.06979687]\n", + " [ 0.03367309]\n", + " [-0.00405033]\n", + " [-0.02021751]\n", + " [ 0.00241654]\n", + " [-0.03099563]\n", + " [ 0.02828403]\n", + " [-0.03638469]\n", + " [-0.05794093]\n", + " [-0.0374625 ]\n", + " [ 0.01211685]\n", + " [-0.02237314]\n", + " [-0.03530688]\n", + " [ 0.00996123]\n", + " [-0.03961813]\n", + " [ 0.07139652]\n", + " [-0.07518593]\n", + " [-0.00620595]\n", + " [-0.04069594]\n", + " [-0.04824063]\n", + " [-0.02560657]\n", + " [ 0.0519959 ]\n", + " [ 0.00457217]\n", + " [-0.06440781]\n", + " [-0.01698407]\n", + " [-0.05794093]\n", + " [ 0.00996123]\n", + " [ 0.08864151]\n", + " [-0.00512814]\n", + " [-0.06440781]\n", + " [ 0.01750591]\n", + " [-0.04500719]\n", + " [ 0.02828403]\n", + " [ 0.04121778]\n", + " [ 0.06492964]\n", + " [-0.03207344]\n", + " [-0.07626374]\n", + " [ 0.04984027]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03207344]\n", + " [ 0.00457217]\n", + " [ 0.02073935]\n", + " [ 0.01427248]\n", + " [ 0.11019775]\n", + " [ 0.00133873]\n", + " [ 0.05846277]\n", + " [-0.02129532]\n", + " [-0.0105172 ]\n", + " [-0.04716281]\n", + " [ 0.00457217]\n", + " [ 0.01750591]\n", + " [ 0.08109682]\n", + " [ 0.0347509 ]\n", + " [ 0.02397278]\n", + " [-0.00836158]\n", + " [-0.06117437]\n", + " [-0.00189471]\n", + " [-0.06225218]\n", + " [ 0.0164281 ]\n", + " [ 0.09618619]\n", + " [-0.06979687]\n", + " [-0.02129532]\n", + " [-0.05362969]\n", + " [ 0.0433734 ]\n", + " [ 0.05630715]\n", + " [-0.0816528 ]\n", + " [ 0.04984027]\n", + " [ 0.11127556]\n", + " [ 0.06169621]\n", + " [ 0.01427248]\n", + " [ 0.04768465]\n", + " [ 0.01211685]\n", + " [ 0.00564998]\n", + " [ 0.04660684]\n", + " [ 0.12852056]\n", + " [ 0.05954058]\n", + " [ 0.09295276]\n", + " [ 0.01535029]\n", + " [-0.00512814]\n", + " [ 0.0703187 ]\n", + " [-0.00405033]\n", + " [-0.00081689]\n", + " [-0.04392938]\n", + " [ 0.02073935]\n", + " [ 0.06061839]\n", + " [-0.0105172 ]\n", + " [-0.03315126]\n", + " [-0.06548562]\n", + " [ 0.0433734 ]\n", + " [-0.06225218]\n", + " [ 0.06385183]\n", + " [ 0.03043966]\n", + " [ 0.07247433]\n", + " [-0.0191397 ]\n", + " [-0.06656343]\n", + " [-0.06009656]\n", + " [ 0.06924089]\n", + " [ 0.05954058]\n", + " [-0.02668438]\n", + " [-0.02021751]\n", + " [-0.046085 ]\n", + " [ 0.07139652]\n", + " [-0.07949718]\n", + " [ 0.00996123]\n", + " [-0.03854032]\n", + " [ 0.01966154]\n", + " [ 0.02720622]\n", + " [-0.00836158]\n", + " [-0.01590626]\n", + " [ 0.00457217]\n", + " [-0.04285156]\n", + " [ 0.00564998]\n", + " [-0.03530688]\n", + " [ 0.02397278]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [-0.0547075 ]\n", + " [-0.00297252]\n", + " [-0.06656343]\n", + " [-0.01267283]\n", + " [-0.04177375]\n", + " [-0.03099563]\n", + " [-0.00512814]\n", + " [-0.05901875]\n", + " [ 0.0250506 ]\n", + " [-0.046085 ]\n", + " [ 0.00349435]\n", + " [ 0.05415152]\n", + " [-0.04500719]\n", + " [-0.05794093]\n", + " [-0.05578531]\n", + " [ 0.00133873]\n", + " [ 0.03043966]\n", + " [ 0.00672779]\n", + " [ 0.04660684]\n", + " [ 0.02612841]\n", + " [ 0.04552903]\n", + " [ 0.04013997]\n", + " [-0.01806189]\n", + " [ 0.01427248]\n", + " [ 0.03690653]\n", + " [ 0.00349435]\n", + " [-0.07087468]\n", + " [-0.03315126]\n", + " [ 0.09403057]\n", + " [ 0.03582872]\n", + " [ 0.03151747]\n", + " [-0.06548562]\n", + " [-0.04177375]\n", + " [-0.03961813]\n", + " [-0.03854032]\n", + " [-0.02560657]\n", + " [-0.02345095]\n", + " [-0.06656343]\n", + " [ 0.03259528]\n", + " [-0.046085 ]\n", + " [-0.02991782]\n", + " [-0.01267283]\n", + " [-0.01590626]\n", + " [ 0.07139652]\n", + " [-0.03099563]\n", + " [ 0.00026092]\n", + " [ 0.03690653]\n", + " [ 0.03906215]\n", + " [-0.01482845]\n", + " [ 0.00672779]\n", + " [-0.06871905]\n", + " [-0.00943939]\n", + " [ 0.01966154]\n", + " [ 0.07462995]\n", + " [-0.00836158]\n", + " [-0.02345095]\n", + " [-0.046085 ]\n", + " [ 0.05415152]\n", + " [-0.03530688]\n", + " [-0.03207344]\n", + " [-0.0816528 ]\n", + " [ 0.04768465]\n", + " [ 0.06061839]\n", + " [ 0.05630715]\n", + " [ 0.09834182]\n", + " [ 0.05954058]\n", + " [ 0.03367309]\n", + " [ 0.05630715]\n", + " [-0.06548562]\n", + " [ 0.16085492]\n", + " [-0.05578531]\n", + " [-0.02452876]\n", + " [-0.03638469]\n", + " [-0.00836158]\n", + " [-0.04177375]\n", + " [ 0.12744274]\n", + " [-0.07734155]\n", + " [ 0.02828403]\n", + " [-0.02560657]\n", + " [-0.06225218]\n", + " [-0.00081689]\n", + " [ 0.08864151]\n", + " [-0.03207344]\n", + " [ 0.03043966]\n", + " [ 0.00888341]\n", + " [ 0.00672779]\n", + " [-0.02021751]\n", + " [-0.02452876]\n", + " [-0.01159501]\n", + " [ 0.02612841]\n", + " [-0.05901875]\n", + " [-0.03638469]\n", + " [-0.02452876]\n", + " [ 0.01858372]\n", + " [-0.0902753 ]\n", + " [-0.00512814]\n", + " [-0.05255187]\n", + " [-0.02237314]\n", + " [-0.02021751]\n", + " [-0.0547075 ]\n", + " [-0.00620595]\n", + " [-0.01698407]\n", + " [ 0.05522933]\n", + " [ 0.07678558]\n", + " [ 0.01858372]\n", + " [-0.02237314]\n", + " [ 0.09295276]\n", + " [-0.03099563]\n", + " [ 0.03906215]\n", + " [-0.06117437]\n", + " [-0.00836158]\n", + " [-0.0374625 ]\n", + " [-0.01375064]\n", + " [ 0.07355214]\n", + " [-0.02452876]\n", + " [ 0.03367309]\n", + " [ 0.0347509 ]\n", + " [-0.03854032]\n", + " [-0.03961813]\n", + " [-0.00189471]\n", + " [-0.03099563]\n", + " [-0.046085 ]\n", + " [ 0.00133873]\n", + " [ 0.06492964]\n", + " [ 0.04013997]\n", + " [-0.02345095]\n", + " [ 0.05307371]\n", + " [ 0.04013997]\n", + " [-0.02021751]\n", + " [ 0.01427248]\n", + " [-0.03422907]\n", + " [ 0.00672779]\n", + " [ 0.00457217]\n", + " [ 0.03043966]\n", + " [ 0.0519959 ]\n", + " [ 0.06169621]\n", + " [-0.00728377]\n", + " [ 0.00564998]\n", + " [ 0.05415152]\n", + " [-0.00836158]\n", + " [ 0.114509 ]\n", + " [ 0.06708527]\n", + " [-0.05578531]\n", + " [ 0.03043966]\n", + " [-0.02560657]\n", + " [ 0.10480869]\n", + " [-0.00620595]\n", + " [-0.04716281]\n", + " [-0.04824063]\n", + " [ 0.08540807]\n", + " [-0.01267283]\n", + " [-0.03315126]\n", + " [-0.00728377]\n", + " [-0.01375064]\n", + " [ 0.05954058]\n", + " [ 0.02181716]\n", + " [ 0.01858372]\n", + " [-0.01159501]\n", + " [-0.00297252]\n", + " [ 0.01750591]\n", + " [-0.02991782]\n", + " [-0.02021751]\n", + " [-0.05794093]\n", + " [ 0.06061839]\n", + " [-0.04069594]\n", + " [-0.07195249]\n", + " [-0.05578531]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03315126]\n", + " [ 0.04984027]\n", + " [-0.08488624]\n", + " [ 0.00564998]\n", + " [ 0.02073935]\n", + " [-0.00728377]\n", + " [ 0.10480869]\n", + " [-0.02452876]\n", + " [-0.00620595]\n", + " [-0.03854032]\n", + " [ 0.13714305]\n", + " [ 0.17055523]\n", + " [ 0.00241654]\n", + " [ 0.03798434]\n", + " [-0.05794093]\n", + " [-0.00943939]\n", + " [-0.02345095]\n", + " [-0.0105172 ]\n", + " [-0.03422907]\n", + " [-0.00297252]\n", + " [ 0.06816308]\n", + " [ 0.00996123]\n", + " [ 0.00241654]\n", + " [-0.03854032]\n", + " [ 0.02612841]\n", + " [-0.08919748]\n", + " [ 0.06061839]\n", + " [-0.02884001]\n", + " [-0.02991782]\n", + " [-0.0191397 ]\n", + " [-0.04069594]\n", + " [ 0.01535029]\n", + " [-0.02452876]\n", + " [ 0.00133873]\n", + " [ 0.06924089]\n", + " [-0.06979687]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [ 0.01858372]\n", + " [ 0.00133873]\n", + " [-0.03099563]\n", + " [-0.00405033]\n", + " [ 0.01535029]\n", + " [ 0.02289497]\n", + " [ 0.04552903]\n", + " [-0.04500719]\n", + " [-0.03315126]\n", + " [ 0.097264 ]\n", + " [ 0.05415152]\n", + " [ 0.12313149]\n", + " [-0.08057499]\n", + " [ 0.09295276]\n", + " [-0.05039625]\n", + " [-0.01159501]\n", + " [-0.0277622 ]\n", + " [ 0.05846277]\n", + " [ 0.08540807]\n", + " [-0.00081689]\n", + " [ 0.00672779]\n", + " [ 0.00888341]\n", + " [ 0.08001901]\n", + " [ 0.07139652]\n", + " [-0.02452876]\n", + " [-0.0547075 ]\n", + " [-0.03638469]\n", + " [ 0.0164281 ]\n", + " [ 0.07786339]\n", + " [-0.03961813]\n", + " [ 0.01103904]\n", + " [-0.04069594]\n", + " [-0.03422907]\n", + " [ 0.00564998]\n", + " [ 0.08864151]\n", + " [-0.03315126]\n", + " [-0.05686312]\n", + " [-0.03099563]\n", + " [ 0.05522933]\n", + " [-0.06009656]\n", + " [ 0.00133873]\n", + " [-0.02345095]\n", + " [-0.07410811]\n", + " [ 0.01966154]\n", + " [-0.01590626]\n", + " [-0.01590626]\n", + " [ 0.03906215]\n", + " [-0.0730303 ]]\n" + ] + } + ], + "source": [ + "#Reshaping to get a 2D array\n", + "X = X.reshape(-1, 1)\n", + "print(X.shape)\n", + "print(X)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`X`と`y`の両方の訓練データとテストデータを分割する\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "モデルを選択し、トレーニングデータで適合させる\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          LinearRegression()
                                          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
                                          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
                                          " + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = linear_model.LinearRegression()\n", + "model.fit(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "テストデータを使用してラインを予測する\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "結果をプロットに表示します\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbmUlEQVR4nO3de3wU1f0//tcQIHIxiQmBALsQUdSigNYLxn6iSaECaj/5NKTawAfRWi2IbUBRS71gtIrKp5rUj5dqK7ZfXfwAWcVS8ALuYtCIQEERvAC/cAtJoCBJQAhkc35/rLtmk92dmd2Z2ZnZ1/Px2Edl92Tm7CTd894z7/M+khBCgIiIiMhEuiW6A0RERESdMUAhIiIi02GAQkRERKbDAIWIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHS6J7oDsWhvb8f+/ftx+umnQ5KkRHeHiIiIFBBCoKWlBYMGDUK3btHnSCwZoOzfvx9OpzPR3SAiIqIY7N27Fw6HI2obSwYop59+OgD/G0xLS0twb4iIiEiJ5uZmOJ3O4DgejSUDlMBtnbS0NAYoREREFqMkPYNJskRERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpqMqQHn++ecxatSo4OqZvLw8rFy5Mvh6QUEBJEkKeUyfPj3kGHv27MG1116L3r17o3///rj77rvR1tamzbshIiIiW1C1zNjhcODxxx/H8OHDIYTA3/72NxQVFWHTpk04//zzAQC33norHn744eDP9O7dO/jfPp8P1157LXJycvDRRx+hvr4eN954I3r06IHHHntMo7dEREREVicJIUQ8B8jMzMSCBQtwyy23oKCgABdeeCEqKirCtl25ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5m5ubkZ6ejqamJtZBISIisgg143fMOSg+nw+vv/46jh07hry8vODzr732Gvr164cLLrgAc+fOxbfffht8raamBiNHjgwGJwAwfvx4NDc3Y+vWrRHP1draiubm5pAHERERac/n88Hr9WLRokXwer3w+XwJ6YfqSrJbtmxBXl4eTpw4gb59++KNN97AiBEjAACTJ0/G0KFDMWjQIHz22We499578dVXX8HtdgMAGhoaQoITAMF/NzQ0RDzn/PnzUV5errarREREpILb7UZZWRn27dsXfM7hcKCyshLFxcWG9kX1LZ6TJ09iz549aGpqwtKlS/GXv/wFa9asCQYpHb3//vsYO3YsduzYgbPOOgu33XYbdu/ejXfeeSfY5ttvv0WfPn2wYsUKTJw4Mew5W1tb0draGvx3oJY/b/EQERFpw+12o6SkBJ3DgkBZ+qVLl8YdpOh6i6dnz544++yzcfHFF2P+/PkYPXo0Kisrw7YdM2YMAGDHjh0AgJycHDQ2Noa0Cfw7Jycn4jlTU1ODK4e4/w4REZG2fD4fysrKugQnAILPzZo1y9DbPXHXQWlvbw+Z3eho8+bNAICBAwcCAPLy8rBlyxYcOHAg2Oa9995DWlpa2BkYIiIi0l91dXXIbZ3OhBDYu3cvqqurDeuTqhyUuXPnYuLEiRgyZAhaWlrgcrng9XrxzjvvYOfOnXC5XLjmmmuQlZWFzz77DLNnz8aVV16JUaNGAQCuvvpqjBgxAlOnTsWTTz6JhoYG3H///Zg5cyZSU1N1eYNEREQUXX19vabttKAqQDlw4ABuvPFG1NfXIz09HaNGjcI777yDn/zkJ9i7dy9WrVqFiooKHDt2DE6nE5MmTcL9998f/PmUlBQsX74cM2bMQF5eHvr06YNp06aF1E0hIiIiYwXudGjVTgtx10FJBNZBISIi0o7P50Nubi7q6urC5qFIkgSHw4Ha2lqkpKTEfB5D6qAQERGRPaSkpAQXvARW7QQE/l1RURFXcKIWAxQiIiJCcXExli5disGDB4c873A4NFlirBZv8RAREVGQz+dDdXU16uvrMXDgQOTn52s2c6Jm/FZdSZaIiIjsKyUlBQUFBYnuBm/xEBERkfkwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREptM90R0gIjIzn8+H6upq1NfXY+DAgcjPz0dKSkqiu6W5ZHmfZB0MUIiIInC73SgrK8O+ffuCzzkcDlRWVqK4uDiBPdNWsrxPshbe4iEiCsPtdqOkpCRk0AaAuro6lJSUwO12J6hn2kqW90nWIwkhRKI7oVZzczPS09PR1NSEtLS0RHeHiGzG5/MhNze3y6AdIEkSHA4HamtrLX0bJFneJ5mHmvGbMyhERJ1UV1dHHLQBQAiBvXv3orq62sBeaS9Z3idZEwMUIqJO6uvrNW1nVsnyPsmaGKAQEXUycOBATduZVbK8T7ImBihERJ3k5+fD4XBAkqSwr0uSBKfTifz8fIN7pq1keZ+kzokTwMaNwPHjie0HAxQiok5SUlJQWVkJAF0G78C/KyoqLJ84mizvk5Q5dgzIzQV69QIuucT/37t2Ja4/DFCIiMIoLi7G0qVLMXjw4JDnHQ4Hli5dapv6IMnyPikyIYCbbgL69gV27/7++QMHgBdeSFi3uMyYiCiaZKmwmizvk0L95S/ArbdGfv2ZZ4A77tDufLotM37++ecxatQopKWlIS0tDXl5eVi5cmXw9RMnTmDmzJnIyspC3759MWnSJDQ2NoYcY8+ePbj22mvRu3dv9O/fH3fffTfa2trUdIOIyDApKSkoKChAaWkpCgoKbDtoJ8v7JL9PPgEkKXpw0rcvMGOGcX3qTFWA4nA48Pjjj2Pjxo3YsGEDfvzjH6OoqAhbt24FAMyePRv/+Mc/sGTJEqxZswb79+8PmR70+Xy49tprcfLkSXz00Uf429/+hldeeQUPPvigtu+KiIiIujh40B+YjBkTvd0f/wi0tACJjFPjvsWTmZmJBQsWoKSkBNnZ2XC5XCgpKQEAfPnll/jBD36AmpoaXH755Vi5ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5eYuHiIhIubY24OqrAY8neruiIsDtBrrplKFqSCVZn8+H119/HceOHUNeXh42btyIU6dOYdy4ccE25513HoYMGYKamhoAQE1NDUaOHBkMTgBg/PjxaG5uDs7CEBERkXbKy4EePaIHJ+npwOHDwJtv6hecqKV6N+MtW7YgLy8PJ06cQN++ffHGG29gxIgR2Lx5M3r27ImMjIyQ9gMGDEBDQwMAoKGhISQ4CbweeC2S1tZWtLa2Bv/d3NystttEZAJMxCQyzooVwLXXyrf79FNg1Cj9+6OW6gDl3HPPxebNm9HU1ISlS5di2rRpWLNmjR59C5o/fz7Ky8t1PQcR6cvtdqOsrCxk7xeHw4HKykouZf0OAzjSwv/3/wFnnSXfzuUCSkv170+sVE/k9OzZE2effTYuvvhizJ8/H6NHj0ZlZSVycnJw8uRJHDlyJKR9Y2MjcnJyAAA5OTldVvUE/h1oE87cuXPR1NQUfOzdu1dtt4kogdxuN0pKSrpsTFdXV4eSkhK43e4E9cw83G43cnNzUVhYiMmTJ6OwsBC5ubm8NqTYt98CZ58tH5z85jdAe7u5gxNAg0Jt7e3taG1txcUXX4wePXpg9erVwde++uor7NmzB3l5eQCAvLw8bNmyBQcOHAi2ee+995CWloYRI0ZEPEdqampwaXPgQUTW4PP5UFZWhnD5+IHnZs2aBZ/PZ3TXTIMBHMVDCOBXvwL69AF27ozcbuRIf/n6P/3Jv5LH7FSt4pk7dy4mTpyIIUOGoKWlBS6XC0888QTeeecd/OQnP8GMGTOwYsUKvPLKK0hLS8NvfvMbAMBHH30EwP9BdeGFF2LQoEF48skn0dDQgKlTp+JXv/oVHnvsMcWd5ioeSiROw6vj9XpRWFgo287j8aCgoED/DpmMz+dDbm5ul+AkQJIkOBwO1NbW8u+Muli4EPjlL+Xb7d4NDBmif3/kqBm/VeWgHDhwADfeeCPq6+uRnp6OUaNGBYMTAHj66afRrVs3TJo0Ca2trRg/fjyee+654M+npKRg+fLlmDFjBvLy8tCnTx9MmzYNDz/8cAxvk8h4zKNQr76+XtN2dlNdXR0xOAH8s0x79+5FdXV1UgZwFN7Gjf79cuSsWgWMHat/f/SgKkD561//GvX10047Dc8++yyeffbZiG2GDh2KFStWqDktkSkEpuE7TzoGpuG5b0l4AwcO1LSd3TCAIzX+/W9g4EB/XZNonngCuOceY/qkF5OsdiYyN+ZRxC4/Px8Oh6PLbrkBkiTB6XQiPz/f4J6ZAwM4UiJQaC07O3pwcu21/tetHpwADFCIFFEzDU+hUlJSUFlZCQBdgpTAvysqKpI2vyI/P7/LTsIdJXsAR8Cjj/oLrb33XuQ2ffoAhw4By5cntjy9lhigECnAafj4FBcXY+nSpV0GYofDkfS3xpYtW4YTJ06EfY0BXHJ75x3/apv774/ebtMm4OhRIDPTmH4ZRXWhNqJkxGn4+BUXF6OoqIgroDqIlNcUkJmZiRdffDGpA7hkVFsLDBsm3+7//T/gv/9b//4kStybBSYClxmT0QJLQevq6sIOJlwKSmrJLS8G/DNMu3bt4t9Ukvj2W+DCC4Ht26O3mzEDePZZa9Qy6cyQzQKJkgnzKEhrcnlNALBv3z7mNSUBIYDp0/15JNGCkx/8wB/EPPecNYMTtRigECnEPArSEvOaCAD+/nf/7sF//nP0drW1wLZtQK9exvTLDJiDQqSC2jwKVp2lSJjXlNw2bQJ++EP5du++C3xXCzXpMAeFSCesOkvRMK8pOR06BAweDLS2Rm/36KPA739vTJ+MxBwUogSz0+ZvPp8PXq8XixYtgtfrZTE6jTCvKbn4fMCECUC/ftGDk/Hj/YXW7BicqMUAhUhjdqo663a7kZubi8LCQkyePBmFhYXIzc21VIBlZsxrSg7z5wPdu/vrmkSSmuovY//22/YptBYv3uIh0phddu+NVKMj8O2eA6h2zJCrZIY+2M2qVcryRzZuVJaPYge67WZMRPLssDpDbhZIkiTMmjULRUVFHMQ0kJKSktBglflS2tq9G8jNlW+3cCFw001698a6eIuHSGNGrs7QKz+Eew8lDzvlSyXa8ePAiBHywcmttwLt7QxO5DBAIdKYUbv36pkfYodZIJJnp3ypRBICuP12oHdv4IsvIrcbPhw4dgx48cXkKLQWLwYoRBozYnWG3t96WaMjMjutauJMWfxcLn+hteefj95u507g66/9QQwpwwCFSAd6rs4w4luvUbNAVmO3VU1azJTZKWBT49NP/bMgU6ZEb7dypX+GRcnmfxSKAQqRToqLi7Fr1y54PB64XC54PB7U1tbGnXSo97fewGqOwAoe1ujws2OuRrwzZXYL2JQ4fBjo29e/qV80jzziD0wmTDCkW/YkLKipqUkAEE1NTYnuCpHhXC6XACD7cLlcqo9dVVUlHA5HyHFSUlJC/u10OkVVVZUO78y82traulyXjg9JkoTT6RRtbW2J7qoqgfclSZLq91VVVRX25yRJEpIk2e5vpK1NiGuvFcIfdkR+/OQnQpw6lejempea8ZszKEQWo1d+SKQZgsCU/axZszSbBbIau+ZqxJovlWzJtQsW+Aut/fOfkdukpAAHDvj3zunOAh6aYIBCZDF65IdEG3ACx6yqqkra4l12XtUUS76UXQO2zt5/359ncs890dutX+8vT5+dbUy/kgXjPCKLCXzrLSkpgSRJIUFFrPkhagYcM1e/1YvdVzWp3aVbq4DNrNVr9+wBhg6Vb/fXvwK//KX+/UlWnEEhsiCtVwnZeYZAC8mwqilQzba0tBQFBQVRAwUtAjYzJtieOAGMGiUfnNxyi7/QGoMTfTFAIbIoLVcJ2X2GIF7RcjUA/wzTH//4R1N8+zdCvAGb2VZECQH89rdAr17Ali2R2511FnD0KPCXv7DQmhG4WSARwefzITc3F3V1dWHzUCRJgsPhQG1tbdIMwuGE27MmINn2rgkEGQDC3maMNJMX+FuLdEvR6L+1118HSkvl2+3Y4Q9QKD5qxm/OoBCRIdVv7aC4uBhPP/102NesXA8lFrHeZjRLgu2WLf5ZELngZPly/wwLgxPjMUAhIgDfDziDBg0KeX7w4MEhA06yVg4F/O999uzZYV+z4/JaObHcZkx0vtORI0BGhj/XJJp58/yBybXX6tINUoCreIgoRKS8AiD8LY5kurXB1U5dBZJrlUpUvlN7O1BcDCxbFr1dYSFrmZgFZ1CICIB84uI999xjqsTGREj0t38ziHcGLRErop5+2l9ITS44aWz01z5hcGIODFCISLYyqBACTz31VNJUDo0k2Vc7abE02Mh8J6/Xn2dy553R261b57+d079/3KckDTFAISLZWxcAogYfdqkcKicZ6qFEouXSYD13+waAffv8gUlhYfR2L77oD0wuuyyu05FOGKAQkWa3JOx8awNI3tVOeuy9o8du362twA9/CDid0dtNm+bPSbn11phPRQbgnTYiE0lU6W+tbknY9dZGR4Fv/+GShSsqKmyZLKxXcrDaBNto7rzTn2sSzdChwOefA337qj++Wcvy2xkDFCKTCLdCJjMzE2VlZbjvvvt0/TAM3LqQu80TSaC4lh1vbYSjdu8aqzNzcvCSJcD118u3+/prYPjw2M6R7KvXEkZYUFNTkwAgmpqaEt0VIiGEEG1tbcLj8QiXyyU8Ho9oa2tT9fNVVVVCkiQBIOwjKytLVFVV6dT77/sQ6fzRHpIkCUmSdO8fyYv37zASj8ej6G/B4/Focj4lPv9cCH8GSfTHW2/Fd55I/9/k331s1IzfDFCI4lRVVSUcDkfIh5fD4VD8wdXW1tbl5yM99P4wLC8vVx2gOJ1OfkibQLx/h9EE/kYjBdGSJAmn06lZQBTNN98IccYZ8oHJ/ffHfy65/28a+b7tggEKkUG0+Hal9NtpIBjQ88NQyQeyw+EQq1at0vxbOsXOiG/5gXN0Po9RMwk+nxCTJskHJvn5Qpw8qc05zThzZHVqxm+u4iGKkVYrG9Tct9d7KW9glYokSRFXqVRWVmLs2LEoLS1FQUGBbfMurEKPFTbh6L00OJo//clfaK2qKnq7hgbggw+AHj20Oa+Zc2+SAQMUohhptemZ2pUven8YJnIgIvWM3HxPj6XB0VRX++uZlJVFb/fRR/75kwEDtD1/shfmSzSu4iGKkVbfrtSuoDHiwzDZVqlYmdHf8rVcGhxJXR3gcMi3e/55YPp0/foR+P9mXV1d2BmqZFu9ZjTOoBDFSKtvVx1vq0RjdJXSwEDEWznmZqdv+SdPApdeKh+cTJniL7SmZ3ACJG9hPrNggEIUIy3Lngduq2RlZUU8FsAPQ+rKLuX3Z80CUlOBDRsitxk8GGhuBl591X/rxwi85Zk4DFCIYqT1t6vi4mI0NjaivLwcmZmZIa/xw5Aisfq3/D/8wR9sfPcWIvryS/8eO6efbky/OjI694a+o2Z50GOPPSYuueQS0bdvX5GdnS2KiorEl19+GdLmqquu6rIE69e//nVIm927d4trrrlG9OrVS2RnZ4s5c+aIU6dOKe4HlxmTmYSrPxFvbRC9Cm6Rfenxd6inNWuUFVp7881E95S0pGb8loQIk/kTwYQJE/CLX/wCl156Kdra2vD73/8en3/+ObZt24Y+ffoAAAoKCnDOOefg4YcfDv5c7969kZaWBsC/JO7CCy9ETk4OFixYgPr6etx444249dZb8dhjjynqR3NzM9LT09HU1BQ8LlEicZ8OMgMr/B0ePAj07y/fbu5cQOGQQBaiZvxWFaB0dvDgQfTv3x9r1qzBlVdeCcAfoFx44YWoqKgI+zMrV67Eddddh/3792PAd2vCXnjhBdx77704ePAgevbsKXteBihERNbS3u6vT9LeHr3doEFAbS2gYCggC1IzfseVg9LU1AQAXe6Xv/baa+jXrx8uuOACzJ07F99++23wtZqaGowcOTIYnADA+PHj0dzcjK1bt4Y9T2trK5qbm0MeRERkDTfd5C+0JhecfP21f4kxgxMC4qiD0t7ejlmzZuFHP/oRLrjgguDzkydPxtChQzFo0CB89tlnuPfee/HVV1/B7XYDABoaGkKCEwDBfzc0NIQ91/z581FeXh5rV4mIKAFefx0oLVXW7oYb9O8PWUvMAcrMmTPx+eefY+3atSHP33bbbcH/HjlyJAYOHIixY8di586dOOuss2I619y5c3HnnXcG/93c3Ayn0xlbx4mISFdffw2ce658u5tuAhYu1L07ZFExBSh33HEHli9fjg8++AAOmYo6Y8aMAQDs2LEDZ511FnJycvDJJ5+EtGlsbAQA5OTkhD1GamoqUlNTY+kqEZGurJCYapQTJ4BeveTb9ejhb9uNhS4oClV/HkII3HHHHXjjjTfw/vvv48wzz5T9mc2bNwP4vophXl4etmzZggMHDgTbvPfee0hLS8OIESPUdIeIKKHcbjdyc3NRWFiIyZMno7CwEP3798fDDz8c9+Z8VnPZZcqCk4MH/RVjGZyQHFV/IjNnzsSrr74Kl8uF008/HQ0NDWhoaMDx48cBADt37sQjjzyCjRs3YteuXXjrrbdw44034sorr8SoUaMAAFdffTVGjBiBqVOn4tNPP8U777yD+++/HzNnzuQsCRFZhtvtRklJSZc9lA4fPox58+ZhwIABwdw7O3v8cX+htfXro7d75JE1EALo18+YfpENqCmwgk4F2AKPhQsXCiGE2LNnj7jyyitFZmamSE1NFWeffba4++67uxRk2bVrl5g4caLo1auX6Nevn7jrrrtYqI2ILKOtra1LUbRwD0mSTFsoLV5r1yortAb8XkiSJJxOJwsOkn6F2syCdVCIKJG8Xi8KCwsVtXU6naitrbVNXsqhQ0pnQf4F4OKQZzwej+47IZO5GVYHhYgoGdXX1ytuu3fvXlRXV+vYG2O0t/s381MWnPRC5+AEUHfdiBigEBGpFEj6V8rqA/Mtt/gLrZ08KdfyXAASgBNhX1V73Si5MUAhIlIpPz9ftsRCR1YdmBcv9ifAvvxy9HZ//3s7HA4nJGl72NclSYLT6UR+fr4OvSS7YoBCRKRSSkoKKisrZdtZdWDeudMfmMhVd50yxZ8GO3Vqt+D1kCQppE3g3xUVFbbJwyFjMEAhshmfzwev14tFixbB6/UmXT0OoxQXF6OqqgpZWVlhX7fiwNza6g9Mzj5bvq3PB7z66vf/Li4uxtKlSzF48OCQdg6HA0uXLkVxcbHGvSW74yoeIhtxu90oKysLqc3hcDhQWVnJAUInPp8Pjz76KCorK3H48OHg806nExUVFZa57ldcAdTUyLdrbAT694/8OivrUjRqxm8GKEQ2ESgc1vn/0oFv8vwWqy+rDswLFgD33CPfzuMBuEI4dlb9+9AaAxSiJOPz+ZCbm9ulqmmAJElwOBy2qscRDQcDeR9/DOTlybd76CFg3jzdu2NrnNn8HuugECWZ6urqiMEJ4N9Hyy71OOSE2x8nNzc3KcrOK3H4sD/PRC44ueACfwIsg5P4RNoSoa6uDiUlJfy7jIIBCpENKK2zYfV6HHJiGQySJalYCOD004EIOb0hjh0DtmzRv0925/P5UFZW1uW2K4Dgc7NmzbLt31y8GKAQmZDaQVNpnQ2r1uNQIpbBIFlmW6ZP9+8efPRo9HZbt/oDmd69jemX3XFmMz4MUIhMJpZBM1A4rHMNigCr1uNQQ+1gkAxT7263/3bOn/8cvd0rr/gDkxEjDOlW0uDMZnwYoBCZSKyDZsfCYclaKEvNYGD3qffaWn9gMmlS9HbXX+8PTKZNM6ZfyYYzm/FhgEJkEvEOmsleKEvNYGDXqfeTJ/2BybBh8m3b2oD/+z/9+5TMOLMZHwYoRCahxaBZXFyMXbt2wePxwOVywePxoLa21vbBCaBuMLDj1PtVV/l3G5ZTX++fNbHxZJppcGYzPgxQiExCq0EzJSUFBQUFKC0tRUFBQdJ8+KkZDOw09V5R4Z81+eCD6O1Wr/YHJjk5hnSLvpPsM5vxYIBCZBJ2GjQTRelgYIep9/Xr/YHJ7NnR2z3wgD8w+fGPjekXdZXMM5vxYCVZIpMIVIOtq6sLm4eSbNVg46GkkmwgIRlAyPU2+9YAR44AZ5wh3+7cc4Evv9S9O0SqsJIskQXxfrV2lNzmstrUuxD+ImtKgpOjRxmckPVxBoXIZMLt22G1nXGtxAr79vzmN8D//q98uy1b/CXqicyKmwUSWZwVBk0jJev1eOstoKhIvt3LLwM336x/f4jipWb87m5Qn4hIhcAtCkrOnWB37wZyc+XbFRcDVVW6d4coIRigEJFpBRJZO0/0BirrmjFXJB4nTyqrZQL4C60lwSQSJTEmyRKRKdm9HH1nP/mJsuCkro6F1ig5MEAhIlOyazn6zv73f/31TFatit7u3Xf9gcmgQcb0iyjReIuHiEzJKuXoY03g3bgRuOQS+ePPnQs89pgGHSWyGAYoFpSsKxoouVihsm4sCbxNTUBGhvyxhw0Dduzwz64QJSMuM7aYZFzRQMnJ7JV1IyXwRqpEG9gH58AB+WO3tAB9+2raXSJTYCVZmwp8IHa+Lx9Y0eB2uxPUM7Iyn88Hr9eLRYsWwev1mibp1MyVddUm8N55J9Ctm3xw8umn/kCGwQkRAxTLSLYVDWQMt9uN3NxcFBYWYvLkySgsLERubq5pgl2zlqNXmsD75JNbIUnA009HP96LL/oDk1GjNO4okYXxFo9FeL1eFBYWyrbzeDws8EWKqL1FkUhmy7tatGgRJk+eHKWFA8Be2eP89Kf+arFEyYKVZG3IKisaKPGUDOZyM3KSJGHWrFkoKioyRQK22SrrRk7M7Q7glKJjnDoFdOcnMFFEvMVjEVZY0UCJp/SWTbLUGNFLfn4+HA5Hp9yYf0JJcLJ3r/92DoMTougYoFhE+A/E70mSBKfTifz8fIN7RmahJok60TNyZk3MVapjAi8wHYAAcE3Un1m50h+YOBx6947IHhigWISZVzRQ4qlNok7kjJzZE3OVGjasGEK0A3g+ars5c/yByYQJxvSLyC6YJGsx4eqgOJ1OVFRUmCahUQmzJT3GwkzvQW0SdaJqjFgpMTeS5mYgPV2+3ZAhwK5dLLRG1JGq8VtYUFNTkwAgmpqaEt2VhGhraxMej0e4XC7h8XhEW1tborukSlVVlXA4HAL+eXEBQDgcDlFVVZXorilmtvfgcrlC+hLp4XK5Qt6DJElCkqSQNoHntH4vbW1tXa5Z5/M6nU7T/j23twsxeLAQ/vmQ6I8k/WgikqVm/GaAQoYKDIrhBic9BkU9mPE9eDweRQGKx+Pp8l46Bw1Op1OX9xBrH81gzhxlgcm//pXonhKZm5rxm7d4yDCB2wqRVo8kunS5EmZ9D/HcsjHqVpV87RA/l8uF0tJSzc8fi7ffBiZOlG/33HPAjBn694fI6ljqnkzJDktbzfoe4kmiDtQYKS0tRUFBgS7Bic/nQ2Njo6K2ZlgqX1fnzx2RC04mTPDPnTA4IdIeAxQyTKKXtmph2bJlitol4j2YtSx8YNXO7Nmzo7Yzw1L5tjZ/YKJkKfDJk/6lw0SkD5YKIsMYvbRV61sXbrcbFRUVitomahaguLgYRUVFplldFGnVTmdmWCpfVKSs7PyePYDTqX9/zMZMq9YoSahJbnnsscfEJZdcIvr27Suys7NFUVGR+PLLL0PaHD9+XNx+++0iMzNT9OnTRxQXF4uGhoaQNrt37xbXXHON6NWrl8jOzhZz5swRp06dUtwPJslaU2AVR7gEU2i4iqOtrU2Ul5eLzMxMzVbZyK1A0fo92IHSawYdE3OVeOklZQmwy5cnpHumYLZVa2Rduq3iGT9+vFi4cKH4/PPPxebNm8U111wjhgwZIo4ePRpsM336dOF0OsXq1avFhg0bxOWXXy6uuOKK4OttbW3iggsuEOPGjRObNm0SK1asEP369RNz587V5Q2Suei9tLWqqkpkZWVFDB5iPYfSFSgA+KH9HaXX7Omnn1Yd0Gmx1P7TT5UFJrNmqT60rZhx1RpZl2HLjA8cOCAAiDVr1gghhDhy5Ijo0aOHWLJkSbDNF198IQCImpoaIYQQK1asEN26dQuZVXn++edFWlqaaG1tVXReBijWptfS1qqqKt1mOJTWGZmV7KNZB7HUZlEi3m/zLS3KApOcHH/tk2Rm9do1ZD5qxu+4kmSbmpoAAJmZmQCAjRs34tSpUxg3blywzXnnnYchQ4agpqYGAFBTU4ORI0diwIABwTbjx49Hc3Mztm7dGvY8ra2taG5uDnmQdRUXF2PXrl3weDxwuVzweDyora2NK4kzUOpdjohxlY3SnJKioiJVx7UzPXKO1Ow31JkQwLBhwOmny5/nyBGgvp5VYM26ao2SQ8wBSnt7O2bNmoUf/ehHuOCCCwAADQ0N6NmzJzIyMkLaDhgwAA0NDcE2HYOTwOuB18KZP38+0tPTgw9nMmao2YzWS1vlPkg7U7vKhps1qqf1NVO731BHc+cC3boBtbXRz7Fhgz+QUVLKPhnYYeUdWVfMAcrMmTPx+eef4/XXX9eyP2HNnTsXTU1NwcfevXt1PydZi9oPSLWrbLhZo3paXzOl3+afeeaZYJDy7rv+WZDHH49+7Gee8QcmF1+sqCtJI5GbShLFFKDccccdWL58OTweDxwdCgbk5OTg5MmTOHLkSEj7xsZG5OTkBNt0LtgU+HegTWepqalIS0sLeRB1pOYDMtaZDrPWGTEzLa+Z0iB09uzZcDovgyQB48dHbzt2rD8wueMOxd1IKpw5pIRSk9zS3t4uZs6cKQYNGiS+/vrrLq8HkmSXLl0afO7LL78MmyTb2NgYbPPnP/9ZpKWliRMnTijqB5NkqTO5JczokNQXbzKu1TdrTAQtrpmyVUHdFCXAAkIozMlPekZvKkn2ptsqnhkzZoj09HTh9XpFfX198PHtt98G20yfPl0MGTJEvP/++2LDhg0iLy9P5OXlBV8PLDO++uqrxebNm8Xbb78tsrOzucyY4hbpgzTwyMrK4oephckHoUsVBSa7diX6nViPkZtKkr3pFqBE+taycOHCYJtAobYzzjhD9O7dW/zsZz8T9fX1IcfZtWuXmDhxoujVq5fo16+fuOuuu1iojTQR7oM0MzNTlJeX22KmI9lnb8IHoTcrCkyWLUt0760t2f/2SBvczZiSml1LcrvdbpSVlYUkijocDlRWViZV/sv31wEA5BPmf/KTr/Huu+fo3i8ikqdm/GaAQmQBkfa0CSQvJlOSbmsrMGaMwKefyhUpOQSgHzweDwoKCgzoGRHJUTN+czdjIpOLp/6H3cyaBZx2GhQEJxmQpGyuMCGyMAYoRCbHap7A//2fv57Jd2VVorgUgARJ8lebZm0aIutigEJkcslczXPLFn9g8otfRG+XlTUNgARgAwDWpiGyg+6J7gBRR3ZNcI1HMlbzPHIEyM0FvtvuK6J584CHHgJ8vpdRXX0z/26IbIRJsmQaXKUSns/nQ25uLurq6sLmoUiSBIfDgdraWssPyu3twKRJwJtvRm931VXAe+8BPXoY0i0i0giTZMly4tml1u6SZR+gigogJUU+OGlsBLxeBidEdscAhRKOq1TkmXkfIJ/PB6/Xi0WLFsHr9ar+Pa1Z488zmT07ert16/wl1/r3j6OzRGQZvMVDCef1elFYWCjbjvUszJejE89tuX37AKdT/hwvvgjcemu8PSUiM1AzfjNJlhIumVepqJWSkmKaIC1S8bjAbblIMzutrcAVVwD/+lf040+dCvztb/7ZFSJKPrzFQwmXjKtUrC7W23Jz5vgLrUULTpxOoKUF+PvfGZwQJTPOoFDC5efnw+FwyK5S6VwR1Cy3O8zSDyOpKR5XUFCApUuBn/9c/rhffQWcw21ziAicQSETiGWVitvtRm5uLgoLCzF58mQUFhYiNzfX8NU+ZumH0ZTeblu//hgkST44eestfwKslYKTeJODiUiGxjspG0LNds1kHVVVVcLhcAgAwYfT6RRVVVVd2kmSFNIOgJAkSUiS1KW9nv01Qz8SwePxdHnfoY80ARwU/rAj8uO++xL9TmIT7m/V4XDY+ndOpAU14zdX8ZCpyN0uCRQti3R7waiiZWbpR6JELh4nAXgdwPVRfz4/H1i92pq1TLizNFHs1IzfDFDIUsyyJNks/UikwEANBBJj7wDwjOzPNTQAAwbo2ze98oKSPTAlihcryZJtmWVJsln6kUiB4nH9+v0X/Hc5ogcnH33kv7Gjd3CiZ14Qd5YmMg4DFLIUsyxJNks/Emn/fmDSpGIcPBh94H/+eX9gkpenf5/03jKBgSmRcRigkKVcccUV6NevX8TXJUmC0+nssiRZa4Gl0Z1XHRndj0Q4eRK47DKgU9X9LqZM8W/+N326MStejNgygYEpkXEYoJBluN1unHXWWfj3v/8d9vV4N85TM4gmywZ+nd1zD5CaCqxfH7nN4MFAczPw6qv+QmtGLcU24vZLMgemRIbTaymRnrjM2K+trU14PB7hcrmEx+MRbW1tie6SbiIt6e34CCxJjuW6xLpsVOnSaKurqoq+XDjw+PLLzj9n3FJsl8sls/TZ/3C5XHGdJ/CeOr+vZFheThQvNeM3AxSLSqY6DG1tbV3ea+dHdna2aG1tjem6xDuI2jlQ/OILZYHJG290/Vm535skScLpdGp2veRrs/gfHo8n7nMlS2BKpDUGKDaXbAXClA485eXlqq+LFoOoHQOUpiYhBgyQD0x+97vIxzAyYBDi+99lpJk2rQMiO/7eifTGAMXGjP5WagZKp+4zMzNVX5d4B1G7zWS1twtxww3ygUlenhCtrdGPZdQtl454+4XI3NSM30yStZhkrMOgdEXE4cOHI74W6brEs2xU7yWtRnv2WaBbN+D//i96u/37/TVNevaM3i4RK14CtVkGd1pi5HA4WOGVyGIYoFhMMtZhULJyIisrS9GxOl+X/v37K/q5zu2MWNJqlA8/9K+2ueOO6O3WrvXPnyiNJxK14qW4uBi7du2Cx+OBy+WCx+NBbW0tgxMii2GAYjHJWIdByZLe3/72t4qOpdV1scNMVkODPzD5j/+I3u6ZZ/yByY9+pO74iVyKnZKSgoKCApSWlqKgoMB2y72JkgEDFItJ1joMclP39913X0zX5cCBA4rO37mdlWeyTp0CrrhCfibkhhsAn09+ZiUa3nIholh1T3QHSJ3At9KSkhJIkhRyi8HOBcIA/2BXVFQUcRO4WK5LrDNSVp3J+v3vgfnzo7cZMAD4+mtAq3045X5vZqHXBoNEFCM9s3X1ksyreAJiqcOQDMsi1V6XWJemGr2kNV5vvqmsnsm2bYnuaWLYbTUWkVlxmXGSUBNwJNMHsNpALNalqVZY0vrVV8oCk6VLE93TxEm2ukJEicQAhULwA1herJVBzVpRtLlZiMGD5QOTOXMS2s2ES8a6QkSJpGb8loQIs07S5Jqbm5Geno6mpiakaXWj3KZ8Ph9yc3MjrjiRJAkOhwO1tbVJf7891hwEM+UuCAFMnQq89lr0dpde6l82LFfLxO68Xi8KCwtl23k8HhQUFOjfISKbUzN+M0nWpLQa9NQsh032D+DA0lSjfk5rf/4zMH26fLu6OmDQIP37YwVWXo1FZHcMUEzI7XajrKwsJLBwOByorKxUvSyTH8D29/HHQF6efLsPPgBstvo8blZdjUWUDFgHxWS0Lp/OD2D7amz0F1qTC04qKvy3fhicdJWsdYWIrIABionoUT6dH8D2c+oUcOWVQE5O9HaTJvkLrZWVGdMvK0pktVsiio4BionoUT6dH8D28sAD/sTWaH8CWVnAkSPA0qX+zf8oOla7JTIn5qCYiNI8kLq6Oni9XsUJtIEP4HB5LRUVFfwAtoDly4Gf/lS+3eefA+efr39/7MYq1W6JkgmXGZuI0iWP2dnZOHjwYPDfShNozbQcVg92fH/btwPnnCPfbvFi4Oc/178/RETxUDN+M0AxkUDNkrq6urB5KJEEbtUk83S0liufzODoUeCCC4Ddu6O3u/NO4I9/DH3OjoGaFfC6E8lTNX7rVS1OT3auJBupfLrcI5krXtqpUm57uxDTpslXgL34YiFOnOj688m0pYGZ8LoTKaNrqfs1a9aI6667TgwcOFAAEG+88UbI69OmTesyUIwfPz6kzaFDh8TkyZPF6aefLtLT08Uvf/lL0dLSorgPdg5QhAj/YZedna0oUPF4PInuvqGUlCp3OBxi1apVsnvzJHozxZdeUrZvzt694X/eioFaoq+5Fqx43YkSRdcAZcWKFeK+++4Tbrc7YoAyYcIEUV9fH3wcPnw4pM2ECRPE6NGjxccffyyqq6vF2WefLUpLSxX3we4BihBdP7hfffVVRQGKy+VKdNcN5fF4VM00Rfpmm8hvwOvWKQtMvN7Ix7DinjJ2mHWw4nUnSiTDNguMFKAUFRVF/Jlt27YJAGL9+vXB51auXCkkSRJ1dXWKzpsMAUpnSgfiZJtBcblcqgOUzt9sE/UNuLFRWWDy1FPyx7La34ddZh2sdt2JEk3N+K1LlQSv14v+/fvj3HPPxYwZM3Do0KHgazU1NcjIyMAll1wSfG7cuHHo1q0b1q1bp0d3bIEF18KLpQKu6FD07uTJk5oXx5PT1gYUFAADBkRv97Of+QutzZ4tf0wrbWmgR0HCRLHSdSeyGs0DlAkTJuDvf/87Vq9ejSeeeAJr1qzBxIkTgx82DQ0N6N+/f8jPdO/eHZmZmWhoaAh7zNbWVjQ3N4c8kg0LroUnF7hFIr4revfcc89pXhwvmoceAnr0ANasidwmIwP45hvA7VZeaM1KWxroUZAwUax03YmsRvMA5Re/+AX+8z//EyNHjsR//dd/Yfny5Vi/fj28Xm/Mx5w/fz7S09ODD6fTqV2HLYQVL7uKFrgpsXPnTkXt4v0GvGKFf9+c8vLo7T77zB+cZGSoO76VZtjsNOtgpetOZDW6F8IeNmwY+vXrhx07dgAAcnJycODAgZA2bW1tOHz4MHIibC4yd+5cNDU1BR979+7Vu9umVVxcjF27dsHj8cDlcsHj8aC2tjYpg5OASIGbEmeddZaidrF+A9650x+YXHtt9HaLFvkzTkaOjOk0lpphs9Osg5WuO5HlxJPsgjBJsp3t3btXSJIkli1bJoT4Pkl2w4YNwTbvvPMOk2Qpbh1XPq1atSrq6goAwul0itbWVuFwOCLWnYl1FcbRo0KceaZ8AmxZmbbXINLKmPLyctMs5Q2sfNH6midSuOvudDotk+xLZBRdV/G0tLSITZs2iU2bNgkA4qmnnhKbNm0Su3fvFi0tLWLOnDmipqZG1NbWilWrVokf/vCHYvjw4eJEh6pSEyZMEBdddJFYt26dWLt2rRg+fDiXGZPm7r777qgByt133y2EiFwcL5YVJe3tQtx8s3xgMnq0EMeP6/O+OwZq5eXlYvDgwSHva/DgwQkPWLS85mZhh5ouRHrTNUCJtKxu2rRp4ttvvxVXX321yM7OFj169BBDhw4Vt956q2hoaAg5xqFDh0Rpaano27evSEtLEzfffDMLtZGm5OpTBL7hBgYRLb4Bv/yysmXDe/bo9a5DRVrK2/mRqNojesw6MEggMjc14zf34iFTindfE6UbL3o8HhQUFMR1zg0bgEsvle/T6tXAj38s304LgX2doq2WCUjkXk5a7l9jt/2YiOyIe/GQpWlRYVRpAbd4Ku8eOCBESor8jMmCBTGfImZqK+xaMe+jI7sUfiOyu4QXaiP78/l88Hq9WLRoEbxer2ZFtdxuN0pKSrp886+rq0NJSQncbrei4+i5UqStDRg3Dujf319ILZKf/tTfds4c1aeQJXf91S7RFRaqPdKZnQq/EVEHekdLeuAMSmLptYeKlvua6LVS5JFH5GdMTj9diE7bT2lKyfWPZY8ixDmjlCgsN09kHZxBId1oNcMRjpYVRrWuT/HOO/56Jg88EL3d5s1AczNwxhmKDqua0usfa4VdK9Qe6czowm96zR4SUSgGKKSY3lPpWg80WlTera31ByYTJkRv9+qr/vmT0aMVdS0maq6/2gq7Vq54amThN7fbjdzcXBQWFmLy5MkoLCxEbm5uXIE5EUWg72SOPniLRxtql2TqPZWu1/FjWXp67JgQw4fL386ZOdNf+8QIsVyfcLeDOj+snkhqVOE3JuISxU/XOihmwAAlfrHkkei9MsYMFUbb24W47Tb5wOT884X49lvduhFWrNe/c+E2O1Y81bvwm5b5UUTJjAEKRRXrN0EjkhETWWH0b39TVmht1y7duhCVVtffrsXM9Cw3z0RcIm0wQKGI4vkmaORUupHf8v/1L2WBybvv6nJ6xcwww2R2egVfRtTVIUoGasbv7qCkomalTKDCakAg8bKkpASSJIUka2q5c2txcTGKioo0qzDaWaB66ddfH8Idd/wMp05FzxWfPx/43e80OXVcjLr+VpaSktLl71YLRu/ArGWFXSLL0jta0gNnUGKnxTdBK+/cWlVVJQYPHiKAlbIzJhMnCmHGyQgrX3+rMnL2Sq86Q0RmwL14KKJY9qgJx4rf8NxuNyZN2gDgsajtevUC9u4FsrKM6VcsrHj9jaDndQnUoAEQdvZKi72MAufo/LGcyP2SiLTEvXgoomTNY1i5sk1Rnsn69fZ638nEiJkHPWevuFKIkgEryVJEWldYNbtdu/yF1iZOlHs/UwFIOHrUenvRdJSsVU71rHDcUXFxMXbt2gWPxwOXywWPx4Pa2lpNZjW0rKRMZAcMUJKQFhVWze74cWDECODMM+VaPgdAAvAqAO3KoSdCslY5NXqzwEAibmlpKQoKCjQL5o0u2U9kdgxQkpSe3wQTSQjg9tuB3r2BL76I1vJLAL0AzAx51op70QDGzSCYkV1mHoxeKURkdlxmnMT0WpKZKK++CkydqqTlmQB2hTwjSRIcDocl96KRm0GQJAmzZs1CUVGRbW7ddWSXmYfABo91dXVhf5dW/hsligVnUMjyNm/255nIBScPPLAWktQNkrQ75Hmr597YZQYhVnaZeUi2/DAiOQxQyLIOH/bfyrnooujtHn3Uf+vn4Yf/w5a5N4meQUh0Ym5g5iHSrs1W2qk5GfLDiJTiLR6yHJ8PKCoC/vnP6O2uvhpYsQLo+IVT7yq1iZDIGQS3242ysrKQGRyHw4HKykrDBlO7Vdi1498oUSxYqI0sZcEC4J57orfp0QPYvx/o18+YPiWaz+dDbm6ubO5CbW2tpoOc2YqKhQuWnE4nKioqOPNAZBJqxm8GKGQJq1cD48bJt9uwAbj4Yv37YzZGVDntKBAURcp90SsoUtIvzjwQmZea8Zs5KGRqe/b4E2DlgpOFC/15JskYnADG5y6YNTFXrxolRGQ85qCQKZ04AVx6KfD559HbFRbuwAMP7MOVV+YDSO7ByMjchUQn5hKR/TFAIVMRAigrA555Jnq77t1r0dZ2Pjye4/B4jE/MNCujatvYZWkvEZkXc1DINBYtAiZPVtLybAA7Q54x+26vdsuNSFRiLhFZG3NQyFI++8yfZyIXnPzjHz44HE50Dk4AffZc0Yod98hhUTEi0hsDFEqYI0eA9HRg9Ojo7crL/bd++vY1Z2JmNHbeI4dFxYhIT8xBIcO1twPFxcCyZdHbjR0LvP020P27v1KrJWaq2SMHgCVvAbGoGBHphQEKGeqpp4C77oreRpKAhgagf//Q562WmKl0Ke6jjz6Kl156KaHVWONht00nicgceIuHDOH1+gMPueDkk0/8MyydgxPAenuuKJ3JmTdvni1vARERxYMBCulq3z5/YFJYGL3dX/7izzO59NLIbayWmBnPTI6Zk34pvERvmkhkNwxQSBetrcAPfwg4ndHb3Xyzf8bklluUHddKiZlyMz5yzJj0S+HZcaUWUaIxQCHN3XkncNppwKZNkduceSZw9Cjw8sv+GRY1iouLsWvXLng8HrhcLng8HtTW1poqOAGUzfgoYZakXwrPziu1iBKJhdpIM4sXAzfcIN9u+3bg7LP1749ZhNtlNysrC4cOHVL08x6PJ5iEareCb1Zn1k0TicyKhdrIUFu3+mdB5IKTf/zDn2eSTMEJ0HXGZ9WqVejVq5fsz3VO+uVtBPMx66aJRHbAAIViduQIkJkJXHBB9HYPPugPTK67zpBumVLHXXZTUlKiDmoBQohg0i9vI5iT1WrzEFkJAxRSLVBo7YwzgG++idzuqquAkyf9lWDpe0oHq1mzZqG4uFi24FugLVeNGM9qtXmIrISF2jrg/X15FRXA7Nny7RoagAEDdO+OrvT6e1A6WHWsMKv0NgILphkrsFJLbtNEs9TmIbISzqB8h/f3o/vgA3+eiVxw8vHH/ts5geDEqrUh9Px7UFtwjrcRzMtqtXmILEVYUFNTkwAgmpqaNDleVVWVkCRJAAh5SJIkJEkSVVVVmpzHivbtE8IfckR/vPhi15+tqqoSDocj5Jo6HI6w17OtrU14PB7hcrmEx+MRbW1tBry78Iz4ewico/N5wp3D4/F06Uu4h8fjibtfFJtwf+tOpzOpPzuIwlEzfid9gNLW1tblg6XzgOF0OoMDppkGUj2dOCHExRfLByZTpwrR3t7159UM8moCGb2p/XuIh9JBLdCncNdT6z5R7JLls4EoHgxQVFDz7dRMA6me7rpLPjBxOoVoaQn/82oGebPNXhk9W6F0UFMz40JEZFZqxm/VOSgffPABfvrTn2LQoEGQJAlvvvlmyOtCCDz44IMYOHAgevXqhXHjxmH79u0hbQ4fPowpU6YgLS0NGRkZuOWWW3D06FG1XdGE0vv2y5Yts/0yz6VL/Xkmf/xj9HZffQXs2QP07Rv+daVJnV6v13SrU4zO9+i4/LigoCBiroKVSvybiVVzoIgohiTZY8eOYfTo0Xj22WfDvv7kk0/iT3/6E1544QWsW7cOffr0wfjx43HixIlgmylTpmDr1q147733sHz5cnzwwQe47bbbYn8XcVC6ouLVV1811UCqpS++8AcmP/959HbLlvnnT845J3o7pYO31+s1XZErMy8btUqJf7Ng4juRxcUzVQNAvPHGG8F/t7e3i5ycHLFgwYLgc0eOHBGpqali0aJFQgghtm3bJgCI9evXB9usXLlSSJIk6urqFJ1XjxyUaPf3s7OzbZmk2NQkRHa2/O2c++5Td1ylt0nuv/9+Re1cLpc+FyAMub8HfHdbr+OtGOYemI/Zbh0SkZ+ut3iiqa2tRUNDA8aNGxd8Lj09HWPGjEFNTQ0AoKamBhkZGbjkkkuCbcaNG4du3bph3bp1YY/b2tqK5ubmkIdWlCwTnDJliqJjGbXMMzBt/dprr6GiogKvvfaaqunr9nbg+uuB9HTg4MHI7X70I3+htT/8QV3/lC6jVVqzw8jZimh/DwHHjx/HsmXLAFj7W7pdb3+wsB2RTcQTCaHTDMqHH34oAIj9+/eHtPv5z38urr/+eiGEEI8++qg455xzuhwrOztbPPfcc2HPM2/evLDfZLVaZixE9BUVZlrmGa6f6PDNXu6b4TPPKFs2XF8ffz/lkjrNvDqlqqpKZGVlReyXJEni7rvvtuy3dDsnfJvp/69EFMqwVTxGBSgnTpwQTU1NwcfevXs1D1CEiDxVb5aBNNK0dee+hBtk1q5VFph89JG2/ZVbRmvW1SlKViKlpKREfd2sS3/tfvvD5XIpClCMvHVIRH4Ju8WTk5MDAGhsbAx5vrGxMfhaTk4ODhw4EPJ6W1sbDh8+HGzTWWpqKtLS0kIeeoi0osIM1SKjTVt31nH6ur7enwD7H/8R/Weef94fouTladFbv2hJnYHbC62trXjooYdMtzpFyUqkaLcIhEl3sU2G2x9mTnQmIhXiiYSA8Emy//M//xMSLYVLkt2wYUOwzTvvvJOwJFk1ElktUum0deDx7rteMWaM/IzJ5MnhC63pKdx1HDx4sCgvL9cl0TSWJFal38LlHoFv6WZJpE2G2x9mmfEkoq50vcXT0tIiNm3aJDZt2iQAiKeeekps2rRJ7N69WwghxOOPPy4yMjLEsmXLxGeffSaKiorEmWeeKY4fPx48xoQJE8RFF10k1q1bJ9auXSuGDx8uSktLdXmDWkvUQKNuwJwvG5gMHChEc7MhXQ9h9O2FWHMt1AaE0QZ6M+V7JMvtDyNuHZol6CSyEl0DlEgf3NOmTRNC+GdRHnjgATFgwACRmpoqxo4dK7766quQYxw6dEiUlpaKvn37irS0NHHzzTeLlkhlScNIZICSKMoGzP+SDUwAIb74IjHvwcgy8kLEFwwp+RauJAdlyZIlpsr3SIYZlAA9ZzzNFHQSWQlL3dtQ9MH9HEWBSYe7cbr0T+7bpJGDoxbBkNy38MAqnkivL1682NCATM11SZbbH3rMctg9yZhITwxQbKrrB2NfAdTJBia/+53+/VLybdLI2wtaBUNy38Ktsjy983sy48opKzB6FpDIbhig2FhVVZUYPNghgNdkA5MxY4Robf3+ZxP9bVLrATva+9EyGJK7bpFeN3O+RyITvq3MrEEnkVWoGb+7gyylsbEYdXXyS2/r6oBBg77/t9vtRllZWcjSWYfDgcrKypiX8sotWZUkCbNmzUJRURFSUlKCFWbr6urC/owkSXA4HMjPzw97rurqatTX12PgwIE4ePAg7rzzzojvR8ulpoHl52pfV9qHzptpGqG4uBhFRUUh1zQ/P1/XpfJ2YPRmkkRJTe9oSQ/JOIPy0UfKCq2tXdv1ZxcvXhxxOjqeKf1Yvk3GcnshWvXcSMcwQ66Fkn19Ag/OXFgDZ1CI4sNbPDZSX68sMHnmmfA/v2TJEt0qnsZ6C0PN7QUl1XMjvR8z5Foorf7LvAVrMEPgS2RlDFBs4ORJIX70I/nA5IYbhPD5wh+jqqpK8cAeyze+eL5NKsmHkUtIlDtnW1ubKC8vF5mZmYqCIb2Ul5fzW7eNmCHwJbIq5qBY3H33AY89Fr1Ndjawfbt/R+JwAvkhSsVyzzyenBK5vA5Avtx8NMuWLcPUqVNDfj4zMxNlZWW47777DM21GD58uKJ2zFuwhuLiYixdujRsTldFRUXCtmcgshsGKCby1ltAUZF8u61bgREjordRO7jHsi9JYI+ikpISSJIUEqRosUdRPAN2RUVFl+e++eYbPPTQQ7jgggsMHUS4N4z9MMmYSH+abhZIsfn6a/+GfnLBydKl/hs7csEJoG5wdzqdYWc5lAh8m9Rjs79YBmxJkiIOEoEAyujN8AIzTZ03mgyQJCmu3wElRqTNRYlIGwxQEujoUcDhAM49N3q7OXP8gcmkScqPrWZwj3cn5mi7FsdDbmDvLDCLY7Zdhs2wGzYRkdUwQEkAIYD//m/g9NP99UoiufRS4MQJYMEC9edQMrinpKRg8eLFmtzu0OPbZLSBPRyHw4FZs2YpOrbR+R56zjQREdmRJMJlN5pcc3Mz0tPT0dTUhLS0tER3R5UXXwR+/Wv5dvv2AZ3GMtXcbjdKSkoAIGwS65IlS4Kvm1mkInNPP/00+vXrF5IDUF1djcLCQtljejwe2SRdPXQuOMe8BSJKJmrGbybJGmTdOuDyy+XbffABoFUqQqTVBk6n03KrDToHWEIIdOvWrUuQEc/KIiMoWb1EREScQdFdYyOQkyPfrqICULEqWBUrf2sPzAJ1/jMN3PIJd3sk0sxRtJ8hIiL9qRm/GaDo5NQpYOxYQC4Xc9IkYPFioBuzgbrw+XzIzc2NuFw6MBtSW1vbJeAKd1vIijNHRER2wgAlwebNAx5+OHqbrCxg587IhdbsIp7ZG6/XG1c+iZVnjoiI7Ig5KAnyz38C110n3+7zz4Hzz9e/P0aIFgTEu4NyrDvHdu7T9ddfz8CEiMhiGKBoYMcOQEk188WLgZ//XP/+GCVaAAIgbO5IXV0dSkpKFOWBxFKBNd6giIiIzIG3eOJw7Jh/JmT37ujtZs8GnnrKmD51pOctjmjJq0IIZGVl4dChQ2F/NlruSOf+5+bmyq7ICRwnloRaIiIyjprxm6mZMRACuPlmoG/f6MHJRRf5C60lIjhxu93Izc1FYWEhJk+ejMLCQuTm5sLtdsd97MBGhOGChsBzkYKTQBsl1VzVVGCV65MQArfddhtWr15taJl7IiKKDQMUlf76V/+Km1deid5u717gX/8CUlMN6VaIwExC59Uvgdsr8QYp8ewy3JGSHBOlFViV9OnQoUMYN26cZoEa6cfn88Hr9WLRokXwer0MKomSEAMUhdav92/o96tfRW/n8fhnWBwOY/rVmZLZjXg3y9OqTLzSHBMle/2o6ZNWgRrpQ8/ZPyKyDibJyjh4EBgwwB90RPPHPwJ33mlMn6KRm0noeHsl1oqmsewy3FEs1VzlKrCq6ZMQApIkYdasWSgqKjJ0hQ+XPkcXKY9ITXK1Vvi7IkowYUFNTU0CgGhqatLtHKdOCfHjHwvhD00iP4qKhPD5dOuGai6XSwCQfbhcrpjP0dbWJhwOh5AkKeyxJUkSWVlZQpKkLm0Cz1VVVWn4ruX7FOnh8Xg07Uc0VVVVwuFwhJzf4XBofi2sKvA7jPS7kiRJOJ1O0dbWpntf+Lsi0oea8Zu3eMJ45BGgRw/g/fcjt0lPBw4fBt5801xVYGNZmquWkuTVF1980dDde9XufBxg1K7GeucF2YGa2T898XdFZBL6x0va02sGZe1a+RkTQIjPPtP0tJpSMruh1bfQcN8ynU5nyLfMtrY24fF4hMvlEh6PR7S2tob8W+tvw+H6FO1hxAyKmWYGzMyI2T85/F0R6UvN+M0A5Tv79wvRq1f0wGTRIs1Op6uqqqqwt1cCjyVLlmh2rs4BSOCDO9zzRk2bt7W1iVWrVonMzExTDDQej8c0wZKZmeE6maEPRHbGACUGr78eOTD5zW+EaG/X7FSKRBr4lYo2k5CZmSnKy8t1G5zDnTsrKytioKBHTkqgH0bmwURihpkBKzBy9i8S/q6I9MUAJQbbtgmRkhIamIwcKcTx45qdQjGtZhoWL14c9UM2KytL80E6EBQovcWi98Cj5DaU3vitXLlEB5X8XRHpiwFKjN59V4gbbxRi6lQhdu/W9NCKRRrg1X5Ay91L7/jQ6kNfzTmN/NCPdzZKi/MnembAShIZVPJ3RaQvNeM39+IxkcDeM5FWMijdwwYAvF4vCgsLFZ3X6XQqOqYcNecMx+VyobS0NK4+mFVgZQiAkBof3CcovETWIOHvikg/3IvHorRcZqlm+axWSzfjXbIbbwG4RJIrza60ZL9W57O6QGG+0tJSFBQUGFogTevfFRHFhpVkTUTpAF9XVwev1xv126XawV6LeiCxBhixVJY1E7fbjbKyspDg0uFwoLKyMmQwKy4uRlFRUVwzAz6fD48++igqKytx+PDhqOej2GnxuyKiOOl7t0kfRlSSTQSlCXr9+vWTTaBVmw+iRf5HLNVcjV5Ro7WqqipD8nsC50rEaigiIq0wB8WiAjkodXV1YTf7iyTSvfFI+5p0/lmleS1KRLt/L4RAVlYWDh06FHze6XSioqLCkt/8fT4fBgwYEPJ+OsvKykJjY2Pc19btdmPSpElR22j9uyQi0hpzUCxKSQn5cAKBQOddigP30rOyssL+XOCYFRUVmg1o0e7fV1VVobGxMequxFbi9XqjBicAcOjQIXi93rjOE9ihWo4wqBQ8EZERGKCYTKQBPlKQERBpcCouLkZjYyPKy8uRmZkZ8ppeSX/FxcXYtWtX2EAkkcmPWlMaeMQboMglT3dm1P5CRER6YpKsCXVO0Nu+fXtwZkVOuMEpJSUFDz74IO677z7Dkv4CgUi8uOW9+oDDyquhiIgCGKCYVGCAd7vdeOihhxTnpEQbnLQKGowSbnVMZmYmysrKcN999+keqMgFRwUFBfjDH/4ge5x4r7magMPpdFp2NRQRUUdMkjUxucJtHdklQTIQFCxbtgwVFRUR22VlZeHFF1/ULX9FydJho5JklSZPS5KU0DodnO0iIjmqxm99FhLpy0zLjPUso6502TG+W2Zq9SWm0TY4jPTQc5PBcNe483U2apmx3A7VeuyrpLZ/RuxUTUTWxr14DKL3h7LSnVUzMzMtPxDEsskgAM33RZGrHxNuL5aqqioxePBg3QfncH9veu9MrbRfWuwfRUT2l9AAZd68eV0+qM4999zg68ePHxe33367yMzMFH369BHFxcWioaFB1TnMEKAY8aGsdAZl1apVGryjxDHTJoOx7mZr1IaEid74MFx/1AZ0RJS81IzfuiwzPv/881FfXx98rF27Nvja7Nmz8Y9//ANLlizBmjVrsH//fsvVwQjUpRBh8gFEhJokscjPz4fD4YhYA0WSJDidTkslvoajdhltZ1ouq1V6rM7t7LR8Wg0t948iIupIl1U83bt3R05OTpfnm5qa8Ne//hUulws//vGPAQALFy7ED37wA3z88ce4/PLL9eiO5tR8KMcTPAQKt5WUlAQrsQboUWQtFlokRpppk0Glx0rEUl6le/4YKdaAjohIji4zKNu3b8egQYMwbNgwTJkyBXv27AEAbNy4EadOncK4ceOCbc877zwMGTIENTU1EY/X2tqK5ubmkEciGfmhbOadVd1uN3Jzc1FYWIjJkyejsLAQubm5cLvdqo4TzyaDWi+rVTprZfRS3sAWAp0D47q6OpSUlKi+5loxc0BHRBan9f2lFStWiMWLF4tPP/1UvP322yIvL08MGTJENDc3i9dee0307Nmzy89ceuml4p577ol4zHB5LUhgDkqseQrxMFvugZY5OGbbZDDSiplEJX2aOc9D7nfHHBQi6shUq3i++eYbkZaWJv7yl7/EHKCcOHFCNDU1BR979+5NaIBi1g9lIxM1tR4w5ZbR9u3bN+TfTqdT10Ah3IoZvc8ZSSICYjXMFtARkXklPEm2o4yMDJxzzjnYsWMHcnJycPLkSRw5ciSkTWNjY9iclYDU1FSkpaWFPBJJyaZ+RueGaHW7RQk9EiMj3cpyOp2oqqrCkSNHDN1kMNp+QkYze56HmW9DEpGF6R0ttbS0iDPOOENUVlaKI0eOiB49eoilS5cGX//yyy8FAFFTU6P4mGZYZiyEeb5lG12HQml9FpfLpfrYZruVZQZmn0EJ4O+OiOSoGb81L3U/Z84c/PSnP8XQoUOxf/9+zJs3D5s3b8a2bduQnZ2NGTNmYMWKFXjllVeQlpaG3/zmNwCAjz76SPE5zFTqPtHlveXK4Sspga/2PXi9XhQWFsr2zePxBFcxJfo6WZlcqXu7bHNARPaX0FL3N9xwgxg4cKDo2bOnGDx4sLjhhhvEjh07gq8HCrWdccYZonfv3uJnP/uZqK+vV3UOs8ygmEG8365jqYarNgeHZdDjxzwPIrIDUyXJ6oEByvfiud0Sz60hpQMmy6Brxyy3FImIYpXQWzxGMNMtnkSL5XYLoM2toXCFw5xOJyoqKlBcXKzJOSgUb5URkZWpGb8ZoFhcrPkJsQY24c4facDU6hxERGQPasZvXUrdk3FiLYev1dLVwB40sfys2nZERJQ8dK+DQvqLpQ6FESXKWQadiIhixVs8NqImP8GIpatcHktERB2pGb85g2IjgdstpaWlKCgoiDroG1EN14wVd4mIyBoYoCQxI0qUsww6ERHFgrd4yJClq1weS0REXGZMlCAMxIiIIuMyY6IECFe4zuFwoLKykreyiIhUYg4KkQbcbjdKSkq6VM2tq6tDSUkJ3G53gnpGRGRNDFCI4uTz+VBWVhZ2KXXguVmzZsHn8xndNSIiy2KAQhSn6urqiPsNAf4gZe/evaiurjawV0RE1sYAhShOLOlPRKQ9BihEcWJJfyIi7TFAIYpTfn4+HA5Hl2q5AZIkwel0Ij8/3+CeERFZFwMUojixpD8RkfYYoBBpgCX9iYi0xUqyRBpiJVkioshYSZYoQQI7ShMRUXx4i4eIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHQYoBAREZHpMEAhIiIi02GAQkRERKbDAIWIiIhMx5KVZAPV+ZubmxPcEyIiIlIqMG4r2WXHkgFKS0sLAMDpdCa4J0RERKRWS0sL0tPTo7ax5GaB7e3t2L9/P04//XS0tLTA6XRi79693DhQR83NzbzOBuB1Ng6vtTF4nY1hlesshEBLSwsGDRqEbt2iZ5lYcgalW7ducDgcAABJkgAAaWlppv6l2AWvszF4nY3Da20MXmdjWOE6y82cBDBJloiIiEyHAQoRERGZjuUDlNTUVMybNw+pqamJ7oqt8Tobg9fZOLzWxuB1NoYdr7Mlk2SJiIjI3iw/g0JERET2wwCFiIiITIcBChEREZkOAxQiIiIyHdMHKIcPH8aUKVOQlpaGjIwM3HLLLTh69GjUn3nxxRdRUFCAtLQ0SJKEI0eOaHJcu4vlmpw4cQIzZ85EVlYW+vbti0mTJqGxsTGkjSRJXR6vv/66nm/FVJ599lnk5ubitNNOw5gxY/DJJ59Ebb9kyRKcd955OO200zBy5EisWLEi5HUhBB588EEMHDgQvXr1wrhx47B9+3Y934IlaH2db7rppi5/txMmTNDzLViCmuu8detWTJo0Cbm5uZAkCRUVFXEfM1lofZ0feuihLn/P5513no7vQAPC5CZMmCBGjx4tPv74Y1FdXS3OPvtsUVpaGvVnnn76aTF//nwxf/58AUB88803mhzX7mK5JtOnTxdOp1OsXr1abNiwQVx++eXiiiuuCGkDQCxcuFDU19cHH8ePH9fzrZjG66+/Lnr27ClefvllsXXrVnHrrbeKjIwM0djYGLb9hx9+KFJSUsSTTz4ptm3bJu6//37Ro0cPsWXLlmCbxx9/XKSnp4s333xTfPrpp+I///M/xZlnnpk01zQcPa7ztGnTxIQJE0L+bg8fPmzUWzIltdf5k08+EXPmzBGLFi0SOTk54umnn477mMlAj+s8b948cf7554f8PR88eFDndxIfUwco27ZtEwDE+vXrg8+tXLlSSJIk6urqZH/e4/GEDVDiPa4dxXJNjhw5Inr06CGWLFkSfO6LL74QAERNTU3wOQDijTfe0K3vZnbZZZeJmTNnBv/t8/nEoEGDxPz588O2v/7668W1114b8tyYMWPEr3/9ayGEEO3t7SInJ0csWLAg+PqRI0dEamqqWLRokQ7vwBq0vs5C+AOUoqIiXfprVWqvc0dDhw4NO3DGc0y70uM6z5s3T4wePVrDXurP1Ld4ampqkJGRgUsuuST43Lhx49CtWzesW7fOdMe1sliuycaNG3Hq1CmMGzcu+Nx5552HIUOGoKamJqTtzJkz0a9fP1x22WV4+eWXFW21bXUnT57Exo0bQ65Pt27dMG7cuC7XJ6CmpiakPQCMHz8+2L62thYNDQ0hbdLT0zFmzJiIx7Q7Pa5zgNfrRf/+/XHuuedixowZOHTokPZvwCJiuc6JOKbV6XlNtm/fjkGDBmHYsGGYMmUK9uzZE293dWXqAKWhoQH9+/cPea579+7IzMxEQ0OD6Y5rZbFck4aGBvTs2RMZGRkhzw8YMCDkZx5++GEsXrwY7733HiZNmoTbb78dzzzzjObvwWz+/e9/w+fzYcCAASHPd74+HTU0NERtH/hfNce0Oz2uMwBMmDABf//737F69Wo88cQTWLNmDSZOnAifz6f9m7CAWK5zIo5pdXpdkzFjxuCVV17B22+/jeeffx61tbXIz89HS0tLvF3WTUJ2M/7d736HJ554ImqbL774wqDe2JsZrvUDDzwQ/O+LLroIx44dw4IFC/Db3/5W1/MSxeMXv/hF8L9HjhyJUaNG4ayzzoLX68XYsWMT2DMi9SZOnBj871GjRmHMmDEYOnQoFi9ejFtuuSWBPYssIQHKXXfdhZtuuilqm2HDhiEnJwcHDhwIeb6trQ2HDx9GTk5OzOfX67hmpOe1zsnJwcmTJ3HkyJGQWZTGxsao13HMmDF45JFH0Nraaqt9Izrr168fUlJSuqxqinZ9cnJyorYP/G9jYyMGDhwY0ubCCy/UsPfWocd1DmfYsGHo168fduzYkZQBSizXORHHtDqjrklGRgbOOecc7NixQ7Njai0ht3iys7Nx3nnnRX307NkTeXl5OHLkCDZu3Bj82ffffx/t7e0YM2ZMzOfX67hmpOe1vvjii9GjRw+sXr06+NxXX32FPXv2IC8vL2KfNm/ejDPOOMPWwQkA9OzZExdffHHI9Wlvb8fq1asjXp+8vLyQ9gDw3nvvBdufeeaZyMnJCWnT3NyMdevWRb3mdqbHdQ5n3759OHToUEhgmExiuc6JOKbVGXVNjh49ip07d5r77znRWbpyJkyYIC666CKxbt06sXbtWjF8+PCQpa/79u0T5557rli3bl3wufr6erFp0ybx0ksvCQDigw8+EJs2bRKHDh1SfNxkFMu1nj59uhgyZIh4//33xYYNG0ReXp7Iy8sLvv7WW2+Jl156SWzZskVs375dPPfcc6J3797iwQcfNPS9Jcrrr78uUlNTxSuvvCK2bdsmbrvtNpGRkSEaGhqEEEJMnTpV/O53vwu2//DDD0X37t3F//zP/4gvvvhCzJs3L+wy44yMDLFs2TLx2WefiaKiIi4z1vg6t7S0iDlz5oiamhpRW1srVq1aJX74wx+K4cOHixMnTiTkPZqB2uvc2toqNm3aJDZt2iQGDhwo5syZIzZt2iS2b9+u+JjJSI/rfNdddwmv1ytqa2vFhx9+KMaNGyf69esnDhw4YPj7U8r0AcqhQ4dEaWmp6Nu3r0hLSxM333yzaGlpCb5eW1srAAiPxxN8bt68eQJAl8fChQsVHzcZxXKtjx8/Lm6//XZxxhlniN69e4uf/exnor6+Pvj6ypUrxYUXXij69u0r+vTpI0aPHi1eeOEF4fP5jHxrCfXMM8+IIUOGiJ49e4rLLrtMfPzxx8HXrrrqKjFt2rSQ9osXLxbnnHOO6Nmzpzj//PPFP//5z5DX29vbxQMPPCAGDBggUlNTxdixY8VXX31lxFsxNS2v87fffiuuvvpqkZ2dLXr06CGGDh0qbr311qQeNAPUXOfAZ0bnx1VXXaX4mMlK6+t8ww03iIEDB4qePXuKwYMHixtuuEHs2LHDwHekniREEqz3JCIiIksx9TJjIiIiSk4MUIiIiMh0GKAQERGR6TBAISIiItNhgEJERESmwwCFiIiITIcBChEREZkOAxQiIiIyHQYoREREZDoMUIiIiMh0GKAQERGR6TBAISIiItP5/wEp1b8yUKjSwAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                          " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test, y_test, color='black')\n", + "plt.plot(X_test, y_pred, color='blue', linewidth=3)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "16ff1a974f6e4348e869e4a7d366b86a", + "translation_date": "2025-09-04T01:29:19+00:00", + "source_file": "2-Regression/1-Tools/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ja/2-Regression/2-Data/README.md b/translations/ja/2-Regression/2-Data/README.md new file mode 100644 index 000000000..fca9e2186 --- /dev/null +++ b/translations/ja/2-Regression/2-Data/README.md @@ -0,0 +1,226 @@ + +# Scikit-learnを使った回帰モデルの構築: データの準備と可視化 + +![データ可視化インフォグラフィック](../../../../translated_images/data-visualization.54e56dded7c1a804d00d027543f2881cb32da73aeadda2d4a4f10f3497526114.ja.png) + +インフォグラフィック作成者: [Dasani Madipalli](https://twitter.com/dasani_decoded) + +## [講義前クイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/11/) + +> ### [このレッスンはRでも利用可能です!](../../../../2-Regression/2-Data/solution/R/lesson_2.html) + +## はじめに + +Scikit-learnを使った機械学習モデル構築に必要なツールが整った今、データに対して質問を投げかける準備ができました。データを扱い、機械学習ソリューションを適用する際には、適切な質問をすることでデータセットの可能性を最大限に引き出すことが非常に重要です。 + +このレッスンでは以下を学びます: + +- モデル構築のためのデータ準備方法 +- Matplotlibを使ったデータ可視化方法 + +## データに対して適切な質問をする + +解きたい質問によって使用する機械学習アルゴリズムの種類が決まります。そして、得られる回答の質はデータの性質に大きく依存します。 + +このレッスンで提供される[データ](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv)を見てみましょう。この.csvファイルはVS Codeで開くことができます。ざっと見ただけでも、空白や文字列と数値データの混在があることがわかります。また、「Package」という奇妙な列があり、そのデータは「sacks」や「bins」などの値が混在しています。実際、このデータは少し混乱しています。 + +[![初心者向けML - データセットの分析とクリーニング方法](https://img.youtube.com/vi/5qGjczWTrDQ/0.jpg)](https://youtu.be/5qGjczWTrDQ "初心者向けML - データセットの分析とクリーニング方法") + +> 🎥 上の画像をクリックすると、このレッスンのデータ準備を進める短い動画が視聴できます。 + +実際には、完全に準備されたデータセットがそのまま機械学習モデルを作成するために提供されることは非常に稀です。このレッスンでは、標準的なPythonライブラリを使用して生データセットを準備する方法を学びます。また、データを可視化するためのさまざまな技術も学びます。 + +## ケーススタディ: 「かぼちゃ市場」 + +このフォルダには、ルート`data`フォルダ内に[US-pumpkins.csv](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv)という.csvファイルが含まれており、都市ごとに分類されたかぼちゃ市場に関する1757行のデータが含まれています。このデータは、米国農務省が配布する[Specialty Crops Terminal Markets Standard Reports](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice)から抽出された生データです。 + +### データの準備 + +このデータはパブリックドメインに属しています。USDAのウェブサイトから都市ごとに分割された多くのファイルとしてダウンロードできます。あまりにも多くのファイルを避けるために、すべての都市データを1つのスプレッドシートに結合しました。つまり、すでにデータを少し「準備」しています。次に、このデータを詳しく見てみましょう。 + +### かぼちゃデータ - 初期の結論 + +このデータについて何に気づきますか?すでに文字列、数値、空白、奇妙な値が混在していることがわかっています。 + +回帰技術を使用してこのデータにどのような質問をすることができますか?例えば、「特定の月に販売されるかぼちゃの価格を予測する」という質問はどうでしょうか。このデータを再度見てみると、このタスクに必要なデータ構造を作成するためにいくつか変更を加える必要があることがわかります。 + +## 演習 - かぼちゃデータを分析する + +[Python Data Analysis](https://pandas.pydata.org/)の略であるPandasを使用して、このかぼちゃデータを分析・準備しましょう。Pandasはデータの形状を整えるのに非常に便利なツールです。 + +### まず、欠損日付を確認する + +まず、欠損日付を確認する手順を実行します: + +1. 日付を月形式に変換します(これらは米国の日付形式なので、`MM/DD/YYYY`形式です)。 +2. 月を新しい列に抽出します。 + +Visual Studio Codeで_notebook.ipynb_ファイルを開き、スプレッドシートを新しいPandasデータフレームにインポートします。 + +1. `head()`関数を使用して最初の5行を表示します。 + + ```python + import pandas as pd + pumpkins = pd.read_csv('../data/US-pumpkins.csv') + pumpkins.head() + ``` + + ✅ 最後の5行を表示するにはどの関数を使用しますか? + +1. 現在のデータフレームに欠損データがあるかどうかを確認します: + + ```python + pumpkins.isnull().sum() + ``` + + 欠損データがありますが、今回のタスクには影響がないかもしれません。 + +1. データフレームを扱いやすくするために、必要な列だけを選択します。`loc`関数を使用して、元のデータフレームから行(最初のパラメータとして渡す)と列(2番目のパラメータとして渡す)のグループを抽出します。以下の例では、`:`は「すべての行」を意味します。 + + ```python + columns_to_select = ['Package', 'Low Price', 'High Price', 'Date'] + pumpkins = pumpkins.loc[:, columns_to_select] + ``` + +### 次に、かぼちゃの平均価格を決定する + +特定の月におけるかぼちゃの平均価格を決定する方法を考えてみましょう。このタスクにはどの列を選択しますか?ヒント: 3つの列が必要です。 + +解決策: `Low Price`と`High Price`列の平均を取って新しい`Price`列を作成し、`Date`列を月だけを表示するように変換します。幸いにも、上記のチェックによると、日付や価格に欠損データはありません。 + +1. 平均を計算するには、以下のコードを追加します: + + ```python + price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2 + + month = pd.DatetimeIndex(pumpkins['Date']).month + + ``` + + ✅ `print(month)`を使用してデータを確認することができます。 + +2. 変換したデータを新しいPandasデータフレームにコピーします: + + ```python + new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price}) + ``` + + データフレームを印刷すると、きれいで整ったデータセットが表示され、新しい回帰モデルを構築する準備が整います。 + +### しかし、奇妙な点があります + +`Package`列を見ると、かぼちゃはさまざまな構成で販売されています。一部は「1 1/9 bushel」単位で販売され、一部は「1/2 bushel」単位で販売され、かぼちゃ1個単位やポンド単位、大きな箱単位で販売されるものもあります。 + +> かぼちゃは一貫して重さを測るのが非常に難しいようです + +元のデータを掘り下げると、`Unit of Sale`が「EACH」または「PER BIN」の場合、`Package`タイプはインチ単位、ビン単位、または「各」単位であることがわかります。かぼちゃは一貫して重さを測るのが非常に難しいようです。そのため、`Package`列に「bushel」という文字列が含まれるかぼちゃだけを選択してフィルタリングします。 + +1. 初期の.csvインポートの下にフィルタを追加します: + + ```python + pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)] + ``` + + データを印刷すると、バスケット単位で販売される約415行のデータだけが取得されていることがわかります。 + +### しかし、もう1つやるべきことがあります + +バスケットの量が行ごとに異なることに気づきましたか?価格をバスケット単位で標準化する必要があります。そのため、価格を標準化するための計算を行います。 + +1. new_pumpkinsデータフレームを作成するブロックの後に以下の行を追加します: + + ```python + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9) + + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2) + ``` + +✅ [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308)によると、バスケットの重さは生産物の種類によって異なります。これは体積測定です。「例えば、トマトのバスケットは56ポンドの重さがあるとされています... 葉物や緑の野菜はスペースを多く取り、重さが少ないため、ほうれん草のバスケットは20ポンドしかありません。」これは非常に複雑です!バスケットからポンドへの変換を行うのではなく、バスケット単位で価格を設定しましょう。しかし、かぼちゃのバスケットについてのこの研究は、データの性質を理解することがいかに重要であるかを示しています! + +これで、バスケット測定に基づいて単位ごとの価格を分析することができます。データをもう一度印刷すると、標準化されたデータが表示されます。 + +✅ 半バスケット単位で販売されるかぼちゃが非常に高価であることに気づきましたか?その理由を考えることができますか?ヒント: 小さなかぼちゃは大きなかぼちゃよりもはるかに高価です。おそらく、大きな空洞のあるパイ用かぼちゃ1個が占めるスペースに比べて、小さなかぼちゃがバスケットにたくさん詰め込まれるためです。 + +## 可視化戦略 + +データサイエンティストの役割の一部は、扱っているデータの質と性質を示すことです。そのため、データのさまざまな側面を示す興味深い可視化、プロット、グラフ、チャートを作成することがよくあります。この方法で、関係性やギャップを視覚的に示すことができます。 + +[![初心者向けML - Matplotlibを使ったデータ可視化方法](https://img.youtube.com/vi/SbUkxH6IJo0/0.jpg)](https://youtu.be/SbUkxH6IJo0 "初心者向けML - Matplotlibを使ったデータ可視化方法") + +> 🎥 上の画像をクリックすると、このレッスンのデータ可視化を進める短い動画が視聴できます。 + +可視化は、データに最も適した機械学習技術を決定するのにも役立ちます。例えば、線に沿うように見える散布図は、そのデータが線形回帰演習に適していることを示します。 + +Jupyterノートブックでうまく動作するデータ可視化ライブラリの1つが[Matplotlib](https://matplotlib.org/)です(前のレッスンでも見ました)。 + +> データ可視化の経験をさらに積むには、[これらのチュートリアル](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott)をご覧ください。 + +## 演習 - Matplotlibで実験する + +作成した新しいデータフレームを表示する基本的なプロットを作成してみましょう。基本的な折れ線グラフは何を示しますか? + +1. ファイルの上部でPandasインポートの下にMatplotlibをインポートします: + + ```python + import matplotlib.pyplot as plt + ``` + +1. ノートブック全体を再実行して更新します。 +1. ノートブックの下部にセルを追加してデータをボックスとしてプロットします: + + ```python + price = new_pumpkins.Price + month = new_pumpkins.Month + plt.scatter(price, month) + plt.show() + ``` + + ![価格と月の関係を示す散布図](../../../../translated_images/scatterplot.b6868f44cbd2051c6680ccdbb1510697d06a3ff6cd4abda656f5009c0ed4e3fc.ja.png) + + このプロットは役に立ちますか?何か驚くことはありますか? + + 特に役に立つものではありません。単にデータを特定の月における点の広がりとして表示するだけです。 + +### 役立つものにする + +役立つチャートを表示するには、通常データを何らかの方法でグループ化する必要があります。y軸に月を表示し、データが分布を示すプロットを作成してみましょう。 + +1. グループ化された棒グラフを作成するセルを追加します: + + ```python + new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar') + plt.ylabel("Pumpkin Price") + ``` + + ![価格と月の関係を示す棒グラフ](../../../../translated_images/barchart.a833ea9194346d769c77a3a870f7d8aee51574cd1138ca902e5500830a41cbce.ja.png) + + これはより役立つデータ可視化です!かぼちゃの最高価格は9月と10月に発生しているようです。これはあなたの予想に合っていますか?その理由は何ですか? + +--- + +## 🚀チャレンジ + +Matplotlibが提供するさまざまな種類の可視化を探求してみましょう。回帰問題に最も適した種類はどれですか? + +## [講義後クイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/12/) + +## 復習と自己学習 + +データを可視化するさまざまな方法を調べてみましょう。利用可能なライブラリのリストを作成し、2D可視化と3D可視化など、特定のタスクに最適なものを記録してください。何を発見しますか? + +## 課題 + +[可視化の探求](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/2-Regression/2-Data/assignment.md b/translations/ja/2-Regression/2-Data/assignment.md new file mode 100644 index 000000000..8eaa57660 --- /dev/null +++ b/translations/ja/2-Regression/2-Data/assignment.md @@ -0,0 +1,23 @@ + +# 可視化の探求 + +データ可視化に利用できるさまざまなライブラリがあります。このレッスンで使用するカボチャデータを使って、matplotlibとseabornを使用してサンプルノートブックでいくつかの可視化を作成してください。どのライブラリが使いやすいですか? + +## 評価基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | --------- | -------- | ----------------- | +| | 2つの探索/可視化を含むノートブックが提出されている | 1つの探索/可視化を含むノートブックが提出されている | ノートブックが提出されていない | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/2-Regression/2-Data/notebook.ipynb b/translations/ja/2-Regression/2-Data/notebook.ipynb new file mode 100644 index 000000000..e2ec2f401 --- /dev/null +++ b/translations/ja/2-Regression/2-Data/notebook.ipynb @@ -0,0 +1,46 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "coopTranslator": { + "original_hash": "1b2ab303ac6c604a34c6ca7a49077fc7", + "translation_date": "2025-09-04T01:36:17+00:00", + "source_file": "2-Regression/2-Data/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/2-Regression/2-Data/solution/Julia/README.md b/translations/ja/2-Regression/2-Data/solution/Julia/README.md new file mode 100644 index 000000000..04653716e --- /dev/null +++ b/translations/ja/2-Regression/2-Data/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/2-Regression/2-Data/solution/R/lesson_2-R.ipynb b/translations/ja/2-Regression/2-Data/solution/R/lesson_2-R.ipynb new file mode 100644 index 000000000..1745cd265 --- /dev/null +++ b/translations/ja/2-Regression/2-Data/solution/R/lesson_2-R.ipynb @@ -0,0 +1,672 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_2-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "f3c335f9940cfd76528b3ef918b9b342", + "translation_date": "2025-09-04T01:39:34+00:00", + "source_file": "2-Regression/2-Data/solution/R/lesson_2-R.ipynb", + "language_code": "ja" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# 回帰モデルの構築: データの準備と可視化\n", + "\n", + "## **カボチャの線形回帰 - レッスン2**\n", + "#### はじめに\n", + "\n", + "TidymodelsとTidyverseを使って機械学習モデルの構築を始める準備が整った今、データに対して質問を投げかける準備ができました。データを扱い、機械学習のソリューションを適用する際には、適切な質問をすることでデータセットの可能性を最大限に引き出すことが非常に重要です。\n", + "\n", + "このレッスンでは以下を学びます:\n", + "\n", + "- モデル構築のためのデータ準備方法。\n", + "\n", + "- `ggplot2`を使ったデータの可視化方法。\n", + "\n", + "解きたい質問によって使用する機械学習アルゴリズムの種類が決まります。そして、得られる答えの質はデータの性質に大きく依存します。\n", + "\n", + "これを実際の演習を通じて確認してみましょう。\n", + "\n", + "\n", + "

                                          \n", + " \n", + "

                                          イラスト: @allison_horst
                                          \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "Pg5aexcOPqAZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. かぼちゃデータのインポートとTidyverseの召喚\n", + "\n", + "このレッスンを効率よく進めるために、以下のパッケージが必要です:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) は、データサイエンスをより速く、簡単に、そして楽しくするために設計された[Rパッケージのコレクション](https://www.tidyverse.org/packages)です!\n", + "\n", + "以下のコマンドでインストールできます:\n", + "\n", + "`install.packages(c(\"tidyverse\"))`\n", + "\n", + "以下のスクリプトは、このモジュールを完了するために必要なパッケージがインストールされているか確認し、足りない場合は自動的にインストールします。\n" + ], + "metadata": { + "id": "dc5WhyVdXAjR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse)" + ], + "outputs": [], + "metadata": { + "id": "GqPYUZgfXOBt" + } + }, + { + "cell_type": "markdown", + "source": [ + "では、このレッスン用に提供された[データ](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv)を読み込み、いくつかのパッケージを起動しましょう!\n" + ], + "metadata": { + "id": "kvjDTPDSXRr2" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n =50)" + ], + "outputs": [], + "metadata": { + "id": "VMri-t2zXqgD" + } + }, + { + "cell_type": "markdown", + "source": [ + "`glimpse()` を使うと、空白があり、文字列(`chr`)と数値データ(`dbl`)が混在していることがすぐにわかります。`Date` は文字型で、さらに `Package` という奇妙な列があり、データが `sacks` や `bins`、その他の値が混在しています。実際、このデータは少し混乱していますね 😤。\n", + "\n", + "実際のところ、完全に整ったデータセットをそのまま使って機械学習モデルを作成できることはあまりありません。でも心配しないでください。このレッスンでは、標準的なRライブラリを使って生のデータセットを準備する方法を学びます 🧑‍🔧。さらに、データを視覚化するためのさまざまなテクニックも学びます。📈📊\n", + "
                                          \n", + "\n", + "> おさらい: パイプ演算子(`%>%`)は、オブジェクトを関数や呼び出し式に順次渡すことで、論理的な順序で操作を実行します。コード内でパイプ演算子は「そして次に」と言っているようなものだと考えることができます。\n" + ], + "metadata": { + "id": "REWcIv9yX29v" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. データの欠損を確認する\n", + "\n", + "データサイエンティストがよく直面する問題の一つに、不完全または欠損しているデータがあります。Rでは、欠損値や不明な値を特別なセントネル値 `NA` (Not Available) で表します。\n", + "\n", + "では、データフレームに欠損値が含まれているかどうかをどうやって確認するのでしょうか?\n", + "
                                          \n", + "- 一つの簡単な方法は、ベースRの関数 `anyNA` を使用することです。この関数は論理オブジェクト `TRUE` または `FALSE` を返します。\n" + ], + "metadata": { + "id": "Zxfb3AM5YbUe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " anyNA()" + ], + "outputs": [], + "metadata": { + "id": "G--DQutAYltj" + } + }, + { + "cell_type": "markdown", + "source": [ + "素晴らしいですね、いくつかのデータが欠けているようです!そこから始めるのが良いでしょう。\n", + "\n", + "- 別の方法として、`is.na()`関数を使用することができます。この関数は、各列の要素が欠けているかどうかを論理値`TRUE`で示します。\n" + ], + "metadata": { + "id": "mU-7-SB6YokF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "W-DxDOR4YxSW" + } + }, + { + "cell_type": "markdown", + "source": [ + "大きなデータフレームの場合、このようにすべての行と列を個別に確認するのは非効率的で、実質的に不可能です😴。\n", + "\n", + "- より直感的な方法としては、各列の欠損値の合計を計算することです:\n" + ], + "metadata": { + "id": "xUWxipKYY0o7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " colSums()" + ], + "outputs": [], + "metadata": { + "id": "ZRBWV6P9ZArL" + } + }, + { + "cell_type": "markdown", + "source": [ + "データが欠けている部分はありますが、今回の作業には影響がないかもしれません。さらに分析を進めてみましょう。\n", + "\n", + "> 素晴らしいパッケージや関数のセットに加えて、Rには非常に優れたドキュメントがあります。例えば、`help(colSums)` または `?colSums` を使用して、その関数について詳しく調べることができます。\n" + ], + "metadata": { + "id": "9gv-crB6ZD1Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Dplyr: データ操作の文法\n", + "\n", + "

                                          \n", + " \n", + "

                                          @allison_horstによるイラスト
                                          \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "o4jLY5-VZO2C" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`dplyr`](https://dplyr.tidyverse.org/)は、Tidyverseのパッケージであり、データ操作の文法を提供します。これにより、最も一般的なデータ操作の課題を解決するための一貫した動詞のセットが利用できます。このセクションでは、dplyrの動詞について詳しく見ていきましょう! \n" + ], + "metadata": { + "id": "i5o33MQBZWWw" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::select()\n", + "\n", + "`select()`は、`dplyr`パッケージに含まれる関数で、保持したい列や除外したい列を選択するのに役立ちます。\n", + "\n", + "データフレームを扱いやすくするために、`select()`を使って必要な列だけを残し、いくつかの列を削除しましょう。\n", + "\n", + "例えば、この演習では、分析に必要な列として`Package`、`Low Price`、`High Price`、`Date`を使用します。これらの列を選択してみましょう。\n" + ], + "metadata": { + "id": "x3VGMAGBZiUr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(Package, `Low Price`, `High Price`, Date)\n", + "\n", + "\n", + "# Print data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "F_FgxQnVZnM0" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::mutate()\n", + "\n", + "`mutate()`は、`dplyr`パッケージの関数で、既存の列を保持しながら、新しい列を作成したり、既存の列を変更したりするのに役立ちます。\n", + "\n", + "`mutate`の一般的な構文は以下の通りです:\n", + "\n", + "`data %>% mutate(new_column_name = what_it_contains)`\n", + "\n", + "`Date`列を使って`mutate`を試してみましょう。以下の操作を行います:\n", + "\n", + "1. 日付(現在は文字型)を月の形式に変換します(これらはアメリカの日付なので、形式は`MM/DD/YYYY`です)。\n", + "\n", + "2. 日付から月を抽出し、新しい列に保存します。\n", + "\n", + "Rでは、[lubridate](https://lubridate.tidyverse.org/)パッケージを使うと、日付データや日時データの操作が簡単になります。そこで、`dplyr::mutate()`、`lubridate::mdy()`、`lubridate::month()`を使って、上記の目的を達成してみましょう。なお、以降の操作で`Date`列は不要になるため、削除しても問題ありません。\n" + ], + "metadata": { + "id": "2KKo0Ed9Z1VB" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load lubridate\n", + "library(lubridate)\n", + "\n", + "pumpkins <- pumpkins %>% \n", + " # Convert the Date column to a date object\n", + " mutate(Date = mdy(Date)) %>% \n", + " # Extract month from Date\n", + " mutate(Month = month(Date)) %>% \n", + " # Drop Date column\n", + " select(-Date)\n", + "\n", + "# View the first few rows\n", + "pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "5joszIVSZ6xe" + } + }, + { + "cell_type": "markdown", + "source": [ + "やったね!🤩\n", + "\n", + "次に、新しい列 `Price` を作成しましょう。この列はカボチャの平均価格を表します。では、`Low Price` 列と `High Price` 列の平均を取り、新しい `Price` 列に値を埋めていきましょう。\n", + "
                                          \n" + ], + "metadata": { + "id": "nIgLjNMCZ-6Y" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new column Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(Price = (`Low Price` + `High Price`)/2)\n", + "\n", + "# View the first few rows of the data\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "Zo0BsqqtaJw2" + } + }, + { + "cell_type": "markdown", + "source": [ + "イエス!💪\n", + "\n", + "「でも待って!」と、`View(pumpkins)`でデータセット全体をざっと見た後に言うかもしれません。「ここ、何かおかしくない?」🤔\n", + "\n", + "`Package`列を見てみると、カボチャはさまざまな形態で販売されていることがわかります。一部は`1 1/9 bushel`の単位で、一部は`1/2 bushel`の単位で、一部はカボチャ1個ごと、一部はポンドごと、さらに幅の異なる大きな箱で販売されているものもあります。\n", + "\n", + "これを確認してみましょう:\n" + ], + "metadata": { + "id": "p77WZr-9aQAR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Verify the distinct observations in Package column\n", + "pumpkins %>% \n", + " distinct(Package)" + ], + "outputs": [], + "metadata": { + "id": "XISGfh0IaUy6" + } + }, + { + "cell_type": "markdown", + "source": [ + "素晴らしいですね!👏\n", + "\n", + "カボチャは一貫して重さを測るのが非常に難しいようですので、`Package`列に*bushel*という文字列が含まれるカボチャだけを選択し、新しいデータフレーム`new_pumpkins`に入れましょう。\n" + ], + "metadata": { + "id": "7sMjiVujaZxY" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::filter() と stringr::str_detect()\n", + "\n", + "[`dplyr::filter()`](https://dplyr.tidyverse.org/reference/filter.html): 条件を満たす**行**のみを含むデータのサブセットを作成します。この場合、`Package`列に文字列 *bushel* を含むかどうかでカボチャをフィルタリングします。\n", + "\n", + "[stringr::str_detect()](https://stringr.tidyverse.org/reference/str_detect.html): 文字列内で特定のパターンが存在するかどうかを検出します。\n", + "\n", + "[`stringr`](https://github.com/tidyverse/stringr) パッケージは、一般的な文字列操作を簡単に行うための関数を提供します。\n" + ], + "metadata": { + "id": "L8Qfcs92ageF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Retain only pumpkins with \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(Package, \"bushel\"))\n", + "\n", + "# Get the dimensions of the new data\n", + "dim(new_pumpkins)\n", + "\n", + "# View a few rows of the new data\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "hy_SGYREampd" + } + }, + { + "cell_type": "markdown", + "source": [ + "私たちは、バスケット単位でカボチャを含む約415行のデータに絞り込んだことがわかります。🤩 \n", + "
                                          \n" + ], + "metadata": { + "id": "VrDwF031avlR" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::case_when()\n", + "\n", + "**でも、もう一つやるべきことがあります**\n", + "\n", + "バスケットの量が行ごとに異なることに気づきましたか?価格を1 1/9や1/2バスケットではなく、1バスケットあたりの価格として正規化する必要があります。標準化するために少し計算をしましょう。\n", + "\n", + "[`case_when()`](https://dplyr.tidyverse.org/reference/case_when.html) 関数を使って、条件に応じてPrice列を*変換*します。`case_when`を使うと、複数の`if_else()`ステートメントをベクトル化することができます。\n" + ], + "metadata": { + "id": "mLpw2jH4a0tx" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(Price = case_when(\n", + " str_detect(Package, \"1 1/9\") ~ Price/(1 + 1/9),\n", + " str_detect(Package, \"1/2\") ~ Price/(1/2),\n", + " TRUE ~ Price))\n", + "\n", + "# View the first few rows of the data\n", + "new_pumpkins %>% \n", + " slice_head(n = 30)" + ], + "outputs": [], + "metadata": { + "id": "P68kLVQmbM6I" + } + }, + { + "cell_type": "markdown", + "source": [ + "さて、私たちはバスケット単位での価格分析を行うことができます。しかし、このカボチャのバスケットに関する研究は、「データの性質を理解すること」がいかに`重要`であるかを示しています!\n", + "\n", + "> ✅ [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308)によると、バスケットの重さはその中身の種類によって異なります。これは体積の測定方法だからです。「例えば、トマトのバスケットは56ポンドの重さがあるとされています... 葉物や緑の野菜はスペースを多く取り、重さが少ないため、ほうれん草のバスケットはたった20ポンドです。」かなり複雑ですね!バスケットからポンドへの換算はやめて、バスケット単位で価格を設定しましょう。このカボチャのバスケットに関する研究は、データの性質を理解することがいかに重要であるかを示しています!\n", + "\n", + "> ✅ 半バスケット単位で販売されているカボチャが非常に高価であることに気づきましたか?その理由を考えられますか?ヒント:小さなカボチャは大きなカボチャよりもずっと高価です。おそらく、大きな空洞のあるパイ用カボチャが1つ占めるスペースに比べて、小さなカボチャがバスケットにたくさん詰め込まれるためでしょう。\n" + ], + "metadata": { + "id": "pS2GNPagbSdb" + } + }, + { + "cell_type": "markdown", + "source": [ + "さて、最後に、ちょっとした冒険のために 💁‍♀️、Month列を最初の位置、つまり`Package`列の「前」に移動させましょう。\n", + "\n", + "列の位置を変更するには、`dplyr::relocate()`を使用します。\n" + ], + "metadata": { + "id": "qql1SowfbdnP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new data frame new_pumpkins\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(Month, .before = Package)\n", + "\n", + "new_pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "JJ1x6kw8bixF" + } + }, + { + "cell_type": "markdown", + "source": [ + "よくできました!👌 これで、新しい回帰モデルを構築するためのクリーンで整然としたデータセットが手に入りましたね! \n", + "
                                          \n" + ], + "metadata": { + "id": "y8TJ0Za_bn5Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. ggplot2を使ったデータ可視化\n", + "\n", + "

                                          \n", + " \n", + "

                                          ダサニ・マディパリによるインフォグラフィック
                                          \n", + "\n", + "\n", + "\n", + "\n", + "こんな*賢い*言葉があります:\n", + "\n", + "> 「シンプルなグラフは、他のどんな手段よりも多くの情報をデータアナリストの頭に届けてくれる。」 --- ジョン・テューキー\n", + "\n", + "データサイエンティストの役割の一部は、扱っているデータの質や性質を示すことです。そのために、彼らはしばしば興味深い可視化、つまりプロットやグラフ、チャートを作成し、データのさまざまな側面を示します。このようにして、視覚的に関係性やギャップを示すことができ、通常では見つけにくいものを明らかにすることができます。\n", + "\n", + "可視化は、データに最も適した機械学習手法を決定するのにも役立ちます。例えば、散布図が直線に沿っているように見える場合、そのデータは線形回帰の演習に適していることを示しています。\n", + "\n", + "Rにはグラフを作成するためのいくつかのシステムがありますが、[`ggplot2`](https://ggplot2.tidyverse.org/index.html)はその中でも最もエレガントで汎用性の高いものの一つです。`ggplot2`を使うと、**独立したコンポーネントを組み合わせる**ことでグラフを作成することができます。\n", + "\n", + "まずは、Price列とMonth列を使ったシンプルな散布図から始めてみましょう。\n", + "\n", + "この場合、まず[`ggplot()`](https://ggplot2.tidyverse.org/reference/ggplot.html)を使い、データセットと美的マッピング([`aes()`](https://ggplot2.tidyverse.org/reference/aes.html)を使用)を指定し、その後、散布図用のレイヤー(例えば[`geom_point()`](https://ggplot2.tidyverse.org/reference/geom_point.html))を追加します。\n" + ], + "metadata": { + "id": "mYSH6-EtbvNa" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plots\n", + "theme_set(theme_light())\n", + "\n", + "# Create a scatter plot\n", + "p <- ggplot(data = new_pumpkins, aes(x = Price, y = Month))\n", + "p + geom_point()" + ], + "outputs": [], + "metadata": { + "id": "g2YjnGeOcLo4" + } + }, + { + "cell_type": "markdown", + "source": [ + "このプロットは役に立つと思いますか 🤷?何か驚く点はありますか?\n", + "\n", + "特に役に立つわけではありません。単にデータを特定の月に点として散らばらせて表示しているだけです。\n", + "
                                          \n" + ], + "metadata": { + "id": "Ml7SDCLQcPvE" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **どうすれば役立つものにできるのか?**\n", + "\n", + "チャートに有益なデータを表示させるには、通常データを何らかの方法でグループ化する必要があります。例えば、私たちの場合、各月ごとのカボチャの平均価格を見つけることで、データの基礎的なパターンについてより深い洞察を得ることができます。このことから、もう一つの**dplyr**の便利な機能にたどり着きます:\n", + "\n", + "#### `dplyr::group_by() %>% summarize()`\n", + "\n", + "Rでのグループ化集計は以下の方法で簡単に計算できます:\n", + "\n", + "`dplyr::group_by() %>% summarize()`\n", + "\n", + "- `dplyr::group_by()`は、分析単位をデータセット全体から月ごとなどの個別のグループに変更します。\n", + "\n", + "- `dplyr::summarize()`は、グループ化変数ごとに1つの列、指定した集計統計ごとに1つの列を持つ新しいデータフレームを作成します。\n", + "\n", + "例えば、`dplyr::group_by() %>% summarize()`を使用して、**Month**列に基づいてカボチャをグループ化し、各月の**平均価格**を求めることができます。\n" + ], + "metadata": { + "id": "jMakvJZIcVkh" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price))" + ], + "outputs": [], + "metadata": { + "id": "6kVSUa2Bcilf" + } + }, + { + "cell_type": "markdown", + "source": [ + "簡潔に!✨\n", + "\n", + "月のようなカテゴリカルな特徴は、棒グラフ📊で表現するのが適しています。棒グラフを作成するためのレイヤーは `geom_bar()` と `geom_col()` です。詳細を知りたい場合は `?geom_bar` を参照してください。\n", + "\n", + "さあ、作ってみましょう!\n" + ], + "metadata": { + "id": "Kds48GUBcj3W" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month then plot a bar chart\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price)) %>% \r\n", + " ggplot(aes(x = Month, y = mean_price)) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"Pumpkin Price\")" + ], + "outputs": [], + "metadata": { + "id": "VNbU1S3BcrxO" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩これは、より役立つデータビジュアライゼーションですね!9月と10月にカボチャの価格が最も高くなることを示しているようです。これはあなたの予想に合っていますか?なぜそう思いますか、またはなぜそうではないですか?\n", + "\n", + "第2レッスンの完了、おめでとうございます👏!データをモデル構築のために準備し、その後、ビジュアライゼーションを使ってさらに多くの洞察を得ることができましたね!\n" + ], + "metadata": { + "id": "zDm0VOzzcuzR" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当社は責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/2-Regression/2-Data/solution/notebook.ipynb b/translations/ja/2-Regression/2-Data/solution/notebook.ipynb new file mode 100644 index 000000000..973fe1267 --- /dev/null +++ b/translations/ja/2-Regression/2-Data/solution/notebook.ipynb @@ -0,0 +1,437 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                                          70BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          71BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          72BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          73BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1617.017.017.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          74BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/8/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          \n", + "

                                          5 rows × 26 columns

                                          \n", + "
                                          " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade \\\n", + "70 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "71 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "72 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "73 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "74 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "\n", + " Date Low Price High Price Mostly Low ... Unit of Sale Quality \\\n", + "70 9/24/16 15.0 15.0 15.0 ... NaN NaN \n", + "71 9/24/16 18.0 18.0 18.0 ... NaN NaN \n", + "72 10/1/16 18.0 18.0 18.0 ... NaN NaN \n", + "73 10/1/16 17.0 17.0 17.0 ... NaN NaN \n", + "74 10/8/16 15.0 15.0 15.0 ... NaN NaN \n", + "\n", + " Condition Appearance Storage Crop Repack Trans Mode Unnamed: 24 \\\n", + "70 NaN NaN NaN NaN N NaN NaN \n", + "71 NaN NaN NaN NaN N NaN NaN \n", + "72 NaN NaN NaN NaN N NaN NaN \n", + "73 NaN NaN NaN NaN N NaN NaN \n", + "74 NaN NaN NaN NaN N NaN NaN \n", + "\n", + " Unnamed: 25 \n", + "70 NaN \n", + "71 NaN \n", + "72 NaN \n", + "73 NaN \n", + "74 NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "City Name 0\n", + "Type 406\n", + "Package 0\n", + "Variety 0\n", + "Sub Variety 167\n", + "Grade 415\n", + "Date 0\n", + "Low Price 0\n", + "High Price 0\n", + "Mostly Low 24\n", + "Mostly High 24\n", + "Origin 0\n", + "Origin District 396\n", + "Item Size 114\n", + "Color 145\n", + "Environment 415\n", + "Unit of Sale 404\n", + "Quality 415\n", + "Condition 415\n", + "Appearance 415\n", + "Storage 415\n", + "Crop 415\n", + "Repack 0\n", + "Trans Mode 415\n", + "Unnamed: 24 415\n", + "Unnamed: 25 391\n", + "dtype: int64" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Month Package Low Price High Price Price\n", + "70 9 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "71 9 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "72 10 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "73 10 1 1/9 bushel cartons 17.00 17.0 15.30\n", + "74 10 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "... ... ... ... ... ...\n", + "1738 9 1/2 bushel cartons 15.00 15.0 30.00\n", + "1739 9 1/2 bushel cartons 13.75 15.0 28.75\n", + "1740 9 1/2 bushel cartons 10.75 15.0 25.75\n", + "1741 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "1742 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "\n", + "[415 rows x 5 columns]\n" + ] + } + ], + "source": [ + "\n", + "# A set of new columns for a new dataframe. Filter out nonmatching columns\n", + "columns_to_select = ['Package', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Get an average between low and high price for the base pumpkin price\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "# Convert the date to its month only\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "\n", + "# Create a new dataframe with this basic data\n", + "new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price})\n", + "\n", + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9)\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2)\n", + "\n", + "print(new_pumpkins)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcXklEQVR4nO3dfZRcdZ3n8fdnKg80GbAJdLKkSQyTycnoEodoLQlGOXE0JiauZNiZFRbOoqPkuIddnWE3M7BwxmEOOcTJLOJZ96wbkBFHJjrjYGTFMWRRhlkXohUTCYoRkAh0kPQY4gO2Etrv/lG3YqW6bj3d7qrum8/rnD5d9btP3/u7v/p09a3bfRURmJlZfv1arwswM7OJ5aA3M8s5B72ZWc456M3Mcs5Bb2aWc9N6XUA9Z511VixcuLDXZZiZTRl79uz554gYqDdtUgb9woULKZVKvS7DzGzKkPT9tGk+dWNmlnMOejOznHPQm5nlnIPezCznHPRmZjnX9KobSXcAbwcOR8R5SdtW4F8DLwFPAu+OiKN1ll0LfAQoALdHxJbxK717Lr/tIb765JHjz1cums1dV104Zr7VtzzA44dfPP588ZxZ7LpmVTdKTLVj7xBbdx7g0NER5vX3sWnNEjYsG+xpTWbWXa28o/8EsLambRdwXkS8BvgucF3tQpIKwP8A3ga8GrhM0qszVdsDtSEP8NUnj3D5bQ+d0FYb8gCPH36R1bc8MNElptqxd4jr7t7P0NERAhg6OsJ1d+9nx96hntVkZt3XNOgj4kHgSE3bfRHxcvL0YeCcOoteADwREd+LiJeATwMXZ6y362pDPq29NuSbtXfD1p0HGDk2ekLbyLFRtu480KOKzKwXxuMc/R8A/1CnfRB4pur5s0lbXZI2SipJKg0PD49DWXbo6Ehb7WaWT5mCXtL1wMvAXVkLiYhtEVGMiOLAQN2/4rU2zevva6vdzPKp46CX9C7KH9JeHvVvUzUEzK96fk7SNqWsXDS7pfbFc2bVnS+tvRs2rVlC3/TCCW190wtsWrOkRxWZWS90FPTJ1TR/DLwjIn6WMtvXgcWSzpU0A7gUuKezMnvnrqsuHBPq9a662XXNqjGh3uurbjYsG+TmS5Yy2N+HgMH+Pm6+ZKmvujE7yajZPWMlbQdWAWcBzwMfpHyVzUzgh8lsD0fE+yTNo3wZ5bpk2XXArZQvr7wjIja3UlSxWAz/UzMzs9ZJ2hMRxbrTJuPNwR30ZmbtaRT0/stYM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzTYNe0h2SDkt6tKrt9yV9S9IvJdX9R/fJfAcl7Ze0T5LvJGJm1gOtvKP/BLC2pu1R4BLgwRaWf1NEnJ925xMzM5tY05rNEBEPSlpY0/YYgKQJKsvMzMbLRJ+jD+A+SXskbWw0o6SNkkqSSsPDwxNclpnZyWOig/4NEfFa4G3A1ZIuSpsxIrZFRDEiigMDAxNclpnZyWNCgz4ihpLvh4HPARdM5PbMzGysCQt6SbMknVZ5DLyV8oe4ZmbWRa1cXrkdeAhYIulZSe+R9LuSngUuBO6VtDOZd56kLyaLzgX+r6RvAl8D7o2IL03MbpiZWZpWrrq5LGXS5+rMewhYlzz+HvDbmaozM7PM/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznmt54RNIdwNuBwxFxXtL2+8CfAa8CLoiIUsqya4GPAAXg9ojYMk51j7Fj7xBbdx7g0NER5vX3sWnNEjYsG2x7PatveYDHD794/PniObN4avhFXo5fzTNN8MTN68csu/Dae8e0Hdwydr5qN+zYz/bdzzAaQUHisuXzuWnD0pZqbWWf6+3PrmtWtbR+K8tyjJZv3sXzP3np+PO5p81g9/WrgebjpdF2x2u8t6vR/jSTpR+b6VV/TBWKiMYzSBcBPwU+WRX0rwJ+Cfwv4L/UC3pJBeC7wGrgWeDrwGUR8e1mRRWLxSiV6v7sqGvH3iGuu3s/I8dGj7f1TS9w8yVL2zrYtaHYSG3Y13vRVqSF/Q079vOph58e037FigVNXwCt7HPa/jjsW5flGNWGYsXc02bUba84uGV9w+0WXzl7XMZ7uxrtT7Owz9KPzYzX63+qk7QnIor1pjU9dRMRDwJHatoei4gDTRa9AHgiIr4XES8BnwYubrHmtmzdeeCEgwwwcmyUrTublXiiVkMeOOEdfqe2736mrfZqrexz2v60s58nuyzHKC3MG4V8K9sdr/Heronan6x61R9TyUSeox8Eqo/is0lbXZI2SipJKg0PD7e1oUNHR9pqnyxGU36bSmuvNlX3earJcowmartT8dhPZD9Oxf7otknzYWxEbIuIYkQUBwYG2lp2Xn9fW+2TRUFqq73aVN3nqSbLMZqo7U7FYz+R/TgV+6PbJjLoh4D5Vc/PSdrG3aY1S+ibXjihrW96gU1rlrS1nsVzZrU877RxeJ1ftnx+W+3VWtnntP1pZz9PdlmO0dzTZrTV3up2x2u8t2ui9ierXvXHVDKRQf91YLGkcyXNAC4F7pmIDW1YNsjNlyxlsL8PAYP9fR19ELPrmlVjQnDxnFljQr3eVTdpH7g2uurmpg1LuWLFguPvagpSyx9OtbLPafvjD2Jbl+UY7b5+9ZgQrHxw2Wy8NNrueI33djXan2ay9GMzveqPqaSVq262A6uAs4DngQ9S/nD2vwMDwFFgX0SskTSP8mWU65Jl1wG3Ur688o6I2NxKUe1edWNmdrJrdNVN06DvBQe9mVl7Ml1eaWZmU5uD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnNNg17SHZIOS3q0qm22pF2SHk++n5Gy7KikfcnXhNxdyszMGmvlHf0ngLU1bdcC90fEYuD+5Hk9IxFxfvL1js7LNDOzTjUN+oh4kPKtA6tdDNyZPL4T2DC+ZZmZ2Xjp9Bz93Ih4Lnn8A2BuynynSCpJeljShkYrlLQxmbc0PDzcYVlmZlYr84exUb7pbNqNZ1+Z3MPw3wG3SlrUYD3bIqIYEcWBgYGsZZmZWaLToH9e0tkAyffD9WaKiKHk+/eAB4BlHW7PzMw61GnQ3wNcmTy+Evh87QySzpA0M3l8FrAS+HaH2zMzsw61cnnlduAhYImkZyW9B9gCrJb0OPCW5DmSipJuTxZ9FVCS9E3gK8CWiHDQm5l12bRmM0TEZSmT3lxn3hLw3uTx/wOWZqrOzMwy81/GmpnlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Oca3rjEQBJdwBvBw5HxHlJ22zgM8BC4CDwbyPihTrLXgnckDy9KSLuzF72WKtveYDHD794/PniObPYdc0qAHbsHWLrzgMcOjrCvP4+Nq1ZwoZlg22tr9bBLevHrDvtDun1TBM8cfN6Lr/tIb765JHj7SsXzeauqy5saR3LN+/i+Z+8dPz53NNmsPv61Q33o7pf8mThtfeOaasco6zLvuaDX+LHvxg9/vz0mQUeuXEt0HxsNVp3s+22u+xgf19LY/yGHfvZvvsZRiMoSFy2fD43bWjtHkHnXnvvCeNcwFPj1M/dcrK8Jqoponk8SboI+Cnwyaqg/wvgSERskXQtcEZE/EnNcrOBElAEAtgDvK7eD4RqxWIxSqVSyzuRFsqL58zi6jct5rq79zNy7Fcv1L7pBW6+ZGnqC6FZyFfc+s7zx6x7PLQS9rUhX1Ed9o36JU8Du16AVDQLkmbL1oZ8xekzC/z5hqUNx1ajdTdycMv6jpetV0e1G3bs51MPPz1m/itWLGga9rUhX9FK2Gc5RuMpz68JSXsiolhvWkunbiLiQeBITfPFQOXd+Z3AhjqLrgF2RcSRJNx3AWtb2WY70kL58cMvsnXngTFBPHJslK07D7S9vlr11j0eqt/hp6kX8rXtjfrFWlMv5CvtnYytbkmrY/vuZ+rOn9ZeLe0tYTu/yfbayfqayHKOfm5EPJc8/gEwt848g0D1CHo2aRtD0kZJJUml4eHhDGWd6NDRkbbax2PddnKYyLE1HurVMZryG3xau+XDuHwYG+XzP5lGSkRsi4hiRBQHBgbGoywA5vX3tdU+Huu2k8NEjq3xUK+OglR33rR2y4csQf+8pLMBku+H68wzBMyven5O0jauFs+Zldq+ac0S+qYXTmjvm15g05olba+vVr11j4eVi2Y3nWfuaTOatjfqF2vN6TPrH9/TZxY6GlvdklbHZcvn15k7vb1a2o+CqfQj4mR9TWQJ+nuAK5PHVwKfrzPPTuCtks6QdAbw1qRtXO26ZtWYA1X5cGXDskFuvmQpg/19iPKVCY0+iE1bX62DW9aPWXc7pqm8jtpQb/Wqm93Xrx4T9rVX3TTqlzxJ+zCvlQ/5mi37yI1rx4R95aqbZmOr0bqbbbeTZVsZ4zdtWMoVKxYcfwdfkFr6IBbKH7jWjvNWr7rJcozG08nymqjV6lU324FVwFnA88AHgR3A3wILgO9TvrzyiKQi8L6IeG+y7B8A/zVZ1eaI+Ktm22v3qhszs5Ndo6tuWgr6bnPQm5m1J/PllWZmNnU56M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczy7lMQS/pA5IelfQtSX9YZ/oqST+StC/5+tMs2zMzs/ZN63RBSecBVwEXAC8BX5L0hYh4ombWf4qIt2eo0czMMsjyjv5VwO6I+FlEvAz8I3DJ+JRlZmbjJUvQPwq8UdKZkk4F1gHz68x3oaRvSvoHSf8ybWWSNkoqSSoNDw9nKMvMzKp1fOomIh6T9CHgPuBFYB8wWjPbN4BXRsRPJa0DdgCLU9a3DdgG5ZuDd1qXmZmdKNOHsRHx8Yh4XURcBLwAfLdm+o8j4qfJ4y8C0yWdlWWbZmbWnqxX3cxJvi+gfH7+b2qm/wtJSh5fkGzvh1m2aWZm7en41E3i7yWdCRwDro6Io5LeBxARHwN+D/gPkl4GRoBLI8KnZczMuihT0EfEG+u0fazq8UeBj2bZhpmZZeO/jDUzyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcy/T96SR8ArgIE3BYRt9ZMF/ARyjcO/xnwroj4RpZtdssNO/azffczjEYgoHK3lILErBm/xo9/8avb4y6eM4td16zi8tse4qtPHmlp/QKe2rIeYMxyKxfN5q6rLgTgt67/Ij8f/dW9Wk4piO9sXgfA8s27eP4nLx2fNve0Gey+fvUJtVcM9vexac0SNiwbbHv/CxKXLZ/PTRuWtrTs6lse4PHDLx5/XukfgB17h9i68wCHjo4wr6qmTrbX6BhVlm9lvQuvvXfMug9uWV+3HwsSK37jDA7+cIRDR0c4dUaBn700StRst+I1H/zSCWPl9JkFHrlxbcPtVjQaF82WbaTRmGom7fhN9LJZNBsDjepqdAza1Wg7E9036vSGT5LOAz4NXAC8BHwJeF9EPFE1zzrgP1EO+uXARyJiebN1F4vFKJVKHdU1Hm7YsZ9PPfx0W8ucUtAJL55WCHj9otl1fzisXDSbPQdfqLvOUwriFadOPyHkW6mjb3qBmy9Z2nQApe3/FSsWNA3f2pCvWDxnFle/aTHX3b2fkWO/Cr6+6QVeu+AVdfug0fZaOUaL58yqW0v1eusFZlaV9deGfMXpMwt12ysOblmf+qZhZcp4qV62kdqQr2gl7HfsHap7/FoZU1mWzaLZWG5U19+Vnk49Bu2GfaPtAOPSN5L2RESx3rQsp25eBeyOiJ9FxMvAP1K+b2y1i4FPRtnDQL+kszNssyu2736m7WXaDXkovwNNe9F+9ckjqev8+WjUDflmdYwcG2XrzgNN60rb/1b6pV6wVtq37jxwwmCu1JTWB422l6WWTo5vOyrrTwvzRiFf0WhcZNFoTDWTdvxaGVNZls2i2VhuVNd4HoNG2+lG32QJ+keBN0o6U9KplN+1z6+ZZxCo7ulnk7YxJG2UVJJUGh4ezlBWdqM5vq3toaMjTedJ2/+s/dLKtlvdXpZaJvr45nX8pB2/Vo5rlmWzaDaWu1VXo+10o4aOgz4iHgM+BNxH+bTNPqD5W5X09W2LiGJEFAcGBjpdzbgoSD3d/kSa19/XdJ60/c/aL61su9XtZalloo9vXsdP2vFr5bhmWTaLZmO5W3U12k43ash01U1EfDwiXhcRFwEvAN+tmWWIE9/ln5O0TWqXLa/9xaS5Uwrtv7hF+XxfPSsXzU5d5ykFMfe0GW3X0Te9wKY1S5rWlbb/rfTL4jmzUts3rVlC3/TCmJrS+qDR9rLU0snxbUdl/afPLNSdntZerdG4yKLRmGom7fi1MqayLJtFs7HcqK7xPAaNttONvskU9JLmJN8XUD4//zc1s9wD/HuVrQB+FBHPZdlmN9y0YSlXrFhw/Kd+9UugII15oS6eM4vvbF7X1gCoXHVz11UXjlmu8mHPdzavG/MCrHxotvv61WPCfu5pM/jO5nUn1F4x2N/X8oc7tftfkFr6IBZg1zWrxgRs5aqbDcsGufmSpQz296Gqmu666sK2t9fsGF2xYgG7rlnVdL1pH14e3LK+bj8WJFYumn18H2bNKBzfdu36H7lx7ZixUrnqptF2gYbjotmyjTQaU82kHb9WxlSWZbNoNpYb1dXoGLSr0Xa60TcdX3UDIOmfgDOBY8A1EXG/pPcBRMTHkssrPwqspXx55bsjounlNL2+6sbMbKppdNVNpuvoI+KNddo+VvU4gKuzbMPMzLLxX8aameWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5zLeivBP5L0LUmPStou6ZSa6e+SNCxpX/L13mzlmplZuzoOekmDwPuBYkScBxSAS+vM+pmIOD/5ur3T7ZmZWWeynrqZBvRJmgacChzKXpKZmY2njoM+IoaAvwSeBp4DfhQR99WZ9d9IekTSZyXNT1ufpI2SSpJKw8PDnZZlZmY1spy6OQO4GDgXmAfMknRFzWz/G1gYEa8BdgF3pq0vIrZFRDEiigMDA52WZWZmNbKcunkL8FREDEfEMeBu4PXVM0TEDyPiF8nT24HXZdiemZl1IEvQPw2skHSqJAFvBh6rnkHS2VVP31E73czMJt60TheMiN2SPgt8A3gZ2Atsk/TnQCki7gHeL+kdyfQjwLuyl2xmZu1QRPS6hjGKxWKUSqVel2FmNmVI2hMRxXrT/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznOr7DFICkPwLeCwSwH3h3RPy8avpM4JOU7xX7Q+CdEXEwyzbzaMfeIbbuPMChoyPM6+9j05olbFg22HSaWSc8pk4+HQe9pEHg/cCrI2JE0t8ClwKfqJrtPcALEfGbki4FPgS8M0O9ubNj7xDX3b2fkWOjAAwdHeG6u/cfn542zS9M60Sj8eYxlV9ZT91MA/okTQNOBQ7VTL8YuDN5/FngzcmNxC2xdeeB4y+6ipFjo2zdeaDhNLNOeEydnDoO+ogYAv4SeBp4DvhRRNxXM9sg8Ewy/8vAj4Az661P0kZJJUml4eHhTsuacg4dHUltbzTNrBMeUyenjoNe0hmU37GfC8wDZkm6otP1RcS2iChGRHFgYKDT1Uw58/r7UtsbTTPrhMfUySnLqZu3AE9FxHBEHAPuBl5fM88QMB8gOb3zCsofylpi05ol9E0vnNDWN73ApjVLGk4z64TH1Mkpy1U3TwMrJJ0KjABvBko189wDXAk8BPwe8OWIiAzbzJ3KB2CNroLwFRI2XloZb5Y/ypK7km6kfBXNy8BeypdaXg+UIuIeSacAfw0sA44Al0bE95qtt1gsRqlU+zPDzMzSSNoTEcW60ybjG2wHvZlZexoFvf8y1sws5xz0ZmY556A3M8s5B72ZWc5Nyg9jJQ0D328y21nAP3ehnHZMxppgctblmlo3GeuajDXB5KyrWzW9MiLq/rXppAz6VkgqpX3C3CuTsSaYnHW5ptZNxromY00wOeuaDDX51I2ZWc456M3Mcm4qB/22XhdQx2SsCSZnXa6pdZOxrslYE0zOunpe05Q9R29mZq2Zyu/ozcysBQ56M7OcmxJBL+kOSYclPVrVNlvSLkmPJ9/PmAQ1/ZmkIUn7kq91Xa5pvqSvSPq2pG9J+kDS3rO+alBTr/vqFElfk/TNpK4bk/ZzJe2W9ISkz0iaMQlq+oSkp6r66vxu1VRVW0HSXklfSJ73rJ+a1NXTvpJ0UNL+ZNulpK2nWQVTJOgp33B8bU3btcD9EbEYuD953uuaAD4cEecnX1/sck0vA/85Il4NrACulvRqettXaTVBb/vqF8DvRMRvA+cDayWtoHwD+w9HxG8CL1C+wX2vawLYVNVX+7pYU8UHgMeqnveyn6rV1gW976s3JduuXDvf66yaGkEfEQ9S/n/21apvPH4nsGES1NRTEfFcRHwjefwTyi+AQXrYVw1q6qko+2nydHryFcDvUL6RPXS/r9Jq6ilJ5wDrgduT56KH/ZRW1yTW06yCKRL0KeZGxHPJ4x8Ac3tZTJX/KOmR5NRO139Fq5C0kPINX3YzSfqqpibocV8lv/bvAw4Du4AngaPJjewBnqXLP5Rqa4qISl9tTvrqw5JmdrMm4Fbgj4FfJs/PpMf9lFJXRS/7KoD7JO2RtDFp6/nrbyoH/XHJ7Ql7/s4H+J/AIsq/dj8H/LdeFCHp14G/B/4wIn5cPa1XfVWnpp73VUSMRsT5wDnABcBvdbuGWrU1SToPuI5ybf8KmA38SbfqkfR24HBE7OnWNlvRoK6e9VXiDRHxWuBtlE9TXlQ9sVevv6kc9M9LOhsg+X64x/UQEc8nL9RfArdRDo+ukjSdcqDeFRF3J8097at6NU2GvqqIiKPAV4ALgX6Vb2QP5bAd6nFNa5PTXxERvwD+iu721UrgHZIOAp+mfMrmI/S+n8bUJelTPe4rImIo+X4Y+Fyy/Z5n1VQO+sqNx0m+f76HtQDHD2LF7wKPps07QdsX8HHgsYi4pWpSz/oqraZJ0FcDkvqTx33AasqfH3yF8o3soft9Va+m71SFhCif3+1aX0XEdRFxTkQsBC4FvhwRl9PDfmpQ1xW97CtJsySdVnkMvDXZfu+zKiIm/RewnfKv98conw98D+XzhPcDjwP/B5g9CWr6a2A/8Ajlg3t2l2t6A+VfCx8B9iVf63rZVw1q6nVfvYbyDe0fofxi/NOk/TeArwFPAH8HzJwENX056atHgU8Bv97NvqqqbxXwhV73U5O6etZXSZ98M/n6FnB90t7TrIoI/wsEM7O8m8qnbszMrAUOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/N8s9l//aWz4AAAAASUVORK5CYII=", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "price = new_pumpkins.Price\n", + "month = new_pumpkins.Month\n", + "plt.scatter(price, month)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Pumpkin Price')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAARAElEQVR4nO3de5AlZX3G8e8joKigiIwbVNYVQ6ErwcVaiRW0CgUNikEQKxFTijHJahlUSsvUqknE/LVE0KoYNVkDigloNCoQLt5AxUuCLrrhIhqUQgMiLBGE0goR+OWP0+sMszOzZ8ft0zO830/VqTndfc7phwae6XlPX1JVSJLa8aChA0iSJsvil6TGWPyS1BiLX5IaY/FLUmMsfklqzK5DBxjHPvvsU6tWrRo6hiQtK1dcccVtVTU1e/6yKP5Vq1axadOmoWNI0rKS5IdzzXeoR5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYZXECl3auVesvHDoCN2w4eugIUrMsfjXNX4JqkUM9ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqTG/Fn2S/JF9M8p0k1yR5Yzf/lCQ3JdncPV7YVwZJ0rZ27fGz7wHeXFXfSrIncEWSz3fL3lNVp/W4bknSPHor/qq6Gbi5e35XkmuBx/W1PknSePrc4/+VJKuAQ4DLgcOAk5K8EtjE6K+C2yeRQ9L8Vq2/cOgI3LDh6KEjNKH3L3eT7AF8Eji5qu4EPgA8CVjD6C+C0+d537okm5Js2rJlS98xJakZvRZ/kt0Ylf7ZVfUpgKq6parurar7gA8Ch8713qraWFVrq2rt1NRUnzElqSl9HtUT4Azg2qp694z5+8542XHA1X1lkCRtq88x/sOAVwBXJdnczXsbcEKSNUABNwCv6TGDJGmWPo/q+SqQORZd1Nc6F+IXV5I04pm7ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JakxvxZ9kvyRfTPKdJNckeWM3f+8kn09yXffzUX1lkCRtq889/nuAN1fVauCZwJ8lWQ2sBy6pqgOAS7ppSdKE9Fb8VXVzVX2re34XcC3wOODFwFndy84Cju0rgyRpWxMZ40+yCjgEuBxYUVU3d4t+AqyY5z3rkmxKsmnLli2TiClJTei9+JPsAXwSOLmq7py5rKoKqLneV1Ubq2ptVa2dmprqO6YkNWOs4k/y0CQH7uiHJ9mNUemfXVWf6mbfkmTfbvm+wK07+rmSpMXbbvEn+T1gM/CZbnpNkvPHeF+AM4Brq+rdMxadD5zYPT8ROG8HM0uSfg3j7PGfAhwK3AFQVZuBJ47xvsOAVwDPTbK5e7wQ2AA8L8l1wJHdtCRpQnYd4zW/rKqfjXbgf2XOcfn7vaDqq0DmWXzEGOuVJPVgnOK/JsnLgV2SHAC8Afh6v7EkSX0ZZ6jn9cBTgbuBc4CfASf3mEmS1KPt7vFX1S+At3cPSdIyN85RPZ9PsteM6Ucl+WyvqSRJvRlnqGefqrpj60RV3Q48prdEkqRejVP89yVZuXUiyRMY46geSdLSNM5RPW8Hvprky4wOz3w2sK7XVJKk3ozz5e5nkjyd0aWVYXTNndv6jSVJ6su8Qz1Jntz9fDqwEvhx91jZzZMkLUML7fG/idGQzulzLCvgub0kkiT1at7ir6p1SR4E/EVVfW2CmSRJPVrwqJ6qug/4uwllkSRNwDiHc16S5PjMukqbJGl5Gqf4XwN8Arg7yZ1J7kpy5/beJElamsY5nHPPSQSRJE3GQodzHpDkvCRXJzknyeMmGUyS1I+FhnrOBC4Ajge+Dbx3IokkSb1aaKhnz6r6YPf8XUm+NYlAkqR+LVT8uyc5hOnbJz505nRV+YtAkpahhYr/ZuDdM6Z/MmPaM3claZla6Mzd50wyiCRpMsY5jl+S9ABi8UtSYyx+SWrMOHfgojt56wkzX19Vl/UVSpLUn+0Wf5JTgT8AvgPc280uwOKXpGVonD3+Y4EDq+runrNIkiZgnOK/HtgN2KHiT3Im8CLg1qo6qJt3CvCnwJbuZW+rqot25HMlqW+r1l84dARu2HB0b589TvH/Atic5BJmlH9VvWE77/swo5u4fGTW/PdU1Wk7ElKStPOMU/znd48dUlWXJVm1w4kkSb0a53r8Z+3kdZ6U5JXAJuDNVXX7XC9Kso7Rzd5ZuXLlTo4gSe1a6Hr8H+9+XpXkytmPRa7vA8CTgDWMrgV0+nwvrKqNVbW2qtZOTU0tcnWSpNkW2uN/Y/fzRTtrZVV1y9bnST7I6Hr/kqQJmnePv6pu7p6urqofznwAL1jMypLsO2PyOODqxXyOJGnxxvly9y+T3F1VlwIk+XPgOcDfL/SmJB8FDgf2SXIj8A7g8CRrGJ0AdgOjG7lLkiZonOI/BrggyVuAo4AnAy/e3puq6oQ5Zp+xY/EkSTvbOEf13JbkGOALwBXAS6uqek8mSerFvMWf5C5GQzJbPRjYH3hpkqqqR/QdTpK08y10B649JxlEkjQZ416W+SXAsxj9BfCVqjq3z1CSpP5s90YsSd4PvBa4itHhl69N8r6+g0mS+jHOHv9zgads/UI3yVnANb2mkiT1ZpxbL34fmHmxnP26eZKkZWicPf49gWuTfKObfgawKcn5AFV1TF/hJEk73zjF/1e9p5AkTcw4J3B9GSDJI7j/zdZ/2mMuSVJPxrnZ+jrgr4H/Be4Dwuiwzv37jSZJ6sM4Qz1vAQ6qqtv6DiNJ6t84R/X8gNF9dyVJDwDj7PG/Ffh6ksvZsZutS5KWoHGK/x+ASxmduXtfv3EkSX0bp/h3q6o39Z5EkjQR44zxX5xkXZJ9k+y99dF7MklSL8bZ4996J623zpjn4ZyStEyNcwLXEycRRJI0GeOcwPXKueZX1Ud2fhxJUt/GGep5xoznuwNHAN8CLH5JWobGGep5/czpJHsBH+srkCSpX+Mc1TPbzwHH/SVpmRpnjP/fGB3FA6NfFKuBj/cZSpLUn3HG+E+b8fwe4IdVdWNPeSRJPZu3+JPszugm67/J6HINZ1TVPZMKJknqx0Jj/GcBaxmV/guA0yeSSJLUq4WGelZX1W8BJDkD+MYCr91GkjOBFwG3VtVB3by9gX8BVgE3AL9fVbfveGxJ0mIttMf/y61PFjnE82HgqFnz1gOXVNUBwCXdtCRpghYq/qclubN73AUcvPV5kju398FVdRkw+768L2Y0hET389jFhJYkLd68Qz1VtUsP61tRVTd3z38CrOhhHZKkBSzmBK6doqqK6fMDttFdCnpTkk1btmyZYDJJemCbdPHfkmRfgO7nrfO9sKo2VtXaqlo7NTU1sYCS9EA36eI/Hzixe34icN6E1y9Jzeut+JN8FPh34MAkNyb5Y2AD8Lwk1wFHdtOSpAka55INi1JVJ8yz6Ii+1ilJ2r7BvtyVJA3D4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYXYdYaZIbgLuAe4F7qmrtEDkkqUWDFH/nOVV124Drl6QmOdQjSY0ZqvgL+FySK5KsGyiDJDVpqKGeZ1XVTUkeA3w+yXer6rKZL+h+IawDWLly5RAZJekBaZA9/qq6qft5K/Bp4NA5XrOxqtZW1dqpqalJR5SkB6yJF3+ShyfZc+tz4PnA1ZPOIUmtGmKoZwXw6SRb139OVX1mgByS1KSJF39VXQ88bdLrlSSNeDinJDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGjNI8Sc5Ksn3knw/yfohMkhSqyZe/El2Ad4HvABYDZyQZPWkc0hSq4bY4z8U+H5VXV9V/wd8DHjxADkkqUmpqsmuMHkpcFRV/Uk3/Qrgt6vqpFmvWwes6yYPBL430aDb2ge4beAMS4XbYprbYprbYtpS2RZPqKqp2TN3HSLJOKpqI7Bx6BxbJdlUVWuHzrEUuC2muS2muS2mLfVtMcRQz03AfjOmH9/NkyRNwBDF/03ggCRPTPJg4GXA+QPkkKQmTXyop6ruSXIS8FlgF+DMqrpm0jkWYckMOy0BbotpbotpbotpS3pbTPzLXUnSsDxzV5IaY/FLUmMsfklqzJI9jn9IM442+nFVfSHJy4HfAa4FNlbVLwcNOGFJ9gdewugw3HuB/wLOqao7Bw0maVH8cncOSc5m9EvxYcAdwB7Ap4AjGG2zE4dLN1lJ3gC8CLgMeCHwbUbb5DjgdVX1pcHCSVoUi38OSa6sqoOT7Mro5LLHVtW9SQL8Z1UdPHDEiUlyFbCm++d/GHBRVR2eZCVwXlUdMnDEiUnySOCtwLHAY4ACbgXOAzZU1R2DhVtCklxcVS8YOsekJHkEo/8uHg9cXFXnzFj2/qp63WDh5uFQz9we1A33PJzRXv8jgZ8CDwF2GzLYQHZlNMTzEEZ//VBVP0rS2rb4OHApcHhV/QQgyW8AJ3bLnj9gtolK8vT5FgFrJhhlKfgQcB3wSeDVSY4HXl5VdwPPHDTZPCz+uZ0BfJfRCWZvBz6R5HpG/xI/NmSwAfwj8M0klwPPBk4FSDLF6JdhS1ZV1akzZ3S/AE5N8uqBMg3lm8CXGRX9bHtNNsrgnlRVx3fPz03yduDSJMcMGWohDvXMI8ljAarqx0n2Ao4EflRV3xg02ACSPBV4CnB1VX136DxDSfI54AvAWVV1SzdvBfAq4HlVdeSA8SYqydXAcVV13RzL/ruq9pvjbQ9ISa4FnlpV982Y9yrgLcAeVfWEobLNx+KXxpTkUcB6RvePeEw3+xZG15raUFW3D5Vt0rrLq19VVdtcLj3JsVV17uRTDSPJ3wCfq6ovzJp/FPDeqjpgmGTzs/ilnSDJH1XVh4bOsRS4LaYt1W1h8Us7QZIfVdXKoXMsBW6LaUt1W/jlrjSmJFfOtwhYMcksQ3NbTFuO28Lil8a3AvhdYPZYfoCvTz7OoNwW05bdtrD4pfFdwOgojc2zFyT50sTTDMttMW3ZbQvH+CWpMV6dU5IaY/FLUmMsfglIUkn+ecb0rkm2JLlgkZ+3V5LXzZg+fLGfJe1sFr808nPgoCQP7aafx+jKrIu1F7DkrsoogcUvzXQRcHT3/ATgo1sXJNk7yblJrkzyH0kO7uafkuTMJF9Kcn13/wKADcCTkmxO8q5u3h5J/jXJd5Oc3V3mW5o4i1+a9jHgZUl2Bw4GLp+x7J3At7t7MbwN+MiMZU9mdBz3ocA7ustVrwd+UFVrquot3esOAU4GVgP7A4f1+M8izcvilzpVdSWwitHe/kWzFj8L+KfudZcCj+5uwAFwYVXdXVW3Mboxy3xna36jqm7sruK4uVuXNHGewCXd3/nAacDhwKPHfM/dM57fy/z/X437OqlX7vFL93cm8M6qumrW/K8AfwijI3SA27Zzs/m7gD37CCj9utzjkGaoqhuBv51j0SnAmd0FuX7B6HaLC33O/yT5WnfDkouBC3d2VmmxvGSDJDXGoR5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSY/4fZDFW+b6+4WkAAAAASUVORK5CYII=", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar')\n", + "plt.ylabel(\"Pumpkin Price\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "95726f0b8283628d5356a4f8eb8b4b76", + "translation_date": "2025-09-04T01:36:34+00:00", + "source_file": "2-Regression/2-Data/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ja/2-Regression/3-Linear/README.md b/translations/ja/2-Regression/3-Linear/README.md new file mode 100644 index 000000000..d10264f4f --- /dev/null +++ b/translations/ja/2-Regression/3-Linear/README.md @@ -0,0 +1,381 @@ + +# Scikit-learnを使った回帰モデルの構築: 4つの方法で回帰を学ぶ + +![線形回帰と多項式回帰のインフォグラフィック](../../../../translated_images/linear-polynomial.5523c7cb6576ccab0fecbd0e3505986eb2d191d9378e785f82befcf3a578a6e7.ja.png) +> インフォグラフィック作成者: [Dasani Madipalli](https://twitter.com/dasani_decoded) +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/13/) + +> ### [このレッスンはRでも利用可能です!](../../../../2-Regression/3-Linear/solution/R/lesson_3.html) +### はじめに + +これまでに、回帰とは何かを学び、このレッスン全体で使用するカボチャの価格データセットを用いてサンプルデータを調査しました。また、Matplotlibを使ってデータを可視化しました。 + +これからは、機械学習における回帰についてさらに深く掘り下げていきます。可視化はデータを理解する助けになりますが、機械学習の真の力は「モデルのトレーニング」にあります。モデルは過去のデータを基にトレーニングされ、データの依存関係を自動的に捉え、新しいデータに対して予測を行うことができます。この新しいデータはモデルがこれまで見たことのないものです。 + +このレッスンでは、回帰の2つのタイプ、つまり「基本的な線形回帰」と「多項式回帰」について学びます。これらのモデルを使って、異なる入力データに基づいてカボチャの価格を予測することができます。 + +[![初心者向け機械学習 - 線形回帰の理解](https://img.youtube.com/vi/CRxFT8oTDMg/0.jpg)](https://youtu.be/CRxFT8oTDMg "初心者向け機械学習 - 線形回帰の理解") + +> 🎥 上の画像をクリックすると、線形回帰の概要を説明する短い動画が再生されます。 + +> このカリキュラム全体を通じて、数学の知識がほとんどないことを前提とし、他分野から来た学生にも理解しやすいように努めています。注釈、🧮 数学の説明、図解、その他の学習ツールを活用して理解を深めてください。 + +### 前提条件 + +これまでに、調査対象のカボチャデータの構造について理解しているはずです。このレッスンの_notebook.ipynb_ファイルには、事前にロードされ、クリーニングされたデータが含まれています。このファイルでは、カボチャの価格がブッシェル単位で新しいデータフレームに表示されています。Visual Studio Codeのカーネルでこれらのノートブックを実行できることを確認してください。 + +### 準備 + +データをロードする目的を思い出してください。 + +- カボチャを購入するのに最適な時期はいつか? +- ミニチュアカボチャのケースの価格はどれくらいか? +- 半ブッシェルバスケットで購入するべきか、それとも1 1/9ブッシェルボックスで購入するべきか? + +このデータをさらに掘り下げてみましょう。 + +前のレッスンでは、Pandasデータフレームを作成し、元のデータセットの一部を標準化してブッシェル単位の価格を取得しました。しかし、その結果、約400のデータポイントしか得られず、秋の月に限定されました。 + +このレッスンの付属ノートブックに事前にロードされたデータを確認してください。このデータは事前にロードされ、初期の散布図が月ごとのデータを示すようにプロットされています。データをさらにクリーニングすることで、データの性質についてもう少し詳細を得られるかもしれません。 + +## 線形回帰線 + +レッスン1で学んだように、線形回帰の目的は次のような線をプロットすることです: + +- **変数間の関係を示す**。変数間の関係を明らかにする +- **予測を行う**。新しいデータポイントがその線に対してどこに位置するかを正確に予測する + +**最小二乗回帰**では、このタイプの線を描くことが一般的です。「最小二乗」とは、回帰線の周囲にあるすべてのデータポイントを二乗して合計することを意味します。この最終的な合計が可能な限り小さいことが理想的です。なぜなら、エラーの数を少なくしたいからです。 + +これは、すべてのデータポイントからの累積距離が最小になるような線をモデル化したいからです。また、方向ではなく大きさに関心があるため、項を二乗してから加算します。 + +> **🧮 数学を見せて** +> +> この線、つまり「最適な線」は[方程式](https://en.wikipedia.org/wiki/Simple_linear_regression)で表すことができます: +> +> ``` +> Y = a + bX +> ``` +> +> `X`は「説明変数」、`Y`は「従属変数」です。線の傾きは`b`で、`a`はY切片を指します。これは`X = 0`のときの`Y`の値です。 +> +>![傾きを計算する](../../../../translated_images/slope.f3c9d5910ddbfcf9096eb5564254ba22c9a32d7acd7694cab905d29ad8261db3.ja.png) +> +> まず、傾き`b`を計算します。インフォグラフィック作成者: [Jen Looper](https://twitter.com/jenlooper) +> +> 言い換えると、カボチャデータの元の質問「月ごとにブッシェル単位でカボチャの価格を予測する」に関連して、`X`は価格を指し、`Y`は販売月を指します。 +> +>![方程式を完成させる](../../../../translated_images/calculation.a209813050a1ddb141cdc4bc56f3af31e67157ed499e16a2ecf9837542704c94.ja.png) +> +> `Y`の値を計算します。もし約4ドルを支払っているなら、それは4月に違いありません!インフォグラフィック作成者: [Jen Looper](https://twitter.com/jenlooper) +> +> この線を計算する数学は、線の傾きを示す必要があり、それはまた切片、つまり`X = 0`のときの`Y`の位置に依存します。 +> +> これらの値の計算方法は[Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html)のウェブサイトで確認できます。また、[この最小二乗計算機](https://www.mathsisfun.com/data/least-squares-calculator.html)を訪れて、数値の値が線にどのように影響するかを確認してください。 + +## 相関 + +もう一つ理解すべき用語は、与えられたXとY変数間の**相関係数**です。散布図を使えば、この係数をすぐに視覚化できます。データポイントがきれいな線状に散らばっているプロットは高い相関を持ちますが、データポイントがXとYの間でどこにでも散らばっているプロットは低い相関を持ちます。 + +良い線形回帰モデルは、最小二乗回帰法を使用して回帰線を描いた場合に、相関係数が高い(1に近い)ものです。 + +✅ このレッスンに付属するノートブックを実行し、月と価格の散布図を確認してください。カボチャ販売の月と価格のデータは、散布図の視覚的解釈によると高い相関を持っているように見えますか?年の*日数*(つまり年初からの日数)を使用してより細かい測定を行った場合、結果は変わりますか? + +以下のコードでは、データをクリーニングし、次のようなデータフレーム`new_pumpkins`を取得したと仮定します: + +ID | Month | DayOfYear | Variety | City | Package | Low Price | High Price | Price +---|-------|-----------|---------|------|---------|-----------|------------|------- +70 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364 +71 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636 +72 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636 +73 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 17.0 | 17.0 | 15.454545 +74 | 10 | 281 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364 + +> データをクリーニングするコードは[`notebook.ipynb`](notebook.ipynb)にあります。前のレッスンと同じクリーニング手順を実行し、次の式を使用して`DayOfYear`列を計算しました: + +```python +day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days) +``` + +線形回帰の数学を理解したところで、カボチャの価格を予測するための回帰モデルを作成してみましょう。例えば、ホリデー用のカボチャ畑を運営する人が、畑用のカボチャパッケージの購入を最適化するためにこの情報を必要とするかもしれません。 + +## 相関を探る + +[![初心者向け機械学習 - 相関を探る: 線形回帰の鍵](https://img.youtube.com/vi/uoRq-lW2eQo/0.jpg)](https://youtu.be/uoRq-lW2eQo "初心者向け機械学習 - 相関を探る: 線形回帰の鍵") + +> 🎥 上の画像をクリックすると、相関の概要を説明する短い動画が再生されます。 + +前のレッスンで、異なる月の平均価格が次のように見えることを確認しました: + +月ごとの平均価格 + +これにより、何らかの相関がある可能性が示唆されます。`Month`と`Price`、または`DayOfYear`と`Price`の関係を予測する線形回帰モデルをトレーニングしてみましょう。以下は後者の関係を示す散布図です: + +価格と年の日数の散布図 + +`corr`関数を使って相関を確認してみましょう: + +```python +print(new_pumpkins['Month'].corr(new_pumpkins['Price'])) +print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price'])) +``` + +相関はかなり小さいようです。`Month`では-0.15、`DayOfMonth`では-0.17ですが、別の重要な関係がある可能性があります。価格が異なるカボチャの品種に対応する異なるクラスターがあるように見えます。この仮説を確認するために、各カボチャカテゴリーを異なる色でプロットしてみましょう。`scatter`プロット関数に`ax`パラメータを渡すことで、すべてのポイントを同じグラフにプロットできます: + +```python +ax=None +colors = ['red','blue','green','yellow'] +for i,var in enumerate(new_pumpkins['Variety'].unique()): + df = new_pumpkins[new_pumpkins['Variety']==var] + ax = df.plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var) +``` + +価格と年の日数の散布図(色分け) + +調査結果は、販売日よりも品種が価格に大きな影響を与えることを示唆しています。これを棒グラフで確認できます: + +```python +new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar') +``` + +品種ごとの価格の棒グラフ + +ここでは、特定のカボチャ品種「パイタイプ」に焦点を当て、日付が価格に与える影響を確認してみましょう: + +```python +pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE'] +pie_pumpkins.plot.scatter('DayOfYear','Price') +``` +価格と年の日数の散布図(パイタイプ) + +`corr`関数を使って`Price`と`DayOfYear`の相関を計算すると、`-0.27`程度の値が得られます。これは予測モデルをトレーニングする価値があることを意味します。 + +> 線形回帰モデルをトレーニングする前に、データがクリーンであることを確認することが重要です。線形回帰は欠損値に対してうまく機能しないため、空のセルをすべて削除するのが理にかなっています: + +```python +pie_pumpkins.dropna(inplace=True) +pie_pumpkins.info() +``` + +別のアプローチとしては、空の値を対応する列の平均値で埋める方法があります。 + +## 単純線形回帰 + +[![初心者向け機械学習 - Scikit-learnを使った線形回帰と多項式回帰](https://img.youtube.com/vi/e4c_UP2fSjg/0.jpg)](https://youtu.be/e4c_UP2fSjg "初心者向け機械学習 - Scikit-learnを使った線形回帰と多項式回帰") + +> 🎥 上の画像をクリックすると、線形回帰と多項式回帰の概要を説明する短い動画が再生されます。 + +線形回帰モデルをトレーニングするために、**Scikit-learn**ライブラリを使用します。 + +```python +from sklearn.linear_model import LinearRegression +from sklearn.metrics import mean_squared_error +from sklearn.model_selection import train_test_split +``` + +まず、入力値(特徴量)と期待される出力(ラベル)を別々のnumpy配列に分けます: + +```python +X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1) +y = pie_pumpkins['Price'] +``` + +> 入力データに対して`reshape`を実行する必要があることに注意してください。これは、線形回帰パッケージが正しく理解するためです。線形回帰は入力として2次元配列を期待します。この配列の各行は入力特徴量のベクトルに対応します。今回の場合、入力が1つしかないため、形状がN×1の配列が必要です(Nはデータセットのサイズ)。 + +次に、データをトレーニングデータセットとテストデータセットに分割します。これにより、トレーニング後にモデルを検証できます: + +```python +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) +``` + +最後に、実際の線形回帰モデルのトレーニングはわずか2行のコードで完了します。`LinearRegression`オブジェクトを定義し、`fit`メソッドを使ってデータに適合させます: + +```python +lin_reg = LinearRegression() +lin_reg.fit(X_train,y_train) +``` + +`fit`後の`LinearRegression`オブジェクトには、回帰のすべての係数が含まれており、`.coef_`プロパティを使ってアクセスできます。今回の場合、係数は1つだけで、約`-0.017`になるはずです。これは、価格が時間とともに少しずつ下がることを示していますが、その変化は非常に小さく、1日あたり約2セント程度です。また、回帰線がY軸と交差する点を`lin_reg.intercept_`を使ってアクセスできます。今回の場合、約`21`になるはずで、これは年初の価格を示しています。 + +モデルの精度を確認するために、テストデータセットで価格を予測し、予測値が期待値にどれだけ近いかを測定します。これは平均二乗誤差(MSE)メトリクスを使って行います。MSEは、期待値と予測値のすべての差の二乗の平均です。 + +```python +pred = lin_reg.predict(X_test) + +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') +``` +私たちのエラーは約2つのポイントに集中しており、これは約17%です。あまり良くありません。モデルの品質を示すもう1つの指標は**決定係数**で、以下のように取得できます: + +```python +score = lin_reg.score(X_train,y_train) +print('Model determination: ', score) +``` +値が0の場合、モデルは入力データを考慮せず、*最悪の線形予測器*として機能します。これは単に結果の平均値を示します。値が1の場合、すべての期待される出力を完全に予測できることを意味します。私たちの場合、決定係数は約0.06であり、非常に低い値です。 + +また、テストデータと回帰線をプロットして、私たちのケースで回帰がどのように機能するかをよりよく理解することができます: + +```python +plt.scatter(X_test,y_test) +plt.plot(X_test,pred) +``` + +線形回帰 + +## 多項式回帰 + +線形回帰のもう一つのタイプは多項式回帰です。変数間に線形関係がある場合もありますが(例えば、カボチャの体積が大きいほど価格が高い)、これらの関係が平面や直線としてプロットできない場合もあります。 + +✅ [こちら](https://online.stat.psu.edu/stat501/lesson/9/9.8)に多項式回帰が適用できるデータの例があります。 + +日付と価格の関係をもう一度見てみましょう。この散布図は必ずしも直線で分析されるべきだと思いますか?価格は変動する可能性がありますよね?この場合、多項式回帰を試すことができます。 + +✅ 多項式は、1つ以上の変数と係数を含む数学的表現です。 + +多項式回帰は、非線形データにより適した曲線を作成します。私たちの場合、入力データに`DayOfYear`変数の二乗を含めることで、年内の特定の点で最小値を持つ放物線をデータに適合させることができます。 + +Scikit-learnには、データ処理の異なるステップを組み合わせるための便利な[パイプラインAPI](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html?highlight=pipeline#sklearn.pipeline.make_pipeline)が含まれています。**パイプライン**は**推定器**のチェーンです。私たちの場合、まずモデルに多項式特徴を追加し、その後回帰をトレーニングするパイプラインを作成します: + +```python +from sklearn.preprocessing import PolynomialFeatures +from sklearn.pipeline import make_pipeline + +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) + +pipeline.fit(X_train,y_train) +``` + +`PolynomialFeatures(2)`を使用することで、入力データからすべての二次多項式を含めることができます。私たちの場合、これは単に`DayOfYear`2を意味しますが、2つの入力変数XとYがある場合、これによりX2、XY、Y2が追加されます。必要に応じて、より高次の多項式を使用することもできます。 + +パイプラインは元の`LinearRegression`オブジェクトと同じ方法で使用できます。つまり、パイプラインを`fit`し、その後`predict`を使用して予測結果を取得できます。以下はテストデータと近似曲線を示すグラフです: + +多項式回帰 + +多項式回帰を使用することで、MSEをわずかに低くし、決定係数をわずかに高くすることができますが、大きな改善はありません。他の特徴を考慮する必要があります! + +> 最低のカボチャ価格がハロウィンの周辺で観察されることがわかります。これをどのように説明しますか? + +🎃 おめでとうございます!パイカボチャの価格を予測するモデルを作成しました。同じ手順をすべてのカボチャの種類に対して繰り返すことができますが、それは面倒です。次に、モデルにカボチャの種類を考慮する方法を学びましょう! + +## カテゴリカル特徴 + +理想的な世界では、同じモデルを使用して異なるカボチャの種類の価格を予測できるようにしたいです。しかし、`Variety`列は`Month`のような列とは異なり、非数値の値を含んでいます。このような列は**カテゴリカル**と呼ばれます。 + +[![初心者向けML - 線形回帰でカテゴリカル特徴を予測](https://img.youtube.com/vi/DYGliioIAE0/0.jpg)](https://youtu.be/DYGliioIAE0 "初心者向けML - 線形回帰でカテゴリカル特徴を予測") + +> 🎥 上の画像をクリックすると、カテゴリカル特徴の使用に関する短いビデオ概要が表示されます。 + +以下は、種類ごとの平均価格がどのように依存しているかを示しています: + +種類ごとの平均価格 + +種類を考慮するためには、まずそれを数値形式に変換する必要があります。これを**エンコード**と呼びます。いくつかの方法があります: + +* 単純な**数値エンコード**は、異なる種類のテーブルを作成し、そのテーブル内のインデックスで種類名を置き換えます。これは線形回帰には最適ではありません。なぜなら、線形回帰はインデックスの実際の数値を結果に加え、ある係数で掛け算するからです。この場合、インデックス番号と価格の関係は明らかに非線形であり、特定の順序でインデックスを並べても同じです。 +* **ワンホットエンコード**は、`Variety`列を4つの異なる列に置き換えます。それぞれの列は、対応する行が特定の種類である場合に`1`を含み、それ以外の場合は`0`を含みます。これにより、線形回帰ではカボチャの種類ごとに1つの係数が追加され、その種類の「開始価格」(または「追加価格」)を表します。 + +以下のコードは、種類をワンホットエンコードする方法を示しています: + +```python +pd.get_dummies(new_pumpkins['Variety']) +``` + + ID | FAIRYTALE | MINIATURE | MIXED HEIRLOOM VARIETIES | PIE TYPE +----|-----------|-----------|--------------------------|---------- +70 | 0 | 0 | 0 | 1 +71 | 0 | 0 | 0 | 1 +... | ... | ... | ... | ... +1738 | 0 | 1 | 0 | 0 +1739 | 0 | 1 | 0 | 0 +1740 | 0 | 1 | 0 | 0 +1741 | 0 | 1 | 0 | 0 +1742 | 0 | 1 | 0 | 0 + +ワンホットエンコードされた種類を入力として線形回帰をトレーニングするには、`X`と`y`データを正しく初期化するだけです: + +```python +X = pd.get_dummies(new_pumpkins['Variety']) +y = new_pumpkins['Price'] +``` + +残りのコードは、上記で使用した線形回帰をトレーニングするコードと同じです。これを試してみると、平均二乗誤差はほぼ同じですが、決定係数が大幅に高くなり(約77%)、より正確な予測が可能になります。さらに正確な予測を得るためには、`Month`や`DayOfYear`などの数値特徴とともに、より多くのカテゴリカル特徴を考慮する必要があります。1つの大きな特徴配列を作成するには、`join`を使用できます: + +```python +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] +``` + +ここでは`City`や`Package`タイプも考慮しており、これによりMSEは2.84(10%)、決定係数は0.94になります! + +## すべてをまとめる + +最良のモデルを作成するには、上記の例からの結合データ(ワンホットエンコードされたカテゴリカル特徴+数値特徴)を多項式回帰と組み合わせて使用します。以下は完全なコードです: + +```python +# set up training data +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] + +# make train-test split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + +# setup and train the pipeline +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) +pipeline.fit(X_train,y_train) + +# predict results for test data +pred = pipeline.predict(X_test) + +# calculate MSE and determination +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') + +score = pipeline.score(X_train,y_train) +print('Model determination: ', score) +``` + +これにより、ほぼ97%の決定係数とMSE=2.23(約8%の予測誤差)を得ることができます。 + +| モデル | MSE | 決定係数 | +|-------|-----|---------------| +| `DayOfYear` 線形 | 2.77 (17.2%) | 0.07 | +| `DayOfYear` 多項式 | 2.73 (17.0%) | 0.08 | +| `Variety` 線形 | 5.24 (19.7%) | 0.77 | +| すべての特徴 線形 | 2.84 (10.5%) | 0.94 | +| すべての特徴 多項式 | 2.23 (8.25%) | 0.97 | + +🏆 素晴らしい!1つのレッスンで4つの回帰モデルを作成し、モデルの品質を97%まで向上させました。回帰の最終セクションでは、カテゴリを決定するためのロジスティック回帰について学びます。 + +--- +## 🚀チャレンジ + +このノートブックでいくつかの異なる変数をテストし、相関がモデルの精度にどのように対応するかを確認してください。 + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/) + +## 復習と自己学習 + +このレッスンでは線形回帰について学びました。他にも重要な回帰の種類があります。ステップワイズ、リッジ、ラッソ、エラスティックネット技術について読んでみてください。さらに学ぶための良いコースは[スタンフォード統計学習コース](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning)です。 + +## 課題 + +[モデルを構築する](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/2-Regression/3-Linear/assignment.md b/translations/ja/2-Regression/3-Linear/assignment.md new file mode 100644 index 000000000..3d4e55dc0 --- /dev/null +++ b/translations/ja/2-Regression/3-Linear/assignment.md @@ -0,0 +1,25 @@ + +# 回帰モデルを作成する + +## 手順 + +このレッスンでは、線形回帰と多項式回帰の両方を使用してモデルを構築する方法が示されました。この知識を活用して、データセットを見つけるか、Scikit-learnの組み込みデータセットの1つを使用して新しいモデルを構築してください。なぜその手法を選んだのかをノートブックで説明し、モデルの精度を示してください。もし精度が低い場合は、その理由を説明してください。 + +## 評価基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | ------------------------------------------------------------ | -------------------------- | ------------------------------- | +| | 完全なノートブックを提示し、解決策が十分に文書化されている | 解決策が不完全である | 解決策に欠陥やバグがある | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/2-Regression/3-Linear/notebook.ipynb b/translations/ja/2-Regression/3-Linear/notebook.ipynb new file mode 100644 index 000000000..679bfc203 --- /dev/null +++ b/translations/ja/2-Regression/3-Linear/notebook.ipynb @@ -0,0 +1,128 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## かぼちゃの価格設定\n", + "\n", + "必要なライブラリとデータセットを読み込みます。データを以下の条件を満たすデータフレームに変換します:\n", + "\n", + "- ブッシェル単位で価格が設定されているかぼちゃのみを取得する\n", + "- 日付を月に変換する\n", + "- 高値と安値の平均を計算して価格を求める\n", + "- 価格をブッシェル単位の数量に基づいた価格に変換する\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "基本的な散布図は、8月から12月までの月データしかないことを思い出させてくれます。結論を線形的に導き出すには、もっと多くのデータが必要かもしれません。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.scatter('Month','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "plt.scatter('DayOfYear','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "b032d371c75279373507f003439a577e", + "translation_date": "2025-09-04T01:01:40+00:00", + "source_file": "2-Regression/3-Linear/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ja/2-Regression/3-Linear/solution/Julia/README.md b/translations/ja/2-Regression/3-Linear/solution/Julia/README.md new file mode 100644 index 000000000..655b6bd34 --- /dev/null +++ b/translations/ja/2-Regression/3-Linear/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb b/translations/ja/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb new file mode 100644 index 000000000..68bd34a88 --- /dev/null +++ b/translations/ja/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb @@ -0,0 +1,1086 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_3-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "5015d65d61ba75a223bfc56c273aa174", + "translation_date": "2025-09-04T01:08:35+00:00", + "source_file": "2-Regression/3-Linear/solution/R/lesson_3-R.ipynb", + "language_code": "ja" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "EgQw8osnsUV-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## かぼちゃの価格設定における線形回帰と多項式回帰 - レッスン3\n", + "

                                          \n", + " \n", + "

                                          Dasani Madipalliによるインフォグラフィック
                                          \n", + "\n", + "\n", + "\n", + "\n", + "#### はじめに\n", + "\n", + "これまでに、かぼちゃの価格設定データセットから収集したサンプルデータを使って回帰分析が何であるかを探求しました。また、それを`ggplot2`を使って視覚化しました。💪\n", + "\n", + "これからは、機械学習における回帰分析をさらに深く掘り下げていきます。このレッスンでは、*基本的な線形回帰*と*多項式回帰*の2種類の回帰分析について、これらの手法の基礎となる数学も含めて学びます。\n", + "\n", + "> このカリキュラム全体を通じて、数学の知識が最小限であることを前提とし、他分野から来た学生にも理解しやすいようにしています。注釈、🧮 数学のヒント、図解、その他の学習ツールを活用して理解を助けます。\n", + "\n", + "#### 準備\n", + "\n", + "改めて、このデータを読み込む目的は、データに基づいて質問をすることです。\n", + "\n", + "- かぼちゃを買うのに最適な時期はいつですか?\n", + "\n", + "- ミニチュアかぼちゃのケースの価格はどれくらいですか?\n", + "\n", + "- 半バスケットで買うべきか、それとも1 1/9バスケットの箱で買うべきか?このデータをさらに掘り下げてみましょう。\n", + "\n", + "前のレッスンでは、`tibble`(データフレームの現代的な再構築)を作成し、元のデータセットの一部を標準化してバスケット単位で価格を設定しました。しかし、その方法では約400のデータポイントしか収集できず、秋の月に限定されてしまいました。データをさらにクリーニングすることで、データの性質についてもう少し詳しく知ることができるかもしれませんね。どうなるでしょうか... 🕵️‍♀️\n", + "\n", + "このタスクでは、以下のパッケージが必要です:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/)は、データサイエンスをより速く、簡単に、そして楽しくするために設計された[Rパッケージのコレクション](https://www.tidyverse.org/packages)です。\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/)フレームワークは、モデリングと機械学習のための[Rパッケージのコレクション](https://www.tidymodels.org/packages/)です。\n", + "\n", + "- `janitor`: [janitorパッケージ](https://github.com/sfirke/janitor)は、汚れたデータを調査しクリーニングするためのシンプルなツールを提供します。\n", + "\n", + "- `corrplot`: [corrplotパッケージ](https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html)は、変数間の隠れたパターンを検出するのに役立つ自動変数並べ替えをサポートする相関行列の視覚的探索ツールを提供します。\n", + "\n", + "以下のコマンドでこれらをインストールできます:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"corrplot\"))`\n", + "\n", + "以下のスクリプトは、このモジュールを完了するために必要なパッケージがインストールされているかを確認し、欠けている場合はインストールします。\n" + ], + "metadata": { + "id": "WqQPS1OAsg3H" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, corrplot)" + ], + "outputs": [], + "metadata": { + "id": "tA4C2WN3skCf", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "c06cd805-5534-4edc-f72b-d0d1dab96ac0" + } + }, + { + "cell_type": "markdown", + "source": [ + "後でこれらの素晴らしいパッケージを読み込み、現在のRセッションで利用可能にします。(これは単なる例示のためです。`pacman::p_load()`はすでにこれを行っています)\n", + "\n", + "## 1. 線形回帰直線\n", + "\n", + "レッスン1で学んだように、線形回帰の目的は、以下のために*最適な直線*をプロットできるようにすることです:\n", + "\n", + "- **変数間の関係を示す**。変数間の関係を明らかにする。\n", + "\n", + "- **予測を行う**。新しいデータポイントがその直線に対してどこに位置するかを正確に予測する。\n", + "\n", + "この種の直線を描くために、**最小二乗回帰**と呼ばれる統計的手法を使用します。`最小二乗`という用語は、回帰直線の周囲にあるすべてのデータポイントを二乗して合計することを意味します。理想的には、その最終的な合計が可能な限り小さいことが望ましいです。なぜなら、エラーの数を少なくしたい、つまり`最小二乗`にしたいからです。このようにして、最適な直線は、二乗誤差の合計が最も小さい値を与える直線となります。そのため、この手法は*最小二乗回帰*と呼ばれます。\n", + "\n", + "これは、すべてのデータポイントからの累積距離が最小となる直線をモデル化したいからです。また、加算する前に項を二乗するのは、その方向ではなく大きさに関心があるためです。\n", + "\n", + "> **🧮 数学を見てみよう**\n", + ">\n", + "> この直線、つまり*最適な直線*は[次の方程式](https://en.wikipedia.org/wiki/Simple_linear_regression)で表されます:\n", + ">\n", + "> Y = a + bX\n", + ">\n", + "> `X`は`説明変数`または`予測子`を指します。`Y`は`従属変数`または`結果`を指します。この直線の傾きは`b`であり、`a`はY切片を指します。これは、`X = 0`のときの`Y`の値を意味します。\n", + ">\n", + "\n", + "> ![](../../../../../../2-Regression/3-Linear/solution/images/slope.png \"slope = $y/x$\")\n", + " ジェン・ルーパーによるインフォグラフィック\n", + ">\n", + "> まず、傾き`b`を計算します。\n", + ">\n", + "> 言い換えると、かぼちゃデータの元の質問「月ごとに1ブッシェルあたりのかぼちゃの価格を予測する」に関連して、`X`は価格を指し、`Y`は販売月を指します。\n", + ">\n", + "> ![](../../../../../../translated_images/calculation.989aa7822020d9d0ba9fc781f1ab5192f3421be86ebb88026528aef33c37b0d8.ja.png)\n", + " ジェン・ルーパーによるインフォグラフィック\n", + "> \n", + "> Yの値を計算します。もし約\\$4を支払っているなら、それは4月に違いありません!\n", + ">\n", + "> この直線を計算する数学は、直線の傾きを示す必要があります。これはまた、切片、つまり`X = 0`のときの`Y`の位置にも依存します。\n", + ">\n", + "> これらの値の計算方法は、[Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html)のウェブサイトで確認できます。また、[この最小二乗計算機](https://www.mathsisfun.com/data/least-squares-calculator.html)を訪れて、数値の値が直線にどのように影響するかを観察してください。\n", + "\n", + "怖くないですよね?🤓\n", + "\n", + "#### 相関\n", + "\n", + "もう1つ理解すべき用語は、与えられたXとY変数間の**相関係数**です。散布図を使用すると、この係数をすぐに視覚化できます。データポイントがきれいな直線に散らばっているプロットは高い相関を持ちますが、データポイントがXとYの間で無秩序に散らばっているプロットは低い相関を持ちます。\n", + "\n", + "良い線形回帰モデルは、最小二乗回帰法を使用して回帰直線を引いた際に、相関係数が高い(1に近い)ものです。\n" + ], + "metadata": { + "id": "cdX5FRpvsoP5" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **2. データとのダンス: モデリングに使用するデータフレームの作成**\n", + "\n", + "

                                          \n", + " \n", + "

                                          イラスト: @allison_horst
                                          \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "WdUKXk7Bs8-V" + } + }, + { + "cell_type": "markdown", + "source": [ + "必要なライブラリとデータセットを読み込みます。データを以下の条件を満たすデータフレームに変換します:\n", + "\n", + "- バスケット単位で価格が設定されているカボチャのみを取得する\n", + "\n", + "- 日付を月に変換する\n", + "\n", + "- 高値と安値の平均を計算して価格を求める\n", + "\n", + "- 価格をバスケット単位の数量に基づいた価格に変換する\n", + "\n", + "> これらのステップは[前回のレッスン](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/2-Data/solution/lesson_2-R.ipynb)で取り上げました。\n" + ], + "metadata": { + "id": "fMCtu2G2s-p8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "library(lubridate)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "ryMVZEEPtERn" + } + }, + { + "cell_type": "markdown", + "source": [ + "冒険心にあふれて、汚れたデータを調査しクリーニングするためのシンプルな関数を提供する[`janitorパッケージ`](../../../../../../2-Regression/3-Linear/solution/R/github.com/sfirke/janitor)を探ってみましょう。例えば、データの列名を見てみましょう:\n" + ], + "metadata": { + "id": "xcNxM70EtJjb" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "5XtpaIigtPfW" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤔 私たちはもっと良くできます。これらの列名を [snake_case](https://en.wikipedia.org/wiki/Snake_case) 規約に変換して `janitor::clean_names` を使用して `friendR` にしましょう。この関数について詳しく知るには: `?clean_names`\n" + ], + "metadata": { + "id": "IbIqrMINtSHe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Clean names to the snake_case convention\n", + "pumpkins <- pumpkins %>% \n", + " clean_names(case = \"snake\")\n", + "\n", + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "a2uYvclYtWvX" + } + }, + { + "cell_type": "markdown", + "source": [ + "とてもきれいに整理されましたね 🧹!では、前回のレッスンのように `dplyr` を使ってデータとダンスしましょう! 💃\n" + ], + "metadata": { + "id": "HfhnuzDDtaDd" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(variety, city_name, package, low_price, high_price, date)\n", + "\n", + "\n", + "\n", + "# Extract the month from the dates to a new column\n", + "pumpkins <- pumpkins %>%\n", + " mutate(date = mdy(date),\n", + " month = month(date)) %>% \n", + " select(-date)\n", + "\n", + "\n", + "\n", + "# Create a new column for average Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(price = (low_price + high_price)/2)\n", + "\n", + "\n", + "# Retain only pumpkins with the string \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(string = package, pattern = \"bushel\"))\n", + "\n", + "\n", + "# Normalize the pricing so that you show the pricing per bushel, not per 1 1/9 or 1/2 bushel\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(price = case_when(\n", + " str_detect(package, \"1 1/9\") ~ price/(1.1),\n", + " str_detect(package, \"1/2\") ~ price*2,\n", + " TRUE ~ price))\n", + "\n", + "# Relocate column positions\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(month, .before = variety)\n", + "\n", + "\n", + "# Display the first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "X0wU3gQvtd9f" + } + }, + { + "cell_type": "markdown", + "source": [ + "よくできました!👌 これで、新しい回帰モデルを構築するためのクリーンで整然としたデータセットが手に入りましたね!\n", + "\n", + "散布図を試してみますか?\n" + ], + "metadata": { + "id": "UpaIwaxqth82" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set theme\n", + "theme_set(theme_light())\n", + "\n", + "# Make a scatter plot of month and price\n", + "new_pumpkins %>% \n", + " ggplot(mapping = aes(x = month, y = price)) +\n", + " geom_point(size = 1.6)\n" + ], + "outputs": [], + "metadata": { + "id": "DXgU-j37tl5K" + } + }, + { + "cell_type": "markdown", + "source": [ + "散布図を見ると、8月から12月までの月別データしかないことを思い出させてくれます。線形的に結論を導き出すには、もっと多くのデータが必要かもしれません。\n", + "\n", + "もう一度、モデリングデータを見てみましょう:\n" + ], + "metadata": { + "id": "Ve64wVbwtobI" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Display first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "HFQX2ng1tuSJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "もし、`city` や `package` のような文字型の列を基にしてカボチャの `price` を予測したい場合はどうすればよいでしょうか? あるいはもっと簡単に言えば、例えば `package` と `price` の間の相関(どちらも数値である必要があります)を見つけるにはどうすればよいでしょうか? 🤷🤷\n", + "\n", + "機械学習モデルは、テキスト値よりも数値の特徴量を使う方が効果的に動作するため、通常はカテゴリカルな特徴量を数値表現に変換する必要があります。\n", + "\n", + "つまり、モデルが効果的に利用できるように予測変数を再フォーマットする方法を見つける必要があります。このプロセスは `特徴量エンジニアリング` として知られています。\n" + ], + "metadata": { + "id": "7hsHoxsStyjJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. モデリングのためのデータ前処理 - recipes 👩‍🍳👨‍🍳\n", + "\n", + "予測値をモデルが効果的に利用できるように再構成する活動は、`特徴量エンジニアリング`と呼ばれています。\n", + "\n", + "異なるモデルには異なる前処理の要件があります。例えば、最小二乗法では、月、品種、都市名などの`カテゴリ変数のエンコード`が必要です。これは単に、`カテゴリ値`を持つ列を、元の列の代わりとなる1つ以上の`数値列`に`変換`することを意味します。\n", + "\n", + "例えば、データに以下のカテゴリ特徴量が含まれているとします:\n", + "\n", + "| city |\n", + "|:-------:|\n", + "| Denver |\n", + "| Nairobi |\n", + "| Tokyo |\n", + "\n", + "これに*順序エンコーディング*を適用して、各カテゴリにユニークな整数値を代入すると、次のようになります:\n", + "\n", + "| city |\n", + "|:----:|\n", + "| 0 |\n", + "| 1 |\n", + "| 2 |\n", + "\n", + "これをデータに適用していきます!\n", + "\n", + "このセクションでは、もう一つの素晴らしいTidymodelsパッケージ:[recipes](https://tidymodels.github.io/recipes/)を探求します。このパッケージは、モデルをトレーニングする**前**にデータを前処理するために設計されています。レシピの中心的な役割は、データセットをモデリングに適した状態にするためにどのステップを適用すべきかを定義するオブジェクトです。\n", + "\n", + "では、予測列のすべての観測値にユニークな整数を代入することで、モデリングの準備をするレシピを作成してみましょう:\n" + ], + "metadata": { + "id": "AD5kQbcvt3Xl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\n", + "pumpkins_recipe <- recipe(price ~ ., data = new_pumpkins) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "# Print out the recipe\n", + "pumpkins_recipe" + ], + "outputs": [], + "metadata": { + "id": "BNaFKXfRt9TU" + } + }, + { + "cell_type": "markdown", + "source": [ + "素晴らしいですね!👏 私たちは、結果(価格)とそれに対応する予測因子を指定し、すべての予測因子の列を整数のセットにエンコードする最初のレシピを作成しました 🙌!では、これを簡単に分解してみましょう:\n", + "\n", + "- `recipe()`への呼び出しで式を使用すると、`new_pumpkins`データを参照として変数の*役割*をレシピに伝えます。例えば、`price`列は`outcome`の役割に割り当てられ、残りの列は`predictor`の役割に割り当てられています。\n", + "\n", + "- `step_integer(all_predictors(), zero_based = TRUE)`は、すべての予測因子を0から始まる番号付けで整数のセットに変換することを指定しています。\n", + "\n", + "きっとこう思っているかもしれませんね:「これってすごくクールだけど、レシピが本当に期待通りに動作しているか確認したい場合はどうすればいいの?🤔」\n", + "\n", + "それは素晴らしい考えです!レシピが定義されると、データを実際に前処理するために必要なパラメータを推定し、処理されたデータを抽出することができます。通常、Tidymodelsを使用する場合にはこれを行う必要はありません(すぐに通常の方法である`workflows`を見ていきます)が、レシピが期待通りに動作しているか確認するための簡単なチェックを行いたい場合には役立ちます。\n", + "\n", + "そのためには、もう2つの動詞が必要です:`prep()`と`bake()`。そしていつものように、[`Allison Horst`](https://github.com/allisonhorst/stats-illustrations)による小さなRの仲間たちがこれをよりよく理解する手助けをしてくれます!\n", + "\n", + "

                                          \n", + " \n", + "

                                          Artwork by @allison_horst
                                          \n" + ], + "metadata": { + "id": "KEiO0v7kuC9O" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`prep()`](https://recipes.tidymodels.org/reference/prep.html): トレーニングデータセットから必要なパラメータを推定し、それを他のデータセットに適用できるようにします。例えば、特定の予測子列において、どの観測値が整数の0、1、2などに割り当てられるかを決定します。\n", + "\n", + "[`bake()`](https://recipes.tidymodels.org/reference/bake.html): 準備済みのレシピを使用して、任意のデータセットに操作を適用します。\n", + "\n", + "つまり、レシピを準備して適用することで、予測子列がモデルに適合される前にまずエンコードされることを、内部的に確認することができます。\n" + ], + "metadata": { + "id": "Q1xtzebuuTCP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep the recipe\n", + "pumpkins_prep <- prep(pumpkins_recipe)\n", + "\n", + "# Bake the recipe to extract a preprocessed new_pumpkins data\n", + "baked_pumpkins <- bake(pumpkins_prep, new_data = NULL)\n", + "\n", + "# Print out the baked data set\n", + "baked_pumpkins %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "FGBbJbP_uUUn" + } + }, + { + "cell_type": "markdown", + "source": [ + "やったね!🥳 処理されたデータ `baked_pumpkins` のすべての予測変数がエンコードされており、定義された前処理手順(レシピ)が期待通りに機能することが確認されました。これにより読みづらくはなりますが、Tidymodelsにとってははるかに理解しやすくなります。どの観測値が対応する整数にマッピングされているか、少し時間をかけて確認してみてください。\n", + "\n", + "また、`baked_pumpkins` は計算を実行できるデータフレームであることも重要なポイントです。\n", + "\n", + "例えば、データの2つのポイント間で良い相関を見つけて、良い予測モデルを構築する可能性を探ることができます。そのために、`cor()` 関数を使用します。`?cor()` を入力して、この関数についてさらに詳しく調べてみてください。\n" + ], + "metadata": { + "id": "1dvP0LBUueAW" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the correlation between the city_name and the price\n", + "cor(baked_pumpkins$city_name, baked_pumpkins$price)\n", + "\n", + "# Find the correlation between the package and the price\n", + "cor(baked_pumpkins$package, baked_pumpkins$price)\n" + ], + "outputs": [], + "metadata": { + "id": "3bQzXCjFuiSV" + } + }, + { + "cell_type": "markdown", + "source": [ + "実際のところ、CityとPriceの間には弱い相関しかありません。しかし、PackageとそのPriceの間にはもう少し強い相関があります。それは納得できますよね?通常、箱が大きければ大きいほど、価格も高くなるものです。\n", + "\n", + "ついでに、`corrplot`パッケージを使って、すべての列の相関行列を視覚化してみましょう。\n" + ], + "metadata": { + "id": "BToPWbgjuoZw" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the corrplot package\n", + "library(corrplot)\n", + "\n", + "# Obtain correlation matrix\n", + "corr_mat <- cor(baked_pumpkins %>% \n", + " # Drop columns that are not really informative\n", + " select(-c(low_price, high_price)))\n", + "\n", + "# Make a correlation plot between the variables\n", + "corrplot(corr_mat, method = \"shade\", shade.col = NA, tl.col = \"black\", tl.srt = 45, addCoef.col = \"black\", cl.pos = \"n\", order = \"original\")" + ], + "outputs": [], + "metadata": { + "id": "ZwAL3ksmutVR" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 ずっと良くなりました。\n", + "\n", + "このデータに対して次に尋ねるべき良い質問は、 '`特定のかぼちゃパッケージの価格はどれくらい期待できますか?`' です。さっそく始めましょう!\n", + "\n", + "> Note: **`pumpkins_prep`** という準備済みのレシピを **`bake()`** し、**`new_data = NULL`** を指定すると、処理済み(つまりエンコードされた)トレーニングデータを抽出できます。例えば、テストセットのような別のデータセットがあり、そのデータがレシピでどのように前処理されるかを確認したい場合は、**`new_data = test_set`** を指定して **`pumpkins_prep`** を単純に bake すればよいのです。\n", + "\n", + "## 4. 線形回帰モデルを構築する\n", + "\n", + "

                                          \n", + " \n", + "

                                          Dasani Madipalliによるインフォグラフィック
                                          \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "YqXjLuWavNxW" + } + }, + { + "cell_type": "markdown", + "source": [ + "レシピを作成し、データが適切に前処理されることを確認したので、次は回帰モデルを構築して次の質問に答えましょう: `特定のかぼちゃパッケージの価格はどれくらいになるか?`\n", + "\n", + "#### トレーニングセットを使用して線形回帰モデルを訓練する\n", + "\n", + "すでにお気づきかもしれませんが、*price* 列が `結果` 変数であり、*package* 列が `予測子` 変数です。\n", + "\n", + "これを行うために、まずデータを分割し、80%をトレーニングセット、20%をテストセットに割り当てます。その後、予測子列を整数のセットにエンコードするレシピを定義し、モデル仕様を構築します。レシピを準備して焼く必要はありません。データが期待通りに前処理されることはすでに確認済みだからです。\n" + ], + "metadata": { + "id": "Pq0bSzCevW-h" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\n", + "# Split the data into training and test sets\n", + "pumpkins_split <- new_pumpkins %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "\n", + "# Extract training and test data\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "\n", + "\n", + "# Create a recipe for preprocessing the data\n", + "lm_pumpkins_recipe <- recipe(price ~ package, data = pumpkins_train) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "\n", + "# Create a linear model specification\n", + "lm_spec <- linear_reg() %>% \n", + " set_engine(\"lm\") %>% \n", + " set_mode(\"regression\")" + ], + "outputs": [], + "metadata": { + "id": "CyoEh_wuvcLv" + } + }, + { + "cell_type": "markdown", + "source": [ + "よくやりました!これでレシピとモデル仕様が揃ったので、それらを一つのオブジェクトにまとめる方法を見つける必要があります。このオブジェクトは、まずデータを前処理(裏でprep+bakeを実行)、前処理済みデータに基づいてモデルを適合させ、さらに必要に応じて後処理を行うことも可能にします。これで安心ですね!🤩\n", + "\n", + "Tidymodelsでは、この便利なオブジェクトを[`workflow`](https://workflows.tidymodels.org/)と呼び、モデリングの構成要素をうまく保持します!これは、*Python*で言うところの*パイプライン*に相当します。\n", + "\n", + "では、すべてをワークフローにまとめましょう!📦\n" + ], + "metadata": { + "id": "G3zF_3DqviFJ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Hold modelling components in a workflow\n", + "lm_wf <- workflow() %>% \n", + " add_recipe(lm_pumpkins_recipe) %>% \n", + " add_model(lm_spec)\n", + "\n", + "# Print out the workflow\n", + "lm_wf" + ], + "outputs": [], + "metadata": { + "id": "T3olroU3v-WX" + } + }, + { + "cell_type": "markdown", + "source": [ + "おまけに、ワークフローもモデルとほぼ同じ方法で適合させたりトレーニングしたりすることができます。\n" + ], + "metadata": { + "id": "zd1A5tgOwEPX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Train the model\n", + "lm_wf_fit <- lm_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the model coefficients learned \n", + "lm_wf_fit" + ], + "outputs": [], + "metadata": { + "id": "NhJagFumwFHf" + } + }, + { + "cell_type": "markdown", + "source": [ + "モデルの出力から、トレーニング中に学習された係数を見ることができます。これらは、実際の変数と予測された変数の間の全体的な誤差を最小にする最適な直線の係数を表しています。\n", + "\n", + "#### テストセットを使ってモデルの性能を評価する\n", + "\n", + "モデルの性能を確認する時が来ました 📏!どうやってこれを行うのでしょうか?\n", + "\n", + "モデルをトレーニングしたので、`parsnip::predict()`を使ってテストセットに対する予測を行うことができます。その後、これらの予測値を実際のラベル値と比較して、モデルがどれだけうまく(またはうまくいっていないか)動作しているかを評価します。\n", + "\n", + "まずは、テストセットに対する予測を行い、その列をテストセットに結合するところから始めましょう。\n" + ], + "metadata": { + "id": "_4QkGtBTwItF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\n", + "predictions <- lm_wf_fit %>% \n", + " predict(new_data = pumpkins_test)\n", + "\n", + "\n", + "# Bind predictions to the test set\n", + "lm_results <- pumpkins_test %>% \n", + " select(c(package, price)) %>% \n", + " bind_cols(predictions)\n", + "\n", + "\n", + "# Print the first ten rows of the tibble\n", + "lm_results %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "UFZzTG0gwTs9" + } + }, + { + "cell_type": "markdown", + "source": [ + "はい、モデルを訓練し、予測を行いました!🔮 その性能はどうでしょうか?モデルの評価をしてみましょう!\n", + "\n", + "Tidymodelsでは、これを `yardstick::metrics()` を使って行います!線形回帰の場合、以下の指標に注目しましょう:\n", + "\n", + "- `Root Mean Square Error (RMSE)`: [MSE](https://en.wikipedia.org/wiki/Mean_squared_error) の平方根。この指標はラベル(この場合はカボチャの価格)と同じ単位で絶対的な値を示します。値が小さいほどモデルが良いことを意味します。(簡単に言えば、予測がどれだけ平均的に間違っているかを表します!)\n", + "\n", + "- `Coefficient of Determination (通常は R-squared または R2 として知られる)`: 相対的な指標で、値が高いほどモデルの適合度が良いことを示します。この指標は、予測値と実際のラベル値の間の分散をモデルがどれだけ説明できるかを表しています。\n" + ], + "metadata": { + "id": "0A5MjzM7wW9M" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Evaluate performance of linear regression\n", + "metrics(data = lm_results,\n", + " truth = price,\n", + " estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "reJ0UIhQwcEH" + } + }, + { + "cell_type": "markdown", + "source": [ + "モデルのパフォーマンスが低下しましたね。パッケージと価格の散布図を視覚化し、それに基づいて予測値を使って最適な回帰直線を重ねることで、より良い指標を得られるか試してみましょう。\n", + "\n", + "そのためには、テストセットを準備して処理し、パッケージ列をエンコードした後、それをモデルが出した予測値と結合する必要があります。\n" + ], + "metadata": { + "id": "fdgjzjkBwfWt" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Encode package column\n", + "package_encode <- lm_pumpkins_recipe %>% \n", + " prep() %>% \n", + " bake(new_data = pumpkins_test) %>% \n", + " select(package)\n", + "\n", + "\n", + "# Bind encoded package column to the results\n", + "lm_results <- lm_results %>% \n", + " bind_cols(package_encode %>% \n", + " rename(package_integer = package)) %>% \n", + " relocate(package_integer, .after = package)\n", + "\n", + "\n", + "# Print new results data frame\n", + "lm_results %>% \n", + " slice_head(n = 5)\n", + "\n", + "\n", + "# Make a scatter plot\n", + "lm_results %>% \n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\n", + " geom_point(size = 1.6) +\n", + " # Overlay a line of best fit\n", + " geom_line(aes(y = .pred), color = \"orange\", size = 1.2) +\n", + " xlab(\"package\")\n", + " \n" + ], + "outputs": [], + "metadata": { + "id": "R0nw719lwkHE" + } + }, + { + "cell_type": "markdown", + "source": [ + "線形回帰モデルは、パッケージとその対応する価格の関係をうまく一般化できていないことがわかりますね。\n", + "\n", + "🎃 おめでとうございます!いくつかの種類のカボチャの価格を予測するモデルを作成しました。これであなたのホリデー用カボチャ畑は素晴らしいものになるでしょう。ただし、もっと良いモデルを作ることもできるかもしれません!\n", + "\n", + "## 5. 多項式回帰モデルを構築する\n", + "\n", + "

                                          \n", + " \n", + "

                                          Dasani Madipalliによるインフォグラフィック
                                          \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "HOCqJXLTwtWI" + } + }, + { + "cell_type": "markdown", + "source": [ + "データが必ずしも線形関係を持たない場合でも、結果を予測したいことがあります。多項式回帰は、より複雑な非線形関係に対して予測を行うのに役立ちます。\n", + "\n", + "例えば、カボチャのデータセットにおけるパッケージと価格の関係を考えてみましょう。変数間に線形関係がある場合もありますが(例えば、カボチャの体積が大きいほど価格が高くなる)、これらの関係が必ずしも平面や直線としてプロットできるとは限りません。\n", + "\n", + "> ✅ こちらに、多項式回帰を使用できるデータの[いくつかの例](https://online.stat.psu.edu/stat501/lesson/9/9.8)があります。\n", + ">\n", + "> 前のプロットで、品種(Variety)と価格(Price)の関係をもう一度見てみてください。この散布図は直線で分析すべきように見えますか?おそらくそうではないでしょう。この場合、多項式回帰を試すことができます。\n", + ">\n", + "> ✅ 多項式とは、1つ以上の変数と係数から成る数学的表現です。\n", + "\n", + "#### トレーニングセットを使って多項式回帰モデルを訓練する\n", + "\n", + "多項式回帰は、非線形データにより適合するような*曲線*を作成します。\n", + "\n", + "多項式モデルが予測性能を向上させるかどうかを確認してみましょう。以前とほぼ同じ手順に従います:\n", + "\n", + "- データをモデリングに適した状態にするための前処理手順を指定するレシピを作成します。具体的には、予測変数のエンコードや次数 *n* の多項式の計算などです。\n", + "\n", + "- モデル仕様を構築します。\n", + "\n", + "- レシピとモデル仕様をワークフローにまとめます。\n", + "\n", + "- ワークフローを適合させてモデルを作成します。\n", + "\n", + "- テストデータでモデルの性能を評価します。\n", + "\n", + "それでは始めましょう!\n" + ], + "metadata": { + "id": "VcEIpRV9wzYr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\r\n", + "poly_pumpkins_recipe <-\r\n", + " recipe(price ~ package, data = pumpkins_train) %>%\r\n", + " step_integer(all_predictors(), zero_based = TRUE) %>% \r\n", + " step_poly(all_predictors(), degree = 4)\r\n", + "\r\n", + "\r\n", + "# Create a model specification\r\n", + "poly_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>% \r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Bundle recipe and model spec into a workflow\r\n", + "poly_wf <- workflow() %>% \r\n", + " add_recipe(poly_pumpkins_recipe) %>% \r\n", + " add_model(poly_spec)\r\n", + "\r\n", + "\r\n", + "# Create a model\r\n", + "poly_wf_fit <- poly_wf %>% \r\n", + " fit(data = pumpkins_train)\r\n", + "\r\n", + "\r\n", + "# Print learned model coefficients\r\n", + "poly_wf_fit\r\n", + "\r\n", + " " + ], + "outputs": [], + "metadata": { + "id": "63n_YyRXw3CC" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### モデルのパフォーマンスを評価する\n", + "\n", + "👏👏ポリノミアルモデルを構築しましたね。それでは、テストセットで予測を行いましょう!\n" + ], + "metadata": { + "id": "-LHZtztSxDP0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make price predictions on test data\r\n", + "poly_results <- poly_wf_fit %>% predict(new_data = pumpkins_test) %>% \r\n", + " bind_cols(pumpkins_test %>% select(c(package, price))) %>% \r\n", + " relocate(.pred, .after = last_col())\r\n", + "\r\n", + "\r\n", + "# Print the results\r\n", + "poly_results %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "YUFpQ_dKxJGx" + } + }, + { + "cell_type": "markdown", + "source": [ + "ウーフー、`yardstick::metrics()` を使用して test_set に対するモデルのパフォーマンスを評価しましょう。\n" + ], + "metadata": { + "id": "qxdyj86bxNGZ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "metrics(data = poly_results, truth = price, estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "8AW5ltkBxXDm" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 パフォーマンスが大幅に向上しました。\n", + "\n", + "`rmse` は約7から約3に減少しました。これは、実際の価格と予測価格の間の誤差が減少したことを示しています。これを*ざっくり*解釈すると、平均的に誤った予測が約3ドル程度の誤差であることを意味します。`rsq` は約0.4から0.8に増加しました。\n", + "\n", + "これらすべての指標は、ポリノミアルモデルが線形モデルよりもはるかに優れていることを示しています。素晴らしい仕事です!\n", + "\n", + "これを視覚化できるか見てみましょう!\n" + ], + "metadata": { + "id": "6gLHNZDwxYaS" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Bind encoded package column to the results\r\n", + "poly_results <- poly_results %>% \r\n", + " bind_cols(package_encode %>% \r\n", + " rename(package_integer = package)) %>% \r\n", + " relocate(package_integer, .after = package)\r\n", + "\r\n", + "\r\n", + "# Print new results data frame\r\n", + "poly_results %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_line(aes(y = .pred), color = \"midnightblue\", size = 1.2) +\r\n", + " xlab(\"package\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "A83U16frxdF1" + } + }, + { + "cell_type": "markdown", + "source": [ + "データにより適した曲線が表示されましたね!🤩\n", + "\n", + "これをさらに滑らかにするには、`geom_smooth` に多項式の式を渡すことで実現できます。例えば、次のようにします:\n" + ], + "metadata": { + "id": "4U-7aHOVxlGU" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_smooth(method = lm, formula = y ~ poly(x, degree = 4), color = \"midnightblue\", size = 1.2, se = FALSE) +\r\n", + " xlab(\"package\")" + ], + "outputs": [], + "metadata": { + "id": "5vzNT0Uexm-w" + } + }, + { + "cell_type": "markdown", + "source": [ + "まるで滑らかな曲線のようですね!🤩\n", + "\n", + "新しい予測を作成する方法は次の通りです:\n" + ], + "metadata": { + "id": "v9u-wwyLxq4G" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a hypothetical data frame\r\n", + "hypo_tibble <- tibble(package = \"bushel baskets\")\r\n", + "\r\n", + "# Make predictions using linear model\r\n", + "lm_pred <- lm_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Make predictions using polynomial model\r\n", + "poly_pred <- poly_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Return predictions in a list\r\n", + "list(\"linear model prediction\" = lm_pred, \r\n", + " \"polynomial model prediction\" = poly_pred)\r\n" + ], + "outputs": [], + "metadata": { + "id": "jRPSyfQGxuQv" + } + }, + { + "cell_type": "markdown", + "source": [ + "`polynomial model`の予測は、`price`と`package`の散布図を考慮すると納得できますね!そして、もしこれが前のモデルよりも良いモデルであるなら、同じデータを見て、より高価なカボチャの予算を立てる必要があります!\n", + "\n", + "🏆 よくできました!1つのレッスンで2つの回帰モデルを作成しましたね。回帰の最終セクションでは、カテゴリを決定するためのロジスティック回帰について学びます。\n", + "\n", + "## **🚀チャレンジ**\n", + "\n", + "このノートブックでいくつか異なる変数をテストして、相関がモデルの精度にどのように対応するかを確認してください。\n", + "\n", + "## [**講義後のクイズ**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/)\n", + "\n", + "## **復習と自己学習**\n", + "\n", + "このレッスンでは線形回帰について学びました。他にも重要な回帰の種類があります。Stepwise、Ridge、Lasso、Elasticnetの手法について調べてみてください。さらに学ぶために良いコースとして、[Stanford Statistical Learning course](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning)があります。\n", + "\n", + "素晴らしいTidymodelsフレームワークの使い方をもっと学びたい場合は、以下のリソースをチェックしてください:\n", + "\n", + "- Tidymodelsウェブサイト: [Tidymodelsの始め方](https://www.tidymodels.org/start/)\n", + "\n", + "- Max KuhnとJulia Silge, [*Tidy Modeling with R*](https://www.tmwr.org/)*.*\n", + "\n", + "###### **感謝の言葉:**\n", + "\n", + "[Allison Horst](https://twitter.com/allison_horst?lang=en) に、Rをより親しみやすく魅力的にしてくれる素晴らしいイラストを作成していただきました。彼女の[ギャラリー](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)でさらに多くのイラストを見つけることができます。\n" + ], + "metadata": { + "id": "8zOLOWqMxzk5" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/2-Regression/3-Linear/solution/notebook.ipynb b/translations/ja/2-Regression/3-Linear/solution/notebook.ipynb new file mode 100644 index 000000000..1015fdb42 --- /dev/null +++ b/translations/ja/2-Regression/3-Linear/solution/notebook.ipynb @@ -0,0 +1,1111 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## かぼちゃの価格設定における線形回帰と多項式回帰 - レッスン3\n", + "\n", + "必要なライブラリとデータセットを読み込みます。データを以下の条件を満たすデータフレームに変換します:\n", + "\n", + "- ブッシェル単位で価格が設定されているかぼちゃのみを取得する\n", + "- 日付を月に変換する\n", + "- 価格を高値と安値の平均として計算する\n", + "- 価格をブッシェル単位の数量に基づいた価格に変換する\n" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                                          0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                          1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                          2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          \n", + "

                                          5 rows × 26 columns

                                          \n", + "
                                          " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 167, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          MonthDayOfYearVarietyCityPackageLow PriceHigh PricePrice
                                          709267PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
                                          719267PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
                                          7210274PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
                                          7310274PIE TYPEBALTIMORE1 1/9 bushel cartons17.017.015.454545
                                          7410281PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
                                          \n", + "
                                          " + ], + "text/plain": [ + " Month DayOfYear Variety City Package Low Price \\\n", + "70 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "71 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "72 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "73 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 17.0 \n", + "74 10 281 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "\n", + " High Price Price \n", + "70 15.0 13.636364 \n", + "71 18.0 16.363636 \n", + "72 18.0 16.363636 \n", + "73 17.0 15.454545 \n", + "74 15.0 13.636364 " + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "new_columns = ['Package', 'Variety', 'City Name', 'Month', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "散布図は、8月から12月までの月のデータしかないことを思い出させてくれます。結論を線形的に導き出すには、もっと多くのデータが必要かもしれません。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkT0lEQVR4nO3dfXRV9Z3v8fc3EB7kYcAQA+Wh0IZSUWLqzWVARi+W+lQdodXOtHcQZ41dOGumc1tn5graXqc67Ywybe2009Urtb3F2mnrkhYVtEIj1NoRNTAQEFQyhRpoCBihgEJIyPf+cXZiHs5Jzsbss0/O/rzWOivnfM/Z53zdhm9+57d/D+buiIhIchTFnYCIiOSWCr+ISMKo8IuIJIwKv4hIwqjwi4gkzOC4E8jGuHHjfOrUqXGnISIyoGzZsuUNdy/tHh8QhX/q1KnU1NTEnYaIyIBiZr9NF1dXj4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EuHphPNbK8/StOJ5rhTEZEIDYjhnBK9x7YdYNnqWoqLimhpa2PFDRVcXzkx7rREJAJq8QtNJ5pZtrqWUy1tHG9u5VRLG7evrlXLX6RAqfAL+4+cpLio669CcVER+4+cjCkjEYmSCr8waexwWtrausRa2tqYNHZ4TBmJSJRU+IWSkUNZcUMFQwcb5xQPYuhgY8UNFZSMHBp3aiISARV+ASC1AaeBBT9FpGBFWvjNbJ+Z7TCzbWZWE8TONbMNZrYn+Dk2yhykb+0Xd5tb23j79BmaW3VxV6SQ5aLFf7m7V7p7VfB4OVDt7tOB6uCxxEgXd0WSJY6unoXAquD+KmBRDDlIJ7q4K5IsURd+B9ab2RYzWxrEyty9ASD4eV7EOUgf2i/uDisuYtTQwQwrLtLFXZECFvXM3Xnu/jszOw/YYGavZHtg8IdiKcCUKVOiyk8C11dOZF75OPYfOcmkscNV9EUKWKQtfnf/XfDzEPAzYDbQaGYTAIKfhzIcu9Ldq9y9qrS0x85hEoGSkUO5aPIYFX2RAhdZ4TezEWY2qv0+cCWwE3gcuDl42c3AY1HlICIiPUXZ1VMG/MzM2j/n393952b2EvCImd0CvA58IsIcRESkm8gKv7v/BrgoTbwJWBDV54qISO80c1dEJGFU+KVDzd4mvrb+VWr2NsWdiohESBuxCACLH9zMc3Wpgv+NZ+q4tLyEH3x6TsxZiUgU1OIXavY2dRT9dr+qa1LLX6RAqfALz+55I1RcRAY2FX7hsunjQsVFZGBT4ReqppVwaXlJl9il5SVUTSvJcISIDGQq/ALAjVWTGTKoiCGDjCGDivhE1eS4UxKRiKjwS8dGLKfPtHH6jHP6jDZiESlkKvyijVjOUvWugyx7dDvVuw7GnYpIKBrHL9qI5Sxcef8mXmt8C4Cf1OxnRtkInr5tfqw5iWRLLX7p2IhlyCBj6OBUP782YsmsetfBjqLf7tXGt9TylwFDhV8AqNn3JqfPOM2tqX7+mt++GXdKeWv9rsZQcZF8o8Iv1DUe56HNr3eJPfT869Q1Ho8po/x25cyyUHGRfKPCL2yrPxoqnnQLZo5nRtmILrEZZSNYMHN8TBmJhKOLu0Ll5DGh4gJP3zaf6l0HWb+rkStnlqnoy4ASeYvfzAaZ2X+a2drg8RfN7ICZbQtuH406B+ldedkolsztuqH9krlTKC8bFVNGA8OCmeO578aLVPSz1HSime31RzU/JA/kosX/WWA3MLpT7H53/0oOPluydM/CWSyZM5Vt9UepnDxGRV/61WPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaiRVpi9/MJgHXAg9G+TnSP8rLRnFj1WQVfelX7TPDT7W0cby5lVMtmhket6i7er4O3A60dYt/xsxqzex7ZjY23YFmttTMasys5vDhwxGnKSJR0czw/BNZ4Tez64BD7r6l21PfBt4PVAINwFfTHe/uK929yt2rSktLo0pTRCKmmeH5J8oW/zzgejPbB/wY+LCZPezuje5+xt3bgO8AsyPMQURi1j4zfFhxEaOGDmZYcZFmhscssou77n4HcAeAmc0H/t7dF5vZBHdvCF72MWBnVDmISH64vnIi88rHsf/ISSaNHa6iH7M4xvGvMLNKwIF9wK0x5CAiOVYycqgKfp7ISeF3903ApuD+Tbn4TBERSU9LNoiIJIwKv4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EsHLZsbztLvv8AHv/AkS7//QtypDAh1jcd5tKZeO7vlAW3EIoCWzQ1r6vJ1HffXv/IGU5evY9+918aYUX67a82OLtt7Lpk7hXsWzooxo2RTi1+0bG5ImVr4avmnpz2d848Kv2jZ3JCerWsKFU867emcf1T4RcvmhnRZeUmoeNJpT+f8o8IvWjY3pJV//oeh4kmnPZ3zj7l73Dn0qaqqymtqauJOo+A1nWjWsrkhLP3+Czxb18Rl5SUq+lmoazyuPZ1zzMy2uHtVj7gKv4hIYcpU+NXVIyKSMJEXfjMbZGb/aWZrg8fnmtkGM9sT/Ey72brkniZwhfPlJ3Yy959/wZef0CZy2ViztZ5Pr3qJNVvr404l8SLv6jGzvwWqgNHufp2ZrQDedPd7zWw5MNbdl/X2HurqiZ4mcIXzvuXr6DwOqgj4jSZwZTTnnzZw8NjpjscTRg/h+TuviDGjZIilq8fMJgHXAg92Ci8EVgX3VwGLosxB+qYJXOF8+YmdtHWLtQVx6WnN1vouRR+g4dhptfxjFHVXz9eB26HLv5Oy9s3Wg5/npTvQzJaaWY2Z1Rw+fDjiNJNNE7jCWbvzYKh40q3dkeF8ZYhL9CIr/GZ2HXDI3beczfHuvtLdq9y9qrS0tJ+zk840gSuc6y4cHyqedNfNynC+MsQlelG2+OcB15vZPuDHwIfN7GGg0cwmAAQ/D0WYg2RBE7jC+fwfX9jjH05REJeeFl08mQmjh3SJTRg9hEUXT44pI8nJOH4zmw/8fXBx91+Apk4Xd89199t7O14Xd3NDE7jC+fITO1m78yDXXTheRT8La7bWs3bHQa6bNV5FP0dincDVrfCXAI8AU4DXgU+4+5u9Ha/CLyISXqbCn5P1+N19E7ApuN8ELMjF54qISE+auSsikjAFXfg1EzWcBzbu4Zp/fZYHNu6JO5UBQVsJykBVsFsvaiZqOOd/4UlOtqau9+xuOM7Xq/ew+0sfjTmr/KWtBGUgK8gWv2aihvPAxj0dRb/dyVZXyz8DbSUoA11BFn7NRA1nTW1DqHjSaStBGegKsvBrJmo4iyomhIonnbYSlIGuIAu/ZqKGc+vl0xk+2LrEhg82br18ekwZ5TdtJSgDXUHvwKWZqOE8sHEPa2obWFQxQUU/C9pKUPKdtl4U6WdqWEi+i3Xmrkih0XBhGcgKso9fJEoaLiwDnQq/dFj0zV/yvuXrWPTNX8adSl7TcOGzo5n0+UNdPQLA1OXrOu5vO3CCqcvXsU97yKY1aexwjje3dokdb27VcOFeqGssv6jFLxlb+Gr5p/dnK/8jVDzp1DWWf1T4hdoDJ0LFk+6VQ2+HiiedusbyT5R77g4zsxfNbLuZvWxmdwfxL5rZATPbFty0EljMKiaODBVPug+ed06oeNJpJn3+ibLF3wx82N0vAiqBq81sTvDc/e5eGdyejDAHycKav/kfoeJJ9/O/vTxUPOnaZ9IPHVzUcdNM+nhFVvg9pb2voDi45f9ssYT6o/KSLo8v7fZY5N2o2fcmza1tHbea3/a626pELNI+fjMbZGbbgEPABnd/IXjqM2ZWa2bfM7OxUeYgfavZ28RzdU1dYr+qa6Jmb1OGI5Jt6fdfCBVPOi1jnX8iLfzufsbdK4FJwGwzuxD4NvB+Ut0/DcBX0x1rZkvNrMbMag4fPhxlmon37J43QsWT7tm69H8QM8WTTstY55+cjOpx96OkNlu/2t0bgz8IbcB3gNkZjlnp7lXuXlVaWpqLNBPrsunjQsWT7rIM3WCZ4kmnZazzT5SjekrNbExwfzjwEeAVM+u8yPvHgJ1R5SDZqZqWvmBliifdyj//w1DxpMu0cqlWNI1PlC3+CcBGM6sFXiLVx78WWGFmO4L45cBtEeYgWfj7n2wNFU+6//nAr0PFk06/X/knsiUb3L0W+FCa+E1RfaacnQ27D4WKJ92Lvz0aKp50+v3KP5q5K1xx/nmh4kk3+71jQsWTTr9f+UeFX/jKn14cKp50/37rvFDxpNPvV/5R4RcA/mDYoF4fi7wb40cP6fJ4QrfHklsq/MLD/7GX35860yX2+1NnePg/9saUUX6r+Id1oeJJt2ZrPQePne4Sazh2mjVb62PKSLIq/Gb2ATOrNrOdweMKM/tCtKlJrjxW2xAqnnTHMqwmnCmedGt3HAwVl+hl2+L/DnAH0AIdI3Y+GVVSklsLKyaEiifd6Axri2WKJ911s8aHikv0si3857j7i91irWlfKQPO4kumpe3jX3zJtJgyym+1d6ffmSxTPOkWXTy5R5/+hNFDWHTx5JgykmwL/xtm9n6C1TXN7EZS6+xIgVjYbRu8hR/Stni9+ddPVnZ5/I1uj6Wr5++8gq//SQUfOf88vv4nFTx/5xVxp5Ro5t73Sslm9j5gJXAJcATYCyx2932RZheoqqrympqaXHxUItU1Hucj9z/bI/6L2y7TtPo0mk40M+++ZzjV8s7mIsOKi/j1sg9rjXnJK2a2xd2rusezmrnr7r8BPmJmI4Aid9d6qgWkt9UTVfh7at9K8BTvFP72rQRV+GUgyHZUzz+Z2Rh3f8vdj5vZWDP7UtTJSW5o9cRwtJWgDHTZ9vFfEyytDIC7HwG0V26BGDtiCIOKrEtsUJExdoQm2aTTvpVgEWCk/hFpK8G+1TUe59Gaem3AkgeyXaRtkJkNdfdm6FhmWb/lBWL/kZMUGXSewlVkqOuiF/9nzY6Ojh4PHl9fqQvimdy1ZkeXXbiWzJ3CPQtnxZhRsmXb4n8YqDazW8zsL4ANwKro0pJcamk9Q8uZrhf5W844La1nMhyRbJrpHI62Xsw/WRV+d18BfBk4H7gA+McgJgXghb3pN77OFE86zXQOR1sv5p+s1+N396eApyLMRWRAWFgxgZf2HUkbl540eCD/9NriN7Pngp/HzexYp9txMzvWx7HDzOxFM9tuZi+b2d1B/Fwz22Bme4KfY/vvP0fOxlUXpJ86nymedJrpHE552SiWzJ3SJbZk7hQNFY5Rry1+d/+j4OfZ/B9qBj7s7ifMrBh4zsyeAj4OVLv7vWa2HFgOLDuL95d+oj1Rw0vXxy+Z3bNwFkvmTGVb/VEqJ4/R71bM+uzjN7Oi9lU5w/CUE8HD4uDmwELeuTC8ClgU9r2lf12+ojpUPOm05+7ZKS8bxY1Vk1X080Cfhd/d24DtZjalr9d2Z2aDzGwbcIjUZusvAGXu3hC8dwOQdv81M1tqZjVmVnP48OGwHy0h7H3zVKh40mnPXRnosh3OOQF4OViT//H2W18HufsZd68EJgGzzezCbBNz95XuXuXuVaWlpdkeJmdh2rnDQsWTTnvuykCX7aieu9/Nh7j7UTPbBFwNNJrZBHdvMLMJpL4NSIw23r6Aqct77h618fYFMWST//791nlpz5f23JWBoq9RPcPM7HPAJ4APAr9291+23/o4ttTMxgT3hwMfAV4BHgduDl52M/DYu/ovkH6x795rmRismT5x9BD23au15Xuz795ruWTaGAYXwSXTxuh8yYDSV4t/Faldt34FXAPMBD6b5XtPAFaZ2SBSf2Aecfe1ZvY88IiZ3QK8TuqPisTsrjU7OBDsi3rg2GnuemyHptT3QS18Gaj6Kvwz3X0WgJl9F+i+C1dGwfaMH0oTbwLUh5BHMk2pXzJnqkZgiBSgvi7utrTfcXdttVigNKVeJFn6avFf1GmGrgHDg8dGaqj+6Eizk5zQlPqz84Wfbueplxu55oIyvvTxi+JORyRrfc3cHdTb81IYystGMaNsBK82vtURm1E2Qt08veg8qufhF/fz8Iv7dYFXBoxsx/FLAatrPN6l6AO82viWls3N4As/3R4qLpJvVPhFffwhPfVyY6i4SL5R4RfGnlMcKp5011xQFioukm9U+IUjb7eEiiddpgu5usArA4UKv2hUz1nYd++1LJ49iZIRxSyePUkXdmVAyXoHLilc7RtlPPR8182wNaqnd1/6+EV86eNxZyESngq/ANooQyRJVPilQ3nZKBV8kQRQH7+ISMKo8EuHusbjPFpTr4lbIgVOXT0CpJZl7rxC55K5U7Qss0iBUotfMi7LrJa/SGGKrPCb2WQz22hmu83sZTP7bBD/opkdMLNtwe2jUeUg2dGSDSLJEmVXTyvwd+6+1cxGAVvMbEPw3P3u/pUIP1tC0AQukWSJrPC7ewPQENw/bma7gYlRfZ6cvbEjhqQ2WOgUsyAuIoUnJ338ZjaV1DaMLwShz5hZrZl9z8zGZjhmqZnVmFnN4cOHc5FmYu0/cpKRQ7u2AUYOHcz+IydjykhEohR54TezkcBq4HPufgz4NvB+oJLUN4KvpjvO3Ve6e5W7V5WWlkadZqJNGjuclra2LrGWtjYmjR0eU0YiEqVIC7+ZFZMq+j90958CuHuju59x9zbgO8DsKHOQvpWMHMqKGyoYbDDIYLDBihsqKBk5NO7URCQCUY7qMeC7wG53/1qn+IROL/sYsDOqHCR7/7ZxD60OZxxaHb61cU/cKYlIRKIc1TMPuAnYYWbbgtidwKfMrJLUtcR9wK0R5iBZqN51kNfSbL1YvesgC2aOjykrEYlKlKN6niM1OKS7J6P6TDk763el3zJw/a5GFX6RAqSZu8KVM9NvGZgpLiIDmwq/sGDmeGaUjegSm1E2Qq19kQKlRdoEgKdvm0/1roOs39XIlTPLVPRFCpgKv3RYMHO8Cr5IAqirR0QkYVT4RUQSRoVfOmgHLpFkUB+/ANqBSyRJ1OIX7cAlkjAq/KIduEQSRoVftAOXSMKo8AvlZaNYMndKl9iSuVMoLxsVU0YiEiVd3BUA7lk4iyVzprKt/iiVk8eo6IsUMBV+6VBeNkoFPwQtcRGOzld4TSea2X/kJJPGDu/XjZFU+EXOwpX3b+rYw+AnNfuZUTaCp2+bH2tO+UznK7zHth1g2epaiouKaGlrY8UNFVxfObFf3jvKHbgmm9lGM9ttZi+b2WeD+LlmtsHM9gQ/0262LpKvetu4RnrS+Qqv6UQzy1bXcqqljePNrZxqaeP21bU0nWjul/eP8uJuK/B37n4+MAf4azObCSwHqt19OlAdPJY8ULO3ia+tf5WavU1xp5LXetu4RnrS+Qpv/5GTFBd1Lc/FRUXsP3KyX94/ssLv7g3uvjW4fxzYDUwEFgKrgpetAhZFlYNkb/GDm7nxgc1845k6bnxgMzc9uDnulPKWNq4JR+crvEljh9PS1tYl1tLWxqSxw/vl/XMynNPMpgIfAl4Ayty9AVJ/HIDzcpGDZFazt4nn6rq28n9V16SWfwbauCYcna/wSkYOZcUNFQwrLmLU0MEMKy5ixQ0V/XaBN/KLu2Y2ElgNfM7dj5ml24Y37XFLgaUAU6ZM6ePV8m48u+eNjPGqaSU5zmZg0MY14eh8hXd95UTmlY+LZFSPuXu/vVmPNzcrBtYCT7v714LYq8B8d28wswnAJnef0dv7VFVVeU1NTWR5Jl3N3iZufKBn186jt85R4RcZwMxsi7tXdY9HOarHgO8Cu9uLfuBx4Obg/s3AY1HlINmpmlbCpeVdC/yl5SUq+n1Ys7WeT696iTVb6+NOZUBoOtHM9vqj/TYyRc5elF0984CbgB1mti2I3QncCzxiZrcArwOfiDAHydKeQ11X4qw7pJU5ezPnnzZw8NhpAH6x+xD3/fwVnr/zipizyl9RjkmX8KIc1fOcu5u7V7h7ZXB70t2b3H2Bu08Pfr4ZVQ6SnTVb6zuKWLuGY6fVks1A5yucqMekS3gFvUibvlpmZ+2O9BNpMsWTTucrnKjHpEt4BVv4H9t2gHn3PcPiB19g3n3P8Pi2A3GnlLeum5V+hEWmeNLpfIUT9Zh0Ca8gC7++WobT+PtToeJJt+jiyUwYPaRLbMLoISy6eHJMGeW3qMekS3gFuUhb+1fLU7zTymj/aqlftp7W1DZkjN96+fQcZzMwPH/nFazZWs/aHQe5btZ4Ff0+RDkmXcIryMKvr5bhLKqYwO6GnqN4FlVMiCGbgWPRxZNV8EMoGTlUBT9PFGRXT/tXy6GDjXOKBzF0sOmrZS9uvXw6wwd3nVE9fLCptS9SoAqy8AOk5iMbWPBTevXfpp7b5XFVt8fSk1YzDaeu8TiP1tRT16g5InEryK6e9ou7za3vdPfcvrqWeeXj1OpPo7dF2jR7N73FD27uOGffeKaOS8tL+MGn58ScVf66a80OHtr8esfjJXOncM/CWTFmlGwF2eLXuOFwelukTXrSaqbh1DUe71L0AR56/nW1/GNUkIVfF3fDuWz6uFDxpNMfynC21R8NFZfoFWTh17jhcDJ156ibJz39oQyncvKYUHGJXkH28YPGDYfx5Sd2Zox//o8vzHE2+e9Xrx3KGNcfy57Ky0axZO4UHnq+ax9/edmoGLNKtoIt/KBxw9lauzPD2jM7D6rwp/HIlv0Z47dddX6OsxkY7lk4iyVzprKt/iiVk8eo6MesILt6JJzrLsyw9kyGeNJNGnNOqLiklJeN4saqySr6eUCFX/jT2e8NFU+68d3W6ekrLil/8/BLXHDXU/zNwy/FncqAUb3rIMse3U71rv5d+bWgu3okO8/VHc4YV+usp5r634eKC0xdvq7j/hM7D/HE8nXsu/faGDPKf1fev4nXGt8C4Cc1+5lRNoKnb5vfL+8d5daL3zOzQ2a2s1Psi2Z2wMy2BbePRvX5kr2jb7eEiifdmdYzoeJJl6mFr5Z/ZtW7DnYU/XavNr7Vby3/KLt6vg9cnSZ+f+cduSL8fMnSW6dbQ8WTrunt9OclUzzpnnkt/fyGTHGB9bsaQ8XDinLrxWcBbas4AFw1M/1F3EzxpJv1npGh4kn34Q+kn9+QKS5w5cyyUPGw4ri4+xkzqw26gsZmepGZLTWzGjOrOXw4fR+09I+qaSVpV+fUmPT07l50Uah40n1z8X8PFRdYMHM8M8pGdInNKBvBgn5qjOW68H8beD9QCTQAX830Qndf6e5V7l5VWlqao/SSqXrXQU62epfYyVbv95EEhWLS2OEMK+76T2dYcZGWBOnFvnuvpXxc6vyUjxuuC7tZePq2+dxx1Qc4f8Io7rjqA/12YRdyXPjdvdHdz7h7G/AdYHYuP1/Si7o/sdCUjBzKqZaua0GdamnTZMFeTL9jHXVvpBZJrHvjJNPvWNfHEbL4wc3889OvsbvhOP/89Gvc9ODmfnvvnBZ+M+u8pdPHgPRrBUhOzXrP6FDxpPvCT7eHiifd/U/vpqXrF0paPBWX9KJeATbK4Zw/Ap4HZpjZfjO7BVhhZjvMrBa4HLgtqs+X7A0bkn46R6Z40j31cvpvQpniSfdYbfouw0xxiX4F2ChH9XzK3Se4e7G7T3L377r7Te4+y90r3P16d0+/y7fklFZPDOeaC9KPrMgUT7qFFekvSGaKS/QrwGrJBpGQLv9g+gKfKZ50mRau04J2mVVNK+HS8q6j6i4tL+m3kXb6Li+9bpShJRt66u1ieH8NtyskmUaHVe86qPPVix98eg41e5t4ds8bXDZ9XL8Or1aLX9TVE1LUk2sKjUaNnb2qaSX87ZUz+n1OjQq/dGyU0Zk2ysgs6sk1hUZ/KPOPuXvfr4pZVVWV19TUxJ1GwatrPK6NMkKo3nWQ9bsauXJmmYp+H666fxOvdlp0rD9XmpTMzGyLu1f1iKvwi0gu6A9l7mUq/Lq4K3KWmk40a0/nEBbMHK+CnydU+EXOwmPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaIlnRxV2RkJpONLNsdS2nWto43tzKqZY2bl9dS9OJ5rhTE8mKCr9ISPuPnKS4qOs/neKiIvYfORlTRiLhqPCLhDRp7HBa2rquztnS1qZlmWXAUOEXCalk5FBW3FBBcREMKoLiIlhxQ4Uu8Pah6UQz2+uPqkssD+jirshZ+LeNe2hfkv8M8K2Ne3Rxtxe6GJ5f1OIXCal610Fe6zQZCeDVxre0Y1kGuhief1T4RULS2jPh6GJ4/olyI5bvmdkhM9vZKXaumW0wsz3Bz4ybrYvkK609E44uhuefKFv83weu7hZbDlS7+3SgOngsMqBokbZw2i+GDysuYtTQwQwrLtLF8JhFulaPmU0F1rr7hcHjV4H57t4Q7L+7yd1n9PU+WqtH8pHWnglHS1zkXr6s1VPWvt1iUPzPy/RCM1sKLAWYMmVKppeJxEZrz4RTMnKoCn6eyNuLu+6+0t2r3L2qtLQ07nRERApGrgt/Y9DFQ/DzUI4/X0Qk8XJd+B8Hbg7u3ww8luPPFxFJvCiHc/4IeB6YYWb7zewW4F7gCjPbA1wRPBYRkRyK7OKuu38qw1MLovpMERHp24DYetHMDgO/PcvDxwFv9GM6/UV5haO8wlFe4eRrXvDucnuvu/cYHTMgCv+7YWY16caxxk15haO8wlFe4eRrXhBNbnk7nFNERKKhwi8ikjBJKPwr404gA+UVjvIKR3mFk695QQS5FXwfv4iIdJWEFr+IiHSiwi8ikjAFU/jN7DYze9nMdprZj8xsWLfnzcy+YWZ1ZlZrZhfnSV7zzez3ZrYtuN2Vo7w+G+T0spl9Ls3zcZ2vvvLKyfl6NxsJmdnVZvZqcO76dc+Jd5nXPjPbEZy3fl3nPENenwj+P7aZWcbhiDGcr2zzyvX5+hczeyX49/YzMxuT4dh3f77cfcDfgInAXmB48PgR4M+7veajwFOAAXOAF/Ikr/mk9izI5fm6ENgJnENq9vYvgOl5cL6yySsn5wu4DLgY2NkptgJYHtxfDtyX5rhBwH8B7wOGANuBmXHnFTy3DxiXw/N1PjAD2ARUZTgujvPVZ14xna8rgcHB/fui/P0qmBY/qUIx3MwGkyocv+v2/ELgIU/ZDIxpXyk05rzicD6w2d3fdvdW4JfAx7q9Jo7zlU1eOeHuzwJvdgsvBFYF91cBi9IcOhuoc/ffuPtp4MfBcXHnFal0ebn7bnd/tY9Dc36+sswrUhnyWh/83gNsBialObRfzldBFH53PwB8BXgdaAB+7+7ru71sIlDf6fH+IBZ3XgBzzWy7mT1lZhdEmVNgJ3CZmZWY2TmkWveTu70m5+cry7wg9+erXZeNhIB0GwnFcd6yyQvAgfVmtsVSGx3lgzjOV7biPF9/Qeobd3f9cr4KovAHfZoLgWnAe4ARZra4+8vSHBrpWNYs89pKaj2Ni4BvAmuizAlSLR5SXyU3AD8n9XWxtdvLcn6+sswr5+crpJyftxDmufvFwDXAX5vZZXEnhM5XD2b2eVK/9z9M93SaWOjzVRCFH/gIsNfdD7t7C/BT4JJur9lP19bjJKLvdukzL3c/5u4ngvtPAsVmNi7ivHD377r7xe5+GamvnHu6vSSO89VnXnGdr0A2GwnFcd6y2uDI3X8X/DwE/IxUt0HcYvk9y0Yc58vMbgauA/7Mg079bvrlfBVK4X8dmGNm55iZkVr6eXe31zwOLAlGq8wh1e3SEHdeZjY+eA4zm03q/0lTxHlhwX7HZjYF+Djwo24vieN89ZlXXOcrkM1GQi8B081smpkNAT4ZHBdrXmY2wsxGtd8ndSFxZ/fXxSCO89WnOM6XmV0NLAOud/e3M7ysf85XFFes47gBdwOvkPqf8wNgKPCXwF8GzxvwLVJXxHfQy9X8HOf1GeBlUt0am4FLcpTXr4BdwecuCGL5cL76yisn54vUH5wGoIVUK+sWoASoJvUtpBo4N3jte4AnOx37UeC14Nx9Ph/yIjUKZHtwezlHeX0suN8MNAJP58n56jOvmM5XHan++23B7f9Gdb60ZIOISMIUSlePiIhkSYVfRCRhVPhFRBJGhV9EJGFU+EVEEkaFXwQwMzezH3R6PNjMDpvZ2rN8vzFm9ledHs8/2/cS6W8q/CIpbwEXmtnw4PEVwIF38X5jgL/q60UicVDhF3nHU8C1wf1P0WnWsKXWvF8TrJW+2cwqgvgXg7XVN5nZb8zsfwWH3Au8P1jL/V+C2EgzezRYc/2H7TOQRXJNhV/kHT8GPmmpzXIqgBc6PXc38J/uXgHcCTzU6bkPAleRWsvlH8ysmNS6+P/l7pXu/r+D130I+Bwwk9TM0HkR/reIZKTCLxJw91pgKqnW/pPdnv4jUktu4O7PACVm9gfBc+vcvdnd3yC1QFpZho940d33u3sbqSn5U/v1P0AkS4PjTkAkzzxOag+F+aTWwGnX23K4zZ1iZ8j87yrb14lESi1+ka6+B9zj7ju6xZ8F/gxSI3SAN9z9WC/vcxwYFUWCIu+WWhwinbj7fuBf0zz1ReD/mVkt8DbvLIOc6X2azOzXwWbaTwHr+jtXkbOl1TlFRBJGXT0iIgmjwi8ikjAq/CIiCaPCLyKSMCr8IiIJo8IvIpIwKvwiIgnz/wEDeg/76NO6rgAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('Month','Price')" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAshElEQVR4nO3dfZyU5Xno8d+1y7IgiwLLunJkV2xWSangRreKIVoVQ03qEdKon74YTKMlzan9pCatmLTHGtvaiE3M6UlOq4k59SVNJJiA9ZgIEqxRwThQXhQ0bAOyGFhwBd01sO7Ldf6YZ5aZ3ZndmWfuZ+aemev7+Sw7c+8z19zP7HDtM/erqCrGGGMqR1WxK2CMMaawLPEbY0yFscRvjDEVxhK/McZUGEv8xhhTYcYVuwLZmD59us6aNavY1TDGmJKyefPmN1W1YXh5SST+WbNmEYvFil0NY4wpKSLyerpya+oxxpgKY4nfGGMqjCV+Y4ypMJb4jTGmwljiN8aYCmOJ32TU1dPLto6jdPX0FrsqxhiHSmI4pym8NVvfYPlj26mpqqJvcJAVH5/H1a2nF7taxhgH7IrfjNDV08vyx7ZzvG+Q7t5+jvcNcutj2+3K35gyYYnfjLD/yDFqqlLfGjVVVew/cqxINTLGuGSJ34wwc+pE+gYHU8r6BgeZOXVikWpkjHHJEr8Zob6ulhUfn8eEmiom145jQk0VKz4+j/q62rziWmexMX6wzl2T1tWtp7OgZTr7jxxj5tSJeSd96yw2xh+RJn4R2Qt0AwNAv6q2icg04FFgFrAXuE5Vj0RZDxNOfV1t3gkfUjuLjxNvQrr1se0saJnuJL4xJjeFaOq5TFVbVbUtuH8bsF5VzwLWB/dNGbPOYmP8Uow2/sXAg8HtB4ElRaiDKSDrLDbGL1EnfgXWishmEVkWlDWq6gGA4PupEdfBFFlUncXGmHCi7txdoKq/FJFTgXUi8mq2Dwz+UCwDaG5ujqp+pkBcdxYbY8KL9IpfVX8ZfD8E/BC4AOgUkRkAwfdDGR57v6q2qWpbQ8OIncNMCaqvq+XcpimW9I0pssgSv4hMEpHJidvAIuBl4HHghuCwG4A1UdXBGGPMSFE29TQCPxSRxPP8m6r+WEReAlaKyI3APuDaCOtgjDFmmMgSv6r+Ajg3TXkXsDCq5zXGGDM6W7LBGGMqjCX+InK9do3v8YwxfrC1eorE9do1vsczxvjDrviLwPVGJ77HM8b4xRJ/Ebheu8b3eMYYv1jiLwLXa9f4Hs8Y4xdL/EXgeu0a3+MlWGexMX4QVS12HcbU1tamsVis2NVwrqun1+naNT7Hs85iYwpPRDYnLYk/xEb1FJGrjU58j2cbsRjjF2vqMZEr5c5i181T7Z3drIp10N7Z7SSeNZ+ZMOyK30SuVDuLXTdP3b56Bw9t2jd0f+lFzdy5eK439TOVw674Tc5yvWotxY1YXM9laO/sTkn6AA9t3Bf6yt/mWph82BW/yUnYq9ZS24gl0TyV6JOAE81TYeq+teNoxvKWxslFr5+pLHbFb7KW71VrKW3E4rp5qrVpSk7lYynV5jPjB0v8JmujXbWWG9fNUy2Nk1l6UeoWoksvag51tR9F/UxlsaYekzXXV62+c908defiuSydP4utHUdpbZoSOulHVT9TOSJP/CJSDcSAN1T1KhG5A/hj4HBwyBdV9cmo62Hyl7hqfWhjaht/vgnMZ67nRrQ0Tnb6ermun+tJgMZPhbji/yywCzg5qexeVf3HAjy3ccz1Vavxhw0PrRyRtvGLyEzgd4BvRfk8prBaGidzTVuTJf0yYsNDK0vUnbtfA24FBoeV3ywi20Xk2yIyNd0DRWSZiMREJHb48OF0hxhjHCnl2dUmd5ElfhG5CjikqpuH/eifgfcBrcAB4CvpHq+q96tqm6q2NTQ0RFVNYww2PLTSRHnFvwC4WkT2At8DLheRR1S1U1UHVHUQ+CZwQYR1MMZkwYaHVpbIOndV9QvAFwBE5FLgL1T1ehGZoaoHgsM+BrwcVR2MMdmz4aGVoxjj+FeISCugwF7g00WogzEmDdfDQ42fCpL4VfUZ4Jng9icK8ZzGGGPSsyUbjDGmwljiN8aYCmOJ3xhjKowlfmOMqTCW+I0xpsJY4jfGmApjid8UTFdPL9s6jka68Nf6nQdZvmob63cerIh4rl9T3+MZN0RVi12HMbW1tWksFit2NUweCrHk76J7n+Hnne8O3Z/dOImnbrm0bOO5fk19j2dyJyKbVbVteLld8ZvIFWLJ3/U7D6YkVYDXOt8NfWXtezzXr6nv8YxblvhN5Aqx5O/anZ05lZd6PNevqe/xjFuW+E3kCrHk76I5jTmVl3o816+p7/GMW5b4TeQKseTvwjmnMbtxUkrZ7MZJLJxzWlnGc/2a+h7PuGWdu6ZgCrGR9/qdB1m7s5NFcxpDJ9VSiuf6NfU9nslNps5dS/zGGFOmbFSPMcYYoACJX0SqReQ/ReSJ4P40EVknIruD72k3Wzf+cjkpZ/WWDm568CVWb+lwULPKmzAU29PFV9e+RmxPl5fx2ju7WRXroL2z20k840bkTT0i8jmgDThZVa8SkRXAW6r6ZRG5DZiqqstHi2FNPf5wOSln/l3rOPjOe0P3Z5w8no1f/LAXdSsF139rE8+1n0jQF7fU8/BN872Jd/vqHTy0ad/Q/aUXNXPn4rmh45ncFaWpR0RmAr8DfCupeDHwYHD7QWBJlHUw7riclLN6S0dK0gc48M57oa/8K23CUGxPV0qSBvhpe1foK3XX8do7u1OSPsBDG/fZlb8nom7q+RpwK5A8oLcxsdl68P3UdA8UkWUiEhOR2OHDhyOupsmGy0k5T+xIP2M1U3kh61YKnt39Zk7lhY63teNoTuWmsCJL/CJyFXBIVTeHebyq3q+qbara1tDQ4Lh2JgyXk3Kumpt+KGOm8kLWrRRcctb0nMoLHa+1aUpO5aaworziXwBcLSJ7ge8Bl4vII0CniMwACL4firAOxiGXk3KWnNfEjJPHp5TNOHk8S85rKnrdSkHbmfVc3FKfUnZxSz1tZ9ZneERh47U0TmbpRc0pZUsvaqalcXKoeMatgozjF5FLgb8IOnfvAbqSOnenqeqtoz3eOnf94nJSzuotHTyx4yBXzT0tdNKPqm6lILani2d3v8klZ00PnaSjjNfe2c3WjqO0Nk2xpF8ERZ3ANSzx1wMrgWZgH3Ctqr412uMt8RtjTO4yJf5xhXhyVX0GeCa43QUsLMTzGmOMGclm7hpjTIUp68Tv+yxO1/VzPUvS93iFYFsRmnJUkKaeYvB9Fqfr+rmeJel7vEKwrQhNuSrLK37fZ3G6rp/rWZK+xysE24rQlLOyTPy+z+J0XT/XsyR9j1cIthWhKWdlmfh9n8Xpun6uZ0n6Hq8QbCtCU87KMvH7PovTdf1cz5L0PV4h2FaEppyV9Q5cvs/idF0/17MkfY9XCLYVoSlltvWiqQiWWI05oagzd40pBBsuaUx2yrKN31QeGy5pTPYs8ReR61mc63ceZPmqbazfGW4zk2zjhX2edI9zteduVMMlfd/T1vXv3GYWVwZr4y8S180Si+59hp93vjt0f3bjJJ665VLn8cI+T7rHvX2sz9meu109vbT93dMkv5sFiP31FaHb+n3f09b179yayspPUfbcNem5bpZYv/NgSgIAeK3z3dBXgZni3fvUrlDPkymeyz13t+47wvBLGA3Kw/B9T1vXv3NrKqsslviLwHWzxNqdnTmVh423Znv6pDLW8+RSj7B77rp+DXzf09b1+drM4soS5Z67E0TkZyKyTUReEZEvBeV3iMgbIrI1+PpoVHXwletZnIvmNOZUHjbe4nnp98Md63lyqUfYPXddvwa+72nr+nxtZnFlifKKvxe4XFXPBVqBK0Uk0aB5r6q2Bl9PRlgHL7mexblwzmnMbpyUUja7cRIL54RLopni3fLbvx7qeTLFc7nnruvXwPc9bV2fb1Qzi21Zaz9FNo5f473GPcHdmuDL/57kArm69XQWtEx3NtnoqVsuZf3Og6zd2cmiOY2hE8BY8RomT+C1pLblUydPCB1v/l3r8qrjcK7fXJ3dx1PuHxp2P1cP3zTf6Z62rn/nrt+Ttqy1vyId1SMi1cBmoAX4hqouF5E7gE8C7wAx4POqOmoPXDmO6ilFsT1dXHPfphHlqz49P+cktnpLB3++cvuI8q9dNy/UVf/6nQe58aHNI8ofWHp+qIToOl6l6erpZcHdP+F434nmowk1VTy//PJQf1Bcx6sURRnVo6oDqtoKzAQuEJFzgH8G3ke8+ecA8JV0jxWRZSISE5HY4cOHo6ymyZLLDspMnbi+dO66jldpbFlrvxVkVI+qHiW+2fqVqtoZ/EEYBL4JXJDhMferapuqtjU0NBSimmPyfTKPa8PbU/PtoEyOl6kT15fOXdfxEh55YQ/X/ssLPPLCnrziRBXP1YQ6W9bab5G18YtIA9CnqkdFZCJwBXC3iMxQ1QPBYR8DXo6qDi4lT775p5+0O53M4yKea5naU0+ZUM3bxweGjjtlQnVWzTzp4qWLlU/n7oyTx3Ng2ISwfDq4XcYDOPeOHw+d70t7j3DP2tfYdseV3sSbf9e6obkVT+86xN0/fjX0hLr6ulrOmDYxpT/ojGnh+w3q62ppnjYxZe5CPvEqXZRX/DOADSKyHXgJWKeqTwArRGRHUH4ZcEuEdXDC98k8rmWazLN+58GURA3w9vGBMeudLt5frtrO8f7UK7jeAc1ra8Mjx/pTyo4c6/cm3iMv7En72oW9Uncdb/WWDqcT6mJ7ulKSPsQnmOXzfybdhDVf/s+UmsgSv6puV9UPqOo8VT1HVe8Myj+hqnOD8quTrv695ftkHtcytadmat8eq97p4lVXCdXibxuw63hrtqd/m2cqL3Q8130ulfZ/ptTYzN0s+D6Zx7VM7amZ2rfHqne6eAODyoD62wbsOt7ieTNyKi90PNd9LpX2f6bUWOLPgu+TeVzLNJln4ZzTQtU7Ea92nHBSTTW144R7rpnHPdecSzXxN2E1ONnasJr44myu4klwX/KMd/0Hz+SUCdUpZadMqOb6D57pRbwl5zU5nVBXaf9nSo1txJIl15NvXMdzLdNknt2HulOOax92P5P4bBGJZ1CNp9O7ntxJciv1Pzy5M68JOf9z9Y6heAPB/XziLV+1bWhSmAb3fZowNHF8auf4SeOrRzl6bK5n9FTa/5lSYlf8OWg7s57PLZrt7A3nOp5r9XW1nNs0ZSjph+0ATHTu9vYP8qv3BujtH+Tz39/mtDPRdWfnfRt2c6w/NRUe61fu27Dbi/q57ox1HS+h0v7PlIqsEr+InC0i60Xk5eD+PBH562irZnwTtgMwXUfpYIbLy7Cdia47O1dneFym8rH43hnrOp7xW7ZX/N8EvgD0QXzEDvB7UVXK+ClsB2C6jtIqSX9s2M5E152dSzI8LlP5WHzvjHUdz/gt28R/kqr+bFhZf9ojTdZKbeXCsB2A6TqLv3LtuU47E113dn76srOYOC71r9PEccKnLzvLi/q57ox1Hc/4LatF2kTkR8DNwPdV9TwRuQa4UVU/EnUFoTwXaSvllQtXb+ngiR0HuWruaTklhq6e3hGdxWFjZfLIC3tYs/0Ai+fNCJ1Uk923YTertx9gybwZoZN+VPVbs/UNPve9rSjxPvN7f68179+569+HKa5Mi7Rlm/h/Dbgf+CBwBNgDXK+qex3XM61yS/y2cqHJl/3OTTbyWp1TVX+hqlcADcD7VfVDhUr65cj3WaZh2AYZheXD79yUrqzG8YvIXcCKYJVNRGQq8XX0bWRPCL7PMs2VbZBReMX+nZvSlm3n7kcSSR8g2Dil4vbKdcX1NneF3jYvuTzTgm7ZXvn73sHta7zE73x8NdRWVzG+Or+ZxQntnd2sinXQ3pndxDxTmrKduVstIrWq2gsQLLNsDYl5cL3NXaG2zRte/qeXtlBTVcVxTlx9Vouw4dVDXPb+UwEy1sn3Dm7f48X2vsV7A0Dw2sdefyuveLev3sFDm/YN3V96UTN3Lp4bOp7xV7adu7cCVwP/l/jM7k8Bj6vqimirF1dunbu+y9Rx+MTNH+Kqrz+XUl47TgChd9gSy3W11RzvG0BEmDCuekSi872D2/d47Z3dXHHvsyPKn77lEloaJxc9nvFDvp27K4C/B34d+A3gbwuV9E3hZeo43NpxdET5+Opqbr6shQk1VUxKWiump3eA/kHoG9C0TUC+d3D7Hm9rx9Gcygsdz/gt60XaVPVHwI8irIvxRKaOw9amKWnL/+DCZv7gwmY2vHqIO/79FXp6U9ekSUgkuvq6Wu87uH2P19o0JafyQsczfhv1il9Engu+d4vIO0lf3SLyzhiPnSAiPxORbSLyioh8KSifJiLrRGR38H2qu9OpbK728D3RcVjF+GphfHW8s7ilcXKwvHLV0FeiQ/HIu+/R09tP30DmpsNj7/XzlbWvsXpLB0fefY+Pf2Am4wRqqoXx1eKkg7umCqqroKbKzbLM46vFaf1cxWtpnMzSi5pTypZe1By6WcZ1POO3Ua/4VfVDwfcwv/1e4HJV7RGRGuC5YAbw7wLrVfXLInIbcBuwPER8k8T1Hr4rYx28N5C4QlW+H+vg6tbTie19K6U9P/b6W8T2vpXSKZhJv8Z3TBqxa1LwxyLxHGF9fcNuEk3oA8A3NuzOK178NTjxhyzf+rmO53od5TsXz2Xp/Fls7ThKa9MUS/plbMw2fhGpSqzKmQuN6wnu1gRfCiwGHgzKHwSW5BrbpCrUnsCrt3SMSPAPbdyXVdLPRj51Xr/zYNo9WdfvDLe6pO/7LLd3dqf9XeQ7DLOlcTLXtDVZ0i9zYyZ+VR0EtolI81jHDici1SKyFThEfLP1F4HGxD67wfdTMzx2mYjERCR2+PDhXJ+6ohRqf9NCLNEbts6Z9gPOVB62Hr7sGWudsSYf2U7gmgG8EqzJ/3jia6wHqeqAqrYCM4ELROScbCumqverapuqtjU0NGT7sIpUqP1NC7FEb9g6Z9oPOFN52Hr4smesdcaafGSb+L8EXAXcCXwl6SsrwazfZ4ArgU4RmQEQfD+UfXVNOoXa33TJeU1pOwCHl4WVT50XzjmN2Y2TUspmN05i4Zxwf6x83zPWOmNNPkadwCUiE4A/AVqAHcADqprVOvwi0gD0qerRYKbvWuBu4LeArqTO3WmqeutosWwCV3Zc70eaKV57Z/eIDsDkMiDt7U3/9ebQksTvn3Eyz+5+k1PrxnOo5z1ndV6/8yBrd3ayaE5j6KSfrFCvaVjpfhfGJIRalllEHiW+69ZPgY8Ar6vqZ7N8wnnEO2+riX+yWKmqd4pIPbASaAb2Adeq6lujxbLEX/qSlys41tefcUavMcadTIl/rAlcc1R1bhDgAWD4LlwZBdszfiBNeRewMNs4pvQlL+R2Yk0fpW8g/uHx1se2s6Bluq0jb0yBjNXG35e4kW0TjzHDpVuuIJmtI29MYY2V+M9Nnq0LzMt25q4pX7ku3ZtuuYJkx/sH6OtPv8xD1HWzeKYSjTVzt3q0n5vKE2bp3sRyBbcOa+OH+CJufQPKNfdtynsZYNfLCldaPFM5sh3OaUzWs0WHb9SyreMoC1qm8/zyy3nkpgt58YtX8N2bLhyxrk8+M09dz2SttHimsmS9Oqcxo80WTQwlzHb0zoZX00/fSI7lum4Wz5g4u+I3WRtrtujwbRhHW4/f92WFKy2eqSyW+E3WxpotmsvoHd+XFa60eKayZLX1YrHZBC6/ZJotmm57wWTpthp0PfPU4hlzQqiZu76wxF86Ht/6xojROzZD15jiCDtz15icXN16OgtaprP/yLGhbQUTt21mrjF+sMRvnKuvq01J8pbwjfGLde4aY0yFsSt+UzBdPb3WBGSMByzxm4KwZZmN8Yc19ZjI5TKxyxgTvcgSv4g0icgGEdklIq+IyGeD8jtE5A0R2Rp8fTSqOpjCSV6fZzhbltkYv0TZ1NMPfF5Vt4jIZGCziKwLfnavqv5jhM9tCii5GSdd081YyzL3DQ4OtfsbY6IX2RW/qh5Q1S3B7W5gF2ANuWVmeDNOuqabxLLME2qqmFw7jnFVUFMtTK4dx4SaKlZ8fJ518BpTQAXp3BWRWcS3YXwRWADcLCJLgRjxTwVH0jxmGbAMoLm5efiPjScSzTgntlQ80XSTnMxtYpcx/oi8c1dE6oDHgD9X1XeAfwbeB7QCB4CvpHucqt6vqm2q2tbQ0BB1NU1I6ZpxMjXd1NfVcm7TlKEJXonbxpjCijTxi0gN8aT/HVX9AYCqdqrqgKoOAt8ELoiyDiZaw5txRmu6Sd4m0LYMNKZ4Imvqkfjeeg8Au1T1q0nlM1T1QHD3Y8DLUdXBFMbwZpx0SX/4NoHJbMtAYworyjb+BcAngB0isjUo+yLw+yLSCiiwF/h0hHUwBTJ8fZ5k6bYJTPbQxn0snT/LlhU2pkAiS/yq+hwgaX70ZFTPafyUaZvA4cdY4jemMGzmrolcNtsB2paBxhSOJX4TuXTbBCazLQONKSxbpM0UxJ2L57J0/qyhbQIB2zLQmCKxxG8KpqVxckqSt4RvTHFYU48xxlQYS/zGGFNhLPGbjEZbatmHeMaYcKyN36Q11lLLxY5njAnPrvjNCNkstVzMeMaY/FjiNyOk2zErn12yXMczxuTHEr8ZIZellosRzxiTH0v8ZoRcllouRjxjTH5EVYtdhzG1tbVpLBYrdjUqTldPr9NdslzHM8aMTkQ2q2rb8HIb1WMyGm2pZR/ipeP7HyuLZ/F8YInflA3fh6BaPIvni8ja+EWkSUQ2iMguEXlFRD4blE8TkXUisjv4PjWqOpjK4fsQVItn8XwSZeduP/B5Vf11YD7wpyIyB7gNWK+qZwHrg/sVyfeZsaU009b3IagWz+L5JModuA4AB4Lb3SKyCzgdWAxcGhz2IPAMsDyqevjK94+ZpfSxFfwfgmrxLJ5PCjKcU0RmAR8AXgQaE5utB99PLUQdfOL7x8xS+9gK/g9BtXgWzyeRD+cUkTrgP4C/V9UfiMhRVZ2S9PMjqjqinV9ElgHLAJqbm89//fXXI61nIW3rOMr133qR7t7+obLJteN45KYLOTfEFoS+xysk30dpWDyLV0hFGc4pIjXAY8B3VPUHQXGniMxQ1QMiMgM4lO6xqno/cD/Ex/FHWc9C8/1jZql9bE3m+xBUi2fxfBDlqB4BHgB2qepXk370OHBDcPsGYE1UdfBV4mNh7bgqThpfTe04Nx8z3ccTTqqppnacpMQL2+mb7nG+d0hbPFOOorziXwB8AtghIluDsi8CXwZWisiNwD7g2gjr4C1N/KsydM+/eAJCEDMubKdvuscpeN0hbfH87tA34dmSDUXQ1dPLgrt/wvG+E80pE2qqeH755aGu0gsV74mbP8RVX38u5+dJF692XBWg9PafeP+Vwmtg8UwpydTGX9aLtPn6Mdj3McSZ4m3tOBrqedLFq64SqqX0XgOLZ8pB2S7Z4PPH4JlTJ3K8fyCl7Hj/QF6dsT1JI3AAenr7ncdrbZoSqtM33fn2DQxSJanH+dQhbfFKp0Pf5K4sr/hLYVz78Ca2fJrcjrz73ohWfQ3KXcYDQo9VTne+t//33/B2HLXF83scuslPWV7xJz62HufEFUziY2uYN3IU8SbWjEsZJz+xZlzoeFs7jmYsb2mc7DTeNW1NLGiZntNY5Uzne85/O4Xnl1/ubNzz1a2n51w3ixddPOOvskz8vn8Mdh2vNcOkqkzl+cbLdazyaOfr+zhqi2fKUVk29Yw1Dj1sPF8/Vrc0TmbpRc0pZUsvag51tR9FPNfzDIwx+SnLK37IPA49LN8/Vp9/xjS+97N9CFUog7SdMc2reK7nGRSK71P6Ky2ecaMsx/FX2phk38d0l+rvw+eRYZUYz+SuosbxV9qYZN/HdJfi78P3kWGVFs+4VZaJP6oxyb5OCCt053Ou9R4tnuvXdPWWDm568CVWb+nIK47vf/wqLZ5xqyzb+BOdibcO+5iZT7OCzx+D6+tqaZ42kZ93vjtUdsa08G2q9XW1tJ0xlefau4bKfvOMqdTX1Yaqd31dLdedP5OHNu0bKruubSbPtb/p9DWdf9c6Dr4Tn7vw9K5D3P3jV9n4xQ+HijVz6kR+1Zc66exXfflNsvN5ZJjv8YxbZXnFD/HO0+eXX84jN13I88svzyuh+P4xOLanKyXpA7zW+S6xPV0ZHjG69s7ulKQP8NP2LmJ7ukLVu6unl5Wb96eUPfrSfm5dtc3Za7B6S8dQ0k848M57oa/8j7z7HgODqf1fA4MaelJcfV0t17XNTCm7rm2mNyPDfI9n3CrLK/4EV2OSfZ8Q9uzuNzOWt51Zn3O8TBO4nt39Zqh6pzvf6ioJRvicuKrO5zX44dZfZixfcl5TzvGeaz+csTzMsNaunl5WxlL/+K2M7eezC88O/R71faSZTQjzV9le8bvk+8fgS86anlP5WDJN4LrkrOkc60tdw+dY39hrAqU734FBHdGU0p3H+kIfyFDnTOVjmV43IafysUTV5l1fV8u5TVOcJVXf4xk3LPFnwfePwW1n1nNxS+qV/cUt9aGu9gGmThofvyJPUl0lTDlpPPH9dU4Yfj+ddM0cl53dkPbYPYd7cqxt3NzTT8mpfCwTa9L/18hUPpao2rxddWYnrN95kOWrtrF+50En8WJ7uvjq2tdCNztGHa+9s5tVsQ7aO7srIl5CWTf1uOT7x+CHb5pPbE8Xz+5+k0vOmh466UP86vSkmuqUtXVOqqlma8fRtO3eYzXPpGvmWLerM+2xYZuntu1/O2P5wjmnFT1efV0ttdXC8b4TZbXVktfv3WVnNsCie58Z6it6NLaf2Y2TeOqWS0PHu/5bm4b6iv7pJ+1c3FLPwzfN9ybe7at3pAw4WHpRM3cunlu28ZJFufXit0XkkIi8nFR2h4i8ISJbg6+PRvX8UfD9Y3DbmfV8btHsvJI+ZL46HVcFw/I+gwpvdh8fNV66Zo5xGd55vzb9pJzrO9rjfIm3eksHbx9Pbdp6+/hA6Ct1153Z63ceTDtAIOyVf2xPV8YBAj7Ea+/sTkmqAA9t3Bf6ytr3eMNF2dTzr8CVacrvVdXW4OvJCJ/fhJSpKeoXb/4q7fGZro4T0rbxk76JqH8wbfGYMj3Ol3hP7EifQDOVFzre2p3pP4FlKh/LaAMOfIg32gq05RhvuMgSv6o+C7wVVXwTratbT+eRT13AHy2YxSOfuoCrW08P3YmcvEhb4uvW356d9tioVhQtdryr5qZvHspUPpZLM7zmmcrHsmhOY07lY3E94KBQAxh8eb+4jjdcMTp3bxaR7UFT0NRMB4nIMhGJiUjs8OH0Q+tMdG5fvYNr7tvEP/2knWvu28Tta3bk1Ykc2/sWvf2DQ1/7j/zK6xVFXcdbcl4TM04en1I24+TxoYaaAsxtSv9fJ1P5WBbOOY3ZjZNSymY3TgrVnwHuBxy4juf7+8V1vOEiXaRNRGYBT6jqOcH9RuBN4ssz/i0wQ1U/NVacctts3Xftnd1cce+zI8qfvuUSWhons3pLB0/sOMhVc0/LKnGNFu/1rndZu7OTRXMaQyeZZOt3HvQ63n0bdrN6+wGWzJvBpy87K3ScqBa+e+SFPazZfoDF82Zw/QfPDB0nIdf3SqHj+f5+yXfARqZF2go6qkdVhxoMReSbwBOFfH6TndHaFx/auHeo0+npXYfY0nF0zJEGmeLdvuZlXvhFvDXw0dh+p6MgfI+360A3b7xzPHS80ZbVcFG/l/Ye4eeHe5ydb7bvlWLF8/H9krw8yv0//YXT1U0L2tQjIjOS7n4MeDnTsaZ4MrUjTj2pJtRIg0zxEkk/l1iZ+D6qIop46Ua5+FQ/ixc+XtSrm0Y5nPO7wEZgtojsF5EbgRUiskNEtgOXAbdE9fwmvEzti0d+1Zf2+LFGGqSL98H3pd/YxZdREBbP4hUzXtSrm0bW1KOqv5+m+IGons+4defiuSydP4utHUdpbZpCS+PkjFcv2Yw0OP+MaTz60n4S+29devapvPBfIwd9+TIKwuJZvGLGi3p1U1uywWTU0jiZa9qahkYSTJ00fsToewnKR5P42NrbP8jxYFTPV5/+Ode1pbZX5jNqIWzdLF5cS+PktKNm8hmVUmnxotinOqrVTW3JBpO1/UeOUVc7LmUph7racaFW56ypquIPL5zFsovfl/KpotB1s3hxXT29vPT6kZSyl14/QldPr8XLUrpPyfmIcnVTS/wma2E/fo72uPq6Widjk31fQdX3eL4vPe57vISWxsnOxtqDu6Xlh7OmHpO1sB8/C7Eph+8rqPoez/c/TL7HKzWRTuByxSZw+aWrpzfUx8+wjytE3SwePL71jRHbleYzbrzS4vko0wQuS/zGmCE+/2EqhXi+8WLmrjGlptwTw3Cu25QrLV6psMRvTAbJU+bLtSnAVCbr3DUmjainzBtTTJb4jUkj6inzxhSTJX5j0qj04X6mvFniNyaNqOYetHd2syrW4WzvVNfxunp62dZx1Jq0ypx17hqTgesp88nrtQNO1393Ec86syuHXfEbM4r6ulrObZri5Eq/ktd/N36xxG9MAVT6+u/GL1FuxPJtETkkIi8nlU0TkXUisjv4Hm5naGNKTKWv/278EuUV/78CVw4ruw1Yr6pnAeuD+8aUPdfrtZfa+u/GL5Gu1SMis4AnVPWc4P5rwKWqeiDYf/cZVZ09Vhxbq8eUi/bObmfrtUcRr9KWqCh3vqzV06iqBwCC5H9qpgNFZBmwDKC5uTnTYcaUFNfrtZfK+u/GL9527qrq/arapqptDQ0Nxa6OMcaUjUIn/s6giYfg+6ECP78xxlS8Qif+x4Ebgts3AGsK/PzGGFPxohzO+V1gIzBbRPaLyI3Al4EPi8hu4MPBfWOMMQUUWeeuqv5+hh8tjOo5jTHGjK0ktl4UkcPA6xE+xXTgzQjj+6Dcz7Hczw/sHMtFIc/xDFUdMTqmJBJ/1EQklm6sazkp93Ms9/MDO8dy4cM5ejuc0xhjTDQs8RtjTIWxxB93f7ErUADlfo7lfn5g51guin6O1sZvjDEVxq74jTGmwljiN8aYClP2iV9EmkRkg4jsEpFXROSzw37+FyKiIjI9qewLItIuIq+JyG8Xvta5Ge0cReTPgvN4RURWJJWXxTmKSKuIbBKRrSISE5ELkh5Tauc4QUR+JiLbgnP8UlCecQOjUjrHUc7vHhF5VUS2i8gPRWRK0mNK5vwg8zkm/dyPfKOqZf0FzADOC25PBn4OzAnuNwFPEZ8cNj0omwNsA2qBM4H/AqqLfR5hzhG4DHgaqA1+dmoZnuNa4CNB+UeJ7/FQqucoQF1wuwZ4EZgPrABuC8pvA+4uxXMc5fwWAeOC8rtL9fxGO8fgvjf5puyv+FX1gKpuCW53A7uA04Mf3wvcCiT3cC8Gvqeqvaq6B2gHLsBjo5zjZ4Avq2pv8LPEaqjldI4KnBwcdgrwy+B2KZ6jqmpPcLcm+FLi5/JgUP4gsCS4XVLnmOn8VHWtqvYH5ZuAmcHtkjo/GPV3CB7lm7JP/MmCHcE+ALwoIlcDb6jqtmGHnQ50JN3fz4k/FN5LPkfgbOBiEXlRRP5DRH4zOKyczvHPgXtEpAP4R+ALwWEleY4iUi0iW4kvWb5OVV9k2AZGQGIDo5I7xwznl+xTwI+C2yV3fpD+HH3LNxWT+EWkDniMeKLoB/4KuD3doWnKSmLMa/I5quo7xBfhm0r84/RfAitFRCivc/wMcIuqNgG3AA8kDk3zcO/PUVUHVLWV+FXvBSJyziiHl9w5jnZ+IvJXxP9vfidRlC5E5JXMU5pznIdn+aYiEr+I1BBPFt9R1R8A7yPenrZNRPYS/wVtEZHTiP/FbUp6+ExONB94K805QvxcfhB8/PwZMEh8gahyOscbgMTt73PiY3JJnmOCqh4FngGuJPMGRiV7jsPODxG5AbgK+EMNGr8p4fODlHNcjG/5ppgdIYX4Iv4X9SHga6Mcs5cTnS2/QWpnyy8ojQ6lEecI/AlwZ3D7bOIfKaXMznEXcGlweyGwuYR/jw3AlOD2ROCnxJPhPaR27q4oxXMc5fyuBHYCDcOOL6nzG+0chx1T9HxT6M3Wi2EB8AlgR9DuBvBFVX0y3cGq+oqIrCT+RuwH/lRVBwpS0/DSniPwbeDbIvIy8B5wg8bfbeV0jn8M/C8RGQccB5ZByf4eZwAPikg18U/jK1X1CRHZSLyZ7kZgH3AtlOQ5Zjq/duKJb128JZJNqvonJXh+kOEcMx1crHO0JRuMMabCVEQbvzHGmBMs8RtjTIWxxG+MMRXGEr8xxlQYS/zGGFNhLPGbsiUiA8Gqna8EqyV+TkRCv+dF5EPByouvBl/Lkn7WECyN8Z8SX0X0M0k/uzBYebIShk+bEmBvRFPOjml86jwicirwb8QXcvubXAMFsyz/DViiqluCZXWfEpE3VPX/EZ889qqq3iAijcBGEVkFdAFfB/6HnliILNfnFuJDrwfDPN6Y4WwcvylbItKjqnVJ938NeIn4shVnAA8Dk4If36yqL4jIw8AqVV0TPOY7wKPAbxJffPH2pHgLgTuAPwMeJz5T8w3gIuCPgse8BJxPfGLZl4FLiU9W+oaq3hesPbSG+JpKNcBfq+qaYCG6HwEbgnhLVPV1l6+PqVyW+E3ZGp74g7IjwPuBbmBQVY+LyFnAd1W1TUR+i/iib0tE5BRgK3AWsBJ4MPEHIYh1CrBHVaeJyCeBNlW9OfhZFbCR+EqabcDHie+H8HciUgs8T3wGbgdwkqq+E3yK2BQ83xnEp+9/UFU3RfICmYplTT2m0iRWQ6wBvi4ircAA8bWMUNX/EJFvBE1Dvws8pqr9QXNLuquktFdOqjooIvcR/2PQJSKLgHkick1wyCnEE/x+4C4RuYT4InqnA43BMa9b0jdRsMRvKkbQ1DNAfHXLvwE6gXOJD3I4nnTow8AfAr9HfH14gFeIX7k/nnTc+cTXWMlkMPiC+B+cP1PVp4bV6ZPEF/Y6X1X7gtUbJwQ/fjf7szMmezaqx1QEEWkA/gX4erBQ3SnAgaDD9BNAddLh/0p83wZU9ZWg7BvAJ4NPCIhIPfFtAleQnaeAzwRLSyMiZ4vIpKAeh4KkfxnxJh5jImVX/KacTQxW8qwhvvLhw8BXg5/9H+AxEbmWeAfq0NW1qnaKyC5gdVLZARG5HvimiEwmfgX/NVX99yzr8i1gFvF12AU4THwLxe8A/y4iMeL9Ca+GOVFjcmGdu8YMIyInATuIb+7+drHrY4xr1tRjTBIRuYL4Vff/tqRvypVd8RtjTIWxK35jjKkwlviNMabCWOI3xpgKY4nfGGMqjCV+Y4ypMP8fFF03YlhPduQAAAAASUVORK5CYII=", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.14878293554077535\n", + "-0.16673322492745407\n" + ] + } + ], + "source": [ + "print(new_pumpkins['Month'].corr(new_pumpkins['Price']))\n", + "print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "相関はかなり小さいようですが、他にもっと重要な関係があるようです。上のプロットの価格ポイントは、いくつかの明確なクラスターを持っているように見えます。異なるカボチャの品種を示すプロットを作りましょう:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA7VklEQVR4nO2deXxU5fX/34cQzACyR6WyBEEpyBIlYF3rAlQtAi61Rtx+xq9tNZbar1q7iHxb7FdxrVr7VZt+QYGIS12wdcMvtmqtLIoIRFHbhCKUhMhO2M/vj3uTzCQzSWbmzsydmfN+ve7rzj1z7+c+T2Zy5rnneZ7ziKpiGIZhZA/tUl0AwzAMI7mY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFlG+1QXoC306tVLCwoKUl0MwzCMtGLZsmWbVDW/qT0tHH9BQQFLly5NdTEMwzDSChGpCme3UI9hGEaWYY7fMAwjyzDHbxiGkWWkRYzfMBLJvn37WLduHbt37051UQwjJvLy8ujTpw+5ubltOt8cv5H1rFu3jkMPPZSCggJEJNXFMYyoUFVqa2tZt24dAwYMaNM1FuoxIlJTA0uWOPtMZvfu3fTs2dOcvpGWiAg9e/aM6onVHL8RlvJy6N8fxo1z9uXlqS5RYjGnb6Qz0X5/zfEbzaipgZISqKuDrVudfUlJ5rf8DSNbMMdvNKOyEjp0CLXl5jp2IzHk5ORQWFjIsGHD+M53vsOuXbsA6Ny5MwCVlZUEAgEKCwsbtieeeCJE4/zzz6ewsJBBgwbRtWvXhvPOPPNMfvKTnzScV1VVxVFHHcWWLVs4/fTTGTx4MCNHjuTkk0/m008/BWiw12tcdNFFSfpLGElBVX2/jRo1So3kUV2tGgioQuMWCDj2TGT16tWpLoJ26tSp4fWll16q9957b4j9n//8px577LFt0lq0aJF++9vfbjjetWuXDh48uKGekyZN0jlz5qiq6je/+U1dsmSJqqo++uijet555zWzG+lBuO8xsFTD+FRr8RvNyM+HsjIIBKBLF2dfVubY4yGjOosTWJlTTz2Vzz//3DO9QCDAfffdx3XXXccrr7zC9u3bmTJlSrPzTjvtNE/va/gXc/xGWIqLoaoKFi509sXF8ellVGdxAiuzf/9+XnnlFYYPH97svS+++CIk1PP222+3Wffcc8+lR48eXHHFFTzyyCNhz1mwYEHIfadMmdJwr5tvvjn6yhi+JaHj+EWkEtgOHAD2q2qRiPQA5gMFQCVwsapuTmQ5jNjIz4+/lQ+hncV1dY6tpATGjvVGP6kkqDJ1dXUUFhYCTou/pKSk2TkDBw5k+fLlMd/j+uuvp66ujsGDB4fYp0yZQiAQoKCggIceeqjBPnfuXIqKimK+n+FfkjGB6wxV3RR0fCvwpqreKSK3usc/CX+pkQnUdxbX+0lo7CxOO8efoMoEAoG4nHpbaNeuHe3aNX/INweffaQi1DMJmO2+ng1MTkEZjCRSUAB794ba9u1z7GlHRlXGyFYS7fgVeF1ElonIta7tcFXdAODuD0twGYwUk6jO4pSQwso0jfE/+OCDCb1fcIx/7NixCb2XkVzEGfGTIHGRr6nqehE5DHgDuAF4SVW7BZ2zWVW7h7n2WuBagH79+o2qqgq7noCRRtTUOBGRggJ/Of2KigqGDBkS3UV+rYyRtYT7HovIMlVtFsdLaIxfVde7+2oReR4YA2wUkd6qukFEegPVEa59DHgMoKioKHG/TkbS8Kqz2BdkVGWMbCNhoR4R6SQih9a/BsYDK4GXgCvd064EXkxUGQzDMIzmJLLFfzjwvJs8qD0wT1VfFZElwNMiUgKsBb6TwDIYhmEYTUiY41fVfwAjw9hrgbMSdV/DMAyjZWzmrmEYRpZhjj+FeJ3uxe96hmH4A3P8KcLrdC9+1zNaRkS4/PLLG473799Pfn4+EyZMAGDWrFmUlpYCMH36dDp27Eh1deOAuPr0zU1fA9x///3k5eWxdetWamtrG8bmH3HEERx55JENx2vWrGHYsGEh106fPp177rkHgKuuuooBAwZQWFjIyJEjefPNNxvOszTO6YU5/hTg9UInftczWqdTp06sXLmSOjcVxBtvvMGRRx4Z8fxevXpx7733tkm7vLyc0aNH8/zzz9OzZ0+WL1/O8uXL+f73v8+NN97YcNyh6SIMYbj77rtZvnw5DzzwAN///vdD3ps7d26D1rPPPtumshmpwRx/CvB6oRO/62UiiQiDnXPOOfzpT38CHGdd3EJK1Kuvvpr58+fz1Vdftaj5xRdfsGPHDmbMmEG5h49tJ554Il9++aVnekZyMcefArxO9+J3vUwjUWGwSy65hKeeeordu3ezYsUKTjjhhIjndu7cmauvvprf/OY3rZTV+QE59dRT+fTTT0PCQ/Hw6quvMnny5BCbpXFOH8zxpwCv0734Xa+eTOgsTmQYbMSIEVRWVlJeXs65557b6vk//OEPmT17Ntu2bYt4zlNPPcUll1xCu3btuOCCC3jmmWcinhtpwe5g+80338xRRx3FZZddxs9+9rOQ84JDPXfffXer5TdSRzLSMhthKC52Urh7le7F73rl5Y6D7NDBeZooK4t/cZdUkOgU0xMnTuSmm27irbfeora2tsVzu3XrxqWXXhpxYZUVK1bw2WefMW7cOAD27t3LUUcdxfXXXx/2/J49e7J5c+jSGF999RUDBgxoOL777ru54IILePDBB7nyyitZtmxZNNUzfIK1+FNIfj6MHu1dyhe/6mVSZ3Giw2BXX30106ZNC7sCVzh+/OMf8+ijj7J///5m75WXlzN9+nQqKyuprKxk/fr1fPnll0RKeNi5c2d69+7dMFrnq6++4tVXX+WUU04JOa9du3ZMnTqVgwcP8tprr0VZQ8MPmOM3Ek46dxbv2wc7dzp7iD8MVlcHmzaFPjEE06dPH6ZOndrm8nXt2osJE85nz549zd576qmnOP/880Ns559/Pk899VREvSeeeIIZM2ZQWFjImWeeye23387AgQObnSci/OIXv2DmzJkNNkvjnD4kNC2zVxQVFenSpUtTXQwjRmpqnE7QYGcXCDhr+fohwWWktMy1tU4ZRUDVqUPPns57sWRlXrsWgvtWDzsM+vWLvdwtlc/IPqJJy2wtfiNqKipg9mxn3xbScSGWffscp3rwIBw44OyrqkJb/tGEwerqQp0+OMeRWv7xls8wWsI6d42ouOEGePjhxuPSUghanzsiXncWJ5q9e52WdDAijj03N3q9nTsj2wOB1JfPyC6sxW+0mYqKUKcPznE0LX8vO58TSYcOTvgkGNXmfRVtpVOn6Oyt4XX5jOzCHL/RZhYvjs6ezuTmOjHzdu0gJ8fZ9+8fe2s6EHBi+sEcdlhsrf1ElM/ILizUY7SZMWOis6c7PXs6fRJ79zot6Xidar9+ztPOzp1OSz9Wp5+o8hnZQ8Jb/CKSIyIfisjL7vF0EflSRJa7W+tTFA1fMGSIE9MPprTUsWcqubmOk/bKqQYC0KtX/E6/Hq/L13T4qpGZJCPUMxVoGgW+X1UL3e3PSSiD4REPPQSrV8OsWc6+LR27Ruvk5OQ0jIEvLCyk0p3kEJxSuZ633norJF1zfn4+hYWFfP3rX+f+++9n9+7dfP3rX+fjjz9uuGbmzJmcddZZDfo9evRoSLFcP+Z+0aIP6dBBmDXrNT7+2BkuCs3TPIOTrjk4pXNhYSFbtmxJzB/H8JyEhnpEpA/wbeAO4MeJvJeRPIYMyexWfioIBAIsX768mT04pfJVV10V9trvfve7PPzww9TW1jJ48GAuuugiHnjgAa677jr++te/sn79eh599FGWLl1K9+7dASe3/oQJExry5u/bB7NmlVNYeAqvvFLOCSd8i6oqJ5QUiRtvvJGbbrop3qobKSDRLf4HgFuAg03spSKyQkT+ICLdw10oIteKyFIRWVqTjnP7jYymZmcNS75cQs3OxH03o02p3LNnTwYNGsSGDRs4++yz6d27N0888QQ33ngj06dPb3D64dizR3nzzWe5/fZZvP/+6+zZs7theKiReSTM8YvIBKBaVZtmcfodMBAoBDYAYVeTUNXHVLVIVYvy02H8n5E1lH9cTv8H+jPuyXH0f6A/5Svjz8tcV1fXEDKpT7MQbUrltWvXsnv3bkaMGAHAAw88wM9//nNqampCVvcKx9Kl7/K1rw2gT5+BjBp1Ou++++dWh4fef//9DWU+44wzoquwkVIS2eI/GZgoIpXAU8CZIjJHVTeq6gFVPQg8DmTomBAjE6nZWUPJSyXU7a9j656t1O2vo+TFkrhb/vWhnuXLl/P8888DbU+pPH/+fI499liOOuoopk6dSl5eHgBf+9rXOPPMM/nBD37Q6v2feaac4uJLaNcOzj77El5/vbzV4aHBq3ctWrQo+kobKSNhMX5V/SnwUwAROR24SVUvE5HeqrrBPe18YGWiymAYXlO5pZIOOR2o29+YayE3J5fKLZXkd/LuyTSalMr1Mf733nuPb3/725xzzjkcccQRgJNJs127ltt3Bw4c4LnnniM39yV+85s7OHhQ+eqrWjp02A4c6lmdDP+QiglcM0XkYxFZAZwB3JiCMhhGTBR0K2DvgdDA974D+yjoVuDpfaJNqQzOcoiXX355q6tyNWXhwoWMHDmSf/3rX1RWVrJ2bRUXXnghL7zwQpy1MPxKUhy/qr6lqhPc15er6nBVHaGqE4Na/4bhe/I75VM2qYxA+wBdDulCoH2Askllnrb2IbaUygA/+clP+N///V+2b9/e5nuVl5c3u9eFF17IvHnzANi1axd9+vRp2O677z4gNMYfPATV8D+WltnIeiKlZW6Jmp01VG6ppKBbgedO3zBiIZq0zJaywTBiIL9Tvjl8I22xJG2GYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvJI2aGliyxNknipdfhmuucfZesGWLs1ykV4knvdbzOo2y3/UMbzDHbySF8nJnhahx45x9G3KORc3w4XDeec5C7uedB27KmphZtQo+/xw2bXL2q1YlTk9EQvLp7N+/n/z8/JD0y6XuYgg//OEP+dWvfkVtLXz8Mdxyyx1MmXI9tbVO1s36dMuFhYWcdNJJDdfn5+dz3HHHcfTRR/Otb32Lv/3tbyHlq9f78Y+nc/PN9zSkZQYoKChg06ZNQPMU0nfeeScAp59+OvXDrgsKChg6dDhDh47gtNO+yeuvV7WY5nnr1q1cccUVDBw4kIEDB3LFFVeEpKJetWoVZ555JscccwxHH300v/rVr6gfij5r1ixEhDfffLPh/Oeffx4R4dlnnw25z6xZsyguLg6xbdq0ifz8fPbs2QPApEmTOPHEE0POCU5DPXTo0JCkeVdddVXDfU4//XQGDx7c8Le56KKLuOOOOxqOg/92Dz74INOnT+eee+5p0An32W3cuJEJEyYwcuRIhg4dyrnnxr+EiQ3nNBJOTQ2UlEBdnbOBczx2rHfr7778Mqxskvzj448du+s7o2LLlsay1lNX59i7dfNer1OnTqxcuZK6ujoCgQBvvPEGRx55ZFitGTNmUFhYyMiRU1AVXnjh98yZ8yFVVXDwINx9990N6ZaDqU/tALBo0SIuuOACFi1axJAhQ9i3j4brVZ2tPi1z03w9kVJIN+WhhxbRtWsvHn30dh5/fAa9ez8eMc1zSUkJw4YN44knngDg9ttv55prruGZZ56hrq6OiRMn8rvf/Y7x48eza9cuLrzwQh555JGGFBbDhw+nvLycs846C3AmwI0cObLZfS644AJuuukmdu3aRceOHQF49tlnmThxIocccghbtmzhgw8+oHPnzvzzn/9kwIABDdfWp6H+7LPPGDVqFBdddBG5YZIZzZ07l6Ki0KHzP//5zwHnRy/4bzd9+vSQ88J9dtOmTWPcuHFMnToVcNJ5xIu1+I2EU1nZPMtjbq5j94pI2QVizToQKRTTaK8Blrh7L/TgnHPO4U9/+hPQmJkzHF26dOG22+5g5sxSZs68nu9975ccemg3RBzH3RbOOOMMrr32Wh577DHASb8sEnpOPGmZVRv1hg8/kZqaLyPqff755yxbtozbbrutwTZt2jSWLl3KF198wbx58zj55JMZP348AB07duThhx9ueNIAOPXUU1m8eDH79u1jx44dfP755xQWFja7V5cuXTjttNNYsGBBg+2pp55q+Fs/99xznHfeeVxyySURZ0kfffTRdOzYkc2bN0f7Z4mJDRs20KdPn4bjEfE+ymKO30gCBQXN/+H37XPsXjF5cnT21ojUqnfs5UB/YJy7bz1u1bKeQ72z2b17NytWrOCEE06IqHfZZcVs27aZnTu3ce65TohI1Vl0/eabb24IF0yZMiWixvHHH88nn3wCOD/MwZP4y8vv55JLCjnpJEdn/fr1De8Fp5AuLCxk/vz5zbRFGvXee+9VvvnNyRHTPK9evbohDFJPfUhk1apVrFq1ilGjRoVcM3DgQHbs2MG2bdvc+wljx47ltdde48UXX2TixIkR611cXNzg1NevX8+aNWsa0krX/+AWFxdHXAPhgw8+4Oijj+awww4L+/6UKVMa/jY333xzxHKEI9xnd/3111NSUsIZZ5zBHXfcEfJZxIqFeoyEk5/vxN1LSpyW/r59zrGXyyxMmODE+INWG2T48NjCPOA45EAgNDwTCEC3bjVACVDnbrjHY4HIFYqs13g8YsQIKisrKS8vbzWOu3HjOrZu/TcHDgh79uwgEOhM//6O448U6mlKcLqW3Fyn76WqynHal156I7fddhM9ezrvFwT9Src11HPDDWfw739vpEePw7j++hkR0zyrKtL0cSPIHul9IMR+ySWX8OCDD7J161buvfdefv3rX4e9ZsKECVx33XVs27aNp59+mosuuoicnBw2btzI559/zimnnIKI0L59e1auXMmwYcMAJzfR448/zj/+8Q9effXViPUOF+ppK+E+u29961sN93zllVc47rjjWLlyJfGsU2ItfiMpFBc7TmXhQmcfIYoRFytWwIIFzg/MggXOcTwceywMGuQsjj5okHMMlUDTZmuua49FL5SJEydy0003RQzz1DN16lR++cvpFBdfzDPP/BfDh9PgpNvKhx9+GJLbpWdPGnR6945eryl//esiKiurGDnyWJ59dlpEvWOPPZYPP/yQg0FxqoMHD/LRRx8xZMgQjj32WJrm6vrHP/5B586dOfTQxrTRY8aMYeXKlWzatIljjjkmYrkCgQBnn302zz//fEiYZ/78+WzevJkBAwZQUFBAZWVlSLjnxhtv5NNPP2X+/PlcccUV7N69O5Y/S0z06NGDSy+9lCeffJLRo0fz17/+NS49c/xG0sjPh9GjvW3pN2XCBPj972Nv6TelWzcnJNXYMi8Amgaq97n2WPRCufrqq5k2bRrDhw+PqPHKK69QXV3NFVdcwfTpt/Hyy8/z2Wer23T/ev7yl7/w2GOP8R//8R8h9txcJxwTFHWJiy5dAjz88APMmfMEX331VdhzBg0axHHHHceMGTMabDNmzOD4449n0KBBTJkyhXfeeYeFCxcCTqjphz/8Ibfcckszrf/+7/+O2NIPpri4mPvuu4+NGzfyjW98A3DCPK+++mpDKuxly5aFjfNfcMEFFBUVMXv27Db9DeLl//7v/9i1axcA27dv54svvqBfv35xaZrjN4yoyAfKgADQxd2X0VKYJxr69OnTMHojHLt37+ZHP/oRjzzyCCJCp06dmDlzZsNQTwiNExcWFrLX7WCZP38+hYWFHHPMMfz617/mueeeizorKTSP8d96660tnt+7d2+Ki4v57W9/C4RP81xWVsaaNWsYNGgQAwcOZM2aNZSVlQFOC/3FF19kxowZDB48mOHDhzN69OiQOtdzzjnntGkZyPHjx7N+/Xq++93vIiLuOgRrG34EAAYMGECXLl14//33m10/bdo07rvvvpCnlHqCY/xjx45ttSzBhPvsli1bRlFRESNGjODEE0/kmmuuYfTo0VHpNiXhaZlFJAdYCnypqhNEpAcwH6eJVAlcrKotdo9bWmZ/UVPjjMgpKIi/9T53Ljz9NFx8MbTQD5nQssWSltkZzVOJ8zVOXZbOHTtg61bo2hXCDI9PuV5dnTOBq1Mnp0/DSBzRpGVORot/KlARdHwr8KaqHg286R4baYKXE7H69oXLLoOXXnL2cT69JmWSWCP5wGhS6fTXrIFPPoENG5z9mjX+0lu71pmkVlnp7NeujU/P8I6EOn4R6QN8G/h9kHkSUB8cmw1MTmQZDO8Inoi1dauzLymJLQXD3Lmwbl2o7V//cuypLls6sGMHuCMZG9i2zbH7Qa+uDqqrQ23V1c0nsRmpIdEt/geAW4DgQNjh9cstuvuwg2FF5FoRWSoiS2sy9b83zfByItbTT0dnb414y5YOK9EFE5TNoE32ZOvt3Bmd3YiPaL+/CXP8IjIBqFbVZbFcr6qPqWqRqhbFM17V8A4vJ2JdfHF09taIp2x5eXnU1tamlfPv2jU6e7L1OnWKzm7EjqpSW1tLXl5em69J5ASuk4GJInIukAd0EZE5wEYR6a2qG0SkN1DdoorhG7yciDVlCvz0p054p56+fWPv4I2nbH369GHdunWk25Pljh0QPJQ8Ly/075lqvT17IHjN90MP9TZNh9FIXl5eSFqH1kjKYusicjpwkzuq526gVlXvFJFbgR6q2nxAbhA2qsdfZNqonnTm3Xfh9ddh/Hg4+WT/6VVUwOLFMGYMxDBy1IiTSKN6UuH4ewJPA/2AtcB3VDX8zA4Xc/yGYRjRE8nxJyVXj6q+Bbzlvq4FzkrGfQ3DMIzm2MxdwzCMLCOjHX8ylvqLB6/LV1EBs2c7+2zQSwZef0Z+/04aWYKq+n4bNWqURsu8eaqBgGrXrs5+3ryoJRKK1+UrLa1fN8nZSkszWy8ZeP0Z+f07aWQewFIN41OT0rkbL9F27tbUOFP2m+Y+r6ryx0gPr8tXUQFDhza3r14d20gKv+slA68/I79/J43MJJW5epJOMpb6iwevy7d4cXT2dNdLBl5/Rn7/ThrZRUY6/mQs9RcPXpdvzJjo7Omulwy8/oz8/p00souMdPz1szgDAejSxdl7vdRfPHhdviFDoGlq8tLS2MMoftdLBl5/Rn7/ThrZRUbG+Ovx+yxOr8vn9SxJv+slA68/I79/J43MIqUzd+PFZu4abcUcq2E0klWdu0Z2ktyFWAwjfTHHb2QE2bYQi2HEgzn+FOL1LM6XX4ZrrnH2idSL9T7hrps7FyZNin3lrXoSNVzy3Xfh9tudvRd4ref1Z24zi7OEcLO6/LbFMnPX73g9i3PYsNCZscOHJ0Yv1vuEu65Pn1Bb376xl7e6WlUkVE/EscfKuHGheuPHx66VCD2vP3ObWZx5EGHmbsqdelu2THP81dXOP1bwP20gELuTWrAgVKt+W7DAW73bbovtPpH0wm1z5nhb5lj/Bu+8E17vnXf8oed1fb3+Thr+IJLjt1BPCvA6LPHCC9HZY9WbPz+2+0RTjljX3PX6b/D669HZk63ndX1tZnF2kcg1d/NEZLGIfCQiq0Tkv1z7dBH5UkSWu9u5iSqDX/F6FufkydHZY9X77ndju0805Yh1zV2v/wbjx0dnT7ae1/W1mcVZRrjHAC82QIDO7utc4H3gG8B0nNW4sjbUo9oYT+3SxZt46vDhoY/p8cZ7I+nFep9w1/XtG2qLJ8YfT9kiMX58qF68MXmv9byur9ffSVUnVLR4sXchI6/1Mh2SHepx77vDPcx1N//PFksSxcVOZsaFC519cXF8eitWwIIFzhDGBQuc40ToHXFE6Hm9e8eupx5/G7zWW78+9HjDhvj0XnsN3nkHpk1z9q+9Fp+e15+5199Jr+dV2DwNDwn3a+DVBuQAy4EdwF2ubTpQCawA/gB0b00nE1v86YiXHZRz5oTX8kvnrtd62YbXncXW+RwbpKJzV1UPqGoh0AcYIyLDgN8BA4FCYANwb7hrReRaEVkqIktrbFCxL/CygzJSJ65fOne91ss2LK21v0nKqB5V3YKz2PrZqrrR/UE4CDwOhE3Oq6qPqWqRqhbl+yTpit8n83hN08k88XZQButF6sT1S+eu13r1/O53cNppzt4LvNbzakKdpbX2OeEeA7zYgHygm/s6ALwNTAB6B51zI/BUa1p+CPX4fTKP10SazNO9e2i5e/SIXa9Hj9i0IuF1Z7HXerH+7ZKl5+WEOlXvO5+9nrCWDZDsCVzACOBDnFj+SmCaa38S+Ni1vxT8QxBpS7Xj9/tkHq+JFE+NFPdurdyR9PLymtv8EgP2Wu+RR8L/7R55xB96Xve5ZNv/jF+J5PgTOapnhaoep6ojVHWYqv7StV+uqsNd+0RVjXOsROLx+2Qer4kUT40U326t3OH02rWDnJzm9/BLDNhrvUgjUGIdmeK1ntd9Ltn2P5Nu2MzdNuD3yTxeEymeGim+3Vq5w+kdPAgHDjS/h19iwF7rRRoaGeuQSa/1vO5zybb/mbQj3GOA37ZUh3pU/T+Zx2siTeaJtdzz5jmhnU6dnP28ec7Wvr1qTo6zj3fCUL1eu3be6eXkOMnecnLi1/O6T8PvfSTZ9j/jR4gQ6rEVuKLg3XedR8vx4+Hkk/2n5zXhVrPq2xfWrWs8p29fWLu2da3ycmeiUbt2Tmu/rAxuuSU2rUj06AGbN4ce19bGrtepE+zaFXq8Y0fk85Ndvlg/i2TpQfb9z/iNSCtwpbw135bNDy1+I/YOwHAdpR06xKYVCa87O++6K7zeXXf5o3xed8Z6rWf4A+Lp3BWRY0TkTRFZ6R6PEJFfePvbZPidWDsAw3WUHjwYm1Yk/N556vfOWK/1DH/T1s7dx4GfAvvAGbEDXJKoQhn+JNYOwHAdpe0ifPNi7Uz0e+ep3ztjvdYzfE64x4CmG7DE3X8YZFvelmu92DI11JOOmQtj7QAM11nsdWei152dnTqF6nXq5K/y+X3CmpF6iHMc/yYRGQhOdk0RuQgnz44RI+mauXDtWpgzByZOdPZt7fwLl/kxVq1I1NbCI4/Aqac6+3g6TsHpyL3rLigsdPbxdOwmonx33QXt2zvzIdq3d47jwevPw/AvbRrVIyJHAY8BJwGbgX8Cl6lqZUJL5+KXUT1eUVPjOOe6ukZbIOA4xFjSEnmtZ/gf+8yNthBpVE+bWvyq+g9VHYuTf+frqnpKspx+JuL3Waax0DShm5FY/PCZG+lLW0f1/FpEuqnqTlXdLiLdRWRGoguXqfh9lmm02AIZySfVn7mR3rQ1xn+OOqmVAVDVzUDWrZXrFfn5zgSmQAC6dHH2ZWWxP6J7rVdPpFZ8zc4alny5hJqdNdTUOBOz6upg61ZnX1LS9pZ/sJYXZIte/Wd+SPca8gYu4ZDuNZ585hVra5j9xhIq1tqjWybTvo3n5YjIIaq6B0BEAsAhiStW5lNcDGPHNp8Z6xe9+pm2HTo4LcuyMuce5R+XU/JSCR1yOrD3wF5+NqyMDh2KQ2LNOTnw5z/DuW7TIFKZmmqVTSqjeFjs6/1lm97ftpWz57oSONABcvbyt21lFBO73g2PlvPwv0rgYAf4y15K+5bx0PfiXH/R8CVt7dy9BZgI/C/OyJ6rgZdUdWZii+eQaZ27fidSx+GyT2oY9WR/6vY3vhFoH0Dvq2L3V6Fe/dBDYfduEHGuDf7xAKfl2/+B5lpVP6oiv1P0v1rZplextoahj/WH3KAPaV+A1ddWMaRf6vUMfxBv5+5M4A5gCHAs8KtkOX0j+UTqOFz8aSUdckLfyM3J5ef3VBIIQOfOjfbt252Y89694UNAlVvCa1VuqYytzFmmt/jTSqdlHszBXMfuAz3D37Q5LbOqvqKqN6nqf6rqa4kslJFaInUcjhlcwN4DoW/sO7CP711cQFUVPPyw09KPRPCok4Ju4bUKuhXEVuYs0xszuADaNZ0Ovc+x+0DP8DctOn4RecfdbxeRbUHbdhHZ1sq1eSKyWEQ+EpFVIvJfrr2HiLwhIp+5++7eVSe78WoN34aOw0Mat7IyGNIvn7JJZeTlBAhIF/JyApRNKiO/Uz6bNsG2bc4PRCTq6mDaNGc9101r87myWxkdJMAh2oVD2jVqxVTmTk7ZOkiA3INd6CDe6B3SztvyeaU3pF8+pX3LYF8AdneBfQFK+5bFHJYJ0dsTv57hc8JN5/ViAwTo7L7OBd4HvgHMBG517bcCd7WmlakpG7wkWWsCl5aq0rFa+dpipWO1lpa6tjCZHdu0BWnFW+Zhw0L14l2Tddw4b8vntV64zyJeVldV66zXF+vqqgTm/TCSBrGuuYvzVLCytfNa0egIfACcAHyKu84u0Bv4tLXrzfG3TLLWN42UutfLLdYyR1oPeMECb/8GflkzdvXq8HqrV8emZ2QmkRx/qzF+VT0IfCQi/aJ9mhCRHBFZDlQDb6jq+8Dh6q6z6+4Pi3DttSKyVESW1th00BZJ1vqmyUjRG2uZI60HHMkeazn8smbs4sXR2Q0jmLZ27vYGVrk5+V+q31q7SFUPqGoh0AcYIyLD2lowVX1MVYtUtSjfko+0SLLWN01Git5YyxxpPeBI9ljL4Zc1Y8eMic5uGCGEewxougHfDLe15dogjduBm7BQT0JI1vqmTeP5ccf4PSzz8OGhevHG+P2+Zmy4z8IwgiGWNXdFJA/4PjAI+BgoU9X9bflBEZF8YJ+qbnFn+r4O3OX+aNSq6p0icivQQ1VvaUnLJnC1jWStb1pR4YQUxoyBIUOa2yD867fecmYEFxfDiBGO9hFHwL//7V2ZX37ZCe9MngwTJsSv5/c1Y8N9FoZRT6QJXK05/vk4q269DZwDVKnq1DbecAQwG8jBCSk9raq/FJGewNNAP2At8B1V/aolLXP86U9wCohduyLP6DUMwztidfwfq+pw93V7YLGqHp+4YobHHH96Ey4FRDCWR94wEkOsKRsapuO0NcRjGE0JlwIiGMsjbxjJpTXHPzJ4ti4woq0zd43MpaICZs929m0hXAqIYHbvbvn9aIi2bKZnZCXhenz9ttmoHv8Q60iS4MXWc3NVO3RwNi9HpXg9yiXb9IzMg1hG9fgFi/H7g4oKGDq0uX316tARJTU1jTn4IfzrNWvglFNa1/K6bKZnZBNxpWU2DGjbbNHgZRiPPBL69GlcknHhQhg92unE/fzz6O7hRdlMzzAczPEbbaa12aJNl2FsKR+/1zNPTS8+PSO7MMdvtJkhQ6C0NNRWWtoYWohm9E5rWl6XzfQMoxGL8RtRE2m2aCzj9b2eeWp6htFITBO4/II5/vShfoZubq7zAyACeXlO2Mdm6BpGconk+NunojBG5lJcDGPHhh/JYzNzDcMfmOM3PCc/P9TJm8M3DH9hnbuGYRhZhrX4jaQRaWKXPREYRnIxx28kBUvLbBj+wUI9RsKJZmKXYRiJJ2GOX0T6isgiEakQkVUiMtW1TxeRL0Vkubudm6gyGMmjpgaWLAnvwC0ts2H4i0S2+PcD/6mqQ4BvANeLSH1aqftVtdDd/pzAMhhJIDg/T//+znEwraVl3revMe5vGEbiSZjjV9UNqvqB+3o7UAEcmaj7GamhaRgnXOgmP9+J4wcC0KWL08Lv0MF5HQg471kHr2Ekj6TE+EWkADgOeN81lYrIChH5g4h0j3DNtSKyVESW1lgA2LeEC+OEC90UFzvpGhYuhC+/hHXrnNdVVdaxaxjJJuEpG0SkM/AX4A5V/aOIHA5sAhT4FdBbVa9uScNSNviXcPl5bA1dw/AHKcnHLyK5wHPAXFX9I4CqblTVA6p6EHgcsESyaUzTME5LoZvgZQJtyUDDSB0JG8cvIgKUARWqel+QvbeqbnAPzwdWJqoMRnJomp8nnNO/4QZ4+OHw15eWwkMPJbKEhmEEk7BQj4icArwNfAwcdM0/A4qBQpxQTyXwvaAfgrBYqCe9ibRMYDC2ZKBheE/Ss3Oq6juAhHnLhm9mGW1ZDnDxYnP8hpEsbOaukXDashygLRloGMnDHL+RcMItExiMLRloGMnFkrQZSeGhh+C66xqXCQRbMtAwUoU5fiNpDBkS6uTN4RtGarBQj2EYRpZhjt8wDCPLMMdvRKalXMt+0DMMIybM8RvhaS3Xcqr1DMOImYQnafMCm7mbZLzOvGaZ3AwjJaQkSZuRprQ113Kq9AzDiAtz/EZzwi2ZFc8yWV7rGYYRF+b4jeZEk2s5FXqGYcSFxfiNyNTUtJxrOdV6hmG0SNKzcxoZQH6+tw7aa71w+P3HyvRMzw+oqu+3UaNGqWG0yrx5qoGAateuzn7ePNMzvfTV8wBgqYbxqQlz1kBfYBFQAawCprr2HsAbwGfuvntrWub4jVaprnb+2aBxCwQcu+mZXrrpeUQkx5/Izt39wH+q6hDgG8D1IjIUuBV4U1WPBt50j7MTv8+MTaeZtn4fgmp6pucjEub4VXWDqn7gvt6O0/I/EpgEzHZPmw1MTlQZfI3fZ8am20xbvw9BNT3T8xPhHgO83oACYC3QBdjS5L3NrV2fcaEevz9m+vSxtVXqY6xdungbszU900uFngcQIdST8OGcItIZ+Atwh6r+UUS2qGq3oPc3q2r3MNddC1wL0K9fv1FVVVUJLWdSWbLEaUlv3dpo69IFFi6E0aMzTy+Z+H2UhumZXhKJNJwzoY5fRHKBl4HXVPU+1/YpcLqqbhCR3sBbqjq4JZ2MG8fv91w4llvHMDKCpOfqEREByoCKeqfv8hJwpfv6SuDFRJXBtwTPZO3UyduZsV7q5eU5enl5oXqxdvqGu87vHdKmZ2QgiRzVczJwOXCmiCx3t3OBO4FxIvIZMM49zk7qn7a8euryWk8kdA+xd/qGu87vHdKmF5+e4V/CBf79tlnnrk/0Vq+O7T6R9PLy0u9vYHpGGkEKxvGnHr8+BidqDHEvoAhnnwi9xYtjK3e4+rZrBzk50WtFcw/TS52e4Wsy1/H7+TG4oCC04xRg9+74xhBP2A5VOHOhq4AJO7zXGzMmtrHK4eq7dy8cOBC9Vkv38PO47GzTM/xNuMcAv21Rh3r8/hhcXa2amxuql5sbu17NatWdTf5sO3HsXuvFMlY5Un3/53/8PY7a9OLTM1IOEUI9mZmds/6xNbiVWf/YGstIl0TodewYOk4+EIhdr3qxMyc6mH2uvdcQb/WKr4SxY6Mbqxypvscf7wwR9Wrcc3Fx9GUzvcTpGb4lMx2/3x+DvdY7bAzkNrHluvZE6EWbXrml+vo99bPpGRlIZsb4WxuHHqueX1ek6jUEPiyFXcBWnP2HpbG19hOh5/U8A8Mw4iIzHX894cahx0pxsROWWLjQ2RcX+0tv7Ukw+BA4L8/Zrz3JX3rg/TyDZODXkWHZqmd4Q7jAv9+2lHfu+p106MxOx8/D7wt1ZJueETUkeyEWL7eoHf/ixc6XLdjRdOni2DMRr+vrd71k4Pcfv2zTM2IikuPPzFBPosYk+/UxONmdz9GWuyU9j/+mL8/dzDWTqnl57ub4hNyRXBUMZjZXUMFgf02QyjY9w1vC/Rr4bYspZUOixjj79TF42LDQ1tXw4fHpjRsXqjd+fHzlLi0N1Sst9fxvMKxPrcLBhm1439rYxaqrtbTdb0P0Sts97J8WcLbpGTFBVoV66qmudsIJ8X7Z/P5P8c47oVr12zvvxKa3enVkPZ/m6lkw5yvXQQdLHtQFc76KSc/5EzTXWx3jnDhVDf/jFw9+n8BlE8JSTiTHn5mhnnry852FQ+IdNuj3x+DXX4/O3hqLF0fW82munhfm7IjK3hqLF26Lyt4qNTXOENZgysriC3H5faSZ13qGZ2S24/cKv0/gGj8+OntrjIkw8Wv8eNi1K9RWV9e2XD1791JDL5ZQRA294OBB2Lkz9Lxt22L+G0w+aWNU9tYYc3j4Fd8i2VslUTFvrxo36aJneII5/rbg9wlcJ5/c3MmPH+/YY6FXL2jfZFJ3+/bQo0fzORFtmSORn095yRv0p4pxLKQ/VZSf+0T4c9esianIE477N8NZDmjDNpzlTDju3zHpDelYRSkPhuiV8iBDOsbo+BM14GDuXJg0ydl7wcsvwzXXOHsvePdduP12Z+9HvYoKmD3b2WeDXj3h4j9+23yTj9+rPoNE6b3zjuq0abHH9uuJNPxy1izVnJxQe05Oq8Myw4b42+/Rano170eYNi22Mk+bpgq6gLO1hEd1AWd7oreawTqLK3Q1g+PTU1Xt3j20rj16xK6lqtqnT6he377x6SVrgIBf9Lzuc/GhHsnu3AX+AFQDK4Ns04EvgeXudm5btHzj+LOFSJ2xc+Y0d9SgumBBi3Jhf0cCe3QxRc215syJrcyRymZ6bWPBgpg+24h4PeAgWQMYYu2996leJMefyFDPLODsMPb7VbXQ3f6cwPsbsRIpFBUpDLNkSYtyYaMcB9pRQGXzk/fvj6nIEa/zi97TT0dnT7beCy9EZ28NrwccJGsAQyR7uus1IWGOX1X/CnyVKH0jwRQXwxtvwI9+5OyLi2PuRG74Hck7SJfAXgJ5Bym749/ks6n5yZE6llsj0nV+0bv44ujsrXF2uDZVC/bWmDw5OntreD3gIFkDGPzyffFarynhHgO82oACmod6KoEVOKGg7i1cey2wFFjar1+/6B6TjPiJFF8cPz7U3tY4a2mpVtNLF1PkxPZLS30ZE02oXt++oXrxxOQXLw4fCognDcbw4aFa8cb4Y/2uJEvP79+XdIzxa3jHfziQg/OkcQfwh7boWIw/ybQWX5wzR3XixLbHk1vSW7BAtaQk9lhyU/yud9ddqoWFzj4eEjUz9pFHVE891dl7QbTflWTr+f37EueADV84/ra+13Qzx59kZs0K76hnzYqtFRJJ76yzfNdCSis9G+WS2XoepDTxheMHege9vhF4qi065viTTKQWeqSRH62NNIik58NREKZner7Q8+iJLpLjT1jnroiUA+8Bg0VknYiUADNF5GMRWQGc4Tp/w28MGQKlpaG20lKorQ1/fmsjDcLpnXVWbFqR8PuoCtMzvWhIcHbThK25q6rhEnOUhbEZfuShh+C665wv7pgxjvOONHuwLSMNTjoJfv97Z6avqjP65M03Y9OKpgymZ3rpqJeomd71hHsM8NtmoR6fUF2t2q5d6ONnu3axZ+csKQm1xRMTjbVspteI30fh+F3Ph9lXycrsnIa3VFbCoYeG2jp3ji07Z24ufO97sHo1zJrl7B96KPllMz2Hmhp4++1Q29tvx549NNv0wPn+evV9hoRmN01YqMfIQGJ9/Gzpuvx8J4yUqrKZnkP9j3NdXaOtPqYcS/LAbNOrZ8gQb77P9eTnJySzqbX4jbYTa1ZRr7ORJuMe2abn9x8mv+ulG+HiP37bLMbvM2LNKup1NtJk3COb9Py+Apff9XwIEWL84rznb4qKinTp0qWpLoZhZD41NU64oz4MZ3ppjYgsU9WipnaL8RtGS2S4Y2iG1zHlbNNLEyzGbxiRKC+H/v1h3DhnX16e6hIZhieY4zeMcNTUQEmJM+pj61ZnX1IS33A/w/AJ5vgNIxwJnjJvGKnEHL9hhCPbh/sZGY05fsMIR6LmHlRUwOzZkfMepVqvpsZZStNCWhmNOX7DiITXU+ZvuAGGDoWrrnL2N9zgLz3rzM4abBy/YSSDigrHOTdl9erYpvh7rVdT4zj74BQGgYDzg5eFwx0zhUjj+K3FbxjJIMvzvxv+IpELsfxBRKpFZGWQrYeIvCEin7n77om6v2H4imzP/274ikS2+GcBZzex3Qq8qapHA2+6x4aR+URa1SzWTI5e6yUjkZ7hGxIa4xeRAuBlVR3mHn8KnK6qG0SkN/CWqg5uTcdi/EbGUFERuqqZ3/SyLUVFhhMpxp9sx79FVbsFvb9ZVcOGe0TkWuBagH79+o2qqqpKWDkNwzAykbTr3FXVx1S1SFWL8q3lYRiG4RnJdvwb3RAP7r46yfc3DMPIepLt+F8CrnRfXwm8mOT7G4ZhZD2JHM5ZDrwHDBaRdSJSAtwJjBORz4Bx7rFhGIaRRBK2EIuqRprfflai7mkYhmG0TlqkbBCRGiCRw3p6AZsSqO8HMr2OmV4/sDpmCsmsY39VbTY6Ji0cf6IRkaXhhjxlEplex0yvH1gdMwU/1NG3wzkNwzCMxGCO3zAMI8swx+/wWKoLkAQyvY6ZXj+wOmYKKa+jxfgNwzCyDGvxG4ZhZBnm+A3DMLKMjHf8ItJXRBaJSIWIrBKRqU3ev0lEVER6Bdl+KiKfi8inIvKt5Jc6Olqqo4jc4NZjlYjMDLJnRB1FpFBE/i4iy0VkqYiMCbom3eqYJyKLReQjt47/5dojLmCUTnVsoX53i8gnIrJCRJ4XkW5B16RN/SByHYPe94e/UdWM3oDewPHu60OBNcBQ97gv8BrO5LBerm0o8BFwCDAA+ALISXU9YqkjcAawEDjEfe+wDKzj68A5rv1cnDUe0rWOAnR2X+cC7wPfAGYCt7r2W4G70rGOLdRvPNDetd+VrvVrqY7usW/8Tca3+FV1g6p+4L7eDlQAR7pv3w/cAgT3cE8CnlLVPar6T+BzIMb17JJDC3X8AXCnqu5x36vPhppJdVSgi3taV2C9+zod66iqusM9zHU3xanLbNc+G5jsvk6rOkaqn6q+rqr7XfvfgT7u67SqH7T4GYKP/E3GO/5g3IVhjgPeF5GJwJeq+lGT044E/hV0vI7GHwrfE1xH4BjgVBF5X0T+IiKj3dMyqY4/Au4WkX8B9wA/dU9LyzqKSI6ILMdJWf6Gqr4PHK6qG8D5AQQOc09PuzpGqF8wVwOvuK/Trn4Qvo5+8zdZ4/hFpDPwHI6j2A/8HJgW7tQwtrQY8xpcR1XdhpOErzvO4/TNwNMiImRWHX8A3KiqfYEbgbL6U8Nc7vs6quoBVS3EafWOEZFhLZyednVsqX4i8nOc/8259aZwEgkvZJyEqeMIfOZvssLxi0gujrOYq6p/BAbixNM+EpFKnA/oAxE5AucXt2/Q5X1oDB/4ljB1BKcuf3QfPxcDB3ESRGVSHa8E6l8/Q+NjclrWsR5V3QK8BZxN5AWM0raOTeqHiFwJTACmqBv8Jo3rByF1nITf/E0qO0KSseH8oj4BPNDCOZU0drYcS2hnyz9Ijw6lZnUEvg/80n19DM4jpWRYHSuA093XZwHL0vhzzAe6ua8DwNs4zvBuQjt3Z6ZjHVuo39nAaiC/yflpVb+W6tjknJT7m4Tl4/cRJwOXAx+7cTeAn6nqn8OdrKqrRORpnC/ifuB6VT2QlJLGTtg6An8A/iAiK4G9wJXqfNsyqY7/AfxGRNoDu4FrIW0/x97AbBHJwXkaf1pVXxaR93DCdCXAWuA7kJZ1jFS/z3Ec3xtOJJK/q+r307B+EKGOkU5OVR0tZYNhGEaWkRUxfsMwDKMRc/yGYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvZCwicsDN2rnKzZb4YxGJ+TsvIqe4mRc/cbdrg97Ld1NjfChOFtEfBL13gpt5MhuGTxtpgH0RjUymTp2p84jIYcA8nERut0cr5M6ynAdMVtUP3LS6r4nIl6r6J5zJY5+o6pUicjjwnog8C9QCDwPXaWMismjvLThDrw/Gcr1hNMXG8RsZi4jsUNXOQcdHAUtw0lb0B54EOrlvl6rq30TkSeBZVX3RvWYuMB8YjZN8cVqQ3lnAdOAG4CWcmZpfAicC/8+9ZgkwCmdi2Z3A6TiTlX6rqo+6uYdexMmplAv8QlVfdBPRvQIscvUmq2qVl38fI3sxx29kLE0dv2vbDHwd2A4cVNXdInI0UK6qRSLyTZykb5NFpCuwHDgaeBqYXf+D4Gp1Bf6pqj1E5CqgSFVL3ffaAe/hZNIsAi7EWQ9hhogcAryLMwP3X0BHVd3mPkX83b1ff5zp+yep6t8T8gcyshYL9RjZRn02xFzgYREpBA7g5DJCVf8iIr91Q0MXAM+p6n433BKulRS25aSqB0XkUZwfg1oRGQ+MEJGL3FO64jj4dcCvReQ0nCR6RwKHu+dUmdM3EoE5fiNrcEM9B3CyW94ObARG4gxy2B106pPAFOASnPzwAKtwWu4vBZ03CifHSiQOuhs4Pzg3qOprTcp0FU5ir1Gqus/N3pjnvr2z7bUzjLZjo3qMrEBE8oH/AR52E9V1BTa4HaaXAzlBp8/CWbcBVV3l2n4LXOU+ISAiPXGWCZxJ23gN+IGbWhoROUZEOrnlqHad/hk4IR7DSCjW4jcymYCbyTMXJ/Phk8B97nuPAM+JyHdwOlAbWtequlFEKoAXgmwbROQy4HERORSnBf+Aqi5oY1l+DxTg5GEXoAZnCcW5wAIRWYrTn/BJLBU1jGiwzl3DaIKIdAQ+xlncfWuqy2MYXmOhHsMIQkTG4rS6HzKnb2Qq1uI3DMPIMqzFbxiGkWWY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFnG/wfSVo6szTyIxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax=None\n", + "colors = ['red','blue','green','yellow']\n", + "for i,var in enumerate(new_pumpkins['Variety'].unique()):\n", + " ax = new_pumpkins[new_pumpkins['Variety']==var].plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAGKCAYAAAAVEBpAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcxklEQVR4nO3df5h3dV3n8ecrwEBEARm4bhW8UxEDfwDekqztpiiFmiGGCW5GZhduLRVpJaX5a7e9bP25musurAiRgqaopGEiF+TiKnrzQ4SQIEMSEG615BbzB/DeP8538sswv+c7c85n5vm4rrnm/PjOzIvx/r488znnfE6qCklSe36s7wCSpOWxwCWpURa4JDXKApekRlngktSoHdfyh+211161efPmtfyRktS8yy677BtVNTVz+5oW+ObNm9m6deta/khJal6Sr862fcEhlCQ7J/l8ki8muSbJ60bbX5vk5iRXjj6eNenQkqS5LeYI/PvAEVX1nSQ7AZckOX+0761V9abViydJmsuCBV7drZrfGa3uNPrw9k1J6tmirkJJskOSK4HbgQuq6tLRrpOSXJXk9CR7rFZISdJ9LarAq+ruqjoYeBhwWJLHAu8CHgkcDNwKvHm2r01yYpKtSbZu27ZtIqElSUu8Dryq/gW4GDiqqm4bFfs9wGnAYXN8zalVtaWqtkxN3ecqGEnSMi3mKpSpJLuPlncBngF8OcmmsZcdA1y9KgklSbNazFUom4Azk+xAV/gfqKqPJTkrycF0JzRvBF66aiklSfexmKtQrgIOmWX7i1YlkSRpUdb0TkwN3+ZTPt53hAXd+IZn9x1BGgQns5KkRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1KjmH6nWwiPAwMeASZo8j8AlqVEWuCQ1asECT7Jzks8n+WKSa5K8brR9zyQXJLl+9HmP1Y8rSZq2mCPw7wNHVNUTgIOBo5I8GTgFuLCq9gcuHK1LktbIggVene+MVncafRRwNHDmaPuZwHNXI6AkaXaLGgNPskOSK4HbgQuq6lJgn6q6FWD0ee85vvbEJFuTbN22bduEYkuSFlXgVXV3VR0MPAw4LMljF/sDqurUqtpSVVumpqaWGVOSNNOSrkKpqn8BLgaOAm5Lsglg9Pn2SYeTJM1tMVehTCXZfbS8C/AM4MvAecAJo5edAHx0lTJKkmaxmDsxNwFnJtmBrvA/UFUfS/JZ4ANJXgLcBDx/FXNKkmZYsMCr6irgkFm2fxN4+mqEkiQtzDsxJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhq1YIEn2TfJRUmuTXJNkt8ZbX9tkpuTXDn6eNbqx5UkTdtxEa+5C3h5VV2eZDfgsiQXjPa9taretHrxJElzWbDAq+pW4NbR8vYk1wIPXe1gkqT5LWkMPMlm4BDg0tGmk5JcleT0JHvM8TUnJtmaZOu2bdtWllaS9G8WXeBJHgB8CDi5qu4A3gU8EjiY7gj9zbN9XVWdWlVbqmrL1NTUyhNLkoBFFniSnejK+71VdS5AVd1WVXdX1T3AacBhqxdTkjTTYq5CCfBu4NqqesvY9k1jLzsGuHry8SRJc1nMVShPAV4EfCnJlaNtfwQcn+RgoIAbgZeuQj5J0hwWcxXKJUBm2fXXk48jSVos78SUpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJatSCBZ5k3yQXJbk2yTVJfme0fc8kFyS5fvR5j9WPK0matpgj8LuAl1fVTwJPBv5zkgOBU4ALq2p/4MLRuiRpjSxY4FV1a1VdPlreDlwLPBQ4Gjhz9LIzgeeuUkZJ0iyWNAaeZDNwCHApsE9V3QpdyQN7TzydJGlOiy7wJA8APgScXFV3LOHrTkyyNcnWbdu2LSejJGkWiyrwJDvRlfd7q+rc0ebbkmwa7d8E3D7b11bVqVW1paq2TE1NTSKzJInFXYUS4N3AtVX1lrFd5wEnjJZPAD46+XiSpLnsuIjXPAV4EfClJFeOtv0R8AbgA0leAtwEPH9VEkqSZrVggVfVJUDm2P30ycaRJC2Wd2JKUqMscElqlAUuSY2ywCWpURa4JDXKApekRi3mOnBJy7D5lI/3HWFRbnzDs/uOoGXyCFySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjXIyK0lNcHKw+/IIXJIaZYFLUqMWLPAkpye5PcnVY9tem+TmJFeOPp61ujElSTMt5gj8DOCoWba/taoOHn389WRjSZIWsmCBV9WngW+tQRZJ0hKsZAz8pCRXjYZY9pjrRUlOTLI1ydZt27at4MdJksYtt8DfBTwSOBi4FXjzXC+sqlOraktVbZmamlrmj5MkzbSsAq+q26rq7qq6BzgNOGyysSRJC1lWgSfZNLZ6DHD1XK+VJK2OBe/ETHI28FRgryRfA14DPDXJwUABNwIvXb2IkqTZLFjgVXX8LJvfvQpZJElL4J2YktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY1asMCTnJ7k9iRXj23bM8kFSa4ffd5jdWNKkmZazBH4GcBRM7adAlxYVfsDF47WJUlraMECr6pPA9+asflo4MzR8pnAcycbS5K0kOWOge9TVbcCjD7vPdcLk5yYZGuSrdu2bVvmj5MkzbTqJzGr6tSq2lJVW6amplb7x0nShrHcAr8tySaA0efbJxdJkrQYyy3w84ATRssnAB+dTBxJ0mIt5jLCs4HPAgck+VqSlwBvAI5Mcj1w5GhdkrSGdlzoBVV1/By7nj7hLJKkJfBOTElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGLfhU+vkkuRHYDtwN3FVVWyYRSpK0sBUV+MjTquobE/g+kqQlcAhFkhq10gIv4JNJLkty4iQCSZIWZ6VDKE+pqluS7A1ckOTLVfXp8ReMiv1EgP3222+FP06SNG1FR+BVdcvo8+3Ah4HDZnnNqVW1paq2TE1NreTHSZLGLLvAk+yaZLfpZeBngasnFUySNL+VDKHsA3w4yfT3eV9VfWIiqSRJC1p2gVfVV4AnTDCLJGkJvIxQkhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1akUFnuSoJNcluSHJKZMKJUla2LILPMkOwDuBZwIHAscnOXBSwSRJ81vJEfhhwA1V9ZWq+gFwDnD0ZGJJkhaSqlreFybHAkdV1a+P1l8E/FRVnTTjdScCJ45WDwCuW37cNbMX8I2+Q6wj/j4nx9/lZLXy+3x4VU3N3LjjCr5hZtl2n/83qKpTgVNX8HPWXJKtVbWl7xzrhb/PyfF3OVmt/z5XMoTyNWDfsfWHAbesLI4kabFWUuBfAPZP8hNJ7gccB5w3mViSpIUsewilqu5KchLwN8AOwOlVdc3EkvWrqSGfBvj7nBx/l5PV9O9z2ScxJUn98k5MSWqUBS5JjbLAJalRG77Akzxwnn37rWUWaS5JHpzkmCRP7DtLi5J8YGz5T2fs++TaJ5qMDV/gwMXTC0kunLHvI2uapHHr9U3ShyQfS/LY0fIm4Grg14CzkpzcZ7ZG7T+2fOSMffe5w7EVFvi97yjdc559Wti6fJP05Ceq6urR8ouBC6rqOcBP0RW5lma+y+2avRRvJbfSrxc1x/Js65rfunyT9OSHY8tPB04DqKrtSe7pJ1LT7p/kELqD1l1Gyxl97NJrshWwwGHvJC+j+x9yepnRukeNS7Mu3yQ9+ackv0U3ZcWhwCcAkuwC7NRnsEZ9HXjLLMvT603a8DfyJHnNfPur6nVrlaV1SS6ab39VPW2tsrQuyd7A64FNwDur6pOj7U8DnlhVb+ozn4Zhwxf4fJKcXFVv6zuHNC7JjlV1V985WpJkf+CNwKOALwG/V1U395tq5TyJOb+XLfwSLSTJkUku6DtHS5JcMrZ81ozdn1/jOOvB6cDHgV8ELgfe0W+cybDA5+dVKEuQ5Igkf5/kO0n+IsmBSbYCbwDe1Xe+xuw6tnzQjH3+u1y63arqtKq6rqreCGzuO9AkeBJzfo4vLc2b6Z6+9Fm6Z6V+DvjjqvofvaZqk1f0TNbOYyfV4d4n2amqy3tLtgIbvsCTbGf2N0SA+69xnNZVVV08Wv5Ikm2W97LtnuQYur+Sd0/yvNH2AA/qL1azZrvyZHq9gCPWPNEEeBJTE5PkK8DvjW160/h6VZ275qEaleQ98+2vqhevVZb1IMkDq+qOvnNMmgU+iyS7As8FXlhVz+45TjMWKJ2qKu8gVC+S/APwyqo6p+8sk2SBj4weC/cs4IXAUcCHgHOr6q96DaYNaeyGsllV1Vvm2697S/Jw4G3AA4DfqKob+k00GY6BJ0cCxwM/B1wEnAUc5p+oSzdL6RTwDeCSqvrHHiK1bLe+A6wnVfVV4JgkRwGfSfIF4J6x/b/QW7gV2PAFTvdMz/8L/PR0ySTxxNvyzFY6m4FXJnntevvzdZV9s6r+rO8Q60mSA4A/oHu/v5OxAm/Vhh9CGV1KdBxwLPAV4Bzg1VX18F6DrSNJ9gQ+VVWH9p2lFUku9/c1OUneAPwC8PKqOr/vPJOy4W/kqaorquoVVfVI4LXAIcD9kpyf5MR+060PVfUtvPlE/doCHLqeyhss8Hs9aKCqPlNVJwEPpTvhcXhfudaTJEcA/9x3jsY8Pskds3xsT7LuLodbA3tW1ff6DjFpjoHPMmVsVd1DNzb+N2sfp11JvsR9b4raE7gF+JW1T9S0L1XVIX2H0LBZ4PCgsbvc7sObT5bkecAPxtaL7mTcnT3lkaY9Isl5c+30KpR2PQj4eWYfoy3AAl+893vibWL+su8A68w2url61hULHG7yDsGJ8UTl5Bw8vZDkT6vqFWPrn6yqn+0lVbu2V9Xf9h1i0ixwZ3abpKn57iD07sEledTY8pHAK8bWfdTf0t3Yd4DVYIHDt9brRDc92IHuVmWPxFeXBx1LVFVznudqmQUOnwQuS/Kaqnpf32Ead2tVvb7vEOuED4jWgjb8nZgASR5KNzfwXnRPjhmfI8GTmIuU5IrZLn1Lsi9w3OhJKFqEJBczz5G2D4gWeAQOQFXdnOTjwJ8Az+FHBe5VKEvz9OmFJHsBz6ebKOxh+Htckqp6at8Z1pMkv1xVfzFafkpVfWZs30mtzjuz4Y/AkxxEd9R9C/C7VXVrz5GalWQ34Bi6KXkfDXwYeEFVPazXYA2a794E8C/DpRqfW2bmPDMtzzvjETh8EDi5qu5z12WSXb0JZUlup3ti+qvoppCt0WPBtHTPmWeffxkuXeZYnm29GRZ4d73tXkm2AFdV1Q+S7A2cDPwq8JD+ojXnj+hmdnwX8L4k7+85T7Ocj37iao7l2dabseEnswL+E3Al8A7gc0lOAK6lO9P/xB5zNaeq3lpVP0U3bWeAjwAPSfKKJI/uNVyDkuwwOpcwvX6/JCcmubbPXI16TJKrRvP1TC9Prx/Qd7jlcgw8+Tu6hzl8K8l+wA3Af6iqz/UcbV1I8ji6MfFfGk3Zq0VIchzwv4E7gevppjo+C/gC8F+q6vL+0rVn9Ei1OY2e2NMcC/y+JzSurqrH9plJSnI18NyquiHJocBn6S7F/HDP0TQgFnhyO91TeKYdN75eVb+95qEalWQ7s48nhu6p9A9c40jNmuXA4stV9Zg+M7Vs7N/m9AnL6X+nTf/b9CQm/P6M9ct6SbEOVJUP4p2cvWfMK/OA8XXnlVma9fpvc8MfgUtDlOQ18+wupyxYmiQ7012w8CjgKuD0qrqr31Qrt+ELPMlfMf8ty01O9N6HWf5MZbS+I3C/qvIvvglI8qSq+kLfOVoyuqT1h3RPpH8m8NWq+p1+U62cbyh4U98B1ouZf6aO7sz8TeCldHdlapmSHEh3fuZ44Nt0D+nV4h1YVY8DSPJuuhvOmrfhC3yuSd6nJ2AC1t0k8Kstye50N0L9CvA+4ElV9c0+M7VodOnb8aOPu4CHA1uq6sY+czXqh9MLVXVX0uzNl/ey4Qt83IwJmB6KR41LMvr9vRx4AXA6cEhVfbvfVG1K8v/oHvd3DnBsVV2f5B8t72V7QpLpOf9DN0XvHXgVStvmmIDpEU7AtCxfpXv24HuA7wIvGT/S8cqJJdlGN4vjPnRP4Lmehm/57ltV7dB3htWw4QscJ2CapDfyo5JZl5dtrZWqOjrJg4BfBF6X5FHA7kkOq6p1MX6rlfMqlOR36ca6d6Ubr30/cEFVPaLXYNrQkuxUVT8cW9+bbmjqeGDfqtq3t3AajA1f4NOSPILuzXEcsD/wGuDDVfX3vQZrSJK3z7ffu1oXb3SH8EeBs4GLauyNmuThrc7docna8AWeZL+qumnGtsfRlfkLnIBp8UYzOc6pqs5cqyytS/Jg4Fh+dEDxQeDsqrq012AaFAv83k/q+FBV/WLfmaRxSR5Cd3XUccDewDlV9cp+U2kILPCxB/HO9VBeLU6S8+bb712ty5fkAcDzgJcBm6pqn54jaQC8CmX+J3VoaQ4H/olu3PZSGn5U1RCM5u94Dt1w3lOATwB/CHyyz1waDo/Ak7vpJs0P3VN4vju9i4Yv8O9Dkh2AI+kK5/HAx+nGba/pNViDkrwPeAbwabqbeT5WVd/rN5WGZsMXuFZHkh+nK/I3Aq+vqnf0HKkpoxPC51bV9r6zaLgscE3UqLifTVfem4Hz6KbuvLnPXNJ6ZIFrYpKcCTwWOJ/uSomre44krWsWuCYmyT105xPg3ieEPZ8grQILXBqgJM+bb39VnbtWWTRcFrg0QKO/Zq4cfcCMpxxV1a+tdSYNjwUuDdBoRswX0D3D8aN0l2Pe0G8qDY0FLg1Ykl2Bo+nK/MHAK+d6ipQ2nh/rO4CkeX2P7hmYd9BNebxzv3E0JB6BSwOU5Gl019IfBnyK7rLMrf2m0tBY4NIAjU5iXgVcQndJ5r3eqM6tLnAyK2moXtx3AA2fR+DSwI2mkq2qunPBF2tD8SSmNFBJfiPJTcBXgZuSfDXJb/adS8NhgUsDlORVdHOBP7WqHlxVDwaeBjxztE9yCEUaoiTXAU+YOQd4kl2AL1bVo/tJpiHxCFwaqNke4FBV/wrc00McDZAFLg3T15I8febGJEcAt/aQRwPkEIo0QEkOopsD5RLgMrrrwJ9E92zMo31MncAClwZr9FDjFwIH0c1GeA3wXp+NqWneyCMNVFV9L8lFwO10R+DXWt4a5xG4NEBJHgj8H+CJdHOC/xjwBLrhlJdU1R39pdNQWODSACU5A7gReH1V3TPaFuCPgUdV1a/0l05DYYFLA5Tk+qraf6n7tLF4GaE0TFn4JdroLHBpmD6T5NWjYZN/k+SPgc/1lEkD4xCKNECjk5jvBg6lO4lZwCHAFXQnMb/dXzoNhQUuDViSRwIHMroOvKr+IcnJVfW2fpNpCCxwqTFJbqqq/frOof45Bi61xxOcAixwqUX+2SzAW+mlQUqyndmLOsAuaxxHA+UYuCQ1yiEUqSFJdk/yyr5zaBgscGmAkuyb5NQkH0vy60nun+TNwPXA3n3n0zA4Bi4N058Dfwt8CDiK7u7La4DHVdXX+wym4XAMXBqgJF+sqieMrd8G7FdV3+8xlgbGI3BpoJLswY+u+f46cP8kuwJU1bd6C6bB8AhcGqAkN9I9fX62m3aqqh6xtok0RBa4JDXKIRRpgJIcOt/+qrp8rbJouDwClwZo9DDjuVRVHbFmYTRYFrgkNcobeaQBSvIHY8vPn7Hvv619Ig2RBS4N03Fjy384Y99RaxlEw2WBS8OUOZZnW9cGZYFLw1RzLM+2rg3Kk5jSACW5G7iTH83//d3pXcDOVbVTX9k0HBa4JDXKG3mkAUqy53z7nQtF4BG4NEhJ/pFurDvAJuAWfnTy0rlQBFjg0uAluaKqDuk7h4bHq1Ck4fMoS7OywCWpUZ7ElAYoycvGVveesU5VvWWNI2mALHBpmHYbWz5txroEeBJTkprlGLgkNcoCl6RGWeCS1ChPYkoDleQA4ETgMaNN1wKnVdV1/aXSkHgELg1QksOBi4HtwKl0V6LcCVyU5Mk9RtOAeBWKNEBJzgf+tKounrH9Z4BTquqZvQTToFjg0gAl+fuqevQc+66rqgPWOpOGxyEUaZi2z7PvzjVLoUHzJKY0TPsmefss2wM8dK3DaJgscGmYfn+efVvXLIUGzTFwqTFJdqyqu/rOof45Bi4NUJJLxpbPmrH782scRwNlgUvDtOvY8kEz9gUJC1waqvnGNh33FOBJTGmodk9yDN1B1u5JnjfaHuBB/cXSkHgSUxqgJGcwz5F2Vb147dJoqCxwSWqUY+DSACV5R5L7PEYtyWOSfKqPTBoeC1wapq8DVyZ5IUCS+yf578B5wDt7TabBcAhFGqgkPwH8Gd0DjR8CfAD4r1X13V6DaTA8ApeGa/roake69+q1lrfGWeDSACV5FfAp4M+r6t8B/x44OsnfJjmw33QaCq8Dl4ZpCjikqrYDVNXNwLFJngl8CPjJPsNpGBwDlxqT5Mer6vt951D/PAKXBmiOucDH/faaBNGgWeDSMF3WdwANn0MoktQoj8ClAUpy3nz7q+oX1iqLhssCl4bpcOCfgLOBS3EOcM3CIRRpgJLsABwJHA88Hvg4cHZVXdNrMA2KN/JIA1RVd1fVJ6rqBODJwA3AxUl+q+doGhCHUKSBSvLjwLPpjsI3A28Hzu0zk4bFIRRpgJKcCTwWOB84p6qu7jmSBsgClwYoyT3AnaPV8TdpgKqqB659Kg2NBS5JjfIkpiQ1ygKXpEZZ4JLUKAtczUtycZKfm7Ht5CT/c5Ff//okz1jgNb+a5CErySlNmgWu9eBs4LgZ244bbZ9Xkh2q6tVVtdCT3n+V7rmU0mBY4FoPPgj8/OjGF5JspivbFybZmuSaJK+bfnGSG5O8OsklwPOTnJHk2NG+J44eW3ZZkr9Jsmm0bwvw3iRXJnl2kg+Pfb8jk3iDjdacBa7mVdU3gc8DR402HQe8H3hlVW2hm0vkZ5I8fuzLvldVP11V50xvSLIT8A7g2Kp6InA68CdV9UFgK/Afq+pg4K+Bn0wyNfrSFwPvWbX/QGkOFrjWi/FhlOnhk19KcjlwBXAQMP4w4PfP8j0OoLv78YIkVwKvAh4280XV3TxxFvDLSXanmznw/In8V0hL4FwoWi8+ArwlyaHALsA/A78HPKmq/jnJGcDOY6+/8z7fobvL8ZqqOnwRP+89wF8B3wP+sqruWkF2aVk8Ate6UFXfAS6mG/Y4G3ggXUl/O8k+wDMX8W2uA6aSHA7dkEqSg0b7tgO7jf28W4Bb6I7Sz5jMf4W0NB6Baz05m262vuOq6stJrgCuAb4CfGahL66qH4xOWL49yYPo3h9vG32PM4D/leRfgcOr6l+B9wJTVfV3q/EfIy3EuVCkZUryZ8AVVfXuvrNoY7LApWVIchndEM2RVfX9vvNoY7LAJalRnsSUpEZZ4JLUKAtckhplgUtSoyxwSWrU/wdO32Yxjk19aAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.2669192282197318\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 174, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcL0lEQVR4nO3df5RcZZ3n8fenSduJJJDQCTEnPwxOhFkWYpSWhYkogsPiHA5wNuiZOSK4OpOVHT3i6iaic3D1zHpMMqszLu4ZGWUJLMMsQxAcZjiQBZTBJUCTyQ9+KdlBSCKE0CRDtyZth/7uH3U7qW6qOl3Vdavurft5ndMnVU9Vfe/zVFe+dfu5z/1eRQRmZlYcHa3ugJmZNZcTv5lZwTjxm5kVjBO/mVnBOPGbmRXMlFZ3YCJmz54dixcvbnU3zMxy5Yknnng1IuaMbc9F4l+8eDG9vb2t7oaZWa5IeqFSu6d6zMwKxonfzKxgnPjNzArGid/MrGCc+M3MCia1xC9poaQHJT0j6SlJn0va10l6VtI2ST+UNDOtPtjk9A0MsnXnfvoGBjMZz8zqk+ZyzkPAFyJis6QZwBOSNgIbgWsi4pCkNcA1wOoU+2F1uGvLblZv2EZnRwdDw8OsXbGUi5fNz0w8M6tfanv8EfFSRGxObvcDzwDzI+K+iDiUPG0TsCCtPlh9+gYGWb1hGweHhukfPMTBoWFWbdhW9556o+OZ2eQ0ZY5f0mLg3cCjYx76JHBPldeslNQrqXfv3r0p99DK7dp3gM6O0R+Nzo4Odu07kIl4ZjY5qSd+SdOBDcDVEfF6WftXKE0H3VLpdRFxfUT0RETPnDlvOuPYUrRg1jSGhodHtQ0ND7Ng1rRMxDOzyUk18UvqpJT0b4mIO8rarwQuAj4WvgRY5nRP72LtiqVM7exgRtcUpnZ2sHbFUrqnd2UinplNjtLKu5IErAdei4iry9ovBL4FfCAiJjSH09PTE67V03x9A4Ps2neABbOmNSRJNzqemY1P0hMR0TO2Pc1VPcuBjwPbJW1J2r4MfAfoAjaWvhvYFBGfTrEfVqfu6V0NTdCNjmdm9Ukt8UfEw4AqPPQPaW3TzMyOzmfumpkVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/tZW+gUG27txP38Cg4zle7uOlJbWLrZs1211bdrN6wzY6OzoYGh5m7YqlXLxsvuM5Xi7jpcl7/NYW+gYGWb1hGweHhukfPMTBoWFWbdhW956X4zleK+OlzYnf2sKufQfo7Bj9ce7s6GDXvgOO53i5i5c2J35rCwtmTWNoeHhU29DwMAtmTXM8x8tdvLQ58Vtb6J7exdoVS5na2cGMrilM7exg7YqldE/vcjzHy128tCkiWt2Ho+rp6Yne3t5Wd8NyoG9gkF37DrBg1rSG/KdzPMdrZbzJkvRERPS8qd2J38ysPVVL/KlN9UhaKOlBSc9IekrS55L2EyRtlPRc8u+stPqQdVlfQ5yXNclmVps01/EfAr4QEZslzQCekLQR+ARwf0R8U9KXgC8Bq1PsRyZlfQ1xntYkm1ltUtvjj4iXImJzcrsfeAaYD1wCrE+eth64NK0+ZFXW1xDnbU2ymdWmKat6JC0G3g08CsyNiJeg9OUAnFjlNSsl9Urq3bt3bzO62TRZX0OctzXJZlab1BO/pOnABuDqiHh9oq+LiOsjoicieubMmZNeB1sg62uI87Ym2cxqk2ril9RJKenfEhF3JM17JM1LHp8HvJJmH7Io62uI87Ym2cxqk9pyTkmiNIf/WkRcXda+DugrO7h7QkSsGi9Wuy7nzPoa4qytSTaz2lRbzpnmqp7lwMeB7ZK2JG1fBr4J3CbpU8CLwEdS7EOmdU/vamhCzXo8M8uG1BJ/RDwMqMrD56e1XTMzG59r9ZiZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBN/C2X9ilnV4tW7nUqvy+t74HiWZ2nW6rFxZP2KWdXi1budSq8LyOV74HiWd77Yegv0DQyyfM0DHBw6UvN+amcHP119Xl1F0ZoV7+7PvI+Lrnu45u1Uitc1pQMIBg8d+fzl4T1wPMuTpl9s3arL+hWzqsXbsnN/XdupFO+YDnGM8vceOJ61A0/1tEDWr5hVLd6yhTPr2k6leG8MBzD6r808vAeOZ+3Ae/wtkPUrZlWLt2TujLq2UyneusuWsu6yd+XuPXA8awee42+hrF8xq1q8erdT6XV5fQ8cz/Kg2hy/E7+ZWZvywV0zMwOc+M3MCseJ38ysYJz4zcwKxonfzKxgnPjNzAqmrRN/1isXOp6ZtULblmzIeuVCx3PlR7NWacs9/r6BQVZv2MbBoWH6Bw9xcGiYVRu21b2n6XjZimdmk5Na4pd0g6RXJD1Z1rZM0iZJWyT1SjozjW1nvXKh47nyo1krpbnHfyNw4Zi2tcDXImIZcG1yv+GyXrnQ8Vz50ayVUkv8EfEQ8NrYZuC45PbxwC/T2HbWKxc6nis/mrVSqkXaJC0G7o6I05L7/wq4FxClL53fiYgXjhan3iJtWa9c6HhmlqaWVOeskPi/A/wkIjZI+iiwMiI+VOW1K4GVAIsWLTrjhReO+v1gZmZlslKd80rgjuT23wJVD+5GxPUR0RMRPXPmzGlK58zMiqDZif+XwAeS2+cBzzV5+2ZmhZfaCVySbgXOBWZL2gV8Ffgj4C8kTQEOkkzlmJlZ86SW+CPiD6o8dEZa2zQzs6NryzN3zcysOid+M7OCceI3MysYJ34zs4Jp68RftPrvWa+fX7Tfh1lWuR5/m8h6/fyi/T7Msqwt9/iLVv896/Xzi/b7MMu6tkz8Rav/nvX6+UX7fZhlXVsm/qLVf896/fyi/T7Msq4tE3/R6r9nvX5+nn8fWT/AXbR41hiplmVulKzU48+6rNfPz9vvI+sHuIsWz2rXknr8jVJv4jerV9/AIMvXPMDBoSNTVFM7O/jp6vPq+tJyvMnFs/pkpR6/WS5k/QB30eJZY00o8Us6WdL9kp5M7i+V9Cfpds2sdbJ+gLto8ayxJrrH/1fANcAQQERsA34/rU6ZtVrWD3AXLZ411oTm+CU9HhHvlfRPEfHupG1LRCxLu4PgOX5rnawf4C5aPKtNtTn+iZZseFXSbwGRBLsMeKmB/TPLpO7pXQ1NWI5nWTDRxP/HwPXAb0vaDTwPXJ5ar8zMLDUTSvwR8c/AhyQdC3RERH+63TIzs7RMdFXPNyTNjIhfRUS/pFmS/jTtzpmZWeNNdFXPhyNi/8idiNgH/F4qPTIzs1RNNPEfI+nwERpJ04DCHbHJeh2T3uf7+NZ9P6P3+b6GxNuxp5/be3eyY8/omb16+13pdVl/T83a0UQP7v4v4H5J/5PSyp5PAutT61UGZb2OyeXf38TDO0oJ/zsP7OCcJd3c/Idn1R3v2ju3c9OmFw/fv+LsRXz9ktPr7nel1wVk+j01a1cTrtUj6cPA+YCA+yLi3jQ7Vq7V6/izXsek9/k+Lvvepje13/4fzqLnpO6a4+3Y08+Hvv1QxXiX3/BYzf2uNN6uKR1AMHjoyOcvS++pWTuYdK2eiLgnIr4YEV9oZtLPgqzXMXnouVdraj+aLTv3V41XT78rjfeYDnGMsvuemrWzcRO/pIeTf/slvV720y/p9eZ0sfWyXsfk/e+cXVP70SxbOLNqvHr6XWm8bwwHb0R239MRPgZh7WjcxB8R70v+nRERx5X9zIiI45rTxdbLeh2TnpO6OWfJ6Cmdc5Z01zXNA7Bk7gyuOHvRqLYrzl5Ez0nddfW70njXXbaUdZe9q6Hv6UfPWDCq7aM9CyY1zXPXlt0sX/MAl3//UZaveYAfbdldd6w04pnV66hz/JI6gG0RcVpNgaUbgIuAV8pfK+mzwGeAQ8DfR8Sqo8Vq9Rz/iKzXMel9vo+HnnuV979zdt1Jv9yOPf1s2bmfZQtnsmTujMPt9fa70usa9R5k/TiMj0FYK9RdqycihiVtlbQoIl482vPL3AhcB9xU1okPApcASyNiUNKJNcRruazXMek5qf69/EqWzJ0xKuGPqLfflV7XqPdgZI7/IEcS68gcfz3xsx7PbDImupxzHvCUpMeAX400RsTF1V4QEQ9JWjym+SrgmxExmDznldq6a81UbW+8kX+pNOqvlKwfh3F9esuSiSb+rzVoeycD50j6r8BB4IsR8XilJ0paCawEWLRoUaWnWIqqrYlv5Fr5Rp570D29i0UnTOPnew7vl/D2E+r/Ykoj3toVS1k15r3z3r61wriJX9JU4NPAEmA78IOIODTJ7c0CzgLeC9wm6R1R4UBDRFxPqSIoPT092b8wcBvpGxhk9YZtHBwaPjw1sWrDNk6dd1zF9uVLZtecwHqf7zuc9Ef8444+ep/vq2vPv/f5vlFJGuBne36VmXgAFy+bz/Ils12f3lruaOv41wM9lJL+h4H/Nsnt7QLuiJLHgGGgvjWHlppqa+K37NzfsLXyjT73IOvxRnRP7+JdC2c66VtLHS3xnxoRl0fE94DLgHMmub07gfOgdB1f4C3A5P4nWcNVm49etnBmw+apG33uQdbjmWXJ0RL/0MiNWqd4JN0KPAKcImmXpE8BNwDvSC7a/jfAlZWmeay1qp1nsGTujIadf9Docw+yHs8sS8Zdxy/pDY6s4hEwDfh1cjuadRJXVtbxF02eVvXkJZ5ZM1Vbxz/hIm2t5MRvZla7SRdpMxvRyLr/1Wr+t2u8Ozfv5A/XP86dm3dmMt79T7/M6tu3cv/TLzckXqOvEdGsa060a7wR3uO3mpSvvQcmtfa+Ws3/emU93lnf2MjLr//m8P15x72FR778u5mJd8G3fzxqCespc4/l3s+fW3e8Rn5W0oiX9c9LI+J5j98mbby197Xasad/1Ica4KZHXqx7zybr8e7cvHNUkgZ46fXf1L2n3uh49z/9csXzFurd82/kZyWNeFn/vDQ63lhO/DZhjVzbXq3mf7X2vMe7e3vlBFqtvdnx7nt6T03tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9q7XmPd9Hpb6upvdnxLjh1bk3tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9K1UDbId6l71nIvOPeMqpt3nFv4dL3LMxEvPNPfRunzD12VNspc4/l/FPr+yLJ+nkVWf+8NDreWD64azVr5Nr2ajX/2zXenZt3cvf2l7no9LfVnaTTjHf/0y9z39N7uODUuXUn/XJZP68i65+XycbzOn4zs4Lxqh6zNuRr+Fo9JlqP38wyppHXRrBi8R6/WQ6VXzOhf/AQB4eGWbVhm/f8bUKc+M1yqNo1E+q5NoIVjxO/WQ75Gr42GU78ZjlU7ZoJvrKXTYQP7prllK/ha/Vy4jfLse7pXU74VjNP9VhVeaktbma18R6/VZTF2uJm1hje47c3yVttcTOrjRO/vUneaoubWW2c+O1N8lZb3Mxq48Rvb5K32uJmVhuXZbaqslZb3MxqU60ss1f1WFVL5s5oaIJudDwzq4+neqxmjVyPn/VzBRzP8VoZL63rLXiP32rSyPX4WT9XwPEcr5Xx0rzeQmp7/JJukPSKpCcrPPZFSSFpdlrbt8Zr5Hr8rJ8r4HiO18p4aV9vIc2pnhuBC8c2SloI/C7w4tjHLNsauR4/6+cKOJ7jtTJe2tdbSC3xR8RDwGsVHvo2sArI/nIiG6WR6/Gzfq6A4zleK+Olfb2Fph7clXQxsDsitk7guSsl9Urq3bt3bxN6Z0fTyPX4WT9XwPEcr5Xx0r7eQqrr+CUtBu6OiNMkvRV4ELggIv5F0i+Anoh49WhxvI4/Wxq5Hj/r5wo4nuO1Ml7fwOCkrrdQbR1/MxP/6cD9wK+ThxcAvwTOjIiXx4vjxG9mVrtqib9pUz0RsT0iToyIxRGxGNgFvOdoSd+yp961xWmtSU5zG0WLZ8WQ2jp+SbcC5wKzJe0CvhoRP0hre9Yc9a4tTnNNclrbKFo8Kw7X6rEJ6xsYZPmaBzg4dGS1wdTODn66+rxx5x/rfV0z+uZ41s5aPtVj+Vfv2uK01ySnsY2ixbNiceK3Cat3bXHaa5LT2EbR4o3I+jGIrMfLCyd+m7B61xanvSY5jW0ULR6UjhksX/MAl3//UZaveYAfbdldd6wixssTz/FbzepdWzzZNcmt2EZR4mX9GETW42WV6/Fbw3RP76rrP0e9r2vlNooSb+SYwUGOJMKRYwb1xC9avLzxVI+ZZf4YRNbj5Y0Tv5ll/hhE1uPljef4zeywrB6DyEu8rPEcv5kdVVaPQeQlXl54qsfMrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgUkv8km6Q9IqkJ8va1kl6VtI2ST+UNDOt7ZuZWWVp7vHfCFw4pm0jcFpELAV+DlyT4vbNzKyC1BJ/RDwEvDam7b6IOJTc3QQsSGv7ZmZWWSvn+D8J3FPtQUkrJfVK6t27d28Tu2Vm1t5akvglfQU4BNxS7TkRcX1E9EREz5w5c5rXObMyfQODbN25n76BwVZ3xaxhpjR7g5KuBC4Czo+IaPb2zSbqri27Wb1hG50dHQwND7N2xVIuXja/1d0ym7Sm7vFLuhBYDVwcEb9u5rbNatE3MMjqDds4ODRM/+AhDg4Ns2rDNu/5W1tIcznnrcAjwCmSdkn6FHAdMAPYKGmLpL9Ma/tmk7Fr3wE6O0b/9+js6GDXvgMt6pFZ46Q21RMRf1Ch+Qdpbc+skRbMmsbQ8PCotqHhYRbMmtaiHpk1js/cNauge3oXa1csZWpnBzO6pjC1s4O1K5bSPb2r1V0zm7SmH9w1y4uLl81n+ZLZ7Np3gAWzpjnpW9tw4jcbR/f0Lid8azue6jEzKxgnfjOzgnHiNzMrGCd+M7OCceI3MysYJ34zs4Jx4jczKxgnfjOzgnHiN2uiHXv6ub13Jzv29Gcynq8/UAw+c9esSa69czs3bXrx8P0rzl7E1y85PTPxfP2B4vAev1kT7NjTPypJA9z0yIt176k3Op6vP1AsTvxmTbBl5/6a2psdz9cfKBYnfrMmWLZwZk3tzY7n6w8UixO/WRMsmTuDK85eNKrtirMXsWTujEzE8/UHikV5uN55T09P9Pb2trobZpO2Y08/W3buZ9nCmXUn6TTj9Q0M+voDbUTSExHRM7bdq3rMmmjJ3BkNSdBpxfP1B4rBUz1mZgXjxG9mVjBO/GZmBePEb2ZWME78ZmYFk4vlnJL2Ai+kuInZwKspxs+Cdh9ju48PPMZ20cwxvj0i5oxtzEXiT5uk3kprXdtJu4+x3ccHHmO7yMIYPdVjZlYwTvxmZgXjxF9yfas70ATtPsZ2Hx94jO2i5WP0HL+ZWcF4j9/MrGCc+M3MCqbtE7+khZIelPSMpKckfW7M41+UFJJml7VdI2mHpJ9J+rfN73VtxhujpM8m43hK0tqy9rYYo6RlkjZJ2iKpV9KZZa/J2xinSnpM0tZkjF9L2k+QtFHSc8m/s8pek5sxjjO+dZKelbRN0g8lzSx7TW7GB9XHWPZ4NvJNRLT1DzAPeE9yewbwc+DU5P5C4F5KJ4fNTtpOBbYCXcBJwP8Djmn1OOoZI/BB4P8AXcljJ7bhGO8DPpy0/x7w4xyPUcD05HYn8ChwFrAW+FLS/iVgTR7HOM74LgCmJO1r8jq+8caY3M9Mvmn7Pf6IeCkiNie3+4FngPnJw98GVgHlR7gvAf4mIgYj4nlgB3AmGTbOGK8CvhkRg8ljryQvaacxBnBc8rTjgV8mt/M4xoiIgeRuZ/ITlMayPmlfD1ya3M7VGKuNLyLui4hDSfsmYEFyO1fjg3F/h5ChfNP2ib+cpMXAu4FHJV0M7I6IrWOeNh/YWXZ/F0e+KDKvfIzAycA5kh6V9BNJ702e1k5jvBpYJ2kn8GfANcnTcjlGScdI2gK8AmyMiEeBuRHxEpS+AIETk6fnboxVxlfuk8A9ye3cjQ8qjzFr+aYwiV/SdGADpURxCPgKcG2lp1Zoy8Wa1/IxRsTrlK6wNovSn9P/GbhNkmivMV4FfD4iFgKfB34w8tQKL8/8GCPijYhYRmmv90xJp43z9NyNcbzxSfoKpf+bt4w0VQqReicnqcIYl5KxfFOIxC+pk1KyuCUi7gB+i9J82lZJv6D0C9os6W2UvnEXlr18AUemDzKrwhihNJY7kj8/HwOGKRWIaqcxXgmM3P5bjvyZnMsxjoiI/cCPgQuBPZLmAST/jkzZ5XaMY8aHpCuBi4CPRTL5TY7HB6PGeAlZyzetPBDSjB9K36g3AX8+znN+wZGDLf+a0Qdb/pl8HFB60xiBTwNfT26fTOlPSrXZGJ8Bzk1unw88kePf4xxgZnJ7GvCPlJLhOkYf3F2bxzGOM74LgaeBOWOen6vxjTfGMc9peb4pwsXWlwMfB7Yn824AX46If6j05Ih4StJtlD6Ih4A/jog3mtLT+lUcI3ADcIOkJ4HfAFdG6dPWTmP8I+AvJE0BDgIrIbe/x3nAeknHUPpr/LaIuFvSI5Sm6T4FvAh8BHI5xmrj20Ep8W0szUSyKSI+ncPxQZUxVntyq8bokg1mZgVTiDl+MzM7wonfzKxgnPjNzArGid/MrGCc+M3MCsaJ39qWpDeSqp1PJdUS/5Okuj/zkt6XVF58NvlZWfbYnKQ0xj+pVEX0qrLH/k1SebIIy6ctB/xBtHZ2IEqnziPpROCvKRVy+2qtgZKzLP8auDQiNidlde+VtDsi/p7SyWPPRsSVkuYCj0i6HegDrgP+YxwpRFbrtkVp6fVwPa83G8vr+K1tSRqIiOll998BPE6pbMXbgZuBY5OHPxMR/1fSzcDtEXFX8ppbgP8NvJdS8cVry+KdD/wX4LPAjyidqbkbOBv498lrHgfOoHRi2TeBcymdrPTdiPheUnvoLko1lTqBP4mIu5JCdPcADybxLo2IFxr5/lhxOfFb2xqb+JO2fcBvA/3AcEQclPRO4NaI6JH0AUpF3y6VdDywBXgncBuwfuQLIYl1PPB8RJwg6RNAT0R8JnmsA3iEUiXNHmAFpesh/KmkLuCnlM7A3Qm8NSJeT/6K2JRs7+2UTt//nYjYlMobZIXlqR4rmpFqiJ3AdZKWAW9QqmVERPxE0neTqaF/B2yIiEPJdEulvaSKe04RMSzpe5S+DPokXQAslXRZ8pTjKSX4XcA3JL2fUhG9+cDc5DkvOOlbGpz4rTCSqZ43KFW3/CqwB3gXpUUOB8ueejPwMeD3KdWHB3iK0p77j8qedwalGivVDCc/UPrC+WxE3DumT5+gVNjrjIgYSqo3Tk0e/tXER2c2cV7VY4UgaQ7wl8B1SaG644GXkgOmHweOKXv6jZSu20BEPJW0fRf4RPIXApK6KV0mcC0Tcy9wVVJaGkknSzo26ccrSdL/IKUpHrNUeY/f2tm0pJJnJ6XKhzcD30oe+x/ABkkfoXQA9fDedUTskfQMcGdZ20uSLgf+StIMSnvwfx4RfzfBvnwfWEypDruAvZQuoXgL8HeSeikdT3i2noGa1cIHd83GkPRWYDuli7v/S6v7Y9ZonuoxKyPpQ5T2uv+7k761K+/xm5kVjPf4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCub/A2eoKqxqO9IQAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']\n", + "print(pie_pumpkins['DayOfYear'].corr(pie_pumpkins['Price']))\n", + "pie_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 線形回帰\n", + "\n", + "Scikit Learn を使用して線形回帰モデルをトレーニングします:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n", + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.77 (17.2%)\n" + ] + } + ], + "source": [ + "X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1)\n", + "y = pie_pumpkins['Price']\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "lin_reg = LinearRegression()\n", + "lin_reg.fit(X_train,y_train)\n", + "\n", + "pred = lin_reg.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXXElEQVR4nO3df3BV5Z3H8feXEDGKEF0QTYCmdTEtv4R6tW5/rL+qYVerjF21bmeHrW5ZXWvXtmJFO63tdEdrnFY722mHGRl1a9mqpGzX1kZrtdqtQC+gBtBYLYgkKFGM+CMCCd/9495gSHJzf+Se3HuefF4zjDfPPfecJ1/hc899znOfY+6OiIiEYUypOyAiIsWjUBcRCYhCXUQkIAp1EZGAKNRFRAIydiQPNmnSJK+rqxvJQ4qIxN66detec/fJuWw7oqFeV1dHMpkcyUOKiMSemb2U67YafhERCYhCXUQkIAp1EZGAKNRFRAKiUBcRCUjW2S9mNg24GzgG2A8sc/fbzawR+AywF3gR+IK7d0bYVxkBqza00djcSntnFzXVVSxpqGfh/NpSd0tEcpTLmXo38DV3/whwCnClmc0EHgZmu/tc4HlgaXTdlJGwakMbS5taaOvswoG2zi6WNrWwakNbqbsmIjnKGuruvsPd16cfvwU8C9S6+0Pu3p3ebDUwNbpuykhobG6la1/PQW1d+3pobG4tUY9EJF95jambWR0wH1jT76lLgQczvGaxmSXNLNnR0VFQJ2VktHd25dUuIuUn51A3s/HASuBqd9/dp/0GUkM09wz2Ondf5u4Jd09MnpzTt1ylRGqqq/JqF5Hyk1Oom1klqUC/x92b+rQvAs4FPu+6hVLsLWmop6qy4qC2qsoKljTUl6hHIpKvXGa/GHAH8Ky7f79P+wLg68Cp7v5udF2UkdI7y0WzX0Tiy7KdYJvZJ4EngBZSUxoBrgd+CIwDXk+3rXb3y4faVyKRcC3oJSKSHzNb5+6JXLbNeqbu7n8AbJCnfp1vx0REJFr6RqmISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gEJOs9SkWitmpDG43NrbR3dlFTXcWShnoWzq8t+33LQKp36SnUpaRWbWhjaVMLXft6AGjr7GJpUwvAsMMgyn3LQKp3edDwi5RUY3PrgRDo1bWvh8bm1rLetwykepcHhbqUVHtnV17t5bJvGUj1Lg8KdSmpmuqqvNrLZd8ykOpdHhTqUlJLGuqpqqw4qK2qsoIlDfVlvW8ZSPUuD7pQKiXVewEtihkTUe5bBlK9y4O5+4gdLJFIeDKZHLHjiYiEwMzWuXsil22znqmb2TTgbuAYYD+wzN1vN7OjgJ8DdcBW4CJ3f6PQTpeC5tSKSGhyGVPvBr7m7h8BTgGuNLOZwHXAI+4+A3gk/XNs9M6pbevswnl/Tu2qDW2l7pqISMGyhrq773D39enHbwHPArXA+cBd6c3uAhZG1MdIaE6tiIQor9kvZlYHzAfWAFPcfQekgh84OsNrFptZ0sySHR0dw+xu8WhOrYiEKOdQN7PxwErganffnevr3H2ZuyfcPTF58uRC+hgJzakVkRDlFOpmVkkq0O9x96Z086tmdmz6+WOBndF0MRqaUysiIcoa6mZmwB3As+7+/T5P/RJYlH68CPif4ncvOgvn13LTBXOora7CgNrqKm66YI5mv4hIrGWdp25mnwSeAFpITWkEuJ7UuPq9wHRgG3Chu+8aal+apy4ikr+izlN39z8AluHpM/PpmIiIREtrv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBET3KBUpkO6cJeVIoS5SgN47Z/XeaKX3zlmAgl1KSsMvIgXQnbOkXCnURQqgO2dJuVKoixRAd86ScqVQFymA7pwl5UoXSkUK0HsxVLNfpNwo1EUKtHB+rUJcyo6GX0REAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJSNlPaYzrSnhx7beIxFtZh3pcV8KLa79FJP7KevglrivhxbXfIhJ/WUPdzJab2U4z29inbZ6ZrTazp8wsaWYnR9G5uK6EF9d+i0j85XKmfiewoF/bLcC33X0e8M30z0UX15Xw4tpvEYm/rKHu7o8Du/o3AxPSjycC7UXuFxDflfDi2m8Rib9CL5ReDTSb2a2k3hg+XrQe9RHXlfDi2m8RiT9z9+wbmdUBD7j77PTPPwR+7+4rzewiYLG7fzrDaxcDiwGmT59+4ksvvVSsvouIjApmts7dE7lsW+jsl0VAU/rxfUDGC6XuvszdE+6emDx5coGHExGRXBQa6u3AqenHZwB/Lk53RERkOLKOqZvZCuA0YJKZbQe+BXwRuN3MxgLvkR5eERGR0soa6u5+SYanTixyX0REZJjK+hulIiKSH4W6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhACr1H6Yhq3vQK//pf6w5qO/yQCmbVTGRmzQRm1UxgVs1EZkwZT2WF3qdEZPSKRahPPbJqQNs7e3tYu3UXa7fuyvr6D006nJk1E9JvABOZVTOBSePHRdFVEZGSyunG08WSSCQ8mUwWZV9vvLOXzTt2s6n9TTa172ZT+25e2Pl2Ufbd6/JTj+NLZ/w148fF4r1PRAKVz42nYxvqueru2c+LHe+wecebbGrbnX4DeJPd73UX7Rizaydw42dmkag7qmj7FBHppVAv0Notu/jOA5vY2LY7smM0zJrCrReewBGHVkZ2DBEJi0I9Ym/v6ebHj73Ajx59MdLj3PmFkzit/uhIjyEi5U+hXkb+9+l2rlqxIdJjfOaEGm6+YA6Ha+xfJEgK9Ryt2tBGY3Mr7Z1d1FRXsaShnoXza0vSl9ff3sPVP3+KJ/78WqTH+d5n53DxSdMjPYaIFJdCPQerNrSxtKmFrn09B9qqKiu46YI5JQv2XK1ct52v3fd0pMeoPqySJ649XWP/ImVAoZ6DT9z8O9o6uwa011ZX8X/XnVGCHhXfltfe4fRbH4v8OLd/bh7nzyvvN0KROFOo5+CD1/2KwX5zA7bcfM5Id6fkbvzlJu7849ZIj3HMhEP53TWnctghGvsXyUc+oT5q/3XVVFcNeqZeUz3w26ujwY3nzeLG82Zl3e75V9/i7B88XtAxXtn9HjO/2ZzTtj+8ZD7nnVBT0HFERrNRe6Ye5zH1OHB3rr3/Ge5btz3S4xx1+CH88bozOLSyItLjiJRSUYdfzGw5cC6w091n92m/CvgS0A38yt2vzXawcgp1KK/ZL6NVpmsbUfj+RSdwwUenjsixRIqp2KH+t8DbwN29oW5mpwM3AOe4+x4zO9rdd2Y7WLmFupRePtc29u93/vnOP/H48x2R96v1uwsYN1Zn/1Ieijqm7u6Pm1ldv+YrgJvdfU96m6yBLtGL4yePfK5tjBlj3H3pyTntN7l1F//wkycL7lf9N36T03Y/+sePcs7cYws+jkixFXqh9HjgU2b2H8B7wDXu/qfBNjSzxcBigOnT9aWXqPS/RtDW2cXSphaAsg720z88mZ+u3jZo+3Ak6o7itovnZb1u0t2zn0/d8ig73nyvoONc+bP1XPmz7NtVVVbwzI1na71/iVyhoT4WOBI4BTgJuNfMPuSDjOW4+zJgGaSGXwrtqAytsbn1oPAC6NrXQ2Nza1mH+qPPDT6Ukqk9H7nUZGzFGJ5cemZO+/vt5lf5l7sLGz7s2tfDjBsezGnbOxYlOPMjUwo6jkihob4daEqH+Foz2w9MAqIf7JRBtWe42JipvVxE2e9i7/vTM6ewNYfvMOzt3s+J332Ytwpc3vmyu3J745g/vZr7L/84FWOsoONImAoN9VXAGcBjZnY8cAgQ7aIlMqS4zruPst+lqskhY8fQcmNDTts+8Ew7X/pZYQu+bdjWyXHX/zqnbVde8Tec+AGt9z8aZA11M1sBnAZMMrPtwLeA5cByM9sI7AUWDTb0IiNnSUP9oOPHSxrqS9ir7KLsdxxqcu7cGs6dm/1LVnu6e1hw2xNsee2dgo7z2R/ndtH4ytOP45qz6zHT2X9cjdovH4UojrNfINp+x7Umw/GbjTu4/KfrIz1G9WGVrPq3T1A36fBIjyMpWvtFRLLa093D9U0bWbk+mm/9jh1jXJiYxkWJqcybVq2z/2HQ2i+jVFzPSuPa7yiN5KeX2y6el3Xfa/7yOhcvW53Xcbr3OyvWbmPF2oFTVvubP72aixLTOHfusVrueZh0ph6IuK5lE9d+RynKmkRd7/f29XDzg8/x3Cu7Wf2XXcPeX3/jxo7hosQ0LkpMY3bthFFz9q/hl1EoruvDx7XfUYqyJuVU7+1vvEvT+jbuTb7M9jeKP/U28YEjuTAxlXPm1jA+5rd61PDLKKR56uGI09z94Zh65GF8+cwZfPnMGUNut69nP4+1dnBf8mUe2vxqzvtPvvQGyZfe4OsrW4bc7vBDKrgwMY3PnTyNDx8zIef9lyuFeiA0Tz0cIc7dH47KijGcNXMKZ83M/i3bba+/y/3rt3N/8mXac1z64Z29Pdz5x60ZbxIzftxYZtZMYFbNBGYeO4FZNROZMWV82S75oFAPRBzmZA8mrv2O0mifuz8c0//qML561vF89azjh9xub/d+fvfcTu5Lvswjzw29HuHbe7pZu2UXa7dkv0bwoUmHp98AJqbeBGomMGn8uLx+h+HSmHpA4jqLJK79jpLm7pePznf3snnHbja372ZT+242tb/J86++nfd+Hrjqk8yunVhQH3ShVERkhHX37GfLa+8cCP7NO1JvAp3v7gPgD18/nalHHlbQvnWhVERkhI2tGMOMKUcwY8oRJf3kU54j/SIiUhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIB0Tx1OYi+bSgSbwp1OaD/WtttnV0sbUqtcKdgF4kHDb/IAY3NrQct9ATQta+HxubWEvVIRPKlUJcDymmtbREpjEJdDsi0pnY5r7UtIgdTqMsBSxrqqaqsOKgtpLW2RUYDXSiVA3ovhmr2i0h8KdTlIAvn1yrERWJMoS4lp7nxA8X1zkf6fznQSNdEoS4lpbnxA0VZk7juO65KUZOsF0rNbLmZ7TSzjYM8d42ZuZlNiqR3EjzNjR8oyprEdd9xVYqa5DL75U5gQf9GM5sGnAVsK3KfZBTR3PiBoqxJXPcdV6WoSdZQd/fHgV2DPPUD4Fpg5O5cLcHR3PiBoqxJXPcdV6WoSUHz1M3sPKDN3Z/OYdvFZpY0s2RHR0chh5OAaW78QFHWJK77jqtS1CTvC6VmdhhwA3B2Ltu7+zJgGUAikdBZvRxEc+MHirImcd13XJWiJuaePWfNrA54wN1nm9kc4BHg3fTTU4F24GR3f2Wo/SQSCU8mk8PrsYjIKGNm69w9kcu2eZ+pu3sLcHSfg20FEu7+Wr77Eoma5k3LaJPLlMYVwJNAvZltN7PLou+WyPD1zhFu6+zCeX+O8KoNbaXumkhksp6pu/slWZ6vK1pvRIpoqDnCOluXUGmVRgmW5k3LaKRlAiRYNdVVtA0S4KN53nTU4noNI679HozO1CVYmjc9suJ6DSOu/c5EoS7BWji/lpsumENtdRUG1FZXcdMFc2J7Blbu4rr2S1z7nYmGXyRoWh9+5MT1GkZc+52JztRFpCjiuvZLXPudiUJdRIoirtcw4trvTDT8IiJFEde1X+La70xyWvulWLT2i4hI/vJZ+0XDLyIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAcka6ma23Mx2mtnGPm2NZvacmT1jZr8ws+pIeykiIjnJ5Uz9TmBBv7aHgdnuPhd4Hlha5H6JiEgBsoa6uz8O7OrX9pC7d6d/XA1MjaBvIiKSp2KMqV8KPJjpSTNbbGZJM0t2dHQU4XAiIpLJsELdzG4AuoF7Mm3j7svcPeHuicmTJw/ncCIiksXYQl9oZouAc4Ez3d2L1yURESlUQaFuZguArwOnuvu7xe2SiIgUKpcpjSuAJ4F6M9tuZpcB/wkcATxsZk+Z2U8i7qeIiOQg65m6u18ySPMdEfRFRESGSd8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAUvPSuiETnG6taWLHmZXrcqTDjko9N47sL5xRl36s2tNHY3Ep7Zxc11VUsaahn4fzaouxbSk+hLlJmvrGqhZ+u3nbg5x73Az8PN9hXbWhjaVMLXft6AGjr7GJpUwuAgj0QGn4RKTMr1rycV3s+GptbDwR6r659PTQ2tw5731IeFOoiZaYnw43EMrXno72zK692iR+FukiZqTDLqz0fNdVVebVL/CjURcrMJR+blld7PpY01FNVWXFQW1VlBUsa6oe9bykPulAqUmZ6L4ZGMful92KoZr+Ey7wI43S5SiQSnkwmR+x4IiIhMLN17p7IZVsNv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBGREZ7+YWQfwEjAJeG3EDly+VAfVAFSDXqpD5hp8wN0n57KDEQ31Awc1S+Y6PSdkqoNqAKpBL9WhODXQ8IuISEAU6iIiASlVqC8r0XHLjeqgGoBq0Et1KEINSjKmLiIi0dDwi4hIQBTqIiIBKXqom9k0M3vUzJ41s01m9u/9nr/GzNzMJvVpW2pmL5hZq5k1FLtPpTBUHczsqvTvusnMbunTHlQdMtXAzOaZ2Woze8rMkmZ2cp/XBFUDADM71MzWmtnT6Tp8O91+lJk9bGZ/Tv/3yD6vCaoOQ9Sg0cyeM7NnzOwXZlbd5zVB1QAy16HP88PPR3cv6h/gWOCj6cdHAM8DM9M/TwOaSX8BKd02E3gaGAd8EHgRqCh2v0b6T6Y6AKcDvwXGpZ87OtQ6DFGDh4C/S7f/PfBYqDVI/14GjE8/rgTWAKcAtwDXpduvA74Xah2GqMHZwNh0+/dCrsFQdUj/XJR8LPqZurvvcPf16cdvAc8CvSvw/wC4Fuh7dfZ84L/dfY+7bwFeAE4m5oaowxXAze6+J/3czvRLgqvDEDVwYEJ6s4lAe/pxcDUA8JS30z9Wpv84qd/3rnT7XcDC9OPg6pCpBu7+kLt3p9tXA1PTj4OrAQz5dwGKlI+RjqmbWR0wH1hjZucBbe7+dL/NaoG+t0nfzvtvAkHoWwfgeOBTZrbGzH5vZielNwu6Dv1qcDXQaGYvA7cCS9ObBVsDM6sws6eAncDD7r4GmOLuOyD1Bggcnd48yDpkqEFflwIPph8HWQMYvA7FzMfIQt3MxgMrSf0D7gZuAL452KaDtAUzz7JvHdx9N6lbCB5J6qPnEuBeMzMCrsMgNbgC+Iq7TwO+AtzRu+kgLw+iBu7e4+7zSJ2Jnmxms4fYPMg6DFUDM7uBVE7c09s02C4i7+QIGKQOcyliPkYS6mZWSeof8T3u3gQcR2o86Gkz20rql1lvZseQeufpe0fdqbz/cTzWBqkDpH7fpvTHsLXAflKL+ARZhww1WAT0Pr6P9z9OBlmDvty9E3gMWAC8ambHAqT/2zsUF3Qd+tUAM1sEnAt83tMDyQReAzioDudTzHyM6ELA3cBtQ2yzlfcvBMzi4AsBfyGcCyID6gBcDnwn/fh4Uh+tLMQ6DFGDZ4HT0o/PBNYF/ndhMlCdflwFPEEqxBo5+ELpLaHWYYgaLAA2A5P7bR9cDYaqQ79thpWPY4fI+0J9AvgnoCU9bgRwvbv/erCN3X2Tmd1L6n9sN3Clu/dE0K+RNmgdgOXAcjPbCOwFFnnq/16IdchUgy8Ct5vZWOA9YDEE/XfhWOAuM6sg9en4Xnd/wMyeJDX8dhmwDbgQgq1Dphq8QCqwHk6NQrLa3S8PtAaQoQ6ZNi6kDlomQEQkIPpGqYhIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiATk/wHell9jjLoNCQAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test,y_test)\n", + "plt.plot(X_test,pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "線の傾きは線形回帰係数から求めることができます。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([-0.01751876]), 21.133734359909326)" + ] + }, + "execution_count": 178, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lin_reg.coef_, lin_reg.intercept_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 179, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([16.64893156])" + ] + }, + "execution_count": 179, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Pumpkin price on programmer's day\n", + "\n", + "lin_reg.predict([[256]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 多項式回帰\n", + "\n", + "特徴と結果の間の関係が本質的に非線形である場合があります。例えば、カボチャの価格は冬(1月、2月)に高くなり、夏(5月~7月)に下がり、その後再び上昇することがあります。線形回帰ではこの関係を正確に捉えることができません。\n", + "\n", + "この場合、追加の特徴を加えることを検討できます。簡単な方法として、入力特徴から多項式を使用することで、**多項式回帰**を実現できます。Scikit Learnでは、パイプラインを使用して多項式特徴を自動的に事前計算することができます。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.73 (17.0%)\n", + "Model determination: 0.07639977655280217\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 180, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbw0lEQVR4nO3de3Cc1Znn8e+jm93ClmRb8kWyjYBgDb6ATQQhFwIhFzu7meBQNVOVyu5Sm9RQSWWnJlMTZ3BIZWq2dpcMnprZzM5WTbEDFVLDsJOZOM4USTAEkkBYMJExjOwYY8AXkGRLsi35otb92T+6JbfurXa3ut+j36eqS2+ffvvto0f2T6/Oe/q0uTsiIhKGonx3QEREskehLiISEIW6iEhAFOoiIgFRqIuIBKRkLl+surra6+vr5/IlRUQib//+/Z3uXpPOvnMa6vX19TQ1Nc3lS4qIRJ6ZnUh3Xw2/iIgERKEuIhIQhbqISEAU6iIiAVGoi4gEZMbZL2a2Bvg+sBIYBh529++a2S7gd4F+4G3gP7t7Vw77KnNgz4EWdu09QmtXnNqqGDu2NrB9S12+uyUiaUrnTH0Q+BN3vwG4Dfiqma0HngE2uvuNwJvAztx1U+bCngMt7NzdTEtXHAdauuLs3N3MngMt+e6aiKRpxlB39zZ3fzW5fQE4DNS5+9PuPpjc7WVgde66KXNh194jxAeGxrTFB4bYtfdInnokIrM1qzF1M6sHtgD7xj30ReBnUzznPjNrMrOmjo6OjDopc6O1Kz6rdhEpPGmHupktAn4IfM3dz6e0P0BiiObxyZ7n7g+7e6O7N9bUpPUuV8mT2qrYrNpFpPCkFepmVkoi0B93990p7fcCnwG+4PoIpcjbsbWBWGnxmLZYaTE7tjbkqUciMlvpzH4x4BHgsLv/VUr7NuBPgTvcvSd3XZS5MjLLRbNfRKLLZjrBNrOPAC8AzSSmNAJ8E/gbYAFwJtn2srt/ebpjNTY2uhb0EhGZHTPb7+6N6ew745m6u/8asEke+ulsOyYiIrmld5SKiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQGb8jFKRXNtzoIVde4/Q2hWntirGjq0NbN9SV/DHlolU7/xTqEte7TnQws7dzcQHhgBo6Yqzc3czwBWHQS6PLROp3oVBwy+SV7v2HhkNgRHxgSF27T1S0MeWiVTvwqBQl7xq7YrPqr1Qji0Tqd6FQaEueVVbFZtVe6EcWyZSvQuDQl3yasfWBmKlxWPaYqXF7NjaUNDHlolU78KgC6WSVyMX0HIxYyKXx5aJVO/CYO4+Zy/W2NjoTU1Nc/Z6IiIhMLP97t6Yzr4znqmb2Rrg+8BKYBh42N2/a2ZLgX8C6oHjwO+7+7lMO50PmlMrIqFJZ0x9EPgTd78BuA34qpmtB+4HnnX364Fnk/cjY2RObUtXHOfynNo9B1ry3TURkYzNGOru3uburya3LwCHgTrgbuCx5G6PAdtz1Mec0JxaEQnRrGa/mFk9sAXYB6xw9zZIBD+wfIrn3GdmTWbW1NHRcYXdzR7NqRWREKUd6ma2CPgh8DV3P5/u89z9YXdvdPfGmpqaTPqYE5pTKyIhSivUzayURKA/7u67k82nzWxV8vFVQHtuupgbmlMrIiGaMdTNzIBHgMPu/lcpD/0rcG9y+17gx9nvXu5s31LHg/dsoq4qhgF1VTEevGeTZr+ISKTNOE/dzD4CvAA0k5jSCPBNEuPqPwDWAieB33P3s9MdS/PURURmL6vz1N3914BN8fDHZ9MxERHJLa39IiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEH1GqUiG9MlZUogU6iIZGPnkrJEPWhn55CxAwS55peEXkQzok7OkUCnURTKgT86SQqVQF8mAPjlLCpVCXSQD+uQsKVS6UCqSgZGLoZr9IoVGoS6Soe1b6hTiUnA0/CIiEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQAp+SmNUV8KLar9FJNoKOtSjuhJeVPstItFX0MMvUV0JL6r9FpHomzHUzexRM2s3s4MpbZvN7GUze83Mmszs1lx0Lqor4UW13yISfemcqX8P2Dau7SHgz919M/Dt5P2si+pKeFHtt4hE34yh7u7PA2fHNwMVye1KoDXL/QKiuxJeVPstItGX6YXSrwF7zewvSfxi+FDWepQiqivhRbXfIhJ95u4z72RWDzzp7huT9/8G+JW7/9DMfh+4z90/McVz7wPuA1i7du37T5w4ka2+i4jMC2a2390b09k309kv9wK7k9v/DEx5odTdH3b3RndvrKmpyejFuuMD9A8OZ/RcEZH5JNNQbwXuSG7fBRzNTncm97+ePcqt/+PnfGtPM/tPnCWdvy5EROajGcfUzewJ4E6g2szeA/4M+APgu2ZWAvSSHF7JlbtuWE77hT7+Zf97/MPLJ1m7tDzxAQWba7m2ZlEuX1pEJFLSGlPPlsbGRm9qasr4+Rf7Btl78BR7Xmvhxbc6GXa4aU0Vn9tcy+/eVMuyRQuy2FsRkcIwmzH1SIV6qtPne/nX11r50YEWftt2nuIi4451NWzfUscnb1hBrKx45oOIiETAvAj1VEdOXWDPay38+EALrd29XFVWzLaNq/jcljo+eN0yioss668pIjJX5l2ojxgedvYdO8ueAy38tLmNC32DrKhYwN2b69i+uY4bVi3GTAEvItEyb0M9Ve/AEM+90c6PDrTwyyPtDAw5DSsWs31LHXdvrtVb9kUkMhTq45y71M+TzW3sOdDC/hPnMIPbrlnG57bUsW3TSioWls55n0RE0qVQn8aJM5f4cfIC67HOS5SVFHFXw3I+vWklH/ud5Qp4ESk4CvU0uDuvv9c9Ov7efqGP0mLjw++rZtuGlXxi/QqqNUVSRAqAQn2WhoedA+92sffQKZ46eIqTZ3soMrilfinbNq5k64aVGoMXkbxRqF8Bd+dw2wWeOnSKvQdPceT0BQBuWl3JpzasZNvGlVynd7GKyBxSqGfROx0X2XvoNE8dOsXr73YBcP3yRaNn8BtqKzRNUkRySqGeI23dcZ4+dJqnDp5i37EzDDusXhJjW/IM/ua1SyjSG51EJMsU6nPgzMU+nj3czlOHTvHro530Dw1Ts3gBn1q/gm0bV3LbtcsoLS7oz/UWkYhQqM+xC70D/OJIB3sPnuIXR9rp6R+iYmEJn7hhBZ9Yv4IPX1dNZbmmSopIZhTqedQ7MMQLRzt56uApfn74NN3xAYossZrk7dfX8NHrq9m8pooSncWLSJoU6gVicGiY197t4vmjnbxwtIPX3+1i2GHxghI+9L5lyZCvYe2y8nx3VUQKmEK9QHX3DPDi24mAf/7NTlq64gBcvaycj15fw+3XV/PB65axWO9qFZEUCvUIcHeOdV7ihaOdPP9mBy+9c4ae/iGKi4yb11YlQn5dDZvqKrV0sMg8p1CPoP7BYV49eY4XjnbwwtFOmlu6cYfKWCkfeV81t19fze3raqjTO1tF5h2FegDOXOzjxbfP8MKbiZA/db4XgOtqrkqMxa+r5rZrl1FeNuPHzIpIxCnUA+PuvNV+kV8lA37fsTP0DgxTWmw0Xr2U29dV89Hra1i/qkJvfhIJkEI9cL0DQ+w/cY7nkxdcD7edB2DpVWWjQzUfuGYZa5bGtISBSAAU6mnac6CFXXuP0NoVp7Yqxo6tDWzfUpfvbs1a+4VeXnyrkxfe7OT5o510XuwDYPniBdxSv5TG+iXcUr+U31m5WPPjRSJIoZ6GPQda2Lm7mfjA0GhbrLSYB+/ZFMlgHzE87LzZfoGm4+doOn6W3xw/Nzp18qqyYm6+egmNVyeCfvOaKq5aoDF5kUKnUE/Dh7/z3GjYpaqrivHi/XfloUe509oVp+nE5ZB/49R53KG4yNhQW0Hj1Uu5pX4J769fwvLFC/PdXREZZzahPm9P01onCfTp2qOstirGZ6tifPamWgDO9w5w4GRXMuTP8o+vnODRF48BUL+snMb6pdy0poqNtRXcsKqChaXF+ey+iMzCvA312qrYpGfq8+ETjioWlnLHuhruWFcDJObIH2rtpun4OX5z/CzPvdHOv+x/D4Aig/ctX8TG2krW11awsS7xNZuf5RrKtQ2RQjBvh19CHVPPBnentbuXgy3dHGrp5lDreQ62dnP6fN/oPlcvK2djbSUb6irYUFvJxtoKlmXwma76OYjMLKvDL2b2KPAZoN3dN6a0/yHwX4BB4Cfu/o0M+5sXI4GhM8SJzIy6qhh1VTG2blg52t5xoY9DrcmQb+mmuaWbnzS3jT6+qnIhG2qTIV9XyYbaClZVLpx2WuWuvUfGBDpAfGCIXXuP6GchkoF0hl++B/wt8P2RBjP7GHA3cKO795nZ8tx0L7e2b6lTcMxCzeIF3NmwnDsbLv+4u3sGONTWzW+TQX+w9TzPvdHOcPIPwKVXlaUEfeLr1UvLR98kNZ+ubYjMhRlD3d2fN7P6cc1fAb7j7n3Jfdpz0DeZpXyMTVeWl/Kh66r50HXVo209/YMcbruQOKtvSQzdPPLrdxgYSiT9ogUlrK+tYENtBVXlpZzrGZhw3Gxd29B4vcw3mV4oXQfcbmb/HegFvu7uv5lsRzO7D7gPYO3atRm+nMxk/Nh0S1ecnbubAeY8xMrLSnj/1Ut4/9VLRtv6Boc4evoih1q7OZgM+ideOUnvwPCkx7imupyDLd3UV1/Fogzn0hdSTUTmSloXSpNn6k+OjKmb2UHgOeCPgFuAfwKu9RkOVkgXSkMTxXn3Q8POBx98lvYLfdPut3zxAq6pvmrM7dqaq1iztJwFJVNPt4xiTSQcQ8NOW3eck2d7ePdsDx9rWM7yiszeBzIX89TfA3YnQ/wVMxsGqoGODI8nVyiKY9PFRUbHNIH+d//hZt7pvMSxjksc67zEM789zZlL/aOPFxmsXlI+JuhHtmsrY5GsiUTL+d4BTp5JhPbJlNu7Z3to6YqPDjkC/J//1Mgn1+f+zX2Zhvoe4C7gl2a2DigDOrPVKZm9qM67n6rfdVUxtm1cNaG9u2eAY2cucazzIsc6LvFO5yWOn7lE0/GzXOq/PIumrKSI4iJjcHjiH48rKxbi7lrsTGY0MDRMW1fv5bA+dzm0T57toWvc9aCq8lLWLi1nQ10ln960irVLy0dvqyrn5t3a6UxpfAK4E6g2s/eAPwMeBR5NDsP0A/fONPQiubVja8Ok8713bG3IY69mNtt+V5aXsrm8is1rqsa0uzsdF/oSZ/bJ2/97q5NDrecZ/w+z7Xwv67+9l5WVC1lZsZBVlQtZUZn4urJiYaK9ciHVVy3QUsaBcncu9Q/R1dNPV88AXT0DnO3p571zY8+6W7t6GUo5MSgtNlYvKWfN0nJuXF05GthrkrdsvikvU/P2zUchiupMj1z2e8+BFh566g1au3upXlTGv9+0ijVLyznV3Uvb+V5OdSdup8/3TjirLykyVqSE/MgvgJUp4b988ULKSrTyZT71Dgxxrqefc5cG6IpfDulzPf10xwc4d6mfrvjAaICf6xmgO94/ZmgkVfWiskRILykfE9prl5WzsmJhXj5eUgt6iczS8LDTeamP0919tHXHOZUS+G3J0G/tjk+YrWMGVbFSqsrLqIiVUhUrpTJ5qyq/vH25rWz0Ma2pM1b/4HAieKcJ4smCu29w8hlUAAtLi6iKlVFVnqj5kvKR7TKqYon7lcn2JeWl1FbFCnLlUi3oNU/pTD1zRUXG8sWJM+9Nqysn3cfdOR8fpO18fEzgd17sozs+kDgr7Onn+JlLo/enO2cqKylKBHzKL4GK5HZbdy8vvX2G7vgAS8pL2b6ljtuvr6asuJiykqLErTjxdUHylto+3br5uaq3uzM07Ay5c7F3cFwQpwb05cA+d+ly3Xr6h6Y8dmmxjQnixPBHMpxHwjo27v48/cWpM/VARHUNlaj2Ox3Dw86FvkG6ewZGQ74r3j+6PdLelfJ4d3yAzot90559pqPIGA34BaXFia8lRcQHhjh1vnfMLxszWF0VY/HCUoZHgjkZzkPDzvDoNqOPj7QNpmynEyVFxmjwTnamXJn8Ov7suryseF5f2NaZ+jwU1TVUotrvdBQV2eiwy2xMNb++ZtEC/vcXbqZ/cJj+oSH6BobpHxqmb3A40TaYuJ+63TcwNGafnx8+PSF83aH9Qh8NKxdTZEZxUcrNjKLUr0WMaSsuTn4tsjHPXbSgZNJhjsULSnTxOccU6oGI6pzsqPY7l6b63jsv9nHrNUuv6NjX3P+TSdv7B4f5+3tvuaJjS2HQZftATDUfPQrz1GfTPh/ksiaqd/gU6oHYsbWB2LiLQlGZpx7FfudSLmuieodPwy+BiOr68FHtdy7lsiaqd/g0+0VEpMDNZvaLhl9ERAKiUBcRCYhCXUQkIAp1EZGAKNRFRAKiUBcRCYhCXUQkIAp1EZGA6B2lMkYhrG0uIplTqMuo8Wubt3TF2bm7GUDBLhIRGn6RUdOtbS4i0aBQl1Fa21wk+hTqMkprbYtEn0JdRmmtbZHo04VSGaW1tkWiT6EuY2zfUqcQF4kwhbrknebGT5TLmkT12FE11zVRqEteaW78RLmsSVSPHVX5qMmMF0rN7FEzazezg5M89nUzczOrzknvJHiaGz9RLmsS1WNHVT5qks7sl+8B28Y3mtka4JPAySz3SeYRzY2fKJc1ieqxoyofNZkx1N39eeDsJA/9NfANYO4+uVqCo7nxE+WyJlE9dlTloyYZzVM3s88CLe7+ehr73mdmTWbW1NHRkcnLScA0N36iXNYkqseOqnzUZNYXSs2sHHgA+FQ6+7v7w8DDAI2NjTqrlzE0N36iXNYkqseOqnzUxNxnzlkzqweedPeNZrYJeBboST68GmgFbnX3U9Mdp7Gx0Zuamq6sxyIi84yZ7Xf3xnT2nfWZurs3A8tTXuw40OjunbM9lkiuad60zDfpTGl8AngJaDCz98zsS7nvlsiVG5kj3NIVx7k8R3jPgZZ8d00kZ2Y8U3f3z8/weH3WeiOSRdPNEdbZuoRKqzRKsDRvWuYjLRMgwaqtitEySYDP53nTuRbVaxhR7fdkdKYuwdK86bkV1WsYUe33VBTqEqztW+p48J5N1FXFMKCuKsaD92yK7BlYoYvq2i9R7fdUNPwiQdP68HMnqtcwotrvqehMXUSyIqprv0S131NRqItIVkT1GkZU+z0VDb+ISFZEde2XqPZ7Kmmt/ZItWvtFRGT2ZrP2i4ZfREQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQCMmOom9mjZtZuZgdT2naZ2Rtm9m9m9iMzq8ppL0VEJC3pnKl/D9g2ru0ZYKO73wi8CezMcr9ERCQDM4a6uz8PnB3X9rS7DybvvgyszkHfRERklrIxpv5F4GdTPWhm95lZk5k1dXR0ZOHlRERkKlcU6mb2ADAIPD7VPu7+sLs3untjTU3NlbyciIjMoCTTJ5rZvcBngI+7u2evSyIikqmMQt3MtgF/Ctzh7j3Z7ZKIiGQqnSmNTwAvAQ1m9p6ZfQn4W2Ax8IyZvWZmf5fjfoqISBpmPFN3989P0vxIDvoiIiJXSO8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYBkvPSuiOTOt/Y088S+dxlyp9iMz39gDf9t+6asHHvPgRZ27T1Ca1ec2qoYO7Y2sH1LXVaOLfmnUBcpMN/a08w/vHxy9P6Q++j9Kw32PQda2Lm7mfjAEAAtXXF27m4GULAHQsMvIgXmiX3vzqp9NnbtPTIa6CPiA0Ps2nvkio8thUGhLlJghqb4ILGp2mejtSs+q3aJHoW6SIEpNptV+2zUVsVm1S7Ro1AXKTCf/8CaWbXPxo6tDcRKi8e0xUqL2bG14YqPLYVBF0pFCszIxdBczH4ZuRiq2S/hMs/COF26Ghsbvampac5eT0QkBGa2390b09lXwy8iIgFRqIuIBEShLiISEIW6iEhAFOoiIgGZ09kvZtYBnACqgc45e+HCpTqoBqAajFAdpq7B1e5ek84B5jTUR1/UrCnd6TkhUx1UA1ANRqgO2amBhl9ERAKiUBcRCUi+Qv3hPL1uoVEdVANQDUaoDlmoQV7G1EVEJDc0/CIiEhCFuohIQLIe6ma2xsx+YWaHzeyQmf3RuMe/bmZuZtUpbTvN7C0zO2JmW7Pdp3yYrg5m9ofJ7/WQmT2U0h5UHaaqgZltNrOXzew1M2sys1tTnhNUDQDMbKGZvWJmryfr8OfJ9qVm9oyZHU1+XZLynKDqME0NdpnZG2b2b2b2IzOrSnlOUDWAqeuQ8viV56O7Z/UGrAJuTm4vBt4E1ifvrwH2knwDUrJtPfA6sAC4BngbKM52v+b6NlUdgI8BPwcWJB9bHmodpqnB08Cnk+3/DvhlqDVIfl8GLEpulwL7gNuAh4D7k+33A38Rah2mqcGngJJk+1+EXIPp6pC8n5V8zPqZuru3ufurye0LwGFgZAX+vwa+AaRenb0b+L/u3ufux4C3gFuJuGnq8BXgO+7el3ysPfmU4OowTQ0cqEjuVgm0JreDqwGAJ1xM3i1N3pzE9/tYsv0xYHtyO7g6TFUDd3/a3QeT7S8Dq5PbwdUApv23AFnKx5yOqZtZPbAF2GdmnwVa3P31cbvVAakfk/4el38JBCG1DsA64HYz22dmvzKzW5K7BV2HcTX4GrDLzN4F/hLYmdwt2BqYWbGZvQa0A8+4+z5ghbu3QeIXILA8uXuQdZiiBqm+CPwsuR1kDWDyOmQzH3MW6ma2CPghif/Ag8ADwLcn23WStmDmWabWwd3Pk/gIwSUk/vTcAfzAzIyA6zBJDb4C/LG7rwH+GHhkZNdJnh5EDdx9yN03kzgTvdXMNk6ze5B1mK4GZvYAiZx4fKRpskPkvJNzYJI63EgW8zEnoW5mpST+Ez/u7ruB60iMB71uZsdJfDOvmtlKEr95Uj9RdzWX/xyPtEnqAInvd3fyz7BXgGESi/gEWYcpanAvMLL9z1z+czLIGqRy9y7gl8A24LSZrQJIfh0Zigu6DuNqgJndC3wG+IInB5IJvAYwpg53k818zNGFgO8D/3OafY5z+ULABsZeCHiHcC6ITKgD8GXgvya315H408pCrMM0NTgM3Jnc/jiwP/B/CzVAVXI7BrxAIsR2MfZC6UOh1mGaGmwDfgvUjNs/uBpMV4dx+1xRPpZMk/eZ+jDwH4Hm5LgRwDfd/aeT7ezuh8zsByR+sIPAV919KAf9mmuT1gF4FHjUzA4C/cC9nvjphViHqWrwB8B3zawE6AXug6D/LawCHjOzYhJ/Hf/A3Z80s5dIDL99CTgJ/B4EW4epavAWicB6JjEKycvu/uVAawBT1GGqnTOpg5YJEBEJiN5RKiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgH5/+EaqS+WjFbpAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)\n", + "\n", + "plt.scatter(X_test,y_test)\n", + "plt.plot(sorted(X_test),pipeline.predict(sorted(X_test)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### エンコーディングの種類\n", + "\n", + "理想的な世界では、同じモデルを使って異なるカボチャの品種の価格を予測できるようにしたいと考えています。品種を考慮するためには、まずそれを数値形式、つまり**エンコード**する必要があります。これにはいくつかの方法があります:\n", + "\n", + "* 単純な数値エンコーディングでは、異なる品種のテーブルを作成し、そのテーブル内のインデックスで品種名を置き換えます。しかし、これは線形回帰には最適な方法ではありません。なぜなら、線形回帰はインデックスの数値を考慮しますが、その数値が価格と数値的に相関している可能性は低いからです。\n", + "* ワンホットエンコーディングでは、`Variety`列を4つの異なる列に置き換えます。それぞれの列は特定の品種に対応し、該当する行がその品種の場合は1、そうでない場合は0を含みます。\n", + "\n", + "以下のコードは、品種をワンホットエンコードする方法を示しています:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          FAIRYTALEMINIATUREMIXED HEIRLOOM VARIETIESPIE TYPE
                                          700001
                                          710001
                                          720001
                                          730001
                                          740001
                                          ...............
                                          17380100
                                          17390100
                                          17400100
                                          17410100
                                          17420100
                                          \n", + "

                                          415 rows × 4 columns

                                          \n", + "
                                          " + ], + "text/plain": [ + " FAIRYTALE MINIATURE MIXED HEIRLOOM VARIETIES PIE TYPE\n", + "70 0 0 0 1\n", + "71 0 0 0 1\n", + "72 0 0 0 1\n", + "73 0 0 0 1\n", + "74 0 0 0 1\n", + "... ... ... ... ...\n", + "1738 0 1 0 0\n", + "1739 0 1 0 0\n", + "1740 0 1 0 0\n", + "1741 0 1 0 0\n", + "1742 0 1 0 0\n", + "\n", + "[415 rows x 4 columns]" + ] + }, + "execution_count": 181, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.get_dummies(new_pumpkins['Variety'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 品種に基づく線形回帰\n", + "\n", + "ここでは、先ほどのコードを再利用しますが、`DayOfYear` の代わりに、ワンホットエンコードされた品種を入力として使用します:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "metadata": {}, + "outputs": [], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety'])\n", + "y = new_pumpkins['Price']" + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 5.24 (19.7%)\n", + "Model determination: 0.774085281105197\n" + ] + } + ], + "source": [ + "def run_linear_regression(X,y):\n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + " lin_reg = LinearRegression()\n", + " lin_reg.fit(X_train,y_train)\n", + "\n", + " pred = lin_reg.predict(X_test)\n", + "\n", + " mse = np.sqrt(mean_squared_error(y_test,pred))\n", + " print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + " score = lin_reg.score(X_train,y_train)\n", + " print('Model determination: ', score)\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "私たちは同じ方法で他の機能を試し、それらを`Month`や`DayOfYear`のような数値的な機能と組み合わせることもできます。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.84 (10.5%)\n", + "Model determination: 0.9401096672643048\n" + ] + } + ], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety']) \\\n", + " .join(new_pumpkins['Month']) \\\n", + " .join(pd.get_dummies(new_pumpkins['City'])) \\\n", + " .join(pd.get_dummies(new_pumpkins['Package']))\n", + "y = new_pumpkins['Price']\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 多項式回帰\n", + "\n", + "多項式回帰は、ワンホットエンコードされたカテゴリカル特徴にも使用できます。多項式回帰を訓練するコードは、上記で見たものと基本的に同じになります。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.23 (8.25%)\n", + "Model determination: 0.9652870784724543\n" + ] + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d77bd89ae7e79780c68c58bab91f13f8", + "translation_date": "2025-09-04T01:03:01+00:00", + "source_file": "2-Regression/3-Linear/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ja/2-Regression/4-Logistic/README.md b/translations/ja/2-Regression/4-Logistic/README.md new file mode 100644 index 000000000..32273ef6c --- /dev/null +++ b/translations/ja/2-Regression/4-Logistic/README.md @@ -0,0 +1,422 @@ + +# カテゴリ予測のためのロジスティック回帰 + +![ロジスティック回帰と線形回帰のインフォグラフィック](../../../../translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.ja.png) + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/) + +> ### [このレッスンはRでも利用可能です!](../../../../2-Regression/4-Logistic/solution/R/lesson_4.html) + +## はじめに + +回帰に関する最後のレッスンでは、基本的な「クラシック」な機械学習技術の一つであるロジスティック回帰を学びます。この技術を使えば、パターンを発見して二値カテゴリを予測することができます。このキャンディはチョコレートかどうか?この病気は伝染性かどうか?この顧客はこの商品を選ぶかどうか? + +このレッスンで学ぶ内容: + +- 新しいデータ可視化ライブラリ +- ロジスティック回帰の技術 + +✅ この[学習モジュール](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott)で、この回帰タイプの理解を深めましょう。 + +## 前提条件 + +かぼちゃデータを扱ったことで、このデータには扱える二値カテゴリがあることがわかりました。それは `Color` です。 + +いくつかの変数を基にして、_特定のかぼちゃの色がオレンジ 🎃 か白 👻 かを予測する_ ロジスティック回帰モデルを構築してみましょう。 + +> なぜ回帰に関するレッスンで二値分類について話しているのでしょうか?それは言語的な便宜上の理由だけであり、ロジスティック回帰は[実際には分類方法](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression)であり、線形ベースのものです。次のレッスンでは、データを分類する他の方法について学びます。 + +## 問題を定義する + +今回の目的では、これを二値として表現します:'White' または 'Not White'。データセットには 'striped' というカテゴリもありますが、インスタンスが少ないため使用しません。データセットから欠損値を削除すると、このカテゴリは消えてしまいます。 + +> 🎃 面白い事実:白いかぼちゃは時々「ゴースト」かぼちゃと呼ばれます。彫刻するのは難しいため、オレンジのかぼちゃほど人気はありませんが、見た目はクールです!したがって、質問を次のように再構成することもできます:'Ghost' または 'Not Ghost' 👻。 + +## ロジスティック回帰について + +ロジスティック回帰は、以前学んだ線形回帰とはいくつかの重要な点で異なります。 + +[![初心者向け機械学習 - ロジスティック回帰の理解](https://img.youtube.com/vi/KpeCT6nEpBY/0.jpg)](https://youtu.be/KpeCT6nEpBY "初心者向け機械学習 - ロジスティック回帰の理解") + +> 🎥 上の画像をクリックしてロジスティック回帰の概要を短い動画で確認してください。 + +### 二値分類 + +ロジスティック回帰は線形回帰と同じ機能を提供しません。前者は二値カテゴリ(「白か白でないか」)についての予測を提供しますが、後者は継続的な値を予測することができます。例えば、かぼちゃの産地と収穫時期を基にして、_その価格がどれだけ上昇するか_ を予測することができます。 + +![かぼちゃ分類モデル](../../../../translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.ja.png) +> インフォグラフィック作成者:[Dasani Madipalli](https://twitter.com/dasani_decoded) + +### 他の分類 + +ロジスティック回帰には、他にも多項式や順序型などの種類があります: + +- **多項式**: 複数のカテゴリを持つ場合 - 「オレンジ、白、縞模様」。 +- **順序型**: 順序付けられたカテゴリを扱う場合。例えば、かぼちゃのサイズ(mini, sm, med, lg, xl, xxl)を論理的に順序付ける場合に役立ちます。 + +![多項式回帰 vs 順序型回帰](../../../../translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.ja.png) + +### 変数は相関している必要はない + +線形回帰がより相関のある変数でうまく機能することを覚えていますか?ロジスティック回帰はその逆で、変数が一致している必要はありません。このデータには相関が弱い変数があるため、適しています。 + +### 多くのクリーンなデータが必要 + +ロジスティック回帰は、データが多いほど正確な結果を提供します。このタスクには小さなデータセットは最適ではないため、その点を考慮してください。 + +[![初心者向け機械学習 - ロジスティック回帰のためのデータ分析と準備](https://img.youtube.com/vi/B2X4H9vcXTs/0.jpg)](https://youtu.be/B2X4H9vcXTs "初心者向け機械学習 - ロジスティック回帰のためのデータ分析と準備") + +> 🎥 上の画像をクリックして線形回帰のためのデータ準備の概要を短い動画で確認してください。 + +✅ ロジスティック回帰に適したデータの種類について考えてみましょう。 + +## 演習 - データを整理する + +まず、データを少し整理し、欠損値を削除していくつかの列を選択します: + +1. 以下のコードを追加してください: + + ```python + + columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color'] + pumpkins = full_pumpkins.loc[:, columns_to_select] + + pumpkins.dropna(inplace=True) + ``` + + 新しいデータフレームを確認することもできます: + + ```python + pumpkins.info + ``` + +### 可視化 - カテゴリプロット + +これまでに、かぼちゃデータを[スターターノートブック](./notebook.ipynb)に読み込み、いくつかの変数を含むデータセットを保持するように整理しました。ノートブックでデータフレームを可視化するために、以前使用したMatplotlibを基にした異なるライブラリ:[Seaborn](https://seaborn.pydata.org/index.html) を使用してみましょう。 + +Seabornはデータを可視化するための便利な方法を提供します。例えば、`Variety` と `Color` のデータ分布をカテゴリプロットで比較することができます。 + +1. `catplot` 関数を使用して、かぼちゃデータ `pumpkins` を指定し、各かぼちゃカテゴリ(オレンジまたは白)の色マッピングを指定してプロットを作成します: + + ```python + import seaborn as sns + + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + + sns.catplot( + data=pumpkins, y="Variety", hue="Color", kind="count", + palette=palette, + ) + ``` + + ![データのグリッド可視化](../../../../translated_images/pumpkins_catplot_1.c55c409b71fea2ecc01921e64b91970542101f90bcccfa4aa3a205db8936f48b.ja.png) + + データを観察することで、ColorデータがVarietyとどのように関連しているかがわかります。 + + ✅ このカテゴリプロットを基に、どのような興味深い探索が考えられますか? + +### データ前処理:特徴とラベルのエンコーディング + +かぼちゃデータセットのすべての列には文字列値が含まれています。カテゴリデータは人間にとって直感的ですが、機械にとってはそうではありません。機械学習アルゴリズムは数値データでうまく機能します。そのため、エンコーディングはデータ前処理フェーズで非常に重要なステップです。これにより、カテゴリデータを数値データに変換し、情報を失うことなく処理できます。適切なエンコーディングは良いモデル構築につながります。 + +特徴エンコーディングには主に2つのタイプがあります: + +1. 順序エンコーダー:順序型変数に適しており、カテゴリ変数が論理的な順序に従う場合に使用します。データセットの `Item Size` 列がこれに該当します。各カテゴリを列内の順序に基づいて数値で表現するマッピングを作成します。 + + ```python + from sklearn.preprocessing import OrdinalEncoder + + item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']] + ordinal_features = ['Item Size'] + ordinal_encoder = OrdinalEncoder(categories=item_size_categories) + ``` + +2. カテゴリエンコーダー:名義変数に適しており、カテゴリ変数が論理的な順序に従わない場合に使用します。データセットの `Item Size` 以外のすべての特徴がこれに該当します。これはワンホットエンコーディングであり、各カテゴリがバイナリ列で表現されます:エンコードされた変数がそのVarietyに属している場合は1、それ以外の場合は0です。 + + ```python + from sklearn.preprocessing import OneHotEncoder + + categorical_features = ['City Name', 'Package', 'Variety', 'Origin'] + categorical_encoder = OneHotEncoder(sparse_output=False) + ``` + +次に、`ColumnTransformer` を使用して複数のエンコーダーを単一のステップに統合し、適切な列に適用します。 + +```python + from sklearn.compose import ColumnTransformer + + ct = ColumnTransformer(transformers=[ + ('ord', ordinal_encoder, ordinal_features), + ('cat', categorical_encoder, categorical_features) + ]) + + ct.set_output(transform='pandas') + encoded_features = ct.fit_transform(pumpkins) +``` + +一方、ラベルをエンコードするために、scikit-learnの `LabelEncoder` クラスを使用します。このクラスはラベルを正規化し、0からn_classes-1(ここでは0と1)の値のみを含むようにします。 + +```python + from sklearn.preprocessing import LabelEncoder + + label_encoder = LabelEncoder() + encoded_label = label_encoder.fit_transform(pumpkins['Color']) +``` + +特徴とラベルをエンコードしたら、それらを新しいデータフレーム `encoded_pumpkins` に統合できます。 + +```python + encoded_pumpkins = encoded_features.assign(Color=encoded_label) +``` + +✅ `Item Size` 列に順序エンコーダーを使用する利点は何ですか? + +### 変数間の関係を分析する + +データを前処理した後、特徴とラベル間の関係を分析して、モデルが特徴を基にラベルをどれだけうまく予測できるかのアイデアをつかむことができます。 +この種の分析を行う最良の方法はデータをプロットすることです。再びSeabornの `catplot` 関数を使用して、`Item Size`、`Variety`、`Color` の関係をカテゴリプロットで可視化します。データをより良くプロットするために、エンコードされた `Item Size` 列と未エンコードの `Variety` 列を使用します。 + +```python + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size'] + + g = sns.catplot( + data=pumpkins, + x="Item Size", y="Color", row='Variety', + kind="box", orient="h", + sharex=False, margin_titles=True, + height=1.8, aspect=4, palette=palette, + ) + g.set(xlabel="Item Size", ylabel="").set(xlim=(0,6)) + g.set_titles(row_template="{row_name}") +``` + +![データのカテゴリプロット](../../../../translated_images/pumpkins_catplot_2.87a354447880b3889278155957f8f60dd63db4598de5a6d0fda91c334d31f9f1.ja.png) + +### スウォームプロットを使用する + +Colorは二値カテゴリ(WhiteまたはNot)であるため、これを可視化するには「[特化したアプローチ](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar)」が必要です。他の変数との関係を可視化する方法もあります。 + +Seabornプロットを使用して変数を並べて可視化できます。 + +1. 値の分布を示す「スウォーム」プロットを試してみましょう: + + ```python + palette = { + 0: 'orange', + 1: 'wheat' + } + sns.swarmplot(x="Color", y="ord__Item Size", data=encoded_pumpkins, palette=palette) + ``` + + ![データのスウォームプロット](../../../../translated_images/swarm_2.efeacfca536c2b577dc7b5f8891f28926663fbf62d893ab5e1278ae734ca104e.ja.png) + +**注意**: 上記のコードは警告を生成する可能性があります。Seabornが大量のデータポイントをスウォームプロットに表現するのに失敗するためです。解決策として、マーカーのサイズを減らすために 'size' パラメータを使用することができます。ただし、これによりプロットの読みやすさが影響を受ける可能性があります。 + +> **🧮 数学を見せて** +> +> ロジスティック回帰は「最大尤度」の概念に基づいており、[シグモイド関数](https://wikipedia.org/wiki/Sigmoid_function)を使用します。プロット上の「シグモイド関数」は「S」字型の形状をしています。値を取り、それを0から1の間にマッピングします。その曲線は「ロジスティック曲線」とも呼ばれます。その公式は次のようになります: +> +> ![ロジスティック関数](../../../../translated_images/sigmoid.8b7ba9d095c789cf72780675d0d1d44980c3736617329abfc392dfc859799704.ja.png) +> +> シグモイドの中点はxの0点に位置し、Lは曲線の最大値、kは曲線の急峻さを表します。この関数の結果が0.5以上の場合、該当するラベルは二値選択のクラス「1」として分類されます。それ以外の場合は「0」として分類されます。 + +## モデルを構築する + +Scikit-learnでこの二値分類を見つけるモデルを構築するのは驚くほど簡単です。 + +[![初心者向け機械学習 - データ分類のためのロジスティック回帰](https://img.youtube.com/vi/MmZS2otPrQ8/0.jpg)](https://youtu.be/MmZS2otPrQ8 "初心者向け機械学習 - データ分類のためのロジスティック回帰") + +> 🎥 上の画像をクリックして線形回帰モデル構築の概要を短い動画で確認してください。 + +1. 分類モデルで使用したい変数を選択し、`train_test_split()` を呼び出してトレーニングセットとテストセットを分割します: + + ```python + from sklearn.model_selection import train_test_split + + X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])] + y = encoded_pumpkins['Color'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + + ``` + +2. 次に、トレーニングデータを使用して `fit()` を呼び出し、モデルをトレーニングし、その結果を出力します: + + ```python + from sklearn.metrics import f1_score, classification_report + from sklearn.linear_model import LogisticRegression + + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('F1-score: ', f1_score(y_test, predictions)) + ``` + + モデルのスコアボードを確認してください。約1000行のデータしかないことを考慮すると悪くありません: + + ```output + precision recall f1-score support + + 0 0.94 0.98 0.96 166 + 1 0.85 0.67 0.75 33 + + accuracy 0.92 199 + macro avg 0.89 0.82 0.85 199 + weighted avg 0.92 0.92 0.92 199 + + Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 + 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 + 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 + 0 0 0 1 0 0 0 0 0 0 0 0 1 1] + F1-score: 0.7457627118644068 + ``` + +## 混同行列による理解の向上 + +上記の項目を印刷してスコアボードレポート[用語](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report)を取得することができますが、[混同行列](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix)を使用してモデルをより簡単に理解することができます。 + +> 🎓 '[混同行列](https://wikipedia.org/wiki/Confusion_matrix)'(または 'エラーマトリックス')は、モデルの真陽性と偽陽性、真陰性と偽陰性を表す表であり、予測の精度を評価します。 + +1. 混同行列を使用するには、`confusion_matrix()` を呼び出します: + + ```python + from sklearn.metrics import confusion_matrix + confusion_matrix(y_test, predictions) + ``` + + モデルの混同行列を確認してください: + + ```output + array([[162, 4], + [ 11, 22]]) + ``` + +Scikit-learnでは、混同行列の行(軸0)は実際のラベル、列(軸1)は予測されたラベルを表します。 + +| | 0 | 1 | +| :---: | :---: | :---: | +| 0 | TN | FP | +| 1 | FN | TP | + +ここで何が起こっているのでしょうか?モデルがかぼちゃを二値カテゴリ、カテゴリ 'white' とカテゴリ 'not-white' の間で分類するよう求められたとします。 + +- モデルがかぼちゃを 'not-white' と予測し、実際にカテゴリ 'not-white' に属している場合、それを真陰性(TN)と呼びます。これは左上の数字で示されます。 +- モデルがかぼちゃを 'white' と予測し、実際にはカテゴリ 'not-white' に属している場合、それを偽陰性(FN)と呼びます。これは左下の数字で示されます。 +- モデルがかぼちゃを 'not-white' と予測し、実際にはカテゴリ 'white' に属している場合、それを偽陽性(FP)と呼びます。これは右上の数字で示されます。 +- モデルがかぼちゃを 'white' と予測し、実際にカテゴリ 'white' に属している場合、それを真陽性(TP)と呼びます。これは右下の数字で示されます。 + +予想される通り、真陽性と真陰性の数が多く、偽陽性と偽陰性の数が少ない方がモデルの性能が良いことを意味します。 +混同行列は、精度と再現率とどのように関連しているのでしょうか?上記で出力された分類レポートでは、精度(0.85)と再現率(0.67)が示されていました。 + +精度 = tp / (tp + fp) = 22 / (22 + 4) = 0.8461538461538461 + +再現率 = tp / (tp + fn) = 22 / (22 + 11) = 0.6666666666666666 + +✅ Q: 混同行列によると、このモデルの性能はどうでしたか? +A: 悪くないです。真のネガティブが多くありますが、いくつかの偽陰性も存在します。 + +混同行列のTP/TNとFP/FNのマッピングを使って、以前見た用語を再確認しましょう: + +🎓 精度: TP/(TP + FP) +取得されたインスタンスの中で関連性のあるインスタンスの割合(例: 正しくラベル付けされたもの) + +🎓 再現率: TP/(TP + FN) +関連性のあるインスタンスのうち、取得されたインスタンスの割合(正しくラベル付けされているかどうかは問わない) + +🎓 f1スコア: (2 * 精度 * 再現率)/(精度 + 再現率) +精度と再現率の加重平均。最高値は1、最低値は0。 + +🎓 サポート: +取得された各ラベルの出現回数 + +🎓 正確度: (TP + TN)/(TP + TN + FP + FN) +サンプルに対して正確に予測されたラベルの割合。 + +🎓 マクロ平均: +ラベルの不均衡を考慮せず、各ラベルの非加重平均を計算したもの。 + +🎓 加重平均: +ラベルの不均衡を考慮し、サポート(各ラベルの真のインスタンス数)によって重み付けされた平均を計算したもの。 + +✅ 偽陰性の数を減らしたい場合、どの指標を注視すべきか考えられますか? + +## このモデルのROC曲線を視覚化する + +[![初心者向け機械学習 - ROC曲線を使ったロジスティック回帰の性能分析](https://img.youtube.com/vi/GApO575jTA0/0.jpg)](https://youtu.be/GApO575jTA0 "初心者向け機械学習 - ROC曲線を使ったロジスティック回帰の性能分析") + +> 🎥 上の画像をクリックしてROC曲線の概要を短い動画で確認してください + +もう一つの視覚化を行い、いわゆる「ROC」曲線を見てみましょう: + +```python +from sklearn.metrics import roc_curve, roc_auc_score +import matplotlib +import matplotlib.pyplot as plt +%matplotlib inline + +y_scores = model.predict_proba(X_test) +fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1]) + +fig = plt.figure(figsize=(6, 6)) +plt.plot([0, 1], [0, 1], 'k--') +plt.plot(fpr, tpr) +plt.xlabel('False Positive Rate') +plt.ylabel('True Positive Rate') +plt.title('ROC Curve') +plt.show() +``` + +Matplotlibを使用して、モデルの[受信者動作特性(ROC)](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc)をプロットします。ROC曲線は、分類器の出力を真陽性と偽陽性の観点から見るためによく使用されます。「ROC曲線は通常、Y軸に真陽性率、X軸に偽陽性率を特徴とします。」したがって、曲線の急峻さと中間線と曲線の間の空間が重要です。曲線が急速に上昇し、線を越えることが望ましいです。今回の場合、最初に偽陽性が存在し、その後線が適切に上昇して越えています: + +![ROC](../../../../translated_images/ROC_2.777f20cdfc4988ca683ade6850ac832cb70c96c12f1b910d294f270ef36e1a1c.ja.png) + +最後に、Scikit-learnの[`roc_auc_score` API](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score)を使用して、実際の「曲線下面積(AUC)」を計算します: + +```python +auc = roc_auc_score(y_test,y_scores[:,1]) +print(auc) +``` +結果は `0.9749908725812341` です。AUCは0から1の範囲であり、予測が100%正確なモデルはAUCが1になります。この場合、モデルは「かなり良い」と言えます。 + +今後の分類に関するレッスンでは、モデルのスコアを改善する方法について学びます。しかし、今のところおめでとうございます!これで回帰に関するレッスンを完了しました! + +--- +## 🚀チャレンジ + +ロジスティック回帰にはまだまだ学ぶべきことがあります!しかし、最良の学習方法は実験です。このタイプの分析に適したデータセットを見つけて、モデルを構築してみましょう。何を学びましたか? +ヒント: [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets)で興味深いデータセットを探してみてください。 + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/16/) + +## 復習と自己学習 + +[スタンフォード大学のこの論文](https://web.stanford.edu/~jurafsky/slp3/5.pdf)の最初の数ページを読んで、ロジスティック回帰の実用的な使用例について学びましょう。これまで学んだ回帰タスクの中で、どのタスクがどのタイプの回帰に適しているかを考えてみてください。どちらが最適でしょうか? + +## 課題 + +[この回帰を再試行する](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/2-Regression/4-Logistic/assignment.md b/translations/ja/2-Regression/4-Logistic/assignment.md new file mode 100644 index 000000000..5f49499f8 --- /dev/null +++ b/translations/ja/2-Regression/4-Logistic/assignment.md @@ -0,0 +1,25 @@ + +# 回帰の再試行 + +## 手順 + +このレッスンでは、かぼちゃデータの一部を使用しました。元のデータに戻り、すべてのデータをクリーンアップし標準化した上で、ロジスティック回帰モデルを構築してみてください。 + +## 評価基準 + +| 基準 | 優秀な例 | 適切な例 | 改善が必要な例 | +| -------- | ----------------------------------------------------------------------- | ------------------------------------------------------------ | ----------------------------------------------------------- | +| | ノートブックが提示され、モデルが十分に説明され、良好な性能を示している | ノートブックが提示され、モデルが最低限の性能を示している | ノートブックが提示されていない、または性能が不十分なモデル | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/2-Regression/4-Logistic/notebook.ipynb b/translations/ja/2-Regression/4-Logistic/notebook.ipynb new file mode 100644 index 000000000..2ea6cfc72 --- /dev/null +++ b/translations/ja/2-Regression/4-Logistic/notebook.ipynb @@ -0,0 +1,269 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## かぼちゃの種類と色\n", + "\n", + "必要なライブラリとデータセットを読み込みます。データをサブセットを含むデータフレームに変換します:\n", + "\n", + "色と種類の関係を見てみましょう\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                                          0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                          1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                          2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          \n", + "

                                          5 rows × 26 columns

                                          \n", + "
                                          " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "dee08c2b49057b0de8b6752c4dbca368", + "translation_date": "2025-09-04T01:18:06+00:00", + "source_file": "2-Regression/4-Logistic/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ja/2-Regression/4-Logistic/solution/Julia/README.md b/translations/ja/2-Regression/4-Logistic/solution/Julia/README.md new file mode 100644 index 000000000..07c4706e8 --- /dev/null +++ b/translations/ja/2-Regression/4-Logistic/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知おきください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb b/translations/ja/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb new file mode 100644 index 000000000..43af62319 --- /dev/null +++ b/translations/ja/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb @@ -0,0 +1,690 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## ロジスティック回帰モデルを構築する - レッスン4\n", + "\n", + "![ロジスティック回帰と線形回帰のインフォグラフィック](../../../../../../translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.ja.png)\n", + "\n", + "#### **[講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/)**\n", + "\n", + "#### イントロダクション\n", + "\n", + "回帰に関する最後のレッスンでは、基本的な*クラシック*な機械学習技術の一つであるロジスティック回帰について学びます。この技術を使うことで、パターンを見つけて二値分類を予測することができます。このキャンディはチョコレートかどうか?この病気は伝染性かどうか?この顧客はこの商品を選ぶかどうか?\n", + "\n", + "このレッスンで学ぶ内容:\n", + "\n", + "- ロジスティック回帰の技術\n", + "\n", + "✅ このタイプの回帰を扱う理解を深めるために、この[学習モジュール](https://learn.microsoft.com/training/modules/introduction-classification-models/?WT.mc_id=academic-77952-leestott)を参照してください。\n", + "\n", + "## 前提条件\n", + "\n", + "かぼちゃのデータを扱ったことで、`Color`という二値分類が扱えることに気づいているはずです。\n", + "\n", + "いくつかの変数を基にして、*特定のかぼちゃの色が何色である可能性が高いか*(オレンジ 🎃 か白 👻)を予測するロジスティック回帰モデルを構築してみましょう。\n", + "\n", + "> なぜ回帰に関するレッスンで二値分類について話しているのでしょうか?それは言語的な便宜上の理由に過ぎません。ロジスティック回帰は[実際には分類方法](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression)であり、線形ベースのものです。次のレッスングループでは、データを分類する他の方法について学びます。\n", + "\n", + "このレッスンでは、以下のパッケージが必要です:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/)は、データサイエンスをより速く、簡単に、そして楽しくするために設計された[Rパッケージのコレクション](https://www.tidyverse.org/packages)です。\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/)フレームワークは、モデリングと機械学習のための[パッケージのコレクション](https://www.tidymodels.org/packages/)です。\n", + "\n", + "- `janitor`: [janitorパッケージ](https://github.com/sfirke/janitor)は、汚れたデータを調査し、クリーニングするためのシンプルなツールを提供します。\n", + "\n", + "- `ggbeeswarm`: [ggbeeswarmパッケージ](https://github.com/eclarke/ggbeeswarm)は、ggplot2を使用してビースウォームスタイルのプロットを作成する方法を提供します。\n", + "\n", + "以下のコマンドでこれらをインストールできます:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"ggbeeswarm\"))`\n", + "\n", + "または、以下のスクリプトを使用して、必要なパッケージがインストールされているか確認し、欠けている場合はインストールすることもできます。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, ggbeeswarm)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **質問を定義する**\n", + "\n", + "今回の目的では、質問を「白」または「白ではない」という二択で表現します。データセットには「縞模様」というカテゴリもありますが、該当するデータが少ないため使用しません。そもそも、データセットから欠損値を除去すると、このカテゴリは消えてしまいます。\n", + "\n", + "> 🎃 面白い事実として、白いカボチャを「ゴースト」カボチャと呼ぶことがあります。彫刻するのが難しいため、オレンジ色のカボチャほど人気はありませんが、見た目はとてもクールです!したがって、質問を「ゴースト」または「ゴーストではない」と再構成することもできます。👻\n", + "\n", + "## **ロジスティック回帰について**\n", + "\n", + "ロジスティック回帰は、以前学んだ線形回帰とはいくつか重要な点で異なります。\n", + "\n", + "#### **二値分類**\n", + "\n", + "ロジスティック回帰は、線形回帰と同じ機能を提供するわけではありません。ロジスティック回帰は「二値カテゴリ」(例:「オレンジかオレンジではない」)について予測を行いますが、線形回帰は「連続値」を予測することができます。例えば、カボチャの産地と収穫時期を基にして、*価格がどれだけ上昇するか*を予測することが可能です。\n", + "\n", + "![Dasani Madipalliによるインフォグラフィック](../../../../../../translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.ja.png)\n", + "\n", + "### その他の分類\n", + "\n", + "ロジスティック回帰には、他にも多項式回帰や順序回帰といった種類があります。\n", + "\n", + "- **多項式回帰**: 複数のカテゴリがある場合に使用します(例:「オレンジ、白、縞模様」)。\n", + "\n", + "- **順序回帰**: 順序付けされたカテゴリを扱う場合に使用します。例えば、カボチャのサイズを有限のサイズ(mini, sm, med, lg, xl, xxl)で論理的に順序付けする場合に役立ちます。\n", + "\n", + "![多項式回帰 vs 順序回帰](../../../../../../translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.ja.png)\n", + "\n", + "#### **変数が相関している必要はない**\n", + "\n", + "線形回帰が相関の強い変数でより良い結果を出すのに対し、ロジスティック回帰は逆で、変数が必ずしも一致している必要はありません。このデータセットのように、相関がやや弱い場合でも適しています。\n", + "\n", + "#### **大量のクリーンなデータが必要**\n", + "\n", + "ロジスティック回帰は、データが多いほど正確な結果を出します。この小規模なデータセットはこのタスクには最適ではないため、その点を考慮してください。\n", + "\n", + "✅ ロジスティック回帰に適したデータの種類について考えてみましょう。\n", + "\n", + "## 演習 - データを整理する\n", + "\n", + "まず、データを少し整理し、欠損値を削除して特定の列だけを選択します。\n", + "\n", + "1. 次のコードを追加してください:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Load the core tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the data and clean column names\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\") %>% \n", + " clean_names()\n", + "\n", + "# Select desired columns\n", + "pumpkins_select <- pumpkins %>% \n", + " select(c(city_name, package, variety, origin, item_size, color)) \n", + "\n", + "# Drop rows containing missing values and encode color as factor (category)\n", + "pumpkins_select <- pumpkins_select %>% \n", + " drop_na() %>% \n", + " mutate(color = factor(color))\n", + "\n", + "# View the first few rows\n", + "pumpkins_select %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "新しいデータフレームを確認するには、以下のように[*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html)関数を使用すると便利です。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "pumpkins_select %>% \n", + " glimpse()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "バイナリ分類問題を実際に行うことを確認しましょう:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Subset distinct observations in outcome column\n", + "pumpkins_select %>% \n", + " distinct(color)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 可視化 - カテゴリカルプロット\n", + "これまでに、再びパンプキンデータを読み込み、いくつかの変数(Colorを含む)を保持するようにデータセットをクリーンアップしました。ggplotライブラリを使用して、ノートブック内でデータフレームを可視化してみましょう。\n", + "\n", + "ggplotライブラリは、データを視覚化するための便利な方法を提供します。例えば、カテゴリカルプロットで各VarietyやColorごとのデータ分布を比較することができます。\n", + "\n", + "1. geombar関数を使用して、パンプキンデータを使い、各パンプキンカテゴリ(オレンジまたは白)に対して色のマッピングを指定することで、このようなプロットを作成します:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "# Specify colors for each value of the hue variable\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# Create the bar plot\n", + "ggplot(pumpkins_select, aes(y = variety, fill = color)) +\n", + " geom_bar(position = \"dodge\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(y = \"Variety\", fill = \"Color\") +\n", + " theme_minimal()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "データを観察すると、ColorデータがVarietyとどのように関連しているかがわかります。\n", + "\n", + "✅ このカテゴリカルプロットを基に、どのような興味深い探求が考えられますか?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### データ前処理: 特徴量エンコーディング\n", + "\n", + "私たちのカボチャのデータセットには、すべての列に文字列値が含まれています。人間にとってカテゴリカルデータを扱うのは直感的ですが、機械にとってはそうではありません。機械学習アルゴリズムは数値データでうまく機能します。そのため、エンコーディングはデータ前処理の段階で非常に重要なステップとなります。これにより、カテゴリカルデータを数値データに変換し、情報を失うことなく処理できるようになります。適切なエンコーディングは、良いモデルを構築するための鍵となります。\n", + "\n", + "特徴量エンコーディングには、主に以下の2種類のエンコーダがあります:\n", + "\n", + "1. **Ordinalエンコーダ**: 順序変数に適しています。順序変数とは、データが論理的な順序に従うカテゴリカル変数のことです。例えば、データセットの`item_size`列が該当します。このエンコーダは、各カテゴリを数値で表すマッピングを作成します。この数値は、列内でのカテゴリの順序を表します。\n", + "\n", + "2. **カテゴリカルエンコーダ**: 名義変数に適しています。名義変数とは、データが論理的な順序に従わないカテゴリカル変数のことです。データセット内の`item_size`以外のすべての特徴量が該当します。このエンコーディングは「ワンホットエンコーディング」と呼ばれ、各カテゴリがバイナリ列で表されます。エンコードされた変数は、カボチャがその品種に属している場合は1、そうでない場合は0となります。\n", + "\n", + "Tidymodelsにはもう一つ便利なパッケージがあります:[recipes](https://recipes.tidymodels.org/) - データ前処理用のパッケージです。このパッケージを使って、すべての予測子列を整数にエンコードする`recipe`を定義し、`prep`を使って必要な量や統計を推定し、最後に`bake`を使って新しいデータに計算を適用します。\n", + "\n", + "> 通常、recipesはモデリングのための前処理として使用されます。この場合、データセットをモデリングに適した状態にするためにどのステップを適用するべきかを定義します。この場合、`prep`と`bake`を手動で使用してレシピを推定するのではなく、`workflow()`を使用することを**強く推奨**します。この内容についてはすぐに説明します。\n", + ">\n", + "> しかし、今回はrecipes + prep + bakeを使用して、データセットに適用すべきステップを指定し、前処理済みデータをステップ適用後に抽出する方法を学びます。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Preprocess and extract data to allow some data analysis\n", + "baked_pumpkins <- recipe(color ~ ., data = pumpkins_select) %>%\n", + " # Define ordering for item_size column\n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " # Convert factors to numbers using the order defined above (Ordinal encoding)\n", + " step_integer(item_size, zero_based = F) %>%\n", + " # Encode all other predictors using one hot encoding\n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE) %>%\n", + " prep(data = pumpkin_select) %>%\n", + " bake(new_data = NULL)\n", + "\n", + "# Display the first few rows of preprocessed data\n", + "baked_pumpkins %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "✅ アイテムサイズ列に対して順序エンコーダーを使用する利点は何ですか?\n", + "\n", + "### 変数間の関係を分析する\n", + "\n", + "データの前処理が完了したので、特徴量とラベルの関係を分析し、特徴量を基にモデルがラベルをどの程度予測できるかの見通しを得ることができます。この種の分析を行う最良の方法は、データをプロットすることです。 \n", + "ここでは再び、ggplotのgeom_boxplot_関数を使用して、アイテムサイズ、品種、色の関係をカテゴリカルプロットで視覚化します。データをより良くプロットするために、エンコードされたアイテムサイズ列とエンコードされていない品種列を使用します。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Define the color palette\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins_select_plot<-pumpkins_select\n", + "pumpkins_select_plot$item_size <- baked_pumpkins$item_size\n", + "\n", + "# Create the grouped box plot\n", + "ggplot(pumpkins_select_plot, aes(x = `item_size`, y = color, fill = color)) +\n", + " geom_boxplot() +\n", + " facet_grid(variety ~ ., scales = \"free_x\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(x = \"Item Size\", y = \"\") +\n", + " theme_minimal() +\n", + " theme(strip.text = element_text(size = 12)) +\n", + " theme(axis.text.x = element_text(size = 10)) +\n", + " theme(axis.title.x = element_text(size = 12)) +\n", + " theme(axis.title.y = element_blank()) +\n", + " theme(legend.position = \"bottom\") +\n", + " guides(fill = guide_legend(title = \"Color\")) +\n", + " theme(panel.spacing = unit(0.5, \"lines\"))+\n", + " theme(strip.text.y = element_text(size = 4, hjust = 0)) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### スウォームプロットを使う\n", + "\n", + "Colorは二値カテゴリ(WhiteまたはNot)であるため、視覚化には「[特別なアプローチ](https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf)」が必要です。\n", + "\n", + "`swarm plot`を試して、item_sizeに対するColorの分布を表示してみましょう。\n", + "\n", + "ここでは、[ggbeeswarmパッケージ](https://github.com/eclarke/ggbeeswarm)を使用します。このパッケージは、ggplot2を使ってビースウォームスタイルのプロットを作成するためのメソッドを提供します。ビースウォームプロットは、通常は重なってしまうポイントを隣り合わせに配置することで視覚化する方法です。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create beeswarm plots of color and item_size\n", + "baked_pumpkins %>% \n", + " mutate(color = factor(color)) %>% \n", + " ggplot(mapping = aes(x = color, y = item_size, color = color)) +\n", + " geom_quasirandom() +\n", + " scale_color_brewer(palette = \"Dark2\", direction = -1) +\n", + " theme(legend.position = \"none\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "これで、色の二値カテゴリとサイズの大きなグループとの関係についての理解が深まりました。次に、ロジスティック回帰を使って、特定のカボチャの色を予測する方法を探ってみましょう。\n", + "\n", + "## モデルを構築する\n", + "\n", + "分類モデルで使用する変数を選択し、データをトレーニングセットとテストセットに分割します。Tidymodelsのパッケージである[rsample](https://rsample.tidymodels.org/)は、効率的なデータ分割とリサンプリングのためのインフラを提供します。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Split data into 80% for training and 20% for testing\n", + "set.seed(2056)\n", + "pumpkins_split <- pumpkins_select %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "# Extract the data in each split\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "# Print out the first 5 rows of the training set\n", + "pumpkins_train %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "🙌 さあ、トレーニング特徴量をトレーニングラベル(色)に適合させることで、モデルのトレーニングを始めましょう。\n", + "\n", + "まず、データをモデリングに適した状態にするための前処理ステップを指定するレシピを作成します。例えば、カテゴリ変数を整数値にエンコードするなどです。`baked_pumpkins`と同様に、`pumpkins_recipe`を作成しますが、ここでは`prep`や`bake`は行いません。これらはワークフローにまとめられるためです。この後のステップでその詳細を確認できます。\n", + "\n", + "Tidymodelsではロジスティック回帰モデルを指定する方法がいくつかあります。`?logistic_reg()`を参照してください。今回は、デフォルトの`stats::glm()`エンジンを使用してロジスティック回帰モデルを指定します。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create a recipe that specifies preprocessing steps for modelling\n", + "pumpkins_recipe <- recipe(color ~ ., data = pumpkins_train) %>% \n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " step_integer(item_size, zero_based = F) %>% \n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE)\n", + "\n", + "# Create a logistic model specification\n", + "log_reg <- logistic_reg() %>% \n", + " set_engine(\"glm\") %>% \n", + " set_mode(\"classification\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "レシピとモデル仕様が揃ったので、それらを一つのオブジェクトにまとめる方法を見つける必要があります。このオブジェクトは、まずデータを前処理(裏でprep+bakeを実行)、前処理済みデータにモデルを適合させ、さらに必要に応じて後処理を行うことができます。\n", + "\n", + "Tidymodelsでは、この便利なオブジェクトは[`workflow`](https://workflows.tidymodels.org/)と呼ばれ、モデリングの構成要素を効率的に保持します。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Bundle modelling components in a workflow\n", + "log_reg_wf <- workflow() %>% \n", + " add_recipe(pumpkins_recipe) %>% \n", + " add_model(log_reg)\n", + "\n", + "# Print out the workflow\n", + "log_reg_wf\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "ワークフローが*指定*された後、モデルは[`fit()`](https://tidymodels.github.io/parsnip/reference/fit.html)関数を使用して`訓練`することができます。ワークフローはレシピを評価し、データを前処理してから訓練を行うため、prepやbakeを手動で実行する必要はありません。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Train the model\n", + "wf_fit <- log_reg_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the trained workflow\n", + "wf_fit\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "モデルのトレーニング中に学習された係数が出力されます。\n", + "\n", + "トレーニングデータを使ってモデルを訓練したので、[parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html) を使用してテストデータに対する予測を行うことができます。まず、モデルを使ってテストセットのラベルと各ラベルの確率を予測してみましょう。確率が0.5を超える場合、予測クラスは `WHITE` となり、それ以外の場合は `ORANGE` となります。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make predictions for color and corresponding probabilities\n", + "results <- pumpkins_test %>% select(color) %>% \n", + " bind_cols(wf_fit %>% \n", + " predict(new_data = pumpkins_test)) %>%\n", + " bind_cols(wf_fit %>%\n", + " predict(new_data = pumpkins_test, type = \"prob\"))\n", + "\n", + "# Compare predictions\n", + "results %>% \n", + " slice_head(n = 10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "とても良いですね!これでロジスティック回帰の仕組みについてさらに理解が深まりました。\n", + "\n", + "### 混同行列を使ったより良い理解\n", + "\n", + "各予測値を対応する「正解データ」と比較するだけでは、モデルの予測精度を判断する効率的な方法とは言えません。幸いなことに、Tidymodelsにはさらに便利なツールがあります。それが、パフォーマンス指標を使ってモデルの効果を測定するためのパッケージ [`yardstick`](https://yardstick.tidymodels.org/) です。\n", + "\n", + "分類問題に関連するパフォーマンス指標の1つに、[`混同行列`](https://wikipedia.org/wiki/Confusion_matrix) があります。混同行列は、分類モデルの性能を示すものです。混同行列は、各クラスの例がモデルによって正しく分類された数を集計します。今回のケースでは、オレンジ色のカボチャがオレンジ色として分類された数や、白いカボチャが白として分類された数を示します。また、**誤った**カテゴリに分類された数も表示されます。\n", + "\n", + "yardstickの [**`conf_mat()`**](https://tidymodels.github.io/yardstick/reference/conf_mat.html) 関数を使うと、観測されたクラスと予測されたクラスのクロスタブを計算することができます。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Confusion matrix for prediction results\n", + "conf_mat(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "混同行列を解釈してみましょう。私たちのモデルは、カボチャを2つの二値カテゴリ、`white`(白)と`not-white`(白以外)に分類するよう求められています。\n", + "\n", + "- モデルがカボチャを白と予測し、実際にそのカボチャがカテゴリ「white」に属している場合、それを`true positive`(真陽性)と呼びます。これは左上の数字で示されます。\n", + "\n", + "- モデルがカボチャを白以外と予測し、実際にそのカボチャがカテゴリ「white」に属している場合、それを`false negative`(偽陰性)と呼びます。これは左下の数字で示されます。\n", + "\n", + "- モデルがカボチャを白と予測し、実際にそのカボチャがカテゴリ「not-white」に属している場合、それを`false positive`(偽陽性)と呼びます。これは右上の数字で示されます。\n", + "\n", + "- モデルがカボチャを白以外と予測し、実際にそのカボチャがカテゴリ「not-white」に属している場合、それを`true negative`(真陰性)と呼びます。これは右下の数字で示されます。\n", + "\n", + "| 真実 |\n", + "|:-----:|\n", + "\n", + "| | | |\n", + "|---------------|--------|-------|\n", + "| **予測** | WHITE | ORANGE |\n", + "| WHITE | TP | FP |\n", + "| ORANGE | FN | TN |\n", + "\n", + "ご想像の通り、`true positive`と`true negative`の数が多く、`false positive`と`false negative`の数が少ない方が望ましいです。これにより、モデルの性能が良いことを意味します。\n", + "\n", + "混同行列は、分類モデルの性能をより良く評価するための他の指標を生み出すために役立ちます。それらをいくつか見ていきましょう:\n", + "\n", + "🎓 精度(Precision): `TP/(TP + FP)` \n", + "予測された陽性のうち、実際に陽性である割合として定義されます。別名:[陽性予測値](https://en.wikipedia.org/wiki/Positive_predictive_value \"Positive predictive value\")\n", + "\n", + "🎓 再現率(Recall): `TP/(TP + FN)` \n", + "実際に陽性であるサンプルのうち、陽性結果の割合として定義されます。別名:`感度(Sensitivity)`\n", + "\n", + "🎓 特異度(Specificity): `TN/(TN + FP)` \n", + "実際に陰性であるサンプルのうち、陰性結果の割合として定義されます。\n", + "\n", + "🎓 正確度(Accuracy): `TP + TN/(TP + TN + FP + FN)` \n", + "サンプルに対して正確に予測されたラベルの割合。\n", + "\n", + "🎓 F値(F Measure): \n", + "精度と再現率の加重平均で、最良が1、最悪が0。\n", + "\n", + "これらの指標を計算してみましょう!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Combine metric functions and calculate them all at once\n", + "eval_metrics <- metric_set(ppv, recall, spec, f_meas, accuracy)\n", + "eval_metrics(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## このモデルのROC曲線を視覚化する\n", + "\n", + "もう一つの視覚化を行い、いわゆる[`ROC曲線`](https://en.wikipedia.org/wiki/Receiver_operating_characteristic)を確認してみましょう:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make a roc_curve\n", + "results %>% \n", + " roc_curve(color, .pred_ORANGE) %>% \n", + " autoplot()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "ROC曲線は、分類器の出力を真陽性と偽陽性の観点から視覚化するためによく使用されます。ROC曲線では通常、Y軸に`True Positive Rate`(感度)、X軸に`False Positive Rate`(1-特異度)が表示されます。そのため、曲線の急峻さや、中央の直線と曲線の間の空間が重要です。理想的には、曲線がすぐに上昇し、直線を越える形になります。今回の場合、最初に偽陽性が発生し、その後、曲線が適切に上昇して直線を越えます。\n", + "\n", + "最後に、`yardstick::roc_auc()`を使用して、実際の曲線下面積(AUC)を計算してみましょう。AUCの解釈方法の一つとして、モデルがランダムな正の例をランダムな負の例よりも高くランク付けする確率として捉えることができます。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Calculate area under curve\n", + "results %>% \n", + " roc_auc(color, .pred_ORANGE)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "結果は約`0.975`です。AUCは0から1の範囲で表されるため、スコアが高いほど良いモデルと言えます。予測が100%正確なモデルはAUCが1になります。この場合、モデルは*かなり良い*と言えるでしょう。\n", + "\n", + "今後の分類に関するレッスンでは、このスコアを改善する方法(例えば、このケースでは不均衡なデータへの対処など)を学ぶことになります。\n", + "\n", + "## 🚀チャレンジ\n", + "\n", + "ロジスティック回帰にはまだまだ学ぶべきことがたくさんあります!しかし、最良の学習方法は実際に試してみることです。このタイプの分析に適したデータセットを見つけて、それを使ってモデルを構築してみましょう。何を学びましたか?ヒント: [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets)で興味深いデータセットを探してみてください。\n", + "\n", + "## 復習と自己学習\n", + "\n", + "[スタンフォード大学のこの論文](https://web.stanford.edu/~jurafsky/slp3/5.pdf)の最初の数ページを読んで、ロジスティック回帰の実用的な利用例について学びましょう。これまで学んだ回帰タスクの中で、どのタスクがどのタイプの回帰に適しているかを考えてみてください。どちらが最適でしょうか?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "langauge": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "feaf125f481a89c468fa115bf2aed580", + "translation_date": "2025-09-04T01:22:33+00:00", + "source_file": "2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/ja/2-Regression/4-Logistic/solution/notebook.ipynb b/translations/ja/2-Regression/4-Logistic/solution/notebook.ipynb new file mode 100644 index 000000000..ab4fe22f3 --- /dev/null +++ b/translations/ja/2-Regression/4-Logistic/solution/notebook.ipynb @@ -0,0 +1,1257 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## ロジスティック回帰 - レッスン4\n", + "\n", + "必要なライブラリとデータセットを読み込みます。データをサブセットを含むデータフレームに変換します:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                                          0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                          1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                          2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                          \n", + "

                                          5 rows × 26 columns

                                          \n", + "
                                          " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \\\n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \\\n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          City NamePackageVarietyOriginItem SizeColor
                                          2BALTIMORE24 inch binsHOWDEN TYPEDELAWAREmedORANGE
                                          3BALTIMORE24 inch binsHOWDEN TYPEVIRGINIAmedORANGE
                                          4BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
                                          5BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
                                          6BALTIMORE36 inch binsHOWDEN TYPEMARYLANDmedORANGE
                                          \n", + "
                                          " + ], + "text/plain": [ + " City Name Package Variety Origin Item Size Color\n", + "2 BALTIMORE 24 inch bins HOWDEN TYPE DELAWARE med ORANGE\n", + "3 BALTIMORE 24 inch bins HOWDEN TYPE VIRGINIA med ORANGE\n", + "4 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "5 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "6 BALTIMORE 36 inch bins HOWDEN TYPE MARYLAND med ORANGE" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Select the columns we want to use\n", + "columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color']\n", + "pumpkins = full_pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Drop rows with missing values\n", + "pumpkins.dropna(inplace=True)\n", + "\n", + "pumpkins.head()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# データを見てみましょう!\n", + "\n", + "Seabornを使って視覚化してみましょう\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHpCAYAAACVw6ZvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3klEQVR4nO3deVRU5f8H8PeFkQFZZXNQ2RQBwy3NNRVGMTCz3JW0JJcyjdwXLJcwBSszTcU0wKxccl9KyoVxS0VTEhXXRM1A+7qwmOz394eH+/M6A7IKV9+vc+7Jee6zfO7IkXfP3JkRRFEUQURERKRgRlVdABEREVF5MdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdDQc0sURaSnp4MfxUREpHwMNPTcysjIgLW1NTIyMqq6FCIiKicGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8VVUXQFTVrq5qAkszZnsipXIbdqWqS6BqgP+KExERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdCUU3BwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp8PPz8/g/MWHo0bN4ZGo8HcuXP1xvbv3x9t27ZFfn4+Zs2aJY1RqVRwc3PDuHHjkJmZKavP0PH4c0dERM8+BpqnRBRFDBw4EGFhYRgzZgySkpKg0+ng7OwMPz8/bNmyBQDg7e0NjUYDnU4njc3IyMCJEyfg4OAg+2V9+PBhZGdno3PnzlJbYGAgUlJSkJycjJ07d0Kr1WLMmDF47bXXkJeXJ6spLCwMKSkpsiMkJETWJyMjA1988UWJr3PTpk3SXPHx8QCA3bt3S2379+/H8uXL8cknnyAxMVEat379euzYsQPfffcdjI2NAQA+Pj7StcybNw/Lly/HhAkTZOs9Onfh0bJlyxLXS0REzwZVVRfwvPjpp5+wYcMGbNu2DT169JDaly9fjtu3b2P48OHo2rUrzM3NodVqodPpMHXqVADAwYMH4enpiU6dOkGn08HPzw/Aw10gV1dXuLu7S/Op1WpoNBoAQN26ddGiRQu0bdsWXbp0wcqVKzF8+HCpr6WlpdS3KCEhIfjyyy8xevRoODo6PvE6bW1tpT8X7ibZ2dnJ1nn99dfx5ptvYsiQITh69Cju3buH0aNHIyIiAl5eXlI/lUoljRswYAD27NmDbdu24ZtvvpH6PD43ERE9n7hD85SsXr0anp6esjBTaMKECbh9+zZ27doFANBqtTh48KC0oxIXFwc/Pz/4+voiLi5OGhcXFwetVvvEtTt37oxmzZph06ZNpa47KCgIHh4eCAsLK/XY4ixcuBC3b9/G7NmzMWrUKDRu3Fhvd+hxZmZmyMnJKfOa2dnZSE9Plx1ERPRs4A5NBdixYwcsLCxkbfn5+bLHFy5cQKNGjQyOL2y/cOECgIeB5v79+zh27BjatWsHnU6HSZMmoUOHDhgyZAiysrIgiiLi4+NlOy7F8fb2xqlTp2RtU6ZMwccffyxr27lzJzp27Cg9LryvpkePHhg3bhwaNGhQovWexMrKCjExMXjllVdgbm6OU6dOQRCEIvv/8ccfWL16tezlNQBo3749jIzkubzwPpvHhYeH45NPPtFrd307EVZWVmW4CiIiqi4YaCqAVqtFZGSkrO3o0aMYPHiwrE0UxRLN5+HhgXr16kGn08HHxwcnT56Er68vHB0d4eLigsOHD0MURWRnZ5doh6Zw7ccDw6RJkxAcHCxrq1u3rt7YgIAAdOjQAdOnT8fq1atLtF5JdO7cGW3btkXz5s3h6uqqdz4xMREWFhbIz89HTk4OunfvjsWLF8v6rFu3rsig+LjQ0FCMHz9eepyeng5nZ+fyXQQREVULDDQVwNzcHB4eHrK2v//+W/bY09MTSUlJBscXtnt6ekptfn5+iIuLQ9OmTdGwYUPp/pXCl51EUYSHh0eJfyEnJSXJ7rUBAHt7e726ixIREYF27dph0qRJJepfUiqVCiqV4R9DLy8vbNu2DSqVCnXq1IGJiYleH2dn5xJfg1qthlqtLle9RERUPfEemqdk4MCBuHjxIrZv3653bv78+bCzs0PXrl2lNq1Wi99//x27du2SbgIGIN0YrNPpSrw7s3fvXiQmJqJPnz5lrr9169bo3bu3dKPy02BiYgIPDw+4ubkZDDNERESFuEPzlAwcOBDr16/HkCFD8Pnnn6NLly5IT0/HkiVLsG3bNqxfvx7m5uZS/8L7aKKjo7FixQqp3dfXV7pvZtSoUXrrZGdnIzU1Ffn5+bh58yZiY2MRHh6O1157DW+//basb0ZGBlJTU2VtNWvWLPJ+kjlz5sDHx6fIHZWqcPv2bb1rsLGxgampaRVVREREVYE7NE+JIAj46aefMG3aNCxYsABeXl7o2LEjrl69Cp1Op/fhfO7u7nB1dUVGRgZ8fX2ldhcXF9SpUwc5OTmynZtCsbGxcHJygpubGwIDAxEXF4dFixZh69at0ue7FJoxYwacnJxkx+TJk4u8Bk9PTwwdOlT24X5Vzd/fX+8aCj/Th4iInh+CWNI7VYmeMenp6bC2tkZaWhrf5UREpHDcoSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVTVXUBRFXt6qomsDRjtq8obsOuVHUJRPQc4r/iREREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0z5ng4GAIggBBEGBiYgIPDw+EhYUhLy8PAKDT6SAIAu7duyd7bOhITU3Vm3/WrFlF9i88/P39ERAQoDd26dKlsLGxwd9//623bu3atdGnTx/89ddfUn83NzeD80dERFTOk0dERNWWqqoLoKcvMDAQMTExyM7Oxi+//ILRo0ejRo0aCA0NLXLM+fPnYWVlJWtzdHTU6zdx4kSMHDlSetyqVSu8++67GDFihNSWm5uLJk2a4JtvvsF7770HALhy5QomT56MyMhI1KtXD5cuXZLWtbS0xMWLF/Huu++iR48eOHXqFIyNjQEAYWFhsrkBwNLSspTPCBERKR0DzXNIrVZDo9EAAN5//31s3rwZ27ZtKzbQODo6wsbG5olzW1hYwMLCQnpsbGwMS0tLab1CCxcuxAcffIBXXnkFbm5uGDZsGF555RW89dZbBtd1cnLCjBkzMGjQIFy6dAleXl4AYHDuomRnZyM7O1t6nJ6eXqJxRERU/THQEMzMzHD79u2nuuaQIUOwefNmDB06FL1798bp06dx5syZYseYmZkBAHJycsq0Znh4OD755BO9dssOi2BlaQ7bBv5lmpeIiKoe76F5jomiiN27d+PXX39F586di+1br149affFwsICPj4+5V5/+fLlOH36NMaOHYvly5fDwcGhyL4pKSn44osvULduXWl3BgCmTJkiq8vCwgIHDhwwOEdoaCjS0tKk4/r16+W+BiIiqh64Q/Mc2rFjBywsLJCbm4uCggK8+eabmDVrVrFjDhw4ILs3pUaNGuWuw9HREe+99x62bNmCnj17GuxTr149iKKI//77D82aNcPGjRthYmIinZ80aRKCg4NlY+rWrWtwLrVaDbVaXe66iYio+mGgeQ5ptVpERkbCxMQEderUgUr15B8Dd3f3Et1DU1oqlarY9Q8cOAArKys4OjoavNnX3t4eHh4eFV4XEREpCwPNc8jc3FwxIaCyghQRET1bGGioRG7duoWsrCxZm52dXYW89FQeGRkZep+HU7NmTb23mBMR0bONNwVTiXh5ecHJyUl2/PHHH1VdFmbMmKFX1+TJk6u6LCIiesoEURTFqi6CqCqkp6fD2toaV05u4du2iYgUjjs0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/LZteu7Z1tfy27mJiBSOOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmYlz/Zuw65UYjVERFQW3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCml4OBgCIIgHXZ2dggMDMSpU6dk/QRBwJYtW2RtcXFxeO211+Dg4ABTU1M0aNAAAwYMwP79+4td083NDYIgYO3atXrnfHx8IAgCVq5cqXcuPDwcxsbG+Pzzzw3Om5qaipCQENSvXx9qtRrOzs7o0aMH9uzZI1v7q6++kh6LooiJEyfCysoKOp2uyFqLOt58803UrFkTq1evlo0rKChA+/bt0bdvXwDy59nExAQeHh4ICwtDXl4eAECn0xW5RmpqarHPJxERPXsYaMogMDAQKSkpSElJwZ49e6BSqfDaa68VO2bp0qXo0qUL7OzssG7dOpw/fx6bN29G+/btMW7cuCeu6ezsjJiYGFnbkSNHkJqaCnNzc4NjoqOjMXnyZERHR+udS05ORsuWLbF37158/vnnSExMRGxsLLRaLUaPHm1wvvz8fAwbNgyrVq1CXFwc/Pz89PocO3ZMem42btwIADh//rzUFhkZiYiICISEhCAlJUUaN3/+fPz1119YtmyZ1Fb4PF+8eBETJkzArFmz9MLZo3MXHo6OjoafRCIiemapqroAJVKr1dBoNAAAjUaDqVOnomPHjvj333/h4OCg1//atWsYO3Ysxo4diy+//FJ2rmnTpvjwww+fuOagQYOwYMECXL9+Hc7OzgAeBpZBgwZh1apVev337duHBw8eICwsDKtWrcLvv/+O9u3bS+dHjRoFQRAQHx8vC0Q+Pj4YOnSo3nzZ2dkICgrC8ePHceDAAXh5eRms89Hrt7W1BQA4OjrCxsZGag8JCcGWLVswYsQI7NixA+fOncOMGTOwbt062NvbS/0efZ7ff/99bN68Gdu2bUNoaKjU5/G5iYjo+cQdmnLKzMzEDz/8AA8PD9jZ2Rnss3HjRuTm5mLy5MkGzwuC8MR1ateujYCAAHz33XcAgP/++w/r1q0zGD4AICoqCkFBQahRowaCgoIQFRUlnbtz5w5iY2MxevRog7s7jweEzMxMdO/eHWfPnsWhQ4eKDDMlJQgCYmJicODAAaxYsQLBwcEYOHAgXn/99WLHmZmZIScnp8zrZmdnIz09XXYQEdGzgTs0ZbBjxw5YWFgAAO7fvw8nJyfs2LEDRkaG8+GFCxdgZWUl7TYAD0POkCFDpMeHDx9GkyZNil136NChmDBhAj766CNs2LABDRo0QPPmzfX6paenY8OGDTh8+DAAYPDgwejYsSMWLlwICwsLXLp0CaIowtvbu0TXO3v2bFhaWiIpKcngDlRZuLq64quvvsLw4cNRr149/Pbbb0X2FUURe/bswa+//oqQkBDZuXr16unNe+bMGYPzhIeH45NPPtFrt+ywCFaW+sHOtoF/SS6FiIiqAe7QlIFWq0VCQgISEhIQHx+PgIAAdOvWDVevXi1yzOO7MAEBAUhISMDPP/+M+/fvIz8//4nrdu/eHZmZmdi/fz+io6OL3J1Zs2YNGjRogGbNmgEAmjdvDldXV6xbtw7Aw4BQGq+88gru37+PuXPnlmrck7zzzjtwcnJCSEgIrKys9M4XBkdTU1N069YNAwYMwKxZs2R9Dhw4IP1dJCQk4JdffilyvdDQUKSlpUnH9evXK/R6iIio6nCHpgzMzc3h4eEhPf72229hbW2NFStW4NNPP9Xr37BhQ6SlpSE1NVXapbGwsICHhwdUqpL/FahUKrz11luYOXMmjh49is2bNxvsFxUVhTNnzsjmLigoQHR0NIYNG4aGDRtCEAScO3euROt26dIFISEheOONN1BQUICFCxeWuOYnUalURT4HWq0WkZGRMDExQZ06dQz2c3d3L/E9NGq1Gmq1ujzlEhFRNcUdmgogCAKMjIzw4MEDg+f79u2LGjVqYN68eeVea+jQodi3bx/eeOMN1KpVS+98YmIijh8/Dp1OJ9u50Ol0OHz4MM6dOwdbW1sEBARgyZIluH//vt4c9+7d02t75ZVXsH37dqxYsaJENzFXhMLg6OLiUqrgR0REzx/+liiD7Oxs6bNO7t69i8WLFyMzMxM9evQw2N/FxQXz58/HmDFjcOfOHQQHB8Pd3R137tzBDz/8AAAwNjYu0dqNGjXC//73P9SsWdPg+aioKLRu3RqdOnXSO9eqVStERUXh888/x5IlS/Dyyy+jdevWCAsLQ9OmTZGXl4ddu3YhMjISSUlJeuP9/f2xY8cO9OjRAwUFBVi8eHGJaq5Mt27dQlZWlqzNzs4ONWrUqKKKiIioKnCHpgxiY2Ph5OQEJycntGnTBseOHcP69esNfi5LoZCQEPz222/4999/0bdvXzRs2BCvvvoqrly5gtjY2CfeEPwoOzs7mJmZ6bXn5OTghx9+QJ8+fQyO69OnD1atWoXc3FzUr18fJ06cgFarxYQJE9C4cWN07doVe/bsQWRkZJFrd+7cGT///DNWrlyJ0aNHl/p+nIrm5eUl/V0UHn/88UeV1kRERE+fIFb1bySiKpKeng5ra2tcObmF73IiIlI47tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeLx27bpuWdbXwsrK6uqLoOIiMqBOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmaVl+3dhl2ptLmJiOgh7tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0ChMcHAwBEHAyJEj9c6NHj0agiAgODhY6tuzZ0+9sREREbJxW7ZsgSAI0mOdTgdBEHDv3j29Nby9vaFWq5GamirrW9yh0+kwa9YsNG/eXG++5ORkCIKAhIQEg/M5ODjg1VdfRWJiosHn4fEjMDCwBM8iERE9axhoFMjZ2Rlr167FgwcPpLasrCysXr0aLi4uxY41NTXFvHnzcPfu3VKve/DgQTx48AB9+/bFd999BwBo3749UlJSpKN///4IDAyUtbVv377Ua50/fx4pKSn49ddfkZ2dje7duyMnJ0fW5/F1UlJSsGbNmlKvRUREysdAo0AtWrSAs7MzNm3aJLVt2rQJLi4uePHFF4sd6+/vD41Gg/Dw8FKvGxUVhTfffBNvvfUWoqOjAQAmJibQaDTSYWZmBrVaLWszMTEp9VqOjo7QaDRo0aIFxo4di+vXr+PcuXOyPo+vo9FoUKtWrVKvRUREysdAo1BDhw5FTEyM9Dg6OhrvvPPOE8cZGxtj7ty5+Prrr/H333+XeL2MjAysX78egwcPRteuXZGWloYDBw6UqfbSSEtLw9q1awGgTMHoUdnZ2UhPT5cdRET0bFBVdQFUNoMHD0ZoaCiuXr0KADh06BDWrl0LnU73xLG9evVC8+bNMXPmTERFRZVovbVr16Jhw4bw8fEBAAwcOBBRUVHo2LFjma+hOPXq1QMA3L9/HwDw+uuvw9vbW9Znx44dsLCwkLVNmzYN06ZNMzhneHg4PvnkE712yw6LYGVpXhFlG3Tn8u4n9rFt4F9p6xMRPQ8YaBTKwcEB3bt3x8qVKyGKIrp37w57e/sSj583bx46d+6MiRMnlqh/dHQ0Bg8eLD0ePHgwfH198fXXX8PS0rLU9T/JgQMHULNmTRw5cgRz587FsmXL9PpotVpERkbK2mxtbYucMzQ0FOPHj5cep6enw9nZueKKJiKiKsNAo2BDhw7FBx98AABYsmRJqcZ26tQJAQEBCA0Nld4VVZSzZ8/iyJEjiI+Px5QpU6T2/Px8rF27FiNGjHjielZWVkhLS9NrL3wnlbW1tazd3d0dNjY28PLywq1btzBgwADs379f1sfc3BweHh5PXLuQWq2GWq0ucX8iIlIO3kOjYIGBgcjJyUFubi4CAgJKPT4iIgLbt2/H4cOHi+0XFRWFTp064c8//0RCQoJ0jB8/vsQvWXl5eeHvv//GzZs3Ze0nTpyAqalpse/OGj16NE6fPo3NmzeXaC0iInr+cIdGwYyNjZGUlCT9ubSaNGmCQYMGYdGiRUX2yc3Nxffff4+wsDA0btxYdm748OH48ssvcebMGenemqIEBATAy8sLQUFB+PTTT6HRaHDixAl8/PHHGDNmTLH116xZEyNGjMDMmTPRs2dP6TNzsrOzpc/DKaRSqUr10hsRET0buEOjcFZWVrCysirz+LCwMBQUFBR5ftu2bbh9+zZ69eqld65Ro0Zo1KhRiXZpVCoVfvvtN7i4uCAoKAiNGzfGzJkzMWbMGMyePfuJ4z/44AMkJSVh/fr1UltsbCycnJxkR4cOHZ44FxERPXsEURTFqi6CqCqkp6fD2toaV05uqdR3OZUE3+VERFQ+3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFU1V1AURVzba+tlzfWE5ERFWPOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4pQ40cXFxlVEHERERUZmVOtAEBgaiQYMG+PTTT3H9+vXKqImIiIioVEodaG7cuIEPPvgAGzZsQP369REQEICffvoJOTk5lVEfUaW7uqoJkqPcq7oMIiIqh1IHGnt7e4wbNw4JCQk4evQoPD09MWrUKNSpUwcffvgh/vzzz8qok4iIiKhI5bopuEWLFggNDcUHH3yAzMxMREdHo2XLlujYsSPOnDlTUTUSERERFatMgSY3NxcbNmzAq6++CldXV/z6669YvHgxbt68iUuXLsHV1RX9+vWr6FqJiIiIDCr1l1OGhIRgzZo1EEURb731Fj777DM0btxYOm9ubo4vvvgCderUqdBCiYiIiIpS6kBz9uxZfP311+jduzfUarXBPvb29nx7NxERET01pX7JaebMmejXr59emMnLy8P+/fsBACqVCr6+vhVTIREREdETlDrQaLVa3LlzR689LS0NWq22QooiIiIiKo1SBxpRFCEIgl777du3YW5uXiFFEREREZVGie+h6d27NwBAEAQEBwfLXnLKz8/HqVOn0L59+4qvkIiIiOgJShxorK2tATzcobG0tISZmZl0zsTEBG3btsWIESMqvkIiIiKiJyhxoImJiQEAuLm5YeLEiXx5iYiIiKqNMr3LSa1WY/fu3fjmm2+QkZEBAPjnn3+QmZlZ4QUSERERPUmpP4fm6tWrCAwMxLVr15CdnY2uXbvC0tIS8+bNQ3Z2NpYtW1YZdRIREREVqdQ7NGPGjMFLL72Eu3fvyu6j6dWrF/bs2VOhxREREVHpzZo1C82bN6/qMp6qUgeaAwcO4OOPP4aJiYms3c3NDTdu3KiwwoiIiJ5XqampCAkJQf369aFWq+Hs7IwePXpw46AYpQ40BQUFyM/P12v/+++/YWlpWSFFPY+e9MPr5uaGr776Surv5uYGQRBw5MgR2Txjx46Fn5+f9HjWrFkQBAGCIEClUsHe3h6dOnXCV199hezsbNlYPz8/qe+jx8iRI6U+j7ZbWVmhVatW2Lp1q2yelStXGpzH1NRU6hMcHIyePXsW+Xw8fr1FWbNmDYyNjTF69Ogn9iUiUoLk5GS0bNkSe/fuxeeff47ExETExsZCq9U+1X/rcnNzn9paFaHUgeaVV16R/aIRBAGZmZmYOXMmXn311Yqs7blR1h9eU1NTTJky5Ynz+/j4ICUlBdeuXUNcXBz69euH8PBwtG/fXrqpu9CIESOQkpIiOz777DNZn5iYGKSkpOD48eN4+eWX0bdvXyQmJsr6WFlZ6c1z9erVUjwrJRMVFYXJkydjzZo1yMrKqvD5iYietlGjRkEQBMTHx6NPnz7w9PSEj48Pxo8fL/1P7LVr1/DGG2/AwsICVlZW6N+/P27evFnknAUFBQgLC0O9evWgVqvRvHlzxMbGSueTk5MhCALWrVsHX19fmJqa4scff6z0a61IpQ408+fPx6FDh/DCCy8gKysLb775pvRy07x58yqjxmdeSX54DXn33Xdx5MgR/PLLL8XOr1KpoNFoUKdOHTRp0gQhISHYt28fTp8+rfd3VrNmTWg0GtlhZWUl62NjYwONRgNPT0/Mnj0beXl5el9GKgiC3jy1a9cu5TNTvCtXruD333/H1KlT4enpiU2bNhXbPzs7G+np6bKDiKg6uXPnDmJjYzF69GiDH49iY2ODgoICvPHGG7hz5w727duHXbt24a+//sKAAQOKnHfhwoWYP38+vvjiC5w6dQoBAQF4/fXXcfHiRVm/qVOnYsyYMUhKSkJAQECFX19lKnWgqVevHv78809MmzYN48aNw4svvoiIiAicPHkSjo6OlVHjM60kP7xFcXd3x8iRIxEaGoqCgoJSrevt7Y1u3bo9MQQUJy8vD1FRUQCgd0/V0xATE4Pu3bvD2toagwcPlmopSnh4OKytraXD2dkZAGDZYRGs/FY8jZKJiIp16dIliKIIb2/vIvvs2bMHiYmJWL16NVq2bIk2bdpg1apV2LdvH44dO2ZwzBdffIEpU6Zg4MCB8PLywrx589C8eXO9l/bHjh2L3r17w93dHU5OThV5aZWu1IEGePh//IMHD8Znn32GpUuXYvjw4bJ3PFHJleSHtzgff/wxrly5UqatQW9vbyQnJ8vali5dCgsLC9nx+NxBQUGwsLCAWq3GuHHj4Obmhv79+8v6pKWl6c3TrVu3UtdYlIKCAqxcuRKDBw8GAAwcOBAHDx7ElStXihwTGhqKtLQ06bh+/XqF1UNEVBFEUXxin6SkJDg7O0v/UwYAL7zwAmxsbJCUlKTXPz09Hf/88w9efvllWfvLL7+s1/+ll14qY+VVr0SfQ7Nt2zZ069YNNWrUwLZt24rt+/rrr1dIYc+LkvzwFsfBwQETJ07EjBkzit1uLGrtx79odNCgQfjoo49kbY+/VLRgwQL4+/vjr7/+wrhx47Bo0SLY2trK+lhaWuLEiROytooMvbt27cL9+/el+7bs7e3RtWtXREdHY/bs2QbHqNVq2XeQERFVNw0bNoQgCDh37lyVrK/kbwEoUaDp2bMnUlNT4ejoWOw7UwRBMPgOKCpaRfzwjh8/HkuXLsXSpUtLNS4pKQnu7u6yNmtra3h4eBQ7TqPRwMPDAx4eHoiJicGrr76Ks2fPyl5yNDIyeuI85REVFYU7d+7IQlJBQQFOnTqFTz75BEZGZdp8JCKqUra2tggICMCSJUvw4Ycf6gWMe/fuoVGjRrh+/TquX78u7dKcPXsW9+7dwwsvvKA3p5WVFerUqYNDhw7B19dXaj906BBat25duRf0FJXoX/2CggLpl1VBQUGRB8NM6T36w3v//n298/fu3XviHBYWFpg+fTrmzJmj966lopw7dw6xsbHo06dPaUuWad26NVq2bIk5c+aUa57SuH37NrZu3Yq1a9ciISFBOk6ePIm7d+/it99+e2q1EBFVtCVLliA/Px+tW7fGxo0bcfHiRSQlJWHRokVo164d/P390aRJEwwaNAgnTpxAfHw83n77bfj6+hb5ktGkSZMwb948rFu3DufPn8fUqVORkJCAMWPGPOWrqzyl+uqD3NxcBAYGYtmyZWjYsGFl1fTcWbJkCV5++WW0bt0aYWFhaNq0KfLy8rBr1y5ERkYafE30ce+++y4WLFiA1atXo02bNrJzeXl5SE1NRUFBAW7fvg2dTodPP/0UzZs3x6RJk2R9//vvP6Smpsra1Go1atWqVeTaY8eORa9evTB58mTUrVsXwMOXsx6fBwAcHR2l3ZO0tDQkJCTIztvZ2Un/x3Hjxg29866urvj+++9hZ2eH/v37671k9uqrryIqKgqBgYFF1ktEVJ3Vr18fJ06cwJw5czBhwgSkpKTAwcEBLVu2RGRkJARBwNatWxESEoJOnTrByMgIgYGB+Prrr4uc88MPP0RaWhomTJiAW7du4YUXXsC2bduerd/lYinZ29uLFy5cKO0weoJ//vlHHD16tOjq6iqamJiIdevWFV9//XUxLi5OFEVRdHV1FRcsWCD1f/yxKIri6tWrRQCir6+v1DZz5kwRgAhANDY2Fm1tbcUOHTqICxYsELOysmTjfX19pb6PHgEBAVIfAOLmzZtl4woKCkRvb2/x/fffF0VRFGNiYgzOA0BMSUkRRVEUhwwZYvD8sGHDpOszdP77778XmzRpIo4aNcrg87hu3TrRxMRE/Pfff5/4nKelpYkAxCsnt4i3L+16Yn8iIqq+BFEs3V2p48aNg1qtRkRERPmSFFEVS09Ph7W1Na6c3AIrS3PYNvCv6pKIiKiMSv1t23l5eYiOjsbu3bvRsmVLvRuWvvzyyworjoiIiKgkSh1oTp8+jRYtWgAALly4IDv3+P0MRERERE9DqQPN4x9xT0RERFTV+GEdREREpHil3qEBgOPHj+Onn37CtWvXkJOTIztXnu8GIiIiIiqLUu/QrF27Fu3bt0dSUhI2b96M3NxcnDlzBnv37oW1tXVl1EhERERUrFIHmrlz52LBggXYvn07TExMsHDhQpw7dw79+/eHi4tLZdRIREREVKxSB5rLly+je/fuAAATExPcv38fgiBg3LhxWL58eYUXSERERPQkpb6HplatWtL3BdWtWxenT59GkyZNcO/ePfz3338VXiAREdHTlBzl/uROFcRt2JWnttazrsQ7NKdPnwYAdOrUCbt27QIA9OvXD2PGjMGIESMQFBSELl26VE6VREREJLl+/TqGDh2KOnXqwMTEBK6urhgzZgxu374t9fHz84MgCBAEAaampvD09ER4eDgMfUHA4cOHYWxsLL0C86jk5GQIggBHR0e9L0Bu3rw5Zs2aJWu7dOkShg4dChcXF6jVatStWxddunTBjz/+iLy8PKlfYW2PH2vXri3Tc1LiQNO0aVO0adMGTZo0Qb9+/QAAH330EcaPH4+bN2+iT58+iIqKKlMRREREVDJ//fUXXnrpJVy8eBFr1qzBpUuXsGzZMuzZswft2rXDnTt3pL4jRoxASkoKzp8/j9DQUMyYMQPLli3TmzMqKgohISHYv38//vnnH4PrZmRk4Isvvii2tvj4eLRo0QJJSUlYsmQJTp8+DZ1Oh+HDhyMyMhJnzpyR9Y+JiUFKSors6NmzZ+mfFAAl/i6nAwcOICYmBhs2bEBBQQH69OmD4cOHo2PHjmVamKiqFX6XU1paGqysrKq6HCKqJqr7S07dunXD6dOnceHCBZiZmUntqampaNCgAd5++21ERkbCz88PzZs3x1dffSX1admyJVxdXWUfsZKZmQknJyccP34cM2fORNOmTTFt2jTpfHJyMtzd3TFp0iRERkbi8uXLcHR0BPBwh6Znz56YNWsWRFGEj48Patasifj4eBgZ6e+ZiKIofauAIAjYvHlzmQPM40q8Q9OxY0dER0cjJSUFX3/9NZKTk+Hr6wtPT0/MmzcPqampFVIQERERGXbnzh38+uuvGDVqlCzMAIBGo8GgQYOwbt06vZeVRFHEgQMHcO7cOZiYmMjO/fTTT/D29oaXlxcGDx6M6Ohogy9LBQUFwcPDA2FhYQZrS0hIQFJSEiZOnGgwzACV+xVJpX6Xk7m5Od555x3s27cPFy5cQL9+/bBkyRK4uLjg9ddfr4waiYiICMDFixchiiIaNWpk8HyjRo1w9+5d/PvvvwCApUuXwsLCAmq1Gp06dUJBQQE+/PBD2ZioqCgMHjwYABAYGIi0tDTs27dPb25BEBAREYHly5fj8uXLeucLv9/Ry8tLart16xYsLCykY+nSpbIxQUFBsvMWFha4du1aKZ6R/1eurz7w8PDAtGnT8PHHH8PS0hI///xzeaYjIiKiEijh3SIYNGgQEhIScOjQIXTr1g0fffQR2rdvL50/f/484uPjERQUBABQqVQYMGBAkffEBgQEoEOHDpg+fXqJ1rezs0NCQgISEhJgY2Oj9+0CCxYskM4XHnXq1CnR3I8r01cfAMD+/fsRHR2NjRs3wsjICP3798ewYcPKOh0RERE9gYeHBwRBQFJSEnr16qV3PikpCbVq1YKDgwMAwNraGh4eHgAevrTk4eGBtm3bwt/fH8DD3Zm8vDxZiBBFEWq1GosXLzb4DQARERFo164dJk2aJGtv2LAhgIch6cUXXwQAGBsbS+urVPqRQ6PRSOfLq1Q7NP/88w/mzp0LT09P+Pn54dKlS1i0aBH++ecfrFixAm3btq2QooiIiEifnZ0dunbtiqVLl+LBgweyc6mpqfjxxx8xYMAAg/eqWFhYYMyYMZg4cSJEUUReXh5WrVqF+fPny3ZI/vzzT9SpUwdr1qwxWEPr1q3Ru3dvTJ06Vdb+4osvwtvbG1988QUKCgoq7qJLqMQ7NN26dcPu3bthb2+Pt99+G0OHDpW9TkZERESVb/HixWjfvj0CAgLw6aefwt3dHWfOnMGkSZNQt25dzJkzp8ix7733HmbPno2NGzdCpVLh7t27GDZsmN5OTOFHsYwcOdLgPHPmzIGPj49s10UQBMTExKBr1654+eWXERoaikaNGiE3Nxf79+/Hv//+C2NjY9k89+7d03tTkaWlJczNzUv7tABiCfXo0UPcsmWLmJeXV9IhRNVaWlqaCEBMS0ur6lKIiEolOTlZHDJkiFi7dm2xRo0aorOzsxgSEiL+73//k/r4+vqKY8aM0Rv73nvviT4+PuJrr70mvvrqqwbnP3r0qAhA/PPPP8UrV66IAMSTJ0/K+rz77rsiAHHmzJmy9vPnz4tDhgwR69WrJ6pUKtHa2lrs1KmT+M0334i5ublSPwAGj/Dw8DI9JyX+HBqiZw0/h4aI6NlRrnc5EREREVUHZX6XE9Gz4uqqJrA008/2/NI4IiLl4A4NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/h4aIiOgRdy7vfmpr2Tbwf2prPeu4Q0NERKQQy5Ytg6WlJfLy8qS2zMxM1KhRA35+frK+Op0OgiDg8uXLcHNzw1dffaU336xZs9C8eXODj93c3CAIQpFHcHAwABR5fu3atRV89cXjDg0REZFCaLVaZGZm4vjx42jbti0A4MCBA9BoNDh69CiysrJgamoKAIiLi4OLiwsaNGhQprWOHTuG/Px8AMDvv/+OPn364Pz589J335mZmUl9Y2JiEBgYKBtvY2NTpnXLioGGiIhIIby8vODk5ASdTicFGp1OhzfeeAN79+7FkSNHpJ0anU4HrVZb5rUcHBykP9va2gIAHB0dDQYVGxsbaDSaMq9VEfiSExERkYJotVrExcVJj+Pi4uDn5wdfX1+p/cGDBzh69Gi5Ao3SMNAQEREpiFarxaFDh5CXl4eMjAycPHkSvr6+6NSpE3Q6HQDg8OHDyM7OlgWaKVOmwMLCQnbMnTu3QmoKCgrSm/vatWsVMndJ8SUnIiIiBfHz88P9+/dx7Ngx3L17F56ennBwcICvry/eeecdZGVlQafToX79+nBxcZHGTZo0SbqRt9CiRYuwf//+cte0YMEC+PvL37FVp06dcs9bGtyheQYEBwcbvMP80qVLAIDw8HAYGxvj888/1xu7cuVK2euhK1eulMYbGRnByckJAwYMwLVr1yCKIvz9/REQEKA3z9KlS2FjYwN/f/9i74p3c3OTxpSmrpJe8+M3pRERPWs8PDxQr149xMXFIS4uDr6+vgAeBghnZ2f8/vvviIuLQ+fOnWXj7O3t4eHhITsK740pL41Goze3SvV090wYaJ4RgYGBSElJkR3u7u4AgOjoaEyePBnR0dElmsvKygopKSm4ceMGNm7ciPPnz6Nfv34QBAExMTE4evQovvnmG6n/lStXMHnyZHz99dfYuHGjrAbg4d3vhY+PHTsmjSttXSW55jVr1pRpLiIiJdFqtdDpdNDpdLK3a3fq1Ak7d+5EfHz8c3X/DMBA88xQq9XQaDSyw9jYGPv27cODBw8QFhaG9PR0/P7770+cSxAEaDQaODk5oX379hg2bBji4+ORnp4OZ2dnLFy4EBMnTsSVK1cgiiKGDRuGV155BW+99Rasra1lNQD/f/e7RqOR7povS10lueZatWqVeh4iIqXRarU4ePAgEhISpB0aAPD19cU333yDnJycpxpo7t27h9TUVNlx//79p7Y+wHtonnlRUVEICgpCjRo1EBQUhKioKLRv377E42/duoXNmzfD2NgYxsbGAIAhQ4Zg8+bNGDp0KHr37o3Tp0/jzJkzT7WussjOzkZ2drb0OD09vVLXIyJlUsKn92q1Wjx48ADe3t6oXbu21O7r64uMjAzp7d1PyzvvvKPXFh4ejqlTpz61GiCS4g0ZMkQ0NjYWzc3NpaNv375iWlqaaGZmJiYkJIiiKIonT54ULSwsxIyMDGlsTEyMaG1tLXsMQDQ3Nxdr1qwpAhABiB9++KFszZs3b4r29vaikZGRuHnz5iJrA6B3vix1leSazc3NxTlz5hQ5ZubMmdL1PHpcOblFvH1pV5HjiIio+uMOzTNCq9UiMjJSemxubo41a9agQYMGaNasGQCgefPmcHV1xbp16zBs2LAi57K0tMSJEyeQm5uLnTt34scff8ScOXNkfRwdHfHee+9hy5Yt6NmzZ6lqLWtdj3v8mgEUe4NbaGgoxo8fLz0ufAmNiIiUj4HmGWFubg4PDw9ZW1RUFM6cOSO707ygoADR0dHFBgcjIyNprkaNGuHy5ct4//338f3338v6qVSqMt3FXta6HmfomoujVquhVqtLVSsRESkDA80zKjExEcePH4dOp5PtWty5cwd+fn44d+4cvL29SzTX1KlT0aBBA4wbNw4tWrSoNnUREREVYqB5RkVFRaF169bo1KmT3rlWrVohKirK4Oe/GOLs7IxevXphxowZ2LFjx1OrKz8/HwkJCbI+arUajRo1AvDwJt/U1FTZeZVKBXt7+3LVSEREysO3bT+DcnJy8MMPP6BPnz4Gz/fp0werVq1Cbm5uieccN24cfv75Z8THxz+1ujIzM/Hiiy/Kjh49ekj9Y2Nj4eTkJDs6dOhQ5vqIiEi5BFEUxaougqgqpKenw9raGldOboGVpbki3qpJRESGcYeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUT1XVBRBVNdv6WlhZWVV1GUREVA7coSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgoefe1VVNkBzlXtVlEBFROTDQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQKFRwcDAEQZAOOzs7BAYG4tSpU7J+giBgy5YteuOTk5MhCAISEhL0zvn5+WHs2LHSYzc3N9lahUdERESR8xZ3zJ49G+bm5rh06ZJs7D///INatWph8eLFeuuam5ujRYsWWL9+vdR/1qxZBuf39vYuxTNJRETPAgYaBQsMDERKSgpSUlKwZ88eqFQqvPbaa5WyVlhYmLRW4RESEqLXz9nZWdZnwoQJ8PHxkbVNnDgRAQEBCA4ORkFBgTR2xIgRaNmyJUaPHq237smTJ9GqVSsMGDAAv//+u3T+8blTUlJw8ODBSnkOiIio+lJVdQFUdmq1GhqNBgCg0WgwdepUdOzYEf/++y8cHBwqdC1LS0tpreIYGxvL+llYWEClUumN/eabb+Dj44Mvv/wSEydOxMqVK3Ho0CEkJiZCEAS9dTUaDZYsWYIffvgB27dvR/v27QHA4NxFyc7ORnZ2tvQ4PT29ROOIiKj6Y6B5RmRmZuKHH36Ah4cH7OzsqrqcJ3JwcMDy5csRFBSEZs2aYdy4cVi4cCGcnZ2LHKNSqVCjRg3k5OSUac3w8HB88skneu2ubyfCysqqTHMSEVH1wJecFGzHjh2wsLCAhYUFLC0tsW3bNqxbtw5GRhX/1zplyhRprcLjwIED5ZqzZ8+e6N+/PwIDA+Hr64shQ4YU2TcnJwfh4eFIS0tD586dpfbExES9ukaOHGlwjtDQUKSlpUnH9evXy1U/ERFVH9yhUTCtVovIyEgAwN27d7F06VJ069YN8fHxcHV1rdC1Jk2ahODgYFlb3bp1yz3v9OnTsWrVKnz88ccGz0+ZMgUff/wxsrKyYGFhgYiICHTv3l067+XlhW3btsnGFLXbolaroVary10zERFVPww0CmZubg4PDw/p8bfffgtra2usWLECn376abFjC3/pp6Wl6Z27d+8erK2tZW329vaytSqKSqWS/fdxhUHKwsICtWvXlt1fAwAmJiaVUhcRESkLX3J6hgiCACMjIzx48OCJfW1tbWFvb48//vhD1p6eno5Lly7B09OzssoslcIgpdFo9MIMERFRIe7QKFh2djZSU1MBPHzJafHixcjMzESPHj1k/a5cuaL3eTMNGzbE+PHjMXfuXNSuXRtt27bF7du3MXv2bDg4OKB3796y/hkZGdJahWrWrFnlN9Pm5eXp1SUIAmrXrl1FFRERUVVgoFGw2NhYODk5AXj49mZvb2+sX78efn5+sn7jx4/XG3vgwAFMnjwZFhYWmDdvHi5fvgxbW1u8/PLLiIuLg5mZmaz/jBkzMGPGDFnbe++9h2XLllXsRZXSmTNnpOegkFqtRlZWVhVVREREVUEQRVGs6iKIqkJ6ejqsra2RlpZW5TtNRERUPryHhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+Bhp57V1c1QXKUe1WXQURE5cBAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BTCsHBwejZs6esbcOGDTA1NcX8+fOlPoIgICIiQtZvy5YtEARBerxy5UrY2NgYXEcQBGzZskXWtnHjRvj5+cHa2hoWFhZo2rQpwsLCcOfOnSLnS0pKgrOzM/r164ecnJxi13y09sePwMDAIsfMmjULzZs312tPTk6GIAhISEiQPTZ0HDlyRDb2wYMHsLW1hb29PbKzs/XmdnNzk8aamZnBzc0N/fv3x969e4usk4iInm0MNOXw7bffYtCgQYiMjMSECROkdlNTU8ybNw93796tkHU++ugjDBgwAK1atcLOnTtx+vRpzJ8/H3/++Se+//57g2OOHTuGjh07IjAwEOvWrYOJiUmJ1goMDERKSorsWLNmTYVcBwDs3r1bb/6WLVvK+mzcuBE+Pj7w9vbWC3aFwsLCkJKSgvPnz2PVqlWwsbGBv78/5syZU2G1EhGRcqiqugCl+uyzzzBz5kysXbsWvXr1kp3z9/fHpUuXEB4ejs8++6xc68THx2Pu3Ln46quvMGbMGKndzc0NXbt2xb179/TG7N27F2+88QZGjRqFefPmlWo9tVoNjUZTrpqLY2dn98T5o6KiMHjwYIiiiKioKAwYMECvj6WlpTSPi4sLOnXqBCcnJ8yYMQN9+/aFl5dXpdRPRETVE3doymDKlCmYPXs2duzYoRdmAMDY2Bhz587F119/jb///rtca/3444+wsLDAqFGjDJ5//CWkzZs3o3v37vj4449LHWaqg8uXL+Pw4cPo378/+vfvjwMHDuDq1aslGjtmzBiIooitW7caPJ+dnY309HTZQUREzwYGmlLauXMnPvvsM2zduhVdunQpsl+vXr3QvHlzzJw5s1zrXbx4EfXr10eNGjWe2DczMxP9+vXDpEmTMGXKlDKtt2PHDlhYWMiOuXPnFjsmMTFRb4yPj4/Bvu3bt9fr+6jo6Gh069YNtWrVgq2tLQICAhATE1Oi2m1tbeHo6Ijk5GSD58PDw2FtbS0dzs7OAADXtxPhNuxKidYgIqLqiS85lVLTpk3xv//9DzNnzkTr1q31fiE/at68eejcuTMmTpxY5vVEUSxxXzMzM3To0AErVqxAUFAQGjVqVOr1tFotIiMjZW22trbFjvHy8sK2bdtkbTdu3ICfn59e33Xr1hVZV35+Pr777jssXLhQahs8eDAmTpyIGTNmwMjoyflbFEXZzdePCg0Nxfjx46XH6enpUqghIiJlY6Appbp162LDhg3QarUIDAzEzp07YWlpabBvp06dEBAQgNDQUAQHB8vOWVlZ4f79+ygoKJD9oi68J8ba2hoA4OnpiYMHDyI3N/eJuzTGxsbYsmULevfuDa1Wi7i4uFKHGnNzc3h4eJRqjImJid4Ylcrwj5azs3OR8//666+4ceOG3j0z+fn52LNnD7p27VpsHbdv38a///4Ld3d3g+fVajXUanWxcxARkTLxJacycHV1xb59+5CamorAwEBkZGQU2TciIgLbt2/H4cOHZe1eXl7Iy8uT3tZc6MSJEwAeBhkAePPNN5GZmYmlS5canP/xm4LVajU2bdqEVq1aQavV4uzZs6W8uqoTFRWFgQMHIiEhQXYMHDgQUVFRTxy/cOFCGBkZ6b21noiInn3coSkjZ2dn6HQ6aLVaBAQEIDY2FlZWVnr9mjRpgkGDBmHRokWydh8fH7zyyisYOnQo5s+fj/r16+P8+fMYO3YsBgwYgLp16wIA2rRpg8mTJ2PChAm4ceMGevXqhTp16uDSpUtYtmwZOnToIHv3E/Aw1GzcuBH9+vWDVqvF3r17pXta8vPz9UKUWq2WdnKys7ORmpoqO69SqWBvb1+u56vQ7du39ea3sbFBRkYGtm/fjm3btqFx48ay82+//TZ69eqFO3fuSC9/ZWRkIDU1Fbm5ubhy5Qp++OEHfPvttwgPDy/1DhMRESkfA0051KtXTxZqfv31V4P9wsLCsG7dOr32devWYebMmXjvvffwzz//oF69eujVqxemT58u6zdv3jy0bNkSS5YswbJly1BQUIAGDRqgb9++GDJkiME1TUxMsGHDBvTv318KNcDDG4dffPFFWd8GDRrg0qVLAIDY2Fg4OTnJznt5eeHcuXMle1KewN/fX69tzZo1uHHjBszNzQ3eaN2lSxeYmZnhhx9+wIcffggAmDFjBmbMmAETExNoNBq0bdsWe/bsgVarrZA6iYhIWQSxNHedEj1D0tPTYW1tjbS0NIO7a0REpBy8h4aIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUr0oDTXBwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp+P8tZfkufy0cePXrOhw83NDQDg5+dn8PzIkSMNXkdxcwqCAK1Wixo1auDgwYOycffv30f9+vUxceJEvXVNTU3xwgsvYOnSpVL/lStXGpzf1NTUYF1ERPTsUsQOjSiKGDhwIMLCwjBmzBgkJSVBp9PB2dkZfn5+2LJlCwDA29sbGo0GOp1OGpuRkYETJ07AwcFBFhQOHz6M7OxsdO7cWWoLDAxESkoKkpOTsXPnTmi1WowZMwavvfYa8vLyZDWFhYUhJSVFdoSEhMj6ZGRk4IsvvijxdZa3/tJauHChrH4AiImJkR4fO3ZM6jtixAi96/3ss88Mzvton6+++gpWVlaytu3btyMkJATBwcG4f/++NG7y5MkwMzPDp59+qrfu2bNn0b9/f4wePRpr1qyRzj8+d0pKCq5evVrm54SIiJRJEYHmp59+woYNG7Bq1SoMHz4c7u7uaNasGZYvX47XX38dw4cPl34xarVaWSA4ePAgPD090aNHD1m7TqeDq6sr3N3dpTa1Wg2NRoO6deuiRYsWmDZtGrZu3YqdO3di5cqVsposLS2h0Whkh7m5uaxPSEgIvvzyS9y6davE11qe+kvL2tpaVj8A2NjYSI8dHBykvjVr1tS7XisrK4PzPtrH2toagiDI2iwsLDB37lyYmJhgypQpAIC4uDh8++23WLVqlWyHpXDd+vXrY9asWWjYsCG2bdsmnX98bo1Gg9q1axusKzs7G+np6bKDiIieDYoINKtXr5Z+qT9uwoQJuH37Nnbt2gXgYSA4ePCgtKMSFxcHPz8/+Pr6Ii4uThoXFxcHrVb7xLU7d+6MZs2aYdOmTaWuOygoCB4eHggLCyvxmIquv7oyNTXFqlWrsHz5cmzduhVDhw7FtGnT0LJly2LHmZmZIScnp0xrhoeHw9raWjqcnZ0BAHf+isOdy7sr9CAioqerygPNjh07YGFhITu6desm63PhwgU0atTI4PjC9gsXLgB4GAju378vvVyi0+ng6+uLTp064ejRo8jKysKDBw8QHx9f4kDg7e2N5ORkWduUKVP06j5w4ICsT+F9NcuXL8fly5dLtFZ56i/Jc1lWS5cu1Zv7xx9/LNecL730EkJDQ9G7d2/Y2dnho48+KrJvfn4+fvjhB5w6dUr2MltaWlqJrzk0NBRpaWnScf369XLVT0RE1YeqqgvQarWIjIyUtR09ehSDBw+WtYmiWKL5PDw8UK9ePeh0Ovj4+ODkyZPw9fWFo6MjXFxccPjwYYiiiOzs7BIHGlEUIQiCrG3SpEkIDg6WtdWtW1dvbEBAADp06IDp06dj9erVlVp/SZ/Lshg0aJBe4CjqpZ3SmD59OsLCwjB16lSoVPo/jkuXLsW3336LnJwcGBsbY9y4cXj//fel85aWljhx4oRsjJmZmcG11Go11Gp1uWsmIqLqp8oDjbm5OTw8PGRtf//9t+yxp6cnkpKSDI4vbPf09JTa/Pz8EBcXh6ZNm6Jhw4ZwdHQEAOllG1EU4eHhIb3k8CRJSUl696rY29vr1V2UiIgItGvXDpMmTSpR/7LWX5Lnsqysra1LfL2lURhiDIUZ4P+DlJmZGZycnGBkJN9UNDIyqpS6iIhIWar8JaeSGDhwIC5evIjt27frnZs/fz7s7OzQtWtXqU2r1eL333/Hrl274OfnJ7V36tQJOp0OOp2uxLsze/fuRWJiIvr06VPm+lu3bo3evXtj6tSpJepfkfUrXWGQqlu3rl6YISIiKlTlOzQlMXDgQKxfvx5DhgzB559/ji5duiA9PR1LlizBtm3bsH79etk7jArvQ4mOjsaKFSukdl9fXwwfPhwAMGrUKL11srOzkZqaivz8fNy8eROxsbEIDw/Ha6+9hrffflvWNyMjA6mpqbK2mjVrFvnOnzlz5sDHx6fInYhHlbX+yvTff//pXa9arUatWrWeah2PE0VRry4AcHR0ZAAiInqOKOJffEEQ8NNPP2HatGlYsGABvLy80LFjR1y9ehU6nU7vA+Xc3d3h6uqKjIwM+Pr6Su0uLi6oU6cOcnJyZDsfhWJjY+Hk5AQ3NzcEBgYiLi4OixYtwtatW2FsbCzrO2PGDDg5OcmOyZMnF3kNnp6eGDp0qOzD8YpS1vor04oVK/SuNygo6KnWYEh6erpeXU5OTqV6qzwRESmfIJb0bluiZ0x6ejqsra1x5eQWWFmaP3lAKdg28K/Q+YiIqHiK2KEhIiIiKg4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESmeIr5tm6gy2dbXFvkt6UREpAzcoSEiIiLFY6AhIiIixWOgISIiIsXjPTT03BJFEQCQnp5exZUQ0dNmaWkJQRCqugyqQAw09Ny6ffs2AMDZ2bmKKyGipy0tLY1vBnjGMNDQc8vW1hYAcO3aNVhbW1dxNSWXnp4OZ2dnXL9+XTH/ICuxZkCZdSuxZuDp121paVnpa9DTxUBDzy0jo4e3kFlbWyvqH/5CVlZWiqtbiTUDyqxbiTUDyq2bqh5vCiYiIiLFY6AhIiIixWOgoeeWWq3GzJkzoVarq7qUUlFi3UqsGVBm3UqsGVBu3VR9CGLhe1eJiIiIFIo7NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDT03FqyZAnc3NxgamqKNm3aID4+vspq2b9/P3r06IE6depAEARs2bJFdl4URcyYMQNOTk4wMzODv78/Ll68KOtz584dDBo0CFZWVrCxscGwYcOQmZlZaTWHh4ejVatWsLS0hKOjI3r27Inz58/L+mRlZWH06NGws7ODhYUF+vTpg5s3b8r6XLt2Dd27d0fNmjXh6OiISZMmIS8vr9LqjoyMRNOmTaUPcGvXrh127txZrWt+XEREBARBwNixY6t13bNmzYIgCLLD29u7WtdMCiYSPYfWrl0rmpiYiNHR0eKZM2fEESNGiDY2NuLNmzerpJ5ffvlF/Oijj8RNmzaJAMTNmzfLzkdERIjW1tbili1bxD///FN8/fXXRXd3d/HBgwdSn8DAQLFZs2bikSNHxAMHDogeHh5iUFBQpdUcEBAgxsTEiKdPnxYTEhLEV199VXRxcREzMzOlPiNHjhSdnZ3FPXv2iMePHxfbtm0rtm/fXjqfl5cnNm7cWPT39xdPnjwp/vLLL6K9vb0YGhpaaXVv27ZN/Pnnn8ULFy6I58+fF6dNmybWqFFDPH36dLWt+VHx8fGim5ub2LRpU3HMmDFSe3Wse+bMmaKPj4+YkpIiHf/++2+1rpmUi4GGnkutW7cWR48eLT3Oz88X69SpI4aHh1dhVQ89HmgKCgpEjUYjfv7551LbvXv3RLVaLa5Zs0YURVE8e/asCEA8duyY1Gfnzp2iIAjijRs3nkrdt27dEgGI+/btk2qsUaOGuH79eqlPUlKSCEA8fPiwKIoPg5yRkZGYmpoq9YmMjBStrKzE7Ozsp1K3KIpirVq1xG+//bba15yRkSE2bNhQ3LVrl+jr6ysFmupa98yZM8VmzZoZPFddaybl4ktO9NzJycnBH3/8AX9/f6nNyMgI/v7+OHz4cBVWZtiVK1eQmpoqq9fa2hpt2rSR6j18+DBsbGzw0ksvSX38/f1hZGSEo0ePPpU609LSAPz/l37+8ccfyM3NldXt7e0NFxcXWd1NmjRB7dq1pT4BAQFIT0/HmTNnKr3m/Px8rF27Fvfv30e7du2qfc2jR49G9+7dZfUB1fu5vnjxIurUqYP69etj0KBBuHbtWrWvmZSJX05Jz53//e9/yM/Pl/0jCQC1a9fGuXPnqqiqoqWmpgKAwXoLz6WmpsLR0VF2XqVSwdbWVupTmQoKCjB27Fi8/PLLaNy4sVSTiYkJbGxsiq3b0HUVnqssiYmJaNeuHbKysmBhYYHNmzfjhRdeQEJCQrWtee3atThx4gSOHTumd666Ptdt2rTBypUr4eXlhZSUFHzyySfo2LEjTp8+XW1rJuVioCGichs9ejROnz6NgwcPVnUpJeLl5YWEhASkpaVhw4YNGDJkCPbt21fVZRXp+vXrGDNmDHbt2gVTU9OqLqfEunXrJv25adOmaNOmDVxdXfHTTz/BzMysCiujZxFfcqLnjr29PYyNjfXeTXHz5k1oNJoqqqpohTUVV69Go8GtW7dk5/Py8nDnzp1Kv6YPPvgAO3bsQFxcHOrVqyerOycnB/fu3Su2bkPXVXiuspiYmMDDwwMtW7ZEeHg4mjVrhoULF1bbmv/44w/cunULLVq0gEqlgkqlwr59+7Bo0SKoVCrUrl27Wtb9OBsbG3h6euLSpUvV9rkm5WKgoeeOiYkJWrZsiT179khtBQUF2LNnD9q1a1eFlRnm7u4OjUYjqzc9PR1Hjx6V6m3Xrh3u3buHP/74Q+qzd+9eFBQUoE2bNpVSlyiK+OCDD7B582bs3bsX7u7usvMtW7ZEjRo1ZHWfP38e165dk9WdmJgoC2O7du2ClZUVXnjhhUqp25CCggJkZ2dX25q7dOmCxMREJCQkSMdLL72EQYMGSX+ujnU/LjMzE5cvX4aTk1O1fa5Jwar6rmSiqrB27VpRrVaLK1euFM+ePSu+++67oo2NjezdFE9TRkaGePLkSfHkyZMiAPHLL78UT548KV69elUUxYdv27axsRG3bt0qnjp1SnzjjTcMvm37xRdfFI8ePSoePHhQbNiwYaW+bfv9998Xra2tRZ1OJ3tb7n///Sf1GTlypOji4iLu3btXPH78uNiuXTuxXbt20vnCt+W+8sorYkJCghgbGys6ODhU6ttyp06dKu7bt0+8cuWKeOrUKXHq1KmiIAjib7/9Vm1rNuTRdzlV17onTJgg6nQ68cqVK+KhQ4dEf39/0d7eXrx161a1rZmUi4GGnltff/216OLiIpqYmIitW7cWjxw5UmW1xMXFiQD0jiFDhoii+PCt29OnTxdr164tqtVqsUuXLuL58+dlc9y+fVsMCgoSLSwsRCsrK/Gdd94RMzIyKq1mQ/UCEGNiYqQ+Dx48EEeNGiXWqlVLrFmzptirVy8xJSVFNk9ycrLYrVs30czMTLS3txcnTJgg5ubmVlrdQ4cOFV1dXUUTExPRwcFB7NKlixRmqmvNhjweaKpj3QMGDBCdnJxEExMTsW7duuKAAQPES5cuVeuaSbkEURTFqtkbIiIiIqoYvIeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiKgUkpOTIQgCEhISqroUInoEAw0REREpHgMNESlKQUEBPvvsM3h4eECtVsPFxQVz5swBACQmJqJz584wMzODnZ0d3n33XWRmZkpj/fz8MHbsWNl8PXv2RHBwsPTYzc0Nc+fOxdChQ2FpaQkXFxcsX75cOu/u7g4AePHFFyEIAvz8/CrtWomo5BhoiEhRQkNDERERgenTp+Ps2bNYvXo1ateujfv37yMgIAC1atXCsWPHsH79euzevRsffPBBqdeYP38+XnrpJZw8eRKjRo3C+++/j/PnzwMA4uPjAQC7d+9GSkoKNm3aVKHXR0Rlo6rqAoiISiojIwMLFy7E4sWLMWTIEABAgwYN0KFDB6xYsQJZWVlYtWoVzM3NAQCLFy9Gjx49MG/ePNSuXbvE67z66qsYNWoUAGDKlClYsGAB4uLi4OXlBQcHBwCAnZ0dNBpNBV8hEZUVd2iISDGSkpKQnZ2NLl26GDzXrFkzKcwAwMsvv4yCggJpd6WkmjZtKv1ZEARoNBrcunWr7IUTUaVjoCEixTAzMyvXeCMjI4iiKGvLzc3V61ejRg3ZY0EQUFBQUK61iahyMdAQkWI0bNgQZmZm2LNnj965Ro0a4c8//8T9+/eltkOHDsHIyAheXl4AAAcHB6SkpEjn8/Pzcfr06VLVYGJiIo0louqDgYaIFMPU1BRTpkzB5MmTsWrVKly+fBlHjhxBVFQUBg0aBFNTUwwZMgSnT59GXFwcQkJC8NZbb0n3z3Tu3Bk///wzfv75Z5w7dw7vv/8+7t27V6oaHB0dYWZmhtjYWNy8eRNpaWmVcKVEVFoMNESkKNOnT8eECRMwY8YMNGrUCAMGDMCtW7dQs2ZN/Prrr7hz5w5atWqFvn37okuXLli8eLE0dujQoRgyZAjefvtt+Pr6on79+tBqtaVaX6VSYdGiRfjmm29Qp04dvPHGGxV9iURUBoL4+AvKRERERArDHRoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUrz/A+sUfVTiRBWAAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                          " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "# Specify colors for each values of the hue variable\n", + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# Plot a bar plot to visualize how many pumpkins of each variety are orange or white\n", + "sns.catplot(\n", + " data=pumpkins, y=\"Variety\", hue=\"Color\", kind=\"count\",\n", + " palette=palette, \n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# データ前処理\n", + "\n", + "データをより良くプロットし、モデルを訓練するために、特徴量とラベルをエンコードしましょう\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['med', 'lge', 'sml', 'xlge', 'med-lge', 'jbo', 'exjbo'],\n", + " dtype=object)" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the different values of the 'Item Size' column\n", + "pumpkins['Item Size'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OrdinalEncoder\n", + "# Encode the 'Item Size' column using ordinal encoding\n", + "item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']]\n", + "ordinal_features = ['Item Size']\n", + "ordinal_encoder = OrdinalEncoder(categories=item_size_categories)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OneHotEncoder\n", + "# Encode all the other features using one-hot encoding\n", + "categorical_features = ['City Name', 'Package', 'Variety', 'Origin']\n", + "categorical_encoder = OneHotEncoder(sparse_output=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_MICHIGANcat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIA
                                          21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                                          31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.01.0
                                          43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                                          53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                                          61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                                          \n", + "

                                          5 rows × 48 columns

                                          \n", + "
                                          " + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_MICHIGAN cat__Origin_NEW JERSEY \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NEW YORK cat__Origin_NORTH CAROLINA cat__Origin_OHIO \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_PENNSYLVANIA cat__Origin_TENNESSEE cat__Origin_TEXAS \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VERMONT cat__Origin_VIRGINIA \n", + "2 0.0 0.0 \n", + "3 0.0 1.0 \n", + "4 0.0 0.0 \n", + "5 0.0 0.0 \n", + "6 0.0 0.0 \n", + "\n", + "[5 rows x 48 columns]" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.compose import ColumnTransformer\n", + "ct = ColumnTransformer(transformers=[\n", + " ('ord', ordinal_encoder, ordinal_features),\n", + " ('cat', categorical_encoder, categorical_features)\n", + " ])\n", + "# Get the encoded features as a pandas DataFrame\n", + "ct.set_output(transform='pandas')\n", + "encoded_features = ct.fit_transform(pumpkins)\n", + "encoded_features.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIAColor
                                          21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                                          31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.01.00
                                          43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                                          53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                                          61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                                          \n", + "

                                          5 rows × 49 columns

                                          \n", + "
                                          " + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_NEW JERSEY cat__Origin_NEW YORK \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NORTH CAROLINA cat__Origin_OHIO cat__Origin_PENNSYLVANIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_TENNESSEE cat__Origin_TEXAS cat__Origin_VERMONT \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VIRGINIA Color \n", + "2 0.0 0 \n", + "3 1.0 0 \n", + "4 0.0 0 \n", + "5 0.0 0 \n", + "6 0.0 0 \n", + "\n", + "[5 rows x 49 columns]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "# Encode the 'Color' column using label encoding\n", + "label_encoder = LabelEncoder()\n", + "encoded_label = label_encoder.fit_transform(pumpkins['Color'])\n", + "encoded_pumpkins = encoded_features.assign(Color=encoded_label)\n", + "encoded_pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['ORANGE', 'WHITE']" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the mapping between the encoded values and the original values\n", + "list(label_encoder.inverse_transform([0, 1]))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAYpCAYAAABBoEQQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxVdf7H8ff1IuAI4oqAIqiIuORS5lqCpqnTkE2NOo6ZYlk5uOVYaf1m1MbCpkUrNbMhW8a0Tdtm1FwAzTRFpVxJDVMTRBNZHEGB8/vDh3e8gXpZT6f7ej4e5zH3nu853/vhjMGbL9/zPTbDMAwBAAAAFlLD7AIAAACAsiLEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcD7MLAAAAwK9fTEyMS8ctWbLEpeMIsQAAAKhy2dnZTu/PnTunDRs2KDo6ulz92QzDMCqjMAAAAMBVaWlp6tChg3Jzc8t1PnNiAQAAUO0qOo5KiAUAAIDlEGIBAABgOdzYBQAAgCqXlJTk9P7HH39UUVGREhMTZbPZHPsjIyNd6o8buwAAAFDl7Ha7DMNwCqw/ZxiGiouLXeqPkVgAAABUuaysrErtj5FYAAAAWA43dgEAAKDaLF++XHfddZfatm2rtm3b6q677tJ7771X5n4YiQUAAECVKy4u1pAhQ/Txxx+rVatWatOmjWw2m/bv36/U1FTdc889eu+991SjhmtjrMyJBQAAQJWbN2+ekpKS9Omnn+qOO+5wavvPf/6jkSNH6qWXXtIjjzziUn+MxAIAAKDKdejQQZMnT9aYMWNKbV+yZInmzp2rb7/91qX+CLEAAACocrVq1dKBAwcUEhJSavsPP/ygiIgInT9/3qX+uLELAAAAVc7b21vZ2dlXbc/JyVGtWrVc7o8QCwAAgCrXo0cPLViw4Krt8+fPV/fu3V3ujxu7AAAAUOX+9re/KTIyUqdPn9Zf/vIXtW3bVpK0f/9+vfDCC/r000+VmJjocn/MiQUAAEC1+Oyzz3T//ffr9OnTTvsbNmyof/7zn7rzzjtd7osQCwAAgGpz/vx5rV27Vt99950kKTw8XP379y/TfFiJEAsAAIBfiNTUVLVu3dqlY5kTCwAAAFMcPnxYCQkJji0jI0PFxcUunUuIBQAAQLU4cuSII7AmJibq+PHj8vHx0S233KLJkycrKirK5b6YTgAAAIAq17x5c/3www+qXbu2evXqpT59+igqKko333yzatQo+6qvhFgAAABUOQ8PD/n4+CgmJkb9+/fXrbfeKl9f33L3R4gFAABAlcvMzFRSUpKSkpKUmJio7777Tp07d1ZUVJT69OmjW265RT4+Pi73R4gtJ8MwlJubK19fX9lsNrPLAQAAsJSffvpJiYmJjlCbmpqqzp07a+vWrS6dz41d5ZSbmys/Pz9lZ2erTp06ZpfjVgzDUEFBgdllAKa48t+/l5cXv0SbhGsPVFyDBg3Uq1cvFRcXq7i4WNnZ2frmm29cPp8QC8spKCjQkCFDzC4DgBv74IMP5O3tbXYZgOUcO3ZMSUlJ2rhxozZu3KgffvhB3bp1U9++ffXOO++oe/fuLvdFiAUAAECVa9GihU6cOKFu3bopKipKr732mnr06CFPT89y9UeIhaU9M2i/PO2uLYoM/BoUFNr05Oq2kqSnB+6Tlwe3NVSXC0U19MSqNmaXAVjW0aNHVbNmTRmGIcMwHNMIyosQC0vztBfzQxxuy8vD4N9/teIXZqAifvzxRyUmJiohIUHvvfeenn76aXl6eqpr167q06ePIiMj1bNnT3l5ebnUHyG2gljcAQAA/Npdvqm0InPBGzdurGHDhmnYsGGSLoXay0/vevvtt/X3v/9dnp6eOn/+vEv9EWIriLvkAQDAr93lm6o/++yzSuuzSZMmuvfee3XvvfdKujTdYP369S6fX/ZnfOnSnWVjxoxRUFCQPD09FRISokmTJumnn35yHBMVFSWbzSabzSZvb2+Fh4crLi6u1JHLLVu2yG6364477ijRduTIEdlsNvn7+ys3N9eprVOnTpo5c6bTvkOHDmnMmDFq1qyZvLy81KRJE912221aunSpCgsLHcddru3n2/Lly8tzSQAAAFABzZo1U0xMjMvHl3kk9vvvv1ePHj0UHh6uZcuWqXnz5tq7d68effRRrVq1Slu3blX9+vUlSWPHjtVTTz2lgoICbdiwQQ8++KDq1q2rcePGOfUZHx+vCRMmKD4+XidOnFBQUFCJz83NzdXzzz+vWbNmXbW2bdu2qV+/fmrXrp0WLFigiIgISVJycrIWLFig9u3bq2PHjo7jlyxZooEDBzr1Ubdu3bJeEgAAAFyHKwHVMAy9+eabLvVX5hAbGxsrT09PffHFF6pVq5akS8m5c+fOatmypZ588km9+uqrkqTf/OY3CggIcBQ+f/58rV271inE5uXl6b333lNycrIyMjL05ptv6oknnijxuRMmTNCLL76o2NhY+fv7l/pFjx49WuHh4dq8ebNq1PjfIHOrVq00fPjwEqPAdevWddRXXvn5+crPz69QHyibK683U5IBVJcrv9/wfR/upjL+zb/99tsaOHDgVW/cKigo0KpVq6omxJ45c0Zr1qzR008/7QiwlwUEBGjEiBF67733tHDhQqc2wzD05Zdf6sCBA2rVqpVT2/vvv6+IiAi1bt1a9957ryZPnqzp06eXeBLK8OHDtXbtWj311FOaP39+idpSUlK0f/9+LVu2zCnAXqkiT1cpKChwmv+ak5MjSXrwwQdVs2bNcveLirlQZJN3TZIsgKp3oeh/P0NGjhxpYiWAdb3xxhtq3LhxqW2nTp0q0+BimebEHjx4UIZhqE2b0tfJa9OmjbKysnTq1ClJ0sKFC+Xj4yMvLy/17t1bxcXFmjhxotM58fHxjgm9AwcOVHZ2tpKSkkr0bbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAAA/4+HhoaKioqu2FxYWym63u95feYpwdVmpESNG6Mknn1RWVpZmzJihnj17qmfPno721NRUbdu2TStXrrxUjIeHhg0bpvj4eEVFRZXob8CAAbrlllv017/+Ve++++51P79BgwZKSUmRdOlGswsXLji1z507V/369XPaV9p8XEmaPn26pkyZ4nifk5Oj4OBgLV68uNTpDag6+fn5jlEQTzujsACqx5Xfb9555x0eOwu3cuXP3vKqV6+eTp48edWsdfLkScd9Va4oU4gNCwuTzWbT/v379fvf/75E+/79+1WvXj01atRIkuTn56ewsDBJl6YNhIWFqXv37o7gGB8fr8LCQqcvxjAMeXl5af78+fLz8yvxGXPmzFGPHj306KOPOu2/PE0hNTVVnTt3liTZ7XbH53t4lPxSAwICHO3X4+XlVeocDm9vb76RmagCM0QAoEyu/H7D936g7Dp27KhVq1Y5ctrPrV69Wh06dHC5vzJNJ2jQoIH69++vhQsXlliINiMjQ0uXLtWwYcNKnXvq4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/++Qo9wgwAAACVb8SIEZozZ442bNhQoi0hIUHPPPOMhg8f7nJ/ZZ5OMH/+fPXs2VMDBgzQ7NmznZbYatKkiZ5++umrnvvQQw/p73//uz766CN5eHgoKytL999/f4kR13vuuUfx8fF6+OGHS+3n6aefVrt27ZxGV202m5YsWaL+/furV69emj59utq0aaOLFy9q48aNOnXqVIl5FmfPnlVGRobTPl9fX9WuXbuslwUAAADXcN9992nFihXq16+fbrjhBrVp00Y2m00HDhzQN998o9/+9rcaPXq0y/2V+WEHrVq1UnJyslq0aKGhQ4eqZcuWevDBB9WnTx9t2bLlmnMZ6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMKbHcQ/fu3bVjxw61bt1asbGxatu2rXr27Klly5Zp7ty5JdanjYmJUWBgoNP2yiuvlPWSAAAAwAUrV67Um2++qZCQEO3du1e7d+9WkyZN9M9//lOffvppmVaSshmu3qUFJzk5OfLz89PZs2dLDeKoOvn5+RoyZIgk6fnf7ZWXB/+E4T4KCm2a+nk7Sfz7r25XXvsPPviAObFwK4ZhqKCg4Bf1775cqxPgfyqy9iwq7kJRDUnMgYb7KCi0lfoaVe/S9xvAPdlstl9UgJUIsbC4J1aVvmYx4A6eXN3W7BIAwGXNmze/7jGGYejIkSMu9UeIBQAAQJU7evSonnrqKfn6+kqSTp8+reeee07PPvusJCkvL0//93//53J/zIktp8tzYrOzs1WnTh2zy3Erl+flAO7oyn//Xl5eTGkyCdceKDu73a4TJ044Hjv7/fffq2PHjsrNzZV06UmrAQEBLi+VykgsLOeXOC8HqE61atUyuwQAMB2z1AEAAGA5hFgAAACY4ufTcsoyTYcQCwAAgCr30EMP6Te/+Y3jfZMmTbRq1SrHe19fX8XFxbncHzd2lRM3dgEAAJiHG7sAAABQ5X744QeXjgsJCXHpOEIsAAAAqlyLFi1kGIZsNpuunAjw8/euLrFV5XNiFy1aJF9fXxUWFjr25eXlqWbNmoqKinI6NjExUTabTYcPH1ZoaKjmzZtXor+ZM2eqU6dOpb4PDQ2VzWa76jZ69GhJumr78uXLK/mrBwAAgCTt2rVLKSkpjv+9vO3cuVOPPfaYatWqJX9/f5f7q/KR2D59+igvL0/Jycnq3r27JGnTpk0KCAjQ119/rfz8fMeanwkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjrmrF65tuKSJUs0cOBAp/Pr1q1brs8FAADAtXXo0KHEvi+++ELTp0/XoUOH9Nhjj2nq1Kku91flIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFA+27dv17Rp0/Tll1/qwQcf1Jo1a9SwYcMy9VEtS2z16dNHCQkJjvcJCQmKiopSZGSkY//58+f19ddfVyjEAgAA4Jfr4MGDGjZsmHr27KnAwEAdOHBAr7zySpkDrFSNIXbz5s0qLCxUbm6udu3apcjISPXu3VuJiYmSpC1btqigoMApxD7++OPy8fFx2p555plKqWn48OEl+j569OhVjy8oKFBOTo7TBgAAANc8/PDDateunbKzs7V9+3b961//UvPmzcvdX7WsThAVFaVz585p+/btysrKUnh4uBo1aqTIyEjFxMQoPz9fiYmJatGihZo1a+Y479FHH3XcjHXZyy+/rI0bN1a4prlz56pfv35O+4KCgq56fFxcnGbNmlXhzwUAAHBHr7/+ury9vZWZmamYmJirHrdr1y6X+quWEBsWFqamTZsqISFBWVlZioyMlHQpNAYHB+urr75SQkKC+vbt63Rew4YNFRYW5rTv8lzXigoICCjR97VMnz5dU6ZMcbzPyclRcHBwpdQCAADwazdjxoxK7a/a1ont06ePEhMTlZWVpUcffdSxv3fv3lq1apW2bdumcePGVVc5Zebl5SUvLy+zywAAALCkv/3tb5XaX7WG2NjYWF28eNExEitJkZGRGj9+vC5cuFCtN3WdPXtWGRkZTvt8fX1Vu3btaqsBAAAA5VMtN3ZJl0Ls+fPnFRYWpsaNGzv2R0ZGKjc317EUV3WJiYlRYGCg0/bKK69U2+cDAACg/GzGlc/5gstycnLk5+en7Oxsx8MUAAAAUD2qbSQWAAAAqCyEWAAAAJju7NmzZbo/ihALAAAA0124cEFJSUkuH0+IBQAAgOVU2xJbvzaX74fj8bMAAMCd+Pr6ymazlfm8H3744Zrtp06dKlN/rE5QTt9//71atmxpdhkAAADVKjMzU40aNSrzeXa7XYZhyGazqbT4eXl/cXGxS/0xEltOlx9/e/ToUfn5+Zlcjfu5/NjfY8eOscSZCbj+5uL6m4drby6uv7kuX39PT89ynb9r165rtp85c0Z9+/Z1uT9CbDnVqHFpOrGfnx//IZmoTp06XH8Tcf3NxfU3D9feXFx/c5VnKoEkdejQ4ZrtmZmZZeqPG7sAAADwi1CWgEyIBQAAgOk8PT3Vtm1bl48nxJaTl5eXZsyYIS8vL7NLcUtcf3Nx/c3F9TcP195cXH9zVfX137Rpk06fPu3y8axOAAAAANPk5uZq0qRJevfddzVjxgxNnz7dpfO4sQsAAACmSEhI0JgxY1S/fn3t2LFD7dq1c/lcQiwAAACqXN++fZ3Why0sLNTWrVv1xBNP6G9/+5vsdnuZ+iPEAgAAoMp16tTJ6X1hYaH27Nmj/fv368yZM2V+gAJzYgEAAGCK48ePKyYmRt9++63mz5+vIUOGuHwuqxOU04IFCxQaGipvb29169ZN27ZtM7skt7Bx40ZFR0crKChINptNH3/8sdkluY24uDjdfPPN8vX1lb+/v+666y6lpqaaXZbbePXVV9WhQwfHIu89evTQqlWrzC7Lbc2ZM0c2m02TJ082uxS3MHPmTNlsNqctIiLC7LLcyo8//qh7771XDRo0UK1atXTDDTcoOTm5wv02bdpUa9eu1d/+9jfFxMRo6NChLp9LiC2H9957T1OmTNGMGTO0c+dOdezYUQMGDCjzkyZQdufOnVPHjh21YMECs0txO0lJSYqNjdXWrVu1du1aXbx4UbfffrvOnTtndmluoWnTppozZ4527Nih5ORk9e3bV4MHD9bevXvNLs3tbN++Xa+99tp1nz6EytWuXTulp6c7ti+//NLsktxGVlaWevXqpZo1a2rVqlXat2+fXnjhBdWrV6/SPiM2NlYpKSk6fvy4y+cwnaAcunXrpptvvlnz58+XJBUXFys4OFgTJkzQtGnTTK7OfdhsNq1cuVJ33XWX2aW4pVOnTsnf319JSUnq3bu32eW4pfr16+u5557T/fffb3YpbiMvL0833nijFi5cqNmzZ6tTp06aN2+e2WX96s2cOVMff/yxUlJSzC7FLU2bNk2bN2/Wpk2bqvyzDMNw+ald3NhVRhcuXNCOHTuc1jCrUaOG+vXrpy1btphYGVC9srOzJV0KUqheRUVF+uCDD3Tu3Dn16NHD7HLcSmxsrO644w7169dPs2fPNrsct3Lw4EEFBQXJ29tbPXr0UFxcnJo1a2Z2WW7h008/1YABAzRkyBAlJSWpSZMm+vOf/6yxY8eWqZ9Zs2Zd9xjDMDRz5kyX+iPEltHp06dVVFSkxo0bO+1v3LixDhw4YFJVQPUqLi7W5MmT1atXL7Vv397sctzG7t271aNHD+Xn58vHx0crV64s0yMaUTHLly/Xzp07tX37drNLcTvdunXTm2++qdatWys9PV2zZs3Srbfeqj179sjX19fs8n71vv/+e7366quaMmWKnnjiCW3fvl0TJ06Up6enRo0a5XI/n3zyieP1hQsXdODAAadpOZdXKyDEAqgysbGx2rNnD3PSqlnr1q2VkpKi7Oxsffjhhxo1apSSkpIIstXg2LFjmjRpktauXStvb2+zy3E7gwYNcrzu0KGDunXrppCQEL3//vtMp6kGxcXF6tKli5555hlJUufOnbVnzx4tWrSoTCF2586djtdpaWnq2LGj075Tp04pICDA5f64sauMGjZsKLvdrpMnTzrtP3nyZJkuPGBV48eP1+eff66EhAQ1bdrU7HLciqenp8LCwnTTTTcpLi5OHTt21EsvvWR2WW5hx44dyszM1I033igPDw95eHgoKSlJL7/8sjw8PFRUVGR2iW6lbt26Cg8P16FDh8wuxS0EBgaW+GW5TZs2Onr0aLn7tNvtKiwsdNp38eJF1ajhejQlxJaRp6enbrrpJq1fv96xr7i4WOvXr2duGn7VDMPQ+PHjtXLlSm3YsEHNmzc3uyS3V1xcrIKCArPLcAu33Xabdu/erZSUFMfWpUsXjRgxQikpKWV+0hAqJi8vT4cPH1ZgYKDZpbiFXr16lVhS8bvvvlNISEi5+wwKCtLFixe1Y8cOx77NmzeXaXCE6QTlMGXKFI0aNUpdunRR165dNW/ePJ07d04xMTFml/arl5eX5/Sbd1pamlJSUlS/fn0m+Fex2NhYvfvuu/rkk0/k6+urjIwMSZKfn59q1aplcnW/ftOnT9egQYPUrFkz5ebm6t1331ViYqLWrFljdmluwdfXt8T879q1a6tBgwbMC68GU6dOVXR0tEJCQnTixAnNmDFDdrtdw4cPN7s0t/DII4+oZ8+eeuaZZzR06FBt27ZNixcv1uLFi8vdp4eHh373u99p0KBBGj58uPLz87V06VI9+OCDrndioFxeeeUVo1mzZoanp6fRtWtXY+vWrWaX5BYSEhIMSSW2UaNGmV3ar15p112SsWTJErNLcwtjxowxQkJCDE9PT6NRo0bGbbfdZnzxxRdml+XWIiMjjUmTJpldhlsYNmyYERgYaHh6ehpNmjQxhg0bZhw6dMjsstzKZ599ZrRv397w8vIyIiIijMWLF1e4z8zMTGPYsGFGw4YNjaCgIOPhhx828vLyXD6fdWIBAABgOUwnAAAAQJX74YcfXDrO1bm2jMQCAACgytntdscTuUqLn5f3FxcXu9QfI7EAAACoFuvWrVPDhg0lScePH9fQoUP11VdfSZLOnDmjvn37utwXIRYAAADVol27do6nnvr4+Mhmszme2pWZmVmmvlgnFgAAAJZDiAUAAECVq+zbsAixAAAAqHI2m+26+0o75moIsQDgBo4cOSKbzaaUlBSzSwHgppYtW6a6des63rdo0UI5OTmO9w0aNNCWLVtc7o8QCwDlMHr0aN11112O91FRUZo8ebJp9aSlpelPf/qTgoKC5O3traZNm2rw4ME6cOCAJCk4OFjp6ek8IhWAaYYOHSovL6+rttvtdnXt2tXl/lidAAAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZd+OAQEBJhbKABUIkZiAaCCRo8eraSkJL300kuy2Wyy2Ww6cuSIJGnPnj0aNGiQfHx81LhxY40cOVKnT592nBsVFaUJEyZo8uTJqlevnho3bqzXX39d586dU0xMjHx9fRUWFqZVq1Zd9fP37t2rw4cPa+HCherevbtCQkLUq1cvzZ49W927d5dUcjrB6NGjHbVeuSUmJkqSCgoKNHXqVDVp0kS1a9dWt27dHG0A8EtAiAWACnrppZfUo0cPjR07Vunp6UpPT1dwcLDOnj2rvn37qnPnzkpOTtbq1at18uRJDR061On8t956Sw0bNtS2bds0YcIEjRs3TkOGDFHPnj21c+dO3X777Ro5cqT++9//lvr5jRo1Uo0aNfThhx+qqKjI5Zov15qenq5JkybJ399fERERkqTx48dry5YtWr58ub799lsNGTJEAwcO1MGDByt2sQCgkvDYWQAoh9GjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxl59WI12au9qgQQPdcMMNjn2Xn25zrafZxMbGKiMjQ0uXLlWPHj30wQcfqF27dlq7du01a9y1a5dGjhyp+fPnq1evXpKk3bt3q6ioSOHh4U61JyUlOdUNAGbixi4AqCJ5eXmKjo7Ws88+W6ItMDDQ8bpmzZpObTabzWnf5XUTi4uLr/l5vr6+io6OVnR0tGbPnq0BAwZo9uzZ6t+/f6nHZ2Rk6M4779QDDzyg+++/36luu92uHTt2yG63O53j4+NzzRoAoLoQYgGgEnh6epaYj3rjjTfqo48+UmhoqDw8qvfbrc1mU0REhL766qtS2/Pz8zV48GBFREToxRdfdGrr3LmzioqKlJmZqVtvvbU6ygWAMmM6AQBUgtDQUH399dc6cuSITp8+reLiYsXGxurMmTMaPny4tm/frsOHD2vNmjWKiYlx+QYsV6SkpGjw4MH68MMPtW/fPh06dEjx8fF64403NHjw4FLPeeihh3Ts2DG9/PLLOnXqlDIyMpSRkaELFy4oPDxcI0aM0H333acVK1YoLS1N27ZtU1xcnP79739XWt0AUBGMxAJAJZg6dapGjRqltm3b6vz580pLS1NoaKg2b96sxx9/XLfffrsKCgoUEhKigQMHqkaNyhtDaNq0qUJDQzVr1izHUlqX3z/yyCOlnpOUlKT09HS1bdvWaX9CQoKioqK0ZMkSzZ49W3/5y1/0448/qmHDhurevbt+97vfVVrdAFARrE4AAAAAy2E6AQAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBwPswsAAADAr19MTIxLxy1ZssSl42yGYRgVKQgAAAC4nrvvvtvx+ty5c9qwYYOio6Md+woKCrRq1SoVFxe71B8hFgAAANUqLS1NHTp0UG5urmPfqVOnFBAQoKKiIpf6YE4sAAAAqlXNmjV18eJFp335+fny8HB9pishtpwMw1BOTo4YyAYAACiboKAgGYahdevWOfb95z//UbNmzVzugxu7yik3N1d+fn46efKk6tSpY3Y5bsUwDBUUFEiSvLy8ZLPZTK7IfXH9AQDlUaNGDY0YMULR0dEaMGCAzp8/r3Xr1mnmzJku98Gc2HLKycmRn5+fBgwYoJo1a5pdDmCKDz74QN7e3maXAQCwoPPnz2vWrFlav369PD09deedd+rRRx9VjRquTRRgJBYAAADVrlatWpozZ065zyfEVtCM/t+pvo/ZVbiXgkKbnlzdVpL09MB98vLgjwnV6UJRDT2xqo3ZZQAALCYpKcml4yIjI106jhBbQTVrFMvLgzmBZvHyMAix1c619fuAXxvm4wMV07dvXxmGcc3/dgzDcHmdWEJsBV0o4psYALiDgoICDRkyRBLzwYHyyMrKqtT+CLEAAACocpW9mlO51ok9duyYxowZo6CgIHl6eiokJESTJk3STz/95DgmKipKNptNNptN3t7eCg8PV1xcXKnrqm7ZskV2u1133HFHibYjR47IZrPJ39/f6akOktSpU6cSSzEcOnRIY8aMUbNmzeTl5aUmTZrotttu09KlS1VYWOg47nJtP9+WL19enksCAACAa0hKSnJpc1WZR2K///579ejRQ+Hh4Vq2bJmaN2+uvXv36tFHH9WqVau0detW1a9fX5I0duxYPfXUUyooKNCGDRv04IMPqm7duho3bpxTn/Hx8ZowYYLi4+N14sQJBQUFlfjc3NxcPf/885o1a9ZVa9u2bZv69eundu3aacGCBYqIiJAkJScna8GCBWrfvr06duzoOH7JkiUaOHCgUx9169Yt6yUBAADAdZQ2J7a091U2JzY2Nlaenp764osvVKtWLUlSs2bN1LlzZ7Vs2VJPPvmkXn31VUnSb37zGwUEBEiSYmJiNH/+fK1du9YpxObl5em9995TcnKyMjIy9Oabb+qJJ54o8bkTJkzQiy++qNjYWPn7+5doNwxDo0ePVnh4uDZv3uy0xlirVq00fPjwEqPAdevWddQHwDVX/meUn59vXiFANbvy3ztLrAPlk5qaqsaNG0u69Nf2W265RceOHZPNZtOpU6cUHh7ucl9lCrFnzpzRmjVr9PTTTzsC7GUBAQEaMWKE3nvvPS1cuNCpzTAMffnllzpw4IBatWrl1Pb+++8rIiJCrVu31r333qvJkydr+vTpJe5cGz58uNauXaunnnpK8+fPL1FbSkqK9u/fr2XLll11kdyK3ElaUFDguCtVuvSwA8AdXXkz48iRI02sBDBPQUFBiZ+DAK6vTp06jrmxPj4+MgxDfn5+ki79oliWXxDLNCf24MGDMgxDbdqUvkZkmzZtlJWVpVOnTkmSFi5cKB8fH3l5eal3794qLi7WxIkTnc6Jj4/XvffeK0kaOHCgsrOzS50PYbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAABVrFyrE7iakkeMGKEnn3xSWVlZmjFjhnr27KmePXs62lNTU7Vt2zatXLnyUjEeHho2bJji4+MVFRVVor8BAwbolltu0V//+le9++671/38Bg0aKCUlRdKlG80uXLjg1D537lz169fPaV9p83Elafr06ZoyZYrjfU5ODkEWbsnT/r///t955x2WGYLbyM/Pd/z1wcvLy+RqAOup7Gk4ZQqxYWFhstls2r9/v37/+9+XaN+/f7/q1aunRo0aSZL8/PwUFhYm6dK0gbCwMHXv3t0RHOPj41VYWOgUHA3DkJeXl+bPn+8YXr7SnDlz1KNHDz366KNO+y9PU0hNTVXnzp0lSXa73fH5Hh4lv9SAgABH+/V4eXnxTQuQdOWsHG9vb0Is3BIPOgDK7uf/3dSsWVOhoaHXPOZayjSdoEGDBurfv78WLlyo8+fPO7VlZGRo6dKlGjZsWKkF+Pj4aNKkSZo6daoMw1BhYaHefvttvfDCC0pJSXFs33zzjYKCgrRs2bJSa+jatavuvvtuTZs2zWl/586dFRERoeeff97lu9oAAABQPbZs2aIGDRo43gcHB2v37t2O9/7+/kpPT3e5vzJPJ5g/f7569uypAQMGaPbs2U5LbDVp0kRPP/30Vc996KGH9Pe//10fffSRPDw8lJWVpfvvv7/EiOs999yj+Ph4Pfzww6X28/TTT6tdu3ZOo6s2m01LlixR//791atXL02fPl1t2rTRxYsXtXHjRp06dUp2u92pn7NnzyojI8Npn6+vr2rXrl3WywIAAIBr6Nq163WPKW0Fqqsp88MOWrVqpeTkZLVo0UJDhw5Vy5Yt9eCDD6pPnz7asmWLY43Y0tSvX1/33XefZs6cqfj4ePXr16/UKQP33HOPkpOT9e2335baT3h4uMaMGVNieZ/u3btrx44dat26tWJjY9W2bVv17NlTy5Yt09y5c0usTxsTE6PAwECn7ZVXXinT9bhyfiAA4NfLy8tLH3zwgT744AOmlwG/ADaDxe7KJScnR35+fkqeG6IGvsyNqk4FhTZN/bydJOn53+2Vlwf/hKvTldef58cDAMxSrtUJ8D8XimqooPD6x6HyFBTaSn2N6nGhqFxPqwYAoFIRYito1tpw1axZ0+wy3NaTq9uaXQIAAKgE//3vf/Xcc89pxowZLh3PkAoAAABMl5eXp1mzZrl8PCOxFfT22287Hp+G6mEYhuMRwF5eXqzXaCJubgEAVKay/EwnxFYQi72bg2eWm+fKXyIAAKhMZVlvgBALoEwKCgo0ZMgQSaxOAABwXYsWLa4ZUouKisrUHyEWQJlcuT5zfn4+IRYA4JLJkydfsz0vL0//93//53J/hFgAAABUuYkTJ16zPTMzs0whltUJAAAAYDmEWABlUlxcXOprAAAqqiyrExBiAZRJbm5uqa8BAKiICxcuqG/fvi4fX+UhdtGiRfL19VVh4f+ezZqXl6eaNWsqKirK6djExETZbDYdPnxYoaGhmjdvXon+Zs6cqU6dOpX6PjQ0VDab7arb6NGjJemq7cuXL6/krx4AAADX8/bbb6tDhw6y2+0un1PlN3b16dNHeXl5Sk5OVvfu3SVJmzZtUkBAgL7++munu5sTEhLUrFkztWzZslyftX37dsfyDF999ZXuuecepaamOh5GcOXaokuWLNHAgQOdzq9bt265PhcAAABld+rUKT300ENat26dXnjhBY0dO9blc6s8xLZu3VqBgYFKTEx0hNjExEQNHjxYGzZs0NatWx0jsomJierTp0+5P6tRo0aO1/Xr15ck+fv7lxpO69atq4CAgHJ/FgAAAFz380fKFhYW6rXXXlP79u21e/duhYSElKm/alliq0+fPkpISNC0adMkXRpxfeyxx1RUVKSEhARFRUXp/Pnz+vrrrzVmzJjqKKnMCgoKnJ5SlJOTY2I1AAAA1vLJJ584vS8sLFRWVpbuvvvuMgdYqRpD7OTJk1VYWKjz589r165dioyM1MWLF7Vo0SJJ0pYtW1RQUOA0Evv444+XWC/swoULatu2bYVrGj58eIl5F/v27VOzZs1KPT4uLq7EbxAAAABwzc6dO0vs++yzzzR27FitWLFC8fHxat68ucv9VcvqBFFRUTp37py2b9+uTZs2KTw8XI0aNVJkZKRjXmxiYqJatGjhFCIfffRRpaSkOG0PP/xwpdQ0d+7cEn0HBQVd9fjp06crOzvbsR07dqxS6gAAAHBX0dHR2rt3rxo0aKAOHTpo4cKFLp9bLSOxYWFhatq0qRISEpSVlaXIyEhJUlBQkIKDg/XVV18pISGhxLIKDRs2VFhYmNO+y3NdKyogIKBE39fi5eUlLy+vSvlsAAAAXNKgQQN98MEHevfddxUbG6s///nPLp1XbevE9unTR4mJiUpMTHRaWqt3795atWqVtm3bVqGbugAAAGBdf/rTn7R3716Xj6+WkVjpUoiNjY3VxYsXHSOxkhQZGanx48frwoUL1Rpiz549q4yMDKd9vr6+ql27drXVAAAA4C6SkpJcOu5a0zuvVK0h9vz584qIiFDjxo0d+yMjI5Wbm+tYiqu6xMTElNgXFxfnWEEBAAAAladv374yDMPxaNkrX19mGIbLjzS3GYZhVHqVbiAnJ0d+fn7Kzs52PEwBcAdnzpzRqFGjJElvvfVWpc1TBwD8ul25POmRI0d0yy236Pjx4459p06dUnh4uOPBVddTbSOxAH4datSoUeprAACu5cpBP19fXxUXFzvtO3/+vMoytspPIAAAAFQrf39/nT9/Xunp6Y59Bw8elL+/v8t9MBILoEy8vb1LfQ0AgKtq166tTp066Q9/+IOmTp2q/Px8PfXUU7rllltc7oM5seXEnFi4K8MwHI9g9vLyKjEpHwAAV2zfvl333HOPfvzxR0lS27Zt9emnn7r81C5CbDllZ2erbt26OnbsGCEWAAC4DV9f30obwCgsLFRqaqo8PT0VFhZWpn4JseX0/fffq2XLlmaXAQAAUK0yMzPVqFEjs8tgTmx5XV5W6OjRo/Lz8zO5GveTk5Oj4OBgRsJNwvU3F9ffPFx7c3H9zXX5+nt6epbrfFemCRiGoSNHjrjUHyG2nC4vLeTn58d/SCaqU6cO199EXH9zcf3Nw7U3F9ffXOWdSnD06FE99dRT8vX1lSSdPn1azz33nJ599llJUl5env7v//7P5f4IsQAAAKgWDzzwgOPJrd9//73mzp2riRMnSro0TaEsIZZ1YgEAAGA5hNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrl/a9Wd1AgAAAFQ5u92uEydOOE0n6NSpk3JyciRdmk4QGBiooqIil/pjJBYAAABV7qGHHtJvfvMbx/smTZpo1apVjve+vr6Ki4tzuT9GYgEAAGA5jMQCAADAcgix5bRgwQKFhobK29tb3bp107Zt28wuyS1s3LhR0dHRCgoKks1m08cff2x2SW4jLi5ON998s3x9feXv76+77rpLqampZpflNl599VV16NDBsT5mjx49nP4Mh+o1Z84c2Ww2TZ482exS3MLMmTNls9mctoiICLPLcis//vij7r33XjVo0EC1atXSDTfcoOTkZFNrIsSWw3vvvacpU6ZoxowZ2rlzpzp27KgBAwYoMzPT7NJ+9c6dO6eOHTtqwYIFZpfidpKSkhQbG6utW7dq7dq1unjxom6//XadO3fO7NLcQtOmTTVnzhzt2LFDycnJ6tu3rwYPHqy9e/eaXZrb2b59u1577TV16NDB7FLcSrt27ZSenu7YvvzyS7NLchtZWVnq1auXatasqVWrVmnfvn164YUXVK9ePVPrYk5sOXTr1k0333yz5s+fL0kqLi5WcHCwJkyYoGnTpplcnfuw2WxauXKl7rrrLrNLcUunTp2Sv7+/kpKS1Lt3b7PLcUv169fXc889p/vvv9/sUtxGXl6ebrzxRi1cuFCzZ89Wp06dNG/ePLPL+tWbOXOmPv74Y6WkpJhdiluaNm2aNm/erE2bNpldihNGYsvowoUL2rFjh/r16+fYV6NGDfXr109btmwxsTKgemVnZ0u6FKRQvYqKirR8+XKdO3dOPXr0MLsctxIbG6s77rjD6WcAqsfBgwcVFBSkFi1aaMSIETp69KjZJbmNTz/9VF26dNGQIUPk7++vzp076/XXXze7LEJsWZ0+fVpFRUWONc4ua9y4sTIyMkyqCqhexcXFmjx5snr16qX27dubXY7b2L17t3x8fOTl5aWHH35YK1euVNu2bc0uy20sX75cO3fuLNMSQKgc3bp105tvvqnVq1fr1VdfVVpamm699Vbl5uaaXZpb+P777/Xqq6+qVatWWrNmjcaNG6eJEyfqrbfeMrUuD1M/HYAlxcbGas+ePcxJq2atW7dWSkqKsrOz9eGHH2rUqFFKSkoiyFaDY8eOadKkSVq7dq28vb3NLsftDBo0yPG6Q4cO6tatm0JCQvT+++8znaYaFBcXq0uXLnrmmWckSZ07d9aePXu0aNEijRo1yrS6GIkto4YNG8put+vkyZNO+0+ePKmAgACTqgKqz/jx4/X5558rISFBTZs2Nbsct+Lp6amwsDDddNNNiouLU8eOHfXSSy+ZXZZb2LFjhzIzM3XjjTfKw8NDHh4eSkpK0ssvvywPDw+XnzCEylG3bl2Fh4fr0KFDZpfiFgIDA0v8stymTRvTp3QQYsvI09NTN910k9avX+/YV1xcrPXr1zM3Db9qhmFo/PjxWrlypTZs2KDmzZubXZLbKy4uVkFBgdlluIXbbrtNu3fvVkpKimPr0qWLRowYoZSUFNntdrNLdCt5eXk6fPiwAgMDzS7FLfTq1avEkorfffedQkJCTKroEqYTlMOUKVM0atQodenSRV27dtW8efN07tw5xcTEmF3ar15eXp7Tb95paWlKSUlR/fr11axZMxMr+/WLjY3Vu+++q08++US+vr6OOeB+fn6qVauWydX9+k2fPl2DBg1Ss2bNlJubq3fffVeJiYlas2aN2aW5BV9f3xLzv2vXrq0GDRowL7waTJ06VdHR0QoJCdGJEyc0Y8YM2e12DR8+3OzS3MIjjzyinj176plnntHQoUO1bds2LV68WIsXLza3MAPl8sorrxjNmjUzPD09ja5duxpbt241uyS3kJCQYEgqsY0aNcrs0n71SrvukowlS5aYXZpbGDNmjBESEmJ4enoajRo1Mm677Tbjiy++MLsstxYZGWlMmjTJ7DLcwrBhw4zAwEDD09PTaNKkiTFs2DDj0KFDZpflVj777DOjffv2hpeXlxEREWEsXrzY7JIM1okFAACA5TAnFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgDcwJEjR2Sz2ZSSkmJ2KQBQKQixAFAOo0eP1l133eV4HxUVpcmTJ5tWT1pamv70pz8pKChI3t7eatq0qQYPHqwDBw5IkoKDg5Wenq727dubViMAVCYPswsAAFTMxYsX1b9/f7Vu3VorVqxQYGCgjh8/rlWrVuns2bOSJLvdroCAAHMLBYBKxEgsAFTQ6NGjlZSUpJdeekk2m002m01HjhyRJO3Zs0eDBg2Sj4+PGjdurJEjR+r06dOOc6OiojRhwgRNnjxZ9erVU+PGjfX666/r3LlziomJka+vr8LCwrRq1aqrfv7evXt1+PBhLVy4UN27d1dISIh69eql2bNnq3v37pJKTicYPXq0o9Yrt8TERElSQUGBpk6dqiZNmqh27drq1q2bow0AfgkIsQBQQS+99JJ69OihsWPHKj09Xenp6QoODtbZs2fVt29fde7cWcnJyVq9erVOnjypoUOHOp3/1ltvqWHDhtq2bZsmTJigcePGaciQIerZs6d27typ22+/XSNHjtR///vfUj+/UaNGqlGjhj788EMVFRW5XPPlWtPT0zVp0iT5+/srIiJCkjR+/Hht2bJFy5cv17fffqshQ4Zo4MCBOnjwYMUuFgBUEpthGIbZRQCA1YwePVpnz57Vxx9/LOnSiGqnTp00b948xzGzZ8/Wpk2btGbNGse+48ePKzg4WKmpqQoPD1dUVJSKioq0adMmSVJRUZH8/Px099136+2335YkZWRkKDAwUFu2bHGMrP7cggUL9Nhjj8lut6tLly7q06ePRowYoRYtWki6NBLbvHlz7dq1S506dXI6d8WKFRoxYoTWrVunXr166ejRo2rRooWOHj2qoKAgx3H9+vVT165d9cwzz1T08gFAhTESCwBV5JtvvlFCQoJ8fHwc2+WRzsOHDzuO69Chg+O13W5XgwYNdMMNNzj2NW7cWJKUmZl51c+KjY1VRkaGli5dqh49euiDDz5Qu3bttHbt2mvWuGvXLo0cOVLz589Xr169JEm7d+9WUVGRwsPDnWpPSkpyqhsAzMSNXQBQRfLy8hQdHa1nn322RFtgYKDjdc2aNZ3abDab0z6bzSZJKi4uvubn+fr6Kjo6WtHR0Zo9e7YGDBig2bNnq3///qUen5GRoTvvvFMPPPCA7r//fqe67Xa7duzYIbvd7nSOj4/PNWsAgOpCiAWASuDp6VliPuqNN96ojz76SKGhofLwqN5vtzabTREREfrqq69Kbc/Pz9fgwYMVERGhF1980amtc+fOKioqUmZmpm699dbqKBcAyozpBABQCUJDQ/X111/ryJEjOn36tIqLixUbG6szZ85o+PDh2r59uw4fPqw1a9YoJibG5RuwXJGSkqLBgwfrww8/1L59+3To0CHFx8frjTfe0ODBg0s956GHHtKxY8f08ssv69SpU8rIyFBGRoYuXLig8PBwjRgxQvfdd59WrFihtLQ0bdu2TXFxcfr3v/9daXUDQEUwEgsAlWDq1KkaNWqU2rZtq/PnzystLU2hoaHavHmzHn/8cd1+++0qKChQSEiIBg4cqBo1Km8MoWnTpgoNDdWsWbMcS2ldfv/II4+Uek5SUpLS09PVtm1bp/0JCQmKiorSkiVLNHv2bP3lL3/Rjz/+qIYNG6p79+763e9+V2l1A0BFsDoBAAAALIfpBAAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAy/EwuwAAAAD8+sXExLh03JIlS1w6zmYYhlGRggAAAIDrsdvtGjhwoLy8vCRJ586d04YNGxQdHS1JKigo0KpVq1RcXOxSf4RYAAAAVDm73a4TJ06ocePGkqS0tDR16NBBubm5kqRTp06pcePGLodY5sQCAACg2v18HLWs46qEWAAAAFQ5X19fZWVlOd5nZWXp3LlzysvLkyRlZGSofv36LvdHiAUAAECVi4iI0CuvvKLi4mIVFxdr4cKFCgoK0tSpU7V582Y9+eSTuvnmm13ujzmxAAAAqHIff/yx/vCHP6h27doqLi5W7dq1tXr1av3xj3/UwYMHFRwcrM8++0w33HCDS/0RYgEAAFAtNm7cqM8++0y1atXS2LFjFRwcLEn66aef1KBBgzL1RYgFAACA5TAnFgAAAJbDE7sAAABQ5ex2u0vLaLm6TiwhFgAAAFVu5cqVldofc2IBAABgOYzEAgAAoNocO3ZMH374oQ4ePChJatWqlf7whz84VipwFSOxAAAAqBbz58/XX/7yFxUWFsrPz0+GYSgnJ0ceHh6aO3eu/vznP7vcF6sTAAAAoMpt2LBBkydP1vjx45Wenq4zZ84oKytL6enpmjhxoiZMmKCEhASX+2MkFgAAAFXud7/7nRo2bKg333yz1PYxY8bo1KlT+uyzz1zqj5FYAAAAVLmvv/5ao0ePvmr7fffdp6+//trl/gixAAAAqHI5OTlq3ry54/1///tfrVixwvG+ZcuWys3Ndbk/QiwAAACqXIMGDXTmzBnH+4yMDI0aNcrxPjs7W02bNnW5P5bYAgAAQJXr0aOH3nnnHdWrV082m03Hjx93at+wYYO6dOnicn/c2AUAAIAqt27dOg0YMMDx6Fmbzabf/OY3jikEN998s1588UXdeuutLvVHiAUAAEC12Lt3r4qKihzv7Xa72rVrV66+CLEAAACwHG7sAgAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOILSfDMJSTkyPuiwMAAKh+POygnHJzc+Xn56fs7GzVqVPH7HIAAAB+0Vq0aHHdwT/DMHTkyBGX+iPEAoCFGIahgoICs8twS1de+zp16qhGDf6YCZTF5MmTr9p28uRJLV26VEePHnW5P0IsAFhIQUGBhgwZYnYZbu+dd95R3bp1zS4DsJSJEyc6vS8qKtK///1vLVmyRGvWrFFkZKT+8Y9/uNwfIRYAAADV5sCBA3rjjTf0r3/9S7Vr11ZMTIzmz5+vJk2alKkfQiwAWNQzg/bL015sdhluI6/ArplrI8wuA7C0rKwstWvXTr1799by5cvVu3fvcvdFiAUAC7nypoiaNYrl5cEKKdWloJBfGMx05ZxkLy8v2Ww2kytCefzmN7/RH//4R3388ceaMWOGYmJiNGTIENWqVavMfTErHQAs5Mqbui4U8UMc7uPyfPAhQ4Zwc6OFeXl5aenSpUpPT9fQoUP18ssvKzAwUA899JC+/vrrMvVVrhB77NgxjRkzRkFBQfL09FRISIgmTZqkn376yXFMVFSUbDabbDabvL29FR4erri4uFKXVtiyZYvsdrvuuOOOEm1HjhyRzWaTv7+/cnNzndo6deqkmTNnOu07dOiQxowZo2bNmsnLy0tNmjTRbbfdpqVLl6qwsNBx3OXafr4tX768TNdi7ty5ZToelePZZ59VdHS0nn32WbNLAQAAZVSnTh2NGzdOycnJ2rhxo2rVqqU77rhD7dq1c7mPMofY77//Xl26dNHBgwe1bNkyHTp0SIsWLdL69evVo0cPnTlzxnHs2LFjlZ6ertTUVE2fPl1/+9vftGjRohJ9xsfHa8KECdq4caNOnDhR6ufm5ubq+eefv2Zt27Zt04033qj9+/drwYIF2rNnjxITE/XAAw/o1Vdf1d69e52OX7JkidLT0522u+66q0zXY8uWLcrMzCzTOaiYzMxMffnll5KkL7/8kusPAIAF1K9fX/Xq1SuxRUZG6u2339aFCxe0f/9+l/sr85zY2NhYeXp66osvvnDMX2jWrJk6d+6sli1b6sknn9Srr74q6dK8h4CAAEly3Hm2du1ajRs3ztFfXl6e3nvvPSUnJysjI0NvvvmmnnjiiRKfO2HCBL344ouKjY2Vv79/iXbDMDR69GiFh4dr8+bNTuv3tWrVSsOHDy8xCly3bl1HfRXx+OOPa8mSJRXuB655/PHHS7zn+gMA8Mv20ksvVeqTTssUYs+cOaM1a9bo6aefLjEBNyAgQCNGjNB7772nhQsXOrUZhqEvv/xSBw4cUKtWrZza3n//fUVERKh169a69957NXnyZE2fPr3EhO3hw4dr7dq1euqppzR//vwStaWkpGj//v1atmzZVRegrqpJ4KdPn9b69et12223VUn/+J/169fr9OnTTvu4/gCqxRU/e/Pz85Wfn29eLW7oyuvNI9+t6Y9//KNq1qxZaf2VKcQePHhQhmGoTZs2pba3adNGWVlZOnXqlCRp4cKF+uc//6kLFy7o4sWL8vb2LrHQbXx8vO69915J0sCBA5Wdna2kpCRFRUU5HWez2TRnzhxFR0frkUceUcuWLZ3av/vuO0lS69atHfsyMzPVokULx/t//OMf+vOf/+x4P3z4cNntdqd+9u3bp2bNmpX42goKCpwmkufk5Di1v/LKK4qKiirRHypPUVGRXnnllVLbuP4AqtqVN9KNHTvWxEpQUFBQrrvZYa4mTZroT3/6k+6//37dcMMNFe6vXDd2ufob0IgRI5SSkqLNmzdr0KBBevLJJ9WzZ09He2pqqrZt26bhw4dLkjw8PDRs2DDFx8eX2t+AAQN0yy236K9//atLn9+gQQOlpKQoJSVFdevW1YULF5za586d62i/vAUFBZXaV1xcnPz8/BxbcHCwU3tRUZFWr17tUl0on9WrV6uoqKjUNq4/AAC/bNOmTdO2bdvUuXNndevWTa+99lqJm/bLokwjsWFhYbLZbNq/f79+//vfl2jfv3+/6tWrp0aNGkmS/Pz8FBYWJunStIGwsDB1795d/fr1k3RpFLawsNApOBqGIS8vL82fP19+fn4lPmPOnDnq0aOHHn30Uaf9l6cppKamqnPnzpIku93u+HwPj5JfakBAgKP9eqZPn64pU6Y43ufk5DgFWbvdroEDB7rUF8pn4MCBev3110sNslx/AFXN0/6/AZzXX3+dx85Ws/z8fI0cOVLSpWWaYD1TpkzRlClTtHnzZkVGRio/P19TpkzRH/7wB40ZM0aRkZFl6q9MIbZBgwbq37+/Fi5cqEceecRpKD8jI0NLly7VfffdV+rcUx8fH02aNElTp07Vrl27VFRUpLffflsvvPCCbr/9dqdj77rrLi1btkwPP/xwiX66du2qu+++W9OmTXPa37lzZ0VEROj555/X0KFDrzovtry8vLyu+R/NxIkT+VN2FbPb7ZowYYLmzZtXoo3rD6DKXfGjzdvbW97e3ubV4uZ40IG11atXTzabTd9884327Nmjd955RyNHjpS3t7diYmI0ffp0l/opc9KbP3++CgoKNGDAAG3cuFHHjh3T6tWr1b9/fzVp0kRPP/30Vc996KGH9N133+mjjz7S559/rqysLN1///1q376903bPPfdcdUqBJD399NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJkHP27FllZGQ4befOnSvrJVHDhg3Vt2/fMp+HsrvtttvUsGFDp31cfwAArKl9+/Z69tlnlZaWpiFDhrg8ZVQqR4ht1aqVkpOT1aJFCw0dOlQtW7bUgw8+qD59+mjLli2qX7/+Vc+tX7++7rvvPs2cOVPx8fHq169fqVMG7rnnHiUnJ+vbb78ttZ/w8HCNGTOmxJ2h3bt3144dO9S6dWvFxsaqbdu26tmzp5YtW6a5c+c6Le0lXVr2KzAw0Gm72o1D18KC+9Xr59eb6w8AgDV98803evTRRxUSEqKPP/64TD/Ty7xOrCSFhITozTffvOYxiYmJpe4v7WEHP9e1a1enm8dKu5Hstdde02uvvVZif3h4+HVru1qf5dGjR49S161F1fH399ctt9yiL7/8UrfccgvXH27lymlNV87RBH7tvLy89MEHHzhew7p++uknGYahG264QUePHtWQIUP04Ycfqnv37mXqp1whFv/zyCOPmF2CW3r88cdLPPQAcAdXzgVkWiDcyeXH2MO6nnvuOX300UdKTk5Wjx49NGbMGA0bNky/+c1vytUfIRYALOpCUQ1JxWaX4TYuFlXuDcOAu3nxxRc1cuRIvf322woPD69wf4RYALCoJ1aV/uAZAPglOn78uOMm+6ysLB08eFA2m01hYWGqV69emfvj10oAAABUObvdrrS0NP32t79Vw4YN1b17d3Xr1k0NGzbUb3/7W/3www9l6s9m8ADicsnJyZGfn5+ys7NVp04ds8sB4CYMw3B6BDaqz5XXvk6dOpW+Hjnwa3fy5EndeOONstvtio2NVUREhKRLD6qaP3++ioqKtHPnTjVu3Nil/gix5USIBWAGQizcFb9EWN/EiROVkJCgbdu2OT0wS7r0RLabb75ZUVFRLi93SogtJ0IsADPk5+dryJAhZpcBmOqdd97hsb8W1KJFCz3//PO6++67S23/+OOP9Ze//EWHDx92qT9+jQEAAECVS09PV4cOHa7a3r59e/34448u98fqBABgUa/8fay8PGuaXQZQLXLy/qupf3/T7DJQAY0aNVJhYeFV2y9evOjyfFiJEAsLunJelJeXl9Pi74A78fKsKS8vQizcg2fB/yILMyGt6aabbtIXX3zhuKHr51avXq2OHTu63B/TCWA5BQUFGjJkiIYMGcINLgDgJi5c/N8IHt/7remRRx7Ra6+9puzs7BJtOTk5ev311zV58mSX+2MkFgAAAFWud+/e2rt3b6ltderU0b59+8rUX5WPxC5atEi+vr5OcyDy8vJUs2ZNRUVFOR2bmJgom82mw4cPKzQ0VPPmzSvR38yZM9WpU6dS34eGhspms111Gz16tCRdtX358uWV/NUDAACgKlT5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr68vb0lSQkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjqWwLpyTbIlS5Zo4MCBTuezXAcAAEDVaNGihUvzmdPS0lzqr8pDbOvWrRUYGKjExERHiE1MTNTgwYO1YcMGbd261TEim5iYqD59+pT7sxo1auR4Xb9+fUmSv79/qeG0bt26CggIKPdnwTxX/geQn59vYiVA9bvy3zw3twCwkp/Pd12/fr3WrFmjv/71r/L19S1zf9UyJ7ZPnz5KSEjQtGnTJF0acX3sscdUVFSkhIQERUVF6fz58/r66681ZsyY6iipzAoKCpwmkufk5JhYjXu78v+HkSNHmlgJYK4LFwvl7e1pdhkA4JKJEyc6Xq9bt07Tp09XnTp1lJiYqH//+9/y9Czb97NqWZ2gT58+2rx5swoLC5Wbm6tdu3YpMjJSvXv3VmJioiRpy5YtKigocBqJffzxx+Xj4+O0PfPMM5VS0/Dhw0v0ffTo0aseHxcXJz8/P8cWHBxcKXUAAAC4k/Xr1+vOO+/UQw89pP379+vHH3/UH//4RxUXF5epn2oZiY2KitK5c+e0fft2ZWVlKTw8XI0aNVJkZKRiYmKUn5+vxMREtWjRQs2aNXOc9+ijjzpuxrrs5Zdf1saNGytc09y5c9WvXz+nfUFBQVc9fvr06ZoyZYrjfU5ODkHWJF5eXo7X77zzjmNONeAO8vPzHX+B8KzJAjMArCUhIUF33nmnHnzwQb344ouSLo3K9uzZUw888IDeeOMNl/uqlu+AYWFhatq0qRISEpSVlaXIyEhJl0JjcHCwvvrqKyUkJKhv375O5zVs2FBhYWFO+y7Pda2ogICAEn1fi5eXl1N4gnmufLiBt7c3IRZuiwd9ALCSpKQkRUdH64EHHnBagSooKEjr1q3TLbfcoqlTp+r55593qb9qe9hBnz59lJiYqMTERKeltXr37q1Vq1Zp27ZtFbqpCwAAAL9c0dHRiomJ0UsvvVSiLSwsTKtXr9Y///lPl/urtr9F9enTR7Gxsbp48aJjJFaSIiMjNX78eF24cKFaQ+zZs2eVkZHhtM/X11e1a9euthoAAADcxahRo/TKK69ctb1Tp0769NNPXe6vWkPs+fPnFRERocaNGzv2R0ZGKjc317EUV3WJiYkpsS8uLs6xggJ+uby8vPTBBx84XgMAfv2unAPO935rulaAvax3794u92czWGiwXHJycuTn56fs7GzHwxQAoKrl5+dryJAhkqTFz/5ZXl41Ta4IqB45uf/VhL++LunSTb08oAjc2goAFlVw4aLZJQDVhn/v+DlCLABY1OVRKQBwR9W2OgEAAABwNT/99JOaN2/u8vHMiS2n7Oxs1a1bV8eOHWNOLIBqYxiG06OXAXdx5b/9OnXqqEYNxuHM4uvrWyXrVGdmZiogIMDlJ3cxnaCcfvrpJ0niqV0AAMCtZGZmqlGjRmaXQYgtr8tPDjt69Kj8/PxMrsb9XH7sLyPh5uD6m4vrbx6uvbm4/ua6fP09PT3LdX5SUtI128+cOVOm/gix5XT5zxh+fn78h2SiOnXqcP1NxPU3F9ffPFx7c3H9zVXeqQR9+/aVYRiVNhWBEAsAAIAql5WVdc32U6dOqVWrVi73R4gFAABAlbve6Hl+fn6Z+uPWvnLy8vLSjBkzePSdSbj+5uL6m4vrbx6uvbm4/uaqjutflqkGLLEFAAAA0+Xm5urhhx/W0qVLXTqekVgAAACY7q233tLHH3/s8vHMiQUAAIBpjh49qjFjxiglJUXx8fEun8dILAAAAEzx1ltvqWPHjqpVq5b27t2rP/7xjy6fy0gsAAAAqlyLFi105a1YhYWFSk9P16JFi/TAAw+UuT9GYstpwYIFCg0Nlbe3t7p166Zt27aZXZJb2Lhxo6KjoxUUFCSbzVamuTOomLi4ON18883y9fWVv7+/7rrrLqWmpppdltt49dVX1aFDB8ci7z169NCqVavMLsttzZkzRzabTZMnTza7FLcwc+ZM2Ww2py0iIsLsstzKjz/+qHvvvVcNGjRQrVq1dMMNNyg5OblMfUyePFmPPPKI0xYcHKz4+HgdOHCgzDUxElsO7733nqZMmaJFixapW7dumjdvngYMGKDU1FT5+/ubXd6v2rlz59SxY0eNGTNGd999t9nluJWkpCTFxsbq5ptvVmFhoZ544gndfvvt2rdvn2rXrm12eb96TZs21Zw5c9SqVSsZhqG33npLgwcP1q5du9SuXTuzy3Mr27dv12uvvaYOHTqYXYpbadeundatW+d47+FBhKkuWVlZ6tWrl/r06aNVq1apUaNGOnjwoOrVq1emfiZOnFhi34MPPqjJkyfrxhtv1KxZszR16lSXl9liia1y6Natm26++WbNnz9fklRcXKzg4GBNmDBB06ZNM7k692Gz2bRy5UrdddddZpfilk6dOiV/f38lJSWpd+/eZpfjlurXr6/nnntO999/v9mluI28vDzdeOONWrhwoWbPnq1OnTpp3rx5Zpf1qzdz5kx9/PHHSklJMbsUtzRt2jRt3rxZmzZtqrLP+Pe//62xY8cqNDRUX331lUvnMJ2gjC5cuKAdO3aoX79+jn01atRQv379tGXLFhMrA6pXdna2pEtBCtWrqKhIy5cv17lz59SjRw+zy3ErsbGxuuOOO5x+BqB6HDx4UEFBQWrRooVGjBiho0ePml2S2/j000/VpUsXDRkyRP7+/urcubNef/31Sv2MO+64Q3v37lXTpk1dPocQW0anT59WUVGRGjdu7LS/cePGysjIMKkqoHoVFxdr8uTJ6tWrl9q3b292OW5j9+7d8vHxkZeXlx5++GGtXLlSbdu2Nbsst7F8+XLt3LlTcXFxZpfidrp166Y333xTq1ev1quvvqq0tDTdeuutys3NNbs0t/D999/r1VdfVatWrbRmzRqNGzdOEydO1FtvvVWpn1OvXj29//77Lh/PhBIAZRYbG6s9e/boyy+/NLsUt9K6dWulpKQoOztbH374oUaNGqWkpCSCbDU4duyYJk2apLVr18rb29vsctzOoEGDHK87dOigbt26KSQkRO+//z7TaapBcXGxunTpomeeeUaS1LlzZ+3Zs0eLFi3SqFGjXO4nJibmuscYhqE333zTpf4YiS2jhg0bym636+TJk077T548qYCAAJOqAqrP+PHj9fnnnyshIaFMf/ZBxXl6eiosLEw33XST4uLi1LFjR7300ktml+UWduzYoczMTN14443y8PCQh4eHkpKS9PLLL8vDw0NFRUVml+hW6tatq/DwcB06dMjsUtxCYGBgiV+W27RpU+YpHdnZ2Y7txIkT+te//uW0LzMzU2+//bbL/TESW0aenp666aabtH79escNRcXFxVq/fr3Gjx9vbnFAFTIMQxMmTNDKlSuVmJio5s2bm12S2ysuLlZBQYHZZbiF2267Tbt373baFxMTo4iICD3++OOy2+0mVeae8vLydPjwYY0cOdLsUtxCr169Siyp+N133ykkJKRM/axYscLxOi0tTR06dHDad+rUqTINCBJiy2HKlCkaNWqUunTpoq5du2revHk6d+6cS8PkqJi8vDyn37zT0tKUkpKi+vXrq1mzZiZW9usXGxurd999V5988ol8fX0dc8D9/PxUq1Ytk6v79Zs+fboGDRqkZs2aKTc3V++++64SExO1Zs0as0tzC76+viXmf9euXVsNGjRgXng1mDp1qqKjoxUSEqITJ05oxowZstvtGj58uNmluYVHHnlEPXv21DPPPKOhQ4dq27ZtWrx4sRYvXlzuPmvWrKmLFy867cvPzy/b0mkGyuWVV14xmjVrZnh6ehpdu3Y1tm7danZJbiEhIcGQVGIbNWqU2aX96pV23SUZS5YsMbs0tzBmzBgjJCTE8PT0NBo1amTcdtttxhdffGF2WW4tMjLSmDRpktlluIVhw4YZgYGBhqenp9GkSRNj2LBhxqFDh8wuy6189tlnRvv27Q0vLy8jIiLCWLx4cYX6KyoqMjw9PY21a9c69i1atMgICwtzuQ/WiQUAAEC1GzNmjJYtW6YBAwbo/PnzWrdunWbOnKm//vWvLp1PiAUAAEC1O3/+vGbNmqX169fL09NTd955px599FHVqOHaugOEWAAAAFgON3YBAACgyiUlJbl0XGRkpEvHMRILAACAKme322UYhmw2m2Nfae+Li4td6o+HHQAAAKBapKamKisrS1lZWdq1a5d8fHx05swZZWVl6bvvvnMKtNfDdAIAAABUizp16qhOnTqSJB8fHxmGIT8/P0mX1oktywQBRmIBAABgOYRYAAAAVLnKvg2LEAsAbuDIkSOy2WxKSUkxuxQAburn811r1qyp0NDQax5zLYRYACiH0aNH66677nK8j4qK0uTJk02rJy0tTX/6058UFBQkb29vNW3aVIMHD9aBAwckScHBwUpPT1f79u1NqxGAe9uyZYsaNGjgeB8cHKzdu3c73vv7+ys9Pd3l/rixCwAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZeWtgkICDC3UABurWvXrtc9xt/f3+X+GIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKwhO7AKAcRo8erbNnz+rjjz+WdGlEtVOnTpo3b57jmNmzZ2vTpk1as2aNY9/x48cVHBys1NRUhYeHKyoqSkVFRdq0aZMkqaioSH5+frr77rv19ttvS5IyMjIUGBioLVu2OEZWf27BggV67LHHZLfb1aVLF/Xp00cjRoxQixYtJF0aiW3evLl27dqlTp06OZ27YsUKjRgxQuvWrVOvXr109OhRtWjRQkePHlVQUJDjuH79+qlr16565plnKnr5AKDCGIkFgCryzTffKCEhQT4+Po7t8kjn4cOHHcd16NDB8dput6tBgwa64YYbHPsaN24sScrMzLzqZ8XGxiojI0NLly5Vjx499MEHH6hdu3Zau3btNWvctWuXRo4cqfnz56tXr16SpN27d6uoqEjh4eFOtSclJTnVDQBm4sYuAKgieXl5io6O1rPPPluiLTAw0PG6Zs2aTm02m81p3+UlZ673PHFfX19FR0crOjpas2fP1oABAzR79mz179+/1OMzMjJ055136oEHHtD999/vVLfdbteOHTtkt9udzvHx8blmDQBQXQixAFAJPD09S8xHvfHGG/XRRx8pNDRUHh7V++3WZrMpIiJCX331Vant+fn5Gjx4sCIiIvTiiy86tXXu3FlFRUXKzMzUrbfeWh3lAkCZMZ0AACpBaGiovv76ax05ckSnT59WcXGxYmNjdebMGQ0fPlzbt2/X4cOHtWbNGsXExLh8A5YrUlJSNHjwYH344Yfat2+fDh06pPj4eL3xxhsaPHhwqec89NBDOnbsmF5++WWdOnVKGRkZysjI0IULFxQeHq4RI0bovvvu04oVK5SWlqZt27YpLi5O//73vyutbgCoCEZiAaASTJ06VaNGjVLbtm11/vx5paWlKTQ0VJs3b9bjjz+u22+/XQUFBQoJCdHAgQNVo0bljSE0bdpUoaGhmjVrlmMprcvvH3nkkVLPSUpKUnp6utq2beu0PyEhQVFRUVqyZIlmz56tv/zlL/rxxx/VsGFDde/eXb/73e8qrW4AqAhWJwAAAIDlMJ0AAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOV4mF0AAAAA3EdMTMx1jzEMQ2+++eY1j7EZhmFUUk0AAADANd19991XbTMMQ7t27dLRo0dVXFx8zX4YiQUAAEC1WbFiRYl9p0+f1tKlS/XGG28oJydHDz/88HX7YSQWAAAA1a64uFirV6/WkiVL9Pnnn+uWW27RmDFjdPfdd8vLy+u65xNiAQAAUK3y8vIUEREhT09PjR49WjExMQoODi5TH6xOAAAAgGpnt9tls9lkGMZ157+WhhALAACAauXj46MjR45o4cKF2rt3r9q2bav+/ftr2bJlKigocKkPphMAAADAVGfOnNG//vUvLVmyRD/88IOGDx+uBQsWXPMcQiwAAACqze9///urttlsNu3atUs//PADS2wBAADgl6N+/fq61hhqnz59XOqHkVgAAABYDiOxAAAAqDauPHZWkpYsWXLNdkIsAAAAqk12dnal9MN0gnIyDEO5ubny9fWVzWYzuxwAAAC3wjqx5ZSbmys/Pz/l5OSYXQoAAIDbYTpBBbm6IC8AAABcmxNrGIbefPPNax5DiK2g/Px8s0sAAACwjGvNiS0qKtK6det0/vx5QiwAAAB+OVasWFHq/k8++URPPPGEvL29NWPGjOv2w5xYAAAAmGbTpk3q2bOnhg8frt/97nf6/vvv9dhjj133PEJsBV3vkWgAAAAoac+ePYqOjtZtt92mdu3a6dChQ3r22Wfl5+fn0vmE2ArKy8szuwQAbmbcuHGKjo7WuHHjzC4FAMrshx9+0KhRo9SpUyd5eHho9+7dev311xUUFFSmfsoVYo8dO6YxY8YoKChInp6eCgkJ0aRJk/TTTz85jomKipLNZpPNZpO3t7fCw8MVFxdX6rNyt2zZIrvdrjvuuKNE25EjR2Sz2eTv76/c3Fyntk6dOmnmzJlO+w4dOqQxY8aoWbNm8vLyUpMmTXTbbbdp6dKlKiwsdBx3ubafb8uXLy/PJQGAanH48GEdP35cknT8+HEdPnzY5IoAoGxat26tDz74QFOnTtXo0aN14MABffLJJyW26ynzjV3ff/+9evToofDwcC1btkzNmzfX3r179eijj2rVqlXaunWr6tevL0kaO3asnnrqKRUUFGjDhg168MEHVbdu3RKjB/Hx8ZowYYLi4+N14sSJUpN4bm6unn/+ec2aNeuqtW3btk39+vVTu3bttGDBAkVEREiSkpOTtWDBArVv314dO3Z0HL9kyRINHDjQqY+6deuW9ZIAQLWZOnVqifcrV640qRoAKLvCwkIZhqHnnnvuqscYhnHdKZtlHomNjY2Vp6envvjiC0VGRqpZs2YaNGiQ1q1bpx9//FFPPvmk49jf/OY3CggIUEhIiGJiYtShQwetXbvWqb+8vDy99957GjdunO64446rLqcwYcIEvfjii8rMzCy13TAMjR49WuHh4dq8ebOio6PVqlUrtWrVSsOHD9eXX36pDh06OJ1Tt25dBQQEOG3e3t5lvSQAUC2WLFni9Bcl6dIPg+s9XxwAfkkKCwtVVFR0zc2Ve47KFGLPnDmjNWvW6M9//rNq1arl1BYQEKARI0bovffeKzFlwDAMbdq0SQcOHJCnp6dT2/vvv6+IiAi1bt1a9957r954441SpxwMHz5cYWFheuqpp0qtLSUlRfv379fUqVNVo0bpX1ZFHg9bUFCgnJwcpw0AqsvFixevuizNihUrdPHixWquCADMVabpBAcPHpRhGGrTpk2p7W3atFFWVpZOnTolSVq4cKH++c9/6sKFC7p48aK8vb01ceJEp3Pi4+N17733SpIGDhyo7OxsJSUlKSoqyuk4m82mOXPmKDo6Wo888ohatmzp1P7dd99JujTP4rLMzEy1aNHC8f4f//iH/vznPzveDx8+XHa73amfffv2qVmzZiW+tri4uGtOZQCAqvT6669ft/3K728A8EuVlJTk0nGRkZHXbC/Xww5KGyktzYgRI/Tkk08qKytLM2bMUM+ePdWzZ09He2pqqrZt2+aYz+Xh4aFhw4YpPj6+RIiVpAEDBuiWW27RX//6V7377rvX/fwGDRooJSVF0qUbzS5cuODUPnfuXPXr189p39XujJs+fbqmTJnieJ+Tk6Pg4ODr1gAAlWHs2LFatWrVNdsBwAr69u0rwzCu+RdyV+bElinEhoWFyWazaf/+/fr9739fon3//v2qV6+eGjVqJEny8/NTWFiYpEvTBsLCwtS9e3dHcIyPj1dhYaFTcDQMQ15eXpo/f36p64TNmTNHPXr00KOPPuq0v1WrVpIuBePOnTtLkux2u+PzPTxKfqkBAQGO9uvx8vKSl5eXS8cCQGWrWbOm7r777lKnFNxzzz2qWbOmCVUBQNllZWVVSj9lmhPboEED9e/fXwsXLtT58+ed2jIyMrR06VINGzas1GTt4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/+eR5AAOBXKSYmpsQv5B4eHho9erQ5BQFAOaxbt061atVSnTp1rrldT5lXJ5g/f74KCgo0YMAAbdy4UceOHdPq1avVv39/NWnSRE8//fRVz33ooYf03Xff6aOPPtLnn3+urKws3X///Wrfvr3Tds899yg+Pv6q/Tz99NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJ+a9nz55VRkaG03bu3LmyXhIAqDbPP//8Nd8DwC/dsGHD1LRpU02dOlX79+8vdz9lDrGtWrVScnKyWrRooaFDh6ply5Z68MEH1adPH23ZssWxRmxp6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMUX5+vtP+7t27a8eOHWrdurViY2PVtm1b9ezZU8uWLdPcuXNLrE8bExOjwMBAp+2VV14p6yUBgGrTsmVLNW3aVJLUtGnTEje5AsAv3YkTJzR79mzt2LFD7dq1U8+ePfX666+X+SmoNsPVu7TgJCcnR35+fkpLS1NoaKjZ5QAAAFjK/v371aFDB/3jH//Qv/71L3333XcaMmSI7r//fvXq1eu655frsbP4n6utSQsAAICruzyO+sgjj2jHjh3avn27AgMDde+99zqeunotJDAAAACYLjw8XL1799Ytt9yiH3744brHE2IriMfUAgAAlF9ycrKmTJmiJk2aaNKkSbrhhhtcCrHletgB/oe1YwEAAMrmwIEDeuONN1RcXKyoqCgNHTpUH374oUtzYS8jxFbQtZ42AQAAAGft27fXvn371L17dy1evFh//OMfVbt2bUd7YWGhNm/eXDWPncX/sLgDAACA6wYOHKgPPvhAbdq0KbX9zJkz6tOnT+U+dhYlFRQUmF0CAACAZbjykBZX/tLNjV0V9PMHLgAAAKBiXPlLNyOxAAAAqDYxMTHXbD9//rxL/RBiK+h68zUAAADwP9nZ2ddsd3WqJiG2gsr6nF8AAAB3tmLFimu2nzp1So0bN75uP1U+J3bRokXy9fVVYWGhY19eXp5q1qypqKgop2MTExNls9l0+PBhhYaGat68eSX6mzlzpjp16lTq+9DQUNlstqtuo0ePlqSrti9fvrySv3oAAACUhasrP1X5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr7jqVcJCQlq1qyZWrZsWa7P2r59u4qKiiRJX331le655x6lpqaqTp06kqRatWo5jl2yZIkGDhzodH7dunXL9bkAAACoPK6sTlDlIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFD56tevr4SEhOseVy1zYvv06aOEhARNmzZN0qUR18cee0xFRUVKSEhQVFSUzp8/r6+//lpjxoypjpIAAABgkqKiIq1Zs0apqanKyckp9ZjevXtfs49qC7GTJ09WYWGhzp8/r127dikyMlIXL17UokWLJElbtmxRQUGB00js448/rv/7v/9z6uvChQtq27ZthWsaPny47Ha70759+/apWbNmpR5fUFDgdLfc1S44AAAAri4jI0O33367UlNT1bRpU/n5+ZU4xjAMzZgx45r9VEuIjYqK0rlz57R9+3ZlZWUpPDxcjRo1UmRkpGJiYpSfn6/ExES1aNHCKUQ++uijjpuxLnv55Ze1cePGCtc0d+5c9evXz2lfUFDQVY+Pi4vTrFmzKvy5AAAA7uyJJ56Qv7+/1q9f7zQVtKyqJcSGhYWpadOmSkhIUFZWliIjIyVdCo3BwcH66quvlJCQoL59+zqd17BhQ4WFhTntuzzXtaICAgJK9H0t06dP15QpUxzvc3JyFBwcXCm1AAAAuIuEhAS9++67FQqwUjWuE9unTx8lJiYqKytLjz76qGN/7969tWrVKm3btk3jxo2rrnLKzMvLS15eXmaXAQAAYGmnTp2qlJvrqzXExsbG6uLFi46RWEmKjIzU+PHjdeHChQqtTFBWZ8+eVUZGhtM+X19f1a5du9pqAAAAcDfNmzfXjh071Lx58wr1U60h9vz584qIiHB6CkNkZKRyc3MdS3FVl9Ke2xsXF+dYQQEAAACVb9SoUZo0aZJycnJ00003XXWd/pCQkGv2YzNcfSwCnOTk5MjPz09paWkKDQ01uxwAAABLKCoq0t/+9jfNmzdP+fn5JZ7QZbPZZBiGiouLr9kPIbacLofYH3744arLcgEAAKB0hmHo6NGjys7OLrW9Q4cO1zy/2qYTAAAAAJfZbLbrThm4FkIsAAAAqk1SUpJLx125EEBpCLEV5O3tbXYJAAAAltG3b18ZhiGbzebYV9r7682JJcSW0+WpxAUFBTyCFgAAuA1fX1+nwFlWWVlZTu+PHDmiW265RceOHZPNZtOpU6cUHh5+3X4IseX0008/SRI3dQEAALeSmZlZoadt1alTx+l9rVq1ZBiG/Pz8JKnUFQtKQ4gtp8uPvz169KjjoqP6XH7s77Fjx0r8x4Cqx/U3F9ffPFx7c3H9zXX5+nt6elZqv1u3btW5c+eUnZ0tPz8/nThxQg0bNrzueYTYcqpRo4Ykyc/Pj/+QTFSnTh2uv4m4/ubi+puHa28urr+5KjKV4Ernz5/XggULFB8fL0n685//rOHDh2vevHm6+eabr3t+jUqpAgAAAHDB8ePHNW3aNDVt2lSfffaZEhMTddddd2n58uUaPHiwDh06pGefffa6/TASCwAAgGrTsmVLRURE6I033tDgwYMlSStWrNB3332nCxcuKCIiQh4e14+ohNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrsq6/kuXLtUf/vCHEvtdWZHgSjx2FgAAAJbDSCwAAACqTUxMjEvHLVmy5JrtjMQCAACg2tjtdg0cONAxLeHcuXPasGGDoqOjJV16kNSqVauu+8QuQiwAAACqjd1u14kTJ9S4cWNJUlpamjp06KDc3FxJ0qlTpxQQEKCioqJr9sMSWwAAADDNz8dTDcNw6YldhNhyWrBggUJDQ+Xt7a1u3bpp27ZtZpfkFjZu3Kjo6GgFBQXJZrPp448/NrsktxEXF6ebb75Zvr6+8vf311133aXU1FSzy3Ibr776qjp06OBY5L1Hjx5atWqV2WW5rTlz5shms2ny5Mlml+IWZs6cKZvN5rRFRESYXZZb+fHHH3XvvfeqQYMGqlWrlm644QYlJyebWhMhthzee+89TZkyRTNmzNDOnTvVsWNHDRgwQJmZmWaX9qt37tw5dezYUQsWLDC7FLeTlJSk2NhYbd26VWvXrtXFixd1++2369y5c2aX5haaNm2qOXPmaMeOHUpOTlbfvn01ePBg7d271+zS3M727dv12muvqUOHDmaX4lbatWun9PR0x/bll1+aXZLbyMrKUq9evVSzZk2tWrVK+/bt0wsvvKB69epV2mf8/ClgLj0VzECZde3a1YiNjXW8LyoqMoKCgoy4uDgTq3I/koyVK1eaXYbbyszMNCQZSUlJZpfiturVq2f885//NLsMt5Kbm2u0atXKWLt2rREZGWlMmjTJ7JLcwowZM4yOHTuaXYbbevzxx41bbrml0vpr06aNcfr0acf7rKwspwx19uxZY9CgQdfth5HYMrpw4YJ27Nihfv36OfbVqFFD/fr105YtW0ysDKhe2dnZkqT69eubXIn7KSoq0vLly3Xu3Dn16NHD7HLcSmxsrO644w6nnwGoHgcPHlRQUJBatGihESNG6OjRo2aX5DY+/fRTdenSRUOGDJG/v786d+6s119/vdz97du3Tw0aNHC8r1u3rqZNm+Z47+fnp//85z/X7YcQW0anT59WUVGR4466yxo3bqyMjAyTqgKqV3FxsSZPnqxevXqpffv2ZpfjNnbv3i0fHx95eXnp4Ycf1sqVK9W2bVuzy3Iby5cv186dOxUXF2d2KW6nW7duevPNN7V69Wq9+uqrSktL06233uq4mx1V6/vvv9err76qVq1aac2aNRo3bpwmTpyot956y9S6eNgBgDKLjY3Vnj17mJNWzVq3bq2UlBRlZ2frww8/1KhRo5SUlESQrQbHjh3TpEmTtHbtWnl7e5tdjtsZNGiQ43WHDh3UrVs3hYSE6P3339f9999vYmXuobi4WF26dNEzzzwjSercubP27NmjRYsWadSoUabVxUhsGTVs2FB2u10nT5502n/y5EkFBASYVBVQfcaPH6/PP/9cCQkJatq0qdnluBVPT0+FhYXppptuUlxcnDp27KiXXnrJ7LLcwo4dO5SZmakbb7xRHh4e8vDwUFJSkl5++WV5eHhcdz1LVK66desqPDxchw4dMrsUtxAYGFjil+U2bdqYPqWDEFtGnp6euummm7R+/XrHvuLiYq1fv565afhVMwxD48eP18qVK7VhwwY1b97c7JLcXnFxsQoKCswuwy3cdttt2r17t1JSUhxbly5dNGLECKWkpMhut5tdolvJy8vT4cOHFRgYaHYpbqFXr14lllT87rvvFBISYlJFlzCdoBymTJmiUaNGqUuXLuratavmzZunc+fOufwsYJRfXl6e02/eaWlpSklJUf369dWsWTMTK/v1i42N1bvvvqtPPvlEvr6+jjngfn5+qlWrlsnV/fpNnz5dgwYNUrNmzZSbm6t3331XiYmJWrNmjdmluQVfX98S879r166tBg0aMC+8GkydOlXR0dEKCQnRiRMnNGPGDNntdg0fPtzs0tzCI488op49e+qZZ57R0KFDtW3bNi1evFiLFy82t7BKWy/BzbzyyitGs2bNDE9PT6Nr167G1q1bzS7JLSQkJBiSSmyjRo0yu7RfvdKuuyRjyZIlZpfmFsaMGWOEhIQYnp6eRqNGjYzbbrvN+OKLL8wuy62xxFb1GTZsmBEYGGh4enoaTZo0MYYNG2YcOnTI7LLcymeffWa0b9/e8PLyMiIiIozFixebXZJhMwwXnusFAAAA/IIwJxYAAACWQ4gFAACA5RBiAQAAYDmEWAAAAFgOIRYAAACWQ4gFAACA5RBiAQAAYDmEWABwA0eOHJHNZlNKSorZpQBApSDEAkA5jB49WnfddZfjfVRUlCZPnmxaPWlpafrTn/6koKAgeXt7q2nTpho8eLAOHDggSQoODlZ6ejqPSAXwq+FhdgEAgIq5ePGi+vfvr9atW2vFihUKDAzU8ePHtWrVKp09e1aSZLfbFRAQYG6hAFCJGIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKYjMMwzC7CACwmtGjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxHTp0cLy22+1q0KCBbrjhBse+xo0bS5IyMzOv+lmxsbHKyMjQ0qVL1aNHD33wwQdq166d1q5de80ad+3apZEjR2r+/Pnq1auXJGn37t0qKipSeHi4U+1JSUlOdQOAmbixCwCqSF5enqKjo/Xss8+WaAsMDHS8rlmzplObzWZz2mez2SRJxcXF1/w8X19fRUdHKzo6WrNnz9aAAQM0e/Zs9e/fv9TjMzIydOedd+qBBx7Q/fff71S33W7Xjh07ZLfbnc7x8fG5Zg0AUF0IsQBQCTw9PUvMR73xxhv10UcfKTQ0VB4e1fvt1mazKSIiQl999VWp7fn5+Ro8eLAiIiL04osvOrV17txZRUVFyszM1K233lod5QJAmTGdAAAqQWhoqL7++msdOXJEp0+fVnFxsWJjY3XmzBkNHz5c27dv1+HDh7VmzRrFxMS4fAOWK1JSUjR48GB9+OGH2rdvnw4dOqT4+Hi98cYbGjx4cKnnPPTQQzp27JhefvllnTp1ShkZGcrIyNCFCxcUHh6uESNG6L777tOKFSuUlpambdu2KS4uTv/+978rrW4AqAhGYgGgEkydOlWjRo1S27Ztdf78eaWlpSk0NFSbN2/W448/rttvv10FBQUKCQnRwIEDVaNG5Y0hNG3aVKGhoZo1a5ZjKa3L7x955JFSz0lKSlJ6erratm3rtD8hIUFRUVFasmSJZs+erb/85S/68ccf1bBhQ3Xv3l2/+93vKq1uAKgIVicAAACA5TCdAAAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWI6H2QUAAADA/WRlZengwYOy2WwKCwtTvXr1ynQ+I7EAAACoNmlpafrtb3+rhg0bqnv37urWrZsaNmyo3/72t/rhhx9c7sdmGIZRhXUCAAAAkqSTJ0/qxhtvlN1uV2xsrCIiIiRJqampmj9/voqKirRz5041btz4un0RYgEAAFAtJk6cqISEBG3btk21atVyasvPz9fNN9+sqKgovfLKK9fti+kEAAAAqBaff/65Zs2aVSLASpK3t7f+/ve/6z//+Y9LfRFiAQAAUC3S09PVoUOHq7a3b99eP/74o0t9EWIBAABQLRo1aqTCwsKrtl+8eNGl+bASIRYAAADV5KabbtIXX3xx1fbVq1erY8eOLvVFiAUAAEC1mDJlil577TVlZ2eXaMvJydHrr7+uyZMnu9QXqxMAAADAcnhiFwAAAKpFixYt5Mr4aVpa2nWPIcQCAACgWrg6VcAVTCcAAACA5XBjFwAAACyH6QQAAACoFq7MiTUMQ0eOHLluX4RYAAAAVItrzYlNS0vT4sWLdf78eZf6Yk4sAAAATHP69Gk9/fTTWrRokbp3765nn31WXbt2ve55jMQCAACg2p07d04vvviinn/+eTVv3lwrV67UwIEDXT6fEAsAAIBqU1hYqMWLF2v27NmqVauWFi5cqBEjRpS5H0IsAAAAqsXy5cv117/+VdnZ2XryyScVGxsrD4/yxVHmxJaTYRjKzc2Vr6+vbDab2eUAAAD84tntdnl5eelPf/qTfH19r3rc3Llzr9sXI7HllJubKz8/P2VnZ6tOnTpmlwMAqGKGYaigoECS5OXlxQAGUA5RUVEyDEPff//9VY9xdXyVkdhyysnJIcQCgBvJz8/XkCFDJEkffPCBvL29Ta4IcG88sQsAABfk5+eX+hqAOZhOAAAAgGoxa9Ysl46bMWPGdY8hxAIA4ILi4uJSXwNw3VNPPaV27dpddUWCwsJC7dmzhxALAEBlyc3NdXpdv359E6sBrGvt2rVq3LhxqW2nTp1SQECAS/2Ua07ssWPHNGbMGAUFBcnT01MhISGaNGmSfvrpJ8cxUVFRstlsstls8vb2Vnh4uOLi4kq942zLli2y2+264447SrQdOXJENptN/v7+Tt9AJKlTp06aOXOm075Dhw5pzJgxatasmby8vNSkSRPddtttWrp0qQoLCx3HXa7t59vy5cvLc0kAAABwHXa7/Zp/ySgqKlKNGq7F0zKH2O+//15dunTRwYMHtWzZMh06dEiLFi3S+vXr1aNHD505c8Zx7NixY5Wenq7U1FRNnz5df/vb37Ro0aISfcbHx2vChAnauHGjTpw4Uern5ubm/j979x5WVZX/cfxzPAiaECpeAC8gIuAlFTMVKQHT1CnTLHMYNEQrc9DUxkprJq1UbKaL5TUbMptKLc2aZgbNFNBMRUzM+y1MTRCvXBxFgf37w8fz6wTqAYEzp/N+Pc9+Ovu2zpf9mH5crr2WXn/99RvWlpaWpk6dOmnv3r2aO3eudu3apZSUFD3++OOaP3++du/ebXX9okWLlJWVZbUNHDiwvI8EAAAANvD09LTq9Py1M2fOqG7duja1Ve7hBPHx8XJ1ddXXX3+t2rVrS5KaN2+u0NBQtWzZUi+++KLmz58vSbrtttssXcJxcXGaM2eO1qxZo9GjR1vaKygo0LJly5Senq7s7Gx98MEHeuGFF0p979ixY/Xmm28qPj5ejRo1KnXeMAwNHz5cQUFB2rhxo1WKb9WqlaKjo0v1AtetW9fmLmsAAADcmjZt2ig5OVnt2rUr83xKSoratGljU1vl6ok9e/asVq9erT/+8Y+WAHuNt7e3YmJitGzZslJh0TAMbdiwQfv27ZOrq6vVuU8//VQhISEKDg7W0KFD9f7775c55CA6OlqBgYF65ZVXyqwtIyNDe/fu1cSJE6/bDc3E1AAAAPbzyCOPaPr06dq3b1+pc/v379err76qQYMG2dRWuULswYMHZRiGWrduXeb51q1b69y5czp16pQkad68eXJ3d5ebm5t69OihkpISPf3001b3JCYmaujQoZKkvn37Kjc3V6mpqaXaNplMmjlzphYuXKjDhw+XOn/gwAFJUnBwsOVYTk6O3N3dLdu8efOs7omOjrY67+7urqNHj5b5sxUWFiovL89qAwAAgO2eeuoptWjRQh06dNCAAQM0adIkTZ48WQ899JA6dOigpk2bWv2L/Y1U6MUuWxf5iomJUUZGhjZu3Kh+/frpxRdfVPfu3S3n9+/fr7S0NEVHR0uSXFxcNGTIECUmJpbZXp8+fXT33XfrL3/5i03f7+XlpYyMDGVkZKhu3bq6fPmy1fm33nrLcv7a5uvrW2ZbCQkJ8vT0tGzNmjWzqQYAAABcVbNmTa1du1YvvviiMjMzNXfuXM2ePVsHDx7Uc889p9TU1FL/an895RoTGxgYKJPJpL179+qhhx4qdX7v3r2qV6+eGjZsKOnq4N3AwEBJV4cNBAYGqlu3burVq5ekq72wRUVFVsHRMAy5ublpzpw58vT0LPUdM2fOVFhYmJ599lmr461atZJ0NRiHhoZKuvoG3LXvL2s+Mm9vb8v5m5k8ebKeeeYZy35eXh5BFgAAoJxuu+02vfTSS3rppZduqZ1y9cR6eXmpd+/emjdvni5evGh1Ljs7Wx9//LGGDBlS5thTd3d3jRs3ThMnTpRhGCoqKtKHH36oN954w6ondMeOHfL19dWSJUvKrKFLly4aNGiQJk2aZHU8NDRUISEhev3116tkEmo3NzfdfvvtVhsAAADso9yzE8yZM0fdu3dXnz59NG3aNLVo0UK7d+/Ws88+qyZNmmj69OnXvXfUqFF69dVXtWLFCrm4uOjcuXMaOXJkqR7Xhx9+WImJiXrqqafKbGf69OmlVnswmUxatGiRevfurfDwcE2ePFmtW7fWlStXtH79ep06dUpms9mqnfPnzys7O9vqmIeHh+rUqVPexwIAAICbiIqKuuk1hmEoJSXlpteVe0xsq1atlJ6eroCAAD366KNq2bKlnnzySUVFRWnTpk03XMGkfv36euyxxzR16lQlJiaqV69eZQ4ZePjhh5Wenq4ffvihzHaCgoI0YsQIXbp0yep4t27dtG3bNgUHBys+Pl5t2rRR9+7dtWTJEr311lulBgrHxcXJx8fHaps9e3Z5HwkAAABssH79egUHBys0NFShoaEKCAjQd999Z9kPDg7W+vXrbWrLZNj6lhas5OXlydPTU7m5uQwtAAAncPbsWcXGxkqSFi9ezLKzQAWYzWadOHHCsuzsjz/+qA4dOlhWZc3JyZG3t7dNQ0MrNDsBAADO5pdzkNu6LCaAqsP/hQAAAHA4hFgAAADYza9ntbJ1hVVCLAAANqhVq1aZnwHYrk+fPnJzc7PsN27cWO+++65l/7bbbtOoUaNsaosXuyqIF7sAwLkYhqHCwkJJV+cOt7W3CEDVoCcWAAAADqfcix0AAOCMCgsLNXjwYEnSZ599xpACoALMZrNsGQRgyxRbhFgAAGzwywV2Ll26RIgFKmDlypVW+ydPntT48eO1ZMkSSVJubq5lPuabIcQCAACgWjz44INW+z/++KNq1KhhOZ6Tk2NzW4yJBQAAgF38+OOPunjxooqLiyVdfXHew8PDpnsJsQAA2OCXY/RsGa8H4Ma2bt2qCRMmqKSkRLNnz1ZBQYHmzp2r4OBgm+4nxAIAYINra7v/+jOA8lm1apX69u2r3/3ud3rnnXcUEBCgZ555Rrfffrvmzp2rP//5zza1U+UhdsGCBfLw8FBRUZHlWEFBgWrWrKnIyEira1NSUmQymXT48GH5+/tr1qxZpdqbOnWqOnbsWOa+v7+/TCbTdbfhw4dL0nXPL126tJJ/egAAAFzTtm1bPfTQQ2rdurX27t2rqKgopaena8GCBXrnnXe0ffv2UuNmr6fKX+yKiopSQUGB0tPT1a1bN0nShg0b5O3trS1btli94ZmcnKzmzZurZcuWFfqurVu3WsZUfPfdd3r44Ye1f/9+y2IEtWvXtly7aNEi9e3b1+r+unXrVuh7AQAAcHNRUVH65ptv5OPjYzlWt25dPfnkk+Vuq8pDbHBwsHx8fJSSkmIJsSkpKRowYIDWrVunzZs3W3pkU1JSFBUVVeHvatiwoeVz/fr1JUmNGjUqM5zWrVtX3t7eFf4uAAAAlM+cOXMqra1qmWIrKipKycnJmjRpkqSrPa7PPfeciouLlZycrMjISF28eFFbtmzRiBEjqqOkcissLLQsNyhdfXsOAAAAtlu8eLFN19kyV2y1hdjx48erqKhIFy9e1Pbt2xUREaErV65owYIFkqRNmzapsLDQqif2+eefLzW49/Lly2rTps0t1xQdHS2z2Wx1bM+ePWrevHmZ1yckJOjll1++5e8FAABwViNGjNDtt98uk8kk6epMH3l5eZZ/NTcMw+YFD6olxEZGRurChQvaunWrzp07p6CgIDVs2FARERGKi4vTpUuXlJKSooCAAKsQ+eyzz1pexrrmnXfe0fr162+5prfeeku9evWyOubr63vd6ydPnqxnnnnGsp+Xl6dmzZrdch0AAADOZN++fWrcuLEkKTMzUx06dNDZs2clSadOnbJ5uGe1hNjAwEA1bdpUycnJOnfunCIiIiRdDY3NmjXTd999p+TkZPXs2dPqvgYNGigwMNDq2LWxrrfK29u7VNs34ubmJjc3t0r5bgAAAFzteTUM47r7N1Jt88RGRUUpJSVFKSkpVlNr9ejRQ0lJSUpLS7ull7oAAADgPKqlJ1a6GmLj4+N15coVS0+sJEVERGjMmDG6fPlytYbY8+fPKzs72+qYh4eH6tSpU201AAAAOBNbe1ltUa09sRcvXlRgYKBlHIR0NcTm5+dbpuKqLnFxcfLx8bHaZs+eXW3fDwAA4GyuvdB1Te3atdWjRw+r89fWD7hpW0ZlRmInkpeXJ09PT+Xm5loWUwAA/HadPXvW8sb04sWLK+0dDcCZ5OTkqFGjRpXSVrX1xAIA4Mhq1KhR5mcAtqusACtV45hYAAAAOLe4uDibrlu0aNFNryHEAgBgg1+O07N1zB4Aax9++KEiIiIsixvcCsbEVlBubq7q1q2rY8eOMSYWAJyAYRiW5cfd3NxKvaACOAsPD48K//o3m836/vvv1aFDh1uug57YCjpz5owksWoXAABwKjk5OWrYsKG9yyDEVtS1t1KPHj0qT09PO1fjfK4t+0tPuH3w/O2L528/PHv74vnb17Xn7+rqau9SJBFiK+zam6menp78j2RHt99+O8/fjnj+9sXztx+evX3x/O3rf2UoDXOEAAAAoFqMHDlSXl5eldIWPbEAAACoFgsXLqy0tgixFeTm5qYpU6bIzc3N3qU4JZ6/ffH87Yvnbz88e/vi+dtXZTz/Fi1a2HRdZmbmTa9hii0AAABUC7PZrIkTJ6pJkyY3vO7pp5++aVuEWAAAAFSLypwnlhe7AAAA4HAIsQAAAHA4hFgAAAA4HEJsBc2dO1f+/v6qVauWunbtqrS0NHuX5BTWr1+v/v37y9fXVyaTSV988YW9S3IaCQkJuuuuu+Th4aFGjRpp4MCB2r9/v73Lchrz589X+/btLZO8h4WFKSkpyd5lOa2ZM2fKZDJp/Pjx9i7FKUydOlUmk8lqCwkJsXdZTuXnn3/W0KFD5eXlpdq1a+uOO+5Qenp6udv5xz/+IT8/v0qpiRBbAcuWLdMzzzyjKVOmWAYn9+nTRzk5OfYu7TfvwoUL6tChg+bOnWvvUpxOamqq4uPjtXnzZq1Zs0ZXrlzRfffdpwsXLti7NKfQtGlTzZw5U9u2bVN6erp69uypAQMGaPfu3fYuzels3bpV7777rtq3b2/vUpxK27ZtlZWVZdm+/fZbe5fkNM6dO6fw8HDVrFlTSUlJ2rNnj9544w3Vq1ev3G399a9/1QcffKCzZ8/eemEGyq1Lly5GfHy8Zb+4uNjw9fU1EhIS7FiV85FkrFy50t5lOK2cnBxDkpGammrvUpxWvXr1jL///e/2LsOp5OfnG61atTLWrFljREREGOPGjbN3SU5hypQpRocOHexdhtN6/vnnjbvvvrtS2ho7dqzRpEkTw83NzRg8eLCxatUqo6SkpEJt0RNbTpcvX9a2bdvUq1cvy7EaNWqoV69e2rRpkx0rA6pXbm6uJKl+/fp2rsT5FBcXa+nSpbpw4YLCwsLsXY5TiY+P1/3332/1ZwCqx8GDB+Xr66uAgADFxMTo6NGj9i7Jafzzn/9U586dNXjwYDVq1EihoaF67733KtTWO++8o+PHj+ujjz7SihUrNHToUPn7+2vKlCk2LXDwS4TYcjp9+rSKi4vVuHFjq+ONGzdWdna2naoCqldJSYnGjx+v8PBwtWvXzt7lOI2dO3fK3d1dbm5ueuqpp7Ry5Uq1adPG3mU5jaVLl+r7779XQkKCvUtxOl27dtUHH3ygVatWaf78+crMzNQ999yj/Px8e5fmFH788UfNnz9frVq10urVqzV69Gg9/fTTWrx4cYXbbNOmjWrUqKHs7GzNnTtX+/bt0x133KHevXtryZIlNrXBsrMAyi0+Pl67du1iTFo1Cw4OVkZGhnJzc7V8+XLFxsYqNTWVIFsNjh07pnHjxmnNmjWqVauWvctxOv369bN8bt++vbp27So/Pz99+umnGjlypB0rcw4lJSXq3LmzZsyYIUkKDQ3Vrl27tGDBAsXGxt5S22azWQ888IAeeOAB5efna+bMmRo2bJiio6Nvei8htpwaNGggs9mskydPWh0/efKkvL297VQVUH3GjBmjf/3rX1q/fr2aNm1q73KciqurqwIDAyVJd955p7Zu3aq3335b7777rp0r++3btm2bcnJy1KlTJ8ux4uJirV+/XnPmzFFhYaHMZrMdK3QudevWVVBQkA4dOmTvUpyCj49Pqb8st27dWitWrKiU9s+cOaOlS5fqo48+0sGDBzV69Gib7mM4QTm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIIMBWs4KCAh0+fFg+Pj72LsUphIeHl5pS8cCBA7c0VVZxcbEMw1D//v3VtGlTrVy5UuPGjdOJEyc0e/Zsm9qgJ7YCnnnmGcXGxqpz587q0qWLZs2apQsXLiguLs7epf3mFRQUWP3NOzMzUxkZGapfv76aN29ux8p+++Lj4/XJJ5/oyy+/lIeHh2UMuKenp2rXrm3n6n77Jk+erH79+ql58+bKz8/XJ598opSUFK1evdrepTkFDw+PUuO/69SpIy8vL8aFV4OJEyeqf//+8vPz04kTJzRlyhSZzWab/skZt27ChAnq3r27ZsyYoUcffVRpaWlauHChFi5cWO62PvvsM61YsUJJSUlq2rSpOnXqpDlz5lQsEFfKfAlOaPbs2Ubz5s0NV1dXo0uXLsbmzZvtXZJTSE5ONiSV2mJjY+1d2m9eWc9dkrFo0SJ7l+YURowYYfj5+Rmurq5Gw4YNjXvvvdf4+uuv7V2WU2OKreozZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXFihdmrVqmUMHjzYWL169S3XZDIMwyh/9AUAAADK5+zZs5U2NSMhFgAAAA6HF7sAAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCgBM4cuSITCaTMjIy7F0KAFQKQiwAVMDw4cM1cOBAy35kZKTGjx9vt3oyMzP1hz/8Qb6+vqpVq5aaNm2qAQMGaN++fZKkZs2aKSsrS+3atbNbjQBQmVzsXQAA4NZcuXJFvXv3VnBwsD7//HP5+Pjo+PHjSkpK0vnz5yVJZrNZ3t7e9i0UACoRPbEAcIuGDx+u1NRUvf322zKZTDKZTDpy5IgkadeuXerXr5/c3d3VuHFjDRs2TKdPn7bcGxkZqbFjx2r8+PGqV6+eGjdurPfee08XLlxQXFycPDw8FBgYqKSkpOt+/+7du3X48GHNmzdP3bp1k5+fn8LDwzVt2jR169ZNUunhBMOHD7fU+sstJSVFklRYWKiJEyeqSZMmqlOnjrp27Wo5BwD/CwixAHCL3n77bYWFhemJJ55QVlaWsrKy1KxZM50/f149e/ZUaGio0tPTtWrVKp08eVKPPvqo1f2LFy9WgwYNlJaWprFjx2r06NEaPHiwunfvru+//1733Xefhg0bpv/+979lfn/Dhg1Vo0YNLV++XMXFxTbXfK3WrKwsjRs3To0aNVJISIgkacyYMdq0aZOWLl2qH374QYMHD1bfvn118ODBW3tYAFBJTIZhGPYuAgAczfDhw3X+/Hl98cUXkq72qHbs2FGzZs2yXDNt2jRt2LBBq1evthw7fvy4mjVrpv379ysoKEiRkZEqLi7Whg0bJEnFxcXy9PTUoEGD9OGHH0qSsrOz5ePjo02bNll6Vn9t7ty5eu6552Q2m9W5c2dFRUUpJiZGAQEBkq72xLZo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYflWOPGjSVJOTk51/2u+Ph4ZWdn6+OPP1ZYWJg+++wztW3bVmvWrLlhjdu3b9ewYcM0Z84chYeHS5J27typ4uJiBQUFWdWemppqVTcA2BMvdgFAFSkoKFD//v312muvlTrn4+Nj+VyzZk2rcyaTyeqYyWSSJJWUlNzw+zw8PNS/f3/1799f06ZNU58+fTRt2jT17t27zOuzs7P14IMP6vHHH9fIkSOt6jabzdq2bZvMZrPVPe7u7jesAQCqCyEWACqBq6trqfGonTp10ooVK+Tv7y8Xl+r97dZkMikkJETfffddmecvXbqkAQMGKCQkRG+++abVudDQUBUXFysnJ0f33HNPdZQLAOXGcAIAqAT+/v7asmWLjhw5otOnT6ukpETx8fE6e/asoqOjtXXrVh0+fFirV69WXFyczS9g2SIjI0MDBgzQ8uXLtWfPHh06dEiJiYl6//33NWDAgDLvGTVqlI4dO6Z33nlHp06dUnZ2trKzs3X58mUFBQUpJiZGjz32mD7//HNlZmYqLS1NCQkJ+ve//11pdQPAraAnFgAqwcSJExUbG6s2bdro4sWLyszMlL+/vzZu3Kjnn39e9913nwoLC+Xn56e+ffuqRo3K60No2rSp/P399fLLL1um0rq2P2HChDLvSU1NVVZWltq0aWN1PDk5WZGRkVq0aJGmTZumP/3pT/r555/VoEEDdevWTQ888ECl1Q0At4LZCQAAAOBwGE4AAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADsfF3gUAAADAecTFxdl03aJFi2543mQYhlEZBQEAAAA3M2jQIKv9CxcuaN26derfv78kqbCwUElJSSopKblhO4RYAAAA2E1mZqbat2+v/Px8SdKpU6fk7e2t4uLiG97HmFgAAADYza/7Uw3DKHWsLIRYAAAAVJsrV65USjuEWAAAAFSbJk2aaPz48dq5c6ckqU6dOvrd735ndY3JZLppO4RYAAAAVJtJkyYpLS1NoaGh6tq1q7744gv9/e9/t5xv2LChDh48eNN2eLELAAAA1W7jxo2KiIhQ27ZtdejQIT3yyCMaMWKEIiIibLqfnlgAAABUu3r16slkMmnHjh3asmWLvL29NWzYMAUFBSkhIeGm99MTCwAAgGq3Z88edejQwepFr+LiYr300kt67bXXVFRUdMP7WbELAAAAdrVjxw599NFHWrJkiTw9PfXaa6/d9B5CbAUZhqH8/Hx5eHjY9AYdAAAA/t+ZM2dkGIbuuOMOHT16VIMHD9by5cvVrVs3m+4nxFZQfn6+PD09dfLkSd1+++32LgeoNoZhqLCwUJLk5ubGX+LglPi1D1Tc3/72N61YsULp6ekKCwvTiBEjNGTIEN12223laocxsRWUl5cnT09P9enTRzVr1rR3OQCAavTZZ5+pVq1a9i4DcEg+Pj567LHHNHLkSAUFBVW4HXpiAQAAUG2OHz8us9l8y+0QYm/RlN4HVN/d3lUA1aewyKQXV7WRJE3vu0duLvxjDpzD5eIaeiGptb3LABzeRx99ZNN1sbGxNzxPiL1FruYSubkwLgrOyc3FIMTCiZTYuwDgN2HChAk3vcYwDEJsVWNEMQA4h1/+fs/rJEDFnT17tlLaYcWuW3S5mF5YAHAGv/z9/toMHQDsp0Ih9tixYxoxYoR8fX3l6uoqPz8/jRs3TmfOnLFcExkZKZPJJJPJpFq1almWECvrb6+bNm2S2WzW/fffX+rckSNHZDKZ1KhRI+Xn51ud69ixo6ZOnWp17NChQxoxYoSaN28uNzc3NWnSRPfee68+/vhjq5UfrtX2623p0qUVeSQAAACwweLFi23abqbcwwl+/PFHhYWFKSgoSEuWLFGLFi20e/duPfvss0pKStLmzZtVv359SdITTzyhV155RYWFhVq3bp2efPJJ1a1bV6NHj7ZqMzExUWPHjlViYqJOnDghX1/fUt+bn5+v119/XS+//PJ1a0tLS1OvXr3Utm1bzZ07VyEhIZKk9PR0zZ07V+3atVOHDh0s1y9atEh9+/a1aqNu3brlfSQAAACw0a/HxJaUlCgvL8+SwQzDUG5ubuWPiY2Pj5erq6u+/vpr1a5dW5LUvHlzhYaGqmXLlnrxxRc1f/58SdJtt90mb29vSVJcXJzmzJmjNWvWWIXYgoICLVu2TOnp6crOztYHH3ygF154odT3jh07Vm+++abi4+PVqFGjUucNw9Dw4cMVFBSkjRs3qkaN/+9kbtWqlaKjo0v1AtetW9dSHwAAAKrer8fEZmZmqkOHDpbjp06dsimflWs4wdmzZ7V69Wr98Y9/tATYa7y9vRUTE6Nly5aVCouGYWjDhg3at2+fXF1drc59+umnCgkJUXBwsIYOHar333+/zCEH0dHRCgwM1CuvvFJmbRkZGdq7d68mTpxoFWB/6VZWVyksLFReXp7VBgAAgFtz+fJllZT8/+wfv/x8I+UKsQcPHpRhGGrduux58lq3bq1z587p1KlTkqR58+bJ3d1dbm5u6tGjh0pKSvT0009b3ZOYmKihQ4dKkvr27avc3FylpqaWattkMmnmzJlauHChDh8+XOr8gQMHJEnBwcGWYzk5OXJ3d7ds8+bNs7onOjra6ry7u7uOHj1a5s+WkJAgT09Py9asWbPrPSYAAADYKCkpSf/973+Vk5Mj6WrPbOPGjW96X4Ve7LJ1apGYmBhlZGRo48aN6tevn1588UV1797dcn7//v1KS0tTdHS0JMnFxUVDhgxRYmJime316dNHd999t/7yl7/Y9P1eXl7KyMhQRkaG6tatq8uXL1udf+uttyznr21ljceVpMmTJys3N9eyHTt2zKYaAAAAUNrx48c1ZswYffzxxzKZTPr973+vOXPmaPTo0erRo8dN7y9XiA0MDJTJZNLevXvLPL93717Vq1dPDRs2lCR5enoqMDBQd911lz799FPNmTNH33zzjeX6xMREFRUVydfXVy4uLnJxcdH8+fO1YsUK5ebmlvkdM2fO1LJly7R9+3ar461atZJ0NRhfYzabFRgYqMDAQLm4lB7+6+3tbTl/o+skyc3NTbfffrvVBgAAgPLZsmWLfv/736tly5bKy8tTamqqxo0bp2+//Vbjxo1TrVq19Prrr9+0nXKFWC8vL/Xu3Vvz5s3TxYsXrc5lZ2fr448/1pAhQ8oce+ru7q5x48Zp4sSJMgxDRUVF+vDDD/XGG29Y9YTu2LFDvr6+WrJkSZk1dOnSRYMGDdKkSZOsjoeGhiokJESvv/66zWMpAAAAUL26d++uCxcuaMuWLfrwww9122236c0337T8a/emTZvUtGnTm7ZT7tkJ5syZo+7du6tPnz6aNm2a1RRbTZo00fTp069776hRo/Tqq69qxYoVcnFx0blz5zRy5Eh5enpaXffwww8rMTFRTz31VJntTJ8+XW3btrXqNTWZTFq0aJF69+6t8PBwTZ48Wa1bt9aVK1e0fv16nTp1Smaz2aqd8+fPKzs72+qYh4eH6tSpU97HAgAAABts2bJFnTt3LnX82qQBx48fV1xcnNasWXPDdso9JrZVq1ZKT09XQECAHn30UbVs2VJPPvmkoqKitGnTJsscsWWpX7++HnvsMU2dOlWJiYnq1atXqQArXQ2x6enp+uGHH8psJygoSCNGjNClS5esjnfr1k3btm1TcHCw4uPj1aZNG3Xv3l1LlizRW2+9VWp+2ri4OPn4+Fhts2fPLu8jAQAAgI3KCrDXfPjhh2rfvn2pjseymAwWgK6QvLw8eXp6auubfmpwO0vPwnkUFpk08V9tJUmvP7Bbbi78FgLncOmKSc/+++qv/U8//bTUVJMAKu7UqVMaNWqUvvnmG73xxht64oknbnpPuYcTwNqVkhoqLLr5dcBvRWGRqczPwG/dlZL//8fLW5l3HHB2v159taioSO+++67atWunnTt3ys/Pz6Z2CLG36OU1QapZs6a9ywDs4sVVbexdAgDAwXz55ZdW+0VFRTp37pwGDRpkc4CVCLEAAACoRt9//32pY1999ZWeeOIJff7550pMTFSLFi1u2g5jYivo2pjYkydPMmcsnIphGCosLJR0df5k/lkVzohf+0DlO3v2rEaNGqVVq1bptdde0x//+McbXk+IraBrITY3N5cQCwAAUEk++eQTxcfH69y5cze8rkLLzgIA4GwMw9ClS5d06dIlm5dfB1B+/fv3v+E0XNcQYgEAsEFhYaEGDx6swYMHW4bUAKh8Fy9e1Nq1a296HSEWAAAb/HKBnV8vtgOg+hFiAQAA4HCYYgsAABuUlJSU+RlA+ZjN5koZV06IBQDABvn5+Vaf69evb8dqAMe1cuXKG57Pzc1VbGzsTdup8uEECxYskIeHh4qK/n9t1oKCAtWsWVORkZFW16akpMhkMunw4cPy9/fXrFmzSrU3depUdezYscx9f39/mUym627Dhw+XpOueX7p0aSX/9AAAAPilBx988IZbnz59bGqnyntio6KiVFBQoPT0dHXr1k2StGHDBnl7e2vLli26dOmSatWqJUlKTk5W8+bN1bJlywp919atW1VcXCxJ+u677/Twww9r//79lnlca9eubbl20aJF6tu3r9X9devWrdD3AgAAwDZXrlxRzZo1b7mdKu+JDQ4Olo+Pj1JSUizHUlJSNGDAALVo0UKbN2+2Oh4VFVXh72rYsKG8vb3l7e1t+WeeRo0aWY55enparq1bt67l+LXtWpgGAABA1WjSpInGjx+vnTt3lnnebDbL39//pu1Uy+wEUVFRSk5OtuwnJycrMjJSERERluMXL17Uli1bbinEAgAA4H/bpEmTlJaWptDQUHXt2lXvvvuu1ZhzLy8v/fjjjzdtp9pC7MaNG1VUVKT8/Hxt375dERER6tGjh6WHdtOmTSosLLQKsc8//7zc3d2tthkzZlRKTdHR0aXaPnr06HWvLywsVF5entUGAACA8nnmmWf03XffKTU1Vdu2bdO8efPk7e2t2NhYpaam2txOtYTYyMhIXbhwQVu3btWGDRsUFBSkhg0bKiIiwjIuNiUlRQEBAWrevLnlvmeffVYZGRlW21NPPVUpNb311lul2vb19b3u9QkJCfL09LRszZo1q5Q6AAAAnFG9evVkMpm0Y8cObdmyRd7e3ho2bJiCgoKUkJBw0/urJcQGBgaqadOmSk5OVnJysiIiIiRJvr6+atasmb777jslJyerZ8+eVvc1aNBAgYGBVltlTWni7e1dqm0Xl+u/5zZ58mTl5uZatmPHjlVKHQAAAM6uXbt2eu2115SZmanBgwfrL3/5y03vqbZ5YqOiopSSkqJz587p2WeftRzv0aOHkpKSlJaWptGjR1dXOeXm5uYmNzc3e5cBAADwm7Njxw599NFHWrJkiTw9PfXaa6/d9J5qDbHx8fG6cuWKpSdWkiIiIjRmzBhdvny5Wl/qOn/+vLKzs62OeXh4qE6dOtVWAwAAgLM6c+aMDMPQHXfcoaNHj2rw4MFavny5ZUrWm6nWEHvx4kWFhISocePGluMRERHKz8+3TMVVXeLi4kodS0hI0KRJk6qtBgAAAGfzt7/9TStWrFB6errCwsI0YsQIDRkyRLfddlu52jEZlbF4rRPKy8uTp6encnNzLYspAAB+u86ePWtZCnPx4sUsOwtUkI+Pjx577DGNHDlSQUFBFW6n2npiAQBwZDVq1CjzM4DyOX78uMxm8y23Q4gFAABAtfnoo49suu7av3xcDyEWAAAA1WbEiBGqU6fODac2NQyDEAsAQGWoVatWmZ8BlN+GDRvUoUOHW2qDEFtB196HY/lZAHAOhmEoMTFR0tWlyC9fvmznigD78PDwkMlksncZhNiKOnPmjCSx/CwAAHAqOTk5atiwob3LIMRW1LWpVY4ePSpPT087V+N88vLy1KxZMx07dowpzuyA529fPH/74dnbF8/fvq49f1dXV3uXIokQW2HXplfx9PTkfyQ7uv3223n+dsTzty+ev/3w7O2L529ftzqUoGXLlnJzc7vlOgixAAAAqDYHDhyolHYIsQAAAKg2cXFxNl23aNGiG55nyZEKcnNz05QpUyqlOxzlx/O3L56/ffH87Ydnb188f/uqrOf/4YcfKicnR7m5ucrNzdWJEyf00UcfWfZzcnK0ePHim7ZjMq7NFQUAAABUMbPZrBMnTqhx48aSpMzMTLVv3175+fmSpFOnTsnb21vFxcU3bIeeWAAAANjNr/tTDcModawshFgAAAA4HEIsAAAA7OrX03bZMo0XIRYAAADVJjg4WC4u/z9BVv369fXCCy9Y9t3c3NSnT5+btkOIraC5c+fK399ftWrVUteuXZWWlmbvkpzC+vXr1b9/f/n6+spkMumLL76wd0lOIyEhQXfddZc8PDzUqFEjDRw4UPv377d3WU5j/vz5at++vWWS97CwMCUlJdm7LKc1c+ZMmUwmjR8/3t6lOIWpU6fKZDJZbSEhIfYuy6n8/PPPGjp0qLy8vFS7dm3dcccdSk9Pr1Bbe/bskZeXl2W/bt26mjRpkmXf09NT//nPf27aDiG2ApYtW6ZnnnlGU6ZM0ffff68OHTqoT58+ysnJsXdpv3kXLlxQhw4dNHfuXHuX4nRSU1MVHx+vzZs3a82aNbpy5Yruu+8+Xbhwwd6lOYWmTZtq5syZ2rZtm9LT09WzZ08NGDBAu3fvtndpTmfr1q1699131b59e3uX4lTatm2rrKwsy/btt9/auySnce7cOYWHh6tmzZpKSkrSnj179MYbb6hevXp2rYsptiqga9euuuuuuzRnzhxJUklJiZo1a6axY8da/U0CVctkMmnlypUaOHCgvUtxSqdOnVKjRo2UmpqqHj162Lscp1S/fn397W9/08iRI+1ditMoKChQp06dNG/ePE2bNk0dO3bUrFmz7F3Wb97UqVP1xRdfKCMjw96lOKVJkyZp48aN2rBhg71LsUJPbDldvnxZ27ZtU69evSzHatSooV69emnTpk12rAyoXrm5uZKuBilUr+LiYi1dulQXLlxQWFiYvctxKvHx8br//vut/gxA9Th48KB8fX0VEBCgmJgYHT161N4lOY1//vOf6ty5swYPHqxGjRopNDRU7733nr3LIsSW1+nTp1VcXGyZoPeaxo0bKzs7205VAdWrpKRE48ePV3h4uNq1a2fvcpzGzp075e7uLjc3Nz311FNauXKl2rRpY++ynMbSpUv1/fffKyEhwd6lOJ2uXbvqgw8+0KpVqzR//nxlZmbqnnvusUyOj6r1448/av78+WrVqpVWr16t0aNH6+mnn7ZpVa2q5HLzSwDAWnx8vHbt2sWYtGoWHBysjIwM5ebmavny5YqNjVVqaipBthocO3ZM48aN05o1a1SrVi17l+N0+vXrZ/ncvn17de3aVX5+fvr0008ZTlMNSkpK1LlzZ82YMUOSFBoaql27dmnBggWKjY21W130xJZTgwYNZDabdfLkSavjJ0+elLe3t52qAqrPmDFj9K9//UvJyclq2rSpvctxKq6urgoMDNSdd96phIQEdejQQW+//ba9y3IK27ZtU05Ojjp16iQXFxe5uLgoNTVV77zzjlxcXG66PCYqV926dRUUFKRDhw7ZuxSn4OPjU+ovy61bt7b7kA5CbDm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIkNlstneJTqWgoECHDx+Wj4+PvUtxCuHh4aWmVDxw4ID8/PzsVNFVDCeogGeeeUaxsbHq3LmzunTpolmzZunChQuKi4uzd2m/eQUFBVZ/887MzFRGRobq16+v5s2b27Gy3774+Hh98skn+vLLL+Xh4WEZA+7p6anatWvbubrfvsmTJ6tfv35q3ry58vPz9cknnyglJUWrV6+2d2lOwcPDo9T47zp16sjLy4tx4dVg4sSJ6t+/v/z8/HTixAlNmTJFZrNZ0dHR9i7NKUyYMEHdu3fXjBkz9OijjyotLU0LFy7UwoUL7VuYgQqZPXu20bx5c8PV1dXo0qWLsXnzZnuX5BSSk5MNSaW22NhYe5f2m1fWc5dkLFq0yN6lOYURI0YYfn5+hqurq9GwYUPj3nvvNb7++mt7l+XUIiIijHHjxtm7DKcwZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXGjvkgzmiQUAAIDDYUwsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAHACR44ckclkUkZGhr1LAYBKQYgFgAoYPny4Bg4caNmPjIzU+PHj7VZPZmam/vCHP8jX11e1atVS06ZNNWDAAO3bt0+S1KxZM2VlZbFEKoDfDBd7FwAAuDVXrlxR7969FRwcrM8//1w+Pj46fvy4kpKSdP78eUmS2WyWt7e3fQsFgEpETywA3KLhw4crNTVVb7/9tkwmk0wmk44cOSJJ2rVrl/r16yd3d3c1btxYw4YN0+nTpy33RkZGauzYsRo/frzq1aunxo0b67333tOFCxcUFxcnDw8PBQYGKikp6brfv3v3bh0+fFjz5s1Tt27d5Ofnp/DwcE2bNk3dunWTVHo4wfDhwy21/nJLSUmRJBUWFmrixIlq0qSJ6tSpo65du1rOAcD/AkIsANyit99+W2FhYXriiSeUlZWlrKwsNWvWTOfPn1fPnj0VGhqq9PR0rVq1SidPntSjjz5qdf/ixYvVoEEDpaWlaezYsRo9erQGDx6s7t276/vvv9d9992nYcOG6b///W+Z39+wYUPVqFFDy5cvV3Fxsc01X6s1KytL48aNU6NGjRQSEiJJGjNmjDZt2qSlS5fqhx9+0ODBg9W3b18dPHjw1h4WAFQSk2EYhr2LAABHM3z4cJ0/f15ffPGFpKs9qh07dtSsWbMs10ybNk0bNmzQ6tWrLceOHz+uZs2aaf/+/QoKClJkZKSKi4u1YcMGSVJxcbE8PT01aNAgffjhh5Kk7Oxs+fj4aNOmTZae1V+bO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKs9sS1atND27dvVsWNHq3s///xzxcTE6JtvvlF4eLiOHj2qgIAAHT16VL6+vpbrevXqpS5dumjGjBm3+vgA4JbREwsAVWTHjh1KTk6Wu7u7ZbvW03n48GHLde3bt7d8NpvN8vLy0h133GE51rhxY0lSTk7Odb8rPj5e2dnZ+vjjjxUWFqbPPvtMbdu21Zo1a25Y4/bt2zVs2DDNmTNH4eHhkqSdO3equLhYQUFBVrWnpqZa1Q0A9sSLXQBQRQoKCtS/f3+99tprpc75+PhYPtesWdPqnMlksjpmMpkkSSUlJTf8Pg8PD/Xv31/9+/fXtGnT1KdPH02bNk29e/cu8/rs7Gw9+OCDevzxxzVy5Eirus1ms7Zt2yaz2Wx1j7u7+w1rAIDqQogFgErg6upaajxqp06dtGLFCvn7+8vFpXp/uzWZTAoJCdF3331X5vlLly5pwIABCgkJ0Ztvvml1LjQ0VMXFxcrJydE999xTHeUCQLkxnAAAKoG/v7+2bNmiI0eO6PTp0yopKVF8fLzOnj2r6Ohobd26VYcPH9bq1asVFxdn8wtYtsjIyNCAAQO0fPly7dmzR4cOHVJiYqLef/99DRgwoMx7Ro0apWPHjumdd97RqVOnlJ2drezsbF2+fFlBQUGKiYnRY489ps8//1yZmZlKS0tTQkKC/v3vf1da3QBwK+iJBYBKMHHiRMXGxqpNmza6ePGiMjMz5e/vr40bN+r555/Xfffdp8LCQvn5+alv376qUaPy+hCaNm0qf39/vfzyy5aptK7tT5gwocx7UlNTlZWVpTZt2lgdT05OVmRkpBYtWqRp06bpT3/6k37++Wc1aNBA3bp10wMPPFBpdQPArWB2AgAAADgchhMAAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAw3GxdwEAAAD47YuLi7PpukWLFtl0nckwDONWCgIAAABuxmw2q2/fvnJzc5MkXbhwQevWrVP//v0lSYWFhUpKSlJJSYlN7RFiAQAAUOXMZrNOnDihxo0bS5IyMzPVvn175efnS5JOnTqlxo0b2xxiGRMLAACAavfrftTy9qsSYgEAAFDlPDw8dO7cOcv+uXPndOHCBRUUFEiSsrOzVb9+fZvbI8QCAACgyoWEhGj27NkqKSlRSUmJ5s2bJ19fX02cOFEbN27Uiy++qLvuusvm9hgTCwAAgCr3xRdf6JFHHlGdOnVUUlKiOnXqaNWqVfr973+vgwcPqlmzZvrqq690xx132NQeIRYAAADVYv369frqq69Uu3ZtPfHEE2rWrJkk6cyZM/Ly8ipXW4RYAAAAOBzGxAIAAMDhsGIXAAAAqpzZbLZpGi1b54klxAIAAKBavPXWW2rRokWltMWY2AoyDEP5+fny8PCQyWSydzkAAAD/08xms77//nt16NChUtpjTGwF5efny9PT07JUGgDgt80wDF26dEmXLl0q98pCACofIRYAABsUFhZq8ODBGjx4sAoLC+1dDuD0CLEAANjg0qVLZX4GYB+82AUAAIAqt2HDBrVq1UqSdO7cOeXl5ZV5nZ+fn03tEWIBAABQ5cLCwvTaa6/pzTff1OnTp0udN5lMMgyDKbYAAKhMv/yD1dY/ZAH8v3nz5unNN9/UCy+8oDvvvFOenp631B4hFgAAG/xyNpr8/HzVr1/fjtUAjue9997TrFmz9Ic//KFS2qvQi13Hjh3TiBEj5OvrK1dXV/n5+WncuHE6c+aM5ZrIyEiZTCaZTCbVqlVLQUFBSkhIKHNakk2bNslsNuv+++8vde7IkSMymUxq1KhRqemsOnbsqKlTp1odO3TokEaMGKHmzZvLzc1NTZo00b333quPP/5YRUVFluuu1fbrbenSpRV5JAAAALiBw4cPq1u3bpXWXrlD7I8//qjOnTvr4MGDWrJkiQ4dOqQFCxZo7dq1CgsL09mzZy3XPvHEE8rKytL+/fs1efJkvfTSS1qwYEGpNhMTEzV27FitX79eJ06cKPN78/Pz9frrr9+wtrS0NHXq1El79+7V3LlztWvXLqWkpOjxxx/X/PnztXv3bqvrFy1apKysLKtt4MCB5X0kAAAAuIn69euXORa2osodYuPj4+Xq6qqvv/5aERERat68ufr166dvvvlGP//8s1588UXLtbfddpu8vb3l5+enuLg4tW/fXmvWrLFqr6CgQMuWLdPo0aN1//3364MPPijze8eOHas333xTOTk5ZZ43DEPDhw9XUFCQNm7cqP79+6tVq1Zq1aqVoqOj9e2336p9+/ZW99StW1fe3t5WW61atcr7SAAAAHAT4eHhevXVV687K0F5lSvEnj17VqtXr9Yf//hH1a5d2+qct7e3YmJitGzZslJDBgzD0IYNG7Rv3z65urpanfv0008VEhKi4OBgDR06VO+//36ZQw6io6MVGBioV155pczaMjIytHfvXk2cOFE1apT9Y93K8rCFhYXKy8uz2gAAAGCbmTNnau/evWrSpIlCQ0MVFRVV5marcoXYgwcPyjAMtW7duszzrVu31rlz53Tq1ClJV99Cc3d3l5ubm3r06KGSkhI9/fTTVvckJiZq6NChkqS+ffsqNzdXqamppdo2mUyaOXOmFi5cqMOHD5c6f+DAAUlScHCw5VhOTo7c3d0t27x586zuiY6Otjrv7u6uo0ePlvmzJSQkyNPT07I1a9bseo8JAAAAv9K8eXPt3r1bCxcu1MCBAxUaGlrmZqsKzU5g65rRMTExevHFF3Xu3DlNmTJF3bt3V/fu3S3n9+/fr7S0NK1cufJqMS4uGjJkiBITExUZGVmqvT59+ujuu+/WX/7yF33yySc3/X4vLy9lZGRIuvqi2eXLl63Ov/XWW+rVq5fVMV9f3zLbmjx5sp555hnLfl5eHkEWAACgHNzc3BQdHV0pbZUrxAYGBspkMmnv3r166KGHSp3fu3ev6tWrp4YNG0qSPD09FRgYKOnqsIHAwEB169bNEhwTExNVVFRkFRwNw5Cbm5vmzJlT5vxhM2fOVFhYmJ599lmr49dWgNi/f78lxZvNZsv3u7iU/lG9vb0t52/Gzc1Nbm5uNl0LAACAqlWu4QReXl7q3bu35s2bp4sXL1qdy87O1scff6whQ4aUOfbU3d1d48aN08SJE2UYhoqKivThhx/qjTfeUEZGhmXbsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/11JqEGAAD4H9OiRYubbv7+/ja3V+7hBHPmzFH37t3Vp08fTZs2TS1atNDu3bv17LPPqkmTJpo+ffp17x01apReffVVrVixQi4uLjp37pxGjhxZqsf14YcfVmJiop566qky25k+fbratm1r1btqMpm0aNEi9e7dW+Hh4Zo8ebJat26tK1euaP369Tp16pTMZrNVO+fPn1d2drbVMQ8PD9WpU6e8jwUAAAA3cPToUb3yyivy8PCQJJ0+fVp/+9vf9Nprr0m6OmPVn//8Z9sbNCrgyJEjRmxsrNG4cWOjZs2aRrNmzYyxY8cap0+ftlwTERFhjBs3rtS9o0aNMtq2bWs88MADxu9+97sy29+yZYshydixY4eRmZlpSDK2b99udc2TTz5pSDKmTJlidXz//v1GbGys0bRpU8PFxcXw9PQ0evToYbz77rvGlStXLNdJKnNLSEiw6Rnk5uYakozc3FybrgcAOLYjR44YDzzwgPHAAw8YR44csXc5gMOpUaOGkZ2dbdk/fPiw4e7ubtk/efKkYTKZbG7PZBg2vqUFK3l5efL09FRubq5uv/12e5cDAKhiZ8+eVWxsrCRp8eLFLDsLlJPZbNaJEyfUuHFjSVcX0OrQoYNlRdacnBx5e3vbPCy0QsvOAgDgbH45B/n15iMHUH34vxAAAAB28evJAMqzMBUhFgAAG/xyWXKWKAfKb9SoUbrtttss+02aNFFSUpJl38PDQwkJCTa3x5jYCmJMLAA4F8MwVFhYKOnq3OG3spQ5gFtXoRW7AABwNiaTiR5Y4H8IwwkAAADgcAixAAAAcDiEWAAAANidYRj66aefbL6eEAsAAAC7O3XqlFq0aGHz9YRYAAAA/E9gnlgAAAA4nPLM/FrlU2wtWLBAzz77rM6dOycXl6tfV1BQoHr16ik8PFwpKSmWa1NSUhQVFaVDhw7p3nvv1fjx4zV+/Hir9qZOnaovvvhCGRkZpfb9/f1vOJYiNjZWH3zwwXVT/pIlS/T73//+ln5eAAAAlPbyyy/f8HxBQUG52qvyEBsVFaWCggKlp6erW7dukqQNGzbI29tbW7Zs0aVLlyzz7iUnJ6t58+Zq2bJlhb5r69atKi4uliR99913evjhh7V//37LYgS1a9e2XLto0SL17dvX6v66detW6HsBAABwY19++eUNzxcVFZWrvSoPscHBwfLx8VFKSoolxKakpGjAgAFat26dNm/erMjISMvxqKioCn9Xw4YNLZ/r168vSWrUqFGZ4bRu3bry9vau8HcBAADAdt9///0Nz586dUqNGze2ub1qGRMbFRWl5ORky35ycrIiIyMVERFhOX7x4kVt2bLllkJsVSosLFReXp7VBgAAgMpRnvGwUjWG2I0bN6qoqEj5+fnavn27IiIi1KNHD8uY2E2bNqmwsNAqxD7//PNyd3e32mbMmFEpNUVHR5dq++jRo9e9PiEhQZ6enpatWbNmlVIHAAAArirP7ARVPpxAkiIjI3XhwgVt3bpV586dU1BQkBo2bKiIiAjFxcXp0qVLSklJUUBAgJo3b26579lnn9Xw4cOt2nrnnXe0fv36W67prbfeUq9evayO+fr6Xvf6yZMn65lnnrHs5+XlEWQBAAAqiaen501f/vqlagmxgYGBatq0qZKTk3Xu3DlFRERIuhoamzVrpu+++07Jycnq2bOn1X0NGjRQYGCg1bFrY11vlbe3d6m2b8TNzU1ubm6V8t0AAAD4f6dPn9ZTTz2lVatW6c9//rNN91TbPLFRUVFKSUlRSkqK5UUuSerRo4eSkpKUlpb2PzseFgAAAFXjyy+/VLt27XTy5En98MMPNt9XLT2x0tUQGx8frytXrlh6YiUpIiJCY8aM0eXLl6s1xJ4/f17Z2dlWxzw8PFSnTp1qqwEAAMBZ/Hou/6KiIr366qv67LPP9Oqrr1oN27RFtYbYixcvKiQkxGr6hIiICOXn51um4qoucXFxpY4lJCRo0qRJ1VYDAACAswgICJBhGDKZTJb/mkwmrVq1qtR7SrYwGeWdzwCSrr7Y5enpqdzcXMtiCgAAACjbr4cKFBUVafr06UpOTtabb75Z6mX+myHEVhAhFgAA4NZ99NFHevrppxUWFqb33nvvhrNF/VK1vdgFAAAA/NrQoUO1a9cuFRUVqV27djbfV21jYgEAAICy+Pr6avXq1Zo3b57N9zCcoIIYTgAAAGA/9MRW0LXsn5eXZ+dKAAAAqo+Hh0e5loe95trsBDdiGIaOHDliU3uE2Ao6c+aMJLH0LAAAcCo5OTlq2LBhue8bP3685fPp06f1t7/9Ta+99prlWEFBgc2rdUkMJ6iw8+fPq169ejp69Kg8PT3tXY7TycvLU7NmzXTs2DGGc9gBz9++eP72w7O3L56/fV17/ufPn7/l7PPjjz+qQ4cOys/PtxzLycmRt7e3SkpKbGqDntgKqlHj6sQOnp6e/I9kR7fffjvP3454/vbF87cfnr198fztqyJDCX7N3d1dly5d0uXLl+Xq6irpaki+7bbbbG6DKbYAAABQrRo1aiQPDw+98cYbkqTi4mK9/vrrCg4OtrkNemIBAABQ7V544QU9//zz+utf/6orV67o4sWLWrZsmc33E2IryM3NTVOmTJGbm5u9S3FKPH/74vnbF8/ffnj29sXzt6/Kfv4TJ05Uu3bttHbtWrm6uqp///7q1q2bzffzYhcAAAAcDj2xAAAAqHIvv/yyTddNmTLFpuvoiQUAAECVM5vNatu2rVxcrvahXr58Wfv27VP79u0lSUVFRdq1a5fNU2wRYgEAAFDlzGazTpw4ocaNG0uSMjMz1b59e8tcsadOnZK3t7eKi4ttao8ptgAAAFDtft2PahjGTZel/SVCbAXNnTtX/v7+qlWrlrp27aq0tDR7l+QU1q9fr/79+8vX11cmk0lffPGFvUtyGgkJCbrrrrvk4eGhRo0aaeDAgdq/f7+9y3Ia8+fPV/v27S2TvIeFhSkpKcneZTmtmTNnymQyWS2jiaozdepUmUwmqy0kJMTeZTmVn3/+WUOHDpWXl5dq166tO+64Q+np6XatiRBbAcuWLdMzzzyjKVOm6Pvvv1eHDh3Up08f5eTk2Lu037wLFy6oQ4cOmjt3rr1LcTqpqamKj4/X5s2btWbNGl25ckX33XefLly4YO/SnELTpk01c+ZMbdu2Tenp6erZs6cGDBig3bt327s0p7N161a9++67lnF8qB5t27ZVVlaWZfv222/tXZLTOHfunMLDw1WzZk0lJSVpz549euONN1SvXr1ytVNWL+strf5loNy6dOlixMfHW/aLi4sNX19fIyEhwY5VOR9JxsqVK+1dhtPKyckxJBmpqan2LsVp1atXz/j73/9u7zKcSn5+vtGqVStjzZo1RkREhDFu3Dh7l+QUpkyZYnTo0MHeZTit559/3rj77rtvuZ3atWsbJ0+etOyfOnXKGD16tGX/zJkzRuvWrW1uj57Ycrp8+bK2bdumXr16WY7VqFFDvXr10qZNm+xYGVC9cnNzJUn169e3cyXOp7i4WEuXLtWFCxcUFhZm73KcSnx8vO6//36rPwNQPQ4ePChfX18FBAQoJiZGR48etXdJTuOf//ynOnfurMGDB6tRo0YKDQ3Ve++9V+52/vvf/6pRo0aW/QYNGmjevHmW/fr162vPnj02t0eILafTp0+ruLjY8mbdNY0bN1Z2dradqgKqV0lJicaPH6/w8HC1a9fO3uU4jZ07d8rd3V1ubm566qmntHLlSrVp08beZTmNpUuX6vvvv1dCQoK9S3E6Xbt21QcffKBVq1Zp/vz5yszM1D333GN5qx1V68cff9T8+fPVqlUrrV69WqNHj9bTTz+txYsX27UuFjsAUG7x8fHatWsXY9KqWXBwsDIyMpSbm6vly5crNjZWqampBNlqcOzYMY0bN05r1qxRrVq17F2O0+nXr5/lc/v27dW1a1f5+fnp008/1ciRI+1YmXMoKSlR586dNWPGDElSaGiodu3apQULFig2NtZuddETW04NGjSQ2WzWyZMnrY6fPHlS3t7edqoKqD5jxozRv/71LyUnJ6tp06b2LsepuLq6KjAwUHfeeacSEhLUoUMHvf322/Yuyyls27ZNOTk56tSpk1xcXOTi4qLU1FS98847cnFxsXleS1SOunXrKigoSIcOHbJ3KU7Bx8en1F+WW7dubfchHYTYcnJ1ddWdd96ptWvXWo6VlJRo7dq1jE3Db5phGBozZoxWrlypdevWqUWLFvYuyemVlJSosLDQ3mU4hXvvvVc7d+5URkaGZevcubNiYmKUkZEhs9ls7xKdSkFBgQ4fPiwfHx97l+IUwsPDS02peODAAfn5+dmpoqsYTlABzzzzjGJjY9W5c2d16dJFs2bN0oULFxQXF2fv0n7zCgoKrP7mnZmZqYyMDNWvX1/Nmze3Y2W/ffHx8frkk0/05ZdfysPDwzIG3NPTU7Vr17Zzdb99kydPVr9+/dS8eXPl5+frk08+UUpKilavXm3v0pyCh4dHqfHfderUkZeXF+PCq8HEiRPVv39/+fn56cSJE5oyZYrMZrOio6PtXZpTmDBhgrp3764ZM2bo0UcfVVpamhYuXKiFCxfat7Bbni/BSc2ePdto3ry54erqanTp0sXYvHmzvUtyCsnJyYakUltsbKy9S/vNK+u5SzIWLVpk79KcwogRIww/Pz/D1dXVaNiwoXHvvfcaX3/9tb3LcmpMsVV9hgwZYvj4+Biurq5GkyZNjCFDhhiHDh2yd1lO5auvvjLatWtnuLm5GSEhIcbChQvtXZJhMoxyrO8FAAAA/A9gTCwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAcAJHjhyRyWRSRkaGvUsBgEpBiAWAChg+fLgGDhxo2Y+MjNT48ePtVk9mZqb+8Ic/yNfXV7Vq1VLTpk01YMAA7du3T5LUrFkzZWVlsUQqgN8MF3sXAAC4NVeuXFHv3r0VHByszz//XD4+Pjp+/LiSkpJ0/vx5SZLZbJa3t7d9CwWASkRPLADcouHDhys1NVVvv/22TCaTTCaTjhw5IknatWuX+vXrJ3d3dzVu3FjDhg3T6dOnLfdGRkZq7NixGj9+vOrVq6fGjRvrvffe04ULFxQXFycPDw8FBgYqKSnput+/e/duHT58WPPmzVO3bt3k5+en8PBwTZs2Td26dZNUejjB8OHDLbX+cktJSZEkFRYWauLEiWrSpInq1Kmjrl27Ws4BwP8CQiwA3KK3335bYWFheuKJJ5SVlaWsrCw1a9ZM58+fV8+ePRUaGqr09HStWrVKJ0+e1KOPPmp1/+LFi9WgQQOlpaVp7NixGj16tAYPHqzu3bvr+++/13333adhw4bpv//9b5nf37BhQ9WoUUPLly9XcXGxzTVfqzUrK0vjxo1To0aNFBISIkkaM2aMNm3apKVLl+qHH37Q4MGD1bdvXx08ePDWHhYAVBKTYRiGvYsAAEczfPhwnT9/Xl988YWkqz2qHTt21KxZsyzXTJs2TRs2bNDq1astx44fP65mzZpp//79CgoKUmRkpIqLi7VhwwZJUnFxsTw9PTVo0CB9+OGHkqTs7Gz5+Pho06ZNlp7VX5s7d66ee+45mc1mde7cWVFRUYqJiVFAQICkqz2xLVq00Pbt29WxY0erez///HPFxMTom2++UXh4uI4ePaqAgAAdPXpUvr6+lut69eqlLl26aMaMGbf6+ADgltETCwBVZMeOHUpOTpa7u7tlu9bTefjwYct17du3t3w2m83y8vLSHXfcYTnWuHFjSVJOTs51vys+Pl7Z2dn6+OOPFRYWps8++0xt27bVmjVrbljj9u3bNWzYMM2ZM0fh4eGSpJ07d6q4uFhBQUFWtaemplrVDQD2xItdAFBFCgoK1L9/f7322mulzvn4+Fg+16xZ0+qcyWSyOmYymSRJJSUlN/w+Dw8P9e/fX/3799e0adPUp08fTZs2Tb179y7z+uzsbD344IN6/PHHNXLkSKu6zWaztm3bJrPZbHWPu7v7DWsAgOpCiAWASuDq6lpqPGqnTp20YsUK+fv7y8Wlen+7NZlMCgkJ0XfffVfm+UuXLmnAgAEKCQnRm2++aXUuNDRUxcXFysnJ0T333FMd5QJAuTGcAAAqgb+/v7Zs2aIjR47o9OnTKikpUXx8vM6ePavo6Ght3bpVhw8f1urVqxUXF2fzC1i2yMjI0IABA7R8+XLt2bNHhw4dUmJiot5//30NGDCgzHtGjRqlY8eO6Z133tGpU6eUnZ2t7OxsXb58WUFBQYqJidFjjz2mzz//XJmZmUpLS1NCQoL+/e9/V1rdAHAr6IkFgEowceJExcbGqk2bNrp48aIyMzPl7++vjRs36vnnn9d9992nwsJC+fn5qW/fvqpRo/L6EJo2bSp/f3+9/PLLlqm0ru1PmDChzHtSU1OVlZWlNm3aWB1PTk5WZGSkFi1apGnTpulPf/qTfv75ZzVo0EDdunXTAw88UGl1A8CtYHYCAAAAOByGEwAAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACH42LvAgAAAPDbFxcXZ9N1ixYtsuk6QiwAAACqXG5urtX+zz//rB07duh3v/tdhdojxAIAAKDKff7555bPx44dU2RkpK5cuaKgoCDNnDmz3O0xJhYAAADV5vjx44qMjFSTJk20du1azZ8/X3/961/L3Q49sQAAAKgWJ06cUFRUlHx9fZWUlKQ6deroyy+/1P3336/69evr8ccft7ktQiwAAACqXFZWliIjI9W4cWOtWrVKderUkSRFRkZqyZIlGjJkiOrWratHHnnEpvZMhmEYVVkwAAAAEBISIi8vL61evVru7u6lzn/44YcaNWqULl68aFN79MQCAACgynl5eWnVqlVlBlhJeuyxx3TmzBmb26MnFgAAAFWuoKDgugG2IgixAAAAqHK2LHZgGIY++OADm9ojxAIAAKDKDRo06LrniouL9c033+jixYsqKSmxqT3GxAIAAKDK/XKxg1/68ssv9cILL6hWrVqaMmWKze2x2AEAAACq3YYNG9S9e3dFR0frgQce0I8//qjnnnvO5vsJsQAAAKg2u3btUv/+/XXvvfeqbdu2OnTokF577TV5enqWqx1CLAAAAKrcTz/9pNjYWHXs2FEuLi7auXOn3nvvPfn6+laoPV7sAgAAQJWrVauWatSooaefflphYWHXvW7AgAE2tUeIBQAAQJVzcXHRzWKnYRg2z05AiAUAAIDDYUwsAAAAHA7zxAIAAKDa7NmzR/v371deXl6Z52NjY21qh+EEAAAAqHJ5eXl69NFHtWbNGrm4uKhOnTqlrjEMQ+fOnbOpPXpiAQAAUOWmTJminJwcbdu2TR07drzl9uiJBQAAQJULCgrSggUL1LNnz0ppjxe7AAAAUOVOnDihgICASmuPEAsAAIAq17RpU+3bt6/S2mNMLAAAAKrcoEGDNGHCBLm6uurOO++Up6fnLbXHmFgAAABUuf/+97964okntHTp0huu3MWKXQAAAPifk5WVpQMHDig3N7fM8w8++KBN7RBiK8gwDOXn58vDw0Mmk8ne5QAAADgVxsRWUH5+vjw9PZWbm6vbb7/d3uUAAAA4hLS0NH3yySc6cOCATCaTAgMDFRMToy5dupSrHWYnAADABoZh6NKlS7p06dINx/MBuL5JkyYpLCxMixYtUlZWlk6cOKEPPvhA3bp104svvliutgixAADYoLCwUIMHD9bgwYNVWFho73IAh7N8+XK9+eabmjVrls6ePavt27dr+/btOnv2rN555x399a9/1YoVK2xujxALAIANLl26VOZnALaZO3euJkyYoLFjx8psNluOm81mjRkzRn/60580Z84cm9sjxAIAAKDKbd++XQ899NB1zw8cOFDbt2+3uT1CLAAANvjl3JW2zmMJ4P+VlJTI19f3uud9fX1VXFxsc3uEWAAAbJCfn1/mZwC2admypQ4ePHjd8wcPHlTLli1tbq9CIfbYsWMaMWKEfH195erqKj8/P40bN05nzpyxXBMZGSmTySSTyaRatWopKChICQkJZb7RuWnTJpnNZt1///2lzh05ckQmk0mNGjUq9ZtGx44dNXXqVKtjhw4d0ogRI9S8eXO5ubmpSZMmuvfee/Xxxx+rqKjIct212n69LV26tCKPBAAAADfwyCOP6N13373u+QULFujhhx+2ub1yh9gff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W11+b3uGX28CBA8v7SAAAAHATY8eO1T333FPmSl15eXnq0aOHxowZY3N75V7sID4+Xq6urvr6669Vu3ZtSVLz5s0VGhqqli1b6sUXX9T8+fMlSbfddpu8vb0lSXFxcZozZ47WrFmj0aNHW9orKCjQsmXLlJ6eruzsbH3wwQd64YUXSn3v2LFj9eabbyo+Pl6NGjUqdd4wDA0fPlxBQUHauHGjatT4/3zeqlUrRUdHl+oFrlu3rqU+AAAAVJ3bb79dY8eOLfe56ylXiD179qxWr16t6dOnWwLsNd7e3oqJidGyZcs0b948q3OGYejbb7/Vvn371KpVK6tzn376qUJCQhQcHKyhQ4dq/Pjxmjx5cqmlXKOjo7VmzRq98sorZU6/kJGRob1792rJkiVWAfaXWB4WAADAPhYvXmzTdbGxsTZdV64Qe/DgQRmGodatW5d5vnXr1jp37pxOnTolSZo3b57+/ve/6/Lly7py5Ypq1aqlp59+2uqexMREDR06VJLUt29f5ebmKjU1VZGRkVbXmUwmzZw5U/3799eECRNKDfw9cOCAJCk4ONhyLCcnRwEBAZb9v/71r/rjH/9o2Y+Ojraap0yS9uzZo+bNm5f62QoLC60mt87LyyvzGQAAAKC0CRMmWO0XFRXp4sWL8vDwsBwzDMPmEFuhF7tsXW4vJiZGGRkZ2rhxo/r166cXX3xR3bt3t5zfv3+/0tLSFB0dLUlycXHRkCFDlJiYWGZ7ffr00d13362//OUvNn2/l5eXMjIylJGRobp16+ry5ctW59966y3L+Wvb9aZ+SEhIkKenp2Vr1qyZTTUAAADg6r/oX9tOnjype+65R5L0/vvvW46fO3fO5vbKFWIDAwNlMpm0d+/eMs/v3btX9erVU8OGDSVJnp6eCgwM1F133aVPP/1Uc+bM0TfffGO5PjExUUVFRfL19ZWLi4tcXFw0f/58rVixosxBv5I0c+ZMLVu2rNRkuNeGKezfv99yzGw2KzAwUIGBgXJxKd3p7O3tbTl/o+skafLkycrNzbVsx44du8GTAgAAQFkuX76shx56SBkZGXrxxRf1hz/8QevWrSt3O+UKsV5eXurdu7fmzZunixcvWp3Lzs7Wxx9/rCFDhpQ59tTd3V3jxo3TxIkTZRiGioqK9OGHH+qNN96w6gndsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/31KpmE2s3NTbfffrvVBgAAANsVFRXpkUce0bZt27R27VpNnTpVr7zyigYOHKitW7eWq61yz04wZ84cde/eXX369NG0adPUokUL7d69W88++6yaNGmi6dOnX/feUaNG6dVXX9WKFSvk4uKic+fOaeTIkfL09LS67uGHH1ZiYqKeeuqpMtuZPn262rZta9VrajKZtGjRIvXu3Vvh4eGaPHmyWrdurStXrmj9+vU6depUqfGv58+fV3Z2ttUxDw8P1alTp7yPBQAAADdQXFysRx55RFu3blVycrJCQkIkSRMnTtTZs2f1u9/9TuvXr7/uu1e/Vu4xsa1atVJ6eroCAgL06KOPqmXLlnryyScVFRWlTZs2qX79+te9t379+nrsscc0depUJSYmqlevXqUCrHQ1xKanp+uHH34os52goCCNGDFCly5dsjrerVs3bdu2TcHBwYqPj1ebNm3UvXt3LVmyRG+99ZbV1F7S1Wm/fHx8rLbZs2eX95EAAADgJgYPHqzNmzdr3bp1lgB7zYwZM/Twww+rT58+NrdnMmx9SwtW8vLy5OnpqdzcXIYWAIATOHv2rOWt6cWLF9+w0wZAad7e3lq3bp3atGlz3WuGDBmiZcuW2dRehWYnAADA2fxyDvLrzUcO4PpuFmAl6eOPP7a5vXKPiQUAAADKa+vWrTd9eevaCqy2IMQCAACgyo0YMUJ16tS57nSmEiEWAIBKV6tWrTI/A7Ddhg0b1KFDh0ppixALAIAN3Nzc9Nlnn1k+A7AvQiwAADYwmUz0wAL/Q3i9EgAAAA6HEAsAAIAq17Jly0odisNwAgAAAFS5AwcOVGp7hFgAAABUubi4OJuuW7RokU3XsexsBbHsLAAAgO3MZrP69u1rGVJw4cIFrVu3Tv3795ckFRYWKikpSSUlJTa1R4itIEIsAACA7cxms06cOKHGjRtLkjIzM9W+fXvl5+dLkk6dOiVvb28VFxfb1F6Vv9i1YMECeXh4qKioyHKsoKBANWvWVGRkpNW1KSkpMplMOnz4sPz9/TVr1qxS7U2dOlUdO3Ysc9/f318mk+m627UVIK53funSpZX80wMAAKAsv+5HNQyj1LEbqfIxsVFRUSooKFB6erq6desm6epqDd7e3tqyZYsuXbpkmXcvOTlZzZs3V8uWLSv0XVu3brWk9++++04PP/yw9u/fb+kprV27tuXaRYsWqW/fvlb3161bt0LfCwAAgOpV5SE2ODhYPj4+SklJsYTYlJQUDRgwQOvWrdPmzZstPbIpKSmKioqq8Hc1bNjQ8rl+/fqSpEaNGpUZTuvWrStvb+8KfxcAAABujclkuuH+jVTLPLFRUVFKTk627CcnJysyMlIRERGW4xcvXtSWLVtuKcRWpcLCQuXl5VltAAAAsE1wcLBcXP6//7R+/fp64YUXLPtubm7q06ePze1VW4jduHGjioqKlJ+fr+3btysiIkI9evRQSkqKJGnTpk0qLCy0CrHPP/+83N3drbYZM2ZUSk3R0dGl2j569Oh1r09ISJCnp6dla9asWaXUAQAA4Az27NkjLy8vy37dunU1adIky76np6f+85//2NxetcwTGxkZqQsXLmjr1q06d+6cgoKC1LBhQ0VERCguLk6XLl1SSkqKAgIC1Lx5c8t9zz77rOVlrGveeecdrV+//pZreuutt9SrVy+rY76+vte9fvLkyXrmmWcs+3l5eQRZAAAAO6mWEBsYGKimTZsqOTlZ586dU0REhKSrobFZs2b67rvvlJycrJ49e1rd16BBAwUGBloduzbW9VZ5e3uXavtG3NzcKnWpNAAAAFRctQwnkK4OKUhJSVFKSorV1Fo9evRQUlKS0tLS/mfHwwIAAOB/S7UtOxsVFaX4+HhduXLF0hMrSRERERozZowuX75crSH2/Pnzys7Otjrm4eGhOnXqVFsNAAAAqJhq7Ym9ePGiAgMDLSs1SFdDbH5+vmUqruoSFxcnHx8fq2327NnV9v0AAACoOJadrSCWnQUAALDdyy+/bNN1U6ZMsek6QmwFEWIBAABs16lTJ6v9y5cva9++fWrfvr3lmGEY2r59u03tEWIriBALAABQcZmZmWrfvr3y8/MrdH+1jYkFAAAArrnVftRqm53gt+bag2f5WQAA4Ew8PDxkMpnsXQYhtqLOnDkjSazaBQAAnEpOTo4aNmxo7zIIsRV1beWwo0ePytPT087VOJ9ry/4eO3aMMcl2wPO3L56//fDs7Yvnb1/Xnr+rq2uF7v/pp5+s9o8fPy7DMHTkyBGrnl0/Pz+b2iPEVlCNGleHE3t6evI/kh3dfvvtPH874vnbF8/ffnj29sXzt6+KDiUICAiwGgd7rZ2AgADLvmEYKikpsak9QiwAAACqnK1TZ9mKEAsAAIAq98v5YCsDIbaC3NzcNGXKFLm5udm7FKfE87cvnr998fzth2dvXzx/+7rV5//rMbHXY+uYWBY7AAAAQJUzm80yDMMy9vXXGBMLAACA/0nffPONGjRoIOnq7ASPPvqovvvuO0nS2bNn1bNnT5vbIsQCAACgWrRt21aNGzeWJLm7u8tkMlnGyubk5JSrLZadBQAAgMMhxAIAAKDKVfZrWITYCpo7d678/f1Vq1Ytde3aVWlpafYuySmsX79e/fv3l6+vr0wmk7744gt7l+Q0EhISdNddd8nDw0ONGjXSwIEDtX//fnuX5TTmz5+v9u3bWyZ5DwsLU1JSkr3LclozZ86UyWTS+PHj7V2KU5g6dapMJpPVFhISYu+ynMrPP/+soUOHysvLS7Vr19Ydd9yh9PT0crVR1iIJvz5WnoUUCLEVsGzZMj3zzDOaMmWKvv/+e3Xo0EF9+vQp91gOlN+FCxfUoUMHzZ07196lOJ3U1FTFx8dr8+bNWrNmja5cuaL77rtPFy5csHdpTqFp06aaOXOmtm3bpvT0dPXs2VMDBgzQ7t277V2a09m6davefffdSp/zEjfWtm1bZWVlWbZvv/3W3iU5jXPnzik8PFw1a9ZUUlKS9uzZozfeeEP16tUrVztLlixR3bp1LfsBAQHKy8uz7Ht5eWnTpk02t8cUWxXQtWtX3XXXXZozZ44kqaSkRM2aNdPYsWM1adIkO1fnPEwmk1auXKmBAwfauxSndOrUKTVq1Eipqanq0aOHvctxSvXr19ff/vY3jRw50t6lOI2CggJ16tRJ8+bN07Rp09SxY0fNmjXL3mX95k2dOlVffPGFMjIy7F2KU5o0aZI2btyoDRs23FI7b775poYNG6aGDRtWSl30xJbT5cuXtW3bNvXq1ctyrEaNGurVq1e5/vYAOLrc3FxJV4MUqldxcbGWLl2qCxcuKCwszN7lOJX4+Hjdf//9Vn8GoHocPHhQvr6+CggIUExMjI4ePWrvkpzGP//5T3Xu3FmDBw9Wo0aNFBoaqvfee6/c7UyfPl1NmzbVI488oqSkJJvng70eQmw5nT59WsXFxZbpIa5p3LixsrOz7VQVUL1KSko0fvx4hYeHq127dvYux2ns3LlT7u7ucnNz01NPPaWVK1eqTZs29i7LaSxdulTff/+9EhIS7F2K0+natas++OADrVq1SvPnz1dmZqbuuece5efn27s0p/Djjz9q/vz5atWqlVavXq3Ro0fr6aef1uLFi8vVTk5Ojv71r3/Jzc1N999/v/z8/PTnP/9Zhw8frlBdzBMLoNzi4+O1a9cuxqRVs+DgYGVkZCg3N1fLly9XbGysUlNTCbLV4NixYxo3bpzWrFmjWrVq2bscp9OvXz/L5/bt26tr167y8/PTp59+ynCaalBSUqLOnTtrxowZkqTQ0FDt2rVLCxYsUGxsrM3tmM1m9e7dW02aNNFnn32md955Rx999JHuuOMOdevWTSNHjtTDDz9s8/9j9MSWU4MGDWQ2m3Xy5Emr4ydPnpS3t7edqgKqz5gxY/Svf/1LycnJatq0qb3LcSqurq4KDAzUnXfeqYSEBHXo0EFvv/22vctyCtu2bVNOTo46deokFxcXubi4KDU1Ve+8845cXFxUXFxs7xKdSt26dRUUFKRDhw7ZuxSn4OPjU+ovy61bt76lIR2GYeihhx7SihUrlJ2drejoaC1cuFC+vr42t0GILSdXV1fdeeedWrt2reVYSUmJ1q5dy9g0/KYZhqExY8Zo5cqVWrdunVq0aGHvkpxeSUmJCgsL7V2GU7j33nu1c+dOZWRkWLbOnTsrJiZGGRkZMpvN9i7RqRQUFOjw4cPy8fGxdylOITw8vNSUigcOHJCfn1+ltF9cXCzDMGQYhlxcbB8kwHCCCnjmmWcUGxurzp07q0uXLpo1a5YuXLiguLg4e5f2m1dQUGD1N+/MzExlZGSofv36at68uR0r++2Lj4/XJ598oi+//FIeHh6WMeCenp6qXbu2nav77Zs8ebL69eun5s2bKz8/X5988olSUlK0evVqe5fmFDw8PEqN/65Tp468vLwYF14NJk6cqP79+8vPz08nTpzQlClTZDabFR0dbe/SnMKECRPUvXt3zZgxQ48++qjS0tK0cOFCLVy48JbaXb58uT755BOtWrVK99xzj8aOHVu+GYcMVMjs2bON5s2bG66urkaXLl2MzZs327skp5CcnGxIKrXFxsbau7TfvLKeuyRj0aJF9i7NKYwYMcLw8/MzXF1djYYNGxr33nuv8fXXX9u7LKcWERFhjBs3zt5lOIUhQ4YYPj4+hqurq9GkSRNjyJAhxqFDh+xdllP56quvjHbt2hlubm5GSEiIsXDhwnK3cfnyZSMpKcn4wx/+YNSoUcPw9/c3Xn75ZePo0aMVqol5YgEAAFDlvLy89N///lcPPfSQRo4cqXvvvfeW2iPEAgAAoMrNmTNHQ4cOtVq161YQYgEAAOBweLELAAAAVc6WWW0Mw9CRI0dsao+eWAAAAFQ5s9msV155RR4eHmWeLygo0J///Gebl6MlxAIAAKDKmc1mnThxQo0bNy7zfE5Ojry9vW0OsSx2AAAAgCrn6uqqK1euXPf85cuXy7WsMyEWAAAAVc7b21uZmZnXPX/kyJHr9tKWhRALAACAKtetWzf94x//uO75f/zjH+rSpYvN7RFiAcAJHDlyRCaTSRkZGfYuBYCTGj16tN5//3299NJLOnv2rOX4uXPnNHXqVP3973/XU089ZXN7hFgAqIDhw4dbrfEdGRmp8ePH262ezMxM/eEPf5Cvr69q1aqlpk2basCAAdq3b58kqVmzZsrKylK7du3sViMA59ajRw/NnDlTM2fOVMOGDeXt7S0fHx81aNBA06dP17Rp0xQVFWVze8wTCwAO7sqVK+rdu7eCg4P1+eefy8fHR8ePH1dSUpLOnz8v6epbwd7e3vYtFIDTmzhxogYNGqQvvvhCmZmZMgxD/v7+GjBggFq1alW+xgwAQLnFxsYaAwYMsHyWZLVlZmYahmEYO3fuNPr27WvUqVPHaNSokTF06FDj1KlTlnYiIiKMMWPGGOPGjTPq1q1rNGrUyFi4cKFRUFBgDB8+3HB3dzdatmxp/Oc//7luLdu3bzckGUeOHLnuNZmZmYYkY/v27detWZKRnJxsGIZhXLp0yfjTn/5k+Pr6GrfddpvRpUsXyzkA+F/AcAIAuEVvv/22wsLC9MQTTygrK0tZWVlq1qyZzp8/r549eyo0NFTp6elatWqVTp48qUcffdTq/sWLF6tBgwZKS0vT2LFjNXr0aA0ePFjdu3fX999/r/vuu0/Dhg3Tf//73zK/v2HDhqpRo4aWL1+u4uJim2u+VmtWVpbGjRunRo0aKSQkRJI0ZswYbdq0SUuXLtUPP/ygwYMHq2/fvjp48OCtPSwAqCQsdgAAFTB8+HCdP39eX3zxhaSrY2I7duyoWbNmWa6ZNm2aNmzYoNWrV1uOHT9+XM2aNdP+/fsVFBSkyMhIFRcXa8OGDZKk4uJieXp6atCgQfrwww8lSdnZ2fLx8dGmTZvUrVu3MuuZO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKsvdrVo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYfl2LV5E3Nycq77XfHx8crOztbHH3+ssLAwffbZZ2rbtq3WrFlzwxq3b9+uYcOGac6cOQoPD5ck7dy5U8XFxQoKCrKqPTU11apuALAnXuwCgCpSUFCg/v3767XXXit1zsfHx/K5Zs2aVudMJpPVMZPJJEk3XYrRw8ND/fv3V//+/TVt2jT16dNH06ZNU+/evcu8Pjs7Ww8++KAef/xxjRw50qpus9msbdu2yWw2W93j7u5+wxoAoLoQYgGgEri6upYaj9qpUyetWLFC/v7+cnGp3t9uTSaTQkJC9N1335V5/tKlSxowYIBCQkL05ptvWp0LDQ1VcXGxcnJydM8991RHuQBQbgwnAIBK4O/vry1btujIkSM6ffq0SkpKFB8fr7Nnzyo6Olpbt27V4cOHtXr1asXFxdn8ApYtMjIyNGDAAC1fvlx79uzRoUOHlJiYqPfff18DBgwo855Ro0bp2LFjeuedd3Tq1CllZ2crOztbly9fVlBQkGJiYvTYY4/p888/V2ZmptLS0pSQkKB///vflVY3ANwKemIBoBJMnDhRsbGxatOmjS5evKjMzEz5+/tr48aNev7553XfffepsLBQfn5+6tu3r2rUqLw+hKZNm8rf318vv/yyZWWua/sTJkwo857U1FRlZWWpTZs2VseTk5MVGRmpRYsWadq0afrTn/6kn3/+WQ0aNFC3bt30wAMPVFrdAHArmJ0AAAAADofhBAAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcFzsXQAAAAB+++Li4my6btGiRTZdR4gFAABAlcvNzbXav3DhgtatW6f+/ftXqD2TYRhGZRQGAAAA2CozM1Pt27dXfn5+he5nTCwAAACq3a32oxJiAQAA4HAIsQAAAHA4vNgFAACAKpeammq1//PPP6u4uFgpKSkymUyW4xERETa1x4tdAAAAqHJms1mGYVgF1l8zDEMlJSU2tUdPLAAAAKrcuXPnKrU9emIBAADgcHixCwAAANVm6dKlGjhwoNq0aaM2bdpo4MCBWrZsWbnboScWAAAAVa6kpESDBw/WF198oVatWql169YymUzau3ev9u/fr4cffljLli1TjRq29bEyJhYAAABVbtasWUpNTdU///lP3X///Vbn/vOf/2jYsGF6++23NWHCBJvaoycWAAAAVa59+/YaP368RowYUeb5RYsW6a233tIPP/xgU3uEWAAAAFS52rVra9++ffLz8yvz/E8//aSQkBBdvHjRpvZ4sQsAAABVrlatWsrNzb3u+by8PNWuXdvm9gixAAAAqHJhYWGaO3fudc/PmTNH3bp1s7k9XuwCAABAlXvppZcUERGh06dP609/+pPatGkjSdq7d6/eeOMN/fOf/1RKSorN7TEmFgAAANXiq6++0siRI3X69Gmr4w0aNNDf//53Pfjggza3RYgFAABAtbl48aLWrFmjAwcOSJKCgoLUu3fvco2HlQixAAAA+B+xf/9+BQcH23QtY2IBAABgF4cPH1ZycrJly87OVklJiU33EmIBAABQLY4cOWIJrCkpKTp+/Ljc3d119913a/z48YqMjLS5LYYTAAAAoMq1aNFCP/30k+rUqaPw8HBFRUUpMjJSd911l2rUKP+sr4RYAAAAVDkXFxe5u7srLi5OvXv31j333CMPD48Kt0eIBQAAQJXLyclRamqqUlNTlZKSogMHDig0NFSRkZGKiorS3XffLXd3d5vbI8QCAACg2p05c0YpKSmWULt//36FhoZq8+bNNt3Pi10AAACodl5eXgoPD1dJSYlKSkqUm5urHTt22Hw/PbEAAACoFseOHVNqaqrWr1+v9evX66efflLXrl3Vs2dPRUZGqlu3bnJ1dbWpLUIsAAAAqlxAQIBOnDihrl27KjIyUj179lRYWJjNofXXyj+fAQAAAFBOR48elclkkmEYMgzDMoygouiJBQAAQJU7efKkUlJSLIsdHDp0SK6ururSpYuioqIUERGh7t27y83Nzab2CLEAAACodj///LPVkrM//fSTXF1ddfHiRZvuJ8QCAADA7o4ePaq1a9cqLi7OpusJsQAAAHA4zBMLAACAKmdLD6thGPrggw9sao+eWAAAAFQ5s9msvn37XvfFrcLCQiUlJdk8YwEhFgAAAFXObDbrxIkTaty4cZnnT506JW9vbxUXF9vUHvPEAgAAoMq5uLjcMKAWFRXJbDbb3B4hFgAAAFWuXr16Onny5HXPnzx5UvXr17e5PUIsAAAAqlyHDh2UlJR03fOrVq1S+/btbW6PEAsAAIAqFxMTo5kzZ2rdunWlziUnJ2vGjBmKjo62uT1e7AIAAEC1GDhwoP75z3/qjjvuUOvWrWUymbRv3z7t2LFDv/vd7/TVV1/JZDLZ1BYhFgAAANXCMAz94x//0PLly5WZmSnDMOTv769BgwZp+PDhqlHD9kEChFgAAAA4HMbEAgAAwOGw7CwAAACqXIsWLW56jWEYOnLkiE3tMZwAAAAAVc5sNuuVV16Rh4eHJOn06dP629/+ptdee02SVFBQoD//+c8sOwsAAID/Hb9edvbHH39Uhw4dlJ+fL0nKycmRt7e3zSGWMbEAAABwOIRYAAAAOBxCbAUZhqG8vDwxGgMAAKBifr2wga0LHUiE2ArLz8+Xp6enZRwHAAAArm/UqFG67bbbLPtNmjRRUlKSZd/Dw0MJCQk2t8eLXRWUl5cnT09P5ebm6vbbb7d3OQAAAE6FeWIBAABQ5X766SebrvPz87PpOkIsAAAAqlxAQIAMw5DJZLJ6p+jX+7ZOsUWIBQAAQJXbvn17mccNw9CSJUs0e/Zsy0IItiDEAgAAoMq1b9++1LGvv/5akydP1qFDh/Tcc89p4sSJNrdHiAUAAEC12rp1qyZNmqRvv/1WTz75pFavXq0GDRqUq40KTbF17NgxjRgxQr6+vnJ1dZWfn5/GjRunM2fOWK6JjIyUyWSSyWRSrVq1FBQUpISEhDLnVd20aZPMZrPuv//+UueOHDkik8mkRo0alZrOqmPHjpo6darVsUOHDmnEiBFq3ry53Nzc1KRJE9177736+OOPVVRUZLnuWm2/3pYuXVqRRwIAAICbOHjwoIYMGaLu3bvLx8dH+/bt0+zZs8sdYKUKhNgff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W1y9atEhZWVlW28CBA8v7SAAAAHATTz31lNq2bavc3Fxt3bpVH330kVq0aFHh9so9T2y/fv20a9cuHThwQLVr17Ycz87OVsuWLfXYY49p/vz5ioyMVMeOHTVr1izLNXfeeaf8/Pz0+eefW44VFBTIx8dH6enpmjJlitq3b68XXnjBcv7IkSNq0aKFnn32Wc2fP1+HDx9Wo0aNJF3tiR04cKCmTp0qwzDUtm1b3XbbbUpLS1ONGqXz+bU34qSrPbErV66scGhlnlgAAADbmc1m1apVS8HBwTdc8fR6L4D9WrnGxJ49e1arV6/W9OnTrQKsJHl7eysmJkbLli3TvHnzrM4ZhqFvv/1W+/btU6tWrazOffrppwoJCVFwcLCGDh2q8ePHa/LkyaWWHYuOjtaaNWv0yiuvaM6cOaVqy8jI0N69e7VkyZIyA6xUvqXMfq2wsFCFhYWW/by8vAq3BQAA4GymTJlSqe2VK8QePHhQhmGodevWZZ5v3bq1zp07p1OnTkmS5s2bp7///e+6fPmyrly5olq1aunpp5+2uicxMVFDhw6VJPXt21e5ublKTU1VZGSk1XUmk0kzZ85U//79NWHCBLVs2dLq/IEDByRJwcHBlmM5OTkKCAiw7P/1r3/VH//4R8t+dHS0zGazVTt79uxR8+bNS/1sCQkJevnll8v8uQEAAHBjL730UqW2V6EXu2wdgRATE6OMjAxt3LhR/fr104svvqju3btbzu/fv19paWmKjo6WJLm4uGjIkCFKTEwss70+ffro7rvv1l/+8hebvt/Ly0sZGRnKyMhQ3bp1dfnyZavzb731luX8tc3X17fMtiZPnqzc3FzLduzYMZtqAAAAQOUrV09sYGCgTCaT9u7dq4ceeqjU+b1796pevXpq2LChJMnT01OBgYGSrg4bCAwMVLdu3dSrVy9JV3thi4qKrIKjYRhyc3PTnDlz5OnpWeo7Zs6cqbCwMD377LNWx68NU9i/f79CQ0MlXR17ce37XVxK/6je3t6W8zfj5uYmNzc3m64FAABA1SpXT6yXl5d69+6tefPm6eLFi1bnsrOz9fHHH2vIkCFljj11d3fXuHHjNHHiRBmGoaKiIn344Yd64403rHpCd+zYIV9fXy1ZsqTMGrp06aJBgwZp0qRJVsdDQ0MVEhKi119/3eblygAAAOCYyr3YwZw5c9S9e3f16dNH06ZNU4sWLbR79249++yzatKkiaZPn37de0eNGqVXX31VK1askIuLi86dO6eRI0eW6nF9+OGHlZiYqKeeeqrMdqZPn662bdta9a6aTCYtWrRIvXv3Vnh4uCZPnqzWrVvrypUrWr9+vU6dOlVq/Ov58+eVnZ1tdczDw0N16tQp72MBAABANSr3mNhWrVopPT1dAQEBevTRR9WyZUs9+eSTioqK0qZNm1S/fv3r3lu/fn099thjmjp1qhITE9WrV68yhww8/PDDSk9P1w8//FBmO0FBQRoxYoQuXbpkdbxbt27atm2bgoODFR8frzZt2qh79+5asmSJ3nrrLY0ePdrq+ri4OPn4+Fhts2fPLu8jAQAAQCXYv3+/zdeWe55YXMU8sQAAALfm8OHDSk5OtmzZ2dk2Dwst93ACAAAAoCKOHDliCawpKSk6fvy43N3ddffdd2v8+PGlpli9EUIsAAAAqlyLFi30008/qU6dOgoPD1d8fLwiIyN11113XXehqhshxAIAAKDKHTt2TLfffrvi4uLUu3dv3XPPPfLw8KhwexVa7AAAAAAojxMnTui9997TlStX9Nxzz8nLy0tdu3bV888/r1WrVqmgoKBc7fFiVwXxYhcAAEDFnTlzRikpKUpNTVVKSoplwarNmzfbdD/DCeBwDMNQYWGhvcsA7OKXv/7d3NzKXFwG+K3j1/5vg5eXl8LDw1VSUqKSkhLl5uZqx44dNt9PiIXDKSws1ODBg+1dBgDATj777DPVqlXL3mWgAo4dO6bU1FStX79e69ev108//aSuXbuqZ8+e+sc//qFu3brZ3BYhFgAAAFUuICBAJ06cUNeuXRUZGal3331XYWFhcnV1rVB7hFg4tNmvPiE315r2LgOoNoWXr2jsX96TxK9/OJdf/tqHYzp69Khq1qwpwzBkGIZlGEFFEWJvEe/F2Zeba025ufGHOJwTv/7hTH755y1/9jqmn3/+WSkpKUpOTtayZcs0ffp0ubq6qkuXLoqKilJERIS6d+8uNzc3m9ojxN4iXjACAKDqXb5SZPlcWFio2rVr27EaVETjxo01ZMgQ/V97dx7U1PX2AfwbAgEUBBcIIEtcitQqoKKojLKIWyvitKOORQxorbVxQes6OhV/MmBra9W64liq4zhWrVq7oLWa4C6KUrepVcBxA8EphkUIGPL+4ZDXFNSwJLeY72cmM7kn9548nkmbJ4fnnjN+/HgAz5Pa2t27duzYgRUrVkAikaCiosKo/ky+TuzmzZvh6OiIZ8/+/8NXVlYGGxubOluLqVQqiEQi5OTkQCaTYc2aNXX6S0xMRGBgYL3HMpkMIpHopY+4uDgAeOnru3fvbuZ/PRERERHVp2PHjpg4cSK2bduG3Nxc5OXlYePGjUZfb/KZ2PDwcJSVleHixYv6O85OnjwJNzc3nD9/HpWVlfo7DJVKJby9vdGlS5dGvdeFCxeg1WoBAGfOnMEHH3yAmzdv6tdxffFXW1paGkaMGGFwvbOzc6Pel4iIiIiaxtvbG/Hx8Uafb/Iktlu3bnB3d4dKpdInsSqVCtHR0Th+/DjOnTunn5FVqVQIDw9v9Hu5uLjon7dr1w4A4OrqWm9y6uzsDDc3t0a/B2svWgAAEfNJREFUFxEREREZz9gENS0tzajzzFITGx4eDqVSiUWLFgF4PuO6YMECaLVaKJVKhIWFoaKiAufPn8fkyZPNEVKzqaysRGVlpdBhWJQXx5vF/URERC2DWq02OC4vL8fx48cRFRXVqP7MlsQmJCTg2bNnqKiowOXLlxEaGorq6mps3rwZAHD27FloNBqDmdiFCxdi6dKlBn1VVVWhe/fuTY5pwoQJEIvFBm03btyAt7d3vedrNBqDm7hKSkoAAB9//DFsbHh3sFCqqp/Bzq5x68sRERGR+ezfv9/gOC8vD/7+/nXajWWWJDYsLAzl5eW4cOECiouL4evrCxcXF4SGhiI+Ph6VlZVQqVTo3LmzQRI5f/58/c1YtdatW4cTJ040OaZvvvkGkZGRBm0eHh4vPT8lJQXLly9v8vsSERERUdP/mmqWJLZr167w9PSEUqlEcXExQkNDATxPGr28vHDmzBkolUpEREQYXNehQwd07drVoK221rWp3Nzc6vT9KosXL8bcuXP1xyUlJfDy8kJqaipcXV2bJSYyTmVlJWJjYwEAEhuuEkdERGSJzJYBhIeHQ6VSobi4GPPnz9e3Dx48GOnp6cjMzMT06dPNFU6D2dra1rv4rp2dHfdvFpBIJBI6BCIiIhKAWZNYhUKB6upq/UwsAISGhmLGjBmoqqpq0soEDfXkyRMUFBQYtDk6OqJ169Zmi4GIiIjIUmRkZBgcP3jwAFqtVr9PQK0X88RXMWsSW1FRAT8/P0ilUn17aGgoSktL9UtxmUt9yzykpKToV1AgIiIiouYTEREBnU5X56+oQ4YM0T/X6XSoqakxqj+zJbEymazeAl4fH5962+/cuVNvP4mJiUhMTHzpca2wsLCXFgw357JMxu7vS0RERI334j0Q/O5tmYqLi5u1P94V00SsySQiIjK9F79v+d3bMtXuoNpcmMRSi6apqhY6BCKzevEzz88/WRJ+3lu+f9fEvoyxNbEiHbc8apSSkhI4OTlBrVY3+y8LerXKykqMHTtW6DCIiEgge/fu5cpALZBYLK63JvZF/8maWCIiIiKyXM1dE8uZ2EZSq9VwdnbGvXv3OBNrZjqdzmALYCJL8uLn39bWlrWBZJH42ReWo6OjSca/tLQUs2bNQlpamlHnM4ltpNzcXHTp0kXoMIiIiIjMqrCwEC4uLibp183NjeUEpla7/e3du3fh5OQkcDSWp3bbX86EC4PjLyyOv3A49sLi+AurdvwlEonJ3qMhM7xMYhvJysoKAODk5MT/kATUpk0bjr+AOP7C4vgLh2MvLI6/sExZytGQAgEmsURERERkcrWrEzQXJrFEREREZHIHDhx45etqtRpyudzo/pjENpKtrS2WLVvGre8EwvEXFsdfWBx/4XDshcXxF1ZTx3/06NGvfL2wsLBB/XF1AiIiIiISXENXJ7AycTxERERERK8lFoshk8mMPp8zsURERETU4rAmloiIiIhMLjw8/LXn6HQ6qFQqo/rjTCwRERERmZxYLMbUqVPRqlUrAM9XI9i5cycUCgUA4OnTp0hNTWVNrKlt2LABMpkMdnZ2CA4ORmZmptAhWYQTJ04gKioKHh4eEIlEOHjwoNAhWYyUlBT07dsXjo6OcHV1xZgxY3Dz5k2hw7IYmzZtgr+/v36R9wEDBiA9PV3osCzWypUrIRKJkJCQIHQoFiExMREikcjg4efnJ3RYFuXBgweYOHEi2rdvD3t7e/Ts2RMXL15scD/Lly/H6tWrsXr1aixZsgQSiUR//L///a9BfTGJbYQffvgBc+fOxbJly3Dp0iUEBARg+PDhDV4aghquvLwcAQEB2LBhg9ChWJyMjAwoFAqcO3cOR48eRXV1NYYNG4by8nKhQ7MInp6eWLlyJbKysnDx4kVEREQgOjoa169fFzo0i3PhwgVs2bIF/v7+QodiUd555x3k5+frH6dOnRI6JItRXFyMkJAQ2NjYID09HTdu3MDXX3+Ntm3bChoXywkaITg4GH379sX69esBADU1NfDy8sLMmTOxaNEigaOzHCKRCAcOHMCYMWOEDsUiFRUVwdXVFRkZGRg8eLDQ4Vikdu3aYdWqVZgyZYrQoViMsrIy9O7dGxs3bkRSUhICAwOxZs0aocN64yUmJuLgwYPIzs4WOhSLtGjRIpw+fRonT55sUj9isRgPHz6EVCoFAOTm5iIgIAClpaUAuMSWyVVVVSErKwuRkZH6NisrK0RGRuLs2bMCRkZkXmq1GsDzRIrMS6vVYvfu3SgvL8eAAQOEDseiKBQKvPfeewbfAWQet27dgoeHBzp37oyYmBjcvXtX6JAsxqFDhxAUFISxY8fC1dUVvXr1wtatW5ulb5FI9MrjV2ES20CPHz+GVqvV/4qoJZVKUVBQIFBUROZVU1ODhIQEhISEoEePHkKHYzGuXr0KBwcH2Nra4pNPPsGBAwfQvXt3ocOyGLt378alS5eQkpIidCgWJzg4GN9//z0OHz6MTZs2IS8vD4MGDdLP4JFp5ebmYtOmTXjrrbdw5MgRTJ8+HbNmzcL27dsb1M/w4cMNdvuSSqXYsmWL/rhVq1aYNm2a0f1xiS0iajCFQoFr166xJs3MunXrhuzsbKjVauzbtw9yuRwZGRlMZM3g3r17mD17No4ePQo7Ozuhw7E4I0eO1D/39/dHcHAwfHx8sGfPHpbTmEFNTQ2CgoKQnJwMAOjVqxeuXbuGzZs3Qy6XG93Pb7/9ZnDcunVrTJgwQX/s4OCAjRs3Gt0fZ2IbqEOHDhCLxXj06JFB+6NHj+Dm5iZQVETmM2PGDPzyyy9QKpXw9PQUOhyLIpFI0LVrV/Tp0wcpKSkICAjA2rVrhQ7LImRlZaGwsBC9e/eGtbU1rK2tkZGRgXXr1sHa2hparVboEC2Ks7MzfH19cfv2baFDsQju7u51fiy//fbbgpd0MIltIIlEgj59+uDYsWP6tpqaGhw7doy1afRG0+l0mDFjBg4cOIDjx4+jU6dOQodk8WpqaqDRaIQOwyIMGTIEV69eRXZ2tv4RFBSEmJgYZGdnQywWCx2iRSkrK0NOTg7c3d2FDsUihISE1FlS8e+//4aPj49AET3HcoJGmDt3LuRyOYKCgtCvXz+sWbMG5eXliI+PFzq0N15ZWZnBL++8vDxkZ2ejXbt28Pb2FjCyN59CocCuXbvw008/wdHRUV8D7uTkBHt7e4Gje/MtXrwYI0eOhLe3N0pLS7Fr1y6oVCocOXJE6NAsgqOjY53679atW6N9+/asCzeDefPmISoqCj4+Pnj48CGWLVsGsVhs8KdoMp05c+Zg4MCBSE5Oxrhx45CZmYnU1FSkpqYKG5iOGuXbb7/VeXt76yQSia5fv366c+fOCR2SRVAqlToAdR5yuVzo0N549Y07AF1aWprQoVmEyZMn63x8fHQSiUTn4uKiGzJkiO73338XOiyLFhoaqps9e7bQYViE8ePH69zd3XUSiUTXsWNH3fjx43W3b98WOiyL8vPPP+t69Oihs7W11fn5+elSU1OFDknHdWKJiIiISHBcJ5aIiIiIWiSuE0tERERELU5DCgR4YxcRERERmdzrNkeo3QnSWKyJJSIiIiKTe9025TqdDmq12uiaWCaxRERERCS4oqIiSKVS3thFRERERC1HQ+dVmcQSERER0X8CVycgIiIDd+7cgUgkQnZ2ttChEBHVy8HBAaGhoUafzySWiKgR4uLiMGbMGP1xWFgYEhISBIsnLy8PH374ITw8PGBnZwdPT09ER0fjr7/+AgB4eXkhPz+fW6QS0X+SRqPB559/jlOnThl9DZfYIiJq4aqrqzF06FB069YN+/fvh7u7O+7fv4/09HQ8efIEACAWi+Hm5iZsoERE9cjKyoJcLodGo4FKpTL6Os7EEhE1UVxcHDIyMrB27VqIRCKIRCLcuXMHAHDt2jWMHDkSDg4OkEqliI2NxePHj/XXhoWFYebMmUhISEDbtm0hlUqxdetWlJeXIz4+Ho6OjujatSvS09Nf+v7Xr19HTk4ONm7ciP79+8PHxwchISFISkpC//79AdQtJ4iLi9PH+uKj9gtEo9Fg3rx56NixI1q3bo3g4OAGfbkQEb2OVqvF8uXLERISgoiICFy5cgUDBw40+nomsURETbR27VoMGDAAU6dORX5+PvLz8+Hl5YUnT54gIiICvXr1wsWLF3H48GE8evQI48aNM7h++/bt6NChAzIzMzFz5kxMnz4dY8eOxcCBA3Hp0iUMGzYMsbGxePr0ab3v7+LiAisrK+zbtw9ardbomGtjzc/Px+zZs+Hq6go/Pz8AwIwZM3D27Fns3r0bV65cwdixYzFixAjcunWraYNFRBZLLBbDyspK/7CxscGKFSuwZ88erFu3Dvb29g3qj+vEEhE1QlxcHJ48eYKDBw8CeD6jGhgYiDVr1ujPSUpKwsmTJ3HkyBF92/379+Hl5YWbN2/C19cXYWFh0Gq1OHnyJIDnMxNOTk54//33sWPHDgBAQUEB3N3dcfbsWf3M6r9t2LABCxYsgFgsRlBQEMLDwxETE4POnTsDeD4T26lTJ1y+fBmBgYEG1+7fvx8xMTH4448/EBISgrt376Jz5864e/cuPDw89OdFRkaiX79+SE5OburwEZEFOnTokMGxVqvFypUrUVRUhG3btiE8PLxB/bEmlojIRP78808olUo4ODjUeS0nJwe+vr4AAH9/f327WCxG+/bt0bNnT32bVCoFABQWFr70vRQKBSZNmgSVSoVz585h7969SE5OxqFDhzB06NCXXnf58mXExsZi/fr1CAkJAQBcvXoVWq1WH18tjUaD9u3bG/EvJyKqa/To0XXaoqOjkZycjHfffReTJ0/GqlWr0KpVK6P6YxJLRGQiZWVliIqKwhdffFHnNXd3d/1zGxsbg9dEIpFBW+26ia/bxcbR0RFRUVGIiopCUlIShg8fjqSkpJcmsQUFBRg9ejQ++ugjTJkyxSBusViMrKwsiMVig2vqS8iJiBrLysoKS5cuxahRoxAbG4sePXogNzfXqGuZxBIRNQOJRFKnHrV379748ccfIZPJYG1t3v/dikQi+Pn54cyZM/W+XllZiejoaPj5+WH16tUGr/Xq1QtarRaFhYUYNGiQOcIlIgsXGBiIS5cuYcmSJUZfwxu7iIiagUwmw/nz53Hnzh08fvwYNTU1UCgU+OeffzBhwgRcuHABOTk5OHLkCOLj442+AcsY2dnZiI6Oxr59+3Djxg3cvn0b27Ztw3fffYfo6Oh6r5k2bRru3buHdevWoaioCAUFBSgoKEBVVRV8fX0RExODSZMmYf/+/cjLy0NmZiZSUlLw66+/NlvcREQvsrGxwZdffmn0+ZyJJSJqBvPmzYNcLkf37t1RUVGBvLw8yGQynD59GgsXLsSwYcOg0Wjg4+ODESNGwMqq+eYQPD09IZPJsHz5cv1SWrXHc+bMqfeajIwM5Ofno3v37gbtSqUSYWFhSEtLQ1JSEj777DM8ePAAHTp0QP/+/TFq1Khmi5uILEtERARet56ATqczejk/rk5ARERERCY3d+5c/XO1Wo2dO3dCoVDo254+fYrU1NTX1v/XYhJLRERERGaVm5uLgIAAlJaW6tuKiooglUqNTmJZE0tEREREZmVvb4+qqiqDhLW8vBy2trZG98EkloiIiIjMyt3dHdbW1ti1a5e+bfv27foNWozBG7uIiIiIyOw+/fRTyOVyfPXVV6ioqMCtW7ewYcMGo69nTSwRERERCWLz5s04duwYJBIJRo8ejfHjxxt9LZNYIiIiImpxWE5ARERERCa3fft2o86Ty+VGnceZWCIiIiIyObFYjDZt2kAkEgEAampqUFJSAmdnZwDPNzpQq9VcJ5aIiIiI/jvEYjEePnwIqVQKAMjLy0NAQABKSkoAPF8n1s3NzehtubnEFhERERGZnU6nM9iG9t/Hr8MkloiIiIhaHCaxRERERGRyzV3ByiSWiIiIiEyu9oauWvb29hg8eLDB63Z2dsb3xxu7iIiIiMjUCgsL4eLiUieZbSwmsURERETU4rCcgIiIiIhaHCaxRERERNTiMIklIiIiohaHSSwRERERtThMYomIiIioxWESS0REREQtDpNYIiIiImpxmMQSERERUYvzf6ZZxmSdoxyiAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                          " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size']\n", + "\n", + "g = sns.catplot(\n", + " data=pumpkins,\n", + " x=\"Item Size\", y=\"Color\", row='Variety',\n", + " kind=\"box\", orient=\"h\",\n", + " sharex=False, margin_titles=True,\n", + " height=1.8, aspect=4, palette=palette,\n", + ")\n", + "# Defining axis labels \n", + "g.set(xlabel=\"Item Size\", ylabel=\"\").set(xlim=(0,6))\n", + "g.set_titles(row_template=\"{row_name}\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9+0lEQVR4nO3deXQc1Z33/3dV9aatZcnaF1tesTEYL3gLdmzAxDAOkEDCPgES8jwTiJMZMkxgzu8MhFmAMUlIgkOWYSDJQIAwLE54MAEvbLHBbGFzAjZeZFuLV+1qqZffH1dSd6m7Zcu2UBs+r3N0wP3tunVv1e263666V7JisVgMERERkQxkD3cFRERERNJRoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLM9wV+BoRKNRdu/eTV5eHpZlDXd1RERE5DDEYjFaWlqoqKjAtge+Z3JcJyq7d++murp6uKshIiIiR6C2tpaqqqoB33NcJyp5eXmAaWgwGBzm2oiIiMjhaG5uprq6um8cH8hxnaj0Pu4JBoNKVERERI4zhzNtQ5NpRUREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0J/165dfPe73+Xpp5+mvb2d8ePHc99993HqqacOd9U+2SIhqP1fOPg25E2E0ZeAJzseb3wR6laBNwg1l0N2wh+Nat0G238L4Tao/DwUzY3HultNrHULFMyA6i+C7TWxWBR2r4I9L0KgDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHoKMOihdAxdlg9eTZ0W6ofRwOvAG542D0peDNjW+7dwPs+gN4ckwstyYea99pyu1uhvKzoWRBPBZuh+0PQ8tfYcRUqL4QHH9PW2JQ/xw0rAF/sWlLoGSwZ0FERA7BisViseHa+YEDB5g+fTqnn3463/jGNyguLubDDz9k3LhxjBs37pDbNzc3k5+fT1NTk/7Wz2B07oXVi6DpvfhrOTWweB1kj4JXroGP/jses31w2sNQ/QXY9hCs/1uIhePxCdfBrLuhZTM8twg6dsVjBdPhzNXg5MAL55vkp5c3HxY9DcXzYNOd8OYN7npO+0848QaTaKw9G7qb4rHyJfDZlRBph9VnmiSlV1YlnLkWghPgtWXwwd3xmOWBeb+Gmkth55Pw0kUQ7YrHx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kUpD7mIiMQNZvwe1kTlxhtv5OWXX+bFF188ou2VqByhjd+ED1ckvz7qyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4dzM8f647qep16gqTSGxanhyrWGr2u3pRcsyTB+dtgacmmzs1/S18CrbeDzt+lxybcB2MnAUbrkqO5Y6Fcz+M3+kREZGUBjN+D+sVdeXKlZx66ql8+ctfpqSkhOnTp/PLX/4y7ftDoRDNzc2uHzkCiXcCXK8/CbueTB0L7YMP70mdpIB5jFT3dPr97UxTbtN7sOW/k5MUMK9tvjd1knKocuuehh3/mzoWbjFtSZWk9JW7Mk3s8fT7bP0IDr6TOiYiIkdkWBOVjz76iHvuuYcJEybwzDPP8I1vfINvfetb/OpXv0r5/ttuu438/Py+n+rq6o+5xp8QvfMs+rP95iftdtkDxAJgedPH0u0TwMlKH/McYp/pyrW84AkMsO0hyrV9g4/BwMdPREQGbVgTlWg0yowZM/iP//gPpk+fzv/5P/+Hr3/96/zsZz9L+f6bbrqJpqamvp/a2tqPucafEDWXp3n9MvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7rJgHoz/abWPGC5Nihyh11EdRcYerWX6DMtCWnJvW2NQOUW3N5+ljBDMiflDomIiJHZFgTlfLyck488UTXa5MnT2bHjh0p3+/3+wkGg64fOQJT/hkqPu9+rXgBTLvDrOCZdkd8pQ6YgX3+I+YOxYJHwV8Uj9k+mHkXFJwCM38II+e4y62+ECZdD6MvhonLcCUOeRNg3v0QKIbPPGAmpPby5JjXAsXmPXkTEwq1TKJRc4kpu/pL7n2OnGPqUjAVZv7IfQfEXwTzf2faMv937sTL8sC023uOwe3JCVLFUnPsqs6Fyf/knouSU2PqKyIix9SwTqa97LLLqK2tdU2m/Yd/+AdeeeUV/vSnPx1ye02mPUr73+hZnnyCWXmTqKPOLL/1BqH8HHASBvtIJ+x+2ixPLv9c8rLcxpegdbO5w1Aw1R1r2QJ7XoKscihb7B7su5tNuQAV55h994pFTX066qB4PuT1WxV24O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrHL3tnvWx5cnF85wx1q3QePzpv1lZ4E97Kv9RUSOC8fNqp+NGzfymc98hu9973tcdNFFvPrqq3z961/nF7/4BZdfnub2egIlKiIiIsef42bVz6xZs3j88cf57W9/y0knncS//uu/ctdddx1WkiIiIiKffMN6R+Vo6Y6KiIjI8ee4uaMiIiIiMhAlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3Du/JZbbuF73/ue67UTTjiBv/zlL8NUo34e9ANd8X9f3AHbH4Gm9yB/Coy+CJxAPN6wFuqeBX8h1FwOWeXxWMsW2P4QRDqh+gtQODMe626GbQ9C2zYYORsqzwO759TEorDrKdj7MmRVwZjLwVcQ3/bAn6H2MbAcGH0xBE+IxzobYev/QGgPlJ4OZWeBZZlYJAS1/wsH34a8iTD6EvBkx7dtfBHqVoE3aNqSXRWPtW6D7b+FcBtUfh6K5ia0pdXEWrdAwQyo/iLY3nhbdq+CPS9CoAzGXAH+kfFtD74HtY+a/6/+EoyYEo+F9sG2B6CjDooXQMXZYPXk2dFuqH0cDrwBueNg9KXgzY1vu3cD7PoDeHJMLLcmHmvfacrtbobys6FkQTwWboftD0PLX2HEVKi+EBx/T1tiUP8cNKwBf7FpS6Akvm3zX822sQhUXwAFp8RjXQdg6wPQsROKPmOOYV9bwrBrJex7FXJqoOYycw567X8dap8w9Rh9KeSNi8c66kxbQvuh/CxzzntFOo9d3930X7D9Z/H4uO/AnDv5pIt07CXSsRfL8eLJqcTyxI9ftLuNSNtuYrEonuxSbP+Ivlgs2k24dTexcDu2fwROdilWz/mOxWJEOhqJdu7H8gRMuY4vXm6omXB7HRYWTk4Fti/er2OREOHWXcQiIZxAEXZWEVbP5zsWixBpqyfa1YztzcHJqcSynXhbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7bUEe1uwfbm4eSUu8738c6KxWKx4dr5LbfcwqOPPspzzz3X95rH46GoqGiAreKam5vJz8+nqamJYDB46A0G40Hr0O/JmwBnroOsMvjTFWaA7uVkwYLHzIC65T549etm0Oo1+Z9g+h1mcF5zJnQ2xGMj58IZfwTLA+v+BhrXxWP+kXD6H6FwBrxzK7xzc0KFLDj1JzDxOmhYB8+fC+HWeLjqfJj/KHQdhNWLzKDVK6cGFq+D7FHwyjXw0X/HY7YPTnvYDFLbHoL1fwuxcDw+4TqYdTe0bIbnFkHHrnisYDqcuRqcHHjhfJP89PLmw6KnoXgebLoT3rzBfXyn/SeceINJNNaeDd1N8Vj5EvjsSoi0w+ozTZLSK6sSzlwLwQnw2jL44O6EQ+SBeb+Gmkth55Pw0kUQTUhGx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kXwwU/htW8CCR+tk2+Bk2+G/W/C2rNM4tWrZKE5DrEIrDkL9m2IxwIlcMYak7S9dSO8f0dCW2yY/UsY91XY/Qy8+EWIdMTjoy+Bzzxg+tZzC6Hlw3jsaPpuKp6RcNHegd9znIrFYnTteZNI2+74i5aNv+RUnOwSwi21dO19m8Tz7ckfh69wMtGuFjrrN5gvBj1s/wj8ZXMBi1DDq0Q7E/qC7SVQNhfbn0/3gQ/oPviBqy7ekSfhDdYQ6dhLqGGj67w42aX4SmZCNExn3Xpi3S3x6nqy8JfNw/Jk0bX3bSKttQml2vhKZuDJKSPcuouuPW+525I3Gl/RyUS72wjVrScW6YyX6wsSKJsLtodQw0aiHXsSivXgL52DEyigu2kL3fs3udtSMBnviHFEOg8QanjFJOm9m2YV4y+dBdEInfUbiHXFP/uWE8BfPhfbm0vXvncJN29LKNXCVzwNT24l4bZ6uhrfAKLxY5Rbja9oKrFwB6H69cTC8c+L5c0jUD4XbC9dja8TaU+4JlsO/tJZOFlFdDdvo3vfu+62jJiIt2Ai0VCTOd/R7nhbAoX4S+cAMUL1G4iGDiYcIx+B8nnYvjy69m8i3LTFVa6vaCqevFFE2hsJNb5mvuz1tiWnAl/xdIiEzPkOt8Wr68nBXz4POyGZzjSDGb+HPVF54okneOutt45o+yFLVH4/HVoOs05jr4KKpWbg6i+rAs5+E1aONt9G+1uy0QzOiYlIr5NvMYNf/8EboHAWzLsfnpqSHLO9cN5WeO6z0PpRcnzu/bBvI3y4Ijk26ssw5ip4fmlyzD8Slm6CleMg3JIcP3MdbFoOu59Kjk2+wSRCr12XHMufAgt/D78f7/oQAmYgPnezSbgSk6pep64wicSm5cmxiqVmv6sXJcc8eXDeFnhqsjth6LXwKdh6P+z4XXJswnUwchZsuCo5ljsWFr8AK8e4LlR9lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpnLZsF1KhlS4bXfPgOdmOX78FQvo3Lkmue8C/or5dO/f5E5EenhHTATbSRq8AWxfPr7iaXTuej5FbSwCVWf0DLLtSVFf0SnmW3nL9qSYk1OOJ7fKJDhJO/USqFpEZ+1a95eQ3raUzaO7aQvRjsakmCd/LJYnO2nwBjP4+0tnmWOUQqDqDEING11JVS/vyJOIhdsJNyVfx+ysErz54wjVr08u1PIQqDqdzl3rUn4O/aWzCLfu7Lu742pL3mhs/wi69v45RbHZ+Mvm9bQlua8HKhfStectoglJVV9bCidDNJKUeALYgZF4CycT2v1SirbY5hjtfpFYQrLby1cyg0h7I5HWnUkxJ7cKf/G05DIzxGDG72F99APw4YcfUlFRQSAQYN68edx2222MGjUq5XtDoRChUPxkNTc3D02lDjdJAXMbPtWgBGbg+PCe9Bf67b9NnaSA+bbuyUkd278Rtv4mdSzaDZt/kTpJ6S13X4oLFZg7DImPlRKF9pm2pEpSwDxGqns6/T5zxqSONb0HW+5NeaEnFoXN96ZOUnrLbUu+IAOmLjljU8fCLaYtqZKU3nJ3rkwTezx1QgDmmG/+Rfr+sPXXqZMUMI+uEu+GJGpcZx69pBLphM33pK9T7ePpz8vR9N1PkUhbQ8rXY5GQSQhS9V0g0ro7ZZICEG6v73vM0F+0q4lwioGnZ6+EW7anTFIAIu31REPJAyWYdiQ+ZnDvtNvcmUiRpACE2+pSJil95SY8bnHVtruFcMuO1PsEwi07UiYpptx6Ymk+E9GORsKe1PskFibcsi1t3w63N7jvliTus70+ZUJgim0n3LqDVEkKQLh1Z8okBXrakuauZLRzH+HWXSljxKLmGKWpU6StnkjiXazEWJo2Ho+GdTLtnDlzuP/++1m1ahX33HMPW7duZcGCBbS0pO64t912G/n5+X0/1dXVH3ONU3D8YPvTx9MlGwBOtplbkoo9ULmW2TbtPgeI2f74PItB7ZOB9+kEwEpzEXQC6fd5qHIHastA5VpeGOi256HaYvsGH4ND1DcHSPNIcaByLcc8jkm7z4H62EBtOcT59g5Q7qeJlf4yaVkDfNezbNKdb8uyByw37XXhkPt00pd7iH0esi0DlGsdYVsYYB6FmWNxpG0Z6PjZA5Q7wPEDLAZoy0DtHPAYWQPWd+ByD3G+PyGGtSXnnHMOX/7yl5k6dSpLlizh//2//8fBgwd55JFHUr7/pptuoqmpqe+ntrY25fuO2ui/O/z31lxuflIJTjLzRXyFyTHLhjFfMfNGBltu+edg3NVmvkV/nlwY/3dmIutgy625zPykklMDE79pJsEmsUyZoy5Kve3oy9Lvs3gBjP+6e2JnL9tvYsULkmOHKnfURVBzBSkHikCZaUtOTeptawYod6DjVzDDHHtPbnLM8phzVr5k8OVWnQ9jr0x94fEVwIRrITh58OUequ9OSNN3P2U8uZUpX7e8uXiCNfHJ4v23y6vCyS5NGXNyKtOWa2cV48mrJmXftRw8+aOxfPmpy82txElTrie3AicnTVs8WTjBmrSJvze3CienPGXMk1uZtlzbX4g3OCp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntTJ/UDHfqDjZ/ny8eSPTpM4WHjyqrGzilNuO9AxcrJLe853CrYXb7AGy5vimtJTridNuelePx5lVMo1YsQIJk6cyObNm1PG/X4/wWDQ9TMkTrvn8N5Xthim3gplZ5g5JYkdOLsKTnsIPFkw/xH3IxXbD7N+biZ7nrrCTDhNVHO5GXzGXg3jrsF1wcqfYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt3hvvgGykwbPAFY8Cj4EyY72z6YeZdZ1TLzhzByjrvc6gth0vVmRdLEZe625E0wc20Cxaa+iXcGPDnmtUCxeU/exIRCLZNo1Fxiyq7+knufI+eYuhRMhZk/ct9R8BeZeRuegPlvYuJleWDa7T3H4PbkBKliqTl2VeeaydCJF9+cGlNfX76ZeJy4UsfJgrn3mXM2+xfmHCa2Zdw15lxPuLYnuUpQMM30kbzxps8k3gHxFfS0Jduc98SVWZYDJ91s+ubUW01fTXSkfTfdHaHyNEnqJ4CTVWTmlCS03XIC+ItnYNkO/pKZ7s+LZeMrmortzcU38iQsn/s65eRU4gnW4ORW4+S6ByjLm2e29WThKz7F3ccsD/6SGVi2F3/xdKx+d+88+WPxZJfizR+PnVXiitn+QryFk3ECBXgLJrnaguPHVzITu68tiXfgbLyFU7D9QXyFU1yrmQCc7DKz39wKk7QltsWTg6/4FCzHbyZ9JvYxy8FXPL0ndgpWv7t3nmCNGYTzx+JkuxMk2z/C1MUXxFs4BdcwZvvw97TFVzKzX+Jl4S2YZI5B4aSkBMnMexmPJ7sUT/44V8zyZJljbnvxl8xwf0m0bHzFp5hzVjQVy5vn2rb3PHuCNUnJiuUL4ht5ErY3B1/RVPf5tr34S2b29LEZWK4vcxaeERNM3yyYiB1wL0CxA+b1T4phnUzbX2trK6NGjeKWW27hW9/61iHfP6SrfgBeuBJ2/tr8f9YY+OJHsPdVaH4fgidC0Wz3+9t3Qv0as8SzfIn74hVuh91Pm2f+FWe7l+XGYtD4vJkYWjjLvSwXzFLXvRvMAFJ6RnyJMZilrrtXmeXM5ee4l+VGw1D/rFmmXLLQvSwXYP8bPcuTTzArbxJ11Jnlt96gKTdhmSGRTtOWcJu5uxNwXxRpfAlaN5s7DAVT3bGWLbDnJbP8tWyx+4PZ3WzKBag4xz3Yx6KmPh11UDzfvSwX4MDb8eXJJf0SjM5GqPujSX4qznHfvYl0mZVI3U2mPln9vjXuWR9fnlzY7y5V6zZz3gIlZul3wpJJulvN3JBo2JzvxME+FjPLmttroWiee0k5QNP78eXJJQvd5zu0z5xvJ2DakjhYRbuh7hmzPLnsDHfiAse27yauivuETqLtLxruINqxD8vxYmcVu27lx6IRIh2NEIvgZJW4luWapa77iIU7sP0jXMtywSx1jYYOYHmysAMj+5ayglnqGunYA5Zlyk3oY7FYlGjHXmKREHZgpGtZLkA01ES0qxnLm+taYgxmqWukYy/YHpzskgHaUuxalgsQ6dxPrLsN25+P3S8Ji3a3maXWTsC1XNqU202k3cyncLKLXfNlzNLmvcQindiBQteyXHOMmomGmrC82a4lxuYYhXqOkdNzjJyEcqNE2hshGsbJKnItKTdtOUCsZ3my7XffpYp2txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHiIQOEOtqxfLl4vjTzDXMIMfNqp9//Md/5Nxzz2X06NHs3r2bm2++mbfeeov333+f4uLUt9ASDXmiIiIiIsfccbPqZ+fOnVx66aXs27eP4uJi5s+fz4YNGw4rSREREZFPvmFNVB56KM2SSxEREREybDKtiIiISCIlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3BXINHtt9/OTTfdxLe//W3uuuuu4a4OPGi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qolwL54nHK4bDcyeLFYjEhHI9HO/VieAJ6cSizH1xePhpoJt9dhYeHkVGD74v06FgkRbt1FLBLCCRRhZxVh9Xy+Y7EIkbZ6ol3N2N4cnJxKLNvp2zbSuY9I+x4s24OTW4ntyYrvs7udSNtuYtEwTnYpTiB+vYlFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW+VuS1cLkbY6AJyccmxfXkJbunra0okTKMTOKkloS7SnLU3Ynmyc3EosOz50RToPEGlvMG3JqcD2xq9j0XAHkdZdPW0pxgnErzexaIRI226i3a3YvmBPW5x4Wzr3EunY29OWSqzezz4Q7Wo1x4gYnuxybH/8MxqLdBFu20Us3IntL8DJLnW3pb2BaOgglicbT24FVu/1EYiGDhJub8DCxsmtwPbmpOw3nzZWLBaLDXclADZu3MhFF11EMBjk9NNPP6xEpbm5mfz8fJqamggGg4d8/6D0T1JSyZsAZ66DrDL40xVmgO7lZMGCx8yAuuU+ePXrZtDqNfmfYPodZnBecyZ0NsRjI+fCGX8EywPr/gYa18Vj/pFw+h+hcAa8cyu8c3NChSw49Scw8TpoWAfPnwvh1ni46nyY/yh0HYTVi8yg1SunBhavg+xR8Mo18NF/x2O2D0572AxS2x6C9X8LsXA8PuE6mHU3tGyG5xZBx654rGA6nLkanBx44XyT/PTy5sOip6F4Hmy6E968wX18p/0nnHiDSTTWng3dTfFY+RL47EqItMPqM02S0iurEs5cC8EJ8Noy+ODuhEPkgXm/hppLYeeT8NJFEO2Kx8deDXPuhfYdpi1t2+Kx/CmmXF8BvPRl2PlEPObJgYV/gNJF8MFP4bVvAgkfrZNvgZNvhv1vwtqzTOLVq2ShOQ6xCKw5C/ZtiMcCJXDGGpO0vXUjvH9HQltsmP1LGPdV2P0MvPhFiHTE46Mvgc88YPrWcwuh5cN47Gj6bjqXZcSl5LgRi0YINbxKtDOhL9heAmVzsf35dB/4gO6DH7i28Y48CW+whkjHXkING13nxckuxVcyE6JhOuvWE+tu6YtZniz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPWyT2XU/eaHxFJxPtbiNUt55YpDNeri9IoGwu2B5CDRuJduxJKNaDv3QOTqCA7qYtdO/f5G5LwWS8I8YR6TxAqOEVk6T3bppVjL90FkQjdNZvINYV/+xbTgB/+Vxsby5d+94l3LwtoVQLX/E0PLmVhNvq6Wp8A4jGj1FuNb6iqcTCHYTq1xMLxz8vljePQPlcsL10Nb5OpD3hmmw5+Etn4WQV0d28je5977rbMmIi3oKJRENNdNZvMF+eetsSKMRfOgeIEarfQDR0MOEY+QiUz8P25dG1fxPhpi2ucn1FU/HkjeKTaDDjd0YkKq2trcyYMYOf/vSn/Nu//RvTpk0b3kTlcJKUXmOvgoqlZuDqL6sCzn4TVo4230b7W7LRDM6JiUivk28xg1//wRugcBbMux+empIcs71w3lZ47rPQ+lFyfO79sG8jfLgiOTbqyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4d7NJuBKTql6nrjCJxKblybGKpWa/qxclxzx5cN4WeGqyO2HotfAp2Ho/7PhdcmzCdTByFmy4KjmWOxYWvwArx7guVH2Wvgfrr4L9G5Nj05ebO1Tv3JIcK1lk4s/MSo45AThvO6yaDh0p7mrM/505Jx/dnxw7mr6bihKVQUk1eAPYvnx8xdPo3PV8iq0sAlVn9Ayy7UlRX9Ep5lt5y/akmJNTjie3yiQ4STv1EqhaRGftWveXkB7+snl0N20h2tGYFPPkj8XyZCcN3mAGf3/pLDp3rknRFkxbGja6kqpe3pEnEQu3E25Kvo7ZWSV488cRql+fXKjlIVB1Op271qX8HPpLZxFu3dl3d8fVlrzR2P4RdO39c4pis/GXzetpS3JfD1QupGvPW0QTkqq+thROhmgkKfEEsAMj8RZOJrT7pRRtscmqXuy6M/VJMZjxOyMe/Vx33XUsXbqUxYsX82//9m9p3xcKhQiFQn3/bm5u/jiqN7DaJ1IPSmAGjg/vSX+h3/7b1EkKmG/rnjS3/fZvhK2/SR2LdsPmX6ROUnrL3ZfiQgXmDkPiY6VEoX2mLamSFDCPkeqeTr/PnDGpY03vwZZ7k5MUMK9tvjd1ktJbblvyBRkwdckZmzoWbjFtSZWk9Ja7c2Wa2OOpEwIwx3zzL9L3h62/SZ2kgHl0lXg3JFHjOvPoJZVIp2lLujrVPp7+vBxN35WjFmmrT/l6tKuJcOvONFvFCLfuSJmkAETa64mGkgdKs78G12MG9067zZ2JFEkKQLitLmWS0lduwuMWV227Wwi37Ei9TyDcsiNlkmLKrSeW5jMR7Wgk7Em9T2Jhwi3b0vbtcHuD+25J4j7b64lFQiljsXB7T1tSJ+Th1p0pkxToaUuau5LRzn1EWtN8fmNRIh178ORWpo5/Sgx7ovLQQw/xxhtvsHFjmgt4gttuu43vfe97H0OtBsHxg+1PH0+XbAA42WZuSaoObA9UrmW2HajcdGx/fJ7FoPZ5iHKdAFheiKX4kDuB9Ps8VLnpLkaHKtfygieQOnaofToB87grmqYt9gDfbg55XixSXuicQPrHK5YD9gBtGbCPDVDfo+m7cvSsAdYyWE760AAxLCd9uZY94D4ta4DhoHfbVF8oLLtvnkraOqVjD9BO2yEWOdK2DHT8bMw6klRtGeD49dQpfXCgmI1FLE2KYx2iL2jNy7AegdraWr797W/zwAMPEAgMcCHucdNNN9HU1NT3U1tbe8htjszIQ7+lV83l5ieV4CQzX8RXmByzbBjzFTNvZLDlln8Oxl1t5lv058mFCX9nJrIOttyay8xPKjk1MPGbZhJsEsuUOeqi1NuOviz9PosXwPivuyd29rL9Jla8IDl2qHJHXQQ1V5i69RcoM23JqUm9bc0A5Q50/ApmmGPvyU2OWR5zzsqXDL7cqvNh3FWpL1i+Aph4LQQnD77cI+27ckyk+5ZsZxXjyasmZd+1HDzB0Vi+/JTbOrmVOGnK9eRW4OSkjlmeLJxgTdrE35tbhZNTnjLmya1MW67tL8QbHJW671o23rxR2P7UfczJqUh7jJyccrx5VSljOH6c4BishAnC7m0r05c7wPGzfPl4gqPTJCQWnrxq7KzilNsOdIyc7NKe852C7cXJKkkd+xQZ1kTl9ddfp7GxkRkzZuDxePB4PDz//PP8+Mc/xuPxEIm4v2H6/X6CwaDrZ0hctvfw3le2GKbeCmVnmDkliR04uwpOewg8WTD/EfcjFdsPs35uJnueusJMOE1UczlMuNZM7Bx3Da4LVv4UM4Eyu8rMN3ESPozeoNmnL99Mokx83GLZZs5G1bkw5Z+h4vPufRYvgGl3mBU80+6Ir9QBM7DPf8TcoVjwKPiLEtrig5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVSY+SP3HQV/kZm34QmY/yYmXpYHpt3ecwxuT06QKpaaY1d1rpkMnXjxzakx9fXlm4nHiSt1nCyYe585Z7N/Yc5hYlvGXWPO9YRre5KrBAXTTB/JG2/6TOIdEF9BT1uyzXlPXJllOXDSzaZvTr3V9NVER9p300o9KEh6Tm41Tq57gLK8efiKpmJ7svAVn+LuY5YHf8kMLNuLv3g6Vr+7jZ78sXiyS/Hmj8fuN7jZ/kK8hZNxAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPcbcguM/vNrcATrHG3xZODr/gULMePr3i6u49ZDr7i6T2xU7D6rW7xBGvw5FbiyR+Lk+1OkGz/CFMXXxBv4RRcw5jtw9/TFl/JzH6Jl4W3YJI5BoWTkhIkM+9lPJ7sUjz541wxy5NljrntxV8yw/0l0bLxFZ9izlnRVCxvnmvb3vPsCdYkJSuWL4hv5EnY3hx8RVPd59v24i+ZOfBdnE+JYZ1M29LSwvbt7jkGV199NZMmTeK73/0uJ5100oDbD+mqH4AHg0DC89PLYrD3VWh+H4InQtFs9/vbd0L9GrPEs3yJe7APt8Pup80z/4qz3ctyYzFofN5MDC2c5V6WC2ap694NZgApPSO+xBjMUtfdq8xy5vJz3Mtyo2Gof9YsUy5Z6F6WC7D/jZ7lySeYlTeJOurM8ltv0JSbOJkr0mnaEm4zd3cC/TL+xpegdbO5w1Aw1R1r2QJ7XjLLX8sWuz+Y3c2mXICKc9yDfSxq6tNRB8Xz3ctyAQ68HV+eXNIvwehshLo/muSn4hz33ZtIl1mJ1N1k6pPV71vjnvXx5cmF/e5StW4z5y1QYpZ+JyyZpLvVzA2Jhs35ThzsYzGzrLm9FormuZeUAzS9H1+eXLLQfb5D+8z5dgKmLYmDVbQb6p4xy5PLznAnLnBs+27ihHNNoj0q0a5WoqEDWJ4s7MDIvqWsYJa6Rjr2gGXhZJW4luXGYlGiHXuJRULYgZGuZbkA0VAT0a5mLG+ua4kxQCzcSaRjL9genOwS16ObWDRCpKMRYhGcrGLXslyASOd+Yt1t2P58bJ/7uhvtbjNLrZ2Aa7m0KbebSLtZFeRkF7vmy5ilzXuJRTqxA4VJy3KjXc1EQ01Y3mzXEmNzjEI9x8jpOUZOQrlRIu2NEA3jZBVh9XscHOk8QKxnebLtd9+lina3E+3ch+X4e9qSeIzCPcco1nOM4tdHs7R5H7FwB7a/wLWk3LSlpWd5crrz3ZiyLZ80x92qn0SLFi0a/lU/IiIiMmQGM35rlo6IiIhkrGFf9dPfunXrhrsKIiIikiGO6I7KwYMH+a//+i9uuukm9u/fD8Abb7zBrl27DrGliIiIyOEb9B2Vt99+m8WLF5Ofn8+2bdv4+te/TmFhIY899hg7duzg17/+9VDUU0RERD6FBn1H5frrr+eqq67iww8/dP3uk7/5m7/hhRdeOKaVExERkU+3QScqGzdu5P/+3/+b9HplZSX19al/JbSIiIjIkRh0ouL3+1P+jZ0PPviA4uLUv5VPRERE5EgMOlE577zzuPXWW+nuNn/wybIsduzYwXe/+10uvPDCY15BERER+fQadKLy/e9/n9bWVkpKSujo6GDhwoWMHz+evLw8/v3f/30o6igiIiKfUoNe9ZOfn8+zzz7LSy+9xNtvv01rayszZsxg8eLFh95YREREZBAGnajs2LGD0tJS5s+fz/z58/tej8Vi1NbWMmrUqGNaQREREfn0GvSjn5qaGmbMmMGWLVtcrzc2NjJmzJg0W4mIiIgM3hH9ZtrJkycze/ZsVq9e7Xo9w/6+oYiIiBznBp2oWJbFT3/6U/6//+//Y+nSpfz4xz92xURERESOlUHPUem9a/IP//APTJo0iUsvvZR33nmHf/mXfznmlRMREZFPt6P668nnnHMOf/rTnzjvvPN49dVXj1WdRERERIAjSFQWLlyIz+fr+/eJJ57IK6+8wgUXXKA5KiIiIocpEon0/fLUTyKfz4dtH9FUWBcrdhxnF83NzeTn59PU1EQwGBzu6oiIiBxSLBajvr6egwcPDndVhpRt24wZM8Z1c6PXYMbvw7qj0tzc3FdQqr/zk0gJg4iISHq9SUpJSQnZ2dmfyIUo0WiU3bt3U1dXx6hRo46qjYeVqBQUFFBXV0dJSQkjRoxIucNYLIZlWUQikSOujIiIyCdZJBLpS1JGjhw53NUZUsXFxezevZtwOIzX6z3icg4rUVmzZg2FhYUArF279oh3JiIi8mnWOyclOzt7mGsy9Hof+UQikaFPVBYuXJjy/0VERGTwPomPe/o7Vm087Om4e/fuZfv27a7X3nvvPa6++mouuugiHnzwwWNSIREREZFeh52oLFu2zPVbaBsbG1mwYAEbN24kFApx1VVX8Zvf/GZIKikiIiKfToedqGzYsIHzzjuv79+//vWvKSws5K233uLJJ5/kP/7jP1ixYsWQVFJERESOzi233MK0adOGuxqDdtiJSn19PTU1NX3/XrNmDRdccAEej5nmct555/Hhhx8e8wqKiIiIGYeXLVvG2LFj8fv9VFdXc+655yb9geBPmsNOVILBoOuX07z66qvMmTOn79+WZREKhY5p5URERAS2bdvGzJkzWbNmDcuXL+edd95h1apVnH766Vx33XUfWz2G4zfpHnaiMnfuXH784x8TjUZ59NFHaWlp4YwzzuiLf/DBB1RXVw9JJUVERD7Nrr32WizL4tVXX+XCCy9k4sSJTJkyheuvv54NGzYAsGPHDs4//3xyc3MJBoNcdNFFNDQ0pC0zGo1y6623UlVVhd/vZ9q0aaxataovvm3bNizL4uGHH2bhwoUEAgEeeOCBIW9rf4edqPzrv/4rK1euJCsri4svvph/+qd/oqCgoC/+0EMPaemyiIjIMbZ//35WrVrFddddR05OTlJ8xIgRRKNRzj//fPbv38/zzz/Ps88+y0cffcTFF1+cttwf/ehHfP/73+fOO+/k7bffZsmSJSmncdx44418+9vfZtOmTSxZsuSYt+9QDvuPEk6dOpVNmzbx8ssvU1ZW5nrsA3DJJZdw4oknHvMKioiIfJpt3ryZWCzGpEmT0r5n9erVvPPOO2zdurXv6cavf/1rpkyZwsaNG5k1a1bSNnfeeSff/e53ueSSSwC44447WLt2LXfddZdrcczf//3fc8EFFxzjVh2+Qf315KKiIs4///yUsaVLlx6TComIiEjc4fzt4E2bNlFdXe2agnHiiScyYsQINm3alJSoNDc3s3v3bk477TTX66eddhp//vOfXa+deuqpR1H7o3f0f39ZREREhsyECROwLIu//OUvw7L/VI+bPk5KVERERDJYYWEhS5YsYcWKFbS1tSXFDx48yOTJk6mtraW2trbv9ffff5+DBw+mnJYRDAapqKjg5Zdfdr3+8ssvZ9w0jkE9+hEREZGP34oVKzjttNOYPXs2t956K1OnTiUcDvPss89yzz338P7773PyySdz+eWXc9dddxEOh7n22mtZuHBh2kc3N9xwAzfffDPjxo1j2rRp3Hfffbz11lvDsrJnIEpUREREMtzYsWN54403+Pd//3e+853vUFdXR3FxMTNnzuSee+7BsiyefPJJli1bxmc/+1ls2+bss8/mJz/5Sdoyv/Wtb9HU1MR3vvMdGhsbOfHEE1m5ciUTJkz4GFt2aFbscGbppNDY2EhjYyPRaNT1+tSpU49JxQ5Hc3Mz+fn5NDU1EQwGP7b9ioiIHInOzk62bt3KmDFjCAQCw12dITVQWwczfg/6jsrrr7/OlVdeyaZNm/pmIluWRSwWw7IsIpHIYIsUERERSWnQicpXv/pVJk6cyL333ktpaSmWZQ1FvUREREQGn6h89NFH/O///i/jx48fivqIiIiI9Bn08uQzzzwz6ZfBiIiIiAyFQd9R+a//+i+uvPJK3n33XU466SS8Xq8rft555x2zyomIiMin26ATlfXr1/Pyyy/z9NNPJ8U0mVZERESOpUE/+lm2bBlXXHEFdXV1RKNR14+SFBERETmWBp2o7Nu3j3/4h3+gtLR0KOojIiIi0mfQicoFF1zA2rVrh6IuIiIiIi6DnqMyceJEbrrpJl566SVOPvnkpMm03/rWt45Z5UREROTT7YhW/eTm5vL888/z/PPPu2KWZSlRERER+ThEI7DnReiog6xyKF4AtjPku12xYgXLly+nvr6eU045hZ/85CfMnj17yPY36ERl69atx2zn99xzD/fccw/btm0DYMqUKfzLv/wL55xzzjHbx1F5sN9v3b24A7Y/Ak3vQf4UGH0ROAl/v6BhLdQ9C/5CqLncdJxeLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQW9v0k4EoLa/4WDb0PeRBh9CXiy49s2vgh1q8AbNG3JrorHWrfB9t9CuA0qPw9FcxPa0mpirVugYAZUfxFsb7wtu1eZD1agDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHzAeyeAFUnA1Wz5PLaDfUPg4H3oDccTD6UvDmxrfduwF2/QE8OSaWWxOPte805XY3Q/nZULIgHgu3w/aHoeWvMGIqVF8Ijr+nLTGofw4a1oC/2LQlUBLftvmvZttYBKovgIJT4rGuA7D1AejYCUWfMcewry1h2LUS9r0KOTVQc5k5B732vw61T5h6jL4U8sbFYx11pi2h/VB+ljnnvSKdx67vrur/l1i9cFkXcvyIdO4j0r4Hy/bg5FZie7L6YtHudiJtu4lFwzjZpTiB+PUmFg0Tad1FNNyO7cvHySnD6um7sViMaEcjkc79WI4fT24VluOLl9vVQqStDgAnpxzblxcvN9JFuHUXsUgnTqAQO6uk77eex2JRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3mDaklOB7Y1fx6LhDiKtu3raUowTiF9vYtEIkbbdRLtbsX3BnrY48bZ07iXSsbenLZVYvZ/9TFH7GLz+bXMN65VdBTN/ZK45Q+Thhx/m+uuv52c/+xlz5szhrrvuYsmSJfz1r3+lpKTk0AUcgSP+o4RdXV1s3bqVcePG4fEc2R9h/v3vf4/jOEyYMIFYLMavfvUrli9fzptvvsmUKVMOuf2Q/lHC/klKKnkT4Mx1kFUGf7rCDNC9nCxY8JgZULfcB69+3QxavSb/E0y/wwzOa86EzoZ4bORcOOOPYHlg3d9A47p4zD8STv8jFM6Ad26Fd25OqJAFp/4EJl4HDevg+XMh3BoPV50P8x+FroOwepEZtHrl1MDidZA9Cl65Bj7673jM9sFpD5tBattDsP5vIRaOxydcB7PuhpbN8Nwi6NgVjxVMhzNXg5MDL5xvkp9e3nxY9DQUz4NNd8KbN7iP77T/hBNvMInG2rOhuykeK18Cn10JkXZYfaZJUnplVcKZayE4AV5bBh/cnXCIPDDv11BzKex8El66CKIJg+zYq2HOvdC+w7SlbVs8lj/FlOsrgJe+DDufiMc8ObDwD1C6CD74Kbz2TSDho3XyLXDyzbD/TVh7lkm8epUsNMchFoE1Z8G+DfFYoATOWGOStrduhPfvSGiLDbN/CeO+CrufgRe/CJGOeHz0JfCZB0zfem4htHwYjx1N303nsiO6lMjHKBaL0bX3bSKttQmv2vhKZuDJKSPcuouuPW+R2Hc9eaPxFZ1MtLuNUN16YpHOvpjlCxIomwu2h1DDRqIdexKK9eAvnYMTKKC7aQvd+ze56uItmIx3xDginQcINbxikvTeTbOK8ZfOgmiEzvoNxLrin33LCeAvn4vtzaVr37uEm7cllGrhK56GJ7eScFs9XY1vAPE/nOvkVuMrmkos3EGofj2xcPzzYnnzCJTPBdtLV+PrRNoTrsmWg790Fk5W0WEe6fSOyR8lrH0MXvwSrmsMAD3j1oJHhyxZmTNnDrNmzeLuu811NRqNUl1dzbJly7jxxhtd7z1Wf5Rw0IlKe3s7y5Yt41e/+hUAH3zwAWPHjmXZsmVUVlYmVXSwCgsLWb58OV/72tcO+d4hS1QOJ0npNfYqqFhqBq7+sirg7Ddh5WjzbbS/JRvN4JyYiPQ6+RYz+PUfvAEKZ8G8++GpFMmc7YXztsJzn4XWj5Ljc++HfRvhwxXJsVFfhjFXwfNLk2P+kbB0E6wcB+GW5PiZ62DTctj9VHJs8g0mEXrtuuRY/hRY+Hv4/XhzxyWRZcO5m03ClZhU9Tp1hUkkNi1PjlUsNftdvSg55smD87bAU5PdCUOvhU/B1vthx++SYxOug5GzYMNVybHcsbD4BVg5xtzl6W/pe7D+Kti/MTk2fbm5Q/XOLcmxkkUm/sys5JgTgPO2w6rp0LE7OT7/d+acfHR/cuxo+m4qSlQyXqS9gVBDiv5newlULaKzdq37S0gPf9k8upu2EO1oTIp58sdiebLp3vduUszy5uEvnUXnzjUp6xOoOoNQw0Zi3cnXFO/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoOp3OXetSfg79pbMIt+7su7vjakveaGz/CLr2Jv/2dcuTTaDq9KP++3ZHnahEI7Cyxn0nxcUyd1bO23rMHwN1dXWRnZ3No48+yhe+8IW+16+88koOHjzIk08+6Xr/sP315Jtuuok///nPrFu3jrPPPrvv9cWLF3PLLbcccaISiUT43e9+R1tbG/PmzUv5nlAoRCgU6vt3c3PzEe3rmKp9IvWgBGbg+PCe9Bf67Q+lTlLAfFv35KSO7d8IW3+TOhbths2/SJ2k9Ja7L8WFCswdhsTHSolC+0xbUiUpYB4j1SX/EsC+feaMSR1reg+23JucpIB5bfO9qZOU3nLbtqeO1T1tHgOlEm4xbUmVpPSWu3NlmtjjqRMCMMd88y/S94etv06dpIB5dJV4NyRR4zrTV1KJdJq2pKtT7ePpz8vR9F05LrnuEiSKdps7EymSFIBwe13KJAUg0taAlfC4JVGsu4Vwy4609Qm37EiZpJhy64ml+UxEOxoJe1Lvk1iYcMu2tH073N6Q9jhE2uuJRUIpY7FwO7GuFiz/Mb57P1h7XhwgSQGIQXuteV/pomO667179xKJRJJ+PUlpaSl/+ctfjum+Eg06UXniiSd4+OGHmTt3riuznDJlClu2bBl0Bd555x3mzZtHZ2cnubm5PP7445x44okp33vbbbfxve99b9D7GFKOH+wBnl160yQbYG6xW07q2+r2QOVa4KT5kMLAMdsfn2cxqH0eolwnAJYXYik+5E4g/T4PVW66i9GhyrW8R75PJ2Aed0XTtMX2Jb/ea8D65mBuzaa48+AE0j9esRzTV9Luc6A+NkB9D9V3BypXjk9W+t9IYVnphwML22yb6guFZffNU0m98QDf6geIWbZDLJKmXMs+RFsGKNeyMb+ZI1VbnAHLHTD2celIvhN0VO87Dgz6qO/ZsyflhJm2trYjuiV2wgkn8NZbb/HKK6/wjW98gyuvvJL3338/5Xtvuukmmpqa+n5qa2tTvu9jVXO5+UklOMk8KvAVJscsG8Z8xcwbGWy55Z+DcVeb+Rb9eXJhwt+ZiayDLbfmMvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7r7omdvWy/iRUvSI4dqtxRF0HNFfQ9s00UKDNtyalJvW3NAOUOdPwKZsD4vzPnoD/LY85Z+ZLBl1t1Poy9MvVF0lcAE6+F4OTBl3uovjsxTd+V45aTU5nydcuThROsSZvce3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV4clOX6+SU482rShnD8eMEx2B5Uif3Tk5l+nJzK3HSxCxfPrYvxWf745aV+jwc8fsGoaioCMdxaGhw35FqaGigrCzV2HBsDDpROfXUU3nqqfg8hN7k5L/+67/SPrIZiM/nY/z48cycOZPbbruNU045hR/96Ecp3+v3+wkGg66fIXG4z9rLFsPUW6HsDDOnJDGLz66C0x4CTxbMf8T9SMX2w6yfm8mep64wE04T1VwOE641EzvHXYNrsM2fYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt0RX6kDZmCf/wh4AmaSlj9hQpntg5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVQzAz7xjoK/yMzb8ATMfxMTL8sD027vOQa3JydIFUvNsas610yGTrz45tSY+vryzcTjxJU6ThbMvc+cs9m/MOcwsS3jrjHnesK1PclVgoJppo/kjTd9JvEOiK+gpy3Z5rwnrsyyHDjpZtM3p95q+mqiI+27clxzAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPc5WWX4ckfiye3Ak+wxhWzPDn4ik/Bcvz4iqe7+5jl4Cue3hM7BavfnWdPsAZPbiWe/LE42e4B1/aPMHXxBfEWTsE1jNk+/D1t8ZXM7Jd4WXgLJpljUDgpKUEy817G48kuxZPvfmxsebLwF/e7Tg+X4gU9n/V0NwYsyK5O/wXvKPh8PmbOnMnq1av7XotGo6xevfqIxv/DNejJtC+99BLnnHMOV1xxBffffz//9//+X95//33+9Kc/8fzzzzNz5sxDFzKAM844g1GjRnH//fcf8r1DuuoHkifVXhaDva9C8/sQPBGK+q0bb98J9WvMEs/yJe7BPtwOu582z/wrznYvy43FoPF5MzG0cJZ7WS6Ypa57N5jOWXpGfIkxmKWuu1eZ5czl57iX5UbDUP+sWaZcstC9LBdg/xs9y5NPMCtvEnXUmeW33qApN2GZIZFO05Zwm7m7E+h3h63xJWjdbO4wFEx1x1q2wJ6XTLZfttg92Hc3m3IBKs5xD/axqKlPRx0Uz3cvywU48HZ8eXJJvw9oZyPU/dEkPxXnuO/eRLrMSqTuJlOf/t9C9qyPL08u7HeXqnWbOW+BErP0O2HJJN2tZm5INGzOd+JgH4uZZc3ttVA0z72kHKDp/fjy5JKF7vMd2mfOtxMwbUl81BTthrpnzPLksjPciQsc276b+NnQJNrjTizcSaRjL9genOwS16ObWDRCpKMRYhGcrOKkZbmRzv3Eutuw/fnYPvd1N9rdRrRzP5YTwM4qct1lj0W7ibSbVUFOdjFWQh8zS5v3Eot0YgcKsfslLtGuZqKhJixvtmuJMUAsEiLSsQcsByerBCthAmksFiXS3gjRME5WEZbHfec20nmAWM/yZNuf368t7UQ792E5/p62HJvHPsd21Q+4HyUP/aqfhx9+mCuvvJKf//znzJ49m7vuuotHHnmEv/zlL0lzV4Zt1Q/Ali1buP322/nzn/9Ma2srM2bM4Lvf/S4nn3zyoMq56aabOOeccxg1ahQtLS08+OCD3HHHHTzzzDOcddZZh9x+yBMVERGRY+iYJCqQ5veoVJs73EP4e1QA7r777r5f+DZt2jR+/OMfM2fOnKT3DWuicqx87WtfY/Xq1dTV1ZGfn8/UqVP57ne/e1hJCihRERGR48sxS1Rg2H4z7eEatuXJjuNQV1eXNKF23759lJSUEIkcxi+G6nHvvfcOdvciIiICJik5xkuQM9GgH7qluwETCoXw+QZYtikiIiIySId9R+XHP/4xYFb59P5hwl6RSIQXXniBSZMmHfsaioiIyKfWYScqP/zhDwFzR+VnP/sZjhN/Dubz+aipqeFnP/vZsa+hiIiIfGoddqLS+1eTTz/9dB577DEKCvS7FURERGRoDXoy7dq1a4eiHiIiIiJJDjtRuf766w/rfT/4wQ+OuDIiIiIiiQ47UXnzzTcP+Z6j/fPXIiIiIokOO1HRIx8RERH5uA3Z36wOBoN89NFHQ1W8iIiIfAoMWaIyjL+ZX0RE5BMvFosR6dhLuHUXkY69Qz7uvvDCC5x77rlUVFRgWRZPPPHEkO6v16BX/YiIiMjwCrfV0b3vPWKRzr7XLCeAd+QUPDnlA2x55Nra2jjllFP46le/ygUXDO0fPkykREVEROQ4Em6ro6vx9aTXY5FO83rJzCFJVs455xzOOeecY17uoQzZox8RERE5tmKxGN373hvwPd373vtETb9QoiIiInKciHbucz3uSSUW6STaue9jqtHQU6IiIiJynIhFQsf0fceDIUtUOjo66OjoGKriRUREPnUsx39M33c8GLJEJSsri6ysrKEqXkRE5FPHDozEcgIDvsdyAtiBkR9TjYaeVv2IiIgcJyzLwjtySspVP728I6cMyZ+0aW1tZfPmzX3/3rp1K2+99RaFhYWMGjXqmO+vlxIVERGR44gnpxxKZn7sv0fltdde4/TTT+/7d+8fK77yyiu5//77h2SfoERFRETkuOPJKcfJLutZBRTCcvzmsdAQ/nHgRYsWDcuy5yFLVPSXlEVERIaOZVk4WUXDXY0hp7/1IyIiIhlryBKVp59+msrKyqEqXkRERD4FDuvRT++EmcPxgx/8AID58+cfWY1EREREehxWovLmm2+6/v3GG28QDoc54YQTAPjggw9wHIeZM2ce+xqKiIh8wkSj0eGuwpA7VlNADitRWbt2bd///+AHPyAvL49f/epXFBQUAHDgwAGuvvpqFixYcEwqJSIi8knk8/mwbZvdu3dTXFyMz+f7RC4+icVi7Nmzx/zeF6/3qMqyYoNMeSorK/njH//IlClTXK+/++67fO5zn2P37t1HVaHBaG5uJj8/n6amJoLB4Me2XxERkSPV1dVFXV0d7e3tw12VIWVZFlVVVeTm5ibFBjN+D3p5cnNzM3v27El6fc+ePbS0tAy2OBERkU8Vn8/HqFGjCIfDRCKR4a7OkPF6vTiOc9TlDDpR+eIXv8jVV1/N97//fWbPng3AK6+8wg033MAFF1xw1BUSERH5pOt9JHK0j0U+DQadqPzsZz/jH//xH7nsssvo7u42hXg8fO1rX2P58uXHvIIiIiLy6TWoOSqRSISXX36Zk08+GZ/Px5YtWwAYN24cOTk5Q1bJdDRHRURE5PgzZHNUHMfhc5/7HJs2bWLMmDFMnTr1qCoqIiIiMpBB/2bak046iY8++mgo6iIiIiLiMuhE5d/+7d/4x3/8R/7whz9QV1dHc3Oz60dERETkWBn071Gx7Xhuk/hLamKxGJZlfaxLrTRHRURE5PgzpL9HJfG31IqIiIgMpUEnKgsXLhyKeoiIiIgkGXSiAnDw4EHuvfdeNm3aBMCUKVP46le/Sn5+/jGtnIiIiHy6DXoy7Wuvvca4ceP44Q9/yP79+9m/fz8/+MEPGDduHG+88cZQ1FFEREQ+pQY9mXbBggWMHz+eX/7yl3g85oZMOBzmmmuu4aOPPuKFF14Ykoqmosm0IiIix5/BjN+DTlSysrJ48803mTRpkuv1999/n1NPPfVj/WuQSlRERESOP4MZvwf96CcYDLJjx46k12tra8nLyxtscSIiIiJpDTpRufjii/na177Gww8/TG1tLbW1tTz00ENcc801XHrppUNRRxEREfmUGvSqnzvvvBPLsvjKV75COBwGwOv18o1vfIPbb7/9mFdQREREPr0GPUelV3t7u+uvJ2dnZx/Tih0OzVERERE5/gzpb6btlZ2dzcknn3ykmwNw22238dhjj/GXv/yFrKwsPvOZz3DHHXdwwgknHFW5x8yDlvvfF3fA9keg6T3InwKjLwInEI83rIW6Z8FfCDWXQ1Z5PNayBbY/BJFOqP4CFM6Mx7qbYduD0LYNRs6GyvPA7jk1sSjsegr2vgxZVTDmcvAVxLc98GeofQwsB0ZfDMGEY9fZCFv/B0J7oPR0KDsLev/sQSQEtf8LB9+GvIkw+hLwJCSbjS9C3SrwBk1bsqvisdZtsP23EG6Dys9D0dyEtrSaWOsWKJgB1V8E2xtvy+5VsOdFCJTBmCvAPzK+7cH3oPZR8//VX4IRU+Kx0D7Y9gB01EHxAqg4G6yeJ5fRbqh9HA68AbnjYPSl4M2Nb7t3A+z6A3hyTCy3Jh5r32nK7W6G8rOhZEE8Fm6H7Q9Dy19hxFSovhAcf09bYlD/HDSsAX+xaUugJL5t81/NtrEIVF8ABafEY10HYOsD0LETij5jjmFfW8KwayXsexVyaqDmMnMOeu1/HWqfMPUYfSnkjYvHOupMW0L7ofwsc857RTqPXd9941ZoXBmPV1wKix5EMkcsFiHSVk+0qxnbm4OTU4llO33xSOc+Iu17sGwPTm4ltierLxbtbifStptYNIyTXYoTiF9vYtEwkdZdRMPt2L58nJwyrJ6+G4vFiHY0Euncj+X48eRWYTm+eLldLUTa6gBwcsqxffE5jbFIF+HWXcQinTiBQuyskr4/0RKLRXva0oTtycbJrcSy40NXpPMAkfYG05acCmxv/DoWDXcQad3V05ZinED8ehOLRoi07Sba3YrtC/a0xYm3pXMvkY69PW2pxOr97MvH7ojvqBwLZ599NpdccgmzZs0iHA7zz//8z7z77ru8//775OTkHHL7Ib2j0j9JSSVvApy5DrLK4E9XmAG6l5MFCx4zA+qW++DVr5tBq9fkf4Lpd5jBec2Z0NkQj42cC2f8ESwPrPsbaFwXj/lHwul/hMIZ8M6t8M7NCRWy4NSfwMTroGEdPH8uhFvj4arzYf6j0HUQVi8yg1avnBpYvA6yR8Er18BH/x2P2T447WEzSG17CNb/LcTC8fiE62DW3dCyGZ5bBB274rGC6XDmanBy4IXzTfLTy5sPi56G4nmw6U548wb38Z32n3DiDSbRWHs2dDfFY+VL4LMrIdIOq880SUqvrEo4cy0EJ8Bry+CDuxMOkQfm/RpqLoWdT8JLF0G0Kx4fezXMuRfad5i2tG2Lx/KnmHJ9BfDSl2HnE/GYJwcW/gFKF8EHP4XXvgkkfLROvgVOvhn2vwlrzzKJV6+SheY4xCKw5izYtyEeC5TAGWtM0vbWjfD+HQltsWH2L2HcV2H3M/DiFyHSEY+PvgQ+84DpW88thJYP47Gj6bsp+eGyzkO8Rz4OsUgXnXXriXW39L1mebLwl83D8mTRtfdtIq21CVvY+Epm4MkpI9y6i649b5HYdz15o/EVnUy0u41Q3Xpikfh5tnxBAmVzwfYQathItGNPQrEe/KVzcAIFdDdtoXv/Jlc9vQWT8Y4YR6TzAKGGV0yS3rtpVjH+0lkQjdBZv4FYV/yzbzkB/OVzsb25dO17l3DztoRSLXzF0/DkVhJuq6er8Q0g2hd1cqvxFU0lFu4gVL+eWDj+ebG8eQTK54LtpavxdSLtCddky8FfOgsnq+hQh18O05AuTx5Ke/bsoaSkhOeff57Pfvazh3z/kCUqv6uA7rrDe+/Yq6BiqRm4+suqgLPfhJWjzbfR/pZsNINzYiLS6+RbzODXf/AGKJwF8+6Hp6Ykx2wvnLcVnvsstH6UHJ97P+zbCB+uSI6N+jKMuQqeX5oc84+EpZtg5TgItyTHz1wHm5bD7qeSY5NvMInQa9clx/KnwMLfw+/HmzsuiSwbzt1sEq7EpKrXqStMIrFpeXKsYqnZ7+pFyTFPHpy3BZ6a7E4Yei18CrbeDzt+lxybcB2MnAUbrkqO5Y6FxS/AyjHmLk9/S9+D9VfB/o3JsenLzR2qd25JjpUsMvFnZiXHnACctx1WTYeO3cnx+b8z5+Sj+5NjR9N3U7ksYy4ln2pde98h3LI96XUnpxxPbhWhhhT9z/YSqFxE58617i8hPfxl8+hu2kK0ozEp5skfi+XJpnvfu0kxy5uHv3QWnTvXpKxroOoMQg0bXUlVL+/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoPp3OnetSfg79pbMIt+7su7vjakveaGz/CLr2/jlFsdkEqk53/TFeOXIfy6OfodDUZLLmwsLClPFQKEQoFOr7d3Nz89BU5HCTFDC34VMNSmAGjg/vSX+h3/5Q6iQFzLd1T5q7Svs3wtbfpI5Fu2HzL1InKb3l7ktxoQJzhyHxsVKi0D7TllRJCpjHSHVPp99nzpjUsab3YMt/JycpYF7bcm/qJKW33LbkCzJg6pIzNnUs3GLakipJ6S1358o0scdTJwRgjvnmX6TvD1t/kzpJAfPoKvFuSKLGdaavpBLpNG1JV6fax9Ofl6Ppu5KxXHcCEl9va8DqfQzbX7TbJDcpkhSAcHtdyiSlr1xv6jmKse4Wwi3Jv86ir9yWHSmTFFNuPbE0n4loRyPhNPskFibcvD1t3w63N6Q/Ru31xCKhlLFYuJ1YVwuWX/MhP26DXp48VKLRKH//93/PaaedxkknnZTyPbfddhv5+fl9P9XV1R9zLVNw/GAP8OwyXbIB5ha75aSO2QOVa4EzwORlzwAx2x+fZzGofTLwPp0AWGkugk4g/T7BHIcj3We6ci0veAKpY4dTru0bfOyQ5WYDab6NDVSu5YA9QFsG7GMDteUo+q5kLivNZd2y08egb65JyhgDbGvZA26b9hp3iJiZUzPAPgcYvqyByrXsAcp1BjxGA8ZkyGTMUb/uuut49913eeihNN8cgZtuuommpqa+n9ra2rTvPSrFKR59pFNzuflJJTjJzBfxpbhDZNkw5itm3shgyy3/HIy72sy36M+TC+P/zkxkHWy5NZeZn1RyamDiN80k2CSWKXPURam3HX1Z+n0WL4DxX3dP7Oxl+02seEFy7FDljroIaq4gZWIQKDNtyalJvW3NAOUOdPwKZsCEvzPnoD/LY85Z+ZLBl1t1Poy7KvVF0lcAE6+F4OTBl3ukfVcympNbmfJ1T24FTk7qmOXJwgmOSZv4e3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV40rTFySnHk1eVMobjxwnWYHlSfwFycirTl5tbmfb4Wb58bF+Kz7YMuYxIVL75zW/yhz/8gbVr11JVlabzAX6/n2Aw6PoZEmf94fDeV7YYpt4KZWeYOSWJWXx2FZz2EHiyYP4j7kcqth9m/dxM9jx1hZlwmqjmcphwrZnYOe4aXINt/hQzgTK7ysw3Sbwb4Q2affryzSTKxMctlm3mbFSdC1P+GSo+795n8QKYdodZwTPtjvhKHTAD+/xHzB2KBY+CP2FCme2DmXeZVS0zfwgj57jLrb4QJl1vViRNXOZuS94EM9cmUGzqm/gN3pNjXgsUm/fkTUwo1DKJRs0lpuzqL7n3OXKOqUvBVJj5I/cdBX+RmbfhCZj/JiZelgem3d5zDG5PTpAqlppjV3WumQydePHNqTH19eWbiceJK3WcLJh7nzlns39hzmFiW8ZdY871hGt7kqsEBdNMH8kbb/pM4h0QX0FPW7LNeU9cmWU5cNLNpm9OvdX01URH2nfTKZh/6PfIx8KbPx47q8T1mu0vxFs4GSdQgLdgEq7PoePHVzIT23bwl8zsdwfOxls4BdsfxFc4Bds/wlWuk12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wULK/77p0nWIMntxJP/licbHeCZPtHmLr4gngLp+Aaxmwf/p62+Epm9ku8LLwFk8wxKJyUlCCZeS/j8WSX4skf54pZniz8xf2u0/KxGdbJtLFYjGXLlvH444+zbt06JkyYMKjth/z3qKw6A/avNf9vBeHSJtj7KjS/D8EToWi2+/3tO6F+jVniWb7EPdiH22H30+aZf8XZ7mW5sRg0Pm8mhhbOci/LBbPUde8GM4CUnhFfYgxmqevuVWY5c/k57mW50TDUP2uWKZcsdC/LBdj/Rs/y5BPMyptEHXVm+a03aMpNWGZIpNO0Jdxm7u4E3BdFGl+C1s3mDkPBVHesZQvsecksfy1b7B7su5tNuQAV57gH+1jU1KejDornu5flAhx4O748uaRfgtHZCHV/NMlPxTnuuzeRLrMSqbvJ1Cer37fGPevjy5ML+92lat1mzlugxCz9TlgySXermRsSDZvznTjYx2JmWXN7LRTNcy8pB2h6P748uWSh+3yH9pnz7QRMWxIf80W7oe4Zszy57Ax34gLHtu8mrorTJNqMFA01Ee1qxvLmupYYA8TCnUQ69oLtwckucT26iUUjRDoaIRbBySpOWpYb6dxPrLsN25+P7XNfd6PdbUQ792M5AeysItfE01i0m0i7WRXkZBe75suYpc17iUU6sQOF2P0Sl2hXM9FQE5Y327XEGCAWCRHp2AOWg5NV4lqGHYtFibQ3QjSMk1WE1e9xcKTzALGe5cm2P79fW9qJdu7Dcvw9bcmI7/WfGMfNqp9rr72WBx98kCeffNL1u1Py8/PJyhpg3kIP/cI3ERGR489xk6ikW+Z13333cdVVVx1yeyUqIiIix5/jZnlyBv0KFxEREclAeugmIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhnLM5w7f+GFF1i+fDmvv/46dXV1PP7443zhC18Yziq5PWi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qqlQEM8TjVctgP55ItFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW4Xl+Pq2jXa1EGmrA8DJKcf25cXLjXQRbt1FLNKJEyjEzirB6rlWxWJRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3oBle3ByKrC98etYNNxBpHUXsWgYJ7sYJ5BwvZHjhhWLxWLDtfOnn36al19+mZkzZ3LBBRcMOlFpbm4mPz+fpqYmgsHgoTcYjP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6EC//IuXDGH8HywLq/gcZ18Zh/JJz+RyicAe/cCu/cnFAhC079CUy8DhrWwfPnQrg1Hq46H+Y/Cl0HYfUiM2j1yqmBxesgexS8cg189N/xmO2D0x42g9S2h2D930IsHI9PuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDdimRj0G0u41Q3Xpikc6+1yxfkEDZXLA9hBo2Eu3YE9/A9uAvnYMTKKC7aQvd+ze5yvMWTMY7YhyRzgOEGl4xSXrvplnF+EtnQTRCZ/0GYl3xz77lBPCXz8X25tK1713CzdsSSrXwFU/Dk1tJuK2ersY3gGhf1Mmtxlc0tS8JkuEzmPF7WBOVRJZlZU6icjhJSq+xV0HFUjNw9ZdVAWe/CStHm2+j/S3ZaAbnxESk18m3mMGv/+ANUDgL5t0PT01JjtleOG8rPPdZaP0oOT73fti3ET5ckRwb9WUYcxU8vzQ55h8JSzfBynEQbkmOn7kONi2H3U8lxybfYBKh165LjuVPgYW/h9+PN3dcElk2nLvZJFyJSVWvU1eYRGLT8uRYxVKz39WLkmOePDhvCzw12Z0w9Fr4FGy9H3b8Ljk24ToYOQs2XJUcyx0Li1+AlWPMXZ7+lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpqJE5ROts/5Voh2NSa978sdiebLp3vduUszy5uEvnUXnzjUpywxUnUGoYSOx7uRrinfkScTC7YSbkq9jdlYJ3vxxhOrXJxdqeQhUnU7nrnUpP4f+0lk42aUp6yMfn8GM38P66GewQqEQoVCo79/Nzc3DWJsetU+kHpTADBwf3pP+Qr/9odRJCphv656c1LH9G2Hrb1LHot2w+Repk5TecvelGCjB3GFIfKyUKLTPtCVVkgLmMVLd0+n3mTMmdazpPdhyb3KSAua1zfemTlJ6y23bnjpW97R5DJRKuMW0JVWS0lvuzpVpYo+nTgjAHPPNv0jfH7b+JnWSAubRVeLdkESN60xfSSXSCZvvSV+n2sfTn5ej6bvyqRKLRVMmKQCRtgashMctru26Wwi3pH8sGG7ZkTJJMeXWE0vzmYh2NBJOs09iYcIt29L27XB7gxKV48xxNZn2tttuIz8/v++nurp6uKtk5grY/vRxb5pkA8wtdstJHbMHKtcCJ82HFAaO2f74PItB7fMQ5ToBsLzpY+n2eahyPYfYZ7pyLe+R79MJmMddg40dstxsIM3duoHKtRywA6ljkD6hPVS5h+q7A5Urnz5WmuHCsvvmqaSOp7nGAdjpY5btkHaIsmysAYYva4B9DlhXyUjH1Rm76aabaGpq6vupra0doj0NItuuudz8pBKcZB4V+AqTY5YNY75i5o0Mttzyz8G4q818i/48uTDh78xE1sGWW3OZ+UklpwYmftNMgk1imTJHXZR629GXpd9n8QIY/3X3xM5ett/Eihckxw5V7qiLoOYKUiYGgTLTlpya1NvWDFDuQMevYIY59p7c5JjlMeesfMngy606H8ZdlXqg8BXAhGshOHnw5R6q705M03flU8eybJyc8pQxT24lTk5lypjtL8QbHJW671o23rxR2P7UfczJqcCTm7pcJ6ccT15VyhiOHyc4BsuTlWbb1GVK5jquEhW/308wGHT9DInL6g/vfWWLYeqtUHaGmVOSmMVnV8FpD4EnC+Y/4n6kYvth1s/NZM9TV5gJp4lqLjeDz9irYdw1uAbb/ClmAmV2lZlv4iR8GL1Bs09fvplEmfi4xbLNnI2qc2HKP0PF5937LF4A0+4wK3im3RFfqQNmYJ//CHgCsOBR8BcltMUHM+8yq1pm/hBGznGXW30hTLrerEiauMzdlrwJZq5NoNjUN/EbvCfHvBYoNu/Jm5hQqGUSjZpLTNnVX3Lvc+QcU5eCqTDzR+47Cv4iM2/DEzD/TUy8LA9Mu73nGNyenCBVLDXHrupcMxk68eKbU2Pq68s3E48TV+o4WTD3PnPOZv/CnMPEtoy7xpzrCdf2JFcJCqaZPpI33vSZxDsgvoKetmSb8564Msty4KSbTd+ceqvpq4mOtO+mlXfot8hxzVc4Bds/wvWak12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wUrH53nj3BGjy5lXjyx+JkuxMk2z/C1MUXxFs4BdcwZvvwl8zEth18JTP73VW18BZMwgkcTn+WTKLJtAN5sBA4EP/3ZTHY+yo0vw/BE6Fotvv97Tuhfo1Z4lm+xD3Yh9th99PmmX/F2e5lubEYND5vJoYWznIvywWz1HXvBjOAlJ4RX2IMZqnr7lVmOXP5Oe5ludEw1D9rlimXLHQvywXY/0bP8uQTzMqbRB11ZvmtN2jKTVhmSKTTtCXcZu7uJC7LBWh8CVo3mzsMBVPdsZYtsOcls/y1bLF7sO9uNuUCVJzjHuxjUVOfjjoonu9elgtw4O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrH7fGvesjy9PLux3l6p1mzlvgRKz9DthySTdrWZuSDRsznfiYB+LmWXN7bVQNM+9pByg6f348uSShe7zHdpnzrcTMG1JfDQW7Ya6Z8zy5LIz3IkLHNu+mzjhXJNoP1UinfuJdbdh+/Oxfe7rbrS7jWjnfiwngJ1V5FpdE4t2E2k3q4Kc7GKshD5mljbvJRbpxA4UYvdLXKJdzURDTVje7KQlxrFIiEjHHrAcnKySnkdGveVGibQ3QjSMk1WE5RngEap8rI6bVT+tra1s3rwZgOnTp/ODH/yA008/ncLCQkaNGnXI7Yc8UREREZFj7rhZ9fPaa69x+unxX0p1/fXXA3DllVdy//33D1OtREREJFMMa6KyaNEiMuTJk4iIiGSg42oyrYiIiHy6KFERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkY3mGuwIAK1asYPny5dTX13PKKafwk5/8hNmzZw93teBBy/3viztg+yPQ9B7kT4HRF4ETiMcb1kLds+AvhJrLIas8HmvZAtsfgkgnVH8BCmfGY93NsO1BaNsGI2dD5Xlg95yaWBR2PQV7X4asKhhzOfgK4tse+DPUPgaWA6MvhuAJ8VhnI2z9HwjtgdLToewssHraFAlB7f/CwbchbyKMvgQ82fFtG1+EulXgDZq2ZFfFY63bYPtvIdwGlZ+HorkJbWk1sdYtUDADqr8Itjfelt2rYM+LECiDMVeAf2R824PvQe2j5v+rvwQjpsRjoX2w7QHoqIPiBVBxNlg9eXa0G2ofhwNvQO44GH0peHPj2+7dALv+AJ4cE8uticfad5pyu5uh/GwoWRCPhdth+8PQ8lcYMRWqLwTH39OWGNQ/Bw1rwF9s2hIoiW/b/FezbSwC1RdAwSnxWNcB2PoAdOyEos+YY9jXljDsWgn7XoWcGqi5zJyDXvtfh9onTD1GXwp54+KxjjrTltB+KD/LnPNekc5j13dXnYqbA5eFOd60b/2D699Zo88h0lZHtLsF25uHk1OOZTt98UjHXiIde7EcL56cSixP/PhFu9uItO0mFoviyS7F9o/oi8Wi3YRbdxMLt2P7R+Bkl2L1nO9YLEako5Fo534sT8CU6/ji5YaaCbfXYWHh5FRg++L9OhYJEW7dRSwSwgkUYWcVYfV8vmOxCJG2eqJdzdjeHJycSndbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7Ycm77bWf8XiO7ti+MpJbt6FsPJisViseGswMMPP8xXvvIVfvaznzFnzhzuuusufve73/HXv/6VkpKSAbdtbm4mPz+fpqYmgsHggO8dtP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6GeGzkXDjjj2B5YN3fQOO6eMw/Ek7/IxTOgHduhXduTqiQBaf+BCZeBw3r4PlzIdwaD1edD/Mfha6DsHqRGbR65dTA4nWQPQpeuQY++u94zPbBaQ+bQWrbQ7D+byGWMDBNuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDeikZlP5JSiqWJwd/+Twsx0/XnjeJtO1OCNr4S07FyS4h3FJL1963STzfnvxx+AonE+1qobN+g/li0MP2j8BfNhewCDW8SrQzoS/YXgJlc7H9+XQf+IDugx+46uQdeRLeYA2Rjr2EGja6zouTXYqvZCZEw3TWrSfW3ZLQliz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPW+625I3GV3Qy0e42QnXriUU64+X6ggTK5oLtIdSwkWjHnoRiPfhL5+AECuhu2kL3/k3uthRMxjtiHJHOA4QaXjFJeu+mWcX4S2dBNEJn/QZiXfHPvuUE8JfPxfbm0rXvXcLN2xLPGr7iaXhyKwm31dPV+AYQjR+j3Gp8RVOJhTsI1a8nFo5/XixvHoHyuWB76Wp8nUh7wjXZcvCXzsLJKqK7eRvd+951t2XERLwFE4mGmsz5jnbH2xIoxF86B4gRqt9ANHQw4Rj5CJTPw/bl0bV/E+GmLa5yfUVT8eSNItLeSKjxNfNlr7ctORX4iqdDJGTOd7gtXt2j6LvpZI/5/CHfMxiDGb+HPVGZM2cOs2bN4u67zWASjUaprq5m2bJl3HjjjQNuO2SJyuEkKb3GXgUVS83A1V9WBZz9Jqwcbb6N9rdkoxmcExORXiffYga//oM3QOEsmHc/PDUlOWZ74byt8NxnofWj5Pjc+2HfRvhwRXJs1JdhzFXw/NLkmH8kLN0EK8dBuCU5fuY62LQcdj+VHJt8g0mEXrsuOZY/BRb+Hn4/3vUhBMxAfO5mk3AlJlW9Tl1hEolNy5NjFUvNflcvSo558uC8LfDUZHfC0GvhU7D1ftjxu+TYhOtg5CzYcFVyLHcsLH4BVo5xXaj6LH0P1l8F+zcmx6YvN3eo3rklOVayyMSfSfGtxgnAedth1XTo2J0cn/87c04+uj85djR9N5XjJFFp3/pHoOuQ7wNwcqtwskt6Bjw3y/Hjr1hA5841yX0X8FfMp3v/Jnci0sM7YiLYTtLgDWD78vEVT6Nz1/MpamQRqDqjZ5BtT4r6ik4x38pbtie3JaccT26VSXCSduolULmIzp1r3V9CettSNo/upi1EOxqTYp78sVie7KTBG8zg7y+dZY5RCoGqMwg1bHQlVb28I08iFm4n3JR8HbOzSvDmjyNUvz65UMtDoOp0OnetS/k59JfOIty6s+/ujqsteaOx/SPo2vvnFMVm4y+b19OW5L4eqFxI1563iCYkVX1tKZwM0UhS4glgB0biLZxMaPdLKdpim2O0+0ViCcluL1/JDCLtjURadybFjqbvpjKcicqwPvrp6uri9ddf56abbup7zbZtFi9ezPr1yR0wFAoRCsVPVnNz88dSzwHVPpF6UAIzcHx4T/oL/fbfpk5SwHxb9+Skju3fCFt/kzoW7YbNv0idpPSWuy/FhQrMHYbEx0qJQvtMW1IlKWAeI9U9nX6fOWNSx5regy3/nfrDEovClntTJym95bYlX5ABU5ecsalj4RbTllRJSm+5O1emiT2eOiEAc8w3/yJ9f9j6m9RJCphHV4l3QxI1rjOPXlKJdJq2pKtT7ePpz8vR9N3j2uElKYD5Vp3mu1wsEjIJQZoLfbh1V8okBSDcXt/3mKG/aFcT4RQDT89eCbfuSJmkmPrWEw0lD5QAkbYG12MG9067e9qS+hFeuL0uZZLSV27C4xZXbbtbCLfsSL1PINyyI2WSYsqtJ5bmMxHtaCTsSb1PYmHCLdvS9u1we4P7bkniPtvrUyYEpth2wq07SHf3Idy6M2WSAj1tSXNXMtq5j3DrrpQxYlFzjNLUKdJWTyTxLlZi7Cj6bqYZ1sm0e/fuJRKJUFpa6nq9tLSU+vr6pPffdttt5Ofn9/1UV1d/XFVNz/GD7U8fT5dsADjZZm5JKvZA5Vpm27T7HCBm++PzLAa1TwbepxMAK81F0Amk3yeYRw1Hus905VpeSHgOO+hybd/gYzDwsXeygTR36wYq13LAHqAtA/axgdpyiPPtHaDcTwvLjs8fShlP/13PJCKpz7d1yHLTXBf6yh1gu3TlHmKf1kAxBtjWsgfcFnuA+g4QM3MsjrQtAx0/e4ByBzh+gMUhjn3a2EDHyDpEfYfqfGfEFNXDclyt+rnppptoamrq+6mtrT30RkOt5nLzk0pwkpkv4itMjlk2jPmKmTcy2HLLPwfjrk59kfTkwvi/MxNZB1tuzWXmJ5WcGpj4TTMJNollyhx1UeptR1+Wfp/FC2D8190TO3vZfhMrXpAcO1S5oy6CmitIOVAEykxbcmpSb1szQLkDHb+CGebYe3KTY5bHnLPyJYMvt+p8GHdV6ouOrwAmXgvByYMv91B9d0Kavnu8s4sO/Z4enpxKPLmVKWOWNxdvsCY+Wbz/tnlVONmlKWPOAOXaWcV48qpJ2XctB09wNJYvP3W5uZU4acr15Fbg5KRpiycLJzgmbeLvya3CySlPE6tMW67tL8SbNyp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntRfgAY69gMdP8uXjyd/dJqExMKTV42dVZxy24GOkZNd2nO+U7C9eII1WN4U15Secj1pyj1U3/UM0HczzbAmKkVFRTiOQ0OD+zZcQ0MDZWXJA6Lf7ycYDLp+hsThPmsvWwxTb4WyM8ycksQOnF0Fpz0EniyY/4j7kYrth1k/N5M9T11hJpwmqrkcJlxrJnaOuwbXBSt/iplAmV1l5psk3o3wBs0+fflmEmXi4xbLNnM2qs6FKf8MFf2eNxYvgGl3mBU80+5wd+BAmWmDJwALHgV/woXe9sHMu8yqlpk/hJFz3OVWXwiTrjcrkiYuc7clb4KZaxMoNvVNvDPgyTGvBYrNe/ImJhRqmUSj5hJTdvWX3PscOcfUpWAqzPyR+46Cv8jM2/AEzH8TEy/LA9Nu7zkGtycnSBVLzbGrOtdMhk68+ObUmPr68s3E48SVOk4WzL3PnLPZvzDnMLEt464x53rCtT3JVYKCaaaP5I03fSbxDoivoKct2ea8J67Mshw46WbTN6feavpqoiPtu58A2aPnHvpNgB0owlswESeryMwpSei7lhPAXzwDy3bwl8x0f14sG1/RVGxvLr6RJ2H53NcpJ6cST7AGJ7caJ9c9QFnePLOtJwtf8SnuPmZ58JfMwLK9+IunY/W7e+fJH4snuxRv/njsLPdCBNtfiLdwMk6gAG/BJFdbcPz4SmZi97Ul8Q6cjbdwCrY/iK9wims1E4CTXWb2m1thBr7Etnhy8BWfguX4zaTPxD5mOfiKp/fETsHqd/fOE6wxg3D+WJxsd4Jk+0eYuviCeAun4BrGbB/+nrb4Smb2S7wsvAWTzDEonJSUIJl5L+PxZJfiyR/nilmeLHPMbS/+khnuL4mWja/4FHPOiqZiefNc2/aeZ0+wJilZsXxBfCNPwvbm4Cua6j7fthd/ycyePjYDy/VlzsIzYoLpmwUTsQPu5PuI+25aqRPjj0tGTKadPXs2P/nJTwAzmXbUqFF885vfHL7JtL36T6q9LAZ7X4Xm9yF4IhT1W0LdvhPq15glnuVL3B0g3A67nzbP/CvOdi/LjcWg8XkzMbRwlntZLpilrns3mAGk9Iz4EmMwS113rzLLmcvPcS/LjYah/lmzTLlkoXtZLsD+N3qWJ59gVt4k6qgzy2+9QVNuwjJDIp2mLeE2c3cn4L4o0vgStG42dxgKprpjLVtgz0tm+WvZYvcHs7vZlAtQcY57sI9FTX066qB4vntZLsCBt+PLk0v6JRidjVD3R5P8VJzjvnsT6TIrkbqbTH2y+n1r3LM+vjy5sN9dqtZt5rwFSszS74Qlk3S3mrkh0bA534mDfSxmljW310LRPPeScoCm9+PLk0sWus93aJ85307AtCVxsIp2Q90zZnly2RnuxAWObd9N/GwcJ5No+2vf9ieI7e/5l032mL8hEjpArKsVy5eL43cnaNFwB9GOfViOFzur2HUrPxaNEOlohFgEJ6vEtSzXLHXdRyzcge0f4VqWC2apazR0AMuThR0Y2beUFcxS10jHHrAsU25CH4vFokQ79hKLhLADI13LcgGioSaiXc1Y3lzXEmMwS10jHXvB9uBklwzQlmLXslyASOd+Yt1t2P587H5JWLS7zSy1dgKu5dKm3G4i7WY+hZNd7JovY5Y27yUW6cQOFLqW5Zpj1Ew01ITlzXYtMTbHKNRzjJyeY+QklBsl0t4I0TBOVpFrWa5pywFiPcuTbb97MI52txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHjmnfTVwVd6wn0fY6rlb9PPzww1x55ZX8/Oc/Z/bs2dx111088sgj/OUvf0mau9LfkCcqIiIicswdN6t+AC6++GL27NnDv/zLv1BfX8+0adNYtWrVIZMUERER+eQb9jsqR0N3VERERI4/gxm/j6tVPyIiIvLpokRFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0L/aPT+Ut3m5uZhromIiIgcrt5x+3B+Of5xnai0tLQAUF1dfYh3ioiISKZpaWkhPz9/wPcc13/rJxqNsnv3bvLy8lx/Kls+mZqbm6murqa2tlZ/20nkE0af70+XWCxGS0sLFRUV2PbAs1CO6zsqtm1TVVU13NWQj1kwGNSFTOQTSp/vT49D3Unppcm0IiIikrGUqIiIiEjGUqIixw2/38/NN9+M3+8f7qqIyDGmz7ekc1xPphUREZFPNt1RERERkYylREVEREQylhIVERERyVhKVERERCRjKVGR48aKFSuoqakhEAgwZ84cXn311eGukogcpRdeeIFzzz2XiooKLMviiSeeGO4qSYZRoiLHhYcffpjrr7+em2++mTfeeINTTjmFJUuW0NjYONxVE5Gj0NbWximnnMKKFSuGuyqSobQ8WY4Lc+bMYdasWdx9992A+TtP1dXVLFu2jBtvvHGYaycix4JlWTz++ON84QtfGO6qSAbRHRXJeF1dXbz++ussXry47zXbtlm8eDHr168fxpqJiMhQU6IiGW/v3r1EIhFKS0tdr5eWllJfXz9MtRIRkY+DEhURERHJWEpUJOMVFRXhOA4NDQ2u1xsaGigrKxumWomIyMdBiYpkPJ/Px8yZM1m9enXfa9FolNWrVzNv3rxhrJmIiAw1z3BXQORwXH/99Vx55ZWceuqpzJ49m7vuuou2tjauvvrq4a6aiByF1tZWNm/e3PfvrVu38tZbb1FYWMioUaOGsWaSKbQ8WY4bd999N8uXL6e+vp5p06bx4x//mDlz5gx3tUTkKKxbt47TTz896fUrr7yS+++//+OvkGQcJSoiIiKSsTRHRURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEMtott9zCtGnThrsaIjJMlKiIyJCqr69n2bJljB07Fr/fT3V1Neeee67rj0yKiKSjP0ooIkNm27ZtnHbaaYwYMYLly5dz8skn093dzTPPPMN1113HX/7yl4+lHt3d3Xi93o9lXyJybOmOiogMmWuvvRbLsnj11Ve58MILmThxIlOmTOH6669nw4YNAOzYsYPzzz+f3NxcgsEgF110EQ0NDWnLjEaj3HrrrVRVVeH3+5k2bRqrVq3qi2/btg3Lsnj44YdZuHAhgUCABx54YMjbKiJDQ4mKiAyJ/fv3s2rVKq677jpycnKS4iNGjCAajXL++eezf/9+nn/+eZ599lk++ugjLr744rTl/uhHP+L73/8+d955J2+//TZLlizhvPPO48MPP3S978Ybb+Tb3/42mzZtYsmSJce8fSLy8dCjHxEZEps3byYWizFp0qS071m9ejXvvPMOW7dupbq6GoBf//rXTJkyhY0bNzJr1qykbe68806++93vcskllwBwxx13sHbtWu666y5WrFjR976///u/54ILLjjGrRKRj5vuqIjIkIjFYod8z6ZNm6iuru5LUgBOPPFERowYwaZNm5Le39zczO7duznttNNcr5922mlJ7z/11FOPsOYikkmUqIjIkJgwYQKWZX1sE2b7S/W4SUSOP0pURGRIFBYWsmTJElasWEFbW1tS/ODBg0yePJna2lpqa2v7Xn///fc5ePAgJ554YtI2wWCQiooKXn75ZdfrL7/8csr3i8jxT3NURGTIrFixgtNOO43Zs2dz6623MnXqVMLhMM8++yz33HMP77//PieffDKXX345d911F+FwmGuvvZaFCxemfXRzww03cPPNNzNu3DimTZvGfffdx1tvvaWVPSKfUEpURGTIjB07ljfeeIN///d/5zvf+Q51dXUUFxczc+ZM7rnnHizL4sknn2TZsmV89rOfxbZtzj77bH7yk5+kLfNb3/oWTU1NfOc736GxsZETTzyRlStXMmHChI+xZSLycbFihzPjTURERGQYaI6KiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMb6/wHCnL2DXQSZ/gAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                          " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Suppressing warning message claiming that a portion of points cannot be placed into the plot due to the high number of data points\n", + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')\n", + "\n", + "palette = {\n", + " 0: 'orange',\n", + " 1: 'wheat'\n", + "}\n", + "sns.swarmplot(x=\"Color\", y=\"ord__Item Size\", hue=\"Color\", data=encoded_pumpkins, palette=palette)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**注意**: 警告を無視することは、決して推奨される方法ではありません。可能な限り避けるべきです。警告には、コードを改善し問題を解決するための有益なメッセージが含まれていることがよくあります。 \n", + "今回この特定の警告を無視する理由は、プロットの読みやすさを保証するためです。すべてのデータポイントを小さなマーカーサイズでプロットし、パレットカラーの一貫性を保ちながら表示すると、視覚的に不明瞭な結果を生じるためです。\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "モデルを構築する\n" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "# X is the encoded features\n", + "X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])]\n", + "# y is the encoded label\n", + "y = encoded_pumpkins['Color']\n", + "\n", + "# Split the data into training and test sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.94 0.98 0.96 166\n", + " 1 0.85 0.67 0.75 33\n", + "\n", + " accuracy 0.92 199\n", + " macro avg 0.89 0.82 0.85 199\n", + "weighted avg 0.92 0.92 0.92 199\n", + "\n", + "Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0\n", + " 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0\n", + " 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1\n", + " 0 0 0 1 0 0 0 0 0 0 0 0 1 1]\n", + "F1-score: 0.7457627118644068\n" + ] + } + ], + "source": [ + "from sklearn.metrics import f1_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "# Train a logistic regression model on the pumpkin dataset\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "# Evaluate the model and print the results\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('F1-score: ', f1_score(y_test, predictions))" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[162, 4],\n", + " [ 11, 22]])" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import confusion_matrix\n", + "confusion_matrix(y_test, predictions)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAIjCAYAAABBOWJ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgUElEQVR4nO3dd1gUV8MF8LOUZelqsItBjTV2jcYKKgoWFDWKJUKIvUc0tqjYoibWxKDGFqwRNGqMjQiC3WhE7CX2BiixgHR27/eHL/tJBGVxl9lyfs/DE3aY2T07ETjcuTMjE0IIEBEREWmRmdQBiIiIyPiwYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBCZgODgYMhkMvWHhYUFypYtiy+++AIPHz7MdRshBDZs2ICWLVuiSJEisLGxQa1atTBz5kwkJyfn+Vo7duxA+/bt4eTkBLlcjjJlyqBnz544ePBgvrKmpaVh8eLFaNy4MRwdHaFQKFClShWMGDEC169fL9D7J6LCJ+O9SIiMX3BwMPz9/TFz5kxUqFABaWlpOHnyJIKDg+Hi4oKLFy9CoVCo11cqlejTpw9CQ0PRokULdOvWDTY2Njhy5Ag2b96MGjVqIDw8HCVLllRvI4TAl19+ieDgYNSrVw+fffYZSpUqhdjYWOzYsQNnzpzBsWPH0LRp0zxzJiQkwNPTE2fOnEGnTp3g7u4OOzs7XLt2DVu2bEFcXBwyMjJ0uq+ISEsEERm9X375RQAQp0+fzrF8woQJAoAICQnJsXzOnDkCgBg3btwbz7Vr1y5hZmYmPD09cyyfP3++ACC++uoroVKp3thu/fr14q+//nprzo4dOwozMzOxbdu2N76WlpYmxo4d+9bt8yszM1Okp6dr5bmIKHcsGEQmIK+CsXv3bgFAzJkzR70sJSVFFC1aVFSpUkVkZmbm+nz+/v4CgDhx4oR6m2LFiolq1aqJrKysAmU8efKkACAGDhyYr/VdXV2Fq6vrG8v9/PzEhx9+qH58+/ZtAUDMnz9fLF68WFSsWFGYmZmJkydPCnNzczF9+vQ3nuPq1asCgFi6dKl62bNnz8To0aNFuXLlhFwuF5UqVRLz5s0TSqVS4/dKZAo4B4PIhN25cwcAULRoUfWyo0eP4tmzZ+jTpw8sLCxy3c7X1xcAsHv3bvU2T58+RZ8+fWBubl6gLLt27QIA9OvXr0Dbv8svv/yCpUuXYtCgQVi4cCFKly4NV1dXhIaGvrFuSEgIzM3N0aNHDwBASkoKXF1dsXHjRvj6+uLHH39Es2bNMGnSJAQEBOgkL5Ghy/2nBxEZpRcvXiAhIQFpaWn466+/MGPGDFhZWaFTp07qdS5fvgwAqFOnTp7Pk/21K1eu5PhvrVq1CpxNG8/xNg8ePMCNGzdQvHhx9TIfHx8MHjwYFy9eRM2aNdXLQ0JC4Orqqp5jsmjRIty8eRNnz55F5cqVAQCDBw9GmTJlMH/+fIwdOxbOzs46yU1kqDiCQWRC3N3dUbx4cTg7O+Ozzz6Dra0tdu3ahXLlyqnXSUpKAgDY29vn+TzZX0tMTMzx37dt8y7aeI636d69e45yAQDdunWDhYUFQkJC1MsuXryIy5cvw8fHR71s69ataNGiBYoWLYqEhAT1h7u7O5RKJQ4fPqyTzESGjCMYRCYkKCgIVapUwYsXL7B27VocPnwYVlZWOdbJ/gWfXTRy898S4uDg8M5t3uX15yhSpEiBnycvFSpUeGOZk5MT2rRpg9DQUMyaNQvAq9ELCwsLdOvWTb3eP//8g/Pnz79RULI9fvxY63mJDB0LBpEJadSoERo2bAgA8Pb2RvPmzdGnTx9cu3YNdnZ2AIDq1asDAM6fPw9vb+9cn+f8+fMAgBo1agAAqlWrBgC4cOFCntu8y+vP0aJFi3euL5PJIHI5y16pVOa6vrW1da7Le/XqBX9/f8TExKBu3boIDQ1FmzZt4OTkpF5HpVKhbdu2GD9+fK7PUaVKlXfmJTI1PERCZKLMzc0xd+5cPHr0CD/99JN6efPmzVGkSBFs3rw5z1/W69evBwD13I3mzZujaNGi+PXXX/Pc5l28vLwAABs3bszX+kWLFsXz58/fWH737l2NXtfb2xtyuRwhISGIiYnB9evX0atXrxzrVKpUCS9fvoS7u3uuH+XLl9foNYlMAQsGkQlzc3NDo0aNsGTJEqSlpQEAbGxsMG7cOFy7dg3ffPPNG9vs2bMHwcHB8PDwwKeffqreZsKECbhy5QomTJiQ68jCxo0bcerUqTyzNGnSBJ6enli9ejV27tz5xtczMjIwbtw49eNKlSrh6tWrePLkiXrZuXPncOzYsXy/fwAoUqQIPDw8EBoaii1btkAul78xCtOzZ0+cOHECYWFhb2z//PlzZGVlafSaRKaAV/IkMgHZV/I8ffq0+hBJtm3btqFHjx5Yvnw5hgwZAuDVYQYfHx/89ttvaNmyJbp37w5ra2scPXoUGzduRPXq1REREZHjSp4qlQpffPEFNmzYgPr166uv5BkXF4edO3fi1KlTOH78OJo0aZJnzidPnqBdu3Y4d+4cvLy80KZNG9ja2uKff/7Bli1bEBsbi/T0dACvzjqpWbMm6tSpg/79++Px48dYsWIFSpYsicTERPUpuHfu3EGFChUwf/78HAXldZs2bcLnn38Oe3t7uLm5qU+ZzZaSkoIWLVrg/Pnz+OKLL9CgQQMkJyfjwoUL2LZtG+7cuZPjkAoRgVfyJDIFeV1oSwghlEqlqFSpkqhUqVKOi2QplUrxyy+/iGbNmgkHBwehUCjExx9/LGbMmCFevnyZ52tt27ZNtGvXThQrVkxYWFiI0qVLCx8fHxEVFZWvrCkpKWLBggXik08+EXZ2dkIul4vKlSuLkSNHihs3buRYd+PGjaJixYpCLpeLunXrirCwsLdeaCsviYmJwtraWgAQGzduzHWdpKQkMWnSJPHRRx8JuVwunJycRNOmTcWCBQtERkZGvt4bkSnhCAYRERFpHedgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1pncvUhUKhUePXoEe3t7yGQyqeMQEREZDCEEkpKSUKZMGZiZvX2MwuQKxqNHj+Ds7Cx1DCIiIoN1//59lCtX7q3rmFzByL699P3799W3hyYiIqJ3S0xMhLOzs/p36duYXMHIPizi4ODAgkFERFQA+ZliwEmeREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1khaMw4cPw8vLC2XKlIFMJsPOnTvfuU1UVBTq168PKysrfPTRRwgODtZ5TiIiItKMpAUjOTkZderUQVBQUL7Wv337Njp27IhWrVohJiYGX331FQYMGICwsDAdJyUiIiJNWEj54u3bt0f79u3zvf6KFStQoUIFLFy4EABQvXp1HD16FIsXL4aHh4euYhoVIQSi7z3Dk6R0qaMQEVEhaFLJCY7WloX+upIWDE2dOHEC7u7uOZZ5eHjgq6++ynOb9PR0pKf//y/TxMREXcUzCCdvPUXvVSeljkFERIVk76gWLBjvEhcXh5IlS+ZYVrJkSSQmJiI1NRXW1tZvbDN37lzMmDGjsCLqvQsPnwMAnOys4PKBjbRhiIhI52zk5pK8rkEVjIKYNGkSAgIC1I8TExPh7OwsYSJp3XuaAgDo9YkzxnlUlTgNERFp05kzZ/DTTz9h5cqVsLQs/FGL1xlUwShVqhTi4+NzLIuPj4eDg0OuoxcAYGVlBSsrq8KIZxDuPU0FAJQvxtELIiJjcvr0abRr1w7Pnz9H+fLlJR+9N6jrYDRp0gQRERE5lh04cABNmjSRKJHhuf+/EQxnFgwiIqNx6tQptG3bFs+fP0ezZs0wbtw4qSNJWzBevnyJmJgYxMTEAHh1GmpMTAzu3bsH4NXhDV9fX/X6Q4YMwa1btzB+/HhcvXoVy5YtQ2hoKMaMGSNFfIOjVAk8ePaqYJTn/AsiIqPw119/oW3btnjx4gWaN2+Offv2wd7eXupY0haMv//+G/Xq1UO9evUAAAEBAahXrx6mTZsGAIiNjVWXDQCoUKEC9uzZgwMHDqBOnTpYuHAhVq9ezVNU8yn2RSoylQKW5jKUclBIHYeIiN7TyZMn0a5dOyQmJqJFixZ6Uy4AQCaEEFKHKEyJiYlwdHTEixcv4ODgIHWcQnX8ZgL6rPoLFZxsETnOTeo4RET0HlJTU1GpUiXExsbC1dUVu3fvhp2dnU5fU5PfoQY1B4PeD+dfEBEZD2tra2zevBkdO3bEnj17dF4uNGVQZ5HQ+8k+RfVDFgwiIoOVmZmpPgXVzc0Nbm5u0gbKA0cwTAhPUSUiMmxHjx5FtWrVcPHiRamjvBMLhgm5x0MkREQG68iRI/D09MStW7fw7bffSh3nnVgwTEj2HAyOYBARGZbDhw+jffv2SE5Ohru7O9auXSt1pHdiwTARSWmZeJqcAQBwLpb7VU+JiEj/HDp0SF0u2rZti127duV59Wp9woJhIrIPjxSzlcNeIe316YmIKH8iIyPRoUMHpKSkwMPDA7///rtBlAuABcNk8BRVIiLDIoTA3LlzkZKSAk9PT+zcudNgygXAgmEyeIoqEZFhkclk2LZtGyZMmIAdO3ZAoTCsKzCzYJiIe5zgSURkEO7evav+3MHBAfPmzTO4cgGwYJgMXgODiEj/HThwANWqVcO8efOkjvLeWDBMBOdgEBHptz///BNeXl5IS0vD8ePHoVQqpY70XlgwTABv005EpN/CwsLQuXNnpKeno0uXLti2bRvMzc2ljvVeWDBMAG/TTkSkv/bt24cuXbogPT0d3t7eCA0NhVwulzrWe2PBMAHZEzzLFbWBuZlM4jRERJRt79698Pb2Rnp6Orp27YqQkBCjKBcAC4ZJ4CXCiYj0040bN5CRkYHu3bsbVbkAeLt2k8BTVImI9NOoUaNQoUIFeHp6qm/Bbiw4gmECeIoqEZH+OHjwIJ49e6Z+7OXlZXTlAmDBMAn3/k0GwFNUiYik9vvvv8PT0xPt2rVDYmKi1HF0igXDBPAQCRGR9Hbs2IHPPvsMmZmZqFy5MmxsjPtnMguGkUtMy8SzlEwAvAYGEZFUtm/fjp49eyIrKwt9+vTB+vXrYWFh3NMgWTCMXPYZJB/YymFnZdz/mImI9NFvv/0GHx8fZGVloW/fviZRLgAWDKPHS4QTEUln586d6nLRr18/rFu3zuCv0Jlfxl+hTBznXxARSad69eooUaIE2rZti7Vr15pMuQBYMIweCwYRkXSqVq2KU6dOoXTp0iZVLgAeIjF6d/9lwSAiKky//vor/vzzT/XjcuXKmVy5ADiCYfQ4B4OIqPBs2rQJvr6+kMvlOHXqFGrVqiV1JMlwBMOIvbpN+/+u4slTVImIdGrjxo3w9fWFSqXC559/jo8//ljqSJJiwTBisS9SkaUSkJub8TbtREQ6tGHDBnW5GDhwIH7++WeYmZn2r1geIjEiT5LSkZKRpX4cc/85AKBcUWvepp2ISEfWrVsHf39/CCEwaNAgLF++3OTLBcCCYTR2n3+EEZvP5vo1zr8gItKNqKgodbkYMmQIgoKCWC7+hwXDSFx+9OqmOZbmMlhZ/P9sZbmFGbrVLytVLCIio9a8eXP4+PigaNGiCAoKgkzG0eJsLBhG5vNPP0Sgl2lPLCIiKiwWFhbYsGEDzM3NWS7+g+M4REREGli9ejUGDBgAlUoF4FXJYLl4E0cwiIiI8mnlypUYPHgwAMDd3R29evWSOJH+4ggGERFRPvz888/qcjF69Gj4+PhInEi/sWAQERG9w/LlyzFkyBAAwJgxY7B48WIeFnkHFgwiIqK3CAoKwrBhwwAAY8eOxcKFC1ku8oEFg4iIKA93795FQEAAAGDcuHGYP38+y0U+cZInERFRHj788EOEhobi1KlTmD17NsuFBlgwiIiI/iMpKQn29vYAgC5duqBLly4SJzI8PERCRET0msWLF6NmzZq4ffu21FEMGgsGERHR/yxatAgBAQG4d+8efvvtN6njGDQWDCIiIgALFy7E2LFjAQBTp05Vf04Fw4JBREQmb/78+Rg3bhwAYNq0aZgxYwYndL4nFgwiIjJp33//PcaPHw8AmD59OsuFlvAsEiIiMllpaWnYtGkTAGDGjBmYNm2axImMBwsGERGZLIVCgfDwcGzfvl19nxHSDh4iISIik3P27Fn158WLF2e50AEWDCIiMimzZs1C/fr1sXLlSqmjGDUWDCIiMhmvz7N4+vSpxGmMG+dgEBGRScg+QwQA5s2bhwkTJkicyLixYBARkVETQmD69OmYOXMmgFenpX799dcSpzJ+LBhERGS0hBCYNm0aZs+eDQBYsGABr9BZSFgwiIjIJCxatAhjxoyROobJYMEgIiKjJZPJMHPmTLRv3x5NmzaVOo5J4VkkRERkVIQQWLVqFVJSUgC8KhksF4WPBYOIiIyGEAITJkzAoEGD0LlzZyiVSqkjmSweIiEiIqMghMD48eOxYMECAEDXrl1hbm4ucSrTxYJBREQGTwiBcePGYdGiRQCAoKAgDBs2TOJUpo0Fg4iIDJoQAgEBAViyZAkAYPny5RgyZIi0oYgFg4iIDNvUqVPV5WLFihW8cZme4CRPIiIyaN26dUOxYsXw888/s1zoEY5gEBGRQatfvz7++ecfFCtWTOoo9BqOYBARkUHJPlvk5MmT6mUsF/qHBYOIiAyGSqXC8OHDMX/+fLRv3563XNdjPERCREQGQaVSYdiwYfj5558hk8mwZMkSjlzoMRYMIiLSeyqVCkOHDsXKlSshk8kQHBwMX19fqWPRW7BgGAkhdQAiIh1RqVQYPHgwVq9eDTMzM6xbtw6ff/651LHoHVgwjMSp26+OQ5Z2VEichIhIu4KCgtTlYv369ejbt6/UkSgfWDCMwLW4JJy5+wwWZjJ41ysrdRwiIq0aOHAgwsLC0KdPH/Tp00fqOJRPLBhG4NdT9wAA7tVLooQ9RzCIyPCpVCrIZDLIZDIoFAr88ccfkMlkUsciDfA0VQOXmqHEb9EPAAC9G5eXOA0R0ftTKpXw9/fH119/DSFezTBjuTA8kheMoKAguLi4QKFQoHHjxjh16tRb11+yZAmqVq0Ka2trODs7Y8yYMUhLSyuktPpnz4VYJKVloVxRa7T4yEnqOERE7yW7XKxfvx5LlizB+fPnpY5EBSRpwQgJCUFAQAACAwMRHR2NOnXqwMPDA48fP851/c2bN2PixIkIDAzElStXsGbNGoSEhGDy5MmFnFx/ZB8e6d2oPMzM2PCJyHAplUr4+flhw4YNMDc3x5YtW1CnTh2pY1EBSVowFi1ahIEDB8Lf3x81atTAihUrYGNjg7Vr1+a6/vHjx9GsWTP06dMHLi4uaNeuHXr37v3OUQ9j9frkzh4Ny0kdh4iowLKysuDr64tNmzbBwsICISEh+Oyzz6SORe9BsoKRkZGBM2fOwN3d/f/DmJnB3d0dJ06cyHWbpk2b4syZM+pCcevWLezduxcdOnTI83XS09ORmJiY48NYcHInERmD7HKxefNmWFhYIDQ0FN27d5c6Fr0nyc4iSUhIgFKpRMmSJXMsL1myJK5evZrrNn369EFCQgKaN28OIQSysrIwZMiQtx4imTt3LmbMmKHV7Prg9cmdfTi5k4gM2LFjx7BlyxZYWFhg69at8Pb2ljoSaYHkkzw1ERUVhTlz5mDZsmWIjo7G9u3bsWfPHsyaNSvPbSZNmoQXL16oP+7fv1+IiXUne3KnczFrNOfkTiIyYK6urggODsa2bdtYLoyIZCMYTk5OMDc3R3x8fI7l8fHxKFWqVK7bTJ06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZmb/YlKysrWFlZaf8NSCz78EivTzi5k4gMT2ZmJp4/f47ixYsDAO8rYoQkG8GQy+Vo0KABIiIi1MtUKhUiIiLQpEmTXLdJSUl5o0SYm5sDgPpcaVPAyZ1EZMgyMzPRu3dvtGzZEnFxcVLHIR2R9EqeAQEB8PPzQ8OGDdGoUSMsWbIEycnJ8Pf3B/Cq0ZYtWxZz584FAHh5eWHRokWoV68eGjdujBs3bmDq1Knw8vJSFw1TsO3Mq8M8bWtwcicRGZbMzEz06tUL27dvh1wux8WLF/MctSbDJmnB8PHxwZMnTzBt2jTExcWhbt262L9/v3ri571793KMWEyZMgUymQxTpkzBw4cPUbx4cXh5eeHbb7+V6i1I4u+7zwAAHh/zm5KIDEdGRgZ69eqFHTt2QC6XY8eOHTnOJCTjIhOmdGwBQGJiIhwdHfHixQs4ODhIHUdjWUoVak4PQ1qmChFjXVGpuJ3UkYiI3ikjIwM9e/bE77//DisrK+zcuROenp5SxyINafI7lDc7MzA3nrxEWqYKdlYWqPCBrdRxiIjeKSMjAz169MCuXbtgZWWF33//HR4eHlLHIh0zqNNUCbjw4AUA4OMyDjx7hIgMwtOnT3Hp0iUoFArs2rWL5cJEcATDwFx8+Kpg1CrrKHESIqL8KVWqFCIjI3Hjxg20atVK6jhUSDiCYWDOZxeMciwYRKS/0tPTERUVpX7s7OzMcmFiWDAMSJZShSuxr+6lUpMjGESkp9LS0tCtWze4u7tj69atUschibBgGBBO8CQifZeWloauXbti7969kMvl+OCDD6SORBLhHAwDwgmeRKTPUlNT4e3tjT///BM2NjbYs2cP3NzcpI5FEmHBMCAXOMGTiPRUamoqunTpggMHDsDGxgZ79+6Fq6ur1LFIQiwYBuQCJ3gSkR5KT09H586dER4eDltbW+zduxctW7aUOhZJjHMwDAQneBKRvpLL5ahcuTJsbW2xb98+lgsCwIJhMDjBk4j0lUwmw08//YTo6Gi0aNFC6jikJ1gwDAQneBKRPklOTsbMmTORmZkJADAzM0OVKlUkTkX6hHMwDAQneBKRvkhOTkbHjh1x6NAh3Lp1C8HBwVJHIj3EEQwDwQmeRKQPXr58iQ4dOuDQoUNwcHDAkCFDpI5EeoojGAbg9QmeHMEgIqlkl4sjR47AwcEBf/75Jxo3bix1LNJTHMEwAK9P8HThBE8ikkBSUhLat2+PI0eOwNHREQcOHGC5oLfiCIYBOM8JnkQkISEEevTogaNHj6JIkSI4cOAAGjZsKHUs0nMcwTAAvEU7EUlJJpNh0qRJKFu2LMLDw1kuKF84gmEAOMGTiKTm6uqKGzduQKFQSB2FDARHMPQcJ3gSkRRevHgBLy8vXLx4Ub2M5YI0wREMPccJnkRU2J4/fw4PDw+cOnUKN27cwMWLF2Fubi51LDIwLBh6jhM8iagwPX/+HO3atcPp06fxwQcfYMuWLSwXVCA8RKLnOMGTiArLs2fP0LZtW5w+fRpOTk44ePAg6tSpI3UsMlAcwdBjSpVAxJXHAIB65YtKnIaIjNnTp0/Rtm1bREdHq8tFrVq1pI5FBowjGHrs8D9P8PB5KhytLdGmegmp4xCREZs8eTKio6NRvHhxREZGslzQe2PB0GO//nUPANCtflkoLHkMlIh0Z/78+fD29sbBgwdRs2ZNqeOQEeAhEj0Vn5iGiKuvDo/0aVRe4jREZIxSU1NhbW0NALC3t8eOHTskTkTGhCMYeir09H0oVQKfuBRF5ZL2UschIiOTkJCATz/9FHPnzpU6ChkpFgw9pFQJbDl9HwDQpzFHL4hIu548eYLWrVvj/Pnz+OGHH/D06VOpI5ERYsHQQ69P7mxfs7TUcYjIiDx+/BitW7fGhQsXUKpUKURFRaFYsWJSxyIjxDkYeoiTO4lIF7LLxaVLl1C6dGlERkaiatWqUsciI8URDD3DyZ1EpAvx8fFo1aoVLl26hDJlyiAqKorlgnSKIxh6hpM7iUgXwsLCcPnyZXW5qFy5stSRyMixYOgRTu4kIl3x9fVFWloaWrVqxXJBhYIFQ49wcicRaVNcXBysrKxQtOirWw0MGjRI4kRkSjgHQ49s/t/kzu71y3FyJxG9l9jYWLi5uaFdu3Z4/vy51HHIBLFg6Im4F2k4mD25s7GzxGmIyJA9evQIbm5uuHbtGuLj4/Hs2TOpI5EJYsHQE6F/v5rc2cilGD4qwcmdRFQwDx8+hJubG65fv44PP/wQhw4dQoUKFaSORSaIczD0gFIlEPK/yZ29OXpBRAX04MEDtGrVCjdu3MCHH36IqKgouLi4SB2LTBRHMPTA4euc3ElE7+f+/ftwc3PDjRs34OLiwnJBkmPB0AObT3FyJxG9n9TUVKSkpKBChQosF6QXeIhEYpzcSUTaUKVKFURGRsLa2hrly/M6OiQ9jmBIjJM7iaig7t69i4iICPXjqlWrslyQ3mDBkNDrkzt55U4i0sSdO3fg5uaGjh074uDBg1LHIXoDC4aEXp/c6VmzlNRxiMhAZJeLO3fuwNnZmTctI73EgiEhTu4kIk3dvn0brq6uuHv3LipXroyoqCiULVtW6lhEb2DBkAgndxKRpm7dugU3Nzfcu3cPVapUYbkgvcazSAqRSiVw/Oa/eJmeicirTzi5k4jyLfvy3/fv30fVqlURGRmJ0qV53RzSXywYhWjTX3cx9fdLOZZxcicR5UeJEiXQrFkzxMTE4ODBgywXpPdYMAqJEALrTtwFAFQpaQcHhSVcnGzRoRZ/SBDRu1lYWGDDhg14/vw5nJycpI5D9E4sGIXk77vPcOPxS1hbmuO3oU1hr7CUOhIR6bnr169j1apV+O6772BmZgYLCwuWCzIYLBiFZPNfr84Y6VynDMsFEb3TtWvX0KpVK8TGxsLOzg6BgYFSRyLSCM8iKQTPUzKw50IsAKA351wQ0TtcvXpVXS5q1qyJoUOHSh2JSGMcwSgEv0U/REaWCjVKO6BOOUep4xCRHssuF3FxcahVqxYiIiJQvHhxqWMRaYwjGDomhMCv/7ugVu/G5SGTySRORET66sqVK3Bzc0NcXBxq166NgwcPslyQwWLB0LHTd/5/cqd33TJSxyEiPZWWlgYPDw/Ex8ejbt26OHjwICd0kkFjwdCx7NELTu4kordRKBQICgpC48aNER4ejg8++EDqSETvhQVDh54lc3InEb2dEEL9uZeXF44fP85yQUbhvQpGWlqatnIYpe1nObmTiPJ2/vx5NGzYELdu3VIvMzPj331kHDT+l6xSqTBr1iyULVsWdnZ26m+MqVOnYs2aNVoPaKiEENj816srd3JyJxH917lz59C6dWtER0dj3LhxUsch0jqNC8bs2bMRHByM77//HnK5XL28Zs2aWL16tVbDGbLTd57h5pNkTu4kojfExMSgTZs2+Pfff9GwYUP+cUZGSeOCsX79eqxcuRJ9+/aFubm5enmdOnVw9epVrYYzZNmjF5zcSUSvO3v2rLpcfPLJJzhw4ACKFi0qdSwirdO4YDx8+BAfffTRG8tVKhUyMzO1EsrQPUvOwN6LcQB4t1Qi+n/R0dFo06YNnj59ikaNGuHAgQMoUqSI1LGIdELjglGjRg0cOXLkjeXbtm1DvXr1tBLK0L0+ubM2J3cSEV7Nyxo7diyePXuGxo0b488//4SjI38+kPHS+FLh06ZNg5+fHx4+fAiVSoXt27fj2rVrWL9+PXbv3q2LjAaFkzuJKDcymQxbt27FhAkTsHjxYjg4OEgdiUinNB7B6NKlC/744w+Eh4fD1tYW06ZNw5UrV/DHH3+gbdu2ushoUDi5k4he9++//6o/d3Jywpo1a1guyCQU6GZnLVq0wIEDB7SdxShwcicRZTt9+jQ8PDwwb948DBo0SOo4RIVK4xGMihUr5mjk2Z4/f46KFStqJZSh4uROIsp26tQpuLu749mzZ9i0aROUSqXUkYgKlcYF486dO7l+o6Snp+Phw4daCWWofot+wMmdRIS//voLbdu2RWJiIlq0aIE9e/bkOK2fyBTk+xDJrl271J+HhYXlmP2sVCoREREBFxcXrYYzJK/flr0PJ3cSmawTJ07Aw8MDSUlJaNmyJfbs2QM7OzupYxEVunwXDG9vbwCvZkL7+fnl+JqlpSVcXFywcOFCrYYzJKduP1VP7uzCyZ1EJun48ePw9PREUlIS3NzcsHv3btja2kodi0gS+S4YKpUKAFChQgWcPn0aTk5OOgtliHhbdiKKjIxEUlISWrVqhT/++IPlgkyaxmeR3L59Wxc5DBondxIRAEyePBllypSBj48PbGxspI5DJKkC3Rc4OTkZe/fuxYoVK/Djjz/m+NBUUFAQXFxcoFAo0LhxY5w6deqt6z9//hzDhw9H6dKlYWVlhSpVqmDv3r0FeRtawyt3Epmu6OhoJCcnA3h1CNnf35/lgggFGME4e/YsOnTogJSUFCQnJ6NYsWJISEiAjY0NSpQogVGjRuX7uUJCQhAQEIAVK1agcePGWLJkCTw8PHDt2jWUKFHijfUzMjLQtm1blChRAtu2bUPZsmVx9+5dya/lf+nRCwCAZ81SnNxJZEIOHz6MDh06oFGjRti9ezeLBdFrNB7BGDNmDLy8vPDs2TNYW1vj5MmTuHv3Lho0aIAFCxZo9FyLFi3CwIED4e/vjxo1amDFihWwsbHB2rVrc11/7dq1ePr0KXbu3IlmzZrBxcUFrq6uqFOnjqZvQyesLAo0IEREBujQoUNo3749kpOTYWlpyT8uiP5D49+IMTExGDt2LMzMzGBubo709HQ4Ozvj+++/x+TJk/P9PBkZGThz5gzc3d3/P4yZGdzd3XHixIlct9m1axeaNGmC4cOHo2TJkqhZsybmzJnz1gvYpKenIzExMccHEdH7iIqKUo/kenh4YOfOnbC2tpY6FpFe0bhgWFpawszs1WYlSpTAvXuvzp5wdHTE/fv38/08CQkJUCqVKFmyZI7lJUuWRFxcXK7b3Lp1C9u2bYNSqcTevXsxdepULFy4ELNnz87zdebOnQtHR0f1h7Ozc74zEhH918GDB9XlwtPTk+WCKA8az8GoV68eTp8+jcqVK8PV1RXTpk1DQkICNmzYgJo1a+oio5pKpUKJEiWwcuVKmJubo0GDBnj48CHmz5+PwMDAXLeZNGkSAgIC1I8TExNZMoioQA4ePIhOnTohNTUV7du3x/bt26FQKKSORaSXNC4Yc+bMQVJSEgDg22+/ha+vL4YOHYrKlStjzZo1+X4eJycnmJubIz4+Psfy+Ph4lCpVKtdtSpcuDUtLyxyX3K1evTri4uKQkZEBuVz+xjZWVlawsrLKdy4iorwUKVIECoUCrVu3xm+//cafLURvoXHBaNiwofrzEiVKYP/+/QV6YblcjgYNGiAiIkJ9lVCVSoWIiAiMGDEi122aNWuGzZs3Q6VSqQ/TXL9+HaVLl861XBARaVP9+vVx/PhxVKhQgeWC6B20dtpDdHQ0OnXqpNE2AQEBWLVqFdatW4crV65g6NChSE5Ohr+/PwDA19cXkyZNUq8/dOhQPH36FKNHj8b169exZ88ezJkzB8OHD9fW2yAiyuHPP//E8ePH1Y+rVavGckGUDxqNYISFheHAgQOQy+UYMGAAKlasiKtXr2LixIn4448/4OHhodGL+/j44MmTJ5g2bRri4uJQt25d7N+/Xz3x8969e+qRCgBwdnZGWFgYxowZg9q1a6Ns2bIYPXo0JkyYoNHrEhHlx/79++Ht7Q25XI4TJ07g448/ljoSkcHId8FYs2YNBg4ciGLFiuHZs2dYvXo1Fi1ahJEjR8LHxwcXL15E9erVNQ4wYsSIPA+JREVFvbGsSZMmOHnypMavQ0SkiX379qFr165IT09H+/btUblyZakjERmUfB8i+eGHH/Ddd98hISEBoaGhSEhIwLJly3DhwgWsWLGiQOWCiEgf7d27F97e3khPT0fXrl0RGhrKeV5EGsp3wbh58yZ69OgBAOjWrRssLCwwf/58lCtXTmfhiIgK2+7du9G1a1dkZGSge/fuCAkJgaUl75BMpKl8F4zU1FT1dfZlMhmsrKxQunRpnQUjIipsx48fR7du3ZCRkYHPPvsMv/76K8sFUQFpNMlz9erVsLOzAwBkZWUhODgYTk5OOdbR5GZnRET6pH79+nB3d4ednR02bdrEckH0HvJdMMqXL49Vq1apH5cqVQobNmzIsY5MJmPBICKDpVAosH37dlhYWMDCQuPLBBHRa/L9HXTnzh0dxiAiksaOHTtw8uRJzJs3DzKZjJf+JtISVnQiMlnbt2+Hj48PsrKyULduXfTu3VvqSERGQ2tX8iQiMiTbtm1Dz549kZWVhb59+6rPkiMi7WDBICKTs3XrVvTq1QtKpRL9+vXDunXrOOeCSMtYMIjIpISEhKB3795QKpXw9fXFL7/8kuMOzUSkHSwYRGQy7t+/j379+kGpVMLPzw9r165luSDSkQIVjJs3b2LKlCno3bs3Hj9+DODVdfsvXbqk1XBERNrk7OyM1atXo3///lizZg3LBZEOaVwwDh06hFq1auGvv/7C9u3b8fLlSwDAuXPnEBgYqPWARETvKzMzU/25r68vVq9ezXJBpGMaF4yJEydi9uzZ6tu2Z2vdujXvckpEemfjxo2oV68e4uLipI5CZFI0LhgXLlxA165d31heokQJJCQkaCUUEZE2bNiwAX5+frh06RJWrlwpdRwik6JxwShSpAhiY2PfWH727FmULVtWK6GIiN7XunXr4OfnB5VKhcGDB2PKlClSRyIyKRoXjF69emHChAmIi4uDTCaDSqXCsWPHMG7cOPj6+uoiIxGRRoKDg+Hv7w8hBIYMGYJly5bBzIwnzREVJo2/4+bMmYNq1arB2dkZL1++RI0aNdCyZUs0bdqUfyEQkeR++eUXfPnllxBCYNiwYSwXRBLR+NJ1crkcq1atwtSpU3Hx4kW8fPkS9erVQ+XKlXWRj4go39LS0jB37lwIITB8+HAsXboUMplM6lhEJknjgnH06FE0b94c5cuXR/ny5XWRiYioQBQKBSIiIrBu3Tp88803LBdEEtJ43LB169aoUKECJk+ejMuXL+siExGRRm7fvq3+3NnZGVOmTGG5IJKYxgXj0aNHGDt2LA4dOoSaNWuibt26mD9/Ph48eKCLfEREb/Xzzz+jSpUqCA0NlToKEb1G44Lh5OSEESNG4NixY7h58yZ69OiBdevWwcXFBa1bt9ZFRiKiXC1fvhxDhgxBVlYWTp8+LXUcInrNe02trlChAiZOnIh58+ahVq1aOHTokLZyERG91bJlyzBs2DAAwNixY/H9999LnIiIXlfggnHs2DEMGzYMpUuXRp8+fVCzZk3s2bNHm9mIiHL1008/Yfjw4QCAr7/+GvPnz+ecCyI9o/FZJJMmTcKWLVvw6NEjtG3bFj/88AO6dOkCGxsbXeQjIsph6dKlGDVqFABg/PjxmDdvHssFkR7SuGAcPnwYX3/9NXr27AknJyddZCIiytO1a9cAvLrx4pw5c1guiPSUxgXj2LFjushBRJQvS5cuRbt27eDl5cVyQaTH8lUwdu3ahfbt28PS0hK7du1667qdO3fWSjAiomy///472rdvD7lcDplMxp8zRAYgXwXD29sbcXFxKFGiBLy9vfNcTyaTQalUaisbEREWLlyIcePGwdvbG9u2bYO5ubnUkYgoH/JVMFQqVa6fExHp0vz58zF+/HgAQO3atXnTMiIDovF36/r165Genv7G8oyMDKxfv14roYiIvvvuO3W5CAwMxIwZMzjngsiAaFww/P398eLFizeWJyUlwd/fXyuhiMi0zZs3DxMnTgQATJ8+HdOnT5c2EBFpTOOzSIQQuf4V8eDBAzg6OmolFBGZrvnz52PSpEkAgJkzZ2Lq1KkSJyKigsh3wahXrx5kMhlkMhnatGkDC4v/31SpVOL27dvw9PTUSUgiMh2NGjWCjY0NJk2ahClTpkgdh4gKKN8FI/vskZiYGHh4eMDOzk79NblcDhcXF3Tv3l3rAYnItLi6uuLKlSsoX7681FGI6D3ku2AEBgYCAFxcXODj4wOFQqGzUERkWhYsWABPT0/UrFkTAFguiIyAxpM8/fz8WC6ISGumT5+Or7/+Gq1bt8a///4rdRwi0pJ8jWAUK1YM169fh5OTE4oWLfrWU8WePn2qtXBEZLyEEJg+fTpmzpwJ4NWNyz744AOJUxGRtuSrYCxevBj29vbqz3kuOhG9DyEEpk2bhtmzZwN4dYhk7NixEqciIm3KV8Hw8/NTf/7FF1/oKgsRmQAhBKZOnYpvv/0WALBo0SKMGTNG4lREpG0az8GIjo7GhQsX1I9///13eHt7Y/LkycjIyNBqOCIyPqtXr1aXi8WLF7NcEBkpjQvG4MGDcf36dQDArVu34OPjAxsbG2zdulV9WV8iorz06tULzZo1w5IlS/DVV19JHYeIdETjK3lev34ddevWBQBs3boVrq6u2Lx5M44dO4ZevXphyZIlWo5IRIbu9SsA29vbIyoqKsfF+ojI+Gg8giGEUN9RNTw8HB06dAAAODs7IyEhQbvpiMjgCSHw9ddfY+7cueplLBdExk/j7/KGDRti9uzZcHd3x6FDh7B8+XIAwO3bt1GyZEmtByQiwyWEwLhx47Bo0SIAgKenJ+rVqydxKiIqDBqPYCxZsgTR0dEYMWIEvvnmG3z00UcAgG3btqFp06ZaD0hEhkkIgYCAAHW5WL58OcsFkQnReASjdu3aOc4iyTZ//nyYm5trJRQRGTYhBMaMGYMffvgBAPDzzz9j0KBBEqciosJU4AOhZ86cwZUrVwAANWrUQP369bUWiogMlxACo0ePxtKlSwEAK1euxMCBAyVORUSFTeOC8fjxY/j4+ODQoUMoUqQIAOD58+do1aoVtmzZguLFi2s7IxEZkEOHDmHp0qWQyWRYtWoV+vfvL3UkIpKAxnMwRo4ciZcvX+LSpUt4+vQpnj59iosXLyIxMRGjRo3SRUYiMiBubm5YsmQJVq9ezXJBZMI0HsHYv38/wsPDUb16dfWyGjVqICgoCO3atdNqOCIyDCqVCsnJyep7Fo0ePVriREQkNY1HMFQqFSwtLd9Ybmlpqb4+BhGZDpVKhWHDhqFVq1Z4/vy51HGISE9oXDBat26N0aNH49GjR+plDx8+xJgxY9CmTRuthiMi/aZSqTBkyBD8/PPPiI6OxuHDh6WORER6QuOC8dNPPyExMREuLi6oVKkSKlWqhAoVKiAxMVE9a5yIjJ9KpcLgwYOxatUqmJmZYf369ejcubPUsYhIT2g8B8PZ2RnR0dGIiIhQn6ZavXp1uLu7az0cEeknlUqFgQMHYu3atepy0bdvX6ljEZEe0ahghISEYNeuXcjIyECbNm0wcuRIXeUiIj2lUqkwYMAA/PLLLzAzM8OGDRvQp08fqWMRkZ7Jd8FYvnw5hg8fjsqVK8Pa2hrbt2/HzZs3MX/+fF3mIyI9Exsbi/3798PMzAybNm1Cr169pI5ERHoo33MwfvrpJwQGBuLatWuIiYnBunXrsGzZMl1mIyI9VLZsWURGRmLr1q0sF0SUp3wXjFu3bsHPz0/9uE+fPsjKykJsbKxOghGR/lAqlYiJiVE/rlq1Krp16yZdICLSe/kuGOnp6bC1tf3/Dc3MIJfLkZqaqpNgRKQflEolvvjiC3z66acICwuTOg4RGQiNJnlOnToVNjY26scZGRn49ttv4ejoqF6WfWtmIjJ8WVlZ8PPzw+bNm2FhYYGXL19KHYmIDES+C0bLli1x7dq1HMuaNm2KW7duqR/LZDLtJSMiSWVlZcHX1xe//vorLCwsEBISwsMiRJRv+S4YUVFROoxBRPokKysLn3/+OUJCQmBhYYHQ0FB07dpV6lhEZEA0vtAWERm3rKws9O3bF6GhobC0tMTWrVvRpUsXqWMRkYFhwSCiN5ibm8PS0hLbtm3j5b+JqEA0vhcJERk3CwsLrF+/HseOHWO5IKICY8EgImRmZmLZsmVQKpUAXpWMTz75ROJURGTIWDCITFxGRgZ8fHwwfPhwDB8+XOo4RGQkClQwjhw5gs8//xxNmjTBw4cPAQAbNmzA0aNHtRqOiHQru1zs2LEDVlZWnMxJRFqjccH47bff4OHhAWtra5w9exbp6ekAgBcvXmDOnDlaD0hEupGRkYEePXpg586dsLKyws6dO9G+fXupYxGRkdC4YMyePRsrVqzAqlWrYGlpqV7erFkzREdHazUcEelGeno6PvvsM+zatQsKhQK7du2Cp6en1LGIyIhofJrqtWvX0LJlyzeWOzo64vnz59rIREQ61rdvX/zxxx/qctG2bVupIxGRkdF4BKNUqVK4cePGG8uPHj2KihUrFihEUFAQXFxcoFAo0LhxY5w6dSpf223ZsgUymQze3t4Fel0iU+Xn5wdHR0f88ccfLBdEpBMaF4yBAwdi9OjR+OuvvyCTyfDo0SNs2rQJ48aNw9ChQzUOEBISgoCAAAQGBiI6Ohp16tSBh4cHHj9+/Nbt7ty5g3HjxqFFixYavyaRqfPy8sKdO3fg7u4udRQiMlIaF4yJEyeiT58+aNOmDV6+fImWLVtiwIABGDx4MEaOHKlxgEWLFmHgwIHw9/dHjRo1sGLFCtjY2GDt2rV5bqNUKtG3b1/MmDGjwKMmRKYkLS0N/fv3z3FzwiJFikgXiIiMnsYFQyaT4ZtvvsHTp09x8eJFnDx5Ek+ePMGsWbM0fvGMjAycOXMmx19RZmZmcHd3x4kTJ/LcbubMmShRogT69+//ztdIT09HYmJijg8iU5KamoouXbpg7dq16NSpk/piWkREulTge5HI5XLUqFHjvV48ISEBSqUSJUuWzLG8ZMmSuHr1aq7bHD16FGvWrEFMTEy+XmPu3LmYMWPGe+UkMlTZ5eLAgQOwtbXFihUrYG5uLnUsIjIBGheMVq1aQSaT5fn1gwcPvlegt0lKSkK/fv2watUqODk55WubSZMmISAgQP04MTERzs7OuopIpDdSUlLQpUsXhIeHw9bWFvv27eOcJSIqNBoXjLp16+Z4nJmZiZiYGFy8eBF+fn4aPZeTkxPMzc0RHx+fY3l8fDxKlSr1xvo3b97EnTt34OXlpV6mUqkAvLp3wrVr11CpUqUc21hZWcHKykqjXESGLiUlBZ07d0ZERATs7Oywb98+NG/eXOpYRGRCNC4YixcvznX59OnT8fLlS42eSy6Xo0GDBoiIiFCfaqpSqRAREYERI0a8sX61atVw4cKFHMumTJmCpKQk/PDDDxyZIPqf8ePHq8vF/v370axZM6kjEZGJKfAcjP/6/PPP0ahRIyxYsECj7QICAuDn54eGDRuiUaNGWLJkCZKTk+Hv7w8A8PX1RdmyZTF37lwoFArUrFkzx/bZM+H/u5zIlE2fPh3nzp3Dd999h6ZNm0odh4hMkNYKxokTJ6BQKDTezsfHB0+ePMG0adMQFxeHunXrYv/+/eqJn/fu3YOZGW/6SvQuSqVSPYHTyckJhw8ffut8KSIiXdK4YHTr1i3HYyEEYmNj8ffff2Pq1KkFCjFixIhcD4kAQFRU1Fu3DQ4OLtBrEhmTly9folOnTujduzcGDx4MACwXRCQpjQuGo6NjjsdmZmaoWrUqZs6ciXbt2mktGBHlT1JSEjp06ICjR4/i3Llz6N69e77PsiIi0hWNCoZSqYS/vz9q1aqFokWL6ioTEeVTUlIS2rdvj2PHjsHR0RFhYWEsF0SkFzSa3GBubo527drxrqlEeiAxMRGenp7qcnHgwAE0atRI6lhERAAKcKnwmjVr5rifAREVvuxycfz4cRQpUgTh4eH45JNPpI5FRKSmccGYPXs2xo0bh927dyM2Npb3+SCSQGhoKE6cOIGiRYsiPDwcDRs2lDoSEVEO+Z6DMXPmTIwdOxYdOnQAAHTu3DnHLHUhBGQyGW+kRFQI+vfvjydPnsDDwwP169eXOg4R0RvyXTBmzJiBIUOGIDIyUpd5iCgPL168gIWFBWxtbSGTyTBp0iSpIxER5SnfBUMIAQBwdXXVWRgiyt3z58/Rrl072NnZYffu3bCxsZE6EhHRW2k0B4MX7iEqfM+ePUPbtm1x+vRpnD9/Hvfu3ZM6EhHRO2l0HYwqVaq8s2Q8ffr0vQIR0f97+vQp2rZti+joaDg5OSEiIgLVqlWTOhYR0TtpVDBmzJjxxpU8iUg3nj59Cnd3d5w9exZOTk44ePAgatWqJXUsIqJ80ahg9OrVCyVKlNBVFiL6n3///Rfu7u6IiYlB8eLFcfDgQd4xmIgMSr7nYHD+BVHhefToEe7evYsSJUogMjKS5YKIDI7GZ5EQke7VqlUL4eHhUCgUqFGjhtRxiIg0lu+CoVKpdJmDyOQlJCTg9u3b6kt+8wJaRGTINL5UOBFp35MnT9C6dWu0adMGJ0+elDoOEdF7Y8Egktjjx4/RunVrXLhwAXZ2dihatKjUkYiI3ptGZ5EQkXZll4tLly6hTJkyiIyMRJUqVaSORUT03jiCQSSR+Ph4tGrVCpcuXULZsmURFRXFckFERoMjGEQSePLkCVq1aoUrV66oy8VHH30kdSwiIq1hwSCSgL29PVxcXJCUlITIyEiWCyIyOiwYRBJQKBTYvn07Hj9+jPLly0sdh4hI6zgHg6iQPHr0CN999536onUKhYLlgoiMFkcwiArBw4cP0apVK/zzzz9QqVSYNGmS1JGIiHSKIxhEOvbgwQO4ubnhn3/+wYcffojevXtLHYmISOdYMIh06P79+3Bzc8ONGzfg4uKCQ4cOwcXFRepYREQ6x4JBpCPZ5eLmzZuoUKECoqKi8OGHH0odi4ioULBgEOlAeno62rRpg1u3bqFixYosF0RkclgwiHTAysoK06ZNQ5UqVRAVFcWzRYjI5LBgEOnI559/jvPnz8PZ2VnqKEREhY4Fg0hLbt++DU9PT8TGxqqXWVlZSZiIiEg6LBhEWnDr1i24ubkhLCwMQ4YMkToOEZHkWDCI3tPNmzfh5uaGe/fuoUqVKli+fLnUkYiIJMcreRK9h+xy8eDBA1StWhWRkZEoXbq01LGIiCTHEQyiArpx4wZcXV3x4MEDVKtWDVFRUSwXRET/w4JBVEADBgzAw4cPUb16dURGRqJUqVJSRyIi0hssGEQFtGHDBnh5ebFcEBHlgnMwiDSQmpoKa2trAICzszN27dolcSIiIv3EEQyifLp27RqqVq2K0NBQqaMQEek9FgyifLh69Src3Nxw//59zJs3D1lZWVJHIiLSaywYRO9w5coVuLm5IS4uDrVr18aff/4JCwseXSQiehsWDKK3uHz5Mtzc3BAfH486deogIiICTk5OUsciItJ7LBhEebh06RJatWqFx48fo27duiwXREQaYMEgysPmzZvx+PFj1KtXDxEREfjggw+kjkREZDB4IJkoD7Nnz0aRIkXQv39/FCtWTOo4REQGhSMYRK+5ceMGMjIyAAAymQxff/01ywURUQGwYBD9z7lz5/Dpp5+iZ8+e6pJBREQFw4JBBCAmJgatW7fGv//+i0ePHiE1NVXqSEREBo0Fg0ze2bNn0aZNGzx9+hSNGzfGgQMH4OjoKHUsIiKDxoJBJi06OlpdLj799FOEhYWxXBARaQELBpmsM2fOoE2bNnj27BmaNGnCckFEpEUsGGSykpOTkZGRgaZNm2L//v1wcHCQOhIRkdHgdTDIZLVs2RKRkZGoXr067O3tpY5DRGRUWDDIpJw6dQoKhQK1a9cGADRq1EjiRERExomHSMhknDx5Em3btkWbNm1w9epVqeMQERk1FgwyCSdOnEC7du2QmJiIGjVqoFy5clJHIiIyaiwYZPSOHz8ODw8PJCUlwdXVFXv37oWdnZ3UsYiIjBoLBhm1Y8eOqcuFm5sb9uzZA1tbW6ljEREZPRYMMlpnzpyBp6cnXr58idatW7NcEBEVIp5FQkarSpUqqFOnDhQKBXbt2gUbGxupIxERmQwWDDJa9vb22LdvH8zNzVkuiIgKGQ+RkFE5dOgQ5s+fr35sb2/PckFEJAGOYJDRiIyMRKdOnZCSkoLy5cvDx8dH6khERCaLIxhkFA4ePIiOHTsiJSUFnp6e6NKli9SRiIhMGgsGGbyIiAh06tQJqamp6NChA3bs2AGFQiF1LCIik8ZDJGTQwsPD4eXlhbS0NHTo0AHbt2+HlZWV1LGIiEweRzDIYD18+BCdO3dGWloaOnbsyHJBRKRHOIJBBqts2bKYN28ewsPDsXXrVpYLIiI9whEMMjhCCPXno0aNws6dO1kuiIj0DAsGGZR9+/ahRYsWePbsmXqZmRn/GRMR6Rv+ZCaDsXfvXnh7e+PYsWM5LqZFRET6hwWDDMLu3bvRtWtXZGRkoHv37pgxY4bUkYiI6C1YMEjv/fHHH+jWrRsyMjLw2Wef4ddff4WlpaXUsYiI6C30omAEBQXBxcUFCoUCjRs3xqlTp/Jcd9WqVWjRogWKFi2KokWLwt3d/a3rk2HbtWsXunfvjszMTPTo0QObN29muSAiMgCSF4yQkBAEBAQgMDAQ0dHRqFOnDjw8PPD48eNc14+KikLv3r0RGRmJEydOwNnZGe3atcPDhw8LOTnpWnp6OkaPHo3MzEz4+PiwXBARGRDJC8aiRYswcOBA+Pv7o0aNGlixYgVsbGywdu3aXNfftGkThg0bhrp166JatWpYvXo1VCoVIiIiCjk56ZqVlRXCwsIwcuRIbNy4ERYWvGwLEZGhkLRgZGRk4MyZM3B3d1cvMzMzg7u7O06cOJGv50hJSUFmZiaKFSuW69fT09ORmJiY44P0W0JCgvrzKlWq4Mcff2S5ICIyMJIWjISEBCiVSpQsWTLH8pIlSyIuLi5fzzFhwgSUKVMmR0l53dy5c+Ho6Kj+cHZ2fu/cpDvbtm1DhQoVEBYWJnUUIiJ6D5IfInkf8+bNw5YtW95698xJkybhxYsX6o/79+8XckrKr61bt6JXr154+fIltm3bJnUcIiJ6D5KOOzs5OcHc3Bzx8fE5lsfHx6NUqVJv3XbBggXq+1DUrl07z/WsrKx4GWkDEBoaij59+kCpVMLX1xcrVqyQOhIREb0HSUcw5HI5GjRokGOCZvaEzSZNmuS53ffff49Zs2Zh//79aNiwYWFEJR3asmWLulz4+flh7dq1MDc3lzoWERG9B8lnzgUEBMDPzw8NGzZEo0aNsGTJEiQnJ8Pf3x8A4Ovri7Jly2Lu3LkAgO+++w7Tpk3D5s2b4eLiop6rYWdnBzs7O8neBxXMr7/+is8//xwqlQr+/v5YtWoVywURkRGQvGD4+PjgyZMnmDZtGuLi4lC3bl3s379fPfHz3r17OW5mtXz5cvUVHV8XGBiI6dOnF2Z00oJ9+/ZBpVLhyy+/xKpVq3jjMiIiIyF5wQCAESNGYMSIEbl+LSoqKsfjO3fu6D4QFZq1a9fC1dUV/v7+LBdEREaEP9Gp0B09ehRKpRIAYGFhgf79+7NcEBEZGf5Up0K1bt06tGzZEv3791eXDCIiMj4sGFRogoOD4e/vDyEErK2tIZPJpI5EREQ6woJBhWLt2rX48ssvIYTA0KFDERQUxMMiRERGjD/hSefWrFmDAQMGQAiBYcOGsVwQEZkA/pQnnXq9XIwYMQI//fQTD40QEZkAvThNlYxXiRIlYGlpiaFDh2LJkiUsF0REJoIFg3TKy8sLZ86cQc2aNVkuiIhMCA+RkNatW7cON2/eVD+uVasWywURkYlhwSCtWrZsGb744gu0atUKCQkJUschIiKJsGCQ1gQFBWH48OEAXt1j5oMPPpA4ERERSYUFg7Ri6dKl6vvJjB8/Ht9//z0PixARmTAWDHpvP/74I0aNGgUAmDBhAubNm8dyQURk4lgw6L1s3LgRo0ePBgBMmjQJc+fOZbkgIiKepkrvx9PTE7Vr14aXlxdmzZrFckFERABYMOg9OTk54fjx47CxsWG5ICIiNR4iIY3Nnz8fK1asUD+2tbVluSAiohw4gkEa+e677zBx4kQAwCeffIIGDRpInIiIiPQRRzAo3+bNm6cuFzNmzGC5ICKiPLFgUL7MmTMHkyZNAgDMmjUL06ZNkzgRERHpMx4ioXf69ttvMWXKFPXnkydPljgRERHpOxYMeqvDhw+ry8XroxhERERvw4JBb9WyZUtMmzYNNjY2mDBhgtRxiIjIQLBg0BuEEMjMzIRcLgfwakInERGRJjjJk3IQQiAwMBAeHh5ISUmROg4RERkoFgxSE0Jg2rRpmDVrFqKiorB7926pIxERkYHiIRIC8KpcTJkyBXPmzAEALFq0CD179pQ4FRERGSoWDIIQApMnT8a8efMAAIsXL8ZXX30lbSgiIjJoLBgmTgiBSZMm4bvvvgMA/PDDDxg1apTEqYiIyNCxYJi4R48eYeXKlQCApUuXYsSIERInIiIiY8CCYeLKli2LiIgI/P333xg4cKDUcYiIyEiwYJggIQTu3LmDChUqAADq1auHevXqSZyKiIiMCU9TNTFCCIwdOxZ16tTBiRMnpI5DRERGigXDhAghMGbMGCxevBhJSUm4dOmS1JGIiMhI8RCJiRBCYPTo0Vi6dCkAYOXKlRgwYIDEqYiIyFixYJgAIQRGjhyJoKAgAMCqVatYLoiISKdYMIycEAIjRozAsmXLIJPJsHr1anz55ZdSxyIiIiPHgmHkMjMzcefOHchkMqxZswb+/v5SRyIiIhPAgmHk5HI5fvvtNxw6dAgeHh5SxyEiIhPBs0iMkEqlwtatWyGEAAAoFAqWCyIiKlQsGEZGpVJhyJAh6NmzJ8aPHy91HCIiMlE8RGJEVCoVBg0ahDVr1sDMzAx169aVOhIREZkoFgwjoVKpMHDgQKxduxZmZmbYsGED+vTpI3UsIiIyUSwYRkCpVGLAgAEIDg6GmZkZNm3ahF69ekkdi4iITBjnYBiBQYMGITg4GObm5ti8eTPLBRERSY4Fwwi0atUKcrkcmzdvho+Pj9RxiIiIeIjEGHz++edwdXWFs7Oz1FGIiIgAcATDIGVlZWHixImIjY1VL2O5ICIifcKCYWCysrLg6+uL7777Dh4eHsjKypI6EhER0Rt4iMSAZGVloV+/ftiyZQssLCwwc+ZMWFjwfyEREekf/nYyEFlZWejbty9CQ0NhaWmJrVu3okuXLlLHIiIiyhULhgHIzMxE3759sXXrVlhaWuK3336Dl5eX1LGIiIjyxDkYBmDChAnYunUr5HI5tm/fznJBRER6jwXDAAQEBODjjz/G9u3b0alTJ6njEBERvRMPkegpIQRkMhkAoFy5coiJieGETiIiMhgcwdBDGRkZ6NGjB0JCQtTLWC6IiMiQsGDomfT0dHz22Wf47bff0L9/fzx58kTqSERERBrjn8V6JLtc7N69GwqFAtu3b0fx4sWljkVERKQxFgw9kZ6eju7du2PPnj1QKBTYtWsX2rZtK3UsIiKiAmHB0ANpaWno3r079u7dC4VCgT/++APu7u5SxyIiIiowzsHQA+vWrcPevXthbW2N3bt3s1wQEZHB4wiGHhg0aBCuX7+Ojh07onXr1lLHISIiem8sGBJJTU2Fubk55HI5ZDIZFi5cKHUkIiIireEhEgmkpqaiS5cu6NmzJzIyMqSOQ0REpHUcwShkKSkp6NKlC8LDw2Fra4urV6+idu3aUsciIiLSKhaMQpSSkgIvLy8cPHgQtra22LdvH8sFEREZJR4iKSTJycno1KkTDh48CDs7O+zfvx8tWrSQOhYREZFOcASjEGSXi6ioKNjb22P//v1o2rSp1LGIiIh0hgWjEFy9ehWnT5+Gvb09wsLC0KRJE6kjERER6RQLRiFo0KAB9uzZA7lcznJBREQmgQVDR16+fIkHDx6gWrVqAABXV1eJExERERUeTvLUgaSkJLRv3x4tWrTAhQsXpI5DRERU6FgwtCwxMRGenp44evQoMjMzkZaWJnUkIiKiQqcXBSMoKAguLi5QKBRo3LgxTp069db1t27dimrVqkGhUKBWrVrYu3dvISV9u7T0dHh6euL48eMoUqQIwsPD8cknn0gdi4iIqNBJXjBCQkIQEBCAwMBAREdHo06dOvDw8MDjx49zXf/48ePo3bs3+vfvj7Nnz8Lb2xve3t64ePFiISd/0+pVq3DixAkULVoU4eHhaNiwodSRiIiIJCETQggpAzRu3BiffPIJfvrpJwCASqWCs7MzRo4ciYkTJ76xvo+PD5KTk7F79271sk8//RR169bFihUr3vl6iYmJcHR0xIsXL+Dg4KCV9zBy42n8cfExnkWuhfk/kQgPD0f9+vW18txERET6QpPfoZKOYGRkZODMmTNwd3dXLzMzM4O7uztOnDiR6zYnTpzIsT4AeHh45Ll+eno6EhMTc3xom0z26r/WNjaIiIhguSAiIpMnacFISEiAUqlEyZIlcywvWbIk4uLict0mLi5Oo/Xnzp0LR0dH9Yezs7N2wr+mcqkiqFfOAVPHjkS9evW0/vxERESGxuivgzFp0iQEBASoHycmJmq9ZIxsUxkj21TW6nMSEREZMkkLhpOTE8zNzREfH59jeXx8PEqVKpXrNqVKldJofSsrK1hZWWknMBEREeWLpIdI5HI5GjRogIiICPUylUqFiIiIPC+p3aRJkxzrA8CBAwd4CW4iIiI9IvkhkoCAAPj5+aFhw4Zo1KgRlixZguTkZPj7+wMAfH19UbZsWcydOxcAMHr0aLi6umLhwoXo2LEjtmzZgr///hsrV66U8m0QERHRayQvGD4+Pnjy5AmmTZuGuLg41K1bF/v371dP5Lx37x7MzP5/oKVp06bYvHkzpkyZgsmTJ6Ny5crYuXMnatasKdVbICIiov+Q/DoYhU0X18EgIiIyBQZzHQwiIiIyTiwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdZLfrr2wZd88NjExUeIkREREhiX7d2d+bsRucgUjKSkJAODs7CxxEiIiIsOUlJQER0fHt64jE/mpIUZEpVLh0aNHsLe3h0wm08pzJiYmwtnZGffv34eDg4NWntPUcZ9qH/epdnF/ah/3qXbpYn8KIZCUlIQyZcrAzOztsyxMbgTDzMwM5cqV08lzOzg48JtCy7hPtY/7VLu4P7WP+1S7tL0/3zVykY2TPImIiEjrWDCIiIhI61gwtMDKygqBgYGwsrKSOorR4D7VPu5T7eL+1D7uU+2Sen+a3CRPIiIi0j2OYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWDkU1BQEFxcXKBQKNC4cWOcOnXqretv3boV1apVg0KhQK1atbB3795CSmo4NNmnq1atQosWLVC0aFEULVoU7u7u7/x/YGo0/TeabcuWLZDJZPD29tZtQAOk6T59/vw5hg8fjtKlS8PKygpVqlTh9/5rNN2fS5YsQdWqVWFtbQ1nZ2eMGTMGaWlphZRW/x0+fBheXl4oU6YMZDIZdu7c+c5toqKiUL9+fVhZWeGjjz5CcHCw7gIKeqctW7YIuVwu1q5dKy5duiQGDhwoihQpIuLj43Nd/9ixY8Lc3Fx8//334vLly2LKlCnC0tJSXLhwoZCT6y9N92mfPn1EUFCQOHv2rLhy5Yr44osvhKOjo3jw4EEhJ9dPmu7PbLdv3xZly5YVLVq0EF26dCmcsAZC032anp4uGjZsKDp06CCOHj0qbt++LaKiokRMTEwhJ9dPmu7PTZs2CSsrK7Fp0yZx+/ZtERYWJkqXLi3GjBlTyMn11969e8U333wjtm/fLgCIHTt2vHX9W7duCRsbGxEQECAuX74sli5dKszNzcX+/ft1ko8FIx8aNWokhg8frn6sVCpFmTJlxNy5c3Ndv2fPnqJjx445ljVu3FgMHjxYpzkNiab79L+ysrKEvb29WLduna4iGpSC7M+srCzRtGlTsXr1auHn58eC8R+a7tPly5eLihUrioyMjMKKaFA03Z/Dhw8XrVu3zrEsICBANGvWTKc5DVV+Csb48ePFxx9/nGOZj4+P8PDw0EkmHiJ5h4yMDJw5cwbu7u7qZWZmZnB3d8eJEydy3ebEiRM51gcADw+PPNc3NQXZp/+VkpKCzMxMFCtWTFcxDUZB9+fMmTNRokQJ9O/fvzBiGpSC7NNdu3ahSZMmGD58OEqWLImaNWtizpw5UCqVhRVbbxVkfzZt2hRnzpxRH0a5desW9u7diw4dOhRKZmNU2L+bTO5mZ5pKSEiAUqlEyZIlcywvWbIkrl69mus2cXFxua4fFxens5yGpCD79L8mTJiAMmXKvPHNYooKsj+PHj2KNWvWICYmphASGp6C7NNbt27h4MGD6Nu3L/bu3YsbN25g2LBhyMzMRGBgYGHE1lsF2Z99+vRBQkICmjdvDiEEsrKyMGTIEEyePLkwIhulvH43JSYmIjU1FdbW1lp9PY5gkMGZN28etmzZgh07dkChUEgdx+AkJSWhX79+WLVqFZycnKSOYzRUKhVKlCiBlStXokGDBvDx8cE333yDFStWSB3NIEVFRWHOnDlYtmwZoqOjsX37duzZswezZs2SOhrlE0cw3sHJyQnm5uaIj4/PsTw+Ph6lSpXKdZtSpUpptL6pKcg+zbZgwQLMmzcP4eHhqF27ti5jGgxN9+fNmzdx584deHl5qZepVCoAgIWFBa5du4ZKlSrpNrSeK8i/0dKlS8PS0hLm5ubqZdWrV0dcXBwyMjIgl8t1mlmfFWR/Tp06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZm/PtYU3n9bnJwcND66AXAEYx3ksvlaNCgASIiItTLVCoVIiIi0KRJk1y3adKkSY71AeDAgQN5rm9qCrJPAeD777/HrFmzsH//fjRs2LAwohoETfdntWrVcOHCBcTExKg/OnfujFatWiEmJgbOzs6FGV8vFeTfaLNmzXDjxg11WQOA69evo3Tp0iZdLoCC7c+UlJQ3SkR2eRO8hVaBFPrvJp1MHTUyW7ZsEVZWViI4OFhcvnxZDBo0SBQpUkTExcUJIYTo16+fmDhxonr9Y8eOCQsLC7FgwQJx5coVERgYyNNU/0PTfTpv3jwhl8vFtm3bRGxsrPojKSlJqregVzTdn//Fs0jepOk+vXfvnrC3txcjRowQ165dE7t37xYlSpQQs2fPluot6BVN92dgYKCwt7cXv/76q7h165b4888/RaVKlUTPnj2legt6JykpSZw9e1acPXtWABCLFi0SZ8+eFXfv3hVCCDFx4kTRr18/9frZp6l+/fXX4sqVKyIoKIinqeqDpUuXivLlywu5XC4aNWokTp48qf6aq6ur8PPzy7F+aGioqFKlipDL5eLjjz8We/bsKeTE+k+Tffrhhx8KAG98BAYGFn5wPaXpv9HXsWDkTtN9evz4cdG4cWNhZWUlKlasKL799luRlZVVyKn1lyb7MzMzU0yfPl1UqlRJKBQK4ezsLIYNGyaePXtW+MH1VGRkZK4/F7P3o5+fn3B1dX1jm7p16wq5XC4qVqwofvnlF53l4+3aiYiISOs4B4OIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg8jIBAcHo0iRIlLHKDCZTIadO3e+dZ0vvvgC3t7ehZKHiAqGBYNID33xxReQyWRvfNy4cUPqaAgODlbnMTMzQ7ly5eDv74/Hjx9r5fljY2PRvn17AMCdO3cgk8kQExOTY50ffvgBwcHBWnm9vEyfPl39Ps3NzeHs7IxBgwbh6dOnGj0PyxCZKt6unUhPeXp64pdffsmxrHjx4hKlycnBwQHXrl2DSqXCuXPn4O/vj0ePHiEsLOy9nzuv23e/ztHR8b1fJz8+/vhjhIeHQ6lU4sqVK/jyyy/x4sULhISEFMrrExkyjmAQ6SkrKyuUKlUqx4e5uTkWLVqEWrVqwdbWFs7Ozhg2bBhevnyZ5/OcO3cOrVq1gr29PRwcHNCgQQP8/fff6q8fPXoULVq0gLW1NZydnTFq1CgkJye/NZtMJkOpUqVQpkwZtG/fHqNGjUJ4eDhSU1OhUqkwc+ZMlCtXDlZWVqhbty7279+v3jYjIwMjRoxA6dKloVAo8OGHH2Lu3Lk5njv7EEmFChUAAPXq1YNMJoObmxuAnKMCK1euRJkyZXLcJh0AunTpgi+//FL9+Pfff0f9+vWhUChQsWJFzJgxA1lZWW99nxYWFihVqhTKli0Ld3d39OjRAwcOHFB/XalUon///qhQoQKsra1RtWpV/PDDD+qvT58+HevWrcPvv/+uHg2JiooCANy/fx89e/ZEkSJFUKxYMXTp0gV37tx5ax4iQ8KCQWRgzMzM8OOPP+LSpUtYt24dDh48iPHjx+e5ft++fVGuXDmcPn0aZ86cwcSJE2FpaQkAuHnzJjw9PdG9e3ecP38eISEhOHr0KEaMGKFRJmtra6hUKmRlZeGHH37AwoULsWDBApw/fx4eHh7o3Lkz/vnnHwDAjz/+iF27diE0NBTXrl3Dpk2b4OLikuvznjp1CgAQHh6O2NhYbN++/Y11evTogX///ReRkZHqZU+fPsX+/fvRt29fAMCRI0fg6+uL0aNH4/Lly/j5558RHByMb7/9Nt/v8c6dOwgLC4NcLlcvU6lUKFeuHLZu3YrLly9j2rRpmDx5MkJDQwEA48aNQ8+ePeHp6YnY2FjExsaiadOmyMzMhIeHB+zt7XHkyBEcO3YMdnZ28PT0REZGRr4zEek1nd2nlYgKzM/PT5ibmwtbW1v1x2effZbrulu3bhUffPCB+vEvv/wiHB0d1Y/t7e1FcHBwrtv2799fDBo0KMeyI0eOCDMzM5GamprrNv99/uvXr4sqVaqIhg0bCiGEKFOmjPj2229zbPPJJ5+IYcOGCSGEGDlypGjdurVQqVS5Pj8AsWPHDiGEELdv3xYAxNmzZ3Os89/by3fp0kV8+eWX6sc///yzKFOmjFAqlUIIIdq0aSPmzJmT4zk2bNggSpcunWsGIYQIDAwUZmZmwtbWVigUCvWtsBctWpTnNkIIMXz4cNG9e/c8s2a/dtWqVXPsg/T0dGFtbS3CwsLe+vxEhoJzMIj0VKtWrbB8+XL1Y1tbWwCv/pqfO3curl69isTERGRlZSEtLQ0pKSmwsbF543kCAgIwYMAAbNiwQT3MX6lSJQCvDp+cP38emzZtUq8vhIBKpcLt27dRvXr1XLO9ePECdnZ2UKlUSEtLQ/PmzbF69WokJibi0aNHaNasWY71mzVrhnPnzgF4dXijbdu2qFq1Kjw9PdGpUye0a9fuvfZV3759MXDgQCxbtgxWVlbYtGkTevXqBTMzM/X7PHbsWI4RC6VS+db9BgBVq1bFrl27kJaWho0bNyImJgYjR47MsU5QUBDWrl2Le/fuITU1FRkZGahbt+5b8547dw43btyAvb19juVpaWm4efNmAfYAkf5hwSDSU7a2tvjoo49yLLtz5w46deqEoUOH4ttvv0WxYsVw9OhR9O/fHxkZGbn+opw+fTr69OmDPXv2YN++fQgMDMSWLVvQtWtXvHz5EoMHD8aoUaPe2K58+fJ5ZrO3t0d0dDTMzMxQunRpWFtbAwASExPf+b7q16+P27dvY9++fQgPD0fPnj3h7u6Obdu2vXPbvHh5eUEIgT179uCTTz7BkSNHsHjxYvXXX758iRkzZqBbt25vbKtQKPJ8Xrlcrv5/MG/ePHTs2BEzZszArFmzAABbtmzBuHHjsHDhQjRp0gT29vaYP38+/vrrr7fmffnyJRo0aJCj2GXTl4m8RO+LBYPIgJw5cwYqlQoLFy5U/3Wefbz/bapUqYIqVapgzJgx6N27N3755Rd07doV9evXx+XLl98oMu9iZmaW6zYODg4oU6YMjh07BldXV/XyY8eOoVGjRjnW8/HxgY+PDz777DN4enri6dOnKFasWI7ny57voFQq35pHoVCgW7du2LRpE27cuIGqVauifv366q/Xr18f165d0/h9/teUKVPQunVrDB06VP0+mzZtimHDhqnX+e8IhFwufyN//fr1ERISghIlSsDBweG9MhHpK07yJDIgH330ETIzM7F06VLcunULGzZswIoVK/JcPzU1FSNGjEBUVBTu3r2LY8eO4fTp0+pDHxMmTMDx48cxYsQIxMTE4J9//sHvv/+u8STP13399df47rvvEBISgmvXrmHixImIiYnB6NGjAQCLFi3Cr7/+iqtXr+L69evYunUrSpUqlevFwUqUKAFra2vs378f8fHxePHiRZ6v27dvX+zZswdr165VT+7MNm3aNKxfvx4zZszApUuXcOXKFWzZsgVTpkzR6L01adIEtWvXxpw5cwAAlStXxt9//42wsDBcv34dU6dOxenTp3Ns4+LigvPnz+PatWtISEhAZmYm+vbtCycnJ3Tp0gVHjhzB7du3ERUVhVGjRuHBgwcaZSLSW1JPAiGiN+U2MTDbokWLROnSpYW1tbXw8PAQ69evFwDEs2fPhBA5J2Gmp6eLXr16CWdnZyGXy0WZMmXEiBEjckzgPHXqlGjbtq2ws7MTtra2onbt2m9M0nzdfyd5/pdSqRTTp08XZcuWFZaWlqJOnTpi37596q+vXLlS1K1bV9ja2goHBwfRpk0bER0drf46XpvkKYQQq1atEs7OzsLMzEy4urrmuX+USqUoXbq0ACBu3rz5Rq79+/eLpk2bCmtra+Hg4CAaNWokVq5cmef7CAwMFHXq1Hlj+a+//iqsrKzEvXv3RFpamvjiiy+Eo6OjKFKkiBg6dKiYOHFiju0eP36s3r8ARGRkpBBCiNjYWOHr6yucnJyElZWVqFixohg4cKB48eJFnpmIDIlMCCGkrThERERkbHiIhIiIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi07v8A1k+hWenkwRsAAAAASUVORK5CYII=", + "text/plain": [ + "
                                          " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import roc_curve, roc_auc_score\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "y_scores = model.predict_proba(X_test)\n", + "# calculate ROC curve\n", + "fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])\n", + "\n", + "# plot ROC curve\n", + "fig = plt.figure(figsize=(6, 6))\n", + "# Plot the diagonal 50% line\n", + "plt.plot([0, 1], [0, 1], 'k--')\n", + "# Plot the FPR and TPR achieved by our model\n", + "plt.plot(fpr, tpr)\n", + "plt.xlabel('False Positive Rate')\n", + "plt.ylabel('True Positive Rate')\n", + "plt.title('ROC Curve')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.9749908725812341\n" + ] + } + ], + "source": [ + "# Calculate AUC score\n", + "auc = roc_auc_score(y_test,y_scores[:,1])\n", + "print(auc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "vscode": { + "interpreter": { + "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" + } + }, + "coopTranslator": { + "original_hash": "ef50cc584e0b79412610cc7da15e1f86", + "translation_date": "2025-09-04T01:18:59+00:00", + "source_file": "2-Regression/4-Logistic/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ja/2-Regression/README.md b/translations/ja/2-Regression/README.md new file mode 100644 index 000000000..d44f69c5b --- /dev/null +++ b/translations/ja/2-Regression/README.md @@ -0,0 +1,54 @@ + +# 機械学習の回帰モデル +## 地域トピック: 北米におけるカボチャ価格の回帰モデル 🎃 + +北米では、カボチャはよくハロウィンのために怖い顔に彫られます。この魅力的な野菜についてもっと探ってみましょう! + +![ジャック・オー・ランタン](../../../translated_images/jack-o-lanterns.181c661a9212457d7756f37219f660f1358af27554d856e5a991f16b4e15337c.ja.jpg) +> 写真提供: Beth Teutschmann on Unsplash + +## 学べること + +[![回帰の紹介](https://img.youtube.com/vi/5QnJtDad4iQ/0.jpg)](https://youtu.be/5QnJtDad4iQ "回帰紹介ビデオ - クリックして視聴!") +> 🎥 上の画像をクリックして、このレッスンの簡単な紹介ビデオを視聴してください + +このセクションのレッスンでは、機械学習の文脈での回帰の種類を扱います。回帰モデルは変数間の_関係_を特定するのに役立ちます。このタイプのモデルは、長さ、温度、年齢などの値を予測し、データポイントを分析することで変数間の関係を明らかにします。 + +このレッスンシリーズでは、線形回帰とロジスティック回帰の違いを学び、それぞれをどのような場合に使うべきかを理解します。 + +[![初心者向け機械学習 - 回帰モデルの紹介](https://img.youtube.com/vi/XA3OaoW86R8/0.jpg)](https://youtu.be/XA3OaoW86R8 "初心者向け機械学習 - 回帰モデルの紹介") + +> 🎥 上の画像をクリックして、回帰モデルの紹介ビデオを視聴してください。 + +このレッスン群では、機械学習タスクを始めるための準備を行います。データサイエンティストの一般的な環境であるノートブックを管理するためにVisual Studio Codeを設定します。また、機械学習用ライブラリであるScikit-learnを発見し、この章では回帰モデルに焦点を当てた最初のモデルを構築します。 + +> 回帰モデルを扱う方法を学ぶのに役立つ便利なローコードツールがあります。[Azure ML](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)を試してみてください。 + +### レッスン + +1. [ツールの選択](1-Tools/README.md) +2. [データの管理](2-Data/README.md) +3. [線形回帰と多項式回帰](3-Linear/README.md) +4. [ロジスティック回帰](4-Logistic/README.md) + +--- +### クレジット + +「回帰を使った機械学習」は[Jen Looper](https://twitter.com/jenlooper)によって♥️を込めて書かれました。 + +♥️ クイズの貢献者には、[Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan)と[Ornella Altunyan](https://twitter.com/ornelladotcom)が含まれます。 + +カボチャのデータセットは[Kaggleのこのプロジェクト](https://www.kaggle.com/usda/a-year-of-pumpkin-prices)によって提案され、そのデータはアメリカ合衆国農務省が配布する[Specialty Crops Terminal Markets Standard Reports](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice)から取得されています。分布を正規化するために品種に基づいた色のポイントを追加しました。このデータはパブリックドメインに属しています。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知おきください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/3-Web-App/1-Web-App/README.md b/translations/ja/3-Web-App/1-Web-App/README.md new file mode 100644 index 000000000..76b56e073 --- /dev/null +++ b/translations/ja/3-Web-App/1-Web-App/README.md @@ -0,0 +1,359 @@ + +# Webアプリで機械学習モデルを使用する + +このレッスンでは、過去1世紀にわたる_UFO目撃情報_というユニークなデータセットを使用して機械学習モデルをトレーニングします。このデータはNUFORCのデータベースから取得されています。 + +学ぶ内容: + +- トレーニング済みモデルを「ピクル化」する方法 +- Flaskアプリでそのモデルを使用する方法 + +ノートブックを使ってデータをクリーンアップし、モデルをトレーニングする作業を続けますが、さらに一歩進めて、モデルを「実際の環境」で使用する方法を探求します。つまり、Webアプリで使用する方法です。 + +これを実現するには、Flaskを使用してWebアプリを構築する必要があります。 + +## [事前クイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/17/) + +## アプリを構築する + +機械学習モデルを利用するWebアプリを構築する方法はいくつかあります。Webアーキテクチャは、モデルのトレーニング方法に影響を与える可能性があります。例えば、データサイエンスチームがトレーニングしたモデルをアプリで使用するよう依頼された場合を想像してください。 + +### 考慮事項 + +以下のような質問を検討する必要があります: + +- **Webアプリかモバイルアプリか?** モバイルアプリを構築する場合やIoT環境でモデルを使用する必要がある場合、[TensorFlow Lite](https://www.tensorflow.org/lite/)を使用してAndroidやiOSアプリでモデルを利用できます。 +- **モデルはどこに配置されるのか?** クラウドかローカルか? +- **オフライン対応。** アプリはオフラインで動作する必要があるか? +- **モデルのトレーニングに使用された技術は何か?** 選択された技術は使用するツールに影響を与える可能性があります。 + - **TensorFlowを使用する場合。** 例えば、TensorFlowを使用してモデルをトレーニングする場合、そのエコシステムでは[TensorFlow.js](https://www.tensorflow.org/js/)を使用してWebアプリでモデルを利用できるように変換する機能を提供しています。 + - **PyTorchを使用する場合。** [PyTorch](https://pytorch.org/)のようなライブラリを使用してモデルを構築する場合、[ONNX](https://onnx.ai/) (Open Neural Network Exchange)形式でエクスポートし、[Onnx Runtime](https://www.onnxruntime.ai/)を使用してJavaScript Webアプリで利用することができます。このオプションは、Scikit-learnでトレーニングされたモデルを使用する将来のレッスンで探求します。 + - **Lobe.aiやAzure Custom Visionを使用する場合。** [Lobe.ai](https://lobe.ai/)や[Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott)のようなML SaaS (Software as a Service)システムを使用してモデルをトレーニングする場合、この種のソフトウェアは多くのプラットフォーム向けにモデルをエクスポートする方法を提供します。これには、オンラインアプリケーションでクラウドからクエリされるカスタムAPIを構築することも含まれます。 + +また、ブラウザ内でモデルをトレーニングできるFlask Webアプリ全体を構築する機会もあります。これもJavaScript環境でTensorFlow.jsを使用して実現可能です。 + +私たちの目的では、Pythonベースのノートブックを使用してきたので、トレーニング済みモデルをノートブックからPythonで構築されたWebアプリで読み取れる形式にエクスポートする手順を探ってみましょう。 + +## ツール + +このタスクには、FlaskとPickleという2つのツールが必要です。どちらもPython上で動作します。 + +✅ [Flask](https://palletsprojects.com/p/flask/)とは? Flaskはその開発者によって「マイクロフレームワーク」と定義されており、Pythonを使用してWebページを構築するためのテンプレートエンジンを備えたWebフレームワークの基本機能を提供します。[この学習モジュール](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott)を確認して、Flaskを使った構築を練習してください。 + +✅ [Pickle](https://docs.python.org/3/library/pickle.html)とは? Pickle 🥒はPythonモジュールで、Pythonオブジェクト構造をシリアル化およびデシリアル化します。モデルを「ピクル化」する際には、その構造をシリアル化またはフラット化してWebで使用できるようにします。ただし、Pickleは本質的に安全ではないため、ファイルを「アンピクル化」するよう求められた場合は注意してください。ピクル化されたファイルの拡張子は`.pkl`です。 + +## 演習 - データをクリーンアップする + +このレッスンでは、[NUFORC](https://nuforc.org) (全米UFO報告センター)によって収集された80,000件のUFO目撃情報を使用します。このデータには、以下のような興味深い目撃情報の説明が含まれています: + +- **長い説明の例。** 「夜の草原に光のビームが照らされ、そこから男性が現れ、テキサス・インスツルメンツの駐車場に向かって走っていく」 +- **短い説明の例。** 「光が私たちを追いかけてきた」 + +[ufos.csv](../../../../3-Web-App/1-Web-App/data/ufos.csv)スプレッドシートには、目撃が発生した`city`、`state`、`country`、物体の`shape`、およびその`latitude`と`longitude`に関する列が含まれています。 + +このレッスンに含まれる空の[ノートブック](notebook.ipynb)で以下を行います: + +1. 前のレッスンで行ったように`pandas`、`matplotlib`、`numpy`をインポートし、UFOのスプレッドシートをインポートします。サンプルデータセットを確認できます: + + ```python + import pandas as pd + import numpy as np + + ufos = pd.read_csv('./data/ufos.csv') + ufos.head() + ``` + +1. UFOデータを新しいタイトル付きの小さなデータフレームに変換します。`Country`フィールドのユニークな値を確認してください。 + + ```python + ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']}) + + ufos.Country.unique() + ``` + +1. 次に、必要なデータ量を減らすために、null値を削除し、1〜60秒間の目撃情報のみをインポートします: + + ```python + ufos.dropna(inplace=True) + + ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)] + + ufos.info() + ``` + +1. Scikit-learnの`LabelEncoder`ライブラリをインポートして、国のテキスト値を数値に変換します: + + ✅ LabelEncoderはデータをアルファベット順にエンコードします + + ```python + from sklearn.preprocessing import LabelEncoder + + ufos['Country'] = LabelEncoder().fit_transform(ufos['Country']) + + ufos.head() + ``` + + データは以下のようになります: + + ```output + Seconds Country Latitude Longitude + 2 20.0 3 53.200000 -2.916667 + 3 20.0 4 28.978333 -96.645833 + 14 30.0 4 35.823889 -80.253611 + 23 60.0 4 45.582778 -122.352222 + 24 3.0 3 51.783333 -0.783333 + ``` + +## 演習 - モデルを構築する + +次に、データをトレーニンググループとテストグループに分割してモデルをトレーニングする準備をします。 + +1. トレーニングする3つの特徴をXベクトルとして選択し、yベクトルは`Country`になります。`Seconds`、`Latitude`、`Longitude`を入力して国IDを返すようにします。 + + ```python + from sklearn.model_selection import train_test_split + + Selected_features = ['Seconds','Latitude','Longitude'] + + X = ufos[Selected_features] + y = ufos['Country'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + ``` + +1. ロジスティック回帰を使用してモデルをトレーニングします: + + ```python + from sklearn.metrics import accuracy_score, classification_report + from sklearn.linear_model import LogisticRegression + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('Accuracy: ', accuracy_score(y_test, predictions)) + ``` + +精度は悪くありません **(約95%)**。`Country`と`Latitude/Longitude`が相関しているため、当然の結果です。 + +作成したモデルは非常に革新的ではありませんが、クリーンアップした生データからトレーニングし、エクスポートしてWebアプリで使用する練習としては良い例です。 + +## 演習 - モデルを「ピクル化」する + +次に、モデルをピクル化します! 数行のコードでこれを行うことができます。ピクル化された後、ピクル化されたモデルをロードし、秒数、緯度、経度の値を含むサンプルデータ配列でテストします。 + +```python +import pickle +model_filename = 'ufo-model.pkl' +pickle.dump(model, open(model_filename,'wb')) + +model = pickle.load(open('ufo-model.pkl','rb')) +print(model.predict([[50,44,-12]])) +``` + +モデルは**「3」**を返します。これは英国の国コードです。驚きですね! 👽 + +## 演習 - Flaskアプリを構築する + +次に、Flaskアプリを構築してモデルを呼び出し、より視覚的に魅力的な方法で結果を返します。 + +1. _notebook.ipynb_ファイルの隣に**web-app**というフォルダを作成します。その中に_ufo-model.pkl_ファイルを配置します。 + +1. そのフォルダ内にさらに3つのフォルダを作成します: **static** (その中に**css**フォルダを作成)、および**templates**。以下のファイルとディレクトリが作成されます: + + ```output + web-app/ + static/ + css/ + templates/ + notebook.ipynb + ufo-model.pkl + ``` + + ✅ 完成したアプリのビューについてはソリューションフォルダを参照してください + +1. _web-app_フォルダ内で最初に作成するファイルは**requirements.txt**です。JavaScriptアプリの_package.json_のように、このファイルはアプリに必要な依存関係をリストします。**requirements.txt**に以下の行を追加します: + + ```text + scikit-learn + pandas + numpy + flask + ``` + +1. 次に、このファイルを_web-app_で実行します: + + ```bash + cd web-app + ``` + +1. ターミナルで`pip install`を入力して、_requirements.txt_にリストされたライブラリをインストールします: + + ```bash + pip install -r requirements.txt + ``` + +1. 次に、アプリを完成させるためにさらに3つのファイルを作成します: + + 1. ルートに**app.py**を作成します。 + 2. _templates_ディレクトリに**index.html**を作成します。 + 3. _static/css_ディレクトリに**styles.css**を作成します。 + +1. _styles.css_ファイルをいくつかのスタイルで構築します: + + ```css + body { + width: 100%; + height: 100%; + font-family: 'Helvetica'; + background: black; + color: #fff; + text-align: center; + letter-spacing: 1.4px; + font-size: 30px; + } + + input { + min-width: 150px; + } + + .grid { + width: 300px; + border: 1px solid #2d2d2d; + display: grid; + justify-content: center; + margin: 20px auto; + } + + .box { + color: #fff; + background: #2d2d2d; + padding: 12px; + display: inline-block; + } + ``` + +1. 次に、_index.html_ファイルを構築します: + + ```html + + + + + 🛸 UFO Appearance Prediction! 👽 + + + + +
                                          + +
                                          + +

                                          According to the number of seconds, latitude and longitude, which country is likely to have reported seeing a UFO?

                                          + +
                                          + + + + +
                                          + +

                                          {{ prediction_text }}

                                          + +
                                          + +
                                          + + + + ``` + + このファイルのテンプレート構文を確認してください。変数がアプリによって提供される`{{}}`の「マスタッシュ」構文に注意してください。また、`/predict`ルートに予測を投稿するフォームも含まれています。 + + 最後に、モデルの消費と予測の表示を駆動するPythonファイルを構築します: + +1. `app.py`に以下を追加します: + + ```python + import numpy as np + from flask import Flask, request, render_template + import pickle + + app = Flask(__name__) + + model = pickle.load(open("./ufo-model.pkl", "rb")) + + + @app.route("/") + def home(): + return render_template("index.html") + + + @app.route("/predict", methods=["POST"]) + def predict(): + + int_features = [int(x) for x in request.form.values()] + final_features = [np.array(int_features)] + prediction = model.predict(final_features) + + output = prediction[0] + + countries = ["Australia", "Canada", "Germany", "UK", "US"] + + return render_template( + "index.html", prediction_text="Likely country: {}".format(countries[output]) + ) + + + if __name__ == "__main__": + app.run(debug=True) + ``` + + > 💡 ヒント: Flaskを使用してWebアプリを実行する際に[`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode)を追加すると、アプリケーションに加えた変更が即座に反映され、サーバーを再起動する必要がなくなります。ただし、注意してください! 本番アプリではこのモードを有効にしないでください。 + +`python app.py`または`python3 app.py`を実行すると、ローカルでWebサーバーが起動し、短いフォームに入力してUFO目撃情報に関する疑問に答えることができます! + +その前に、`app.py`の各部分を確認してください: + +1. まず、依存関係がロードされ、アプリが開始されます。 +1. 次に、モデルがインポートされます。 +1. その後、ホームルートでindex.htmlがレンダリングされます。 + +`/predict`ルートでは、フォームが投稿されると以下のことが行われます: + +1. フォーム変数が収集され、numpy配列に変換されます。それがモデルに送信され、予測が返されます。 +2. 表示したい国名が予測された国コードから読み取り可能なテキストとして再レンダリングされ、その値がindex.htmlに送信され、テンプレートでレンダリングされます。 + +このようにして、Flaskとピクル化されたモデルを使用してモデルを利用するのは比較的簡単です。最も難しいのは、予測を得るためにモデルに送信する必要があるデータの形状を理解することです。それはモデルがどのようにトレーニングされたかによります。このモデルでは、予測を得るために入力する必要があるデータポイントが3つあります。 + +プロフェッショナルな環境では、モデルをトレーニングする人々とWebやモバイルアプリでそれを利用する人々の間で良好なコミュニケーションが必要であることがわかります。私たちの場合、それはあなた一人です! + +--- + +## 🚀 チャレンジ + +ノートブックで作業してモデルをFlaskアプリにインポートする代わりに、Flaskアプリ内でモデルをトレーニングすることもできます! データをクリーンアップした後、ノートブック内のPythonコードを変換して、`train`というルートでアプリ内でモデルをトレーニングしてみてください。この方法を追求する利点と欠点は何でしょうか? + +## [事後クイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/18/) + +## 復習と自己学習 + +機械学習モデルを利用するWebアプリを構築する方法は多数あります。JavaScriptやPythonを使用してWebアプリを構築し、機械学習を活用する方法のリストを作成してください。アーキテクチャを考慮してください: モデルはアプリ内に保持すべきか、それともクラウドに配置すべきか? 後者の場合、どのようにアクセスしますか? 応用ML Webソリューションのアーキテクチャモデルを描いてみてください。 + +## 課題 + +[別のモデルを試してみる](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/3-Web-App/1-Web-App/assignment.md b/translations/ja/3-Web-App/1-Web-App/assignment.md new file mode 100644 index 000000000..188e50c69 --- /dev/null +++ b/translations/ja/3-Web-App/1-Web-App/assignment.md @@ -0,0 +1,25 @@ + +# 別のモデルを試す + +## 手順 + +既に訓練済みの回帰モデルを使用して1つのWebアプリを構築したので、以前の回帰レッスンで学んだモデルの1つを使って、このWebアプリを作り直してみましょう。スタイルをそのまま維持してもいいですし、カボチャのデータに合わせてデザインを変更しても構いません。モデルの訓練方法に合わせて入力を変更するのを忘れないように注意してください。 + +## 評価基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| ------------------------ | ------------------------------------------------------- | ------------------------------------------------------- | -------------------------------------- | +| | Webアプリが期待通りに動作し、クラウドにデプロイされている | Webアプリに欠陥がある、または予期しない結果を示す | Webアプリが正しく機能しない | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤訳について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/3-Web-App/1-Web-App/notebook.ipynb b/translations/ja/3-Web-App/1-Web-App/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/ja/3-Web-App/1-Web-App/solution/notebook.ipynb b/translations/ja/3-Web-App/1-Web-App/solution/notebook.ipynb new file mode 100644 index 000000000..14decf576 --- /dev/null +++ b/translations/ja/3-Web-App/1-Web-App/solution/notebook.ipynb @@ -0,0 +1,267 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5fa2e8f4584c78250ca9729b46562ceb", + "translation_date": "2025-09-04T02:22:03+00:00", + "source_file": "3-Web-App/1-Web-App/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " datetime city state country shape \\\n", + "0 10/10/1949 20:30 san marcos tx us cylinder \n", + "1 10/10/1949 21:00 lackland afb tx NaN light \n", + "2 10/10/1955 17:00 chester (uk/england) NaN gb circle \n", + "3 10/10/1956 21:00 edna tx us circle \n", + "4 10/10/1960 20:00 kaneohe hi us light \n", + "\n", + " duration (seconds) duration (hours/min) \\\n", + "0 2700.0 45 minutes \n", + "1 7200.0 1-2 hrs \n", + "2 20.0 20 seconds \n", + "3 20.0 1/2 hour \n", + "4 900.0 15 minutes \n", + "\n", + " comments date posted latitude \\\n", + "0 This event took place in early fall around 194... 4/27/2004 29.883056 \n", + "1 1949 Lackland AFB, TX. Lights racing acros... 12/16/2005 29.384210 \n", + "2 Green/Orange circular disc over Chester, En... 1/21/2008 53.200000 \n", + "3 My older brother and twin sister were leaving ... 1/17/2004 28.978333 \n", + "4 AS a Marine 1st Lt. flying an FJ4B fighter/att... 1/22/2004 21.418056 \n", + "\n", + " longitude \n", + "0 -97.941111 \n", + "1 -98.581082 \n", + "2 -2.916667 \n", + "3 -96.645833 \n", + "4 -157.803611 " + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          datetimecitystatecountryshapeduration (seconds)duration (hours/min)commentsdate postedlatitudelongitude
                                          010/10/1949 20:30san marcostxuscylinder2700.045 minutesThis event took place in early fall around 194...4/27/200429.883056-97.941111
                                          110/10/1949 21:00lackland afbtxNaNlight7200.01-2 hrs1949 Lackland AFB&#44 TX. Lights racing acros...12/16/200529.384210-98.581082
                                          210/10/1955 17:00chester (uk/england)NaNgbcircle20.020 secondsGreen/Orange circular disc over Chester&#44 En...1/21/200853.200000-2.916667
                                          310/10/1956 21:00ednatxuscircle20.01/2 hourMy older brother and twin sister were leaving ...1/17/200428.978333-96.645833
                                          410/10/1960 20:00kaneohehiuslight900.015 minutesAS a Marine 1st Lt. flying an FJ4B fighter/att...1/22/200421.418056-157.803611
                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 23 + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "ufos = pd.read_csv('../data/ufos.csv')\n", + "ufos.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array(['us', nan, 'gb', 'ca', 'au', 'de'], dtype=object)" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ], + "source": [ + "\n", + "ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']})\n", + "\n", + "ufos.Country.unique()\n", + "\n", + "# 0 au, 1 ca, 2 de, 3 gb, 4 us" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nInt64Index: 25863 entries, 2 to 80330\nData columns (total 4 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 Seconds 25863 non-null float64\n 1 Country 25863 non-null object \n 2 Latitude 25863 non-null float64\n 3 Longitude 25863 non-null float64\ndtypes: float64(3), object(1)\nmemory usage: 1010.3+ KB\n" + ] + } + ], + "source": [ + "ufos.dropna(inplace=True)\n", + "\n", + "ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)]\n", + "\n", + "ufos.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Seconds Country Latitude Longitude\n", + "2 20.0 3 53.200000 -2.916667\n", + "3 20.0 4 28.978333 -96.645833\n", + "14 30.0 4 35.823889 -80.253611\n", + "23 60.0 4 45.582778 -122.352222\n", + "24 3.0 3 51.783333 -0.783333" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          SecondsCountryLatitudeLongitude
                                          220.0353.200000-2.916667
                                          320.0428.978333-96.645833
                                          1430.0435.823889-80.253611
                                          2360.0445.582778-122.352222
                                          243.0351.783333-0.783333
                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 26 + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "\n", + "ufos['Country'] = LabelEncoder().fit_transform(ufos['Country'])\n", + "\n", + "ufos.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "Selected_features = ['Seconds','Latitude','Longitude']\n", + "\n", + "X = ufos[Selected_features]\n", + "y = ufos['Country']\n", + "\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", + " FutureWarning)\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", + " \"this warning.\", FutureWarning)\n", + " precision recall f1-score support\n", + "\n", + " 0 1.00 1.00 1.00 41\n", + " 1 1.00 0.02 0.05 250\n", + " 2 0.00 0.00 0.00 8\n", + " 3 0.94 1.00 0.97 131\n", + " 4 0.95 1.00 0.97 4743\n", + "\n", + " accuracy 0.95 5173\n", + " macro avg 0.78 0.60 0.60 5173\n", + "weighted avg 0.95 0.95 0.93 5173\n", + "\n", + "Predicted labels: [4 4 4 ... 3 4 4]\n", + "Accuracy: 0.9512855209742895\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import accuracy_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('Accuracy: ', accuracy_score(y_test, predictions))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[3]\n" + ] + } + ], + "source": [ + "import pickle\n", + "model_filename = 'ufo-model.pkl'\n", + "pickle.dump(model, open(model_filename,'wb'))\n", + "\n", + "model = pickle.load(open('ufo-model.pkl','rb'))\n", + "print(model.predict([[50,44,-12]]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当方は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/3-Web-App/README.md b/translations/ja/3-Web-App/README.md new file mode 100644 index 000000000..81bb3e33b --- /dev/null +++ b/translations/ja/3-Web-App/README.md @@ -0,0 +1,35 @@ + +# 機械学習モデルを活用したウェブアプリの構築 + +このカリキュラムのセクションでは、応用的な機械学習のトピックについて学びます。具体的には、Scikit-learnモデルをファイルとして保存し、それをウェブアプリケーション内で予測に使用する方法です。モデルを保存した後、Flaskで構築されたウェブアプリでそのモデルを使用する方法を学びます。まず、UFO目撃情報に関するデータを使用してモデルを作成します。その後、緯度と経度の値と秒数を入力することで、どの国がUFOを目撃したかを予測するウェブアプリを構築します。 + +![UFO Parking](../../../translated_images/ufo.9e787f5161da9d4d1dafc537e1da09be8210f2ee996cb638aa5cee1d92867a04.ja.jpg) + +写真提供:Michael Herren on Unsplash + +## レッスン + +1. [ウェブアプリを構築する](1-Web-App/README.md) + +## クレジット + +「ウェブアプリを構築する」は[Jen Looper](https://twitter.com/jenlooper)によって♥️を込めて書かれました。 + +♥️ クイズはRohan Rajによって作成されました。 + +データセットは[Kaggle](https://www.kaggle.com/NUFORC/ufo-sightings)から提供されています。 + +ウェブアプリのアーキテクチャは、部分的に[この記事](https://towardsdatascience.com/how-to-easily-deploy-machine-learning-models-using-flask-b95af8fe34d4)と[このリポジトリ](https://github.com/abhinavsagar/machine-learning-deployment)(Abhinav Sagar作)を参考にしています。 + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当社は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/4-Classification/1-Introduction/README.md b/translations/ja/4-Classification/1-Introduction/README.md new file mode 100644 index 000000000..5bed69b4a --- /dev/null +++ b/translations/ja/4-Classification/1-Introduction/README.md @@ -0,0 +1,313 @@ + +# 分類の紹介 + +この4つのレッスンでは、古典的な機械学習の基本的な焦点である_分類_について探求します。アジアとインドの素晴らしい料理に関するデータセットを使い、さまざまな分類アルゴリズムを実践していきます。お腹が空いてきましたか? + +![ほんのひとつまみ!](../../../../translated_images/pinch.1b035ec9ba7e0d408313b551b60c721c9c290b2dd2094115bc87e6ddacd114c9.ja.png) + +> このレッスンでパンアジア料理を祝おう!画像提供: [Jen Looper](https://twitter.com/jenlooper) + +分類は[教師あり学習](https://wikipedia.org/wiki/Supervised_learning)の一形態で、回帰手法と多くの共通点を持っています。機械学習がデータセットを使って値や名前を予測することだとすれば、分類は一般的に2つのグループに分けられます:_二値分類_と_多クラス分類_です。 + +[![分類の紹介](https://img.youtube.com/vi/eg8DJYwdMyg/0.jpg)](https://youtu.be/eg8DJYwdMyg "分類の紹介") + +> 🎥 上の画像をクリックして動画を視聴: MITのJohn Guttagが分類を紹介 + +覚えておきましょう: + +- **線形回帰**では、変数間の関係を予測し、新しいデータポイントがその線に対してどこに位置するかを正確に予測するのに役立ちました。例えば、_9月と12月の間でカボチャの価格がどうなるか_を予測できました。 +- **ロジスティック回帰**では、「二値カテゴリ」を発見するのに役立ちました。例えば、この価格帯で_このカボチャはオレンジ色か、それともオレンジ色ではないか_を判断しました。 + +分類では、さまざまなアルゴリズムを使用して、データポイントのラベルやクラスを決定する方法を見つけます。この料理データを使って、材料のグループを観察することで、その料理の起源を特定できるかどうかを見てみましょう。 + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/) + +> ### [このレッスンはRでも利用可能です!](../../../../4-Classification/1-Introduction/solution/R/lesson_10.html) + +### はじめに + +分類は、機械学習研究者やデータサイエンティストにとって基本的な活動の1つです。例えば、二値値の基本的な分類(「このメールはスパムかどうか?」)から、コンピュータビジョンを使用した複雑な画像分類やセグメンテーションまで、データをクラスに分類し、それに関する質問をする能力は常に役立ちます。 + +科学的に言うと、分類手法は予測モデルを作成し、入力変数と出力変数の関係をマッピングできるようにします。 + +![二値分類 vs. 多クラス分類](../../../../translated_images/binary-multiclass.b56d0c86c81105a697dddd82242c1d11e4d78b7afefea07a44627a0f1111c1a9.ja.png) + +> 分類アルゴリズムが扱う二値問題と多クラス問題。インフォグラフィック提供: [Jen Looper](https://twitter.com/jenlooper) + +データをクリーニングし、視覚化し、機械学習タスクの準備を始める前に、機械学習を使用してデータを分類するさまざまな方法について少し学びましょう。 + +[統計学](https://wikipedia.org/wiki/Statistical_classification)に由来する古典的な機械学習を使用した分類では、`smoker`、`weight`、`age`などの特徴を使用して、_X病を発症する可能性_を判断します。以前に行った回帰演習と同様に、教師あり学習技術として、データにはラベルが付けられており、機械学習アルゴリズムはそのラベルを使用してデータセットのクラス(または「特徴」)を分類し、グループや結果に割り当てます。 + +✅ 料理に関するデータセットを想像してみてください。多クラスモデルではどのような質問に答えられるでしょうか?二値モデルではどのような質問に答えられるでしょうか?例えば、ある料理がフェヌグリークを使用する可能性があるかどうかを判断したい場合はどうでしょう?また、スターアニス、アーティチョーク、カリフラワー、ホースラディッシュが詰まった買い物袋を渡されたとき、それで典型的なインド料理を作れるかどうかを知りたい場合はどうでしょう? + +[![クレイジーなミステリーバスケット](https://img.youtube.com/vi/GuTeDbaNoEU/0.jpg)](https://youtu.be/GuTeDbaNoEU "クレイジーなミステリーバスケット") + +> 🎥 上の画像をクリックして動画を視聴。料理番組『Chopped』の全体のコンセプトは「ミステリーバスケット」で、シェフたちがランダムな材料から料理を作らなければなりません。きっと機械学習モデルが役立つでしょう! + +## こんにちは「分類器」 + +この料理データセットに関して私たちが尋ねたい質問は、実際には**多クラスの質問**です。なぜなら、扱うべき国別の料理がいくつもあるからです。材料の一群が与えられた場合、それらの多くのクラスのうちどれにデータが適合するでしょうか? + +Scikit-learnは、解決したい問題の種類に応じて、データを分類するためのさまざまなアルゴリズムを提供しています。次の2つのレッスンでは、これらのアルゴリズムのいくつかについて学びます。 + +## 演習 - データをクリーニングしてバランスを取る + +このプロジェクトを開始する前の最初のタスクは、データをクリーニングし、**バランスを取る**ことで、より良い結果を得ることです。このフォルダのルートにある空の_notebook.ipynb_ファイルから始めてください。 + +最初にインストールするのは[imblearn](https://imbalanced-learn.org/stable/)です。これは、データのバランスをより良くするためのScikit-learnパッケージです(このタスクについては後で詳しく学びます)。 + +1. `imblearn`をインストールするには、以下のように`pip install`を実行します: + + ```python + pip install imblearn + ``` + +1. 必要なパッケージをインポートしてデータをインポートし、視覚化します。また、`imblearn`から`SMOTE`をインポートします。 + + ```python + import pandas as pd + import matplotlib.pyplot as plt + import matplotlib as mpl + import numpy as np + from imblearn.over_sampling import SMOTE + ``` + + これで、次にデータをインポートする準備が整いました。 + +1. 次のタスクはデータをインポートすることです: + + ```python + df = pd.read_csv('../data/cuisines.csv') + ``` + + `read_csv()`を使用すると、_cusines.csv_ファイルの内容を読み取り、変数`df`に配置します。 + +1. データの形状を確認します: + + ```python + df.head() + ``` + + 最初の5行は次のように見えます: + + ```output + | | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | + | --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | + | 0 | 65 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 1 | 66 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 2 | 67 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 3 | 68 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 4 | 69 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + ``` + +1. このデータについての情報を`info()`を呼び出して取得します: + + ```python + df.info() + ``` + + 出力は次のようになります: + + ```output + + RangeIndex: 2448 entries, 0 to 2447 + Columns: 385 entries, Unnamed: 0 to zucchini + dtypes: int64(384), object(1) + memory usage: 7.2+ MB + ``` + +## 演習 - 料理について学ぶ + +ここから作業がより興味深くなります。料理ごとのデータの分布を調べてみましょう。 + +1. `barh()`を呼び出してデータを棒グラフとしてプロットします: + + ```python + df.cuisine.value_counts().plot.barh() + ``` + + ![料理データの分布](../../../../translated_images/cuisine-dist.d0cc2d551abe5c25f83d73a5f560927e4a061e9a4560bac1e97d35682ef3ca6d.ja.png) + + 料理の数は有限ですが、データの分布は不均一です。これを修正することができます!その前に、もう少し探索してみましょう。 + +1. 料理ごとに利用可能なデータ量を調べて印刷します: + + ```python + thai_df = df[(df.cuisine == "thai")] + japanese_df = df[(df.cuisine == "japanese")] + chinese_df = df[(df.cuisine == "chinese")] + indian_df = df[(df.cuisine == "indian")] + korean_df = df[(df.cuisine == "korean")] + + print(f'thai df: {thai_df.shape}') + print(f'japanese df: {japanese_df.shape}') + print(f'chinese df: {chinese_df.shape}') + print(f'indian df: {indian_df.shape}') + print(f'korean df: {korean_df.shape}') + ``` + + 出力は次のようになります: + + ```output + thai df: (289, 385) + japanese df: (320, 385) + chinese df: (442, 385) + indian df: (598, 385) + korean df: (799, 385) + ``` + +## 材料を発見する + +次に、データをさらに掘り下げて、料理ごとの典型的な材料を学びます。異なる料理間で混乱を引き起こす再発データをクリーニングする必要があります。この問題について学びましょう。 + +1. Pythonで`create_ingredient()`関数を作成して、材料データフレームを作成します。この関数は、役に立たない列を削除し、材料をそのカウントでソートすることから始めます: + + ```python + def create_ingredient_df(df): + ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value') + ingredient_df = ingredient_df[(ingredient_df.T != 0).any()] + ingredient_df = ingredient_df.sort_values(by='value', ascending=False, + inplace=False) + return ingredient_df + ``` + + この関数を使用して、料理ごとのトップ10の人気材料を把握できます。 + +1. `create_ingredient()`を呼び出し、`barh()`を呼び出してプロットします: + + ```python + thai_ingredient_df = create_ingredient_df(thai_df) + thai_ingredient_df.head(10).plot.barh() + ``` + + ![タイ料理](../../../../translated_images/thai.0269dbab2e78bd38a132067759fe980008bdb80b6d778e5313448dbe12bed846.ja.png) + +1. 日本料理のデータについても同じことを行います: + + ```python + japanese_ingredient_df = create_ingredient_df(japanese_df) + japanese_ingredient_df.head(10).plot.barh() + ``` + + ![日本料理](../../../../translated_images/japanese.30260486f2a05c463c8faa62ebe7b38f0961ed293bd9a6db8eef5d3f0cf17155.ja.png) + +1. 中国料理の材料についても同様です: + + ```python + chinese_ingredient_df = create_ingredient_df(chinese_df) + chinese_ingredient_df.head(10).plot.barh() + ``` + + ![中国料理](../../../../translated_images/chinese.e62cafa5309f111afd1b54490336daf4e927ce32bed837069a0b7ce481dfae8d.ja.png) + +1. インド料理の材料をプロットします: + + ```python + indian_ingredient_df = create_ingredient_df(indian_df) + indian_ingredient_df.head(10).plot.barh() + ``` + + ![インド料理](../../../../translated_images/indian.2c4292002af1a1f97a4a24fec6b1459ee8ff616c3822ae56bb62b9903e192af6.ja.png) + +1. 最後に、韓国料理の材料をプロットします: + + ```python + korean_ingredient_df = create_ingredient_df(korean_df) + korean_ingredient_df.head(10).plot.barh() + ``` + + ![韓国料理](../../../../translated_images/korean.4a4f0274f3d9805a65e61f05597eeaad8620b03be23a2c0a705c023f65fad2c0.ja.png) + +1. 次に、異なる料理間で混乱を引き起こす最も一般的な材料を`drop()`を呼び出して削除します: + + みんなが大好きな米、ニンニク、生姜を削除します! + + ```python + feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1) + labels_df = df.cuisine #.unique() + feature_df.head() + ``` + +## データセットのバランスを取る + +データをクリーニングしたら、[SMOTE](https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html)(Synthetic Minority Over-sampling Technique)を使用してバランスを取ります。 + +1. `fit_resample()`を呼び出します。この戦略は補間によって新しいサンプルを生成します。 + + ```python + oversample = SMOTE() + transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df) + ``` + + データをバランスさせることで、分類時により良い結果が得られます。二値分類を考えてみてください。データの大部分が1つのクラスである場合、機械学習モデルはそのクラスをより頻繁に予測する傾向があります。ただし、データが多いためです。データのバランスを取ることで、この不均衡を取り除くのに役立ちます。 + +1. 次に、材料ごとのラベル数を確認します: + + ```python + print(f'new label count: {transformed_label_df.value_counts()}') + print(f'old label count: {df.cuisine.value_counts()}') + ``` + + 出力は次のようになります: + + ```output + new label count: korean 799 + chinese 799 + indian 799 + japanese 799 + thai 799 + Name: cuisine, dtype: int64 + old label count: korean 799 + indian 598 + chinese 442 + japanese 320 + thai 289 + Name: cuisine, dtype: int64 + ``` + + データはきれいでバランスが取れており、とても美味しそうです! + +1. 最後のステップは、ラベルと特徴を含むバランスの取れたデータを新しいデータフレームに保存し、ファイルにエクスポートすることです: + + ```python + transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer') + ``` + +1. `transformed_df.head()`と`transformed_df.info()`を使用してデータをもう一度確認できます。このデータのコピーを保存して、今後のレッスンで使用してください: + + ```python + transformed_df.head() + transformed_df.info() + transformed_df.to_csv("../data/cleaned_cuisines.csv") + ``` + + この新しいCSVは、ルートデータフォルダに保存されます。 + +--- + +## 🚀チャレンジ + +このカリキュラムには、いくつかの興味深いデータセットが含まれています。`data`フォルダを掘り下げて、二値または多クラス分類に適したデータセットが含まれているか確認してください。このデータセットにどのような質問をしますか? + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/) + +## 復習と自己学習 + +SMOTEのAPIを調べてみましょう。どのようなユースケースに最適で、どのような問題を解決するのでしょうか? + +## 課題 + +[分類手法を探求する](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/4-Classification/1-Introduction/assignment.md b/translations/ja/4-Classification/1-Introduction/assignment.md new file mode 100644 index 000000000..ec2f88b5a --- /dev/null +++ b/translations/ja/4-Classification/1-Introduction/assignment.md @@ -0,0 +1,25 @@ + +# 分類方法を探る + +## 手順 + +[Scikit-learnのドキュメント](https://scikit-learn.org/stable/supervised_learning.html)には、データを分類するための多くの方法が掲載されています。このドキュメントで少し探索してみましょう。目標は、分類方法を探し、このカリキュラム内のデータセット、質問、そして分類技術を結びつけることです。スプレッドシートや.docファイルで表を作成し、データセットが分類アルゴリズムとどのように機能するかを説明してください。 + +## 評価基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | ----------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| | 5つのアルゴリズムと分類技術を概説した文書が提示されており、説明が詳細で分かりやすい。 | 3つのアルゴリズムと分類技術を概説した文書が提示されており、説明が詳細で分かりやすい。 | 3つ未満のアルゴリズムと分類技術を概説した文書が提示されており、説明が詳細でも分かりやすくもない。 | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/4-Classification/1-Introduction/notebook.ipynb b/translations/ja/4-Classification/1-Introduction/notebook.ipynb new file mode 100644 index 000000000..ca50de32a --- /dev/null +++ b/translations/ja/4-Classification/1-Introduction/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d544ef384b7ba73757d830a72372a7f2", + "translation_date": "2025-09-04T02:39:53+00:00", + "source_file": "4-Classification/1-Introduction/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/4-Classification/1-Introduction/solution/Julia/README.md b/translations/ja/4-Classification/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..d385b95be --- /dev/null +++ b/translations/ja/4-Classification/1-Introduction/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb b/translations/ja/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb new file mode 100644 index 000000000..d5a29e041 --- /dev/null +++ b/translations/ja/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb @@ -0,0 +1,724 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_10-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "2621e24705e8100893c9bf84e0fc8aef", + "translation_date": "2025-09-04T02:45:11+00:00", + "source_file": "4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb", + "language_code": "ja" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# 分類モデルを構築する: 美味しいアジア料理とインド料理\n" + ], + "metadata": { + "id": "ItETB4tSFprR" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 分類の入門: データのクリーンアップ、準備、可視化\n", + "\n", + "この4つのレッスンでは、古典的な機械学習の基本的な焦点である*分類*を探求します。アジアとインドの素晴らしい料理に関するデータセットを使い、さまざまな分類アルゴリズムを実践していきます。お腹が空いてきましたか?\n", + "\n", + "

                                          \n", + " \n", + "

                                          これらのレッスンでパンアジア料理を祝おう!画像提供: Jen Looper
                                          \n", + "\n", + "\n", + "\n", + "分類は[教師あり学習](https://wikipedia.org/wiki/Supervised_learning)の一形態で、回帰手法と多くの共通点を持っています。分類では、アイテムがどの`カテゴリ`に属するかを予測するモデルを訓練します。機械学習がデータセットを使って値や名前を予測することだとすれば、分類は一般的に次の2つのグループに分けられます: *二値分類*と*多クラス分類*。\n", + "\n", + "覚えておきましょう:\n", + "\n", + "- **線形回帰**は、変数間の関係を予測し、新しいデータポイントがその線に対してどこに位置するかを正確に予測するのに役立ちました。例えば、*9月と12月でカボチャの価格がいくらになるか*を予測することができました。\n", + "\n", + "- **ロジスティック回帰**は、「二値カテゴリ」を発見するのに役立ちました。この価格帯では、*このカボチャはオレンジ色か、それともオレンジ色ではないか*?\n", + "\n", + "分類では、データポイントのラベルやクラスを決定するためにさまざまなアルゴリズムを使用します。この料理データを使って、材料のグループを観察することで、その料理の起源を特定できるかどうかを見てみましょう。\n", + "\n", + "### [**講義前のクイズ**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/)\n", + "\n", + "### **イントロダクション**\n", + "\n", + "分類は、機械学習研究者やデータサイエンティストの基本的な活動の1つです。単純な二値値の分類(「このメールはスパムかどうか?」)から、コンピュータビジョンを使用した複雑な画像分類やセグメンテーションまで、データをクラスに分類し、それに質問を投げかける能力は常に有用です。\n", + "\n", + "科学的に言い換えると、分類手法は、入力変数と出力変数の関係をマッピングする予測モデルを作成します。\n", + "\n", + "

                                          \n", + " \n", + "

                                          分類アルゴリズムが扱う二値問題と多クラス問題。インフォグラフィック提供: Jen Looper
                                          \n", + "\n", + "データをクリーンアップし、可視化し、機械学習タスクの準備を始める前に、データを分類するために機械学習を活用するさまざまな方法について少し学びましょう。\n", + "\n", + "[統計学](https://wikipedia.org/wiki/Statistical_classification)に由来する古典的な機械学習を使用した分類では、`喫煙者`、`体重`、`年齢`などの特徴を使用して、*X病を発症する可能性*を判断します。以前に行った回帰演習と同様の教師あり学習手法として、データにはラベルが付けられており、MLアルゴリズムはそのラベルを使用してデータセットのクラス(または「特徴」)を分類し、グループや結果に割り当てます。\n", + "\n", + "✅ 料理に関するデータセットを想像してみてください。多クラスモデルではどのような質問に答えられるでしょうか?二値モデルではどのような質問に答えられるでしょうか?特定の料理がフェヌグリークを使用する可能性があるかどうかを判断したい場合はどうでしょう?また、スターアニス、アーティチョーク、カリフラワー、ホースラディッシュが入った食材袋を渡された場合、それで典型的なインド料理を作れるかどうかを知りたい場合は?\n", + "\n", + "### **「分類器」にこんにちは**\n", + "\n", + "この料理データセットに対して私たちが尋ねたい質問は、実際には**多クラスの質問**です。なぜなら、扱う可能性のある国の料理が複数あるからです。一連の材料が与えられた場合、それらのデータはどのクラスに適合するでしょうか?\n", + "\n", + "Tidymodelsは、解決したい問題の種類に応じて、データを分類するためのさまざまなアルゴリズムを提供します。次の2つのレッスンでは、これらのアルゴリズムのいくつかについて学びます。\n", + "\n", + "#### **前提条件**\n", + "\n", + "このレッスンでは、データをクリーンアップし、準備し、可視化するために以下のパッケージが必要です:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/)は、データサイエンスをより速く、簡単に、そして楽しくするために設計された[Rパッケージのコレクション](https://www.tidyverse.org/packages)です。\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/)フレームワークは、モデリングと機械学習のための[パッケージのコレクション](https://www.tidymodels.org/packages/)です。\n", + "\n", + "- `DataExplorer`: [DataExplorerパッケージ](https://cran.r-project.org/web/packages/DataExplorer/vignettes/dataexplorer-intro.html)は、EDAプロセスとレポート生成を簡素化し自動化することを目的としています。\n", + "\n", + "- `themis`: [themisパッケージ](https://themis.tidymodels.org/)は、不均衡データを扱うための追加のレシピステップを提供します。\n", + "\n", + "以下のコマンドでこれらをインストールできます:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "または、以下のスクリプトを使用して、このモジュールを完了するために必要なパッケージがインストールされているか確認し、欠けている場合はインストールします。\n" + ], + "metadata": { + "id": "ri5bQxZ-Fz_0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, DataExplorer, themis, here)" + ], + "outputs": [], + "metadata": { + "id": "KIPxa4elGAPI" + } + }, + { + "cell_type": "markdown", + "source": [ + "後でこれらの素晴らしいパッケージを読み込み、現在のRセッションで利用可能にします。(これは単なる説明のためであり、`pacman::p_load()`はすでにそれを行っています)\n" + ], + "metadata": { + "id": "YkKAxOJvGD4C" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 演習 - データをクリーンアップしてバランスを取る\n", + "\n", + "このプロジェクトを始める前に、最初のタスクとしてデータをクリーンアップし、**バランスを取る**ことで、より良い結果を得る準備をしましょう。\n", + "\n", + "それでは、データを確認してみましょう!🕵️\n" + ], + "metadata": { + "id": "PFkQDlk0GN5O" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# View the first 5 rows\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": { + "id": "Qccw7okxGT0S" + } + }, + { + "cell_type": "markdown", + "source": [ + "面白いですね!見たところ、最初の列は一種の`id`列のようです。データについてもう少し情報を得ましょう。\n" + ], + "metadata": { + "id": "XrWnlgSrGVmR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Basic information about the data\r\n", + "df %>%\r\n", + " introduce()\r\n", + "\r\n", + "# Visualize basic information above\r\n", + "df %>% \r\n", + " plot_intro(ggtheme = theme_light())" + ], + "outputs": [], + "metadata": { + "id": "4UcGmxRxGieA" + } + }, + { + "cell_type": "markdown", + "source": [ + "出力から、`2448`行と`385`列があり、欠損値が`0`であることがすぐにわかります。また、1つの離散的な列、*cuisine* が含まれています。\n", + "\n", + "## 演習 - 料理について学ぶ\n", + "\n", + "ここから作業がより興味深いものになっていきます。料理ごとのデータ分布を見ていきましょう。\n" + ], + "metadata": { + "id": "AaPubl__GmH5" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Count observations per cuisine\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(n)\r\n", + "\r\n", + "# Plot the distribution\r\n", + "theme_set(theme_light())\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " ggplot(mapping = aes(x = n, y = reorder(cuisine, -n))) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"cuisine\")" + ], + "outputs": [], + "metadata": { + "id": "FRsBVy5eGrrv" + } + }, + { + "cell_type": "markdown", + "source": [ + "料理の種類は有限ですが、データの分布は均一ではありません。それを修正することができます!その前に、もう少し探索してみましょう。\n", + "\n", + "次に、各料理を個別のtibbleに割り当て、それぞれの料理にどれだけのデータ(行、列)があるかを確認してみましょう。\n", + "\n", + "> [tibble](https://tibble.tidyverse.org/) は、現代的なデータフレームです。\n", + "\n", + "

                                          \n", + " \n", + "

                                          @allison_horstによるアートワーク
                                          \n" + ], + "metadata": { + "id": "vVvyDb1kG2in" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create individual tibble for the cuisines\r\n", + "thai_df <- df %>% \r\n", + " filter(cuisine == \"thai\")\r\n", + "japanese_df <- df %>% \r\n", + " filter(cuisine == \"japanese\")\r\n", + "chinese_df <- df %>% \r\n", + " filter(cuisine == \"chinese\")\r\n", + "indian_df <- df %>% \r\n", + " filter(cuisine == \"indian\")\r\n", + "korean_df <- df %>% \r\n", + " filter(cuisine == \"korean\")\r\n", + "\r\n", + "\r\n", + "# Find out how much data is available per cuisine\r\n", + "cat(\" thai df:\", dim(thai_df), \"\\n\",\r\n", + " \"japanese df:\", dim(japanese_df), \"\\n\",\r\n", + " \"chinese_df:\", dim(chinese_df), \"\\n\",\r\n", + " \"indian_df:\", dim(indian_df), \"\\n\",\r\n", + " \"korean_df:\", dim(korean_df))" + ], + "outputs": [], + "metadata": { + "id": "0TvXUxD3G8Bk" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **演習 - dplyrを使って料理ごとの主要な食材を発見する**\n", + "\n", + "ここではデータをさらに深掘りして、料理ごとに典型的な食材が何かを学びます。料理間で混乱を引き起こすような繰り返しのデータを取り除く必要があるので、この問題について学んでいきましょう。\n", + "\n", + "Rで`create_ingredient()`という関数を作成し、食材のデータフレームを返すようにします。この関数では、まず役に立たない列を削除し、食材をその出現回数で並べ替えます。\n", + "\n", + "Rにおける関数の基本構造は以下の通りです:\n", + "\n", + "`myFunction <- function(arglist){`\n", + "\n", + "**`...`**\n", + "\n", + "**`return`**`(value)`\n", + "\n", + "`}`\n", + "\n", + "R関数の簡潔な入門は[こちら](https://skirmer.github.io/presentations/functions_with_r.html#1)で確認できます。\n", + "\n", + "それでは早速始めましょう!これまでのレッスンで学んだ[dplyrの動詞](https://dplyr.tidyverse.org/)を活用します。復習として:\n", + "\n", + "- `dplyr::select()`: **列**を選択して保持または除外するのに役立ちます。\n", + "\n", + "- `dplyr::pivot_longer()`: データを「縦長」に変換し、行数を増やして列数を減らすのに役立ちます。\n", + "\n", + "- `dplyr::group_by()`と`dplyr::summarise()`: 異なるグループの要約統計を見つけ、それをきれいなテーブルにまとめるのに役立ちます。\n", + "\n", + "- `dplyr::filter()`: 条件を満たす行のみを含むデータのサブセットを作成します。\n", + "\n", + "- `dplyr::mutate()`: 列を作成または変更するのに役立ちます。\n", + "\n", + "Allison Horstによる[*アート*満載のlearnrチュートリアル](https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome)では、dplyr(Tidyverseの一部)の便利なデータ整形関数が紹介されていますので、ぜひチェックしてみてください。\n" + ], + "metadata": { + "id": "K3RF5bSCHC76" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Creates a functions that returns the top ingredients by class\r\n", + "\r\n", + "create_ingredient <- function(df){\r\n", + " \r\n", + " # Drop the id column which is the first colum\r\n", + " ingredient_df = df %>% select(-1) %>% \r\n", + " # Transpose data to a long format\r\n", + " pivot_longer(!cuisine, names_to = \"ingredients\", values_to = \"count\") %>% \r\n", + " # Find the top most ingredients for a particular cuisine\r\n", + " group_by(ingredients) %>% \r\n", + " summarise(n_instances = sum(count)) %>% \r\n", + " filter(n_instances != 0) %>% \r\n", + " # Arrange by descending order\r\n", + " arrange(desc(n_instances)) %>% \r\n", + " mutate(ingredients = factor(ingredients) %>% fct_inorder())\r\n", + " \r\n", + " \r\n", + " return(ingredient_df)\r\n", + "} # End of function" + ], + "outputs": [], + "metadata": { + "id": "uB_0JR82HTPa" + } + }, + { + "cell_type": "markdown", + "source": [ + "では、この関数を使って、料理ごとの人気のある材料トップ10を確認してみましょう。`thai_df`で試してみましょう。\n" + ], + "metadata": { + "id": "h9794WF8HWmc" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Call create_ingredient and display popular ingredients\r\n", + "thai_ingredient_df <- create_ingredient(df = thai_df)\r\n", + "\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "agQ-1HrcHaEA" + } + }, + { + "cell_type": "markdown", + "source": [ + "前のセクションでは、`geom_col()`を使用しましたが、`geom_bar`を使って棒グラフを作成する方法も見てみましょう。詳しくは`?geom_bar`を参照してください。\n" + ], + "metadata": { + "id": "kHu9ffGjHdcX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a bar chart for popular thai cuisines\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10) %>% \r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"steelblue\") +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "fb3Bx_3DHj6e" + } + }, + { + "cell_type": "markdown", + "source": [ + "日本語のデータでも同じことをしましょう\n" + ], + "metadata": { + "id": "RHP_xgdkHnvM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Japanese cuisines and make bar chart\r\n", + "create_ingredient(df = japanese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"darkorange\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "019v8F0XHrRU" + } + }, + { + "cell_type": "markdown", + "source": [ + "中国料理はどうですか?\n" + ], + "metadata": { + "id": "iIGM7vO8Hu3v" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Chinese cuisines and make bar chart\r\n", + "create_ingredient(df = chinese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"cyan4\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lHd9_gd2HyzU" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "ir8qyQbNH1c7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Indian cuisines and make bar chart\r\n", + "create_ingredient(df = indian_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#041E42FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "ApukQtKjH5FO" + } + }, + { + "cell_type": "markdown", + "source": [ + "最後に、韓国の材料をプロットします。\n" + ], + "metadata": { + "id": "qv30cwY1H-FM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Korean cuisines and make bar chart\r\n", + "create_ingredient(df = korean_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#852419FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lumgk9cHIBie" + } + }, + { + "cell_type": "markdown", + "source": [ + "データビジュアライゼーションから、異なる料理の区別を曖昧にする最も一般的な食材を、`dplyr::select()`を使って除外することができます。\n", + "\n", + "みんなが大好きな米、ニンニク、そしてショウガ!\n" + ], + "metadata": { + "id": "iO4veMXuIEta" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "iHJPiG6rIUcK" + } + }, + { + "cell_type": "markdown", + "source": [ + "## レシピを使ったデータの前処理 👩‍🍳👨‍🍳 - 不均衡データの対処 ⚖️\n", + "\n", + "

                                          \n", + " \n", + "

                                          @allison_horstによるイラスト
                                          \n", + "\n", + "このレッスンが料理に関するものであることを考えると、`recipes`を文脈に合わせて考える必要があります。\n", + "\n", + "Tidymodelsはもう一つ便利なパッケージを提供しています。それがデータ前処理用のパッケージ、`recipes`です。\n" + ], + "metadata": { + "id": "kkFd-JxdIaL6" + } + }, + { + "cell_type": "markdown", + "source": [ + "もう一度、私たちの料理の分布を見てみましょう。\n" + ], + "metadata": { + "id": "6l2ubtTPJAhY" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "old_label_count <- df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "old_label_count" + ], + "outputs": [], + "metadata": { + "id": "1e-E9cb7JDVi" + } + }, + { + "cell_type": "markdown", + "source": [ + "ご覧の通り、料理の種類の数にはかなりの偏りがあります。韓国料理はタイ料理の約3倍です。データの不均衡は、モデルの性能に悪影響を及ぼすことがよくあります。例えば、二値分類を考えてみてください。データの大半が一つのクラスに偏っている場合、機械学習モデルはそのクラスを頻繁に予測する傾向があります。これは、そのクラスのデータが多いからです。データを均衡化することで、この偏りを取り除くことができます。多くのモデルは観測数が均等であるときに最も良い性能を発揮し、不均衡なデータでは苦戦する傾向があります。\n", + "\n", + "不均衡なデータセットに対処する方法は主に2つあります:\n", + "\n", + "- 少数派クラスの観測値を追加する: `オーバーサンプリング` 例: SMOTEアルゴリズムを使用する\n", + "\n", + "- 多数派クラスの観測値を削除する: `アンダーサンプリング`\n", + "\n", + "では、`recipe`を使って不均衡なデータセットに対処する方法を示してみましょう。レシピは、データ分析の準備をするためにデータセットに適用すべき手順を記述した設計図のようなものと考えることができます。\n" + ], + "metadata": { + "id": "soAw6826JKx9" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = df_select) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "cuisines_recipe" + ], + "outputs": [], + "metadata": { + "id": "HS41brUIJVJy" + } + }, + { + "cell_type": "markdown", + "source": [ + "前処理のステップを分解して説明します。\n", + "\n", + "- `recipe()`をフォーミュラと共に呼び出すことで、`df_select`データを参照として変数の*役割*をレシピに伝えます。例えば、`cuisine`列は`outcome`の役割を割り当てられ、他の列は`predictor`の役割を割り当てられています。\n", + "\n", + "- [`step_smote(cuisine)`](https://themis.tidymodels.org/reference/step_smote.html)は、少数派クラスの新しい例をこれらのケースの最近傍を使用して合成的に生成するレシピステップの*仕様*を作成します。\n", + "\n", + "さて、前処理されたデータを確認したい場合は、[**`prep()`**](https://recipes.tidymodels.org/reference/prep.html)と[**`bake()`**](https://recipes.tidymodels.org/reference/bake.html)を使用する必要があります。\n", + "\n", + "`prep()`: トレーニングセットから必要なパラメータを推定し、それを他のデータセットに適用できるようにします。\n", + "\n", + "`bake()`: 前処理済みのレシピを取り、それを任意のデータセットに適用します。\n" + ], + "metadata": { + "id": "Yb-7t7XcJaC8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep and bake the recipe\r\n", + "preprocessed_df <- cuisines_recipe %>% \r\n", + " prep() %>% \r\n", + " bake(new_data = NULL) %>% \r\n", + " relocate(cuisine)\r\n", + "\r\n", + "# Display data\r\n", + "preprocessed_df %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Quick summary stats\r\n", + "preprocessed_df %>% \r\n", + " introduce()" + ], + "outputs": [], + "metadata": { + "id": "9QhSgdpxJl44" + } + }, + { + "cell_type": "markdown", + "source": [ + "料理の分布を確認し、不均衡なデータと比較してみましょう。\n" + ], + "metadata": { + "id": "dmidELh_LdV7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "new_label_count <- preprocessed_df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "list(new_label_count = new_label_count,\r\n", + " old_label_count = old_label_count)" + ], + "outputs": [], + "metadata": { + "id": "aSh23klBLwDz" + } + }, + { + "cell_type": "markdown", + "source": [ + "おいしい!データはきれいでバランスが取れていて、とても美味しそうです😋!\n", + "\n", + "> 通常、レシピはモデリングの前処理として使用され、データセットをモデリングに適した状態にするために適用すべき手順を定義します。この場合、手動でレシピを評価する代わりに、通常は `workflow()` が使用されます(これまでのレッスンで既に見てきた通りです)。\n", + ">\n", + "> そのため、tidymodels を使用する際には、通常 **`prep()`** や **`bake()`** を使う必要はありませんが、レシピが期待通りに動作しているか確認するために便利な関数です。今回のケースでも同様です。\n", + ">\n", + "> **`new_data = NULL`** を指定して準備済みのレシピを **`bake()`** すると、レシピを定義した際に提供したデータが、前処理ステップを経た状態で戻ってきます。\n", + "\n", + "それでは、このデータを次回以降のレッスンで使用するためにコピーを保存しましょう:\n" + ], + "metadata": { + "id": "HEu80HZ8L7ae" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Save preprocessed data\r\n", + "write_csv(preprocessed_df, \"../../../data/cleaned_cuisines_R.csv\")" + ], + "outputs": [], + "metadata": { + "id": "cBmCbIgrMOI6" + } + }, + { + "cell_type": "markdown", + "source": [ + "この新しいCSVは、ルートデータフォルダーにあります。\n", + "\n", + "**🚀チャレンジ**\n", + "\n", + "このカリキュラムにはいくつかの興味深いデータセットが含まれています。`data`フォルダーを掘り下げて、バイナリまたは多クラス分類に適したデータセットが含まれているか確認してみましょう。このデータセットに対してどのような質問をしますか?\n", + "\n", + "## [**講義後のクイズ**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/)\n", + "\n", + "## **復習と自己学習**\n", + "\n", + "- [themisパッケージ](https://github.com/tidymodels/themis)をチェックしてみましょう。不均衡なデータに対処するために他にどのような手法が使えるでしょうか?\n", + "\n", + "- Tidy modelsの[参考ウェブサイト](https://www.tidymodels.org/start/)。\n", + "\n", + "- H. WickhamとG. Grolemundによる[*R for Data Science: Visualize, Model, Transform, Tidy, and Import Data*](https://r4ds.had.co.nz/)。\n", + "\n", + "#### 感謝:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/)に感謝します。彼女はRをより親しみやすく魅力的にする素晴らしいイラストを作成してくれました。彼女の[ギャラリー](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)でさらに多くのイラストを見ることができます。\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview)と[Jen Looper](https://www.twitter.com/jenlooper)に感謝します。彼女たちはこのモジュールの元となるPython版を作成してくれました♥️\n", + "\n", + "

                                          \n", + " \n", + "

                                          @allison_horstによるアートワーク
                                          \n" + ], + "metadata": { + "id": "WQs5621pMGwf" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当方は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/4-Classification/1-Introduction/solution/notebook.ipynb b/translations/ja/4-Classification/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..fd5daa2b7 --- /dev/null +++ b/translations/ja/4-Classification/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,710 @@ +{ + "cells": [ + { + "source": [ + "# 美味しいアジア料理とインド料理\n", + "\n", + "## はじめに\n", + "アジア料理とインド料理は、世界中で愛されている多様で風味豊かな料理の宝庫です。このガイドでは、いくつかの人気料理とその特徴について紹介します。\n", + "\n", + "## アジア料理\n", + "アジア料理は、地域ごとに異なる味わいや調理法が特徴です。以下はその一部です:\n", + "\n", + "### 中華料理\n", + "中華料理は、バランスの取れた味と多様な食材で知られています。 \n", + "- **炒飯**: ご飯を卵、野菜、肉またはシーフードと一緒に炒めた料理。 \n", + "- **麻婆豆腐**: ピリ辛の豆腐料理で、ひき肉と豆板醤が使われます。 \n", + "\n", + "### 日本料理\n", + "日本料理は、シンプルでありながら繊細な味わいが特徴です。 \n", + "- **寿司**: 酢飯と新鮮な魚介類を使った料理。 \n", + "- **味噌汁**: 味噌をベースにしたスープで、豆腐やわかめがよく使われます。 \n", + "\n", + "### 韓国料理\n", + "韓国料理は、発酵食品や辛味の効いた料理が多いのが特徴です。 \n", + "- **キムチ**: 発酵させた野菜(主に白菜)に唐辛子やニンニクを加えたもの。 \n", + "- **ビビンバ**: ご飯の上に野菜、肉、卵をのせ、コチュジャンを混ぜて食べる料理。 \n", + "\n", + "## インド料理\n", + "インド料理は、スパイスの豊かな香りと多様なカレーで有名です。以下はその一部です:\n", + "\n", + "### 北インド料理\n", + "北インド料理は、クリーミーなカレーやパンが特徴です。 \n", + "- **バターチキン**: トマトベースのクリーミーなカレーに鶏肉を加えた料理。 \n", + "- **ナン**: タンドールで焼かれる柔らかいパン。 \n", + "\n", + "### 南インド料理\n", + "南インド料理は、スパイシーで軽めの料理が多いです。 \n", + "- **ドーサ**: 発酵させた米と豆の生地で作る薄いクレープ。 \n", + "- **サンバル**: レンズ豆を使ったスープ状のカレー。 \n", + "\n", + "## まとめ\n", + "アジア料理とインド料理は、それぞれの地域の文化や歴史を反映した多様な味わいを楽しむことができます。ぜひ、これらの料理を試してみてください!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "ImblearnをインストールしてSMOTEを有効にします。これは、分類を行う際に不均衡なデータを処理するのに役立つScikit-learnパッケージです。(https://imbalanced-learn.org/stable/)\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: imblearn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.0)\n", + "Requirement already satisfied: imbalanced-learn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imblearn) (0.8.0)\n", + "Requirement already satisfied: numpy>=1.13.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.19.2)\n", + "Requirement already satisfied: scipy>=0.19.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.4.1)\n", + "Requirement already satisfied: scikit-learn>=0.24 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.24.2)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.16.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.24->imbalanced-learn->imblearn) (2.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install imblearn" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "import numpy as np\n", + "from imblearn.over_sampling import SMOTE" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../../data/cuisines.csv')" + ] + }, + { + "source": [ + "このデータセットには、指定された料理のセットからさまざまな料理のあらゆる種類の材料を示す385列が含まれています。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 65 indian 0 0 0 0 0 \n", + "1 66 indian 1 0 0 0 0 \n", + "2 67 indian 0 0 0 0 0 \n", + "3 68 indian 0 0 0 0 0 \n", + "4 69 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 385 columns]" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          065indian00000000...0000000000
                                          166indian10000000...0000000000
                                          267indian00000000...0000000000
                                          368indian00000000...0000000000
                                          469indian00000000...0000000010
                                          \n

                                          5 rows × 385 columns

                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 2448 entries, 0 to 2447\nColumns: 385 entries, Unnamed: 0 to zucchini\ndtypes: int64(384), object(1)\nmemory usage: 7.2+ MB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "korean 799\n", + "indian 598\n", + "chinese 442\n", + "japanese 320\n", + "thai 289\n", + "Name: cuisine, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "df.cuisine.value_counts()" + ] + }, + { + "source": [ + "バーグラフで料理を表示\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD4CAYAAAAtrdtxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAASY0lEQVR4nO3df7TldV3v8eerGZkRRoeAiXtE5UgNIkUCjlwQIzAiC7NscdcSbcmsfkxl5SXX0juuyzK9d3UvlXnpplajma0kMtCUhluImNcr8msGBmb4pZaTQCFQOYom0fi+f+zPkd14hpnzOWefvYfzfKy113z35/vde7/22fvMa3++3733SVUhSVKPbxt3AEnSgcsSkSR1s0QkSd0sEUlSN0tEktRt+bgDLKYjjjiipqenxx1Dkg4oW7dufbiq1sy2bkmVyPT0NFu2bBl3DEk6oCT5u72tc3eWJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqduS+sT69vt3Mb3xqnHH0ALZefG5444gLXnORCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktRtIkokyaFJXtuWz0yyeY6X/29Jzh5NOknS3kxEiQCHAq/tvXBVvbmqPraAeSRJ+2FSSuRi4DuTbAN+E1iV5Iokdye5NEkAkrw5yc1JdiTZNDT+viTnjTG/JC1Jk1IiG4G/qaoTgTcAJwEXAscDxwCnt+3eUVUvrKrvAZ4KvGxfV5xkQ5ItSbbs/tqu0aSXpCVqUkpkTzdV1X1V9Q1gGzDdxs9KcmOS7cBLgO/e1xVV1aaqWldV65YdvHp0iSVpCZrUL2B8dGh5N7A8yUrgXcC6qro3yVuAleMIJ0kamJSZyFeAp+1jm5nCeDjJKsBjIJI0ZhMxE6mqf0xyXZIdwL8AX5xlmy8leTewA3gAuHmRY0qS9jARJQJQVa/ay/gvDS1fBFw0yzbrR5dMkrQ3k7I7S5J0ALJEJEndLBFJUjdLRJLUzRKRJHWbmHdnLYYTjlrNlovPHXcMSXrScCYiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6rZ83AEW0/b7dzG98apxx9CY7Lz43HFHkJ50nIlIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG77VSJJPj3qIJKkA89+lUhVvWjUQSRJB579nYk8kmRVkmuT3JJke5Ifa+umk9yd5NIkdyW5IsnBbd2bk9ycZEeSTUnSxj+R5NeT3JTkM0m+r40vS/Kb7TK3J/m5Nj6V5JNJtrXrmtn+nCTXt0yXJ1k1ih+SJGl2czkm8nXgFVV1MnAW8FszpQA8F3hXVT0P+DLw2jb+jqp6YVV9D/BU4GVD17e8qk4BLgR+tY39NLCrql4IvBD42STPAV4FXF1VJwLPB7YlOQK4CDi7ZdoCvH4ud16SND9z+dqTAP8jyRnAN4CjgCPbunur6rq2/H7gdcDbgLOSvBE4GDgMuAP4i7bdh9q/W4HptnwO8L1JzmvnVwNrgZuB9yZ5CvDhqtqW5PuB44HrWpcdBFz/LaGTDcAGgGVPXzOHuytJ2pe5lMirgTXAC6rqsSQ7gZVtXe2xbSVZCbwLWFdV9yZ5y9D2AI+2f3cP5Qjwy1V19Z433srrXOB9Sd4O/DNwTVWd/0Shq2oTsAlgxdTaPXNKkuZhLruzVgMPtgI5Czh6aN2zk5zWll8FfIrHC+PhdqziPPbtauAX2oyDJMcmOSTJ0cAXq+rdwHuAk4EbgNOTfFfb9pAkx87h/kiS5ml/ZyIFXAr8RZLtDI4/3D20/h7gF5O8F7gT+N2q+lqSdwM7gAcY7JLal/cw2LV1Szve8hDw48CZwBuSPAY8Arymqh5Ksh64LMmKdvmLgM/s532SJM1Tqp54D0+Sw4FbqurovayfBja3g+cTbcXU2pq64JJxx9CY+FXwUp8kW6tq3WzrnnB3VpJnMDhY/bZRBJMkHdiecHdWVf098ITHGapqJzDxsxBJ0sLzu7MkSd0sEUlSN0tEktRtLh82POCdcNRqtvgOHUlaMM5EJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd2WjzvAYtp+/y6mN1417hhSt50XnzvuCNK/40xEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3Ra0RJK8L8l5s4w/I8kVC3lbkqTxW5QPG1bV3wPfUi6SpAPbvGYiSV6T5PYktyX54zZ8RpJPJ/nbmVlJkukkO9ry+iQfSvJXST6b5DeGru+cJNcnuSXJ5UlWtfGLk9zZbuttbWxNkg8mubmdTp/PfZEkzV33TCTJdwMXAS+qqoeTHAa8HZgCXgwcB1wJzLYb60TgJOBR4J4kvwP8S7u+s6vqq0n+C/D6JO8EXgEcV1WV5NB2Hb8N/K+q+lSSZwNXA8+bJecGYAPAsqev6b27kqRZzGd31kuAy6vqYYCq+qckAB+uqm8AdyY5ci+XvbaqdgEkuRM4GjgUOB64rl3PQcD1wC7g68AfJNkMbG7XcTZwfNsW4OlJVlXVI8M3VFWbgE0AK6bW1jzuryRpD6M4JvLo0HL2Y5vdLUeAa6rq/D03TnIK8AMMjqv8EoMC+zbg1Kr6+kKEliTN3XyOiXwc+E9JDgdou7Pm4wbg9CTf1a7vkCTHtuMiq6vq/wC/Ajy/bf9R4JdnLpzkxHneviRpjrpnIlV1R5JfA/5vkt3ArfMJUlUPJVkPXJZkRRu+CPgK8JEkKxnMVl7f1r0OeGeS2xncj08CPz+fDJKkuUnV0jlMsGJqbU1dcMm4Y0jd/HsiGockW6tq3Wzr/MS6JKmbJSJJ6maJSJK6WSKSpG6WiCSp26J8AeOkOOGo1Wzx3S2StGCciUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6LR93gMW0/f5dTG+8atwxJM3RzovPHXcE7YUzEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUbWQlkuTTc9z+zCSb2/LLk2wcTTJJ0kIZ2edEqupF87jslcCVCxhHkjQCo5yJPNL+PTPJJ5JckeTuJJcmSVv30jZ2C/ATQ5ddn+QdbflHk9yY5NYkH0tyZBt/S5L3tuv+2ySvG9V9kSTNbrGOiZwEXAgcDxwDnJ5kJfBu4EeBFwD/YS+X/RRwalWdBPwp8MahdccBPwScAvxqkqeMJr4kaTaL9bUnN1XVfQBJtgHTwCPA56vqs238/cCGWS77TOADSaaAg4DPD627qqoeBR5N8iBwJHDf8IWTbJi53mVPX7OQ90mSlrzFmok8OrS8m7mV1+8A76iqE4CfA1bO5XqralNVrauqdcsOXj2Hm5Uk7cs43+J7NzCd5Dvb+fP3st1q4P62fMHIU0mS9tvYSqSqvs5gN9NV7cD6g3vZ9C3A5Um2Ag8vUjxJ0n5IVY07w6JZMbW2pi64ZNwxJM2RXwU/Xkm2VtW62db5iXVJUjdLRJLUzRKRJHWzRCRJ3SwRSVK3xfrE+kQ44ajVbPFdHpK0YJyJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrotH3eAxbT9/l1Mb7xq3DEkaVHtvPjckV23MxFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1W9ASSTKdZMdCXqckaXJNxEwkyZL60KMkPVmMrESSHJPk1iTfl+QPk2xv589q69cnuTLJx4Fr29gbktyc5PYkbx26rg8n2ZrkjiQbhsYfSfJrSW5LckOSI0d1fyRJ32okJZLkucAHgfXAKUBV1QnA+cAfJVnZNj0ZOK+qvj/JOcDatv2JwAuSnNG2+6mqegGwDnhdksPb+CHADVX1fOCTwM/OkmVDki1Jtuz+2q5R3F1JWrJGUSJrgI8Ar66q24AXA+8HqKq7gb8Djm3bXlNV/9SWz2mnW4FbgOMYlAoMiuM24AbgWUPj/wpsbstbgek9w1TVpqpaV1Xrlh28eqHuoySJ0XwB4y7gCwzK4859bPvVoeUA/7Oqfn94gyRnAmcDp1XV15J8ApiZyTxWVdWWd7PEvlBSksZtFDORfwVeAbwmyauA/we8GiDJscCzgXtmudzVwE8lWdW2PSrJdwCrgX9uBXIccOoIMkuSOozklXtVfTXJy4BrgP8OnJBkO/BvwPqqejTJnpf5aJLnAde3dY8APwn8FfDzSe5iUD43jCKzJGnu8vjeoCe/FVNra+qCS8YdQ5IW1Xz/nkiSrVW1brZ1E/E5EUnSgckSkSR1s0QkSd0sEUlSN0tEktRtSX0474SjVrNlnu9SkCQ9zpmIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqtqT+KFWSrzD7n+adFEcAD487xBMw3/yYb37MNz/zyXd0Va2ZbcWS+u4s4J69/XWuSZBki/n6mW9+zDc/SzWfu7MkSd0sEUlSt6VWIpvGHWAfzDc/5psf883Pksy3pA6sS5IW1lKbiUiSFpAlIknqtmRKJMlLk9yT5HNJNo4pw3uTPJhkx9DYYUmuSfLZ9u+3t/Ek+d8t7+1JTl6EfM9K8tdJ7kxyR5L/PEkZk6xMclOS21q+t7bx5yS5seX4QJKD2viKdv5zbf30KPO121yW5NYkmycw284k25NsS7KljU3EY9tu89AkVyS5O8ldSU6blHxJntt+bjOnLye5cFLytdv8lfZ7sSPJZe33ZfTPv6p60p+AZcDfAMcABwG3AcePIccZwMnAjqGx3wA2tuWNwK+35R8B/hIIcCpw4yLkmwJObstPAz4DHD8pGdvtrGrLTwFubLf7Z8Ar2/jvAb/Qll8L/F5bfiXwgUX4Gb4e+BNgczs/Sdl2AkfsMTYRj227zT8CfqYtHwQcOkn5hnIuAx4Ajp6UfMBRwOeBpw4979YvxvNvUX7o4z4BpwFXD51/E/CmMWWZ5t+XyD3AVFueYvCBSIDfB86fbbtFzPoR4AcnMSNwMHAL8B8ZfAp3+Z6PNXA1cFpbXt62ywgzPRO4FngJsLn9BzIR2drt7ORbS2QiHltgdftPMJOYb49M5wDXTVI+BiVyL3BYez5tBn5oMZ5/S2V31swPeMZ9bWwSHFlV/9CWHwCObMtjzdymtycxeLU/MRnb7qJtwIPANQxmmF+qqn+bJcM387X1u4DDRxjvEuCNwDfa+cMnKBtAAR9NsjXJhjY2KY/tc4CHgD9suwPfk+SQCco37JXAZW15IvJV1f3A24AvAP/A4Pm0lUV4/i2VEjkg1OBlwdjfc51kFfBB4MKq+vLwunFnrKrdVXUig1f9pwDHjSvLsCQvAx6sqq3jzvIEXlxVJwM/DPxikjOGV475sV3OYFfv71bVScBXGewe+qZxP/cA2jGFlwOX77lunPnasZgfY1DGzwAOAV66GLe9VErkfuBZQ+ef2cYmwReTTAG0fx9s42PJnOQpDArk0qr60CRmBKiqLwF/zWCKfmiSme+BG87wzXxt/WrgH0cU6XTg5Ul2An/KYJfWb09INuCbr1apqgeBP2dQwpPy2N4H3FdVN7bzVzAolUnJN+OHgVuq6ovt/KTkOxv4fFU9VFWPAR9i8Jwc+fNvqZTIzcDa9k6FgxhMR68cc6YZVwIXtOULGByHmBl/TXuXx6nArqFp80gkCfAHwF1V9fZJy5hkTZJD2/JTGRyvuYtBmZy3l3wzuc8DPt5eLS64qnpTVT2zqqYZPL8+XlWvnoRsAEkOSfK0mWUG+/V3MCGPbVU9ANyb5Llt6AeAOycl35DzeXxX1kyOScj3BeDUJAe33+OZn9/on3+LcSBqEk4M3i3xGQb70P/rmDJcxmB/5WMMXnn9NIP9kNcCnwU+BhzWtg3wzpZ3O7BuEfK9mMF0/HZgWzv9yKRkBL4XuLXl2wG8uY0fA9wEfI7BboYVbXxlO/+5tv6YRXqcz+Txd2dNRLaW47Z2umPmd2BSHtt2mycCW9rj+2Hg2ycs3yEMXq2vHhqbpHxvBe5uvxt/DKxYjOefX3siSeq2VHZnSZJGwBKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd3+PxNFbW14TY8fAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df.cuisine.value_counts().plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "thai df: (289, 385)\njapanese df: (320, 385)\nchinese df: (442, 385)\nindian df: (598, 385)\nkorean df: (799, 385)\n" + ] + } + ], + "source": [ + "\n", + "thai_df = df[(df.cuisine == \"thai\")]\n", + "japanese_df = df[(df.cuisine == \"japanese\")]\n", + "chinese_df = df[(df.cuisine == \"chinese\")]\n", + "indian_df = df[(df.cuisine == \"indian\")]\n", + "korean_df = df[(df.cuisine == \"korean\")]\n", + "\n", + "print(f'thai df: {thai_df.shape}')\n", + "print(f'japanese df: {japanese_df.shape}')\n", + "print(f'chinese df: {chinese_df.shape}')\n", + "print(f'indian df: {indian_df.shape}')\n", + "print(f'korean df: {korean_df.shape}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def create_ingredient_df(df):\n", + " # transpose df, drop cuisine and unnamed rows, sum the row to get total for ingredient and add value header to new df\n", + " ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value')\n", + " # drop ingredients that have a 0 sum\n", + " ingredient_df = ingredient_df[(ingredient_df.T != 0).any()]\n", + " # sort df\n", + " ingredient_df = ingredient_df.sort_values(by='value', ascending=False, inplace=False)\n", + " return ingredient_df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAeAklEQVR4nO3de7RVdb338fcHRFAhTPBCeNnogzckQJcdb11ES01QSxGLUtNHjl1EM2twhmbUo+PY5dhN07DHII+nuKSPFKe0FPEasTcCG1TUEk8QCmjuJIRg+33+WL+ti82+AWvvORfr8xpjjT3Xb/7mnN85x2J/+M0595qKCMzMzPKiW9YFmJmZlXIwmZlZrjiYzMwsVxxMZmaWKw4mMzPLlV2yLmBn0L9//6ipqcm6DDOzitG/f3/uv//++yPi9ObzHExlUFNTQ21tbdZlmJlVFEn9W2r3qTwzM8sVB5OZmeWKg8nMzHLF15jMzLrApk2bWLFiBRs2bMi6lC7Xq1cv9t9/f3r06NGh/g6mMqhf2UDNxNlZl2G2Q5bfdGbWJezUVqxYQZ8+faipqUFS1uV0mYjg1VdfZcWKFQwaNKhDy/hUnplZF9iwYQP9+vWrqlACkES/fv22aaRYEcEkaYqk81pof4+kme0su7y1WxLNzLpStYVSk23d74o+lRcRfwW2CiwzM6tcuQwmSRcC1wABLAYagQ9IuhrYD/hKRMyUVAP8OiKOktQd+CZwOvAWcEdE/LBknbsB9wD3RMQdkj4FTAB2BeYBn4uIRknrgO8Do4A3gbMj4pWu2G8zqx7lvi5d7muEvXv3Zt26dWVdZ0fl7lSepCHAdcDIiBgGXJlmDQBOohgYN7Ww6HigBhgeEe8F7i6Z1xv4FfDzFEpHAGOBEyNiOMXgG5f67gH8IW37EeCyVuocL6lWUm3j+obt3l8zM9tS7oIJGAnMiIi1ABHxWmr/fxHxVkQ8DezbwnKnAj+OiM3NlgO4D/hpRPwsvT8FOAaYL2lhen9wmvdP4Ndpuo5i2G0lIiZHRCEiCt1377sdu2lm1nUmTpzIrbfe+vb7SZMmccMNN3DKKadw9NFHM3ToUO67776tlnv44YcZNWrU2++/8IUvMGXKFADq6ur44Ac/yDHHHMNpp53GqlWrylJrHoOpNRtLprf1CuLjwOl65wqcgKkRMTy9DouISWnepnjnefON5PR0p5nZthg7dizTp09/+/306dO56KKLuPfee1mwYAFz5szhS1/6Eu/8+mvbpk2buOKKK5g5cyZ1dXVccsklXHvttWWpNY+/dB8C7pV0c0S8KmmvDi73O+BfJc2JiM2S9ioZNV2fXrcCnwMeBO6T9N2IWJ220SciXir3zpiZ5cGIESNYvXo1f/3rX1mzZg3vfve72W+//fjiF7/II488Qrdu3Vi5ciWvvPIK++23X7vrW7ZsGUuWLOHDH/4wAI2NjQwYMKAsteYumCJiqaQbgbmSGoGnOrjoT4BDgcWSNgF3ALeUzL8SuFPStyLiK5KuAx6Q1A3YBHwecDCZ2U5rzJgxzJw5k5dffpmxY8dy9913s2bNGurq6ujRowc1NTVb/b3RLrvswltvvfX2+6b5EcGQIUN48skny15n7oIJICKmAlPbmN87/VwOHJWmNwNXp1dp35qSt58paZ8GTGtt3Wl6JtDm30mZmVWKsWPHctlll7F27Vrmzp3L9OnT2WeffejRowdz5szhpZe2/r/5QQcdxNNPP83GjRt58803efDBBznppJM47LDDWLNmDU8++STHH388mzZt4rnnnmPIkCE7XGcug6nSDB3Yl1p/nYuZbYMsvgJqyJAhvPHGGwwcOJABAwYwbtw4Ro8ezdChQykUChx++OFbLXPAAQdw/vnnc9RRRzFo0CBGjBgBwK677srMmTOZMGECDQ0NbN68mauuuqoswaSOXuiy1hUKhfCDAs2sLc888wxHHHFE1mVkpqX9l1QXEYXmfSvprjwzM6sCDiYzM8sVB5OZWRep1ksn27rfDiYzsy7Qq1cvXn311aoLp6bnMfXq1avDy/iuPDOzLrD//vuzYsUK1qxZk3UpXa7pCbYd5WAyM+sCPXr06PATXKudT+WZmVmuOJjMzCxXHExmZpYrvsZUBvUrG8r+NEqzvMriq3SsunjEZGZmuVJ1wSTpvyXtmXUdZmbWsqo6lZeeYDsqIt5qt7OZmWVipx8xSaqRtEzSz4AlQKOk/mnehZIWS1ok6a7UtrekX0qan14nZlm/mVm1qZYR02Dgooj4g6TlAJKGANcBJ0TE2pJHuH8f+G5EPCbpQOB+YKvvqpc0HhgP0P1de3fBLpiZVYdqCaaXIuIPzdpGAjMiYi1ARLyW2k8Fjiye9QPgXZJ6R8S60oUjYjIwGaDngMHV9eVXZmadqFqC6R/b0LcbcFxEbGi3p5mZld1Of42pDQ8BYyT1Ayg5lfcAcEVTJ0nDM6jNzKxqVW0wRcRS4EZgrqRFwM1p1gSgkG6KeBq4PKsazcyqkart2SCdoVAoRG1tbdZlmJlVFEl1EVFo3l61IyYzM8snB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Uq1fLt4p6pf2UDNxNlZl2GWmeU3nZl1CbYT8YjJzMxyxcFkZma5UjHBJOksSRPLtK5Jkq4px7rMzKy8KuIak6RdImIWMCvD7W/OYttmZtWmy0dMki5MD+FbJOkuSTWSHkptD0o6MPWbIul2SfOAb0m6WNItad5oSfMkPSXp95L2Te2TJN0p6WFJf5Y0oWS710p6TtJjwGEl7YdI+q2kOkmPSjq8pe134SEyM6tqXTpikjQEuA44ISLWpseZTwWmRsRUSZcAPwDOSYvsn/o2Srq4ZFWPAcdFREj638BXgC+leYcDJwN9gGWSbgPeC1wADKe4zwuAutR/MnB5RDwv6V+AHwEjm2+/hX0ZD4wH6P6uvXfksJiZWYmuPpU3EpgREWsBIuI1SccDH0/z72LL0cmMlkKBYmBMkzQA2BV4sWTe7IjYCGyUtBrYF3g/cG9ErAeQNCv97A2cAMyQ1LR8zw5sn4iYTDHU6DlgsB8DbGZWJnm/xvSPVtp/CNwcEbMkfQiYVDJvY8l0I23vYzfg9YgYvo3bNzOzTtLV15geAsZI6geQTuU9QfE0G8A44NEOrKcvsDJNX9SB/o8A50jaTVIfYDRARPwdeFHSmFSPJA3r6M6YmVn5demIKSKWSroRmCupEXgKuAL4qaQvA2uAz3RgVZMonn77G8WwG9TOdhdImgYsAlYD80tmjwNuk3Qd0AP4RepnZmYZUIQvj+yoQqEQtbW1WZdhZlZRJNVFRKF5e8X8ga2ZmVUHB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Urev128ItSvbKBm4uysyzDL3PKbzsy6BNsJeMRkZma54mAyM7NcyTSYJJ0j6cgO9Jsi6bwW2j8k6ddlrKcg6Qdp+mJJt5Rr3WZm1jFZj5jOAdoNpq4SEbURMSHrOszMqlmbwSTpJkmfL3k/SdI1kr4sab6kxZK+XjL/q5KWSXpM0s8lXZPaD5H0W0l1kh6VdLikE4CzgG9LWpj6XJbWu0jSLyXtXlLOqZJqJT0naVQLte4h6U5Jf5T0lKSz29ivXpJ+Kqk+9T05tXd4BCZpfKqntnF9Q0cWMTOzDmhvxDQNOL/k/fkUnzI7GHgfMBw4RtIHJB0LnAsMA84ASh/+NBm4IiKOAa4BfhQRTwCzgC9HxPCI+BNwT0QcGxHDgGeAS0vWUZO2eSZwu6RezWq9FngoIt4HnEwx8PZoZb8+D0REDAU+AUxtYX1tiojJEVGIiEL33ftuy6JmZtaGNm8Xj4inJO0j6T3A3sDfgKHARyg+Fh2gN8Wg6gPcFxEbgA2SfgUgqTdwAsVHoTetumcrmzxK0g3Anmm995fMmx4RbwHPS/ozcHizZT8CnNU0SgN6AQdSDLjmTgJ+mPbxWUkvAYe2dSzMzKxrdOTvmGYA5wH7URxBHQT8e0T8uLSTpKtaWb4b8HpEDO/AtqYA50TEIkkXAx8qmdf8GfDN3ws4NyKWdWA7ZmaWUx25+WEacAHFcJpBcRRzSRoJIWmgpH2Ax4HR6fpNb2AUQET8HXhR0pjUX5KGpXW/QXGk1aQPsEpSD2BcszrGSOom6RDgYKB5AN0PXKE0LJM0oo19erRp/ZIOpTiycqCZmeVAu8EUEUspBsbKiFgVEQ8A/wU8KakemAn0iYj5FK8ZLQZ+A9QDTXcFjAMulbQIWAo03ZjwC+DL6QaEQ4CvAvMohtyzzUr5H+CPad2Xp1OGpf4P0ANYLGlpet+aHwHdUv3TgIsjYmN7x8LMzDqfIpqfEduBlUm9I2JdupvuEWB8RCwo2wZyqlAoRG1tbdZlmJlVFEl1EVFo3l7u78qbnP5gthcwtRpCyczMyquswRQRnyzn+naUpNOAbzZrfjEiPpZFPWZm1r6d+tvFI+J+trzl3MzMci7rryQyMzPbgoPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrO/XfMXWV+pUN1EycnXUZZhVh+U1nZl2C5ZxHTGZmlisOplZIGi7po1nXYWZWbRxMrRsOOJjMzLpY7oJJ0oWSFktaJOkuSTWSHkptD0o6MPXbV9K9qd8iSSek9qslLUmvq1JbjaRnJN0haamkByTtluY9LKmQpvtLWi5pV+AbwFhJCyWNzeZomJlVn1wFk6QhwHXAyIgYBlwJ/JDiIzTeC9wN/CB1/wEwN/U7Glgq6RjgM8C/AMcBl5U8yXYwcGtEDAFeB85trY6I+CdwPTAtIoZHxLQWah0vqVZSbeP6hq1XYmZm2yVXwQSMBGZExFqAiHgNOJ7iE3MB7gJOKul7W+rXGBENad69EfGPiFgH3AO8P/V/MSIWpuk6oGZHCo2IyRFRiIhC99377siqzMysRN6CqTOVPjq9kXduld/MO8ehV5dWZGZmW8lbMD0EjJHUD0DSXsATwAVp/jjg0TT9IPDZ1K+7pL5p3jmSdpe0B/Cxkv6tWQ4ck6bPK2l/A+izQ3tjZmbbLFfBFBFLgRuBuZIWATcDVwCfkbQY+DTF606knydLqqd4au7I9Cj3KcAfgXnATyLiqXY2+x3gs5KeAvqXtM8BjvTND2ZmXUsRkXUNFa/ngMEx4KLvZV2GWUXwNz9YE0l1EVFo3u6vJCqDoQP7Uut/bGZmZZGrU3lmZmYOJjMzyxUHk5mZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFX8lURnUr2ygZuLsrMswq2j+Dj1r4hGTmZnlSsUHk6RvSDo16zrMzKw8Kv5UXkRc39nbkNQ9Iho7eztmZlZhIyZJX5W0TNJjkn4u6RpJUySdl+Yvl/R1SQsk1Us6PLXvLel3kpZK+omklyT1T/M+JemP6YGAP5bUPbWvk/Qf6YGFx2e202ZmVaZigknSscC5wDDgDGCrh0slayPiaOA24JrU9jXgoYgYAswEDkzrPAIYC5wYEcOBRoqPbwfYA5gXEcMi4rEW6hkvqVZSbeP6hrLso5mZVdapvBOB+yJiA7BB0q9a6XdP+lkHfDxNnwR8DCAifivpb6n9FOAYYL4kgN2A1WleI/DL1oqJiMnAZCg+wXZ7dsjMzLZWScHUURvTz0ba3z8BUyPi31qYt8HXlczMul7FnMoDHgdGS+olqTcwahuXPR9A0keAd6f2B4HzJO2T5u0l6aAy1mxmZtuoYkZMETFf0ixgMfAKUA909OLO14GfS/o08CTwMvBGRKyVdB3wgKRuwCbg88BLZd8BMzPrEEVUzuURSb0jYp2k3YFHgPERsaADy/UEGiNis6TjgdvSzQ5lUSgUora2tlyrMzOrCpLqImKrG9kqZsSUTJZ0JNCL4rWhdkMpORCYnkZF/wQu66wCzcxsx1RUMEXEJ7dzueeBEWUux8zMOkEl3fxgZmZVwMFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeVKRf2BbV7Vr2ygZuLsrMswqzrLbzoz6xKsE3jEZGZmueJgMjOzXKmIYJJ0uaQL0/QUSedt53qGS/poeaszM7NyqohrTBFxe5lWNRwoAP/dfIakXSJic5m2Y2Zm2ymXwZRGR9cAQfHBgH8C1kXEd5r1ux4YDewGPAH8a0SEpIeBecDJwJ7Apen9N4DdJJ0E/DtwBHAIcDDwP5I+A9xGMbw2A1dHxJzO3VszMyuVu1N5koYA1wEjI2IYcGUb3W+JiGMj4iiK4VT6uPVdIuJ9wFXA1yLin8D1wLSIGB4R01K/I4FTI+ITFJ9eGxExFPgEMFVSr1bqHC+pVlJt4/qOPkjXzMzak7tgAkYCMyJiLUBEvNZG35MlzZNUn5YbUjLvnvSzDqhpYx2zIuLNNH0S8J9pu89SfMT6oS0tFBGTI6IQEYXuu/dtZ5fMzKyjcnkqryPSSOZHQCEi/iJpEsUn2zbZmH420vZ+/qNzKjQzs+2RxxHTQ8AYSf0AJO3VSr+mEForqTfQkTv13gD6tDH/UWBc2u6hFB/JvqwjRZuZWXnkLpgiYilwIzBX0iLg5lb6vQ7cASwB7gfmd2D1c4AjJS2UNLaF+T8CuqVTg9OAiyNiYwv9zMyskygisq6h4hUKhaitrc26DDOziiKpLiIKzdtzN2IyM7Pq5mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeWKg8nMzHLFwWRmZrniYDIzs1yp2G8Xz5P6lQ3UTJyddRlm1omW33Rm1iVUDY+YzMwsVxxMZmaWKw4mMzPLlVwEk6QLJS2WtEjSXZJGp0emPyXp95L2ldRN0vOS9k7LdJP0gqS90+uXkuan14mpzyRJd0p6WNKfJU1I7TWSnpF0h6Slkh6QtFuad4ik30qqk/SopMOzOzJmZtUn82CSNAS4DhgZEcOAK4HHgOMiYgTwC+ArEfEW8J+kJ8wCpwKLImIN8H3guxFxLHAu8JOSTRwOnAa8D/iapB6pfTBwa0QMAV5PywFMBq6IiGOAayg+PLClusdLqpVU27i+YYePg5mZFeXhrryRwIyIWAsQEa9JGgpMkzQA2BV4MfW9E7gP+B5wCfDT1H4qxSfTNq3zXelx6wCz01NoN0paDeyb2l+MiIVpug6oScucAMwoWVfPloqOiMkUQ4yeAwb7aYtmZmWSh2BqyQ+BmyNilqQPAZMAIuIvkl6RNJLiCKhp9NSN4ghrQ+lKUriUPhq9kXf2uXn7bmk9r0fE8LLujZmZdVjmp/KAh4AxkvoBSNoL6AusTPMvatb/JxRP6c2IiMbU9gBwRVMHSdsVLBHxd+BFSWPSeiRp2Pasy8zMtk/mwRQRS4EbgbmSFgE3UxwhzZBUB6xttsgsoDfvnMYDmAAU0g0UTwOX70BJ44BLUy1LgbN3YF1mZraNFFFZl0ckFSje6PD+rGtp0nPA4Bhw0feyLsPMOpG/+aH8JNVFRKF5e16vMbVI0kTgs7xzbSkXhg7sS60/tGZmZZH5qbxtERE3RcRBEfFY1rWYmVnnqKhgMjOznZ+DyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFQeTmZnlSkV9JVFe1a9soGbi7KzLMLOdWDV9V59HTGZmlitVEUySJkh6RtLf0hfBttbvYkm3dGVtZma2pWo5lfc54NSIWJF1IWZm1radfsQk6XbgYOA3kr7YNCKSNEbSEkmLJD1Sssh7JP1W0vOSvpVJ0WZmVWynD6aIuBz4K3Ay8LeSWdcDp0XEMOCskvbhwFhgKDBW0gEtrVfSeEm1kmob1zd0TvFmZlVopw+mNjwOTJF0GdC9pP3BiGiIiA3A08BBLS0cEZMjohARhe679+2Ccs3MqkPVBlMaSV0HHADUSeqXZm0s6dZI9VyHMzPLhar9pSvpkIiYB8yTdAbFgDIzs4xV7YgJ+LakeklLgCeARVkXZGZmVTJiioiaNDklvYiIj7fQ9e35qc+oTi3MzMy2UhXB1NmGDuxLbRV9XYiZWWeq5lN5ZmaWQw4mMzPLFQeTmZnlioPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYr/uaHMqhf2UDNxNlZl2Fm1qWWd9I33njEZGZmueJgMjOzXKnaYJJ0saRb0vTlki7MuiYzM6vSa0ySttjviLg9q1rMzGxLFR1Mkr4KfApYA/wFqAMagPHArsALwKcjYr2kKcAGYATwOLC4ZD2TgHUR8R1J/wu4Hdib4qPVx0TEn7pqn8zMql3FnsqTdCxwLjAMOAMopFn3RMSxETEMeAa4tGSx/YETIuLqNlZ9N3BrWv4EYFUr2x8vqVZSbeP6hh3cGzMza1LJI6YTgfsiYgOwQdKvUvtRkm4A9gR6A/eXLDMjIhpbW6GkPsDAiLgXIK27RRExGZgM0HPA4NihPTEzs7dV7IipDVOAL0TEUODrQK+Sef/IpCIzM+uwSg6mx4HRknpJ6g2MSu19gFWSegDjtmWFEfEGsELSOQCSekravZxFm5lZ2yo2mCJiPjCL4k0MvwHqKd748FVgHsXgenY7Vv1pYIKkxcATwH5lKdjMzDpEEZV7eURS74hYl0Y1jwDjI2JBV9dRKBSitra2qzdrZlbRJNVFRKF5eyXf/AAwWdKRFK8jTc0ilMzMrLwqOpgi4pNZ12BmZuVVsdeYzMxs5+RgMjOzXHEwmZlZrlT0XXl5IekNYFnWdWyH/sDarIvYDq67a7nurlUtda8FiIjTm8+o6JsfcmRZS7c85p2kWtfddVx313LdXaucdftUnpmZ5YqDyczMcsXBVB6Tsy5gO7nuruW6u5br7lplq9s3P5iZWa54xGRmZrniYDIzs1xxMO0ASadLWibpBUkTs66nNZIOkDRH0tOSlkq6MrVPkrRS0sL0+mjWtTYnabmk+lRfbWrbS9LvJD2ffr476zpLSTqs5JgulPR3SVfl9XhLulPSaklLStpaPMYq+kH6zC+WdHTO6v62pGdTbfdK2jO110h6s+TY356zulv9bEj6t3S8l0k6LZuqW617WknNyyUtTO07drwjwq/teAHdgT8BBwO7AouAI7Ouq5VaBwBHp+k+wHPAkcAk4Jqs62un9uVA/2Zt3wImpumJwDezrrOdz8nLwEF5Pd7AB4CjgSXtHWPgoxSffybgOGBezur+CLBLmv5mSd01pf1yeLxb/Gykf6eLgJ7AoPQ7p3te6m42/z+A68txvD1i2n7vA16IiD9HxD+BXwBnZ1xTiyJiVaRHgkTxKb3PAAOzrWqHnA1MTdNTgXMyrKU9pwB/ioiXsi6kNRHxCPBas+bWjvHZwM+i6A/AnpIGdE2lW2qp7oh4ICI2p7d/APbv8sLa0crxbs3ZwC8iYmNEvAi8QPF3T5drq25JAs4Hfl6ObTmYtt9A4C8l71dQAb/sJdUAIyg+5RfgC+m0x515OyWWBPCApDpJ41PbvhGxKk2/DOybTWkdcgFb/mPN+/Fu0toxrqTP/SUUR3dNBkl6StJcSe/Pqqg2tPTZqJTj/X7glYh4vqRtu4+3g6mKSOoN/BK4KiL+DtwGHAIMB1ZRHIrnzUkRcTRwBvB5SR8onRnF8wa5/JsHSbsCZwEzUlMlHO+t5PkYt0bStcBm4O7UtAo4MCJGAFcD/yXpXVnV14KK/GyU+ARb/gdsh463g2n7rQQOKHm/f2rLJUk9KIbS3RFxD0BEvBIRjRHxFnAHGZ0iaEtErEw/VwP3UqzxlabTR+nn6uwqbNMZwIKIeAUq43iXaO0Y5/5zL+liYBQwLoUq6VTYq2m6juK1mkMzK7KZNj4blXC8dwE+DkxratvR4+1g2n7zgcGSBqX/GV8AzMq4phal87//F3gmIm4uaS+9NvAxYEnzZbMkaQ9JfZqmKV7YXkLxOF+Uul0E3JdNhe3a4n+ReT/ezbR2jGcBF6a7844DGkpO+WVO0unAV4CzImJ9Sfvekrqn6YOBwcCfs6lya218NmYBF0jqKWkQxbr/2NX1teNU4NmIWNHUsMPHO4u7O3aWF8U7lJ6j+L+Ba7Oup406T6J4KmYxsDC9PgrcBdSn9lnAgKxrbVb3wRTvSFoELG06xkA/4EHgeeD3wF5Z19pC7XsArwJ9S9pyebwphucqYBPFaxiXtnaMKd6Nd2v6zNcDhZzV/QLFazJNn/PbU99z02doIbAAGJ2zulv9bADXpuO9DDgjT3Wn9inA5c367tDx9lcSmZlZrvhUnpmZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWK/8fnSxrKwF+wYgAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "thai_ingredient_df = create_ingredient_df(thai_df)\r\n", + "thai_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 11 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAdqUlEQVR4nO3de5xXdb3v8dcbREhBvICJeBkvKAocbmN57eb9btsLFpmkD3nUMT1mdg4dtWNnu/fW3NXOtHQ6JewyE1DTorwcNDVF5TfcBi9gKZ5AVLAaRcQQP+eP9Z36McwMg/5m1vrN7/18PObBWt91+X3WmoE337XWrK8iAjMzs6LolXcBZmZm5RxMZmZWKA4mMzMrFAeTmZkVioPJzMwKZau8C+gJBg0aFHV1dXmXYWZWNQYNGsR99913X0Qc13qZg6kC6urqKJVKeZdhZlZVJA1qq92X8szMrFAcTGZmVigOJjMzKxTfYzIz6wbr169n+fLlrFu3Lu9Sul2/fv3Ybbfd6NOnT6fWdzBVQNOKZuqmzMq7DHufll1zYt4lWA1Yvnw5AwYMoK6uDkl5l9NtIoLXX3+d5cuXs9dee3VqG1/KMzPrBuvWrWOnnXaqqVACkMROO+20RT3FmgomSb+RtH3edZhZbaq1UGqxpcddU5fyIuKEvGswM7OO9ahgkvQ14J2IuF7Sd4HREfEpSZ8CzgcOA+qB/sBvgd8DhwIrgFMj4m1J+wA3AoOBtcAFEfFcDodjZj1Ype9LV/peaf/+/VmzZk1F99lZPe1S3qPAEWm6HugvqU9qe6TVusOAGyNiBPBX4PTU3gBcFBHjgcuAH7T1QZImSypJKm1Y21zhwzAzq109LZgagfGStgPeAeaQBdQRZKFV7sWIWFC2XZ2k/mQ9qBmSFgA3A0Pa+qCIaIiI+oio773NwC44FDOzypkyZQo33njj3+evuuoqrr76ao488kjGjRvHqFGjuPvuuzfZ7ne/+x0nnXTS3+e//OUvM3XqVAAaGxv5+Mc/zvjx4zn22GNZuXJlRWrtUcEUEeuBF4FJwONkYfRJYF/g2Varv1M2vYHssmYv4K8RMabs64AuL9zMrItNmDCB6dOn/31++vTpnHvuudx1113MmzePhx56iK9+9atERKf2t379ei666CJmzpxJY2Mj5513HpdffnlFau1R95iSR8kuwZ0HNAHfARojIjb3ZEhEvCHpRUlnRsQMZRv8l4hY2OVVm5l1obFjx/Laa6/x8ssvs2rVKnbYYQd22WUXvvKVr/DII4/Qq1cvVqxYwauvvsouu+yy2f0tWbKExYsXc/TRRwOwYcMGhgxp8wLTFuupwXQ5MCci3pK0jk0v43VkIvBDSVcAfYBfAA4mM6t6Z555JjNnzuSVV15hwoQJ3HrrraxatYrGxkb69OlDXV3dJr9vtNVWW/Hee+/9fb5leUQwYsQI5syZU/E6e1wwRcRsskBpmd+vbLouTa4GRpa1/3vZ9IvAJuODmJlVuwkTJnDBBRewevVqHn74YaZPn87OO+9Mnz59eOihh3jppZc22WbPPffkmWee4Z133uHtt99m9uzZHH744ey///6sWrWKOXPmcMghh7B+/XqWLl3KiBEjPnCdPS6Y8jBq6EBKfq2NmW2BPF6FNWLECN58802GDh3KkCFDmDhxIieffDKjRo2ivr6e4cOHb7LN7rvvzllnncXIkSPZa6+9GDt2LABbb701M2fO5OKLL6a5uZl3332XSy65pCLBpM7e6LL21dfXhwcKNLOOPPvssxxwQO0+S9XW8UtqjIj61uv2qKfyzMys+jmYzMysUBxMZmbdpFZvnWzpcTuYzMy6Qb9+/Xj99ddrLpxaxmPq169fp7fxU3lmZt1gt912Y/ny5axatSrvUrpdywi2neVgMjPrBn369On0CK61zpfyzMysUBxMZmZWKA4mMzMrFN9jqoCmFc0VH43SiiuPV8mY1RL3mMzMrFBqNpgkTZJ0Q5r+oqTP512TmZnV6KU8SRsdd0TclFctZma2saoOJklXAp8DVgF/AhqBZmAysDXwB+CciFgraSqwDhgLPAYsKtvPVcCaiPh3SfsCNwGDyYZcPzMi/thdx2RmVuuq9lKepIOA04HRwPFAy6vT74yIgyJiNPAscH7ZZrsBh0bEpR3s+lbgxrT9ocDKdj5/sqSSpNKGtc0f8GjMzKxFNfeYDgPujoh1wDpJv0rtIyVdDWwP9AfuK9tmRkRsaG+HkgYAQyPiLoC07zZFRAPQANB3yLDaevmVmVkXqtoeUwemAl+OiFHAN4HyNwe+lUtFZmbWadUcTI8BJ0vqJ6k/cFJqHwCslNQHmLglO4yIN4Hlkk4DkNRX0jaVLNrMzDpWtcEUEXOBe8geYvgt0ET24MOVwJNkwfXc+9j1OcDFkhYBjwO7VKRgMzPrFFXz2CCS+kfEmtSreQSYHBHzuruO+vr6KJVK3f2xZmZVTVJjRNS3bq/mhx8AGiQdSHYfaVoeoWRmZpVV1cEUEZ/NuwYzM6usqr3HZGZmPZODyczMCsXBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrlKr+BduiaFrRTN2UWXmXYVVo2TUn5l2CWeG4x2RmZoXiYDIzs0Kp+mCS9L8lHZV3HWZmVhlVf48pIr7R1Z8hqXdHQ7KbmVnlVFWPSdKVkpZI+r2k2yRdJmmqpDPS8mWSvilpnqQmScNT+2BJD0h6WtL/kfSSpEFp2eckPSVpgaSbJfVO7WskfVvSQuCQ3A7azKzGVE0wSToIOB0YDRwPbDK4VLI6IsYBPwQuS23/C3gwIkYAM4E90j4PACYAh0XEGGAD/xiOfVvgyYgYHRG/b6OeyZJKkkob1jZX5BjNzKy6LuUdBtwdEeuAdZJ+1c56d6Y/G4F/StOHA58GiIh7Jf0ltR8JjAfmSgL4EPBaWrYBuKO9YiKiAWgA6DtkWPUOA2xmVjDVFEyd9U76cwObPz6RjXz79TaWrfN9JTOz7lc1l/KAx4CTJfWT1B84aQu3PQtA0jHADql9NnCGpJ3Tsh0l7VnBms3MbAtVTY8pIuZKugdYBLwKNAGdvbnzTeA2SecAc4BXgDcjYrWkK4D7JfUC1gMXAi9V/ADMzKxTFFE9t0ck9Y+INZK2AR4BJkfEvE5s1xfYEBHvSjoE+GF62KEi6uvro1QqVWp3ZmY1QVJjRGzyIFvV9JiSBkkHAv3I7g1tNpSSPYDpqVf0N+CCrirQzMw+mKoKpoj47Pvc7nlgbIXLMTOzLlBNDz+YmVkNcDCZmVmhOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoVSVb9gW1RNK5qpmzIr7zKsB1l2zYl5l2CWG/eYzMysUHpcMEmqk7Q4TX9C0q/T9CmSpuRbnZmZbU7NXMqLiHuAe/Kuw8zMOla4HpOkbSXNkrRQ0mJJEyQdJOnx1PaUpAGpZ/SopHnp69DN7HeSpBvSdJ2kByUtkjRb0h6pfaqk69NnvSDpjO44ZjMz+4ci9piOA16OiBMBJA0E5gMT0mCB2wFvA68BR0fEOknDgNuATcb1aMf3yYbNmCbpPOB64LS0bAhwODCcrIc1s60dSJoMTAbovd3gLT9KMzNrU+F6TGQj0x4t6VpJR5CNpbQyIuYCRMQbEfEu0Af4kaQmYAZw4BZ8xiHAz9P0T8mCqMUvI+K9iHgG+HB7O4iIhoioj4j63tsM3IKPNjOzjhSuxxQRSyWNA04ArgYebGfVr5ANsT6aLGDXVaiEd8qmVaF9mplZJxWuxyRpV2BtRPwMuA74KDBE0kFp+QBJWwEDyXpS7wHnAL234GMeB85O0xOBRytVv5mZfTCF6zEBo4DrJL0HrAe+RNZz+b6kD5HdXzoK+AFwh6TPA/cCb23BZ1wE3CLpa8Aq4AsVrN/MzD4ARUTeNVS9vkOGxZBz/yPvMqwH8ZsfrBZIaoyITR5aK2KPqeqMGjqQkv8hMTOriMLdYzIzs9rmYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxQHk5mZFYqDyczMCsXBZGZmheJgMjOzQvEriSqgaUUzdVNm5V2G9XB+f57VCveYzMysUBxMZmZWKA4mMzMrlB4fTJI+J+kpSQsk3Sypt6TzJS1N7T+SdENadx9JT0hqknS1pDV5129mVmt6dDBJOgCYABwWEWOADWRDqV8JHAwcBgwv2+R7wPciYhSwfDP7niypJKm0YW1zl9RvZlaLenQwAUcC44G5khak+UuBhyPizxGxHphRtv4hZfM/72jHEdEQEfURUd97m4FdULqZWW3q6cEkYFpEjElf+wNX5VyTmZl1oKcH02zgDEk7A0jaEZgPfFzSDpK2Ak4vW/+Jsvmzu7VSMzMDengwRcQzwBXA/ZIWAQ8AQ4B/BZ4CHgOWAS03iS4BLk3r7lvWbmZm3aTHv/khIm4Hbi9vk7Q4IhpSj+ku4Jdp0Qrg4IgISWcD+3dvtWZm1uODqR1XSToK6Afczz+CaTxwgyQBfwXO68zORg0dSMmvizEzq4iaDKaIuKyd9keB0d1cjpmZlenR95jMzKz6OJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaHU5JsfKq1pRTN1U2blXYbViGV+/ZX1cO4xmZlZodRsMEn6naT6vOswM7ON1WwwmZlZMfWoYJK0raRZkhZKWixpgqRvSJqb5hvSkBbl2/SSNFXS1Wn+GElzJM2TNENS/3yOxsysNvWoYAKOA16OiNERMRK4F7ghIg5K8x8CTipbfyvgVuD5iLhC0iCyEW+PiohxQAm4tK0PkjRZUklSacNaD3RrZlYpPS2YmoCjJV0r6YiIaAY+KelJSU3Ap4ARZevfDCyOiH9J8wcDBwKPSVoAnAvs2dYHRURDRNRHRH3vbQZ22QGZmdWaHvW4eEQslTQOOAG4WtJs4EKgPiL+JOkqslFrWzxOFlzfjoh1gIAHIuIz3V27mZllelSPSdKuwNqI+BlwHTAuLVqd7hWd0WqTHwO/AaZL2gp4AjhM0r5pf9tK2q97qjczM+hhPSZgFHCdpPeA9cCXgNOAxcArwNzWG0TEdyQNBH4KTAQmAbdJ6ptWuQJY2vWlm5kZgCIi7xqqXn19fZRKpbzLMDOrKpIaI2KT3yftUZfyzMys+jmYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKxcFkZmaF4mAyM7NCcTCZmVmhOJjMzKxQetq78nLRtKKZuimz8i7DrBCWXXNi3iVYlXOPyczMCsXBZGZmhZJrMEk6TdKBnVhvqqTWYykh6ROSfl3BeuolXZ+mJ0m6oVL7NjOzzsm7x3Qa2VDmhRARpYi4OO86zMxqWYfBJOkaSReWzV8l6TJJX5M0V9IiSd8sW36lpCWSfi/pNkmXpfZ9JN0rqVHSo5KGSzoUOIVsYL8FaZ0L0n4XSrpD0jZl5RwlqSRpqaST2qh1W0k/kfSUpPmSTu3guPpJukVSU1r3k6m9oj0wMzPbcpvrMd0OnFU2fxawChgGfAQYA4yX9DFJBwGnA6OB44HywZ8agIsiYjxwGfCDiHgcuAf4WkSMiYg/AndGxEERMRp4Fji/bB916TNPBG6S1K9VrZcDD0bER4BPkgXetu0c14VARMQo4DPAtDb21yFJk1NQljasbd6STc3MrAMdPi4eEfMl7SxpV2Aw8Bey4cuPAean1fqTBdUA4O6IWAesk/QrAEn9gUOBGZJadt2Xto2UdDWwfdrvfWXLpkfEe8Dzkl4Ahrfa9hjglJZeGtAP2IMs4Fo7HPh+OsbnJL0E7NfRuWgtIhrIApe+Q4Z5GGAzswrpzO8xzQDOAHYh60HtCfxbRNxcvpKkS9rZvhfw14gY04nPmgqcFhELJU0CPlG2rPU//q3nBZweEUs68TlmZlZQnXn44XbgbLJwmkHWizkv9YSQNFTSzsBjwMnp/k1/4CSAiHgDeFHSmWl9SRqd9v0mWU+rxQBgpaQ+wMRWdZwpqZekfYC9gdYBdB9wkVK3TNLYDo7p0Zb9S9qPrGflQDMzK4DNBlNEPE0WGCsiYmVE3A/8HJgjqQmYCQyIiLlk94wWAb8FmoCWmy8TgfMlLQSeBloeTPgF8LX0AMI+wJXAk2Qh91yrUv4f8FTa9xfTJcNy/wz0ARZJejrNt+cHQK9U/+3ApIh4Z3PnwszMup4iKnd7RFL/iFiTnqZ7BJgcEfMq9gEFVV9fH6VSKe8yzMyqiqTGiKhv3V7pd+U1pF+Y7QdMq4VQMjOzyqpoMEXEZyu5vw9K0rHAta2aX4yIT+dRj5mZbV6Pfrt4RNzHxo+cm5lZweX9SiIzM7ONOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXSo3+Pqbs0rWimbsqsvMswqyrLrjkx7xKsoNxjMjOzQqmKYJK0q6SZeddhZmZdryqCKSJejogz8vhsSb7caWbWjQoXTJKukXRh2fxVki6TtDjNT5J0p6R7JT0v6Vtl6x4jaY6keZJmlA1meIKk5yQ1Srpe0q9T+0fS+vMlPS5p/7LPuEfSg8Dsbj0BZmY1rnDBRDZw31ll82eRDR5YbgwwARgFTJC0u6RBwBXAURExDigBl0rqB9wMHB8R44HBZft5DjgiIsYC3wD+tWzZOOCMiPh4W0VKmiypJKm0YW1zW6uYmdn7ULjLVBExX9LOknYlC5G/AH9qtdrsiGgGkPQMsCewPXAg8FgaXX1rYA4wHHghIl5M294GTE7TA4FpkoYBQTYCbosHIuLPHdTZADQA9B0yrHKjLZqZ1bjCBVMyAzgD2IWsB9Va+TDoG8iOQ2Rh8pnyFSWN6eBz/hl4KCI+LakO+F3Zsre2uGozM/vAingpD7IwOpssnGZ0cpsngMMk7QsgaVtJ+wFLgL1T8EB2CbDFQGBFmp70wUo2M7NKKGQwRcTTwABgRUSs7OQ2q8jC5TZJi0iX8SLibeC/AvdKagTeBFpuCn0L+DdJ8ylu79HMrKYoouffHpHUPyLWKLv5dCPwfER8t1L77ztkWAw59z8qtTuzmuA3P5ikxoiob91eK72ECySdS/ZAxHyyp/QqZtTQgZT8l8zMrCJqIphS76hiPSQzM+s6hbzHZGZmtcvBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKpSbe/NDVmlY0UzdlVt5lmFkX8Dv9up97TGZmVig1F0ySfiNp+7zrMDOzttXUpbw07MVJEfFe3rWYmVnbenyPSVKdpCWS/hNYDGyQNCgt+7ykRZIWSvppahss6Q5Jc9PXYXnWb2ZWa2qlxzQMODcinpC0DEDSCOAK4NCIWC1px7Tu94DvRsTvJe0B3Acc0HqHkiYDkwF6bze4Gw7BzKw21EowvRQRT7Rq+xQwIyJWA0TEn1P7UcCB2VU/ALZrGQG3fOOIaAAaIBvBtssqNzOrMbUSTG9twbq9gIMjYl1XFWNmZu3r8feYOvAgcKaknQDKLuXdD1zUspKkMTnUZmZWs2o2mCLiaeBfgIclLQS+kxZdDNSnhyKeAb6YV41mZrWox1/Ki4hlwMiy+bqy6WnAtFbrrwYmdFN5ZmbWSo8Ppu4wauhASn5tiZlZRdTspTwzMysmB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxS/+aECmlY0UzdlVt5lmJl1q2Vd9MYb95jMzKxQHExmZlYoDiYzMysUB5OZmRVKlwaTpG0lzZK0UNJiSRMkHSlpvqQmST+R1FfSpyT9smy7oyXd1c4+e0uamvbXJOkrqf0CSXPTZ90haZvUPlXSGWXbrymb/h9pHwslXZPa9pF0r6RGSY9KGt5V58fMzDbV1T2m44CXI2J0RIwE7gWmAhMiYhTZU4FfAh4ChksanLb7AvCTdvY5BhgaESPTPm5J7XdGxEERMRp4Fji/o8IkHQ+cCnw0bfOttKgBuCgixgOXAT9oZ/vJkkqSShvWNnd8FszMrNO6OpiagKMlXSvpCKAOeDEilqbl04CPRUQAPwU+J2l74BDgt+3s8wVgb0nfl3Qc8EZqH5l6OE3ARGDEZmo7CrglItYCRMSfJfUHDgVmSFoA3AwMaWvjiGiIiPqIqO+9zcDNnQczM+ukLv09pohYKmkccAJwNfBgB6vfAvwKWAfMiIh329nnXySNBo4FvgicBZxH1hM7LSIWSpoEfCJt8i4pgCX1ArbuoIZewF8jYkxnjs/MzCqvq+8x7QqsjYifAdeR9YTqJO2bVjkHeBggIl4GXgau4B+X59ra5yCgV0TckdYdlxYNAFZK6kPWY2qxDBifpk8B+qTpB4AvlN2L2jEi3gBelHRmalMKQTMz6yZd/eaHUcB1kt4D1pPdTxpIdqlsK2AucFPZ+rcCgyPi2Q72ORS4JfV+AL6e/rwSeBJYlf4ckNp/BNwtaSHZPa63ACLiXkljgJKkvwG/Af4nWaj9UNIVZCH2C2Dh+zx+MzPbQspu7xSDpBuA+RHx47xr2RL19fVRKpXyLsPMrKpIaoyI+tbthXlXnqRGst7MV/OuxczM8lOYYEqPZ29E0pNA31bN50REU/dUZWZm3a0wwdSWiPho3jWYmVn38iuJzMysUBxMZmZWKIV6Kq9aSXoTWJJ3HZ00CFiddxFbwPV2LdfbdaqpVuj+elcDRMRxrRcU+h5TFVnS1iOPRSSpVC21guvtaq6361RTrVCsen0pz8zMCsXBZGZmheJgqoyGvAvYAtVUK7jeruZ6u0411QoFqtcPP5iZWaG4x2RmZoXiYDIzs0JxMH0Ako6TtETSHyRNybue1iTtLukhSc9IelrSf0vtV0laIWlB+joh71pbSFomqSnVVUptO0p6QNLz6c8d8q4TQNL+ZedwgaQ3JF1SpPMr6SeSXpO0uKytzfOZxh+7Pv08L0qDfOZd63WSnkv13JVGuEZSnaS3y87xTe3vuVvrbfd7L+nr6dwukXRsQeq9vazWZWnk7vzPb0T46318Ab2BPwJ7k42KuxA4MO+6WtU4BBiXpgcAS4EDgauAy/Kur52alwGDWrV9C5iSpqcA1+ZdZzs/D68Aexbp/AIfIxtMc/HmzifZSNO/BQQcDDxZgFqPAbZK09eW1VpXvl6Bzm2b3/v0924h2Uup90r/dvTOu95Wy78NfKMI59c9pvfvI8AfIuKFiPgb2YCCp+Zc00YiYmVEzEvTbwLPkg20WG1OBaal6WnAaTnW0p4jgT9GxEt5F1IuIh4B/tyqub3zeSrwn5F5Athe0pDuqbTtWiPi/oh4N80+AezWXfVsTjvntj2nAr+IiHci4kXgD2T/hnSbjuqVJOAs4LburKk9Dqb3byjwp7L55RT4H31JdcBYstF9Ab6cLo/8pCiXxpIA7pfUKGlyavtwRKxM068AH86ntA6dzcZ/qYt6fqH981n0n+nzyHp0LfaSNF/Sw5KOyKuoNrT1vS/6uT0CeDUini9ry+38OphqgKT+wB3AJRHxBvBDYB9gDLCSrAtfFIdHxDjgeOBCSR8rXxjZdYZC/Y6DpK2BU4AZqanI53cjRTyfbZF0OfAucGtqWgnsERFjgUuBn0vaLq/6ylTN976Vz7Dxf6xyPb8OpvdvBbB72fxuqa1QJPUhC6VbI+JOgIh4NSI2RMR7wI/o5ksKHYmIFenP14C7yGp7teWSUvrztfwqbNPxwLyIeBWKfX6T9s5nIX+mJU0CTgImpiAlXRJ7PU03kt2z2S+3IpMOvveFPLcAkrYC/gm4vaUt7/PrYHr/5gLDJO2V/sd8NnBPzjVtJF03/jHwbER8p6y9/L7Bp4HFrbfNg6RtJQ1omSa78b2Y7Lyem1Y7F7g7nwrbtdH/Not6fsu0dz7vAT6fns47GGguu+SXC0nHAf8dOCUi1pa1D5bUO03vDQwDXsinyn/o4Ht/D3C2pL6S9iKr96nurq8dRwHPRcTylobcz29eT130hC+yp5iWkv1v4vK862mjvsPJLtMsAhakrxOAnwJNqf0eYEjetaZ69yZ7cmkh8HTLOQV2AmYDzwP/F9gx71rLat4WeB0YWNZWmPNLFpgrgfVk9zXOb+98kj2Nd2P6eW4C6gtQ6x/I7s20/PzelNY9Pf2MLADmAScX5Ny2+70HLk/ndglwfBHqTe1TgS+2WjfX8+tXEpmZWaH4Up6ZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVij/H6ovFeU7ywQTAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "japanese_ingredient_df = create_ingredient_df(japanese_df)\r\n", + "japanese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfeElEQVR4nO3deZwV1Z338c8XbCEKYlSMiEurISECsl1NULO5xD2aCYgT4hLzkkcn4pgEnyGPJoMTM+OSbTRGJRmFUUcF1GjCqHGUuBL1NggNKmgiPmGJ4tZiEILwmz/qtN603U033O5bl/6+X69+dd1Tp079Thfxl3Oqbh1FBGZmZnnRrdIBmJmZlXJiMjOzXHFiMjOzXHFiMjOzXHFiMjOzXNmm0gFsDXbZZZeora2tdBhmZlWlrq7u1Yjo27TciakMamtrKRaLlQ7DzKyqSHqpuXJP5ZmZWa44MZmZWa44MZmZWa74HpOZWSdYv349y5YtY+3atZUOpdP17NmTPfbYg5qamjbVd2Iqg/rlDdROmlXpMKyDLb30uEqHYFVs2bJl9O7dm9raWiRVOpxOExG89tprLFu2jH322adNx3gqz8ysE6xdu5add965SyUlAEnsvPPO7RopOjGZmXWSrpaUGrW3305MZmaWK7m4xyTpNGAiEMACYDpwEbAt8BowDlgFLAYOjohVkroBS4BRqZlrgb3S9vkR8Zikyals3/T7pxFxpaRa4B7gUeBgYDlwYkS8I2k/4GqgL7AGOCsinuu43ptZV1Tu+9Llvgfaq1cv3n777bK22VYVHzFJGkSWhA6LiKHAP5IljE9FxHDgVuD/RsRG4CayJAVwBDA/IlYB/w78JCIOBL4M/LLkFAOBo4CDgH+W1PhYyADg6ogYBLyZjgOYAkyIiJFkyfLnLcQ9XlJRUnHDmoYt/juYmVmm4okJOAyYERGvAkTE68AewH2S6oELgEGp7vXAaWn7TOCGtH0E8DNJTwN3AztI6pX2zYqIdan9V4CPpPIXI+LptF0H1KZjDgZmpLauA/o1F3RETImIQkQUum/XZwv/BGZmHWvSpElcffXV732ePHkyl1xyCYcffjgjRoxgyJAh3HXXXR847ne/+x3HH3/8e5/PPfdcpk6dCkBdXR2f/exnGTlyJEcddRQrV64sS6x5SEzNuQr4WUQMAf4P0BMgIv4EvCzpMLIR0D2pfjeyEdaw9NM/IhrHoOtK2t3A+9OXzZV3A94saWdYRHyiIzpoZtaZxo4dy/Tp09/7PH36dE4//XTuvPNO5s6dy+zZs/n2t79NRLSpvfXr1zNhwgRmzpxJXV0dZ555JhdeeGFZYs3DPaYHgTsl/TgiXpO0E9CH7L4PwOlN6v+SbErvxojYkMp+C0wArgCQNKxkNNRmEfGWpBcljYmIGcoeJTkgIuZvRr/MzHJj+PDhvPLKK6xYsYJVq1bx4Q9/mN12241vfvObPPzww3Tr1o3ly5fz8ssvs9tuu22yvcWLF7Nw4UKOPPJIADZs2EC/fs1OMLVbxRNTRCyS9APgIUkbgHnAZLLptDfIElfpt7LuJpvCu6Gk7DzgakkLyPr0MHD2ZoY0DrhG0kVADdk9LicmM6t6Y8aMYebMmfz5z39m7Nix3HzzzaxatYq6ujpqamqora39wPeNttlmGzZu3Pje58b9EcGgQYOYM2dO2eOseGICiIhpwLQmxR+c7MwMJXvo4b0n5dL9o7HNtDu5yefBJR8Hl5T/sGT7ReDotsZuZlYtxo4dy1lnncWrr77KQw89xPTp09l1112pqalh9uzZvPTSB1eh2HvvvXnmmWdYt24d77zzDg888ACHHnooH//4x1m1ahVz5sxh1KhRrF+/niVLljBo0KBmztw+uUhMbSVpEnAO7z+ZlwtD+veh6NfVmFk7VOIVV4MGDWL16tX079+ffv36MW7cOE444QSGDBlCoVBg4MCBHzhmzz335OSTT2bw4MHss88+DB8+HIBtt92WmTNnct5559HQ0MC7777L+eefX5bEpLbe6LKWFQqF8EKBZtaaZ599lk98ous+S9Vc/yXVRUShad28PpVnZmZdlBOTmZnlihOTmVkn6aq3TtrbbycmM7NO0LNnT1577bUul5wa12Pq2bNnm4+pqqfyzMyq1R577MGyZctYtWpVpUPpdI0r2LaVE5OZWSeoqalp8wquXZ2n8szMLFecmMzMLFecmMzMLFd8j6kM6pc3lH01SsuvSrxKxqwr8YjJzMxypcslJkn/LWnHSsdhZmbN61JTeWnhv+MjYuMmK5uZWUVs9SMmSbWSFkv6T2AhsEHSLmnfaZIWSJov6cZU1lfS7ZKeSj+HVDJ+M7OupquMmAYAp0fE7yUtBZA0CLgIODgiXk1LugP8O/CTiHhU0l7AfcAH3lUvaTwwHqD7Dn07oQtmZl1DV0lML0XE75uUHQbMSKvfEhGvp/IjgP2zWT8AdpDUKyLeLj04IqYAUwB69BvQtV5+ZWbWgbpKYvpLO+p2Az4VEWs3WdPMzMpuq7/H1IoHgTGSdgYomcr7LTChsZKkYRWIzcysy+qyiSkiFgE/AB6SNB/4cdp1HlBID0U8A5xdqRjNzLoidbW1QTpCoVCIYrFY6TDMzKqKpLqIKDQt77IjJjMzyycnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzy5Wu8nbxDlW/vIHaSbMqHYblxNJLj6t0CGZVzSMmMzPLFScmMzPLlapITJJ2lzSz0nGYmVnHq4rEFBErImJ0Jc4tyffhzMw6Ue4Sk6RLJX2j5PNkSRMlLUyfz5B0h6R7JT0v6fKSul+QNEfSXEkzJPVK5cdKek5SnaQrJf0mlR+U6s+T9Likj5ec425JDwIPdOofwMysi8tdYgJuA04u+Xwy8ESTOsOAscAQYKykPSXtAlwEHBERI4Ai8C1JPYHrgGMiYiTQt6Sd54BPR8Rw4HvAv5bsGwGMjojPNhekpPGSipKKG9Y0bG5fzcysidxNU0XEPEm7StqdLIm8AfypSbUHIqIBIC1/vjewI7A/8JgkgG2BOcBA4I8R8WI69hZgfNruA0yTNAAIoKbkHPdHxOutxDkFmALQo98ALwNsZlYmuUtMyQxgNLAb2QiqqXUl2xvI+iGyZPL3pRUlDWvlPN8HZkfElyTVAr8r2feXdkdtZmZbLI9TeZAlo1PIktOMNh7ze+AQSR8FkLS9pI8Bi4F9U+KBbAqwUR9gedo+Y8tCNjOzcshlYoqIRUBvYHlErGzjMavIksstkhaQpvEi4h3gH4B7JdUBq4HGm0KXA/8maR75HT2amXUpitj6b49I6hURbyu7+XQ18HxE/KRc7RcKhSgWi+VqzsysS5BUFxGFpuW5HDF1gLMkPQ0sIpu+u67C8ZiZWQu6xPRVGh2VbYRkZmYdp6uMmMzMrEo4MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa50iS/YdrT65Q3UTppV6TDM2mTppcdVOgSzVnnEZGZmuVL1iUnS+ZK2K1Nbn2tcdt3MzCqj6hMTcD7QrsQkqXsHxWJmZluoqhJTWvxvlqT5khZK+mdgd2C2pNmpzjWSipIWSbq45Nilki6TNBcYI+mjkv4ntTVX0n6pai9JMyU9J+nmtFSGmZl1kmp7+OFoYEVEHAcgqQ/wNeDzEfFqqnNhRLyeRkUPSDogIhakfa9FxIh07BPApRFxp6SeZEl6T2A4MAhYATwGHAI82jQQSeOB8QDdd+jbMb01M+uCqmrEBNQDR6aRz6cjoqGZOienUdE8sgSzf8m+2wAk9Qb6R8SdABGxNiLWpDpPRsSyiNgIPA3UNhdIREyJiEJEFLpv16csnTMzsyobMUXEEkkjgGOBSyQ9ULpf0j7ARODAiHhD0lSgZ0mVv7ThNOtKtjdQZX8jM7NqV1UjJkm7A2si4ibgCmAEsBronarsQJZ8GiR9BDimuXYiYjWwTNJJqd0e5Xqyz8zMtky1jQaGAFdI2gisB84BRgH3SloREZ+XNA94DvgT2T2ilpwKXCfpX1JbYzo2dDMzawtFRKVjqHo9+g2Ifqf/tNJhmLWJ3/xgeSGpLiIKTcurbcSUS0P696Ho/7GbmZVFVd1jMjOzrZ8Tk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YpfSVQG9csbqJ00q9JhmLWL35lneeURk5mZ5YoTk5mZ5UpFE5OkkyTt34Z6UyWNbqb8c5J+U8Z4CpKuTNtnSPpZudo2M7O2qfSI6SRgk4mps0REMSLOq3QcZmZdWauJSdKlkr5R8nmypImSLpD0lKQFki4u2f9dSYslPSrpFkkTU/l+ku6VVCfpEUkDJR0MfJFsRdqnU52zUrvzJd3eZLnzIyQVJS2RdHwzsW4v6XpJT0qaJ+nEVvrVU9INkupT3c+n8jaPwCSNT/EUN6xpaMshZmbWBpsaMd0GnFzy+WRgFTAAOAgYBoyU9BlJBwJfBoYCxwClqxJOASZExEhgIvDziHgcuBu4ICKGRcQfgDsi4sCIGAo8C3y9pI3adM7jgGsl9WwS64XAgxFxEPB5soS3fQv9+gYQETEE+HtgWjPttSoipkREISIK3bfr055DzcysFa0+Lh4R8yTtKml3oC/wBjAE+AIwL1XrRZaoegN3RcRaYK2kXwNI6gUcDMyQ1Nh0jxZOOVjSJcCOqd37SvZNj4iNwPOS/ggMbHLsF4AvNo7SgJ7AXmQJrqlDgatSH5+T9BLwsdb+FmZm1jna8j2mGcBoYDeyEdTewL9FxHWllSSd38Lx3YA3I2JYG841FTgpIuZLOgP4XMm+aFK36WcBX46IxW04j5mZ5VRbHn64DTiFLDnNIBvFnJlGQkjqL2lX4DHghHT/phdwPEBEvAW8KGlMqi9JQ1Pbq8lGWo16Aysl1QDjmsQxRlI3SfsB+wJNE9B9wASlYZmk4a306ZHG9iV9jGxk5YRmZpYDm0xMEbGILGEsj4iVEfFb4L+AOZLqgZlA74h4iuye0QLgHqAeaHwqYBzwdUnzgUVA44MJtwIXpAcQ9gO+CzxBluSeaxLK/weeTG2fnaYMS30fqAEWSFqUPrfk50C3FP9twBkRsW5TfwszM+t4img6I7YFjUm9IuLt9DTdw8D4iJhbthPkVKFQiGKxWOkwzMyqiqS6iCg0LS/3u/KmpC/M9gSmdYWkZGZm5VXWxBQRXylne1tK0lHAZU2KX4yIL1UiHjMz27St+u3iEXEff/vIuZmZ5VylX0lkZmb2N5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV7bq7zF1lvrlDdROmlXpMMw6xNJLj6t0CNbFeMRkZma54sRkZma54sTUhKSzJZ2WtqdKGl3pmMzMuhLfY2oiIq6tdAxmZl1ZWUdMkraXNEvSfEkLJY2VNFLSQ5LqJN0nqV+qe56kZyQtkHRrKjtI0py0cODjkj6eys+Q9CtJ90taKulcSd9K9X4vaadUbz9J96ZzPSJpYCux1kp6MJ3/AUl7pfLJkia2oa/jJRUlFTesadhUdTMza6NyT+UdDayIiKERMRi4F7gKGB0RI4HrgR+kupOA4RFxAHB2KnsO+HREDAe+B/xrSduDgb8DDkxtrEn15gCnpTpTgAnpXBPJVqptyVVka0YdANwMXNmejkbElIgoRESh+3Z92nOomZm1otxTefXAjyRdBvwGeIMsodwvCaA7sDLVXQDcLOlXwK9SWR9gmqQBQJAtld5odkSsBlZLagB+XXLOAyT1Ag4GZqRzAfRoJdZRZIkO4Ebg8vZ318zMyq3cCwUukTQCOBa4BHgQWBQRo5qpfhzwGeAE4EJJQ4DvkyWgL0mqBX5XUn9dyfbGks8byfrRDXgzIoaVrUNmZtbpyn2PaXeyKbabgCuATwJ9JY1K+2skDZLUDdgzImYD/0Q2UuqVfi9PzZ3RnnNHxFvAi5LGpHNJ0tBWDnkcOCVtjwMeac/5zMysY5R7Km8IcIWkjcB64BzgXeBKSX3S+X4KLAFuSmUCroyINyVdTjaVdxGwOa9SGAdck46vAW4F5rdQdwJwg6QLgFXA1zbjfAAM6d+Hor8db2ZWFoqISsdQ9QqFQhSLxUqHYWZWVSTVRUShabm/YGtmZrmy1X/BVtKFwJgmxTMi4gfN1Tczs8ra6hNTSkBOQmZmVcJTeWZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitb/ePinaF+eQO1kzbnDUpmtqWW+nVgWx2PmMzMLFecmMzMLFe2usSUlkxfmLY/J+k3afuLkiZVNjozM9uULnOPKSLuBu6udBxmZta63I2YJG0vaZak+ZIWShor6UBJj6eyJyX1TiOjRyTNTT8Hb6LdMyT9LG3XSnpQ0gJJD0jaK5VPlXRlOtcfJY3ujD6bmdn78jhiOhpYERHHAaTFBOcBYyPiKUk7AO8ArwBHRsRaSQOAW4APrOvRgquAaRExTdKZwJXASWlfP+BQYCDZCGtmcw1IGg+MB+i+Q9/299LMzJqVuxETUA8cKekySZ8G9gJWRsRTkC2hHhHvkq1Q+wtJ9cAMYP92nGMU8F9p+0ayRNToVxGxMSKeAT7SUgMRMSUiChFR6L5dn3ac2szMWpO7EVNELJE0AjgWuAR4sIWq3wReBoaSJdi1ZQphXcm2ytSmmZm1Ue5GTJJ2B9ZExE3AFcAngX6SDkz7e0vaBuhDNpLaCJwKdG/HaR4HTknb44BHyhW/mZltmdyNmIAhwBWSNgLrgXPIRi5XSfoQ2f2lI4CfA7dLOg24F/hLO84xAbhB0gXAKuBrZYzfzMy2gCKi0jFUvUKhEMVisdJhmJlVFUl1EfGBh9ZyN5VnZmZdmxOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlSh7flVd16pc3UDtpVqXDMLMyWnrpcZUOocvyiMnMzHKlyyamJkutn53eUm5mZhXWJafy0npO74mIaysVi5mZ/a2qTkySvgt8lWxNpT8BdUADMB7YFngBODUi1kiaSrbK7XDgMWBBSTuTgbcj4oeSPgpcC/QFNgBjIuIPndUnM7Ourmqn8tKKtl8mW1r9GKBxTY87IuLAiBgKPAt8veSwPYCDI+JbrTR9M3B1Ov5gYGUL5x8vqSipuGFNwxb2xszMGlXziOkQ4K6IWAuslfTrVD5Y0iXAjkAv4L6SY2ZExIaWGpTUG+gfEXcCpLabFRFTgCkAPfoN8GqLZmZlUrUjplZMBc6NiCHAxUDPkn3tWX7dzMwqoJoT02PACZJ6SuoFHJ/KewMrJdUA49rTYESsBpZJOglAUg9J25UzaDMza13VJqaIeAq4m+whhnuAerIHH74LPEGWuJ7bjKZPBc6TtAB4HNitLAGbmVmbKKJ6b49I6hURb6dRzcPA+IiY29lx9Og3IPqd/tPOPq2ZdSC/+aHjSaqLiELT8mp++AFgiqT9ye4jTatEUgIY0r8PRf8jNjMri6pOTBHxlUrHYGZm5VW195jMzGzr5MRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma5UtVvfsiL+uUN1E6aVekwzKwD+J15nc8jJjMzy5WqT0yS/kXSEZWOw8zMyqPqp/Ii4nsdfQ5J3Vtbkt3MzMqnqkZMkr4rabGkRyXdImmipKmSRqf9SyVdLGmupHpJA1N5X0n3S1ok6ZeSXpK0S9r3VUlPSnpa0nWSuqfytyX9SNJ8YFTFOm1m1sVUTWKSdCDwZWAocAzwgcWlklcjYgRwDTAxlf0z8GBEDAJmAnulNj8BjAUOiYhhwAbeX459e+CJiBgaEY82E894SUVJxQ1rGsrSRzMzq66pvEOAuyJiLbBW0q9bqHdH+l0H/F3aPhT4EkBE3CvpjVR+ODASeEoSwIeAV9K+DcDtLQUTEVOAKZCtYLs5HTIzsw+qpsTUVuvS7w1sun8iW/n2O83sW+v7SmZmna9qpvKAx4ATJPWU1As4vp3Hngwg6QvAh1P5A8BoSbumfTtJ2ruMMZuZWTtVzYgpIp6SdDewAHgZqAfaenPnYuAWSacCc4A/A6sj4lVJFwG/ldQNWA98A3ip7B0wM7M2qZrElPwwIiZL2g54GKiLiF807oyI2pLtIvC59LEBOCoi3pU0CjgwItalercBtzU9UUT06rBemJlZi6otMU2RtD/Qk+ze0Nw2HrcXMD2Niv4KnFXOoIb070PRry0xMyuLqkpMEfGVzTzueWB4mcMxM7MOUE0PP5iZWRfgxGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrlSVV+wzav65Q3UTppV6TDMzDrV0g56441HTGZmlitOTGZmlitOTGZmlitOTGZmlisdmpgkbS9plqT5khZKGivpcEnzJNVLul5SD0mHSfpVyXFHSrqzhTa7S5qa2quX9M1Ufpakp9K5bk9rNpHqji45/u2S7X9KbcyXdGkq20/SvZLqJD0iaWBH/X3MzOyDOnrEdDSwIiKGRsRg4F5gKjA2IoaQPRV4DjAbGCipbzrua8D1LbQ5DOgfEYNTGzek8jsi4sCIGAo8C3y9tcAkHQOcCHwyHXN52jUFmBARI4GJwM9bOH68pKKk4oY1bV1I18zMNqWjE1M9cKSkyyR9GqgFXoyIJWn/NOAzERHAjcBXJe0IjALuaaHNPwL7SrpK0tHAW6l8cBrh1APjgEGbiO0I4IaIWAMQEa9L6gUcDMyQ9DRwHdCvuYMjYkpEFCKi0H27Ppv6O5iZWRt16PeYImKJpBHAscAlwIOtVL8B+DWwFpgREe+20OYbkoYCRwFnAycDZ5KNxE6KiPmSzuD9ZdXfJSXgtILttq3E0A14MyKGtaV/ZmZWfh19j2l3YE1E3ARcQTYSqpX00VTlVOAhgIhYAawALuL96bnm2twF6BYRt6e6I9Ku3sBKSTVkI6ZGS4GRafuLQE3avh/4Wsm9qJ0i4i3gRUljUplSEjQzs07S0W9+GAJcIWkjsJ7sflIfsqmybYCngGtL6t8M9I2IZ1tpsz9wQxr9AHwn/f4u8ASwKv3uncp/AdwlaT7ZPa6/AETEvZKGAUVJfwX+G/h/ZEntGkkXkSWxW4H5m9l/MzNrJ2W3d/JB0s+AeRHxH5WOpT0KhUIUi8VKh2FmVlUk1UVEoWl5bt6VJ6mObDTz7UrHYmZmlZObxJQez/4bkp4AejQpPjUi6jsnKjMz62y5SUzNiYhPVjoGMzPrXH4lkZmZ5YoTk5mZ5UqunsqrVpJWA4srHUcZ7QK8Wukgysx9yr+trT+w9fWp3P3ZOyL6Ni3M9T2mKrK4uUceq5Wk4tbUH3CfqsHW1h/Y+vrUWf3xVJ6ZmeWKE5OZmeWKE1N5TKl0AGW2tfUH3KdqsLX1B7a+PnVKf/zwg5mZ5YpHTGZmlitOTGZmlitOTFtA0tGSFkt6QdKkSsezuSQtlVQv6WlJxVS2k6T7JT2ffn+40nG2RtL1kl6RtLCkrNk+pHW2rkzXbUFazDJXWujPZEnL03V6WtKxJfu+k/qzWNJRlYm6ZZL2lDRb0jOSFkn6x1RezdeopT5V83XqKelJSfNTny5O5ftIeiLFfpukbVN5j/T5hbS/tiyBRIR/NuMH6A78AdiXbFXc+cD+lY5rM/uyFNilSdnlwKS0PQm4rNJxbqIPnyFbNHLhpvpAtqLyPYCATwFPVDr+NvZnMjCxmbr7p39/PYB90r/L7pXuQ5MY+wEj0nZvYEmKu5qvUUt9qubrJKBX2q4hW9vuU8B04JRUfi1wTtr+B+DatH0KcFs54vCIafMdBLwQEX+MiL+SLSh4YoVjKqcTgWlpexpwUgVj2aSIeBh4vUlxS304EfjPyPwe2FFSv86JtG1a6E9LTgRujYh1EfEi8ALZv8/ciIiVETE3ba8GniVb9LOar1FLfWpJNVyniIi308ea9BPAYcDMVN70OjVev5nA4ZK0pXE4MW2+/sCfSj4vo/V/lHkWwG8l1Ukan8o+EhEr0/afgY9UJrQt0lIfqvnanZumtq4vmV6tqv6k6Z7hZP9vfKu4Rk36BFV8nSR1l/Q08ApwP9nI7s2IeDdVKY37vT6l/Q3AzlsagxOTARwaESOAY4BvSPpM6c7IxulV/b2CraEPwDXAfsAwYCXwo8qG036SegG3A+dHxFul+6r1GjXTp6q+ThGxISKGAXuQjegGdnYMTkybbzmwZ8nnPVJZ1YmI5en3K8CdZP8YX26cOkm/X6lchJutpT5U5bWLiJfTfzQ2Ar/g/WmgquiPpBqy/4DfHBF3pOKqvkbN9anar1OjiHgTmA2MIptKbXy3amnc7/Up7e8DvLal53Zi2nxPAQPS0yrbkt34u7vCMbWbpO0l9W7cBr4ALCTry+mp2unAXZWJcIu01Ie7gdPSk1+fAhpKppNyq8k9li+RXSfI+nNKekJqH2AA8GRnx9eadN/hP4BnI+LHJbuq9hq11Kcqv059Je2Ytj8EHEl272w2MDpVa3qdGq/faODBNPLdMpV+CqSaf8ieHFpCNgd7YaXj2cw+7Ev2pNB8YFFjP8jmiR8Angf+B9ip0rFuoh+3kE2brCebA/96S30ge/Lo6nTd6oFCpeNvY39uTPEuSP9B6FdS/8LUn8XAMZWOv5n+HEo2TbcAeDr9HFvl16ilPlXzdToAmJdiXwh8L5XvS5ZEXwBmAD1Sec/0+YW0f99yxOFXEpmZWa54Ks/MzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLlfwHH5sUVMquziAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "chinese_ingredient_df = create_ingredient_df(chinese_df)\r\n", + "chinese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfTElEQVR4nO3de5RXdb3/8ecLHEEdQkU0fngZNBRFBGH0eMtMTSs17QjiL0tMj/ws01ylHUrr4MnWsU4Xu1iGHsPMo1zSBcVKLe+aF2ZAbhJqggWSgOUkGoTj+/fH/ox8HecK35m9v8zrsdZ3zd6f/dmf/d6f9WXefPbesz+KCMzMzIqiV94BmJmZlXJiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtku7wC2BbvttlvU1NTkHYaZWUWpr69fFxEDm5c7MZVBTU0NdXV1eYdhZlZRJL3YUrkv5ZmZWaE4MZmZWaE4MZmZWaH4HpOZWTfYtGkTK1euZMOGDXmH0u369u3LnnvuSVVVVYfqOzGVwaJVDdRMmpN3GLaNWnHtKXmHYGWwcuVK+vXrR01NDZLyDqfbRASvvPIKK1euZMiQIR3ax5fyzMy6wYYNGxgwYECPSkoAkhgwYECnRopdnpgkXSppqaTbuvpY5SBphaTd8o7DzLY9PS0pNenseXfHpbzPAidGxMpuONbbJG0XEW925zHNzGzrdWliknQDsC/wG0l3APsBBwNVwOSImCXpPOBjwI5p+10R8aW0//qIqE7LY4FTI+I8SfsBtwE7AbOAyyKiWtJxwNeBvwHDgP0lfRK4FNgeeBL4bEQ0SjoJuBroA/wR+HRErC+JfQfgTuDOiLixyzrJzHqkct+XLve9yOrqatavX99+xS7QpZfyIuIi4CXgg2RJ5P6IODyt/7eknVLVUcB4YAQwXtJe7TT9feD7ETECaD4SGw18PiL2l3RgavfoiBgFNALnpEt1V5GN5EYDdcAXStqoBn4F3N5aUpI0UVKdpLrGNxra7wwzM+uQ7nz44SRgkqSngQeBvsDeadt9EdEQERuAZ4B92mnrSGBGWv7fZtueiojlafkEYAwwNx33BLIR3BHAQcBjqXxCs2POAn4WET9vLYCImBIRtRFR23vH/u2Ea2aWr0mTJnH99de/vT558mSuueYaTjjhBEaPHs2IESOYNWvWu/Z78MEHOfXUU99e/9znPsfUqVMBqK+v5wMf+ABjxozh5JNPZvXq1WWJtTsTk4AzI2JU+uwdEUvTto0l9RrZfImxdN73vh08zuvNjnlLyTEPiIjJqfy3JeUHRcQFJfs9BnxYPfVOpZltc8aPH8/06dPfXp8+fToTJkzgrrvuYt68eTzwwAN88YtfJCLaaGWzTZs2cckllzBz5kzq6+s5//zzufLKK8sSa3cmpnuAS5p+2Us6tAP7vCzpQEm9gI+XlD8BnJmWz25j//uAsZJ2T8fcVdI+af+jJb0vle8kaf+S/b5Gdp/q+uYNmplVokMPPZQ1a9bw0ksvsWDBAnbZZRfe+9738pWvfIVDDjmEE088kVWrVvHyyy93qL1ly5axePFiPvShDzFq1CiuueYaVq4szzNu3fkHtl8HrgMWpkSzHDi17V2YBPwaWEt2H6g6lV8G/ELSlcDdQIs3eSLiGUlXAfemY24CLo6IJ9JDF7dL6pOqXwU8W7L754GbJX2r6WEMM7NKNm7cOGbOnMlf/vIXxo8fz2233cbatWupr6+nqqqKmpqad/290Xbbbcdbb7319nrT9ohg+PDhPP7442WPs8sTU0TUlKz+vxa2TwWmlqyfWrI8E5jZQrOrgCMiIiSdDRyQ6j9Idv+qtP1pwLQWjns/cFg78X66hWObmVWk8ePHc+GFF7Ju3Toeeughpk+fzu67705VVRUPPPAAL7747lko9tlnH5555hk2btzIP/7xD+677z6OOeYYDjjgANauXcvjjz/OkUceyaZNm3j22WcZPnz4VsdZqa8kGgP8KF0WfBU4P89gRgzuT51fG2NmnZDHq6aGDx/Oa6+9xuDBgxk0aBDnnHMOp512GiNGjKC2tpZhw4a9a5+99tqLs846i4MPPpghQ4Zw6KHZXZjtt9+emTNncumll9LQ0MCbb77JZZddVpbEpI7e6LLW1dbWhicKNLO2LF26lAMPPDDvMHLT0vlLqo+I2uZ1/a48MzMrFCcmMzMrFCcmM7Nu0lNvnXT2vJ2YzMy6Qd++fXnllVd6XHJqmo+pb9+OviOhcp/KMzOrKHvuuScrV65k7dq1eYfS7ZpmsO0oJyYzs25QVVXV4RlcezpfyjMzs0JxYjIzs0JxYjIzs0LxPaYyWLSqoeyzUZptiTxec2NWbh4xmZlZoTgxmZlZoTgxtUMZ95OZWTcp9C9cSTWS/iDpNklLJc2UtKOkMZIeklQv6R5Jg1L9ByV9X9LTkhZLOjyVT5Z0q6THJT0n6cKSY1whaa6khZKuLjnuMkk/BxYDe+Vx/mZmPVElPPxwAHBBRDwm6WbgYrJp1k+PiLWSxgPfYPOcTDtGxChJxwI3Awen8kOAI4CdgPmS5qRtQ4HDAQGz035/SuUTIuKJloKSNBGYCND7PQPLfc5mZj1WJSSmP0fEY2n5F8BXyBLKb7N5AukNrC6pfztARDws6T2Sdk7lsyLiH8A/JD1AloyOAU4C5qc61WQJ6U/Ai60lpdT+FGAKQJ9BQ3vWy6/MzLpQJSSm5r/0XwOWRMSRHawfbZQL+K+I+GnpBkk1wOudjtTMzLZaoe8xJXtLakpCnwCeAAY2lUmqklQ6l+/4VH4M0BARDan8dEl9JQ0AjgPmAvcA50uqTvsMlrR7l5+RmZm1qhJGTMuAi9P9pWeAH5IllB9I6k92DtcBS1L9DZLmA1Vsvu8EsBB4ANgN+HpEvAS8JOlA4PF0WXA98EmgscvPyszMWqQizw2SLqn9OiIObqdqU/0Hgcsjoq5Z+WRgfUR8u8whAlBbWxt1dXXtVzQzs7dJqo+I2ubllXApz8zMepBCX8qLiBVsfty7I/WPa6V8cnkiMjOzruYRk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFUqh/8C2Uixa1UDNpDl5h2HWI6y49pS8Q7Au5hGTmZkVihOTmZkVSq6JSdIZkg7qQL2pksa2UH6cpF+XMZ5aST9Iy+dJ+lG52jYzs47Je8R0BtBuYuouEVEXEZfmHYeZWU/WZmKSdK2ki0vWJ0u6XNIVkuZKWijp6pLtX5W0TNKjkm6XdHkq30/S3ZLqJT0iaZiko4CPAf8t6elU58LU7gJJv5S0Y0k4J0qqk/SspFNbiHUnSTdLekrSfEmnt3FefSX9TNKiVPeDqbysIzAzM+u89kZM04CzStbPAtYCQ4HDgVHAGEnHSjoMOBMYCXwEKJ38aQpwSUSMAS4HfhwRvwdmA1dExKiI+CNwZ0QcFhEjgaXABSVt1KRjngLcIKlvs1ivBO6PiMOBD5IlvJ1aOa+LgYiIEcD/BW5pob02SZqYEmVd4xsN7e9gZmYd0ubj4hExX9Lukv4PMBD4GzACOAmYn6pVkyWqfsCsiNhANr35rwAkVQNHATPS9OUAfVo55MGSrgF2Tu3eU7JtekS8BTwn6QVgWLN9TwI+1jRKA/oCe5MluOaOIZuinYj4g6QXgf3b6ovmImIKWcKlz6ChxZ0G2MyswnTk75hmAGOB95KNoPYB/isiflpaSdJlrezfC3g1IkZ14FhTgTMiYoGk84DjSrY1/+XffF3AmRGxrAPHMTOzgurIww/TgLPJktMMslHM+WkkhKTBknYHHgNOS/dvqoFTASLi78BySeNSfUkamdp+jWyk1aQfsFpSFXBOszjGSeolaT9gX6B5AroHuERpWCbp0DbO6ZGm9iXtTzayckIzMyuAdhNTRCwhSxirImJ1RNwL/C/wuKRFwEygX0TMJbtntBD4DbAIaLr5cg5wgaQFwBKg6cGEO4Ar0gMI+wFfBZ4kS3J/aBbKn4CnUtsXpUuGpb4OVAELJS1J6635MdArxT8NOC8iNrbXF2Zm1vUUUb7bI5KqI2J9epruYWBiRMwr2wEKqra2Nurq6vIOw8ysokiqj4ja5uXlflfelPQHs32BW3pCUjIzs/Iqa2KKiE+Us72tJelk4JvNipdHxMfziMfMzNq3Tb9dPCLu4Z2PnJuZWcHl/UoiMzOzd3BiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtmm/46puyxa1UDNpDl5h2HWY6y49pS8Q7Au5BGTmZkVSsUnJkn/KenEvOMwM7PyqPhLeRHxta4+hqTeEdHY1ccxM7MKGzFJ+qqkZZIelXS7pMslTZU0Nm1fIelqSfMkLZI0LJUPlPRbSUsk3STpRUm7pW2flPSUpKcl/VRS71S+XtJ30hxSR+Z20mZmPUzFJCZJhwFnAiOBjwDvmsMjWRcRo4GfAJensv8A7o+I4WQTG+6d2jwQGA8cnaZ+b2TzzLk7AU9GxMiIeLSFeCZKqpNU1/hGQ/PNZma2hSrpUt7RwKw0c+0GSb9qpd6d6Wc98K9p+Rjg4wARcbekv6XyE4AxwNw0I/sOwJq0rRH4ZWvBRMQUYApAn0FDyzfboplZD1dJiamjmqZIb6T98xPZhIZfbmHbBt9XMjPrfhVzKQ94DDhNUl9J1cCpndz3LABJJwG7pPL7gLGSdk/bdpW0TxljNjOzTqqYEVNEzJU0G1gIvAwsAjp6c+dq4HZJnwIeB/4CvBYR6yRdBdwrqRewCbgYeLHsJ2BmZh1SMYkp+XZETJa0I/AwUB8RNzZtjIiakuU64Li02gCcHBFvSjoSOCwiNqZ604BpzQ8UEdVddhZmZtaqSktMUyQdBPQluzc0r4P77Q1MT6OifwIXljOoEYP7U+dXpJiZlUVFJaaI+MQW7vcccGiZwzEzsy5QSQ8/mJlZD+DEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmhVJRb34oqkWrGqiZNCfvMMxsK63wq8UKwSMmMzMrlB6bmCSdJ+lHafkiSefmHZOZmfXQS3mS3nHeEXFDXrGYmdk7VXRikvRV4JPAWuDPQD3Z3EsTge2B54FPRcQbkqYCG8jeMv4Y2YSDTe1MBtZHxLclvQ+4ARhINj37uIj4Y3edk5lZT1exl/IkHQacCYwEPgLUpk13RsRhETESWApcULLbnsBREfGFNpq+Dbg+7X8UsLqV40+UVCeprvGNjk6ka2Zm7ankEdPRwKyI2ABskPSrVH6wpGuAnYFq4J6SfWZERGNrDUrqBwyOiLsAUtstiogpwBSAPoOGxladiZmZva1iR0xtmAp8LiJGAFeTzXbb5PVcIjIzsw6r5MT0GHCapL6SqoFTU3k/YLWkKuCczjQYEa8BKyWdASCpj6Qdyxm0mZm1rWITU0TMBWaTPcTwG2AR2YMPXwWeJEtcf9iCpj8FXCppIfB74L1lCdjMzDpEEZV7e0RSdUSsT6Oah4GJETGvu+PoM2hoDJpwXXcf1szKzG9+6F6S6iOitnl5JT/8ADBF0kFk95FuySMpAYwY3J86f6HNzMqiohNTRHwi7xjMzKy8KvYek5mZbZucmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFAq+s0PRbFoVQM1k+bkHYaZdTG/S697eMRkZmaF4sRkZmaF4sRkZmaFUojEJOlcSQslLZB0q6TTJD0pab6k30naQ1IvSc9JGpj26SXpeUkD0+eXkuamz9GpzmRJN0t6UNILki5N5TWSlkq6UdISSfdK2iFt20/S3ZLqJT0iaVh+PWNm1vPknpgkDQeuAo6PiJHA54FHgSMi4lDgDuBLEfEW8As2T5d+IrAgItYC3we+FxGHAWcCN5UcYhhwMnA48B9pynWAocD1ETEceDXtBzAFuCQixgCXAz9uJe6Jkuok1TW+0bDV/WBmZpkiPJV3PDAjItYBRMRfJY0ApkkaBGwPLE91bwZmAdcB5wM/S+UnAgdJamrzPZKq0/KciNgIbJS0BtgjlS+PiKfTcj1Qk/Y5CphR0lafloKOiClkSYw+g4ZW7jTAZmYFU4TE1JIfAt+NiNmSjgMmA0TEnyW9LOl4shFQ0+ipF9kIa0NpIym5bCwpamTzOTcv3yG182pEjCrr2ZiZWYflfikPuB8YJ2kAgKRdgf7AqrR9QrP6N5Fd0psREY2p7F7gkqYKkrYosUTE34HlksaldiRp5Ja0ZWZmWyb3xBQRS4BvAA9JWgB8l2yENENSPbCu2S6zgWo2X8YDuBSoTQ9QPANctBUhnQNckGJZApy+FW2ZmVknKaKybo9IqiV70OH9ecfSpLa2Nurq6vIOw8ysokiqj4ja5uVFvcfUIkmTgM+w+d6SmZltY3K/lNcZEXFtROwTEY/mHYuZmXWNikpMZma27XNiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQqmoNz8U1aJVDdRMmpN3GGbWDVZce0reIWzzPGIyM7NCcWIyM7NCqZjEJOlj6SWu5WhrsqTLy9GWmZmVV0XcY5K0XUTMJpuLKa/jv5nHsc3MeppuHzFJOjdN6LdA0q2SaiTdn8ruk7R3qjdV0g2SngS+Jek8ST9K206T9KSk+ZJ+J2mPVD5Z0s2SHpT0gqRLS457paRnJT0KHFBSvp+kuyXVS3pE0rCWjt+NXWRm1qN164hJ0nDgKuCoiFiXplG/BbglIm6RdD7wA+CMtMueqW6jpPNKmnoUOCIiQtK/AV8Cvpi2DQM+CPQDlkn6CXAIcDYwiuyc5wH1qf4U4KKIeE7SvwA/Bo5vfvwWzmUiMBGg93sGbk23mJlZie6+lHc8MCMi1gFExF8lHQn8a9p+K+8cncxoKSmQJYxpkgYB2wPLS7bNiYiNwEZJa4A9gPcDd0XEGwCSZqef1cBRZNO4N+3fpwPHJyKmkCU1+gwaWlnTAJuZFVjR7zG93kr5D4HvRsRsSccBk0u2bSxZbqTtc+wFvBoRozp5fDMz6yLdfY/pfmCcpAEA6VLe78kus0E2ZfojHWinP7AqLU/oQP2HgTMk7SCpH3AaQET8HVguaVyKR5JGdvRkzMys/Lp1xBQRSyR9A3hIUiMwH7gE+JmkK4C1wKc70NRksstvfyNLdkPaOe48SdOABcAaYG7J5nOAn0i6CqgC7kj1zMwsB4rw7ZGtVVtbG3V1dXmHYWZWUSTVR0Rt8/KK+QNbMzPrGZyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUIr+dvGKsGhVAzWT5uQdhpkVzIprT8k7hIrkEZOZmRVKj0pMkv5T0ol5x2FmZq3rUZfyIuJrecdgZmZtq/gRk6QvSFqcPpdJqpG0VNKNkpZIulfSDqnuVElj0/IJkuZLWiTpZkl9UvkKSVdLmpe2Dcvz/MzMepqKTkySxpBNLPgvwBHAhcAuwFDg+ogYDrwKnNlsv77AVGB8RIwgGzl+pqTKuogYDfwEuLyVY0+UVCeprvGNhrKel5lZT1bRiQk4BrgrIl6PiPXAncD7geUR8XSqUw/UNNvvgFTn2bR+C3BsyfY729gXgIiYEhG1EVHbe8f+W30iZmaWqfTE1JqNJcuNdP5eWtP+W7KvmZlthUpPTI8AZ0jaUdJOwMdTWXuWATWS3pfWPwU81EUxmplZJ1T0aCAi5kmaCjyVim4C/taB/TZI+jQwQ9J2wFzghi4L1MzMOkwRkXcMFa/PoKExaMJ1eYdhZgXjNz+0TVJ9RNQ2L6/oEVNRjBjcnzp/Ac3MyqLS7zGZmdk2xonJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxa8kKoNFqxqomTQn7zDMrAL4/Xnt84jJzMwKJdfEJGlnSZ/NM4YUx02SDso7DjMzy3/EtDPQqcQkqXc5A5DUOyL+LSKeKWe7Zma2ZfJOTNcC+0l6WtJcSb9u2iDpR5LOS8srJH1T0jxgnKQHJX1PUp2kpZIOk3SnpOckXVPSxiclPZXa/2lTUpO0XtJ3JC0Ajkzt1aZtH5Y0T9ICSfd1Z2eYmVn+iWkS8MeIGAVc0U7dVyJidETckdb/mSaYugGYBVwMHAycJ2mApAOB8cDRqf1G4Jy0707AkxExMiIebTqApIHAjcCZETESGNdaMJImpsRY1/hGQ2fP28zMWlFJT+VNa7Y+O/1cBCyJiNUAkl4A9gKOAcYAcyUB7ACsSfs0Ar9s4RhHAA9HxHKAiPhra8FExBRgCmQz2G7B+ZiZWQuKlJje5J0juL7Ntr/ebH1j+vlWyXLT+naAgFsi4sstHGtDRDRuRaxmZtZF8r6U9xrQLy2/CBwkqY+knYETtrLt+4CxknYHkLSrpH3a2ecJ4FhJQ5r22coYzMysk3IdMUXEK5Iek7QY+A0wHVgMLAfmb2Xbz0i6CrhXUi9gE9l9qBfb2GetpInAnWmfNcCHtiYOMzPrHEX49sjW6jNoaAyacF3eYZhZBfCbHzaTVJ8eYnuHIt1jqlgjBvenzl82M7OyyPsek5mZ2Ts4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4zQ9lsGhVAzWT5uQdhplZt+qq1yt5xGRmZoXixGRmZoXS4xOTpIsknZt3HGZmlunx95gi4oa8YzAzs80qbsQk6VxJCyUtkHSrpKmSxpZsX59+HifpIUmzJL0g6VpJ50h6StIiSfulepMlXZ6WH5T0zVTnWUnvz+cszcx6ropKTJKGA1cBx0fESODz7ewyErgIOBD4FLB/RBwO3ARc0so+26U6lwH/0UYsEyXVSaprfKOhk2diZmatqajEBBwPzIiIdQAR8dd26s+NiNURsRH4I3BvKl8E1LSyz53pZ30bdYiIKRFRGxG1vXfs38HwzcysPZWWmFryJuk8JPUCti/ZtrFk+a2S9bdo/f5aU53GNuqYmVkXqbTEdD8wTtIAAEm7AiuAMWn7x4CqfEIzM7NyqKgRQUQskfQN4CFJjcB84N+BWZIWAHcDr+cZo5mZbR1FRN4xVLza2tqoq6vLOwwzs4oiqT4iapuXV9qlPDMz28Y5MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4qbwykPQasCzvODphN2Bd3kF0guPtWpUWL1RezI63ZftExMDmhRX1d0wFtqylRx6LSlKd4+06jrfrVVrMjrdzfCnPzMwKxYnJzMwKxYmpPKbkHUAnOd6u5Xi7XqXF7Hg7wQ8/mJlZoXjEZGZmheLEZGZmheLEtBUkfVjSMknPS5qUdzwtkbRC0iJJT0uqS2W7SvqtpOfSz11yjvFmSWskLS4pazFGZX6Q+nyhpNEFiXeypFWpn5+W9NGSbV9O8S6TdHIO8e4l6QFJz0haIunzqbyQfdxGvIXsY0l9JT0laUGK9+pUPkTSkymuaZK2T+V90vrzaXtNQeKdKml5Sf+OSuXd/32ICH+24AP0JpuufV+yWXMXAAflHVcLca4AdmtW9i1gUlqeBHwz5xiPBUYDi9uLEfgo8BtAwBHAkwWJdzJweQt1D0rfjT7AkPSd6d3N8Q4CRqflfsCzKa5C9nEb8Rayj1M/VaflKuDJ1G/TgbNT+Q3AZ9LyZ4Eb0vLZwLRu7t/W4p0KjG2hfrd/Hzxi2nKHA89HxAsR8U/gDuD0nGPqqNOBW9LyLcAZOcZCRDwM/LVZcWsxng78PDJPADtLGtQ9kWZaibc1pwN3RMTGiFgOPE/23ek2EbE6Iual5deApcBgCtrHbcTbmlz7OPXT+rRalT4BHA/MTOXN+7ep32cCJ0hSN4XbVryt6fbvgxPTlhsM/LlkfSVt/+PJSwD3SqqXNDGV7RERq9PyX4A98gmtTa3FWOR+/1y61HFzyeXRQsWbLhsdSva/5ML3cbN4oaB9LKm3pKeBNcBvyUZtr0bEmy3E9Ha8aXsDMCDPeCOiqX+/kfr3e5L6NI836fL+dWLa9h0TEaOBjwAXSzq2dGNkY/VC/81AJcQI/ATYDxgFrAa+k2847yapGvglcFlE/L10WxH7uIV4C9vHEdEYEaOAPclGa8NyDqlNzeOVdDDwZbK4DwN2Bf49r/icmLbcKmCvkvU9U1mhRMSq9HMNcBfZP5qXm4bi6eea/CJsVWsxFrLfI+Ll9I/9LeBGNl9KKkS8kqrIfsnfFhF3puLC9nFL8Ra9jwEi4lXgAeBIskteTe8jLY3p7XjT9v7AK90cKvCOeD+cLqFGRGwEfkaO/evEtOXmAkPTkzfbk93EnJ1zTO8gaSdJ/ZqWgZOAxWRxTkjVJgCz8omwTa3FOBs4Nz0pdATQUHI5KjfNrrl/nKyfIYv37PQk1hBgKPBUN8cm4H+ApRHx3ZJNhezj1uItah9LGihp57S8A/AhsvtiDwBjU7Xm/dvU72OB+9OINc94/1DynxSR3Q8r7d/u/T509dMV2/KH7GmVZ8muJ1+ZdzwtxLcv2dNKC4AlTTGSXc++D3gO+B2wa85x3k52aWYT2fXrC1qLkezJoOtTny8CagsS760pnoVk/5AHldS/MsW7DPhIDvEeQ3aZbiHwdPp8tKh93Ea8hexj4BBgfoprMfC1VL4vWYJ8HpgB9EnlfdP682n7vgWJ9/7Uv4uBX7D5yb1u/z74lURmZlYovpRnZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF8v8BEBScEicaSW4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "indian_ingredient_df = create_ingredient_df(indian_df)\r\n", + "indian_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAAD4CAYAAABYIGfSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5xXVb3/8dcbHCEFp1SyCbQho0hAQAYTNPV4KfOSdhTpRF7SXxz9HbFOWnHSftFJfz/NfuZdo1JILQXKS3KCTPBOyowIwyWsRI8gKd5GkSCEz/ljr5Ev48www56ZLzPf9/PxmMfs79prr/XZCx58WGvv796KCMzMzGz7dCt2AGZmZp2ZE6mZmVkOTqRmZmY5OJGamZnl4ERqZmaWw07FDsA61p577hmVlZXFDsPMrFOpqal5JSL6NLbPibTEVFZWUl1dXewwzMw6FUnPN7XPS7tmZmY5OJGamZnl4ERqZmaWg6+RmpnZe2zcuJGVK1eyfv36YofSoXr27Em/fv0oKytr8TFOpCWmdlUdlRNnFjsM68Keu+y4YodgbWDlypX07t2byspKJBU7nA4REbz66qusXLmS/v37t/g4L+2amdl7rF+/nj322KNkkiiAJPbYY49Wz8KdSDuYpJMk7deCelMkndJI+eGS7muf6MzMtiilJFpve87ZibTjnQRsM5GamVnn4GukDUi6DHghIq5PnycBawEBpwI9gLsi4ntp/3eBLwNrgBeAmoj4kaR9geuBPsA64KvA7sDngcMkXQycDBwBjAd2Bv4CnBYR61I4R0maCOwGfCMitpqJStoVuBYYDJQBkyLinjYfFDMreW19b0VbX0vv1asXa9eubdM2W8oz0ve6kyxh1juVLEkOAA4EhgEjJB0qaSRZMhwKfA6oKjhuMjAhIkYAFwI3RMTjwL3ANyNiWET8FfhNRIyMiKHAMuDsgjYqU5/HATdJ6tkg1ouAORFxIPBPwBUpuW5F0nhJ1ZKqN62r244hMTOzpjiRNhARC4APSvqwpKHA68AQ4DPAAuApYCBZYj0YuCci1kfEW8BvAST1AkYD0yU9DfwEqGiiy8GSHpFUC4wDBhXsmxYRmyPiz8Czqd9CnwEmpj4eBHoC+zRyTpMjoioiqrrvUt7KETEz63gTJ07k+uuvf/fzpEmTuOSSSzjyyCM54IADGDJkCPfc894FuAcffJDjjz/+3c/nnXceU6ZMAaCmpobDDjuMESNG8NnPfpbVq1e3SaxOpI2bDpwCjCWboQr4f2kWOSwiPhYRP2/m+G7AGwX1h0XEJ5uoOwU4LyKGAN8nS4b1okHdhp8FnFzQxz4Rsaxlp2hmtuMaO3Ys06ZNe/fztGnTOOOMM7jrrrt46qmnmDt3LhdccAERDf9ZbNzGjRuZMGECM2bMoKamhrPOOouLLrqoTWJ1Im3cncAXyZLpdGA2cFaaaSKpr6QPAo8BJ0jqmfYdDxARbwIrJI1J9ZVmtwBvAb0L+uoNrJZURjYjLTRGUrd0vfWjwPIG+2cDE5RuM5M0vA3O3cys6IYPH87LL7/Miy++yMKFC/nABz7Ahz70Ib7zne+w//77c9RRR7Fq1SpeeumlFrW3fPlyFi9ezNFHH82wYcO45JJLWLlyZZvE6puNGhERSyT1BlZFxGqyRPdJYF7KWWuBL0fEfEn3AouAl4BaoP4i5DjgxnRTURlwB7Aw/f6ppPPJEvV3gSfIrsM+wdZJ9r+BJ8luNjonItY3uDX7B8BVwCJJ3YAVpGRuZtbZjRkzhhkzZvC3v/2NsWPHcvvtt7NmzRpqamooKyujsrLyPd/53Gmnndi8efO7n+v3RwSDBg1i3rx5bR6nE2kT0lJr4eergasbqfqjiJgkaRfgYaAm1V8BHNNIu4+x9ddfbkw/Deud2URcD5JdDyUi/g786zZPxsysExo7dixf/epXeeWVV3jooYeYNm0aH/zgBykrK2Pu3Lk8//x732z2kY98hKVLl7Jhwwb+/ve/88ADD3DIIYfwiU98gjVr1jBv3jxGjRrFxo0beeaZZxg0aFAjPbeOE2l+k9MDFnoCUyPiqWIH1Jwhfcup9iPczKyVivHox0GDBvHWW2/Rt29fKioqGDduHCeccAJDhgyhqqqKgQMb3n8Je++9N6eeeiqDBw+mf//+DB+eXfHaeeedmTFjBueffz51dXW88847fP3rX2+TRKqWXqi1rqGqqir8Ym8z25Zly5bxyU82dY9k19bYuUuqiYiqxur7ZiMzM7McnEjNzMxycCI1M7NGleKlv+05ZydSMzN7j549e/Lqq6+WVDKtfx9pz54Nn8baPN+1a2Zm79GvXz9WrlzJmjVrih1Kh+rZsyf9+vVr1TFOpGZm9h5lZWX079+/2GF0Cl7aNTMzy8GJ1MzMLAcnUjMzsxx8jbTE1K6qa/M33Zu1VDEeM2fW3jwjNTMzy8GJ1MzMLIeiJFJJJ6U3prT2uLXtEU9XIWmKpFOKHYeZWSlpVSJVpi2S70ls/U5OMzOzTmmbSVFSpaTlkn4BLAZOk1QrabGkywvq3SipWtISSd8vKL9M0lJJiyT9SNJo4PPAFZKelrRv+pklqUbSI5IGpmP7S5qX+rtkG3FWSHo4tblY0qdT+WdSG09Jmi6pV2NxpbITJD0haYGkP0jaK5VPkjQ1xfa8pH+W9MMU1yxJZaneCEkPpfOYLamimXjPL+j/jlS2q6SbJT2ZYjgxlXeXdIWk+an+v6ZySbou/fn8AfhgE32NT3821ZvW1TX7521mZq3T0rt2BwBnAP8N/BEYAbwO/F7SSRFxN3BRRLwmqTvwgKT9gVXAF4CBERGS3h8Rb0i6F7gvImYASHoAOCci/izpU8ANwBHA1cCNEfELSf+2jRi/BMyOiEtTDLtI2hO4GDgqIt6W9G3gG5KubxhXauNR4KBU9r+AbwEXpH37Av9ENpOeB5wcEd+SdBdwnKSZwLXAiRGxRtJY4FLgrCbinQj0j4gNBf1fBMyJiLNS2ZMpQY4D6iJipKQewGOSfg8MBz6RYtoLWArc3LCjiJgMTAboUTGgdB6caWbWAVqaSJ+PiD+mGdKDEbEGQNLtwKHA3cCpksanNivI/nFfCqwHfi7pPuC+hg2nGeJoYLqk+uIe6ffBwMlp+1bgcpo2H7g5zQ7vjoinJR2W4ngstb0zWRKsayKufsCdaSa5M7CioP3fRcRGSbVAd2BWKq8FKskS2mDg/tRXd2B1M/EuAm6XdDfZ+AF8Bvi8pAvT557APql8f225/llO9p+bQ4FfRcQm4EVJc5rpz8zM2kFLE+nbze2U1B+4EBgZEa9LmgL0jIh3JB0IHAmcApxHNtMs1A14IyKGNdF8i2ZQEfGwpEOB44Apkq4kmzXfHxH/0kjMjcV1LXBlRNwr6XBgUsEhG1I/myVtjC2vRNhMNo4ClkTEqJbEm+I8FDgBuEjSkNTGyRGxvEGsAiZExOwG5ce2sC8zM2snrb1x6EngMEl7puXTfwEeAnYjS7Z16bri5+Dd2WZ5RPwX8O/A0NTOW0BvgIh4E1ghaUw6RpLq6z0GfDFtj2suMEkfAV6KiJ8CPwMOIFuGPljSx1KdXSV9vJm4ysmWoyFbym6N5UAfSaNSX2WSBjURazdg74iYC3w79dsLmA1MSIkTScPTIbOBcwuuxX5c0q7Aw8DYdA21gmzp2czMOlCrnmwUEaslTQTmks2eZkbEPQCSFgB/Al4gS4CQJct7JPVM9b+Ryu8AfirpfLIZ4TjgRkkXA2Vp/0Lga8Av07XNe7YR3uHANyVtBNYCp6drlWcCv0rXFiG7ZvpWE3FNIltifh2YA7T41QcR8Y+09HqNpHKysb0KWNJI9e7AbamegGvSteMfpGMWpWS7Ajie7D8GlcBTKcmuIbvz+S6ymfRSsuvX87YV55C+5VT76TJmZm1GpfTSVoOqqqqorq4udhhmZp2KpJqIqGpsn59sZGZmlkOne2h9uinn1gbFGyLiU8WIZ1vSV20OblB8dUTcUox4zMysbXW6RBoRtUBTd/jucCJiW99/NTOzTsxLu2ZmZjk4kZqZmeXgRGpmZpaDE6mZmVkOTqRmZmY5OJGamZnl0Om+/mL51K6qo3LizGKHYbaV5/zYSuvEPCM1MzPLwYnUzMwsByfSIpC0ttgxmJlZ23AiNTMzy8GJtJXSy8FnSlooabGksZKOlLRAUq2kmyX1kHSEpLsLjjta0l0Fn38saYmkByT1SWX7SpolqUbSI5IGpvITJD2R+vhDenk6kial/h6U9Gx6v6uZmXUgJ9LWOwZ4MSKGRsRgYBYwBRgbEUPI7oQ+l+zl5wPrkyTwFeDmtL0rUB0Rg4CHgO+l8snAhIgYAVwI3JDKHwUOiojhZC89/1ZBPAOBzwIHAt+TVNYwYEnjJVVLqt60ri73AJiZ2RZOpK1XCxwt6XJJnwYqgRUR8UzaPxU4NLI3pt8KfFnS+4FRwO9Snc3AnWn7NuAQSb2A0cB0SU8DPwEqUp1+wGxJtcA3gUEF8cyMiA0R8QrwMrBXw4AjYnJEVEVEVfddyttgCMzMrJ6/R9pKEfGMpAOAY4FLgDnNVL8F+C2wHpgeEe801SzZf2reiIjGXhF3LXBlRNwr6XBgUsG+DQXbm/CfqZlZh/KMtJUkfRhYFxG3AVeQzTQrJX0sVTmNbLmWiHgReBG4mCyp1usGnJK2vwQ8GhFvAiskjUn9SNLQVKccWJW2z2iXEzMzs+3i2UvrDQGukLQZ2Eh2PbScbEl2J2A+cFNB/duBPhGxrKDsbeBASReTLceOTeXjgBtTeRnZ9dCFZDPQ6ZJeJ5sB92+nczMzs1ZSdinP2ouk64AFEfHzYscCUFVVFdXV1cUOw8ysU5FUExFVje3zjLQdSaohm31eUOxYzMysfTiRtqP0NRYzM+vCfLORmZlZDk6kZmZmOTiRmpmZ5eBEamZmloMTqZmZWQ5OpGZmZjk4kZqZmeXgRGpmZpaDH8hQYmpX1VE5cWaxwzBrV89ddlyxQ7AS4hmpmZlZDk6kOzhJ/5VeDG5mZjsgL+3uwCQJOD4iNhc7FjMza5xnpDsYSZWSlkv6BbAY2CRpz7TvdEmLJC2UdGsq6yPp15Lmp5+Dixm/mVmp8Yx0xzQAOCMi/ijpOQBJg4CLgdER8Yqk3VPdq4EfR8SjkvYBZgOfLGxM0nhgPED33fp00CmYmZUGJ9Id0/MR8ccGZUcA0yPiFYCIeC2VHwXsl60CA7CbpF4Rsba+ICImA5MBelQM8JvczczakBPpjuntVtTtBhwUEevbKxgzM2uar5F2HnOAMZL2AChY2v09MKG+kqRhRYjNzKxkOZF2EhGxBLgUeEjSQuDKtOt8oCrdhLQUOKdYMZqZlSIv7e5gIuI5YHDB58qC7anA1Ab1XwHGdlB4ZmbWgBNpiRnSt5xqPz7NzKzNeGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7Mc/IjAElO7qo7KiTOLHYZZUT3nx2RaG/KM1MzMLAcnUjMzsxy6XCKVVClpcSPlD0qq2o72zpR0XdtEZ2ZmXU2XS6QGknzt28ysg3TVRLqTpNslLZM0Q9IuhTsl3SipWtISSd8vKB8p6XFJCyU9Kal3g+OOkzRP0p6NdSppiqSbUtvPSDo+lXeXdIWk+ZIWSfrXVH64pIclzZS0PB3bLe1bK+nHKcYHJPVJ5ftKmiWpRtIjkgY26PsJ4IcN4hqfYqretK4u9+CamdkWXTWRfgK4ISI+CbwJ/O8G+y+KiCpgf+AwSftL2hm4E/haRAwFjgL+Xn+ApC8AE4FjI+KVZvquBA4EjgNuktQTOBuoi4iRwEjgq5L6p/oHAhOA/YB9gX9O5bsC1RExCHgI+F4qnwxMiIgRwIXADQV99wNGR8Q3CgOKiMkRURURVd13KW8mdDMza62uugT4QkQ8lrZvA85vsP9USePJzr+CLIkFsDoi5gNExJsAkgCOAKqAz9SXN2NaRGwG/izpWWAg8Blgf0mnpDrlwADgH8CTEfFs6utXwCHADGAzWWKvP4ffSOoFjAamp7gAehT0PT0iNm0jPjMza0NdNZFGU5/TTPBCYGREvC5pCtBzG+39Ffgo8HGgejv6FtkscnbhDkmHNxdrI+XdgDciYlgTdd7eRmxmZtbGuurS7j6SRqXtLwGPFuzbjSzh1EnaC/hcKl8OVEgaCSCpd8FNO88DJwO/kDRoG32PkdRN0r5kyXc5MBs4V1JZavvjknZN9Q+U1D9dGx1bEGs3oH4G+yXg0TQbXiFpTGpHkoa2dFDMzKztddVEuhz4N0nLgA8AN9bviIiFwALgT8AvgcdS+T/IEtm1khYC91MwU42IPwHjyJZV922m7/8GngR+B5wTEeuBnwFLgafSV3N+wpbVgPnAdcAyYAVwVyp/myzJLiZbWv7PVD4OODvFuAQ4sVUjY2ZmbUoRTa0kWmulZeL7ImJGC+sfDlwYEcc3sm9tRPRq2wihqqoqqqu3tTptZmaFJNWkm1Tfo6vOSM3MzDpEV73ZqF1JuggY06B4ekSc2Zp2IuJB4MEm9rX5bNTMzNqeE+l2iIhLgUuLHYeZmRWfl3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWbNeO6y44odgrWCZ6RmZmY5OJGamZnl4ETayUk6R9LpaXuKpFO2dYyZmbUdXyPt5CLipmLHYGZWykp6RippV0kzJS2UtFjSWEkjJD0kqUbSbEkVqe75kpZKWiTpjlR2oKR5khZIelzSJ1L5mZLulnS/pOcknSfpG6neHyXtnurtK2lW6usRSQObibVS0pzU/wOS9knlkyRduI3zHC+pWlL1pnV1bTV8ZmZGiSdS4BjgxYgYGhGDgVnAtcApETECuJktb3mZCAyPiP2Bc1LZn4BPR8Rw4P8A/7eg7cHAPwMjUxvrUr15wOmpzmRgQurrQuCGZmK9Fpia+r8duKalJxkRkyOiKiKquu9S3tLDzMysBUp9abcW+P+SLgfuA14nS4D3SwLoDqxOdRcBt0u6G7g7lZUDUyUNAAIoK2h7bkS8BbwlqQ74bUGf+0vqBYwGpqe+AHo0E+sossQMcCvww9afrpmZtbWSTqQR8YykA4BjgUuAOcCSiBjVSPXjgEOBE4CLJA0BfkCWML8gqZKtX9K9oWB7c8HnzWTj3g14IyKGtdkJmZlZhyvppV1JHyZbcr0NuAL4FNBH0qi0v0zSIEndgL0jYi7wbbKZaK/0e1Vq7szW9B0RbwIrJI1JfUnS0GYOeRz4YtoeBzzSmv7MzKx9lPSMFBgCXCFpM7AROBd4B7hGUjnZ+FwFPAPclsoEXBMRb0j6IdnS7sXA9jwuaBxwYzq+DLgDWNhE3QnALZK+CawBvrId/TGkbznVfmqKmVmbUUQUOwbrQFVVVVFdXV3sMMzMOhVJNRFR1di+kl7aNTMzy6vUl3Z3OJIuAsY0KJ4eEZc2Vt/MzIrLiXQHkxKmk6aZWSfhpV0zM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvDXX0pM7ao6Kiduz9MMzayUPOdHibaYZ6RmZmY5OJGamZnl4ERqZmaWgxOpmZlZDk6kBSTtKmmmpIWSFksaK+lISQsk1Uq6WVIPSUdIurvguKMl3dVEm90lTUnt1Ur691T+VUnzU1+/lrRLKp8i6ZSC49cWbH87tbFQ0mWpbF9JsyTVSHpE0sD2Gh8zM3svJ9KtHQO8GBFDI2IwMAuYAoyNiCFkdzmfC8wFBkrqk477CnBzE20OA/pGxODUxi2p/DcRMTIihgLLgLObC0zS54ATgU+lY36Ydk0GJkTECOBC4IZGjh0vqVpS9aZ1ddseBTMzazEn0q3VAkdLulzSp4FKYEVEPJP2TwUOjext6LcCX5b0fmAU8Lsm2nwW+KikayUdA7yZygenGWQtMA4YtI3YjgJuiYh1ABHxmqRewGhguqSngZ8AFQ0PjIjJEVEVEVXddylvyTiYmVkL+XukBSLiGUkHAMcClwBzmql+C/BbYD3Z+0LfaaLN1yUNBT4LnAOcCpxFNtM9KSIWSjoTODwd8g7pPziSugE7NxNDN+CNiBjWkvMzM7O25xlpAUkfBtZFxG3AFWQzzUpJH0tVTgMeAoiIF4EXgYvZslzbWJt7At0i4tep7gFpV29gtaQyshlpveeAEWn780BZ2r4f+ErBtdTdI+JNYIWkMalMKWmbmVkH8Yx0a0OAKyRtBjaSXQ8tJ1s63QmYD9xUUP92oE9ELGumzb7ALWl2CfAf6fd3gSeANel371T+U+AeSQvJrtG+DRARsyQNA6ol/QP4L+A7ZEn4RkkXkyXdO4CF23n+ZmbWSsou99n2kHQdsCAifl7sWFqqqqoqqqurix2GmVmnIqkmIqoa2+cZ6XaSVEM2W7yg2LGYmVnxOJFup/R1k61IegLo0aD4tIio7ZiozMysozmRtqGI+FSxYzAzs47lu3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWZdzHOXHVfsEIrGM1IzM7McnEjNzMxycCI1MzPLwYm0lSSdLmmRpIWSbpV0gqQnJC2Q9AdJe0nqJunPkvqkY7pJ+oukPunn15Lmp5+DU51Jkm6W9KCkZyWdn8orJS2T9FNJSyT9XtL70r59Jc2SVCPpEUkDizcyZmalyYm0FSQNAi4GjoiIocDXgEeBgyJiONlLtb8VEZuB28heug1wFLAwItYAVwM/joiRwMnAzwq6GAh8FjgQ+J6kslQ+ALg+IgYBb6TjACYDE9KbaC4Ebmgi7vGSqiVVb1pXl3sczMxsC9+12zpHANMj4hWAiHhN0hDgTkkVwM7AilT3ZuAe4CrgLOCWVH4UsJ+k+jZ3k9Qrbc+MiA3ABkkvA3ul8hUR8XTargEq0zGjgekFbTV8hRspzslkSZceFQP8JnczszbkRJrftcCVEXGvpMOBSQAR8YKklyQdQTbDrJ+ddiObwa4vbCQlww0FRZvY8ufTsPx9qZ03ImJYm56NmZm1ipd2W2cOMEbSHgCSdgfKgVVp/xkN6v+MbIl3ekRsSmW/BybUV5C0XYkwIt4EVkgak9qRpKHb05aZmW0/J9JWiIglwKXAQ5IWAleSzUCnS6oBXmlwyL1AL7Ys6wKcD1SlG5aWAufkCGkccHaKZQlwYo62zMxsOyjCl8zai6QqshuLPl3sWOr1qBgQFWdcVewwzKyL6epPNpJUExFVje3zNdJ2ImkicC5bro3uEIb0Lae6i/+FNzPrSF7abScRcVlEfCQiHi12LGZm1n6cSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvAjAktM7ao6KifOLHYYZlYCuvrzd+t5RmpmZpaDE2mRSaqUtDhtHy7pvrT9+fTgezMz24F5aXcHFRH3kr3P1MzMdmCekeYkaVdJMyUtlLRY0lhJIyU9nsqelNQ7zTwfkfRU+hm9jXbPlHRd2q6UNCe9DPwBSfuk8imSrkl9PSvplI44ZzMz28Iz0vyOAV6MiOMAJJUDC4CxETFf0m7A34GXgaMjYr2kAcCvgEZfEtuIa4GpETFV0lnANcBJaV8FcAgwkGwGO6PhwZLGA+MBuu/WZ/vO0szMGuUZaX61wNGSLpf0aWAfYHVEzAeIiDcj4h2gDPippFpgOrBfK/oYBfwybd9Kljjr3R0RmyNiKbBXYwdHxOSIqIqIqu67lLfq5MzMrHmekeYUEc9IOgA4FrgEmNNE1X8HXgKGkv0HZn0bhbChYFtt1KaZmbWQZ6Q5SfowsC4ibgOuAD4FVEgamfb3lrQTUE42U90MnAZ0b0U3jwNfTNvjgEfaKn4zM8vHM9L8hgBXSNoMbATOJZsZXivpfWTXR48CbgB+Lel0YBbwdiv6mADcIumbwBrgK20Yv5mZ5aCIKHYM1oF6VAyIijOuKnYYZlYCutKTjSTVRESjN4h6RlpihvQtp7oL/eU2Mys2XyM1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBTzYqMbWr6qicOLPYYZiZdaj2fFyhZ6RmZmY5OJGamZnl4ETaSUg6U9J1afuc9Do2MzMrMl8j7QTSi8HfFRE3FSsWMzPbmhNpB5L0XeDLZC/nfgGoAeqA8cDOwF+A0yJinaQpwHpgOPAYsKignUnA2oj4kaSPATcBfYBNwJiI+GtHnZOZWanz0m4HkTQSOBkYCnwOqH9B7G8iYmREDAWWAWcXHNYPGB0R32im6duB69Pxo4HVjfQ9XlK1pOpN6+ra4GzMzKyeZ6Qd52DgnohYD6yX9NtUPljSJcD7gV7A7IJjpkfEpqYalNQb6BsRdwGktt8jIiYDkwF6VAyI3GdiZmbv8oy0+KYA50XEEOD7QM+CfW8XJSIzM2sxJ9KO8xhwgqSeknoBx6fy3sBqSWXAuNY0GBFvASslnQQgqYekXdoyaDMza54TaQeJiPnAvWQ3Df0OqCW70ei7wBNkifZP29H0acD5khYBjwMfapOAzcysRRThS2YdRVKviFibZo0PA+Mj4qmOjKGqqiqqq6s7skszs05PUk1EVDW2zzcbdazJkvYjuw46taOTqJmZtT0n0g4UEV8qdgxmZta2fI3UzMwsBydSMzOzHJxIzczMcvBduyVG0lvA8mLHsQPZE3il2EHsQDweW3gstlbq4/GRiOjT2A7fbFR6ljd1C3cpklTt8djC47GFx2JrHo+meWnXzMwsBydSMzOzHJxIS8/kYgewg/F4bM3jsYXHYmsejyb4ZiMzM7McPCM1MzPLwYnUzMwsByfSEiLpGEnLJf1F0sRix9MRJN0s6WVJiwvKdpd0v6Q/p98fSOWSdE0an0WSDihe5G1P0t6S5kpaKmmJpK+l8pIbj/Re4CclLUxj8f1U3l/SE+mc75S0cyrvkT7/Je2vLLtjiJIAAALmSURBVGb87UVSd0kLJN2XPpf0eLSUE2mJkNQduB74HLAf8C/pTTRd3RTgmAZlE4EHImIA8ED6DNnYDEg/44EbOyjGjvIOcEFE7AccBPxb+jtQiuOxATgiIoYCw4BjJB0EXA78OCI+BrwOnJ3qnw28nsp/nOp1RV8DlhV8LvXxaBEn0tJxIPCXiHg2Iv4B3AGcWOSY2l1EPAy81qD4RGBq2p4KnFRQ/ovI/BF4v6SKjom0/UXE6vpX90XEW2T/YPalBMcjndPa9LEs/QRwBDAjlTcci/oxmgEcKUkdFG6HkNQPOA74WfosSng8WsOJtHT0BV4o+LwylZWivSJiddr+G7BX2i6ZMUpLccOBJyjR8UjLmE8DLwP3A38F3oiId1KVwvN9dyzS/jpgj46NuN1dBXwL2Jw+70Fpj0eLOZFaSYvs+18l9R0wSb2AXwNfj4g3C/eV0nhExKaIGAb0I1uxGVjkkIpG0vHAyxFRU+xYOiMn0tKxCti74HO/VFaKXqpfoky/X07lXX6MJJWRJdHbI+I3qbhkxwMgIt4A5gKjyJav659BXni+745F2l8OvNrBobang4HPS3qO7LLPEcDVlO54tIoTaemYDwxId+HtDHwRuLfIMRXLvcAZafsM4J6C8tPT3aoHAXUFS56dXrqG9XNgWURcWbCr5MZDUh9J70/b7wOOJrtmPBc4JVVrOBb1Y3QKMCe60NNsIuI/IqJfRFSS/dswJyLGUaLj0Vp+slEJkXQs2XWQ7sDNEXFpkUNqd5J+BRxO9gqol4DvAXcD04B9gOeBUyPitZRoriO7y3cd8JWIqC5G3O1B0iHAI0AtW66DfYfsOmlJjYek/clululONqGYFhH/KemjZDOy3YEFwJcjYoOknsCtZNeVXwO+GBHPFif69iXpcODCiDje49EyTqRmZmY5eGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHL4Hx9S2FkSapv/AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "korean_ingredient_df = create_ingredient_df(korean_df)\r\n", + "korean_ingredient_df.head(10).plot.barh()" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          00000000000...0000000000
                                          11000000000...0000000000
                                          20000000000...0000000000
                                          30000000000...0000000000
                                          40000000000...0000000010
                                          \n

                                          5 rows × 380 columns

                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 15 + } + ], + "source": [ + "feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1)\n", + "labels_df = df.cuisine #.unique()\n", + "feature_df.head()\n" + ] + }, + { + "source": [ + "SMOTEオーバーサンプリングを使用してデータを最も多いクラスにバランスさせます。詳細はこちらをご覧ください: https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "oversample = SMOTE()\n", + "transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "new label count: korean 799\nchinese 799\njapanese 799\nindian 799\nthai 799\nName: cuisine, dtype: int64\nold label count: korean 799\nindian 598\nchinese 442\njapanese 320\nthai 289\nName: cuisine, dtype: int64\n" + ] + } + ], + "source": [ + "print(f'new label count: {transformed_label_df.value_counts()}')\r\n", + "print(f'old label count: {df.cuisine.value_counts()}')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          00000000000...0000000000
                                          11000000000...0000000000
                                          20000000000...0000000000
                                          30000000000...0000000000
                                          40000000000...0000000010
                                          \n

                                          5 rows × 380 columns

                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "transformed_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy \\\n", + "0 indian 0 0 0 0 0 0 \n", + "1 indian 1 0 0 0 0 0 \n", + "2 indian 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 thai 0 0 0 0 0 0 \n", + "3991 thai 0 0 0 0 0 0 \n", + "3992 thai 0 0 0 0 0 0 \n", + "3993 thai 0 0 0 0 0 0 \n", + "3994 thai 0 0 0 0 0 0 \n", + "\n", + " apricot armagnac artemisia ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 ... 0 0 0 \n", + "3991 0 0 0 ... 0 0 0 \n", + "3992 0 0 0 ... 0 0 0 \n", + "3993 0 0 0 ... 0 0 0 \n", + "3994 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 0 0 0 0 \n", + "3991 0 0 0 0 0 0 0 \n", + "3992 0 0 0 0 0 0 0 \n", + "3993 0 0 0 0 0 0 0 \n", + "3994 0 0 0 0 0 0 0 \n", + "\n", + "[3995 rows x 381 columns]" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisia...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          0indian000000000...0000000000
                                          1indian100000000...0000000000
                                          2indian000000000...0000000000
                                          3indian000000000...0000000000
                                          4indian000000000...0000000010
                                          ..................................................................
                                          3990thai000000000...0000000000
                                          3991thai000000000...0000000000
                                          3992thai000000000...0000000000
                                          3993thai000000000...0000000000
                                          3994thai000000000...0000000000
                                          \n

                                          3995 rows × 381 columns

                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "# export transformed data to new df for classification\n", + "transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer')\n", + "transformed_df" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 3995 entries, 0 to 3994\nColumns: 381 entries, cuisine to zucchini\ndtypes: int64(380), object(1)\nmemory usage: 11.6+ MB\n" + ] + } + ], + "source": [ + "transformed_df.info()" + ] + }, + { + "source": [ + "将来の使用のためにファイルを保存する\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "transformed_df.to_csv(\"../../data/cleaned_cuisines.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "1da12ed6d238756959b8de9cac2a35a2", + "translation_date": "2025-09-04T02:40:47+00:00", + "source_file": "4-Classification/1-Introduction/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/ja/4-Classification/2-Classifiers-1/README.md b/translations/ja/4-Classification/2-Classifiers-1/README.md new file mode 100644 index 000000000..5b6af4c20 --- /dev/null +++ b/translations/ja/4-Classification/2-Classifiers-1/README.md @@ -0,0 +1,253 @@ + +# 料理分類器 1 + +このレッスンでは、前回のレッスンで保存した、料理に関するバランスの取れたクリーンなデータセットを使用します。 + +このデータセットを使って、さまざまな分類器を用いて_材料のグループに基づいて特定の国の料理を予測_します。その過程で、分類タスクにアルゴリズムを活用する方法についてさらに学びます。 + +## [講義前クイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/) +# 準備 + +[レッスン1](../1-Introduction/README.md)を完了している場合、これら4つのレッスンのために、ルートの`/data`フォルダに_cleaned_cuisines.csv_ファイルが存在することを確認してください。 + +## 演習 - 国の料理を予測する + +1. このレッスンの_notebook.ipynb_フォルダで作業し、そのファイルとPandasライブラリをインポートします: + + ```python + import pandas as pd + cuisines_df = pd.read_csv("../data/cleaned_cuisines.csv") + cuisines_df.head() + ``` + + データは以下のように見えます: + +| | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | +| 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + + +1. 次に、いくつかのライブラリをインポートします: + + ```python + from sklearn.linear_model import LogisticRegression + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + from sklearn.svm import SVC + import numpy as np + ``` + +1. X座標とy座標を2つのデータフレームに分割してトレーニング用に準備します。`cuisine`をラベルのデータフレームとして使用します: + + ```python + cuisines_label_df = cuisines_df['cuisine'] + cuisines_label_df.head() + ``` + + 以下のように表示されます: + + ```output + 0 indian + 1 indian + 2 indian + 3 indian + 4 indian + Name: cuisine, dtype: object + ``` + +1. `Unnamed: 0`列と`cuisine`列を`drop()`を使って削除します。残りのデータをトレーニング可能な特徴として保存します: + + ```python + cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) + cuisines_feature_df.head() + ``` + + 特徴は以下のように見えます: + +| | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| ---: | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: | +| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | + +これでモデルのトレーニングを開始する準備が整いました! + +## 分類器の選択 + +データがクリーンでトレーニングの準備が整ったら、どのアルゴリズムを使用するかを決定する必要があります。 + +Scikit-learnでは分類が教師あり学習のカテゴリに分類されており、その中で多くの分類方法が提供されています。[その種類](https://scikit-learn.org/stable/supervised_learning.html)は最初は非常に多くて混乱するかもしれません。以下の方法はすべて分類技術を含んでいます: + +- 線形モデル +- サポートベクターマシン +- 確率的勾配降下法 +- 最近傍法 +- ガウス過程 +- 決定木 +- アンサンブル法(投票分類器) +- マルチクラスおよびマルチ出力アルゴリズム(マルチクラス分類、マルチラベル分類、マルチクラス・マルチ出力分類) + +> [ニューラルネットワークを使用してデータを分類する](https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification)こともできますが、このレッスンの範囲外です。 + +### どの分類器を選ぶべきか? + +では、どの分類器を選ぶべきでしょうか?多くの場合、いくつか試して良い結果を探すのがテストの方法です。Scikit-learnは、作成されたデータセットでKNeighbors、SVC(2種類)、GaussianProcessClassifier、DecisionTreeClassifier、RandomForestClassifier、MLPClassifier、AdaBoostClassifier、GaussianNB、QuadraticDiscriminationAnalysisを比較し、結果を視覚化する[比較](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html)を提供しています: + +![分類器の比較](../../../../translated_images/comparison.edfab56193a85e7fdecbeaa1b1f8c99e94adbf7178bed0de902090cf93d6734f.ja.png) +> Scikit-learnのドキュメントで生成されたプロット + +> AutoMLはこれらの比較をクラウドで実行し、データに最適なアルゴリズムを選択できるため、この問題を簡単に解決します。[こちら](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)で試してみてください。 + +### より良いアプローチ + +しかし、無作為に推測するよりも良い方法は、このダウンロード可能な[MLチートシート](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott)のアイデアに従うことです。ここでは、マルチクラス問題に対していくつかの選択肢があることがわかります: + +![マルチクラス問題のチートシート](../../../../translated_images/cheatsheet.07a475ea444d22234cb8907a3826df5bdd1953efec94bd18e4496f36ff60624a.ja.png) +> Microsoftのアルゴリズムチートシートの一部、マルチクラス分類オプションを詳細に説明 + +✅ このチートシートをダウンロードして印刷し、壁に貼りましょう! + +### 推論 + +制約を考慮して、さまざまなアプローチを推論してみましょう: + +- **ニューラルネットワークは重すぎる**。クリーンだが最小限のデータセットを使用し、ノートブックを介してローカルでトレーニングを実行するため、ニューラルネットワークはこのタスクには重すぎます。 +- **2クラス分類器は使用しない**。2クラス分類器は使用しないため、one-vs-allは除外されます。 +- **決定木またはロジスティック回帰が適している可能性がある**。決定木やマルチクラスデータに対するロジスティック回帰が適しているかもしれません。 +- **マルチクラスブースト決定木は異なる問題を解決する**。マルチクラスブースト決定木は非パラメトリックタスク、例えばランキングを構築するタスクに最適であり、私たちには役立ちません。 + +### Scikit-learnの使用 + +データを分析するためにScikit-learnを使用します。ただし、Scikit-learnでロジスティック回帰を使用する方法は多数あります。[渡すべきパラメータ](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression)を確認してください。 + +基本的に、Scikit-learnにロジスティック回帰を実行させる際に指定する必要がある重要なパラメータは、`multi_class`と`solver`の2つです。`multi_class`の値は特定の動作を適用します。solverの値は使用するアルゴリズムを指定します。すべてのsolverがすべての`multi_class`値と組み合わせられるわけではありません。 + +ドキュメントによると、マルチクラスの場合、トレーニングアルゴリズムは以下のように動作します: + +- **one-vs-rest (OvR)方式を使用**する場合、`multi_class`オプションが`ovr`に設定されている場合 +- **クロスエントロピー損失を使用**する場合、`multi_class`オプションが`multinomial`に設定されている場合(現在、`multinomial`オプションは‘lbfgs’, ‘sag’, ‘saga’, ‘newton-cg’ソルバーのみでサポートされています) + +> 🎓 ここでの「方式」は、'ovr'(one-vs-rest)または'multinomial'のいずれかです。ロジスティック回帰は本来バイナリ分類をサポートするように設計されているため、これらの方式はマルチクラス分類タスクをより適切に処理できるようにします。[出典](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/) + +> 🎓 「solver」は「最適化問題で使用するアルゴリズム」と定義されています。[出典](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression) + +Scikit-learnは、異なるデータ構造が引き起こす課題に対してsolverがどのように対応するかを説明するこの表を提供しています: + +![ソルバー](../../../../translated_images/solvers.5fc648618529e627dfac29b917b3ccabda4b45ee8ed41b0acb1ce1441e8d1ef1.ja.png) + +## 演習 - データを分割する + +前回のレッスンでロジスティック回帰について学んだばかりなので、最初のトレーニング試行ではロジスティック回帰に焦点を当てることができます。 +`train_test_split()`を呼び出してデータをトレーニングとテストグループに分割します: + +```python +X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) +``` + +## 演習 - ロジスティック回帰を適用する + +マルチクラスの場合、使用する_方式_と設定する_ソルバー_を選択する必要があります。LogisticRegressionを使用して、multi_classを`ovr`に設定し、**liblinear**ソルバーを使用してトレーニングします。 + +1. multi_classを`ovr`に設定し、solverを`liblinear`に設定したロジスティック回帰を作成します: + + ```python + lr = LogisticRegression(multi_class='ovr',solver='liblinear') + model = lr.fit(X_train, np.ravel(y_train)) + + accuracy = model.score(X_test, y_test) + print ("Accuracy is {}".format(accuracy)) + ``` + + ✅ デフォルトとしてよく設定される`lbfgs`のような別のソルバーを試してみてください +> 注意が必要な場合は、データを平坦化するためにPandasの[`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html)関数を使用してください。 +精度は**80%以上**で良好です! + +1. このモデルを試すには、データの1行(#50)をテストしてみてください: + + ```python + print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}') + print(f'cuisine: {y_test.iloc[50]}') + ``` + + 結果が出力されます: + + ```output + ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object') + cuisine: indian + ``` + + ✅ 別の行番号を試して結果を確認してください。 + +1. さらに掘り下げて、この予測の精度を確認してみましょう: + + ```python + test= X_test.iloc[50].values.reshape(-1, 1).T + proba = model.predict_proba(test) + classes = model.classes_ + resultdf = pd.DataFrame(data=proba, columns=classes) + + topPrediction = resultdf.T.sort_values(by=[0], ascending = [False]) + topPrediction.head() + ``` + + 結果が出力されます - インド料理が最も可能性が高いと予測されています: + + | | 0 | + | -------: | -------: | + | indian | 0.715851 | + | chinese | 0.229475 | + | japanese | 0.029763 | + | korean | 0.017277 | + | thai | 0.007634 | + + ✅ なぜモデルがこれをインド料理だと確信しているのか説明できますか? + +1. 回帰のレッスンで行ったように、分類レポートを出力して詳細を確認してください: + + ```python + y_pred = model.predict(X_test) + print(classification_report(y_test,y_pred)) + ``` + + | | precision | recall | f1-score | support | + | ------------ | --------- | ------ | -------- | ------- | + | chinese | 0.73 | 0.71 | 0.72 | 229 | + | indian | 0.91 | 0.93 | 0.92 | 254 | + | japanese | 0.70 | 0.75 | 0.72 | 220 | + | korean | 0.86 | 0.76 | 0.81 | 242 | + | thai | 0.79 | 0.85 | 0.82 | 254 | + | accuracy | 0.80 | 1199 | | | + | macro avg | 0.80 | 0.80 | 0.80 | 1199 | + | weighted avg | 0.80 | 0.80 | 0.80 | 1199 | + +## 🚀チャレンジ + +このレッスンでは、クリーンアップしたデータを使用して、材料の組み合わせから国の料理を予測する機械学習モデルを構築しました。Scikit-learnが提供する分類オプションをじっくり読んでみてください。さらに「solver」の概念を掘り下げて、裏で何が行われているのかを理解してください。 + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/22/) + +## レビューと自己学習 + +ロジスティック回帰の数学的背景について、[このレッスン](https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf)を掘り下げて学んでください。 +## 課題 + +[solverについて学ぶ](assignment.md) + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてお考えください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当社は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/4-Classification/2-Classifiers-1/assignment.md b/translations/ja/4-Classification/2-Classifiers-1/assignment.md new file mode 100644 index 000000000..067b9f4e2 --- /dev/null +++ b/translations/ja/4-Classification/2-Classifiers-1/assignment.md @@ -0,0 +1,24 @@ + +# ソルバーを学ぶ +## 指示 + +このレッスンでは、アルゴリズムと機械学習プロセスを組み合わせて正確なモデルを作成するさまざまなソルバーについて学びました。レッスンで紹介されたソルバーを確認し、その中から2つを選んでください。自分の言葉でこれら2つのソルバーを比較し、対比してください。どのような問題に取り組むのか?さまざまなデータ構造とどのように連携するのか?なぜ一方を選ぶべきなのか?について考察してください。 + +## 採点基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | ---------------------------------------------------------------------------------------------- | ------------------------------------------------ | ---------------------------- | +| | 2つの段落でそれぞれのソルバーについて深く考察し比較した内容が含まれる.docファイルが提出されている | 1つの段落のみが含まれる.docファイルが提出されている | 課題が未完成である | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/4-Classification/2-Classifiers-1/notebook.ipynb b/translations/ja/4-Classification/2-Classifiers-1/notebook.ipynb new file mode 100644 index 000000000..10964c19b --- /dev/null +++ b/translations/ja/4-Classification/2-Classifiers-1/notebook.ipynb @@ -0,0 +1,41 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "68829b06b4dcd512d3327849191f4d7f", + "translation_date": "2025-09-04T02:22:35+00:00", + "source_file": "4-Classification/2-Classifiers-1/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "分類モデルの構築\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。原文(元の言語で記載された文書)が公式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の利用に起因する誤解や誤認について、当方は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/4-Classification/2-Classifiers-1/solution/Julia/README.md b/translations/ja/4-Classification/2-Classifiers-1/solution/Julia/README.md new file mode 100644 index 000000000..ef7b0c198 --- /dev/null +++ b/translations/ja/4-Classification/2-Classifiers-1/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb b/translations/ja/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb new file mode 100644 index 000000000..971ba92fa --- /dev/null +++ b/translations/ja/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb @@ -0,0 +1,1289 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_11-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "6ea6a5171b1b99b7b5a55f7469c048d2", + "translation_date": "2025-09-04T02:25:43+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb", + "language_code": "ja" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# 分類モデルを構築する: 美味しいアジア料理とインド料理\n" + ], + "metadata": { + "id": "zs2woWv_HoE8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 料理分類器 1\n", + "\n", + "このレッスンでは、*材料のグループに基づいて特定の国の料理を予測する*ためのさまざまな分類器を探ります。その過程で、分類タスクにアルゴリズムを活用する方法についてさらに学びます。\n", + "\n", + "### [**事前クイズ**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/)\n", + "\n", + "### **準備**\n", + "\n", + "このレッスンは、[前回のレッスン](https://github.com/microsoft/ML-For-Beginners/blob/main/4-Classification/1-Introduction/solution/lesson_10-R.ipynb)を基に進めます。前回のレッスンでは以下を行いました:\n", + "\n", + "- アジアとインドの素晴らしい料理に関するデータセットを使って、分類の基本的な紹介を行いました 😋。\n", + "\n", + "- データを準備し、クリーンアップするためにいくつかの[dplyrの動詞](https://dplyr.tidyverse.org/)を探りました。\n", + "\n", + "- ggplot2を使って美しい可視化を作成しました。\n", + "\n", + "- [recipes](https://recipes.tidymodels.org/articles/Simple_Example.html)を使用してデータを前処理し、不均衡なデータに対処する方法を示しました。\n", + "\n", + "- レシピを`prep`して`bake`することで、期待通りに動作することを確認する方法を示しました。\n", + "\n", + "#### **前提条件**\n", + "\n", + "このレッスンでは、データをクリーンアップし、準備し、可視化するために以下のパッケージが必要です:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/)は、データサイエンスをより速く、簡単に、そして楽しくするために設計された[Rパッケージのコレクション](https://www.tidyverse.org/packages)です!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/)フレームワークは、モデリングと機械学習のための[パッケージのコレクション](https://www.tidymodels.org/packages/)です。\n", + "\n", + "- `themis`: [themisパッケージ](https://themis.tidymodels.org/)は、不均衡なデータに対処するための追加のレシピステップを提供します。\n", + "\n", + "- `nnet`: [nnetパッケージ](https://cran.r-project.org/web/packages/nnet/nnet.pdf)は、単一の隠れ層を持つフィードフォワードニューラルネットワークや多項ロジスティック回帰モデルを推定するための関数を提供します。\n", + "\n", + "以下のようにインストールできます:\n" + ], + "metadata": { + "id": "iDFOb3ebHwQC" + } + }, + { + "cell_type": "markdown", + "source": [ + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "または、以下のスクリプトを使用すると、このモジュールを完了するために必要なパッケージがインストールされているか確認し、足りない場合は自動的にインストールします。\n" + ], + "metadata": { + "id": "4V85BGCjII7F" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, themis, here)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "an5NPyyKIKNR", + "outputId": "834d5e74-f4b8-49f9-8ab5-4c52ff2d7bc8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. データをトレーニングセットとテストセットに分割する\n", + "\n", + "前回のレッスンからいくつかのステップを選んで始めましょう。\n", + "\n", + "### 異なる料理間で混乱を招きやすい、最も一般的な食材を `dplyr::select()` を使って除外する\n", + "\n", + "みんなが大好きな米、ニンニク、そしてショウガ!\n" + ], + "metadata": { + "id": "0ax9GQLBINVv" + } + }, + { + "cell_type": "code", + "execution_count": 3, + "source": [ + "# Load the original cuisines data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger)) %>%\r\n", + " # Encode cuisine column as categorical\r\n", + " mutate(cuisine = factor(cuisine))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Display distribution of cuisines\r\n", + "df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "New names:\n", + "* `` -> ...1\n", + "\n", + "\u001b[1m\u001b[1mRows: \u001b[1m\u001b[22m\u001b[34m\u001b[34m2448\u001b[34m\u001b[39m \u001b[1m\u001b[1mColumns: \u001b[1m\u001b[22m\u001b[34m\u001b[34m385\u001b[34m\u001b[39m\n", + "\n", + "\u001b[36m──\u001b[39m \u001b[1m\u001b[1mColumn specification\u001b[1m\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", + "\u001b[1mDelimiter:\u001b[22m \",\"\n", + "\u001b[31mchr\u001b[39m (1): cuisine\n", + "\u001b[32mdbl\u001b[39m (384): ...1, almond, angelica, anise, anise_seed, apple, apple_brandy, a...\n", + "\n", + "\n", + "\u001b[36mℹ\u001b[39m Use \u001b[30m\u001b[47m\u001b[30m\u001b[47m`spec()`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to retrieve the full column specification for this data.\n", + "\u001b[36mℹ\u001b[39m Specify the column types or set \u001b[30m\u001b[47m\u001b[30m\u001b[47m`show_col_types = FALSE`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to quiet this message.\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 indian 0 0 0 0 0 0 0 0 \n", + "2 indian 1 0 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 0 0 \n", + "5 indian 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 0 0 \n", + "2 0 ⋯ 0 0 0 0 0 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 1 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                          A tibble: 5 × 381
                                          cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          <fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
                                          indian0000000000000000000
                                          indian1000000000000000000
                                          indian0000000000000000000
                                          indian0000000000000000000
                                          indian0000000000000000010
                                          \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 799\n", + "2 indian 598\n", + "3 chinese 442\n", + "4 japanese 320\n", + "5 thai 289" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 799 |\n", + "| indian | 598 |\n", + "| chinese | 442 |\n", + "| japanese | 320 |\n", + "| thai | 289 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 799\\\\\n", + "\t indian & 598\\\\\n", + "\t chinese & 442\\\\\n", + "\t japanese & 320\\\\\n", + "\t thai & 289\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                          A tibble: 5 × 2
                                          cuisinen
                                          <fct><int>
                                          korean 799
                                          indian 598
                                          chinese 442
                                          japanese320
                                          thai 289
                                          \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 735 + }, + "id": "jhCrrH22IWVR", + "outputId": "d444a85c-1d8b-485f-bc4f-8be2e8f8217c" + } + }, + { + "cell_type": "markdown", + "source": [ + "完璧です!では、データを分割して、70%をトレーニング用データ、30%をテスト用データに振り分けましょう。また、分割時には「ストラティフィケーション」技法を適用して、トレーニングデータセットと検証データセット内で各料理の割合を維持するようにします。\n", + "\n", + "[rsample](https://rsample.tidymodels.org/) は、Tidymodels のパッケージで、効率的なデータ分割やリサンプリングのためのインフラを提供します。\n" + ], + "metadata": { + "id": "AYTjVyajIdny" + } + }, + { + "cell_type": "code", + "execution_count": 4, + "source": [ + "# Load the core Tidymodels packages into R session\r\n", + "library(tidymodels)\r\n", + "\r\n", + "# Create split specification\r\n", + "set.seed(2056)\r\n", + "cuisines_split <- initial_split(data = df_select,\r\n", + " strata = cuisine,\r\n", + " prop = 0.7)\r\n", + "\r\n", + "# Extract the data in each split\r\n", + "cuisines_train <- training(cuisines_split)\r\n", + "cuisines_test <- testing(cuisines_split)\r\n", + "\r\n", + "# Print the number of cases in each split\r\n", + "cat(\"Training cases: \", nrow(cuisines_train), \"\\n\",\r\n", + " \"Test cases: \", nrow(cuisines_test), sep = \"\")\r\n", + "\r\n", + "# Display the first few rows of the training set\r\n", + "cuisines_train %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Display distribution of cuisines in the training set\r\n", + "cuisines_train %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training cases: 1712\n", + "Test cases: 736" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 chinese 0 0 0 0 0 0 0 0 \n", + "2 chinese 0 0 0 0 0 0 0 0 \n", + "3 chinese 0 0 0 0 0 0 0 0 \n", + "4 chinese 0 0 0 0 0 0 0 0 \n", + "5 chinese 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 1 0 \n", + "2 0 ⋯ 0 0 0 0 1 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 0 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                          A tibble: 5 × 381
                                          cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          <fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
                                          chinese0000000000000100000
                                          chinese0000000000000100000
                                          chinese0000000000000000000
                                          chinese0000000000000000000
                                          chinese0000000000000000000
                                          \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 559\n", + "2 indian 418\n", + "3 chinese 309\n", + "4 japanese 224\n", + "5 thai 202" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 559 |\n", + "| indian | 418 |\n", + "| chinese | 309 |\n", + "| japanese | 224 |\n", + "| thai | 202 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 559\\\\\n", + "\t indian & 418\\\\\n", + "\t chinese & 309\\\\\n", + "\t japanese & 224\\\\\n", + "\t thai & 202\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                          A tibble: 5 × 2
                                          cuisinen
                                          <fct><int>
                                          korean 559
                                          indian 418
                                          chinese 309
                                          japanese224
                                          thai 202
                                          \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 535 + }, + "id": "w5FWIkEiIjdN", + "outputId": "2e195fd9-1a8f-4b91-9573-cce5582242df" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. 不均衡データへの対処\n", + "\n", + "元のデータセットやトレーニングセットを見て気づいたかもしれませんが、料理の数にはかなりの偏りがあります。韓国料理はタイ料理の*ほぼ*3倍の数です。不均衡なデータは、モデルのパフォーマンスに悪影響を及ぼすことがよくあります。多くのモデルは観測数が均等であるときに最も良いパフォーマンスを発揮するため、不均衡なデータには苦戦しがちです。\n", + "\n", + "不均衡データセットに対処する方法は主に2つあります:\n", + "\n", + "- 少数派クラスに観測値を追加する:`オーバーサンプリング` 例えば、SMOTEアルゴリズムを使用して、少数派クラスの近傍のデータをもとに新しい例を合成的に生成する方法。\n", + "\n", + "- 多数派クラスから観測値を削除する:`アンダーサンプリング`\n", + "\n", + "前回のレッスンでは、`recipe`を使って不均衡データセットに対処する方法を説明しました。`recipe`とは、データ分析の準備をするためにデータセットにどのような手順を適用すべきかを記述した設計図のようなものと考えることができます。今回の場合、`training set`における料理の数を均等に分布させたいと考えています。それでは、さっそく始めましょう。\n" + ], + "metadata": { + "id": "daBi9qJNIwqW" + } + }, + { + "cell_type": "code", + "execution_count": 5, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing training data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "# Print recipe\r\n", + "cuisines_recipe" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Data Recipe\n", + "\n", + "Inputs:\n", + "\n", + " role #variables\n", + " outcome 1\n", + " predictor 380\n", + "\n", + "Operations:\n", + "\n", + "SMOTE based on cuisine" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 200 + }, + "id": "Az6LFBGxI1X0", + "outputId": "29d71d85-64b0-4e62-871e-bcd5398573b6" + } + }, + { + "cell_type": "markdown", + "source": [ + "レシピが期待通りに動作することを確認するために(prep + bakeを使用して)、もちろん試してみることができます。すべての料理ラベルに「559」の観測値があることを確認してください。\n", + "\n", + "このレシピをモデリングの前処理として使用する予定なので、`workflow()`を使用すればprepとbakeをすべて自動で行ってくれるため、レシピを手動で推定する必要はありません。\n", + "\n", + "では、モデルのトレーニングを始めましょう 👩‍💻👨‍💻!\n", + "\n", + "## 3. 分類器の選択\n", + "\n", + "

                                          \n", + " \n", + "

                                          @allison_horstによるアートワーク
                                          \n" + ], + "metadata": { + "id": "NBL3PqIWJBBB" + } + }, + { + "cell_type": "markdown", + "source": [ + "どのアルゴリズムを使用するか決める必要がありますね 🤔。\n", + "\n", + "Tidymodelsでは、[`parsnip パッケージ`](https://parsnip.tidymodels.org/index.html)が、異なるエンジン(パッケージ)間でモデルを扱うための一貫したインターフェースを提供しています。[モデルの種類とエンジン](https://www.tidymodels.org/find/parsnip/#models)や、それに対応する[モデル引数](https://www.tidymodels.org/find/parsnip/#model-args)については、parsnip のドキュメントをご覧ください。最初はその多様性に圧倒されるかもしれません。例えば、以下のような手法が分類技術に含まれます:\n", + "\n", + "- C5.0 ルールベース分類モデル \n", + "- 柔軟な判別モデル \n", + "- 線形判別モデル \n", + "- 正則化判別モデル \n", + "- ロジスティック回帰モデル \n", + "- 多項回帰モデル \n", + "- ナイーブベイズモデル \n", + "- サポートベクターマシン \n", + "- 最近傍法 \n", + "- 決定木 \n", + "- アンサンブル手法 \n", + "- ニューラルネットワーク \n", + "\n", + "このリストはまだまだ続きます!\n", + "\n", + "### **どの分類器を選ぶべきか?**\n", + "\n", + "では、どの分類器を選べばよいのでしょうか?多くの場合、いくつか試してみて良い結果を探るのが一つの方法です。\n", + "\n", + "> AutoML はこの問題をうまく解決してくれます。クラウド上でこれらの比較を実行し、データに最適なアルゴリズムを選択できるようにしてくれます。[こちら](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)で試してみてください。\n", + "\n", + "また、分類器の選択は問題に依存します。例えば、結果が「2つ以上のクラス」に分類される場合(今回のケースのように)、`多クラス分類アルゴリズム`を使用する必要があります。これは、`二値分類`とは異なります。\n", + "\n", + "### **より良いアプローチ**\n", + "\n", + "しかし、単に当てずっぽうで選ぶよりも、ダウンロード可能な[ML チートシート](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott)のアイデアに従う方が良い方法です。ここでは、今回の多クラス問題に対していくつかの選択肢があることがわかります:\n", + "\n", + "

                                          \n", + " \n", + "

                                          Microsoft のアルゴリズムチートシートの一部、多クラス分類オプションを詳細に説明
                                          \n" + ], + "metadata": { + "id": "a6DLAZ3vJZ14" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **理由**\n", + "\n", + "制約を考慮しながら、異なるアプローチを検討してみましょう:\n", + "\n", + "- **ディープニューラルネットワークは重すぎる**。データセットがクリーンであるものの最小限であり、ノートブックを使ってローカルでトレーニングを行うことを考えると、ディープニューラルネットワークはこのタスクには重すぎます。\n", + "\n", + "- **2クラス分類器は使用しない**。2クラス分類器は使用しないため、one-vs-allのアプローチは除外されます。\n", + "\n", + "- **決定木やロジスティック回帰は有効かもしれない**。決定木や多項式回帰、多クラスロジスティック回帰は多クラスデータに対して有効かもしれません。\n", + "\n", + "- **多クラスブースト決定木は異なる問題を解決する**。多クラスブースト決定木は非パラメトリックなタスク、例えばランキングを構築するタスクに最適であり、今回の目的には適していません。\n", + "\n", + "また、通常はアンサンブル法などの複雑な機械学習モデルに取り組む前に、最もシンプルなモデルを構築してデータの状況を把握するのが良い方法です。したがって、このレッスンではまず`多項式回帰`モデルから始めます。\n", + "\n", + "> ロジスティック回帰は、結果変数がカテゴリカル(または名義尺度)の場合に使用される手法です。バイナリロジスティック回帰では結果変数が2つですが、多項式ロジスティック回帰では結果変数が2つ以上になります。詳細については[高度な回帰手法](https://bookdown.org/chua/ber642_advanced_regression/multinomial-logistic-regression.html)をご覧ください。\n", + "\n", + "## 4. 多項式ロジスティック回帰モデルのトレーニングと評価\n", + "\n", + "Tidymodelsでは、`parsnip::multinom_reg()`を使用して、多項式分布を用いて多クラスデータを予測する線形予測モデルを定義します。`?multinom_reg()`を参照すると、このモデルをフィットするために使用できるさまざまな方法やエンジンについて確認できます。\n", + "\n", + "この例では、デフォルトの[nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf)エンジンを使用して多項式回帰モデルをフィットします。\n", + "\n", + "> `penalty`の値はほぼランダムに選びました。この値を選ぶより良い方法としては、`リサンプリング`を使用し、モデルを`チューニング`する方法がありますが、これについては後ほど説明します。\n", + ">\n", + "> モデルのハイパーパラメータをチューニングする方法について学びたい場合は、[Tidymodels: Get Started](https://www.tidymodels.org/start/tuning/)をご覧ください。\n" + ], + "metadata": { + "id": "gWMsVcbBJemu" + } + }, + { + "cell_type": "code", + "execution_count": 6, + "source": [ + "# Create a multinomial regression model specification\r\n", + "mr_spec <- multinom_reg(penalty = 1) %>% \r\n", + " set_engine(\"nnet\", MaxNWts = 2086) %>% \r\n", + " set_mode(\"classification\")\r\n", + "\r\n", + "# Print model specification\r\n", + "mr_spec" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 166 + }, + "id": "Wq_fcyQiJvfG", + "outputId": "c30449c7-3864-4be7-f810-72a003743e2d" + } + }, + { + "cell_type": "markdown", + "source": [ + "素晴らしい仕事です 🥳!これでレシピとモデル仕様が揃ったので、それらを一つのオブジェクトにまとめる方法を見つける必要があります。このオブジェクトは、まずデータを前処理し、その後前処理済みデータにモデルを適合させ、さらに必要に応じて後処理を行うことも可能にします。Tidymodelsでは、この便利なオブジェクトを[`workflow`](https://workflows.tidymodels.org/)と呼び、モデリングの構成要素を便利に保持します!これは、*Python*で言うところの*パイプライン*に相当します。\n", + "\n", + "それでは、すべてをワークフローにまとめましょう!📦\n" + ], + "metadata": { + "id": "NlSbzDfgJ0zh" + } + }, + { + "cell_type": "code", + "execution_count": 7, + "source": [ + "# Bundle recipe and model specification\r\n", + "mr_wf <- workflow() %>% \r\n", + " add_recipe(cuisines_recipe) %>% \r\n", + " add_model(mr_spec)\r\n", + "\r\n", + "# Print out workflow\r\n", + "mr_wf" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow ════════════════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 333 + }, + "id": "Sc1TfPA4Ke3_", + "outputId": "82c70013-e431-4e7e-cef6-9fcf8aad4a6c" + } + }, + { + "cell_type": "markdown", + "source": [ + "ワークフロー 👌👌! **`workflow()`** はモデルとほぼ同じ方法で適合させることができます。では、モデルをトレーニングする時間です!\n" + ], + "metadata": { + "id": "TNQ8i85aKf9L" + } + }, + { + "cell_type": "code", + "execution_count": 8, + "source": [ + "# Train a multinomial regression model\n", + "mr_fit <- fit(object = mr_wf, data = cuisines_train)\n", + "\n", + "mr_fit" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow [trained] ══════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Call:\n", + "nnet::multinom(formula = ..y ~ ., data = data, decay = ~1, MaxNWts = ~2086, \n", + " trace = FALSE)\n", + "\n", + "Coefficients:\n", + " (Intercept) almond angelica anise anise_seed apple\n", + "indian 0.19723325 0.2409661 0 -5.004955e-05 -0.1657635 -0.05769734\n", + "japanese 0.13961959 -0.6262400 0 -1.169155e-04 -0.4893596 -0.08585717\n", + "korean 0.22377347 -0.1833485 0 -5.560395e-05 -0.2489401 -0.15657804\n", + "thai -0.04336577 -0.6106258 0 4.903828e-04 -0.5782866 0.63451105\n", + " apple_brandy apricot armagnac artemisia artichoke asparagus\n", + "indian 0 0.37042636 0 -0.09122797 0 -0.27181970\n", + "japanese 0 0.28895643 0 -0.12651100 0 0.14054037\n", + "korean 0 -0.07981259 0 0.55756709 0 -0.66979948\n", + "thai 0 -0.33160904 0 -0.10725182 0 -0.02602152\n", + " avocado bacon baked_potato balm banana barley\n", + "indian -0.46624197 0.16008055 0 0 -0.2838796 0.2230625\n", + "japanese 0.90341344 0.02932727 0 0 -0.4142787 2.0953906\n", + "korean -0.06925382 -0.35804134 0 0 -0.2686963 -0.7233404\n", + "thai -0.21473955 -0.75594439 0 0 0.6784880 -0.4363320\n", + " bartlett_pear basil bay bean beech\n", + "indian 0 -0.7128756 0.1011587 -0.8777275 -0.0004380795\n", + "japanese 0 0.1288697 0.9425626 -0.2380748 0.3373437611\n", + "korean 0 -0.2445193 -0.4744318 -0.8957870 -0.0048784496\n", + "thai 0 1.5365848 0.1333256 0.2196970 -0.0113078024\n", + " beef beef_broth beef_liver beer beet\n", + "indian -0.7985278 0.2430186 -0.035598065 -0.002173738 0.01005813\n", + "japanese 0.2241875 -0.3653020 -0.139551027 0.128905553 0.04923911\n", + "korean 0.5366515 -0.6153237 0.213455197 -0.010828645 0.27325423\n", + "thai 0.1570012 -0.9364154 -0.008032213 -0.035063746 -0.28279823\n", + " bell_pepper bergamot berry bitter_orange black_bean\n", + "indian 0.49074330 0 0.58947607 0.191256164 -0.1945233\n", + "japanese 0.09074167 0 -0.25917977 -0.118915977 -0.3442400\n", + "korean -0.57876763 0 -0.07874180 -0.007729435 -0.5220672\n", + "thai 0.92554006 0 -0.07210196 -0.002983296 -0.4614426\n", + " black_currant black_mustard_seed_oil black_pepper black_raspberry\n", + "indian 0 0.38935801 -0.4453495 0\n", + "japanese 0 -0.05452887 -0.5440869 0\n", + "korean 0 -0.03929970 0.8025454 0\n", + "thai 0 -0.21498372 -0.9854806 0\n", + " black_sesame_seed black_tea blackberry blackberry_brandy\n", + "indian -0.2759246 0.3079977 0.191256164 0\n", + "japanese -0.6101687 -0.1671913 -0.118915977 0\n", + "korean 1.5197674 -0.3036261 -0.007729435 0\n", + "thai -0.1755656 -0.1487033 -0.002983296 0\n", + " blue_cheese blueberry bone_oil bourbon_whiskey brandy\n", + "indian 0 0.216164294 -0.2276744 0 0.22427587\n", + "japanese 0 -0.119186087 0.3913019 0 -0.15595599\n", + "korean 0 -0.007821986 0.2854487 0 -0.02562342\n", + "thai 0 -0.004947048 -0.0253658 0 -0.05715244\n", + "\n", + "...\n", + "and 308 more lines." + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "GMbdfVmTKkJI", + "outputId": "adf9ebdf-d69d-4a64-e9fd-e06e5322292e" + } + }, + { + "cell_type": "markdown", + "source": [ + "モデルが学習中に得た係数が出力されます。\n", + "\n", + "### 学習済みモデルの評価\n", + "\n", + "テストセットでモデルの性能を評価する時が来ました 📏!まずはテストセットに対して予測を行いましょう。\n" + ], + "metadata": { + "id": "tt2BfOxrKmcJ" + } + }, + { + "cell_type": "code", + "execution_count": 9, + "source": [ + "# Make predictions on the test set\n", + "results <- cuisines_test %>% select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test))\n", + "\n", + "# Print out results\n", + "results %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class\n", + "1 indian thai \n", + "2 indian indian \n", + "3 indian indian \n", + "4 indian indian \n", + "5 indian indian " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | .pred_class <fct> |\n", + "|---|---|\n", + "| indian | thai |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & .pred\\_class\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t indian & thai \\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                          A tibble: 5 × 2
                                          cuisine.pred_class
                                          <fct><fct>
                                          indianthai
                                          indianindian
                                          indianindian
                                          indianindian
                                          indianindian
                                          \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "CqtckvtsKqax", + "outputId": "e57fe557-6a68-4217-fe82-173328c5436d" + } + }, + { + "cell_type": "markdown", + "source": [ + "素晴らしい仕事です!Tidymodelsでは、モデルの性能評価は[yardstick](https://yardstick.tidymodels.org/)を使用して行うことができます。これは、性能指標を使用してモデルの有効性を測定するためのパッケージです。ロジスティック回帰のレッスンで行ったように、まず混同行列を計算することから始めましょう。\n" + ], + "metadata": { + "id": "8w5N6XsBKss7" + } + }, + { + "cell_type": "code", + "execution_count": 10, + "source": [ + "# Confusion matrix for categorical data\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class)\n" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " Truth\n", + "Prediction chinese indian japanese korean thai\n", + " chinese 83 1 8 15 10\n", + " indian 4 163 1 2 6\n", + " japanese 21 5 73 25 1\n", + " korean 15 0 11 191 0\n", + " thai 10 11 3 7 70" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 133 + }, + "id": "YvODvsLkK0iG", + "outputId": "bb69da84-1266-47ad-b174-d43b88ca2988" + } + }, + { + "cell_type": "markdown", + "source": [ + "複数のクラスを扱う場合、これをヒートマップのように視覚化する方が一般的に直感的です。このように:\n" + ], + "metadata": { + "id": "c0HfPL16Lr6U" + } + }, + { + "cell_type": "code", + "execution_count": 11, + "source": [ + "update_geom_defaults(geom = \"tile\", new = list(color = \"black\", alpha = 0.7))\n", + "# Visualize confusion matrix\n", + "results %>% \n", + " conf_mat(cuisine, .pred_class) %>% \n", + " autoplot(type = \"heatmap\")" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deWBU9b3//0+ibApWrbYuvYorXaxoaatWvVqpqG2HsCmLBAqoVXBDjCKbKMqOQUDFFVxKqyhVFLUqWKJsxg3Lz2IFGilLiEqptMX0hpzvnJkMCbx5/W5vz5k5Z+D5/OOc85nEz3w8Mw9mMjmo84gocC7qBRDtCQGJKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQijHkLb+NUZVRb2Ahn26OeoVNCxWpyZWi/mbeGbnGNJl42PUmbNiVM+7nohRlz4ao/o/HqOuFc/sHEMasShGdfwsRt3+1qYYNXJ9jLq9MkZNE89sIMUkIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSbI+EVLQktatJvB8FpNGtv9LoqMteTx7d/f2vND6h5M3oIS07xT0XxjyhQJpx+sGNj79pbfCJgkJ6o7V72t/f4FKdFSmkRa3dnNTBgnYHNPneY7GCVPvB1ggg3ezaTZraq+C8RYvGF7a64cbW7rLIIU1sdmR8IE1ynX4957qC9pFDGtvsiDSkywsn+D0eJaRxycWkIC1pcdzYSecUzIwTpP+0YJBOONJ/CTqncP6iI49YsGjRwqMOjhrSS03GTY0PpJNaVia3P92nImJIc5vcWZqG1LVFoInCgPRCkzF3pyF1bLa8snLdd1pGC+nTOy8uvvdLr+iVEZ2KF/hv7WoTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZgHS8cf624sKF5RdO84/+plbEDGk8oWfxQjSt7/pb7vu80ngmYJBWvTa+jpIPz0ickhLFlSmIa1vVuSPR7lXI4V0w9jN6wdM94qu+fCfj3XZ5v+MVDRwi/dKl23eoPFfVD/es3pj+/e3b7xudmaYDUjD3C+fmz+6aee64Zsnfz3QdOF82BAjSFPckOV/nrFfv+AzBf6woQ7SWa3Wr18dLaRkaUiL3FB/MMdNjhLS6sTG5KbcK3ra8zYmKlKQ5nrepsQnqxKbkz8zdStblVjtedu9zDD5zyxpn+wPIUJadFsz5wp7pz5i+P1vH2i372gg7dT9+yfPz/WVwScKC1Lrlh0PdAddvyYOkJ5zd/mDN9ywKCG92b42tS9anHwvl/g4BSl9WJZINbv2ng4ls9Z7mWHye9/4cbL3QoR0T/MzRt91SWHqI4bJzh0+KdBsex6kZw/4yYzfXL7PzfGB1LKw20P3F7mL4gDpSTfVHyxzN0YJaVH77WlIS+ohpQ+XJjJv4zbNG9mhrH64uwJBeuPwE/0Xo66FTya3L44f2ragF5AatPGo7/ovRlcULo0NpLff87dd3ZwYQHrOTfIHZW54lJDWJCo876MXdgNpbWJl8usbvZotyd30wZlhFiA97VJwJrjMLL9wDwGpvrfddf7uCXdPbCCle8IFmi8kSEvcLf7gqfQLU1SQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpgVSD383Wg3+PkbHkyTugVI9ZW7/v7uEXdXbCCtXOlv73fjYgBpQ4uf+4MhrixSSFvu6NJz2rbdQdo8ruslJSu82ll9Ova6+++ZYRYgvdH8mDeSuw7usRcLT/WPLnGTgVTfxq+02pjc9Xa/jwukdwsv9AfnFbwRA0iVlzZ5p7Jy7bHfDjTXHnGt3UB32qgJFxe2XbSo2H332pLzC77zRsSQ5pWW9nADSkvfiQOkTXe6Hz/wxOWFRcFnCgbp2QkTurorJ0xYvL6Paztu1OmuX6DpgkGaO2lSN9d/0qRlle8dfPTQO37QaA6QFo06qWmjlleWLVr0Zkmrps2O7fFqoNlCgNQ7fS2ZezAWkDY9+P39Gp8wZH3wiYJB6ll3Vu5dv3ZM6xZNT5kYaLaAkHrVLWZ6ZeWiC1s0Pe2ZQLPtIZDCjau/ZVz9rQKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEiqmEDqOSJGnXJfjOpw+z0xqtOUGNU76rPRsMvEMzvHkEa+GqMuHBajznv8tRg1IOoFNGzgKzFqiHhm5xjSvZ/GqF/MjFHd3on6zWXD7ox6AQ27oypG3Sue2UCKSUCSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyhQTpraYHhzDLL/7zp/3YY9zg1MFDHQ7Z92sXz0ge3fTt5o2O6j0jWkjLTnHPhTFPGJDmt23e/OTSquAThQFpXcl/NW45bFPwiUKEVJN4f6fxpkTFrjdlGVLVmS5aSL0bH1wH6QeFF155puswc+b1BUf37HWi6xQppInNjowNpJcbtbx90jnuluAzhQEpsc9V0y9xJcEnChFS7Qdbd4W0601ZhjSp8bmRQhrWqPiyNKQS1y25/f43Z8z82qEPzJz58GEHRAnppSbjpsYG0o8O+ONnn1V9Z7+NgWcKAdJsd1ty+/Mzg78kZfGtXRLSv/29oUD6wwEll0YKadyomXWQftT0ofRND/e4zt+d7R6IEFL5ws/iA2nydH/bx/0p8EwhQOrSfF3wSVKF+9auNrFwRP++8z1v9aAuVy9Mv7WrGN6964gN3o4vZQ/SRSeujxZSsjpIh540c2aDH4tmnPDV/3TCkD5siA+kdOceGnyOECAdfW5VVWXwaapC/xmpaOAW75Uu22r7lW6rGpKGdGXptn+MKfEyX8oepIcK5n0aE0gzCs7t8/WC/S9KvQw9dNfw0/e5BkgNe9jdHnyS4JA2FfaadEzBQf0/iR+kuf5buk/+mNjoeUvSkLZ+6XmLO9RmvpT8xgVtkr0dNqQ/HdL307hAut8deuxVN15Y0Ma/qcS5Q274jyfcIyH9utlFsfjUrsId9b0Hnrqq8Gfxg7TY8zYnPi5rv93zPklDWj6kuLhboibzpeQ3lvdM9mHYkLoeviY2kB50zacndz9xtya3U6+/7LSCBJDqG7dPpw0hTBMc0l/cQWuSu8vcK7GDtCSlZX77Ws9bk4K0odPsam+pD2lJBtJuCg7pqYKHKyoquh1csS4GkGY2+6a/HeT61N3cPkUKSKmudIM+DWOeEH5GanGmv/2NuyvwTNmBtDxR6XllKUhlRTWe92j2IfVzdZ0fB0itDvO317orphQP948Gur5AqmtgQWkIs3wWCqQzjve3j7l7As+UHUjVPUq3rrs5BWllYsW/Fg5OVGUb0tsv+LU74IU34wCplytJbs8oHD+14Jv+p3ftUmMgJXvahfWJRQiQxrunk9su+7wVeKbsQPI+ur7z1e8k/uzfNKN7jylbB3bblGVI6aL9GWlonz5nu4v69Jkw86GWTdr3+6E7f+bMn7nju/c+veC4//QaoTAgzSst7eEGlJYGnyq4gcrjDipN9V7gqUKAtK71foPuLnKXB59pz7rWLmJIP657d3nVzJn3tv3KPocVJ/XM6H1046bfuGj6fzpnGJB6163rwcAzBYf0UeYt+GOBpwrjEqGP+3yt0XFj43WtXZC4+lvF1d8yrv62AUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAcl28S9jVKt2Mer4blGfjob9KOoFNOxnV8Soi8QzO8eQ7loVo7r/JUYNf/KNGDXkTzFq1PoYNU08s3MMafLaGNUz6rcJDbvtmWUxanhFjIrV+8z7xDMbSDEJSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIs/yBt6n1EoUsFpFwHJFn+Qbp437a9+6UCUq4Dkiz/IH312WwBAtL/FpBk+QdpvyogRRWQZPkH6ezXgRRVQJLlH6S3f7gYSBEFJFn+QTrzv9x+R6cCUq4Dkiz/IJ3dNhOQch2QZPkHKfsBSQUkWT5C+uyFBx56+Qsg5T4gyfIP0vZBjfzLGvYfD6ScByRZ/kEa7zo+/OIL91/gHgVSrgOSLP8gfeuG9P6K7wEp1wFJln+QmsxP7+c1A1KuA5Is/yDt/3x6/2xzIOU6IMnyD9JZP672d9vanQukXAckWf5Bmldw1JWjbr/8iMJXgZTrgCTLP0jeb7/pf/z93XnZcgQkGZBkeQjJ89a/VV6ZNUZA0gFJlpeQshyQVECS5RmkVqO9VjsCUq4DkizPIJ1W6p22IyDlOiDJ8gxSTgKSCkiy/IPU5sP0/ulvASnXAUmWf5BceWr3P7c1BlKuA5Is3yC5+rhoNecBSZZvkN6/2xWl/uuQl434C5ByHZBk+QbJ8y74U7YAAel/C0iy/IPkbZyS3FTdtglIOQ9IsvyDtPIw/1OGCnfYaiDlOiDJ8g9Sh+Pf8ncfHt8JSLkOSLL8g3ToI+n9/S2AlOuAJMs/SM2eSO9/tV9MIc07t3nzk8ZW+Ie/P9k9GT2kkvSvC86OGtJrmV9cjF+2bNoPvtL4xMFLo4T0/Dn773/SmDUVFdenV3Vm9JCWneKeC2OefwvSjy6o8Xdf/ODMzC01ifdjBOnZfY8eNuYsd2PycHSzI+IA6ZeFd/n9OmpIbw5JdX7Br5ZNKmx1402nuCsihPTbfY8eOvosN6iiom/hWL+ZkUOa2OzIHEJ6ueDYASNH9Dm08OXMLbUfbI0RpNNbvLt2bcW391uz9rdNRk2KA6TuBwSfI10Yb+1eP7TDsmXfOLJs2bJFRx8cIaTTWrxdUbHmW/utqri4RaCJQoP0UpNxU3MIyXuljf9CfHJc/4bs+Lv9bbFbvrbsd2tjAelnRwafI10YkC458NVliwdO9A9/7sqigzRusr/t6d6ruPDweEAqX/hZTiF53mcf/H8N/4vF/lu7iuHdu47Y4FUnXh7cr+9SLzOuTSwc0b/vfM/bPL5Xl8GrPO+1qzoX31u9Y5gFSOnOPiS1iwWks1tVVa0NPk1VKJCeLCzJHC5tfVigqcL4sOHsQyoqzjyxomJlDCAlyzGkXfIhXVm67R9jSpKH1/3Ve7XDlszYKxq4xXulyzZv0Pgvqh/vWb2x/fvbN143OzNM/sP/XJfsy7Ah3eeGxQfSKcd0PsgdNOgvsYB0/qFvpPZvzH34gn3HRg3pHje0ouLklkUHuoOu/WhvgrTbvyHrQ9qatLC4Q21N4jnP2971lczYK5rreZsSn6xKbE7+LNWtbFVidfLrXmaY/IcXtEn2dsiQZjZrVxEfSMcU9pj5UEf30+AzBYf0ZOGg9MFU5w4vDTZXcEiPNDt/TUVFy8JL7r8n4S7YmyDt9m/I+pCWDyku7paoqUksS95w1azM2CtanHxbl/i4LJFqdu09HUpmrfcyw+T3rrg52c4XSQSGNGqfotVr4wPp/RX+trubG3im4JC6Nn49ffC7icPPL/hFtJBu36f9x8ndknJ/cLF7ai+CtNuSkDZ0ml3tLfUh+f9fzCt+nRl7RUtSkJYmquu+edO8kR3K6oe7Kyikfu7aT9bGCFK637hRgecIDGnp13/UYNTXzYgSUl93zZ/rR4+6EUB6v6yoxvMe9SE97XnVnV/LjDOQ1iZWJr9xo1ezJbmbPjgzzAqkqwvG7jiOBaTVq/3tQ25i4JkCQ3rE3eLvXip5xN/d5YZGCGlAwZj0wYoV/vYeN3ovgrR/g3b8DdkkpJWJFf9aODhRVZMYUFE9q+PfMuMMJG9oSVXNi10+f7XPx7Wbh0zJDLMB6VduZP0gDpA+KLzI37UtWBI9pKvdr/zd7wq/tyS56+qmRgfp8cwr0LLCdv7u3ILX9yJIXZO1anRG5w6nFLS5ugEkb0b3HlO2Duy2IfHiTZ37lXuZ8aYMpM3jul5SssKrndWnY6+7/54ZZgHSmmMPHDvOb8naOePGXeJ+OW7cm9FCqurnzp8w+gx3efCZAkP6uft9at/bnXz9ze0KTloSGaRVxxw4JnVBw6KK3u680SN/6PoEmS4MSPNKS3u4AaWl7+QAUrLZJ23wdyu/ObchpB2H74g5/g8FgvR+5oKyB9deWnc0LWJIG8efckDTU0uDTxQc0tmF6f3Swa2aNjuu5+uBJgsE6d3M4/RAxeo7Tm7RtPW4QI7CgNQ788zJDaSTnkrv72tdd8P2jxI7PnWLHlLYcfW3jKu/Vf8WpMavpfezm9TdsLDDqFog5SQgyfIP0hGXpna1XQ8PTgZI/7eAJMs/SLe67147atSAb7nBQMp1QJLlH6TacYf7P5EdMrwGSLkOSLL8g5Sk9Mmypau3Z4sRkHRAkuUjpG1vzfnU+x8g5T4gyfIQ0sQWzi3xhvwia5SApAKSLP8gPeDaT09CenTf8UDKdUCS5R+kk6/0tiUhebecCKRcByRZ/kFq+moa0u8aASnXAUmWf5C+9nwa0lMHACnXAUmWf5B+cs4/fUifn9QOSLkOSLL8g/T6Psdf5/r2PqDRm0DKdUCS5R8k77VT/Ssbfvj7bDkCkgxIsjyE5Hmb3ntvc9YYAUkHJFn+QToje/+JVSD9LwFJln+QvjEJSFEFJFn+QXruW7/9F5CiCUiy/IN09ndd4yOO9gNSrgOSLP8gnXle27qAlOuAJMs/SNkPSCogyfIO0rZlb24BUkQBSZZvkCa3cK5R/y/FNwIpuwFJlmeQnnEtbxh2lrtafCOQshuQZHkG6eyW/v8utm+jvwEpioAkyzNIzYf727dc1i5YBdL/X0CS5Rkkd7+/3eBeFt8JpKwGJFm+QXrQ3250LwEpioAkAxKQ/v2AJMs3SLcsSTbPlfo7IOU6IMnyDVLDgJTrgCTLM0i3NgxIuQ5IsjyDlJOApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZOvQM0Yd/4sYdWq7TjHqB5fGqJ/2iVEXimd2jiFNWR+jij+PUaOWboxRiWkxanTUj03DYvKKBCQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiRbUEhvtHZP+/sbXKqzIodUduEBTdr8KoSJAkNa1No9s+tRFJBGHOWuSx1cf3zjxifcsPNtkUEK7XEKBVJN4p1oIY1tdkQa0uWFE/wejxrS2y2OmzD53IIngs8UFNK45Kl5ZpejKCB1a3xQGs2V7shLLj1s35sa3hYZpPAepz0C0twmd5amIXVtEWii0CB1bvbh559vOumY4DMFhPR8k9GT03zqj6KANKjRJT3TaA498K5p0ya0aNXwtsgghfc47RGQFr22vg7ST4+IBaSqZh393Wj3euCpAkJaPH9jHZ/6oygg3XrLtDSaMe4sf9y2YHz9bZFBCvFxCg1SzbCRNX8d36tzyYfe9sTv+k32No/v1WXwKs+rGN6964gNXm1i4Yj+fednBVKyOkhntVq/fnX0kJa54f5urpsaeKrgHzbU84kQUrI0mjvcef6gixtYf1tkkEJ8nEKDVFrypTfo1i1fPtz1b17RwFX/9AaN/6L68Z7V3pWl2/4xpsRL3rjFe6XLtuS3f74s2d+yAql1y44HuoOuXxMxpBfc3f5uiRsReKo9DdLU/Y7yB23cZTGAFOLjFBakJ/p/4a1OrPW86osXeEVPet6qxGbPq+1W5m390vMWd6j1iuZ63qbEJ8lvX9Am2dtZgdSysNtD9xe5iyKG9Iy7z9+9424KPNWeBmlawv33yNsuaOH6xgBSiI9TSJDGJv7geW+2r00O+v/GKyrzvLJEqtne8iHFxd0SNV7RYs/bnPcB240AABDoSURBVPg4+R2rpyRblxVIb7/nb7u6OdFCmucm+7vF7tbAU+1xkO4+r8C5b13qrowBpBAfp5Ag9RsxsKYO0lVPeEVLPG9pojr1tQ2dZlcnBzWpG9OQdlNYkNI94UZGC+ltN8zfzUn/gReoPQ7StGljS+5M/ow0LAaQQnycQoJUvrXPI94a/43bts7zU2bWJlYmv7LRKyuq8bxHcwVp5Up/e78bFy2kT1sk/N1wtzjwVHsgJL/v7jclBpBCfJxC+7BhRYd3vZKRX2y7r+c/Uma8oSVVNS92+XxlYsW/Fg5OVOUE0ruFF/qD8wreiBbS58VNln/++YZjvxN8pj0O0umHTp42bXDhORZX7iGF+DiF93ukx4u3VN3R89Lbkj/8pCBtHtf1kpIVnjeje48pWwd225RFSM9OmNDVXTlhwuL1fVzbcaNOd/0CTRcCpD98teXwMT9sNDf4TAEhzZ04sZu7auLEpQ2OooB0Q48ep7u2PXqMnHZFwQnFHZp/dWzD2yKDFN7jtEdca9czfYWdu3f92jGtWzQ9ZWKg2UK51m7ZRS2anvFcCBMFhFRcd2rua3AUBaSz6u69z7Rpfb7RqPlpd+58W1SQwnuc9ghIIcfV3zKu/lYByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSRUTSB2LY9SJfWJUm469Y1TLs2NUIurHpmEXimd2jiFNq4xRvaP+c79ht77zWYwatSlGXV8eo24Xz2wgxSQgyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSLagkBa1dnNSBwvaHdDke49FCym5mGd2PYoW0pz/PrjJSZM+DT5RcEh/cnXNjBbSgsw6JpSXzzq7eeOT7oo1pKIlOw1rEu9nBdK4ZkekIS1pcdzYSecUzIwSkr+YZ3Y5ihbSrMKTx0443Q2OA6R1d6UqKng9WkiLh6Y6v2BW+Zz9j7p56GkFE+MKafnHBlLtB1uzAemFJmPuTkPq2Gx5ZeW677SMENLzTUZPTvOpP4oYUsuj13322cbjD40DpHSrDy8OPkkIb+0WHtqxvPyCpi+Vly894RtxhXTbiwaSLBikJQsq05DWNyvyx6Pcq9FBWjx/Yx2f+qNoIVXe8YS/6+HWxQbSZQd/FHySECB1PXB++bKm5/uHg9wT8YQ0pH2n672iV0Z0Kl7geRXDu3cdsSFrb+0q6yAtckP9wRw3OTpIyer5xAJSuk9P+0bwSUKC9Gbh2BBmCQ5pduHN5eVPuwH+8XQ3Ip6QvH7+K9I1H/7zsS7bvCtLt/1jTEkdpPXPJKvKBqTn3F3+4A03DEg7tWH5y50bzQw+T0iQOhz+lxBmCQ6p3aGLyssfcMP846fc1XGG9LTnbUxUeFu/9LzFHWrTkBa0SfZ2NiA96ab6g2XuRiDt1DPOHfWbEOYJB9KbhXeGMU1gSLMLb0xup7nb/MGz7vI4Q1rseZsTH3vLhxQXd0vUZP8VaZI/KHPDgbRTH/1qaseCgcHnCQfS5Y1XhzFNYEjdGi9Mbh90Q/3BU+6aOENakoK0odPsam9pBtJuCgnSEneLP3gq/cIEpJ0a5F4NPEcokCqP+EkY0wSG9NbXz/R3c1x/f3dP+oUp3pDKimo879HsQ9rQ4uf+YIgrA1J9fxz3O3/3azc5HpBecpPCmCYwpBnpl6Jl+5/n7wa4p2IKqf/Df89AWplY8a+FgxNV2YZUeWmTdyor1x777UBz7WmQPio8syq5+6V7Jh6Qhrvgv4z1CwrpGjcrte/Q+Pny8kX/dUKgybIIaW7nPhlI3ozuPaZsHdhtQ3YgzZ00qZvrP2nSssr3Dj566B0/aDQnQkhzJ07s5q6aOHFpg6NoIX12nfvhqImdCr5fFQ9I3d2aMKYJDCnhFqb28w48csCgk/edHldI/5eCQepVd9nU9MrKRRe2aHraM4FmCwipuG4x9zU4ihjSp5NObrb/t66uCD5TKJAuKAxjluCQ/ruw7uDpc/Zvcup9wSbbIyCFHFd/y7j6WwUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkVUwgzXg8Rg2MegENGzY16hU07NqoF9CwWD1O08QzO8eQiPbMgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQghIRCGUl5CmTY56BQ2ad+emqJdQ34d3Lo16CfV9eeesqJfQoBl3ZnX6vISUaBf1Chp0R5uPo15Cfa+2eTzqJdS3tc3VUS+hQb2/n9XpgRQ0IKmAFPeApAKSDEg2IKmAJAMSUfwDElEIAYkohPIDUtGS1K4m8X7ECzFL2JSoyPmqYnAaTDWJd6Jegq7u6ZMpK+cvryDVfrA14oWYJSQh5XxVMTgNpthCWv6xgZSV85dXkGJYElLUS4hFsYV024u5efrEHNKnd15cfO+XXtErIzoVL/Bfk2sTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZruGS1g9qMvVC9Nv7SqGd+86YoO340vZXkPmDqsTLw/u13epZxaQ69PjQ6oZNrLmr+N7dS750Nue+F2/yTvuNadnZ+eGtO90febpk1nH3vjW7oaxm9cPmO4VXfPhPx/rss0/A0UDt3ivdNnmDRr/RfXjPas3tn9/+8brZmeGWV9QgyXU9ivdVjUkDenK0m3/GFPi7Vhd1tdQd4c1iev+6r3aYYtZQK5Pjw+ptORLb9CtW758uOvfkutY9c8d95rTs7NL/fxXpPTTp/6k7XWQVic2JjflXtHTnrcx/ZQtmuu/n/pkVWJz8s1ut7JVidWet93LDLO+ogZL+KO/uCXpVW390vMWd6jNfCn7a6i7w5rEc8l//a6v7LqAnJ+eJKQn+n+RfMDWel71xQu8oie9+nvN6dnZpRSk9NOn/qTtdZDebF+b2hctTr5ZSXycehanD8sSqWbX3tOhZNZ6LzPM+ooaLqH9ds/7JA1p+ZDi4m6JmsyXsr+GujusSSxL3nDVrF0XkPPTU5MYm/hD5gHr/xuvKIl2x73m9OzsUgpS3f3uOGl7HaRF/nPVS/+0mIGUPlyayLxP2TRvZIey+mGWa7CE+f6TZk0K0oZOs6u9pf5TZUluIGXusCaRfI54V/x61wXk/PTUJPqNGFhTB+mqJ1LryNxrbs/OLvV7ccfTp/6k7XWQ1vifiX30wm4grU2sTH59o1ezJbmbPjgzzHoNlrA8Uen/qetDKiuq8bxHcwgpc4c1ieS7lurOr+26gJyfnppE+dY+jyQfsOQbt22d56fWkbnX3J6dXWoAqf6k7XWQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpj1BTVYQnWP0q3rbk5BWplY8a+FgxNVOYOUucOaxICK6lkd/2YWkOvT43/YsKLDu17JyC+23dfzH+lPnOvuNbdnZ5f6P/z3zP3Wn7S9D9KWO7r0nLZtd5A2j+t6SckKr3ZWn4697v57Zpj1Gi7ho+s7X/1O4s/+TTO695iydWC3TbmClLnDDYkXb+rcr9wzC8j16Un9Hunx4i1Vd/S89LZ1db+6ydxrTs/OLs3t3GfHA7bjpO19kGg3NfgTNba/B93rAlLetf0j/zPtdECKS0DKuxZ2GFWbOQZSXAISUQgBiSiEgEQUQkAiCiEgEYUQkPK3X7pMp+32622Pzu169uqAlL+9PnXq1Gtd5+TWXNb9nv+4AimHASm/e92V7u7mKUDKcUDK7+ognXn28984w2vd2j8u+qp3QfLtXhuv7XFrLmze/JLsX8lLQMr36iCdd/I373mhHtKfilz5h17blq1HP3tjwS+iXeFeEpDyuzpIbd2c5HYHJK+f23Hjj74W4fL2noCU32UgNf6XZyE19a/J61UY4fL2noCU32UgHeFvd4V0tD/sx0OcizjL+V0G0tH+FkjRxVnO73aCdOpJ/vY0IEUQZzm/2wnSeYckfyja1CwJ6TL3P0DKaZzl/G4nSJPdmMp3f/ydJKQR7rangZTLOMv53U6Qqm84sknr5we08Ly/nNqoFZByGWeZKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYXQ/wMhANIDIZLX1QAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 436 + }, + "id": "HsAtwukyLsvt", + "outputId": "3032a224-a2c8-4270-b4f2-7bb620317400" + } + }, + { + "cell_type": "markdown", + "source": [ + "混同行列プロットの中で、濃い色の四角は多くのケースを示しており、予測ラベルと実際のラベルが一致しているケースを示す濃い色の四角が対角線上にあることが確認できるはずです。\n", + "\n", + "次に、混同行列の要約統計量を計算してみましょう。\n" + ], + "metadata": { + "id": "oOJC87dkLwPr" + } + }, + { + "cell_type": "code", + "execution_count": 12, + "source": [ + "# Summary stats for confusion matrix\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class) %>% \n", + "summary()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " .metric .estimator .estimate\n", + "1 accuracy multiclass 0.7880435\n", + "2 kap multiclass 0.7276583\n", + "3 sens macro 0.7780927\n", + "4 spec macro 0.9477598\n", + "5 ppv macro 0.7585583\n", + "6 npv macro 0.9460080\n", + "7 mcc multiclass 0.7292724\n", + "8 j_index macro 0.7258524\n", + "9 bal_accuracy macro 0.8629262\n", + "10 detection_prevalence macro 0.2000000\n", + "11 precision macro 0.7585583\n", + "12 recall macro 0.7780927\n", + "13 f_meas macro 0.7641862" + ], + "text/markdown": [ + "\n", + "A tibble: 13 × 3\n", + "\n", + "| .metric <chr> | .estimator <chr> | .estimate <dbl> |\n", + "|---|---|---|\n", + "| accuracy | multiclass | 0.7880435 |\n", + "| kap | multiclass | 0.7276583 |\n", + "| sens | macro | 0.7780927 |\n", + "| spec | macro | 0.9477598 |\n", + "| ppv | macro | 0.7585583 |\n", + "| npv | macro | 0.9460080 |\n", + "| mcc | multiclass | 0.7292724 |\n", + "| j_index | macro | 0.7258524 |\n", + "| bal_accuracy | macro | 0.8629262 |\n", + "| detection_prevalence | macro | 0.2000000 |\n", + "| precision | macro | 0.7585583 |\n", + "| recall | macro | 0.7780927 |\n", + "| f_meas | macro | 0.7641862 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 13 × 3\n", + "\\begin{tabular}{lll}\n", + " .metric & .estimator & .estimate\\\\\n", + " & & \\\\\n", + "\\hline\n", + "\t accuracy & multiclass & 0.7880435\\\\\n", + "\t kap & multiclass & 0.7276583\\\\\n", + "\t sens & macro & 0.7780927\\\\\n", + "\t spec & macro & 0.9477598\\\\\n", + "\t ppv & macro & 0.7585583\\\\\n", + "\t npv & macro & 0.9460080\\\\\n", + "\t mcc & multiclass & 0.7292724\\\\\n", + "\t j\\_index & macro & 0.7258524\\\\\n", + "\t bal\\_accuracy & macro & 0.8629262\\\\\n", + "\t detection\\_prevalence & macro & 0.2000000\\\\\n", + "\t precision & macro & 0.7585583\\\\\n", + "\t recall & macro & 0.7780927\\\\\n", + "\t f\\_meas & macro & 0.7641862\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                          A tibble: 13 × 3
                                          .metric.estimator.estimate
                                          <chr><chr><dbl>
                                          accuracy multiclass0.7880435
                                          kap multiclass0.7276583
                                          sens macro 0.7780927
                                          spec macro 0.9477598
                                          ppv macro 0.7585583
                                          npv macro 0.9460080
                                          mcc multiclass0.7292724
                                          j_index macro 0.7258524
                                          bal_accuracy macro 0.8629262
                                          detection_prevalencemacro 0.2000000
                                          precision macro 0.7585583
                                          recall macro 0.7780927
                                          f_meas macro 0.7641862
                                          \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 494 + }, + "id": "OYqetUyzL5Wz", + "outputId": "6a84d65e-113d-4281-dfc1-16e8b70f37e6" + } + }, + { + "cell_type": "markdown", + "source": [ + "もし、精度、感度、PPVといったいくつかの指標に絞って考えるなら、スタートとしては悪くないですね 🥳!\n", + "\n", + "## 4. さらに深掘り\n", + "\n", + "ここで一つ微妙な質問をしてみましょう:あるタイプの料理を予測結果として選ぶ基準は何でしょうか?\n", + "\n", + "実は、ロジスティック回帰のような統計的機械学習アルゴリズムは、`確率`に基づいています。つまり、分類器が実際に予測しているのは、可能性のある結果の集合に対する確率分布です。そして、最も高い確率を持つクラスが、与えられた観測データに対して最も可能性の高い結果として選ばれます。\n", + "\n", + "これを実際に確認するために、ハードなクラス予測と確率の両方を試してみましょう。\n" + ], + "metadata": { + "id": "43t7vz8vMJtW" + } + }, + { + "cell_type": "code", + "execution_count": 13, + "source": [ + "# Make hard class prediction and probabilities\n", + "results_prob <- cuisines_test %>%\n", + " select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test)) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test, type = \"prob\"))\n", + "\n", + "# Print out results\n", + "results_prob %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class .pred_chinese .pred_indian .pred_japanese .pred_korean\n", + "1 indian thai 1.551259e-03 0.4587877 5.988039e-04 2.428503e-04\n", + "2 indian indian 2.637133e-05 0.9999488 6.648651e-07 2.259993e-05\n", + "3 indian indian 1.049433e-03 0.9909982 1.060937e-03 1.644947e-05\n", + "4 indian indian 6.237482e-02 0.4763035 9.136702e-02 3.660913e-01\n", + "5 indian indian 1.431745e-02 0.9418551 2.945239e-02 8.721782e-03\n", + " .pred_thai \n", + "1 5.388194e-01\n", + "2 1.577948e-06\n", + "3 6.874989e-03\n", + "4 3.863391e-03\n", + "5 5.653283e-03" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 7\n", + "\n", + "| cuisine <fct> | .pred_class <fct> | .pred_chinese <dbl> | .pred_indian <dbl> | .pred_japanese <dbl> | .pred_korean <dbl> | .pred_thai <dbl> |\n", + "|---|---|---|---|---|---|---|\n", + "| indian | thai | 1.551259e-03 | 0.4587877 | 5.988039e-04 | 2.428503e-04 | 5.388194e-01 |\n", + "| indian | indian | 2.637133e-05 | 0.9999488 | 6.648651e-07 | 2.259993e-05 | 1.577948e-06 |\n", + "| indian | indian | 1.049433e-03 | 0.9909982 | 1.060937e-03 | 1.644947e-05 | 6.874989e-03 |\n", + "| indian | indian | 6.237482e-02 | 0.4763035 | 9.136702e-02 | 3.660913e-01 | 3.863391e-03 |\n", + "| indian | indian | 1.431745e-02 | 0.9418551 | 2.945239e-02 | 8.721782e-03 | 5.653283e-03 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 7\n", + "\\begin{tabular}{lllllll}\n", + " cuisine & .pred\\_class & .pred\\_chinese & .pred\\_indian & .pred\\_japanese & .pred\\_korean & .pred\\_thai\\\\\n", + " & & & & & & \\\\\n", + "\\hline\n", + "\t indian & thai & 1.551259e-03 & 0.4587877 & 5.988039e-04 & 2.428503e-04 & 5.388194e-01\\\\\n", + "\t indian & indian & 2.637133e-05 & 0.9999488 & 6.648651e-07 & 2.259993e-05 & 1.577948e-06\\\\\n", + "\t indian & indian & 1.049433e-03 & 0.9909982 & 1.060937e-03 & 1.644947e-05 & 6.874989e-03\\\\\n", + "\t indian & indian & 6.237482e-02 & 0.4763035 & 9.136702e-02 & 3.660913e-01 & 3.863391e-03\\\\\n", + "\t indian & indian & 1.431745e-02 & 0.9418551 & 2.945239e-02 & 8.721782e-03 & 5.653283e-03\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                          A tibble: 5 × 7
                                          cuisine.pred_class.pred_chinese.pred_indian.pred_japanese.pred_korean.pred_thai
                                          <fct><fct><dbl><dbl><dbl><dbl><dbl>
                                          indianthai 1.551259e-030.45878775.988039e-042.428503e-045.388194e-01
                                          indianindian2.637133e-050.99994886.648651e-072.259993e-051.577948e-06
                                          indianindian1.049433e-030.99099821.060937e-031.644947e-056.874989e-03
                                          indianindian6.237482e-020.47630359.136702e-023.660913e-013.863391e-03
                                          indianindian1.431745e-020.94185512.945239e-028.721782e-035.653283e-03
                                          \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "xdKNs-ZPMTJL", + "outputId": "68f6ac5a-725a-4eff-9ea6-481fef00e008" + } + }, + { + "cell_type": "markdown", + "source": [ + "もっと良くなりました!\n", + "\n", + "✅ なぜモデルが最初の観察がタイ料理だと確信しているのか説明できますか?\n", + "\n", + "## **🚀チャレンジ**\n", + "\n", + "このレッスンでは、クリーンアップしたデータを使用して、材料の組み合わせに基づいて国の料理を予測する機械学習モデルを構築しました。Tidymodelsが提供する[多くのオプション](https://www.tidymodels.org/find/parsnip/#models)を読んでデータを分類する方法や、[他の方法](https://parsnip.tidymodels.org/articles/articles/Examples.html#multinom_reg-models)で多項ロジスティック回帰を適合させる方法を確認してください。\n", + "\n", + "#### 感謝の言葉:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) さん、Rをより親しみやすく魅力的にする素晴らしいイラストを作成してくださりありがとうございます。彼女の[ギャラリー](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)でさらに多くのイラストをご覧ください。\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) さんと [Jen Looper](https://www.twitter.com/jenlooper) さん、モジュールの元となるPython版を作成してくださりありがとうございます ♥️\n", + "\n", + "
                                          \n", + "食べ物のダジャレは理解できないので、ジョークを入れるのはやめておきます 😅。\n", + "\n", + "
                                          \n", + "\n", + "楽しい学びを!\n", + "\n", + "[Eric](https://twitter.com/ericntay)、Gold Microsoft Learn Student Ambassador\n" + ], + "metadata": { + "id": "2tWVHMeLMYdM" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/4-Classification/2-Classifiers-1/solution/notebook.ipynb b/translations/ja/4-Classification/2-Classifiers-1/solution/notebook.ipynb new file mode 100644 index 000000000..262b90c09 --- /dev/null +++ b/translations/ja/4-Classification/2-Classifiers-1/solution/notebook.ipynb @@ -0,0 +1,281 @@ +{ + "cells": [ + { + "source": [ + "分類モデルの構築\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          00indian00000000...0000000000
                                          11indian10000000...0000000000
                                          22indian00000000...0000000000
                                          33indian00000000...0000000000
                                          44indian00000000...0000000010
                                          \n

                                          5 rows × 382 columns

                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "from sklearn.svm import SVC\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          00000000000...0000000000
                                          11000000000...0000000000
                                          20000000000...0000000000
                                          30000000000...0000000000
                                          40000000000...0000000010
                                          \n

                                          5 rows × 380 columns

                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy is 0.8181818181818182\n" + ] + } + ], + "source": [ + "lr = LogisticRegression(multi_class='ovr',solver='liblinear')\n", + "model = lr.fit(X_train, np.ravel(y_train))\n", + "\n", + "accuracy = model.score(X_test, y_test)\n", + "print (\"Accuracy is {}\".format(accuracy))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "ingredients: Index(['artemisia', 'black_pepper', 'mushroom', 'shiitake', 'soy_sauce',\n 'vegetable_oil'],\n dtype='object')\ncuisine: korean\n" + ] + } + ], + "source": [ + "# test an item\n", + "print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')\n", + "print(f'cuisine: {y_test.iloc[50]}')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0\n", + "korean 0.392231\n", + "chinese 0.372872\n", + "japanese 0.218825\n", + "thai 0.013427\n", + "indian 0.002645" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          0
                                          korean0.392231
                                          chinese0.372872
                                          japanese0.218825
                                          thai0.013427
                                          indian0.002645
                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "#rehsape to 2d array and transpose\n", + "test= X_test.iloc[50].values.reshape(-1, 1).T\n", + "# predict with score\n", + "proba = model.predict_proba(test)\n", + "classes = model.classes_\n", + "# create df with classes and scores\n", + "resultdf = pd.DataFrame(data=proba, columns=classes)\n", + "\n", + "# create df to show results\n", + "topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])\n", + "topPrediction.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.75 0.73 0.74 223\n indian 0.93 0.88 0.90 255\n japanese 0.78 0.78 0.78 253\n korean 0.87 0.86 0.86 236\n thai 0.76 0.84 0.80 232\n\n accuracy 0.82 1199\n macro avg 0.82 0.82 0.82 1199\nweighted avg 0.82 0.82 0.82 1199\n\n" + ] + } + ], + "source": [ + "y_pred = model.predict(X_test)\r\n", + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の利用に起因する誤解や誤認について、当方は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "9408506dd864f2b6e334c62f80c0cfcc", + "translation_date": "2025-09-04T02:23:13+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/ja/4-Classification/3-Classifiers-2/README.md b/translations/ja/4-Classification/3-Classifiers-2/README.md new file mode 100644 index 000000000..84c5bc6c4 --- /dev/null +++ b/translations/ja/4-Classification/3-Classifiers-2/README.md @@ -0,0 +1,249 @@ + +# 料理分類器 2 + +この第2回目の分類レッスンでは、数値データを分類するさまざまな方法を探ります。また、どの分類器を選ぶかによる影響について学びます。 + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/) + +### 前提条件 + +前回のレッスンを完了し、4レッスンフォルダのルートにある `data` フォルダ内に _cleaned_cuisines.csv_ という名前のクリーンなデータセットがあることを前提としています。 + +### 準備 + +クリーンなデータセットを _notebook.ipynb_ ファイルに読み込み、X と y のデータフレームに分割して、モデル構築プロセスの準備を整えています。 + +## 分類マップ + +以前、Microsoftのチートシートを使用してデータを分類する際のさまざまなオプションについて学びました。Scikit-learnは、さらに詳細なチートシートを提供しており、分類器(別名:推定器)を絞り込むのに役立ちます。 + +![Scikit-learnのMLマップ](../../../../translated_images/map.e963a6a51349425ab107b38f6c7307eb4c0d0c7ccdd2e81a5e1919292bab9ac7.ja.png) +> ヒント: [このマップをオンラインで見る](https://scikit-learn.org/stable/tutorial/machine_learning_map/)と、ドキュメントをクリックして読むことができます。 + +### 計画 + +このマップはデータをしっかり理解した後に非常に役立ちます。マップの道筋をたどることで、決定を導き出せます。 + +- サンプル数が50以上 +- カテゴリを予測したい +- ラベル付きデータがある +- サンプル数が10万未満 +- ✨ Linear SVC を選択可能 +- うまくいかない場合、数値データがあるので + - ✨ KNeighbors Classifier を試す + - それでもうまくいかない場合、✨ SVC や ✨ Ensemble Classifiers を試す + +この道筋は非常に役立ちます。 + +## 演習 - データを分割する + +この道筋に従い、使用するライブラリをインポートすることから始めましょう。 + +1. 必要なライブラリをインポートします: + + ```python + from sklearn.neighbors import KNeighborsClassifier + from sklearn.linear_model import LogisticRegression + from sklearn.svm import SVC + from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + import numpy as np + ``` + +1. トレーニングデータとテストデータを分割します: + + ```python + X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) + ``` + +## Linear SVC分類器 + +サポートベクトルクラスタリング(SVC)は、サポートベクトルマシン(SVM)ファミリーのML技術の一部です(以下で詳細を学べます)。この方法では、ラベルをクラスタリングする方法を決定するために「カーネル」を選択できます。「C」パラメータは「正則化」を指し、パラメータの影響を調整します。カーネルは[いくつか](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC)の選択肢がありますが、ここでは「線形」に設定してLinear SVCを活用します。確率はデフォルトで「false」ですが、ここでは確率推定を得るために「true」に設定します。ランダム状態を「0」に設定してデータをシャッフルし、確率を取得します。 + +### 演習 - Linear SVCを適用する + +分類器の配列を作成することから始めます。テストを進めるにつれて、この配列に追加していきます。 + +1. Linear SVCを追加します: + + ```python + C = 10 + # Create different classifiers. + classifiers = { + 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0) + } + ``` + +2. Linear SVCを使用してモデルをトレーニングし、レポートを出力します: + + ```python + n_classifiers = len(classifiers) + + for index, (name, classifier) in enumerate(classifiers.items()): + classifier.fit(X_train, np.ravel(y_train)) + + y_pred = classifier.predict(X_test) + accuracy = accuracy_score(y_test, y_pred) + print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100)) + print(classification_report(y_test,y_pred)) + ``` + + 結果はかなり良好です: + + ```output + Accuracy (train) for Linear SVC: 78.6% + precision recall f1-score support + + chinese 0.71 0.67 0.69 242 + indian 0.88 0.86 0.87 234 + japanese 0.79 0.74 0.76 254 + korean 0.85 0.81 0.83 242 + thai 0.71 0.86 0.78 227 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +## K-Neighbors分類器 + +K-Neighborsは、MLメソッドの「近傍」ファミリーの一部であり、教師あり学習と教師なし学習の両方に使用できます。この方法では、事前に定義されたポイントを作成し、データをこれらのポイントの周りに集めて、データの一般化されたラベルを予測します。 + +### 演習 - K-Neighbors分類器を適用する + +前回の分類器は良好で、データにうまく機能しましたが、精度をさらに向上させることができるかもしれません。K-Neighbors分類器を試してみましょう。 + +1. 分類器配列に行を追加します(Linear SVC項目の後にコンマを追加してください): + + ```python + 'KNN classifier': KNeighborsClassifier(C), + ``` + + 結果は少し悪化しました: + + ```output + Accuracy (train) for KNN classifier: 73.8% + precision recall f1-score support + + chinese 0.64 0.67 0.66 242 + indian 0.86 0.78 0.82 234 + japanese 0.66 0.83 0.74 254 + korean 0.94 0.58 0.72 242 + thai 0.71 0.82 0.76 227 + + accuracy 0.74 1199 + macro avg 0.76 0.74 0.74 1199 + weighted avg 0.76 0.74 0.74 1199 + ``` + + ✅ [K-Neighborsについて学ぶ](https://scikit-learn.org/stable/modules/neighbors.html#neighbors) + +## サポートベクトル分類器 + +サポートベクトル分類器は、分類と回帰タスクに使用されるMLメソッドの[サポートベクトルマシン](https://wikipedia.org/wiki/Support-vector_machine)ファミリーの一部です。SVMは「トレーニング例を空間内のポイントにマッピング」して、2つのカテゴリ間の距離を最大化します。その後、データをこの空間にマッピングしてカテゴリを予測します。 + +### 演習 - サポートベクトル分類器を適用する + +サポートベクトル分類器を使用して、精度をさらに向上させましょう。 + +1. K-Neighbors項目の後にコンマを追加し、次の行を追加します: + + ```python + 'SVC': SVC(), + ``` + + 結果は非常に良好です! + + ```output + Accuracy (train) for SVC: 83.2% + precision recall f1-score support + + chinese 0.79 0.74 0.76 242 + indian 0.88 0.90 0.89 234 + japanese 0.87 0.81 0.84 254 + korean 0.91 0.82 0.86 242 + thai 0.74 0.90 0.81 227 + + accuracy 0.83 1199 + macro avg 0.84 0.83 0.83 1199 + weighted avg 0.84 0.83 0.83 1199 + ``` + + ✅ [サポートベクトルについて学ぶ](https://scikit-learn.org/stable/modules/svm.html#svm) + +## アンサンブル分類器 + +前回のテストは非常に良好でしたが、最後まで道筋をたどってみましょう。ランダムフォレストとAdaBoostという「アンサンブル分類器」を試してみます。 + +```python + 'RFST': RandomForestClassifier(n_estimators=100), + 'ADA': AdaBoostClassifier(n_estimators=100) +``` + +結果は非常に良好で、特にランダムフォレストが優れています: + +```output +Accuracy (train) for RFST: 84.5% + precision recall f1-score support + + chinese 0.80 0.77 0.78 242 + indian 0.89 0.92 0.90 234 + japanese 0.86 0.84 0.85 254 + korean 0.88 0.83 0.85 242 + thai 0.80 0.87 0.83 227 + + accuracy 0.84 1199 + macro avg 0.85 0.85 0.84 1199 +weighted avg 0.85 0.84 0.84 1199 + +Accuracy (train) for ADA: 72.4% + precision recall f1-score support + + chinese 0.64 0.49 0.56 242 + indian 0.91 0.83 0.87 234 + japanese 0.68 0.69 0.69 254 + korean 0.73 0.79 0.76 242 + thai 0.67 0.83 0.74 227 + + accuracy 0.72 1199 + macro avg 0.73 0.73 0.72 1199 +weighted avg 0.73 0.72 0.72 1199 +``` + +✅ [アンサンブル分類器について学ぶ](https://scikit-learn.org/stable/modules/ensemble.html) + +この機械学習の方法は「複数の基本推定器の予測を組み合わせる」ことでモデルの品質を向上させます。この例では、ランダムツリーとAdaBoostを使用しました。 + +- [ランダムフォレスト](https://scikit-learn.org/stable/modules/ensemble.html#forest)は平均化法であり、ランダム性を取り入れた「決定木」の「森」を構築して過学習を防ぎます。n_estimatorsパラメータは木の数を設定します。 + +- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html)は、データセットに分類器を適合させ、その分類器のコピーを同じデータセットに適合させます。誤分類された項目の重みを重視し、次の分類器の適合を調整して修正します。 + +--- + +## 🚀チャレンジ + +これらの技術には調整可能な多数のパラメータがあります。それぞれのデフォルトパラメータを調査し、これらのパラメータを調整することでモデルの品質にどのような影響があるかを考えてみましょう。 + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/) + +## 復習と自己学習 + +これらのレッスンには専門用語が多く含まれていますので、[このリスト](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott)を確認して役立つ用語を復習してください! + +## 課題 + +[パラメータの調整](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/4-Classification/3-Classifiers-2/assignment.md b/translations/ja/4-Classification/3-Classifiers-2/assignment.md new file mode 100644 index 000000000..3fc442935 --- /dev/null +++ b/translations/ja/4-Classification/3-Classifiers-2/assignment.md @@ -0,0 +1,25 @@ + +# パラメータプレイ + +## 手順 + +これらの分類器を使用する際、多くのパラメータがデフォルトで設定されています。VS CodeのIntellisenseを活用して、それらを詳しく調べてみましょう。このレッスンで紹介された機械学習の分類技術の1つを採用し、さまざまなパラメータ値を調整しながらモデルを再訓練してください。そして、どの変更がモデルの品質を向上させ、どの変更が品質を低下させるのかを説明するノートブックを作成してください。回答は詳細に記述してください。 + +## 評価基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | ---------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------- | ----------------------------- | +| | 分類器が完全に構築され、パラメータが調整され、変更点がテキストボックスで説明されているノートブックが提示されている | ノートブックが部分的に提示されるか、説明が不十分 | ノートブックにバグや欠陥がある | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤訳について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/4-Classification/3-Classifiers-2/notebook.ipynb b/translations/ja/4-Classification/3-Classifiers-2/notebook.ipynb new file mode 100644 index 000000000..41a3694b6 --- /dev/null +++ b/translations/ja/4-Classification/3-Classifiers-2/notebook.ipynb @@ -0,0 +1,163 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          00indian00000000...0000000000
                                          11indian10000000...0000000000
                                          22indian00000000...0000000000
                                          33indian00000000...0000000000
                                          44indian00000000...0000000010
                                          \n

                                          5 rows × 382 columns

                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          00000000000...0000000000
                                          11000000000...0000000000
                                          20000000000...0000000000
                                          30000000000...0000000000
                                          40000000000...0000000010
                                          \n

                                          5 rows × 380 columns

                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤訳について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "15a83277036572e0773229b5f21c1e12", + "translation_date": "2025-09-04T02:32:03+00:00", + "source_file": "4-Classification/3-Classifiers-2/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/ja/4-Classification/3-Classifiers-2/solution/Julia/README.md b/translations/ja/4-Classification/3-Classifiers-2/solution/Julia/README.md new file mode 100644 index 000000000..af45e44d7 --- /dev/null +++ b/translations/ja/4-Classification/3-Classifiers-2/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の利用に起因する誤解や誤認について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb b/translations/ja/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb new file mode 100644 index 000000000..768bd0b72 --- /dev/null +++ b/translations/ja/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb @@ -0,0 +1,650 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "lesson_12-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "fab50046ca413a38939d579f8432274f", + "translation_date": "2025-09-04T02:34:52+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb", + "language_code": "ja" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "jsFutf_ygqSx" + }, + "source": [ + "# 分類モデルを構築する: 美味しいアジア料理とインド料理\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HD54bEefgtNO" + }, + "source": [ + "## 料理分類器 2\n", + "\n", + "この2回目の分類レッスンでは、カテゴリカルデータを分類するための`さらなる方法`を探ります。また、どの分類器を選ぶかによる影響についても学びます。\n", + "\n", + "### [**講義前のクイズ**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/)\n", + "\n", + "### **前提条件**\n", + "\n", + "前のレッスンを完了していることを前提としています。なぜなら、以前学んだいくつかの概念を引き継ぐからです。\n", + "\n", + "このレッスンでは、以下のパッケージが必要です:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/)は、データサイエンスをより速く、簡単に、そして楽しくするために設計された[Rパッケージのコレクション](https://www.tidyverse.org/packages)です。\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/)フレームワークは、モデリングと機械学習のための[パッケージのコレクション](https://www.tidymodels.org/packages/)です。\n", + "\n", + "- `themis`: [themisパッケージ](https://themis.tidymodels.org/)は、不均衡データに対処するための追加のレシピステップを提供します。\n", + "\n", + "以下のようにしてインストールできます:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"kernlab\", \"themis\", \"ranger\", \"xgboost\", \"kknn\"))`\n", + "\n", + "または、以下のスクリプトを使用して、このモジュールを完了するために必要なパッケージがインストールされているか確認し、足りない場合は自動的にインストールすることもできます。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vZ57IuUxgyQt" + }, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, themis, kernlab, ranger, xgboost, kknn)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z22M-pj4g07x" + }, + "source": [ + "## **1. 分類マップ**\n", + "\n", + "[前回のレッスン](https://github.com/microsoft/ML-For-Beginners/tree/main/4-Classification/2-Classifiers-1)では、複数のモデルの中からどのように選ぶべきかという質問に取り組みました。選択は主にデータの特性や解決したい問題の種類(例えば、分類や回帰)に依存します。\n", + "\n", + "以前、Microsoftのチートシートを使ってデータを分類する際のさまざまな選択肢について学びました。Pythonの機械学習フレームワークであるScikit-learnは、さらに詳細なチートシートを提供しており、分類器(別名エスティメーター)を絞り込む際に役立ちます。\n", + "\n", + "

                                          \n", + " \n", + "

                                          \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u1i3xRIVg7vG" + }, + "source": [ + "> ヒント: [このマップをオンラインで見る](https://scikit-learn.org/stable/tutorial/machine_learning_map/)と、ドキュメントを読むために道筋をクリックできます。\n", + ">\n", + "> [Tidymodelsのリファレンスサイト](https://www.tidymodels.org/find/parsnip/#models)も、さまざまなモデルタイプに関する優れたドキュメントを提供しています。\n", + "\n", + "### **計画** 🗺️\n", + "\n", + "このマップはデータをしっかり理解した後に非常に役立ちます。道筋をたどることで意思決定に至ることができます:\n", + "\n", + "- サンプルが50以上ある\n", + "\n", + "- カテゴリーを予測したい\n", + "\n", + "- ラベル付きデータがある\n", + "\n", + "- サンプル数が10万未満である\n", + "\n", + "- ✨ Linear SVCを選択できる\n", + "\n", + "- それがうまくいかない場合、数値データがあるので\n", + "\n", + " - ✨ KNeighbors Classifierを試すことができる\n", + "\n", + " - それでもうまくいかない場合は、✨ SVCや✨ Ensemble Classifiersを試してみる\n", + "\n", + "この道筋は非常に役立ちます。それでは、[tidymodels](https://www.tidymodels.org/)モデリングフレームワークを使って始めましょう。これは、良い統計的実践を促進するために開発された、Rパッケージの一貫性があり柔軟なコレクションです 😊。\n", + "\n", + "## 2. データを分割し、不均衡なデータセットに対処する\n", + "\n", + "前回のレッスンで、私たちの料理ジャンル間で共通する要素があることを学びました。また、料理ジャンルの数にかなりの偏りがあることも分かりました。\n", + "\n", + "これらに対処するために以下を行います:\n", + "\n", + "- 異なる料理ジャンル間で混乱を引き起こす最も一般的な要素を`dplyr::select()`を使って削除します。\n", + "\n", + "- データを前処理してモデリングの準備をするために、`recipe`を使用し、`オーバーサンプリング`アルゴリズムを適用します。\n", + "\n", + "これらは前回のレッスンで既に見た内容なので、簡単に進められるはずです 🥳!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "6tj_rN00hClA" + }, + "source": [ + "# Load the core Tidyverse and Tidymodels packages\n", + "library(tidyverse)\n", + "library(tidymodels)\n", + "\n", + "# Load the original cuisines data\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\n", + "\n", + "# Drop id column, rice, garlic and ginger from our original data set\n", + "df_select <- df %>% \n", + " select(-c(1, rice, garlic, ginger)) %>%\n", + " # Encode cuisine column as categorical\n", + " mutate(cuisine = factor(cuisine))\n", + "\n", + "\n", + "# Create data split specification\n", + "set.seed(2056)\n", + "cuisines_split <- initial_split(data = df_select,\n", + " strata = cuisine,\n", + " prop = 0.7)\n", + "\n", + "# Extract the data in each split\n", + "cuisines_train <- training(cuisines_split)\n", + "cuisines_test <- testing(cuisines_split)\n", + "\n", + "# Display distribution of cuisines in the training set\n", + "cuisines_train %>% \n", + " count(cuisine) %>% \n", + " arrange(desc(n))" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zFin5yw3hHb1" + }, + "source": [ + "### 不均衡データへの対処\n", + "\n", + "不均衡データは、モデルの性能に悪影響を及ぼすことがよくあります。多くのモデルは観測数が均等である場合に最も良いパフォーマンスを発揮し、不均衡なデータでは苦戦する傾向があります。\n", + "\n", + "不均衡データセットに対処する方法は主に2つあります:\n", + "\n", + "- 少数派クラスに観測値を追加する: `オーバーサンプリング` 例えば、SMOTEアルゴリズムを使用して、少数派クラスの新しい例をこれらのケースの近傍を基に合成的に生成する方法。\n", + "\n", + "- 多数派クラスから観測値を削除する: `アンダーサンプリング`\n", + "\n", + "前回のレッスンでは、`recipe` を使用して不均衡データセットに対処する方法を示しました。`recipe` は、データセットをデータ分析の準備が整うようにするためにどのステップを適用すべきかを記述した設計図のようなものと考えることができます。今回の場合、`training set` における料理の数を均等に分布させたいと考えています。それでは、始めましょう。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cRzTnHolhLWd" + }, + "source": [ + "# Load themis package for dealing with imbalanced data\n", + "library(themis)\n", + "\n", + "# Create a recipe for preprocessing training data\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>%\n", + " step_smote(cuisine) \n", + "\n", + "# Print recipe\n", + "cuisines_recipe" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KxOQ2ORhhO81" + }, + "source": [ + "さあ、モデルのトレーニングを始めましょう 👩‍💻👨‍💻!\n", + "\n", + "## 3. 多項ロジスティック回帰モデルを超えて\n", + "\n", + "前回のレッスンでは、多項ロジスティック回帰モデルについて学びました。今回は、分類のためのより柔軟なモデルを探っていきましょう。\n", + "\n", + "### サポートベクターマシン\n", + "\n", + "分類の文脈において、`Support Vector Machines`(サポートベクターマシン)は、クラスを「最適に」分離する*ハイパープレーン*を見つけようとする機械学習手法です。簡単な例を見てみましょう:\n", + "\n", + "

                                          \n", + " \n", + "

                                          https://commons.wikimedia.org/w/index.php?curid=22877598
                                          \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C4Wsd0vZhXYu" + }, + "source": [ + "H1~はクラスを分けません。H2~は分けますが、余白は小さいです。H3~は最大の余白でクラスを分けます。\n", + "\n", + "#### 線形サポートベクター分類器\n", + "\n", + "サポートベクタークラスタリング(SVC)は、機械学習技術の一つであるサポートベクターマシン(SVM)ファミリーに属します。SVCでは、ハイパープレーンはトレーニングデータの`ほとんど`を正しく分離するように選ばれますが、`一部の観測値を誤分類する可能性`があります。一部のポイントが誤った側に位置することを許容することで、SVMは外れ値に対してより頑健になり、新しいデータへの一般化能力が向上します。この違反を調整するパラメータは`cost`と呼ばれ、デフォルト値は1です(`help(\"svm_poly\")`を参照してください)。\n", + "\n", + "ポリノミアルSVMモデルで`degree = 1`を設定することで、線形SVCを作成してみましょう。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vJpp6nuChlBz" + }, + "source": [ + "# Make a linear SVC specification\n", + "svc_linear_spec <- svm_poly(degree = 1) %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svc_linear_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svc_linear_spec)\n", + "\n", + "# Print out workflow\n", + "svc_linear_wf" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rDs8cWNkhoqu" + }, + "source": [ + "ワークフローに前処理ステップとモデル仕様をまとめたので、線形SVCをトレーニングし、その結果を評価してみましょう。パフォーマンス指標として、以下を評価するメトリックセットを作成します:`accuracy`、`sensitivity`、`Positive Predicted Value`、および `F Measure`。\n", + "\n", + "> `augment()` は、指定されたデータに予測結果の列を追加します。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "81wiqcwuhrnq" + }, + "source": [ + "# Train a linear SVC model\n", + "svc_linear_fit <- svc_linear_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svc_linear_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0UFQvHf-huo3" + }, + "source": [ + "#### サポートベクターマシン\n", + "\n", + "サポートベクターマシン(SVM)は、クラス間の非線形な境界を扱うためにサポートベクトル分類器を拡張したものです。本質的に、SVMは*カーネルトリック*を使用して特徴空間を拡大し、クラス間の非線形な関係に適応します。SVMで使用される一般的で非常に柔軟なカーネル関数の1つが*放射基底関数*です。それが私たちのデータでどのように機能するか見てみましょう。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-KX4S8mzhzmp" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Make an RBF SVM specification\n", + "svm_rbf_spec <- svm_rbf() %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svm_rbf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svm_rbf_spec)\n", + "\n", + "\n", + "# Train an RBF model\n", + "svm_rbf_fit <- svm_rbf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svm_rbf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QBFSa7WSh4HQ" + }, + "source": [ + "ずっと良いですね 🤩!\n", + "\n", + "> ✅ こちらもご覧ください:\n", + ">\n", + "> - [*サポートベクターマシン*](https://bradleyboehmke.github.io/HOML/svm.html), Hands-on Machine Learning with R\n", + ">\n", + "> - [*サポートベクターマシン*](https://www.statlearning.com/), An Introduction to Statistical Learning with Applications in R\n", + ">\n", + "> さらなる学習のために。\n", + "\n", + "### 最近傍法分類器\n", + "\n", + "*K*-最近傍法 (KNN) は、各観測値を他の観測値との「類似性」に基づいて予測するアルゴリズムです。\n", + "\n", + "これをデータに適用してみましょう。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "k4BxxBcdh9Ka" + }, + "source": [ + "# Make a KNN specification\n", + "knn_spec <- nearest_neighbor() %>% \n", + " set_engine(\"kknn\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "knn_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(knn_spec)\n", + "\n", + "# Train a boosted tree model\n", + "knn_wf_fit <- knn_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "knn_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HaegQseriAcj" + }, + "source": [ + "このモデルはあまり良いパフォーマンスを発揮していないようです。おそらく、`help(\"nearest_neighbor\")`を参照してモデルの引数を変更すれば、パフォーマンスが向上する可能性があります。ぜひ試してみてください。\n", + "\n", + "> ✅ 以下を参照してください:\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> *K*-Nearest Neighbors分類器について詳しく学ぶにはこちらをご覧ください。\n", + "\n", + "### アンサンブル分類器\n", + "\n", + "アンサンブルアルゴリズムは、複数の基本推定器を組み合わせることで最適なモデルを作成します。その方法は以下のいずれかです:\n", + "\n", + "`bagging`: 基本モデルの集合に対して*平均化関数*を適用する\n", + "\n", + "`boosting`: 一連のモデルを順次構築し、それぞれが前のモデルを改善することで予測性能を向上させる\n", + "\n", + "まずは、ランダムフォレストモデルを試してみましょう。このモデルは、多数の決定木を構築し、それに平均化関数を適用することで、全体としてより優れたモデルを作成します。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "49DPoVs6iK1M" + }, + "source": [ + "# Make a random forest specification\n", + "rf_spec <- rand_forest() %>% \n", + " set_engine(\"ranger\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "rf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(rf_spec)\n", + "\n", + "# Train a random forest model\n", + "rf_wf_fit <- rf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "rf_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RGVYwC_aiUWc" + }, + "source": [ + "よくやった 👏!\n", + "\n", + "では、Boosted Treeモデルを試してみましょう。\n", + "\n", + "Boosted Treeは、逐次的な決定木のシリーズを作成するアンサンブル手法を定義します。このシリーズでは、各木が前の木の結果に依存し、誤差を段階的に減らそうとします。この手法は、誤分類された項目の重み付けに焦点を当て、次の分類器の適合を調整して修正を試みます。\n", + "\n", + "このモデルを適合させる方法はいくつかあります(`help(\"boost_tree\")`を参照してください)。この例では、`xgboost`エンジンを使用してBoosted Treeを適合させます。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Py1YWo-micWs" + }, + "source": [ + "# Make a boosted tree specification\n", + "boost_spec <- boost_tree(trees = 200) %>% \n", + " set_engine(\"xgboost\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "boost_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(boost_spec)\n", + "\n", + "# Train a boosted tree model\n", + "boost_wf_fit <- boost_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "boost_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zNQnbuejigZM" + }, + "source": [ + "> ✅ ぜひ以下をご覧ください:\n", + ">\n", + "> - [Machine Learning for Social Scientists](https://cimentadaj.github.io/ml_socsci/tree-based-methods.html#random-forests)\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> - - AdaBoostモデルについて解説しており、xgboostの良い代替案となります。\n", + ">\n", + "> アンサンブル分類器についてさらに学ぶために。\n", + "\n", + "## 4. 追加 - 複数モデルの比較\n", + "\n", + "このラボでは、かなり多くのモデルを適用しました 🙌。異なる前処理やモデル仕様のセットから多くのワークフローを作成し、それぞれの性能指標を一つずつ計算するのは、面倒で手間がかかることがあります。\n", + "\n", + "これを解決するために、トレーニングセットに対して複数のワークフローを適用し、テストセットに基づいて性能指標を返す関数を作成してみましょう。[purrr](https://purrr.tidyverse.org/)パッケージの`map()`と`map_dfr()`を使用して、リスト内の各要素に関数を適用します。\n", + "\n", + "> [`map()`](https://purrr.tidyverse.org/reference/map.html)関数を使用すると、多くのforループをより簡潔で読みやすいコードに置き換えることができます。[`map()`](https://purrr.tidyverse.org/reference/map.html)関数について学ぶ最適な場所は、R for Data Scienceの[反復処理の章](http://r4ds.had.co.nz/iteration.html)です。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Qzb7LyZnimd2" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "# Define a function that returns performance metrics\n", + "compare_models <- function(workflow_list, train_set, test_set){\n", + " \n", + " suppressWarnings(\n", + " # Fit each model to the train_set\n", + " map(workflow_list, fit, data = train_set) %>% \n", + " # Make predictions on the test set\n", + " map_dfr(augment, new_data = test_set, .id = \"model\") %>%\n", + " # Select desired columns\n", + " select(model, cuisine, .pred_class) %>% \n", + " # Evaluate model performance\n", + " group_by(model) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class) %>% \n", + " ungroup()\n", + " )\n", + " \n", + "} # End of function" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Fwa712sNisDA" + }, + "source": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "3i4VJOi2iu-a" + }, + "source": [ + "# Make a list of workflows\n", + "workflow_list <- list(\n", + " \"svc\" = svc_linear_wf,\n", + " \"svm\" = svm_rbf_wf,\n", + " \"knn\" = knn_wf,\n", + " \"random_forest\" = rf_wf,\n", + " \"xgboost\" = boost_wf)\n", + "\n", + "# Call the function\n", + "set.seed(2056)\n", + "perf_metrics <- compare_models(workflow_list = workflow_list, train_set = cuisines_train, test_set = cuisines_test)\n", + "\n", + "# Print out performance metrics\n", + "perf_metrics %>% \n", + " group_by(.metric) %>% \n", + " arrange(desc(.estimate)) %>% \n", + " slice_head(n=7)\n", + "\n", + "# Compare accuracy\n", + "perf_metrics %>% \n", + " filter(.metric == \"accuracy\") %>% \n", + " arrange(desc(.estimate))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KuWK_lEli4nW" + }, + "source": [ + "[**workflowset**](https://workflowsets.tidymodels.org/) パッケージは、ユーザーが多数のモデルを作成し簡単に適合させることを可能にしますが、主に `クロスバリデーション` のようなリサンプリング技術と連携するよう設計されています。このアプローチについてはまだ学んでいません。\n", + "\n", + "## **🚀チャレンジ**\n", + "\n", + "これらの技術には多くのパラメータがあり、例えば SVM の `cost`、KNN の `neighbors`、ランダムフォレストの `mtry`(ランダムに選択された予測子)などを調整することができます。\n", + "\n", + "各モデルのデフォルトパラメータを調べ、それらのパラメータを調整することでモデルの品質にどのような影響があるかを考えてみましょう。\n", + "\n", + "特定のモデルとそのパラメータについて詳しく知りたい場合は、次のコマンドを使用してください: `help(\"model\")` 例: `help(\"rand_forest\")`\n", + "\n", + "> 実際には、これらの *最適な値* を *推定* するために、多くのモデルを `シミュレーションデータセット` でトレーニングし、それらのモデルがどれだけうまく機能するかを測定します。このプロセスは **チューニング** と呼ばれます。\n", + "\n", + "### [**講義後のクイズ**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/)\n", + "\n", + "### **復習と自己学習**\n", + "\n", + "これらのレッスンには専門用語が多く含まれているため、[このリスト](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott) を確認して役立つ用語を復習する時間を取ってください!\n", + "\n", + "#### 感謝の言葉:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) に感謝します。彼女は R をより親しみやすく魅力的にする素晴らしいイラストを作成してくれました。彼女の [ギャラリー](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) でさらに多くのイラストを見ることができます。\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) と [Jen Looper](https://www.twitter.com/jenlooper) に感謝します。このモジュールの元となる Python バージョンを作成してくれました ♥️\n", + "\n", + "楽しく学びましょう!\n", + "\n", + "[Eric](https://twitter.com/ericntay)、Gold Microsoft Learn Student Ambassador\n", + "\n", + "

                                          \n", + " \n", + "

                                          @allison_horst によるアートワーク
                                          \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/4-Classification/3-Classifiers-2/solution/notebook.ipynb b/translations/ja/4-Classification/3-Classifiers-2/solution/notebook.ipynb new file mode 100644 index 000000000..2c2532d94 --- /dev/null +++ b/translations/ja/4-Classification/3-Classifiers-2/solution/notebook.ipynb @@ -0,0 +1,304 @@ +{ + "cells": [ + { + "source": [ + "より多くの分類モデルを構築する\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          00indian00000000...0000000000
                                          11indian10000000...0000000000
                                          22indian00000000...0000000000
                                          33indian00000000...0000000000
                                          44indian00000000...0000000010
                                          \n

                                          5 rows × 382 columns

                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 2 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          00000000000...0000000000
                                          11000000000...0000000000
                                          20000000000...0000000000
                                          30000000000...0000000000
                                          40000000000...0000000010
                                          \n

                                          5 rows × 380 columns

                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "さまざまな分類器を試す\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.svm import SVC\n", + "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "C = 10\n", + "# Create different classifiers.\n", + "classifiers = {\n", + " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n", + " 'KNN classifier': KNeighborsClassifier(C),\n", + " 'SVC': SVC(),\n", + " 'RFST': RandomForestClassifier(n_estimators=100),\n", + " 'ADA': AdaBoostClassifier(n_estimators=100)\n", + " \n", + "}\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy (train) for Linear SVC: 76.4% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.64 0.66 0.65 242\n", + " indian 0.91 0.86 0.89 236\n", + " japanese 0.72 0.73 0.73 245\n", + " korean 0.83 0.75 0.79 234\n", + " thai 0.75 0.82 0.78 242\n", + "\n", + " accuracy 0.76 1199\n", + " macro avg 0.77 0.76 0.77 1199\n", + "weighted avg 0.77 0.76 0.77 1199\n", + "\n", + "Accuracy (train) for KNN classifier: 70.7% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.65 0.63 0.64 242\n", + " indian 0.84 0.81 0.82 236\n", + " japanese 0.60 0.81 0.69 245\n", + " korean 0.89 0.53 0.67 234\n", + " thai 0.69 0.75 0.72 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.73 0.71 0.71 1199\n", + "weighted avg 0.73 0.71 0.71 1199\n", + "\n", + "Accuracy (train) for SVC: 80.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.71 0.69 0.70 242\n", + " indian 0.92 0.92 0.92 236\n", + " japanese 0.77 0.78 0.77 245\n", + " korean 0.87 0.77 0.82 234\n", + " thai 0.75 0.86 0.80 242\n", + "\n", + " accuracy 0.80 1199\n", + " macro avg 0.80 0.80 0.80 1199\n", + "weighted avg 0.80 0.80 0.80 1199\n", + "\n", + "Accuracy (train) for RFST: 82.8% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.80 0.75 0.77 242\n", + " indian 0.90 0.91 0.90 236\n", + " japanese 0.82 0.78 0.80 245\n", + " korean 0.85 0.82 0.83 234\n", + " thai 0.78 0.89 0.83 242\n", + "\n", + " accuracy 0.83 1199\n", + " macro avg 0.83 0.83 0.83 1199\n", + "weighted avg 0.83 0.83 0.83 1199\n", + "\n", + "Accuracy (train) for ADA: 71.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.60 0.57 0.58 242\n", + " indian 0.87 0.84 0.86 236\n", + " japanese 0.71 0.60 0.65 245\n", + " korean 0.68 0.78 0.72 234\n", + " thai 0.70 0.78 0.74 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.71 0.71 0.71 1199\n", + "weighted avg 0.71 0.71 0.71 1199\n", + "\n" + ] + } + ], + "source": [ + "n_classifiers = len(classifiers)\n", + "\n", + "for index, (name, classifier) in enumerate(classifiers.items()):\n", + " classifier.fit(X_train, np.ravel(y_train))\n", + "\n", + " y_pred = classifier.predict(X_test)\n", + " accuracy = accuracy_score(y_test, y_pred)\n", + " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n", + " print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "7ea2b714669c823a596d986ba2d5739f", + "translation_date": "2025-09-04T02:32:31+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/ja/4-Classification/4-Applied/README.md b/translations/ja/4-Classification/4-Applied/README.md new file mode 100644 index 000000000..86b28b726 --- /dev/null +++ b/translations/ja/4-Classification/4-Applied/README.md @@ -0,0 +1,329 @@ + +# 料理推薦ウェブアプリを作成しよう + +このレッスンでは、これまでのレッスンで学んだ技術を活用し、美味しい料理データセットを使用して分類モデルを構築します。また、保存したモデルを使用する小さなウェブアプリを作成し、Onnxのウェブランタイムを活用します。 + +機械学習の最も実用的な用途の1つは推薦システムの構築です。今日はその第一歩を踏み出しましょう! + +[![このウェブアプリを紹介](https://img.youtube.com/vi/17wdM9AHMfg/0.jpg)](https://youtu.be/17wdM9AHMfg "Applied ML") + +> 🎥 上の画像をクリックすると動画が再生されます: Jen Looperが分類された料理データを使用してウェブアプリを構築します + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/25/) + +このレッスンで学ぶこと: + +- モデルを構築し、Onnxモデルとして保存する方法 +- Netronを使用してモデルを確認する方法 +- ウェブアプリでモデルを使用して推論を行う方法 + +## モデルを構築しよう + +応用機械学習システムを構築することは、これらの技術をビジネスシステムに活用する重要な部分です。Onnxを使用することで、ウェブアプリケーション内でモデルを使用し、必要に応じてオフライン環境でも利用できます。 + +[前のレッスン](../../3-Web-App/1-Web-App/README.md)では、UFO目撃情報に関する回帰モデルを構築し、「ピクル化」してFlaskアプリで使用しました。このアーキテクチャは非常に有用ですが、フルスタックのPythonアプリであり、要件によってはJavaScriptアプリケーションを使用する必要がある場合があります。 + +このレッスンでは、推論のための基本的なJavaScriptベースのシステムを構築します。ただし、まずモデルをトレーニングし、Onnxで使用できるように変換する必要があります。 + +## 演習 - 分類モデルをトレーニングする + +まず、以前使用したクリーンな料理データセットを使用して分類モデルをトレーニングします。 + +1. 便利なライブラリをインポートします: + + ```python + !pip install skl2onnx + import pandas as pd + ``` + + '[skl2onnx](https://onnx.ai/sklearn-onnx/)'を使用して、Scikit-learnモデルをOnnx形式に変換します。 + +1. 次に、以前のレッスンと同様に、`read_csv()`を使用してCSVファイルを読み込みます: + + ```python + data = pd.read_csv('../data/cleaned_cuisines.csv') + data.head() + ``` + +1. 最初の2つの不要な列を削除し、残りのデータを'X'として保存します: + + ```python + X = data.iloc[:,2:] + X.head() + ``` + +1. ラベルを'y'として保存します: + + ```python + y = data[['cuisine']] + y.head() + + ``` + +### トレーニングルーチンを開始する + +'SVC'ライブラリを使用します。このライブラリは精度が良好です。 + +1. Scikit-learnから適切なライブラリをインポートします: + + ```python + from sklearn.model_selection import train_test_split + from sklearn.svm import SVC + from sklearn.model_selection import cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report + ``` + +1. トレーニングセットとテストセットを分割します: + + ```python + X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3) + ``` + +1. 前のレッスンと同様にSVC分類モデルを構築します: + + ```python + model = SVC(kernel='linear', C=10, probability=True,random_state=0) + model.fit(X_train,y_train.values.ravel()) + ``` + +1. 次に、`predict()`を呼び出してモデルをテストします: + + ```python + y_pred = model.predict(X_test) + ``` + +1. 分類レポートを出力してモデルの品質を確認します: + + ```python + print(classification_report(y_test,y_pred)) + ``` + + 以前見たように、精度は良好です: + + ```output + precision recall f1-score support + + chinese 0.72 0.69 0.70 257 + indian 0.91 0.87 0.89 243 + japanese 0.79 0.77 0.78 239 + korean 0.83 0.79 0.81 236 + thai 0.72 0.84 0.78 224 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +### モデルをOnnxに変換する + +適切なテンソル数で変換を行うことを確認してください。このデータセットには380の材料がリストされているため、`FloatTensorType`でその数を記載する必要があります。 + +1. 380のテンソル数を使用して変換します。 + + ```python + from skl2onnx import convert_sklearn + from skl2onnx.common.data_types import FloatTensorType + + initial_type = [('float_input', FloatTensorType([None, 380]))] + options = {id(model): {'nocl': True, 'zipmap': False}} + ``` + +1. **model.onnx**というファイルとして保存します: + + ```python + onx = convert_sklearn(model, initial_types=initial_type, options=options) + with open("./model.onnx", "wb") as f: + f.write(onx.SerializeToString()) + ``` + + > 注意: 変換スクリプトで[オプション](https://onnx.ai/sklearn-onnx/parameterized.html)を渡すことができます。この場合、'nocl'をTrueに、'zipmap'をFalseに設定しました。このモデルは分類モデルであるため、辞書のリストを生成するZipMapを削除するオプションがあります(不要です)。`nocl`はモデルにクラス情報を含めるかどうかを指します。`nocl`をTrueに設定してモデルのサイズを縮小します。 + +ノートブック全体を実行すると、Onnxモデルが構築され、このフォルダに保存されます。 + +## モデルを確認する + +OnnxモデルはVisual Studio Codeではあまり視覚的に確認できませんが、多くの研究者が使用している非常に優れた無料ソフトウェアがあります。 [Netron](https://github.com/lutzroeder/Netron)をダウンロードし、model.onnxファイルを開きます。380の入力と分類器がリストされたシンプルなモデルが視覚化されているのが確認できます: + +![Netronの視覚化](../../../../translated_images/netron.a05f39410211915e0f95e2c0e8b88f41e7d13d725faf660188f3802ba5c9e831.ja.png) + +Netronはモデルを確認するための便利なツールです。 + +これで、この便利なモデルをウェブアプリで使用する準備が整いました。冷蔵庫を見て、残りの材料の組み合わせでどの料理が作れるかをモデルで判断するアプリを作りましょう。 + +## 推薦ウェブアプリを構築する + +モデルを直接ウェブアプリで使用できます。このアーキテクチャにより、ローカルで実行したり、必要に応じてオフラインでも使用できます。`model.onnx`ファイルを保存した同じフォルダに`index.html`ファイルを作成することから始めます。 + +1. このファイル _index.html_ に以下のマークアップを追加します: + + ```html + + +
                                          + Cuisine Matcher +
                                          + + ... + + + ``` + +1. 次に、`body`タグ内で、材料を反映するチェックボックスのリストを表示するための少しのマークアップを追加します: + + ```html +

                                          Check your refrigerator. What can you create?

                                          +
                                          +
                                          + + +
                                          + +
                                          + + +
                                          + +
                                          + + +
                                          + +
                                          + + +
                                          + +
                                          + + +
                                          + +
                                          + + +
                                          + +
                                          + + +
                                          +
                                          +
                                          + +
                                          + ``` + + 各チェックボックスには値が設定されています。これはデータセットに基づいて材料が見つかるインデックスを反映しています。例えば、リンゴはこのアルファベット順のリストで5番目の列にあり、カウントが0から始まるため値は'4'です。[材料スプレッドシート](../../../../4-Classification/data/ingredient_indexes.csv)を参照して特定の材料のインデックスを確認できます。 + + index.htmlファイルで作業を続け、最後の閉じタグ``の後にスクリプトブロックを追加します。 + +1. まず、[Onnx Runtime](https://www.onnxruntime.ai/)をインポートします: + + ```html + + ``` + + > Onnx Runtimeは、幅広いハードウェアプラットフォームでOnnxモデルを実行できるようにするために使用され、最適化やAPIを提供します。 + +1. Runtimeが設定されたら、呼び出します: + + ```html + + ``` + +このコードでは、以下のことが行われています: + +1. 380の可能な値(1または0)の配列を作成し、選択された材料チェックボックスに応じてモデルに送信します。 +2. チェックボックスの配列を作成し、アプリケーション開始時に呼び出される`init`関数でチェックされているかどうかを判断します。チェックボックスがチェックされると、`ingredients`配列が選択された材料を反映するように変更されます。 +3. チェックボックスがチェックされているかどうかを確認する`testCheckboxes`関数を作成します。 +4. ボタンが押されたときに`startInference`関数を使用し、チェックボックスがチェックされている場合は推論を開始します。 +5. 推論ルーチンには以下が含まれます: + 1. モデルの非同期ロードを設定 + 2. モデルに送信するテンソル構造を作成 + 3. トレーニング時に作成した`float_input`入力を反映する'feeds'を作成(Netronで名前を確認できます) + 4. これらの'feeds'をモデルに送信し、応答を待つ + +## アプリケーションをテストする + +Visual Studio Codeで`index.html`ファイルがあるフォルダでターミナルセッションを開きます。[http-server](https://www.npmjs.com/package/http-server)がグローバルにインストールされていることを確認し、プロンプトで`http-server`と入力します。ローカルホストが開き、ウェブアプリを表示できます。さまざまな材料に基づいてどの料理が推薦されるかを確認してください: + +![材料ウェブアプリ](../../../../translated_images/web-app.4c76450cabe20036f8ec6d5e05ccc0c1c064f0d8f2fe3304d3bcc0198f7dc139.ja.png) + +おめでとうございます!いくつかのフィールドを持つ「推薦」ウェブアプリを作成しました。このシステムを構築する時間を取ってみてください! + +## 🚀チャレンジ + +ウェブアプリは非常にシンプルなので、[ingredient_indexes](../../../../4-Classification/data/ingredient_indexes.csv)データの材料とそのインデックスを使用してさらに構築してください。どの味の組み合わせが特定の国の料理を作るのに適しているでしょうか? + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/26/) + +## 復習と自己学習 + +このレッスンでは、食品材料の推薦システムを作成することの有用性に触れただけですが、この分野の機械学習アプリケーションには非常に多くの例があります。これらのシステムがどのように構築されるかについてさらに読んでみてください: + +- https://www.sciencedirect.com/topics/computer-science/recommendation-engine +- https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-recommendation-engines/ +- https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/ + +## 課題 + +[新しい推薦システムを構築する](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/4-Classification/4-Applied/assignment.md b/translations/ja/4-Classification/4-Applied/assignment.md new file mode 100644 index 000000000..532d4ea66 --- /dev/null +++ b/translations/ja/4-Classification/4-Applied/assignment.md @@ -0,0 +1,25 @@ + +# レコメンダーを作成する + +## 手順 + +このレッスンでの演習を通じて、Onnx Runtimeと変換されたOnnxモデルを使用してJavaScriptベースのウェブアプリを構築する方法を学びました。これを活かして、これらのレッスンのデータや他の出典(必ずクレジットを記載してください)を使用して、新しいレコメンダーを作成してみましょう。たとえば、さまざまな性格属性に基づいたペットのレコメンダーや、人の気分に基づいた音楽ジャンルのレコメンダーを作ることができます。創造力を発揮してください! + +## 評価基準 + +| 基準 | 優秀な状態 | 十分な状態 | 改善が必要な状態 | +| -------- | ---------------------------------------------------------------------- | ------------------------------------- | --------------------------------- | +| | ウェブアプリとノートブックが提示され、どちらも十分に文書化され動作している | どちらか一方が欠けている、または不完全 | 両方とも欠けている、または不完全 | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/4-Classification/4-Applied/notebook.ipynb b/translations/ja/4-Classification/4-Applied/notebook.ipynb new file mode 100644 index 000000000..de988b3b0 --- /dev/null +++ b/translations/ja/4-Classification/4-Applied/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2f3e0d9e9ac5c301558fb8bf733ac0cb", + "translation_date": "2025-09-04T02:31:18+00:00", + "source_file": "4-Classification/4-Applied/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/4-Classification/4-Applied/solution/notebook.ipynb b/translations/ja/4-Classification/4-Applied/solution/notebook.ipynb new file mode 100644 index 000000000..b9272b1f2 --- /dev/null +++ b/translations/ja/4-Classification/4-Applied/solution/notebook.ipynb @@ -0,0 +1,290 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "49325d6dd12a3628fc64fa7ccb1a80ff", + "translation_date": "2025-09-04T02:31:40+00:00", + "source_file": "4-Classification/4-Applied/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: skl2onnx in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (1.8.0)\n", + "Requirement already satisfied: protobuf in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (3.8.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.19.2)\n", + "Requirement already satisfied: onnx>=1.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.9.0)\n", + "Requirement already satisfied: six in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from skl2onnx) (1.12.0)\n", + "Requirement already satisfied: onnxconverter-common<1.9,>=1.6.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.8.1)\n", + "Requirement already satisfied: scikit-learn>=0.19 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (0.24.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.4.1)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from protobuf->skl2onnx) (45.1.0)\n", + "Requirement already satisfied: typing-extensions>=3.6.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from onnx>=1.2.1->skl2onnx) (3.10.0.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (2.1.0)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (0.16.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install skl2onnx" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd \n" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          00indian00000000...0000000000
                                          11indian10000000...0000000000
                                          22indian00000000...0000000000
                                          33indian00000000...0000000000
                                          44indian00000000...0000000010
                                          \n

                                          5 rows × 382 columns

                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 60 + } + ], + "source": [ + "data = pd.read_csv('../../data/cleaned_cuisines.csv')\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                          00000000000...0000000000
                                          11000000000...0000000000
                                          20000000000...0000000000
                                          30000000000...0000000000
                                          40000000000...0000000010
                                          \n

                                          5 rows × 380 columns

                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 61 + } + ], + "source": [ + "X = data.iloc[:,2:]\n", + "X.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine\n", + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          cuisine
                                          0indian
                                          1indian
                                          2indian
                                          3indian
                                          4indian
                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 62 + } + ], + "source": [ + "y = data[['cuisine']]\n", + "y.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.svm import SVC\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SVC(C=10, kernel='linear', probability=True, random_state=0)" + ] + }, + "metadata": {}, + "execution_count": 65 + } + ], + "source": [ + "model = SVC(kernel='linear', C=10, probability=True,random_state=0)\n", + "model.fit(X_train,y_train.values.ravel())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.72 0.70 0.71 236\n indian 0.91 0.88 0.89 243\n japanese 0.80 0.75 0.77 240\n korean 0.80 0.81 0.81 230\n thai 0.76 0.85 0.80 250\n\n accuracy 0.80 1199\n macro avg 0.80 0.80 0.80 1199\nweighted avg 0.80 0.80 0.80 1199\n\n" + ] + } + ], + "source": [ + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from skl2onnx import convert_sklearn\n", + "from skl2onnx.common.data_types import FloatTensorType\n", + "\n", + "initial_type = [('float_input', FloatTensorType([None, 380]))]\n", + "options = {id(model): {'nocl': True, 'zipmap': False}}\n", + "onx = convert_sklearn(model, initial_types=initial_type, options=options)\n", + "with open(\"./model.onnx\", \"wb\") as f:\n", + " f.write(onx.SerializeToString())\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/4-Classification/README.md b/translations/ja/4-Classification/README.md new file mode 100644 index 000000000..67b50c1bb --- /dev/null +++ b/translations/ja/4-Classification/README.md @@ -0,0 +1,41 @@ + +# 分類の始め方 + +## 地域のトピック: 美味しいアジアとインド料理 🍜 + +アジアやインドでは、食文化が非常に多様で、とても美味しいです!地域料理のデータを見て、その材料を理解してみましょう。 + +![タイ料理の売り手](../../../translated_images/thai-food.c47a7a7f9f05c21892a1f9dc7bf30669e6d18dfda420c5c7ebb4153f6a304edd.ja.jpg) +> 写真提供: Lisheng Chang on Unsplash + +## 学べること + +このセクションでは、以前学んだ回帰分析を基にして、データをより深く理解するために使用できる他の分類器について学びます。 + +> 分類モデルを扱う方法を学ぶのに役立つローコードツールがあります。[Azure ML](https://docs.microsoft.com/learn/modules/create-classification-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)を試してみてください。 + +## レッスン + +1. [分類の概要](1-Introduction/README.md) +2. [さらに多くの分類器](2-Classifiers-1/README.md) +3. [さらに別の分類器](3-Classifiers-2/README.md) +4. [応用機械学習: Webアプリを構築する](4-Applied/README.md) + +## クレジット + +"分類の始め方" は [Cassie Breviu](https://www.twitter.com/cassiebreviu) と [Jen Looper](https://www.twitter.com/jenlooper) によって♥️を込めて書かれました。 + +美味しい料理のデータセットは [Kaggle](https://www.kaggle.com/hoandan/asian-and-indian-cuisines) から提供されました。 + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてお考えください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当社は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/5-Clustering/1-Visualize/README.md b/translations/ja/5-Clustering/1-Visualize/README.md new file mode 100644 index 000000000..bf6de6e7e --- /dev/null +++ b/translations/ja/5-Clustering/1-Visualize/README.md @@ -0,0 +1,344 @@ + +# クラスタリングの紹介 + +クラスタリングは、[教師なし学習](https://wikipedia.org/wiki/Unsupervised_learning)の一種で、データセットがラベル付けされていない、または入力が事前定義された出力と一致していないことを前提としています。さまざまなアルゴリズムを使用してラベルのないデータを分類し、データ内で認識されるパターンに基づいてグループ化を提供します。 + +[![PSquareによるNo One Like You](https://img.youtube.com/vi/ty2advRiWJM/0.jpg)](https://youtu.be/ty2advRiWJM "PSquareによるNo One Like You") + +> 🎥 上の画像をクリックしてビデオを視聴してください。クラスタリングを使った機械学習を学びながら、ナイジェリアのダンスホールトラックを楽しんでください。これはPSquareによる2014年の高評価の曲です。 +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/) +### はじめに + +[クラスタリング](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124)はデータ探索に非常に役立ちます。ナイジェリアの観客が音楽を消費する方法における傾向やパターンを発見できるかどうか見てみましょう。 + +✅ クラスタリングの用途について少し考えてみてください。日常生活では、家族の服を仕分けするために洗濯物の山を整理する際にクラスタリングが行われます 🧦👕👖🩲。データサイエンスでは、ユーザーの好みを分析したり、ラベルのないデータセットの特性を特定したりする際にクラスタリングが行われます。クラスタリングは、靴下の引き出しのような混乱を整理するのに役立つ方法です。 + +[![MLの紹介](https://img.youtube.com/vi/esmzYhuFnds/0.jpg)](https://youtu.be/esmzYhuFnds "クラスタリングの紹介") + +> 🎥 上の画像をクリックしてビデオを視聴してください: MITのJohn Guttagがクラスタリングを紹介します + +プロフェッショナルな環境では、クラスタリングは市場セグメンテーションを決定したり、どの年齢層がどの商品を購入するかを特定したりするのに使用できます。また、不正検出のためにクレジットカード取引のデータセットから異常を検出するのにも役立ちます。あるいは、医療スキャンのバッチから腫瘍を特定するためにクラスタリングを使用することもできます。 + +✅ 銀行、eコマース、またはビジネス環境で「野生の」クラスタリングに遭遇したことがあるかどうか、少し考えてみてください。 + +> 🎓 興味深いことに、クラスタ分析は1930年代に人類学と心理学の分野で始まりました。それがどのように使用されたか想像できますか? + +また、検索結果をグループ化するために使用することもできます。例えば、ショッピングリンク、画像、レビューなどです。クラスタリングは、大規模なデータセットを縮小し、より詳細な分析を行いたい場合に役立ちます。この技術は、他のモデルを構築する前にデータについて学ぶために使用できます。 + +✅ データがクラスタに整理されると、クラスタIDを割り当てることができます。この技術はデータセットのプライバシーを保護する際に役立ちます。より明確な識別可能なデータではなく、クラスタIDでデータポイントを参照することができます。他の要素ではなくクラスタIDを使用して識別する理由を考えてみてください。 + +クラスタリング技術についての理解を深めるには、この[学習モジュール](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott)を参照してください。 +## クラスタリングの始め方 + +[Scikit-learnは多くの方法](https://scikit-learn.org/stable/modules/clustering.html)を提供してクラスタリングを実行します。選択するタイプはユースケースによって異なります。ドキュメントによると、各方法にはさまざまな利点があります。以下は、Scikit-learnでサポートされている方法とその適切なユースケースを簡略化した表です: + +| メソッド名 | ユースケース | +| :--------------------------- | :--------------------------------------------------------------------- | +| K-Means | 一般的な目的、帰納的 | +| Affinity propagation | 多くの不均一なクラスタ、帰納的 | +| Mean-shift | 多くの不均一なクラスタ、帰納的 | +| Spectral clustering | 少数の均一なクラスタ、推論的 | +| Ward hierarchical clustering | 多くの制約されたクラスタ、推論的 | +| Agglomerative clustering | 多くの制約された非ユークリッド距離、推論的 | +| DBSCAN | 非平坦な幾何学、不均一なクラスタ、推論的 | +| OPTICS | 非平坦な幾何学、密度が変化する不均一なクラスタ、推論的 | +| Gaussian mixtures | 平坦な幾何学、帰納的 | +| BIRCH | 外れ値を含む大規模データセット、帰納的 | + +> 🎓 クラスタを作成する方法は、データポイントをグループにまとめる方法に大きく関係しています。いくつかの用語を解説しましょう: +> +> 🎓 ['推論的' vs. '帰納的'](https://wikipedia.org/wiki/Transduction_(machine_learning)) +> +> 推論的推論は、特定のテストケースに対応する観察されたトレーニングケースから導き出されます。帰納的推論は、一般的なルールに対応するトレーニングケースから導き出され、それがテストケースに適用されます。 +> +> 例:データセットが部分的にラベル付けされていると仮定します。一部は「レコード」、一部は「CD」、一部は空白です。空白にラベルを付けるのがあなたの仕事です。帰納的アプローチを選択した場合、「レコード」と「CD」を探すモデルをトレーニングし、そのラベルをラベルのないデータに適用します。このアプローチは実際には「カセット」を分類するのに苦労します。一方、推論的アプローチは、未知のデータをより効果的に処理し、類似したアイテムをグループ化してからグループにラベルを適用します。この場合、クラスタは「丸い音楽的なもの」と「四角い音楽的なもの」を反映するかもしれません。 +> +> 🎓 ['非平坦' vs. '平坦'な幾何学](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering) +> +> 数学的な用語から派生した非平坦 vs. 平坦な幾何学は、クラスタ内のポイント間の距離を「平坦」([ユークリッド](https://wikipedia.org/wiki/Euclidean_geometry))または「非平坦」(非ユークリッド)な幾何学的方法で測定することを指します。 +> +>'平坦'はユークリッド幾何学(その一部は「平面」幾何学として教えられる)を指し、非平坦は非ユークリッド幾何学を指します。幾何学が機械学習と何の関係があるのでしょうか?数学に根ざした2つの分野として、クラスタ内のポイント間の距離を測定する共通の方法が必要であり、それはデータの性質に応じて「平坦」または「非平坦」な方法で行うことができます。[ユークリッド距離](https://wikipedia.org/wiki/Euclidean_distance)は2点間の線分の長さとして測定されます。[非ユークリッド距離](https://wikipedia.org/wiki/Non-Euclidean_geometry)は曲線に沿って測定されます。データが視覚化され、平面上に存在しないように見える場合、専門的なアルゴリズムを使用する必要があるかもしれません。 +> +![平坦 vs 非平坦な幾何学インフォグラフィック](../../../../translated_images/flat-nonflat.d1c8c6e2a96110c1d57fa0b72913f6aab3c245478524d25baf7f4a18efcde224.ja.png) +> インフォグラフィック作成者 [Dasani Madipalli](https://twitter.com/dasani_decoded) +> +> 🎓 ['距離'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf) +> +> クラスタは距離行列、つまりポイント間の距離によって定義されます。この距離はいくつかの方法で測定できます。ユークリッドクラスタはポイント値の平均によって定義され、'セントロイド'または中心点を含みます。距離はそのセントロイドへの距離によって測定されます。非ユークリッド距離は'クラストロイド'、つまり他のポイントに最も近いポイントを指します。クラストロイドはさまざまな方法で定義できます。 +> +> 🎓 ['制約'](https://wikipedia.org/wiki/Constrained_clustering) +> +> [制約付きクラスタリング](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf)は、この教師なし方法に「半教師あり」学習を導入します。ポイント間の関係は「リンク不可」または「リンク必須」としてフラグ付けされ、データセットにいくつかのルールが強制されます。 +> +>例:アルゴリズムがラベル付けされていないまたは半ラベル付けされたデータのバッチで自由に動作する場合、生成されるクラスタは質が低い可能性があります。上記の例では、クラスタは「丸い音楽的なもの」、「四角い音楽的なもの」、「三角形のもの」、「クッキー」をグループ化するかもしれません。いくつかの制約、つまり従うべきルール(「アイテムはプラスチック製でなければならない」、「アイテムは音楽を生成できる必要がある」)が与えられると、アルゴリズムがより良い選択をするのに役立ちます。 +> +> 🎓 '密度' +> +> 「ノイズの多い」データは「密度が高い」と見なされます。各クラスタ内のポイント間の距離は、調査すると、より密集しているか、または「混雑している」可能性があり、このデータは適切なクラスタリング方法で分析する必要があります。[この記事](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html)は、ノイズの多いデータセットを探索するためにK-MeansクラスタリングとHDBSCANアルゴリズムを使用する違いを示しています。 + +## クラスタリングアルゴリズム + +クラスタリングアルゴリズムは100以上あり、その使用は手元のデータの性質によります。主要なものについて説明しましょう: + +- **階層型クラスタリング**。オブジェクトが近くのオブジェクトとの近接性によって分類される場合、クラスタは他のオブジェクトとの距離に基づいて形成されます。Scikit-learnの凝集型クラスタリングは階層型です。 + + ![階層型クラスタリングインフォグラフィック](../../../../translated_images/hierarchical.bf59403aa43c8c47493bfdf1cc25230f26e45f4e38a3d62e8769cd324129ac15.ja.png) + > インフォグラフィック作成者 [Dasani Madipalli](https://twitter.com/dasani_decoded) + +- **セントロイドクラスタリング**。この人気のあるアルゴリズムでは、クラスタを形成する数「k」を選択した後、アルゴリズムがクラスタの中心点を決定し、そのポイントの周りにデータを集めます。[K-meansクラスタリング](https://wikipedia.org/wiki/K-means_clustering)はセントロイドクラスタリングの人気バージョンです。中心は最も近い平均によって決定されるため、この名前が付けられています。クラスタからの二乗距離が最小化されます。 + + ![セントロイドクラスタリングインフォグラフィック](../../../../translated_images/centroid.097fde836cf6c9187d0b2033e9f94441829f9d86f4f0b1604dd4b3d1931aee34.ja.png) + > インフォグラフィック作成者 [Dasani Madipalli](https://twitter.com/dasani_decoded) + +- **分布ベースのクラスタリング**。統計モデリングに基づき、分布ベースのクラスタリングはデータポイントがクラスタに属する確率を決定し、それに応じて割り当てます。ガウス混合法はこのタイプに属します。 + +- **密度ベースのクラスタリング**。データポイントは密度、つまり互いに集まるグループに基づいてクラスタに割り当てられます。グループから遠いデータポイントは外れ値またはノイズと見なされます。DBSCAN、Mean-shift、OPTICSはこのタイプのクラスタリングに属します。 + +- **グリッドベースのクラスタリング**。多次元データセットの場合、グリッドが作成され、データがグリッドのセルに分割されることでクラスタが作成されます。 + +## 演習 - データをクラスタリングする + +クラスタリングは適切な視覚化によって大いに助けられるため、音楽データを視覚化することから始めましょう。この演習では、このデータの性質に最も効果的なクラスタリング方法を決定するのに役立ちます。 + +1. このフォルダ内の[_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/notebook.ipynb)ファイルを開きます。 + +1. データ視覚化に優れた`Seaborn`パッケージをインポートします。 + + ```python + !pip install seaborn + ``` + +1. [_nigerian-songs.csv_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/data/nigerian-songs.csv)から曲データを追加します。曲に関するデータを含むデータフレームをロードします。ライブラリをインポートしてデータをダンプすることで、このデータを探索する準備をします: + + ```python + import matplotlib.pyplot as plt + import pandas as pd + + df = pd.read_csv("../data/nigerian-songs.csv") + df.head() + ``` + + データの最初の数行を確認します: + + | | name | album | artist | artist_top_genre | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature | + | --- | ------------------------ | ---------------------------- | ------------------- | ---------------- | ------------ | ------ | ---------- | ------------ | ------------ | ------ | ---------------- | -------- | -------- | ----------- | ------- | -------------- | + | 0 | Sparky | Mandy & The Jungle | Cruel Santino | alternative r&b | 2019 | 144000 | 48 | 0.666 | 0.851 | 0.42 | 0.534 | 0.11 | -6.699 | 0.0829 | 133.015 | 5 | + | 1 | shuga rush | EVERYTHING YOU HEARD IS TRUE | Odunsi (The Engine) | afropop | 2020 | 89488 | 30 | 0.71 | 0.0822 | 0.683 | 0.000169 | 0.101 | -5.64 | 0.36 | 129.993 | 3 | +| 2 | LITT! | LITT! | AYLØ | indie r&b | 2018 | 207758 | 40 | 0.836 | 0.272 | 0.564 | 0.000537 | 0.11 | -7.127 | 0.0424 | 130.005 | 4 | +| 3 | Confident / Feeling Cool | Enjoy Your Life | Lady Donli | nigerian pop | 2019 | 175135 | 14 | 0.894 | 0.798 | 0.611 | 0.000187 | 0.0964 | -4.961 | 0.113 | 111.087 | 4 | +| 4 | wanted you | rare. | Odunsi (The Engine) | afropop | 2018 | 152049 | 25 | 0.702 | 0.116 | 0.833 | 0.91 | 0.348 | -6.044 | 0.0447 | 105.115 | 4 | + +1. データフレームの情報を取得するために、`info()`を呼び出します: + + ```python + df.info() + ``` + + 出力は以下のようになります: + + ```output + + RangeIndex: 530 entries, 0 to 529 + Data columns (total 16 columns): + # Column Non-Null Count Dtype + --- ------ -------------- ----- + 0 name 530 non-null object + 1 album 530 non-null object + 2 artist 530 non-null object + 3 artist_top_genre 530 non-null object + 4 release_date 530 non-null int64 + 5 length 530 non-null int64 + 6 popularity 530 non-null int64 + 7 danceability 530 non-null float64 + 8 acousticness 530 non-null float64 + 9 energy 530 non-null float64 + 10 instrumentalness 530 non-null float64 + 11 liveness 530 non-null float64 + 12 loudness 530 non-null float64 + 13 speechiness 530 non-null float64 + 14 tempo 530 non-null float64 + 15 time_signature 530 non-null int64 + dtypes: float64(8), int64(4), object(4) + memory usage: 66.4+ KB + ``` + +1. `isnull()`を呼び出して、合計が0であることを確認し、欠損値がないか二重チェックします: + + ```python + df.isnull().sum() + ``` + + 問題なし: + + ```output + name 0 + album 0 + artist 0 + artist_top_genre 0 + release_date 0 + length 0 + popularity 0 + danceability 0 + acousticness 0 + energy 0 + instrumentalness 0 + liveness 0 + loudness 0 + speechiness 0 + tempo 0 + time_signature 0 + dtype: int64 + ``` + +1. データを記述します: + + ```python + df.describe() + ``` + + | | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature | + | ----- | ------------ | ----------- | ---------- | ------------ | ------------ | -------- | ---------------- | -------- | --------- | ----------- | ---------- | -------------- | + | count | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | + | mean | 2015.390566 | 222298.1698 | 17.507547 | 0.741619 | 0.265412 | 0.760623 | 0.016305 | 0.147308 | -4.953011 | 0.130748 | 116.487864 | 3.986792 | + | std | 3.131688 | 39696.82226 | 18.992212 | 0.117522 | 0.208342 | 0.148533 | 0.090321 | 0.123588 | 2.464186 | 0.092939 | 23.518601 | 0.333701 | + | min | 1998 | 89488 | 0 | 0.255 | 0.000665 | 0.111 | 0 | 0.0283 | -19.362 | 0.0278 | 61.695 | 3 | + | 25% | 2014 | 199305 | 0 | 0.681 | 0.089525 | 0.669 | 0 | 0.07565 | -6.29875 | 0.0591 | 102.96125 | 4 | + | 50% | 2016 | 218509 | 13 | 0.761 | 0.2205 | 0.7845 | 0.000004 | 0.1035 | -4.5585 | 0.09795 | 112.7145 | 4 | + | 75% | 2017 | 242098.5 | 31 | 0.8295 | 0.403 | 0.87575 | 0.000234 | 0.164 | -3.331 | 0.177 | 125.03925 | 4 | + | max | 2020 | 511738 | 73 | 0.966 | 0.954 | 0.995 | 0.91 | 0.811 | 0.582 | 0.514 | 206.007 | 5 | + +> 🤔 クラスタリングはラベル付けされたデータを必要としない教師なし手法であるにもかかわらず、なぜラベル付きデータを表示しているのでしょうか?データ探索の段階では役立ちますが、クラスタリングアルゴリズムが機能するためには必須ではありません。列ヘッダーを削除し、列番号でデータを参照することも可能です。 + +データの一般的な値を確認してください。人気度が「0」である場合、ランキングがない曲を示しています。これをすぐに削除しましょう。 + +1. 棒グラフを使用して最も人気のあるジャンルを調べます: + + ```python + import seaborn as sns + + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top[:5].index,y=top[:5].values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + ![most popular](../../../../translated_images/popular.9c48d84b3386705f98bf44e26e9655bee9eb7c849d73be65195e37895bfedb5d.ja.png) + +✅ より多くの上位値を確認したい場合は、`[:5]`を大きな値に変更するか、削除してすべてを表示してください。 + +ジャンルが「Missing」と記述されている場合、それはSpotifyが分類しなかったことを意味しますので、これを削除しましょう。 + +1. 欠損データをフィルタリングして削除します: + + ```python + df = df[df['artist_top_genre'] != 'Missing'] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + 次にジャンルを再確認します: + + ![most popular](../../../../translated_images/all-genres.1d56ef06cefbfcd61183023834ed3cb891a5ee638a3ba5c924b3151bf80208d7.ja.png) + +1. このデータセットでは、上位3つのジャンルが圧倒的に多いです。`afro dancehall`、`afropop`、`nigerian pop`に集中し、さらに人気度が0のデータを削除します(これはデータセットで人気度が分類されていないことを意味し、目的に対してノイズと見なされます): + + ```python + df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')] + df = df[(df['popularity'] > 0)] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + +1. データが特に強い相関を持つかどうかを簡単にテストします: + + ```python + corrmat = df.corr(numeric_only=True) + f, ax = plt.subplots(figsize=(12, 9)) + sns.heatmap(corrmat, vmax=.8, square=True) + ``` + + ![correlations](../../../../translated_images/correlation.a9356bb798f5eea51f47185968e1ebac5c078c92fce9931e28ccf0d7fab71c2b.ja.png) + + `energy`と`loudness`の間に強い相関があることがわかります。これは、音量の大きい音楽が通常非常にエネルギッシュであるため、驚くべきことではありません。それ以外の相関は比較的弱いです。このデータでクラスタリングアルゴリズムが何を見つけるか興味深いですね。 + + > 🎓 相関は因果関係を意味しないことに注意してください!相関の証拠はありますが、因果関係の証拠はありません。[面白いウェブサイト](https://tylervigen.com/spurious-correlations)では、この点を強調する視覚的な例がいくつか紹介されています。 + +このデータセットでは、曲の人気度とダンス性に関して収束が見られるでしょうか?FacetGridを使用すると、ジャンルに関係なく同心円が並ぶことがわかります。このジャンルにおいて、ナイジェリアの嗜好が特定のダンス性レベルに収束している可能性はあるでしょうか? + +✅ 異なるデータポイント(energy、loudness、speechiness)や他の音楽ジャンルを試してみてください。何が発見できるでしょうか?`df.describe()`テーブルを見て、データポイントの一般的な分布を確認してください。 + +### 演習 - データ分布 + +これらの3つのジャンルは、人気度に基づいてダンス性の認識において大きく異なるでしょうか? + +1. 上位3つのジャンルの人気度とダンス性のデータ分布を、指定されたx軸とy軸に沿って調べます。 + + ```python + sns.set_theme(style="ticks") + + g = sns.jointplot( + data=df, + x="popularity", y="danceability", hue="artist_top_genre", + kind="kde", + ) + ``` + + 一般的な収束点の周りに同心円を発見することができ、ポイントの分布を示しています。 + + > 🎓 この例では、複数の分布を扱う際にデータを解釈するための連続的な確率密度曲線を使用するKDE(カーネル密度推定)グラフを使用しています。 + + 一般的に、これら3つのジャンルは人気度とダンス性に関して緩やかに一致しています。この緩やかに一致したデータでクラスタを決定するのは難しいでしょう: + + ![distribution](../../../../translated_images/distribution.9be11df42356ca958dc8e06e87865e09d77cab78f94fe4fea8a1e6796c64dc4b.ja.png) + +1. 散布図を作成します: + + ```python + sns.FacetGrid(df, hue="artist_top_genre", height=5) \ + .map(plt.scatter, "popularity", "danceability") \ + .add_legend() + ``` + + 同じ軸の散布図は、収束パターンを類似して示します。 + + ![Facetgrid](../../../../translated_images/facetgrid.9b2e65ce707eba1f983b7cdfed5d952e60f385947afa3011df6e3cc7d200eb5b.ja.png) + +一般的に、クラスタリングでは、データのクラスタを示すために散布図を使用できます。このタイプの視覚化を習得することは非常に有用です。次のレッスンでは、このフィルタリングされたデータを使用して、k-meansクラスタリングを適用し、興味深い方法で重なるグループを発見します。 + +--- + +## 🚀チャレンジ + +次のレッスンに向けて、実際の環境で使用される可能性のあるさまざまなクラスタリングアルゴリズムについてのチャートを作成してください。クラスタリングが解決しようとしている問題の種類は何でしょうか? + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/) + +## レビューと自己学習 + +クラスタリングアルゴリズムを適用する前に、学んだようにデータセットの性質を理解することが重要です。このトピックについてさらに読むには[こちら](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html)をご覧ください。 + +[この役立つ記事](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/)では、さまざまなクラスタリングアルゴリズムが異なるデータ形状に対してどのように動作するかを説明しています。 + +## 課題 + +[クラスタリングのための他の視覚化を調査する](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/5-Clustering/1-Visualize/assignment.md b/translations/ja/5-Clustering/1-Visualize/assignment.md new file mode 100644 index 000000000..53d91c965 --- /dev/null +++ b/translations/ja/5-Clustering/1-Visualize/assignment.md @@ -0,0 +1,25 @@ + +# クラスタリングのための他の可視化方法を調査する + +## 指示 + +このレッスンでは、クラスタリングの準備としてデータをプロットするためのいくつかの可視化技術を学びました。特に散布図は、オブジェクトのグループを見つけるのに役立ちます。散布図を作成するための異なる方法や異なるライブラリを調査し、その作業をノートブックに記録してください。このレッスンのデータ、他のレッスンのデータ、または自分で取得したデータを使用することができます(ただし、ノートブック内でその出典を明記してください)。散布図を使ってデータをプロットし、そこで発見したことを説明してください。 + +## 評価基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | ------------------------------------------------------------ | -------------------------------------------------------------------------------------- | -------------------------------- | +| | 5つの散布図が十分に文書化されたノートブックが提示されている | 5つ未満の散布図が提示されており、文書化が不十分なノートブックが提示されている | 不完全なノートブックが提示されている | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/5-Clustering/1-Visualize/notebook.ipynb b/translations/ja/5-Clustering/1-Visualize/notebook.ipynb new file mode 100644 index 000000000..c6756f761 --- /dev/null +++ b/translations/ja/5-Clustering/1-Visualize/notebook.ipynb @@ -0,0 +1,50 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python383jvsc74a57bd0e134e05457d34029b6460cd73bbf1ed73f339b5b6d98c95be70b69eba114fe95", + "display_name": "Python 3.8.3 64-bit (conda)" + }, + "coopTranslator": { + "original_hash": "40e0707e96b3e1899a912776006264f9", + "translation_date": "2025-09-04T01:57:43+00:00", + "source_file": "5-Clustering/1-Visualize/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当方は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/5-Clustering/1-Visualize/solution/Julia/README.md b/translations/ja/5-Clustering/1-Visualize/solution/Julia/README.md new file mode 100644 index 000000000..f6aa858d8 --- /dev/null +++ b/translations/ja/5-Clustering/1-Visualize/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb b/translations/ja/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb new file mode 100644 index 000000000..0ec38a757 --- /dev/null +++ b/translations/ja/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb @@ -0,0 +1,494 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## **Spotifyから取得したナイジェリア音楽の分析**\n", + "\n", + "クラスタリングは、[教師なし学習](https://wikipedia.org/wiki/Unsupervised_learning)の一種で、データセットがラベル付けされていない、または入力が事前定義された出力と一致していないと仮定します。この手法では、さまざまなアルゴリズムを使用してラベルのないデータを分類し、データ内で見つけたパターンに基づいてグループ化を行います。\n", + "\n", + "[**事前クイズ**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/)\n", + "\n", + "### **はじめに**\n", + "\n", + "[クラスタリング](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124)は、データ探索に非常に役立ちます。ナイジェリアのオーディエンスが音楽を消費する方法におけるトレンドやパターンを発見できるか見てみましょう。\n", + "\n", + "> ✅ クラスタリングの用途について少し考えてみてください。日常生活では、洗濯物の山を家族ごとに仕分けるときにクラスタリングが行われます 🧦👕👖🩲。データサイエンスでは、ユーザーの好みを分析したり、ラベルのないデータセットの特性を特定したりするときにクラスタリングが行われます。クラスタリングは、いわば混沌を整理する手助けをしてくれるのです。例えば、靴下の引き出しのように。\n", + "\n", + "プロの現場では、クラスタリングは市場セグメンテーションや、どの年齢層がどの商品を購入するかを特定するのに使われます。また、クレジットカード取引のデータセットから不正を検出する異常検出にも利用されます。あるいは、医療スキャンのバッチから腫瘍を特定するのにも使えるでしょう。\n", + "\n", + "✅ 銀行業務、eコマース、ビジネスの場で、クラスタリングに出会った経験について考えてみてください。\n", + "\n", + "> 🎓 興味深いことに、クラスタリング分析は1930年代に人類学や心理学の分野で始まりました。それがどのように使われていたか想像できますか?\n", + "\n", + "また、検索結果をグループ化するためにも使用できます。例えば、ショッピングリンク、画像、レビューなどです。クラスタリングは、大規模なデータセットを縮小し、より詳細な分析を行いたい場合に役立ちます。この技術を使用することで、他のモデルを構築する前にデータについて学ぶことができます。\n", + "\n", + "✅ データがクラスタに整理されたら、クラスタIDを割り当てます。この技術は、データセットのプライバシーを保護する際に役立ちます。クラスタ内の他の要素ではなく、クラスタIDでデータポイントを参照することができます。他の要素ではなくクラスタIDを使用してデータを識別する理由を考えてみてください。\n", + "\n", + "### クラスタリングの始め方\n", + "\n", + "> 🎓 クラスタを作成する方法は、データポイントをどのようにグループ化するかに大きく関係しています。いくつかの用語を解説しましょう:\n", + ">\n", + "> 🎓 ['推論的' vs. '帰納的'](https://wikipedia.org/wiki/Transduction_(machine_learning))\n", + ">\n", + "> 推論的推論は、特定のテストケースに対応する観測されたトレーニングケースから導き出されます。一方、帰納的推論は、一般的なルールをトレーニングケースから導き出し、それをテストケースに適用します。\n", + ">\n", + "> 例:部分的にラベル付けされたデータセットがあるとします。一部は「レコード」、一部は「CD」、一部は空白です。空白部分にラベルを付けるのがあなたの仕事です。帰納的アプローチを選ぶ場合、「レコード」と「CD」を探すモデルをトレーニングし、そのラベルを未ラベルのデータに適用します。このアプローチでは、実際には「カセット」であるものを分類するのが難しくなります。一方、推論的アプローチは、未知のデータをより効果的に処理します。似たアイテムをグループ化し、そのグループにラベルを付けるからです。この場合、クラスタは「丸い音楽アイテム」や「四角い音楽アイテム」を反映するかもしれません。\n", + ">\n", + "> 🎓 ['平面' vs. '非平面'の幾何学](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering)\n", + ">\n", + "> 数学用語に由来するこの概念は、クラスタ内の点間の距離を「平面的」([ユークリッド](https://wikipedia.org/wiki/Euclidean_geometry))または「非平面的」(非ユークリッド)な方法で測定することを指します。\n", + ">\n", + "> この文脈での「平面」とはユークリッド幾何学(「平面幾何学」として教えられる部分)を指し、「非平面」とは非ユークリッド幾何学を指します。機械学習と幾何学がどう関係するのかと思うかもしれませんが、どちらも数学に根ざした分野であり、クラスタ内の点間の距離を測定する共通の方法が必要です。データが平面上に存在しないように見える場合、特別なアルゴリズムを使用する必要があるかもしれません。\n", + "\n", + "

                                          \n", + " \n", + "

                                          ダサニ・マディパリによるインフォグラフィック
                                          \n", + "\n", + "> 🎓 ['距離'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf)\n", + ">\n", + "> クラスタは距離行列、つまり点間の距離によって定義されます。この距離はさまざまな方法で測定できます。ユークリッドクラスタは点の値の平均によって定義され、「重心」または中心点を含みます。距離はその重心までの距離で測定されます。一方、非ユークリッド距離は「クラストロイド」、つまり他の点に最も近い点によって定義されます。クラストロイドはさまざまな方法で定義できます。\n", + ">\n", + "> 🎓 ['制約付き'](https://wikipedia.org/wiki/Constrained_clustering)\n", + ">\n", + "> [制約付きクラスタリング](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf)は、この教師なし手法に「半教師あり学習」を導入します。点間の関係が「リンク不可」または「リンク必須」としてフラグ付けされ、データセットにいくつかのルールが適用されます。\n", + ">\n", + "> 例:アルゴリズムがラベルなしまたは半ラベル付きデータのバッチに自由に適用される場合、生成されるクラスタの品質が低い可能性があります。上記の例では、クラスタが「丸い音楽アイテム」「四角い音楽アイテム」「三角形のアイテム」「クッキー」をグループ化するかもしれません。いくつかの制約やルール(「アイテムはプラスチック製でなければならない」「アイテムは音楽を再生できる必要がある」など)が与えられると、アルゴリズムがより良い選択をするのに役立ちます。\n", + ">\n", + "> 🎓 '密度'\n", + ">\n", + "> 「ノイズの多い」データは「密度が高い」と見なされます。各クラスタ内の点間の距離を調べると、密度が高い、または低い、つまり「混み合っている」ことがわかるかもしれません。このようなデータは、適切なクラスタリング手法で分析する必要があります。[この記事](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html)では、K-MeansクラスタリングとHDBSCANアルゴリズムを使用して、クラスタ密度が不均一なノイズの多いデータセットを探索する違いを示しています。\n", + "\n", + "クラスタリング技術を深く理解するには、この[学習モジュール](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott)を参照してください。\n", + "\n", + "### **クラスタリングアルゴリズム**\n", + "\n", + "クラスタリングアルゴリズムは100種類以上あり、その使用はデータの性質に依存します。主要なものをいくつか紹介します:\n", + "\n", + "- **階層型クラスタリング**。オブジェクトが近くのオブジェクトとの近接性によって分類される場合、クラスタは他のオブジェクトとの距離に基づいて形成されます。階層型クラスタリングは、2つのクラスタを繰り返し結合することで特徴付けられます。\n", + "\n", + "

                                          \n", + " \n", + "

                                          ダサニ・マディパリによるインフォグラフィック
                                          \n", + "\n", + "- **重心型クラスタリング**。この人気のあるアルゴリズムでは、「k」、つまり形成するクラスタの数を選択した後、アルゴリズムがクラスタの中心点を決定し、その点の周りにデータを集めます。[K-meansクラスタリング](https://wikipedia.org/wiki/K-means_clustering)は、重心型クラスタリングの人気バージョンで、データセットを事前定義されたKグループに分離します。中心点は最も近い平均によって決定されるため、この名前が付けられています。クラスタからの二乗距離が最小化されます。\n", + "\n", + "

                                          \n", + " \n", + "

                                          ダサニ・マディパリによるインフォグラフィック
                                          \n", + "\n", + "- **分布型クラスタリング**。統計モデリングに基づいており、データポイントがクラスタに属する確率を決定し、それに応じて割り当てます。ガウス混合モデルはこのタイプに属します。\n", + "\n", + "- **密度型クラスタリング**。データポイントは、その密度、つまり互いに集まる程度に基づいてクラスタに割り当てられます。グループから遠く離れたデータポイントは、外れ値またはノイズと見なされます。DBSCAN、Mean-shift、OPTICSはこのタイプのクラスタリングに属します。\n", + "\n", + "- **グリッド型クラスタリング**。多次元データセットの場合、グリッドが作成され、データがそのグリッドのセルに分割されることでクラスタが形成されます。\n", + "\n", + "クラスタリングを学ぶ最良の方法は、自分で試してみることです。この演習でそれを行います。\n", + "\n", + "このモジュールを進めるためにいくつかのパッケージが必要です。以下のコマンドでインストールできます: \n", + "`install.packages(c('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork'))`\n", + "\n", + "または、以下のスクリプトを使用して、必要なパッケージがインストールされているか確認し、欠けている場合はインストールします。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork')\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## 演習 - データをクラスタリングする\n", + "\n", + "クラスタリングという手法は、適切な可視化によって大いに助けられます。では、音楽データを可視化するところから始めましょう。この演習では、このデータの性質に最も効果的なクラスタリング手法を決定するのに役立ちます。\n", + "\n", + "まずはデータをインポートするところから始めましょう。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core tidyverse and make it available in your current R session\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# Import the data into a tibble\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\")\r\n", + "\r\n", + "# View the first 5 rows of the data set\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "時々、データについてもう少し詳しい情報が欲しい場合があります。そのようなときは、[*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) 関数を使って、`データ`や`その構造`を確認することができます。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Glimpse into the data set\r\n", + "df %>% \r\n", + " glimpse()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "よくやった!💪\n", + "\n", + "`glimpse()`を使用すると、行(観測値)と列(変数)の総数が表示され、さらに変数名の後に各変数の最初のいくつかのエントリが行ごとに表示されます。加えて、変数の*データ型*が各変数名のすぐ後に`< >`内に示されます。\n", + "\n", + "`DataExplorer::introduce()`を使うと、この情報を簡潔にまとめることができます:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe basic information for our data\r\n", + "df %>% \r\n", + " introduce()\r\n", + "\r\n", + "# A visual display of the same\r\n", + "df %>% \r\n", + " plot_intro()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "素晴らしいですね!データに欠損値がないことがわかりました。\n", + "\n", + "この機会に、代表的な集中傾向の統計量(例:[平均](https://en.wikipedia.org/wiki/Arithmetic_mean)や[中央値](https://en.wikipedia.org/wiki/Median))や、散布の指標(例:[標準偏差](https://en.wikipedia.org/wiki/Standard_deviation))を`summarytools::descr()`を使って調べてみましょう。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe common statistics\r\n", + "df %>% \r\n", + " descr(stats = \"common\")\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "データの一般的な値を見てみましょう。人気度が `0` になることがある点に注意してください。これはランキングがない曲を示しています。これらは後ほど削除します。\n", + "\n", + "> 🤔 クラスタリングを行う場合、ラベル付きデータを必要としない教師なし手法を使用しているのに、なぜラベル付きデータを表示しているのでしょうか?データ探索の段階では役立ちますが、クラスタリングアルゴリズムが動作するために必須ではありません。\n", + "\n", + "### 1. 人気のあるジャンルを探索する\n", + "\n", + "では、どのジャンルが最も人気があるのかを調べてみましょう 🎶。ジャンルが出現する回数をカウントしてみます。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Popular genres\r\n", + "top_genres <- df %>% \r\n", + " count(artist_top_genre, sort = TRUE) %>% \r\n", + "# Encode to categorical and reorder the according to count\r\n", + " mutate(artist_top_genre = factor(artist_top_genre) %>% fct_inorder())\r\n", + "\r\n", + "# Print the top genres\r\n", + "top_genres\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "うまくいきましたね!「写真はデータフレームの千行に値する」と言われることがあります(実際には誰もそんなこと言いませんが 😅)。でも、言いたいことは伝わりますよね?\n", + "\n", + "カテゴリカルデータ(文字列や因子変数)を視覚化する方法の一つは、棒グラフを使うことです。では、トップ10のジャンルの棒グラフを作ってみましょう:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Change the default gray theme\r\n", + "theme_set(theme_light())\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "これで、`missing` ジャンルがあることを簡単に見つけられるようになりました 🧐!\n", + "\n", + "> 良い可視化は、予想していなかったことを示したり、データに関する新たな疑問を提起したりします - ハドリー・ウィッカムとギャレット・グローレムンド, [R For Data Science](https://r4ds.had.co.nz/introduction.html)\n", + "\n", + "注意: トップジャンルが `Missing` と表示されている場合、それはSpotifyが分類していないことを意味します。では、それを取り除きましょう。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " filter(artist_top_genre != \"Missing\") %>% \r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "データを少し探索した結果、上位3つのジャンルがこのデータセットを支配していることが分かりました。`afro dancehall`、`afropop`、`nigerian pop`に焦点を当て、さらに人気度が0のものを除外してデータセットをフィルタリングしましょう。(これはデータセット内で人気度が分類されていないことを意味し、今回の目的ではノイズと見なすことができます。)\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "nigerian_songs <- df %>% \r\n", + " # Concentrate on top 3 genres\r\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \r\n", + " # Remove unclassified observations\r\n", + " filter(popularity != 0)\r\n", + "\r\n", + "\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "nigerian_songs %>%\r\n", + " count(artist_top_genre) %>%\r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "データセット内の数値変数間に明らかな線形関係があるかどうかを確認してみましょう。この関係は、[相関統計量](https://en.wikipedia.org/wiki/Correlation)によって数学的に定量化されます。\n", + "\n", + "相関統計量は、-1から1の間の値で、関係の強さを示します。0より大きい値は*正の相関*(一方の変数の値が高いと、もう一方の変数の値も高くなる傾向がある)を示し、0より小さい値は*負の相関*(一方の変数の値が高いと、もう一方の変数の値が低くなる傾向がある)を示します。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Narrow down to numeric variables and fid correlation\r\n", + "corr_mat <- nigerian_songs %>% \r\n", + " select(where(is.numeric)) %>% \r\n", + " cor()\r\n", + "\r\n", + "# Visualize correlation matrix\r\n", + "corrplot(corr_mat, order = 'AOE', col = c('white', 'black'), bg = 'gold2') \r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "データは「energy」と「loudness」の間で強い相関がある以外は、あまり強く関連していません。これは、音楽が大音量であるほど通常はエネルギッシュであることを考えると納得できます。「Popularity」は「release date」とも関連性があります。これも納得できることで、最近の曲の方が人気がある可能性が高いからです。また、曲の長さとエネルギーにも相関があるようです。\n", + "\n", + "このデータをクラスタリングアルゴリズムがどのように扱うのか、非常に興味深いですね!\n", + "\n", + "> 🎓 相関は因果関係を意味しないことに注意してください!相関の証拠はありますが、因果関係の証拠はありません。この点を強調する面白い[ウェブサイト](https://tylervigen.com/spurious-correlations)には、いくつかの視覚的な例があります。\n", + "\n", + "### 2. データ分布を探る\n", + "\n", + "もう少し微妙な質問をしてみましょう。ジャンルごとに人気度に基づいてダンス性の認識が大きく異なるのでしょうか?トップ3のジャンルについて、人気度とダンス性のデータ分布を特定のx軸とy軸に沿って[密度プロット](https://www.khanacademy.org/math/ap-statistics/density-curves-normal-distribution-ap/density-curves/v/density-curves)を使って調べてみましょう。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Perform 2D kernel density estimation\r\n", + "density_estimate_2d <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre)) +\r\n", + " geom_density_2d(bins = 5, size = 1) +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " xlim(-20, 80) +\r\n", + " ylim(0, 1.2)\r\n", + "\r\n", + "# Density plot based on the popularity\r\n", + "density_estimate_pop <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " theme(legend.position = \"none\")\r\n", + "\r\n", + "# Density plot based on the danceability\r\n", + "density_estimate_dance <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = danceability, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\")\r\n", + "\r\n", + "\r\n", + "# Patch everything together\r\n", + "library(patchwork)\r\n", + "density_estimate_2d / (density_estimate_pop + density_estimate_dance)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "私たちは、ジャンルに関係なく同心円が一致しているのを確認します。もしかすると、このジャンルにおいてナイジェリアの嗜好は、ある一定のダンサビリティのレベルで収束しているのではないでしょうか?\n", + "\n", + "一般的に、これら3つのジャンルは人気度とダンサビリティの点で一致しています。この緩やかに整列したデータの中でクラスターを特定するのは難しい課題となるでしょう。散布図がこれを裏付けるかどうか、試してみましょう。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# A scatter plot of popularity and danceability\r\n", + "scatter_plot <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre, shape = artist_top_genre)) +\r\n", + " geom_point(size = 2, alpha = 0.8) +\r\n", + " paletteer::scale_color_paletteer_d(\"futurevisions::mars\")\r\n", + "\r\n", + "# Add a touch of interactivity\r\n", + "ggplotly(scatter_plot)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "同じ軸の散布図は、収束の類似したパターンを示しています。\n", + "\n", + "一般的に、クラスタリングでは散布図を使用してデータのクラスターを表示することができます。この種類の可視化を習得することは非常に有用です。次のレッスンでは、このフィルタリングされたデータを使用して、k-meansクラスタリングを適用し、興味深い形で重なり合うグループを発見します。\n", + "\n", + "## **🚀 チャレンジ**\n", + "\n", + "次のレッスンに備えて、実際の環境で使用する可能性のあるさまざまなクラスタリングアルゴリズムについてのチャートを作成してください。クラスタリングはどのような問題を解決しようとしているのでしょうか?\n", + "\n", + "## [**講義後のクイズ**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/)\n", + "\n", + "## **復習と自主学習**\n", + "\n", + "クラスタリングアルゴリズムを適用する前に、学んだように、データセットの性質を理解することが重要です。このトピックについてさらに学ぶには、[こちら](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html)を参照してください。\n", + "\n", + "クラスタリング手法の理解を深めましょう:\n", + "\n", + "- [Tidymodelsとその関連ツールを使用してクラスタリングモデルを訓練・評価する](https://rpubs.com/eR_ic/clustering)\n", + "\n", + "- Bradley Boehmke & Brandon Greenwell, [*Hands-On Machine Learning with R*](https://bradleyboehmke.github.io/HOML/)*.*\n", + "\n", + "## **課題**\n", + "\n", + "[クラスタリングのための他の可視化手法を調査する](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/assignment.md)\n", + "\n", + "## 感謝の言葉:\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) さん、Python版のオリジナルモジュールを作成していただきありがとうございます ♥️\n", + "\n", + "[`Dasani Madipalli`](https://twitter.com/dasani_decoded) さん、機械学習の概念をより理解しやすくする素晴らしいイラストを作成していただきありがとうございます。\n", + "\n", + "楽しい学びを!\n", + "\n", + "[Eric](https://twitter.com/ericntay), Gold Microsoft Learn Student Ambassador\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "99c36449cad3708a435f6798cfa39972", + "translation_date": "2025-09-04T02:02:38+00:00", + "source_file": "5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/ja/5-Clustering/1-Visualize/solution/notebook.ipynb b/translations/ja/5-Clustering/1-Visualize/solution/notebook.ipynb new file mode 100644 index 000000000..2a6f7c8c5 --- /dev/null +++ b/translations/ja/5-Clustering/1-Visualize/solution/notebook.ipynb @@ -0,0 +1,870 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Defaulting to user installation because normal site-packages is not writeable\n", + "Requirement already satisfied: seaborn in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (0.11.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (3.5.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.21.4)\n", + "Requirement already satisfied: pandas>=0.23 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.3.4)\n", + "Requirement already satisfied: scipy>=1.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.7.2)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (4.28.1)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.4.7)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (1.3.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (8.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (0.11.0)\n", + "Requirement already satisfied: packaging>=20.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (21.2)\n", + "Requirement already satisfied: setuptools-scm>=4 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (6.3.2)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.3 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from pandas>=0.23->seaborn) (2021.3)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from python-dateutil>=2.7->matplotlib>=2.2->seaborn) (1.16.0)\n", + "Requirement already satisfied: tomli>=1.0.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (1.2.2)\n", + "Requirement already satisfied: setuptools in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (59.1.1)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                          0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                                          1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                          2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                                          3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                          4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                          \n", + "
                                          " + ], + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "データフレームに関する情報を取得する\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 530 entries, 0 to 529\n", + "Data columns (total 16 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 530 non-null object \n", + " 1 album 530 non-null object \n", + " 2 artist 530 non-null object \n", + " 3 artist_top_genre 530 non-null object \n", + " 4 release_date 530 non-null int64 \n", + " 5 length 530 non-null int64 \n", + " 6 popularity 530 non-null int64 \n", + " 7 danceability 530 non-null float64\n", + " 8 acousticness 530 non-null float64\n", + " 9 energy 530 non-null float64\n", + " 10 instrumentalness 530 non-null float64\n", + " 11 liveness 530 non-null float64\n", + " 12 loudness 530 non-null float64\n", + " 13 speechiness 530 non-null float64\n", + " 14 tempo 530 non-null float64\n", + " 15 time_signature 530 non-null int64 \n", + "dtypes: float64(8), int64(4), object(4)\n", + "memory usage: 66.4+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "name 0\n", + "album 0\n", + "artist 0\n", + "artist_top_genre 0\n", + "release_date 0\n", + "length 0\n", + "popularity 0\n", + "danceability 0\n", + "acousticness 0\n", + "energy 0\n", + "instrumentalness 0\n", + "liveness 0\n", + "loudness 0\n", + "speechiness 0\n", + "tempo 0\n", + "time_signature 0\n", + "dtype: int64" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "データの一般的な値を確認してください。人気度が「0」になる可能性があり、その値を持つ行が多数存在することに注意してください。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          release_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                          count530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000
                                          mean2015.390566222298.16981117.5075470.7416190.2654120.7606230.0163050.147308-4.9530110.130748116.4878643.986792
                                          std3.13168839696.82225918.9922120.1175220.2083420.1485330.0903210.1235882.4641860.09293923.5186010.333701
                                          min1998.00000089488.0000000.0000000.2550000.0006650.1110000.0000000.028300-19.3620000.02780061.6950003.000000
                                          25%2014.000000199305.0000000.0000000.6810000.0895250.6690000.0000000.075650-6.2987500.059100102.9612504.000000
                                          50%2016.000000218509.00000013.0000000.7610000.2205000.7845000.0000040.103500-4.5585000.097950112.7145004.000000
                                          75%2017.000000242098.50000031.0000000.8295000.4030000.8757500.0002340.164000-3.3310000.177000125.0392504.000000
                                          max2020.000000511738.00000073.0000000.9660000.9540000.9950000.9100000.8110000.5820000.514000206.0070005.000000
                                          \n", + "
                                          " + ], + "text/plain": [ + " release_date length popularity danceability acousticness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 2015.390566 222298.169811 17.507547 0.741619 0.265412 \n", + "std 3.131688 39696.822259 18.992212 0.117522 0.208342 \n", + "min 1998.000000 89488.000000 0.000000 0.255000 0.000665 \n", + "25% 2014.000000 199305.000000 0.000000 0.681000 0.089525 \n", + "50% 2016.000000 218509.000000 13.000000 0.761000 0.220500 \n", + "75% 2017.000000 242098.500000 31.000000 0.829500 0.403000 \n", + "max 2020.000000 511738.000000 73.000000 0.966000 0.954000 \n", + "\n", + " energy instrumentalness liveness loudness speechiness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 0.760623 0.016305 0.147308 -4.953011 0.130748 \n", + "std 0.148533 0.090321 0.123588 2.464186 0.092939 \n", + "min 0.111000 0.000000 0.028300 -19.362000 0.027800 \n", + "25% 0.669000 0.000000 0.075650 -6.298750 0.059100 \n", + "50% 0.784500 0.000004 0.103500 -4.558500 0.097950 \n", + "75% 0.875750 0.000234 0.164000 -3.331000 0.177000 \n", + "max 0.995000 0.910000 0.811000 0.582000 0.514000 \n", + "\n", + " tempo time_signature \n", + "count 530.000000 530.000000 \n", + "mean 116.487864 3.986792 \n", + "std 23.518601 0.333701 \n", + "min 61.695000 3.000000 \n", + "25% 102.961250 4.000000 \n", + "50% 112.714500 4.000000 \n", + "75% 125.039250 4.000000 \n", + "max 206.007000 5.000000 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "ジャンルを調べてみましょう。「欠落」としてリストされているものがかなりあり、これはデータセット内でジャンルとして分類されていないことを意味します。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsIElEQVR4nO3debyt9dz/8ddbpzI20EETGRKZwpHMGVJyU6ZUJN25C0Uh81CmW4RkCLmLTCXTLXT/lFA3bkPSQETRdKSOBkMpOn1+f3yvzXKcOtN3t9Y++/V8PPbjrH2ta639qWvvtd7rO6aqkCRJ0oq72bgLkCRJWlkYrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJ0ybhzyNf1yf8ZeT7Z4+7PknqLS4QKummkHAe8PwqvjHuWpZHwpwqrht3HZImmy1Wkm5yCasnvDfht8PXexNWH+7bMuGihNcm/D7hvBtr3Uq4S8LJCX9K+EbCBxM+NXL/FgnfS7gy4fSELUfu+3bCWxK+Ozz++IR1hvs2SqiE3RMuAL45HP/3hJ8nXJHw9YQ7D8eTcHDCpQl/TDgz4T7T839Q0qQyWEkah9cBWwCbAfcHNgdeP3L/HYF1gPWBXYHDEja5gef6DPBD4HbAAcAuU3ckrA98DXgrcFtgP+ALCXNHHr8zsBtwe2C14ZxRjwbuBWydsB3wWuBpwFzgf4GjhvOeADwKuAewJrADcNkS/j9IWskYrCSNw7OBN1dxaRULgDcxEogGb6ji2ipOooWjHRZ9koQ7AQ8G3ljFX6v4DnDsyCnPAY6r4rgqrq/iBOAUYNuRcz5WxS+r+AtwDC3sjTqgiquG+18AvL2Knw/dgv8JbDa0Wv0NuA1wTyDDORcv+/8aSTOZwUrSOKwHnD/y/fnDsSlXVHHVjdw/+jyXV3H1yLELR27fGXjm0A14ZcKVwCOAdUfO+d3I7auBWy/yMxZ9vkNGnutyIMD6VXwT+ADwQeDShMMS1lhMzZJWYgYrSePwW1pImXKn4diUtRNudSP3T7kYuG3CLUeObThy+0Lgk1WsNfJ1qyoOXIZaR2f4XAjsucjz3aKK7wFU8b4qHgRsSusSfMUy/BxJKwGDlaRxOAp4fcLcYbD4G+EfA84Hb0pYLeGRwL8Bn1v0Sao4n9a1d8Bw7kOBJ4+c8ingyQlbJ6yScPNhcPwGy1n3h4HXJNwbIGHNhGcOtx+c8JCEVYGrgGuA65fz50iaoeaMuwBJs9JbgTWAM4bvPzccm/I74ApaK9XVwAuq+MUNPNezgY/TBor/EPgssApAFRcOA87fSQtzC4dzXrg8RVfxpYRbA0cP46r+AJww1L8GcDBwV1qo+jpw0PL8HEkzl+tYSZoow3IIn6pavlalhM8Cv6hi/66FSdJSsCtQ0ow2dMHdLeFmCdsA2wH/PeayJM1SdgVKmunuCHyRto7VRcALq/jJeEuSNFvZFShJktSJXYGSJEmdGKwkSZI6mYgxVuuss05ttNFG4y5DkiRpiX784x//vqrmLu6+iQhWG220Eaeccsq4y5AkSVqiJOff0H12BUqSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpkz7gKW1YNe8YlxlzAr/Pig5467BEmSZhxbrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHWyxGCV5OZJfpjk9CQ/S/Km4fhdkvwgyTlJPptkteH46sP35wz3bzTN/w2SJEkTYWlarK4FHltV9wc2A7ZJsgXwDuDgqro7cAWw+3D+7sAVw/GDh/MkSZJWeksMVtX8efh21eGrgMcCnx+OHwlsP9zebvie4f7HJUmvgiVJkibVUo2xSrJKktOAS4ETgHOBK6vquuGUi4D1h9vrAxcCDPf/Abhdx5olSZIm0lIFq6paWFWbARsAmwP3XNEfnGSPJKckOWXBggUr+nSSJEljt0yzAqvqSuBbwEOBtZLMGe7aAJg/3J4PbAgw3L8mcNlinuuwqppXVfPmzp27fNVLkiRNkKWZFTg3yVrD7VsAWwE/pwWsZwyn7Qp8ebh97PA9w/3frKrqWLMkSdJEmrPkU1gXODLJKrQgdkxVfTXJWcDRSd4K/AQ4fDj/cOCTSc4BLgd2nIa6JUmSJs4Sg1VVnQE8YDHHf00bb7Xo8WuAZ3apTpIkaQZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKmTJQarJBsm+VaSs5L8LMk+w/EDksxPctrwte3IY16T5JwkZyfZejr/AyRJkibFnKU45zrg5VV1apLbAD9OcsJw38FV9a7Rk5NsCuwI3BtYD/hGkntU1cKehUuSJE2aJbZYVdXFVXXqcPtPwM+B9W/kIdsBR1fVtVX1G+AcYPMexUqSJE2yZRpjlWQj4AHAD4ZDeyc5I8kRSdYejq0PXDjysItYTBBLskeSU5KcsmDBgmWvXJIkacIsdbBKcmvgC8C+VfVH4EPA3YDNgIuBdy/LD66qw6pqXlXNmzt37rI8VJIkaSItVbBKsiotVH26qr4IUFWXVNXCqroe+Cj/6O6bD2w48vANhmOSJEkrtaWZFRjgcODnVfWekePrjpz2VOCnw+1jgR2TrJ7kLsDGwA/7lSxJkjSZlmZW4MOBXYAzk5w2HHstsFOSzYACzgP2BKiqnyU5BjiLNqNwL2cESpKk2WCJwaqqvgNkMXcddyOPeRvwthWoS5IkacZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktTJEoNVkg2TfCvJWUl+lmSf4fhtk5yQ5FfDv2sPx5PkfUnOSXJGkgdO93+EJEnSJFiaFqvrgJdX1abAFsBeSTYFXg2cWFUbAycO3wM8Edh4+NoD+FD3qiVJkibQEoNVVV1cVacOt/8E/BxYH9gOOHI47Uhg++H2dsAnqvk+sFaSdXsXLkmSNGmWaYxVko2ABwA/AO5QVRcPd/0OuMNwe33gwpGHXTQcW/S59khySpJTFixYsKx1S5IkTZylDlZJbg18Adi3qv44el9VFVDL8oOr6rCqmldV8+bOnbssD5UkSZpISxWskqxKC1WfrqovDocvmeriG/69dDg+H9hw5OEbDMckSZJWakszKzDA4cDPq+o9I3cdC+w63N4V+PLI8ecOswO3AP4w0mUoSZK00pqzFOc8HNgFODPJacOx1wIHAsck2R04H9hhuO84YFvgHOBqYLeeBUuSJE2qJQarqvoOkBu4+3GLOb+AvVawLkmSpBnHldclSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInSwxWSY5IcmmSn44cOyDJ/CSnDV/bjtz3miTnJDk7ydbTVbgkSdKkWZoWq48D2yzm+MFVtdnwdRxAkk2BHYF7D485NMkqvYqVJEmaZEsMVlV1MnD5Uj7fdsDRVXVtVf0GOAfYfAXqkyRJmjFWZIzV3knOGLoK1x6OrQ9cOHLORcOxf5FkjySnJDllwYIFK1CGJEnSZFjeYPUh4G7AZsDFwLuX9Qmq6rCqmldV8+bOnbucZUiSJE2O5QpWVXVJVS2squuBj/KP7r75wIYjp24wHJMkSVrpLVewSrLuyLdPBaZmDB4L7Jhk9SR3ATYGfrhiJUqSJM0Mc5Z0QpKjgC2BdZJcBOwPbJlkM6CA84A9AarqZ0mOAc4CrgP2qqqF01K5JEnShFlisKqqnRZz+PAbOf9twNtWpChJkqSZyJXXJUmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJ0sMVkmOSHJpkp+OHLttkhOS/Gr4d+3heJK8L8k5Sc5I8sDpLF6SJGmSLE2L1ceBbRY59mrgxKraGDhx+B7gicDGw9cewIf6lClJkjT5lhisqupk4PJFDm8HHDncPhLYfuT4J6r5PrBWknU71SpJkjTRlneM1R2q6uLh9u+AOwy31wcuHDnvouGYJEnSSm+FB69XVQG1rI9LskeSU5KcsmDBghUtQ5IkaeyWN1hdMtXFN/x76XB8PrDhyHkbDMf+RVUdVlXzqmre3Llzl7MMSZKkybG8wepYYNfh9q7Al0eOP3eYHbgF8IeRLkNJkqSV2pwlnZDkKGBLYJ0kFwH7AwcCxyTZHTgf2GE4/ThgW+Ac4Gpgt2moWZIkaSItMVhV1U43cNfjFnNuAXutaFGSJEkzkSuvS5IkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE6WuNyC1NMFb77vuEtY6d3pjWeOuwRJmrVssZIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpmzIg9Och7wJ2AhcF1VzUtyW+CzwEbAecAOVXXFipUpSZI0+VYoWA0eU1W/H/n+1cCJVXVgklcP37+qw8+RNGYPf//Dx13CSu+7L/7uuEuQtAKmoytwO+DI4faRwPbT8DMkSZImzooGqwKOT/LjJHsMx+5QVRcPt38H3GEFf4YkSdKMsKJdgY+oqvlJbg+ckOQXo3dWVSWpxT1wCGJ7ANzpTndawTIkSZLGb4VarKpq/vDvpcCXgM2BS5KsCzD8e+kNPPawqppXVfPmzp27ImVIkiRNhOUOVkluleQ2U7eBJwA/BY4Fdh1O2xX48ooWKUmSNBOsSFfgHYAvJZl6ns9U1f9L8iPgmCS7A+cDO6x4mZIkSZNvuYNVVf0auP9ijl8GPG5FipIkSZqJXHldkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUyZxxFyBJmn4nPerR4y5hpffok08adwmaALZYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6mTPuAiRJ0o37wMu/Mu4SVnp7v/vJXZ7HFitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqZNqCVZJtkpyd5Jwkr56unyNJkjQppiVYJVkF+CDwRGBTYKckm07Hz5IkSZoU09VitTlwTlX9uqr+ChwNbDdNP0uSJGkipKr6P2nyDGCbqnr+8P0uwEOqau+Rc/YA9hi+3QQ4u3shk2Md4PfjLkLLzes3c3ntZjav38y1sl+7O1fV3MXdMbaV16vqMOCwcf38m1KSU6pq3rjr0PLx+s1cXruZzes3c83mazddXYHzgQ1Hvt9gOCZJkrTSmq5g9SNg4yR3SbIasCNw7DT9LEmSpIkwLV2BVXVdkr2BrwOrAEdU1c+m42fNELOiy3Ml5vWbubx2M5vXb+aatdduWgavS5IkzUauvC5JktSJwUqSJKkTg9UMlOSuSVYfdx2SJOmfGaxmmCRrA/sBrzNcSdINS5Jx16DZx2A1gyTZqKquAL4ArAnsZ7iaPL6YzyxJHpTELbdWMklSVZXk4Ul2T/K4YfkfzQCjr6PD/sMzhsFqhkiyFvCuJK+rqhOBLwLrYbgam6k//CT3HV681wcYXswNVxNs5NrNo22t9YYk2463KvU0/B0+BvgkcHfgvcBLktx9rIVpiaZC8XD7ecATZlIoNljNHFcB7wPunWS/qjoJOAbD1ViMfBp+PO06vAV4S5KXj74oaDIN1+6JwFHA6bRFjV+U5OnjrUy9JNkEeAGwb1W9BtgV2BjYaqyFaYlGQtVewD7A2VX11/FWtfQMVhNu6pN1Vf0N+D7wQWCLRcLV7YE3Gq5uOsMb8wOBVwDbV9Vjgc/RtnKyW2lmmAe8vqoOBfanhay9kmwz3rK0IjIAHgXcDdg6ya2q6lTaNd5jGKuqCZbk9sAutJ1bzkvy9CQvGFqZJ5rBaoIt0hy6JkBVfRd4D/DQkXD1VWA14NZjK3aWGZqlHw08Blh/OPwd4I/Ag8dVl27YYrpnbwk8D6CqLgV+APwV+I8km9+01WlFjVzfdYA5VfVR4G1AaG/OAL8D/jQc0wRJMjfJFsPtbYA7AicABwMfB3YANgMeO6YSl9q0bGmjPkZC1UuAxwGXJTm+qo4eXkP2SfLGqnpzku9U1V/GWe/KbqT7b1Xgb7TWw7WBVyW5oqp+kuQ0YOcktwT+Ypfg5Biu3YNpQfjrwH8C705ySFXtA9yK1uW+ALgr8MOxFatlNlzfbYE3A/OTXAXsTruuuybZmfae986qunyMpWrxVgVen6RoDQU7AF8BzgVOrqpfD1vlzUtys6q6foy13iiD1YRL8gLg6cCzgYNobwS3q6oPJpkD7J7ktr5QTL/hhfvJwFNp3a8H0bpiLwOOTXIErQXroKq6enyVatRIIN4S+DBwKfAU4LO0cYsHJDkJWJfWjfsU4N7jqVbLK8m9gLcCewOnAZ8BPlZVOya5BtgaOLOqvjqc71jICVJVv03yf7ThFR+oqj/QPtz8EP4+iP35wM6THKrArsCJluTmwLW0N/JnALcAngO8PMkLq+pkYE9D1U0jyYOAdwD/Rev22wW4P23W0adorYofqaqvzLTpwSujoWVxKhBvRlv/7UlV9SjgPOAJwDpV9Qza39UjaIF5N+DT46hZK+Ra4Czg1Kq6uqq2B9YdBkD/N62r9/5JdjRUTYbFdM9/lfa3+Pgk+42c93DgzsBzquqsm7DE5WKL1QRZtHmzqq4BPpZkQ2AbYPeqmp/kdNoMpqOq6soxlTsb3Qv4YVV9D/hekmcArwK+BbwbuJjWgnh6Vf10jHXOekluBxyd5ClDF/lDgS2B+9G6Ft4N7As8J8lqVXV8krsAzwSeUVW/GE/lWlojLZGr0BoJLqe1Os6jffABOJqWra9LciStC/9bhqrxW2QM8bNoYx5/VVVfTXI5cMjQnXsu7UPQW2fK+53BakIk2aCqLhpuvxi4C/Bb4DD+MeDyLkmeBFwC7DFTfslmqpEX7qnAexawbZJ5VXVKVX0+bWHJjavqpCSfA64H/jDWwkVVXZbk+cBGSf5aVR9KchvawPTLh+t1MK3b4aLhMb9J8qqqumqctWvpDH+b2wHPpQ1GP4g27vH9SQ4HrqF1C+4znP834MgxlatFjISqvWmtVB8AvpFkt6o6Ksmew7E5wPNm0vtdDO7jNTSFrkEbE/B24AzauI//on26Xoe2/sqewAOBBwHPrqozxlHvbJO2TtVDgStpM1ReQGuZmg+cTZu+/bSp65FklapaOJ5qBf98DZK8DngjcK+Rwa9bAe+rqhOnQvOkD4bVv0pyT9rr5Ntpr5MH0Lrn/0YbT7UB8PmqOn5cNerGJbk/beHW7WnhandgLdoEgw8Pk4BuPtOGuxisJkSShwGH01pFPlhV30yyHq2raQ1gr6q6Osmaw6A+TbOhX/8IWrfRc2n9/+cDc4GH0WYbfbSqjnXMxmQYaWXcArh0CFOvAl4KPLyqzk3yclq42hm40kA18yS5D+3v8uyqeslwbGvatPxHVtU5YyxPN2Bxr5NJ1qGNb9y3qrZMshvtvfAZVfXFcdS5ohy8PkZTA/eGX7bv0RL7vYFtoc2SAA4EFgIfHD5VG6puAknuAbyI1rJxGO0T1e2A+1XV+6pqR1rztKFqggyhampF9aktht5BW/vt5CT3qKp3M0z6MFTNWL+kDZG4V5KNk6xeVV+n7aM6d7ylaXEWGVP16CTbJlm7qn4PrE7rAYC2FuBngZ+MqdQVZovVmCzyS/Z42to582nrIv0Pbcr+R4b770h7z7hkXPXONsOb80toM41eOoy/WQM4CXhWVf1yrAVqsYYB6F+hhd5TktwXWLWqTh1arl4JbFCu+TZjTXX1DrM+Dwf+AnyDtozGUcB2VfWjcdaoG5bkpbQlhM4AtqB1/60B/DttketNgCdX1W/GVuQKMliN2fBLtj1tZtmjaYui3ZU2yPLDVfXesRU3i4x0Id0VuJo2w2gT2ti2C2ifhEPb/PpJVXXh2IrVP1nkQ8qtaAtEXk5ruXgALRx/oqo+leTudhPNXCN/p3OGmX6r0QasP5j2oedrwwxPW5EnUJL7AW+qqqcm2Qf4t6raKm1NxvsA96XNvD77Rp9owtkVOEZJNgW2rqpHA2sCV9DGfPyANqZnlyRrjbHEWWOkC+mrtG6jH9Fm9x1Fm779OdoL+KsMVZNj5I122yT701ovLqBNuz+etv3F12gTPwBm7Kfg2WhkuMTGQ8s9AEOomlNtY94XAafQpuufaqiaHFPXb8TFwOlJPkob8vLE4fh2wFlV9cmZHqrAYHWTWswv2V+BC5K8FrgHbUXZvyXZrqp+CDxsJk0xncmGF+23Av9RVTvTgtSxwK9os46+B3yb1rK4uGupMRhC1VNoe8KdWlXXV9UhVbV3VR1HC1TPA/7fcL4zNmeIkdC8Ne1v8b9pm2TfHf4pXP2NFq5uD7wGlxGaCEOX7VRL8m2HQeqXAxsBdwd2Ha7hc2kzd283tmI7syvwJrJId8V2tDFV3we+RFt4ctPhl+z5tOUVtq+qy8ZW8CwwMtX+wbSVuA8E9q9/rCf2fmBhVe2btn7YU2kDKj9SVdeNq+7ZLsm6wAOq6rhhnM0RwDtprVEPoW1JczBwW2B/4Iiq+vK46tXySzKPNjP6NcAdaBN8zgX+e6pLd2TM1Wq0lfR/O7aCBfy9N+YOVfWtJC+j/U3eHngTrUHhubT3wKLNsN6xqn42rnp7M1jdxIZ1dPagrX10TpLH0nZevz0taO1IW7bflbunSZJbTA1eTvII4FDaIoL7AseNTBp4FrBZVb1m+P4JwOlOIhivtI12zwN+W1VXJvkEbbunWwA/o6319uuq2iPJetX2ILN7aIZJW9D1QGCbqrrbcOyRwE60iT6fm5pEEtchmyhJ3kRbR+y7tOu1A631+OXAx2jbC92b9r538kweqL44Bqub0NCEfTiw09SnquET91q0T2JXAP+3MvQxT6ph/Zv3Av9GG4fzYdoigh8dWq4Ooy0EeiXwLOC1VfW18VSrUUnuDMwdZvutCRwCfBn4Ou1anVZVP0myCW2R3R2r6orxVaxltWgAHrmW5wAvHlqYt6RtSv+fK9sb8kw30n17M+B1tMkjfx2WpyFtfbkv0Qat/3iMpU4rx1hNo8WMw/k9bfDeaklWG34J/0ZbaPK9VfVxQ9X0GULsvrQ1UtYCHklbM+VZSdYfpmjvDPyaNgPwpVX1NcdTjVeaNWifcj+d5PHV1nP7X1pAfmJVfWwIVU8HPg8caqiaWUbelLdKsnuS5w+vhy+mtUa+Z2iZ+jbwSkPVZBkNxUPr4duAE4G1kzw2yS2r6vu0D0NrjLHUaWeL1TRZZEzVOsBVwHXAMcDxVfWh4b6dacssvKzco2xaDcHq9cDdaDul7wmsQhvTdh1wSFVdPL4KdWOSvJ02Q/M64AND6N2F9vfz7WE5hXcOt4+z+2/mGBnv+CTaZJFX0LqMPlNV+w2t/W8FLq+qF9n1N1kWeb/bmfbB9dqqOjzJvsBmtO7b3wBvALZcmYOxsyemwSK/ZC+j9TGfTpvVsjfwuaHb6Tpgc2AXQ9X0mmodTPIdWqD6dlWdNdz3JVrLx6uT/KdjqCZHklWHVl1oszLXoi2g+/wkVNUnk1wPPCnJVVX1yuFxhqoZIG1B15tV22poHdrr4w60WdLnAc9MW51797TlNFaHv7eIaEKMvN+9ENgN+BSwXZKnV9W2aRsq70UbZrHVyhyqwK7AaTHyS/Zg2oC9F9PW0tmX9on7CbSWq/+jDWI/czyVzg4jXQx3pS0a+TTgZkneOrxofxc4jhZ01xpjqRqRtsnu4UkeMxw6nrbe2xa0BXRflGSbqvo0bZzVuVOPNVTNGA8Dbpe2Jc3vaRN7VqPNHnsE8BhgtyQfqKqzy83nJ8owlmrq9hxa6/FLq237tTWwMMn7hwlBnwTeVbNg1wpbrKbJMNvsi7Tupe8nuQXwJ1oT93pTXYGafkOoegptRe5zaGOoPkKbofKSJO+rqv9Ncma5btgkuT3D/plJPgxcT5t2vxNtvNXNaa2MN6uqI8dXppZXVX06ya2BHyV5TlWdkbb5/I+HrsE70hbs/fp4K9Wi0havXg84a2hEuBj4G21ZjCmvoDUoUFUH3cQljo0tVp0sOsC5qr5DS+g7JFlnmN5/Mm0m01ZJ1nZQ9E1jmInyBmBr2oyUF9FaDd9F+4T18rSFBq8cW5H6F1V1MvAo4J7Ab2lbPR1Nu34b0AapH0ZbD0czyNRrX9rin/ehvVZ+dJi1ex6wZpJDaVtJfbmqTvD1cuJsAvxbkiNpYx4voi3E+5Ekmw/nPBS4e5Jbzqbr5+D1DhYZU/U44DbACVV1VZKDaV0X21XVpcMA6lWr6uoxljyrJNmAtrTC2rQBsDvTllm4HPg4sKDctHViDW++7wXuR5u+vQ3w3ao6cQjELtY6Aw1vvofQuo6+P4xH3Zm2dyq0631VVZ00phJ1I4b3so/RFv98bVV9YDi+J//YZuhBwLNrJVr8c2kYrDrKP3bt/hWtOfQdVXVSkoNog6MfVVV+uh6TJG8DLq2qQ9K2UXgJ8PSqOn/MpWkJhtli7wK2qKo/LDKoXTNMkg1pq+NfXlV7jBx/GfAfwDPLRZInzqKzMZM8ENiK9qH1TODoaqvgP5C2vNB1NQtXwneM1QoY+v+vqKprk2xFm+3wiCSvpg3K3G1ozHpFkmtp61UZrMbnTGDP4ZPW04B9DFUzw7C0wkLgl0nu6RpVM951wBm0mWPbVNXUXo7vSbIKTiKZSFOhKsmuwKrABVX1jiQvoPXM/CnJ2rRemw/O1kkktlgth6GveC5tjMd/0aaWrg3cmjaTZVda8+jHaJtNvrKqvjWeajUlbZHJp9KuzRHliuozztByddWwSKRmiJGZuQ+lvXZeQJtE8jza1ibHVNWJYyxRS2mYCPRu4NO0rr5vVtXBafvcPgR4HPDk2db9N8oWq+WTYbzUW4CX0RZC+yxwWZJ/B/6nqq5J8l3aJpM2aU+AqvojcGSST1fb8Nq1jmaYqTDstZtZhlD1BNqYqvcwbGsCHAssBJ6Xtpny8WMsU0uQtiDv5sBTqurnSR4EvGn4c3xvkk8Ca8z2IS8Gq+Uw0sd8S9pWC0ekLdf/MeB7wKFJ7kGbEfHM2f5LNoEWgmsdzWReu5ljWOtoLdrCvE8FbgucBZxaVZck+Rxt4U93PZgwIy2NUx9k7kSbYPBt4OfAacD+wMFJVquqd+JwF7sCl1eSZwGvAp5Im8XyXOBQ2j50D6cN6PtUVf1iXDVK0qRI8iraAq+Ppc0UOzfJ82jL0JznauqTZZHZ7hvTxlNdO/TK7EdrNPjZsDDofYDLqurCMZY8MWyxWn63A06utv3JR5JcRltT55ZV9VHAKcKSZrUkm9GWmnkTbfLOLsBjhlB1f9qH03Oq6tdjLFOLMRKqprYZujTJfFoL1RzgqCS7VNXptJYrDQxWy+8CYLNhjaT5VfX5YQr/k5McXVV/GnN9knSTG+k+eiTwTGDrJJdW1RvTtinaP8l1tI15XzUspqwJlLaDyJ60HpiNaLPdP0TrDlwP+FCSLavqr2MrcgIZrJbf/wLPpm0a+pMkt6QNVN/HUCVptpkKVEOoehRt1tjewHzgMWn7Ae4wvFmvTVut+8dORJgci7kWC4HTqup3SS6h7YDwAOAhVXVA2h6OhqpFGKxuxA39wQ+rPf8hyV60NP8IYGNgv6o67yYuU5LGKm1/v3sl+XZVLaQNcv5AVX05yYm01ql3DC+ph4w+1lA1GRYZU/Vi4I7AQbSemd2GyVkXJLmetp3N94HLxlbwBDNY3YBFfsm2AwJcX1XHDlP151TV5UneUW2z0FtV1VXjrVqSxuLBtB0nbjV08/0BOCDJMVX1myTfo61b9egkC6rqM+MsVv9q5P3uP2gb1J9aVVcm2Q/YL8kmwC+B+wMHjD5G/8xNmG/AyC/ZC4C30BL6B5K8crj/umEa8dQvlnv/SZqVqurLwO9oM6O3B46n7cd5yDCu6n60/Tp/Baw/pjK1BMOMvxfQZrkvTHJ74ERgX9qMzk2AXarqN2MrcgawxWoRi7RU3Zw2G2LXqvpJkmOAryf5c1UdOjo92OQuabYZfb0cWvBPAp4A/JW2CGiAT9K2sNkdeCCw1bCt1HW+bo7XIu9369AaCJ5SVfOTvAK4ZmhE+HNVvXCsxc4gBqsbMLRUnU1r+rxF2uaTvxmmnu443uokafyGgeqPBu5L29rko0n+TNs26vqqOijJocPpmwNvBJ5abqA9douEqr2Bu9IC8BeHU64Cbj0MhdknybZVdel4qp1ZDFaDJJtU1dnDC8XTaNOEd6INznspbXbLJcCGwC2H7RcWjq9iSRqPkSUVHkLr/jsLmJfku0O4Wgg8Z1g88gu0ldcfRlvT6udjK1x/NxKqXkTrmdkJOBVYL8mBwDXA+2nLKjzXULX0XHkdSLI1bW2OB9LGAbwbOLeqXjzcfwRtevBVtD7m3arK/f8kzVpJNgfeTNtk/owkO9LC05lDuNoJOGtYQJJhyxOn5k+QtI3p3wO8gdaYsC1tS5pbA2fSWh53rqqzxlbkDDTrW6yGT1Sb036xNqVNC/4WsF2SJ1fVV6rq34dPZqvQFgM9f2wFS9JkWAt4PG3xyDOAzwPXM4yhqqpD4Z/WtzJUTZiq+uOwbNA9aV20j0kS4FLgN8ATbKladrM+WA0D884FXk9bDO0xtCbQv9BWUV9YVcdV1Q/GWackTZKqOn4YNvH2JL+tqqOSfJ72AfT0kfPsFplg1fb/uxqYk+S+tBXWvwkcbKhaPrM+WA3OoM2G+COwZlX9PskXaZ++dklybVWdONYKJWnCVNWxw7pVbxm6+o4Ejhp3XVpmFwBfpXULrkfbYNkNlZfTrBxjtchsiNWAhVW1cFgI7bHA/lX1o2EfwCcCX62qi8dYsiRNrCRPAQ6kdQ3+bnQpGs0MwxIYd6TN5pw/7npmslkXrBYzxXRTWkvVAVV1TZLXAg8BDqyq/3P2nyQtWZK5VbVg3HVI4zbrgtWUYYrps2i7dJ8KfAN4Y1Wdm+StwN2B51XVNWMsU5IkzSCzMljdwBTTS2lLLbywqs5JcruqcoNJSZK01GZlsAJIsjptiul7R6aYLgA+QusWdGVgSZK0TGbtrMDFTDG9M22zyY8YqiRJ0vKYtS1W8PdWq31pM1mmppi6wqwkSVouszpYgVNMJUlSP7M+WEmSJPVys3EXIEmStLIwWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRO/j/0nFv+UbvkvAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top[:5].index,y=top[:5].values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "了解しました。以下が翻訳された内容です。\n", + "\n", + "# 音楽ジャンルのリスト\n", + "\n", + "このドキュメントでは、Spotifyで利用可能な音楽ジャンルのリストを提供します。ジャンルは、アーティストや楽曲を分類するための便利な方法です。\n", + "\n", + "## ジャンルの分類\n", + "\n", + "Spotifyでは、以下のようなジャンルが一般的に使用されています:\n", + "\n", + "- ポップ\n", + "- ロック\n", + "- ヒップホップ\n", + "- ジャズ\n", + "- クラシック\n", + "- エレクトロニカ\n", + "- レゲエ\n", + "- カントリー\n", + "- ブルース\n", + "- メタル\n", + "- フォーク\n", + "- ラテン\n", + "- ソウル\n", + "- ファンク\n", + "- ワールドミュージック\n", + "- パンク\n", + "- オルタナティブ\n", + "- R&B\n", + "\n", + "[!NOTE] このリストは包括的ではなく、Spotifyのカタログに基づいています。\n", + "\n", + "## ジャンルの使用例\n", + "\n", + "ジャンルは、以下のような場面で役立ちます:\n", + "\n", + "1. プレイリストの作成:特定のジャンルに基づいてプレイリストを作成することで、特定のムードやテーマを強調できます。\n", + "2. 音楽の発見:新しいアーティストや楽曲を見つける際に、ジャンルをフィルターとして使用できます。\n", + "3. 分析とレポート:ジャンルデータを使用して、リスナーの嗜好やトレンドを分析できます。\n", + "\n", + "[!TIP] ジャンルを活用することで、音楽体験をよりパーソナライズできます。\n", + "\n", + "## 注意事項\n", + "\n", + "[!IMPORTANT] ジャンルは主観的なものであり、アーティストや楽曲が複数のジャンルに分類されることがあります。\n", + "\n", + "[!CAUTION] ジャンルの分類は、地域や文化によって異なる場合があります。\n", + "\n", + "## まとめ\n", + "\n", + "Spotifyのジャンルは、音楽を整理し、発見するための強力なツールです。ジャンルを理解し活用することで、音楽体験をさらに豊かにすることができます。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAHuCAYAAADELJsvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZdklEQVR4nO3debytc9n48c/lHENmcsxzREqGjBkbRMgYGRJShqg0e2gQ9aSJRkoTqUilqJSkNOjXQElFnlQkKZ4iPWnC9fvj+q72sjucs89ea6/7nPN5v177tde613B/73vdw/WdIzORJElStyww6gRIkiTpPxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSRqaCP6v7++BCP7W9/zgUadPkrosHMxW0lSI4GbgeZl8ddRpmRMRTM/kvlGnQ9L8w5I0SVMugoUjeEcEv2t/74hg4fbajhH8NoITI/jfCG5+uFK3CNaK4JsR/CWCr0bw3gg+1vf6VhF8J4K7I/hxBDv2vXZlBKdGcFX7/FciWK69tmYEGcEREfwG+Fpb/twIbojgrggui2CNtjwiOCOCOyK4J4KfRPC44exBSfMDgzRJo3ASsBWwMbARsAXw6r7XVwSWA1YBDgXOjmC9h/iuTwDfBx4JnAwc0nshglWALwJvAJYFXg58JoIZfZ8/CDgcWB5YqL2n3w7AY4CdI9gTOBHYB5gBfAs4v73vacD2wKOBpYD9gT/OYj9I0kMySJM0CgcDp2RyRyZ3Aq+nL7hqXpPJPzL5BhVo7T/+SyJYHdgceG0m/8zk28AlfW95NnBpJpdm8kAmlwNXA7v2vecjmfxPJn8DLqQCx34nZ/LX9vrRwJsyuaFVff43sHErTfsXsASwPhDtPbdPfNdIUjFIkzQKKwO39D2/pS3ruSuTvz7M6/3f86dM7u1bdmvf4zWA/VpV590R3A1sC6zU957f9z2+F1h83DrGf987+77rT0AAq2TyNeA9wHuBOyI4O4IlZ5JmSZotBmmSRuF3VMDTs3pb1rNMBIs9zOs9twPLRrBo37LV+h7fCpyXydJ9f4tlctoE0trfu+pW4Khx3/eITL4DkMm7MnkCsAFV7fmKCaxHkh7EIE3SKJwPvDqCGa2h/mthrLF/8/oIFopgO2B34FPjvySTW6jqy5Pbe7cGntH3lo8Bz4hg5wimRbBI65iw6hym+33Af0XwWIAIlopgv/Z48wi2jGBB4K/A34EH5nA9ksT0USdA0nzpDcCSwHXt+afasp7fA3dRpWf3Akdn8vOH+K6DgXOoRvrfBz4JTAPI5NbW2P8tVGB4f3vPMXOS6Ew+G8HiwAWtHdqfgctb+pcEzgDWpgK0y4C3zsl6JAkcJ01Sx7QhMj6WOWelXRF8Evh5Jq8baMIkaYpZ3SlprtaqGR8VwQIR7ALsCXxuxMmSpEmzulPS3G5F4CJqnLTfAsdk8qPRJkmSJs/qTkmSpA6yulOSJKmDOlHdudxyy+Waa6456mRIkiTN0jXXXPO/mTlj1u+cnE4EaWuuuSZXX331qJMhSZI0SxFxy6zfNXlWd0qSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB00fdQLGu/Osjw19HTOOefbQ1yFJkjQZlqRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkddAsg7SIWCQivh8RP46In0XE69vytSLiexFxU0R8MiIWassXbs9vaq+vOeRtkCRJmufMTknaP4AnZ+ZGwMbALhGxFfBm4IzMXAe4Cziivf8I4K62/Iz2PkmSJE3ALIO0LP/Xni7Y/hJ4MvDptvxcYK/2eM/2nPb6UyIiBpVgSZKk+cFstUmLiGkRcS1wB3A58Evg7sy8r73lt8Aq7fEqwK0A7fU/A4+cyXceGRFXR8TVd95556Q2QpIkaV4zW0FaZt6fmRsDqwJbAOtPdsWZeXZmbpaZm82YMWOyXydJkjRPmVDvzsy8G/g6sDWwdERMby+tCtzWHt8GrAbQXl8K+OMgEitJkjS/mJ3enTMiYun2+BHATsANVLD2zPa2Q4GL2+NL2nPa61/LzBxgmiVJkuZ502f9FlYCzo2IaVRQd2FmfiEirgcuiIg3AD8CPtTe/yHgvIi4CfgTcMAQ0i1JkjRPm2WQlpnXAZvMZPmvqPZp45f/HdhvIKmTJEmaTznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB80ySIuI1SLi6xFxfUT8LCJe3JafHBG3RcS17W/Xvs/8V0TcFBE3RsTOw9wASZKkedH02XjPfcDLMvOHEbEEcE1EXN5eOyMz39b/5ojYADgAeCywMvDViHh0Zt4/yIRLkiTNy2ZZkpaZt2fmD9vjvwA3AKs8zEf2BC7IzH9k5q+Bm4AtBpFYSZKk+cWE2qRFxJrAJsD32qLjIuK6iPhwRCzTlq0C3Nr3sd8yk6AuIo6MiKsj4uo777xz4imXJEmah812kBYRiwOfAY7PzHuAs4BHARsDtwNvn8iKM/PszNwsMzebMWPGRD4qSZI0z5utIC0iFqQCtI9n5kUAmfmHzLw/Mx8APsBYleZtwGp9H1+1LZMkSdJsmp3enQF8CLghM0/vW75S39v2Bn7aHl8CHBARC0fEWsC6wPcHl2RJkqR53+z07twGOAT4SURc25adCBwYERsDCdwMHAWQmT+LiAuB66meocfas1OSJGliZhmkZea3gZjJS5c+zGfeCLxxEumSJEmarznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10CyDtIhYLSK+HhHXR8TPIuLFbfmyEXF5RPyi/V+mLY+IeFdE3BQR10XEpsPeCEmSpHnN7JSk3Qe8LDM3ALYCjo2IDYATgCsyc13givYc4OnAuu3vSOCsgadakiRpHjfLIC0zb8/MH7bHfwFuAFYB9gTObW87F9irPd4T+GiW7wJLR8RKg064JEnSvGxCbdIiYk1gE+B7wAqZeXt76ffACu3xKsCtfR/7bVs2/ruOjIirI+LqO++8c6LpliRJmqfNdpAWEYsDnwGOz8x7+l/LzARyIivOzLMzc7PM3GzGjBkT+agkSdI8b7aCtIhYkArQPp6ZF7XFf+hVY7b/d7TltwGr9X181bZMkiRJs2l2encG8CHghsw8ve+lS4BD2+NDgYv7lj+n9fLcCvhzX7WoJEmSZsP02XjPNsAhwE8i4tq27ETgNODCiDgCuAXYv712KbArcBNwL3D4IBMsSZI0P5hlkJaZ3wbiIV5+ykzen8Cxk0yXJEnSfM0ZByRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpg2YZpEXEhyPijoj4ad+ykyPitoi4tv3t2vfaf0XETRFxY0TsPKyES5IkzctmpyTtHGCXmSw/IzM3bn+XAkTEBsABwGPbZ86MiGmDSqwkSdL8YpZBWmZ+E/jTbH7fnsAFmfmPzPw1cBOwxSTSJ0mSNF+aTJu04yLiulYdukxbtgpwa997ftuW/YeIODIiro6Iq++8885JJEOSJGneM6dB2lnAo4CNgduBt0/0CzLz7MzcLDM3mzFjxhwmQ5Ikad40R0FaZv4hM+/PzAeADzBWpXkbsFrfW1dtyyRJkjQBcxSkRcRKfU/3Bno9Py8BDoiIhSNiLWBd4PuTS6IkSdL8Z/qs3hAR5wM7AstFxG+B1wE7RsTGQAI3A0cBZObPIuJC4HrgPuDYzLx/KCmXJEmah80ySMvMA2ey+EMP8/43Am+cTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdNMsgLSI+HBF3RMRP+5YtGxGXR8Qv2v9l2vKIiHdFxE0RcV1EbDrMxEuSJM2rZqck7Rxgl3HLTgCuyMx1gSvac4CnA+u2vyOBswaTTEmSpPnLLIO0zPwm8Kdxi/cEzm2PzwX26lv+0SzfBZaOiJUGlFZJkqT5xpy2SVshM29vj38PrNAerwLc2ve+37Zl/yEijoyIqyPi6jvvvHMOkyFJkjRvmnTHgcxMIOfgc2dn5maZudmMGTMmmwxJkqR5ypwGaX/oVWO2/3e05bcBq/W9b9W2TJIkSRMwp0HaJcCh7fGhwMV9y5/TenluBfy5r1pUkiRJs2n6rN4QEecDOwLLRcRvgdcBpwEXRsQRwC3A/u3tlwK7AjcB9wKHDyHNkiRJ87xZBmmZeeBDvPSUmbw3gWMnmyhJkqT5nTMOSJIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10Cx7d85Pfn/m64a+jhVf8Pqhr0OSJM39LEmTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA6aPpkPR8TNwF+A+4H7MnOziFgW+CSwJnAzsH9m3jW5ZEqSJM1fBlGS9qTM3DgzN2vPTwCuyMx1gSvac0mSJE3AMKo79wTObY/PBfYawjokSZLmaZMN0hL4SkRcExFHtmUrZObt7fHvgRVm9sGIODIiro6Iq++8885JJkOSJGneMqk2acC2mXlbRCwPXB4RP+9/MTMzInJmH8zMs4GzATbbbLOZvkeSJGl+NamStMy8rf2/A/gssAXwh4hYCaD9v2OyiZQkSZrfzHGQFhGLRcQSvcfA04CfApcAh7a3HQpcPNlESpIkzW8mU925AvDZiOh9zycy88sR8QPgwog4ArgF2H/yyZQkSZq/zHGQlpm/AjaayfI/Ak+ZTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQdNHnQCV687aY+jrePwxlwx9HZIkaTAsSZMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6qDpo06ARu+yD+069HXsfMSlQ1+HJEnzEoM0jdR55+w89HUccthlQ1+HJEmDZnWnJElSBxmkSZIkdZDVnZpvvf384Ve1vuxAq1olSXPGIE0agcM/u8vQ1/GRvb880+W7fu41Q1/3pXudOvR1SNK8bmjVnRGxS0TcGBE3RcQJw1qPJEnSvGgoQVpETAPeCzwd2AA4MCI2GMa6JEmS5kXDqu7cArgpM38FEBEXAHsC1w9pfZLmArtddObQ1/HFfV4w0+W7f/rjQ1/3F5558EyX7/HpLwx93Zc8c/eZLt/nM98d+rov2nermS5/0WdvHfq637X3ajNdfv5n7hz6ug/cd8ZMl1/10eGve5vnzHzdN7/j90Nf95rHrzjT5X8447qhr3uFlzx+psvvePdXh77u5V/41KGvY7zIzMF/acQzgV0y83nt+SHAlpl5XN97jgSObE/XA26cxCqXA/53Ep+fDNftul2363bdrtt1z1/rXiMzZx4pD9DIOg5k5tnA2YP4roi4OjM3G8R3uW7X7bpdt+t23a7bdXfBsDoO3Ab0l0Gv2pZJkiRpNgwrSPsBsG5ErBURCwEHAJcMaV2SJEnznKFUd2bmfRFxHHAZMA34cGb+bBjragZSbeq6Xbfrdt2u23W7btfdFUPpOCBJkqTJce5OSZKkDjJIkyRJ6iCDtJmIiLUjYuFRp0OSJM2/DNLGiYhlgJcDJ83rgVpExKjT0AUz2w+T3TcRMeXnlr9nt4ziGJhbeex2X//x3EZt0GyIiKUiYpX2eJ2IWHRCn7fjwJiIWDMzb46IpwB7AHcAb8vMfwxwHZEd2Om9dETENsD6wM3AtzLzn1O17vZ4WmbeP+x1PkxaFsjMB9rjVYH7M/P2SX7nv7cpItYD7s3Moc2P0ztu2+ODqd/z+8CPM/M3w1rvIIw7FnrH5L9/kzn5nlGLiMcBv83Mu+dkWya57t4+3A5YjLrGf2mq1j9Z7fh9NHAtcG1m/rotf9DvO4rfu2/fLgzcN8rr1ihFxHOAv2TmZ0ew7ik9nyYrIqYD2wOPBdYB1gSelZl/n93vMKfXRMTSwNsi4qTMvAK4CFgZePmclKj1coYRsWFEbNOLpNtJPvJcY0vHk4DzqIPnHcCLImKdYa533E35MOBpo8qVRcQTqBOIiHgp8Hnggog4u+89E/qtImJ94IT2+Bhq/34hIl7dbpwDFREzgFdGxEsj4lDgpcC9wPOA50fEJoNe5yC14/AZbZ+fGxGPz8wHZrXfI2LbiNi1BUQjP6/6zvfHAKcA74qIpdq2TNl1tu2H3YEzqevXmyLiJVO1/slo58sxwI+p69GT2/L+a8a67ca34BSnrReg7QZcALw3Io4d9jrb/8dGxNYRsdyISui3jIjP9y16AnBPfxqHuO6DIuKoiHghwFSfT5OVmfcBvwD2AZ4FnDORAA0M0vr9FXgX8NiIeHlmfgO4kDkI1PpO6Ke27zgVODUiXtaVHH8r4TkaOD4z/ws4FFgX2GmY6+272B4LvBi4cSpK7x7CtsApLWf4RGBX6mR6dC9Qm4Pfam1gzYh4O7BX+97DgH9SAenyg0n6v/0FuII6Tg8FnpeZbwJeQ41RuDV0tzopIh4LvB74CnAT8JmI2LJXovYQn9kS+Ci1X49rwf5IA7W27r2AjwC/A2ZQgdoyU3ljaaXBLwf2BP5GHXdHRMRrpmL9cyLKMsDjgN2BxYH/Ac5p+22h9r7jgfdR1+lDh3AuzSxtK0bE6u333ZE6Vl9DZYQOjYhFhrXuts49gXOBw4EP0zKVUykzv0dd0y5uixYDHtFL47DW24L244GFgadHxDfbOmeZiRu1/vS1WpSPAp+m4ovt+t4368xGZs7Xf7Qq3/Z4IWCbtjNf3pbtALwTeCOw8AS+d1NqMN/12vOnU7nDvUa9ve3v+cDVwHuBxdprOwI/ApYZchqWB74LrEdlFPalAsbNRrA/jgb+X/vNF+87Dq4D9puD75sO7AKc1fZlr0nBBsC3gKcOYRsWpqrnvwt8CJjWlu8MfA1YdJTH3MOkexPgc8CpfcuOpKreV3qIzywNHAVs354fBLwfOHTE27IQ8BngiX2/9+nAB4Gl2rIYchpWpCaMXgfYgiqRWrIdG/8HnDzq37wvrf+xL4BXA98GLutbdhwVmBwEXNnOry+1xycByw8xjesAVwGPbc/3oDJdu7Vrxhpt+doDXOfjgEPa41Xbti4GHAz8EFh22MdR/2/Uu5a059+mgo3XAvu3ffHYdqytPMhjov3OFwDb9C37HDUw/siP3wlsx07tWrAqsBTwJuA0qknKrlRc8LC/53xdkjauGH0pgMy8irq4bt1XovYF6iK8+Gx+70JUcPckYJW2+NtUEfHmA92I2dQX2S8HTM/MD1CBZ1DTdgH8niqZGWguJSJmRMRW7fEu1M3kcuAM4BzqhN+YVr0xTFE9d/+dA8/M9wEfoE6iJ0TEElkle18B/jWb37lhb/9mFW9/FfgUNV/tqyNikcy8nrpprjuAbdglIl7fHk/LajP5ZerieT9wYnvrQu35tMmuc0juoC7Gm0TEqm1bzga+Tt2MHqSVKnwceAmwYVv8ZeqG/ZSIOGJKUj1z04BlGPt9f0FNj7chcHJELNa71gxaK4laHvgksHpm3kRlhC7JzHuA+6jqzyuHsf6JGnfdfUlEvKZVYf4a+AdVAhkRcQAVkN8OJPBs4AXUvn4nlQl5UUSsNOj0tYf7Ar8C7oiInan5qM8FXgXslpm3RMTTWhqWGMB6l6Wa2fTaQN8BXE+VJh0LPDMz/wRsFxFLTnZ9s0hLZLk/InaPave6LbAScDKVET2Kqtp/HXWdmcz6plOBCxGxOXWP+BewQt/bTqBKMDut79h+EfAGqnbmfcAawFuo7TqVysD9cpbXhVFHnV34A14EXEwVJx/Qlj2Ruui9tj1/xOxEz1RbiaBukKdQpWmbtNf2oUpsFmWKckPj0rgrVXp2MfAJqsj62VTAdAXwDWD3Iax3ZSrQ/XzbH0tRua/DaLlQKsd8DrDAELd/b6pk6YlUoNr/2qFUcPVm6oL4S1op6Cy+8+nAz4Anz+S17akA8ItUW5ufAetOchueRpXy7dm/DcDefen5ZnvPl4HHT/Vx9jBp750jGwNbtovWI6gSqNOoIH1rKrjdcNxnN6EC582pavKfA5u315Ztx/HjRrAt69JK/ahc82XArn2//wep0ocnTEGaXgV8FliCuoleQd1QbwO27k93F/7a7/gtYP32fEkqg3Fu+61/QAVlm/S9fj5jJcVfAN4GLDfgdPVK1BcEfgPcDazVln2Kuk5Op66n1wNPH9B6l2vb84J27q5G1b5c1zt+qIz/z3r7bAp+oxdRNQLr9S27FPhc3/MlBrCezYFXtt/+e23ZwcCdwBbt+eHUNbqTNQPjtucpVGZzOlXo85123PSO5fWpDNWsv2vUGzPqP6q66xtUScr57YJ2bHtt+3bQLDub3/UMKtD7AlWS9rh2IbqVasvwTeAZI9rOx1DF5U+kgsTPARe0155JBRMv6nv/QC/mVNXE3cAbZvLaYVRvrg2GuP0rUwHq5uOW7wq8uj0+isrNv6l3UZ7Fd67SLphP6d9n7SL70fZ4h/a7n88kA7T2fScCr5jJ8h+03zGoAO7NwKqjONZmkf7d2kW/dyM+ngrULgSuoarfe0FOb3+u0I7PK/u+5/i273vVi9OncBt66doZuIGqZn4RVWq2N1Vd+17gt1Szhw8Aew4pLWsDS7bHi7b1rtue7wc8F3jaqH/3/v3WHi8EfKxdl9YCjmCss8AMqhrt1VQv5XX7PvND4K1U6fu3gVUGmT4qEPwkVZKzOFWSdgPVdrf3vgupYO3y3rE6yfXO6NvGD1JtCY9vz59CNWH4YDv3b2AIGemHSNfj2j5errf/+177OXBhezzpjDUVEH+Mqm06rm/5UVQNxIeoe8RjR30cz+rYbs/Xp4Ls51LB2lJtG35Ga6oxu39DmWB9btEaff6DurA+h7GSpQ9FxAOZeVZEfD9nozdGVE/BN1O96rYHDqF+nPOoE/4pwFmZ+fkYzbAT/6ByfT9s27NXRHyjNeB/P9XWZ+tWxfDJbEfanJpJB4kvUCfbqyPi7sx8W3vfNlSJyrOzqgSHZWHqInzTuP3/QHuNzHx/RNxJ7aObZ+M776EC/L9GxHLAn6hqmfOAx7Qi/O9SDY2vz8w75zTxffvzLmDTiHgVddFajLqRfIS62G9O3Ty+mpl/ndP1DUNELE41an9hZn47ItaiSk9/T7VFO4dqO3UFPKhR8l1UKeyxEfGyzHx7Zr6jNbr9WFQP1numajsyMyNiM+pcfwYVRB5M5ZrPB55KBU/voEpHtgT+e5BpiIhp1HH7QeD6iPgzFdTcR+3jozLzU33vH3mHpd76I2KjzPxxRNxLNbl4BBUMrEyVSn2tnU9PBXbOzLsiYnpm/jMi9qVKJjagMtO3DTCJ0zPznqjesEtSbc7WjoiVgc9FxJKZeUpm7h811tX0rOrkOdaqVg+jeoAvRF0v/gqsERFPyswrIuL3VEnyMsCRmfmtYfyeM/nOu6iMBhGxcLahqFqTkPUjYg2ohvyTXV9m/isiTgd+AqwaNRTLBe2a/APgf6lhT343xxs4JOOq7x8D3J2ZP2/P16ba3P45In5D3SNumdAKRh2BTuUfDxHxUxHvl2m5MqrK4CfA0hP47mdT3Wt7z59JlW6sTF2oX0RVtU1JlQxjuf1pVC5laermt23fe44Bjm6PF6Sq/FYY1Lrb42dRxdTbtudPbPvlGKrq7m0T2c+TTMvJVEBwAxUQXNx+63uoXNzJzEYJYt++DaptwUVUCdwXqRLK71HF9BcA75md75zANizU9t33qRKFi6kq9Cup3O236EgJ2vjtpkomvgCsM+74eEt7vGpL/4ntuH0SFbwdAyxCNRd4N/Divs+vOUXbsjZwSnu8GNXG5Jd9r29Ptft6bS9NVCna54GNBr1PGeuM8AiqBO8CKkB8PnVj3XZQ6xzwflyJaoz/XCrIfFL73VelArUvU9W1q1LVamvx4Mbry7f/A63yoqrMfw48pj0/hKrqfEZ7vklL9xsHuM7lGOtYtmK7lmzanv8XVfKyA7DgFPwu/deYRdu5uhBV2r1H32sHU22JB5YmWq90WokvVbv1bqqjxqFUU5jOVNM/zHYcR2Xa3w1c3pa9E7iEak93/Zxcm0e+YVO4A1fte/xCKjf2cirHtCBVfL1tuym8D5gxi+/rXSwXaP83pdp5bdb3nvOAHdrjldqPuNoUbvOeVHufi6i2PvtQVU3HtZPiZwyht2Hf+o+jcobPBv4OHNi3r75DBRpDq+Icl5Zem5w9aUOttAvgZlSQ81pmo43AuItZ7zuf2o6ZRalSlc2Bs9tF5lED3IaXAC9oj99KNV7uvXYEVZIy2z2Qp/A47D/3Tmm/e69H8f5t/y/anq9MZZqeRA3JcRRVDfoWapDT3ak2Xi9r7x9aG8Zx2zAd2Kq3LVTPv8uo6sXeNWBHqmqz185yKQbYXqrvmrMbFZSPD1iPoNqlPUC72Xftj7rW7kD1Wjy2b/kLqJvYv6tn2++8B2MB6cHt3H3Y9sGTSNupVHOXR7fnB1CZ9d3b802pJhOPYvIZrwWpzMi72jVoaapU9C19638FdQ/ZidYrfwp+nxdRGYsrqYKGbdr5987291MGWNDQft9fUBnkzzNWzfv8di79io5WcY7bjp2pQpAlqNLhy/teezlVkj5H7YNHvnFTsPOiXSx/TQVgW1E3iSOpUo4LqBzdi6jSlZ/M7s6kbs6voYK+9anqjVdRQcnm1E3m8X3vnzaMbXyItK1P5Ux3o3Ijv6aC0C2pgORshthWBdiIsbr4Y6m2JL9irORuUWazrd8A0rI/Yx0WNqVubou0155GlaYtPcHvPJgqEVySCswuogW8bX1fZYDDA1Bt575EK+mkep6dTpVSPrul5dFTdXzNIq1rAM9tj3cBbqQyMIdTpVBvbMteSZVe7NLeu0D7m0YFvUe15QtTN6v3tOf7MLWdBPo7aPwI+HR7vC7VBvUdjAVqy7T/A7uhjlv/U6mG5Bu1/fgHalaU/vevOOpjYCbbsB9jJYwLUiXql1FV31ABy7btWP4fqnRwK6qk+CNUgHAjQ7hh0xfoUxmdOxgLlA5qv/le7fmkG8n3ras3RuCbqeGIlqSCtrcx1kbtxGEe6zw407lPu46sw1gm6ZlUxukAqn31OgNc9yHUtbhXevkEqqT9+PZ8YWZRWDLC43l8LcFWbV8dT5U+LtSWbzPpdY16Y6dwpz6Rqub6DK0nXjv43tkuAr2c/FKz+X3btIvGkVQwdAJwIBXsXUDlCvaY2Q86Bdv6uHYBfFffsp2pruwDO8nGrXNm4x4tRw3oemV7fjiVy99nCvfF3lTw3QsEprcLwReoG/8PmWAOhwp0v9M7Aalc8KsYG3rjhkHeTKipRD5G6/XUlq1PlT58hhqWYsNBrW8A6d2Cajx/MlVls027IJ9OzYgQVA76mYxrRNt3Hr6SygAt0Z4vTlWFLsEUlZ6NS9djqEB5OnXT/nBbvg5VzXhmez7QtFEZi48wVjr3rHZ+P713DFIl4m/q+0z0/x/RMRDj/r+XKoVZoz1fuB0fd1IlJgdRwe6CVGnadVQQs2K7hhzLAEulZ5Lexfsejw/UDm3n9IxB/L48ODBajwq239rO6aWo6sT3MORM17h0LEe1mz6tb9lGVKe3gV5b+o6Jk4A/Avu259OoQO2bwCtHdezO5jb0MmW9bdmQasP3g773HEZ1MllyUusa9cYOeUeOv1A8gcq5v63vPStRxcwfmd0TkKp2+ThjvUCXaydZ/4Xykf3rnuLtXojqPXc5ldtfuC1/D62Kbhj7uT3egbqZ9UoUngW8vz3el7qhzbLn5ADTdnS7ObyMVk1Cldb0BhKcUFqoAGNXxjqF9KrtZrSL7JMZcJuw9nvuQrV3exVjQxD0jutFpvoYm400b0UN+HlJ37K9qEDtBGYyYDLweKo932rt85+jcvRLU4HJ9xjwcAsT2J79gXf2/R7XA2e3549mCEOdtO99BjXW0vm06njqRv5Z4Ent+QepxshdKUntvx6s2ff4BCpTtGZ7/jzg7dQMDbfz4EDpue29TxpSGpdjbAiX3lRP/QNan0BVffZKeWY6uPKc7huqjdvjqVLnXhXZW6mgbWkqqJ2qYTaOou4Vh1All4v2vfbeQR/bPPie9Nx2LvUGDJ5ODdEzZc2CJpj2Tfsev7idl2+mqqyf1I7lA6kS0B8ygFLQkW/0EHdm/4XiqVSuYLl2gNxEq0ppr6/IBBrMUzf3L7WbSG/8nCWpHPZIL5SM3cAXpNp0vJ+qatihHUCbD3HdL6FKFc9sB+gmbb3nUiU+P2UKA7S+dB1KFUE/hQEENFSQtyNVCvsahjhuT99FfUGqPda7qTYOU1Z1Pom0b0dVx/V3qX9m229rj3vvLlRJyk+pDjbLUaWg51MByfdpY8FN8TZs1C6+C7UbWC9jthAVGJ07pPWuQjVR2IkqSX05lStfo73+ESro3ZkKMCY9vMsQtuFYqm3TJ6lx8Bah2ll9l5qR41dUoHJh+31PGPf5I6jG+osywBLKdi79VzveDmrpeQpVJX85LUCgBmm9a1DrZ6z05cntWvxBqmp3H6oDyClUdef6U3V+t+vYlYy1+/tk+9udCt6uZzbH85rN9R1HlZR9ul0HlqZqo65jgB1shri//h9VS7VF+79vO85/0n7XHaiMx9sYUJA98o2egp36EqrHxclU6ccMqrrq5/SNfTOL7+jdKNemArqFqOLN91DVMo+iqj2uY4Q5gL50Tm//F6KqEq5tJ8TT+t834HU/Hvhse/xixnq39HJGhzAbg8MOYNsfNLVI3+OjqcD66bN7AZzZfmIsCJ5GtWd7OzWu2iCCv5n+Ln3rXIgqxfsIfWPadfmPamd0Da3DQ1u2wrj3rEvdtLajgqLXUVV5M6gb5GNoHUyGcew+TNqXpIL729tNa5t2ju/YXl+QCY55NIF1b0kF5Nu1C/56VMP2C4FHUm2EPtZuDvuO+neeSfp3bGlbrT1+TTtugwo896cC85XaflyRanj9hvb5HdrvvviQ0rch1R7sQ8Bb+5a/h7r59kotJ13FSl9nHqqE+DTGpjXbmhpeYicqMH8TU1eCtgR1/7odOKhv+SktHZ9hgB272rXgJ+233opq+nB+OyZObuf8QoNa34D3Vf995fJ2vTqwb9nuVO/+gWfYR77xQ96xGwBfbo/PoBp3L9ieb9FuHkvP5nc9ncpVfIIa72v1dtG+kCo1uowBjTw90QOHusmtyEwClHYB/CAVrC3HgG5y47+HuqGe3NZzWd/69x32iTduu1ejAqherrU/UDu+HQOzPJHGfefy9AUWfd89rZ2cb2KS1XDj1rcnVUqyx0zWuRBVetK5xuEPc2w8kWq/+R+BJXWT3gh4X287qfZKF1E57kfN7DunYBt6zRW2pHLPX6HGUvwaVQKzTN97h5HpCap6957edYUaluJUqpq9N8DojFHsn4f6zfv+P50aF7J3DVqbaiLSG3H9lVSp+7VUELozVb17DZWZ+gGt1HBI6ZxOBbuntd92+773fJAqXVqESZagUZ2KXsTYgMOfpNq7bdeXlkMY6xQzlKD0YdK3IhUsfYDWbrfvtYH2FKcC0vN6vwN1Dz0P2KotG0lThgkcM/3X6CuAH/c9X5JqjzzwuWRHvgOGsTP7nq9D9WI8kYpyez369mz/Z+sgbAfyNYw1FH91u7gsT1XpvYcqPl9kZukY8oHTP+r5cTx4DKr+ErWLqVKfSY9vw4PHLVqWCv6mUQ30v04LIKib2o8ZUHuO2UjXC6gA8b+pm1kvsOnvvbX0BL/zJe3YuYIHTwTePw7dYgPchqOp0ppXUeM0vbLvtc5Vcfbth02ogHWmVSNULnrbccseT/XifBXV/ueIvteOb8fsd5iikoW+dS9P3ahfS5UCb0vdaHdox/hfh3lMM1Zy+h4qUD2BsaBsFart0meoIKIT40f1nWu9tkZrtevS/r3jhMrg7kt1CPgWFZCvQvWOf3PfteRlDKGDU9+xuj4VmG1Cte97Y7tm9I8hOZCOP1R13npUJ7Vej82Pt9+v10b2QKr6b9qwfk8e3M5s8XGvrd5+g7Pom81gUGlp3/3Gti9+Ahze99q5wKGDXN8wjpn2eFuq9mTZ9vwbVKbtUVSV9Y3DuC6MfCcMaWfuSeXeF2gX+v9hLGB5XrtAPHIW39e76GxOlRJ9iAeP9/Ru4B3t8W7URf1YpnZ6ms2o6H0dqlTvLKrtSn+g1l9VtvIA1rkBYw2WX0rlOK+nOgjsTbUfOptqC/eTQV3sZiNd+7STZoWWhg+Oe312qzj7A7r92sV8ASqYuOyh3jug43aRdtL3ShvWasfuCya7niHt8945shPVfuoTVGbmUGaRo6QaxH+DylycSzWOv4XKUD2Tat/5OCpQuoI2J+4Qt6V3A9+eKt3bmirhuJpqPH0KY5mwKQsaqerez1NBRO/msCodaYNGBVy9HrnHUCWgz6MC3V2oHs8ntmPih1Sv3idTJWVLtc+tQmXunj0Fv+/uVOnN96nBcjejgsNTqNqWgVVf05chppqbvJuxQO3iloYT2zk/tB7vVM/op1FVjAdRvQ7Hz128OlW6+Q4GWGVHjXd2M3BRe74zVV14GtVp4FpG0E55Drbjle1a9SWqrffz2/KvMjZh+lCa84x844ewM4+jSiLWac+fTAUNn6NypNfyMD0u6BsokYqcr6MaDl/MgzsbPIsH9+Z8GgMYrX8C27lEu3n0j3q+HdVo/yT6OjAw2Ea3vXYcz20n2zJUo9tLqaBmdaqq49CpPPnaunenhvnoH6dmowl8xwbjfuPdqdKTV1EldL2q8o0HmO7ezePodpy9j5bB6DuuPjxV+3E207xk3+P1qFKB3hyae1MZlt6YcTNr17cCVdXVm1j7uHbMnky1UXk7fTctpqgahGrv9ytam7O2bMt2bP8L+ERb9qDetUNIx787/7T/K1MZj7czRWMLzmY6F6VK+86lSoMub+ffRdRNbSOqtOoj1M3/KKrqeEbf814J4cmMDdQ8yDHm+tuDrd1+301buo6hSskf347JgbQHo28stXZOH0AFrO+ngsHe0B7nUTUNvZ6NAy8ppzKvZ1LB8dVUwNTreb/AuPeuykx6XU9i3c+lMm3b06oCqWrmx1IFCm+mQ0MHjUt7f+Z5RSo4691TntL2aa938GcY0tBWmfNYkEaVKH2DvhIjKgc+g6q2OoyHiXapnPtXqRKNtagbcy9i3pzK3b+Fyv38mL4R36f6wGnP1+OhRz0faIDEWDCxANUI+CLaBO1t+VZUA9QnTPE+2Zu6uW5Jjbl0Vd9rx1DtXWa3Wvtx7WL9GCr3uRdVuvOpvvccSTXYnlRus/84bBfSK9pF7I3tgtYbtPYIqvdeJ6o62345o124plHV/DcCL+97z4vbeTTTUmUqsO8fZ67XbvJzVLA95eN8UaVnP2JsWp4N+9L3SKrqflidBHrbuyTjmiMwFrCtQgWLnRhmoy99j6GCm+8xNv7k5u2adCJjPSUPbtfMXin8gVS17ZfaMfRrBlw6yFh7sN6wGo8CvtT3+spUoHQZbaiNAaxzUaqK+plUW+Hr27XydCqD+xGqY0yvI8xFVEnpwGtg2vXkGirzvjfwSyoTtOMUHBfLUcFpb6rFzzPWLm+NUR+3E9iO3ahCh5/3XRsWpXrhvnoq0rAAc7E2OW2//6UChYUiYqE28em/qFHO35GZ52TmjQ/xXQtS7WA+SdWdb0c12n1WRKySmT+giop/RbWveElmfnEmaRiK3iSuEbFTRBwREc9r2/JCqvv26RGxQGZeSbVj+vWg1w3/nkz3jVRQsUxEPDkiFs3M71KljUsOar0PlZa+xwtQAfgTqKqU9wM3R8S2EXEEVdR+TraJgR/mOx8fEa/LzJ9SE3y/AnhpZn6ONuxBRGwdES+j9vebMvPeSWzDzsCXImLpNiHv86gJ2O/IzJOAvwDvi4iPUSVsb8ixCeFH7T7q91+EqrI8jSqpXj0i9mjvuYrahoVn9gWZeRdtUOmIeFw7Rz/F2DAji7T35RC3Y7z7qVLzbSPi/VQu/8yIOCgz/wh8PDO/OYzzvZ3Xz6BmL/hCRDw7Ih7dXrs/IqZlTSS+V2b+z6DXPxmZeQNVknY7cFJELNaulR+i2n49KyKWp6qK1qNuemTm+dRx82ngH9RE6r8YcPL+QQVgS0TEJpn5S2CRiHh9S8PvqCDmd8CREbFUu6bMsXZdOIO6hryL6gG4T1vPA1Q708dQ9xLaa/dSmZ5B+yd1nT6gre8Z1DX62RGxN9SE4BExY5ArjYjjqAB9UyrjDNWOc/GIOAT4TDsmOiciVo6IRdrj7akMxJepY/XQiNig/cY3Ufe/6UOPAUYdqU4iwh0/WvIjqIv8Z4Fj+l47iLp5P2zj7vbZ11OlJN+iqr42pEpiTmOKGr8/RNp6pWS7UTeSnakLy9va8nWo0paBj3o+bj8fRDXOP6I9P55qSP1GKtC4hSluX0BVZ19FlYQsTZWefZ66ccxyIEGqZHBL6mbx6rZsO9rwKu35Ce04+AiTzHFTxf2voUoWntj25yuo6r9n9L1vy/b6GqM67h7umKBKCr5JXfgXbPvom+38+S59PVMf4jt6PRW/xNg0UVtQkxFvNBXb0P6vRZVSTWvH9xnAru21o6lqmaHOm0hV/9xA3dQOo9qfnci42U+GmYYBbMOjqHZXH2RsgOeNGLvJvZAqXfsbcNIUpGd8e7DefL2bUG0nz2vH7vVUKem5DLYt1k7UGGuvaM+nU6WHb2IS8zjOQTreTmU8j2/Pl6NqAz5Mta26nMHOL/uCdh1YhRoj8WNUDcU5VMbs/zFF8zXPQdp3owpplqXatf8YOLK9tjFjtQZvpUp+p2aolFHvmDncmf2Bw0upRqgfpHLhq1BVKR+mot9rmUW9d98Feyfg9zy4Gm+bdmK9kylsc9bWvRZjQxAsR93Q1qfaF3yHCoo+1F5fb5gnPhX8fJ+qPrgMuLQtP4oKHN/OEKtiqNzn49vj7YHT+147kQqger2l/j0ExwSOowOoXOeL2vMnUjfoVzDWY20gVRJUMHA91bFiOaoK8bh2vO46lcfYHKT93z0KqZ56l7bjcYG2r84Bnjeb37Uk1VbnVVSGaMt2LE3JecbYsDrnU1Wda/W9tnX7fXaagnTsTBtjsD3flqou7lR7HWYSJPLgjjbrUUHuJ6kqob2oG/YyjE2dtx6VwTx5SGl8uPZgJ1HNMlZo5/YZVND2xJbOh+1MNgdp2YuasuvA9nwaNTfp0Dp9jP+NqEzsoVTJ5nOowoylqHZV72ewk6UvSd2HV6LuE1+mguHPUm3xrqWDARqVCXsE1T7xudQsEOtRhTWf63vftLY/n8FUtrce9Q6a5M7dnIrUt6Lq3L9KRcCLtxPzcMaNbD6zH6j9X5u6eT6RquJ6A2MNLLejgpChDcb6EGk7mCpd6AUJq1GNXH9E3RTXporQ3zOEdfdffKdTJXXb9C37PPDu9vgVDHlIAqrUbjmqncX2VK7sc1SQuAcVqM3RyNhUj9hLqZv11xkrUduaCjpOYIClKVTO8mpa9+22bGUqF3o+8JSpPM5mkdYVaL2a28Xp0nYh3q4t248q/XpmO05eRd0AJ7QN1A31u0zRqOP857A6J1E31FXbefZ5+ko2h5SGNdv/lagbRP+4eO8HnjXq378vPf0ZmpXoC2h48JA8G9BqHqjgYB+qdPArjPUC3YuqLnrkoM6p9r0P1x7sFCoj92r6AhOqDe/QRrun2steQxtmYgp/o31718b2fOd2bTmICQ5DNME0LEyVoH69lyaqyvN0hjCG2IDTvlO7Bvyh73j6Lq2GamTpGvWOmcQO3ZYaFPCk9vwR1PRPl9FX3Tmb37UHFeV/muoY0Out+DrGArWlR7Sdi7eLSK8UaUva8BJUQPk2Bpzbp6oNew1bN283rvN4cI+79WkDkA55+/sHo30c1aum14BzT6oX2U3A34H/noPvX4GqLl2KsarPTwEv7tvfkyrZGXfxXIixxuC94LDXS2hVqh3dyKrWZ5L2M6mqoG2pksZntjT+ggc3Av8K1eN4Nap0e0IXZOqmvsaQt2VWw+q8k7H5OXuB6UCrGBnLFG5MteM6oz1/IVWN8moqc3ATU9wJZ1Zpbo9fRmUwLuHB0331B2q9Xqk7UI3VvzXu88czvJkE9qY6MXyJFnhRmd3XUc1ZLmj/l2qv7cSQS0Wo+8v1VEZsYE1RHmZ9x7d98FYqQ3U+Vcq1K9UmbT+GOybbulQp1IZUxu6TdHQuznHp3o0KKK9gbBikJalS4KFM/zZb6Rr1jpnADpxZUfvbqXrjXjfu3rQ5F1FF7LM8CKlSuB9QN+uDqfr7N1PFml+jStSmbOyz/m2lcj9bUSVV32Os9+GnqJvn7YyVaAwyR7olFfycC3yvLTu4HcBbtOeHUyWXiw7xZF+GsWBxR6rdyzuom+kT+t63PZVTm2VR+vi0UoHRzxgbDmIxKtf9P7RAbVDHLVWleSZtHsO27MR24dy6Pe9EL86+NC9Ma9DOgwfzPbDto53a8xX7XuvaNszRsDpDTM9ubd1vBP5EBRBLUKX/57fz7mHb9I1oP/YyMI+mmoH8jOpANdPfncpgnk5lJHekqtuuYYBVbA+Rzk60BxuXphlTtJ7pVO1Sr1ftiu16dmJ7vj8DGC9zFmlYmCpRv7wdI52r4mzpHH8vWICqqTmIyjz3hhFaqm3LSGZ5GfmOmujOpEq59mKsceoZVGPE5dvzBZlAA1DqJr05NR7V96lG+F+lqjx3ZYgTks8iXVu07epNmfFSKge7avvbFdhhSOtesJ3o9/Dg3PJRVFD8IarkcagD1VLtRU6jqil+0ZYtSuUQ30GVOPRKpWYZSI87jjZgrBr5lVTV6dp92/kG+kpZBrAtL6CGh+k1qP04Y1Wdb6By+JOe/3PA+79/IOT3U21M1mAsE3EocCsdGrtrJtvQmWF1qKqfxaic+n5t2YpUadOb+963xPjjddR/VID2Q+Bdfcs2pdrtnfgwn1upnU9fpBqqT0k7O0bQHmxEv0v/NW3pdox9h74p2Kiqzw9McboWpErVVxn1PpqN/XYkVbr6YqrTwALten0xY52IRnYujnxnTXDHvoQqevwIFenu0Ja/leodNce5FSpX++L2+DlUQLTGiLZzNarq9exxy1/atnPgOVH+c2DDTanc0GlUKdq0vuWrM+TcWF863kqVbvb32F2ipesDwJYT3T6qROtnVBXdvlSnhJdRHTHe1v4PbHBCZt6gttezqjfo8kAbLQ8w7f2B2nlUSeDqfa9PyXEwh2nvjb/2fCoYeg5VEvRVxsZvegzVi/Mkxsb5GuoFmcpg7NL3fDtquIRXDnO9E0zjzGoueqPjb9h3XGxBlfIv+3D7rf0Wk56SboLbMGXtwUb9G1FBxQnt8Q7t/nhIe34w1Xh/sWEf23PbH1U1/DWq0+E3qMzyyu21lzLWCWbo1dQPmcZR76RZ7MAVGSvt2ImxHoUnUF1hz6ENMEmVRqw5iXUdQDUafzl9A22OaLtXoqbDuYb/nPT2FYybA3HA6z6UGk7jae350dR0Jnu0144b5ok+/rupzhHPo3o+HsDYxNcrUqOUT6i9GJXD/gSV63w+NSzAYVQR/Q5UVdQw5g2cWYPa/6UyB1N685rob8GD54D9SDvv1hh1+mYj/SMfVqdvHz6Kagc3rZ1TX2FswOJNWxpv7p13Xfjd2+M923nXK2V+NVXqvBFjgdpAJ+Ie8LZMaXuwEW3jUVSg3KviXJyqcfpFO65uZIqm55ub/qjCkHe3a/MrqHaMb6Mycr35p5cedTp7F5BOaYPDzaBKkz5IHWjLUAfftlSwsAd1w1iHyoF+fZLrXJJqdLoHNQ3PFyfzfRNcd2+g2q2p7f4NNWjuYdTYPhdm5hVTkI49qHZ+H6cGiP1aZp4REc+jqjueQvV4+9mQ1v/vQXMj4tlUidnNmfmliNiPumFcSO2TacBbMvOfs/jOp1EjXX86IlalSrDuzczd2+uHUMfUj4DzM/PPw9i2tq51qfZdL6CqDQ+h2s38ZljrnIi+43BdajDaP/T9HtMz876IWJg67/47a/DfTuof/JkqAbwyMw9or21D5ZwXpbbjD0NOyy5UE4ErqIFLj6XGytuKOtd3okp99gW+nTUg9chFxEuo3pnfpc65j2bmBRFxAtVe9kWZ+ZNRpnF2RMSMzLxz1u+c+0TEI6h2jGdRtT/7UQH0t6nOHSsBf8nM20eWyI5qA9gvS8UQp1Ht0LeiCgR+CDwnOzCI+PRRJ+AhRGbeERGnUkWO/8jMTwJ/jIjnUlN7/D0irgISmPTNIjPvAc6NiI+3m9G/A4ZhazeTp1EN4k+niqZ3p06y+4HD2qjjXxlWGlqwsgXVYPmGiHgC8Pq2G94REedRwc7QLnZ9AcFLqIDsU8CrImJLqsTpASpQ3JoaZPBhA7Tmt8DfImL1zPxNRLwVODUiXpyZ78zM81rgseEwtmmc31AN8E+ncvb7dTBA25mqjvsz8LGI+HJm3tTOiemZ+Y+IOHiqzo050bcta1OZnn2A4yPiDcDbM/OqNrL8XlSJ6tCCtIjYkGo0fyD1+7+I6hhwONUAf3WqTdxqVMeFC4aVlologex2mbldRJxI3eyfGhFk5mkR8U/g7pEmcjbNqwEaQGb+LSIupYKMWxkbf3E74JPZsRkquiRrppM/RMQGwHWZ+a+IWIu6/767CwEa0Pnqzj2BK6kpJQ5vy3amGtqeRTVeH/R8b1NaZ081UlyWGvdrfWpYjZ8wVhWyPBWoDrTBLWPVML3/JwF/BPZtz6dRpWnfZArbylANvT9KVQe+kqqmOouqtuoNVrvkBL9zaSrAO6Y934mqsulvXDuh75zE9nW2QS2wGRUYr0P13juLqv4f2uTBQ9yWkQ6r086fJakqpyupWoAFqGDn7dQ4bL2q+3WpUpAp73XYl97+Ks7F29/q1JArV1Dtmd5JlTAcNOrf178H/XaLUJ1glm3Pe013BjaDwtz8N6t7OmM9/D8K3EbHeqOOPAEPs+Oe1S4IK1B17ldRDSCnU22H3sAUTcswRdv7Kqp7+HcZ6/V3GNUma6BtKcZdkNdlrN3fc6mc2GPb8+nUeE5DG+Nm/AlEVXGuQlX/XEm1gzq6nUSnzum+YGwC9ue1509tF7KjR/3bd+Gv7ff3Ar/sW7Yd1VHgJDo2sfcstmVkw+rwn5mfx1GZrhf2vWdlqld6b7y/abTAcdR/VE+3kxnrPf8KxoayeAEVuHd6UNL59Y/KBBzRjrehDnMyt/yNu9dt0869pfuW9dpVLk8VSnRuPLeuVndCjUb9zaz2Iu+PiD9SdcWLZuYHqJ4Yc7WI2BjYMzNfT+VUD6EGCP1lRGxEBW43ZeavBrne7B29NRHu/sAdEXEbVcowHTg/Ig7JzB9TpRFDMa4N2s5UQ/rfZuZtbXLb72fmP1vVypepmRUemJN1Zeb3ImJX4CsR8UBmfjgi7qdKOuZL/fs/M/8SEe8C1omI91JBxbciYhoV6PxrlGmdoN9SAcVGVLf6jYH3UUNwvA24MzPvG/RK+6pZdwT2joibqKBwD+DL7bh7b2b+LiJela26Pqta5a5Bp2cC6V4gMx+IiF7HoD0z86/t5e9T58w61Nhyu2fmHaNKqx7WIlSNwf5ZE9/P18bdX46keif/BPhuRFyUmTdk5v2tKdEd1OD4ndPJjgMAEbE7dXE7BbitXfwuaS8fnJl/GV3q5lzfhXw7qpHnzsA7MvOsiLgQ+AdwH3VjeV1mXvLQ3zapdGxL5Yp3Atakqlk3pwbyex01btyOOXvtviablsOpXmM3UifRp6kT5gaqGnhHatDUnw9gXZtRN55DM/O8yX7f3Gpcw/rVqWvBByPi0VTv6XuAl7ab9zKZObIgYk5FxBuBOzLznRHxHKo92L6ZecsQ1/kU6rw6k8qdb0iVmt1KNR14Y2a+Z1jrn4jWUennmXlXa0T9XuDzmfn59vz+9vtvSpVCXJa2ceq0qWxLPbdonc6eRBV6PJ665y4AfGwQ95Rh63JJ2reoHPxxwI8iYlGqk8CL58YArXfytBvj9lQPyuOoOvAnRcTCmbl/C56WoUqNrhnUSTeT77kfuDYzfx8Rf6AmPd6EGnfs5Ih4z7ACtHE5nGdRN4DHUu11nkX97qdTweMWVLA6kNLEzLy6dYq4dxDfNzfqKznZjRqF/RXARyJi/cx8eUT8N1Ul+B6qRGpoPV6H7CfAUS3g2Ie6dgwtQGs2oAKxcyNiKSrzc3hmHhIRe1HT13XF5sAtEfG3rI5YdwKPjoiFeud+K+H+aWa+e6Qp1WwxQHuwiFiMai6zYosbrooIqNk9joqIs7qe8VhglCuPtrdmsnx61lAIx1I3iG2pm/dJmXnz1KVwMCJiZeDJreoIquTiPZl5MZV7fRewX+tx+O3M/HxmXgODOenGBUUvbCUMNwAbR8ThLXb8DVVUvl772B8nu97ZSEuvCmUfarT9X1OjPP+BGidutcz8whCqe3+UmTcO8jvnBhGxVkQ8qgVoy1GZhP2pcYJupo7BD2XmTVRp6vsA5rSKuQMupcZ025oKnK4a9Ar6zumeRal2XbRr2LXAUhGxVmZ+LzOvfKjr3lTprT8z30W1+bwmIh5JtQHdCtgmIpZtJRCvoa4LUueNP7datf1zgL9GxFlt2VVUZ5g/MsJmBrNrZNWd427We1K9+R7oVe/F2LhMvVz/Yn3tJOYqbft+QbWVuY/qaXYGVYX366jhAM6l2qV9OjM/MaR0PJ9qBP7DzNyn5ZJfTg2a+z9UddDeLVgaqlb9dAhV5ft+quH6Xllt0DakqmE/nkMew2p+EhEHU8fhj7OG0liNKrU9l2o0uyY1sfeZmXncyBI6YH3XkoFVBUXEEr0S/dZ0YR3g59T+fTk1n/DzIuKx1Bhpzxl1jr2virv3/zCq6v+5VLXs3lSGaWeqTfDi1LRw140qzdLsGhdTPJe6tv25NeNYhToPf5mZx7b3PCIz/za6FM+ekZWk9e3Mo6lee+sB74mIV7bX72vBS++iOtdWT7USs99T7VT2okYbfx/wzohYn6onX4m6wK8yjDS0g/ZoKldxf0QsT+UmjqcmkF2PmkZkKgK0/akqzRdk5t3UjAK3AZ9uVS0/oUoaDdAGKDM/TvXe/UFEPD4zb6Wq365ppWUrUtXMF48wmcNwPwyuKqg1vfhiROzbzt+zqXaTR1NjzF0EPBAR36C69b951AFaszr8e1zG/ajg7O7MfDk16fwlwCWZeQhwDLCPAZrmIgH/7hB3BDULw1kR8ZrMvI063jeNiNOhxpgbWUonYMrbpI2LdhehqlsOzcwfRTWcvywi/i8zz+yvZpkb69r7tzUz/9Qu2k+j5un7LHVQnUeVrh1BTQ+zU2tDc99ktnncfl6OCnL3yOo5+Qrg7y0Q/r/MPGYSmzmhtDSLUyVlG1MTp/8lIo5nbHaJ/Zm7ehN2Wl/Jyc5U84HzgA9ExBFUNedSEXEmVZKyf1avznmmAfKgtyMz742IM6gOFn8FjsjM70QNhHk4NZXbkVEzXPwrM/8w6v3Z2h++JSI2p4b1eQHwxayepgtQPd9OBb4VETvl8NvuSQMREU+iaof+3M7BpwPPoDrBfRt4VkQsm5kviYh9qLEq5xoj6zjQStBupKrZHtGqNX/douADRpWuQWo3xh2oqoSvZeYHIuL/qF6rD2TmW9vNEaqB/Gup6sZJBSjjArTjqIvyfVQOH+rGsnirhn1xROyaQ+pWP5M2aHfm2PAXp0TEHZn5jcz8awsaloK5MyjvqnYcbkGNf/WSdtzdT7XX2gt4CVWa+8nM/FbvM6NJ7dwhMz8bEX+heh8/mZrv91Yq975fe89v+94/ygBtIaqJxaupDjobUYPn7hYRX8vMH1Alf68B/ka1q5PmFpsCv4zqAPPrqKFknkBlOLePmrHm/0XEL7MjPasnYsqCtIhYLzNvbDeMfagL2YFU472XUI2Y/0CNxr5o1Ngl3ZiWYYL6Si62pKo4rwc2i4irWqB2P/DsiJhOXeSXpnqB7ZkDGN+mLyh6AVUqdSA1MPDKEXEa8HdqYtmVqbYyQxsfpi8tL6c6CdwTET8EPkCVJJ4RNWbU5Zl5L3NxtXZXtbZnrwR+kpnfBcjM06Pa2F5OTU916QiTOFfKzK+2dl1vbTeA81smbIPWnODOLgS7We08f0O1R02qZ9uCVKnfc6PGb7umZQ5fP8KkShOWmW+Pmm/4TxGxRmb+b1SHntvaW1ai5hueK69xU9ImrVWzfCkilo6Ix1BtkK7PzDsy8yRqMuf3RcTHqHYdb5hbAzR4UMnF64EDM3M/ajDWDSPi+Zl5ITX9zo2ZeX9m/hF46yACtJ6oCeM3pXrF7ktNIJ5UlcZvgEdR1TTXD2qdD5OWnakqoN2oDgKPpRp0nkO1zXtdRDwiYrS93uZh91Ftjp4QNdk3UIEaNeH70iNK11wvMz9LZTLfGxEXU9WIp7Zr28gDtD5XU80MfkeV4v+eyiD+GnhJRGwyysRJExERK0V1MCMinpGZv6CuZd+N6qn8I2rO5oup2UbelAMeJWCqDL13Zyst+i/gV9QFYWOqF+OeVIPaz7f3bUlNj3LbvNAeImrC9EuBV7VIfzrVc2on4EeZeWZ739DaqkRNHL4+NVjuk1oQdAfVJum0IVZxLthfZdv2xQZUkPh0qsTwHxGxQWZeHxFLZQ1XoAHoK8ndmppg/DfU+XcYFSBfmJlXjDCJ85xWO3AK8PzM/H8daIPW38xgAaqDyDSqynsl4DWZeVPLNO8CnN8CN6nzImJNqgPeD6jOdvtm5h9bW9HdqQKKB6gaql9l5i9HldbJGnp1Z1bj9F9S7SHup6q8/k61fXhGRNyfmZdm5veGnZaplJlfaRfuN0XE71pVyKepC+WP+943tAt5C4TuBaa3XMea1DQ1ZwwxQFsSODAiPk7Nj7k0VYrzTNrvnzWkyvHA1hFxqAHaYLUA7WnUhNinU51Udqd6790PHNaaE3xlhMmcp2TmRRFxZWb+qT3vSoB2JFVqflvWuGgvjYh3A6+NiDdm5g0RcdNk28FKU6F3bGfmzRFxLjWO36tagBZZnQMWoDKm62Tm5aNN8eRNVZu066i2RvcAS7U644uoSPeQiPjHvJizz8xLIuI+4NSooSXOBc6f4mT8BvgCdbNemWp/dOswVtRK0O6JiAeokpvfUyWnC1ETx98HvCAi/kGV6jw7M/8+jLTMr9oFamngKKq35rJUm8gfZvUy/BQ1eO3tI0vkPKoXoI3auDapBwEvBK6MiLWBUzLzhRFxDvCyiDjWAE1zg3GZj0dTVfgHAOdGxF2Z+VGAzHxxRPyOuvYNZVD2qTSU6s5xO3Mhag64+1vj8SdT0/z8IKqL+tOBL2TmPHvTiIg9gNOokqXf5xSP4B41pMeKVFuU22b1/jlcxwbUEBp7tXVdQA2j8eSWy1mTGs18a6rDwPsz82fDSIsgIl5F9ZR9MjXX7S9bI/dvAjdP9TGoqdOaNaxAzWRyLNV56JlU298/Ay/MzLsjYoV0LEJ1XK+tcl9M8TJqwOXDs4aUego1csEhVMHT9pl5/IiSO3ADD9LGBWjHUW2R7gFOzpof7kRgS6pN1P+LubgX50RExIzMvHPU6RimljtfhepN+meqx+5B1CC5P48aQPW6aLNIjDCp86SI2Jhq7/f6iDiF6r33pNb2aCMqcH5+Zn57lOnU1Iiat3BDqtH0kyJidWpWhNcDb5sfrrua+8WD55I9kJoZZ+dWa7N6Zv4mavy/s6lY44U5Dw3CPPDqznFF7ftRN+kfAqtFxGsz878j4g3U+Fw/ml+qu+blAK0XaGfmYRHxQSpXs29mnhE1OvtnonruPjkiDsjqzaoB6OsksB11vu0cNfbca6NGw39dq3LfmGq7YYA2n8gae/ABYIGoyd4fB3we+IQBmrqulaA9GnhHROzWMvYJfAnYKyLWAPaIiJ9TPayfRg0effeo0jwMw6ruXJJqA/Ua6saxK9WrcCXgmJazf6Q367nbuFLT/rkMz6LNBZiZd0bEUcD21CTXQx/yY34wbt9vD3ycKrlcnxrI8TuZ+Y6I2Jaaw+53mXnNqHsdarBm9nv2105EzTbySmBzqgp0n8z8+dSnVJozETGDOn5/TLWnfTGV4Xg78L/UFIMfycxrR5XGYRraEBwx8+Ef7qQm0z7Zxqpzt5lUa69H9dp9bWb+LSLeQwVq+7cG6/8ustbkRMTKwGOAK1tbz2cDq2TmmyNicarU7M3UUBvvHGFSNUQRsUivJiIingAskDV7wL8nlW+Pl6Z6dt+V88DwRpr39bdDa4U+L6bGIHxca+P8iHaf2ZMaVmbvzLx5ZAkeoqENZpuZ/6B6dPaGf9iNmtD7/QZoc7+ZVGufRk3e/qGIWDszj6Pmhfxo63Hobz44m1O9Mxdr1cl/Bp4fEWtl5v9RUxT9CtghIg4aYTo1JO2aenhELN7OwQuA0yLiUvj30EcLtsd3Z+a1BmiaW2QTNX3klzLzVGp8zx9FxEotQHsWFaAdMq8GaDD8IThmNvzDb4a8Tk2RGJvV4AAqUPsRNczG+yPiqMw8NCJWtJPAYGXmxRGxLDXl2KXUyPHvA94ZEa8EFqGaFlxDdeTQvGcVqrf4otQ5uHnrsfmNiLg0M3fNzH/NLx2zNO+JiKcz1q6dzHxla2P57Yh4IvBV4NvDGrGgK4YapGUNpno68AmGOPyDRqP1rjmWqtbee1y19vMi4nXpKOYD01/FnJl/iohvUI1l/0kNWBtUbvM+4Ajq5r1TK1G5z7Zoc7+IWDQz783ML0fEItTwGstTQfndmblDRHw9ap7gbQzQNLcY14RmYWAtasaAJwC3AGTmCa1Jx1eATeaHAoCpmHHgX8BQBk/V6OV/zmqwBlWt/T6rtQerFf/vQLX1+1pmfiBqQu89qEzQWyPizPb2LYDXUsGzv8M8oN2cto2Iu4GNgD9QYxMeDWwTEfdm5i0ts3RpRKyWQxq4WhqkcQHaUsDfMvPMqHFWnx8Rd2fm1wAy87iIWH5+CNBg6mYc0LzNau0h6htmY0uqivN6YLNWWvKBiLgfeHbU/LCfoWYceCI1ZtoNI0u4Bu0+ai7WU4BHAjtm5q3tRnYwMC0iLs/MX2XmrqNMqDS7omYPWAK4JiJeSg1Uu0hEHN16qP+dGrJrwcy8rH1snh3SajyDNE2a1drD1QK0LahBSA/MGhD4AOCJEfH8FqhNA25s1Vt/jIi32pt23pI1GPi3qZ5u3wbWjYjbW9XnfdQQLP+IiN9Qs7xYva1Oa00xXgT8K2rWml2B51Nt0b4RETtk5vsi4hHAcyPiW626f745tg3SNBBWaw/d0lRD8Z2ouXA/Tc19u1PLYZ4JD5qA2ABtHhM1vdx61NRqz6HmZl2aGjz6WmqsvKt6Q29IXRY188y/IuJU4BXA7sDVmflr4C2tk8AVEfG0rIHRl87Me0ea6BEY2hAckgYnM78C7EPlJg9sN+JPA18Drux733yTw5zX9caK6nt8D1XScEhmfgj4BTXMyieoXr5fzczfjSSx0gS0zGSvTdk04NVU54C1ImIzgMx8G3AW8Lk2zubdI0nsiA1tMFtJgxcRuwKnAu/KzHNHnR4NX0Qsnpn/16qGtqRmcvl0q+beCXgy8PHM/OlIEypNUEQcQ3V82ocaTuZ1wN+o47s3MPOymfmn0aVytAzSpLlMq/Y6jar+/P380stpftNKz54InAPslJk3t0Bte+CNwLmZedYIkyjNsXYdOxXYozfQctQUUCdS0z99MDN/2N/zc35kdac0l8nMS4AdMvN3Bmjzlv4qzta28CrgQuDTEbFGa/t5FfBr4BkRscyIkipN1srAJzPzlohYqA28fCfVQeou4LdgEw47DkhzoXYx0zxk3FhRe1Pzbd5Itde5G7goIp5PDVL8AHBoZt41mtRKk3YLsFdEfCYzbwSIiMOAWzLzpJGmrEOs7pSkDomI44EDgW8AywKPAJ5LDVq7KfAY4HmZed2o0ihNVptW8BVUYdFV1FhpLwUOysxfjDJtXWKQJkkd0QYkPgf4rzZQ7YrAscBfM/O0NutAZuZfR5lOaRAiYiVgT6rzwJ+BN5n5eDCDNEkakXFVnEtTN6qrgAsy811t+b7Azpl55MgSKg1RmzUDx3f8T3YckKQRGBegvQA4uj3/L2CXiDikvXURYEZELNbfsUCaV2TmPw3QZs6SNEkaoYg4impz9sxWxbk4NR7a+4DvAZsD+2Tmz0aYTEkjYO9OSRqRNifh04HXAvdGxNHARtTcnJsCKwF/yczbR5dKSaNiSZokjVBEHAkcQ819ez3wG+DxwHHOwynN3yxJk6TR+ijwI+CXmfmniDiAmkh9IcAgTZqPWZImSR0QEQsAhwPHAwc6F6ckS9IkqRsWoWYS2D8zbxh1YiSNniVpktQR8/tk0pIezCBNkiSpgxzMVpIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOuj/A/TuAEmJ9MDRAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[df['artist_top_genre'] != 'Missing']\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlmklEQVR4nO3de9yt9Zz/8de7tqLofEsqEokGs7El50PoMNgxv9JBysSWKeeQzISGwaQQid2InFKK0dCMkpQzu6SSoiiVXXuriE46fH5/XNc9Ldve7cP9vVvrvvfr+Xjcj73W97rWWp96rPte7/U9XakqJEmSNHGrDLsASZKk6cJgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmaNAl/Hvi5M+Hmgft7DLs+SWotbhAq6Z6QcBnwiiq+OexaVkTCjCpuH3YdkkabPVaS7nEJqyd8KOF3/c+HElbvjz0z4cqEgxJ+n3DZ3fVuJTwk4ayEPyV8M+HIhM8NHN8m4fsJf0j4WcIzB459O+HfEr7XP/7UhA36Y5slVMI+Cb8FvtW3/1PCLxKuT/hGwoP79iR8MGFBwg0J5yc8anL+D0oaVQYrScPwdmAbYCbw98DWwL8MHH8AsAGwMbAXMDdhyyU81xeAHwPrA+8E9hw/kLAx8HXg3cB6wAHASQljA4/fHXg5cH9gtf6cQc8AHglslzAbOAh4MTAGfAc4rj/vecDTgYcDawO7ANcu5f+DpGnGYCVpGPYADqliQRULgXcxEIh6/1rFrVWcSReOdln0SRIeBDwBOLiKv1TxXeDkgVNeCpxSxSlV3FnFacA8YMeBcz5VxS+ruBk4gS7sDXpnFTf2x/cF3lvFL/phwX8HZva9VrcB9wMeAaQ/Z/7y/6+RNJUZrCQNwwOBywfuX963jbu+ihvv5vjg81xXxU0DbVcM3H4wsHM/DPiHhD8ATwU2Gjjn6oHbNwH3XeQ1Fn2+Dw8813VAgI2r+BbwUeBIYEHC3IS1FlOzpGnMYCVpGH5HF1LGPahvG7duwpp3c3zcfGC9hDUG2jYduH0F8Nkq1hn4WbOK9y1HrYMrfK4AXrXI892niu8DVHFEFY8HtqIbEnzzcryOpGnAYCVpGI4D/iVhrJ8sfjDcNeG8966E1RKeBjwf+NKiT1LF5XRDe+/sz30S8IKBUz4HvCBhu4RVE+7dT47fZAXr/jjwtoS/A0hYO2Hn/vYTEp6YcC/gRuAW4M4VfB1JU9SMYRcgaaX0bmAt4Lz+/pf6tnFXA9fT9VLdBOxbxUVLeK49gE/TTRT/MXA8sCpAFVf0E87/gy7M3dGf8+oVKbqKryTcF/hiP6/qj8Bpff1rAR8ENqcLVd8ADl2R15E0dbmPlaSR0m+H8LmqFetVSjgeuKiKdzQtTJKWgUOBkqa0fgjuoQmrJGwPzAb+a8hlSVpJORQoaap7APBlun2srgReXcVPh1uSpJWVQ4GSJEmNOBQoSZLUiMFKkiSpkZGYY7XBBhvUZpttNuwyJEmSlurss8/+fVWNLe7YSASrzTbbjHnz5g27DEmSpKVKcvmSjjkUKEmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqZMawC2jt8W/+zLBL0DRz9qEvG3YJkqQpwh4rSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1MhSg1WSTZOckeTCJD9P8rq+fb0kpyX5Vf/vun17khyR5JIk5yV53GT/R0iSJI2CZemxuh14U1VtBWwD7JdkK+BA4PSq2gI4vb8PsAOwRf8zBziqedWSJEkjaKnBqqrmV9U5/e0/Ab8ANgZmA8f2px0L7NTfng18pjo/BNZJslHrwiVJkkbNcs2xSrIZ8FjgR8CGVTW/P3Q1sGF/e2PgioGHXdm3Lfpcc5LMSzJv4cKFy1u3JEnSyFnmYJXkvsBJwOur6obBY1VVQC3PC1fV3KqaVVWzxsbGluehkiRJI2mZglWSe9GFqs9X1Zf75mvGh/j6fxf07VcBmw48fJO+TZIkaVpbllWBAT4J/KKqDh84dDKwV397L+CrA+0v61cHbgP8cWDIUJIkadqasQznPAXYEzg/ybl920HA+4ATkuwDXA7s0h87BdgRuAS4CXh5y4IlSZJG1VKDVVV9F8gSDm+7mPML2G+CdUmSJE057rwuSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiNLDVZJjkmyIMkFA23HJzm3/7ksybl9+2ZJbh449vFJrF2SJGmkzFiGcz4NfBT4zHhDVb1k/HaSw4A/Dpx/aVXNbFSfJEnSlLHUYFVVZyXZbHHHkgTYBXh247okSZKmnInOsXoacE1V/Wqg7SFJfprkzCRPW9IDk8xJMi/JvIULF06wDEmSpOGbaLDaDThu4P584EFV9VjgjcAXkqy1uAdW1dyqmlVVs8bGxiZYhiRJ0vCtcLBKMgN4MXD8eFtV3VpV1/a3zwYuBR4+0SIlSZKmgon0WD0HuKiqrhxvSDKWZNX+9ubAFsCvJ1aiJEnS1LAs2y0cB/wA2DLJlUn26Q/tyl8PAwI8HTiv337hRGDfqrquYb2SJEkja1lWBe62hPa9F9N2EnDSxMuSJEmaetx5XZIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGlhqskhyTZEGSCwba3pnkqiTn9j87Dhx7W5JLklycZLvJKlySJGnULEuP1aeB7RfT/sGqmtn/nAKQZCtgV+Dv+sd8LMmqrYqVJEkaZUsNVlV1FnDdMj7fbOCLVXVrVf0GuATYegL1SZIkTRkTmWO1f5Lz+qHCdfu2jYErBs65sm/7G0nmJJmXZN7ChQsnUIYkSdJoWNFgdRTwUGAmMB84bHmfoKrmVtWsqpo1Nja2gmVIkiSNjhUKVlV1TVXdUVV3Akdz13DfVcCmA6du0rdJkiRNeysUrJJsNHD3RcD4isGTgV2TrJ7kIcAWwI8nVqIkSdLUMGNpJyQ5DngmsEGSK4F3AM9MMhMo4DLgVQBV9fMkJwAXArcD+1XVHZNSuSRJ0ohZarCqqt0W0/zJuzn/PcB7JlKUJEnSVOTO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1stRgleSYJAuSXDDQdmiSi5Kcl+QrSdbp2zdLcnOSc/ufj09i7ZIkSSNlWXqsPg1sv0jbacCjquoxwC+Btw0cu7SqZvY/+7YpU5IkafQtNVhV1VnAdYu0nVpVt/d3fwhsMgm1SZIkTSkt5lj9E/A/A/cfkuSnSc5M8rQlPSjJnCTzksxbuHBhgzIkSZKGa0LBKsnbgduBz/dN84EHVdVjgTcCX0iy1uIeW1Vzq2pWVc0aGxubSBmSJEkjYYWDVZK9gecDe1RVAVTVrVV1bX/7bOBS4OEN6pQkSRp5KxSskmwPvAV4YVXdNNA+lmTV/vbmwBbAr1sUKkmSNOpmLO2EJMcBzwQ2SHIl8A66VYCrA6clAfhhvwLw6cAhSW4D7gT2rarrFvvEkiRJ08xSg1VV7baY5k8u4dyTgJMmWpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDWyTMEqyTFJFiS5YKBtvSSnJflV/++6fXuSHJHkkiTnJXncZBUvSZI0Spa1x+rTwPaLtB0InF5VWwCn9/cBdgC26H/mAEdNvExJkqTRt0zBqqrOAq5bpHk2cGx/+1hgp4H2z1Tnh8A6STZqUKskSdJIm8gcqw2ran5/+2pgw/72xsAVA+dd2bf9lSRzksxLMm/hwoUTKEOSJGk0NJm8XlUF1HI+Zm5VzaqqWWNjYy3KkCRJGqqJBKtrxof4+n8X9O1XAZsOnLdJ3yZJkjStTSRYnQzs1d/eC/jqQPvL+tWB2wB/HBgylCRJmrZmLMtJSY4DnglskORK4B3A+4ATkuwDXA7s0p9+CrAjcAlwE/DyxjVLkiSNpGUKVlW12xIObbuYcwvYbyJFSZIkTUXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzNW9IFJtgSOH2jaHDgYWAd4JbCwbz+oqk5Z0deRJEmaKlY4WFXVxcBMgCSrAlcBXwFeDnywqj7QokBJkqSpotVQ4LbApVV1eaPnkyRJmnJaBatdgeMG7u+f5LwkxyRZd3EPSDInybwk8xYuXLi4UyRJkqaUCQerJKsBLwS+1DcdBTyUbphwPnDY4h5XVXOralZVzRobG5toGZIkSUPXosdqB+CcqroGoKquqao7qupO4Ghg6wavIUmSNPJaBKvdGBgGTLLRwLEXARc0eA1JkqSRt8KrAgGSrAk8F3jVQPN/JJkJFHDZIsckSZKmrQkFq6q6EVh/kbY9J1SRJEnSFOXO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNTJj2AVIWn6/PeTRwy5B08yDDj5/2CVI04I9VpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzMm+gRJLgP+BNwB3F5Vs5KsBxwPbAZcBuxSVddP9LUkSZJGWaseq2dV1cyqmtXfPxA4vaq2AE7v70uSJE1rkzUUOBs4tr99LLDTJL2OJEnSyGgRrAo4NcnZSeb0bRtW1fz+9tXAhos+KMmcJPOSzFu4cGGDMiRJkoZrwnOsgKdW1VVJ7g+cluSiwYNVVUlq0QdV1VxgLsCsWbP+5rgkSdJUM+Eeq6q6qv93AfAVYGvgmiQbAfT/Lpjo60iSJI26CQWrJGsmud/4beB5wAXAycBe/Wl7AV+dyOtIkiRNBRMdCtwQ+EqS8ef6QlX9b5KfACck2Qe4HNhlgq8jSZI08iYUrKrq18DfL6b9WmDbiTy3JEnSVOPO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1ssLBKsmmSc5IcmGSnyd5Xd/+ziRXJTm3/9mxXbmSJEmja8YEHns78KaqOifJ/YCzk5zWH/tgVX1g4uVJkiRNHSscrKpqPjC/v/2nJL8ANm5VmCRJ0lTTZI5Vks2AxwI/6pv2T3JekmOSrLuEx8xJMi/JvIULF7YoQ5IkaagmHKyS3Bc4CXh9Vd0AHAU8FJhJ16N12OIeV1Vzq2pWVc0aGxubaBmSJElDN6FgleRedKHq81X1ZYCquqaq7qiqO4Gjga0nXqYkSdLom8iqwACfBH5RVYcPtG80cNqLgAtWvDxJkqSpYyKrAp8C7Amcn+Tcvu0gYLckM4ECLgNeNYHXkCRJmjImsirwu0AWc+iUFS9HkiRp6nLndUmSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpkItstSJI0aZ7ykacMuwRNM997zfcm/TXssZIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGJi1YJdk+ycVJLkly4GS9jiRJ0qiYlGCVZFXgSGAHYCtgtyRbTcZrSZIkjYrJ6rHaGrikqn5dVX8BvgjMnqTXkiRJGgmpqvZPmvw/YPuqekV/f0/giVW1/8A5c4A5/d0tgYubF6K7swHw+2EXIU0y3+daGfg+v+c9uKrGFndgxj1dybiqmgvMHdbrr+ySzKuqWcOuQ5pMvs+1MvB9PlomayjwKmDTgfub9G2SJEnT1mQFq58AWyR5SJLVgF2BkyfptSRJkkbCpAwFVtXtSfYHvgGsChxTVT+fjNfSCnMYVisD3+daGfg+HyGTMnldkiRpZeTO65IkSY0YrCRJkhoxWKmJJJsnWX3YdUiSNEwGK01YknWBA4C3G64kaepJkmHXMF0YrDQhSTarquuBk4C1gQMMV5rK/IDRyiZJqqqSPCXJPkm27bdK0gowWGmFJVkH+ECSt1fV6cCXgQdiuNIUMB6gkjy6/0DZGKD/gDFcaaXRv+efBXwWeBjwIeC1SR421MKmKLdb0ApLci/gScC+wDlV9YEkzwB2AX4HfKCqbh1mjdLiDHxDfw7wEWA+cBnwc+Dw8g+jViJJtgQOAT5fVScneRzwKuDcqjpquNVNPfZYabmNf5uvqtuAHwJHAtskOaCqzgROAO4PHGzPlUZRH6oeB7wZ2Kmqng18ie5SXLOHWpx0D0kPeDrwUGC7JGtW1TnAccCcfg6tloPBSstl/Jt+f3ttgKr6HnA48KSBcPU1YDXgvkMrVlqCfv7IM4BnARv3zd8FbgCeMKy6pHvCwFD3BsCMqjoaeA8QukvQAVwN/Klv03KYlEvaaPoaCFWvBbYFrk1yalV9sf9dfV2Sg6vqkCTfraqbh1mvNG5g+O9ewG10Pa3rAm9Ncn1V/TTJucDuSdYAbnZIUNNR/3uwI93w31VJbgT2AdYE9kqyO10++I+qum6IpU5JBisttyT7Av8I7AEcChyWZP2qOjLJDGCfJOv5C6lR0n+YvAB4Ed1Q9aF0w9bXAicnOYauB+vQqrppeJVKkyvJI4F3A/sD5wJfAD5VVbsmuQXYDji/qr7Wnx+/ZCw7g5WWS5J7A7fSfTi9DLgP8FLgk0nurKqjkvy4qm4ZZp3SopI8Hng/8Aq6OSV7AmfQrYR6AF0P7FFV9d9JVq2qO4ZWrDS5bgUupFt0dAuwU5Izk+wHfAJYh25qx67A8Yaq5eMcK92tJH/1HqmqW6rqU3RdxtsD+1XVGcDPgH9Oso6hSiPqkcCPq+r7VfU+4H+B1wP3Bg6j673aJ8mjDFWaTga2Flm1Hwq/DtgImDVw2heBO6rqduBY4CzgDEPV8jNYaYmSbFJVd/a3X5Pk8CQHJFmLuyY2PiTJHOAa4NlV9YfhVSzdZeDDZPzv3IXAaklmAVTVicBFwBZV9Xu6VYFfBv44hHKlSdMPg8+m+/JwPN2XjCOBjyTZP8kr6IYFL+nPv62qjq2qa4ZW9BTmPlb6G/0H0lp0Y+/vBc4DjgD+E3gM3UqSvej2OXkc8Hhgj6o6bxj1SkvS71P1JOAPwGl0e67NB64CLqZbUv7i8feuQ4CajpI8gu7v93vp/n6/k24o/Da6+VSbACdW1anDqnE6MVhpiZI8Gfgk3Tf9I6vqW0keCLyVLnjtV1U3JVm7qvyWr5GS5CnAMXTDfC+j2wLkcmAMeDLdcPbR/YaITs7VtJTkUXS/AxdX1Wv7tu2ATwNPq6pLhljetORQoP7KwPBJqur7dBPT/w7YEaCqfge8D7gDODLJKoYqjZokDwf+GTiiquYCOwHrA4+pqiOqaldgb0OVVgK/pJu68cgkWyRZvaq+QXd917HhljY92WOl/7PI5p/PARbSDZmsC/wP3TL0T/THH0A3dO8YvEZOkh2A19KtfnpDVf2mnxt4JvCSqvrlUAuU7gHjQ9v9hPVPAjcD3wQW0A2Dz66qnwyzxunIYKW/keQNdN/wz6DbnXoXYHO6lSIfr6oPDa04aTEGNv/cHLiJbtXTlnTzAH9L9+08dJPT/6GqrhhasdI9YOB3YkZV3d5fbeBIuisLnAl8vapOtce2PYcC9VeSbAVsV1XPANYGrgf+UFU/opunsmeSdYZYovQ3+g+QHejmUR0O/IRudd9xdEvKv0T3ofJWQ5Wmo4FpHFv0IwoA9KFqRlX9hW54fB6wBnCOoWpyGKxWcgPXjBr3F+C3SQ4CHg7sXlW3JZldVT8GnuyWCho1/QfJu4FXVtXudEHqZOBXdCuhvg98m64XdnHve2nKGuid2o7uff9fwH5JHgZ/Fa5uowtX9wfehpuETwqD1UpskTlVs/tVgL8GNgT2pht/v6Xf4+SA/rI1tw6vYuku4/tTJXkC3WKKc+lW/VFV7wa+AxxUVT+lmyP4ULoNQGf4LV3TSR+qZtFdVeAFwJvoFh3ttEi4WrXvudoZOKwPWmrMYLUSGwhV+wP/BizoNwT9MN23+xOTHEi3cdyrq+raYdUqjUtyH4CqujPJU+km5T6Kbn+efxg49bt0k3Wpqq/TbY54Yr+ztDRtJLkf8HLgcVV1SVV9j+76f5sDL+lXydJPZF+lqv7Sr/DWJLAbcCXXf5vZGdh+4BftO8D5dFstXE+3iuriIZUo/Z9+T54PJXk+3SU5/hX4SFWdkeTPwNwkD6XbEPQlwEHjj3XzQ00ngyMOVfWnJEcAD0tyJPCaqvpOklWBPeg2AqU/987hVLzycFXgSmbRyYr9RPSPAwcCvwNu67uVNwMud8hEo6JfMn4U8CPgv4Hn0Q17rAvsVVVXJXkk3UrW9YEf9JvaOkFX08rAnKrnAg+i+yz/z75n6kDgBuCNfa/uulV1/VALXsk4FLgSWWRO1Qb9kMqNwOrADn33cCXZnW5i4xpDLFdanKvogtOX6FY3HUI3t+o1STaqql9U1cer6j1V9S24a8hbmg76obxK8g90O6pfCRyS5AP9/mz/DjwA+Gj/EDdwvofZY7WSWCRUvRHYDfgZ3eqRn9J9UF0E3A5sDexZVecPp1rpry3yDf2zwLf73dPHL13zfLovAv/uprWajpI8BFilqi5NsgHd78Eb6FZvHwhsDHyzqvZJsiWwenn91qGwx2olMRCqnkB34eTXAF8HXk+3z8/z6Cb3/oDuorSGKo2ERTb/HANeDKyS5N39MMf3gFPovhSsM8RSpcn0ZGD9/pI0vwfmAKsB7wKeCjwLeHmSj1bVxYaq4XHy+kqkX0H1ZeDDVfXDfijwT8CbgQdW1VFDLVBajD5UvZBu2O8Sui1BPkG3pPy1SY7oJ+qe7x5rmq6q6vNJ7gv8JMlLq+q8JA8Ezu7nUj2AbnPcbwy3UtljNY0tugliVX2Xrvt4lyQbVNXNwFl02ys8N8m6bpyoUZNkG7rVf9sBX6Hb4PB5wAfo5lu9qd+b6g9DK1KaJAM7qm9Ht63IZ4Gj+xWylwFrJ/kY3WWbvlpVp/l3fLicYzVNLTKnalvgfsBpVXVjkg8C29BtALqgX211r6q6aYglS4uVZBO6rRXWpdtdfXe6lazXAZ8GFpYXktU0lmRrui/Ab+hHG95I93uwU3/KY4Abq+rMIZWoAQaraS7dBZX/ke7SHhsC76+qM5McSjfh9+lVtXCYNUrLIsl76Dax/XCSlwGvBf6xqi4fcmnSpEmyKfBB4LqqmjPQ/kbglcDOVXXBsOrT33KO1TTTj7NfX1W39iuonltVT+13UH8y3eTGqqo3J7kVWBMwWGkqOB94Vd/D+mLgdYYqrQRuB84DZifZvqr+F6CqDu83AF1nmMXpb9ljNU30Y+pjwInAfwKfoxs6uS/dipG9gBcCnwIeBrylqs4YTrXS8kuyFvAiuvfxMf1laqRpZWAV7JPo/qb/lm7Bxt501/87oapOH2KJWgonr08fqaoFdNf8242ue/ja/hv9w4H/qapbgO/RDQvadawppapuqKpj6S6x9HUn6Go66kPV84Bj6KZvnA08BTiZrudq7/64RpRDgdPEwPWf1gDuAxyTZI2q+hTwfeBj/eUOnkQXuhz+01R1B7ijuqafJKvQDe29iq53dj3gQuCcqromyZforpQxf2hFaqkcCpxGkrwEeCuwA91qkZcBHwOOp/vG81zgc1V10bBqlCTdvSRvBdYGng3s0e+2vjfd9jiXeSHl0WaP1fSyPnBWf0mPTyS5FpgLrFFVRwMuxZWkEZRkJt0WOO+iW1S0J/CsPlT9Pd2X5kuq6tdDLFPLwGA1vfwWmNnv+3NVVZ3YL0t/QZIvVtWfhlyfJKk3MFH9acDOwHZJFlTVwUkeAbwjye3ATOCt/SbPGnEOBU4jSdam2zjxcroLK69BNyT4uqq6bHiVSZLGLbKB89OBzwP7A48AHg98v6o+1F+GbF3gd1V19uDjNLoMVlPMkn6x+kt63J5kPbqJjw8EtgAOcPM4SRoN/fX9Hgl8u6ruSPJSYOOqen9/LcCZwPvptlX48BBL1QoyWE0hi3zLmQ0EuLOqTu7bxsPVKv1FOdesqhuHWbMk6S793+5fAVfSbf65Ld3O6s+tqt/0KwOPpZtndWJVfWFoxWqFuI/VFDIQqval269qS+CjSd7SH7+9/6UcT8te+0+SRkhVfRW4mm7F9k7AqXRTOD7cz6t6DN21MX8FbDykMjUBTl6fAhbpqbo3sAuwV1X9NMkJwDeS/LmqPja4DNexeEkaDYN/x6vquiRnAs8D/gJ8hW4E4rN0vVj7AI8Dnttfwul2/55PHQarKaTvqboY+CVwn37I7zdJ9gd2HW51kqQl6Vf/PQN4NPCtqjo6yZ/pLtF0Z1UdmuRj/elbAwcDL6qq24ZUslaQQ4EjLMmW8H+/kC+mW477c+Ba4A1015EC2BRYo78gpyRpRIxfeinJE+mG/54BvCXJK6vqOOBrwEuT7ALcAtwbeDLdnlY/H1LZmgAnr4+oJNsBR9F1B28EHAZcWlWv6Y8fQ7cM90a6uVYvd/WfJI2eJFsDhwBvqarzkuxKF57O73uudgMurKqf9eevVlV/GWLJmgCHAkdQkhl0XcH/CmxFt/z2DGB2khdU1X9X1T/134BWpdsM9PKhFSxJujvrAM+hu6zYecCJwJ30c6iq6mNw1zwsQ9XUZrAaQf3qvkuBf6G74Oyz6LqIb6bbRf2Oqjqlqn40zDolSUtXVaf20znem+R3VXVckhPpvhj/bOA8h5CmAYPV6DqPbruEG4C1q+r3Sb5M9y1nzyS3VtXpQ61QkrRMqurk/vI0/9YP9R0LHDfsutSec6xGxCJbKqwG3NHvynsA3RXO31FVP+mvA7gD8LWqmj/EkiVJyynJC4H30Q0NXj24RY6mB4PVCFgkVO1PN6/qBuCdVXVLkoOAJwLvq6ofJFm1qu4YYsmSpBWUZKyqFg67Dk0Og9UISfLPwEuA3YFzgG8CB1fVpUneDTwM2LuqbhlimZIkaQkMViMiyVrA4XQrAXcGdgQW0G218OqquiTJ+lV17RDLlCRJd8NgNUKSrA48AvhQVT2r31huIfAJumFBd+CVJGmEuSpwhFTVrUluAmYkeTTwYOB04BOGKkmSRp89ViOm77V6Pd2KkQcCO1fVhUMtSpIkLROD1Qjqr2b+ALoLc1417HokSdKyMVhJkiQ1ssqwC5AkSZouDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpkf8PwQ8MlHUQ3OMAAAAASUVORK5CYII=", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAJZCAYAAABoaLenAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZx0lEQVR4nO3dd5glZZn///eHIUnWBROCIKKAIAMiomJGZA1gQFFxlTVgWuMuij8UEXXFtGv265gwoCIYQEXAVRFFEIY0BFFYxFVRMIEgkmbu3x9VDWd6eronNVXV/X5d17m6znPqVN3ndLrPXU9IVSFJkiT13WpdByBJkiQtCxNXSZIkDYKJqyRJkgbBxFWSJEmDYOIqSZKkQTBxlSRJ0iCYuEqSJGm5JdkryS+SXJbk4Ake3zzJD5Ocm2RBkieu9Dmdx1WSJEnLI8kc4JfA44HfAmcBz6mqi0f2mQecW1UfT7IdcEJVbbEy57XiKkmSpOW1K3BZVV1eVTcDXwH2GbdPARu02xsCV67sSVdf2QNIkiRp1tkU+M3I/d8CDxm3z2HAyUleBawL7LGyJzVx7aFb/nR57/tv3Omej+g6hCmdd6+dug5hUlf9fd2uQ5jSGlnUdQhT+vfVruo6hCm9aM7mXYcwqSvn9P5PDldxc9chTOletWbXIUzprgvTdQhT+t3q/f55PPyKo3rxJk53rrDmJlu9FDhwpGleVc1bzsM8Bziyqt6f5KHAF5JsX1Ur/M/FxFWSJEmLaZPUyRLV3wGbjdy/V9s26kXAXu3xTk+yNrAxcPWKxmUfV0mSpKFZtHB6b1M7C9g6yZZJ1gSeDRw/bp//Ax4HkGRbYG3gjyvzsk1cJUmStFyq6lbg34CTgJ8DX62qi5IcnmTvdrd/B16S5Hzgy8ABtZLTWdlVQJIkaWhWvJvoqguh6gTghHFth45sXww8fFWe08RVkiRpaBZ1n7h2wa4CkiRJGgQrrpIkSQOzEjNKDZoVV0mSJA2CFVdJkqShsY+rJEmS1F9WXCVJkobGPq6SJElSf1lxlSRJGpplW5Z1xrHiKkmSpEGw4ipJkjQ09nHtryTXdx3DmKliSbJRklfcUfFIkiTNFr1JXNPoTTwrYSPAxFWSJE2fRYum99ZTnSaKSbZI8osknwcuBN6S5KwkC5K8bSnPOWiifZJ8M8nZSS5KcmDbNifJkUkuTHJBkte17VslObHd/8dJtpkkxi2TnN4+/x0j7esl+X6Sc9rH9mkfOgLYKsl5Sd47WcySJEladn3o47o18AJgA2BfYFcgwPFJHllVp47tmGTPdv+J9nlhVf0lyZ2As5J8DdgC2LSqtm+fv1F7qHnAy6rq0iQPAT4GPHYp8X0Q+HhVfT7JK0fabwSeVlV/S7IxcEaS44GDge2rau4yxCxJkrTcyj6unfl1VZ0B7NnezgXOAbahSfhGTbbPq5OcD5wBbNa2Xw7cJ8mHk+wF/C3JesDDgGOSnAd8ArjHJPE9HPhyu/2FkfYA/5lkAfA/wKbA3SZ4/rK8LpIcmGR+kvmf+vyXxz8sSZI06/Wh4vr39muAd1XVJybZd8J9kjwa2AN4aFXdkOQUYO2q+muSHYEnAC8DngW8FrhmrCK6jGqCtv2BTYAHVdUtSa4A1l7WmJc4QdU8mkowt/zp8onOJ0mS1OhxP9Tp1IeK65iTgBe2FVGSbJrkrsu4z4bAX9ukdRtgt/bxjYHVquprwJuBnavqb8Cvkjyz3Sdtcrs0pwHPbrf3H2nfELi6TVofA9y7bb8OWH85X5ckSZKm0IeKKwBVdXKSbYHTkwBcDzwPuHoZ9jkReFmSnwO/oOkuAM3l+8+OzFbwpvbr/sDHk7wZWAP4CnD+UkJ7DfClJG8EjhtpPwr4VpILgPnAJW2Mf05yWpILge9W1UFTvS5JkqTlMkv7uKbKq9J9M4SuAne65yO6DmFK591rp65DmNRVf1+36xCmtEb6/4fx31e7qusQpvSiOZt3HcKkrpzT+z85XMXNXYcwpXvVml2HMKW7LkzXIUzpd6v3++fx8CuO6sWbeNMvfzKtb9Ra99u9F69zvN5UXCVJkrSMFi3sOoJOmLi2khwCPHNc8zFV9c4u4pEkSVqqWdpVwMS11SaoJqmSJEk9ZeIqSZI0NE6HJUmSJPWXFVdJkqShmaV9XK24SpIkaRCsuEqSJA2NfVwlSZKk/rLiKkmSNDBVs3MBAiuukiRJGgQrrpIkSUPjrAKSJElSf1lxlSRJGhpnFZAkSZL6y4prD93pno/oOoQp/ePKH3cdwpQO2eWQrkOY1KVrXd91CFN6OBt2HcKUPr/Wel2HMKUP3HJT1yFMaoeFa3UdwpSecEt1HcIy6Pf3GeD0NdfuOoQpbXlLug5hGOzjKkmSJPWXFVdJkqShWeQ8rpIkSVJvWXGVJEkaGvu4SpIkSf1lxVWSJGloZuk8riaukiRJQ2NXAUmSJKm/rLhKkiQNzSztKmDFVZIkSYNgxVWSJGlorLhKkiRJ/WXFVZIkaWCqXPJVkiRJ6i0rrpIkSUNjH9fZJ8n103DMuUmeOHL/sCT/sarPI0mSNNtYcV315gK7ACd0HIckSZqpXDlrdktyUJKzkixI8ra2bYskP0/yySQXJTk5yZ3axx7c7ntekvcmuTDJmsDhwH5t+37t4bdLckqSy5O8uqOXKEmSNGgmrkCSPYGtgV1pKqYPSvLI9uGtgY9W1QOAa4BntO2fBV5aVXOBhQBVdTNwKHB0Vc2tqqPbfbcBntAe/61J1pju1yRJkmawRYum99ZTJq6NPdvbucA5NInm1u1jv6qq89rts4EtkmwErF9Vp7ftX5ri+N+pqpuq6k/A1cDdVmHskiRJs4J9XBsB3lVVn1isMdkCuGmkaSFwpxU4/vhjLPG+JzkQOBAgczZktdXWXYHTSJKkWcE+rrPaScALk6wHkGTTJHdd2s5VdQ1wXZKHtE3PHnn4OmD95Q2gquZV1S5VtYtJqyRJ0pKsuAJVdXKSbYHTkwBcDzyPtu/qUrwI+GSSRcCPgGvb9h8CByc5D3jXtAUtSZJmrx73Q51Oszpxrar1RrY/CHxwgt22H9nnfSPtF1XVAwGSHAzMb/f5C/DgSc65/dIekyRJ0tLN6sR1JT0pyZto3sNfAwd0G44kSZo1ZmkfVxPXFdROdXX0lDtKkiRplTBxlSRJGhr7uEqSJGkQZmni6nRYkiRJGgQrrpIkSUMzSwdnWXGVJEnSIFhxlSRJGhr7uEqSJEn9ZeIqSZI0NLVoem/LIMleSX6R5LJ2FdGJ9nlWkouTXJTkSyv7su0qIEmSpOWSZA7wUeDxwG+Bs5IcX1UXj+yzNfAm4OFV9dckd13Z85q4SpIkDU33fVx3BS6rqssBknwF2Ae4eGSflwAfraq/AlTV1St7UrsKSJIkaTFJDkwyf+R24LhdNgV+M3L/t23bqPsB90tyWpIzkuy1snFZcZUkSRqaaZ7HtarmAfNW8jCrA1sDjwbuBZyaZIequmZFD2jFVZIkScvrd8BmI/fv1baN+i1wfFXdUlW/An5Jk8iuMBNXSZKkoVm0aHpvUzsL2DrJlknWBJ4NHD9un2/SVFtJsjFN14HLV+Zl21Wgh867105dhzClQ3Y5pOsQpvTO+e/sOoRJfXOHt3QdwpT+PIC/EK+9sboOYUpPzFpdhzCphek6gqkdvfacrkOY0gb0P8bNbu06gqltWzd0HYKWQVXdmuTfgJOAOcBnquqiJIcD86vq+PaxPZNcDCwEDqqqP6/MeQfwb0mSJEmL6X5WAarqBOCEcW2HjmwX8Pr2tkrYVUCSJEmDYMVVkiRpaKr/3aSmgxVXSZIkDYIVV0mSpKHpQR/XLlhxlSRJ0iBYcZUkSRoaK66SJElSf1lxlSRJGpqanRVXE1dJkqShsauAJEmS1F9WXCVJkobGBQgkSZKk/rLiKkmSNDT2cZUkSZL6y8R1nCRbJLlwBZ7305HnP3fVRyZJktRatGh6bz1l4rqSkqwOUFUPa5u2AExcJUmSVrHBJa5tRfOSJEcl+XmSY5Osk+RxSc5NckGSzyRZq93/iiTvadvPTHLftv3IJPuOHPf6pZzrx0nOaW8Pa9sf3bYfD1w87vlHAI9Icl6S1yU5NcnckWP+JMmO0/X+SJKkWaAWTe+tpwaXuLbuD3ysqrYF/ga8HjgS2K+qdqAZdPbykf2vbds/AnxgOc5zNfD4qtoZ2A/40MhjOwOvqar7jXvOwcCPq2puVf038GngAIAk9wPWrqrzlyMGSZIkMdzE9TdVdVq7/UXgccCvquqXbdvngEeO7P/lka8PXY7zrAF8MskFwDHAdiOPnVlVv1qGYxwDPDnJGsALaRJsSZKkFVaLalpvfTXUxHX8O3rNcuw/tn0r7etPshqw5gTPex1wFbAjsMu4ff6+TIFW3QB8D9gHeBZw1ET7JTkwyfwk84/52/8ty6ElSZJmlaEmrpsnGaucPheYD2wx1n8V+BfgRyP77zfy9fR2+wrgQe323jTV1fE2BH5fVYvaY85ZhtiuA9Yf1/Ypmm4GZ1XVXyd6UlXNq6pdqmqXZ26w+TKcRpIkzVrOKjAovwBemeTnwJ2B/wb+FTimvay/CPh/I/vfOckC4DU0VVSATwKPSnI+TfeBiSqoHwNe0O6zzVL2GW8BsDDJ+UleB1BVZ9P0xf3s8r1MSZIkjRnqylm3VtXzxrV9H9hpKfu/t6reONpQVVcBu400vbFtvwLYvt2+FHjgBPucApwy7njrtV9vAR47+liSe9J8SDh50lclSZK0LHo88n86DbXiOhhJng/8DDik7XIgSZKkFTC4iutoRXQZ999i2oJZtvN/Hvh8lzFIkqQZpscj/6eTFVdJkiQNwuAqrpIkSbNej0f+TycrrpIkSRoEK66SJElDM0srriaukiRJQ1MOzpIkSZJ6y4qrJEnS0MzSrgJWXCVJkjQIVlwlSZKGxgUIJEmSpP6y4ipJkjQ0ZR9XSZIkqbesuEqSJA2NfVwlSZKk/rLi2kNX/X3drkOY0qVrXd91CFP65g5v6TqEST31grd3HcKU3v+gQ7sOYUo7585dhzClW3reFe2S1W7sOoQpbV5rdR3ClM6qa7sOYUq/Wb3/7+Oat6zTdQiT2q3rAFrlPK6SJElSf1lxlSRJGhr7uEqSJEn9ZcVVkiRpaJzHVZIkSeovK66SJElDYx9XSZIkqb+suEqSJA2N87hKkiRJ/WXFVZIkaWhmaR9XE1dJkqShcTosSZIkqb+suEqSJA3NLO0qYMVVkiRJg2DFVZIkaWDK6bD6I8lhSf6jb+dPcs8kx7bbj07y7XZ77yQHt9tPTbLdHRuxJEnSzGfFdTlU1ZXAvhO0Hw8c3959KvBt4OI7LjJJkjSr2Me1W0kOSfLLJD8B7t+2vSTJWUnOT/K1JOu07Ucm+VCSnya5PMm+I8d5Y5IL2ucc0bZtleTEJGcn+XGSbdr2pyT5WZJzk/xPkruNhLRjktOTXJrkJe3+WyS5cILYD0jykSQPA/YG3pvkvPa854zst/XofUmSJC27XlRckzwIeDYwlyamc4Czga9X1Sfbfd4BvAj4cPu0ewC7A9vQVDuPTfLPwD7AQ6rqhiR3afedB7ysqi5N8hDgY8BjgZ8Au1VVJXkx8Abg39vnPBDYDVgXODfJd6Z6HVX10yTHA9+uqrEuBdcmmVtV5wH/Cnx2Rd4jSZKk28zSimsvElfgEcA3quoGgDb5A9i+TVg3AtYDThp5zjerahFw8UildA/gs2PHqaq/JFkPeBhwTJKx567Vfr0XcHSSewBrAr8aOf5xVfUP4B9JfgjsCpy3Aq/tU8C/Jnk9sF97nCUkORA4EOC16z+IJ99pqxU4lSRJ0szVm64CS3Ek8G9VtQPwNmDtkcduGtkOS7cacE1VzR25bds+9mHgI+3xXzru+OM/yqzoR5uvAf8MPBk4u6r+PNFOVTWvqnapql1MWiVJ0qRq0fTeeqovieupwFOT3CnJ+sBT2vb1gd8nWQPYfxmO8z2a6uZYX9i7VNXfgF8leWbbliQ7tvtvCPyu3X7BuGPtk2TtJP8EPBo4axlfy3Vt3ABU1Y00leKPYzcBSZKkFdaLxLWqzgGOBs4HvsvtSeJbgJ8BpwGXLMNxTqTp7zo/yXnA2JRW+wMvSnI+cBFNP1iAw2i6EJwN/Gnc4RYAPwTOAN7eziiwLL4CHNQO+BornR4FLAJOXsZjSJIkLd2imt5bT/WljytV9U7gnRM89PEJ9j1g3P31RraPAI4Y9/ivgL0mOM5xwHETtB+2lBivALZvt08BTmm3j6Tp1kBVnQaMn8d1d5q+twsnOq4kSZKm1pvEdaZK8g1gK5pZDCRJklZa9bgqOp1MXKdZVT2t6xgkSZJmAhNXSZKkoZmlFddeDM6SJEmSpmLiKkmSNDSLFk3vbRkk2SvJL5JcluTgSfZ7RpJKssvKvmwTV0mSJC2XJHOAj9IssrQd8Jwk42dVop2f/zU005uuNBNXSZKkoel+Htddgcuq6vKquplmHvt9Jtjv7cC7gRtXxcs2cZUkSRqa7hPXTYHfjNz/bdt2myQ7A5tV1XdW1cs2cZUkSdJikhyYZP7I7cDlfP5qwH8B/74q43I6LEmSpIGpmt7psKpqHjBvkl1+B2w2cv9ebduY9WlWGz0lCcDdgeOT7F1V81c0LiuukiRJWl5nAVsn2TLJmsCzgePHHqyqa6tq46raoqq2AM4AVippBSuukiRJw9PxAgRVdWuSfwNOAuYAn6mqi5IcDsyvquMnP8KKMXGVJEnScquqE4ATxrUdupR9H70qzmniKkmSNDQu+SpJkiT1lxVXSZKkgalZWnE1ce2hNbJsawR36eFs2HUIU/pzz3+63/+gCbsB9cq/n3141yFM6SE7PL/rEKb0+LU2m3qnDj38lrW7DmFKp62xShbdmVbPvaX/fxdPXfOWrkOY0mVr9P9/oLrT83/tkiRJWsIsrbjax1WSJEmDYMVVkiRpaGZpjworrpIkSRoEK66SJEkDM1tnFbDiKkmSpEGw4ipJkjQ0VlwlSZKk/rLiKkmSNDTOKiBJkiT1lxVXSZKkgXFWAUmSJKnHrLhKkiQNzSzt42riKkmSNDB2FZAkSZJ6bFYlrklem2SdkfsnJNmow5AkSZKW36JpvvXUrEpcgdcCtyWuVfXEqrqms2gkSZK0zDpNXJN8M8nZSS5KcmDbtleSc5Kcn+T7bdtd2n0XJDkjyQPb9sOS/MfI8S5MskWSdZN8pz3GhUn2S/Jq4J7AD5P8sN3/iiQbt9vPb49/fpIvtG1HJvlQkp8muTzJviPnOijJWe1z3ta2LXHetv2IJBe3+77vjnhvJUnSzFWLpvfWV10PznphVf0lyZ2As5IcB3wSeGRV/SrJXdr93gacW1VPTfJY4PPA3EmOuxdwZVU9CSDJhlV1bZLXA4+pqj+N7pzkAcCbgYdV1Z9GzgtwD2B3YBvgeODYJHsCWwO7AgGOT/JIYJPx503yT8DTgG2qquyaIEmStGK67irw6iTnA2cAmwEHAqdW1a8Aquov7X67A19o234A/FOSDSY57gXA45O8O8kjquraKeJ4LHDMWEI7cl6Ab1bVoqq6GLhb27ZnezsXOIcmqd16Kee9FrgR+HSSpwM3TBRAkgOTzE8y//gbLp8iXEmSNKvZx/WOleTRwB7AQ6tqR5ok8LzlPMytLP4a1gaoql8CO9Mkku9IcuhKhHrTyHZGvr6rqua2t/tW1acnOm9V3UpTmT0WeDJw4kQnqap5VbVLVe2y9zr3WYlwJUmSZqYuK64bAn+tqhuSbAPsRpN4PjLJltD0bW33/TGwf9v2aOBPVfU34AqaRJEkOwNjz7sncENVfRF479g+wHXA+hPE8gPgme1lfcZ1FZjIScALk6zX7r9pkrtOdN52nw2r6gTgdcCOy/b2SJIkTcw+rne8E4GXJfk58Aua7gJ/pOku8PUkqwFXA48HDgM+k2QBzaX2F7TH+Brw/CQXAT8Dftm27wC8N8ki4Bbg5W37PODEJFdW1WPGAqmqi5K8E/hRkoU01d8DlhZ4VZ2cZFvg9CQA1wPPA+47wXnXB45LsjZNpfb1K/BeSZIkzXqdJa5VdRPwz0t5+Lvj9v0L8NQJjvEPmr6m411BUxUdv/+HgQ+P3N9iZPtzwOfG7X/AuPvrjWx/EPjguFP870TnpekqIEmStGr0uCo6nboenCVJkiQtk66nw5IkSdJy6nM/1OlkxVWSJEmDYMVVkiRpYKy4SpIkST1mxVWSJGlgrLhKkiRJPWbFVZIkaWgqU+8zA1lxlSRJ0iBYcZUkSRqY2drH1cRVkiRpYGqRXQUkSZKk3rLiKkmSNDCztauAFVdJkiQNghVXSZKkgSmnw5IkSZL6y4prD/37ald1HcKUPr/Wel2HMKXX3lhdhzCpnXPnrkOY0kN2eH7XIUzpZxd8vusQpvT1Hd7SdQiTunKNriOY2ke/8/KuQ5jSB5/42a5DmNITb5zTdQhTWrDW7KwkLi/7uEqSJEk9ZsVVkiRpYJzHVZIkSeoxK66SJEkDU/0exjFtrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQwziogSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqdlZcTVwlSZIGphZ1HUE37CqwCiTxA4AkSdI0m5WJa5LnJTkzyXlJPpFkTpLrk7wzyflJzkhyt3bfTZJ8LclZ7e3hbfthSb6Q5DTgC+1+30tyUZJPJfl1ko2THJ7ktSPnfmeS13TzyiVJ0kywqDKtt76adYlrkm2B/YCHV9VcYCGwP7AucEZV7QicCrykfcoHgf+uqgcDzwA+NXK47YA9quo5wFuBH1TVA4Bjgc3bfT4DPL8992rAs4EvTtsLlCRJmqFm4yXuxwEPAs5KAnAn4GrgZuDb7T5nA49vt/cAtmv3BdggyXrt9vFV9Y92e3fgaQBVdWKSv7bbVyT5c5KdgLsB51bVn6frxUmSpJnPwVmzR4DPVdWbFmtM/qPqtnUoFnL7e7MasFtV3Thuf4C/L+M5PwUcANydpgK7ZFDJgcCBAPfe8L5sss49lvHQkiRJs8Os6yoAfB/YN8ldAZLcJcm9J9n/ZOBVY3eSzF3KfqcBz2r32RO488hj3wD2Ah4MnDTRk6tqXlXtUlW7mLRKkqTJ1KJM662vZl3iWlUXA28GTk6yAPgeMFmm+GpglyQLklwMvGwp+70N2DPJhcAzgT8A17XnvBn4IfDVqlq4al6JJEnS7DIbuwpQVUcDR49rXm/k8WNpBlhRVX+iGcw1/hiHjWu6FnhCVd2a5KHAg6vqJrhtUNZuNAmtJEnSSrmtc+MsMysT12myOfDVNkm9mXZWgiTb0Qz6+kZVXdphfJIkSYNm4rqKtEnpThO0Xwzc546PSJIkzVR96IeaZC+aaUPnAJ+qqiPGPf564MXArcAfgRdW1a9X5pyzro+rJEmSVk6SOcBHgX+mmdf+Oe1V5lHnArtU1QNpumC+Z2XPa8VVkiRpYHqwutWuwGVVdTlAkq8A+wAXj+1QVT8c2f8M4Hkre1IrrpIkSVpemwK/Gbn/27ZtaV4EfHdlT2rFVZIkaWCme+Ws0YWRWvOqat4KHut5wC7Ao1Y2LhNXSZIkLaZNUidLVH8HbDZy/15t22KS7AEcAjxqbJrQlWHiKkmSNDA9mMf1LGDrJFvSJKzPBp47ukOSnYBPAHtV1dWr4qT2cZUkSdJyqapbgX+jWcr+5zSrg16U5PAke7e7vZdmgadjkpyX5PiVPa8VV0mSpIHpwawCVNUJwAnj2g4d2d5jVZ/TiqskSZIGwYqrJEnSwEz3rAJ9ZeIqSZI0MD0YnNUJuwpIkiRpEKy4SpIkDUwfBmd1wYqrJEmSBsGKaw+9aM7mXYcwpQ/cstKLX0y7J2atrkOY1C2Luo5gao9fa7Opd+rY13d4S9chTOnpF7y96xAm9dUHHjr1Th37ryd+tusQpvSP9L/T4W/WmNN1CFPaYAB/G/tgtg7OsuIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwPS/R/X0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGZrYuMGbFVZIkSYNgxVWSJGlgCvu4SpIkSb1lxVWSJGlgFs3SpbOsuEqSJGkQpkxck/x0RQ6c5KlJtluR506HJBslecUy7nv9dMcjSZK0ohaRab311ZSJa1U9bAWP/VRgwsQ1SRddFDYClilxlSRJUv8sS8X1+vbro5OckuTYJJckOSpJ2seOSHJxkgVJ3pfkYcDewHuTnJdkq/a5H0gyH3hNkiOT7LuU8/woyXFJLm+PvX+SM5NckGSrdr9NknwtyVnt7eFt+2FJPtOe7/Ikr25PcQSwVRvPe5Osl+T7Sc5pj7vPBK99stf8oDbOs5OclOQebfurR96Lr7Rtj2rPe16Sc5Osv4LfL0mSJIpM662vlrfyuRPwAOBK4DTg4Ul+DjwN2KaqKslGVXVNkuOBb1fVsQBtvrdmVe3S3j9ykvPsCGwL/AW4HPhUVe2a5DXAq4DXAh8E/ruqfpJkc+Ck9jkA2wCPAdYHfpHk48DBwPZVNbc9/+rA06rqb0k2Bs5IcnxVje/uPNFr/hnwYWCfqvpjkv2AdwIvbM+zZVXdlGSj9hj/Abyyqk5Lsh5w49RvtSRJ0sRm6wIEy5u4nllVvwVIch6wBXAGTSL26STfBr49yfOPXsbznFVVv2/P87/AyW37BTQJKcAewHZtQgywQZsUAnynqm4CbkpyNXC3Cc4R4D+TPJLm+79pu98fxu030Wu+Btge+F57/jnA79v9FwBHJfkm8M227TTgv5IcBXx97HiSJEladss7q8BNI9sLgdWr6lZgV+BY4MnAiZM8/+8j27eOnT/JasCaSznPopH7i7g92V4N2K2q5ra3Tavq+gmev5CJE/T9gU2AB7VV2KuAtSfYb6JjBbho5Nw7VNWe7T5PAj4K7AyclWT1qjoCeDFwJ+C0JNuMP0mSA5PMTzL/x9dfOkEYkiRJjdnaVWClp8Nqq5wbVtUJwOtoLvMDXEdzqX5prgAe1G7vDayxnKc+mabbwFgcc6fYf3w8GwJXV9UtSR4D3Hs5zv0LYJMkD23PvUaSB7QJ+GZV9UPgje051kuyVVVdUFXvBs6i6cqwmKqaV1W7VNUuj1hv6+UIRZIkaXZYFaP71weOS7I2TSXy9W37V4BPtoOj9p3geZ9sn3c+TZX27xPsM5lXAx9NsoDmdZwKvGxpO1fVn5OcluRC4LvAu4FvJbkAmA9csqwnrqqb24FlH0qyYXv+DwC/BL7YtgX4UNvf9+1tcrwIuKg9vyRJ0gqZrX1cs+RYJHXt/232vN5/U86dc9PUO3Vsu0VrdR3CpG7pOoBl8MfVFnYdwpR2vqn/66g8/YK3dx3CpL76wEO7DmFK/7e81+Q68I/0/k83d1/Y30vAY/r+V+dVv/liL97EE+/27Gn9gdvrqq/04nWO55KvkiRJAzNbK679L1VIkiRJWHGVJEkanD6P/J9OVlwlSZI0CFZcJUmSBmbR7Cy4WnGVJEnSMFhxlSRJGphF9nGVJEmS+suKqyRJ0sD0f7mL6WHFVZIkSYNgxVWSJGlgXDlLkiRJ6jErrpIkSQOzKM4qIEmSJPWWFVdJkqSBma2zCpi4SpIkDcxsHZxl4tpDV87p/+eoHRau1XUIU1rY8+4/l6x2Y9chTOnht6zddQhTunKNriOY2lcfeGjXIUzqWQsO7zqEKR2yyyFdhzClHW+e03UIU7pijf7/f7l73/94q1MmrpIkSQOzaJbm9w7OkiRJ0iBYcZUkSRqYRczOkqsVV0mSJA2CFVdJkqSB6f8wu+lhxVWSJEmDYMVVkiRpYJxVQJIkSeoxK66SJEkDM1tXzrLiKkmSpEGw4ipJkjQwziogSZIk9ZgVV0mSpIFxVgFJkiSpx6y4SpIkDYyzCswwSa5vv94zybFdxyNJkqSVM+MrrlV1JbBv13FIkiStKlZcZ6gkWyS5sN0+I8kDRh47JckuSdZN8pkkZyY5N8k+7eMHJPl6khOTXJrkPSPP3TPJ6UnOSXJMkvXa9iOSXJxkQZL3tW3PTHJhkvOTnHrHvgOSJEkzw4yvuI5zNPAs4K1J7gHco6rmJ/lP4AdV9cIkGwFnJvmf9jlzgZ2Am4BfJPkw8A/gzcAeVfX3JG8EXp/ko8DTgG2qqtpjARwKPKGqfjfSJkmStELKWQVmha9ye7eBZwFjfV/3BA5Och5wCrA2sHn72Per6tqquhG4GLg3sBuwHXBa+5wXtO3XAjcCn07ydOCG9hinAUcmeQkwZ6LAkhyYZH6S+edcd9mqebWSJGlGWjTNt76aVYlrVf0O+HOSBwL70VRgAQI8o6rmtrfNq+rn7WM3jRxiIU2VOsD3RvbfrqpeVFW3ArvSJMRPBk5sz/symgrtZsDZSf5pgtjmVdUuVbXLzuvfd5W/dkmSpKGbVYlr62jgDcCGVbWgbTsJeFWSACTZaYpjnAE8PMl92/3XTXK/tp/rhlV1AvA6YMf28a2q6mdVdSjwR5oEVpIkaYX0oeKaZK8kv0hyWZKDJ3h8rSRHt4//LMkWK/hybzMbE9djgWfTdBsY83ZgDWBBkova+0tVVX8EDgC+nGQBcDqwDbA+8O227SfA69unvDfJBe0gsZ8C56+6lyNJknTHSjIH+CjwzzTdJ5+TZLtxu70I+GtV3Rf4b+DdK3veGTs4q6rWa79eAWw/0n4V4153Vf0DeOkExzgSOHLk/pNHtn8APHiCU+86wXGevpzhS5IkLVV1HUCT71xWVZcDJPkKsA/NeKAx+wCHtdvHAh9Jkqpa4fBnY8VVkiRJkxgdNN7eDhy3y6bAb0bu/7Ztm3CfdhzQtcAS43yWx4ytuEqSJM1Ui6Z5OqyqmgfMm96zLD8rrpIkSVpev2Pxweb3atsm3CfJ6sCGwJ9X5qQmrpIkSQPTg1kFzgK2TrJlkjVpBr4fP26f42nmuodmHv0frEz/VrCrgCRJkpZTVd2a5N9ophSdA3ymqi5Kcjgwv6qOBz4NfCHJZcBfaJLblWLiKkmSNDB9WN2qnbf+hHFth45s3wg8c1We064CkiRJGgQrrpIkSQPTg3lcO2HFVZIkSYNgxVWSJGlgpnse176y4ipJkqRBsOIqSZI0MH2YVaALVlwlSZI0CFZcJUmSBsZZBSRJkqQes+IqSZI0MItmac3VxLWHruLmrkOY0hNu6f8vzNFrz+k6hEltXmt1HcKUTlvjxq5DmNJHv/PyrkOY0n898bNdhzCpQ3Y5pOsQpvTO+e/sOoQpHfGgt3QdwpTm3tT/IT2Xrdnvv9190f/v5PSwq4AkSZIGwYqrJEnSwPT/uuf0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwCxK1xF0w4qrJEmSBsGKqyRJ0sDM1gUIrLhKkiRpEKy4SpIkDczsrLdacZUkSdJAWHGVJEkaGOdxlSRJknrMiqskSdLAOKuAJEmS1GMzJnFNcv0qOs6jk3x7VRxLkiRpOtQ03/pqxiSukiRJmtlmXOKaxnuTXJjkgiT7te2LVVKTfCTJAe32XkkuSXIO8PSRfQ5L8pkkpyS5PMmrRx57XpIzk5yX5BNJ5rS3I0fO/bp231cnuTjJgiRfuaPeC0mSNDMtmuZbX83EwVlPB+YCOwIbA2clOXVpOydZG/gk8FjgMuDocbtsAzwGWB/4RZKPA/cF9gMeXlW3JPkYsD9wEbBpVW3fHnuj9hgHA1tW1U0jbZIkSVoOM67iCuwOfLmqFlbVVcCPgAdPsv82wK+q6tKqKuCL4x7/TlXdVFV/Aq4G7gY8DngQTVJ8Xnv/PsDlwH2SfDjJXsDf2mMsAI5K8jzg1omCSHJgkvlJ5v/8ustX4GVLkqTZYhE1rbe+momJ69LcyuKvd+1lfN5NI9sLaarUAT5XVXPb2/2r6rCq+itNpfcU4GXAp9rnPQn4KLAzTbK7RKW7quZV1S5Vtcu2699neV6XJEnSrDATE9cfA/u1/U03AR4JnAn8GtguyVrt5frHtftfAmyRZKv2/nOW4RzfB/ZNcleAJHdJcu8kGwOrVdXXgDcDOydZDdisqn4IvBHYEFhvlbxSSZI0K83WWQVmYh/XbwAPBc6nee/fUFV/AEjyVeBC4FfAuQBVdWOSA4HvJLmBJvFdf7ITVNXFSd4MnNwmprcArwT+AXy2bQN4EzAH+GKSDWkqtR+qqmtW4euVJEmzTJ8HUE2nGZO4VtV67dcCDmpv4/d5A/CGCdpPpOnrOr79sHH3tx/ZPpolB3JB0x1gvN0nj16SJElTmTGJqyRJ0mxRvb6gP31mYh9XSZIkzUBWXCVJkgZmtvZxteIqSZKkQbDiKkmSNDB9XiRgOllxlSRJ0iBYcZUkSRqY2VlvteIqSZKkgbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGpuzjKkmSJPWXFVdJkqSBsY+rJEmS1GNWXHvoXrVm1yEsg5u6DmBKGzCn6xAmdVZd23UIU3ruLRt2HcKUPvjEz3YdwpT+kX73Rdvx5n7/rgAc8aC3dB3ClA4+++1dhzClo3Y8tOsQprTebC0lLif7uEqSJEk9ZsVVkiRpYGZrYdrEVZIkaWAWlV0FJEmSpN6y4ipJkjQws7PeasVVkiRJA2HFVZIkaWAWzdKaqxVXSZIkDYIVV0mSpIFxAQJJkiSpx6y4SpIkDcxsXYDAiqskSZIGwYqrJEnSwDirgCRJktRjVlwlSZIGxlkFZpkkVyTZeIL2vZMc3EVMkiRJWrpZm7guTVUdX1VHdB2HJEnS0iya5tvKSHKXJN9Lcmn79c4T7DM3yelJLkqyIMl+y3LsXiSuSdZN8p0k5ye5MMl+bUX0PUkuSHJmkvu2+26S5GtJzmpvDx85xmfafc9Nsk/bPifJ+9rjLkjyqpFTvyrJOe05tmn3PyDJR9rtI5N8KMlPk1yeZN+RmA9qz78gyduW9jra9iOSXNzu+7475E2VJEnqxsHA96tqa+D77f3xbgCeX1UPAPYCPpBko6kO3Jc+rnsBV1bVkwCSbAi8G7i2qnZI8nzgA8CTgQ8C/11VP0myOXASsC1wCPCDqnph+8LPTPI/wPOBLYC5VXVrkruMnPdPVbVzklcA/wG8eILY7gHsDmwDHA8cm2RPYGtgVyDA8UkeCWwy/nUk+SfgacA2VVXL8k2RJEmaTFWv+7juAzy63f4ccArwxtEdquqXI9tXJrmaJo+6ZrID96LiClwAPD7Ju5M8oqqubdu/PPL1oe32HsBHkpxHk0hukGQ9YE/g4Lb9FGBtYPN2/09U1a0AVfWXkfN+vf16Nk1yO5FvVtWiqroYuFvbtmd7Oxc4hyap3Xopr+Na4Ebg00meTvMJYwlJDkwyP8n8+ddftvR3SpIkqd/uVlW/b7f/wO3504SS7AqsCfzvVAfuRcW1qn6ZZGfgicA7knx/7KHR3dqvqwG7VdWNo8dIEuAZVfWLce2Tnfqm9utClv5e3DSynZGv76qqT4zfefzrqKrD22/I44B9gX8DHjv+eVU1D5gH8PZ779/rj1GSJKlb0z2Pa5IDgQNHmua1ucrY4/8D3H2Cpx4yeqe92rzUYJPcA/gC8IKqmrJ7bS8qrknuCdxQVV8E3gvs3D6038jX09vtk4FXjTx3brt5Ek2f1bTtO7Xt3wNemmT1tn20q8CKOgl4YVvpJcmmSe460eto99mwqk4AXgfsuArOL0mSNG2qal5V7TJymzfu8T2qavsJbscBV7UJ6VhievVE50iyAfAd4JCqOmNZ4upFxRXYAXhvkkXALcDLgWOBOydZQFP1fE6776uBj7btqwOnAi8D3k7TD3ZBktWAX9H0if0UcL+2/Rbgk8BHVibYqjo5ybbA6W2efD3wPOC+E7yO9YHjkqxNU6l9/cqcW5IkaWVH/k+z44EXAEe0X48bv0OSNYFvAJ+vqmOX9cC9SFyr6iSaKuZt2oTwvVU1vjPvn7i9Ejva/g/gpRO030qTLL5+XPsWI9vzaTsRV9WRwJHt9gHjnrPeyPYHaQaKjfrf8a+jtesEbZIkSSuk5wsQHAF8NcmLgF8DzwJIsgvwsqp6cdv2SOCfkhzQPu+AqjpvsgP3InGVJEnSzFBVf6YZ2zO+fT7tDE5tt8ovLu+xe5u4jlZEJUmSdLvpHpzVV70YnCVJkiRNpbcVV0mSJE2s5wsQTBsrrpIkSRoEK66SJEkD0/PpsKaNFVdJkiQNghVXSZKkgen5PK7TxoqrJEmSBsGKqyRJ0sA4j6skSZLUY1ZcJUmSBsZ5XCVJkqQes+IqSZI0MPZxlSRJknrMimsP3XVhug5hSqevuXbXIUxps1u7jmByv1l9ra5DmNKpa97SdQhTeuKNc7oOYUq/WaPfMV6xRv8rN3Nv6v86QUfteGjXIUxp//MP7zqEKX19h7d0HcIgOI+rJEmS1GNWXCVJkgZmkbMKSJIkSf1lxVWSJGlgZme91cRVkiRpcJwOS5IkSeoxK66SJEkDY8VVkiRJ6jErrpIkSQNTToclSZIk9ZcVV0mSpIGxj6skSZLUY1ZcJUmSBqasuEqSJEn9ZcVVkiRpYJxVYJZJslGSV3QdhyRJkpbNrE1cgY0AE1dJkjQ4i6hpvfXVbE5cjwC2SnJekvcmOSjJWUkWJHkbQJItklyS5Mgkv0xyVJI9kpyW5NIku7b7HZbkC0lOb9tf0ranPfaFSS5Isl+Hr1eSJGnQZnMf14OB7atqbpI9gX2BXYEAxyd5JPB/wH2BZwIvBM4CngvsDuwN/H/AU9vjPRDYDVgXODfJd4CHAnOBHYGNgbOSnFpVv78jXqAkSZqZ7OM6u+3Z3s4FzgG2AbZuH/tVVV1QVYuAi4DvV/PTcgGwxcgxjquqf1TVn4Af0iTBuwNfrqqFVXUV8CPgwXfEC5IkSZppZnPFdVSAd1XVJxZrTLYAbhppWjRyfxGLv3/jP/os10ehJAcCBwLsv9GuPGLdrad4hiRJmq363A91Os3miut1wPrt9knAC5OsB5Bk0yR3Xc7j7ZNk7ST/BDyaplvBj4H9ksxJsgnwSODMiZ5cVfOqapeq2sWkVZIkaUmztuJaVX9uB1ldCHwX+BJwehKA64HnAQuX45ALaLoIbAy8vaquTPINmn6u59NUYN9QVX9YhS9DkiTNQrN15axZm7gCVNVzxzV9cILdth/Z/4CR7StGHwMWVNXzxx2/gIPamyRJklbCrE5cJUmShmjRLJ1VwMR1Faiqw7qOQZIkaaYzcZUkSRoY+7hKkiRpEGZrV4HZPB2WJEmSBsSKqyRJ0sDM1q4CVlwlSZI0CFZcJUmSBsY+rpIkSVKPWXGVJEkaGPu4SpIkST1mxVWSJGlg7OMqSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqUdchdMLEtYd+t3r/y/9b3pKuQ5jStnVD1yFMas1b1uk6hCldtkb//zAuWKv/P4sb9PxtvPvC/r+Hl605p+sQprRez7/PAF/f4S1dhzClp1/w9q5DUI+ZuEqSJA3MIvu4SpIkSf1lxVWSJGlgynlcJUmSpP6y4ipJkjQw9nGVJEmSesyKqyRJ0sDM1j6uJq6SJEkDs2iWJq52FZAkSdIgWHGVJEkamHJwliRJktRfVlwlSZIGZrYOzrLiKkmSpEEwcZUkSRqYRdS03lZGkrsk+V6SS9uvd55k3w2S/DbJR5bl2CaukiRJWpUOBr5fVVsD32/vL83bgVOX9cAmrpIkSQNTVdN6W0n7AJ9rtz8HPHWinZI8CLgbcPKyHniVJ65JNkryinb7nkmOXdXnmOL8uyT50DQc96lJtlvVx5UkSZph7lZVv2+3/0CTnC4myWrA+4H/WJ4DT8esAhsBrwA+VlVXAvtOwzmWqqrmA/On4dBPBb4NXLysT0iyelXdOg2xSJKkWWy6V85KciBw4EjTvKqaN/L4/wB3n+Cph4zeqapKMlGwrwBOqKrfJlnmuKYjcT0C2CrJecClwLZVtX2SA2iSv3WBrYH3AWsC/wLcBDyxqv6SZCvgo8AmwA3AS6rqkolOlOSZwFuBhcC1VfXIJI8G/qOqnpxkE+BLwD2B04HHAw8C1gO+C/wEeBjwO2CfqvpHkpfQfKPWBC5r45sL7A08KsmbgWcAn27PMz/JxsD8qtqifZ1Pb88xJ8kTgQ8D2wNrAIdV1XEr/O5KkiRNszZJnTfJ43ss7bEkVyW5R1X9Psk9gKsn2O2hwCPaq/TrAWsmub6qJusPOy19XA8G/req5gIHjXtse5qk7sHAO4EbqmonmqTy+e0+84BXVdWDaMrHH5vkXIcCT6iqHWkSy/HeCvygqh4AHAtsPvLY1sBH28euoUlGAb5eVQ9uj/lz4EVV9VPgeOCgqppbVf87xXuwM7BvVT2K5pPHD6pqV+AxwHuTrDvF8yVJkpaq531cjwde0G6/AFiiYFdV+1fV5lW1BU2+9/mpkla44wdn/bCqrquqPwLXAt9q2y8AtkiyHk0F9Ji2YvsJ4B6THO804Mi2Sjpngsd3B74CUFUnAn8deexXVXVeu302sEW7vX2SHye5ANgfeMByvcLG96rqL+32nsDB7es5BVibxRNooCnJJ5mfZP451122AqeUJEnqhSOAxye5FNijvT82DulTK3PgO3rlrJtGtheN3F/UxrIacE1brZ1SVb0syUOAJwFnt6PTViSWhcCd2u0jgadW1fntZf9HL+X5t3J74r/2uMf+PrId4BlV9YvJghktyR+6xf6zczkMSZK0TFZ2rtXpVFV/Bh43Qft84MUTtB9Jk39NaToqrtcB66/IE6vqb8Cv2r6rpLHj0vZPslVV/ayqDgX+CGw2bpfTgGe1++4JLHUC3BHrA79PsgZNxXXM+Nd1BU1/WZh8ANpJwKvS9jxOstMyxCBJkqRxVnni2mbZpyW5EHjvChxif+BFSc4HLqKZC2xp3pvkgvZcPwXOH/f424A928efSTMlw3VTnP8twM9okt7RQWFfAQ5Kcm47gOx9wMuTnAtsPMnx3k4zKGtBkova+5IkSSus531cp036HNzKSrIWsLCqbk3yUODjy9oNoUtD6Cqw5S3LPnVFV7atG7oOYVI/zzpdhzCly9ZY1HUIU1qn+v+zuMGifse4Tu//4sDfBrBcznr9/3Vhg4X9/2Y//YJ+13fW2Pg+vfiF3mDd+0zrN/Nvf7+8F69zvDu6j+sdbXPgq+0ktzcDL+k4HkmSpJU23fO49tUgEtckh9Bc6h91TFW9c7LnVdWlgH1KJUmSZoBBJK5tgjppkipJkjRbVI9nFZhOg0hcJUmSdLvZ2lVgAN3dJUmSJCuukiRJgzOTZ4WajBVXSZIkDYIVV0mSpIGZrYOzrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQws7PeasVVkiRJA5HZ2kdiNklyYFXN6zqOyRjjqmGMK6/v8YExrip9j7Hv8YEx6o5nxXV2OLDrAJaBMa4axrjy+h4fGOOq0vcY+x4fGKPuYCaukiRJGgQTV0mSJA2CievsMIS+Pca4ahjjyut7fGCMq0rfY+x7fGCMuoM5OEuSJEmDYMVVkiRJg2DiKkmSpEEwcZUkSdIgmLjOcEl2T/Kv7fYmSbbsOqZRSeYkuWeSzcduXcc0KskOXceg6ZfkVUnu3HUck0mybpLV2u37Jdk7yRpdx7U0Se6c5IFdxzGZJKsl2aDrOIYmyd2SPLm93bXreJYmyZ2S3L/rOLRqmbjOYEneCrwReFPbtAbwxe4iWlySVwFXAd8DvtPevt1pUEv6WJIzk7wiyYZdBzNekrOTvLLPSVeS9yTZIMkaSb6f5I9Jntd1XOPcDTgryVeT7JUkXQc0gVOBtZNsCpwM/AtwZKcRjZPklPZ7fRfgHOCTSf6r67hGJflSG+O6wIXAxUkO6jquMX3/fUnyLOBM4JnAs4CfJdm326iWlOQpwHnAie39uUmO7zQorRImrjPb04C9gb8DVNWVwPqdRrS41wD3r6oHVNUO7a1XFZqqegSwP7AZcHb7T+/xHYc1aj/gnjRJ11eSPKGHSdeeVfU34MnAFcB9gd4kCgBV9WZga+DTwAHApUn+M8lWnQa2uFTVDcDTgY9V1TOBB3Qc03gbtt/rpwOfr6qHAHt0HNN427UxPhX4LrAlzYeAvuj778shwIOr6gVV9XxgV+AtHcc0kcNoYrsGoKrOo/lea+BMXGe2m6uZ76ygudTYcTzj/Qa4tusgplJVlwJvpqlePwr4UJJLkjy928igqi6rqkOA+wFfAj4D/DrJ29qqVx+s3n59EnBMVfXye97+rvyhvd0K3Bk4Nsl7Og3sdknyUJoPUt9p2+Z0GM9EVk9yD5pKXN+unoxZo+1i8VTg+Kq6hfZvZE/0/fdltaq6euT+n+lnLnHLBO9dn77PWkGrT72LBuyrST4BbJTkJcALgU91HBNJXt9uXg6ckuQ7wE1jj1dVby4ttn30/pXmn8j3gKdU1TlJ7gmcDny9y/hgsRifCHwNOArYHfgBMLe7yG7z7SSXAP8AXp5kE+DGjmNaTJLXAM8H/kTzO3JQVd3S9im9FHhDl/G1XkvT7ecbVXVRkvsAP+w2pCUcDpwE/KSqzmpjvLTjmMb7BE0l83zg1CT3Bv7WaUSL6/vvy4lJTgK+3N7fDzihw3iW5qIkzwXmJNkaeDXw045j0irgAgQzXHtZe08gwElV9b2OQxrre7s0VVWH32HBTCHJj2gSmWOr6h/jHvuXqvpCN5HdFsPZNJfCPg18rapuGnns61XVeVUYoK3+XltVC5OsA2xQVX/oOq4xSd4GfKaqfj3BY9tW1c87CGup2oR6vfaSslZSktWr6tau4xgzgN+Xp9N8OAb4cVV9o8t4JtK+b4fQ/P+D5gPVO6qqTx8CtAJMXGewJO+uqjdO1daVJM+sqmOmautSktdW1QfGtb2mqj7YUUiLSXKfqrp8XNuWVfWrrmIaL8kzgROr6rokbwZ2pvkHck7Hod1mKd0qrmsvI/dCki8BLwMWAmcBGwAfrKr3dhrYiLZbxTtoqoUnAg8EXldVfRoU+hrgs8B1NB9KdwIOrqqTOw2sNZDfl7sDDwEWAWf1KamGZrYa4H+q6jFdx6JVr4/9UrTqTDSI6J/v8CiW7k3L2Nal50/QdsAdHcQkjl3Gti69pf0nvDvNQJ1PAx/vOKbxzgH+CPyS5tL2H4ErkpyT5EGdRna7vg8qgv4PLAJ4YRvjnjT9mP8FOKLbkBbT69+XJC+mmVXgacC+wBlJXthtVIurqoXAoj7OBKOVZx/XGSjJy4FXAPdJsmDkofWB07qJ6nZJ/pmmP+amST408tAGNINiOpfkOcBzgS3HTaGyPvCXbqK6XZJtaEaUbzhukNgGwNrdRLVUC9uvTwLmVdV3kryjy4Am8D2a7iAnASTZE3gGTWXuYzTVpa6NDir6SNsHt2+XzJYYWNS/SS4YC+iJwBfa/sJ9CrLvvy8HATtV1Z8BkvwTTd/Rz3Qa1ZKuBy5I8j3amXUAqurV3YWkVcHEdWb6Ek1F5l3AwSPt11VV50kXcCUwn2aqrrNH2q8DXtdJREv6KfB7YGPg/SPt1wELJnzGHev+NFWtjYCnjLRfB7yki4Am8bt2kODjgXcnWYv+Xe3Zrapue9+q6uQk76uql7bx9kHfBxVB/wcWQTOt3ck0Fes3JVmf5pJ3X/T99+XPNH9nxlzXtvXN1+nB4FmtevZxnQXSrGxyWxWuqv6vw3Buk2SNPvUhHKIkD62q07uOYzLtIIm9gAuq6tJ2uqQd+tKnEKBNZL4PfKVt2o8mcdiLpg/fzl3FNpm+DSqCJQYWrQus36c+kO3AtrnA5VV1TVsx3LSq+vCBtPe/L0k+D+wAHEczvdQ+NB/mF0C/ZoXRzGTFdQZrVw75L5oJ6q8G7g38nP5MWn7OBJc6r6Wpxr5j7FJUF5L8pKp2T3Idi8/9F5qZDzpdJjLJG6rqPcBz224Ni+nT5bCquiHJ1TSjkC+l6Q7StymSngu8Ffgmzff7tLZtDs2cpJ1LcjfgP4F7VtU/J9kOeChNH8heaJOuVwCbAwfS/O25P/2a07WA7WiuWBwOrEuPutcM4Pflf9vbmOPar31a3IYkv2KCeVur6j4dhKNVyIrrDJbkfOCxNKMrd0ryGOB5VfWijkMDbhuBvJCmawPAs4F1aCaA372qnrK05852SZ5SVd9K8oKJHq+qz93RMS1NO/3ZLjSrpN2vnQP3mKp6eMehAbeNQP58Ve3fdSyTSfJdmj63h1TVjklWB86tqh06Du02SY6m6f7z/Kravk1kf1pVc7uN7HZJPk7TNeCxVbVtmuWST66qB3ccGtD/35ehaCvpY9amWaL2LlV1aEchaRWx4jqz3VJVf06yWpLVquqHST7QdVAj9hh3CfaCJOdU1c7pwdrcbUJzUVVt03Us41XVt9qvvUlQJ/E0mimHzoFm6eG2X2EvtJe0751kzaq6uet4JrFxVX01yZsAqurWJAunetIdbKuq2m/sKkBbPezTwCeAh7R/Y84FqKq/Jlmz66BG9Pr3JckuNPOj3puRHKL6t1z3+Ct2H0gz77WJ68CZuM5s1yRZDzgVOKq9/PT3KZ5zR5qTZNeqOhMgyYO5fQnLzvvttQnNL5Js3pd+wWOSfItJli+sqr3vwHCmcnNV1Vi3kPRv6WFoVnE7rZ1BYnQEcp/66/29rSKNvY+70b8lk29Ociduj3ErRlbF64lb2g+lYzFuQr8GZ/X99+UompkFLqBf79tikowWRVajqWKb88wAfhNntn1oRvS+jmZ98w1p+nT1xYuBz7TJdWhGSL+4/UP9rk4ju92daZYOPJPFE5quE8P3dXz+5THR0sOf7Dim8cb67a1Gz/rqjXg9cDywVZLTgE1o5tHsk7fSLDywWZKjgIfTr3mPAT4EfAO4a5J30ryHb+42pMX0/fflj1V1/NS7dW50NphbgV/Rk/7qWjn2cVXnxiaJrqq+VY9I8qiJ2qvqR3d0LEOWHi49PJEk61TVDV3HsTRtv9b707yPv+jjrBxtVXg3mhjPqKo/dRzSEtp5kB9HE+P3e7ikb29/X5I8DngOzSwct1XTq6pXU09lAKsKasWYuM5AE4yEX0zXI+LHtPMTPgPYgsX7SvWpKtxLSb5aVc9KcgETz3rQq/5mfZdkbHT+elW1eZIdgZdW1Ss6Dm0xSR7Gkr8vn+8soAkk2ZQl+z+e2l1ES2q7CtyNxWPsVXegvkryRWAb4CJu7ypQVdWr1bPGxkuMazu7qvqyEp5WkF0FZqCqWh8gydtpJtH/Ak1Csz9wjw5DG+84mj56Z9O/fnDAbf0IPwxsC6xJ0wf37z1I/l/Tfn1yp1EsgzQre70buCvNz2EvphQb5wPAE2guxVNV5yd5ZKcRjZPkC8BWwHncvrpSAb1JXJO8m2YO3MWSGpp+9r2Q5FU0XRquonkfQxNjLz7sDeD35cFVdf+ug1iaDGtVQa0AE9eZbe+q2nHk/sfbKbL6MqryXlW1V9dBTOEjNNN0HUPTuf/5wP06jQioqt+3X3+d5O7ArjT/fM/q02TvrfcAT+nb5djxquo34wbA923E/i7AdtXvy2RPpZnGqZcfRFuvoYmxj6s9Qf9/X36aZLuqurjrQJZiSKsKagWYuM5sf0+yP81qQEXTL6lPswr8NMkOVXVB14FMpqouSzKnqhYCn22n0XlT13EBJHkxzQeRH9BUZj6c5PCq6tO64Vf1+J/wmN+0l+EryRo0yU3fYr4QuDvNVZS+uhxYg55eQWn9hv7NxjCq778vuwHntRP830TPuidV1XHAcRnAqoJaMSauM9tzgQ+2t9HVgPpid+CAvv4BbN3QzvF4Xrtgwu/p17rhBwE7jVWP2oExPwX6lLjObyem/yb9HczxMprfk02B3wEnA6/sNKIlbQxc3M5wMfo+dj3DxagbaH5Xxg/c6c1KbjTJ9SlJvsPiMfZl6rO+/770/SrZmHOTvJKm28Dokue96our5WfiOoNV1RU0U2JNKMmbqqrLaaf+ucNzL6t/oenX+m8004ptRjOgrC/+THMJbMx1bVufbECT0Ow50lZAX/4R04587/XKWcBhXQewDI5vb332f+1tzfbWN73+fWm7J+0ObF1Vn23nwV2v67gm8AXgEpq+64fT/H73uZKtZeSsArPYRKMuO4hhiT+ATlcytSSvbzfnAjvQDHQrmg8qC6rqgG4iG6b2Z+8lLDli3+rMcmoXINi8qn7RdSxa9YayJG2Sc6tZ6nxBVT2w7QL046rarevYtHKsuM5unS7FOPoHkGYN9jWAL9JMWt6pCaaZWkwPujOMTZI/NnH+mOM6iGVSST4HvKaqrmnv3xl4f8+SwuOAHwP/Q88GZU0yvV3fRpuT5Ck0i2OsCWyZZC5weB+6M/R9tbkkb6iq9yT5MBPE2aPuFr1eknbE2BzH1yTZHvgDzUwNGjgT19mt63J7n/8A9nqaqap6W9cxLIcHjiWtcNva8Dt1GM9E1qmqN3YdxETGprcbiMNoZrg4BaCqzktyny4DGjG22tzTaQa5fbG9/xyaqbG6NnYZe36nUUyt70vSjpnXfkh+C033lfXoz4w6WgkmrrNbpxVXevwHsKp+3XUMy6K9xP0GlhyA8NjOglrSaknuXFV/BUhyF/r3t+fbSZ5YVSd0HchUktyVxb/XfZo4/5aqunbctGK9WM9+bLW7JO+vql1GHvpWks6Txar6Vvv1c13HMoW+L0kLQFV9qt38EdCXD09aBfr2z0N3rGM6Pn/v/wCOu0y7Jk13hj4sQDDmKOBomgrxy4AXAH/sNKIlvR84PckxNB+W9gXe2W1IS3gN8KYkN9NcYuzjZfi9ad7LewJX06xO9XOaDy19cVGS5wJzkmwNvJpmlos+WXd0OdAkWwK9+dCc5H7Af7Bkf+u+fBjdBDgW+BtNN69DgT06jWgCrsw4czk4awZr/wB+HLhbVW2f5IE0ixK8o+PQbtPnNbnHS1NG2gfYraoO7joeuH0Jw7EBCG3bWVX14K5jG5VkO2DsH+8P+jZ5eZLVaEYdb1lVhyfZHLhHVf2s49Bu0y4e8ljgf9pBJ48BnldVL+o4tNskWQc4hNtHxJ8EvKOqbuwuqsUl2QuYRzMtVmg+ALy0qk7qNLBW+33+fzQrCt7W37qqzu4sqBFLWUr1tr8/fZHkRG5fmXH0fXx/Z0FplTBxncGS/Ihmns9PVNVObduFVbV9t5EN29ho1a7jAEhyRlXtluQk4EPAlcCxVbVVx6GRZIOq+lvbNWAJVfWXOzqmpUnycZpL2o+tqm3bvnEn9+kDQJL5VbVLm9jsVFWLkpw/bnW8TiXZuarO6TqOqbTVuG3au5f0aaWvsQ+jXccxXpKXA6+guew+OiB0feC0qnpeJ4Ethf/rZi67Csxs61TVmeP6m93aVTBjBjZKenSt69VoZkHoTfUIeEeSDYF/Bz5MMwfk67oN6TZfounCcDaLf7/H1obvU7+zh1TVzu2qaGMDyPo2x+c1SdYDTgWOSnI1/VoJD+D9aZYgPhY4uqou7Dqg8ZI8f1zTjkmoqs93ElBr5APet5K8AvgGiy9A0PUHvS8B3wXeBYxecbquB7FNZBArM2r5WXGdwZJ8l2bi/GPaf8r7Ai+qqiFM/N8LST47cvdW4Argk1V1dTcRaTok+RnwMOCs9ndlE5qKay8q63Db4MV/0HyA2h/YEPhi35KGNnF9FrAfzQepo3vWPenDI3fXBh4HnFNV+3YUEgBpVhAsJh40W1XVpw96vZfkYuC+QJ9XZtQKMHGdwdppaObR/EP+K80v8PPaFbU0AwykH/P3q+pxU7V1Kcn+NInWzsDnaAaQvbmquh7AeJsk7x4/ZddEbX2RZAeaGS/2q6q+Va9vk2Qj4CtVNZSlTLUMktx7ovahzBijpevTmutaxarq8qrag2YU6DZVtbtJ6/JJcp8k30ryxyRXJzmuR/NSQjMLw5toJ9uuqgXAszuNqJVk7fby58ZJ7pzkLu1tC2DTjsNbTFUdRZNkvQv4PfDUPiWtrcdP0NarqydJtk1yWJoFPD5MM6PAvToOayp/B7bsOogxSV7ZJtNj9+/cdh3Q8rlugtuVnUakVcI+rjNYktfQrEh1HfDJJDsDB1fVyd1GNihfAj5Ks1gCNEnhl4GHdBbR4nrZj7n1UuC1NNM3nc3tl0D/Bnyko5iWqqouoVnbvFdGB8UkWTDy0PrAad1EtVSfoZme7QlV1cskIYuvoDUH2Bb4ancRLeElVfXRsTttf+uXAB/rMKYhOgfYjOZqY4CNgD8kuYrmPe7FLA1afiauM9sLq+qDSZ4A/BPwL8AXABPXZbdOVX1h5P4XkxzUWTRL+lOSrWj/Ebf9mH/fbUiNqvog8MEkr6qqD0/5BC3NYAbFVNVDu45hGbxvZPtW4NdV9duugpnAnCSpth9fkjk0c0hr+XyPZoaVkwCS7Ekzr+tnaT4E9KX4oOVkV4GZbazC9UTg81V1ERN3/NfSfTfJwUm2SHLvJG8AThi77N11cMArgU8A2yT5HU2F8+WdRrSkP6RdyjfJm5N8va3+axlU1bVVdUVVPQf4LU23kALWa+eb7VySr7ZfL0iyYOR2wbgqcefaFbQuoalY3xm4uduIlnAicHSSxyV5HM0VnhM7jmmIdhudm7e90vjQqjoDWKu7sLSyHJw1g7Uj4jel6b+1I81lsVP6OEdgX7UjfZemNyN92xHnq1XVdV3HMt7Y5ORJdgfeAbwXOLSqrHgshyT/BhwGXMXty6j2YpR0kntU1e+HMCAmybNofgZPofkg/wjgoKo6tsu4xqRZDOOlNLMdQFM5/FRVLVz6szRekpOB7wNfaZv2o+knvhft7CFdxaaVY+I6g7V/AOcCl1fVNUn+Cdi0HcCjGSDJfwLvqapr2vt3Bv69qt7caWAjxhZsSPIu4IKq+lJ6tIjDUCS5jGa+2T93HcuQtQs4PH5sSrt26rP/6dlCDncCNq+qX3Qdy1Al2Rh4K7B723Qa8Daa1bQ2r6rLuopNK8fEdYZrE5mtaeYrBKCqTu0uomFJsgbNpfdHtk2n0KxEdktnQY2YKAHMBEsydinJt4Hf0VQ7dqaZi/TMPiUKQ5DkhzQJV18G391mYIuKXFBVO4zcXw04f7StS0n2pqkIr1lVWyaZCxxeVXt3G5nUDw7OmsGSvBh4Dc10NOcBuwGnc/ua8Zrax4E1uH1E77+0bS/uLKLFzUmy1tiSlW2lpm/9t55Fc3nufW3l/x40SxFr+VwOnJLkOyy+otJ/dRfSbTGs33UMy+HENEskf7m9vx9wQofxjPdWYFeaD8lU1XlJejNdV98l+UBVvXbc7BG38QPA8Jm4zmyvAR4MnFFVj0myDfCfHcc0NA8eVxn8QXupsS+OAr6f21f4+leaCfT7ZGNgPsDIYKLeTTs1AP/X3tbEUeYrrKoOSvIM4OFt07yq+kaXMY1zS1VdO26KOy+NLruxWWDeN+leGiwT15ntxqq6MQltVe6SJPfvOqiBWZhkq6r6X7htNbLeDJKoqne3o7bHBnK8fXQkbU98h9uXslybZrDgL4AHdBnU0FTV2wCSrFNVN3Qdz5BV1deAr3Udx1JclOS5NFdTtgZeTbOQg5bB2Pys7ewRwG1d5jZzfMfMYOI6s/22XYHlm8D3kvwV6M3o3oE4CPhhksvb+1vQVDV7o6q+SzPPZy+N7zvYToXlSkDLKclDgU8D6wGbJ9kReGlV+V4ugwH1w30VcAhNd5AvASfRzMah5ZDkFGBvmjznbODqJKdV1es7DUwrzcFZs0SSRwEbAidWVd/mLeytJGsD/05T0bwGOAv476q6scu4xiR5OvBu4K40/4D79k94QuMHyGhqSX4G7AscPzYgL8mFVbV9t5FpOlhZXzkjs5m8mKba+taxqfm6jk0rx4rrDNfOnbl1VX22nfZlU2CyuUm1uM/TLFH69vb+c2n6UD2zs4gW9x7gKVX1864DWZokoxWO1WhmFujlcqB9V1W/Gdf3sTfdVrRqJHkY8CmsrK+s1duBoM+iqWBrhjBxncGSvBXYBbg/zTJ3awBf5PZBCZra9lW13cj9Hya5uLNolnRVn5PW1uiI81tp+rz2tX9hn/2mTWqqnabtNUDfv/dafv8NPAE4HqCqzk/yyMmfogkcTtPN4idVdVY7PuHSjmPSKmDiOrM9DdgJOAegqq4cW3pTy+ycJLu1ywSS5CG0I+R7Yn6So2n6MY9OkfT1ziIaZ2RQ0Xrt/eu7jWiwXgZ8kOaqye+Ak2mW/NUMY2V95VXVMcAxI/cvB54xdj/Jm6rqXV3EppVj4jqz3VxVlaTgtmVBtXweBPw0yf+19zcHfpHkAvqx3OYGwA3AniNtBfQmcU2yPU33iru09/8EvKCqLuw0sIGpqj8B+3cdh6adlfU7xjMBE9cBMnGd2b6a5BPARkleArwQ+GTHMQ3NXl0HMJmq6tUMB0sxD3h9Vf0QIMmj27aHdRjT4LST0L+KZmaL2/52O6H6jDNaWb+S5nK3lfVVL1Pvoj5yVoEZLsnjaapxAU6qqu91HJJWoXbWgxfRzIk6uqzvCzsLapwk549f3nWiNk2uXfji08AFwKKx9tH5KiUtm74tja1lZ8V1hmsTVZPVmesLNKtQPYFmMML+9O+y4uVJ3sLtK9o8j2b5Ui2fG6vqQ10HoenVDiL6IM0S3UWzTPfr2j6aWnWsuA6UFdcZaEATbWsljcxVuKCqHtj2iftxVe3WdWxj2lVr3gbsTvNz+WPgbVX1104DG5h2NaWtaQZljQ7EO6ezoLTKJTkD+Cjw5bbp2cCrquoh3UU18yT5/6rKJdAHyMRVGrAkZ1bVrklOpVmN6g/AmVV1n45D0yqW5F3AvwD/y+1dBaqqHttdVFrVJpok3641yy/J/YCPA3erqu2TPBDYu6pchWzgVus6AE2vJLsn+dd2e+N2gIdmjnltRfPNNPM+XkyzklZvJPleu/Tw2P07Jzmpw5CG6pnAfarqUVX1mPZm0jrzfDfJwUm2SHLvJG8ATkhylyR36Tq4Afkk8CbgFoCqWkBTvdbA2cd1BptgAYI1cQGCGWHcalRjMwt8tP3at2nPNq6qa8buVNVfk9y1w3iG6kJgI+DqjuPQ9HpW+/Wl3N7lKzRJVwFeTVk261TVmePmw721q2C06pi4zmwuQDBzjX0f7w88mHaVHeApwJmdRLR0i5JsXlX/B5BkCybug63JbQRckuQsFu/j6nRYM8sbgROr6m/toMadgbfbl3m5/SnJVrR/a5LsC/y+25C0Kpi4zmwuQDBDjaxGdSqwc1Vd194/jGZJ1T45BPhJkh/RVI4eARzYbUiD9NauA9Ad4s1V9dUkuwOPBd5H01fTwVnL55U080Vvk+R3wK9oZjTRwJm4zlBpro982wUIZry7ATeP3L+5beuNqjoxyS40yeq5NMvT/qPToAbI+VpnjbHlXZ8EfLKqvpPEAUXLqZ0+bI+2YLPa2Id7DZ+J6wzVVlqfCbwe+BvNJeVDXYBgxvk8cGaSb7T3nwoc2Vk0E0jyYpplK+8FnEczP+XpNNUkLaNx09ytCawB/N3p7Wac37UFh8cD706yFg6kXm7tgNDn0640N9bXtape3V1UWhWcDmsGS/I54CNVdVbXsWj6JNmZ5vI7wKlVdW6X8YyX5AKafrhnVNXcJNsA/1lVT+84tMFqr6jsA+xWVQd3HY9WnSTr0Cw1fUFVXZrkHsAOVXVyx6ENSpKfAmew5Epzn+ssKK0SJq4zWJJLgPsCvwb+PtY+fo5AaTolOauqHpzkPOAhVXVTkouq6gFdxzZ0YwtQdB2H1Dcu6Tpz2VVgZntC1wFIwG/by3bfBL6X5K80H6a0HJKMVqhXo5nq7saOwpH67gvt2I5vs/gsHH/pLiStClZcJd1hkjwK2JBmup+bp9pft0vy2ZG7twJX0AzecV5XaZwkrwTeCVzD7X3Dy1UFh8/EVZJ6Lskc4NVV9d9dxyINQZLLgV2r6k9dx6JVy5GKktRzVbUQeE7XcUgDchlwQ9dBaNWzj6skDcNpST4CHM3igy1dUUla0t+B85L8kMX7uDod1sDZVUCSBqD9BzxeVZXz4UrjJHnBRO1OhzV8Jq6SNABJ7tOuBjRpmyTNZCaukjQAE81LmeTsqnpQVzFJfZPkq1X1rHbhk/EJTlXVjl3EpVXHPq6S1GPtSmMPADYcN5frBsDa3UQl9dZr2q8/Bw4aaQ/wnjs+HK1qJq6S1G/3B54MbAQ8ZaT9OuAlXQQk9VVV/b7dvG9VLbbQSfshUANnVwFJGoAkD62q07uOQ+qzJC8HXgHcB/jfkYfWB06rqud1EphWGRNXSRqAJO8B3gH8AzgReCDwuqr6YqeBST2SZEPgzsC7gINHHrrO5V5nBhNXSRqAJOdV1dwkT6PpOvB64FQHm0iaTVw5S5KGYY3265OAY6rq2i6DkaQuODhLkobhW0kuoekq8PIkmwA3dhyTJN2h7CogSQOR5C7AtVW1MMk6wAZV9Yeu45KkO4oVV0kajm2ALZKM/u3+fFfBSNIdzcRVkgYgyReArYDzgIVtc2HiKmkWsauAJA1Akp8D25V/tCXNYs4qIEnDcCFw966DkKQu2VVAkoZhY+DiJGcCN401VtXe3YUkSXcsE1dJGobDug5AkrpmH1dJkiQNghVXSeqxJD+pqt2TXEczi8BtDwFVVRt0FJok3eGsuEqSJGkQnFVAkiRJg2DiKkmSpEEwcZUkSdIgmLhKkiRpEExcJUmSNAj/Px/6v9Jq3TQTAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "corrmat = df.corr()\n", + "f, ax = plt.subplots(figsize=(12, 9))\n", + "sns.heatmap(corrmat, vmax=.8, square=True);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGkCAYAAAB+TFE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dWH39m+q9Xuqvde3eTeG7bBdAwm9A6BBEJJvtASSggJCYQk1IQSCBBIqKaYjgvuvTfZktV71/Y+8/2x0tpCkrst28z7PPvM7MydmbNl7m/uveeeI0iSJCEjIyMjIzPAKAbaABkZGRkZGZAFSUZGRkbmJEEWJBkZGRmZkwJZkGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMC1UAbICNzuIiSiD8YwBf04Q368AX9+AKhZfd7b8CHL9j98qNRqjFpIzHrIkmOTMCkjUQQhIH+KDIyMvshC5LMgODyuWlyttLhttLpsdLhtuL0uXAHvLgDHjx+D+6AF4/fgyfg3U9sQgJztBg1EeREZzAsoZCihEFkWFJkgZKRGWAEOVKDzPGm1dXO7pa9lLZVUmtroNbWQIfb2qucVqVFr9KiV+nQqbXoVDr0Ki06lRaNSoNWqUGjVKNVadB0rytD6z22qfbbp9KgUajxBX3YvA7a3Vbq7Y3UWBvY3bqXOlsjAKmmJM7ImsD0zAmYdaYT/RXJyMggC5LMccDld7O1cReb6newq6WUFmcbEBKc1MhEUsyJpJqSSDTGEa23YNGbsehMaJTqE25ru6uTjfXbWVq5hpK2ctRKNWflTGVO4Wyi9OYTbo+MzI8ZWZBkjgl2r4PVNZtYX7eVHc17CIpBIjURDI7PZ1BcLoWxuWRaUlEoTl4/mlpbA/OLF7Csai1KhZI5hbO5uHA2GpVmoE2TkflRIAuSzBHjC/rZVL+dZZVr2dywg6AkkmSMZ0xKEWNThpMfk31SC1B/NDpaeG/7fFZVbyAhIpZbRl/FiKTBA22WjMxpjyxIMoeFJEkUt+xledU6VtdsxOV3E6UzMyVjLFMzxp9WzgE7mnbz+sb3qbM3MjtnGteNuBSt3FqSkTluyIIkc0jYvA6WVqxhYflyGuzNaFVaxqeOYFrGeIbGF5ySLaFDwR/08972+Xy+ZyHJkQn8cuJPyYxKHWizZGROS2RBkukXSZLY3bqXBWUrWFOziYAYoCA2h7NypjIudQQ6lXagTTxh7GjazQtr38Tpc/GzMdcyNXPcQJskI3PaIQuSTC9EUWRt3WY+Lf6Wio4aDGo90zLGc2bOFNItKQNt3oDR6bHxzKrXKG4p5by8GVw74lJUCuVAmyUjc9ogC5JMmIAYZFnlGj7b/R0N9maSjPFcWHgWUzLG/qhaQwciIAZ5Z+vHfFWymEFxufxq0q1Y5HlLMjLHBFmQZJAkic0NO3h7y8fU2RvJikrjkkHnMC5lxGk7NnS0rKhax8vr3yFSY+S+KT8jOzpjoE2SkTnlkQXpR06rs51XN/yXLY27SIqM57rhcxmdXHTaeModTyo6anh6xctYvXZuH3stUzLkcSUZmaNBFqQfKZIk8X3FKt7a/BEiElcOvZCzc6ejUsrhDQ8Hq8fG31f9i+KWvVxUeBZXD7tYblXKyBwhsiD9CPEEvLy07m1W12xkSHw+t4+9jnhj7ECbdcoSCAZ4c/OHfFe2jBGJg7l74s0YNREDbZaMzCmHLEg/MhrtzTy98hVqbQ1cNWwOFxWehUKQn+iPBQvLlvP6pveJM0Rz/5TbSTUnDbRJMjKnFLIg/YjY21bJn5a9CMAvJ95CUeKgAbbo9GN3y17+tvJVfEE/d064kbEpwwfaJBmZUwZZkH4k7GjazV9WvIxJa+ThM+4h0Rg30CadtrS62vnrilco76jmnLwzuHb43AGJZC4jc6ohC9KPgE31O/jbyldIjIznoel3Ea23DLRJpz2+oJ//bfuUr0oWk25O4c7xN5AZlTbQZsnInNTIgnSas6u5hCeWvUiqKZFHpt+DUSsPtp9INjfs4J/r3sbudXBR4Vn8ZPB5cjoLGZl+kAXpNKasvYrHv3+WaIOF38/8NSatcaBN+lHi8Dp5e+vHfF+xiviIGK4ZfgkTUkfJc71kZH6ALEinKY2OFh5a+Bd0Ki1/mHkv0QbLQJv0o2dH0x7e3Pwh1dY68mOyuXLYhQyJL5CFSUamC1mQTkOcPhcPL3waq9fOE2feT1Jk/ECbJNOFKIosqVzD+9vn0+GxkhudycWDzmZ08jCUcqBWmR85siCdZgTEIE8u+wc7W0p4ZPrdDI7PH2iTZPrAF/SzpGI183d/R7OzjWi9hZnZk5iZNZnYiOiBNk9GZkCQBek049+b3ueb0iXcPvY6ZmRPGmhzZA5CUAyysX47i8pXsKVhFwgwInEw0zLHMzZ5uOwAIfOjQhak04hllWt5ce2bnJ8/ixtG/mSgzZE5TFqcbSwqX8nSyjW0uTrQq3VMSB3F9MzxFMblyhE1ZE57ZEE6TajsqOXhRX8hNzqTR864Rx6POIURJZHilr0srVzDmppNeAJe4gzRTM0cx7SM8SSbEgfaRBmZ44IsSKcBDp+T33z3JD7Rz1OzfysnjDuN8AZ8rK/bwrLKtWxtKkaSJPKiM5maOZ7J6WOIlF35ZU4jZEE6xRElkaeWv8S2pmJ+P+P/yI/NHmiTZI4THW4rK6rWs6xyDVXWOtQKFVMzxnF+wSzSzMkDbZ6MzFEjC9Ipzkc7v+SDHV9w86grOCfvjIE2R+YEUdlRy4KyZSytXIMv6Gd44mAuLDiTYQmF8rwmmVMWWZBOYbY07OTPy/7BlIyx3Dn+Rrki+hFi9zpYULacb0qX0OmxURibw2VDL2CoPOFW5hREFqRTlGZnGw989ydi9VH88cz70cruwT9q/EE/i8tX8UnxN7S7OxkUl8tlQy5gaELBQJsmI3PIyIJ0CuIL+nl00V9pdLTw5FkPkihHYpDpwhf0s7h8JZ8Uf0OH28qQ+HyuGHoRhXE5A22ajMxBkQXpFOTl9e+wuHwl90/5OWPkBHAyfeAL+llYtpxPir/F6rExMmkIVwy9iOzo9IE2TUamX2RBOsVYXL6Kl9e/zSWDzuGqojkDbY7MSY4n4OWb0iV8tvs7nD4X41NHcsXQC+X06jInJbIgnUKUt1fxyKK/UhiXy0PT7kKhkGfuyxwaLp+bL0oW8sWeRXiDPqZmjOOyIeeTIGcOljmJkAXpFKHd1clvFj6JUlDy5OzfyLmNZI4Im9fBZ8Xf8s3epYhikJnZk7l08HlyehKZkwJZkE4BPAEvv1v8Nxrszfxx1n2kW1IG2iSZU5x2dycf7/qaReUrUQgKzs6ZxsWDzsakixxo02R+xMiCdJIjiiJ/X/0v1tdt5YEptzMqedhAmyRzGtHsaOWjnV+xtGoNWqWGM7OncF7BTGINcgoMmROPLEgnMZIk8eqG/7GofAU3jryM8/JnDrRJMqcpdbZG5u38ilU1GxGAieljuLDgTLKi0gbaNJkfEbIgnaRIksQ7Wz/m8z0LmTv4HK4cdnw86oJBkU6Hlzarh3abhw6bB5vLh9sTwOUN4PYG8PqCiKLUZReIXX8ZhSCgUSvQqJVdLwUaVWhd27Vdq1ai1SjD65qu99of7NOolSgVB48sIIoSgaCIPyASCIrh9e6XLxDE7xfx+oP4A0F8fhGfP4gvIPZ+7w92lQsd173PH+h5vD8QRBQP7ftUKEClVIReqtBSHV4Xwvu6P7tOq0Kn6VrXdK+r0He912qV6DUqIvRqjHo1Wo3yuEZgaHW281XJYhaWr8AT8DIsoYBz8mYwKmmoHEFe5rgjC9JJiCRJfLDjC+bt+oqzc6dz86grjroS8ngDVDbYqGiwUd/ioLbZQX2Lg8Z2V1hs9ketUqDXqtBrVWg1ShSCgCCA0L0ERJEeFXf3eiB4ZH8phUIgpEn7rkHX9QACAZFgH7YeLoIAalVINNUq5T5RVSm6titRh8U1tO1QxBJCYr2/WAYCUg/h3CegQTy+rpc3cMifS6UUwuJk1GuIMITWTREaok06oiK1RJl0REXqiDJpMUVoD9n2/XH6XCwsW8HXpd/T7u4kRh/FrJzJzMyeTLTectjnk5E5FGRBOskQJZE3N33IN3uXMDNrEreNveawE7OJokRVo40dZW2UVHdQVtdJXbOD7jpPo1aSEhdBcpyR5NgI4qIMxJh0oQqtqxJTq47cpTwoSqFWiD+I1xdqhXi71n1d6/vv6173B8Ww/RBqjUmEBBpCItnd2lB3tz66liqlIiwePxQUjSr0XqtWolYpUSmFky7Omz8g4vUF8PiC4VapZ7/3Trcfh9uPw+XD4fbve+/243T5sTq9uDyBXudVKASiIrXERxlIiDGQEG0gMTqChBgDybERRJt0B/wuujPaLihbxtbGYhSCgjEpRczMmszwxEFyq0nmmCIL0kmEL+jn5XVvs6J6PRcWnMm1w+ceUsUZFCUq6q3sKGtjR1kruyrasLv8AMSYdeSkWMhJNZOTYiYr2UysRY/iCJ6aZU5uPL4AnXYvHTYvHfZQ92uH3Uur1U1Tu4umdhdtnW72b4xF6NWkJ0SS1vVKT4wkPSGSGHNvoWq0N7OwfAXfl6/C7nNi1pmYkj6WaZnjybSknnQiL3PqIQvSSUKzs42/r3yV8o5qri66mDmFs/u9wYNBkbI6KzvKWtle1kZxRRvOrqfjpJgIhubEhF7ZscRHG07kx5A5yfEHRFo6XTS1uahvcVDVZKemyU51ox2b0xcuF6FTkZNqITvFTE6qhdxUM8mxRhQKgUAwwObGnSytXMPG+u0ExSBp5mSmZ45ncvpYYgxRA/gJZU5lZEE6CVhft5WX1r2NKIncOf6GXvHp/AGRvTWd7ChvZUdZG8WVbbi9QQBS4oxdAhTLsJwYYsz6gfgIB0QK+Am6bIg+N5Lfi+j3IPm6lx5EvxcpGABJBFFE+sESQFAoQaEILZXK0FJQIigUoFCiUGsR1FoUGl1o2fU+tK5DUGtCx8j0i9XhpbpLnCobbJTVdlLZYMMfCP0Geq2SrOSQQOWkmMlNtWA2w7r6zSyrXEdJWzkAeTFZjE8dyfjUEXIkCJnDQhakAaTd1cm/N7/PutotZFhS+fWkW0mMjMfl8bO7qoNdFW3sKm9nT3UHPn9IgNITIxmaHRKgodkxRJl0A2K7JEmIHicBa0voZWshYG0l6LKFxMdlI+gOrUs+z1FcqbuVeAycGdRaFFoDCl0ECm0ECp0h/F7Zva17v26/dW2onKDW/ui6pQJBkZomO2W1VspqOymrs1Jeb8XrC/0fNSoFWclmslPNxMYo6FRUU+raRpW1GoBMSyrjUkcwPHEwOVEZcrgrmQMiC9IAYPPY+aJkEd+ULiEgipybcS7p6qGUVHWys6KNijorogQKAbJTzAzOimFIduhlNmpPiI2SJCG6bPg7m7vEpuvV9d5vbUXyunocI6g0KCPMKPQmlIZIlAYTCoMJpcGEUh+JQqtHUOtCrReNLtRy0YRaMChVCIIi1ArqWiIowgIQai0FkcTuZTDUihKDSMEAUsC3r7Xl94aXkt+D6PeFlj43oseF6HEieruXToIeJ6LHBWJvp4AeKJQotPougdonVGFh2/8VFrKe5QXNgZ0ITgWCokRds53yOitldVb21nZSXmcNO1WolAIp8Qb0Ji92ZR2tVCAYbBh1OoYlFDI8YRDDEgcRZ4g+5b8LmWOLLEgnCEmS2NNcwVc717G2pByf3UBkMAWvw4DLHbqRNWolhRlRDM6KYXBWNAUZURh06uNjjxgkaG8nYGsjYG3Bb23eJzrWZgLWVqSAr8cxgtaA2hyHyhyHyhzftYwLb1MYTKdsBSNJElLAFxIs736C1f3yunq++trmdYe6HQ+EoAh1K2r0IbHqWu57b0Ch0XWJlx6FVhfa1lVW2P8Y9ckjbqIo0dju7NGSKqvtDDvXAOgjgohaG0FNJ4LegckE+alxDE7KJD8mi+zoDHSqE/PAJXNyIgvSMUSSJJxuP21WD21WD9XNneysqaOisZO2Dh8Bt5buLiiVUiAzOeT51t0nn51iRqU8ui4NSZKQfO5Q15nTSsDRTtDWRsDW2vUKrQcdnb0qT4XBhMoUh9oSFxab/YVHqYs4KttOd0LfvacPofqhgLlD42k+d3hd9LoQfZ7wtoMKGwBCl0CFBEyhCa0L3evdIvYD8eu9zYCg0YZapsf4+2jpdFNWa6Wy3kpNs4OaJju1zfaec9VUXgStG4XWQ0SERKxFR3KMiYz4WLLj48mMjSc2wiJ39/0IkAWJru4pKfSUFwyK4TkzP1x6fAEcbj82p5dOhwery4PN6cXqCLna2hwBAj/s9VEEUOjcWCwK8pJjGZOVQ0F6LGkJkaiUitAcGzGIFPQjBQKhZdDf1Q3lD73CFZerRwUmda13j9sEnVZElw0p6O/1GQWVBpUpBqUpFpUpBlVk19IUGxYchWZgxqNkehJurXldXb+9p8dvL4X/A/uWkq/7/+HpKhMSONHrOkRxIyRS+7XKBK0ehUoTcghR7XspfvBeUGtQqLTh9X371AgKJYJSCQpV17qKIAKtNj+1rW5qW11UNlmpbu6gpcONwyEhin20+pR+VJoAWp2EwaAkQq/AoFMTodNg1GswGbSY9AZMBi1GvQa9Roteo+5aatCp1aE5a11z2eRpDycnp6QgBQIBGhsbD1jG6vDywgdbcHr8BEWJYFBCEiWCkoQohl5BUULsen+4CIjoFD50gh+d4MOocBOpcGNUeDEpvZiVXqJUoaU6/OQpgtQ10VOSIBgAMcgRDdgLyq6nYy1KnRFBF4nSYAyN1eiMoTEcfSQKgxlVZBSCNuKk6d6ROXFIkgRBf2hczedG9HlDLTG/p2tczbOvZeb3dnk/uhG9XiS/e99DUdCHFPAjBvwQ8IMUPIZWCiAoQBnynHQKejoDeqyiDoeowhnU4BA1OEUNrqAGp6TBJWrwSWpEjrDVJIihCCDCfvde13r39q6gISgEAZPOiFJQ7BetZN+91L3avWV4fhxzz8g9qAmJiYmoVKojs/805ZQUpNraWmbNmjXQZsjIyMgcMYsWLSI1NXWgzTipOCUF6VBaSEdKY2Mj11xzDf/9739JTEw8Ltc4Xsi2Dwyy7QPDqWw7yC2kvjglvw2VSnXcnywSExNP2acX2faBQbZ9YDiVbZfpiey2IiMjIyNzUiALkoyMjIzMSYEsSDIyMjIyJwWyIP0Ak8nEnXfeiclkGmhTDhvZ9oFBtn1gOJVtl+mbU9LLTkZGRkbm9ENuIcnIyMjInBTIgiQjIyMjc1JwSgpSIBCgtraWQK/AcTIyMjKnDz+2uu6UFKTGxkZmzZp13KI1yMjIyJwM/NjquuMuSA6HgwsuuIDa2tpe+xYuXMicOXO46KKLuOOOO7BarcfbHBkZGRmZk5TjKkhbt27lqquuorKystc+h8PBY489xquvvsr8+fMpKCjghRdeOJ7myMjIyMicxBzXWHYffPABv/vd77j//vt77fP7/Tz22GMkJCQAUFBQwOeff96rnM1mw2az9dj2Y2m+ysjI/HiQ67rjLEhPPPFEv/uioqI488wzAfB4PLz66qtcd911vcq99dZbvPjii8fNRhkZGZmTAbmuOwmifdvtdu644w4KCwu55JJLeu2/4YYbem3vDjsvI/Njw+/3U1tbi8fjGWhTZA4BnU5HamoqarX6oGXlum6ABam5uZlbbrmFCRMm8Nvf/rbPMiaTSQ4NIiPTRW1tLZGRkWRmZsoZgE9yJEmira2N2tpasrKyDlperusG0O07GAzy85//nHPPPZeHHnpIvrlkZA4Bj8dDTEyMfL+cAgiCQExMjNyaPQxOeAvp1ltv5e6776axsZFdu3YRDAb59ttvARg6dOgBx51kZGSQxegUQv6tDo8TIkiLFy8Or//rX/8CYNiwYezevftEXF5GRkZG5hTglIzUICMjc+zYtm0bjz76KADbt2/n7rvvPuTyx6KcjEw3siDJyPzI2bt3L01NTUCo5+L5558/5PLHopyMTDcD7vYtIyNzfBBFkT/96U9s3boVp9OJJEn88Y9/5MMPP6Szs5OamhqGDx/OqlWrsNvt/OY3v+Hiiy/mD3/4A1988QUbNmzgySefRBRFAH72s59RVFTE888/Hy7/5z//uc9rNzQ09Cr3/vvv8/bbb6NQKIiNjeWRRx4hKyuLBx98EEEQKCsro729ncmTJ/Pwww8f0FU6GAzyl7/8hcWLFxMZGUlRURFlZWW8/fbb2O12nnjiCUpKSvD7/UycOJH7778flUrFsGHDuO2221i5ciXNzc1cf/313HjjjXz88cd89NFHuN1ujEYjb7/9Nh9++CHvvvsuoihisVh45JFHyMnJOS6/lUwX0ilITU2NlJ+fL9XU1Ay0KTIyJ5Rdu3YdctlNmzZJd911lxQMBiVJkqRXXnlF+tnPfiY98MAD0g033BAuN2/ePOm2226TJEmS1qxZI51//vmSJEnS9ddfL33xxReSJElScXGx9Nhjj/UqfyD2L7dq1SrpzDPPlNra2sL7zj33XEkURemBBx6QLr74YsnhcEher1e65pprpLfffvuA53733Xela665RvJ4PJLX65Vuvvlm6dprr5UkSZIefPBB6T//+Y8kSZIUCASke++9V3r11VclSZKk/Pz88Lm3b98uDR06VPJ4PNK8efOksWPHSna7XZIkSVq7dq109dVXSy6XS5IkSVq+fLl07rnnHvQz98Xh/GY/5MdW18ktJBmZ05SRI0diNpt57733qKmpYe3atURERGCxWBg9evRBjz/33HN5/PHHWbx4MZMmTeL//u//jtiW5cuXc9555xEdHQ3A3LlzeeKJJ8JBly+55BIiIiIAmDNnDosWLeLaa6/t93xLly5lzpw5aLVaAK644grefvttAJYsWcL27dv56KOPAHq5Xc+aNQuAIUOG4PP5cLlcQCh8mdFoDJ+jqqqKK6+8Mnyc1Wqls7MTi8VyxN+DzIGRBUlG5jRlyZIlPPHEE9x0003MmjWL7Oxs5s+fD4DBYDjo8VdeeSUzZsxg5cqVLF++nBdffDF8/OEiSVKf27rz/CiVyh7bFYoDD2+rVD2rrv3Li6LIc889F+5es9lsPdyvu0Wse1u3bft/J6IoMmfOHO67777w++bmZsxm80E+qczRIDs1yMicpqxcuZIZM2Zw9dVXM2zYMBYuXEgwGOxVTqlU9pkA7sorr6S4uJi5c+fyhz/8AZvNhtVq7bf8gc47ZcoUvvrqK9rb2wGYN28eFouFjIwMAL7++mt8Ph9er5dPPvmEGTNmHPDc06dPZ/78+fh8PgKBAJ988kl435QpU3jzzTeRJAmfz8ftt9/OO++8c1B792fy5Ml8+eWXNDc3A/Duu+9yww03HNY5ZA4fWZBkZE5TrrzyStavX8+FF17IFVdcQVpaGrW1tWEnhW5GjhxJeXk5v/jFL3psv/fee3n++ee5+OKLuf7667nzzjtJTU3tt/wP2b/c5MmTufHGG7nhhhs4//zz+fTTT3nllVfCLRudTsfVV1/NhRdeyJgxY7j00ksPeO65c+dSVFTExRdfzJVXXolarUav1wPw0EMP4XK5uPDCC7nwwgvJz8/npz/96WF9d1OnTuXWW2/l5ptv5sILL+SLL77gxRdflCe6HmcEqa+29ElObW0ts2bNYtGiRaSmpg60OTIyJ4zi4mIGDRo00GYcUx588EHy8vK45ZZbDvmYFStW0NbWxpw5cwD44x//iFarDXexnUwczW/2Y6vr5DEkGRmZI6K8vJxf/epXfe7Lysri2WefParzX3311Tidzj73/fOf/+T111/n9ddfJxgMUlhYyGOPPXZU15MZeGRBkpGROSKys7P57LPPjvo8Tz75ZJ/b//e//x3wuDfeeOOory1zciGPIcnIyMjInBTIgiQjIyMjc1IgC5KMjIyMzEmBLEgyMjIyMicFsiDJyMjIyJwUyIIkIyNzTHn++eeZNWuW7AUnc9jIbt8yMjLHlM8++4zXXnuNrKysgTZF5hRDFiQZmVOUxRuqWbCu+ric+6xx6cwck37AMoFAgMcee4zS0lJaW1vJysoiOTmZpqYmfvGLX/C3v/2Nm266iSFDhtDa2spHH33E66+/zvz581EqlUyePJn77ruPhoYGbr/9dtLS0qiqqiI5OZmnn34ai8XC999/z7PPPosoiqSlpfH4448TGxvLzJkzmTlzJhs2bADgT3/6E4MHDz4u34XMiUPuspORkTkiNm/ejFqt5v3332fBggV4vV4mT55MfHw8r776KoMGDaKjo4PbbruNzz77jFWrVrF48WI+/vhjPvnkE6qqqnjvvfcAKCkp4YYbbuDLL78kJyeHF198kba2Nh599FH+8Y9/8PnnnzNq1Cgef/zx8PUtFguffvopd999Nw888MBAfQ0yxxC5hSQjc4oyc8zBWzHHk7Fjx2KxWPjvf/9LeXk5lZWV4dxC+zN8+HAA1qxZw/nnn49OpwPg0ksv5dNPP2X69OlkZmYyfvx4AC6++GLuvfdeJk+eTFFRUTiG2xVXXMGrr74aPu/ll18OwMyZM3nwwQdpb28P51uSOTWRW0gyMjJHxKJFi7j33nvR6XTMnTuXsWPH9pn3qFuAfhhlHAinp9g/v5EkSSiVyl7l98+f9MNjRFHskVNJ5tREFiQZGZkjYvXq1Zx77rlceumlxMbGsn79+j7zLXUzYcIEvvzySzweD4FAgHnz5jFhwgQAKioqKC4uBkK5kqZNm8bw4cPZunVrOKvs+++/H25FAXz55ZcALFiwgJycHDl53mmA3GUnIyNzRFx22WXce++9fPPNN2g0GkaMGBEWj76YMWMGxcXFXHrppQQCAaZOncq1115LY2MjZrOZ559/nurqagoKCvjjH/+IwWDg8ccf584778Tv95OcnMwTTzwRPt+mTZv46KOP0Ov1/QZolTm1kAVJRkbmiCgoKODzzz/vtX3/lBR79uzpse+OO+7gjjvu6HWMXq/npZde6rW925uuL37961//KHIE/ZiQu+xkZGRkZE4K5BaSjIzMgJKamsrixYsP65jDLS9zaiC3kGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMCWZBkZGSOKU1NTdx6663H5FzPPfccixYtOibnkjn5kb3sZGRkjikJCQn861//Oibnuueee47JeWRODWRBkpGROSLWrl3LK6+8gk6no6ysjIKCAv7617/S3NzM9ddfz+LFi2lsbOTee+/FarWSn5/P+vXrWbZsGU6nk8cff5zS0lKCwSC33norF1xwQTgSeGdnJzNmzKC5uZlx48Yxd+5cnnnmGVavXo3VaiUqKooXXniBuLg4pkyZwtlnn83GjRtRKpU8++yzpKWl9bC1v3QVFRUVPProo3R2dmIwGHjooYcoKiriwQcfRBAESkpKcDgc3H777Vx88cUD8C3/uJAFSUbmFMW+bQn2rcdnPk7k8JlEFp1x0HKbN2/m66+/Jj4+nssvv5wVK1aQn58f3v/EE09w7rnncs0117BgwQK++OILAF566SWGDBnCU089hcPh4MorrwxHBW9qauKrr75CpVLx4IMPAlBVVUV5eTnvvfceCoWC+++/n88//5ybb76ZlpYWJk6cyCOPPMKTTz7Jf//73/Bx+9OdrmLx4sU88MADfP7559x3333cdtttzJ49my1btnDPPffw7bffhu147733aGtrY+7cuUyePJm4uLij/WqPiL6C1p6OyGNIMjIyR0xeXh6JiYkoFApycnKwWq099q9cuZI5c+YAcNZZZ2EymQBYtWoV7733HnPmzOGaa67B5XJRWloKwODBg3tE8gbIyMjggQce4MMPP+TJJ59ky5YtPVJdTJ06NWzPD23oZv90FU1NTTQ2NlJdXc3s2bMBGDFiBGazmfLycgDmzp2LWq0mMTGRUaNGsXHjxqP6ro6OH4cgyS0kGZlTlMiiMw6pFXM80Wq14XVBEHo9ySuVyj6f7kVR5Omnn2bIkCEAtLa2Yjab+fzzz8PpKvZnx44d/PrXv+bGG2/k7LPPRqFQ9Dhvtx192dDND9NVBIPBXmUlSQpHLN8/nYUoir1E8oQS8A/ctU8gcgtJRkbmuDFp0qRwANalS5dis9mAUCqKd999F4Dm5mYuuugiGhoa+j3P+vXrGTduHFdddRW5ubmsXLnygKku+uKH6SpSUlJIS0vju+++A2DLli20traSl5cHwNdff40kSdTV1bFt2zZGjx59eB/+GCIGfxyCJLeQZGRkjhu//e1veeCBB/jggw8oLCwMd9ndeeedPPbYY1xwwQUEg0Huu+8+0tPTw04HP+S8887jzjvv5MILL0StVlNQUHDAVBd90Ve6iqeffprHHnuMF154AbVazQsvvIBGowHA4/Fw6aWX4vP5ePzxx4mKijqKb+LocDl6Z+I9LZFOQWpqaqT8/HyppqZmoE2RkTmh7Nq1a6BNOCzeeustqbS0VJIkSdqxY4d0ySWXDIgdM2bMOKz64oEHHpDmzZt3TK59NL9Zd123esnSY2LLyc5xbyF1e9C8/PLLvXKXFBcX8/DDD+NwOBgzZgy///3vB7afVua0R5IkvAEvLr8HT8CDN+jHH/QTlLrHEwRUCiUqhRKNSoNepSNCrUer0iIIwkCbf8qRkZHB//3f/6FQKNBqtfzhD38YaJNOSaxW50CbcEI4rrX/1q1befjhh6msrOxz/3333ccf//hHRowYwW9/+1s++OADrr766uNpksxpjCRJWD02Gh2tNDtbaXW10+7qpNXdQYe7k06PDbvXSUAMHPa51QoVJl0k0XoLcYZo4o2xxEfEkhwZT4opEbPOdBw+0anP9OnTmT59+kCbcdjpKk62DLStVvtAm3BCOK6C9MEHH/C73/2O+++/v9e+uro6PB4PI0aMAEIuls8//3wvQbLZbOGB0G4aGxuPm80yJz+iKNLkbKXGWk+drZE6eyN11kbq7U24A54eZY2aCGIMUUTrzWRYUjFpI4nURBCh0aNTadEoNWiUahSCAoUgIAFBUSQg+vEGfbj9Xlx+Fzavg063jXZ3J+Ud1ayt3UxQEsPXMetMZEelkR2VQU50OnkxWSdUpCRJQpQkRDG0HnrtcxYWAEEIeaEpFAKKrqXMycOB6rqmDlmQjponnnii333Nzc09JpnFxcXR1NTUq9xbb73Fiy++eFzskzn56fTYqLHWU2Otp9paT1VnLTXWenz7eR1F6c2kmpKYnjmBpMh4kiLjiYuIIdYQjValOS52iaJIq7uDelsTtbYGqjprKe+oZkvjrrArcVJkPIPi8hgcl8fg+DxiDdFHdC2vP0hjm5Omdhcqb4DWTjeBoEgwKBEQQ0tRlA57pooggEohoFIqUKkUqLteGpUSjVopC9YJ5kB1XWOnp8/tpxsDNmAj9TFXoK8++htuuIFLLrmkx7bGxkauueaa42abzIlFlETa3Z002JuptzVRbw9V8tWddVi9+54MIzURZFhSOStnGmnmZNLNySSbEjCo9SfcZoVCQXxEDPERMYxIGhze7g34qOiopqStnF0te1lTs4nF5SsBSDTGMTShkCHxeQyJy8eiN4ePkySJDruX6kYb1U126pod1LU4qGt20GrdVxnde2kqnQ4vKoWAUhkSD6VGQKEUUO7X+uluDe1PqBXVNddG7HoFRQJBCY8viMPl79GiUqsV6DQq9BolOq0KjVqJzPHjQHVdu0Ps56jTiwETpISEBFpbW8PvW1paiI+P71XOZDKFXUVlTi0CwQBOvwunz4Xd58TudWD12On02OhwW2l1d9DiaKXJ2dqjxaNVaUmNTGRk8lDSzSlkWFJIMydj1kae9I4FWpWGwrhcCuNyuahwNqIkUt1Zz87mPWxv3sPK6vUsLFsOgEUdQ0QwgYDVQmu9DodVTUgKIEKnIiXeyNDcWFLijCTFRJAQYyDoaCQnxXxcvgdJkvAHRHz+IF5/EK8viNPtx+b0AaBWKYjQqYjQq9FrVSf9b3GqcaC6rsP943gYGDBBSklJQavVsnHjRkaPHs2nn37KtGnTBsocmX5w+z20uTpod3di9dixee04fC6cfhcuvxtPwIs34MXj9+IJeHEHPKGl34P/AM4DkZoIovUWEoxxDE8cTGJXV1tyZALRestpU9lZHT7amtS46tJQ1pvR1+fT6axHEdlGm6mdzsgSiAxAAUQpDKQaU8mPyyQ/PpF0SzKJxnhUin2VUXFx03H7bgRBQKMOddcZu7ZJkoQvIOL2BHB5/FidPjodPpQKgUiDmsgIDTqN7Bl7vHEGdDTZOkkwWQbalOPKCf8n3Xrrrdx9990MGzaMv/71rzz88MM4nU4GDx7M9ddff6LNkemi022lvKOGamsdtbYGGuzNNDpasHsdvcoKCOjVIXdonUqLTqVFq9Ji0kWiU2nRq3To1DoMah0GtZ4ItYFIbQSRWiMmrRGLzoRaqT7un0mSJFx+Nx0eKzaPHbvPidPnxhPw4Au7e4uAhEJQoFKo0Cg16FVaIjSGkK16MzH6qIOORYmiRGO7k/I6K+V1VirqbZTXWWm37etui4/Sk5VsZtqIcWQlm8hKNhNr0VFra6CkrYyS1grKOqr4unwBX5WFOs+UgoJEY3yXV18MI9T5OLzOLtd0FUqF8riKtyAIaNVKtGollkgtoijh8vixu/aJk06jxGzUEmlQh215/vnn+eyzz7j22mu56aabjsqGF154AYC77rrrqD/PgaitrQ1HKT9UZs6cyX/+8x/WrVvHunXrjqN3nsCCbdu4dsrp/dB+QgRp/x94/zwphYWFfPTRRyfCBJn9kCSJBnsTO5r3UNyyl5LWclpc7eH90XoLSZHxjE8ZQbwxllhDNNF6MxadCZM2EoNGj0LoHXVKCvrxNlXha64i0N5AwF6D6HYgBkJdPoJShag1YI0wozLForYkoo5NQR2dhKA4si4JURJpcbZRZ2uk3t5Mo6OZFmcbLc52WlzteAPeAx4vIIBw8GjKJq2RRGOoFZcYkYA2GIXfbqSpOUhFfUiA3N5Qi1CpEEiNN1KUF0tOioWcFDNZKWaM+r5FODMqlcyoVGbnhtyjfQEftbZGam0N1NoaqLc10eRspaS1jLz0VJqc+7q6BUClUIUFSqVQoVaqUCvUqJUhwTqWKBQCRoMGo0FDMCh2CZOXpnYXbVaBqEgdpggNn332Ga+99hpZWVnH9Po/Zlbu2SsLkszpQSAYYEfzHjbUbWNL406anW1AyEOtICaHc/NnkB2VQYYlhQiN4ZDPG3TZcBavxlmyHk/1TqQu8UGhQmW0oNBHIqhDk0pFr4tARyMBpxXJuy8UiqDSoEnMRpeSjy5tELr0wSj1xl7XcvicVHbUUNlZR3VnHTW2emqtDXiDvnAZg1pPQkQsyZEJFCUOIkYfRZTejKmrdWbQGDCodGhUGlQKZVhYQwP9wZCrd8CDw+ui02OnqrWZypYmaq0t1De3Utq0BUm1n8eTT48hMo68kWkMSchnTGYumUnmo3IA0Kg0ZEenkx2d3mvfzl27SDUlERCDLK9cy/LqdSEXb6Twcn8EBBSCIuTu3eXaLnDwFtWMrElMz5pwwDKSJPLXp/5ASUkJra1tJKem8+Cjf+b1l5+lsbGRX/ziF/ztb3/jpptuYsiQIbS2tvLRRx/x+uuvM3/+fJRKJZMnT+a+++7rEcgU4LXXXuODDz4gKioKk8lEUVERAO+88w6fffYZbrcbQRB49tlnycnJYebMmVx00UWsWLECt9vNU089xdChQykuLubRRx/F4/FgNpv561//SmJiIq+++ipff/01wWCQKVOmcN999wGhcEG/+tWvKC0txWQy8Y9//IOoqKh+r3uiMCq9NDRCVWctGZbUgx9wiiIL0mmMKInsbC5hedU61tdtxelzoVVpGRZfwEWFsylKHERCROxBu3yCotTlZizS3ZAINFfg2vgF7j1rQQygjk4icsSZ6NIHoU3IQmWJP2CrJ+hxEmhvwNdag7epEm9dKdYNX2FdOx9JUOBJzqI5KZ0mk4maoIvKzlpaukQUQvN+0s1JzMqeTJo5mRRTEsmmBCI1EYfdheUPiDS2OalttlPT5KCm2U5NU2jd5w8CWgQhlcToAoqSIkmO1hIR5SKg6aDRXc/e9kpKXSspbVjJgjYDQ+LyGZpQQFFCIUmRCce0S00hCGhVGrSAXq1Dreh9C4thgRJD65JEUNoXiFSBAoVCgVJQ9NnSPVQ2b96MWq3mgw8+QBRFrr/+esp3b+L/7nuIDevW8Ps/PUN2Tg4dHR3cdtttjB8/nqVLl7J48WI+/vhjVCoVd911F++9914Pr9nt27czb948PvnkEwRB4IorrqCoqAiHw8HChQt5++230el0PPfcc/zvf//jkUceAUL5jj766CPefvttXnnlFV544QXuvfde7r33XmbMmMH//vc/3nrrLSZOnMiOHTv46KOPEASB++67j/nz5zN69Gja29u56aabKCoq4u677+arr75izpw5B7zuiSBbZ2W3LZt5O7/h/yb/9IRd90QjC9JpSKurncXlK1lSsYZWVzt6tY4xyUVMTBtNUeIgxKBAU5uL6ioXGzsqaLN56LR76XR4sTt9ONx+XJ4AHl8Ary9IUNz31B2jsHORYSMjNNV4JDVrvbms9+fR5opF16xCu8mFXrsHg66MCJ2aCL2aSIOGSIMao0GDKWLfy2xMRR2dgjU1m+qcAio7qqlqKaPG3oRdtEPnToQOidggpOksTE8eQ172WLJjMg866VSURGweO+1uK50eG802Ky02G+1OJ1anC7vLg8Ptx+H243QHkYIKpKAKAipMWiNJ5mhmZSWSlxRHRpKJ9IRIdNr+b5dWZzu7WkrZ0byHnU17WFe3BYBYQ3RYnIYmFGI5hpNlp2dNOGgrphtREvEGQq2/bgcUCQmloCBCY8CoiUB3mOGRxo4di8Vi4b///S/l5eVUVVUR9HtJjTeiVAgEgiI1TaExyGFdLZw1a9Zw/vnnh1NMXHrppXz66ac9BGndunVMnz6diIgIAM455xxEUcRoNPK3v/2NL7/8ksrKSpYvX86gQYPCx+2fE+m7776jvb2dlpYWZsyYARCedP/UU0+xbds25s6dC4RaRcnJyYwePZr4+Phwayw3N5eOjo6DXvdEkK1ppdhbyKqSPZyXX0Zh3IlrnZ1IZEE6TZAkieKWvXxVupgNdduQJImhCYWclXY2OncKNY0uPtti5x/Ni3vMa4HQuIDFqMVi1GKK0BBj1mPQqdBrVWg1StQqJWqlRGL9chJrFiIpFDQkn0ljwmR0aBjf5Srs8QXx+AK4vQFcngBN7S7sbh8unwsPDgSNG4XOhaB1I+icoZfGQ3cdKIhKNKKZCDLJVsYRrzST57WR5CjDXLMH5e5SxJWLqIwZhDN+GPaofDokL62eFjp8LXT627EHOnGLdrw4QTjA3A1JAK0AWglVVM9uLg9QAVR4YUN9BAm2WFLqE0kzJ5MVlUZ2VDpGbUSPY2IjopkWMZ5pmeMBaHK0sLWxmG1Nxayv28qSitUApJqSGBSXS0FsDvmx2YfUQj0WKAQFerUOvVoH+tDEXlfAHXbJt3kdqJWqrkgWRpSKg7ecFi1axPPPP8/111/P3Llz6ejoQJKkcDSIlDgjWkNo3KzVFiBRFUQUe/8mgUBPb0xBEHqUU6lU+Hw+GhoauO6667j22muZNm0asbGxFBcXh8vtnxMJQK3uOWbn9Xppbm4mGAxyww03hJ0tbDYbSqWSjo6OHrE0u3MrHey6J4IsQqk5dO40Xtv4Ln8+64ET4hh0opEF6RRHlEQ21G3jk+JvKGuvQqfUk6Ecga8xlS2bAqwLdAAd6DRK0hIiGZYbS3KckeTYCBKiDcRFGbAYtQeclR+wt9P8yd/x1BQTUTiRmLNuIivCTKfXRqfbRqfHhtVjw+q1d63bET023B4rQbcVAl72T7mmVeowq6OIUMSjk8yo/WYErwm/S4fLHcTh9tPo8VPhDbDUG4kojUCpGEx6ZCWxhgZUUiVtnVU0uVT49rNb8msQfBGoRTNGIRWjMhKT1kS0wUy8yUJSlJnkKDMpcWZMhn2J5URJxB8M4Pa7cfhd2DwOOj1WWl3tNDlaaXS0sKN5D8uq1oaPSTTGkR+bzaDYXIbE55NgjOshLAnGOGbnxjE7dxqiKFLRWcP2pt0Ut5Syono9C7rmIkVqIsiMSiPdnEKaOYkUUyJJkUfW9Xg4KBQKjJoIjJoIREnE6QuFR2pzddDhtoa9IQ/kFLF69WrOPfdcLr30Upqamli/fj0TJ07c7xoCCTEh4Q4ERGqa7YwYNYY3Xv8XV1xxBSqVinnz5jFhQs9W3sSJE7nnnnu466670Gg0LFiwgOnTp7N9+3YyMjK48cYb8fl8vPzyy0RH9x/9IjIyksTERFauXMnkyZP57LPPWLduHeeddx7PP/88l19+OVqtll/84hdccskljBs3rs/zHO51jwcmyUp6QiR48qm2fsb/tn3GDSN/ckJtOBHIgnSKIkoiq6s38v62L2l0NaEKGPHXDcHdnIxdoSY3NYJzJ0WTl2YhN81CUkzEYYWCCYpBGh0tVFZtYe+aebQJIs4Rw7EpPbQvfrJPd3AIjWtYtCYsehOZljRGJg0lWm8hPiKGuK7IBsaDVLa+gI/KzlrK2qsoa6+ivKOaensTjZJIIxChtpCssTDeFyC+vZmEznbi/EHM8VkYcoZhyB2FOikbp9+D1WvH7nXi9Lvw+DtoCDZTUx+K7B1y9VaiVWkxqPVEaiOw6Ewkxcb3WRF3O1Xsba+itK2CrQ27WFYZEql9XXODKEochEm7zylDoVCQE51BTnQGFw86G1EUqbbWU9JWTnlHNZUdNXxXtgz/fpOD9SodsYaoUBw+QxTReksosGswEm/AF3bIOBaipRAURGqNRGqNeANeOj1dDxleOxatCbPO1GeL6bLLLuPee+/lm2++QaPRMGLEiH5zFKUlGGloc5E7eCzjJxZz6aWXEggEmDp1Ktdee22PsoMGDeKGG27gJz/5CSaTieTkZAAmT57Mu+++y3nnnYdGo6GoqCic9rw/uvMd/eUvfyEqKoq//OUvxMfHs3v3bi6//HKCwSBTp07lkksuoa6urs9zHMl1jwfTiuJ4Z0E5s0fP4MuSRRTEZjMhbdQJt+N4IkgH83c9CamtrWXWrFksWrSoV0qL0x1RFPlqxzo+2f0FdqkN0R1BoD6HTEMho/ITGJEfR0FGNNrD8PIKikGqOmspaatgb3slVR211NmbekTFjlDpiDfGEW0IVYxRejMWXcgV3KIzYdZFYtZGojnM2HEun5vKzhoqOmqo6FrW2RoRuwKXmnUmcqLSyezqKsuOTidGHxXu1mmwN1NZt4Pq6q3UtdfQ4nPQqVJgUykIHmFlLQgC0ToLCcZYkk2JpJuTybCkkGVJQ6fe19aTJIl6exM7mvawozn0cvpcCAhkRqWGxakgNgfNQbpXRFGk2dlKvb2JenvIdb3V1R6KWO4OzaOSkLgz5xpSstNCdnanylCqUCtUqJVqNEo1GqWmx2TaI8EX9NPh7sThc6EUlEQbLEfdahNFiaZ2Fw63H4tRQ6xFf9pMgD4QxcXFRzzm1F3XvTk3n/TbXuTnL27hytl5FCu/pKKzht+d8UvyY7OPscUDh9xCOkWwOrzMW72JRXXf4Nc3I3kMpElTmV0wifGXJhIVqTv4SbqQJIk6WyObGnawvWk3e1rL8HTN1+mOWj3EEI9x2wqS9FEMveQBzNHJR2W/w+ekwd5MXdf8mhprA9XWOtpcHeEyFp2JrKh0xqYUdUXNzghHbfAEvFR21LKudgsVHTVUd4Ym8O4fDcISYSIhLokCEYwOB4b2ZiJcdiKCIgatEVNiNsakPAzJ+Wjj0pAUCgLBAJ6u/Eh2376I3i2uNprsLayu2RgO9SMgkGZOJj8mi0FxeQyJzyfFlEiKKZGz86YjiiLlHdVsbdzFtqbdfLFnIZ/t/g61QkVe1zGFcTnkRWdh0PSMv6dQKEiMjCcxMp6+nnkDYpBOj5X68joSjLEExCBBMYhfDBAQAzh8rrCIA6GWn1KDTq1Dr9KhUaoPq/LXKNUkGOMwB7y0uTpocbZh9zqIi4g5qLj2h0IhkBhjoNXqptPuQ5IgLurHIUrHglh9kKE5MSzbVM9ffvkzHl78V55c/k8eOeMesqLSBtq8Y4IsSCc5e2s7mbdsJ+valqGIq0ap1TA+6kxunnQeUcZDDyoqSRKlbRWsqtnI+rqtYRfqFFMi0zLHUxibS2FsDjGGKHxNFdS//QgqcxzJVz2O0nBwzzBPV8XV6mqnxdlGs7ON5q44dU2OVhy+fQnGVAoVKaZEBsXmkmZOJjMqlSxLWjjYaCAYoNpax8b6bextq6KsvZJae2N48qpZG0lmVCrnJJxBmjmZ1C6X7x8GWZUkiUBHA+7KHXhqivFU7yKweyMuwK3SoEnMQpuUQ1RSDolJuaiTMnu5qkuSRIfbSkVnDWVdXXWrajaysHwFEIroPSyhkOGJgxkSn09uTCa5MZlcOuQ83H4PxS2lbG/aw66WEj4u/hppV1ckcGM8GVGpZJhDcfqSIxOIj4jpt4WpUiiJNUTTomzCqInos0xQDOIL+vAG/XgDPrwBL06/O3y8Qa0nQmNAr9IdsgjoVFqSIxOw+5y0uzqotTZ0tY5NRyQkgiAQaw6JUIfNiyDwo2kpHS2i18WM0Wm88MEWGpsDPDz9Lh77/hkeX/Isj0y/m+zojIE28aiRu+xOQiRJYntZKx8sLGFH+1Y0GXsQVH4mp0zi5rGX9PLwOhBNjha+r1jN8sq1tLjaUSlUFCUOYnTSMEYmD+mVEiHg6KDu3/eDoCDlxj+jigzt9/g9NDpaaXK20ORo3a9LKSRCTp+rx3mUgoLYrjGjBGMcica4rmR2ScRHxITHaERRpN7eFB4vKmuvpLKzNtzyMWmN5ERnkhOd3tVll0GU7siDiwZsrXjqSvDW7sFTvxdfY3l4Mq+g1qFJyESbmI02KQdtUjbqmJReIiWKIpWdtexsLmFH8x52tZTiDXhRCgryYrIoShxMUUIhOdEZPcaiXH43e9sqKW2roLyjmqrO2vAE5W4sOhMxhihi9FHhrtHwS2fGUW+lsLAQhUKxX86j0C0s0DvKdyAYwBXw4PK7cfndSJKESqEMhXHSGFEpD/2ZNCAGw7+1TqUlPiLmiD29JEkKt5RizTqiTIfewj+VkCSJ3bt3H5Muu6IbH4b0UVz/2DfMHp/Bz+YW0exo5fffP4Pd5+T/Jt3WI/L8qYgsSCcZu6va+c+XxeyoqcGQuwvR2EJOVCY/H3fNIc/QFkWRDfXb+HbvErY37UEQBIoSBjElfSxjU4f3m65BEoPU/Pd3VLdW4ppxOXWiJ5QEz95Ih9vao6xBrSfOEE1MRDSx+tDge6whmtiIKOIMMUTrLSh+MBDuCXiptYZyB1V21nZFXagNR1rQqrRkR6WTE51BbnQmudEZxEXEHNenZ0kM4m+tw9tYjrexDG9DOb6mCiR/qAtTUGtDApWShy6lAG1qASpjVI9zBIIB9rSVh7rqGoup6KhBQkKv0jEoLpfB8XkUxuaSFZXWqwL3+D3U2ZuotzXR7GylxdlOg72FVkcHNp8dr9jTRf/y1HMoTM5HZ4wAlCAqQFKAqETqWlcoQKlQoFKGch2pVUq0agUajQJf0Ivd58TldyMQSmBo0ZsPuRtOkiQcPhetrnYkJGIN0Uc8tiRJoTElu8tPcmwEEf2EVjpVkSSJtrY27Hb7EYdQ2l+Qhl71f0QWzeCp/6xn295W3vrd2aiUCtpdnfx5+T+osdbz09FXcmbO1GP8SU4ccpfdSUJLh5s3vtjJ8i21RKY2EzlyJwoFXDP8CmbnTjukGfWegJfF5Sv5qmQxzc42YgxRXD70QmZkTSTGENXnMaFupb3sailhR9laqlVWAsmRsOdrtCotaaYkihIGhWK4GeNJNMYSb4ztt9tIkiTsXgel7RXU25qoszdSa2ukztpAs7Mt/DSvV+nIsKQwM3syWVFp5ERnkBKZ2EvEDgdPwEurqz3sumzzOnD6XLj9HnxBH4GuaAUKQYFGoUan1mLURGDSGomKiyUuoyD01K9Q4m+r7xKoMrz1e7Gu/wrrmvkAqKOT0WUMQZ9VhD5zGCp9JEPi8xkSn8/VRRdj8zrY0bSbHU2h1tOmhh0AKBVKMswpZEalkRaZjE6KwufQ0dEGdS0KalsMNLSKuL2R+z6UIojBGMBkEdFFBNlQY0VHExatDoRQNIb9wwUJKFCgROgSK1Gkx8RmpSIU0VutEgjgoy5QiyRJ6FRaItSGQ/7+g6KI3eegNliNVqXBqIk4oqgP3XmgGmolok3aQ5r/dCqh0+mO2UOz2BVua8aYNFZsrWfT7mbGDUkk2mDh8Zm/5tnVr/Hqhv+xt62Sm0dfecRjfQOJLEgDTFCU+Hx5Ge98sxsJH7mTq6jzlzAoNpdfjLuBeGPsQc/hCXj5tnQp8/cswO51UBCbw7XD5zI2ZXif7sv19ibW125lU8N2SlrLCUoiKkFJitvDFH0cKYXnEqNORC+Y8AdCidzwA53Q5lBgUznwCy24JSsO0UqHt51mZyuNjmaaHK24usYtIDRelBQZT050BtOzJpBmTibDnEK8MfaIw9aEPPNqqbbWUd2VxrzB3kSnx9arbPeEUI1SjUro6iaUJHyiH08/KTLiDNGkmpPJtKSSM3g0uVMvJVkdgbepAk/1LjzVu3DsWol98wIQFOhSCzDkjyNi0ATU5nhMWiOT0scwKX0MAFWtLazcu4Pi5nIa2uqpaF2PpNwXf08SFSiJQJ8QSXKamRiDhURzDKmWGNJj4kg0R2PWmfr0nJMkCavHRrW1nsrOGva2VbGntYwOT6hFm25OYWzyCNK1hbQ0CWwva2VraT1ubxCzUcPUMbFIcWUsq1iJUqHkJ4PP4/yCWYfkpSeKIvP3LOD97e9i1pm4c/wNDE0oPLQfcT8a25zc8/clZCaZ+NMdU1DKmWr7RPSEBGlUQTymCA2LN9YwbkgiEJpu8cCUO/hg5+d8vOsbKjpquGfizSSbEgfS5MNG7rIbQOpbHPz93U3sqepg6BA1ttjVtHnauXzoBVxcePZBn1YDYpCFZcuZt+trrB4bwxMHc+ngcymMy+1VttnZxoqqdaysWk+NLTTr26KKI8KfjNgZxcVt3xMlOviz9SJcUtekUUFE0DlR6B0IekdoqXMi6FwIin0eXZIooAgY0EkmIlUW4gyxpEclUpiYzrD0NIx6bS97DhV/0E9FRw2lXS7p5e3VNDiaw/sj1HpSTUkkmRJINMYRHxFDjCGKKJ0Zky7yoAP43oAPm9dOm6uTVlcbjY5W6m2NVFnrqLc1dqWnCIlUYVxoEuzQ+ALiDFF46/fiKtuEq2QDvuZKAJRJ+XTEj2aXkEtpg4fyuk7abfsijsda9GQmR5IYr8Rg8aDUu/EKNto87bQ622lzd4ZdvPdHQMCsiyTGEEVcREzXmFwCqaYk0szJPdJjdHtRbm7Yyfq6LexuLQNgWEIB5+bNZFj8YLaWtLJwfTVrdzSgUCiYPiEKZ/RWtjbtIMOcwu3jrjvkQfLy9iqeW/NvGuzNnJ8/i6uGXXTY7v+LN1TzzLubue3iYVw49fRxYz5awl12lw8jf/oFxJx5IwCvfLyNb9dW8Z/HzukVRX5j/XZeXPsm/qCfa4fPPeQelpMBWZAGiO831vDPj7aiUiqYdZaapS1fYFDr+eWkWxgUl3fQ4zfV7+CtLR/SYG9mSHw+Vw67iILYnvGtAsEA6+q28vWepexpD03kU7qjcTfHI3YkIPn0REVqmWkqZ6p7EWszzqc5Lgar1ESrr5FWT3M4KKeAQIw+hhhdLFGaaIxKC1rJjDIQgd+lpdPuo7XTTVO7i5YOF/v1EoXzAOWkmMlJs5CfFoUlsm+Rsnkd7GktC71ayijrqA7Ph4rWW8iNziQ7Op1MSyoZltTjmszPF/RT2SWGe1rLKW4pDadUj4+IYXBsATHKNALWaNoqGzA0bGawVEKi0opHUlGsHERL8mQSM7PJSTWTlWTCaDh4Rd3t4h2KgmGlw22jw9NJu6uT1i4X7GZXG0Gx67cRBFJNSRTE5jA0Pp9hCYVE7jcxt9XZztLKNSwsW0Gbu4NUUxI/GXIeE9JG0drh4YNFJSxYV41Rr+asszSsbl+AzWvn0iHnc8mgsw8phYUn4OWdrR/z3d5lJEcmcMe46w9rfowkSfzu1dXsqe7glQfP7Pf/8WOju677z7XjyB45kbgL7gCgpLqDXz+3jDsvG8HZE3o/OLS7O3l53dtsadxFUcIgbh93Xb/d9icTsiCdYAJBkdc/28EXKysYnB3NsImdzC/9ioKYbH49+baw63N/tLk6+Pem91lft5WkyHiuH/ETRiUN7VEpO3xOPtq6kMUVy/BILkSvnmBLChGeLIamplGQEUVumgWLRWRP207WrnqXMp0KhxD6KxjUenKiM8iKSg+7JaeYEg7Zo8ofEGlqd4YiZzfZqWywUVFvpa7FEY4WHh9toCDDQkqKgMrUSXuwgZLWcursjUCoqy87Kp382GwKYrPJi84i2mA5/C/8GNE9AL+qZA+baoupdlbgVjchqAJIEqh8FuJUaQyKzWOiyUBCw3rce1ZDMEjE4ElETbkMTdyxmysSFIM0OVuptTZ0ddVVsqetHLffg4BAYVwOE9NGMyl9TDhqRFAMsrpmI5/s+oYaWwPZUencOPJyCuNyqGqw8cIHW9hT3cGZE5OQkrezqmYDhbE53D3x5l7emP2xrbGYl9a/Tburk3PyzuDKYReF4ucdAjVNdu786/ecNzGTn80tOuLv5nSiu65755ZppOcUkHDpvUDo/3j7U4uwROp48hdT+jxWkiQWlC3n7S3zUCqUXDnsIs7KmXrMc2QdS2RBOoG4PH6e+s8GNu1p5qKpWUgp21lYvoIpGeO4fey1B6zwJUliUflK3t4yj6AU5CdDzueC/Fk93HbbnFZeWfEpW9s3ICkCBK2xJElDmJ47krGDk8hIjKTJ0cKqmo2sq91CeUc1AKZAkKFJQxiWMZqCuBySIxOOSxO/3WFnZWkxW+tLqbJWYZWaQNU1lhJQEyHFk2XKZHT6IKYVDiFSN3CuwMGgSEW9jV0VbRRXtlNc2U5bV1BavVZJXloUBRkWTHEunKpGSjpKKWkrJygGEQSBTEsqeaYUUtrbiN6zmRi3B3PRGURNvxpV5PF5UhVFkbKOKjY37GBtzWZqbA2oFCompo3i/PxZ4fxKoiiyono97277jDZ3BzOzJ3Pt8EvQK/W8/XUx877fy5hBCUybAW9seQ+VQsWd429kVPLQQ7LD5Xfz7rbP+G7vMqL0Zm4Y+RMmpI46pJbsix9uYdH6Gl5/+CyiT1NX8MOhu6773+3nkBwfTdLVvwvve3/BHt75ZjevP3QW8dH95zBrtDfz6ob/saN5D2nmZG4aeTlDEwpOhPmHjSxIJwib08fv/rWa8jort186lGJxMatrNnLxoLO5aticA96sVo+Nl9a/w6b67QyNL+BnY68hwRi3b7/TyXPfz2OHbT2SIoDGmcaMtDOYM3YkcVF63H4PK6rW833FKva2VwKQF5PFmITBJH7/EZkJeSRd8dAx/bwev4fKzjoqOqop66iivL2aOltjeGwkOTKB/Jhskgyp4Iiivk6guKKd6iZ7qMWhFMhNtTAoK4aCjCgKM6KIMR/aRGBvwIfVa+/ysHPjFwOIktgVakcV8ijTGDBrI9GrQ2NMHXYPJVUd7KnuYE9VByXVHXh8oS6xuCg9gzKiGZwVzaCsGDKSTH0OvHsCXkpayylu2cvu1r3sbasMu7SrUZDg8REfEElPHUpG4WQSjPHERURj0kYel27Hqs5aFpWvZGnFGtwBDyMSB3PlsDlhYfIEvHy080u+2LMIi87EHeOupyhxEF+vquCf87YxqSiJ6y5O57k1r1PVWcvcwedw+ZALD9kTr6S1nNc2vktlZy1D4vO5YcRlZEYd+H6tb3Xw8ycXccWZBVxzzuE7SJxudNd1795zCQk6iZSbnwrva2xzcuufFnLTBUOYO6P3uPH+SJLEurot/GfzR7S42pmQNorrh19KbMSJDRJ7MGRBOgE43H4eemklNU127r9+NCs7v2Bt7WauHX4JFxXOPuCxxS2lPLvqdRw+J9cMv4Rz8s4It14CgSAvL/mWZY0LQO3B6EvnimEXMnv4EARBoN7exFcli1lWuRZPwEuaOZnpmROYlD6aWEM01nVf0LbgDZJv/DO6lPwj+mzdKcSrrfVUd9ZRZa2jqqOWRkdLWHzMOlMouGhUOnkxWeRGZ/Y7udfh8rGrop2d5aGWSWlNJ4FgyLEgxqwjJ8VCVrKJtEQjmkgXLtppcjVRb2+iydFKq7MtHJ3gUFBIKiSfnoBLj+iOQPBEkmRMYmhKJoMzYxmcFUNc1KFHxNifoBikztYYCqDaWUt1awU1bdVYhWCPcmqFiii9uWsirCW8HmOwEKMPOTFE6c1H5ZX4XdkyPt+9ALvPyRmZE7lm+MXhnFJl7VW8uPZN6myNXFR4FlcOm8MXyyt4ff5Orjt3EBefkcnrm97n+4pVDEso5J4JN2PSRR7kqiFEUWRh+Qre3z4fh8/FjKyJXD7sQqL1ln6Peexfq6lssPH6w7N/9B533XXd+/dfTYyvlbTbX+ix/5fPLEGpEPjbPdMP6Xy+gI/5exbwSfG3CMDFg87mooKzDtsJ5XghC9JxxusP8ugrqyip7uChm8ay1vYdSyvXcP2In3BBwawDHvtN6RLe2vwh8RGx/GrSrT2eLteVlvP8qv/g0zWh8Udz3fCfcPawkUDoyXjezq9ZW7sZpULJlPSxzM6dRk50RvhJXBKD1PzzTlSmGJKv/+MhfRarx0ZVZx011nqqrfXUWOupsTXgDezzIkuIiCXDkkpmVCqZllBA1Cj9kUdW8AeClNVZ2VJRw7b6Emqd1bgUrQgG2z5PP0lAGTCilUwYFJHoBCMaQY9S1CIGlXi94HIHsDq8uHxeUAYRlH4UGh9GcxCd0Y+kduAQO8NOHBqlumsMK4fC2BwK43L6nXt1OEiSRNv2JZQueYs2gviHTsYRHUeH20q7uzO83D8tO4REK9EYR4o5iQxzCjnRGeTFZB1WunmXz83Hxd/wZcki9CodN468jKkZ4xAEAV/Ax5tbPmJh2XIKYnP45cRbeH1eGau21fPMr6aTlWxmcflKXt/4HiZtJL+a9NPDclpw+Jx8vPNrvt67BJWg5IKCM7mo8Kw+x5eWba7l6Xc28uc7JjM05+DTHk5nuuu6Dx+5BXPrbjJ++e8e+z9cVMJ/vio+aLfdD2lxtvH21o9ZU7OJOEM014/8CeNSRgx4CCdZkI4jkiTxt/9uYunmWu6/bgxVwjrm7/6Oy4acz2VDL+j3OFEUeXPLh3xTuoRRycO4e/xN4WCcgaDI0199yib7YgQEzkg+k59NvQClUkmzo5X/bf+MVdUb0Kt1nJN7Bufmz+gzS6mrdCONH/yJ+Ln3Yhw0sdf+dlcne9srKWuvCkfj3n+eT6TWGHZ4SDMnk9710h3iAPbB6PTYwlG0dzWX0OhoAUJCkWVJJ06bhEGMQXKbcNu02BwBbE4fTo8ff0AkKEooBQGtRoleqyLSoCHarCPOoicpNoKUOCOp8UY0+0VFD4pBGuzNVHTUUNZeSWl7JeUd1aFxIQTSLSkMictjcHw+g+PzjkqgAvYOWj5/HnfFNoxFZxB77s9QdD2lSpKE2++h3d1Jq6udZmcbTY4W6u1N1FobaHK2AoSjio9MGsK4lJFkRaUdUoVSa2vglXXvsKetnAlpo/jZmGvCwraiaj2vbPgvepWWn4+6mb/9q5ysZBN//PlkACo6avj7yldpdbVz7fC5nJc/87AqsUZHC//b9ilrajZh0hq5dPB5nJUztcdYqMvj5+pHvubi6TnceMGQQz736Uh3XTfvj3cSUbaSrAff67G/odXJbX9eyK1zhnLRtMPPIruzuYQ3Nn1AtbWOYQkF3DjyctLMRxdI+WiQBek4Mn9ZGf/6bAfXnltIfHYbL61/m9k507hl9JX93sQBMciLa95gVc1Gzs+fxXXD54b77Fttdh747J/YNZWYxCQenv0zMmMS8AV8fFL8LfN3f4cgCJyfP4sLC888YIXZ+OGTeOtKSb/rFVAoQ0nomvaws7mE3a1ltLtDUbgVKIg3xJNmSiE7Oo3c2HQyo1IOmkL8cPEEvOxu2cu2xmK2Ne2m2hrKTWNQ6xkcl8eguDwGxeWSGZV21KkVDgdfwMfe9ip2tZSyq7mEPW3l+IN+BAQyLCkh2+LzKIjNOez05JIk0rHsAzpXfIg2JZ+EnzyAymg56HEuv5vy9iqKW/ayvWk3JW0ViJJIcmQCM7MnMTN78kHFct+k1vnEGqL5v8m3hSNGV3fW8fTKV2hzdTDGOIvvFwo8fddUCjND4w1On4t/rPsPG+q2MjZlOLePu+6wxXlvWyX/3fYJO5tLSDTGcXXRxYxPHRm+L+5/YTmSJPH03dMO67ynG9113cd/uQ/9jq/JeuA9BFVP56efP7mQpFgjv/vpoaWz/yFBMciCsuW8v+Nz3H4P5+RO57KhFxxW6/tYIQvScaKqwcYvn1nKqIJ4rro4gUcX/41Bcbn8dtqd/bpdBsQgz61+vc/xpd31tfx+0QsE1DbGRE3jvtlXoBAU7G4p46X1/6HB3syU9LFcO3zuQd2jg04r5c/fSvOIKawzWNjesgtHsCtWnV9LwBaF6LAgOixIrkiQ9tmrUgrERRlIiTOSlWyiID2KIdkxhzS/Zn+6UzVsayruSoFRTkAMoFaoKIjNoShxEEPjC8iOSj+qcELHGn/Qz972SnY2l7CzuYSStopwYr0EYxx50ZnkRGeQHZ1Ohjm1V5qJvnDuXkPzZ8+hjIwm6apHUEcd3ux6u9fButotLK1cw+7WMrRKDWflTuPiwtkHHespaS3nmVWvYfc5uGPc9eHoEg6vk2dW/4vtTXugOZvxMTP49dVjwsdJksSXJYv479ZPiNZbuGfiLYedl0eSJLY07uSdLR9TY2tgcFweN468nMyoVP716Xa+WVPFh386/7ASS55udNd1nz77CNpNn5Dxy3+jjOg5NeSf87by/YYa3v3jeaiUR36v2LwO3t8+n4VlKzBqI7h62BxmZE06ofefLEjHgaAocd/zy2jucPH0PZP406q/EpCC/GX2b3tMWNwfURJ5ce1brKhaxw0jfsL5+40vbaou4anl/0RC5OpBV3PxqAmIoshHu75k3q6viTVE87Mx11CUePCIwhUdNXy69B22OytxqBRIogLRGoPel0x6RBaZ0UnEWgyYIjTotSqUSgFRlPD4gjhcPtptHpraXdQ2O6husiOKEoIA+elRTByaxPRRqcRaelfCoiRSY63vipBdwq7mknCIoQxLKkUJhRQlDmJQbO5RD7D6gn46PTZsHjvugAdf0B/2stMo1ejVulBQUZ3pkOfI9EcgGKC8o5rdrXspaQ1Fk2h3d4b3xxqiSTMnkRSZQHJXPMD4iBhiDdE9uqk8dSU0vv8EglJD0rWPoYlJOSJ7Kjtq+WLPQpZXr0On0nLZkPM5N2/GAeeedHps/H3lq+xuLePyoRdy6eBzEQSBgBjkjU3vh9Ktdybw+vUPEKnv+duWtlXw3OrXaXV1cMXQC5kzaPZhO18ExSCLy1fx3o75OHxOzs6dTqx7BP/6eDevP3wW8VEn/kn9ZKG7rpv/0p9Rr/4vqT9/AU1Mzy61lVvrefI/6/nr3VMpyDh6r7mKjhre2PQ+u1vLyI5K56ZRl/eadH+8kAXpOPDtmipe/HALv75mNMWB71lSuZrHZ/76gD/qf7d+wme7v+PKYRcxd/C54e2b63bz5LJ/IPnV3D3uZ0wpLMDudfDs6tfZ3rSb6ZkTuHnUFQesWEVRZE3tJt7f8i0N7loUIuQ4g4i6s5hRMJrR+UmH7FK9P15/kJLqDraVtrJhdxN7azoRhFCsrQumZhAZ42ZPWzm7W/ZS3Lo3nKIiISKWoQmFDE0IheE50u6/7lTn3V5sddYGGh0t4WgKh4JBrSc+IoakyATSzElkWEK5mWIMUUc8wNvptlLeUUNVZ23Y8aPB3oRvvxTlAgIWvYlYQzRxhmhiI2KIFgWUaz4nNigw5KrH0cUceV9+ra2Bt7fMY3PDTrKj0rlrwk2kHCCumT/o55X1/2VZ1VpmZk/m1tFXoVQokSSJV5Z/xqL6b0mOSOH3Z97Va/K2y+fm1Q3/ZVXNRobGF3DnhBsP6EXXHw6vk/d2zGfB3uVEqI207cjnz9ddwuCsmMM+1+lCd133xevPolz6Gsk3PYUuuaeLd1O7i58+sYA7Li3i3ElHFlX8h0iSxMrqDbyz9WPa3Z1MyxjPNcMvIeogE/ePFlmQjjE+f5Db/ryQWIue6y6P44mlzzOncDbXDL+k32NWVK3n+TX/5sycqdw6+qpwRbintZzfLXyGgEfLXaN/zvRhuTQ5WvjT0hdpcbXz09FXMTN7Ur/nFSWRlVUbeHfb57S6WxE9BizOLO6xLSN+9AUknHX9MfnMoiTS5GhlQ9UeVpTupNJajajtRFDsS0ZXGJfLoK5YcHERR1bBePweilv3sqNpD8Ute6noqA7HmovURJBqTibJGNflJm3BpDViUOvRqjQoBAWiJOIP+nH5PTh8Tjrc1i6ngdau9A/7opGbtEZyozPJj82mMDaH3OjMo2q5iZJIh9tKk6OVJkcLLa5Q7LruNOWtro4eKeOVUmiuVmZMKHNuYWwOmZa0w+o+kSSJNbWbeG3je/gCPm4dczXTMscfsPz7O+bz8a5vGJcygnsm3oxaqcbl8XPNX99Al7edaIOJ30y7k1RzUq9jv69YzRub3kejVPOL8TcwKnnY4X9RdLW6Vr5Js7uZ4dGjuW/G9SeNW/KJpruu+/LtV1AseIHEqx7FkD28RxlJkrj6ka+ZPDyZOy8bcUyv7/F7+HT3t8zfvRCVQsllQy7g3PwZx20cV472fYxZtL6aNquHu68czr83vUSiMe6AHnV1tkZeWf8OhbE53DzqirAY1dub+OP3LxLwargo5WqmD8ul1tbA498/S0AM8ugZv6Qwrv8WV0lrOa9vei+Um8cVibptDDdMmcnEyHpaP/0ec+G4I/p8oiTS6GihoqOa8vZqyjuqqeioCXe/aZRq8tPSUXvzKNkN1uYIskfkcf3MoYed70aSJKo6a9ncsJMtjbvCkRBUChV5MZlcWHhWV96kzKNyLe/GE/BS3VnX5WUXyg67f+qInKgMBsXlMiguj4LY7MMa9FUIilDiPUMUg+N7xyoUJZFOt41mZys1NTso3TCf5mArOwJulletA0K5i0YkDmZS+mhGJA09aKUgCAIT00ZTEJvD86v/zYtr36TaWs/VRXP67FYTBIErh83BpI3kzc0f8pcVL3Hv5J9j0GlI0eZidKbQplvGw4ue5v4pt/f4HIIgMDN7EgWx2Ty7+nWeXP5PLsifxdXDLznsyisvJotfjb6Hez/8F1vZyMOLmrh/yu0n3STOE4lCE+oBEX+QCBNC331GkomapkPvGThUdGodVw6bwxlZk3hz0we8vXUeSyvX8NPRVx2w/jlSZEE6hkiSxBcrK8hNNdNEMQ32Zh6ceke/eUmCYpAX176JRqnml5N+Gr5xXT43Ty79J15fkBTHbK6ZNZJGRwuPf/8sAI/P/HWvJ9RuvAEf/9v2KV+Xfo+WCHxlRYyIH8Gvfj4Ks1FLy5ffoNAa0KYcPICrJEm0uToo6Yq0XdZeRWVHDe5AKISOWqEi3ZLCpPQx5EZnkB2VQZo5KTxe4Z4V4P0Fe/hkyV62lbXymxvGkptqOeA1nT4X25t2s6lhB1sadoZdzTMtqZyfP4uihEIKYnN6RLc+VuhUWvJjs3sMztu9DkraKkLdji17+aJkEZ/t/g4BgTRzMoWxORTE5pAXk0mCMe6IRVEhKIg2WIg2WCiMy2VyZBqNHz6JIX8sqgvuZ3drGVsbi9lUv50V1esx60zMzpnKufkzDurhFq238PAZ9/DGpveZv/s7Oj1Wbh97Xb/jSuflz0Sv0vHy+nd4cvk/eHDqL8hMMrOzIsBfrrifPy17kT8ufZ67J9zEhLRRPY5NMSXyxJn38/aWeXxRsojStgp+NfnWw+7CUylUBGoKuWTMeBY1f8ZvFjzJb6bdGY4y8WNDodEhApK370nfCdEGtpW2HLfrJxrjeGDqHayv28obmz/g0cV/ZWbWJK4efkk4VuKxQBakY0hZrZXqRjs/u3QQH+96jSHx+YxM6j/+15cliyhrr+KXE38avmElSeLlDe/Q5GzBWzqWO2+ZhNPv5ImlLxAUg/z+AGJUZ2vkbytfpdbWQLZ2BDtXxnLBxDx+evGw8Ix3d9UOdOlDeqXl7qbZ0cq2pt3saN7DnpYy2rrcv9UKFZmWVKZmjiM7KoPsqHRSzUkHfPrVa1XceMEQJgxN4qm3N/DAiyt44PoxjBu8bywjKAYpa69iW1MxWxt2UdJegSRJRKj1FCUOZmTSEIYnDj7ufdf9Eak1Mjp5GKO7up+8AR+lbRXsbt3L7pYyllWt5buyZUCoBZMTHcp4m2lJI8OSSkJE7BF5KRnyRhM963raF75JVFIuUybPZUrGOAJikK2Nu1hQtpwPd37JFyWL+Mng8zkv/8COCyqFkp+OvooovYUPdnyOKEncOf6Gfh0QZmRPQqVQ8eK6N3lq+T/JTTiLpZvdRKrM/GHmvTy14iWeWfUat465qleGUo1SzS2jr2RQXB4vrX+bB7/7M/dN+Tl5MYc+vuELhCYoF1gKmFl0P39a+iK/X/IMD0+/+7DOc7rQLUiiz9Pn/oRoA202D/6AiFp1fLziBEFgXOoIihIK+WjX13y5ZyEb67dz29hrGJsy/OAnOARkQTqGrNhah1IhEDTXYK2x8+uht/X7xNzpsfHRzq8YlTyMifs9Za6oWs+amk0omwYxKnUQOSlmnlj2PO2uDn4341f9itG2xmL+tvJV1EoVV+Vcz7/fbWbmmDRuu2RY2IaAvYNARyOm0WeHjwt1i9WxqmYD6+u2UmcLRduO0pkZFJ9HYWwOeTFZZJhTeniFHQ6FmdH8/ZfTePz1tfzpzTXceFkqisgOdjWXUNyyF3cgFKE6OyqdSwadw4jEIeTFZJ6UUYm1Kg1DEwrCwSmDYpBaW0NXvqYqytqr+LT4O8SusS21Uk1aV86iVFMSKaZEUk2JxB+CUJnHXYC3vpSOpe+iTx+ELm0QKoUyLJBVnbX8b9tnvL11HquqN3DPxJtJjIzv93yCIPCTIeehEATe2z4fo8bAzaOu6Lf81MxxSEi8uPZNnEYJyKShzUlWspmHp9/N31f9i1c3/A9f0M95+TN7HT8pfTSppkT+suIlHvv+GX458ZZDrrhc7tB4WoReTaoplj/MupfHvn+GPy19gT+eef8BHTRORwR1d5dd3y0ks1GLJIHT7T/uqTt0ah3XDr+EaRnj+Mfat3h6xctMyxzPzSOvOKRpDgdCFqRjyMbdzQzOjub7qoXkRmf2mSivm492fok/6OeGET8JC4bD6+TNLR+SpE+hvCqd83+axae7v2V70x5+Pva6fud5rKnZxHOrXyfFlMT9k2/n4Rc3kxIXwR0/Gd5DEL11ewDQpRbi8XtYUrmGRWUrqLLWoRAUDInP48zsKQxPGkxKZOIxCSNi8zrY21ZJSVs5pmFlaBPK+V95qLJJioxnSsbYUAUfX9CvS/yR4Al4aXa00ubuwOoJBVr1Bf1ISCgFZTjtdpTeTKwhihhD9BEN1CoVSjK6cjN1txR8QT811vpwmKUaaz3bGotZWrkmfJxaoSLVnESWJY3s6HRyozPJsKT2EGFBEIg77+d4G8po/vRZUm/9Owrdvu65DEsqv5n2C9bUbOKVDf/lwQVP9hrb6YtLBp2Dw+vki5JFpEQmcnZe/3HQpmWOx+V38+9N76POdFHXPI6sZDNalYb7Jv+MZ9e8zpubP0QhKDgn74xex6dbUvjTmQ/w5PJ/8reVr3Ln+BuZkjH2oN9rpyMUjsoUEeqajTFE8cgZ9/DbBU/y9IqXefKsB49ZVJBTAUGpAoUqnMb8h+g0of+NxxcATkwuqXRLCk+ceT/zdn3NJ8XfUNpawa8n30a65cimLIAsSMcMp9tPVaONM2caWGFv4s7xN/Zbtt3dyeLyVczInkzSfk+0H+36CofPSZ50Dk06D7GJAf628EsmpY1mRlbv8D4Amxt28Nzq18mJzuS30+5kU3E7Da1OfnvjOLTqnhWst6EMr1LJ5+17+Grtyzj9brKi0vjp6CuZkDb6qPuCXX43lR01lLWHInyXtVWGw9woBAUZ5hTOyJrImrVeJHs0j//yHMzGo795XD43e9sr9wt1VEuLs+2wzqFUKEmNTCSrSxwKYrNJMycfUUBTjVIdCib7g4yrTp+LOlsjtbZGam0NVHfWsb5uK4srVgGhMayihEGMSx3BmJQiDGo9Cq2B+Dn3UP/WQ7QtfJO4C37R63oT0kaRHZ3Bn5e9yBNLn+eh6XcxOL7/YLmCIHDt8LnU25t4c8uH5ERnkBuT2W/5c/LOoMXRyed8y5KaZUwZcRUAKqWKX078KX9f9S/+vel9jJqIPsXGpIvk0TPu4cnl/+SFtW+gU2kYc5CWUoc91DW1fwqK+IgYfjXpVh7//lne2foJPx1z1QHPcbqh0OqQ+umy02lDVbnbG+hz//FCpVRxxbALKUos5JlVr/HQwr9w+7jrmZQ++sjOd4zt+9FSXm9FksCqKkev0jEhdWS/ZReWLScoBrmo8KzwtnZ3Jwv2LuOMzIls+x6GZMfy9taP0Km0Pbzv9qfGWs/fV71GujmF306/E4Naz7LNdUSbdIwf0rNLQ5IkVjTt5LOMGOy7vmJMchEXDzr7sGfXd+P2e0KpJbrEp6Kjmgb7vtTisYZosqPTmZUzhfyYLLKjM9CpQuJzdpqVXz+3jH98tJXf3DD2sFpioiTSaG+mtCsh3Z7WMmqtDWF37SRjPHnRmczMmkRiZByxhmgsOhMRGgMapQYFAkFJxB3w4PA66fBYaXG202Bvoqqzlo3121lSsRoIjQkNTxzEqKRhDE8afNSCHaEx9HKakCSJFlc7e9sq2NFcwqb67ayr24JWqeHMnKnMKTwLS0o+lolz6Fz1Ccah09Bn9nanjo+I4fGZv+bRxX/jLyte5snZvyFxvxQlP0ShUHDnhBu579sneGHtGzw9+6EDulZfM+Iivtq4nW3ScopbxoSzGqsUSn458RaeWPoCL637D4nGuD7FTafW8eDUO/j9kmd5bvW/eeLM+w/4JN3a6UGjVvbyzBwSn885eWfwTekSZudOO6qn8VMNhcbQb5edXhOqyj3eYJ/7jzeD4vJ4avZv+fvKV3lu9es4fA5m5x5aBPL9kQXpGFHf4gQkKhyljE4p6vfmFkWRReUrGZE0uEeF8VXJ9wSkIBcVzOabD9eSPzjI6qbd3Djysj7Dv/gCPv6+8l/oVFoemHoHBnWo73ZXRRtjBiX0CLdi9zp4ad3bbBA6yFTo+M2sew74RPxDJEmi3t7E7pa97GkrZ29bZY/cRjGGKLKj0pmWMZ7s6HSyo9IPONk1O8XMdecW8sYXu1i5rZ4pw/uuVDwBL/W2RmqsDVRZQ7mV9ncx16t05MdmMTFtNPkxWeREZxySK7aK0FiQRWfqcz5Nk7OVPS1lbG/ezdaGXays3oBCUDA8cRBT0scxNqXomHUXCYJAfEQM8RExTEofgyiJlLZVsKBsOV+Xfs/i8pX8dPRVTJ5yGY7i1bR+/Sqpt/0doQ/PzUitkd9Mu5MHvn2CF9e8yeOzfn3AFp5RE8Ed467nD0ue49Pd33L50Av7LasQFOSI0ykLfs7za97g7+c8Gp6MrVGquXfybTz43Z95ZtW/ePqch8P/x/3RqXU8MOV27vvuTzy35t88ddZv+h2XbOl0EWfR9/mwctmQ81lSsZpPir/hnom39Gvz6YZCq0Psx8tO26PLbmCI0pt55Ix7+Pvq10Jz34J+Lig487DOIQvSMaLd6kaIsOLwOxl1AM+6nS0ldLit3DTy8vC2QDDA9+UrGZsyHK1kQhQlKoObiNKbe3kwdfPBzi+oszfy8PS7w7HrPL4AVoePlLh9T/K1tgaeWvZP2twdnN9i54LhM4k5BDFy+JxsadjJpoadbG/ajbXL/TpSE0FeTBaT0keHYrYdRHz6Y860HJZuruPV+ZuITvBi83fS7Gyl0dFKk6OZenszba6OcHm1QkW6eZ+LeW50JqmmpGMeZ0sQBBKNcSQa45ieNQFREilvr2Zd3RZWVK3nhbVvoFfrmJU9hXPyziD+CCf59odCUFDQ5Up+6eDzeHn927yw9g06hs/lzNm30Pj+E1jXf4Vlwpw+j4+PiOGGkZfxz3X/YVX1xoOO1wxLKGRS2mjm717A7NzpBwwQm5MUw65Nw2gvXMOHO77g+pE/Ce+L1Bq5Z+ItPLL4r7y3bT43j+7bWcKiN/OzMdfwlxUv8XXpEi4s7LvCau5wE99PHiqjNoIzsiayoGw5Lr+7T/E7HRE0+v5bSF1ddgMpSAAalYZ7J/+M59f8m/9smUdcRAzjD9Bb9ENkQTpGONx+dNGdABQl9J/pcn3dVtRKdQ938K1Nxdh9TmZmTcLtDSDoHDR4q7hq2Jw+5zDV25v4cs8iZmZN6hG/LhgMtVi63T6rO+v4/ZJnUSDw0PCr0H/4d7QHCEfjD/pZX7eNpZVr2Na4i6AkEqk1UpRQyJD4AgbH5ZIUmXBYXWxBMUirq51GRwtNjpZQpAJnK82OVjrSW/EEPTy29Ktw+UhNBInGOIbE5ZMUGR/ySjMnkWSMHxCvO4WgIDcmk9yYTK4cdhF7Wsv4bu8yvipZzNel33N+/ix+Mvjc4zLAnhQZz6Nn/JLn17zBO1s/Jn/mvZhzRtK5ch6Rw2ei1PcdOHVa5ng+2/0dX5YsOiQHgiuGXcTq2k18XfI9VxX1LXQAeekW/EvMTIgfzdd7l3Bu/oweUTfyY7M5K2cq35Ut47z8Gf16/I1JKaIoYRDzd3/HuXln9NlKam53kTOsb49SgPGpI/i69Ht2NpccM5fjkx2FSoMY8PW5T6ftmvs3QF12+6NSKLlz/I20Odt5cc2bpM5OOmSvSFmQjhG+gIjC2ElSZOIBIyzvbNrD4LjcHhM719duQa/WUZQwiKZ2D8qYhlCuo34cGebt/AqVQsWVP6g89FoVKqVAp91Lq6udPy59HrVCxWMzfkVkfSVNgMqS0Ot8br+Hb/cu5auSxXR6bMQYoji/YBbjU0eSE51xSAP7/qCfOlsj1dZ6am0N1NoaabA10ehsISjuu0nUSjXxhhjijbEUxOawu9TD3jIf910xjRHpGUftNno8UQiKrjQYeVwz/BI+2P4F83d/x9bGXTx6xj3H1EuwG6VCyR3jrmdXSylf7FnIXTOupe61e+lc/SkxM6/r184ZWRN5Z+sntLk6iDFEHfAaSZHxjEwaypLK1Vwx7MJ+f++C9FCkhDRGsVnaxNelS7h+xKU9ylw6+DwWl6/im71LuXHkZf1e89z8GTy1/J9sayruFWLI4w3ltjpQUNWc6EwEBKo6a380goRSjeTp28suPIY0wC2kbjRKNfdO+Tn/9/XveX3jezxyxj2H9CArC9IxQgBEnZWsqP6765w+F7W2xnCIfwiNWWxtKqYoYRAqpQqjXo0yqok4TUqfk0E73FZWVW/g7LwzenWvKBQC6QkmSmvbeWblF3gDPp44834SI+Ox2jcBoDLte6KVJIklFav537ZPsXrtDE8cxB3511OUMOiAXWGiKFJtraekrZy97ZWUt1dTZ2sIx5VTCgoSI+NJNiUwJqWIpK4o14nGOCx6U48Kz1rg5fanFvHxV82Mv7PgwF/ySUSsIZo7xoe8iZ5e8TJvb/2YO8YdXmxASZJweUKZbO0uH15/EFGUUCoUGHQqTBFaok1atCoNg+PyKO+oRpuQiXHIFGwbvsEy/qJeqQi6KYwNTTmo6Kg5qCABTE4bw6b67VR01PTyDuwmLkpPfLSB8kofI3OHsrJ6PdcNn9ujoonSmxmZNIQ1NZt6TGn4IcMSClEr1exo2tNLkFo6Q91S/XXZQWgMMFIbQbvbetDPdrogqNRI+wXo3Z/wGNJJ0ELqJkpv5qqiOby28T021m9nTErRQY+RBekYoVKLEHQfsGla0VGDhNTDoaDN3UGbq4M5XbmPRIUbhcGBWew7MOXyqrUEJZHZuX0nLivKi+WrvQtQtlfyq0k/DQ/aBx0dIChQGkIiZvM6+MfaN9ncsJOC2Bzun3r7AWfAt7ra2VS/nS2NxT1SR0RqjeREpTM6eRjplmQyzKkkRsYf8pwes1HLbZcU8bf/buSdr4u54fzBh3TcycKIpCHkx2ZT1lbZbxlJkmjpdFNWa6WiPhTNo67FQVO786BdLAqFQFJMBL6MWrRaJTVNduInX4pj5wqsG74ienrfrs/mrla6w+c8pM8xKD4kYHvbKvsVJIDhubGs2t7ALVOHsaF+Gw32JpJ/8J8fnjiY9XVbaXG2EW/sOwW5RqkmOTKBentTr32tXYIUd5C0EwpBgSiePBXw8UZQqqAfQdJ1tZBc3r73DxSzsqcwb9fXLChbLgvSiUTQecADUbr+n0ZrbQ0APVIEV3bUAJAdFYrRVdpeCYC7ve/B5bU1m8mJyiA5snfXG8CooWa+cZSRpstjYtq+uQBBtw2F3oigUNJgb+aPS5+n023l5lFXMDt3Wp/dNE6fi+VV61hetY7StgoA4iJimJA2isFxoSgOcRExRz2B9oxRqewoa+WjxaUkxhg4e0LmUZ3vRLKudgu7Wko5P29fpAKXx09JdQfFlR3sqWqntKYTmzPU9y8IkBgTSqE+LDeWWLMeS6QWU4QGrUaJQhAIBEVcngCdDi8tHS52teyhXNFER3ked6xcTFJMBLeaC2H911gmzUWh7j2XqzvVx6Hme4rRR6FSqGhxtR+w3Ij8OBasq0bpDbXMam2NvQSp+6GsydnaryBBKPWHJ+Dttb3NGhKkGPOBU6o4fC6Mx6Gb9GRFUKqRgn13ySkUAnqt6oTPQzoYSoWS6ZkT+Gz3dzh8zoPGXTyugvT555/z0ksv4ff7ufHGG7nmmmt67N+5cyePPvoofr+fpKQknn76aUymY5sa+0Sh1YWe1BTB/m+iFmcbaqWaKN2+bpb6rrk73Tdxd+rumkp6xaVy+Jzsba/i0iHn9XuNnfb1CAqRll0ZeM4JhCfMiR4nSl0EzY5WHvv+7+G4eH25f3e4rXy2+zsWla/EG/CSYU7hqmFzGJ864rCdGkRRxOl34faHEuV1p1hQCAq0Kg0GtZ4IjYGfXVJEa6ebFz/cSpvVwxVnFYTj752MBMUgnxR/y4c7vyA9Mo143whe/HALuyvbqW6yI0kh8UlLiGTc4ERy0yzkpJrJTDKFn2YPhZLWcr5ftpwUfSL/d8PNbC/tYPW2Bv5Xmc5dkcW8+/JbjDj/UoZk9/T229NaDoSiORwKgiCgVqh6pMDoi+F5cQgCVNSEhMTudfQqo1WGxkd9/TzNd+PyuYjpI4J3m7X3pNgf0uhoJiAGSD5AqKTTDUGpQgr0/50adCrcnpNLkACGxhfwafG3lLdXHzSJ6HETpKamJp555hk+/vhjNBoNV155JePHjyc3d184nSeeeIK7776b6dOn8+STT/L666/zq1/96niZdFyJMIY83Jy9788wnR4bFp2pR4Xe5upAr9KF58802luIVJto9gjsKm9jeP6+uUpl7VVISAzqJySRP+hncfkqBkcPYeN6Fe8t2MONFwwBQPJ58Ku1PLviJXxBP7+f8X+9JhUGxSCf71nIvJ1fERADTE4fy3n5M8g+QBcOhFKv11obqOysoc7WSIO9mRZnG+3uTmxeR3i+Un8IgoBFayI2M5r0SBUfbqtgZfk2fn7ONIZlnTwxyyRJorXTw5q9u5lf+SlWsRmhI4Xd6/PZLe4kQqeiICOayUXJFGREU5ARddgpN7oJBAPM37OAD3d8QWxEDL+ddidxERbS4iycNymL1s4RNPx7C+mdG3nwHwmMyIvjpguHkJ1iRpREFpavIMOccsDJsfvjC/hwBzwHfYI1G7XkplrYXtYEsfTp+ej0h1pnhgO0zgLBAA2OZob24ZHabvNg1KvRqPvv9t3RXAJwwjKZngyExpD6FxyDToXrJBSkzK6Holpbw8AJ0qpVq5gwYQIWiwWAs88+m2+++YY777wzXEYURZzOUB+32+3GbO49QGuz2bDZbD22NTY2Hi+zjxhTZOjmaW7t2y0TwOl3Y1T37Be3ee09vPI6PJ3EG6OxapQs31rXQ5CqO+sByLKk9Xn+7U27cficXDR+OtEdfj5ZspdxQxIZnBWDFPTzpT5IjbWe3067q5cYtbk6+Puqf1HaVsHYlOFcN3xuv267kiRR0VHD5oYd7GjeQ2lbRfhpWKVQkWCMJT4ilpzoDMw6E5HaCAxqPRqlGqVCiYBAUAriDfhw+d3YvA463Faana0EDE2o0620sIfH1yxBvzKGooQhXDJiKjlxJ25Wvs3po67ZQU2znaoGG5UNNsob2/FG70SZUAUBDVG2iQyLHUb+iGgKM6NIi4/sMSH5SAiIQVZVb+DDnV/S5GhhQtoobht9NUZtT6GItRhQTz2fiO/+zS9mRvGfNZ386pklXDAlm/i8Jmqs9fzyMCaNVnbWApDWT/De/RlVEM9H68rQxNKnw0StNdQ1nWTsv/VS0vWf6SunTofdS9QBWkcAK6s3kGSM77fr+lTkYHXdgbrsAAw6NU73yTWGBIQftp195HL6IcdNkJqbm4mL21eZxsfHs23bth5lHnzwQW666Sb+9Kc/odfr+eCDD3qd56233uLFF188XmYeMzTqrrk/jf03kfxBX695RW6/B4Nq383n8LqIMliYOCyJFVvq+OlFQ8Pdbk3OFiI0hl6VUzebG3aiVWkZllBA4RzYUdbGU/9Zz99/OZ0G0csKlZezc6czIqmn40CdrZE/LHkOl9/NLyfe0sMLcH9aXe0sKlvJ8qq1NDvbEBDItKQyK3sKeTFZZEWlkWiMO+r5Qjavg12NZXyzbRO720tY176UdYuXovHFkBcxgklpY8hIMBMXpcccoT0sEZAkCY8viM3pw+rw0m7z0NbppqXTTXOHm4Y2J42tThz73dhajZL4NAeqwRsJ4mBM/DhuGXspMcZj171s9dj4vmI135Yupc3dQYYlld9Ou5MRSUP6PcY4ZBptC99irK6SKb+5kv98XcyXW9ej8WygIKqgxxjiwVhXtxWFoGBw3MHzZA3Pj2Pezk5g39Pv/uxo3kN8REyvVOf7s6ZmE2qFiqKE3k/MnXYvUQeIWF3ZUUtxSynXFF1yTAIAnywcrK4TlKp+vewg1MVZ23zsk/QdLYIgdD2Eigcte9wEqa/M6Pv/eTweDw899BBvvfUWRUVFvPHGGzzwwAO8+uqrPY654YYbuOSSnum/Gxsbe41HDTTdn620phNJkvq8UURJ6uVOHRCDPSYGeoJetEoNsydksmRjLd9vquXciZkAdLptROv6v8n3tJaRH5OFWqlGrYSHbhrHfS8s4/evrSElyYUaemWvbXd18sclzxOURP4w694+xxxanG18sOMLVlStQ5QkihILuXTweYxKHnpEURoOhklrZELGcCZkDEcUJdaVVvJN8SpKA9vY6V/E9uJVBBbmEGxNQaFQYIrQEKFTo9cqUauUKBQCCkFAlCQCARFfIIjHF8TtCeBw+wkEe98YKqVAXJSBhGgDU0ekkBxnJDkuguRYAwtrv+Wr0qWkmBK5feztRxz/74cExSBbG4v5vmIVG+q2EpREhsTnc8voKxmVPPSg87+UhkgM2SNw7lpJ9MzrGDsBVgQ3I3oi2f59Gt+aqjin679zIDwBL9+Xr2RU8rBDmktVkB6FKqqFSCG2V3mX3822pt3Myprc7/Fuv4elVWsYnzqyT6eLdpuHQZn9Z4edt+sr9CodZ+ZMOaitpxKHVNf1Ua92E2fRs6Wkud/6Z6Bw+z1ISBgPMazXcSEhIYENGzaE3zc3NxMfv68JX1JSglarpago5Ap4xRVX8Nxzz/U6j8lkOiUcHZRdQmNzeahuspOR2NtmhSDg/0FlKAj0+JOJkoRSUDA4K5rcVDOfLNnL7PEZKBUCTr+r31htoihSa2vkvPwZ4W0ZSSYevH4cf3hrOc0pXiYGND0ChIqSyPNr/o3T7+Lxmb/uJUaiJPL57oV8sPMLBODs3OmcVzDrmIfLORAKhcCEgiwmFGQhSVezoW477237ghrtDmIKWhmingmeSJxuPx5fEH8gSFCUQuIvCBh0KixqLVqNEoNOTYROhdGgwRyhwWzUEmXSEmPWYzH2bml5Az7+uvJltjYWc07eGVw7fG6/2X8Ph0Z7M4srVrG0Yg0dHiuRWiPn5s1gZs5kUk0H7zLbn4jCCVjLNvLWqjf4qnY9OVEZ3DX2Nl7x7uEfH22lucPFdecOOmAF9Vnxd9h9Ti7umnpwMFrcLQjGTlT2Eb32rahahz/oZ2rmuH6P/3bvUtx+D+cXzOq1T5Ik2m2efrvsdrfsZW3tZi4bcv5hpZA/FTikuu4Av2OsRY/bG8Tp9mM0HPuMykdKd1ddhHoABWnSpEm88MILtLe3o9fr+e677/jDH/4Q3p+RkUFjYyPl5eVkZ2ezaNEihg3re+7NqYBW2dXFoAyyeU9zn4KkVmqwe3vOC1EqVAT2m0uhFBSIkoggCFw2K58/v7WepZtqmDkmHX8w0G/q7nZ3JwExQOIP+u1HFcZz4XkRfFMPGc0ebE5fOMfM9+Wr2NVSyu1jryMzque4lMfv4ZnVr7O5YQfjUkZw46jLiDX0/9R6IhAEgbGpRYxJGcbyqnW8vWUeqzwfcMOInzA7d9oxfSoUJZFnV7/Gtsbd/HzstczM7v+J/1DPt6l+B1+Xfs/2pt0IgsDIpKHcnDWR0UnDjij5oSRJlJgjeT0tmtba9ZyZM5UbR16GRqnm0ZvH89LH2/hwUSkA15/X9/yu/2fvvMOjKtM+fJ9pmZmUmfTeeyAJCaH3KoioKApi1/WzrH11i72srrruuq517b03RJDeWyChJJCekN57Mpk+5/tjkkBIIaEISO7r8pLMnHPmzWTmPO/7vM/z+xU1lvBTzhomB40Z9MpvRe56JEhpLPbAZhO7A7nNZmNl7kbCXO0WHn3RYdLzc846knxH9Nnv1NZhxmyx9VnybbFZeS/9K9zVriw8Rin/wkHE3oLfN56djcR1zfpzKiDVdlrQePRRUXk8Z3SF9MADD3DDDTdgNptZvHgxCQkJ3Hbbbdx7773Ex8fzj3/8g/vvvx9RFHF3d+f5558/U8M543QJPHp7yNlzuIbLp/WuhFPLVZSZK3s8ppQ5oLcc9ThRSOUYrfbCiPEjfQkP0PD56px+FbG7aO4UP+1L3cHkUIdSlOCr0/PXN7bx1B8m4KZ14LusVUS5h/WSKDJaTDy/9XXyGo7wh9FLmRN+em/2p4ogCEwNGcconzje2PMJ7+/7ipKWCv6QvPS0ia2uyd9CemUmtyQvOaVgZLPZ2FGaxg9Zv1LRVo27ypUlIxcyI3RityjuUBFFkey6fL49vJLDtXl4yBTcYVQzM2VZ9zFSqYQ/LrZL6ny7IR8vV3Wv9F2zoZWXd7yD1sGFm5OvZjBUt9ex5cguopwS2d8ho6HF0H0j3FmWRlV7LQ9OvK3fz8uP2atpN+lY0o+yeF2TfTbtoe2t0vBT9hpKWyp4ePId3VYmFxKiKA4Uj7rfs/pmPaF+/af2f2sqWu3Nz/7OJ66YPaN9SAsXLmThwp4fvHfffbf739OmTWPatKF7ZpyLOHcWGkSEqNm5tZ7mNmMvK2EXhSPtx62QnOTqHtUnKrmKDrM9QEkkAjcvGMFj/9vJ8q2FyCTSfvtEuoKaStZ7ZnmkuYwQuSMeylYamw089N+tLF6koaGjiZuTru5183h/31fk1Bdy/4Q/nLTR1m+Bi9KZv0y5ky8zlrM8Zy06Uwf3jL/5pJxfj8VsNfND1q/Ee0dz0Ul4unSRW1/Ie+lfUdJcTrDGn3vH38L4wOSTHp/VZmVPxQF+yd1AfsMRNEoXbk66mtHl5bSnrsBm1CNxOHojFwSBO69MpK5Jzzs/ZRIT4kaI71Gljr9v/i9txnaenvngoHX4PjnwPTKpnFlBM9nPYbtNhKsKi9XC15krCNb4MzZgVJ/n1uoaWJW3sdOmpO9WgupG+3fB261neqe4qZzvD69kYlDKhaNd1wfCQCsk7dEV0rlERVs1SplDn5Pl4zm92v0XMF2b+wF+CmwibD9Y0ecxeosB4zGKvS5KZ9pNHd1pO2cHxx7NholRnowb4cM36/OQIEdv7tsx0mqz7031dbOraa/HR+GCYOrgxbsmIJdL+WT7JhQSh146YhnV2Ww+sotFsfPO6WDUhUSQcG3iIq5LvIJdZem8uecTbIOo5hmI3PoiWoxtzIuccVIrQ6vNyucHf+SJDf+i3aTj3vG38OJFjzA5eMxJBaNmQys/ZP3K3b88zis736PV0MatyUt5Y8GzzI+agVPwSLBZMVbm9zpXKhF4cFkyjko5r39zAFEUqdU18OTGf1HVXsvDk+84YZ9ZF3srDpJWcZAr4+bj72pXYOhSoFhTsIUaXT3LEi/vtxjj84M/IgjCgIrilXX2z76fx9FKUrPVzOupH+Hk4MStyX3bWlwQdHVb94PWWYlUInRLL50rVLbW4O/sM6jv0nBAOk04KdTIJDJEuYFQPxc2ppX1OsZNpQWg4Rh5FjeVBhGRZoNdJFKrdKHJ0FMw8rbL47GJUFFlpK0fbbKuogrLcdpeFquFDrO+uwTX38nKv++bioO2BX2DC9+sy+9REfnd4ZV4qt1YPIAaxLnIpTFzWBp/KdtL9vB15opTulZFq733o799kIEwWky8sO1NluesZVbYJP497wkmB485KSv0goZi/rv7Q+5c8QhfZf6Mn4s3f558B69e/DQXRU7rNoF08LfblRsq8vq8jsbJgesvjiW3tInv9uzkb+teoFnfwqNT7z5ho2IXbcZ23k37gmCNP5dEz0bRqSBiNttoM7bz3eGVJHjH9rBVOZacugJ2laVzWczcAcVeS6vb8NAoUSuPFo98e3glpS0V3DnmujOiqH7+MHCDuVQi4K5VnZMrJD+XwfWLDWvZnSYkggR3lZb6jkZmjI7ngxWHKatpI9D7aNNrl3dMXUdjt/5X15ezXteEh9oNd5UrOlMHBouxO0/u7aZm6ZwovsjIQilvxSbaet3guo49Xhusq2FVpbKv4Cyt9Tj5u2GVtxOkDePLtblU1LZz39IkmoyN5NQXcm3CIuSnoZrst2ZR7DzqdI38mL2aUNdAxgcmn9R1zDb7ezbUijqrzcrLO/5HRk02t6dcy6yTKEsWRZF9VYf4KXsNufWFqGRK5oRPYV7EtF6acV1IlY7IXH0w1RT3e93JSd58lJ7Pt0dWE6Dx5aFJ/9fv9foa09t7P6PNpOORqXfbU8ed3ltSqcDXmSvQW4zceIxh3/Hnf37wR1yVmhMWIxSUNxPmr+3+uaixlJ9z1jE9dEKv1fwFh8iAKySwp+3qms6dgGQwG2joaBq0H9LwCuk04uXkTl17PdOTA5BIBDbsLe3xvHen0GRNe93Rcxztj3VVonQHLV1Dj3MXTY/ATaXFKlqpbm7ieJw7JV9ajcc1xnV+fgWVfWZpbqxCZ+rAJtqYkxzJjQvi2Hqggife2UV6eTbAoFR5z0UEQeDW5CVEuoXw1t5PqT3uPRwsLg72SUSXS+5g+T5rFQers7ht9LKTCkYZ1dn8dd0/eHHbmzR2NHFT0lW8fek/uCV5yQmDh8IrGFNtSZ/PHag6zF/WPY/FvRBbfRBPT3940MEIYFXeRvZWHOTahMu7qzHbOlN1HTSyrmgbcyOm9hANPpb9VYfJbShi8YgFAxYjtOpMlNe2Ex1sn6TZRBvvpn2Bi4NTL9+lC5OBq+wAPDSqcypl16XVOVhFjeGAdBrxcvSkWlePq4uSsXHebNhbhtlydD/DVaVBLpVT1XZsQHJHQKC63f6H69Ieqz4maAHIpBIun2APFB+vT+N4XDvTgY365h6PKzvL0Y0yGUhkmBoqutN6CqmcxTMjefi60eSWNPLN9n3IJLLzWo5FJpVx38Q/gAhv7fmkzwbtExHQebMubu69D9gf1W21/Ji9hinBY4fcsNmob+al7W/z9y3/RWfq4K6xN/Dqgme4OGrmoNW6Fe7+mJtrekjLlDSX84+tr/P81teRCAKXB1yL8UgcdY39y1sdz+HaPD49+ANj/BNZEHW0b6iqQQeIbK5Zg6NczdUjLun3Gj9mr8ZT7caMsIkDvlZGgf0zPzLcPinbXrKXwqYSrk+88oQaexcCNrMRQT5wObenq4qGFj0229A/92eCyjZ7+nvYMfYs4OvsSZuxHZ2pg4vGh7D7UDWph6u6S7YlggQfR48eKyS5VI6noxuVnaWRvp36cZWtNXBcpXdKWBif5kBqQQFZR1KICz3aoOogU6BxcKa2vb7HORKJBBcHJ5qN7cjd/TDXleEks6eiDJ3FFVOTAnBSKXh+wyFkZhk6gwWnkxQFPRfwcnTnusQreDf9C7YWpzItdPyQzg/U+KOQKjhQmUO4UywmsxWzxYbFasMmit0TValEQCaVIJdJ+LFgDQIC1yYsOuH1jyWt4iBvpH6M2WZhWcLlLIiaeVLpUpnWG2xWLG2N1EisfHd4FbtK01HLlVyfeCXzIqeRX9rKl2ynua235UNfVLXV8q8d7+Dr7MUfx93YY1O6oLwZtVcjeY0F3JK8pF85q6LGEnLrC7kp6aoTFnSkZ9fiqJITHeSK1Wblm0MrCHUNZFJw31JWFxqi2YjkBBMUd40Si1WkrcOExunsl8ZXtNYgCMKgRX6HA9JpxLdzZVHVVktSdDAeWhXrUkt79BD5OHt1B58u/F18Ke/cSHdUqNEqXbq9k47Fy9EduUSG3NXAG98d5NUHpyOTHl3k+rn4dG/IH4u3owfV7bU4eIegLz6Et1yNXCrvsZpKjvEipdyX9JoqXvx4L0/dNh6p9PxdQM8Kn8SmIzv5IvMnJgQmIyCjoUVPXZOe+hY9jS0GmtqMNLcZadHZHVvbOszo9Gb0BjOySBc2tu/j128HsYku2FAm7cHa7MUtT25F46TAzUWJl5saf08ngnxciArU4uvh2H1TF0WRn7LX8GXmcsJdg7l3wi3dk5GTQabxoFoh5ce0z9jTUIBCpuCy2LlcGjOne3Vh7Zw1D8bWo8XQyvNbX0cQBP4y5a7uPruusR/Ir0ERmoe7szezw6f0e50NRTtQSOVMD5nQ7zEAVquNPVnVjI7xQiqVkFq+n1pdAw+NWnxSBSG/R2wmA4Ji4IDUZdnR0GI4RwJSNd6OHoOeZA0HpNNIV6qrsq2GCPcQZo0J5Jv1edQ2deDV6X7p6+zNvqpDWG3WbhHSABcfMmtysNlsSCQSAjV+3YrJxyKVSAlw8cWmspGzqY2ftxZxxYyjDbhBGj+2FO/uVfQQqPFjb8VBFH7TaD+0FWtbI35OXpS39GzSjQvwZ1/DHg4UVfD5mpx+u/vPZdo6TBRX2tW5HZvjKbCt4Na3PqClxLeXDJiDQoqrswMaRwdcnZUEejvjpJSjUsootxk4oNvMLVeE4q52Qy6TIJVKkAgCgmCvwO3SyitoKeCXSgszw8fhEhpAc5uRhhYDJVVtpB6q7g4EWmcHkqI8mZYcQIF5D99nrWJy0BjuGHv9KUkSFTWW8m3RRtKD3HFoOsJlsXO5JGpWDxV5gJoGe4WmxwDW4GD33Xpuy2s06Zt5Yvr9vWa3RRUt1AsFKCQtXJOwpN+Vj81mY3f5flL8E1ErBn7N9NxaWnUmpo6yT962FKfiqtSQ4nd+7meeCUSzAcmJAlKnwkVjq4Ew/7PfHFvcXEaQZvAq/cMB6TTi7ejRYz9o9pggvl6Xx4a9ZVwzNxoAf2dvrDYrtbqG7hmxv4svFpuFWl09Ps5eBGn8WVe4tTtAHUuwawD7KjMZHTuZr9blMjMlsLsBN8w1iDUFW6hsq+mhiRbuFsLGIztpcbcHTENFLuFuwaSW7+/xGl2utaNHy/l+Yz4T4n2JDOy/RPdsI4oiFXXtZBTUc7iogdySJmoajzYZq1Uy5DGuSD3LWRI5HW83NZ5aFe5aJW4uPUuLj6e0WcOBNZtx8+tgaujAN8UjB1ORVkn4w+xpvTbtzRYb5bVt5JU2kVnQwN6sGraW7EYRdohIx3juGnsjMunJNcqWNJfzdeYK0iozUMuUzGrUsXDsUvwS+i7ZP1TUgJNKjo97//sx7UYdz219jfLWav48+Y4+5YR+3VWE3L+QEE0gY/1H9XutI81ltBnbSRlEddyvO4vROjswOtYbk9XMweosZoVOOm3KG78HbCZDn+7Ax3LsCuls027SUd1e10sJZiCGA9JpRCaV4a52pbpzH8fH3ZGECA82pZWxdE4UgiB0b+5VtFZ3B6SuTfTy1qrOgOSHyWqmRlffK40T5hrE5iO7uHJuAPtfq+PrdbncfoX9hhndefPIrSvsEZDivOyWArliB5FyJYaSw8THjWLjkZ3kNRzp9qSJ9ghHJVPi6tuES7Yv7y0/xAt/nHxOyQaJokhuSRNb9peTeri6u8TVzUVJbIgb8yaEEOanIdjXGTcXJSty5Xx28EcWTPdDOwRl8gAXXxykCo40lzGNgfegcuoKCHML7rOCTC6TEOqnIdRPw0XjQ8irO8KTm1YhN/iQsceXx0t38bcbx3brCw6GRn0zX2YsZ2txKiq5kiUjFzI3IIW61+/EsZ/NbKPZyu5D1YyJ8+43Zdesb+G5ra9T0VrNgxNv69P6oqnVwOaiVCQhepYkLBzws5FbXwhAnGfUgL9PWU0badk1XDM3GplUQnZdIWarmQSf3uZ9FzKiyYCgHvgz3GXb0dI+uH3CM0lho73qsy/Nwv4YDkinGW8njx6FBTNGB/Dq1wfIL2smKsi1R0DqKq8O6DRFK2upIsU/sds8r6S5vFdA6vrjdkjqmTM2iNW7S7hyZiQeWhW+zt5olC4crs3rUXbs5+yNl6M76VWHiQ+KRX8kg6RZ1yGXyNhRurc7IMmlciYGpbCtJJVFs8bw0U+FZBTUkxg5uA3JM4nRbGVdagkrthVRWa9DIZOQFO3FVbOiSIz0wNfdsc+bY1cpcnVb3ZACkkQiwcvRvVf5/fGYLCYKmkpYEDXzhNc0WUy8ufdjtEoXXrz0QfbENPHm9wd55M3tvHzf1BNam9tsNn7N38RXh1ZgtVlZGDOby2MvwknhiM2gow4QbX2rVKxPLUGnN3PRuL5vDmUtlbyw9Q1aje38ZcqdJPr0na79Yk0OeBfh6+hDcj9NsF2UtlTi7OB0Qs2+7zbmo5BLuXhiKAAlndWNg1WQuFCwmY1ITpD6lMukyKQCeuPZd449UJWFXCIbkqvv8Hr4NOPp6N7dUwR2gVSpRGBnhn2/pqtooaLtaPGBWq7CXe1KWWchQ6CLL4IgUNrSu+w4RBuATCIjr76Iq2dFYRNFlm+1z0QFQSDeO4aMmuwe8jmCIDAuIMn+eHAc5sZK5O0tjAtIYmtxKh2mo30LC6NnYbFZaVBmoHFS8Mv2otP7Bg0RURTZsLeU255bx/9+zMTZUcF9S5L49Ol5PHbLOOZPCMHPw6nfmbrebJ8pnswejVLmgMk6cIl0Vl0BVpuVEV4DrwLArjhQ2VbDnWOvx0XpzOyxQTx681hKqtv4bkNv2Z9jqW6v44mN/+LjA98R5xnBK/Of4LrEK7oLFrrK2/t6H3R6M1+tzyMu1I0RYb2tQ3aX7ePR9S9htll4auaD/Qaj/LIm1mWnIVG1c8WIi064cq7T1Z+wuqq4qpVN6WVcPDGkO/Vcq2tAIZXjOoD314WIaDIgnCBlB6BykJ31gGSz2dhTvp8RXlFDEsIdDkinGS9HD5oNrd0KCU5qBfERHuw+dLRIwc/Zu1elXaCLb3eRgUKmwM/Ju88+GLlUTphrEHn1RXi5qZmU4Me6PaUYTPYPYLLvCFqN7RQ0FPc4b2rIOKw2K+lK+02kIz+NS6Jno7cYWJW/8ejYXHy4KGIaG4q2kzhKQlp2DW0dg+9bOZ3o9Gae/SCV/3y1Hy83Nf+4axIv3zuV2WODBtz/6UIURTYf2YmTwpGgfpo2B6LVpDuhh0taxUEUUvkJ01LFTeWsyF3PjNCJPeR6Rsd4M26ED+v2lPbbM7W7bB9/WfM85a1V3DPuZv465Y94H3ejFztL+IU+7Ek+/OUwre1G/nDZyJ4mmWYD7+z9nH/vfJdAjR8vzPlbv+kVo9nKK1/uR+lfjouDM5P6cRU+lmZ964BBRRRF3v0pEyeVnKtnH33/Wg1taBycz6lU8bmAbRBFDXBuBKQD1VnUdTSesPfseIYD0mnGs9MzqKHjqJrCmDhvKup0VHdWOfk6e1PVWfjQRYDGj4q2GmydKZdgrT8lTb318ABiPMMpbCrFZDExf0IIOr2Z3Zn2gJfkOxKpRMru8v09zgnWBhDlHsa6in1IPAPR5ewmzC2Isf6jWJ6zjvpj9PWuib8UX2cvsmzrsMraST3Uu5T8TNNhMPPImzvYl1PLbZeP5KW7pzAy3GPQ59tEG58e+J4D1VlcGTd/yH5DTfoWatrr+nTQ7cJoMbGjLI0Uv4R+farAPlt8J+1znBRqrk+8otfzsSFuNLYaet1EbKKNrzNX8O+d7xLg4sPLFz3GlJCxfbsRG+yipBJlz4KF7QcrWLO7hEXTI3oUqByszuJPa/7OhqIdXBozl6dnPNhvak0URf73QwblTTXYnGqZHT55UO9n+wCGkgCb0svIKKjn+vmxOB/j39NhMaD+nZnvnSqiKCKajINaIUkkdrfks4VNtPH94ZW4qbSMGaDopS+GA9Jpxr3zS32sgOqozj2YjAJ7Ks/byYM2Y3sP5e4AF1/MVnN3ui/ENZC6jkba+xBTjfWMxGKzkN9YzIgwdzw0SrYfPJoSTPSOZVdpei/V60tj5lCjqycrOAxDWTaW1nq7JIso8vaez7qPV8qV/HnKnUgkoIpLY2t2zml6dwbPf77aT0l1K4/dMo5Lp4T3cnMdiIKGYh5f/09+ydvAvIjpzD/GRXewrM7fDMC4fqwUADYUbbc3QUcObFHxS94GChqLuSnp6j4bSHUGMxIBFPKj1XYWq4XXd3/E91mrmBE6kadn/mlAgzNLu30CJHXUdj9WVNHCq1/tJzrYlWvn2Vdlte31/GvHOzy35TVkgpSnZj7AdYmLBgwwK3ccYd2eUkaMbUciCMwZoO/oWI7VYzye+mY97/x0iNgQNy4aH9LjOZPFhIP03DGYOyewmADxhHtIYO83G0yv2Zlie8le8huLWRp/6ZDV7YcD0mmmS9G7SX9UBy3Q2xknlZzcEvtNw7PzxnLshrl/pxpuRZs9lRfcWdhQ2kfaLsYjHEEQOFybZ7f4HunL/rw6TGa7JNDUkHE06Js4VJPb47wU/wTCXINYYajEJED7oW14OXlwY9JiMmqy+ebQL93H+jl78/j0+5DJIUe+gu3FveWKzhQ5xY3syqxi2UUxpMQOTsbIYDawtTiVJzf+i0fWv0htRyN3j7uJm5OvHnJj5ZGmMn7JXc/EoJR+Nd9aDW18f3gVI7yiiPHobcbYhb00+2dS/BP7THOJokhadg2Rga7dTc4Gi5EXt7/J9tK9LI2/lDvGXHfCFYml2b7ilmk6pacadDz93m6c1Ar+duMYDNYOPjnwPff/+jT7qw5x9ciF/HPeY8R6Rg543V2Zlbz7UyYpI9ypFrMZGzBqQLXuY3+v/gKS1Sby7y/2YbXauP+apF6TDZPVhPwkHHR/z3SnZAchJWW1ikjOUrqzur2O9/d9RaRbCFNDxg35/OGAdJrp8kVqMR4NSIIgEBGgpaiiGQBPtX1juf6YtN6xKg9Ad6qopI+A5KhQE6YN4lCNfeWSFO2FyWztDnhj/BNxVjiytmBrj/MkgoQbkxbTYGhhY3AQbQc3Ioois8ImMzN0Ij9k/cqqvKP7SSGugdwQeRs2vSP/TX2ff25/u5fG3plgZ2YVMqmEhVMGttSu1TWwvnAbL2x7k1uX/5nXUz+iUd/CdYlX8OrFTzE1ZNyQ9yFKmyt4fuvrODs4cXPSVX0eYxNtvLX3UzosBm5JXtLva3SY9byy8z0cFWpuT1nW53F7s2s4UtnKnHH2HjCdqYPnNv+XjJoc7hhzPVfEzR/U72CqK0OQOyDTeFDb1MFjb+/EZLby15uS2Fy+ibtXPs7KvA1MDhrDqxc/zeIRF5+w0GNfTi0vfZpOVJArCWN16Mx6LjlGz24gjFYToij2qcX3+epsMgvruX1RAn4evZUwjFYTiuEVUg9spk7TTsWJU3YWq62HgstvRYdZz793vIMEgfsm/uGkFDYGNQ1ZtGgRy5Yt45JLLkGlOvGS8UJGLVchFSS0HmOyBxDk68zqXSXYbGJ3rv7YfSZnhSOOclV3U62rUoOTwpHS49QUuoj3iWFFzjo6zHriQu0rrqziBuIj7DIds8InszxnLdXtdT0qnWI9I5kTPoX1hdsI1zfhUXoYVfBI/pCyjHZzBx/t/5YmfQvXxF+GRCJh2ohI3vlmAuGjG8moPsD9q55iQmAyF0VMI7pzpXa6aWjR46FVonI4+vG02KyUt1SR33CE7PoCcuoKuve9PB3dmR02mXEBo4jxjDipL4JNtLH5yC4+3P8tarmSx6bf2z25OBZRFPki4yfSKzO5KemqfhWurTYr/9n5nr06bvr9fV6rpd3IW99nEOjtxMyUIJoNrTy35TXKW6t4YMIfhmSfYawqQOEVQlVDB4+/vZN2g4F5lwi8lP6SvTnVP5GlIxd2txSciLTsGp7/aA9B3s48eEM8j216jnjvmD4bZfui1WBXndc49FSL2La/gm835HPR+GBmjw3q81y92dA9QRvGTvcK6QRFDVabSHuHaUh9bacDg8XIP7a+QVlLJX+ecidejr2rOQfDoALS448/ztdff82rr77K3Llzueaaa4iMHHipf6EiCAKOCjXtx9iSA/h7OmEyW2lqM+DqrEFA6KElJwgC3k6e3cKrgiAQpPHrs/QbYJRPHD9lr+FQTS5jA0bh7+lIfunR682PnMHK3A38mLWaO8de3+Pc60ddSXZdPl/YRHz2LicxeCQyiZQHJvyBD/Z9zfKcteQ1HOGusdfj7eTJ6Bhfsg858O+HL2N1wSbWF25nR2kaHmo3UvwTSPCOIco9rJdUzckgiiJqZyuN1gp+ydlIZVsVR5rLKG2uwNxp365RuhDrEcGlMXMY4RVFQGeZ/Mlgs9k4UH2Ybw+tpLCphJFe0fxx3I19pqVsoo3PD/7Iitz1zI2YyvzIvvembDYbb+z5hAPVWfxfyrXdjcnHYjRb+cfHe2lpN/LITZNpMjTy9y3/pVHfzF8m38Uo38HLNtlMeoyVhYixc3jy9a1YXEpwHlHMryWtxHvHsDT+UiLdQwd9va37y3nly30E+7rw9G0T+Pzw1+jM+iFZQHTthR6775V9pJFXvtpHbIgbty/qX72h1diOywVtxNcbm9mIACcUV23vMGET+U117FqN7by8/W3yGoq4f8Kt/Zo0DoZBBaTk5GSSk5NpbW1lxYoV3HnnnXh5eXH99dczf/78k37x3ytquYoOc09Pki4tu7omPe4aFS5K517OsD5OnhQ2HfVQCtL6s/nIrj4N+aI8wlHLVaRXZjI2YBRh/lpyS44WUriqNMwJn8KvBZtZEDWzx8xYKXPgr1P+yCOrnuG/xhIeL8skJDAeqUTKH0ZfQ5R7GB/s+5oHf7VbIExMTmRXZhXZ+R1cn3QlV41YwO7y/aSW72dj0Y7uAgB3lSsBGh+8HT1xU2vRODjjqFCjkCq6Nzdtog2T1YzBYkRn6qDN1E6zvpUGfTP1ugZqdQ0YrSakUfDJwVQcFWpCtYFcFDmdMNcgItyC8XbyPKWVmdVmpaiplL0VB9lRspe6jkY81G7cNfYGpoaM63OF1W7S8WbqJ6RVZnBRxDRuTr66zzFYrBZe3/MxO0vTuCb+sj6tKDoMZp7/aA9ZRxp46NrRSBxbeXTDm1hsFp6Yfv+gVyHd1yvcj2iz8O/cZszhuYiKdnycw3gg4dZB9Ud1IXb2tH2w4jBxoe48dss4dpTvZHPxLq6Imz9gxeHxFDeXA/Z2BoDS6lae/WA3nloVj948Frms783uDpOeDrMej0HsU11IiF0B6QQrpC4vpC5NuzNNZWs1/+j077pv/K1MCBx9Stcb9M5ha2sry5cv57vvvsPZ2Zn58+ezfPlyNm3axEsvvXRKg/i9oZIpMZh7akl1SXo0ttofd1W60HycAZyXkwe7y/d3C68Ga/wxWIzU6hp6NRjKJFKSfEeQVpmBzWYj1M+FbQcq0OnNOHZaR1w54mK2lKTywb6veWLG/T1utF5OHjw26Q6e2fwqT+38H/dPtc/KBUFgWuh44r1j+CLjJ37OWYdcuglNrD+fbTMyIf4KlHIl00MnMD10AiarmYKGYgoaiylpLqeitZqCxhJ0x60Q+0NAwNnBETeVFm8nT+K9Y/B28mT99kZKim389dZZRAf3X102EFablWZDK3W6Bqrb6yhvraKosZSCxmIMFiMSQUKCdwzXJi5irP+oPgsHRFEkrTKD99K/pNXQxs1JVzMvcnqfwajdqONfO9/hcG0e1yYs4rLYub2OqarX8fxHeyitaeP+pcnIPWp4cuPHaByceXLG/T0knwaDzSayeevPbPJzo05diI+jF9cnXUeKX8KQgrbFauPtHzJYs7uESQl+PLAsmW2lO/lg/9ck+8UP6HfUF5k1uXg7eaJVaaiq1/H4/3Yhk0p4+v8mDDh7L2u1p6jPZ0+uM4HY2eB9oqKGslr7VkGA55lfYe4sTeN/aZ8jl8h4csYDQ55I9cWgAtKf/vQntm7dyvTp03nqqadISkoC4JprrmHixKE1Pl0IOMgUGI/r8O/qQm/pdNrUKF16OZL6OHlhE23UdzTi7eTZ7c5Z3FTWZ8f7uIAkdpSmcag2lxBf+4yyuKq1uxvf2cGJ6xOv4O29n7EqbyOXRM/ucX6IfxwPu8TyVvNhnt/6GvMiprM04VLUchVuai13j7+Jy+MuYmXuRrbYUml2LubWH/cwPjiBkV7RRLmH4u3kSZxXZK+0lMliotXYjs7cgdFiwipaERAQBAG5RI5S7oCTXI2jQt2ten4s430MPPzaNp58Zxd/vXEMo6K8MFnNtBrbaDPqaDO202psp91k/3ebUUebyf7/FmMbLYZWWoxtPZpNZRIZQRo/poWMJ9YzgnjvGJwHSA0VNpbwRcZPZNbkEKjx4y+T7+xXzqagoZhXdr5Lk6GVu8fd1KvCyK44Uca7yzORSgQeu3UMucZd/LxzHdHuYTw0+fY+95kGorShhhdWvUe9tgWlzYGbR13F3MjJfb6fA9HcZuTFT/dyqLCBxTMjWTw7lI8PfMX6ou0k+Y7ggQl/GJLIaauhjYyabOZHTKemsYNH396B2WLjH3dNGlDYFSC/4QgwLBt0PDazESknLmoor2lDIoCf55kzNDRYjHy8/zs2FG0nyj2M+ybc0u10faoMKiBFRkby6KOP4ubWc6Yqk8n48ssvT8tAfk8opAr0lp4rJKfOxr/2jq6A5NzL86gr6FS11eHt5Emgxg+pIKGoqbTPDe5k35Go5Sq2FO9mWexSAAormnvIw8wInci+ykN8fvBHQrSBjPSO7nGNiMlLuet/97IxOoY1BVvYUZbGZTFzmR02GbVCRYCLL7ePuZbrE6/g8S9/oqQjn93CfjYf2QXYV4MBLj74Onvj6eiOm0qLRumMk8IRtVyFUqawBx1BigDYELHZbJhtFpoMLVS116I3G+kw69GZOtCZO7oDTOD4ZnIranhu1wZk+y1YMff7njvKVTg5OOGicMRD7Uq4axBalQY3lRYvR3e8nDzwdvQ44c3aarOyv+oQq/I2cag2FyeFIzclXcXciGl99lRYrBZ+zF7N91m/4qbS8szMPxHhHtLjmNLqVv73YyYZBfWMCHPnhstD+CL7M/IaipgbPpUbkxYPyZTPYDbw3u7lbC3fikRmY3qTnmuveg6N++Bl/rvIKWnkhY/30tZh5v5rEhHcKnlwzdM061u5LGYuS+MvHXKAW12wGavNyki3JP725nb0Bgt/v2Miwb4nDrgHqrLwd/bpbp8Yxs7Rsu+Bi8ryy5sJ8HbuNyV6quyrPMT76V9S39HE5bEXcfXIhUPuNRqIQQWktLQ07rjjjh6PXX311XzzzTeEhw9eOO9CQS6V0WrsefNUyCTIpAI6vf1xrVJDi8E+g+9KrXQJqVa11TDKNw6FVE6Q1p/CxuI+X0chUzApKIXNxbu5cdRiXJ0dyC9r7nGMIAjcNfYGHtvwT17a/haPTbu3x9Ja7uqDe8Is5h3cyOxlf+GbI9v57OAPfHd4JRODUpgclEKMZyRqhYqnrrqSP726ldYKI/dcF4ZZ0ciRpjLKW6s4XJdHY2nzSVmG937/5LgonHBxcCI6wJO6OiuV1WaUUjVjo4MYGxWEm9oFJwdHnBWOOCkch3zTPBaL1UJOfSF7Kw6ysyydFkMrrioN1yYsYk7ElB7mdMeSVZvHe+lfUd5axeTgsdyavKSHMkFVvY6v1+eyKa0MlVLO7YviUfpW8sLulxEEgfsm3MKkoDGDHqfVZmVj4S4+2f8jRrEDrc6d2xtyCR17+ZCDkSiK/LytiI9+OYyrG1w818Z3le/QUNhEhFsIf5r4fyeVgqnTNbAiZz0JnvG8+lE+ZovI3++YSHiA9oTnthraOFyb22slPwzYTPaU3UB7SFabSG5xI1OSBr/XN1ia9S18uP9bdpWlE+Diy9MzHyTGs//+u5NlwIB07733cuTIEcrKyli4cGH34xaLZdinZADkEnl3RVgXgiCgcpDT0SkPo1W6YLFZaDfputNGWqULarmqh+trpFso20r29OmNBHBRxDTWFW5jbeE24kI9OVTY0CPIAagVKh6bdi9Pbvo3z25+lXvG38zYYxQIXKdcRXvmZjT7NvPYogcpbCxhdf5mdpSmsbFoB2q5ihFeUcR6RnDj1T6893UJr31SyAPXjObW0ZO6r2OxWe2pMkMb7SYdBosRg8WI2WrGeoxqhEwiRS6RI5fKUMocUMmVqOUqHDtTeH3J8GQdaeCjX7LYsLqR9B21zJ+gZs5YLRrl0NoQRFGkQd9EaXMlR5pKya0vJLu+EKPFiFwiI8lvJNNCxpPkO7LfmV9FazVfZi5nT/kBPNVu/GXKXYzu9Pyx2UQyC+tZueMIuw9VIZdKWDglnGnjtXyV/T2ZaTmM8IrirrE3DDrNIYoi+6oO8WH699R21GBr1zBGOYcl7auQanzRTl48pPegpd3Iy99sI7P+MK6jmtBJa1lTIjLCK4o/pFxDsu/IkyoasdisvJ76MaIIWTu8kYrwjz9OIthncKnIjUd2YhVtTAkeO+TX/r1zdA+p/3Lu0upWdAYLsSEnt+faFzbRxsaiHXx+8EdMVjNLRi7kspi5Q5biGiwDXvXPf/4zFRUVPP744zz++OPdj0ul0uGy7wGQS2WYrb3TS04qOR16e0A6KjHU3B2QBEEgwMW3RyovxjOctYVbKW4u6zOvHqT1J9kvnpV5G7gs4jZ2ZFRSWtPW6ybgptby7KyHeGnbW7y843/MjZjKsoTLUctVyJzd0Iy/jObt32JImU94YCx/HHcjt45eSkZ1NvuqDnG4Jpe9FQftFwsHqVXFy7t34ZflybioULyd3bpTdY4KFT5OnihlDsilcuQSGVKJtNdNThRFRFHEIlqx2uz/6c162oztWGwWLDZr9/+lzlZuXOJNXqmCnZkVfJ26nW/2bCfQx4m4EFfCAjQ4OUqx2uxVfCarCb3ZQIdZT5tRR5OhhcaOpu4qvi4CXHyZFjKOBO9YErxjUA6waVzeWsVPWWvYVroHhVTBkpELuSR6NgqpnMLyZnZkVLJlXzm1TXqc1XIWz4xkznh/tlVu5amta5FJZPxh9FJmh08ZdK9UVm0enx9cTn5jEaJBjUPDGO6ZMhG/fW9hMenxuuaxE5q2gb1p8XBtHpty9pNeeQjRUYfCEVxdfLk48GKmBI/F5xQs1G2ijXfTviC7Lh9KRuEsOPPsHyfiN8jNdYPFyMrcDcR7xwy6V+pCQrQYEWQKhAEyAXuz7CoviZGD13wciPKWKt5J+5yc+kJGeEVxW8qyM15sMmBACggIICAggDVr1gwr7w4BB6kCYx8ByVEtp11vvxm6q+xFCI36JkJcjy6xg7T+7CpN617ljPSy7/lk1OT0u9G7dOSl/GXt81RJ9yERHNmyr7xP+3Gt0oWnZj7IlxnLWZW3kdSy/SyKm8essMloJy6iLWMT9avfxf/WfyJIpChlDowNGNW9mmrWt1DUVEpxczllLVUcLi+j2lDMz7m5MIiPhyAICJ0Hiognn95Tg0PnVlgNUNMImxr7PrQr/adROuPt7EWCTxy+zl4EuPgSog04obW2TbRxqCaXVfmb2FeZiUIqZ0HkTCZ4T6G8ysTb3x1mf14tDS0GJAKMivLi+vmxjIv3YW/lPp7Z/iIN+iYmBaVww6jFuKoGZ6mQU1fIt4d+IbM2B8xKTOVxzAqfxHVTHWlb+R8sumZ8lj6Gg3dIn+dbbVbyG4rJqMkiozqHgsZibKIN0SpBYfHiougZzI0dc0pB6NjXejf9SzYd2Ym1MgJvInn2ngm4awa/el2evZYWYxtLRi488cEXIKLJeMKm2D1Z1UQGaof0vveFyWrmx6zV/JSzBpVMyV1jb2BayPjfJAYMGJCuueYavvzyS5KTk3sMputmuW/fvjM+wPMRpcyhV9k3gIujorvKritdU3ucAVyYaxDrC7dR3V6Hr7MXWpWGMNcg9lYc5PLYi/p8vRDXAOZGTGVtwVaiR8xlXWopS+dE9xDr7EIhlXNj0mImB4/hkwPf89H+b/nu8CqmBo8leeIlqFd/RMuelWjHX9rrXK1KQ7IqnuRjLKmPVLbw7vIMMksq0Whg/Cg34iI0CFILRqsJk9XUudKx2m+Ix/j2SAQBiSBBKkiRSqTIuv+TIZPIkEokR/8tSJFKJJ3H2/8vdJ5f26gnt7iZ3JImCsta0RsAmwS1QkmAj5ZAb2f8XZzwclbjrlWidXLAxVGBSt7/x7+ypY5NhbvZXpZKg6EBB4maUEkK1IXw6wEj3+p3A/ZVb2KkJymx3qTEeqNxUrC/6hBPbPqEkuZywlyDuG/CLYPKt4uiyKHaXH7I+tWuU2h1wFwRTbA8njuujMarYitNXy1H6qjB97qnUfr37DFqNrSyv/IQ+6oOkVmTQ4dZb3cpdvTHoTmK5kpn5o4cxa2LE05oBjhYWg1t/Hf3h2TUZGOpDCNUksJTd0/ood59IkqbK/gpZw2Tg8acltLh3yM2i2nAptj6Zj15pU0su+jUXHYP1+bxTtrnVLXVMjV4HDeMuvK0NLwPlgE/la+++ioAv/zyy0CHDXMcaoUaY+eN+Nh9CFdnB0qq7KXeWqULSplDt3ZdFzGd7orZdfndRQ7jA5P5IuMnatrrevngdHFtwuUcrM6iXraDZmMKq3Ye4fJp/d8Ew92CeXrmg+TUFbAqfxNrC7exymbBOcKHiMPLGaUWiA5IIFDjN2AFWKifhufumExGQT3fb8xnzfo6NmwyMDHBl9ljIkiI9EB6hnW1wt1gQuevarXaOFLVSkFZM0UVLZRUt7Izo6pPTyeJAA4KGXKZxC7ZL2vH4liNzaUSwcku62RtdcVal4C+0QejQkGQj5xJie5EBGiJDnYlyMcFqURAFEUya3L4JvUX8hqK8Hb04L4JtzAhcPQJ03M20UZaRQbLs9eQ31iM1KbCVBaDxhjBH6d4EWvJpv3nj2k26HAaORX3OTcjVbsgiiIVbdXsLT9IWsVB8juLX9xUWsYHJjPCM4acTIFfNlfg5uzAk9ckkRx96iuiLtIqMng37QtaDO2YikaS4JbEIzeNRekw+GBnMBt4ddf73dWMw/SNzWwYcIW0fm8pogjTk0+uoEFn6uDTgz+wsWgH3o4ePDbt3h6+Xb8VA35yDhw4MODJ/v7Dud6+cO508WwztvdI0XhoVTS1GjBbbMhlEgJcfHtJA/m7+OCq1HCgOouZYfaCgcnBY/gyczkbi3ZyTcJlfb6mUq7koUm38/iGl9EmHOCLDTImxvvh5Tawr0yMZwQxnhHoTB2kV2ayr3QfGeUH2J+9CrJXIREkeDt54OvkhZejBx6ObriptLiqNGgcnHF2sFe5JUZ6khjpSUlVK6t3F7MpvZyt+yvQOjkwMcGXiQl+jAhzP+Oij1KphIgALRHHVXW1d5iobdLT0KKnuc1IW4eZxo4WaozlNFjKaRDLMdIMgLPgRrBqIrGakQTEeuOhVeGpVaF1duhzH2xfZSbfZ/1KfsMR3FWu3DZ6GTPCJp6wHNZkNbO1eDcrctdT1VaLzOqEvDyMOL2SOYFmfExrsOyooFWQ4Bg9Fu3EK1H4hFLUVEpqwUb2lB+gslMdPtwtmCUjFzLaL55gbQCHihp446sDVNTpmDM2iFsuHYmTauiuuX1R3VbLpwd/YG/FQZwl7nRkjmNSVAwPLhuNXDb4v6/NZuP11I8pb6vm0an3/KYz8fMN0WxEoup7r9BmE1mXWsKoSM8T9nn1xd6Kg7yX9iUtxjYujZnLVSMWDOjvdSYZMCB9+umn/T4nCAJz5/buRB8GtCp7QUFzZ/lwF77ujthEuzVAoLczoa6BbC/d20MaSBAEkv3i2VG6F5PVjEIqt2vG+SWwrnAbi2Iv6nfjPUjrz8OT7+CFrW9CxE6e/ULOv25f0Gfq7ngcFWqmhoxjasg4Wg9sIHfN27SkzKbBy4/y1iqq22rJrivo1V/VxbGVcioXJfGzHejogMZmMxsqD7K2RIJCqiDQU0u4rzuR/h64OTmilDngIHOwV9vJlJ0/K06pjPt4DBYjjaZ66sRaysUqSiwVFOlKutOlCqmcWM8IRvnMZrRf/KD2VSw2K7vL0lmes46S5nI81W7cNnoZ00PH91hRilYzNkMHVoMOm7EDm0FHS3s9G6sPsbG5kDbRjIdBYF6DhfEdJSiFIpCBUKdAHhSLJnku6piJHDE1s6ZsH6lp71PX0YhEkDDCK5L5kTMY45/YLdjb0m7kv18fYP3eUrzd1Dx7+wRGRZ2eVVFNex3Ls9ey6chOZFI5kbLxZOxyYe7YUO5anDgkDx5RFHl/31fsqTjATUlXnZXZ+PmEaDYh0Wj7fO5gfh21TXpuWjBiSNdsMbTywb5v2FWWTrA2gL9M6b/x+7fipAPSMP3joT7qdxTaqbYAdFe+lVS3EujtTLRHOOsKt1HaXNGtygAwITCZDUXbSavIYGKQXRtqUew89la8yC95G1g8YkG/rz3SO5onZtzH85vfpFq2loe/aOTFa65FqRj87Ng5cSaBBem479nIlJuexyHevtEsiiJ6s4FGfTPNhhZajG20GtppM+nQmTroMNt1yPRmA+0mHXoM2JwMODrYy79FREqB0lrYVDvwGORSOapjgpRS3hmspAoUUjlyqRyZRNodyLuq9UxWMwazAZ25g1ZjO82G1l4yRt6OHoS6BjE3YirRHuGEuQYNujG1w6xnY9FOVuVtpL6jEV+llpu9kkgRVYhZ+6nfswmrrgWrvg2bob27XBegXi5lm1ZFurMKi0QgWmdkTKMZb7MaR3dfPEZOROkZiIN3CHKvIIpaKllXmsauLS/T0NGETCIjwTuGxSMWMMY/sYfZn9VqY01qCZ+uykZvtHDljAiWzo0+5b0iURTJqS/g1/zNpJbvRypImR0+BUNZKKu3VXPJpFBuuzx+SAaKNpuN9/d9xbrCbVwWM5eLo2ae0hgvBESzsV/ZoLWpJTir5YyP79u7qy8OVB3mjdSP0Zn1LI2/lEtj5p7WBteTZcBP63PPPcejjz7aqym2i7fffvuMDOp856jiQs+7brCvMzKphNySJiYn+nerJhyozuoRkEZ6ReOhdmNd4dbugBThHsL4gGR+yl7DlOCx/e4lAUR5hPHvBY/x9Jq3qTKmctu3+dw+4SomhSYOqlJGEAQ8F9xJ+XsPUfPjvwm45SUkSkcEQUCtUNkVHDRD01wTRRGzzUKHyUBeeR0ZRdVkldRRXNOIFQsSmRUvdzleHg64aWU4O0uwCRYMZgMGixGj1UiHqYNGSxMmqxmzzYLFZum2ahYEAZkgRSGVo5QrcZSr8HfxYaRXNO5qVzwd3fBx8sLf2XvA0u7+qGyqYNXB5WytzcIgWgk1WLm4sY2Yjlok5NEmkSJzckXq5IrMxR2FTyhSlTMSpSNFNgPLGwrIMdYgiAKyBk/UjaH4xMQTOyesh7V4aXMF20v3smPfR9TpGpBKpIzyieOa+MsY7RffpyX4gbxa3lt+iJLqNhIiPLh9UTxBg+z96Y9mQyvbS/awqWgnZa1VOMpVLIyezcVRM1m1uYqftuWxcEoYt102tJ4lo8XEG6kfs7t8H5fFzGVZwuWnNM4LBZvF2GdTbEu7kd2Hqrh4Uuig1BksVgufZ/zEyrwNBGr8eHz6fedUmf2AAWnChAkAXHRR39Vdw/SNo0KNm0pLyXH7Q3KZlJgQVzLy7dL8biqtvYKu/ECPCjqJRML8yBl8evB78uqLuiuPbkxazMGaLF5P/ZgnZzww4IzGTaXlP5f9hXe3rGFd6Rr+u/d/fJnpxYLYaUwMSkF7At00qcoZ78sfoPLTx6ld8Treix9GOAmfoS4EQUAhlaNQyRkb6czYSPvvZDBZyC1uIrOwnszCeg7tbsZitTfR+rq7ER3iSlyQK5GhWkL9NINKP54urGYje/b9zNriXWSJHQhAQruJGTJXIr2jUYwMRu4RgNzVB6mTtkePSE2jjuUZqWwv20q7pAbRIkesi2CkJplZk6MYE+fdvXpp0rewvWQvW4p3U9pSgUSQEO8dw1WdK6G+ghBAYXkzn6zKZl9uLV5uav56wxgmJpy8FYfO1GFXQC9NI7MmB5toI9IthDvGXMfEoBSUMgdWbi/i6/V5zB0XPORgVK9r5F873qGoqZQbRl05rMgwBPor+96UXobFKjJ37IlTbS2GVv69812y6wqYFzGd6xIXoThLe0X9MWBAmjnTvpRetGgRTU1NHDhwAJlMRmJiIi4upzYD+70T7hZMQadQ5LGMjvHm45VZ1DZ14OWq7q6gq2qr7a6qA5gTPpmfc9by2cEfeHrmnxAEAXe1K/+XsoxXd33AR/u+4dbRSwe8IQiCwP9Nn8eM8jH8Y/mP1Kjy+Wj/t3y8/zsi3EOI944hxiOCcLegPkVGlYExuM++kYZ1H9K8/Xtcp5z+KiilQkZilCeJUfYVn8lsJb+smZziRnJKGjmYV8fmdLuVgVQiEOjtTJi/hlA/DSG+zgT5uODaR7HBqdDUVMnqnZ+xpbmQRpkEJ6vIfLUfc6Jm4BuRguS43iWj2UpReSv5pU1klzaQUXuIDk02EnUbWFWEMIGLR0xlbIw/aqU9NWi1WUmrOMj6oh3srzqEKIpEuoVwS/ISJgQmDyi0WlzVyldrc9mRUYmTSs6tl47g4omhJxWsW43tpFVkkFq+n4yabKw2K56O7lwaM4epweN6rIT35dTyzk+ZjBvhw11XDk1NfF/lId7Y8zEWm4WHJ99Oin/ikMd6IWMv++5Z1CCKImtTS4gOdj2hTmBpcwX/2PYGbcZ27h1/C5ODBy9Z9VsyqATz5s2b+ctf/kJkZCQ2m43S0lJeeeUVxow5N3+pc4FYzwj2VhykoaOph9nbpAQ/Pl6ZxZZ95Vw1K4ppIeP5OvNn1hRs6VH2qpQrWRJ/Ke+kfc7mI7uYEWZXVZ8UNIYjTWX8nLMOR4WapfGXnvDGEBngzv9uv4UfNxfw3c50TE6VVNhaKGhYg8ivwFEvIx8nL7ydPPBQ26vptHHjcajMp2nrVyg8A3GMGX8G3q2jKORSRoS5dwvEiqJIfbOBgvIm8suaKaxoYX9uLRvTyrrPcVTJCfB0wtfTET93R7zd1Xi6qvHQqHDTKHEYxI3aJtrIrDzM6vTvONBRg1UQCJepuDpsElOSLkMQZDS2Gsgu76C6oY6qeh3lte2UVLdSWa/DZrMhdavGIbAQ0bcdrdSNeeFXc1nCFOTHyKy0GtpYX7SdtQVbadQ3o1W6cFnMXKaHjMfPZeA9gLzSJr7dkMfuQ9WoHGQsmRPF5dMihlw9V9tez96Kg+ypOEhOfQGiKOKpdmN+5AwmBCYT4RbS6zNV16Tn5c/TCPJx4U/Xjh50Kb/RYuKLjJ/4NX8TQRp/Hpx027C1xMlg7r1CyiluoqymnXuuHjXgqXn1Rfxj6+s4yBx4ZuZDhLn17dR7LjCogPTqq6/y2WefdcsFHT58mMcff5wffvjhjA7ufKZLYSGzJofpoRO6H/f1cGREmDtrU0u4YkYkrioNE4NS2FC0gyvi5vdwypwZNpFtJXv4aP+3xHhGdK+gliVcjs6k58fs1bSZdNySvOSEG5JymYSrZ0dx0fhglm8tZNXOYjqMejz8jASF2VA6d9BibCCvIRV9H0296nBvHPd+gPuRDbhpvNEqXdCqNLgqNbirtbir3XBXu6IYgmr1YBAEAU9XFZ6uKibEH7ULb24zUlLdSml1G2W1bVTWtXO4qIEt+8o5XgBCrZShcXTASS3HUSVH5SBDqZCikEsxCW3UkE+N5RAdgh6V1Ua8XgXWcbSYAviuxMT7KzbQ1mHqcV2JAN7ujgR6OxEea6TIlkq9sRZ/F18Wj1jK+ICkHtqDNe11rMhZz6biXZitZhK8Y7kleQnJfvED/u0sVhu7D1Xx89YisosbcVTJWTInisumhg+6+VQURY40lZFWeZC95Qe7U8mBLr5cETufsQGjCNEG9DuxEUWR177Zj9li4283julhLT8QOXUFvLX3U6raapkXOZ3rEq847Z+PCwex1wpp3Z4SVA5Spozqfw8op66Q57a+hlbpwuPT7ztpa/HfikF9sgRB6KFdN2LEiNOi6vx7Jkjrj5tKy96Kgz0CEsDCyWG88MledmZUMmWUP4vi5rG9dC8/Zq3mxqSjQpkSQcI9427iL2uf5+Xtb/PMrIdwVKiRCBJuS7kGZwdHfspeQ1lLJfeMuwkvpxNrWGmcHLjh4jiunhXFjoxKNqaVcWBbPTbRGXdNMImRHkSFOOHpBTKlkRZjG036Fhrb6qjJ201rXSmF5g5azHbx1ONxU2nxcfLEz8WHABcfgjR+BGkDTrsltdbZAa2zvffpWMwWK3XNemobO6hvNtDUZqCpzUhLu5H2DjM6vZm61jY6HEoxOZVic6wHEcL1JuJaRIraJlAiC0XpIMNJJSHAy5mRYQ5onR1w1yjxdFXj7abGy1VNaWsZnxz4jj11Bfg4eXJv0i1MDBzdIxDV6Rr49vBKthTvRipImRoyjkuiZp2wKKSmsYN1e0pYl1pKY6sBbzc1t102ktljg7rTfgNhsVrIqssnrTKje6UuCALR7mHcMOpKUvwT+/TY6ovdh6rYn1fH/10ePyhtug6zni8yfmJdwTY8HN14fPp9xHufmoLAMD3N+QxGC9sPVjA50b/fCUJ5SxUvbn8TN5WGp2Y8OGjZqrPJgAGpubkZgJEjR/L++++zdOlSJBIJP/zwA+PHn9nUzfmORJAwPiCJtYXbaDO299ijGR/vS6C3E5+vzmFCvC8BLr7MCJ3I6vxNzAid0KPqxcPRjQcm/oHntr7Oi9ve5JGpd6OUK5EIEpYlXE6Qxp9307/gT2v+zlUjLubiyJmDUuJVOsiYNSaIWWOCaG4zsjermvScWtKyatmUZt+zcVTJCffXEOoXRKjvCKaOGoNi3UtI2xrxu/7vWNRONOlbaOhooqGjibqORmra66hqq2VXWXqPcmtPtRsR7qFEuYcS7RFOiGvgGSkzlcuk+Hk44efR88ZpsBg5UHWYHaWZ7KvMxGyz4OPkSYrBkxEF2QREjMNz2V1IHAZuJAb75vB7+z5n05GdaByc+cPoa5gZNqnH76M3G/gxezW/5G5AAOZHzuDSmDkD+vy0683szKhkc3o5mYX1CAIkR3vxx8WJjI71PmGfT4dZz8HqLPZWZLCvMpMOsx65VE6idyxLRi4k2XfkkJtPRVHkq3V5+Hs6cfHEkBMeu7t8Hx/t+5ZmQyvzIqdzTfylJ1XVOExvjlX63plZhd5oZdaYvtNv7UYd/9j6OnKJjEen3nNeBCMAQRxgqRMTE4MgCH2uhgRBIDs7+4wOrj/Ky8uZNWsWGzZsICDg9Ht/nC5Kmyt4aM3fuS7xCi6NmdPjuT2Hq3n2g1RuWTiCRdMjaDW288CvT+OhduW5WX/uFVR2laXz6q4PCHcN4i9T/9hjxVGna+D9fV+zrzITT0d3roybz5TgsUMyfevCZhMpq20jp7iJgvJmCsqbKa1uw2S2AhAkredul3XopM6kBt6Am5cXvu5qvN3sezddBQaiKNJiaKW0pZLi5nIKGospaCimvsOuguogcyDWI5wRXtGM8Ioi1DXwtDbDgn2/5kB1FnsrDrK/6hAmqxmN0oUJgclMDkjGecsP6PP24Dp1CdrJV51wL04URTYf2cUnB77DYDGyIHoWV8TN7+WXtK/yEO+mfUGDvompweNYmnBpd2/a8TS3GdmTVc2uzCoO5NVisYr4eTgyMyWQGSmBeLkOHCCb9C2kV2ayt+IgmTU5WGwWnBWOjPZLYExAIgnesafUdV9S1crdL2/ijkXxLJjcv85cTXsd76d/xYHqLEK1gdyWsqyXUeEwQ6frXvfRFVHEX/dnnEZMAeCxt3dQ09jBO3+b3ad6yD+3v83+6sM8O/Oh8+rvMOBUOicn55QuvmLFCt566y3MZjM33XQT1157bY/ni4qKePLJJ2lpacHT05N///vfaDTnRyQfDEFaf2I8wllbsIUFUTN73HDHxHkzJs6bz1bnMHaED/6eTtyeci0v7/gfnx38gZuSr+5xrQmBo5EKUl7d/QGPrHuBhybd3t275Onozl+n3MWBqiy+ylzO23s/48uM5UwPncC0kPFD6hmSSASCfVwI9nHhIuylpFabSE2DjtKaNipq29lX6sGYis9JLv6EVw/MRicenQErZBI8XdX4ejji46bG290RH/eRJISOw2e0mg5bOzl1hWTV5XG4No/PM34E7M6zMZ4RxHpGEOkeSphrEKohzqxbDW0UNJaQU19AZnUORU2liIi4KjVMD53A+IBk4jwjEQSoXf4qurw9uM+9Bc2Y/huNu2jsaOatvZ9ysDqLGI9w/m/MtQS49HxfzVYznxz4njUFWwhw8eXvEx/uJRZqtdrIL29mf04t6Tm15JU1IYrg5aZm4ZRwJif6ERmoHTA41ukaSC0/QGr5fvLqixAR8XJ0Z17ENMYEJBLlHnbagvuhIruaxZi4vgsuLFYLv+Rt4NvDK5EKEm5KuoqLIqad9snFMCDI7HtITW0GMgrqWTonus/PyeYju0irzODGUYvPq2AEg9xDMplMbNmyBZ1OB4DVaqW0tJQHHnig33Nqamp45ZVX+OGHH1AoFCxdupRx48YREWFXwRRFkTvvvJNHH32UqVOn8vLLL/POO+/w8MMPn4Zf69xhYcwc/rn9bbaV7OmxlyQIAn9cnMjd/9zEy5+l8eLdUxgbMIr5kTNYlb+JQI0fs8In97jW2IBRPDXjAf614x0eXf8S1yRcxsVRM7vVCkb5xpHoE0tmTQ6r8zezInc9y3PWEujiy2j/BEb5xBHlHjZkcy2pRMDP0+mY/YNIOo6EIP/mBV6K3AVzH6LWIKemQUd1Ywc1jR3UNHSQfaQBnaGnUaGrswO+Ho74ekQzwWM02gjokFVTZSglr6GQ/VWH7O8PAl5OHvi7+OCldkercsFJoUYukSMCJqsJnamDJn0LNbp6yluqaNDbBVGlgoQItxCuGrmAJN+RhLoG9hA4bdz0GbrD23Gbce2ggtH+qkO8vvsjTFYztyQvYW7E1F6CqW3Gdv65/W1y6gtZEDWLZQmXIZfKMVusFFa0kFXUSGZhPVlHGugwWBAEiAzUsuyiGMbG+RDq5zJgEDJYjOwqTWdL8W6y6vIBCNL4c9XISxjrn0igxu+M2AM0tRoQBPB07W1pUNRYwlt7PqWkpYKxAaO4JWlJt4TRMKcfobOoIS2rBlGECfG9J5rtJh2fZfxItEf4eamAMag70wMPPEBZWRl1dXXExcVx8OBBxo4d2NVx586djB8/Hq1WC9iba1evXs3dd98N2Cv11Go1U6dOBeCOO+6gtbW113VaW1t7PV5dXd3ruHOV0X7xhLsG882hX5gYlNKjyshdo+L+pUn8/cM9vPV9BvcuGcX1o66ksq2Gd9O/xMnBkXEBST2uF+keyotz/8b/9n7OJwe+Z0dpGrcmL+2eCQmCQIJPLAk+sTTrW9hVto89FQf4OWcdP2WvQS6VE+kWQpRHGGGuQYS5BuHp6D7km5k6NBGfq/9G9bcvIFv9IqOWPYEstndKp73DRFWDjur6DqobdVTV66is17E/t5YNe8uOOdIZd814wrxkOLrrENStGKVNVLXUkV2b36+GnqNCjbejB7GeEYS4BhDhFkK4W0i/aar2nF007/wR56Q5aCYsGvB3FEWRH7NX81XmzwRr/Hmgn5LldpOOZza/SkVrNctiluFiDubDFTnklTZRWN7S3ejr7+nIlFH+jIryJCHCExfHE6fSDGYDq/I3sTJ3A20mHb5OXiyNv5SJgaNPi5fRiVArZYiifX+rq6rParPyU/Yavj28Eo2DMw9PvoMxw31Fp8yJ7nVdVXaph6vxdFUR0kfv0c8562g36rh12pLz0sNuUAEpOzubtWvX8tRTT3HzzTcjiiJPP/30gOfU1tbi6Xm0isfLy4uMjIzun0tLS/Hw8OAvf/kLWVlZREVF9XCl7eLjjz/m9ddfH+zvc84hESRcm3g5z2x+lRU567hyxMU9nh830pelc6L5al0uvh6OXD07ij9NvI2/b3mN/+x8j/sm3Mr4wOQe52iULjw8+Q52lO7l4wPf88j6F5kYOJrFIxf0SCNpVRrmR81gftQMdKYOsuryOVybR05dASty1nXbijvKVQRpA+wVcRp/grR+BGsDUMoGdiJVhSbge83jVH/9PBUfP4rvNY+h8Oy5yeqkVhCpVvSQx+lCb7RQWddOZb2Oyrp2Kjr/O3xAis7gDDgDQUgkAl5uDnh6yvB0dcDLVY2PqzMB7q74urvgrJYP6stnbq6l7pc3cfCLxGPurQOeY7PZeCf9CzYW7WBy0BjuGHMdCpkCURRp6zBT0xlcy2vb2Nj4Ha1CNZb8ZN7f3Qg04qCQEhGg5ZLJocSEuBEX4oary9BSkEWNJbyy631q2utI8h3J5bFzifGI+E1vNNHB9r2vtOwaZowOpNXQxqu73yezJpeJQSn8YfRSnBRDV5gepjcnutcJcgVGs5X9eXXMGRvU63OgM3WwpmAL4wOTe0iRnU8MKiB5eXkhk8kICQkhLy+P+fPno9frBzynv0KILiwWC3v27OGzzz4jPj6e//znP7zwwgu88MILPc658cYbWbSo50y2urq6137UucxI7xjGBybzQ9avTAhM7tUAec3caKobdXz6azZOajkXTwzlkal3849tb/DKzve4Kekq5kfN6HGOIAhMDh5Lsl88P+esZWXuRnaV7SPFP4EFUTOJ9Yzs8X47KtSM8U/snsmarGZKmysobi6jqKmM0uYKthandq9EBAT8XLwJdw0mwj2EGI9wgrT+vVJVysBYfK9/luovn6Xyk8fwXvxnVMEjB/W+qBxkhAdoCT/OKkIURVp1JirrdFTUtVPVoOsOXEVHWtAZepoaKuRS3DVK3DVKXJ2VaJwUuDg64NLZd6RWyVHJJKi2/BuJzYZl8v9R0WhAEIzYbCI2m4jZasNktmIwWekwmFlV9iMFusOEy1KwFCfybEYaDS0G6ps70But3a8t8ypFHlKJn2ECo5JGE+LrQpi/Bn8v5yGpXx9PZVsNT2/+D2q5iqdmPECcV9SJTzoDxIS4EeDlxLcb8ggPk/LPHW/RaGjhjjHXM7OzWXuY08OJ7nWC3IG80iZMZmufvlbbS/aiNxu47LgCqvOJQQUktVrNihUriImJ4ZtvviEsLKy7JLw/vL29SUtL6/65trYWL6+jb6KnpyfBwcHEx9vdRy+55BLuvffeXtdxcXH5XcgU3ZJ0NZnV2byR+jHPzHqox6avRCJw35IkOvQW3vo+A0EQmD8hhMem3curu97nw/3fUNZSyc3JV/eqnFPLVSyNv4yLo2axKm8Dawu2sbfiYHcp+ZTgMWj7KPlUSOVEuIf02PQURZH6jkZKmsspairjSFMpGTXZbC1JBcDZwYkE7xhG+9ldY7uqyxy8Q/C7+R9Uf/UcVV88i+fFt+OcePL5a0EQ0Dg5oHFyIDa0Z3WaKIq0683UNHRQ29RBXbOe+mY9DS0GGlsNFJY309Ju7LV3Nc0hmysc8/msfRJ7384c8PVlgbnIfY9gLo8kt9aLGucGXJ0dCPByYlSUJ16uqs6qQiUv7H0BP+dInpxx/WlduXxy4HukgpRnZv6p2134bCCVCNx66Uie+WwDj6xdidJBytMzHjzvNsvPB050r5PIHcgpse+TRgf3zjhsK9lDoMbvrFtInAqDCkhPPPEE33zzDQ8//DDfffcd1113HQ8++OCA50ycOJHXXnuNxsZGVCoVa9eu5dlnn+1+PikpicbGRnJycoiJiWHjxo2MGDE0P4/zCa1Kw20py/jPrvf55tAvvYz2ZFIJf70xhec/2sub3x1Eb7BwxYwIHpp0O18d+pmfstdQ1FTK/RNu7XPvwMXBiaXxl7Eodj47S9NYX7iNTw9+z2cZP5DgHcP4gGTGBozqU7OuC0EQ8HR0x9PRvVtrrCtIZdXmk1mTw8HqLHaUpiGXyhnjl8CMsInEe8cg13jhd+Pz1P7wMnW/vIGptgS3WTf0EBw9HQiCgLNagbNaQUSgtt/jLFYbbR0mOgwWdLWVSFd8hclzJLNTljDDBlZRBFG0q4RLJUilAgq5lIK2LL4rPMKUwInccukS1Mr+04E5dYU0G1q5Ofnq0xqMrDYrB6oOc3HkjLMajLqICXfCNeEgHWYr872Hy7nPFoLMgZziRnw9HNE49Uyn17TXkddQdN6rpw8qIIWEhPDnP/+Z1tZW/vOf/wzqwt7e3jzwwAPccMMNmM1mFi9eTEJCArfddhv33nsv8fHxvPHGGzz22GPo9Xp8fHx46aWXTuV3OeeZGJRCRnU2P2avJtI9lBT/hB7Py2VSHrlpLK98uY8PfzlMc7uRmxbEsSzhciLdQ3kz9WMeXvs8N41azMywSX3eBB1kCmaETWRG2EQqWqvZWpzKztI0/pf2Oe+mf8kIryjG+CcyNmDUgE2aXXQFqWmh7kwLHY9NtJHfcITtJXvZUZrGzrJ0/Jy9uThqJtNDJ+Cz9DEa1n1Ey55fMNYcwevyB5E5nfh1TjcyqQRXZyVaJ5Hq9V9jkEqIuOoeZC79q1k0G1p57dcVRLqHcuf4ZSds3O1yaw1zPb3aYHqzAZto66GBeDb5eP93mIR2ws3z+PqXCnydvJiZcu7qof1eEeQK8suaeqmTAByszgLoVQR1vjGogFRUVMQ999xDa2sr3333HTfddBOvv/464eHhA563cOFCFi5c2OOxd999t/vfiYmJfPfddycx7POXW5KXUNxczmu7P+S5OX/u1csil0n407WjcXFU8OPmAuqb9dy/NIkx/on8c95jvJH6Mf9L+5w9FQe4bfQyPBz7brgEux36NQmXsTT+Uo40lbG7fB+p5fv5YN/XfLjvGyLdQxkXkMSEoOR+GzePRyJIiPYIJ9ojnBtGXUlq+X5W5m7kvfQv+f7wKi6Lncvs2Tfg4BtO/a//o+L9h/C6/P5B7yudbnTZO9EXHcB97i0DBiOAbzJXYLAYuWvsDYNSkZB27qdZbdYTHDk0lHIlAgI688D7tL8F5S1VbCnezWUxc1kcdzHPvr+b/3y1H4lEwvTkc7cp/feIzizQ2GrsNvo8lqza/G7ZrvOZQUn2/v3vf+eRRx7B3d0db29vrrvuOp544okzPbbfJQqZgocm345CpuCFrW/QYuhd6i6VCNy+KJ6bFsSx7UAFj729k5Z2Ix5quy7YLclLyKrN50+rn2VN/hZsndVy/SEIAmFuQSxLuJxXL36af89/gqtGXoLJauLTg9/zxxWP8dTGf7OxaEef+nT9IZfKmRw8lufn/IUnpt+Pn4s3H+3/lvtWPkmqowzvG55DolBR9dlTNG7+AtFqOfFFTyNWfRsNa9/HwTccl9HzBjy2Sd/CpiM7mRU2Cf8TqG53Edwp8ZTXh83IqSCTSHFVaajTNZz44DPM9tI9SAQJC6Nn4yCX8tgt4xgZ5sErX6SzM6PybA/vwkGmoKre3gfal55gdl1BZ9P3+VfqfSyDCkjNzc1MmjSp++drr72W9vb2Mzao3zseajf+MvlOmg2tvLjtLYwWU69jBEHgypmR/PWGMRSWN/Pwf7dRUdeORJAwL3I6/5r3OBHuIby/7yue3vQKla2D780KcPFl8YiLeemiR/nvgme4auQlNBtaeXvvZ9z+81/5YN/X1LbXD/p6giAw0juaJ2c8wBPT78NNreWdtM/5276PKbnoGtTx02ne8T0VH/0NU23poK97qjSs+whrRxseC+464V7WluLdWEUbl0TNGvT1g7UBeDt6sK5w22kXG/ZUu3XLLJ1NipsrCHDx7dbAUypkPH7rOCKDXPnnZ+lkHTn7QfNCQJApqOwMSP6ePcvsWwytNBlaCD+Pixm6GLQFqNFo7I6+dXV12GwDz8qHGZgI9xDuHX8LhY0lvLrr/X7TPpMS/XjurknoDGYe/u9Wso/Yb1JeTh48Nu1e7hxzPaUtlTy89nlW5Kw/4WrpeHycPFk84mJemf8kz8x8iNF+Cawr3Ma9q57kjdSPhxSYwF7i/vdZD/PnyXcgl8r5795PeVnRTNmsqzC11lP+wcM0bf8O0Woe0nWHii5nN+2Zm9FOvAIH75ATHp9emUm4a/CQmk0FQeDSmLnkNxwhtXz/yQ+2D1yUzrQZdaf1mieDVJBgsfVc2aocZDxx63i8XFU8/9EeGlrOfmrx944gtSuhAPi49wxIpS32lWqgxq/XeecbgwpIy5Yt49Zbb6WhoYF//etfLFmyhGuuueZMj+13z9iAUdycfDVplRl8uO+bfmfZMcFuvHzvVJzUCh57ewd7s+yrIUEQmBE2kX/Pe4JEnzg+Pfg9z25+lSZ9y5DHIggCMZ7h3Dv+Zt5Y8HfmR85gZ1k69//6NJ8d/AFDHx5JA10rxT+Rl+Y+wr3jb8FsM/NGyRbeiA4mKyKW+i1fUv7un9AXD1x+fbKYm2uoW/UWCp/wQbnc2mw2ihpLiPWMGPJrzQybSLA2gA/3fUO76fQFEJlE1isQnA1iPSOobKshr76ox+Mujgoeu2UcBpOV1789OGxHc4YRZDKa242olbJezsAVndmRoWhWnqsMKiAtXryY++67j4ULF2KxWHj22WdZtmzZmR7bBcG8yOlcGjOXtYVb+TV/U7/H+Xo48s97phDk48xzH+5hx8Gj+XtXlYaHJ93OHWOuo6ChmL+u/QcFDcUnPSY3tZYbkxbz2sXPMDloDD/nrOOBX58hrSLjxCcfg0QiYXLwGF6Z9yT3jLsZBAmfWGt4OTaE9Qoz+V8+Tc33/8TcePr2ImxGPTXfvgiiiPeiBxAGodvXZGjBbLPgexJOplKJlDvHXE+rsY330r86mSH3icFiOCWV7tPFrLDJuKm0/HPH/yhqLOnxXKC3M9fPjyUtu4a07JqzNMILA0EipbXdhMaxt3pKi6ENAQGtw/nfrzmogNTe3s6+fft4+OGHue6669i8eTMdHR0nPnGYQbEs4TLG+CfyyYHvOVST2+9xGicHnrtzElFBrrz0WRq7D1V1PycIAjPDJvHc7D8jl8p4evN/yKw5NbV2N7WWu8bdwLOzHkKtUPHS9rd4ffdHQ14JSCQSpoSM5Z/zHuOvU+4iwC2QXx3hH2FevNuSy/pPHqZm5dtYWupOabw2k57qr5/DVFeG1+UPIHcb3IyxyyHXUdFbQHQwhLkFsXjEAnaWprGzNP2krnE89bpG3FVnv+xbJVfy+PT7kAlSHln/Eu+lf9kjjbtgUihebmp+2FxwFkf5+0eQymnRGXFx6j1JaTG04uzg2MMY8nxlUL/B3/72t25lBhcXuypxX7pzw5wcEkHC3eNuwsfJk9d2f0ibsf+CEbVSzlO3jSciQMNLn6Z17yl1EaT15++zHsbL0Z2Xtr9NcVP5KY8v2iOcF+f8jSvjLmZ76V4eXv1cd9/DUJAIEpL94nl8+v38e94TXBQ5nSKtCx/6uvBI837e+Pphdv/4AvqK/CFf29xUTeXHj2Eoz8Xr8vtRhw++H6Pri2w5hfLty2MvItw1mA/3fX3KqTuDxUhFWw1B2nNjT8DfxYd/znuU2WGT2VC4nXtWPcFL294irSIDQRCZPSaIQ4UNtLQPvkJzmKEhSGW09LdCMrahcRia8eK5yqD6kIqLi3nttdcAcHZ25pFHHuHSSy89owO70FDJldw/4Vb+tu4FPj3wA3eNu6HfY9VKOU/cOp6HX9vG8x/t4ZUHpuGhPTq716o0PDrtHv627gX+s+s9Xrro0R4q4yeDTCpjSfxCUvwTeD31I57b8hpzwqdwXeIVQ/YtAnu++6bkq7k2cRHplZlsK9xOak0OO0wluGz+JyNtDozxTyRx5FwcPQP7LWe16lpoSVtFy+6fEWQKfJY8MqRgBODcKQ460ERgIAxGC01tRub4XcLbh9/glQ3fEOcwGZ3BjN5gwWCyYrJYsVhtiCIIgr1xV6mQ4aSSo3FywNNVRaC3M/6eTuTUFWATbcR4RJ7UeM4ETgpH/pByDVfEzWdNwRY2HtlJWmUGrkoNI7SjQC5wpLKFUVFnXoH8QkSQymltMRLZhzpJq6ENjfL8T9fBIAOSxWKhvb0dJyd7/btOpxvexDwDhLgGsiB6Fity1nNJ9KweVubHo3Fy4PFbxvGnV7fw8ufpPHfnpB5inm4qLXeOuYHnt77GuoKtLIgefDnzQIS7BfPinL/x1aEVrMzdwP6qw9w6eimj/eJP6npyqZzxgcmMD0ymw6xnb/FeduVuJq29ip116cg3pBFphpFKDxJcg/Fy8gRRxKprxlh9BEN5DtisOMZOwH32zchchi6146RwxEHmQO1xfT8ms5XGVoNdJ6/FQEPrUc28xlYDTa0GGluN6I1Hiw/kYX5kWNPZc8AZiahA7SBDqZAil0uRSSVIBLCJdmkjg9FCu96M2XK0MlIuk6CNzUWqkqM0eSJ2yhudK7iptVyTcBlXjbyE/VWH2FC4nR1VW1Emwk9FzQQGXH3OKEz8rpBIadWZ+rQsaTG2ndf6dccyqIB0+eWXc9VVVzFv3jwEQWDdunVcccUVZ3psFySXx1zEmvwtrMrbyB1jrx/w2EBvZ25flMB/vtrPyu1FXDq1p3LGKN84oj3CWV+4/bQFJLA3994w6krGBYzinb2f8+K2N0nxS+CGUVeekkePWq5iWuRUpkVOxWQxcfBIKnsLdpLRWk6W2MA3jQ14VFuI7DARZRKJVnvjOm4hzgkzUHgMXjXAbLHS2GqkscVAY5s92ChsTuzOK6A4bVd3EGrr6N0fppBLcXNxwM1FSaifhtExSrTO9p+1zg60ieG8mfEGd93qybyoqYOyRe8wWKht6qC0uo2csjo2dqzDUu/Jw//dSYivC/MmhDBrTCBKxdCMFc8kMom0Wz1+Y0YOr2/+kVxpJvetOszS+Et7GEcOc+oYkWOxir007MBe1KC9kFJ2t99+OxEREezatQuZTMZDDz3EtGnTzvTYLkicHBwZF5hEavl+bktZdkIr6JkpgWw7UMFnq7OZPMoft+M8dyYEJvPR/m9p6Gg67TPXaI9wXpz7CCvzNvJ91ioe+PVpZodPYVHcvEHp5A2EQqZgTOQUxkROQRRFqtpq2F91mIyqLPbVF7DLakIqdBBFLaNqD5EkFQnWBmA0Walt6qC2SU9dpxp4V4Bp6lzZtHX07oFSREmRKVtQd5jwdlMTG+qGm4sSdxcl7hqV3d5Cq8JRKRswyIiiF1/nu5LTkM984cTfEUEQcFTJCVVpCPXTYHQpREw388ilV1Fb5sDaPaW8/UMGX63N5erZUcybEIJcdm7d6EtLrVjLRvD8spv5NvtHPjnwPVl1Bdw/4dZTThUPY0cn2gOR5riiBpPFhN5i6G5cPt8Z9JRrypQppKSkdKfqmpubu91ghzm9JHjHsrU4laq22hP2FgiCwP8tiuePL23k89U53HP1qB7PdzXLVbfXnZFUikwq47LYuUwLGce3h1eyvnAbG4t2MCtsMpfGzBlQa2+wCIKAn4sPfi4+LIiehdlqZl9ZLjuLD5LdkEt23XK+zFwOZgcsTZ5Ym7yxtbqBKEUiEXB1dsBdo8TXw5G4MHfcXZS4uijtAafTQ+nDzDqKm8t45cZTm2gJgkCoWxDlLUMvZbfarKzI3UC4WzDJAdEIgQLzJ4ZyuKiBz1fn8M5PmazccYT/WxTfpx/O2aCtw8Sa3SWMifUm1MOHhyffwaq8jXx84Dv+s+t9Hpr0f8MrpdNAh80eiFyOK2po7dz3vKCKGj7++GP+9a9/YTbbZ5Zdee3s7OwzOrgLlS6BxLqOhkE1u/l5ODF/YigrtxexaHo4AV5HP5xyiX2Gaj7DOnJd9hqXxszhh6zVrCvcytrCrUwMHM2C6FmnJGsiiiJV9ToO5NdxuKiB3JImaho7ACdgNBqtiMa3BZtzDS1e5Vi8ylFIFIz0imNKSAqj/UagHKDwQhRFKttqTnlV14WLgxMFJ6Fvt61kDzXtdVw/6fYeq7ARYe48d+dE0rJreHf5IZ58ZxeTE/34w2UjcdecXKn66UAURV7/9gB6o4Vr58UA9oDclR7++MB3bCrayazwyWdtjL8X2q327/HxK6QWY5v98QupqOHTTz/lyy+//F37FZ1LdKU5hhJErp4VxbrUEr5ck8vD16d0P95uss+gnBTq0zvIfvB28uTOsddz1YgFrMzbyMaiHWwv3Uu0RzjzI2cwNmDUoJS0bTaRnJJGdmRUsudwNdUN9r43NxclsSFuXDwxhHB/LSF+Lj3y6marmUO1ueytyGBP+X72VR9ALpWT6BNHil88CT6xPZTNbaKNX/M2UdJczi3JS07Le2Cz2U6Yaj0ek9XMN4d+Idw1uNvV91gEQWBMnA+jojz5YVMBX6/PIz2nhmvmxnDJ5LDfPI1ns4m8+1MmOzOquPmSOEL9eppAXhw1kx2laazIXT8ckE4DXQFJ69RzYtUlzqy5kFJ2np6ew8HoN6Sj03ZgKOXUWmcHFk4J47uN+SyeFdl9gyjvlBX5rWXpPRzduDFpMVeNXMCmop2szt/Mf3a9h6tKw9zwqcwOn9znrK6uSc/a1BI2ppVS26RHLpOQGOnJ5dMiSIryxNfDccA9HLlUTpLvSJJ8R/KH5KVk1xeQWr6fvRUHSas4CICrUoOPsycyiZTKtloaOppI9IllVtikfq87FOo7GnFT9nbpHYhf8zZR39HInWMHdp6Vy6QsmRPN1KQA3vkpkw9WHGb1rmJuWBDHhJG+SE7BNn2wtLQb+e/XB9iTVc3l08JZNL235JIgCEwOHsNH+7+lSd+Cax+uxcMMHp3FfqvWOh+3QjJ0rpAupJTdpEmT+OKLL5g1axYODkdno8N7SGeGms5O+MF6FHVxxfQIft1ZzAc/H+aZ2ycgCAL5DUfwdvTAycHxxBc4A6jlKhZEz2J+5Az2Vx9mdf4mvj60gu+zfmVSUAoXR80k1DWQrCMN/LSlkNRDVYhAYqQn186LZfxIH9TKk9sYl0gkjPCKYoRXFDcnXU1ZSyWHanM50lRGna4Bg8VEtHsYKQkJTAoac1rKq202G0eayxgfkDzoc5r1LfyQ9SvJfvHEe8cM6hxfD0eeuHUc6Tm1fLDiEC98vJcwPw1XzIhgUqIfMunpXzGZLTbW7y3ls1+z6TBYuH1RPAsmhfb7vjl19nfpLQZcGQ5Ip0KbRYqTSo5c1nPl3dy9QrqAUnbvvPMOJpOJZ555pvux4T2kM8eR5jIcpAq8HQc2lDseJ7WCay6K5t2fDrEjo5KJCb7k1BUw2i/hxCefYSQSCaP94hntF09FazW/5m9iS3EqW4p342DyorU4ALXJj0XTI5g/MRRvt9ObYhQEgSCt/4C9XaeDgsZidKYORngNvqn184yfMNnM3Dhq8ZBeSxAEUmK9SYr2Yuv+cr5el8vLn6fz/s+HmDUmiKlJ/oT4upxyoG1o0bMpvZxVO49Q16QnNsSNP16V2KdR3LEUNBYjk8iGPLEapjdtZila594l3436ZhzlqnNC9/B0MKiAlJExNFHNYU6N7LoCIt1DT0qbasHEUDallfHW9xk4uXXQZtIx0jv6DIzy5PFz9ibeYTqZZe6UmrMQfEtxiNqHt3MlIbFuuGt7f/HOF7aX7kUmkZHkOziH3Oy6fLYU7+by2IvwPckeLqlEYMboQKYlBZCWU8PqXcX8sLmA7zbl4uZrxC/QjMrZhEJpw1Elx1Xlgr+zDzGeEb1eUxRFmtuMFFa0kFPSyMG8OnJKmgAYGe7OXVcmMjrG64RBrrGjmS3Fuxnrnzhc+n0aaDcLuDr3TuE36Jtx+x01Ig8qIJlMJrZs2YJOZ9foslqtlJaW8sADD5zRwV2ItBhaKWkuZ2n8yUkzSaUSHlw2mgf/s4U3Vm8EF86ZgGSziew+VMXX6/MoqmjBx13NXbMWMSXZj7TK/SzPWcebez7h20O/cFnsXGaETkR+Ht3MOkx6thTvZlzAKBwHUURisVl5L/0rPNRuXBE3/5RfXyIRSIn1QuHaiCoqgwNVh9GLJgpFEJukiBY5AiDITSCxq0MorC64mMNQd4TS0SalvlmP3mjX9JMIEB6g5bp5MUwZ5d+nU2lftJt0vLT9LWyiyJKT/BwP05N2o0BoHyukpo7m01Ydei4wqID0wAMPUFZWRl1dHXFxcRw8eJCxY8ee6bFdkHQpdCd4x570NQK9nXlw2Whe3rEXpdUZpXB29o+6sFhtbDtQwXcb8ymtbsPXw5H7lyYxPTkAaedex+TgsUwKGsP+qsP8kPUr76V/xY9Za1gUN4+ZoRORDcJG4myzKn8TerOBhdGzB3X8L7nrKWup5M+T70ApO7VVoc1mY3vpXn7MWk1FWzVOCkemho4lyXcE4a4htLcKFFe1UVbbZm8cbq+lyVaBzqGMeuUBcDiIRhPAqPAERniOIMxfS7i/Zsj7d7n1hbye+jENHU08NOn2k171DdOTNpPQZ8quQd90xtPQvyWD+pZnZ2ezdu1annrqKW6++WZEUeTpp58+02O7IDlYnY2zwpEw16BTus6EeF+0eSaaa5346xvb+fP1KT36k34LWnUm1qWW8MuOI9Q36wnyceZP145myij/Hrp7XQiCQLLfSJJ8R5BZk8O3h37hvfQv+TlnLVePXMjkoDHnrMR+Y0czP+esZYx/4qB0xarbavn28ErGBowipY8y76GQXZfP++lfU9pSQbA2gHvG3cz4wKQeq0t3Rwj27buwoKa9jg1FO9hYtIMDxpWUNe9kkiYFpS6JcEXwCd9zq83Kodpcfs3fzL7KTDwd3Xl8+r3Eep474rDnOwYLvVRYOkx6mg2tv3kF7ZlkUAHJy8sLmUxGSEgIeXl5zJ8/H71+2Lb4dCOKIpk1OYzwjj7lG68oinRYW5kUM5K0jXru+/cWls6J4rKp4b0cJ08nVpvIocJ6NuwtZcfBSkwWG/HhHtx1ZQKjY7wHVZYsCAIJPrHEe8dwoPowX2X8zOupH/FzzjqWJVxGku/Ic0pwVBRF3k3/Aqto44ZRV57weJto439pnyOTSE+p98lgMfLZwR9YW7AVD7Ub90+4lfGByUNWRvB28mRZwuVcNWIBeysOsqU4lZW5G/g5Zx1quYpwtyACXPzwdHTDUa5GEAT0ZgMN+mbKWirIqS9EbzbgrHBkyciFXBw186QU4IcZGHdNz/e0vNXuh/Z7sC7vYlABSa1Ws2LFCmJiYvjmm28ICwvr9kca5vRR015Ho76ZkV6nvucjImIVbQR4arjxoRm89X0Gn6zKZuWOI1wyOYzZY4L6TAGcDGaLlcNFDaQermZXZhUNLQbUShmzxgRx8aRQQnxPriRVEASSfEeS6BPH7rJ9fJn5My9se5MRXlFcn3jFOaNwvKZgC+mVmdwwajHeg5itri/czuHaPG5Pufak8//lrVX8a8c7VLbWsCBqFkvjLz3lSiu5VM7EoBQmBqXQbtRxoDqLrLp8ihpL2HhkJ0ZLT78jmUSGn7M3k4LGkOgTS7LvyPNqz+984/iAVNopTxX4O7Au72JQAemJJ57g22+/5eGHH+b777/n+uuvHy5oOAPkdcrNxHiEn+DIEyMRJDg7OFHf0Yi7RsVjt4wjo6COr9fl8fHKLD79NZuECA+SoryIC3MjzE8zqJWTKIrUNesprmqloKyZ7OJGsosbMZqsKGQSkqK9uHVhAGNH+uBwmlZiEkHCxKAUxvqPYn3Rdr49vJK/rnuByUFjWJpwGV6OQ7ecOF1k1uTw8f5vSfYdycVRM054fE17HZ8d/IEE71hmnmQj7v6qQ7yy8z0cpAoen34vIwfZuzQUnBwcmRw8hsnBYwD7311n7qDDbABRxEGmwFnhdM6mUH+PHC8TVdJcjoPMAc+z+Pk/3QwYkK6/vmfX+A033IAoikRHR/Prr79yzTXXnPEBXkiUNJcjl8jwd/E5LdeL84xkX2UmJosJhUxBQoQnCRGelFS3sjm9nNTDVXz4y2HAXlHl4arGQ6NE4+SAykGGRBCwiSJGk5W2DhNNbQZqm/QYTfYqLEGAYB8X5owJIinGi4RwD5QOZ674QCaVMS9yOlNDxrE8ey0r8zawu3w/8yKmsShuHs4Og6sCO13k1BXw0va38XP25t7xt5wwVWaz2Xg99WMEQeCOsdedVNpxU9FO3k77jBBNAH+Zchduau1Jjn5oCIKAk8Kxu9l1mN8e9+P2kHLqC4lyD/ldidcOePe47rrrAFi3bh3t7e1ceeWVSKVSli9fjovL76Mz+FyiRlePl6PHkHXQ+mN+5HRSy/fzZebP3DDqyu4bYLCPCzcuiOPGBXE0tOjJK22iqKKVqnodDa16ymvbMZos2GwigkRAqZDipFIQ4OVMcrQ3fp6OBPu4EOrnctIqCqeCWq7imoTLmBsxla8PrWBl/kY2FO1gYcxsLo6aiVp+5gVH95Qf4LXdH+Km1vLY9PtQK078mt9lrSK3vpB7xt18Us2iq/M388G+r0n0ieVPE/9vQMHYYX5fKOVCj8leh0lPaXMFi0dcfBZHdfoZMCBddNFFALz//vt89dVX3cvz6dOns2TJ6RGiHOYobcZ2tKrTF+jjvKK4KGIaK/M20GHWc/2oK3rNcN01KibEq5gQf/5tjLqrXblr7A0sjJ7NV5k/882hX1iVt4kFUTOZFzl9UL1AQ8VsNfP1oRX8nLOOCLcQ/jzlTrSDkG3JqM7m+8OrmBoyjikhQ2+ZWFewjQ/2fU2KfyIPTLh1eK/mAkPr2PNWndtQiIhIjGdvHcHzmUHlV5qamjAajahU9lmgTqejpaXljA7sQsRitQxqpj0Ubk6+GkeFmh+yfmVXWTpTg8cxyncEYa5BaFUufS73bTYbbaZ2WgxtNBlaaNK30GxopVnfQrOxjTZjO+0mHQazEaPVhMVmVyWXSqQopArUciUuDk64KrV4OLrh6+RFgMYXfxefM9K1H6jx4+HJd1DYWMK3h1fy9aEV/JSzlpmhE5kbMfW0pEBFUWR/1WE+OfAdlW01zA6fwk2jFqMYRCFBra6BV3e9j7+LD38YPfQ0987SdN5L/5Jkv3genPCH86Ina5jTi1bd829+sCoLuURGpHvoWRrRmWFQn+xLLrmEq6++mjlz5iCKIqtXr+bqq68+02O74FDIFBjMxhMfOAQkgoSl8ZcyITCZ5Tnr2FK8m7WFWwF7lZSzgyMOUvtN1Wy1oLcY0JsNiIi9rqWSKdEonXFxcEar1KByVuIgVXTbSVhFGyaLCZ1ZT6uxjbKWKpr0Ld3XkgoSgjT+RHmEEecVyQivaFxO475PuFswf51yF8VNZfySu4G1hVv5NX8T0R7hTAkeQ4p/4pCr2vRmA6nl+/k1fxNHmsrwdfLikan3MMo3blDn60wdvLD1DWyijYdPogE2qzaP11M/ItojbDgYXcBonY7+3UVRJK0yg3jvmFNuqD7XGNSn+7777mPEiBHs3r0bgL/+9a/DFuZnAHeVK5m1OWfk2sHaAO4dfzMmi4nCphJKmiuo72ik3ajDaDUB9rJfpcwBJ4UaFwdnNEpntEoXXJUatEqXk9qzMFnN1LTXUdZSRXFzGYWNxWwu3s2agi0ICIS7BZPin8BY/1GDMiMcDCGugdw9/iauG3UFm4/sYmtxKu+lf8V76V8RqPEjxiOcUNcg/Jy9cVNpUMtVSCVSzDYLrYY2anX1lLZUkl2Xz+HafCw2C37O3twx5jqmBo8bdFAwWky8tP0tqtpreXTq3UNWLShvreKf29/G28mDP0+5c1CrsWF+n2jVRzMLZS2V1OoauDz2orM4ojPDoKdbs2fPZvbswUmiDHNyhLgGsrUklYaOpjNiNw72VVisZ+Rv1kWvkMoJ1PgRqPFjYtBowK7hVtRYQkZNNvsqD/FV5s98lfkzgS6+TA4ey5SQsadFIVqrdOHy2Iu4LGYuFa3VpFVmcKgml+2le1lXuO2E5we4+DIvYhpjA5KI9ggbUlWcwWLkn9vfIqeukHsn3Dzk0uxWYzsvbn0TmUTG36bePVzddoHjfExA2tvp63UuqPifbobX/+cQo3zi+ARILd/PxVEzz/ZwzhgyiZQojzCiPMJYPGIBjfpm9pQfYEdpGl9mLuerzJ9J8IlldvhkRvslDMphdiAEQSBA40uAxpfLYy/CJtqo1zVS1V5Lk74FvdmAVbQil8hxdnDCQ+1KgIvvSe/ntRnbeXHbW+Q3HuGusTcwKWjMkM43W828vP1tGvXNPDnjgbPaZzXMuYGz6uitOq0yg0i3kN+l6eFwQDqHCND4Eu4azJqCLcyLmH7BNB26qbTMi5zOvMjp1LTXsaV4N5uKdvGvHe/gqtIwJ3wKs8OnDKqabTBIBAleTh54OQ3Nb2owlDZX8M/OYPLAhD8wPnDwRn1g3x/4X9rn5NQXcv+EW4nyCDvtYxzm/EOttqdrG/XNFDaWnLQbwLnOhXHHO4+4LHYuVW21g0op/R7xdvLk6pELeeOSv/PnyXcSpPHnm0O/cNeKR3kj9WOKm8rO9hD7RBRF1hdu55H1L2KwmnhyxgNDDkYA3x1eydbiVK4eeQkTg1LOwEiHOR9xUtlTdukVmQCMOUVB3nOV4RXSOca4gCTivWP47OAPxHlF/q6EE4eCRCIhxT+BFP8EKttq+DVvE5uLd7OleDcjvKKYHzmDFL+Ec2IVWdlWwwfpX5NRk028dwz3jLsJ7UmkU9YX2mWRpodM4Mq431fD4zCnhrPKvkJKqzyIt6MHAS6/H/26Yzn73+ZheiAIAn8ceyMquZJ/bH2DWl3D2R7SWcfP2ZtbRy/l7YXPc13iFdS01/Pyjv9xz6on+Cl7DS2G1rMyrmZ9Cx/u+4Y/rX6W/IYj3Jq8lEen3XNSwWh32T7eTf+CJN8R/N+Ya88pNfNhzj5OjgoMZgOZNbmk+Cf+bj8fwyukcxA3tZa/Tb2bZza9wuMb/smfJ99J+DmibH02cVSouTRmDguiZrK34iBrCrbwRcZPfH1oBSl+CUwLGcconxFnvFfnSFMZawq2sK04FatoY0boRJbELzzpPa69FQd5ddf7RLqF8sDE2065iGOY3x9KBzkZNTlYbBZG+8Wf7eGcMYYD0jlKqGsgT8/8Ey9se5PHNvyTJSMXcknUrOHGSOyKEOMDkxkfmEx5axUbC3ewtSSV1PL9OMpVjPZLYLR/PPFeMTg5nHq5tCiKlLZUkF6Zya7SdEpaKpBL5UwLGc+lMXPwOQVX1J2laby2+0PCXIN4ZOrdv7tGx2FOD4JExr7KdFRy5e9OLuhYhu9u5zBBWn9enPs33kn7gi8yfmLTkZ0sjlvAxKDRp02A9XwnwMWXG5IWsyxxERnVWewsS2df5SG2lqQiIBCk8SPCPZRQ1wACXHzxcvJAq9T0uwoxWIzUdzRS3VZHaUsFRY2l5NYX0mJsAyDKPYxbkpcwOXjMKfcG/Zq3iY/2f0uMZzh/mXLXbyIKO8x5iiBhf9VhEr3jftcr6OGAdI7j7ODEnyb9H/sqD/H5wR94LfVDvsj8iRmhE5gQOJoAF98zmk82Wc006ptp7GimxdhKi6ENnakDvcWAyWrGZrMBdmsIlUyJs4MjWqULHmo3/Jy9T8sKZTDIJFKS/eJJ9ovHarNS2FhCRk0OOXUF7C5LZ0PR9h7HO8pVKOVKZBIZomjDbLPQYdJ3q1Z04ePkSYJPLCO8oknyHXFaej8sNisf7/+WNQVbSPFP5P7xtwyrMAwzIBW6WpoMLST7jTzbQzmjnNGAtGLFCt566y3MZjM33XQT1157bZ/Hbd68mWeeeYaNGzeeyeGc1yT7jWSUbxz7KjNZU7CF7w//yneHV+Hp6M4Irygi3UIJ1vrj6+yFk8JxUEHKJtpoN+po1LfQqG+ivqOROl0jdboG6nQN1OoaulcGxyOXyFDIFN3irGarGaPF1EsDT6t0IcwtmGj3MEZ4RRHuFnzGV3fSYxpvwZ5ya9A3UdlaQ62uniZ9C21GHQaLEYvNgiAIyCUy1HIVLkpn3FRafJw8T6k5tj/qOxp5ddcH5NYXckn0bK5LWHROVAoOc26TVV8IwCjfEWd5JGeWMxaQampqeOWVV/jhhx9QKBQsXbqUcePGERHRM/9ZX1/Piy++eKaG8btCIkhI8U8kxT+RJn0LeysOcKA6m/SKDDYf2dV9nIPMAa3SBSe5GgeZAqlEioCAxWbBZDWjNxtoN+loM+mwibYeryGVSPFQu+Hl6MZo/wQ81G54qF1xU2nRKl1wcXDCSeHY516WTbShM3XQpG+hVtdAVVstJS3lFDaUsK/S3j+hkitJ8h3JuIBRJPmO/E32TARB6Pw9Tl2O6GQRRZFtJXv4cN/XWEUb90+4dbjPaJhBk99QTJDG/7Q1h5+rnLGAtHPnTsaPH49WqwXs3kqrV6/m7rvv7nHcY489xt13382//vWvPq/T2tpKa2vPst7q6uozMubzCVeVhrkR05gbMQ1RFKnV1VPWUkl1ez0NHU00G1rQmTowHbNykUmkOCrUeKjd7AKqSic0Di64qjS4qexWEVoHl5OesXfZpjs7OBGk9e/xXKuxnazaPPZXHSa9MoOdpWk4yBwY5z+K6aHjifOK+l05Xx5LdVstH+7/hv1Vh4lyD+Pu8Tfh4+R5toc1zDnGQPe6Iy1lzAmbcTaG9ZtyxgJSbW0tnp5Hv3ReXl5kZGT0OOaTTz4hLi6OxMT+u44//vhjXn/99TM1zN8FgiDg7eSJ9zl8k3NxcOqujLPZbGTV5bO9dC+7ytLZWpKKl6M7s8ImMyN0wkn18ZyLtBnb+TF7DavzNyOTSLkp6aoLShJqmKEx0L3OaDER4/H7ra7r4owFJFHs7adz7L5GXl4ea9eu5aOPPhpwxXPjjTeyaNGiHo9VV1f3ux81zLmPRCJhpHc0I72juSXpavZUHGB94Xa+zFzON4dWMDYgibkRU4nzjDwvGwBbDK2sytvE6vzNGCxGpoWM55qEy36XYpjDnD5OdK+L8Qg/G8P6TTljAcnb25u0tLTun2tra/HyOtqvsXr1aurq6rjyyisxm83U1taybNkyvvjiix7XcXFxwcXl9503vZBRyBRMDh7L5OCxVLZWs65wO5uLd7GrLB0/Z29mhk1iasi4cz53LooihY0lrCvcxvaSPVhsVsYFJrE47uJe6cthhumLge51KrnqjFnSnEucsYA0ceJEXnvtNRobG1GpVKxdu5Znn322+/l7772Xe++9F4Dy8nJuuOGGXsFomAsLPxcfbkxazDXxl7KrbB/ri7bz2cEf+DLjJ0b5jmBK8FiS/eLPqebRmvY6dpXtY1vJHspaKnGQOTA9dAILombidxqs04cZBuzfjfMxWzBUzugK6YEHHuCGG27AbDazePFiEhISuO2227j33nuJj//9yl8Mc2ooZAqmhY5nWuh4ylur2HxkN9tKUkmvzEQhlZPoE8dovwRG+cYN2ZL8VDFZTOQ2FJFZk8O+ykOUtlQA9obZ20YvY1JQymkvFR9mGP9TUAM5nxDEvjZ7znHKy8uZNWsWGzZsICAg4GwPZ5jfAJvNRk59ATvL0kmryKBR3wyAv4sPsR4RRLiHEuYaRICLz2mTVzJbzVS21VDSXEFRUymFDcUUNpVisVmQChKiPcJJ8U9kbMCoYRO9Yc4IXfe6J95/jmsnLz7bwznjDCs1DHNeIJFIiPOKIs4riluTl1LaUsHB6mwO1+ayqyyd9Z1KDFJBgreTJz5Onnio3dCqNLg4OOKoUOMgdUAhlSMRBETo0ZelM3XQamynydBCQ0cjte0N1HY0dBfnyKVywrSBXBw1g7hOC3iVXHkW35FhLiR+60zA2WI4IA1z3iEIAsHa/2/vTmOjKhs2jl8DbdlKKYUuPKC8AbENYYuC7CU8ULpRdkNZLAqCgCyWSNjEQMSASFKIJGyi4UNRSkGwBAHZZGmDghrW+kLCIn0ZSi1SaEs7Mz3vBx4m1hateRznHvr/JU2Yc8+cueZOOdec6cw9rdQ6uJWGRMWowqqQ/X6+rv76s278+n/Ku29X/oMC/e8vV/WgvLjG+61jq6Mm9RurWYOmatvsf9Sn9Ut6pkkLPdvk0QoYrB8Ib2lav3a8Q5NCgs+rY6ujfwVF6F9BEer9bOUxp8up++XFKnaUqMxZLofLoYr/nPX41amrgLoBauBfT438G6phQIOn9sO58G215SMDFBKean51/dS0QZNa8x8aT6fashI8TwcBwHC14S3fEoUEADAEhQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMIJHCykrK0sJCQmKiYlRenp6lfGDBw9q6NChGjJkiKZPn6579+55Mg4AwGAeK6Tbt28rLS1NW7du1e7du7VtEpZtFQAADjxJREFU2zZduXLFPf7gwQMtWbJEGzdu1JdffqnIyEh99NFHnooDADCcn6d2nJ2drR49eig4OFiSFBsbq3379mnGjBmSJIfDoSVLlig8PFySFBkZqaysrCr7KSoqUlFRUaVtdrvdU7EBwCs41nmwkPLz8xUaGuq+HBYWprNnz7ovN23aVAMHDpQkPXz4UBs3btQrr7xSZT9btmzR2rVrPRUTAIzAsc6DhWRZVpVtNputyrb79+9r+vTpioqK0vDhw6uMT5gwocp2u92ucePG/X1hAcDLONZ5sJDCw8N1+vRp9+X8/HyFhYVVuk5+fr4mTZqkHj16aOHChdXuJygoSEFBQZ6KCQBG4FjnwTc19OrVSzk5OSosLFRpaakOHDig6Oho97jL5dLUqVMVHx+vRYsWVXv2BACoPTx6hpSamqqUlBQ5HA6NGjVKnTp10uTJkzVr1izZ7XZdvHhRLpdL+/fvlyR16NBB77//vqciAQAM5rFCkqSkpCQlJSVV2rZp0yZJUseOHZWbm+vJuwcA+BBWagAAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGMGjhZSVlaWEhATFxMQoPT29yvilS5c0cuRIxcbGatGiRXI6nZ6MAwAwmMcK6fbt20pLS9PWrVu1e/dubdu2TVeuXKl0nblz52rx4sXav3+/LMtSRkaGp+IAAAznsULKzs5Wjx49FBwcrIYNGyo2Nlb79u1zj+fl5enhw4fq0qWLJGnEiBGVxh8rKirSzZs3K/3Y7XZPxQYAr+BYJ/l5asf5+fkKDQ11Xw4LC9PZs2efOB4aGqrbt29X2c+WLVu0du1aT8UEACNwrPNgIVmWVWWbzWar8fhjEyZM0PDhwytts9vtGjdu3N+QEgDMwLHOg4UUHh6u06dPuy/n5+crLCys0nhBQYH78p07dyqNPxYUFKSgoCBPxQQAI3Cs8+DfkHr16qWcnBwVFhaqtLRUBw4cUHR0tHu8ZcuWqlevns6cOSNJ2rVrV6VxAEDt4rFCCg8PV2pqqlJSUjRs2DANHjxYnTp10uTJk3Xu3DlJ0qpVq7R8+XLFx8ertLRUKSkpnooDADCcx16yk6SkpCQlJSVV2rZp0yb3v6OiopSZmenJCAAAH8FKDQAAI1BIAAAjUEgAACN49G9InuJyuSSp1n2KGcDTIyIiQn5+PnkI9hifnI07d+5IUq36wBiAp8uhQ4fUqlUrb8cwis2qbskEwz18+FDnz59XaGio6tat+7fu+/Eno9PT0xUREfG37tvTyO4dZPcOX84u1ewMyel0ym6315qzKZ98hPXr11fXrl09eh8RERE+++yF7N5Bdu/w5ex/xs/P76l9bNXhTQ0AACNQSAAAI1BIAAAjUEi/ExQUpBkzZvjkqrtk9w6ye4cvZ0f1fPJddgCApw9nSAAAI1BIAAAjUEj/cebMGY0cOVJDhw7VhAkTlJeXJ0kqKirSlClTFB8fr3HjxrlXiTBNVlaWEhISFBMTo/T0dG/H+VNr165VYmKiEhMTtXLlSklSdna2kpKSNGjQIKWlpXk54Z/74IMPNH/+fEnSpUuXNHLkSMXGxmrRokVyOp1eTle9w4cPa8SIEYqLi9OyZcsk+c6879692/0788EHH0jynXlHDVmwLMuy+vfvb126dMmyLMvavn27NXXqVMuyLGvp0qXWhg0bLMuyrC+++MKaPXu2tyI+kd1ut/r372/dvXvXKi4utpKSkqzLly97O9YTnTx50ho9erRVVlZmlZeXWykpKVZWVpbVr18/68aNG5bD4bAmTpxoHT161NtRnyg7O9vq3r27NW/ePMuyLCsxMdH64YcfLMuyrAULFljp6eleTFe9GzduWH369LFu3bpllZeXW2PGjLGOHj3qE/NeUlJidevWzfrll18sh8NhjRo1yjp58qRPzDtqjjMkSeXl5Zo9e7aioqIkSZGRkbp165Yk6ejRo+4vGRw8eLCOHTsmh8PhtazVyc7OVo8ePRQcHKyGDRsqNjZW+/bt83asJwoNDdX8+fMVEBAgf39/tW3bVteuXVPr1q31zDPPyM/PT0lJScY+hl9//VVpaWmaOnWqJCkvL08PHz5Uly5dJEkjRowwMvvXX3+thIQERUREyN/fX2lpaWrQoIFPzLvL5VJFRYVKS0vldDrldDrl5+fnE/OOmqOQJAUEBGjo0KGSpIqKCq1du1YDBw6UJOXn5ys0NFTSo2U8AgMDVVhY6LWs1fltRkkKCwvT7du3vZjoj7Vr1859ELl27Zr27t0rm83mM4/h3XffVWpqqvvtxr+f/9DQUCOzX79+XS6XS5MmTdKQIUO0detWn/ndCQwM1OzZsxUfH6/o6Gi1bNlS/v7+PjHvqLlaV0hfffWVoqOjK/28+uqrkh6dKb399ttyOp164403nriPOnXMmjarmnfu22w2LyT5ay5fvqyJEydq3rx5evbZZ6uMm/gYtm/frhYtWqhnz57ubb4y/y6XSzk5Ofrwww+VkZGhc+fO6ebNm1WuZ2L23Nxc7dixQ0eOHNGJEydUp04dnTx5ssr1TMyOmvPJxVX/G/Hx8YqPj6+yvbi4WNOmTVNwcLDWrVsnf39/SY+eMRYUFCgiIkJOp1MPHjxQcHDwP5z6j4WHh+v06dPuy/n5+QoLC/Nioj935swZzZo1SwsXLlRiYqK+/fZbFRQUuMdNfQx79+7VnTt3NHToUN27d08lJSWy2WyVst+5c8fI7M2bN1fPnj0VEhIiSRowYID27dtXacV8U+f9xIkT6tmzp5o1aybp0ctzmzdv9ol5R82Z9VTfi+bOnavWrVtrzZo1CggIcG/v16+fdu3aJenRwahr167usjJFr169lJOTo8LCQpWWlurAgQOKjo72dqwnunXrlt58802tWrVKiYmJkqTOnTvr6tWr7peV9uzZY+Rj+PTTT7Vnzx7t3r1bs2bN0r///W8tX75c9erV05kzZyRJu3btMjJ7//79deLECRUVFcnlcun48eOKi4vziXmPiopSdna2SkpKZFmWDh8+rJdeeskn5h01V+vOkKpz8eJFHTp0SM8995yGDRsm6dGZ0aZNmzR79mzNnz9fiYmJaty4sVatWuXdsNUIDw9XamqqUlJS5HA4NGrUKHXq1MnbsZ5o8+bNKisr04oVK9zbkpOTtWLFCs2cOVNlZWXq16+f4uLivJjyr1m1apXeeecdFRcXq3379kpJSfF2pCo6d+6s119/XWPHjpXD4VDv3r01ZswYtWnTxvh579Onjy5evKgRI0bI399fHTt21JQpUxQTE2P8vKPmWDoIAGAEXrIDABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAp5g/vz52rx581+6zaFDh9yraB89elRr1qzxRDTgqcTnkIC/0YABAzRgwABJ0rlz53Tv3j0vJwJ8B4UEn3Pq1CmtXLlS4eHh+vnnn1W/fn2tWLFCYWFhWrp0qXJzc2Wz2dS3b1/NmTNHfn5+at++vSZMmKBTp06ppKREc+bM0aBBg7Rz507t379fGzZskKQqlx/LzMzUtm3b5HA4dO/ePU2ePFljx47Vzp07lZmZqdLSUgUGBmr48OHav3+/pk+frs8//1wul0uNGzfW2bNnFRcXp9GjR0uS1q1bp7t372rhwoX/+PwBpqKQ4JMuXryoBQsWqGvXrvrss880d+5ctWvXTsHBwcrKypLD4dC0adP0ySefaMqUKXK5XGrSpIl27typ3NxcjR8/Xl27dq3RfRUXF2v79u3auHGjmjZtqh9//FGvvfaaxo4dK0m6cuWKDh8+rMDAQO3cuVPSo1URkpOTdffuXaWmpurgwYNav369Ro8erYqKCm3fvl0ff/yxx+YH8EX8DQk+KSoqyl0oI0eO1KVLl7Rnzx6NHz9eNptNAQEBSk5O1rFjx9y3GT9+vPu2zz//vL777rsa3VejRo20fv16ffPNN1q9erXWr1+vkpIS93hkZKQCAwP/cB/9+/dXQUGBcnNzdfz4cbVq1Upt2rT5qw8beKpRSPBJv12hWnr0FRC/XwWroqKi0lda//Y2FRUVqlu3rmw2W6XbVffli3a7XcOGDVNeXp5efPFFvfXWW5XGGzZsWKO8ycnJyszM1I4dO5ScnPyntwFqGwoJPik3N1e5ubmSpG3btumFF15QfHy80tPTZVmWysvLlZGRoV69erlv83jV9gsXLujq1avq1q2bQkJCdPnyZZWVlcnpdOrIkSNV7uv8+fMKCQnR9OnT1bdvX/d1XC7XH2asW7dupUJ8+eWXdfDgQV24cEExMTH/7RQATx3+hgSf1Lx5c61evVp5eXkKCQnRypUr1ahRIy1btkxJSUlyOBzq27ev+2vGJen7779XRkaGKioqlJaWpiZNmqh3797q1q2b4uPjFRoaqu7du+unn36qdF+9e/dWZmam4uLi1KBBA3Xq1EkhISG6fv36H2bs2bOnZs6cKX9/fy1evFjNmjVThw4d1LZtW+O+wgQwAat9w+ecOnVK7733nvbs2VPj20RGRionJ8f95XTeUFhYqFGjRik9PV0tWrTwWg7AVLxkB/wDMjIylJCQoJSUFMoIeALOkAAARuAMCQBgBAoJAGAECgkAYAQKCQBgBAoJAGAECgkAYIT/B5VRJ992K6JTAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                          " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set_theme(style=\"ticks\")\n", + "\n", + "# Show the joint distribution using kernel density estimation\n", + "g = sns.jointplot(\n", + " data=df,\n", + " x=\"popularity\", y=\"danceability\", hue=\"artist_top_genre\",\n", + " kind=\"kde\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "一般的に、これらの3つのジャンルは人気とダンスのしやすさの点で一致しています。同じ軸の散布図は、同様の収束パターンを示しています。ジャンルごとのデータ分布を確認するために散布図を試してみてください。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFcCAYAAACwQwV1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABcRklEQVR4nO3deVxU5f4H8M9hZlgVAQGXNHPLLMXSVNxDVEQk1xKXcCkry+v90c2iTK/XpcXqmkm5lNfMSFFEDc1dSVNzqyS8erVMxRIQQUcRmO38/qAZZzlz5szMObN+369Xr3vnzPbMDJ7veZ7n+3wfhmVZFoQQQogfCnB3AwghhBB3oSBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4La8MghqNBlevXoVGo3F3UwghhHgxrwyCJSUlSExMRElJibubQgghxIt5ZRAkhBBCxEBBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL8ld3cDCCGepeBUMb7ccRblldWIjgxBenJ7PNGlububRYgkKAgSQgwKThUja+Np1Kq1AIDrldXI2ngaACgQEp9Ew6GEEIMvd5w1BEC9WrUWX+4466YWESItCoKEEIPyymq7jhPi7SgIEkIMoiND7DpOiLejIEgIMUhPbo8ghczkWJBChvTk9m5qESHSosQY4lcOXT6OdYVbceNuBRqGRmFs3DD0adHN3c3yGPrkF8oOJf6CgiDxG4cuH8eKE9lQaVUAgPK7FVhxIhsAKBAaeaJLcwp6xG9QECQeSYoe27rCrYYAqKfSqrCucCsFQUL8FAVBidCwm+Ok6rHduFth13FiH1pkT7wRJcZIQH8SL79bARb3TuKHLh93d9O8Al+PzRkNQ6PsOk6E0y+yv15ZDRb3FtkXnCp2d9MI4UVBUAJSncT9hVQ9trFxwxAoCzQ5FigLxNi4YU69LqFF9sR70XCoBDxl2O120UFUHsiGRnkD8vCGiEwYj/od+rq0DY5oGBqFco7vytkem34olYapxUeL7Im3oiAoAalO4va4XXQQ5duXg9XUAgA0ynKUb18OAB4fCMfGDTOZEwTE67H1adHN7UHPF+fOoiNDcJ0j4NEie+LpaDhUAp4w7FZ5INsQAPVYTS0qD2Q7/dqHLh/HS/mzMCZnGl7KnyX6XGefFt3wQtfxiA6NAgMgOjQKL3Qd7/bgJQZfnTujRfbEW1FPUAKeMOymUd6w67hQUq6184eMWr65M2/uDdIie+KtKAhKxN3DbvLwhtAoyzmPO0OqtXb+spDdl+fOaJE98UY0HOqjIhPGg5EHmRxj5EGITBjv1OtKlfTjCRm1Ug/zAlSgmhBPQ0HQR9Xv0BfRKS9CHh4NgIE8PBrRKS86nRQj1Vo7d2fUumptJ82dEeJZaDjUh9Xv0Ff0TFCpMjfdnVHrqpJqNHdGiGeRNAjm5+dj2bJlUKvVmDRpEsaPNx2K++677/DBBx8AAB588EHMmzcPYWFhUjaJOEmqpB8pl0UI4cqeqBRzZ7aSivwh6YgQR0gWBEtLS7F48WLk5eUhMDAQaWlp6N69O9q0aQMAUCqVyMzMxNq1a9GmTRt89tlnWLx4Md566y2pmkREIkXSj7szat3dE3WGraQif0k6IsQRks0JHjlyBPHx8YiIiEBoaCiSkpKwc+dOw/2XLl1C06ZNDUExISEBe/futXgdpVKJq1evmvxXUlIiVbOJG/Vp0Q2fpi5Ezphl+DR1oUtP0J6wttNRtpKKPCHpiBBPJVlPsKysDDExMYbbsbGxKCwsNNx+4IEHUFJSgnPnzuGhhx7Cjh07UF5umdK/Zs0aZGVlSdVMr+Ct5c+8ibt7os6wNZTr7qQjQjyZZEGQZVmLYwzDGP5/eHg43nvvPcyePRs6nQ5PP/00FAqFxXMmTpyIESNGmBwrKSmxmF/0Vd5c/sxeUsxbmZcoi++lxc93vud8D3ev7XSUraFcbx7qJURqkgXBRo0a4eTJk4bbZWVliI2NNdzWarVo3LgxNm7cCAA4c+YMmje3TBYIDw9HeHi4VM2UjFgndL7yZ74UBKWYt9KXKNNXaKlgfsOea2fAyLSivYcnsJVU5O6kI0I8mWRBsGfPnli6dCkqKioQEhKC3bt3Y/78+Yb7GYbBlClTsHHjRsTGxuI///kPhgwZIlVzJGGtEDLXCX3ZsbVYufkX3CqOtistXqryZ7aIVeSZ72LA+D6GCYCO1Zk8V+gSBWttNS9RJm9+3hAA7X0PT2ZrKNebh3oJkZqkPcGMjAykp6dDrVZj9OjRiIuLw9SpUzFjxgx07NgR8+bNw3PPPQeVSoUePXrg2Weflao5JsTopZn3MvSFkAFgw5+WiQgaVgNVVBHY4idMHmsrsDhT/szRz8n32ewJhHy9OwAm97FmAVDP1rwVX1vNS5ExgTUOvYc3sDWU661DvYRITdJ1gqmpqUhNTTU59tlnnxn+/xNPPIEnnnhCyiZYEGvYja8QclVb7pOq8UlYaNHkyITxJnOCgLDyZ858TmeKPAvt3en/vy225q342mq+vQ+rCgYTZBkIaW6MEP/ldxVjxKoMwlcIuZmVRARWFSzoNYzp5/3szQ515nM6WuTZPPA62rvTEzJvxdfWV8Z1NuklaoofhKLlGZMhUXvmxnxlwbkv7mdIiKP8LghyBSe+49bwbSLKlYjAagOgKX7Q4rFC8JU/s3ZiduZzOrpBKlfg5aLveXG1JYAJAMvqBAcZvraalyiLYlsjvskDVrND+Xj7gnP930n53QqwqhCombZg0dThoW5CfIXfBUFGHQJWYXnSZNT2VfFPT25v0ssA7hVC7tOi7mSiD05h8nAoL7WCtqKxxWOdwXdiDuAYitQfd+az8RHSwzPueXFlLNq7ea6ttnKXKEsW/Pp6rqotKhbji6N6gWG4q66Blq37jpjAaihaFgEAtBVNeYe6qddIfJ3fBcHay22haFkERnYvQLDaAKgut7XrdWwVQjZPRJDiZMJ3YuYKgACsHjfmaJFna+vR+Hp3zg4vuqogtTctODe/OLqtqrJ4DCPTQd78PLQVTQFwDyuLlSBFiCfzuyAYxbZGxe9/pcsH1oBVBUNT/CCi2NZ2v5Y9hZClKJrMd2KOthKQogUmgTjSXmvr0az17sTKWHTFZq7etOBc6LC0caIW11C3MwlSrkI9VeIsvwuCdcNnKtSebmo4FqSQIf0pcfdzc0USBd+J2R0LpH15PZoz36ery94J7Z3qE7WsDXU7miDlKtRTJWLwuyDoiuEzVyVR8J2YxQxIvpIV6QxHv093lL2zdnFkQieDpvhBxPD8/TuaIOUq3tBTJZ7P74Ig4PjwmdBg4KokCiGVQpx9P3sCursyKF0VpPm+T2vDcu4oe8d1cSQPkCFYFowqddW972gs/3fkaIKUq3h6T5V4B78Mgo6w5wTvyiQKqSuB2BPQ7Q3+YgQvT1i6wDcsd78byt6JNQrgqqQjR3l6T5V4BwqCAtlzgrc6HKUOwZP/2OpxJxPAekCyJ6Db81ixgpcnLF3gG5ab24C/7J0zFwJ8z/WmpCNHeXpPlXgHCoIC2XOCf7Reb+y5vd2kMol+GQYLz5vA5wtI9mRF2vNYsYKXrd/FFUOlfMNykcOtl71z5kLAE3rA7ubpPVXiHSgICmTPCf6HwzKomUcslmHo12QBnjWBzxeQ7MmKtOexYg0Z8/0u9gYKRwMm37AcX9m7dfmzHL4Q8IQesCfw5J4q8Q5+EQTF6A3Yc4Ivr6wGi6YmQY+Lvgfh7p3j+QKSPfNL9jzW3nV31n5Dvt/FnkDhTM/K1rCctbJ3zlwIeNPifUI8mc8HQbH29rPnBG+tZ8D1OE/YOd5WQLJnfknoY+25qBASoLh+l6wfVnO+N1egcKZnJXaFHSEL8L1p8T4hnszngyDXyc3Rvf2EnuC5egbm9D2FygMLLFLofwwGdhV+jVtn1rlkXZ6rFtab9+aeeCAeP14rcnrJibXfJUoRihvqu5zHzTnbsxKzwo6Q793Wc2ltJyHC+HwQtHYSc2RvP6G4egZdH4rFiXNlFj2Fiztv4Kd6QdjVsB5uygMQomWhCmCgDWAAuCbhwRWVXrh6cwWXfhBUMNveAGUIAPqamQxjuE+hYzGo/I7Fc9zRs3Lme+d7rjcmzVDQJu7i80GwXmAYZwFhaBQmN8VeYMvVM5jG8bjTMQ2RV5+B+q+gVy1nLB4jRcID10nn09SFor2+OWeGG+0JUCYBQB/8WBYAEKHRIenGHXS6Y1lXs3OTDtj920HO41JyZimDted6W9KMNwZt4jt8Pgj+df6zPA7TO9y1wHZ3dD2oOYbszAkZlhN6Ne2Ok44zw432DBtyFo9mGESotci8XLdAXR4ebfG8H68Vcb63teOu8vnJddh78XvoWB0CmAAMaNUbzz0+lvc53pY0421Bm/gWnw+Cd9QcvUAAjFxj+P/uXGBbISAAAraH5ewJbO446Tgz3GjPsKG1E/1NeQDebdEQSTdrMeiJ8YKfZ3zc1UN2n59cZ9I71bE6w+3nHh9rtT3eljTjbUGb+BafD4LWNtGFKhgM4PYFtkKKHQtJlrAnsLnjpOPscKPQYUOr3yfD4KZChs2x9RFbPxh9BD5PHzjc0Xvee/F7q8fbxbS22h537CDiDG8L2sS32N5m3MvVXm4LVmc6z8bqGKiLH8Q3Hw7Df94a5NbFtmPjhiFQFmhyTMbIUD8wrC5Ih0aJnjxi7eQi5UnHVcONXN+nMRWrxbrCrYKeZxw4+C4ypMK3MbKti54Xuo5HdGiUXX9D7mLruydESj7fE6wfFogamE8Msqgfxn2idPWQl1iZmUKupvWfjetxUp90HM7wdCJr0loPm+s9+7Tohv9d/81k/u2JB+INrydm71noZwtgAjgDYQATYLM9UhdWF5Mv70NJPJ/PB0FF8/Oo1ZgeYwLqjptzV5aarROWkN2zhawbM79fL9oFJx2HMzxh/++g/z5fyp9l13sWXPrBEHR0rA4Fl35Au5jWgubZpEhKGtCqN+cQ8oBWvfHjtSKfGkL0pqBNfIvPD4dWaZSCj7tjyMsW/TY91yurTYpvF5wqNnmcrSEwzqzJvx73aepC0U5Ahy4fx0v5szAmZxpeyp+FQ5ePA7BvyEus30HM9+R7LX1gK79bARb3Apv+sxecKsaUBbvx5D+2IuvQesGf7bnHx2JQ674IYIz+mWpl2PXrQZQr74CB6TA/DSESYj+f7wlau4JnmACMyZnm8LZBgGuGTu3ZPZvvatoVyTD2ljcbHtkOLb5ZhYvKRSY1U8VqqxhZpcbDi9Ze6yWeQtja8iYm1YN08mpYrgS1/v7PPT4Wzz0+FisP7MCea3U7kzAAIFdBp2MQLAuGiq2hIUQH0AJ9AvhBEOQaJgTuJR2U363AsuNfAnDtkJ1QYu2e7YoMPHvKm+lrpmo4aqaK2VZns0qN39Paa/EFUPOLGFYVDCaoxuKxtj7bvj/2gFGYXgwxASxUKgY5E5bxPldMvhI4aIE+0fP54VDzYULzISQA0Oi0+OLHDW4ZsrPF2iJ+IYv7jYcma9S1kAfITO4Xe/jMnh5c5YFsi5qprKYWlQey7c4WtDYEaw9nMhT5sm3NL1Y0xQ/CPNdFxshsvo9Ozn3RY+24OTG+I1vDvt7EE6c+iHv4fBAE6gLhp6kLkTNmmUWlGL3bqiq7UstdtdYuPbk9ghSmwUvI4n7zE9YddRVYFnYvvbCHPUsvNMobnI/VKG/Y9TuIdWIW8p6OzHdyX6yYXogxXOOjZgI03Bc91o4bO3T5OJYd/9LkO1p2/Eu7vyNfChy0QJ/o+fxwqL34hs+MszRDHgsBOBbhizG8aD7kNCipN344HGjXNj1cJywtq0WQPAirRnzgdBu5cA09yxk5bv/WCk/+Y6tJ2+XhDaFRllu8hjy8IQDhw5hiVr/he09Ht3PSJhebzAnKm58HE2B6IabRaW22N/G+gYY5QT1WK8OA+wba/Fxf/LgBGp3pUKp+9MOe78hagCi/W2Exv+7paIE+0aMgKJA+S1N/Mqu93BaKlmdMTkpiDC9ynWwP1u7EC8+MR58WgwS/jjuudPu06Ibq4nPIvXIENwOABlog/M8YnC+pq9VpvG1Vl4TxJvsoAgAjD0JkgmVJMz6u+pyObudkvqNIQKDlfCBfe40viILlwahVy8DKVAjQhGDAfQPxfEKyzbZzFpDnOW4NX3Uj41444Pnzat5WVYdIR9IgmJ+fj2XLlkGtVmPSpEkYP970BHfmzBnMmTMHarUaTZo0wfvvv4/w8HApm4T6VnaVqB8Yxvs88wQH/a7xQS0uAIpq0a6CxerZuONK93bRQbQ9vBOZRoFNxVZgfWB9nFK1AmCU2fpWXUCvPJANjfKGSXaoPVz1OZ0JtsY7iryUf9zh5KtatgaBQYF4oetktwQZa0lmxryl8DUt0Cd6kgXB0tJSLF68GHl5eQgMDERaWhq6d++ONm3aGB6zcOFCzJgxA/369cO7776LVatWISMjQ6omAQAmdX4ay45/aTI8JA+QYVLnp3mfx5WNqa1oiuqKpvjmQ/ckl/Bxx5UuV7JLIKPF0JCfDEEQuPdd1u/Q1+6gZ85Vm8uKFWzHxg3j/PuzN/nKns9QTxHGWUi+noL/ws+ceeCwskGLpFV0xEQL9AkgYWLMkSNHEB8fj4iICISGhiIpKQk7d+40eYxOp0NVVd0/zurqagQHB0vVHIM+LbphWrd0kwSIad3Sbf5jcCZL0x5i1fV0Vf1I42SRBZEsfqoXZPGYyADTE7CY3xnf5xQzm1HM+pbm23tZ2+5LrAuiyV2ehowxTa6SMTJM7sJ/4cfFOMksWqS/VV/KOiXeR7KeYFlZGWJiYgy3Y2NjUVhYaPKYzMxMTJ48GW+//TZCQkKwYcMGi9dRKpVQKk2ru5SUlDjVNkeuANOT25vMCQLSbMEkZg9O6itd8+G6mwoZ8mLDASjx2J17PcJK3b0ehxTfmSs2lxVr+Gxd4VZoWdMkFS3LnRgjVu9TqqE/sf5WaT9B4k6SBUGW4/KWMcoFr6mpwaxZs7BmzRrExcVh9erVeP3117Fy5UqT56xZswZZWVlSNVMw8wQHqbZg8qa5Cq6TlzqAwa6G9QxBUBegwHdsd7u3rRJjeEzspBkxLirsaZOnXxCJ9bdKyxWIO0kWBBs1aoSTJ08abpeVlSE2NtZw+/z58wgKCkJcXBwAYMyYMViyZInF60ycOBEjRowwOVZSUmKRZOMKxgkOUpKqByf2vAvfBrYAY0h2+UeHvviHne0Uo5qHJ6bB29MmqS6IxPw7EONv1RN/J+I/JAuCPXv2xNKlS1FRUYGQkBDs3r0b8+fPN9zfokULlJSU4OLFi2jVqhX27duHjh07WrxOeHi45Bmjnk6Mk5YUZaKsnbyiwxqi1azlDr0mIN7wmCemwdvbJrEviDyxXJgn/k7Ef0jaE8zIyEB6ejrUajVGjx6NuLg4TJ06FTNmzEDHjh3xzjvv4P/+7//AsiwaNmyIt99+W6rmCMYXcFyVwWa8KL9B83Jom/4MDVu3H5T5SUtom6SYd5Hq5OWOAtqu4u42eeL8m7u/E+LfGJZr8s7DXb16FYmJidi3bx+aNWsm2uty7bkXKAvEC13rhl6t3SfmP9aCU8XI2vst0OQcmL8WVnOV1dLvASi0TWNypnGmtDMAcsY4XoBZigsDa/sA6rd9Io4T++9AyF6XhHgyqhhjxFZtRFdcQa86tBtM80IwMssdxY3duFth11W9VPMuUsxf0vCYdMT8OzCvomRcEYgCIfEWFASNODIMJ3YGW3VUEQJsBECg7qRlq73GvbQwRRjkATKTRdruDizmvcjOTTrgx2tFuHG3AvUCwxAYoECVuspmD1OqYerbRQedrmjjaexZrG+Ltb0uP/z6R3y54yz1ColXoCBoxNZVsisy2KzVljSmD17rCrdabdOhy8ex4tiXUP21Ju2OugoyMKgfGIY7KtuBRWpcCRq7fztouP+2qgqBskBMj+cvESZVood+v0OWY79Dbw+EQhfr28K3pyX1Com38IsgKLSnYOsq2RVDdMGyENTouE4uDBiwFu231qavT+UYAqCeFiwCWdapOUBzjvbCuIZyzQkZbrY30UNoe/n2O/TmIGjPYn1boiNDcJ0nEBrqxFIQJB7M54PgocvHsezYWpPsymXH1gLg7ilYu0qWMoPN+MRs7aK8niIU/xlpugUSX5uWHv0PZ0bNDSs7BzgSzJzphQkdRrb1OHuGsO1pL99+h1KSOtFEzIXpXFWUzPH1FgnxBD4fBFef3GQIgHoaVoPVJzdZnPhsXSVLkQTClZHKpYqjADJgPTElQqPDTbPNePXHbbVBaDBzJt2eb1se88c58jpcz7OnvVz7Hf5ULwi7YsJxS6K981yRaCJmYoxxFSVrPUKxa+sSIjafD4J31ErzjbwNx803AhXzKtlWz0p/v5BAANh/kkq+yyC3Pgt1wL0Pr9CxSL7LWLSPYQKgY02Do5Bg5sz3JWRbHiHDzfZkktrT3kiz/Q5/qheEvNhww/cpxSJzrkQTTf1iLDu7H8t+FWe7LrEzb/VVlMwDOCBNnVhCxObzQVCnCkZAEEeyCWO5EWg9K3sN1rOy16C17EFbPSuhvT89GSNDraYWY3KmIUwRBoaBzeSWAT3HQ1ewCrsignBTHoAIjQ5JN2sx4IlnLd6fZbmzUW0FM2d6FVxDucbZoUJP+LaGqY2HF0MeCwEUlj0Wrvbq5/30v++umHCTCwpA/CUy5kOHsqg/oWhZBPavbGExAq9Uw/quqq1LiNh8PgiGVHRATeyPvOvu9CczlZW5Da7jfNmD637fxTvsJiQpJIAJAMvqEKYIQ422xhCcjfeF4zsp1u/QF4MAdD2QDY2y/K8g/Szqd+iLdfmzBAVgW8HM2V6FWMPL1l7HvHdSe7ktFC3PgJEJWybyc/1grHsgGjfuBoi6d5415okm8ubnLf5uxQi8UtWmdVVtXULE5PNB8Nk+g5C1VwPWRgWWG3cr6pJgOO6r1Vn2JPmyB2/Ecm/TqD9h2jpxGld9eSl/FueGqHp8J0Vrm9YKOXELCWauLHflSMKI+fCitqIpACCoxQVAwT+8KLS3LuYSGfNEE8bKchlX7q7w+cl12Hvxe+hYHQKYAAxo1RvPPT7WZe9PiNR8PgjWnSiH4MsdLf8aEvsOrJUhsbLKu5xDpzqV5Wa/fNmDDR9oxztMyJcUEm12YhZywrP3pGjt/fW9T3uCmSt253Y0YYQrM1Fb0RTVFU3xzYf8AV5Ib13sJTLmQ4oBmhCrf6uu8PnJdSZrN3WsznCbAiHxFT4fBAHTYZpDl5tYHcJbufkXi6FTVhuAkIoOFq/JlT2oP25rmNCemp9CsijtPSkKeX/9jvGeUNDYWmUSW2vQrK1jE5KxyHdhwQCSfSdC/1ZdYe/F760epyBIfIVfBEFjfEN42j5NTIZOWVUwcO0hPDtgkMXrmGcPAgAjD0Jkwnjcb2OY0J5hxLFxw5D1wxdgrcxKOXJStPX+QhJ7XFnx39paM1tr0LjWsQnNWLS6TZQLi3i7e3cF84xhruNUQJt4O78LgoD1ITzzoVO+f9Tm2YPmtSVtDRMKHUY8e/EGdDqAMZpmZNm6eU3zoVN78L2/rULirt6PztEenTMZi55SxJvvd5K6tmkAx9IZ/XGACmgT3+CXQZCPeYZb3bDgcs4rcWuJJ2La98ceMArTXiDDAIw6xKkeCV9vjm89nTv2o3OmR+doxqK7e2G2uKK26YBWvU3mBI2PA44PUxPiSSgI8vCEXbh18mquhFXo5I6Xo7JVSs7aUKB+XSUXsTMWjXs5rcIb4rVeg7H8dJjdPTpnhm5dlfTjSE/VFbVN9fN+1rJDHR2mJsSTUBDk4Qm7cFvLEAzQOF6OylYpOSHVXMw5krFoLUBx9XJi/rsRS4a/iPodLOdn+V7f3RcxfJwZTnRVbdPnHh9rNQnGmcQjQjwFBUEeriyjZk3ifQOx59p2kwXerFaGAfcNtLsNenyl5ADToUAhZd0cmSvjC1AtROrluOsiRmjvzpkyaXzZya7izDA1IZ6CgqAZ85qaXCXFWAAv5c8SHMic6ZE8n5AMHKibG9TJ69aODbhvYN1xB1krJWe8HlI/FDgmZ5rVainOLBXgC1CvitTLsfciRoysV3t6d86USePLTnYVKpVGfAEFQSNCa2oC9gUyZ3skzyck43lwBz1HTtxcpeSsrYeUaqkAX4ASq5djT21TsYZO7UkWcaZMmq3sZFehUmnE23HX9/JT1qqEBDDcX5PxsgE+jvRIXsqfhTE50/BS/iwcunzc6uNWnMhG+V/7EOpP3NYer/dsn0Fgi+Ogqw0Gy6Luf4vj8Gwfy/m2sXHDECgLNDkmxlIBa3OIDUOjEJkwHow8yOS4I70ce9pua1mIUPYki6Qnt0eQ0XZX9pZJq9+hL+7/2wq0mpWL+/+2wqs3+yXEXagnaMTayYZldWAAzmFBIfODUvVIHO1hClkPaTyv1aB5HOo1P48qjRINQ6PQuF4MPjm2Bkt/WO1wPcnOTTpwpt93btJBtF6OPcscxJr/tSdZxNPKpBHijygIGrEVrBzdNsiehdf2BDZnTtx8w1jm81o3i6MRVNII05/qhF/Z70WpJ/njtSLe42KtwRS6zEHIhYqQoWd7k0U8qUwaIf7IL4dDrQ038g2fOTMs2KdFN7zQdTyiQ6PAoG4+jatOKGBfYOMbUnQG37wWXz1Je4iZeSsGW7+v0KHnJ7o0x/SnOiEmMgQMgJjIELzWS41WRxbg4sLRuLL0BdwusuwBA/b9nRBCxOF3PUEhw418V/tSL7wOU4Rxbp0UprDc2Nfe0l7GPRm+zXn55rWCBdSTFMKZDXmlYOu3t6eHbty7q1vz+AU0Aiu7uGKBPiHkHr8LgrZOZuYnIVfspmAcnDgX8IF7D0QhhbD199ULDMNddQ20bF0Pj29zXr55rbs26kkKJWVtTkeXOvAFIEd7rq6o7GIve6rUUIFs4uv8LgjaczJzRcURy81buVfl3VFxb6xr7cRt/rq3rTxfz/hCgG9e61f2Bm89SaHsrc3JF9hMk3jKoW36s0lJODF+M0d7rq6q7CKUPesYqUA28Qd+FwTtOZm5ouKIkM1brbVPjNc1pr8Q4FsE/QT460nawzyAF5wqxpS1uw3BTPFXRmqYIgw12hpodHUnY+PApi1vYnKiro4qQoBZSTjj38zRXqKjPVdPqOxizJ51jFQgm/gDvwuC9pzMXJG8IeS1HBkmdKSNxoGWL3uUr56ko4x7HbKoP1ETW4RaTd2wK9ccqT6w1ZzuZ3Ki5ltr50zP3tFdJTyhsosxe9Yxilkg29V7UBIilN8FQXtOZq5I3rD2HgF/lWzjm+dzpO3WuHs+zrjXwVU5hcuNuxWoNjshs6pgMBwl4RqGRjnds3ckacVTKrvo2bOOUawC2Z5eyJz4N0mDYH5+PpYtWwa1Wo1JkyZh/Ph7V79nz55FZmam4XZFRQUaNGiAbdu2SdkkAJYnM2vJL67YWNXae3Clxtuz43u9wDDIGJkhEQYA5AEyBMuCUaWuQmBAIFQ6NViwCGAC8MQD8Q6dkMSajzPuXVjrzZlrGBqFGrMTtab4QShaFpkEUf1vlvXDas7XkXpZhiv2nRTKnnWMYhXI9oTdWAixRrIgWFpaisWLFyMvLw+BgYFIS0tD9+7d0aZNGwBA+/btsXVrXUmq6upqPPXUU5g7d65UzbHK2SUTzhLyHvrgxtWzs7bj+21VFeQBMtSTh6FKbboMQv+Z2b+ScHSsDgWXfkC7mNZ2fTbzxAlb83F8jHsd1npzxvSBTdu0CbL2fgs0OQcmsAasKhhsRTPUb3LTUOFG/7mtfYcME4AxOdP8YpjOnqLXYhXI9rQ1oYQYkywIHjlyBPHx8YiIiAAAJCUlYefOnZg+fbrFY1esWIGuXbvi8ccfl6o5Vtm7ZEIKfO9hmT1qydqO7xqdFsHBQfjPyA9Mjot1ZW6eOGFv7Utjxr0OTfGDULT6BUzAvUxZBgzqBYZarGs8hOMIbFlk6H0yQTWQx/6JyY8/Y9I7zvphNWfvGLi3xtH8Akis5QGfn1wnSiKRWOwpei1GgWxPWxNKiDHJgmBZWRliYmIMt2NjY1FYWGjxOKVSiQ0bNiA/P5/zdZRKJZRKpcmxkpIS0drp6VepQrI8G4ZG2fU5xPrM5gkSfPNxthj3OqyvlrS0rnAr5wbBQnrHDMeaR/3FgHnWqaPLAz4/uU6UMnPezBXTCoQ4SrIgyLKW690YjhXf+fn5GDBgABo25E4ZX7NmDbKyskRvn56nX6XaCkzyABlq1LVW9/yrF2hZacbez2wt2cU8cYJvPk4Ifa/jpfxZKL9r+olYsIa1jsY9Nr6Abqt3PCZnmtXnirU8gK/MnL8EQVdMKxDiKMmCYKNGjXDy5EnD7bKyMsTGxlo8bu/evXjhhResvs7EiRMxYsQIk2MlJSUmSTbO8PSrVL4sz/p/VYHhWkKgx3EtYtdn5pszNU+c0FY0hVwegPptLlrMx9lDSI9U32PjC+i2erx8z70q0vIAa+Xk7C0z5+2oHBzxVJIFwZ49e2Lp0qWoqKhASEgIdu/ejfnz55s8hmVZnDlzBo899pjV1wkPD0d4eLhUzfT4q9Thke2w5s4RqAPu9aIVOhYTm/fElsr/2awEU8URIO35zHzzh/pNdU3mzQYMkWwOydyNuxWYHj/ZakC3lgij7/HyXQysPn2Td3mA0PnCAJHKzAH+s9bOXz4n8QyS9gQzMjKQnp4OtVqN0aNHIy4uDlOnTsWMGTPQsWNHVFRUQKFQICgoyPYLSsiTr1If+ukwRupuY1fDergpD0CERoekG3fwUPlh3Ii1fSK1NsQp9DPb6k1JsbM4V3Di0jA0ymZA5+vx8j1Xm1xsdXkAZzmxvd/iy0uWPeABrXqLUmbOX9ba+cvnJJ6DYbkm7zzc1atXkZiYiH379qFZs2bubo6BFFewFxeOBnc9UQYfxLXj7TFZW29oj7r5OY5lBeoQVP/UT7KiyuY7XhiXTQP4P5vQ3TJssdbbm7Jgt0kvURb1J+dcqL59YmSHWvsdokOjDD1yX+Avn5N4Dr+rGCMVqa5g+WpP8vWYokUKwlzvwWplUF1uCxbSFVXmKmhgfIHRuUkHw9IHrjWQ+vbeUVchUBaI6fGT7f4urPVyzecFuSrcGC85EaPMnKdnMYvFXz4n8RwUBJ1gfGLmS7d3JhDx1Z683w2L+aEOgepyW2grmhoe44qiysZBke+CwxXVScyzYp1ZHymUp2cxi8VfPifxHH65s7wYDl0+jmXH1hp2GreW7WdP/U4u9Tv0RXTKi5CHRwNgIA+PRnTKiy4tw9WnRTd8mroQOWOWofqnfiYBUM+RosqO4gt0ruhJpCe3R5BCZrjNqoI5HyfmiXtsHP/O977CXz4n8RzUE3TQ6pObLBZpc3EkC9CctdqT7kgiEKuosi182Zd8gc4VPQnzcmIhFR1MaqYC4p+4PT2L2Rah8+Xe/jmJ9xEUBEeMGIFx48Zh6NChCAkR92TnDmKUw7qjVgoqayLlejB3FCZOT26PJTk/QaO9l6wjlzF2F1XmY2szV75A56p1n+bzha5I6/fkLGY+9l6seevnJN5JUBCcPXs2cnJysGTJEgwaNAhjx45F27ZtpW6bJMTaLVunCkaAjSLPQF2CilTclURgnk/saH6xtcBhq1pL5yYdOJcddG7SwW09CTpxW0e7SBBPJigIdu7cGZ07d4ZSqUR+fj6mTZuG2NhYPPPMM0hOTpa6jU4zPtlCHQJN/baAk4kdIRUdUBP7o0lWIMsCxpXh5AEySecyrPWIGqi1uLL0BUn2rftyx1lodaZRT6tj7f7++HoHtjZz/fFaEef9+uPeHJDEKtrtSSjjk3gywXOCSqUSW7duRW5uLurXr4/k5GRs3boVBw4cwKJFi6Rso1MsdmFQVEPRsu5kaZzgYW9ix7N9BiFrrwasfgsfjRyMTGMyRCrFCkzjk2RY2wZApNmJhGXxUFUtNMo7KN++HABEDYTlldWQRf1Ztyzgr62LNMUPopwjWYYPX+8gOrIf77yjr55UxRql8DSU8Uk8maCsjX/84x9ITExEYWEh5s6di82bN+OZZ55BVlYWCgoKJG6ic7hOtoxMB3nz8ybH7E3seKJLc0wfMAThV5JRe2IwZFDAPAdGy2oNuxmIQX+SvF5ZDRaAOvSa5YMYBufC6irwsJpaVB7IFu39AaBB83IoWhYhIKgGDAMEBNVA0bIIDZpbrmXkwxfIzLMvAdPNXK2dPPXHC04VY8qC3XjyH1sxZcFuFJwqtqtt7sI3DOzNKOOTeDJBPcG2bdti1qxZiIoyPfnI5XKsW7dOkoaJxdrJ1nhtlyO7ZQOmyRFP5+zkfIyzSySMCd2/76b8XjTWKG+I9v4AoGh+HrUa02QfRqaDwuyiwha+3oGtzVz5kl+8uTdlaxjYW1HGJ/FkgoLgyZMn8eKLL5oce/rpp7Fhwwa0bt1akoaJxdrJNkATAgYQbd6FUYeAVVierBi1eNm0QvfvizAKUvJw7i2qHFWlUdp13BpbWZx8NUn5TqpT1u4WZQskW/jm7hyd13PV8hN38OZ5WuLbeIPgjBkz8Pvvv6O4uBipqamG4xqNBgEB3rHO3lom4cCHuuK5CeINx9RebmtRP5LVBkB1WbwsWiH79yl0LJJu3AFwr7KMmMSa33G2d2DtpOqK3hRfbxOAwz1R862pAMdHKQghwvAGwddeew1//PEHZs+ejdmzZxuOy2Qyr1kiYSuTUCxRbGtU/A6LhJEoVryesq39+6IUoRhUfged7qggD4+WJDtUzHV49vQOhK7Dc0VvytbcnaM9UVvDwIQQ8fEGwWbNmqFZs2bYtWsX567w3sDanJyYc3WAPkCpUHv6XpZkkEKG9KfEu4rnPEmKsH+fPdwxv2PPYmtX9KYc6W0K7YlKsTUVIcQ63iA4duxYrFu3Dp07dzYJgizLgmEY/Pjjj5I30FlibmrKx1VX8Z5wknT1/I49i61d8TvY6m16+rwebVpLyD28QXDJkiUAgG3btrmkMVKwVrZMinJmnhCgfJG96wKl/h1s9TY9eV6PNq0lxBRvEPz55595n3zfffeJ2RZJRFtJ5JCynBkRl6ctthbS2/TUeT0qYUaIKd4guHbtWqv3MQyDQYMGid4gsbmqoDKRjif+hny9TU8eEfDVajuEOMrhIOgthCRy0ByJZ6PF1uLxtF41Ie7GGwQXLlyIWbNmWSyU11u+fLkkjRIbXyIHzZF4B1u/IQVIYTyxV02IO/EGwR49egAAkpKSXNIYd6A5Eu9GFzH2oV41IaZ4g2D//v0B1G2qW1lZiZ9//hlyuRydOnVCeHi4SxooNZojEZere2V0EWM/KmFGyD2CFssVFBRg8ODBWLVqFZYtW4YhQ4bgxIkTUrfNJWztSECE0/fKyu9WgMW9Xtmhy8c5Hy/Gbg90EUN8SWFhIebMmQMA+OWXXzBjxgzBjxfjcf5IUBBcsmQJvvrqK3z11Vf4+uuvsWLFCrzzzjtSt80laJsX8fD1ysyZbwulr7FpbyCkixjiS3799VeUlpYCADp27IiPP/5Y8OPFeJw/ErSLBMMwJrVCH3nkEbBS7BjrBlLNkfhjsoY9vTK++pv2LC+gRA/iDXQ6Hd5++22cPn0aVVVVYFkWCxYswMaNG3Hz5k0UFxejU6dOOHLkCG7fvo033ngDw4cPx/z587Ft2zacPHkS7777LnS6uiIfL7zwAuLi4vDxxx8bHm+tY3Lt2jWLx+Xk5GDt2rUICAhAdHQ0Zs+ejZYtWyIzMxMMw+C3335DRUUFevXqhbfeegsKhcLqZ9NqtVi0aBH279+P+vXrIy4uDr/99hvWrl2L27dvY+HChTh//jzUajV69OiB1157DXK5HB07dsTzzz+Pw4cPo6ysDOnp6Zg0aRLy8vKQm5uL6upq1KtXD2vXrsXGjRuxbt066HQ6REREYPbs2aLtYMQbBG/evAkA6NChA1atWoW0tDQEBAQgLy8P8fHxojTAE4g9R+ILyRqOBHF70u/F2u2BEj2INzh9+jTKysqQk5ODgIAArFy5Ep999hkiIiJQU1OD7du3AwDy8vKwa9cuvPPOOzh27Jjh+UuXLsXkyZORkpKCc+fOIScnB0lJSZgxY4bh8dY0adLE5HFHjx7F559/jpycHERFRSEvLw8vv/yyoQ3nzp3DV199BYVCgSlTpiAnJwcTJkyw+vobN27EmTNnsG3bNjAMg2nTphnue/vtt/HII4/g3XffhVarRWZmJlavXo2pU6dCpVIhMjIS69evR1FREcaOHYuxY8cCqOu57t+/H/Xq1cPx48exZcsWZGdnIyQkBN9//z3+9re/4dtvv3XqN9HjDYLx8fFgGMbQ63v//fcN9zEMg9dff12URvgab0/WsCeIGwfLeoFhkDEyaNl7PTxrvTIxd3ugRA/i6R577DE0aNAA69evR3FxMY4dO4awsDBERESgS5cuNp+fnJyMefPmYf/+/ejZsydeeeUVh9ty6NAhDBkyxLBJ+siRI7Fw4UJcvXoVQF0iZFhYGABg2LBh2LdvH28Q/O677zBs2DAEBQUBAMaMGWNYY15QUIBffvkFubm5AICaGtP9TxMTEwHUjS6qVCrcvXsXANCuXTvUq1fP8BqXL19GWlqa4Xm3bt3CzZs3ERER4fD3oMcbBM+dO+f0G/gjb0/WEBrEzYPlbVUV5AEy1JOHoUpdxdsro73ziD8pKCjAwoULMXnyZCQmJqJVq1b45ptvAAChoaE2n5+WloaEhAQcPnwYhw4dQlZWluH59uKaymJZFhqNBkDdVnnGx23tHSuXm4YR48frdDosWbLEMHSpVCpNNmPQB079MX3bjL8TnU6HYcOGYebMmYbbZWVlaNCggY1PKoygxBiVSoU9e/Zgy5Yt2LJlCzZt2oTFixeL0gBXECML0R7enqwhNIhzBUuNTotgRRByxizDp6kLrfbQnujSHNOf6oSYyBAwAGIiQzD9qU4eW26MEGccPnwYCQkJGDduHDp27Ii9e/dCq9VaPE4mkxmCkbG0tDScPXsWI0eOxPz586FUKnHr1i2rj+d73d69e+Pbb79FRUXdv+dNmzYhIiICLVq0AADs2LEDKpUKtbW12Lx5MxISEnhfu1+/fvjmm2+gUqmg0WiwefNmw329e/fGF198AZZloVKpMG3aNHz11Vc222usV69e2L59O8rKygAA69atw8SJE+16DT6CEmMyMjJQXFyM69ev4+GHH8bp06fRrZt3DD/x7QIu1QnX25M1hM7tOdvj9eQam4SIKS0tDa+++ipSU1Mhk8nw+OOPY/fu3WjWrJnJ4x577DF89NFHePnll5Genm44/uqrr+Ltt9/GRx99hICAAEyfPh3NmjWDTqczPP6TTz6x+v7Gr/vJJ59g0qRJmDhxInQ6HaKiorBixQpDDy44OBjjxo2DUqlEUlISRo0axfvZRo4cid9//x3Dhw9HaGgomjVrhpCQummNWbNmYeHChUhNTYVarUbPnj3x3HPP2fXd9enTB1OnTsWUKVPAMAzq1auHrKws0fa4ZVgBaZ79+/fH7t27MXfuXEyePBksy+Jf//qX22qLXr16FYmJidi3b5/FH5G5KQt2c849xUSG4D9vSVcA3JuzQ82HOYG6IP5C1/Emn+Gl/FlWd+j4NHWhS9pKCBFPZmYm2rZti2effVbwc77//nvcuHEDw4bVXeQvWLAAQUFBhuFLTyeoJxgbGwu5XI4HHngA58+fR3JyMqqrbWfx5efnY9myZVCr1Zg0aRLGjx9vcv/Fixfxz3/+E7du3UJMTAz+/e9/izbOqydWFqK9vDlZQ2jGpbf3eAnxFRcvXkRGRgbnfS1btsRHH33k1OuPGzcOVVVVnPd9+umnWLVqFVatWgWtVouHHnoIc+fOder9XElQEAwNDUV+fj4eeughbNiwAa1atTIsn7CmtLQUixcvRl5eHgIDA5GWlobu3bujTZs2AOomQKdNm4ZZs2ahb9+++OCDD7By5UrRrx7EzEL0Np+fXIe9F7+HjtUhgAnAgFa98dzjYwU9V0gQp+UJhHiGVq1aYetWy6IU9nr33Xc5j3/99de8z1u9erXT7+0ugoLgnDlzsGHDBsycORO5ubmYMGGCzRTdI0eOID4+3pDCmpSUhJ07d2L69OkAgDNnziA0NBR9+/YFALz44otQKpUWr6NUKi2Ol5SUCGk2gL+yEPd+CzQ5ByawBqwqGLj2ENIHDBH8Gt7o85PrsPu3g4bbOlZnuC00EArhzT1eQggRFAQfeOABvPbaa1AqlYK71WVlZYiJiTHcjo2NRWFhoeH2lStXEB0djddffx3//e9/8eCDD2L27NkWr7NmzRpkZWUJek8usuhrCGxZBA1blxnFBNVA3rIIsujHAPhuUsbei99bPS5mECSEEG8maInExYsXkZKSgpSUFJSWliI5ORm//fYb73O48m2Ms3k0Gg2OHz+OCRMmID8/H82bN+fsik+cOBH79u0z+S87O1tIswHUDdXpA6DhvVkNZz1LX6JjdXYdJ4QQfyQoCC5YsABvvvkmGjZsiEaNGmHChAk2K5I3atQI5eXlhttlZWWIjY013I6JiUGLFi3QsWNHAMDQoUNNeop64eHhaNasmcl/jRs3FvThAO9fuO6oAIb7p7V2nBBC/JGgM+LNmzfRq1cvw+3x48fjzp07vM/p2bMnjh49ioqKClRXV2P37t2G+T+gbt1KRUWFoSrN/v378cgjjzjyGXh5+8J1Rw1o1duu44QQ4o8Edwtqa2sNw5nXr183VDO3plGjRsjIyEB6ejqGDx+OoUOHIi4uDlOnTsUvv/yC4OBgfPLJJ3jrrbeQkpKCY8eOITMz07lPw8Fft0p67vGxGNS6r6HnF8AEYFDrvg7NB94uOogrS1/AxYWjcWXpC7hddND2kwghbvfxxx8jMTHRq7M3pSZosXxubi62bNmCK1euYNiwYdi+fTuee+45jBs3zhVttGDPYnnAuxeuu9vtooMo374crKbWcIyRByE65UXU79DX4vH0XbsHfe/eoeBUMb7ccRblldWIjgxBenJ7SasmJSYm4vPPP0fLli0lew9vJygIAsCJEydQUFAAnU6H3r17mwyPupq9QZA47srSF6BRllscl4dH4/6/rTA5JrTSDBEXfe/ewbyEI1BXNF6MmrkajQZz587FhQsXUF5ejpYtW6Jp06bIy8vD/fffjw8//BCTJ0/GI488gvLycuTm5mLVqlX45ptvIJPJ0KtXL8ycORPXrl3DtGnT0Lx5c1y+fBlNmzbF+++/j4iICBw4cAAfffQRdDodmjdvjnnz5iE6Ohr9+/dH//79cfLkSQB12yc9/PDDTn0eVxI0HHrnzh38+OOPmDlzJiZMmICCggLDlhfEt2mUNwQft2dneWe5uii6J3Pl904cx7eRtLN++uknKBQK5OTkYM+ePaitrUWvXr0QGxuLlStXon379qisrMTzzz+PrVu34siRI9i/fz/y8vKwefNmXL58GevXrwcAnD9/HhMnTsT27dvRunVrZGVl4caNG5gzZw4++eQT5Ofno3Pnzpg3b57h/SMiIrBlyxbMmDHD67bYExQE33jjDUOFmPDwcDAMw7mmj/geeXhDwcddlYmrv6K+XlkNFveKovtrIPTXDGhvI2UJx65du2LcuHHIzs7GwoULcenSJc6OSqdOnQAAP/zwA1JSUhAcHAy5XI5Ro0bh6NGjAOrWhXfv3h0AMHz4cPzwww8oLCxEXFycYeRtzJgx+OGHHwyv+/TTTwOoqzNdWlpq2KHCGwgKgpcuXTJE9/r16+PNN9/EhQsXJG0Y8QyRCePByINMjjHyIEQmjLd4rKsycaW8ovZG/poB7W2slWoUo4Tjvn378OqrryI4OBgjR45E165dOddqBwcHAwBnYqN+qyXj/QFZloVMJrN4vPH+g+bP0el0JnsSejpBQVCj0ZgsiaiqquL8gonvqd+hL6JTXoQ8PBoAA3l4tNWkmLFxwyBjTP/4ZYxM9ExcdxVF91TuzICmzGHh0pPbI0hh+u9DrI2kjx49iuTkZIwaNQrR0dE4ceIE536FevHx8di+fTtqamqg0WiwadMmxMfHAwB+//13nD1bd0G5adMm9O3bF506dcLp06cNu8/n5OQYeosAsH37dgDAnj170Lp1a9E3QpCSoLJpw4cPx1NPPYXBgweDYRjs2bMHI0eOlLptxEPU79CXM+hxYRgArNltkflzUXQu7ipkbp45rFGWo3z7cgAQ/PfiT/TJL1Jkhz711FN49dVXsXPnTgQGBuLRRx81BCwuCQkJOHv2LEaNGgWNRoM+ffpgwoQJKCkpQYMGDfDxxx/jypUraNeuHRYsWIDQ0FDMmzcP06dPh1qtRtOmTbFw4b3t0n788Ufk5uYiJCTEahFuTyU4O3Tfvn04evQo5HI5evTogX79+kndNqsoO9QzuWp/QSmz7Ihw9mQOE+9w9epVpKenY//+/YKf079/f3z55Zdeey4W1BME6nb3ffzxxw3DoDdv3jTsEEGk5S1rwFyVoGHritpbvi9vZ0/mMCGeSlAQXLNmDT788EOo1WoAdZOiDMMYxo2JdMzXgJXfrcCKE3UFxD3txN4wNIqzJyhFgsYTXZpz9vq86fvydvLwhlZ6gtwZxcTzNWvWzK5eIAC7H+9pBCXGrF27FuvWrcPZs2dx9uxZnDt3jgKgi3jTGjBPKFHnTd+Xt7Mnc5gQTyWoJxgTEyNJcWtimzetAfOEnea96fvydvU79MXZ329AfnoLGuAObqEeNA8PR0tKiiFeRFAQ7NWrF77++mskJiYiKOjelR/NCUrPlUOMYnD3TvPe9n15s4JTxcg6rECt+l6meNBhGaY3LaYEJeI1BA2Hrly5EvPmzUO/fv0QHx+P+Ph49OjRQ+q2EXjGEKM3oe/LdahoAfEFgnqCXJvdEtfwhCFGb2Lv90WZpI6jogWer7S0FG+99RY+++wzp19ryZIl6NChAxITE0VomecQtE5QpVLhu+++Q1VVFQBAq9XiypUryMjIkLyBXGidIBED7b7gnCkLdnMWLYiJDMF/3hrkhhYRYj9BPcGMjAwUFxfj+vXrePjhh3H69Gl060YnCeLd+DJJKQjalp7cnrNogRhlwHzV7aKDqDyQDY3yBuThDRGZMF6U6jrHjh3DihUrEBwcjN9++w3t2rXDBx98gLKyMsPi95KSErz66qu4desWHnzwQZw4cQIHDx5EVVUV5s2bhwsXLkCr1WLq1KkYOnSoYYeJmzdvIiEhAWVlZejWrRtGjhyJxYsX4+jRo7h16xYiIyOxdOlSxMTEoHfv3khKSsKpU6cgk8nw0UcfoXlz0/lha1sv/f7775gzZw5u3ryJ0NBQzJo1C3FxccjMzATDMDh//jzu3LmDadOmYfjw4U5/Z3qC5gTPnj2LvLw8JCYm4s0338T69etx+/Zt0RpBiDtQJqlznujSHNOf6oSYyBAwqOsBUtUe6/Rl5urWVrKGMnNi1Vv96aefMGfOHOzYsQN//vknvv/+e5P7Fy5ciOTkZOTn52Pw4MEoLS0FACxbtgyPPPII8vLykJ2djeXLl6O4uG5HltLSUmzevBmvvPKK4XUuX76MixcvYv369di1axfuv/9+5OfnAwCuX7+OHj16YMuWLejatSuys7M528q19dLMmTPxzDPPID8/H2+88Qb+/ve/Q6VSGdqxfv16rFmzBosWLcL169dF+c4AgT3B2NhYyOVyPPDAAzh//jySk5NRXU3j/v7KV+bR3JVJ6ivfH2C9aAGxVHkg21BnVY/V1KLyQLYovcG2bduicePGAIDWrVvj1q1bJvcfPnwY77zzDgBg4MCBCA8PBwAcOXIENTU12LRpEwDg7t27hl2CHn74YZMdIgCgRYsWeP3117Fx40b8/vvv+Pnnn3H//fcb7u/Tp4+hPfrenjnjrZcyMzNRUlKCK1euYNCgumH0Rx99FA0aNMDFixcBACNHjoRCoUDjxo3RuXNnnDp1CoMHD3bwmzIlKAiGhoYiPz8fDz30EDZs2IBWrVoZ9hck/sWXKrKMjRvGOScoZSapL31/xD5Sl5kzXr7GMIzFTj8ymYxz9x+dTof333/fsBa8vLwcDRo0QH5+vmHrJWNFRUX4xz/+gUmTJiEpKQkBAQEmr6tvB1cb9My3XtJqtRaPZVnWsBOG8dZMOp3OIjA7Q9Bw6Jw5c3Du3Dn07t0bMpkMzzzzDJ599lnRGkG8hy9VZOnTohte6Doe0aFRYFBX6FvqpBhf+v6IfezZoFoKPXv2NAxbfvfdd1AqlQDqtlVat24dAKCsrAxPPvkkrl27ZvV1Tpw4gW7dumHs2LFo06YNDh8+zLttExfzrZfuu+8+NG/eHLt37wYA/PzzzygvL0fbtm0BADt27ADLsvjjjz9QWFiILl262PfhefCG02eeeQaM0V446enpYFkW7dq1w44dOzB27FjRGuINXDWMVXCqWJLtVsTga/Norl7c72vfHxEuMmG8ydZTgGvLzL355pt4/fXXsWHDBjz00EOG4dDp06dj7ty5GDp0KLRaLWbOnIn777/f6lDmkCFDMH36dKSmpkKhUKBdu3a82zZx4dp66f3338fcuXOxdOlSKBQKLF26FIGBdWt+a2pqMGrUKKhUKsybNw+RkZFOfBOmeJdI7Nq1C0BdtL5z5w5GjRoFmUyGrVu3Ijw8HPPnzxetIfZwxxIJV6XTe/o2Qa7aLslX0ffn36TKDhXiyy+/RM+ePdGmTRucOXMGs2fPRl5enkve25i9Wy9lZmYaslKlwNsTTEpKAgCsWrUK69evR0BA3ejpE088gTFjxkjSIE/lqnR6viocnhAE3TGP5kvo+/Nv9mxQLbYWLVrglVdeQUBAAIKCgtzWifE0gmYXKysrUVtbi5CQup27q6qqLDKPfJ2rhrE8vQoHVbBxji9/f548jE+Afv36uXUzdD17t16Seqd6QUFw6NChePrppzFw4ECwLIudO3caUlz9havS6aMjQzircERHhoj6Ps5wd5Fsb+eL35/5MP71ympkbTwNABQIiUcTlB3697//HX//+9+hVCpx+/ZtZGZm4rnnnpO6bR7FVYWZ05PbI0ghMznmL1U4Dl0+jpfyZ2FMzjS8lD8Lhy4fd3eTiEBUTJt4K8GLLQYMGIABAwZI2RaP5qphLP1Vs78NK9H6Oe8m5jC+LxUTIJ5PvBWHfsBVw1j+WIWD6nh6N7GG8eliiLiaoOFQQqTmTOIRDaO6n1jD+FRMgLgaBUHiEawlGNlKPNL3HMrvVoDFvZ4DBULXEquYNhUTEN/HH3+MxMRErF692unXWrp0KZYuXSpCq/hdvXoV/fv3t+s5/fv3x9WrV5GXl4fMzEzBz5N0ODQ/Px/Lli2DWq3GpEmTMH68aWWErKwsbNq0yVC54Omnn7Z4DPEPjq6fo2FUzyHGML67ipq7ijvmO7du3YrPP/8cLVu2lPR9vJVkQbC0tBSLFy9GXl4eAgMDkZaWhu7du6NNmzaGxxQVFeHf//43HnvsMamaQbyEo4lH1HPwLb5cTEDK+U6NRoO5c+fiwoULKC8vR8uWLZGVlYW3334bpaWlePnll/Hhhx9i8uTJeOSRR1BeXo7c3FysWrUK33zzDWQyGXr16oWZM2eaFKsGgM8//xwbNmxAZGQkwsPDERcXBwD46quvsHXrVlRXV4NhGHz00Udo3bo1+vfvjyeffBLff/89qqur8d5776FDhw44e/Ys5syZg5qaGjRo0AAffPABGjdujJUrV2LHjh3QarXo3bs3Zs6cCaCuVFpGRgYuXLiA8PBwfPLJJ4iMjLT6vo6SbDj0yJEjiI+PR0REBEJDQ5GUlISdO3eaPKaoqAifffYZUlNTMW/ePNTW1lq8jlKpxNWrV03+KykpkarZxI36tOiGT1MXImfMMnyaulDQicHRYVTimdxR1NxVpJzv/Omnn6BQKJCTk4M9e/agtrYW3333HebNm4fY2FisXLkS7du3R2VlJZ5//nls3boVR44cwf79+w2b516+fBnr1683ed1ffvkFmzZtwubNm7F69WrDuffOnTvYu3cv1q5di23btmHAgAH4+uuvDc+LiIhAbm4u0tLSsGLFCgDAq6++ipdeegn5+fkYMmQI1qxZg4MHD6KoqAi5ubnYsmULSktL8c033wAAKioqMHnyZGzbtg3R0dH49ttvbb6vIyTrCZaVlSEmJsZwOzY2FoWFhYbbVVVVaN++PV5//XXcd999yMzMxKeffoqMjAyT11mzZg2ysrKkaibxcr7cc/BXvlhMAJB21KJr166IiIhAdnY2Ll68iEuXLuHu3bucj+3UqRMA4IcffkBKSophu6RRo0Zhy5YtJlNSx48fR79+/RAWFgYAGDx4MHQ6HerVq4cPP/wQ27dvx6VLl3Do0CG0b38vCcp4T8Hdu3ejoqIC169fR0JCAgBg3LhxAID33nsPhYWFhrqgNTU1aNq0Kbp06YLY2FhDr7NNmzaorKy0+b6OkCwIctXlNt6RIiwsDJ999pnh9pQpU/Dmm29aBMGJEydixIgRJsdKSkrcMndIZaE8jy+XISO+Rcr5zn379uHjjz9Geno6Ro4cicrKSqt7+emDnk6ns7hPo9GY3GYYxuRxcrkcKpUK165dwzPPPIMJEyagb9++iI6Oxtmz9wojGO8pCAAKhcLkdWtra1FWVgatVouJEydi8uTJAOpG/mQyGSorK032DNTvTWjrfR0h2XBoo0aNUF5ebrhdVlaG2NhYw+0///wTubm5htssy3JulBgeHo5mzZqZ/KffPdmV9GWhrldWg8W9slAFp4pd3hZiypFhVEJcTcqqU0ePHkVycjJGjRqF6OhonDhxwuYef/Hx8di+fTtqamqg0WiwadMmxMfHmzymR48eKCgowO3bt1FbW4s9e/YAqBsmbdGiBSZNmoROnTrh4MGDvO9Xv359NG7cGIcPHwZQl6yzZMkSxMfHY+vWraiqqoJGo8HLL79s2L2Ii73vK4RkPcGePXti6dKlqKioQEhICHbv3m1StTw4OBjvv/8+unfvjmbNmiE7OxsDBw6UqjlO85TdHaiaBiHeScpRi6eeegqvvvoqdu7cicDAQDz66KM29/hLSEjA2bNnMWrUKGg0GvTp0wcTJkwweUz79u0xceJEjB49GuHh4WjatCkAoFevXli3bh2GDBmCwMBAxMXF4cKFC7zvp98vcNGiRYiMjMSiRYsQGxuLc+fO4emnn4ZWq0WfPn0wYsQI/PHHH5yv4cj72sK7n6Cz8vPzsWLFCqjVaowePRpTp07F1KlTMWPGDHTs2BG7du3C0qVLoVar0blzZ/zrX/8ybKLIxx37CT75j63g+qIYAN986Jr5J1ftaUgIIf5C0nWCqampSE1NNTlmPA+YlJRk2LPQ03nC7g6+vibOnRuOAtTLJsQfUe1QG/QnxjttKxCsCoH6SltoK+qGBFy9u4Mvr4m7XXQQ5duXg9XULZPRKMtRvn05ALgkEFLNSkL8E5VN42FckgsAmMBqBLY6A1nUnw6XhXKGL6+JqzyQbQiAeqymFpUHsl3y/lSzkhD/RD1BHlwnRgRo0TTuKj5Nneby9vjymjiN8oZdx42JMYzpy71sQoh1FAR5eNqJ0ZVr4lw9PyYPbwiNspzzOB+xhjF9vWYlIYQbBUEennhidEU1DXfMj0UmjDeZEwQARh6EyAT+oghiJQv5ci+bEGIdzQnykHJxqydzx/xY/Q59EZ3yIuTh0QAYyMOjEZ3yos2kGLF6675cs5IQYh31BHn4a0kudw0D1+/Q1+5MUDF7675as5IQYh0FQRv88cToicPA1tAwJiHEGTQcSix40zAwDWMSQpxBPUFiwduGgf2xt04IEYdfBEEqh2U/CiyEEH/g80GQymERQgixxufnBKkcFiGEEGt8Pgh6WtUXQgghnsPng6AvF50mhBDiHJ8Pgt6U7k8IIcS1fD4xxtvS/QkhhLiOzwdBgNL9CSGEcPOLIEiINbSGlBD/RkGQ+C1aQ0oI8fnEGEKsoTWkhBAKgsRv0RpSQggNhxK3cfd8nDdtGUUIkQb1BIlb6Ofjyu9WgMW9+bhDl4+7rA20hpQQQkGQuIUnzMfRXoSEEBoOJW7hKfNxtIaUEP9GPUHiFlTTlRDiCSgIEreg+ThCiCeg4VDiFlTTlRDiCSgIEreh+ThCiLtJOhyan5+PIUOGYODAgcjOzrb6uIKCAvTv31/KphBCCCEWJOsJlpaWYvHixcjLy0NgYCDS0tLQvXt3tGnTxuRx5eXleO+996RqBiGEEGKVZD3BI0eOID4+HhEREQgNDUVSUhJ27txp8bi33noL06dPl6oZhBBCiFWS9QTLysoQExNjuB0bG4vCwkKTx3z55Zd4+OGH0alTJ6uvo1QqoVQqTY6VlJSI21hCCCF+SbIgyLKsxTGGYQz///z589i9eze++OIL3qC2Zs0aZGVlSdJGQggh/k2yINioUSOcPHnScLusrAyxsbGG2zt37sT169cxatQoqNVqlJWVYdy4cfj6669NXmfixIkYMWKEybGSkhKMHz9eqqYTQgjxEwzL1WUTQWlpKcaOHYvc3FyEhIQgLS0N8+fPR1xcnMVjr169ivT0dOzfv1/Qa1+9ehWJiYnYt28fmjVrJnbTCSGE+AnJEmMaNWqEjIwMpKenY/jw4Rg6dCji4uIwdepU/PLLL1K9LSGEECKYZD1BKVFPkBBCiBiodighhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiAhhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C1Jg2B+fj6GDBmCgQMHIjs72+L+PXv2IDU1FSkpKcjMzIRKpZKyOYQQQogJyYJgaWkpFi9ejK+//hpbt25FTk4Ofv31V8P9d+/exbx587B69Wps374dtbW12Lx5s1TNIYQQQixIFgSPHDmC+Ph4REREIDQ0FElJSdi5c6fh/tDQUOzfvx/R0dG4e/cubty4gfDwcKmaQwghhFiQS/XCZWVliImJMdyOjY1FYWGhyWMUCgW+++47vPbaa4iNjUXv3r0tXkepVEKpVJocKykpkabRhBBC/IpkQZBlWYtjDMNYHOvXrx+OHTuGf//735g7dy4+/PBDk/vXrFmDrKwsqZpJCCHEj0kWBBs1aoSTJ08abpeVlSE2NtZw++bNmygqKjL0/lJTU5GRkWHxOhMnTsSIESNMjpWUlGD8+PEStZwQQoi/kGxOsGfPnjh69CgqKipQXV2N3bt3o2/fvob7WZbFzJkz8eeffwIAduzYgc6dO1u8Tnh4OJo1a2byX+PGjaVqNiGEED8iaU8wIyMD6enpUKvVGD16NOLi4jB16lTMmDEDHTt2xPz58/HCCy+AYRi0adMG//rXv6RqDiGEEGKBYbkm7zzc1atXkZiYiH379qFZs2bubg4hhBAvRRVjCCGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8lmS1Qwkxd7voICoPZEOjvAF5eENEJoxH/Q59bT+REEIkQkGQuMTtooMo374crKYWAKBRlqN8+3IAoEBICHEbGg4lLlF5INsQAPVYTS0qD2S7qUWEEEJBkLiIRnnDruOEEOIKFASJS8jDG9p1nBBCXIGCIHGJyITxYORBJscYeRAiE8a7qUWEEEKJMcRF9MkvlB1KCPEkFASJy9Tv0JeCHiHEo9BwKCGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/JZXrhPUarUAgJKSEje3hBDirxo3bgy53CtPocSIV/6C169fBwCMH08ltwgh7rFv3z40a9bM3c0gTmJYlmXd3Qh71dTUoKioCDExMZDJZFYfV1JSgvHjxyM7OxuNGzd2YQupPY7ytDZRe2zztDa5qj3UE/QNXvkLBgcH4/HHHxf8+MaNG3vUFRu1xzZPaxO1xzZPa5OntYd4JkqMIYQQ4rcoCBJCCPFbFAQJIYT4LZ8OguHh4Zg+fTrCw8Pd3RQA1B4hPK1N1B7bPK1NntYe4tm8MjuUEEIIEYNP9wQJIYQQPhQECSGE+C2fDYL5+fkYMmQIBg4ciOzsbLe1486dOxg6dCiuXr0KADhy5AhSU1MxaNAgLF682KVtycrKQkpKClJSUrBo0SK3twcAlixZgiFDhiAlJQWrV6/2iDYBwHvvvYfMzEwAwNmzZzFq1CgkJSVh1qxZ0Gg0Lm1Leno6UlJSMGzYMAwbNgynT59269/3/v37MXLkSAwePBgLFiwA4L7fbOPGjYbvZdiwYejSpQvmzZvnEX9DxEuwPqikpIRNSEhgKysr2aqqKjY1NZW9cOGCy9vx888/s0OHDmUfeeQRtri4mK2urmb79evHXrlyhVWr1eyUKVPYgoICl7Tl8OHD7JgxY9ja2lpWpVKx6enpbH5+vtvaw7Ise+zYMTYtLY1Vq9VsdXU1m5CQwJ49e9atbWJZlj1y5AjbvXt39vXXX2dZlmVTUlLYn376iWVZln3jjTfY7Oxsl7VFp9OxvXr1YtVqteGYO/++r1y5wvbu3Zu9du0aq1Kp2LFjx7IFBQVu/81YlmXPnz/PDhw4kP3zzz89oj3EO/hkT/DIkSOIj49HREQEQkNDkZSUhJ07d7q8HRs2bMA///lPxMbGAgAKCwvRokULNG/eHHK5HKmpqS5rV0xMDDIzMxEYGAiFQoHWrVvj0qVLbmsPAHTr1g1ffvkl5HI5bty4Aa1WC6VS6dY23bx5E4sXL8aLL74IAPjjjz9QU1ODRx99FAAwcuRIl7bn4sWLYBgGU6dOxZNPPomvvvrKrX/fe/bswZAhQ9C4cWMoFAosXrwYISEhbv3N9ObOnYuMjAwUFxd7RHuId/DJIFhWVoaYmBjD7djYWJSWlrq8HQsXLjQp7+bOdrVt29ZwIr906RK+/fZbMAzj9u9JoVDg448/RkpKCnr06OH2327OnDnIyMgwpNebtycmJsal7VEqlejRowc++eQTfPHFF1i/fj3+/PNPt31Hly9fhlarxbPPPosnn3wSX3/9tdt/M6DuwrempgbJycke0R7iPXwyCLIcqz4YhnFDS0x5QrsuXLiAKVOm4PXXX8f999/v9vYAwIwZM3D06FFcu3YNly5dclubNm7ciCZNmqBHjx6GY+7+zR577DEsWrQIoaGhiIqKwujRo/Hxxx+7rU1arRZHjx7F+++/jw0bNuCXX34xzHe7oz1669evx+TJkwG4/zcj3sUrC2jb0qhRI5w8edJwu6yszDAk6U6NGjVCeXm54bar23Xq1CnMmDEDb775JlJSUnD8+HG3tue3336DSqVC+/btERISgkGDBmHnzp0mO4O4sk3ffvstrl+/jmHDhuHWrVu4e/cuGIYx+Y6uX7/u0u/o5MmTUKvVhsDMsizuu+8+t/1u0dHR6NGjB6KiogAAiYmJbv3NAEClUuHEiRN49913Abj/3xnxLj7ZE+zZsyeOHj2KiooKVFdXY/fu3ejbt6+7m4VOnTrh999/Nwwpbdu2zWXtunbtGl5++WV88MEHSElJcXt7AODq1at46623oFKpoFKpsG/fPqSlpbmtTatXr8a2bduwdetWzJgxA/3798c777yDoKAgnDp1CgCwZcsWl35Ht2/fxqJFi1BbW4s7d+5g8+bNeP/99932952QkIDvv/8eSqUSWq0Whw4dwuDBg936d/S///0PDzzwAEJDQwG4/++aeBef7QlmZGQgPT0darUao0ePRlxcnLubhaCgILz77rv429/+htraWvTr1w+DBw92yXuvWrUKtbW1hqtlAEhLS3NbewCgX79+OH36NIYPHw6ZTIZBgwYhJSUFUVFRbmsTlw8++ABvvfUWqqqq8PDDDyM9Pd1l752QkGD4jnQ6HcaNG4cuXbq47e+7U6dOeO655zBu3Dio1Wr06tULY8eORatWrdz2mxUXF5vsG+jOf2fE+1DZNEIIIX7LJ4dDCSGEECEoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiDxW5mZmVi1apVdz9m3b59h54SCggIsWbJEiqYRQlzEJ9cJEiKVxMREJCYmAgB++eUX3Lp1y80tIoQ4g4Ig8TjHjh3DokWL0KhRIxQXFyM4OBjvvvsuYmNj8a9//Qvnzp0DwzDo06cPXnnlFcjlcjz88MOYOHEijh07hrt37+KVV17BoEGDkJeXh127dmHFihUAYHFbLzc3Fzk5OVCr1bh16xamTp2KcePGIS8vD7m5uaiurka9evUwYsQI7Nq1Cy+99BLWr18PrVaL+vXro7CwEIMHD8aYMWMAAMuWLUNlZSXefPNNl39/hBDhKAgSj/Tf//4Xb7zxBh5//HGsW7cOM2fORNu2bREREYH8/Hyo1WpMmzYN//nPf/D8889Dq9WiQYMGyMvLw7lz5zBhwgSTHTz4VFVVYePGjVi5ciUiIyPx888/Y/LkyRg3bhwA4Ndff8X+/ftRr1495OXlAairnJKWlobKykpkZGRg7969WL58OcaMGQOdToeNGzfi888/l+z7IYSIg+YEiUd66KGHDEFs1KhROHv2LLZt24YJEyaAYRgEBgYiLS0NBw8eNDxnwoQJhuc++OCDOHHihKD3CgsLw/Lly/Hdd9/ho48+wvLly3H37l3D/e3atUO9evV4XyMhIQHl5eU4d+4cDh06hGbNmqFVq1b2fmxCiItRECQeyXhXAqBu9wTzCn86nQ4ajYbzOTqdDjKZDAzDmDxPrVZbvFdJSQmGDx+OP/74A126dMH//d//mdyvL8xsq71paWnIzc3Fpk2bkJaWZvM5hBD3oyBIPNK5c+dw7tw5AEBOTg46d+6M5ORkZGdng2VZqFQqbNiwAT179jQ8Z8uWLQCAM2fO4Pfff0fXrl0RFRWFCxcuoLa2FhqNBgcOHLB4r6KiIkRFReGll15Cnz59DI/RarW8bZTJZCZB+KmnnsLevXtx5swZDBw40NmvgBDiAjQnSDxSdHQ0PvroI/zxxx+IiorCokWLEBYWhgULFiA1NRVqtRp9+vTBiy++aHjOjz/+iA0bNkCn02Hx4sVo0KABevXqha5duyI5ORkxMTHo3r07/ve//5m8V69evZCbm4vBgwcjJCQEcXFxiIqKwuXLl3nb2KNHD/ztb3+DQqHA7Nmz0bBhQ3To0AGtW7eGQqGQ5HshhIiLdpEgHufYsWOYP38+tm3bJvg57dq1w9GjRw2bvbpDRUUFRo8ejezsbDRp0sRt7SCECEfDoYSIYMOGDRgyZAjS09MpABLiRagnSAghxG9RT5AQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/Nb/AzTNtGFHfP2fAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                          " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.FacetGrid(df, hue=\"artist_top_genre\", size=5) \\\n", + " .map(plt.scatter, \"popularity\", \"danceability\") \\\n", + " .add_legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.9" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "c61deff2839902ac8cb4ed411eb10fee", + "translation_date": "2025-09-04T01:58:40+00:00", + "source_file": "5-Clustering/1-Visualize/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ja/5-Clustering/2-K-Means/README.md b/translations/ja/5-Clustering/2-K-Means/README.md new file mode 100644 index 000000000..c2c7e0dcb --- /dev/null +++ b/translations/ja/5-Clustering/2-K-Means/README.md @@ -0,0 +1,261 @@ + +# K-Means クラスタリング + +## [事前クイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/) + +このレッスンでは、Scikit-learnと以前インポートしたナイジェリア音楽データセットを使用してクラスタを作成する方法を学びます。K-Meansを使用したクラスタリングの基本について説明します。前回のレッスンで学んだように、クラスタリングにはさまざまな方法があり、使用する方法はデータに依存します。ここでは、最も一般的なクラスタリング手法であるK-Meansを試してみましょう。それでは始めましょう! + +このレッスンで学ぶ用語: + +- シルエットスコア +- エルボー法 +- 慣性 (Inertia) +- 分散 (Variance) + +## はじめに + +[K-Meansクラスタリング](https://wikipedia.org/wiki/K-means_clustering)は、信号処理の分野から派生した手法です。この手法は、データを「k」個のクラスタに分割するために使用され、観測値の一連の操作を通じて行われます。各観測値は、与えられたデータポイントを最も近い「平均値」またはクラスタの中心点にグループ化する役割を果たします。 + +クラスタは、[ボロノイ図](https://wikipedia.org/wiki/Voronoi_diagram)として視覚化することができます。これは、点(または「シード」)とその対応する領域を含みます。 + +![ボロノイ図](../../../../translated_images/voronoi.1dc1613fb0439b9564615eca8df47a4bcd1ce06217e7e72325d2406ef2180795.ja.png) + +> インフォグラフィック: [Jen Looper](https://twitter.com/jenlooper) + +K-Meansクラスタリングのプロセスは、[3つのステップで実行されます](https://scikit-learn.org/stable/modules/clustering.html#k-means): + +1. アルゴリズムは、データセットからk個の中心点を選択します。その後、以下を繰り返します: + 1. 各サンプルを最も近いセントロイドに割り当てます。 + 2. 前のセントロイドに割り当てられたすべてのサンプルの平均値を取ることで、新しいセントロイドを作成します。 + 3. 新しいセントロイドと古いセントロイドの差を計算し、セントロイドが安定するまで繰り返します。 + +K-Meansの欠点の1つは、「k」、つまりセントロイドの数を事前に決定する必要があることです。ただし、「エルボー法」を使用すると、「k」の適切な初期値を推定するのに役立ちます。これをすぐに試してみましょう。 + +## 前提条件 + +このレッスンでは、前回のレッスンで行ったデータのインポートと初期クリーニングを含む[_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/notebook.ipynb)ファイルを使用します。 + +## 演習 - 準備 + +まず、曲データをもう一度確認しましょう。 + +1. 各列に対して`boxplot()`を呼び出し、ボックスプロットを作成します: + + ```python + plt.figure(figsize=(20,20), dpi=200) + + plt.subplot(4,3,1) + sns.boxplot(x = 'popularity', data = df) + + plt.subplot(4,3,2) + sns.boxplot(x = 'acousticness', data = df) + + plt.subplot(4,3,3) + sns.boxplot(x = 'energy', data = df) + + plt.subplot(4,3,4) + sns.boxplot(x = 'instrumentalness', data = df) + + plt.subplot(4,3,5) + sns.boxplot(x = 'liveness', data = df) + + plt.subplot(4,3,6) + sns.boxplot(x = 'loudness', data = df) + + plt.subplot(4,3,7) + sns.boxplot(x = 'speechiness', data = df) + + plt.subplot(4,3,8) + sns.boxplot(x = 'tempo', data = df) + + plt.subplot(4,3,9) + sns.boxplot(x = 'time_signature', data = df) + + plt.subplot(4,3,10) + sns.boxplot(x = 'danceability', data = df) + + plt.subplot(4,3,11) + sns.boxplot(x = 'length', data = df) + + plt.subplot(4,3,12) + sns.boxplot(x = 'release_date', data = df) + ``` + + このデータは少しノイズが多いです。各列をボックスプロットとして観察することで、外れ値が見つかります。 + + ![外れ値](../../../../translated_images/boxplots.8228c29dabd0f29227dd38624231a175f411f1d8d4d7c012cb770e00e4fdf8b6.ja.png) + +データセットを確認してこれらの外れ値を削除することもできますが、それではデータが非常に少なくなってしまいます。 + +1. クラスタリング演習で使用する列を選択します。範囲が似ている列を選び、`artist_top_genre`列を数値データとしてエンコードします: + + ```python + from sklearn.preprocessing import LabelEncoder + le = LabelEncoder() + + X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')] + + y = df['artist_top_genre'] + + X['artist_top_genre'] = le.fit_transform(X['artist_top_genre']) + + y = le.transform(y) + ``` + +1. 次に、ターゲットとするクラスタ数を選択する必要があります。このデータセットから抽出した3つの曲ジャンルがあることを知っているので、3を試してみましょう: + + ```python + from sklearn.cluster import KMeans + + nclusters = 3 + seed = 0 + + km = KMeans(n_clusters=nclusters, random_state=seed) + km.fit(X) + + # Predict the cluster for each data point + + y_cluster_kmeans = km.predict(X) + y_cluster_kmeans + ``` + +データフレームの各行に対して予測されたクラスタ(0, 1, または2)の配列が表示されます。 + +1. この配列を使用して「シルエットスコア」を計算します: + + ```python + from sklearn import metrics + score = metrics.silhouette_score(X, y_cluster_kmeans) + score + ``` + +## シルエットスコア + +シルエットスコアは1に近いほど良いです。このスコアは-1から1の範囲で変動し、スコアが1の場合、クラスタは密集しており、他のクラスタから明確に分離されています。0に近い値は、隣接するクラスタの境界に非常に近いサンプルがある重なり合ったクラスタを表します。[(出典)](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam) + +私たちのスコアは**0.53**で、ちょうど中間です。これは、このデータがこのタイプのクラスタリングに特に適していないことを示していますが、続けてみましょう。 + +### 演習 - モデルを構築する + +1. `KMeans`をインポートし、クラスタリングプロセスを開始します。 + + ```python + from sklearn.cluster import KMeans + wcss = [] + + for i in range(1, 11): + kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) + kmeans.fit(X) + wcss.append(kmeans.inertia_) + + ``` + + ここにはいくつか説明が必要な部分があります。 + + > 🎓 range: クラスタリングプロセスの反復回数 + + > 🎓 random_state: セントロイドの初期化に使用される乱数生成を決定します。[出典](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans) + + > 🎓 WCSS: 「クラスタ内平方和」は、クラスタ内のすべてのポイントがクラスタのセントロイドに対して持つ平均平方距離を測定します。[出典](https://medium.com/@ODSC/unsupervised-learning-evaluating-clusters-bd47eed175ce) + + > 🎓 Inertia: K-Meansアルゴリズムは「慣性」を最小化するようにセントロイドを選択しようとします。これは、クラスタがどれだけ内部的に一貫しているかを測定するものです。[出典](https://scikit-learn.org/stable/modules/clustering.html)。この値は各反復でwcss変数に追加されます。 + + > 🎓 k-means++: [Scikit-learn](https://scikit-learn.org/stable/modules/clustering.html#k-means)では、「k-means++」最適化を使用できます。これは、セントロイドを互いに(一般的に)遠く離れた位置に初期化し、ランダムな初期化よりも良い結果をもたらす可能性があります。 + +### エルボー法 + +以前、3つの曲ジャンルをターゲットにしているため、3つのクラスタを選択すべきだと推測しました。しかし、それは正しいのでしょうか? + +1. 「エルボー法」を使用して確認してみましょう。 + + ```python + plt.figure(figsize=(10,5)) + sns.lineplot(x=range(1, 11), y=wcss, marker='o', color='red') + plt.title('Elbow') + plt.xlabel('Number of clusters') + plt.ylabel('WCSS') + plt.show() + ``` + + 前のステップで作成した`wcss`変数を使用して、エルボーの「曲がり目」を示すチャートを作成します。これが最適なクラスタ数を示します。もしかすると、やはり**3**かもしれません! + + ![エルボー法](../../../../translated_images/elbow.72676169eed744ff03677e71334a16c6b8f751e9e716e3d7f40dd7cdef674cca.ja.png) + +## 演習 - クラスタを表示する + +1. 今回は3つのクラスタを設定してプロセスを再試行し、クラスタを散布図として表示します: + + ```python + from sklearn.cluster import KMeans + kmeans = KMeans(n_clusters = 3) + kmeans.fit(X) + labels = kmeans.predict(X) + plt.scatter(df['popularity'],df['danceability'],c = labels) + plt.xlabel('popularity') + plt.ylabel('danceability') + plt.show() + ``` + +1. モデルの精度を確認します: + + ```python + labels = kmeans.labels_ + + correct_labels = sum(y == labels) + + print("Result: %d out of %d samples were correctly labeled." % (correct_labels, y.size)) + + print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size))) + ``` + + このモデルの精度はあまり良くなく、クラスタの形状がその理由を示しています。 + + ![クラスタ](../../../../translated_images/clusters.b635354640d8e4fd4a49ef545495518e7be76172c97c13bd748f5b79f171f69a.ja.png) + + このデータは不均衡で、相関が少なく、列の値の間に大きな分散があるため、うまくクラスタリングできません。実際、形成されたクラスタは、上記で定義した3つのジャンルカテゴリによって大きく影響を受けている可能性があります。これは学習プロセスの一環です! + + Scikit-learnのドキュメントでは、このようにクラスタがあまり明確に区別されていないモデルには「分散」の問題があると説明されています。 + + ![問題のあるモデル](../../../../translated_images/problems.f7fb539ccd80608e1f35c319cf5e3ad1809faa3c08537aead8018c6b5ba2e33a.ja.png) + > インフォグラフィック: Scikit-learn + +## 分散 + +分散は、「平均からの差の二乗の平均」と定義されます[(出典)](https://www.mathsisfun.com/data/standard-deviation.html)。このクラスタリング問題の文脈では、データセットの数値が平均から少し離れすぎていることを指します。 + +✅ この問題を解決する方法を考える良いタイミングです。データをもう少し調整しますか?別の列を使用しますか?別のアルゴリズムを使用しますか?ヒント: データを正規化して他の列をテストするために[スケーリング](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/)を試してみてください。 + +> この「[分散計算機](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)」を試して、概念をもう少し理解してみてください。 + +--- + +## 🚀チャレンジ + +このノートブックで時間をかけてパラメータを調整してみてください。データをさらにクリーニングすることで(例えば外れ値を削除するなど)、モデルの精度を向上させることができますか?特定のデータサンプルに重みを付けることもできます。他にどのような方法でより良いクラスタを作成できますか? + +ヒント: データをスケーリングしてみてください。ノートブックには、データ列が範囲の点でより似たものになるように標準スケーリングを追加するコメント付きコードがあります。シルエットスコアは下がりますが、エルボーグラフの「曲がり」が滑らかになります。これは、データをスケーリングせずに放置すると、分散の少ないデータがより大きな重みを持つようになるためです。この問題についてもう少し[こちら](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226)で読んでみてください。 + +## [事後クイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/) + +## 復習と自己学習 + +K-Meansシミュレーター[こちら](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/)を見てみてください。このツールを使用して、サンプルデータポイントを視覚化し、そのセントロイドを決定できます。データのランダム性、クラスタ数、セントロイド数を編集できます。これにより、データがどのようにグループ化されるかのアイデアが得られますか? + +また、スタンフォード大学の[このK-Meansに関するハンドアウト](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html)も確認してみてください。 + +## 課題 + +[異なるクラスタリング手法を試してみましょう](assignment.md) + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/5-Clustering/2-K-Means/assignment.md b/translations/ja/5-Clustering/2-K-Means/assignment.md new file mode 100644 index 000000000..662c87573 --- /dev/null +++ b/translations/ja/5-Clustering/2-K-Means/assignment.md @@ -0,0 +1,25 @@ + +# 異なるクラスタリング手法を試す + +## 手順 + +このレッスンでは、K-Meansクラスタリングについて学びました。ただし、データによってはK-Meansが適さない場合もあります。これらのレッスンで使用したデータ、または他の場所から取得したデータ(出典を明記してください)を使用して、K-Means以外のクラスタリング手法を示すノートブックを作成してください。どのようなことを学んだのか説明してください。 + +## 評価基準 + +| 基準 | 模範的 | 適切 | 改善が必要 | +| -------- | --------------------------------------------------------------- | ------------------------------------------------------------------ | ---------------------------- | +| | クラスタリングモデルが十分に文書化されたノートブックが提示されている | 文書化が不十分、または不完全なノートブックが提示されている | 不完全な作業が提出されている | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/5-Clustering/2-K-Means/notebook.ipynb b/translations/ja/5-Clustering/2-K-Means/notebook.ipynb new file mode 100644 index 000000000..ba5bd7004 --- /dev/null +++ b/translations/ja/5-Clustering/2-K-Means/notebook.ipynb @@ -0,0 +1,231 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "3e5c8ab363e8d88f566d4365efc7e0bd", + "translation_date": "2025-09-04T02:09:14+00:00", + "source_file": "5-Clustering/2-K-Means/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "前回のレッスンで終了したところから始めましょう。データをインポートしてフィルタリングした状態です。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                          0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                                          1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                          2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                                          3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                          4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "私たちは3つのジャンルのみに集中します。もしかしたら3つのクラスターを構築できるかもしれません!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                          1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                          3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                          4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                          5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
                                          6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/5-Clustering/2-K-Means/solution/Julia/README.md b/translations/ja/5-Clustering/2-K-Means/solution/Julia/README.md new file mode 100644 index 000000000..2001df1ce --- /dev/null +++ b/translations/ja/5-Clustering/2-K-Means/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当社は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb b/translations/ja/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb new file mode 100644 index 000000000..29ce59579 --- /dev/null +++ b/translations/ja/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb @@ -0,0 +1,637 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "colab": { + "name": "lesson_14.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "coopTranslator": { + "original_hash": "ad65fb4aad0a156b42216e4929f490fc", + "translation_date": "2025-09-04T02:15:24+00:00", + "source_file": "5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb", + "language_code": "ja" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "GULATlQXLXyR" + }, + "source": [ + "## RとTidyデータの原則を使ったK-Meansクラスタリングの探求\n", + "\n", + "### [**講義前クイズ**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/)\n", + "\n", + "このレッスンでは、TidymodelsパッケージやRエコシステム内の他のパッケージ(友達と呼びましょう 🧑‍🤝‍🧑)を使ってクラスタを作成する方法と、以前インポートしたナイジェリア音楽データセットを使用する方法を学びます。K-Meansクラスタリングの基本について説明します。前のレッスンで学んだように、クラスタを扱う方法は多岐にわたり、使用する方法はデータに依存します。ここでは、最も一般的なクラスタリング手法であるK-Meansを試してみましょう。それでは始めましょう!\n", + "\n", + "このレッスンで学ぶ用語:\n", + "\n", + "- シルエットスコアリング\n", + "- エルボー法\n", + "- 慣性(Inertia)\n", + "- 分散(Variance)\n", + "\n", + "### **イントロダクション**\n", + "\n", + "[K-Meansクラスタリング](https://wikipedia.org/wiki/K-means_clustering)は、信号処理の分野から派生した手法です。この手法は、データの特徴の類似性に基づいて、データを`k個のクラスタ`に分割・区分するために使用されます。\n", + "\n", + "クラスタは、[ボロノイ図](https://wikipedia.org/wiki/Voronoi_diagram)として視覚化することができ、これは点(または「シード」)とその対応する領域を含みます。\n", + "\n", + "

                                          \n", + " \n", + "

                                          Jen Looperによるインフォグラフィック
                                          \n", + "\n", + "K-Meansクラスタリングの手順は以下の通りです:\n", + "\n", + "1. データサイエンティストが作成したいクラスタの数を指定します。\n", + "\n", + "2. 次に、アルゴリズムがデータセットからランダムにK個の観測値を選択し、それをクラスタの初期中心(すなわちセントロイド)として使用します。\n", + "\n", + "3. 次に、残りの各観測値を最も近いセントロイドに割り当てます。\n", + "\n", + "4. 次に、各クラスタの新しい平均を計算し、セントロイドをその平均に移動させます。\n", + "\n", + "5. セントロイドが再計算されたので、すべての観測値を再度確認し、別のクラスタに近いかどうかを確認します。すべてのオブジェクトは、更新されたクラスタ平均を使用して再割り当てされます。このクラスタ割り当てとセントロイド更新のステップは、クラスタ割り当てが変化しなくなるまで(すなわち、収束が達成されるまで)繰り返されます。通常、各新しい反復でセントロイドの移動がわずかになり、クラスタが静的になるとアルゴリズムは終了します。\n", + "\n", + "
                                          \n", + "\n", + "> 初期のk個の観測値をランダムに選択するため、手順を適用するたびに結果が若干異なる可能性があることに注意してください。このため、ほとんどのアルゴリズムでは複数の*ランダムスタート*を使用し、最も低いWCSSを持つ反復を選択します。そのため、*望ましくない局所最適解*を避けるために、常に複数の*nstart*値でK-Meansを実行することを強くお勧めします。\n", + "\n", + "
                                          \n", + "\n", + "この短いアニメーションは、Allison Horstの[アートワーク](https://github.com/allisonhorst/stats-illustrations)を使用してクラスタリングプロセスを説明しています:\n", + "\n", + "

                                          \n", + " \n", + "

                                          @allison_horstによるアートワーク
                                          \n", + "\n", + "クラスタリングにおいて基本的な疑問が生じます。それは、データをいくつのクラスタに分けるべきかということです。K-Meansの欠点の1つは、`k`、つまり`セントロイド`の数を事前に決める必要がある点です。幸いなことに、`エルボー法`を使えば、`k`の良い初期値を推定するのに役立ちます。これをすぐに試してみましょう。\n", + "\n", + "### \n", + "\n", + "**前提条件**\n", + "\n", + "[前回のレッスン](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb)でデータセットを分析し、多くの可視化を行い、興味のある観測値にデータセットをフィルタリングしました。このレッスンをぜひ確認してください!\n", + "\n", + "このモジュールを進めるにはいくつかのパッケージが必要です。以下のコマンドでインストールできます: \n", + "`install.packages(c('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork'))`\n", + "\n", + "または、以下のスクリプトを使用すると、このモジュールを完了するために必要なパッケージがインストールされているか確認し、不足している場合は自動的にインストールします。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ah_tBi58LXyi" + }, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork')\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7e--UCUTLXym" + }, + "source": [ + "さあ、始めましょう!\n", + "\n", + "## 1. データとのダンス: 最も人気のある音楽ジャンルを3つに絞る\n", + "\n", + "これは前回のレッスンで行った内容の復習です。データを切り分けて分析してみましょう!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Ycamx7GGLXyn" + }, + "source": [ + "# Load the core tidyverse and make it available in your current R session\n", + "library(tidyverse)\n", + "\n", + "# Import the data into a tibble\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\", show_col_types = FALSE)\n", + "\n", + "# Narrow down to top 3 popular genres\n", + "nigerian_songs <- df %>% \n", + " # Concentrate on top 3 genres\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \n", + " # Remove unclassified observations\n", + " filter(popularity != 0)\n", + "\n", + "\n", + "\n", + "# Visualize popular genres using bar plots\n", + "theme_set(theme_light())\n", + "nigerian_songs %>%\n", + " count(artist_top_genre) %>%\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\n", + " fill = artist_top_genre)) +\n", + " geom_col(alpha = 0.8) +\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\n", + " ggtitle(\"Top genres\") +\n", + " theme(plot.title = element_text(hjust = 0.5))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b5h5zmkPLXyp" + }, + "source": [ + "🤩 これはうまくいきましたね!\n", + "\n", + "## 2. データをさらに探索する\n", + "\n", + "このデータはどれくらいクリーンでしょうか?ボックスプロットを使って外れ値を確認してみましょう。外れ値が少ない数値列に注目します(もちろん、外れ値を除去することも可能です)。ボックスプロットはデータの範囲を示し、どの列を使用するか選ぶのに役立ちます。ただし、ボックスプロットは分散を示さないため、クラスタリングに適したデータを評価する上で重要な要素である分散については別途考慮が必要です。詳しくは[この議論](https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot)をご覧ください。\n", + "\n", + "[ボックスプロット](https://en.wikipedia.org/wiki/Box_plot)は、`数値`データの分布を視覚的に表現するために使用されます。それでは、人気のある音楽ジャンルとともに、すべての数値列を*選択*することから始めましょう。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HhNreJKLLXyq" + }, + "source": [ + "# Select top genre column and all other numeric columns\n", + "df_numeric <- nigerian_songs %>% \n", + " select(artist_top_genre, where(is.numeric)) \n", + "\n", + "# Display the data\n", + "df_numeric %>% \n", + " slice_head(n = 5)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uYXrwJRaLXyq" + }, + "source": [ + "選択ヘルパー`where`がどれだけ簡単にしてくれるか分かりますか💁?他の便利な関数については[こちら](https://tidyselect.r-lib.org/)をチェックしてください。\n", + "\n", + "数値特徴ごとにボックスプロットを作成する予定ですが、ループを使うのは避けたいので、データを*縦長*の形式に再整形しましょう。これにより、`facets`(データの各サブセットを表示するサブプロット)を活用できるようになります。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "gd5bR3f8LXys" + }, + "source": [ + "# Pivot data from wide to long\n", + "df_numeric_long <- df_numeric %>% \n", + " pivot_longer(!artist_top_genre, names_to = \"feature_names\", values_to = \"values\") \n", + "\n", + "# Print out data\n", + "df_numeric_long %>% \n", + " slice_head(n = 15)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-7tE1swnLXyv" + }, + "source": [ + "もっと長くなります!さあ、`ggplot`を使う時間です!では、どの`geom`を使いましょうか?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "r88bIsyuLXyy" + }, + "source": [ + "# Make a box plot\n", + "df_numeric_long %>% \n", + " ggplot(mapping = aes(x = feature_names, y = values, fill = feature_names)) +\n", + " geom_boxplot() +\n", + " facet_wrap(~ feature_names, ncol = 4, scales = \"free\") +\n", + " theme(legend.position = \"none\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EYVyKIUELXyz" + }, + "source": [ + "簡単だね!\n", + "\n", + "さて、このデータは少しノイズがあることがわかります。各列をボックスプロットで観察すると、外れ値が見られます。この外れ値をデータセットから取り除くこともできますが、それではデータがかなり少なくなってしまいます。\n", + "\n", + "とりあえず、クラスタリングの演習で使用する列を選びましょう。範囲が似ている数値列を選びます。`artist_top_genre`を数値にエンコードすることもできますが、今回はそれを除外します。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-wkpINyZLXy0" + }, + "source": [ + "# Select variables with similar ranges\n", + "df_numeric_select <- df_numeric %>% \n", + " select(popularity, danceability, acousticness, loudness, energy) \n", + "\n", + "# Normalize data\n", + "# df_numeric_select <- scale(df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D7dLzgpqLXy1" + }, + "source": [ + "## 3. Rでk-meansクラスタリングを計算する\n", + "\n", + "Rでは、組み込みの`kmeans`関数を使用してk-meansを計算できます。詳細は`help(\"kmeans()\")`を参照してください。`kmeans()`関数は、すべての列が数値型であるデータフレームを主な引数として受け取ります。\n", + "\n", + "k-meansクラスタリングを使用する際の最初のステップは、最終的なソリューションで生成されるクラスタ数(k)を指定することです。データセットから抽出した3つの音楽ジャンルがあることを知っているので、3を試してみましょう:\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "uC4EQ5w7LXy5" + }, + "source": [ + "set.seed(2056)\n", + "# Kmeans clustering for 3 clusters\n", + "kclust <- kmeans(\n", + " df_numeric_select,\n", + " # Specify the number of clusters\n", + " centers = 3,\n", + " # How many random initial configurations\n", + " nstart = 25\n", + ")\n", + "\n", + "# Display clustering object\n", + "kclust\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hzfhscWrLXy-" + }, + "source": [ + "kmeansオブジェクトには、`help(\"kmeans()\")`で詳しく説明されているいくつかの情報が含まれています。ここでは、その中のいくつかに焦点を当ててみましょう。このデータは、サイズがそれぞれ65、110、111の3つのクラスターにグループ化されていることがわかります。また、出力には、5つの変数にわたる3つのグループのクラスター中心(平均値)も含まれています。\n", + "\n", + "クラスタリングベクトルは、各観測値のクラスター割り当てを示しています。`augment`関数を使用して、元のデータセットにクラスター割り当てを追加してみましょう。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "0XwwpFGQLXy_" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "augment(kclust, df_numeric_select) %>% \n", + " relocate(.cluster) %>% \n", + " slice_head(n = 10)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NXIVXXACLXzA" + }, + "source": [ + "完璧です!これでデータセットを3つのグループに分割しました。それでは、クラスタリングの結果はどれくらい良いのでしょうか 🤷?`Silhouetteスコア`を見てみましょう。\n", + "\n", + "### **Silhouetteスコア**\n", + "\n", + "[Silhouette分析](https://en.wikipedia.org/wiki/Silhouette_(clustering))は、得られたクラスタ間の分離距離を調べるために使用できます。このスコアは-1から1の範囲で変動し、スコアが1に近い場合、クラスタは密集しており、他のクラスタと明確に分離されています。一方、スコアが0に近い場合、クラスタは重なり合っており、サンプルが隣接するクラスタの境界付近に非常に近いことを示します。[参考](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam)。\n", + "\n", + "平均Silhouette法では、異なる*k*の値に対して観測値の平均Silhouetteを計算します。平均Silhouetteスコアが高いほど、良好なクラスタリングを示します。\n", + "\n", + "クラスタパッケージの`silhouette`関数を使用して、平均Silhouette幅を計算します。\n", + "\n", + "> Silhouetteは、[ユークリッド距離](https://en.wikipedia.org/wiki/Euclidean_distance \"Euclidean distance\")や[マンハッタン距離](https://en.wikipedia.org/wiki/Manhattan_distance \"Manhattan distance\")など、任意の[距離](https://en.wikipedia.org/wiki/Distance \"Distance\")メトリックで計算することができます。これらの距離については[前のレッスン](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb)で説明しました。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Jn0McL28LXzB" + }, + "source": [ + "# Load cluster package\n", + "library(cluster)\n", + "\n", + "# Compute average silhouette score\n", + "ss <- silhouette(kclust$cluster,\n", + " # Compute euclidean distance\n", + " dist = dist(df_numeric_select))\n", + "mean(ss[, 3])\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QyQRn97nLXzC" + }, + "source": [ + "私たちのスコアは **.549** で、ちょうど中間に位置しています。これは、私たちのデータがこのタイプのクラスタリングに特に適しているわけではないことを示しています。この推測を視覚的に確認できるかどうか見てみましょう。[factoextra パッケージ](https://rpkgs.datanovia.com/factoextra/index.html)は、クラスタリングを視覚化するための関数(`fviz_cluster()`)を提供しています。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "7a6Km1_FLXzD" + }, + "source": [ + "library(factoextra)\n", + "\n", + "# Visualize clustering results\n", + "fviz_cluster(kclust, df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IBwCWt-0LXzD" + }, + "source": [ + "クラスターの重なりは、今回のデータがこのタイプのクラスタリングに特に適していないことを示していますが、続けてみましょう。\n", + "\n", + "## 4. 最適なクラスター数の決定\n", + "\n", + "K-Meansクラスタリングでよく出てくる基本的な疑問の一つは、「既知のクラスラベルがない場合、データをいくつのクラスターに分ければよいのか?」という点です。\n", + "\n", + "これを調べる一つの方法として、データサンプルを使って`クラスター数を増やしながら一連のクラスタリングモデルを作成`(例: 1~10まで)し、**シルエットスコア**のようなクラスタリング指標を評価する方法があります。\n", + "\n", + "最適なクラスター数を決定するために、異なる*k*の値に対してクラスタリングアルゴリズムを計算し、**クラスター内平方和(WCSS: Within Cluster Sum of Squares)**を評価してみましょう。クラスター内平方和(WCSS)はクラスタリングのコンパクトさを測る指標で、値が小さいほどデータポイントが近いことを意味します。そのため、WCSSはできるだけ小さい方が望ましいです。\n", + "\n", + "それでは、1から10までの異なる`k`の選択がこのクラスタリングに与える影響を調べてみましょう。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "hSeIiylDLXzE" + }, + "source": [ + "# Create a series of clustering models\n", + "kclusts <- tibble(k = 1:10) %>% \n", + " # Perform kmeans clustering for 1,2,3 ... ,10 clusters\n", + " mutate(model = map(k, ~ kmeans(df_numeric_select, centers = .x, nstart = 25)),\n", + " # Farm out clustering metrics eg WCSS\n", + " glanced = map(model, ~ glance(.x))) %>% \n", + " unnest(cols = glanced)\n", + " \n", + "\n", + "# View clustering rsulsts\n", + "kclusts\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m7rS2U1eLXzE" + }, + "source": [ + "各クラスタリングアルゴリズムにおける中心 *k* の総クラスタ内平方和 (tot.withinss) を求めたので、[肘法](https://en.wikipedia.org/wiki/Elbow_method_(clustering)) を使用して最適なクラスタ数を見つけます。この方法では、クラスタ数の関数としてWCSSをプロットし、[曲線の肘](https://en.wikipedia.org/wiki/Elbow_of_the_curve \"Elbow of the curve\") をクラスタ数として選択します。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "o_DjHGItLXzF" + }, + "source": [ + "set.seed(2056)\n", + "# Use elbow method to determine optimum number of clusters\n", + "kclusts %>% \n", + " ggplot(mapping = aes(x = k, y = tot.withinss)) +\n", + " geom_line(size = 1.2, alpha = 0.8, color = \"#FF7F0EFF\") +\n", + " geom_point(size = 2, color = \"#FF7F0EFF\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pLYyt5XSLXzG" + }, + "source": [ + "プロットは、クラスタ数が1から2に増加するにつれてWCSSが大幅に減少(つまり、*密集度*が向上)し、さらに2から3クラスタへの増加でも顕著な減少を示しています。その後、減少はそれほど顕著ではなくなり、約3クラスタのところでチャートに`肘` 💪が現れます。これは、データポイントが2~3の適度に分離されたクラスタに分かれている良い指標です。\n", + "\n", + "ここで、`k = 3`のクラスタリングモデルを抽出する準備が整いました:\n", + "\n", + "> `pull()`: 単一の列を抽出するために使用\n", + ">\n", + "> `pluck()`: リストなどのデータ構造をインデックスするために使用\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JP_JPKBILXzG" + }, + "source": [ + "# Extract k = 3 clustering\n", + "final_kmeans <- kclusts %>% \n", + " filter(k == 3) %>% \n", + " pull(model) %>% \n", + " pluck(1)\n", + "\n", + "\n", + "final_kmeans\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l_PDTu8tLXzI" + }, + "source": [ + "素晴らしいですね!取得したクラスターを視覚化してみましょう。`plotly`を使ってインタラクティブにしてみませんか?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "dNcleFe-LXzJ" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "results <- augment(final_kmeans, df_numeric_select) %>% \n", + " bind_cols(df_numeric %>% select(artist_top_genre)) \n", + "\n", + "# Plot cluster assignments\n", + "clust_plt <- results %>% \n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = .cluster, shape = artist_top_genre)) +\n", + " geom_point(size = 2, alpha = 0.8) +\n", + " paletteer::scale_color_paletteer_d(\"ggthemes::Tableau_10\")\n", + "\n", + "ggplotly(clust_plt)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6JUM_51VLXzK" + }, + "source": [ + "おそらく、各クラスタ(異なる色で表される)がそれぞれ異なるジャンル(異なる形で表される)を持つことを期待していたかもしれません。\n", + "\n", + "モデルの精度を確認してみましょう。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HdIMUGq7LXzL" + }, + "source": [ + "# Assign genres to predefined integers\n", + "label_count <- results %>% \n", + " group_by(artist_top_genre) %>% \n", + " mutate(id = cur_group_id()) %>% \n", + " ungroup() %>% \n", + " summarise(correct_labels = sum(.cluster == id))\n", + "\n", + "\n", + "# Print results \n", + "cat(\"Result:\", label_count$correct_labels, \"out of\", nrow(results), \"samples were correctly labeled.\")\n", + "\n", + "cat(\"\\nAccuracy score:\", label_count$correct_labels/nrow(results))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C50wvaAOLXzM" + }, + "source": [ + "このモデルの精度は悪くはありませんが、特別良いとも言えません。このデータは、K-Meansクラスタリングに適していない可能性があります。データが不均衡で、相関が少なく、列の値の間に大きな分散があるため、うまくクラスタリングできないのです。実際、形成されるクラスタは、上で定義した3つのジャンルカテゴリに大きく影響されている、または偏っている可能性が高いです。\n", + "\n", + "それでも、これは非常に学びの多いプロセスでした!\n", + "\n", + "Scikit-learnのドキュメントでは、このようにクラスタがあまり明確に区別されていないモデルは「分散」の問題を抱えていると説明されています。\n", + "\n", + "

                                          \n", + " \n", + "

                                          Scikit-learnのインフォグラフィック
                                          \n", + "\n", + "\n", + "\n", + "## **分散**\n", + "\n", + "分散は、「平均からの二乗差の平均」と定義されます [出典](https://www.mathsisfun.com/data/standard-deviation.html)。このクラスタリング問題の文脈では、データセットの数値が平均から少し離れすぎる傾向があることを指します。\n", + "\n", + "✅ ここで、この問題を解決するためのさまざまな方法を考える良い機会です。データをもう少し調整しますか?別の列を使用しますか?別のアルゴリズムを試しますか?ヒント: データを正規化するために[スケーリング](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/)を試し、他の列をテストしてみてください。\n", + "\n", + "> この '[分散計算機](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)' を使って、概念をもう少し理解してみてください。\n", + "\n", + "------------------------------------------------------------------------\n", + "\n", + "## **🚀チャレンジ**\n", + "\n", + "このノートブックで時間をかけてパラメータを調整してみてください。データをさらにクリーンアップする(例えば外れ値を削除する)ことで、モデルの精度を向上させることができますか?特定のデータサンプルに重みを付けることもできます。他にどのような方法でより良いクラスタを作成できますか?\n", + "\n", + "ヒント: データをスケーリングしてみてください。ノートブックには、データ列を範囲的により似たものにするための標準スケーリングを追加するコメント付きコードがあります。シルエットスコアは下がりますが、エルボーグラフの「折れ目」が滑らかになります。これは、データをスケーリングしないままにすると、分散の少ないデータがより大きな重みを持つようになるためです。この問題についてもう少し読みたい場合は、[こちら](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226)をご覧ください。\n", + "\n", + "## [**講義後のクイズ**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/)\n", + "\n", + "## **復習と自己学習**\n", + "\n", + "- K-Meansシミュレーター [こちら](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/) を見てみてください。このツールを使ってサンプルデータポイントを視覚化し、そのセントロイドを決定できます。データのランダム性、クラスタ数、セントロイド数を編集できます。これにより、データがどのようにグループ化できるかのアイデアが得られますか?\n", + "\n", + "- また、スタンフォード大学の [K-Meansに関するハンドアウト](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) も見てみてください。\n", + "\n", + "K-Meansクラスタリングに適したデータセットで新たに習得したクラスタリングスキルを試してみたいですか?以下をご覧ください:\n", + "\n", + "- [クラスタリングモデルのトレーニングと評価](https://rpubs.com/eR_ic/clustering)(Tidymodelsとその関連ツールを使用)\n", + "\n", + "- [K-meansクラスタ分析](https://uc-r.github.io/kmeans_clustering)、UC Business Analytics R Programming Guide\n", + "\n", + "- [tidyデータの原則を用いたK-meansクラスタリング](https://www.tidymodels.org/learn/statistics/k-means/)\n", + "\n", + "## **課題**\n", + "\n", + "[異なるクラスタリング手法を試してみる](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/assignment.md)\n", + "\n", + "## 感謝の言葉:\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) さん、Python版のオリジナルモジュールを作成していただきありがとうございます ♥️\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) さん、Rをより親しみやすく魅力的にする素晴らしいイラストを作成していただきありがとうございます。彼女の[ギャラリー](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)でさらに多くのイラストをご覧ください。\n", + "\n", + "楽しい学びを!\n", + "\n", + "[Eric](https://twitter.com/ericntay)、Gold Microsoft Learn Student Ambassador\n", + "\n", + "

                                          \n", + " \n", + "

                                          @allison_horstによるアートワーク
                                          \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/5-Clustering/2-K-Means/solution/notebook.ipynb b/translations/ja/5-Clustering/2-K-Means/solution/notebook.ipynb new file mode 100644 index 000000000..e384c97fe --- /dev/null +++ b/translations/ja/5-Clustering/2-K-Means/solution/notebook.ipynb @@ -0,0 +1,550 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "e867e87e3129c8875423a82945f4ad5e", + "translation_date": "2025-09-04T02:10:23+00:00", + "source_file": "5-Clustering/2-K-Means/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "前回のレッスンで終了したところから始めましょう。データをインポートしてフィルタリングした状態です。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                          0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                                          1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                          2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                                          3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                          4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "私たちは3つのジャンルのみに集中します。もしかすると3つのクラスターを構築できるかもしれません!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                          1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                          3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                          4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                          5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
                                          6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "df.head()" + ] + }, + { + "source": [ + "このデータはどのくらいクリーンですか?ボックスプロットを使用して外れ値を確認してください。外れ値が少ない列に集中します(ただし、外れ値を除去することも可能です)。ボックスプロットはデータの範囲を示し、使用する列を選ぶのに役立ちます。ただし、ボックスプロットは分散を示さないことに注意してください。分散は、良いクラスタリング可能なデータの重要な要素です(https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot)。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADFQAAAxLCAYAAAAjUVg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdsU5bZxiA4R/XFalaEEsHS1xCOpbroL3Qluug3Zp7YGAzqdRIwe7QMBAlEBrsY/w+z2QfWfgbLMv/d/SKg/V6PQAAAAAAAAAAAAAAAEpmUw8AAAAAAAAAAAAAAACwbYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyJlv+w0PDg4Oxxg/fXh6Pca43fYMAAAA7Lxvxhg/fnj813q9fjflMPBc7EUAAAD4QnYj7B17EQAAAL7QVvciWw8qxn+H4z8meF8AAABepp/HGH9OPQQ8E3sRAAAAnspuhH1hLwIAAMBTbXwvMtvkHwcAAAAAAAAAAAAAANhFU/yHiuu7B5eXl2OxWEwwAgAAALvs6upqnJ2d3T29fui18MLYiwAAAPAouxH2lL0IAAAAj9r2XmSKoOL27sFisRinp6cTjAAAAMALcvv4S+DFsBcBAADgqexG2Bf2IgAAADzVxvcis02/AQAAAAAAAAAAAAAAwK4RVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5MynHgAKVqvVWC6XU49BwGq1Gjc3N/euHR0djdlMP8fmHB8f+4wBAMAn2AfwMed2do0zPQAAAAB8PfcDdoc9/PbYL7NPBBWwBcvlcpyfn089BsBGXFxcjJOTk6nHAACAnWMfAOw6Z3oAAAAA+HruB1Bkv8w+kQYBAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx4Aqv5+/etYzw+nHoN98/6f8cOb3+9devv6lzHmryYaiH1z8P7d+P7Nb1OPAQAAL5Z9QJxzOxNypgcAAACA7XE/YCL28Bthv8y+E1TARNbzw7H+9rupx2DPHHzq4vyVzxoAAMCOsA9oc24HAAAAAGhwP2Aa9vDA/zGbegAAAAAAAAAAAAAAAIBtE1QAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx5g16xWq7FcLu9dOz4+HrOZ9gQAAHj5nHmAh/iOAAAAdo1zCgCwLX53AAD7zG+dzxNUfGS5XI7z8/N71y4uLsbJyclEEwEAADwfZx7gIb4jAACAXeOcAgBsi98dAMA+81vn8yQlAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAwL/s3bFOXGcax+FvWMJqdtcYuYi3MJeQckpzEUlBJJB8AUikyAXkCtIQcQGRQApFvO7T2SVlcgVhG9NZFLMmxLNFtljHY3xsw5x3zv95JDdnBnhlffqY8838bAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAACiXF5e9j0CUJg9gq4qr5XKswEAQCWCCgAAAAAAAABiTKfT9vXXX7fpdNr3KEBB9gi6qrxWKs8GAADVCCoAAAAAAAAAiHF0dNR+/vnndnx83PcoQEH2CLqqvFYqzwYAANUIKgAAAAAAAACIcHZ21k5OTlprrZ2cnLSzs7OeJwIqsUfQVeW1Unk2AACoSFABAAAAAAAAwODNZrN2cHDQrq6uWmut/fbbb+3g4KDNZrOeJwMqsEfQVeW1Unk2AACoSlABAAAAAAAAwOA9ffq0nZ6evnbt9PS0PXv2rKeJgErsEXRVea1Ung0AAKoSVAAAAAAAAAAwaNPptB0eHs597PDwsE2n0wVPBFRij6Crymul8mwAAFCZoAIAAAAAAACAQTs6Omrn5+dzH3v+/Hk7Pj5e8ERAJfYIuqq8VirPBgAAlQkqAAAAAAAAABisX3/9tZ2cnFz7nB9++KGdnZ0taCKgEnsEXVVeK5VnAwCA6gQVAAAAAAAAAAzSbDZr3333Xbu6urr2eVdXV+3g4KDNZrMFTQZUYI+gq8prpfJsAACwDFb7HqCaV69evXHtxYsXPUzCkMxdQ25QgWU0Z+/yexJguczbt+fdBwGZnIvcLOcBQCnu6QFYUh97lvH06dN2enra6bmnp6ft2bNnbWtrq/P3B5abPYKuKq+VyrMtG+ejwIfyfgCD53x5EHxe5O1uPKgYjUYP3vGUf970z7xJFxcXb1x79OhRD5MweL+/bK39re8pAN7P7y/fuOT3JMDyu7i4aPfu3et7DBgE5yK8k/MAoC/u6QEYkK5nGdPptB0eHr7X9z48PGyTyaSNx+MPHQ9iLdu5iD2CriqvlcqzLSPno8CN8n4AQ+J8ebB8XuQPK7fwPc/e8adbEg0AAACwfJyLAAAAFHF0dNTOz8/f62ueP3/ejo+Pb2kiGLylOhexR9BV5bVSeTYAAFgWtxFUAAAAAAAAAEBvLi8v2+PHjz/oa3/88cd2eXl5wxMBldgj6KryWqk8GwAALJPbCCo23/Fncgs/EwAAAKAC5yIAAAAFrK2ttc8///yDvvaLL75oa2trNzwRRFiacxF7BF1VXiuVZwMAgGWyetPfcDab/fu6x0ej0U3/yBt1586dN659//337e7duz1Mw1C8ePGiPXr06PWLf/lrP8MAfIw5e5ffkwDLZd5r03n3QcCHcS7C/3MeAJTinh6AJfUxZxm7u7vtp59+aufn551/3v3799vOzs57zQj8YdnORewRdFV5rVSebRk5HwU+lPcDGDzny4Pg8yJvd+NBxbJbWXnzP+24e/du29jY6GEaBq3YYRFAJ3P2Lr8nAZbfvPsgIJNzkQVwHgD0xT09AAPS9SxjPB63vb299s0333T+3nt7e208Hn/oaMASsUfQVeW1Unm2ZeR8FLhR3g9gSJwvD5bPi/zB3wIAAAAAAAAAg7S1tdUmk0mn504mk/bw4cNbngioxB5BV5XXSuXZAABgGQgqAAAAAAAAABik0WjU9vf32+rq6rXPW11dbfv7+23kX5GFKPYIuqq8VirPBgAAy0BQAQAAAAAAAMBgbW5utu3t7Wuf8+WXX7bNzc0FTQRUYo+gq8prpfJsAABQnaACAAAAAAAAgEHb3d1tn3766dzH7t+/33Z2dhY8EVCJPYKuKq+VyrMBAEBlggoAAAAAAAAABm08Hre9vb25j+3t7bXxeLzgiYBK7BF0VXmtVJ4NAAAqE1QAAAAAAAAAMHhbW1ttMpm8dm0ymbSHDx/2NBFQiT2CriqvlcqzAQBAVYIKAAAAAAAAAAZvNBq1/f39trq62lpr7ZNPPmlfffVVG41GPU8GVGCPoKvKa6XybAAAUJWgAgAAAAAAAIAIm5ubbXt7u7XW2vb2dnvw4EHPEwGV2CPoqvJaqTwbAABUJKgAAAAAAAAAIMbu7m777LPP2s7OTt+jAAXZI+iq8lqpPBsAAFSz2vcAAAAAAAAAALAo4/G4ffvtt21tba3vUYCC7BF0VXmtVJ4NAACq8T9UAAAAAAAAABDFB0yB69gj6KryWqk8GwAAVCKoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAKrtqYAAACAASURBVAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDirfQ9Qzfr6envy5Mkb1wAAAIbAPQ9wHXsEAABQjfsUAGBRvO4AAIbMa523E1T8ycrKStvY2Oh7DAAAgFvhnge4jj0CAACoxn0KALAoXncAAEPmtc7brfQ9AAAAAAAAAAAAAAAAwKIJKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiLPa9wCQanT1su8RGKKr/8y9Nlr8JAyUvQsAAD6O19Th3LfTI/sPAAAAACyO87ieOIe/FdYzQyeogJ78/ZfHfY9AiH/88q++RwAAAOB/nAfwZ+7bAQAAAACGx/sBdTiHB95lpe8BAAAAAAAAAAAAAAAAFk1QAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcVb7HgASrK+vtydPnvQ9BgFevXrVLi4uXrt2586dtrKin+P2rK+v9z0CAACU5DyAP3PfTjXu6QEAAADg43k/oA7n8IvjfJkhEVTAAqysrLSNjY2+xyDEvXv3+h4BAACA5jyA+dy3AwAAAAAMi/cDanEOD7wvyRUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAwH/Zu+8w6YoyYeP3Qw4CgqCIqAQjgooCKyDyIqYFQWFFQFExYVhZw+oiqyzgmpVVVIwgQQwogih8JhAMyC6goIgiBkBQkIwE4SU83x9V7RyaDjPzdvf0TN+/6zpXn9OnzjnVXWd6uqrrqZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNnGXm4JpLt1auvPLKObi8JEmSJGnctdUXl+6WTpqHbBeRJEmSJPVl24gWKNtFJEmSJEl9jbpdJDJz2Ne49wUjNgPOGelFJUmSJEnz2eaZee5cZ0IaBNtFJEmSJEmzYNuIFgTbRSRJkiRJszD0dpGlhnlySZIkSZIkSZIkSZIkSZIkSZKkcTQXM1QsD2xSN68B7h7RpddmaqSDzYGrRnRdDZ5luXBYlguHZblwWJYLh2W5cFiWC4vlOX1LA2vV9Qsy8465zIw0KHPYLjITflZpEnnfa1J572sSed9rUnnvzz+2jWjBmSftIhos//9oUniva5J4v2tSeK9rkozj/T7SdpFlhnnyTuoLGvl0pBHR3LwqM68YdR40GJblwmFZLhyW5cJhWS4cluXCYVkuLJbnjF021xmQBm2u2kVmws8qTSLve00q731NIu97TSrv/XnLthEtKPOhXUSD5f8fTQrvdU0S73dNCu91TZIxvt9H1i6y1KguJEmSJEmSJEmSJEmSJEmSJEmSNC4MqJAkSZIkSZIkSZIkSZIkSZIkSRPHgApJkiRJkiRJkiRJkiRJkiRJkjRxDKiQJEmSJEmSJEmSJEmSJEmSJEkTx4AKSZIkSZIkSZIkSZIkSZIkSZI0cQyokCRJkiRJkiRJkiRJkiRJkiRJE8eACkmSJEmSJEmSJEmSJEmSJEmSNHEiM+c6D5IkSZIkSZIkSZIkSZIkSZIkSSPlDBWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJs5EBFRExMMj4pCIuCgibo2I6yPinIh4W0SsNNf5m2QR8cCIeG5EvCsivh0R10ZE1uWoWZzvnyPixIi4IiLuqI8nRsQ/DyH7aoiIzSLivyLie433/5aIuDgijoyIp87wfJblHIiIVSNij/qZ+cOI+H1E3BQRiyPi6og4IyL+IyIeMM3zbRURx0bEZRFxe0RcFRHfjYg9h/1a1FtEfKDxeZsRsWgax/h3OYfayqvXcsY0zmVZjpGIeFhEHBwR50bENfXz8vKI+HH9jrRxn+MtzzlQ/ydO9++y72et5Shp0EbVFuLnl8bNMO/9iFgpInaNiE/Vc94QEXdGxHURcVZEHBQRaw/qtUjTNarP/LZrrhQRf2x81710GNeRehnlvR8Rz4iIo6K0l94apc304og4PiJeFxH3G+T1pG5Gcd9HxHpR2o9/FhE31u8710fET6P8DvTAQVxHkjS/WN/WpLCOrUlivVqTwrq0FroYcD/saV5zzyh9ha+K0s/psij9RLccxvVGITJzrvMwVBGxE3AssGqXJBcDO2bm70eXK7VERK8b8OjM3Hua51kK+Czwyh7JDgdek5n3TD+Hmo6I+BGwzTSSHgO8OjMX9ziXZTmHIuIZwPenkfRaYK/M/G6Pcx0EHED34L1TgBdk5u0zzaeWTEQ8ETgHWKbx9HaZeUaX9P5djoE+/zObfpiZi7qcw7IcMxGxL/A+YOUeyQ7NzDd1ONbynENRgpe2ncEh9wAPy8w/t53HcpQ0cKNoC/HzS+NomPd+RDweOBPo98Pe34B9MvO4mV5Dmo25av+OiA8D/9546rLMXG+Q15B6GdW9HxGrA0cCz+uTdNPMPH9JriX1M6Lv+S8BPgOs2CPZ9cAemTmd3xIkSQuA9W1NCuvYmiTWqzUprEtrEgyqH/Y0r7UicDywQ5ck9wDvysyDB3XNUVnQM1RExKbAcZQPw1uAdwBbAdsDn6vJHgWcEhGrzEkm1fQn4HuzPPY9THXiOA/YE9iiPp5Xn38V8O4lyaC6Wqc+/gU4FHgB5f3fEngL0Oo4+FLgqD7nsizn3uWU4Jc3ArtSynFrYHfga8DdwJrANyPiCZ1OEBGvAQ6k/J/5A6VMtwCeD5xek+0IfH5or0IdNTq+LQNcPc3D/LscL58CNumxvLzHsZblGImIdwIfowRTXAy8DVgEbAo8o27/lFLZ6MTynFsvp/ff4iaU/50tp7UHU1SWo6SBGmFbiJ9fGisjuPdXZapzx5nA/sAzgScBz6b8WHJPTffFcJYWjcBctX/X674JuB24eVDnlaZrVPd+RKxGGXym1enjRODFwFOAzSltp4cCV8z2GtJ0jeK+j4itKb/hrEj5XnMkpU1/C8rvPt+qSdcAToqIDWZzHUnS/GJ9W5PCOrYmifVqTQrr0ppQS9IPezo+z1QwxelM3e+vpPQTXQo4KCL2GWIehiMzF+wC/AhI4E5gyw7731b3J3DQXOd3EhfgYOC5wIPq9nqNMjlqmud4VC3jpIy4vmLb/pXq86174RFz/boX2gKcDLwQWLrL/jWB3zbK9mmW5Xgu3cqwLc3zG2V5Qof9awA31v2XAWu2XwP4ZuMci+b6dU/SQmmMSeA3wHv7lYN/l+OzLOl3FstyvBZKBb1VpkcDy/ZIu5zlOT8X4AONct7LcnRxcRnFwgjaQvz8chnHZdj3PuVHluOAjXqkeR7lB5MEfk+dHdjFZVjLKD7zO5xzaeDces4DgEvr+qVz/X64TM4yqnufMuhMUjo27dwjXQDLzPX74rKwlxF9zz+5cY7Xd0lzSCPNJ+b6fXFxcXFxGf5ifdtlUhbr2C6TtFivdpmUxbq0y6QsDKAf9jSv8/TGeb9JW19TSj/hy+r+G4DV5/q9mcmyYGeoiIgtgG3q5hGZeVaHZIdQOpQCvDEilh1J5vQPmXlgZp6cmX9dgtO8iTLSOsC+mfn3tmvcBuxbN5cB3rwE11IHmfnczPxqZt7dZf+13Ht6whd0OZVlOce6lWFbmm9QAmRg6nO26VXAanV9v1r+7dd4PWWmCyhfTjUCEfEw4L/r5muBxdM4zL/LhcOyHBN1pphP1c1fAK/MzDu7pc/MTn+rlueYq+X84rp5C3BCh2SWo6SBGmFbiJ9fGiujuPcz86eZuXtm/rpHmpOY+p+/IWXmMWko5rD9+43AkyltQx8YwPmkGRnVvR8RTwVeUjffmZnf7JY2i7tmeg1pukb4mb9VfbwuMz/ZJc27GutbzuIakqR5xPq2JoV1bE0S69WaFNalNUkG1A97Ot5aH++iBBDdq69p7Se6X928P6Uf6byxYAMqKCOotxzZKUFm3kOJhIRSeNsNO1MarIgIpqYFuygz/7dTuvp8qwP48+pxGq3TG+sbtu+0LOed1lSTK3TY1/r8/RudO4+SmVcAp9bN7Qc5JaZ6OowyZe7RmfnDfon9u1w4LMux8yzgkXX9AzNtHLI8543tgYfU9eNr5+J/sBwlDcnQ20L8/NKYGqd2wJ7tH9IAjfy+j4iHM/Xj32u7BH9Lwzaqe/8N9fEm4BOzOF4apFHd98vVx0u6JcjMm4DWIErLdUsnSVowrG9rUljH1iSxXq1JYV1aGqDav3P7unlq7f/ZyQmUfqMAuww9YwO0kAMqnlofbwV+1iNds0Pp1sPLjoZkfWCdut6vc3Br/0MoU9potJZvrHeaBcGynCci4tHAE+vmRW37lgO2qJtn9an0t8pxeWCzgWZS9xERL6RM7XU9U9Gi/fh3uXBYluNlt/qYlOkfAYiINSLikRGxRp/jLc/54aWN9WM67LccJQ3DKNpC/PzSOBqndsB+7R/SoMzFff9JYGXgC5l5xhKeS5qtod/7tY2zFUD6/cy8vT6/dEQ8NCLWi4hOA81IwzKqz/xWQPT63RJExKrAmm3pJUkLl/VtTQrr2Jok1qs1KaxLS4O1OVMBQV1/I679RVsD8m0+oFm9RmIhB1Q8tj7+vs+ov83OwI/tmkrjaqPG+kVdU913v2U9ets21n/TYb9lOcYiYqXayfctlH+Iy9RdH21L+ihg6bpuOY6JiLg/cGjd3K9OrzUd/l2Op90i4tcRcVtE3BwRv4uIoyOiV6S8ZTlenlIfL83MmyPiRRFxAXAdcDFwXUT8NiLeGhHLdzje8hxzEXE/piLtLwPO6JDMcpQ0DKNoC/HzS+NonNoB+7V/SIMy0vs+IvYAdgBuAP59tueRBmAU9/4TmJqZ94KIWDUiPkoZSfBPlBEHb4qI70fEohmeW5qNUX3mf7o+PiAiXtslzQEd0kuSFi7r25oU1rE1SaxXa1JYl5YGaza/ES8DPHI42Rm8BRlQUSMYWxFd3aYVASAzb6BEoQE8dJj50lCs21jvWdbA5Y11y3qEImIp4O2Np77aIZllOWYiYu+IyIhIyufkxcAhwINqkvcDX2o7zHIcTx8E1gbOBI6YwXGW53jaiFKJWxG4H/AIykj4P4iIEyNitQ7HWJZjov5PfEzdvDYiDgW+CGzclvRRwIco5Xr/tn2W5/j7F8qoQgDHZmZ2SGM5ShqoEbaF+PmlsTJO7YAR8QRgx7p5QWbawUNDMer7PiJWZ2pQjbdn5jWzOY+0pEZ47zd/HFwKOBd4I9Csny8HPINSb99vhueXpm3En/mfZ2qWzcMi4nMRsVNEbBYRu0bEiUzNfvyezDx1FteQJM0T1rc1Kaxja5JYr9aksC4tDcWC/414QQZUAKs01m+ZRvrWB+L9hpAXDddMyvrWxrplPVpvBrao6ydkZqdptCzL+eN8YIvM3L9DB1HLccxExDbAq4C7gNd26dTbjeU5Xm4DvgK8GtgG2BR4FvAeyswGAM8HTuowXZplOT5WY+o7+CbAvwFXAnsBawArUUZZak1/txWlAt5keY6/lzbWj+mSxnKUNGijagvx80vjZizaAevMYoczNWvjOwZ5fqnNqO/7D1EG2DgL+NwszyENwqju/TUa6/tRRlH7DqWNewXggcDrgJuAAN4fEc+b4TWk6RrZZ35m3p2ZLwN2A35BaVf+JnAO8HVK2+PpwDMz850zPb8kad6xvq1JYR1bk8R6tSaFdWlp8Bb8b8QLNaBihcb64mmkv6M+rjiEvGi4ZlLWdzTWLesRiYhtKTMZAFxN+ULciWU5fr5B6ey7CaVSsydwIvBE4MsR8dwOx1iOYyQilgM+S6mAfiQzfzXDU1ie4+UhmblnZh6emT/JzPMz8/u1wvU44Lyablvu+1lrWY6PlRvrK1ACZbbLzC9m5g2Z+ffM/BHwdEplG2CXiPintuNaLM8xExHrAovq5v9m5sVdklqOkgZtVG0hfn5p3IxLO+AngM3q+tGZ+a0Bn19qGtl9HxFPA17B7AZqkAZtVPd+e939+8BzM/OczLwjM6/JzE8DzwXuqeneFxExw+tI0zHS7zoR8VjKQBGbdEmyJfDKiHjIbM4vSZpXrG9rUljH1iSxXq1JYV1aGrwF/xvxQg2ouL2xvtw00i9fH/8+hLxouGZS1ss31i3rEYiIx1E64C9DKavdMvPqLsktyzGTmTdm5q/qck5mfiUzd6V8AdyAMgr+3m2HWY7j5T+BxwB/Ag6exfGW5xjJzBt77Psr8ALgzvrUvm1JLMvxcXvb9uGZ+dv2RJn5d+49ytLuXc5heY6fvZiqZx3dI53lKGnQRtUW4ueXxs2ctwNGxP6UUaegjDr1r4M6t9TFSO77OhJsa6CGQzPzguXcewAAIABJREFUlzM5XhqCufi+A7BfZt7dnigzfwKcUDcfS/cfzaUlMbLvOnW247OAnYA/Ay8B1q7XfSjlO85twB7A2fU3IEnSwmV9W5PCOrYmifVqTQrr0tLgLfjfiBdqQMXNjfXpTBfSioqczvQ+Gi8zKetm9KtlPWQRsT7wPWB14G5gjzridjeW5TyRmV8Avkb5H/KJiGhO1Wc5jomIeAywf93cNzNv7ZW+C8tzHsnMP1JGdgB4RESs09htWY6Pm9u2v9cj7WmUEWoANu9yDstz/LykPt4BHNcjneUoadBG1Rbi55fGzZy2A0bEa4D31s2LgB1mWf+SZmJU9/07gEcDlwMHzvBYaRjm4vvONZl5XteU8N3G+uZdU0mzN5L7vnbw+zKwGnAV8JTMPDYz/5qZd2bmFZn5SeBplB/Q16H3QBKSpPnP+rYmhXVsTRLr1ZoU1qWlwVvwvxEvM9cZGIbMvD0irgMeAKzbK21ErM5U4V0+7Lxp4K5orPcsa0rEX4tlPUS1E++plC8BCbwiM0/qc5hlOb+cBLyQ8vn5HOBL9XnLcXy8mRIN+kdgpYjYo0OajRvrT4+Itev6t2qDpOU5//wa2KGuPwT4S123LMdEZt4REdcAa9Wnur7H9TvttZTRC9Zq7LI8x1REbAZsVDdPzswbeiS3HCUN1AjbQvz80liZy3bAiNgT+GTdvAx4ZmZeu6TnlfoZ4X2/X308FdgpIjqlaZ175Ubbw9WZ+YMZXkvqa4T3fjP9FV1T3TftWl1TSbM0wvv+OZT2RICPZ+ZVXfJzYUQcSxkt/MkR8YTM/MUMryVJmgesb2tSWMfWJLFerUlhXVoaivbfiM/tkXZe/ka8IAMqql8D21BGaF4mM+/qku4xjfXfDD9bGrBfN9Yf0zXVffdb1kMSEWtSRkjfoD61b2YeM41DLcv55ZrG+sMb6xdTZiRZGstxrrWmztqAEg3dzwGN9fWBW/Hvcj7KLs9bluPlQmBRXV+6T9rW/uZ3WctzfL20sd5vZAnLUdIwjKItxM8vjaORtwNGxM7AMZTZG68Ets/Mfj8OSoM0ivu+NW33y+vSy5pMtT/8ELCzh4ZlFPf+hY316dbb4d51d2mQRnHfP7ax/vM+aX9G6QTSuqadQCRp4bK+rUlhHVuTxHq1JoV1aWmwZvMb8V3A74aTncFbaq4zMEQ/qY8rA0/ukW7bxvqZw8uOhuQSpkbf3rZXQsrUSQB/Bi4dVoYmWUSsRpmKrTUy89sz87BpHm5Zzi8Paaz/Y1qmzFwMnF03t4yI5eiuVc530DtiUXPHv8v5Z6PG+l8a65blePlRY32DbokiYlVKgymU8mixPMdQRCwLtEYLugb4dp9DLEdJwzCKthA/vzSORtoOGBHbA1+lDFZzHWWkzD/M9nzSLNn+rUk19Hs/My8D/lQ314suQ8dWGzbW/9w1lbRkRvGZ3+xY0m9AvmW7HCdJWnisb2tSWMfWJLFerUlhXVoarHOAxXW962/Etb/oU1rHZOadw87YoCzkgIpvNNY7RvZGxFJMjSJ7I3D6sDOlwcrMBE6qm4+JiKd0Slefb0U9nVSP0wBFxErAKcCT6lPvycwPTPd4y3Le2a2xfkHbvtbn76rArp0Ojoh1gWfUzdMy8+bBZk+ZuXdmRq8FOLhxyHaNfZfWc/h3OY9ExPrAM+vmHzLzH40NluXY+XpjfZce6XYBWo1LP249aXmOrX9mahraL/UY4QKwHCUNzdDbQvz80pgaWTtgRGxF+RtYHrgJeHZmXtj7KGkoRvGZ37NdobYtXFaTX9Z4ftEMX4s0E6P6zG/V3VcFtu+Rrtn++ZOuqaQlM4r7/pLG+jZ90jZ/NL+kaypJ0kJgfVuTwjq2Jon1ak0K69LSANX+nafVzWfU/p+d7Er57Ac4cegZG6AFG1CRmWcz1fHslRGxZYdk/87UtDuHzqdIGN3LR4G76/rHI2LF5s66/fG6eVdNrwGqUWUnAlvXpw7NzHfO4lSW5RyLiL0jYoU+ad4M7FA3L6HRybc6nNLIBfD+iHhA2/FLA59katq+Dy1RpjVs/l2OgYjYKSK6RrNHxIMoDRKtWWE+2SGZZTkmMvOXTM1esGcdceleImJt4N11czFwZFsSy3P8vLSxfsw0j7EcJQ3UINpCImJRRGRdjupyKT+/NFZGde9HxBMpg0msDNwK7JiZPxvEa5BmaoSf+dJYGfH3ndvr+v/UWSTvJSL2AhbVzVMy8/LpvxJp+kZ0358G3FbXXxcRm3TKS0T8M1MDhPwZOH/6r0SSNN9Y39aksI6tSWK9WpPCurQ0M7XfaOt+P6hLsg/Xx2WAw2o/0OY51gRag7DfSOlHOm/0m2ZmvnsjZRqeFYHvRcR7KVFkKwJ7APvUdBcDh8xJDidcRDwVeETjqTUb64+IiL2b6TPzqPZzZObFEfEh4O3AZsCZEfEB4A+UacH2AzatyT+Umb8b2AtQy5eBZ9X1HwBHRMTGPdIvzsyL25+0LMfCQcAhEfF1SuT3H4BbgFWATYAXMxU4sxjYJzPvbp4gM6+PiP2ATwMPB/4vIt5DmcliHeBNwHY1+Zcz84xhviAtGf8ux8bHgWXr3+ZZwKXA3yn/NxcBr2Hqf+hPgMPaT2BZjp03AVsC9wdOjoiPAv+PUq5bAPsDrWjuA5ozjoDlOW4iYnXguXXzV5n58+kcZzlKGpKht4X4+aUxNdR7PyI2BL5L+f4G8E7gpj7tH1dn5tUzvZY0A7Z/a1KN4vvOnyLiv4APUtpFz67fd37J1My8r6vJ/wa8eXYvRZq2od73mXljRLwfeBfl94CfRsTHge8DNwAPAp4HvJqpAfvenpn3zPoVSZLmC+vbmhTWsTVJrFdrUliX1kQYRD/s6cjMH0TEVyh/PzsD36/9nf5C+ax/B/Cwmny/zLxhNteZK5GZc52HoYqInYBjmZpCpN3FlOj2348uV2qpkXsvm276OsVdp/MsBXwOeEWPw4+gdP72H9KARcRMP0guy8z1upzLspxDEXEpJQiinyuAV2Tm93uc62DgAKDj3y2l4/C/ZObtXfZryGo06YF1c7tuwS3+Xc69Gfxtfh14VWbe2OU8luUYqRWa4ymV6E4SeE9mHtDleMtzTETEa4FP1c3/yMxpz75kOUoahiVpC4mIRUxNaXx0Zu7d5Rp+fmnsDPPer43N7bOG9XNwZh40w2OkGRnFZ36f619Kqa92be+ThmFU935EvI8SLNqtjfNq4PmZedb0ci7N3rDv+4gI4H8oHU663fMAdwL/mZkf7pFGkrSAWN/WpLCOrUlivVqTwrq0JsEg+mG3fS/v+n07Ilak9HXaocvp7wH+ez5+X1+qf5L5LTO/BTwe+Ajlw+82ylQi51JHTDSYYv7LzHsy85XAjsBJlIinxfXxJGCHzHyVnTjGn2U5555Nmc7sBEpU+F+Bu4CbKaPNfh14OfDoXsEUAJl5IPBU4EvA5ZRyvJoShfuizNzRYIr5wb/LsfAySvDLdyjfZ66n/G3eSJn95TPAVpn5gm7BFGBZjpvM/AnwOOBg4BeUkTduBy6hVFKe3C2Yoh5veY6Pl9THu4EvzuRAy1HSMIyiLcTPL40j2wE1ibzvNalGde9n5v6UGXu/QJkx9A7gJuAcymAyj7LTh0Zl2Pd9Fm8GNqfMQP0rym8Dd1Pu+59ROolsbAcQSZos1js0KbzXNUmsV2tSWJeWBisz/56ZOwIvpvQDvZryG/HllH6iT52PwRQwATNUSJIkSZIkSZIkSZIkSZIkSZIktVvwM1RIkiRJkiRJkiRJkiRJkiRJkiS1M6BCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJGjMRcVREZERcOtd5AYiIvWt+MiLWm+v8SJIkSZKkyRARixptEovmOj+SJEmSJEmSJGnhMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEnSEhm3GTUkSZIkSdL4ioj1GrNO7D3X+ZEkSZIkSZIkSZNtmbnOgCRJGm+ZeRRw1BxnQ5IkSZIkTZjMPAOIuc6HJEmSJEmSJElauJyhQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSNKci4qCIyIjIun3/iDg4Ii6MiFsi4vqIOD0i9pzGudaLiI/UY2+OiNsi4ncR8ZmI2KTPsVmXg+r2MyLimxFxZUTcHhF/jIhPRMRDpvtaeqRb1Ljeon6vq8PxK0fE7hFxeEScHxE3RcSdEXFNRPwwIt4aEfeb4et9ekR8LSIur+e6tJF270b69dpfL/Cy+tTDG+n+sdS0Ozee22Mar/GQmvauiFhnpu+RJEmSJEnDFBEbR8Q7I+K7EXFFRNxR2zF+FxFHR8RTpnmerWv9/rcR8beIWFzPd3JE/GtE3L/HsTtFxPGN618XEWdFxNt7tQsMsv0iIp4cEUdExMURcWttQ7k8In4WEYfV9oBopE/gksYpjuzQlnDQTPLQSLtDRBxb23BaebkkIr5e2zZWakt/r/aOiFgqIvaJiJ9GxA31HL+MiHe0H9vl+ktHxMtq2f2lUSY/iYi3RMSKfY6f0XvZOG6FiPi3iDgjStvQnVHa034bEd+u116vX/4lSZIkSVqIImK72lbzxyh9SP4WERdExIe69UVobzupde+3RcTPo/RFuTkizo6IN0TEMtPIwwo17WkRcVVt/7k6Ik6NiFf2OkdEXFrzclTdfnJEHFXbPO7o1L4TEStFxAG1XePWRvvEK6Lo2N4SEY9vPP/2abyufRvpt+iXXpKkcdb3H7okSaMSEesD3wc2bDy9MrAIWBQRzwdenJl3dTj2pcBngeXbdj2iLq+MiAMy833TyMeBwEFtT68P/CuwV0TslJk/ntaLGo5TgG07PL8m8LS6vD4idsjMi/qdLCLeA/znYLN4H6cAVwIPBvYGvtIjP8sAe9XN72TmX4acN0mSJEmSpq3+0Hx6h13LMdUO8dKIeH9m7t/lHCsCRwCdBpB4SF12BNairY0iIlYAvgTs0nbcGsBT6rJvROyYmedP71XNXES8Gfgw9x24ad26PAl4PbAKcMsQ8/EA4Dhg+w6716vLrnX7qC6nWQn4XodzbFKXnSPi6Zl5a5c8PAz4JvCEtl1rAFvX5XW1TC7ucPys3suIeDBwKrBR23Gr1+VRwHOAdYC3dsq7JEmSJEkLUW0/ORLoNODjxnV5XUTsmZnf6nGeBwHfAZ7YtmvzujwrIp6fmfd0Of4JwEnAw9t2rUVph9geeE3th/LXPq/ptcDH6dHnMyLWBX4APLLx9EpMtU/sAnys07GZ+cuIOKe+rpcB7++VH+Dl9fHCzDy7T1pJksaaARWSpHFyHCVw4dPA8cBNwOOB/Sg/AL8Q+Avw5uZBEbEj5QfxoPyofAjlx+S7gK2A/SnBBu+NiBsz81M98rAjsBnwW+CDwC+B1YDdgFfX9ZMjYuPMvHyJX/HsLANcQPmh/lzKexKUCvgulPdpfeAbEfHEzLy9x7l2pXQMuAD4CPArYEXu2xjQyScp5fRu4Hk1H8/ulDAz764jJuwPPDMi1s3MK7qcd0fggXX989PIhyRJkiRJo7QMcCtl8IAfABcBf6PUZR8H/Buljv72iLg4M49sHhwRS1F+SH9mfep3lDr2ucBtlMEItqLU7zs5mqlgil9Q2kF+Q+m8vwdlIIN1gNMi4vGZ+ecle7n3FRGPZyoA4BLgE8D5wPWUTv+PBrajtBc0bVLz9t26/U7Ke9F09QzysRIluKU1M+nPKANu/Aq4A3goZeCJ3fuc6nOUQJSjga8CVwEPA/4D2BLYoub1PgEyNaDjJ/Vad9Rz/RC4FLgf8CzgjZRAm29HxJMy86bG8bN9L6F0omgFUxwLnEBpn7mbch9t1uU4SZIkSZIWrDrD4/GUvgcA36LU9/8I3EOp5/87pe5/fERsnZnndjndCZS698fqea6n1NUPAB4L7ETpS/KZDvl4BKWNYDVK29FhwNnA5cADgJ2B11ACGE6KiG0y884u+dicMjDl5ZR2hHMpbVTbNK63LKW9qhVMcQqlneIKyoAN+wDPpQRzdHN4vdZjImLLzDyrU6IaKLJp3bRfhyRp3ovMnrN6S5I0VBFxEHBg46kXZeaX29KsAvyYMsrfPcATMvNXdd+ylB+o16EEU2zTPvpiRDwcOIvyQ/JtwMMz89q2NM1/iD8Hts3MW9rSvAQ4pm5+LTNf2Lb/H68lM6PHa17E1EiW22XmGW37j6JE+1+Wmet1OP6Rmfm7Hud/BqVjwlLAqzLziA5pmq/3NGDHzLyjy/n2pozcALB+Zl46k/w20m1I6SQSwDsy871d0p1EaTi4BnhIjwYDSZIkSZJGLiLWBO7KzBu77F8OOJkSMHEZsGFm3t3Y/2/AoXXzRGDPTnXyGnjx4GZARB1U4uS6eRqwQ2Yubjvu1ZSgAoCvZububfsPYgnbLyLiXZSOA7fW19dxBMWIWA24uTlKY0SsRwkcAHh5Zh41mzzU/f/D1MAbhwH7ZocfPWqZrN7MZ1t7B8BLMvPYtuOWp3RQ2Bi4Dli7febUiPgi8CJKWW+XmZfQJiI2pbRtrQy8NzPf0dg3q/eyjrT5N2BZ4JDM7DoDRUSskZnXd9svSZIkSdJC0mgbuRPYOTO/0yHN6pS6+uOAMzPzqY19BzHVj+VO4Fkd2iTWAH4NPAj4ZWa2z1pJRJxJGTTjvHqOazukeQ4l8GEpYJ/M/Fzb/kuZmt3iAuBpPdqk3gh8tG5+NDPf3CHNx4E3NJ5qb/NZBbiS0obxuczcp8u1DqUMKnInpV/HNZ3SSZI0X7RPHy1J0lw6uT2YAiAzb6ZEykP53/Xaxu5dKMEUAO9uD6aox18GvK1ursTUtIPd7NMeTFHP8wXg263rRsTafc4zFL2CKer+UymzVwA8v8/p7qEEXXQMphikzPwDcEbd3LtTmjpd5g5181iDKSRJkiRJ4yYzr+32w3Xdv5ipdoiH05gFsgZJtPZdAby0W508M+/pMLvEv9bHOynBCIvb9lN/eD+1bu4aEQ/u85Jmo9UmcnG3AICal5uawRSDFBH3p4ziCGVmijd2Cqao+VjcK5/ACe3BFPW4OygzRkAZOXKj5v4aHNIKWHlDp2CKep7zKAEfcN82kdm+l2tQgikAftTtuHqswRSSJEmSpIlQZ6fYr25+rFMwBUBm3sBUG83WEfHITumAj7cHU9Tjr2dqoIZN6kAIzXxsQwmmAHhZp2CKep7vUGbTgC79KBr+tVebFFN9aa4A3t4lzX9QZrfsqPbP+Wrd3D0iVmxPUweueHHdPNlgCknSQmBAhSRpnBzZbUdmng1cWDef0djVWk96TyP4NeCmDse3uyAzf9Zjf+saywCLeqQbmYhYKyIeGREbtxbK7A5QZvXo5cz2GSeG7PD6+MiIeGqH/XtR3ltwWkhJkiRJ0jwQEctHxMMiYqNGvbw580Ozbv5EYN26/rlOAzr0uM4ywLZ183uZeXmP5K3RDIfVfnFlfdwoIrYYwvmn4+mUgTOgdJC4u1fiPr7YY1+znWiDtn07AktTZkT9Nr21gh7WiYiHNZ6f7Xt5HdAKqHlJvT8kSZIkSZp0GwEb1vXjeyXk3gMUbNklzXTaDAJYv23fzvXxt5l5wTTzsXmP+v3lmfnjbieIiIcAj6mbX+sxgMffKf1nemn161gV+JcO+3eiDDwB9uuQJC0QBlRIksbJOX32n10fH1Uj3gE2ro+X9Ip6ryM2ntd2zJLkAWCTPmmHJiK2jojjIuI64GrgYsr0jq3l1TXpmn1O9cvh5bKjE4Ab6nqnmUJaz52Tmb8aTZYkSZIkSZqZiFg5IvaPiF8AtwKXUQaCaNXLz2skb9bNN22sd/0RvIsNmAog+L8+aZv7e7WDzNaXKbNkLA+cGRHfiojX1oCS6HPsoCzJe9nuoh77mrM7rNK2b7P6uBJwV0RktwU4uXFcc9bTWb2XtWPEcXXzBcDvI+KDEbFDnb1DkiRJkqRJtFlj/aw+dfXmQBdr09mSthk8ulceaj5as2MuS5mRspN+fTua7T+9BhEFOLfXzsz8KfDrutmrX8eV9B9gQpKkecGACknSOLm6z/6/1scAVq/rrcpkv2MBrmo7Zkny0O88QxMRBwE/AV44jTzcZ/rFNjf02T9QmXk7cGzdfGFErNzaV0dhfFzddBQDSZIkSdJYioj1KEET7wUeT5mhoJdm3bwZXHFle8I+mm0A/dovrmqsD7z9IjMvAvaktCssAzwX+BTlfbk6Ir4QEdsM+rptluS9bHdbj333NNbby/qBs7xeKzBmSd/LNwDfqusPB94GnAJcFxHnRMTbImK1WeZRkiRJkqT5aInr6k2ZOWdtBm369e1YvbHedTDSae4HOKI+blfbwgCIiAcDz6mbxyzhjKGSJI0Np4CWJI2TnKNjh3GeoYiI7YED6+YfgQ9Tgiv+BNyamXfVdO8CDpjGKeeicns4sC9wP8oIikfX51ujGPydMjqjJEmSJEnj6AvA+pQ2hCOBrwC/ofwYvTgzMyKWYqrOPYwZG+a8/SIzvx4RpwK7A88GtgHWogQ67AXsFRFHA6/IzHu6n2lea3WWuBbYbgbHXdLcmO17mZl/A3aug1S8EFgEPLHma7O6vDUinp+ZZ8385UmSJEmSNO80Axt2Ai6d5nHTGcRzNvn4BaVuP11/7vL8qPt2HAO8D1gOeBlwcH3+pUy9NgfKlCQtGAZUSJLGyYOAy/vsh9JpoBV9f33bvl5aUzRe3yNNv/M097ef5x8/aEfEUj06C6zc5fnpeHV9vAF4SmZ2GzlgTmbPmI7M/GVEnANsTgmiODoiVgD2qElOyMyb5iyDkiRJkiR1ERGPAZ5aN9+bme/skrRbvfzaxvqDgYtmcPlmO0S/9ou1G+tDa7+o9ffP1oWIeCzwPMpACutQfnA/Dzi037lmof29vKRbwiG6rj6uAvxmSUZlXJL3MjPPBs6ux61CCazYG9iVMiLm1yNiw8z8+2zzJ0mSJEnSPHFdY/3GzPzVHOfjfiPKQ3MGi7X6pO23n8y8NiJOAnYDXhYR78rMpLQ3AJyZmRfPKqeSJI2hpeY6A5IkNWw+zf2/y8zFdb1V8Vw/IrpW+iJiWWDTtmOWJA+dznNzY311untUn2v08rj6eHqPYAooIxCOymxGxTy8Pj4tIjag/MB///qcoxhIkiRJksbV4xrrx/VI161e/vPG+tNmeO0/ArfV9X/qk3aLxvrI2i8y8zeZ+X7gKcCt9ekXtieb6Xm7WJL3clDOq4/LM+C2mGm+l52Ouzkzv5WZ/wJ8rD79YKYCgSRJkiRJWsjOa6xvPWe5mMrHBhGxds+Ug3FhY/3JfdJOtw2j1a9jfWBRRGwFPKY+Z78OSdKCYkCFJGmcvKzbjojYHNi4bp7a2NVaD8psB928AFitw/HtNomITXvsf0V9vBs4o21fcyTEXhXQPXrs66c1u1TXUSJr/vt1rBik2+vj8jM45suUzgBBGcGgVXaXAKcPLGeSJEmSJA1Wc9bnXjM4vLbL879ganbOV0XE/aZ74cy8C/hh3XxmRKzbI/mr6uNdzEH7RWZeDrRGKVyzbfftjfWZtCW0O52pQIN9I2LpJTjXbH2LqQCRNw3jAn3ey35Oa6zP9FhJkiRJkuajnwNX1PV9ImKFOcrHN+tjAG8c9sUy8wqm2g92i4iObS71/dhtmqc9Fbisrr+cqX4dtwBfnWVWJUkaSwZUSJLGyc4RcZ+R9mrngs/UzXsa6wDfAP5S198REZt0OP6hwIfr5m3AkX3y8dmIuE+niIh4EbBD67qZeWVbkp9SOioAvDkiosM53sa9R4mcqd/Vx6dGxCM6nH8t4AtLcP7ZaL0PD4yIVaZzQGbezFQF+zXA0+v6UXWaSEmSJEmSxtHvGut7d0oQEa8DntdpX2beA3yobq4LHBMRy3U5z1IRsU7b04fVx+WAI+qMnO3HvQJ4Vt08YRjtFxHx/Ii4f4/9D2VqxMJL2nZfB7RmHt2w2zn6ycwbmWojejLw0U6vpeZn2Yh44Gyv1SMPvwW+Vjf3iIi39EofEetHxJ5tz83qvYyIDSJi2z5ZfFZjvb0cJEmSJElacGrby3vr5gaUtpeuAzpExKoR8YYh5ON7wNl1822d+sK05WOTiNhpCS/baidZF3h/lzQfAtrbmzqq72VrJop/AXav61/LzFtmm0lJksbRMv2TSJI0MucCX6o/Bh8P/A14PLAf8Oia5rDM/GXrgMxcHBH7UEYEXBU4MyI+RBmB725gK+DtQOtH87dm5rV98rAZcG5EfAC4gDKzxQsoHf8Bbgbe2n5gZl4dEV8D9gSeDXwzIg4D/go8DHgJpZL505qv2TgG2IkyCuYPI+L9wM/qvq2AtwBrA2cBW87yGjP10/q4FPDpiPg48I/3ODN/3+W4wykjGLTK5h7gqCHlUZIkSZKkQTgP+BVlFs3XRMTqlIENrqT8WL0XpQ3hTGDrLuc4jFK3fyawC3BBRHyS0iZxG6Ve/xRK+8KXgINaB2bmKbXtYTdKZ/n/jYj/AS4CVqfMKtGaXfN6SjvBvQwiEvFtAAAgAElEQVSo/eJNwBcj4hTgB8BvgJtqHjYD9gVWrGk/3Xb9uyLinPr+vCIizgPOB+5s5Tszr+9y3XYHUN7HTYA3AFtGxGco7TmLKWWyTX2t72Q47Q6vo7zmDYBDIuJ5lPabC4E7gAcATwCeQxlQ4kTKzJ0ts30vHwacHhG/ruc8F/hz3fdQSieHVmeN84H/G8zLlSRJkiRp7H2aqXaX3YAn1faCsyl17lUpgxcsAnamzKb5iSHk40X1mmsAx0XEXsBxlAE77qb0ldiU0k70FOAQSt+X2foEpQ/GxsCb6iCdn6PM2LEusA+wY81TayCNfgNefh44EFip7TlJkhYUAyokSePkhZRAiNfXpd3X6dwR4JSIeDkl2n4V4F11abobOCAzP9UnD6fU5UA6z2TxN2DnzLy0y/FvpvzY/UjguXVp+golkODUPvnoKDOPj4gjKZXgdYCPtSW5u+ZhdUYXUPED4H8pFfwX1aWp4+iQmfnT+qP/RvWp0zLzT0PLpSRJkiRJSygzMyJeQqkLr05py2gfYfACyo/1f6GDzLwnIp4PHE0JvngU8NEZZOOllLb9XYAnAcd2SPMXYMfM/HOHfTCY9ouVKK9zty777wEOzMxvdNj3PkoHgQdQgkaaDqYRRNJLZt4WEU+ntBk9jTJTxWenc+ygZOb1EbE1ZSbObWo+ntbjkL91eG5J3suNmGpb6eQiYFdnBJUkSZIkTYrafrM7cCjwWsoMmR/sccjVQ8rHHyJiS0q7xcaUwIles1B0ajOYyfUWR8SOlHarDenc5vM94CPAt+v27X3OeUVEfBf45/rUxZn5kyXJpyRJ42ipuc6AJEktmXkJ5Yfv91JG47uNMjrAj4C9MvMFmXlXl2OPpowgcGg99lbg78AfKBH3m2bm+6aZj4MoowaeQhmdcTFwKfBJ4HGZ+cMex/4V+CfgA5RRBe6gjAjZeg17UoIeZi0zX0EZLfLHlNky7gAuo4yIuVVmHrok559Ffu6hjIr5buAXwC30H8Wgpdnpw1EMJEmSJEljLzPPB55IGe3wMsrMCtdTRvd7K7BFZl7Z5xy3ZeZulBkLvgBcQmnHWAxcTgk2eA1lZML2Y2/PzF0pIyieQAmeWAzcQJmFYH/g0TWf3a6/pO0Xe1JGNfwSZfaDq4C7KG0CFwKforTFvLvL9U8BtgdOqvm/s1O66cjMazNzW2BXyoynV9TXczvwR+BrwIu596wQA5WZV2Xm0yidFL5Yr3sb5XVdQ5nt4xBg29qu0zTb9/LHlJE03wecDvye0k50J6U963uUTiNPrG1ukiRJkiRNjMy8MzNfT5k18uOUATBuorR33ESpgx9BGezisUPMx8WUdqQXUQIr/sRUG9CVwBmUvhZPzsz2gUNnc70/UV7zgZRZVv8O3EgZJPP1lMCIFRqH3DSN036hsd5pYFJJkua9cFAiSdJcioiDKBU5MrPjTAYjykfrH+LBNaBCIxARX6Q0HNwAPDgz75jjLEmSJEmSJEmSJEmSJC1IEfFO4L8pAzqskpk9Z6mIiPcA/0kJRnlov4FEJEmaj5yhQpIkzYmIuD+wS938osEUkiRJkiRJkiRJkiRJwxERAexeN8+fRjDF0sBL6+a3DaaQJC1UBlRIkqS58m/AinX903OZEUmSJEmSJEmSJEmSpPksItaLiGV6JHkXsHFdP3oap3wxsG5dt1+HJGnB6vXPU5IkaWBqpX09YHlgO8qUkADfzMwL5ypfkiRJkiRJkiRJkiRJC8DewMsj4kvAmcBfgGWBxwIvAxbVdL8GPtfpBBHxiHrMZsBH6tO/AP7fsDItSdJcM6BCkiSNyrrA79qeuwl4yxzkRZIkSZIkSZIkSZIkaaF5GPD2HvsvAnbMzDu67G/v13En8LrMzEFkTpKkcWRAhSRJmgtXA2cB78jMP8x1ZiRJkiRJkiRJkiRJkua5IygDWz4LeASwFrAScD1llokTgc9n5uJpnOsG4OfAf2XmWcPJriRJ4yEMHJQkSZIkSZIkSZIkSZIkSZIkSZNmqbnOgCRJkiRJkiRJkiRJkiRJkiRJ0qgZUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZL+P3t3kNPWFQZQ+OK6IlUbxKQDpGQH6bCsg3Yj7KxlHbSzZg8ZZBIMlRopmA6aSIWQAk3ws32+b2SuLN4/ssV/dQQAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmq37gzs7O7hjjh/c/vh5jXK56BgAAANbeV2OM79+//uPq6urtlMPAl2IvAgAAwD3ZjbB17EUAAAC4p5XuRVYeVIx//jj+bYLnAgAAsJl+HGP8PvUQ8IXYiwAAAPBQdiNsC3sRAAAAHurR9yKzx/zlAAAAAAAAAAAAAAAA62iK/1Dx+sOL09PTcXBwMMEIAAAArLNXr16Nw8PDDz++/q/3woaxFwEAAOBOdiNsKXsRAAAA7rTqvcgUQcXlhxcHBwfj2bNnE4wAAADABrm8+y2wMexFAAAAeCi7EbaFvQgAAAAP9eh7kdljPwAAAAAAAAAAAAAAAGDdCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmUw+wbpbL5VgsFtfO9vb2xmymPQEAAADYNrftgqa2XC7H+fn5tbOnT5/aT30G+z0AAAAAAFjPe5FVK93DuB+B+xFU3LBYLMbR0dG1s5OTk7G/vz/RRAAAAAA8ltt2QWwf+z0AAAAAAHAvUuN+BO5HdgQAAAAAAAAAAAAAAOQIKm44Ozu71xkAAAAAAAAAAAAAALC5BBUAAAAAAAAAAAAAAEDOfOoBAAAAAGCd/Pni53E1351ugHd/je9e/nrt6OLFT2PMn0w00GbZefd2fPvyl6nHAAAAAACAjTD5vciqbek9jPsR+P8EFQAAAADwL1fz3XH19TeTPX/ntsP5k0lnAgAAAAAAttPU9yKr5h4GuGk29QAAAAAAAAAAAAAAAACrJqgAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMiZTz3Aulkulx+dvXnzZjx//nzMZvoTAAAAYHstl8uxWCyune3t7dmJAHwmn68AAAAA28W+B4BN47vr0wQVN1xcXHx0dnx8PE5OTsb+/v4EEwEAAACsxmKxGEdHR9fO7EQAPp/PVwAAAIDtYt8DwKbx3fVpkhIAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAPibvfuJjeuq/wZ87Lj5ya/SNEZq+6LWYovUIL1ITXYNKxYsQIioiaNEqhDQFJImFFg6RaLuFikhEW1ZISVK0qqoArGhK9JVky4imggQC6SGqmoiZJpatX6uY78bbDnj8Z07M/fM3Lnf55EQ9vjc8+/eOb33jD8xAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQEVJH330UfrHP/6RlpaW0sLCwvrrCwsLaWlpKS0tLa2/tvZ962vtbCy3VZnW8v0oe3y/7Qyr7rrJMdatrqvWtiLNM0TlfQ5EYb3Lx9wCADRT0X1eu591W77b9te+n5+f37L8Vsd02mevuu/dau1n0++xo4wzl17nzXx3VsUc1WWec/UjR70bPzMdRXU550A9WSMgJu/9wSrz+3WDOied2nFtAECzCVSU9MMf/jD94Ac/SN/97nfTgQMH0vz8fJqfn08HDhxIzz//fHrhhRfS4uJiWlxcTC+88EI6efLkfa/99Kc/TYuLi/fVuVb2hRdeSPPz823LtJbvVKZI2eP7bWdYdddNjrFurHOrr3O1DdSL9zkQhfUuH3MLANBMRfd57X7Wbflu21/7/p///Gfav39/+uijjzaVX9snbz1m4775IPrerdZ+ltnnH2Xtzgvl9XpNenbrrIo5qss85+pHjnrXPifdKixXd3U550A9WSMgJu/9wWrdD+j2ub/qvhS149oAgOYTqOjShx9+mD777LN06tSpNDs7mz777LP097//Pd28eTNduHAhnT9/Pt28eTP99a9/ve+1999/P124cOG+utbK3rx5M83OzrYt01q+U5kiZY/vt51h1V03Oca6sc6tvs7VNlAv3udAFNa7fMwtAEAzFd3ntftZt+W7bX/t+x/96EdpZWUlnThxYlP5tX3y1mM27psPou/dau1nmX3+UdbuvFBer9ekZ7fOqpijusxzrn7kqHftc9JTp05VVucg1eWcA/VkjYCYvPcHq3U/oNvn/qr7UtSOawMAmk+gokc3btxIN2/evO+1ixcvposXL2567dKlSymllC5fvpxu3bqVUkrp1q1b66+nlNbr2lhmo1u3bqXLly8XlilS9vh+26miD02QY6wb67x06dL69bPx68uXL6erV6+GmWeIKtJ6CsRmvcvH3AIANFPRfV67n3Vbvtv2N+5Vrv0rjnfu3El//OMf18tv3Ce/dOnSfT3bnlAAACAASURBVMes7Zu37oHm6Hu3Nrax1s9O+/yjrN14mzjOXHq9Jj27dVbFHNVlnnP1I0e9V69eXV8Lbty4ka5evdp3nYNUl3MO1JM1AmLy3h+s1v2Adr9fN6hz0qkd1wYAxCBQUaF79+6llZWVTa/du3cvpZTS559/ns6cOZNWVlbS6dOn11/faK3M6urq+murq6vpzJkzaXl5ecsyRcoe3287VfShCXKMtbXO5eXl9etn49eff/55mpubCzHPEFWk9RSIzXqXj7kFAGimovu8dj87ffp0On36dOnyne4Z2x2zca9yo1/+8pdpeXl50z758vJy22Na90Cr7nu3Wtto1bR77K3G27Rx5tLrNenZrbMq5qgu85yrHznqXVlZSXNzc/e9Njc3t+kz0rqqyzkH6skaATF57w/W6urqpv2A1t+vK3rur7ovRefetQEAcQhUDNi1a9fSq6++mt57773CMu+8887691euXEnXrl0rLFOk7PH9tlNFH5ogx1jb1bmVu3fvVto2UC+R1lMgNutdPuYWAKCZiu7z2v3svffe27RPXVS+0z1ju2Na9yrX3Lt3Lx0/frztPvlWx+Tse7fK7Nc26R67aLxNGmcuvV6Tnt06q2KO6jLPufqRo95XX31101p99+7d9Nprr/Vc5yDV5ZwD9WSNgJi89wfrypUrhb83l1Lxc3/VfSk6964NAIhDoKLF22+/nb2NN954o2OZc+fOpcXFxbS4uJjOnTtXWKZI2eP7baeKPjRBjrEW1VlW0+YZooq0ngKxWe/yMbcAAM1UdJ939uzZdPbs2dJ1FZXf6p6xlz3Mv/3tb12VL6OXvnerm7E24R67zHibMM5cen0G8+zWWRVzVJd5ztWPHPXOz89v+Tnn66+/nubn57uuc5Dqcs6BerJGQEze+4O1uLjY1R5FqyrPSadzPz8/79oAgEAEKlr8/ve/z95GmT95+/HHH6cLFy6k8+fPp9u3bxeWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd592+fTvduXOndF1F5be6Z6xiD7MKvfS9W92MtQn32GXG24Rx5tLrM5hnt86qmKO6zHOufuSod3Z2dsvPOVdWVtKpU6e6rnOQ6nLOgXqyRkBM3vuDdf78+a72KFpVeU46nfvZ2VnXBgAEIlCxwf79+4fdhftcvHgxXbp0qbDMpUuX0q1bt9r+7IMPPkiXL1/uePy7775bqtxW7RQp24de6q6bHGMtU2dZTZlniCrSegrEZr3Lx9wCADRTlXuIZbTeMw66/X70e7/by1hH+R67m/GO8jhz6fUZzLNbZ1XMUV3mOVc/ctT77rvvpps3bxaWuXHjRrp69WrpOgepLuccqCdrBMTkvT9YH3zwQcffgyujinNS5tx3uve9dOlS+vDDD/vqBwBQHwIV//Xpp5+mf//738Puxn3u3buX7t27V1hmeXk5nTlzJq2urt73+urqavrVr36VlpeXOx7/8ssvlyrXrp0i3fSh27rrJsdYy9ZZVhPmGaKKtJ4CsVnv8jG3AADNVPUeYhkb7xmH0X4/+rnf7XWso3qP3e14R3WcufT6DObZrbMq5qgu85yrHznqXVlZSS+//HKp9ufm5rb8KxbDUpdzDtSTNQJi8t4frNXV1XTmzJmOvwdXRr/npKq9jOXl5fSb3/ymrzoAgPqYGHYH6uKb3/zmsLvQs2vXrqV33nkn7du3b/21K1eupGvXrpU6/u7duz23U6SbPnRbd93kGGs3dZY16vMMUUVaT4HYrHf5mFugrHa/+PTJJ58MoSeD03Z8PiAdbW3OX9OvY+qv3TVYxS+b5thDLGPtnnF1dXUo7fej1/vdfuZ6FO+xexnvKI4zl16fwTy7dVbFHNVlnnP1I0e9r776aunPE+/evZtee+219Nxzz5UqPwh1OedAPVkjICbv/cG6cuVKeu+99yqrr59zUuVeyvXr1ze9Zh+SUeBzkQbz+Qgd5PqsogkqD1SMjY093qHI/626zX5V8efEhu3cuXNpz549aXJyMi0uLqZz585lb6dIL30oW3fd5BhrHc4hUA+R1lMgNutdPuYWBmsU90U2+vTTTze99swzzwyhJ0N2739TSv9n2L2gV/f+d9NLIa9jau/TTz9NX/jCF3o+PuceYhlnz54d2X+hs9v73SrmepTusfsZ7yiNM5den8G+8pWveHbroIrn27o8I+fqR4565+fn0xtvvNFVna+//no6ePBgmpqa6uq4HOpyziGKUdsXsUZATN77g7W4uJjOnj1beb29nJNB7KXYh2Rk+VykGXw+Qg/6/ayiKcYz1Hmrw/9q989VvfLKK8PuQt8+/vjjdOHChZRSSufPn0+3b9/O3k6RXvpQtu66yTHWOpxDoB4iradAbNa7fMwtDNzI7YsAMJpy7iGWcfv27XTnzp2htd+Pbu93q5jrUbrH7me8ozTOXHp9BpudnfXs1kEVz7d1eUbO1Y8c9c7Oznb9LxWurKykU6dOdXVMLnU55xDISO2LWCMgJu/9wTp//nyW/YNezsmw91IAgPrKEagYKX/+85+H3YXKvPnmm2lhYSH97ne/y97O0tLSlj9fWlrquQ+d6q6bHGPtp85+2wbqJdJ6CsRmvcvH3AIANNMg9hCbruz9bpVzPQr32FWMdxTGmUs/83fz5s2ejosy31U839blGTlXP3LUu7Cw0PO1eePGjbSwsNDTsVWpyzkH6skaATF57w/W0tJSevPNN7PV3805sZcCABTJEaiY7vC/PRna7NnXvva1YXehMvv37087duxI3/nOd7K3s3379i1/vn379p770Knuuskx1n7q7LdtoF4iradAbNa7fMwtDMVI7YsAMJoGsYfYdGXvd6uc61G4x65ivKMwzlz6mb8nnniip+OizHcVz7d1eUbO1Y8c9e7YsaPna3P37t1px44dPR1blbqccwhmZPZFrBEQk/f+YG3fvj3t378/W/3dnBN7KQBAkYmqK1xdXf1X0c/HxsaqbrJvzz33XHrllVeG3Y2+PProo+nw4cMppZSOHDmS3n777Sx/omxjO0V66UPZuusmx1jrcA6Beoi0ngKxWe/yMbcwWKO4L7LRgw8+uOm13/72t+mhhx4aQm8G45NPPknPPPPM/S9u+5/hdIZqtDl/Tb+Oqb92a027NbcbOfcQy3jkkUfS6upqunPnzlDa70e397tVzPUo3WP3M95RGmcuvT6Dzc3NpaNHj3p2K1DF821dnpFz9SNHvXNzc2n//v1pZWWldJ3j4+PppZdeKl0+p7qcc4hi1PZFrBEQk/f+YB05ciT96U9/qnz/oJdzMoi9FPuQjAKfizSYz0foIMdnFU1ReaBiFM3MzIx8oOLYsWNpcnIypZTS5ORkOnbsWPr5z3+etZ0ivfShbN11k2OsdTiHQD1EWk+B2Kx3+ZhboBvj45v/mOlDDz2Udu3aNYTeDFHNfsGDLrU5fyGvY2qv3ZrbjZx7iGUcP348ra6uDq39fnR7v1vFXI/SPXY/4x2lcebS6zPY1NSUZ7cOqni+rcszcq5+5Kh3amoqPf300+ny5cul6zxw4ECampoqXT6nupxzoJ6sERCT9/5gTU5OpuPHj1e+f9DLORnEXop9SEaWz0Wawecj9KDfzyqawiz81x/+8Idhd6Fne/bsSU899dR9r+3bty/t2VPur2Xu3Lmz53aKdNOHbuuumxxj7abOskZ9niGqSOspEJv1Lh9zCwDQTDn2EMtYu2ccVvv96PV+t5+xjuI9di/jHcVx5tLrM5hnt86qmKO6zHOufuSo9+jRo6U/T9y5c2d69tlnS5UdlLqcc6CerBEQk/f+YO3bty89+eSTldXXzzmpci/jq1/9aiX1AADDJ1DxXw8++GB6+OGHh92N+2zbti1t27atsMzExEQ6ceLEpj+NOTY2lk6cOJEmJor/CMnExESanZ0tVa5dO0W66UO3dddNjrGWrbOsJswzRBVpPQVis97lY24BAJqp6j3EMjbeMw6j/X70c7/b61hH9R672/GO6jhz6fUZzLNbZ1XMUV3mOVc/ctQ7Pj6eZmdnS7U/Oztbu3/ZsC7nHKgnawTE5L0/WGNjY+nkyZMdfw+ujH7PSVV7GRMTE+n73/9+X3UAAPVRr92sIXvjjTeG3YX7HDp0KM3MzBSWmZmZSdPT021/Nj09nQ4ePNjx+L1795Yqt1U7Rcr2oZe66ybHWMvUWVZT5hmiirSeArFZ7/IxtwAAzVTlHmIZrfeMg26/H/3e7/Yy1lG+x+5mvKM8zlx6fQbz7NZZFXNUl3nO1Y8c9e7duzc98cQThWV2796d9u7dW7rOQarLOQfqyRoBMXnvD9b09HTH34Mro4pzUubcd7r3nZmZSY899lhf/QAA6kOgosW3vvWt7G2U+VdZHn300XT48OF05MiR9MgjjxSWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd5z3yyCNd/XXmovJb3TNWsYdZhV763q1uxtqEe+wy423COHPp9RnMs1tnVcxRXeY5Vz9y1Ds3N7fl55zj4+PppZde6rrOQarLOQfqyRoBMXnvD9aRI0e62qNoVeU56XTu5+bmXBsAEIhARYuvf/3r2dt4+umnO5Y5duxYmpycTJOTk+nYsWOFZYqUPb7fdqroQxPkGGtRnWU1bZ4hqkjrKRCb9S4fcwsA0ExF93nHjx9Px48fL11XUfmt7hl72cP88pe/3FX5Mnrpe7e6GWsT7rHLjLcJ48yl12cwz26dVTFHdZnnXP3IUe/U1NSWn3MeOHAgTU1NdV3nINXlnAP1ZI2AmLz3B2tycrKrPYpWVZ6TTud+amrKtQEAgQhUDNiePXvS0aNH05NPPllY5qmnnlr/ft++fWnPnj2FZYqUPb7fdqroQxPkGGu7Oreyc+fOStsG6iXSegrEZr3Lx9wCADRT0X3eVj9r3afuVL7onrHdMa17lWu2bduWzp4923affKtjNnryyScr7Xu3yuzXNukeu2i8TRpnLr1ek57dOqtijuoyz7n6kaPeo0ePblqrd+7cmZ599tme6xykupxzoJ6sERCT9/5g7du3r/D35lIqfu6vui9F5961AQBxCFRUaNu2bZv+zO22bdvStm3bUkopPfDAA+nkyZNpfHw8nTx5cv31jdbKjI2Nrb82NjaWTpw4kSYmJrYsU6Ts8f22U0UfmiDHWFvrnJiYWL9+Nn79wAMPpFOnToWYZ4gq0noKxGa9y8fcAgA0U9F93lY/O3nyZFfli+4Z2x2zca9yo5/97GdpYmJi0z75xMRE22Na90B//OMfV9r3brW20app99hbjbdp48yl12vSs1tnVcxRXeY5Vz9y1Ds+Pp5mZ2fve+3FF1/c9BlpXdXlnAP1ZI2AmLz3B2tsbGzTfkDr79cVPfdX3Zeic+/aAIA4RmNnq4Z2796dnnjiifteO3ToUDp06NCm12ZmZlJKKR08eDA9/vjjKaWUpqen119PKa3XtbHMRtPT0+ngwYOFZYqUPb7fdqroQxPkGOvGOmdmZtavn41fHzx4MO3ZsyfMPENUkdZTIDbrXT7mFgCgmYru89r9rNvy3ba/ca9ycnIypZTSww8/nL7xjW+sl9+4Tz4zM3PfMWv75q17oDn63q2Nbaz1s9M+/yhrN94mjjOXXq9Jz26dVTFHdZnnXP3IUe/evXvX14Ldu3d3/BeG66Yu5xyoJ2sExOS9P1it+wHtfr9uUOekUzuuDQCIof0/n8SWHnvssTQ/P59eeumllFJKhw8fTtPT02liYiIdPnw4pZTS9evX08rKShofH19/7S9/+cv612uOHDmSrl+/nlJKaW5uLr344oubyrSWb1dPWWWP77edYdVdNznG2lrnVl9HmmeIyvsciMJ6l4+5BQBopqL7vHY/67Z8t+2vff+Tn/wkfe9730tnzpzZVH5tn7z1mF/84hf37Zvn7nu3WvvZ2t+m2eq8UE6v16Rnt86qmKO6zHOufuSod25uLh0+fHj9M9NRU5dzDtSTNQJi8t4frHb7Ad0891fdl6J2XBsA0Hxjq6urg21wbOzxlNKtlFK6detW7VKb77//fnr++ec3vf7rX/86TUxMpC996UtpaWkp7dixI6WU0sLCQtq+fXtKKa3//9LS0vpxG19b+3qjtbLbt2/fskxr+U5lqji+33aGVXfd5Bjrxjq3+jpX20C9eJ8DUVjv8qnz3P7rX/9K09PTa99Or66u/muY/YGq1H1f5D//+U/69re/fd9rb731Vtq1a9eQepRfuzEv/L9DafWBySH1KKWxzxfTjusX73tt2H0aJe3mr+nXMfU36PW16D6v3c+6Ld9t+2vfz8/Pp6mpqbblU0ptjynaA83R92619rPO99hViDLOXHqdN/PdWRVzVJd5ztWPHPUuLCysf2Y6iupyzrdib4Qmqvu+yEZ1XyOAPLz3B6t1P6Db5/6q+1LUTrufR9xPpxnq+LnIoDX1cxifj9DJKP23a9D7Iv5CRUlf/OIX1y+YjTdH7TYJ291cbXXDtfH1Mjd//d4glj0+541opAePHGPd6pppbSvSPENU3udAFNa7fMwtAEAzFd3ndbN/3elnZY9Z+75dmKJTnzrtoVfd92619rPp99hRxplLr/NmvjurYo7qMs+5+pGj3lEOU6RUn3MO1JM1AmLy3h+sMr/rNKhz0qkd1wYANNv4sDsAAAAAAAAAAAAAAAAwaAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOBPD7kDd7NixY9Nrp0+fTjt37hxCbwAAAAAGZ+fOnemtt97a9BoA/bG+AgAAADSL/R4ARo3/dm1NoKLF+PjmP9qxa9eutq8DAAAANMn4+HjatWvXsLsB0DjWVwAAAIBmsd8DwKjx366tSQkAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAWz1K/gAAIABJREFUAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFTw/9m783iJ7vl+/K93FhJLEEEsrRDVSqmqWBJClKpd7UuVaC21Vf3Kl1aRllpKS2upJYi9VAVBpaioWCKofYkgUYkgSBCSiHx+f5wzvZObmbvMnTtz753n8/E4jzln5nPO58ycz+fMOZ/zeZ8DAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALZ7d5rwAAAAAAbCV1/rnzXYHzzxn5Xs1+TbaluW8/AAAAAADYRhauXX2HXodZuO0IUySgAgAAAACGXPILb5v3KlzEpb5w1LxXAQAAAAAA2IG24nWRWXMdBhbbLvNeAQAAAAAAAAAAAAAAgFkTULHMZS5zmTW9BwAAAAAAAAAAAAAAbF8CKgAAAAAAAAAAAAAAgIWz27xXYKvZa6+98va3v/0i7wEAAACw84xqC5q3Cy64ID/5yU8u9N6lL33p7LKLe6NMSvseAAAAAABszesis7ZI12FcH4G1EVCxzC677JLLXvay814NAAAAAGZgq7YF7b333vNeBQAAAAAAYIfZqtdFZs11GGDYzgunAgAAAAAAAAAAAAAAWIWACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4ew2hzx3HYx85zvfmUP2AAAAbHXLzhd3HZcOtiHtIgAAAKxK2wg7lHYRAAAAVjXrdpFqrW12HhfOsOrAJCfMNFMAAAC2sxu11j4575WAadAuAgAAwAS0jbAjaBcBAABgApveLrLLZi4cAAAAAAAAAAAAAABgK5rHEyounuR6/eT3k/xypiuwNvtm6a4IN0py+hzXBaZFuWanUrbZiZRrdiLlmvXaNckV+vHPt9bOnefKwLSMaBe5QuwfWeL/kgFlgQFlgWHKAwPKAsOUh51L2wg7zgb6i9jXbS+21/ZhW20vttf2YnttH7bV9mJ7bS+21/axFbfVTNtFdtvMhY/Sf6Et/TjSqhqePL219u15rQtMi3LNTqVssxMp1+xEyjUTOmXeKwDTtrxdpKqGOw7YPy44/5cMKAsMKAsMUx4YUBYYpjzseNpG2FEm7S9iX7e92F7bh221vdhe24vttX3YVtuL7bW92F7bxxbeVjNrF9llVhkBAAAAAAAAAAAAAABsFQIqAAAAAAAAAAAAAACAhSOgAgAAAAAAAAAAAAAAWDgCKgAAAAAAAAAAAAAAgIUjoAIAAAAAAAAAAAAAAFg4AioAAAAAAAAAAAAAAICFI6ACAAAAAAAAAAAAAABYONVam/c6AAAAAAAAAAAAAAAAzJQnVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcHZ0QEVVXb2q/qGqvlJVZ1fVD6vqhKp6QlVdYor53L6qjqqqb1fVuf3rUVV1+2nlAQObWa6r6hJVdfeq+pd+mT+qql9U1Q+q6mNVdXhV7Tut7wIDs9pfL8vzElX1japq/XDyZuTD4pplua6q21TVkVV1Up/XWVV1YlW9taoeUVWXmmZ+LLZZlO2q2q+qnlNVn6qqM/vjkR9W1Uer6qlVdcVp5AMwTdogGNjk8/ZdquqAqjqsql7SL/fcofOaQ6f0NZgS7TgMbHJZuE5VPbqqXlNVn+7/G87p8/lGVb25qu5aVTWt78PGaAtjYJP3DYcNbe/VhsOm9JWY0Cz3C6UtEZiT6tp9H1NV/15VX6uqn/XHrd+uqrdX1X2rard1LO+6VfWyqvp6Vf28qr5fVR+uqj9dz3LWmNf9quo/q+r0fp1PqarXV9VB08xnK6mqS1XVLarq8VX1lqr65nqPJavq5HUcjwyG/SZc3yM3O4+tbErba791/IZHTmm9d+vr7If7Ovzzvk6/rKp+cxp5bDVT2la79Mt4ZlUd2++bzquqH1fVF6prN/ytKa2vurXB7bVsef675qi69tL1/i8dPmFeh252Hjtdv39b0284xTwP7uvJKX29Ob2qjqmq+00rj52qpnysv0I+6tYqyjXriVVrU9ufbClVdeckr0+y15gkJya5Y2vtpA3ksUuSlyf5kxWSHZHk4a21CybNBwY2s1z3J1MfSbJaQ/mPkzystfbm9eYBo8xifz0m3+cl+Yuht05pre03zTxYXLMq11V1uSSvTnLXVZLeoLX2mY3kBcnMjrH/KMnLkuy5QrIfJrlva+19k+YDME3aIBjY7LJQVQ9KcuQKSW7VWjt2kmUzfdpxGJjBvuH1Sf5wDUk/lOQerbUfTJIP06EtjIEZ7BsOS9dutBYPbq0dOUk+bJy2RGARVNXTkzw5yWpBvickuWdr7VurLO+hSV6U5GJjknwi3b7zjPWu67J89kzy1iR3GJPkgiR/21r7m43ksxVV1QeTHDrm4zUdS/adja++jmzPSrJva+2cdcwzyOvIJA9aY/JrtNZOXm8eW9mUttd+Sb65xixf01o7bI1px+W3T5L3JLnRmCTnJnl0a+2IjeSz1UxpW30rya+skuyCJM9L8qS2gc6B6tbGt9fQsvx3zVnfufpp65zt/q21N02Q16FJPrjG5H/TWjt8vXnsdFV1bJJbriVta23DN5Lpy8dTMv4m9e9Od5y67uOUnW7ax/qr5HVo1K2xXLPemKlGNm4VVXWDJG9O1wnrp0mela4S7ZnkvkkemuTaSd5dVQe21n4yYVZ/l6VC8T9J/j7J15Psn+T/JblBkock+X6Sv5owD0gyk3K9V5Yuwn8kybuSfDLJD5JcIcnd+zz2SvKGqvpxa+0/NvSlWHgz3F+PyvfPk5yT5BdJLj2N5UIyu3JdVZdJ8r4kN+zfOipdw8jXk/wyXSPaLZPcY+IvA0NmUbar6mbpOonukq4x7zVJ3pHktCS/mq7B9s5J9k7yjqq6bmvtGxv7ZgAbow2CgRmVheHG6F8k+XyS3ZNcbwOrzibQjsPAjPYN5yc5Pl1Z+HyS09P9H1wuyW8keXiS66Y7Rzy6qm6+3S5k7BTawhiYQ1n4/XTn1uN8e4PLZ0LaEoEFcuV057Rnp9sHfSDJ19Idn1wnyZ+l61R9oyTvr6rfaa39dNSCquoOSV6arh35u+naTI5P12780HTnQzdOclRVHdpa++UG1vtVWeqQ+sEk/5TuP/V66dpf9k9yeFV9p7X28g3ksxUNt0H8MN0558FZPbB/2G0zvuPwwG2SPL8ff8sUOimelu7YZyWnbjCPrWga22vYX6e7PjPOjyZcbpKkqnZNty8YBFO8Lckr0q37Tfr8r5jkZVV16g5r05jGtrpK/3pSkn9P1x5wWrpjyFsleVy6NoH/l+5YbxrtxerWBuqW/64t4yXpzoNWsmuS/07XrvrjJG+fQr5/nK4j+Tjfm0IeO9knkzx4MzOoqodnKdjm60mema6d9SpJHptu33rHdPXr/pu5LtvU1I7110ndGuKa9RS01nbckO5PraW7MHDQiM+f0H/ekhw+YR7X7pff0lXKPZd9fon+/cF6XGvev4thew+bXa7THfC/OckBK6S5a7rOjS3diVnN+3cxbO9hFvvrEcvcNd3BdksXWXxyP37yvH8Pw84YZlWuk7y2X8Y5Se6yQrpKstu8fxfD9h9mdIz9rqFlPHJMmn8YSvOief8uBoPBoA3CMOOycOMkj0ly0yR79O8dPrTcQ+f9OxhmUx6042yfYUb7hhXP+fq2kH8fymfsOaRh+5eHMdtfW9gWG2a0bzhsaBn7zfs7G+ZXFvrlaEs0GAxzHZI8J13nmkuP+XzX/hxnsM976ph0u6frrNPSPc1g/xFpXjy0nMM2sM6/O7ScdybZddnn+yQ5pf/8R0kuN+/fecrb7GFJ7pehdqbNOJZctt1vvoHlHLnIx7nT2F5J9ptG3VljXn88lNeLR3x+rb6Ot3QdMnfM8cmUttVH0wU3jGzrSdeh8XtDx5nX3MD6qlsb317+u7bRkOT2Q7/hERtYzqFDyzl03t9rOw5Jju1/v2M3OZ+9k5zZ53VKkn2Wfb5rX59sz/G/4VSO9deYl7o1/rdxzXqDw7jH02xbVXXjJIf0k69srX1sRLJ/SPLlfvyxVbX7BFn9eZae8PGY1trPhz9srf0s3QXu9OkeN0EekGQ25bq19tHW2n1aa19aIc070t0ZIOlOwG6wnjxg2Az318s9Nt1duL6a7oAOpmZW5bqqbp7kj/rJv26tvXNc2tY5f715wLAZ7rMP7l9/0Fp7yZg0fzs0ftAEeQBMjTYIBmZVFlprn2itvbC19vHmsdJblnYcBma4b1jxnK91dzV87tBbh4xLy+bRFsbAHMsCW4y2RGCRtNae2Fr7+zbmLqj9Mesjk5zXv3XPMYu6W5Jr9uPPaq19fUSaJ2Tp7vlPmHCVk+Tx/ev56W4AdKG7hbfWzkjyxH7ysunuwrpjtNZe3lp7U2vtpM3Ko3+C0l36yW+01o7brLx2ullsrykb1K8fZkQ97b/Hs/rJa6Wr+zvCNLZVa+3g1toxre+5OOLzr2fpetpuSf5g0rwW3ZTqlv+u7eWBQ+OvndtaMEsPSXKZfvyJfT35P0PHqYP6tJE6uiNN8VifCblmPR07LqAiFz4IfPWoBK17nPngD++y6R7Js2ZVVenu8JYkX2mtfXxMPh9Pd5EiSe7azweT2PRyvQ4fHBrff5PyYDHMvFxX1dWz1HDwp62181ZKDxOYVbl+dP96VpIXTTA/rNesyvbg0d/fHJegtXZWkkEjxmqPCgfYbNogGNhK5+3M31YqD9px5msrlYXhi1l7bFIerExbGANbad/AfGlLBBjSWvtBks/1k+POX4b3nUeOWc7Pkrylnzygqq693nWpqksnuXU/+f7W2rfHJH1bkh/34zumw/cM3TtL5yc6rS6Ivk5ep598S19nRzlyaFz9Wj9tQluH/65toqr2ytL1mG8m+fAcV4fZGdTRH2fpBkUX0ten9/eTt+7rG+uwxmN9Juea9RTsxICKm/evZyf51ArpPjQ0frN15nGNJFcZsZyV8rlqusfjwSRmUa7X6uJD478cmwpWN49y/ZIkl0zyutbasRtcFoyy6eW6qi6WpQPU9w3uTFxVu1bVr1TVflWlcwzTNqt99uCk6hrjEvQNWfssSw8wL9ogGNhK5+3M31YqD9px5msrlYX7Do1/ZZPyYGXawhjYSvsG5ktbIsBFDc5hxp2/DPadX22tnb7Ccjb6P3qjLN3QZ2x7TB+wOuhIdCNPlVq3wV3AW5LXzXNFmKmbD42vVL9OT3JiP+l4eP20CW0d/ru2j3sl2bMff924p8Cwc/TnzDfuJz+2ys1IBvXq4kkO3NQV27lWO9Zncq5ZT8FODKgYRDGftMojaYcvGl1nbKrRDhiznGnnAwOzKNdrdcuh8S+PTQWrm2m5rqr7JrlDusck/sWky4FVzKJcXz9Ld+v5fFXtVVUvSHfH/m+lu1PCWVX1vqo6dJ3LhnFmtc9+af96+ar60zFpnjIiPcC8aINgYCudtzN/W6k8aMeZr7mWharap6oOqqpXJnly//YZSd4wrTxYF21hDMxj3/Dqqjqtqs6rqjOq6uNV9YyquuoGl8vGaEsEGFJVV8zSfu4i5y9Vdakkv9JPbnYbySTtMbsl+bUJ8lpIVXWNLHXiOq619o0pLfryVfWhqvpBVZ1bVd+pqmOq6tFVdYkp5bEIHlNVJ1XVOVV1VlV9sapeWlW/M4VlT1K/fqWqLjmFvBfJtNuE1K0J+O/adh44ND7NJyf9XVWd0tedH1XV/1TV8yd5EsmC+o2qOr6qzuz/l75dVe+oqgdOISDo2kl27cddg9tEqx3rT0jdWuKa9RTsqICK/g4qg7vVjntsVZKktfajdNE4ydKBy1pdbWh8xXyS/O/Q+HrzgVmW67Wsy/WT3LGf/HxrzYV4JjLrcl1Vl0vygn7ySa2170+yHFjJDMv18AHqLkk+meSx6R7HNnCxJLdJ8l9V9cR1Lh8uZMb77FdlqXHqxVX1iqq6c1UdWFV3r6qjkjy+//zvWmvvH70YgM2nDYKBrXTezvxtpfKgHWe+5lUWqurYqmpV1ZJ8P8lHk/xxkkrXefZurbUzN5IH66ctjIE5/k8cmuTKSXZPcvkkN0kXaHVSVT18g8tmAtoSAUZ6QrqOnUnylhGfz7KNRHvM5ntguvOUZLqdVi+V5BZJ9k73H7dvktsmeWGSE6vq4CnmtZP9TpL9091Jeq90xxQPT/KpPrDi4ivNvIpJ6lctm48V9AEOf95PnpvkHVNYrLo1Gf9d20RV7ZfkkH7yI621r09x8Qcn+dV0deeySX47XR39clUdXlW10szkSumeInGZdP9LV01ylySvSfKZqtpIZ231ZnZWO9afhLoV16ynabfVk2wrlx4a/+ka0p+d7nHXl9rEfM4eGl9vPpDMrlyvqD8hPiJLUZlPXiE5rGbW5fq56Q6wP5bkFRMuA1Yzq3K999D4E9PdYe69SZ6a5HPpGjXvkeTZ6U4on11VX2mtTaOhjMU0s312a+2XSR5UVUcn+askD+mHYR9M8kzBFMAWoA2CgS1x3s6WsSXKg3acLWFLlIUh/5zk6a21MzZp+axMWxgDsy4L30jytnRlYXAh85rp2o7uma5d6aVV1VprL58wDyajLRFgSFXdJEudf7+d5F9GJJtlG4n2mM33R/3rzzOdTnUtyceTHJ3k00m+m+5/73pJ/iRdR8yrJvnPqjqktfY/U8hzJzozyVFJjk3ytSTnpAvMvW263/FS6QIrLp3kDyfMQ/3afM9J18E0SV7cWjttA8tStzbGf9f28UdZCvR7zZSW+Z105+THpTs/Pz9d3bxTusDC3ZM8LV1n8L+aUp47yQVJPpDkPUk+m+QH6cr576T7L7pOuoC/D1bVjVtr35ogD/VmBtZ4rL8e6taFuWY9JTstoGKPofHz1pD+3P51z03M59yh8fXmA8nsyvVqXpTkwH78Na21o6e8fBbLzMp1Vd0i3Z0Yz0/yp621tt5lwBrNqlwPP852jyTvS3KnviN60t2B9KVV9YUkH0p357lnVdU7lX8mNNNjkf4OEg9M1xA7ykFJ/qSqvtxaO3WSPACmRBsEA1vlvJ2tYauUB+048zevsvDgdOeNle6uXAcmeUSSRye5ZlU9pLX23Q3mwfppC2NglvuGo9L9BywvAyckeXNV3Sndxefdkzy/bzs6fYJ8mIy2RIBeVV0pyVvT9V9pSR7UWvvZiKSzbCPRHrOJ+jvZ799PvqO19uMpLPZxY57G97GqekWSZ6TrUHfJJEdU1YH+6y7itCRXHVH//ifJe6rqxUnen67D4v2r6s2ttXdOkI/6tYmq6g/TtQEkyZeT/PUGF6lubYz/ru3jAf3rOZlOoN8JSa7eWvvFsvc/neTtVfXyJP+ZLrD9Sf0+9bNTyHcnufuY/c+Hq+ol6W4i8qB0NxV5QZK7T5CHerPJ1nGsv1bq1kW5Zj0lu8x7BabsnKHxi60h/eARdD/fxHyGH3O33nwgmV25Hquq/jJLd4c+IcmjprVsFtZMynV/R86Xp+tE8E+ttc+tZ35Yp3kchyTJE4cugP6f1tpx6S6KJ11k/rjO6bCamR2LVNUh6e6aeeckp6a7E8i+fb6/ku4Y5GdJ7pvkE1X1m+vNA2CKtEEwMPfzdraUuZcH7ThbxlzKQmvtm621L7TWPt9a+3Br7flJfivdndzulOSEqrraykthE2gLY2Bm+4bW2lkrdWRqrb0ryd/2k5dId3dZZkdbIrAlVVWbwnDYOvK7dJJ3Jxkcoz6ptfZfY5LPso1kW7THzHp7TdEDh8anchfwMR0uB5+11tqT093lOunubH3wNPJdj62+vVpr563UwbG19rUsdThOksdMmNWWr19bfVutsN6HJnllP/nDJPdorW20nUHd2hj/XROYw/HITZNcu598R2vtrI1+h9ba2SM6fA9//oksBT/V0Pi2spnbapX9zy/StYF/tX/rblV11Qm+wo6pN2sxh7q1nmP9NVmUurVOrllPyU4LqPjJ0PhaHhMyuCvLWh5zMmk+w3d+WW8+kMyuXI9UVQ9P8sx+8itJ7tBaO3uFWWAtZlWun5zk19M9zv5p65wX1msexyHfX+WxqccMjd9onfnAwEzKdnUdf96U7k4Bpye5aWvt9a2177bWftFa+3Zr7SVJbpHuRO0qmd7jVgEmoQ2Cgbmet7PlaMdhYMvsG1pr56R7csXP0gUq//2082BV2sIY2DL7ht7L090dMEluuUl5MJq2RGDhVdUeSd6R5Ib9W89rra10rDrLNhLtMZukvxZw737yO+menjQrLxsad+wzgdbah5N8qZ+8eVVN0u9M/doEVXVgknem68D403RtQl+eUfbq1nj+u7aH4UC/184w339NMnhKk7qzTq2187MURJZM9huqN5tkgmP9aVq0uuWa9ZTsNu8VmKbW2jlV9YMkl89SVNNIVXW5LG20/11nVt8eGl/tbl6/MjS+3nxgluV61PLul+Ql/eQpSX6vtXbGRpcLMyzXT+xf35/kzlU1Ks1g2Zesqvv249/baEQsi2eG5Xo4/bfHprpo2iusMx9IMtOyfbskg7tGvLC1dvqY9fliVb0+3R0nblhV11+ARzQCW5A2CAbmed7O1qMdh4Gttm9orZ1RVR9J8ntJ7lpVu690Jy+mS1sYA1tw3/C9fn32ydI5OTOgLRHYwq4zhWV8Z7UEVbVbkrckuVX/1hGttSesMtupQ+Ob3UayvD3mk5uY10bMZHtN2Z2TXK4ff+OoJydtoi8Njc/j2Gc7bq9RvpTkgCR7pDuW+f46519ev1ZquxjUr5bVj2WmaVttq+qe6P7eJJdOcm6SP2itHT+r/KNurcR/12Rmtk2r6mJJ7tNPfjcXDjTfVK2186vqxCQHZvuek8+7/m10/7No1+C28rH+1OyQurVmrllPz44KqOh9KckhSa5VVbv1kWij/MbQ+Hojcod3xL8xNtXG84GBWZR7s5/AAAAgAElEQVTrC6mqu6SLut0l3R/hrVtrszxBZeebRbkePF7qwf2wkn3S3Rk9ST6UxEVkJjGLcv3FofFdV0k7/Pm4dYG1mEXZHj55//QqaT+VLqBikKeACmBetEEwMPPzdrY07TgMbLV9w6CTyyXStYNshY44i0RbGANbbd/QVk/CJtGWCGw5rbWvbHYe/R3tX5euY32SvDnJw1ebr7X2k6r633Sdcza7jWSS9pjzk3xtgrwmNovttQmG7wI+66dQz/W4Z5tur1E2+jsur1+fWSHtoH797yyfwLmdtlVV7Z/uSS+XT7cfuk9r7QMzXg11awz/XZOZ8Ta9U5K9+/E3zDjQL9nm5+RboP5t9Pc7Mckv050P7/hrcFv5WH8TbOu6NQHXrKdgkkevbXXH9a+XzNLjYkYZfpTLR9aZxzeTnDZiOaPcon89NcnJ68wHBmZRrv9PVd06XZTgbkl+kO6Ohl+fdHkwxkzLNczIppfr1topSb7VT+5XY2432dt/aPzUsalgdbPYZw+f0K0W+L37mPkAZk0bBAPObximHYeBrbZvGL4b17Z5zPYOstXKA/OzZcpCVV0hXXBNsnTMyexoSwQW1cuSDJ6UdXSSB7TWLljjvIN9569X1b4rpNvo/+gJSc4bsawL6e9qfdPBPJ4Ct7L+2ON2/eRnWmufn/EqHDA07thncoPf8dx07RDrddzQ+Er1a98k1+4nnRuNUFVXS/eEwisnuSDJg1pr75jDqqhbK/PftbUNB/q9dpYZ93fxH+zn1J3JbGj/01o7L8kn+smD+voxzqBenZuVnwCz6DZyrD8VC1q3XLOegp0YUPH2ofGRd2Dqo6AGf4ZnJvngejJorbUkgwPQ36iqm45K178/iLR5Rz8fTGLTy/XQcg5OV74vnuSsJL/fWvviynPBRGaxv67VhiSn9MlPGXr/0HV+FxiY1f763/vXvZLceoV0dx8aP25sKljdLMr2N4fGD1kl7fDJ2TfHpgLYfNogGJjZeTvbgnYcBrbMvqHvZHFQP3lKa+0nm5EPK9IWxsCW2TckeViSQQf7D21SHoynLRFYOFX1j1l6+vAHktxrhbunjjK87zxsTB6XSHLvfvJLrbUT17ue/fHy4A7vt+mPp0e5e7r9a5Ictd58FtD9snTDpFk/nSK58N2RHftMoKpuluQ3+8njJukg2dfJwZ2K793X2VEOGxpXv5apqiumC6bYr3/rT1trb5zT6qhbK/PftUVV1eWT3KGf/Gxr7bMzXoX7JLlMP67urFPfaf6Ph9767wkXNaije+XC58XDeV0tyW36yQ9oWx1tCsf607KIdcs16ynYcQEVrbVPJPlwP/knVXXQiGR/keQ6/fg/LY+0rKpDq6r1w5FjsnpBusf9JMkLq2rPZcvYM8kL+8nz+/QwkVmV66r67STvThepdnaSO7bWPjWN7wDLzXB/DTMz4+OQc/rxf6yqvZYnqKoHJDm0n3x3a+1/1/5N4MJmVLY/kORn/fgjqup6o9alqm6f5G795KlZ+VHQAJtKGwQDzm8Yph2HgVmUhaq6dlX97krrUVWXSfLGJIM7rM30bnt0/FcwMKN9w35VdYOV1qOq7pTkqf3kz5O8eh1fgynQlggsmqo6PMnj+smPJrlra+3cdS7mqCTf6Mf/sqr2H5HmuUkuNzQ+al0OG9p/Hj4mr+f1r7sleXFV7bpsGfskeU4/eWaSI9b2FRbaoAPX+enOUdakqg4f2l6Hjfj8plV15RXmr6p6RpY6Qn42nnhwEVX1B1Xjn2ZVVdfKhbfbS8akW3F79Qb1a+8kfz9iGfsn+ct+8qQseKfv5arqskmOSfLr/VuPa629YoLlqFuz4b9r6xoO9Ftze1l/zj3YFseO+PxyVXXoKsu4cZIX9ZMtyb+sNf9FUFW36vd14z7fPV35HZwvHz3qPHa1bdU7It3NipLk2dUF2gwvY9d0/3mD+jSyji66aRzrq1uTc816Onab9wpsksemO0DbM8l/VtUz00XT7JnucTIP69OdmOQfJsmgtXZiVT03yZOSHJjkI1X1nCRfT/dI3CcmGTRWP7e19rUJvwsMbGq57g/Yj0kyOBj56yRnVdV1V5jte6217603Lxiy6ftrmINZHId8q6qemq6B8XpJPtEfh3wuS1Hzj+iT/zhLJy2wEZtatltrZ1bVs5P8bZJLJ/loVb0wyfuS/CjJlZLcNclDsxQY/qRZPx4SYARtEAzM5PxmxMXN3x4av11V7Tc0fVJrzd2F50M7DgObvW+4SpIPVNVn092F6lNJTk93sWLfJDdL8if9eJJ8IcmzJ/omTIO2MAY2uyzsl+SDVfWxJEen69g0+A+4ZpJ79sOgw9zjW2unTpAPG6ctEVgIVfWYJE/rJ09N8v+SXGOFvttJ8tXlnXxaa7/ol3V0un3YR/rOvJ9I1xH1oUnu0Sc/LsnrJl3n1tp/VdW/ptsf3yXJ+6rqBUlOS7c/fXKSX+2TP7G19qNJ89qK+s7zN1/29qUGryPaJ97bWjt9heUdkOSGQ2mneX56uyRPqqr3prum8KV0HYUvnuS30t29+iZ92p8leeh2ulPuWkxpex2V5KSqelu6OvXtJOcmuXKS3093bjlY5ltaa2/bwCq/Jt12uVmSR1XVvkleke560I2TPCVdHb8gyZ/N6e7Wm2Kj26qqLp7uBhuDNsE3JHn/Km1CZ7fWJnniu7o1hbrlv2tLGw70e8MUl3uZdOfkn8tSe9130nVC/tUkd0ryR1m6+cnz3CjnIh6U5J1V9c4kxyb5arrz1UulO554WJID+rTfS3duPZHW2g+r6olJXprk6kmOr6q/S/L5dG2vf57kVn3yN7XWjp00r51qWsf6a6Burcw1641qre3IIcmd00WOtTHDV5Nca8y8hw6lO3KFPHZJ8soV8mjpIth2mffvYdgZw2aW63SPlVupLI8aDp/3b2LY/sMs9ter5H9yP//J8/4tDDtnmFW5TvKsdA2J4/L5bpKD5v17GHbOsNllO11HjuevUq5bkvPSdfaY+29iMBgMrWmDMMy8LKznvH3scgzbuzxEO862Gja5LBy6jjLwriRXmPfvsejDLP4rVsn/5GgL2xLDFtk3nJ3kYfP+LRZ9mNV+IdoSDQbDHId0HeHWew6z3wrLe2i6jt7j5j0+yT4rzH/YUNrDV0i3Z7qOy+Py+eVK82/nIes/7zx0leU9eyjtvda5LocPzXvYKp+vNJyS5Gbz/m236vZax7wvSXLxSbfXULp90nUoH5fPOUkeMu/fdqttq3TB0+vdnx47ybZSt6a7L4z/ri01JPmNod/k3eucd7geHrvK5ysN56frhF7z/j222pDkyDX+hp9LcsCk22pZ2r/JyufM706yx7x/m604ZErH+urWVLaFa9YbGHbqEyrSWju6qn4rXdTNHZNcLV3Hq5OS/FuSF7XWfrbBPC5I93iUf08XvXOjdAf8ZyQ5IcnLWmv/sZE8YNgsyjXMmnLNTjSrct1a+8s+Iv8RSQ5Jd4eYc9JFE78zyQtba2etsAhYl80u2607+3pcVb0+yUPS3fHl6kkukeSnfT4fSnecfeJGvgvANGmDYMD5DcOUBwY2uSx8JN2dQm+T7o5QV0v3dLdLpLtr2zeTfDzd3dM+spHvwXTYNzCwyWXhU0kekOSgdPuGK6c7dtwt3V1/v5jkA0mOaJ5eNHfaEgHWr7X2iv5JTH+W5Nbp7h58dpIvp7vD9BFtCne0b639PMkdq+r+6TqyXj/dkwK/m+TD6fbRH9toPjtdVe2S5A/7yTPT/e9M06vTBwamu2v+FZNcPl1nujOSfDrdneHf2Fo7Z8p57yR3Sfcb3iTdtZl9klwy3bnlN9KV+Ve11r4wjcxaa2dU1cHpOpnfP8l1+vxOS3es+k+ttS9OIy8mpm5Nkf+uLeePhsZfO+Vln5bkXunqzo2TXDXdPnWPdB2dv5quA/oRrbWTp5z3TvGcJJ9J9xsekOQKSfZOF5T03SSfTPLWJEe11n45jQxba0+rqmOSPCrdOfOV0h23fDbJq1trb5pGPmyIurUK16w3pvqIEQAAAAAAAAAAAAAAgIWxy7xXAAAAAAAAAAAAAAAAYNYEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFwDZVVYdVVeuH/ea9PrBcVZ3cl88j570uAAAAsJOs1C5UVUf27588l5UDAAAAmJKd1DemqvYb+i6HzXt9AIAlAioAAAAAAAAAAAAAAICFI6ACgKmrqsMHUfXzXheWVNWx/XY5dt7rAgAAAAAAAAAAADBvAioAtqnW2pGtteqHk+e9PgAAAADMX2vtsL69aL95rwsAAAAAAMBWJ6ACAAAAAAAAAAAAAABYOAIqAAAAAAAAAAAAAACAhSOgAmCbqqrDqqr1w37LPju2f//YfvqqVfWPVXVSVf28qn5QVcdU1e1XyWPXPp9jqur0qjqvqs6qqq9V1Qeq6q+q6oDl65TkaUPvtRHDfkOfL1/XX6uqF/V5/Gw4/Urfedl67zeU7rARnx/Zf3ZyP71vVT2vqk7s8zy1qt5SVb85Yrn/3Kf7eVV9t6reUFX7r/Q7Ds1/q6p6TVV9o8/nx1X1+ap6blVdZYX5Dh98n356j6p6QlV9uqp+0g+fqKpHV9Vu475vklv2b91yxDY5edk8l6yq+1TVEVX1mX67/6Kqvl9VH6qqx1fVpdbyvcd8p0OH8j60f+/efbn6fv/7frWq/r6q9l7jMv+gqv6tqr5VVedU1ZlV9cmqelpVXW6Vea9dVS+sqi/0v+d5VXVa/91f1f8WFx8x37rqCAAAAGy25e0eQ+8/dehc/NfWsJxj+rTfqapdx6SZ6Fx8RNvMZavqb6vqi1V1dr+c/66qP1zjd75MVf1lVX2kb1c4r1/vo6vqnlVVq8x/t6p6e1V9u6rO7dsGvlFVH66qp1fVjcfMd5WqenbfRjNoO/lu397zpr7NYK+1fAcAAABgMlV1hap6RlX9T9+mcE5VnVxVr6uqm68y76Ct5PBV0l2ob8uYNLtW1SOr6vjq+oOc1bcZPH5Uf4MR82svAYA5uUinSwB2lqq6WZK3J9ln6O09ktw2yW2r6gmtteeNmO9SSd6T5JBlH+2eZK8k10ryu0l+J8k9p7Sud03yhiSXnMby1pjn9ZO8N8m+Q2/vmeReSe5QVbdrrR1XVb+b5G1JLjOUbo8k909y+6o6pLX2xTF57JHk1UnuO+Lj6/bDI6rqfq21o1dZ3yv16/vbyz66UT/ctqr+oLV2wUrLWYN3ZykAY9g+SW7RD4+sqju01r6ywbx2qarXJXnAsvevneQJSe7W/76nj5q576Dx1nTlcdjFk9ywHx5ZVXdtrX18xPz3SvL6JBdb9tGV++H6SR6c5HpJvjA038zrCAAAAGzAG5P8TT9+/6Hxi+jbH27dT/5ra+2Xyz7f0Ln4smX9erq2jv2WfXRIkkOq6qDW2qNXmP/WSd6c5PLLPto3yZ364T1VdZ/W2k+XzbtrkjelawcadrEkl0pyjSQ3T3L7JAcum/eQJO9K1wYw7Ir9cN10bUFn9OkAAACAKauq2yb5t1z0/Pzq/fCAqnpxkj+bQj+KldZjXP+BG/TD/ZI8ZB3L014CADMkoAJgZ7tyumCKC5I8KclxSc5Ld2Lz1CSXTfKsqvqPEcEAh2fpRO9d6QIdvpXknHQnOTdId4LVhuZ5e5JPJnlkkkf0711vxHqdOuK9X03Xqf1nSZ6e5MNJfpkuSOCnI9JPwyWSHJXupO+vknyoz/N2/fQlk7yuqn4v3Xc7K93vdny6/9B7JPnzJJdL8sokN12eQR/R/9Ykd+zfOjrJW5J8I912uXGSv0j3/d9aVTdrrX1yhXV+W5IDkvxzv6wfJvn1JE9Jcp0kd07y0CQvG5rnyUmely6o48B02+jBy5Z73rLp3ZJ8Psk7+/SnJal0DQ53S3LvdCfJb6+q326tnbPCOq/m6UkOTvcbvzbJKUmulORR6X63ayV5froGhgvp7+Lw/nRBC79M1znkPUm+mS6w4RZJ/r90ZfY9VXWD1topQ/NfKd3vcrEk30vyoiQfT3fyvmef9y2T/MGI9T48668jAAAAMBettZOq6vgkN8kqARVJ7pNk8FSKNwx/sNFz8WUuka594/JJntEv96fpzqmfluRqSR5VVUe31o5ZPnN/I5H/6PP9bpIXJvlsunaMq/Tf4wFJ7pDkNenacoY9IkudA45LckSSryc5u1+n30rXTjR8g43Bb/Cv6ToH/CTJvyT5YLq2hYulazM5OF0bCgAAALAJquq307UrXCzJL9Jd739nuvP6G6TrJ3ONdH0Pzk7yxE1cnddnqf/AJ9L1cfhaur4Ph6Vrf3jZyDkvSnsJAMyYgAqAne3a6Tqn36y1NhzEcEJVnZDkv9P9FzwsyWOXzXvv/vWtrbXlUedJFwn/rKrae/BGa+3MJGdW1feG3vvCiHlHuUa6k7eDWmvfGnr/+DXOP4krpAsSuHFr7evDeVbVGelOtvdL8tEkp6f7Hb8/lO4jVXV+uqco3KTvIPA/y/J4SLqggF8kuUtr7b3LPv94/3SGDyf5zSQvSBfwMs6Nkty2tXbs0Hufrqpjknwp3cn4IzN0It5v+1Or6uz+rbPXsF0e3Fr72oj3j0/ylqp6ZZJj0gVz/GG6gJJJHZzkr1trfzf8ZlW9N105u22Se1bVny37/ZMuwOV3kpyZ5DattU8t+/y4qnpDko+lCzB6Zr++A3fM0hNRbj3id/loktdW1ag7O6y7jgAAAMCcvSFdQMW1q+rAFW7qcP/+9cQRaTZ6Lj7sCukuqB+07GYfn6qqY9Pd7GGPdG0dF+ogUFW7p+ussHu6c/B7tNZ+NpTk00neVVX/neTlSe5eVb/XWnvfUJrBuf3xSW7VWjt/2fq9P8k/jji3v1m6DghJcv/W2vI7Kn48yZuq6nHpOkEAAAAA0/fydO0Kv0xyp9bafw59dkJV/Vu6gIADkjy+ql474majG1ZVd0xy137yPUnuuqyN4T1V9dSsfHOLYdpLAGDGdpn3CgCw6R6zLJgiSdJaOy5LwQrLHzmYdI/5S7qO/mO11n64sdW7kCctC6aYhacsC6YYeFW6Jw0k3cnqqM78SRdRP3Ch37F/OsXgDgf/PCKYIknSWvtRuqCMJLlZVf3aCuv7wmXBFINl/DDdkxaS5HpVdZnladZjTDDF8OfvT3dnh2T00xvW41PpOlcsz6Ml+cd+crckBw1/3j8y81H95FNGdOAYLOeUdE/BSJJ7VdUlhz4elPMfrRRk0lr7eWvt58venkcdAQAAgI14c7pOBsmYIIeq2j9d0EVy0adTTONcfLmnjOrM0Fo7Kd3TLJPRN5+4b7obYZyT5IHLOgcML+cV6e4MmXR3hBw2OLf/6IjOAcPLWH5uv+/Q+H+vMN/5rbUfj/scAAAAmExV3TjdDSmT5BXLgimS/F9fjIf1k7ukC0DYDIPlnpvkoWPaGJ6RZK03JE20lwDATAmoANjZzkzy7hU+H1z0vuaIz77Tv96nqmYRGX5ekn+bQT7DWpK3jPyg6zw/CCr4UZZF9Q+l+2a6RxUmF/0dD0iyfz/+1lXWZfhk8qCxqZZ1ZFhmsD0r3RM/pqaqrlBVv1ZV1x0MSQYBJtff4OLf2AdPjDLcMWP573vLLD1Ccq2/7+5Jbjj0/qCcX66q7pr1mXUdAQAAgA1prX0vyeCOg/epqlHXCO4/NP7GZZ9N41z8Qqs0Io9hg3aBvavqsss+u0v/+qExN8EYtS7L21wG5/Z3rqp9VlnGqPmS5MHrmA8AAACYjtsMjb9yXKLW2keSfHnEPFNRVbsmObSf/M/W2mlj1uOCJK9Z42K1lwDAjAmoANjZvtaflI0ziBa/9IjPBidyByf5ZlW9qKruVlVXmOoaLvlaa+2c1ZNN1RmrPD3gzP71pBU6/A+nW/47Hjg0/rGqauOGJD8dSrtvxvvKCp8Nf5dR23RdqupmVfXmqvpBku8lOTHdoyMHw0P7pOs5gR5l0u80/Pt+Z5Xfd/hOD8O/7zuztP2Oqqr/qqrHVdUN+4aPlcy6jgAAAMA0DG7WcOUkvzvi80FAxfH9XQ+HTeNcfNgZrbUfrLCua2kX+P2V1qNfl8ePWY/Buf21kpxUVa+qqvtV1dVWWKckOS7JN/rxF1TVJ6rqL/u2lIutMi8AAACwcdftX89L8plV0h7fv/7aJpy3759kcAPGE1ZJ+4lVPh/QXgIAMyagAmBnG/noviGDYItR/wdPT/KqdJHvV0zyqCRvS/K9qvpCVf1NVV1pamvaPQVi1tb6+6w13fIO+Fdc9xp1xj7tYNzjGJetx6h1WZeqOjz/P3v3H2x5Xddx/PVZl18J62YqrNoPBc0SSlFBERVFsdA1QENNR9Py56gpTU6NYzWWTuOgVFKCWZZFKZktkZo/Mk2jxJ+TRDlqgGRIGMGCprHspz++3+teLvf3nnvP3X0/HjN37vn1PefDuXuH+/2c7/PzHXZ2z0xy5yUefsjevFYWeX/nBEETf3/HSYgnJflqhjN7PDrJG5N8Ksn1rbV3t9aeuMDzrPfvCAAAAEzCjuzZF3/G7Dtaa8cmud94db6zZE56rmO5cy7JZOYFbjOH0Xv/gySvS7Irw5k3npNhBcirW2tfaq29obV2uzO79t5vSbI9e1a4fMj4PB9PckNr7W9aaz+1jMUaAAAAgNWZOY7h+t77riUe+7Xxe0vy3Ws0jmRYqHIx1y7zOc2XAMA62zztAQCwMY07Oj/TWntDkqdnWLHwwUkOTHL/8eus1toze+8XTeAlb53Ac2w0s3cCtye5cpnbLbWTvaZaaycn+ZXx6r8nOTvDDu5XknxjZjKitfaaJK+eyiAHs9/fY5Pcsszt/mP2ld77x1prRyV5cpJTkzwyyT2TbElyepLTW2vvT3LG7KBlCr8jAAAAsNd67ze31i7KsC97RmvtRbPOGjpzdopbk7xzns0nsi8+ITNjeV+SV672SXrvr2qtvSVDXHJykodmCECOTHJWkpe21l7Wez9vznaXt9aOyTDnsz3DfMJRGQ5CePz4dVZr7dTe+1TnegAAAGA/1qc9gFk2wljMlwDAKggqAFhU7/3yDAfNv7q1dnCSEzN8uP6sJIcm+bPW2pG992vWYTizK/vFzrJ0x7UeyDLNPgXjDb33y6Y2kpV53vj9f5I8tPd+3QKPW+rMFWtt9vt7Xe991QdnjAeOXDB+pbV2ryRPSPLSJPfNsFP/2iSvmGfbjfQ7AgAAAMtxQYagYkuSJyZ5V2ttU5Knjfd/cIEPtSe2Lz4B/53k7kkO3Ns5l977VRlWTHxda+2ADCsonpnkBUkOTvK7rbVP9N4/O2e7WzOc8WNHkrTWtiX5sQxnsXzQ+HV+hgUbAAAAgMm5fvz+Pa21zUucpeKI8XvPcBzEbD3DmSsWOwYlWfg4lNnPd/gSz7HU/ZNgvgQAVmGpPwQA4Dt679/qvX+o9/7cJL8w3nxIhg/eb/PQNRrCTbMuL3Yaxvuu0euv1OydxodPbRR7LPfncv/x+98tElMkw9kYpmnN3t/e+xW993MzTAjMHBxy5jK2W+7vCAAAAEzT+5N8fbw8c1aKRyW5x3j5ggW220hzHTNjeXBr7cBJPWnv/Zbe+yW995dnz3vTkjxlGdte03t/W5KHJfnMePMTW2uHTGp8AAAAQJJkJhY4MMkDlnjsceP3L/be/2/OfTPHoSx4DEprrWU4y8J8vpzkf8fLD1liHEvdPwnmSwBgFQQVAKzW3866fJc5931r5kJr7aAJvuYVsy4vdjD/0yf4mnvjM9lzMP7zx7MXTNPMz2Wpn8nMGawWPNNHa+2BSY6fxKD2woeSfHO8/LJxEmOieu87k3xyvDr33/lSFvsdAQAAgKkZV228cLx6amtta/Z8GP7NjCsIzmPN98VX4K/G73dK8pw1eo1V7dv33m9J8tHx6uYkWyc5KAAAACAfmnX5uQs9qLX2sCQ/PM82M2aOQ1nsGJQfzwL79uMcy0fGq6eMZ2OYbxybkjx7kdeYFPMlALAKggoAbqe1dufW2vYlPhQ/ZdblK+bcd82sy0dObmS5LHtO2/iS+WKN1tqZSX5ygq+5ar333RlOf5gk907y9sUCk9baltbaS9ZwSDM/l3sv8bP94vj9xNba7VZZaK3dNckfT3pwK9V7vyHJuePVE5KcM05CzKu1dnhr7Wfn3Pb4hSY0xvvvlD2rVVwx6/a9/R0BAACAaZs5C8VBGWKKJ4/XL+q93zzfBpPYF5+gP0py9Xj57NbaIxd7cGvtxNbao+bc9szW2uaFtskC+/attUfMN2cy6/4DM5zxI0luTrLYGUABAACAFeq9X5rkU+PV57XWTp77mPHz/vPHq7uTvHmep5o5wP/41trtzsbZWjsiyZuWGM7M8x6U5PzW2h3mecwvJTlmieeZBPMlALAKi/2PD4C6tmSo1q9srb07ySeSXJVkV5JtSbYnmfkw/KtJ/nrO9pfMunxOa+21GQ7m7+NtV46V/or03ne11s7PsKN5dJIPt9Zen+QrSQ7PEFL89Pj6J6z0+dfIeUkel+T0DOM7dvxvuDTJjRne6/slOSnJkzKcReLceZ9p712SYQWCuyV5Y2vtT8YxJMktvferxstvz/AzvmOSj7bWfiPJp8f7TkhyVpIjkvxjhlMyTtMvZ9jhPp31x/UAACAASURBVD7JzyU5qbX2e0k+l+QbGU7Lef8kj82wasTnk7x11vZPT3Jxa+2DST6QPdHOYRn+jb0kyT3Gx543a7u9/R0BAACAqeq9X9JauyLJvZK8NntWBbxg4a2S7P2++KTG/+1xYY2PJDk0wzzROzKcXeOKDAtKbUvyoAzzMsckeWn2HCiRDAtGnD3u21+S5MsZ5mYOzzCf86LxcTfntu/LyUle3Vr7WJL3JPnnDAcBHJLkvklemOTY8bG/v5p5MAAAAGBJz8vwWf2BSd7bWntTkoszzE88MMkvZlj8MknO7r1fNs9zvCXJizMcR3lxa+01ST4+PufDMxwfcUCGhSnvM98geu8Xt9YuznCcwPYk/9BaO2fc5m4ZjmN5aoYAZLEzYew18yUAsDqCCgAW8wMZdg4Xck2Sn5i7amHv/UuttQuTnJmhTD9lznb3SnLlKsf060keneShGQ7u3zHn/o9kOAh+vh3hddd77621pyb5rQw7h0cmef0im/zXGg7nHRlilHsnefn4NeOqDD/v9N7f1Vp7W4b44u5JfnvO89ya5BUZDpCYalAxTgY8LskfJjkjyY9m8SBl5zy3HZDk1PFrIefl9u9DssrfEQAAANgg/jTJq7Inpvh6kvcvtsGE9sUnovf+T621k5JcmOR7kzxj/FrJWA7PcCDAi+a5LxkWo3ha7/3qObdvyhCWPOr2m3zHRRnmYgAAAIAJ671/rrW2PcmfZ1gU8efHr7l+Jwvsn/fe/6W19sokb8xwDMQ5cx5yfZLTkvxaFggqRs9I8r4MEcbxGY7PmO2zSV6QPYtZrhnzJQCwcoIKAOZzVZLjMhxgfkKS78+ws3RokhuSXJ6h6n9L732hD8WfmaGuf0qSH8yw4v+mvR1Y7/2brbXHZDig/2lJjkpyS5IvZDh14XkZdgg3jN77LUle3Fp7c4YVEk5K8n0Z3s+bM6wC8OkMO9drdiaD3vvNrbUTMuyYnpLh5/pdCzz2ua21Dyd5fpIHZFh94WtJ/j7Jub33S1trv7pWY12J3vtNSZ7cWjsxybOTPCJDCHJIhh3/L2c4I8h7MpyFYrZXJPlgksck+ZEMKzHcNUM0cnWGs3C8tff+8TnbTeJ3BAAAAKbtggxBxYwLl7M64F7ui0/UeJDAfTKs9rg9wwqUd0myO8MqiP+aYZXFv+i9f2HO5kcneUKSEzMsgnF4hrjkpiT/liEueXPv/do5252dYZXFx46vd/cMK04mw/zJpUne3nt/z8T+QwEAAIDb6b1/oLV2VIYFJU/NsMDkQUmuTfKxJOfN83n/3Oc4p7V2eYbjB47LcBzFfyZ5b5LX996/0lpbahw3jRHDC5M8K8kPJekZ5kjemeQ3kxyxyv/MFTNfAgAr03rv0x4DAAAAAAAAAAAAAADAutrrlcIBAAAAAAAAAAAAAAD2NYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5Wxe7xdsrR2U5Jjx6nVJbl3vMQAAALDh3SHJXcfLn++9f3uag4FJMS8CAADAMpkbYb9jXgQAAIBlWtd5kXUPKjLsHH9yCq8LAADAvukhST417UHAhJgXAQAAYKXMjbC/MC8CAADASq35vMimtXxyAAAAAAAAAAAAAACAjWgaZ6i4bubCpZdemm3btk1hCAAAAGxk11xzTY477riZq9ct9ljYx5gXAQAAYEnmRthPmRcBAABgSes9LzKNoOLWmQvbtm3LPe95zykMAQAAgH3IrUs/BPYZ5kUAAABYKXMj7C/MiwAAALBSaz4vsmmtXwAAAAAAAAAAAAAAAGCjEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmbpz0A9t7u3buzc+fOaQ9jw9i9e3duuumm29x22GGHZdMm/RCL27Jli38nAAAAwLLsS3Ny5sumy5wTAAAAAPOZb47RXBIArD9BxX5g586dOe2006Y9DNjn7dixI1u3bp32MAAAAIB9gDk5lsucEwAAAADzmW+O0VwSAKw/KSMAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAABgHd14443Lug0AWFuCCgAAAAAAAAAAAAAAoJzN0x4Aa+MbR5+RvvmgaQ9jOnZ9K4de9pe3uenmo09PNh88pQGxEbVd384dL3v3tIcBAAAA7Ec27Jyc+bJ1Y84JAAAAAABg3yKo2E/1zQelH3DItIcxFW2+GzcfXPb9AAAAAGB9bNQ5OfNlAAAAAAAAML9N0x4AAAAAAAAAAAAAAADAehNUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOZunPYCNZvfu3dm5c+dtbtuyZUs2bdKeAAAbh79ZAIBp8XcIADDD3wUAAACwert27VrWbQDA2hJUzLFz586cdtppt7ltx44d2bp165RGBABwe/5mAQCmxd8hAMAMfxcAAADA6l177bXz3nbkkUdOYTQAUJclggAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAA+H/27i7EqvPcA/g7H1WmWuNI1VOI0ptCYSyci4wpLfE2lEapSvxASS4KsaA4aAuFMqZQp4XeTJmJXhgopEFRE9R0YihpoRRDW/y4OFAHAr3TQIi22hjt4HScORfn7OBst9u9ZvaatfZ+fj8I4trr43nfvffqs177nwEAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAaHN3794tuoRZJicnS33+vOsrWruPr1q08WZlfoB63CMAgKJV+pFG+pKH95mcnAzVy1SPNa+xZzlv1hoivV8VRYw5y3eq2dednJxMt2/fznxcnsq2bgqUy5kzZ4ouAQAAIDcXL14suoRSEagAAGhjt2/fTtu2bcv8j5V5mZiYSD/84Q/TxMREKc+fd31Fa/fxVYs23qzMD1CPewQAULRKP3L79u0n9iUP9y4TExPpwIED6cCBAyF6meq+La8+Lst5s9YQsfcsYsxZvlPNvu6BAwfS3r1709atW9PHH3/c8HF51lm2dVOgXEZGRtJrr72WRkZGii4FAACg6cbGxtKPf/zjNDY2VnQppSFQAQDQxgYHB9O///3vdOjQoaJLSSmldPz48fS3v/0tnThxopTnz7u+orX7+KpFG29W5geoxz0CAChapR8ZHBx8Yl/ycO9y/PjxND4+nsbHx0P0MtV9W159XJbzZq0hYu9ZxJizfKeafd3x8fH097//PU1PT6f9+/c3fFyedZZt3RQol3Pnzs36EwAAoJ0MDw/P+hOBCgCAtnXp0qU0Pj6eUkrp6tWr6dKlS4XWc/369XT69OmUUkqnT59O169fL9X5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L6nTp1KJ0+e/Py1U6dOtXUvU923Xbp0KZc+Lkt/mLWXjNh7FjHmLN+pZl/31KlTs7bdvHkzvffee088Ls85Ktu6KVAuzz//fN2/AwAAtLKXXnqp7t+jEqgAAGhD09PTaWhoaNa2oaGhND09XUg9MzMzaXR0NE1NTaWUUvrPf/6TRkdH08zMTCnOn3d9RWv38VWLNt6szA9Qj3sEAFC06n6kolZfUr3v1NTUrLWPqampNDIy0pa9TK2+bWhoqOl9XJb+MGsvGbH3LGLMWb5Tzb7uyMhIevDgwSOvDQ8P19xeq95m11m2dVOgXG7dupXu378/a9v9+/fTrVu3CqoIAACgee7du5euXbs2a9u1a9fSvXv3CqqoPAQqAADa0LFjx9KdO3dmbbtz5056/fXXC6nnwoUL6fLly7O2Xb58OX3wwQelOH/e9RWt3cdXLdp4szI/QD3uEQBA0Wr1IxXVfUm9fSuuXLnSlr1MrbFXrwU1o4/L0h9m7SUj9p5FjDnLd6rZ171y5UrN1x48eJBeffXVxx6X5xyVbd0UKJctW7Zk2g4AANBKXnjhhZrbN27cuMCVlI9ABQBAm7l9+3Z6++23a7721ltvpdu3by9oPRMTE+no0aM1Xzt69GiamJgo9Px511e0dh9ftWjjzcr8APW4RwAARavXj1RU+pJG9q04cuRIW/UyWcY+nz4uS3+YtZeM2HsWMeYs36lmX/fIkSN19/nzn/+cPv7440eOy3OOyrZuCpTLyMjIvF4HAAAos7Gxscf+BtDp6ek0Nja2wBWVi0AFAECbGRwcfOyvqJ+enk6HDh1a0HqOHz+ebty4UfO1Tz75JJ04caLQ8+ddX9HafXzVoo03K/MD1OMeAQAUrV4/UlHpSxrZ4JWy9AAAIABJREFUt+LGjRtt1ctkGft8+rgs/WHWXjJi71nEmLN8p5p93Zs3bz5xv/379z9yXJ5zVLZ1U6Bczp07N6/XAQAAymx4eHher7c7gQoAgDZy8eLFND4+Xnefq1evpkuXLi1IPdeuXUunT5+uu8+pU6fS9evXCzl/3vUVrd3HVy3aeLMyP0A97hEAQNEa6UcqTp48mU6dOpXp/CdPnmyLXibLPFXMpY/L0h9m7SUj9p5FjDnLZ6WZ17527VrD38+bN2+m99577/Pj8pyjsq2bAuXy/PPPN3U/AACAMtm9e3dD+7300ks5V1JeAhUAAG1ieno6/fznP29o36Ghocf+NLZmmZmZSa+99lqampqqu9/U1FQaHR197K+Vy+v8eddXtHYfX7Vo483K/AD1uEcAAEVrtB+pePDgQXrw4EGmazx48CCNjIy0dC+TdZ4qsvZxWfrDkZGRNDo62nAvOT09Ha73LKLfzvpZada1Z2Zm0ujoaKbv5/DwcJqamsp1jsq2bgqUy61bt9L9+/cb2vf+/fvp1q1bOVcEAADQPPfu3UsfffRRQ/teu3Yt3bt3L+eKyqm76ALKptYC2aefflpAJY2rWV8bLDBDrmp8R8r+XQd4WK171htvvJHu3LnT0PF37txJr7/+evrBD37Q7NI+d+HChXT58uWG9r18+XL64IMP0oYNGxbs/HnXV7R2H1+1aOPNyvwA9WS9R/z1r399ZLvnKSKyJkdN1pwIptbney7/R+Qs/ch8XLlypaWfd+YzT1me9bJc58qVK5lqOHbsWLjn0yKeyefyWWnGtS9cuJDpM5HS/4Wd9u3blz788MOG9p9LnceOHSvVuilQLlu2bMm8/5/+9Kd8igEAAGiyF154IdP+GzduTH/84x9zqqa8mh6o6OjoePoJu/xXs6/ZTJ999tkj215++eUCKpmnB/dTSl8sugoorweP/pSRlvyuAzzk/PnzmfZ/66230vbt21Nvb2/Ta5mYmEhHjx7NdMzRo0dTf39/6unpyf38eddXtHYfX7Vo483K/MDCarV1kbncI379618/ss3zFPw/a3JYc4L02WefpRUrVjS8/1z6kfk4cuRISz7vNGOeGnnWy/v9ePvttzPt3+rPp0U8k8/nPZzPtScmJtKRI0fmdN1GwxQVWeq8fft25s9dnuum0O5abV1kZGRkzscNDAw0uRoAAIDmGhsbm9Nv+hwbG0ubNm3Kqapy6szhnNef8F/+P2IIACCgrD8Bcnp6Oh06dCiXWo4fP55u3LiR6ZhPPvkknThxYkHOn3d9RWv38VWLNt6szA8suJZaF5nLPeKf//xnTtUAABHNpR+Zjxs3brTk804z5qmRZ72834+s61et/nxaxDP5fN7D+Vz7+PHj6ebNm3M6NqssdQ4ODpZq3RQCaKl1kXPnzi3ocQAAAAtpeHh4QY9rZXkEKgAAaBFXr15Nd+/ebeo5Jycn09mzZ+d07JkzZ9Lk5GSu5797926u9RUt7/kvm2jjzcr8APXM5x4BANAMRfUjrfa808x5qjf2svaHrfZ+VRTxTN6M93Au1y7is9NInXfv3k3j4+NzOn8e66ZAuZw5c6bQ4wEAAPJ08eLFQo9vNXkEKtY84b/+HK4JAMAcrFu3Li1durSp51y0aFHasmXLnI7dunVrWrRoUa7nX7p0aa71FS3v+S+baOPNyvxAIVpmXWQ+9wgAgGYoqh9pteedZs5TvbGXtT9stferoohn8ma8h3O5dhGfnUbqXLp0aerr65vT+fNYN4UgWmZdZOvWrYUeDwAAkKdnn3220ONbTXezTzgzM/NRvdc7Ojqafcmm+tKXvvTItt/85jfpqaeeKqCaxnz66afp5Zdfnr2xa3ExxUCrqPEdKft3HeBhtf73v7OzM9Ovr+/s7EyHDx9udmkppZR2796d/vCHP6QbN240fMzq1avTrl27FuT8eddXtHYfX7Vo483K/MDCarV1kbncI7785S+nf/zjH7O2eZ4iImty1GTNiWBq3Qtr/TtLPXPpR+Zj1apVLfm804x5auRZL+/3I+v6Vas/nxbxTD6f93A+1969e3f6/e9/n27evDmn47PIUufQ0FDaunVradZNod212rrI5s2b07lz5+Z0HAAAQNkdPHgwDQ8Pz+m4aJoeqGh1nZ2P/tKOp556Ki1fvryAauahZAsRUDo1viMt+V0HeMjGjRvTb3/724b337ZtW+rt7c2llp6enrR3797005/+tOFj9u7dm3p6ehbk/HnXV7R2H1+1aOPNyvwA9czlHvH9738//fKXv5y1zfMU/D9rclhzgpr/zlLPXPqR+di3b19LPu80Y54aedbL+/148cUX0+nTpxvev9WfT4t4Jp/Pezifa/f09KR9+/bN6bpf//rX04cfftjw/lnq7O3tzfy5y3PdFCiXgYGBOQUqBgYGcqgGAACguTZt2pR+9atfpZmZmYaP6ezsTJs2bcqxqnLKtqoNAEBpvfzyy2nZsmUN7bts2bL0yiuv5FrPhg0bUn9/Y7+9u7+/Pz333HMLev686ytau4+vWrTxZmV+gHqy3iO++c1v5lwRABBNln5kPlr9eWc+85Rl7Fn7w2eeeabhfffs2RPu+bSIZ/K5fFaace0NGzY0/Hmo6OrqSkeOHMl1jvbs2VOqdVOgXM6ePZvr/gAAAEU6f/58pv3ffffdnCopN4EKAIA20dnZmQYHBxvad3BwMPNPjMyqo6Mj7d+/P3V31/+laN3d3Wn//v2Zf9X3fM+fd31Fa/fxVYs23qzMD1CPewQAULRG+5GKrq6u1NXVlekaXV1dLd/LZJ2niqx9XNb+cGBgoOF9Ozs7w/WeRfTbWT8rzbp2R0dHGhgYyPT9PHjw4OfXz2uOyrZuCpTLihUr0uLFixvad/HixWnFihU5VwQAANA8S5YsSWvXrm1o37Vr16YlS5bkXFE5WQ0CAGgj69evT319fXX3WbduXVq/fv2C1LNmzZq0ffv2uvvs2LEjrVmzppDz511f0dp9fNWijTcr8wPU4x4BABStkX6kYufOnWnHjh2Zzr9z58626GWyzFPFXPq4LP1h1l4yYu9ZxJizfFaaee01a9Y0/P1cuXJl+u53v/v5cXnOUdnWTYFyef/995u6HwAAQJm8+eabTd2vHQlUAAC0maGhocf+FLXOzs50+PDhBa1n9+7dadWqVTVfW716ddq1a1eh58+7vqK1+/iqRRtvVuYHqMc9AgAoWr1+pKLSlzSyb8WqVavaqpfJMvb59HFZ+sOsvWTE3rOIMWf5TjX7uitXrnzifqOjo48cl+cclW3dFCiXzZs3z+t1AACAMjt48OC8Xm93AhUAAG2mt7c3vfjiizVf27ZtW+rt7V3Qenp6etLevXtrvrZ3797U09NT6Pnzrq9o7T6+atHGm5X5AepxjwAAilavH6mo9CWN7Fuxb9++tuplsox9Pn1clv4way8ZsfcsYsxZvlPNvu6+ffvq7vPtb387feUrX3nkuDznqGzrpkC5DAwMzOt1AACAMtu0aVPq6Oio+VpnZ2fatGnTAldULgIVAABtaM+ePWnZsmWzti1btiy98sorhdSzYcOG1N/fP2tbf39/eu6550px/rzrK1q7j69atPFmZX6AetwjAICi1epHKqr7knr7Pu6YdlFr7NVrQc0Ye5b+MGsvGbH3LGLMWb5Tzb7uM888U/O1rq6u9LOf/eyxx+U5R2VbNwXK5ezZs5m2AwAAtJLz58/X3P7uu+8ucCXlI1ABANCGOjs70+Dg4Kxtr7766mN/pX3eOjo60v79+1N3d3dKKaUvfOELaWBg4LHJ54U+f971Fa3dx1ct2nizMj9APe4RAEDRqvuRilp9SfW+3d3ds9Y+uru727aXqdW3HTp0qOl9XJb+MGsvGbH3LGLMWb5Tzb7uwMBA6urqeuS1H/3oRzW316q32XWWbd0UKJcVK1akxYsXz9rW09OTVqxYUVBFAAAAzbNkyZK0du3aWdu++tWvpiVLlhRUUXlYGQIAaFPr169PfX19KaWU1q1b99ifCLdQ1qxZk7Zv355SSmn79u3p6aefLtX5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L47duxIO3fu/Py1HTt2tHUvU9239ff359LHZekPs/aSEXvPIsac5TvV7Ovu2LFj1raVK1em73znO088Ls85Ktu6KVAu77///qy//+53vyuoEgAAgOZ78803Z/39jTfeKKaQkhGoAABoY0NDQ+mLX/xiOnz4cNGlpJRS2r17d/rGN76Rdu3aVcrz511f0dp9fNWijTcr8wPU4x4BABSt0o8MDQ09sS95uHfZvXt36uvrS319fSF6meq+La8+Lst5s9YQsfcsYsxZvlPNvm5fX1/62te+ljo7O9Po6GjDx+VZZ9nWTYFy2bx586w/AQAA2snBgwdn/UlKHTMzMwt7wY6Op1NK11NK6fr166X7STP/+te/0ve+971Z29555520fPnygip6slo13/3vnWnmCz0FVVSsjv9MpKX/c3LWtsjzQW21Pidl/64DPCxLz3L37t20dOnShSrtiSYnJ9OiRYtKe/686ytau4+vWrTxZlXm+fnoo4/SmjVrKn9dMzMz81GR9UCzlH1d5GGPu0e04toJ5KGV1uSsly0ca05Ek3dfUOlHGnl2eXifycnJlFIq7fNOs1XPT17PelnOm7WGMj+f5qWIMWf5TjX7uimldO/evdTb25vpuDzrLNu6aTVrI7SjVloXOXPmTNq6dWvRZQDQ5v7yl7+kn/zkJ7O2/eIXv0jf+ta3CqoIgCguXryYnn322aLLeKyFXhfpzvPkAAAUr2z/KJj3P9bO9/zt/o/37T6+atHGm5X5AepxjwAAilbpRxrpSx7eJ1ofUz3evMaf5bxZa4j2nqVUzJizfKfKcN286yzbuilQLsIUAABAOytzmKIInUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHC6iy6gbJYtW5beeeedR7YBAJSJngUAKIo+BACo0BcAAADA3K1evbqhbQBAvgQqqnR2dqbly5cXXQYAQF16FgCgKPoQAKBCXwAAAABz19396P99s9Y2ACBfnUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAA/pe9Ow+X5yrrBP59fwkBEkgCBIkgEhYVUFSGRcMiQTaFAMoIMi4QhUEYZRTFCYhL1FEQhhFkGRAYAwoIKiEBRQhLkE0JOGyyLwECgSQsISwh25k/qi63c+nbd+v11ufzPPXc6ttVp6r7rVNVfareUwAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAINz8KJXgNmoS7+56FVYnEsvGvu/mv+asMQGXUcAAACAmVja9gbtZXOztNsAAAAAAAAAY0mo2KcOe9/LFr0KS+Vq7ztl0asAAAAAwD63Sm1y2ssAAAAAAAAgObDoFQAAAAAAAAAAAAAAAJg3CRUAAAAAAAAAAAAAc3TEEUds638AwGxJqAAAAAAAAAAAAAAAAAbn4EWvAHt3+OGH5+Uvf/miV2NpXH755bnwwguv8L+rX/3qOXBA/hCTHX744YteBQAAAGBFrFKbnPayxdLmBAAAAMA449oYtSUBwPxJqNgHDhw4kCOPPHLRq7FUrnnNay56FQAAAADYx1atTU57GQAAAAAsl1VrYwSA/UoXZAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAACdn8Y+AAAgAElEQVQAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBOXgByzxobeScc85ZwOIBAABYdht+Lx602XSwgrSLAAAAsCVtI+xT2kUAAADY0rzbRaq1NutlXHGBVbdOcuZcFwoAAMAqu01r7R2LXgmYBu0iAAAA7IK2EfYF7SIAAADswszbRQ7MsnAAAAAAAAAAAAAAAIBltIgnVFw5yS36l+cluWyuK8DQHZ31Hi9uk+RzC1wX2IrtlVVhW2WV2F5ZFbbV7pGN1+7H39ta++YiVwamRbvIyrAfHgZx3v/EeP8T4/1PjIdBnPc/Md4dbSPsOyvSLmKftdzEZ7mJz/ISm+UmPstLbJab+Cw38VleqxKbubaLHDzLwsfpP5DHkbIQVTX68nOttbMXtS6wFdsrq8K2yiqxvbIqbKvf8slFrwBMm3aR1WA/PAzivP+J8f4nxvufGA+DOO9/Yrwn2kbYV1ahXcQ+a7mJz3ITn+UlNstNfJaX2Cw38Vlu4rO8Viw2c2sXOTCvBQEAAAAAAAAAAAAAACwLCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHCqtbbodQAAAAAAAAAAAAAAAJgrT6gAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqWElVdYOqenJVfbCqvlZVX6yqM6vqt6vq0D2WfaCqbl5VJ1TVM/tyv1lVrR+Om9LHYCBmvL0eWlX3q6r/05f5paq6pKq+UFVvq6qTquroaX0W9rcZb6s3q6pfq6rnV9W/V9XZVXVRv5yPV9VLquq+VVXT+jzsX7PcVics89B+W107HzhrFsth/5nxvvWEkW1yq+GEKX0kgJVVVYdU1UOr6tVVdU7/W/+rVfWhqvqrqrrdNsv5yao6pT+n/Wb/95Sq+slZf4ahqqrvqKrjq+qPqupVVXX+yDHu5F2Ut+cYVtXBVfXwqnpTVZ1XVd+oqo9V1bOr6vt3uk5DN40YT7uNpC/vf/RlfbE/l/tgf253g11/2AGbdl3eUPaufrOJ83TNIsZVddeqOrmqPtrH54Kq+nBV/X1VPaKqrrbF/GI8RdOMcVUdU1V/VlXvrKov9/vsL1bVW6vq96vqO7ZZjhhPUVXduv/+XzNyrvTVvt79VVXdYYflOe8CpqKqDq+qB/b79zf25wYXVNXFVXVuVZ3RHw+uNcVl2odt07ziU1P63devz7ba1veyvstijvGZ6jWLIZznzSM21Z13bzcuE39TD63uTFLdb5nRz3zclMr9L9Wdi3+uuvspPllVf1NVx+6gjH1fd7YyzfhU1RFV9fPV/R56d19HL6nuuP6GqvqtqjpyG+WctZf6t19MOTYn7WC/tuVyquqo6to73lNVX+mH9/T/m9o55jKbVnyq6rhdHHvO2KSsQdWdvX5fu1ie486o1prBsFJDknsnuSBJ22T4UJKb7KH8B08ouyU5btHfgWF1hllur0l+MMmFW2yvrV/+zy76uzAs9zCHfevfbGNbbUnOSHKtRX8fhuUdZr2tTlju/9qwnLMW/V0Yln+Yw771hG3uW1uSExb9fRgMBsMihyQ3SPK+bewv/yJJbVLGgSTP3WL+5yQ5sOjPu9+GLb7zk3dQzlRimOSoJG+fUMZFSR666O9tlYa9xjhTbiNJcpMkH96inOMX/b2t2jCturxJ2Tv+zSbOyx3jJNdI8vJt1OsfFuPVi3GSX0zy9S3K+0KSu21RjhhPN77/so0615I8P8khW5TlvMtgMEx1SHLXbe6jzktyjz0uyz5sCeOTKf7uS3c9cjvr2xb93a5KfPrlnLDd7zVbXLPIQM7z5lR3jtlBXNaGV29S1qDqzoTv9IeTXLLhMx+3xzKvmuQfJ3ynlyX5g22UM4i6M6/4JPnJdMfrrbb5c5LceYuyztpm/Tlr0d/hKsSmL++kHezXJi4nyY/0cdxs/s8mue2iv8NViU+S43YQm7Xh2ZuUNai6s4Pv64w9LsdxZ8xwcGCFVNUtk7wkXYX+apLHJ3lD//qBSf5rku9N8o9VdevW2oW7WczI+CVJ3pvkSklusYdVZ4DmsL0enmStB7a3JHllkneku9B07ST365dxeJIXVtVXWmuv2tOHYl+a07710iT/lm5bfW+Sz6Vr+LlGkpsm+ZUkP5DkTkleUVV3aK1dvpfPxf4zp211s+X+RrrGkkuSXH0a5bK/LWB7vUe6hpzNnL3H8gFWVlVdKV2j4FrPj+9J8r/TJbZdPckdkvxWksOSPDLd/vQJY4r6kyQP6cf/X5InJvlYkhsn+R9JbpnkoenOc39nBh+FzqeSfDDJ3Xcx755jWFUHJTklyW36f70s3Y00X0x30eV3k3xHkmdX1Wf8Dt+V3cR4am0kVXX1dPuM7+n/9Zwkf5vkG0nunOSxfTkvqarbt9betYP1ZN1e6vIV7OY3mzjPxa5jXFVHJDk9ya36f52S5O/T7bMvS3L9dG1I/3lCGWI8e7uKcVXdPsnJ6W5WvTzdzfmnpjsH++50nV7dO8k1k5xaVT/QWvv4mHLEePqu2//9bJK/S/KmdHE+KMmx6c6Zr5fkQemum/3chLKcdwGz8Ol0bazv7MfPSXc8+a4kP5PuvP+oJKdV1W1ba+/e5XLsw3Zn1vGZxbXxdyT5pR2ux6qaV/1Zs+trFgM8z5t1bD6T7d3v9Nisn989f4tph1R3rqCqDiT5yyQHJzk33b58Gv5vknv2429I8tR0degW6Y41N05yUlWd01r7y03WbWh159vMID7XSnLldL9dT0/yz0neneTL6erozyf52SRHJ3nlNr/XU9OdB2zm4j2u81KaYd1Zs9V+7hObvVFV10/yinTnE5emu370yv7t45P8ZpLvTHcv061aa/vuuvsM4nNmtnfseXq6Nr5k62PP0OrO/0nyzAnvf22P5TvujLPojA6DYSdD1nvHuSTJsWPe/+2sZzedtMtl3DbdDRQ/muQq/f9OGin3uEV/D4bVGGa9vSa5XbobNW8+YZr7pjuxb0k+mk16WjUMe5jTvvXgLd4/KMk/jCznPov+XgzLN8xjWx1T5kHpGgVbkt/Levb7WYv+PgzLPcxp33rCSBnHLPozGwwGw7IO6S48ru0v35rkoDHT3CpdY2tL8qWN56/pkuDWeuY5M8lVN7x/aP//tX3/1J+YNeQhyR+mu3Bxnf71MSMxPXmbZUwlhkl+eWTZzxjz/k2y/oSqj2z1W8gwnRhnim0kSf5oZNm/vcmy1ralMxb93a3SMI26PKbMXf1mE+fljnGSF/TzXJQJbUTpOkcau58V4+WNcbqbEtbm+W+bTPPkkWmeLsZzi+8rkzwgY86X+/ePSpeUvPa9/9gm0znvMhgMUx822zdtmOanRvYbL9vlcuzDljQ+me7vvjOGdI4wx/pzwkgZx+xhfQdznjev2GxnPdIlXrQkX9m47xuZblB1Z5Pv4Df67+ADSf50JDbH7aHMHx8p57SN20W68/BPZr3t+hqblDOYujOv+KRLlnhWku+eMM0jR5bz+gnTnZU9tIGt+jCjunPSWjl7XLcXjKzP/ce8/4CR9/dl/GYRn20s88isPwHmIxOmG1TdGfnuT5rhMhx3NhkOBFZEVd02yR37l89rrb1tzGRPTrdjT5Jf73uh3JHW2ttba09rrf1ra+2iXa4uAzeP7bW19tbW2s+21t4/YZpT0/V4knSZg7fcyTLY/+a4b710i/cvS/KkkX/dcbNpGaZ5batj/Hq6Gyw/lOTPplAeA7DA7RWA8W43Mv74/tzzClpr78x6j0NHJrnZhkl+I/nWk14f2Vr7xob5v57uwkn66R6115VmXWvtD1prr2ytfX4PxUwrho/u/34xXYLkxnX9aLonUyXdDTI/vYd1Hoy9xnhabST9Odl/719+IN0527ctK8nz+pd3qqrbbJyG8aZUlzfa8W82cZ6dacS4qu6Q5Bf7l7/bWjttwvLauDYnMZ6dKdXjtXOzL7TWNutp749Gxo/d+KYYz0Zr7fjW2kvHnS/375+f7ikVa35mk6KcdwFTt9m+acM0L093Xpjs/jqTfdguzCM+ro3v3hzrz54N7TxviWJz16w/rezvN+776FTVdyf54/7lwzO93tDXjhmXpks6v8J20Z+Hn9i/PDLdU5I2rtug6s44s4hPa+0lrbWHt9Y+NWGap6Xr7CPpvtej9rrc/WaGdWfPqurodE8aSZJXt9b+buM0rbWXJnl1//IX+3n2jQXG52fTPQEmSf56Tsuk47izCQkVrJKfGhn/q3ETtNYuT5c1mHSV+c6zXinYxDJtr28YGb/xjJbB6lqmbfXCkfGrzGgZrK65b6tVdYOsX8B/eGttaX7Ys/SWad8KQHLIyPjHJ0z3sXHzVFWl6+EwST7YWvvXcTP3/1+7uHnffj6WwLRiWFXfm/Vkm5f2N9KMc/LI+ErfFLMPbdVGcuckR/Tjz+/P2cY5eWRcjBdkD7/ZxHm5/Vr/94IkT99lGWK83NbOsz6x2QSttQuSnL9h+lFivDgTj6XOu4AlsHatacfXmezD5mLX8dkB18Z3bx7x2YrzvPFmHZsHjYw/f0bL2A+ekeRq6bbNN06jwKq6epK79C9f21o7e5NJX5bu6SHJ+G1e3ZlBfHbgjP7vgSQ3nPOyV8EiY7OV+2T9Huqx1/V7J/d/D/Tz7CeLis/asadl/b4JZsxxZzIJFaySO/R/v5bknROmG92x3352qwMTLdP2euWR8S17OGBwlmlbfeDI+AdntAxW1yK21WcmOSzJX7fWzthjWQzLMu1bAVi/ySFJbjRhurWL7C3JR0b+f8Os99C2VWPy2vvXS3LMNteP2ZtWDO8wZrpv01r7XJIP9y8d45fLVm0k24pxul7n1m6KEuPF2e1vNnFeUlV1SNZvYjx97QnSVXVQVV2/qo6pqu3cQCTGy23t3GzTm0yq6vAka716fmjMJGK8OFsdS513AQtTVd+X5If7l7u5zmQfNkNTiM92uTa+C3OMz1ac520w69j0N1audRR2VpJ/mfYy9oOqekCS49M9eejRW0y+E7fJehL5pGPGxUnWEv1u0/cMPmrQdWeG8dkux55NLEFstrLdurMvr+svKj5VdeOsP8H0Ta21s+a1bBx3JpFQwSpZ68Xho+Me4z1i9AfEzTadCmZrmbbXO42Mf2BGy2B1LXRbraqjqurYqnpeksf1/z4/yQuntQz2jbluq1X1wCT3TPKlJL+123IYrEXsW/+qqj5bVRdX1flV9a9V9T+r6np7LBdgP3hx1ntRObGqDto4QVXdMsm9+pcvaq19ZeTtm4+Mb3XRUpvEcppWDHdTzvWr6rAtpmV+tmoj2VaM+3O8j/Yv1fUF2ONvNnFeXj+U9R5X31tVh1fVU9K1FX0q3RMNLqiq06vquAnliPFye1b/91pV9fBNpvm9MdOPEuPFmcqxdMz7zruAXamqQ6vqe6rqN9PdyHNw/9ZTdlGcfdiUTTk+27WTa+M3rap/q6ovV9VFVXV2VZ1aVQ8ac9PYvjPj+Oz2moXzvMy97vxMkkP78b9urbVtzDOoulNVRyZ5av/yxNba+ZOm36HdHDMOTvI9uylnP9adGcdnu9aOPZdk/fvdzI9V1buq6sKq+npVfaKqXlJVP7Xfnno9z9hU1Wuq6tz+uHNuVZ1RVY+pqmtsMeta3bmgT3Ydq7V2TtavM6k7e7ebJyMNpu707l9V7+8/64VV9ZGqen5V3XmP5TruTCChgpXQ9zq11hvRZo+ZSZK01r6UrjfgJLn+LNcLxlmm7bWqfijrNwW9t7UmoYJvWdS22v9waVXVkpyX5K1JfjlJpbtA/tOttS/vZRnsL/PeVvsf1WsNko9prZ23m3IYpgWeBxyX5DuTXCnJtZL8SLpEtY9W1a/ssWyAldY3Av9iuh5Qbp/kzP7i3o9W1V2r6g/SXZg8JMm/59tvzP2ukfGJ+/Yknx4Z1yaxPKYVw92UUxvmY0G22UayFquvbeN36VqMr11VV544JVM1hd9s4ry8Ri/EHUjXg9mvJzly5P+HJLlrktdX1YmblCPGy+3/JnlBP/6MqnpOVd27qm5dVferqlOy3ivin7TWXjumDDFegKo6kOQxI/966ZjJnHcBM1dVJ4xcZ/pauqc8PDnJdfpJnpDkRbso2j5sCmYYn+0se6fXxq+T5LZJjkjXu/j1ktwn3Y1976qqpb/pa6fmGJ/jsrtrFoM9z1tg3Rm9qfUFm051RUOrO09McnSStyR53pTLnvaxZ3B1J7ONz5aq6l5JfrB/+eoNnTWNc8N0HUpcLclV0z3p6gFJTknypn3WWd48Y3O3JNdOd9y5drokl8cn+XhV3XfCfGt1Z6v6l6zXnf1y7WchdadPfviF/uU3kvzdNmcdUt1JunbSm6X7rFdLcpN0x+zXV9UpVXXELst13Jng4K0ngaVw9ZHxr25j+q+le9z71WazOjDRUmyv/QHouUnWel993ITJGaal2FZH/EWSP15QjwEst3lvq09K1xD4tiTP2WUZDNe8t9ePJ3lZuu117YfojZL853S9Cl0lybOqqrXW/nKXywBYea2106rqVumSJR6Sb+/x5vPpekJ+Tmvt6xve28m+/Wsj49oklse0YmhbWFE7aCNZi/F2z+PWXC3JN3e3duzCXn+zifPyuubI+Inpfs/8c5LfT/KeJIen+63zhHQ37jyhqj7YWjt1QzlivMRaa5cleXBVvSLJ7yR5aD+MekOSP90kmSIR40V5VLob55LkZa21d46ZxnkXsEjvSvKw1tqZu5zfPmy29hqfiXZ4bfzyJK9L8k9J3p3kC+ni9p+S/Eq6m9dunuQNVXXb1tqnZrHOS2Za8dnrNQvned9uZnWnqr476z3rv7W1tlXP+oOrO1V1x3S/Vy5N8vBtPsFjJ6Z97BlU3ZlDfLZa/jWTPKN/eVm69ovNXJzktCSvSfK+JBek60Di2CSPSHez8u2TnF5Vx7bWLpjVes/DHGPz3iQvT/L2JJ9Nl1DxfUl+Psnd033H/1BV926tvWrM/LupOyt/zrbgunOHdOcGSXJKa+3CLaYfVN1J1zncaemOtx9Mt22uJQk9PF2i6k8lObWq7tZau2SH5TvuTCChglVxlZHxi7cx/Vqlu+oM1gW2sizb69OT3Loff35r7RVTLp/Vt6ht9ZfS3Txc6U5yb53uJPfXktyoqh7aWvv8HpfB/jK3bbWqfizdE1MW0ujCvjDPfesp6Y7xG7fTM5O8pKqOT3fh4kpJ/ryqTpv0qFKA/ayqDknXc8t9052HbnSddD3ifCJdQ+WonezbRxsBtUksj2nF0LawurbbRrIW452cxyViPDdT+s0mzsvrsJHxqyQ5Pcnx/Q34Sfek02dV1fvSPV3qQJLH97912oZ5EzFeWn2PtQ9KcotNJjk2yUOq6gOttc+MeV+M56yq7pQumSlJzk3XnjuO8y5gHl6e7klWSVfvb5yud9qfTvLiqvqN1tord1Gufdh0zCo+W9nJtfH7bdKT7puq6pnpErcfnK696ClJ7jfVNV2sWcZnGtcshnyet4i68wtZbyvdztMpBlV3+jblv0z3Hf15a+19M1jMtI89g6k7c4rPpOUflOSFSW7Q/+t/ttb+34RZbrtJ/Tmjqp6e5O/TJQDcLMkfJPnNaa7vPM0xNk9prZ005v//luQF/RORnpUu2fK5VXXj1tpFG6bdTd1Z2XqTLL7upHui/JrtHHsGU3d619vk855eVU9L8qokt0yXYPGIdJ0X74TjzgQHFr0CsE2jB7NDtjH92qNhvjGDdYGtLHx7rarHZr1XrzOT/Oq0ymZfWci22lr7RGvtfa2197bW3tRa+/N0j0D8pyTHJzmzqvbFY42Zmrlsq33vRWs/HJ/aWnvPTuaH3tz2ra21CybdQNY3rP9R//LQdD2yAwxOVR2W5LVJHpuu5+snpmtYvXK63q3vnuTN6S66v7yqNja27mTfPvqoWm0Sy2NaMbQtrKAdtpGsxXgn53GJGM/FFH+zifPy2nhR+8SRZIpvaa29Od2NWEl3TN94U74YL7G+F8S3Jbl3ks+ku5B+dLp4XT/dfvrrSR6Y5O1V9f1jihHjOepjcEq6jvouSnL/1tq5m0zuvAuYudbal/vrTO9rrZ3ZWvvb1tr90iXr3Shdb60n7KJo+7ApmGF8NrXTa+Ob3KS29t4lfVkf6v/101V1vWms5zKYZXymdM1isOd5i6g7Wb+p9ZtJXrKddZzw3n6sO7+T5KZJPpXkD2e0jGkfe4ZUd+YRn0memeQn+vFXJvnjSRNvUX8uTJdA9cX+Xw/rb3pfVXOJzaTvtH//2Ume17+8brqnJW20m7qzyvUmWWDdqaqrJLl///Kz6a7dTTSwurPV5/18uid+rT2V4pG7WITjzgQSKlgVo4/22c5jk9Z6strOI2Vg2ha6vfYZtn/av/xgknu21r42YRaGa2n2rX0W+C+lu1h6/XQ3ucGaeW2rj0v3+MdPp8tch91Ymn1r7y+TrF3AuNOkCQH2sZOS3LEff0hr7cTW2gdbaxe31r7SWjs9yZ2TvCHdTbpPqqofGpl/J/v20Z61tUksj2nF0LawYnbRRrIW452cxyViPC/T+s0mzstrdD973hY9O756ZPw2m5QjxkumT4x6cbqk1s8l+dHW2t+01j7fWruktXZ2a+2ZSX4s3YXZ6yZ5/piixHhOquqGSV6T5BpJLkvywNbav0yYxXkXsDCttb9O8nfp7oN5elVdc4dF2IfN0BTiM9Ysro231i7N+g2YyQDa1mcVnzG2umbhPG+DGdad26a7oTZJTtvqxuTt2E91p6pumq6DniR55AzvuZn2sWcQdWeO8dls+Y9P8rD+5ZuSPGBchxA70Vq7IMnf9i8Py/pTl1bKomMzxrNHxqd13FnJepMsRXzuk+TIfvyFe603yf6pO9vVWvt4uqf6JslNquq6OyzCcWeCgxe9ArAdrbWLquoLSa6VZGKv5VV1jaxXwk/Pet1go0Vur1X1X9JlQSfJJ5PcrbV2/l7LZX9atn1ra+38qnpLkrsluW9VXanvyYKBm+O2emL/97VJ7l1V46ZZK/uwqnpgP35ua+31O1wW+9QS7lvP7dfnqCSr3hMQwI5Vd0D/5f7lh1tr427IS2vt0qr6vXRPqjiQ5IQkj+rfPntk0q2epHb9kXFtEstjWjHcWM6k39tr5bQN8zEnu2wjOTvJj6Q73z9yi5sJ1mJ8XmvtmxOmY3qm9ZtNnJfX6H53q33n6LTX3vCeGC+vn8j6b9OntdY+N26i1tp/VNXfpOvh9lZV9UOttXePTCLGc9BflH9tusSWluSXW2unbjGb8y5g0U5N10vtYemOOy/awbz2YbO3l/h8mxlfG3//yPhQ2tanGp9xtnHNwnneeLOIzYNGxl8whfLW7Je686h0vW5/PMmhI20Mo35gZPzHq+rofvwVO7hJeeMx4x0Tpt3q2DOkujOv+HybqjoxyWP6l/+e5PjW2rR6XN8P9WdhsdnEVt/p2Umuk63P/ZL1urPK134WHR/Hnul4f5J79uPXS/e0j+1y3JlAQgWr5P3pepS8SVUd3Gc2j3PTkfEPzH61YKy5b69VdZ90JxsHkpyT5C6ttSE0vLE3y7ZvPa//e2i6hrRzZrgsVss8ttW1R9H9Uj9MclS6HhWT5I1JJFQwatn2rZs+YhtgAK6TZK3Xtkm9XCfJO0fGR/fR79/k/+Nok1hO04rhxnLetY1yPr0EvXANzh7aSN6f9Ue/3zTJv25S/sFJbty/VNfnZ1q/2cR5ef3HyPhBW0w7+v7G31xivLxuNjL+71tM+850CRVJF8fRhAoxnrGqOipdj4c36v/1yNbadm52cN4FLNp5I+M32OG89mGzt5f4XMEcro0PsV19avHZwqTv1nneeFONTVVdKcm3OiFI8s97LXPEfqk7V+7/3ijr7QuT/N7I+A2TbHefvptjz6VJPjKmnCHVnXnF5wqq6r8leUL/8gNJ7tFa+6RtGjwAACAASURBVMpuytrEfqg/C4nNBFt9p+9PcqskR1TV0Zt1/FBV35nk8P6lurMLVfUdSe7Rv/z31tr7dlvWGPuh7uzEXj6v484EBxa9ArADb+7/HpbuQLaZ0cczvWV2qwMTzXV7raq7JHlpukS5L6TrfeNjuy2PQVm2fetopvBSP+aLuVu2bRUmWZrttaqune5msmRnPRMA7BejN1hu1bHIlTaZ7xNZ34du9Zj6H+v/fibJWVutHHMzrRi+eWR803L6Hpu+t3/pnHTO9thGsq0Yp3ts+NqTEMR49YjzkmqtfTLJp/qXx9QmjyHp3Xhk/DMb3hPj5TWNc7NEjGeqqo5I8uokN+//9ZjW2jO2ObvzLmDR9nKdyT5s9qZyHXBO18ZvPjI+lLb1mV+n3cY1C+d54007NvdK96T1JHnRhI7BdmOIdWcvzkxycT8+6ZhxSJIfXZuntXbJhknUnRmrql9M8vT+5ceT3HWKT0Vao/5M31bf6XbrjvtQ9u7nst4WNM2nUyTDqzt7+byOOxNIqGCVvHxkfGwPZFV1IOuPBvpykjfMeqVgE3PbXqvqduke8XjlJBeky4D+j8lzwbcszb61qr4rybH9y0+21i6cxXJYWTPfVltrtdWQ7pHRSbeNrv3/uB1+Fva/pdm3JnlYkrWbkN44o2UALLMvJlnrIerYvieUzYw2+H1ibaS11tL95kqSm1bVj2aM/v9rvbWc2s/HEphWDFtrH856DzoPqKpDN1nkCSPjp+xqpdmVKbSRnNHPlyQPnnAz9wkj42I8J1P8zXZGxHmZ/UP/9/Akd5kw3f1Gxt+84b0zIsbL6hMj43fcYtqx52a9MyLGM9Gf3/xjkv/U/+tPWmt/tt35nXcBS+D+I+Pv3cmM9mFzsev4rJnHtfG+/eiXR/71L9Msf4ntOT7bsNU1izPiPG+cacfmQSPjz59CeUn2V91prZ2wjTaIPxyZ5c4j7521g+VcmOR1/cu79vdMjHO/rPeOP26bPyMDqjvzis+aqrpfkr9Kt/86O91TkaZ603af2L725JivJ3nHNMufl3nHZht+ZWR83HHntCSX9+OTnoh7Qv/38n6elbTg+Kwdey5J8qI9lvUt+6XubFdV3TDJ3fqXH2utbexoZiLHnckkVLAyWmtvT/Km/uVDqurYMZP9VtYfGf3UjZlRVXVcVbV+OHl2a8vQzWt7raofTndx47B0j9W6V2vtndP4DAzDPLbVqvreqvrxSevRn+C+KMkh/b+mnY3MinMewCqZ0771mKq65aT1qKrjk/x+//Ib6Rr6AAaltXZ5ut9MSXLdJI8bN11VXSPJ6I1ir9wwyVOSXNaPP62qrrph/qsmeVr/8tJ+epbLtGL4v/q/10zyxI1vVtWNkzy2f/nRrEAD8X4xjTaS1trFSf6if3mzJI8es5xjkzykf/nG1tqZu15pFkKcl95TklzUj//vqjp84wRV9QtJjutf/mNr7dOj74vxUntduovbSfKIqrrFuImq6ieT/HT/8jNJ3jX6vhjPRt/74ClJbt//66mttd/dRVHOu4Cpq6oTquoqW0zzqCT37F9+IutttGvvb+cagX3YLswrPtP43VdVd66qIye8f6Ukz816+/0rNp5vrpp5xGda1yyGdp43x33b6PTXTPeEiiR5b2vtXZOmH5lvcHVnGvoYr8XnpE0mWztmHJzkGVV10IYyjsp62/WX033PVzC0ujMt24lPVd09yYuTHJTk3HRPpjhrh8v5iY3nFBvev1q6Jy+tPTnmea21b+5kGfvNVrGpqltU1U22KONhSR7av/xcxpxvtdY+l+SF/ct7VNXPjCnn/knu0b/8636eQdvmvm10+u9Psnae8M+ttfO2uZxB1Z2qundN6Biuqq6TrjOatXvrnjlmGsedPdjqcbqwbH493aNfrprkNVX1p+l6871qukyzh/XTfTjJk3e7kKo6YcO/fnhk/Ceq6piR1x9trW3sAQuSGW+vfUPbq5Os/Wj93SQXVNUPTJjt3NbauTtdFvverPet103yuqp6d7pe29+Z7sfKpUmOTneB7iH9eJK8L8kTdvVJ2O/mch4AUzLr7fWYJG+oqrcleUWSd6drxEuSGyX5mX5Y6wng0TvtnQBgH/mjJPdNcmiSk6rqVul6Xvt4kquke2TtbyT57n7617XWXjNaQGvtw1X1pCSPSfd42rdU1Z8l+ViSGyc5MeuNwU9qrX1kth9pWKrqDklGL44cNTJ+k43tOK21kzeWMcUYPj9dT3u3T/KrVXV0kuck+VKS2yb5vXS99lye5L+31i7d/icdrr3GeMptJE9K8rNJvjfJE/sLc3+b7maPOyf5nXTt6t9It+9gm6ZRl6dInGdgSvvrT1XV76e78fAWSd7e76/fk27/er8kj+gn/0qSR22yOmI8A3uNcWvty1X1hHTnZ1dP8taqelqS09MdS6+T7rztv2a9U7jH9EmyG4nx9L04yd378dcned4Wx9KL+17Yr8B5FzAjJyV5clX9Q7qnU30syVfTHU9ukeTns54QdnGSh7XWLhtTzkT2Ybt2UmYcnyn+7ntwktOq6rR0Pet+KN155dWS3Cpd2/3N1+ZP19a/6k7K7OvPMZneNYshneedlDns2zZ4YNZvxNzJ0ymGWHfmorX2+qr623SxuU+S06vqKUk+m247eFzW265PbK19aZOihlR35qK6p1Kdkq7OXJKuDeJKWxx7zm6tfXnD/x6T5IVV9bJcsa4fkeR2SR6e9Rh/KN2+gcluleS5VfWGJK9K9/SeL6Tbxm+abv+59vv2snT7z69tUtbjkvxEkmsneXFV3TrrnW4dn66jxCQ5L935Bzv34JHxnRx7hlZ3npZuH/MPSd6W5Kx0++yj0nUu8ytZb4t7c5Jn7GYhjjsTtNYMhpUaktw73eNi2ibDh5LcZJN5jxuZ7uQJy9is7HHDpuUYDLPcXtM9Emkn22pLctKivxPDcg4z3laP28E2+sok117092FY3mEe5wFbLP+sfv6zFv1dGJZ/WJJ969fSNRAt/PswGAyGRQ5J7pqusXur/ebrklxjkzIOJHneFvM/N8mBRX/e/TYkOXknv30nlDOVGKZrsH77hDIuSvLQRX9vqzTsNcaZchtJupuFPzxh3guSHL/o723VhmnV5S2WcVa2+ZtNnJc7xkken+4Gw83m/3ySY8V49WKc7ia6P98ivi3dDWOPFuO5xnenx9KzJpTlvMtgMEx1GDnP22r4dJK7bVLGcSPTnTxhWfZhSxifTOl3X7Z/PvOeJDdf9He7QvE5bpvL2NY1iwzkPG8esRkz/b/2016a5OgdrOvg6s42vpOTRj73cZtMM7rvOmlCWVdN9wSezb7XyybNP1LOIOrOvOKzoYztDieMKeeMbc57RpLrLfq7W5HYnLDN7/T8JPfdxjr9SJJzJpRzTpIfWfR3tyrx2TDtgXRPH21JvpjkkB2sy6DqTrZ/XvD3SY7cS2ziuDN28IQKVk5r7RVV9YPpspnvleS70jWsfzTJ3yV5emvt6xOKgLmxvbIqZrytviXd4+/umq43n+9K19vcoel6rfhEuoabF7fW3rKXz8H+Z7/KKpnx9vrOJL+Q5Nh0+9bvTHeB7uB0vZz9R7qbgp/bPJ0KIK2111bVTdM9Ge0nk3x/uh4NL0339LQzk7woyWmtbwEcU8blSR7S9wzzsCS3SbfvPb+f/9mttVfN+rOwe9OKYWvt/Kq6Xbres38u3eOMD0vXe8/rkjy1tfYfs/kUzENr7aNVdcskv5rk/ukuChyS7gaGf0oX408ucBWZAnFebq21x/Y9nz4iyR3T/ea5KN0FutOSPK21dsEWZYjxEurPtR5VVX+T5KFJ7pDkBunaCr+a7jfzG9Mdl7/t6QcbyhLjJeW8C5iBe6RrY719uv39dZJcK11vp+cmeVe6TrteutdrBPZhuzK3+EzBn/Xrc2y63vSvneSaSb6ZLmn3HeluUjul7f1JAMtiHvGZ6jWLAZ3nzbXuVNX3pLtpOElOb619bgezD7HuzE1r7RtJ7lVVP5fuZtgfStd+/fkkb0p3TfFt2yhnKHVn1Tw6yV3S1Z/vS7d/PDLJ19OdF/xbuicGvmaz6xN8m39Kd73n2HRPD1vbf1a6m/bfneSf0yWafWWrwlpr/1ZVt0h3Xf+n0j15KenuZzo1yVNaa1+Y8mcYirsk+f/s3XmYJVV9N/DvD0FFBHFDUFRcYoxCVBQTNwSj0biCor4aE8HEXZNINJvhFZNoXhNMosHgLmiMcQUVNW4Rlxijxg2XuERARFQUcVA2gfP+caqdy+XeXmZ6pme6Pp/nuU/f6qo6dW518wz16/M954bD+ze21i5Zwblj+2/nsUnumf55b57+eXdLr5edmeTjSU5Yzr8HS/Hvzmy1Pn6PAAAAAAAAAAAAAAAAlm+Hte4AAAAAAAAAAAAAAADA1iZQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVADAGquqfaqqDa/DN6Odwyfa2WfVOggAAAAAAAAAjE5VHb0wDmGt+7I9qqqDJsZxHLTW/QEAZhOoAAAAAAAAAAAAAAAARkegAgAAAAAA1jGrWgIAAACT1ArYEqzIAcD2SqACANaJ1trxrbUaXqevdX8AAAAAAAAAgO1Xa+3ohXEIa92X7VFr7ZSJcRynrHV/AIDZBCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACgFVRVTesqv9XVZ+pqh9X1c+q6ntVdWpVvaGqDq+q3abOacPr6GH73lX1jqo6u6ouqqpvVtWxVXWjZfZh/6p6aVV9tap+UlU/Hd4fV1W32opt7FtV/zh89h8N9+K7VfWBqvqjqtprGW3cp6reOZx3cVWdNvRh70XOOXzinu4zY/8pw75Thu0bVdXfVdU3qurCqvphVb23qn5jmZ9zz6p6XlV9uqrOHfp5ZlW9qaruvcS5Vxn6+97hM14y/N58vao+WFV/VlW3mXPurYb7+8WqOn849ztV9bmqenVVPbKqrraczwAAAADrWVUdVFUtyWsmvn3aRP1g4XXQjHMPqao3V9W3hjrNeUMN4DlVde1Frnn80Obpw/aeVXVMVX2tqi6oqrOG2sFtp87bp6pePBx34VBXen1V3WKRax298BmG7d2r6rlV9aWhrnNuVX2oqh61zPu1T1X9/XD++UN/v15VL6uq/ZbTBgAAAGzLVlormH72ntHe6cP+44ft/Yfn+TOH5/tvDOMSrjd13l2n6g7/W1UvqKpdl/EZrlJVj62qk4exAhcP4x0+VlVHVtXOm3p/lrjuvaqPfzlt+GwXVNUZVfWJofZxrxnnHLRY/WXiuJtUHxNy2nA/vlNVJ1XVwcP+pX4O0+NvDhj6+u3h/pxVVa+rql9a4jPevKr+sPp4ldOHz3nh8DnfWFX3m3PePkPfPjTx7Q/N+L06fOKcK9SQFunTUmNhpn8H7zi0fdrw2efds80eHwTA+lGtzfz3AgCWrarukeTkJLstceiDWmsnT5y38I/Qc5O0JEfPOe/Hw7kfnXP9HZIck+QPktScNi5N8tTW2su3YBtXSfK3S7SRJCe01g6fOG+fJKcNm0ck+cUkfzLn3HOS3LO19pUZ1z88G4seN2utnT61/5Qk90zy4STPTnJSkisULSY8q7V2zLwPUFW/meRlSXaZd0ySVyV5Umvt0qlzr5nk3Unusci5SfLW1tphU+c+PMk/J7nqEufu11r74hLHAAAAwLo2/KH+Q0sdl+Tg1topwznXTvKWJFcaBDDh+0ke0lr7xIxrHp/ksUnOSPKQJP+WZM8Zbfw0yf1aax8bBhy8Lcm1Zhz3oyT3aK19aca1jk7ynGHz5knen2ReAONNSX5zuk4x0dZvJ3l5knmTNFyW5KjW2l/P2Q8AAADbvJXWCiafvVtrVxoHMQyGv2mSE5J8MMkrM/vv+V9LH+vw3ap6ZpK/yexxFZ8ZjvvJnP7fJMk7ktxukb5/I8kDWmtfW+SYFamqv08fC7KYH7bWpoMjB2Xj/f55/WXqmHsleXuSa85osyX58/R7utjPYXL8zfeTvCjJjjPauyDJb7TWPjKjjZsl+eaMc6b9c5IjJmssU+NeFnNEa+344ZzjM9SQWmv7zDthGWNhTs/G38FPJPnHTH32yXu2GuODAFh/Zv2jCQDLVn0lgH9ND1Ocn+S49IfB76c/0N0syV2THLpIMw9IcqckX01/aP5C+h/QH57k8cP7k6tq39bamTPO/8ckTxnefyTJ8ekPeRekP0T/QZLbJnlZVX23tfaOLdTGy5M8bnh/dpJjk3w8PRBy/SR3TnLYjPMmPT79fn04PbDwtSS7J/nt4XX9JK9Ocpcl2lnMXulhisvTgxsfS3JJkrsn+b/D9f66qt4zZ7DCI5K8Lv3B8pvD5/xyethjnyS/k+T+w9cNSY6cauLobAxTnJzk9Um+leSiJHskuUOSB6YXBiave4P0h+Srpv9+HZv+MPyDJDsnuWV6YOSQFd4PAAAAWK8+lWS/9GDDXw3fu2+S70wdd1ry8zrPB5Lsnx4g+Jf0SRFOS7JTkgPTn/P3SPLuqrpDa+2MOde+RpIT05/j/yy91nFZkvsN27skeV1V3Se9TvHj9LrEf6X/7eJh6fWYa6dP2vCrS3zWN6bXoV6aHgj5cZJfTvLHSW6V5BHD537G9IlV9YD0WlAl+UmSFw734dL0Os2fpk9K8fyqOq+1dtwSfQEAAIBt1YpqBStwuySPSg8zHJPk1CS7po+heEz6s/kxVfW29IkqFwa+fzX9mfv30scZ7J8eILjSJJRVdd308Q03TnJxklek1xtOTw8j/HqS308fO/Ceqtq/tfbjFX6OK6mqB2ZjmOIL6eNivpJee9g9fSzJvdPHhKy07ZunB0R2Sa9DHJdeJ9mQZN8kz0ryvPR6yXLcd+jHqemhilPTx1Mcmn5vrpFej/mF1tolU+deJX3syHvTJ634cpJzk1wn/ef31OGzPiZ9rMhzJs49K/336oD0MS1J/9l/auoa317m59gUBwx9OzP9d/DT6TWm6ck+V2N8EADrjBUqANgsQ1L+g8PmFVagmDpuxyTXaK1tmPje5D9CM2cZqKrfSvLaYfPNrbVHTO2/T5L3DZu/21p71YxrXz3Ju9JnVjwjyS2nkvKr0caD02cMSJL/THL/1tp5c+7FjSeDITOS+q9I8sQ29Y90Vb0iye8Om/u31j47tf/wLG+Figyf4W6ttbOmjrl7+gNjJXlxa+33p/ZfL70Acq30h+AnzprZsaqelz444vIkt2mtfXVi37fSCxxvaa09fPrcieOu01o7d2L7cekDKJJFVqCoYfnO1tqF89oGAACAMVmqZjBx3MLz/HlJ7t1a++8Zx9w0vfaxV5J/aa395tT+49NnF0z6JAi/2lr736ljnpo+UULSJ2g4L71Occ7UcX+TPnAgmV0LOTpX/OP9o1trb5g6ZtckH03/g/jlSW43WVOoqp3SB17cMD1McY/W2ucW+cwXJLlpa+0HAQAAgO3UCmoFR2d5K1QkfcLJ+7TWLpg65s3pk09elh5C+FCSR7bWLps45irpYYlfTfLDJHtOj0WoqtcneXT6eIeDW2tXCn1U1R3S6wC7JHl+a+3Zc27BslXVa5P81nDdfRdZPeMKYxyG7x2URVaoqKoTs3HSyENbaydN7b/GcP7PwxpLrFCR9MkxDp0OTFTVs7MxRPPQ1tqJU/t3SbJba+3sOZ+v0seJHJ6+8uiNpgMry1mRY+LY47O6K1QkPUBy4CLjdTZ7fBAA69MOa90BALZ7e068v9KSgAtaa5dOhilmeMKsh87W2uuSvGfYPLSq9pw6ZGFWgrfOetAZ2rgoydOGzZsmOXgLtnFBksPmPZwNbc1aZWPB2UmePh2mGBwz8X46Qb9ST58OUwx9+1g2zmww6xpPTg9TnJXkKYs8ND5nOGaH9JU1Ji38DD+6WAenCw0T5/1oXphiOO9CYQoAAABYmaq6ZvpMg0ly1KwwRZIMK1L85bD58OGP7fMcNR2mGLw6faXKpK/G+XvTYYrB5EoQS9VCTp4OUwz9PT/JE4bNHZI8aeqQQ9PDFEnyV9NhiqGNM7Ix2HGNJEcs0RcAAAAYm5Y+QP2CGfv+afh6lSRXTx8fctnkAcP2y4fN6ya5zeT+YaLKRw6bT5sVphja+WySlwybh6/oE8y3MFbhM/PCFMO1p8c4LKqqbpjkQcPmW6bDFEObF2RjXWM5LkpyxIzVJ5LkxekrUCQz6iyttZ/OC1MM+1uSP0wPxuySvirHtuapi43XyeqMDwJgHRKoAGBzTT5Mbeofk0+d90f6wcJygDsmOWjhm1W128T2Wxa7QGvtK+mzIibJXVa5jeumz5KQJG9srU0vhbkSb2mtXTzn+l9NnykxSW6+Gdc4Lz1NP8/Cz2LWNR48fD15Xj+THqBJn7kxmbhXg4XfmUcOsyks18J5166qh6zgPAAAAGBp90yfRCFZokaSjZNq7JTkjnOOaUneNHNHnwjh68Pmj5K8d85xpyU5f9hcqhbymnk7WmufTPKlYXP6j/0L2y0ba1CzvDl9Fs1ZbQAAAMDYfWEYUzHL5yfev3+R4MHkcdN1gAekBzIuyMZJOedZqFvcsKpussSxy7EwVuHAqrrFKrS34OD0z5Qkr5t3UGvt87nivVnM+1tr35/TzvnZWI9ZcsxJVe1UVXtX1S9V1b5VtW/6pBQ/HA653TL7tLWc2VqbO7HnaowPAmD9EqgAYHN9LMk3h/f/UFWfrKo/raq7VdVVl9nGp5bY/8mJ9/tNvL9DNv5b9oaqaou9klxvOHbPVW7j9kkWllRcdNWFZfifJfb/aPi662Zc4+uttcsX2b9QvLjCNYYlNm8/bD5xGffqsOHY6VVFThi+3jXJaVV1bFUdWlXXX6Lf70gPgyTJiVX171X1jKq649A3AAAAYNPdaeL92Us880+uHDn93L/gB0vMzLjwjP+NOSt1Th+3VC1kufWlW03VrPYdvp42Z5WMJMkws+Nnp84BAAAAuq8tsm9yxYDlHjddB1ioW1wjyaVL1C1OnjhvXt1iJV47fL1uki9W1b9W1RFVdcvNbHeyvrDYJKRJ8ulltrnUmJOZ40EWDCGKp1bVJ9In/DwzyZeTnDrx2mM4/Hqz2lhDX1hi/2qMDwJgnRKoAGCztNZ+lr4E4cJMAwckeX560OK8qvq3qnr0EgPeZ6bjJ3xv4v11Jt7vMX3gMk2uirAabUw+JM5d/nCZZi1/OWkhCLE5AYLlXmP6/xOuk75KyEpNr0Lxl+kzPrb0+//UJG9L8v2q+mJVPbeqbjDdSGvth+krZJyVHmA5OMnfpRcOzq2qt1XVAzehfwAAAMDq1EgmLbf+sFq1kOXWlyrJtSe+v1BrWur8JPnu1DkAAABAN/f5fmrCx8XqAJPHTdcBVrtusWyttQ8meVqSC5NcPckj08c8fL2qvl1VL62qTVmtYbI+MXeSh2XuX7DJdZaquk6S/0xybJJfSbLUJKo7L7NPW8uPlti/Zr9DAGz7NmVQJABcQWvty1W1X3qw4kFJDkxyy/SHp/sOryOr6v5zlhZcbBbCxUw+4D0xyceXed7kQ9RqtDEWk/fqlUletMzzLpncGEI4v1NVL0zyqCT3Sp9N4qpJbju8jqyqx7TW3j517keHWR4eluT+6b9reyfZLcmhSQ6tqvcmeWhrbalCAQAAALDR5HP//kl+tszzvr0F+rIpNrW+tFrnAwAAAFvOQt3iB+mTLy7Xaatx8dbaS6rqzUkeneQ+Se6W5FpJbpQ+1uQJVfX81tqfr8b11siLktxxeH9SemjkC+mTUFy0sMJoVX0ryY3TJ63Ylly2xH7jgwCYS6ACgFXRWrss/YHqpCSpqr2S3C999YE7Dq+XpQ96n3al1QgW2X/uxPsfTry/oLX2xRV2e7Xa+MHE+7024fztxeS9r028Vz/XWvtykqOSHFVVV09y9/Tiw28nuWb6Eou3aK2dPXXeRUleP7xSVTdL8oAkT09yq/QAz/OSPGNz+gcAAAAjM1kjOae1tq0EJZbrBknOXGJ/0oMTk38IP3dq/2L2nDoHAAAA2DoW6ha7JvnKMEZlqxomEP2HJP9QVTskuX36GJinJdk9ybOr6lPTE0cuYrI+cf0kZy1y7PU3ocvLVlW7pa+8kSSvb609ZpHDr73IvpVYWC1jhyWO22WVrrca44MAWKeW+scIADZJa+3s1tprktwlyWeGbz+wqmYt+XfAEs1N7p98oPlcNs4eeLdN6ujqtPHZiTYO3MQ2tnmttUuSfGnY3NR7Na/ti1prH2itPS7Js4Zv75zkgcs497TW2rHpvycLgz0esZr9AwAAgO3cclZf+OzE+1V97t9Klltf+vpQ41iwUGu6WVXNHZxQVTslucPUOQAAALC92t5WalyoW1wtyZ3WsiNJ0lq7vLX2mdbaUUl+bWLXSsYqfGni/R3nHtVt6c/8C0l2Gt6/cd5BVXXr9Aky51nJ79X5w9fdlzjuVitoczGrMT4IgHVKoAKALaq19rMkHx42d8zsB6H9quoOM76/4HHD18uSnDLR9jlJPjFsPnqxP3ov0r/VaOPcbFwK8BFVdcOVtrEdecfw9dZVdd8tdI0PTry/3nJPaq1tSPKplZ4HAAAAI3DRxPurzTnmA0kuGN7/XlXVlu3SqnvsvB1VdUCSfYfN9bePyQAAIABJREFUD0ztXtiuJEcs0v5hSa41pw0AAADY3iynVrAteWc2Dob/g7XsyLTW2meycbWJlYxVOCUbV2n4rXkHVdXtktxukzq3fDtOvF9sRYgnLdHOSn6vThu+7lpVvzjrgKq6apKHLdHOsqzG+CAA1i+BCgA2S1Xdo6puucj+qya557D5kyTnzDn05VV1pYeyqnp0kvsPmye11s6eOuSvhq+7JXlLVc1NrlfV1arqqVV19S3QxguGr9dI8uaqulbmqKq95+3bDrwo/eeYJK+pqtsudnBVPaCqfnli+zpV9aAlBmX8+sT7hQfoVNV9q2qvRa51rSR3nj4PAAAAyGQ95RazDmitnZfk2GHzrkn+vqrm/g2hqm5QVb+7el3cbA+uqivNAllV10zysmHz8on3C05K8p3h/bOrar8Zbdw4yTHD5gVJXrMqPQYAAIC1s2StYFvSWvtqkjcPm/+nqo5c7PiqullVPWo1rl1Vj6yqnRfZf6ck1x42lz1WobX27STvGjYPq6pDZrS9c5KXr6C7m+ob2RhYeeysMR1V9aAkT1uinZX8Xn144v0fzjnm75LcaIl2VmI1xgcBsA7tuPQhALCoX0tyVFV9NP1B7wvpoYmd05fde1KS/YdjX9Vau3RGG59OX57w01X1giSnps/4d1iSJw7HnJ/kmdMnttbeXVUvSvL7SQ5M8pWqemmSjyX5YXpy/pZJ7pHkoekPsSdsgTbeWVWvSvI76YMOvlxVxyb5jyQb0mchuFOSRyb5fJLDZ97NbVxr7XtV9dgkb0myV/rP7Pgk70ny7fQlIPdODzYcluTmSR6U/nuR9IfSdyQ5vareluS/kpyR5NKhvQclWRiMcVaSkycu/6gk76yq9yd5X5IvJjk3ya7ps0w+LRsfpF+6mp8bAAAAtnOfTZ8h8OpJ/rKqfpb+PL4wC+JZrbULk/zf9IkxfiW9TnJQVb0iyeeS/DS9JnLbJPdO8hvpNZxXbsXPsZhPJ/mXqrpnet1iQ5JfTvLHSRZmOXxJa+0Lkye11i6pqiekz3S5W5L/qKq/TV9B87L0Os+fJNljOOWZrbUfbOkPAwAAAFvYcmsF25Inp4+7uHmSF1bVQ5K8NsmXklyc5LrpKzncL8m9kpyY5A2rcN0XJHlpVb09yUeSfC29TnLdJHdP8vThuMuy8jrJkenjbhYm7zxu6PeG9HEQf5TkNkk+leSAzfsY87XWflhV707ygPT7976hL2ek10Qelj7O5ZtJdk8yc3WH1tq3qurb6eNGnjm8/2r6vUmS77XWzh+O/WxV/WeSuyR5/DBh6wlJfpzkF5I8If3n+PH0+sxqfM7NHh8EwPokUAHAatgh/Y/t91zkmLcn+dM5+941vJ6T2TP8bUjy4Nba6XPOf0b6wPqjkuyZ5OhF+vHTbHxQW+02npjkwiRPTXLDJM+fc/7nF2l7m9dae9tQmDg+yXXSQzPzlnW8PP1+TdsnvTAwz9lJHtJa+8nU93dKX7Hk/lc+5edemuTFi+wHAACAUWmtnV9VL07/I/z+6RMVTDo4ySmttYur6j7pz/wPTR+EcGzm27AFurupHpEegnjK8Jr21sypRbTW3lVVR6SvXrFrkr8YXpMuS3JUa+24VesxAAAArJHl1gq2dr8W01o7t6ruluRN6QPeDxxe86xm3WL3JI8dXrNcnORJrbVPr6TR1to3hpUpTkwfzP/0bAxoLHhu+ricA9JDMFvKk9ODBTdJn0zj3lP7v5XkkCTvXqKd5yf5pyQ3Sx8rNOmI9LrTgselr1SxR2bf32PSAzOrEqgYrMb4IADWmbnLdQPAMh2TnkQ/Lskn0h+gLhpep6c/yD6wtXbIYrMXtNaOTk+5vyvJ95JcMpz/T0lu21r78CLnttbaX6SviPE36TMSnpv+UHN+ki8neX36g9des/qxSm1c1lp7evqMCC/PxlkJfpbku+kFiCMzY6WN7U1r7Z3pD7/PTPLv6T+zn6UHSk5LX1niyCT7tNY+NHHqGemrVxydfj++muS89BUqfpA+m8Ozkty6tfbfU5d9RpLHJHl1+s/nrPTfkwvT7/UJSe7RWntya+3yAAAAAJP+JMnjk3w0G2seV9JaO7+19rD0gQmvTH92Pz/92f3c9BkRX5I+2cF9tny3l6e1dlqSO6b/0f4rSS5In9HwI0ke01o7bM7KqQvnn5Dk1kleNJz/0/Saw/8meUWSO7TW/nqLfggAAADYupZVK9iWtNa+21o7MMkD08dwfDO9BvCzJOekr2bwwiT3bK09bpUue3D6igZvTV+t85z0OsmG9JU+jklym9ba8ZvSeGvt/emrUbwsfUzFJeljMN6V5H7DeJrdhsN/vKkfYhn9ODM9XPO36WMwLh6u9/n0UMftW2tfXkY7x6WPI3pfku+n36t5x/7PcM2F1TAuSb+//5bkAa21Z23GR5p3zc0eHwTA+lOttbXuAwAjVVUL/wg9d3gABAAAAIBlqaqj01c8TWut1rY3AAAAAFtGVX0gya8l+Vhr7R5r3R8AWG+sUAEAAAAAAAAAAACwjamqGyY5cNj8xFr2BQDWK4EKAAAAAAAAAAAAgK2sqm65yL6dkxyfZKfhW6/dGn0CgLHZca07AAAAAAAAAAAAADBCr6yqXZK8Kcl/Jzk3ya5J7pTkKUkWAhevaq2dujZdBID1TaACAAAAAAAAAAAAWHeqao8ke2zCqZe01r622v2Z407Da54Tkzx9K/UFAEZHoAIAAAAAAAAAAABYj56S5DmbcN4ZSfZZ3a7MdGSSQ5PcK8neSa6fpJJ8P8knkpzQWnv3VugHAIxWtdbWug8AAAAAAAAAAAAAq6qqjs4mBipaa/usbm8AgG2RQAUAAAAAAAAAAAAAADA6O6x1BwAAAAAAAAAAAAAAALY2gQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGZ8etfcGqulqS/YbNc5JctrX7AAAAwDbvKkmuP7w/tbV28Vp2BlaLuggAAADLpDbCuqMuAgAAwDJt1brIVg9UpD8cf2oNrgsAAMD26YAkn17rTsAqURcBAABgpdRGWC/URQAAAFipLV4X2WFLNg4AAAAAAAAAAAAAALAtWosVKs5ZePPJT34ye+211xp0AQAAgG3Z2WefnTvf+c4Lm+csdixsZ9RFAAAAWJLaCOuUuggAAABL2tp1kbUIVFy28GavvfbK3nvvvQZdAAAAYDty2dKHwHZDXQQAAICVUhthvVAXAQAAYKW2eF1khy19AQAAAAAAAAAAAAAAgG2NQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKOz41p3AABgW3L55Zdnw4YNa92Ndevyyy/P+eeff4Xv7brrrtlhBznfzbXbbru5jwAArEvr/TnNc9Km8xwEAAAAAPOt99rqWlLX3brUgtnSBCoAACZs2LAhhxxyyFp3A1bspJNOyu67777W3QAAgFXnOY15PAcBAAAAwHxqq6wXasFsaeI6AAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjM6Oa90BAIBt3U/3fWjajldb626sD5delGt+8cQrfOsn+x6a7Hj1NerQ9qkuvTi7fPFta90NAABYM+vqOc1z0rJ4DgIAAACAzbeuaqtrSV13i1ELZi0IVAAALKHteLW0nXZe626sCzXrmzte3f0FAABWZD09p3lOAgAAAAC2lvVUW11L6rqwvuyw1h0AAAAAAAAAAAAAAADY2gQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdP4/e3fwG2XV7wH8tLdyU4OFcQE3Rv4CYGFi2cHfYCRQE0hYCSZNcOF20AV16YY3XYArE0gsROPeHaykGxPhH5DrAjYNhdiIvNO78L2R4kynffqcPuf09/kkbKYzh29Mf8/MOY9fRqECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIZ6rrAAAlGwwGaXV1dcNjMzMzaXJSHw0AqJPPNwC0zXsLAHg/BAAAumdfAgBsxmeF0RQqADaxurqaPvjggw2P/fDDD+ngwYMdJQIA2BmfbwBom/cWAPB+CAAAdM++BADYjM8Ko6mUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUbOLFixddR4DiNJ2L3PPU9vrmHwAAiC7HvqjUvVapuQAAgPFKvXcF1M01Iq/nz593HWHLaspao5pmraasAABsj0LFCGtra+mzzz5La2trXUeBYjSdi9zz1Pb65h8AAIgux76o1L1WqbkAAIDmzGtMAAAgAElEQVTxSr13BdTNNSKvlZWVdPbs2bSystJ1lLFqylqjmmatpqwAAGyfQsUIN2/eTL/88ku6detW11GgGE3nIvc8tb2++QcAAKLLsS8qda9Vai4AAGC8Uu9dAXVzjcir3++n33//PV25cqXrKGPVlLVGNc1aTVkBANg+hYohHj16lJaWllJKKS0tLaVHjx51nAi613Qucs9T2+u/vt5vv/2244wAAAA1ybGPK/WspdRcAADAeKXeuwLq5hqR1/3799PDhw9TSik9ePAg3b9/v+NEo9WUtUY1zVpNWQEAaEah4jXr6+vp2rVr6eXLlymllP7888907dq1tL6+3nEy6E7Tucg9T22vP2y9r7/+upWsAAAANcixjyv1rKXUXAAAwHil3rsC6uYakddgMEgLCwsbHltYWEiDwaCjRKPVlLVGNc1aTVkBAGhOoeI1d+/eTcvLyxseW15eTvfu3esoEXSv6Vzknqe21x+23s8//9w4HwAAQG1y7ONKPWspNRcAADBeqfeugLq5RuR1/fr1tLq6uuGx1dXVdOPGjY4SjVZT1hrVNGs1ZQUAoDmFilesra2lxcXFoT9bXFxMa2tru5wIutd0LnLPU9vrb7YeAABABDn2caWetZSaCwAAGK/Ue1dA3Vwj8lpZWUl37twZ+rPbt2+nlZWVXU40Wk1Za1TTrNWUFQCAnVGoeMXNmzfTkydPhv7s8ePH6datW7ucCLrXdC5yz1Pb62+2HgAAQAQ59nGlnrWUmgsAABiv1HtXQN1cI/Lq9/tpMBgM/dlgMEhXrlzZ5USj1ZS1RjXNWk1ZAQDYGYWK//j111/T0tLSps/59ttv06NHj3YpEXSv6Vzknqe219/KegAAAHtZjn1cqWctpeYCAADGK/XeFVA314i8fvrpp/Tw4cNNn/PgwYN0//79XUo0Wk1Za1TTrNWUFQCAnVOoSCmtr6+nf/3rX+nly5ebPu/ly5fp2rVraX19fZeSQXeazkXueWp7/a2uBwAAsFfl2MeVetZSai4AAGC8Uu9dAXVzjchrMBikL7/8ckvPXVhYGPnNELuhpqw1qmnWasoKAEA7proOUIK7d++m5eXlLT13eXk53bt3L506dSpzKuhW07nIPU9tr7+d9f7f06dPt/V8oC5DZ9whGKUZ8jvp/YmtGva74sYPxJZjH1fqWUupuWo37H3EZxPaZJ9GSsk+iOLZa0F+pd67AurmGpHX9evX0+rq6paeu7q6mm7cuJE++eSTzKmGqylrjWqatZqyvs45HfA6Z6tUyVlwNs4wR2u9UDExMfHumKf8T9t/506sra2lxcXFbb1mcXExzc7Opunp6UypoFtN5+L48eNZ56nteW2yXkopXbhwYduvASr37z9SSm92nQL+9u8//vGQ9yd24tmzZ+ntt9/uOgbsCc5Fyj1rKTXXXvDs2bN/POazCdnZp8VjH0SF7LWgPaXeuwI2ci7Cq1ZWVtKdO3e29Zrbt2+nubm51Ov1MqUarqasNapp1mrKOoxzOmBLnK1SOmfBu8oZ5l8mM6z5aMyf7f1T8JndvHkzPXnyZFuvefz4cbp161amRNC9pnPR7/ezzlPb89pkPQAAgDHCn4uUetZSai4AAGC8Uu9dAf8Q/lyEv/X7/W3/a7eDwSBduXIlU6LRaspao5pmraasAAC0J0ehohovXrxI33//faPXfvfdd+nFixctJ4Lu7WQuHj582Oh1W5mntud1J+sBAADsBTnORUo9ayk1FwAAMF6p966AujkryOv58+eNr8EPHjxIz58/bznRaDVlrVFNs1ZTVgAA2pWjUHFkzJ/ZDH9nI/v27Usffvhho9eePn067du3r+VE0L2dzMXRo0cbvW4r89T2vO5kPQAAgE2EPhcp9ayl1FwAAMB4pd67AoYKfS7C3/bv39/4Gnzs2LG0f//+lhONVlPWGtU0azVlBQCgXVNtL7i+vv6/m/18YmKi7b9yR86fP59+/PHHbX1d2+HDh9O5c+cypoJuNZ2LhYWFdOnSpWzz1Pa8NlkvpZRu3LiRDh06tK3XAPV4+vRpunDhwsYH/+u/uwkDowz5nfzmm2/SgQMHOghDbYZd5956662O0sDe41yk3LOWUnPtBcPeR3w2oU32aaSU7IMonr0W5FXqvStgI+civGphYSGdPn06DQaDLb9mcnIyXb16NWOq4WrKWqOaZq2mrMM4pwNe52yVKjkLzsYZ5mitFypqMz09nebn59MXX3yx5dfMz8+n6enpjKmgW03notfrZZ2ntue1yXoppXTo0KF08ODBbb0GqFxhB/ww7HfywIED3p9obHIyx5cXAjXIcS5S6llLqbn2gmHvIz6bkJ19Wjz2QVTIXgvaU+q9K6Buzgry6vV66cyZM2lpaWnLrzl79mzq9XoZUw1XU9Ya1TRrNWUdxjkdsCXOVimds+Bd5QzzL/4rpJROnTqVZme39s2Ss7Oz6eTJk5kTQfeazkXueWp7/e2sBwAAsBfl2MeVetZSai4AAGC8Uu9dAXVzjcjr0qVLaWZmZkvPnZmZSRcvXsycaLSastaoplmrKSsAAO1QqEh/fa3k5cuX09TU5l/YMTU1lS5fvlzc11BCDk3nIvc8tb3+VtcDAADYq3Ls40o9ayk1FwAAMF6p966AurlG5DU5OZn6/f6Wntvv9zv913FrylqjmmatpqwAALTDp/v/OHLkSJqbm9v0OR999FE6cuTILiWC7jWdi9zz1Pb6W1kPAABgL8uxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHN33OsWPH0okTJ3Yp0Wg1Za1RTbNWU1YAAHZOoeIV58+fT4cOHRr6s8OHD6dz587tciLoXtO5yD1Pba+/2XoAAAAR5NjHlXrWUmouAABgvFLvXQF1c43Ia2FhYeQ3OkxOTqarV6/ucqLRaspao5pmraasAADsjELFK6anp9P8/PzQn83Pz6fp6eldTgTdazoXueep7fU3Ww8AACCCHPu4Us9aSs0FAACMV+q9K6BurhF59Xq9dObMmaE/O3v2bOr1erucaLSastaoplmrKSsAADujUPGaU6dOpdnZ2Q2Pzc7OppMnT3aUCLrXdC5yz1Pb6w9b77333mucDwAAoDY59nGlnrWUmgsAABiv1HtXQN1cI/K6dOlSmpmZ2fDYzMxMunjxYkeJRqspa41qmrWasgIA0JxCxWsmJibS5cuX09TUVEoppTfeeCN9+umnaWJiouNk0J2mc5F7ntpef9h6H3/8cStZAQAAapBjH1fqWUupuQAAgPFKvXcF1M01Iq/JycnU7/c3PPb555+nycny/telmrLWqKZZqykrAADN+aQ/xJEjR9Lc3FxKKaW5ubn07rvvdpwIutd0LnLPU9vrv77eO++8s+OMAAAANcmxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHU0opHTt2LL3//vsdJxqtpqw1qmnWasoKAEAzChUjnD9/Ph0/fjydO3eu6yhQjKZzkXue2l7f/AMAANHl2BeVutcqNRcAADBeqfeugLq5RuS1sLCQ3nzzzXT16tWuo4xVU9Ya1TRrNWUFAGD7proOUKrp6en01VdfpX379nUdBYrRdC5yz1Pb67+63h9//NHKmgAAADXJsY8r9ayl1FwAAMB4pd67AurmGpFXr9dLt2/fTvv37+86ylg1Za1RTbNWU1YAALbPN1Rswodg+Kemc5F7ntpe3/wDAADR5dgXlbrXKjUXAAAwXqn3roC6uUbkVVNBoaasNapp1mrKCgDA9ihUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAADA/7F379HWnHV9wL+/NxcgJCFyUVpAwkVcICqsJkgQ4VVRqwsERClasa9KEVpslaqwrNrUeqOWBVphRbyQIF6gSCJFQaAYigISoBZSCBclUeSSIBJCQhJCpn/MnJz9npy9z97n7LNvz+ez1qx37/fMfp6Z+T3zPDOz5zcbAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgOScuewEAVtnpp5+eiy666Fb/BwCwrhzfADBvxhYAMB4CAADL57wEAJjEscJ4EioAJjhy5EjOOOOMZS8GAMDcOL4BYN6MLQBgPAQAAJbPeQkAMIljhfGOLHsBAAAAAAAAAAAAAAAAFk1CBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADTnxGUvAADAqqubblj2ImyOm67f9f9q8Uuy1rRJAABat1HHxM6TprJRMQcAAACAJXGdbU5c1z002ijLIKECAGAPt7/0lctehI126qUXLnsRAACANbPp52nOkwAAAACAw7Dp11aXyXVdWF9Hlr0AAAAAAAAAAAAAAAAAiyahAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDknLnsBAABWyemnn56LLrpo2YuxsW6++eZcc801x/3faaedliNH5Pke1Omnn77sRQAAgEOx6edpzpP2z3kQAAAAAIy36ddWl8l13cVyLZjDJqECAGDEkSNHcsYZZyx7MTbaHe94x2UvAgAAsEZaOE9zngQAAAAAzFsL11aXyXVd2BxSoQAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaM6JS6jzhK0XH/vYx5ZQPQAAAKtux/niCePmgzXkuggAAAB7cm2EDeW6CAAAAHta9HWR6rrusOs4vsKqs5JcstBKAQAAWGdnd133jmUvBMyD6yIAAADsg2sjbATXRQAAANiHQ78ucuQwCwcAAAAAAAAAAAAAAFhFy/iFitsk+crh7VVJvrDQBWjbXbP9tIezk3x8icvCfInt5hLbzSW2m0tsN5fYbi6xXU0nJLnL8Po9XdfdsMyFgXlxXWQsfTHjaBuMo20wjrbBONoG42gbjLPstuHaCBvHdZG1suw+kNmJ2foRs/UjZutHzNaPmK0fMVs/6xKzhV4XOfEwC9/NsEJ+jnQJqmr07ce7rvvIspaF+RLbzSW2m0tsN5fYbi6x3Vxiu9KuWHM3WBcAACAASURBVPYCwLy5LrI7fTHjaBuMo20wjrbBONoG42gbjLMibcO1ETaK6yLrY0X6QGYgZutHzNaPmK0fMVs/YrZ+xGz9rFnMFnZd5MiiKgIAAAAAAAAAAAAAAFgVEioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmlNd1y17GQAAAAAAAAAAAAAAABbKL1QAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQsWaqap7VtVzq+qyqrq2qj5VVZdU1Y9X1SkHLPv+VfWMqrqgqt5VVR+pquuHev6mql5WVY+tqprX+nC8w4zvhDpPGeLbDdPlh1FP6w553z02Er+9pmNzWiUGi9xvq+pRVXV+VX1oqOvqqvpAVb2iqp5eVafOs77WHVZsq+rMGfZZffMhWMR+O8T5OVX1zqr6dFV9fqjnLVX1M1X1xfOoh+MtKLb3qqrnVdWlVXXNUM8Hq+qFVfUV86gDYD+q6our6tFV9bNV9Zqq+uTIscT5+yjvW6vqwuHawA3DvxdW1bfOUMaJVfW0qnpzVV1VVZ+rqr+uql+fpc+sqjsP6/XuqvrMML17+L87zVDOA4e6/3pYlquGZXtaVZ04QzkH3jaLNI+2UXM+76z+WsRPDOP0p4bx9LJhHL/nDOs2l7G/qh5WVS+tqiuqvxb28ar606r67mnLGMr57qp63fD564fyXlpV58xSzqJU1VnDsenrRtrzZ6s/z3xxVT18xvL0G+PLWbd+48BtQ78xdTlr029U1elV9aRh+72p+utTV1fVjVV1ZVVdPMRoqn1slbbhpravRZlH26iqozP0GedOsUzGkzVQ/bWz0dgeneIzjjfGl7NR7QM2UW3gOVhVPaD6Y51XV9Xl1R+7XFdVH66qP6iqb5tlnSbUs5Tvwzc0ZpdPuR0vn2Xd9qhzYWPUpsWs+nsDZv1e+dgs6zhSV/P7WVXdpqoeWlU/XFW/U1Xvr6qbt9Z7H+u2yHtJFnosuIlxm/c6Tajn3Bn2taPzqHOodxNjNu12vHiWddujzoVdy9u0mFV/fWjWMe3oLOs4Upf9rOpLquopVfV7VfXeYTlurKqPVdVrq+qpVXW7GZZlY8e043RdZ1qTKcljklydpBszvT/JfQ9Q/ksnlD06XZzkTsveHps2HXZ8J9T733bUc/myt8WmTQvYd49Nue92SY4te3ts0rSo/TbJFyW5aIr4PmjZ22RTpsOMbZIzZ9hnt6Y/XfY22ZRpEfttkicnuW6PmP5Dkm9a9vbYpGlBsX1qkhsm1HFDkmcse1uYTKY2pz3GnfNnKOdIkt/co7zfSHJkj3LunOTtE8q4PslTplier0nysQnlfDTJQ6Yo51/v0Yf/ZZI7L2LbrGPbyBzPO5PcN8kHJnz+6iSPnmKZ5jL2Jzk3yRcmlPPqJLfdo4zbJfnjCWV8Icl/WnZb2LHM/3vKeF6Q5ORF7BvRbyy9XcyzbUS/sYn9xqOmjOdVSb5lXbbhJravdWwbSY5OWUaX5Nw9lsd4sgZTkgcl+fyOdTh62NtA+1h+7E2mVqds4DnYsKzTrNNrk5xxwO13bMq6uszp+/BNjNlQxuVTrtflc9iGCx2jNjFmSc6foe1vTefYz/YXsyQvnvT5GddtUfeSLPxYcBPjNs91mqKuc2fY146K2cRlmXY7XjyHbbjQa3mbGLP09xxPG7OtbXo3+9nsMUt/reGmKZblA0m+aop129gx7VbLcFgFm+YcqOTB2b4x75okP5nknCTfkORFOxrnafus4/wkb0vy3PQHyv88yT9LfzH8GUneM1LPWw6zYbY2LSK+E+q9KcnnknxmqOPyZW+PTZoWtO8eGynnm5M8cMJ0oItVpsXGdqjnDkneMVLeK5N8T/ovbM5K8vgkz0/yd5FQsRaxTXLSHvvp1vS7I3V9z7K3yyZMC+qTvzbbNz58IclvJ3lskrOTPCHJq0bquS7JvZe9XTZhWlBsnzRSzqeT/PQQ77PSn5B+cPjbzUmeuOxtYjKZ2ptG+qguyRVJ/nTk/fkzlPOLI59719D/nT38+66Rv/3ChDJOSPLmkXn/MP01hock+eEknxgZK791Qjn3SHLlMO/nkzwnydcN03OyfQPWJ5LcfUI53zYyPn98WIaHDMv0hyPL+eYkJxzmtlnXtpE5nXcmOW0Yj7fKetEwXp8zjN/XDP9/bSac32ROY3+SHxqZ90NJfmCI6WOTvHHkb7+3x/b5/ZF535jt478fGMrd+ttTl90eRpZ5a7n+Pv055ROGZX5okh9N8pEZ1l+/cYjbZl3bRvQbm9hvPCrJ36b/0u/fpb8m9dAkD0vyxCQvz/YXdTck+epV34ab2r7WsW3k+ISK78/kPuOLJyyL8WQF2sQUbeZItm8s/MTI8h89zG2gfaxH+zCZNnXKBp6DJXnDMM8/JPn1JN+d/hjo7PQPJ7psR1+27/tLsoTvwzcxZkM5lw/zXbTHdrzfHLbhQseoTYxZkrvtEacHpj8G2TqmeL/97EAxO39kvs+kv/n3liTaGdZrYfeALXo/29S4zXOdpqjr3JGy9tq/by9mE5dlq4wX7rEd7zWHbbjQa3mbGLMk95qizT9xpJ7X2c/2F7MkPzX8/Yb0xx8/lOQR6cen78zx3xNemcnXLjZ6TLvVMhxWwaY5B2o7g+nz2SWbOMmPjzSYc/dZx4l7/P2EHH8B79uXvV02ZVpEfMfEc+sm7Z/O9onz5cveHps0LWjfPTZSxpnLXudWpkXtt0leMpRx/aR+N0nt1Y+bViu2eyzDCekPsrdORm637O2yCdOC+uRXj5Txb8bM89yReX5t2dtlE6bDjm2SU7J9YfuaJA/cZZ7Tk7x7mOfjSU5d9nYxmUxtTUn+c5JHJ/mS4f2ZI33f+VOWcb9s3/xzyc5jkKE/vGSkz931aSPpLyBv1f2CXf5+32w/yeSD445jR46FuyTftcvfRy+s7rqO6ZNZ/3qY5+ok99llnheMlHPsMLfNGreNYyOfOfMAy/KzI+X8+C5/f9jIdr54QjkHHvuT3DF9kmSXPtHkzjv+fkKOT4Y9OqacbxiZ51XZcbNb+icRXjH8/R+TfNGy28SwXK8e9qFdb84blnv0JuNHjJlPv7Fh/cYc24Z+Y/P6jbE3847M87iRdXvlqm/DTWxfa9w2js5j3WI8WZnxZI84/ciwvO9L8gtT7POONxpqHybTpk7ZwHOw9E8qfmqS24yp45QcfzP59x1g+x0bKedMMTvQOHb5pDFqjttv4WPUpsZsivV++kg9P3WA7Wc/S/7FsB2+IkMSWEaeqD7Dei3qXpKlHAtuYtzmtU5T1nXurG1KzMau14H3oynrWfi1vE2N2RTr/ZyRdfreA5TT9H6WPoHjl5LcZcLyjt639NsT5tvoMe1Wy7GoBmM6QJD67OStRnfemHmOJHnvSMd80iEty0NHluWXl71tNmFaVnyTPHMo77IkJ0dCxdrGNhIqNjm2Dx+p58eWvd4tTKsy5ib5lmkOXE2rF9sknxo+/8kJ89xhZFneuexts+7TImKbPkt/q46fmzDfo0bme8ayt43JZGp7yv5umn/hyGceOmae0esCt/oicJhnq8/9hySnjJnn2SPl7HYT0l2z/WS1105Y5tcO83whyV13+fvozUzPHlPGKSNj+P87zG2zCtM+28axkc+cuc96T8r2jaLvzfifIj5vpK6zd/n7XMb+JD8xUs6TxpRz92w/UfuPx8zzJ9m+gLvrU3xy/C9d3eqG3VWd0ifibC33r46ZR7/RQL+xz7ah32iw3xiWfetJxFet8jbc1Pa1ytMebePoyPofPUAdxpMVH0+SfGm2f/3lkTn+qZG7xn5e20D7WP32YTK1PmXNzsGmXKcHjpTxqgNsm2Mj5Zy57Fitc8yyuISKlRyj1jFmU6zTW4fP35zkngfYNs3vZ2M+d/HW56acf2H3G6zqfraOcZvXOk1ZzrnzXrZWYzZSz7mHvG1W8lreOsZsj/KOZPtXHK7JmLFzyrLsZ3svy8lJPjqU8enscm00DY5pR8I6eNzI6xfvNkPXdTenfyJKkpyR5OsPaVmuGXl920OqozULj29V3TP907eS5Gld1914kPIYa5X2XeZrUbF9xvDv1Ul+bR+fZ3arst9+38jrCw6h/BYtKrYnD/9+eNwMXdddneSTO+Zn/xYR27NGXr9mwnwXp/9FoaRPwgBYG1VV6X+iOEku67rubbvNN/z/+4e3jx0+N1rO/ZLcf3j78q7rrhtT5fkjrx+/y9+/PbnlutWu/fuOco4Mn9lpdJw4f5e/Z1jGlw9vHzCswy3mtW3I16dPLE2SC4bxeTfnj7zerW3Ma+zfKuczSV45ppyPJHnD8PYbq+q00b8P779xePuGYf7dvHKoJ9l9nVbVn428vs/OP+o3mu43JraNOdJv9Nap30i2v0PY7fuDVdqGG9e+1sCktnFgxpO1GU9ekOTU9Pvdm/aa2fFGc+0DWrdu52B76rru0mx/H3KY5w7LsnExm4cVH6M2KmZV9WXpby5Mkjd1XXfFrGWsgYXEbI4W8p30Cq73TusWt2ks6nrYsmxizA5sxa/lbVrMvjHJ3YbXr5gwdq6zlYnZcL/wXwxv75DkTrvM1tyYJqFiPTx8+PfaJO+cMN/ohcevPaRledLI68sOqY7WLCO+L0xy+yS/03XdxQcsi/FWad9lvg49tlV1crYPFl7fdd31w/+fUFX3qKozq0pi2/wtfb8dTsi2DkovT//zaRzcomK7dfB+r3EzVNXp6X/Ob3R+9m8RsR09efzEuJm6rrsp/ZMDk+ScqjpxxnoAluleSf7p8HqvG5u2/n639L92MOrhu8x3K13XfTzJB4a3u/XLU5WTvfv3rXLeP9S5n3LmtW1aN21M35Fk60L5pJjue+wfzrceMrx96x4Pmtgq5zY5PskySc7OdoLspPZ+Y5KtC8BnV9VJE+pbJbcZef2FXf6u3xhfzqb3G3u1jXnRbwyfWZd+o6q+PMmDhreX7fjbqm3DTWxfK2tS25gj40lvZceTqnpi+qcxfirJj035Mccb48vZqPYBJFm/c7BpbR27Hea5w7JsaswOapXHqE2L2ehD+l4ydq71tqiYzcuivpNetfXead3iNo1FXQ9blk2M2Tys8rW8TYuZMW3xMdtreZob0yRUrIetrOUPDTdpjTN6Efr+Y+eaUVXduarOqarfSvIfh//+ZJLfnVcdjVtofKvqSUm+Lf1P7PyH/ZbDVJax7764qj5aVTdW1Ser6m1V9XNVdbe9P8oMFhHbr87209reU1WnV9Xz0/e/f5v+6fdXV9Xrq+rojGUz3lLH3MF3pv8596RPfOvmXH6rFhXb84Z/71RVTxszz0/vMj/7t4jYfnbk9R3GzTRkwJ8+vD05yX1nrAdgmR4w8nqvm9wm9an7KeceVXX7MeVcPekGo67rPpbtp/4ctyxVdWqSe8y4LLcqJ/PbNptiv+edU23HYTz/0PB2t204j7H/fklO2GtZpihnP23jxCRftse8q+KRI6/ft8vf9RvbWus39mobO+k3tm1cv1FVp1TVl1XVM9N/obWVWP78HbOu2jbcxPa1UmZoGzv9fFVdUVU3VNU/VtX/qarn7Xw6/y6MJ+PLWbqqOiPJrwxvn9V13ScnzT/C8ca2jW0fwC3W7RxsT1X14GxfM5/m3GEaq/R9+DrH7BFV9VdVdU1VXVdVH66ql1XV4+bwtN9VHqPWOWbHGeL0vcPb65K8YtrPTqHF/WxeFvWd9Kqt907rFrdpzHo9bE9V9bqqunLY166sqour6tlV9UXzKH9G6xyz76qq9w7j2TVV9cGquqCqZn5S/i5W+VreOsfsOMN58tYve1yR5OI5lm0/28WQ9HPO8PYTXdd9apfZmhvTJFSsuOHp41tPMB73k0FJkq7r/jF9NlCyfSFuv/VeXFVdVXVJrkryliQ/kKTS38z7+K7rPn2QOlh8fIeBYOvLimd3XXfVfsphb8vad5McTfJPkpyU/mnaX5M+EepDVfVDByybLDS2owcLR9I/De/fp/95rC0nJ3lUkjdW1bNmLJ8dlrjf7tRC1vVCLTi2v53tuL2gqn6jqh5TVWdV1XdU1YXZfgLfz3dd94Z91MFggbEdPZl95Ni5kgcnOXXk/ZfOWA/AMt195PXEPjXJ34283tmn7qec2vG50XL2KmO0nHksy2GWsymOZn/nnVvb8dopriltbce7VNUtT8iZ49ivbeyhqo4kefbIf718l9n0G9u0jcmORr8x73KWqqqOjXx/cG36J6o+N8mXDLP8UpLf2/GxVduGm9i+lm6fbWOnh6U/nz45/bXQByX5kSTvq6pzJ9zgZzwZX84q+K9J7prkL5L81gyfc7yxbZPbBzRvTc/BpvGTI6+nOXeYxtGswPfhGxCze6V/wN+pSW6X/gm/T0xyYZI3H/DG+ZUcozYgZjs9IttPZr6w67prZvjsXo6mvf3swBb8nfTKrPdO6xa3aezzetg0vinJXdLva3dJ/z30Lyb5m6p67Jzq2NMGxOwB6W+svl36ce2+6e+7eWNVXVhVYx+YOIWVXO8NiNlOT0iylVT40jk/eNZ+trunZnvM+h87/9jqmHbi3rOwZKeNvP7s2Lm2XZu+czl1rxn36VeT/JcZnhzDZIuO7y+n/+LirUl+Y59lMJ1Fx/ZvkrwyfWy3Bo57pz/g+M70v3RwXlV1Xde9aJ910FtUbO848vpZ6WP42iQ/k+Td6Z/m8oT0X0LeIckvVdVlXdf90Yz1sG3pY25VfWm2b9Z+S9d1H5o0P1NbWGy7rvtCkn9VVf8z/RcFTxmmUX+W5BckU8zFomL7miQ3pT9/emZVvWTn8fBwAvzzE5YPYNXN0qdeO/J6Z58673Km7d8XsSwHLWfdHfS8cz8xTfrteMOOMmYpZ7exX9vY248mecjw+pVd1+32c86rth31G4sxTdvYot9oq20kyV8leWrXdZfs8rdV24ab2L5W2aS2seVj6fuMP0/ff9yUPrHi0elvhDgpyX9Kn2jxk7t83ngyvpylqqqvS3997KYkT5vxxohV25baB3BY1vEcbKKq2jruT5J3ph/nD2LVvg9f15jdmORVSV6X5NIkV6dPYj0nydPT35j2tUleX1XndF139R717WZVx6h1jdk4ow/pu2CGz03S8n42D4u832CV1nundYvbNGa5HjaN9yS5KMnbk3w0/fnulyf5l0m+OX2//IdV9Ziu615zwLqmsa4xuy79mPa/0j+1/rPZvmH+aekTwh6X5I+q6pu6rvv8PupYxfVO1jdm4xzGg2ftZ2NU1b2zfW/LZ9MnmBxkWbaWZ+3HNAkVq++2I69vnGL+rQv5tztgvd+fvoFX+s7jrPQnT89Icu+qekrXdZ84YB0sML5V9Yj0vzKynwvWzG6R++6FSS7YJaaXJHlZVT06/UnvSUmeV1WvmvRT1OxpUbEd/TnP2yZ5fZJHDzdrJ/2vB51XVZcmeVP6X7H4xSG+9u/9WdaYO+p704+9iV+nmKeFxraq7p/+hO8rx8xyTpIfrKr3dV339/upg1ssJLZd1/1dVZ2X/lj4bkn+oqp+In1yzI3pn5Z5bpJvGd6fvJ96AJZslj71hpHXO/u6eZdzkP591dZpnc3jvHM/MU2O347zGvu1jQmq6pHpk/eT5Mr01wR3s2rbUb9xyGZoG4l+Y7dlmWc5y3ZR+l9TTfplu0/6p9k+PsnvV9WPdF336h2fWbVtuIntaxXsp20kfd9wz11ubnhXkouq6kXpb/q7Q5JnV9XLuq77vzvmNZ6ML2dpqurkJC9Kf83zeV3XXTpjEau2LbUPYO7W+BxsrOF7khcPbz+X5MkH/P5ypb4PX/OYPWTML7RdXFW/luQV6W8yvH/6ZNZn7lHfblZujFrzmN3K8NTorYSlv09/M/FBtb6fzcMiv5NepfW+xZrGbaIZr4dN4/ld1527y///ZZKXDL8Cc16SE5L8ZlXdp+u66w9Y51hrHrO7jRnTXl9V/z39QxMfnD7B4unpHyQ+q5Vb7zWP2a1U1d3T/zJSkryt67oPzKFY+9n4ZTkl/Xi+9cstP9x13UcPuCyjy7PWY9qReRfI3I3uqCePnWvb1s9Nf+4glXZd9+Gu6y7tuu49Xde9ueu65yX5qiR/kv5pQJcMnRkHs5D4Dj9DvnXB+le6rnv3LJ9nXxa273Zdd/WkC1DDF1Q/O7w9JckPzloHx1lUbHceqD1rJJniFl3X/Xm2n+hy/4y/gZu9LWXM3eHJw783JHnZHMtt3cJiOzxx761JHpP+AuaTk9x1qPceSf5t+iclPCnJ26vqK2atg+Mscr/9sfTHwklyv/Q3iVw9lPXW9MkU70jyWyOfmefPKwMctln61NuMvN7Zp867nIP076u2TmtrTued+4lpcvx2nNfYr22MMRyfXpj+QTzXJ/muruuuHDP7qm1H/cYhmrFt6Dd2X5Z5lrNUXdd9evj+4NKu6y7puu4Puq77jvQPF7h3+if/HdvxsVXbhpvYvpZun20jXdddO+lJkV3XvT39Qw7y/9u773BbqvLw498XEFGkgwo2lKIi/ARBIwH0Ioiggr0glgtGjYVEDRgbckGi0Whi7CJR7A0iFmyxXIrGCKgRjYoIFytVmvTy/v5Ya3vm7rvrOfucfc7e38/zzLP37JlZs2bWlD1rVqG853hZh9m8n3QPZ5xeCzwA+A1wzCyWX2z70uND0kgt8WewjiJiK0pe+gZAAodl5s8HWbabxfQ+fKmnWZeCp61p11Iqw/6p/vTCWjlyWIvqHrXU06yLJwIb1u8fz8zbB1yuK8+zkVjI95aLabuBJZ1uXQ2bHzaIXtfhOv0DzLxv3orSQ8y8WOpp1ueedgml4lkrr+HwWa5mUW33Uk+zLp7NTDn2kfS45HnWNS7rAJ8DHlx/el9mnjiCuDTjs6TvaVaoWPyahbAG6aKk1aL5IN2sDKXWwjqUUgjwXsBbR72OKbRQ6fs6SpdFv6W0IqD5t2jO3ep4SoYVlJq3mr2FStvmei7LzB/1mPfrje8PHXI9mjHW8zYiHkZ5uQjwxX5/8DWUBUnbWoHxU5Sa3BcDD8/Mj2fmJZl5S2b+LjPfCzyC8kCwFaPrgndaLdh5m5k3USrKvAD4MTP3VSitCPwTsBczvcwAXDnseiRpjIa5pjZ7U2u/po46nLlc3xfbNk26fs+ds0lTWH0/jure77HRQUTcl9L69ybAbcAzM/P0Hosstv3odWOezOLYGJTXjdmHsyhl5scoL+XWAt4dEZs2Ji+2fTiJx9ei1efYGNSngWvq917XDPB+siiOjYh4APCaOnp4Zl43i2AW2770+JA0MhPwDLaGeo//BrB1/enwzPx0v+VGZN7fh09imrXLzKsp/7taYe02bBgsonvUBKfZcxvfPzrgMqMwyefZKCxkeYPFtN1LPd06msf8sEF8oPHdc22WMvMC4L/q6La10uewFs12T3Cajavh2ak6zyIigBOBx9afPkvnBktmE5dmfJb0Pc0KFYtcrcRwRR3t2SNERGzCzAHz23mKz+XAd+voEyLiDvOxnmmxgOn7j/Xzm8CBEfHM9qER9vqN3x815HpULcJz99JGfO4xH+uYFguYts35fzfEvFsMuR5Vi+C8HVfG18RbwLTdn5lr7Lu6dXObmT8DPl5Hd42IB3eaT/0t9Hmbmbdn5gmZuQul4sx2lDTfMjNfX+OzXWOR/5vNeiRpTJr/Ofv1SHmvxvf2a+pswknW/M/bGh+kd8xWOO1x+f0s4tIpnFHtm4k2wHNnaz+uHxEb9wmutR8vq5UaW+sY1b1/nMd7p3DGrr5M+ial0m+rBdEv9FnM68YMj41Z8LqxtI+NHlrHx/qU5+SWxbYPJ/H4Wuy6HRsDycxbgfPqaK9rBng/WSzHxisoLQteANy5y7upHRvzP6oxrXW++H9jxqQdH9JUm5BnsNVExAbA14BWz9xHZeZ7+oQ/MvP9PnwS06yH5ruN2ezLRXGPmtQ0i4i7AfvV0XMyc8HeRU34eTZnC/zectFs91JPt07mMz9sQHO9Dvc0iWnWg/e0YlGmWUTsBuxQR7+cmQvZYOW0nWfvAQ6p378KPLtXD1fTek+zQsXS0Dp5t63drnTzgMb3OXWZ2Mdl9fPOwObzuJ5psRDp2+oK51BKy9mdhlZabt747Q1DrkerW2znbtfuGTW0hUjbnzW+r91n3ub0W4dcj1Y3lvO2VlB8Zh29lJLhrNFaiLR9YOP7D/vMe06XdWp4YzlvM/PazDw/M//QetCMiLWBnessF9TKyJK0VDQzDvvdm3pdU2cTzm87tFbbCmejiLh7twAiYktmurdfLS6ZeS0zmWkLvU2dwpkGvZ47B9qP9X6+TR3ttA9Hce8/j9IaUM+4DBDObI6NW4Ff9Zl3QUXE5pSWuu5Xfzo8Mwep5O11Y8ZEXjfmcGwMw+tG/3AW3XWjj8sa3+/T+L7Y9uEkHl+LXbdjYxhzvma0Tfd+Mr/uWD/vR/d3U09pzH9U4/dWw0H+35gxaceHNLUm6BnsLyLiTsCXgIfWn/4lM4/rE/Z8mJf34ZOYZn3MdT+O/R414Wl2CDPlAz4ywPyjNqnn2ags1HvLRbHdE5Ruf7FA+WH9zFv5rklMsz7GcU8baV7ehKdZs+HZhb6nTc15FhFvAV5cR08HnpKZtwwRn6m4p4EVKpaKM+vn+sCuPeZrdj3z3a5zzV2zRpbdws7d0d1e9wAAIABJREFUYktfjc6iSduI2IKZSjN/mI91TJl5T9vMvAj4TR3duna91c02je+/7zqXBjGu8/ZxwGb1+ydri3sarYVI22a69XqYAGj28mV6z82iud8CezNzLi9kd5SSNAoXMvOs0K9r20fUz98Dq9qmndn43jWcWvho+zra6bo8UDj0v763wrl/rwJPfcIZ1b6ZaAM8dw6aprsx05JNrzSd9b0/M28GflBHd4+IdemuFc5NwNlt084Cbu6wvtXU8B/eWmbAjOoFEREbAV9nphWoVw/RgqjXje7hLPnrxhyPjUHX4XWji8V83RhAx/cHi3AfTuLxtdjN6d1SfXHbug/M+prh/WTJ8f9G93A8PqQlaMKewVrz3QE4uRHW+zPzVX3iN3Lz9T58EtNsADs0vs9mX471HjUFadYqfHoLpSLqgpnw82xUFuq95di3e8LSDViY/LABzfU63NEkptkA5rovx5qXN8lp1tbw7GWUXhMW0lScZxHxeqD13/ws4PGZecOA8Zmae1qLFSqWhlMa3w/tNENErMXMn+argO/MR0Qi4p7A7nX0otqKiuZm3tM3M6PfAFxUZ7+o8fuyIbdFq1s05y7wQqBVIP+0eVrHNFmotD25fm4I7NNjvic3vp/ZdS4NYlzn7ThrXU+LhUjbCxvf9+ozb/Mh4MKuc2kQi+J+Wyu+raijtwAfHPU6JGk+ZWYCra5mHxARD+80X/291frHF+pyzXDOY6ZFkKdHxJ27rHJ54/vnO0z/ItDqarbj9b0tnNvrMu2a94nlHaZT4/j0Ovp/dRv+YlT7Zgr0e+5cCVxdvz+vR6Xx5Y3vnY6NUd37W+FsyOrPVM1w7gnsW0e/1Z4PVse/VUf3rfN38mRmWijutE1jUY/9U4GH1J/+KTPfMujyXjcm97ox12NjCF43lth1Y0BPa3w/t23aYtqHK5mw42sJ6HVsDOIZwEb1+xrXDO8ni+9+kpnLB3g3dUxjkb0b01bVMPy/UUzc8SFNowl8Bmv12vxJ4ID608eAl/TYjPk08vfhk5hm/dRCgK3Cjdczi0q847xHTXqaRcROwIPr6Fdy4XtKn9jzbIQW5L3luLd7AtNtIfPDBvGixnfPtVmKiPsCj66jv87MoRuoHWde3hSk2QHM9E45joZnJ/48i4i/B95YR88F9h8yP3Eq7mntkXFYAgOlq5WkFM7avcP0I+v0BFZ0mL6sMf3EDtO3Bx7VJw4bNeKRwLHj3i+TMsx3+g4Yh1V1+VXj3h+TNCzAubs1sEufODye0mJZUjI97jHu/TIJw0Kct8C9gRvqPD8BNuwwz7Mb4Xx53PtlEoaFviYDmzbO0Z+Me/sneViAa/LGwHV1+jXATl3icQBwW53vd8Ba4943S31YoGvyZsAdu0xbG3hPI4xjxr1PHBwcHOqzwlDPiZS8gVvrMmcBd2qbfqf6e+uau12XcA5rrPvdHaZvQynAmJRuj9fpEs5HG+E8tcP0pw1w/b4D8Os6z9XANh3maV7Dl8/nvlkMw7DHBiN87gSObaz7yA7Td6/7L4GVPdY3p3t/nWdTSuZuUvJENmubvjal8FsrnGVdwnlUY54vAGu3Td+c0ohFAlcCm4z7GKjxWpfSSlIr7u+YZTheNybsujGKY8PrxsReN5YD6/WZ5xWNbbugw7Ytqn04icfXUjw2gE36bQ/wsJqWSSmgvmuX+byfLJL7yRDHz4oBznn/b0zp8eHgMEkDE/gMRilU/aFGOCfR9r9swG1a1uu6yZjeh09omu3fvv626Xdp2+Z3zibNRrnd055mHZZ5WyPMJw+xTZ5nszzeKJXxE8ghlhnFM+KiPM8mNd1GuE3Le6UtsBOwbZ8wXtgI44/A+qZZx/kPpMd1E7gb8MPGNr9yNmlW51nwvLxJTLMOy5/U2L6HDLGc59lg/0MOpeShJfBL4G6zjM9E39PWiMd8BOowDwkFu1D+kCZwLfAaSjdBewMfaBxwvwQ26LB8z4OyMf3HlMzLA4GH1vUeABxXLx6tMM4F7jzu/TIpw3yn74BxWFWXXzXu/TFJwwKeu9+rYT+W0g39bpSWiz7buDkm8JJx75NJGRbqvGX1Px6/oPzh2bWu513M/Jm4er7+LEzbsNDXZEpLPa35/2Hc2z/Jw0KkLXBUY55rgTfV8HcGHgO8l5nCGAk8e9z7ZRKGBUrbpwIXA+8AnlSvxXsALwZ+1Fj+K8C6494nDg4O0zcAe1IyEVvDEY1r05lt05b3COfNjeV+SGkJeLf62cx8flOPMNau62zNe1K9Dz4MeBlwSf39NuCAHuHcC7iUmcyxf67buWf93rqnXgrcs0c4j2WmMuPFNQ4Pq3FqZtieQY8X/6PYN0vx2GCEz53ABpT7cWveD1Du1w+vYV9bf78e2LlHOHO69zfCeVFj3vMpz1u7AQcB325M+2SfffypxrzfrsvvVsM7vzHtheM+HhpxPrkRr29RXjLs2GPY3uvGdFw3RnFs4HVjUq8bq4ArgOMprY7tQWkZdU/Kc1HzHL4J2Hex78NJPb6W2rHBTGXP/6X0VnAQ5f3UQ4AnAicwU3Argbf2iIv3k0VwTAx5/KxoxH/ZfO4Dj4+ld3w4OEzSwAQ+gwFvbyx/LuXe3WubduwSzrJGOCf2mL6g78MnNM1WUv63fRB4HuXetTOlV/XXMFMYNCnvpTedTZqNcrunPc06hPeHuswVDPEuql+a4XnWCuPutOWV1nOhtWz7tI4FdhnBM2K/NBvXeTap6TaqbaJ/Qe/llDI+/wW8ktJ7wkMo14Xnsnph7FuBA02zrmm2Cvg98E7gYEqjGDtTevY8DrisEd4ZdG84sWeaNeZb0Ly8SUyztvA2AW6sy5475L7pmWZ4nkHJT2uWJ9y/T1x2pEulEib8nrZGHOYrYId5SKxSyeHqxoHRPvyy28Wo30HZNr3f8GVgi3Hvj0kb5jN9B1z/qrr8qnHvi0kbFsm5ex2L6AXspAwLdd7WPwy391jPJXSoBeqw+NO2zv99Zv6o333c2z7pw3ynLaVFpn/rc84mcDNwxLj3xyQNC5C2T+2TprcD/0GXzBgHBweH+R6AEwd8Nkgge4SzVr2e9Vr+BPr0sERpkecHPcK4EfibAbbrr1i9gYf24Y/AXw0QzgtYvSBe+/A/wOZ9whjJvllqxwYjfu4EtgXO6xHO1cDjBwhn1vf+tnCOofd/t1Pp3+r2nep83cK4jR4vY8Z0XAx8TNRh1XyfG3jdGPtxMapjA68bk3rdWDVguv4WePRS2YeTeHwttWOD1XvP6jXcChwNRJ/4eD9ZQgODV6jw/8YUHh8ODpM0DHivaw6reoS1KK6JDP4f4C9Dl3CWNeY5sc/0XsNI34dPaJqtHHBbVtKj94F+aTbq7Z7mNGsLa//Gcu8Zct/0TDM8z4bdD61heY+w5vSM2C/NxnWeTWq6jWqbGKyg9yDhXw48wTTrmWarBlz2JGDjHnHpmWaN+RY0L28S06wtvL9tzLtGr7F9lu2ZZniewZDvBeuwrEd8JvaetkYc5itgh3lKMLgP8K/1ILyO0k3QWcCr6NFjRL+DktK17H7AWym16M6rJ8EtlJrNZwPvBvYY9z6Y5GG+0nfAda/qd7F2WHxpS2lF7ZB6fn6f0mrEdZQM+IspNR5fC9x13PtgUoeFOm8ptak/ClxIyVi5ipL58npgo3Hvh0kcFiJtge0a83513Ns8LcMCpe2uwPsorTJdQ3npf1X9T/V2etQ2d1icaUvpFvQISg8UF9Twr63rej8DvCR3cHBwmM+BEVWoaIT3WOAUSgs/N9XPUxigtbRGGOtQWiU+g5IxeQPwa0rrxQ8aIpzNgTfW++q1dfhJ/W2zIcLZsa771zUul9e4/S09uoaej32zlI4N5uG5E1i/3p/Pqvfr6yitGf0rcJ8hwpnVvb9DOH8NfAL4Td2uS4BvAAcPua+fVZe7pIbzmxruoqsAP8wxwYD5RV435nffLKVjw+vGUPt7KV037k9p1e1kSk8CF1PeH1xDaYnvJMoLy4H242Lah5N6fC2VYwNYl9KIwdsp19gL6rI3U1qUPJPSuuTWQ8TJ+8kSGRiwQsUo94HHh4ODwzgGJvAZjIWrUDGW9+ETmma7Af9Y1/lzyn+tWyhlg35OyUN6DP0rsPZMs/nY7mlNs7ZwPtGI+1DvpDzPBkszRl9geNbPiIv1PJvUdBvVNtG/oPddgcMoPQWdTWl44HrKdeH3lPfQfwdsaJr1TbNHAm8Avko5x66g3NOupDyXvZ8B8ob6pVmH+RckL28S06wtvO/W+W4Fthpy33ie9UkzRlyhooZ5HybwntY+RI2AJEmSJEmSJEmSJEmSJEmSJEnS1Fhr3BGQJEmSJEmSJEmSJEmSJEmSJElaaFaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1rFAhSZIkSZIkSZIkSZIkSZIkSZKmjhUqJEmSJEmSJEmSJEmSJEmSJEnS1LFChSRJkiRJkiRJkiRJkiRJkiRJmjpWqJAkLZiIWB4RWYetxx2fSdbYzyvmEMayRjjLOkxf0ZreZfmVdfrK2cZBkiRJkiTNnXkynUXEiXWfrBp3XCRJkiRJ0poiYlV9dj9x3HGZVpb9kCRNAytUSJIkSZIkSZIkSZIkSZIkSZKkqWOFCkmSNBaj6EVDkiRJkiSpyd44JEmSJEmSlo6I2LqRl7N83PGRJE2ndcYdAUmStDhl5kog5rD8spFFRpIkSZIkSZIkSZIkSZIkacTsoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSdLIRMQmEfHPEfGLiLghIi6NiG9GxNMGWHbdiDgwIt4dEWdFxJURcUtEXBER/xMRKyJi8z5hrIqIjIgT6/j9I+KD9febIuKSiPh8RDx8wO3ZOiLeEhHn1HjcEhGXR8QZNT7367HsRhHxmoj4bkRcFhE3R8QfI+JLEfHUiIgey64fEc+IiBMi4scRcXVd92URcVpEHBERdxlkGxph7hsRX6xxuDEiLqj7+h49lllW92dGxLJh1leXX1mXXdn2+6qIyMZPRzfW0xpOrPP+Zx2/MiLW67O+dSLi4jr/V4aNryRJkiRJ0ywi1o6I50XElyPiDzUv5YqIODMiXhkRd+qx7Gp5ABFxj4j414g4v+YRXRERX4+IAwaMy3NrHsiVEfHniDg3It4QERvW6a38gxWNZZbV/IYPN4K6sEOew7Ie6904Io6NiJ9FxHURcVVEnB4RhwwSb0mSJEmSJl0tK5Gtd/61bMRREfGj+hydEbG8bZlZl58YIl7bRsS/1TyEq2t+xAURcWJE7NZn2S0j4iURcVJE/KrmCdwUEb+PiC/U8hs9y1lGxHoR8Xc1j+SyWsbjTxHxy4j4as1b2brH8rPOl5mriHh4RHyulre4MSIujIjjI+L+Ay4/6/1Xj6MLGz99uENezoouyz4kIt5f9/Gf63p/GRHvi4jth94RkqSpts64IyBJmgwR8UDgm8BWjZ/XA/YB9omIDwOn9wjieOB5HX7fFHhYHV4WEU/IzO8OEJ8nAR8H7tz4+a7AE4EDI+KQzPxMj+WPAN4E3KFt0mbAnnVYVof2ZfcBPlPnbbo78Pg6fCUinpGZf+6w+lOBR3b4fXPgEXV4SUQ8NjN/0W0bGvE5GljR9vN9gZcCz46IAzPzjH7hjMkJwJOAjSlp9+ke8z4WuFv9/qF5jpckSZIkSRMjIu4NfBF4cNukTYE96vDiiHhcZp7XJ6w9gFMo+Rgt6wH7AftFxJGZ+bYuy94B+BzwhLZJO9bh2RHx6MG2aji1kMDXgK3bJu0F7BURu2fmy+Zj3ZIkSZIkLUURsR3wDdZ8lm7OM9fyE4PEo1v5jvvW4bkRcVxmvqHDsmsDv6Nzw9RbAQfV4fkR8eROcYyILSnlZXZom7RJHbYH9q/hHdFh+ZHlywwrIl4BvI3Vt39r4AXAsyLi6X2Wn/P+m0Wc16pxfjnQXhln+zr8TUS8NDOPn+v6JEnTwQoVkqQ5i9I64NeZqUzxGeAjwKWUB5VXAodSXnx3sw5wAfB54AfAb4BbgfsA+wKHUR6wPx8RO2bmpT3C2gl4BvBH4O3A2ZSHqMcAr6a8xD8+Ir6dmZd12J6jgGPr6FXAe4HvAFdQCvY/BHgykB2W3QP4KuVB/RLgXcD/An+o++cZwLMphf8/Ajyly744l/LAfHZdNuq+eBLwdMpD/ykRsXNm3thjXzwO2A34JfBW4CfARsDTKA/AGwFfrvv0tz3CGaX9gHUp2wjwPso+brqyfn6N8vB9T8ox1KtCxaH183LKvpMkSZIkSX1ExGbAmcC9gJuADwKnAauAu1Ce4/8e2Bb4akQ8JDOv7hLclpTKFLdT8mDOBG6mNEzxBkq+ypsj4quZ+bMOy/87M5UpfkZ5Of5TYENKnsiLKflOnZxFyRN6AnBc/e0xlHyVpgtZ052BL1Hyno6jFIL4M7ALcDQlX+KlEfGlzPx6l/VLkiRJkjRtTgLuQSkX8UXKe/7tgItgZOUneoqIIyllIaCUh3gf8CtKWY/7Ay8DdgeOiojLM/Od7UHUz2/XuJ4LXAZsANyPUq5id+DRwHvo3FDou5ipTPFx4D/rNt5GySvZjTUbj2jFf5T5MkOpDZX+ax29GngLsLKOPwp4FfAJyv7oGkz9nO3+24lyLLTyW14PfKFtnvbyQe8CXlK/nw6cSClvdD2lUsrLgQcBH4iIizPT8iOSpL4ic42yoJIkDSUi/oWZWvSvzcw3t02/A/BlyoNey30zc1Vjnm2AC7LLjSkidgK+R3lgPC4zj+owzypKpQOAc4BHZeY1bfMcQnmABXhlZv5b2/RdKJUY1gLOA/bJzN91idO9mpUQ6naeR6mt/zXgKZl5fYflXkDpkQNgv8z8r7bp22Xmrzqts07fl/IwuRbwN5n5Hx3mae7HHwKPbK/pHxHPAT5aRz+XmU9vm76MUpEEYO/MXNk2fQWlUAGZuUYXnBGxktLTxmmZuaxHHI/JzBVrbOjMfMcCR1EKY9ynU3pExF0pFS/uAPx7Zr68W3iSJEmSJE2biFgOfLiOtufJfAJ4FqWww96ZuUaFg5pfcgawPvCmzHxd2/SVzPS2eRGwR2b+vm2ePSkvuQN4Z2b+fYd1nFOn/zclT+aGtnmeSunBomWNPIVe29phu05k5kX+1TXeP2ubZ1tKYYD1gC9mZscCEJIkSZIkTYNmOQHKO/wDMvMbHeYbVfmJVZRyIB/JzOVt03YAfkwpJ3AMJZ8g2+ZZi1JZ49mUxhPunZlXNqYHsE1mnt9jm4+hNBSRwP2b5TkiYj3gmhqHt2fmGj1QNObdNDP/1PbbnPNlZiMi1qU0OrEVJU9k98z8eds8OwLfpTR0AR3Kfsx1/9XpWzPTAMahmXlij7AeTekVBbqXl1kPOJVSKeQiYNvMvLVbmJIkQeeuliRJGlh9yHp+Hf0J8M/t82TmLXWeW7qFk5m/7laZok4/Fzihjj5xgKgd1l6ZovokMy0T7tVh+pGU+2MCz+xWmaLGqb1Hh2dSMgNuBJ7bKTOgLvdBSi8cAMs7TO9amaJO/yYzPTAMsi9e2KnbxMz8GKWFAIAnRcTdBwhrHD5ESY+16NzaA5TMjzs05pckSZIkSX3UF9bPqKMv6/TSHiAzf0RpRRA65GW0Oby9MkUN40zgf+popzyZFzLTquEL2itT1DBOovRuOh+O6tRrRi0QcEod3XOe1i1JkiRJ0lJ0YqfKFNVIyk/08Q+UcgJn06EyRQ3/duBwSu8PdwGe2jY9e1UGqI4FLqfkWxzUNm1TZsoqnN4rkA6VKbZm9Pkyg3oCpTIFwBvbK1PU9f4U+KdegYxg/w3r1fXz5E6VKWqcbqT0TAKlMs7ec1ynJGkKWKFCkjRXuwKb1O8f6VYpolZM6PYgvYaI2CQitomIB0XEjrXm+1V18g61NYNuzs3Mn3SJRwI/qqP3a1vnWsABdXRlfSgdRuvB77TM7NXlIcw8SO/eL9CI2CIitmvth7ovWuE/uM/i52bmOT2mtyofrAMs6xeXcagtSX6zji7vMtuh9fOcbmkvSZIkSZLW8DhgbeB6Zhpd6KaVl7FVRNy7yzxXUVoA7KaVR3G/DtP2rZ8/6lSxoeGjPabNVlIa4eimFe9NI2LjeVi/JEmSJElL0Sd6TJuX8hNtDqyfJ/dpwPMqSu+TfdcREWtFxFYRcf9G+YwHAq3GONvLaFwB3Fy/Pyci1hki/qPOlxlGKx8mKT14dPPhOs9AZrH/BhYRGzJTruWkXvPWCiKX19FhjytJ0hQa5gYuSVInOzW+n9Vn3h9QHgg7ioidgFdQKjX06i1hLUoljku7TP9Fn3i0av1v0Pb7fYHWS/Ez+oTRyW718zERMegDZcftjIg9gL+jPMRu2mP5zfuEP0iatOwEfLrP/ONyAvBoYNuI2Csz/5I+EbEbsGMdtXcKSZIkSZIG18rLuDNwa0T0mrfp7sBvOvz+q9ryYzcd82QiYj1g2zraq2EIKK1OjtrlmXlFj+nNFiQ3YKbRD0mSJEmSplmvxg5HVn6ik4i4D7BFHX1zRLx5tuuIkiFyCPB84K+AO/VYfrUyGpl5U0R8BngOpfeLh0bEZ4GVwPdqZY5uRp0vM4xWWZ8LM/PybjNl5mURsYpSnqajuey/Ie3CTAPin4qITw243MDHlSRpelmhQpI0V83C/t0qOLRc0m1CRDwfeD+D35t6PYB17CqyofVif+2235sPbn8cMB5Nd53FMmtsR0SsAI6e7fJthkmTXhU3xu0USusBm1N6o2hWeDmsft5I79YkJUmSJEnS6maTlwHlRX8ng+bJtPee3ez1oV+rlf2mz8ag8YY185MkSZIkSZpWV/aYNpLyEyMOH9ryNGojD/9JafhzEJ3i+DJK3saBwH2AI+twe0T8EPgscHxmXt223KjzZYbRKh/Sr0wJlHIlHStUjGj/DWqc+0uSNOGsUCFJGqWBu/lriogHMFOZ4lLgX4BvA6uAazPzljrfYcB/tBaba2TnQeuF+leBV80mgIjYh5nKFBcAbwPOpLQucF1m3lrnOxY4aoAgZ5Umi01m3hwRH6P0YPK0iDg8M6+rD+cH19k+36d1B0mSJEmStLpWXsblwN5DLHfhPMRFkiRJkiQtIZl5W4/Jcy4/0UezwYNjgc8NuNx1beOvY6YywGnAe4AfAhcDN7R64oyI04G96FBWJTOvAQ6KiIcBTweWATvXOO5WhyMi4omZ+d8dtmGc+TJzLVMy5/03hGaavwj43oDL9ar4I0kSYIUKSdLcNR887gac12Peu3X5fTnlnnQb8MjM/EWX+ea7B4VmN4ZbzmL5K4CtgHUz86ezjMML6ueVwMMzs1uri4Pui277vNP0Pw0Y5ricQKlQcRfgacCJwBOZacXyQ+OJliRJkiRJS9YV9XMD4Od9CkLMp2YDCVv0mbffdEmSJEmSNH6jKD/RL/yWW2azjogI4G/q6BnAo1oVADroW0YjM38A/KCGvQGlYsVy4MmU3hVOjohtMvOGtm0YR75Mq6xPvzIlXecZ9f4bQDPNr5+n40qSNKXau9WWJGlY5za+P7TPvN2mP6h+/m+PyhRQau3PpwuZeYH/iFks/6P6uVtErDvLOLT2xXd6VKaAwffFMGmyqB82M/P/gFZrDYfWz8Pq50XAtxY8UpIkSZIkLW2tvIw7Mv/5Ll1l5o3Ar+vorn1m7xfPieitU5IkSZKkJW4U5Sd6uQC4un7fY5ZhbArcvX7/XLfKABFxF+D+wwScmddm5pcy8ynAO+vPWwJ7NmYbZ75Mq6zPfSNis24zRcQWwNZdJo9q/w2al/PjxryzTXNJkjqyQoUkaa7OYabm+nNqDfQ1RMQ9gP26hNHqMWn9biuJiC2Bg2YbyUHUh7tT6+gjI2KXIYP4Yv3ciJkC/8MaZF/sAvzVgOHt1Gc7WhUSbgNWDhjmqNxYP+84xDIn1M+9ImJvYJ86fmJmWmBCkiRJkqThfImZF9EvH2dEmGkoYZeIeFCP+Z7bJ5wbG9+HyXOQJEmSJEmjM4ryE13V3hy+Ukf3i4gHziKYdRrfu5bRoPTCsE6P6f00G4fcvPF9nPky36yfQe+8luV1nk5Gtf8GysupjZJ+v44+q1b2kCRpJKxQIUmak8y8CfhwHd0ZOLJ9nohYB/gg0K3VgV/Vz+0i4q87LH9n4JPAneYc4f7eBtxOeSD8dETcs9uMHaZ9BPhtK5yI6NnLRUTsGRGPbPu5tS/2jIhtOyyzBfCxXuF2cHxErPHwGhHPAh5bR0/JzD8OGe5ctda3zRDLfAa4lpI+n6T8l0lmjkFJkiRJkjSgzPwl8Lk6+syIeGWv+SPivhFx8DxF53hmChF8MCLWyAeKiKcAT+oTTjN/Y5g8B0mSJEmSNDqjKD/Rz5spjUeuBZzUp3zH2hFxSNs8lwFX1e8HR8Qahfkj4qHAG3uEe78B4t1sfPTC1pcx58ucwkweylERsUYPEhGxA/C6HmHMef9VVwA31+/98nKOq58bUtJ8424zRsQdI+KlEbFenzAlSbJChSRpJI4Ffle/vyUiPhkR+0fEQyLimcD3gAOAs7ss36ogsBZwakS8NiIeEREPi4gXU7qQ5UZvAAAHxklEQVTtWwZ8d/42ocjMHwNH19HtgXMj4riI2Ccido6IZRHx8og4nbaKDbVyydOBm4C7AN+OiI9HxFMjYteIeGhEHBQRx0TET4AzgJ3aovDR+rk+cFpEHB4Rf12HI4D/BXYA/nvATTqb0jXk2RGxvMbjURHx3kb8rwWOGDC8Ufpe/TwoIl4UETtGxLZ1uGunBTLzOuDTdbTVdeS3M/Oi+Y6sJEmSJEkT6sXABfX72yPitIh4fkQ8PCJ2iYh9I+IfIuK/gPOBp8xHJDLzHEqDHAC7A2dFxPNqXsbeEfEuSkMLP2gu1iGoHzHTsuEbI+LREbF9I89hIRrskCRJkiRpqo2o/ES/dZzLTFmHHYCfRsRba3mVXSJi94g4OCLeSanc8XFg48bytwOfqKP/Dzizzr9bLSPyduB0Sj7DeV2icW9gZUT8rJYteWLdtodGxJMj4jPAS+u8Pwb+p235seTLZObNwOF1dBPg+xHx6rre3SPiNcyU6Ti/Sxij2H9k5q3AWXX0sBrGAxt5OZs25v0K8O919BHAzyPi6EaZnj1qftIJlAoj72ZuvYtIkqaENwtJ0pxl5tURsT+lS8C7AwfXoelE4DQ69CSQmWdFxNHAMZSH13/qsJq3Az8F9hhdzDvLzOMi4vZGfF5H51r3p3VY9vsRsQz4LHAv4JA6dHNN2/InRcSHKV1ebgW8s23+24BXUB5odx9gc06tw9F07sXhGuCgzFw1QFij9jbgqZQuG9/fNu0jlK4jOzkBeEFj/EMjj5kkSZIkSVMiM/8UEXtQ8jL2oryM7tVq5DU9ps3V4ZT8kMcDD6LkJzVdCDyLmRf5N7ZNJzOvrQUlXgU8BPhG2yx7AytHFmNJkiRJktTRXMtPDLiOd0TEdcA7gI2AI+vQyc2smZfwOko5lJ0pjVV+sm36nyiVGI6lNMrZzQ516OYXwJMzc7XGIcaZL5OZJ0fEkcBbKWVj3tw2y/WUSjFHAtt2CWZU++/NwJeAzTqEcQywojH+ihruUZQySivo7jpKORtJknqyhwpJ0khk5s8oL7rfCvyK0srA5cB3gGdl5qF9lj8WeBzlJfeVlAfZ3wH/CeyXmQvag0JmvonysPsOSkWOa4BbKV0Wnga8HnhOl2W/D2wH/C2lMsMfmHkw/y1lG18HPCAzP9ph+cNq2GdQeo+4CbiI0qPEX2fmv7cv02dbVgD717hcUuOyCngv8KDMXKNiyEKovYHsDnwK+A1lOwdZ7gfMtF5wFeUYkSRJkiRJs5SZF2fmIygVGT5BaRnxeuAWSl7I9yiNXTyy5lvMVzxuBg6iNDRxJnB1jcfPgTcBuwJXNBa5uktQr6Y0xnAG5QW7L84lSZIkSRqDuZafGHAdHwTuR2lo8ruUsiq3UgrTnwecXNd/j8w8v23ZqykVAo4Czq3x+jMlL+JtwIMz8/Qeqz8DWEapEPAdSiMQ11LyVC6p2/e3wM6ZeWGX+I8tXyYz3wbsSSl3cSkz5VM+BOyWmaf2WX6u+68VzqnAPsAXKMfILT3mzVrGaHtKGaWzmcn/uRb4P8p+fB6wZWbe0G/9kiRFW6VHSZKkRS0iNgQuBu4EvC8zXzLmKEmSJEmSpAUSEXtSCisA7JuZ3xpnfCRJkiRJkiRJ0tJmDxWSJGmpOZhSmQLgP8YZEUmSJEmStOAOrp+3AOeMMyKSJEmSJEmSJGnps0KFJElaMiJiHeCVdfTszLTghCRJkiRJEyIiNo+IjXtMfwzwojr6xcy8amFiJkmSJEmSJEmSJtU6446AJElSLxGxKbApsBnwD8D2ddKbxhYpSZIkSZI0H3YEvhARnwO+CfwauB24D3AQ8GxgbeAG4LXjiqQkSZIkSZIkSZockZnjjoMkSVJXEbECOLrt5y9n5oFjiI4kSZIkSZonEbEM+E6f2a4BnpaZ35j/GEmSJEmSJC0+EXFX4K6zWPTmzDxv1PGRJGmps4cKSZK0VNwKXAR8CnjzmOMiSZIkSZJG72xgObA/8GBgC2BjSiWK84GvAe/OzMvGFUFJkiRJkqRF4CWs2TDlIC4Cth5tVCRJWvrsoUKSJEmSJEmSJEmSJEmSJGkJiIgVzLJCRWZuPdrYSJK09FmhQpIkSZIkSZIkSZIkSZIkSZIkTZ21xh0BSZIkSZIkSZIkSZIkSZIkSZKkhWaFCkmSJEmSJEmSJEmSJEmSJEmSNHWsUCFJkiRJkiRJkiRJkiRJkiRJkqaOFSokSZIkSZIkSZIkSZIkSZIkSdLUsUKFJEmSJEmSJEmSJEmSJEmSJEmaOlaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1/j+aeOcrmpqnWAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(20,20), dpi=200)\n", + "\n", + "plt.subplot(4,3,1)\n", + "sns.boxplot(x = 'popularity', data = df)\n", + "\n", + "plt.subplot(4,3,2)\n", + "sns.boxplot(x = 'acousticness', data = df)\n", + "\n", + "plt.subplot(4,3,3)\n", + "sns.boxplot(x = 'energy', data = df)\n", + "\n", + "plt.subplot(4,3,4)\n", + "sns.boxplot(x = 'instrumentalness', data = df)\n", + "\n", + "plt.subplot(4,3,5)\n", + "sns.boxplot(x = 'liveness', data = df)\n", + "\n", + "plt.subplot(4,3,6)\n", + "sns.boxplot(x = 'loudness', data = df)\n", + "\n", + "plt.subplot(4,3,7)\n", + "sns.boxplot(x = 'speechiness', data = df)\n", + "\n", + "plt.subplot(4,3,8)\n", + "sns.boxplot(x = 'tempo', data = df)\n", + "\n", + "plt.subplot(4,3,9)\n", + "sns.boxplot(x = 'time_signature', data = df)\n", + "\n", + "plt.subplot(4,3,10)\n", + "sns.boxplot(x = 'danceability', data = df)\n", + "\n", + "plt.subplot(4,3,11)\n", + "sns.boxplot(x = 'length', data = df)\n", + "\n", + "plt.subplot(4,3,12)\n", + "sns.boxplot(x = 'release_date', data = df)" + ] + }, + { + "source": [ + "いくつかの列を選択し、範囲が似ているものにしてください。ジャンルを整理するために、artist_top_genre列を必ず含めてください。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import LabelEncoder, StandardScaler\n", + "le = LabelEncoder()\n", + "\n", + "# scaler = StandardScaler()\n", + "\n", + "X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')]\n", + "\n", + "y = df['artist_top_genre']\n", + "\n", + "X['artist_top_genre'] = le.fit_transform(X['artist_top_genre'])\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "y = le.transform(y)\n", + "\n" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 1, 0, 0,\n", + " 0, 1, 0, 2, 0, 0, 2, 2, 1, 1, 0, 2, 2, 2, 2, 1, 1, 0, 2, 0, 2, 0,\n", + " 2, 0, 0, 1, 1, 2, 1, 0, 0, 2, 2, 2, 2, 1, 1, 0, 1, 2, 2, 1, 2, 2,\n", + " 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 0,\n", + " 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2,\n", + " 1, 2, 2, 2, 0, 2, 1, 1, 1, 2, 1, 0, 1, 2, 2, 1, 1, 1, 0, 1, 2, 2,\n", + " 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2,\n", + " 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 2, 0, 2, 2, 0, 2, 2, 1, 1, 0,\n", + " 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 2, 2, 2, 1, 1, 1, 1, 1, 0,\n", + " 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2,\n", + " 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 1, 2, 1, 2, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 1],\n", + " dtype=int32)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ], + "source": [ + "\n", + "from sklearn.cluster import KMeans\n", + "\n", + "nclusters = 3 \n", + "seed = 0\n", + "\n", + "km = KMeans(n_clusters=nclusters, random_state=seed)\n", + "km.fit(X)\n", + "\n", + "# Predict the cluster for each data point\n", + "\n", + "y_cluster_kmeans = km.predict(X)\n", + "y_cluster_kmeans" + ] + }, + { + "source": [ + "それらの数字は私たちにとってあまり意味がないので、精度を確認するために「シルエットスコア」を取得しましょう。私たちのスコアは中間にあります。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.5466747351275563" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ], + "source": [ + "from sklearn import metrics\n", + "score = metrics.silhouette_score(X, y_cluster_kmeans)\n", + "score" + ] + }, + { + "source": [ + "KMeansをインポートしてモデルを構築する\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.cluster import KMeans\n", + "wcss = []\n", + "\n", + "for i in range(1, 11):\n", + " kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)\n", + " kmeans.fit(X)\n", + " wcss.append(kmeans.inertia_)" + ] + }, + { + "source": [ + "そのモデルを使用して、エルボー法を用いて構築する最適なクラスタ数を決定する\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAFNCAYAAACAH1JNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5hdZX33//d3coIQgSQEUkJMQE4iVMABgyIp4SyHhD3wCLWK/VEpLSii9Kn2oG3110ptK1JbWypWeMoD8kNIEJCDnEU5hIMEpEIKBMIpkUA4J4R8f3+sNWYnmWRmktmz9t7zfl3XvvZa91p7z3c5l5kP973WfUdmIkmSpNbRUXUBkiRJ6h8DnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASdI6RMSnIuKndfsZETtWWZMkgQFOkoiIJyPizYh4re717arrkqR1McBJUuHozBxT9zq96oIkaV0McJLUPx+NiMcj4tcR8Y2I6ACIiI6I+IuIWBARiyLiwojYojx2QUR8odyeVA7FnlbuvycilnR/jyT1hf9gSFL/HAt0AnsDM4H/p2z/VPk6ENgBGAN0D8PeCvxOuT0deBw4oG7/9sxc2diyJbUTA5wkFWZHxMt1r0+v47yzM3NJZj4FnAOcWLZ/HPinzHw8M18DvgScEBHDKQLc/mUv2wHA3wMfLj83vTwuSX1mgJOkwqzM3LLu9R/rOO/puu0FwLbl9rblfv2x4cA2mfk/wOvAnsBHgKuAZyNiFwxwkjaAAU6S+mdy3fa7gWfL7WeBKWscWwG8UO7fChwHjMzMZ8r9k4CxwAONLFhS+zHASVL//ElEjI2IycAZwA/K9ouBMyNi+4gYA/wt8IPMXFEevxU4Hbit3L+l3P9pZr4zaNVLagvDqy5AkprEjyKiPkjdAMzp4bw5wL3AFsD3gfPL9u9RDKPeBmwCXAd8pu5ztwLvYlWA+ykwum5fkvosMrPqGiRJktQPDqFKkiS1GAOcJElSizHASZIktRgDnCRJUosxwEmSJLWYITeNyFZbbZVTp06tugxJkqRe3Xvvvb/OzAlrtg+5ADd16lTmzp1bdRmSJEm9iogFPbU7hCpJktRiDHCSJEktxgAnSZLUYgxwkiRJLcYAJ0mS1GIMcJIkSS3GACdJktRihtw8cA21ciUsWgTLlsGoUbD11tBhRpYkSQPLdDFQVq6EefNg2jSYOrV4nzevaJckSRpABriBsmgRzJwJC8oJkxcsKPYXLaq2LkmS1HYMcANl2bJV4a3bggVFuyRJ0gAywA2UUaNgypTV26ZMKdolSZIGkAFuoGy9NcyZsyrETZlS7G+9dbV1SZKktuNTqAOlowP22APuvBMefxzeeqvY9ylUSZI0wEwXA6mjAyZOhGuugUMPhSVLqq5IkiS1IQNcI9Rq8M47cOWVVVciSZLakAGuEfbaq5gL7vLLq65EkiS1IQNcI0QUvXA33ACvvFJ1NZIkqc0Y4BqlqwuWL4err666EkmS1GYMcI0ybVrxQIPDqJIkaYAZ4BqlowOOPbZ4IvWNN6quRpIktREDXCN1dRXh7frrq65EkiS1EQNcIx1wAIwbBz/8YdWVSJKkNmKAa6QRI2DmTPjRj4oHGiRJkgaAAa7RajVYuhRuuqnqSiRJUpswwDXawQfDu97l06iSJGnAGOAabZNN4MgjYfbsYnktSZKkjWSAGwy1GixeDD/9adWVSJKkNmCAGwxHHFH0xDmMKkmSBoABbjCMGQOHHVYEuJUrq65GkiS1OAPcYOnqgoULYe7cqiuRJEktzgA3WI46CoYPd1JfSZK00Qxwg2XsWDjooGIYNbPqaiRJUgszwA2mWg3mz4eHHqq6EkmS1MIMcINp5kyIcBhVkiRtFAPcYNpmG/jIR5xORJIkbRQD3GCr1WDePHjssaorkSRJLcoAN9hqteLdXjhJkrSBGhrgIuLMiHg4Ih6KiIsjYpOI2D4i7oqI+RHxg4gYWZ47qtyfXx6fWvc9XyrbfxURh9W1H162zY+ILzbyWgbM5Mmwzz7eBydJkjZYwwJcREwCPgt0ZubuwDDgBOBs4JuZuSPwEnBy+ZGTgZfK9m+W5xERu5Wfex9wOPCvETEsIoYB/wIcAewGnFie2/y6uuCee+Cpp6quRJIktaBGD6EOBzaNiOHAaOA5YAZwWXn8AmBWuT2z3Kc8flBERNl+SWYuy8wngPnAvuVrfmY+npnLgUvKc5vfsccW77NnV1uHJElqSQ0LcJn5DPAPwFMUwW0pcC/wcmauKE9bCEwqtycBT5efXVGeP76+fY3PrKu9+e28M+y+u8OokiRpgzRyCHUsRY/Y9sC2wGYUQ6CDLiJOiYi5ETF38eLFVZSwtq4uuP12eOGFqiuRJEktppFDqAcDT2Tm4sx8G7gc+DCwZTmkCrAd8Ey5/QwwGaA8vgXwYn37Gp9ZV/taMvO8zOzMzM4JEyYMxLVtvFqtWFJrzpyqK5EkSS2mkQHuKWBaRIwu72U7CPglcDNwXHnOSUB3grmy3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSMpHnS4soHXM7D22AN23NHpRCRJUr818h64uygeRrgPmFf+rPOAPwU+HxHzKe5xO7/8yPnA+LL988AXy+95GLiUIvxdC5yWme+U98mdDlwHPAJcWp7bGiKKXrgbb4SXXqq6GkmS1EKi6OQaOjo7O3Pu3LlVl1G4+2744AfhwgvhE5+ouhpJktRkIuLezOxcs92VGKrU2QnbbecwqiRJ6hcDXJU6Ooo54a69Fl57repqJElSizDAVa2rC956qwhxkiRJfWCAq9r++8OECU7qK0mS+swAV7Vhw2DWLLjqqqInTpIkqRcGuGZQqxX3wP3kJ1VXIkmSWoABrhnMmAFbbOHTqJIkqU8McM1g5Eg4+uhiWa0VK6quRpIkNTkDXLOo1WDJErj11qorkSRJTc4A1ywOOwxGj3YYVZIk9coA1yxGj4YjjoArroCVK6uuRpIkNTEDXDPp6oLnnoM776y6EkmS1MQMcM3kyCOLBxqc1FeSJK2HAa6ZbL45HHJIcR9cZtXVSJKkJmWAaza1Gjz5JDzwQNWVSJKkJmWAazbHHFMsr+UwqiRJWgcDXLPZaiuYPt3pRCRJ0joZ4JpRrQaPPFK8JEmS1mCAa0bHHlu82wsnSZJ6YIBrRttuC/vt531wkiSpRwa4ZtXVBfffD088UXUlkiSpyRjgmlX3MOoVV1RbhyRJajoGuGa1ww6w554Oo0qSpLUY4JpZVxf87GfF+qiSJEklA1wzq9WKd4dRJUlSHQNcM9ttN9h1V6cTkSRJqzHANbtaDW65BV58sepKJElSkzDANbuuLnjnHbjyyqorkSRJTcIA1+z22gumTHEYVZIk/YYBrtlFFMOo118Pr7xSdTWSJKkJGOBaQVcXLF8O11xTdSWSJKkJGOBawX77wcSJTuorSZIAA1xr6Ogolta65hp4882qq5EkSRUzwLWKWg3eeAOuu67qSiRJUsUMcK1i+nQYN86nUSVJkgGuZYwYAcccU8wHt3x51dVIkqQKGeBaSa0GS5fCzTdXXYkkSaqQAa6VHHIIjBnjMKokSUOcAa6VbLIJHHkkzJ5dLK8lSZKGJANcq+nqgkWL4I47qq5EkiRVxADXao44ouiJc1JfSZKGLANcqxkzBg47rLgPLrPqaiRJUgUMcK2oVoOFC+Gee6quRJIkVcAA14qOPhqGD/dpVEmShigDXCsaOxZmzCjug3MYVZKkIccA16pqNZg/Hx56qOpKJEnSIDPAtapZsyDCYVRJkoaghga4iNgyIi6LiP+OiEciYr+IGBcRN0TEY+X72PLciIhzI2J+RDwYEXvXfc9J5fmPRcRJde0fiIh55WfOjYho5PU0lW22gf33dzoRSZKGoEb3wH0LuDYzdwXeDzwCfBG4MTN3Am4s9wGOAHYqX6cA3wGIiHHAV4APAvsCX+kOfeU5n6773OENvp7m0tUF8+bBY49VXYkkSRpEDQtwEbEFcABwPkBmLs/Ml4GZwAXlaRcAs8rtmcCFWbgT2DIifgs4DLghM5dk5kvADcDh5bHNM/POzEzgwrrvGhqOPbZ4dxhVkqQhpZE9cNsDi4H/jIj7I+K7EbEZsE1mPlee8zywTbk9CXi67vMLy7b1tS/soX3oePe7YZ99DHCSJA0xjQxww4G9ge9k5l7A66waLgWg7Dlr+DwYEXFKRMyNiLmLFy9u9I8bXLUa3H03PP107+dKkqS20MgAtxBYmJl3lfuXUQS6F8rhT8r3ReXxZ4DJdZ/frmxbX/t2PbSvJTPPy8zOzOycMGHCRl1U06nVivcrrqi2DkmSNGgaFuAy83ng6YjYpWw6CPglcCXQ/STpScCccvtK4JPl06jTgKXlUOt1wKERMbZ8eOFQ4Lry2CsRMa18+vSTdd81dOy8M+y+u8OokiQNIcMb/P2fAS6KiJHA48DvU4TGSyPiZGAB8L/Kc68BPgrMB94ozyUzl0TEV4HuhT//JjOXlNt/DHwf2BT4cfkaemo1+NrXYNEi2HrrqquRJEkNFjnElmLq7OzMuXPnVl3GwHrwQXj/++G88+DTn666GkmSNEAi4t7M7Fyz3ZUY2sEee8B73uOkvpIkDREGuHYQUUzqe+ON8PLLVVcjSZIazADXLmo1WLECrrqq6kokSVKDGeDaxT77wKRJDqNKkjQEGODaRUdH0Qt37bXw+utVVyNJkhrIANdOajV46y348dCcTUWSpKHCANdOPvIRmDDBSX0lSWpzBrh2MmwYzJxZPMiwbFnV1UiSpAYxwLWbri549VX4yU+qrkSSJDWIAa7dzJgBm2/uMKokSW3MANduRo6Eo4+GOXOKeeEkSVLbMcC1o64uePFFuO22qiuRJEkNYIBrR4cdBqNHO6mvJEltygDXjkaPhiOOgCuugJUrq65GkiQNMANcu6rV4Lnn4M47q65EkiQNMANcuzrqqOKBBp9GlSSp7Rjg2tXmm8PBBxcBLrPqaiRJ0gAywLWzWg2eeAIeeKDqSiRJ0gAywLWzmTOho8NhVEmS2sx6A1xE7BMRE+v2PxkRcyLi3IgY1/jytFG22gqmT3c6EUmS2kxvPXD/DiwHiIgDgK8DFwJLgfMaW5oGRFcXPPJI8ZIkSW2htwA3LDOXlNsfA87LzB9m5l8COza2NA2IWbOKd4dRJUlqG70GuIgYXm4fBNxUd2x4D+er2UyaBPvtZ4CTJKmN9BbgLgZujYg5wJvA7QARsSPFMKpaQa0G990HTz5ZdSWSJGkArDfAZeb/C3wB+D6wf+ZvJhTrAD7T2NI0YGq14t1eOEmS2kJvT6GOBu7NzCsy8/WI2CUizgR2z8z7BqdEbbQddoA99zTASZLUJnobQr0WmAq/GTb9ObADcFpE/F1jS9OAqtXgZz8r1keVJEktrbcANzYzHyu3TwIuzszPAEcARzW0Mg2srq5iSa3Zs6uuRJIkbaTeAlz9IpozgBsAMnM5sLJRRakB3vte2GUXJ/WVJKkN9BbgHoyIfyjve9sRuB4gIrZseGUaWBFFL9wtt8CLL1ZdjSRJ2gi9BbhPA7+muA/u0Mx8o2zfDfiHBtalRqjV4J134Ec/qroSSZK0EXoLcGOAH2XmGZn5i7r2pRQPOKiV7L03TJniMKokSS2utwD3z8D4HtrHAd8a+HLUUBFFL9z118Orr1ZdjSRJ2kC9BbgdM/O2NRsz83bgtxtTkhqqVoPly+Hqq6uuRJIkbaDeAty71nNsxEAWokHyoQ/BxIlO6itJUgvrLcDNj4iPrtkYEUcAjzemJDVURwfMmgXXXANvvll1NZIkaQMM7+X454CrI+J/AfeWbZ3AfjiRb+vq6oJ/+7fiXriZM6uuRpIk9VNvPXBHAr8H3AFMKV+3Ar+dmY82uDY1yvTpMHasw6iSJLWo3nrgtgPOAd4LPEgR5BYBo4G3GluaGmbECDjmGJgzp3igYeTIqiuSJEn9sN4euMw8KzM/BGwDfAlYAvw+8FBE/HIQ6lOjdHXByy8XKzNIkqSW0tsQardNgc2BLcrXs8BdjSpKg+CQQ2DMGCf1lSSpBa03wEXEeRFxB/ADigcXfgYcn5mdmfn7g1GgGmSTTeDII2H27GJ5LUmS1DJ664F7NzAKeB54BlgIvNzoojRIajVYtAjuuKPqSiRJUj/0dg/c4cA+rFq4/gvAPRFxfUT8daOLU4N99KMwapRPo0qS1GJ6vQcuCw8B1wA/pngS9T3AGQ2uTY02ZgwcdlgR4DKrrkaSJPVRb/fAfTYiLomIpyjmfzsK+G+gRrGgvVpdrQZPPw1z51ZdiSRJ6qPe5oGbCvx/wJmZ+Vzjy9GgO/poGD686IXbZ5+qq5EkSX3Q2z1wn8/MH25MeIuIYRFxf0RcVe5vHxF3RcT8iPhBRIws20eV+/PL41PrvuNLZfuvIuKwuvbDy7b5EfHFDa1xSBs3Dg48sJhOxGFUSZJaQl/ngdsYZwCP1O2fDXwzM3cEXgJOLttPBl4q279ZnkdE7AacALwPOBz41zIUDgP+BTgC2A04sTxX/dXVBY89Bg8/XHUlkiSpDxoa4CJiO4r1VL9b7gcwA7isPOUCYFa5PbPcpzx+UHn+TOCSzFyWmU8A84F9y9f8zHw8M5cDl5Tnqr9mzoQIJ/WVJKlFNLoH7hzgfwMry/3xwMuZuaLcXwhMKrcnAU8DlMeXluf/pn2Nz6yrXf01cSLsv7/TiUiS1CIaFuAi4ihgUWbe26if0Y9aTomIuRExd/HixVWX05xqNXjwQZg/v+pKJElSLxrZA/dh4JiIeJJieHMG8C1gy4jofvp1O4oVHijfJwOUx7cAXqxvX+Mz62pfS2aeVy7/1TlhwoSNv7J2dOyxxbu9cJIkNb2GBbjM/FJmbpeZUykeQrgpMz8O3AwcV552EjCn3L6y3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSPLn3Flo66n7U2ZAp2dBjhJklrAYDyFuqY/BT4fEfMp7nE7v2w/Hxhftn8e+CJAZj4MXAr8ErgWOC0z3ynvkzsduI7iKddLy3O1oWo1uOsuWLiw6kokSdJ6RA6xub86OztzrqsO9OzRR2GXXeDcc+Ezn6m6GkmShryIuDczO9dsr6IHTs1q553hfe9zOhFJkpqcAU6r6+qC22+HRYuqrkSSJK2DAU6rq9Vg5Uq40udBJElqVgY4re63fxt22MFhVEmSmpgBTquLKIZRb7wRXn656mokSVIPDHBaW60Gb78NV11VdSWSJKkHBjitbd99YdIkJ/WVJKlJGeC0to6OYmmta6+F11+vuhpJkrQGA5x61tUFb75ZhDhJktRUDHDq2f77w1ZbOYwqSVITMsCpZ8OHw8yZxYMMy5ZVXY0kSapjgNO6dXXBK68UU4pIkqSmYYDTus2YAZtv7qS+kiQ1GQOc1m3UKDj6aJgzB1asqLoaSZJUMsBp/Wo1ePFFuO22qiuRJEklA5zW7/DDYdNNfRpVkqQmYoDT+o0eDUccAVdcAStXVl2NJEnCAKe+qNXg2WfhrruqrkSSJGGAU18cdRSMGOEwqiRJTcIAp95tsQUcfHAxnUhm1dVIkjTkGeDUN11d8MQT8ItfVF2JJElDngFOfXPMMdDR4aS+kiQ1AQOc+mbCBJg+3fvgJElqAsOrLkAt5NRTi4cZ5s+HMWNg662LXjlJkjSo/Ourvlm5EnbaCc48s3ifNg3mzXNuOEmSKmCAU98sWgTHHgsLFhT7CxbAzJlFuyRJGlQGOPXNsmWrwlu3BQuKdkmSNKgMcOqbUaNgypTV26ZMcV44SZIqYIBT32y9NcyZsyrETZkC3/senHyyT6ZKkjTIDHDqm44O2GMPuPNOePLJ4n3XXeHVV4tJfs86C95+u+oqJUkaEgxw6ruODpg4seh9mzgRtt0Wbr8dTjsN/vEfYcaMYtF7SZLUUAY4bZxRo+Db34aLLoL77oO99oKbb666KkmS2poBTgPjd38X7rkHxo0rFr7/u79zjjhJkhrEAKeBs9tucPfdcPzx8Gd/VswT99JLVVclSVLbMcBpYL3rXXDxxfDP/wzXXQcf+EAxtCpJkgaMAU4DLwJOPx1uuw1WrIAPfQjOO8854yRJGiAGODXOtGlF79v06fCHfwif+hS88UbVVUmS1PIMcGqsrbaCa66Br3wF/s//KULdo49WXZUkSS3NAKfGGzYM/uqv4Mc/LuaJ6+yEH/6w6qokSWpZBjgNnsMOK4ZUd9sNjjsOPv95V2+QJGkDGOA0uN797uLhhtNPh29+Ew48EJ55puqqJElqKQY4Db6RI4tpRi6+GB54APbeG266qeqqJElqGQY4VeeEE4rVG8aPh0MOgb/9W1dvkCSpDwxwqtZ731us3vCxj8Gf/zkccwwsWVJ1VZIkNTUDnKo3ZgxcdBF8+9tw/fXF6g1z51ZdlSRJTcsAp+YQAaedBrffDu+8Ax/+MPz7v7t6gyRJPTDAqbl88INw//0wYwaceiqcdBK8/nrVVUmS1FQaFuAiYnJE3BwRv4yIhyPijLJ9XETcEBGPle9jy/aIiHMjYn5EPBgRe9d910nl+Y9FxEl17R+IiHnlZ86NiGjU9WgQjR8PV18Nf/3X8F//Vaze8KtfVV2VJElNo5E9cCuAL2TmbsA04LSI2A34InBjZu4E3FjuAxwB7FS+TgG+A0XgA74CfBDYF/hKd+grz/l03ecOb+D1aDB1dMCXvwzXXgvPPQf77AOXXVZ1VZIkNYWGBbjMfC4z7yu3XwUeASYBM4ELytMuAGaV2zOBC7NwJ7BlRPwWcBhwQ2YuycyXgBuAw8tjm2fmnZmZwIV136V2ceihxZDq+94Hxx8PZ57p6g2SpCFvUO6Bi4ipwF7AXcA2mflceeh5YJtyexLwdN3HFpZt62tf2EN7Tz//lIiYGxFzFy9evFHXogpMngy33gqf/Syccw78zu/AwoW9fkySpHbV8AAXEWOAHwKfy8xX6o+VPWcNf8wwM8/LzM7M7JwwYUKjf5waYeRI+Na34JJL4MEHi9UbfvKTqquSJKkSDQ1wETGCIrxdlJmXl80vlMOflO+LyvZngMl1H9+ubFtf+3Y9tKudfexjxeoNEyYUw6tf+5qrN0iShpxGPoUawPnAI5n5T3WHrgS6nyQ9CZhT1/7J8mnUacDScqj1OuDQiBhbPrxwKHBdeeyViJhW/qxP1n2X2tmuu8Jdd8GJJ8Jf/iUcfbSrN0iShpRG9sB9GPgEMCMiHihfHwW+DhwSEY8BB5f7ANcAjwPzgf8A/hggM5cAXwXuKV9/U7ZRnvPd8jP/A/y4gdejZjJmTDHFyL/+azGUuvfert4gSRoyIofYTPednZ051z/07eWee+C44+D554uHHE49tVjZQZKkFhcR92Zm55rtrsSg1rfPPnDffXDQQfDHfwyf+ISrN0iS2poBTu1h/Hi46ir46lfh//7fYkkuV2+QJLUpA5zaR0cH/MVfwPXXwwsvQGcnXHpp1VVJkjTgDHBqPwcfXKzesMcexbQjZ5wBy5dXXZUkSQPGAKf2tN12cMstRXg791xXb5AktRUDnNrXyJHFU6mXXgrz5sFee8ENN1RdlSRJG80Ap/Z3/PHFHHHbbAOHHVY86ODqDZKkFmaA09Cwyy7F6g0f/zh8+ctw5JHw4otVVyVJ0gYxwGno2GwzuPBC+M534KabitUb7r676qokSeo3A5yGlohipYY77ii299+/WI5riK1IIklqbQY4DU2dncXqDYccAqedBr/3e/Daa1VXJUlSnxjgNHSNGwc/+hF87WtwySXF6g2PP16sqbpgQfHuww6SpCZkgNPQ1tEBf/7nxeoNkyfDk0/CtGkwdWrxPm+eIU6S1HSGV12A1BQOOgh22gkOOKDofYPifeZMuPHGItANG1ZpiZIkdTPASd0yV4W3bgsWFCs4vP/9sO++sN9+xWvaNNhqq2rqlCQNeQY4qduoUTBlyuohbsoUGD8ePvUp+PnP4eyz4Z13imM77bQq0O23H+y+u710kqRBETnEpk/o7OzMuXPnVl2GmtHKlcU9bzNnFiFuyhSYMwf22KO4Vw7g9deLVR1+/vNVr8WLi2ObbWYvnSRpQEXEvZnZuVa7AU6qs3IlLFoEy5YVPXJbb70qvPUkE554YvVA94tf2EsnSRoQBriSAU4NZy+dJGmArCvAeQ+cNNA22wymTy9e0HMvnffSSZI2gj1wUhXqe+nuvLN4X7SoOGYvnSSpZA+c1Ew2ppdu2rSil264//eVpKHKHjipWdlLJ0lDnj1wUqtpRC9df5+ylSQ1JXvgpFbWn166D30Inn56/fPcSZKaitOIlAxwamvrm5fu8svhzDPXXmnijjtg0qTqapYkrZNDqNJQEAE77FC8Pv7xoq27l27s2J7Xep0/v1jrdfvtV7122GHV9pQpMHLk4F+LJGmdDHBSu+u+l+7553te63XMGDjuOHj8cbj/fpg9G95+e9U5EUUP3ZrBrvu17bYOwUrSIDPASUPF1lsX97z1dA/cv/3bqvPeeQeefbYYin3iiSLYdW//5CfFsfpbL0aOhKlT1w523a9x44oQKEkaMN4DJw0lA/EU6rJlRQCsD3b1ryVLVj9/8817DnY77FAEv9GjB+zyJKndeA+cpCKsTZy4cd8xahTsvHPx6snSpT0Hu1/9Cq67Dt58c/Xzt9lm3fffTZ7shMWS1AP/ZZQ0sLbYAvbcs3itKRNeeGH1YNfdk/fzn8Oll66a1w6KNWEnT+453G2/fRH+6odnnedO0hBhgJM0eCKKHsCJE4u56db09tuwcOHa99498QRcfXUR/uptuumq++8OPBD23x9OOGHVPX6zZxf3+A0bNiiXJ0mDxQAnqXmMGLGqd23GjLWPv/EGPPlkz/ff7bzzqvAGxfusWXDOOXDqqcXDFP15bb65vXeSmpYBTlLrGD0adtuteK1pwYKe57mbOhWOOaZ4uGLJEnjqqWJy4yVL4LXX1v2zOjpgyy37H/zGjvW+PUkN578yktrDqFE9z3M3cSKcd17Pn1m+HF56aVW4W9/r17+GRx8ttl9+ef21bL75hgW/TTbp/Tq9z08SBlFgrMMAAApnSURBVDhJ7WJd89xtvfW6PzNyZPEgxDbb9O9nvfNOEeLWF/jqg+HTT6/arn9IY02jR68e6NYMeTvvXDzUcfzxq67x8suLkDpsWBHoNtmkeG/VufcMqFKfGOAktYeOjuKBhTvvbPwf/2HDYPz44tUfmfDqq33r8VuyZFWP34svFr2Fl1++KrxB8V6rwTe/WbzX6w5z9a+e2vpzvD/fsSHDyCtXwrx5PU82bYiTVuNEvpLU7DKL+fOeew523HHt4w89BLfdBm+9tfZr2bKe23s7vrGGDet/APyDP4ATT1x7GHz2bLjnnqLHdOTI4ju6t9fcX9exESOaIwTaw6h+ciJfSWpVEcXw6mab9Xyf3/jx8Ed/NHA/L7Po8duYANiX40uXrn78U5/q+UGUpUvhlFM2/rpGjOh/8Ovvues7tuWWxZPUtdqqHsYrrijmNxw2rOi17A6arToEDu0fUpvk+gxwktQqNuQ+vw0RUfxhGjVqYL+3N88/33NA3WGHYn7AZcuKYNn9qt9f37H+nLtsWdHbuXTp+j+3bNnqawL3xeWXw5lnrj4EfuyxPQ+BjxixKtDVb6/53te2RhzrqW2zzYr7P+tD6uzZxe+wo6M4b/jwIrC2YkhtomF+h1AlqZU0yX/9N0QT/XHskxUr+hcSp07teQqcBx8slpl7++3iO99+e/XtNd/7e6y38wcyB6wZUqH4PfYUUrsDXXfv48ZsD8R39GV7zz3hqKPWvr4779z4ZQrXwSFUSWoHA7GebbMazAdRBkL3H/fRo/t2/rp6GCdMgLPOakyNfbFy5cAFxV126XkYfMcd4e//vngKe8WK4jVQ28uXb9hn69/76pZber6+Zcs2+tfQXwY4SVLzaOeAOlhD4P3V0TFwQ+brC6l/8icb//2NkFmE2L4Ev2HDer6+wb7dAAOcJEmDo9V6GDdEs4bU9Ykogln3XIrrs3Jl01yfAU6SpMHSzj2M0P4htYmur+UDXEQcDnwLGAZ8NzO/XnFJkiQNXUMhpDbB9bV0JI6IYcC/AEcAuwEnRkQPj/hIkiS1j5YOcMC+wPzMfDwzlwOXADMrrkmSJKmhWj3ATQKerttfWLZJkiS1rVYPcH0SEadExNyImLt48eKqy5EkSdoorR7gngEm1+1vV7atJjPPy8zOzOycMGHCoBUnSZLUCK0e4O4BdoqI7SNiJHACcGXFNUmSJDVUS08jkpkrIuJ04DqKaUS+l5kPV1yWJElSQ7V0gAPIzGuAa6quQ5IkabBEZlZdw6CKiMXAgl5P1PpsBfy66iK0Ufwdtj5/h63N31/rG6zf4ZTMXOsG/iEX4LTxImJuZnZWXYc2nL/D1ufvsLX5+2t9Vf8OW/0hBkmSpCHHACdJktRiDHDaEOdVXYA2mr/D1ufvsLX5+2t9lf4OvQdOkiSpxdgDJ0mS1GIMcOqziJgcETdHxC8j4uGIOKPqmtR/ETEsIu6PiKuqrkX9FxFbRsRlEfHfEfFIROxXdU3qn4g4s/w39KGIuDgiNqm6Jq1fRHwvIhZFxEN1beMi4oaIeKx8HzuYNRng1B8rgC9k5m7ANOC0iNit4prUf2cAj1RdhDbYt4BrM3NX4P34u2wpETEJ+CzQmZm7U6widEK1VakPvg8cvkbbF4EbM3Mn4MZyf9AY4NRnmflcZt5Xbr9K8YdjUrVVqT8iYjvgSOC7Vdei/ouILYADgPMBMnN5Zr5cbVXaAMOBTSNiODAaeLbietSLzLwNWLJG80zggnL7AmDWYNZkgNMGiYipwF7AXdVWon46B/jfwMqqC9EG2R5YDPxnOQz+3YjYrOqi1HeZ+QzwD8BTwHPA0sy8vtqqtIG2ycznyu3ngW0G84cb4NRvETEG+CHwucx8pep61DcRcRSwKDPvrboWbbDhwN7AdzJzL+B1BnnYRhunvE9qJkUY3xbYLCJ+r9qqtLGymNJjUKf1MMCpXyJiBEV4uygzL6+6HvXLh4FjIuJJ4BJgRkT8V7UlqZ8WAgszs7vn+zKKQKfWcTDwRGYuzsy3gcuBD1VckzbMCxHxWwDl+6LB/OEGOPVZRATFvTePZOY/VV2P+iczv5SZ22XmVIqbpm/KTP/Lv4Vk5vPA0xGxS9l0EPDLCktS/z0FTIuI0eW/qQfhgyit6krgpHL7JGDOYP5wA5z648PAJyh6bh4oXx+tuihpiPkMcFFEPAjsCfxtxfWoH8re08uA+4B5FH+HXZWhyUXExcDPgV0iYmFEnAx8HTgkIh6j6Fn9+qDW5EoMkiRJrcUeOEmSpBZjgJMkSWoxBjhJkqQWY4CTJElqMQY4SZKkFmOAk9Q0IiIj4h/r9s+KiL8aoO/+fkQcNxDf1cvPOT4iHomImxtZV0RMjYjf7X+FktqBAU5SM1kG1CJiq6oLqVcuOt5XJwOfzswDG1VPaSrQrwDXz+uQ1MQMcJKayQqKSU3PXPPAmj1VEfFa+f47EXFrRMyJiMcj4usR8fGIuDsi5kXEe+q+5uCImBsRj5ZrwxIRwyLiGxFxT0Q8GBF/WPe9t0fElfSw2kFEnFh+/0MRcXbZ9mVgf+D8iPhGD5/50/Izv4iItSb9jIgnu8NrRHRGxC3l9vS6ybPvj4h3UUwa+pGy7cy+XkdEbBYRV5c1PBQRH+vLL0ZSc/G/xiQ1m38BHoyIv+/HZ94PvBdYAjwOfDcz942IMyhWLvhced5UYF/gPcDNEbEj8ElgaWbuExGjgDsi4vry/L2B3TPzifofFhHbAmcDHwBeAq6PiFmZ+TcRMQM4KzPnrvGZIygWMf9gZr4REeP6cX1nAadl5h0RMQZ4i2IR+7MyszuIntKX64iILuDZzDyy/NwW/ahDUpOwB05SU8nMV4ALgc/242P3ZOZzmbkM+B+gO7jMowht3S7NzJWZ+RhF0NsVOBT4ZEQ8ANwFjAd2Ks+/e83wVtoHuKVckHwFcBFwQC81Hgz8Z2a+UV7nkn5c3x3AP0XEZ4Ety5+5pr5exzyK5X/OjoiPZObSftQhqUkY4CQ1o3Mo7iXbrK5tBeW/WRHRAYysO7asbntl3f5KVh9pWHPtwAQC+Exm7lm+ts/M7gD4+kZdRf/95hqBTX5TZObXgT8ANqXoWdu1h8/26Toy81GKHrl5wNfKYV9JLcYAJ6nplL1Tl1KEuG5PUgxZAhwDjNiArz4+IjrK++J2AH4FXAf8UUSMAIiInSNis/V9CXA3MD0itoqIYcCJwK29fOYG4PcjYnT5c3oaQn2SVdfY1d0YEe/JzHmZeTZwD0XP4avAu+o+26frKId/38jM/wK+QRHmJLUY74GT1Kz+ETi9bv8/gDkR8QvgWjasd+wpivC1OXBqZr4VEd+lGGa9LyICWAzMWt+XZOZzEfFF4GaKnq+rM3NOL5+5NiL2BOZGxHLgGuDP1jjtrykegPgqcEtd++ci4kCKHsWHgR+X2++U/3t8H/hWH69jD+AbEbESeBv4o/XVLak5ReaaIwqSJElqZg6hSpIktRgDnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASZIktRgDnCRJUov5/wEEXUm8vjXJ1AAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(10,5))\n", + "sns.lineplot(range(1, 11), wcss,marker='o',color='red')\n", + "plt.title('Elbow')\n", + "plt.xlabel('Number of clusters')\n", + "plt.ylabel('WCSS')\n", + "plt.show()" + ] + }, + { + "source": [ + "Looks like 3 is a good number after all. Fit the model again and create a scatterplot of your clusters. They do group in bunches, but they are pretty close together." + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd3gUVduH7zOzNZWE0BKqVAHpAgpSFBTBil2wI2Lvfnasr72j2MWCBVGQpqgIAtKl914SSoD0bJ853x+zCdnsbFhCAop7X5eXZHZ2zskmOc85T/k9QkpJjBgxYsT476Ic7wnEiBEjRozjS8wQxIgRI8Z/nJghiBEjRoz/ODFDECNGjBj/cWKGIEaMGDH+48QMQYwYMWL8x6k2QyCE+FQIkS2EWB3hdSGEeFsIsVkIsVII0am65hIjRowYMSJTnSeCMcCACl4/F2ge/G84MLoa5xIjRowYMSJQbYZASjkbyKnglguBL6TBAqCGEKJedc0nRowYMWKYYzmOY2cAu8p8nRm8tqeiN6WlpcnGjRtX47RixIgR48Tj77//PiClrGX22vE0BFEjhBiO4T6iYcOGLFmy5DjPKEaMGDH+XQghdkR67XhmDWUBDcp8XT94LQwp5YdSyi5Syi61apkatBgxYsSIUUmOpyGYBFwbzB7qDuRLKSt0C8WIESNGjKqn2lxDQohvgD5AmhAiExgJWAGklO8D04CBwGbABdxQXXOJESNGjBiRqTZDIKW86jCvS+D26ho/RowYMWJER6yyOEaMGDH+48QMQYwYMWL8x4kZghgxYsT4jxMzBDFixIjxH+dfUVAWI0aM/xYysAu8vxtf2PsjLPWP74ROcGKGIEaMGP8o9OLPofBVQBoXCl9HJj6IEn/tcZ3XiUzMNRQjRox/DDKwM2gEvIAv+J8XCl8xTgkxqoWYIYgRI8Y/B+9vgG7ygg7eX4/1bP4zxFxDMWIcJQd25zD5velsWbGdFqc24/wRZ5NSO/l4T+tfijzeE/hPEjMEMU54pJRIKVGUqj8Ab125g3t7PYHf68fvDbBsxiomvDWVd+b/j/ot0qt8vBMee38ofMvkBcV4LUa1EHMNHWN25uex/sB+NN3s+BujKinOL+bl60cx0Hk1A2xXcn/fkezaYCpwW2neuvVDXAVu/N4AAD6Pn+I8F+/dM6ZKx/mvICyNIOEewI6xT7UY/064B2FpeETPklJH+jciAxHVl2MEEYbkz7+HLl26yH9jP4LMgnxumfIT2/JyUYXAplp49ewB9G180vGe2gmJlJI7uj3CtpU78PuMRVoIQXxyHGM2vk1yWtJRj6FpGufar0Lq4X9DVruFae5vjnqM/yoysB08wZiA42yEpfGRvd87D5n/AEgXSB3U+oiUdxGWJlU+138LQoi/pZRdzF6LnQiOAbqUXP3jODYcPIAnEKDY7yfX4+b2aZPZlpd7vKfHrvx83l44n2dnz2Tuzh382zYHZqxbuImd6zJLjQAYxsHn9fPLp39UyRiKomCxmntX7U57lYxRFUj57zt9CktjRMJw478jNQLaHmTuraAfMAwBHtC2IHOGIqW/Wub7bydmCI4Bi7IyyXW70cstsAFd5+tVK47TrAymbtzAOWPH8O7iBXy2fCkjpv7ELVN+qhbXVXF+MZuXb6Mwt6jKn12ezA27Ta/73D62rqwaV4EQgn5De2G1W0Ou2xxWBtx0ZpWMcTTorono2b2Q+1qhZ/dEd/1wvKd0TJCu8UCg/FXDKHjnHo8p/eOJBYuPAftdxabXA7pOVmHBMZ7NIVx+Pw/9/gueQCDk2rzMnUzfspmBzVtUyTi6rvPhg18yefR0LDYLAV+As4b24u73bka1qFUyRgl5+/NZ+vsq8g8UoJu4bOxxNpp3qjp33K1vXMfuLXtZv2gTqkVF82u069OGG569ssrGqAy66ycoeBLwBC9kQ8Ez6IASd8nxnFr1o+8FTHb+UjdOCTHCiBmCY0CnuukETHbYTouV3g0bH/sJBVmUlYlqkknj8vv5acPaKjMEP7w+hSkf/IbP48fnMf5A/xg7h6TUBIa9OLRKxgCY+M40PnzoKyw2FYEg4AugWo3FGUBRBPY4O+fc0LfKxnQmOHn1j6fYtnonmRt206hNAxq2yjC9t8TlJoSosvEjUvwmpUagFDcUvQUnuCEQttOQ7qkY/a7KooOt0/GY0j+emGvoGJCRlMRlrdvitBxyIdhVlXqJCVzY6uTjNi+LokRM27apVbdHGP/6ZLwub8g1r9vHpPemV1k8YsuK7Xz88Fj8Xj/uQg+uQje6piMAZ6IDq91Ct0GdeXfRiySmJFTJmGVp0rYhZ1zS3dQI7N2ezaPnPs8A25UMdF7NC0PfoiCnsMrnEIIWoeurvveEiAFViONssDTEyDwqwQmOAQhL0+M1q380sRPBMeLpPmfRqV4GX6xchsvnY2DzltzQoRMOi/Xwb64mumbUR1XCd6dOi5XLW7etsnEixQQ8xR50Ta8S99D0MTPxe8PdATaHjQc+u50zBnc76jEqg6vQzZ3dHqHgYCG6LtE1ndnjF7B15Q4+WP5qtdQ2AKDWB21n+HUl/dicSMohpRf0IlBSEKJ6959C2CD1W6TrS/BMBuyIuCHgvKhax/03EzMExwghBBe1OpmLjuMJoDw2VeWD8y7ipkk/AqAFC6+uansKPRs2qrJxWnRuypp5G8KuN2iVUWUxAneRxzQmIKXEU1zeRXLsmPHVbDwub8jcAr4A+7bvZ8WsNXQ885TqGTjhfsj/P0LdQw5IuK9Kh5FSgn8J0vMHiHiE84KQfH8pfciC58A9AZCgJCMTn0BxDqjSeZRHKHGIhFsg4ZZqHedEoVpNsxBigBBigxBisxDiYZPXGwkhZgghVgohZgkhYlqzx5iuGfVZcNMInjuzP4/27M3PQ67j8V59q3TXeOsb1+OIs6METx9CCOxxNu5456YqG+OMwd1xxIenbGoBjc7921XZOEfKttU78RR7w65rms6u9eaZTVWB4jwXkl8CtSGgGv9PfgEl7oIqG0NKicx/CJk7DFyfQPF7yAOD0F0TD92T/zi4J1IqIqfvh/yHkL5FVTaPGEdPtZ0IhBAq8C7QH8gEFgshJkkp15a57VXgCynl50KIM4EXgGuqa04nGlJKxq5awUdLl5DncXNqen0e7tmLZqk1j+g58TYbF7asvpNKy1Ob8c7CFxj7/A9sXrqVRm0aMOSxS6o0e6fLOe3pfHZ7/v51BZ5iL0KAzWnjuqevILVuSpWNEwktoFGYW0RiSkLIKadp+8Y44u1hxkBVFRq1rt59j+I8F5znVt8AvjmGSJx0By8EjP8KnkA6zgQkeKZhKIiWxYMsGo1I7Vp9c4txRFSna6grsFlKuRVACPEtcCFQ1hC0BkrOqjOBifzLkVJG3E3vys/npw3rKPL5OLPJSZyannFUO+8X587mq1XLcQfTP2du38rCrEymXX0tDZL/WaJnjds04LGv76m25yuKwlWPXMzmpdvwuo0UwabtG9NvaK9KPa+in+OcHxYw7tVJ5O8voMs57YlLdDJ59K/4fQFsDitDn7yMS+4ZhBCCM6/uyedPjcPn8aNrRuaY1WYho3k92vVuXblv9h+CdE8NFmyVQ1jA9xeozUBYQZY3BJjHL2IcN6rTEGQAZQXEM4HyEbsVwGDgLeBiIFEIUVNKebDsTUKI4cBwgIYNj0xv5FixKCuTZ/78g3UH9pNkt3NTx87c2qVbaXrmTxvW8cjvv6JJHb+u8+XK5XTLqE+yw8HO/Dy612/A9R06USsuPqrx8j0evli5DK+mlV6TgCfg5/2/F/H8mcdWoCtvfz5/TViE3xug23mdqNekzlE/c/nM1Ux4exp5+wvocVFXzrulP3GJzpAxJ749jaUzVpNat4ZxGiiTnbRh8Rbu7/sUn6x5I2qDu2XFdt654xPWzt+AI87OucPO4qYXhmALFo19+ez3fPfyT3iDO/wpH/wWIjHh9/r5/IlviUt0MHBYP5wJTkYtfIF37/qUxb8sQ7Wo9LmyByNevfa4BG2rFGEBBOapZxawNDBy98NQwNqheucW44ioNq0hIcSlwAAp5bDg19cA3aSUd5S5Jx0YBTQBZgOXAG2llHmRnlsVWkP5Hg/j1qxi2b49tKyZxlVt21E7vvIphWuy93H5+G9Ld+YATouFy9ucwsjeZ1Lg9dL9k/dDCrdKKPkzsikq8TYrk6+6hvTEw+vgLN+7h+smjqfQF77balUzjWlDrotq7gFd5+OlS/hq1XKKfX56NWrMQz3OICOKOZQwe/x8XrpuFIoQ6MF6iasfu4Qhjx1Zvrqr0M3fv61ECNi1Pouxz/9YmnZqc9qo3aAm7y15CWeCk4N7chnR8UGK812m2UIlOBMdPDvpYdr3bnPY8fft2M/Np9yHu+hQgNXmtNLl7A48PeEhivOLubzecHwekx1uOWo1SOPrHaOj+K7/vUjfEmTOTYA79AURh6g9HyGc6EXvQ/HoMu4jAcKJqPlDLJXzGFOR1lB1ngiygAZlvq4fvFaKlHI3xokAIUQCcElFRqBKJlVYwKCvv6DI60NH8uvmTXy4ZDHjL7+Kk2vVrtQz3160IGyRdwcCfLt6Jfd278G8XTuNnH0TSsywT9fQvDpvLPiLV/of3q+bnpiIr8xpoAQBnJSSGvXcH/j1Z6Zv2VR6spiycT1zd+7gt2uuJ9UZd9j3F+QU8tJ1o/C5QxfHb/73I90GdqJZx+hEvmaPn8/L149CtahIKXEXhmb6+Nw+sncdZOqHv3Ppfecz9rnxFOYUoQXCP4OySF2yd1t2VIZgwttTS1VED43rZ8n05ezZto+DWTlY7ZaoDEHu3iPTkFo+czVf/+9H9m7LpvXpLRn6xKXUb17viJ5xrBG2Lsj466H4U4zfPAWQiBqjEMI4uYn4W0BNRxaNNqp6bZ0g4U7wr0Z3jTdE4ByDEEp0J+EY1UN1Zg0tBpoLIZoIIWzAlcCksjcIIdLEoaTiR4BPq3E+APzfb9Mp8HrRg0uwDri1ALdPm1LpZ248eMD0cGxVVXYXFmAxydU3Q5OSOTui08GpHZ9A38YnYVdD0y8dFgsjuhwKwi3bs5sLv/2KZu+8TocPRvHmgr9Kq5x35efzy+aNYe6lAq+Hb1atjGoeC6csRVXDf438Xj8zvp4T1TMOZB3kpetG4XX5cBW4w4xACT63j/mTjdPg4p+XH9YIgOHrj9YYbVq6jYA//NRmtVvJ3LCb1HopISJ2FdHgZPPqYjP++HYuj5//AstmrGLP1n3M/GYut3V5iB3rMqN+xvFCSbwXkTYVkfgQIulJRO25CHtPpLYbGdhmSEFru0E/CLIQApmQOxxZMBJcnyALnkfuP8toUVkBUi9Gun9CFn+O9IenIsc4OqrNEEgpA8AdwHRgHTBOSrlGCPGMEKIkh60PsEEIsRGoAzxfXfMpYUGWed/T7fm5eE1cN9HQKi0Ns6Xer2lkJCbRo0GjqKs5kx2OqMd9/Zxzuahla+yqikVRqJ+UxHsDL6BtbcM/v+ngQYZO+J5V2fvQpaTA6+XDpUt4YubvAKzdn43fRPpCk5KZ27dGNQdN002/NymJaqEG+HPcfFMp5/IIASl1awCQWPPwrjy700a7Xm1o2r5xVPNo3qmJqZqo3+unfst00pvWpWWXplhsFR+k7U4bt7wSXaN1TdN47+7P8LoOnTJ0TcdT5GXM499G9YzjjbA0RMQPRcQNBj0X/cCFyP3nIA9cBPs7Q9EokHmADtqmMqqgAG6QeciCxyM+X/qWI/efgcwfiSx8BXnwMvT8h0/8CuljSLXWEUgpp0kpW0gpm0opnw9ee1JKOSn47/FSyubBe4ZJKcMTrquY8gqgZamsIbiz62k4LKGLg9Ni4aq27Ui023Farbw38AIcqorDYsGqKMZBulyw0GmxMKxj56jHdVisvNDvbFaMuJPFw27lz+uG0bvxod3v6CULQ3b7AJ5AgInr15LjdlHk90VsDGgWezCj28COpdkwZbE5bfS+7PSonuEp9kZlNGxOGxfdYbjNLr3v/LC6AdWqUDMjleS0JNLq1+TKhy/i6YkPRjUHgMF3D8LqKKck6rRx6oCOpcHvpyY8SPverbHarTgTHCSkxHPF/11Iiy5NSUiJp/XpLXh+6qN07t8+qjFz9+WHxCRKkFKy+q91Uc+99H2BzUjvQqRezRIWZmPLADJnCAQ2YNQNuIML/uF+l3TwLUKaZBdJqSHzbgVZhKEd5AM84P4ZvNOr+luocqS2Fz1/JPr+/ugHr0Z6Zh7vKZnyn6ssTrDZKDJZ5FQhiLfZKvXM1rVqM+aiS3jmz5msO7CfZLudG4NZQyXUS0ykZlw8+13FKEJgV1XqJyWTWViAVVHwaRpDTmnPpZWQdrCpKjY1vEJ37YH9pobPpqrsys+nht1hBHhN7qkZRXwAIKVODW598wZG3zsGLaChazo2h43+1/biQOZBJrw9jdant6Rll8iBwVPP7cA3L04I0yMSwpCIUK0qWkDnllevoW2PVgD0vbIH21fv5Ic3pmC1Wwn4AjTr2IRnJv0fSamJUc29PLUb1uLNOc8y6s5PWDPPyBoaOLwfNzx3Vek9SamJvDj9CXL35VGYW0xGs7pHVR0dnxwX8TSUcgT1D1I7gMwdDoHNpSmbMuEOlGNZWeubG1ywKyNhXhJjKId/FUgzV6Eb6RqHcFRvhfLRILV9yAMXBD+TAGg7kHlrkIn3osRff7ynF8J/zhDc2+10np/7Z8jiJ4Ahp7Q3VeKMxAGXi+/WrGTDgQO0q1OXy1q3ZfJV5rVwmq4z9Mfv2e8qDtmBZxYW8N7A87GrFlqmpUUVnD0STk6rxeacg2ELvVfTaJCcTIPkZCxBI1QWu6pyXouWUY9z3vD+dDyzLTO//Qu/x0+Tdo14546PmTF2DgGfhqIqdOp3CiPHP2C6aLbo3JRmnZqwZu76kOsd+rZlxOvXU5hTRItTm+KMP+Q2E0Jw4/NXc+n957N1xQ7SMlKrpEdwfHIcaRmpJNSIIy7R+LfFGj7nlDo1SKlT46jHc8Y7OPPqnsz89q+QgLs93s7Vj1xc+rXU9iILXwPvbBBOiBuCiL8BIYw/YZl3OwTWA4FDC2fxe0hLC4Sj6tRWK0TLjpAuejgsYO9V+r2EEgBTxysgK3eCP1bI4g8PGYFS3FD4BjLuitKA+j+B/5whuL5DJ3I8bj5eagQddQmXnNyax87oE/UzNh48wGXff4tPC+DVNH7ftoX3/17ExCuGUD8pvJBrfuYuiv3+MDeMX9OYtWM7T/WuniYmt3bpyq9bNoWktTosFi5o0arU6NzZtTvvLV5Yeo/DYqFRcg0Gnxy52ElKyboFG1k4bSlxiU76XtmDjGb1GPr4pUgpubH1PRQeLKSs/Vn6+yqmfvg7F9x2Ttjz9mzbx6YlW8Kur5m3gcTUBE5qZ657tG/HfsY+/wMr/1xDrQZpXPXwxXTqV3k5idx9edza5SGKc4vRdUnBwSI+e/xbdqzN5L4PR1T6uYfjrneH4ff6mfPDQiw2FalLhj55GX2u6AGA1POQBy8GPQ/QQOZC0TvIwDpEjdeRgUzwryWsGYt0I12fVbkhkHoe+DeAWi+0j7C1IxHlbEMQGMqgunF6UVIRSc+a32pth7kH24mI+4eLyHnnE94gBxAqBLaAteqEHY+W/2zPYpffT2ZBPnUTEkiyRx+gBbjs+29Yumd3yK+8KgRnNWnK++ddGHb/lI3refj3X3EFTNQxVZWArtM8tSaP9+pDjwZVJ/YGRtbQU3/+wersfSTa7VzXviN3dj0tJJ11zs7tfLliOXleDwObteCKNqfgtJqrokopeeWGd5kzfgEetxeL1YKiKjz02e30vvx0dm/Zy/D294cEP0to2qEx7y99Jez6uFd+4rMnviVQLiPH5rAy7MWhXHzXwLD37Nm2j1s7P4SnyIMWMHah9jg7t799A+feeNYRfUYljHnyW8a9MimsLsHqsPLF5lGkpRtpuWvmbWDCO9PI2ZNL9/O6MGh4P+KTKj7NSWmksVpsFmrVN5cAKcgpJGdPHvVOqh3S6lIv+gCK3iW8v4AdkTYNZAEy55rg7rMcanOUWlONOfhXGgJw/lUgEiDuGkTCbRF24ubfgyx8FVxfgLCB9IO1PSLlPYRiuOP03HvAO5NDtQV2YywZAArA0goSH0GgQWAjqI3BfkaFc5De2cjcOwEN8IGIA2tnRMoHUc/9eKDn3Gi4y8KwIWr9jlDrHtP5HK86gn8Ufk3DHQiQaLMhhCDOaqVFzbQjfk5A11m2d0/YvkeTktk7t5u+p1PddFMjAJS6ZTYcPMDNkyfy5cWX0rleaOphkc+HVVGwW478x9WxXjo/XVlx85czGjbmjCgb5Cz+ZTlzflhQWsFbsni/cuO7nHpuRwJ+LWLFbMBvHhAO+DVTP7muy4jv+eqZ8bgLPSGBaq/Lywf3f0H/a3pH7CUspWTt/I0cyMqhRZeTQiqgV81ZZy5lbbeybeUO0tJTmfrRb4y+93N8bi9SGtXLU97/ldF/v0R8snku/Nr5G3hhyFvkZucjdUmDVhk8Me4+MpqF1gkkpSaaxzd8Swg3Ahi76cA6sPfBfCduA4dx2pSBrUFjEVygZT4Uf4zU9yKS/2c67zA8E8H1FeCFkrwO/zJk/oOIlPeNKdV4DekaB+5vjHscgxDxNyIUkywve4+ohhX2XlDrV6R7MugHEfaeYDut2uWsjxYRfzPS9zehBXc2sHU95kbgcJzwhsCvabz412y+Wb2SgK6TFhfHYz37ALD2QDZNaqQwqHnLiDvg8ihCoEYIsJbP6S9ha14uFqEQOIz/1BMI8Mb8v/hq8OUALN2zm0dm/MrW3FwUAec0bc5zZ/YnyX78GqPPGDvHVE1Ttags/X0lPS7qSmJqQtg9NqeN/teY6/6cfuGpjH3+h7DMIUURnH6h6QaGFbPWmGYraZrO3m3ZpvGCg3tyefCsp9ifmYMiBAF/gL5X9eS+j0agKAoNW2Wweu76sOcGfAHqNK6Nx+Xl/fs+Dwlq+9w+DmTl8NN707n6kcFhY+buy+Phc54LyQzaunIH9/V6krE7Rkc0WCFYmoJvHuHtFzVQ6yOEDZn4BBQ8hZGtIwG7of0ffyNQ4q8OF3/DPQmZ+ABCOXwRoiz+lLAqYnzgnYvU8xFKMkKoiPirIP4qs0dUGqHWQSQMq9JnVjfCfhoy6TEofBGjZ7LfMGA1Xj/eUwvjhDcEI2fNYOL6dXg0Y+e6t6iIu36Zgk1V8WoacVYrL/01hx8vvzoqoTZFCAY2b8G0TZvw64cWLruqRsz4yfO4sVssBPyHT8ncmGPILO3Kz+eaCeNxB08SmoTpWzax/sB+GiQnE9B1Lm7VhvNbtDyiIPfRoloij6WoCkIIHvvmXh4Z8BxaQMPn8eNMcNDw5AwuutO8YrpxmwZcev/5/PDa5NKCLavNwlWPDg7ZNWdu2sOPb0xh+5pdYW6kEjS/RlKaedbQ81e9QdamvSEL/azv5nFyt+YMGt6fwfcM4rcvZ4cs9Fa7hZanNsMRb2fRz8tMTyh+r5854+ebGoJfv5gVZuCkLnEXe1n08zJOv+BU07mWRcQNQbq/MRaSQzMDtTnCasRylLjBSEsTZPFnRs9e2xmI+GsQSjCg7V+L4Vop/3A7BHaALYpqdD1S0b8SdEslG7n93llI93cgPQjH+eC8ACGOXwOmo0EGthlGWCSC/awjroBW4i5HOi8yPmMlBaEeuRfiWHBCG4ICr5cf163Fp5f7Q4TS/HqX348nEODhGdMZG9yJH46n+/RjW14em3MOIjBqEzrWTef+08yPul3SMwjo0RVXNUsx/Mefr1iKTwtd7Py6zubcHDbn5gCwZPduJm9cx8fnX1ytAmYuv5+J69eyKCsTxzn1UX9LQNsT6o+WuiwN1LY5vSVfbBnFjLFz2J+ZQ7szTqbbeZ1QI5yYAG545krOGNyNOeMXIISg9+Wn0eSUQ/GSNfM28PA5z+L3+tECuqlBsjqsdBvYydS9krsvj/ULN4ft9r0uLxNH/cyg4f1p0DKD56c8wmvDRrM/0zDI7fq0IXvHAW5oeRdSyogGyBWhGjp754HSPs1l8Xv9HMzKifh5lEVYGkDKp8j8R0ELVhvbe4e5dIStI8LW0fwhlpMNn3z51E7pBbWB6VvCsPcM9hYo97usJIBiGGxZ+CK4vqXk5CB9y4ymNKmfYyjT/zsw4iHPgWuccUFYgKcg5SOELfpaHwh2TLM2r/I5ViUntCHYX1xkWjlbHl1KFmVl4g0EovLDJ9ntTLj8albu28u2vFxa1kyrUKeobkIiN3ToxOcrlpfu8C2KgqbrIZ5dh8XCPd2NIqwV+/aiHSaQ7w74WZiVyfzMXZzeIHpV1vUH9vPrls1YFIWBzVvQuEbkfPVct5sLvv2KHLcbd8CPTVWRD7Yl/f31OHcUBbWB4Inv78cRd8hlVaNWMpfcc17UcwJo1qEJzTqYy0G8ccsHIe6mkgCxoirY42wEfBqnntOBh8bcbvp+T7EXRTU3lmXdNu37tOHzTe9QcLAQCdx08t0U5hRxuJyKSIa4bqNaptcDvsARyVAIW2dI+yVYoWtHKEeWaiwSbkZ6fiHUteMw+vgGd6lSSmMnX/QB6MXg6A2Jj6KoKcFn3GV0IpPFGIVdCmBDJD2LEAoysAtcX2O4p0pwQ2A1eGeBo3JB/OOC709wjaf0ewnGRGTuCKg97197wonECW0IFCGQUaWzAYgj2lULIWhftx7t60YnDPbg6WfQOT2Dr1Yup8jnY1DzlhT7fHy6/G9yPR6apqTyRK++dM0wmpWYCcqZ4fL7mb1je9SG4NV5c/h0+VL8moYiBKMWLeDhnr24tr35TvKthfPILmNQfZoGCgQe6MJNRRk4E5z0HNy10kVc0eBxedm1Psv0NavDyltzn6NGnRqk1I7s2qvbpDaJKQl4XaG7cIvNQs9y/YyFECSnJTFj7Bz83sBhjQBAk1PMP//c7ALT64qqkL3D6JsgpWTy6Ol8/cIE8vbl06h1fW557To6nRXaxlIIAaJyTXaEpRmkfo4seBoCa0HEg/NqROLdpffIvLtCq3U9P4FnOnqtuShqEk0NypcAACAASURBVEKth6z5FeQ9adQsqDUh4T5EyQLvW4hpqqd0Ib0zD933L0C6xhMeDwEIgG8p2I9PD+zq4oQ2BGayz2aoQtCzYUPT6tyqQgTTS89qElphe3vX7qZNUOKt0VU521SVFGd06a9r92fz6fKlpZ+LJiV+dF6Y+ydnN21G3YTwxXz6lk2mp6oDXjc9h/WhTkLl5bujxVqBto+qKCEupEgIIXjo8zt44oKX0PwBAn4Ne5yd5FqJpr59gANZOaZunfCHw3m3mPd/MAtog/E9lcQbvn1xAl//78fSE8/WlTt48oIXeXH647TtWXWd44StAyJtgunvmx7IiiDZ4IHC56DGy0htH+RcazShxwuaG/IfRirxCHtvUJJAKCYJTBaIIhj9j8KsmQ5g1EBE8TvxL+OfnX91lFgPE0S1KArxVht14hN48axDhU5+TePzFcs4/5svOe/rLxizfGnUO/TKYHYS6dO4ScQspLIoQhDQJW/M/4u/du2oUIhr2qaN+Ew0fYQQzNh2SGRu6Z7d3Dx5Av2//MxUjgOMQjx7FTWej4pK1Lvous5vX/zJnac9ys3t7mPt/A28Pe85LrzzXHpc1JVhLw7ho5Wvk1TT/DTTqlszrPbD75UsFpVNS7eZvnbGJd2xx4UbdV2XdB3YEb/PzzcvTAjLsvK6fXz2RKjonJRepG8Z0r8pKsE16d+AnncP+v4B6Ll3If2GdpHpydddQXNA75/G84pGgZ7PIdePDniQ+Y8hpQ723pjvLS0I55H1pjjeCOcFRgV3GDrYzDPZ/s2c0CeC+snJEfsnNUhKZsgp7WlcowZ9G5+ENbjoSikZNnkCS3ZnlVbbvjxvDr9t3cxXF192zLpKXdn2FMasWMpBl6t0R25TVQSUzlXTJbrUeXex0Q8hbrmVjnXr8ekFg0vvKYsiBMLkAykrgPf71s3c9ctUvIEAEvPiflUIOtdLp4ajakvkc/flsXDqUhCC7ud1okYtw9Xj84ZXZZegaTq7t+wlOS0xLI//zVs+ZOa3c0sX2a83/8isb+fx7pKXSjuOVUS7Xq1peWoz1i/chNcdOeMr4NeY++NCrvy/8ErXlqc2xRHvCCuwa9Q6g7T0VA5kHYx4atix9pAMte6eDAVPAgKkBmo6pHwQUtkr/auRxV+CtsdIOXX/gOHL10HbjvT+CamfIMwWMrUCl5N0oe8/G7S9mFbK6gWg70GoGZA6Bpl7c7BeQRhjJ72IsFRtoWS14zgXPJMNd5d0AVZAhaSXEeLIClD/DZzQhqDA60URwjToWuD1MHP7VlrXqk2X9IxSyYXFu7P4e8/uEFkGTyDAin17KwzKegMBpm3ayF+7dpCRlMTlbU45oi5f5UmyO5h85TW8t2Qhv23dTKLNELK7oEUrlu/bg1/TueeXqRxwH+oZ6/L7WbpnN+PWrGJIu/BWgOe1aMnHy5aglXOZ6VLS76SmSCl5cuaMEJdaySenCIFDtSAE1IqP580B4dW+R8PPn85g1B2foAR7G7xz+0fc+9EI+g3phTPeQUbzemRu2B32Pr/Pzy0dHkALaPQc3J37Px6B3Wkna/MeZoydHeLa8Xn87N2ezZ/j5tH/mt6HnZMQgv/9/BgT357GL5/+gdftI2dPrmkKaXIt81PF/ElLwpr2AOxav5utK3dQv2U6IkK/igYtjVoI6V8H+Y8RUlSmbUPmXg9pvyOEgu6eAvmPUrrw+xcSavF1wI0seBaR9lP4YI5LoOAZzAXjvKBtN51jcDJGzAEQ1jZQaw74VxgBVlvHals4pdQNgyPiqnyDJoQKNd4H3zzDgCo1EM4LDWN3jJHSjXRNBv8SsDRGOC9FqJVrohWJE9oQFPv9WBUVTQvfxeR7vSzMymRhViafL1/K95ddRcd66SzZnWUaW3D7/SzZnWVqCIp8Pi4Z9zVZhQW4/EZmzcdLl/DR+RcfUTZPeWrGxfFEr7480StUK+bU9Pqs3Z9tWq3sDgQYv26NqSFoUTONu7qexlsL5wHGQiel5Nm+/cj3eFiTvY8ct1mADOIsVp7qcybpiUl0zagfJqF9NOzdns2oOz4J88e/cfP7dOjblrT0VO4ZPZzHznsBv9doAq+oCrqmowd0PAFjx//XhIUAPDr2btbO2xgUuAt9pqfYy9+/rohoCApyCvnh9SnM+2kxiakJDL5nEJc/eCGXP2hIh9zc7j52rssK2cU74u1cfNcg0+ctn7XaVGYaYM1f6zmpXSMuvf98vn91ckj9gt1p47qnrwBAur4mXMpZBz3XqOy1ngIFIwmtPo5whgqsN40RKIodPfl1yL+PI1MPtRpFUsohAT4hVKMTWclM9ELwTEVq2QhbJ7CdflRVwVJKZPEnwRaYLlBqIBPuQ4m7rNLPNEMIAfYeiCgroKsDqecgD14CWg5G8NpmFAemfoGwVl5XqzwntCFolFyDRLsNj6vioLEO3PDTDywfcSdpcXE4LBZc/tAFxGGxUis+1PXg9vvJLi5m/LrV7MzPK61NKIkn3Dd9GvNuuqVKF80SKtoBVfTaiC5dGdi8Bb9v3YJFUWhXpw4P//4ruwryUYQIq7kooVZ8PINPPny7x8ow+/v56BGkmMc8/i2tujWnw5lteWfB//j+1UnsWLOLA1k55OwNLXDyefzM/XEhhblFRgMbk8/BYlOp1cC8qKc4v5hbOz9E7t680paVm5ZuZfN927j+6SsBeH7KIzw84Dn27zqIalHxe/0MefwSupxt3n8gLSMVm8MaZuRUi1raZOfakZfjKfLw06hf8PsCJKTGc8fbN9Ghb7BAUduH+eIsQM+BwKYIr5vhiPj7oTgHIu09kK7vjE5ingoa44jEoNZQK0SNVyPepvvWQM6VlMQVZLECluZQczxCVK5CXhZ/CkXvUJrVox+EgufQsSNsHYzCLaX6stiOJbLwneDPv2QN8xkS43kPIWr9UmXjnNCGQBGCV/qfy4ipPxHQNAIVBNgKfD6KfT4GNm/J83Nmhb2uCsGg5i0AQ1b6xbmzGbt6BYoQuE2URQGK/D625ebQNNVcZOxI8QYCjF6yiB/WrUGLUB/htFi44jA9DRom1+DGjp2RUtL3i0/ILCiosGGP02JhROfDV8BWloBfQ5r4yX0eP398M4dZ4/5C6pJzbzqLBz+7HSEEQ5vcZvos1aqSv7+Ajme1JT7ZiafYE6JjpFpUBt5snsY45YPfyMsuCOlb7Cn28v0rkxh81yCSaiZSu2EtPlnzJpuXbSP/QCEtT21KYkrkzKn+1/bh6+d/DLkmhJH22nWgsWte9sdqJr//G1rwM/C5fLx/7xja9WptCNTZ+wZTM8ud1qTPUPyUbiNuEA3iMJWxIgFh64BUalVgCASixpug1EVUUCglpYTc6witK9AhsAFZ8AoiOXJXsgqfWfw+4amdbih4CIkd0JCOsxHJz/+jpJ4rhfdXTOMyWiZSO4hQq2ZtOaGzhgB6NWrMlKuuYWi7jmGpm+XxBPwk2GyMHXw59ZOScFqsxFmtpCcm8uXgy0pVSt9ZtICvV6/AEwjgimAEwAjmOixVU3gipeTaieP5cOlisgoL2FtcZNQCYCzUFkXBabHSo0EjLomyuc2yvXs44HKZGgFFCBJsNhwWC8M6dalUw5xoOe2CLqgmmv8Afm8Ar8uHz+Nn+piZLJjyNwBterQqjSeEzFsR1GlcC1VVeW3m0zRu0wC704YzwUGNWkmM/OHBEKG5siz+ZbmpP99is7ChjEy2EILmnU6iy9ntKzQCAGnpqTw35RFS69XAkeDAHmcjo0U6r816GpvdipSS14a9h9flLXU3+Tx+CnOL+Hzkd8Z4cReDmgGU9bU7IX4YQk0zKo8tzYEosrjkwYgZR9K/Cbm/NzL3FiiMIAsNYDkFYT+jQiNgPG8DSPM6Cjw/HH6upniN3semGHEQ8IHnN2Tew5Uc459EpFOTNEQHq4hqPREIIQYAb2H8hn4spXyx3OsNgc+BGsF7HpZSTqvqeZyUksqTvQ0/e9O3X4u4cCcGF/q2tevw53XD2JKbg5TQLDW19DgtpeTTZX+HBJPNUISgaUoKGUmVDxiXZcmeLNbszw6JX/h1nTirlUtatSY9KYmu6fXpULde1IGzHLcrotuqe0YDHunZi0Y1UkioZOe2w5G5cTcrZq0hLskZMWBaFk+xl2kf/c5p53fh2qcuY8GUJXiKPKVuJUecnZv+dzVWm/EHkt60Lh+ueI2szXvwunw0alO/QpmLWg3TEIoIU0LVNZ2UOkYGk6ZpfPviRCa+M43ifDdtTm/BrW/cELFnAkD73m34ZtcH7FibidVmIaP5oZ9Rzt48cvflh71HC+gsmrYUwAi21vzeiBV4poOShIi7JqTPgEh5D5l7Y1CCQjWXpAZjx2/yM5dSN96vZ0f8PgziIGX0Ye4Jou+P/Fqlu9LaQUmLYp5e8M5A6rkIpXJFeFJ6ka4Jxq5cSUHEDTFiHMeSuCtMJMhVsHVGKFWztkA1GgJhCIu8C/QHMoHFQohJUsq1ZW57HKOp/WghRGtgGtC4uuYEMLB5C6Zu2hh2/ZTadUIKyoQQNDNx6fh1neIKxOPirFYEgkS7jfcGXVA1kwZW7ttHwMQd5PL7sVss3NK56xE/s0PddNP6CKfFwoBmzWlT23znfLRIKXnrtg/57YvZCGHoFEVVuAV4PcZnn9GsHu8ufokvnx7HqjnrSMuoyVWPXMxp54enRpaXe47ExXeey5zv54ekiiqqQr2T6tC0fWMA3hrxIX98M7c0HXT5zDXc0/NxPlj+KvVOivx5KYpCk7bhiQOOeHvEVpXxyYdkJIQSj0i4GRJuNr1XqHWg5hRDllo/gCz+Dny/hd9o624+Qf+yCMZDgNrU0COyd0fEXR29b9/awXi/2dZLqVw6qRACmfBAMJXWPAh/6GarET+ohCGQ0os8eAUEtmGcMgTS8xsy8X6U+OsqM/VKIeJvRPqXgXeeUayHACUNkRze1+NoqM4TQVdgs5RyK4AQ4lvgQqCsIZBAiVlLBsLzA6uY58/sz7oD+9mZn09A17EoCikOJ+8PCm8oY4ZNVWmQnMzO/PBdXKuaadzYsTO14xPo0aBhlaqCZiQmYVXUsIXbabHQMLlyLRPT4uK4pfOpfLz071INJLuqUi8xsdoCwwBzfljAjK/mmLphKsIRb+esq88o/bp+83o88tXdEe+XUjLzm7lMGj0dT7GXPlf04MI7BoS0vCxLi85Nuf+T23jr1g/RdYkW0DjplIaM/PFBhBDkZufz+1dzwnoW+Dx+xr3yE3ePHn5E3w9AfFIcXc7pwJLpy0ME7exxdi4yachTEUIICKqRyvxnzG/yrTG/LoswrxqRoNZDSf3giOYCoKiJ6PZzwVv+kC8guQLX0+GeG3cRUnEiC98EbXewSU4BpgYnWkG9ckjXhDJGgOCzPVD4KtI5+JgFo4WwIlLeR/rXg3+NUT9i61blvRiq0xBkALvKfJ0JlBfoeAr4VQhxJxAP9DN7kBBiODAcoGHDyqdjgpGfP33I9czeuZ11+/fTuEYK/U5qekTyEiN7n8nt0yaXumkEhmDcM3370SW9evKMz2xyEvE2K+6AP8Snb1EUEu12vl29klPTM0wD05qus7eoiES7PayXwb3de9Cudl0+X7mMfI+Hc5u1IMFmY8BXY8h2FdMstSaP9ux9VGmw5Zn64e+mPQ3MUC0qWkDDkeDg5O7NOWvIGYd/U5C3bvuQGV8d6p+wa0MWM7+ZyzsLX4hYUNb3yh6ccUk3tq/eRUJKPHUbH8rXztywG5vDGmYItIAWEkM4Uh4aczuPn/cCW1bswGJV8Xn99Bt6BuePOLvSz0TPNL8ud5umj2LtVE7mOohwHlWDeFHjNWRhBrg+B3yGSqnzCigciZ67A9S6kHAvitM8/Tbicx3nIByGGoAM7EQevChY+KWXzpuEeyqdmWQEaU1SqYUV/EuDVdTHDmFtBdZW1ff86mpVKYS4FBggpRwW/PoaoJuU8o4y99wXnMNrQojTgE+AtlJG7uBSVa0qD8fyvXuYtGE9Esn5LVrRqV5oo5M/tm3ludl/sK+4mPqJSTxzZn+6BQXjqov5u3YybPKE0viERQgcVitI0KShZDqoeUte6ndOqe9/2qYNPDlrBi6/YUD6NWnKS/3OIT6C33/M8qW8Mm9OWJ/jMRdeUiqId7Tce8YTrP5rfYX3WG0WajeqRd+relBwsJCu53bi1AEdUKI8Ze3Zuo9hbe8Nczk54u3cPXo4/YaaN8mpiAO7c7i26R1hhkBRFfpf04sHPjVXPo2W7Wt2sW97Nk07NCYt4+iyQfTsPqCbHLCV2ii1zdongl48FgpforQoTThBbYao+Y0hpXwUGOuMZhRo5d5BqFvHAUkjUeIqL0MhAzuQRW+DbxEotREJtyIcpvvKqNDz7gfPFMLL8OMRKZ9Glvv+B1NRq8rqzBrKAsqey+oHr5XlJmAcgJRyPkZaxHHv3PDyX7O5+sdxfLFyGV+sWMY1E77nf2VSSrfm5nD/rz+zt7gYdyBAZmEhd/08hT2FkbIZjh5vIMCt0yaFLNABKSny+Sjy+3AHAniC1c2TNhiL7N97snjwt1/IcbvxBAL4NI0Z27Zw1y9TTMfQdJ03F84LC4R7AgFemTenyr6XM4ecgT0ufKdmsVmIS3KSUCOec27oy6iFL3DdU1dw5zvD6DawU9RGAGD1X+tNexZ4ir0smb68UvNOS0/ltAu6YHOGLopWu5XLHozOtVgRjds0oNugzkdtBABIuJvQLCMAJyTcFfEtSvwQROqX4LwI7GciEkdWiREAw20lhAVZ+Arhvn0PFL0elX5SRLQd4F9pBKi1LYYmk4xOdNJ0vnFDCM/YESCSwGpeM/JvpjpdQ4uB5kKIJhgG4Erg6nL37ATOAsYIIU7G+M2tINWg+tmcc5AxK5aFZOe4AwG+WrWCwSe3oVVaLR774zcKvJ7SvYI74MenBXh+zixGDTy/WuY1ddMGCryHd6e4A36+Xr2Ci1qdzAdLFodVSXs1jXm7drK3qJC6CYn4NI13Fs3n61UrKPb5I7bT3BTsnFYVDLixL398PYcty7fjLvJgtVlQLApPfHcf3QZF3/Rj7YKNfPjAF2xaupXkWklc/uCFJNSI589x83AVutG18IXFYrVELCgDw300+r7PWTlrDc5EB+ffNoCrH7m4tKXk/31xJx899CU/f/IHPrePxqc05K53h9Ho5CM7LXlcXhZOXYq70E2n/u2oXcGcKoMSdzE6ASh6IxgwTYX4u1HiKm6+JGztEbZqXOgC282v6wcx6g2OXI5C+paHnjKkC1xfIvX9RnBc2MDex7xvcgSErRMy8X4ofDWYpilBJCFSP/3H90quDNVmCKSUASHEHcB0jNTQT6WUa4QQzwBLpJSTgPuBj4QQ92Kcwa6X1eCryi4u4vu1q8kqKKBb/Qac26xFxJjAH9u2mhZr+TWNGdu20iy1Jot3Z5k2r5+5fWvY+6qKP3dsj/reksV/Z0G+aaqsVVXZV1xM3YREbp36E39u345+mL4NjSoZkDbDarPy0m9P8sVT45g/eQk1aiVxw3NX0rZH9JLLm5dv46F+z5TKMuzfdZD37vkMRVXQSrSATGKfqlVl4DDzgrIDWQe5s/ujuArcSCnxun2Me2kimRt28+hYIyhts1u5/a0bue3NG9ACGharhaK8Yia8PZVtq3fRvGMTzhrai7jEyIVMq+eu47FBLyCRSF2iBXSufPgirh0ZXYe8aFHiLoO4y5DSB1iPmWBihah1jd17eUQikXPmK0YWjcL0lOGZiPROx3B86FBjFMIefYxJib8O6RxsxASCJ4ET0QhANdcRBGsCppW79mSZf68FqlXIY8nuLK6Z8D1+TUMHxq9dzdsL5/PTlUNN8+MjGQghBPag+qcSoXm9Ral6WeZV2fuYu3M72UXRuZ0cFgsXtTQW1K7pGWzNzQlLO/VrOk1TUtmWm8Os7dsO27rHYbFwb/fQH9OWFdtZ/PMyHAkOel92Gil1ojcUPq+fh/o9zZYVO/AUedhtU3n47Od4/Lv76H5edCeCL54ah88dekKSukQrK5ERlE+12a2oFhWLzcL/fXFnxDTPCW//jM/tC3FReN0+5k5YSPbO/dRueKjbmBACi9VC1uY93HXao3jdPrwuHzPj7Xz5zPeMWvSi6S7f5/Xz+Pkv4ioMDUSOe2USJ7VvTFp6Cg1aZRCfdGQdyCqiIteODGwH7wxAAcc5CDU94r1VgtrY3BAodStvqDRzCXAgqIIa/GfeHVDrryM7GSiJxzwwfDw4oSUmpJQMnzyhVAMIDL/6trxcHp0xnR4NGtG4RgpdM+qX/hKeVr+BaSOWgK5zWn0jJfScps34dcvmkPtsqsrgk1tXOB+338/M7Vtx+f30bNjItBHM6ux9rMneR/2kZCasX8u0zRvxa5ppYl8JJYYpzmqlWWpNrj7FEKMa0aUrkzaup8jrK93xOy0Wbul8Kgk2G9+t3hrRCAiMxa5uQgKP9uxNz4aNyCosoIbdwSf3fs6vn88i4NNQrSof/99XPPrNPVE1YgeY/tlMNi/bVpqLH/BpBNB48Zq3+X7fx6UFYRWxZfn2qFoUOOIdDHlsMF3O7kCTUxoGhejMWb9oE36TnsQ2u5UdazNDDEEJb474kMLc4tJaAE+xF5/Hz+h7xjDyhwfC7l/+x2pTX7jX5eWZS1/FmeAg4NO47MHzue6pK6p1F68XvR8sVtIBAYWvIxMfMpQt9SKjbqCq1Tb9y8yva5uRMoAQlViSLCcHC+kO9wuhGL0VjjBD6b/ACW0ItuXmkhfBrz5l00ZmbNuKIgTpiUl8c8nlpDrjWLJnN6qJdLWKYMmeTNrUrs2zffuxOSeHXQX5pal4LWumcUOHTvyxbSu14+NpU6t2yB/xoqxMbpo0obTZvSZ17ujandtPNQp8vIEAN0+eyN97jHi6LiU+TYuq0WaduHjibDb6NG7CLZ1PZfzaNazdn03rWrX5ZvAVfLR0MfMyd5LmjGN451M5v4WRhmapIPiakZjI79fehE1V+Wb1Srp89B5+TUPTdOLz9pHi9SM0I9ce4IUhbzFu78cRc/TL8sfYOWH6/GAY7o1LttLm9JaHfUaDlulk7zxw2PsURdCwVX2adTTvhVyWJqc0ZM28DYdcS0H8Xj/pzeqGzHPD4s3kZhewYtYa00rkRT8vNR2jfMZRWaQucRUYO9gfXp9CRrN6UcllVwbp3xQ0AuX+PgqfReI0BJEKNGTcdShJ4Qat8kQK4EqOTPX0ECLhDqR3DuatJcuPUdmK5hObE9oQZLuKK3y9JDtme14uj/3xG6MHXchBl8u0f4GG5IDL0P6v4XAy7eprWZSVyba8XFrUrMnPmzZyzldjsKkqmi5pkJzM5xddQu34hOAiPyGsIvm9xQs5rX5DOtVL570lC1m8OzPk9BIt+90uAsVFZBUWMGb5UmyqijsQwGmxEGe1MuGKIbyeFF6c1L9pM56ZPdPU2JzfohU2VeX3rZt5dvbMUGmLjqlofo1a47eXXlNUhWW/r+L0Cw9/KrCZdOwCYyG0OaLTTxn65GWsnru+woYxYFT0dhkQKsl9YHcOOXtyadAyHWfCIV/+4LsHMf2zmSGGwOaw0r5Pm9Lq5L3bs/m/s58ld28eiHA5ihJKgsvl6dC3jWk/g/J4ir2Me+Wn6jMEnulEXpTdhzbX7i+R9tOqTorZ3hc8vwBlPwMB1k6Vzk4S1laQ+gWy8CXwrwIRFyyQK2d0pQa26GME/yVOzMhHkBY1a1boUinBr+vM2LYVv6axsyAv4n078w69JoSgW/0GXNm2HVmFhXy9ehVeTaPQ58MV8LM55yC3T5sMwNxdO0zdGJ5AgO/XrgZg3JrVlTICQGkMwBMIoElZauDcgQC5Hg8jZ80wfV96YhIXt2qNWs79UMPhYHhQsuKdRQvCMo+kTaWwW210W+ivT7Rx/vOG98cRHx4YTEiJj2rnDtC2Ryue+P5+0pvWQVEEzgQH3c/vjM1hJS7JSVyik+S0RF6c/nhp8Zir0M1j5/2Pa5vdwYNnPc1ldYbx7UsTSp+Z3rQur8wYSbOOjVEUgdVupd/QXjw5/oHS7+/x815g79Z9uIs8uAvNd6BWuyVi4Vt8cjztelfsQiwhLzu8er3qiDInQ7oNWeoqQiT+X7B/cYkBdoBIRFRQaazrPvSDN6DvbYW+twX6vu7onlmhz7W1R6n5NUrdVYjaC4wOY6XKo4oxTuL9CDXcvRfjBD8RpDrj6Fa/AQsydx32Xl1KdCnJLop8isguNn/NEKErV20qJauz97G3qBCvSZ9gMP4U3cG+B9H2RLapKrXj4vFoAfI9HtN4Rll0KZmz0yQ4F+Tl/gPoULceY5Yvpcjno99JTbm72+kkOwwXT8TaCCnR4ywowZ7GAb/GytlrWT5rDb0u6U7bnq1M/dsBf4AeF3el34ze/DpmJkJRUFUFi03l2UkPH5FPvNvATnQb2Amfx4fFZkFRFNxFblbOXofdaeOUM04OiQm8fP0ols1Yhd8bwB8sNBv73A9kNKvHGZcYLrpWXZsz+u9X8Hn9WKxqSO3CjrWZ7Nu+37R3gqIqWO3GHBq2rs/NLw81nfOB3TmsnBVB5qHs8xRB+z7Vp/gqHOcgiz8idGceAXk4l8sRjKvWhbRfke5JEFgFluYI58UhjW3CODgoNMAscyBvOHrq9ygmqa5CCEh+BXwLjJOPcBrdxaqxMvffzgltCADeH3Qht02dxOLdmShCwa8ZvXjL/ikLoH2dutgtFlrXqsXcXeYL58m1zHcTkfL7VUWh0OujR4OG+E0avsRZrQxqbvjDzz6pGT+sXxOW4VMStC3pV/zewAvo3bgJGw8e4OLvxh7WEABYKkh5U4RgaLsODDXpaAbQvm49/ti2JWz/KAISa3EAq8OKpunoAY2J7/yM1HV++WQGfa7owX0fjShd2H//6k8+zyHhdgAAIABJREFUfngsOXtySa6VzDUjL+OD5a+ycvY6kmom0HVgp6j6CJthcxxyKTgTnHQbGK4QWZBTyKJpy0J6DYDhgvnu5YmlhqD0mSZzKc53oZgUqQHUb1GPwXcPolGbBrQ5vWVEg7Z23gYsNkuFInuqVcURZ+eG566MeM/RIqwtkAkjoGg0hjEQhLlSAHAinOeVfiWlBN8CoxWlmg6O/kes+S+UeET8VcBVh71X9601zzICoytb2kRjXtp+pOszQ5xNTUfE34Swn4awn3ZEc/uvcsIbgiS7na8GX0ZWYQH7i4tJttu56sdxFHp9uAN+HBYLNlXlxbMM3ZI7u57GJ8v+No0TTNu0kXFrV9Mtoz6P9Oxdqk7a/6SmfLZ8Wdhib1ctnJSSgqoojOx9Js/MnmkEXIMZPj0aNOSsk4weCfef3pM5O7eT5/Xg8vtxqBYsqsKzfc4is7CARJudQc1bUjPOSCtsHmWzG6uicl6LwwdfI3H/aT2Yt2tHSLWxTVW5rV0H0kY2R9d0xv7vBwLlmrnM+u4v+l/bm3a9WjPru794c8RHpTn/edn5fPjglwx/eSgX3FZ5HZsjoTCnCNWi4Dex2eU7nUWiWcfGpqcBm9PG2df1YdDw/od9Ro3ayaYuNEUR1G5UC0ecnVN6ncwVD11EnUbV68ZQEm5DOgaA5//ZO8/wKKo2DN9ntqZ3IEDoTXoTEFFRARVQUBAQ7KBi7+WzYu8FCypiwYKAgAoCIoh0lI50pNdACOnJtpnz/ZhkSbKzyZJkQ8t9XVyY2Z2Zs7iZd+YtzzMPhAmJGbLeRa8deIBQsLYFu95lI6UDefxW8GzVZaSFHTJfhbgJCHPJXh9lxrXM/2v5w2lSPYI8ds2JuoBnC9K5BBn5Mkpo+Se+zwXO+kBQQK2ISK+Z/J833c4v27awPvkwTeLiGdi8BdF2/a4mzGrll8HDuPXXaaTmG8MX3I0XFJ8X7NnNykMHmT3sFmpFRHJXh078tn0bxx26lINJCCwmE69f3tOrQDqkZWvaJ9Zk6pZNZLuc9GrQmIvq1vNqAsWHhjL3ptv4ddsW1iYfokF0LAObt/Re+IuT4XT49UQQgM1sRhGC+tExPFvM8/hkiAsJ9RafC9CkpFPrJnTpncTvX83HbDYVCQSgB4OXB72HxaYPXBX24wW9XfLbF38qdyBIO5LOjrW7ia8VS/1WRaWNVVVlxqd/MOPTP3DmOr0OYIVRTArtewTm/WoLsXHnWzfy8f1fFplajogN5+q7rwjoGC27NSMiJhxHjrNIodlis/Dy9Keo16JsapmBINVD+vCVcykosYiwEWDvjQjXVVMFIG0XI/OmgpaOsF0Gtkt0D2JA5ozTFTALOm9kDpCLTH8EEf9rcBZtMX5SBfThNEBmf5pvVlPwHSxQCn0ZGdIbUYEGLmcrQROdCxaVJToH+kRyam4u106e4JPDtygKQ1u14YVLLgP09NCkjf+yeN9eakVGckubdjSLL/mOzuFx88fOHRzKyqJ19RpcUDsp4Bz5T5s28OSffxi+Zsl/AmkUG8f5NWuVqxf9vlkzmLXD178hxm5n1R338OcPi/nwni/8GrSXhBAwy/Gj3w6bkpBS8vmj45n+6R9YbGZUj0adZrV4bfbTRCfoJjKv3vA+y2es9gYhk9mEqqrevKDJbCIkws5na94O+O77f1e9wrr5m/C4C0lGh1j5YMkrJRa6NU3zGtMIRfB8vzc5svcYJpOCUASPfDGSiwcGnsaQUtMN4XMnAW6w90OEDvTbeaPfNffNv2su+C7bwXoByHTAjAi9HuzX+J2e1VIuB9Wo3mZFJPwVtEKsdrSL7s1cnOgvUOyX+F+XCEXETUGYGwVlXWcaJYnOnTNPBCdDptPJO8sWM2P7Njyaavgo79Y0Zu/Yzv6MDNrUqMHQlm24o8P53BGgt++utOMMnjIRR75YnM1spll8At9fOzAge8ukqCi/r4VbrQxtdaKIpknJsdwcwq02Qi0nd3c0b7exvHKaw8HBrCy69O3AByNPXqseIDYxpkxBAGDe94uY+cU83E63tzd/1797efWGD3h73gvs23qQZdNXFfE8UD0qVruFWo0TkZqkdfcWDH6iX8A6P0f2pvDvws1FggDo08KT3v6VZyY8ZLjf+oWbeO2GD8jN1v2TE5LiGDX1MRCCvKw8GratF9AQXWFkxpO6VHJBIde9BemYBbHfGl7IZc6X+TLNhW9oHOD668R7MjeCYwEi5gM/Jy3ppjGIN5TxsyD1hkITxFaIeArFnt9aq8QZBwLpAVE2d7JzjapAUAxV0xg0ZSJ70tNK7eQ5lpPD/JxdLN2/l6/WruHnwUOpFx3YF++h32dyPC/P++uT63az6egRPl+9kgc7dzXcx6WqfLNuDZM3b0DVJBZFMSwWj2h/IujP3bmD5xbMI8Ohi+Rd1agJr17WM+CAYOSKVkCOy0nt+ASenfgIrwx5D0VRUD1qQG5jtlArt79WXIMwcKZ98JuPp4HqUdm0dBtpRzPYtmKHoaexy+Gmfuu6/O87/yqc/ji67xgWm8Xn80lNcvC/w4b7HDt0nGf7vl5krQe3H+LRS0cxYd9nZSqQS/c23bKyiL6OAzwbwbUIbN19d3L9g3ExuPCB88D5F9K9CWExMCYK6Qc54yg6lCXAXE+fRg4SihILCXPQNBeQi1Ksw0iEDUemP0HRgTILWDtVmLn72c5ZPUdQFhbu3cPBzIyA2jkLLpH6/ICTVxcvDOgcx3Jz2X481eceyqmqTNls3FoopWTE9J/54J9l7EpLY29GOkjpMyfRq0Ej7u6o+/+sSz7Mg3NmcjQnB6eq4lJVft+xnYfnzAxonQDVQsMMtwsgKV+IrkvfDny6+i26XdeZDr3aYPZjRF+Y869sV65hqazjxq28ikmQk5FLfO1YjDJiFpu5REvJkqjborbhZLDZaqL1xcaCeXO/XeA1pS9ASnA73F5P4pPG9Q+Gd+AyF+n0U1w11cbYgaw4Hl3T3wARdgeYG+sDWwCE6oqcUe8FcNzyoyhWnyAAeiss4SPRZxLCAZs+oBb9fqWs62zgnH0i8Ggax/NyibaHFBGa23IshTy3cRG2YPDKqKNIk5IlJfTrF0aW8Bjt77W1yYdZffhQ0QlfKQmzWBjRrgMJYeH0atiY+ELF5U9XrcBpIEO9cO8ejmRnUz28dPGt5y65lAdm/1bkMwv0yeOCp4q/Ji3lndvH6PIZmoaqaigmxecCWJgl0/7hiye/5863bip1DUbUbpLIkb2+iuWqW6Vmw+rUbFid6IQonLmuIuswmf2rj5ZGZGwE/e67iulj5njrDooisIfZGfiIsfz4sYPHDZ+QVI+qTyfnM+/7RfzwylRSDx2nYdt63PHWTTTv0sR4IUosCLOBAbwFXOvR0u4G68WI0P7e1k4RNgLpXELpMgwWvx6/QgmFuCngWoR0/asL1NmvQijGNwuViRJ+NzL0JvBsByUBYQ5e0f1s5Jx8Ivhm3Ro6jB1D9/Ff0u7zT3hn2RKvmmjdqChCDPLWYRYL93Xqwie9r8biR2XUaD8jEkLDaBAd43N/ZjOZuLap8dTpuuTDhrMIOW43uW4PQ1u1KRIEAPZmpBuGFavJRHIxNVOZP1AHsGz/PoZOnUy3r8fy2/atDG/XAatiQhECBejTuAlv9tC7ZDJTs3jntjG48lw481y4nZ78bhiJ2WIynCAuYOr7xgY5geCv5VMCGceyUBSFd/4aRbPOjbDYzNhCrFSrE89rs54pl/b/HW/eyL2jb6POebWIrhbFJYO7MmbVm37NZNp2b0lIuLH+UosL9QGnaR/O5IORYzmw/RB52Q42LtnKEz1eYtvKHcaLsPdAV3Yvjhs863U10aw3kMf6IzXdkF5Y20HU6/k58xDAguGvv1DA5r8NVggFYeuOEvGAXpw+DYJAAUIJR1jbVwWBMnDOPRFM27LJx4rx63WrsSgKD3bpSs8GjXh18QKvXAPoQ1cOj4exq1diVhRUTfURprOZTAxu0SrgdXxwZR8GT5mIS9XI87gJs1ioFx3D3eefsHXOcbmYsGE9v+/8j1y322++PsRs/L+xY2Itdh1PxVPsCcatajSIiQX0yebXlixk6pZNOD0e6kXHcDAr05saK5gstppMaJrEpphYsHcPO9OO0zyhGv/MXGPoBCYl9L6jBwMe7sstje83XJ+majjznNhCTl6HPi/LuEvJYjWTk5FLTLUoqiXFM3rJq6QdSceZ56J63QTdhP5IOmlHMqjVuIbhuXeu38OaeRuIiAmja//zWTFrLb9/NR9N0+h1y6X0uqU7Vw0P7Kmia7/zSWpWiz2b9nsL1/YwG136dqBB67p43B6+fWGyYXvtV8/+yJtznvM5phB2XVsnbWS+abvILwQXFm7LA/UQMnc8Ily30FRCeiPtV4B6EJRIcG9Fpj+Ibk1Jvg3jmKBf3KVnPzLnK91RzNIYETai1M4e6VyGzBmvdw/ZL0OE3lhpBvLnAudcIPhoxd8+/fd5Hg9frl3N/Z0vwGY2M2XQUJ6aN8crTWE1mXB4PEX2U6TEajJhNZlwqxoXJtXhIT9FXiOaxMWz+LY7mfnfNg5lZtK6Rg26163vnTvIc7u5dtIP7M/MxKmWbLnnz1Xs7o6dmLF9CznuE4b3IWYzw9t1JCLfxP6u334tIna3Oz2tyDEKQkjB605NxelSeXjOLObceCuapvlNZ5mtZmo2rFFimqjwVPDJ0Llve2Z+PtdHwM1kNvH1MxMIiQjhytsvo3H7+mz5+z8cuU4kks8eHs/K39dhsZnRVI1bXhzsTetIKXl3+BgWTF6G6tEwW0y8f9fnuqF8fnrnv9W7WDx1Oa/M+J+3LVdKydYVOziw/RD1WiTRuH2DIut5b+GL/Prx7/z5w2LMVjNXj+xFz1v0+kj60Qw8BtLXALvW7/H7+YWlOSQs1Ien3NshcxSQW+xdTnDMhvATXspCmMBcR//B1gWqLQPPJsAM5mZBN16R7u3I44Pz01oe8GxG5s2G2C8RVsPORrScryBrNN60VvZWZN4UiPv1pLwFqvDPORcIjuRkG27P87hxejyEWCzUiojku2uvx+nxsPVYCkOn/eRzqdOAdjUSual1O5rGxdEwwEnfwoRbrX6fIqZu2cTBrNKDAICRAKaUklqRkfwy5EbeXbaEvw/uJzYklDvbd2TAeXpHyM7jqaw6fLBMYnd7M9JJycmhU+/2aPd84fO61W6l+2BdsbL74K7Mn+BrmN6+Z+siMw471u5m4U/LEIpC90FdadC6rs8+BQx7ZgCLp/5Ddlo2Lodb7xCSEpfDzaIpfyOEyD+nxGKzIKXEkeNEUQSqR/MWfce/MInEBtW5sH8nlvy8goU/LS/kk6D/27sKBTFHjpN/F27m34WbadO9BTkZOTzZ6xX2bt6PEAJNkzQ9vyGvznwae74vsy3ExqDH+zHIwNc4Ms7/XW2N+iUXtYUQYGkOIgzpT8JZlHzXLIQJLIEN1FUEMuv1/EG0AlQgD5n5AiLet4lBatmQ9T5FO5WcoB5F5k7wDsOVaS3OJfowmnoIrB0Q4fchzPXKfLwzmXMuEDSLi2fdkWSf7SFmCzf+/BNxIaHc2rY9XZPqYDObcaoqJsW428KtqvRu7KegV07+3L3T7+RwYULMFno0ODHeP23LJt5ZvoTk7GwSwyN4rGu3Ij7KblVl8uaN/LxlE5lOZ5kNw6WUmBRBTLUo7vt4OB/f9yWaJtFUDYvVTN+RPTmvc2MAnhh/H2lHMlg7f4P3EaNZ58bc+tIQprw3g8i4CPZs2s/0T37XL9BCMO3937jhf9cy7NmBhuePqR7NFxve5bfP/mDNvA2YzCY2Lt3qTb9IKb0X+8L6QmqxqOnIcTLxjZ+5sH8n/vjmL5+WVCMcOU7WLdhIm+4t+OTBr9m1fk8RQ5stf//H2Ce+5eq7ehGVEElsDf8txVa7lWvuvYLpY/4okh6yhVq5+YXrS10LgDDXRZrrguc/imr6hyBCy1aMDxqu1cbbPTuR0okQxVJ17o2657BPYdwJzr+gjIFAy50KmS/hfcpwHEY6/4S4aQhzYAq4ZxNBDQRCiCuB0eiVrXFSyjeKvf4+UKB/EApUk1JWnDmuAU91u4Rbf51apPtGAE7Vw9pkvRd86f69PNzlQka070jLatUNPYztJhO9GjYO2jqrhYX7tcQsINRs4aK6dflt+1bGrVlFhM3GjG1bcBTk97OzeGb+XACubdYcTUqGT/+Z1YcPBhRkSiIpKorYEL04fdXtl9P20pYsnLwct9PNBdd0pFHbE79MJpOJt+Y+T9qRdA5sP0z1egmMe+p7Hr/8RVSPismkFPMV0P2CJ7z+M5cMvpDajRMN1xAZG8HQpwcw9OkBvDt8TJHhsZMh9bCeDlP9qMQWxxpiJSouEiklf01c6pPacTvdzBjzB/O+W4zH5aHtZS15ZsKDhEUVzb3n5ThwO9wMf30YZquZXz6cjcvpJjo+kjvfvZnzr2wX8GcQ0Z8ij9+UbwKfXysIHazLMZ9OKBGgGdV3LPl/ir8/BmPfBAFK2Yr+Unog63WKdlBpuuR29ofnZNtp0AKB0AVKPgF6AgeAlUKI6fk+xQBIKR8u9P77gcC/+WWkU63afH/t9byzbAlbU1Owm82k5uYWGczK83h4d/lSBrVoRaTNxjMXdfcWkCW6h29ieESR6d2K5sbWbZmxfWuRgKUIQUJoGJfVa4AqNRLDw/l8zSqvkJ3At7vc4fHw7vIl9G96Hkv27WVN8qESg4BAdy4TgNlkwuF2GyYdMhwONCm9WkmJ9asz5Mn+JX6mmOrRxFSPZv6ExSyfvsp7B+xvNZqqsXz6Kq5/1Lg1szBh0WGltqwaoZgU2l6qyz23urg5K39fV+o+UpPMGf8XUz/4zW9+H/D6Faybv4FXh47mtZlPA3qn1du3j2HVHP1cifWr8dhX93DLi4NxZDsIjQwtgyyIlp9ycaJ/CxRQDWQZTjWhN0H2GIoOw9kgZKBxfcLcRJ+B8Oyi6FS0HRF2S9nWoCaDNBqu08BVOfI1pxsBBQIhxGrgK2CClDKttPfn0wnYIaXclX+MiUA/YLOf998AvBDgsctF+8SaTBgwCIAhUyeRnO1bN7CaFDYcTebCpLoMbdWGZvEJjF+/hqM5OfRs0IjBLVoRZi1boTMQWlWrzsuX9uCFBX+iCIGqadSMiOTLa66lTlQ0blXl/C8+LRIo/D07HMrKotFH72H2M4ks0AviqpR0qZ3ECxdfSkJYOMdycxgydZLXma0wOW43R7KzSYwwzkE785ws/WUlacnpNO/alGadGnkvbrO/nB9QCkZRREDDaQBX3HYpv332R6mOZT5IyfWPXQPAvq0H/b7NFmpDMQk0VUNqkh1rSjBML4bb6WHd/I2kHk4jtkY0T/Z6mT0b93kL3fu3HeLJK17hy43vGfoiB/QxUgfnawYVoIFzOjK3LSLM2BvhVCDC7kCq+yHvVxA2kC6wdUdEPmX8fiEgZhwy7U7w7ANh0p3GIp7yW1wuFSUavz4MQZyQPp0J9IlgMHAb+l39KuBr4A9ZcoK5FlBYAOQA0NnojUKIukB9YH6A66kwEkJDDe+kPZokxn5CZ719Yk3aJ9as1LUNOK8FfRo3YePRo0TYbDSJjfNeTLccS0H10y1khAS/3gUSePLCi7m1bVEd/0ibjWh7iGEg0KQk3E8g3L1xH49d+gJulwe304PZYqJN9xa8+PMTJ4TfAuSiAYZfGR/qt6zD3R/cypgHv8FsNeFxqwGlikwWE4umLKd+yzqk+PFADo0M4daXBlO3RR2eu/p1wwGxgqcRIYwlecxWM+lHMzh2IJUD2w/5dDt5XB6mfzqHEa/rF+2czFzmfP0XGxZvIalpTfqO7OV3/kFzbwGZavwBsz+FcgQCKSW41+laPpbm5RZwE8KEiHoVGf6wrh1kStLNakrax5SIiJ+B9OwALR3MzfXhtrKuQQlH2q/Kt8wsfEMSgggbWer++myGPKvaVwPqFZNS7pBSPgM0ASagPx3sFUK8KISIrYB1DAGmSCkNrxBCiDuFEKuEEKtSUnynScvDLW3aYy/Wh28SgloREZxXinpoaTg9HlYcPMC65MMl5vpLwm620LFmLZrGxRdJF4RZLOXO8xfG3/ruaNfBZ07BajJxab363hbUwkgpeWngO2SmZpOX5cDj8ujF1b828tvnulpqr5u7eztqimMLtWEPtWG1W3jg0zv8DmoZ0eeOnkw6NJbHv76X/vdd6XeQqzBup4c/f1gMQMdebbCG+AY3j8vDpTd0w2ozY7EZ3zvF1ojm0iEXct4FTYq4ohUgpSSpaU2S96QUcT0rfI79Ww8BcDw5jeHNH+KrZ35kybR/mPLuDIa3eIhN859HS+mJduxaZN7PJwr9nv/8f0BZdrtLqaUhU/sh025DZr6APHYdWtpdSFm2WkxhhCkeYT2/1CBQZB9zI4S1Y7mCgPdYUS+DvSdg1SUzRJhuZWn3P0wn1UNoqcOQRzshj3ZGOzYQ6dlV7rWcDgRcIxBCtEZ/KugNTAV+ALqh38UbiYYfBAqP+NXO32bEEOBeP68hpRwLjAVdhjrQNQdCx5q1ePqi7ry2eAFmRcGjaSRFRvFlv+vKJd88d+cOHp07G9AvAmFWK+OuvpaW1cqmc1Mcm8nst+PHoiioUmISIiAHM5vJ5FeEbmDzluw4fpxv/12L1WTCpWp0SKzJWz2MfQQO7Uwm5YDv3akz18V3L/7E/AlLqNsiicYd6vPf2j04sh1Y7RYUReHRr+4hJz0HIQQXXNORmOon3zcQHh1Gt2s706JrU375aHZA+7idHqa+/xvV6iYQERtGZorm7QKyhVpp36M1rw0bjSPb6W0tLYwQcF6XJjw94SFSDqRyV9vHyM3M8xaf7aE2Rrw+FKvdSsO29fAYFKVtIVZadtMnjb9+9kfSj2Z693e7PLhdHt4duY5xi3QZE5kxClwbEFHPg6WD/w9nKvtTrMx4Gjw7KFLFcS5DZn+OiDAeEjxTEMKOiH4PqWXoBXZTbb8S3gBSuvT0m5aCtzPLswGZOgQS5p/x8wwB+RHk1wjSgS+BqVKe6OUSQkyTUl5nsI8Z2A5cjh4AVgJDpZSbir2vGfA7UL+UVBMQPD+CXLebjUePEG230yTu5LsRth5L4c0li1idfIhom53DWZk+WchIq5V/RtyNzc8k8MmwPvkww37+iVy3b5qiaVw8s4fdwiNzZjFj+1ZDbaTC2Ewmltx2p18THIC0vDy2px4jMSKCOlH+L9D7tx3kno5PllgDMJkVLDYLt782jOPJacQkRHHp0G7EVPMvrV0Wprw3g2+en4jb4UbTJEIRRcxgQL+ImyxmvThuMxMWFcYFV3dg7fyNRMaGgxDsWr/H+3mEIkBSJAjbQq28Ne8FrzZQyoFUfnx9GmvmbSC+ViyDn+hXpAPo5cHv8c9vq731DJNZITIugq+2jCY8OoyB1YeTkZLp83nMVo0JqzcTFVfwzbIiEuYhTDXQjl2bPxhW5NNB9NgTcs0ngZQO5JH2GJbylWoo1XznQs5mpGMOMuOpYjMQAKGIyKcRoYNOybpOhorwI7i+oOhb6KD1pZS7jYIAgJTSI4S4D5iD3j76lZRykxDiJWCVlHJ6/luHABMDCQLBJNRioVOt2mXad1facfpP/B5X/t13tsv40Tnb7eavPbu5slH5204bxcYZpnMsikK3Ovog1t0dOzPrv20+gnGgO5gJ9JTQWz2uLDEIAMSEhNC5dukaLrWb1CQyLqLEQKB6NFSPkz++mc+nq98u9ZhlZeAjV5PYsAY/vj4NR46TTr3bMXf8Apx5LjwuFU1V0VTp7fxxuzw4c10c3nWEr7eMZvvqnTxyyQtF+vtlfkAxm02YbRbMFhP3fzKiiEBcQu04HvjkDr/revqHB/np3RnM+GwOjhwnXfp04LZXbyA8Wm8vtYfaMEzoSLDYCv0/F1ZdpsFUAxH7HTLtHnCvzH/RAhHPlCkI6OcqIe3o09N/ZiK1THDMQHoO6FpMtsvQ718NUA/4+dy5SHVfQLqupzOBBoIpQHFH8ClACc+kIKWcBcwqtu35Yj+PCnANFcahrEy+WruadUeSaRIbx4j2Hb3aO2Vh1II/vUGgJDQp2Xg0uUICQZjVykOduzL6n2XeWoFZUYiw2bizvW6Ok+fRh7MKowjBRXXqcln9hlgUhR4NGpUaBE4GIQTPTHyYp654Gc2jldjFs3PdXn2OwCCnXhH88e0CRt/9BZpHRfVoJO8+yiWDLqBz7/akHkpj/AuTyMkoWgjXVI21f27E5XCxbv5GHxMa0INB/4evoveIHtRsWOOk128ymxjyZH+/7bZ9R/bi+5d/KpKGMps12l2cTWh44e+ZBoqeahRKOCLuW6R2HLQ0MNUpl0WjUMKR5obg2VZ89WAru/Xp6YJ0b9bnLqQHyEPmhYKpDsT+aKy1ZG6eP9hW7PsgQhGWlpWy5mBSYiDIT9u0AKKEEIXv/COB0itxpwlSSlYeOsjRnGyi7XbumTUDp8eDW9NYn3yYX7dtYXz/gXSsWatMx1916FDA7y1emC4Pd3Y4nwYxMYxds4qUnBwurluPezp2JiFM/yJ/tmoF7mIdOqqULD+wnzd7XOl9X0XTvEsTvt81hvkTlnDsYCq/jpmDw8DK0mw1G5rHBIoj18m87xaxfsFGqtdLoO9dvahRT2//y0rLZvTIL3A5TlxMnblOFv20nMuHXczFAy/g2xcn+zmyRNMkkXERWKxm1GIdPla7hep1qpHUtGzfl9K4/tGr2b56Z76gnwmpqSTWyeSxD/YVepcJlEQfeQihxOoy1QEitex8g3gT2Lp6ZasBRNTr+RdLN7owXQgoYYiIR8v1+U4HZPoj+T7HBRtywbMLmTMWEfGw7w7WLmBqlB8YC54MLKDUAFvZZM1PJ0q7KjUF+gLRQOGpnizA/7PvacSF1AToAAAgAElEQVThrCyG/TyZozk5CPRhscIpFVVK8jwenpk/lzk33lq2kwT4XGgSgjY1jKdky0qPBo3o0aBoS19ydhZ70tPZfvyY4WyBBAb+9CNhVitDWrRiaKs2mA06WcpDZFwE/e/Xp1oX/rScZINAEBJhL3NBPistm3vPf4q0I+k4cpyYrSZ+/eh3Xp7xFG0vbcmqOesxWZSic0vo8hALJi6h/eWtqNciiY1LtvocO7paFPZQGxcN6MyYh7/2eV0xKXQfErjA4MliMpt4fvKj7N92kB1r91C9XgLN2h6EzKf1C5ZUwdISET26XA0NWt5MyPif7m2gb4HoDxG2iwH0O934ObovsrpDN3sJGXDGF0alekRP9fjggrzpYBAIhBC64mvOJ5D3i/7/wN4HEfFguZ68ThdKDARSyl+BX4UQF0gpl1fSmiqU+2bPYH9GRqkF051px3F43AH5BRenY2Itluwv3ZRGk5J2NYI3i+BSVR6fO5s/du7AajL5rVW4VJX9mXoW+s2li1i8bw9fXH1t0NZl1EUEkHksq8ypoYlv/ELKgVRvft/jUvG4VN685SMm7P3MUBob9F9oU/6QWsp+47mBzOPZqB6VsKgwnpnwEC8OfMerV2S2mHjsq3uITqjYwrYRSU1rFXrqaIK0LQF1ry4XbSpf95lUD0LGU4CzyBCNTLsfqi1E5DuBCVO1M75DyJcSvm/C/2tCCUVEPA4RjwdhTaeWEm8DhRBP5P/nUCHEh8X/VML6ysWR7Gw2pxwtNQiAnl/3ZzhTGqO6X4bNVPq+ihAs2BO8vuP3li9l7q6d+daZroDsxPM8Hpbt38e/BkJ8FYXZz4VeMSllTg0tnvq3obxD1vFsDu86Qscr2qKpvv8C1hArPW7UC6iZqcZKtJpHw5HrRPWofPrIeNRCshWapjH28e9wGVhWVjSappGVlu1tIxXChDA38AYBKR1Ix19Ixx9eA5pAkXm/gZF4iAAcc8u58tMbYYrXLTd9Ln92CDEWOTzbKe23cEv+36uA1QZ/TmvyPO6AsjY2k4lrmzX3egGcLA1iYvl58DC6161PhNXq1yhGlZJ9GWUf8CmNCRvXF5GcCBRVSlYfDrzOcdL4SV+UI6uBzc9AmqZJbKE2QiNCeG7Sw9hCrNjD9AE1q93CgIf70KJrU0BXQDUirlYMoREhrJi9luPJaWieQoFAlWQdz2bpz8a+vhXF3O8WMqTWnQxKvIP+sbfy1bMTikxkS+cy5NELkBmPIjOeQh69AC13eglHLIbMwbA1VKr5JjdnNyL6A13QToQBFhAhYGmLCLv9VC/tlFBaamhG/t/jK2c5FUudqGgfd67CRFituFSNrklJPH9x+TohmsUn8FU/vZ5++6/TWLDXWItGKc/VrxSMZgoCwaIoVA9S4RjwKwSnqbpsdVlSQ/3uvZLPHh1fpLVTMSk0aluPuERd9rlznw5M2P8ZS39egSPHyflXteXvGau5PnEEWalZJDaogdVuwe3yeOcLbKFW7vtwOEII9m4+YChTkZftYM+m/T7bK4q/f1vN6LvHFvFFmPbBLKQqGf76MKSWhUy/G2Qx/+HMZ5DWtogC45kSELbuuuOXj4exAraLKuaDnMYIc13d2Mc5H9TDetHd0r5cNZczmdK6hmbgX8sMKeU1Fb6iCuRYbo6hhDRA9bAw3ul1FXUio0mKqth8b4uEaizcu9vnH86iKNSNDp7Kdutq1Q29FkpCF5wzc3n9hqW+t6y0uLAp6+Zv9NneoE3dMreO9r7jcjYt38aiycv0YwiIqRbFs5MeKfK+yNgIr63k18/+yNQPZnqDx4Hth7DaLbS9tCXJu49Qq3Eiw54dSMt8L+E6zWphDbH62GKGhNupe15wOoYAvh01yWeC2Znr5JePZ3Pzi4Mwq/NAGl2wVGTedETEfaWfxNIO7FeA84/8JwAB2CF0CMLcoLS9y4XUMpF5U/UZCHMTRMgghOnkjZ3KixBWsBtPyJ9rlNY19E6lrCJIHMjM9BvF0hwOLkzy74BVHga1aMW4tat8nL9CLBYuqxe8X7IXL+3BDVMn4fJ48EiJWQjMJhOtEqqzNTWFmJAQrmjYmN+2bSXd6UACtSIiGdP7mgqZdvbHPe/fyoPdnsPlcKG6VRSTomsJfTKizMdUFIUnv7mPG58dwLYVO4irFUuri84z1PEBvdW0cBAowOVwY7Ga+XbHJz77dO7TnuiEKFx5bm+e3mRWCIsOo9uALmVee2kk7zXW09JUjey0HKLDczDM76OCDKxWIISAqDfB1QeZNwOECWG/FmEL3ucCXa9Hpg4ALQe9pWseMmccxE5EWILn71FFyZSWGlpYWQsJBpEGomgFBFLcLStJUVF8cEUfHps7GyEEUkpCLVbGXXNtUC+4rapVZ+YNN/PFmpVsTjlKi2rVGdGuo89TyFMXXszu9DTMilKiXERFUb9VXcauf4cp781g28qdNGhdh+sfvYbaTcrfQVWrUSK1GpXeknvs4HEUP05zuzfsM9xuMpsYvexVPr7/S5b9uhKpSTr3bc/9Hw3Hagtey2DDNvUMn6CsIVYi4yNAXgxZb/ruKEIQ9sB72oUQYLsEYSvj9HEZkJmv6wNv3kDmBOlCZj6LiJtUaeuooiilpYYmSykHCSE2UDRFJAAppaw8s9MyUC86hjCLhRyD3PkVhdzFPJrGHzv/48/du4gPCWVwy1blmjQGuKJRY7rXq8/a5MPYTCba1EgMan2ggLrR0bxymX8FRdAvAOX9fCdLjXrVuO/D4ZV6zsLE1YzxW6uo28JXWiQvOw+z1UxMtSiem/SIV1uoMnLIt786lMcvH1UkPWQLtXHbKzdgMpmAOsjQWyD3O/S7aqkraFq7g6WMGv2VhWsRvk8zEtzrkdJVovBbFcGjRNE5IUSilPJwvl+AD1LK0pvnK5iTFZ2buX0bj86djSs/TaMIQbTNxqxht1AtLByXqjJs2mS2HEsh1+32plPe6nEFfZs0C9bHqOIUMPaJ75g+Zo6PN3BhwbhNy7bx/p2fcWD7IRRF4ZLBXXngkxGEhIf4O2xQ2Lx8G+Oe+oGd6/cQXyuWm18YxCWDig6xSdcKPdcu3Qj71frdvZHL12mEduR8P9LYFkT19f61fqooNyWJzgWkPpp/kBrormMSWCmlDF7jeQmURX10/ZFkxq1ZxYHMDC5MqsOtbTsQn6+v8+OG9byyeIGPtn+oxcKqO+4u04BZFSdPekoGnz78jd6WKQQXD+zCyHdvITKuZPMPj9vDkb0pRMVHekXb/KFpGhPf+Jkp784gKy2HOs1rc+8Ht9G+h/5ge+C/w9zd/vEignkWm4WW3Zrx1tzn/R22ipNAy3wDcn+gqCGMBexXoES/d6qWdU5Q7kAghBgBPI/uPSCAS4CXpJRfVeRCA6GiZaiHTZvM8gO+rYDhViuf9+nHBUmlt+JVUT7cLje3n/cQKftTvUVZs8VEjfrVGLfxfb+dRTO/mMsXT3yPmi8q1+26zjzyxUi/pjeFkVL6pHk+um8cM8fO8zGxt4VY+Wzt2xVS0zjXkdKBTLsLXOtODJKY6iFixyOU4E9rn8tUhAz140A7KXU/PCFEHLAM3ansjCbUYpyTlFIS4sespSxIKZm+fSvfrl9LjttN70ZNuL1dB792j+cSy35dRUZKZpELsMetkno4jX9mraHrNef77LNi9lo+ffibInn0pT//g5SSZyY8VOo5jXL9ezbt9wkCoIvjHd51pCoQVABC2BGx45HuzbqAm6k+WNqcs/37pwuBBoJUdKG5ArLyt53xDG3VmmX79+mSzYWIsNpoXT1wG73SGLVwPlM2b/SmoPampzFj+1Zm3HDjGZ9+klKyYvZaZo/7E6fDxeVDL+LSIReWOiOgqipH9x5j+6qd5BmI0jlzXezddMAwEEx4bZpPr73L4WbpzyvISssmIubkhdGaX9CELX9v9+oKFeB2uqnXsurJsCIRluZgaX6ql1FFPqV1DRVM5+wA/hFC/IpeI+gH/BvktVUK3evW56bWbRm/fg0mRUFBYDGZ+LLfdRXW5XMwM5PJmzYUmStwqiqHsrL4ddtWBrdoVSHnOVV8/th4Zo6d582tb1y8hXnfL+K1WU/77etfPO0fRt89FkeOE4/L4zV/L4wt1ErtpsZ34cf8CNmZLCYyUjLLFAj639+b3z6bi8etFpk0vmjgBSTUrvyBpyqqqCxKeyIoqNTtzP9TwK/BWU5wyHI6mfXfNpJzsmlXoybd6tT1XuSFEDzV7WJuatOWFQcOEGW3c1GdulgqcM5gTfIhzIriM2CW53GzcO/uMzoQHNqZzIxP/8DlOPFE5chxsmnZNlbNWU+nq9r57LNt1U7evPlDQ//fAkxmE5GxEVxwtbH3UYtuzUg5kOoTPBRFUL1eQpk+S1xiDB+veJ0vnvyetfM2EBIRQv/7ruT6x07rAfoqqig3pQ2UvVhZCwkWm1OOcsPUyaiaRq7HTajFQrO4eH64blCR4a5aEZFce15wHlUTQo27WcyKQq2IyKCcs7JY++cGhMFdvyPbwd+/rTIMBFPem4Erz3e2Q1EECD04d+nbgQfGjMBsMf6K3vzC9fw9YxWOHKc3GNhCbQx/fRgWa9lTbbUaJTJq6tknM1xFFSURUI1ACJEAPIHuVuZ1JpNSXlbKflcCo9EFwMdJKd8weM8gYBR6ymm9lHJooIsvDSkl98/+jSzXiVa1XLebzSkpfLl2Nfec37miTlUinWrVJtoe4mOKY1YUhrZqUylrCBbhMeEoJt8Umtli8tv6mbzrCEbdaiHhdl785QlaXdzcb0qpgFqNEhmz6k2+HfUTGxZvJqF2HDf87zq69C3RPbWKKqowINBi8Q/AJHS3spHALYCxIEo+QggT8AnQEzgArBRCTJdSbi70nsbA/4ALpZRpQohqJ/8R/HMwK5PD2Vk+2x2qh2lbN1VaIFCEYMJ1g7jrt1/Yk5GOSeh1iHd6XkX96JhKWYM/NE3jzWWLmbjxX1yqSrsaNXm755XUigzsSaVzn/aGF22T2cQVtxorura5tAU71+3BXcxPwO3y0KBNvVKDQAG1GiXyv+8fCOi9VVRRhX8CDQRxUsovhRAP5usPLRRCrCxln07ADinlLgAhxET0IvPmQu+5A/hESpkGIKU8enLLLxmBQNWM5yQCnKOrMJKiopg17Bb2pqeT63HTODauwu0hy8LAn34solj698H9XPrtlyy97Q4SwkovuNpDbbz++7M8d/UbuJ1uELo42uNf30tiA2MXrQEP9WX2l/PR0nNQ87X+7WE2rn2gd5mKvFVUUUX5CDQQFCR0Dwsh+gCHgNLEamoBhSe1DgDFb8GbAAghlqKnj0ZJKX8PcE2lUjMiAn8q2pUhtmZEMGWoT5atKSmGstUeTWPUwvl80juwIul5nRsz6dBYNi/fjtvppsWFTbGF+B/qiqkezWdr3ua7l35i1Zx1RMVHMPCRa7hsaLcyf5Yqqqii7AQaCF4RQkQBjwIfAZGAr8Nz2c7fGOgO1AYWCSFaSSnTC79JCHEncCdAnTqB93MfzMr0O6iyLyPdcPu5xG//+Rq3F/D3ASNzb/+YzCZaXXRewO9PqB3HI2NHntQ5qqiiiuAQUCCQUv6W/58ZQKBWXgeBpEI/187fVpgDwD9SSjewWwixHT0wFEk7SSnHAmNBl5gI8PwIhN9ZgMpQAj3dKempKDak7CJrUkp+/nAWk9+ZTlZqFk06NmTke7fStGPJ5jcZxzJZMWstCL32EBlbss5QFacHUkrQjoCwIZRTW/OqomwElKQWQjQRQvwphNiY/3NrIcSzpey2EmgshKgvdG3ZIUBxU9Vf0J8GEELEo6eKKszdvVZkpGF7pt1sZuB5LSrqNGcsA89r4bdO8XCXC8t83HFPfc9Xz/xI6sHjuBxuNi7ZymPdXyjR3vGPbxcwtM5IPrpvHB/dO46hSSP5a9LSMq/hZJBS4nK4DDuZqigZ6VqFPNYDmdITebQbWuqNSLVCS31VVAKBViu/QO/ucQNIKf9Fv7D7RUrpAe4D5gBbgMlSyk1CiJeEEAXJ5zlAqhBiM/AX8HiBnlFF8dFVfYmy2Qi1WFCEINRioXX1Gtzatn1FnuaMRFEUJg4Y7GPSc3vb9vRu3KRMx8zNyuOXj343cAJz8cMrUwz3ObovhdEjx+JyuMnLdpCX7cCZ5+Kd28aQejitTOsIlD8nLOaGpLu4OvxGrou/jUlv/1oVEAJEqoeQacNB3Y+uJuoG92rk8Zuq/g3PMAKtEYRKKVcUy7d7/L25ACnlLGBWsW3PF/pvCTyS/ycoNItPYOntdzF7x3aSs7NpXyORLrWTqkSu8mmfWJMt9z7Esv37SMnJpmeDRoSWQwgvefdRzFYTrmLSQZom+W+N8cPewsnLvZIORRCweOrf9L/vqjKvpySW/bqS9+/8zDvhnJ2Ww/cv/QRSMviJ/kE559mEzJ0IsvhlQNXTRO5VYPXViKri9CTQQHBMCNGQ/BYcIcRA4HDQVlXBhFosDKhKBZVI1wqS205IivMRbQNdcbjOeb5OYAAupxuPgeqn6lFxO3wnkCuKr5/70UfmwpHj5MfXf2bgo1fnu4FV4Rd1LycaCgsjQK1cuxIpXeD4A+n6B0y1ECHXIUwVOpZ0VhNoauhe4HOgmRDiIPAQcHfQVlXFGUtETDg9b7oYW2jRpwpriJVhzwww3Kdz7/aGgx2aR6NTn+Cl8JL3GM9EOnOdOAzUUKsohqUTYNBUID1gaVlpy5BaNjL1OmTGs5A3CbI/Rh7rhXRVnG/J2U5AgUBKuUtK2QNIAJpJKbtJKfcEdWVVBIRbVflz904mb9rA7vTg5tMD5f5PRtDv3iuxh9kQiqB2k0Re/PkJmp7fyPD9qYfTUAwkq01mhdRDwftMdZoZK5uGRYUSEnHiApednsP8CYuZ9/0iMlN9J9XPVURIf1BigMLaTnaw90CY61faOmTOV+DZC+Tmb3GBzEWmP1JVqwiQQLWGXgPeKujvF0LEAI9KKUvrHKoiiOw4nsoNUyfj9HhQpUSTGv2bNue1y3ue0hqI2WLmjjdvYvjrw/C4Vay2kkXgtq3Yger2TQ1pmmT7yh20vzw46qzDX7+R5695A2deMZP4V2/wylwsmrKcN2/5GJNJ/1n1qDz42Z30url7UNZ0JiGUMIifhsz+BBxzQdghdBgi9MbKXYhjJkWtL/PRMvT0lble5a7nDCTQ1NBVhYe88iUhegdnSVUEgpSSO2f8wvG8XLLdLvI8bpyqyoztW5m+3f+gWGWiKEqpQQD0uoI9zHcS2RZiJSEpPhhLA6D95a148ZcnaNimHla7hZqNavDI2Lvoc0dPANKOpPPmLR/jynN5u5lcDjejR47lyN4SpbbOGYQSixL5HEq1RSgJf6CE3YIuM1aZi/DX3KCV8FoVhQk0EJiEEN7fVCFECFC6MWwVQWPH8eMcycnxEdDI9bj5YcP6U7KmsnLJoK6YrWYKP8QIIbDYLXS7rlNQz92hZxs+W/s2M3MnMH77R1w29CLva4un/oPRc5WmSRZOXhbUdVVxEtj83JMqsQhTlb1oIAQaCH4A/hRCDBdCDAfmAuODt6wqSsOpevxORzs8weu0CQahESG8t/Al6raog8VmwWKz0KB1Xd5f9HKJmkXBxuVwoWmaz3bNo+J0+DfVAUhPyWDF7LXsWLu7Kk8dbNTDYBSytSx00YIqSiNQiYk3hRD/Apfnb3pZSjkneMuqojSaxSdgMSk+3Xt2s5lrmgSu+XO6UL9lHb74911SD6chBMTWOPVSBZ37tOfr5yb6bLfYLVzQt6PhPlJKvnpmAtM+mInFZkH1qNSoX5035jxLXOKp/0xnJe6lGIpLCi2/RmDcpFDFCQLWQZZSzpZSPpb/pyoInGLMisL7vXoTYjZjUfScbKjFQqPYOG5sfeaa3cQlxpwWQQAgqWktBjzUB1uo3v0khMAeauOq4ZfTqJ1xV8ziqX/zy0ezcTnc5GTk4shxsm/LAV4c8HYlr/4cQvHjJy09IE6P79LpTqBdQ9cBbwLV0J/BBPpg8Jnts3iGc0m9+sy58VYmb9rIkZxsLqpTlysaNq5Qv+WKYvvqnYx/YTK7/91LUrOa3PTCIFpe2OxUL6tUbn91KBdccz5//rAITZNcNuRCWpSw7qkfzMSRU7SDRVM1dq7bw9F9KVSrUzY/5bIgtRxk3m/g2QLmpoiQqxHK2ef3IMKGI9OfAPIKbbWAtTPC5CdIVFGEQCeL3wKullJuCeZiqjh5akdG8cgFZReIqww2Lt3KU1e8givPiZSQciCVTUu38cLUxzj/Sl9P49ON8zo35rzOjQN6b3ZatuF2k8VEdnou1SpmgLtUpHoYmToAtBz0C2QIMns0xE1BmI0nvM9UhP0KZPhuyB4DwgzSDZa2iOj3TvXSzhgCDQRHqoJAUaSUrEk+xJ70dJrExdOqmrEbV0Wfc+n+fUzdshGPJunXtBmX1W942ktqf/boeB8ROmeei08e/Jpvtp3+geBk6NrvfA7vPOJjw2kym6jbvPIuwDLzJdCOAwXF7jyQTmTmKETsuEpbR2WhhI9Eht4Inv9ASTjrgl2wCTQQrBJCTEKXjfb+RksppwVlVac5mU4Hw6b95J3klVLSqnoNvr7mOkIspffNl5VXFy/gx40byMvvCvprzy4uq9eA0Vf2Oa1F9Hat32O4/dCOw6geFZPBVPGZyvWPXcP8CUtIT8nEledCUfQ22Ic+u6tyP6dzESeCQAEauJYipTytvy9lRSjhYD27biwqi0ADQST6/HavQtskcE4Gguf/+pPtqcdwF2otXJ98mHeWL+G5iwP17Tk5dqUd54cN/+JUT9xp5rrd/Ll7F6sOH+T8mqfvHVBkfCSpB4/7bA+JCEExnXrf5ookMjaCsevfYebYeayas45qdeLp/0BvGrWtPMkFHRPGgnBnT9AtCSldyNzJ4JgBwo4IvQFsV5yVAbAiCLR99LZgL+RMQZOS2Tu2FwkCAE5VZeqWTUELBIv27sGoRS7P4+av3btO60Aw5Mn+jHvqhyLpIVuojese6ntW/mKGRYUx6PF+DHq836lbREgfyJtO0WBgAfvZfzGU0oM8fiO4t1FQQJaudRDyNyJq1Cld2+lKoF1DdmA40AKwF2yXUt4epHWdtmhSovoZEHKpvno5FUWY1YpJUaDYOSyKQrj19B7y7nfvlWQcy+Snd2agKAJN1eh7Zw9ufM5YjbSs5GTkMPHNX1j403Jsdit97+5F37t6npNy0iLif0j3Zr2PXqogTGCqjYh8vvSdz3Sc88CznaJdRHmQNxUZdhvCXLdchy8YEDybAmqgqaHvgK3AFcBLwDB017FzDrOi0L5GTVYfPljk/lxBcEndekE77xUNGzFqwXyf7SZFoV/T03uATAjBLaMGM+TJ/qQcOE5czRhCwuyl73gSuBwu7uvyNEf2pOB26nfBXzzxPRsXb+GZHx+u0HOdCQglEuJ+AdcKvYBqbqi3U4qzKxVnhHQuAZlr8IoCrpVQxkAgtePIjFF6oEEibRcjIl9EmGqUZ7mnBYF+KxpJKZ8DcqSU44E+QOfgLev05rXLexJhs2E363E0xGwmJsTOs0FKCwFE2ux83rcf4Var90+I2cw7Pa+kVuSZMc5hC7FRu3FihQcBgL8mLuXYgVRvEADdV2D59FXs23ow4OO4XW7mfb+Ilwa+w+h7xrLTT6H7TEAIgbB1RoTdiLBdcE4EASB/wMygaUMo+bLZJ4+UKjJ1SH4Q8AAqOBciUwci5ZnvXRHoE0HBb1e6EKIlkIw+XHZO0ig2jvk3385PmzayNfUYratXZ8B5LYm0BTdF061OXVaOuJvlB/ajahpdaicRVg5bybOJdX9t9BnkAhCKYMvf26nTrFapx3A53Tx6yfPs2bQfR44TxaQwd/xC7vt4OFfedlkwll1FEBAhA5E5X+NbLLeC7SKjXUrHuQi0FIo69Gogs8HxO4Sc2damgQaCsfkeBM8C04Fw4LnSdhJCXAmMRm9VGCelfKPY67cCbwMFt2wfSynPiCbn2JBQ7uoYXGVMI2xmM93rVXYHyulPjfrVsNjMPjaZQhHE14oN6Bhzxy9g98b93qK2pmo481x8fP9XXDKoa1CeZKqoeIQ5CaJHIzMeQ2+w0EBEI2I+R5RVllrdBdLA80DmIt3/IQyM2s4kSgwEQojCpvIFnUOf5P8dVsq+pvz39gQOACuFENOllJuLvXWSlPK+wJd8+uBWVTKdTqLtdr2QW8Upo/eIHkx5d0aRQKAogojYcNpeFpht4sKflvsMvoHulLZ52TY69DxzNZzONYT9UrD9De6NIGxgPq98xV1zI/04spgftwhFWJqWb7GnAaU9EUTk/90UOB/9aQDgamBFKft2AnZIKXcBCCEmAv2A4oHgjENKyUcr/uaLNStxaxp2k5kHu3TltrbB89etomQSasfx6syneeOmD8lMzUJTJQ1a1+G5yY8G3DUUHm18byOlLGJdWcWZgRCWihsws3YDpYbeheVND5lARIH9ioo5xymkxEAgpXwRQAixCGgvpczK/3kUMLOUY9cC9hf6+QDGBeYBQoiLge3Aw1LK/cXfIIS4E7gToE6dShJrKYHPV6/k89UryPPoXwiXqvLOssVEWK0MbF55pt1G7E1PZ9zaVWxKOUqLhGqMaNeRutHRp3RNlUXri5vzw55PSd59FIvdQnzNwFJCBfQd2YuVs9fiKPZUEB4VRrNOVVLG5zJCmCDuR2Tma3pNAA1slyEin6WQZ9cZS6D5jOpAYScOV/628jIDqCelbE0JZjdSyrFSyo5Syo4JCZWn3uhnLXxWKAgUkOfx8OGKv0/RqnQ2Hj1Cnx+/ZdLGf1mXfJhJG/+lz4/fsvHokVO6rspECEFig+onHQRAt64c/GQ/LHYLoREhhEaEEFM9mtdmP+P1MK7i3EUo0SjRb6HU+BelxkaUmKyH6lIAABJdSURBVA8RprOjZybQYvG3wAohxM/5P/cHvilln4NAUqGfa3OiKAyAlDK10I/j0FVOT2vcmkaW06BoBBzNMVaerCxeWPAnue4TnRIeKfG43Yxa8CdTBg09hSurHHIyc/np3RksnLQMW4iVq+/uxVUjLj+pi/iNz11Pnzt78u+iLUTEhNGme4tyawTl5TiY+t4M5v+4FLPFRJ87e9D3rl5nlcZSFWc2gUpMvCqEmA0U9F7dJqVcW8puK4HGQoj66AFgCFDkaiSESJRSHs7/8RpO0yE1l6rywd/L+GHDOnLcbsyK4iMxAXpb6alk/ZFkw+3r/Gw/m3A5XDxwwdMc3n0Ut0MPhp8+Mp5/F2/hf989cFLHioyPoF7LJMKjw8p9sfa4PTx80XPs33oQV/66vnjyB9bO38ioqY+X69hVVFFRBPpEgJRyDbDmJN7vEULcB8xBbx/9Skq5SQjxErBKSjkdeEAIcQ169eU4cOvJLL6yeHzu78zdtQNHfjpIM5CYsJvNPN3tkspeWhFCLRayXb5eumFBVEQtTF6OA03VCIsMrZTzFWbh5OUc3XfMGwRAHyhbMu0f9j97kKSmpc8RACz5+R/ev+tzXA43qkelWafGPDf5EWKqRZVpXUt/WcmhHcneIFCwrlVz1rFj3e5TIEZXRRW+BDXxKaWcJaVsIqVsKKV8NX/b8/lBACnl/6SULaSUbaSUl0optwZzPWUhOTuLP3b+5w0CBShCEGsPIdJmo0NiTb7pN4CuSae2kH1Dy9beaecC7GYzw1q1Dep5Uw+n8b8rX+Ha2FsZEH8793R8gt0b9gb1nMVZM3+D4UCZogg2L98e0DF2rNutdx0dy8KR7cDtcLN5+TaevurVMq/r30WbyMs2mDyVsCXAdVVRRbAJ+IngXGVPejpWkxlnMbE3TUrqREUxbfCwU7QyXx69oBuHs7KYu2sHVpMJl6rSs0FDHurSNWjnVFWVRy5+jiN7U1A9errsvzW7efiS5/l2x8dExkaUcoSKoXrdBCxWs48hjKIoxAVYOP7lw1lFnigAVLfK/m2H2PXvXhq0PnmNmoSkeKx2S5EnAtCNagJdVxVVBJuqVohSqBcdXcQDoACzEDRPOL06BqwmEx9e1Zf5Nw/nsz79mH/zcEZf2RdrENU31/65kbSjGd4gUIDH6eGP8QuCdt7i9B5xOSZL0c+pKIKw6FDaXR5YS2/ynhQ0zTftZ7aYSD3k66cQCL1uvsSnziCEwBZq4/yrgvukVkUVgVIVCEqhRngEVzRs5JNysZrNjGjf8RStqmQSIyK4IKkOiRHBvxs/vOsImse3cO7Mc3Fg22GDPYJDtaR4Xp7+FHE1Y7CH2bDaLTRoU493F7wY8EBZ+56tsdp9JQjcTjeNOzQo07pia8Tw2uxnSEiKxx5qwxpipV7LJN5b+CIWa+XUbqqoojTOidSQ0+Phrz27OZKTRbsaNWld/eRkY9/ueRXv/72UCRvWk+N206Z6DUZ1v5x60WVTMjybaNSuPkLxHd23h9k4r0tghu8VRdtLWzJh32cc2pGM1W6hWp2Tmzm5emQvpo+ZQ0ZKJp78FJM9zMY1915JdELZisUALS9sxg97xnBwRzIWq5nqdU/tLEwVVRRHSD8mK6crHTt2lKtWrQr4/bvSjjN4yiQcHjceTUMRgs61k/i8Tz8s56BhSUUjpeTxy19ky9/bvXlwk8VEfM1Yvtz8PraQM2vqMj0lg4lv/sLyX1cRERvGgIevpvvgrmeVCUkV5yZCiNVSSsM0xlkfCHr/MJ5tqceKmMiEmM081rUbt7XtUPELPAdxOVx8/8oU5nz9Fx6XyoXXduL2V28o1110FVVUUbGcs4HgUFYml3/7lU/HD0Dj2Djm3HhrBa+uiiqqqOL0pKRAcFYXiz2a5veR3mMwGfz/9u4/yKryvuP4+7PL7soiIhTGqFB3VaISlR9FA0karUqLP4KdmEZMmpBEy8SqI8ROitKxE1NnqjP1RyamDqYmnalKq8aUAadqiWmjbQQUURQRlE2BIGADQfm1LPvtH+esOSzrsqR7Oefe83nN3Ln3POe5dz/cs8v3nufc8xwzszKq6UIw6pghjGg+eGrhpvr6wl/n18zsSKnpQiCJ70y9lEENjR98/bO5oYFThg4r7Fc/rfqtemENN0y+halN0/mTj1zN/DueoNN7oFZgNX2MoMuvdu/ix2+sYuN7OzjnhJFcdPIpDPC0wlYB61b+DzdMuuWAK501NTdxyTUX8uf3fLWXZ5pVVm/HCEpxHsGwgc18bby/IWSV9/Dtj9O+58CJ//bu2suiec8w41ufZ9CQXq/wapaLUhQCq007fvUeC+9/muWLV/KRlhF8dtaltJ51+PMB9ae1y9uInqapaBzApnVbPNuoFZILgVWlbZu38/UJ3+T9be/TvmcfdfV1PDv/eebOn83kz+R3/KflzFFsXLOJ7kOuHe0dPqPYCssD5VaVHr79R+x4d8cHZzN37u9k7+527vqz+3M9MPvFuVfQOPDAOYSamhuZ8uXzGDz06JxSmfXOhcCq0s8XvkjHvoNPFNyzcw+/fCu/azSfOr6V2xfdQutZybUpmo8ZyBWzP8MN370mt0xmh+KhIatKRw9thraD2/d3dDJoyJG/QlrW2PM+xrwVf0dnZ6cvem9Vwb+lVpU+O+syjhp04IR2Axrq+dgnT/utLyvZ31wErFpU9DdV0lRJqyWtlTSnl35XSApJPsvL+uSiP/00l86cQsNRDQwaMpCm5iZazz6JuY/MyjuaWdWp2AllkuqBN4EpwAZgKXBVRLzerd9gYBHQCFwfEb2eLfbbnFBmtWvb5u2sXb6O4ScOy/2ro2ZFltekc+cCayPi7YhoB+YDl/fQ79vAHUAPV/g2693Q447lnKnjXQTM/h8qWQhOBNZnljekbR+QNAEYFRGLKpjDzMx6kdvRLEl1wF3ATX3oO1PSMknLtm7dWvlwZmYlUslCsBEYlVkembZ1GQycCfxUUhswCVjQ0wHjiJgXERMjYuKIET4708ysP1WyECwFRktqldQITAcWdK2MiF9HxPCIaImIFuDnwLRDHSw2M7P+VbFCEBEdwPXAU8Aq4F8i4jVJt0maVqmfa2Zmh6eiZxZHxJPAk93abv2QvudXMouZmfXMpz6amZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJVbQQSJoqabWktZLm9LD+65JelfSypOckjalkHjMzO1jFCoGkeuA+4GJgDHBVD//RPxwRZ0XEOOBO4K5K5TEzs55Vco/gXGBtRLwdEe3AfODybIeI2JFZHAREBfOYmVkPBlTwtU8E1meWNwAf795J0nXAN4BG4IIK5jEzsx7kfrA4Iu6LiFOAvwT+qqc+kmZKWiZp2datW49sQDOzGlfJQrARGJVZHpm2fZj5wB/3tCIi5kXExIiYOGLEiH6MaGZmlSwES4HRklolNQLTgQXZDpJGZxYvBdZUMI+ZmfWgYscIIqJD0vXAU0A98GBEvCbpNmBZRCwArpd0EbAP2AbMqFQeMzPrWSUPFhMRTwJPdmu7NfP4xkr+fDMzO7TcDxabmVm+XAjMzErOhcDMrOQqeozArD9FBGteeptfrn2H1rNP4qQzRuYdyawmuBBYVXh/+07m/NHf8IvX11NXV8f+jv2Mu+BM/vrxv6ChsSHveGZVzUNDVhXuvXYeb61oY8/Ovex6bzd7d7ez/Ccreejbj+UdzazquRBY4XXs6+C5J5bQ0d5xQHv77nYWPbA4p1RmtcOFwApvf8d+Ovd39rhu7+69RziNWe1xIbDCaxrYxMljTzqova5OnDN1fA6JzGqLC4FVhZseuJaBgwfS0JQcGG4c2MjgYYOZeeeXck5mVv38rSGrCqeOb+XBVfew8P6naVu5njMmjebiay7kmGGD845mVvVcCKxqDD9hGF+5bXreMcxqjoeGzMxKzoXAzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxKzoXAzKzkXAjMzEpOEZF3hsMiaSvwiz52Hw68W8E4/aVackL1ZHXO/lUtOaF6sh7pnCdFxIieVlRdITgckpZFxMS8cxxKteSE6snqnP2rWnJC9WQtUk4PDZmZlZwLgZlZydV6IZiXd4A+qpacUD1ZnbN/VUtOqJ6shclZ08cIzMzs0Gp9j8DMzA6hZguBpKmSVktaK2lO3nm6SHpQ0hZJKzNtwyQ9I2lNej80z4xpplGSnpX0uqTXJN1YxKySjpK0RNKKNOe30vZWSS+k2/+fJTXmmbOLpHpJyyUtTJeLmrNN0quSXpa0LG0r1LZPMx0r6TFJb0haJWly0XJKOi19H7tuOyTNKlLOmiwEkuqB+4CLgTHAVZLG5JvqAz8EpnZrmwMsjojRwOJ0OW8dwE0RMQaYBFyXvodFy7oXuCAixgLjgKmSJgF3AHdHxKnANuDqHDNm3QisyiwXNSfAH0TEuMxXHIu27QHuBf4tIk4HxpK8t4XKGRGr0/dxHPB7wC7gCYqUMyJq7gZMBp7KLN8M3Jx3rkyeFmBlZnk1cHz6+Hhgdd4Ze8j8r8CUImcFmoGXgI+TnKgzoKffhxzzjST5g78AWAioiDnTLG3A8G5thdr2wBBgHemxzqLm7JbtD4Hni5azJvcIgBOB9ZnlDWlbUR0XEZvSx+8Ax+UZpjtJLcB44AUKmDUdbnkZ2AI8A7wFbI+IjrRLUbb/PcA3gc50+XcoZk6AAJ6W9KKkmWlb0bZ9K7AV+EE63PZ9SYMoXs6s6cAj6ePC5KzVQlC1Ivl4UJivckk6GngcmBURO7LripI1IvZHsts9EjgXOD3nSAeRdBmwJSJezDtLH30qIiaQDK9eJ+nT2ZUF2fYDgAnA30fEeGAn3YZXCpITgPT4zzTg0e7r8s5Zq4VgIzAqszwybSuqzZKOB0jvt+ScBwBJDSRF4KGI+FHaXMisABGxHXiWZIjlWEkD0lVF2P6fBKZJagPmkwwP3UvxcgIQERvT+y0k49nnUrxtvwHYEBEvpMuPkRSGouXscjHwUkRsTpcLk7NWC8FSYHT6jYxGkt2xBTln6s0CYEb6eAbJeHyuJAn4B2BVRNyVWVWorJJGSDo2fTyQ5DjGKpKC8Lm0W+45I+LmiBgZES0kv48/iYgvUrCcAJIGSRrc9ZhkXHslBdv2EfEOsF7SaWnThcDrFCxnxlX8ZlgIipQz74MnFTwocwnwJsl48dy882RyPQJsAvaRfKK5mmSseDGwBvh3YFgBcn6KZFf1FeDl9HZJ0bICZwPL05wrgVvT9pOBJcBakl3xprzf00zm84GFRc2ZZlqR3l7r+vsp2rZPM40DlqXb/8fA0ILmHAT8LzAk01aYnD6z2Mys5Gp1aMjMzPrIhcDMrORcCMzMSs6FwMys5FwIzMxKzoXArJ9IasnOKnsYz/uvzPO/0P/JzHrnQmCWk64ziiPiE2lTC+BCYEecC4GVRvqJ+w1JD6Vz1z8mqVnShemkZa+m14toSvu3SbozbV8i6dS0/YeSPpd53fc/5Gf9TNJL6e0Tafv5afsCkrNgs8//W+D30znrZ0v6T0njMq/5nKSxFXuDrLRcCKxsTgO+FxFnADuAb5BcI+LKiDiLZCKzazP9f522f5dk9tC+2gJMiWTitiuB72TWTQBujIiPdnvOHOBnkcxdfzfJFB9fAZD0UeCoiFhxGBnM+sSFwMpmfUQ8nz7+J5L5adZFxJtp2z8C2Zk2H8ncTz6Mn9MAPCDpVZKpI7IXRloSEev68BqPApelk/99jaRgmfW7AYfuYlZTus+psp1kzpe+9O963EH6IUpSHdDT5SVnA5tJrppVB+zJrNvZp6ARuyQ9A1wOfJ7k6lZm/c57BFY2vyup65P9F0gmLGvpGv8HvgT8R6b/lZn7/04ft/Gb/5SnkXz6724IsCkiOtPXrO9DtveAwd3avk8yrLQ0Irb14TXMDpsLgZXNapILrawimanybuCrwKPpME4ncH+m/1BJr5Bca3h22vYAcJ6kFSTDRT19wv8eMCPtc/qH9OnuFWC/pBWSZgNEciGbHcAPDu+fadZ3nn3USiO95ObCiDizj/3bgIkR8W4FYx0qwwnAT4HT070Ls37nPQKzgpL0ZZLrRM91EbBK8h6BmVnJeY/AzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxK7v8A+me/ab3a2nMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "from sklearn.cluster import KMeans\n", + "kmeans = KMeans(n_clusters = 3)\n", + "kmeans.fit(X)\n", + "labels = kmeans.predict(X)\n", + "plt.scatter(df['popularity'],df['danceability'],c = labels)\n", + "plt.xlabel('popularity')\n", + "plt.ylabel('danceability')\n", + "plt.show()" + ] + }, + { + "source": [ + "このモデルの精度は悪くはありませんが、優れているわけでもありません。データがK-Meansクラスタリングに適していない可能性があります。別の方法を試してみるとよいかもしれません。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 811, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Result: 109 out of 286 samples were correctly labeled.\nAccuracy score: 0.38\n" + ] + } + ], + "source": [ + "labels = kmeans.labels_\n", + "\n", + "correct_labels = sum(y == labels)\n", + "\n", + "print(\"Result: %d out of %d samples were correctly labeled.\" % (correct_labels, y.size))\n", + "\n", + "print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/5-Clustering/2-K-Means/solution/tester.ipynb b/translations/ja/5-Clustering/2-K-Means/solution/tester.ipynb new file mode 100644 index 000000000..43f921472 --- /dev/null +++ b/translations/ja/5-Clustering/2-K-Means/solution/tester.ipynb @@ -0,0 +1,343 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "6f92868513e59d321245137c1c4c5311", + "translation_date": "2025-09-04T02:12:08+00:00", + "source_file": "5-Clustering/2-K-Means/solution/tester.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "前回のレッスンで終了したところから始めましょう。データをインポートしてフィルタリングした状態です。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                          0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                                          1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                          2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                                          3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                          4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 105 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import numpy as np\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "私たちは3つのジャンルのみに集中します。もしかしたら3つのクラスターを作れるかもしれません!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 106 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                          1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                          3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                          4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                          5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
                                          6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 107 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "scaler = StandardScaler()\n", + "\n", + "# X = df.loc[:, ('danceability','energy')]\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "Unknown label type: 'continuous'", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;31m# we create an instance of SVM and fit out data. We do not scale our\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;31m# data since we want to plot the support vectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0mls30\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 30% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0mls50\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 50% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mls100\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 100% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/semi_supervised/_label_propagation.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 229\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mX_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 230\u001b[0;31m \u001b[0mcheck_classification_targets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[0;31m# actual graph construction (implementations should override this)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/utils/multiclass.py\u001b[0m in \u001b[0;36mcheck_classification_targets\u001b[0;34m(y)\u001b[0m\n\u001b[1;32m 181\u001b[0m if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',\n\u001b[1;32m 182\u001b[0m 'multilabel-indicator', 'multilabel-sequences']:\n\u001b[0;32m--> 183\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Unknown label type: %r\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0my_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 184\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unknown label type: 'continuous'" + ] + } + ], + "source": [ + "from sklearn.svm import SVC\n", + "from sklearn.semi_supervised import LabelSpreading\n", + "from sklearn.semi_supervised import SelfTrainingClassifier\n", + "from sklearn import datasets\n", + "\n", + "X = df[['danceability','acousticness']].values\n", + "y = df['energy'].values\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "# step size in the mesh\n", + "h = .02\n", + "\n", + "rng = np.random.RandomState(0)\n", + "y_rand = rng.rand(y.shape[0])\n", + "y_30 = np.copy(y)\n", + "y_30[y_rand < 0.3] = -1 # set random samples to be unlabeled\n", + "y_50 = np.copy(y)\n", + "y_50[y_rand < 0.5] = -1\n", + "# we create an instance of SVM and fit out data. We do not scale our\n", + "# data since we want to plot the support vectors\n", + "ls30 = (LabelSpreading().fit(X, y_30), y_30, 'Label Spreading 30% data')\n", + "ls50 = (LabelSpreading().fit(X, y_50), y_50, 'Label Spreading 50% data')\n", + "ls100 = (LabelSpreading().fit(X, y), y, 'Label Spreading 100% data')\n", + "\n", + "# the base classifier for self-training is identical to the SVC\n", + "base_classifier = SVC(kernel='rbf', gamma=.5, probability=True)\n", + "st30 = (SelfTrainingClassifier(base_classifier).fit(X, y_30),\n", + " y_30, 'Self-training 30% data')\n", + "st50 = (SelfTrainingClassifier(base_classifier).fit(X, y_50),\n", + " y_50, 'Self-training 50% data')\n", + "\n", + "rbf_svc = (SVC(kernel='rbf', gamma=.5).fit(X, y), y, 'SVC with rbf kernel')\n", + "\n", + "# create a mesh to plot in\n", + "x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n", + "y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n", + "xx, yy = np.meshgrid(np.arange(x_min, x_max, h),\n", + " np.arange(y_min, y_max, h))\n", + "\n", + "color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)}\n", + "\n", + "classifiers = (ls30, st30, ls50, st50, ls100, rbf_svc)\n", + "for i, (clf, y_train, title) in enumerate(classifiers):\n", + " # Plot the decision boundary. For that, we will assign a color to each\n", + " # point in the mesh [x_min, x_max]x[y_min, y_max].\n", + " plt.subplot(3, 2, i + 1)\n", + " Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n", + "\n", + " # Put the result into a color plot\n", + " Z = Z.reshape(xx.shape)\n", + " plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)\n", + " plt.axis('off')\n", + "\n", + " # Plot also the training points\n", + " colors = [color_map[y] for y in y_train]\n", + " plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black')\n", + "\n", + " plt.title(title)\n", + "\n", + "plt.suptitle(\"Unlabeled points are colored white\", y=0.1)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/5-Clustering/README.md b/translations/ja/5-Clustering/README.md new file mode 100644 index 000000000..790650dd2 --- /dev/null +++ b/translations/ja/5-Clustering/README.md @@ -0,0 +1,42 @@ + +# 機械学習のためのクラスタリングモデル + +クラスタリングは、互いに似ているオブジェクトを見つけ、それらをクラスタと呼ばれるグループにまとめる機械学習のタスクです。他の機械学習アプローチとクラスタリングの違いは、プロセスが自動的に進む点です。実際、教師あり学習とは正反対と言っても良いでしょう。 + +## 地域トピック: ナイジェリアの聴衆の音楽嗜好に基づくクラスタリングモデル 🎧 + +ナイジェリアの多様な聴衆は、多様な音楽嗜好を持っています。Spotifyから収集したデータを使用して([この記事](https://towardsdatascience.com/country-wise-visual-analysis-of-music-taste-using-spotify-api-seaborn-in-python-77f5b749b421)に触発されました)、ナイジェリアで人気の音楽を見てみましょう。このデータセットには、曲の「ダンサビリティ」スコア、「アコースティック性」、音量、「スピーチ性」、人気度、エネルギーに関するデータが含まれています。このデータからパターンを発見するのは興味深いでしょう! + +![ターンテーブル](../../../translated_images/turntable.f2b86b13c53302dc106aa741de9dc96ac372864cf458dd6f879119857aab01da.ja.jpg) + +> 写真提供: Marcela Laskoski on Unsplash + +このレッスンシリーズでは、クラスタリング技術を使用してデータを分析する新しい方法を学びます。クラスタリングは、データセットにラベルがない場合に特に役立ちます。ラベルがある場合は、以前のレッスンで学んだ分類技術の方が役立つかもしれません。しかし、ラベルのないデータをグループ化したい場合、クラスタリングはパターンを発見する素晴らしい方法です。 + +> クラスタリングモデルを扱う方法を学ぶのに役立つローコードツールがあります。[Azure ML](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)を試してみてください。 + +## レッスン + +1. [クラスタリングの概要](1-Visualize/README.md) +2. [K-Meansクラスタリング](2-K-Means/README.md) + +## クレジット + +これらのレッスンは🎶を込めて[Jen Looper](https://www.twitter.com/jenlooper)によって書かれ、[Rishit Dagli](https://rishit_dagli)と[Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan)による有益なレビューが加えられました。 + +[Nigerian Songs](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify)データセットは、Spotifyから収集されたものとしてKaggleから提供されました。 + +このレッスンの作成に役立った有用なK-Meansの例には、[アイリスの探索](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering)、[入門ノートブック](https://www.kaggle.com/prashant111/k-means-clustering-with-python)、および[仮想NGOの例](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering)があります。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/1-Introduction-to-NLP/README.md b/translations/ja/6-NLP/1-Introduction-to-NLP/README.md new file mode 100644 index 000000000..c0adbe98f --- /dev/null +++ b/translations/ja/6-NLP/1-Introduction-to-NLP/README.md @@ -0,0 +1,177 @@ + +# 自然言語処理の紹介 + +このレッスンでは、*自然言語処理*(NLP)という*計算言語学*のサブフィールドの簡単な歴史と重要な概念について学びます。 + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/31/) + +## はじめに + +一般的にNLPと呼ばれる自然言語処理は、機械学習が適用され、実際のソフトウェアで使用されている最もよく知られた分野の一つです。 + +✅ 毎日使っているソフトウェアで、NLPが組み込まれているものを思い浮かべられますか?例えば、ワードプロセッシングプログラムや普段使っているモバイルアプリなどはどうでしょう? + +このレッスンで学ぶ内容: + +- **言語の概念**。言語がどのように発展してきたか、そして主要な研究分野について。 +- **定義と概念**。コンピュータがテキストを処理する方法についての定義や概念、例えば構文解析、文法、名詞や動詞の識別などを学びます。このレッスンではいくつかのコーディング課題があり、次のレッスンでコード化する重要な概念がいくつか紹介されます。 + +## 計算言語学 + +計算言語学は、数十年にわたる研究開発の分野で、コンピュータが言語を扱い、理解し、翻訳し、さらにはコミュニケーションを取る方法を研究します。自然言語処理(NLP)は、コンピュータが「自然な」、つまり人間の言語を処理する方法に焦点を当てた関連分野です。 + +### 例 - スマートフォンの音声入力 + +スマートフォンに音声入力をしたり、仮想アシスタントに質問をしたことがある場合、あなたの音声はテキスト形式に変換され、その後話した言語から処理、つまり*構文解析*されます。検出されたキーワードは、スマートフォンやアシスタントが理解し、行動できる形式に変換されます。 + +![理解](../../../../translated_images/comprehension.619708fc5959b0f6a24ebffba2ad7b0625391a476141df65b43b59de24e45c6f.ja.png) +> 言語の本当の理解は難しい!画像提供: [Jen Looper](https://twitter.com/jenlooper) + +### この技術はどのように可能になったのか? + +これは、誰かがこの機能を実現するコンピュータプログラムを書いたから可能になりました。数十年前、あるSF作家たちは、人々が主にコンピュータに話しかけ、コンピュータが常に正確にその意味を理解する未来を予測しました。しかし、実際にはそれほど簡単な問題ではなく、今日では問題の理解が進んでいるものの、文の意味を完全に理解する「完璧な」自然言語処理を達成するにはまだ多くの課題があります。特に、ユーモアや皮肉のような感情を文から検出することは非常に難しい問題です。 + +この時点で、学校の授業で文法の構成要素について学んだことを思い出すかもしれません。一部の国では、文法や言語学が専用の科目として教えられていますが、多くの国ではこれらのトピックは言語学習の一環として教えられます。例えば、初等教育で母国語を学ぶ際(読み書きを学ぶ)や、中等教育で第二言語を学ぶ際などです。名詞と動詞、または副詞と形容詞を区別するのが得意でなくても心配しないでください! + +*単純現在形*と*現在進行形*の違いに苦労する場合、あなたは一人ではありません。これは多くの人々、特にその言語のネイティブスピーカーでさえも難しいことです。良いニュースは、コンピュータは形式的なルールを適用するのが非常に得意であり、人間と同じように文を*構文解析*するコードを書くことを学べるということです。後に学ぶより大きな課題は、文の*意味*や*感情*を理解することです。 + +## 前提条件 + +このレッスンの主な前提条件は、このレッスンの言語を読んで理解できることです。数学の問題や方程式を解く必要はありません。このレッスンの元の著者は英語で書きましたが、他の言語にも翻訳されているため、翻訳版を読んでいる可能性があります。いくつかの例では、異なる言語の文法ルールを比較するために複数の言語が使用されています。これらは翻訳されていませんが、説明文は翻訳されているため、意味は明確なはずです。 + +コーディング課題ではPythonを使用し、例はPython 3.8を使用しています。 + +このセクションで必要なもの: + +- **Python 3の理解**。Python 3のプログラミング言語の理解。このレッスンでは入力、ループ、ファイル読み取り、配列を使用します。 +- **Visual Studio Code + 拡張機能**。Visual Studio CodeとそのPython拡張機能を使用します。お好みのPython IDEを使用することもできます。 +- **TextBlob**。 [TextBlob](https://github.com/sloria/TextBlob)はPython用の簡易テキスト処理ライブラリです。TextBlobのサイトで指示に従い、システムにインストールしてください(以下のようにコーパスもインストールしてください): + + ```bash + pip install -U textblob + python -m textblob.download_corpora + ``` + +> 💡 ヒント: PythonはVS Code環境で直接実行できます。詳細は[ドキュメント](https://code.visualstudio.com/docs/languages/python?WT.mc_id=academic-77952-leestott)を確認してください。 + +## 機械との対話 + +コンピュータが人間の言語を理解しようとする歴史は数十年前に遡り、自然言語処理を最初に考えた科学者の一人が*アラン・チューリング*です。 + +### 『チューリングテスト』 + +チューリングが1950年代に*人工知能*を研究していた際、人間とコンピュータが(タイピングによる通信を通じて)会話を行い、その会話の中で人間が相手が人間かコンピュータかを判断できない場合、コンピュータは*思考している*と言えるのではないかと考えました。 + +### インスピレーション - 『模倣ゲーム』 + +このアイデアは*模倣ゲーム*というパーティーゲームから着想を得たもので、尋問者が部屋に一人でいて、別の部屋にいる二人の人物のうち、どちらが男性でどちらが女性かを判断するというものです。尋問者はメモを送ることができ、書かれた回答からその人物の性別を明らかにする質問を考えなければなりません。当然、別の部屋にいるプレイヤーたちは、尋問者を誤解させたり混乱させたりするような回答をしながらも、誠実に答えているように見せかけようとします。 + +### Elizaの開発 + +1960年代、MITの科学者*ジョセフ・ワイゼンバウム*は[*Eliza*](https://wikipedia.org/wiki/ELIZA)というコンピュータの「セラピスト」を開発しました。このプログラムは人間に質問をし、回答を理解しているかのように見せかけました。しかし、Elizaは文を構文解析し、特定の文法構造やキーワードを識別して適切な回答をすることはできましたが、文を*理解*しているとは言えませんでした。例えば、Elizaが「**私は** 悲しい」という形式の文を提示された場合、文の時制を変更し、いくつかの単語を追加して「**あなたは** 悲しいのはどれくらいですか?」という回答を生成することがありました。 + +これにより、Elizaが文を理解し、続く質問をしているような印象を与えましたが、実際には時制を変更し、いくつかの単語を追加しているだけでした。Elizaが対応するキーワードを識別できない場合、代わりに多くの異なる文に適用可能なランダムな回答を生成しました。例えば、ユーザーが「**あなたは** 自転車です」と書いた場合、Elizaは「**私は** 自転車であるのはどれくらいですか?」と回答する可能性があり、より合理的な回答をすることはありませんでした。 + +[![Elizaとの会話](https://img.youtube.com/vi/RMK9AphfLco/0.jpg)](https://youtu.be/RMK9AphfLco "Elizaとの会話") + +> 🎥 上の画像をクリックすると、オリジナルのELIZAプログラムについての動画が見られます + +> 注: [Eliza](https://cacm.acm.org/magazines/1966/1/13317-elizaa-computer-program-for-the-study-of-natural-language-communication-between-man-and-machine/abstract)の1966年に発表されたオリジナルの説明をACMアカウントを持っている場合に読むことができます。または、[Wikipedia](https://wikipedia.org/wiki/ELIZA)でElizaについて読むことができます。 + +## 演習 - 基本的な会話型ボットのコーディング + +会話型ボット、例えばElizaのようなものは、ユーザー入力を引き出し、理解しているかのように知的に応答するプログラムです。Elizaとは異なり、私たちのボットは知的な会話をしているように見せるための複数のルールを持っていません。代わりに、ほぼどんな些細な会話にも適用可能なランダムな応答を生成する能力だけを持っています。 + +### 計画 + +会話型ボットを構築する際のステップ: + +1. ユーザーにボットとの対話方法を説明する指示を表示する +2. ループを開始する + 1. ユーザー入力を受け取る + 2. ユーザーが終了を要求した場合、終了する + 3. ユーザー入力を処理し、応答を決定する(この場合、応答は可能な汎用的な応答リストからランダムに選択される) + 4. 応答を表示する +3. ステップ2に戻る + +### ボットの構築 + +次にボットを作成します。まずいくつかのフレーズを定義します。 + +1. 以下のランダムな応答を使用してPythonでこのボットを作成してください: + + ```python + random_responses = ["That is quite interesting, please tell me more.", + "I see. Do go on.", + "Why do you say that?", + "Funny weather we've been having, isn't it?", + "Let's change the subject.", + "Did you catch the game last night?"] + ``` + + 以下はサンプル出力の例です(ユーザー入力は`>`で始まる行です): + + ```output + Hello, I am Marvin, the simple robot. + You can end this conversation at any time by typing 'bye' + After typing each answer, press 'enter' + How are you today? + > I am good thanks + That is quite interesting, please tell me more. + > today I went for a walk + Did you catch the game last night? + > I did, but my team lost + Funny weather we've been having, isn't it? + > yes but I hope next week is better + Let's change the subject. + > ok, lets talk about music + Why do you say that? + > because I like music! + Why do you say that? + > bye + It was nice talking to you, goodbye! + ``` + + この課題の一つの解決策は[こちら](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/1-Introduction-to-NLP/solution/bot.py)です。 + + ✅ 考えてみましょう + + 1. ランダムな応答が、ボットが実際にユーザーを理解していると思わせることができると思いますか? + 2. ボットがより効果的になるためにはどのような機能が必要ですか? + 3. ボットが文の意味を本当に「理解」できる場合、会話中の以前の文の意味を「記憶」する必要があると思いますか? + +--- + +## 🚀チャレンジ + +上記の「考えてみましょう」の要素のいずれかを選び、それをコードで実装するか、擬似コードを使用して紙に解決策を書いてみてください。 + +次のレッスンでは、自然言語を解析するためのさまざまなアプローチや機械学習について学びます。 + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/32/) + +## 復習と自己学習 + +以下の参考文献を読んでさらに学びを深めてください。 + +### 参考文献 + +1. Schubert, Lenhart, "Computational Linguistics", *The Stanford Encyclopedia of Philosophy* (Spring 2020 Edition), Edward N. Zalta (ed.), URL = . +2. Princeton University "About WordNet." [WordNet](https://wordnet.princeton.edu/). Princeton University. 2010. + +## 課題 + +[ボットを探す](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。原文(元の言語で記載された文書)が公式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/1-Introduction-to-NLP/assignment.md b/translations/ja/6-NLP/1-Introduction-to-NLP/assignment.md new file mode 100644 index 000000000..178e5ef73 --- /dev/null +++ b/translations/ja/6-NLP/1-Introduction-to-NLP/assignment.md @@ -0,0 +1,25 @@ + +# ボットを探そう + +## 手順 + +ボットは至る所に存在します。あなたの課題は、ボットを見つけて採用することです!ボットはウェブサイト、銀行アプリケーション、電話などで見つけることができます。例えば、金融サービス会社にアドバイスや口座情報を問い合わせる際に利用されることがあります。ボットを分析し、混乱させることができるか試してみてください。もし混乱させることができた場合、なぜそうなったのか考えてみましょう。その体験について短いレポートを書いてください。 + +## 評価基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | ------------------------------------------------------------------------------------------------------------- | ---------------------------------------- | --------------------- | +| | ボットのアーキテクチャを推測し、それに関する体験を説明した1ページのレポートが書かれている | レポートが不完全、または十分に調査されていない | レポートが提出されていない | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/2-Tasks/README.md b/translations/ja/6-NLP/2-Tasks/README.md new file mode 100644 index 000000000..0a6ed51fa --- /dev/null +++ b/translations/ja/6-NLP/2-Tasks/README.md @@ -0,0 +1,228 @@ + +# 自然言語処理の一般的なタスクと技術 + +ほとんどの*自然言語処理*タスクでは、処理対象のテキストを分解し、分析し、その結果をルールやデータセットと照合する必要があります。これらのタスクを通じて、プログラマーはテキスト内の単語や用語の_意味_や_意図_、または単に_頻度_を導き出すことができます。 + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/33/) + +テキストを処理する際に使用される一般的な技術を見てみましょう。これらの技術は機械学習と組み合わせることで、大量のテキストを効率的に分析するのに役立ちます。ただし、これらのタスクに機械学習を適用する前に、NLP専門家が直面する問題を理解する必要があります。 + +## NLPに共通するタスク + +テキストを分析する方法はさまざまです。実行できるタスクがあり、それらを通じてテキストの理解を深め、結論を導き出すことができます。通常、これらのタスクは順序立てて実行されます。 + +### トークン化 + +おそらくほとんどのNLPアルゴリズムが最初に行うことは、テキストをトークン、つまり単語に分割することです。一見簡単そうに思えますが、句読点や異なる言語の単語や文の区切りを考慮する必要があるため、複雑になることがあります。区切りを決定するためにさまざまな方法を使用する必要があるかもしれません。 + +![トークン化](../../../../translated_images/tokenization.1641a160c66cd2d93d4524e8114e93158a9ce0eba3ecf117bae318e8a6ad3487.ja.png) +> **Pride and Prejudice**の文をトークン化する様子。インフォグラフィック作成者:[Jen Looper](https://twitter.com/jenlooper) + +### 埋め込み + +[単語埋め込み](https://wikipedia.org/wiki/Word_embedding)は、テキストデータを数値に変換する方法です。埋め込みは、意味が似ている単語や一緒に使われる単語がクラスター化されるように行われます。 + +![単語埋め込み](../../../../translated_images/embedding.2cf8953c4b3101d188c2f61a5de5b6f53caaa5ad4ed99236d42bc3b6bd6a1fe2.ja.png) +> "I have the highest respect for your nerves, they are my old friends." - **Pride and Prejudice**の文に対する単語埋め込み。インフォグラフィック作成者:[Jen Looper](https://twitter.com/jenlooper) + +✅ [この興味深いツール](https://projector.tensorflow.org/)を試して単語埋め込みを実験してみましょう。単語をクリックすると、似た単語のクラスターが表示されます。例えば、'toy'は'disney'、'lego'、'playstation'、'console'とクラスター化されます。 + +### 構文解析と品詞タグ付け + +トークン化された各単語は、名詞、動詞、形容詞などの品詞としてタグ付けすることができます。例えば、`the quick red fox jumped over the lazy brown dog`という文は、fox = 名詞、jumped = 動詞として品詞タグ付けされるかもしれません。 + +![構文解析](../../../../translated_images/parse.d0c5bbe1106eae8fe7d60a183cd1736c8b6cec907f38000366535f84f3036101.ja.png) + +> **Pride and Prejudice**の文を解析する様子。インフォグラフィック作成者:[Jen Looper](https://twitter.com/jenlooper) + +構文解析は、文中でどの単語が互いに関連しているかを認識することです。例えば、`the quick red fox jumped`は形容詞-名詞-動詞のシーケンスであり、`lazy brown dog`のシーケンスとは別です。 + +### 単語とフレーズの頻度 + +大量のテキストを分析する際に役立つ手法の一つは、興味のあるすべての単語やフレーズの辞書を作成し、それがどれだけ頻繁に出現するかを記録することです。例えば、`the quick red fox jumped over the lazy brown dog`というフレーズでは、`the`の頻度は2です。 + +以下は、単語の頻度を数える例です。ラドヤード・キップリングの詩「The Winners」には次のような一節があります: + +```output +What the moral? Who rides may read. +When the night is thick and the tracks are blind +A friend at a pinch is a friend, indeed, +But a fool to wait for the laggard behind. +Down to Gehenna or up to the Throne, +He travels the fastest who travels alone. +``` + +フレーズの頻度は必要に応じて大文字小文字を区別することができます。例えば、`a friend`の頻度は2、`the`の頻度は6、`travels`の頻度は2です。 + +### N-グラム + +テキストを一定の長さの単語のシーケンスに分割することができます。1単語(ユニグラム)、2単語(バイグラム)、3単語(トライグラム)、または任意の数の単語(N-グラム)です。 + +例えば、`the quick red fox jumped over the lazy brown dog`をN-グラムスコア2で分割すると、以下のN-グラムが生成されます: + +1. the quick +2. quick red +3. red fox +4. fox jumped +5. jumped over +6. over the +7. the lazy +8. lazy brown +9. brown dog + +これをスライディングボックスとして文に適用すると視覚的に理解しやすくなります。以下は3単語のN-グラムの場合です。各文でN-グラムが太字で示されています: + +1. **the quick red** fox jumped over the lazy brown dog +2. the **quick red fox** jumped over the lazy brown dog +3. the quick **red fox jumped** over the lazy brown dog +4. the quick red **fox jumped over** the lazy brown dog +5. the quick red fox **jumped over the** lazy brown dog +6. the quick red fox jumped **over the lazy** brown dog +7. the quick red fox jumped over **the lazy brown** dog +8. the quick red fox jumped over the **lazy brown dog** + +![N-グラムスライディングウィンドウ](../../../../6-NLP/2-Tasks/images/n-grams.gif) + +> N-グラム値3:インフォグラフィック作成者:[Jen Looper](https://twitter.com/jenlooper) + +### 名詞句抽出 + +ほとんどの文には、主語または目的語となる名詞があります。英語では、しばしば`a`、`an`、`the`がその前に付くことで識別できます。文の意味を理解しようとする際に、`名詞句を抽出する`ことはNLPで一般的なタスクです。 + +✅ 文「I cannot fix on the hour, or the spot, or the look or the words, which laid the foundation. It is too long ago. I was in the middle before I knew that I had begun.」では、名詞句を特定できますか? + +文`the quick red fox jumped over the lazy brown dog`には2つの名詞句があります:**quick red fox**と**lazy brown dog**。 + +### 感情分析 + +文やテキストは、*ポジティブ*または*ネガティブ*な感情を分析することができます。感情は*極性*と*客観性/主観性*で測定されます。極性は-1.0から1.0(ネガティブからポジティブ)、客観性は0.0から1.0(最も客観的から最も主観的)で測定されます。 + +✅ 後で学ぶように、機械学習を使用して感情を判断する方法はさまざまですが、一つの方法として、人間の専門家がポジティブまたはネガティブに分類した単語やフレーズのリストを使用し、そのモデルをテキストに適用して極性スコアを計算する方法があります。この方法がある状況ではうまく機能し、別の状況ではうまく機能しない理由がわかりますか? + +### 語形変化 + +語形変化を使用すると、単語の単数形または複数形を取得することができます。 + +### レンマ化 + +*レンマ*は、一連の単語の根本または基本形です。例えば、*flew*、*flies*、*flying*のレンマは動詞*fly*です。 + +NLP研究者にとって有用なデータベースもいくつかあります。特に: + +### WordNet + +[WordNet](https://wordnet.princeton.edu/)は、単語、同義語、反意語、その他多くの詳細を多くの異なる言語で提供するデータベースです。翻訳、スペルチェッカー、またはあらゆる種類の言語ツールを構築する際に非常に役立ちます。 + +## NLPライブラリ + +幸いなことに、これらの技術をすべて自分で構築する必要はありません。自然言語処理や機械学習に特化していない開発者でも利用しやすい優れたPythonライブラリが利用可能です。次のレッスンではこれらの例をさらに詳しく学びますが、ここでは次のタスクに役立ついくつかの便利な例を学びます。 + +### 演習 - `TextBlob`ライブラリを使用する + +TextBlobというライブラリを使用してみましょう。このライブラリには、これらの種類のタスクに取り組むための便利なAPIが含まれています。TextBlobは「[NLTK](https://nltk.org)と[pattern](https://github.com/clips/pattern)の巨人の肩の上に立ち、両者とうまく連携します。」そのAPIにはかなりの量の機械学習が組み込まれています。 + +> 注:[Quick Start](https://textblob.readthedocs.io/en/dev/quickstart.html#quickstart)ガイドは、経験豊富なPython開発者に推奨されます。 + +*名詞句*を特定しようとする際、TextBlobは名詞句を見つけるためのいくつかの抽出オプションを提供します。 + +1. `ConllExtractor`を見てみましょう。 + + ```python + from textblob import TextBlob + from textblob.np_extractors import ConllExtractor + # import and create a Conll extractor to use later + extractor = ConllExtractor() + + # later when you need a noun phrase extractor: + user_input = input("> ") + user_input_blob = TextBlob(user_input, np_extractor=extractor) # note non-default extractor specified + np = user_input_blob.noun_phrases + ``` + + > ここで何が起こっているのでしょうか?[ConllExtractor](https://textblob.readthedocs.io/en/dev/api_reference.html?highlight=Conll#textblob.en.np_extractors.ConllExtractor)は「ConLL-2000トレーニングコーパスで学習されたチャンク解析を使用する名詞句抽出器」です。ConLL-2000は、2000年の計算自然言語学習会議を指します。この会議では毎年、難しいNLP問題に取り組むワークショップが開催され、2000年には名詞チャンク化がテーマでした。モデルはWall Street Journalを使用して学習され、「セクション15-18をトレーニングデータ(211727トークン)として、セクション20をテストデータ(47377トークン)として」使用しました。使用された手順は[こちら](https://www.clips.uantwerpen.be/conll2000/chunking/)で、結果は[こちら](https://ifarm.nl/erikt/research/np-chunking.html)で確認できます。 + +### チャレンジ - NLPでボットを改善する + +前のレッスンでは非常にシンプルなQ&Aボットを作成しました。今回は、入力を感情分析して感情に応じた応答を出力することで、Marvinを少し共感的にします。また、`noun_phrase`を特定してそのトピックについてさらに質問します。 + +より良い会話型ボットを構築する際の手順: + +1. ユーザーにボットとの対話方法を説明する指示を表示する +2. ループを開始する + 1. ユーザー入力を受け取る + 2. ユーザーが終了を要求した場合は終了する + 3. ユーザー入力を処理し、適切な感情応答を決定する + 4. 感情に名詞句が含まれている場合は、それを複数形にしてそのトピックについてさらに質問する + 5. 応答を表示する +3. ステップ2に戻る + +以下はTextBlobを使用して感情を判断するコードスニペットです。感情応答の*グラデーション*は4つだけですが(必要に応じて増やすこともできます): + +```python +if user_input_blob.polarity <= -0.5: + response = "Oh dear, that sounds bad. " +elif user_input_blob.polarity <= 0: + response = "Hmm, that's not great. " +elif user_input_blob.polarity <= 0.5: + response = "Well, that sounds positive. " +elif user_input_blob.polarity <= 1: + response = "Wow, that sounds great. " +``` + +以下はサンプル出力の例です(ユーザー入力は`>`で始まる行にあります): + +```output +Hello, I am Marvin, the friendly robot. +You can end this conversation at any time by typing 'bye' +After typing each answer, press 'enter' +How are you today? +> I am ok +Well, that sounds positive. Can you tell me more? +> I went for a walk and saw a lovely cat +Well, that sounds positive. Can you tell me more about lovely cats? +> cats are the best. But I also have a cool dog +Wow, that sounds great. Can you tell me more about cool dogs? +> I have an old hounddog but he is sick +Hmm, that's not great. Can you tell me more about old hounddogs? +> bye +It was nice talking to you, goodbye! +``` + +タスクの一つの解決策は[こちら](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/2-Tasks/solution/bot.py)にあります。 + +✅ 知識チェック + +1. 共感的な応答は、ボットが実際にユーザーを理解していると思わせることができると思いますか? +2. 名詞句を特定することで、ボットはより「信じられる」ものになりますか? +3. 文から名詞句を抽出することは、なぜ有用なのでしょうか? + +--- + +前の知識チェックでのボットを実装し、友人にテストしてもらいましょう。それが友人を「だます」ことができるでしょうか?ボットをより「信じられる」ものにすることはできますか? + +## 🚀チャレンジ + +前の知識チェックでのタスクを試して実装してみましょう。友人にボットをテストしてもらいましょう。それが友人を「だます」ことができるでしょうか?ボットをより「信じられる」ものにすることはできますか? + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/34/) + +## 復習と自己学習 + +次のいくつかのレッスンでは感情分析についてさらに学びます。この興味深い技術について[KDNuggets](https://www.kdnuggets.com/tag/nlp)の記事などを調べてみてください。 + +## 課題 + +[ボットに応答させる](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/2-Tasks/assignment.md b/translations/ja/6-NLP/2-Tasks/assignment.md new file mode 100644 index 000000000..6b0094799 --- /dev/null +++ b/translations/ja/6-NLP/2-Tasks/assignment.md @@ -0,0 +1,25 @@ + +# ボットに会話をさせる + +## 手順 + +これまでのレッスンでは、基本的なチャットボットをプログラムしました。このボットは「bye」と言うまでランダムな返答をします。返答を少しランダムではなくして、「why」や「how」といった特定の言葉を言ったときに返答をトリガーするようにできますか?ボットを拡張する際に、機械学習がこのような作業をどのように手動から解放するかを少し考えてみてください。NLTKやTextBlobライブラリを使用して、タスクを簡単にすることができます。 + +## 評価基準 + +| 基準 | 優秀な状態 | 適切な状態 | 改善が必要な状態 | +| -------- | --------------------------------------------- | ------------------------------------------------ | ----------------------- | +| | 新しいbot.pyファイルが提示され、文書化されている | 新しいbotファイルが提示されているがバグが含まれている | ファイルが提示されていない | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤訳について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/3-Translation-Sentiment/README.md b/translations/ja/6-NLP/3-Translation-Sentiment/README.md new file mode 100644 index 000000000..bd372eba2 --- /dev/null +++ b/translations/ja/6-NLP/3-Translation-Sentiment/README.md @@ -0,0 +1,200 @@ + +# 翻訳と感情分析をMLで行う + +前のレッスンでは、`TextBlob`を使用して基本的なボットを構築する方法を学びました。このライブラリは、名詞句の抽出などの基本的なNLPタスクを実行するために、裏で機械学習を組み込んでいます。計算言語学におけるもう一つの重要な課題は、ある話し言葉や書き言葉の言語から別の言語への正確な「翻訳」です。 + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/35/) + +翻訳は非常に難しい問題であり、数千もの言語が存在し、それぞれが非常に異なる文法規則を持つことが課題を複雑にしています。一つのアプローチは、英語のような言語の正式な文法規則を非言語依存の構造に変換し、それを別の言語に変換する方法です。このアプローチでは、以下の手順を取ります: + +1. **識別**: 入力言語の単語を名詞、動詞などにタグ付けして識別します。 +2. **翻訳の作成**: ターゲット言語形式で各単語を直接翻訳します。 + +### 英語からアイルランド語への例文 + +英語では、_I feel happy_ という文は以下の順序で3つの単語から成り立っています: + +- **主語** (I) +- **動詞** (feel) +- **形容詞** (happy) + +しかし、アイルランド語では、同じ文は非常に異なる文法構造を持っています。「happy」や「sad」といった感情は、あなたの上に「ある」と表現されます。 + +英語のフレーズ `I feel happy` はアイルランド語では `Tá athas orm` となります。直訳すると `Happy is upon me` となります。 + +アイルランド語話者が英語に翻訳する場合、`Happy is upon me` ではなく `I feel happy` と言います。これは、単語や文の構造が異なっていても、文の意味を理解しているからです。 + +アイルランド語の文の正式な順序は以下の通りです: + +- **動詞** (Tá または is) +- **形容詞** (athas または happy) +- **主語** (orm または upon me) + +## 翻訳 + +単純な翻訳プログラムは、文の構造を無視して単語だけを翻訳するかもしれません。 + +✅ 第二言語(または第三言語以上)を成人してから学んだことがある場合、母国語で考え、頭の中で単語ごとに第二言語に翻訳し、それを話すという方法を取ったことがあるかもしれません。これは、単純な翻訳コンピュータプログラムが行っていることと似ています。この段階を超えて流暢さを得ることが重要です! + +単純な翻訳は、悪い(時には面白い)誤訳を引き起こします。例えば、`I feel happy` を直訳すると、アイルランド語では `Mise bhraitheann athas` となります。これは文字通り `me feel happy` を意味し、有効なアイルランド語の文ではありません。英語とアイルランド語は隣接する島で話されている言語ですが、文法構造が非常に異なる言語です。 + +> アイルランド語の言語伝統についての動画をいくつか見ることができます。例えば [こちら](https://www.youtube.com/watch?v=mRIaLSdRMMs) + +### 機械学習アプローチ + +これまで、自然言語処理の正式な規則アプローチについて学びました。もう一つのアプローチは、単語の意味を無視し、代わりに機械学習を使用してパターンを検出することです。これは、元の言語とターゲット言語の両方で大量のテキスト(*コーパス*)またはテキスト群(*コーパラ*)がある場合に翻訳で機能します。 + +例えば、ジェーン・オースティンが1813年に書いた有名な英語の小説『高慢と偏見』を考えてみましょう。この本を英語で読み、人間によるフランス語訳を参照すると、一方の言語でのフレーズがもう一方の言語で*慣用的に*翻訳されていることを検出できます。これをすぐに試してみましょう。 + +例えば、英語のフレーズ `I have no money` をフランス語に直訳すると、`Je n'ai pas de monnaie` になるかもしれません。「Monnaie」はフランス語の微妙な「偽の同義語」であり、「money」と「monnaie」は同義ではありません。人間が行うより良い翻訳は `Je n'ai pas d'argent` であり、これは「お金がない」という意味をよりよく伝えます(「monnaie」は「小銭」という意味です)。 + +![monnaie](../../../../translated_images/monnaie.606c5fa8369d5c3b3031ef0713e2069485c87985dd475cd9056bdf4c76c1f4b8.ja.png) + +> 画像提供:[Jen Looper](https://twitter.com/jenlooper) + +十分な人間による翻訳があれば、MLモデルは以前に専門家によって翻訳されたテキストの一般的なパターンを特定することで、翻訳の精度を向上させることができます。 + +### 演習 - 翻訳 + +`TextBlob` を使用して文を翻訳できます。有名な『高慢と偏見』の冒頭の一文を試してみましょう: + +```python +from textblob import TextBlob + +blob = TextBlob( + "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife!" +) +print(blob.translate(to="fr")) + +``` + +`TextBlob` は翻訳をかなりうまく行います:"C'est une vérité universellement reconnue, qu'un homme célibataire en possession d'une bonne fortune doit avoir besoin d'une femme!"。 + +実際、1932年にV. LeconteとCh. Pressoirによるフランス語訳よりも正確であると言えます: + +"C'est une vérité universelle qu'un célibataire pourvu d'une belle fortune doit avoir envie de se marier, et, si peu que l'on sache de son sentiment à cet egard, lorsqu'il arrive dans une nouvelle résidence, cette idée est si bien fixée dans l'esprit de ses voisins qu'ils le considèrent sur-le-champ comme la propriété légitime de l'une ou l'autre de leurs filles." + +この場合、MLによる翻訳は、原作者の意図を「明確化」するために不必要に言葉を追加した人間の翻訳者よりも優れています。 + +> ここで何が起こっているのでしょうか?そして、なぜTextBlobは翻訳が得意なのでしょうか?実は、TextBlobは裏でGoogle翻訳を使用しており、数百万のフレーズを解析してタスクに最適な文字列を予測する高度なAIです。ここでは手動の作業は一切行われておらず、`blob.translate` を使用するにはインターネット接続が必要です。 + +✅ 他の文も試してみましょう。MLと人間の翻訳のどちらが優れているでしょうか?どのケースでそう感じますか? + +## 感情分析 + +機械学習が非常に効果的に機能するもう一つの分野は感情分析です。非MLアプローチでは、ポジティブな単語とネガティブな単語を特定し、新しいテキストが与えられた場合、ポジティブ、ネガティブ、中立の単語の総価値を計算して全体的な感情を特定します。 + +このアプローチは、Marvinのタスクで見たように簡単に騙される可能性があります。例えば、`Great, that was a wonderful waste of time, I'm glad we are lost on this dark road` という文は皮肉でネガティブな感情を持つ文ですが、単純なアルゴリズムは `great`、`wonderful`、`glad` をポジティブとして検出し、`waste`、`lost`、`dark` をネガティブとして検出します。これらの矛盾する単語によって全体的な感情が揺さぶられます。 + +✅ 人間の話者として皮肉をどのように伝えるかを少し考えてみましょう。声の抑揚が大きな役割を果たします。「Well, that film was awesome」というフレーズを異なる方法で言ってみて、声が意味をどのように伝えるかを発見してください。 + +### MLアプローチ + +MLアプローチでは、ネガティブとポジティブなテキスト群を手動で収集します。例えば、ツイートや映画レビュー、またはスコアと書かれた意見があるものです。その後、NLP技術を意見とスコアに適用し、パターンが浮かび上がります(例:ポジティブな映画レビューには「Oscar worthy」というフレーズがネガティブな映画レビューよりも多く含まれる傾向がある、またはポジティブなレストランレビューには「gourmet」という言葉が「disgusting」よりも多く含まれる)。 + +> ⚖️ **例**: 政治家のオフィスで働いていて、新しい法律が議論されている場合、支持するメールや反対するメールをオフィスに送る人がいるかもしれません。これらのメールを読んで「支持」と「反対」の2つの山に分類するように指示されたとします。メールが多い場合、すべてを読むのは圧倒されるかもしれません。ボットがすべてのメールを読んで理解し、それぞれのメールがどの山に属するかを教えてくれるとしたら便利ではありませんか? +> +> これを実現する一つの方法は機械学習を使用することです。モデルを「反対」メールの一部と「支持」メールの一部でトレーニングします。モデルは「反対」または「支持」メールに特有のフレーズや単語を関連付ける傾向がありますが、*内容を理解することはありません*。トレーニングに使用していないメールでテストし、モデルが自分と同じ結論に達するかどうかを確認します。その後、モデルの精度に満足したら、将来のメールを読むことなく処理できます。 + +✅ このプロセスは、以前のレッスンで使用したプロセスに似ていますか? + +## 演習 - 感情的な文 + +感情は -1 から 1 の*極性*で測定されます。-1 は最もネガティブな感情を意味し、1 は最もポジティブな感情を意味します。また、感情は客観性 (0) と主観性 (1) のスコアで測定されます。 + +ジェーン・オースティンの『高慢と偏見』をもう一度見てみましょう。このテキストは [Project Gutenberg](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) で利用可能です。以下のサンプルは、本の最初と最後の文の感情を分析し、その感情の極性と主観性/客観性スコアを表示する短いプログラムを示しています。 + +以下のタスクでは、`TextBlob` ライブラリ(上記で説明)を使用して `sentiment` を決定してください(独自の感情計算機を作成する必要はありません)。 + +```python +from textblob import TextBlob + +quote1 = """It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.""" + +quote2 = """Darcy, as well as Elizabeth, really loved them; and they were both ever sensible of the warmest gratitude towards the persons who, by bringing her into Derbyshire, had been the means of uniting them.""" + +sentiment1 = TextBlob(quote1).sentiment +sentiment2 = TextBlob(quote2).sentiment + +print(quote1 + " has a sentiment of " + str(sentiment1)) +print(quote2 + " has a sentiment of " + str(sentiment2)) +``` + +以下の出力が表示されます: + +```output +It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want # of a wife. has a sentiment of Sentiment(polarity=0.20952380952380953, subjectivity=0.27142857142857146) + +Darcy, as well as Elizabeth, really loved them; and they were + both ever sensible of the warmest gratitude towards the persons + who, by bringing her into Derbyshire, had been the means of + uniting them. has a sentiment of Sentiment(polarity=0.7, subjectivity=0.8) +``` + +## チャレンジ - 感情の極性を確認する + +あなたのタスクは、感情の極性を使用して、『高慢と偏見』に絶対的にポジティブな文が絶対的にネガティブな文よりも多いかどうかを判断することです。このタスクでは、極性スコアが1または-1の場合、絶対的にポジティブまたはネガティブであると仮定できます。 + +**手順:** + +1. [Project Gutenberg](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) から『高慢と偏見』のコピーを .txt ファイルとしてダウンロードします。ファイルの冒頭と末尾のメタデータを削除し、元のテキストのみを残します。 +2. Pythonでファイルを開き、内容を文字列として抽出します。 +3. 本の文字列を使用してTextBlobを作成します。 +4. 本の各文をループで分析します。 + 1. 極性が1または-1の場合、その文をポジティブまたはネガティブなメッセージの配列またはリストに保存します。 +5. 最後に、ポジティブな文とネガティブな文(別々に)およびそれぞれの数を出力します。 + +こちらにサンプル [解答](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb) があります。 + +✅ 知識チェック + +1. 感情は文で使用される単語に基づいていますが、コードは単語を*理解*していますか? +2. 感情の極性が正確だと思いますか?つまり、スコアに*同意*しますか? + 1. 特に、以下の文の絶対的な**ポジティブ**極性に同意しますか? + * “What an excellent father you have, girls!” said she, when the door was shut. + * “Your examination of Mr. Darcy is over, I presume,” said Miss Bingley; “and pray what is the result?” “I am perfectly convinced by it that Mr. Darcy has no defect. + * How wonderfully these sort of things occur! + * I have the greatest dislike in the world to that sort of thing. + * Charlotte is an excellent manager, I dare say. + * “This is delightful indeed! + * I am so happy! + * Your idea of the ponies is delightful. + 2. 次の3つの文は絶対的なポジティブ感情としてスコア付けされましたが、よく読むとポジティブな文ではありません。なぜ感情分析はこれらをポジティブな文だと判断したのでしょうか? + * Happy shall I be, when his stay at Netherfield is over!” “I wish I could say anything to comfort you,” replied Elizabeth; “but it is wholly out of my power. + * If I could but see you as happy! + * Our distress, my dear Lizzy, is very great. + 3. 以下の文の絶対的な**ネガティブ**極性に同意しますか? + - Everybody is disgusted with his pride. + - “I should like to know how he behaves among strangers.” “You shall hear then—but prepare yourself for something very dreadful. + - The pause was to Elizabeth’s feelings dreadful. + - It would be dreadful! + +✅ ジェーン・オースティンの愛好家なら、彼女がしばしば英語リージェンシー社会の滑稽な側面を批判するために本を使うことを理解しているでしょう。『高慢と偏見』の主人公であるエリザベス・ベネットは、鋭い社会観察者(著者と同様)であり、彼女の言葉はしばしば非常にニュアンスに富んでいます。物語の恋愛対象であるダーシー氏でさえ、エリザベスの遊び心とからかいの言葉遣いに気づきます:「私はあなたと十分に知り合いになったので、あなたが時折自分の意見ではない意見を述べることを大いに楽しんでいることを知っています。」 + +--- + +## 🚀チャレンジ + +ユーザー入力から他の特徴を抽出することで、Marvinをさらに改善できますか? + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/36/) + +## レビューと自己学習 +テキストから感情を抽出する方法はたくさんあります。この技術を活用する可能性のあるビジネスアプリケーションについて考えてみてください。また、それがどのように失敗する可能性があるかについても考えてみましょう。感情を分析するための高度で企業向けのシステムについてさらに知りたい場合は、[Azure Text Analysis](https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/how-tos/text-analytics-how-to-sentiment-analysis?tabs=version-3-1?WT.mc_id=academic-77952-leestott)をご覧ください。上記の『高慢と偏見』のいくつかの文をテストして、そのシステムがニュアンスを検出できるかどうか試してみてください。 + +## 課題 + +[Poetic license](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/3-Translation-Sentiment/assignment.md b/translations/ja/6-NLP/3-Translation-Sentiment/assignment.md new file mode 100644 index 000000000..1946ed95e --- /dev/null +++ b/translations/ja/6-NLP/3-Translation-Sentiment/assignment.md @@ -0,0 +1,25 @@ + +# 詩的ライセンス + +## 手順 + +[このノートブック](https://www.kaggle.com/jenlooper/emily-dickinson-word-frequency)には、Azureテキスト分析を使用して感情分析が行われた500以上のエミリー・ディキンソンの詩が含まれています。このデータセットを使用して、レッスンで説明された手法を用いて分析してください。詩の感情の提案は、より高度なAzureサービスの判断と一致しますか?あなたの意見では、なぜ一致する、またはしないのでしょうか?何か驚いたことはありますか? + +## 採点基準 + +| 基準 | 優秀な例 | 十分な例 | 改善が必要な例 | +| -------- | ------------------------------------------------------------------------ | ------------------------------------------------------- | ------------------------ | +| | 著者のサンプル出力をしっかりと分析したノートブックが提示されている | ノートブックが不完全である、または分析を行っていない | ノートブックが提示されていない | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/3-Translation-Sentiment/solution/Julia/README.md b/translations/ja/6-NLP/3-Translation-Sentiment/solution/Julia/README.md new file mode 100644 index 000000000..b14ee641d --- /dev/null +++ b/translations/ja/6-NLP/3-Translation-Sentiment/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/3-Translation-Sentiment/solution/R/README.md b/translations/ja/6-NLP/3-Translation-Sentiment/solution/R/README.md new file mode 100644 index 000000000..69160a871 --- /dev/null +++ b/translations/ja/6-NLP/3-Translation-Sentiment/solution/R/README.md @@ -0,0 +1,15 @@ + +これは一時的なプレースホルダーです + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb b/translations/ja/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb new file mode 100644 index 000000000..98e9479f5 --- /dev/null +++ b/translations/ja/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb @@ -0,0 +1,100 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "27de2abc0235ebd22080fc8f1107454d", + "translation_date": "2025-09-04T03:09:39+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from textblob import TextBlob\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# You should download the book text, clean it, and import it here\n", + "with open(\"pride.txt\", encoding=\"utf8\") as f:\n", + " file_contents = f.read()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "book_pride = TextBlob(file_contents)\n", + "positive_sentiment_sentences = []\n", + "negative_sentiment_sentences = []" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for sentence in book_pride.sentences:\n", + " if sentence.sentiment.polarity == 1:\n", + " positive_sentiment_sentences.append(sentence)\n", + " if sentence.sentiment.polarity == -1:\n", + " negative_sentiment_sentences.append(sentence)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n", + "for sentence in positive_sentiment_sentences:\n", + " print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n", + "for sentence in negative_sentiment_sentences:\n", + " print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/6-NLP/4-Hotel-Reviews-1/README.md b/translations/ja/6-NLP/4-Hotel-Reviews-1/README.md new file mode 100644 index 000000000..9fe26d108 --- /dev/null +++ b/translations/ja/6-NLP/4-Hotel-Reviews-1/README.md @@ -0,0 +1,416 @@ + +# ホテルレビューによる感情分析 - データの処理 + +このセクションでは、前のレッスンで学んだ技術を活用して、大規模なデータセットの探索的データ分析を行います。各列の有用性を十分に理解した後、以下を学びます: + +- 不要な列を削除する方法 +- 既存の列を基に新しいデータを計算する方法 +- 最終的な課題で使用するために結果のデータセットを保存する方法 + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/37/) + +### はじめに + +これまでに、テキストデータが数値データとは大きく異なることを学びました。人間が書いたり話したりしたテキストは、パターンや頻度、感情や意味を分析することができます。このレッスンでは、実際のデータセットと課題に取り組みます:**[ヨーロッパの515Kホテルレビューのデータ](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)**。このデータセットは、[CC0: パブリックドメインライセンス](https://creativecommons.org/publicdomain/zero/1.0/)のもとで公開されており、Booking.comから公開情報をスクレイピングして作成されました。データセットの作成者はJiashen Liuです。 + +### 準備 + +必要なもの: + +* Python 3で.ipynbノートブックを実行する能力 +* pandas +* NLTK、[ローカルにインストールしてください](https://www.nltk.org/install.html) +* Kaggleで入手可能なデータセット [ヨーロッパの515Kホテルレビューのデータ](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)。解凍後約230MBです。このNLPレッスンに関連するルート`/data`フォルダにダウンロードしてください。 + +## 探索的データ分析 + +この課題では、感情分析とゲストレビューのスコアを使用してホテル推薦ボットを構築することを想定しています。使用するデータセットには、6都市にある1493の異なるホテルのレビューが含まれています。 + +Python、ホテルレビューのデータセット、そしてNLTKの感情分析を使用して以下を調べることができます: + +* レビューで最も頻繁に使用される単語やフレーズは何か? +* ホテルを説明する公式の*タグ*はレビューのスコアと関連しているか?(例えば、*若い子供連れの家族*のレビューが*一人旅*よりもネガティブな場合、そのホテルは*一人旅*に適していることを示しているかもしれません) +* NLTKの感情スコアはホテルレビューの数値スコアと一致しているか? + +#### データセット + +ダウンロードしてローカルに保存したデータセットを探索してみましょう。VS CodeやExcelなどのエディタでファイルを開いてください。 + +データセットのヘッダーは以下の通りです: + +*Hotel_Address, Additional_Number_of_Scoring, Review_Date, Average_Score, Hotel_Name, Reviewer_Nationality, Negative_Review, Review_Total_Negative_Word_Counts, Total_Number_of_Reviews, Positive_Review, Review_Total_Positive_Word_Counts, Total_Number_of_Reviews_Reviewer_Has_Given, Reviewer_Score, Tags, days_since_review, lat, lng* + +以下のようにグループ化すると、より簡単に確認できます: +##### ホテル関連の列 + +* `Hotel_Name`, `Hotel_Address`, `lat` (緯度), `lng` (経度) + * *lat*と*lng*を使用して、Pythonでホテルの位置を示す地図をプロットすることができます(ネガティブレビューとポジティブレビューを色分けするなど) + * Hotel_Addressは明らかに有用ではないため、国名に置き換えてソートや検索を簡単にする予定です + +**ホテルのメタレビュー関連の列** + +* `Average_Score` + * データセット作成者によると、この列は「過去1年間の最新コメントに基づいて計算されたホテルの平均スコア」です。この計算方法は少し特殊ですが、スクレイピングされたデータなので現時点ではそのまま受け入れることにします。 + + ✅ このデータの他の列を基に、別の方法で平均スコアを計算する方法を考えられますか? + +* `Total_Number_of_Reviews` + * このホテルが受け取ったレビューの総数 - この値がデータセット内のレビューを指しているかどうかはコードを書かないと明確ではありません。 +* `Additional_Number_of_Scoring` + * レビューのスコアが付けられたが、ポジティブまたはネガティブなレビューが書かれていない場合を意味します + +**レビュー関連の列** + +- `Reviewer_Score` + - 小数点以下1桁までの数値で、最小値2.5から最大値10の間 + - なぜ2.5が最低スコアなのかは説明されていません +- `Negative_Review` + - レビューを書かなかった場合、このフィールドには「**No Negative**」と記載されます + - ネガティブレビューの列にポジティブな内容を書く場合もあります(例:「このホテルには悪いところがありません」) +- `Review_Total_Negative_Word_Counts` + - ネガティブな単語数が多いほど、スコアが低いことを示します(感情分析を行わない場合) +- `Positive_Review` + - レビューを書かなかった場合、このフィールドには「**No Positive**」と記載されます + - ポジティブレビューの列にネガティブな内容を書く場合もあります(例:「このホテルには良いところが全くありません」) +- `Review_Total_Positive_Word_Counts` + - ポジティブな単語数が多いほど、スコアが高いことを示します(感情分析を行わない場合) +- `Review_Date`と`days_since_review` + - レビューの新鮮さや古さを測る指標として使用できます(古いレビューは、ホテルの管理が変わったり、改装が行われたり、プールが追加されたりして、正確でない可能性があります) +- `Tags` + - レビューアが選択できる短い記述で、ゲストのタイプ(例:一人旅や家族)、部屋のタイプ、滞在期間、レビューの提出方法などを示します。 + - 残念ながら、これらのタグを使用するには問題があります。詳細は以下のセクションで説明します。 + +**レビューア関連の列** + +- `Total_Number_of_Reviews_Reviewer_Has_Given` + - 推薦モデルで役立つ可能性があります。例えば、数百件のレビューを投稿しているレビューアがネガティブなレビューを投稿する傾向があるかどうかを判断できるかもしれません。ただし、特定のレビューのレビューアは一意のコードで識別されていないため、レビューのセットにリンクすることはできません。100件以上のレビューを投稿しているレビューアは30人いますが、推薦モデルにどのように役立つかは不明です。 +- `Reviewer_Nationality` + - 一部の人々は、特定の国籍がポジティブまたはネガティブなレビューを投稿する傾向があると考えるかもしれません。しかし、そのようなモデルにそのような見解を組み込む際には注意が必要です。これらは国籍(時には人種)に基づくステレオタイプであり、各レビューアは個々の経験に基づいてレビューを書いています。それは、以前のホテル滞在、移動距離、個人的な気質など、多くの要素を通じてフィルタリングされている可能性があります。レビューのスコアが国籍によるものだと考えるのは正当化が難しいです。 + +##### 例 + +| 平均スコア | レビュー総数 | レビューアスコア | ネガティブ
                                          レビュー | ポジティブレビュー | タグ | +| ---------- | ------------ | ---------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------- | ----------------------------------------------------------------------------------------- | +| 7.8 | 1945 | 2.5 | 現在この場所はホテルではなく建設現場です。長旅の後に休んでいる間、早朝から一日中建設騒音に悩まされました。隣の部屋でジャックハンマーを使った作業が行われていました。部屋の変更を求めましたが、静かな部屋はありませんでした。さらに悪いことに、料金が過剰請求されました。早朝のフライトのために夕方にチェックアウトし、適切な請求書を受け取りましたが、翌日ホテルが予約価格を超える金額を無断で請求しました。ひどい場所です。ここを予約して自分を罰しないでください。 | 何もありません。ひどい場所です。避けてください。 | 出張 カップル スタンダードダブルルーム 2泊滞在 | + +このゲストはホテルでの滞在に満足していなかったことがわかります。このホテルは7.8の良い平均スコアと1945件のレビューを持っていますが、このレビューアは2.5を付け、滞在のネガティブな点について115語を書いています。ポジティブレビューの列に何も書かなかった場合、ポジティブな点がなかったと推測するかもしれませんが、実際には警告の7語を書いています。単語数だけを数えるのではなく、単語の意味や感情を分析しないと、レビューアの意図を誤解する可能性があります。不思議なことに、2.5というスコアは混乱を招きます。滞在がそれほど悪かったのなら、なぜ全く点数を付けないのではなく2.5を付けたのでしょうか?データセットを詳しく調査すると、最低スコアは2.5であり、0ではないことがわかります。最高スコアは10です。 + +##### タグ + +前述のように、最初は`Tags`を使用してデータを分類するアイデアは理にかなっているように思えます。しかし、これらのタグは標準化されていないため、あるホテルでは*シングルルーム*、*ツインルーム*、*ダブルルーム*というオプションがあり、別のホテルでは*デラックスシングルルーム*、*クラシッククイーンルーム*、*エグゼクティブキングルーム*というオプションがあります。これらは同じものかもしれませんが、バリエーションが多すぎて以下の選択肢が考えられます: + +1. すべての用語を単一の標準に変更しようとする。ただし、各ケースで変換方法が明確でないため非常に困難です(例:*クラシックシングルルーム*は*シングルルーム*にマッピングされますが、*中庭または市街地ビュー付きスーペリアクイーンルーム*はマッピングが非常に難しいです)。 + +1. NLPアプローチを取り、各ホテルに適用される*ソロ*、*ビジネストラベラー*、*若い子供連れの家族*などの特定の用語の頻度を測定し、それを推薦に組み込む。 + +タグは通常(ただし常にではありません)、*旅行の種類*、*ゲストの種類*、*部屋の種類*、*滞在日数*、*レビューが提出されたデバイスの種類*に対応する5〜6個のカンマ区切りの値を含む単一のフィールドです。ただし、一部のレビューアが各フィールドを埋めない場合(空白のままにする場合)、値は常に同じ順序であるとは限りません。 + +例として、*グループの種類*を取り上げます。このフィールドには`Tags`列で1025のユニークな可能性があり、残念ながらそのうちの一部しかグループを指していません(部屋の種類なども含まれています)。家族に関連するものだけをフィルタリングすると、結果には多くの*ファミリールーム*タイプの結果が含まれます。*with*という用語を含めると、つまり*Family with*の値をカウントすると、結果は改善され、515,000件の結果のうち80,000件以上が「若い子供連れの家族」または「年長の子供連れの家族」というフレーズを含んでいます。 + +これにより、`Tags`列は完全に無用ではないことがわかりますが、有用にするにはいくらかの作業が必要です。 + +##### ホテルの平均スコア + +データセットには、平均スコアとレビュー数に関連する以下の列があります: + +1. Hotel_Name +2. Additional_Number_of_Scoring +3. Average_Score +4. Total_Number_of_Reviews +5. Reviewer_Score + +このデータセットで最もレビュー数が多いホテルは*Britannia International Hotel Canary Wharf*で、515,000件中4789件のレビューがあります。しかし、このホテルの`Total_Number_of_Reviews`値を見ると9086です。レビューの多くがスコアのみでレビューがないと推測するかもしれません。その場合、`Additional_Number_of_Scoring`列の値を加えるべきです。その値は2682で、4789に加えると7471になりますが、それでも`Total_Number_of_Reviews`の9086には1615足りません。 + +`Average_Score`列を取ると、それがデータセット内のレビューの平均であると推測するかもしれませんが、Kaggleの説明では「*過去1年間の最新コメントに基づいて計算されたホテルの平均スコア*」とされています。これはあまり有用ではないように思えますが、データセット内のレビューのスコアを基に独自の平均を計算することができます。同じホテルを例に取ると、平均ホテルスコアは7.1とされていますが、データセット内のレビューアスコアの計算平均は6.8です。これは近いですが、同じ値ではありません。`Additional_Number_of_Scoring`レビューで与えられたスコアが平均を7.1に引き上げたと推測するしかありません。しかし、その主張をテストまたは証明する方法がないため、`Average_Score`、`Additional_Number_of_Scoring`、`Total_Number_of_Reviews`を使用したり信頼したりするのは難しいです。 + +さらに複雑なのは、レビュー数が2番目に多いホテルの計算平均スコアが8.12で、データセットの`Average_Score`は8.1です。この正しいスコアは偶然なのか、それとも最初のホテルが異常なのかは不明です。 +これらのホテルが例外である可能性があり、ほとんどの値が一致しているが、何らかの理由で一部が一致していない場合に備えて、次にデータセット内の値を調査し、値の正しい使用法(または不使用)を判断するための短いプログラムを書きます。 + +> 🚨 注意事項 +> +> このデータセットを扱う際には、テキストを自分で読んだり分析したりすることなく、テキストから何かを計算するコードを書くことになります。これがNLPの本質であり、人間が行うことなく意味や感情を解釈することです。ただし、否定的なレビューを読む可能性があります。読む必要はないので、読まないことをお勧めします。一部のレビューはくだらないものやホテルとは無関係な否定的なレビュー(例:「天気が良くなかった」など)であり、ホテルや誰にもコントロールできないものです。しかし、否定的なレビューには暗い側面もあります。時には否定的なレビューが人種差別的、性差別的、または年齢差別的であることがあります。これは残念なことですが、公共のウェブサイトからスクレイピングされたデータセットでは予想されることです。一部のレビュアーは、不快感や不快感を覚えるようなレビューを残すことがあります。コードに感情を測定させ、自分で読んで不快になるのを避ける方が良いでしょう。とはいえ、そのようなレビューを書く人は少数派ですが、それでも存在します。 + +## 演習 - データ探索 +### データの読み込み + +データを視覚的に調べるのはこれで十分です。次はコードを書いて答えを得ましょう!このセクションではpandasライブラリを使用します。最初のタスクは、CSVデータを読み込んで確認できることを保証することです。pandasライブラリには高速なCSVローダーがあり、結果は前のレッスンと同様にデータフレームに配置されます。読み込むCSVには50万行以上が含まれていますが、列は17個だけです。pandasはデータフレームと対話するための強力な方法を多数提供しており、各行に対して操作を実行することも可能です。 + +このレッスンの以降では、コードスニペットとコードの説明、結果の意味についての議論があります。コードは付属の_notebook.ipynb_を使用してください。 + +まず、使用するデータファイルを読み込みましょう: + +```python +# Load the hotel reviews from CSV +import pandas as pd +import time +# importing time so the start and end time can be used to calculate file loading time +print("Loading data file now, this could take a while depending on file size") +start = time.time() +# df is 'DataFrame' - make sure you downloaded the file to the data folder +df = pd.read_csv('../../data/Hotel_Reviews.csv') +end = time.time() +print("Loading took " + str(round(end - start, 2)) + " seconds") +``` + +データが読み込まれたら、いくつかの操作を実行できます。このコードを次の部分のプログラムの先頭に保持してください。 + +## データの探索 + +この場合、データはすでに*クリーン*であり、英語以外の文字が含まれていないため、アルゴリズムが英語文字のみを期待している場合に問題を引き起こすことはありません。 + +✅ データを処理する前に、非英語文字をフォーマットする必要がある場合がありますが、今回はその必要はありません。もし必要だった場合、非英語文字をどのように処理しますか? + +データが読み込まれたら、コードを使って探索できることを確認してください。`Negative_Review`と`Positive_Review`列に焦点を当てたくなるかもしれません。これらの列にはNLPアルゴリズムが処理する自然なテキストが含まれています。しかし、ちょっと待ってください!NLPや感情分析に飛び込む前に、以下のコードを使用して、データセット内の値がpandasで計算した値と一致しているかどうかを確認してください。 + +## データフレーム操作 + +このレッスンの最初のタスクは、以下の主張が正しいかどうかを確認するために、データフレームを調査するコードを書くことです(変更せずに)。 + +> 多くのプログラミングタスクと同様に、これを完了する方法はいくつかありますが、良いアドバイスとして、最も簡単で理解しやすい方法で行うことをお勧めします。特に後でこのコードに戻ったときに理解しやすい場合はなおさらです。データフレームには包括的なAPIがあり、効率的に目的を達成する方法がしばしばあります。 + +以下の質問をコーディングタスクとして扱い、解答を試みてください。解答を見ないようにしてください。 + +1. 読み込んだデータフレームの*形状*(行数と列数)を出力してください。 +2. レビュアーの国籍の頻度を計算してください: + 1. `Reviewer_Nationality`列にある異なる値はいくつあり、それらは何ですか? + 2. データセットで最も一般的なレビュアーの国籍は何ですか(国名とレビュー数を出力してください)? + 3. 次に頻度が高い国籍トップ10とその頻度を出力してください。 +3. トップ10のレビュアー国籍ごとに最も頻繁にレビューされたホテルは何ですか? +4. データセット内のホテルごとのレビュー数(ホテルの頻度)を計算してください。 +5. データセット内の各ホテルのレビュースコアの平均を計算し、新しい列`Calc_Average_Score`をデータフレームに追加してください。この列には計算された平均値が含まれます。 +6. ホテルの`Average_Score`と`Calc_Average_Score`が(小数点以下1桁に丸めて)一致しているホテルはありますか? + 1. Series(行)を引数として受け取り、値を比較し、一致しない場合にメッセージを出力するPython関数を書いてみてください。その後、`.apply()`メソッドを使用して各行を処理してください。 +7. `Negative_Review`列の値が"No Negative"である行数を計算して出力してください。 +8. `Positive_Review`列の値が"No Positive"である行数を計算して出力してください。 +9. `Positive_Review`列の値が"No Positive"であり、かつ`Negative_Review`列の値が"No Negative"である行数を計算して出力してください。 + +### コード解答 + +1. 読み込んだデータフレームの*形状*(行数と列数)を出力してください。 + + ```python + print("The shape of the data (rows, cols) is " + str(df.shape)) + > The shape of the data (rows, cols) is (515738, 17) + ``` + +2. レビュアーの国籍の頻度を計算してください: + + 1. `Reviewer_Nationality`列にある異なる値はいくつあり、それらは何ですか? + 2. データセットで最も一般的なレビュアーの国籍は何ですか(国名とレビュー数を出力してください)? + + ```python + # value_counts() creates a Series object that has index and values in this case, the country and the frequency they occur in reviewer nationality + nationality_freq = df["Reviewer_Nationality"].value_counts() + print("There are " + str(nationality_freq.size) + " different nationalities") + # print first and last rows of the Series. Change to nationality_freq.to_string() to print all of the data + print(nationality_freq) + + There are 227 different nationalities + United Kingdom 245246 + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + ... + Comoros 1 + Palau 1 + Northern Mariana Islands 1 + Cape Verde 1 + Guinea 1 + Name: Reviewer_Nationality, Length: 227, dtype: int64 + ``` + + 3. 次に頻度が高い国籍トップ10とその頻度を出力してください。 + + ```python + print("The highest frequency reviewer nationality is " + str(nationality_freq.index[0]).strip() + " with " + str(nationality_freq[0]) + " reviews.") + # Notice there is a leading space on the values, strip() removes that for printing + # What is the top 10 most common nationalities and their frequencies? + print("The next 10 highest frequency reviewer nationalities are:") + print(nationality_freq[1:11].to_string()) + + The highest frequency reviewer nationality is United Kingdom with 245246 reviews. + The next 10 highest frequency reviewer nationalities are: + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + Saudi Arabia 8951 + Netherlands 8772 + Switzerland 8678 + Germany 7941 + Canada 7894 + France 7296 + ``` + +3. トップ10のレビュアー国籍ごとに最も頻繁にレビューされたホテルは何ですか? + + ```python + # What was the most frequently reviewed hotel for the top 10 nationalities + # Normally with pandas you will avoid an explicit loop, but wanted to show creating a new dataframe using criteria (don't do this with large amounts of data because it could be very slow) + for nat in nationality_freq[:10].index: + # First, extract all the rows that match the criteria into a new dataframe + nat_df = df[df["Reviewer_Nationality"] == nat] + # Now get the hotel freq + freq = nat_df["Hotel_Name"].value_counts() + print("The most reviewed hotel for " + str(nat).strip() + " was " + str(freq.index[0]) + " with " + str(freq[0]) + " reviews.") + + The most reviewed hotel for United Kingdom was Britannia International Hotel Canary Wharf with 3833 reviews. + The most reviewed hotel for United States of America was Hotel Esther a with 423 reviews. + The most reviewed hotel for Australia was Park Plaza Westminster Bridge London with 167 reviews. + The most reviewed hotel for Ireland was Copthorne Tara Hotel London Kensington with 239 reviews. + The most reviewed hotel for United Arab Emirates was Millennium Hotel London Knightsbridge with 129 reviews. + The most reviewed hotel for Saudi Arabia was The Cumberland A Guoman Hotel with 142 reviews. + The most reviewed hotel for Netherlands was Jaz Amsterdam with 97 reviews. + The most reviewed hotel for Switzerland was Hotel Da Vinci with 97 reviews. + The most reviewed hotel for Germany was Hotel Da Vinci with 86 reviews. + The most reviewed hotel for Canada was St James Court A Taj Hotel London with 61 reviews. + ``` + +4. データセット内のホテルごとのレビュー数(ホテルの頻度)を計算してください。 + + ```python + # First create a new dataframe based on the old one, removing the uneeded columns + hotel_freq_df = df.drop(["Hotel_Address", "Additional_Number_of_Scoring", "Review_Date", "Average_Score", "Reviewer_Nationality", "Negative_Review", "Review_Total_Negative_Word_Counts", "Positive_Review", "Review_Total_Positive_Word_Counts", "Total_Number_of_Reviews_Reviewer_Has_Given", "Reviewer_Score", "Tags", "days_since_review", "lat", "lng"], axis = 1) + + # Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found + hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count') + + # Get rid of all the duplicated rows + hotel_freq_df = hotel_freq_df.drop_duplicates(subset = ["Hotel_Name"]) + display(hotel_freq_df) + ``` + | Hotel_Name | Total_Number_of_Reviews | Total_Reviews_Found | + | :----------------------------------------: | :---------------------: | :-----------------: | + | Britannia International Hotel Canary Wharf | 9086 | 4789 | + | Park Plaza Westminster Bridge London | 12158 | 4169 | + | Copthorne Tara Hotel London Kensington | 7105 | 3578 | + | ... | ... | ... | + | Mercure Paris Porte d Orleans | 110 | 10 | + | Hotel Wagner | 135 | 10 | + | Hotel Gallitzinberg | 173 | 8 | + + データセットでカウントされた結果が`Total_Number_of_Reviews`の値と一致しないことに気付くかもしれません。この値がホテルの総レビュー数を表しているが、すべてがスクレイピングされていないのか、または他の計算なのかは不明です。この不明確さのため、`Total_Number_of_Reviews`はモデルで使用されません。 + +5. データセット内の各ホテルのレビュースコアの平均を計算し、新しい列`Calc_Average_Score`をデータフレームに追加してください。この列には計算された平均値が含まれます。`Hotel_Name`、`Average_Score`、`Calc_Average_Score`列を出力してください。 + + ```python + # define a function that takes a row and performs some calculation with it + def get_difference_review_avg(row): + return row["Average_Score"] - row["Calc_Average_Score"] + + # 'mean' is mathematical word for 'average' + df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + + # Add a new column with the difference between the two average scores + df["Average_Score_Difference"] = df.apply(get_difference_review_avg, axis = 1) + + # Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel) + review_scores_df = df.drop_duplicates(subset = ["Hotel_Name"]) + + # Sort the dataframe to find the lowest and highest average score difference + review_scores_df = review_scores_df.sort_values(by=["Average_Score_Difference"]) + + display(review_scores_df[["Average_Score_Difference", "Average_Score", "Calc_Average_Score", "Hotel_Name"]]) + ``` + + データセットの平均スコアと計算された平均スコアが異なる理由について疑問に思うかもしれません。なぜ一部の値が一致し、他の値に差異があるのかは分かりませんが、この場合はレビューのスコアを使用して自分で平均を計算するのが安全です。とはいえ、差異は通常非常に小さいです。データセットの平均値と計算された平均値の差が最も大きいホテルは以下の通りです: + + | Average_Score_Difference | Average_Score | Calc_Average_Score | Hotel_Name | + | :----------------------: | :-----------: | :----------------: | ------------------------------------------: | + | -0.8 | 7.7 | 8.5 | Best Western Hotel Astoria | + | -0.7 | 8.8 | 9.5 | Hotel Stendhal Place Vend me Paris MGallery | + | -0.7 | 7.5 | 8.2 | Mercure Paris Porte d Orleans | + | -0.7 | 7.9 | 8.6 | Renaissance Paris Vendome Hotel | + | -0.5 | 7.0 | 7.5 | Hotel Royal Elys es | + | ... | ... | ... | ... | + | 0.7 | 7.5 | 6.8 | Mercure Paris Op ra Faubourg Montmartre | + | 0.8 | 7.1 | 6.3 | Holiday Inn Paris Montparnasse Pasteur | + | 0.9 | 6.8 | 5.9 | Villa Eugenie | + | 0.9 | 8.6 | 7.7 | MARQUIS Faubourg St Honor Relais Ch teaux | + | 1.3 | 7.2 | 5.9 | Kube Hotel Ice Bar | + + スコアの差が1を超えるホテルが1つしかないため、差異を無視して計算された平均スコアを使用しても問題ないでしょう。 + +6. `Negative_Review`列の値が"No Negative"である行数を計算して出力してください。 + +7. `Positive_Review`列の値が"No Positive"である行数を計算して出力してください。 + +8. `Positive_Review`列の値が"No Positive"であり、かつ`Negative_Review`列の値が"No Negative"である行数を計算して出力してください。 + + ```python + # with lambdas: + start = time.time() + no_negative_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" else False , axis=1) + print("Number of No Negative reviews: " + str(len(no_negative_reviews[no_negative_reviews == True].index))) + + no_positive_reviews = df.apply(lambda x: True if x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of No Positive reviews: " + str(len(no_positive_reviews[no_positive_reviews == True].index))) + + both_no_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" and x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of both No Negative and No Positive reviews: " + str(len(both_no_reviews[both_no_reviews == True].index))) + end = time.time() + print("Lambdas took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Lambdas took 9.64 seconds + ``` + +## 別の方法 + +Lambdaを使用せずにアイテムをカウントし、行数をカウントするためにsumを使用する別の方法: + + ```python + # without lambdas (using a mixture of notations to show you can use both) + start = time.time() + no_negative_reviews = sum(df.Negative_Review == "No Negative") + print("Number of No Negative reviews: " + str(no_negative_reviews)) + + no_positive_reviews = sum(df["Positive_Review"] == "No Positive") + print("Number of No Positive reviews: " + str(no_positive_reviews)) + + both_no_reviews = sum((df.Negative_Review == "No Negative") & (df.Positive_Review == "No Positive")) + print("Number of both No Negative and No Positive reviews: " + str(both_no_reviews)) + + end = time.time() + print("Sum took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Sum took 0.19 seconds + ``` + + `Negative_Review`と`Positive_Review`の列にそれぞれ"No Negative"と"No Positive"の値を持つ行が127行あることに気付いたかもしれません。つまり、レビュアーはホテルに数値スコアを与えましたが、肯定的または否定的なレビューを書くことを拒否しました。幸いにも、このような行は少数(515738行中127行、0.02%)であるため、モデルや結果に特定の方向への偏りを与えることはないでしょう。しかし、レビューのデータセットにレビューがない行が含まれていることは予想外かもしれません。そのため、このような行を発見するためにデータを探索する価値があります。 + +データセットを探索したので、次のレッスンではデータをフィルタリングし、感情分析を追加します。 + +--- +## 🚀チャレンジ + +このレッスンでは、以前のレッスンで見たように、操作を行う前にデータとその欠点を理解することがいかに重要であるかを示しています。特にテキストベースのデータは慎重に調査する必要があります。さまざまなテキスト中心のデータセットを掘り下げ、モデルにバイアスや偏った感情を導入する可能性のある領域を発見できるか試してみてください。 + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/38/) + +## 復習と自己学習 + +[NLPに関するこの学習パス](https://docs.microsoft.com/learn/paths/explore-natural-language-processing/?WT.mc_id=academic-77952-leestott)を受講して、音声やテキスト中心のモデルを構築する際に試すツールを発見してください。 + +## 課題 + +[NLTK](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文が公式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/4-Hotel-Reviews-1/assignment.md b/translations/ja/6-NLP/4-Hotel-Reviews-1/assignment.md new file mode 100644 index 000000000..a51889432 --- /dev/null +++ b/translations/ja/6-NLP/4-Hotel-Reviews-1/assignment.md @@ -0,0 +1,19 @@ + +# NLTK + +## 手順 + +NLTKは計算言語学や自然言語処理で使用される有名なライブラリです。この機会に『[NLTK book](https://www.nltk.org/book/)』を読んで、その演習に挑戦してみてください。この評価されない課題では、このライブラリについてより深く理解することができます。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された文書が公式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の使用に起因する誤解や誤認について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/4-Hotel-Reviews-1/notebook.ipynb b/translations/ja/6-NLP/4-Hotel-Reviews-1/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/ja/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md b/translations/ja/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md new file mode 100644 index 000000000..5f48609cf --- /dev/null +++ b/translations/ja/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/4-Hotel-Reviews-1/solution/R/README.md b/translations/ja/6-NLP/4-Hotel-Reviews-1/solution/R/README.md new file mode 100644 index 000000000..a5808376e --- /dev/null +++ b/translations/ja/6-NLP/4-Hotel-Reviews-1/solution/R/README.md @@ -0,0 +1,15 @@ + +これは一時的なプレースホルダーです + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb b/translations/ja/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb new file mode 100644 index 000000000..ab1bd5ca4 --- /dev/null +++ b/translations/ja/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb @@ -0,0 +1,174 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2d05e7db439376aa824f4b387f8324ca", + "translation_date": "2025-09-04T03:09:21+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# EDA\n", + "import pandas as pd\n", + "import time" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_difference_review_avg(row):\n", + " return row[\"Average_Score\"] - row[\"Calc_Average_Score\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "print(\"Loading data file now, this could take a while depending on file size\")\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n", + "end = time.time()\n", + "print(\"Loading took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What shape is the data (rows, columns)?\n", + "print(\"The shape of the data (rows, cols) is \" + str(df.shape))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# value_counts() creates a Series object that has index and values\n", + "# in this case, the country and the frequency they occur in reviewer nationality\n", + "nationality_freq = df[\"Reviewer_Nationality\"].value_counts()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What reviewer nationality is the most common in the dataset?\n", + "print(\"The highest frequency reviewer nationality is \" + str(nationality_freq.index[0]).strip() + \" with \" + str(nationality_freq[0]) + \" reviews.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What is the top 10 most common nationalities and their frequencies?\n", + "print(\"The top 10 highest frequency reviewer nationalities are:\")\n", + "print(nationality_freq[0:10].to_string())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many unique nationalities are there?\n", + "print(\"There are \" + str(nationality_freq.index.size) + \" unique nationalities in the dataset\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What was the most frequently reviewed hotel for the top 10 nationalities - print the hotel and number of reviews\n", + "for nat in nationality_freq[:10].index:\n", + " # First, extract all the rows that match the criteria into a new dataframe\n", + " nat_df = df[df[\"Reviewer_Nationality\"] == nat] \n", + " # Now get the hotel freq\n", + " freq = nat_df[\"Hotel_Name\"].value_counts()\n", + " print(\"The most reviewed hotel for \" + str(nat).strip() + \" was \" + str(freq.index[0]) + \" with \" + str(freq[0]) + \" reviews.\") \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many reviews are there per hotel (frequency count of hotel) and do the results match the value in `Total_Number_of_Reviews`?\n", + "# First create a new dataframe based on the old one, removing the uneeded columns\n", + "hotel_freq_df = df.drop([\"Hotel_Address\", \"Additional_Number_of_Scoring\", \"Review_Date\", \"Average_Score\", \"Reviewer_Nationality\", \"Negative_Review\", \"Review_Total_Negative_Word_Counts\", \"Positive_Review\", \"Review_Total_Positive_Word_Counts\", \"Total_Number_of_Reviews_Reviewer_Has_Given\", \"Reviewer_Score\", \"Tags\", \"days_since_review\", \"lat\", \"lng\"], axis = 1)\n", + "# Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found\n", + "hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count')\n", + "# Get rid of all the duplicated rows\n", + "hotel_freq_df = hotel_freq_df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "print()\n", + "print(hotel_freq_df.to_string())\n", + "print(str(hotel_freq_df.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# While there is an `Average_Score` for each hotel according to the dataset, \n", + "# you can also calculate an average score (getting the average of all reviewer scores in the dataset for each hotel)\n", + "# Add a new column to your dataframe with the column header `Calc_Average_Score` that contains that calculated average. \n", + "df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n", + "# Add a new column with the difference between the two average scores\n", + "df[\"Average_Score_Difference\"] = df.apply(get_difference_review_avg, axis = 1)\n", + "# Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel)\n", + "review_scores_df = df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "# Sort the dataframe to find the lowest and highest average score difference\n", + "review_scores_df = review_scores_df.sort_values(by=[\"Average_Score_Difference\"])\n", + "print(review_scores_df[[\"Average_Score_Difference\", \"Average_Score\", \"Calc_Average_Score\", \"Hotel_Name\"]])\n", + "# Do any hotels have the same (rounded to 1 decimal place) `Average_Score` and `Calc_Average_Score`?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当社は責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/6-NLP/5-Hotel-Reviews-2/README.md b/translations/ja/6-NLP/5-Hotel-Reviews-2/README.md new file mode 100644 index 000000000..9ebb5a243 --- /dev/null +++ b/translations/ja/6-NLP/5-Hotel-Reviews-2/README.md @@ -0,0 +1,388 @@ + +# ホテルレビューによる感情分析 + +データセットを詳細に調査した後、列をフィルタリングし、NLP技術を使用してホテルに関する新しい洞察を得る時が来ました。 +## [講義前クイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/39/) + +### フィルタリングと感情分析の操作 + +おそらく気づいたと思いますが、このデータセットにはいくつか問題があります。一部の列には役に立たない情報が含まれており、他の列は正確ではないように見えます。仮に正確だとしても、それらがどのように計算されたのか不明であり、自分自身の計算で独立して検証することができません。 + +## 演習: もう少しデータ処理 + +データをもう少しクリーンアップします。後で役立つ列を追加し、他の列の値を変更し、特定の列を完全に削除します。 + +1. 初期の列処理 + + 1. `lat` と `lng` を削除する + + 2. `Hotel_Address` の値を以下の値に置き換える(住所に都市名と国名が含まれている場合、それを都市名と国名だけに変更する)。 + + データセットに含まれる都市と国は以下の通りです: + + アムステルダム, オランダ + + バルセロナ, スペイン + + ロンドン, イギリス + + ミラノ, イタリア + + パリ, フランス + + ウィーン, オーストリア + + ```python + def replace_address(row): + if "Netherlands" in row["Hotel_Address"]: + return "Amsterdam, Netherlands" + elif "Barcelona" in row["Hotel_Address"]: + return "Barcelona, Spain" + elif "United Kingdom" in row["Hotel_Address"]: + return "London, United Kingdom" + elif "Milan" in row["Hotel_Address"]: + return "Milan, Italy" + elif "France" in row["Hotel_Address"]: + return "Paris, France" + elif "Vienna" in row["Hotel_Address"]: + return "Vienna, Austria" + + # Replace all the addresses with a shortened, more useful form + df["Hotel_Address"] = df.apply(replace_address, axis = 1) + # The sum of the value_counts() should add up to the total number of reviews + print(df["Hotel_Address"].value_counts()) + ``` + + これで国レベルのデータをクエリできます: + + ```python + display(df.groupby("Hotel_Address").agg({"Hotel_Name": "nunique"})) + ``` + + | Hotel_Address | Hotel_Name | + | :--------------------- | :--------: | + | アムステルダム, オランダ | 105 | + | バルセロナ, スペイン | 211 | + | ロンドン, イギリス | 400 | + | ミラノ, イタリア | 162 | + | パリ, フランス | 458 | + | ウィーン, オーストリア | 158 | + +2. ホテルメタレビュー列の処理 + + 1. `Additional_Number_of_Scoring` を削除する + + 1. `Total_Number_of_Reviews` をそのホテルに実際に含まれているレビューの総数に置き換える + + 1. `Average_Score` を独自に計算したスコアに置き換える + + ```python + # Drop `Additional_Number_of_Scoring` + df.drop(["Additional_Number_of_Scoring"], axis = 1, inplace=True) + # Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values + df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count') + df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + ``` + +3. レビュー列の処理 + + 1. `Review_Total_Negative_Word_Counts`、`Review_Total_Positive_Word_Counts`、`Review_Date`、`days_since_review` を削除する + + 2. `Reviewer_Score`、`Negative_Review`、`Positive_Review` はそのまま保持する + + 3. `Tags` は一時的に保持する + + - 次のセクションでタグに対して追加のフィルタリング操作を行い、その後タグを削除します + +4. レビュアー列の処理 + + 1. `Total_Number_of_Reviews_Reviewer_Has_Given` を削除する + + 2. `Reviewer_Nationality` を保持する + +### タグ列 + +`Tag` 列は問題があります。この列にはリスト(テキスト形式)が格納されていますが、順序やサブセクションの数が常に同じではありません。この列には 515,000 行、1427 のホテルがあり、レビュアーが選択できるオプションが少しずつ異なるため、人間が正しいフレーズを特定するのは困難です。ここで NLP が役立ちます。テキストをスキャンして最も一般的なフレーズを見つけ、それらをカウントすることができます。 + +残念ながら、単語ではなく複数語のフレーズ(例: *Business trip*)に興味があるため、6762646 語のデータに対して複数語の頻度分布アルゴリズムを実行するのは非常に時間がかかる可能性があります。しかし、データを見ずにそれが必要な作業だと判断するのは早計です。ここで探索的データ分析が役立ちます。例えば、`[' Business trip ', ' Solo traveler ', ' Single Room ', ' Stayed 5 nights ', ' Submitted from a mobile device ']` のようなタグのサンプルを見た場合、処理を大幅に削減できる可能性があるかどうかを検討することができます。幸いにも、それは可能ですが、まずいくつかのステップを踏んで興味のあるタグを確認する必要があります。 + +### タグのフィルタリング + +データセットの目的は、感情や列を追加して最適なホテルを選ぶ手助けをすることです(自分自身のため、またはホテル推薦ボットを作るよう依頼されたクライアントのため)。タグが最終的なデータセットで役立つかどうかを自問する必要があります。以下は一つの解釈です(他の目的でデータセットが必要な場合、異なるタグが選択される可能性があります): + +1. 旅行の種類は関連性があり、保持するべき +2. ゲストグループの種類は重要であり、保持するべき +3. ゲストが滞在した部屋、スイート、スタジオの種類は無関係(すべてのホテルには基本的に同じ部屋があります) +4. レビューが送信されたデバイスは無関係 +5. レビュアーが滞在した夜数は、ホテルを気に入った可能性があると関連付ける場合は関連性があるかもしれませんが、可能性は低く、おそらく無関係 + +要約すると、**2種類のタグを保持し、他を削除します**。 + +まず、タグをカウントする前に、より良い形式にする必要があります。つまり、角括弧や引用符を削除する必要があります。これを行う方法はいくつかありますが、最速の方法を選びたいです。大量のデータを処理するのに時間がかかる可能性があるためです。幸いにも、pandas にはこれらのステップを簡単に実行する方法があります。 + +```Python +# Remove opening and closing brackets +df.Tags = df.Tags.str.strip("[']") +# remove all quotes too +df.Tags = df.Tags.str.replace(" ', '", ",", regex = False) +``` + +各タグは次のようになります:`Business trip, Solo traveler, Single Room, Stayed 5 nights, Submitted from a mobile device`。 + +次に問題が発生します。一部のレビュー(行)には 5 列、一部には 3 列、一部には 6 列があります。これはデータセットの作成方法の結果であり、修正が困難です。各フレーズの頻度をカウントしたいのですが、レビューごとに順序が異なるため、カウントが正確でない可能性があり、ホテルが本来得るべきタグを割り当てられない可能性があります。 + +代わりに、この異なる順序を利用します。各タグは複数語で構成されていますが、コンマで区切られています!最も簡単な方法は、各タグをその順序に対応する列に挿入して一時的な 6 列を作成することです。その後、6 列を1つの大きな列に統合し、`value_counts()` メソッドを実行します。その結果を印刷すると、2428 のユニークなタグがあったことがわかります。以下はその一部です: + +| Tag | Count | +| ------------------------------ | ------ | +| Leisure trip | 417778 | +| Submitted from a mobile device | 307640 | +| Couple | 252294 | +| Stayed 1 night | 193645 | +| Stayed 2 nights | 133937 | +| Solo traveler | 108545 | +| Stayed 3 nights | 95821 | +| Business trip | 82939 | +| Group | 65392 | +| Family with young children | 61015 | +| Stayed 4 nights | 47817 | +| Double Room | 35207 | +| Standard Double Room | 32248 | +| Superior Double Room | 31393 | +| Family with older children | 26349 | +| Deluxe Double Room | 24823 | +| Double or Twin Room | 22393 | +| Stayed 5 nights | 20845 | +| Standard Double or Twin Room | 17483 | +| Classic Double Room | 16989 | +| Superior Double or Twin Room | 13570 | +| 2 rooms | 12393 | + +`Submitted from a mobile device` のような一般的なタグは役に立たないため、フレーズの出現回数をカウントする前に削除するのが賢明かもしれませんが、非常に高速な操作なのでそのまま残して無視することもできます。 + +### 滞在期間タグの削除 + +これらのタグを削除するのがステップ1です。これにより、考慮すべきタグの総数がわずかに減少します。データセットから削除するのではなく、レビューのデータセットで値としてカウント/保持することを選択しないだけです。 + +| Length of stay | Count | +| ---------------- | ------ | +| Stayed 1 night | 193645 | +| Stayed 2 nights | 133937 | +| Stayed 3 nights | 95821 | +| Stayed 4 nights | 47817 | +| Stayed 5 nights | 20845 | +| Stayed 6 nights | 9776 | +| Stayed 7 nights | 7399 | +| Stayed 8 nights | 2502 | +| Stayed 9 nights | 1293 | +| ... | ... | + +部屋、スイート、スタジオ、アパートメントなどの種類は非常に多様です。それらはほぼ同じ意味を持ち、関連性がないため、考慮から除外します。 + +| Type of room | Count | +| ----------------------------- | ----- | +| Double Room | 35207 | +| Standard Double Room | 32248 | +| Superior Double Room | 31393 | +| Deluxe Double Room | 24823 | +| Double or Twin Room | 22393 | +| Standard Double or Twin Room | 17483 | +| Classic Double Room | 16989 | +| Superior Double or Twin Room | 13570 | + +最後に、これは喜ばしいことですが(ほとんど処理を必要としなかったため)、以下の**有用な**タグが残ります: + +| Tag | Count | +| --------------------------------------------- | ------ | +| Leisure trip | 417778 | +| Couple | 252294 | +| Solo traveler | 108545 | +| Business trip | 82939 | +| Group (combined with Travellers with friends) | 67535 | +| Family with young children | 61015 | +| Family with older children | 26349 | +| With a pet | 1405 | + +`Travellers with friends` は `Group` とほぼ同じであると主張することができ、それを上記のように統合するのは妥当です。正しいタグを特定するコードは [Tags notebook](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) にあります。 + +最終ステップは、これらのタグごとに新しい列を作成することです。そして、各レビュー行について、`Tag` 列が新しい列のいずれかに一致する場合は 1 を追加し、一致しない場合は 0 を追加します。最終結果として、例えばビジネス vs レジャー、またはペットを連れて行くためにこのホテルを選んだレビュアーの数(集計)が得られます。これはホテルを推薦する際に有用な情報です。 + +```python +# Process the Tags into new columns +# The file Hotel_Reviews_Tags.py, identifies the most important tags +# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, +# Family with young children, Family with older children, With a pet +df["Leisure_trip"] = df.Tags.apply(lambda tag: 1 if "Leisure trip" in tag else 0) +df["Couple"] = df.Tags.apply(lambda tag: 1 if "Couple" in tag else 0) +df["Solo_traveler"] = df.Tags.apply(lambda tag: 1 if "Solo traveler" in tag else 0) +df["Business_trip"] = df.Tags.apply(lambda tag: 1 if "Business trip" in tag else 0) +df["Group"] = df.Tags.apply(lambda tag: 1 if "Group" in tag or "Travelers with friends" in tag else 0) +df["Family_with_young_children"] = df.Tags.apply(lambda tag: 1 if "Family with young children" in tag else 0) +df["Family_with_older_children"] = df.Tags.apply(lambda tag: 1 if "Family with older children" in tag else 0) +df["With_a_pet"] = df.Tags.apply(lambda tag: 1 if "With a pet" in tag else 0) + +``` + +### ファイルの保存 + +最後に、現在の状態のデータセットを新しい名前で保存します。 + +```python +df.drop(["Review_Total_Negative_Word_Counts", "Review_Total_Positive_Word_Counts", "days_since_review", "Total_Number_of_Reviews_Reviewer_Has_Given"], axis = 1, inplace=True) + +# Saving new data file with calculated columns +print("Saving results to Hotel_Reviews_Filtered.csv") +df.to_csv(r'../data/Hotel_Reviews_Filtered.csv', index = False) +``` + +## 感情分析の操作 + +この最終セクションでは、レビュー列に感情分析を適用し、結果をデータセットに保存します。 + +## 演習: フィルタリングされたデータの読み込みと保存 + +ここでは、前のセクションで保存したフィルタリング済みデータセットを読み込むことに注意してください。**元のデータセットではありません**。 + +```python +import time +import pandas as pd +import nltk as nltk +from nltk.corpus import stopwords +from nltk.sentiment.vader import SentimentIntensityAnalyzer +nltk.download('vader_lexicon') + +# Load the filtered hotel reviews from CSV +df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv') + +# You code will be added here + + +# Finally remember to save the hotel reviews with new NLP data added +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r'../data/Hotel_Reviews_NLP.csv', index = False) +``` + +### ストップワードの削除 + +ネガティブレビューとポジティブレビュー列で感情分析を実行すると、時間がかかる可能性があります。高速なCPUを搭載したテスト用ノートパソコンでテストしたところ、使用した感情分析ライブラリによって12〜14分かかりました。これは(比較的)長い時間なので、速度を向上させる方法を調査する価値があります。 + +ストップワード(文の感情を変えない一般的な英単語)を削除するのが最初のステップです。これらを削除することで、感情分析の速度が向上する可能性がありますが、精度が低下することはありません(ストップワードは感情に影響を与えませんが、分析を遅くします)。 + +最も長いネガティブレビューは395語でしたが、ストップワードを削除した後は195語になりました。 + +ストップワードの削除も高速な操作であり、515,000行の2つのレビュー列からストップワードを削除するのにテストデバイスでは3.3秒かかりました。デバイスのCPU速度、RAM、SSDの有無、その他の要因によって、若干の時間差が生じる可能性があります。この操作が感情分析の時間を改善するのであれば、実行する価値があります。 + +```python +from nltk.corpus import stopwords + +# Load the hotel reviews from CSV +df = pd.read_csv("../../data/Hotel_Reviews_Filtered.csv") + +# Remove stop words - can be slow for a lot of text! +# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches +# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends +start = time.time() +cache = set(stopwords.words("english")) +def remove_stopwords(review): + text = " ".join([word for word in review.split() if word not in cache]) + return text + +# Remove the stop words from both columns +df.Negative_Review = df.Negative_Review.apply(remove_stopwords) +df.Positive_Review = df.Positive_Review.apply(remove_stopwords) +``` + +### 感情分析の実行 +レビューのネガティブおよびポジティブな列に対して感情分析を計算し、その結果を新しい2つの列に保存してください。感情のテストは、同じレビューに対するレビュアーのスコアと比較することになります。例えば、ネガティブレビューの感情が1(非常にポジティブな感情)で、ポジティブレビューの感情も1だとします。しかし、レビュアーがホテルに最低スコアを付けていた場合、レビューのテキストがスコアと一致していないか、感情分析ツールが正しく感情を認識できなかった可能性があります。いくつかの感情スコアが完全に間違っていることを予想してください。その理由が説明可能な場合もあります。例えば、レビューが非常に皮肉的である場合、「もちろん暖房のない部屋で寝るのが大好きでした」といったレビューがポジティブな感情と認識されることがありますが、人間が読めばそれが皮肉であることがわかります。 + +NLTKは学習用にさまざまな感情分析ツールを提供しており、それらを置き換えて感情がより正確かどうかを確認することができます。ここではVADER感情分析が使用されています。 + +> Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. + +```python +from nltk.sentiment.vader import SentimentIntensityAnalyzer + +# Create the vader sentiment analyser (there are others in NLTK you can try too) +vader_sentiment = SentimentIntensityAnalyzer() +# Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. + +# There are 3 possibilities of input for a review: +# It could be "No Negative", in which case, return 0 +# It could be "No Positive", in which case, return 0 +# It could be a review, in which case calculate the sentiment +def calc_sentiment(review): + if review == "No Negative" or review == "No Positive": + return 0 + return vader_sentiment.polarity_scores(review)["compound"] +``` + +プログラム内で感情を計算する準備ができたら、以下のように各レビューに適用できます。 + +```python +# Add a negative sentiment and positive sentiment column +print("Calculating sentiment columns for both positive and negative reviews") +start = time.time() +df["Negative_Sentiment"] = df.Negative_Review.apply(calc_sentiment) +df["Positive_Sentiment"] = df.Positive_Review.apply(calc_sentiment) +end = time.time() +print("Calculating sentiment took " + str(round(end - start, 2)) + " seconds") +``` + +私のコンピュータでは約120秒かかりますが、コンピュータによって異なります。結果を印刷して感情がレビューと一致しているか確認したい場合は以下を使用してください。 + +```python +df = df.sort_values(by=["Negative_Sentiment"], ascending=True) +print(df[["Negative_Review", "Negative_Sentiment"]]) +df = df.sort_values(by=["Positive_Sentiment"], ascending=True) +print(df[["Positive_Review", "Positive_Sentiment"]]) +``` + +チャレンジで使用する前にファイルで最後に行うべきことは、保存することです!また、新しい列をすべて並べ替えて、扱いやすいようにすることを検討してください(人間にとっては見た目の変更です)。 + +```python +# Reorder the columns (This is cosmetic, but to make it easier to explore the data later) +df = df.reindex(["Hotel_Name", "Hotel_Address", "Total_Number_of_Reviews", "Average_Score", "Reviewer_Score", "Negative_Sentiment", "Positive_Sentiment", "Reviewer_Nationality", "Leisure_trip", "Couple", "Solo_traveler", "Business_trip", "Group", "Family_with_young_children", "Family_with_older_children", "With_a_pet", "Negative_Review", "Positive_Review"], axis=1) + +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r"../data/Hotel_Reviews_NLP.csv", index = False) +``` + +[分析ノートブック](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb)全体を実行してください([フィルタリングノートブック](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb)を実行してHotel_Reviews_Filtered.csvファイルを生成した後)。 + +手順を振り返ると以下の通りです: + +1. 元のデータセットファイル **Hotel_Reviews.csv** は、前のレッスンで[エクスプローラーノートブック](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb)を使用して調査されました。 +2. Hotel_Reviews.csv は[フィルタリングノートブック](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb)によってフィルタリングされ、**Hotel_Reviews_Filtered.csv** が生成されました。 +3. Hotel_Reviews_Filtered.csv は[感情分析ノートブック](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb)によって処理され、**Hotel_Reviews_NLP.csv** が生成されました。 +4. NLPチャレンジで**Hotel_Reviews_NLP.csv**を使用してください。 + +### 結論 + +開始時点では、列とデータがあるデータセットを持っていましたが、そのすべてが検証または使用できるわけではありませんでした。データを調査し、必要のないものをフィルタリングし、タグを有用なものに変換し、独自の平均値を計算し、感情列を追加し、自然言語テキストを処理することについて興味深いことを学んだはずです。 + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/40/) + +## チャレンジ + +データセットの感情を分析したら、このカリキュラムで学んだ戦略(例えばクラスタリング)を使用して、感情に関するパターンを特定できるか試してみてください。 + +## 復習と自己学習 + +[このLearnモジュール](https://docs.microsoft.com/en-us/learn/modules/classify-user-feedback-with-the-text-analytics-api/?WT.mc_id=academic-77952-leestott)を受講して、さらに学び、異なるツールを使用してテキストの感情を探索してください。 + +## 課題 + +[別のデータセットを試してみる](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/5-Hotel-Reviews-2/assignment.md b/translations/ja/6-NLP/5-Hotel-Reviews-2/assignment.md new file mode 100644 index 000000000..0af761f5a --- /dev/null +++ b/translations/ja/6-NLP/5-Hotel-Reviews-2/assignment.md @@ -0,0 +1,25 @@ + +# 別のデータセットを試してみよう + +## 手順 + +NLTKを使ってテキストに感情を割り当てる方法を学んだので、別のデータセットを試してみましょう。データの処理が必要になる可能性があるため、ノートブックを作成して、考えたプロセスを記録してください。どのような発見があるでしょうか? + +## 評価基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | ----------------------------------------------------------------------------------------------------------------- | -------------------------------------- | ---------------------- | +| | 完全なノートブックとデータセットが提示され、感情の割り当て方法がよく説明されている | ノートブックに十分な説明が欠けている | ノートブックに欠陥がある | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/5-Hotel-Reviews-2/notebook.ipynb b/translations/ja/6-NLP/5-Hotel-Reviews-2/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb b/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb new file mode 100644 index 000000000..ce4808e2c --- /dev/null +++ b/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb @@ -0,0 +1,172 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "033cb89c85500224b3c63fd04f49b4aa", + "translation_date": "2025-09-04T03:09:56+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import time\n", + "import ast" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def replace_address(row):\n", + " if \"Netherlands\" in row[\"Hotel_Address\"]:\n", + " return \"Amsterdam, Netherlands\"\n", + " elif \"Barcelona\" in row[\"Hotel_Address\"]:\n", + " return \"Barcelona, Spain\"\n", + " elif \"United Kingdom\" in row[\"Hotel_Address\"]:\n", + " return \"London, United Kingdom\"\n", + " elif \"Milan\" in row[\"Hotel_Address\"]: \n", + " return \"Milan, Italy\"\n", + " elif \"France\" in row[\"Hotel_Address\"]:\n", + " return \"Paris, France\"\n", + " elif \"Vienna\" in row[\"Hotel_Address\"]:\n", + " return \"Vienna, Austria\" \n", + " else:\n", + " return row.Hotel_Address\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# dropping columns we will not use:\n", + "df.drop([\"lat\", \"lng\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Replace all the addresses with a shortened, more useful form\n", + "df[\"Hotel_Address\"] = df.apply(replace_address, axis = 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Drop `Additional_Number_of_Scoring`\n", + "df.drop([\"Additional_Number_of_Scoring\"], axis = 1, inplace=True)\n", + "# Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values\n", + "df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')\n", + "df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Process the Tags into new columns\n", + "# The file Hotel_Reviews_Tags.py, identifies the most important tags\n", + "# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, \n", + "# Family with young children, Family with older children, With a pet\n", + "df[\"Leisure_trip\"] = df.Tags.apply(lambda tag: 1 if \"Leisure trip\" in tag else 0)\n", + "df[\"Couple\"] = df.Tags.apply(lambda tag: 1 if \"Couple\" in tag else 0)\n", + "df[\"Solo_traveler\"] = df.Tags.apply(lambda tag: 1 if \"Solo traveler\" in tag else 0)\n", + "df[\"Business_trip\"] = df.Tags.apply(lambda tag: 1 if \"Business trip\" in tag else 0)\n", + "df[\"Group\"] = df.Tags.apply(lambda tag: 1 if \"Group\" in tag or \"Travelers with friends\" in tag else 0)\n", + "df[\"Family_with_young_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with young children\" in tag else 0)\n", + "df[\"Family_with_older_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with older children\" in tag else 0)\n", + "df[\"With_a_pet\"] = df.Tags.apply(lambda tag: 1 if \"With a pet\" in tag else 0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# No longer need any of these columns\n", + "df.drop([\"Review_Date\", \"Review_Total_Negative_Word_Counts\", \"Review_Total_Positive_Word_Counts\", \"days_since_review\", \"Total_Number_of_Reviews_Reviewer_Has_Given\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_Filtered.csv\n", + "Filtering took 23.74 seconds\n" + ] + } + ], + "source": [ + "# Saving new data file with calculated columns\n", + "print(\"Saving results to Hotel_Reviews_Filtered.csv\")\n", + "df.to_csv(r'../../data/Hotel_Reviews_Filtered.csv', index = False)\n", + "end = time.time()\n", + "print(\"Filtering took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb b/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb new file mode 100644 index 000000000..6685bbbfb --- /dev/null +++ b/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb @@ -0,0 +1,137 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "341efc86325ec2a214f682f57a189dfd", + "translation_date": "2025-09-04T03:10:14+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV (you can )\n", + "import pandas as pd \n", + "\n", + "df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# We want to find the most useful tags to keep\n", + "# Remove opening and closing brackets\n", + "df.Tags = df.Tags.str.strip(\"[']\")\n", + "# remove all quotes too\n", + "df.Tags = df.Tags.str.replace(\" ', '\", \",\", regex = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# removing this to take advantage of the 'already a phrase' fact of the dataset \n", + "# Now split the strings into a list\n", + "tag_list_df = df.Tags.str.split(',', expand = True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove leading and trailing spaces\n", + "df[\"Tag_1\"] = tag_list_df[0].str.strip()\n", + "df[\"Tag_2\"] = tag_list_df[1].str.strip()\n", + "df[\"Tag_3\"] = tag_list_df[2].str.strip()\n", + "df[\"Tag_4\"] = tag_list_df[3].str.strip()\n", + "df[\"Tag_5\"] = tag_list_df[4].str.strip()\n", + "df[\"Tag_6\"] = tag_list_df[5].str.strip()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Merge the 6 columns into one with melt\n", + "df_tags = df.melt(value_vars=[\"Tag_1\", \"Tag_2\", \"Tag_3\", \"Tag_4\", \"Tag_5\", \"Tag_6\"])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The shape of the tags with no filtering: (2514684, 2)\n", + " index count\n", + "0 Leisure trip 338423\n", + "1 Couple 205305\n", + "2 Solo traveler 89779\n", + "3 Business trip 68176\n", + "4 Group 51593\n", + "5 Family with young children 49318\n", + "6 Family with older children 21509\n", + "7 Travelers with friends 1610\n", + "8 With a pet 1078\n" + ] + } + ], + "source": [ + "# Get the value counts\n", + "tag_vc = df_tags.value.value_counts()\n", + "# print(tag_vc)\n", + "print(\"The shape of the tags with no filtering:\", str(df_tags.shape))\n", + "# Drop rooms, suites, and length of stay, mobile device and anything with less count than a 1000\n", + "df_tags = df_tags[~df_tags.value.str.contains(\"Standard|room|Stayed|device|Beds|Suite|Studio|King|Superior|Double\", na=False, case=False)]\n", + "tag_vc = df_tags.value.value_counts().reset_index(name=\"count\").query(\"count > 1000\")\n", + "# Print the top 10 (there should only be 9 and we'll use these in the filtering section)\n", + "print(tag_vc[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当社は責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb b/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb new file mode 100644 index 000000000..18e8af08b --- /dev/null +++ b/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb @@ -0,0 +1,260 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "705bf02633759f689abc37b19749a16d", + "translation_date": "2025-09-04T03:10:32+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "[nltk_data] Downloading package vader_lexicon to\n[nltk_data] /Users/jenlooper/nltk_data...\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import time\n", + "import pandas as pd\n", + "import nltk as nltk\n", + "from nltk.corpus import stopwords\n", + "from nltk.sentiment.vader import SentimentIntensityAnalyzer\n", + "nltk.download('vader_lexicon')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "vader_sentiment = SentimentIntensityAnalyzer()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# There are 3 possibilities of input for a review:\n", + "# It could be \"No Negative\", in which case, return 0\n", + "# It could be \"No Positive\", in which case, return 0\n", + "# It could be a review, in which case calculate the sentiment\n", + "def calc_sentiment(review): \n", + " if review == \"No Negative\" or review == \"No Positive\":\n", + " return 0\n", + " return vader_sentiment.polarity_scores(review)[\"compound\"] \n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "df = pd.read_csv(\"../../data/Hotel_Reviews_Filtered.csv\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove stop words - can be slow for a lot of text!\n", + "# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches\n", + "# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends\n", + "start = time.time()\n", + "cache = set(stopwords.words(\"english\"))\n", + "def remove_stopwords(review):\n", + " text = \" \".join([word for word in review.split() if word not in cache])\n", + " return text\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove the stop words from both columns\n", + "df.Negative_Review = df.Negative_Review.apply(remove_stopwords) \n", + "df.Positive_Review = df.Positive_Review.apply(remove_stopwords)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Removing stop words took 5.77 seconds\n" + ] + } + ], + "source": [ + "end = time.time()\n", + "print(\"Removing stop words took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Calculating sentiment columns for both positive and negative reviews\n", + "Calculating sentiment took 201.07 seconds\n" + ] + } + ], + "source": [ + "# Add a negative sentiment and positive sentiment column\n", + "print(\"Calculating sentiment columns for both positive and negative reviews\")\n", + "start = time.time()\n", + "df[\"Negative_Sentiment\"] = df.Negative_Review.apply(calc_sentiment)\n", + "df[\"Positive_Sentiment\"] = df.Positive_Review.apply(calc_sentiment)\n", + "end = time.time()\n", + "print(\"Calculating sentiment took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Negative_Review Negative_Sentiment\n", + "186584 So bad experience memories I hotel The first n... -0.9920\n", + "129503 First charged twice room booked booking second... -0.9896\n", + "307286 The staff Had bad experience even booking Janu... -0.9889\n", + "452092 No WLAN room Incredibly rude restaurant staff ... -0.9884\n", + "201293 We usually traveling Paris 2 3 times year busi... -0.9873\n", + "... ... ...\n", + "26899 I would say however one night expensive even d... 0.9933\n", + "138365 Wifi terribly slow I speed test network upload... 0.9938\n", + "79215 I find anything hotel first I walked past hote... 0.9938\n", + "278506 The property great location There bakery next ... 0.9945\n", + "339189 Guys I like hotel I wish return next year Howe... 0.9948\n", + "\n", + "[515738 rows x 2 columns]\n", + " Positive_Review Positive_Sentiment\n", + "137893 Bathroom Shower We going stay twice hotel 2 ni... -0.9820\n", + "5839 I completely disappointed mad since reception ... -0.9780\n", + "64158 get everything extra internet parking breakfas... -0.9751\n", + "124178 I didnt like anythig Room small Asked upgrade ... -0.9721\n", + "489137 Very rude manager abusive staff reception Dirt... -0.9703\n", + "... ... ...\n", + "331570 Everything This recently renovated hotel class... 0.9984\n", + "322920 From moment stepped doors Guesthouse Hotel sta... 0.9985\n", + "293710 This place surprise expected good actually gre... 0.9985\n", + "417442 We celebrated wedding night Langham I commend ... 0.9985\n", + "132492 We arrived super cute boutique hotel area expl... 0.9987\n", + "\n", + "[515738 rows x 2 columns]\n" + ] + } + ], + "source": [ + "df = df.sort_values(by=[\"Negative_Sentiment\"], ascending=True)\n", + "print(df[[\"Negative_Review\", \"Negative_Sentiment\"]])\n", + "df = df.sort_values(by=[\"Positive_Sentiment\"], ascending=True)\n", + "print(df[[\"Positive_Review\", \"Positive_Sentiment\"]])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Reorder the columns (This is cosmetic, but to make it easier to explore the data later)\n", + "df = df.reindex([\"Hotel_Name\", \"Hotel_Address\", \"Total_Number_of_Reviews\", \"Average_Score\", \"Reviewer_Score\", \"Negative_Sentiment\", \"Positive_Sentiment\", \"Reviewer_Nationality\", \"Leisure_trip\", \"Couple\", \"Solo_traveler\", \"Business_trip\", \"Group\", \"Family_with_young_children\", \"Family_with_older_children\", \"With_a_pet\", \"Negative_Review\", \"Positive_Review\"], axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_NLP.csv\n" + ] + } + ], + "source": [ + "print(\"Saving results to Hotel_Reviews_NLP.csv\")\n", + "df.to_csv(r\"../../data/Hotel_Reviews_NLP.csv\", index = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当社は責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md b/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md new file mode 100644 index 000000000..650d2dd20 --- /dev/null +++ b/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤訳について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/R/README.md b/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/R/README.md new file mode 100644 index 000000000..e288d7eb8 --- /dev/null +++ b/translations/ja/6-NLP/5-Hotel-Reviews-2/solution/R/README.md @@ -0,0 +1,15 @@ + +これは一時的なプレースホルダーです + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が公式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の使用に起因する誤解や誤認について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/README.md b/translations/ja/6-NLP/README.md new file mode 100644 index 000000000..da9f8c4f1 --- /dev/null +++ b/translations/ja/6-NLP/README.md @@ -0,0 +1,38 @@ + +# 自然言語処理の始め方 + +自然言語処理(NLP)は、コンピュータプログラムが話し言葉や書き言葉としての人間の言語を理解する能力を指します。これを自然言語と呼びます。NLPは人工知能(AI)の一部であり、50年以上の歴史を持ち、言語学の分野にルーツがあります。この分野全体は、機械が人間の言語を理解し処理するのを助けることを目的としています。そして、スペルチェックや機械翻訳のようなタスクを実行するために使用されます。医療研究、検索エンジン、ビジネスインテリジェンスなど、さまざまな分野で実際の応用例があります。 + +## 地域トピック: ヨーロッパの言語と文学、そしてヨーロッパのロマンチックなホテル ❤️ + +このカリキュラムのセクションでは、機械学習の最も広く使われている用途の一つである自然言語処理(NLP)について紹介します。計算言語学から派生したこの人工知能のカテゴリーは、音声やテキストによるコミュニケーションを通じて人間と機械をつなぐ架け橋です。 + +これらのレッスンでは、小さな会話型ボットを構築することでNLPの基本を学び、機械学習がこれらの会話をますます「賢く」するのを助ける方法を理解します。1813年に出版されたジェーン・オースティンの古典小説**『高慢と偏見』**のエリザベス・ベネットやミスター・ダーシーと会話しながら、時を遡ります。その後、ヨーロッパのホテルレビューを通じて感情分析について学び、知識を深めます。 + +![高慢と偏見の本と紅茶](../../../translated_images/p&p.279f1c49ecd889419e4ce6206525e9aa30d32a976955cd24daa636c361c6391f.ja.jpg) +> 写真提供: Elaine Howlin on Unsplash + +## レッスン + +1. [自然言語処理の紹介](1-Introduction-to-NLP/README.md) +2. [一般的なNLPタスクと技術](2-Tasks/README.md) +3. [機械学習による翻訳と感情分析](3-Translation-Sentiment/README.md) +4. [データの準備](4-Hotel-Reviews-1/README.md) +5. [NLTKを使った感情分析](5-Hotel-Reviews-2/README.md) + +## クレジット + +これらの自然言語処理レッスンは、[Stephen Howell](https://twitter.com/Howell_MSFT) によって☕を片手に書かれました。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/6-NLP/data/README.md b/translations/ja/6-NLP/data/README.md new file mode 100644 index 000000000..16de19987 --- /dev/null +++ b/translations/ja/6-NLP/data/README.md @@ -0,0 +1,15 @@ + +このフォルダーにホテルレビューのデータをダウンロードしてください。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/1-Introduction/README.md b/translations/ja/7-TimeSeries/1-Introduction/README.md new file mode 100644 index 000000000..f93457860 --- /dev/null +++ b/translations/ja/7-TimeSeries/1-Introduction/README.md @@ -0,0 +1,199 @@ + +# 時系列予測の入門 + +![時系列の概要をスケッチノートで表現](../../../../translated_images/ml-timeseries.fb98d25f1013fc0c59090030080b5d1911ff336427bec31dbaf1ad08193812e9.ja.png) + +> スケッチノート: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +このレッスンと次のレッスンでは、時系列予測について学びます。時系列予測は、機械学習科学者のレパートリーの中で興味深く価値のある分野ですが、他のトピックほど知られていない部分もあります。時系列予測は、過去のパフォーマンスに基づいて、価格などの変数の将来の潜在的な価値を予測する、一種の「水晶玉」のようなものです。 + +[![時系列予測の入門](https://img.youtube.com/vi/cBojo1hsHiI/0.jpg)](https://youtu.be/cBojo1hsHiI "時系列予測の入門") + +> 🎥 上の画像をクリックすると、時系列予測に関する動画が視聴できます + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/41/) + +時系列予測は、価格設定、在庫管理、サプライチェーンの問題などに直接応用できるため、ビジネスにとって非常に価値のある興味深い分野です。深層学習技術が将来のパフォーマンスをより良く予測するための洞察を得るために使われ始めていますが、時系列予測は依然として古典的な機械学習技術によって大きく支えられています。 + +> ペンシルベニア州立大学の有用な時系列カリキュラムは[こちら](https://online.stat.psu.edu/stat510/lesson/1)で確認できます + +## はじめに + +例えば、スマート駐車メーターのデータを管理しているとします。このメーターは、どれくらい頻繁に使用され、どれくらいの時間使用されているかを時間の経過とともに提供します。 + +> 過去のパフォーマンスに基づいて、供給と需要の法則に従ってメーターの将来の価値を予測できるとしたらどうでしょう? + +目標を達成するためにいつ行動すべきかを正確に予測することは、時系列予測によって取り組むことができる課題です。忙しい時間帯に駐車場を探している人々に料金を高くするのは喜ばれないかもしれませんが、道路を清掃するための収益を生み出す確実な方法になるでしょう。 + +時系列アルゴリズムの種類をいくつか探り、データをクリーンアップして準備するノートブックを始めましょう。この例で分析するデータは、GEFCom2014予測コンペティションから取得したものです。このデータは、2012年から2014年までの3年間の毎時の電力負荷と温度値で構成されています。電力負荷と温度の過去のパターンを基に、電力負荷の将来の値を予測することができます。 + +この例では、過去の負荷データのみを使用して、1つのタイムステップ先を予測する方法を学びます。ただし、始める前に、舞台裏で何が起こっているのかを理解することが役立ちます。 + +## 用語の定義 + +「時系列」という用語に出会ったとき、その使用方法をいくつかの異なる文脈で理解する必要があります。 + +🎓 **時系列** + +数学では、「時系列とは、時間順にインデックス付け(またはリスト化またはグラフ化)されたデータポイントの系列です。最も一般的には、時系列は時間的に等間隔で取得された一連のデータです。」時系列の例としては、[ダウ平均株価](https://wikipedia.org/wiki/Time_series)の毎日の終値があります。時系列プロットや統計モデリングは、信号処理、天気予報、地震予測など、イベントが発生しデータポイントが時間を通じてプロットできる分野で頻繁に使用されます。 + +🎓 **時系列分析** + +時系列分析とは、上記の時系列データの分析を指します。時系列データは、特定の形式を取ることがあり、「中断時系列」のように、あるイベントの前後で時系列の進化のパターンを検出するものもあります。時系列に必要な分析の種類は、データの性質によって異なります。時系列データ自体は、数値や文字列の系列の形を取ることがあります。 + +分析には、周波数領域や時間領域、線形や非線形など、さまざまな方法が使用されます。[こちら](https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm)で、このタイプのデータを分析する多くの方法について学ぶことができます。 + +🎓 **時系列予測** + +時系列予測とは、過去に収集されたデータが示すパターンに基づいて、将来の値を予測するためにモデルを使用することです。時系列データをプロット上のx変数として扱い、回帰モデルを使用して探索することも可能ですが、このようなデータは特別なタイプのモデルを使用して分析するのが最適です。 + +時系列データは、線形回帰で分析できるデータとは異なり、順序付けられた観測値のリストです。最も一般的なモデルはARIMAで、「自己回帰型積分移動平均」を意味します。 + +[ARIMAモデル](https://online.stat.psu.edu/stat510/lesson/1/1.1)は、「系列の現在の値を過去の値や過去の予測誤差に関連付ける」ものです。これらは、データが時間順に並べられている時間領域データを分析するのに最も適しています。 + +> ARIMAモデルにはいくつかの種類があり、[こちら](https://people.duke.edu/~rnau/411arim.htm)で学ぶことができます。次のレッスンで触れる予定です。 + +次のレッスンでは、[単変量時系列](https://itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm)を使用してARIMAモデルを構築します。このモデルは、時間の経過とともに値が変化する1つの変数に焦点を当てます。このタイプのデータの例としては、マウナロア観測所で記録された月ごとのCO2濃度を示す[このデータセット](https://itl.nist.gov/div898/handbook/pmc/section4/pmc4411.htm)があります。 + +| CO2 | YearMonth | Year | Month | +| :----: | :-------: | :---: | :---: | +| 330.62 | 1975.04 | 1975 | 1 | +| 331.40 | 1975.13 | 1975 | 2 | +| 331.87 | 1975.21 | 1975 | 3 | +| 333.18 | 1975.29 | 1975 | 4 | +| 333.92 | 1975.38 | 1975 | 5 | +| 333.43 | 1975.46 | 1975 | 6 | +| 331.85 | 1975.54 | 1975 | 7 | +| 330.01 | 1975.63 | 1975 | 8 | +| 328.51 | 1975.71 | 1975 | 9 | +| 328.41 | 1975.79 | 1975 | 10 | +| 329.25 | 1975.88 | 1975 | 11 | +| 330.97 | 1975.96 | 1975 | 12 | + +✅ このデータセットで時間とともに変化する変数を特定してください + +## 時系列データの特徴を考慮する + +時系列データを観察すると、[特定の特徴](https://online.stat.psu.edu/stat510/lesson/1/1.1)があることに気付くかもしれません。これらの特徴を考慮し、軽減することで、そのパターンをよりよく理解することができます。時系列データを「信号」として捉え、それを分析したい場合、これらの特徴は「ノイズ」として考えることができます。この「ノイズ」を軽減するために、いくつかの統計的手法を使用する必要があります。 + +時系列データを扱うために知っておくべき概念を以下に示します。 + +🎓 **トレンド** + +トレンドは、時間の経過に伴う測定可能な増加や減少として定義されます。[詳細はこちら](https://machinelearningmastery.com/time-series-trends-in-python)。時系列の文脈では、トレンドを利用し、必要に応じて時系列からトレンドを除去する方法について説明しています。 + +🎓 **[季節性](https://machinelearningmastery.com/time-series-seasonality-with-python/)** + +季節性は、例えば休日の売上増加のような周期的な変動として定義されます。[こちら](https://itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm)で、データの季節性を表示するさまざまなプロットの種類を確認できます。 + +🎓 **外れ値** + +外れ値は、標準的なデータの分散から大きく離れた値です。 + +🎓 **長期サイクル** + +季節性とは独立して、データは1年以上続く経済的な低迷のような長期サイクルを示すことがあります。 + +🎓 **一定の分散** + +時間の経過とともに、データは昼夜のエネルギー使用量のような一定の変動を示すことがあります。 + +🎓 **急激な変化** + +データは、さらなる分析が必要な急激な変化を示すことがあります。例えば、COVIDによる企業の突然の閉鎖はデータに変化をもたらしました。 + +✅ [こちら](https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python)に数年間にわたるゲーム内通貨の毎日の支出を示す時系列プロットがあります。このデータで上記の特徴のいくつかを特定できますか? + +![ゲーム内通貨の支出](../../../../translated_images/currency.e7429812bfc8c6087b2d4c410faaa4aaa11b2fcaabf6f09549b8249c9fbdb641.ja.png) + +## 演習 - 電力使用量データで始める + +過去の使用量を基に将来の電力使用量を予測する時系列モデルを作成してみましょう。 + +> この例のデータは、GEFCom2014予測コンペティションから取得したものです。このデータは、2012年から2014年までの3年間の毎時の電力負荷と温度値で構成されています。 +> +> Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016. + +1. このレッスンの`working`フォルダーで、_notebook.ipynb_ファイルを開きます。データの読み込みと可視化を支援するライブラリを追加することから始めます。 + + ```python + import os + import matplotlib.pyplot as plt + from common.utils import load_data + %matplotlib inline + ``` + + 注意: 環境を設定し、データのダウンロードを処理するために、`common`フォルダーに含まれるファイルを使用しています。 + +2. 次に、`load_data()`と`head()`を呼び出してデータをデータフレームとして確認します。 + + ```python + data_dir = './data' + energy = load_data(data_dir)[['load']] + energy.head() + ``` + + 日付と負荷を表す2つの列があることがわかります。 + + | | load | + | :-----------------: | :----: | + | 2012-01-01 00:00:00 | 2698.0 | + | 2012-01-01 01:00:00 | 2558.0 | + | 2012-01-01 02:00:00 | 2444.0 | + | 2012-01-01 03:00:00 | 2402.0 | + | 2012-01-01 04:00:00 | 2403.0 | + +3. 次に、`plot()`を呼び出してデータをプロットします。 + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![エネルギープロット](../../../../translated_images/energy-plot.5fdac3f397a910bc6070602e9e45bea8860d4c239354813fa8fc3c9d556f5bad.ja.png) + +4. 次に、2014年7月の最初の週を`energy`に`[開始日]:[終了日]`のパターンで入力してプロットします。 + + ```python + energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![7月](../../../../translated_images/july-2014.9e1f7c318ec6d5b30b0d7e1e20be3643501f64a53f3d426d7c7d7b62addb335e.ja.png) + + 美しいプロットですね!これらのプロットを見て、上記の特徴のいくつかを特定できますか?データを視覚化することで何が推測できるでしょうか? + +次のレッスンでは、ARIMAモデルを作成して予測を行います。 + +--- + +## 🚀チャレンジ + +時系列予測が役立つと思われる業界や研究分野をすべてリストアップしてください。これらの技術が芸術、計量経済学、生態学、小売業、産業、金融などでどのように応用できるか考えられますか?他にどのような分野がありますか? + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/42/) + +## 復習と自己学習 + +ここでは取り上げませんが、ニューラルネットワークは時系列予測の古典的な方法を強化するために使用されることがあります。[この記事](https://medium.com/microsoftazure/neural-networks-for-forecasting-financial-and-economic-time-series-6aca370ff412)で詳細を読むことができます。 + +## 課題 + +[さらに多くの時系列を視覚化する](assignment.md) + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/1-Introduction/assignment.md b/translations/ja/7-TimeSeries/1-Introduction/assignment.md new file mode 100644 index 000000000..e1b179c1e --- /dev/null +++ b/translations/ja/7-TimeSeries/1-Introduction/assignment.md @@ -0,0 +1,25 @@ + +# 時系列データをさらに可視化する + +## 手順 + +時系列予測について学び始め、特別なモデリングが必要なデータの種類を確認しました。エネルギーに関するデータを可視化しましたね。次は、時系列予測が役立つ他のデータを探してみましょう。3つの例を見つけてください([Kaggle](https://kaggle.com) や [Azure Open Datasets](https://azure.microsoft.com/en-us/services/open-datasets/catalog/?WT.mc_id=academic-77952-leestott) を試してみてください)。それらを可視化するノートブックを作成し、季節性、急激な変化、その他の傾向など、特別な特徴があればノートブックに記録してください。 + +## 評価基準 + +| 基準 | 優秀な例 | 適切な例 | 改善が必要な例 | +| -------- | ------------------------------------------------------ | ---------------------------------------------------- | ----------------------------------------------------------------------------------------- | +| | 3つのデータセットがノートブックでプロットされ説明されている | 2つのデータセットがノートブックでプロットされ説明されている | 少数のデータセットがプロットまたは説明されている、または提示されたデータが不十分である | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてお考えください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/1-Introduction/solution/Julia/README.md b/translations/ja/7-TimeSeries/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..b98751696 --- /dev/null +++ b/translations/ja/7-TimeSeries/1-Introduction/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてお考えください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/1-Introduction/solution/R/README.md b/translations/ja/7-TimeSeries/1-Introduction/solution/R/README.md new file mode 100644 index 000000000..090d62cba --- /dev/null +++ b/translations/ja/7-TimeSeries/1-Introduction/solution/R/README.md @@ -0,0 +1,15 @@ + +これは一時的なプレースホルダー + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/1-Introduction/solution/notebook.ipynb b/translations/ja/7-TimeSeries/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..d15930591 --- /dev/null +++ b/translations/ja/7-TimeSeries/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,169 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "このノートブックでは、以下を実演します:\n", + "- このモジュール用の時系列データのセットアップ方法\n", + "- データの可視化方法\n", + "\n", + "この例で使用されているデータは、GEFCom2014予測コンペティションから取得したものです。 \n", + "2012年から2014年までの3年間の毎時電力負荷と気温値が含まれています。\n", + "\n", + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import matplotlib.pyplot as plt\n", + "from common.utils import load_data\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "CSVからデータを読み込み、Pandasのデータフレームにする\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ], + "text/html": "
                                          \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                          load
                                          2012-01-01 00:00:002698.0
                                          2012-01-01 01:00:002558.0
                                          2012-01-01 02:00:002444.0
                                          2012-01-01 03:00:002402.0
                                          2012-01-01 04:00:002403.0
                                          \n
                                          " + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "data_dir = './data'\n", + "energy = load_data(data_dir)[['load']]\n", + "energy.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "すべての利用可能な負荷データをプロット(2012年1月から2014年12月まで)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhb5ZU/8O+r3bYkO7bl3YljZ3dCnJBASCCQFkqBgUDpBrRMZ6YLMJ2l26/TTjtDmelMp09nOtNOaUt31tKFtRToQAkpSUhIiJPY2Z14X+VFkiVL1vL+/pBkjHESL5Ku7r3fz/P4IbF07z1Gsa1z3/OeI6SUICIiIiIiIgIAg9IBEBERERERUfZgkkhEREREREQTmCQSERERERHRBCaJRERERERENIFJIhEREREREU1gkkhEREREREQTTEoHoITi4mJZU1OjdBhERERERESKOHDggFtK6ZruMV0miTU1Ndi/f7/SYRARERERESlCCNF2rsdYbkpEREREREQTmCQSERERERHRBCaJRERERERENEGXexKJiIiIiIgAIBwOo7OzE8FgUOlQ0sJms6Gqqgpms3nGxzBJJCIiIiIi3ers7ITD4UBNTQ2EEEqHk1JSSgwODqKzsxOLFy+e8XEsNyUiIiIiIt0KBoMoKirSXIIIAEIIFBUVzXqVlEkiERERERHpmhYTxKS5fG1MEomIiIiIiBRkt9tTcp57770X3/rWt+Z9HiaJRERERERENIFJIhERERERURaQUuILX/gCVq9ejTVr1uDxxx8HAIyOjuLd73431q9fjzVr1uDpp5+eOObrX/86li1bhssvvxwnTpxISRzsbkpERERERATga88242i3N6XnXFXhxD/fWD+j5z7xxBNobGzEoUOH4Ha7sXHjRmzduhUulwtPPvkknE4n3G43Nm3ahJtuuglvvvkmfvnLX6KxsRGRSATr16/HxRdfPO+YuZJIRERERESUBV577TXcdtttMBqNKC0txZVXXok33ngDUkp8+ctfxkUXXYSrr74aXV1d6Ovrw5/+9CfccsstyM3NhdPpxE033ZSSOLiSSEREREREBMx4xS/THnnkEQwMDODAgQMwm82oqamZ9ViL2eBKIhERERERURa44oor8PjjjyMajWJgYAA7d+7EJZdcAo/Hg5KSEpjNZrzyyitoa2sDAGzduhVPPfUUxsbG4PP58Oyzz6YkDq4kEmnQSGAcDpsZRoN2Z/4QERERac0tt9yCPXv2YO3atRBC4Jvf/CbKyspwxx134MYbb8SaNWuwYcMGrFixAgCwfv16fOhDH8LatWtRUlKCjRs3piQOIaVMyYnUZMOGDXL//v1Kh0GUFj2eMbznv3ZiZbkTP7pzA/JzzUqHRERERJS1jh07hpUrVyodRlpN9zUKIQ5IKTdM93yWmxJpzL///jhC0RgaO0bwgR/uRo9nTOmQiIiIiEhFMpYkCiF2CCGCQojRxMeJSY/dLoRoE0L4hRBPCSEKJz1WKIR4MvFYmxDi9innPeexRHrzRusQnjnUjbu21uLnf7ER3SNB3Hr/bpzq8ykdGhERERGpRKZXEj8tpbQnPpYDgBCiHsAPAXwUQCmAAID7Jx3zPQDjicfuAPD9xDEzOZZIN6IxiXufaUZ5vg13XVWHzUuK8finNiEck3j/D/Zgf+uQ0iESERERkQpkQ7npHQCelVLulFKOAvgqgPcJIRxCiDwAtwL4qpRyVEr5GoBnEE8Kz3usAl8HkaJ+tb8Dzd1efOn6lci1xHtS1Vfk44m7N6Mwz4I7frwXe1oGFY6SiIiIKPtouU/LXL62TCeJ/y6EcAshdgkhrkp8rh7AoeQTpJQtiK8cLkt8RKSUJyed41DimAsd+zZCiE8KIfYLIfYPDAyk8EsiUp5nLIxvvXgCl9QU4saLyt/2WHVhLn5z12UoyrPg/h2nFYqQiIiIKDvZbDYMDg5qMlGUUmJwcBA2m21Wx2VyBMYXARxFPIn7MIBnhRANAOwAPFOe6wHgABAF4D3HY7jAsW8jpXwAwANAvLvpnL8Koiz0nZdPYSgwjl/cuApCvHPsRZHdilsvrsL3XjmNfl8QJY7Z/aAgIiIi0qqqqip0dnZCqwtJNpsNVVVVszomY0milHLvpL/+QghxG4DrAYwCcE55uhOAD0DsPI/hAscS6cLpfh9+sbsVH964EKsr88/5vO0NFfjuH0/jd4d68JeXL85ghERERETZy2w2Y/FivjeaTMk9iRKAANAMYG3yk0KIWgBWACcTHyYhxNJJx61NHIMLHEukC//yu2PIsRjx+fe8o8r6bZaUOFBf4cTTh7ozFBkRERERqVFGkkQhRIEQ4lohhE0IYRJC3AFgK4AXADwC4EYhxBWJRjX3AXhCSumTUvoBPAHgPiFEnhBiC4DtAB5KnPqcx2bi6yJSWlOXB6+eHMCnty1Bkd16wedvb6jAoY4RnHX7MxAdEREREalRplYSzQD+FcAAADeAvwFws5TypJSyGcBdiCd8/YjvJ7xn0rH3AMhJPPYYgLsTx2AGxxJp2iN722AzG/DhSxbO6Pk3rq2AEMAzjVxNJCIiIqLpZWRPopRyAMDG8zz+KIBHz/HYEICb53IskZZ5g2E8dbAbN62tQH6OeUbHlOfn4NLFhXj6UBf+9t1Lpm1yQ0RERET6lg1zEoloDp58swtj4Sg+smnRrI7b3lCJMwN+NHVNbRxMRERERMQkkUiVpJR4+PU2XFSVj4uqCmZ17PWry2E2Cjzd2JWm6IiIiIhIzZgkEqnQvrNDONU/OutVRADIzzXjquUlePZwN6IxjgwlIiIiordjkkikQg+93ganzYQbL6qY0/HbGyrQ5w1h75nBFEdGRERERGrHJJFIZQZ8IbzY3Iv3X1yNHItxTue4emUp8ixGPM0up0REREQ0BZNEIpX51f4OhKMSd2ya2diL6djMRly7ugy/b+pBMBxNYXREREREpHZMEolUJBqTeHRvOzbXFaHOZZ/XuW5uqIQvGMGOEwMpio6IiIiItIBJIpGK7DjRj66RsTk1rJlqc10RFuSa8YejvSmIjIiIiIi0gkkikYo8/HobShxWXLOqdN7nMhkN2LykGLtPD0JKdjklIiIiojgmiUQqMRIYx46TA/jghmqYjan51t1SV4xebxBn3P6UnI+IiIiI1I9JIpFK7GkZhJTAthWulJ1zy5IiAMDu0+6UnZOIiIiI1I1JIpFK7GpxI89ixEVVBSk758LCXFQW5OA1JolERERElMAkkUgldp8exCWLC1NWagoAQghsWVKEPS2DiMa4L5GIiIiImCQSqUKPZwxn3H5sWVKc8nNvWVIMbzCC5m5Pys9NREREROrDJJFIBXafHgQAbK5LfZKYPOeuxDWIiIiISN+YJBKpwK4WNwrzLFhR5kj5uV0OK5aXOrC7hfsSiYiIiIhJIlHWk1Ji9+lBXFZbBINBpOUam5cUYd/ZIQTD0bScn4iIiIjUg0kizUgwHMWxHi9+d7gbD+xswcvH+uAeDSkdli6ccfvR6w1ic2JcRTpsqStGKBLDm+3DabsGEREREamDSekAKDtJKfHKiX48tq8DJ/t86BgKYLrml1ULcrC2ugAbFy3AbZcuhNVkzHywGre7Jb5XcEsa9iMmXVpbCKNBYPfpwbTseyQiIiIi9WCSSG8TjUk8d6QH979yGsd7fShz2nDxogXY3lCJJSV2LHHZUZ5vw6n+URzqGEFjxwga20fw3OEetA4GcO9N9Up/CZqz+7QbFfk2LCrKTds1HDYz1lblY1eLG5/H8rRdh4iIiIiyH5NEAhBPDn9zoAPf39GC1sEA6lx5+M8PrMVNDRXTzuW7ZHEhLllcOPH3e59pxs93t+JdK0qwdZkrk6FrWiwmsefMIK5eWQoh0rMfMWnLkmLcv6MF3mAYTps5rdciIiIiouzFPYmEPm8QH/nxXnzxt0fgsJnxg4+sx/995krcenHVjAe3/8N1K7CkxI7P//oQhv3jaY5YP472eDESCGNLGvcjJm2uK0Y0JrH3zFDar0VERERE2YtJos69enIA1//Pn9DYMYJvvv8iPPPpLXjv6vJZd9G0mY347w81YMg/jn986giknGYDI81acixFJvYJrl9UAJvZgF2nOQqDiIiISM+YJOpUOBrDN54/jj//6T4U26149m+24IMbqudV0ri6Mh+fuWYZfn+kF0+82ZXCaPVr1+lB1LnyUOq0pf1aVpMRG2sKOS+RiIiISOeYJOqQJxDGh364Bz94tQW3X7oQT396C5aUpGZI+11X1mFjzQL88zPN6BgKpOScejUeiWHf2SFsWZK5bqNblhTjZN8o+n3BjF2TiIiIiLILk0Qd+u4fT6GxYwTfuW0d/u2WNbCZUze2wmgQ+K8PNgAAPverQ4hONzeDZqSxYwRj4WhGR1Ikx2zsSYzdICIiIiL9YZKoM10jY3jw9Tbcur4KN62tSMs1qgtz8c83rsK+1iE8d6QnLdfQg90tbggBbKotvPCTU2RVhROFeRY8f6Q3Y9ckIiIiouzCJFFn/uelkwCAv79mWVqvc+v6KlQW5OA3BzrTeh0t2316EKsr8lGQa8nYNY0GgQ9cXIX/O9aHPi9LTomIiIj0iEmijpzq8+E3Bzpx56ZFqCzISeu1DAaBW9dX4rVTA+j1MNmYrWA4ioMdw9hcl/7RF1PdfulCRGMSj+1rz/i1iYiIiEh5TBJ15Ft/OIE8iwn3bFuSkeu9b30VYhJ48iA7nc7W8V4fwlGJdQsLMn7tRUV52LrMhV/u60AkGsv49YmIiIhIWUwSdeJg+zBebO7DJ7fWojAvM+WLNcV52FizAL850MG5ibN0pMsDAKivyFfk+h+5dCF6vUG8dKxfkesTERERkXKYJOqAlBL/8cJxFNst+MvLF2f02u+/uAotA340doxk9Lpq19TpQUGuGVUL0lsWfC7vWlGC8nwbHtnbpsj1iYiIiEg5TBJ1YOcpN14/M4S/eddS5FlNGb329WvKYTMb2MBmlpq6PVhTmQ8hhCLXNxkNuP2ShfjTKTfOuv2KxEBEREREymCSqHGxmMQ3XziO6sIc3HbJwoxf32Ez47rV5Xj2UDeC4WjGr69GoUgUJ/t8ipWaJn3okmqYDAKPvM7VRCIiIiI9YZKocS8296K524vPXrMMFpMyL/et66vgDUbw0rE+Ra6vNicSTWvWVCqbJJY4bLi2vgy/PtDJBJ+IiIhIR5gkapiUEv/7ymnUFufhprWVisVxWV0RKvJtLDmdoaYuLwAoniQCwB2bFsIzFsbvDvcoHQoRERERZQiTRA3bcXIAzd1e3HVVHYwGZfa2AfEB7e9bX4WdJwc4oH0GjnR54LSZUF2oTNOayS6rLUKdKw8Ps+SUiIiISDeYJGrY/a+cRmVBDm5Zp9wqYtKtF3Nm4kw1dXmwWsGmNZMJIfCRTYvQ2DGCpsRYDiIiIiLSNiaJGrX3zCDeaB3GJ7fWwmxU/mVeXJyHDYsW4DcHOjkz8TzGIzGc6PVlRalp0vvWV8FmNuCxfe1Kh0JEREREGaB89kBp8b0dLSi2W/ChjdVKhzLh/RdX4XT/KB7Z285E8RxO9vkwHo2hPouSxPwcM66tL8NzR3owHokpHQ4RERERpRmTRA063DmCnScH8FeX18JmNiodzoSbGiqwqbYQX3mqCZ986ADcoyGlQ8o6yZLObFpJBICbGyoxEgjj1ZMDSodC0+gcDuDh19vw6/0dCEeZyBMREdH8ZHayOmXE/a+0wGkz4SObMj8X8XxyLSY8+vFN+Omus/jmiydw7bd34uu3rMF7V5cpHVrWaOr2wGE1YVFhrtKhvM3lS4tRmGfBU41duGZVqdLh6F4kGsP+tmG8crwfr5zox8m+0YnHfvBqC7503Uq8e2VJVuxrJSIiIvXhSqLGnOrz4YXmXnxscw0cNrPS4byDwSDw8Stq8bu/uRxl+Tbc9fABfO5XhxCKcA4fABzp8mJVhRMGBbvRTsdsNODPLirHS0f74AuGlQ5H18YjMXzkJ3vx4Qdex093nYXLYcVXbliJlz57JX505wZICXz8wf247Uev40gnmw0RERHR7DFJ1Jjv72hBjtmIj21ZrHQo57Ws1IEn79mCe66qw2/f7MTTjd1Kh6S4cDSGYz3erCs1Tbp5XSVCkRheaOpVOhTdklLin55uwutnhvDPN67CwX96Dx75+CZ8/IpaLCmx45pVpXjxM1tx3/Z6nOwbxY3/+xq+8fxxpcMmIiIilWGSqCEdQwE8fagbd1y6EIV5FqXDuSCLyYAvXLscRXkW7GkZVDocxZ3uH8V4JIY1VdmZJK6rLsCiolwm9Ap6cE8bfvlGB/56Wx3+Ysti2K3v3DFgNhpw52U12PGFq7C9oQI/3NmCloHRac5GREREND0miRryfFMPojGJj22pUTqUGRNCYFNtEfa0DOq+4+mRRNOa+orsTBKFENi+tgK7Wtzo8waVDkd3dp12477fHcXVK0vxuWuWX/D5TpsZX/2zVbAYDXjg1TMZiJCIiIi0gkmihuw4MYDlpQ5ULciupicXsqmuCL3eIFoHA0qHoqjmLg/yLEbUFucpHco5bV9XCSmBZw9xNTGTWt1+3PPIm6hz5eG/P9ww4z2rxXYrPrihGk8c7ESvh4k9ERERzQyTRI0YDUXwRusQrlruUjqUWbustggAdF9yeqTLg/qK/KxrWjNZncuOi6ry8VRjl9Kh6IYvGMbHH9wPIYAf37lx2hLT8/nk1lrEJPDTXWfTFCERERFpDZNEjdh92o1wVOLKZepLEutceXA5rNhzRr9JYiQaw9EeL+ornUqHckHbGyrR1OXF6X6f0qFonpQSn/3VIZx1+3H/HeuxsGj2VQLVhbm4YU05Hnm9DZ4AO9MSERHRhTFJ1IhXTw4gz2LEhppCpUOZNSEELtP5vsQzbj+C4VjWdjad7Ma15TAI4KmDLDlNt5/tasX/He3Dl69fic11xXM+z11X1sE/HsXDe9tSGB0RERFpFZNEDZBSYseJAWxeUgyLSZ0v6WV1RXCPhnTbhTE5z04NSWKJw4YtS4rx9KEu3Sb1mXC4cwT//vwxXL2yFH85z2ZUqyqcuHKZCz/bdRbBMGeSEhER0fmpM6Ogt2kZGEXXyJgq9yMmTexLPDOkcCTKONLlQY7ZiFqXXelQZuTmhkp0DI3hzfZhpUPRJG8wjE8/ehAuuxXf+sBFEGL++1TvvqoO7tFx/PpAZwoiJCIiIi1jkqgBO04MAIAq9yMmLSrKRXm+Da/rtHlNc7cHqyqcMGZx05rJrl1dBpvZgGc4MzHlpJT40hNH0DUyhu/ctg4FuamZeXrp4kI0VBfgRzvPIBKNpeScREREpE1MEjXg1ZMDWFJiV93oi8mS+xJfP6O/fYmxmERztxerK7K/aU2S3WrClrpivHJiQHevV7o9tq8Dzx3uwefesyyle4yFELj7qjq0DwXwfFNvys5LRERE2sMkUeUC4xHsPTOEq1S8ipi0qa4Ig/5xnOzT177ErpExBMajWF6mniQRAK5aUYL2oQDOuP1Kh6IZx3q8+NqzzbhiaTHu2lqX8vNfs7IUda483L+jBbEYk3siIiKaHpNEldvTMojxaAxXLS9ROpR5e2teolvhSDKrdTCeZC0uzlM4ktlJ3ph45Xi/wpFox33PHoXDZsa3P9SQlnmZBoPAX29bgmM9XrzYzNVEIiIiml7Gk0QhxFIhRFAI8XDi71cJIWJCiNFJH38+6fmFQognhRB+IUSbEOL2Kee7PfF5vxDiKSGE+mZAzMOOEwPIMRuxcfECpUOZt+rCXFQtyNHdvMRWtzqTxOrCXCwtsU/siaX5cY+GsPfsIG6/pBrFdmvarrO9oRJ1rjx8+6WTiHI1kYiIiKahxEri9wC8MeVz3VJK+6SPX0x5/jiAUgB3APi+EKIeABL//SGAjyYeDwC4P91fQLaQUmLHyX5sriuC1WRUOpyUuKy2CHvPDumqFO6M248csxGlzvQlBuly1XIX9p0dgj8UUToU1XvpaB9iMt4UKJ2MBoG/v3oZTvaN4rkjPWm9FhEREalTRpNEIcSHAYwAeHmGz88DcCuAr0opR6WUrwF4BvGkEIgnjc9KKXdKKUcBfBXA+4QQjtRHn33Ouv3oGFL36IupLqsrwkggjGO9XqVDyZhWtx81xXkpGXOQaduWl2A8GsNunXalTaUXmntRXZiDVeXp35t6w5pyLC914L9fOslOp0RERPQOGUsShRBOAPcB+Ow0D5cIIfqEEGeFEN9OJIcAsAxAREp5ctJzDwGoT/y5PvF3AICUsgXxVcdlKf8CslCyzE8L+xGTLqtL7kvUT9LROhjA4mJ1dqbdUFOIPIsRr5zgvsT58AbD2HXajffWl2XkZoHBIPCZa5bizIAfT3OMCREREU2RyZXEfwHwEynl1EnOxwE0ACgH8C4AFwP4r8RjdgBTl5Q8AByTHvec5/EJQohPCiH2CyH2DwxoYw/VjpMDqHXlobpQnQnGdMrzc1BTlIvXdbIvMRyNoX0ogJoide1HTLKYDLh8aTF2HO/nKIx5eOV4P8JRifemudR0smvry1Bf4cR3/ngKYa4mEhER0SQZSRKFEA0Argbw7amPSSl7pZRHpZQxKeVZAP8P8RJTABgFMLX2ygnAN8PHJ1/nASnlBinlBpdL/eWZwXAUe88M4koNjL6Y6rK6+L5EPTTV6BweQzQmVde0ZrJty0vQ7QnqbnRJKr3Q1AuXw4p11ZlrQCWEwGeuXoa2wQCeeHPqvTsiIiLSs0ytJF4FoAZAuxCiF8DnAdwqhHhzmufKSXGdBGASQiyd9PhaAM2JPzcn/g4AEELUArAmjtO0vWeHEIpoY/TFVJtqi+ALRtDcPXWRWHvU2tl0suS/QZaczs3YeBQ7Tgzg2vrStIy9OJ93ryzB2qp8fOfl0xiPcDWRiIiI4jKVJD4AoA7xstIGAD8A8ByAa4UQ24QQi0RcNYBvAHgaAKSUfgBPALhPCJEnhNgCYDuAhxLnfQTAjUKIKxL7GO8D8ISU8h0riVpzsH0YQgAXL1L/6IupLqoqAACc0sHK1BkNJIll+TasLHdyXuIc7Tw1gLFwFO+tL8/4tYUQ+Mw1y9A1MobH93dk/PpERESUnTKSJEopA4my0l4pZS/iZaJBKeUAgHUAdgPwJ/57BMDfTjr8HgA5APoBPAbgbillc+K8zQDuQjxZ7Ed8L+I9mfialHa404OlJXbYrSalQ0m5YrsFADDoDykcSfq1uv1w2EwozLMoHcq8bFvuwv62YXiDYaVDUZ0Xm3qRn2PGpbXKjHi9cpkLGxYtwHdePgXPGF8/IiIiUmZOIqSU90opP5L4839JKSullLlSymop5d9OXgmUUg5JKW+WUuZJKRdKKR+dcq5HE5/Pk1Jul1IOZfrryTQpJQ51jGBtYsVNa+xWE6wmA9yj40qHknatg34sVun4i8m2rShBNCax65Rb6VBUZTwSw0vH+nD1ylKYjYr8OIYQAvfeVI8h/zi+8fwxRWIgIiKi7KLMuxKal87hMQz6x3FRtTaTRCEEiu1WuH3aX0k8M+BXdalp0rrqAjhtJu5LnKXXzwzCG4xktKvpdFZX5uPjly/GY/s6dDV+hoiIiKbHJFGFDnWOAAAaNLqSCMRLTgdGtZ0kBsNRdHvGVDv+YjKT0YArlrnwyokBjsKYhReae5FrMeKKpcVKh4K/v3oZFhbm4stPHkEwHFU6HCIiIlIQk0QVOtzpgcVkwPKyd4yD1IxiuxWDGi83bR8KQEp1N62ZbNvyEgz4QmjunjralKYTjUn8obkP25aXwGY2Kh0OcixG/Pv71uCs24/vvHxK6XCIiIhIQUwSVaixYwSryp2wmLT78hXbrXBrfCXxrAY6m06WnNn5R3Y5nZE324fhHg3hWoVLTSfbsqQYH7i4Cj/ceQZHmewTERHplvZaY2pcJBrDkU4PPrSxWulQ0qrYYcGgfxyxmMz47LhMSc5IrNFIkuhyWLGpthC/3NeOu6+qU6wRi1q80NQLi9GAbctdSofyNv94w0q8cqIf//DEYTxx92aY+DoSERGd15mBUfzxeD9CkRhCkRjC0RjGIzFYTAasKHNgVbkTi4vzVPU7lUmiypweGMVYOIq11flKh5JWRXlWRGMSnrEwFqh8PMS5nHX7UZhnQX6OWelQUuYTV9Tir36xH78/0oPtDZVKh5PVdp1249LaQjhs2fX6F+RacO9N9fj0owfxs12t+MTWWqVDIiIiykrjkRh+8GoL/vePpzEejU183mI0wGIyIBSJIhyN92qwJraKbawpxKe3Lcn697dMElXmcIcHADQ7/iKp2GEFALhHQ1n/TTRXZ93a6Gw62bblJahz5eGHr57BTWsrVD/aI11GQxGc6PPh2vrsKTWd7IY15fjVsk78cGcLPn7FYr6OREREUxxoG8I//PYITvWP4sa1FfjSdStQZLfAYjRM/N4MR2NoGRjFsR4vjnZ7cbTHi1/sbsVTB7vwTzeuyur3SupZ8yQAQGPnCBw2kyY6Yp5PsT2eGGq5w2nroF9zr6PBIPDJrbU42uPFrtMcpXAuhztHICXQsDA7b/YIIXDd6jK4R8cn9s4SERFR/EbvV546glu/vweB8Sh+9rGN+O5t61BRkAOryfi2pM9sNGBFmRO3rKvCP96wCo98fBOe/ZvLUVWYi7/7ZSM+9rM30DEUUPCrOTcmiSpzqGMEa6sKNLtPL6nYnlxJ1GaHU38ogj5vCIuLc5UOJeW2N1Si2G7FA386o3QoWauxI/vH2GysWQAA2N86rHAkRERE2ePeZ5rx6N52/OWWxfjDZ7Zi24qSWR2/styJJ+7ejH++cRXeaB3Ce769Ez/fdTZN0c4dk0QVCYajON7r0/x+ROCtJHFQoyuJrYPJzqZ2hSNJPZvZiL/YUoOdJwdwrIcdMqfT2D6CmqLcrC6lrnPZsSDXjP1tQ0qHQkRElBU6hwN46mAXPrZ5Mf7pxlXIs85t557RIPAXWxbj/z57JTbVFuLeZ4/iV290pDja+WGSqCLN3V5EYxIXZfHqQ6oU5JhhNAjNjsFodcdLC2o0uJIIAHdcuhC5FiN+xNXEd5BS4mDHCNYtXKB0KMnIF7IAACAASURBVOclhMDFixZwJZGIiCjhRzvPQAjgE1sXp+R8lQU5+NGdG3DF0mJ85akmHGzPnt+5TBJV5FCyRK1a+0miwSBQmGeB26fNctOz7lEA0NyexKSCXAs+uKEazzR2o8czpnQ4WaXbE8SAL6SK7+MNNYU44/Zr9mYNERHRTLlHQ/jlGx24ZV0lyvNzUnZek9GA7962DmX5Ntz18AH0e4MpO/d8MElUkUOdIyhz2lDqtCkdSkYU260Y9GvzzelZdwClTuucyxTU4K8uXwwJ4Oe7WpUOJas0tqvnZk9yX+KBtuy5s0lERKSEn+06i/FoDJ+6si7l5y7IteCBOy+GdyyCux4+gFAkmvJrzBaTRBU53OnRxX7EpGK7BQMabVyjxc6mU1UX5uL6NeV4dG87fMGw0uFkjYPtw7CYDFhZ7lQ6lAtaXZkPi8mA/a3cl0hERPrlC4bx4J42XLe6DHWu9PSTWFHmxH9+cC3ebB/Bvc8cTcs1ZoNJokqMBOKt6PWwHzGp2G6F26fVlUQ/al3aThIB4JNX1MIXiuDxLNuMraTGjhGsrnDCYsr+H79WkxFrq/LxBvclEhGRjj38ejt8wQjuuWpJWq9z/Zpy/PW2Ojy2rx2P7G1L67UuJPvfpRCA+CoioI4StVQptlsw6A9BSql0KCnlGQtjyD+u+ZVEAFhTlY/lpQ7sOu1WOpSsEI7GcKTLg4bq7G5aM9mGmkI0dXkwNq586QsREVGmBcNR/OS1s7hiaTFWV6a/ou+z1yzHtuUu3PtMM9oGlZtVzCRRJZJNa9ZU6anc1IpgOAa/xt6ctiaGk9cUaz9JBID6CieOchQGAOBErw+hSAwNC9Vzs2djzQJEYhKHOkeUDoWIiCjjfn2gE+7REO6+KvV7EadjNAj8x60XwWQw4JsvnMjINafDJFElDnV6UOfKg9NmVjqUjEnOStRayenZRJJYq5MkcWW5E33ekGZnXs5GsrX1OhVVBKxPjOrgvkQiItKbSDSGB3a2oKG6AJfVFmXsuiVOGz51ZS2eO9KjWPM4JokqIKVEY8cI1upoPyIAFNnjg8a11n7/rNsPIeKNXfRgVUW8QcuxHp/CkSjvYMcIiu0WVC1IXevsdCvItWBZqZ37EomISHd+d7gHHUNjuOeqOgghMnrtT26tRYnDin997qgiW6+YJKpAjycI92gIa1W0+pAKEyuJGutwetbtR0V+Dmxmo9KhZESyi+cxlpyisWMEDdUFGf9FM18bagrxZvswojFt7Q8mIiI6l3A0hv9+6SRWlDlw9crSjF8/12LC59+zHAfbR/D7I70Zvz6TRBVINq25SEf7EQHA5UgmidpaSWwd1Edn06TCPAvKnDbdJ4meQBhnBvxYt1A9TWuSNtYsgC8Ywck+rgYTEZE+/Gp/B1oHA/jCtcthMChzc/fWi6uwosyB/3jheMZnJzJJVIFTiTdmy0odCkeSWYV52is3lVLirFv7MxKnWlnu0H3zmsZE4xc1dijesKgQAPclEhGRPoyNR/E/L53ChkUL8K4VJYrFYTQIfPn6lWgfCuChPZkdicEkUQVO9o+iakEO8qwmpUPJKLPRgIJcMwY1VG46HAjDF4xgUZE+9iMmrSx34nT/aMbvgmWTxvYRCKHOioCqBTkodVqxX6HN80RERJn0892t6PeF8MXrVii+RWTrMhe2LnPhu388jZFA5t4TM0lUgVN9PiwtsSsdhiKK7VZNrSR2DAUAAAt10rQmaVWFE5GYxKm+UaVDUUxjxzCWltjhUGGHYiEENtQUYj+b1xARkcZ5AmF8f8dpvGtFCTbWFCodDgDgy9evgC8Yxnf/eDpj12SSmOUi0RjODPh1V2qaVJRn0VaSOBxPEvXS2TRJ781rkh2K1VhqmrRx0QJ0jYyhe2RM6VCIiIjS5vuvtsAXiuAL1y5XOpQJK8qc+OCGavxidyt2t7gzck0miVmufSiA8WgMS/S6kuiwaqq7afuQPpPEmqI85JiNuh2D0TYYwHAgjIZq9TWtSdqQuJvKklMiItKqXk8QP9t1Fjc3VE7c4M4WX7p+JRYX5+Guhw7gdH/6K7OYJGa5U4l/BEt1upLo0ly56RgW5Jph19n+UqNBYHmZA0d7PEqHoojGDvU2rUlaUeZAnsXI5jVERKRZ3/njKcSkxGevWaZ0KO+Qn2PGTz+2ERaTAX/x830YTPP7YyaJWS7Z2VS3K4l2C3zBCIJhbTQ86RwO6G4VMWlluRPHenyKDIRVWmPHCHItRiwrVe/3sclowPpFC7DrtBsxzkskIiKNOTMwisff6MAdly7K2vdq1YW5+PGfb0S/N4RPPLg/re+PmSRmuVP9o6gsyNHdylNSkT0+K3HQr42S046hAKoXZOcPnnRbVeGEZyyMbk9Q6VAyrrFjBKsr82EyqvtH7vaGSrQM+PHs4W6lQyEiIkqpH/3pLCxGA/562xKlQzmvhuoC/PeHGnCwYwSf+/WhtN24Vfc7Fh042TeKpSpefZiv4mSSqIGS02hMomtkDFWFOUqHoohV5fGS6WPd+mpeE4nGcKzHizWV6ht9MdX71lWivsKJ/3j+uGZW94mIiCLRGF5s7sU1q0rhcliVDueCrltTji9dtwLPHe7Bt/5wIi3XYJKYxaIxiZaBUd2OvwDi5aYANLEvsc8bRDgqdbuSuLzMCSH01+G0ZcCPUCSG1ZXZtQF+LgwGga/csArdniB+8tpZpcMhIiJKiX2tQxjyj+O61WVKhzJjn7iiFu+/uArff7UFQ2mouGOSmMXahwIYj8R027QGeGsl0e1Tf7lph047mybZrSYsKszFUZ0lic3d8WY9qyvUv5IIAJfVFeE9q0px/yun0e/TX+kwERFpz/NHemEzG3DlcpfSocyYEAI3N1RCyvTcgGeSmMWSTWv0vZIYTxIHNLCS2DEcny9XvUCf5aZAfF+i3lYSm7q8sJkNqHVp5/v4S9evxHg0hv/6w0mlQyEiIpqXWEziheZebFteglyLunqArExu5WGSqC96H38BADkWI/IsRgxqYFZix1AAQgCVOk4SV5Y50ToYwGgoonQoGdPU7cGqcieMBqF0KCmzuDgPd15Wg8f3d+CozvaYEhGRthxoH8aAL4T3qqjUNKnIbkWJw5qWKi0miVnsVJ8PFfk23XY2TSrSyKzEjuEASh02WE1GpUNRTHIw7YlefSQWsZjE0W4vVmugac1Uf/uupcjPMeNfnzuqy7EmRESkDc8f6YXFZMC7VpQoHcqcrKpwpuWGLZPELHaqfxRLdLyKmFRst2giSewcGkO1TjubJq2qiCeJR3t8CkeSGW1D8VVTrexHnCw/14y/f/dS7G4ZxMvH+pUOh4iIaNaklHihqQdblxbDYTMrHc6crCx3omVgFOORWErPyyQxS0VjEqf7R7FMx/sRk4rtVm2Umw7rd0ZiUnm+Dfk5Zt2UKDZ1xZvW1Gugs+l07ti0CLWuvLS13yYiIkqnQ50edHuCeO/qcqVDmbNV5U6EoxKn+lN7A55JYpbqHA4gFInpekZiUrFD/eWmoUgUvd4gqnTa2TRJCIFV5fppXtPU7YHZKLC0RJsVAWajAe+/uArHe30YCaj/Rg4REenL8009MBkErllZqnQoc5bcynMsxVVaTBKz1Kk+Nq1JKs6zYCgwjkg0tcvomdQ9EoSU+u5smrSy3InjvV5EY9rfx3a024vlZQ5YTNr9Ubu2qgAAcLjTo3AkREREMyelxPNHerF5STHyc9VZagrEm8nZzIaUV2lp952Lyp1MLBkvYbkpih1WSAkMqXilQu8zEidbWe5AMBxD66Bf6VDSSkqJpi6PJvcjTpZsynO4c0ThSIiIiGbuaI8X7UMBXK/CrqaTGQ0Cy8tSX6XFJDFLne4bRXm+DU6VbqJNpeSsRDXvS+wYZpKYlGxeo/WS025PEMOBMOo12Nl0svwcM2pdeWjs4EoiERGpxwtNvTAI4JpV6i01TVpV7sCxXm9Ku40zScxSJ/t9XEVMKMqzAICq9yV2DI3BbBQoc9qUDkVxS0rsMBmE5pvXJJvWrK7QZtOaydZWFeBQ5whHYRARkWr8/kgPNtUWoSixGKFmq8qdGAmE0eMJpuycTBKzUCzZ2ZT7EQHEy00BlSeJwwFUFORoaqD6XFlNRiwszEVbogRXq5q7PDAaxMSGci1bW5WPAV8Ivd7U/XIiIiJKl1N9PrQM+HGdyktNk95qXpO6G/BMErNQ5/AYguEYlnIlEYA2yk07hzj+YrISpxX9Gk8omrq9WOKyw2Y2Kh1K2l1UHW9ec4glp0REpAIvNPVCCODaem0kiSsSSWIqq7SYJGah5JwTjr+Ic9pMsBgNGFD1SuIYqgvZ2TSp1GlDn1e9r+dMNHV5NDsfcapV5U6YDAKH2LyGiIhUYF/rEFaWOVGikW1AdqsJi4pycayXSaKmneqPj79YotHZarMlhECR3QK3T50rif5QBEP+cTatmaTUaUO/L6jZPWz9viD6fSHNdzZNspmNWFHuYIdTIiLKerGYRGPHCBoWFigdSkqtKndyJVHrTvb5UOq0Ij+HnU2Tiu1W1e5JnOhsynLTCSUOK4LhGLzBiNKhpEVz4od0vQ6a1iStrSrA4Q4PYjqYf0lEROp1xu2HLxhBQ7W2ksSV5U60DQXgD6XmvRWTxCzEpjXvVGy3YNCv0iRxaAwAx19Mlizv0Oq+xOZEZ9NVOksSfaEIzmp8/iUREalbY0e86mWdBpNEKYHjvb6UnI9JYpaJxSRO9Y1y/MUURXarastNO4aSK4nck5hUmuhYq9V9iU1dXiwuzoNDR3NO1yZ+2bLklIiIslljxzAcVhPqXNp6r528MX00RR1OmSRmma6RMYyFo1xJnKLYbsWgP6TKPWwdwwHkWowoTMx7pPieRCC+d0+Lmro9uio1BeLzL3MtRnY4JSKirNbYMYKLqvNh0NhYsop8G5w2U8rGYDBJzDKnJ5rWaOvuxnwV2y0IRyW8Y+rbw9YxNIbqBbkQQls/jOajxKndlcSRwDg6h8ewulIfTWuSjAaB1RX57HBKRERZKxiO4niPT3P7EYF4o8dVFalrXsMkMcu0J0oTa4ryFI4kuyRnJapxDEbncIDjL6bItZjgsJrQp8E9icmmNXrpbDrZ2up8NHd7MR6JKR0KERHROzR1eRCJSTRUL1A6lLRYWe7EiV4foiloIsckMct0DgdgNRlQbGdp4mTJJFFtHU6llOgYCqCKnU3focRp1WS5aXN3vNxSb+WmAHBRVQHGIzGc7EvNpnkiIqJUSjat0eJKIhAfgzEWjqItBU3kmCRmma6RMVQuyGFp4hTFjnjSrLYkcTgQhn88ys6m0yh12jRZbtrU5UVlQQ4W6HAPavKXbvKXMBERUTY52DGCyoIcuBIN9LRmZXnqmtcwScwyncNjXHWahiu5kuhTV1LBzqbnVuq0aXIl8WSfDyvK9Nl4qmpBDhbkmtnhlIiIslJj+wgaFmpzFREAlpbaYTKIlDSvYZKYZbqGx1BZwIRiqgW5FhgNQnV7EjuGE0kiVxLfocRhRZ9XnR1rzyUWk2gd9GNxsT73FAshsLa6gB1OiYgo6wz4QugaGdPcfMTJrCYjlpTYU9K8JuNJohBiqRAiKIR4eNLnbhdCtAkh/EKIp4QQhZMeKxRCPJl4rE0IcfuU853zWLUJjEcw6B9HFVed3sFgECi2WzCgupXEMQBMEqdT4rRhPBKDZyysdCgp0+sNIhiOYbFLn0kiEN+XeKrfB39IfZ2IiYhIu7S+HzFpZbkTx3rm3xtAiZXE7wF4I/kXIUQ9gB8C+CiAUgABAPdPef544rE7AHw/ccxMjlWV7pF4QsEkcXouh1V9SeJwAAtyzbBbTUqHknVKNTgGo9Ud3yi+WMfdiRuq8xGT8Q5yRERE2aKxYxgmg9D8iKrlZQ70eoPwBud3Ez6jSaIQ4sMARgC8POnTdwB4Vkq5U0o5CuCrAN4nhHAIIfIA3Argq1LKUSnlawCeQTwpPO+xmfqaUqljmEni+bjsVvWVmw4FuIp4DqVOGwBoal/i2UQ3sRqdlpsC8ZVEADjcySSRiIiyR2PHCFaUO2AzG5UOJa3K8+Pvr+a7sJKxJFEI4QRwH4DPTnmoHsCh5F+klC2IrxwuS3xEpJQnJz3/UOKYCx2rOl2JJLGygEnFdFS5kjgUQDUbEU2rxKG9lcSzA37YzAaUJRJgPSq2W1FZkINGNq8hIqIsEYtJHO7waL7UFHir2aNqkkQA/wLgJ1LKzimftwOYesvZA8CReGzqzsvkYxc69m2EEJ8UQuwXQuwfGBiYQ/jp1zk8BrNRTLx5prdzOaxwj44jloIBoZkQjUl0jYyhqpArw9MpccQTqT6vdlYSWwf9qCnKg8Gg7xE2a6vzcYQriURElCVaBkbhC0XQUL1A6VDSLjneQxVJohCiAcDVAL49zcOjAKZOnXYC8F3gsQsd+zZSygeklBuklBtcLtfsvoAM6RoZQ0VBju7fYJ5Lsd2KaExiODCudCgzMjgaQjgq2a32HHIsRjhtJvRrKEk8444niXq3qCgPPZ4x1dzQISIibTuok6Y1QOqSxEx107gKQA2A9sSQeDsAoxBiFYAXAKxNPlEIUQvACuAkgBgAkxBiqZTyVOIpawE0J/7cfJ5jVadzOMD9iOcx8Y9+NIQie/avtvYnvjmTK2b0TvFZidooN41EY+gYCuDa+jKlQ1FcqcOKcDR+Q0cN36tERKRtjR0jcNhMqNVBz4D8HDPMxvmPjctUuekDAOoANCQ+fgDgOQDXAngEwI1CiCsSjWruA/CElNInpfQDeALAfUKIPCHEFgDbATyUOO85j83Q15VSnJF4fqmqsc6UZEOWEiffJJ9LidOqmXLT7pEgwlGp686mScmmRL0aeW2JiEjdGttH0FBdoItqPSFEvNmjGspNpZQBKWVv8gPxMtGglHJAStkM4C7EE75+xPcT3jPp8HsA5CQeewzA3YljMINjVSMYjqLfF0IVm5ycU3Il0a2SDqf93uRKIpPEcyl12DTTuOaMexQAdD0jMak00VmtXyOvLRERqdfYeBQn+ny6KDVNSkWzR0WGt0kp753y90cBPHqO5w4BuPk85zrnsWrS44nfcedK4rmlqsY6U5JllC4miedU4rSh3xeElBKJUnTVSs5I5J7Et1YStbJKTERE6nWky4NoTOouSewemd/v4IzOSaRz6xwOAOCMxPOxW02wmQ0qShKDKMg1w2rS9jye+Sh1JveuzW/gazZoHQzAbjWh2G5ROhTFJUvDtbJKTERE6tXYMQxAH01rklyO+c8WZ5KYJToTMxKrOHj9nIQQqpqV2O8NTbxZpuklV5yS+zfV7Izbj8XFeapfEU0Fi8mAojwL+jTwuhIRkbod6vSgakGOrhqpuexWDI6GEJ1Hl3EmiVmia3gMRoNAKUsTz8tln/+dkUwZGA2xac0FJPdramHFqdXtR40OuqbNVInTpqnxJkREpE5Hu71YXZGvdBgZ5XJYEZPAkH/uY+OYJGaJzuEAyvNtMBn5kpyP2lYSOf7i/LSyd208EkPncACLi1gJkFTqtLK7KRERKcoXDOOs24/VlVPHqmtbKvp4MCPJEl0jHH8xE2pJEqWUGPCF2Nn0ApI/xNS+4tQ+FEBMsrPpZFrqXEtEROp0tNsLAKjX4UoigHlV3zFJzBKdw2McfzEDLrsNw4EwxiMxpUM5L89YGOPRGDubXoDNbERBrnmiE6xasbPpO5Xm2+AeDSESze7vVSIi0q7mZJKot5VEe7xSiyuJKjceiaHPG0QlO5teUDLpGvRnd1KRTHpKnCw3vZASh1X15aZnE0niYu5JnFDqtEJKwD069/0QRERE89HU7UGJw6q77T/FjnindSaJKtfrCSImOf5iJtQyKzE5RJzlphdW6lR/WeLZQT8W5JpRkMvxF0mlDm3sNyUiIvU62u1FfYW+VhEBINdigt1qYpKodp0jiRmJ3JN4QapJEhOt/5kkXliJQ/1dMNnZ9J200pSIiIjUKRiO4lT/KFZX6ms/YtJ8ZyUyScwCEzMSuSfxgtSTJLLcdKZKnVb0+0KIzWOWj9LOuv1YzP2Ib1OaGP/Sl+Xfq0REpE3He32IxqQuVxKBxNi4ecwrZpKYBbqGxyAEUJbPhOJCiu3zr7HOhH5vCLkWI+xWk9KhZL0ShxWRmMRwQJ1718bGo+jxBLkfcYoiuxVGg0CfhyuJRESUec3dHgD662yaNN+JAEwSs0Dn8BjKnDZYTHw5LsRqMiI/xzyv5fNM6PcFWWo6Q2+VJWb3a3ourYOJzqZMEt/GaBBw2dXflIiIiNSpqcuL/Byzbnt+MEnUgK6RAGckzoIaZiX2+0K666Q1V8mS3L55lEQoqZWdTc+p1GlluSkRESniaLcH9RVOCCGUDkURLocV3mAEwXB0TsczScwC8RmJTBJnKl5jnd1vPAd8IbicXEmcieTeNbU2rznLlcRzKnGqvykRERGpTzgaw7Fen26b1gDx98sA4J5j9R2TRIVFojH0ejgjcTZcDuuc/8FnSr+X5aYzlWxG1K/SctOzA364HFbuP51GqZPlpkRElHmn+0cxHonptmkNMP9mj0wSFdbnCyESk+xsOgvZXm7qD0XgH4+y3HSGrCYjFuSa1VtuOuhnqek5lDpsGA6EEYrMrdSFiIhoLpq7vQD027QGYJKoel0T4y+4kjhTLocV/vEo/KGI0qFMK/nNyJXEmSt12lTbuIbjL84t2ZRIravERESkTk1dHuSYjbq+iTuRJLLcVJ06hwMAwMY1szDfGut0e2tGIpPEmVLr3jVfMAz36Dj3I55D8nuAJadERJRJR7u9WFXhhNGgz6Y1AFCYZ4EQXElUreRKYgWTxBmb7/J5uvUnyiZdXEmcsVKHdSK5VpNWd/wmj57vVJ5PcvarWleJiYhIfWIxieZuD1breD8iAJiNBhTmWpgkqlXn8BhcDitsZqPSoahGsT3Lk0RvstyUexJnqsQZTxJjMal0KLNyxj0KgEniuZQ6kkkiVxKJiCgzWgf98I9Hdb0fMWk+fTyYJCqsa4TjL2ZrvjXW6dbvC8FsFFiQa1Y6FNUoddoQjUkM+seVDmVWkiuJi4rYeGo6BblmWIwG1TYlIiIi9ZloWlOp75VEIJEkck+iOnUOB7gfcZYK8ywwzKPGOt36fUG47FbdDm+dixKVrji1DvpRWZDDSoBzEELEV4lZbkpERBnS1O2B2SiwtMShdCiKm89scSaJCorFJLpHghx/MUtGg0DRPP7Rp9uALwSXk6Wms1GaaHDSr7IVp9ZBP1cRLyDeuVZdrysREanX0W4vlpc5YDExzUmWm0o5++08/L+noIHREMajMVSy3HTW5nNnJN36vSGOv5ilEpWOSujzBCeas9D0Sp1WJokAxiMx/Pvvj+GKb/4RX3riMHafdiOqsj24RJQddre48b77d+Hzvz6kdChZR0qJpi4PVnM/IoB4khiKxOCbw9g4UxrioRnq5IzEOZtPjXW69fuC2FCzQOkwVCU51kRNXTBjMYl+XwhlXDU+rxKHDTtPupUOQ1EdQwF8+rGDONQxgksWF+Lpxm48tq8DLocVN6wpx63rq7Cmim9oiOj8Tvf78I3nj+OlY/3IsxjxZvsIrl5ZiveuLlM6tKzR7QliOBBGvc47myZNngjgtM2uVwaTRAV1jcSTRO5JnD2Xw4qTfT6lw3iH8UgMw4EwO5vOksVkQFGeRVUNTtz+ECIxyZXECyjLt2E0FMFoKAK7VX+/cp4/0oP/99vDgATuv2M9rl9TjrHxKF450Y9nD3Xj0X3teHBPK35792asW8ibS0T0ToOjIXz7pZN4bF8Hcs1GfPG9K/DRyxbh/d/fjXufacaWJUVwzDIB0KrmLg8AoL6SN96At27CD/hCqHPZZ3XseX9jCyEeAnDBehgp5Z2zuioBiJeqAeCbzDlwOaxwj8ZHJhiyaFBqcnUzOUScZq7EaUO/isoS+zzx17qUK4nnNbHf1BuEfZa/oNQsFIni688dw4N72rC2ugD/e9s6VBfG96/mWIy4fk05rl9TjmH/ON77Pzvxlaea8MynL9f14GcieicpJT72szdwtMeLOy5diL9791IUJd74f+PWi3DL/bvwrRdP4GvbVyscaXZo6vbCIICVZVxJBOY3W/xCexJPA2hJfHgA3AzACKAzcex2ACOzvioBiHdyzDEb4dDh3fX5ctmtCEclPGNhpUN5m2SSwz2Js1fiiM9KVIvexGvNctPze2tWonpe21S4/5UWPLinDZ+4YjF+/anLJhLEqRbkWfDVP1uF5m4vHn69LcNRElG2e7N9BEe6PLj3pnrct331RIIIAA3VBbhz0yI8+HobDrYPKxhl9jjd78OiojzkWNh1HEhjkiil/FryA8AyADdIKe+QUn5ZSvkRADcAWD77kAkA+nwhlDo5KmEusnVWYjLJYbnp7KmtwclEkshKgPOaaEqkolLi+RqPxPDI3na8e0UJ/vGGVRfssHfDmnJcsbQY33rxhK7+PxHRhT2ytw12qwm3rKuc9vHPX7scpQ4bvvTEEYSjsQxHl33ahwJYeI6bcnqUn2OG2Sjm9H55Nt1NNwF4fcrn9gK4bNZXJQDxlcQSrkLMSTJJdGfZytNEkshy01krddow4AuppuNjnycIo0Gg2M7X+nyS5aZqugEwX8839cA9GsKdm2tm9HwhBL52Uz1CkRj+7blj6Q2OiFRjJDCO3x3uwc3rKs65p9thM+Nr2+txvNeHH//pbIYjzD7tg0wSJxNCzHkiwGySxIMA/k0IkZO4aA6ArwNonPVVCUC8NJGlanOTrSuJA94ghACK8ixKh6I6JU4bYjK+QV8Ner1BuOxW7iG7ALvVhFyLEb0edbyuqfDQnjbUFOXiiiXFMz6m1mXHXVfW4qnGbuxu0Xc3WCKK+82BToxHYrj9kkXnfd619WV4z6pS/M/LJ9E+AeO7GwAAIABJREFUGMhQdNnHEwjDG4xwfvEUyVmJszWbJPFjALYA8Agh+hDfo3g5ADatmQMpJfq8oYm77DQ786mxTqeB0RCK8qwwGTmCdLZKHeoag9HnDaKUpaYXJIRAqdOmqs6189Hc7cH+tmF8ZNOiWTfVumfbElQX5uCrTzVhPMKyMSI9k1Li0b3tWL+wAKtmMM7ha9vrYTIY8Fe/eAMH2vS5P7FtyA8A59wDrldpTxKllK1Sys0AlgC4CcASKeVmKWXrrK9K8IUiGAtH2RlxjhxWE6wmQ9Ylif3eEJvWzJHa9q71eoIo402eGSl1WlXVuXY+HtrThhyzER+4uHrWx9rMRtx302q0DPjx49fOpCE6IlKLPWcGccbtxx2Xnn8VMak8Pwffu2M9fMEIbv3+bnzxN4cx5B9Pc5TZpX0ovorKctO3m+ts8Vkvd0gp2wHsA9AphDAIIbhkMgcTXTCZJM6JEGLOd0bSqd8X4n7EOXpr71p2vabn0sty8RkrddpU87rOhycQxlONXbh5XQXyc+c2s2zbihJcW1+K77x8SjeJNRG90yN721GQa8YNF5XP+Jgrl7nw8ueuxKe21uK3b3biXf+5A7/c146YSvb6zxeTxOm57FYMjs6+58OMEzwhRIUQ4kkhxCCACIDwpA+apeQbplKuOs3ZXO+MpFO/LzgxuJRmp9huhRDqaHASGI/AF4yw3HSG4kliEFJq+43Krw90IBiO4aObauZ1ni9fvxLjkRh+9CeuJhLp0YAvhBebevH+9VWwmWc3yiHPasKXrl+J5/72CiwrceAfnjiCL/72cJoizS7tgwEU2y3I42i5t3E5rIhJzHpleTargD8EMA7g3QBGAawH8AyAu2Z1RQIQL1UDOIh7PubarSldojEJ9+g4VxLnyGw0oCjPqopy0+T3L1cSZ6bEYUUoEoN3LKJ0KGkTi0k89HobNtYsmNH+ofNZVJSH7Q2VePj1dt2VixER8Kv9HYjEJG67dOGcz7G8zIHHP7UJt1+6EE8e7NLFz5L2oQD3I05jrn08ZpMkbgbwl1LKRgBSSnkIwF8B+NysrkgAMNHEgQnF3GVbuemQfxzRmOSMxHkocVjRr4KyxIkZiUwSZyR5M0zLzWtePTWAtsEA7rysJiXnu+eqOgQjUfz0Nba0J9KTaEzisX3t2FxXhDqXfV7nEkLgo5sWIRKT+N3h7hRFmL3ahwJYxCTxHeY6EWA2SWIU8TJTABgRQrgA+AFMP92TzqvfG4LDZkKuhUvic+VyWDEUGM+a4bHJFTA2rpm7UqdVFYlEsiSW5aYzk0wSkyuwWvTg7la4HFZcW1+WkvMtLXXgutVl+MXuVnjGuKuDSC92nhpA5/DYjBvWXMjKcidWlDnwxJtdKTlfthqPxNA9Msb9iNNw2eO/g9O5krgXwPWJP78I4HEATwDYP6srEoBE+3yuQsyLy2GFnEONdbr0J775uDo8d2ppcJKc+cfv4Zl5qymRNpPEtkE/dpwcwO2XLITFlLpebn+9bQl8oQge3N2asnMSUXZ75PU2FNutuGZVacrO+b71lWjsGMGZgdGUnTPbdI+MISY5/mI6xY747O50JokfBfBq4s9/D+AVAE0Abp/VFQlAMklkMjEfyQYx2VJyOpBIblhuOnclThvcoyFEsmR1+Fz6vEHYrSbYuTl+Rkonxptkx/dqqv3ucA+kBG6fx/6h6dRX5OPdK0rwk11n4Q9pdz8nEcV1DAXw8vF+fHhjdUpvOG1vqIRBAE8d1O5qYrKz6aKiPIUjyT65lvj7lbQliVLKESnlUOLPY1LKf5FS/n/27jy8zbPKG//31m7ttmXZlvclq90szdq00JbSBei0tEBLYYBSBjoF5jcsA7zDDMsLww868w4wzFtm2AtlK2UoOwUKbWmzJ03TJI0d77skW7K1Wvv9/iHJMSGJJevZZJ3PdeW6Umt57lSW9JznnPucj3DOZ4pcK0G2uyllIUqz2o24YsmXm9ZRuemqOXPZYZ9CssOXQhd5imPQqmGr0q7ZTOLZmSBaaqpE+Ux/zyu6sRBN4nuHxwR/bkKIsnz30BhUjOHNe4W94FRvNeDqbgcef2FqzXaZHqPxF5e1mokAxYzA0DLG/jdjbIQxFmOMDef+W1f0Sisc5xzeEJWblqohtx9sOrAo80qyvKE4rAZN0e2qyXlLDU4UHky4g7Gl3z9SmHqrXvGv62r1uUPY2FBaR9NLubK1Gtd0O/DVP40glkyLcgxCiPwWE2n88OgEbulpQKOtSvDnv2N7Eyb8izg2Ni/4cyvBhD8KnUZFfSEuITsRoLjv4GJy2f8K4JUA7gewFdnRF68A8GBRRySYjyaRTHOakViieosBOo0K476o3EsBkG1G5KTAvyTn964pIzt8KZ4AXeQpVrnsNy1WLJnG8GwYmxosoh3jva/oxlw4jkePToh2DEKIvH72whQCi0m89SphGtZc6OaeBlRp1fjJ85OiPL/cxn1RtFRXQaVici9FkVYzEaCYIPENAG7jnP+Oc97POf8dgDsA3FXUEcn5zoh0klkSlYqhtcaIUV9E7qUAyJab0hWs0pRDJjGT4fCG4jT+okhOi0HRr+tqDXrDyHBgY6M4mUQA2NNRg13t1fjvZ4Yom0jIGsQ5x8MHRrGxwYLdHTWiHMOk1+CW3gb88sWZNfk5MuaP0n7EyxA7SLxUaE4he5HyM9Yo61S69lojxpSSSQzFKUgsUa1JB8YAr4KDiblIHKkMp3LTIjXY9PCG4khn1tZ+mLMzQQDARhEziYwxfODGDZgJxPC53/SJdhxCiDyOjs6jzx3CvfvawZh4p9V3bG9CKJbCH/u8oh1DDpxzTPijtB/xMuosegRjqaIuEBQTJD4G4BeMsZsZY5sYY7cA+Gnu56QI3qVMIgUUpWqtMWHcH5V9IzbnHLMhKjctlUatgsOsV3QXTA+Nv1iVBqsB6QyHr8iN80rX5w7BoFWJfgX7qq5a3LuvHQ8fGMWzA7OiHosQIq1vHxiFrUqL27eJO3r86m4HnBb9mpuZOB9NIhxP0fiLy8gnMYqp6CkmSPwwgCcBPATgOID/RHYMxoeKeA6C8/utqAtm6dpqjYgm0kV3bBJaMJZCPJWhTKIAlN7gJF8JQOWmxWnINWKYCSj3tV2NPncQG+otUEuwD+Z/vWoj1jnN+IfHTmIhquwOwISQwswEFvHEGTfu3tWCKp24je/UKobbt7nwdL9XMTOmhTCW23bURkHiJTXZs9/BUwuFN3u8bJDIGHtF/g+AawA8DeBdAP4K2QY2T+V+TorgCcZQY9JBr6EumKVqq81+IMhdcuqhEmLB1FuU3eBkKUikctOi5INqt4IvAKxGv4idTS9k0Krxhbu3wR9J4J8eP11QBUUmw/HQU4PY+///Afd89RA+95s+PHF6BjMK6QpNSKX7/uFxZDjHW/aK07DmQndsb0Yqw/HLF6clOZ4U8jMSW2spSLyUxlyQOLNQ+HfwSpOgv3GJn+e/mVju750FH5HAE6S9a0LJl3iN+aLY1S7OZu9CuAOUXRKK02rAyckFuZdxSZ5ADGoVg8NM7+Fi5INq9xrKJM6G4pgLJ7BBxP2IF+ptsuH9N67Hvz7RjxtOOHHnlc2XvO9CNIEP/Ogk/tjnxVWdtYgkUvjGc8NIprNf4V11JvzwXVdRVQshMomn0vjBkXHcsNEpWankZpcV6+vNeOK0G2+9ql2SY4ptIhcktlRTkHgpjfmxcUVkEi8bJHLOO0pbErkYmpEonCZ7FdQqhnGZO5x6qARRME6LHr5IAsl0Blp1MRXx0nAHY6gz6yUpL1xLak06aNVsTWUS+9y5pjWN0gWJAHD/y7vwdN8sPvGzM9jdUYPmi5wYvTi5gHd/73l4gjF86vYevGVvGxhjiCXTODsTxPGxeXzm12fxyMFRfOCmDZKunxCS9asXZzAXTuBt+9olPW6Py4YjI35JjymmMV8UTote9HLdcmbQqlFr0mG6iAu1K2USiQg8wRg2SVSetNbpNCq47AaMKqbclK7Il6reagDnwFw4LspA4VJ5gjHUU6lp0VQqBqfFsKYyiX0zIQCQrNw0T61i+Pe7tuJV//Es3vO953HH9iZUm3SoNelRbdLi+bF5fPqXZ1Fn0eOxv92HbS32pccatGpsb63G9tZqHBr24buHx/Hu67th0NLJFSFSymQ4vv7sCDrrTLim2yHpsV12A9zBGNIZviYueI5TZ9OCNNoNwmUSifDSmWwXTOpsKpz2WhPG/PIGie5gDHajlk60BJB/b3iCygwS3YEYOutoFtNqNNjWVpB41h1EvVWPGpNO8mO31Bjx2TuvwAcfO4mTv3jpL26/bkMdvnDXNlRfZm33Xd2BJ88exs9emMLdu1rFXC4h5AI/fn4SL80E8cW7t4k69uJimuxGpDMcnmAMLrvyvmeLNeGPYm9nrdzLUDyXraqo2eIUJEpsLhxHhlODEyG11hjxq1Mzsq7BHaDh6kLJl2IrtcOpOxjDvi76MlqNBpsBL00H5V6GYPpmpGtaczF/tdWFV1/RiIVoAvPRBPyRJPyRBNQqhhs2OqFaIUNwVVctNjZY8M3nRnHXzhbJT1QJqVTheAr/9tt+bG+14/ZtLsmP77Kf359W7kFiPJXGTDBGTWsK4LJX4eCQr+D7K2/DzxrnWZqRSAGFUNprTViIJhGIJmVbA+0zFU6+qZNXgUFiNJFCKJaictNVarBmM4lyzzUVQjKdwaA3LPl+xAupVQy1Zj26nRbs7qjBLb0NuHFz/YoBIgAwxnDfNR3o94Swf7DwEwdCSGm+/NQgZkNxfPzWzbJcnFnNOASlmpxfBOegctMCuOwGhOIpBGOFnS9TkCixfGt/KjcVTv7q0ZhfvuY17kCMXlOB1Jr1UDHAG1LeGAzqYluaRpsBi8k0gospuZdSstG5CBLpTNnvL79tqwsOsw7f3D8i91IIqQgT/ii+/twI7tjehO2t1bKswbWGgsSl8RcUJK4ov4Wn0DEYFCRKjDKJwpN7VmIqncFcmMpNhaJWMdRZ9IosN3XT+7ck9WtoVuJZd7ZpjZTjL8Rg0Krx5j1t+GOfF0OzYbmXQ8ia99nfnIWaMXz4Fvm6Cpv0GtiN2qKamCjVuI+CxEItLzMuBAWJEvMGY1CxbDt4Ioz8B8O4TM1r5sIJZDioBFFA9VbDUtZdSbxLlQD0Wq9Gfk7TWggS+2aC0KgYuurMci+lZH+9tw06tQoP7x+VeymErGmHhn349Sk3/vbaLtkbs7lsVZiaXwNBoj8Kg1ZF814LkM8gTwcUFiQyxr7LGJthjAUZY+cYY3+T+3k7Y4wzxsLL/nxs2eP0jLFv5h7nZox94ILnvYEx1scYizLGnmKMtUn1b1oNTzAOh1kPjQLnv5Uro04Dp0WP0Tl5yk2XsksWChyE4lR4JrGBLgisylImscAvKCXrc4fQ7TRDpyn/z/I6ix63bXPhx8cnsRBNyL0cQtakdIbj0798CS6bAe96eafcy0FTdRWmCyw7VLL8+AtqvLUyp8UAtYopstz0swDaOedWALcB+BfG2I5lt9s55+bcn08v+/knAawD0AbgegAfZozdAgCMMQeAnwD4GIAaAMcAPCr6v6QEHmpwIgo5x2As7VOjwEEwTqsBswrdk2jWa2DWU2Po1TgfJCrvtS1W30wQG8u81HS5+67uwGIyjR8enZB7KYSsST8+PoEz00F85FUbFTH0vcletWbKTanUtDBqFUODtfBZiZIFiZzzM5zz/JkBz/3pKuChbwPwac75POf8LICvAbg3d9udAM5wzh/jnMeQDSi3MsY2Crp4AXmCcQoSRdBaa8RYEbNfhET7TIVXbzHAF0kgkcrIvZQ/4wlSg6JS6DQqOMw6uIPlfWISiCYxHYhhY2N5N61ZbrPLiqs6a/HtA6NIppX1viOknKUzHF9+ehD//NPT2NlWjdu2Sj/y4mKa7FUIxVMILMrXGb5UnPNcJpFmFxeq0WZQXrkpADDGvswYiwLoAzAD4NfLbh5jjE0yxr6VyxCCMVYNoBHAyWX3OwmgJ/f3nuW3cc4jAIaW3b782O9ijB1jjB2bnZ0V8p9VFC+dZIqivdYITzCOxURa8mN7gjFoVIz2mQoo/x6ZDSsr4+QOxihjXKIGm2Ep+16u+tzZWY9rKZMIAO96eSdmAjE8cnBM7qUQsiaMzkVw11cO4l+f6MeNm+vxtbfuVExZ5NL+tDLOJs6FE1hMptFaU96zHqXUaC+8zFjSIJFz/m4AFgAvQ7ZMNA5gDsAuZMtJd+Ru/17uIfmOAIFlTxPI3Sd/+/LbLrx9+bG/yjnfyTnfWVdXV/o/ZhXiqTR8kQRlnETQWpu9iiRH8xp3MAanRV/QXDJSmPx7RGn7Ej0BKhcvVYPVgJmyDxKznU03raFMIgBct6EO166vwxd+fw7eUHm/RoTIiXOO7x4aw6v+41kMeEL4jzduw0NvuhLVCrqYnO90Wc7Na8Zzo8/yo9DIylz27IXaTGblecWS77jnnKc5588BaAbwAOc8zDk/xjlPcc49AN4L4CbGmAVAvh/38m9iK4BQ7u/hC2678HZFye+xokyi8NqXxmBIX3LqCcaos6nA8l3KvArqcJrJcHhDNOqkVA02g+KC/2L1uUOwG7VwrrFueowxfPK2HsRTGXzu131yL4eQssM5x9P9Xrzxq4fwzz89jR1t1fjt+1+O27c1KSaDmNdUXVynSyU6PyORyk0L5bJVIZHOwBdZuUmZnG3ZNLj4nsR8aKvinM8jW5a6ddntWwGcyf39zPLbGGOm3HOegQLlW/o76SRTcG25Dwg5ZiV6ghQ4CC2frVNSNmMuEkcqw6nctEQNVgPmo0nEktKXhgulz51tWqO0kz4hdDhMeNfLO/GTE1M4POyTezmElIV4Ko0fHZvALV98Fvd+6yhG5iL49Gt78Z37dss+6uJSHCY9dGoVpsq43HTcl117c7Uy/x8rUTFlxpIEiYwxJ2PsjYwxM2NMzRi7GcA9AP7AGNvDGNvAGFMxxmoBfAnA05zzfBnpdwD8M2OsOteQ5p0AHs7d9jiAXsbY6xhjBgAfB/Ai51yRl0C9NCpBNDajFnajFmN+GTKJVIIouFqTDmoVU1TGyROgGYlCaMidMCnptS1GJsPR7w5hY8PaKjVd7j3Xd6PJXoVP/PwMUtTEhpBL4pzj2wdGcc2DT+HDP34RjAH//oateO4jr8Bb9rYpehuKSsXgshvKutx0Yj6KeqseBq383WLLRX5e8UwBGWSpMokcwAMAJgHMA/g/AN7HOf85gE4ATyBbInoa2X2K9yx77CeQbUYzBuAZAP/GOX8CADjnswBeB+AzuefdA+CNEvx7VuV8F8y1VaKkFG01RskziZF4CqF4igIHgalULDcrUTnlpkszEum1Lkn+/1+57kucmI8imkhjU+PaalqzXJVOjY/duhl97hC+Q01sCLmodIbjYz87jU/8/AzWOc145B278Zu/fxlet6O5bOanusp8DIY7EFNsplap8pnEqQKa10gy7CsXzF17idt+AOAHl3lsHMB9uT8Xu/1JAIodebGcJxSHVs1QbVTOxuW1pLXWhJMTC5Ie8/xwdQr8hZYNEpUTSJx/rSlILEX+vaKk17YYZ2eyW97XciYRAG7uqV9qYnPr1kY4qQKGkCWxZBrv++ELeOKMG/df24mP3LxR0VnDS3HZq/DcwJzcy1g1dzCG7jrzynckS6qNWhi0KswopdyUZHmCMTgthrL8ICkH7bVGTC0sSjrji2YkisdpNSw1e1ICTyAGtYrBYaYLAqXIl5uWaybxnCcbJK6rX9snJtTEhpCLC0STeOs3juCJM2587NbN+MdXbSrb87omexU8oZjiZhIXyhOgsVTFYozBZasqqGERBYkS8gbjcFKpqWhaa4xIZ7ik9fUUJIqn3qq8TGKdWQ91mZ4MKIVZr4FZrynbWYmjvggabQYYdZIU4siqw2HCO1/egZ+cmMKgV5FNwwmR1ExgEXd95SBOTMzjS/dsxzuu6ZB7SSVpsleB8/Ks7AjTdp9VcxU4K5GCRAm5gzHazySidkeuw6mEsxLduWYm9LoKr96S7YIZTymjCyaNOhFOg81QtkHimC+KtgqayfWmPW0AgGfOlW9JGiFCWEyk8eavHcbUwiIefvtu3LbVJfeSSpbfnzZZhs1r8t8htN2neI02g6Ia1xDkTjIpmBBNW430sxI9wRgseg1M+rWfVZBaPuuulFmJnmAM9WtsLp5cGqyGpT2e5WbMF0F7beXM5GqyV6HDYcKBQQoSSWX7wpPnMDwXwVfesgNXdzvkXo4glmYllmHzGqrkWr1GexW8ofiKZcYUJEokmkghFEtRuamI6ix6VGnVknY4peySeJxLsxKVEiTGae+DQMo1kxiOpzAXTqCtgoJEALi6uxaHhn2S7vcmRElOTizg688O457drWsmQATOj0MoxyBxKZNIQWLRmuyGgsqMKUiUSD4bQjMSxcMYQ1utUdJMojsYo5EmIsm/V7wKyDjFkmkEFpN0xVIgDVYDZsPxspvBl/9saa+gclMAuLrLgUgiLXn3aEKUIJHK4MM/fhFOiwH/+OqyaKZfMINWDYdZj6lyDBKp4/iq5ceGrHRxgIJEiVBaXBrZIFG6TKI3GKfXVCT54FsJG+rzF3mcVG4qiAabAekMx1w4IfdSipL/bKm0TOJVXbVgDNg/6JN7KYRI7qGnBtHvCeEzd/TCatDKvRzBNdkNZRkkeoIxWAyaimgiJrT8XtSVuoxTkCgRT65kjrJO4mqrNWHcH0Umw0U/VibD4aFmRKKpNuqgUbGl946cPCG6yCOk/Hum3PYljuYyiZXUuAYA7EYdrmiyYT/tSyQVps8dxENPDeL2bS7csKle7uWIItvpsvyCRHeAzr9Wy2XPlRmv0LyGgkSJ5EvmnPQLLarWGiPiqczSSb2YfJEEUhlOpQ4iUakYnBa9IvauUSWAsPLvGSW8tsUYm4uizqKvyEZV+7oceH58HpF4Su6lECKJVDpbZmqr0uITf9Uj93JE02SvwtTCIjgX/+K6kDxBmpG4WkadBrYqLZWbKoUnGINBq4LVUHknF1LKdx2UouQ0Hzg4aZ+paDrqTBiek26P6aV4glQJIKTzQWJ5Xb0e9UUqbj9i3jXdDqQyHEdG/XIvhRBJfHP/CF6cDOCTt/WgxqSTezmicdmrEEtmMB9Nyr2UorhpYkBJXPYqzKwwK5GCRIl4cnvXGKNB3GLqrMsGiX0zQdGP5aFN06LrrjNjyBuW/QqnNxiDTqOCrWrt7UeRQ41RB51aBbdCxpsUKjsjsbL2I+btbK+GTqPC/gEqOSVrXybD8V9PD+G6DXW4dUuj3MsRVX4MxlQZzUpMpTOYDcWp3LQELtvKe1EpSJSIOxijzqYScNmr0FxdhYPD4jdYWOqsRR9Soul2mhGOp2Tfu+bJdbGlizzCUKkYnFZ9WWUSFxNpuIOxis0kGrRq7GyrxnO0L5FUgLPuIOajSdy21bXmP/ebck1Myql5zVw4gQwHjSArgcteRY1rlMJL8/Qkc3WXAweHfEiL3LzGE4hBxQCHee2Wocit22kBAAx6w7KuwxOM00UegTXaDLIH/8UY91dmZ9Plru52oM8dwly4vDLAhBTr4FD2QvNVXbUyr0R8+U6X5dS8hi7Sl67RbkBg8fIlxhQkSoBznjvJpP1MUtjXXYtgLIUz0wFRj+MJxuEw66FR09tILN1OMwBgwCNzkBiivQ9Cq7cayqpxzejSjMTKDhIB4MAQjcIga9vBIR86HaaleXJrWbVRiyqtuqwyifnvDgoSV89VwO82nd1KIBRPYTGZppNMieSv/Ik908tNnbVE5zDrYKvSYnBW3iDRG4zDSU1rBJXPJMq937RQY7kgsbVCy00B4IomGywGDe1LJGtaKp3B4RE/9lZAFhEAGGNw2Q1llUlc6jhuo+/l1cpnkC+HgkQJnB9/Qb/MUnBaDFhfb8aBIXFPZDzUWUt0jDGsc5plLTcNx1MIx1P0Wgus3mpALJlZsdxFKUZ9UdSYdBXdvEitYriqsxbPDc6VTXBfaYKxJE6Mz+OxYxP4/O/6MeEXv9P3WnNqKoBwPIV9FRIkAuU3K9EdjEGjYnCY6Lx6tRoLSHLQPAYJnG+fTyeZUtnX5cAPj44jnkpDr1GLcgx3MIad7dWiPDc5r9tpxu9e8sh2fO/SjET6MhJSvozLHYzBblT+vt4xXwRtFZxFzLtmnQO/e8mDcX/ldnpVmlgyjQ/9+EUcHvbBG/rz/aJP9c/ifx7YB52GcgKFypdT7+2snCCxuboKv5egK7xQPIEYnBY9VKq13VRITA02A1bqyUSfGhKgQdzS29dVi1gygxPjC6I8fyyZxkI0SfXwEuh2muGPJOCPJGQ5/tJFHmpcI6iGXJnQSt3VlGJ0LlrR+xHz8vsSqcupcjxycAy/ODmNvZ21+MgtG/G1t+7EHz94LR5605U4NRXAl/4wIPcSy8rBIR82NljgMFfOhUGXrQpz4QRiybTcSymIm5pBlkyrVsG5Qq8UChIlkD/JXOnFIMLZ01kLFQMOiHQi46XssGTyzWvkKjn1hvLl4vRaCyn/3vGUQZAYT6UxHVikTCKATocJDVYDDoi855sUJhhL4qGnB/GydQ586Z7teOC6Lty4uR6ddWa8ZksjXr+jGV9+ehDHx/xyL7UsxFNpHBvzV0RX0+XysxLLpeTUHYzRRXoBrNSYiYJECXiCMVj0Gpj0VN0rFVuVFlc027FfpC58bsoOS2apw6k3JMvxPVRuKgqnJVvqUg6ZxAn/Ijiv7M6meYwxXN3twP6hOWREHjNEVvaVZ4awEE3iI7dsvOjtn/irzXDZq/D+R08iHE9JvLry88L4AmLJDPZ1OeReiqTOj8FQ/ucxkL24SOdfpWtaoXkNBYkS8ARj1LRGBld31eLkxIIoX4z5wIG6m4rPZathi8JhAAAgAElEQVRClVYtWybRE4zDqFPDTBd5BKXTqFBr0i+9l5Qs39mUMolZV3fXYiGaRL9Hngs3JMsbjOEbz43gtq0u9DbZLnofi0GLL9y9DZPzUXzqF2ckXmH5OTDkg4oBuztq5F6KpJrKaFZiKJZEJJGm8y8BrNS8hs56JOChUQmy2NflwJefHsLRET+u3+gU9Llpn6l0VCqGbhk7nOa72LKVdniTojXaDGWRSRz1ZTtEUiYxq8eVDUj63SFsarTKvBp59LmDeNs3j8AX/vO90nqNCp9+bS/uvLJZ9DV88Q8DSKU5PnjT+sveb1d7DR64rgsPPTWEV2x04pbeRtHXVq4ODvnQ22SruC7G+SYmk2UQJC5dpKfzr5KtNAaDgkQJeIJx7Kmwq1JKsLO9GjqNCvsH5wQPEt2BGKq0algN9BaSQrfTjEPD8uyB8gbjtJ9YJPVWAybnld+if8wXgdWggd1YWSeOl9LhMEGjYjhXoZnExUQaf/f9E0hngPuv7fyz2w4O+fDhH7+IOoseL1tXJ9oahmfDePToBN68p7WgLrN/f8N6PHNuFv/4k1Mw6TXoddlQbVJ+V2EpLSbSODExj/uu6ZB7KZLTqlWot5THrER3gHpCCOWW3obL3k5nuCLjnMMbilHTCxkYtGrsaK0WZV+iOxhDvVVP2SWJdDvNePzEFMLxlORln55QDFub7ZIes1K47AYcHvGBc67o99KoL4p2h0nRa5SSTqNCu8OEARnnl8rp0796CQPeMB55x+6/CASDsSTu+u+DeOC7z+NH91+FzS5xMq3//rtz0GtU+LtXrCvo/jqNCl+8ezte+9B+vOUbRwBkM/mbGq3ocVlx77521FZQN8+LOTbmRzLNK24/Yl5TdXnMSnTTdh/BrJRJpD2JIpuPJpFMc2p6IZN9XbU4OxOELxxf+c5F8AbjdBVLQvnmNUMSn5RyznPlpvT+FUNrjRGhWArz0aTcS7ms7IxEKjVdbp3TjIEKzCT+5tQMvn94HPdf23nRTKHVoMW33r4LZr0Gb3/4iCgn3ScnFvCrUzP4m5d1oq6IKodupxnPfeR6PPKO3fjHV23Eno4aTM5H8dBTg/jgYyfBeWU3Ijow5INGxbCrQucfu+xVmCqDIJHKTaVDQaLIaO+avPblZnodGha2/beb9plK6nyHU2mDxGAshVgyQ+9fkXQ4soHXyFxE5pVcWjKdweT8ItpqqGnNcuvqLRjzR8tmrpoQphYW8ZH/eRFbm2344I0bLnm/RlsVvvX2XYjG07j3W0cQWBTuIgjnHA8+0Ycakw7vfFnxZZF2ow4vW1eH+6/twhffuB2/e/+1+OirN+Hp/ln84axXsHWWowNDPmxrscOoq8wiO5fdgJmFmOK7FrsDMVgNGlTp1HIvZc2jIFFk1D5fXlubbTDrNdg/JNy8RM45zeiRWFuNEVo1k7x5jTdIMxLFlA8SRxUcJE7NLyKd4dTZ9ALr683gXL75pVJLpTN43w9PIMOBL92zHTrN5U+fNjVa8d9v2YHh2Qj+9pHjiKeECaafHZjDgSEf3nt9NywGYfbIvm1fO7qdZnzqly9VVNC/XDCWxKnJBeyrsPmIyzXbq5BIZzAncOWV0OgivXQoSBRZfui600K/0HLQqFXY01GDA4PCBYmz4TgSKcouSUmjVqHDYZL8hNSTe//WU+MaUbTUGKFWMUVnEkdz4y/aHVRuutz6egsA+eaXSu0//ziIo6Pz+JfX9hZcenx1twP/+votODjsw+d/f67kNWQy2Sxic3UV3ry3teTny9OqVfjkX/Vg3B/F158dFux5y8mRYT8yHLiqQvcjAuf3pym95DTfcZyIj4JEkbmXMhF0kimXq7pqMeqLCvbBd3x0HgCwteXic6mIOLqdZgzNSh0kUrm4mLRqFZqrqzDiU26QOJYbf0GZxD/XXpvtcDrgWfuZxAl/FP/5xwHceWUTXru9qajH3nllM964qwVf+9MwXphYKGkdvzw1gzPTQXzgxvXQa4QttbtmnQOv6m3AQ08NlUXzEqEdHPZBr1Fhe2vlNilzLc1KVPZYIneAKrmkQkGiyDzBGKqNWsE/0EnhrlmXvTL4TP+sIM93eMSPKq0aVzRV7peJHLqdFoz5IpKWQ3lCdJFHbO21JkWXm475ojDq1Kir8M6PF9Jpstn9cxUQJD4/Po8MB975ss6V73wRH33NJtRbDfjQYydX/fmVSGXw77/rx8YGC27fVlygWqh/es0mcHB85tdnRXl+JTs45MPO9moYtJV7rtZUnc8kKncsUSpXDkvlptKgIFFkHuqCKbsN9RZ0OEz4+ckpQZ7v0LAPO9qqV9yTQoTV7TQjw8+X/0nBG4zDYtBUbCMDKXQ4skGiUjsr5jub0viLv7Su3lwR5aZnpoPQaVRLDbSKZTVo8dk7r8CAN4wv/WFgVc/xw6PjGPNF8ZFbNkKtEud3sbnaiAeu7cavXpwRdIuG0iXTGZzzhLClwkcdWQ1aWPQaRWcSZ8NxZDiNv5AKneWKzBui2mm5McZw+zYXDo/4MRMorYxmIZpAvyeEPR01Aq2OFKq7LnuCJuW+RNr7IL4OhwmRRBqzIWU2Sxj1RdBOpaYXtc5pwbg/isXE2m52cmoygE2NVmjVqz9lum6DE3ftbMZ/PzOEk0WWnUbiKXzpDwPY3VGD6zb85dgNId1/bSeaq6vwyV+cQTKdEfVYSjHujyKV4UvfMZWsqVrZYzDcARp/ISUKEkVGM9aU4bXbmsA58PMXpkt6nsMjfnAO7K3gDmhy6awzQcUg6R4oev+Kr13BYzDSGY4J/yLNSLyE9fUWcA7J9wpLiXOO09MB9LqsJT/XP71mM+osenzoxyeL6nb6jedGMBdO4H+9aqPoGW2DVo2P3boZ5zxh/OT5SVGPpRT5C49dq8wUryUuexWm5pUbJFKfAGlRkCiidIZjNkTlpkrQ7jBha4sdj58oreT08LAfeo0KW5qpaY3UDFo1WmqMGJTwhNQTjKOeOhOLqiMXgElZRlyomcAiEukMZRIvYX19fn7p2i05HfdHEYql0NtU+me+rSpbdnrOE8b//eNgQY/xheP46p+GcXNPPa5slWbI+02b69FoM2D/oE+S48ltKUiso4tBLrsB0yVWXIlpKZNI5aaSoCBRRL5c7TTNWFOGO7a50OcOod+9+hOawyM+XNlaTY2IZNJdZ8aQROWmnHN4QzF6/4rMZTdAq2YYmVNes4TznU3p5PFi2h0maNVsTTevOT0VBABcIUCQCACv2FiP113ZjC8/PYQ/nPWseP+HnhpCNJHCh27eIMjxC8EYw/ZWO05MzEt2TDkNzYbRYDUINneynDXZjViIJhGJp+ReykW5g3Fo1Qw1Rp3cS6kIFCSKiGasKcutW11Qqxh++sLqsomBxSRemgliTyftR5RLd70Zw7MRpCTYKzMfTSKZ5lRuKjKNWoXWGqMiO5yen5FImcSL0ebmlw541m4m8fR0AFo1w7p64UoRP37rZqxzmvGObx/DRx8/ddET8mAsiQef6MN3Do7iDTta0O20CHb8QmxvqcaEf1Gxe4WFNOQNo8tJF4KA7EU7AIodg+IJxuC0GKASqXkT+XMUJIqIaqeVxWHW45puB37+wjQymeI7KR7N70fspP2IcumuMyORzmBCgj0T9P6VTofDpMg9icOzERi0Kio5vox1TssazyQGsKHBImj1iM2oxU/fczXuf3knfnBkHK/6j2dxbNQPINtp85GDo7ju357Gfz09hNu2uvDRV28S7NiFys8LLHW2o9JxzjE0G6GmNTnNS2MwlBkkugMxKjWVEAWJInLTSabi3LG9CVMLizia+0IuxuERH3QaFba1VHabbDnlW9BL0eH0fJBImUSxtdeaMOqLrOrijZgGvGF0O8101foy1tWbMTG/Njuccs5xeiqAXpfwe9ANWjX+8dWb8Oi7rgIHx11fOYiPPn4KN3/xT/jYz85gfb0Zv3jvNfj83dtgM0pfBtnbZINGxXBifG2XnHqCcYTjqVWPN1lrXHZlB4meYIw6m0qIgkQReYMxMAY4zFQ7rRQ3bq5HlVaNn66iy+nhET+2tdgretiu3PJf5FI0yvDmysWdlEUSXbvDhHgqs3RhTSmGvGHKMKxgLXc4nVpYxHw0iR6B9iNezO6OGvzm71+Ou3e14PuHxwEAX3/rTvzgnXtxhYwN0gxaNTa7rDgxvrYzieeb1tD7HMh+32lUTJHlppxzuGkslaQqMkiMJaW54ukJxuEw66EpYbYSEZZJr8FNPfX49akZJFKF72sLxZI4PRWgUlOZWQxaNNoMOFdC86FC5TOJTsokiq4jNwZDSfsSI/EUphYWKcOwgnyH03NrcF+i0E1rLsWs1+Czd27BU/9wHX77vpfjlZvrRR91UYjtLXacnFxAWmEZfiHlL27Q+zxLrWJosBkwvaCsC3YAEIqnEE2k0WCj72SpVGT0MuANYz6SEP04nhClxZXotdubEFhM4ul+b8GPOTY6jwwH9nZQ0xq5XdlWnZtXKe6JiycUQ7VRS51sJZAPEocVFCSeP3mUtmFIuWmrXbsdTs9MB6BWMWxskOZ3oMNhglZBF5W3t1YjmkivyQsAeYPeMCx6DeqoweASpc5K9ARoC5fUlPNpJLHnJaiz9wTjtJ9JgV7W7UCtSVdUl9NDIz5o1QzbJZpTRS5tX1ctZgIx0RudZN+/9GUkhQarAXqNSlGZxHwZGmUYLk+rVqHTYV6THU5PTQWwzmmu2C0G+eY1a7nkdNAbRpfTrIjMrVI02asUuScxvx2Bki/SqcggkQE4NiZ+kOgN0ow1JdKoVbh1SyOePOtFMJYs6DGHh/3Y2mxHla4yTxaU5OouBwBg/5C4g57p/SsdlYotNa9RikFvGBoVQ1stjb9YSXe9Geck2CcspaWmNSKXmipZa40RNSbdmm5eMzQbpgtBF2iyV8EdjEkyaqoY7lwmkbqbSqcig0SDVo3jo+J+6CVSGfgiCWqdrlCv3d6ERCqDx59fOZsYiadwivYjKkZbrRFN9iocGJwT9TieYJxmnEqo3WFU1BiMAW9YceV/SrXeacHk/CKiCWUO4F4NbyiOuXACvS6r3EuRDWMM21vsa3YMRjCWhDcUp6Y1F3DZq5DOcHgVNiOTxlJJryK//Ux6DU5OLhTVuKRYs+Hsm4vKTZVpW4sduztq8J9/HED4IoOMlzs2No90hmNPJ+1HVALGGPZ11eLgsE+0kQnpDMdsmMpNpdThMGPcH1XM1eshL2UYCrW+3pztcOpVTpBfqlOTAQCQtcOoEmxrsWPAG0ZgsbCqm3JCJeUX15Sblai0DqfuYAx2o7Ziy7/lUJFBolGnRjyVwZnpgGjHcNMGW0VjjOGjr96EuXACX/3T8GXve3jYB42KYUcb7UdUin3dtViIJvHSTFCU5/dF4khnOF3kkVCHw4hkmiuiq148lcaoL0InjwVaV59t7LKWGpycng5AxYBNjZWbSQSwtA//xcm1l00coiDxoprs2fNWpe1LnFmgZpBSq8gg0aTTAACOi7gv0Uvt8xVvW4sdr9nSiK/9aXjp9bqYwyN+bGm2wZj7vSHy25fbl3hgSJyS06UZifSFJJn22myH0xEF7EscnYsiw+nksVDttUbo1Ko1tS/x9FQAXXXmiv/c39JiA2Nrs3nN4GwYOrUKLbnMGcly2bP/P5QWJE4HYktrI9KoyCBRo2ZoqakSNUik2uny8OGbNyCVyeALTw5c9PZxXxQvTi5gD+1HVJR6qwHdTjP2D4rTvIbev9JT0qxEKkMrjkatQmedCQNraAzG6algRTetybMatFjnNK/J5jVD3gjaHUaaZX0Bo06DaqNWceWmM4FFNFLTGklV7DtjZ1sNjo3NizZrzROKQ6NiqDHqRHl+Ioy2WhP+em8bHj06/hct3EfmIrjrKwdh1mvwhh3NMq2QXMq+rlocHfWLsrfYE6Q9xVKrs+hh0qkV0bxmwBsCY6CGFkXodpoxsEYyibOhONzBGHoquGnNcttbqnFiYkH02bRSo86ml6a0WYnRRAoL0SRlEiVWsUHilW3VmA3FMSnSm8ATjMFp0UOlotk7Svd3r1gHk06DB5/oW/rZoDeMu79yEMl0Bj9411500smi4uzrciCaSOOkCHtlPMEYGAMcZgoSpcIYQ7vDpIggcdAbRku1kRokFGF9vQUT/rXR4fR0rl/BFZRJBJCdl7gQTWLUF5V7KYKJp9IY80XoQtAlNNmrFLE/PC+/FpedMolSqtggcWeuCcmxMb8oz+8NxlFPafGyUGPS4YHru/DkWS8ODftwzhPCG796EBkO/PBde7Gxga4mK9FVnbVQMWC/CKMwvKEYak16Gn8gsXaHMmYlDlJn06Ktr8/+/8qX6pazM1PZIHEzZRIBnG9es5ZKTsd8tO/4clz2KkwtLComezwTyCZ0Gm2USZRSxZ4Bra+3wKLX4JhI8xI9wRjNSCwj913dgUabAR//2Wm88auHoFYxPHr/3qWufUR5bEYteptsODAk/L5ETzBOpaYy6Kg1YXJ+EUkZx2CkMxzDc9TZtFj5jMzwrPxBfqlOTQXQ6TDBYtDKvRRF6HaaYdZr1lTzmvzFDMokXlyTvQrheArBmDIqA2bymUQKEiVVsUGiWsWwrdUuWvMaTzBGJ5llxKBV44M3bcA5TxgGjQqPvusq+vIoA1d11eLE+LzgJW6jcxHa+yCDdocJ6QzHhF++srYJfxSJVIaCxCK11hqhYsCwAsqFS3V6KogeKjVdolYxbG2x4cTE2skk5oPEzjqTzCtRJqXNSpwOLIIxoN5G59VSqtggEcg2r+n3hBCMCTskdjGRRjCWovb5ZeaO7U34l9f24kd/exXaHfTFUQ6u7nIgmeY4KmBFgDcUw/BcZKkknUgn3+FUzn2J1Nl0dfQaNZqrjRieLe9y0/lIAlMLi+ilUtM/s72lGmdnQlhMpOVeiiCGZsNosldV/IiTS1kag6GQ5jUzCzE4zHroNbRPXEoVHSTuaKsG58LP/6H2+eVJrWL4671taK42yr0UUqBd7TXQqVU4IOC+xCMj2X3KNPZEekoIEgcoSFy1zjpT2Zeb5l//jY0UJC63vdWOdIbjVG6/Zrkb9IbRRe/xS8o3iJkOKCNInA4swkV9PiRX0UHitlY7VAyCl5yeDxIpLU6ImKp0amxvtQu6L/HQsA8mnZoyCTKoNmphNWhkbV4z6A2j3qqHlfajFa3TYcbIXASZjDKaXaxG/nevvZYuFi63rcUOAHhhDZScZjI8O/6CtpRcksOkh06jwpRSyk0XFqlpjQwkCxIZY99ljM0wxoKMsXOMsb9ZdtsNjLE+xliUMfYUY6xt2W16xtg3c49zM8Y+cMHzXvKxKzHrNdjUaMVxgTuczgQok0iIVPZ1OXB6OoCFaEKQ5zs07MfO9hoasCwDxhg6HCaMzsm3J3HQG6Is4ip11pmwmEzDHVRO6/xijfui0KgYmmhP8p+pNetRZ9FjwFPe5cRANisVS9K+48tRqRhcNoMiyk0555gJxKhPgAykPAv6LIB2zrkVwG0A/oUxtoMx5gDwEwAfA1AD4BiAR5c97pMA1gFoA3A9gA8zxm4BgAIeu6IdbdU4Mb6AlIDd9I6N+WHSqZdKpwgh4rm6uxacZzOApZoLxzHoDWMvlZrKpt1hkm1fG+ccQ7MRyjCsUr4JSDmXnI76ImiqrqKLRBfRVWfCUJnvOQWWdzalc7TLaaquUkTjmuBiCtFEmmYkykCyT0HO+RnOeTz/n7k/XQDuBHCGc/4Y5zyGbFC4lTG2MXfftwH4NOd8nnN+FsDXANybu22lx65oR1s1ook0+tyh0v6ByxwY9GFPZy3NWCNEAltb7DDp1Hh2oPR9iYeHs1UFeztrSn4usjqbG62YDsTgDUmfjXIHYwjHU+im0Ter0unIjcGYK99AYtwfRVstBQ8X01VnxtBsRDGz81aLmlMVxmWrUkS5aX4NVG4qPUmjGMbYlxljUQB9AGYA/BpAD4CT+ftwziMAhgD0MMaqATQuvz33957c3y/52ELXtLM9ezIo1L7EqYVFDM9FsK+LMhGESEGrVuH6jU788sUZxJKldd47NOyDUadGL7W/l00+i5sP2KWUL6WjTOLq1Fv1MOnU5Z1JnIugrYb2I15MV50ZgcUkfBFhSvvlMjQbQbVRi1oz9Y24HJe9Ct5QHImUfHNrAWAm1zynkTKJkpM0SOScvxuABcDLkC0TjQMwA7iwXVYgdz/zsv++8Das8Ng/wxh7F2PsGGPs2Ozs7NLPXTYDGqwGHBMoSNyf67J4zTqHIM9HCFnZm3a3IrCYxK9PzZT0PIdHfNjZXkNVADLqcVlh1msEKR8uFmUYSsMYQ0edqWxnJS5EEwjGUmijpjUXtRbKiQFgyBumOcgFaKquAufnmzHKZTrX58NFmUTJSX4mxDlPc86fA9AM4AEAYQAXthG0AgjlbsMFt+dvwwqPvfC4X+Wc7+Sc76yrq1v6OWMMO9qr8bxAQeKBwTk4zDpsoHIlQiRzVVctOhwmfP/w+KqfYy4cxzlPmEpNZaZRq7CzvRqHR6TPJA7OhmE3auEw6yQ/9lrR6TCX7azEUV+2YRKVm15cPrAq932Jw3MUJBYi37xpUubmNTMLi9CoGOoslPmVmpyXyzXI7kk8A2Br/oeMMVP+55zzeWTLUrcue9zW3GNwuccWs5BdbdWYWlgs+YOPc479Qz7s63KAMVbScxFCCscYwz27W3BsbB7nPKvbX7w0H7GDSsXltrezFoPeMGZD8ZXvLKBBT7YtPn1+r15nnQlTC4sll37LYSw3/oIyiRfXZK+CXqPCkLd8g8RwPIW5cAJtDnqNV5IPEuVuXjO9sIh6qwFqFX0uS02SIJEx5mSMvZExZmaMqRljNwO4B8AfADwOoJcx9jrGmAHAxwG8yDnvyz38OwD+mTFWnWtI804AD+duW+mxBXn1lkaoVQw/OjZR0r9zIHdSc003lZoSIrXX72iBTq1adTbx8LAPVVo1tjTTfkS57enIZnMPj0hbcjo4G6ZS0xJ11pnBOWSddbla47lMYivtSbwolYqhs85c1pnEpQsBNZQtXklDbni97EFiIEadTWUiVSaRI1taOglgHsD/AfA+zvnPOeezAF4H4DO52/YAeOOyx34C2WY0YwCeAfBvnPMnAKCAxxbEaTHgho1O/M/xSSRLGIXxXK674tW0H5EQydWYdLi5twH/8/wkFhPFZzGy8xGraT+iAvQ22WDSqSVtXuMLx+GPJChILFGno3z3rY36omiwGmDQquVeimJlx2CU32ubN75UUkwXAlZi0KrhMOtl73A6E1ikzqYykeRsiHM+yzm/lnNu55xbOedXcM6/tuz2JznnGznnVZzz6zjno8tui3PO78s9rp5z/vkLnvuSjy3G3btaMBdO4A9nvav9Z2L/4Bzaa400hJcQmbxpdytCsRR++eJ0UY/zRxLo94RoPqJCaNUq7GyvkbR5DTWtEUbHUpBYftmmcX+EgocVdNaZMTkfLctyYgAY8+eyxfQ6F6SpWt4xGJkMhzsQg4vOq2VBl8xzrl1fh3qrftUlp8l0BodH/LiaSk0Jkc3ezhp01pnw/SPFlZweyZU1UtMa5djTWYMBbxhzYWn2JQ7OUpAoBJNegwaroWwziRQkXl5XnQkZDozlMnLlZswXRbVRC6tBK/dSykJ7rVHWPahz4TiSaU7lpjKhIDFHo1bhDTta8HS/d2kmSzFenFxAOJ6i/YiEyIgxhjftbsWJ8QWcnQkW/LhDw35UadW4osku4upIMfJZ3SMSdTk9NRmA1aChNusC6CzDMRjRRAqzoTh1Nl1BuXc4HfdH0EqvccF6XTZMB2LwyzQbMz/+gspN5UFB4jJ37WxBhgM/PjZZ9GOfG/CBsWwrfkKIfF53ZTN0muIa2Bwa9mFHWzV0GvpIVIormmww6tSSlZweGfVjZ3sNVNRBr2SddSYMz4bBOZd7KQUbo71qBcnPSizXDqdjvijaqDFRwXpc2SlzZ6YvHEkujZlcqWujjTKJcqAzomVaa43Y11WLR49NIJMp7stt/9Acel022I00X4sQOVWbdHh1bwN+emIK0URqxfvPRxLoc4eo1FRhtGoVdrRVSxIkzoXjGJ6NYHcH/Q4IodNhRjCWgk+m7MNqLAWJ1PXysow6DZrsVWWZSUykMpheWEQ7XQgoWI8r2+379FThlTlCymcSaU+iPChIvMDdu1owOb+Ig0WcmETiKZwYn6f9iIQoxJv2tCEUT+EXJ1duYJMf2k5Na5Rnb2ctznnC8Im8L/Fo7ndgVzsFiULIZ5vKaV9ifjQCNTRZWTmWEwPA1MIiMhxUbloEm1GLlpoqnJYxk2jQqlBtpD2kcqAg8QI39zTAVqXFD48W3sDmyKgfyTTH1d10kkmIEuxqr8bGBgsefKJ/xSveh4Z9MGhV2NJM+xGVRqp9iUdG/TBoVbiiiWZkCqHTkd23Vk4dTsf82YYmtio6GV1JV50ZQ97yKicGls1IpAsBRelptOGlabkyiYtw2arAGG0DkAMFiRcwaNW4Y3sTfnvajfkCS2UODM5Bp1HRVWhCFIIxhv/66x1gAN7y9cOXbEZ1bNSPn74whV3tNbQfUYG2NNtQpRV/X+LRUT+2tdjpd0AgTdVV0GlUZZVtGvNFqGlNgbrqTIgk0vAEpek8LJRxf76kmILEYvQ2WTEyF0EolpT82NMLMTRSZ1PZ0DfiRdy9qwWJdAaPn5gq6P7PDfqws62aBvASoiAdDhO+fd9uhGIpvOUbR/7ios9PT0zhTV87jGqjDp+6vVemVZLLyc5LrF4qCRZDKJbES9NB7O6gShChqFUM7bXG8sok0viLgpVrh9MxXxRVWjXqLHq5l1JW8vsS5cgmzgQWqbOpjChIvIhNjVZsbbbh0aMTK5ZTzIXjODsTpP2IhChQb5MNX3vbToz7o2+OHqYAACAASURBVLj34aOIxFPgnOPzv+vH+x59Adtb7Xj83fuWBoAT5dnbWYs+d0i0FuzHx+aR4cBuqgQRVKfDXDaZxHxDE8owFabLWb5BYmuNkUoXi9TTlO9wKm2QmExn4A3FqWmNjChIvIQ372lDvyeEb+0fvez9fvJ8dlzGPhp9QYgi7e2sxUNvuhKnpwL42+8ex//3wxfwpT8O4g07mvHIO/ZQR2KF25PrOHpkRJyS06OjfqhVDNtbaU+qkDrrTBj3RZFMZ+Reyoom56PIcFC5aYGcFj3Mek1ZNSYC8jMS6UJAsZwWA5wWveTNa9yBGDgHXDT+QjYUJF7C63c046bN9fjMr8/iwNDcRe/zVL8Xn/tNH27Y6MS2FjrBIESpbtxcjwdftwXPDszhFyen8ZFbNuJfX7+F9qCVgS3Ndhi0KhwaFqfk9OjIPHpdVpj0GlGev1J11pmRynBM5PaBKdmYn2YkFoMxhq46U1llEjnnGPfTjMTV6nFZJS83ncmNv2ikTKJs6AzpElQqhs/fvQ2dDhPe873n/+KL7qXpIN77veexqdGKL92zncoXCFG41+9oxn+9+Up8577deOC6LnrPlgmdRoWdbTWiNK+Jp9J4YXKB5iOKIF/CXQ7ZprG5fNdLyiQWqjPX4bRceENxxJIZuhCwSr1NNgx4w4gl05IdM99wjjKJ8qEg8TLMeg2++tadSGU47n/kOBYT2TeHJxjDO759FBaDFt942y66Ak1ImXjVFY14+fo6uZdBinTt+jr0uUPocwt7JfvFyQASqQx1phZBV35W4pzyA4kxfxRGnRoOM5WeF6qrzoTpQAyReErupRRkdC4/B5MuBKxGj8uKdIajzx2S7JjTC5RJlBsFiSvocJjwpXu246w7iI/8z4uIxFO47+GjCC4m8c17d6GBrnAQQoioXr+jGXqNCt8+MCbo8+bnL1KQKDy7UYcak648Mom+KNpqTVRdUIR8h9ORMmlONEbjL0qS73B6RsJ9idMLi7AaNDBTIkY2FCQW4PoNTvzDTRvw85PTeNV/PIuzM0H83zddic0uq9xLI4SQNa/apMPt21z46YkpBKLCzeo6MuLHOqcZ1SbKIImh02EqkyAxQsFDkcqtw+m4Lwq1iqGpmrJSq9FcXQVblRanp6TblzgTWKTOpjKjILFA776uC6++ogHj/ij+9209uH6jU+4lEUJIxXjrVe1YTKbx2PEJQZ4vneF4fmye9iOKqLPOpPgxGOkMx4R/kfaqFamt1ggVA4bK4CIAkM0kuuwGaNV02rsajLFc8xopM4kxNFK1nqzo3VIgxhi+cPc2/Py9V+MtV7XLvRxCCKkovU027GyrxncOjiGdufz82kKcnQkiFE9RkCiizjoz5sJxBGPCZX+F5g7GkEhnqGlNkfQaNVpqjGWUSYygnV7jkvQ22XDWHZJsrM1MYJH2I8qMgsQi6DVqbGmmUReEECKHt+1rx7g/iqf7vSU/F+1HFF9nrsPpoIK7YJ7vbEqZxGJ1lVGH0zF/FK1UUlySHpcViVRGkvfzYiKN+WgSTRQkyoqCREIIIWXhlt4GOC16fPtg6Q1sjo760WSvoj0vItrUmN23L/V8tWLQjMTV66ozYWQugowAmX0xBRaTWIgm6TUu0fnmNeK/n6dz4y+o3FReFCQSQggpC1q1Cm/e04Y/nZstqcyNc46jo37soVJTUeWbXUhxUrlao74ItGqGRhtdLChWV50Z8VQGUwuLci/lssZ92QsBrTVUblqKDocJRp0ap6fE35c4kx9/Qe9LWVGQSAghpGzcs6cFWjXDIyVkE0fmIpgLJ7CLgkRR5ZtdSNk2v1jjvihaqo1Qq2j8RbHKpcPpmJ9KioWgVjFsapTm/ZzPJLrslEmUEwWJhBBCyobTYsBrrmjEj49PIrzKQd77B+cA0H5EKfS4rOiTsNlFsUZ9UQoeVik/K1HJe06B7BxMALQnUQC9Litemg6KXmKczyTSLHJ5UZBICCGkrLx1XzvC8RR+8vxk0Y89NRnA537Th94mK7rqqPxMbD0uGxKpjCKzTZxzjPsi1Nl0lWpMOjjMevS5Q3Iv5bLGfVE4zHqYaCh7yXpcNkQSaYz6xB19MrWQfc30GrWoxyGXR0EiIYSQsrK9xY4tzTZ8a/8oYsl0wY8b80Xw9oePwG7U4Rtv2wXGqMRQbL1N2eY1Ug7hLpQvkkAkkaZMYgl6m6yS7FErxZg/Qq+xQHpy72ex9xmfngpiQ4NZ1GOQlVGQSAghpKwwxvD+G9djZC6Cj//sNDhfufRpNhTHW795BOkMx3fesRv1VipjkkKHw4wqrVqR+xJHcuMvaH7e6vW6bBjwhou6WCO1cV8UbVRqKoh1Tgt0ahVOi/h+DsdT6HMHsaONtgPIjYJEQgghZef6DU689/pu/OjYJH5wZOKy9w3HU7jv4aPwBGP4xr27lvZSEfFlm11YFNnhNF8mub7BIvNKyldvkxXpDEe/QktO46k0ZoIxtFImURA6jQrrG8yiZo9PjM8jw4GdbdWiHYMUhoJEQgghZen9N67Hy9fX4RM/P40T4/MXvU8ilcED3z2Ol2aC+PKbr8SVrXTiIbUel02SZhfFOucOwaLXwEXNMVYtPztPzMxSKSb8i+CcOpsKaXd7LY6OziOaWF3jsJUcG52HigHbW+2iPD8pHAWJhBBCypJaxfClN25Dg82AB777PGZD8aXbOOd4qs+L2x/aj2cH5vDZO6/AKzbWy7jaytXjsiIcT2E8N7heKfo9IaxvsNDe1BLkZ2Eqcc8pAIznxl/QjEThvHKzE4lUBs8OzIny/MfH5rGhwQqLQSvK85PCUZBICCGkbNmNOvzXm3dgPprA3/3geaTSGRwb9ePurxzC2x8+ikg8hYfedCXu2tki91IrVm9TNtukpJJTzrMlkuvrqdS0FIwxXNFkU2zzmvz4C8okCmdXew2sBg2efMkj+HOn0hmcGJ+nUlOFoCCREEJIWettsuGzd16BQ8N+3PTFP+H1/30QI74IPv3aXjz5gWvxmi2Nci+xoq2rN0OjYooqSfSG4ggsJrGR9iOWrKfJin53CImU8mZhjvmiMOs1qDXp5F7KmqFVq3D9Rif+2OdFWuAS8j53CJFEGjvbKUhUAgoSCSGElL07r2zG31zTAV84gQ/fsgHPfOg6vGVvG3Qa+pqTm16jxrp6ZTWvyTdaoUxi6XpdNiTSGQx4lde8ZswXQWuNkUqKBfbKTfXwRRJ4YeLie8FX6/hY9vl2UCZREejbkxBCyJrwz7duxomP3Yh3X9cNo44GZytJr8uKM1OBgsaVSCEfJG6gTGLJlsqJFbgvccwfpVJTEVy7oQ4aFcPvX/IK+rzHxubRYDWgyV4l6POS1aEgkRBCyJqhUlHGQIl6XFb4Igl4gvGV7yyBfk8IdRY9aqgMsWRtNUaY9RpFlRMD2c7G474oOhzUtEZoVoMWeztr8eRZYfclHh/1Y0d7NWV+FYKCREIIIYSIqmepeY0yAol+dwgbqNRUECoVw2aXVXHNa0Z9EaQynEqKRfLKTU4MesMYmYsI8nzTC4uYDsSoaY2CUJBICCGEEFFtarSCMWV0OE1nOAa8ISo1FVCvy4aXZoKCNzIpxTkP7TsV0w2bsiOF/iBQNvFYbj/izrYaQZ6PlI6CREIIIYSIyqzXoKPWpIhs04Q/ilgyQ5lEAV3RbEUsmcHwbFjupSw55w5BxYDOOio3FUNLjREbGyz4vUCjMI6P+mHUqbGpkd6XSkFBIiGEEEJE19NkU0QmsS/f2ZQyiYLpdWXLiZW0L/GcJ4z2WhMMWrXcS1mzbtxcj6OjfsxHEiU/17GxeWxrsUOjptBEKeiVIIQQQojoelxWTC0sYiFa+gllKc6XIZplXcda0llnhkGrwqlJ+S8C5J3zhqjUVGSv3FSPDAee6i+ty2k4nsLZmSDtR1QYChIJIYQQIroelxWA/PsS+z0htNYYaUyKgNQqhs2NVsVkEmPJNEbnInQhQGRXNNngtOhL7nL6wvgCMhzY0U77EZWEgkRCCCGEiK7HpYwOp/1ualojht4mG16aDiKjgOY1w7MRZDiwjjKJolKpGG7YVI9n+mcRT6VX/TzHxvxgDNjeahdwdaRUFCQSQgghRHQ1Jh1cNoOsmcR4Ko2RuQg1rRFBr8uGcDyFMX9U7qVgwJstKaaLAeK7cbMTkUQah4b9q36O42Pz2FBvgdWgFXBlpFQUJBJCCCFEEptdNlk7nA7PRpDOcGpaI4Kepmw5sRI62Pa7Q9CoGNprqbOp2PZ1OVClVePJVXY5TWc4TowvYGc77UdUGgoSCSGEECKJ3iYrhuciiCZSshy/P9fZdCMFiYJbX2+BTq1SxL7Ec54wOutM0GnoNFdsBq0a12+sw09fmMJcOF704/vcQYTjKZqPqED07iGEEEKIJHpdNnAOnJqUJ5Do94SgVTN0OCjDJDStWoWNjRacmZK/w+k5T4j2I0roAzeux2IijQd/01f0Y4+PzQMAdlBnU8WhIJEQQgghktjdWQONiuGZc7OyHL/fHUJXnRlamsUmih6XDaenA+BcvuY1i4k0JuajWO+kIFEq3U4L3nFNBx47PrkU9BWCc45fn5pBg9WA5uoqEVdIVoM+JQkhhBAiCatBix1t1XiqX74gkWbniae3yYqFaBKT84uyrWHQGwbnwIYGGn8hpb+7YR0arAZ8/GenkS6ww+33j4zj0LAf73lFNxhjIq+QFIuCREIIIYRI5vqNTpydCcIdiEl63FAsiamFRep4KaJeBYw56fdk951Suam0zHoN/uk1m3BmOojvHx5b8f4T/ig+86uzuKbbgb/e0yrBCkmxKEgkhBBCiGSu3+AEADxzzivpcc95wgBA4y9EtKHBAq2a4fnxBdnWMOAJQadWoa3GKNsaKtWtWxqxr6sW//bbfvgu08Qmk+H4h8dOQsUYHnz9FsoiKhQFiYQQQgiRzPp6M1w2A57qk7bk9JyHZueJzaBVY29nLZ58ySPbvsR+TwhdTjM0tO9UcowxfOr2HkQTaTz4xKWb2Hz74CgOj/jxsVs3oclOexGVit5BhBBCCJEMYwzXbXTiucE5JFIZyY7b7w7BqFPTSanIbuppwPBcBIPesCzHH/CEsb6e9iPKJd/E5kfHLt7EZmQuggef6MP1G+pw184WGVZICkVBIiGEEEIkdf0GJ8LxFI6N+SU7Zr5pjUpFpW1iumlzPQDgd6scrl6K/L5Tak4kr3wTm3u/eQT3P3IMjxwcxfBsGOlcmalOrcLnXkdlpkqnkXsBhBBCCKks+7pqoVOr8HT/LPZ1OSQ55jlPCK/cVC/JsSpZvdWAbS12/PaMG++5vlvSYw/kspcUJMrLrNfgm/fuwncOjuLZgTn89kz2gkG1UYv5aBJfuHsr6q0GeRdJVkRBIiGEEEIkZdJrsLujBk/1efHRV28S/Xhz4Th8kQTtR5TIzT0NePCJPkwvLMIlYXnvQG7fKZWbym+zy4rPvW4LOOcY90fx3OAc9g/OocFahddua5J7eaQAVG5KCCGEEMldt6EOA94wJvxR0Y91bDS7N6rHZRX9WAS4qSebsf29xCWn5zxhGLQqtFRTZ1OlYIyhrdaEN+9p+3/t3XmU3VWV6PHvTmUkEwkZCIGEKQMQmiGAIE8IIDg1zVOUp9KIz25A1O7WFlkuZwXn7nZoWxREBARFUZ8KikpAUEAlqCEMSRiSAGYmY2WqpGq/P+6viktIVZLKrXtvVX0/a9VK1W84v31z1q/q7nvObx++fv50Pnb24U4z7SZMEiVJUtWdNrW0FMZv53d9ldOZjy9j6MC+HDtxRJdfS3DI6CEcOmYIv3p0aVWvO3/ZeiaN8blTqRJMEiVJUtUdPGowE0buxT3zuna9xJaW5O55y5kxZQz9XBahal51xFj+uGAVqzc0Ve2a85etZ5JTTaWKqMpvy4gYEBHXRsSiiFgfEX+NiNcU+w6MiIyIxrKvj2537rcjYl1ELI2If9+u7TMiYm5EbIyIuyNiYjVekyRJ6ryI4LQpo7nvyefZvLW5y64z+7k1rGxs4pWHjemya+ilzjp8X5pbkrvmdu2HAK3WbtzKsnVbmGLRGqkiqvWRWl/gWeBUYDjwEeAHEXFg2TF7Z+aQ4uuKsu2fACYBE4HTgMsj4tUAETEK+DHwUWAkMAu4pUtfiSRJqogZU8ewaWszf1rQdUthzHx8OQ19glMnj+6ya+il/m7/4YwbPrBqU07nL28tWmOSKFVCVZLEzNyQmZ/IzIWZ2ZKZtwELgOm7cPqFwBWZuTozHweuAd5e7HsD8Ghm/jAzN1NKKI+KiKmVfxWSJKmSTjp4Hwb07cPdXTjl9M7HlzF94gj23qt/l11DLxURnHX4WO59YgWbmrpupLjV/KKyqdNNpcqoyeT8iBgLTAYeLdu8KCKei4jrihFCImIEMA6YXXbcbOCI4vsjyvdl5gbgqbL9kiSpTg3s18BJh+zDb+d1TfGa51ZvZO7S9U41rZGzjtiXzVtbuPeJri9ONH/pegb3b2B8FZfckHqyqieJEdEPuAm4PjPnAiuB4ylNJ50ODC32A7R+HLS2rIm1xTGt+8v3bb+//LoXR8SsiJi1YkXX/7KSJEk7d9qUMSxYuYEni+mCldT6PNwZh42teNvauRMOGsnwQf2qMuV0/rJGJo0d6vIKUoVUNUmMiD7AjUAT8B6AzGzMzFmZuS0zlxXbz4qIoUBjcWr5wkbDgNa/JI3b7dt+f5vMvDozj8vM40aP9rkESZLqwWuO3JdB/Rr48p1PVLztmY8v56BRgzlktFMQa6FfQx/OmDqGmY8vZ2tzS5ddZ1tzC48tWWfRGqmCqpYkRumjnWuBscC5mbm1nUOz+LdPZq4GlgBHle0/ihemqT5avi8iBgOH8OJprJIkqU6NGTqQi085mNseXsKfn1ldsXY3bNnGA089z+lTnWpaS2cdsS9rN23lwS4sTvSnBatYu2krM6Y4CCBVSjVHEq8CDgPOzsxNrRsj4mURMSUi+kTEPsBXgd9mZus00huAj0TEiKIgzUXAd4p9PwGmRcS5ETEQ+BjwcDGNVZIkdQMXn3Iwo4cO4NO3P05m7vyEXfC7J1bS1NzCGT6PWFOnTh7NoH4N3Prn57rsGrfPWcKgfg3MmGJfS5VSrXUSJwKXAEcDS8vWQzwfOBi4g9IU0UeALcBbyk7/OKViNIuAe4AvZuYdAJm5AjgX+DSwGngZ8OZqvCZJklQZgwf05f1nTuahRau545HKPL828/FlDB3Yl+MPHFmR9tQ5g/o38JYTJvDTvy7m2VUbK95+c0vyq0eXcvrUMQzq31Dx9qXeqlpLYCzKzMjMgWVrIQ7JzJsy83uZeVBmDs7McZn5tsxcWnbulsx8R2YOy8yxmflf27V9Z2ZOzcxBmTkjMxdW4zVJkqTKedNxBzBl7FA+d8dcmrbt2fNrLS3J3fOWM2PKGPo11KSQu8pcdMpB9Am4+t6nK972Hxc8z8rGJl575LiKty31Zv7mlCRJNdfQJ/jQ6w5j0fMbufEPi/aordnPrWFlYxNn+DxiXRg3fBBvnL4/t8x6luXrNle07V/MWcLAfn04barPI0qVZJIoSZLqwqmTR/OKSaP46swnWLOxqdPtzHx8OQ19wkImdeSSUw5hW3ML1/5+QcXabG5J7nhkGadPHcNe/ftWrF1JJomSJKmOfOi1h7Fu81a+dteTnW7jzseXMX3iCPbeq38FI9OeOHDUYM4+aj+++4dFe/QBQLk/LVjFysYtTjWVuoBJoiRJqhuHjRvGm6bvz/UPLOSJZS9Z9ninnl7RyNyl63mlVU3rzrtmHMqGpma+c//CirT3y0dKU01d5kSqPJNESZJUVy47awrDBvbjkhsfYt3m9pZVfqltzS184NaHGTqgL/9w1PgujFCdMWXfoZx5+Fiuu28hjVu27VFbzS3JLx9ZymlTnGoqdQWTREmSVFfGDBvI188/lmdWbeS93/8rLS27tnbi1+5+kocWrebK109j3+EDuzhKdca7ZhzC2k1bufmPe1acaNbCVaxY71RTqauYJEqSpLrzsoP34WNnH85dc5fzpTvn7/T4hxat4qszn+D1x4znnKMdRaxXx0wYwcmH7sM1v1vA5q3NnW7nF3OWMKCvU02lrmKSKEmS6tIFJ07kvOP257/vepI7HlnS7nHrN2/lvbf8lfEjBvGpc46oYoTqjHefdigr1m/p9LOJLcVU0xlTRjN4gFNNpa5gkihJkupSRPCpc6Zx9AF78+8/mM28pTsuZPPxnz7K4jWb+fL/OZqhA/tVOUrtrpMO3oczDx/LF+6Yy52PLdvt82ctWs1yp5pKXcokUZIk1a2B/Rr4xj9OZ/CAvlx0wyyuv38h9z25kmXrNpOZ/PSvf+PHf/kb/3L6oUyfOLLW4WoXRARfefPRTBs/nH/53l+Y/eya3Tr/F3OW0L9vH844bGwXRSgpMnftYfCe5LjjjstZs2bVOgxJkrSLHlq0mktunMXKxhfW2Bs6oC9NzS1MGz+cWy4+kb4NfvbdnaxYv4U3XHUfm5qa+fGlJzNhn706PH7Dlm3c8MAivnbXE5x86CiufttxVYpU6pki4qHM3OGNZJIoSZK6hcxk+fotPLW8kSdXNPLU8kaWrdvCh193GAeM7DjBUH16akUj5151PyP36s+PLn05Iwb3f8kxG5u2ceMDi/jmvU+zakMTp04ezRXnTNtpUimpYyaJ2zFJlCRJqg+zFq7ird/6I0eOH84V50xjzcYmVm1sYvWGJhav3cwPZz3LysYmXjFpFO995WSmTxxR65ClHsEkcTsmiZIkSfXjF3OW8O6b/8yO3paWksNJPnMqVVhHSaJ1gyVJklRTrz1yHLe+8+UsW7eZkYP7M3Jwf0bs1Z8Re/XzWVOpBkwSJUmSVHNOI5Xqhx/NSJIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2kRm1jqGqouI9cC8WsehLjUcWFvrINRl7N+ezf7t2ezfns8+7tns355jSmYO3dGOvtWOpE7My8zjah2Euk5EXJ2ZF9c6DnUN+7dns397Nvu357OPezb7t+eIiFnt7XO6qXqqn9c6AHUp+7dns397Nvu357OPezb7txfordNNZzmSKEmSJKm36ign6q0jiVfXOgBJkiRJqqF2c6JeOZIoSZIkSdqx3jqSKEmSJEnaAZNEdWsRMTIifhIRGyJiUUS8tdj+uoj4fUSsiYilEfGtiNhhiV/Vrw7697SImFP07/PFMeNrHa92T3v9u90x346IjIhDaxGj9kwH9/CMiGiJiMayrwtrHa92T0f3cESMjoibI2JtRKyOiJtqGat2Xwf374e2u3c3FffzqFrHrMrprUtgqOf4H6AJGAscDdweEbMpreFzJXAvMAC4Gfgi8M4axanOaa9/HwNelZmLI2IAcAVwFfAPNYtUnbHD/s3MRwEi4n8Bh9QwPu259u5hgMWZuX/NIlMldHQP/xh4EJgAbASm1SxKdVZ7/fsZ4DOtB0XEJ4BTMnNlTaJUl/CZRHVbETEYWA1My8z5xbYbgb9l5ge3O/YNwCcz88jqR6rO2NX+LZLETwDnZObhtYhVu29n/RsRfSm9wbwQmA1MyswnaxawdltHfQzcAXzXJLH72kn/3kWpIMYhmdlcuyjVWbvxNziApyi9x7q+JsGqS9TddNOIGF7rGNRtTAa2tf7yKswGjtjBsacAj1YlKlVKh/0bERMiYg2wCbgM+EL1Q9Qe2Nn9+z7g3sx8uOqRqVJ21sdjImJZRCyIiC8Vb0rVfXTUvycC84Dri0cCHoyIU2sRpDptV99jvQIYA/yoWoGpOuomSYyIQRFxLfB0REyodTzqFoYA67bbthZ40bOHEXEmpdGIj1UpLlVGh/2bmc9k5t7AKOAjwNzqhqc91G7/RsQBwCV4z3Z3Hd3DcylNXxsHnA5MB/6rqtFpT3XUv/sDZwF3A/sC/wn81GfWupVdeo9F6f3VrZnZWJWoVDV1kSRGxBBKzxONApZTer5I2plGYNh224YB61t/iIgTKT2P+MbtPg1T/dtp/wJk5irgekpvQHzOuvvoqH+/DHwqM9dWPSpVUrt9nJlLM/OxzGzJzAXA5cC5VY9Qe6Kje3gTsDAzr83MrZn5feBZ4OQqx6jO25X3WHsBb6L0N1g9TE2TxIgYFRH9ik8ffgJ8GDgHuCAiXl7L2NQtzAf6RsSksm1HUUwrjYhjgJ8B78jMmTWIT3umw/7dTl9K0122/4Om+tVR/54BfLGoTLy02PfAjqqfqq7tzj2c1MkH19plHfXvw5T6tJxFMLqXXbl/Xw+sAn5bxbhUJTUpXBMRBwKtpZDXAR8E5mXm5mL/NcBRmXlC1YNTtxIR36f0h+efKU1d+gXwciCAmcC/ZuYttYtQe6KD/p1C6Q/VE8A+lCqwHZqZx9YoVHVCB/27ghcnDEuAk4DZmbmp2nGq8zro4zHA08AzlKYm3kBp5On/1ihUdUIH/buEUjGT9wLfpZRMXA1MtgJm99Fe/5ZVoP418IfM9NGAHqjqn9pFxCDgW8BDwBsoDWd/AnhL2WHvBo4oXzMpIvyEUTvyLmAQpWnK3wMuLX55vR8YDVxbto6PhWu6n/b6dzyl6ojrgTlAC6U3Iepedti/mbm8mI64NDNbRxJXmiB2S+3dw8cA9wMbin/nAP9aqyDVae3dw6soLUl0GaXn2D5IqQK1CWL30t79S7E28emUPuBRD1T1kcRi2Po64J8zc25EDAP+DTgNuLi1xHlEvA+4PDPHFT8Pzcz1ERHpuh2SJEmS1CVqMToXlBZUXQuQmesoLbi6GLgUSqOGQZwyKgAACatJREFUmfklYFVE/CwiNgKfLY43QZQkSZKkLlL1JLGoMDmHF5c2n0tpusmBEXFwZrZExBhKCeWxwPsz8z3VjlWSJEmSeptaPef3OeD1ETEZIDObgceASbywJsts4M+ZuX9mXlWbMCVJkiSpd6nVmmJ3Fl83ACcW2x4p/h0OrAQmuTCnJEmSJFVXTZbAgLYFOGdTWofld8AFwCzgosxs6uC8ccBFwN2Z+TsL2UiSJElS5dRqJJHM3BgRZ1Na++o1wLeKYjU7szdwMhARMcuS6JIkSZJUOTUbSXxRELs4Gth6XERcCpwBfCczb+v6CCVJkiSpd6iLBep3J0EsfrwFaATOjIh9W/d3YYiSJEmS1CvURZJYrr1krxhBnBwRZ2TmKuBnwIHAq1v3Vy9KSZIkSeqZ6i5JLJLB9uI6D7g9IvoDPwEWAqdExOHgaKIkSZIk7am6SxIj4tXAlRGxX/HzKa37MvNKYDHw0WLk8BZgBKXCN44mSpIkSdIeqrskEWgAzgJOjojXAddExKll+/8N+EBETMjM+yktm3FsRJxWg1glSZIkqUepuyQxM28H/gS8EmihNK30PWX7f17s/2yx6fvAaGB6RDRUN1pJkiRJ6lnqKkkse6bwK8BhwETgAWDviHhb2aH3AG8uitg8BVyWmf+Rmc3VjViSJEmSepa6ShKLojWRmfOAX1NaC3Fr8f3FETG8OHQt8CBwcnHewwAdFLyRJEmSJO2CqNdaLxExFPgxcBfwG+AKYBylQjWzgLdn5vraRShJkiRJPU/fWgewIxHRJzPXR8QNwNspjRqeB/w90JyZP9ju2JbaRCpJkiRJPUvdjiS2iojvA88Dn8zM5WXbG3wGUZIkSZIqq26f4SsrYvPfwHTgwPLtJoiSJEmSVHl1myQWRWz6ZOZ9lOJ8Vev2nZ0bEQdHxLDi+9jZ8ZIkSZKkkrpNEgEysyUi9gI2AfN25ZyIeDfwCHBW0UZ9z6eVJEmSpDpS10li4X8Df6FU6XRXHAWsBk6IiEldFpUkSZIk9UDdoXBN7OIU04bMbI6ID1BaKmM68B3g5szc0sVhSpIkSVKPUPcjie0liBExoPi3oTiutZDNScB1wG3AOcBBVQhTkiRJknqEuk8StxcRIyLi28A34IXkMCJaX8uzwAHAtcBA4C0RcWVE/F0t4pUkSZKk7qRbJYkRcSTwE+B4YHJEvKHY3iczW4rDjgHmZeYqYCvwYeBI4OkahCxJkiRJ3Uq3ShKB/sCNwNuBmcBFEdG/qILavzjmj8AnI2IOMAz4PbAQGFz9cCVJkiSpe6nrJDEipkbEqRExptg0B7g1Mx8CfgUk8B6AzGwqppyOA44AvpyZpwKfB0ZWP3pJkiRJ6n7qsrppUYzmG8B5wEOUEr/LM/PnZccMAf4JOBe4IDMXFdsPApZl5saqBy5JkiRJ3Vy9jiQeARwKHAKcRWkpi69ExCmtB2RmI6Upp4uB95Wd+2xmbmwtZBMRUa2gJUmSJKm7q5skMSKGl1UoPRGYmJkrgZbM/DylZw0vjIiDy06bD3wPmBYRn4mI+4AzAFoL2ezKGouSJEmSpJKaJ4kRMSkifgXcBPwoIiYCjwHPRMTRZVVLPwscBbQtZZGZTUAzpaTyQuCazPxVVV+AJEmSJPUgNU0SI+KfgLuAvwCXUyow81GgL7CM0lRTADLzYUqFay4ozm2IiDOBW4GvZ+b4zPxOVV+AJEmSJPUwNS1cExFXAosy85ri5/2BucBkSsngscA3M/OuYv/ZwOeA44vnDscDGzJzTU1egCRJkiT1MH1rfP1vAFsAImIAsBF4ChgE/JBS4Zr3RsRTRfXS44Fft1Yuzcy/1SRqSZIkSeqhapokZuZzUKpAmplbIuJwSlNgny3WPfwqcCVwe0SsAaYA59cuYkmSJEnq2Wo9kgi8qALpDGBeUZCGzHwkIs4FjgGOyMzraxSiJEmSJPUKdZEkRkRDZjYDJwB3FNsupTRy+OnMnAXMqmGIkiRJktQr1EWSmJnNEdGXUnXTMRFxL3Ag8I7MXFHT4CRJkiSpF6lpddNyEXEkMJvS0hf/mZn/UeOQJEmSJKnXqacksT/wHkprHm6udTySJEmS1BvVTZIoSZIkSaq9PrUOQJIkSZJUP0wSJUmSJEltTBIlSZIkSW1MEiVJkiRJbUwSJUmSJEltTBIlSQIiYkJENEZEQ61jkSSplkwSJUm9VkQsjIhXAmTmM5k5JDObq3j9GRHxXLWuJ0nSrjBJlCRJkiS1MUmUJPVKEXEjMAH4eTHN9PKIyIjoW+z/bURcGRH3F/t/HhH7RMRNEbEuIh6MiAPL2psaEb+JiFURMS8izivb99qIeCwi1kfE3yLisogYDPwS2K9ovzEi9ouIEyLigYhYExFLIuJrEdG/rK2MiHdFxBNFe1dExCFFnOsi4getx7eOVEbEhyJiZTFyen51/oclSd2VSaIkqVfKzAuAZ4CzM3MI8IMdHPZm4AJgPHAI8ABwHTASeBz4OECR8P0GuBkYU5z39Yg4vGjnWuCSzBwKTAPuyswNwGuAxcU01yGZuRhoBt4HjAJOAs4A3rVdXK8CpgMnApcDVwP/CBxQtP+WsmP3LdoaD1wIXB0RU3brP0uS1KuYJEqS1L7rMvOpzFxLadTvqcy8MzO3AT8EjimO+3tgYWZel5nbMvMvwI+ANxX7twKHR8SwzFydmX9u74KZ+VBm/qFoZyHwTeDU7Q77Qmauy8xHgUeAX2fm02VxHrPd8R/NzC2ZeQ9wO3AekiS1wyRRkqT2LSv7ftMOfh5SfD8ReFkxRXRNRKwBzqc0igdwLvBaYFFE3BMRJ7V3wYiYHBG3RcTSiFgHfIbSSGBn4gJYXYxatloE7Nfe9SVJMkmUJPVmWaF2ngXuycy9y76GZOalAJn5YGaeQ2kq6v/jhamtO7r+VcBcYFJmDgM+BMQexDaimA7bagKweA/akyT1cCaJkqTebBlwcAXauQ2YHBEXRES/4uv4iDgsIvpHxPkRMTwztwLrgJay6+8TEcPL2hpaHNMYEVOBSysQ3yeLOF5BaWrsDyvQpiSphzJJlCT1Zp8FPlJMD31jZxvJzPXAWZQK1iwGlgKfBwYUh1wALCymj76T0lRUMnMu8D3g6WKa6n7AZcBbgfXANcAtnY2rsBRYXcR1E/DO4rqSJO1QZFZqpo0kSaonETED+G5m7l/rWCRJ3YcjiZIkSZKkNiaJkiRJkqQ2TjeVJEmSJLVxJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTGJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTm/wOL0q2viKFO9gAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "dddca9ad9e34435494e0933c218e1579", + "translation_date": "2025-09-04T01:50:38+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/1-Introduction/working/notebook.ipynb b/translations/ja/7-TimeSeries/1-Introduction/working/notebook.ipynb new file mode 100644 index 000000000..cff62ce98 --- /dev/null +++ b/translations/ja/7-TimeSeries/1-Introduction/working/notebook.ipynb @@ -0,0 +1,64 @@ +{ + "cells": [ + { + "source": [ + "# データセットアップ\n", + "\n", + "このノートブックでは、以下を実演します:\n", + "\n", + "このモジュール用の時系列データのセットアップ \n", + "データの可視化 \n", + "\n", + "この例で使用するデータは、GEFCom2014予測コンペティション1から取得したものです。2012年から2014年の3年間にわたる、1時間ごとの電力負荷と気温の値で構成されています。\n", + "\n", + "1Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤訳について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5e2bbe594906dce3aaaa736d6dac6683", + "translation_date": "2025-09-04T01:51:42+00:00", + "source_file": "7-TimeSeries/1-Introduction/working/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/2-ARIMA/README.md b/translations/ja/7-TimeSeries/2-ARIMA/README.md new file mode 100644 index 000000000..0aea74f78 --- /dev/null +++ b/translations/ja/7-TimeSeries/2-ARIMA/README.md @@ -0,0 +1,407 @@ + +# ARIMAによる時系列予測 + +前のレッスンでは、時系列予測について少し学び、一定期間にわたる電力負荷の変動を示すデータセットを読み込みました。 + +[![ARIMAの概要](https://img.youtube.com/vi/IUSk-YDau10/0.jpg)](https://youtu.be/IUSk-YDau10 "ARIMAの概要") + +> 🎥 上の画像をクリックすると動画が再生されます: ARIMAモデルの簡単な紹介。例はRで行われていますが、概念は普遍的です。 + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/43/) + +## はじめに + +このレッスンでは、[ARIMA: *A*uto*R*egressive *I*ntegrated *M*oving *A*verage](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average)を使用してモデルを構築する具体的な方法を学びます。ARIMAモデルは、[非定常性](https://wikipedia.org/wiki/Stationary_process)を示すデータに特に適しています。 + +## 基本概念 + +ARIMAを使用するためには、いくつかの重要な概念を理解する必要があります: + +- 🎓 **定常性**: 統計的な観点から、定常性とは時間が経過しても分布が変化しないデータを指します。一方、非定常データは、分析するために変換が必要なトレンドによる変動を示します。例えば季節性はデータに変動をもたらし、「季節差分」を行うことで排除できます。 + +- 🎓 **[差分化](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average#Differencing)**: 統計的な観点から、差分化とは非定常データを定常データに変換するプロセスを指します。これにより、非定常なトレンドが除去されます。「差分化は時系列のレベルの変化を除去し、トレンドや季節性を排除して時系列の平均を安定化させます。」[Shixiongらの論文](https://arxiv.org/abs/1904.07632) + +## 時系列におけるARIMAの役割 + +ARIMAの各部分を分解して、時系列データをモデル化し、予測を行う方法を理解しましょう。 + +- **AR - 自己回帰 (AutoRegressive)**: 自己回帰モデルは名前の通り、過去のデータを分析して仮定を立てます。これらの過去の値は「ラグ」と呼ばれます。例えば、鉛筆の月間販売データがある場合、各月の販売総数はデータセット内の「進化する変数」として扱われます。このモデルは「進化する関心変数が自身のラグ(つまり過去の値)に回帰する」形で構築されます。[wikipedia](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average) + +- **I - 統合 (Integrated)**: ARIMAの「I」は、データが非定常性を排除するために差分化ステップを適用される「統合」された側面を指します。 + +- **MA - 移動平均 (Moving Average)**: このモデルの[移動平均](https://wikipedia.org/wiki/Moving-average_model)側面は、現在および過去のラグ値を観察することで決定される出力変数を指します。 + +要するに、ARIMAは時系列データの特殊な形式にできるだけ近づけるようにモデルを構築するために使用されます。 + +## 演習 - ARIMAモデルを構築する + +このレッスンの[_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/working)フォルダーを開き、[_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/2-ARIMA/working/notebook.ipynb)ファイルを見つけてください。 + +1. ノートブックを実行して`statsmodels` Pythonライブラリを読み込みます。ARIMAモデルにはこれが必要です。 + +1. 必要なライブラリを読み込む + +1. 次に、データのプロットに便利なライブラリをいくつか読み込みます: + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from pandas.plotting import autocorrelation_plot + from statsmodels.tsa.statespace.sarimax import SARIMAX + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + from IPython.display import Image + + %matplotlib inline + pd.options.display.float_format = '{:,.2f}'.format + np.set_printoptions(precision=2) + warnings.filterwarnings("ignore") # specify to ignore warning messages + ``` + +1. `/data/energy.csv`ファイルからデータをPandasデータフレームに読み込み、確認します: + + ```python + energy = load_data('./data')[['load']] + energy.head(10) + ``` + +1. 2012年1月から2014年12月までの利用可能なエネルギーデータをプロットします。前のレッスンでこのデータを見たので驚きはないはずです: + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + では、モデルを構築しましょう! + +### トレーニングとテストデータセットを作成する + +データが読み込まれたので、トレーニングセットとテストセットに分割します。トレーニングセットでモデルを訓練します。通常通り、モデルの訓練が終了したら、テストセットを使用してその精度を評価します。モデルが将来の時間帯から情報を取得しないようにするため、テストセットがトレーニングセットより後の期間をカバーしていることを確認する必要があります。 + +1. 2014年9月1日から10月31日までの2か月間をトレーニングセットに割り当てます。テストセットには2014年11月1日から12月31日までの2か月間を含めます: + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + + このデータはエネルギーの1日あたりの消費量を反映しているため、強い季節的パターンがありますが、消費量は最近の日々の消費量に最も類似しています。 + +1. 差異を視覚化します: + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![トレーニングとテストデータ](../../../../translated_images/train-test.8928d14e5b91fc942f0ca9201b2d36c890ea7e98f7619fd94f75de3a4c2bacb9.ja.png) + + したがって、データをトレーニングするために比較的小さな時間枠を使用するだけで十分です。 + + > 注意: ARIMAモデルをフィットさせるために使用する関数はフィッティング中にインサンプル検証を使用するため、検証データは省略します。 + +### トレーニングのためのデータを準備する + +次に、データをフィルタリングしてスケーリングすることでトレーニングの準備をします。必要な期間と列のみを含むようにデータセットをフィルタリングし、データが0から1の範囲に投影されるようにスケーリングします。 + +1. 元のデータセットをフィルタリングして、前述の期間ごとのセットと必要な列「load」と日付のみを含むようにします: + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + データの形状を確認できます: + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +1. データを(0, 1)の範囲にスケーリングします。 + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + train.head(10) + ``` + +1. 元のデータとスケーリングされたデータを視覚化します: + + ```python + energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12) + train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12) + plt.show() + ``` + + ![元のデータ](../../../../translated_images/original.b2b15efe0ce92b8745918f071dceec2231661bf49c8db6918e3ff4b3b0b183c2.ja.png) + + > 元のデータ + + ![スケーリングされたデータ](../../../../translated_images/scaled.e35258ca5cd3d43f86d5175e584ba96b38d51501f234abf52e11f4fe2631e45f.ja.png) + + > スケーリングされたデータ + +1. スケーリングされたデータを調整したので、テストデータもスケーリングします: + + ```python + test['load'] = scaler.transform(test) + test.head() + ``` + +### ARIMAを実装する + +いよいよARIMAを実装する時です!先ほどインストールした`statsmodels`ライブラリを使用します。 + +次のステップを実行する必要があります: + + 1. `SARIMAX()`を呼び出してモデルを定義し、モデルパラメータ(p, d, qパラメータ、およびP, D, Qパラメータ)を渡します。 + 2. `fit()`関数を呼び出してトレーニングデータ用にモデルを準備します。 + 3. `forecast()`関数を呼び出して予測を行い、予測するステップ数(`horizon`)を指定します。 + +> 🎓 これらのパラメータは何のためにあるのでしょうか?ARIMAモデルでは、時系列の主要な側面(季節性、トレンド、ノイズ)をモデル化するために使用される3つのパラメータがあります: + +`p`: モデルの自己回帰部分に関連するパラメータで、*過去*の値を組み込みます。 +`d`: モデルの統合部分に関連するパラメータで、時系列に適用する*差分化*の量に影響します(🎓 差分化を覚えていますか?👆)。 +`q`: モデルの移動平均部分に関連するパラメータ。 + +> 注意: データに季節的な側面がある場合(このデータにはあります)、季節的ARIMAモデル(SARIMA)を使用します。その場合、`p`, `d`, `q`と同じ関連性を記述する別のパラメータセット`P`, `D`, `Q`を使用しますが、モデルの季節的な要素に対応します。 + +1. まず、希望する予測範囲(horizon)値を設定します。3時間を試してみましょう: + + ```python + # Specify the number of steps to forecast ahead + HORIZON = 3 + print('Forecasting horizon:', HORIZON, 'hours') + ``` + + ARIMAモデルのパラメータの最適な値を選択するのは、主観的で時間がかかる場合があります。[`pyramid`ライブラリ](https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html)の`auto_arima()`関数を使用することを検討するかもしれません。 + +1. 現時点では、いくつかの手動選択を試して良いモデルを見つけてみましょう。 + + ```python + order = (4, 1, 0) + seasonal_order = (1, 1, 0, 24) + + model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order) + results = model.fit() + + print(results.summary()) + ``` + + 結果の表が表示されます。 + +最初のモデルを構築しました!次に、それを評価する方法を見つける必要があります。 + +### モデルを評価する + +モデルを評価するには、いわゆる`ウォークフォワード`検証を実行します。実際には、新しいデータが利用可能になるたびに時系列モデルは再訓練されます。これにより、各時点で最適な予測を行うことができます。 + +この手法を使用して時系列の最初から始め、トレーニングデータセットでモデルを訓練します。その後、次の時点で予測を行います。予測は既知の値と比較して評価されます。トレーニングセットは既知の値を含むように拡張され、このプロセスが繰り返されます。 + +> 注意: トレーニングセットのウィンドウを固定して効率的なトレーニングを行うことをお勧めします。新しい観測値をトレーニングセットに追加するたびに、セットの最初の観測値を削除します。 + +このプロセスは、モデルが実際にどのように機能するかをより堅牢に推定します。ただし、多くのモデルを作成する計算コストがかかります。データが小さい場合やモデルが単純な場合は許容されますが、スケールが大きい場合は問題になる可能性があります。 + +ウォークフォワード検証は時系列モデル評価のゴールドスタンダードであり、独自のプロジェクトで推奨されます。 + +1. まず、各HORIZONステップのテストデータポイントを作成します。 + + ```python + test_shifted = test.copy() + + for t in range(1, HORIZON+1): + test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H') + + test_shifted = test_shifted.dropna(how='any') + test_shifted.head(5) + ``` + + | | | load | load+1 | load+2 | + | ---------- | -------- | ---- | ------ | ------ | + | 2014-12-30 | 00:00:00 | 0.33 | 0.29 | 0.27 | + | 2014-12-30 | 01:00:00 | 0.29 | 0.27 | 0.27 | + | 2014-12-30 | 02:00:00 | 0.27 | 0.27 | 0.30 | + | 2014-12-30 | 03:00:00 | 0.27 | 0.30 | 0.41 | + | 2014-12-30 | 04:00:00 | 0.30 | 0.41 | 0.57 | + + データは予測範囲ポイントに応じて水平にシフトされます。 + +1. テストデータに対してスライディングウィンドウアプローチを使用して予測を行い、テストデータの長さのループで実行します: + + ```python + %%time + training_window = 720 # dedicate 30 days (720 hours) for training + + train_ts = train['load'] + test_ts = test_shifted + + history = [x for x in train_ts] + history = history[(-training_window):] + + predictions = list() + + order = (2, 1, 0) + seasonal_order = (1, 1, 0, 24) + + for t in range(test_ts.shape[0]): + model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order) + model_fit = model.fit() + yhat = model_fit.forecast(steps = HORIZON) + predictions.append(yhat) + obs = list(test_ts.iloc[t]) + # move the training window + history.append(obs[0]) + history.pop(0) + print(test_ts.index[t]) + print(t+1, ': predicted =', yhat, 'expected =', obs) + ``` + + トレーニングが進行している様子を確認できます: + + ```output + 2014-12-30 00:00:00 + 1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323] + + 2014-12-30 01:00:00 + 2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126] + + 2014-12-30 02:00:00 + 3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795] + ``` + +1. 予測値を実際の負荷と比較します: + + ```python + eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)]) + eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1] + eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h') + eval_df['actual'] = np.array(np.transpose(test_ts)).ravel() + eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']]) + eval_df.head() + ``` + + 出力 + | | | timestamp | h | prediction | actual | + | --- | ---------- | --------- | --- | ---------- | -------- | + | 0 | 2014-12-30 | 00:00:00 | t+1 | 3,008.74 | 3,023.00 | + | 1 | 2014-12-30 | 01:00:00 | t+1 | 2,955.53 | 2,935.00 | + | 2 | 2014-12-30 | 02:00:00 | t+1 | 2,900.17 | 2,899.00 | + | 3 | 2014-12-30 | 03:00:00 | t+1 | 2,917.69 | 2,886.00 | + | 4 | 2014-12-30 | 04:00:00 | t+1 | 2,946.99 | 2,963.00 | + + 時間ごとのデータの予測値を実際の負荷と比較します。この精度はどの程度でしょうか? + +### モデルの精度を確認する + +モデルの精度を確認するには、すべての予測に対して平均絶対誤差率(MAPE)をテストします。 +> **🧮 数学を見てみよう** +> +> ![MAPE](../../../../translated_images/mape.fd87bbaf4d346846df6af88b26bf6f0926bf9a5027816d5e23e1200866e3e8a4.ja.png) +> +> [MAPE](https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/) は、上記の式で定義される比率として予測精度を示すために使用されます。実際の値と予測値の差を実際の値で割ります。 +> +> 「この計算で得られる絶対値は、予測されたすべての時点で合計され、フィットした点の数 n で割られます。」 [wikipedia](https://wikipedia.org/wiki/Mean_absolute_percentage_error) +1. コードで方程式を表現する: + + ```python + if(HORIZON > 1): + eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual'] + print(eval_df.groupby('h')['APE'].mean()) + ``` + +1. 1ステップのMAPEを計算する: + + ```python + print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%') + ``` + + 1ステップ予測のMAPE: 0.5570581332313952 % + +1. マルチステップ予測のMAPEを表示する: + + ```python + print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%') + ``` + + ```output + Multi-step forecast MAPE: 1.1460048657704118 % + ``` + + 低い数値が理想的です: MAPEが10の場合、予測が10%ずれていることを意味します。 + +1. しかし、いつものように、このような精度の測定は視覚的に確認する方が簡単です。では、プロットしてみましょう: + + ```python + if(HORIZON == 1): + ## Plotting single step forecast + eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8)) + + else: + ## Plotting multi step forecast + plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']] + for t in range(1, HORIZON+1): + plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values + + fig = plt.figure(figsize=(15, 8)) + ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0) + ax = fig.add_subplot(111) + for t in range(1, HORIZON+1): + x = plot_df['timestamp'][(t-1):] + y = plot_df['t+'+str(t)][0:len(x)] + ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t)) + + ax.legend(loc='best') + + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![時系列モデル](../../../../translated_images/accuracy.2c47fe1bf15f44b3656651c84d5e2ba9b37cd929cd2aa8ab6cc3073f50570f4e.ja.png) + +🏆 とても良いプロットですね。精度の高いモデルを示しています。素晴らしい! + +--- + +## 🚀チャレンジ + +時系列モデルの精度をテストする方法を調べてみましょう。このレッスンではMAPEについて触れましたが、他に使用できる方法はありますか?それらを調査し、注釈を付けてください。役立つドキュメントは[こちら](https://otexts.com/fpp2/accuracy.html)にあります。 + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/44/) + +## 復習と自己学習 + +このレッスンでは、ARIMAを使用した時系列予測の基本のみを扱っています。時間をかけて知識を深め、[このリポジトリ](https://microsoft.github.io/forecasting/)とそのさまざまなモデルタイプを調べて、時系列モデルを構築する他の方法を学びましょう。 + +## 課題 + +[新しいARIMAモデル](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/2-ARIMA/assignment.md b/translations/ja/7-TimeSeries/2-ARIMA/assignment.md new file mode 100644 index 000000000..ba1bc3d05 --- /dev/null +++ b/translations/ja/7-TimeSeries/2-ARIMA/assignment.md @@ -0,0 +1,25 @@ + +# 新しいARIMAモデル + +## 手順 + +既存のARIMAモデルを構築した後、新しいデータを使用して新しいモデルを作成してください([Dukeのこれらのデータセット](http://www2.stat.duke.edu/~mw/ts_data_sets.html)のいずれかを試してみてください)。ノートブックに作業内容を記録し、データとモデルを視覚化し、MAPEを使用してその精度をテストしてください。 + +## 評価基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | ------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------ | --------------------------------- | +| | 新しいARIMAモデルが構築され、テストされ、視覚化と精度が説明されたノートブックが提示されている。 | 提示されたノートブックが注釈されていない、またはバグが含まれている。 | 不完全なノートブックが提示されている。 | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/2-ARIMA/solution/Julia/README.md b/translations/ja/7-TimeSeries/2-ARIMA/solution/Julia/README.md new file mode 100644 index 000000000..c6439336a --- /dev/null +++ b/translations/ja/7-TimeSeries/2-ARIMA/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/2-ARIMA/solution/R/README.md b/translations/ja/7-TimeSeries/2-ARIMA/solution/R/README.md new file mode 100644 index 000000000..9e07253e3 --- /dev/null +++ b/translations/ja/7-TimeSeries/2-ARIMA/solution/R/README.md @@ -0,0 +1,15 @@ + +これは一時的なプレースホルダー + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当社は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/2-ARIMA/solution/notebook.ipynb b/translations/ja/7-TimeSeries/2-ARIMA/solution/notebook.ipynb new file mode 100644 index 000000000..bd51b784c --- /dev/null +++ b/translations/ja/7-TimeSeries/2-ARIMA/solution/notebook.ipynb @@ -0,0 +1,1138 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "このノートブックでは以下を示します:\n", + "- ARIMA時系列予測モデルのトレーニングのために時系列データを準備する方法\n", + "- 簡単なARIMAモデルを実装して、時系列の次のHORIZONステップ先(時刻*t+1*から*t+HORIZON*まで)を予測する方法\n", + "- モデルを評価する方法\n", + "\n", + "この例のデータはGEFCom2014予測コンペティションから取得されています。2012年から2014年までの3年間の毎時の電力負荷と気温値で構成されています。タスクは電力負荷の将来値を予測することです。この例では、過去の負荷データのみを使用して、1ステップ先を予測する方法を示します。\n", + "\n", + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016.\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## 依存関係のインストール\n", + "まずは必要な依存関係をインストールしましょう。以下のライブラリとその対応するバージョンは、このソリューションで動作確認済みです:\n", + "\n", + "* `statsmodels == 0.12.2`\n", + "* `matplotlib == 3.4.2`\n", + "* `scikit-learn == 0.24.2`\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "source": [ + "!pip install statsmodels" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "/bin/sh: pip: command not found\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from pandas.plotting import autocorrelation_plot\n", + "from statsmodels.tsa.statespace.sarimax import SARIMAX\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape\n", + "from IPython.display import Image\n", + "\n", + "%matplotlib inline\n", + "pd.options.display.float_format = '{:,.2f}'.format\n", + "np.set_printoptions(precision=2)\n", + "warnings.filterwarnings(\"ignore\") # specify to ignore warning messages\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 18, + "source": [ + "energy = load_data('./data')[['load']]\n", + "energy.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          load
                                          2012-01-01 00:00:002,698.00
                                          2012-01-01 01:00:002,558.00
                                          2012-01-01 02:00:002,444.00
                                          2012-01-01 03:00:002,402.00
                                          2012-01-01 04:00:002,403.00
                                          2012-01-01 05:00:002,453.00
                                          2012-01-01 06:00:002,560.00
                                          2012-01-01 07:00:002,719.00
                                          2012-01-01 08:00:002,916.00
                                          2012-01-01 09:00:003,105.00
                                          \n", + "
                                          " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2,698.00\n", + "2012-01-01 01:00:00 2,558.00\n", + "2012-01-01 02:00:00 2,444.00\n", + "2012-01-01 03:00:00 2,402.00\n", + "2012-01-01 04:00:00 2,403.00\n", + "2012-01-01 05:00:00 2,453.00\n", + "2012-01-01 06:00:00 2,560.00\n", + "2012-01-01 07:00:00 2,719.00\n", + "2012-01-01 08:00:00 2,916.00\n", + "2012-01-01 09:00:00 3,105.00" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "すべての利用可能な負荷データをプロットする(2012年1月から2014年12月まで)\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## トレーニングデータセットとテストデータセットの作成\n", + "\n", + "### データセットの分割方法\n", + "\n", + "機械学習モデルを構築する際、データをトレーニングセットとテストセットに分割することが重要です。トレーニングセットはモデルを学習させるために使用され、テストセットはモデルの性能を評価するために使用されます。\n", + "\n", + "[!NOTE] トレーニングセットとテストセットの分割比率は、一般的に80:20や70:30が推奨されます。\n", + "\n", + "### データのシャッフル\n", + "\n", + "データを分割する前に、データをシャッフルすることが重要です。シャッフルすることで、データの偏りを防ぎ、モデルの汎化性能を向上させることができます。\n", + "\n", + "```python\n", + "import random\n", + "\n", + "# データをシャッフルする\n", + "random.shuffle(data)\n", + "```\n", + "\n", + "### トレーニングセットとテストセットの作成\n", + "\n", + "以下のコードは、データをトレーニングセットとテストセットに分割する方法を示しています。\n", + "\n", + "```python\n", + "# データを分割する\n", + "train_size = int(len(data) * 0.8)\n", + "train_data = data[:train_size]\n", + "test_data = data[train_size:]\n", + "```\n", + "\n", + "[!TIP] 分割比率はプロジェクトの要件に応じて調整してください。\n", + "\n", + "### 注意点\n", + "\n", + "- データが十分に大きい場合、分割比率を変更してもモデルの性能に大きな影響はありません。\n", + "- データが少ない場合、クロスバリデーションを検討することをお勧めします。\n", + "\n", + "[!CAUTION] データの分割後、トレーニングセットとテストセットに重複がないことを確認してください。\n", + "\n", + "### 次のステップ\n", + "\n", + "データセットを分割した後、トレーニングセットを使用してモデルを構築し、テストセットを使用してモデルの性能を評価します。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00' " + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e5wtV1Xv+5tVtR792u8kEoMkIGAUJEjwwEE9IHh5eHzCiYr40XPPJSjnw8XrkQN6RRHPOXJ8AKLyFHzw1vBSQQnEhMBNQtgJeZNkJ+wk+5Gd/eze/V6rqub9Y9aomlVdtXqO2btXr+4e388nn97pXnNVrVr1mGOO3/gNpbWGIAiCIAiCIAiCIABAsNE7IAiCIAiCIAiCIIwOEiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDkSJAqCIAiCIAiCIAg5EiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDnRRu/ARrBv3z598cUXb/RuCIIgCIIgCIIgbAi33HLLSa31eXV/25ZB4sUXX4z9+/dv9G4IgiAIgiAIgiBsCEqph5v+JnJTQRAEQRAEQRAEIUeCREEQBEEQBEEQBCFHgkRBEARBEARBEAQhZ1vWJAqCIAiCIAiCsL3p9/s4fPgwlpaWNnpX1pVut4uLLroIrVbLeYwEiYIgCIIgCIIgbDsOHz6MqakpXHzxxVBKbfTurAtaa5w6dQqHDx/GJZdc4jxO5KaCIAiCIAiCIGw7lpaWsHfv3i0bIAKAUgp79+5lZ0slSBQEQRAEQRAEYVuylQNEwuczSpAoCIIgCIIgCIIwZKanp/Hud7+bPe5lL3sZpqen12GPCiRIFARBEARBEARBGDJNQWIcxwPHfeELX8CuXbvWa7cAiHGNIAiCIAiCIAjC0HnTm96EBx98EJdddhlarRa63S52796Ne++9F/fffz9++qd/GocOHcLS0hJe//rX48orrwQAXHzxxdi/fz/m5ubw0pe+FD/0Qz+EG264Ad/5nd+Jz33ucxgbG1vzvkmQKAiCIAiCIAjCtub3/+lu3HP07Dl9z++9cAd+7ye+r/Hvb3vb23DXXXfhtttuw3XXXYcf//Efx1133ZW7kH7oQx/Cnj17sLi4iGc/+9l4+ctfjr1795be48CBA/j4xz+OD3zgA7jiiivwqU99Cq961avWvO8SJAqCIAiCIAiCIGwwP/iDP1hqU/Gud70Ln/nMZwAAhw4dwoEDB1YEiZdccgkuu+wyAMCznvUsPPTQQ+dkXyRIFARBEARBEARhWzMo4zcsJiYm8n9fd911+PKXv4wbb7wR4+PjeP7zn1/bxqLT6eT/DsMQi4uL52RfxLhGEARBEARBEARhyExNTWF2drb2bzMzM9i9ezfGx8dx77334qabbhrqvkkmURAEQRAEQRAEYcjs3bsXz3ve8/C0pz0NY2NjuOCCC/K/veQlL8F73/teXHrppXjqU5+K5zznOUPdN6W1HuoGR4HLL79c79+/f6N3QxAEQRAEQRCEDeJb3/oWLr300o3ejaFQ91mVUrdorS+ve73ITQVBEARBEARBEIQcCRIFQRAEQdi2/Je/+Qae/pYvbvRuCIIgjBRDDxKVUk9WSi0ppT6S/f/zlVKpUmrO+u+XrdfvUUp9Rik1r5R6WCn1ysr7vTL7/bxS6rNKqT3D/kyCIAiCIGxOrrn3OGaX4o3eDUEQhJFiIzKJfwngG5XfHdVaT1r//W3l9T0AFwD4RQDvUUp9HwBkP98H4Jeyvy8AePd6fwBBEARBELYW29GjQRAEoYmhBolKqZ8HMA3gGsfXTwB4OYA3a63ntNZfA/CPMEEhYILGf9JaX6+1ngPwZgA/q5SaOvd7LwiCIAjCVmWpn270LgiCIIwMQwsSlVI7ALwVwG/U/Pl8pdRjSqmDSql3ZMEhADwFQKy1vt967e0AqNvl92X/DwDQWj8Ik3V8Ss32r1RK7VdK7T9x4sQ5+ESCIAiCIGwVphd7G70LgiAII8MwM4l/AOCDWuvDld/fC+AyAI8D8KMAngXg7dnfJgGcrbx+BsCU9feZAX/P0Vq/X2t9udb68vPOO8/7QwiCIAiCsPU4M9/f6F0QBGGbMT09jXe/269S7p3vfCcWFhbO8R4VDCVIVEpdBuBFAN5R/ZvW+pjW+h6tdaq1Pgjgv8NITAFgDsCOypAdAGYd/y4IgiAIgrAqkkkUBGHYjHKQGK3bO5d5PoCLATyilAJMBjBUSn2v1voHKq/VKILX+wFESqkna60PZL97BoC7s3/fnf0/AEAp9UQAnWycIAiCIAjCQAIFpBqYWZBMoiAIw+VNb3oTHnzwQVx22WX4sR/7MZx//vn4+7//eywvL+NnfuZn8Pu///uYn5/HFVdcgcOHDyNJErz5zW/GY489hqNHj+IFL3gB9u3bh2uvvfac79uwgsT3A/iE9f+/CRM0/ppS6gUAvg3gEQAXAXgbgM8BgNZ6Xin1aQBvVUr9XzCy1J8C8O+z9/kogBuVUj8M4FaYmsdPa60lkygIgiAIwqpMtCPMLseYXpQgURC2Nf/yJuDYnef2Pb/j6cBL39b457e97W246667cNttt+Hqq6/GVVddhZtvvhlaa/zkT/4krr/+epw4cQIXXnghPv/5zwMAZmZmsHPnTrz97W/Htddei3379p3bfc4YitxUa72QyUqPaa2PwchEl7TWJwA8E8ANAOazn3cC+L+t4a8FMAbgOICPA/g1rfXd2fveDeBXYYLF4zC1iK8dxmcSBEEQBGHzE4UKALDUTzZ4TwRB2M5cffXVuPrqq/HMZz4TP/ADP4B7770XBw4cwNOf/nR86Utfwhvf+EZ89atfxc6dO4eyP8PKJJbQWr/F+vfbURjV1L32NICfHvD3jwH42LncP0EQBEEQtgdZGQx6sbTAEIRtzYCM3zDQWuO3fuu38JrXvGbF32699VZ84QtfwO/8zu/ghS98IX73d3933fdnqH0SBUEQBEEQRonAxIhYliBREIQhMzU1hdlZUyX34he/GB/60IcwNzcHADhy5AiOHz+Oo0ePYnx8HK961avwhje8AbfeeuuKsevBhmQSBUEQBEEQRoFUm5+SSRQEYdjs3bsXz3ve8/C0pz0NL33pS/HKV74Sz33ucwEAk5OT+MhHPoIHHngAb3jDGxAEAVqtFt7znvcAAK688kq85CUvwYUXXripjWsEQRAEQRBGjn5igsNeIkGiIAjD52MfK1fNvf71ry/9/5Oe9CS8+MUvXjHuda97HV73utet236J3FQQBEEQhG1LHiRKJlEQBCFHgkRBEARBELYtcWL0plKTKAiCUCBBoiAIgiAI2xKtNeKsKFEyiYIgCAUSJAqCIAiCsC3pZ1lEAFiOpU+iIGxHtNarv2iT4/MZJUgUBEEQBGFb0rfMaiSTKAjbj263i1OnTm3pQFFrjVOnTqHb7bLGibupIAiCIAjbktjKJIq7qSBsPy666CIcPnwYJ06c2Ohd4bF0FujPA1OPc3p5t9vFRRddxNqEBImCIAiCIGxL+qlkEgVhO9NqtXDJJZds9G7wectO8/P3pgGl1mUTIjcVBEEQBGFbInJTQRA2Ncuz6/bWEiQKgiAIgrAtEbmpIAibmvn1k8lKkCgIgiAIwrakJ5lEQRA2I91d5ufCqXXbhASJgiAIgiBsSyiTGAUKyxIkCoKwWRjLgsT5k+u2CQkSBUEQBEHYllBN4ng7lEyiIAibh7Hd5ueCBImCIAiCIAjnFAoSJzuRZBIFQdg8UJAomURBEARBEIRzS5wauel4J0IvTlhjj04vYn45Xo/dEgRBGEzYNj/7i+u2CQkSBUEQBEHYllBN4ng7ZLub/vu3/Rt+4QM3rcduCYIgDCbNFrXipXXbhASJgiAIgiBsS1JtgsRu5FeTeMfhmXO9S4IgCKujKUhcXrdNSJAoCIIgCMK2JMnkpp1WgFQDaapXGVEeJwiCsCGkmdRdMomCIAiCIAjnliTLJHaiEADQT92yieKEKgjChkL3KskkCoIgCIIgnFtSK5MIFDWKq7HU55ncCIIg1LHUT3DVLYehNVOdMIRMYrRu7ywIgiAIgjDC5HLTiBkkMp1QBUEQ6nj3dQ/iXdccwHg7xMue/jj3gVKTKAiCIAiCsD6knnLT5b7ITQVBWDvLmSrh4Ml53kCpSRQEQRAEoY5/vesYzsz3Nno3NjXU9UIyiYIgbAT7JjsAgJNzzIxg6plJnH4EWDjt9FIJEgVBEARhk3F2qY9f/cgt+JW/vnmjd2VTkxvXZDWJfcdeiUuSSRQE4Rywa7wFADg5x1zw8+2T+M6nA+/8fqeXSpAoCIIgCJsMynjdeUT69K2F3Lgmk5vGjq0tlsW4RhCEc8jJWWZGkGoSEw81SW/W6WUSJAqCIAjCJiPOMl7Srq+gn6S4/zG3yQ+x0rjGMZMoLTAEQTgHUF00X24qNYmCIAiCIFToOQYz24m3f+l+/B/vuJ5lAFENEvvSAkMQhCFCt/JF7j3FtyaRgQSJgiAIgrDJcDVY2U7cc/QsAODgyTnnMVST2G2R3NTR3VQyiYIgnAPoHpRwZSG+NYkMJEgUBEEQhE2GazCzndgz0QYAnJ7vO4+RTKIgCBsJ1UW71kPnSJ9EQRAEQRCq9OJiQsFegd6i7B43QeL0gruRQ94nkTKJjjJe27gmleMvCIIndP/mZxKlJlEQBEEQhAp2JnFZevYBAHZnVvKnGb0jVxjXOE7U7BYYUh8qCIIv6VrlpkkPWCdliQSJgiAIgrDJsPv5LUvPPgBAKwv0zjAyiTQxo5pE1z6JdmAux18QBF+8M4naWhxMHCWnzGBSgkRBEARB2GTYtXOSyTLQJIuTSczlpnkLDLeJWi+WTK4gCGuHjGvYdeapdd9xlZym7vXagASJgiAIgrDpsDNePXHaBFDUBi4xMnt0GAu5qdtYW5bK2Z4gCIJN6l2TmADRmPl34hj8ub4uQ4JEQRAEQdhk2BkvyWQZKHBzlYwCdiaR5KZuEzV7QtcXp1lBEDyh25WXcU2LgkRH9QSZ3TgiQaIgCIIgbDJsian07DNQwMfJrObGNS3/TKL0rBQEwReSm6aa6ZSsE6A1bv7t2gZDgkRBEARB2NrYgckw5KZxkmKxN9oZSwr4lhiZVRrTDnl9EkuZRKkJFQTBEzswZNWXlzKJjjJSO0jUq9/rJEgUBEEQhE1Gf8iZxNd/4jZc+rv/uu7bWQu0Is+pEUy1hlJAm2lcYweJ7CbYgiAIGbFPkEiKB67c1A4mHbKKEiQKgiAIwiZj2MY1n7/zUQDAqTlHWdMGQCvynBrNJNUIlUIUKAC+clPJJAqC4EeqPVQhFOCxaxKtINFBoipBoiAIgiBsMvpDlpueP9UBANz/2Ny6b8uX2MfdVGsEgULElpsW23AdI9Rz6PQCrr33+EbvhiBsCLYqwfleTj0S2UGi3Vtx9TESJAqCsClZ7CV455fvF2dHYVtiZ7yGITd94nkTAIADx2fXfVu+FC0w3O8JaZZJbIVZJtExK1jKJIq76Zr4lb++Gf/5b77B+t6Gzen5Hv7y2gf4DpSCsApeQWKeScyMa3zkppJJFARhq/I3NzyEd375AP72hoc2elcEYejYk4lesv6T670TJpN4cs69Uf2woZpETtAcpxphoBAFQf7/LqTibnrOoMzvPY+e3eA9aeZPrr4Pf/zF+/Clex7b6F0Rthi23NTZBCutZBJjD7lpIkGiIAhbFDKaODq9tMF7IgjDJ/ZZfV7T9sw2RjnbQ/OrXpw6W8mnWZBImUTXSVos7qbnjEsftwMAcOfhmQ3ek2a6WR/Nh0/Nb/CeCFsNO5PovMBVDRJ9+iQ6BJYSJAqCsCnZN9kGAJxgGmn8fw+cxB/88z3rsUuCMDTiIbubUrZslNtgpB6TrUSbIFEphTBQ4m66AZyX1bsenV5kjbv67mO4+eDp9dilFVy4qwsAOMLcR0FYjZJxjeuCU16TSHJTx3lQYgWJkkkUBGGrQn3NTszygsRf/Kuv44NfOzjSGRFBWI3esPskZoHQ4ghfN3EpSHTbzyQFAmWyiFGgWJlEbvZRqKdwpeUdxys/fAuueN+N67FLKyD32yNnJEgUzi1rq0nk9km0axIlkygIwhaF6o9OMoPEnWMtAMDhITzse3GKV37gJtz6yJl135awvRh6JnETyE3tFXlXh1MjNzX/boUBqyaRJIhiZrI2fGpJhw2dF6fmeTW5n7rlMH77M3euxy4JWwR7jYlfk8g0rrHlpunqgaUEiYIgbEpoYnaSKTd93E4jGzp0ZuGc71OVgyfnccODp/DGq+5Y920J24t+kqLbMo/wYUyuqc3DKAeJiU8mURt3UwBQqhxoDiJONTotEySKcc3aSPJM4uieW3T+a8fzg/hv/3A7Pvb1R9Zjl4QtglefxGoLDAenUgAVuakEiYIgbFFoYsHtUZYHiafXP0ikDEXCnFgIwmr0E412GKAdBkORmyabQG6aeGYSg0xKGAbK2fAmSXUepPelBcaaiD3lpsOEMve+SeNRXlwRNhY/uWk1k+gqN43r/92ABImCIGxK6MbKlXrtHjeGN4/OrL8rKu2a68RTEFzpJylaYYB2NJwgkSbJXOOaWx4+jW+fmFuPXVqBfZ25TsrJuAYAQqWcg4A4TdGVTOI5Ia9J9AykuNk9H/qezxuCq3gZJp++9TAuftPnMb+8etAgnHvsxa2+6/lFQWLUzd7E8fyyJaYSJAqCsFUhiQa3kTWtWg/jgUiTd8kkCueaONFohQE6UTAUmV4hN+Vdby9/z4340T/9ynrs0gpinyAxteWmyvlaTVOgk7XhEeOatUH3cN9M4jCy27RI4uw+mUELEMeZtfPD5P3XfxsA8JC099gQ0lQX95L1Nq6xXydyU0EQtio0IeQu7CZ5kLj+EwuavIsaTTjX9NM06+8XDCVIoetmlGVzdibRVYaealtu6p6VKmUSmTehmQXHCd02gU7fZeYCBDE9hONJ3zE3a7973BilcV24fZhZ7OMFf3Id7j7K6zdJZm5yXm4MiRUkOi96U01i1AFUwDCuse7fkkkUBGGr4ivhpAn1Qm/9M4m0Mi7uh8K5hprAR6F7b7+1QHV3m6Um0TVwtjOJgVLO16pdkxgzgvTbD03jGW+9Gp+/41HnMVudJM8kup9bdjA/s7j+wQ2dT9wgcVdW3jCMTOI3Dp7GwZPz+JMv3scaRyUY00M4jsJKUq3zBaee672cArwgAsK2u3FNSW4qmURBELYovoFXLjcdQlPwZZGbCutEolFkEoewCEGBKCdIHHYtbpLqvH+qqywwSZFnEgNWTaJGJ2uBwTHPuvfYWQDAtfcddx6z1aHDx5Gb2vf/YQSJdP5zpd0TbXOODKO8YaobAQBml3jb2pVlO08z23sI54Yk1ei0uHLT7HUqBMKOp9xUMomCIGxRfJMnvjWJj5xawPGzPLMbWnUehrGCsL1ItUaggFaoWJksX2gbHLnp0pBbGpgVeV6dYKqLPolB4B7YJqlGFCiEgWLVRbczWdkwzIY2C4lHTaIdmA+zTyj3e6MFCF8pLYdWdm5xg8Qdmdx0lM11tjKJRt5z1flekmcSQyBsefZJlCBREIQtSmLdTDlZRZrscoPEH/nja/GD/+sa1hiRmwrrRZpqBEohCoZTkxjnNYmpcyA1jLpfmzgpZFs+clPjbsoIEkOFKODJfVuhn9nNLQ+fxus+/s0t6ZScZ+kYCxB2ptjXFZUDBaVc45rcuXUICyb0nJld8susSpC4MaR2JtH1XkI1iUFo5KbO7qZ2kChyU0EQtij2s5qzukuT3YUhyE17EiQK60SS1SS2QsWSOx6fXcJv/sPt7FYWJedQxwkvdxtrxa7t8TGuCZRyViiY4x9kxkHuxz/KtsXNSL3mw7fgn24/uiUn8hSYczKC9vHjBm4+0OJiP9GsQL2f8D+bL7TwwM0k0riZRWmBsREkJek6N5MYAWHk1ydR3E0FQdiq2Cv+rCBxqMY1mbupxIjCOcbITRWiMGDJHd/xpQO46pbD+OxtR1jbsycvrtfbQn+4k85Sg3sf45rAPZMYpxqhgjEOYhz/nmdGigxQTm3BurE45QdSPucjMbccs0sA7EUSzncXe5jy+JJnEpkqGcrk9oYsDxcMiS6k6+5BYvZdqdAEiqnjdyfupoIgbAdsiddy4v5wW2sLDE5NFtWhSCZRONeUMomx+/k1lmXa5pjZhiTVGM9MOJyDxCFnEhONIpPouI9xdhwBIFC8msQwCDK5r/vxp2PHzSztGhteK4Vh4yPJ9A0Spxd6eNrvfRHvuuYB9x1E5XnjoVwZRk2ir8uxb72lcG5IrXu583dIwV4QmUBRuwaJUpMoCMI2IPHMJPYtl0af4O3RGXfzGlpxFndT4VyTaJP5Mu6m7uf/JDkgemQbKEh0nSTbctNhmDel6epy05mFfqkeOS0FicyaxHxix5dJsvvtTZhMIjdIvPngadz07VOsMcOGAql+op3vyXaQyAna5rLv/sM3PczYw7KhCE+5Mny5KX+c3z7e8vAZfO3ASa9tCgWJzoLEIHDPUuc1iYF/JlHkpoIgbFXsFX/OQ9uehPhITh9jOJzS6vFWNJsQNhatM7kj0zhlqmOCRG4msZ+mGG+bsa6TUTuTOJS6sdTuN7Zye8txgme89Wr8n3/zjfx3NEEDqE+i+7bCMOtTybi+SdLn25Sd22/vivfdiJ9//02sMcPGvie7ZhN7sd/9n9YATs/zjqO96MCSmybDl5v6juMGiS9/zw141Qe/7rVNoYBMyFpRwMgkZvdvFRrzGtcgUYvcVBCEbUApk8h4aNtZFx9jDc6YXiaDjVP3FXJBcCGhiUXIczfNyu8wt+zugJimGlqjkJs6B4nFJGSpt/5BYppqdKPmmsQv3fMYAODrB0+XxgTkbhoo54xnkqYIPdxle7kBCu94kCvq8VleG57NQClIdJRlluSmnPt/9lru7dg3k9j3DMB88O2XSsdE5KYbA0neI5+axCACVMCUmyrr34ORIFEQhE1Jcg4yiT7ZDU4zcXvCM4yVZGH7kKS6kJsyzmOarM4x5Ka0sDLGrEm0F1SG0TMx0UVbirpjctZyb6TG4eVMors03J7YcRaAcrkp895Dn4ebAd4M+NyTfeWmnKxveXtre95waxJnFvus+ncAJdkzR71SSGLlGbURFPXljPpmuwUGV24aROY/kZsKgrBV8Q0S40R729ADPOOaci8vWaUVzh2pNq6cfLkj3yafJpETTLmpvaAyjHYYaSm7uvKY2L1V7zl6Nvsd8kyicTd131YUGHdZH+MaV2MdYpi1bcPGDsxdzy373sqrSfc7fnHit+DX95SbPuP3r8YV77uRNWbtDqx+x2YY9cZbGbqXm3ZGHpnEIHTKCppxcTamJX0SBUHYungHiWmaZ0RcJ3f2Q9A3kziMTIqwfbBXnzk1iTR55ARtNPkcYxrX2Nfo0DKJmZlM3T3Bvt7vPjoDwDRip7YZgVLOGRiqSWwxW2Ask9yUmdGi13OzS5sBe+HO9Z7cL7mNMs5laxwnuIlTv8XFtQT3dxyeYb2+5MDKWJSk69tXbroVFy6GSele7novyVtgBEx308QElWHLKfsoQaIgCJuSUh0Ly0igcGl0XbWzJyRLjIevPXnhjBOE1SjcTRUra5BnsjzMN7gtMOxrdBiZxDgxEtx2VC/Bpf2Z6ka451GTSVzqJ3lbkJDpbhoq09vMR27KzWhR5nHJc0I+yvVmqS4Mh1ydYu1MLHeRkOD1ZeS3gLG3N4zjX/5s/MDZN9ibZzolC2XS7F4ehUHJkGnwoOyYk3TUNbjUWZAYhCI3FQRh6+LbAiNOde7S6Dq5th++nJX8cnC59TIAwsZRuJsGrBYMNHnsMbKPlGko3E0dAynPa9SXQrZVHyTS5/j+i3bi3kdnARhlAAUoSrk7RFJmybcmkS03JUmg533Ex8l5WBhXWjMd9alJ9GmBBPDuyXGSYiJzBmYtSg7RuMa3l2MuifU8tzj1zcJKzIIT0OaoEko1iUGz3HTuBHD7JwtbX5GbCoKwHfBtgREnKbvhtu/EoiS3kyBROIeQu2nEacAMv0xW3zOTaF+jw5gkk2wrCtXAmsQnnTeJQ2cWoLXGUr+Qnxt309W3Q58rDAIEilcTSseSU8dov943kzg/hEyuL2mq0Ykok+h2XEo1iUwlCcFRd5jFRX4mnc6nYZjCeGcSSW7qWa/JqW8WVkImZBHHhMzOJA6Sm978fuAzVwI3vTsbl5jXhy1xNxUEYfTRWuNPr74Pdx3h1V/41iT27Ye9aybReh1r9Tn1m5AI24s/+eJ9+B//fA9rDE0s2iGjATP8gsQkzyTyZNqx5zXqS6oLx9e6Y0L78117xrHQS3B6vmcyiVFRk+jibkrvE2V9EjlOkra7Ka8mbm3ZnlGWBMapRqfV3LqkDgqax1ohq/6u760KSTFJmUTnxUU/aauvEYxvWQSdz/3Er1XTKJ9bm4GScY2z3JRqEsndtOE76M2Zn49kJkh5JjEEEgkSBUEYcZbjFH/+bw/gP72X5+SWpBqtMDMSYE541zLZ5RjX2PVNYlwjNPEX1z6Av/raQZzJ2jK44O1uSpksD4ketwXGRmQSoyxwrvt8JvsKPH7POADg2yfnAQDd7HMZd9PVjyVNpAOl2JlE+17FykDGfNmiHWyM8kTe9LfkmYnRvXuiE3lnElmtMxKrTMFxnP39cgJZ3566vu2dYk/pLiFy07VRaoHBNa6h+sImE5o50xsWi9PFuCAUuakgCJsDWs3lSl0Sy+zA9cGmtVkpHcvH8SYkAH+FtpNlKXwzAML24dZHzji/NpdWBkEma3OU6eWZLPeJKE0+qQWGa01WqSYxGYbczm6BUZ9JjIIAF+0eAwA8cNysslOAEii3/nKU1aOaRFezG6B8r2JJfj0yiXaQMr88uvefONWW4zTPFGm8HbLLDQieKiTFRIf3vKFtTbRDLMeJ8zXq28ux1KaD85zydIolJEhcG7YCwvmeUO2TqBvGzR03PxdOF+PI3VSMawRBGHU4mTmbcrDHW9nlTkjshygrk5jq3OxA5KZCE1mbPtY5Qo547Yhkem4Ty+U1yE3JXMQ1Czl0uWm+Il+f3TZb/koAACAASURBVIuTFGGg8LidJkh8iDKJJXdTl+2Yn2Fg3E05NaF29spZWobiHsSpSbSP+ShP5BPLuMbVuMM3SLRbj3BNyMbyTKLbuNzwqRMh1e7BX6m/LqcnY+oX7NnZK86CKyH19muDnJJbnPryUk3iIOMayiSeKcbljqjSAkMQhBGHrPG5dRip9qkt9KutKtWWeK4+y4NUaIL6r3Emdmnubkr95dzOZZ+aRMqU5Zl7x7FDl5vqQrZVN9mNU40oVNg11kKggCPTiwCAsbaZCinl5lRKk+oo9G+BAfDUEz4OlH3PrJkvWmvcd2yWPS7RhdzUVd1RLFyEzHYP1jFhnJNpqjHOPP/pecOtZbQDBU4GOPG83nwkuL01SlSFgsJwi1FfXqpJHCA3na0JEvM6RskkCoIw4vhmEuOkkJu6TpxolXqsxast8TUESFNLoicPUqGBKMgkyYxzpHA3zTIwTFdIn0wiN3OfpEWWdDjGNWZ7g/okRoFCECjsHm/jaBYkUoASBnCSjtLCVrcVGrkvR25q7ZePw6xvJtH3PsvhM988ghe/83pce+9x5zFUApD3SXTMJNL3NNYKvdo9AHwTMlKguEo5i7pJ5nPK2sc5hnOor1FOkupckeAacNvnljzb1kaqTX1zOwwYmUSSm2ZZwTp30zQBlmeAqAvEi0B/MatJjERuKgjC5oAe1Ipmk46k2kyS21HgXCPlm0m0Jy6cyZbJJJLcVDKJQj2UDeScI2lKdSxZJtFxcl1kEt3rGCkIakUBAuV+3aS6kIQPYyKpS30Sa+SmqUaYBeR7Jto4Or0EwDKuUW71hTSR7rZCBMxMov1aTpBIUsUk1c59Me1jvjiEFhgHshrPex496zyGDgfX3dSWQPOCbc92RtrUlyvF6a9bqeV1XZS0a0kZ/S1LGcF1d271M8kRVmIyieY54FWTqMJ6uWmSGaFNfYf5uThdMa4Rd1NBEEacxZ65KXLlpiTR6DRIy+qo1iS6mnfQA7EVKubEoghIpSbR8PCpeQmYK4QhyU0Zq/9WQATw5aZmjNv5n/cFVM1SzjriNC2Mm4bkbhoo1TjZShKdB+S7J9o4djYLEsm4xjHgo3vWWCtExAwS7Yk8K0i0gxsPSeAwMom0IMA1hAEKKbPrOZlYEmiO0YuvuQvVu7YZ5z/15eTLTf2ydLGv3NRy/HaWm9qyackkrolE230SGTWJKjDSiSAsCqVLb5wFiZMXmJ+LpwvjmqAhsKwgQaIgCBuKt9yUHtoRb9IKFJMZd+Makg1FvCAxTdEKA7TDQFpgwEy0/sMfX4fXfPiWjd6VkSKvSWTZ5Jughsa6ypRKxinMrA1db64TySQFojBgXaNrgcx8muoE6Z4BAHsn2vnvx6xMosta1VKeSQxMb0VmJrGQ4PrJVF3vQcOuSSTzGU7Wkua2RQsMXr1rJ2JI9FANpHiZRO75TxP+8TxIdP3e/DKCcZJighnsme2leZDoLFuXIPGckWbGNa5ydzMoMRlEoDngIzlpHiSeKYxrRlVuqpR6slJqSSn1Eet3r1RKPayUmldKfVYptcf62x6l1Geyvz2slHpl5f0axwqCMPr4Bomp9ggSK/3euC6NE21eT64kNRPrTiuQ7BmKie5X7j+xwXsyWtC8gG1cE4CdSbRf5xwk6qIvYLvBpn16oZe3lMj3MZv8dMLAy1qfg873McsI1ky2kjRFlGVt91hBIgU3oYJTfSEFQV6ZxDRlL1IBJgDgZmV7Q5ab5plEjpFMnknk1dbSoetEIdMAiF9frrWGzurGOpG7uUhhXMN14fYzN4pTzQ5IgbJTuLMiQYxrzhm0ABFyFpx0VlsImGCxriZxRSbxjGVcM7py078E8A36H6XU9wF4H4BfAnABgAUA7668vpf97RcBvCcb4zJWEIQRZ4ncTZnjyDa6zXho0ypdO+TVltgGBJwHYpKmCJVCtxWK3BRicNAELUJwjk+ayU0p6HGV3PnUEtktH5oWZa78u1vword/pfQ3mvx0WuufSaSPHygz2arrd2hnEi/ZN5H/vuiT6FaTSAtbVJPIkjt6TMgBE3BMMuubh21c08k+F8lxXbBdSgFOdjvNthk412gCfn0S7Ux6JwqdM/5Jbq7j727K6ndoyUa57VW4x9/XpVcoYy9ABEH9fasWqi0EmttZ1AaJqdUCY8SCRKXUzwOYBnCN9etfBPBPWuvrtdZzAN4M4GeVUlNKqQkALwfwZq31nNb6awD+ESYoHDh2WJ9JEIS14Z1JzLJ0vBqR4mHfYthNF4Y3ETNI1AhDhW4rYMmGtiqbZcX50OkFPP0tX1yRGVsv6LzkSZk1VBYQ2e+xGmlmwAG4139RZsPYtNcHRd8+aY7VNx85U9rHIDCLMuu9QJBamcSwIZMYJxqtzLjmPz3r8ZjqRHjy+ZO4aLfpm2gmaatva8kKEqPALbC094HbSoReO9nNgg3HwGHYQSKdi5xM4ooenIyaRLqPO9dxoTCFiQLlvJ90LuWLJEyZ9rinKyrAbWWRoh3yzKUAY3pVmLm5LjZJJvFcYM9JQlV/36qlFCQ2tMDI5abnm5+53DQEwmi05KZKqR0A3grgNyp/+j4At9P/aK0fhMkcPiX7L9Za32+9/vZszGpjBUHYBPjXJKZsuWk+kcwMb1xXW/0ziZncLgqlJhH+9v/D5ot3H8PsUoyPfv3hoWwv74HH7NsWZu0cAPcgMU5Sttw61ZWJTM22Ln+CqfT4xkOn89+ZlhMBOi3edeMD7aNSymQEazZnZxJ3jrdw3Ruejy+8/ofzNiKBGlwTdHR6EX/wz/fkjenH2iHCQLEyWYmd7WHW0o0x20T41DGuBZrgLjGkrf6ZROSZdK5sNwp46g463CS37rkGlxWjNFcJqG/dZD/RiMLAGKC4thJJTSYrb0EictOhYi9AhA0LcLWQbBRolpvGy+bn2C4jL12wjWtaI9cn8Q8AfFBrfbjy+0kAM5XfzQCYyv5W9VKmv602toRS6kql1H6l1P4TJ6QeRhBGBaqV0ZrncJpkJhW8lV3zM1QKrYZeanXQ6jO7JlHrbEISiNwU5cnELKP/17CZyjI2w9pHmkyy3U2DIpPoms1KUs02CbGvm6Z6P5oIn5zrlfYxUGBl+32hXQoyA4i6QNauSQSAvZOdvKYTQKPhDfHaj96KD37tIG552GRLu1Gw6pgqdr891yCdeglyW/fQMVdqODWJeUacaQgDFCUArkFKqk2WuhUEbLlvFJrWMa7bKibyYC1KJvlzg2cmY58X3PKGKFBoBcq5tjN3/GZmt0t9Ekd4wW/UsRcgmmTyOUduBW77uPm3XZPYmEnM7sVhBxjfUzauGSW5qVLqMgAvAvCOmj/PAdhR+d0OALOr/G21sSW01u/XWl+utb78vPPO430AQRDWDXuFm51JUTwpWyHtMO0sfNxN+4l2rhtIEmNt3Y3CdTfu2AyU2y+M7sRistMCAMwurb7Sula01kVNIqtPIgVEzEyiFaRwZXNBgIH1fgBwZsEKEhPbEZJ3/p+YXWYtGjnJTa1MYh1KKQw6jLcdmgZgMoqACYyjhm01kaQpO2tGGccJZisF+t6mOtFQ5Ka0PU5ASsFMECi0gsC5LRGpNFphgCR1vyf3kxStwGTbONsCkPfl5dbAj7eZ7qZraGURhbwFUNrHDlPuW5LEygKoN/YCRNN9K+cDLwA++6vm3yQbBVZ3Nw1bwNjuirtpBCQjEiQCeD6AiwE8opQ6BuA3AbxcKXUrgLsBPINeqJR6IoAOgPuz/yKl1JOt93pGNgarjBUEAcCdh2fYPQiHiT154fXXMo2xfVZ2wyDg9XuruKI6T67zTKIY1wCbxzad4ohhZBLtua1r/zuAMonI2yk4q5S0ZvekK8lNm9pLZNfEmYUisDaZRJ4jJGBqQp/9P7+M91//becxtnFN0BDIGvlrc5AYDjCuse+hD59aAGAMb1x7KxK2bNS9Kbt53Rjze6PAfbITse8/X7rnMRyfXWKNKWpreQZMAPXgZGT3UuotZ75PV3llnJhAqsmlt3YfS8Y1/OfNGLMmsdwnkRdwR4FCFLjXadI+diKe3NSupRPjGn+SpFiAoBY8qy54mBetLjfNM4ltK0hMTX/FEZObvh/AkwBclv33XgCfB/BiAB8F8BNKqR/OjGreCuDTWutZrfU8gE8DeKtSakIp9TwAPwXgw9n7No4d0ucShJHmhgdO4if+4mv42xse2uhdaaRsyc/IHKRmksx6aNuyoTBwlskULTD4GZggl5tKJrGXJNa/R3diQSv5wwgS7foyTiaRMimUGXOVm5oghdc2I58QUgDWkKUDTCsMIs0yG9w+iYfOmCDs2vuOO48pahL9M4mDahKnreD30ZkltKMg71PJChIT7R3s+daSTnZ5/V37SYpX/91+/ML7b3IeA/gZMNGhC/Nm4u6fzRjXZEEiw4QpCgNPuSmzT2jubsqUm9oOxMyFo4AbbGu/mlA6J8dboXONprAS+9yiBaxVlQn9hUomMQJ0ihVNXmuDRKtP4qjITbXWC1rrY/QfjEx0SWt9Qmt9N4BfhQn4jsPUE77WGv5aAGPZ3z4O4NeyMXAYKwjbmqMzZiX4jsPV0t3RwW4o7WrIAJSbG7Nlc5nhQeK82lpeyeesJEeBQqcVSpAIv0buGwFNwochN7UDDNdJpM4DIp67adWkghtsDGxUn32fp+fLNYnUpoblbuohfEita3twJrF52jMoK3h8drn0/3QvCDKJqqtaI7FrEpmZLG7rjNiSqXLkpvT+D56Ydx4DFOcgp0aQxihlen72HcfG2b2Vakpdg6J+otHKA1LHTLotN2UoUGjcONu4xs/dVFuOr67fAT0D2e6y1sLFKKtCRh06jtFqJmR2zeHybGFAAxQ/q3WJJblpVpNItYyBm9w0Yn2ac4TW+i2V//8YgI81vPY0gJ8e8F6NYwVhu9NmNl/eCEqZREZvpzSTm4bKPWizZXOuPdEA+4FobpnuTZHNym43ErkpsHnkpjRJOzuUTCI/SLSlXjSxcKnJ8jWpKGUSA4W6eWSRSeyXxgVMiZ4vhdy0CNxW7GOSIuw0T3tI7lVHVXo5s2g+Z2RN7GxTnCbiNGUHiXRsua0zKCMx2Ylw5Myi0xiAdx+u2x4ns2rfk1uhcl+4yO6t5EzrnElMKJPIWFystsBYd7mpX01ikmp0IrMAyv1s3pnEdjjSqpBRp7oAZ/+uxOyx4t9LZ4uMIGDko0AmObXub6VM4i7jbjp1QeZuGo2U3FQQhDXywj+9Du+65gBrTCcPEkc3i2WvmrrWlZhxmXGNT03iANlc07aAYkWYs5JM7qaj/B0Mi81iXEOGFq4T1rVgZ7Nd5aYl23RXiRKKyUeX2YKh3MurPiClie3ccpx/zySJbUchLyPi/MqCct1kfaASpzqXJ9YxyKn0+FmTSXzXLzwTAPLG9hSku2Ru0lQj1cjdZbkZKTIX4d7vuq2Qdb35TvppeyyXauuezMqAZdLhVkByU8dMIkmgmfWP9j46t5cgU5goRKA4clNPCbouDICcXWLpHIm4EnTzuu4Q2ttsZexza6AqZO6x4t/LsyZrqCy5KbBSPmoHieN7gHgRWJ4bPbmpIAhr58ET83j7l3ieTO1w9DOJJbkpoyaRshQst7ncpbFZNte0LYCfgaEaKDGuMdjHbZTPSQoOOa6VvvhkEm3b9IAhN61mErkOiIOuG/t304u9/Hdcsw/AL0gp9UlsqEmk/WlCDahJJLnpC7/nfNzwph/FVb/2XADlTOJqFFmbTCLpev/R1e+Nd98yQaL7uey7gEPb41w39rnFzYAFypabussrI7bcFPk+NvXgrN1W9jpzDbg7XNvnBeda0NosnLYi9xYYeQuSiFknm1iZxBG+l486SWVOAqD+/Fo8U/x7ecYEiXYLDGB1uSkALJzMjGuyFhirXKsSJArCFoYewCM9IfdssJ7qwgLdNeNjZ2CaZHODxo1xM4lajGuI47NLeOT0Qv7/nEnrsKHsNkc250viMSG0DZgo5nGZl6+sP3LNGpiflIGvCwLs7MqZeTM5IXMRbk0iyfIUVpdvEqU+iQPadAyqSRzkbnpybhljrRATnQgX7hrD93yH6b7FyeRWG8e7Zntyd2V2w/kiS8QJNtYcJHLkptaCRxS414mnWcBPEl9+cMmXZJo2Be6fzx7XablfA3RejLVCVnuJhCS4Ab9OP8qMU7jn1ng7kiBxDdjuvmGuSqg5nqUgkWoSs3sZBYtVh9OqcQ0RRMbdFFg1m7ghNYmCIAwHmogPK0j85DceQT/ReNVznuA8piQ35TSqz2RDYcOktWkMQBNJtzouoJhcjzObItvmCnGq83qY7ciL33F9qT3CKE8s6LpxlSOvBbu9AXeCxu2TWM1IcV2Bg6yXV924JNW59Jt6JcapRrelsl6m7osk9FrlHiM69UlcLZPYVMsIAGfme9gz0V7x+/z4OwQ3lCGiMgDXTGIuE/YMEsfaoXNACvhfm7Q9zgJQecGDUSeusxpByiS6SkDTwtxlftmt5rh6vbk+b2zDmxYjc1n0xeTJtFOSm4bumUQ7S9piuMvaC6dSk+hPXX157fllB4krahKbMokVuSlBfRKBItvYwPacrQjCJsO3zyE9OIc1IX/jp+7E73z2LtYY2ySBNbnIVk2b5G9aa9x88HTp2Ln0e6vdlsfkmpwkA6XyzA2nD95Www4QgRGvSbRq6tabYkU+dM6Ia11MPnO5qcM9wrffXt4nbsAkOU40zpvsACjaYJC5SKfFk5v6LGoVxjVFv7HqfTNO04F9Ege5m55e6GHv5Mog0dm2HkWGqBUGCBRDIukpd7eDy1S7n8/eNYmagkTeYh9gudIyArBAIV9048grw4AXtK0wPGOWKVB7g8S1l2P2uolOxFpcoWNiFiX5WdJWqNhS5vE2L5AVypSk/MpVblqtScxCuYFyUzuTGDbXMVaQIFEQNgH2M8n1AQUUN/JRNk3pJWmxss6ZXGQP+yCon1h8+tYjuOJ9N+Ifbz9ajHGQzdVuK3v45sYRDvtJ7x1lNYkAz4RgK1EntR3lIJEmWKle//20nSvZbqOlOhaG3NHTXTMKgsZJcpym2DdlgkRaEEh01gImNFI718UuryAx2yfqkwisDIqSZPU+iUD9otzp+R52j68MEgfa1lfIj2OY1cS5TuQ9jWuqmUtncxdPKXiRSeTV0QHFuez6eDMBf8CXm6aF3NSnTygnk5hYizlhoJwzx3kmsR3x3E01SXCD3Hxr1THZORgGASuTaEugOV4CQhl7TjJwwWnhNNAaB6CApWkgXgYic791k5tWMomOclMJEgVhE2CvCp5l9G7L5aYjbJoSp2ku43TtkQUU0rGo4eF7Ys4YTdxp9YgsisTNpMR10koGNO3QPZNoF6STm+F2zSQePrOw4nejvPpsT5LXez9tSWA/0U7nZGKvPrMyWVSj5tenj66bpkb1lEkkuWmSIjeXMttzDBI9FlNKNYkNxyROB7epGOQueHq+h701clOWcY0VbLcCvrlIKwwQetSNcWWqa61JdD2P7TEmk8io96Nzi5lJTK1MIru/LilQuBn4PJPIG8fN0qVUbxlwnFvNz9xd1ssUaXTv5aNOseBnLTjVfQeLZ4DxfUB3pwkYe3NAe9L8LZebVt1NKZNYlZuGIjcVhK2EfeOuyvYGjzM375GekMca41n/QU7LAbLXb5KW7R43K2VnKn3bgCIjwnloh9ZklxMkRoFCK8oK0rfpw/S+Y3MrfjfKEwv7+11vwyHbJRBwC6RSa2LHcTeljHtuwOTRJ85cNytfEycak50Q3VaAM/MUJKYIlXF25GzPT25aBLJBg2yLFnuayHtO1hzK0/M97K4JEn3cZSNPd2WqwfNxNwXcg3Tf1i9rMWEKVLMqpA4T7BVBOqedBTcgKpmLcBQoFaM0tpstN0hMC8dXbrAXBibD7dO7M041S+EkFKSlbLP5XWNN4vhuE+wtngZ680B7wvyt0d20B0CZv7fGgKhrfq9EbioIWwr74cKZtFJmrjfCctN+UjSXdq2jAIpMYpO0jAJPqo8CKiYJDHdTckXMg8Rk5fH8i387gN/69B24+eDpyrYUwoBpVJFqPHB8ZWC1WbnuvuPY0S37pI2ycY19HnImaV89cAKv/8Q3WduqTuQ5UuYwKKSVLvPWYmKXZfYcm6bb2Z6m2ipjJBVg93i7kJtWFldcM4R0zDnGQS6TrThJB7qb5sFlZdxSP8FCL6k1rqHMpMu1TRmCoiaOL3dshfXGQYPGceWm9jno0/PQbMv1Xmd+hllNlrNxTRbsUU0iJysYBp5yU2Zwn1avG+eg1PzstkJWVj3VyB1f2e1tlFmAcD+OabaP2bnFeHYLBSXjmkELTr05oD1lZKML1SCR5KaV7yDpmSwiOYCR5LQkN5VMoiBseuybBmfSSquro9xuoJekrCwKQe0lmqVl5rOftoJE+6HNcjfNahIHZRL/5Or78fGbD+GK992IfpKWJoQcSRoA/OW1D+BFb/8K7j121un1o843HjqN5z5pb+l3o5xJtIMnzqLML33wZnzutqOsjDGdp/k14GiKBBQSPYAnd+TKFlOHSXI/MaYwO7otzC5RCwyUM/CumcTsmHMWEkp9EhuCvSTVA41rKLisjiP5bL27aZC/92rQd21qEhlyUzuTGPGCS/u+5VOTyHre2EEio00QULibOgdg2f2fKzfNyxQYQbptLsLJdpaDy4C1SBgoE9xzTISSVENlxjXceldauHA9jnYmEeD1OBYK6koHas+veAmI2sD4XiuTSHJTunHVyE1D657VGjM/o7YxswGARDKJgrDpsSednJVFegAMw8rflzjR7P5fQDHha5KW0UR/ukZuynY3zbIkrSxrsFowe9O3T1UyiSSJctve/oeNk9mjM0tOrx915pYT7J3s4KcuuzD/3ShnEvul642/nwse1yjHudJe/We5myaWBJqTSbHkdkGDuQi1pJnsRpjLWgvEaZo1EqdMIk9uypkg0z4FypabVoLELLBoomkl/9ScCRLrjGsG1TFWia37T8QJGnR5Is9pXRIFQR5IubdgKN5/scdz16x7j9X2EciC+6DB2bFuXJ5JpHuy6/aKWkZ32a75mctNnWWjxbiIE1za/UUZ95+idzC/3jVgZiATK5AFRnvRb5SxnaOjQfOEuGfkouN7gPlTWWaxkkmsk5uGloJn/qT5ufe7RW4qCFsJezLBWdmlh+AIx4joW5lE1web1tr0hBrgCEYrqTOLVpBYmVy7PrTjrNYjbMhQAMDFe8fxI085DwBwx+GZFfbngHsmMWdI35tp17F+G1vqJxhrhXjnz12Gg3/4MgBwdt9bK4fPLLAmukDZQInjDEyqnoVl9zFxNUhk1Lty3U2LYCNgGXcUxjUmA9+cSQww2YkwtxRn4zIZGzeTmB1z7gQZKDelru5nqgf3XiwykOXfUyaxrgUGp0+lHaRHoXKW18drkKkGAdiBlP06TqBuP6e45xZ9b5wsHfUEBNxNz9JUI1TwkpsGWZlCqt1kuFXDJ86iQJDV8nKNa9hZ0pKUOXA+jlSCwZX7CmXq5Ka110CyXLiUnj0MQAOdLJMYNBjX2L0UAWA5M/E7/3utIFHkpoKw6Vmr3NS10J745zuO4rl/eI230QqrcXOS5vWDPi0AmhzBSO5kZ15dZHP120tzswl7+6XtJRr7Jts4f6qDgyfnV9imA7yay2HyxN/+Al79d7esy3trrbGYBYlKKSiqfRlSJvGH/ve1+JW/vpk1pl8yrnHfT1pEWOi5NekGyu6mgNtEPq2RKLn1SSyClDazcTZtp6mXIGX2J7sRZrNMopH2oTCucfzOKTjkmXaYn0o1N6XW2eS7CUoyVgPu0/MDMoke7qZhEBhXZm62R5HclKGAyBYEAEZNonXcfSS/Zlt8SSanLVGRNeO1T1qL3DQsLRQ6bMvKAHP6JOb9RaOA5SeQpOb8bwX8fod5nSaj3tUYKbmpa7YD/STFc/7XNfjCnY86j6m2SQEa7iXU8mLc6ndImURyN622wKgGia3s9XueaMlNJUgUzhHfevQs2+lvqZ/g7/cfWtcsxXbAfpj5GNckzEzR737ubjw6s8RyUrVhrT4nujCu8XBbJEf7Ort7oNx2ouo2594nsZy1qbuJx2mKVhDg4r0TePjUPMqZRPe6pY3iy996bF3et59oJGnxHQO8Vfy1QOf81zMzIVdKclPGJI2CkwVG5nJFJtHFuKbG3dStT2Ka72crDBjGNUUA3GQu0k81wlBhysokmuCyMHxyPZYUHLIaieeTrWJfq3NyrYtAsI6mmiAKEge2wHAK0ouaRE5GkD4HjeP1BISH3NRzUdJDblrIhHmN6qmdScQMgPM2EZnc1KnlTGlxsfw7m8NnFvCK99yAB0/MlV6T90lkyFvDQKHTCljHX5PjaxiwgmaAn6WOE53J1vk9jrcqZxf7OHZ2Cb/9mTudx9jGTU2LWwBMkBi2gZ3fVfyuXckkVo1rdFoEkADw6muAV3zIBIjSJ3HzsBwnePuX7mdLoobJ3HKMl/7ZV/Hrn7iNNe7PrjmA/37VHfji3eszAd0u+GYS7ZVLzkofTVg5Aan9sOXIxPpJionc3ZS/+tkUuNFEyg6Qy8Y1ylmGm2S1VQODxMRMWp6wdxwPnVqoZDvB+nz5e45wUOkK3dfI4AAAy3xjLfgev36q88DGL5PIWf2vGtes3GetNQ48Npufx7ZtfRHYrL6tUk1ixHNApHO4KQOfpBotkptWMokUpLjeu3K5KWuCbH4OcjdNtYZCc5SoGuo7z8z3EChg51hrxZh8YueQJbLb4nCUDBRcGgdKnkwyCoO1yU2ZLRi44+zWJWFDvWvTtuxyA86zw86AObnSljL3zQt+f/gv92L/w2fwtzc8lO8jUDiOskx5FNAJTZDo3HOyEgC7jin20V1umqQpwlCxs9TbAc68yXaqF4ndvAAAIABJREFUHliWkiybmsS93138Ls8kknFN5TtIkyKABIDzLwWe9nLz7yaJagUJEkeAq245jHddcwB//m8HNnpXGqFVomvvO84aR/2yaCVW8KNck8jIUlgPCk52j2ytZ5fcZXM+9Shaa8Spxpiv3NSSllVX/+Oa1fCytKn+Znzw5Dw+d9uR8ntVTHLqVvr6SYpWGOBxu8ZwYnY5f2iuJZM4DEnmemf5F7MH5ljLziQOR27qO3HpxymmOuac5FxvFLDNM+SmeYP7vHfhyu296VN34sfecT2uu+8EgKpxjXmNk9yxaoDC7C0HoNbdUWudT76nui0s9BIkqc7HdVru/UWB4l7iU5NY7pNY2U+4ZRKrl8Sp+R52j7drTW+Kid3q+1gyrmFMyNdiXBMo/kTetybRq0+ifS9vuCfXjssk0JxMOo0LAl4GMneqXqWX3R2HpwEY4zLA+r4V0900+2wdhroAoMxxJhtlupuyHb+1zg2wAKDnqErYytCx5CwsVheu7fcpEfeM3HTvE4vfVYPEWrlpiFpEbrp5oMnT0enFDd6TZmhVitvkmGu9LdRTCnhYWTr+yi5Q1EdRRsBtW5ZEz3Efaf/GmDba9PwzRhr1N1Z7f/LMRvYSCi7rbsav+quv4/WfuK20GkgP7UEmIfkkOQsuzmZtAErupswgkROg+OKbbZtfjnHF+27Etx4d3KYjDxLbxeOmHQ0pSPScuPSTFJNZX0fO9UYxBEcVssLdtGafb88mn7dkrrd0bnZbYeMiyaBtsWsS08IVtM7dkc6hVuZuCphrLk3LbQpcnx/0/pwaXrsFRl3GX2sNrYtsYR1NAffMYr82iwjAurY5mcQArUAxJIHIximWAUpSkQS6Zpd6npnEtbTACAKemViSOtRx1W0vLdcyuhyTUplCw/NmOU5w5IyZwx3LXKntzxaxauCLmkTA/TvQuliU1NrtmNgLEFzH79A6t0a13n6Y+DxL6/wVagP13LjGrklcTW6alOWmNtIncfOwO6tzODXC2TbfGwDdQEbZ7n4z4Nvc2x7HChKzCSv1O3PBnpC7Bjc0Se22AijFr0kcZCZjP/wLt0VL2tQwIaHj+/Cphfx3caLzZs9A/cOgnxYtAIDCVTUKbHdTt89H81jOiqQv3IUf4u6jZ3HzwdN406fuGPg6CpjsTGLEmOiuBV/HvX6qMbmWTCJjcYWOw/gA4xp637uOGnc6krOOt0OvFgx5TaJzc+/CuKZuIlm4bwb5IsnccpxnG7iTXXp/15oxs4/mZylwsMbSP93cTcvbTFKdP8uqcIKUkrogZAR7ltw0DNzr9ijbljuAOh5/+16+3sY1tikMJ0hMMylzfv473k5IFdJmSHBL2Z6Gifyh0wtINXDJvgmcXYoRJ2lu5gR4uJta1w1ncSVQQCsa/NkOnV7I72vV+mZnx++kGmzLHM+nV2StcU31O0gTkxWMOub/f+6jwFNfZuSjgCU3rWYSk7JxjU1T24zqy5w+hbCu0DPr5NwIB4mezlV5kCg3kDVhT0BYxjWemUSqH+NkEu3veLWH2kIvxs0HT+cPllYYoBUEzm0RYsuAo2mSFtdmEldfNf2uPabhLJkPAMUkOQgUVIMkJ07SvCYLKIJE++bPvY6GkUnk9N20oaDmW8dmB75usb+yJpFjGrQW7IkLx1ihH6f598iqScy+50WPPondAS0w6Ly568gMtNZ5kDjWDlnupoldk8iobYutya6ZSFb/TtexlUlcik3rmMBqgcEMEgH3YEPnk616uSn9a7C7ab3hDX2OQWOcatusTG4UcMxFzM/8vsVoE2Fne5zdTS3Jc538uQkf4xp6Gd0n2XLTvBzLPbhky01pUTJsnsgfPGkWFZ/5+F0AgOnFfqkvJ8/d1ARtbWaQSMFlK2j+bEv9BD/8R9fijVeZxT27vQc7kxgWfSpFbuqXTKk6rgM1C07xsvlJQeKl/xH4hY8DnSnz/6ohk1itSbSh/okiNx19aOXm5NzyBu9JM76rRNzJwUZxz9GzI+3O5es2l5QykO4Pe8r6nGXUJPYZQeJrPnwLrnjfjTiSSaxbkTFXcP0OckewAatv9v5QbWVV2lG3avr4PeMAgG9bQaI9SQ5rbNrT1PRttDOJ05kzbGQ9SLk1ib5ZPt9tuE60gOK+tdq1vVRTkxgFakXLkvXAPgc4Tr2JZyaRAob5NfRJrLvX0uTj5FwPj51dxmLfnM/j7YjnbupZ20YmIWZs3YJM8b6TeSaxn0v7OIEsUH5/14nXaplE2/20iab9tDNCTWNcMp55C5KQmUmsyB2dM4nVINFxnO/iYppqlksvjQGKHoSua0d0TjY50jaRZK0zBjYur46xMolN19vcsrm/XLzP1IlNL/Ty8x/gZRITMq7JWse4LuSRc2shW1z5Glr8/OxtR/MxtH+cxTvqk9iWTGKOj3u5XafcqApJstgg7NS/SVNNok6Kv1URuenmga6tUyMcJPpKw0jSMcqZxIdOzuNl7/oq3vYv9270rjRSdjf1M67hBByUJZrzDBIHTSzSVOOrB04CAG7NaqxaAbNJtOUI1vTQtidEttsiUPS7qrup00Pv2NmlYnt2TVbNw76fZ1IKuZ2dSeTY5AOFNI5TD+eLfV6wDFcc7wmLVtaL4PRDWwv2+XSWIZ1OtXE3DZSf5JfTJ5HO2+6AyXWcaly022S47zoyU5ab5pPk1bdl18RxHGYp2ADqs8BF8BPkiySzS3Ge7eEaN9nv796mw7xOWZlEe3t2zWIT9KcVJljW56/S1G5j0D5GQYAo4PQ7LGSqfplEntzUvn9zyxu6TJOicgDsfo90MROr3V46WIFSR7Vur2579KzdO2nKh84s9PNWFgBYNYmU7cxl2kyDqaa2UADwwPG50v/bvVPDNSxASE2i3zzZNiFrziRmKsNoZQseM7gpkxg3y03JuEbkpqMPnRBDKNHxxneViO5Rrg+njYAmXBS4jCK+NYl2oMQJ1EmKw6lJLE8smm88C9aqKBlxtMIgc2RzfEBZNVCNmURrf+hzVFtn1Pc7NL+zHXmrtSXVB6n9vhNZkEjOvu0wGGibXvv5stcNRW5qbYMjL3adTNS5m3LqqtaCLYGioN0Fkol1opD1HdA1xmqBkZ23FEQ3yU2fduFOACYTYAfeTWYrdRSr1mDb5OeZxJqJZN7/L1ClRRKtzXa4xk2px31LW5MtOib2LcGlJrGp3iwdkElsCizrKGoSefLDct2YW0BqxvnVjfnWsqfp4Ix47RirJrFp4a4OWrjjupumWS9BTgbSPv5N2R56n32TJttzer6Xt7IAzLPKuU9itriSy00dF6pSvXoAbAeJcZKuqLd0D9LTkimSyE09axJtdVNDTbRzJnG1Fhg29HuRm44+rjKJKtfddxyv/rv953hv6ilnpDg1ceakXRrCZNcXuhFzMg2AWdG/4n03smoEfbGPP2d7sWN2rwrduDgtMFxrEhesQOTmrMl5txWixWkAXJNJrHNc3D1uVstOZfW+qdZQymQTlFppdQ8U56wdJNqZBDORqY4pVmNJbndk2mQid4y1WNImwK9PnC/2BMS35ckgqV1dTWK0ATWJZxlBIsnEuq2AlUmka9PnWutGNLleeVz6SYpd4y20QoXpxX5Rk9gK83PZ5TlS1L8ErJrENK0Y1zRkUaKgkFsfzc7/yU5UZNIZNZAEtyl7U20P7bJTTWJ1IT/rkzp4zOrHn2TIE50ok9fzguYwZJqLeMpN7UPOWVyM0zRv5cI5twBzT2bJTXVFyswMnBXjeysZnjXVwKflIHF6oVfKwLMyido8Z3K5qcP9pAj2it6ddZ/txGyhWDs13ysFKWqVBYhvPXoW33zELOyuyFKPsFpsWPhkU0t1ymHDuZzXJHbr32SQ3LTRuMZNbtowWhgmvlLO//w334DWZmJiT8DWA/sG0E80Oo5nDhmRLDBqdIYN3Ug5k0gAeMs/3o39D5/BnUdm8OyL9ziPO3R6AbNLMb73wh3OY8p9EjkPbWtF3mPcepjkULYqChSOZlbh5+/oIAoVQ35VrH7SBLR6f+4lKXZPtLEcp3g0247d762uthAoJrzVTGIrk1EFNRkACm5bYYCpfJJs6i13jrXYNu30HQ8nk1h8FlYT4NJEXqMd1U+i6T3H2xXjmiFkEu37FjeTGDIziVrr/FhyJkx0/6EWIb2a7cWpcc7dOdbKP0fLamS9WgbmzHzPuAdbExJWn0RdTI4DZSbyWut8om3X2tEiCZ3/U90IIaNxOVA9t3gZKXuSXFeTOCCR2LjglKQ6X0yswpH70ne3c6xlMrmOk8pyvz1eU3bTOD4LEhk1qJ3INHJnLXhoq5UL814+qHdt0zgaY7bNk3IWGUGHbdXJTWuyzQCwN3Orn8mMa2yZNieTrhTy/qIu9yA7IzuoKbt9jz8xu1x211xlAeKlf/ZVAMBDb/vxXO4r7qYFSWW+1XTPsKm2gAFqgs08SGyQm+ZBYk0msakFhvRJ3Dz4yq7oYTzNMGTwxZ68s1wCs9dyap2GDV3Y8wyJGFBkRjg90QDgh//oWrzsXV9ljbFXmzh1ar6ZRBrHkra6ZhKz4/WcJ+7Nf3fBVBetwL1Gim6sUWBL2VYGbu0wwHfs7OKxrL7Qdpvjyk1JMlqXBbMnyRN5JtFMknd0rUyia5CYfcfDqEm0Jw0+GTBg8CSmriaRIytbC3YQxDFhSlMzaeJkEntJmmdBfBqQU9ag7hyJkxRREGDHWAszC30s9pKSfHeQ4cRiL8Ez/+BL+Pn331S0Ugh4fRKNSYj5d90k2V60mWib858WZqa6LVabjurruPcEZUkC+e6m5fci4lQ3juPIfWcW+2iFCmOtkGXelE/kA54zMEkyI2a2J9F6oPy5eXtp/lx0DUjt3rUcuSM5eapcgsuQcioF6mjC6S9K/XXrxtF1S5n0hV5SMnziyYtpkcq9vjOpCTbqzknbefnUfG+Fu6bLeZykusgkZvvo64C/lXBVQDw6s4g3XnUHTs0tl6XMTRng1eSmJB2tbYHRZFwjLTA2Db6TpTxIXFz/1hmlGgWfIHGEM4m+x58ehkORm2bHf7zNq5GKU42JtrtkxR5nxjAyibFbQEo95J77pCJIPH9HJ5ObOsqo8prEZmlNPzHZl8ft7OLRGROw2W5zTe6mdKzPLPTzB6jJQCIft1JummUSgwCtMEC3FWBmsQ+lTCYlz2w4ThJ85ab7HzqNf9h/iDVmuVRL6hskNo/L5aZRuSZxOJnEYhssuanlLuh6DdjHwDUjDhTHkVbkmxYuoqDIJC70Yoy3CznHIMOJq+85BgC499jsykwioyWFLTcFqpmbIkgMMsk1XXM7uhG7JjHROpexudY62XLSukC2CCKb36NpkjbI3XSQtI948MQc/vBfvoX3fuVB7BxrQSkTuLnKP9P8ewvY5iKRR5BYcill3RP4NYnaDoCVapSuL8dJ6W8lVQgzcA6DQm7KMa4ZlIGk92lHATpRgMVesuK6YfVJtGpJ3eSm5udAAxQAi/00L8M4aWUSBzl+m/cvfn90ehFxYtxNWyNuTviV+0/gtR+9ZSjbsucvg87/6+47gU/uP4TXfvTW0gJQY3Z7NeOaphYYA+WmFCRKJnHk8a3NGWYmMS5lEt33ly4UTt+wYeMr9yUXt2F8NjrmY+2QffzHs/OE1e8q+944E4RyTeIA45oss/SsJ+xGGCjsHm+h2wozuSlXWtb80O4nKVphgAt2dPHY2eX8NeXawma5aZLqvE41tjKJZlx5Y7ZkCgCecoHpXzTVMQEiO5PoKTd9xXtvxBuuGtzcfuW21p5JHLRQsthP0ImCUp+5oQWJ1ufhBIk0uWNlEu0g0aMBOU22miTQURhgVx4kJiX5bhis7F0IAP9272N4/SduW7Ffud29ax2XZVxT10uQtk1/M0FiVpPYjQbK32q3l+p8Ec69BYYlN61xvKT50yB308aaxKS4/pvGDHqMv/pv9+N9X/m2eS8r4HNV5ayQm3ICIlX0zeN83+0ogFLcrHjhbspxzgWK9hJ158hDJ+fxg//zGvzyX38jb01Uctxl1GnSuDzbzMwkUgayTpJMrxlvh5jvxaXrJgrcg/siSHR/bhQOrM2tXABgqZfgot2mzdOp+eWycc0AhccpS1lz8OR8lqXGwJ6Mo8Avf+hmfOHOY0NdzAcGXzekUpq2FqJNltr8fcV5EmdO69yaxDQWuelWwD4hOFLOiaHKTYv94gQptAo8yn0S15pJ9JUEcmTGtI9jrZBVHB0nRSbRpyaRJzd1yyxRTeLeiTaefP4kLthhbnxRGDCMFezVz/Lviv0xze3Pn+ri+OwStNYlt7kgm1hXV67tc52uLdvdMKzNJGYTv+yh/qwn7AaAPNuzWk3ib3zyNnz06w/n/0/Hz6f9Ahf7/OVmqYtxzfu51EtKUlOAt/K/FnxrEknKxskk2tczZ8JELyXZVt19oZ+maGU1iYfPLOCf73g0zzIAJjtWd2792TUPlP7/WLZYEgVmsus6sS4b12T7XVfvl11bk90onwhNdfk1uXaQyDWuKfXOs4bqPNvZ/B5Bw34OzCQ6yE3tY0WLFT7GNZRtY7mbZgsC5hxhZI6VkSRzF45INu3TAqNp8eiT+w9hZrGP6+8/gZf+2Vdxer63MkjkyE0DW9rnMCY//s0OlPbnGG9Hudw0v244fTHTausYhtxUDXZ8XYoT7J1soxMFODnXK7fAGLB4R8oAwGQSE51lEkdcbkrJFK7nhA/VOv0mjmflL3GaluYy9H2vOE+SLEBfTW5avZ8PdDelTOLgMgwJEkcA+wHCWbUjg4wZptz0riMzuPfYWdaYkgGKh9x0VFeZAP8gkWQ1vpnEBY4pTPaQ6LZCZ0MAwHxvY1mg4pMl8qljXG0c9ZCb6ET47Zddije8+KkATE9N9zoWa2LR8NCOM7np7vEW+onGfFX+05A1sM+HIpOYWpPklavWFLjTxP3fXWKMjKjXYuPNP+PT3zyC//czd+X/P8zr5pzITQcEs4v9cv0cMMQWGNnxCxS3T6IZ02FkEn3v43QutcP6bE+aamhtjtnOsRbOZAsX9z02m7+m7pwEgGdctLP0/4dOLwAoZHPOQZu2g8RsP637UCH1ND8nLWezqW5k6gQ5hisluaN79gUwgWp9IGt+DjauMT+rC0eJ1rn5zsoxq2ekOlGAx+8ZK+1HKwycgwY7+xgGjGDb+t4irtwxMC0YuPcEqnd1fU7Zmawmx2m6vzzniXuwHKe4/dB05Zx0y4prba4l2hbt86r76GBcU7RlUhhrh0Zuqv36JCa63MrCRb5ebWVh3mfluMVMhbBvsoOTc8srAuCmXTx+tnBFnVnsW865oy03naz0LV5PSjWJA66b45nD7NxyXDauqblvmV9QkNiqf8O8BUZdTeJq7qYSJI48pZ5QjBsyGQRwT/7/+Odfw0veyTNOKWUSGZksGjfKmUT78wyy8q9CshpfGcM8oyddbpPfClnZ5lTrXJbGqklM+JlE+8Y2KPuS28C3I/zIU87DCy+9AEAmv2KsdAPZ6ltY/9Amuenu8ay58XyvMrFA/bi0yL6eXYzz15QnJCsDUvMZzGue9937Sn93zaQcs1xY6TP4wBlnf1fr8X0v9GqCROU+YV0LNLnaMdZiZfwpk2Iyibxz0myXH2xHDRO7vrUAsXO8qEn59Rc9Of93U8BH991PXPkcAMBDp+bz1wcDAnWtNZb6CU7OkUzb7pOIFftZbVS/Y6yYzNBiJqcmK041W7ZY7pNYY1xjTcaaaDLYsevfqrjUJJ6a6+HyJ5QdsM3xYEppA14WPl7lvtVEcf67O+Ca/TTncTvimJAh378mx+lUa+wca+GPX/EMAMaVczlO0c2yWIFiykaDASYhteOyfbSMa5rMy0huWhjX0OcziwIucwytTQ183qjeJUi0FmryGuCacYv9BN0oNPXNC/1KANz8jJpdLuaZ04t9JNQnccTlphMd8+wZSpDoWJOYB4lLcVnK3JQBpuCvKSvY5G6qk+JvVYLA/E3kpqNP1TbXFbLXHe2aRH6wMWzs5zRn4kqyGt9MIqdxeV6T2ApZN+M4KYJEbr8rwL9GzcW4ZrxTvuG1IkZzb1vH3zCx6yfG/GJXVqQ/vdBHkhSTpqY+WXGSYs9kYWMOIJPWNE+2cuOa7KE+1W3hZ5/5nXjjS74HQBEA1F07dtBvT8oBdxv5Kpxm7v6ZRLdxdS16ht0CY7ITsXq1kk1+txVg2fH6tu8jPsY1ZOe/olG9tQDxuJ1FTcqvv+gp+b+bDCfmlmM8cd8ELnv8LgQKuPvoWShl7iNNE/K7jszgkt/6Ar7nzf+Ky//Hl/N9oIzBoB6EFEa94Knn5X+j+yTH3THVhWxxLXLTsnFNto8DahKLe0L599Q4vI4mRQKRpBpnFnq4aLfJJP7c5Y8HALQC0/LHJWiw73dqgLlLFVvuGAXumcskLRxwOc8A6kPL6cFZ1CQ2Z8Tp+O/N7suPnF6A1oWT6GoB8D/sP2T6FtYpUBiZxCBAY30tffYgMEFi1bgmb9Xk8BXQokyxAOogN01rPltdTWI/Qbcd5iZY1QC4aQGCFkyVMs/SOCmkzIEaYblp1zz/h5NJdKtJpF6V870kv74GZanzbF9TVrCxJnFAJhEw2UTJJI4+9rXlI/fiBBs2HPmVffJzgpQ8kziiq0yA/2ejuQZnQm7DySTGudzU3QEUKNf2cDMpAK9GzX4gDTqP53sJ2lFQqqkCaNLkOCG0JDLNzY2zTGLWt+pMNkmwHfGq+w2Yh92eLGND10iSWK0zarI2VeMaAHj7z12GX3v+k/L9bKoJsq8NamafZxI9F1c4bVl826TYX9VqxjUrahIZRhNrwQ4SOec/NepmZRKtz8Ptk6gUCklmzfkImJrdJ+wdr32Ppkzi/HKMiU6EbivExfsmABRmSk0T8ruPzpT+f6mfYCkuAv26zJntLAoAL3/WRbjs8bvww08uMurcTCLXJdMONmqNayjbOeA9Gt1NrcWlKvTrpvN5eqGHVJsa7IN/+DL871d8PwDzfdr7PYi4EgC4LrD4ZhJNf0WzEM0KEtPClZNjQkbnv2qotyQZ63g7wng7xMEsIz6VBQCDsqsPHJ/DG666A//t728vOYCqmnOkibpsz8rnTbGQON6OsNAvG9c0tWoCjJHJV+4/seLz0vu5LDrZmfJBypWlfoqxVhEklrLUA2o7Z7Nn4eN3j2Nm0dSERtbC0TBqzH2YzBajh5FMca1JnLXm3o/NLqEVmqx9Y3Y7d91qqi9saoERN2cfARNASpA4+pTkph4BmK/c8aGT84xtuZ38K8eNvtzUviB9zF18g3ROWxDa1lg7dG7ADGQudaGxqeadW1kmyzNoWC2TONFeeePiGDnYxfZ1E0J6TRCo3O77zEIvzxABzdKyOE2xd9IUiJ+tySTWrbZWjWvqaKoJsoMXenjQ+/tKeDjZ7bLhkPs410xitacfwDNxWAt0Hk51I7aUljKJrvdXX0WILWWsM+Ao6l0VLt47UfseTe6m88tJLrd6aua4uzO7Hpom5NWs77GZJSz2iiCx7rqxJ5qA6Q362f/6PHz4v/y7/DWsmqxU543EnWvbaibJ57JPYtO1nWcfGz4buULuneyUspgc4xSSLfrUdtL3FTHlraFS/CBRm/PDtFdx/66Lhbv6oM02Dto72c7nLlRvNsi45vAZU4d777FZK5NoHX+Hj1c2Sqv/vu2eiGPtEAvLSSWT2xy4vfajt+CXP3Rznu3S2XGkhQSX761kXNMQbGit8xrxnWOtTDZqBcADgr3ZpRidKMD5Ux2cmaeaxCA/LsOoMfdhw2oSBzy7l/opdmRZ8Eenl7Cj28qv7er7ALDkpg0h26AWGE2BJQCEkchNNwOJZ5BCF7evA+JjViHyatjZBk5N3GYwrrEDE+6qKcDLCNqwahKzfey2QvQdH75AxUjA49zykR+GgVrV3ZRkQjatMHAOgJNVJoRA8aDdlWUFpxf6pZrEoGGSEKcaU5ltf55JTMu1jHWBJX2GJpomd/axml2Kc6MSwP+6IXMgF3yDG1d308V+uiLw4PR6WwsUAE92Il5WPDWTLU4m0ZYAsmoStbVwUVfvak1Qv2NHvQW6qpGpAtm1lk2SSO441aHsS/2EvLpQc3RmEctxmgf6dQ6geU3igDxdyJI7WplE5+NvfpZqEq3N2S0ymhjkbtqUSVwt2Ds1lwWJE+UeZ6ohIK2jdN8aYC5SJU7T3HCHW5NYGNcwFo60aYvQbqhlPDK9iFe85wbcdaTIVqcapYW7erlpEYDtm+zg7qPGeM+WmzYdx4dPmSBxoVfUfwVWKwuX478UJ1lLkGZTmFImsWVqEqvmOvS6KofPGOdQkiHSceS0TqrPdpZf0090pi4KsGuc5KZWAKwUtK73Zji71MdUt4Vd4ya4NPeWYuFoGIt+Pvh6d/hQqklsuG9RoL5vyixEH51Zyuu2m0pn/OWmqchNtwK+kzRqF+CbSfSdELq2KQCKVeBRziQmjpPdKnRMvOWmjIk8bavLbIFBK7DcFWEK1nhBovk53hrcNmB2qZ9PVG1YEqXK6iew8qFNMqZdY0UmsbRqXWPAASBvErxjrJXXYZRlW8GqxjV1NNUE2d/L3HJckS36PXhZctNUZ/LfwcF9FTsoGVS3t1QnNx2SPCmXm3Zb7ExiGBh3U9dJMn2eDqO2Fihne+rqBPN618D0mvyjl38/Pvdfn1d6TdPxnO/Feauk86e6+WvzbdWcj3R/+dirTRbw6PRSKRtcV+9EbzMgSWcyiYya47X0SRzobjooSMz+uMJcUOvcoXjlmPL2q5yaNxN/UicQTUqGOlZbpGqCMntAlklkZGXzFhiMBQ+ti/5+dZPk+46dxf6Hz+An/+JrpW3RMVQNQUpqZXL3ThTHcYc1uW7aTTJrml2K8wXuMODJTRetvqRNE3n7O5roRHlQavdJBFB7DVA/Wj7xAAAgAElEQVTd/PHZwrgsUGpgLXsVbZ3fTXJTUph0WyF2jLXQi1Ms9OKS3L1uHACcXYqxoxth51gbMws98xzP5L7DqjH3gfaKSjnWk8ShJpGeQ/uy+8HR6cXc6IuO/4ognYK/1eSm1XFp3Jx9BDK5qWQSRx5fuSmdkEueARinuXrfYYWkdlz22jjVIytH8K0lWqsDJUemmmRyI5+MYOgRJPq0wKDjONYOB46bXarPJHImMXUuddWHlNbIiv8DTHUj07i2krWpG2dcURV2dKPCuMaepKmVE8KqcU0dzZnE4jqcXeqXF428M4m8msQoyLJmDFWCcyaxl2CsVT4uISNgWAv9JEWgsoULj5rEFqOOznYg5sq07ex2o3FNNkm+4tmPxzMev6v0mtVqEgHgvGzlms63Jtkc3esfnzXcfuzsUqmutP66KTI0TXBqElNttcBwDmyQ78Mgd9NBxjWN7qaJbvxsTdlHgjKJeyqZRJ67piVJHrDAshwn+Mw3D+P+rD2KLdMMQ2Ym0VNuOqgmkXY71cU9syw3ba73o9e85Se/N//9ZIeClObjSJnEONWYph6VAc+4Zn45yTNSjXWr1jNirB1isZ9ktZ10/JvbIO3MggRqM0HjBmUfq7g8EymhMJYZ1wDA6fl+yZQNqA+cZ5diTI21sG+yjRNzy1jqp5jqrJ7J3WiKns9+i/k+2wKaF3jpOUT345nFfk0msTIol5uukkms1iSuKjdtAYlkEkceX7kpnYTcTCKt2nFkiyW5qUcLDGB0zWt8J+VrDRJZRjLZSjan1xWQyY3oYc90RQXM8XAN7ul14+3BEr3ZbEWySothm17n5NbkNgcAu8fbKzKJTXUbVJC/d7JTyH/SsrtpNZitM66p0lSTVZWblnqS+hrXMO4JJJMy5winJtExSKzrk9jgrHmu6SUpojBgZQSpl5pZWQ+gtaMDYnYIui338xgoZ1JqjWuyN44GLEAMcjedXBEkZtmUplrebN+N4U2AmcU+FvtJXiNYd93YAVoTUejublpqgeF4DZT7JK68J1TNdepokoAOqklsyj4Sp+Z7UAp5bXSxLV5NXEmS2XA+/uNtR/H/fPJ2/PKHbobWujSO426apshko9wFj2wxs+F5Y2//geNzKz9bg3TXDrYu2l2YN+Vy0wFmPpRJBICT2f28VKbQcEg+dcth/M5n78RiL8FiPy4WSRom8kZ9QO7WEfqJxtxSXMrk0uetkgeJWSaRFqlUlk10KfGptrKgfbLJg8SWHSQu5+dwMOCcPPv/s/feQbdlV33g74R775df6he6X7ekDpJaCSGU0BiQhMCWisIYCxFcDBhmbMAe12AzpgjWmMwUEpjgGRMNA7YZwxQYDLKEJIJQtpAsulupWy11fvm9L990zp4/9ll773POWjvc773PUs1bVV3f63vvvmffE/Zea/1+67f2Z9hYKnH3yTXje1Jwk1JvfNhGa85hsNnawjX88WhvPr1uSwc2CJGVWAmLtsCo5wG66U0k8fPCWrStJOGIxYJEos1MUmoLIzIk7LjPgyBx0ZpEWoBTFx9yRFID0jxPC6T0OJ1BHhZptSWxUs7dOQIaSfEGiRNLU3GNJOGjjtXaEP1IIqAdtKt7Wu67K1zDoYJlnuPs0WU8cW0fSilM57Vx0jlHnp6PgUe4JhcCfPe6bI3dupn0BAS1xQnRTX/yv3wcb3vgHAAKinOMynwhBVwgrG661KGbanpS9KEWtnmlMMi1clxqv0O3B2dUJl85SGLis+3Wm3WHuiJNknFO8ryqMZ7VBgGhIJGulYSAmeMVGdaXdC+1qVOTyDnJtIf5qJyxSCLV5I4S1U25PolsL0fPd8SgRF2jl6Wkx+WdCY6tDHtBvkR356ybpJLGvO/hywCApzbHuO+JTUyaWjqaZzSS2ARlet9ITHjkMpLoHv89D10C0PQEbH6bGKQL6rIGgRHOSVUrPHZlz4g2kYiQDsD6cyJ7+8fO43t+96P4d+9/FL/+3s80SCLV5PLjtAKu/vfZo7r+95Ere+bzPnVT8snObVJS0iYRSo/I19XdKV7z03+OX3jng61epRySDlhfZVDkZj14anPcojIDEpKoEa+7T62Z1wzdNKC4+6o3/Rl+5V0Pi+/fSDOsqEPYcNoCj/zxaP2986QVIaP7OGvuy766KdFNJeEaX03iTXXTz3tbFEmk7FIykpgvfiwgtQXGwVGRG20L000N2paWQaMFfBEFxJTeWnpcbaT8F+15GOsk0MIWQhJ3xhbdcG1Q5NGiSK4AgYQI1koZh/DoyhDX9qa6Po4QkYCU+W1Hl/HU5j7GsxrzWpk5c0puNG+pbkm/xyMpbSTR0k1Te2ICmo4M+OmmO5M5fukvHsZ3/NZf6bnXtaUkJ/XSDD83Va0D7JVB+3qXh0RPIpRiaVBgPKvietJFJCCkYwHAUpl23driFn3HLqbeVSOJ7dfoviJEjmpgjjVCTlJARPfAINc07YtN704TJDJOMv0rWJOYGGwDB+uT2KabNu/7SnQYwRvA3ycxF5JNZFd2pz2qqZ5HAt20I1wjiYv81SNXce8ZHRA9dGGnhSRrJDF+fdXCTWlrAil8Dgu+LpfWjJPrI/zqX37G/DbTJiKi3s81QwEV0NUnr+1jVim86Gmank19aNtIYn/c+x++jOVBgXvPrOPdD15qahLteeTGuXWrdxzXaOe1vZl5zYckUqKQyhu0KirM8aQyjIcv7eDTF3fx02//lEnatOr0pQRQnuFpzRw/c2m3pa4szVG3zihxTytIDPepnFU1Pnt5Dz/+lo+z799oW6R0ZvFjOcl14XjUr/fE6tCwCzacpDmLiofoplILDBXok1gMcFPd9PPA3DU4JWtn6aZpNz8tWklN2Z2bNqVP3zziobme9rsfegzv/fSlpDGLCtcsgiQqpczmkkzjaTK09P8xRoIrwwQkxR2XMk8T3AwLUchEKaVrG7iaRMGx8B3LrS3p3s59JHGKHadGS1Q3rTSydvbYMmaVwsOXNC3KrRvoZnZdBUrJJCTFvS47k3nrPKYkBACLZPrUTf/68WvtubtoW0rdXkSQaGtg+jWJKSrJixrR1EZljlrFIYIuLdGqC4bnqkxwky5c4zrJonCNj26aMcFl5548vjrET3ztC/Cr3/oSMwZgAqLKouIbSwNDgVvuCHe06aaq9R5nseqmdP+PygVbYLh00+Q5tucA0JotP9tBuunOtKds6o6LozL3++11hyml8OS1fbzoacfMcV0kOb1PYhMkprbAyBvhGhZJ1K+95t5TOLc1xu5krtkdvd/GBWD2/P/I1zwP955ZbymHcr+NVEO/4PYmSGzopkVLAbc/7uruFCfWhjh7dBmb+zPsTudGuIbuke69TGwfwNbzAu1AihsH2D2AFM9deq1GEvlr4Pb+u9KgpNL9T3ME9N53ZmPJIMU9uq8wx9Egx5HlAU41KGQLSRQegD2n1VfKXna9jM73YfifMTWJxPJZHhRGzMplVnEJP6tuugDdVEIfgZtI4ueLLdqnb1G6aarzD7SdwKQ+fbUyi+thPKT//P/9a/y9X/lA0phF1WUXqUmsatveIClD22waRFmKdULrejF103llr1uquuPyoBR/G6FyLN20yOJbYDgOcC5QZDT1Sf/76MoQ13Zn2JvOHaeJHzevtXDN7Q1liEQgXGeL6z9F70km1iQ2gdmxlQG2HbrpqCQkJX5jpeP7xjzwhJaPp0xyVSsURYM2L5A48ql57js1MK6lyPgfxAiBp3MZkyhx6b6LIImjQYGqVkkiIV7hGof+KRlHQaTvcZ3rv/fyp5maLhFJdxQg15dKI6axVMrCNUZZ0fM7Y1U56dkqc0Kk0pBEiW4XczkyJnComPPomqGbCge4tDsxKK5rPpGQrrntFaTjXd2bYVYp3H1yFVmm200AMH0yfbTFrtFzkyx41tSBDwSBNUpAUDuWpzbHLdRMqtN06xYB4Fte8Qy89bu/zPy/tJ5s7uvA6a6G2nexERGidg/03V27sqfRX2o4vz+tsDJqi4t0n1NNCSbUfmjWvCMd5UrfHkCK5/o8hmtJ3SDxsaYfpIuScnX6QBMk5xluP66vg2UJyPfkZF6ZxM0zT2s00Q2ApWTHjpOwvNSc/8M0OgcpSfKDHgvwJU7166NBjqtNYP+Ku0+Y93Mv3VQKEov258jqyk83LW62wPi8sEWFU8ihPpQWGI4TmIYkuip18cd76MIO3v6x89GfP4i1H+y036bH3Hj6raGbNo5ibDBFiGAqbWhe2wx07DxbwjUCIkXN4qU+iUqlOZJ5npmNuer8Pv01hCQOsT2ZY3N/ZpFExkmoa4sa3NYEiZ88t9OaMxfsuVQ3yWQkUT+/t6yNNN2Ugu1hGt1OGwWJ8pjzWxoZoqnOGucmtScaCa4MPXWylDXt9kksE5QWD2JUI0WiK75WHWQu3TSpT9mCNMkW3Y4J9mi99SUguJqgELotoQazWmFQaNEMjSQ2QaKpyeo7kpbKeXAk0Z231EqBM1uTeAAFViZIpPlIvy2kUirSTQUklzO3rleiqRLie+bIEo4sD0yQ6NLkk9RNF6Cgq0ZwZSCMo+MTHfPc5tiItAC2TpMVE/PSrfnzT/TNs0eXUeYZSzflLtvV3SmOrQxxZEXX5O5O51jpBlIckthMMcsynN7QiYEjDaXQ1/KEKIgGSaxVS/BGYl1cc3r/PXZlzxzHR9t1fwMhnsea+9OHbk/mtalvveekDhKJJukT1NtzVNx3JnP81SNX8HPveJD97I2ww6SbRtUkzu2e+K++4QvxPV/5LLzszuPmfZ5u2nxXiG7KBZch4ZqbdNPPfXNviJQAzCCJiTc/LQCpQYNRm0us21teAEn8ip/5C/yD3/xQ9OcPYouqSdYLLD5ucJfWg1A1TlO64h8JEKQGpRZJjA9IAX9N4nazYXDqpoSUxNxf9JEW3bT36NhN+8Sa3gTPb01MZp1z7uj6DIoctx3V6mOEJK45waWUofX4MSjznG37QNflxNpQI4kVBRvpzxs5wj4qJ9GSKAtdNfVW2iFPS5KUee5Fe1zJdddCQgfXyyyS2ASJEfcyPdd5o25K3xMep/8ulWnXrXaQRFaAxrknJePQbat2yI8Tm4I3wk0AsLFsn9Nen8QWShdz/8epm7rnf1DGK3K6dcrcmmCRRvk7OHXHEJJo0cf+e7OqxrW9mVl/+GOFf9/eZN6qv3PnRUaI76n1JRxdHhiq5epITm5J1uqTuEALjJGwJtC1JCTxyc39FmrGJSBoXCi4534bBYlHVwY4e2wZn720az7vQ4AvN4H90WWdXNwez7Ey6vRJZBgobk06JRUJSfS1SjFIYkPNdGtQy0JuDbW5Z5E5ChLz3K/cDdhnn2ijRIeW1gQSbyNGxkvvPI71UYlb1ofmt0lJErfV1950jtf/m/fhX73jUwurwqeaaYFxCMermvp+QPavxw7d9MuedRL/5DXPbL2vUfFukBhJN3VrEpXS9FNfC4z8JpL4eWEu/zypTtBpVJ/Sg3ARjvasUqZwOwVtq9RiSOJhWrtPZboCaBKS6JzzRfodpqgt0ueIbhob7Cml9PUepQWJdB6HZS46g9TQlqtJHCTUytL3a+Ga9vHNfJTd0J9/9oh5nZwmztlyRULWlwbYWCrxyXPtIJHLyJv/9TigoZrEW9ZG2BnPzX21yHNjKNCe+4MU/rYakRxSDhwUeTKVPM918CIFlxLdtMjjaHYHNepBmEI3tagwDogkRgY3qtMnUUASk9VNjUPIj5GClFll2z24tPAeJY0JEn0PQAySNa/qFr22zOORLHPdcn5NcGtNJeOo6/Y8BoJ05rcRneyEh24aI1yz6zRzlxx5QnxPrY9wZGWIJxr6obtuxfephBWzWqAFhrQm0PU/e1QjWE9dG7eSJNI9WddyCxJADlI292co8gxroxJ33bKKB5u2G0UuB3uAgyQ2SZI95vz36aZttJlExI4uNwGYpwaSGBw7Bkm08xsUHrpp02MvyyyVs5UkCSCJpHAaQjtp3aRk21e94FZ86I1fYXxCXwsSV0Rtb1qZdYzaS91oWySZDwDX9qYmyRBr81rZJKGwJ7pIImdcyYGmkWZyhivL9PtuTWJI7AYAips1iZ8XVrk31oKiMAsJriQFpFYCPUVwYl4frCbxMAqdF0US6TQk0XYXpBYTJY3QhJhjkpR8nqcJENAUVxLpppT95PoIkhm66YivSQTingGXkiY5TW7/uefdtmE+t9qlzblBonFQ9Xk+e2zF0rZcJbcercOiGJIVApLSChKntk9iarAB2IDChzQTkqiU7n01rxUGRdODM5HJUOY5BiUvUgG0i/RdK/K8qc+9sc831aVaJDGCbsrdWxHnpTbXLQ1JrOra9klknK0Y4Zos6zONavM7EpHEujbHWndUiJe6qsAu3bT5G0YS+fOolMI3/vL78Dd/9l0tJHF4ULopK1wjf4cVobHjQkgifSfn/FNCxidcE4Pu7TtBihRIXW6olCfWhji6PMBWk5CjcWXzzMVY7dBN57WKSkKb859n4ppAa9vysMCxlQEu7oxbSRJJlEeXTXiCdCFIubY3w5HlAbIsw90nrSpnkecO3bQ9bjyrsDutcHx1gKMr9rqtDNsCNH1RmLYCLu0hR1fCNYlUp0aCY93eqT7hmuOrQ6wNS2w1e6ur7tsLEjv7FCGJNGtJzI18FVpHM6fOm8ZJy10bSawMtfVcU/Zwo82CImllWV/4I2/HC3/4T5LGVLXCsNT3VqgmkdbTrmlWSOfFOkAbBTSa6NYkGvQxIFxzk256uPYb7/kMPv7UVtKYWinTEyopAHMcl5S6xMVoksrU9aQKtSxCNyU7jGLjlnBQkpNcN2Pi5zhtIYlp14xqdIA0ZCNVuIau72qqcE2Npm5SRqR2PEgibaoxzwAttMuDQnS26trSmAZFbihOXSTR3ettKwuq2Vg27/laYFj0KRAkMpdt4khiU+AGOEHiAkkI3/1xeWdinIire1NTt1omiIQAbQq09AzsNetSt0+izapHH24hM3TTZu2KUYJu1bua5y1+HF23FFVgF0nsNel2kDXJOIpSCEmUUIN5Zeu/nnvbhnmdxFcKxpFUkUkS6b585PIe3v/wFTx8cddQ0ss8S+oL66qX+hRYQ2gngNY1oGvvqwnNBHXHyzueIDEJSZwb4RQpAJgZR74wgQngrHcJSGKlFIrM9l2N2eNcuq+EANOeWeYZTqyNcGl72gqIDAWUoUl6bv/mueGRRKJ7un3pWkhiZ5pUF7i+NDAIG6DFaOj3AQySqNr3CCGJlCDzXW+rblrZ30t0U0/y7lrz+9aWSoN6ucmtHgW9hvkMYGsRbd0z/ZYOkmjEVnj0y9fSyFXa3pvMcbwJvM9vHk6QaGoSD6lPYpHnorov4NTplwKSmDHodj33C9AA+n0XSQyJ3QAN3fRmkHio9kP/+WN43c/9ZdKYeaXMguKjifXGNVkLwELYMUY3YBq1tcaAbv7IOSqlFf6WE4UcXAs1Bb8e5i7AaUpu+u8iYjeLHMutSYwJpFy56xQBAhqXiiQSauPb1Hx005RngGiMozJ3nNb2OIU2O4PEI2wLDP06Ry0jh/yL77KqY2tOcNl1tmJQCglJtDWJ2gm/2tQKHoRuKo1RSuHy7hR33qIdJq2mamsSY51IOlaRZxjknppEEUlsz/dGWUXCNUQ3jUimuQqAC6mbJtYktlsA9B07E+wFArDuFC0iym/z5LR2/ZFZpcw68+pnn8LL7zyO/+lL7sQzmnuGcySNroJnjj4k0UUbnmhq6WxT9kj0y0nUcI68pZvK30HT59RNve1tsowVQLm8a9E9bow7b5/tTysjnOKr2wP0eb71SD+5FVsTCjjCNUVCLW8zHQpSOPTRZYDcsjbEpZ1Jq72HTzk0hCRKdNONJkg8sWopv26ZgtQmoiwynG3Ey77iOafxd150Vr8uUNDdejTAqsq664n+XH/+lCicVrUuH1L2OvtUaccNwrw2Kk1y0UUSe3NU7XvZ+BNOgO+eg+78aG3rWu5JQOw4LTB2pxWOrerrcf6QkMTDFK6pGmV0X+I0SDfNOLppoLYQ0EiiW5MYSzet/HTTAH5501IspS7QNaLp+VSsOJtXNdZGJa7Mp9H9zZRyWjAkqptSjUjsHOl0HARJ3J9VOJY8Ks1iGqD6xpHcvc+JIHMdxzTnv27ukfjMrus0DIsiiTYK2OsWi+YSalM2NRTKESQgI0rMOkM3NcI1EcebzCosDXK9kTYf725SSrWdVsrm0+LMbYjGIWzee81zTuFH/uhjACxti6sZoP/t/l7XJEoU1QRSxvtaI0ZAdJRFhJGkZ3Q8qzGZ13ja8RU8dGEHW+OZqUFLebYBq5yrqWX82ie2wEhAUQ5ipBKYVFvYQkTiKdD0WyhxF1//5ReucZFNyTKG7ti9l7tmUJsukljX5lnM8wz/zz/84tZ9bZ8be6/QsX2iMIWnKbhbt0SCK2UApe6aOwcOEYypSeTqxmKCxDzj93+LJPZrEqXzz9mu09/VCge1P1PVuv1Enmf4wjuYGuwEOjk9N6ZXZVSQ2D7/HLJKtO0yz3DL2gj3P7GJ46tDhm7KBYnysYs8A5dP3tqf4UiDXNH6CujgyDJJ5KTMs06v4wM/8BqcWh/1xHW4pIx7j/zw334+TqyN8CXPvKUZZz/Xtcms1n1q5zX2pvMWulp6knCzusbaoMTaUolPX9T1lnnmC7bbqPgLmlr913/R2dbr3fPfrUnsWiHc/4BFZgFgfzo3pSYXdw6nJvEwW2CQwJJPzI1qFYdSwM0K18TQTTtIYkjsBkBMn8SbQeJ1tBTRB9cslTCN7jWrFY4STTWxvxyQTjctC4LR4zYaK8DRIFILIImLtveYV7WhL4aMejsplU6lJZtVNYoQHQBdumkitS/LMCwbZzfiGrhIQgrd1G1lkTJPyj6XxkHriw0QYsC1wDB004h7eX9WtWg8nJNcK9Uilh1rnAWqi+Q2xK5D/vQTq3jT130BPvLYNadvVd8BUlFOMl9bQsEWnROiDaUi8FSDCsj3B53/W49o5VbqyzgcFCgTnm2gSVxk/nVrX1A3TQnaDmJW8Cke3TOoWJ6mbkpfTahlrEPuyvtzAhxRgiuZD0nkx8nqpu12A93Eh2k54wZg5rPiFL1I4q5DSXu8EVzRqswybatr7nniaIsxgawvceRvwSDQTXcnrQRQd0z3WJK1hVOaeTHBDc3xRU+zqVVSqE1pO0M18Cl00y7dl1vG20jiCJd2prj7ZB9J5GrpSg+SmGVC8DWvjd6Dew2OrQzlY3Wem9MbS6336Tbw9UkEdCuSn/jaF5j/l4Rr6lphWtW47cgSntwcY2cyN/s9oGv1petGz+raqOwhufxva8/ljuMr+Oz/8VW9OfaQxFkgSPQ8224LjN1pZZ7nw0D2AOtPLHq8WVV768Fdc3156XjTqmpdo64VTMmBppsG5tCjmzb/vkk3/dyxFAfLNaISpjtpyhFJiF/8yVKFawaJgaylLaYhUq7tLxgk7iWMI+GOIs+SAzey2HPZFq5JudZo9QSMUwCljCgM3TQG7aZxy4k1iYSI+BRYt8dzrA4LdoEcJgjX7E+rFjrF0Y1ItIfsNc85DcD2eOI2RPoKd3ZveMkdrc2eq3+JQimEjZTonkTBpdYUS6ZPYmxSJnw/En2bHJ/t8cwignkenWzS80YwuSX1SUwR7TiI1UbwKYE2aihZbjAb8bw140ZlfLLDzDECSfTxFDgkKxQkyuqmfqeIQ0SiahILWYBjn0ESc2IlJKBfepwObLvnhP7lVzfto0ShfpP0nRwofqVRyeRQYK4mumsXtsbY3Ju1BOAy4bq5SNbpjSX84jd/Ef7kn36ZSVoUCcI1tN8Mk5BE+7sk9WKaY5ZlOLk+ws5kjsu7U9teyIMk+ntw8nRT95wc7dQXSkH6oskVLinKjuscj9bq4w0leW9aGeEgGic9A7MmGe6Wb2SZ3BbKlqDwc5TOiaWb8gGHhBwDOjBcHhTIMh0w0l6xqL+cavRTFg0SUxRO68aX97FrNJ3ftwYxgo2qiqCbZgLd1DOuGATppjeDxOtoKVQt1zQnn6SO42mjrihMStaabCG6qadnj3SsReimVAsRIzTBWUotY9Vk43zFxuy4Bc4lff/SILX/lKbblJ5A6r9+9gq+8Ef+xEhLm82uyE0AliJ4s7yIAEeWeVtZbI9nLIoIICoAJkl5t7k0gKbvXvuzdYMQk732+WfwwR98DV7e1BlaJbd+kJjakyu6JpE5/RSkkRNIaF8qkuiuHdIzSojNmQ2LJM4rXUdRJDa4rxpa4tBTNzYWW2Dwju71NnISbYuh8PFcRCSlJpF+yyhRqdpFDbhEQmwCoudYO8JV0hj3c2TzSGe3jcDrvwsjiQ7aQHV8tCYnt8Bwz2Uykth8lkUSPYGzgGRd2pkawZPeGAERJDu/NcbLfuKd+Mf/4cMA0Go3ADC1q1UbyXrt82/Fs06vm//3NTzvGu03wyJ+D6Dfn2Uear0TtFEf2o89uWWCHKlO00XbOZOO5waJLSTRobh2T3+3bq9rnCgSHSsmAdG93rS+U6uMncnc9KkE4BWCm1U1hkVugmyad1Hw62ut/PeydG9NQ3RTz7M9q2qMBjlWBgX2ppX5rpSE5EGMjhOr0tu1a04vypARK81Hk5/Oa+PfcpZzIlj/HemmN4PE62iLqicZSlRCzYCRyS/TxC0WQb8ATaUdFPlCSOLSAsI1lGlZlG66lxIkKpfum4bkkkU78s33rw7LJHVTQzf10OYeeGIT1/ZmuP+Jzdb8ykTaHK3dqQhw1yHnjrUzmbd6r7kWcsh/5u2fwot+9O148Pw2xrOqpQ7GZd+6NYmAbjTdOx5LN+V/I43rB4nNPIJIYv9ckgNEgRSJ+ywlCtfMI+5Hei5OboyQZcBWQzfVSGIik0GRmq1HyW1WwVXlJTs0ukjtVbgAACAASURBVKmyAij6eDF0UxskpvQltTWJaUrVLkrCBXsxwU3G0k318SUERkJzZ1XtDYh8CPyi6qZ0Xw7LHFd3Z2beKftN9zx1BSAsJTwtALbKj+lI1pXdKStaQ/MD5PXudz/0GADg3Q9dAoB+n0QmAAjN0efIP+eNb8XvNMe05Q3xSKJygisuAae/17aJeO6tuh5uWtUmcWhowh6UlDNJ3dRtSr/iJBUHRe5VUqXfwR5LQnJVOJBlxzX/T7TgvUllBLdoHiLdtEnouHtq4SCJ3ectqHgsIolNkCi0bciFIB2wzITlYdmim6a0WzqIue2LFvHRSUguxqiWd1jkorbCrKrFekRASHjUVVjdtNsCQ0UI1+TlTbrpYdridFPbAy/aIazaKF20mIzzsWQkkTbtSMeOFqRF+iQOSLV1gdYeQDszHTLjJKe2AHCpu5G/jZzUlVGRtGCRA+ALpKj/3YMXtlvHcoU7YhqYd5HE1CDR1+9wezxvZT1d84mZKKXw8+98EADw0IUdXZPYQxL7TpOfotc/ly6KJBkfJMagFHwvKeoBRud7Z9KpSYw9/875lp5RkiNfG5VYG5bYHs8MZUlT+1KQ9NrU+0n3//60bqhG7RNzWMI1um7SBqVpdNPMqb+LGNdBEpNQmwgkMYSAcc29gTCS2I2b50E6FIckhpF0H5JIQeKZjSWTudeCW2lBYpbZILB7Lm0gK38H1wMyRriGC9IB3W7mOCNa436f1Cv0yU6LgJUAJXPe6dPXNY0k8ufywfN6Tf2pt35Sf3eTuDDMlRi6tZNcKZjzqOdog7a7T66aZ6VLN+XElLzqvpzYB9oofW8NCtQkBp+bzuHmVZgS6zveRhPo7UzmqGs7Py1cIwSJDXrcRRIpx8PVPwLy/ibdW1a4RqabSmv5rFHvXx0V2JvOzXfd6AQhmXsPLlLytJVAN43xJadzP52f9DFaFkM37dYkEkLoG3eTbnq4ltLPzDW3B148kki0RRKuiRvnPjBJIjnkSObxCqzdmsSkILF5iFJqEtuLQRpKtwjd1L1W8ZTA5pwMyuQgPRQkXmqCxIcuaJUztyeSGZfQFHyUGiQ2yQ6fAI0vi+aTCH/0yp7597mtsVCT2B6jEBL7aD7njIt5jLj6C4NSeMLSMudl4YnuTPRZ6pVl6aZxz/asRTf1I4nLgwLrS6URrikbhzCpBU9zT/oc+fG8YilKkkDC9TYSk7BU5vhgzyclz1lX3TSFcUHH0VSj9vsK4cQF3yex9o6TBVDSkcS4HoS5B0mcI8uAk+sjk7k3SOI8Pth2f2uRdemm+m/oPALtNSFE26Vjcc/2tf0ZjjKiNe6xpGfgwtYY955Zx0ufcQzroxLPOt2tpW5/PoS2+RApYp+c3tABLSUuBikMFDq/DpLIBUR0Hssix11NfbhFEgUKaA1DoUz5bbXnnEhBuvv8cyahnXUASfTRVAGYVh27RDdtHkEtXCOjUoMiM2MB4Jb1obi+hlFS+i3t18mf8u3dfiQxM/uNRRIPh266aInVImPcGni5JjGAJHL3ckyfxF4LjGbeQbqpPwi+qW56HW2RPoCApUSUCTWJBklMpHIuXJNY6+xymUDJdDPrWZYG9S9Sk9j+bfHOJ9US+DJ20jh6oGOPR9dtZVTgwnYaaun2/+IbN+taHgoS3SbQKU3B3UzqsMzjhWsc2jTA00mqWolZNJ9E+Hs/fdn8+9zWGPuzGsdX7eKXZby6qQ814APuSIe8cxpjUIqQuqmhmzYo+GiQHmyQyXRT/d2roxLrS4O+cM0C6LZvQ5wLG2JKrd9BrK71fWXu/4jfR9fSvZdj+stZddN4xxqwlFg6ptReJVTvJDmfUn2h5LROK4WlQToior9THBaoSaywOixxZHlgEoNFlmFQpiCJaKFN3VY1sQJAQPu3hWi7NI5Fsiq5vtO3lgPAhe0JTm8s4de+9SWolXXQpR6jXVXarvlqEj/21BYAm9Aln6TwrOVds+JFcisFYk2QHW965hGKJiUuqgCSmOe8cJCLXALA97/uXiNgk3uCbUB+brKMV9Oe134kUaKu0/9vNIHy3nRu9nvAL1xDdNMzjgLridWRTNsNMGVuhLopAQzHVoa4ujc1fmBKQvIgNq+1wON4Vi9EN01jfFkxN2mc24eWM7kFRihI7KqbNn5b5qudGQDVzSDx0OwgNYnUkysVNSB102gFuBaSmIIa6OxyiiS5zVrlGHooaZzRhpiCJLq/LUm5tcluDhMcEkAvuMuDAjuTeUJNaEM3Hcb3LQR0ADb0NI4HbE+uBy/sGGEjwC+Jzc7RoduNElpnuCq9AI++6AXbv0H1VUoVfuqtn8Dzz27g6u4M5zbHmHTophzdRSl4OXqckxbjkHPKfXHjeEoaCcAMmhYzO+M23TSaylyFn21CEleGBTaWS2ztzzW9MM9RFnp+dcDZMcerLQVdCr6kDfGwgsRK2d8GxDkmFklAkpNs1E0TEWBdx4LmmH1HPpbK3EdfQogIv5bMq4Cwgpdu6r//pftkfzbH8rBoqTSmC9e0haq6iL+l7YYDYE6UxxekSHRTX52aJJxCdr5BErutnHyIlB9ty0UmCZVnkOiZTq7YtTxl32jRTbtBSieQJTEeQzf1/bZAkM4F265yMAB8xyvvbo1x503WbSzPGUdvDYnrhOitJKyzPZm36ulDwjVlnuPWo/1aey6QDSaOBP8ihm4q3SPTud4DjiwP8PjVfStcc4hI4sqwxHg2xWQBjYvYHuR0rDzT/uuOUPI0CdBN2SBRRQjX5DnfAsOLJN5sgXGotmhNImXkh2V8Jp8eyOUD9ElMUZcyDbdT0E4XkUqotwSscE3KQ91CUhIDsKLIvDUb0vFSRXnoHlkZlknno5vZ5TZEqkncHs9xcXvSokmlCIW4dQvU4DfGSKWXqGrcvezbSKXAYVYpXN2b4W899wzOHl3GU5vjpk+iXb66NYluVlsyLuCOUillFvG4ZuJ+JBHQ9HHaXG6IcM3EBom3rI1wcWeij19YcZfYfq8kuDIoc7Gdy7ShGnXNdx9fT3NZAgBQxbSOMeJFaU5yV900ZU2m81HknCKh/huqSZQEOFKft7kH/QJ4uiP91FAgK51GjSQWBlECGrqpp5F41+q6TTftHi+ml6lBidw1oY5bSzgk0YcuSWgPAPzOf30M57cmvR59dCxunE7ayC5dWchIIq3xF0gZu6GbGlXgGMEnJ5i2wUb7M11kj5BLSvjJTeADVFqB7ujWJHaN2qR06aYhBVCa5yJ0X/f73XGA9gnyzAqX0efLPBODe6IuUt9b1zjk3iSORQo6vy5PA3RTqU8ooNfBYZEZJJF8oEMTrqmVTbguEJhOEtk1IcEtrUjrv09Y4ZpgC4wu3TQSSQzYzSBRsKpW+Nd/+iAuNRS+GHOdYqkYXToWiYtE90RrPreUmLV2KaApWfx5XeuMfMIcTSa7CYAXqklMUCltifIkIonUFDyVpmr6VCaIuwB6c5xV8ZLM5AD5EJire1PcdXIVgEYT6R5JbgreQhLjEc8Y4RqqY+NMkggnZ3tQ5rj92DIev7LXBIlFa6z702KRve7xYpzdrEFt3Gc8RjlRajDtBs7LgwI7jZOwPEylkrs1iSEkscTpjSWc3xyDFAd9NGH+eCooLjITsqY+RPx6Wkzvzt4Yx5FKSa7Qs0WOVAq7Q2rbAMBATYsgG/SdnEl0x1ld99Cr1jiGEhiHJMrrz950juVhaRQegQZJLOPr9CfzuqW+mHeCPWVe96Pk3eDSBunpdFNSO2THeBIlb7n/KQDAq559KnrcQWoSaY3fm1bYbZq5U5AOIKmWPctgkHGONuomILoK2qK4S6jej6FpA/2gtDeOCS7tvikOQ54LaGfgGdWfa79ukrlFhtVGTAxwgkRPrThRjF3VbjNH5rdZ9e7AmsAkINw5cb9NWstJ3fTYygCb+zMjRniYdNNFdDHIUntnG8VvwZcM1SR2fRkADd00EK6JdNNATWLAbgaJgv3Fpy7gzX/yKfzUWz8RPcYNTFJUlGzdTHzW1LTAWLAmcVSm1d9RdjmFktmtbUt52GitXVRtNLXfYZGn1b/QOHP+Ixc8+n6zaCVc7zKXaTyAvkbPuXUDgK5LtBnRxZzdPKOaxEThmlxGUnyOjCQRTottmWd4+olVPLk5xrW9WadPYjoiyG2IJBISQ0lrj/Mfi+bPXrfa1umsDAvsTrvCNenIvZT535vOMWpoy6c3lrA9mWNzf6bFXYq04MbUMnoo6FJjdkmi/Xqb2bQDwjUfefQqvud3PorN/VkrwZDUOkbZtVUfazHhmkVqEjMmAREKEr3qpgHURo/rB2BeJNGDNkwrTad3pfyPrw6TFL+n87pVM9UNimLWBKAveBPDSpBaANC6LR3H/X7Xnry2j7/53NN48dOPRY87iLqpW3d+rVFzdJHEFOEmX3lDN2gjpJR+k6Wbtr87CkmUgvRAcCkj8H7xJg7t9CHwRnFUQvfyDCujwiCJ9CxxawKgr7+uSbRlKM8/u2HneAAkUWLKSOfSV+86m+vzcnRlCKVsovKw6Kb1AkGi+2yliiCGkMSQuimbcIqhm/ZaYETQTSOQxJs1iYI9fHEXgOXMx5jrgIxnlQkgQkZ1MwXihVrmnWAjOvuvKNtdYH8a3yaCnL20Xo42Ozgs0+im9FGJxsaPcR/sBYLEBeimhlqWrPiq76tpVUfdJ7T4+JDEea1w25ElrC+VeOjCDl5wu+5D1R4XQRtqPmJrEtOEawpvTaKsnCg5CBTwDMscJ9etnPwtjrR8F0mx9M80+o8VoIkZZ1/rKitylgsbqYskuvdCKkvAZRf4+iTSmnHmCCkZ6my1TSTE0/sGg9yb3CLBq65J6ofX2/rPDT/Pb/jl92M6r/G655/BqpHjT+vn2A0SUxSnWz3RJCqz5zs42lxIlVMWCWmLi/THMUmSWLRTRERqDPIMx1dsT8Fb1kdJLTAm87pVM9VtSm0RQf/3dGu5TJAeCDZ6WhMOk4YdIyBLSik8fnUfX3LPyaRxMUhirfiaY3e/pBYkhSP4FMVAcZKLUiuFbrnBd77ybozKAl/34tubsWDHBRHBnG8v5PZJZMdljJKqCYjEYb17C7DUdskkKiet22WeYXVU4lqj7kuJLZZdALu+UELnw2/8yp7it9gDUghmJbTTJqr43yYhuYD2cdYHJY6ttgOSw2iBQYH0cmKQ6E4tBdxQSu8bvvKqWVWbPYYztp1LPV+gBQbRonx0U76Ha+trg5/4/6k91kjuc1xvyVzKYVLrhtoiMLHBRg9JTHDsAO3IpDyklBFNQTtdJDG5B2Hze1LGtEV5EummeZ4kt67nqJIdeUIcUzNbJEnu6y9Hzt09p9bw4IXt1vlPQhKdTTIFSTRCJrmMSPkcGUndlK7loMjx9BOr5vWvf8kd5t9ZL/tPr8vzZWurIlCDjHFkahWmsRUMRQloO0CuGA9RmVPovjROSuS4ySu33olaYNB8Yqz13FSKRUSkrGnpuY+vpxkpfw8FGrBJniu7U5s1z9KSK1bdNNyW6ONPbeHTF6lVjdMnkUGkYhIXktMKhIOUPnKp/A4yc+1iAjBWkKExYqrcfmzZvLY+Ks29FWOTTruVrlJsDCWcGxfHSuADG0AO0qX17ureDHvTCmedcxEzzodauvPgAo5pK0i0LUgskhhfk5h7GC9dddOlQYHvetXdjnJrf1xdKyglo1h6nET3DScu+mgbJbcDlEDmuQkdS3+/hNLpfoeXd3WJE63/Ek3YBJfNw3p8ddjuHczMMYQkSvdWSARLQnIBqknMcXSlHZAcBpJIP8P0fI72r+3nkuimjr6IiCQ2rAnJWFZClLpppyaRAsabdNMbY49f3QcQzjq65t4UKUW5VkpeFoDoWrcFRiqSmBwkVprWkJLZbdUkJqqb0ti05t7296T2trF94tIWhGSRCoMAl0nzpODK10uQ6Eb3nFzDQxd2WzSWJJVGZ0MYlXm0uhcVbfvaDcSo/fWcLSfT+pxb1/FNL7sDf/CP/waOrAxaY91hMY61FOy577HzZDb7rrIiZ2XO1wFXDk1sxdnkyzxP6t1pkSwZSXSD9FMOKusG9ynHKzKYInxuPZHqL/JcHnM9jX5v1gR80nNK6+il3UmLWnUgJNFzHn/g9+/DD/3hA3qODtohOZ+APyHM1bEsKlxTK+Xt98nd/1GBbDNHLpkwq3Uy4fZjK+a1rKkTr2rFPjddm8zaNYkagbHvx8yR3u+yBGg+vjGp9V9W3bQ97tzmGICcoJZUoMNIokydnsxrHF/VTjwFia2a3MQWGDF9EjnjEhAmaZlYkwuEKbh86xj7neLxmOetDgSyUoLX1vvp9Z9UyimZJ4nykK/CMTWAprxBYBcEKehdNkPtHychuYCmmw6KvLXfAIeDJPaYW4kJVyCdlZZnmTe5NQuqR/dLAKDqCLqpVJPoc2ZuCtcsbIQEpgQbLrycXBPXZLvjkUT9uUV7qQ0b4ZpYgR29iWdehTTpWLbfXkrgpv8uSjdNRRIpkE26bpVFElPquIBFkEQ0TYqbYzOLOG1Szzy9hks7E7PZtBGReGdXO8nxAkfufQzwdZqVR7hGyrTSczUsc4zKAj/5d78AL7zjaOszedYP2gA/RY8TT4kVoHGPoceFE0pi3ZJzTlp0oUQE3g1SpA3KDUiOu3Rdp01E9L1cWSQR4O/lmdC7Tao/vd5Gzw3gr5uh6315Z2quUZb43Nh67/CacHlnahKRLtrBZeQNKu45Nkc3DUn5S+0GiDIlGSv4ZJ4bzziBTg5YAY4zncBoUBICHH4GJvO285VnfJ1yKO/bXUtikdzu7woiiZJwUPNblwb8RfCq0nppwu15uTaZV7hlrQkS96dmfoRSpQieuS0wkmmjzLgQRRJomCQ9BF61nn/peH20rS2iw49j9uCALxVucN8gid0gUUASibkmI9VM4iICEWTnGAjUSybYNvOsagzKHLceWe68fnhB4nJHIClk7jOSCjiYfVsYp9k1oQRENwMx92cJAb34LtICI2A3g0TB6CKlBCnuTZ+SJaEMoG4vkRZs2BYYceMoQzFKGFc1dI8yzxtKrDxmazzDL7zzQcyquqWIlSpcQw/34nTTlPNfW0psCt3UQRJTxUXShWvqlnBNb2Nz6o/uObUGAPjk+W39WpEmQOBSUnRSID4B0VZS7Y+j5r+ciZlWgySGFMEcx45eT6wRMZSpACICtLN9KqImsSxkmXY6J0tskBj5bDcf81FdXAU+6stFczPCNQnXu8z995YoXJMQfB3E9O/V/5bqqZVS2Gvqs1t009wRYUpA4Ak59bEStsYzPHlt3/QzpVPEZeRJTCk1SKE1ItTMvS9SEZkk4ZIrPgRSoLIBlobYRZ1T0O1ppyax61xHI4l51gq4o+imOVMTGhmkc5RMPX+53QAg1ZKGrxt3/qfzGres6aSRSzdNa51kjyOqlAaQPY4pE6JIAn2KMGDXw9C4/nm070nGismouH3DJybjtsZadoJEqUwB0KrfnPFUWv3XF1gCMpLoQ8UlgGPa1BsfW+nUJB4C3ZT2stSew66a70LqpqXc3zWobspRd2PopnmBG9EC46ZwjWDkmCUhUgsiieRIDfJ4ahl9zsjkJyhQApYSVdUKId0UOpZWN/XP8f/804fwS+96GGePLeNMU/NU5jlGnuai7DwXCBIPKlyTSjed1ypdpGJB+gOhDfLma7Ot95xcBwB88tyWfq0J7oG4GjB3Q/DJpvfGKdUkEij7zwdEqUiirUkMOclpyIbP2fU5hDSN1JpEnwLiSnN93GbiFCRGq8sSkjUoxKDGbS7tXoelQWEEEKJb3Kh2704OFZw2WeSuHWaQaJDEgq/5nla1cSgv7UxadLMiQbiD7p1BAJFVSmGrUVG9tjdrobtcbVVU4iLzBBsSapD3HXKaXwwC746zSRl5nK+eeu700/zNb38ZTjSoVqiW1LXJvMKxVVv31BeuCa8JQB/NpdMaouBy7A7AhyTqv93TEaQJC4nCeV1jNPAIYnie00krSCQGinutY2oS7drpS/j5gi+uBCBEkaT3RJXS4L7Rfm0ehSTyvXK9+4ZwTtyyEFfQxEUSpQQcYBMp3PH64kb6BTHY8yCJ4fPBv0f+rZt4kn7T9Ta6bVdGiUGic41S1E0pweZtCyUkTsnYcxmlbtqlm96sSbyhRjdTShZh1goSU5AsjSQMCj9K1x0DILkFAy0SKQiYyVgVOrPuG0PzeuLqfotrny5ckx4kLipcQ9mfZLpprRxqWVpw3+0PFTXHPFzXUOYZzh5bRpFneOSyFl9qSZnHICKdmqyUvpgU2EjH8jV8lgIHV7hGMq2caP/fMC1ikMQWJU3/9TmEXCY/piaxyPvZfzo+OYRuM/EizzBcqCYxx6yuWSr5XKB/Pu34SnILDFMnKyAb9F1c/YVvzPU0Eq4B9PrFOSbjqT2/l3cskpiqbtoNmqUxO5O5uc+e3NxvNYHnsv9RCQ8GbQjJ1kvqpgrhgLQ7LkRjA2QHFCCGgZ7Qlz3rJJ53m1ZmtvdkHN3UJ1xjnu3Ac5p1nDQVcf67YwC0mDScyW0iGkc+GNz3g41QIAXwz9xkXmNjucSgyLC5b/v0+RJ+XWu1wBBq513WhG+O7nWrDJMkhOz1j0XvyeN44SZ3LtI8OQVQH7XVd04AHcyujaxDvzzMzfyVYujklR3HGYtuB4I9Trmb/t+PyMqJtHmlDG2c7DX3nkpSkl/U+khiXMDX0rdI8UEbP21Q5KgVf04mMS0wehcgQt201wLj+iCJN4NEwcgxSwkaXGpqCpQ+qxwkK5Z+6CycpQfq75pV4IuvNaDvLpu6JZ8TSV/32NW9Ftc+WbiG6L5JaqP23ynHIgpk6Le5RjSxJVMTGu9Y55k9/ymZrfbmK2Ujdc+kU+sjPNHUPNG9xY2T5gjAKO5G1yQ2m6RVyWSEazyOjBQA07n1LaxZtniNVFvcwmbDJeMRyDCSWOR8HbBbp7PhUkDztN6dtfNsK2GDkhT4nnFixVy3WDSdKNCSSiZAWdP+8XzUt+tp7v1WCHRTV4l6azxrBTyp6qZFpkVyfGvy1tgyKs5tjjXa2tzbnHCNqUkM3JNd359+q/i8CdctlPDIsoyp9wvP0RekzBpKWtd8ipxd67bA6KNL4aBBj+N/WyjhJAcboZY/aQiYNC6kbupF/Jtzt7E0wFVG3TR135CoxV11U3GOzrBQsK3fY+i35vzLc+aYMvOYoJQJwOoAAm/6JPaum00KuC3X6F4uhWtA40rhB/KKx/5gzyC53Xu59q8JRZ57eqDa9e3X//5L8eY3vBBHlgdJ4o6LGs1pkb7UZLHCfXQ8N1HO7d0huinL3qrrOLop1wLjZk3ijTFy3lNpo/bf8Q/AvK4xMFLyaTexCdwS6Y60AMXM0zrpDdrmcZgubGtltocv7rbQrcOoSVxUuIYy+WkiIfqvre2MRRI1kkaLROyiRXOUHK0uRenWI7pROoAOuhFPGypyTbdL6ZtXZA76wiKJck2KlGk1SYpABtrdtOlf/hoRO2/zG4yzm5ZtjUISBeEOt05no0M3TUG3Y/r0SUH6HcdXkpQMgWbfCiCJErXmMFtgWOEafu2iesSjKwNsj+ctJJ2uWay6Kd1TvjV5q0FqAOCRy3vYHs+NsiQvXBOJiCQjibzzGZPwKPN2/Tz9K7WWkUy6L/OEe3Iyq1rOV5feHRPs0fttUarm/Hv75snsDilI8fUS1ONkhEiPa78eRBI99zK1D1lfKrHpqJsaVkjU/a//Zpk/APYjgs3nmISfN7hk6+9inhtOpZSut38ch8B79w0hMUbHK/MMawzdVFKCNn6ZZz/lflscktg/l8EgXbhH3D3g1feewte9+PamldqNDxJpuT9QTeJCvmQmjp0J7BoytlWQim2BkUg3LW7STRc2urgptW1uXWAKlE49onzqe/0x1nEeBCigrtHNN0xBEp2MlUY75TEXtnWPnyt709Zmt2iQmHIe3QcrGUlssj/JPekMbTc2SK+b2s7FkETJ0erWUbhKYm6j9LiMsP5LEuixaA9liX0CKF4kkbKYnQWSnsUQj59TN/UhglxwE4ckghkXh1AAUnZdj1136aYZ3ZOR95YJEuWsKaG9ZF/xnNMAtENiRFoSkUQfjVDqk5hCfz6IuUI9A0E4iJDEU+sjbI9nLecyzzO23i94LM+a7AaJ9z+xCQCmHozLIhvn23Nsrt41hMBI6poxCY+8UzuZ8txwp3JWKRYRCSUT/vNHn8SzfvC/YGcyx7Rq003zrF3vF1uTqM+lO86+LlnG1ag57A7OgvTDQDKNRxL94l7u97vznDW929aXBlbdNE9D0pWy95tMpY1UN3XG2edRPjb9tpbgUOA86nH+0g3J+H6mcTWJEnJZ5JmpnQOs3oQUuHX7JHYtyxg/IVATKq0JlUPb50xq0wHoZ7vLJhkkJJ8PYpXj72ZZvL/lzi1Nld/2SQT6WiFVrRodkMQgMZpu6gaJES0wbiKJi5tFEv3OwcXtCX7t3Z+BUqqDJKYFKYMiT2pU36oTTKBJWiQxoSaxRW31t8642ASJ1/ZmrSAxpQckYBe31Ob2ZCnZH1tLtwAim9gCg6jFyUFi1an/CjgWbo+tk+ujYJ0U9115nlZgbvj4zbG4Z8dHiQqpm3qFa3K+t5lvgeSy3TFIIufIhEQLAOsschlvgyQu28xenkg3Var9bHP3JKG9ZL/0P74Yn/yx1wIIC650rWqQRE7tlYxzEAAZabjeFkM3HTdB4umNJdQK2G7ooHQ9u6iZ71hWJEdekx94csv8+z4TJGokkastpP8NKSd2T2UIkaLXu2u5Uv6aXKDvFNqkTBil4GsSeVpyaN363373o5hWNR69vKf7JEapm4pT1O93qIRRCSemJi6MJLa/vztOOpeZeXbar8ciiVISblQW2FguDd20yNKQ9G5yBeAYLwF1U2YPiEX2uIBD1gAAIABJREFU3Dm4cw6dEy5odr+TPR7zvNUqXLeaBRD/FpLYrONSgtcmT+XnO1VcJxfurdpZ29hxZg/on0suKAqp5F8vc6/lsMgxSWwVBySKICrLSgP6PpDRVyj9z0DvcYtRN+3VJEbQTW+qmy5u9ACGVEP/yW9/GO9/+Ape+ayTrSAoiW5a1aZIPB61IeQojabqZlaAuAy5Kxziqs0NmRv9yq7OQl7bm5px9NtSHEJa4JOCvQWRRFdwJfk8FjpDFZNppWMNitzQDaZVZCF1k8njUCygX390+zGLJK6PSpNhjrne3WbivsX8rx65gloBL33GcYN2Sr216lq3Ugln1oWFNVTs3UH26HV5TH9js+0G5HG8I+MPLPU4/Ze7dnROXOEaAEnCNabeeCCLfXQdSZ14aGpfkltgNEii8Lvou1i6qamRjTrUwlYre52l53tvqp/Bk02zZ1e4g/76ar5//p0P4hV3n2i1QdHtjPgxP/uOTwEAVocFHrywAwC4pTn2wsI1jPNpgkRhoHWs26+HEBEAvR5sLtXQN0Z/lrlPhB5/oZo4cuAu7050TaLTW1BSNw11Suyrm9L59yNS3T3frRNnxyxck9jMi2GTxARg3XNJNVejMsf6aGDpprlF0mMcehdxlRVYA8EGsweYfJ/n2C4rhJzaqOCS8UtikESOXRDTBol7vt1gdtWpSSQkUWyVEtgXOXZBKJEg3VtBwRsHgcydK0X0/u4cBwn72kGsy2aLrS9cuE9ijU6Q2B5rwB0P4s8hwFHqpou0wLiJJC5uFByGgpSHL+4C0Nlo15FIyZLMak037aIhXdufVnjksj7ezEH3knqpdZDEGIdw7mxavoJcpRS2xzOsDAvUCrjaSGlTL7UUMR/apA+jJpEWTuLJSyhpa0xlN6BBnkery87rukNHiEVt9Bw50Qh6H7COxZ0n18x7blPw1D6JRQBFef2/eR/e8IvvA9Cvm5QWyFCNTi9IdFBzyYpeHVHznVHIhn0tBUlsOzJ+0QJ9vBgkcdAcQ7+XVidLz7aPbio7MilKhoCljklOjGZX8NQaGnOjKUdVbXsQSnWC+1Oim2r0nYJEozia95UMyR66sIOfefun8L/+9kdajpSUXNmdzLE1nuO7XnU3XnrncfP6yYZuSntAq742JkhhKEqxtW19umlEm4h8gefNQ0ueNzT8rsXS5EkAyKduShYMgLOuuql93TdGqhMXW5AI5yNINxWCbWKbiHMUxpHE/7CpSaR1w63lja3JBfT5ldcEv3AKN8fY8w+02Qyh80/jpOcmtSYxJlGY5577pEM3XSrbdFMpuJRbrPT9yVh10/49GXi2BWG8mcACSmEoHcTc+vJRWUSDDvQ7dJlUfAsM2m+kmkTXb5SsL7gFHfAF6aYFjyR6axJvBokLm0ESAzfV1lg7FFv7s9Zn02oStXCNlMUBgMev7uFVb/4zvPJNf254zQA1wY7nd9ODmSZc09QkuvVmnAM0rVArLacP6J5jgEWkUpQMDd104SAx/li0cA6NKmdEIOUUm2tqWeT5b1oQUJAYS3/o9rfroVGdrPWdJ1Zb71tnK164Js+zpo6LH+P2vdwa235vA+E8hjLrkvNDCZvrXZPIobJxjbN5RyacRW6Ox2z2tMmSChvVlKbQtGtnYwP4Z7SqZQn6FAVcOp7bXkVSpeWU3KQx19uq1nPDO7v7hm6qAzViQ9D9poNE/hl42wPnAAC3H1tpOVJSQPrUphb2evbpdbz5DS80r5uaRIbupRAObKgFgxtcVrVGBCXHVUJ7FNIRkdg2HTSvrkmtWaTESve1J65pJWefumkMJZbm2aWS63GeMZxDHpkUk8eFEMj263PPsw3INZCExo7KvKWuvDIghoF8/7vmMlAkcZ1gL0Hmt7ktacRxTMIjlCSh46UG6fSdbCJHnqL5zkpAnLvCNd1+tt093/avFu4Tpt5y0URCsN5SYgEJe3dZ+MuWrpe5dNNRgi4Grd0rwyKZbupTNzVBa+Bc9msSK/8DAGiksXZ6kd9sgXHjjDLgQBhqHjfw9eb+rOXMxTdJV6iVXohdyL5rr37zn+P8ViMKszttt6UIUAK7xwPSWmAQHWt1VFi6KbNpkCDD0080QeJ205SXkMSEIJE+mxLsuRt7knBN1aZJxvWOtNnWlF6CtJGPClltq6oVfvSPPoaHGioavUb3h+4J5d/Yzjp0UyBNKKSNJMrX7b7HN1v/pjnKmU+6Z0OZ9fbrIalvgDZE+//GafVs2xwqG4fa0DHaxws58nKW1tLEbjuyjG99xdPxG9/2UgBIElOir/XVG1e1HAD4kB7OKLgN0YS5622TFlGHWthq57kZCGwGqkkkuun5LR3IUVafzew2RomwQZmZmlx9LB4BfmpTBzO3HlnCLWsjvOufvxo/9XVf4IhU6M91A7CYoA1oC7VUyi9kIt2PsYgIJ1wTajivv7/vgLp9Ettz1H99zcQBmHY/XXXTVrBHifUgksjXKYfUZXs96YLBHs1LSPiJNYn8uGBNoiCcRU4wIYlk7v2fpm6aiddaiyKF11Y2AeHrXcusQTFBIsfectEn3/H4eteI5IqnBvVuhwFkxkj7aaBWnws2QgI0Pgp0FALZDWQlumkCs+kg5l7LFPFEOtcrgyLJl1TN/S0h6eae9Lbz6tc3Q9VhJDEv2lC6uSkP1gLjZk0iYy5EHAtPbzZIIhXLR6uUOs595txYg851dYOQi9uT1riD1CTGjKPgb2Np4G2UToIPT29QrIsOksgVUUvmbn5JSKKD7iXJFiurbqqPGbEhNl9P41KQ3FYLDGYBuv+JTfzauz+Dt3/sPN71va+GUjqR4FLZpADMraP6qdd/AZ5z60br9ZgAwN1cfQjw5d2J+ffjV/dMcbso9d381LC0ezfY8G+GgN7c3ADA1LFEBG5dlVL9fZ4xzO+LcazJWeRqYOic5HmGH/6a55v3hmVCTaKhm8r3sU8C3Vczxhk1qhdpwp6aGTvmxkaJ7rmVxGRoLaU2FOcatI+QFB/ddKdZ867tzXDrEeuAScciJJGQ4qedWMHTmqQawF8DfW/5f6dNXNiaIC2k4xnjQQ2Cz43oJHvGBGhznJS/D0l099jHru4BQI9u2nq2QXMMBMALoKScKm2oT5/kWNMzUUjOv3DdQuqm0rmcO468q65MqFYsC8iiNvK1VoF7mWVpNH9D59+dAxAb7DHBdqC/KM3Tfbxj0GYax4m7AHrNWB31XXJpP7VJV0ndlBfl8VIdBZTaV6YA8PX9gLx3u4y0rq97Pc20CsyQ1KvbBImj0iQCY8eRKrx7/O73epViGQRYB4kBTK8rXBNTkxjRAuNmkMiY61z5HLSJw1W+1gSJK4MC25N5PP3QQUnovgj5aBe2x478cSZSmzhzudbu//uMgr+N5YFTt8QgiQ319nm36cDkU+e39RwJ7Yydo4o7/71xzfcvJWZ/yJG0ojzxSGKRparL1i26KTfPDz1yFQDw6JU9jGeVOeduIBHqkwgAX//SO8y/TQ+8qIywdYp8NYnuebq4PcF4XmNpkIeRRE/mkxtngo0AKsIHe2GHMLVxNk839Tvkeo76L0fDldDVlASQVTeVe3e6iHRvfgsgiW4LDDG45+imAmp8Pa2rUljmOfbm897n6PdSkPjktX2MSkut1wERP9HdqQ0SXQdM13H1x5xvgsTTR0bs93HXQEUkIFw1SdrUJTEY37HoeDGoeGqbiJB6sa8FBk9RtRN49LIOEl0krN/KIhzs0Tj3cDF9KrOMo5tS4i5VuEb/9dWaAVxwGYkkSjV4Wdbq00qN3Ys8TvPApZvSp/s9PyPRZobdEVNf3kquRCCJHEvAUgJ98+wq4Oq/qUlJoI8cv+OffRmeuDZujQG4gKP9Pnesri8Zqkmk+XPBpW9cKZSYuIw311xG2jJuXJToUsyHZR4NHtDavTIsosVuAPsMWg0IgW7qS94xwX1UkNgVromhm95EEhcz13H3CYvsTuwFISRxeaiDxFj6oStAQzd0dxHpBhJtJDEPiou45gZS7vG7n/kPH3wUUAp/+okLeOWzTgLQG7BPuMbSTVdx9ugyHm8oQPqh0UFwKJPlzlGan2R0/pYG8cgeHc99sOOypvqvRtvihYOoBQb9x6mbPvCEpXF+4DNX8MV3HTfHor8+hTTOUmrAqtZvk+st3Wfj0s4U+9MKy4NClPoO0X+CtBom2CDrOmmxDmEX4Y5Tkuxv2rVSwbYBco9Lq27atRSpcDpvpPAo0k0Tzz9nrlKtNI6OP2SSAhKKcj3NZRYAcp0gnd+TayNkma6tpoCR5ir5FtsGSZy2aKHSsSbz2ogocMadlxi1UbpfVecZWIQiFnUvd7LdsQqs+rPt1300dJ/AkevwPdkE3yQ+BDQZeSbYCCP+3TUBzTh5TJ5xdNPm+4SB0npQdVgh4jjmPPoVOfnn1GXFuDWJqw3dVCOJ4f3UDTbpke+hZoF72QbA7pj2e5xlTOAcou3SuH5wr5H0oHANizbHoNT94wH2et9zah33nFo374cDDuk+4emOMWtC715W/mDbtmXh/ZJuYtgkrQ+hTy6QXvJE45YH8WI3AIyatpQQsyi1r3SGYd2pKgJJFIRrDtgC42ZNImOuc+W7QXYd4Y7N/Rmmc2WEJ+Jl660jIy3iVCPzL77qOQA0jdNkaAq9IHNiN5zRQ7I0kJHEjzx6FW/8T/fjjX/wAP7skxdNsLe+VJqHnQuKDOK4VOIFZ4+Y13W9XzyS1QoSk1pZ6L/DQnasdyZz/NAfPoBv+/UP4uGLO+Z4ZZ4nISkuvTNFOEhTiXMzTw5J3JtWeNrxFQzLHO956JJDmWiCRG+xvRxsAJE1iU4mVTtM/P1Fz8b6qMT5rTH2ZxWWKfvMzDGkxkbBZXeDmlayE0nWfQaiRSo6m3ZUbRWTkVcIoy/SM+BDEjUCv2hNYv+aEUWUsxS6qZsRlcb56KYmQLmBUGJXpVBK5riJs+MrOjikdZzmKp0T2gN2pxXGs9qi/Vw2GIs1E48J2jg0l5SUJeMCSyDuXu7RTc13hlEiKQnEqpsWPIrijnONxIeAxajk9D7bpy+AZIn1R8GkTPv1UHCTm+u2WADQd+TtXnZsxSZHCEmMZSq5wZyPbupHm+lzaQkIi0Da17rPPz+Or+307TX0ndzzHaxJzPnjAfLeLQYcEckEtrYwgjbavSe1crk4jD3/dDxujpZuemPLDej5J+2IVD95dVTq8rEEf77I5SA4BkksmMQFVO0P9oC+cE1UC4ybdNOFzHXcfbTFnU6QOK9rs7BG1yQ6ClUK+t/dxf9C06D+7lNrWBuVuLg9MbUD1F4iliJmHCJSN2V2X1KKI3vkyh5GZY5RWXjpP0Q3XV8a4M6TVl1zWORiAMzOccHaQoukFOL5f/eDl/Ab7/0sAOBLn3kRd51cA4l5+NT3pGNZtC3u/FPdKkABQH/crKqxvlRiWK7gsSt7vYWF7e0UqKOQJKo5q53NlWgh3f5HNE8AuM1BjZcbhNov9R1QKRV+m0/dtOvIW6dVHNIcr0sbbV4P0EGAft1YTEAKdKmEyuvcaWXBuHur2wJDQhLFeySBAupeS2nczHNPWpGu8LEWNZf+BkB0ElwU/uT6CJd3p61+Zb4MtLsHnNsamwBdCixDzcQ5hdkY+ieHLlV1gGon3I+x9NZUtFNucSMLU0koCmDXhfWl0iQoT21YJHERKjnNk6u39A3LBIfc/Q294xhkVRgn9kkUgu1AcCPWijvPiYugU6IkuibROOQAaj6w0cI18nf4+iR6gxQmcWd+VyC4587/ouq+UckVie4r7DmSyFcMUt1DH4NJquZzzHWLoTKLVPJukNj8f2zrsEXNUI4zQhIjg71m3iQoNq1qr3CeOV7DJvFRwoGQD8T4aUpF0k3djDcpdX2eIIlZlv27LMueyrJsK8uyT2VZ9j83rz8jyzKVZdmO898bnXGjLMv+bTPuXJZl/6zzva/JsuwTWZbtZVn2Z1mWPf2gcyW1r7VR6UUEXSRxZzw3dFMgHkl0e8BJiz8FqktlgSPLutlt1WSJSUkplrZlkUQ9z64cMwDj8P/iN38RAODtHztvaj2kOgrAIonrSyVuPbLUfF7XP5qFLmKetTPHlJpE6yTnYubn4rbl+lPwTT26pNoqzlyqR5JwUK1M4MUVsQN6QRoUOW49soQnr+23aDxAAEmU2hsYZyt+s6c+ie73u2aDxCU8ekXXBJFjUWT93xbTpLhg6Dizqm6JIXDWLdKPqWMB+ghAjCMpoj0hJJERruFqSdtj4ikyvR6oAmoWEg6KeUZbDAhBNdGXITciRTfQSeiKBBQC4l85dEdSOHX7leUM2kC2M56b831ha2xVSjNGoQ7xSGLb2Q3fx1wtUTD7zwRtMQER0H++Q6qVNIY+65pJAvmSCdz605xgah+yNMhbLQS6SKJVyfRbF4GJqonjaIsBOmCIli/WJBpkyb7m0r8lM+MEJLfIM5xwgkS3BUxan0QXSWx/RiGANjN+QgyVk1uTQ8E2fSe3boWRxP4zqr/PO4zd821S3F+72l27bDKXPxaxgFpjlD8AJsVvDqWOovuKaHq/BQbA+5/X07p005R6e8CKl8UrjOtyDokBESNcw9JN6xi6aUe45jrVJB4m3fQnATxDKbUB4G8D+LEsy17svH9UKbXW/Pejzus/BOCZAJ4O4NUAvjfLstcCQJZltwD4PQBvBHAcwIcA/MeDTpSc39WRn49MWeSVYYGdyRyzucKw0DU6sciSW9ibMwsk4KqPZTi6MtCopdNXShcoxx2P6F3GkRSQxGMrA5w9alX3Lu3YdhYAv2mPZxWyTH83qfe5dXT6+OF5upTYWsWhX+6chqVco3lhe4I8A85sLOFCQ+Otaz9Fhp2js7GmCAdRuw0ayznk80rfR2ePLuPJzbFzjzjjehQlP/XE/raE2pI88waXhBSdObJsGpAvexQhQ/QYfUyGtljXXhQR0Ituux5L/w06u4Ijme5cR2SfSbjGeQbmAUemSKhJpOlQTSK3dvmEC6S+eZzNnXtEcv7tBt0fb+jPNzBINDRtem48FFBAX1eqaXORREmEBtB7ACXELmxPzP2fZXywHXJAOZGKWqlgZMPVEvmoxXqO/SCF/pWaXIlBO6X11Ye4+dZk2qdvWdOBzXJHJrEX7DV/Y4LZ9vm33ydZl5Gg5xxe73y0/BAC6V5rqfardSzBv6ic4O7Ict9p1HXR4X3DPU+SSE4IcaZz7A5TEeefu09iHHKuTcS8DusmLJJIoHmmIomicE0guMwYRKqq/b00AZ4qHwouxQSQUG/sa6V2Pc29txepSSS12RRV1MJBEjkkF/DTTbkWZ4sJ1yj7umSfS0iiUuoBpRRpyarmv7sjhn4rgB9VSl1VSn0cwK8A+PvNe38XwANKqd9VSo2hA8oXZll270HmSjfE6qj01sSRcM2ZjSXsjOcaAWpQs1hkyV3cuV5XQLtp6pHlAa7tz1rUEqn+xXe80aBo/b9rT1zdx9ljyzi+Nuy9JwWyAFrCJRZJzMzv08eL2Gw6aGfsuWwjiUKQuDXBibURbj261EYS80ThGocSWwo90TibOwEPV8QO6N9bFhluPbKMi9sT09ybKMZsk9zAhliYRSv+t7XEfJjzSYg7oS+ApWdwTlM8ktgJEucqGCR2M7sxjgW9z9Uy+rxyjtpX13Gqie1jRCCJKfWuHbop9wxQQoSzlPvfnbc0zt5HHiQxMrm1iHUbF0uoLKGrWZaZmrZWvz0m4QFox3BnMsdtR3VCbF6rVpJEorb60B6pV24sldk9ZBWJ7rECHN5RfSe5VvEKrAvVrnLnsrm/CUm84/hK6/28E+xZR947zV6AH5M44uu/9F+vmAyD9oTWcl9PwNRAyv3/ssjY4MhHed+dzPGrf/kwZlXdaoEhifLo+0ScoqU7Jt6TXAAcovvSexzaFkQSBSpz6vPmzlPWE5DAg3Bw2QUP5gFEUH8ff0/G1bv2x7nvk6VoJBzE2gKDKTWJeiD5M5OIIJFalbnJdY5urecTr9SuvzwiSOwK10TVJBYIrfaHKlyTZdn/lWXZHoBPAHgKwFuctx/JsuzxLMt+vUEIkWXZMQC3Avio87mPAnhe8+/nue8ppXYBfNp53z32P8yy7ENZln3o4sWL3nnSpqXppvJNRXTT0xtLGkmsagyLDMMiXu3ScrZzdoHU89H/30YSLUe627PHezwHpXOP79r2eIajy0Mj4gAA3/HKuwD40Yb9WWWcpDNNkHiqcbqSHFC1WJBoahLLQnSsL2yPcWp9hNPrSzi/NW71IExRXHSRlEGgBca8qs294tLNuCJ2QP/eQZHj1qP6HD54QQvskPLcQtnnPOO57o198tw2fvYdn2pq5GCOU3oyfnqeGY6v2GxUy0kWaGV+JJHbRP0CHADntMY5hBIFxe8Qto8BAArhzZerN7PXTXYQYhNAtgWGzBKgwnrOkoRrnPtfZkDIWdPUdhsp9kd//SSe8X1/jKt7bfaDP3DTn3n2Ga0qSP0MgbbytGvjWY1a2Z6HALA0dJB0Dkms/A4oRwkMKUICwj2p/LW1dDw2uRI4YB9JDM9Rql31oWB+JgPV8Ov/f+kzjnfm2KffAnHqpnx7g0CwJzAnUhHIeKVq+5pCeL2TnrlQgOmjvH//792HH/vjj+O9n77MJxc740KMCx8FOqZO3L1uLookGYe2hSjhNM9uTS4QkVzh9sXaf+2knrJuvR07jilDikH8WVRc+dcEju4OyIlhK4B4OEhikTesnMj9xijllylBov5L9Y9A37/27Ylk3RY8+ssj6KZd4RpTkxjqzeVHEw81SFRK/SMA6wC+FJomOgFwCcBLoemkL27e//fNkLXm76bzNZvNZ+h9973u++6xf1kp9RKl1EtOnjzpnadBEoclplUtUjmJbnrmyBK2xzPj3Kdk/y1KKAunuMIdR5YHuLbXRhJT1E2NcI0HSSRKwrKj8Pf9r9PKqr5gb39Wme89sTrE97722fi/v+1lzRzjkSz6vUtGyj/tt4XopqfWRzi1McL5rXEr05UirlM7i5+PjgYAb/yDB/C8f/k2fODhy5jOa5NF44rYAWBaaeSMlOYeaXqAERXI2yfRQyUpPYvkV//rd+Nn3/EgLu9OWwIEXrrXXN/vxxixAw7djpkjF1xSEO+zRRBBM082uExzZKKQFOYZuJ41iW6SBOApMj66qa/eWDpWq09igvOZkjRKtTe97ZMAgPubVjJG3VSghbsUUOrx+tlLu+b9XLgG1CPRVdQ0wk0cZQhhB9TQ9Dr3cujeyphrEKKIAXxtYYxxzcRj2mYAXBLUllz05udJXNA1+dovOovveOVd+Kdf+aze2K4CMRDjJEv1zb4xHLtD//Wudxy1z0G2OaOXuTYdiyCJLitGGic9p39831MAdGLZfd4l4Y5ahYK2vsJ1Sk2iG3MsvN9EBIl9lJpe9w4TkMTae72l5EoIKe3OEQgL0NDxeghwreBjqUrPqb0GfJ/EG1luADh1mw0FOr50Sf8lfyaGblo560TofISEa1i6aVDdtCtcE4EkAsG6xENXN1VKVQDenWXZNwP4LqXUz0PXEgLA+SzL/hcAT2VZtg5gp3l9A8DY+fd28++d5v9dc99fyCamJlGfnlmlMCz7T0gXSZzOKUhMQBJrCgDl2h6X131keYgtqkksbIY8mm5akSMpSxDPa1vL8tUvvA0vv9NmaKXFHwAmMyvck2UZ/tGr7jHvLULlXPKoNPrG+eimu5M51k+u4ejyoNXP0s1+xsT3rkx5WWTYn8m/66OPXQMAvPWBc9ibVlgbWQVQ1pGsagxLjRoDMKIwG8u2vYQso+3fELnzX9fKLIKPXdlr0Z0GntoxSoocdRBnQlJ8GdMQ3Y5zYkIZ2i5tKHbTzvNObzmqYws4MjQve7wwksIJ14RrSXV/0RDdR3+v/jss5WumxUzSnBHOXFGOMN20fzwSSLgRQSI1P/7Ueb0N0O8S21I4dcJ33qLzkq96tk0kSkk4WpdOrPWDRBFJbESyJOPW15jsP4cu1cpfj0Xj+Ocm5Ei2z0kcQtFHewB7DwyY8yJl5AHbHmljaWCSmN3jsZTAYDDL91wNBWDSvu1v+cCvkzHiRlxw76dyCv5Fh+Hx3u/78tZz4uvVOmioqJe2J0bZPc/tGeb6JIasn7jTf31XjUuuRFFwGZqw6//Ic+wG6c2xQsFlztXqhymx+nNSwCEFiTzdMaqXI/OMhmpr6ftdk1BxSze9sUiiuwf5kuS9cc3nLN2038+6ay67xqxb0jVLXEvi6KYd4Rqim4aCywCS+N+zBUYJvibRJPyUUlezLHsKwAsBvL15/YUAHmj+/QB0zSIAIMuy1eY76f2FbDzVJ5ec8llVt2pUyHamcwzLHMdWBqiVVvccFDkGeXxNoi1uz9mNXh+fNtEcR1cGmFY1ticz86Bx9RBkv/yuT+OeU2v48ntPA9AbV5ZZR5KTIHYXhF/4phe13vMFUhpJFGhzCS0YumhnfNGw/jss5RrBWRNcbywPoJRt26Gd3eZ7Ijay2ln8BoUfSbzQKKre9/gmdidzk3yQCqlnlUYbCTl87EobSeSCvZgMldSqg2h5APDY1f3W5uOrSZxWCsMyx1FH7MBVN5VrL9KcJoUwStelDcU7u1JTZM8YJkuokUTvoQyS4l6DmJpEgHre+Rf7rrop2wLDhyQm1AmapsAOapDaAkAKpA5iu5M5rjT384cf0ckZWkdKX+BGrIw8wwd/4DWtpuJlnntr4taXSvNMLreQ9P78wkgiFwDEoNT02fa9HLone89NBG2R5tlF0mNEO4D++uptleJjMjSvcQlcM0eOEhhKrPcCAHrdnzjq9ZbzJEnssbiEn79NinXI7WuGWRaFJPrnSTW27jhpf1sblRjPpri0M8Xtx2w9uphMjrlPeucyHOzxbYnC55+9brXyKqLSd3bvfyBMNy3G0Ln8AAAgAElEQVRYPYE6GDToz3XGBX6fxMoJJ04ZJDEQXMrqprxwjWmBcUjqpiRcE824a87bcoIPGkO3DokUAdROR69XmYbVmzdShWsiWmAAnxt00yzLTmVZ9o1Zlq1lWVZkWfa3AHwTgHdmWfbyLMuenWVZnmXZCQA/D+DPlVJEI/1NAP8iy7JjjSDNPwDwG817vw/g+VmWvT7LsiUA/zuAv1ZKfeIg8x03WYONRihEukGm8xpLZY61pj3Elb0phmWGgacFQ9dMAJhnIq/bpaQea9Clt9x3LogkKqXwE2/5BL79Nz6ET57TWfV5rTDIcxNgcs2sfVkjXyBFwjX8uHg1QxskpikgWuEO3qmj7y7zzFxbEoUp8zS6qZsh8/VJ3J9WRhn2/ic3cXVvamTaJbrprKGbUlD4aCdI5JICMaIwOovZv97UugTQASk5l5lTk8g5CboGN281YPapm8Zk1rnWAbH1ThxFKbkmq/nrDRJNJr87x7Dz484NCNdp+vqSds0g6R6adlWF1U3j7n+7JknOZ1BMKWHTjrW3PXAO03mN244s4X0PXwZgs8FFnrPJjq6YzKmNJRNYAvoeYoNEBwGjZ3ppYB1lrkzBpbZyxgnXqAgkXUa3Y5BExtmNQAV7NO1IJLFfTiEL15h9iqObemiqZo4LJo64YMOP0vWvt9QjrnUsJnERQrKMn9Bat8LBvbR3h2ogyyITnXl6/eL2pFUDKAvXxPTT7NJNYb5XMs4pjxEO4nQBopDEznND538x4ZrwHIH+dQshpRxzIn5NaL8WUkqWwANpfzMtMG4Ak8S1bluW1NINt09i7Jgiy8S91FK7w+JlZmiMAA3QF665TnTTw6pJVAC+C8DjAK4CeDOA71ZK/SGAuwC8FZoiej90neI3OWP/JbQYzSMA/gLAm5RSbwUApdRFAK8H8OPN974cwDcedLL7U6KxWCSRM0IYyUFQSl/8Ms+8TUI/+JkrpubFbCSFiyTym2iZ5/jK554xr/salwM2AAKAX3/PZwDYAFCCw93PcCYt/kC7JrFrKQ7oosI1FkkpMK8V66Tpnoi56fvoilv46l+kOdI46Xc9cU0HeK97/hkjdOEiiVKfxGGZtYLEMs86ARifsfNlTaX6NjdIfKLpy2h6y3mCFE2vznBs1RGuMXRTX32CLyPM1LFEKofyPdEiHMKWIxnOWnNOWgzaw6HpoXNC5z8m49pXNxWQRE/Q1p2fZO3Nt318c6wQkpjFb9qx9sCTW1geFPg5hwFB7SyK3FODnejIA+11mdBb3zMKhNVNubp0TeUMIYl9J82nZEvWdVpjpfw5xctYJDElwWXQd5ZxEX52WEqmd5Z9dCkmuOQSfjEURE6kIoRkcb3sYgIpae8OBRss/a0x2psv7Uxac5Ap6JFruXvdzPw8YxiUOkY4iEfbYltg2P+PTUBwTJmqrr3Ho/WCqxME/P00u5ctBvHn9uAg3VRgoUj7m08Q73qaEeEL+Gldo99h6Kaz+BYwWSbvpTHCNb1zGStA0xOuoZsyhCT6CaWHEiQqpS4qpV6plDqqlNpQSr1AKfUrzXu/rZS6Uym1qpS6VSn1LUqpc87YiVLq25txp5VSP9P57ncope5VSi0rpV6llPrsInO8vDPBM77vj/GnnziP8Yzopg2SKAWJc4UytwEHoLOhg0JGEt9y31P4+l96H17903+OT53fNg+Jr5k7bYbDIsfx1SG+5gtvA6Az3gBfowYA57cm5t8ff2oLAEx/RZ9DWCnZafKNG898SKKMSPWOb5DEVLppc55KOUtFgj90ba/tOXTTlEDWyZBJQTqg6ZsA8IaX3G5ec4NEnsama/2WBoX5LUeWByYI4dRso9pLCJs9UW4BTdernE3SRwuhmkRqzQHA1KX46KZe+hUTOMcoh3briOifIYdEog3FZK3TFSj791eoTnOQkHGlS+ulm3o2e6m5N9lkXuE/feQJjGdV634Tnc+Ak8wp2R7UZlWNpUFumAIAsDJykEQxcPM7aSzd0VGdHpog0VWcXiAg5YK9GCSdcdJi6KZdpzX2cvQc+Ui0H+gjzn51U5nxQvf3UPC4ZOGaUDDbCcAigpSMpY3Sb/AnxTgkK6oFQyLaac6lsC77xLOk57QVJDrnySLi7c/HrOXdgNsc2oeSMmuQGyBIljHBfQQojiJD7/4HImjazL4Yut6S6F9MP00ucRETpPfqhpU/2WHoppEJIKN1cKPppiaZT0nyNF/S0E1j+oQ610NMkgT2e4Ch7kYHiQUdpPn7+YUkfs7bx5og6hf/4mHsz+LoprOqxqDMsDayJ3lQZl56xrsfugRAL0Rvvf+cCTbKPBN53S61CwBONkIJp9ZtewnOITnfNIu/++QqzjX/ruoahROQSs3cRcfOM248q1qKqK6ZvjExohgmSJSdXc5c4RpAQA0qHdjTtXWRRE5+XpyjiyQKQTqge04CwHNvPWJeW2+CRKmWdNbMEYBBqd1ehJyQRkwAVuQ8LXbbCRL3plWjZEZIohykUJAIAB/8gdfgF77pRWa+PgXWEG0lVREP6DtbsYjIIs4WVzscg/bwlCi/g7ZIcsXUG3N9EgNZcqnhPAD84O/fj+/+j/8Nv/W+R/i61e49GaDbSa0lDmKzpjXQmpO4ozpZuSbR32C66xC64wD9jJB4zbJTk7uYumn/eseg1HxNVjqSSJFUOk01QhBDUDd16/K54wD9YANw90WZbtoNtoEFkKzmn6F6v+6tFYtkcUGb7x6xc7T/H6UAKp7/ULAhl7PQGnNpZ2r8pGGZ2/pmBkkMRWBZ1hYTUxE1idya7AYI4jjmOY1PSnL3iHcYmxgLKY5K180tC+GME+WJXUu44MarbhpAqbvPtiljudHCNQ5KzpXASNYNEqOEaxyfMNTbMoq6a5DEBLqp+3lVA8giMuU3g8QoI0SpqhUmswpZ1lY35WzaOMnkGAM6q+lrrn7f45v4G/ecwAvOHsF7HrrkKJc6dNPO0C6thhwSOm6W8cEXBYkvvOOorhmoFWa1DkDomeV8tDoCSQz1SeyN89S2dc0EiUbdNM6R7DvJTPa5URck9JeuewtdZU7KY1f28IO/fx++//fuw7yqe06yhCQ+fnUfgyLDqfWRcVZDSOK0ST4AljL83V9h5d05IQ2336ZknGoZAGw1dNNT6yPsTyu4amu+mkQSrgE0qv3VL7zNvOdTYPU6ydwGFRFILFpb1b0GKmIcTb9Lbw1mn5n7K6RuavrERTwDrpR9mfPiWS6VmDMfKv7hR68C0HV/7rWUas1CfcpSakRibVYpDDtrsqWb6mvNNZheCEl0kne3NqwOSppIa0JIlITrVakQI0DDJS5UsCa36zgtiojoJEn4WO4xyHyIm01AcEhiOAnhrlsxzzYg15v5fp9E0fPNT4/r003jauI6NZAmuJfHSPtbSOBFah3j7ssXtyfYawT/lgeFvJdGJtNSa0lNCYAb3EegNmz9XQRNuys4ZESRIpIynLqsv0ykr4oNhNfyrJMkaSYa9Zx2z0mYbtpffwAPkmjoptd3/e9az0+LRBLpXKe0wHADUqmdXYxwTY/RRkhisAUGZWYoSIzorQgEkUQvGTXLst+CZWmIppT6lvBMPrftyWsa8alqhfG8xlJZeIMNen1Y9Ommw0KWjP70xR1840ufhiu7E3zksWstypLE66bjE0TffeC4hQfQCzcAvODsEfzeh5/ApZ2Jaebso1b66mZ8gdT+VK5JXESAI7UmsVuTJWX/XbopBWGt3k7MuH/7ns/g33/gUQDAd77yrh7dTlp7Hr+6h9uOLiPPM6wMS+xNK6yO3FrS/ph5c18BwPe97l4oBbz2+bYWNc899V++PolMHRFgaxLPHFnC3nTeoo75rttsXvupXlwWGYEAjEOXVIQAjVjHEs4Iu9cgBoHk6JU3GkmMem5q66hwjp1SSqNLgSCdSwBVtcLjV/Qa+dePb5pnsoUkdp3PCITiegvXzCudBFp1GA0rToN7oI8cBtUkJeEaIzqW48wRHSRe3rHrCbcmhBxCjpIZV5Oo/3bRvfD93x8DRKANeR9ti3GQARlJ5OZq15/+97n9g9nj5W2VwDR2gf3/GCTRJybmrUlkardj1DX7DAj7umTS+Q/RFos8F2vnAc1yubg9wfntsU6SF7bVAJfwiwtSuHvSM4ZB0mNQmyyTETrvHDsJ15hAFtB78HjeT6bF1Ptx7RRC43h1U/8cNejAXbe0IF3/P58EPawWGG6iMk24Rv9NKXlikUQh4e1N5nfBoli6KYckhgJL4MA1iQ9Bi8Z8GrpJ/d8BUEAL0OQAvgbAtfAsPveNgsSre9Mm2MlNkDgR6aaqhyTqPoky93kyr7EyLLAyKrE7qVqUGZHXXemFlW4e+ku0SgmRmsx1k9bbj60AAM5tjk3W3FuTWCuRouGvSayDwjUxDylt/sl005qCRJ5uR/SYMs96wjVlIT/YQHuRuLY3i27S+vjVfZxtJMUpOLTqpjw9o1bW8fnOV96N73pVu1MMJ3gTVZMo0Ia29jWaenJthL1p1dp8fAJHMwfx7FqW9bORMVLmEpIY49gxifUIatniSnqp9V/c/RVy0Og+iHluamW/Z1D02Qz0FeFemv3Xz2+NMa1qPP/sBqZVjccbGjUJdXV/F2DXsUVqnRY1er5dCqKL3LvzItOBmx9tYGn5jgP05feeAgDcc3qteY1HwEPUVo5aFuu00mftuDhqWRs1o9fDx+srqfrHcAqsgL92zI8kkiqqfH/psao5rn49qgdk4m/TtdTt1+rA/a+PxQeXPicS8NBNA3N0P2vGhoLETFj/mz2RWmY8dmXPURLuJ9Lo2CExsUwMgOUxnF9i9ugQ3bRzPhTikiTtREL4/AN8YiwU7PkEh0LjFg3SObQ5JgERK0pl/IobXJPo3tsp+00XqJBigPYY/df11RcSrqGAm85ldG1hE4eQeE19CEiiUuqH6d9Zlr0NwFcppf7See1LALwxPIvPfXtqU1Mzn7o2NrRJA4l7kMRBkRknBNAbVlnk2J32Ocx1rVDVOrBcHRbYncxbMtkSr3vWKHKSfcNL78AnntrCd75SBw8s+gJLo6LaRU051Zl2n0hF5dmk5GywwrSqg8I1UaIwPSQxLfsjCdfQ/xZ5bnpOUnLAp8gG6ACY7Ore1Fn8ci/d9OL2BC+78zgAK+oy9AT3brsTyfhmt2F1U0m4Zns8x+qwwNpSif1Z1cpsSmIHNFe39qt9LD6LSfOXjGs2HJP97NK9XPVNn4l9Er3H6t8nSvnPvTSucu4jdn4eJ7lrleMAcEFiiNqq58ivCY9c1iq9X/rMk7j/iS18+qJWZ85z2fm01BoBSbwhQWLdQ5YoaSQGs3VI3ZRHUuYOC+QVd5/EB3/wNTi1rhFFqY5rXiusRMmft++tcPa/k31GpEMo3P+hqLQv+BR2/iW6qe++9CUX7Vop1CQ6Ca6ySHPk+6I84fVHcpBTHfm4msQuJdl+n2RBJFGkhUvCTfr8nz26hI8+plW43T65QD8ho7AIlbm5boF9o3u82FrGXpAYkxToJHgNkhhD706ku4uCQypcOrBITWLBJHjj6ab8HtAdm5L8PIi1Vejl1mi9cc3nfCKIXXOBAxFJrCPuya5YnVmTY4VrHCQx1CMRuK41iV8M4P2d1z4A4BUJ3/E5a0S5m1Y1zm2OtbJkc7G8wjWFRRwBfVMN8oyF0d0altWRdshJSXVU5mKQMm/qbMjWRiXe9IYX4tiq7k8nIUREoyJHfnc6x8xFicRx8qYozZEKe91z4Ron/y8ZOTqL0k0lmnA3AHv68RV8pmlFUuY5K/5ANm7qVAFgc3/WylK6VKauXdmd4nhznf6Hu08AgFED5YI9ovBINE6ADy5jC6K5zN3OZIa1pRIrQ41u1871p+vNXYPJvO+Qm2MJWUwgJArDBZdx9X5dxxqIcAjzrkPSvB7hkPSofREOAtBBEiP7JMYkSlxnlqX7UmlD4B7hnlGqb37FXfoefvjiTjO/3Js4AnzOp5xcWdS4IDHr3MucSqCfAso7M13hFAoQATlxFw5IGUQkAkmkr0wNLnvzdLLh4XHOMBXn/AN96qivJi7PM5b+BrT7VHJWdp7TyPi31zogLknFOOQxQSJzn8wDzdW5cZZq7h8D+Oqk5PMo1c4DwK1HNJL46JW9Vlsud16ADr5UTJDC3FtAXADcVpwOj+u2O6FxQeS+s3bFJiW7CDDN2V+nrP+yYjKBdlLdyxaH+HMIsJ82LYouCloJPq2D62mxjK+u0ed8IojSGLdOX1KkjemT2KtJjKab1vZvFJJ4/VpgfATAT2RZtgwAzd8fB/DfEr7jc9ZI0RQAHrmyi9EgpiZR9RySMqcWGFzmrQliityIKVxsalhWR6UTpLTHUZ2NZJJjR84PqWluj+eoKmVqGyWRinktH09CDUIbtk8lkzs+sFifxDyzc+A4/IB1Hu44vmLahLQpuP3vHs+q/4+9d421LcvKw7611t7nnHvuvdX16mr65Wrc3XQDbTcCxLOJTUMEthTkOIEIS8QojuNECkqIHVsxWIqFJVs4TqQosWKTOH+sOAgpOCFxlETmkcSY4E4cFAgY6AYaupuuoqpuVd17z2PvvVZ+zDVfY445xzf3PdWpNndKV/uevffcc+6155pzjPF94xtBnOKVBwJJrDjbD6/3uNgd8Mwd5yT+e3/og/jvv+cj+MJnb4cxC9qokWcD1Bww99iut1RXUz3ZjDg/mXBxvc8kuZs5iYd6TqJm/MTDvjpF9bstsA9tmaS/ENfDj6fmvzR2xmiQx+d6kJS8lte6jmqGbkcJjMy51xCKYIy356jtCS+tubsfeudbMA6OWuY/yzI+6zS2m0cS9/PS2IPWeR7KeVpiMq2cRFVwpYEkWk4DgCLfiUG/AC0nsd2vRBLzz6v3k44sQ9Fb31usE/fYFqDRrn8UfVPnKIICy9JWgwzzLL4bVzZgXnLqOhW4G0qaaioc1h6vL7hVQ3ssWuxYuf7ennn7mo+7LMjUzeVewjrp0klhEOBacAWwaKr69egVrmG3sWks1/++EZR3fco9wfez1tYxqRuanXCYDXVTC0kUnb0NyrLEjm1xP3M2aK1+tmz+PUwJqlcf7vAPP/5SUTsbUJztBFyotaLuMF0CQwjXzAcb2gZuFEn8bgBfD+DVYRg+C5ej+BEAn/eiNYBzAp5djfnffPkCt7ZjWCAW3TRtT98+cSUwlAjJPkGyfO2uF193Efpb20mNBgNORdJSrdTWcKC2rk7ig6t9ZqTURCrmxiFVjQYbBuFGHNitFvngbSRXNk+TjPQMQbcLKrHu9eefOQ+vuRs7fo5sl/sD3rYehvcudsWGoG0iXsTimRVJ3EwjPvTOWApDM8hjnk07sbkYjzBkaonbPgfm/GTCw90BF7sDznzZgIrD7ea6VJHjNpLYjkjq9B/rYCsNZIBAN45AEjXkjHFkVSSRVTel7pv4OVpuYUAMWihpZU94+cEVpnHAk7e2ePr2aRJcGU3jsy6I8cbQTWv0w7os+WzQvep0fkB38GvfzRTJURERzrBz743POefGRqR6c9tiv/S+4fYfoLz+Qbim5qRUHO7rhO7bHG9930w4275fNyK7vi4RSMBCYPTr0QoK+/Hkb+0/r9Zqe4lFi62tf38uP/fEWdhnz1MnUaBm/hModdNOB1gLsIf/N4bTEGAG7SxtLntvBfQzf56NEjyV382xV/rOUhYV1wJ+luAZgCLgUctJ/FyVwEgDlRtlj6z2W21JP+3W+fvtf+On8Z0/9DP47TVlbRxi6lgBVISATNueB5Iz4FFKYFB005Pmy7STuCzLry/L8nUA3gfg2wC8b1mWrzu2eP2brT28PuD5Z26Hv8+2UzDUa0mr1wrd7v1vu6PmAwGRnpGK3bzw2hXOTyaMYz0nbq84o2mrqu+tDuH5yYRhAO5f7bMDqCZS0aK7jBVHyhJOiflYTAkM93hMCYyUDy77xXIj7nUv6OOfqyWIA0659fbJBnfPNrj3cBeKO3tqgbaHeOXUp2+fli9CN8j9wduu23bc5m8ZrrdOJiwLcO/hdaANWTmJrehzgQiS0e6StkXWNlOcRMsslOqmPQIQUvCGyX8EajmJbUOXOUwPczTUa6qJ6WfWxqsFPJ46P8E4Dnj2zkmouzoNQzVwZKsmvjHCNX6vTINAbrxKbg9hpNWCK4B+4Nf2BLZOogxcMIqEgAyUMEGS/tw2oNyDFrIPoF1/99grcLRf95+aQS+DAkz9O0ARTpkZsY/1vZlzQyp5Kk4blZM49/1utfPNFK4ZK+kz63NnmzGccalwXU05l0G3ex3gsXL93Xjta3KcuEt5r1lj+dfV37uTSgt4dM84S5XvxqLiaVsWq9zGOqdKAEiurVbw+SZbWHMN+1prh9ld92Hwgjf6+fvgao9f/qxLvfj7v/iCG2sYIk2+Yie3AL4iNYsugeGFa3pLYNwc3dSNuyyfBPCzAH5rGIZxGJhZvPnbxe6QGRW3kpzEmpPi1B3zr//80+eOHmPQTb2IyQuvX4X/t6icbUW8Sk2uVelvGAbcOdngvkASR2URe5l8C0lki6b61rMp+M/yBw7LW/e0MY8kyN9AUvve9kR03qxNxCm3jnjq/AT3Hl4Hx8IjkFof7yR6uqlsLSSxNyfxGGqZb16W/3y93i/dvy7KBlQRyEZOYg1Zak1Tp5vy6qbeMGCorW68440tiaQwBqHsx0Tx0/e12rK0841T9LvWtDxZwNFNPSL+1rvxvrlztlENNMBO0tei+I/a9klO4v/yvX8Av/QD3xpeq0nJM3QvXbgmDzrlffQ9waS2VmijjGEHlDlg3cJN/v/EWi7FXYw5Vilp9RIYfqz6/tP63fKgwLzYwSZAc1IYJz13SF0/G8mtU/v6+nH53kYwp3H9WzmJJ5sx7AklkqjN0Q549OYWquwOMigptyCW3q1/t3Y/FUlc+gNH7m9rL9dyEpk8ZeUeNfaSGr2ytrYi3fRzhCQOfU5iqjFQ238AhNqgAPCx33h5fb/7W6PJz8a9BiT2RTfd1AvX7GM/qgTGDdFNh2F4xzAMPzoMw0sA9gB2yb/P+3Z5fcCTt05CuYKzEy4n0RvzT527C72ZRmw3o+pYpnRTX8frxdevYt08xUDw428NeFrjWacO4Z2zDe5fOjVV/1na5s8iGzXhlJuo9+bfc+ukk266UiKiYS2Ea8QcU6GJFEms0U3PthOevn2Clx5cZxGympMekMRz3UnUkthjbmebbiovozOACNSsZrhOQwhWvPzgOjjoMSex/A2c4pk+lra2KNrQWFJWqO8m6EaMsp02T8rYCusknSNnEAI1JLEWXOFzEtODXFuTLJKo002vQ7Dj2TvRSXzmzoktXFNzgCt1Ox+lpdT8k82YIRveadACXBYFVM+Jy4NOaasqThPlNtyc4nPHrH///27hGvF5bD9mjtY6aZ0dteBWUwBCBAWYexQ4PicRyOmmziBv9xuGslYuhyRKcRd7v/MfWdsXmsI1yhrxJTBOpjGk6vgzxH+e5rRRjpQIdlj9amJiQPs3kL81QAYl5foPomDNbmrwzl7HtfumTZNXz4Ajg8mHuU2b1ujufs7jUPb1SNsbXQJDq13IgA5poGYzDkUeu2/XyUb9mYRu6h/rpco6fm+2BIYUrrmhEhg9KODfAHAN4JsA3Afw5QD+OwD/esdnvCnbsix4uDvg1kksivzFX3A30Jba6qbuPT/xZ/4gfvbPfxMAYDsOqmOZ5pv5PMEX70cksUrbUgRy0lYXSYh0wNunm5VumtfAq9FGW7L1gBJpIlUaa0bhJ168Hw4DP6fTTrqpj8jVUEs/R3+DPpcgIq1kY8AFEc62E567e4oXXrvKKFK13E5PU67WjlSS2P1aa9KLtYNtsRVAa7klTvF2DHmyv3P/KtBN/TWpBT1qm52kcQJ8tLuQTSe+m6R7MUqebi79AhD+Ky+iH4skpuMxlMz0fa2WOgXammSENLToM5Cr9HqD8GQz4u7ppm7ELPl3KMfiixuzbX+YcVKp3VnNyTIct7GGJDYCOjWU1HRIVTo/g9K5x2MQyGMpgb05iVVhNuPMmcZRdVIsg1cGBTyzxmrSAViM3C83lnvsFfPRauXOhJNYQ9taww3DUNBUAZ+T3nYA9HSDdf1vRrz1Tkk31XI7AZgCX4UoT/J8dY5KACJek05Hambp1vFvH5Sk6isqQZK2kIkevD4sRsBPAQ8oUR7FTnC2VaNPJQDRqvm5XYVk3ogW2AN+b+lEEtMczBaSeJUIXr74usvT97a9RpNna3dm8wxIokU3lSUwFjIn8ebopl8H4F9ZluX/BrAsy/JzAP4EgD/d8RlvyrY7uPqFt7ZT2L6+4vmnA5W0LVzj3vPk+QmeW9UvN9NY4fB7o2II6OFhXgKqWKNttdRGXb9SWc31S5DEU083jZ+lRTospbN6raV2Ll3L2P0nv/06PvrXfgr/2U99ws1hfU93CYw1+uM3JRml2ok5PpMgIre2U3UzBoDLvaObPvfEKV54/TKjSGmOjZtPW5TkJoVrFnComXb9Q6mUdXObl0gbapUumRuH1DSU65GJJGs5IsvS3lTdZ+bzpOk/0kieiah1xSBhkcT0NziIPFnZgmND3ANp7lSLJdAyeGuo+MPrfVgfb1v3OZ+zUau5yqz/G6ebNoySqMKaX0vLcashKVZ9v2qeuFEDFSgdAFY4pcxJtI1d3bBudlPQHo7GBihOkXHm1CL5acCz1g+I95tVV843GWCZl+PUZemcxE76odaPCW75fqWzYYiSVM6N64MzRrfTiPc+dweAU/72rUbJNAMeRwQu9FxeIihZcaSsH1wikPT1H/TrzwiZaA6HmTpQ9AHx3fop0LV819Y9upn0XNdHbf/x3/8VvPfP/z3sDnMI5qcgACue6N+/mer1FT2S+OR5ROP8/zVVYEq4Rq7lYDhZRpCPXvfmJHTY2G4AACAASURBVN4ckniAo5kCwL1hGN4K4AGAd3Z8xpuy+fIXt042+Ev//Ifw7V/xLnzle56KdRI7SmAAWNVNtchbiSQCMfJQu9GuD/XcLyDJExRDHhIaw92zCpJYQxsMZKNMUI4Rm2Y/5bq8dN9FYH7s5z6dzeF0M2IYOkpgrIddrQaPpPal3/FD73yLkZN4wK3thOfunuGVhztc7qJxL/PhfGPEfGoGk6UkpuV/UQaJZriuEXZfvxGIUubB4TaQatlUZ+/I4sY96o6Bxr8+323sJvO3xjp0GoTaYW/WSezI5U0PNu2gD2qjRkReWyPpvvFFb7sLIC8bVKMotcZ7I4RrNDEx3yKbIX9+P89tx61iJIegnyZcUwncmeqmyh7Ul5MYn6PW5Fj2ST+vNV56SWYK7dfPDubMUYNbhjMlgwLzbCOCvp9EiXgnPT7H7FuDZsgTAaeauinlgCnOhrUml0VjvazrfxrwbR9+B4B8nzoGEfTj5d/NPfbSTSlWiHpOEdfRjyeDku1uhZowsOZEE8EOLTDfdNzEdQT4POUi5cOYo8aSAaJtobVaaZtHbX/nZz8JAPjHn7wX9ppxqOdNai11it3+o9ugV6sd+K6nboXnnlrTizTmVgzU1seW9V2juqm1KIVwzQ2VwGjjjHn7PwD8YQA/CuB/AvDDAC4AfKzjM96U7WJNPr21nfDBL3gCf/XbPwwAGAf3IzF007SdVJHEWHz5C544w+9962184sUHAVWsHqKHGdvmDeoeZdQmRRJvn2zw2dcusRnHYPhrIhUWbbTmyD5KTuJrly728JlXL7LPHscB22msOumyRSTRoy/5WP76p9/t3/zG9+EdT95ykaZKxG5ZFlcWYjuFBP3APx9zGkOKpIacrAa6WuYMrK8ZTopmWDCbv44kLjjdjrh7FreDIidR+Q0OjYNDQztn4tCu1YBkapsB8d6hjd3CILGNLS3/iDEIN8ohJcWUyj4dOYkJTaqFJFo5iTUEzM//S97xRPF6Lf+lNZ5bjzcbSd7PdSXoGEnuQxLrjnOdPZEG7tKXzTqJfg8Sxq6NUmMdL3cuGYM8DcKxNpsU5qGQxAYikr6uzVFDnNO6oFpTkUTGSRTnYs/+04sAa/cAQ68fhlIkZ32l2U+jwLHqmodlwZh8vl83p5sR7376HH/ru78SH3pHWuIpD0Cw7I4SpfP97Dl27+VJMGcI+/qC0TCu43jumgSH1LDJ1bqMhJMO6MI1TVZIsiaDIjfa1wOolGUxUPjavX1oBOBqVQAetX3pO96Cz7x6iZ/++O+E4LlXKQX4gKu/ZjUhSiACSO9+6hw//6nXAEQkUQtupUI6tTbKeT6KcM3nGEn8LgA/tf7/3wbwEwB+HsAf6/iMN2WLSGJ+OTxEzdBN07YZR8xLecOkdNNhGPAdX/luAMC9h077p3aj7Q+2uimg0718v+eeOMWn711mZQs0ZCnC4Zazlz9vilQ0jN17Dx1F5ZX1OoRk42FYHW7OcvFqXzX0SxNI+DPf8gH8sa/+PQAUmH9t14cZy4KQkwg4hza9jum8W+OlTXWIZvZgKw3yXtTMN5+TmDqJQd20gWS1jOuWuqn13Uon0TaaJN2LcUjdPI/IY/EOqejHXH8gv5Yscs8cps64Wec41nNC24ZFJZcuydvzwjVf9u4n4zwVR8pCSd8IJHHX2CvrEXmbtqgKdzS+n5aj5v9mDMKyTmK1C4C4XqWYBoNI5XPkgyulkmd7jrVIvhVgrCEOFt1UGtdpEKXVxkHmGx+n3MpekwLtgW3IS5pkRM3seWqKiy0kfaqkHMjUiI9+8G0h5cbPUat3SOXtdSOCKObIBiXTMXw/Zv0D8cxnlVtV4Roj2FGj81t5gpO2J5CBI42Cy6D2qjJ/7b6e6s7XozQ/3AuvX2WBoVoJJK1lwjUNgTWPJL7n2Vg+L9VzqFcBIAIe0km0lEqLOomHz21O4rIs95ZleXn9/8WyLD+wLMufW5blM+xnvFnbw2vned/alhdrUugBgDs4WnRToDTsZHmDb/7i5wAAv/Dp18JY7rPzz9vNdQoV0MoTjDfIh975Fty/2uNXX7wfNv1JMSStvCWJ2Mh+x+QkeucQcNc1NZy3U91Jl83LFtcKtbaKX6dzlBudp5aebka8Y1W//eTLDzNqH4CComE5AFoSO+OkqGUiFk5dU9vsPAUuo5sW6qalYTEvfQ5A+LPlJA7l+vfPt5pEuOmotZhnV1Hwol+7o3bYSwq0bNuKgaa1VN1UE8Sw6J+AgSQm983Hvv+b8V/9ya8W/cr5APXfTtt/HrXVAneAEqFdm+W4jaNOt9uHoJ9ONwV0o4lSN5VIYrXHOl4V3W73kygdH1wp8/aYPkB5dljqmu4eVZgMhsEr9y6Xw9WcopunuAcYIRONbsqgq8Og7K2EIS+de8aRAnRU1kISa2eAlT8vz7fF2A/CHAe5JrngYvpe+f9qP8WeOYbeHc5tazzVcWhT0AE9UHIw9hLpyPp59geO7IBTQC0Ve7IFHOxumEkCAK+vzLQHV3vMczyXayWQtJaWF9k0BHZ8Xu6XvD2ya8J4CnPrkCCbtVbYF91I4hz7MSUwbgpJHIZhOwzDXxyG4deGYbgchuET69+6vv/nUbsMSGJ5QZ1BXhehOdmUl3BbQV9SuikAvPetd/BHv/yd+I/+JU9vde9TkUQmYqo4bj5f5ve909FAliVu+qNiSFpR3ZZCmpuLlQ9UXst7FzHZ/XI3Z1L9PZQEH/2pXf8gWV+ZY01d1q+Ps+2Ed67c89965SIgKnGDrDjOjfE0Jc/0M9V+FQeMiSKrAhzr+jpPlOluecXdmmGdoL21sYp9laCA6hRcPifRXxc2sl4UBacMO2+Q9/UDysP+ptVN0zyKOt20/hkaAunGz+XWn71zmsvda5Fu40CcKsb/o7SWErRG9wUIx63i3BzmGcOg/3a1ckbHIIlcTlz8/NCPdNw0cREmULLPxiIM68b1N4WDlPVvCneIe4cVrnGKx8k4DJJYQW04JLHPIAcaNHmL7qg5AEs738x/N7kHRSXuyvlWoM3ukQl4qOyORs9aoDydvzqWGvA7ht5tn21+npqd1kJy/eeqojDNgGsZOGJR8QI8IFFLDaiol3e6eSYJALx+5UCH+5d7h4CGM7GNJP7FH/sFfOff/Bk8vN4HwMH1q8/T3wNfmCCJvk2TztRridb48fx7AYAvgSGEa9gSGDeYk/iDAL4KwJ8C8BsAngfwFwA8AeB7Oz7nTdcurt0PfUspVVCjusQoWnnH+U1TIlkp3RRwG9F/+B1fFl6v1ekzI0YSnl6bL5IOOIc0fqd6ncTooLWj3d3Uyoaxe+9BRBJfu9xlvO3tNIYEeat5lbYp0E0lkthWYK2py/qN4GQz4omzLZ442+C1yz3e8eRZ9t2q5UQqm7KWxE4hiSpFicuJ05FEhxKlhkJEEnWlWDPfUo2Qu0dLSKAUVuAQQeAI+k+BpNiHqO8no89MP/n9bHVT/fprzUVN4zi1HME2/arcR4DjZPIZ1b6bTkmp5YkDjYCH9d0SNDc9InaNfnpx78WmSCr9epCsYk0SqsAS/XKf1+6XOrPjOFDqyr7fMeqa6r61tGlbMijACtekdC/vjL1hOaEKvZtDsvIgVRROYZzLviB0Lbgi7RnZtDIpfg7tOeasnJ46ifl9wwVc3Rj5eGxQIJ43+fOt8bTgnRW8qPZrOvfxfb5xiL8muGXkJFaYE20kkWeJ9bT7K5LohBpTRLAeSACA//If/DoA4Kd/9aWcbjo2hGtW27AGMKlIopm36u+39Qm6BIYQrlkWjm46tt3AHifx2wF8eFmWl9a//8kwDP8XgJ/D57mT6CFjDRXUogFAm2rhkUIpuGLRM+KGpSEp9fnXoP79PON0pdCebEY8sxaCj0hivU5iuyaOVoPNlrsHdAP0lYcRSXztYpc5IF100/XG9je3NKwjksgbdunfvt+7njrH//uZ1/D2tzhUsS7/7GgkdSSl3FSjAmjtW9aRxGPyIdw8yyCEz8+dxmGlRNWUYmsOtx6xBtqRZM2IXGBTOTdiY/UfYZmEg3BUmOsIeOMu78ciiel1odWEK4fUqw93eO1yh3c/fZ7ljUzjUAhuMZS0WuBoMQzyWuDIUnFjlObY5qnqNlNA7gvtotStfla5jfRns+6ZtN8hW1sLJVsPlI4D49zI/EfX7L3EzdMJd/BBkvKcYoQ7aqV7mJzEfuGadV6LFyXhnG03pxyRsoaT+4+cQ32OuiqziVwqZ4BF25180Lt2LrbophqSSDhEaYA97FsMAt9JnQ6OlKRkNmeopDfMtiML6E66C6YR16T3d1OvCecA9zr3LUHD2ne7dTKFVJ6bbIFu6hHBdfiacJls96/2WYCnhSR6J/FkGvE/f+8/k/0etTPRCghE5F4aM73CNQd7QQLA1CaD9gjX1EYjZvHmbruG81BDEq8FdTRtXom05qRUOfwVuqOjP9TnX1e/yg/FUN8syUmsJ9YaSKLhSBV9KpQVIN7UwIokJlTGbrrpOITvV6V/Gk66doimr7/n2XMAUcCj1s8SxKgpeQIW/1+nqTLRfzXgoeRE3DmNFATtHrDoxVqEnHJSKtfE/G5iY2XKbQClo84oCwJaMWuunxSOOBiBi23Ib9YPqW/8az+Jb/jBn3CfNYuDrYYkGgGgWuCoWbuzSoeyjP+bMxIsZKNW85OlgKqFohtIuuwT7pmWSIgSTFvAI3uHDIEhkQ1BmwYxnkRu5gWUQaIHGO11Ug1uGXtJOkfGQAN0VgKL5KZLhEUgtTJIvarMrJqzljs8N9Yx0KYSpq9r/TRng3HANOXWZnBRsZ0Y6rQmFthD7/bdWCddzS082Ai3Rks+GL9bELNKr8lsB45KKvP6PHOvidu0Fcg5P9kEPZCbbN6evH8pSr41KMnpc8FJTBDIWrqHdxJPtyO+6G138b7nImNvGsv6rhb66/sBiV2ysHRTKVxD5iQadNMeJ/FHAPzYMAzfMgzDFw/D8K0A/u76/Od1awoQVNCXWCNLcSwD3TTvd92gqALReNOQFIZXbylLPXPHRQzONlF9qZc26vvVnYbad3O5jLUb1NMbX7vYh/eMo5dJ1m9Q2fzhWsstDDmhlTnWi4L7a+J+oG/7sCsNemdVA9USxAGsdSrbv1u1TmIzKKAYFgQlrRqRT2jJ7183uY+879msXzW/rTKkjnauh7aREye/m3PcyI3VCwl4QbBOdHUh+gAlIsjksfh5zprj0LhvAF2E4TAveHktXr0/zBmaqdJ2CUra0YpslTXSjD6PJW36UZp3OOtMDT0nxQzm+PtbCfr1lPyh9laFNkrVNlPODhY1mMU69s+3x8vXJRtcqSHVTce5yoBooxsyKGDl3vmmiZKw118GnKjAXRHMYejF/ahZbTxauKYSdGrtXVnQIszddrilKJLVT0sViY6bfW9nCDyREyrvb4bK719flnw8i8oPVBDg2UASgyOb39/U2lLYBa0p+utf1Io+1PfW2ycTHl4f1NeObZe7Q7Cz718dcnXThgjcvYTN9sDXEyeQRM/WOZ0Uuuk4VlLH2te/qOcb1E07hWvYnMS3f1nz5R666Z8F8P0A/lMA7wDwKQD/NYAf6PiMN2Vr5apV87g8AqAhiT76L6LkJt1UoQwB9qHRokmmC/JT91wdwq/6wqcA6A6wvxYWjaFwpAy5e/9arSj707dP8Kl7F3j1QuQkbvqRxJqzHZHEPoNESvl/y5e+Df/5v/yV+Jr3PhP6AHnEzn0vI9emgggCBNp2RB6L9rv5efo1+8N/6msxIOfYa+pekRKsr2WZ6wR0IIkKAsny+P367VE3zQ7Emc9JlMIdTD+5n/g1WzNKWnkUv/LC6+H/L7x+VSbbF8Em1yxWQomYtYMrQD0Hsu0Q1fNDfGuplZbvre/JQFk3zzcrIl9HEucm1Q5AJSDQUiSMc/LNIVLVLq6fQvfinJsKamPtJeLMsSTy034aImsjzuU6MUsAiKAAiyRKh69H7TL/3WznfqjcNwy9OC93Qv5uyrW0frtWkARo6RCUVEc3d3uOGUpKpGBo678rt1CyQohzw4/hHvPPq7XUudwkjCcGXdKCroxwU2/gSMvTB2x2E2DboGk7P9ngky8/bE+msz24ciji2XYM6qZ+bq2z9JXCSUSCJNbLsF3tnZN7ulVS1UbleixtfRFAuZasuumxJTCe/9rmy00ncRiGj4qnfnL9NyDaHB8B8OP2TN68LaKCek6injTvD/zy87xRI50bnm7a5wDU6vvJ/JyPfuA5fOLFX8NH3v/Wde66shpgR7ur1JNOtMHP2zuJmXDNOOCkIyfxsLhrUdSZWduOiORrCqASARiGAd/8JW9LvpcfXzE+O68Hg4Clkvx5kVz7oLHqjT19u+SnyxwR3wfgDQSAow3pYj68uuksDm3G2JX5KLQAR6dBDpSBGba4uva73U9o2p++d5FdJ00UhglA1GijgH1v66qhrT5j00n81L0LfP1f+XH84L/4+0NN2VaLJYYqyEbYX9N8p4UuS6EJg2lMEiAJHCmGfJMlUDV2+5ANPza1/gWS7uZooA0Cue+hcmoId1OAZhpCPbK0sXTTkJNoII9hjgLNZdCXWKcyPkc56cr9Brpf1mWdR7NbgRIBbbQHKANwvvn7qHZNS+Vcfo56PyJQXjhE3DqWlGvauUwCCW6O7X5pwMkb39Y+6fv10uR1xV37HpCBCyq4WwmktfKAz98AJNGjiM/cPsWn7l3gOsk3lznKaXs5EU+8f3XIAlCttIjrJCdRNu18c6yt9nco6aa9JTASdVNDlIZp1if8F5Xnw560/v/3PvJM/n9s+0MdSdQUioC4iWk3TohYi+jDrjEOUHf2rENKM0j856Q36J/7Qx/Ev/EH34s7p5vQr4YkWhGqmgPQUjPcVIzC/bzgmTW/77WLXYh2DUNfTqITrtENJve3/26tOZY88nBNDOOzV1q/Ke5CGJJeNML3Y6LdOnW6LsABOGS8pBfP2Vy0ORbrOJlHrenOJU//8fPkcxKVEgC2HYlJoKvM9dfGs2pk1ZQFgZgPAQCffvVS5CRquU7u0RSuWeS+ZQdXXL/8uTSKq/dpI4mfePE+AODv/uNPUU7i3kISA90omeM6PEMB1Sj21p5QrC3YzjYgjd1++htAUsskkh6iK81uRc7lPNtov59ngSQaTspYOYMt+qhGCWRA6ZBfGOimNpW2VricctrkfUOgPcNQQ+n6nQ3LmdIEUACYgivSTogqpcaaHGr9Gn2UfZJB4CN7Kz7H5CRKJD06Uu3xJJXZfwblJCr2nRXwk2OxgaNuuqlyHV3f+pq8fbrpchL3hxk//LHfxHd85burQIs/A95ya4tP3bvA65f7eCZWQBgAIW0DKOmmm2nAZUVh/3rv1LS1fUhXeOdTB8Kex5bAkMI184HLSTRa00lcluULH3mEz4MWECbNSaygX60Dv4YkhtqKhnCK5oA1o89VJDE3QLfTGJwxAIXUdPoZvYIrj4ok3tqOmMbB1UlMok+bacQDciOJdFP9Olr0GECnQ9momX79TdU+jVq5PrLIsZfkZwzCVgmMY/LN/Gu1OVZz4ozDphS8IYw0EZhhHKIwTzEem5MoxUXYnMQeJLEV/fRUFwD4zZcfZhFwzahgKGkaAhl/65ZwTemUUutKoT8f26ycYw0RYYNiQHl/t4Irmropg4iEvGiBJLLrv5tadgRqkI2XOGAaE0c2dX1ZSGJr32rMU+Yk0mindIAZRGp9uTv/S3XauNy2fYaIu0fr22m0cItuXaNp9wqz9cxRXkf/fKvJ/WQhgivht+5khUS6qe/DOcAa64hZl7UzuL2/5nPz82Xy+yUiDlgMlDintLXSNxySyAvX/J+/8Qq+70d/Hs8/fRsfef+z6nv8GfDkuRNjefVil9iS9bPU01S304D716VwTS2YebWfm/b8Mfe2P2fDGcCWwJB003kPbE7r7ydbj3DNP7XNI4naIVdDv9K8uaJPRZGQzUnUI4u2EaM5RVauzbHCNaUhaect1erNeGPr1nbCxe6QbX4n04DdnkMSvSS0pcbWuiaac0OXKZDXnzCSl0UWZbcjwlowgc01qCG5bSOhnpNYV3fUcwsBxkkpHWfG2AXyPCJrLN8vPxDf2JxEec9ZlKFhGAqRCt9SCt7HX7if3TcabZQJQGgIJJOTeJwR0y6B0es/BrqpUsoI0CPJzH5Xy2Vp0SQ1Y5BVdywcN/Drvzcnbhzz8ybuP+3x5JljyfGHeSrry14n9TOYKwIf85SpOoniuzlno91HDwqQqI0SFGaCAvnvls+j2U853xj7oqiVayHAo+4kHsXuAHcP5Oq+XOH4dIzwf6ufcIp6HOC0n/9/S7gJ0APzVn1RtSwLOJRau/7tc6N/j7x9usHusBSlmmrt4c45P69e7Krv8WfyU+cubea1xEmsMb6A1Lk8UYRr6jmJ1/u5ft7UUHuLbip/N5puKuokzvsbQRIfO4lIaUrlYm7lcQH6phwKYCvCNcNQdzYGsfH4Ns9o7j41NU+T7qhtPI3vFfoplEAp7qL3ayNZZ9sxOonrd9pOIy2TP6+f03LagDYltuU416J9tc3nMM+cIIaIYqafqfZTDcL+wvFxnkcUSicc55I2zTnAx0jCTyJKyDikbi79hrWfZ5rbxkQIY784nnWP+j46kujGf+eTt/CrL95fjdIh9KmWwDAoSlV131ZwRUMoDISoRuX37WI1ClhnMdJi+RI3LAMCUPaThrqpLq2fv1ZrMi+3J7dK5h9R1D5l/zHRBvH9LGpxNp6yvtrCNTpFbF5IVc5OJHEQ+zmL7Pk5+UYhiSpzwv7daoY8FShU9gULyU3H8I25v1VKrGXrrsHT2M892qUbtMAp+bulJgbxu8k9oSe9wY3HBwp9v1I/wmYqAWVZFoZKmwWuCZ0Ez4CQoouHuV5y43wVx2PRRB8UvX9VdxK9s/eWFUm89zA6iTVHNu331Pk2OIkcknjA6UZ3xKr3GrGOgeS86c5JTOok3kBO4mMnEVGFVEP4pDHoW6CbNpBE2W13aFNyagIJgJ3Hlc7JN8b41zZ+oF+4hjEkN+OgRmS8BPTZdsLl7pBFyHpKYPhDq+a0McIRGh3KQiBj5Lns159/RMxRiVovTNRacTYY4Y7NWIoHWTWy9LzV9TXDSSxpklz9Kfdeb9hxh7bMZZkJ1MCPJwueU0iiuHesMilAHXG7XJ2oD73zCfzqC/ezA0jNCSWi3ZpwE+tI9dZJ1FD7tHnjYQF3/0emhj6mVifRqlMJ1PfllhFaQ/sBDhHJBW/61UYBvgSDhnayCExwwAyHIfSr0B3bTkopJc/0k0ahhTzKfiGQT0T//cd25ySO5XnD/m6LsraYoEDBsKGFa/rtCxWRMgIQ41BB4Jn7RgZO211UxJ/Zy2MOng+S5M/XxyvPfEvd1/cr6m6b+yuKsdjv1muTaP0Ad+bU5nj7xDkwbDqRT69I62rL5q/Rk7eck/jC65e4fRJLvgFlsA8Arn2/85MoXOPP0qkuXNNi60ndAoClm4rzhi2B4esdHlYn+oaEax47iWjnqmmCDEAbSZE0F9+sw6ZNN63302gFgKPRvhG5hY9iSNYO+82UOInJ4bOdRpqO4KPZ0TgQry/MHOvOZc2RktST7Hu1rqMSxYxR02o3tVA3E7X29FYZxQSOoxL61/Q5NkR5GnN0yEb+3AICJQ33XDQI0+etfqmSIZ9bmCCJjYhp2U8YCJaTWEHcPJL4nmdu4+H1wSXpr0u0WYPTiv7XAkCdCDyDULRyEh9c9Snf+WtUr5NYGruxwH3juw1lP6DtpNTQfqCfbsesfy1vkkXAtDnawjW5E8zUaQUawYTO/Yfpp9VJfMNyEpVAIbcn95e8cnPU6abWt9NQkXmxnT1AT9+w7YRkjusj4+wdQ1OVTgqL5AIKAt+eYsIU8H04R1YGsC3bIu2nIYkM3TrSphcuT3MsUzD8860m6b6Ap8Tq7/dlti46kcSmkzh7RNDRTefF0VoBDkl88lZEEkMuYwNJbNW4nAY9sMgG/MJ5QyOJq5M4eyfxMd30xprPSdQ2vI2BJOp003Lj8X+3IXv3qBlbx6qbmuUe5IHN1DtsGJIW/aeWEzetOYmXuznPSdz0lMDwSGL8O20MbaVWx8vPX2vaQZN+r+pYrbwlA20DNJpktYvrJxwiP8f0M7W2mfpzEv1Bs4jDF7Bz4rTakUxkHcgRQT+PVpPGdU9uYRrZdYY81y9dJxYl2ffR7hsfWX3mjjsQX3pwHagvrZzQ1vfTnD2KSn4EQjEqyHbaLq576aZczndvTmJNuMaX3Gn1yRFBzpIfh+MQwWI8sl8uwLSeaywikjhg7H1TqOBatMVRj+QzdEcgDxyxaCcg2QWcs9G7J2voC6uKKnPN0nlU+yl7Cc14UYKn7eufG8lMuoGfY06R9P2a3VSl3l6nDSDVTUU9U9oBFmhWPH/b/TZKKTZTXVZ8N97ZRoHIAhzdV6Ob1tVN3VnFBgMZJNGzzjzd1I0T1fz9nIp+a8D1Lbe2LuUp2dtr6R5Aew/Scql7yhmFvZxVNw1Iolc33XN1Eo322EmEUzfdjHpBaw3mB2IESXOKQsT6IDd/m9ctb1Dfr9dpANoS7X7uNbppb2SXzfer5Xc6uumIi+tD5hRvRr4ExmGNZteuIyulreUW+vnXvpf/Htr3qo6lUsTy12pzBPrzLyaNbhfQlz7n3ioMruVDYD20TSddi74RimzpvBhqcdovFbw5JreQiVr7fhLJMpHEmpO4izWhAODF169CdLZWbxKwiyLXFI97qetMcKtFN33g6aadTmLN6fZ7U47k2uqm1aBf4/7WWAKskSavJbX+BbLh/m+j2yXd1D1aK7kQrqEdsHJfZpwUje11MNBLeW+3nPp8jtqe0O4T97u+Pbkm1NVbJoKmO2pnvuns1e0Lk12gOhvNKSp54ms/LBHg8QAAIABJREFU4gyQAVdGyAcQlMyZDwqkKF36fHU8cS0ju8lGErVALVMCxnc7Nm+VpqBra7nhRJ1tfU4i6yTaOYmSbgog0E1rAo9A1Au5c7ZxNui8BMZWC0lsiTdpudQM46KwJ1l1U08tPazlPB7TTW+uebqj1lpUF0CnCWtRXf83E2kqE9nbh1Rt8T+KIElr869RHwC0ndKxrEEIuBt0Gle66f6QCUL05CS6yGYyVhVJMebYiyQqB43vx0Roe2sStahsrab1s5w9P88aklgX81nfJ5DE3hxBYHXAyAK0h2AQ2sEOQDu0qTKJBVWSUST085FOup2TWCK5gDs0p3HAU7fjgXhr6/Mvyv2AcQC0g83nbFsBJ20veRS6qTceLvecEeH3iVrAoxUkYZBErVZotU6oxhKAfW+7vkoAwhT7cI9HCadojix937i/LaXF0K9y5ljrREMS0/1e77cKyPmyOInhZ80RiHsqdx3do9yTGSdd3gKUKuego22MfdEbzKyVDnBOSnuOcj365805KvcNgwrKGqhmsEMN5vA5iTGQAG6OYz4eiyRqdqGZ8y3W5Eze2zUxK8YB1sTLav1ON3qpuLT9xksP8IufeQ1AdBKbSOIcVUp980hiTaUacDmJ22kMZTlSBHQa6zZoiy2m5VKzecrZPFm66bR+5/lxTuKNt91hrgrK1PLoWsI1tURv5rAZVPqJ4dgoUWRGkERyz91nEE5KE0lsOUW6sRuRxAkX10K4ZjPgmkQS93PMwdRKALAO2DH5d0AZIT/MRk6oFsUkHdl0XgCfkyjH81RrqwSApFxb10TPkeKLUhcOGPvd1s08rmPWKXV/L4Rh58eTzgaDpMj1xamblmsL8MpqI+6cRifRK8ZNwxB+W98YSpq233GOFEoEcjEoqmOZI5s2L1xz/4rLWdmTdFM1J5FAUspc5brzptMP89dqrUCJiPUvHSLfzzY+S0aCm4PdD0gMUMNg9a0qXGMwJ9RArUE3HcUc2XvUT6WHShsUUZNpcs6GgjZQwTT93GAMUGnvtiiBQAwgaikmfUgit7acA3yMc1kGXFnnvlQFbs9RnsE9cwSSYGag8tsK173BFQ0RBzhnOx2qh+4rTeUWclarJ+7bZ169wB/4qz+J7/yhnwEAXK1Cba3zwO9/5ydTKE1xZ3USR2X/9213cPUOz082mBcXmMzVTfU5tvZYvQYqwfiSZwftJCp008c5iTfTWgpFrTw6oF42A9A2f4620pvsKg/D9P9tlVJ9ju4zjUO7OGg42pYG9Xta7K3thKv9nOU6nExjYezWWnq4apsqY6RpqpxR2IiX1vf9qE1cOUhbv7eGVDMKfBpyaTl7/jUZSbNyEtU5osNp60REpAM8E98LKI0E5joCa+1IYZBTVLYjkEStTiXgIqvOSYzRQo8kagEghpKmBVes9Q/ozmWrkDKgBwTS9nDNVXlI5qywJTDynFD7u9WKibfzUcqxjkV7loVBROKc0vF6xT7ifO1+6fvd3mtMEp462mfs1s5gq+xGoBd3UmL9e4JyZUeQSuZgc05b33kPaGweLiimiWlYdXKPEW4Cyu/Ws7Yy55IIXPt5yvqidHAxvd+InEQpVNTjAKfjMWryQC0Nwz6307l1OdvavsWo0nbYvJaT+I9+/RUArowFAFyuSOJrTXXTmHJwtjqJUrhGC0ruDzO2qw0KAA+u9mHdb6Z6TmIbSez/zdJ59pfA8HUSHwvX3HjbzzM2DUU8LScxblyKk1jh8FNRhFGTxOaQxPTGZgvHlxzy9bXmePpBk85F7TfWcxK34xhyElOa5nYaMS86RUD7HN9Poz4wRppWpiM4UjWRloqxy9B9Zb9HE67hNh8NSWnmJCpJ857+VRuzVtybMX6AHJWiEEhxTQLdtNe5JK4jsEbyJZJI9JOBEjYnUQuuXO1mnG4m3D1LnMQVSaypGAJ2AKKKJFp1EpXxmkaMQv9Mm89JfECq33lj42RTD/gBOdrG1ncFdCSlZ/0z9zZQ5h8xwRUtD9s5KfZYyxLntoTnm93K+20mgySFc0PkxNXODWt9KXsClzcp9wTG+I9z8o0SqRComevH0oTz3zqde3U8bV8w2Ax1zYM63RooA97RtmhOUUEg3SOnyimvf3us4+uL+vcu2SPrlPr3h3OUOAPU60/sWyFPv8ORlUEqgAxuKTZXbY7eSbyuUDl/7cUHAIAnVxGagCRe1nMSrwMzagy/xTlZAmOz0k3dGPvw/lZOopWXfhRQJM+bUALDcPiGwTmKvgTG4zqJN9dc/cJ6RLiVk6jdAHUkkUva7s1l1MbjkERdbAKw8pZ06sM4tDc7DbZfliUYCbfWnMR5iQa3FW1algX/z2+9GuYQ6KZKxDoYaY1vpxkxFpU23tT586z6nrYhtzaSqmw3e0CpSGILSWmom9Y2SOWaLMT613O57INN5huEII6JJObXZF7YnMSYb7AsizMkSZRin13/maqTqCOJB5xucyTxPBWuKe5t99hkJSgHGyPuUsuZsUSK/Pu0drEK87AlcPw8a6hgpEDHz2P2ybC2OoJAtdxagDOSS9pcu4/vVzopdh8gpc2RjqwSXKHopqPCQiH2ydoZbAUlgTwnkQoAiUDVstjCQVoJDNZJ1wxJzk7I+wCcIa+qcDf6afVF3d/2nqCKIpkBj1ysis3lLRxnQiREO0upmsPi3Ajfrd2tzIFf1xhzBhSqwJZwU3G2+etor+VFWVvMtexRNw05iZX9/dd+5z6AeE2ZnMR9kpfuh5V0Uw1J9HRTH2R9cB3pprU0KaAdKKkhiWw5r2DyBiSROATGrUASHzuJN9L2hzqSWC3k27hxak7iwhwayiZuRRa1aBgrSHIMkqjllVhKZ36eNZQuy0nMkET3WMtL/KH/7RP45/6T/x0f+/WXM0OlLVxTn6PuABuomeLY+O/GCGJodRK5nMS0H5/vpyGJN52TqNVyZIw0PZervx9D6wDK6OIC+zD0/fbCQGBzstJDyqIk+7H0nERHN72t0E115VD7sK/RAQE74KTtJYwRX6Ob+sgxq26826/zNJR68/Vvi/LUhGtaCFg0PuNzXWiPMNKYPFkNXeqladOOrKTNEYi466cjshbiXKWbtvZXsQfxSOL6+SmSaDG91MAdh2TNS05TpZDEUeat5nOvNS3gdDCQxJjLJc+AdvkeKYpE57sK+4JFEvX7xh4LyM9Sd/3b/UJt6nBu8A6YG8+9P+w/FAIsrv9iCTeVZyLTxkEi4n7uVj/dKardoxFJrDiJLz0EEJ3DqG5q10ncTCPe88xtADm7xr1HdxJTuikQbZg2kli3M7QSTz3odvgN2BIYADBtk5zEx0jijbXd3K9u2sp5qi1GKrJ7BEStHlCzvSFrDilLSes96AGjlMI04HTNSUwN54AkVqJNP/Kx3wIAvC4KoEqlM/fdEF6rNS3STddJlN/t0F8nkbn+miPFHGxa8KJVIzTtV3XujZzEPNeDN1plRNjygGV5gwOLvhTOpW1YuPHioX0gjZ/QL/m9D429J52jpu7onMSYoA8At05i/kUNSTxW3dfMP9L2LUP9ENAju0A0HuYFVF6yV7Y7aVhO8vuxDrA2z1bwonVv24hIiUAya1ITCmHQFyAGqlhHVjNAjxF88p9hB6n0QG3LuB6GIb9PDeQxnSOQ5nJ1CKAUezKHGkjkxpqlDAj0UJn1s7vep1YCZm8E/aRSsv8fcwb00kbd54rrT4ylqQL3pG6E+4YsQVIyXvLPq85T2DORgdUWJkzHAnlvSxuURRK1VCkXuNff7wGAWhDQ00qjk7jmqF8fqudBULgeB3z9+54J7weU65H1m1d10+hUpXUSD/NSoKRAm/KraXCw6SxZYJ4tgQE4pzBFEhnH0prLI3/CPwVtb6ib1gr5+te1PoBOG+UihPlzVj8tGjY35pf2qyGJlpNYyMGTiEirvERIGr6OfPBIN9UNyV95wVESQn3FcGPrRp353SqRbqCONtSQYxNJVJ09e0PW1hdXAFhxEhkkUc1JXK9JZcxaLUeGDgWU6BJ72Kd0Uy63MD/sGYPQ9/OOsx+TFa7JcuLmBeeUsl35vFc3TVsQrhlirllUXuQCEPU6iQ3na+g/EGvS+r75OpCAcxhrbA/fgsBO432bMS/DQ6mbNu5vE0lUjC0r4iEdKcbZAHIEZlkWirkinVkt91Vrkk7LKKkCOgulRUkDfJBEcRLnNgIM5AEuC3lM5+jnBfC0Uf9e3zgn3T0elgUjosPIlCBR0R4KbSv3ciYnsaz7TJTYUoIklgc8KAjkMQGIvhz4tB9BGxXOJa0cKs63iHzZzqWWg9rD1OhRKQXi2cEiueOIwpFq3dvb9eyqpRPskvN1d5iz8+DB1QFvOS/XbBSuGfE9H30/zjYT/siXvRNA3S53c3AlMDzqCCBjpfl5yN+ppeDt9p78uzEUaMAHXdc/WOEaYEUSH5fAuPHWUjd1qFn5fDAMG3TTclNleN2ac2MUwFbUTWdiP1bppiwlrdgM2knUgB4RTiWgb5+6G/T1y30YvxVtSj/r9ctdFinWhGtYURjNGPTz15qG5AJrlMmoGyn7cWhPPi+A23w0Bywigi0joeTkW0GIWr4lEyEHSuPaOtiOVzJE1s8VUja7ZVFCJiCj9fPzpPJRNCRxNwcU0Y9dJOmL6w9YdOvSQd+RaHNx31j7loEkXiX1ET2VtNX8PFsiTJICRDnANSexQV889vq714+rwZnmYbNOg3SIepwNQNxvpCHfTTetlmBoC6cAOb3YQh59k/mFPXXzSifFDgrr/aw5lg4pwOXEaYg/JbDWGRgu0c74fHOOYg9iWDL+c8t+/WfiQvxuJd3UP9+eo2QltOxIOc8UrIjpHu0+6XuDk0iglmm/GLhudlMDQK2Ax4kBAKQ239V+DogiALxWEa9JBRvPthO+55veHxw/DUxJx9puonANEK9fKy2iZfdOCuBzIJlKWdB16aCbjluHIAKPcxJvsjm6aV3GVi3keySSyGwimnNjIXtyPMYhGgcNtYyvNeeoGExUUXCxIfhru52GkGD8yoPrYOidNAqufubVi/D/1y8F3VQxRhYct9FZaEPNSbQcgJoCKNA+7DU11S6UrhdJVO4BqyxCTRCAUXEDlO9mCkes8+o1COWBCHssP8+9OOhZA1TmhHIIfPn8bl4C0v7WO6cAgLNtXcmNUeBr1Qm18mtLVoJRAqNx+AJ5rsrVwS6DEahGBpKo527zEXnfGCTxWLSnl7bo+3WjBoHumBuELAKTIfdUUKaCJBpMBqC/BIPrOyZ5kyTav74lzUk0g1vrkpMlMKzh/PzTS8I6N3oAwnZKy7SIdoC3JdxkBo4Um8S8JkOZb8kiiTK4SCOJvddfOHsMA8jPEcjTIgBbuEYyzKL92WZ3pGOxiGC0J5E99tJU/di1r2aJEmZO4u6Ay108A2p5iZFuWl6XFpLohGvynMSUbuq/i2wt8SaNhcgylbL7m1U3BYBpVTedZwAL18doj51EeLpp5bBXjB8gRiM0wzAgiYXRRG7iWjSmZWxpqI3/PAOR0qKKgEFJq6BttrGrU7bca9FJ/O3XLsP/W3TT33w5dxJTpFajxLK5BnXhDqtOYv685QBoUWTmsK+hFOzB1puTKCl66WdUi4n7DVmI8hwzRxeNbHYLv02gv5FGqzSSWUMyRcXDIdrZz43HqZtqSGLa9613nZPogysy1wwgRanC76YEEpq11Eoj0lK8bB2+gENK/aVhFE4jksij4v66HoOktNAzNbd2ad8zad+i3iHDNDpiTcrvxpwbab8UTT9GuAlw66Z2/qZzUUUxCCTRrwuWEisdAIuOmfXJnA0iuLW+3Isc1/LGjglCz8uRdOsGkg6sAddsju7RuibDIMqykEh6mcvIMbeAfuZKzZGigyvrPH2w1bpP5bkRg1v2HHsRQf8dJFPGDDiNuSqq79tyoqZxqO7t1/s5OG0eSfSgQU3hNK2TqI3n3lOeN/uDE148V+imMo80bS02g8ZCtO61tG90Ev3iYpHEXUQTHzuJN9NadFOphudblNgv+9Q2VVZIoEcgwc2hjJAwN7Ymk78Qm52Wf2TllQC6UmyKZN1Z673NC3DnbBueB3Qj8TdfeRj+H5HEdY7Kd6OcFKWfn2PtWh6rbqrVtwyHfWvzr1Kb6n3cPBUnkUESlWKysV/NcXaPvcZPzIeIzzGRZKncyioZankbVG7VmOc6ARwlaiPQdBpJVPaglO71de91SfqnG48kuveoSGJrLAUB4yiZY3kgzjZqmX6+bFf7OQSLapSktO0PM4bBMniR5yQSdRKrdW8bgQhpRLr/e0PeMlw145pYy0PqJHJOg1bKws3BHguIgbEDwRLwnyt/bkvgq41ktcfbTHnuMOPISirhTIwj+wDreUOqosoAby8iGAJABCJVBjPbgaqacc3k3GviOqwDlgYuGPRlGI5QN1XORHfeWGMhnyMRgEvHi0JR9vnrPzcPLi7h+VafdIweRDDvx+5bus3b6redhiqSeH2Yg014tZ9xvZ/x9PkJAOD+lU433TXsGS0gk461FUrhPthYC1L556paFUOJJLLCeCqS2JOT6Cmqj+mmN9N281yNPtcMtKZwzSNEPjVqmWUk606De7Roo7VagqYCovLdjjF2I5KY13vz/w81mpQb+9WHbqO4e7rB/atdZqho321eFtPW0tXf3CFa+w2q6qZGBLqdt0QEBToNC208LidRpxenn1nMsWL8sEWK82tCRNan/Joc2ARxMU/WkExpi9a1SJs8FKmcRIXGE/qu3/vf/ZYP4O/8ya/B73vXWwBUrn/P2uqmZPYHxSwk8Xo/4+4aLKKQxHmpCpD5Jmt+xvVvG8kqklLdE+J7fItISruVOd8ddRKDAJOfB2kQCnVT27l0j5Fu2kGJ1RBZBhGRTgrhmG7GMaje9lBigXgNmYBT7JPvW+yenNNUSRX0zgAQUC9n1LouNZqelZM4FXmT7rGb7jizStUoHGc2J/dYEbhe4RoZvGP2Vt8v1yCw+0madi8FvdcB1lJ15kVn2/m2ncZqCYzdYcHd4CQesJ9nPHXbOYktJNHVSCzHHIZB1fxwYzm6aYokPnErKoUDDSexdgaMZXkbxgcAxLUMJTCIm2DcOBQxIImPncQbaQ5q1n+Amvx26+ZuIYm2kyI3OvvGVqNhhEVSQ9uMblUFVmsNa7lt3mDejINwEqNKI6DfoH5zeebOiaObJjes6twvXBRTV387wog0jJ9jEeBq3h4bNe10AKRhDQCHQ5umV8uTpaPIhdHEGbuxdiFvWAN5ZJczJOM1iUgi4VwKVNZCUXyf6gG19t1MI752RRPd/MpAAqtu6vol4xi/tR9Po5v2qvT6tiwLrvaHYCRc72e88uA6y0OWbbefm6I1fkzNAT6ObopqFFkPHHHrRO5dh5mLPjsxkz6DUBqtbCkF+dtZNdvCHBUWCq2uKaPyREBnmyKJDac+Hy/Oy4/D0hZLRIpzUlJK4OKiacYcRU6i+Dy2nx+bQhIVe8ZKp9ByElmULkXAjglAUMwVlc3DM1dmcd/QTmkSlPRzb44nWFhMLmOp0svd2zJVhN9LBlXdtPXdTqaxKkp4mBfcXW3Cq92Mw7zgqXMXNKw6iXO7Xnet7rkvgTEMQ1h/PkDZyp3fN+4djabK2yXJ2dFTAsMjid5JZPoY7bGTCLdAakiKVhATSCI5jYiF7qT0GTEMIqg5G+E1g46wLGX00+o3Kd+NidpNYz23bRoj3RQA7pzmN6j23bza1VO3T3D/ap9FfDVjhM1JLGg1hIobUG4i+8Nslg0A8lxG6veuIMfHIYmcAyClnAMFt+YkanMk0AbNuF7AU5SC0WocTrGfe+xXaUzQxw4kcTOO3UiipBr51jqgtIPN/7f19TSaalrLtDVHTZWZCa5o++t+XhztfDUSrg8zvv+//Xl87V/+cfzDj7+kft5+rguQ+SbTB1ImgzXPku7YzkdJPx/oo3vJXF5qTSp00977LawRYiwgN0BZdVMteEo56fL6EwjfZhqDc8nuCX7P9nseM44ugNJfODuiNna/3uCin6eco3V21IIklkEu2Ty0I6s5N0yQZJBOac+ZGJ+zhAKBhF4c5rg+b8xRXkveSdQZQD0IMM8uQNaP3be0c2o2AlzbaVSVq/0ZmdJNd4cFT523kURny7dsZR1w2B2Wgk34xJmNJM6NPeXYgDcAfOMHnsOXvOMJ90evuunhOqKPN4AkPq6TCDsaoMHT1s2toS9sTqKakN7s49+bj5W+prV08fsbi3VKj8m3nBSHO43k310dQyBuDq28pav9ASebEXfPtnj5wRWWJfLIa5RYykA7EknsNZL10iXl96yO14vSKddyR+RkaXm5Vi7FsdLu6sY625LkMm/mQG7GGt2UE6AZgxHpvyJjJKfIBrCuLaJGli6/Xf+OmrPNOA5aACLsdYYhqSGJDGqpsgT2uZFwvZ/xy7/9OgDgb/6vH89Q09DnUE8bCGOOOd2uB0nsKd2gKhAHxLk5RUzjkFGwaBGm5DcIRmtn4IgpgST7sTUZ5Rx9o9U1RUSecQI2SdCPZwnkwQsmcKSzQniHyHfrcaS0AARTF1NNNzCYJOl7076Wk6JRYhkbKH1/+lyrTWMugsKdN/ncAK7kRumA9d03vcrY8vdm+sX7BtlcewMXPfnNZapU+97ZbvScRP+ctwmv9gcc5gW3TydsxqGak7hXnL201VI3rvfx7PBL4YlbAkmsBDNNJ1EEypl98q/8C78//hEcPhJJnPd9fYz2GEmEd5JqOYnO2ZMwulVzJqX+pH2YaIwaIWxtxhVkyX9etV8l0gHYwinld+tHSdM5b6YRZ9s4qKebykLgabvezzjdjLh7usFnX7sCEOvE1TYsJtJ3Y5Hu2cjJanw3K5fUfX4+x16DMP1/K/qm0R0tmqr23RbwyIbMpTMPqPX1XGyCNwh7VRrdWkYYCyDrKybIBuDQKEb+XFVka/RVkUT/eQwFVNlLLDS9l12wCWOVr3mWQBSumcP1/Qe/+pIauPP5KK2mqcsCBuI55Iadb609r3UdzZSDsQwUskhiKclv9JHr36utG+Ol8vUsGiLn6JuFpvuzL70H2DFTejfLEvDfLRWmsmvLIbzXNy4ojDA33yd9vtpvzPOd6NIlwnHjWAL5e30zfzfBVIqOrD1HQKQAEHtr6ZTa61izL3rSG2QuLyPel47HnL+As0PnuW/9x0BtHszszdOkHeABhZ1s5Q2fTCOuVCfRfY4PEl7uZnfeTSPunG0adNP2eVqrVrA7zDjZ5P2e8HTTRjCzqd6q2uXcWs5ajwiNpJs+zkm8mdZaWMGQEevDiuRIFUP/GYwhn47FUMRauW1MJF+TyW/NsuZIWZu/hkilkfz02hR004oheboZcfdsgxdfv1r7eQSyjPxTzsZY5ltaOTM14Rorct3KJWURYN96op9pP0ul1PUrAyWeNmw6KUciidmaBHfYTwlKdFh4o9WNFw0ZjpI2ZDS2dO5Wv90hXktG3VTW9vOtlRPXqsFJra3OvWQadeOfGUurQ+sRgVS4xhsG14cZv/PgqujTUqlOx9TXP2NsKUZy7fqrTjpvbKW/N6scmn431iCURjKLGqSiGD1062rOdytIpZxv7Jie3h1olcw9OuXrksll1EpgMOe9XFts3pgcj6cSDrqz0egn99a0b0+uPp3v6h3uZE1SKLVCpTXPm0qA3RrPvyzRNisAVEMS7QB77qQzZ44MJtOI4JEOsEo3NRx1RzetI4nennPCNa5Uzt2zDe5X6aZtJLF2lu6U1CBGuIZBEmcRzGf2yawF4RoCFXxcAuONaa1cqZohYx1SGmpG5SgMpfHvnmc2g7JfUxVVyT9iDBm9liODZI1KTqIeyQ9000p5CcAZjidTrop6fhpv7BLZIIq5D4ox2BA2Sufei6RIWgfQhwB3J9sr4zE5iVqgxEISR6UP46TXSjewkeRcbMLuI6XreZGQuL56cxKBeF2onEQluOL61oNbtTqVAJqGjJoTSkSSa3TT1v3WyqW+2ruDMQjXHGa8drHD88+cAwA+fe+y6MPQTSXlnTG2NCfF961dE/+0FvDrFRdhlUNTFgotNiEMybBEzIBfzNtjv1eYo7AJLYRPy11lAzOe3h3QcGKO/veOpTNs51JDpLjzfljfi+yR3ic7EUh5n7J7l1uT+XP7Rk5u+pky39L6BUq6o/29APeeR1X8Do6sMVaNgm7NM1JA3cVkgrRAiQAzv1v1+hMOKZCyC7i1paYhGefwyUYXrolBwihc40Xe7pxu8VpD3dRSqlZz4BXdiSfObF2MVqBE8x0YdLto8wHAEPOTWm3aAofH6qY33hjaVlkDrG04TaNWI4WIxoz9Cel6UXai37E0VS1iNDMHVElZ2QtE6sPvfhKAVhRcdxJPt1NAGwDg9klURT2mTqK20Zk5icHRyJ+3nBuJYvk+ACkuIn5vGklMJsrkJOqbnRuvXhYkvi+fox2NBDQE0t5Y0yg5L1wjo6asuEXukKZzb/Zb17U/GJlC3bW86HYU0z1m9wDp7Ml+zJ6gGf8s3VRTQJd008vdAQ+uD/jA2+4CAD5zr1Q53R/sEhjSAduF/YdR1xRO4lJX9Gzd24zjcAxFKaVW0oiU2EtYtGcb1vGSoCH2HMdBcbaX/iAcm8vltAFSSqw9R596konymPUOEd7rm0tvIK+/MOSZcyodz18aezxHAQ37JLH/A/7MV5BEQ8wKiHsri6RrYkrU/i+DK4yTPupOOk/JjGMx/YrceTLYIc8A5syJ5737AVgKelWUx7wmeX1j17d9nm6nUa2BWyKJjm66nVYksVYn0QjoawJrgLv/ZKqCzEnUA7X1AFeNldPrI2Le84jguHFIoldEfewk3kxrRQpDVLHYIN1jK4ogjR9K3GWoOYn2ZtCtinq0k6KgdFRtodHMbfuh7/oKfNfXPI8v/z1PZc9XhWtioWzSAAAgAElEQVRWjrpv5ycRSVTpn53X343djk75/E0tb5X53dLNhzHSdNluvraTWiidoHtJwRVOuTVfk+wcpZAAs7FmjhtxPdx47rFf3TQaWwGlIKzk7ZT/5gyS6Iry6gdUFUl8hABQ2c82LqaxRPut+83Po003dffzyw+uAQAf/ALnJH5KcRJ3hxnbTftaVnMSiTqJqnCNZSAo15+hXEtqJbO2Uuey39iV/dpjeUdqP8/9dFNh7C4LmoESTbgm5E5axvXk6N1Mbr8cz9dXtFSqAf33XhY7+C+vfz8CLJx7Y7wY0FyyR2sP2ij2jLV3yb2VzXeNZ4D7my0bUOo5dNTl7bz+o/xu5L0d6j4n+z/AOekZkk78bjJ4zez/ab8yJ7HZrUCpGeXc7TSodRL9cx4AuNofAtp397Sek7gz2CSa7Qrkwdpv+/A7ACSpSw0btBUoqacFdXqJy4F39oqcxMd00xtpTdqWYjQB8Sat3Tha5I3btPpVy2pCJoCdWwgIuimx2Unuv5+n9d00lcZAt1hvtOeeOMMP/JEP4Wwr6iQqUP/1fl7VTeMNdHsVvNHpb4BFJNE2ERpJLJxSi+6rOencZizHmwlH6vicxNKZdcp29bFG9bvZUTSd7shtrNMUAwOskyjHsxT7fNsk904PkpLT9BYK8dQCHkAbhdQDR/Y8WzRVaw/S8pQ5kZzyNU839Qf179x3TuK7nj7HZhzw0uo0pm1nBC78mHt1/dv3d9ovRPJr54Ya7LADQL5vavzT6388gm4q9gTWkAyO1GHpQtIlU0bu/2ofZX8NjqlllK/XkkUefR8gEa4hrn9dzZl00iUCTJxTwPEIZOmkGPfNVNoz+7l9f8vfjc+Jc4+p42ZdD6A8u4/JSaQDOYEm3Hf9i5xEMsAiz1O/NpuaB5O+ttg9IaKk+Ryqc6zYrlZO4rWWk7iWxciFa1xQwiGJjTqJRsCvphTu7/v/4Ns/jH/0fd8crkNLuKY/UHiEcM184Osdjl7d9HGdxBttLUNNRn5881zr2iGgIYnMpjWOudHEcOT9/i7RF8BApBRDnss/0vLvOLrjYRYCKCEnrm3sSpQOcNEmr27q2+31/zqtgKOfaLlHveqmTPStJm5xnAKobZBoEXmmUPpW0K+AVSSks7bcshD5KEpQgFGlBfJoay/dNKOWkcau78dSjQCdpmciiWM/kthSPG4ZXDWaqr1vlXvJwZD7buUbX+1yJPGl+06o5omzDU43umHBqJtKQ5Kh26nfzYjkt/LEKXERaaCRdOteZ68qd2+Mlaqb9iDpVSn/Rt+NQN/Zfq6vy3k6Jm8430vafVQ1Z8K5LJy99Xk64HfIfzfeAVidjXAdjX4Km4E9FwNtdH2+N1C4EIFTAEXeHnP9I93Uz5EM5BzpAMtyIoy6suun36fNnFAR3GIp6P7l3nxXp2ZbBiVba6u2l18Huqlzci52Lmi4mVzJs2adRMMu0WzX1F442Yx4693TrA9QcRKX3jOYC15nbe5BEjcrknhzdRIfO4loG5S1BWJRgNxizBc/e2hoyF7T2TiWIhYOtvhcNCTrTat1xURbNSdlbxhpcTMuX7vazaFOom+3E7ppMUdCAEJDRNiIqSZ33zLIa5TAYymZxziXjAR6LSexaVhrRjJFSfbXMj63gDSSEwf/sHDUMumUss5lpKEvtMEK5DQ95tr7z9WEolpzbeUptyhpR69JxblflrZxPQWDqWUkuHvbI4dPnG1xUjEsLKqRH1Nd/50siIAeW+dGJ5Lr+0oDjcmlSwOMbFkWmTsZDXl7TY6D2797kHRppO1nO0g1jWWQiqWPbtc8zWPyhn0dVEZdVmNbcCUw8v1u6aRkFnRHC4GUzg2LJFaCp8y5EdFO7jeQ59u8kDmJIjDcc/27adqj7OeDK33rxNs1jHhZOh5z5kjwoBftjKVLOOdS2lyH2e63UVKQgJiTeLaZsJ0GPFiRw2kccPu0rm7q6iS2HefCljeupWZvAZEqX01VUwAmtk5iPtDe5q2HyZ4Ah+vHTuJNt5bDt1E2f8A2Jp1RkT/HbloqRYwwyDUk0UIEAZ1uauUtHZPvNyrX0sqJa6qbHkq66flpIlxzTE6ogtosREDAfZe8j5tHeyw/r3SOPG00Psd+N9evNJIZdVNp3FFR5CXfIO0Dyj0erW6a1DazqGjZPBMEhis3EA3XA3GP+pZS2R4FSTQPtqP3BH1Nsvd2T9RUo8n75n/HW6sQ1b2H1+Hv080U6Khp2x3q9W59K3MS3XczqVRjRRW18v1agSMmmCONQVq4o5d+KAKFbL09YEXp5rkr30+mKjB5aloQlKWPulJUfbUcJXLp9hI2uNUXXPHT6aUJF2gbuN9N0slZJHEzlrVarfztkkoLbo6F49ZObfDNObLxb4buW+btkcGV4Eghe7R+N6lu2oskytIZbRu0FGBi5igDpz17iVZOzbKdtJx07ySebEacbqbgJG6nwQUJ13QN2Zxd0ihXpgQ7zJrPyZmt9evTBbBZCUXryUncnAH7KzzOSbzhNs8MktW5QSpIIpujoCJSnbRRZrN7FOEarbD0MXRH9karqptuRrzlVkQSz7c+J7Hsw8xRF7xpb5B+6qoiZGuDVIzkLkRQjPcowjWMEyyLWfd+t2NyEn1OVq+R3Es39b8XrSSZrGV/WPUU6t4dEiSxU5ET4A82DX1pzfLYumG6c2ncN4pKr2/++51tRwwDQg7KyWZsIoknRmRgHMqcRCuPESgDYxZ9MRr/8TlNQl0dayydBmYtp85ldNyMPoW6afwsq21Xx6En30+mKgQkkUGkFCeRFa5h3w+kecPrXmIECYHj9zuN7g70lzOiUSJxVrE5iTXV7540jF6ULr0HmJzEYVD2LaOP/9plbqHRT1xHxk4DSiTR2sd9Cw5fhyqqfynSTf3zZOBI1FdkrokU3LL6aWcbEJ3E7TTidDOG/X8a3d+Arja6M2rlyiAhEOds1nwu2HPtPUVShH2ffrrpns8t3JwB+4vHTuJNt1a9n1pOomUka5E3ZzS151LSTbkbtOi3PlISyXM5Xq/gSlcJhmSe+xBJa+ckahvJ1X7GyWYKtdOASOfT6KYLuENb9vNoQ60Ng6NedTvpng6S0RF6Cs7n41lbj4okrmu0VTqglhPULkAe3+fbgg7jRxitzL6aHjgHcjOWh70V/An9wmE/B8Owi8o2dyCJCkXGOthU4RT/GhFwKvJdmzOsOJfGWo41I8t723/Odhpxtpnw2oU79E43zki4UnMSbYdvI4J3h3mm6cWZA+CdjsoX1PdWNPukfWVuIau4WyJSnHPTi2QBbq/dHzqRRBHJ78lJ1JxEKwd160tgGPdL2qZxwDC4e5sVDhrXPunaYvsBCSXQP2+dARXaqNlP5Jeze5CkWzM01VIUhpyjRLeJPr5ftpcw1786x75+jEMEJI7DIf/d7NzaeN7k49X7SbukVzgopftaYwGlw8dcy1SRPG3X+7j/n25GPLw+rH8PSV6/cgbM7ZQDKa7j+rR/g5oNagIcSnCdCbgWrScncXPmOOv7Vf37Md300ZuX6a0vED1qYeVk1fKIeiF7+gYV9EoWEQRQOJf0AdUZIZEbJFDWSZTNVDedRgzDgD/9z34RvuH9z2b9JCLIonRFTcyFy0nppu1Wrz9n2EkDtNcBc/+fMQwG4qnkjpmKr5qTwtAWJdVFPN9qKcI9k0hiQYkygj++hQLrc4pqmN2CE+OQRI5q5JQFOw+2CrIBGHvCUP5uzL2tq6JaRdLdo1rcOLk25ycTXr1wdbG2UwNJnGdsN4xKYxqkskuQACUzxFLlHAbnNGjqpkxZhJBbO3OGHZAHE3qRjaIfgdxspwG7eaFLG/j3qOqmTUQkN5DTfuZeuf7efr2ckFwvb7z20FSnYSjORKuXTBVhkUR5v9G/tzg7/DVlHABNFbh1Ocs5+v7WGYxsjgxLxs+xoLtbgjziDO69b0Le3twWMpT9CiSxs5+/pi3UzPc7Nie0V5SnqPFN3DsacwtI6aYDTrdTgiQOkY2zV84No06ihlweWBtUAYrcZ+qLLNgInTZQ0eYDZ1wAwPbMPV4/cI834CQ++id8njc2t6eXblqjZDI5Cr2y9YBbQ6pB0qRJ5gayH68naXtld64Jue05TlPpcNNJwxUk8XTrPvN7vun9Rb/eum2un04r4JzLvt+tJjhkb8Yo+lFIrjLejjCSt+KA8p/BCNf00A+B8vfuQTZOphG71RhkaR3yQDwYjo3st0uQFI5uGqOLj4IkmgebukbW1wgKaDqcC640p1jQ2PxnULnUyr2dXptbJ1MQrjlpIIm7wxzWaq1pOYmWcBBQ7idUMetBGq0w+4SxApLe4aQo/exzQwRlvEFIBjz2mXKo3aeubmrXSdTORQs53o6ObhqcRCOIEMeU3429/vFvJigpgzk82uweYzCN+71rtQuZvOjDoe93q+kJ0GsyPQOI/b9wUshzG8jTG4AOFe71+rG1TIdhyBkv/joSiDiQOpe8cy8DQN3odge6mm7lzHibSUcSJd304fWakziOWFabU6uvaImXOdHF/LkoIMc7e0CaF10fK/189xlcwCNr874PSQSAq/vrJB4jiY/crEMgRnDK/MI2+qJTxCi6o+JsMKplmkHSiyQ6ONyeYzo3wFM5+6KYgB2RlzljabvaH6qRYZ2ix0Vai34zF+nrpVrotdQ6In2dDphMZPf/N5EshTZhIYm1pG12bRWS/MTG6hPaXX+S/iaQy8PM9dsqtNGeHMj9vJjKvr616ovWDjYVESRQqUdV3O35vVtU8hQpvbWNeRUnDSRxb+SjACik/FkkUd7fjPMgVaCZnFAgp0QFlLoTSaEd0sJIBjVHYDXwMnVT4n4bnSG5LPn3a6vgKvsPe++slNirXicxqKKu86avf64AzeaElkii0a+gSWLt1+cU0WyGccxz2Qn67qNSOcNwpGGt2UD29YjvTce0GS/uMTrbfK5ZCiCw+bxhrxQlT5hcWUlJZtdWN9106M8btnISN9OI0+2EB1eH8P6TJK9fNrNO4lAGJa1gbU24Jjr4hnNZgDDV6emtR7hme8s9Xq9OIhPtM9pjJ9Ew8FJamexn1ajRnBQmiqMpEjJQfzdqcCxtsWpItucYFbrSnCB/g+pLcRCbcdq8cI3WRoXGwNWp1G9s07kpqEZ+/u01ApSGtX1AVfp1ilQAq2S0lcelSjmTNbKWvrVVO7SZ83e71kTz82PUTeV3Y9XH8jpx9mEo+6WKi5ZjM44DliVfk+zBJnNCAY4C3au4e0zAoyYIkM57M444P4lO4nZVu9PVTZkSGEKA5kAKHNUQMOP+npXrT4lnrW/uUc5NnVI6/0usE7ZOHOAc9usUSSevo5uf+5sRb9LWJBuY2ayU2G4ncXQOMFOiI8xzkCkf/U4b66TIa8KcbWm/AskynUThADDF3MUc/bFvBwrXMZK1zBjW0uGgcqk11BL2/ebz/dJgB7P+gTwvmhau8Xl4QRV1nT9hT5aBhPb85D3Ks9kqyvyNfptxrArQAI4JcLoZg7rpZhqw3bgPrAYKm6yEsQB8QqCkcmG0/QewzwBZp9L3OaoERo9wDQBc3HOP3ml8hPbYSbSMLZEwHPvZXGvpJFJOioDsefqJfoMykfxctpiXuy/7cdGwtB+bW6U5fL4ERq1fIVxDOOnH5ltKp5Shex1TNgDQKbgUSqoY5Yd5Jur0lTRhhyQyogXxuR4HuDSaSKN17w/RPnXTrHA2MVaaW8hGyF2/OB6rbqqppFkIgKQRAsdToBeDNVHrdzB+bxpJPCmRRJ1uuphOoqQ30eqmoxSuyb9DrU++l/OO20Gsf4oCnTilMZeRdFK8U0oan0BEEnvW/yQCVQzlWt6jAIdkAatwzWEO+8Ipm5M4jTmSyOwlU44kHiPmRqubivuNOdu08WjKuzDmqfqWco7r8zQFNHMSiSDJMCA98hfY95rMHQ6OlDlajvjPC3fPADmSOJPXX7KAekpnRFEk7j4NKOkRKLWWcmOlZWn7f+qsZ07iOGYBWtlcoLA+XlpLNoxl7OXa/gPYe5Bmp7H3aTHBXrrpxcv534/QHjuJBlWmlpNoITc1umkvZM9KmZdUC3tDqNWks6mtWj+C7qg43AfjsKkZkofZqc7VjMJRGHVujsfWe7M343HIKbHMYaOjNnykT6rg9kZNAY5uF2v75QhwW7TAPcoN8tjILrOtbjcjrhM6DifjH5E9P98uuulh6TSs4wHHGmjammSjmDdTToeRktcDHhbSJvv45n+PzTjg/CQekCdrjooeRW4bCEBu2LmxOXVTSSVkaHpDbS8njC1pxNNIinA27LWVz409b9xnr8qhxhmaj5fvecx11PYt1kj2jrpHnn0Ou9UckpjkJDLXv2CTdOTErd3YoJiWt8esERmEYyiBwOpsKE66RbeWc2RaISbGdcM49Ad3AWSqqD1IukTuWds/zYtmkcQ0Bx5IgjlEPz9G79oqcxKb3Yr1z+wLTiCq3MvT8+10M+HBdaSbeptPy0ncz+1AoaZVYZXhqQrXGGi65lyyTKWszXtuQwaicM3FK+vfj44kPhau8YZaZYFotf3832aEREWy2vORtFHWsBgqCGSrV41uSkc/xTxtGknZb2fklmg0NoDJJQW0OpU0StdJt5O/d1QyZIzk+BxFyRzX6Gf6u6EDJU2dRIJupxtpBpKoIFkLeKPpGHXTY5BEjW5KIYJBhCkxkimaanQu2XwgWUg5/b+Vy1vQr9h7tPN3kzmQTH3L2r2dznuaYk7idhowjkMTSdxYSOL4CDmJWRCIuL8lu6ODblcINxFzTJWZg/pnJwLM5kgBq7rpYaFQVWu81m+g1tclcxL9/XaxGpknE0fb8ohzT76xDEwygVP/sUWZAmOssnQJX0sWSJBEMpjgcnnLNJGmcy/m6DdzRik8HYNVqi50AWbS2Utowj3MlXGI7++hm6aorHfue2tMs2JRKbpH00aDkw7Rz7ZLNBv0mJzENHiRBna20xDmsZMKNHBOdCt9QwYJ07HMlLOKDWqVwHjkOok9OYmb1Sl8TDe9uWYiiTUn0aBg6UgiRyNZskXlHm0qYYnaAH05A3683kgT26/G0QYaSGItimP024yjev2tVqv31q9u6h7bRrJ/b27IU6iBGrU2+lSRREMh8Ig6ifp15GjT7r3CaCKuyclmiJFWgiIJpLTRePgyh32s1RTpdpRTOpbOpYn2aFRO42DT1GUZqktNuObY+paW+qccyze/1rbjGOimPkLschJzJ3FZFlcCwzRAxyK308oJdf0EkkKgx5LdwQY80nu7RzhlMw5ZTq41P6Dcy7vW8pTXIKTUTQsk0R5vbJwbjHANgIBEdKmbzkuXky5rcB4TOI3ndm8/m0mS9vNONh1MGPPSUIyTXs33Y50U74CRe7KWE8ecG6kyfI+adnp/s3ME1nWSXP+eYKakqTKpCr200ZoCLqXMr96j7flpOYnp2ZjqTqRIoipcY6QcbMQaAewyPHXhmlVh1nAuU1VgNpiTtaNyElckcfPYSXzkxvKKCz6yUY9FSq0DfJ04FZGyDhvFabD6HVuCoZq3dKSTkr5W7VO5sVtGstx7GCNZR0k5Woe8Hm4ejT6V68/StmRxb2vz8cn2krZl11oqVVH389w0QPVAQj+StXQYySmSyPzWQHL4BuOa66cJ1/SUwNgdFhNFD3OsILnpa7LFdRyf6wkk9AYu5O/NFJfWKKq+pU6AF67xBr6jmx6K9y9LnX7umxMykfU+iZzEKpJS71MTcrCWiRcqWpalywHbbhTVxE4kMSogsk7pknwvu49/T0ApiHn6e1SjO7JUeS+h3ydcEwM5zL2dIlKAp9dzQZnSSekMyhB9gBIVsUrphH5Tvv4ZOnMZgHDP29ckH4MJQANlUCb9LKufpLZyzmW8vx9F3bQruCic+z7hml4nvS9QK9lUXMrTWIiyATlT7HSTCJdNYzxDK2WQrPzmqkpp5RyoC9e4x54a38fXSWTVTRMncRiBads5WNl+1zuJe5JXrCKJLSNZ2bBYARRJWQGIjXXUk4Z7848cJY2LPvc6N5pK5mF2N3VtzEIO2/czDGypxuY+o6O4rjDIe517351SdxQOaW8eBdDhFAkpcyaSqdEdrcNNDyR0yG8fgSSm6qaODm738d9tl0WE+X5pCQDKsE5oqmztNi+xrSOJtYNtfZ9Yk0wpHff58TkKARb9GASmRuUH4r68GSPd9GSKTqJEEiP91lY3ldfxqBIYRCS/QBJZByC5d3pEYeT69/NujiV+gx5EZLuWl2BRS6BUuGaQRI2BwuZy+aCBl9DnS2CMGd2UEq4Z5Z7cIdQlHalOJ9EXc7earN3G1oGU9kzP7xaonHQtx+O/27wkBe7ZgGtydi+E3ZTOM6VN00hiInDk9h97TUo9h1CnlbBn5Hej82QLdNvup9eKtgNARU3xOfYtkMSNnpO4LMtaAqNRJ3GoI4m1bjWgyKpVqQW3WPsua/MBGI9AEje3OMPJaL/rnUQrIqbVlgNsnrxWJJRZINMYb2agb2M9CKcB4IRT8vwjDrUEBEpE8P/rKpktZ9s9ak460OaDS/SRddLTz/f9KNl6dYOs95HKanGs5lBhvF4EGHCHisztYQopu/fmSEqT+x+ib/E5KrdNiZADJJK4yXMSGcMuFjdOnUvOIAcEkkhFhFen9LAEg75W69O3Zn1RI4qZ560ypSxQjMUhkHk/im5aYQm4z5kxDG4debqpf7+vh5nuk7H4sh3w6Nl/Qj+xnzMI31QJ+LF7kFPXPNJJZI1/iSwRNWF9OyZvr8iJC+u4swQGXSfRve7VEa17LfRbkcQeloBcW/PC0TiBxJHyTooxlkQpWOOzyG0jfztZq5XpJ/cS1gEu1yRfpiYdh70maYCd2bd8S39vCzTI5imQRMa3rOck2usrOtvuOZbNE68jZ4NK9pZf0xaY4t4r7Lskz/ksqZO7GdM6ibqz10o50NLAoghWRQRROUvTOVupUlK4phtJXDqcRJ+DePFKRBUfsf2udxJZuqMmf9vm44/FomIM+QKRCje2HX3O819s40LPP+o35H0/67uptDnDSakiuRaSIqJabo4dggCCNsQUu9WELbp/t4WkugwCpUN/HgXA0e2OQRL9S71RtKjc6vtwBxTgjGQfXbSUNdPma6LF6CznNABYjeR87tYcAeecs0iiVgLDUnfUhWt4GlupuEtGnwvaHNFHQxIThM/TTf13Od04ilJqJIS6WqZwjesbjeQ2PSn205HE1vUchjzg10Pb8u/3Q7J5sh6BZeYH6AgwLaS30rsjtbjfSaEQqQS19401kj1V7fXLHYAeJPE44Zru+roiL50NisXc7aQ/GVwESieRCRRm15/op4lZAf3F3FkHTF7LnmsiHSLm5JjGmFvIiusA+V5yMJCvdCwAxf3N0MmlY2mLICIbgw1uSfZWDJ7W+2i1s93YHqUDbiclkDZTvQRGYJ90qptatNGWeCWAagkxeZYyYm5qOyYncTncSD4i8NhJNHMiWk5KW5ShdCwZI03SOugozqgr6TGR/NIgtMeS/ag5DuWGYEXyNbTN9wPaOVmFuiz6k7b9/81C9YOk7frn7ahpyVlnDsQy34ntJ+m+Jvqi0B33BuKmoUSM0TSs1zmlDLkX7O92uulXNwU8ApPkf/UiiST1B8hpQ96htQzXgG4nRtreyCXS8iEY2pZKEyYQyFKkIp9Hu0/5Wvr73Tl1eRWyIHpKNwolM8y1nO9BjLov4JzL1Chh0OMqu6PjN4jOnjlFR/9c0UcW3Q7BHH+/GedaPp5zpPz36kESo7FL1NvTgosEAgkAd05dLs/LD52TeNqVk9gnXKMF/BhVcqAvuALo5xSbbgBoSGI/Tdvqp9FGASLgKgMX5F4+yL2LuP7AGnANhvz6HF0Cxjtg3PoH3DXz/fbk/RaCi/J3Y4LX8vqT6LY8gxm7MEP7Z9+v794GIggzDAPOT2M+3mYckrz+/ODwueYte0ZDEtmawwVQZPwGcq/rCfhlrScnMa2L+BhJvJlmJQDXKFEzgSTqOYnt+UyjKAjLRnEqzmWr27ElGOqF0jkDLVNJm2c7j2hQKAJGLuk4RPEH37pyRI5AV9Xr3x6uQDxZikw5Xn8eBfDG5SRqKHXf2ooHvfu8ZjcAOd3OISJkZHfNEenJP/L1FVPhDuZ380bq1S7JSSTKNgASSeSCW0W9w06qF0AGt8Qco4HQ6OMj1grddHeIuTrP3DkBENEgjw5d7aJ4zXWgm5KoeBKRZ9RN3RrRnPSbz0mMueJcXo9vIXAxz2YQoRgrQW14BH7MxF2Y203mpTP13oJjs+T7luvXHs87ia88uAbQQzd1yq1WMDJtKY0QIM97sd+xzCEtd5tikoi9nBVAkQEP5voXewJpy/iXszXZEYBIHW7mmuhlIrg9IeQIEgHQ0G8csrq87NoCYlCFRRLTHDxW7EkGGHtyGeW5AbTXlqZT4f6O/e6cTtn7fZCwyEsn9jzVljTu8WoJDAKoAFJKOL9PZq0nJ3F7K6KON1D+AnjsJJo320bcnGm/NpJSLnwmt20cdMjeRLLGiuBNy0hT8o84ldKyH+PcxANK5LYRhkxBETA2vBol9hgqLY0AC0TWzb3ZTclbInMLiw2ZNRLGwtlgcxIP8nczInaARFc7FHDDxuqeZ3MS5wXBcO2hm+4SRKRXFZWlvgEI+RWXuwPt2IzK9T9GFZhCBKsUdK5fzO2xr4lX29XopmmR+2dXJ9G/TUbVgWggsKh4qhJIqZuOQ0ZvDQaCkZcrWRqAvb7SoEBPvmtag5NWySyclL7gSorAc+IuEhGxa4WqebIkAnZ7NTBfenCNzTh0fbdMuOYNYnfIcg+9lOSI3Nu2Rd5PlEohcnm7kUTpyJKMC3l2sOh2sZaPCLgqW1G1pTmJc8d5kwYT6Jzo9T27Q/y9/Wc1+02l4jEjQJO+nwOUT14AACAASURBVN23pAPGnIs1JDGlvZ+f5EjiSZVu6tkkDeGasUxDOjrlzLie2j0KHEE37clJHAbg/Gn3/8d005tpbEReyubOc3uzk8Y4QKo7jtLZ4BaWFLwBkZOo002Xbtnu0M/4brWiyEwh3zJpmMzJEhRc+vAVjhTj3EiHCGCcy37Uxo9XIolmNxe8ELTF45FE20CQjnOvslpPjkikgLpcLj5HZBTOHtHHU17mfnGRaRxwuT8EJNGiwMX7Jj5n7VuqcE1HIOfYAFCvYZFSttK2n5fg9Dxz+zTvsz5/nUSSd6TDvRV0UyZI4j83R+Bt56bK7jDGStWje5yUWPNzphA6ORbAozaAQ9P383HqpjInsV1OSqe7W/2AHElk8xH957o8Zfc3m5MohWts5H59r7gH2H0ypUlSSK7YS3pKKfTmJJbOBufYlMIp/PUH8jxNZiXngit995t3THrSG/KcxJnqJ1M+WHXfNH2ph6IKRCSwL+Up/s0EPDTbAvB2ofvOt1MkcUxyEgWS6BXKW4FCKcAEwBTBqgrXdAIVPUHorPXkJALA+bPu8THd9GaaFe2wONO1ppdg4KIxalH2Zq8GktVyEiuUQBbt2Rf9uM2ncDbMOn1lzUNe3TE+55CUPicF4KiLko4TkVyinxiLPdhymjAXbS1LYMxmXo8WKHE5iY35KUgi891knprvzSKJgHMeXN1IswuANdp66DPIPd00q6VGGglnmxGXO74EhpbLa+Vk1ZB0Jkjl39vVTxitvGFR0nj8vAOSeDd3Ek8UJHFH0D8BnW7HUtl2WQ4kYSSP8h5dnyfRvVS4hqJAJ7maPeqHfiz3yBsx241DEtl1nI7XU6rDv5SfG+1C1r7d9jmJvU6iL4HREzgahwJJp/e7zvumQNsIhzQbzwdJWERKoKSW/D+QOMBrN1Y4xU8lpa4zW+sk+jHpDX6esgRJPwJ5pLrpwlGZN0fcN/71VCWW6ROuvwj4MSw4oESOrbSsdCzfUvbK7QRJnMZYAqNQN/VIYuMMSOtGhn7GPLUgbdqviiRWgiSkmRBbT04iAJw/4x4fI4k302i6qcJHbtZ/eYScxNxoYjfWfsEb3SDsr9HkP4M92GRE2DLshqHcROz6lu6xRLLIOXaie8OQO7JLx2EvkePjqE38gShpQ6bYh1K6xEIS/RzldWQPmmA0zXY00rcTjzCtRnKXummCCFLUvk2C2qxfkR3vbDtldFNW3TTP5TWCW8Fpi8+xQSoARQCC3RNkkfRedV/f0n0hVbcDEhQ3ddpmfy3b420TtA1wxjKHJOp14tqlGyrqpibdDuvcli7D4iShmzI0TqD8vdmadIDLDb1K1jEjClMgiYRz78vUzOr155zE68NM5yP6z83zLYk9eShpizzdtK+fPKcWMrgokZtDMKzt8TKU1CtCMikHYi8/hk3CnolAitywzmV/wXkgCjf5MWkkccqRRLYGpx8HSJgTHYJDrAiTXJO0LVMECvPP01oNSUyv5+1EuOb8ZApIoayTGAKFrTWpnDf+e9b2IC3dA4jrky2f1xOAyAfa83RTINJNHyOJN9NYuqm2sCzhDt1J5JyN5YhDQ8t/aXXTkUReybA3/0ItgUFsrqXjnN7Yel9dOIXPEZFztDdIiZrln9caT1ICOdrokB2G7rPsfjJ4kZYaqPaZyk2SymUcynxLa44yT62HopGqXvYd2o4215NbmOaILKTx75tzEudAl7EokrVcXjf3yvpXaGzM9Q/R4CJI0u4ngzJ+WIbuqDmJ6e8nHU1NAn1HRJHT+aS0LQ5JHIsgCWDkJA5lkMQ/32rpHsRSxIAK3ZSlOyZoA3vf3NpOuNzPuFwFhE63tiGzEShwuOcINknupHD36p3EwOxBEk83I672fTVQ0wAcuyfX6PWWxyfPKfZ309a/m7t9/Y+hW6djsXuCtC/Y7+a/Q2o7UeqmiX3B1hL08wwCWAuH9rt+Y+ZcUkiiKDq/P7i93PzdMrppfK7VJHjA5jdr9S2tfhLZ9i1l6p0nQcKnb58UgT7f/JpsnadyHbt+9j2u0VT3xveTudT+kfIRf+l/AH7grcBnfwFY5j4k8daT7vHsLXyfRvucOYnDMPztYRg+MwzDa8Mw/PIwDP9q8to3DcPwS8MwPByG4SeGYXg+ee10GIa/tfb77WEY/h3xudW+TLMO4VpOonVzSzU8gETpQhRn7RMWYrNbVUmvV354QQ/akEcWbbShpBbsDnYkX4v+sMnGpbpjcyjVkbUCAn68XiRX70cebMNxEaq0H8A76YAQCpltCq6kEnY5wOKAYvqluQpd6qajo8315hYCyGiqLJJ4uh1dTuLBFYxnhYM0uldXTi6x/9TopsfmkvYzJ1yTwYu//Se+Gv/jv/UNAJBIoKf7iO20pa/799M5ieOAvHQPIbhSYXdYo6W/d08JhpSGRYuEiN+tpyj42dYFnB5cOSeRQeqqxdwpxLkUbmLunVur89rjJN462eBid+h20gsUhb633d80JVka5J1oW5Tl566jDC4y16XuNLTnWDjA5F6uUd6ZpZyKwPn60gwrxwcXAazCNfZYgNtLUpXSnnxjT6ncEarwbo5DEZCh9wRvg3YGt7LanWj/3lUkMdFKSAM9w+DEp9yZfYS66VimLjFleGS+MZAgiZUfXqoyM2JuccAtcLgGdpdrTmKHq3bvk+7x+Y/wfVpTuZFP4dpfBvCeZVmeAPBtAP7SMAxfMQzDswD+GwB/AcDTAD4G4IeTfv8+gPcDeB7ANwL4s8MwfCsAEH3NZkWENQPN92vy8RXHpkc5VNJPmAR4WQDez6Pep2YQtueo5ZsxCOQxpRT8eHX5YSMnq9PYredy2RvkMYJDcp0sC1fMWqORMGeUdEqdk04Kp2TCBbZzX6Ck4A7EtJ/vTdFNJZJIGrtelKQHSZxGV7+zF4EEEpre3lHgWCpnj3BEDUk3HRQtAMQEt8R9Qwtu1eimh1zQ4SPvfxZf/PYnAJQGk/u/+wxbuEYIQBx4ddPuYuLjceqm6bVk6t36tg3odlyT1r1dGNYdSKJX6n31Yi1NsuVzEkOdShIRdGIf8e/gcBBz9XS1J29tzff6dms74eL6kDjbxL6l7cmmQ+QeexFImSfF/m7yXDxGACWdbx+S6GyE7r2E3MvleAvIPM0hZeW45zjHLUESO+6bdC/Zz3wJHv9+wO1bW/L3Ds42ybaQa5JX3F37iQBvOyexPNv8Z/jfM62T6Nt2GjPhMoATL5tEsC8d21rLVVVUEknsCeYHquj+oj8n8QN/2D2+96N8n0b7nDmJy7L8wrIsV/7P9d97AfxRAL+wLMuPLMtyCecUfngYhg+u7/3jAH5gWZZXlmX5RQA/BOC719esvmazIHEtH8v3s+BpuRgZlEgWhH2U3Darn17vsGMTT1EiYo41Kf9j6iTGnMTKWCJCDpA5carjTCIiYqx0Hq1+x+Qkpk5pD9qglsAgqF5Av3M/FY4zi3aWyfY96N7F9QHzwhfOntaoZC8iuJ1GXB/mLgQScAjM5W7G1X7uEvvQ65S1g1sHsSZZylBJ027PUVNbTJ+vNY3+A7RpoP53TnNSGGQvfT0VgODoXmOBpFvjFeyOgFK0x8qcxGBomVPMaLiRRtjuIwN+88IHOwon8YicRDYnbhxzJJFx0n3zddbe9dS5+V7fbp2MDknsCRwN6HY2SmpfX78oQMPS5EWeFOukT7k9w9CttcBRjwJuioD10E39NNmcxFSVszfguk++G7v/5zmJfSUwYnCLRBLHMaPEAv10016afHF2t+zkSp3EtBTPuUJjl0EjIGEXGCkAwiyn1rI2nhUoKXMSOVvedV5FZ3YX/TmJX/WvAd/3WeDOW/k+jfY5zUkchuGvD8PwEMAvAfgMgL8H4EsB/Jx/z7IsDwB8HMCXDsPwFIC3p6+v///S9f/VvuycaERKOokGBcLD2lK4gHE2/Hvdo3ueSTaW0X8AzXIWo4j8ABwiqKEUPTmJ0tlgKEPyBrWSjVVHlrn+quNsH241J93aD2T9qXnhDqjNlCrpuec4Kmf+uzE5WV444pj6loW6KTXH+Hv35AR5h+v1yz0ADtkAVgGCw9J1HYGVgnhYYq4Ha1xvnHDNjhTT0PYgc9+q3qPcWGWQpC/6z1LLak7iYV6qEeG0HmCcI+c0bGVEfrbVlf3nashlW0mvn93h5liqlDKIiEY3pRCYZO86kPcogEDj9E5iz1ouirkzdfo6giRpe+uqjvuup3i1v1vbCYd5weXOVvH0bUoomTTdWhjWNCVZnFOs4FD1+hP3tyqc1UU3JRG6QOX3VE72+rvHlPLLpmAUOfBkUCb9vXl10zHbJ9l7FIjXfTcvzVIPvqVgxbEUdDblSQbmmf1O1k31LQ0M+HX0x7/2+dhvOhIRHHObMB3bWstarXSgIXgz5J/fVSdxmzqJnUjiMNyYaA0AdIz86O3/Y+9dY23LsvKwb67H3udx3/fWs6u6u6qrmqYbKN79wNAQwGDAsUgHuR0S4SQGYhsbh6AkljAgISRH+EcUJYpC4jwcxxa2ZAs7kZFCTKxEUaTwAz+IiSPLEBv6XVX3cR57r1d+zDXWHGuudfb6xrr3nLvPuXtIpXtqnz3PmnvtueYcY3zf+EbTNH/COfenAHwcwLcCWAG4BuAL0VvvA7je/k7+P/4dJsb2zDn3IwB+BADe+973dq9PZVzPgsOnKBDaaZIMhZfln9iMB3xw8tBIhs3VAU64Zm4vtbmqqH2Vuuk+Qc7FPSAN6o5RADadocVgXEV8b2MCNPrvnX296HuDgSJjzPQB/QMK4JGUWDiCCS7jwJlBcoH20I6ykcxBupfFyAaXfcvafm8Mhao3LvV9sqzS1nt5goerwtNNLUjiCJJ1JpKeeDqs+Rk9I0liQb9kjH79LItp2mIMkjjWkmJ675Lsrk3dVNf26PFTSIqeI+ts6SDYEuz16KaGtawFpixNwTWSuMimadOAyq5X/eebQxKHSRJmru+5tY//C+/g7rXl5HvF9lvZ/Uergpof4B1Qs9hH9LyFRBV5Tql90oRIKSTdOaJ20vWdcopKOPhsXClFTK1kklvAMHltSkrGQToZuGlGwnJCWVksS+yqqKHlUjuO6G8MjNckMnuyf7//fxbdPitRuOkZHdOAAIb7/2//+e8djBvUCBIUe/F/tGI3s5ZH+ytOnMGxKrPFT+sFiU1l65P4hO3C1U2bpqmapvnfAbwC4I8DeATgRvS2GwAetr9D9Hv5HSbGxtf9xaZpvr5pmq9/7rkAw07K37bf52CBTFAgzqJkTq0P+b3m1fvXpzfxWCQE2Lz5n1l/t3mKZ8rkT+1Zj4UkDh7QzTSlmHoC2D5bfC+tAdHcmiwLRWYOjUFTogCPOjA1WXniejWJjJjPeC9HYo6JGxw0DJVWVNDeOV4D4OmmcpBaawvz1KGoG7rWRkzUTdcVGSSOJDyY+pKxtTXJEohqov04QwIoYkAw4+JaD2Bz8BaLz/j3N73fnWUhkApICutcx31C5fWzLHFnKU5PzFEFwayDBgQksawaOkgH0BOYstRW7S/89e6fFCZqNzCibjpxzfj+W4Lgj73u+4Y9f90QJLYB8KNWlIet9wuBjX+NDfbmthuwCg4l8f03JAk1M4pF0mVuci1LD9rCWO8X70FMwhvos7C6721yVL8tjk3dNLAS2M8mST/xewqivzEwrJsE+ER5UIkVX2Z6jv79oMeN9QAGOBCmioCbABycfb0YhAHYtTxkvDB13z65YvfTkOmaRCPd9AnbhSKJI9f+AIDfhK87BAA45w7l9aZp3nHOfQbAWwD+5/Ytb7VjsGksO4mpheWcaymB8SKegtGHjp0JpTMuLBc55My4sfo7Zo5jaBuD0o3dk6JqsJfbAilgmlow1ifR4uxaaXpxQMQ6d3HDbbonlHJA2aw1EFAzMRZJGUMSp4N7RHRTFu2ch5JKkPiuBIkk3VQOUmttoa/3sInkAKpPYvkYdNOm/7sxS2IkF8QzOpemGo2z1VIPXy83ZMrlnvXWMUk3zSLhGktNolW4Y0y4yb8+cS3lJE9lq/vjJACuJ5kW2uI+cXRtrULuLQkZQNckNt0cNs4xWsviXDOJmT/8Da/i1TsH+MQH7lJzBEIA/KilrrMsjTpa/3RSMgpSWFXUnriLAUmsjYGbRnx0Td2mdTkWyFI1iR2SXndzpertR6i7zFJOXDhnLAqUupWFRd10kSVdPfW6qnFtj3PDs8QnJYFWuIYSvEl6a8TPezq5C/T3ciYJKn829ks2InRn1CROa34kQySx+3ybkMTh3+/2cmN/RabuO07AATOQxLp6qkHihSCJzrnnnXOfds5dc86lzrnvAvBHAPwvAP4mgK9wzn3KObcH4KcB/IOmaX6rHf6XAPyUc+52K0jzwwD+2/Z3U2MnjXEMx+Rv/SI7+++e1UqBcZoAKCeZW1hjDjmwuSbxLIeQpZZZVVHPEkChatsiJHFqAzq7bnLzHJPo/svfsN5/3kmO7iNZf9FHEiff3lmWDhERTl2tf9g0ROZ0KFzDNXzWznVAGqbH7XdIotRIkXTTNOkpQtJIYuZbZxRVPamqqU2Ea9YlN268JnFa8CNWZDPtPzOTW1X0vVH9XUeRxLPXZTZCN2UP4Fi4xiOJXEa+GG3BsFlJLxZuAqadrUUW5mhxWnu1jAaHJN5L6NrahQ4SuWctnAE2ddO4drU0JGacc/imN+7RSD8QkMSjVUnND/AsDY3QMePG2jYA08HloN6PYHbo+eiaRCZJMkAgKWpfHGxwaFuX7FD3kvmuh6J/hqRk9L3R6qa1DREE2h6cba0rewb464UzuGRbYCSut9cBXEIG0IggeR8HdF//uhVM8WM3+1w+URH3SZz+fGPACMMKGdXFIM4ALRzEsPs6y2PhmqeH510U3bSBp5b+CwDvAPgLAP5M0zR/q2maLwD4FICfb3/3UQCfVmN/Bl6M5ncA/D0Av9A0za8AADF20pjDPhuBtqc25bniLrFCFCuBfhbdcdN6HKPE1o2lbkkHN0S95ciGMFvddOLBHgtkKWc3yn524xgnZsQhZK5nDdJlnFZxY64FtAGRMUgH+kgi3aMsHanTZD7bzEP7oK0jeufIRjcV2pAp0wdPiyqqmq4tFFtmKVZtn0RmXDbynFLqmgOUevrZdm6sltHQFse6b7mhAAGwOXgb65M4JSIQj9UULApJTBI0zUi9zcQZMIduHRS1azrYBoJwU6+WkXy2ZQ/xCbHpOQIKSTw2IIlxMoFEBOMgsSJq2R/HQk2iBInTY3SwHXrSTSdAASX20b5uPYPNiKCRyhkjkMz+M9YnkfnKpJarMgZggYWF7rpsUlILN8lrU6b9QgsCv8xSrBSSyJ4dOuArKpYB0WcJODe9JuVjaESQ+d7O6otpBVPk/6fqvYfAzbTC9WjpBjMumRmUuv59lNcmTeimxTGA5qnWJF5IeNoGc5/c8PtfBTDatqJtm/Fvtf+ZxjLGKD6N1cTVE5vyGIzOOGlnNSSd5IMPqE1ox00HsjECZnUI/bjpjTWWBPY/E/32RrI4U07a46KkVgTSubj+iPzekmEtKdsnca3qGvTcN5lX5OwjIiySUg6ut3lcTAlhJdDH2nswn21Qk0jSTYU2JM8cL1zjUVnLQQ94uumq4IPLsbYUVVdHwR1QAFeTCJyVuGCd1jBG5rDJxp5toM2UnzF4VLiG2MeBPpLSNA3vJHdiGjXSJO2uvTn7HLM7pu8joBDB0pa40HTTDhWf8byxtVWC3FvWf3f/jTWh8Zqsak5MZq7FSCJ7/+MkCatcGVAb7rmJEUGmRnxsnDUA68ZVdoecRTuBfi0djWQN1E35zybPs2yX7J5QGO8j4JOX69KzBFiFa8AnXTskkWSvZG0is5vjTESQE5wb910ZJDEO+Mop/zoZAgdyHDBtWUbbGU1dr3+5kIjb1DojDeU9LHAAwDuO2T6wPmoHXX0kcWuNRhLjBTkDSaRaMIzIOOu/d/a4WEnSgCTqbDdzrblUzvb3dpXMvrMLTNckjvZ7g6EmVNNNiSzhGLUPzPUi54duOD8jaw2M0E0rviZRrifB6VRNRJoM22awh3atDl+Ac7aWWQLnAt2UpcDlrZNgobbK31+VFVZFTSMpgO/btq5qPFqVs3rLARYk0ZbIAYa1jHXD0N/8v/Y+icNnG9hck9gJYM1CEhVKRyLiY9cUVGRKGCyuiWb8yFwFpOE+MuNC8FzVHGrg/3YI1C31tXsqCcMjiX3J+7rhmQwDJJEtApthQbjGQDdNxpQkp6+VuGF5CStu1GvmTlIyExcHbgbKe9xzb2L9yzUA8X+47yxPk44p4IO96TEDddOaD26GzJXp62n651RLNG2SUFmVNV2XLtfr0YTJFhjWOQ5pwqzgHLrrAJwPNAYcyNjNa2tYkyi+BhOU1nX/7JjaK8daYHBI4rCdF816z/eA1YP2D13xmsRttuBgn/2ecWh7OtOh/z7AZcSGvWa4hTXI/hMZaHkmhs3cJ641irYxyq1DESCqJtENaxKn6sfOqgllkcRS3X+2Jit2CAGutiS+jxz/f0jt40QBkq62qq4b1M20IiTgD+2uR1O7602hB7EiIS1AMJZZJ8Y553CQp0G4xqJuqhQh2dql/TzFSVFhZUQSbx4sAACfe3BKBbJBAa5/sE3R9MYo6NRhHyU8wKz/aN+qiX1VxsUOAuA/31lJiNAPcFiTOOXM62CP7dGn/26/lmvzh4vZHWxGPg729PU32UL1SbQEexrxrGoDkqiaXNPtZjqGTVsnRUr5P05N4hwT4ZoHp20LDMKR19+3RQSrP05e2zzGP/vhPtY1x0AB2uBGKIEVF4DF/gxTEx37MiwlFhDF6YCAsbWFQFynOX2tRKFEloRrqtg1bAIOCOfSuqpRVA1ysnVGnjoUZXhuqOSKQjvZ9jZScqDVTdl1LO8HAvjAJBJGNT+MSGLoVMAnLuRak6UzI+cU2zoj9uXZdYL8ADh+2/+8OOTGnIPtgkRGSj4ZiitMLaxEOSNijJMW01RlNKOSOSpcs2GYZBUH44hr+ffOQ8B6SCLRgiEZeUCnkIMxARpmIx/2Wuq/vmlc3G5Dz+Msi1uXmHo7xQ45gzaowI1VhIyvV3RI4kSQmA4DYO6QUtlIsrZNbH+RBSTRTDedzgxq21ukOCls2WAAuLWfAwC++GiNO4f55Pt1n1UxBoEfBinNRiErsWEt43R/s7OEa6ZbAAwTQPJ3zqxJjCTy9XWng8SAZFmQxIDc8HVSY+wOCqFQNZc25WIZV5uQDY1QsGgnEPokAtMJo3iOge7I1RbGfdFYKuFck8/2zpHfS3RAfJbpXmqW4D5VzwB73sv1CvW8sfdD7+VMssOP6SM+LJPBj0H3L0837SOJFnXTXr0rmXDtAiLDGTDod0gux2W7lrqSA1JgLU+DKmpJtsDINdppuv/9di6mIDHySzYNDcn8YfeAqbU1QBIn2GVjc/TXJvfyqCyCuV6aDNvi0EFitgccfdH/LEI2T8F2QWL7xW3OWgyh7amFFSNZgkhNBmARakDXKLjIIWn/pQQBjI7MeMNtLkseiwBtqj3ScxzQTScOqTEBmjnKrSFbNDUuphb7f5mM8BwkcZQiwzhbbQN4PY6uSZQeTaUfNxUkxpQQVrhAI1lWCujBIsX9EyPdtM1aWxw7ADjIU5ysS6xKG9301kEIDG8fLibfn0Z7AtA618yzHa1J5nxK3JhwjS1x1KlyTowbywgDm1UXg3DNsCZxMkhU8vqlYf3HQTCTyR8+22SfuF6fRP7Z1ghrRSINQITaGIKNZZZ0yRFrn8R+kGILpAAeSZlrIoL1diuCtUcknBJ1tlmUkudS0np0RwtKl+h6PxbJ9f/qlg/+9U0Ouf+3Rzclt8k8jXoJkglowH+m2nAmjvVJZEXgdJDIJmWWHd3Ui5exSOIiS/rCNSQDoqp9/bUlsRInoZlRMUrHrJG4RlmsnEgejbalI5E9PUd/relEyZhwTUX45nrfslCZAfjA8PhL7c8H5KAnb898kMgUnyZRAABMZ7eGfPz2b00hie1iDUGKf53JyMdKesz1BoI3DNoWcc/lelQAEAWlVd1M0r3GoP6pwvkxSixFG40CYJaCOEbtY8ZpqoufI38fB4GsMfvJiG/o61lrEuMAoCYP0t4BZaBtAUG8BrDVSZVVY1K2A7xwx0lRYV1WdEAKALf2Q2B454AIEkeQe8a5Tly8JlkBiGHiwqq2aEHg4wSc/J2pZ1sLMLFqnkGAxooktoFpF9xM18QNBYDYJt1KpZRIYopJwLZukUQWEc/TvrgFu/6dc7h3za9fvidpvybRUqcc16CyTvkcO1z65/lLRysAQcl1k+lErY1uOkyuMIh/lgbBFUsAoOuraOEg8UtiJHHD54uZSkxtv5hPXEhwwwd7fo62M7FX398Fl8QckxDIsqJsgA4SPZK4JDOgi9QL3gB+/2GEa3K1300FXtpidgGbXAS0cI28viFoO6tP4sR3Hu8HAKe6Psbw41kh/deEBTFV8hEDPnQrHh0k7uimT884ZaMzkMSJxSHvA3gaSZexq/qHxnSwF94LGIRTRrLdU0u4cwi1k0Y6oHHgUNYN8ilnNwHqGOqfcArj/lN+jtNIohwOwxqRaWd30O6BGJeqQzTMcd7BxiqyWXt5ASK/3Q8upyiWA+Ea8iDVNahWdG9/RpCYZ66rDwFCnzrmWidrewsMjSTeYZDEkYOtZpIrSbwm2ebSseKuvb9rcJKnx431SdzEMHDOYRG1cmHbsnRBSlV3a9PiJAtSxATpMd2arVvKFFJqyT53QWJZ0wkZoP9sW2mcz11fAuBR+wEtmcjiy7hecrE5XyRxmaV+jVUNFlnCJbfU921BEnt0Uzk36CBFBdsWJFEl4eYgiawwkv7ebHNsSwAMSRItnGKqLXSuu+8WNe0s9bXzdc2rJAPhXDpeVQCmGTlin+LqEQAAIABJREFUiyzBylqTmISEU0X2YPbj+v6FKUhv+s/AHHVTXz959rXivVXmCUwEl9Ec/bWng+cxJJETXRzWG9P71uIQOH3X/7xDEp+eMZtCvECY7FZMN+WlrWMk0RDsRagBQAreGOv2OkUq9YzSohgxBZGoSYw/m1zPz2Uz2lD30FXuPgJDha5puqm9T2U3rkcjZIVr5om7aEls+R6mEMF4nnRN4kgCwipSYUX3ekgiUUcEeJRgXdY4LfyhzTq8+4puahOumRckWpHEOPvZgEQ2krhOlhBgiujdbE3i2LMNEHR+JeLg58itE40kioNtQxJbxK3ihGuswllACPZ6NYmMk5b44HlV1ibaqKaxWRARIIgwvecWVzMzphI7W7jmHINEIKCJeyyVdqwEwFg6cBF0Rx2UlgRt3Y+RmsSAODPPjU6eNiQiCASULiQJp8foPchSy54kI+e9oQa4aqmcPN3Ur6uHrSgSe3YssoAkFmQLDK2U7BMC1KV65SVsQmZQqkMkeM9SN91Uk+7/Zj9JqP8GJVzT87mIYG+EzVYzZ7AL99GSlAQAHNwLP++CxKdnTPHp0Nn1/05J3wLDIHHaaWrnFWUfJhEwN8xa63mcOS4ZEbcwom1Sb8kgYGmCqCZxmls/JlwzWZM4QomllFvP+N4YJHFsjVAI5Fzabucg9Oe+yfK0n332f4uoSVT9frogceJwi4vLaUlyFdxYFcE0lZNFEkWk4uGpl7tnD21RN10baxKvL0PPI6omcSTbyhxsmuoFGBI58V5CiFLFIhWypKfnOI4kTjWL1mq7AOiATwuniMPFfN9jtXST1NYkTsBxjqQWoLGKKS2yBKuiNiEbfUTKQIdC6CP4xvPXqPcnSV+V00J37Dl2pCrq49i1Pf+c7pHJJp3wsPRc1UkZps5JbC7dcYBAGtZkr1WKNeFXc/sP0KpwGxWn9TNqqWXXa0v+5a6nUTo73fRh++ywSOIy08I1fE1iN0fDGolLPizCNRZg5CwksZoIaMdqEikkcSThyiQ8PCLYf41RWPb3Eb1r0vvWtefDz4tdkPjUjNmU4wCAyW4NVErJoCHO2FmQxLE+fZNI4sCR4cYAY/WWHJJldXZ1k+Ju3FSfxAjZADh1x1iAIwTp53j/jfcDGBeuoaTMVbDHUvTkPV1NYitcM0U3jZMrrCS5puAyMtra3nPbIxrO8bQOObRF8IZVKt1fpKgb30vNgiQ65/DyzT0AwEvtv5tsLPvJF9tHiCBdkxj+nwnu5VYPe2QR1zoTSTz78+Wp6xwm//6aor9puqmMZ747GRdq9+rp5FbSF+liEFkAbZ2Ln2Nl2FsBv5ZXZWVyWrVqogVtANC1m3n9Ob5mZqAKadx/AAkuz9d9OVzYg8SmaemHliDFBQfUUssYlw7QoiRp/+xggo0gqKeCe5LxUqkAmO+T6BEYi2OtS0wsSG7qhoENcz2N0lnuv+w3j4xJyV5NIpkkkdYtot5tQZt1IoFCjSPfyRK0jYnCTAE3cU2iBUm09+rul84AfMmHbvej5zBph8+Fn3dI4tMzpvh0KOU/vfjnqpTGGTu6lcJI1lrPY9M8e4I3BGowJ2Ok56kDvoJSN03OLFI+66Aac6w93WVifmd8tqlzdPb9j8bxDW/taCcgjeO9IIBkoWnhiPZ6oU+i7Xtjs91jdFPWcZXgi0W2geAEPjixtc4QWfx3jwtTCwwA+Ls/+a341Z/4Frx0c5qmF69J+ZlB6eI1SdUkJmPqppvHxCIVMlWKbloPX/fCDJuchKQnXMNmyUeRRANty4okameEbRPknEOeJFi3zynA1agBLdpQ1rDI3eda8dhYk/inv/1NADySCPSfb0bdGvBrua9mu3l9PAm73iKJTPsLQKnS1rUpSElc2OcsNdi5SrjWDU/l9BS4sI4t7VV0cEmjpIpxZFVgrSbOeW2hxKShqI5hXEASLT2HNUpXN5ZEjl9Pj1okkT07NN20rOuuFdAmC/tdbarjjWtJbS1I/P8z4EHcEkdsCr0cq0lkFK5j31V+tpZuyPUoJLEdZy2d6SGJTzFIzKbfcrWNOUxjBT5m4zpLpZQNwEIjWUxeS8b1+/T5f6eWo26kLONYalnsELJUKl003zTT9/+sxqnJBuRgXLiGUxsFRgIwYo2M3v+p4NINBW/YGpE5joVkFqs6NBNnMsn6O5hTk2ihJGsKrlXd9D237ZupyNtL42wLkggAJ0VFB5bhmineeP469d6zsp8cRSZKkrDZ/znjlGNBC9e4IW0ImHZC88z1+iSytMUk8cFsWTWdCISFbirX5FpgJOb9R0xaAFiCDcDX4a5Kn/jkg0QlXEMGDWJ/6Kvfgz/01e+h3w/0e+CxwWyeDhkX5ylcAwCHS0ESjT0gFU3SGkhZHEmP9ug2EdQ0+1RCtt5skCSpu7Nk8lrqnKIp0K3ibldbSCYyAf+cWfuLxklJ5hHQAQ5L5QdCEnJWTWIVUCkr3bQ0IInxPWETyQAG95ISeIxRwYl1GdPP9XWZ6+kjh0USx1puWMZ1wjXsg3q4o5tuhTH9xsZoc8BExiJSKWXph6FxNnrjJp2tBBFq0M5jKuCL0Aaql2AUgI01wz57nn35bYDot5cOof4pul0cyAJcvd8gY0rWRCSufx94evGwJQiHyA5FQrg+ieFgC/QM5rBPBuqmzPfWCX0YAtnHUTd98YZHEr/2vbeo9wMaSfSZXVbwRovksA2R51iM0gGBAbHJ4rXFOjIxus0Kruj6wrnqymJTQXCuBJgAXqURCA7oquSFinKVXJH5TQtuxUwGa01WbVLJBALd1CLsItcC7Oqmc0yfARWJJGqRFsDvQcy+9TgmQSK7H3TUPiMCNpYUYxN+c4RrdH9FlrY41qieRYADK4pHO/OWShsCjekx8qfN6qZpP3EN2BOulgB4bk2ippvahWuaVjGURxLntKmR9wOczxv7kmJltXk9xywNfd0pmmp8PV6ErP8a8+zErAn5W5TtkMTtsKqerl0a1PYQ2d0YSWwMrRSAsKBoummU/WeD0li4hkF7Ou559JDy2U9bADCGJPpDcfN1gKFwzVRN4ln1lhytYHj/p/bWGIG0UDsGTWspummorbJw5HWh+LrigvuxDC172KxKW7Ah9uGXb+CPf+sH8EMffz/1fiAgBdaaRF2rZKlJnGNxLS9zQI2qaxJVcTG6zTaBj0Uq5LWNc0yCSm93vY5hsKkmMYnoh7yTtt+ibXOEawJyM013lGy3p/m6traTmqL/fO19APj1L5S0LEnogHSh+yQaKIFzTTt47Pem1RYBv/7P+5m7vrTVJMZKkgCPgMWUNBZdnSNcEwcAXE1uPwCYEpYK10IvccSuSa+CXpmTi0Bf3ZSum1RKnuz1ArugNqmbzq5J7NFNbS0wKmPdZJYkHbrH1jfHvhMTcAuzY4wpNoUIjvqEbrP/Gphi/bNjupZ9KLDGIKxa3XRKkX9gz32Zmvj5JaGnbBck1jVV77cu+4sK2AwbD1RKWSSxo0xEzpYhcEsS19UfWSXoTeqaTezIc+O0/DbABelx1qicyP6Mcc8bYo4DKX+SNpc4L1rQOYQkAhmjDexhP7dPos72sfcf6IskFGQtlzSpB2ziRlrd1NICAPCf7z/47g9R7xWTRtkPTgs4x7UEAfq1SuftsMa1vMyBH4/xdEfuWvFzQ41zwz1h+hAdOgjM/pqlfeECC/3Qty6puj2dUaaVhIhWF2QcBMDf99TxNYn+er7Fh3xG1q9Ytr3UlpkFSdRIiiHTPdN0PZFFuEZ/30Xd4MBYB2w1QRL3SbqppoVbgg3NQrHQ6+egPYDcf1sNaowSlRVJN1V7gklMKfEBsGX/13O0qZvqhuf+Naq+P2Ll8Oqm/ZpE9rzpBYlVQ91/6UEtSrGWPonzkUQJitrXJ5l6Z/Qhn0QSh2I3k2JuUd2knydXujG4HnFfsjQkvM3CNTnXVui8bRckkgukhxIRG3msUiqj2Xq/GG1jauKANlsHxyvpDdAGy7gwRs9hk8XKdsA8JHGKFhXqE/rfGxM0+7mF6wCccJAf52sF5tJN6V6Cbl4dS9fvrQo1iVMKXcAZNYkTwjU9JJEMtgGMq5ueo+O6VMI1izSh68Zu7Id+h5YWGHNMI/CAYd/Sz00DOLLfWEydpvsrKoRI5jA15szakg1jBWnTY2gkcdG2LjGom8r3K04aE5Rqheu0RUz5INE7TuuqQpo4yiH08/SfzTv/3Jg8TbrEj58rNWy2aaeQRhLTpF+DWtWdA3xe9tz1JQDgtBhRVhoxzdKwCde4QVKSQhJVEs6CZGmNBWsAoL83ShU16VPQaUpsmwSyMEm0DoFJJVbP0XBOSYnBuqxNVFpJLnbMFQOSuGr3rIIUbuoFzjMTCRafxF8L3TUBu8I7c80zkcSJWym/12PZmsSY8UKLx0VAkSkJ9+m/Avzeb/DvPwfbBYkk1GytSTxTpZR4YPT76Yy8gvoz8FnruHE2P244RytKIYc+pW46QBs217KMZYwYZ1f+pLW9R3z/bXRT7ewa2hR02ef+HDZZkMQOjgyjkqaVSi01iZ0zYqTxxDTV8yw/6oRrTgoTIqjbV1xEkKgpMlQWM2JAVE1DftdDmqqVXcA6yWMJoIJAuAVpE7M4QHuqvyXA0Yvl+12VPJI4pgLN+gdZ2+JjVdR0M3eZ57sna1Owl6euC7it6qZzLKYlLwg6Z5721z8r3PE49lXvuQkA+Cefe0i9v6v3NgrX9Pe79jUmuEmdasli65OomUqWRunyfDPCTTJOn1PsPp6lSU8l1qxuarn/qT1xDYQ94Xhd0nME/HmzSBN8/sEKAF/esExFuZgT/AOU4m7bTmdOIoHvZRojidP0T2C8ncXUNcdqEqfYZX5cvwxM5jsbSTSAABahwM4+9L3+v6doO+EaYpMcZPGJjSs4CH0+MotkhU0Lk9fS16sVujdHyZBteK7HsfWWQJ+CGDZkW789GbuxBUn7Jwd9EiemGIuEWOim/npyrf7rZ9k4krj5WoBkaP3PFmqNVuCz1yT699tqEkP/NcCQWZ9RbznXOuGa05ISMRG7d23Z/Xz+NYn9Q5E6ENNhT1Ir3RfgaxL7IhVsAmjYJ3GqByogSFsUJJJrZD9PcKqCREaZdhEhiSUhnKLl5wEekQUEJao9dZSsiZN5iiNp6ZMowYbQ5c/TJAAGbEiWPoNZdc3Hsa98xQeJuvZ1k/UTcP41XrjG/xxqGaevN5duGusCcPt/y4wSdd+aEw7SfoIlAZG3c5yjbmrvkziC9hDXk3PjZF21158cAsD7GLcOcnz+YRskGpBEADgt/PUY4Zo+ksiJRAFDFhBLf/bv9/9P17JHCSDmmqmqmRTj1Eb9v3Pq+2MRbrq/YswKPOf99UnbM48kMn2CBrU9xMYVqEb+/2U4A737cfGmNTXO/6trgpi16Ole4f9t42IYnRmn6hosNYnRQT2VyYwznwBXkyhjzbVVI/cfIISDRsRFrE2KLQFYL7NoyGxphdmuT+IUkpiM1XpMXqqXWbdkhOeaHPaPViVuKgrplOk5ve8u30x8jo3V4Flp2jxtKEqu1KA46Fqkgk1AxEg6oDOuZ6+vLE1w1DpnQHs/2FrSha9JXJmQRL9GViUf3ARkw/+/BUmUFh+rsjKh1FKTaKL2RYm780zIAH2VRhbJyltkSaysm3Onm17fy/Effeor8darnFKyzEcrRzPBnmbl2IRrNN2Udz6z1HUUWr51DLr3A54FxNAd9b5lqYnL2t6dlgRoKLmxBXvZyHnPzFMYKLIPsc8bANw+WOD/aRFqWt0067dqYvaFWM3cIm6kz+A5aHNV8/d/rE/iRiQxHUESCcXvWHPCz7OZTBSOljwRlOtUJ7ytwjVbYs98kMh80XFhLbNxDfsdcojIoJk7GQDE1Kam4eifiRu2bmAd+XjxcxtCgpOq6s11+v6PIIlTnPUR4RoLImJtCj68/9z3liYx3ZTL5EuQ3qisKUc3DYeGOF20cIQ4CKXQTfnvzaRSN0JbPE90Q9P55tJGv8bQcmOOZUnsJNdY5pu37zQ6fC0qdfHzRmfkjXvCKJJYTx+mImwhNtUSR9t+nuLd48KkbhqQRL93MU5yYIUEIQdLTWJR1TgtamOQmGJV1HTwBfiA1IrsPY4tI5XGOcI1Pvt//kSoP/wN76Xfq/UETHRHN9wnWeSmRzclb8ciTbp2P94ZZ9RN+zQ9X3vPjSsVm8Qk3FTbEEG51XXdmJDcNEnQNPZxkjiy0k0B4OZBSEZeW3JuuCSzpJaRUd2V701QWZ7u67CSRMJEOwqxmG5qEkEc8e+mQIAhu8xQlqWRxLrB/pR/N0ZvZeimKpg1C9dsiT3zdFPmi47FFZiN6yyVUosACqACUpKmKgFHw0L90WdjaxL7FA3/GltLp7nueu5njhnJGk05QUl0/2WedL2fESWN73+4J9Pj9Gdj+73lap1YhGvk0CiquqNrMHVqWhK7qGo4x2zIiUIS+URC6vpiB/5vnT+SCNhpo7//wy/g5n6OG3s8AjnH8plIog6kmPproEW3Iwo0xxLQAhxhDpPXGskIA9N0U00DrMg5AqomcY5wTVV3/06NizPr3kkm55gJ2lnRLRgAT51dVzXFkBETaitgC2Tn2jJLux6VTL9PICSpJPnm+8Rtl7M1xtJglarn9EnM0z6Vk+9BGJ4d7/9Mj4nLYIqK+97y1HXaAxa6qZzB1tpOIIi0+Nemr6UTpyxzCwhI4rEgiYbn5rYKEm8fLqgxi6zfz3efCRJVWxbb/e+f3VSNbEQ3ZZOSZ6mbTvVJLAYU1eme52MMM0qELGITAiS99YJ9mfOwHZJIfNFjtC1g85ets4qArd8eMIIkssFll8m313+ZxqmHRg5uZunrOrWAGNih/qneNmNIorQFmbJRKX/j5mMRvOkVUZMbeZ6JQ9KYHQugrUk0IpDy/nXVICdUQPX3xt5HQNBt//OFqJs+BpL4X/wbX4fo7DgXy6IaPKZP1iAB1LCZ9b7gjalPYpcU4xoHx0i6HzuNJA7ot0SNpth+nuLUSDeVgFCy654GutlJGyT8DCjdwSLFZ+4XuFbakMRFmmDV1lte3+OO9zxNUDfonPLzVjddZEmHvljUTQFBsBytrnmRNh5sGJFEwz6pnWtLo3TdSqEikcQYJSrrpguSNs4x1UiigRKbJLOCbcDvV7NUUWubKqo8/0dtKwuL83/7wAeGeepwuOCSQLIHCZK4T4zTGgRsbaGM0/vWXs7ff90Cg+4TOnIGTPVJFPRXrsHWCMrf711rqnVGMl7yRMUOkXDNZQsSd0gi8UXHi5jZuFK1YQG8SmOXjVHjKIpexLVm61/iz1Y3DVd/pIVrojlsnKeiDbHwu2S1miZ2CqeRxP5nY+smh5LkLN00zhpNIomDmkRbbeG6V7fBZ1t13Qw7Tt5fVDXlWMsYTYmlhVMGCOTksNmWpUkXPFuRROecqRZlrmWJ67UAYA58aaPQjWmmJcKB8cSRVcyKCfTk92M0HmDzulykSYfqyRhagn4R1E0XGdfyJEscnFNIIhG8jbFCWCftYJnhpKiwKmqTmNIy9zWJpwWPQEpwI075eSOJiyx8dzWR7NBzDNQtTjjlIq3H0jAEN/0+lXxwqXvFWVCiRVu3CvgaW2bPi1Eilt6t9y2WkSBzlCb1AL//+DnagkTtc1mCdK2KDXACWGK32iDx1sGCLqXoahIlSLTQTbsEEI/kalEk0320CtdEZ0DTNJMBpvg/MQuLqRH0c7QhiVpcqhtHCeWomlyDD7RNtl277FMwFjKOlfSAzYs4pmewTnIc3FQ1n/0H+kgWsxTTyCEEGaT4AMD/bBGu0RkqVrgmUHfDa1N9wOIgHWiRROKuaMc1IIKbxwzvP/991014P0tJW0SOHXMtQG2uVR0EaEgnoVDCNZRogXoGTCp1ri/RLq+dp4lS6XmrlM61PE2GNXhETVwVHaJz1E3Z2hLNLpDxk/1dR2g8DMMgRhJZcQXAO1cnhadyLknYzDnXicIAaBvWTwSJI/XlNJKYpzhel36OBudzmaUo6wbHaz5IXCiapEXwZq4tsyTUO5FIVp70ncKy5oRTLtJkPn26I4kIVvZgr+slWDcm5dylCtLXpDBSjBL5IJ07b7rPZlj/Urdqae+kz2BrAhTwiWdLkL5Uqth+znwy54Ub/ryJEbRNJrXz7xyv/f8b6aZs2xIgYnwZgQrNFOMT0Jq5EuawaYxcQ4wtHfPX0OPqSdGzLD0D7ZzyXUfaq1w24Zrt9Igu0CiIOh0qgAIckmhVadT0AKB10Kjsv8wNahzjEAb1PZkn5xCGzyTXtFLS2GbusQAEMJ390QEKwGWnxHo1IuT3Ft9/9p7IGurolSzdNHLsmDkC/fsijgLblFfoHUXFyc+n2mnq5jg5bLQm9LwpGs/f8D0PLQf9RVqs5sYITmikAeDX1kDdtCF7oPaQRE4UKUbSgaCeO1WTGNNv2eBmL09xWtQ0iiKmVTlXxfTYGP2yBAD7ixTH68osXCPoxjvHa7q/ou7vdyHqpipIYQV2QvlGENM47xYYVhsTrqEQQV1bSCaF/bgERdWYmCRAvyZxXXHrKz5P2T6VuibRom66zDwFWmpXTeqmtf3+A96/qBv+Pi4j+idDvxX74AvXAQBvH63pMaK8/dn7p/T1ulpqUTwm778WamEEYYBxn5cFDuL2NvrvnTVGv1eux5w3eo7y85zaeYamqhNAcj8vgnn0JG27dtmnYEw2wDsyfYcE2BzcDLLIVgEahaRYePVaOMUatMk4ZgnH9RAA50iOKV5OCadkyfDBnnIKx+4HQKKyM9TmzqKbTiOQ6K7TNHxGuAsSS5siW6aCS7aVBdB3Elak45pHVBfAXu8a1tb5bqwvtpndA7I+5KItT/pCLWxN4kDsZo6YFelc6HY6tHBNhKTLPIHNyYtcBWwAT1sEQi3Pg5PCFCQu8yC4YqlJ1NR1mm66CMI1lj6Jh61S4sPTkkYS+wmn83didLDNBvd5x5zw97Ko63NvgWG1vnCNf40V/OgFUqwCZYvAWFAzINz/pmnoREm8lguyT2WmAlLL2urq/QyiMMF3stWy65pEiwDWMkvgXAgSLQnGN1+4Rr9XTCiqn33gg0SmJlG37rEguX0/bVoQBtBIrv9/C910tMWcAYQB+NIxIOqTSJyLWeQny7Wn8iQ9KnmzQxIvpTGO05gCJTCBJKb9RczWtg1oqqSy1NwsTpwhYdVNE4U2sCItfp7JjJrE4YM91Rg23A///7UZyZJx/l+rKq2Mm6xlVEkBCyIrwjXrqjY1YNbCNeuulYWhBUBV45RUXByl8ViDdAP68jgmh+mHX75x7teaY3P6JMY1iTXpkM8Vs0p77ALu+46RdICrScwjZJXpkSUmtTz3Twq7KExZo2yDKZZu2lMJZOmmC08bfbQqTXPUcvossiF7glBpzxtJlLpJgEcS+43qfTLtIlpgWKzXk85QS50lSV/cyCDuYm23AQThmrK9j1R9ebSW2e8tj5xkliEsa/dkzYvCyFs03Ze7/xLcNKY2HUJB72oSDc/pc215A9uDExgiiUxNYhDcqkwKuDpRaKGN+vfbhIriunSGdRQj2wCJJEbJDj/f6XG65Vh/HMHmEX/XmMzZFnvm1U1ZKfl4UQEcHB7qUTA5Rv9e17GYetT0KKDzsjiz20RQAdgwcGb6JALoWjDI2E33sjswoto2rgdh+EyhtnDzmLNrEifGqSxm4vhAtleTaHASJBhaKyQxJw43OZBO1hWNJMby2+wc+0Xz5++0AsAXHq4AAB968fq5X2uOxc3jy4kkCTBEBC0Jp1jMyko3ZRNAmUqmxXvf5prEqAVGzaubClr89tHaiCT64EYCnKlawVF1U3It7y/80fzOcWFCKA4WOki0IYnyuc7bh1mkaaSuyZ9vZdV03/vWqZsq4RomkSyWpqHeuyLPe0B6CdpEcgAfOJR1g9PC7ydMzWuc9C5JNeFevaUhAAs9CFu6KTHOOS8uVTfBmbck2CXgtjjxyyxVSCK/lzjn8H/8h/8SbuzzrZNutW0zPmMIEmVOq7I2KeD2lcltpSwdm4Qtb4jPqc6/3qQ5kfTeC/DsGpmbvh4reFM36BIdfu/aOCxS9+UT5dtk25WKewpG0U3PyHRs+rKTOPNGIlkxTXWuuilANjKNkUTSIdS91CxUQt1/h+GeA0A6omQ1lcl0zvkAOApkuZqsJ0c3ZZHjqrHVUcztySWHxmlRdRQnJpMsTutJ2zrAhCTWDUUhEVtkAW220K8ex/7s93wIH3/9Lj72+t3zv9gMi5vHs8mtfh0vX5OrD1GWAt0XruGSJEm03wFcgJm3FL1GJYHYoOFO25fst794ZOpvKTQ9tnXGMOHHq/RKIMuoqGo7XIbnklc3FdSm6v3/eVncgoFFpIC+KvNVEa7Jo4SrRYGyt7fSwaX/fh+1rRss5QYyT1q8TNckGgLgZdyDkL0n7dldGc7SrPe92Zz4vTwJQaKBFg4AL9/a7yH/09dKscgSfK6lm+5RdNNQkzi3TyLL0oiFa9izO1PsMj9e/JlNY4ZIIpNgGfrJvACNnhvgz7ipRIk+p2SuO7rpJTNWxnaMM80gicMaNRuSyG5aAySRHKfbDQC+nQUVXPYCMP8aKyUv90I2BlbddKBkRXxvRbdhta/R6o79z0Z/b0pd1o+buNZIsT0zxzHhGuZAFMdxVdaKbjo9rkMSiwqnBaeI11M3JYMGGdfVsRiyn49jX/XKLfzVH/lYD4nZJovppgWhVBfXJLIqpboBMMBT12PhmjRxRJLE/xtndoHNSFEsgW5BKSRIPFpX3c+MieKi1CVOOYXxnmBx0nRtLBvsAX26KRtcCitBggZrr1CribpmXTeUsiCgpPyrWp0b2+W+zBeuSXqUtNnCNeQ2Kd+v9PdbEEh1nPRm+1TmiUJSGh7tlDk+PJU5ct+1nN0WxW/92SxtOgD14AvOAAAgAElEQVT/bM5BEufarf28+w72iO8tSxOkicOqrFGUvCJwD0k00EYBVeJD7slnI4lnj9WlLHoc60vGNYlTe8lYMpMJSnV/V4ty7jbZdu2yT8H4jPwQSWQW8aD/0cRD45xD4vp0U4uyl7UmMW6BMadxNkutlHGx2hOrSBWrmzLfm2wigW5KzNENEUgrImIOLmvbwdb1SSxV1tqAJK6KqssGM8G9OK1elp9DNzQlxJJZz9LQF9PSW+4qW5YmXcIDaCXoJzYGfR8BI/0n2hM4mnak0mjKPutDm1C361q5hM/GZmh1YGgLEr1wjbRvMPdJNASymkpmQxLtdFOh9j089c7uebeB0fXNc5BEeQ62D0lsE3dGCqhG/C1tUkS4h1ED1raIAjBLwk/ORbZPpU5usX1a/ZykvUS7Jkl0W85um+K3/9t1G1za6KahvvZCgsSWcpomjl7/fo4VrSUgf1/ThJlnNG6TwiYFvLhLX6VU/72zxgB9n7Ak9tdRRJD0JYF+MpMp+YjrlC8bigjsgkTqAUiSIP/vx0z395Ngb9Dvjdy0NJXTwquXZ6Zu7LWFYdzksJ7gTYckkj0IYyrnlHDKmJIVmzWKg3QrR56tmxzefy4oTdTmY6ENLbKwSYYifSJIbGk8py2SyIjWAEFJTZBEqkdT0t8g2TnmapyFonSVbZH2KTkFkcmP+4uyQUriXK8tTkPuCTrhZN+3hnTTTc+3OEjSSoFRthObGyQKTVKuyaqbauo0jyQqRNAgrX84oyZRnNsHhqDhcUzXSbHIWZqEpEC3PrasBYZuX2Wpwe4FUoYgRT6/JC3YfVICLgtKJ3MqVIKX7ZOoWSF0TWIuc7S1lxDROYu6aYwA2+im8xD/uXZr3+9X+3lKK35LIMtqCQBxP2uj4I1KSlLnxhlIorVPYk2dicLAsgV7nZ+me/MSiVDtA1nu4zbZdu2yT8EYxynOIlhUOeOaRI4C2q9J5II99K7TgKwtTFxPWbAxBJe1uhZgQBIV111e22RxvzGA5ZEHqovl0Nbqjiy6N7j/VnXHGiba0Nw+iZ0kdlG3SCIZJGrhGhpJDJlFi5CACOmIKM9lUwM7D8uSfk1iWdWTrWMCm8GGUmhxKYCvSdRy32zQNiYkwKmbBvohYHOuNSXTSjcVZwuYdq41QtHNkRauCQ7ngakFhnZauWe7awp+cjFIouwdx+sSTcPVcskZUNRBcGvbsvK6vZBFpEK3k7IwJ7r7WLQKoOS4QU0i8X2LkufK2Keyl6g17OVyTt0/kbpJ7hmQxLxFTE+Xs9QGBVAAvZrmi0ASX7jp+/laAtJlluK0mIEk9r437lq9ceSePGDqEc/OWbTRSbXRNPgk+nqT6vXtr2Mkcbp1RjinLG2atsl2QSKxkGMlJdYp13V7srZoJNH4oHW1baomjms3EGVjZtUfCWo2E6Uj7iMQoQ0Ej7yv0PW4c7Rx1nm6qf9XC9dQYgc9uqlca3JYR1NZlRXWVUM7hIFuakcSi0rPkTs09Lgd3VTopmFN1s00Aq+RDeDx6KbM2tJy36xDOPZsMwyDsZpE1gHVe4AVSVzpmsRJuikGc2Qd0OevL7uf33P7gJ5jT92UVEUNSKK939scm0N3zDWSSLI7Ltp0sNEhWayTXNkSOUBA245WNnEXuf+PjMjxIku6BAmDvgD9ekubumm7JjtRGL4msW6MLZdUMs2SyAGA22r/sArXzLGXb+31/mVsmSc4WlVoGj64jH0gtv43LtU5v5rEfrmBjJvaEuJWLjJu0gdN+zGA/xmT9dS6v6ul3nibbBckUkGi/1cXbQNEcONcz0EAOEc+UYFb1dhqe/qNm4lrDeim3EJOkkCtZIM9eU+HyJIU0LlKVj2n1Ug/ib/rqT2yc3YHiq+bx/WEawzB9qhwDX0ApzhtkUS21mNPCddYkcSysvWt0igRW5N71S1PgyPJtgAY1kXzQg5D4RrOISyMyN7Yoc3VJPrfifjSuuKagou91GbkLUHifp52SDrABIktkqgz8uQz+vKt/e7n997hg0R9z1iHcK9DEi+GbrqIAgAL3dE78oIkbtfGMNonkUncpZpxxNcW7mWhThzgkcQuSDcgiYDU5NZtzR8XpOepw7ryTJKaTFwDAQV/eGoThYnVTU2JqnaOFubKnYOLRRJfafcFiyrzMkvM4jraT7ME91kSekyzCV6NpAMc6ytT+0E3jkASk8SXgQW/kPvO464D/mcCSYyEay4j3XQ7pfwu0Dh1034Wga0B62VjjGpnGklkEaLeHEnaRCxcU9UsvdX1HEI9h83jkq6+k0XpxnricNmfId2XCTg0lZae4xlIIt0Cw3iwhQyV6snFOhe5L2RnZcyBgCR6J7misqZCGy1rRYk1BcD2GpGralomXNb01HeXR9nPiqQNDZFENnHhejVLrLqynqP+edPzvYiQREvCAwD+1o/9Pvzl//N38I2v3aHH7C88bWvd9UmcqEmMAmAL2qnf98rt/Q3vPNtouukASTxvumkrlGNQU+2Ea6qmqyfaOuGaqE+ic+Rzo5xk9rwHQnDf9RI8ZyRR1H2DcBDzvSkn2UBbDMI1dnVTEaABbMyVsmq67401jSReBJXw1oG/HvtsA/5eds82jST2/TT2e/Ogg18fjYW5opOShD9ztgDN9BxF0A0IfiGtsN/E1+PGSenMjm56CY2pnYlbMLDIWRzsAZyTnEQIpEklsAnXm9U423C9mMpp6UlU1k2HjMxFEqfGxYevzHvKelRaMnATZyDQfY3BfZvFlOtPWa9PoiEAAwKSaBGuERqbp5vW2CMO7UUU7AG2NSKfbRckhsbZQKjDm06u9LOtNEtArX+pJWW+gTztP2/MgZhGz42fL+8kFB262tBrGQCeu77Ev/udHzS1PDlYpDhukyTAjD6JzTz580NDLzUAuNs6ruy19i64JnGOcEqnZltvbwsMjVJUBtRYzuDGqK6pazvl+ozJ/X+0stGLRSWTbV0FROiqhW6aR2izQd1UAlKAZGFFiVoTkqiCRFZI5nHszReuAQC++yteoscssiTQdlkkMULFpxC6blzSF65hfaBYpRTY7M/ELBm5HqW4qwLZAHBMI5AABi03LHoalnKDbbJnHklkHKckcrZYmqQO9roAgKRkzuF1A4FWyfQRBPoNsAFb3VJA29rXSAfUj+Gbi2oBFDGmJkLLOFsomX0qLRfIjqmbUm0DRummk8NCTWJl77+z7CGJNrTB0ji4l0UzBOla7t5So3OVTSsgirpmPnHg6wx50zQ2UaouSPSv0bShGfWPwFlI4nRNYhckGhIec21/keGkqHBSSJ9EW5DI1Mxo+zs//s34zP0T8zz/qx/6evz0L/8m3nj+GvX+ziG/oJpECUrvH6/p6+m1LMmSbatJBFSrGkNCII8ccp6S6e+b1CRa6aYW4Rp537pVpAVIxotGVw2iMLoFRpY4Wsl2jrppv58vfx8B4PYBT1d/EvahF2/g13/qO3Dv2nL6za0ts6RDZC01iYDU11qRRFtSLE3cIPiSv3WWZWewy9jrFRErZ9qXbK/RxEHpFMARSmfYViLbZs98kMg0hc2iAIClV+pgrzIEALGyFBcktnPTSCKZyY9bYJjRNsOhobnk3Tjy/sdFykwj07gmlHVcA5W2P4ezx7Tz6gkHTV6qhyRa5tihdKVdAVRqSyzCNUnisJ+neLdz7AiqkeqH1hgyu72N1VgjclVN6jaaJrQAyCfXZP+g169NjdMteABuLWu6Kc2AkL3VrG4qCYgQOOfZ+a6T/S644bLyMZJrzSR/+Us38OUv3TDP82veext/+0/9Pvr9UtsmNYnnjSSKAuvbRzy60WegCN10u5BEAL3evDySGEQ4LEkxoRx2NYnk7RgguYZE4aqsu8Qrc/8zRROuyTNRrgUAp0XdlTowliR9dVPW3wJaNo+RbmqpaX5SZgkQgfk1iYBdzKcnFkgixxp9BECVpowhiayYUq4YfvKsTpeOSVBqU0XVCSC2BGPb7JkPEpmFHDdzZx2uONhjxsh7NBw+S7iG5D+P0U2ZjbzfONv22fx1AiJipW3JzwyPfKA2aqTSskji2P23IInmmsRMo3S27OcyS3BaeNqQpY7rYJHi7aM2SCQykl3dWNV0dEULlXbd1vbsYsTosCH7xGkFUMvaci48L5bnRrfAYPetQOUPrwU67aYgMUISjTWJc0ycVXkGpqiqoU9lOAO2Ud0uTx2cAx6uLqYmUeiz77QJJ4puqhAptkzhaZj0BUwSR88vPNu2hN8yiwWHuGBqoC5L166mnm4q6AuB5GZqL69qnhKu16BlPYrGgqVOv0OlKhvdFwA+8rJP4rz1yk16zEXbMks7f8aKJEr9NUs3HZRKPY666Yb1Fc6NcHAwfQvleoEVyLXTOavkiUcSLy8r6pkPEplgaow2BHA1QbEACkt/ENCsMkD28RzZgEite54mpnsJGkRhMnUgFiWXER7rk8jQaTUiaEFE9PfGUmsG9UeGDdK/n++tCAzVTS3lOV64xgdglkbd1/YyfPHRCoAt+19Udfc5OSqtzj5fzo31SVumAu4gHMGuybpjQbAsAU13p+eYKHVTsh4liRJwAFQQfPYfEId4XdZgW4I8rknvwi91QeKEcE3EgLA6oBdl0gOvQ0gNe8Ick/v2joFuqvcE6dV3EWqSVhO0bZkldHIrVoG2KoDeN9aSSp/QLx35vZxGEvMER6uSpugBge0g4jrsHJ1zXQ2wBdmWBK+pL3L75610X8ALyfzWz313t+9to+nnmRcpikWRuGvpUgVfcjM95qw+iRSSWGmfcFpttLteTDc1stlEFXWyx7rq71peUrrp9u2yF2xVxdAW+wEAU1gLjCOJVOCmkMSarGOJhWv4LE74XFK3ZO1tM6cnUVU3WFcVUiLjOlfdNE9H0E7SSdabgZ73WTa8/2xWC924Ob0E15L9NCGJQje11XHdPljgs/dPAXAZyV4ga8nsKpEKi9N0la2r71TNxOk+iT2nafpamm5qaW+Tq7rJquJEBOJaXgCUeqI4O1JbO/X+J2ES3Hzp0RrO8XRTjSRuq3DBXp4GJclzvo8SpHSsBErdNOwlp63jamkoflG2l3sF3NpAk88U4m9JinW1nUYqoVAkf+9dv5ezipeLtE83pURC2s92tLKvrVv7vs2DpUZ2Tp9EXd/GKnJq28tTXDe0pLho0+uCfWZkjNRfs/uWBjj4XrnJaE2iXd10unRJxsq47uyY6rkdXY9XRVVI4hbv/5tsFyQSSOKgUTpZSxdnVfTf2mSaJkn3G2vf0zS2cUmv/qj/t6bGyftZZBXQ1F0vZc4cGmNQf0kgpWnSb+4t854yzVm3iuv0BYcmL9Wnm9a8I++cw6KlNllrnZZZglUr5W8LEnP8XhskXlvydNOimtfeY13uWmCI5QpJZNUFY4QC4PskNo3fSyzfm68BVkiiMUkixnw+yY6fFnUQ8jlnIZMuSDxaYT9P6fY2VvrV07Aeve+cgy+h6UqQyCBFISlQ47RVl93fwiBRkEQLbTTv1omt/muu4NDBIsVenuDtozXy1OGQrPlbtgwUoSBOCWcB4ZkURMqC/kq7ByvddE4NNhB0Aa7aeaNp8XRbnK7e1X9vLALWAzjIRIkuUwDCWbDpexinf7JIYoJC/DuCtQKouuEYdJhCIDsGxOUVrnnmg0Qm2Ih7pNCBgwvcZ6sCqM5YsI6dvg4dXLqhuA6zjrMer1sCsOlxPSSx5Pr0jambMhL7XuxDEFn/GkXlzPpNwQGuJyYQIbmGA0oX27OHVJ46FGVtpmTu5R5JLIwNyLWS2/PX9ybfr+mmXW2bgUrbOU2XcGN90qbvJYuc6ZpEi3CQfkYtGfk88apxTSP1F5NDBgk4AFTNmTjEq7JCQTa3f1yTLPyXHq0pMY1RddMtXcsaYThvJHGRJVikCd4lBYCAML9V6Vvw6Ne2yTok0RBs6GROXXPnKKBrEm00Yecc7h568ZPbBwu6dcMyS7Eu6+7+M0G6JI6PWnEdS1LyVtuo3nJGiQp0l/A2sHKquqbLey6T3VXiOny7k5Zu2iLA7FqOAQ5WTbuvi9H+rQ2+4Ri7jFX01y0wuppElpUT9waf+Hw95eJLmoB45oNEJtgY1pb4hTIpeJO4LmirDYGUD1ICBXSOuqlFgn6gZMjWMqp2D/K3pkzD9uuqxsIif65osX5DmKYIDPsdTl4Oeeo6dIKl28XOrqW2U8aZg8Qs6QQBLAjFwSLFo1VJI7lit1SQ+Nz1aYW1Mbopm4AApN/Y1Tu055iWkpfnYMrh0skVC5I4V3FXDlppb8OIHcSUTAAo6qYVU9kUJLbIUlGr5urnTTeVWq51V5+4yXJFNQJ45einYXI/nbuYJvUHy7SriWOQS612eVoI3XT73JcOSTQkBGKBKau6qZVuCgTKqUWd09NNqw7JZe6/nPfHK1tNIhCSkpbPtWzPxE7d1JC4llZBW9hZ5bHsnjqraSSx68EpNYkkkhj12GXupQYcgBC4WZFEujevYph1ZwcLAgz8yWmgws+zRRIv4eLavl32Aq0LNkjaUMiQ+NeZ4DJA77yztZgjJR+pa7JKSj1qmaVuL+lnyPlx4UBclzUWBiRRO1sAp0hVxHRTChEJSGJJOteD+iMya9S1ADBSZAAvXe/rX2x009uHC7x7vKaRXLE7h6Hu4i7hXOSabmr4bDq4LMg1ctVNS8kLcmYptq8MCaBe6wzDOC0wVZMOwqgAQVVPUtcDssQjq49rgh7ePylwkE9rvmkFYkD28vOb3+OY3M9FmlxIU/DDRdYhUlTJQZogSxxWZehTuc1IokUAJU7msOP8dwXcN6qbAiE4tPT5E7rpqeH+y/kiSKIlSLx5YK9JXGYpVkVt9EnUfndJ0Z5Npltm8EhiGyQWtiAxTsyzScm6waA0a9M1w7mhg0sSSVT0Vl4pvB+Udm1upnxQ1arpsrbA2NIj62KsCzbYjHxHJazhHEdBLKPMA0u3CyqB89RNmeA3HmcJZHNVf2RCEtX1WLpjLHcv12WyOHPEdfIsBJcskhgQQXTjLPejVPefDfj2FylOCjuSeOdggaJq8KWjlenQ1kgi09x4ob436/r34wRtfqa3KQDBuSqququnYNVNy7rpUH8b/co2rod2ssI1ktzSSGI1nXHVwjVdTeI5rxNNr6OQxGjfYus0n4bJ/bwoxdBDVdPMt2BIWiRx+9VNLXL3uuenpXRAVGlDTSJ/P+5em4ckarrpHhFwSFBi7ckIBOEay3PtA9nKVksd1yRu6TM61+5dC9+xiEZNmaD7Qje1IImdWGNNJhcH/rV/fdOZM4okks+O9BwGgkgaW5P4uMI121pusMm2b5e9QLMEGwB6srmss6WRJYB3ktdKXXOuuqkpuGyCQ8hkkvP2wADCfbHUOxVVTQun6KABCJz1SVXU1HWbgBXJErSGHSf+sG4LYm9l0c6blkBvs9akkqqYOAZF1ZhU2V64MV2HqK3LopV1aO9hQqTqFm1+prcpAMG5sqgLamTPqm4K9BFIU3ubdpy1RlmsrKf3hT7dVBCp8z2AtYPF1CRqBWKAb4vzNEwQpYtC57SYBvt8+1rqCquiwjK7GMTTarInSxsMxrQDak347eVpdw5bkmkffsn39ztuET7Ghkji9PX2FfpunaOsSTmLqTmqIB2w0eu7+v4tXFePYxpJZO//gG5qQMV7as4UmyQKwIjSrPFzY0ZNYkc3JWsSB3PkkMSy9onTXZB4yYxVCQyZPiMFVHGfHydIMQmgKMie4WcHmqriWRPrOE/noaSySa0rXjhFNxvW/zJ00zjzQ80xTXrBZeKmA+e5dF8dJFqEgwB/SAe6KTcG6GePr+/xrVK/9cueww983Sv48W9/k3p/aNvQUNlBsYBItZTkLUQMLtqWPXolV4MXpN1tTlNPkr/btzhKIOCzszTdPcoiA2hRyKnDN0GauL7a4jknE27u591nYkQ7nHNeXEohidvqJLz+3DUAwHvvHFzI9XpIosFxlZpEBsl9GqbnyAbcWpTKimQd5Pb7CADf9qHnAaBD4RmTpuwSWDKf77BNBtxve2JaEn7f+NodvPXqLfzrH3ufaY6+JtT/P/O8yd66bhO1lrP0MpjoB7z16i16zNwWGGnk81rZVDLOv372F6HPKMD7W03DAxVyhnYJV0PP4f4cJ2IHBTBts7r1JuM9xCtooZHm5l1BBzYA16MPkJq4IAcMcE7yIus3gbeKTQCcaqsfh26cVaSim6NhnDhXp2ufbWUcO/l+1kZ0L0uSbsMSH5TZ6zzdNwSXln5vQTiIrD/NAtoQxI1IummbtV5XNrTtdi9I5JHEPE3wCz/wFv3+XpuODkkkrqNquVhxo6tuC/UMhBo87mCz1oSGQzuI5FCCTwqBLOsGBxa6qcoIF1VD7QveIb+4PolJ4nD7IMcXH3HCNTKnsqpNPWifhr1+7xAAcEjS0R7XhLq+MCCCosqcOI7q+DRs2c7RgiT26N1GJOvGvm9LlCaOKgEQe/3eIX7++78C3/Lmc/QY8YPuG9RUBXF/59iOJL716i388p/8Jvr9QGjvFDQIpsfsKVGkq1iTuJen+Gs/+nF86KXr9BgJnKW/JY0kakX/hlM37RKFyucCNp85WRy0kfRPwO/JEvyypRuZOkv9dbmka48VVdW4ZkjKb4tdvhk/QaOzAVGQwgdgDidFvxiXUdvSNYksj3kUyTK1zmhMlEAJpHQvNeYB7YLEtgm2DUlsev9OB4m6BYkNyRXqz+MIB7EBKeCpLpY6CkAaYBdYFbVNtEDVFt44500ra9t0dC0YDM2Ny2pHNxUTh2xVVrRst65jnFOjY+2v2GV3K7twTUw3ZVTghFq2Ljlk9UnYncMFvki2wADCPmm5j0/Dnrvh0YbX2mDxvO3Flrq+ZwgaFm1SwGE7lU0BP69VUeG0qHqU2k2WKeaEtU3KrU7cxXY/nHP4wY/yCB0Qzu63j3zAxyCJ8py8O4NuOseEEls3DRzBAAKCKJKwcrYV7X8c+8bX7pjeL+vp0comOJSlDqsyBFJTqqFAPykJcKVZYz1oAV6/QxBEvnRjnBI7KR6n6o29n7ad+9Yme6aDRLYmUb5YjWSxUrtxD0KKbqeRLDKzNSbRy84RaNU1TZTM8JBaHlA5WE7WPgBgDlIdSMlc9dzPsrEWGFQArJAslkc+tyfaWE0i60h6JLHGqqxMh++da/PopnNMEh4WJ1kLOXgk8eod2lbrI4m25FZRhSCdc5rCs20TsxJ6Md8CYDRIJOimgFDLApJ4EetEqNpsAODry2tTbefTsE+++Rx+/vu/At//Ne+5kOu90AalN/Z5JoMgiQ7bqWwKBLrjaVHjziHvWAOCJNpa/tzat7eJmGs39v2a//yDUwAc5fogppued5DY0U3ttZ2nbTsdhjl01W0Zocbs86ZbYJRVQ6HbY76Tfn3MOiTRKDAo7+mEayoy2IuCUlb1PlP1luvKlszfFnu2g8QZzhYgtSUclSqu22MDh7WiqVrl5wH/8FiFayyBrEYNLOPkYDkpKt+njzg0dG0boGjCFJIodFN+jote4Gbsd9j6urOEa4w1ics8wcnaJpIA9AU4LHTTOZanSVuTaBGukXqDHZIoFtQ8627fmnp2OiSxtNWEaiTXtCfE9RfG/UesqDgauqAGF0U3BYKQwwee4xC3vEXSRWxrW5UTk8SOLD2OiQgWi8gCoQYb4HorPg3by/3ZfVJUtEMYzrcaZV2b+vTdmtEmYq7dbAP6zz9cIU0c9bzt5b5NR4cknvMz6tkFPEspHrcuq0uJ9jxpk/X0wNiDsx+AcS22huqm075yjCSyQRvQBw8EKLL0HAYCM5AVjyuquhPcumx2+Wb8BC1AxmRNoiCJZKY7VcIpFuGIQZ9E4tAIgU0ISi1007puTI5MR8HVKBGDJC5CQTTbp08EIMoqpo5OPdiJKqL2r1lbMJR1TQpw+H+twjUdQmSsGwN8wL0q2yBxptN0/kiid5Itmb4ekrgTrgEQDm1dk8gKbulnlFIpVQewLbgPB6KVph2r1DF00722J9pFBon/9POPAAAfe/0u9X5B0mtDkupZMFFc3CcRWUB64FU4XVcmmupFmnau2dYeuUq4sm0DxHRt53mbBImfe3BK33/nHA7yFO8ceSTxvJ/RZZaiqBocr20OuSCJu5ZL3vLUIXF2JHGR9XtMW/QcykFN4tnPgXNu1L/mkEQ1RxIoGiCJFXee6uSu99Mu39q6fDN+gsYiUsM+fXyWvFvEVuEURW21BG0huPQtIJg5Ai2SaKBEdXWCygFiHtCuCXYh2T422zpscD81T6/A2g8sGSbJHGd3KFxD0k0VtdVC9wX8vTxZV4+VoboQJLGqTTLtogi2KneHtthCHTZdkDiV3IoQcWBebSHA0uRVcMmyLYTuHiGJjHMhPdGkxcRFBIn/8ae/Bt/85j288fw16v156jySbqw3vur28q19AMB3feQFesyetGAoeeXQizaplbx/Upgca8AngNhSFjFBEnWS5bzsxl5AEi33/2CZ4UHbJ/G8kRRxwh+cliZ0dZknOC2rS1s39qTN9+BMu++NrQHut0bjEuyabq3/nTpzdB/yziekhBCDX84mGAeBLAlULNIEiYNqi7Od+9Yme6bpphVZk6gdNIAXk0kTZ4LQxTJVk8iqnaWJz/yEILHmxqlMvsWR7KNt/Gfr6KYtTZKln3gpebmX8r1NP9hB3dRG9wVsh3aMiLC1pLresjEGift5itO2BcD8IPECkMSWj+8cl0hIEofrexnePV6jqhss0su3sT5pC3XRVfe8TaHwY+1VrOqmYmyTYiDQVCnhmu65Ca+VVUMxDKTdgCTULoKW/J0ffgHf+WE+sJGEn4VJ8izYa/cO8b/9+9+GV27v02OWWdqJi2yrcI04gWXdmFp7AOiawJuEa1p0T2i452mCJN4/KfCeW/z3pinF51+T2AaJBk8rL7QAACAASURBVCQXCKyEXVIy2DJPgpItGdx4JDEEbsw+Ln5c186C1I/Q/Q4tZRFjweV0TWJ/jqxYo3MO+5LMN2pHbItdvhk/QQv9xiaCxIjKWRqEayq18Fm1rUXqsG7FJixqZ7qW0dLLEfB9Ek291KSOorI5QHmrJHbSIYn8Z5MAWNQMp5pnZ2mCsu4rsLJ9EoFWuMYoHKT7VFoccu/I9//WlO3lXoX10cqWNQWAv/LHPoo/+NbLuH7OkvfiJEttISt3f3M/xxcergBcDJVq262HJJacIptO5FiEm+YK12glNy/4NP29xTRtf10SSYyEa/ItFDgS+pWVSv4s2Kt3Duj9AAhI4oOTskO1ts32F2HdsmibppLX5Hkj9lIbrH2ppXOep2mRIUsApkWeLkK4BgAenBamxGnHStjVwHe2zJKuJtGCJK7KQOVkhGt0CxgZp18/y3SwZ1HYzxR4wKub9msS5V/mPN1fpDhalygqPnG0TfaMI4kkZDxQN60NUrtK7ZLc/LsahVbtjD1IF2mCQskPc2in/7dPNyUCKS2vbw5uFP+f3JCzVD3YNflgd1Q2vq8NEN1/sj4qCNfYvm/pJbiubHRfIDgh941ZUwD4xBv38Ik37pnGzDEJ7lfG2sJbByFIZLKRV930HiSo7DSS6LoxtSHTqgVo5JG2IPBl7RV3mTUZZ2gBH2Tu5Qx1PcHbR3XnlGyjc+d75dqC9J2NmyCJp0XdoVrbZncPl93PbC/HRVy3ZEj4ffMb9/Cvft0rePnmnm2iM2wvT7HIPJ3Q0qeyhyRegHAN4JFEVoEY8N/VaauTsEtKevNJuFX3MzcmJPOLuqZaYAQRmr4oDIckBqFGZgwQwAOAB4qGLTfCHKZsf5Hi3WMbIrtN9kwHiWxN4pDKySGJWeK6BV83PNUoVwGYR6SoYcjVA8rSVjRN0tQTTfd2MjSuBdpauqJCUXIqhkAfSWRli0Mz8RpS8mSR8l+XNV1/GhBZKaTm6h/lerpNgaUmEYBZ3fQizdeFivwzP8eb+zn++dsnAC5G3n3bLWv3IC+vX2E/TyeTRyEBEdqrWBBBLdpkYReUVYPToqYk8hOVpBIra25fOFhkOFqXOFr7upmLagRvMWF3CHN3J1wz3w4WKd49KdA02Nog8UUVrLGJO003ZZMrYkni8Bd+4C3bJB/DhOFhuf8SJDp3/ki6rkm8rfoBT9lenuDzDwuUNae4/iyY3k95JNF1ZTpNMw3AAEMkka9JVK3ijEiiIIFsz+G45YaMY87F/VwHiZdvbV2+GT9BY2sSAZ/ts1I5NRxeN40haFABmAmBDKqodW2jVpb1vEDKI4nemWQRz/2FlzK38P+llYJcU899ao79AJi4Vg8l5e9/4oJAkaW2JM/svQSBfp+qbc1QZW0hu5XGc2t/saObKnPOdXuQRbgjVpdllpZWcqsNLAFdA3laVJRjIc9Wj25Kqkdf28twtCpxtCqRJm4rD+BFlvgazS3vk3gZ7N61ZXdGiWDLtpm09gBAK4DKuj1e+7ZQFpTuou3F9vO9RraAAYKSraXcYK7NUZeVcQ87cZ3tvf8XaVqvwFKTuK5qFXxZkERe3RSIaxJ5X14z/Niewx3goEAAgPt8+3natYDZqZteMmMRKSBSbTIEibXKjrDBxkIFYDWpbgqIAmjIdHDtBkQ4xRhI9UQxbBny/TzFccvR5pHE0AKj46xPKlIF2ty8mkRbTWgsVMQGe4sWJQ2yynzdntg2OshAKy4iQaIFSTzIcdKKMeyCRG/SAuBkzaF0QEhAWFRKs5Hnhmqd0e5bpy0Czzi7cSNloFU3Jfbka8sMD09LHK0qHC6mkdWnYXkrQrYTrnl8u3c9IEM3thRJvLGn0RdSubtVQHxwYlOSfBomgjWv3+ODRBEn2jf0xJxruuWAJdjbyxM8OG17Oe7OGwD9tcz6F3nqdRLEV+b6JPq/HVNHp/ygUXVT0ueNW1lM+aGh5UYfgWT28708xf1jXzN8GRMQz/TTEHq3MSIJM5BEpwprDcGeDsBYkRwgiCQ0ja9lpFpnSK2TbsFgqj9qTCgp4B8aORDZzIpugVGQWaoO7azrWeqmgu4xDqv8bS1URNOL0wTrssGq9EER61zcPgxO07ZmqA4XGU7WpT1IVE7gTt3UWx9J5A9taw9OXaRv6+8a6oEAbh13NO0e3ZTrr3VtmWFV1rh/UuDaFlJNgcDu2AnXPL49dy2gdNtKN9WJCiuSdd/YuPxpmNBpLfdfAsvzVtIG+nuOtU+i7Fu7INGbtMdapAntu8q9O1l7X+ax+iROnDm5amVh2V99cBmCPZYGnUXMQHltyg4WKd45vrxraztP1gsya/ZB9y7k1E2TzslqjEED4NE9GyXTtaiB/39b4/KAPFJog4zr2kTYNuTPPzwFAFpdM9fSypWom04IDvVaWfjXOOGatiaxDdItgkOSQWPVTYEQ3IsAB+tc3FFB4jaKdgC+ruFoZaMWA0HaHbicG+t52DJr+8StebqpoNQmddOulrdBlhja2yyCkBLAISJxPQogqnjT15Oamc89OMXBlgaJWVuTuOuT+Pj23PUgCrOtQSLg23v8sy8emVDjRRaQrG3tAQkAf+Y73oRzwPd91cv0GOmJeX15/t/ZjX07+gX4ey5b0HJLz9KLNgnqLckO8UOOJEi09OruqJzcWdVTNzUIs+WtmFjTNJ7NRvquWeJCTaKB9bW/SDtW1DYngM6yyzfjJ2gCHTOQuK5J5Nsi9HnWlho1ADgpKlR1Q0PUIu5SWmotew23Zd4GtK2t97P4Pjf2cvzuu16U5BqZXfQPtgjXsEiiQgQ7J5m4lupdaAn2tLJXRdaE+uu5fpBIbiR3DjSSuJ2OxeHSyz+baxIPdkFibIs2SDxphWsY6xJHFnXTNNB/LDRtmdPbrRw/sybl7/bVTWvq4L6ugsRtFK0BQpC+o5s+vt27Fva7WwZRkou2H/u2NwDA1Kaj325gO/dywN/3n/mDHzFRR1+9cwAA+K6PvHhe0+pM33MLtU+fudvKyrlo64JEw32Us/q4FRMzIYlSX0i3D0u6oK0LEpn+uu3z5Vs1caUNMs8YSWTmORfd3hbbzpP1gqwwZAO0umZdN9RGosdYggapSXy08g+aRdxlXQWxCVMz9yr0JmOmuVCBlKVuDwDuHi5wWvhJstlF3QKjCxINrUssTrIWDvL93ngkUa8RWpVW2kQUFZzjUcHrM2oGLtoOFhmOV3ZpcY0U7FpgeFu0SPVpUdFBkawtE91UqQIv64QeJ4fhO239BePsxv1FAdAUb7kHn3+w6qlKbpN54SBbe6GdjZtWq3zxxnZ+3wDwqa97BV/93lumur1+4/Lt3Mvn2mv3DvF3/71P4v13+fsx155IL8cdkggg0E0bVQowZeI7nRiQxEGfRJK9pWmjFiRRnq/TsjKVc2VtvaXMUeYwZboFzGWsSXymg0RLTeIi7QvXHDBjMl8gW7X99ixBAwAcSZBIDly0lFiLHLBca102WGYWtCFkfywoKdCvpaORxDTBw8Lfj1BsvPmauv9UbUBE+sqttiCx66VpQY7b4F5aWbACHJqOsa2OxeEixbqqcbQucffacnpAazf3FUq6pZ/tom2Z+15eJ0WNO4cGtbmyMa3/UJPY0G2CgPA9idw3o+4Y9xcFWiSR2PNk73i4KnFo6Il2keZFEuzKxTsbWpI4/OpPfBJ3DhcXIoLyOPaB566Z3r9Ik05dc5uRxLn2uvF+zLXDRdppA1jOjduHO+ZKbJKEFp+GMfFVj9sgkUnwxnTTiiw3yFKnhBrt59SqqOmzRuY5CEoZuqlGEi8hSn35ZvwEzVSTmHlHHhCl0um/L1mDdRukWGsSBUlkF1aetSIJhsaiuQ72jDWaAFrk0hYk3lEbMlvMLs4WEJDEqYe7QxJ1ewnTZ/MBMFtvuVB1k7VV3XRGI2Vt25qhklqxd4+L2XTTba4/uki7sZfh0ar0fRJJJ1mQRAHqmKWs5b7ZxsaAF+3Yz1MTkpi0/R8l8QOAzu5eW4a/v610U0kcWVqJ7Oxse+P5a71a7KtiyywIp1xGR3JbzDnX+RSWYFuj1Lsg0ZsgiVJmxVge0U2pPolpP0hk9/9MCwUafFfxlVZlRde/A77kSc4pCZwZn2b/ktNNL9+Mn6BZahKXaYJ1qz7pW2BwiqhAK5zyGEEi61xLL8GgDsVfS8vkm4JLo7gL0N+QWbpprummkjWaQhKj2kKA3ETygECWRlXaTgHXVIMqNYmVeRP5o594P4AgM75tJo78O8dr02fTgeGLN7fzs1203djLcf+k8EEi6UgKA4KlaAPo6gErTVOle6CmuH9sq63K0qRTLAZEuIZRNw1r5HC5nUmSvM127/ok7myTLfMED1e7Pn1PwoRVYDlvLoMI3EXbay09+Ac/+j56zABJNJQ3hHYWNbX/Z6q8xwL4aP+uqGsaBEiVmqqAAUxC4bqqk7XUKW+LbWf69YLMUpO4yJJOoagmMx2B7liZ0DZZxFZJZlFgDUW8hEMojeONlLRecGkIpADgrhIgYJHETAVg0i9xStxCI4mdKI9BgON0XdHfNeBrSddKAdeiivrotMSqqM1Z5J/9lz+Cn/yuL9vaFgBS63G8rmzqpgpJ3NbPdtF2Yz/Hg5MSZV3TAVieOayKGqu2BphqcJ+GQ9vauqGPJJL7lsrQAr5lDZO4047dNiOJvgcqH6Tv7NkzHZhsc5/Ey2ASHFqCbX3ebKsI3EXbV75yE//wZ39/L8iZsmXWDxKZYC+N+iSWFedz5anrtC0sNd+yLk4LjySymgdZEvorsmw2AHjpVqiffmGLa6nPsmd6N7LUJOYqACjqmlNRUjVxVcM7WpIJe6drwMkGiVFPLmO7B2EVmFpgtFlyU03igd25045k94BO3Jd+Cww/lonbxAE/LaoWNSaDxKwvXGNDIJvZdNNtDqI0wmPJ0LLqnc+S3dzP8eCkwMnaom6adCg1wKF7knwpjXRTwCe43pmBJEoQVdUNmobbk3VLhDcuqObJalKXLk7TZaQb7ez8TQcmV7Em8SJNHHlLwnWHJI6bJUAEHk+4plQoHRN8ZYk6NwyAj0YSTwu+nZTugx2CxOnrSQsY4HJSmS/fjJ+gWSBqHQCsy5rqpRMLp7CMTFFDEmfL2gLDQm3SLTBC3Z59nIVu+ppSfTOhpF0LDK5IeVTdlKxJTBOH07JCVdez+iRWDX9PFi2V+bSw00233XqqcYbPxor3PEt2Yz/Dum2VQiOJbQJCMq7M+grNjW2JI6Af3O/R+5brKORse5vYPvb6XdP7L8rCXs63BdnZs2f6udwFiY9n3/LBewCAb3ztDj1mV5P4ZEzu3VHXAsMiXBMa3DP7fz4iXMMhiUG4RsQCGctUG7a1AUl8z63LXS6zvRDEBVhlyAboAICV89cFsrUhkDrsxD68Y2ELpBoVEDEIaQj2GgNkn8VBogFJvHWw6BoOs5alQRQmqJtu/nxagMZCNwW8MuPJut1EWNpcmnSKtFXNoy8HixTH68rk/F8WO5wZJALAp7/hVbz5wvUnPaVLa7pOk10niwhJZBJOOrNr6S8KREGi4bkpyn5tCUsB+k//ta/Br/yjz3a92LbN9hdBuAnYIYk7Gze9N+7WyOPZn/u+D+OnvvfDprNUv1czFHZmM9m3O7opI1wT1ySSdFNP/2yZWw3PCpTvelVWXgdiDpJYcj4oANwzqLpvoz3TQaIVSVyrLAIVJOYBybLQFoWiJ02pbX0Sa/W5uDEAeuIKTE1iT5THGCQCwN/58W/uJL8ZW2ZaOKiGc9PfWywcBHB0U8ALcJy26B6LiCyUAm7d8C1Pru/leHhazhKu2XbTtR7WIPHPf+qrnvR0LrXpone2dYwwIFZljcRxwZdWHLX0FwXQU11lD98sdcpBsNXufd9XvYzv+6qXqfc+DTuIekdeted7Z0/G9Blz1RKFF21zhX9++U9+E24fLHZq2o9hcsaLuumcFhhlzbWl0L2zLT6vLgM7LWqTLoZmvKSJo/zeNHH46Gt38G0fep66zrbZLkiEvU/iuqwp3rpQUldl7SmqpIOwSBNkiTNnnxepayli9p6Aum6PFa7JEoeTojK19xDby1PTYbjMEqzKEKQzm0hPuKZukDiexrjMfE+606KmERGhjQI24ZrrbWuD43WF569frUfyxZt7cA5oml2tx+Oadl5eILPdyyzByVqozCm9/rPU19JZ9kig7+CytbJ5MqSSs0jitpsk/Lq9fBcA7GzEXroZBC2Y/qI7e/L21qu3nvYULr3F6qYUK01q4BVTjC0LElVsC3tOC9esyhrPsaUbieuSmL6/In9G/dKPfpx+77bZM70bdcI1xJfdQxJZumneDxJZJMU5h4NFOgtJLKrGBL075zrBG0ubCMBTy07W85BEqy3zFKvSU2LLqqGklbVwTW0U19nLE6wKW2Gz5shbhGskk/X20frKyZ/naQLpk37v2tXrb3aRputmWJW0a0ufgLDQpgFPASqrUMvL0k3lWZGm1tS1ehlhqUm8GkfT/kwRsp09WyYtjNLEXZm1v7NnzzokcdW2wGDUTaM+iUXNtUDKkhEk0cCCW5U1VgYdiMUMoOIq2LPxKc8wWWCcCqivm6nb7LqlJnFd1jRFVexwmXWOBd0nsQ1ku89FXi5vUYPaKFKxt0hxYlQAnWt7undhxfXR6dp7tGI+FjGUvTzF8bo01QlqcSOLcI3QCL/4aHWlGyl/7ftuP+0pXGp7/71Qd8cGidf3chyvKxyteNo00B7AuucqnTjy65elwwJ9UaqSFKW6LDYUIbu6z/fO5tsrt/2zvVsfO7vMJuUGD079fjdH3bSsaq6/otKpENEbquuA8iUt/p0veQpI4rPCjHo2PuUZVta+TodBfARJFDSRCfh0n0SWoip2sEi7B4ClKIm4joU22htnrNvzaFtlRunmmKYIrEmJ5B6SaFRg3c9T3D+xSfn31E0NgbMgiUXVXEkn4YMv+PYEH3rxxlOeyeU2LUfOorKytr50ZEtAeLqpfS+RBveWtixxrQfAZaAvg4mQz7sdkni1mAI7ezL2cttLbaesubPLbNfb/V/o9QybTc6WTt20amh1U2GerA1lCp1wTWFTlF/oILHkfNCrYFerAMpoZd3QtTZC5ZSm1FRNopLatdBNgb6TxQaXgrZJ0TArIy+ZfEubCKClmxaVuQXGHIuRRE6RNtRb1oY+lf56KX7v3ZPetaevFyjJdWOhm6pGvlfQifyrP/wxfPHR+twTCc+SsZS0G20d4xcerkwJiKxVcrPuCXfb4NVygOpaj9JQAnAZTLfAcKRw0M6ePXv1zgG+4f238ae//c2nPZWd7Wy27eW+fZgk2DmV0qhPYl3jWj4dmvg+iX3BM5NfXtam3tSLLO38u6KqkWfPxl7+TAeJVc1lLICwsKT/iwVJFARyYQgA5vSXEyU9UQ1lingBL3jT769oCxJLEtl7HNtTSGJJfm/OOc8jr3xgaa1JfNeIJC413dQoXCN2aEBgLovdvbbE3UsuA70t9jf+xCe65AVjsra++GhFU1QBH+StFLuAXct326bUknFlTNckdn0S2SLILTfZx989KrDMkl3/z52NWp4m+Ov/ziee9jR2trPHMuccDhdpVyrF+GlJ4uBcEJ9hWViipQHo/ro8w2xV+BYYNmHCXU3iM2VFZWmU7t/3qO2Dx2UsAqxtpZuKKp7/O9w44YN3wQ0reJP1+yuy1LJlnnrlxLLqMubnZUKVOy1qn8WhA2D/YHvuOX//l3naUcRMSGIrrlM3fJ9EHSS+cGMXTO3sbPva9942tXyQtWVFEkW4KQjXcGv5ThskrgxBolapK6+YuqnsyQ9X5ZVkCexsZzvbmTapgwd4RkmWOFVywDH8dOukwlDL7pzDMktwvK7aEh9ec2K1q0k8H3POLZ1zf9E59zvOuYfOud9wzv2B9nfvd841zrlH6r8/F439r51zD5xzn3XO/UT0t7/dOfdbzrlj59yvOefeNzWff/yZB3hwWvi2FIYsAqCCREq4pg9rW+imdw9DsMAuxtC4ua1/sdTSqYbzLOC2n/s2ESfrCnvnHCQKkrgqq1Z+mOeRS584y/3fz9Pufuwb7mPdhA2LTUDcUqqVLxrQnp3tbMpEFKlubFTmZZZiVVZegMmAwAvd1BwkdnTTq6VuqpNnV7HeeGc729nOtOlSKXbPE2FIAHQ5UZYkqOoGTdOYa9n3F2knJsaCAL4Nmw9+iwtgz22LXRS3LQPwzwF8EsD/B+B7APw159xXqvfcappmrLv6zwJ4E8D7ALwI4Necc/930zS/4py7B+BvAPhjAP42gJ8D8EsAPrZpMmXd4HRdmfjIopR5ZAgSO7ppWWNdVlgYsuNvtmIfAJ/F35/ZuDlLHAoleGOhm362qHGyruhAaq4J5fO0qOnCZiAgiWvDd+2vF+4dG2zL931aSo8g7lq3VcP5F27ugsSdPTnTKLUVSTwtarNy8Z02uSX9QhnTUuZdn8QrUr+ap0nXGucqKxfvbGc72xnQV7ame+X2EoVcCwwJJIvKt0VLHO+73tzP8fmHpwD4czFWN70qbJcpu5BTq2mao6ZpfrZpmt9umqZumuZ/BPDPAHwdMfyHAPxc0zTvNE3zjwH8lwD+aPu7fwXAbzZN89ebpjmFDyjfcs59aOqPHndBog1JPDLQTbPEIXFtn0RjC4wPvnAdAHDDICUfgkRbLZ2gbdInkQ1K9/IEJ0WFk+L8g8RAN62wJltgAEGRalXyKlZAHz1kWwfIpnFaeAeZvY+6TslSN7aznU2ZFkVi9wN572lRmVWBhW7Krn3gjBYYVyhLK47Sjm66s53t7Kqb7Hf7eWrz07QoDNkCA/Dsk6K21Qje3M/x+QcrADY/eV35cqJ1uatJPFdzzr0A4IMAflO9/DvOuX/hnPtvWoQQzrnbAF4C8PfV+/4+gI+0P39E/65pmiMA/1T9Xl/zR5xzv+6c+3UAOCkqrIqKDtzkfSIKw4xzzmE/T3G8rszqpl/2og8Sf+DrX6XHdDWJRiRx0dJNOySRdAr32z6JJ0XVXfu8LNBNa6yKuuvHNjmuRUSsdNOb+9q5tq2R03Xbs8fgXH/guUMAwPPXdzWJO3tydnM/77KrliTJMktwWlaoapsq8I29DD/6ydfxl//tj9JjerUlHd306mRpdz3wdraznT0rJkHidQPA4RlfolTKMcWk/rCoGnNLih6SaCg5axqPdBZG0Ocy24VLKTrncgD/A4D/rmma33LOXQPwDQB+A8BdAP9Z+/vvAiCcy/vqT9wHcL39+RqAL0SX0L/vrGmaXwTwiwCwfOnN5qSobI3SYySRXCDX93K8e7JG3QCLlA+kXrixh1/7yW/Fe+8cTL+5tQ5JPLI1bl6KSEVXk8giiSmOVyVOC/4+zrU9hSQeFyWev84hbofLDEfr0oQaA/0gkQ2AZY2cFEI35R3dX/rRj+OffPbhM5Od2tnFWJo4vHB9id+7f2qqG97L03ZPaOgaZcAnxv7sH/hy0xz79ShCN706z8H77x3iH/7u/V2QuLOd7ezK26wgUSGJvsSBoZu2SGJVo6xt9M+b+3lg3BmEawBfPrarSTwnc84lAP57AGsAPwYATdM8AvDr7Vs+55z7MQCfcc5dB/Coff0GgFP188P250ft/2vTvz/TTta2RpqyIES4hh13Yz/DFx95ZM+aeXjt3qHp/bonF8DX0u1lvnF8oJty19vPUxy1Klbnrm6qWmAcG2ogDxcZjlYlqga4pQK/KbuhkURyE5FAWdqksME2ANy7tsS9N3Yo4s6evEmS432GhNNenrZIoq0mcY7laVC2K6urhyS+/66/77s+oTvb2c6uut3YlyCR97cWOlFIBnxyRgiyZylR0CAAjST2gsRdTeITN+cLr/4igBcAfKppmuKMt7Z4FpKmad4B8BkAb6nfv4VAU/1N/Tvn3CGAD6BPYx21E6lJNIqSPFr5oIhFBa/v5fjSo1Xvb5yXiTN439gCY9lSMq10U40enr9wTVCKPV3z9NaDhaf7WqjFQEw3tQWJxys7kriznZ2XiRz5G89fm3hnsGXW7glGddM55psit/Uo9dVqgQEAb7b15ayIw852trOdXVZ76eY+gKBUzVieuYAkki0whG1SVC2yZzintH+n1eU3mfiPojGyQxKfvP3nAL4cwHc0TdN1g3bOfRTAuwD+XwC3AfwnAP7XpmmEYvqXAPxUW0v4AoAfBvBvtr/7mwB+wTn3KQD/E4CfBvAPmqb5ranJCN3UjiT6AIwNOG7sZfjdd05MY+bavkIS08TRmZW9Vu5+XdamcT1K5rkL1ygkseD7MgrdNE8TE91Lbxz3rnGbiNx/QZst4h0729l5maxHS5Do6aYVquoCgsQ0qJt2SOIVopt+z1e8iOd/5GOdGNnOdraznV1Ve+W2DxLfPT4LBxqablTPonQdklh5JDGfCQI8d41jcEk5kSCJuz6JT9Da3oU/CuCrAXxW9UP8QQCvA/gVeIroPwKwAvBH1PCfgRej+R0Afw/ALzRN8ysA0DTNFwB8CsDPA3gHwEcBfJqZk0cSebqpBHhHgiQaahK/dOSRxOU5L6p91Sbi/2/vzoMkuasDj39fX3P03DPSwOhcSUggtCABkkBrc6wEmCtYEAiEECAsc8hgBwEGggUB5jCLN/AuYQ6DZS0IcZrDBmyFIYwIbwBhZHMYeWVAIHGIEbpmpkfTPdPH2z8yK7vU9MxU9XRVdlV9PxEV012VWfW6pjt/9fK9/P3amqRidLic3GW2rV/8bU1/XJ1eJ7F5zcl2ltxYOzbMvv2z7J9ubwmM5oNI68n2fVuSW1nYVeq0v3j+wzn/gUdXE6i0YtXoEFMzc0zNzHb8euPR4aFqwpr52U37529nZHiIR560tZr5VZL6VWOc2TPZepLYWKsbGktgtDe7aVF9bH3M2NS07NhRLU4W2ChUs0uoiQAAGwxJREFUHJidbXuinF7WlUpiZt4KHOp/8BOH2Hc/8OLyttjjXwUOu+TFQsXspq0nDo3kqTG7aavtUOtXj1Rrf3W6kjg6PFSsOTaX7c9k2KistrGWV3OFreOVxJHiZ9szNc3+mbmW200blcSIWHK7aasWtvs6UYVWgvNO2cZ5p2xra5/VI8McKE/ItHpN7lI11hGE+dlNB2UAlqR+ckxZSZzYv9iy54sbGxliYmqGzGR2rtV20/nZTdtt/zx+y/x8H+1OXlm1m470z4nMQxnYiySKdtPZtpc3mJhqbw3C5glQujFl7tqxYfZMzbS9Jtr+6caC820kiU1nYDo9cU1EsKFpbZuW203HRpianmM4Ztr62dpZn7KhkSjvLicO6nQFRuqUxsmi3ZPTLR8jl2pkaIjZuSQz5yuJVuElqedsXDPKxeccx9MesqPlfVaNDHH37Fy1FFIrx/+qkjibzLSZJJ6+Y+F8l63FCEW76dR050+erhQDmyQWk5m0XklsVA7vLCeh2dDizE3N0wB3o4d5y/gYe6baS4hWjxal/n0HZttqybxPu2kXEqINq0e4fU8xyW3Ls5uuasw4OttWlXRkeIg/euJp/FYbFZjGe7DLSqJ6XGMA3D05fZ8TXZ3QOLZOl9eWQOst3pKkleVPnvmQtrYfLa9JnL/c4PDH/0ZL6vRckVy2uwRGu5onrunG2uArxUAmiUMRbbdXNhKAnbunWDs23MbENd2tJG5bt4pb7trXVrLX2HZiarqtGJurbd2YuW/DmlF2NpLEsdZeb23Tdu1eE/r7jzulre0bvyON9Xfa+T+QVpLG7/LuyemWr9lYqvtcW9KHs5tKkg6usU7i/OUGhz/+N2Y3nZlNDsy0twQGwNWXnc3aNoob1QoHUzNkDk6n2EAmiRHF5CIHZltvr2xMOnDvgVnuv7G1hdwBdmya37adxUWXqlHda6dq1mgna7cCGRE86qStbFgzwqnbW585cak2rB7lJ3fcC7TRbrpqfrtWlztZqsaZpV3VOpVWQ9SbGseBXfumuzJxDcD0TPbl7KaSpIMbLddJbOdyg/nZTYuTi+1eFvG4045ua/tqTJxs75KzXjeQSeJQBLvbrPasHh1m3aoR9u6faatUfXzTAtYnbet8IrVtfZHMttMv3Vw1aPdavE+85JFtbX8kNqwZqWYObX1206ZKYocruY3ZTfdU61QOxkFE/adxTJic7vzspvMzF89WE9h4TaIkDYZGJXGmjcsNmme8n56d63gRZrzslru7XK2g09fqrxSD8VMuMBzBHeW1he0kDlvL2TzbuUanedr5jWs7e20PzFcS2zkR33gPdk+2127abc2tu632g29tmoG100niyPAQY8ND89ckDshBRP2nuQK/usN/N42ugH0HZpmZm2MoXGNUkgZFY53E6TYuN2h8BpycLk4udrr7pHFJ1V17i06xTs/ov1IM5KfY4aGoJkBp54P81rLldFMbSWK3S9KNM/CntbFwcyPGPZPTK/o6uubkvNVrIJsrud1IgFePDlWLyDpxjXrV+qYTMp0+hjUG230HZov1rpy0RpIGRqOSeGBmrvr+cBrjxuSB2WJx+w4vSdE4mdkoMA1KkjiQ7abDQ8GvdhdJYjstgVvGiypduzMjveMZZ7B1vLOTPzT8t7OO4Ve7p3jt77S+dGSjbL6/zSUwuq25Ffbko1pr3d3atID10etbv5Z0qVaPDvPrif3V11Iv2rhm/m+t020182eEZ5iezWr9K0lS/2tUEqskcfjwn50aSdrUzCwzs3MdrySOj923kjgon+8GMkkcGY7ql3HzeOsJXyPhaDdJvOTcE9ra/kgcu3kt73jGf25rn+bqYacndzkSxzVVBVttN42Y/8B59n/asuwxLdQc10pOuKVD6WYlsXHdcKPddNS/G0kaGKPDQ8xl0ToKrVUSV481VxKzrXUSl2JoKFg7Nlwtg2eS2MeGm85Ut1Phu+D07fzs7n089aGtLxLaC5orBd1Yy3GpnnD6/QA4adt4W/td9Ihj+emd93ZlmY7mFoSV3LorHUrzJACdTxLnB/tBWqRYkjSfFN5bTkzYTrvp1HTRbtqNZZPGV400VRJX7mfl5TTwSeK2NtYAe/zp23n86ds7EVKt7jMD6Ar+xV8zNsw/vOrRbVdy3/2sh3Yoot/UHJuVRPWq+57s6Fa7aXtr10qSel8jKZyYKpLEltZJHB5iZCiYnJ5lZi6rJTE6ad2qEX5+9z6g9W62XjeQSeJIBLPl183XrA2qLePdmwH0SJ3axoQ8ddi8tngvx4aHnKFRPau5TbtblcR9B2bZPz1nJVGSBshYmeA1Komtfg5dPTrM5IE5pmfmOt5uCsWs3zPlDKyDMk6t7IygQ4aHu/cBqBdsalqaYyUvgdELNpcJ90pPtqVWdXN206mZWSuJkjRAGpfmTEwVM8O3MnENlEli2YHSjc+u401dd4NSSRzI0bi5vVLFH+h4+QvvdXRHZks5EZLJtvrFeIcHw6rd9MCMlURJGjCNMWD3ZOvXJBb7DTExNc2B2TnWdeFzffO8FoMyTg3kJ9mRoeCZDzuGi885ru5QVozx8pffCtiRabSbHpidqzkS6chc8KDi+utHn3pUR19nbHiI4aEo2k2tJErSQGl0k+yaLCaFaTlJHB3m7nuLfdZ2YWLCdat7Y/6O5TSwJbX3XHRm3SGsKFn+240ZQPtZI0mcPDB7mC2lle39lzyMucyOt5tGBGtHh4t20+k5towPxuArSZq/Ln33vrLdtI0ksTHbaKc7XgCO2bQGKD4nD0pBxYxAANxRLgD/8BM21xxJb2tUZI9vWtNR6kXdbJleMzbMZFVJHIw2HklSc7tp45rE1ieu+eWuSaA7lcRTjl4HFB13zZO79bPBSIV1WI1f/tPvv6HmSHrb2Sdu5oIHHc1HXnxO3aFIPWN81Qj3HphhanpuYM7QSpLmk8RdbSaJa8aGubOLlcTG5+RBmrneSqIA+NRLHsnE1MxA/fJ3wtZ1q/jLF55ddxhST9mweoQ9UzPsn5lzxmlJGiBrR4tUpKokttFuWj1HFyauaSSJr378qR1/rZXCJFFAkdxsXbeq7jAkDaANa0bZPTldtJtaSZSkgVFVEtu8JrF5+bbxVZ0/ubh2bIRb3vWUjr/OSuJoLEmq1cY1o+yZnGb/9JzL8EjSAGkkiXsmpxkeCoZb7GhrTBQILm3XKSaJkqRabVwzyj37DnBgdo7VAzK1uCRpvm30wOxcy9cjAmwZn08Su1FJHESOxpKkWm1cM1q1GllJlKTBMTwUVYtpO7NqW0nsPJNESVKtNq6Zv7bEaxIlabA01kpsJ0ncsq45SfTkYic4GkuSatWcJDq7qSQNlrXlcb+tdtOmSuJoG/updb6rkqRaWUmUpMG1egmVxEa76fYNzszfKTbxSpJqdXTTIH//jatrjESS1G1bx8f4yR33tnWS8NjNa3jlfz2Fix5xXAcjG2wmiZKkWp20bV319QnbxmuMRJLUbffbuAa4h/u1cZJwaCh49RNO61xQst1UklSvzU1Tmd9/g5VESRokO8rk8NjNa2qORM1MEiVJK8ZQiwspS5L6Q2MJi3WrRg+zpbrJdlNJUu0+d8V5TE3P1h2GJKkm7Uxco84zSZQk1e5hx2+uOwRJUg0ufdQJ/PD2CS4778S6Q1ETk0RJkiRJtdgyPsb7LnlY3WFoAeu6kiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKkSmVl3DF0XERPAfyxh143A7hW+nzHWu18vxLjU/Yyx3v16Ical7tcLMS51v23AnV16raXu1wvv41L364UYl7qfMda7Xy/EuNT9eiHGpe5njPd1WmauX/SRzBy4G3DDEvf70Erfzxj92Qb5Z+uFGP3ZejPGI/jZVvx40wvvoz+bMa60/XohRn82Y2xhn4OOUbabtueLPbCfMda7Xy/EuNT9jLHe/XohxqXu1wsxHsl+3Xwt3//6Xqvb+xljvfv1QoxL3a8XYlzqfsbYokFtN70hMx9RdxySpP7meCNJWqkONUYNaiXxQ3UHIEkaCI43kqSV6qBj1EBWEiVJkiRJixvUSmJHRMSWiPh8RNwbEbdGxPPK+x8XEf8WEbsi4q5ym2PqjrffRMQrIuKGiNgfEf9nwWPnR8RNEbEvIr4WESfUFGbfOtj7HxGXRMTeptu+iMiIeHiN4faViFgVEVeVx52JiPhuRDxpke2uLN/7C+qIU+qUg42/5WOvjIifRsSe8hj1W3XG2o8Ocfw/sTzmNI8Bb6ox1L50qDEgIh4ZEV+JiLsj4o6I+ExE3L/umPvJ4cbgiLg8In5c/v5fFxE76oy3VSaJy+t9wAFgO3AJ8IGIeDDw78ATM3MTsAP4EfCB2qLsX7cBbwf+qvnOiNgGfA54E7AFuAH4VNej63+Lvv+ZeW1mrmvcgCuAnwD/WkOM/WoE+DnwGIopsN8IfDoiTmxsEBEnA88GflVDfFKnLTr+RsS5wLuAZ1H8bVwFfD4ihmuLtD8tevxvsqlpHHhbF+MaFIcaAzZTtBSeCJwATABX1xFkHzvo+x8RjwXeCTyd4jPoT4FP1BRnW2w3XSYRMQ7cA5yRmT8s77sG+GVmvr5pu1XAW4CnZ+bpdcTa7yLi7cCxmfmi8vuXAC/KzPPK78cp1i07KzNvqi3QPrXw/V/k8a8B12fmW7sa2ICJiO8Db83Mz5bfXwe8F3g/cHlmfrXO+KTlcqjxF/gO8OrMPKdp273Ajsz0hMkyW2T8PZHiQ/FoZs7UF9ngWTgGNN3/MODrebC18bQsGu8/8ChgTWb+fnn/Dopj0ymZeXONIR6WlcTlcyow0xigSt8DHgwQEcdHxC5gEngN8O7uhziwHkzxfwFAZt4L3Fzery4q23wfDXy07lj6WURspzgm3Vh+/2xgf2b+Xa2BSZ1xqPH374HhiDi3rB6+GPgusLP7YQ60WyPiFxFxddndow5aOAYs8OiD3K9lssj7H80Pl/+e0dWglmCk7gD6yDpgz4L7dgPrATLzZ8CmiNgC/B5gBat71gF3LLiv+r9RV70A+KfM/GndgfSriBgFrgU+kpk3RcR6ilaXx9cbmdQxhxp/J4DPAv+X4sPZLuBJaRtVt9wJnE2RmG+laAu+FnhinUH1s4VjwILHHgJcSdH6qA5YZAy+DvhkRHyQ4nKzK4EE1tYYZkusJC6fvcCGBfdtoBigKpl5N/AR4G8iwiS9O1r6v1FXvIDi918dEBFDwDUU12a9orz7LcA1mXlLTWFJnXaoY/zvApdRVBXHgOcDX+qViSN6XWbuzcwbMnMmM2+nOC49oTx5pWV2kDGg8dgpFJX1P8zMf6ohvL632PtfXtrxZoqTVbeUtwngF7UE2QaTxOXzQ2AkIh7QdN9DWbykPwIczW8OauqMGyn+L4DqmpSTsd2iqyLiv1BM3PTXdcfSjyIiKCbl2A5cmJnT5UPnA38QETsjYidwHMUF9a+rKVRpuR1q/D0T+FJm/jAz5zLzOorJm86rIU4VFRTw8+eyO8QY0LjU46vA2zLzmppC7GuHev8z832Z+YDM3E6RLI4AP6gn0tb5R7pMyuvcPgf8cUSMlx+Inw5cExHPjIjTImIoIo4C3gN8p6wqaplExEhErAaGKa5BWV1Waz8PnBERF5aPXwl830lrltch3v+GFwKfzUwruJ3xAeBBwNMyc7Lp/vMprn04s7zdBryUou1L6nmHGn+BbwNPiYiTovB4imuFVvwHtF5ysON/eS1o4/PPVorJs67PzN31RtyXFh0Dolhy7R+BP8/MD9YV3AA42Pu/OiLOKI8/x1PMNPu/M/OeugJtlUni8roCWAP8mmJ625dn5o3AMcB1FOXlfwPmgGfUFWQfeyPFxECvp2gpmgTemJl3ABcC76CYAe9c4Ll1BdnHFn3/oThIAhdhq2lHlGeJX0qRBO6M+fXILsnMuzJzZ+MGzAL3ZObeWoOWltfBxt+PAp8Erqe4bvG9wEs9SbjsDnb8P4n5zz8/APYDF9cUY9861BgAXE7x//CWpvs9/i+jw7z/q4GPU7TF/zPwTYol2VY8l8CQJEmSJFWsJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpEpfJYkRcUtE/Doixpvuuzwirq8xLElSnynHm8mImIiIXRHxjYh4WUT01bgqSRpM/TiYDQN/WHcQkqS+97TMXA+cALwLeB1wVb0hSZJ05PoxSfxT4DURsWnhAxFxXkR8OyJ2l/+eV97/nIi4YcG2r4qIv+1SzJKkHpWZuzPzb4HnAC+MiDMiYlVE/M+I+FlE3B4RH4yINY19IuLpEfHdiNgTETdHxO/U9xNIknRf/Zgk3gBcD7ym+c6I2AJ8GXgvsBV4D/DliNgKfBE4LSIe0LTL84CPdyNgSVLvy8x/Bn4B/DZFZfFU4EzgFOAY4EqAiDgH+CjwR8Am4NHALd2PWJKkxfVjkgjFQPzKiDiq6b6nAD/KzGsycyYzPwHcRNEutA/4G+BigDJZfCBgJVGS1I7bgC3AS4BXZebdmTkBvBN4brnN7wJ/lZlfycy5zPxlZt5UU7ySJP2GvkwSM/MHwJeA1zfdvQO4dcGmt1Kc3YWianhx+fXzgC+UyaMkSa06BhgB1gL/Uk5qswu4DmicuDwOuLmm+CRJOqy+TBJLbwZ+j/kk8DaKyQWaHQ/8svz6K8BREXEmRbJoq6kkqWURcTbFmPMFYBJ4cGZuKm8bM3NduenPgZPrilOSpMPp2yQxM38MfAr4g/KuvwNOjYjnRcRIRDwHOJ2i4khmTgOfoZj4ZgtF0ihJ0iFFxIaIeCrwSeBjmfk94MPAn0XE0eU2x0TEE8tdrgIui4jzI2KofOyB9UQvSdJv6tsksfTHwDhAZt4FPBV4NXAX8FrgqZl5Z9P2HwcuAD6TmTNdjlWS1Fu+GBETFJXB/04xIdpl5WOvA34MfCsi9gBfBU6DaoKby4A/A3YDX+c3O10kSapNZGbdMUiSJEmSVoh+ryRKkiRJktpgkihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSp0tNJYkSsioirIuLWiJiIiO9GxJOaHj8/Im6KiH0R8bWIOKHpsYsi4hvlY9cf4jVeEBEZEZd3+MeRJEmSpNr1dJIIjFCsT/UYYCPwRuDTEXFiRGwDPge8CdgC3AB8qmnfu4H/BbzrYE8eEZuBNwA3diR6SZIkSVph+m6dxIj4PvBWYCvwosw8r7x/HLgTOCszb2ra/nLg+Zn52EWe64PA94GLgI9l5l92/ieQJEmSpPr0eiXxPiJiO3AqReXvwcD3Go9l5r3AzeX9rTzXOcAjgA8uf6SSJEmStDL1TZIYEaPAtcBHykrhOmD3gs12A+tbeK5h4P3AKzJzbrljlSRJkqSVqi+SxIgYAq4BDgCvKO/eC2xYsOkGYKKFp7wC+H5mfmvZgpQkSZKkHjBSdwBHKiICuArYDjw5M6fLh24EXti03ThwMq1NQnM+8JiIeHL5/RbgrIg4MzNfcYj9JEmSJKmn9XySCHwAeBBwQWZONt3/eeBPI+JC4MvAlRTVwZugaikdpXgPhiJiNTBbJpkvAlY3PdfngL+mSEYlSZIkqW/1dLtpue7hS4EzgZ0Rsbe8XZKZdwAXAu8A7gHOBZ7btPulwCRFkvnb5dcfBsjMXZm5s3GjaGPdk5kLr3GUJEmSpL7Sd0tgSJIkSZKWrqcriZIkSZKk5WWSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIERMTx5Vq7w3XHIklSnUwSJUkDKyJuiYgLADLzZ5m5LjNnu/j6j42IX3Tr9SRJaoVJoiRJkiSpYpIoSRpIEXENcDzwxbLN9LURkRExUj5+fUS8PSK+UT7+xYjYGhHXRsSeiPh2RJzY9HwPjIivRMTdEfEfEXFR02NPjoh/j4iJiPhlRLwmIsaBvwd2lM+/NyJ2RMQ5EfHNiNgVEb+KiD+PiLGm58qIuCIiflQ+39si4uQyzj0R8enG9o1KZUS8ISLuLCunl3TnHZYk9SqTREnSQMrMS4GfAU/LzHXApxfZ7LnApcAxwMnAN4GrgS3A/wPeDFAmfF8BPg4cXe73/og4vXyeq4CXZuZ64AzgHzPzXuBJwG1lm+u6zLwNmAVeBWwDHgWcD1yxIK4nAg8HHgm8FvgQ8HzguPL5L27a9n7lcx0DvBD4UESc1tabJUkaKCaJkiQd3NWZeXNm7qao+t2cmV/NzBngM8BZ5XZPBW7JzKszcyYzvwN8Fnh2+fg0cHpEbMjMezLzXw/2gpn5L5n5rfJ5bgH+AnjMgs3enZl7MvNG4AfAP2TmT5riPGvB9m/KzP2Z+XXgy8BFSJJ0ECaJkiQd3O1NX08u8v268usTgHPLFtFdEbELuISiigdwIfBk4NaI+HpEPOpgLxgRp0bElyJiZ0TsAd5JUQlcSlwA95RVy4ZbgR0He31JkkwSJUmDLJfpeX4OfD0zNzXd1mXmywEy89uZ+XSKVtQvMN/autjrfwC4CXhAZm4A3gDEEcS2uWyHbTgeuO0Ink+S1OdMEiVJg+x24KRleJ4vAadGxKURMVrezo6IB0XEWERcEhEbM3Ma2APMNb3+1ojY2PRc68tt9kbEA4GXL0N8by3j+G2K1tjPLMNzSpL6lEmiJGmQ/QnwxrI99FlLfZLMnACeQDFhzW3ATuB/AKvKTS4FbinbR19G0YpKZt4EfAL4SdmmugN4DfA8YAL4MPCppcZV2gncU8Z1LfCy8nUlSVpUZC5Xp40kSVpJIuKxwMcy89i6Y5Ek9Q4riZIkSZKkikmiJEmSJKliu6kkSZIkqWIlUZIkSZJUMUmUJEmSJFVMEiVJkiRJFZNESZIkSVLFJFGSJEmSVDFJlCRJkiRV/j9YJ750IxgAtQAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          load
                                          2014-11-01 00:00:000.10
                                          2014-11-01 01:00:000.07
                                          2014-11-01 02:00:000.05
                                          2014-11-01 03:00:000.04
                                          2014-11-01 04:00:000.06
                                          2014-11-01 05:00:000.10
                                          2014-11-01 06:00:000.19
                                          2014-11-01 07:00:000.31
                                          2014-11-01 08:00:000.40
                                          2014-11-01 09:00:000.48
                                          \n", + "
                                          " + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.10\n", + "2014-11-01 01:00:00 0.07\n", + "2014-11-01 02:00:00 0.05\n", + "2014-11-01 03:00:00 0.04\n", + "2014-11-01 04:00:00 0.06\n", + "2014-11-01 05:00:00 0.10\n", + "2014-11-01 06:00:00 0.19\n", + "2014-11-01 07:00:00 0.31\n", + "2014-11-01 08:00:00 0.40\n", + "2014-11-01 09:00:00 0.48" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "元のデータ vs スケールされたデータ:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 24, + "source": [ + "energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)\n", + "train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAZ+klEQVR4nO3df5BV5Z3n8fdHoOjwKyq0ZFYGOroRGBEDNNHEgJg4cUdXolIzi8YVzRiyZq1UyspkslZQRl3N7jBOyk00YWOUKJgfikw07tRIIok6M2rjChFtpSxFWX8UkAnQ/Ea/+8c5rZdL3+5z6T739u3zeVWdou95zjn3e56+fb8853nOcxQRmJlZMR1V7wDMzKx+nATMzArMScDMrMCcBMzMCsxJwMyswAbXO4BqjBkzJlpaWuodhplZQ1m7du3WiGjuqqyhkkBLSwttbW31DsPMrKFI2lSpzJeDzMwKzEnAzKzAnATMzAqsofoEzKz/OnDgAJs3b2bv3r31DqWwmpqaGDduHEOGDMm8j5OAmfWJzZs3M3LkSFpaWpBU73AKJyLYtm0bmzdv5qMf/Wjm/Xw5yMz6xN69exk9erQTQJ1IYvTo0VW3xJwEzKzPOAHU15HUv5OAmVmBuU/AzHLR8s1f9unxXvv2eX12rHPPPZcVK1Zw9NFHV9zmuuuuY/bs2Zx99tlVH3/NmjUsWbKEhx9+ONP6IzFnzhyWLFlCa2trr47jJGBWAKVfyH35ZdpoIoKI4JFHHulx2xtuuKEGEdWfLweZ2YBx6623MmXKFKZMmcJ3vvMdAF577TUmTpzIZZddxpQpU3jjjTdoaWlh69atANx4441MnDiRT3/601x88cUsWbIEgMsvv5z7778fSKasuf7665k+fTqnnHIK7e3tADz99NN88pOfZNq0aXzqU5/ipZdeyhzr73//ey644AKmTp3K6aefzvr167s95p49e5g/fz6TJ0/mwgsvZM+ePX1SZzVpCUj6GPA74P6IuDRddwlwCzAGeBT4YkT8vhbxmNnAs3btWu666y6eeuopIoLTTjuNM888k2OOOYaNGzeybNkyTj/99EP2eeaZZ3jggQdYt24dBw4cYPr06cyYMaPL448ZM4Znn32W22+/nSVLlvDDH/6QSZMm8fjjjzN48GBWr17NtddeywMPPJAp3uuvv55p06axatUqfv3rX3PZZZfx3HPPVTzmHXfcwbBhw3jxxRdZv34906dP73WdQe0uB30PeKbzhaSTgR8A5wHPAkuB24H5NYrHzAaYJ554ggsvvJDhw4cDcNFFF/H4448zd+5cJkyYcFgCAHjyySf5/Oc/T1NTE01NTZx//vkVj3/RRRcBMGPGDFauXAnA9u3bWbBgARs3bkQSBw4cqCrezoTxmc98hm3btrFjx46Kx/ztb3/LV7/6VQCmTp3K1KlTM79Xd3K/HCRpPvAH4Fclq78APBQRv42IDmARcJGkkXnHY2bF05kYemPo0KEADBo0iIMHDwKwaNEizjrrLJ5//nkeeuihPrlbOo9jdifXJCBpFHADcE1Z0cnAus4XEfEKsB84qYtjLJTUJqlty5YteYZrVjgt3/zl+0ujmzVrFqtWrWL37t3s2rWLBx98kFmzZnW7zxlnnPH+F21HR0fVo3a2b9/O8ccfD8Ddd99ddbzLly8HklFDY8aMYdSoURWPOXv2bFasWAHA888//34fQm/lfTnoRuDOiNhcdhPDCGB72bbbgcNaAhGxlORyEa2trZFTnGbWx2o9Cmn69OlcfvnlfOITnwDgyiuvZNq0abz22msV95k5cyZz585l6tSpjB07llNOOYUPf/jDmd/zG9/4BgsWLOCmm27ivPOqO9/FixfzxS9+kalTpzJs2DCWLVvW7TGvuuoqrrjiCiZPnszkyZMr9l1USxH5fK9K+jiwHJgWEfslLQb+fURcKukfgCcj4n+WbL8TmBMRaysds7W1NfxQGbPqVRoi2pdDR1988UUmT57cq2PUQ0dHByNGjGD37t3Mnj2bpUuX9lmnaz109XuQtDYiuryhIM+WwBygBXg9bQWMAAZJ+hPgH4FTSwI8ARgKvJxjPGZmh1m4cCEvvPACe/fuZcGCBQ2dAI5EnklgKfCTktdfJ0kKVwHHAf8iaRbJ6KAbgJURsTPHeMzMDtN5nb2ocksCEbEb2N35WlIHsDcitgBbJP0XkstFo4HVwBV5xWJmtRERnkSujo7k8n7Npo2IiMVlr1cAxU7BZgNIU1MT27Zt83TSddL5PIGmpqaq9vPcQWbWJ8aNG8fmzZvxUO766XyyWDWcBMysTwwZMqSqJ1pZ/+AJ5MzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMcweZ9QN9+YQvs2q4JWBmVmC5JgFJ90p6S9IOSS9LujJd3yIpJHWULIvyjMXMzA6X9+WgW4C/jIh9kiYBayT9X2BbWn50RBzMOQYzM6sg15ZARGyIiH2dL9PlxDzf08zMssu9T0DS7ZJ2A+3AW8AjJcWbJG2WdJekMRX2XyipTVKbn1hkZta3ck8CEfEVYCQwC1gJ7AO2AjOBCcCMtHx5hf2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrIqIjItoi4mBEvANcDXxO0shaxGNmZolaDxEdTNd9ApH+6yGrZmY1lNuXrqTjJM2XNELSIEnnABcDv5J0mqSJko6SNBq4DVgTEdvzisfMzA6X5xDRAK4Cvk+SbDYBX4uIX0i6GLgZOA7YATxKkiDMrB8ovYMZfBfzQJZbEoiILcCZFcruA+7L673NzCwbX4M3MyswJwEzswJzEjAzKzBPJW1mPfJU1wOXWwJmZgXmJGBmVmBOAmZmBeYkYGZWYO4YNsuZO1WtP3NLwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCizXJCDpXklvSdoh6WVJV5aUfVZSu6Tdkh6TNCHPWMzM7HB5twRuAVoiYhQwF7hJ0gxJY4CVwCLgWKAN+GnOsZiZWZlcbxaLiA2lL9PlRGAGsCEifg4gaTGwVdKkiGjPMyYzM/tA7n0Ckm6XtBtoB94CHgFOBtZ1bhMRu4BX0vXl+y+U1CapbcuWLXmHa2ZWKLkngYj4CjASmEVyCWgfMALYXrbp9nS78v2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrgA5gVNlmo4CdtYjHzMwStR4iOpikT2ADcGrnSknDS9abmVmN5JYEJB0nab6kEZIGSToHuBj4FfAgMEXSPElNwHXAencKm5nVVp6jg4Lk0s/3SZLNJuBrEfELAEnzgO8C9wJPAfNzjMWsX8h7WmlPW23Vyi0JRMQW4MxuylcDk/J6fzMz65mnjTAzKzAnATOzAnMSMDMrMD9j2Kyfceeu1ZJbAmZmBeYkYGZWYE4CZmYF5iRgZlZg7hg2s6q443pgcUvAzKzAnATMzArMScDMrMAyJQFJp+QdiJmZ1V7WjuHbJQ0F7gaWR0T5oyHNLAfuhLW8ZWoJRMQs4AvAHwNrJa2Q9Ke5RmZmZrnL3CcQERuBbwF/TfKcgNsktUu6qKvtJQ2VdKekTZJ2SnpO0p+lZS2SQlJHybKoL07IzMyyy3Q5SNJU4ArgPOBR4PyIeFbSvwP+BVhZ4dhvkCSM14FzgZ+V9S8cHREHexG/mZn1QtY+gf8F/BC4NiL2dK6MiDclfaurHSJiF7C4ZNXDkl4FZgBrjyxcMzPrS1mTwHnAnoh4F0DSUUBTROyOiHuyHEDSWOAkYEPJ6k2SgqR18VcRsTV76GZm1ltZk8Bq4GygI309DPgn4FNZdpY0BFgOLIuIdkkjgJnAc8Bo4Htp+Tld7LsQWAgwfvz4jOEWi0eQFFvp778321d7HBsYsnYMN0VEZwIg/XlYlh3TVsM9wH7g6s79I6ItIg5GxDvp+s9JGlm+f0QsjYjWiGhtbm7OGK6ZmWWRNQnskjS984WkGcCebrbv3E7AncBYYF5EHKiwaVQZj5mZ9YGsl4O+Bvxc0puAgI8A/ynDfncAk4GzSzuUJZ0G/AHYCBwD3Aas8U1oZma1lSkJRMQzkiYBE9NVL3Xzv3oAJE0AvgzsA95OGgWQrnsPuBk4DthB0jF8cdXRm5lZr1TzPIGZQEu6z3RJRMSPK20cEZtIWg2V3FfFe5sNOHl3xLqj17LIerPYPcCJJKN53k1XB1AxCZiZWf+XtSXQCvxJRESPW5qZWcPIOhrneZLOYDMzG0CytgTGAC9IepqkoxeAiJibS1RmZlYTWZPA4jyDKCrf6ds4/LuygSrrENHfpEM+PxYRqyUNAwblG5qZmeUt6+MlvwTcD/wgXXU8sCqvoMzMrDaydgz/V+AMkhu7Oh8wc1xeQZmZWW1kTQL7ImJ/5wtJg/lgvh8zM2tQWTuGfyPpWuBD6bOFvwI8lF9Y1hfcmVk/vlvXGkXWlsA3gS3A70jm/nmE5HnDZmbWwLKODnoP+N/pYmZmA0TWuYNepYs+gIg4oc8jMjOzmqlm7qBOTcCfA8f2fThmZlZLWS8HbStb9R1Ja4Hr+j4ks77Xl53k7nDvmuulMWW9HDS95OVRJC2Dap5FYGZm/VDWL/K/K/n5IPAa8Bfd7SBpKHA7cDbJpaNXgP8WEf8nLf8s8D1gPPAUcHn6IBozM6uRrJeDzjrCY78BnAm8DpwL/EzSKUAHsBK4kuR+gxuBnwKnH8H7mJnZEcp6Oeia7soj4tYu1u3i0NlHH05HGc0ARgMbIuLn6fEXA1slTYqI9myhm5lZb1UzOmgm8Iv09fnA08DGrG8kaSxwErABuApY11kWEbskvQKcDLSX7bcQWAgwfvz4rG9nNVL0zsCin781vqxJYBwwPSJ2wvv/c/9lRFyaZWdJQ4DlwLKIaJc0guQO5FLbgZHl+0bEUmApQGtrq+crMjPrQ1mnjRgL7C95vT9d1yNJRwH3pPtcna7uAEaVbToK2JkxHjMz6wNZWwI/Bp6W9GD6+gJgWU87SRJwJ0nCODciDqRFG4AFJdsNB05M15uZWY1kaglExH8HrgD+LV2uiIibM+x6BzAZOD8i9pSsfxCYImmepCaSm87Wu1PYzKy2qrnhaxiwIyLuktQs6aMR8WqljdPHUX6Z5MH0byeNAgC+HBHLJc0DvgvcS3KfwPwjOgMzqxtPmd34sg4RvZ5khNBE4C5gCMmX9xmV9klv/FI35auBSdUEa2ZmfStrx/CFwFxgF0BEvEkXI3nMzKyxZE0C+yMiSKeTTjtyzcyswWVNAj+T9APgaElfAlbjB8yYmTW8rHMHLUmfLbyDpF/guoh4NNfIrKH5Ttq+5zq1PPSYBCQNAlank8j5i9/MbADp8XJQRLwLvCfpwzWIx8zMaijrfQIdwO8kPUo6QgggIr6aS1RmZlYTWZPAynQxM7MBpNskIGl8RLweET3OE2S9404/q4bv1LW+0lOfwKrOHyQ9kHMsZmZWYz0lgdJpH07IMxAzM6u9npJAVPjZzMwGgJ46hk+VtIOkRfCh9GfS1xER5Q+GMTOzBtJtEoiIQbUKxGqrUsdiaad0lm36s952nla7vztrrRFlnTvIzMwGoFyTgKSrJbVJ2ifp7pL1LZJCUkfJsijPWMzM7HDVPFnsSLwJ3AScA3yoi/KjI+JgzjGYmVkFuSaBiFgJIKkVGJfne5mZWfXybgn0ZJOkIJmd9K8iYmv5BpIWAgsBxo8fX+Pw6iNLB2OjdM5aMVV7B7zvmK+fenUMbwVmAhOAGSSPqlze1YYRsTQiWiOitbm5uYYhmpkNfHVpCUREB9CWvnxH0tXAW5JGRsTOesRkZlZE/WWIaOfdyP0lHjOzQsi1JSBpcPoeg4BBkpqAgySXgP4AbASOAW4D1kTE9jzjMTOzQ+V9OehbwPUlry8F/gZ4CbgZOI7kucWPAhfnHEvduNPrA64L61RpAIQ7lWsr7yGii4HFFYrvy/O9zcysZ74Gb2ZWYE4CZmYF5iRgZlZg9b5j2I5Qlk61RuWOQbPacUvAzKzAnATMzArMScDMrMCcBMzMCswdw0egUkfkQOuUbcRjZnmv7jqSB8Lv0KwabgmYmRWYk4CZWYE5CZiZFZiTgJlZgbljuJfckfiB3tSF67EY+uoz4jvD+45bAmZmBZZrEpB0taQ2Sfsk3V1W9llJ7ZJ2S3pM0oQ8YzEzs8Pl3RJ4E7gJ+FHpSkljgJXAIuBYkofO/zTnWMzMrEzeTxZbCSCpFRhXUnQRsCEifp6WLwa2SpoUEe15xmRmZh+oV8fwycC6zhcRsUvSK+n6Q5KApIXAQoDx48fXMkbrZxrlbmbrO/795K9eHcMjgO1l67YDI8s3jIilEdEaEa3Nzc01Cc7MrCjqlQQ6gFFl60YBO+sQi5lZYdUrCWwATu18IWk4cGK63szMaiTvIaKDJTUBg4BBkpokDQYeBKZImpeWXwesd6ewmVlt5d0x/C3g+pLXlwJ/ExGLJc0DvgvcCzwFzM85ll5p9A6qRo/fzPKR9xDRxcDiCmWrgUl5vr+ZmXXP00aYmRWYk4CZWYE5CZiZFZinku6G71DNl+uiGPrD77lSDJ6S2i0BM7NCcxIwMyswJwEzswJzEjAzKzB3DJfpD51Y9gH/Pqwr/lz0HbcEzMwKzEnAzKzAnATMzArMScDMrMAK2zFc2rHkuwar404566/8d109twTMzAqsrklA0hpJeyV1pMtL9YzHzKxo+kNL4OqIGJEuE+sdjJlZkfSHJGBmZnXSH5LALZK2SnpS0px6B2NmViT1TgJ/DZwAHA8sBR6SdGLpBpIWSmqT1LZly5Z6xGhmNmDVNQlExFMRsTMi9kXEMuBJ4NyybZZGRGtEtDY3N9cnUDOzAareLYFyAajeQZiZFUXdkoCkoyWdI6lJ0mBJXwBmA/9Yr5jMzIqmnncMDwFuAiYB7wLtwAUR8XIdYzIzK5S6JYGI2ALMrNf7m9nAlmV6E08z0f/6BMzMrIacBMzMCsxJwMyswJwEzMwKrLDPEzAzq6RIHcZuCZiZFZiTgJlZgTkJmJkVmJOAmVmBFapj2A9IN7PeyPod0kidyW4JmJkVmJOAmVmBOQmYmRWYk4CZWYEVqmPYzKySSp2+RzKgpNo7jittX4s7l90SMDMrsLomAUnHSnpQ0i5JmyRdUs94zMyKpt6Xg74H7AfGAh8HfilpXURsqG9YZmbFUM8HzQ8H5gGLIqIjIp4AfgH853rFZGZWNIqI+ryxNA14MiKGlaz7OnBmRJxfsm4hsDB9ORF4qaaB9t4YYGu9g+hHXB+Hcn0cyvVxqL6qjwkR0dxVQT0vB40AdpSt2w6MLF0REUuBpbUKqq9JaouI1nrH0V+4Pg7l+jiU6+NQtaiPenYMdwCjytaNAnbWIRYzs0KqZxJ4GRgs6WMl604F3ClsZlYjdUsCEbELWAncIGm4pDOAzwP31CumnDTspaycuD4O5fo4lOvjULnXR906hiG5TwD4EfCnwDbgmxGxom4BmZkVTF2TgJmZ1ZenjTAzKzAnATOzAnMSyEDSUEl3pvMb7ZT0nKQ/S8taJIWkjpJlUdm+P5K0Q9Lbkq4pO/ZnJbVL2i3pMUkTan1+R0LSvZLeSs/rZUlXlpRVPKeBWh9QuU6K+hkBkPQxSXsl3Vuy7pL0b2mXpFVp32BnWbfziXW3b6MorxNJcyS9V/b5WFCyfb51EhFeeliA4cBioIUkcf5HkvsZWtIlgMEV9r0FeBw4BpgMvA38h7RsDMkNcn8ONAF/C/xrvc83Y52cDAxNf56UnteMns5poNZHD3VSyM9IGv8/ped2b0kd7QRmk9wwugL4Scn29wE/Tcs+nZ77yVn2bZSlizqZA2zuZvtc66TuFdKoC7CeZO6jnv7A3wQ+V/L6xs5fEsl0GP9cUjYc2ANMqvf5VVkXE4G3gL/o6ZyKUB9d1EkhPyPAfOBnJP+B6vzCuxlYUbLNiSSTSI5Mz20/cFJJ+T3At3vat97n2ss6qZgEalEnvhx0BCSNBU7i0BvbNknaLOkuSWPS7Y4B/ghYV7LdOpLsTfrv+2WR3DvxSkl5vybpdkm7gXaSL7xH6OacBnp9QMU66VSYz4ikUcANwDVlReXn8wrpl1y6HIyIl0u2764uSvft97qpE4DjJL0j6VVJf69kgk2oQZ04CVRJ0hBgObAsItpJJneaCUwgafqPTMshaZ5B0nyj5OeRJeWlZeXl/VpEfIUk1lkkN/7to/tzGtD1ARXrpIifkRuBOyNic9n6nj4f3c0n1qh10alSnbSTTKX/R8BnSD4jt6ZludeJk0AVJB1F0hTbD1wNEMk02G0RcTAi3knXf07SSJL5keDQOZJK50dq+PmTIuLdSKYBHwdcRffnNODrAw6vk6J9RiR9HDgb+Psuinv6fHR3rg1XF526q5OIeDsiXoiI9yLiVeAbJJeaoQZ14iSQkSQBd5I8AGdeRByosGnn3XdHRcS/kVwSOLWkvHR+pA2lZWkT8EQac/6kwXwQe5fnVLD6gA/qpNxA/4zMIekHeV3S28DXgXmSnuXw8zkBGEoyl1hP84l1t29/N4fKdVIu+OC7Of86qXdHSaMswPeBfwVGlK0/jaQT8ChgNEkv/mMl5d8GfkMy8mMSyR9858iPZpKm2zySkR//gwYY+QEcR9LBNQIYBJwD7ALm9nROA7E+MtRJoT4jwDDgIyXLEuD+9FxOJrm8MYuk0/NeDh0d9BOS0TDDgTM4fCRMxX3789JDnZxFcqlQwB8DjwF31apO6l45jbCkv6AA9pI0vzqXLwAXA6+mf/BvAT8GPlKy71CS+ZF2AO8A15Qd+2ySa4J7gDVAS73PN0N9NKdfWn9Iz+t3wJeynNNArI+e6qSIn5Gy+BeTjoRJX18CvJ7Wxz8Ax5aUHQusSsteBy4pO1bFfRtp4dDRQdcA/w/YDbwB3EbJ6J6868RzB5mZFZj7BMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswP4/zu7dqmtpqTMAAAAASUVORK5CYII=", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAaCklEQVR4nO3de5RV5Znn8e+PSyjlIhEK1GBZagJeQBQL7ehSM9EWO2omhjjRqOOltaIOsTNZzdLJ0oTYtunOmpl0JEokbTAg2iRpcKKxXYKXVmNPQsE0ERQ0LsHQogIJSCF3n/ljn9JjUUXtU5x9Tp3av89aZ8m+nf285+B5ePfz7ncrIjAzs3zqU+0AzMysepwEzMxyzEnAzCzHnATMzHLMScDMLMf6VTuAUgwfPjwaGxurHYaZWU1ZsmTJhoio72hbTSWBxsZGWlpaqh2GmVlNkbSms22+HGRmlmNOAmZmOeYkYGaWYzVVEzCz2rJr1y7Wrl3L9u3bqx1KLtTV1TFq1Cj69++f+hgnATPLzNq1axk8eDCNjY1IqnY4vVpEsHHjRtauXcuRRx6Z+jhfDjKzzGzfvp1hw4Y5AVSAJIYNG1Zyr8tJwMwy5QRQOd35rJ0EzMxyzDUBM6uYxlt+Vdb3W/1355f1/To8x+rVXHDBBSxfvjz1MVdddRUXXHABX/rSl1Ktr0RMnXESMMuB4h/fSvxwWu3w5SAz67W2bt3K+eefz/jx4xk7dizz5s0DYPHixZx22mmMHz+eU045hS1btrB69WrOOOMMJkyYwIQJE3jhhRf2er89e/YwdepUJk6cyAknnMC9994LJCNzpkyZwpgxYzjnnHN45513uoztySef5KSTTmLcuHFcc8017NixA4Dbb7+diRMnMnbsWJqbm2l7+uOSJUsYP34848eP5+677y7XR1SZJCDpU5K2S3qgaN1XJK2RtFXSw5IOrkQsZpYfjz/+OIcddhjLli1j+fLlnHfeeezcuZMvf/nL/OAHP2DZsmUsWrSIAw44gBEjRrBw4UKWLl3KvHnzuOmmm/Z6v/vuu4+DDjqIxYsXs3jxYn784x/z+uuvs2DBAlatWsVLL73E7NmzO0wgxbZv385VV13FvHnzePHFF9m9ezczZswAYMqUKSxevJjly5ezbds2Hn30UQCuvvpqpk+fzrJly8r6GVWqJ3A3sLhtQdLxwL3AFcBI4D3gngrFYmY5MW7cOBYuXMjNN9/Mc889x0EHHcSqVas49NBDmThxIgBDhgyhX79+7Nq1i+uuu45x48Zx8cUX89JLL+31fk888QSzZ8/mxBNP5NRTT2Xjxo28+uqrPPvss1x66aX07duXww47jM9+9rP7jGvVqlUceeSRjB49GoArr7ySZ599FoCnn36aU089lXHjxvHUU0+xYsUKNm3axKZNmzjzzDMBuOKKK8r2GWVeE5B0CbAJeAH4ZGH1ZcAjEfFsYZ/bgJclDY6ILVnHZGb5MHr0aJYuXcpjjz3Grbfeytlnn81FF13U4b7f//73GTlyJMuWLeP999+nrq5ur30igunTpzNp0qSPrH/sscfKEu/27du58cYbaWlp4fDDD2fatGmZ322daU9A0hDgduAb7TYdD3zQp4mI14CdwOgO3qNZUouklvXr12cZrlnuNN7yqw9evdGbb77JgQceyOWXX87UqVNZunQpY8aMYd26dSxenFyc2LJlC7t372bz5s0ceuih9OnThzlz5rBnz5693m/SpEnMmDGDXbt2AfDKK6+wdetWzjzzTObNm8eePXtYt24dTz/99D7jGjNmDKtXr+b3v/89AHPmzOGss8764Ad/+PDhtLa28otf/AKAoUOHMnToUJ5//nkA5s6dW54PiOx7An8D3BcRa9vdxDAI2Nxu383A4PZvEBEzgZkATU1NkVGcZlYBlR6Z9OKLLzJ16lT69OlD//79mTFjBh/72MeYN28eX/va19i2bRsHHHAAixYt4sYbb2Ty5MnMnj2b8847j4EDB+71ftdeey2rV69mwoQJRAT19fU8/PDDXHTRRTz11FMcd9xxNDQ08OlPf3qfcdXV1TFr1iwuvvhidu/ezcSJE7n++usZMGAA1113HWPHjuWQQw754JIVwKxZs7jmmmuQxLnnnlu2z0htledyk3QiMBc4KSJ2SpoGfDIiLpf0f4BfR8T3ivbfAnwmIpZ09p5NTU3hh8qYla6zIaJZDx19+eWXOfbYY8v+vta5jj5zSUsioqmj/bPsCXwGaATeKPQCBgF9JR0HPA6MLwrwKGAA8EqG8ZiZWTtZJoGZwD8VLf81SVK4ARgB/JukM4ClJHWD+S4Km5lVVmZJICLeIxn6CYCkVmB7RKwH1ku6nuRy0TBgEXB1VrGYWfVEhCeRq5DuXN6v2LQRETGt3fKDwIOVOr+ZVV5dXR0bN270dNIV0PY8gY6Gtu6L5w4ys8yMGjWKtWvX4uHdldH2ZLFSOAmYWWb69+9f0lOurPI8gZyZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOee4gsx4g6yd8mXXGPQEzsxzLNAlIekDSOknvSnpF0rWF9Y2SQlJr0eu2LGMxM7O9ZX056LvAX0bEDknHAM9I+n/AxsL2oRGxO+MYzMysE5n2BCJiRUTsaFssvI7O8pxmZpZe5jUBSfdIeg9YCawDHivavEbSWkmzJA3v5PhmSS2SWvx0IjOz8so8CUTEjcBg4AxgPrAD2ABMBI4ATi5sn9vJ8TMjoikimurr67MO18wsVyoyOigi9kTE88Ao4IaIaI2IlojYHRFvA1OAcyUNrkQ8ZmaWqPQQ0X50XBOIwn89ZNXMrIIy+9GVNELSJZIGSeoraRJwKfCkpFMljZHUR9Iw4C7gmYjYnFU8Zma2tyyHiAZwA/AjkmSzBvh6RPxS0qXAncAI4F1gIUmCMLMeoPgOZvBdzL1ZZkkgItYDZ3Wy7SHgoazObWZm6fgavJlZjjkJmJnlmJOAmVmOeSppM+uSp7ruvdwTMDPLMScBM7MccxIwM8sxJwEzsxxzYdgsYy6qWk/mnoCZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeVYpklA0gOS1kl6V9Irkq4t2na2pJWS3pP0tKQjsozFzMz2lnVP4LtAY0QMAT4P3CHpZEnDgfnAbcDBQAswL+NYzMysnUxvFouIFcWLhdfRwMnAioj4OYCkacAGScdExMosYzIzsw9lXhOQdI+k94CVwDrgMeB4YFnbPhGxFXitsL798c2SWiS1rF+/PutwzcxyJfMkEBE3AoOBM0guAe0ABgGb2+26ubBf++NnRkRTRDTV19dnHa6ZWa5UZHRQROyJiOeBUcANQCswpN1uQ4AtlYjHzMwSlR4i2o+kJrACGN+2UtLAovVmZlYhmSUBSSMkXSJpkKS+kiYBlwJPAguAsZImS6oDvgX8zkVhM7PKynJ0UJBc+vkRSbJZA3w9In4JIGky8EPgAeA3wCUZxmLWI2Q9rbSnrbZSZZYEImI9cNY+ti8Cjsnq/GZm1jVPG2FmlmNOAmZmOeYkYGaWY37GsFkP4+KuVZJ7AmZmOeYkYGaWY04CZmY55iRgZpZjLgybWUlcuO5d3BMwM8sxJwEzsxxzEjAzy7FUSUDSuKwDMTOzyktbGL5H0gDgfmBuRLR/NKSZZcBFWMtaqp5ARJwBXAYcDiyR9KCkP880MjMzy1zqmkBEvArcCtxM8pyAuyStlPTFjvaXNEDSfZLWSNoi6d8l/UVhW6OkkNRa9LqtHA0yM7P0Ul0OknQCcDVwPrAQuDAilko6DPg3YH4n7/0HkoTxBvA54Gft6gtDI2L3fsRvZmb7IW1NYDrwj8A3I2Jb28qIeFPSrR0dEBFbgWlFqx6V9DpwMrCke+GamVk5pU0C5wPbImIPgKQ+QF1EvBcRc9K8gaSRwGhgRdHqNZKCpHcxNSI2pA/dzMz2V9oksAg4B2gtLB8IPAGcluZgSf2BucBPI2KlpEHARODfgWHA3YXtkzo4thloBmhoaEgZbr54BEm+FX//+7N/qe9jvUPawnBdRLQlAAp/PjDNgYVewxxgJzCl7fiIaImI3RHxdmH9uZIGtz8+ImZGRFNENNXX16cM18zM0kibBLZKmtC2IOlkYNs+9m/bT8B9wEhgckTs6mTXKDEeMzMrg7SXg74O/FzSm4CAQ4AvpzhuBnAscE5xQVnSqcAm4FXg48BdwDO+Cc3MrLJSJYGIWCzpGGBMYdWqffyrHgBJRwBfBXYAbyWdAiisex+4ExgBvEtSGL605OjNzGy/lPI8gYlAY+GYCZKIiNmd7RwRa0h6DZ15qIRzm/U6WRdiXei1NNLeLDYHOJpkNM+ewuoAOk0CZmbW86XtCTQBx0VEdLmnmZnVjLSjcZaTFIPNzKwXSdsTGA68JOm3JIVeACLi85lEZWZmFZE2CUzLMoi88p2+tcPflfVWaYeI/mthyOenImKRpAOBvtmGZmZmWUv7eMnrgF8A9xZWfQJ4OKugzMysMtIWhv8bcDrJjV1tD5gZkVVQZmZWGWmTwI6I2Nm2IKkfH873Y2ZmNSptYfhfJX0TOKDwbOEbgUeyC8vKwcXM6vHdulYr0vYEbgHWAy+SzP3zGMnzhs3MrIalHR30PvDjwsvMzHqJtHMHvU4HNYCIOKrsEZmZWcWUMndQmzrgYuDg8odjZmaVlPZy0MZ2q/5B0hLgW+UPyaz8ylkkd8G9Y/5calPay0ETihb7kPQMSnkWgZmZ9UBpf8j/V9GfdwOrgf+yrwMkDQDuAc4huXT0GvA/IuJfCtvPBu4GGoDfAFcVHkRjZmYVkvZy0H/q5nv/ATgLeAP4HPAzSeOAVmA+cC3J/QZ/A8wD/qwb5zEzs25KeznoG/vaHhH/u4N1W/no7KOPFkYZnQwMA1ZExM8L7z8N2CDpmIhYmS50MzPbX6WMDpoI/LKwfCHwW+DVtCeSNBIYDawAbgCWtW2LiK2SXgOOB1a2O64ZaAZoaGhIezqrkLwXA/Pefqt9aZPAKGBCRGyBD/7l/quIuDzNwZL6A3OBn0bESkmDSO5ALrYZGNz+2IiYCcwEaGpq8nxFZmZllHbaiJHAzqLlnYV1XZLUB5hTOGZKYXUrMKTdrkOALSnjMTOzMkjbE5gN/FbSgsLyF4CfdnWQJAH3kSSMz0XErsKmFcCVRfsNBI4urDczswpJ1ROIiL8Frgb+VHhdHRF3pjh0BnAscGFEbCtavwAYK2mypDqSm85+56KwmVlllXLD14HAuxExS1K9pCMj4vXOdi48jvKrJA+mfyvpFADw1YiYK2ky8EPgAZL7BC7pVgvMrGo8ZXbtSztE9NskI4TGALOA/iQ/3qd3dkzhxi/tY/si4JhSgjUzs/JKWxi+CPg8sBUgIt6kg5E8ZmZWW9ImgZ0RERSmky4Ucs3MrMalTQI/k3QvMFTSdcAi/IAZM7Oal3buoP9ZeLbwuyR1gW9FxMJMI7Oa5jtpy8+fqWWhyyQgqS+wqDCJnH/4zcx6kS4vB0XEHuB9SQdVIB4zM6ugtPcJtAIvSlpIYYQQQETclElUZmZWEWmTwPzCy8zMepF9JgFJDRHxRkR0OU+Q7R8X/awUvlPXyqWrmsDDbX+Q9M8Zx2JmZhXWVRIonvbhqCwDMTOzyusqCUQnfzYzs16gq8LweEnvkvQIDij8mcJyRET7B8OYmVkN2WcSiIi+lQrEKquzwmJxUTrNPj3Z/hZPSz3exVqrRWnnDjIzs14o0yQgaYqkFkk7JN1ftL5RUkhqLXrdlmUsZma2t1KeLNYdbwJ3AJOAAzrYPjQidmccg5mZdSLTJBAR8wEkNQGjsjyXmZmVLuueQFfWSAqS2UmnRsSG9jtIagaaARoaGiocXnWkKTDWSnHW8qnUO+B9x3z1VKswvAGYCBwBnEzyqMq5He0YETMjoikimurr6ysYoplZ71eVnkBEtAIthcW3JU0B1kkaHBFbqhGTmVke9ZQhom13I/eUeMzMciHTnoCkfoVz9AX6SqoDdpNcAtoEvAp8HLgLeCYiNmcZj5mZfVTWl4NuBb5dtHw58B1gFXAnMILkucULgUszjqVqXPT6kD8La9PZAAgXlSsr6yGi04BpnWx+KMtzm5lZ13wN3swsx5wEzMxyzEnAzCzHqn3HsHVTmqJarXJh0Kxy3BMwM8sxJwEzsxxzEjAzyzEnATOzHHNhuBs6K0T2tqJsLb5nmnPtq5DcG75Ds1K4J2BmlmNOAmZmOeYkYGaWY04CZmY55sLwfnIh8UP781n4c8yHcv0d8Z3h5eOegJlZjmWaBCRNkdQiaYek+9ttO1vSSknvSXpa0hFZxmJmZnvLuifwJnAH8JPilZKGA/OB24CDSR46Py/jWMzMrJ2snyw2H0BSEzCqaNMXgRUR8fPC9mnABknHRMTKLGMyM7MPVaswfDywrG0hIrZKeq2w/iNJQFIz0AzQ0NBQyRith6mVu5mtfPz9ZK9aheFBwOZ26zYDg9vvGBEzI6IpIprq6+srEpyZWV5UKwm0AkParRsCbKlCLGZmuVWtJLACGN+2IGkgcHRhvZmZVUjWQ0T7SaoD+gJ9JdVJ6gcsAMZKmlzY/i3gdy4Km5lVVtaF4VuBbxctXw58JyKmSZoM/BB4APgNcEnGseyXWi9Q1Xr8ZpaNrIeITgOmdbJtEXBMluc3M7N987QRZmY55iRgZpZjTgJmZjnmqaT3wXeoZsufRT70hO+5sxg8JbV7AmZmueYkYGaWY04CZmY55iRgZpZjLgy30xOKWPYhfx/WEf+9KB/3BMzMcsxJwMwsx5wEzMxyzEnAzCzHclsYLi4s+a7B0rgoZz2V/78unXsCZmY5VtUkIOkZSdsltRZeq6oZj5lZ3vSEnsCUiBhUeI2pdjBmZnnSE5KAmZlVSU9IAt+VtEHSryV9ptrBmJnlSbWTwM3AUcAngJnAI5KOLt5BUrOkFkkt69evr0aMZma9VlWTQET8JiK2RMSOiPgp8Gvgc+32mRkRTRHRVF9fX51Azcx6qWr3BNoLQNUOwswsL6qWBCQNlTRJUp2kfpIuA84EHq9WTGZmeVPNO4b7A3cAxwB7gJXAFyLilSrGZGaWK1VLAhGxHphYrfObWe+WZnoTTzPR82oCZmZWQU4CZmY55iRgZpZjTgJmZjmW2+cJmJl1Jk8FY/cEzMxyzEnAzCzHnATMzHLMScDMLMdyVRj2A9LNbH+k/Q2ppWKyewJmZjnmJGBmlmNOAmZmOeYkYGaWY7kqDJuZdaazom93BpSUesdxZ/tX4s5l9wTMzHKsqklA0sGSFkjaKmmNpK9UMx4zs7yp9uWgu4GdwEjgROBXkpZFxIrqhmVmlg/VfND8QGAycFtEtEbE88AvgSuqFZOZWd4oIqpzYukk4NcRcWDRur8GzoqIC4vWNQPNhcUxwKr9OO1wYMN+HF9r8tZecJvzwm0uzRERUd/RhmpeDhoEvNtu3WZgcPGKiJgJzCzHCSW1RERTOd6rFuStveA254XbXD7VLAy3AkParRsCbKlCLGZmuVTNJPAK0E/Sp4rWjQdcFDYzq5CqJYGI2ArMB26XNFDS6cB/BuZkeNqyXFaqIXlrL7jNeeE2l0nVCsOQ3CcA/AT4c2AjcEtEPFi1gMzMcqaqScDMzKrL00aYmeWYk4CZWY71qiSQdi4iJf5e0sbC6+8lqdLxlkMJbZ4qabmkLZJelzS10rGWS6lzTkn6mKSXJa2tVIzlVEp7JU2Q9KykVklvS/qrSsZaLiX8vR4g6UeFtv5R0iOSPlHpeMtB0hRJLZJ2SLq/i33/u6S3JL0r6SeSBnT3vL0qCfDRuYguA2ZIOr6D/ZqBL5AMST0BuBD4aqWCLLO0bRbwX4GPA+cBUyRdUrEoyyttm9tMBdZXIrCMpGqvpOHA48C9wDDgk8ATFYyznNJ+x38FfJrk/+PDgD8B0ysVZJm9CdxBMlimU5ImAbcAZwNHAEcB3+n2WSOiV7yAgSR/aUYXrZsD/F0H+74ANBct/yXwf6vdhizb3MGxdwHTq92GrNsMHAm8DPwFsLba8WfZXuBOYE61Y65wm2cA3ytaPh9YVe027Gf77wDu38f2B4E7i5bPBt7q7vl6U09gNLA7Il4pWrcM6OhfD8cXtnW1X09XSps/ULj0dQa1eWNeqW2eDnwT2JZ1YBkppb1/BvxR0guS3ilcGmmoSJTlVUqb7wNOl3SYpANJeg3/UoEYq6mj36+RkoZ15816UxJINRdR0b6b2+03qAbrAqW0udg0ku9+VgYxZS11myVdBPSNiAWVCCwjpXzHo4ArSS6RNACvAw9lGl02Smnzq8AfgP8oHHMscHum0VVfR79f0PX/9x3qTUmglLmI2u87BGiNQt+qhpQ8/5KkKSS1gfMjYkeGsWUlVZsLU5V/D7ipQnFlpZTveBuwICIWR8R2kuvEp0k6KOMYy62UNt8NDCCpgQwkmYWgt/cEOvr9gm7Ou9abkkApcxGtKGzrar+erqT5lyRdQ6GgFBE1OVKG9G3+FNAIPCfpLZIfh0MLIyoaKxBnuZTyHf8OKP6HTK39o6ZNKW0+keT6+R8L/6iZDpxSKJL3Vh39fr0dERu79W7VLoKUuaDyTyTd34HA6STdpOM72O96kmLhJ0hGFKwArq92/Bm3+TLgLeDYasdciTaTTJN+SNHriySjLw4huURU9XZk8B1/lmR0zIlAf+D7wHPVjj/jNs8C/hk4qNDmbwL/Ue34u9nmfkAd8F2SQngd0K+D/c4r/L98HDAUeIoUg0E6PW+1G17mD/Fg4GFgK/AG8JXC+jNILve07SeSSwV/LLy+R2EKjVp7ldDm14FdJF3JttePqh1/lm1ud8xnqMHRQaW2F7iB5Pr4n4BHgMOrHX+WbSa5DDQXeAfYBDwPnFLt+LvZ5mkkvbfi1zSS+k4r0FC07zeAt0nqILOAAd09r+cOMjPLsd5UEzAzsxI5CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5dj/BywbGaIaCXKXAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "テストデータもスケールしましょう\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 25, + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          load
                                          2014-12-30 00:00:000.33
                                          2014-12-30 01:00:000.29
                                          2014-12-30 02:00:000.27
                                          2014-12-30 03:00:000.27
                                          2014-12-30 04:00:000.30
                                          \n", + "
                                          " + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.33\n", + "2014-12-30 01:00:00 0.29\n", + "2014-12-30 02:00:00 0.27\n", + "2014-12-30 03:00:00 0.27\n", + "2014-12-30 04:00:00 0.30" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "source": [ + "# Specify the number of steps to forecast ahead\n", + "HORIZON = 3\n", + "print('Forecasting horizon:', HORIZON, 'hours')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Forecasting horizon: 3 hours\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 27, + "source": [ + "order = (4, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)\n", + "results = model.fit()\n", + "\n", + "print(results.summary())\n" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " SARIMAX Results \n", + "==========================================================================================\n", + "Dep. Variable: load No. Observations: 1416\n", + "Model: SARIMAX(4, 1, 0)x(1, 1, 0, 24) Log Likelihood 3477.239\n", + "Date: Thu, 30 Sep 2021 AIC -6942.477\n", + "Time: 14:36:28 BIC -6911.050\n", + "Sample: 11-01-2014 HQIC -6930.725\n", + " - 12-29-2014 \n", + "Covariance Type: opg \n", + "==============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "ar.L1 0.8403 0.016 52.226 0.000 0.809 0.872\n", + "ar.L2 -0.5220 0.034 -15.388 0.000 -0.588 -0.456\n", + "ar.L3 0.1536 0.044 3.470 0.001 0.067 0.240\n", + "ar.L4 -0.0778 0.036 -2.158 0.031 -0.148 -0.007\n", + "ar.S.L24 -0.2327 0.024 -9.718 0.000 -0.280 -0.186\n", + "sigma2 0.0004 8.32e-06 47.358 0.000 0.000 0.000\n", + "===================================================================================\n", + "Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 1464.60\n", + "Prob(Q): 0.83 Prob(JB): 0.00\n", + "Heteroskedasticity (H): 0.84 Skew: 0.14\n", + "Prob(H) (two-sided): 0.07 Kurtosis: 8.02\n", + "===================================================================================\n", + "\n", + "Warnings:\n", + "[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## モデルを評価する\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "各HORIZONステップごとにテストデータポイントを作成してください。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 28, + "source": [ + "test_shifted = test.copy()\n", + "\n", + "for t in range(1, HORIZON):\n", + " test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')\n", + " \n", + "test_shifted = test_shifted.dropna(how='any')\n", + "test_shifted.head(5)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          loadload+1load+2
                                          2014-12-30 00:00:000.330.290.27
                                          2014-12-30 01:00:000.290.270.27
                                          2014-12-30 02:00:000.270.270.30
                                          2014-12-30 03:00:000.270.300.41
                                          2014-12-30 04:00:000.300.410.57
                                          \n", + "
                                          " + ], + "text/plain": [ + " load load+1 load+2\n", + "2014-12-30 00:00:00 0.33 0.29 0.27\n", + "2014-12-30 01:00:00 0.29 0.27 0.27\n", + "2014-12-30 02:00:00 0.27 0.27 0.30\n", + "2014-12-30 03:00:00 0.27 0.30 0.41\n", + "2014-12-30 04:00:00 0.30 0.41 0.57" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "テストデータに基づいて予測を行う\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 29, + "source": [ + "%%time\n", + "training_window = 720 # dedicate 30 days (720 hours) for training\n", + "\n", + "train_ts = train['load']\n", + "test_ts = test_shifted\n", + "\n", + "history = [x for x in train_ts]\n", + "history = history[(-training_window):]\n", + "\n", + "predictions = list()\n", + "\n", + "# let's user simpler model for demonstration\n", + "order = (2, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "for t in range(test_ts.shape[0]):\n", + " model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order)\n", + " model_fit = model.fit()\n", + " yhat = model_fit.forecast(steps = HORIZON)\n", + " predictions.append(yhat)\n", + " obs = list(test_ts.iloc[t])\n", + " # move the training window\n", + " history.append(obs[0])\n", + " history.pop(0)\n", + " print(test_ts.index[t])\n", + " print(t+1, ': predicted =', yhat, 'expected =', obs)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2014-12-30 00:00:00\n", + "1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323]\n", + "2014-12-30 01:00:00\n", + "2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126]\n", + "2014-12-30 02:00:00\n", + "3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795]\n", + "2014-12-30 03:00:00\n", + "4 : predicted = [0.28 0.32 0.42] expected = [0.26812891674127126, 0.3025962399283795, 0.40823634735899716]\n", + "2014-12-30 04:00:00\n", + "5 : predicted = [0.3 0.39 0.54] expected = [0.3025962399283795, 0.40823634735899716, 0.5689346463742166]\n", + "2014-12-30 05:00:00\n", + "6 : predicted = [0.4 0.55 0.66] expected = [0.40823634735899716, 0.5689346463742166, 0.6799462846911368]\n", + "2014-12-30 06:00:00\n", + "7 : predicted = [0.57 0.68 0.75] expected = [0.5689346463742166, 0.6799462846911368, 0.7309758281110115]\n", + "2014-12-30 07:00:00\n", + "8 : predicted = [0.68 0.75 0.8 ] expected = [0.6799462846911368, 0.7309758281110115, 0.7511190689346463]\n", + "2014-12-30 08:00:00\n", + "9 : predicted = [0.75 0.8 0.82] expected = [0.7309758281110115, 0.7511190689346463, 0.7636526410026856]\n", + "2014-12-30 09:00:00\n", + "10 : predicted = [0.77 0.78 0.78] expected = [0.7511190689346463, 0.7636526410026856, 0.7381378692927483]\n", + "2014-12-30 10:00:00\n", + "11 : predicted = [0.76 0.75 0.74] expected = [0.7636526410026856, 0.7381378692927483, 0.7188898836168307]\n", + "2014-12-30 11:00:00\n", + "12 : predicted = [0.77 0.76 0.75] expected = [0.7381378692927483, 0.7188898836168307, 0.7090420769919425]\n", + "2014-12-30 12:00:00\n", + "13 : predicted = [0.7 0.68 0.69] expected = [0.7188898836168307, 0.7090420769919425, 0.7081468218442255]\n", + "2014-12-30 13:00:00\n", + "14 : predicted = [0.72 0.73 0.76] expected = [0.7090420769919425, 0.7081468218442255, 0.7385854968666068]\n", + "2014-12-30 14:00:00\n", + "15 : predicted = [0.71 0.73 0.86] expected = [0.7081468218442255, 0.7385854968666068, 0.8478066248880931]\n", + "2014-12-30 15:00:00\n", + "16 : predicted = [0.73 0.85 0.97] expected = [0.7385854968666068, 0.8478066248880931, 0.9516562220232765]\n", + "2014-12-30 16:00:00\n", + "17 : predicted = [0.87 0.99 0.97] expected = [0.8478066248880931, 0.9516562220232765, 0.934198746642793]\n", + "2014-12-30 17:00:00\n", + "18 : predicted = [0.94 0.92 0.86] expected = [0.9516562220232765, 0.934198746642793, 0.8876454789615038]\n", + "2014-12-30 18:00:00\n", + "19 : predicted = [0.94 0.89 0.82] expected = [0.934198746642793, 0.8876454789615038, 0.8294538943598924]\n", + "2014-12-30 19:00:00\n", + "20 : predicted = [0.88 0.82 0.71] expected = [0.8876454789615038, 0.8294538943598924, 0.7197851387645477]\n", + "2014-12-30 20:00:00\n", + "21 : predicted = [0.83 0.72 0.58] expected = [0.8294538943598924, 0.7197851387645477, 0.5747538048343777]\n", + "2014-12-30 21:00:00\n", + "22 : predicted = [0.72 0.58 0.47] expected = [0.7197851387645477, 0.5747538048343777, 0.4592658907788718]\n", + "2014-12-30 22:00:00\n", + "23 : predicted = [0.58 0.47 0.39] expected = [0.5747538048343777, 0.4592658907788718, 0.3858549686660697]\n", + "2014-12-30 23:00:00\n", + "24 : predicted = [0.46 0.38 0.34] expected = [0.4592658907788718, 0.3858549686660697, 0.34377797672336596]\n", + "2014-12-31 00:00:00\n", + "25 : predicted = [0.38 0.34 0.33] expected = [0.3858549686660697, 0.34377797672336596, 0.32542524619516544]\n", + "2014-12-31 01:00:00\n", + "26 : predicted = [0.36 0.34 0.34] expected = [0.34377797672336596, 0.32542524619516544, 0.33034914950760963]\n", + "2014-12-31 02:00:00\n", + "27 : predicted = [0.32 0.32 0.35] expected = [0.32542524619516544, 0.33034914950760963, 0.3706356311548791]\n", + "2014-12-31 03:00:00\n", + "28 : predicted = [0.32 0.36 0.47] expected = [0.33034914950760963, 0.3706356311548791, 0.470008952551477]\n", + "2014-12-31 04:00:00\n", + "29 : predicted = [0.37 0.48 0.65] expected = [0.3706356311548791, 0.470008952551477, 0.6145926589077886]\n", + "2014-12-31 05:00:00\n", + "30 : predicted = [0.48 0.64 0.75] expected = [0.470008952551477, 0.6145926589077886, 0.7247090420769919]\n", + "2014-12-31 06:00:00\n", + "31 : predicted = [0.63 0.73 0.79] expected = [0.6145926589077886, 0.7247090420769919, 0.786034019695613]\n", + "2014-12-31 07:00:00\n", + "32 : predicted = [0.71 0.76 0.79] expected = [0.7247090420769919, 0.786034019695613, 0.8012533572068039]\n", + "2014-12-31 08:00:00\n", + "33 : predicted = [0.79 0.82 0.83] expected = [0.786034019695613, 0.8012533572068039, 0.7994628469113696]\n", + "2014-12-31 09:00:00\n", + "34 : predicted = [0.82 0.83 0.81] expected = [0.8012533572068039, 0.7994628469113696, 0.780214861235452]\n", + "2014-12-31 10:00:00\n", + "35 : predicted = [0.8 0.78 0.76] expected = [0.7994628469113696, 0.780214861235452, 0.7587287376902416]\n", + "2014-12-31 11:00:00\n", + "36 : predicted = [0.77 0.75 0.74] expected = [0.780214861235452, 0.7587287376902416, 0.7367949865711727]\n", + "2014-12-31 12:00:00\n", + "37 : predicted = [0.77 0.76 0.76] expected = [0.7587287376902416, 0.7367949865711727, 0.7188898836168307]\n", + "2014-12-31 13:00:00\n", + "38 : predicted = [0.75 0.75 0.78] expected = [0.7367949865711727, 0.7188898836168307, 0.7273948075201431]\n", + "2014-12-31 14:00:00\n", + "39 : predicted = [0.73 0.75 0.87] expected = [0.7188898836168307, 0.7273948075201431, 0.8299015219337511]\n", + "2014-12-31 15:00:00\n", + "40 : predicted = [0.74 0.85 0.96] expected = [0.7273948075201431, 0.8299015219337511, 0.909579230080573]\n", + "2014-12-31 16:00:00\n", + "41 : predicted = [0.83 0.94 0.93] expected = [0.8299015219337511, 0.909579230080573, 0.855863921217547]\n", + "2014-12-31 17:00:00\n", + "42 : predicted = [0.94 0.93 0.88] expected = [0.909579230080573, 0.855863921217547, 0.7721575649059982]\n", + "2014-12-31 18:00:00\n", + "43 : predicted = [0.87 0.82 0.77] expected = [0.855863921217547, 0.7721575649059982, 0.7023276633840643]\n", + "2014-12-31 19:00:00\n", + "44 : predicted = [0.79 0.73 0.63] expected = [0.7721575649059982, 0.7023276633840643, 0.6195165622202325]\n", + "2014-12-31 20:00:00\n", + "45 : predicted = [0.7 0.59 0.46] expected = [0.7023276633840643, 0.6195165622202325, 0.5425246195165621]\n", + "2014-12-31 21:00:00\n", + "46 : predicted = [0.6 0.47 0.36] expected = [0.6195165622202325, 0.5425246195165621, 0.4735899731423454]\n", + "CPU times: user 12min 15s, sys: 2min 39s, total: 14min 54s\n", + "Wall time: 2min 36s\n" + ] + } + ], + "metadata": { + "scrolled": true + } + }, + { + "cell_type": "markdown", + "source": [ + "予測値を実際の負荷と比較する\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 30, + "source": [ + "eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])\n", + "eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]\n", + "eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')\n", + "eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()\n", + "eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])\n", + "eval_df.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          timestamphpredictionactual
                                          02014-12-30 00:00:00t+13,008.743,023.00
                                          12014-12-30 01:00:00t+12,955.532,935.00
                                          22014-12-30 02:00:00t+12,900.172,899.00
                                          32014-12-30 03:00:00t+12,917.692,886.00
                                          42014-12-30 04:00:00t+12,946.992,963.00
                                          \n", + "
                                          " + ], + "text/plain": [ + " timestamp h prediction actual\n", + "0 2014-12-30 00:00:00 t+1 3,008.74 3,023.00\n", + "1 2014-12-30 01:00:00 t+1 2,955.53 2,935.00\n", + "2 2014-12-30 02:00:00 t+1 2,900.17 2,899.00\n", + "3 2014-12-30 03:00:00 t+1 2,917.69 2,886.00\n", + "4 2014-12-30 04:00:00 t+1 2,946.99 2,963.00" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "すべての予測に対して**平均絶対誤差率 (MAPE)** を計算します\n", + "\n", + "$$MAPE = \\frac{1}{n} \\sum_{t=1}^{n}|\\frac{actual_t - predicted_t}{actual_t}|$$\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 31, + "source": [ + "if(HORIZON > 1):\n", + " eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']\n", + " print(eval_df.groupby('h')['APE'].mean())" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "h\n", + "t+1 0.01\n", + "t+2 0.01\n", + "t+3 0.02\n", + "Name: APE, dtype: float64\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 32, + "source": [ + "print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "One step forecast MAPE: 0.5570581332313952 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 33, + "source": [ + "print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Multi-step forecast MAPE: 1.1460048657704118 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "テストセットの最初の1週間の予測値と実測値をプロットする\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 34, + "source": [ + "if(HORIZON == 1):\n", + " ## Plotting single step forecast\n", + " eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8))\n", + "\n", + "else:\n", + " ## Plotting multi step forecast\n", + " plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']]\n", + " for t in range(1, HORIZON+1):\n", + " plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values\n", + "\n", + " fig = plt.figure(figsize=(15, 8))\n", + " ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)\n", + " ax = fig.add_subplot(111)\n", + " for t in range(1, HORIZON+1):\n", + " x = plot_df['timestamp'][(t-1):]\n", + " y = plot_df['t+'+str(t)][0:len(x)]\n", + " ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t))\n", + " \n", + " ax.legend(loc='best')\n", + " \n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "No handles with labels found to put in legend.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHjCAYAAAB7INHwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xV9f348de592bvhDBkhhEggCICIqCCgoJ7K462Wm1rtV+7tFpb/XVpq6211tFaR93WPVBQQXAwFBXUMMLeSHZyM26Se+/5/fG+J+ecDJYhN+P9fDx45JxzRz6xac59fz7vz/ttmKaJUkoppZRSSqnuxxPtASillFJKKaWUig4NCJVSSimllFKqm9KAUCmllFJKKaW6KQ0IlVJKKaWUUqqb0oBQKaWUUkoppbopDQiVUkoppZRSqpvyRXsAh1uPHj3MQYMGRXsYSimllFJKKRUVn3/+ebFpmtktPdblA8JBgwbx2WefRXsYSimllFJKKRUVhmFsa+0xTRlVSimllFJKqW5KA0KllFJKKaWU6qY0IFRKKaWUUkqpbqrL7yFUSimllFJKqa6ioaGBnTt3EggEmj0WHx9Pv379iImJOeD304BQKaWUUkoppTqJnTt3kpKSwqBBgzAMo/G6aZqUlJSwc+dOcnJyDvj9NGVUKaWUUkoppTqJQCBAVlaWKxgEMAyDrKysFlcO90UDQqWUUkoppZTqRJoGg/u7vi8aECqllFJKKaVUN6UBoVJKKaWUUkp1UxoQKqWUUkoppVQnYprmQV3fFw0IlVJKKaWUUqqTiI+Pp6SkpFnwZ1UZjY+PP6j307YTSimllFJKKdVJ9OvXj507d1JUVNTsMasP4cHQgFAppZRSSimlOomYmJiD6jO4P5oyqpRSSimllFLdlAaESimllFJKKdVNaUColFJKKaWUUt2U7iFUSqluYv16+O9/ITsbfvxjiIuL9oiUUkopFW26QqiUUt3Es8/Cjh3wxRfw5pvRHo1SSimlOgINCJVSqhsIBGDzZvt84UKor4/eeJRSSinVMWhAqJRS3cCmTeDsX1tVBUuWRG88SimllOoYNCBUSqluoKCg+bX5891BolJKKaW6Hw0IlVKqG1i/vvm13bvhq6/afyxKKaWU6jg0IFRKqS4uFIKNG+1zj+Mv//z57T8epZRSSnUcGhAqpVQXt3071NXZ52efbR/n58POne0/JqWUUkp1DBoQKqVUF+dMF83IgDPPhLQ0+5quEiqllFLdlwaESinVxTkDwtxciImBk0+2ry1ZAhUV7T8upZRSSkWfL9oDUEopdfiYZvOAEGDGDHjjDQgGoaEB3n4bZs2C2lr7XyDg/mr9a2iAkSNh6tTo/ExKKaWUajsaECqlVBdWVATl5XIcDMp+wscfl8CuulqCxXAY1q2Dr78Gr/fA3nf7dhg8GI444vCNXSmllFKHn6aMKqVUF+ZcHSwpgS1bYPNm2LNHgrlQSFYR6+oOvrjMunVtO1allFJKtT9dIVRKqS7MCghNE3w+d8uJlBTo1UsCRa8X9u6Fk06ChAT7X3y8+7iiAl59VV5fUCDPV0op1T3V1Ei16pwcyM6O9mjUodKAUCmlujArIKythaQkOc7MhCuvlCCvoADuvtt+/vjxMHp06+8XCsG8ebKvcPdu8PslsFRKKdX9vPqqZIv4fHJfGTAg2iNSh0JTRpVSqouqqoJdu+TY74esLDkePhzS0yEuDsaMgb597dfMm7fv9/R6Ydgw+9yZkqqUUqr7qK6WSUWQPepPPy371lXnowGhUkp1URs22MdVVdKDEOxKowCGIdVFLV99JSt/++J8vQaESinVPa1dK9sRLLW18OSTMgGpOhcNCJVSqouyZm5DIUnn8fmkB+GgQe7nTZ7sTvvcX6P63FwJJAE2bpSZYaWUUt1Lfr59bO1PLy+Hp56SQmWq89CAUCmluihr9c7vl32DADk9/PjMBtfzYmOlL6Hl44/3PcObmAj9+slxfT1s29aGg1ZKKdXh1dRI1WqQycbvfU/uJSBVrJ97TiYjVeegAaFSSnVBDQ32zbqyMhIQLlxI7vWnyAbCX//aFfWdfLLc1K3Xvv/+vt9/+HD72FqJVEop1T2sWyc9bAGGDpUqoxdfbK8UbtoEr73mTilVHVe7BoSGYXgNw1hpGMbcJtfvMwyjynEeZxjG/wzD2GgYxieGYQxyPHZL5HqBYRintt/olVKq89iyRVI5TTNSUIZiWLaUYWaBTO3eeadUh3n0UQiFSEuT1FHLe+/tOxW0aUCoN32llOo+1qyxj0eNkq+5uXD22fb1VatgwYL2HZc6NO29QngDsNZ5wTCM8UBGk+d9HygzTXMo8HfgL5Hn5gGXAKOAWcCDhmF4D/eglVKqs7FW7QIBSeOJ37aeLErIpMx+0t69cPXV0mti8WJXcZmKCli2rPX379ULUlPluLRUehkqpZTq+gIB2T8OUnnaOUE4bpy7P+2HH8Knn7bv+NTBa7eA0DCMfsDpwCOOa17gbuCmJk8/G3gicvwScLJhGEbk+vOmadaZprkF2AhMPNxjV0qpzsbaP1hZGWk3sWEDubRSEnTVKpg+nf43nMeo3nZkN39+6yt/hqFpo0op1R0VFNj7A4cMkZ62TtOmyTyjZe5cqUiqOq72XCG8Fwn8wo5r1wNvmKa5p8lz+wI7AEzTDAIVQJbzesTOyDWllFIRpmm3nPD7ITOpDnbsYBiOPhRxcc1f+OqrzL73VPjic6ivZ/v2fd/Ene0nNCBUSqnuYfVq+zgvr/njhgFnnmlPGpomvPACbN/ePuNTB69dAkLDMM4ACk3T/Nxx7QjgQuCfh+H7/cAwjM8Mw/isSDtkKqW6md27pWFwKCRfs/xb8NHAQLayl55sy51JaO16mDOn2WuPDH5OnzUL4fXXYP165r/Vepm4IUPsQjTbtkkakVJKqa6rvt6ecPR4YOTIlp/n8cBFF9kVqa3G9cXF7TNOdXDaa4VwCnCWYRhbgeeBk4DVwFBgY+R6omEYkYxkdgH9AQzD8AFpQInzekS/yDUX0zQfNk1zvGma47Ozsw/LD6SUUh2VtVrn90vfweQdaxnMZh7lak7nLc6vfIwpcwZwcehZbr58Jw/n3MF7zGATg2kghlnMlyZSn37Cyj+9zZ7nFrf4fWJiYPBgOQ6H7T0lSimluqb16+2CY4MGSRui1sTGwuWX222PamvhiSegqqr116joaJeA0DTNW0zT7Gea5iCkKMz7pmlmmKbZ2zTNQZHrNZEiMgBvAN+NHF8Qeb4ZuX5JpAppDjAM0K2qSinl4No/mBHG2LSJNCp4jKvkgbR0gkEpC75gbV8ezryZW3Ke5+KYV5nKx/yT6/maMRSQy+6KRJ64dB51s8+ROuNN6D5CpZTqPpzpoqNHS7XR226DJ5+Eb75p/vykJPjud+UrSOP6J5/UxvUdjS/aA2jFo8BTkRXDUiSIxDTN1YZhvACsAYLAdaZpattLpZRysNpA+P3QJ6MYArWsZCwmBnh9kJzU5BUGZGZBejrhvXvZ8Y0PfziF8khCxpccyQvztzPgnQIGH7WHnIsnMvXUJI4+2r2PcMMG+b6G0X4/q1JKqfbR0GBPOBqG9B88+WTZMpCQIMVjJkyAmTPhqKPse0FmJlxxhXQ5amiQxvXPPy+rh17tFdAhtHtjetM0F5umeUYL15MdxwHTNC80TXOoaZoTTdPc7HjsT6ZpDjFNc7hpmvPaa9xKKdUZlJXJHo1AQG68WWUbSaSGBcyUJ6Slkp5uMHOmew8gAB4v9DkCRo8mJcOHgZQYNfFQSSo7zb58uCqFJ36znmvOLuSDxSbp6dKCAmS/4q5mSfxKKaW6gg0bZA8hwMCBsHChBIMg6aAbNsBXX8Hf/ga//CXMmyf3BYC+fd2N6zduhNdf1x62HUVHXSFUSil1CJzpoh4PpO/Ip5BsaonUBU9L59JL4apI9mgoBDt3SiP7zZutr7FsSRpI0pY6qooDEAxSSSppVGBYL9qxnb/9qJzjvsolN1daGoKsTlpFBJRSSnUdTauL3nef+/EdO2TVMD4eCgvh2WfhpZdgyhRZNRw+HM46C157TZ6/cqX0s50xo/1+BtUyDQiVUqoLsQJCvx8yEmoxi4v4nKmNj8dlp3LeefbzvV6Z6R04UHpHWcJhWLEijtt+G0vVthKqtpSS3VBENcmNweXugkqevXMb0783kI8+ktcVFEgKkVJKqa4jGHTvEx8yBD7/3D7PzJRJyNJSOOII+3p9PSxaJP9GjJDA8IQTpGE9wAcfQFqapJqq6Gn3lFGllFKHj9UwuLoasgK72M4Aqolk5CencMY5PtLT9/8+Hg8ceyycOM1g8MQeHHlBLhOmp/JswtXE0ND4vMfuLibRV9/YmHjPHlmdVEop1XVs2mQXgunfH774AkpK7MeTkyElBWpq4PrrYdKk5vsD162Df/4T3nhDAkzr/d58s8WaZaodaUColFJdRCAgjX/9ftmXkVm8gU0MadwLSFoal112cO85e3bkwOtla98pVP/1IebwXOPjNdUm//7OEoYNs19jrVIqpZTqGpzpoqNGSSqoJSHBDv4aGmDpUrjuOrj3XjjvPFkBdCovl3vV8uWyylhaKo3rd+w4/D+HapkGhEop1UVs3GhXFyUcomF3EWVkND5+wowYBgw4uPccOxZ697bP59WdxFUXVpFBWeO11xelELdna+O5tp9QSqmuIxRyr+ANGACfOpq+JSXZbSUAXn5ZCpylp8O550pgeN11uCYOPR7Zb15SImmjCxbAPffICqNqfxoQKqVUF7F+vQSElZWQGi5nnZlLPAF5MDaOy67PPOj3NAw49VT7fOVKqP7dX/lRqr1KaJrwxu9XysZDJLXIalyslFKqc9uyRaqIguwPXLcOiork3DBgzBjpNWgJBOCZZ+xzn09SSG+7Df7wB9lD6PPJquLgwdLAvqwM3n8fXnyx/X4uZdOAUCmluoiCArvdRELFXnbRFx/SqnVETh3jjjm0BoHHH2/P/pomvLMik3P+czpD2NT4nFUl/Ql8JFPGDQ2wdeu3+lGUUkp1EE3TRd94w24/kZAgAd5FF8keQssLL7S8n3zQILjmGqlQevHF0rZo4EAJLMNhWSlcu/aw/jiqBRoQKqVUFxAKScqo3w9gUlYUJM5aHQQuu8JzyA3j4+Jg+nT7/MMPoe6M8/n5SV+6nrf8oyChvcWAFghQSqmuIBx2B2h9+sCKFfZ5cjJMnSpfL7nEvl5TA8/ZiSTNpKTAGWdImuikSZCdLde/+UYCTk0dbV8aECqlVBewfbvM2FZWQqg6wJ5gVmO6aE9vCTN/Oupbvf/MmXbRgLo6KSF+7HM/5fj4zxqfU0kya19aDeFwY/qqUkqpzmvbNru5fO/esjWhsFDOPR7o0QOOPFLO58yBxET7tc89B1VV+35/jwcmTpT3jo+XVNSKCnjrrbb/WVTrNCBUSqkuwNluorZMAsE4JKfnkrEF+JLivtX7Z2ZKGwrLu+9CKKsnP73rCLyRtFQfQb4q60dgyeeUldl7TJRSSnVO+fn2cV6e7POrqJDzxEQ47jjZDwjSZP6ii+znV1VJ6uj+jB0rgWH//rIiWVQEX30Fa9a03c+h9k0DQqWU6gLWr5d00XAY/H6DOOoxMEmglnOuzNj/GxyAWbPs49JS+M9/oP+Pz+TCUZJPZAAGYb74sApKSrT9hFJKdWKm6Q7KsrKksJglORmmTHG/5rLLZJuB5Zln9p/+mZ4OOTmyV71nT0kbBelPqKmj7UMDQqWU6uRM0w4IqypCmKFQ4/7Bs3md1PNntsn3ycmRggKWJUvgkUcNrnllNqk+uWvHE2CtmUvZa4spWBtuk++rlFKq/W3fbqd8ZmfDhg125ofXKymekye7X5ORAeefb59XVLh7Frbm6KPla69esvXBNOV7a+po+9CAUCmlOrmiImn0W1kJ5SUhvASJpw4DkzlHrnE3EvyWrr1WigpYPvoIXvqoF9dcIxVrrDTVT/f0Z/vLKxpLlSullOpcnKuDeXkyCWgFhElJMHx4pBhMkw3j3/mOtJKwPP20VMDel3Hj5KvHIyuRVoVSTR1tHxoQKqVUJ2e1m6ishPq6MLHU4yXIdBbR97xj9/8GByEtDW65xR1jLl4M1eOmMqCXBKFx1LGDfmxbsJ6Ni3a06fdXSil1+Jmmu91EcrJkojQ0yHlSEkyZbMKNN8qy4IwZ0mUeKTRzzjn2a0tL4dVX9/39BgyQverWe2c4djpo1dHDTwNCpZTq5Kx00fIyE1+4nngCGMDlPC11vdtYRoYEhT172tc++MAg76IxmB5vY3XTT0LHsOaXjzU2rFdKKdU57NplF4/JzJS2RtbqoM8n+wQnBz+Av/5VnrhwIfzoR42v/+537WIzAE8+afcubIlhSHEZSzBo32OqqzV19HDTgFAppTo5qwx4dVU4ki4aYDT5jOlVZG/MaGOZmfDrX8tMsGVbWSqZw3sSRx0A5aTz2tphhB/692EZg1JKqcPDuTo4ciQsX+5OF01JgSPfu8f9opdekka1yF7AM8+0HyoqkpW+fbHSRkH2L06fTmP/XE0dPbw0IFRKqU7M74cdO2DPHiAUIoYG4qjncp7GOON02ZBxmGRlwa23yldLUu4R+BN6EYPkFS3nONbe+Jg0s1JKKdXhNU0XjY2VSUdrxTA5GSaN9uOd38Ky3U9/Kj2QgO99z30L+u9/7ZTTluTlufceFhXB8cfb55o6evhoQKiUUp3Yhg2yP6Oy0oRQiARqOILdTGfRYUkXbapHD1kptPZ7pKQYpOb0oAG5qweI45+1V8E112ineqWU6gS++QbKyuQ4LQ02bbJXB2Nj5d+UyvktbwdYuRKeeAKAvn3htNPc7/v2261/35gYGD3a/VbTp2vqaHvQgFAppTqx9eth82YwwyY+giQQYA7P4Y31ySb/dtCzpwSF6elynjs6loakdALEAzCfWWx/bx08+mi7jEcppdShc64OjhgBn33mThcFk8kf39X6G/z6141lQq+6yr1K+PjjjQuILXLucsjPl5jzvPM0dfRw04BQKaU6sfz8SBPfkLSbyKSUs3kdpk2TvJ520ru3FJpJS5PZ49wj46nzJFJHPHXEcRc3wi9+ATt3ttuYlFJKHZym6aKGIStzxcVynpQEIzIKydrymf2k2FhpSmjZuxfuvBOQ6qEzHa1wd+6Ed95p/fs7C8s0NMhY+vbV1NHDTQNCpZTqpOrrYdGiyJ6MUIg46riQF0mipl3SRZs64ggJClNSICfHICE1htpIQLiQk1lRmQs/+IGmjiqlVAdVWGgHfykpkoFSXi73mbg4Seuc4p/vftE558Avf+m+ds898mLg+993P/TYPopPp6fD4MH2+cqV8rVp6ujcuYfww6lWaUColFKd1KZNUgocTDDDJFPFHJ6XB08/PSpj6ttXgsLUVMgd4QVfLLUkUEYm9/BzwvPmS/1xpZRSHY4zHXPoUAnICgvlPDkZCAWZsuoB94uuugp+9SuZFbTU18NNNwES4J10kv3Q1q3SpaI1zrTRlStlDtHnk9RRK/306681dbQtaUColFKd1BtvyEyppIuGmcECerNXaoQ7p1jbWf/+cPPNUjEuIcULhodKUlnBMbzBWVKFbvfuqI1PKaVUy5zpouGwrAw69w+m1u5ldJ0jXbR/f9mvnpzcmCba6OWX4YMPALj6avdDjz7a+iqhMyAsL5cAEmTCcepU+zFNHW07GhAqpVQn9corkc35Iek/eC0PyQNRSBdtauBA+M1vYMgQA2JjMYFisvkDv6G6vB6uvVZTR5VSqgMpLpbtfyDB3+bNEAhIfZiEBPB6YVLle3hw/O2+8kp5AODyy2HCBPebRtpQ5ObCCSfYlzdubGxZ2MyAAe52RlbaKGjq6OGiAaFSSnVCBQVSYRRMCIcYxFbG8pU82AECQoCcHNlWkp7hAV8MIbxsJYdbuEOmdp97LtpDVEopFeFcHczJkXNnMRlqa5m65wX3i6680j72eODee92Pr1olDQhpvkr4yCMtzwsahru4jDMg1NTRw0MDQqWU6oQefBCCQSI5NyYXEblJp6fD5MnRHJrL9OkwezZ443yEjBhM4Dnm8DLnwk9+Yk9HK6WUiipnQFhfL7eXwkIJ0JKSgOJiJrHcftLJJ8OgQe43mTwZLrnEfS3ShiIvD447zr68bh0sXdryWJxpo1u32n0RQVNHDwcNCJVSqpMpLJSy3Va6aBx1fJ9H5MFZs2QKtYPIzpZGwxMmGBAbh4lBGC+383s+Ks2DW2+N9hCVUqrbKyuDPXvkOCFB0kXDYVkhTEgAjxEmr3wpmTgis6blQy1/+Yu7DUVhIdxxB3Dgq4R5edLNwuJcJQRNHW1rGhAqpVQn8+KLUFUVuYmGQwxlI72I7PrvIOmiFsOA3FyYNAmye3kIxyUCsIc+3M2N7H5svuS/KqWUihrn6mC/frLHr7xcMlGSk4HycqbUv28/KT0dzj235TcbMABuvNF97e9/h82bOeooGD/evvz117BiRfO3iImRyURL04BQU0fblgaESinVidTWSuG26mrADOM1g8zkXQyQO+OsWVEeYXMjRsjNe+pUSMqIw4jcwfMZxVxzNvz2t1EeoVJKdW/OgDAQkK+FhXJbSUgAiouZwhL7SZdd5l4FbKqlNhSRILGlVcKWjBvnHl99vftxTR1tOxoQKqVUJ/Lmm1BaajWjD5NKBdOQst5MnuwuzdZBDBoks705OdCzl0FKD0lprSCdF7iI8hffhS++iO4glVKqm6qogJ075Tguzm7zUFQEiYngCdaTVrmDPBxLcK2li1qSkuDPf3Zfe+UVWLyYY46Bo46yL3/xRcu3AGdhmYYGyM9v/pymqaPz5u17WKplGhAqpVQnEQ7Ds8/KDGgoBEY4SBalHM9H8oQoNaPfH59PGhwbBhx7LMRlJGN45fazljzmcroUHVBKKdXunKmW2dmwY4esEvr9kXTRkmIms9RuN3H00e6qL6257DKYONF97ac/xQiHDmiVMC0Nhgyxz1etav6cllJHm64kqv3TgFAppTqJDz+UWdzqagCT5HAluRSQSCS/p4PtH3TKzZWvPXvC6NEGyT3iAAgQz7/5IYF3FsPixVEbn1JKdVfOdNHaWvlaVCTtBePjTSguYTKOcqD7Wx20tNSG4ssv4fHHmTRJCsdYPv1UgrmmnHHnypUtF6Dp29cudhoK2Suc6sBpQKiUUp3EM8/I15oaIBwmgzKO4ku5OHAgjBoVtbHtjxUQWsc9+iU0VkNdxwhe5Ry45RZtVq+UUu3I74ft2+U4JsadLpqUBEaVH6M+wHEskwfi4uDSSw/8Gxx3HMyZ4752660Y/soDWiV0po2Wl7ce7A0dah9v3Hjgw1NCA0KllOoE1qyR2dFQCOrqINGoJZY6O130jDMkJ7ODSk2FPn3k2OuF8883SMyUggRhvPydnxNa/qlsklRKKdUu1q615+HS06GkxG43YfUeHMVq0qmQJ513HmRkHNw3+ctfIpVpIgoL4U9/4vjj3ZOFS5bA+vXulw4Y4N4a37TaqEUDwm9HA0KllOoEnKuDpmmSHiwmjnomEKnX3UH3DzoNH24fjxkDg0fEyZQ0sIkhPMsc6UsYCkVphEop1b04C7VYFTqtJvBxviCUlbmrix5ouqhT//7N21Dcey/G5k3N3q5pP0HDcK8StlZ/rHfvSACLrG5WVBz8MLszDQiVUqqDC4fh44/luKoKYr1hEkOV5LCFZGqkDNz06dEd5AFwBoRbt0qGaFy6PWt8NzcRyl8Nzz3X/oNTSqluprraTsH0+WDbNjluTBctKwXTtAPCQYMO/V5z002y2c8SaUMxfbp7BXD+/OZzgs59hNu2SaXtpgxDVwm/DQ0IlVKqg9u2zSokIzO4SR6Zxj2ayFTpjBn77gfVQfTta8/g7t0rFUePOTYGYmMB2EVfHuYHcNttWiZOKaUOM2e6aGKiTDiCZHQmJwPFxWRQxgjWyQNXXmmX8zxYLbWhePVVPB8scrXPLS2VAjNOeXmyddHSUrVR0IDw29CAUCmlOjgrpcfaPxhfX4mBY9a2A1cXdTIM936RDRvgjjsgJtVeJfwHP6VmyzetdypWSinVJpzVRa1Jx9pauc/EBmugpsZuN2EY8L3vfbtveOmlMhPo9LOfcdqp7iXBpr0EY2Jg9Gj7vLW0UWeLik2bJLtGHRgNCJVSqoOzAsLqatk/GF9XQTLVjLKaBJ92WvQGd5CcAWFBgewlnDnL1zj9W0Q293ID/P739icUpZRSbaqmBjZvlmPDsBvTFxXZvQcBe+Jx5kyp8PJttNKGIvfjxxg82L60aJHd/sLiTBtdvVqC1qZSUmQvIcjr9+z5dsPtTjQgVEqpDs4KCKuqIIYGvATpy06yKJG7pHNfRgc3dKidcbR5s5QRv/NOiHWsEj7K99mz14D77ovSKJVSqmtbt85eQYuNtQOswkJISgxDSQkewkxiuTxwKMVkWjJpkjSsdzB+cyuzT6xpPK+thQ8+cL/MWVgmGHSvbjpp2uih0YBQKaU6sEBAUitNU2Z048IybXoMn2NAp0kXtcTH2zfsYBBeeEHaUZx7gbdxH2QF6dzFjXDXXXa5O6WUUm3GGVBZewfDYbnPxFSVQyjEaPJJxS9VX84+u+2++Z13uttQFBUxa/XfXE95+233S9LS3Cmh2n6ibbVrQGgYhtcwjJWGYcyNnD9jGEaBYRj5hmE8ZhhGTOS6YRjGfYZhbDQM4yvDMMY53uO7hmFsiPz7bnuOXyml2ps1i9vQAA31JvH1fmJpYJxVUKYTtJto6rTTGuvIsGMHLFwIv/sdJGYmgGFgYvA6Z7OqfKAEhUoppdpMba3ssQOZbNy9W45LSyPZ+8WSLjqVSHnryy93V3X5tvr3l6qjDn0e+QPjhtq9IpYvb15N1Jk2unKlXRDHacAAqZgKsH17y6mlqrn2XiG8AVjrOH8GGAGMARKAqyPXZwPDIv9+ADwEYBhGJnA7cCwwEbjdMIyD7I6plFKdhzWLW1MD4VCYeGpIoZLhrIfsbJgwIboDPARZWXDWWfb5Rx9Jz6iLLvE0rhL6SeUubiR87326EUQppdrQujTM7GEAACAASURBVHV2awePxw6sioshKaYO/JUATGapPHDVVW0/iJtugn797POGBmZveajxNByGd991v8QZEFZUwJYtzd82Jka6Y1jv0dJzVHPtFhAahtEPOB1oLB1nmubbZgTwKWD9ZpwNPBl5aDmQbhhGH+BU4D3TNEtN0ywD3gNmoZRSXZRz/6ARChFHPT0opj87ZHXwUEuAR9lRR7lv7i+9BNdeCxl94sEwCONhBRN4K3AS/PGP0RuoUkp1Mc50Ub/fPg4EwFtWAkAWJeSyHsaPhyOPbPtBJCY2a0Nx8qd3EFNb2XjeNG20f393z0JNG2077flJ4l7gJqBZEdhIqugVwPzIpb7ADsdTdkautXa96fv9wDCMzwzD+KyoqKhtRq+UUlGQny+znIEAxIYDeAkxji+kDHgn2z/Y1BlnyCInSEHRjz6CCy70QEIiAJWk8U+up+bfT9n5TUoppQ5ZIGAHScGgFJEByUKprzcbq4s2tptoq2IyLbn0UikyE5GKn+NDixvP16yRPrwWw2ieNtoSDQgPXrsEhIZhnAEUmqb5eStPeRD40DTNj9ri+5mm+bBpmuNN0xyfbX3aUEqpTqa0VLIl6+ogWB8m3qwhGT95rJW8mJkzoz3EbyU2Fi66yN7vsXmztKHoOzgWPB6C+NjOAP4buhxuvz26g1VKqS7AmS5qmnaSSWkpJIX8UF8PRNpNxMfDJZccvsEYRrNVwtmbH4BQsPG8aU9CZ0C4bVvzfYYAPXtKCwqAkhKtTXYg2muFcApwlmEYW4HngZMMw3gawDCM24Fs4OeO5+8C+jvO+0WutXZdKaW6HGf/wVBDiHgCpFJJHmvghBMgNTW6A2wDvXu72ygWFMCUqR68SVKBroI0nuJydj+zCL7+OkqjVEqprsGZLlppZ2dKcFgqWXUewhzLJ3DBBZCefngHdMIJOJsQTmlYREpNYeP522+7i8eMHOmub7NqVfO3NAz3KqEmmOxfuwSEpmneYppmP9M0BwGXAO+bpnm5YRhXI/sC55im6UwlfQP4TqTa6CSgwjTNPcA7wCmGYWREismcErmmlFJdTn6+3Airq4FQmDgC9KCYwWzu9OmiTuPHw6hRcmyacrMfNDwOvF7qiaOSVO7jJ3DrrdEdqFJKdWJ1ddLGCGQhsLxcjsNhKC0KNl44ii9JoerwpotaDAO+853G01gamFk3t/F89273XGBMjGSSWL74ouW31bTRgxPtagT/AnoBywzDWGUYxm2R628Dm4GNwH+AHwOYplkK/AFYEfn3+8g1pZTqcvLz5abdUG/iMRtIo4JRrMFHqEsFhIYB55xjT0QnJ0NWD4O4VJkGriCNBcxg5Zs7YOnSKI5UKaU6L2e6qGGA1yvHFRXgqyxpXIqbzFJp+nfiie0zsCuucJ3O3vYQ1AUaz5sWl3E2qV+9uuXWEs6ehZs2SdCrWtfuAaFpmotN0zwjcuwzTXOIaZpjI/9+H7lumqZ5XeSxMaZpfuZ4/WOmaQ6N/Hu8vcevlFLtIRyWG10gAA11drroSNZCbq57+rMLiI+Hiy+W/SyGAT16QN/B8eD1UUsi9cTwN35B+OZft9x8Siml1D4500UDdryF12PiiRSTgcj+wSuvlD/G7WHwYJg6tfH0KL6kT71dTebdd6UXr2XsWHtowaD757IkJUGfPnIcCMAu3WC2T9FeIVRKKdWCbdskVbSmBsLBMHHU2QHh7NnRHt5h0a+fXSenf38wMUjpIR3sK0hjHSOY+1EqvKM7BZRS6mA400VDISm2YinbWSXd6oFsihhmbILvfa99B+hIG/VgMrvkGUAm/yorYdky+6lpaa5th5o22gY0IFRKqQ4oP19mPuvqTAiFSKKadMpl/+Csrtt+dcoUGDZMUplyciApKwHTF0M1yQTx8gDXUXPz7zX/RymlDkJBgdxTwE4VBYkD/dvtMpyTWYoxexb0bdbV7fC68EJXtZhZJU9DVXXjedO0UWe10VWrWk4c0YDwwGlAqJRSHVB+vqS5BOvCgElPCsllA774mPbb1xEFhgHnny8lw3NypIBASo84whhUkkoJWTz+5dHSyV4ppdQBcaZVOvfcxXiCeMvt5cIpLIGrrmrHkUWkp8PZZzeeDmYLw0P2oD/8EKqq7KePG2cfV1RI26KmBgyQewjAzp3uNFnlpgGhUkp1QM79gz6CZFEi6aInnggJCdEe3mGVlCTVzuPj5YaemB6HGROLn1TCGDzDZey+5Z/2dLdSSqlW1dfD+vVybJp2M3qAmk17GivNeAkxsccWOPPMKIwSV9oowGm7HoFIE4L6enj/ffuxfv0gK8s+b6n9hM8nE4sgSSUtBY1KaEColFIdTF2dpPcEAhAOmSRQSzJVEhB24XRRp8GDJfYdOlRmeJOz4gjixU8K9cTyj81nwH//G+1hKqVUh+dMF42JsSuNhkKwe72dljmWVSR/5zyIjY3CKIFTTpGu8tZp7Wt4Ksobz51po4bhThtdubLlt9S00QOjAaFSSnUw69ZJMZlggwnhEGmUk0Cgy+8fbGr6dMjLk0pxaVmxmDHxVJCGCSzkZL649eXGQghKqY7LNOHLL2H+fPD7oz2a7seZLupMrIitq8R05GFGLV3UEhMDc+Y0nmZTzISgXU3m889h71776c6AcNs2d6EciwaEB0YDQqWU6mAa9w8G5M7dkyKGsQHfwH4wfHiUR9d+PB646CIYPVpmgzN6xVJLAtUkAfC3wssJ3/9glEeplNqXDRvg97+HO++Ef/0L7r5bO8e0J2e6KLgDKrNJhDTlqGoYNaqdRtaKpmmjO/4NQek5YZruItMjR7rq0LSYNtqjB6SmynFZGZRq9/IWaUColFIdzNdfR/YP1ocxgD7sIY81sjrYXn2hOojUVLjmGtkrkpzuIybORzFZmEABw5n7h5VSk1wp1aF88w3cd58Eg/n5kvmwaRPMmwdvvhnt0XUfGzbYPfwSEhxJFeEw3xTYfzt7UsjgH3eADJSjj3YFpdPDC4irLGo8d6aNxsTAmDH2eUtpo4ahq4QHQgNCpZTqYD77TNJ6wkGTBGpIINCt9g82NWKEVB4F6NE3lhqSqSYRgPv936Hmwf9Gb3BKKRe/H556Cm6+GVaskH1qW7fa+9YCAVktnD9f60K1h/x8+9j63wAgruwbiuuSG8+nxnyCccnF7TiyVhiGa5UwkVqm1cxrPN+40e6nCO600dWr3RVULRoQ7p8GhEop1YGUlsL27RCqDwFhMignlnpyvDvgpJOiPbyo+dGPoHdviEv0kZIYZi+9MYFSMln47N79vl4pdXjV18PcufCLX8C770rwYZqwY0fzVZqqKgkaH3pI2gGow6OhwZ0u6qwuam7bjjPf5MTpXju3Mtouu8yVDXPa3sdc+8Xn2fEhY8faTw0G3QGwZcgQ+zmbN7sDYyU0IFRKqQ7E2j/YENk/mE0huazHN3VSx7lZR0FMDFx/vTRUzuwTS4B4SskEYOnqNHeDKqVUuzFNWLIEbroJ/vc/d52nigopCjVjhqT2zZwJGRnyWEEB7NoFDz8M772nq4WHw4YNEqiD3D7KrYKdpsnOLfWNz0vBz8SrRrf/AFvTt6/80kQcyydkVNszB/PnSxsJkJ9ryBD7pS2ljSYmwhFHyHFdnU5CtEQDQqWU6kA+/VRmdYMNJgYmvdjbrdNFnU47TWrq+BJiiTMaKCWTAHEsD08gtGBRtIenVLezejX89rdSLMZZ4dHjgaOOkq1gw4fLRM6MGXDDDTBokPwLhSR9zzSl6biuFrY952qZFUABUFlJcW1i4+k0z0fEzJ5Bh+JIG/UR4pSy5wGpRlRYKBVHLc600VWrWi5apGmj+6YBoVJKdSBLl0I4bBIOhYmlodv1H9wXqyJ5VhYkJpg0EEspmVSSwurnvor28JTqNnbtgr/+Ff78Zyn373TMMfCb30jAFxMj10aMgOOPh4EDYfJkSE+Xa6WlkhEB8iH/4Ycl3VRXC7+9hgZZhQVJlywuth8zdu10pYvOOKa042WgnHsuJCU1np5W+TxU2j1LnGmjzoCwosK9x9CiAeG+aUColFIdRDgsM+7BWvk0lEY5cdQzuFeNTLcrZsyAnBxIz/RiArUk0EAMSxYGtJa9UodJfb3sbS4pgUcfhVtukb6CTkOGSCD4k5/A4sV2FndmphSFsvZwXXAB+Hzyr29fCQ6TI7VNTBM++ggefFBXC7+tjRvtdNGMDKn6atm92c7rTcHPxEuHtfPoDkBSkvyyROSxhgEBe0PkwoV2AZl+/aBXL/ulK1Y0f7v+/SE2Vo537dIWtk1pQKiUcgmHpcrlCy/Ali3RHk33smGDVOgL1ln7B4sYTgHeWTO7XbuJ1iQnw7Rp0HtwIh7C1BFHgHiWluTqtK9Sh8HGjXD22TB9uqzEPPmkuyhHdjZcdx3cfrukh777rgSPYK/qx8fbz+/RQ/YSWtavl8/9Rx5pXysqktXCd97R1cJD5WxG71Tvr6Os3D6fxmJizj6tfQZ1sBxpowYwe+/jEJZfvupqmTwAuT1OnGi/7NNPm88Per0weLAcm6YUl1E2DQiVUo2sDf6vvy698J54Qv9otqcFC+RGFWww8RImkzJNF23B7NmQmuElMSaIiYGfZNYyktJXFkd7aEp1Kdu3ww9/KIU6ysvlQ3h+vqwA7t4tgdxdd8GkSfKhPD9f0t4tZ50l1YGbOussKfQBMgk5dy5ceCFceql7tfDjj2W1cMeOw/6jdinBoPR9tDibsRvf7HGli87M2SRpFx3RtGmytBcxu/516S4f4exJ6AwIS0ul52VTzrTRltJKuzMNCJVSBALSKPjf/5ag0BIKwbPPwp490Rtbd7JsGYSDIcImeAmRTjkjWeeeTlf07CkZtEnJ8rGmlkRMDJa/vGs/r1RKHai9e+HHP5ZJQauxOUjgFxcnH7r/+U9pH1FdLXsAX33Vft7EidISoCXJyXDmmfb5Z5/JB/SRI+H//s+dIV9UBP/5j6wWOsehWrdxo51OmZ3t3ue5d7NdkTkFPxMuGNjOozsIHg9cfnnjaT92cWTdZ43nS5bYlVMHDpSf1dJS2mjTfYS6y8CmAaFS3Zhpyj6Qe+91p1gkJMi+D5CbypNPuibl1GEQDsvserBWPvEkUkUqleRMzJYqKspl4kTo0UcqVtQTSx0xLFmZaFeoUEodstJSuPZaWSH0R+p4xMTIql7fvnJ/8Hrlw/gDD0gF4Ouvh8pKeW6/frKSvy+nnGLfZwCef17uQQkJsvJ42WW6WnionOmiPp99b6+pClNRYufgTmcRMeec3s6jO0hXXOE6nb3nscbNkaGQZNbAgaWNZmbKnlWQ4jPOyrjdnQaESnVThYXw2GPw0ksyu2sZN05Kg191lV10rKpK0kedz1Nta9MmmQkP1oXwYJJJObmsxzv7lGgPrUMaNw4yjkggzmjAxKCKFJYFxxP+8ONoD02pTq2yUvYEbtsmgaFpSjGO6dNlf+DFF9vVQ8FuPv/RR9KHcNUqCfZ8vn1/n9hYKTZjWb/e3UNuxAhZLXSuMhYXy2phS83HlQgGYe1a+9w5mWsWF+MJ2wHhjLTP4Nhj23F0h2DkSJgwofF0Ju/iLbNLpraWNlpc3LwOgmFotdHWaECoVDdTXy9NgB94ALZuta/36gVXX21Xek5Lg+9+V2ZrQWbSnnrKrlqm2tbChdJuIhh0povq/sHW9OkDQ4YYJMZLc60qkqkklTXProryyJTqvGpqJAjbsEGqMNbWSmA3caLU9xg5En79a9lnPmeOpI5WV9sVG4NBua9cdpnsLXRWtmzJ1Kmy4mj53//cBWsSEiRovOwySEmRa6Ypew6tlEjltmmT/d+mVy930FO82W7bkEolE87sLUu9HZ2juEw6FUypeRerJ+FXX9lbXXJy3Ak1n37a/K00IGyZBoRKdSNr18J990kTYKtJbWysxBzXXis5+E49e0r6vjXTu2sXPPec+4at2sayZRCuayCMgccKCFN3u2ZGldsJJ0BKunyYCZBACIOl7+kytlKHor4efv5zWX0zTZkE9HrlT9CIEe6tzD17wi9+IROLOTn2imFKigSJ9fVSqfqcc+APf2g9zdPjkRVHy+7dcn9qasQIaWdhtRZwVphUbs500fh4u0qr3w/+YjulvkNXF23qkktcS86zS5+R2YsIqydh07TRFSuap40OHmwX7d6yRT/PWDQgVKobKCuDZ56RAjEVFfb1UaMkPXTKlNYnCQcMkBu29Qd040Z47TXdjN2Wysrkv2swEMTAxEuIbArJOTW3c8zeRsn48ZDVPwEPYUJ4qCaJJbsHaQMzpQ5SMAi/+pUUdwG5T4TD0mQ+I8M9MWjx+6XQy/jx8nn99NPhiCOav+/rr8sq329/23LV6rFjJeCzvPJKy6t/CQnufYnOgiJKhELudFHn/T5UUYW33m6+N8O7WHJ7O4MePeQXLOIEPiSxwq529/bb9mcSZ0BYWOguqAPye9SvnxzX1+ueVIsGhEp1YcEgfPCBVIJzlqDOzJQMjEsusfcJ7suIEdKHyrJqlewlUW2joMDeP+glTCp+8liL97RToz20Dm3oUOjdN4ZEnxTi8ZPKGvIof21xdAemVCcSDsNtt9krbsGgBBJHHy2fw8eNgzG+tbJn4IUX4J13CC1Zzv/u3UPVHj/U19Ont8n998Nbb0nKqbNYjPU95s2Diy6SLBXnhKJhyL3IUl4O8+e3PNYhQ6TXoTXO995ru/8OXcGmTXZdrT59ZF+mpWSLHR2mUsnEExMO7ANAR+FIG42jnhnlL4EpqU7bt9uB8JAh7t+//aWNavsJoQGhUl3U5s2SzrNggV2q2+uVwgDXXw/Dhh3c+x1zDJx8sn3+8cfuflPq0H3+OfgrwgTDjnRR1sKpGhDui8cDxx8PiUmyfF1ttZ94Ydt+XqmUAgnM7rjDPcFXVgZjxkh6pq+8iMvmXQ55efKB/OKLYdYs3p36O7bd9gj8415i7vojc27sR3zfLBJHD+Y7fz+aNwMzuYm76LnnS/m0vmuXbCgsLeHJx4Pcf797HEOGuFd25s61q5s2deqp8v99kP1jmhBgc6aLJifbWZWVlVBdZK8OTmMxvrM7eHXRpk4/XZarI2bVvAIVlY3nVnEZw3DvtGip2qjuI2xOA0KlupjqanjxRXj8camyZRk6VPZgnHSSu0LcwTjxRPcf2nnz5IasDl1dnaRphevqCOPBS4g0yskbYcoUr9qnE06AtCz5hW4gljpiWfppjL1xRinVItOEv/9dtgBYAgEYNAj6xhXD++9z+txr6fneM67X5TOKpUxuPD+LN+gd3i0lSbdsgVWriPtoARd9/ite3z2e3xT9H/2+WQG7dsrjX+fzxD3FPP6Y+1P6hRfaGfKBgHtcTtnZze9DuoWhebpold1ukEBVAzE1dn7tDBa4G0F2BnFxrg2n4/mM7Cq7jOg779h/9p2TC3v3Nk8L7ddP3g6kz7JWUNeAUKkuJRSCO++ERx6RVJFgUDb5X3yxTO5+23Z2hgFnnCGTxZZXXpE0FXVoNm6UG1awNoiXMAbQi0IGnTkm2kPrFMaMgeyBCcQiy+CVpLKs7mjCy1vIE1JKNfrPf2RfucU0YXB6KQM2LIT588jYnc+ZvOl6TRE9eJVzG88nsIKxfNnq94ghyDm8zsuczxU8JRdDUor0gRvW88K9uxuf27u3ZLBYFi6UPWAtmT5dCqaALEA6V8a6qy1b7Gqvffq4t4mUb2uSLppXLdWAOhtH2qgHk1nFTzdGgWVldnrosGF2v0Fonjbq8ciqNMjvfUt7W7sbDQiV6kJeeQXefFMqta1dC19/Lfv/hg+3i8J8Wx6PzOQOGiTnoZB8qNi9e58vU60oKIDCQpNgfRgvIXwEOYbPdf/gAYqNhaPHeUiKl1JxVSRTRgbrnv0iyiNTquN65hl4+GHHhSo/UwtfIW3JW7BH/pjP4TnisPsM1Y07jueOvJP6QcOhzxH061nPadmf2Ust++AlzP9xHxfwkut73vXzPbx92TONVWTOOccO9EIhyXZpSVKSZKxYnKtD3ZWzN2NGht1/sLISaorsipzTWIzvzNl0SpMmufI9Z4fehLLSxnNNGz10GhAq1UXs3Qv332+3kxgwQG4KL74o5cEXLWq78so+n/SFskqA19fDk09KxpA6cOFwpKDMrgaCePEQIo0K8uK3wOTJ+38DBcje1sQUKYHY2H5iXsV+XqVU9/Tqq5IqCkCVH9YXcE7Bn6nbubfxObmsZxLL5WTyZMz57/DajUsoOutquPxyEn/yfS5Z/wd8hbslvzMQkJvQ+vWSA79wocxQPv443Hsv/O53GNdey03x/2Q28+zBmCb/79lhLBr2A/jgA9LS4DRHJ4Tly5s3F7dMmmRvKSsvl9Y93VXTdNFae7sg/sowsVUljeczea/zpYtaDMO1SjiMDQyptvetLFpk75t0po3u2dN80rppQNjd0441IFSqC7AKA1gBWWqqO12irAweewxuukkKwVhB47cRHy9/l9PS5Ly6Gp54wr1vQe3brl1ykwr46wEDD6YUlJmaJUtf6oBMngzpfeLxECaMQRXJLN16hHsTrVKKd9+FO+4wwV8ps1EFBZzpf5a+7KKaZAAMTL7Dk9RPOYndz3/Ilw98zOu1p5C/WtJMDEOqhVp/+wFZJezZU3L1jjlGNqufey5873vS2+i22+DBB/Gs/prbZy7jRD5ofGkYD7/e8SM+mXYTXHUVsyeWuN77+edb/rDu87nrbn3wQffdC7Z1qx0INU0X9e+pwgjLbHAqlUzI2iLRdGd1+eWNhwZwWslTUCelVevqYPFieSw31/07+skn7rfJyLCrkVZWSqXv7kwDQqW6gHfflZshSErntGkSII4b535eYSE89BDceqtUtvy2M2KpqfDd70pfH5CA9KmnWu4hpZpzt5uQG3Y2hQw69+goj6xzSUuD4aNjSfDa7SfyGUXl64uiPDKlOo4PPzD57Q0VmOsKZCWvys9JLORcXuF1zqaIHuykH77eWfzvB+/zx2kLeCj/eF562eDzz+33Oflke//VQRs8GN87b3HnU/2ZmGDnODYQwy/4G18+/jnxY0dwbvJ7gNyg1qxxp0M65eXBwIFyXFcH779/iOPq5Jz/fXr1khUxkECnttiOkqezCN/pp3bu/rY5OVJNLGIW86HEXgG10kY9HumRadlf+4nunjaqAaFSnZzfD3/9q50O2r+/VBMdMAB+9jO4/XZpQO+0c2djFg/5+d8uMMzOhiuusCuX7t4Nzz3XdumpXdm6dVC4J0gwaOKJBIQTWIF3didpFtyBTJ0KSYlyXEMSITwsf35rVMekVIdgmiy55xN+fvo6/Ot2UlllUEoGyVSRQC03cB+bGMKupOFUDhtPjytOx99zSIsbz0ePdn0WPzSGQezlF/HXDWczJtfeoxggnhv4BwXFmUz7yyx6f/iiRDS0vkpoGO5m9StWtF6IpqsKhyVotlh9CEGyg+L8drA0gwVSGa6zc6SN9qKQY/wfYE0gfPqpnRziTBu1MnKcNCC0aUCoVCd3113S3gkgMRF++EOp1mYZOhRuvhluucX9xw+kOuhf/iKVSb9Nc9b+/aWSqdUbatMm2T7S3XPy96W8XLbcFG2tJoQXD2HiCTCh7zeds/pblJ16KiRmSJptEB8B4li6zGib/GilOimzNsC/xj7EnF/0YVd1GmVk4CeFdCo4jmXsYADFSQNh8BDIGcyICSmNNWKSk6V42PjxMGsWXHmlpIq2VYGyxL4Z/GPFZIadPLCxkkwVyVzP/eygPxdtv1saEn79Ndu3hlrte9u3Lxx1VOTnNVtvat9VOdNFe/d2N6OvKg5g1EuEmEolE3yrukZ/2wsusKsPAadV/a9xv0o4LFtYQQrqpaTYL2u6Sjh4sP25ZevW7l2YSANCpTqx5cvlfglyk5482b0h3ykvT7Zx/PznEsA5rV0Lv/893HOPlPA+FMOHw9ln2+dffSWV31TLCgrk5lNUZGIgeyHSKWfEjH7RHlqnlJMD/YdJ+wkTqCSNpdVHEl6ljTJV9/XOd57hz1/NpgFf47VsipnJuxg5g1iTdyHxIweT1ieJ0aPl/vDDH8q2gl/9Cr7/ffm7PmWKfHhuq2DQkpoKD7yQzYBT8+CIvmAYlJHBj3mQvuxkaLgAvlwFc9/ixXt30dDQ8vvMnCl7CkEmN7/NBGdn40wX7d/fbqFQWQmBEntT/3QW4Zs2Vf6jd3ZpaVKSNmI6i/CV2kvD1mcPr3ffaaNxcfbnoYaGQ//80xVoQKhUJxUIwB//aM9o9e4tKaL72hpgGHD00fCnP8F117lXEgFWrpQPAg88YO9BOBjjxsGMGfb5kiXdu/LbvqxbByUlJg2BcGO6aDZFDLpwwn5eqVpiGDDhWA+JcXb7iVIy2fDsiiiPTKno2L6yhPte6UsdsuQXSz2D2czd4//H9/83i+G3z2Ho0SmMGCETKr/9rdSD6dfPtfhy2GVmwoP/8tBrbB/Z35CSSiE9uY4HOZXIJ/vKCkpeep/3zvxHi+Ws09Ikbdwyf373SA5omi7qDJiLiyGhugumi1ocaaOp+Dmu3P4f/auvJAMH3GmjO3bYGVUWTRsVGhAq1Undfz9s2ybHcXFw1VWyb/BAGIYUGfvzn+Hqq5s3rF++XGaHn3vu4G+qJ5wAxx5rn7/zzqEFl11ZXZ2UUi/aXEXQ9DQWlBnr/RrvSSfu59WqNSefDEkpMiNSTyz1xLBkblmUR6VU+6uuhmdu+IR14VwA4gkwyLeb199J5NQVfyJj+lgWL7ZX/CZOlCySaOndWwqeZfaJh9xhkJPDDl8Of+dnjMSOeN54J47qEce02KDw+OMlzRVkH6GzEE5XtW2bXVm1Vy/3yqi/PIhR7Qci6aKs6LztJloyc6bd+wo4pWGu7MWIeO89+TpypP17Ac1XCTUgFBoQKtUJrV0rm+wtxxwD559/FZMnqQAAIABJREFU8O/j9Upz37vvlkrOzkwS05RqXffdJ30GD5RhSNrq8OFybjUXbi3VpzvatEn+uxRu8mNiRFJGTU4YXWaXbFUH7fjjIb1PHB5MwnioJoll67Ok8pJS3UQ4DC88UsmXS6upJR4fITIo45zTG+hxipSefvZZO7skNhbmzInigCMGDJDslJQUAzKzYNRoNvU4lpWMIxT5uFpNEm8WHSubGa+4AirsfqOxsRIjWBYu7PoVr53pooMH270IKyuhvqxJddG84fKkrsJqiBxxIh8QW2b30nz3Xfnq9cpnJEvTgPCII+wV8T17um/rLA0IlepkQiGpHGrd6LKypPG8VeXzUMTEyD7zv/0NLrxQitNYPv9cis4czGdqj0daUCUlyXlRkT1bp2T/IMA39r2LZPyMPUP3D34bMTFw5Ph4Ejzyfw4/KXxpjsH/1odRHplS7WfRItj0/KesCQ3HADIoxevzctFfJXdu9WrpHW854wzo0SM6Y21q2DCZhExIQD7wDxzEluGz2JUwjHDkI+s7nEoJmfD003DkkXbPJWDsWHsrRHU1fNiF/6/fNF00HLYzevbuhcSAnVrbqZvR74sjbTSRWqZWvNU4+7xmjVRUB3fa6LZt7kq0Ho+7jcqmTYdzwB2XBoRKdTKPPWbPAsbEyCRpbm7bvHd8PJx1lqSSOtNPN26UFhV797b+2qaSkiQotCxb1r3TMSymKQFhrb+B8trYxnTRHhQz8JLjojy6zm/KFHtCo5Z4Gojh02f1F091DwUFsPitaopWbKOIHqRRTiwNTJ1i0ndoAqGQ9Iq19OgBp58evfG2ZMwYmZxsnORMTqFi2HhWZc8kbHgJ4uNhfkAt8VIFZPp0uOkmqKvD43G3oVi61JVF2KWsX2+vZvXs6Q5kqvxhPJXyg6dSyXg+61r7By1HHSWTAhGnmPNde0ytiehRo+wJapD2JE6aNqoBoVKdyrZt8Mgj9vmoUa6MiTaTkQG/+Y30nLLs3StB4cHMng0f7q7w9cordnns7mrXLpm5LlpdiIkHT6R30pjELXhHjYjy6Dq/GTMgOUM+SYbxUUMCSz8KaQ8U1eWVl8PLLwPLlrE6lEsiNSRSA74YLv7dSAAWLJC/QZZLL5VUy45m4kSZmLRaAvhiPNQm9+TLwedhpmWwhjz+xK2UkS7/3777btm8np/P4MEwIvKnNBi0Uwe7gvJyWfV84AF45hn7em6uFFKBSLpoZaCxGfBJvI8vKx2O66ITjo5Vwql8TEKZ/QtuBYRerxS9s3zyifstmgaE3fF2oQGhUp2EacL/+392QJWaCjfeePiqwSUkwC9/KfuyLH4/3HEHfPHFgb/P7NlSRc56/RtvdM8/tpZ16+Rr4YYKwtg13KeMD7R9TfduaMAAyMmT9hNhDKpIZln5CMz13agOvep2gkEpAlZbXE3tinx20o90KjCAgXlJTDw+Hr9fJuUseXnuCbuO5sQTZRLS+rOYng6lNfHkDzwNc0Qe2xjI77id3fSRJ3z5pWwWu+ceTp0Zbgwmv/5aqkt2Vn6/ZNg8/LCsnL73nrtSptcrQb2113/PHkiss1fJZrBANvbvqwR5Z3bppY0zB/HUcXz1fKiVD0rr10t/QXCnjW7ZYjevB/ndstKmq6oOLhuqq2jXgNAwDK9hGCsNw5gbOc8xDOMTwzA2GobxP8MwYiPX4yLnGyOPD3K8xy2R6wWGYXSB7ppKHZiXXrL3fXg8sqfekSlxWHi9cM017tTP+nq4916ZaW5NeTk8/risMn79texLtG7Oq1fLfbu7svYP7t5jB38+gky/uFcrr1AHwzBgwiQfibFSMaOaRL6hFxuf0v4nqut6+23YvRtYtowNoUGRYNCEmBguvnEAHo8U97ImFD0e2W7Q0eegZs+Gm2+WY49H9geWlHqYV3gM72VcxKveC5jBAn7Iv7iLG3m0/nJe+cXH5M/6JT1jSqmslC1lb73VuSYia2tl//7jj8vi59tvNw9qk5IkyPnRj9zVRSsrwRdJF02jQtJFu+L+QUufPnDKKY2np/CuFC6IsFaIR49210fQaqNuvv0/pU3dAKwFrFqGfwH+bprm84Zh/Av4PvBQ5GuZaZpDDcO4JPK8iw3DyAMuAUYBRwALDMPINU0z1M4/h1LtqqQE/vEP+3zYMGkY3B4MA847T4rXPPaYbFo3TXjiCZlhu/hi+0PFrl2SxvL663bRmw8+kFnpadPg/ffl2ty5MHCgpKZ2JxUVMrNrlpVTWJ+GB6kAkEkpgy6ZFOXRdR3Tp8PT93soL4EQMQRIYNmbxQz7Y7RHplTbW7UqsiequprQii8oZjI+ZEIkcUAPzjgv9v+zd97xUZVZH//eKZlk0nsBkpDQQXoXpSPoKlZ0UbGtrmVddXd1d33fXVdd17K6vupr3dXXCtjQdW10QUGa9JIQCC0kJCG9TcrMff84M3NnIDQNmZTn+/nkw9yZO5MTIPe55zm/8zvs2wfffGO8Z8oUmTfYHrjiCqnavPCCJIUJCbImVlXZaIxIobomko8briCeIkJxZ7ybwLXlIIWRwbhsdiwWqaCmpclalp4um6rJyQH90fxoaBB/gG3bJCFxNnNnGxwsld1zzhHDUJNJztu0SV6vrISmugaodwBud1GL5pcwdUhuukmGTwJjWU1oyUFqUrqAxcKiRbKxbbHIHOZVq+Qt69ZJ4dRDjx4ycgvk7993rmVnoNUqhJqmdQUuAv7lPtaAScBH7lPeAi51P57pPsb9+mT3+TOB+bqu1+u6vg/YA/gUgRWKjslf/mK4a9vtIhX1navjS02N6ON9XbRagvHjxc3UV6L6xRfw0kvSu/DHP0ol8YMP/K2+6+pkZ3r8eOMGpL5eel06w+BgXzzVwcodh2jC6hWM9oktxhwTGbC4OhqDB0NyWhAaOk5M1GBn1Y4ocDgCHZpC0aIUFooMH4DvVxPqrKAe90XaauXimxMICYG33zYqZOHhssnXnrjhBpm1C7IBGRvr3lDUTBAWjh4aTpGWRCXG7CSTq4nwsgNQXkZTo4u9e0Wh8u23Yqxz9dWBX4eamsQN8/33pWfyo49knfBNBq1WSQBnz5b5wJddJsmLR3WTnW2YyxQUQGij4aIzlcWy+EZ28PXlssu8NxhBNDLBtQyOSpVw/36j4ucrG927VzYWPKSnG5vbhw51vvuT1pSM/g/wAOD5K44FynVdd0/CIQ/o4n7cBTgE4H69wn2+9/lm3qNQdEgWLzZctTVNlB++g989NDTIInfxxXDXXbLzNWeOSE48GvrToqhINCpz5kgm56OzGThQZKCetaW4WOSjM2bI5tyJLqAffyyynSuvNJzjDhyA7747g7g6AN7+wd3lOH36B0cOUyKHliQyEnoPsWPX6tHRqCGUTc4B1CxaFejQFIoWo75eql6NjUBNNWk/fEIOPrq3pCSuvs7K6tX+ErirrvJ3XGwv3HEHPPusFIMuu0wcsUeNkk1Ss90GkZGUWBIpJQbPqhVKDRZHNRQX46yr95sxV1srI5Xuussttz0DamqMgfA/hupq+PRTSQLnzZN5gr6zes1mMca56iqRzM6aJQPWLc3o+n74wXhcVgbWqjKgk8hFPVitcPfd3sNpLJJ7GV1uSjzmMuec47+p7es2arMZI0saGvxUp52CVpGMapr2M6BI1/UfNE2b0Arf7zbgNoBUX+98haKdUV0tC5YnJ0tNhV/9yv8cl0v6C15++fhG6J075evFF2X3a+JE+erb95jeEV0X67JXXjGyN5AM8xe/kA9wW9GlpIhZ2aOP+l8wCwrkYmqxyO5taqohY6mogK++gksvlUT13/+W55ctk53OlJQW+etq0zQ0QG4u4HRy+IgJfBLCqXPakG6pgzBunMai+To1NdBAELXYWf/uD0y4ZHKgQ1MofjK6LlJ8T4UjdP0KBjeu5RXcZTSrlTEXxRIUJEPoPaSlScGoPaJpYnLma3QGkkw99xzU1Jipr4+gIesoPbJWM871DRVEsYu+rHaNwVEaQr2Wgi0mkfpGox6yfr1UC+++WzYtTScplRw4IMoYj0vlpElSbQ0PP/2fIzsbPvnk+IRS06B7d9l47dfPPYvxFOi6kRBWVoKryQnVMjR4Essw4+qY4yaa49ZbxYWotpaRrCOisYTKsjKIiWXRItlQsFrFbXT1annLunUwfbrxEV27yr0MSJUwsRO19rdWD+G5wCWapl0IBCM9hM8BUZqmWdxVwK6Axyv2MNANyNM0zQJEAiU+z3vwfY8XXddfA14DGD58eDtqI1Yo/Hn8cSPpCg4WyWZUlBzrulzUXnjh9Bqg9++XauH//Z/0YEyYABOHVzF065uYX3vZGG54LP/6F+TkUPPWRyxYGce8ebLxFhIiMXlUeI2N4ob2hz+IvKe0VHZwPVXDuXNh5kwxgcvOlmqZ0ykSGc+FuiOzd69bBpR3iFJXpDcdDDU5GDKrhQZJKryMGAFxCSaK94ELE7XYWb2ikQmBDkyhaAFWrzaGkms11Vy9/ne8zSzjhKQkJl9g4bHHJFHwMGfOyROe9siAAaJcefppKC/XsA/N5GjGHLI3wL1H/kAIdbzBzewnHUrgHHsFey/7HR+vSvJ+Rl0dPPWUmKX9+c/+/ZW6Ln/Xn38uyacvS5ZIT9rMmXDBBc1X8Dw0NsLChcePPEhNlcrVgAEnbgU5Efv3G5sCBQVgb6ryvjaFJbL76zt1vSMTHQ033ggvvYSVJiaxjE8LkyAmhrw8jV27JNEeMcJICHNypKrq8TPo1s2oGh461LZdeFuaVrks6Lr+R13Xu+q6no6YwizTdf1aYDlwpfu0GwB33YDP3Me4X1+m67rufv4atwtpd6AncIxPkELRMVi3ThYgD5MmSRIHsjjdfjvcc8/xyaDFIjuWkyadeCRF0b4aPnhqP3dMyWHaff14eNdVrOQ86jl+IFUxcTy/YiAX9tnLc0/UeXsTzWapCIaGyliJYcOkcrh2rSR7SUkSg4fcXPmZNE0qhR7JUnFxx5oTdSI8ctGmnH2UEuN9PjO+ArO1g92htQEyMsRu30ojLszSR1jUA/1gO/afVyiQKpXvNXPK4beIqj/CQtzG61Yrsb3iWLTIfyj7RRfJvLqOSFoaPPSQj9okKopdE+/i0VGfU0osM/hKXFeB7YciuPnlEbw87j1Skv1rBhs3wjXXSE9fY6OYjPzpTyLtPDYZ9FBXB/PnwwMPyBrXnJtpYaEIcHyTwYQEuPNOKWyNHn3mySD4y0VLSiCoRsZNdCq5qC/33ON9OI1FoguullKsRzY6cKDIQz34yka7+ZSc8vLOZqBtj9Z2GT2W3wPzNU37K7AJeN39/OvAO5qm7QFKkSQSXdd3aJr2AbATaALuUg6jio5IQ4Msbp7qWlKSGMnk5Yl680QjH6ZPlwXGsyjW18uCtnw5rFzupPJAqWRgPtPhK4jkP1zMf7iYEOoYw/dMTNlNGgf4MH8sXzGDJizgALJ2yZ12ZBSaJgnfdddJgvrFF8b3fOYZMQCYPds/1rlzpecjNFR6QN59VxbPFStkrmJUlNzAeL4qKiTBvfhi6NKOu4V1XeYhAZTsLqHR59I7dGgb931vp4SEwKDhQXy/qJKKRiv1BJNHF/a9t5qMP14d6PAUih9FdbUkK561oU9SOec9fT9vcjUN7g29+rgUnJipMopFXHSRyCI7MnFxkrz9z/+4DbzMZvJ6TuLhLpu5f82VDM7fzCaGoKPxVeNkbnjuOuZPfp//nf4uH3xtmNHU1srn/PWv4uh9bL9lVJRUA0tKpO3B829RXCyKnZ49Ze3r0UOu/WvWSALf1GR8xsiRsl7/VGWMZxRVRQW4nDpapbjPeeWinS0h7NVLJLKff84wfiCGUkoLCyEsjMWL4de/lu6XIUMMR9H16w0T1thYWTvq6kQJ5XCcvVnPbY1WTwh1Xf8G+Mb9OJdmXEJ1XXcAV53g/Y8Bj529CBWKwPPss8bulNUqydUbb0h7X3NW1CNHyoWuTx//5202GB+3g/Elr+Dc9C4bq3qwnIl8wwSKSDjuc+qiUliWcDvLwsNl9arM9fYjAOByEbRnJz+b7uS6V8aRmibJzMCBshh7nOxcLlGaXnKJyGE88tDPPxcpjsUiC9iWLbLb7XJJ4ti7d/OSm7174ckn26/U6fBhtwtcVRVlpS50jAHBE2Z3ggbKADF6NMyLgIoSj2w0lNWfFJLxx0BHplCcOS6XuDh7Er3oaLg8+3Fcjno+cout6i2hFLvi6B9nvG/mTBnd0NZnDrYEYWHixPnKK8acuTJ7Vx6dupJfHPkr2xc20oiVvWTyCZdx7tJVPLA5g8kPfsyflownO9vdi+dO8goLJcdIT5dNyQsvhHPPNdapqVOlOujplweRIT78sCQdwcFGTxqIAc5llx2/Vv8YjhyRtcXz2K7Vem8QprJYpDujO+E4o3vvhc8/x4yLySzlw/IYaKjnyBEb27bJ/cqIEUZCmJ0tG9BRUfI70rWrMdfx8OHOo7gNdIVQoVAcw86dssCALEoRETLaoa7u+HN795ZE8DjXUc9ch1deEY9twAyMYAMj2MD9/J1d9GU5E1kechH7owdLRmf1kYxarNCrJxw8CEePEkEls/iAWXxAzNdl8Jcb5fPd2ospU2T9efFFqXCC2KFXVPib3cybB/37y+OwMEl46+tFnpOXJ9KfY29cjhyR5HHIkB/1VxpwNm50P8jN5SjGnZrZojHx0g5uBx5AevWC7j0tHCrRcWKWPsItdq5rajp5s49C0QZZuhT27ZPHFgv8fHIRIWNeYBnjKSSRemwcsaXTNVnzVp4uv1wSkM6E1Srma++9Jz17AHXOIF5KeoRhN22kaO5SqHewiSFsYggJJUXU/vYL4noGURg+kvJyY8PO6ZS/87g4Ud+kpfl/r5QU+M1vZJzF3LmyXIIkle+8I2t4ZqZci/r0kcT8TAxomsPhkITFd65kURHE1olcNIpyhvEDXDi7c17nJk2Spsxt25jKYj7kKvkL6tqNRYskIRw0SCqFDQ2yib1hg9zDgMhGPQnhwYOdJyFsp/vtCkXHxOWS5vjGRkmk8vNFlnJsMpiSInKWd945JhlsaJAXunaFa6/1JoPHomka/Wakc9dn0/mochofrUrhrnuD6Nfv2BNNpIxJ4/4bivlCu5jbeZUYxNKaN9+EyZP9Bh4OHQoPPui/4CUl+Usu8vIME1OzWSqIngSwslIW4O7dJfmLjTXe59H/tzeqqnwSwr17KcSwLesSW/+j+kYUp0dqKqSdE0EI9bgwUYeNDQ3nULti/anfrFC0IbKyxAjaw89+BslvPwl1dcznGhzYOKKl4LIFk54u58ya1fmSQQ+aJu0Ms2cbzzmdsKZ+KM5f3AapqZQTxQaG809u5V2uY1eOmcQ93zGyTwV2u1TzkpPlKy8Pfv5zSTKbG6/Uv784b994o5iU5OaKyMblkj7/7GxJNOz2M/9ZqqtlDZk3T1pJfvlLMcDxVEArKiSp0So6uVzUg6ZJlRAYzGbiKYbio+BysmSJ/JvYbDKv1oPqI1QVQoWiTfHPf8LmzZIENjZKMuXb/BwZCbfcItbYQcf6v6xfL9rSE3W+A8THywfcdptkXW7S02W20003STVvxQpZxIYPh8mTNczmGTD7E7nDcC86gNirjRwppcCBAwHZTXvoIfjHPyShNZmk7XD3btmsNJvl5/jZz0SiERUlVdEffpCfKThY5kJFR0s++9pr8q22bRPpTfJpTmjQdZF77NghefKUKadn493SfP+9W8XjctF130qOcq73tYFDzCd+o+InY7HA8BEmvnrPRW0tuDBTQSQb3vqO8yePCXR4CsVpUVYmgg8PQ4fCsC5H4OWXyaEHqxnLERLRQ0KJjdUIC5Pk5cILAxdzW2HGDFlLXn1VEjSTCQ5VRBJzyfVs/+IQpfvKvTMLHQRzuCaIzO+X8fg1QRwaMIMFn5i8JjENDdLOsXSprHHHVguLi8Ws+5xzZK3JyZFqZWqqJIJvvikbmz//uSyXJ5LwlpcbTtzZ2eJ2eTIKCiDcVg/1Yvk9hSVy8bvggh/999bumT0b/vhHTEVFTGUxc12z4ehRjpoS2bxZfodGjDCS6l27ZEM6IsLfr+DQIXey3Qnk1iohVCjaCA6HFPeOHpVju92wQrbZpOA3Z04zTmR1dbI6PfPMiSfDjx8vtqSXX95MJulPYqLkfccxbZqI7i++2N/a9MABGDtWtk5nzvR+xt/+JqMnQkNlIb3oIpGGglxkZ8ww1Cz9+8simJcn53z0keSto0aJDMczTHjJErj++pOGT1ERbN0qX2VlxvMVFbJj3Jo4HMaCQ34+5roqnJ7LrqZx7iWxJ3yvomXo0we6dXFRnIMhG13u4PxAB6ZQnAZNTVIZ8oz3SUpyj5X7/VNQV8cL/EqSQc0MwTbS0uQa6THJUEgbXWSkmM14/NRKy010PTeNpJ6hlHy7i4q6ILqQRwa5hOgOsueBOaOUn193MUvWR/kKYdi6VZK622+XNUXTxD104UL597JY5Lpz6aWSZHz/veE8eviwjMcYMEBylq5dZQM4K8tIAI8cOb2fq1s3aRs5fBj0I2In65WLnj9BfujOSnCwzLN6+GFJCJkNhUWQkMDChRpDh0qF0GqVzXePbHTSJEnm4+Mlwa+rk3+fuLhTf8v2jpKMKhRthKeeMpJBk0kqYWazSH4+/VT6F45LBr/7TsTwf//78clgZKQ0GO7YIc0G11xzymTwlPTpIyvf5GOGe9fUSKBPPOFd+cxmuaja7VIFvOgi4/SiInE+9WAywVVXGeEdPCg/WlAQTJxonLdypXFj5EtZmbz2v/8rLm8rVvgngyALbWvLP9atM5Lg9JIf2EF/72smq5kJk1WF8GyTmQkZA8Ox0oQLM3WE8F1eGnpRcaBDUyhOyddfG6YkNpskItYSqQ6uZjTvcw06JgixExKi8cADKhlsjr59Zb5gTIz/8/G947j3neEsve5NHuIRMsn1vubM3U/Z3//FoJDd9Owp13LfauHzz8tG7TPPiMu2x0XUbpdk79prJSd55BH5/r5s3w7/9V8yJeG++6SCuWLFiZNBk0muZRdeKD2LL78sm64jR7rnTFZIQtjp5aK+3HEHBAUxgO0kUwAN9VBezrJlotoJDpbbJw/ezVs6p2xUJYQKRRtA10VO4sFuF7XH++/LohEff8wbqqsl2Tv/fKP72ZcbbpAmhuee4/jGwJ9ITAx89ZVkqMf+EH/8o5Qxm8narrnG/3jevOM/dsYM43jpUpGcTppkyDUcDkkUQXrzvv9eFtJ//EOkOL7mNSA5cWqqcXyicR1ng8ZGic/DeQfeZSNDvcfhkRo9erRePJ2V5GRI7xuC3dKACw0XJnLJ4OC8VYEOTaE4KQ0N/nPmrrjCndA89RSbHH34A0/KSCBNg2Ab118vrpeK5unSBf7yF0mi+vWTzol//AMuvCKEsHdeZtCHf+L2qPe5hdfpyy6ZW1hXh2XB+/TY/QVjRjTS1CT7n7ou69G334qMdNMmSTIyM8XQxjcBTE+XpfG++6TC60HXj9+49OCpMs6cKa6pr74qsf/859Jf79kcXrIEcDZBlchopuBe5FRCKFKl2bPRcLuuAhQWUVZmjOsYMcI4fdcuw8HXNyE8lWS3o6AkowpFG+CTT/x3BkeOFFlJs7r1JUtkku3+/ce/1rWrNN35ZlZnA6tV7ET795fE1HcWxrvviqT0k0/8Vr+MDBlc70mStm6VXdIBA4y3Dhtm9E64XCIdveMOeX7DBtmBfecdqSDu39/8AODQUPnMgQPlol5bK4t+Q4OMr9i/H6/pwtlk82ZD6poUXk3G1gXs5Vnv6737B7XbMRrtCU2T/w+J0Y1UFHtko6Gs+qiAtHtO/X6FIlDs3WtUnbp3dycZBQVseHEtL3APubj7wENCSE7W+MMfAhZquyE6Gu6++wQvXnkl2qhRpM+ZQ/o38yghhu8Zw0aG0rhxI4kHDnLhJZex8XASO3b4L3sbN4q88Nprm3cR1TTpWxs4UGYXfvKJsT6AVH979pQksHdvSSxPNaNQ191ma5WVgG7IRfv06TzWmKfi3nvhzTeZxiLeZo6M0aqtZdEiO6NGSXJtsRgGQD/8ABMmyK2Uh86SEKrbEYWiDfDkk0ZyExQkkpDjksGKCkkEp05tPhn85S9FHnq2k0Ff7rxTJu56mh09rFkjW2++w5nwd3wD6Q/0RdOk78IzCLi4WIqRaWli/b1jhyy869b5J4PBwbLY3ngjPPCA9Nh43EtDQ/1HMS1Z0nwi2ZK4XP4Gr+fp37KJIdThdrUxmxk1vpNMu20DZGZCjz4WNHRc7j7CVRtsJ+65VSjaAFlZxmNPxWntffN5oeE2CkimDjtoGvHdbMya1blbxlqMbt1kkXj8cWItlfyML7ifvzONRUSU5GJ56w1GOr/nogt177JntYqKp6JCjNmef95oFTgWi0UkvU8/LX3y114rlb9XX5VK4MyZks+dzsD6rCxR0VCu5KInZNAgmDiR3mTTDXdmV1jIsmWi4gkJ8frhAYZsNCHBaGEpLDRGaXVkVEKoUASY9evFZdND9+7+fXOATHTv31+mvR9LRoZsOb7yilhktTaTJklfYe/e/s/n5cG4caJ7dTN6tJ+5KUuW+E2tACSB87VKX79eqoMul5HI5ebKgulpzP/97+U9mZnND68fN85waz1wQHbezyY7dhhSoOhoGLDzA5ZgaLlMQRbGjTu7MSgMMjOh26AYQnDgxEQTZlY7BuNYtzXQoSkUzeJyiVrCQ58+sPqzo7z4YQIuTBwgHQ2dhAQICzMdJ8lX/ATMZvjDH2D1aujZkxAcnMd3/IZ/cJVrPilL3yZhyXtcOrmKSy8VZaIngXO54O23Rdq5efOJv0VoqFSipk+X65P5DNvJGxulyoiue52/lVz0BNx3HxowjUVyXFZKVWkDa9fK4ciRxqlgtL07AAAgAElEQVQ7d0rl1mQy3EZdLnfi3cFRCaFCEWCeeMKQBZlMonDwJjUlJWIZd/HFYiXmi2fWztatzWSQrUzPnlIVPNbmurZWmgcvuwzy8tA0WSg9uFzwwQfHf1zv3v7afk2TRVPTJOcNCpLd1auvlp3zU83eDQmBc41pDyxdevaqhLruPy9snGUNpg/msxZjYGRwmMVvV1JxdomOhm7pZqLtDeho6GhUEMkPb6qEUNE2OXxYetVAqhXbt8Mrf9iH7nJRTRglxJJgKSW0SxSDB8vgc0ULM2KESFJuuQUAMy4Gso3beYU79j3A3e+N5uWx7/DeOy769PF/68GDIuh56inD2fSnouuySfD00yIEWrAAqKkGp9OQi8bESG+GwuCii6BHDyMh1HUoLmaR+3DIECMhdzqNucGdrY9QJYQKRQA5eNDfbTMmRpIcQBro+vWTnrxj6d1b3FWefdbQVwaaqCipZN7TTGPWp59K5vb881x4gdOvkLlggfReHMv06SIV1TSpKt5+u6zPGRnGjMIzYexYYw5hXp7/7ntLsmeP0Q8aeng3Q+6fgu5wkIX7jkHTSOoWRELC2fn+iubp0QO6p8rOi1c2uqiF7tQUihbGVy7qcMA/n69FzxYDsUN0I4FC7ClRoJmMNUPR8oSFiTLno4+8rREakEIByWU7Yc4cet10Lm/9aj133+1v5K3rsuF59dV4q1E/htJSmer085+LxHT+fK9KFMqlOjiVxSIX9Z3npBBMJrjnHjLJJcPjIltczDfLnDQ0iInfOecYp3tko53NaVQlhApFAHnqKUObrmkifwypLJTJ81dddbye0iNl2bxZMpy2hsUiw55ee+34JojqarjnHoInjOaKkcZ2W2UlfPnl8R/lqQI+/DDcfLNU+CZNMl5fseLMdP02G5x3nnF8tqqE3urgnj2MffdOrA01HKQbR3HPHLTbGTpcXXpbm8xM6DEsEgtNODHRSBDL96W5DRkUiraFJyE8cMA9x277DnA5AR0XGnarE+LiSEgIvECkU3DFFbBli+g8j2XNGsxjR3HDyluY93yx3ygDkLEhd90l4ydO93LT0CBr1L33yubos8/6j//1UlHOUDbyC9ztJEou2jw33giRkUaVsKmJ2rxSVrnNpn1lo9u3S1XX11jm4MGz7z0QaNRdiUIRIKqqpHDmcSoLDobf9P5CqoIff3z8GwYOlG3Gxx+Xk9syt94qjX+jRh3/2oYNXPX3kZgPH3Tf4MgIiub8PTTN31zHd/xhdbX/WIfTYdQoo6B65Ij0+p0OxcUiI1m9Wiq6X30l/Rvz58Nbb4khwHPPwYMPSv/Iso9LWfZ+EXMbr+AX/JO7eFFmhdntmEKClaInAGRkQExaBOHmOlyY0YE99ODQB2f4n0ihOMuUlcleYEOD9DTZtVrYnUMQDQxiCyZ0SE4CzcQVV6iCUKvhMZx54onjZ/rqOrzxBmmTe/DPPs9w/31NXkWKh88+g1mzZDOzOXRd1qQnn5Qk8Pe/FyFQc2tjXBzMmVHMB45LeI1fEkup/Ec4tm1DIYSFwa23GgkhQGERixdJltecbDQszPDLq67u+HuHKiFUKALE88/7X2DGn1NC4m0zRR/ii9UqZbL162X+Qnth4EBYtQpeeuk4s5sE1xGmHHlHVr+KcvbvlxbEU5GU5D9IdvHiM9u1CwqC8eON42XLTm00uW0b3H+/7NC+/DK88Ya4oy5YIMOIlyyRRXvDBqkOlh6opHLXYYL1WmoIox4b5USBPRSCQwgORvUPBgC7XUwCusXVoQM6Jmqxs3r+wUCHplD44akOFhbKBpa2cwdmVwO/4++s5lywBkFcHFarvwGXohUwmyVT27lTLEGPpbIS0wO/4+pHB/D+L5f5VZ4Ajh6F3/5WNg89xmNFRbKxeNVVMkL4ww+bTz6CgsSh9PnnZe35dcy7ZLDPOOG886R1Q9E8d99NqjmfXuyWY0cdK/9TTl2dJH/9+xunNicb7eh9hCohVCgCgGeenqc6GGTV+fXh3/sPNgIYPlwG4/z5z8fvSLYHzGYZJLhrl6x2PsxmrmyB79kDuXuZ96/qE3yIP76Dlw8cgJycMwtpxAgjPy0uloTvRNTUiPr12H+W5nA4oCKvAg4cQMNFPMUAVBDJwejBEByMpsmO47EGBIrWITMTeve3oAFOTDiwsXxtSMfXAinaFZ6EMD8fIoPqYHcO/dlBGTEcJNVbHZw61T2oXtH6ZGaKxGfhQv8p9B6ys0m5fjIvHvgZf7ol3ztI3sOiRdIZcuedMibphReanyYFsoH44IPyrf72Nxg7Rse8c5s0Fvqi5KInJzUVrriCC1jofcpx6KjXj8A3ed+2Te7TOtM8QpUQKhQB4N13ZffXU53qGVnE+L1v+J/0+OOiifTtdm6vpKRId/1//iMXZaA/OxmI2+WxrIzv38oh95F3T5l9DRwoNt8eFi8+s1AsFv82kGXLTvwt33vPp3kfSeaSkmSwfZ8+Uq0cORLOPx+S6/bS6+Ay+rGTy/mEG3mLCCrYmzyOiJRwUlLkR+/fX6pVitYnMxO6DEkkBJGNgsaq6kHUbz/DXQWF4izhcEhi0NQkG1ZhB6V3cDgbeJ+rvdVBQI2aaAtMmya9hc8+2+wgSO3LL5h5TzofnvMI54/2b3qvqJBKVHMqlcRE6Z1fsEBUKZeff5Twz+dJL1yXLrIQ/vCD/5tUQnhq7r2XqfjcNFRWsHh+CeCv3Glqkt9DVSFUKBRnDV0X6aFn1ITF7OKGo89IX4iH2bPFPKajNYf87Gcitfnd78BsliqhB5eT+Q/tFPeYrSceB6BpMGWKcbx+vSG9OV2GDjWUNaWlzc+L2rzZ38l0wgSR6vz97/Doo/Bf/yU/xt13w6zgz4j+ci799O30Iptz2Mr/cC9r064mJCWG4GAxtbFYZHCxIjCkpYEtzEpiaBVO929cOZFsfH1ToENTKABRPLhcsmFot9Rj3rMbDZ1EjrCasd7q4IAB0m6uaANYreL+kpMj/fO+je8AjY3E/+9DPPNRGn+buJioqOYVCcHBcOGF0mXxnwWN3DlgJamv/bfIWhIS5L7grbfEpeZY+vYVK2XFyRkzhpRRqfTHMBBY9WU5NTWy4Rsba5yakwPJycZtWH6+cd/WEVEJoULRyixbJhcaT1UqyVTM5Q6f0RLh4ZJ1dFRCQ+Xn27CBicOrSaTQ+9Ln/IyKtbskY/v9741BXMdw/vmGgtbp9B/dcTqYzf6OpcuX+1/oa2pkV9ZDbKysxc3y0UesuvGfuHSoIpz1jOBxHuRo2nCIi/ee1q+frOXTpp1ZrIqWw2qVKm2PNM/4CRN1hPDtV1UBjkyhEDxy0YICiKjMA5eT3mTzNTPQrTZvdVCNmmiDxMdLj8GGDf6Db91ohUeY9vQ0PiyfxgXnGJPOhw6VrpBFr+7jkeSXGfm3SzHFx0rD+2OPyeedTNYeFCRaUsXpcd99frLRhqIKVvxHmjZ79jRO27NH7hVSUuTY6TRGSnVEVEKoULQyTz8tO8C6DiacTKn6mBR8dvwefti4AnVkBg/GvGYVV18XJHOCgAaCWMDlcuV96ikYMAC+/vq4t9rtMG6ccbxsWfM7d9XVstv65z9LE361T5vioEHeeysqKvzVN++95191vOUWjnOMA+CDD6i9+ibWuoaxmcF8xBXkkwJp6d4Pt9vhgQfgzTebbzVRtC6ZmdBrRJR7/IQZHRMLczKbH4apULQiTifs3i3rw5EjEFF2AIABbOPfzBQdoWYiJsZfJaFoYwwdKvKS994TeecxRP+whMfe7MJ/Mu5h4d2f81rQr7jktz2xD8iQpsJ//1tsyE+G3S4D159/XnaYL730LP0wHZDLL2dK8k7jWHex6AUZTOybEObkyH1aZ5GNqoRQoWhFdu6UzT6pDupENR3lKj7EKzAZMAB+9avABdjamM1c+uJUQob192o4P2AWjbg1Gvv3y6DdsWPhmWcgN9f7Vl9zGU8vhi/r18su+htvyJzDhx6S6txvfysN/Q6Hf5Xwm2+gsVHaQXylouPHn6CNc/58mD2bt12z+YBZbGAYVpoISu/iTQanTJEJIrNmeXNeRYDJzISQrrHEmCpxuZfAvXo6+Z/8hMnRCkULcPCgXJeKiyHI7CToqGwUlhJDDaEQJT1qV1xx/JhXRRvDM1g4K0v6C2y2405J/vB5Ym+8GF588QRDBo9h8GBRzixbJr0On38uPQvuvnzFaWK1knDvbAZj9IqsWW+msqTRLyEsK5O/5s5iLKNuURSKVuSJJyQZdDpBczYxrGkNQ3wuSrz4Yqdb6SMi4OIrbZDZAzJ7UGztwlIm+5/0/ffSsJeZKQODHn2UrhU76NfXkNF4zGUcDlGk3nGH9OH40tAgM6AefFASynfflWSyqUmqhytXwuuvG+fHxJxAKjp3LuWz7+TPzj/xKH+SsRJAWNcoiI0jJUU2bp94QlREirZDSgoEh2ikJ9TgcvcR1hLKpn+r8ROKwOLrLhrRVAq6i3T28RUXSkJhC8ZshssvD2ycijMgLAz++lfZDT7TGSEJCXDddTLctqAANm2SRWXixGYTTMUZcOutTAsyBkI2NbpY/thqUlP9Dd1zclSFUKFQtDBFRTKzzukE3eUitLGc6SwkGreN5fXXS3NcJ8TrlhcVBQP6M7fvo+jaCS5PmzeLBnTAAKa+eqUskiVH2bNH56uvJIF7//1Tf8/6eli6VL7ee08qhA8/LP9OHm655XhHUP2dd/nsug+4XP+ID5jlrTIFxUZgT4nm5pvFUHXs2DP+a1C0AiaTDKnv1Ufq8k7MODGzal0HM3BStCt0XRJCl8vdP1iVB0AU5eSSARFSHZw8WW0ytUsyMsQydPHiE7sBWa3iXvb44zIZvaBA5lNdf73YWytajuhoplyXhAnD4nXRu0WYTTrduxun5eTIpnV4uByXl/u3nnQkVEKoULQSTz8tSYjTCVpjIwPZwgjWy4sREdIz10lJTfXpCTSZ2WkfwbZ520+ZIA85+CmxO1bg+moh2e9v5o6rSzi4owp8HFtHjBAzl9/8RhS5xxIcLOqeXbtEZrpwoZicduly/Lqd+/QCbpvj4BH9v6kggmrcw6WiohkxIYx586QFJDj4x/9dKM4+mZmQ2DeWIBq8Cf36Q0nN+78rFK1AcbHI00pKJDkMKZL+wd30khMiZXiqGjXRzpkyRTY1n3sOeveWReZXv4LPPpP/AMuXi8P4kCGqz+AsE/P7WxmGYR6wvjiNsq/XHmcso2mdo0qotkQVilagvh4+/FAWemejE5urlqFsNKyPH3200+8Azp4N331nHL+3sS8DV6yQxppPP5Xd1W+/9btpN+OiL7v4NzOpbIxAa9SJrsrBbDFhiwnj1zdVcdVD/TCF2OjfX75Hfr5UahcuhOxsudiHhsLRo/KZ9fVyzqJFkiBOnixr+PoX1vD2u11wIv0adYTgxExwXARTLg3h1VfV+t1eyMgALSaGaO0gRXoc0MgeZ3cc2/cQPLBXoMNTdEJ83UUjg2rRqquIopy1jJKLVHg4ffp0jLG0nR6rFX79a/lSBI5evZg69EPWb5RDFyaWPbKCni+O9p5y4IC0mnTrJqpfgLy8jmkQpxJChaIVeOklqKwEp1OHhkZ6k80QNmOnTqah3nlnoEMMOCNGSOVm7145Xr5cbo6SU1ONxbOoSHZSFyzAtXgpbzf9nH9xC1WInkNHo4pwxjWt4pGiP5P65CF4OUIyuuhoCA4mxWZjTnAwc3rbOJgaz+L9PXl59UBoigZdQwfsWgOmmiYqak0seFdjwSs1cMi4XOpANeH06mtl5EVhzJ6tksH2RGwsREZpJIbXUlip4UKjjmB2/XsHQ1RCqAgA2dmyYVhQAMkO8bbXkZtUwsLAZGbWrONH3CkUih/PpD+P48lLnTgxA7BwTRRPW/YD6YAouvbtUxVChULRArhcxky7JkcjVhoYwQYGsUWefPHFjjeA/kfgMWV79FE5drmkF++ee3xOSkiAX/yCg9N+wV8ebGDr6iooKyO0vIZqwtBwkc5+XuNWgnDPoaislOpiM6QCIziHb7ifGBLYQX+cmGkqduEqLvTrL/AljhKGTI4leUw8ERGS0yvaD5ommw+pKU1srZSb7kaC2LCsgiF/CnR0is5GTY3cZJaXi0IhrEQMjg6QJidERBIc7O+srFAofjpRl5zPqNi5rC7pDcAmBlP/8hskJDzi9RPIyYELLpBNX5cLDh+WPzvaJnAH+3EUirbHggUiQXQ1OXE1NNGNgyRxhN5kww03+A/U6+RMn+6dPgHAJ59Aba1xrOsivZ09G7ZmBUFMLGT2IKJfV8Ljgzm360GSraVsYfBpfb9aQnidWwBIpIi+ZHEDbzGTTxnD96SQ73d+EA3cob3KzFsTSR4jnefnnivDaxXti8xMSO8Tgobu3R1evS0iwFEpOiOe6mB+PkSEuTAVFWChSWaaAkRGMGHCCWahKhSKH4+mMXV2gvdQR2PpW3n07ObwPpeTIypfT1dPQ4O/+VxHQSWECsVZ5vnn5U9nbT1mnIxiLf3ZgSUyDJ58MrDBtTFsNrjySuO4ulpGLYGMkPjVr+SvzGFcqzGZ4Jd3mJlzeygRE4bBVVey+Mb34LbbpKJ4EuYym1JivMe/4+8E0UgspSRSyHvM5m3mcBP/x3W8yweWa5n0yiwKEiXhDAmB4cNb7MdXtCIZGRCcnkQYxviJzSVd0R31gQ5N0cnwlYtGOEuhqQkdZD6txQohIUyfHuAgFYoOyoQ/nYfVR6S1qG4cPXO+9B7v2SO/nx19HqHSqSkUZ5G1a2HHDtAbGnA26SRQTAr5MhD1r3+FxMRAh9jmuPJKePNNmQ0IMv89NFRmCx5r99ytm4yKGDgQVq+Gl18GTGZ2NfXi0COv0u2ll+QfISdHtFj19ZJN1tez7WAkK1aNdQ+GdHFe7E6mp0VRnBPG7opEGp1NfBt8Gxfav6GfY7kMJXz4X7yVZ8xIHD3af2aRov0QFgbx3cOIs+RT1RSGjkYx8RQt30HijKGBDk/RSWhqkstTVZVIR9ObZNyEVy4aGUFkpMbo0Sf5EIVC8aMJjw9mzPBGVq6RGdBbGcgdnz4KEy8FzURlpbgAd+sG69bJew4dEt+DjoRKCBWKs8gTTwDo6DV1gIWRrCOSStIHRcHttwc4urZJXBxMmwZfujfoDh6Ehx46/rxZs+Duuw0Z1ciRMHeuDJoHcRK96SazDAQ8ZihgbS3864+A+74/Ohque2I02G9mcj7sflmeX2eew7n3QaSMACM/H/Z8I4+tVtRNWjsnLQ1Soh3sK5Y+wnpsbP38IFNVQqhoJXJzobFRri12O1h259GIlUoipEIYEcnUqarNXKE4m0z7dR9Wrs2VUiCwMz+S4OI8HAniKp6TA336GOd3xAqhkowqFGeJ/fth1SrA4aBJ1winkh7sZSBb0V5+Sa3wJ2H27BO/lpAgPjwPPODfU2OxwKRJxvF338mOe3PMny8jnzzcfLMxgD4lxbCUdjplYL2Hb781Hg8ffvzQekX7Ij0d0t1DiF2YcWHiu2/VLEJF6+EZN5GfD5HB9VBWhhMzXjPRiAglF1UozjLnz4zGFm/0kC9hKhmHjQU/J0dEQp41/+hRqKtr7SjPLiohVCjOEo8/LjMH9dpaXJgZzgZMuBh0TT8YMybQ4bVp+vSBoc0UaS68EN5/H0aNav59EycaBi8NDbBy5fHnbNsmIy08nHceDD7Gg2byZMPefeNGY2D0DvfYSJNJzGQU7Zu0NEjqHYmVRpzu5XDd3rgAR6XoLOi69A/W1IgZckRtPi40DuFuVrKHktTVolyMFYqzjN0O46YYO8y76EtM1ippM6H5AfV5ea0d5dlFJYQKxVmgshK++AKorcWFiWDq6M8OEkOqSHr+wUCH1y647TbD1jk6WnoIH3kEwsNP/J7oaH9d/5IlXgUIIDt6r79uHEdFwbXXHv85iYkwYIA8drkkgfzuO+OzBg0yZKSK9ktUFET1TiKacnRkHuHu2hQai8oCHZqiE1BQIGtFfr4YatmK8qghjEakl4nICK/dvUKhOLtMvbGL/CK6KXVGwIH9gLSuOBwd21hGXWYUirPAM89AXWUDNDTgxMIAthNEI4PuGAvx8YEOr10wfLiYyzz8MHz8sVT/TgffWV1FRbBli3E8b55U+jzcfLMY1jTHpElGlXDLFti0yXhNTQrpOKT1spEQXAVIH2ENoeR8tivAUSk6Ax65aEEBREboaEcKaMDqIxeNZMaMQEWnUHQuxp6rYY2P9h7vphfszQVkMzg3t2MPqFcJoULRwjidMPc9HWpq0QETToaxES0piYH/dXGgw2tX9OsHF10EEWcwHq5nT5ECeli8WP7cvt1fKjpuHAwZcuLPiYszpKS6Lv+uIP2Fp5hmoWhHpKdDt0SRBXkG1K//sjiwQSk6BVlZolooLYUIVznO+iYKSJYXzWYyB9rp0SOwMSoUnQW7HUZMNm42djCA2JJsqBSnupwc6NLF2CjOy/NXILV3VEKoULQwr78Opfl14HLixEwP9hBKDem3TCYyRk0wP9tomn+VcOtW2LcP/vUv47moKLjuulN/1sSJx8u1zjuvZeJUtA3S0iCjlwUNMZYB+O6H4MAGpejwVFZKZfDIETHECi3Lo4xoNNx3mOERTJ+hbtEUitZkwiURECZ9KS5MODF7q4Q5ORAcbIi8HA4xl+koqKuNQtHCvPpCvdd+SkNnFGth8BAGXZYR4Mg6D2PGyJw5D088cfpSUV+io2HYMOM4Pd1fMqJo/8THQ2yfBOzU4HLfjm/OT+hYW7+KNoevu2h4OGgF+TiwYfIkhO7+QYVC0Xqcfz4QF+s9LiIe9uWC7mLvXlkWOqqxjEoIFYoW5MsvYf/uBgB0IJkjxAbXYZk2kf79AxtbZyIoCMaPN45ra43H5557cqnosUyaBMnJIlu96KKWi1HRNtA0SBuRQBwyh8SFmYKmeEq3HQ5wZIqOTFaWGBgePQoRIY00FJdTRKL39UGjQ0hJCWCACkUnJC4OBoyN9EqDcsnAWeuAI4VUV0tFv6P2EaqEUKFoQZ797xKZdwCAJtXBSRPpPSSUYKVCa1WmTDG0/h4iI09PKupLWBjceSfcfz8kJbVcfIq2Q1qGmZTIagCcngH1C/YEOCpFR6WhQQwqCgvlOKK2gGLiseGQJ4KDmX5F2Ik/QKFQnDXGT7FClJjLuDBRTRjk7gVENtpRnUZVQqhQtBBb1tWzaYvxKxVDCV2TnSIXHRTAwDopcXHHzzK8+WZ/KalCAdJHmN61CZAbABcmVi3pYFOHFW2GPXvEpCo/X65H5iP51BLilYuaIiOYMiXAQSoUnZQJE/DKRjXAQTAcPASNjezZI20GnukUhYU+NYB2TqskhJqmBWuatk7TtC2apu3QNO1h9/OTNU3bqGnaZk3TvtM0rYf7eZumae9rmrZH07S1mqal+3zWH93PZ2uaphT2ijbD47/Yg+5yuY90BrMFbcYMQkJN9OwZ0NA6LTNninwUxCCmuWH3CkVyMqT2DcVCEy73bfnaXWdgbatQnAFZWdDUJGNxIiJ0HIdLKMOwux89Sic6+iQfoFAozhrp6ZDaLxyscvNQRCK6swkOHmD3blGTduki5+o6HO4g3QWtVSGsBybpuj4IGAxM1zRtNPAycK2u64OBucB/u8+/BSjTdb0H8CzwJICmaf2Aa4D+wHTgJU3TlG2jIuDUHSxmxTajETmKCnoNtkNKCgMGiIucovXp3h0eewwefBBuuinQ0SjaKmYzpI9KIgqxF3dhYldZAq6GpgBHpuhouFyQnS29SC4XRFBJfl0kdtyNzprG9BuVNl2hCBSaBuMnaBAr93SNWCknCvbmkp8vngQdsY+wVRJCXah2H1rdX7r7y7MNGwnkux/PBN5yP/4ImKxpmuZ+fr6u6/W6ru8D9gAjW+FHUChOypKnN9OAFZD/1P2sOZgnTwBQctEAk5QkswOP7SdUKHxJGxpLgtljLGOiSg8nd/HeAEel6Gjk5ckNZUEBhISA7Wg+1YRhRtQltshgJlxgC3CUCkXnZvx4vAmhjXoxfCoqRK+qZu9elRD+JDRNM2uathkoAhbrur4W+AXwpaZpecD1wBPu07sAhwB0XW8CKoBY3+fd5LmfUygCyldfuvyOuw2KhhA7UVGQmhqgoBQKxWmT3l2jW5xUaVyYacTKuk87iBZI0WbIypL+wcJCcS6uPlRGHXbv6+OH12C3n+QDFArFWWfgQIhODobQUEy4qCBSXsjNJSfn+ISwI0wparWEUNd1p1sa2hUYqWnaAOA+4EJd17sC/wf8oyW+l6Zpt2matkHTtA3FxcUt8ZEKxYlxOlmzz5D42Kklpr/sUwwapCpTCkV7oGtX6JEpq7qnj/DbVeqXV9GyZGVBcbH0EEaENXG42IqdGu/r0+ckBDA6hUIB0id43nl4q4T1BFFNKOTmsidHx26HmBg5t6YGyssDF2tL0eouo7qulwPLgRnAIHelEOB9YKz78WGgG4CmaRZETlri+7ybru7njv0er+m6PlzX9eHx8fFn5edQKDwULtrCYZckhDoQaypH6yIDpAYODGBgCoXitLFaoddw6eXSkaRwy4GYQIel6ECUlkoymJ8v/9/slUVU6BFYcAIQYatnzNVpAY5SoVCA2200JgY0DRv1FJII1VXsWVV43ID6jiAbbS2X0XhN06Lcj0OAqcAuIFLTtF7u0zzPAXwG3OB+fCWwTNd13f38NW4X0u5AT2Bda/wMCsWJWPSvAzQhrjEuTKQmOMBkIjkZEtRmr0LRbkg7L5U4SgD5XT5YG0t1Yc0p3qVQnB5ZWWIkc+SIyEXL95fh8rkNm3JOEdYgVZVWKNoCo0ZBcKgFoqII9iSEQN2ufRw+7J8Q5uUFKMgWpLUqhMnAck3TtgLrkR7Cz4FbgY81TduC9BDe7z7/dSBW0zgyv20AACAASURBVLQ9wG+APwDour4D+ADYCXwN3KXrurOVfgaFolkWrjQaPlyY6XWOGAIoMxmFon2Rfk44ScFlgCSE9djY9klOgKNSdBSysqCkROaWRURAfr7mLxedpUadKBRtBZsNRo8GYmOx0EgVEdRjgwMHyNleryqEPwZd17fquj5E1/WBuq4P0HX9Effzn+i6fo6u64N0XZ+g63qu+3mHrutX6breQ9f1kZ7n3a89put6pq7rvXVd/6o14lcoToSrrIIfjoprjA6EUo29TxqapuSiCkV7IzUVuifXA7K548TEt/+pCHBUio5AXR0cOCByUZMJwrQayupDsCKjTRIoZvAtwwIcpUKh8GX8eCAiEs1idbuNJkBjIzkfbSEx0RgpVlAgfcHtmVbvIVQoOhI731rvHSjsxEyyrRwiI8nIgPDwAAenUCjOiJAQGDIYzLjcc5E01mwJDnRYig5ATo64ixYUQFgYlO4txYQhcJrePRtTTFQAI1QoFMdy3nlgMmsQG4MNh1c2umfpAcxmY0C953e7PaMSQoXiJ7D0wxIa3fMHnZjJ6NYAKLmoQtFeyRiTSCRiGefCzM7CuA5hKa4ILFlZUFYGDgdERkL+IRehvnLRS4ICGJ1CoWiOqCgYPBiIjcVGPUeJpQkzBfvrqc4p6FCyUZUQKhQ/Fl1n6SZxIfTcL2YODkfTZBC6QqFof6RP7E4CMq7IiYnyplDyNh8NcFSK9ozTCbt3i1wUINTuorTKipVGADLIpefsEQGMUKFQnIjx44EQO7ZgMy5MHCUe0Nnz4kK6djXOUwmhQtFJqd68h+11GQDomIiigqDMVJKSIFipzBSKdklaLxvdIisBMZZpwMraD/YHNihFu+bAAakMFhSA3Q5l+ysJ0uvw+IlOD/0ObdjQgMaoUCiaZ/x4+dMUF0MQDYZs9OMtdOtqyEdUQqhQdFLWvbGdOsRh1ImJLhFVYLXSvXuAA1MoFD+aiAgY3KMakB5CHY1vlzUGOCpFeyYrCyorZYB1RAQc3t+AnVrv6xdMcYLZHMAIFQrFiejaFTIygNgYgt3GMjoaOXnBROT8QITbHLiiAqqqAhrqT0IlhArFj2Tlwloa3P2DLkz0yJCdovT0AAalUCh+MoPH2AmhDpDf7U27wwIckaK9ouuwa5chF7XboazCjA1xsx3IVrpcNjKAESoUilMxYQJgsWILtdCIlVJi2Esmzv97u8P0EaqEUKH4EeiOepbvTQU0dMCMk25D49A0lRAqFO2dtPHpxHoH1JvZVxGDo045yyjOnKIiKC+XhDAoCMqLGwlpqjTkonwN06YFNEaFQnFyJkyQP21xYh9fSAL12Mibu5JuSYaCRCWECkUn49CnP3DIlQKIrCzaVIk1OZ7ERLGuVygU7Ze089NIMomxjAsTdXoQO75uxyu9ImBkZUF1tUjJIiIgP9fhHUZvwsWU/kcgOTnAUSoUipPRpw/Ex4MlJgKz5vL2EeaUx9Ft91LveSohVCg6GWvm7cOBZH5OzHSNrQNNU9VBhaIDEBtvok9iGQAuNFyYWPlxcYCjUrRHsrMNuWhwMFSU6wTjAGAUa4m5aEwAo1MoFKeDyQTnnw+ayYTNbqYOO5WEs4ceJH/+T28LcH6+uAq3R1RCqFD8CL5drdGAzI3SMdGjj/QSqoRQoWj/aBqcN6wWEy5ANn2+X6ud4l0KhT/V1ZCXJ+6iZjNUVOiENFV45aIz+AqmTw9ojAqF4vTwyEaDo8VMsJBEcuiJ9avPSAoVN5nGRigsDFCAPxGVECoUZ0hjXiGrjvZ2OxBCEA0kDkoCVEKoUHQUep6bSCTG+IkdhyMDHJGivZGdDbW1MpA+PBwKDjQQ6pT/U0E0MMG+Hs49N8BRKhSK02HYMDGFskXawGSmkESKSKCyKYRue5Z7z8vLC2CQPwGVECoUZ8jWNzZQQRTg7h8MqiUoyk5CAoSGBjg4hULRIqRf0Jt4igBJCI/WhVGU1xDgqBTtiexsqQ4CWCxQXe4kxC0XHc8K7JPHiNOMQqFo8wQFyf5NUJCGFhxEJZE4CGYPPei28j3vee21j1AlhArFGbLmP8U4kMnzLsx0S5abRFUdVCg6DomDkugefASQhLARC2vePxDgqBTtibw8o3+wqgpCnFVuXYnbXfSCCwIYnUKhOFMmTJB+wqAwGyCy0d30olvWIrEURiWECkXnwOVi1dZw6pGLgYZOWl8pC6qB9ApFx8FkgnE9Crz9Xi5MrPiyOqAxKdoPtbVw9CiUlIDVCoUFLkLrSwGIoJKxrFb9gwpFO2PsWOkHttnNYLFSSCJ76EEU5YTu2gDI73xtbYAD/RFYTvaipmnvAKccvqTr+pwWi0ihaMOUrtzO1oZe3v5Bm1ZPXN94QFUIFYqOxvAxNoK211OPDRdmNu4IDnRIinZCUREcOSKD6V0uqKtqJB65S5zMUqyZaZCZGeAoFQrFmRAeLr2Ey5YBNhslTbFk0xsnZrpt/YKs86aDyUReHvTqFehoz4xTVQj3AHvdXxXApYAZyHO/dyZQfjYDVCjaEuve2uUdN6GjEWVvJCTUTFwchIUFODiFQtGidJ9oDKh3YmJvSSSNjSd/j0IBkhB65KLV1RDiqsWk5KIKRbtnwgQZIUOQFR2NfJI5SCpdK7ZDbi7QPmWjJ00IdV1/2PMF9AIu0nX9Wl3XH9R1/TrgIqB3awSqULQFvl/u8OsfTO0mC7yqDioUHY8u088hBbmrd2GipslK1vqqAEelaA/k50Oxe3RlRQXYG0QumkARQ9ik5KIKRTtl/HgxiTJbTBBko5AkMZbhEGzdCnTAhPAYRgNrjnluLaCmqio6BXpVNd8fSMbh7h+0Uk9KX3EbVf2DCkXHwxIdzvCYfd5jJxZWzD0cwIgU7YWsLLdUtA6a6p2ENMq4iQtYiMlqgYkTAxyhQqH4MSQmQp8+7iqhzUYx8eyiD104jJadBQ4HeXkiF29PnElCuAn4m6ZpIQDuPx8DNp+NwBSKtsaeuesoIAndLfwJNjuJ6x4OqAqhQtFRmTS4zDug3oWJ1d85AxyRoq2j67BnjzyuqgKLqx4z8v9mOl/DuHGqx0ChaMeMHw82G2C10GQKYjXnYqOBBGc+7NxJfb2hEGgvnElCeCNwLlChaVoh0lM4DlCGMopOwfcf5vn1D0ZEQEgIxMRARESAg1MoFGeFPuMTCUdkoi7M7NhnD3BEirZOdTUUFkpiWFsLNmctGpDOfnqxW/UPKhTtHG9CiAY2G7vpSRlR7Vo2etoJoa7r+3VdHwv0AC4Beui6PlbX9f1nKziFoi2xZoPZ2z+oA93SzWiaqg4qFB2Z1Av6kuAzoL6gKoyysgAHpWjTFBZCeTnU1ICu69jqRS46na9ljInqH1Qo2jU9e8q9n6YBQTaKSCSbXpIQ5h2C0tKOmxB60HX9ILAOyNM0zaRpmpplqOjwOLL2s6miu7d/0I6DhF7RgOofVCg6Mrah/elnygZkI6hRN7PmP+1MC6RoVQ4fhspKkYuaXE6CdAfglosmJcHAgQGOUKFQ/BQ0TdqAg4IAsxmHJYyVnC8JIcDWreTlBTTEM+a0kzlN01I0TftE07QSoAlo9PlSKDo0G1/fRA2huDCjA0E2jdgkK6ASQoWiQ2O1Mik91zug3omZbz4pDWhIirZNVhY0NYlcVHM2YKOeAWynK4dh2jR3WUGhULRnxo93G8sA2GysYDxxHCWGUnrv+pSBA1ztyljmpIPpj+FVoBaYDKwAzgf+AnzZ8mEpFG2LNV+X+8hFNcIiLYSFQVQUREYGODiFQnFWGTNWw5rbQANBuDCxcbO6oVecmOxsqK+XHkJrkxjKTGORvKjkogpFh2DIEPGQqKgAgoLYWTOAJizcx/8g42svBW1CYIM8A85E7jkWuFnX9c2Aruv6FuAW4LdnJTKFoq3Q2Mj3WVHehNBCEykZQWiaqg4qFJ2B7pMyiEGqgi5M7M6PwOUKcFCKNomuw7594HDIgc1VgwYMZrNUBqdODXSICoWiBTCbYdIk94FmojIoljWMNk54662AxPVjOZOE0IlIRQHKNU2LB2qALi0elULRhij88gdym7p5HUZDTQ7i0sVWVBnKKBQdn7Dxw8hA5hHqaFQ1WMnJUuMnFMdTXg4lJVIhNOlNBFOPhSZ6sAeGD4e4uECHqFAoWojp02VIPQA2G59xsfHiRx+Js1Q74UwSwrXAhe7HC4H3gQXAhpYOSqFoS6x5by9NWHBiBsBqDyIuXiRjqkKoUHQCundndLAxcteJmeXzjwQwIEVbJT9fJGQOB2jOJoKopxe7CaJRjZtQKDoYo0dDaKj7wGpllXWi8WJ1NSxYEJC4fgxnkhBej/QOAtwLLAe2A7NbOiiFoi3x/+zdd3Rc13nu/++eMw0DYNDZAHawiKJEioJIVavLkmwV21KsuMf2spO4XFtOu7lxHKfd6zT/YieOb/yLEjtOcZMsWbZkFauQkigWQSQBNoAESJAEARKVKDOYmbPvH2c4pLooETiYmeez1izOOVPwgLYIvHP2++7n1qdzy0VdDLGqMPG4t/dgZaXP4URk8hnD9ef3nLZBvcNzj4/5HEqmo5YWSKUgnbYEMikiTLCCnd6DKghFCkosBqtWnTwy7AstZ4DTBksUYkForR201vZn749ba//MWvv71truyYsn4i+39zibjs7NFYQljDFjQWmuf1DD4kSKw6qrqinFW/6TIcCOPRGfE8l0tHu3t1wU1+KQwiHtFYQVFd7lBBEpKKd/zpMOlfCLwK1w++1w333wgx/4F+wMncm2EyFjzFeNMR3GmIQxZn/2ODyZAUX8tPO7mxkmfqp/MJyhZo73i6CWi4oUj8orVzGHI4DXR9g1WMbIiM+hZNppa8sOlHEzlJDAgFcQXnvtac1GIlIo3vteCJysppwgP3/Pd7xi8PbbsxsV5oczWTL6V8B1wKeBVcBvAtcAX5uEXCLTwsafHiWNQzq7Q0uoLEpNjfeYBsqIFA+z9iIuoDl3PJEJsPGphI+JZLrJZODQIe8KobEuERJESbCQDrj8cr/jicgkmDED5s49dbx5W8T7UCjPnElBeCdwq7X2EWvtHmvtI8B7gF+bnGgiPrOW516M5paLBsgQqoxRWQnl5d7+MyJSJGprua5uW26DepcAT/7omK+RZHrp7YWBgexAGdebMLqMPTi4sG6d3/FEZJJccsmp+6OjsGmTf1neqjMpCF+rW0pdVFKQRjbvYsfY4lxBWMYoNXNLCQS8q4PqHxQpLldekiJICvAGy2x9XltPyCk7dsDEBGQyloB1iTDBubR6G5ZdcIHf8URkktx006n7ExPw2GP+ZXmrzqQg/BHwM2PMO40x5xhjbgR+mj0vUnA2/2sLLoFcQRgrDVBT5/0no/5BkeJTf9VSaugDvInDuw6WYK3PoWTaaGk5OVDGxck2G6xgJ5x/PpSU+B1PRCbJlVee2n7CWq8gdF1/M52pMykIfw94DPhHYCvwTbytJ353EnKJ+O65x0bIECCF1xTsVMRyewqrf1Ck+Jh1a1nGntzx0HiEAwd8DCTTyt69JwfKuERPHyij5aIiBa28HBobTx339norBvLJ6xaExphrTt6Ay4EngU8Bt+ANl3kie16koNjRMTbun5G7OhhhHFNWTlWV9ynQycJQRIrIBRdwBc/kDtM2wK/uP+FjIJlOOjpOXSGMMk4ZIzRwCNau9TuaiEyySy89dT+ZhCef9C3KW/JGM5D/5TXOn1wkY7L3F521RCLTQNdPNnHEnZUrCOPBBFWzIjiO+gdFilZJCTcvbecv97q4BHAJ8MzPB/j4/yj3O5n4LJGAnh5IJCzGzRAlyQp2EsDqCqFIEbjqKrjnHq8YPFkQfv7z+fP74usWhNZadUpJUdr4gwPAubmCMBoPU1Pr/Vet/kGR4nX+lVXE9o4xQhkuAba1nEnnhRSqHTu8otDNWAK4REhyDru8tWTLlvkdT0Qm2dKl3hYUXV3eFjT790NnZ/78zqifZCKvYuNGi0uACcIYLE5FufYfFBGcS9Yyn1ONg53Hy7xlglLUtm071T/o7Vyb9iaMNjV5U0ZFpKA1NHi3kzIZaG/3L8+ZUkEo8jKp/V1s6V9EgghgiDNEqiROdTXEYt4nQCJSpNaupYktucOJlOH5jRo1Wux27z69f3BCA2VEikwgABdf7BWFa9bA5z4H11/vd6o3b0oKQmNM1BizyRizzRjTaoz5ava8Mcb8hTFmrzFmlzHm86ed/4Yxpt0Ys90Ys+a09/qoMaYte/voVOSX4rLj37YyRiy3XLS8xKWi2iEUUv+gSNFbvpwbw0++ZIP6J+4b8DORTAP79p0qCCOMU8UAM+nRQBmRIrJ8ubfLzKxZcPCg32nOzBsNlTlbksA11toRY0wI2GCMeQg4B5gLLLfWusaYk9debgKWZG/rgH8C1hljqoGvAE14w2y2GmMesNbqp7GcNc892Ac0nJowWhXTclER8TgO11x0guAzaVIEcQmw6alxv1OJjzIZOHQIkgkL1iXGOCvY6X1ooCuEIkVjyZJT97u6vGXk0ah/ec7ElFwhtJ6R7GEoe7PAbwF/aq11s8/rzT7nNuB72ddtBCqNMbOBdwKPWmv7s0Xgo8CNU/E9SJHIZHiutRwXwwQRQqSw8QrtPygiOfHLz6eOHsD7QbZzf578xJdJsX8/DA97A2UMligJr3+wvh7mzPE7nohMkcZGqKz0Wofvuiu/NqefqiuEGGMcvA3tG4F/tNY+b4xZDLzfGPMe4BjweWttG1APdJ328kPZc691XuSsGHj8BXZPLCJJBIuh2gySCM6kutr7lGfmTL8Tiojv1q7lXHZyJPvjp380zJEj+t2/WG3bdmq5qEOGIGlvwqiWi4oUldJS+MY38rO1aMqGylhrM9ba1UADsNYYsxKIAAlrbRPwHeCes/G1jDGfMsZsMcZsOXbs2Nl4SykSz39vD0BuuWhppUN5uSES8a4OBjSGSUTWruUqnswdZjLw+C/T/uURX7W0nJowGskOlDmXVi0XFSlC+VgMgg9TRq21g8ATeEs9DwH3Zh+6Dzg/e/8wXm/hSQ3Zc691/uVf45+ttU3W2qa6urqz+w1IQXvuqQngVEEYqSnXclERean6et5dt4kA3nogF4f1Pxv0OZT4Ze/elw6UmUkP1QzoCqGI5I2pmjJaZ4ypzN4vAa4HdgM/Ba7OPu1KYG/2/gPAR7LTRi8Ghqy13cAvgRuMMVXGmCrghuw5kbfNDgyy8VADFkgSpYwRJkqrcgNl8mVzURGZZMaw5NIZlDIKZCecbc2jZhE5azIZb5pgMmEBlxIS3nYTxniNRCIieWCqeghnA9/N9hEGgB9aax80xmwA/sMY80VgBPhk9vm/AG4G2oEx4DcArLX9xpg/AzZnn/en1tr+KfoepMC1/8fz9FGT6x+siYyScCPU1EAk4o0RFhEBMOvWsuj+/WxjFQCdPSWkUhAK+RxMptSRI9DXBzY7PaKEMa8gXLECyst9Tici8uZMSUFord0OXPAq5weBd73KeQt85jXe6x7OUq+hyOk2/uQwUJNbLhqriZKOQUkJzJ+v/kEROc3atazj+VxBODERYMMGuPrqN3idFJSdO2F0FHBdAriESXn9g1ouKiJ5RL/iigBYy3NbvI/2E5QQIEOwRttNiMhraGridu7DYAHIWPj5fUmfQ8lU27HjVP9gODtQZjm7NVBGRPKKCkIRILF9Ly+OLM72D0aoNoOMRyrVPygir66igsuWDVCCtym9xfD0IwmfQ8lU270bkkkLrkuUBHPpIs4JXSEUkbyiglAEeOHftjFBmAnCuASoLk8znnSoqYFwGGbP9juhiEw34YvXsJj23HH7gZB3tUiKQiYD+/bBRNJCdkP6Fez0+gxWrvQ7nojIm6aCUATY+PAQcGq7idiMUqJRiMVg3jxwHD/Tici0dPXVXMvjucOJJPxSc6+LRnd3dqBM5mUDZdas0XQhEckrKghFkkk2tlUDXv9ghCTU1FBT400OV/+giLyqa6/lPfwUhwygPsJis38/DA0Bros5/QqhlouKSJ5RQShFb/TZbezPzMcCCSLUBocYpTQ3UEb9gyLyqhoaWL0smduPEOCZX6kgLBY7d8L4OOC6hEgRxGUZezRQRkTyjgpCKXrtj3UCkCKEi0N5HMbGDDU13qqf+np/84nI9BW+/kpW0Jo77joaZGDAx0AyZXbuzG5Ib10iJFlAJzHGdYVQRPKOCkIpem3P9wOn+geD8RjhMJSVwdy56h8Ukddx3XXcxEO5w1TK8POf+5hHpoTrwp49MDHhbTsSJeHtP1hbqz4DEck7Kgil6O3d7fX/nCwITXlprn9Qy0VF5HVddRXv5DHCpACw1vLzH4/5HEomW3c39PbiVYZACeNe/+C6dd4PDxGRPKKCUIpbKkV7d1m2fzBKlASJUDy3/6A+6BWR11VRwbnryihnOHdq87NprPUxk0y6jg4NlBGRwqGCUIqau3M3be4i0gTJEKQ8MMZYKkxNDQSD0NDgd0IRme6C11/NBTTnjnsGQhw65GMgmXT79sHICOC6BEkTJcES2jRQRkTykgpCKWpHntjDOCW55aLhUgfHgYoKrxgMBn0OKCLT33XX8W5+hsG7LJhJW+7/qS4RFrJduyAx7g2UCZNiKW3esuGLLvI7mojIGVNBKEVt74Ye4LSBMrGo+gdF5MxcfDGXRV8kQgIAC/ziRyf8zSSTxnWhpQVSE17/YIQE57ALGhuhutrndCIiZ04FoRS19u3jACSzBaEtKVH/oIicmUiEc66aSRWDuVM7dhgyGR8zyaTp7oaeHl4yUOZcWrVcVETylgpCKV7WsvdABBdDiiCGDJlIjMpKb6uJuXP9Digi+cK5/houZmPueOBEkN27fQwkk6azEwYHyQ2UiWigjIjkORWEUrw6OmibmEeKMGAoYQIbChOPe/2DoZDfAUUkb1x3HTfwCA7eZcFMxnLvj3SJsBB1dMDwMOC6OGQoY5RF7NcVQhHJWyoIpWiNPredw9QzQRiAcNQQjRqiUS0XFZEztHIla6v3U8J47tSj9434GEgmS1sbjI24gCVImhXsxAk5sGqV39FERN4SFYRStPY92QWQKwidaIh43HtMA2VE5IwEAiy/YR61HM+d2rsvwJj2qC8orgs7dkA67U2RjZBkJa1eMRiN+pxOROStUUEoRWvvVm8K4ARhLGAjESoqIBBQ/6CInLnA9dfyDp7KHQ+PB9m61cdActYdPQpHjpAbKBNl3JswquWiIpLHVBBK0Wpr98bDTxDGJUCoNEI8DvX1EA77nU5E8s511/EONhBmAgDrWn78n0mfQ8nZ1NEBAwOcNlAm6U0Y1UAZEcljKgilOPX00HZiFhmCuAQIksYp8a4Qqn9QRN6SefNomn+cGKO5U+sfTfgYSM62zk4YHrK5gTIVDDOXLl0hFJG8poJQipK7tZl2GnP9g6EgBBxDWZkKQhF565bc1MhMenLHXUcCHDvmYyA5q/bvh5ETJwfKZDiPHQQq4rBkid/RRETeMhWEUpS617czRoxktn/QCQcpL4dgEObP9zudiOSrwPXXchVPEsAbOjKaCPLMMz6HkrPC2uxAmZT3v22QFKvYDhdd5DWfi4jkKf0LJkVp78Z+4LT+wRKHigqYPRsiEZ/DiUj+uvpq1pmtRPCWilpr+cn3NWq0EHR3w+HDnDZQJts/qOWiIpLnVBBKUWrbmQJOFYThWJCKCm03ISJvU1UVTeclKePUHoSbn02drCEkj3V2Qn8/pw2USXgTRjVQRkTynApCKT4nTtDWG8fFkCaExRAujxKPq39QRN6+xe9azmyO5I57+xz27/cxkJwVHR0wNOiC9QbKVNPPbLpVEIpI3lNBKMVn2zbaWJLbfzAYsBAIUFmp/kERefu8/QjXEyQDQGLC4bHHrM+p5O3q6ICRYe9Sr0OGc2nFzJsHs2b5nExE5O1RQShFZ+z5HRyiIVsQBgiHLCUlXjEYjfqdTkTy3iWXcFFoOyV4vYMWy4M/GH2DF8l09sqBMhnW8IKuDopIQVBBKEWnfX034PUPZggQjgaIx9U/KCJnSTRK0zrnJX2EO3dkSGhLwrx19Kg3VMZmvCuEISa8CaMaKCMiBUAFoRSdtm3ep/YnB8pEsgNl1D8oImfLwltWMo8DueP+IYft230MJG9LRwf09QGuzQ2UWcFOXSEUkYKgglCKy8QEbQcjWCBJGBeHcHmYigr1D4rI2WOuv45LeJ4ISQCS6QC//EXG51TyVnV2wkB/BvAGytRxnNrAAKxZ43c0EZG3TQWhFJfWVva6i0kTxMXBwcUJB2lshJISv8OJSMFYtYoLy/YS49QehI/dP/I6L5DprL0dRoZODZQ5h12wciWUlfmcTETk7VNBKEXF3dpMO43Z/kGHSMjFceD88/1OJiIFJRCg6cpSyjmRO7V/f3bZoeSVkwNlMmmvIAySYRXbtFxURAqGCkIpKt3P7GeM2KkN6SMQj8OiRX4nE5FCM/+21czlIAG8QuLEaIDnnvM5lJyxnh7vZjPehFGHNOt4XgNlRKRgqCCUotK2ZQiAJBFcHCIljgbKiMikMNdfxzo2U4I3XjSZcXjk5xM+p5Iz1dEBA/0Wmx0oE2aC89mhK4QiUjBUEErxcF3a2ry7CaJYIFweZv58iMV8TSYihWjBAi6ceZjYadtPbHh0HNf1MZOcsc5O6D+eBiwOGWbSQzyWgRUr/I4mInJWqCCU4tHeTltyLi4BJghjgHBJkJUr/Q4mIoWq6doK4gznjo8e9XoJJX+0tcHI8MnlohmW0gZNTRAM+pxMROTsUEEoxaO5mTaWnOofdDJgDE1NfgcTkUI19/YLmcshgqQBGBsP8OST/maSN89a2L4d3NMGypzHdi0XFZGCooJQisbYphYO0ZDdfzBAJOwtFT3nHL+TiUihMtdczUVszW0/kXQd1IPfdQAAIABJREFUnnho3OdU8madHCjjZgfKBMhwEZs1UEZECooKQika+zYew2Ky/YOGcEmA+nooLfU7mYgUrJoaLlw8SNlp20+8sHGCZNLHTPKmdXbCwMCpgTLBkxNGdYVQRAqICkIpDtbS1uL9BjaOtwN9pDTIsmV+hhKRYtD0zhrKOYHJHg8MWF54wddI8iZ1dMBAbwqL1z84ix7KZ5bB3Ll+RxMROWumpCA0xkSNMZuMMduMMa3GmK++7PFvGGNGTjuOGGN+YIxpN8Y8b4xZcNpj/zN7fo8x5p1TkV8KQHc3bcMzsHhbTgCEy8KsWuVvLBEpfHNuX0sDRwhnt58YTwR44lfW51TyZuzZA6MnTg2UWUy7t1zUmDd4pYhI/piqK4RJ4Bpr7SpgNXCjMeZiAGNME1D1sud/Ahiw1jYCXwe+ln3uCuAu4FzgRuBbxhhnar4FyWvNzexlKROEyOAQDFgcx2jVj4hMOnP5ZTQ5L1LKKAATNsiGR8Z8TiVvJDdQJnNqoMy5tGq5qIgUnCkpCK3n5BXAUPZms8XcXwO/97KX3AZ8N3v/x8C1xhiTPf/f1tqktbYDaAf0L7O8IfuCN2F0nBIshkjIUlYGCxf6nUxECl5JCReuTFJ+Wh/h3p1p+vt9zCRvKDdQJjthNECGNbyggTIiUnCmrIfQGOMYY14EeoFHrbXPA58FHrDWdr/s6fVAF4C1Ng0MATWnn886lD338q/1KWPMFmPMlmPHjp39b0byTvdznYwRYxxvB/pw1LBggVb9iMjUaHrXTEoZJ0AGgJETrrafmOY6O2GwP4O1vHSgjPYqEpECM2UFobU2Y61dDTQAa40x7wDuBL45CV/rn621Tdbaprq6urP99pKH2pq9C9TjRAGIxBxtNyEiU2b2ey+hnsOUnOwjTDqsf8r1OZW8no4OGDyewsXgkKGW48xYWg2VlX5HExE5q6Z8yqi1dhB4ArgaaATajTGdQMwY05592mFgLoAxJghUAH2nn89qyJ4TeW2Dg+w9Wo4FJk4bKLNmjb+xRKSIrF5NU0krZXgfTk0QZNOTo1jNlpm2du2CsZFTA2UW0oG5WMtFRaTwTNWU0TpjTGX2fglwPbDVWjvLWrvAWrsAGMsOkQF4APho9v4dwK+stTZ7/q7sFNKFwBJg01R8D5LHXnyRNpbkBsoYYygrD7B8ud/BRKRoOA5NayzlDOe2nzhyMMPevb6mkteQGyiTPjVQ5hx2aaCMiBSkqbpCOBt4whizHdiM10P44Os8/1+AmuwVw7uBPwCw1rYCPwR2Ag8Dn7HWZiY1ueS/5mbaaWQUbwf6cNClvBwaGnzOJSJFpem2esKkCJICYGzU5fHHfQ4lr6q31xsoY08bKLOKbRooIyIFaaqmjG631l5grT3fWrvSWvunr/KcstPuJ6y1d1prG621a621+0977C+stYuttcustQ9NRX7Jb+ObW+hibm6gTCQC8+ZBNOpzMBEpKjPeeznz6CKGt+XEeMph44a0z6nk1ZzqH/QGyoSZYE1wB5x/vt/RRETOuinvIRSZavs29+NiSGQHyoRLHM491+dQIlJ8Fi2iqXJfro8wRYjtz4+RTPqcS16howOG+tJYAtmBMn3MWT0TwmG/o4mInHUqCKWwjY+zd79DBocUIQBKK4MsW+ZzLhEpPsZw4bogZYxg8IaVDB5Ps3Gjz7nkFVpaIDHm5iaMzqabskvO8zuWiMikUEEoha2lhXZ3EUkiuDiAoaYuyLx5fgcTkWLU9L75BMkQwbssOD5mtR/hNJPJwLZtYNPeiAKHDEvZg1mngTIiUphUEEpha25mL0sZI4YFgo63hZQKQhHxQ+17rmA+ByhlFIDxdJDNz2jN6HRy8CD09lrcjHcVN0ia89ihCaMiUrBUEEpBsy80s5clpwbKhC11dVBT43MwESlOtbU0zT5COScAr49w/84Ex475nEtydu2CoWMTuBgCuERIsrLsIDQ2vvGLRUTykApCKWjdm7oYJp7rHyyJGRobwZg3eKGIyCS58LIoJYzj4C1JHBtK8atf+RxKcnbuhKH+DJYAQdLUcpzZa2brB4eIFCwVhFK4MhnaW5NMECGDA0BFraPloiLiq6b3LyaApYRxAMbGYP16n0MJAK4LmzZBKukNlAmSpo5jzLhsid/RREQmjQpCKVx797J3Yj5JwtmC0FA7M6SCUER8VX3zxSwKdOa2nxh3w2x7fhxrfQ4mHDjg9RDaVBqbLQiX0EbJZWv8jiYiMmlUEErham6mjSUkKMHFYAKGuhlGBaGI+CsWo2lBH6XZ7SfSBDnWlaC11e9gsmsX9Pa4uK7N9Q9eQLMGyohIQVNBKIWruZlWVjCBt5FwNOQSjUJDg8+5RKToXXhVOREmCJEGYPxEmscf9zmUsGXLS/sHGzhE/UwX6ur8jiYiMmlUEErBGt/SSgcLyWT/b15ebpkzB8Jhn4OJSNG78APLMEDs5PYT47DxOdffUEXOdWHDBmBiItc/OJ+DzFijTxFFpLCpIJTCZC37XhgiQTQ3UKaqNqDloiIyLVRetZrG0AHKsttPjNsIu5oTHD/uc7Ai1tUFXV02WxAGCJGmgS5m3qLloiJS2FQQSmHq6qJteMZLJozWzI6qIBSR6cFxaFo2QhmjOGRIEyTRP8ZPfuJ3sOK1bRsc78lgXe9K7Sy6qQiMMuuuq/wNJiIyyVQQSmFqbmYHK0nj4OJgjKG6RgNlRGT6uPDaShxcSk8uGz2R4dFHfQ5VxB55BNzEBBmc3HLRhefGcKrifkcTEZlUKgilMDU38yKryeBggUh2oIwKQhGZLi786EoMlgoGMVjGkgHa9rh0dPidrPhY6+0/yEQKNztQZh4Habyx0e9oIiKTTgWhFCT7QjN7WZpbLhovcykrg8pKn4OJiGTFVy9iSewIpYzhkCZBFHf4BPfe63ey4tPZCYcOZrCZNBkcKhmkgkEWf/hSv6OJiEw6FYRSkI5uPcwQFa8YKGOMz8FERE4yhqZVEzi4lDFKGofEsRF+9SvIZPwOV1weeQSSIyksBgMsYj9VDeXUrJztdzQRkUmnglAKT18f247UkCZIBgeDpWpWiZaLisi0c83nVgJQzjABLMPjQQ7tS7B9u8/Bisxjj5GdLuoQJMU8DrL4ijn6EFFEioIKQik8zc08zzoAMjgEDMQrteWEiEw/q+46h3lVI5QyRpAUI5SRPjbA/ff7nax4WAsvvpCBVIoMAaIkmEUPjXes9juaiMiUUEEohae5me2cj0sAi8EJQlmZBsqIyPRjDNxyRzg7bXQEF8PoQIpn16cZG/M7XXFobob+3jQWcHGYx0GcyjiL3rnE72giIlNCBaEUnuZm2llyaqBMaYZQCOrrfc4lIvIq3vXlCwkEA5QzgkOGYVtGz55Bb+qlTLr77iM3XdRgaaSdOWtmESvVelERKQ4qCKXgHN+8n2PU5X64V1Y5zJ4NwaDfyUREXmnG3AgXr0oQY4wgacaJkjw2zM8esH5HKwpPPelCaiK73USKuRyi8ealfscSEZkyKgilsIyOsqF9FpZs/yAu8RkRLRcVkWnttrsX55aNGmB4IsK2pwfp7fU7WWEbG4O9rSmwlgwOMzhGJBqg8bZz/Y4mIjJlVBBKYdmxg81cBHgFoWMs8aqgCkIRmdauuGMm8doIZYzikOYE5fS2D/Pss34nK2wPPgipsZP9gwEWsY/w8oXMXaglJSJSPFQQSmFpbqaFc7EY7wphMEB5uQbKiMj0Fg7Dze+NZKeNpkkTZHQozUM/GcV1/U5XuB78mYXURHZFiWUZe1j4jnk4jt/JRESmjgpCKShjm1vpYl62fxCiEYhEVBCKyPR3691LCETClDLq7UlIOe3P9NDe7neywuS6sGl9ElwXlwBlnKDCGWPxrVouKiLFRQWhFJSO53vppzr7aW+GeAVUZG8iItPZ0mWGZSuDuWWjo5Ry9GCK59an/Y5WkFpaoP9YBvBaDOZyCBYtpPH8mM/JRESmlgpCKRypFM17S0kSzg2UKa/VQBkRyR+3fmYeMTNOiDQWw4lMCU/8+yHGx/1OVngefBAyyRQuBothCXuJr1pIba3fyUREppYKQikcu3ezNX0ekB0og0u8OqSCUETyxo3vjRGpqyDGmLcnIeV0beujpcXvZIXnkZ8lIJPBxSFImkV00HjzMoy2HxSRIqOCUArG+PPb2UcjAC4OJuhooIyI5JWKCrjy3WWUMopDhiQRDg2W8uxPuv2OVlC6u2H/nhQAGQLM4BiB+jk0NlX6nExEZOqpIJSC0bn+IH3UZAfKuARCDmVlKghFJL/c+okZxEoNQdLenoRUsOW+gxw75neywvH005AYyWS3m3CYzwHMsqUsXux3MhGRqaeCUApG5wsD9OUGyriUlXmj3GfP9juZiMibd/HFMGtJnBjjuT0JD7UnefGZUb+jFYxf3J8kk8rgZn8NWsZuZl++mJjmyYhIEVJBKIXBWva2G4aJZ/sHM8Srg9TXo/2kRCSvBALwrt+YQamTIEiGDAEOuPVs/M4O7Ul4FoyOwqanEoC3GX0pI9RUQ+Pls3xOJiLiDxWEUhASuzvZnZiP9RaLYoDy6rCWi4pIXrrldodYXSkBMtk9CSvYu6GX/fus39Hy3saNMDpwsn/QYTbdmGXLaGz0OZiIiE9UEEpB6Hy0jT5qcscm6BCvMCoIRSQvzZsHa66uyC0bHSNGx3AVzd/XuNG366lfZUiM22z/YIBF7Ce0Yglz5/qdTETEHyoIpSB0PtdNPzVYDBbACWrCqIjktVvvKqW03BDEG37SyQKa/3sviYTfyfKX68ITDwyRIYCLQ5gJ5pUcZ+EVDQSDfqcTEfGHCkIpCJ07TtCfHSjjYAlHDZGICkIRyV/XXQc188qzpUuGYeIc3DtOy+M9fkfLWzt2QE/Xqe0m4gwTXzqLxUv065CIFC/9Cyh5L5GAw50p+qnObTkRr3SoqoKyMr/TiYi8NbEYvPPOOCXBFA4ZUoTYw1Kav/Wc39Hy1tNPWRIn0oC33UQDh9Q/KCJFTwWh5L2DLxxndNSSJIzBegNlakK6Oigiee+WWw2lNREcMhjgIPPY+8Qhjh9O+h0tLz11/yAJN4SLweCyIHCI8vMXUlfndzIREf+oIJS8t+/xTvqoBsj2DzrEKwIqCEUk761eDUvXxAkADmlGKKNrvIYX/3GD39HyzqFD0NaSIIODS4AYY9QtKKXxnBDG+J1ORMQ/U1IQGmOixphNxphtxphWY8xXs+f/wxizxxjTYoy5xxgTyp43xphvGGPajTHbjTFrTnuvjxpj2rK3j05Ffpm+rIXW54bpz04YtQQgqIEyIlIYjIHb7whSUhbAwdtIfScraP7P3dqT8Aw9/TSMD3pXVjM4VDBEfEWDlouKSNGbqiuESeAaa+0qYDVwozHmYuA/gOXAeUAJ8Mns828ClmRvnwL+CcAYUw18BVgHrAW+YoypmqLvQaahw4dhqHOAfqpOzhfFBB3KylQQikhhePe7oXxmCQFcAlgO0UDvgVE6fr7T72h5Zf3Ph0lMeD8pLAHm0YVZuoTFi/1OJiLirykpCK1nJHsYyt6stfYX2ccssAloyD7nNuB72Yc2ApXGmNnAO4FHrbX91toB4FHgxqn4HmR6am0Feo7STw1B0higrNwQjcKsWX6nExF5+2bMgKtuiBIIBnFIM04J7Syh+e+f8jta3hgZga3rx0gQxSVAlHFm1FlmL45RWup3OhERf01ZD6ExxjHGvAj04hV1z5/2WAj4MPBw9lQ90HXayw9lz73WeSlC1kLLpjHS/UMMEcfgrZ8qrw7R0AABdciKSIF4z3sgVhEiSAaAVlaw86njJI8O+JwsPzz7LCT7R8gQxCVAKaPULq3RclEREaawILTWZqy1q/GuAq41xqw87eFvAU9ba9efja9ljPmUMWaLMWbLsWPHzsZbyjR05AgMNncwQBUOLhmCEHCIVzpaLioiBeXKK6FufhRjDA4u3cxmOB2l5a9+4Xe0vLD+kXESo14xfbJ/sGLVfBWEIiL4MGXUWjsIPEF2qacx5itAHXD3aU87DMw97bghe+61zr/8a/yztbbJWttUp1nSBau1FWhvZ4BqShgnRRjCIQ2UEZGCEw7D+94XwJREcEiTJsgOzqP5+61ouszry2TgmV8MkSCKBUKkmVU6QnhmtX5WiIgwdVNG64wxldn7JcD1wG5jzCfx+gJ/3Vp7+k+0B4CPZKeNXgwMWWu7gV8CNxhjqrLDZG7InpMiYy207HBhXzt9VBMmSZoghMLE4zB37hu/h4hIPnnf+yBWeWpPwt2cw4FjJfT/5Am/o01r27bB0JFRxrP9gzFGqZ1fxvz5EAz6nU5ExH9TdYVwNvCEMWY7sBmvh/BB4NvATOA5Y8yLxpg/zj7/F8B+oB34DvDbANbafuDPsu+xGfjT7DkpMt3dMNDaDWNjjFLmzRc1hnAsSCSiK4QiUniWLYNzVjqYcBiHNMeoZYg4zX/3K7+jTWtPP54iPTxKhiAZHMoYpfbcmVouKiKSNSWfjVlrtwMXvMr5V/362amjn3mNx+4B7jmrASXvnFwumsHhBOXectFQiHiFobYWYjG/E4qInH0f+hBsfT6KMzFCmiAvsIZ5Gx/gmv0dmEUL/Y43LT19Xx8JGwEggKU0mKRiyQwVhCIiWZrDKHnHWmhpAdrb6WY2ATJMZAvC6mpdHRSRwnXLLVBWGSQQMASwtLGEIeJ0fO2Hfkeblg4ehINtyex2E4Yo49TODFIeN8yY4Xc6EZHpQQWh5J2eHujvGoHuIxyjjhCpbEEYZsYMFYQiUrgqK+Ed7zCYkigOaYaJc4TZNP/nLkgk/I437Tz9pIsdGMztP1jKKDWLK2lsBGP8TiciMj2oIJS8410d3IcFjlMDwIRTQjQWIB5XQSgihe3jHwcTCeNk915t5gJaR+aR/P6PfE42/Tx97zHSGUuaIBZDzCSpXVGn5aIiIqdRQSh5xdpT/YNDVDBGjBQhbDjCyR1GVBCKSCG74gqYMTNAIOoVhR0sJEGE1q8/4ne0aWV4GF7cNJHbbiLCBKGKEiqqgyxe7Hc6EZHpQwWh5JXeXjjek4F9+zj+KstFo1HUFyIiBc1x4N3vBiLestEEUdpppHlnGDZt8jvetPHMM+AODJGgBEuAEsaoqY8yZw6UlfmdTkRk+lBBKHmlpQU4dAgmkgxSgQEmAiUEwg41NdDQoL4QESl8n/oUmKCDEwxggG2sopMFDPzdv/odbdpYf38/NpEgQZQMAUoZo3ZpjZaLioi8jApCySvectE2JgjTzWwsMB6ppKbGEAxquaiIFIfGRliyhOxwmQxHmMMYMTb/5CDs3Ol3PN+l0/Dso6OkCZImSJgJgqURaueEVRCKiLyMCkLJG729cOwY0NZOP1U4ZEgQZcIpyfUPrlrla0QRkSlzxx1AKIRjMqQJ0soKnk1fRO/7fgvGx/2O56vmZhjpHc31D0ZJEqwsp6ZGHxyKiLycCkLJG62twNAgHD/GKGUYYJBKCIWYMQPmzIELLvA7pYjI1PjEJyAUMjixEhwytLKSNA73716KvftLfsfz1fqHTsDISG67iRij1MwvY+FCCIX8TiciMr2oIJS8cXIzeovhIHNJEiERLKesPEAs5g1ZUP+giBSLykq48EIgEiYcgkEq6GUGB5nH5m9vgXvv9TuiL6yFp+/rByBBCQEyRKIBahpKtFxURORVqCCUvHDsmLdklLZ2RokxTgmDVOSuDtbUwCWX+J1SRGRqfeADAAZTVkrAeMNlLIZHuIHhj38BDh70O+KU6+yEQx2pXP9gCQmIx6mtRQWhiMirUEEoeaG1FUiloLOTJBFShBgjBuEwdXVw000QDPqdUkRkat15J5SXAyaAUxajg4X8khsYpJIHhy7HfuCD3oSVIvL0o0kYHmacKC6GSLZ/sKEBZs70O52IyPSjglDyQksLcPAApFMcYQ7DVIBxCEYc5s6Fq67yO6GIyNQLh+Haa737JhTEjZXRxTzu5T08yvXsfKYf/uzP/A05xZ764VGwLgmiAMSCaaobSryprGorEBF5BRWEMu0dPw49PUBbO2DpYAEjlEE4RF2d4cYbIRLxO6WIiD+++EVYtMi7b6MxJoIxxojxMO/kD/jfnPjTr8NTT/kbcoo8+yxsf9ECkCBKjDFMRTm1tUbLRUVEXoMKQpn2WlvxpgS0t+PiMEwFFgPhMHPmwPXX+51QRMQ/K1fC7/wOXHQRRCIGyspImBgAW2jiFu7n4Pt/F/r6fE46uVIp+JuvZWBokDRBUoSIMQbxcmprYfFivxOKiExPKghl2mttxftFZnCAw8zmBOXeA6Eg73sflJX5Gk9ExHe/9mvwrnfB5ZdD3YwAxEoYpwSAPSzjfT3/wM9v/kesa31OOnn+67/g4LNdkE6TIEoVA0QDKZzyMpYty/ZaiojIK6gglGmtvx+6u4H2diIk2cjFWAIQClFVFfA2ZhYRKXLGwKc/DStWeFcKz10Vxg2XkMRbT3+UWfzxppv58k1bGB31Oewk6O2F7/xFj9djACQJM4fDUFVJTa1h6VKfA4qITGMqCGVaa2nJ3mlvI0CaPmq941CISy/1tpsQERFvwMwXvwh1dV5P4RXXhHGdMCnCpAlygnIefjTAB9415K28KCDf+KNextsO544XcIB0NA4zZ1FTo+WiIiKvRwWhTGutrUAyCQe72M4qXBzvgXCYT37S12giItNORYXXTxiLQXVtgEuvCBAkQ4YgI5STsg6HN3bx8Y9l+O53wXX9Tvz2NW8Y5eHv9YL1vplyhqkzfYzOXQ4Bh5kzYcECfzOKiExnKghl2hoYgCNHgI4Oou4Im7jIeyDgMGOWwxVX+BpPRGRaqq+Hz38eHAdqGkppXBaggkECZBikEptMkOno4pvfhM9+NrfKMi+5Gctff7AZkoncuXfxC5Kr1mIjJTgOrFoFoZCPIUVEpjkVhDJtnb5cdJgKhqjyjkMhbrpJ+0mJiLyWc8+F3/gN737D6jpKq6PM4ijlnGCMUug7Dv19bNoEd90FGzb4m/et+smnHmbvwWjueBXbKL/0PE5UzQOguhqWLfMrnYhIflBBKNPWye0mbFs7m2nKnY+WOdx6q3+5RETywZVXwi23eFfHZl84h2Q4Th3HWMh+Mjhw4AAkEwwOwhe+AH/7tzAx4XfqN2/w8a3807+eKgYNlvcv2MSzCz/IiRPeudpatP+giMgbUEEo09LgIBw+DPT0MDgaoouG3GO1c8KsXetfNhGRfHHnnbBuHdTMCFK6vIHjzCCAy238lCr3OOzvyPXe/dd/wcc+BocO+Zv5Tenv51t3PM6wPbWXxLtDj/DQVf+HRCpIIgHBICxfDrNm+ZhTRCQPqCCUaenkclHb1s5RZjKAN040HDFcdnmAWMzHcCIiecIY+NSnYMkSmLu0FDNnFgeYzy7O4U/4KpeOPQqHj+Sev3ev9/zubh9DvxHXZfd7/5D7Bq/OnSpnmLK73k3vRBV9fd65VavgvPPUXiAi8kZUEMq0dHIket/uXo4wB4v3E72yymiYjIjIGQiH4e67Yd48mLmiBsrj7GQF/8mv87/5A+7u+T2Co4O55/f2wm//NrnCarqx/+dr/NVTa3M/FwAuv2iCh46sYudO6OmBuXO9m5aLioi8MRWEMu0MDWWXLI2N0dETY4RSAEKkiNWVqiAUETlD5eXwpS/BggWG6OJ6CIbYwOV8j4/wAf6Lf+t9F9Wlydzzu7q8onB42MfQr+bJJ3noj55hO+djgQnCBEpL+HnqBnp6IJ2G0lLv6mBVFZxzjt+BRUSmPxWEMu2cXC461NLFGCUcZwYAFeFxFiwJ09DwOi8WEZFXNWeOt3H9gsYQZt5cXBz+hU+ymQtZ3v8s/5D+TcrLbe75+/bB5z4HY2M+hj7d0aOMvv/jfN1+PvuzoY5jzCC9oJFU2vt1JhCAm27yeic/9zmIRt/gPUVERAWhTD8nl4u27UgQJE2SCA5pyqpCXH65v9lERPLZihXeHoU188pgxgyShPkDvsYgcZY++2/8/ep/o6Tk1PNbW70iMpl87fecEuk0w3d+gt/r/RK7WMEAVUwQoqKhjJSJYAxUVnrf2x//MaxZo70HRUTeLBWEMq0MDXlLlUZHXLp7A4xml4tWMIyprFRBKCLyNl1xhTc4JlRfB7FSeqnjbv6ONA7n/8On+NuP7XhJMbV1K/z+70Mq9frvay2Mjp7drSushYMH4Yd3/og/2nADP+V2Mid/dSktI1RZxsyZ3tLQm2/29l7UEBkRkTMT9DuAyOl27vT+bNs8SDzTzyEaCOBSHhglVlfK6tX+5hMRKQR33QW7dgW4b2wutLWzxW3i63yB30n/LWs/cxFfu+tb/E7Lx3CzxdeGDd6Vty99Cfr7vYEzx497t5P3+/ogkfCWaX7sY3DZZW89XzoNO3bAxo1w5Kk27E/beZYbcbODZIIRh/pzy1nc6C0TLSuD3/xN776IiJwZFYQyrbS0eL9QHGxLMpsxhqikkkEClXEuudRoCZCIyFlgDHz5y7B7d5hd4/XYgwf4MXcwnwOcm9yJ/e53eWd8hH+PfIJUKEY6bfjOd+Chh7ytHF5PIgHf/rY37fM97zmzK3ajo14RuGlTtndxaBDuv58DzOcI9ZQwTqmThIVLWNxocgXgJz/pDZEREZEzp4JQpo3hYW9p0P79YIaHGKcEgyXOMFTM03JREZGzKBSCv/97uPPOCobG6hg7fox7+Dh1HPeeMAzz2UxLaA3ESsFx6OryNnx/M9M777vPKwo/+ck37uc7ccK7Crl582lLU9Np+Mm9hBODtHMpMzmKg8vw7BUsmh/KFYPXXAMXXviW/xpERIqeCkKZNnbu9H4R6NgzQTzRw3HqKOcEDhmIx9/W8iMREXml2bO9K4V/+D9nMRGJ0H00QDCTpoIhAljm0UU6FWL30HKIlkDknzh1AAAeyklEQVRJlI6OAGVl8I53QE0N1Nae+hPgnnu8Ag/g2We95aRf+IK39cXLDQ7C+vVen2Im87Jsz93LJUe+yUbWkSKMg8vErLmEK2LU1XnPqa+HD35w8v5+RESKgQpCmTZaWqCzE1KDJ4gzzB6WM4tuKC1lxfkhqqv9TigiUnhuuAE2bzbce281qXgFB3urKOs7wEL2s5IWbuEBnuVSHkncQDBjCM6dzchIJcuXGz7wgVe+37x58Dd/A93d3vHevfAnf+L1H86Z453r64Onn4YXXwTXfenrlyyBK4d/xryn3k83s/l3PgKAjVfQ78xg3TLvecEgfOYzEA5Pzt+LiEixUEEo08KJE9DR4e17FTgxTIogURKESEPFDG1GLyIySYzxNqF3HOjrc4hE6gkcC8LDbYx1ldLDLO7gx9RynJ+m3gP790E8zt/95TxKS6PcdttL32/GDPjKV+Ab3zg1KKy3F776VfjQh+DoUW9gjLUvfd0558CVV0L9yB5o8irN/48vMEEYwmH6KxZRP9sQi3nP//Vfh7lzJ/kvR0SkCGgel19++ctXro8pYjt3ev2DiXGXipHD9FFHBYPegxUV6h8UEZlE1dVw993e9NH584GZM+EjH4Hbbqe3dBG/5EYmiDCfTsaJYoeHYWcrf/6bXTxy//gr3q+0FH73d70CD7wBMa2t8NnPwoMPnioGjfGG1Hz2s/CBD0B9/ATccQeMjLCJi/gV14AxjNUvIeU6LF7svW71arj++qn5uxERKXS6QjjVJia8XX6/9S34wz+Ev/gLvxNNCzt2QFsbMDZKhdvPAAuIMAGhEDVzYyxb5ndCEZHCFolAU5N3O3YMmpsNzeXnMbJ0KTz9NHbTJpbb3XQzh4PMo8SOETvax5fvPE7sjwa4/MtXv2SkaDDoLUfdtQseeeTU13nhBRgdTPHrl3RwZelWare+CN/f5T1x/35wXdI4/DW/C0C6fh7HR0pYtcq7illR4e2jqP0GRUTODhWEU+nwYe+Tz40bveO//EtYtw5uvdXfXD4bGfEGD4yOestFHTLY7F5TxCu47DKjvaVERKZQXZ1XzF13HbS1RWhecz27n14Fv3iYqw48yWNcRxcNjFBGOJXit77i8O0H/geX/ftvYZefQ2cnPPmEZf+OUWLHj3NR+Tgv7C3HTSSpTvUQaOniyAMbiPN/gVfueP8D3k8HC7GV1Ry3tVRWwqxZ3mOf/vSrD6gREZG3RgXhVAoEvKkpp/vwh2HLFq+Lvkjt3OkNHQCIjx4hRJooSe+ElouKiPgmEIBly7zb2K0z2PahD9P8/2/l2h89x8MjQY4yiwlCHKeWD2y9m8+f+49UrF7Igd4Sb7xoMgHAfNJcxiGeZy3jeE2Am1hLHzV8ka9TwXDua/ZRzf/l0xCJMlw9n8SQ4aKLvMduvvmN90EUEZEzo+suU2n2bPjhD2kPLOUBbvHODQ/D+97nXR4rUg8/DENDwESSyvGjwMlJA4ZgdTkXX+xjOBERASAWg0suNfz2PU18/oXf4H/d2sIsenOPTxDmm/a3aW524fAhSCYIM8EVrOdL/C2f4B7+kv9FPYdzr9nHYv6EP+EQ9blz34z/EWNV9SQXLGFgyGHBAigrgwUL4M47p/AbFhEpEsa+fMzXZHwRY6LA00AE76rkj621XzHGLAT+G6gBtgIfttZOGGMiwPeAC4E+4P3W2s7se/1P4BNABvi8tfaXr/e1m5qa7JYtWybnG3sLRkbgw5e207VjkFt5gN/na16v3Ic+BN/7XtE1RYyOwrvf7X2QHOg/xjVHvsezXEaGIJSXs/ZDy/jWt/xOKSIir+b4M3v44K3D7O2vIUkUC0RIUkM/MznKLI4SJEMAF4PFYMkQoIXz6QvPgnAYEwkTLAlxwfkutQvLeXpjGNeFI0e8K5RXXukVo3/+597nqiIicuaMMVuttU2v9thULRlNAtdYa0eMMSFggzHmIeBu4OvW2v82xnwbr9D7p+yfA9baRmPMXcDXgPcbY1YAdwHnAnOAx4wxS621eTGu01pvL6au8GKo2s8DA7eyh2X8Fb9H/fe/Dxdf7G2qVCSOHIFvf9srBgHiYz0sopP1ZMfSabmoiMi0VnvZMr6/y/LJdx3h4Iv9jKcdwFvn0ctMes1sKIlCNJrb2J5oFBuOkOgPeBvYW2AMjmyEmjaIx6G/H1IpOP98bzjNRz6iYlBEZLJMyZJR6xnJHoayNwtcA/w4e/67wO3Z+7dlj8k+fq0xxmTP/7e1Nmmt7QDagbVT8C2cFem0t+wFjLf2JRplD8v4EN9nA5d500efe87nlJMvnYbHHoN/+Ad49NHsSddlyfAW+jht93kVhCIi017dDMM/3V/PrKuXUza/lrKGagKNjV6z35oL4JwVsHCRV9FVVkG0BBMIUFPjbXdxur4+b5/CEyegshLq62HtWnjHO/z53kRE/l97dx4fVXX3cfzzS0ISthAggIRNQZbiBhoUrVallipVoGqBFtEWWpG61/Vxq6I+VlyxWoUqKGKtqBSx6qtUBOqDUAERlUU2o+w7BBQISc7zx7nDTDBRIMnMJPf7fr3mlZkz95577v0lDL85554TBnGbVMbMUvHDQo8GngJWANudc0XBJqth/00ELYBVAM65IjPbgR9W2gKYHVNt7D5Jr1Ytv1jv8cfDQw+lsq9dO1i8mJ0l9bmOx/ntvme5/KJfkDJ/nl8DqgZauxYmTvQf+B9+6IfQpqVBy1obGVTyPH/if/yG6Rm07pBJ69aJba+IiHy/3FwY9Wwajz7ahLVr/YiYkhL/M/IoKfHbxpY3bQrbt/t1aCPlRUXQsCGccALk5MDgwaG7m0JEJK7ilhAGwzq7mFk28A+gU1Udy8wuBy4HaJ1kGYUZXHghdOoEt9xSm3W7j4KVKwB4lt/y2bpjue+iIWRPn+QzpRqiuBimT4f//Md/6C9aBBs2+A/9Fi3gzDXv0YwNbKGx36FBA04/Xf8DEBGpLlq3hscfP7x98/Ph0Udh27ZomRkMG+YXuRcRkaoT91lGnXPbgWnAqUC2mUWynpawf+qxNUArgOD9BvjJZfaXl7FP7DFGO+fynHN5TZo0qZLzqKjOnWH8eDi1V0NodsT+8tl0Z+DMYSwc+kQCW1e51q6Fp5/2CWFJCaxeDV984UfNtmkD7Y92DP7iTmYSMz5Uw0VFRELjyCP9Pfax3+H27euXuxARkaoVl4TQzJoEPYOYWW3gJ8BifGJ4cbDZZcAbwfPJwWuC999zfjrUycAAM8sIZihtD3wYj3OoCg0awMiRcPkfm2P16+0v30AzfjvmVF6/aRZxmAS2yhQXw9SpMGqU7w0Ev7xEfr7vIc3O9pMHXPvTJaSvXsn/RRJCS6FOs3p07ZqwpouISJw1agR33eWX573iCvj5zxPdIhGRcIjXmMTmwAvBfYQpwATn3D/NbBHwdzO7D5gPPBds/xzwopktB7biZxbFObfQzCYAi4Ai4MrqMsNoeVJS4PJhqRzbqil3XLSFgsIMAPZRiwceTWHBN5u57ZEcMjMT3NBDtG5d9F7BiNRUf69Iy5bR19deC40nvclWGrKQY/wbWfXpfloqtWrFv90iIpI4GRnQs2eiWyEiEi5xSQidc58A3+rvcc6tpIxZQp1ze4Ayl591zt0P3F/ZbUy0085vxPhXM7il7+csdsEYmZIS3h6znqUbGjDi0VrVYoKV4mKYMcM/IhMIgB8i+/nnlOrxvPRS6NABeOstZvLD6BsaLioiIiIiEhdxv4dQypfbO4/nHivgQiZGC/fsYfl7XzFokGPGjMS17WCsW+fXFZw2LZoM1qkD/fv7WeNWrIhue/bZ0KMHvstw5szocFGABg344Q8REREREZEqpoQwyaRfcwW3XbKKP3IP6RT6wm3b+HrlRm64Af78Z98Ll0yKi+G993wyGDtE9Jhj4Jpr/ALDU6ZEyzt08L2DAEyZQlGxn0wHgMxMOnfJoHHjuDVfRERERCS0lBAmGzMYNYoLjvuS5/k1LSKTqK5eDbt28sILcOWVPslKBuX1Cvbr53sG16+HsWOj2zds6JPE/StqvP02H9OFrwnmFddwURERERGRuFFCmIzq1IGJE+nQYCMvMogzeB9wsGIl7Ctk7lwYOBA++SRxTXQO5szxM4iW1St43HF+RtGRI/1wUfBJ4HXX+dlVAZg9GyZM4H3OiFbQIFsJoYiIiIhInCghTFZHHw3jxpHFTh7hBn7PX0gp2gsrV4IrYdMm+N3vYMIE4r40RVERvPEGTJ4cHb4a2ytYt67fZuTI0osMDxkCbdsGL5YuhfPPh927o/cPpqbRqHVdOnWK6+mIiIiIiISWEsJk1rs33HYbKTgGM5YnuYrsXathtR9GWlwMI0bAvfdCYWF8mrRjBzz7LMybFy1r1w6uvtr3Cpr5BPX552H58ug2555LtOdv/XpfsGULq2nBl7Tx5S1bcvoZKaTot1JEREREJC70X+9kN3w4nHMOACczh5cYyLEbp8K26E2EkyfD5ZfDxo1V25T8fHj6aVizJlr2ox/5CWLq1YuWTZ1KqRlRO3eGAQOCFzt3ws9+Bl98QQnGG/Tx5c2bQ06OhouKiIiIiMSREsJkl5oKL79MZBHCZmzkr/yOi1aNhD2792/22WcwaFDV3FfoHHzwgZ8c5uuvfVl6uk/yfvITSvXoLVkC48dHX+fkwFVX+dNg3z64+GIKPlrGOAbRhzcYy2+gcWPIzSUtDU45pfLbLyIiIiIiZYvLwvRSQTk58NprfsxlYSG1KOJ/9g2n47atjMh9jCLnw7hli+8pvPVW6Nu3/OoKC2HzZv8oKfFDPuvXL3vbfftg0qTSiWbjxvCrX0HTpqW33bIFnngiel9hejr84Q9B3c6xrN/tvDKlG+9wF3vJ8BtlZUGbNoBxyin+/kMREREREYkPJYTVRbdufhHCoUP3F1249knatdjDTRmPs3WPz6SKivwo0w8/hAsv9Pf8RZK/TZv8zx07vl19mzZ+aGfnztCxI9Su7SeE+dvfSs8i2rEjXHwxZGaW3r+wEB57zI8IjRg6FHJz/RqFf79hDh993K/0TnXq+GzUUsjLg1tuqehFEhERERGRQ2Eu3lNUxlleXp6bO3duoptROZyDIUMoHDuezeSwiSZsJofl1p4xjW9mVUprilza/h66Ro2ga1fIyDi0w6Sk+KUhNm/2HXiNGvkhnz16wFln+YljDmzW00/DrFnRsh49/HavvgobPt0Iq74qvVNGBhnHd+S83un07w/t2x/y1RARERERkYNgZvOcc3llvacewurEDJ56iikz6vPKyph4Ojh68yz22C5Wp7eDOrXBUti6FWbOhJNOiln7L0Zqqv8ZSSDBJ3fr1sH8+dHlLGrV8olgQYGfObRt2+i+AO+8E00GCwpgzx4YPdoPN2X7tm8lg83Tt/CLe7vQd2g6WVkVvioiIiIiInKYlBBWN7Vrk/PY7TB4HmzZvL84hRKOdwvI2rudxXuPwdWujWVmUlycwoIF/p7CHj2gSRN/S2KTJpCd7Yd6Ll0KCxf6+wTffx+2b48eLjMTjjrKDzd97bVoWceOfnhp3brRYaX5+bBrlx8mmpIC7Nrp100M5DGXARmT+NH04aR0bxaf6yUiIiIiIuVSQlgNNTmmKZx7Lmlr8slZ8B4525aSw2Zy2EwTNrGOIxi5+1q+3puFNW8OjZswc2YqRx7p14KP7d3LyPDrBzZv7petOO00PznMpk2+h7BevdLbg+8BnD8fpk/3w0pXrfJlKSm+npQU/Ayoy5eT6XbTi7fpzyu0S/0SXn8Dup8cx6slIiIiIiLl0T2E1VBRkZ+8JTsbrLgIxo2Du+/2mVlgLc25kYdZSgdIqwW5fp2/k09J4YEHSg8hXbLE9/7t3etfm/nlJE4/3Q8BXbwYPv3UDz9dtswnjFu3lh5qCtCsmZ8nhn2F5C6bQb/dL9CbyWQRzDTz3HMweHCVXhsRERERESntu+4hVEJYU+zdC6NGwX33+e49YA8ZDOcuptDTb5OeAbm55B7biEceNY4+GqZN84+I2rWhf38/THT5cpg71z/mzfNrEBYVwe7dvkdw925KTWDToAGc3GUvA6ZdwekrXyCFmN+t4cPhzjvjdDFERERERCRCCWEYEsKIXbtg5Eh46CHYsQMHvMgg/szVOILpQTMzSW/dnDP6NiI93Zc559cNbNXK9wjOm1f28hSxnPMJYu3a/h7Ffn320vbK80pnmOAXR3zmmW9PTyoiIiIiIlVOCWGYEsKIrVthxAi/Uvzu3XzAqdzO/ezEr0C/jWy+ScumU+cUCus1ZNcuIy3t4HK29HQ4/njIy/OPY46BWqklcMkl8PLLpTe+4AKYOBHSdLuqiIiIiEgiKCEMY0IYsW6dH0Y6ejSrio7gBh5hJW0pJoVNNKGEVLKsgLq1werW8UtW1Knju/0sBfCTyhx7rE/+unXzyWB6+gHHuekmePjh0mXdu8PUqcGNhSIiIiIikghKCMOcEEasXAn33MM3417jLu5hOmdRSC0cRgaFpTZNoYQf2BLyjlhD3gn7OOHMbOqcchyccIK/WfBAjz8O119fuqxDBz8LTU5OFZ6UiIiIiIh8HyWESgijFi6k5I67GDOpIaMYisMwHO1ZRjfmkMdcujKfenxd9v6tW0PXrtCli/+5aZO/RzD296hZM79S/VFHxeecRERERESkXEoIlRB+25w55N/xLOtn59O5YFZ0aYiKqlcPZsyAE0+snPpERERERKRCvish1EwfYdWtG0f+qxtHOgerV/uV5j/+OPozP//Q60xLg9dfVzIoIiIiIlJNKCEMOzO/1kSrVtC7d7R82zZYsKB0krhokV9nojxjxkDPnlXfZhERERERqRRKCKVsDRvCWWf5R8SePT4pjE0SFyyAWrXgwQdh0KBEtVZERERERA6DEkI5eJmZfjiohoSKiIiIiNQIKYlugIiIiIiIiCSGEkIREREREZGQUkIoIiIiIiISUkoIRUREREREQkoJoYiIiIiISEgpIRQREREREQkpJYQiIiIiIiIhpYRQREREREQkpJQQioiIiIiIhJQSQhERERERkZBSQigiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERERERCSklBCKiIiIiIiElDnnEt2GKmVmm4AvE92OMuQAmxPdCPkWxSX5KCbJSXFJPopJclJcko9ikpwUl6rVxjnXpKw3anxCmKzMbK5zLi/R7ZDSFJfko5gkJ8Ul+SgmyUlxST6KSXJSXBJHQ0ZFRERERERCSgmhiIiIiIhISCkhTJzRiW6AlElxST6KSXJSXJKPYpKcFJfko5gkJ8UlQXQPoYiIiIiISEiph1BERERERCSklBAeBDMbY2YbzeyzA8ofMrMlZvaJmf3DzLLL2f/eYJuPzWyKmeUG5WZmT5jZ8uD9E8vZ/1wz+zzY7taY8qPM7L9B+Stmll6Z553skjguZmb3m9lSM1tsZtdU5nknsySISYWOXxMlcUy6mNnsoN65ZnZyZZ1zdVCFcelkZrPMbK+Z3fgdxz/JzD4N4veEmVlQ3sjM/m1my4KfDSvzvJNZssYkeO/qoA0LzWxEZZ1zdZAEcbnfzFaZ2a4Dyv9gZouCuqeaWZvKON/qIIlj0trMppnZ/KD+XpVxvqHgnNPjex7Aj4ATgc8OKO8JpAXPHwQeLGf/rJjn1wDPBM97Ae8ABnQH/lvGvqnACqAtkA4sADoH700ABgTPnwGGJfpaKS4O4DfAOCAleN000dcqDDGpjOPXxEcSx2QKcF5MXdMTfa1qSFyaAt2A+4Ebv+P4HwZxsyCOkViMAG4Nnt+qv5WkiMnZwLtARqS+RF+rkMWlO9Ac2HVA+dlAneD5MOCVRF8rxYTRBP8XBjoD+Ym+VtXloR7Cg+Cc+w+wtYzyKc65ouDlbKBlOfsXxLysC0Ru3OwDjHPebCDbzJofsPvJwHLn3ErnXCHwd6BP8M1hD+C1YLsXgL6HfnbVVzLGJXhvGDDcOVcSHGfjoZ9d9ZTgmFT4+DVRssYkqCcreN4AWHsQp1NjVFVcnHMbnXNzgH3lHTuIU5ZzbrZzzuG/wIp8fvTBf55AyD5Xkjgmw4A/Oef2Ruo7pBOr5hIZl2C72c65dWWUT3POffN9x6+JkjUmhPxzpSLSEt2AGmQw8Ep5b5rZ/cClwA78t0oALYBVMZutDspif8nL2uYUoDGwPeYPL7KvlBbvuAC0A/qb2c+BTcA1zrllFTiHmqaqYlIpxw+pRMTkOuBfZvYw/vaF0w6xzWFwOHE5GC3w8YqI/fxoFvMfrfVAs0OoNwwSEZMOwBlB3XvwPSdzDqXRIVBVcTlYQ/C9uhKViJjcDUwxs6vxieY5lVRvjacewkpgZrcDRcBL5W3jnLvdOdcq2OaqeLUtzBIYlwxgj3MuD/grMKaS6q32Ev23cjDHD5sExmQYcH1Q7/XAc5VUb42Q6L+VoH5HtEc49BIYkzSgEX6Y3E3AhNj7C8Mu0X8rZnYJkAc8VJn1VmcJjMkvgeedcy3xtyK8aGbKdQ6CLlIFmdmvgfOBgcGHJ2Y2NrhR9u0ydnkJuCh4vgZoFfNey6AsVnnbbMEP0Ur7jn1DK4FxAf/N7sTg+T+A4w/zNGqUOMTkkI8fdgmOyWVE/05exQ/DFiocl4OxhtJDuWJjtyEy9Df4GarhieVJcExWAxOD4dkfAiVAziGeQo0Uh7h83/HPAW4HekeG9IZdgmMyBD+/Bs65WUAm+ls5KEoIK8DMzgVuxv9DEBlHjnPuN865Ls65XsF27WN26wMsCZ5PBi41rzuwo4wx0XOA9uZnFE0HBgCTgz+yacDFwXaXAW9U8ilWS4mMS/DeJKLDH84Ellbi6VVLcYrJIR8/zBIdE/y9HWcGz3sAGlZNpcTlewVxKjCz7kFP06VEPz8m4z9PQJ8rQFLEZP9nipl1wE9ktrkCp1QjxCMu33P8rsCo4Pj64oTExwT4CvhxcIwf4BPCTZVUd83mkmBmm2R/AC/j74vZh/+mbkhQvhx/D83HweOZcvZ/HfgM+AR4E2gR+dIEeAo/W+WnQF45+/fCJxUrgNtjytviZyVbjv+GPSPR10pxcQDZwFvBvrOAExJ9rUIUkwodvyY+kjgmpwPz8DP0/hc4KdHXqobE5YigvgJge/A8q4z984L9VwBPAhaUNwam4hP0d4FGib5WignpwPjgvY+AHom+ViGLy4jgvZLg591B+bvAhpjjT070tVJM6AzMxH+ufAz0TPS1qi6PyD82IiIiIiIiEjIaMioiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERELHzFqb2S4zS010W0RERBJJCaGIiISCmeWb2TkAzrmvnHP1nHPFcTz+WWa2Ol7HExERORhKCEVEREREREJKCaGIiNR4ZvYi0Bp4MxgqerOZOTNLC96fbmb3mdkHwftvmlljM3vJzArMbI6ZHRlTXycz+7eZbTWzz82sX8x7vcxskZntNLM1ZnajmdUF3gFyg/p3mVmumZ1sZrPMbLuZrTOzJ80sPaYuZ2a/N7NlQX33mlm7oJ0FZjYhsn2kB9LMbjOzzUGP6MD4XGEREamulBCKiEiN55wbBHwFXOCcqwdMKGOzAcAgoAXQDpgFjAUaAYuBPwIEyd2/gb8BTYP9/mJmnYN6ngOGOufqA8cC7znnvgbOA9YGQ1XrOefWAsXA9UAOcCrwY+D3B7Trp8BJQHfgZmA0cAnQKqj/lzHbHhHU1QK4DBhtZh0P6WKJiEioKCEUERHxxjrnVjjnduB781Y45951zhUBrwJdg+3OB/Kdc2Odc0XOufnA68Avgvf3AZ3NLMs5t80591F5B3TOzXPOzQ7qyQdGAWcesNkI51yBc24h8BkwxTm3MqadXQ/Y/k7n3F7n3AzgLaAfIiIi5VBCKCIi4m2Ieb67jNf1gudtgFOCYZ7bzWw7MBDfOwdwEdAL+NLMZpjZqeUd0Mw6mNk/zWy9mRUA/4vv4TucdgFsC3ojI74Ecss7voiIiBJCEREJC1dJ9awCZjjnsmMe9ZxzwwCcc3Occ33ww0knER2eWtbxnwaWAO2dc1nAbYBVoG0NgyGtEa2BtRWoT0REajglhCIiEhYbgLaVUM8/gQ5mNsjMagWPbmb2AzNLN7OBZtbAObcPKABKYo7f2MwaxNRVP9hml5l1AoZVQvvuCdpxBn5466uVUKeIiNRQSghFRCQsHgDuCIZ4Xny4lTjndgI98ZPJrAXWAw8CGcEmg4D8YAjoFfjhpDjnlgAvAyuDoaa5wI3Ar4CdwF+BVw63XYH1wLagXS8BVwTHFRERKZM5V1kjaERERCRRzOwsYLxzrmWi2yIiItWHeghFRERERERCSgmhiIiIiIhISGnIqIiIiIiISEiph1BERERERCSklBCKiIiIiIiElBJCERERERGRkFJCKCIiIiIiElJKCEVEREREREJKCaGIiIiIiEhI/T/TYeQPsPM8oAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "c193140200b9684da27e3890211391b6", + "translation_date": "2025-09-04T01:47:12+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/2-ARIMA/working/notebook.ipynb b/translations/ja/7-TimeSeries/2-ARIMA/working/notebook.ipynb new file mode 100644 index 000000000..61baa4edd --- /dev/null +++ b/translations/ja/7-TimeSeries/2-ARIMA/working/notebook.ipynb @@ -0,0 +1,57 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "523ec472196307b3c4235337353c9ceb", + "translation_date": "2025-09-04T01:49:47+00:00", + "source_file": "7-TimeSeries/2-ARIMA/working/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "このノートブックでは以下を示します:\n", + "- ARIMA時系列予測モデルのトレーニングのために時系列データを準備する方法\n", + "- シンプルなARIMAモデルを実装して、時系列の次のHORIZONステップ先(時刻*t+1*から*t+HORIZON*まで)を予測する方法\n", + "- モデルを評価する方法\n", + "\n", + "この例のデータはGEFCom2014予測コンペティションから取得されています。2012年から2014年までの3年間の1時間ごとの電力負荷と気温値で構成されています。タスクは将来の電力負荷値を予測することです。この例では、過去の負荷データのみを使用して1ステップ先を予測する方法を示します。\n", + "\n", + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, Rob J. Hyndman, 「確率的エネルギー予測:Global Energy Forecasting Competition 2014とその先」, International Journal of Forecasting, vol.32, no.3, pp 896-913, 2016年7月-9月。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pip install statsmodels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤訳について、当社は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/3-SVR/README.md b/translations/ja/7-TimeSeries/3-SVR/README.md new file mode 100644 index 000000000..82f358996 --- /dev/null +++ b/translations/ja/7-TimeSeries/3-SVR/README.md @@ -0,0 +1,393 @@ + +# サポートベクター回帰による時系列予測 + +前回のレッスンでは、ARIMAモデルを使用して時系列予測を行う方法を学びました。今回は、連続データを予測するために使用される回帰モデルであるサポートベクター回帰(Support Vector Regressor)モデルについて学びます。 + +## [事前クイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/51/) + +## はじめに + +このレッスンでは、回帰のための[**SVM**: **S**upport **V**ector **M**achine](https://en.wikipedia.org/wiki/Support-vector_machine)を使用してモデルを構築する具体的な方法を学びます。これを**SVR: Support Vector Regressor**と呼びます。 + +### 時系列におけるSVRの役割 [^1] + +時系列予測におけるSVRの重要性を理解する前に、以下の重要な概念を知っておく必要があります: + +- **回帰:** 与えられた入力セットから連続値を予測するための教師あり学習技術。特徴空間内で最大数のデータポイントを持つ曲線(または直線)をフィットさせることが目的です。[詳細はこちら](https://en.wikipedia.org/wiki/Regression_analysis)。 +- **サポートベクターマシン (SVM):** 分類、回帰、外れ値検出に使用される教師あり機械学習モデルの一種。モデルは特徴空間内のハイパープレーンであり、分類の場合は境界として機能し、回帰の場合は最適なフィットラインとして機能します。SVMでは、通常カーネル関数を使用してデータセットをより高次元の空間に変換し、分離しやすくします。[詳細はこちら](https://en.wikipedia.org/wiki/Support-vector_machine)。 +- **サポートベクター回帰 (SVR):** SVMの一種で、最大数のデータポイントを持つ最適なフィットライン(SVMの場合はハイパープレーン)を見つけるためのものです。 + +### なぜSVRなのか? [^1] + +前回のレッスンでは、時系列データを予測するための非常に成功した統計的線形手法であるARIMAについて学びました。しかし、多くの場合、時系列データには*非線形性*が含まれており、線形モデルでは対応できません。そのような場合、回帰タスクにおいてデータの非線形性を考慮するSVMの能力が、時系列予測においてSVRを成功させる要因となります。 + +## 演習 - SVRモデルを構築する + +データ準備の最初のステップは、前回の[ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA)レッスンと同じです。 + +このレッスンの[_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/3-SVR/working)フォルダを開き、[_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/3-SVR/working/notebook.ipynb)ファイルを見つけてください。[^2] + +1. ノートブックを実行し、必要なライブラリをインポートします: [^2] + + ```python + import sys + sys.path.append('../../') + ``` + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from sklearn.svm import SVR + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + ``` + +2. `/data/energy.csv`ファイルからデータをPandasデータフレームにロードし、確認します: [^2] + + ```python + energy = load_data('../../data')[['load']] + ``` + +3. 2012年1月から2014年12月までのエネルギーデータをすべてプロットします: [^2] + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![全データ](../../../../translated_images/full-data.a82ec9957e580e976f651a4fc38f280b9229c6efdbe3cfe7c60abaa9486d2cbe.ja.png) + + では、SVRモデルを構築しましょう。 + +### トレーニングとテストデータセットを作成する + +データがロードされたので、トレーニングセットとテストセットに分割します。その後、SVRに必要なタイムステップベースのデータセットを作成するためにデータをリシェイプします。トレーニングセットでモデルをトレーニングします。トレーニングが終了したら、トレーニングセット、テストセット、そして全データセットでモデルの精度を評価し、全体的なパフォーマンスを確認します。テストセットがトレーニングセットより後の期間をカバーするようにして、モデルが未来の期間から情報を得ないようにする必要があります[^2](これを*過学習*と呼びます)。 + +1. 2014年9月1日から10月31日までの2か月間をトレーニングセットに割り当てます。テストセットには2014年11月1日から12月31日までの2か月間を含めます: [^2] + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + +2. 違いを可視化します: [^2] + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![トレーニングとテストデータ](../../../../translated_images/train-test.ead0cecbfc341921d4875eccf25fed5eefbb860cdbb69cabcc2276c49e4b33e5.ja.png) + +### トレーニングのためのデータ準備 + +次に、データをフィルタリングしてスケーリングすることでトレーニングの準備をします。必要な期間と列のみを含むようにデータセットをフィルタリングし、データが0から1の範囲に投影されるようにスケーリングします。 + +1. 元のデータセットをフィルタリングして、前述の期間ごとのセットと必要な列「load」と日付のみを含むようにします: [^2] + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +2. トレーニングデータを(0, 1)の範囲にスケーリングします: [^2] + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + ``` + +4. 次に、テストデータをスケーリングします: [^2] + + ```python + test['load'] = scaler.transform(test) + ``` + +### タイムステップを使用したデータ作成 [^1] + +SVRでは、入力データを`[batch, timesteps]`の形式に変換します。そのため、既存の`train_data`と`test_data`をリシェイプして、新しい次元(タイムステップ)を追加します。 + +```python +# Converting to numpy arrays +train_data = train.values +test_data = test.values +``` + +この例では、`timesteps = 5`を使用します。つまり、モデルへの入力は最初の4タイムステップのデータであり、出力は5番目のタイムステップのデータになります。 + +```python +timesteps=5 +``` + +ネストされたリスト内包表記を使用してトレーニングデータを2Dテンソルに変換します: + +```python +train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0] +train_data_timesteps.shape +``` + +```output +(1412, 5) +``` + +テストデータを2Dテンソルに変換します: + +```python +test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0] +test_data_timesteps.shape +``` + +```output +(44, 5) +``` + +トレーニングデータとテストデータから入力と出力を選択します: + +```python +x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]] +x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]] + +print(x_train.shape, y_train.shape) +print(x_test.shape, y_test.shape) +``` + +```output +(1412, 4) (1412, 1) +(44, 4) (44, 1) +``` + +### SVRの実装 [^1] + +次に、SVRを実装します。この実装について詳しく知りたい場合は、[こちらのドキュメント](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html)を参照してください。今回の実装では以下の手順を行います: + +1. `SVR()`を呼び出し、カーネル、ガンマ、C、イプシロンなどのモデルハイパーパラメータを渡してモデルを定義します。 +2. `fit()`関数を呼び出してトレーニングデータにモデルを適合させます。 +3. `predict()`関数を呼び出して予測を行います。 + +ここでは[RBFカーネル](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel)を使用し、ハイパーパラメータのガンマ、C、イプシロンをそれぞれ0.5、10、0.05に設定します。 + +```python +model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05) +``` + +#### トレーニングデータにモデルを適合させる [^1] + +```python +model.fit(x_train, y_train[:,0]) +``` + +```output +SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5, + kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) +``` + +#### モデル予測を行う [^1] + +```python +y_train_pred = model.predict(x_train).reshape(-1,1) +y_test_pred = model.predict(x_test).reshape(-1,1) + +print(y_train_pred.shape, y_test_pred.shape) +``` + +```output +(1412, 1) (44, 1) +``` + +SVRを構築しました!次に評価を行います。 + +### モデルを評価する [^1] + +評価では、まずデータを元のスケールに戻します。その後、パフォーマンスを確認するために、元の時系列と予測時系列のプロットを作成し、MAPE結果も出力します。 + +予測値と元の出力をスケールバックします: + +```python +# Scaling the predictions +y_train_pred = scaler.inverse_transform(y_train_pred) +y_test_pred = scaler.inverse_transform(y_test_pred) + +print(len(y_train_pred), len(y_test_pred)) +``` + +```python +# Scaling the original values +y_train = scaler.inverse_transform(y_train) +y_test = scaler.inverse_transform(y_test) + +print(len(y_train), len(y_test)) +``` + +#### トレーニングデータとテストデータでモデルのパフォーマンスを確認する [^1] + +データセットからタイムスタンプを抽出し、プロットのx軸に表示します。最初の```timesteps-1```値を最初の出力の入力として使用しているため、出力のタイムスタンプはその後から始まります。 + +```python +train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:] +test_timestamps = energy[test_start_dt:].index[timesteps-1:] + +print(len(train_timestamps), len(test_timestamps)) +``` + +```output +1412 44 +``` + +トレーニングデータの予測をプロットします: + +```python +plt.figure(figsize=(25,6)) +plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.title("Training data prediction") +plt.show() +``` + +![トレーニングデータ予測](../../../../translated_images/train-data-predict.3c4ef4e78553104ffdd53d47a4c06414007947ea328e9261ddf48d3eafdefbbf.ja.png) + +トレーニングデータのMAPEを出力します: + +```python +print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%') +``` + +```output +MAPE for training data: 1.7195710200875551 % +``` + +テストデータの予測をプロットします: + +```python +plt.figure(figsize=(10,3)) +plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![テストデータ予測](../../../../translated_images/test-data-predict.8afc47ee7e52874f514ebdda4a798647e9ecf44a97cc927c535246fcf7a28aa9.ja.png) + +テストデータのMAPEを出力します: + +```python +print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%') +``` + +```output +MAPE for testing data: 1.2623790187854018 % +``` + +🏆 テストデータセットで非常に良い結果が得られました! + +### 全データセットでモデルのパフォーマンスを確認する [^1] + +```python +# Extracting load values as numpy array +data = energy.copy().values + +# Scaling +data = scaler.transform(data) + +# Transforming to 2D tensor as per model input requirement +data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0] +print("Tensor shape: ", data_timesteps.shape) + +# Selecting inputs and outputs from data +X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]] +print("X shape: ", X.shape,"\nY shape: ", Y.shape) +``` + +```output +Tensor shape: (26300, 5) +X shape: (26300, 4) +Y shape: (26300, 1) +``` + +```python +# Make model predictions +Y_pred = model.predict(X).reshape(-1,1) + +# Inverse scale and reshape +Y_pred = scaler.inverse_transform(Y_pred) +Y = scaler.inverse_transform(Y) +``` + +```python +plt.figure(figsize=(30,8)) +plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(Y_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![全データ予測](../../../../translated_images/full-data-predict.4f0fed16a131c8f3bcc57a3060039dc7f2f714a05b07b68c513e0fe7fb3d8964.ja.png) + +```python +print('MAPE: ', mape(Y_pred, Y)*100, '%') +``` + +```output +MAPE: 2.0572089029888656 % +``` + +🏆 素晴らしいプロットで、精度の高いモデルを示しています。よくできました! + +--- + +## 🚀チャレンジ + +- モデルを作成する際にハイパーパラメータ(ガンマ、C、イプシロン)を調整し、テストデータで評価して、どのハイパーパラメータセットが最良の結果をもたらすか確認してください。これらのハイパーパラメータについて詳しく知りたい場合は、[こちらのドキュメント](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel)を参照してください。 +- モデルに異なるカーネル関数を使用し、それらのデータセットでのパフォーマンスを分析してください。有益なドキュメントは[こちら](https://scikit-learn.org/stable/modules/svm.html#kernel-functions)にあります。 +- モデルが予測を行う際に参照する`timesteps`の値を変更してみてください。 + +## [事後クイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/52/) + +## 復習と自己学習 + +このレッスンでは、時系列予測におけるSVRの応用を紹介しました。SVRについてさらに詳しく知りたい場合は、[このブログ](https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/)を参照してください。この[scikit-learnのドキュメント](https://scikit-learn.org/stable/modules/svm.html)では、一般的なSVM、[SVR](https://scikit-learn.org/stable/modules/svm.html#regression)、および使用可能な異なる[カーネル関数](https://scikit-learn.org/stable/modules/svm.html#kernel-functions)やそのパラメータなどの実装詳細について包括的な説明が提供されています。 + +## 課題 + +[新しいSVRモデル](assignment.md) + +## クレジット + +[^1]: このセクションのテキスト、コード、および出力は[@AnirbanMukherjeeXD](https://github.com/AnirbanMukherjeeXD)によって寄稿されました。 +[^2]: このセクションのテキスト、コード、および出力は[ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA)から引用されました。 + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解について、当社は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/3-SVR/assignment.md b/translations/ja/7-TimeSeries/3-SVR/assignment.md new file mode 100644 index 000000000..2476c7fd1 --- /dev/null +++ b/translations/ja/7-TimeSeries/3-SVR/assignment.md @@ -0,0 +1,27 @@ + +# 新しいSVRモデル + +## 手順 [^1] + +SVRモデルを構築したら、新しいデータを使って新しいモデルを作成してください([Dukeのこれらのデータセット](http://www2.stat.duke.edu/~mw/ts_data_sets.html)のいずれかを試してみてください)。ノートブックに作業内容を注釈し、データとモデルを可視化し、適切なプロットやMAPEを使用してその精度をテストしてください。また、さまざまなハイパーパラメータを調整したり、タイムステップの異なる値を試したりしてください。 + +## 評価基準 [^1] + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | ------------------------------------------------------------ | --------------------------------------------------------- | ----------------------------------- | +| | SVRモデルが構築され、テストされ、可視化と精度が説明されたノートブックが提示されている。 | 注釈がない、またはバグを含むノートブックが提示されている。 | 不完全なノートブックが提示されている。 | + +[^1]:このセクションのテキストは[ARIMAの課題](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/assignment.md)に基づいています。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知おきください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/3-SVR/solution/notebook.ipynb b/translations/ja/7-TimeSeries/3-SVR/solution/notebook.ipynb new file mode 100644 index 000000000..e868a91f2 --- /dev/null +++ b/translations/ja/7-TimeSeries/3-SVR/solution/notebook.ipynb @@ -0,0 +1,1023 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "このノートブックでは、以下を実演します:\n", + "\n", + "- SVM回帰モデルのトレーニング用に2次元の時系列データを準備する方法 \n", + "- RBFカーネルを使用してSVRを実装する方法 \n", + "- プロットとMAPEを用いてモデルを評価する方法 \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## モジュールのインポート\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [ + "## データの準備\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### データを読み込む\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          load
                                          2012-01-01 00:00:002698.0
                                          2012-01-01 01:00:002558.0
                                          2012-01-01 02:00:002444.0
                                          2012-01-01 03:00:002402.0
                                          2012-01-01 04:00:002403.0
                                          \n", + "
                                          " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAH1CAYAAABbUbvGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC4S0lEQVR4nOzdd7wU1d0G8OfcQu9dQUA6goI0RQXFimL3jb3FrjHRmNg19hJrYo29d8WKFQQFC0WlSu8gvVzqBe695/1jd/bOzk7vs/t88/GTy+7M7NnZmTOn/o6QUoKIiIiIiIgIAIqiTgARERERERHFByuJRERERERElMFKIhEREREREWWwkkhEREREREQZrCQSERERERFRBiuJRERERERElFESdQKi0KxZM9m+ffuok0FERERERBSJX375Za2UsrneewVZSWzfvj0mTZoUdTKIiIiIiIgiIYRYbPQeh5sSERERERFRBiuJRERERERElMFKIhEREREREWUU5JxEIiIiIiIiANi1axeWLVuG8vLyqJMSiFq1aqFNmzYoLS21vQ8riUREREREVLCWLVuG+vXro3379hBCRJ0cX0kpsW7dOixbtgx77rmn7f043JSIiIiIiApWeXk5mjZtmncVRAAQQqBp06aOe0lZSSQiIiIiooKWjxVEhZvvxkoiERERERFRhOrVq+fLcW6//XY89NBDno/DSiIRERERERFlsJJIREREREQUA1JKXHvttejZsyf23ntvvPPOOwCALVu24LDDDkOfPn2w99574+OPP87sc88996BLly446KCDMHv2bF/SweimREREREREAO74dAZ+/2OTr8fca/cGuO24Hra2HT58OCZPnowpU6Zg7dq16N+/PwYPHozmzZvjww8/RIMGDbB27Vrsv//+OP744/Hrr7/i7bffxuTJk1FRUYE+ffqgb9++ntPMnkQiIiIiIqIYGDduHM444wwUFxejZcuWOPjggzFx4kRIKXHTTTdhn332weGHH47ly5dj1apVGDt2LE466STUqVMHDRo0wPHHH+9LOtiTSEREREREBNju8QvbG2+8gTVr1uCXX35BaWkp2rdv73hZCyfYk0hERERERBQDgwYNwjvvvIPKykqsWbMG33//PQYMGICysjK0aNECpaWlGD16NBYvXgwAGDx4MD766CNs374dmzdvxqeffupLOtiTSEREREREFAMnnXQSfvrpJ/Tq1QtCCDzwwANo1aoVzjrrLBx33HHYe++90a9fP3Tr1g0A0KdPH5x22mno1asXWrRogf79+/uSDiGl9OVASdKvXz85adKkqJNBREREREQRmzlzJrp37x51MgKl9x2FEL9IKfvpbc/hpkRERERERJTBSiIREVECvPbTIrS/YQQ2le+KOilERJTnWEkkIiJKgOfHLQQArNuyM+KUEBFRvmMlkYiIKAF2VVQBAEqLRcQpISLKP/kcp8XNd2MlkYiIKAF2VaUe8qXFfHQTEfmpVq1aWLduXV5WFKWUWLduHWrVquVoPy6BQURElAAVlameRMGORCIiX7Vp0wbLli3DmjVrok5KIGrVqoU2bdo42oeVRCIioiTJv4ZuIqJIlZaWYs8994w6GbHCSiIREVHMtb9hROZv1hGJiChonNhARESUIHk4ZYaIiGKGPYlEREQxtbOiCss3bs96TbIvkYiIAsZKIhERUUzdOHwaPvh1WdZr7EkkIqKgcbgpERFRTH0/NzfSHuuIREQUNFYSiYiIYqqqKrdKmI/reBERUbywkkhERBRTlToVQtYRiYgoaKwkEhERxVRlJWuEREQUPlYSiYiIYoo9iUREFAVWEomIiGKqUm9OIkPXEBFRwFhJJCIiiqkqdhsSEVEEWEkkIiKKKZ2ORA43JSKiwLGSSERElCCsIxIRUdBYSSQiIkoQrpNIRERBYyWRiIgopoTOa6wiEhFR0FhJJCIiShB2JBIRUdBYSSQiIoopodeVyL5EIjKws6IKOyuqok4G5QFWEomIiGJK6Aw4ZU8iERnpe9c36Hn7V1Eng/JAaJVEIcQYIUS5EGJL+r/ZqvfOFEIsFkJsFUJ8JIRoonqviRDiw/R7i4UQZ2qOa7gvERFRvmEdkYiMbN5RwZ5E8kXYPYlXSinrpf/rCgBCiB4AngFwDoCWALYBeEq1z5MAdqbfOwvA0+l97OxLRESUV9iTSEREQSuJOgFIVfw+lVJ+DwBCiFsBzBRC1AdQBeAUAD2llFsAjBNCfIJUpfAGs32llJsj+C5ERET+0ZmTKNmXSEREAQu7J/E+IcRaIcQPQohD0q/1ADBF2UBKOR+pnsMu6f8qpJRzVMeYkt7Hal8iIqJE041bQ0REFLAwexKvB/A7UpW40wF8KoToDaAegDLNtmUA6gOoBLDJ4D1Y7JtFCHEJgEsAoG3btm6/AxERUaQ43JSIiIIWWk+ilHK8lHKzlHKHlPIVAD8AOAbAFgANNJs3ALDZ4j3YeF/9+c9KKftJKfs1b97c25chIiIKgd4SGKwkEhFR0KJcAkMiNZJmBoBeyotCiA4AagKYk/6vRAjRWbVfr/Q+sNiXiIgo0XSXwOCcRCIiClgolUQhRCMhxFFCiFpCiBIhxFkABgP4EsAbAI4TQgwSQtQFcCeA4elex60AhgO4UwhRVwhxIIATALyWPrThvmF8LyIiorCxJ5GIiIIW1pzEUgB3A+iG1DzDWQBOVALSCCEuQ6rC1xTASAB/Vu17BYAXAawGsA7A5VLKGQAgpZxhsS8RERERERE5EEolUUq5BkB/k/ffBPCmwXvrAZzoZl8iIqIk45xEIiKKQpRzEomIiMiE3hIYnJNIREGZt3ozpi/XLhxAhSjMJTCIiIjIAaHTlcieRCIKyuGPfA8AWHT/sIhTQlFjTyIREVGCsI5IRERBYyWRiIiIiIiIMlhJJPLJ4nVb8cmUPxzvd9JTP2DIQ2P8TxARJZ7enEQiIqKgsZJI5JNj/jsWf3vrN8f7/bZkIxau3RpAiogo7qSUeHHcQqzfujPqpBAREWWwkkjkk607K6NOAhElzIw/NuHOz37H1e9M1t+AXYlERBQBVhKJiIgi8vuKTQCA7+essb2PZHhTIiIKGCuJRD5jAY6I7KpToxgA0KJ+Tf0NmJ1Q2kWvTMTDX8+OOhlEVCBYSSTy2UWvTIo6CUSUEPVqppYr7tqqfsQpobgbOXM1Hv92XtTJIKICwUoikc9GzVoddRKIKF9wTiIREUWAlUQiIqKAfDx5OS54eaLh+0JY1AI53JSIiCJQEnUCiIiI8tVVb08GAJRt24WGdUp9OSbrjUREFDT2JBIREQWs911fR50EIiIi21hJpIK2bssOLF2/LepkEFGeMwp6bDnlkHMSiYgoAqwkUkEb+t+xGPTA6KiTQUQFznDlHI4tJSKiCLCSSAVtzeYdUSeBiMgRLsVKRHomLlofdRIoj7CSSEREFBGr4KYcbkpEdt328Yyc16SUeHzUXKwsK48gRZRkrCQSERFFTBqNK2WvYd56b9JSrN3C0SwUrFkrN+Phb+bgyjd/jToplDCsJBIBWLaBwWuIiCgcK8vKce37U3Hxq5OiTgrlkcqq3FYl5bVtOyvDTg4lHCuJRAAO+jeD1xBR+ATHkxakXZVVAIDVm9iTSP6p5IRl8hEriVSwynexVY2I4sGwbKdbh2RBkIhyVen0JCqYa5BTrCRSwXp05Jyok0BEZI4lOyKyyawnkWMWyKmSqBNAFJW1m3f6cpzv56xBw9qlvhyLiAqLZXRTykv83SkIVRxuSj5iJZEKlmE0QYfOfXGCL8chosLFsl1hkvzhiSimONyUChafzUQUe+xxyksi3ZXIxxD5SS8QVlH6WlP3Mj4/dgG63vJFaOmiZGIlkQpWWC24H/22HJvLd+m+t2jt1lDSQETxpBTpnKyTGOcGrvJdlfjHu1OwehMX7jbDuj8FQW8Yc1G6pK+uJN49YiZ2VFSFlCpKKlYSqWCFUc6avrwMV78zGTcMn6b7/v/976cQUkFEFI6vZqzEB78uw90jZkadlERwU+HfsNWf+fRUGKp7EnPf43BnMsNKIhWsMPLG7ellNlaV6beqbzLoYSQiSjIG0DDnJXDNlW/96l9CKK/oXVaZ0Qo69yRvUzLDSiIVLL/zRr2HfvVQMoN9fE4DESVMOhPIt8La4nXbok5CIrgJoLZq0w7sqqxC+xtG4D9cyok8YGMOmWElkQqW35mjWYWPQzqIqBDMX70FADBteVnEKYk3vQAjdkkpM6NUnh+70K8kUZ4yK33oDUElUrCSSIXL58xRqLoSf/9jU/o1849i3ZGInAo623hy9Dy0v2GEq333bdcYANBj9wZ+JilvuX0GmA0hpMIlbI5jVjZjTyKZYSWRCpZf6yTqOeaxsem/zDNsvQy6bPsuXPTKRKzdsiOAlBFRnCg9SnEqqj341WzX+yo5XpO6NfxJDOWQqA5GYve6WbJuG76cvjKwNFE82O2fVq6fu0f8HlxiKPFYSaSC5XcDWpHenMT0a78t2aifBp3X3hy/BCNnrsZz3y/wLW1ERE556aWy26NB7giHc1mP+s/3uOz1X4JLEMWW3jWilFde/3lJuImhRGElkcgnenNM1K+Up+eQqOkVwooshqgSUWGbuWJTKJ9T6WLCEvMte6ymIpiS6j/tHWG7zvOHiMgMK4lUsMJu6NYbWqpXBsvMFeCM8oJVUVnlqoBOySOsQiDr+NfHMwJJi5arSzC9D/sRzXk9P5lhyswmSI03HvmIlUQqWF6iyxkcMPclVU3U7sM8jnOUKDyPfjMHnW7+AvvfNyrqpFAI4limY1CL8Lg5xRIeeyIpb+nlJ3q9zb6XfygvsZJIhSv4OmLWa3Yf5k7nmlB++e+ouQCANZsZuIiiUZzOhNibHU/qaQp25o2+/8uyIJNDMTV69uqok0AJx0oiUYDUQ1rtBoFQeh/Zik9UOIKMtuyUl14q5Xswbo25f3+ZiiDr9jw5eTx8O2uVuw+hxFGPXvrzSxMjTAnlA1YSqWD5XYYp0nnaq4d02G2UZ9mKqHDEp2qYy1N0Ux/TkY8++DXVu+d2uGnmbxv7c2ghEbnBSiIVLL9DtPt1uEx0U/YkElEEvMyLZrbljJvnhvoc2zrdrCMWNCf35KpN5cElhBKHlUQin6ifw8qD300BoHq4qfc0EVEyxKlytbOyyvW+yvfgOonhqKyS2OXh96L8YvuuM9jwtpAiJyv63zMS170/JdTPJPtYSaSCFWQRRikouSn4Vc8HilGpkYgCFZe7/ZfFGzJ/e6m4soqY6/1fluHH+Wt9OZb6+fD82IWm2/K3KBxmbTPz12zFjgrz9TLDjoWwZvMOvDuJgZXiipVEKlh+N3RbtpzbnZMouP4VUaGI233+q6qS6KbmGrOvEyv/fG8KznxuvOfjaBsQN27b6fmYlL/UeczwX5ebbssRTKTGSiIVLL9bV/06nnIcZtZEFLYKjxmPMpeao02D47RhgUN/SWE9NNnZ8iqU31hJJAqLzed09fOcGTRRofhl8QZUxGBuWWVVdRo45J0oWawi2RYXmb/PxmlSYyWRClboras2M98iDjclKhjqitiIaSsiTEku5kHxJKWzCKfqJ907E5cEkSSKCb1ijTqPKU5vYFT6Ufce8v4nVhKpYMV1AE71cFPm0Em0s6IKm8t3RZ0MSqBdldHf814bz6q/QVxz2MKj/kmv/2BadAmhyBVZ9CRKg7+pMLGSSBQz6gf6hq070fGmz32LiEfBO+3Zn7D37V9HnQxKiM3lFZm/LcpvoVDnP14KiZwGRxQ/xRY3ZtTDTacvL8MZz/6M8l3mUVgpHKwkEsXMD/PWZf7+fcUmVFZJPPHtvAhTRE78tmQjAGDUzFXRJoQS4dLXfsn8fc278VovzE3gCg6ACJ/V78T6emFYvnE7Zq3cnPO6+vKwmpOYPdw0/Jv55o+m46cF6zBzxabQP5tysZJIhcuHJ+fcVbkZshG7QSA+mfJHansJ1CpN3aI/zl/HSGMJc+Erk6JOAiXcHxu3Y/OOCusNfVTkuQswHd3Ue1LIhJOnAaObFoY5OhVELcvhpg7mugaJpZ14CL2SKIToLIQoF0K8nv73IUKIKiHEFtV/56m2byKE+FAIsVUIsVgIcabmeGemX98qhPhICNEk7O9EyWQVBcyOYY+N8yElxkqKqm/Ruau3BPpZRBS9h7+enfl74qL1oX++OlfkcNPgrdm8A1tMGgKqqiQe/no21m7ZEWKqKF9lAtcY3J9Rx0JgtmHfmNmrA4+IHUVP4pMAJmpe+0NKWU/13yua7XcCaAngLABPCyF6AED6/58BcE76/W0Angr6CxApdgZ4g0pkt+pbr29EREn3eIyGlrspL3LAg75/fzkr8/eOiuz5Vp9M/sNwv58WrMPj385Dv7tHGm7z3NiFqDKZTMaCd2GwM1rJat5z1PevMhdx47ad0SYk5sbOXYPzX5oY+PMi1EqiEOJ0ABsBjLK5fV0ApwC4VUq5RUo5DsAnSFUKgVSl8VMp5fdSyi0AbgVwshCivp3jj1+wDi+OW+jwW1C+CH0FDIvMd+zcNVn/fv+XZY72JyLyymu+qGRTfozUyCdPj5mf+fus58ZnvWdWuK+0GUlEHQApB3+KglDlcztyFGUOZU7lKz8uxtotO2KxdmwcrdmcGlmweN3WQD8ntEqiEKIBgDsBXKPzdgshxCohxEIhxKPpyiEAdAFQIaWco9p2CoAe6b97pP8NAJBSzkeq17GLnTSd9uzPuPOz3x1+E8oXcXtuXmQxhy3qYSBElP/UlTt15eWn+euwZN22KJKUdyYt3pD1b7Os3ajSrp2jbnfOu9rMFZtQto3L9eQLP0oIRTGJVLJ+6070u3skbvloetRJiaWwOjnCvBzuAvCClHKZ5vVZAHoD2A3AoQD6Angk/V49ANoQR2UA6qveLzN5P0MIcYkQYpIQYtKaNWu0bxMFzk0Grn7wRx2amojynzCYlHjGcz9j8IOjQ09PoQuyR/bo/47FKf/7MbDjU7j8aEiOywgAZXrNiKkrIk5JYQulkiiE6A3gcACPat+TUq6UUv4upaySUi4EcB1SQ0wBYAuABppdGgDYbPN99ec8K6XsJ6Xs17x5c6zjJPCCF0ZLjJPW3R0VVbhV02qmzvPZk0hUWOJyy1/99m+2t1XSzMA19ml/5q07KnDxq5Owsqzc9nk07Y00KfjPY0C0vGEUAV3v5bhUBo0oS3VUxiUTjKmgz05JwMdXHAKgPYAl6VDM9QAUCyH2klL20WwrUV15nQOgRAjRWUo5N/1aLwAz0n/PSP8bACCE6ACgZno/Uzd9OM3VF6H84XcmaXWz6mXgQmRn4K/9vNjwmFwCg4iCpl4uQclxPjIJrGJ8HJ8SVAg0eftnU//AN7+vQuM6pTixd+uIEkVJY2e0kdUm6vvWzRBmvzEb0RdWJT+s4abPAuiI1LDS3gD+B2AEgKOEEEOEEO1Eyh4A7gfwMQBIKbcCGA7gTiFEXSHEgQBOAPBa+rhvADhOCDEoPY/xTgDDpZSWi8WU7+JkWAqenzcyh5sSUdCyRpu6iW4ag4Jl0hidMSlhWEr28yyzATI/+DLcNMTWHSX4ihmu8Wku6Fs3lEqilHJbeljpSinlSqSGiZZLKdcA2BfAjwC2pv9/GoC/qXa/AkBtAKsBvAXgcinljPRxZwC4DKnK4mqk5iJeYSdNvO7Ib3qXlLrA5GpOIh/eBWX15vKok0AxEkWFy3N0U2W4KfsAbNMuX6GcOwn759HLlaKNpE3JZNSQrJePxKEMPPA+44UOWPQxF9bvF9Zw0yxSyttVfz+C6kA1etuuB3CiyftvAnjTaRpicH9QwlRUVuHmD6fj0oM7oEPzer4cU8D84Z493NSXj6QYu+uzmVEngWIkiopWdtwa55lOZg8+ZN1TnTu9de2276rMfdGDiYvW40/99vD1mBQ+vxuVrQ737qSlqKySOGNAW1fHr7AxPIrZiLmgi4UxCXYbPjtd2Lsqq3DfFzNRtp0hovOR05aYacvL8M6kpfj7O5MDSY8edSZt5wGwdssOrN7E3qikYs8xqUXR2p81J9HD5cjCnX1mw031yirrt+YuNO4l72C2kx/srqnpl+ven4obhwcT34OXZDwUbiXRxjafTP4Dz3y3AL3u+JqFtzzk9CdV8t8ivabdAD4vvVfmr5ttrBfU7+6RGHCv8RAOireiOIwBotiI4nrwPtyUz0q11ZvL0f6GEabbaE+Z8hOY9eRKhlUgDaNbL4m3pKwet04RKtxKoo0Lr6KqOhdesp6LCBc6JdMKM89SZ+4MVZ7/WEekqBksk+j8OLyYAQA/zV9nuY32PKvPndFp/HJG9vpxCawHUATiXmFsUb8mAKD3Ho2iTUhCBN0oV7CVRDtFffV8kLjfWBQ8Zfx8SZH+bWO1no/+5HHz65CXHVH+mr/GvOEnkrVRs4abMgeK0ufTVujOSQSAbTuz5yU6qZKPmb3afaIocdZtzY0iGtcmnCFdWwAA9mhSB0B80xk1PxrhKqskllp0gBVsJdHW+c1aL4YKnTLev9jgqa19aPuBZbTCwuGmheWwh7+LOgk5eAX6y05hTlsZV/Yo31WFFWX+zzH/x7tTsGQdR0cVigtenhR1EmxTbhdtxF/S5+Us/XfUXAx6YLTpNgVbSSRySmbmJLo9gJvPZEZZSNwU0KWU2LgtN5AFJdf4Bevw9oQlkXx21mLarvKs9HH8SU5BUv8GO3xY01lbT5UABj84OuvfZuav2YLut35p2etA5BfWEc35kb/+NH+t5TYFW0nkA4zcCrPe5uSjrIauUfwN/225433eGL8Eve/8BvNWbw4gRRSF0579GTcMnxbJSIKbP7QOkGVGGVbPTvGUiQvXe9rfaMixk2tDu63Txsd3Jy3F9l2V+GzqCuuNKW9E2UZdnY8wIwmKnSWWCreSaOO6y5rAzx6dvJOEvMfJZXfuCxOCS0iBWrZhG35eYB14wg9uK3ljZq8BACxYs9XP5FAMWK1T+Pd3JuO0Z34KKTXOJCB7DcVrPy92vI/62WRUSI6iROJm3UwiNzIjEpiRmPMUXcx6k8KtJPIRVvDCrvfrfZzVVejkobyrkjHR/Tb4gdE4/dmfDd/fsHUnDn5wNOau8t6Lt7PC2wXJ4lv+scqjPvxtOcZ77Kny8vl+7UPZ7JRPnDRc6w039cPOiqrQ1+Yjb5LSQ8erypwfP5+dQxRsJdEO9U1UJYFHvpmDdVtyo0RRYYh5nhr79CWRVfln1KzVWLxuG57+br7nzzL6/Rau3YoFmqHEUkpsLt9luh+RV256jqp7APL7whw3dy3m+NA4BJj3NtqtDDr5pTZu25X17/d/WYZtOyscHCGlyy1f4JJXkxMUheJj8TqLkS9sbbJl4dpgRxAVbCXR6fPrg1+X4bFRc3HD8GnBJIhiZdHarfjvyLm+DjPWHmre6s2ZZTX8wMiYEQrweTbkoTE4VBMF85UfF2Hv279mIIk8l+RyUr7nRme/MB5HPvq9L8darIk0mhU8yJdPsLZms3EDuNKzqXc9jprF5TTyVZDDi697f6rFZ6fkez7ilnJP/r5iE1ZvdhcB2U6RkZVEm54ek+opKN/l/zIHFD8XvzoJj46cg+Ubtwf2GfeMmGm9kSaPvvDliZi4SH94GSuJ4YvqjH/9+yoAwBJWEhNl9SZnD/NI1klUSXIlNV8Y5THa38ZrXmT2W/PRkj/iEn3Y6HJT0lcoIxL8sGn7LuuNXCrYSqIdepdm1A9tCsf2dGNAlc40P7eXgLZVrkPzejb2yTZq1mpc/vqvutsyL02mnRVV+G3JBle/n/paZNbkr/Vbd7oagmfG6UiUqH9SN58fdZrzgbpg7PV8bi7fhfd/WebxKJQE+VQGYJCkeGAl0UQ+3XDkTlaUOb+P7XI/o4YK9iQG58o39Svmfrh7xO846akfMX917twCOwsK81cPRp+7vvFtOKGioIJL8cIM1akGUW4XrXU+2mDgfaNw84fmDRoVhXQtJ4TfDYWBNjwaHFspxlRlehRZWQzC6s3l+HmBddAzVhIB/DjPekFJBa/XwhDE7xx0pEDWEYNjtT6Y2c/065IN+HXJBsP3Z/yxCQCwYdvOnPfu/3KW6efurKzMDD0l/y3bENxwc1sift54KqDxWelaVlZucB61PS3zDZbAcfNcWFFWjjfGL9FPT9oRPjegEAE6w6hZsAnE9OVltrYr2EqiOsT0mc+Pt70fK4nkhNn1UlRkI8y5TgnBqODGnsTw2TnlJz/1I05+6kfjY5js+87EpabHvuBlRhbMZ1FPb+DjLhp2zntYl0ZllcRTY3KjNwcdVZGcS1IRwO5wUvYkplz19m+49r0pvh3P7jKABVtJtHOB6t1wHCdNflwD4+auxQQb65vp5Y9Gn56g5wOpmD3Y+YDML05/zsok//7MkALl95VhdLytPs/LpeA4yi5s3J+u5iTbXbLFYLNZ6WVlkpz1BeHjyX/gPT/nFtvMnwu2kmiH3Zo25a9Vm8pxxCPfYUWZu2FnRqHMz35hPCYv3Wi5v14+aZR5JqkVMR8NfmA07v7sd8f77apM/aC6v7XBPvq/NZ+qcee0ZzDqdco9FdR4OTqiLlyrb+84NUw/+NVsXOxiXcQZf5RhU3lwERjJviCvpslLN2LPGz/HKU8bj5wxS0f5rkpM0ZSL4nP1x8sTo+eF8jkFW0l0WwFk60ZhUB7Yb09cirmrt+DtCebD/oyP4086zLw9YQmG/7qMw019UlFZhR0V9pa6GTN7DYDU77Rk/TY8P26ho89qf8MI08aCzeXeW/F/XrAOX0wzn1NJ4dq6owIPfz3bcjunPcnTl5f5vHam8wyMuZA7Tp8Vdrf3+7HwjYs50MMeG4dzXpjgb0IoR9RFgO/npJ6Hvyw2noOv0MvbWL62b+aKTaF8Tkkon5JHeA0XBt2FXDUZcKXDZn43Qwf1exKrXy3fVZkJq9+lpfWSGmTtlKd/xJRlZVh0/zDLbT+Z8kcIKfLm9Gd/BgBb34eCpdy6j307F898t8ByezvRbdWOfXwcAPe/tR/DmwvhGTnCIpCVG07P2xfT7aXBy4ioMbNXo0+7xq73V9P2EFH+aVK3hm/HUnrQN27bhV2VVSgtLtg+rUDYzRV41k3otsoUwhOQbHlz/OLgP0RvTqLqtb+/MznzN3sS3Zm+vCyrcDxlmb2oX75jM2reUwo+uyrs/daJHm6ax9nRXwJYEsdoKLLRbzDVZj7l5bFwz4iZ7nemxHPaaNSpRaqheq/dGlgfW/c1/c/7/Y9wes0Kid2osawkqjz89Ww8GdI4X0oGs/toqcPw+K6WwLBolRg3t3r5FoaKdm7k76tw7OPj8N6k6Beb9lofYB0z/pTfyEZg49T2wSVF//M0H+jl84f/utxTWgpN1Pev7vA/l8cq274LW3cw4E2cBVFaUBqq69YsttxWNyif6jV1D3iiA3jFFHsSXXj823l48CvzeSJxmkROwVHyJCWjkjrv2RkKFkTBX/2SehkNVhGdW7QuFcZ9djqi2uJ17sK6M1cgO5TrxM7yNwCj2xYSo7KF17Y/z/u72KfXHV9j/3tHeftgsuXzaStQtj38oEB6gYiUa83tCIiscpbqX06H3ZM1u/lC4VYSTU7Q6k3l+GLaCuyoqMp5j8/swpDzwPaxldUJvbxRXXAsVhU2iwr3brZUtm0XHvl6ds48UqX3VRnqFcQwMqIMpfHJbk+iy0xm2rIyvDvJXbAtPz6f/OP1N3AyJ1FKiW0el7xYsi4VOGkzexIDt2TdNlzxxq+4+u3fbO/jpOHJbMur3rL/mXaPnZU21Z+sI0aHgWt0nP7cz1iwRr9HgddqYbCTj0ZVgFJ/bFYlkcNNDd3x2QwM/3U59tq9IYb2bJV5XTl9ym/p92/65vgltrdlgTz/KY1PdgvubkeuHPdEKoDNqf32cLSf9tMKceTMzwvWoXZpMXrt0SjqpADwXuaw3SAB4JUfF+H2T6uX8XHTkz34wdGO9yF3lCjcTqe+AN6np/wwf52n/S0b3lXJcxokkKzZfQax70HHsvXGNxyH/+QPO3nkqs3lAIAvpq/E4nXZoeXtFKC8Xi9W+wuDvylb+a7Uw7SiKnt0gHLOlJ5E9TUxdu4a28c3+pmeH2sdwdINvQyeOVP8ZYaxB9yTGKWk50OnP/szTnjyh6iTEYnPp68M9Phz0sP6yR/akTBh2qkz0k659+2Ue/R7EvU3iOL7xVX7G0bgl8XrPR+Hw029MDl5DA6SP+zkO6s37QAAzF29BTeml5pwsr+X7QEbGakKr01jmbmlmnOnnDPtHFQAvqzrFfWjbf6aLZm/35m4BO1vGIE1m3dEmKLClpmTaPNW9bsBvbJKmhbgtO/5lWcl0bsTvQ/XdcLoXHsfbhot9TV15KPfM6CNj5SRRFHM2atR4q36oHtd6482ZSVR45vfVxu+V7bNXtAoBq4JyC+LN6CiMrcFhfKLkiUN6twMAHDGAGfDtrTHcZ0O3cA1+ke1W/AsSOlz8+Toefh5QfUwmcxwU2UYoMtz+NvSDV5Sl0pDAA/CP780MfP3u+kIrm6D8xSqXT7m98pvbHeoj5+Fo9Wby9Hxps/R/56Rtvcp5LLZXSN+t94oIOp8yE2eJKXER78tx/adlf4lyid6sR7IHeX5FVQd0ez+b1yn1NuxdcoxRmWbfB1uumzDNrz0w0Jfj9nrzq9x8INjMGfVZl8aulhJdGHiIv0C4QUvT8TR/x0bcmooCJnMMZ0Jq+f7KW85LcC5m9+jk5HmZ34ZKOXXm7Vyc2ZxeUA9XCd7O6eWmgxRV3w+zf8FuNX0rot8fbiG6ZYPp/t2LKc9iX5auj41XH7tlp2G2/BqUYnwZHjN439esB5XvzMZd0dY0QWqg9hQMErSC8wr0yncNnLO+CO15mbZtl34fk7uNIu3JizB+AXZcxC9xkCwWgJDLV97Es95YQLu+PR3rN9qnCe7sXbLDhz56Pe47oOpno/FSqIOq0vfqLD/7azVmLmCi37mBzvzDUNIhcUSGBxhaq3LzV/gs6n6FTTl/GV68Xw+oerewWvenezbcfWSWSUlFqzZkikwGKbJt1QUhtGzjYf2OKVcDjsr7f0Kfg4jc3MoNw1b+ZIlqb95ZZWMZJkBAK6GZ25OL0+walO5p/mvdn99ox6Ls18Yz0bNACk/rZLnuz3XF7ycGnGy0GCUyY3Dp+E0VeOq+rMBYK6Luaa6kdvVf6u+TFWedj4recrHk52tKetLQDHOSQyQx99n5opNmLeaE7gTweS3ttO6lRXRuYDn90Rpp8lwQe1cxSALuOW7vD3pnvvePAjO7JWbcejD3+HKN72FJqdsxT52+yn3s93AA352BNta11Wa/9sOo4Jekt37+Uz0uuPr0ObTqSt2d4+Y6WL/cEOajZy5Svd1zj8Mll93V7FRAByTD1BfYyc99WP6tdS/Z610V741yi8q8yQf0VLO4B2f/o5py8oCmVu6elO5wWczuqlrVmPmJyzyFlno6P+OxeGPfO/pGBQuiznWgbniDZ11+/Izv4xEdU9i9r/1+BH0ZYyqV2re6i1Z71n9rPd8bl5YfGL0PADAD/PWukob6fO1iJ2+0OxWPP1cgiKKbCPJZTt1gfWTKX8AALZYVHoWrNmC92K0PqXT47i91jmiJRrKNZqZHePydyguVhpL7V8w6s/Srq25bWclVm/Wr5xk9td5zaiOlK/TJtTn8LgnxuGpMfPs7ejgdAy4d5SzRGkUbCXRS572n5FzfUsHRccsQ/VvnUT/Mzd1wdHJQsmUS3v2rM6mk6AfQO6vP2VpWebvwx/5ztGxAOCf701xtR+QP8MAw/ZHWblvc0aqpzrbDVzjy8emj2UnLL33D1R/syQX7bKG9SuvWXyhYY+Nw7XvT0VVlcS7k5ZGFuQuk16Px1mwZis2bvM2zFabBm1FZM3mHbju/SmWw+TJH3rXcLEmyrcd6vKT3m6bLIZn6ze8V786alZ1g2q+zknUmvGHvelqTs/GpvJdmLpsY9ZrXAIjYIMe+FZ3gi8lh62KoOn+TgPX+MNLfjlh4XrL1vBCNn9NdJE/7eTZ7/+yLKcHkoL3x0bni1XrUe7dIrtPXpOb/YNfljn8cPVh7WUihTzcVJ30zIgDi1x8e7qi8+6kpbju/al4YZy7yIVee+a8RkdVG+NhTu66rTstowPfPeJ3vDtpGb6YHmxgr7zm022mbZQyu96zgvnpBk1zkQDVcRaonsV52pEIt023z1pMPdG68OWJOP6JH7IarbgERsCWrt+Ouz6LNnIYBUf7YNVb5DWq8o/bj924bSdOfeYn/EVvCGvMbSrfhdd/XhxYoVNCYsrSjZEFpwjDpMWpqMwJLrdHxu9zdnj3lvY+1+S9f7w3xdFnqgtaRsO3zCKfupHkBim9AvI2m0tKbEj3vjnpgfbzGssJyGUvBQ5ete/tCUtsbcdRMc75nS9pe+xeNGnk0P+1ql+1GiKqt3+hPZr8GqZt1QOprMjgprLNSqIHhXZBFyKzFhs7Q7OyA9dEe8UoAVyUcNdJctPwabjlo+n4JV3RscvJEKalG/wP154bB4C5RhL5NdxJ+f1Li8N/9Kq/g1Fh4cD7v836t9n1+v4vy9D+hhFYu8V4nu4kg+WikkDvJz/s4dyh3qN0grb8OD81L9jtVeOl52T7zkps2VHp+Th+2WURyZeNVt45OYXf/J66XvXKI9qXHvvWeI6csKjhWOWZusNNDXaJuuwUFO0ZdPs1r3p7sq3t3JQ/WEkkcimqB7A6w3TSElXkYt5BXCgt8k4jhB7/xDhb24n0/4KWxHNP/jUIhh3KfUVZ9TBZ9XewW+k12+ytdA/RorXZQ7TVd1GSoxJmz0k0zhv+Oyo3RsHYualK4uZy+z2p6t/k6THzbe+nddC/v8Xf3vrN9f5aej+h+roCzM+PtmDa925n87rJmpNK1Aid9XqXbdju+DhBBCtiI6p7QURGBVhJjJRRaFqKI3c3oM4oVc/cHifB5TXXD6Q5q8zn772dXt8raQ8npRCqh5EGvdMWlqIKnLBhm7fhnwPvq+4ZVH+HIL9Osu4kEzpzEnU3s1GRtmPQA6Mzf7tdb3nrjgqsUw1xdTTY1EEvzvkvTrS9rRXmV965uefUPYEV6QqGk3qG5XribuYz503mYY+f1/75L+vfk2puzm/BVhL9mCvhtQv89Od+tt6IYiFOmZfbtCgVIT6Uq01eutHxPk7u+ygqn1bJy9ehO0Hy65wpR7F7D77+s/1KhuVnZw039f597JyTfMlqwvgefkTQvert7B5EKaXttBtdk3q/8sbt+mnVC9RjnR9ZJIwsuauQZe80fXmZz0vuOD9WoV0K2h54L+c/qECaBVlJ3FVZhTGzo49MunS9/3OgyD7zglryijeW2Utmg+R9N0WQlS67Bffpyzeh/Q0j8OsS6/lWS9dnD8sqtIdgvvBrJI9SMBs1033ESPefXf237eGmAOasyl4Y+5UfF5lWELOWcU9wi1TSRhcAwLTl0c439zIHNcGXSuT8uFa/nL7SUT5ntakfFVdyxur82Q28pVaQlcSdFbkTQ+K+WGdFZRV6/OtLvO807DkZcpIfZQWgUXrknO7n0yXm9mHqtBcjTuIU+W50OiT8yN9zA1ZYMitch/TDqD+nz13f4IQnfwjlc5NE+zP5Pd/j21nhVxLVX8HJ3MgjH/0+69+3fTLDdLizWnzuWueyl8CwP+fOi1+XbPBUUI5TPqmw+21YP3DO9agigx29jzDwNlrB65qcSWMaRd+F58aaL43R565vVJ9tL68oyEqinns/n+l4n/lrtqL7rV/mvB7EorBbd1Ri685K3PnpDN+PTdbcFASs1odyS8pUJn/HpzOwoqx6XqvdOQLxK0Yki3Ie3eTnFSaVjShaUddv3YkpLobcFhr/ehL9OY67z/ZvuGlFVVWmkKE9Ur6U9Z2cox0VlWh/wwjPn3nyUz/i48l/uN4/kGAiOqdh1SbjiLZ29idnKqsk+tz1DdrfMALbdXqDnJ5jve2FgK83r9NDjZu7FrVKi/1LQAL4fbsGMUKFlcS0r39f6Wq/7ToVwnNeGO81OYaY34bDjxaeN8cv0RT8/fv11mzegZd+WJT1mtXRlUJPEnsSFUEWOJyeFjdpeWrMfMNeqQmL1js/oI4k/75x5VdvUZRDGLN6Ej3eSEJU91mZHaperRJPnxMXVoFrynzsAVmwxjzYlhkvIfWNtn35x0Vuk+MI8y1jM/4oy8xZXaUT8NDp3ay3vYD3fMHLkl9Tlm309NlJlITh+KwkBmDiog3YXG790GALW7JZ3d/aHmU/h5gVFznPXDKVxAT2JQadl0pp/zMmLfZWmTN6EH8+zV1DFQXPr7w62jxf3ZNob48dJqNiitJ5kNlUjfoxriSe/uxPePZ746UmnBTgrvRxyYnFPsYqcNooofeVl3hMj1UaWAxyRr2sTObcOu5J1O9KtJM/zVq5yVY8DaejL1I9pIV9NcTx27OSGJC9b/8a60wWGaZk8ePmvffzWT4cJUUvAw4iJDXlUuZjue0V4s8Qf9rfyK8lMOLy29tt5T/tWeMI3Eo7lfZY6n/HOc/5ecF60zzZSU/IhIX+jAIA4HG4afZT4Id563Dow9/Z2vfcFye4/lyKmMNGVC89iUP/MzZruRbDz3B470e1zBCZK8xKos4NtarM/wrd2i3eQ1pnJK/zJ6+4DRgURLYnhH4Bxm60sQSMcDAU1GPE1TlxHTTA3X52uYlgRub8jm4ajeqL3PP3kUBR+qaJecw3X7hdJzFJ1PPbnfKyvNKnU1KV4nw5j0FQj/7RPcU+zUn0ei+rd3caDFKC14CRHRX+P9Pt3quFWUnUsTOgICNmvNwPqzeVBxIgp5C4jhIag4zMukKYuwVb6oylTo2zCyLO53PMbHdDmx/5Zo6rtSPzndvfWrseb6RVRNXl7ce1W1GZOsbaAhgxk5Qh+ss3brfeKABm58fupZbkxsugqc9NaXF1sd3/R5B/BzzD4TrgcX6eBmHasrKc+9XoFFzx+q+2junkDNo93QVZSYwiL9pRUelPtMv0Dzvg3lG45LVfvB+vgJndJGbXyKTFG2z9lqkeP+fpCsLGbTs9DWOiXK7Dj4dQVZjucr20x0bNxYlcEiO3kcXlT/aSdnHxCPMDdZ5WWSXx6ZQ/bE2JaFG/pu7rSqCl+75wHhk8acKuwOzesFa4H5gAqzeX44lv5xb8WnpFevEIHF6f67fuxKZyTQNW1Kc16s8P2fiF62xvOyqCJZMUBVlJDItSGPx1yQZ0veVLHP3fsabbX/TKJAy8b5Tue3oPqe/nrPGcRnJn644Ky9blIDNdp8f+61u/4dGRc4JJTIjOC3DeTFgFwcgfxuSYf9FNo6Oer7Z6czn++tZvuOx164bGFg1yK4nq8+FTfToxtOujBvF9T9y3dQBHtRZEj6lflbqr356Mh76eg2kuG8DyhW50bIeneLTOSBMlrJ1tesnw8FNXSeNctnCemeF9UbvlnfiGHssjJz/1IwBg3mrz0NYjZ7pYnJsiISXwzqSlUSfDkDZa5x+qYQ2Fk+Ea+993xlEN7YrzaTTtJeewrtDkLqUTj6tmy47UVAWrZxKgfy0p+wPxvg/8ov4ZL3p1UvCfl0f3qF+X/Nb0XGunc93ygdH1oD0Tdiv5ur+JlJFedzHJGhPNzwBaClYSffDl9JUY2rNV1MkgH1lllmXbrZc4ESLaddHUZNbf8UiTE36vJ/Ts9wsy60655Xq4acSnP+rPLyRxWgdLnZLvZqdGoWxwub7f31RLPuzfoamXZCVC2L9j0u5RP05PnO6VODO7Nuw+2/W2M9pzktH6vT7/XIUWuCbq693up4c+3FQI0VkIUS6EeF312plCiMVCiK1CiI+EEE1U7zURQnyYfm+xEOJMzfEM9zXi93VoZ8iObjoK6Y7IMxURt2ZaPQx+nL8Oxz0+DjsrcudOJiUIQ5C0996KsnLHZ8VtZTuMCfpe5zBUVklURBDMKy6C+oXiErjGz/0O794i+4UEP9aWbdBf/y3sZ3VS60t2071w7VYAyFlvr7JK+hO7Ic+oLz8/nh96hzA67DXvTjE4iN4xjNO2futOHPrwGMxfoz96odAC1+hRTsE3v69C+xtGYOM2H1dIcCmKOYlPApio/EMI0QPAMwDOAdASwDYAT2m235l+7ywAT6f3sbNvpPy85hesSWWqvI3iwfaQF81m/e7+xtZCtF5d/8FUTFtehhVl23PSkbSexN53fh34/Ntx89Zie0jRgiWAH+evDfQzJi/daHiN2inIHfHId+h08xc+p6rwaM91XApCPVs3AAC0b1rHctuYJDkUhz9ib01BNTb2VtOtfOhsp0Rf1i67cc4L49GZ+Y6prFFBmhNue7ip7mv617FfedZXM1ZiwZqtePa7Bfpp4m2U+QWe/T41HWb2ys3RJSYt1EqiEOJ0ABsBqKOznAXgUynl91LKLQBuBXCyEKK+EKIugFMA3Cql3CKlHAfgE6Qqhab7hvSVAvHl9BU5rzHiYLyMmOouUujaLTttLURrxSpDVR4eykNjQbrlNok2uhwS55TTJWXcDzeVuPuz6CJCSplKQ5nJeU3y9RIEt791nHrt1RVW5fvUqRHsjJOkFfzKd1X3YqmTzuGm5r6YvtLwPbNeK+1p/XF+KuLjNe9O9ill+UF9Ds0aJWw3AOsc48nR3ufpm1Eqm0p0Vu33kFImrgHbC70cRWT+P32OADw+am5YSdIVWiVRCNEAwJ0ArtG81QNApj9bSjkfqZ7DLun/KqSU6rCMU9L7WO2bWJfZXBOFgmNVuHvs23m2jhFVlqfMmYxi/U8ypxSEtMIsh743aRl63fl1eB+YMH4V0nMD1/hzXDfUeZqT3oGkDn1MsiQWlX//Y5Pu63oF/6pMI2Y19d/Df13uY8qSQ0qJqcs2mm6jN0BkZ2WVo/VKja4vr0N9za5bJd16K3hY7VuoVm0qx8PfRBuVPsyexLsAvCClXKZ5vR4AbUzjMgD10+9pcx7lPat9swghLhFCTBJCTCrbGE4I5SAKBNrWl0KeNxSUHRWVWLmp3HpDC0G2ilkV8pRIcB/9VpgPWyt6Z+/6D6aF8tmXGqxvWhRiafy7uVw+JwzaXzRuPUR2kuM0zfnSGyCl90Kzl89Omh0V9kdizF21BUvWbcPERRsyr5llf1VVMpknxaGXf1yE45/4AePmZk9HyL6npM5fwKK1Wz2PXAgycqxSdlWec9re+QL4eR2LwzkJpZIohOgN4HAAj+q8vQVAA81rDQBstnjPat8sUspnpZT9pJT9GjZq6Cj9dmjXTgKsW2Dd/P7aG8uPUP6UbcTU3OG+bjlp3bNLADjo3/aGrEYdYCdoOyoqM+tGrSjbjvY3jLA13y+sIaxO+P2A5lwp/1z4irtlD/SWwIgqhL9e5W3mik0FuaSAXW/8vDjqJCSKXplHLxt6Z9JSDH5wNP795Sxbx+1w0+eYsiz/10ecm16SZuE64+H+Rtm6H/fxrkpvxzB75CjpU3oStc+nKiljUSkK2sqycoyyudxdHEZxhNWTeAiA9gCWCCFWAvgngFOEEL8CmAGgl7KhEKIDgJoA5qT/KxFCdFYdq1d6H1jsG6q/vzPZ8T5+3BCrN/tfCSkURjdghceMMnN8CFz19mRfjqXmJHX5XFHYVVmFrrd8iXs+T83vU9YIemtCfNevVMQh89dyeq38sngDbvt4el5fY17ptezHIXqj+hfTi4Cs5uVaTUKv4rotO/DjvLW6QSK2hRTMSisJ500reSmOn+L0zValqfBlzUk02NdJHVF7fKvX/ZAZbmow3lTCOG9M4v1g5OSnfrBudAyhfGA3Xw9rncRnAbyt+vc/kao0Xg6gBYCfhBCDAPyK1LzF4VLKzQAghBgO4E4hxEUAegM4AcAB6eO8YbZvmNxewj/MW4sDOzUzfH/Zhm245aPpLo9OZozKtkH3vg3Ys0kgi57qimFlxC870oXbF8YtxEn7ts68zkpLypxV1gule3HK0z8CAG4/vofFlskTVKEkqCtTSuksuIoqIRVVVQCKTY7tPl1JcNOH0/DVDP2WfTvffVYQEQgjOuc/LdCfL+2F3YbszeUVvn920giDXjY19VQTt0tjuG0HX1nmfhqO9XBTieOfyP8AjX+kz2FSstVQehKllNuklCuV/5AaJloupVwjpZwB4DKkKnyrkZpPeIVq9ysA1E6/9xaAy9P7wMa+kfrWxlplE40WKk178KvZGDOb84fCVFkVbEu/0cRtu+zs3muPRgCA/u0slw1NLPV5GO1xXcB8dMxjYx1tn++VgTgI6hzbOW52b0T1P/wf5uzr4QK3fZd1fh92W1vCTqGptyYssbXdjcPDmRMeZ0oFSvv7Zy97ob+vk0rivZ+7i6598IPm01zMGte0wYpyo5u6SlKifD3DOApwXEWxTiKklLdLKc9W/ftNKWVbKWVdKeUJUsr1qvfWSylPTL/XVkr5puZYhvtG7cGvZltuM8MgIhhFJ+iexKAO/9uSjZm/pyzdaLhdvsgK6R9dMhLH7fDBdVt24KYPp+UEqCiEh7tbOXMSY9hDaVVJjOPQaKfem7QU7W8YoTu01nRJgYgubo6GqA66NlnzLAt7OZIoaG9JadB7qF7X00ljj9G2VhXNHRX6S8TYYTnctAAuebsjyLbvjGaYu55IKomRC/FifHeS+fyob35f5WmOSiHcWGHLp0AOepl+vlwz6vleUlYXHsL6etrCS1K4/f3v+2IW3hy/BJ9O8S+wU1y5PUc7KipN8w8ZUJBGp5UK9eZW+Z2X9MYhr6mqkrj2/akAqpcGsiuq9I/iyAhcnY7z8M5Eez2R+SDTk6jtZVP9bTRCxI9rVe8Qduvkn08zfy5k1kk0OKBZBTUO+Ygf1F/9rs9+N9xu2vJUkCanazcHoTAriSH6dEr2ouvrdKJdOhkmQMELvJIY4s9dKFdWFBPbk1pJ1LN43VbLM6jkU+zlMNb1li/xt7d/M3w/qHlXdn4Ro+AXXkdOXPv+1KyAF3G7OoarlgFymk9E9V0WrDGObhlXeoF//KCtVCj/mrpso+2hrElRPScx+3U7eW7Y5UhtVe+KN37Fui07DbdXklfI6yQ67QXfYRFUzBt7aSnMSmKEoxUuf/1XR9vn/8CK+Al+uGl42WE+l+ezhpuqvueIqSssIzYWMr3n1BnP/my9H6zny5D5Ejrbd1Vixh/+h/J3vJahg4AXVuWanRVVWLZhu7MEhGjjNuOCK5DfeWSYgppTqK0krihLXWvHP/FD3s1jzCwPoclV7VyjfjRuO7kX9DY1q9Qo6Xvlx0WOP7sARhjrCvZr2/uxC7OSGOFwnxWbch+mnobzsIjmmlHG41cY6ELN2KIgkZ2hrglgfcp8oZffbNtVaZmHFdL1HOQ6mr+v8H8euvMesurtreJ02Xk+1SjRL0q8+MNCJ8mKhNm5YwXSGa+Luesp1nQ9XeawoT1JlAqxtghip0jiR+Oz12Ns32k8UkI59laD+Xbmc4M9JSs2rO4O7bracfjahVlJDIDRhW9nzb0+d33jd3LIBm3Gs3pTORau9W+Yj1HGFocbPx9MVS+unBMpLd5nOdEVrnifWl8c8eh3Oa/5dU1FdWmqP1Zd6Hx+3ALPxy4t1r+gP578h+7rcWL2e7ARNnqJziud8jTctHoeZ1Q2mQynt6roxu1OW7R2q/9LlVlcy1OWlWHVpuplRoJ9VnC4aSzYWXdom04Fc/ivy2wdP+Zl4UQZcO8oDHlojGH0Lb9wDqo/Tn3mp8zfOUMgeYoNCQEsW78t53WrU2Z0V8S9Qu6G3txBv+YqR3W+3hi/WDcNr/60WG9zR9TfKNaXQ5zTRrqMAp3ko+oh/dkXqp2sx5fhph73b1DL/dLrcSsXHfLQmKwyhh/s9LSvUa0runuj2r5+vhusJMbUNe9OwdRlG6NOBnkQ12dbvLJif8Ts+RJrK8rKMWWZ+3lx2gLMywZzTEhfEI1Qdq5/9Xq76iH1bRpHXxAJklWwCNOeROW9mOblhUA73DSfGQausfHUNqpkOWmUirLBj8/wlGMfH5f5++JXJwX2OWc8Zx2HAGAlMda27sjtYdyyI5joeBSeOGWG23dW4sVxC32bhxmVpA0LC2Lujl1/e0s/+qbVdakuwPy2ZEPm9btHuFuYuVDFodCr/qkvGdzB+/EScvutKCvPeW3WSuM5ojLnDwpbXBtbg5AJXONioXlflsDweAwvu+fLLbZk3TaUbd+Fj35bjvY3jMC/v5yVeS9O17Ld4H6sJMbYVzNWWm6TLzdWnAR9I8dp6YSHvp6NOz/7HZ9PT/bad6l1ErP/HWdJq9SqCQGMnLkq6mSEzq9fLIr2GG2hU52Glg1qeT++6uyMivG1ccKTP+S8tsEsSFHcM5ICUBynknXAjALX6NHe034MN/U65NOssVn9K+r1WMZtuKlbgx8cjWGPjc3MD316zPxoE+QRK4kxxmFcpMfpWjtmlMWl9ebFJknusgz58cAJk9U5Uz/DR89aY7yhjrcnLMEXFostF4wACkPLNmzH4Y/kBttRaMtu6kLapa/94j0BquPn00LwVTIVcXCBjwHN8loA9bkCqiNmTp+dCtNFr9gbiugku/FazzTbXf07rtyU26NvtnPS6o9xXhLIKVYSY06vQrCjorpA/+b4/FpMNkxGD5+4T5TPx0AhXmlPyRGPfh9NQmJm+cZgHlZOl3G4Yfg0XP5G/oaudyKInsRXflyEeau3GL7vV9CdpNi+sxIPfz0bOyuqPNVbhAA+mxL/CK35LMqh+WFTynu50U1zt9U2xsThDh+/wF400IH3fZvzWpwadjeVB7MEUhKvZFYSQ+ZH+f41TTS6VXqtMmTJ6LdI4o3s1S+LNlhvFGPPj80O4293vD1VY9uDOTfnR6+R77ZPZviQGme0PRN+D+2K26Xz5Oh5ePzbeXhz/GLrjU1MSni+mHTvTFxSWD2JypxEF/v60XjsNcjNlzamSBkfz/Wuvrv2vSm+Hm/qso147efFibyWWUmMue/m5A7r2qEpAMfp5qJkemfS0qiT4ElFlcSCNckZEpbk1vEkpz1fWRU+7v9iVta//X5mxO0ZVL4rNdpmZ6W3xqKfFqzD7Z/+7keSCoPP18H1H0wrqNxGGC2U6EGUt+bslZszf1s9N+w0XC1etxVnPvez4wCOs1ZuwtcOKrArN+3IeW1XZRV63/k1Pp683NFnA8DxT/yAWz+a7ni/OGAlMSaMWnDWb91pvW/s2nGTza/WnrFz1/pzIMqxUidK4SPfzIkgJe4k5Z79Q2e4anlFsuevFiLt/PZ8H32axBZ7MlBAP6YS3fSxb+dlvW7neTF6tve5wE7qpnZiIxz1H/vTPuzkSQ9+NRs/zl+Hbx3Oex76n7G4xOPc643bdmHjtl246zP3jUZPjk5eEBtWEkNmdBM+/V3yLp585VdPiV4vsB/8DFyjNW/1Frw1wd95rs98Nx8/zPO3wuzk4RNH05c7m9MXtI3bdmGXTq/LIQ+NAQBMXLQec9Nz3v71cfjDJePAacW+orIqtKVlnHY8JCmS4KbyXbju/Sm+Lv9UaHM0QxNE4Br/DxlbXh7tn09zP9RT4SSP8zs2gpNlPqJYRUgpF63dsjPxS4Y5wUpiTLw9IdnD/fJJvjVc/roke16NWWZ87ONjcePwab5+/n1fzMJZz4/39ZhKVFbyj17jgDK380//+ylWS7ckQaebv8A9n4ezhuRrPzube6ct4D3w5SxPlbAge8af/W4B3p20DC//sNDW9l9OX4Hnxppv+6f//ehH0igE+fY8NhNEA3A+BbpTGreiCC6oHqn0kYshp3ExZvZqHPrwGNvblwSXFApKPt30FDyzqIfbNUtflO9KVQqqqiSKYrDoN4VH+e1JXz5nu0+NmR/bsO1OK6CXvV4dRVe7fqri1yUbPaaKwlJIc6CN6j5h5T1Bfo5Vvc7sfSVZSiUx6itio9naqjF3y0fTHeX17ElMIDvhkcmaUaYU5HDOsAmR26iwdssOvJ3uNRoR4tp1c1dttt6IIsN8pHDo/da6a5fFAK/LwjZ12caokxCaFRujvQeDvNUWWqw16mS4adhlNO1oLMXKsnK8m/Cgf1ZYSQxZUOuWkXOFUPiQUn9C+A0WQ0q9nJrPp63A8F+X5bx+p4cJ3xSd+76wHjI5f41xbzXFj9797WWenp95aWWVxJnP/Zwzj1lbMPx5wTosXb/Nvw+mWNKuB5jP9mxW1/djOrk19e7jpev9KbN++Fv2EM1ZK+03Gi9Zvw0/zluLr39fBSD8OYknP6U/PP3sF8bjuvenoixBPYtO69esJCZQAdRtIpU//YgpYQepuOKNX3HNu/6uM+QGh2U7YzSs75nvFui+rnbYw9/5nRwKkN6tYVRJDHtgxfqtO/Hj/HW46u3fABg/705/9mcMemB0eAmj2EhSodwJw+GmIX1+lFG3zfKZx0bNxZmquAZBz0m0e/S1W1JLZSQpEJjT4dusJMbEEraIUiBk3vWY6kXh1KMN+0/m8u06oRS7BeqKKv37Kuzr4kWbAWr0LF6XO6Qt3xr9CLj142SuOaf1/Zw1pjED/OCktz2oe/3dif4OySyKuOYiBDBn1eZEz020i5XEPHDJa5OiTkLiVFVJwwXk8y1ei5setTj3wh3z37G2tvtkyh8BpyS/vOShcK5Yun4bNpXn/4MzSf7+7uSc1/R6DHZVeBhu6nrPXE+PUZaDcp4RD0kv2ULRGDE1nDnuW31cDiVK5744AYc/Yj0Kw8vz+NAYjPK47oOpvh7P7ZzEt31c3mu0ahj0Z1OTU9bgcNMCoO3ajtuaa0nwzcxVhu/lU+AawHyR2holycsC5tpsec2vXzF4m8q9F7wGPTAaxz0+Luu1z1XBkX5esM7zZ0Qlxu0mpvR6EvS+y06bPfRB2lFRmfOa1Xmfvrws87edaZXKsi6UXAm9FcnEuvTQTTvcPtutYjG4dWuC1g52eu6SV0KkggoJbaR8VyWeHD3P9tBDLe3SD/lKSvNWyL5tG9s6ztRlG3HCE+NQvis55y3fKvtJsXhddqXkijeqlyS47PVfcrYv31WJKVyDMTB2G1XiMK/mnBcmGL5ndDsf+/g4LHAQOIkjb5Lv2wIIZhPFaB4nn+l36pwsS+NkTuK2nc4aP//61m95vSbw+q07HW3PSmICRTm5OC6eGj0PD341G2/bHOv+5fQVGK/qxVhr0mpV4SHKXxyt3ZKbKdQoTt36RgVD7au3fzIDU5aVZbXaOxX2M49VxPip0rm3bhw+DSc8+QNWxXQJBkU+5bt638TL/elXgXbCwvWZv7XlQLOPMCr46O0yZvYaFykjCpc6q8yfnMcfTiqJ/3LYy/dpnk9TcTpiiJXEAvXOxCWJbi3Zke5B3Gxz/tNlr/+K0579OfPvLi3rG257V54t1fDE6Hk5r11w0J4A7BcMlc20efOWHRW6BX8rr/+8GCc/9YPj/SjZ9C4VpRdxsw/DXcmmGPQaSinx1oQlvswvi/7bEPkrmp5E+9tG2QhbUmz/01eWZTc+qkefVVZJxz2NQOq7a8tCFTEYrh8EVhIT6MVx3gNMXP/BNJz4ZHIL6UpP2LxVWzBzhfmcTL1CSHG+RacxYJTnl6YzWaPeEeOHRfV5K9u+Cz1v+wqPfDMn85rdOWe3fDTddHjJknWpACj3fW69Rp9hSgvjJ06+zO/Eon5YdHsSQz7/P85fhxuHT7PdKOf2fuawc0oi9d24YmN2RSeoCqSjNRUDSYE9JQ7Kb9rb/45Pq3sWbxw+FXv96ytf0nTxq/k5jL0gK4nbEj4fzY8AE0mnPPiH/7YcR1tEuzz3xdx5LjFoSI8F9dpovyzeYLid3vnauC01xEsdRfRckzlFeoxa8QY/OBrHPz4Oz3xvvUafEc7djR+9X0R5Le73ZNzT54Tf38XN8bakG+/enrjUNGiFncrrpu2MqEv5RX1P3fRhMAFXzD7TinbuuZFpy9xPUTFSUuy+6jJ27loAqXS9O2kZAH8q3aPzdBh7QVYSV8Z87gvZ4OCm1qv8JLlx2UnSrU6TevjfaJNgAEbDTYHUGp8bbEyGlpB47adFWZ/T966RhtsvsvkQMpTg3zjpjnvcfpAj9vSEL6r5lT1v+wrPfDc/53W9dYK1V4VZo8+Fr+RnKz4VLrNAUkE1WAWRL7wxfrHvx3TSk6ilnLtx89ZmXut/zyhnx0DhNEIXZCWRkm/+mtxFk/UYzZdzMvE5n8msv6Xu32pGZ+2rGSstP+uHeetw68cz8OeXJ2Ze276rEr8sXm+yFyXRtOVlmPGHvRZk5ZrKs3hRsdGwdmnOaxWV0ZzsLTsqcN8Xs1ztKyHx0FezMXGR/fxixcbtrj6L8s+slZsw6IFvbTVoFqr/jJzr+zHjFghQKfqpyzhmgQx1j2Hw+pVv/mrwTnKxkpgnFq6trjTNWrkJve/8Gqs352+PaZHNlqRXf1oUbEISYO/WDXVfr6yS9pce0DRdbtlRgeUbqgtges8Bu9ffKU//hImL1mNnRZWjUPaUQDq3rd5DO47inTpjemuh6g3jDns47aWvVS+H8t9RJoXTdLoEBJ4YPQ9/+t9Ptj/jlZ8WJ3rUCPnniW/nYen67fh+bjKGBebL8PbKkCuJU5ZuxH9HzjWcyrLFh+laRqNfPpu6Qvf1JGMlMU8MeWhM5u8Xxy3Exm27TIcPJp3d5/6KPBxa7KRlTkKiY/O6uu8tWpfdG2vnoaRkjn/630848/nxmdczQ2NUP8xRj35vO52TFm3ALR9Nw6EPf+d4HR/DtPpyFHJr2QZ7vThKr77Z9Tdn1WbMs7neXxy4Xb81CHbvgygLpXrLUqzevANL128zHepuxzPfuZ/XTPknKcPbTYebhpgOr4LoSTTLq0548gc8OnIOznp+vG4ZeN3WnabxFygbK4kF7u0JS7J6IePq31/OwnMugpjU9DDBOV+4yaLVmXD7G0ZgimbyuTairJQSW3dUYGdFdeF4wzb7wSQkJH6cn4qM6kdLH4VPG6Dgqrcn52yjt8yFUmgzKxQd+ej3OPyR77wl0CMnwQ1e+XFRcAkpIOph7G4bj5ZzyCklUJIqgmbM8vUg/bZkY9bUFrVpyzbmVDRXlDGf0MMSdJ7ZWVGlithkvf0Nw6dl9ULG1dNj5uOez2diqU6AAzNGpyDuQ9v8YnQN6LWl2jkjZm2wz4/1tjSL38MOE9JgnDfemrjE1X5JiW7qRKFFoA7yt1Mq5896iHRM+euXxettlQuSlr2YNUpFsYaiW3FMq15vspORT3H8TkEpMXtTCPEabNxbUspzfUsReZLvraZnPPczxl1/qO3tC+heNuTncDPDYXRCoNLjyV66frvtdNhRKNHH4sLt76Y8r6NqcfZLVsEhRt9l9WZnQRmC4qZglZShgRSdM54bj50VVXjjov3Qv30TPP7tXFxxSCfUrlGcvWHujIhYU+6WpFdIgki+hMSuyip88MsyfPjbckgJvHvZQE/HdNKwN2VZGXrs3sDT5yWFVU/iPADz0/+VATgRQDGAZel9TwCwMbjkkRfTlvu/Pk3Ytu+sxOs/V4dQtjvPSWFUxpi0qHDGpBv2prrIvP/PJGiEl4dvEA8Sli/D5u5HnPFHaujyu5OW+pkY3zn5dh+r1g5NiqAaGNdt2YELX56IjQ6GnxPZpUxxmLliE94cvxiPfzsP174/xXD7uDSkf2KRR8h0e+x2naWEHvxqdhBJCkRQjX/Pj12IG4ZPw/iF6zHBQcRjp/TmNX742/LAPi9uTCuJUso7lP8AdAEwTEp5lpTyJinl2QCGAegaRkLJHnWr0xvj3Q3/ipP7vpiJWz6anvO63WxHW0846tHvUVkl8cg3czynLQmcZM+FMgSXglHlMVbLhIX5sxSK3YWm84VZ3vH8uIUYNWt1VmOfo2MzWyIbqqTEjnSF8bOpK/Ca5npTrtH7XS7B4re/vfWb6ftKevWW69KLThxXQQU33bDNfYA7Iez30L4zMd6Nl0FzMidxfwA/a14bD8BbHy+RCSfBT3RpMtjZqzbji+n5F6bYjXdM5pB95FNLmZsoj361PLInMVxef7ekr12ar5UZJyHs9cLOK+flYZcNc7NXbXa1HxUW7WV6q07jcpLkS34SxHBZJ4fMl/MYFSeVxN8A3CuEqA0A6f+/B8DkANJFLuXb/VCsKTc2rVsDgP2MR6/YuWpTPOboRO05baAZ1Sm9Yfg0R8cS0K+UPfHtPMfp8usa5pzEcHmdkxr3SuKM5Zsw9D/fY3P5LuysSM2HSfp8ITtmrbRfSbvJYb5hRQAYO3etr8ek/GTVQ6iOvB1X6uzkg1/zI38JqidRe27mh7zGclzmegfNSSXxfAAHAigTQqxCao7iQQAYtCYmKiqrsGNX/DNCJ7QFRyVbOKRrC1v765U7K2K0hlnQpJT4eLK9+VF28/IbHRQEV5Y5X6cyD56LZKJcZ44NAJRoW4Ri5t9fzsKslZsxafEGPDF6Hv7x3hSMmFY9KqGQL9u/pofOfWQzryEK08qycoycaX/d6LLtu7B6c7RrLN89Yia63PJFfgX0CtAx/x3raHuvySqUaMu2K4lSykVSygMAdAJwPIBOUsoDpJSLgkocOXPOCxNwzGPObpS4KyrKLjgqGWaphwJlEIu7FpK3JgQ71/Wn+ew5SCSbt5XReqd1tNEIY0YZdllSJDKt1pu2F9ZSF0amLkt+kDTKP+PSvdCL1jlbC/qA+0ZhwD2jgkiSrtWbUhVSbaP2rkqJ0bPWhJaOIARR3NI75A4HPcXxbo6MF8frJEoplwCYAGCZEKJICMG1FmPipwXrok6C70q0lUSHOY7ekMOKSlYS9Whb/EbNXOVof71z7SYYzq0fz3C8j56Yj17MO3Z/6Z0GPfkn79vGv8Q4MHHRenS86XOs22I+fEhpXCouEhgxNdWDOHc158tZYUAsiorSG+i03LB1p/5oh6Bc/8FUAPpBUnZWhpsWv4V594/TGZr+o8dG5/Vb3QfIyQe2K3hCiN2FEB8KIdYBqACwS/UfJcAP89a6Gv4XpeIi/eGmdukON/UahjEPvP/LspzXtMMvLnxlkufPsTukIx/mXhQ6L/OEgdxRAwqnBTw7pizdiD/970eU76rEs98vQGWVxKTF5sviKMPUi4XAkK7NAQA1SqofobyG7XNyrgZ1bhZgSiifaK8qpfc/7oOHdqUbrvXm/yZ9dkwQ+beRs18Yn/v5Bh9vN1VBLq+RBE56AZ8BsBPAYQC2AOgD4BMAlwWQLgrAWc+Px7GPJ2s4qrYn0Wk5TK/YuYs9ifjD58YC9tqR7Yn8qovlDxtrlm3RiZjp1a0fT8fERRswc8UmKFmM7UquEPht6UYAwDPfLcDTY+b7nr5898qPi2xtJwRb8sm9rTtSeUfc5/UZNZAB4VayghDEuffcIGdQYEn6uQ6Ck0riAQAukFJOBiCllFMAXAjgH0EkjPz13ZzUuPa1W5L1wC0uyr5Et+yoMAx8ccHLE3HUo99nvcbANQ629fA5N3+oH26cWW7h+HG+8+HuB9z/bQApsaY0PlVUScxckWq9tyofKEG0Kqtk1n317y9TURV5rRvQOTHz19ibI1ZRKTHjj00+J4gKxe2f/g4A2FQe7wFvJnVEz1Gjo5ak5L9ks/GqkJQ42LYSqWGmALBRCNEcwCYArX1PFfnuvBcnRJ0EV4p1mjG+naUfpczodS0GrgmGXoXc7mTyJD1IKPmUYeyjZ63GkvWphe+tWryFqsdROwyegrGLUwPIgUkGQwP/+d6UkFPizJjZawwbr52sUxpHce3F1UvWwrXhLqORBE56EscDOCb991cA3gEwHID3iUsUC19OX4F/vOt/Zrp2yw4sTRfEnNqu02voJNMUOjUXzkkMz6dTGBKf9H2uWj5Ca9Ki9Xhx3ELD971SegWf0hkq+vDXs3X3qVDNb9LWEd+ZGGzE33wzZ5W9gD9c65ScMFrmojwBS4MZ9a7HtZJlVxDJlx6Py1zFPieVxHMAfJf++2oAowFMB3Cmz2miiFz2+q/44NfcgCZe9bt7JAY9MNr2OPK5qzZjQ3oeygKdjLNKSt3Kn9ro2avx6k+LdN8rpOimTiILRvksSvqQGrJPiSJ6xRu/Gm7zf//7CXd+lhoqFsSlodcTqHzO49/O091n3upUK3OVlDnrt9704XT2hjvgdTTHR78tz3ltcnqeKJETb01YgiXr3DVi+0nJX7SSPk8uSdGNmYfncrJO4kYp5fr039ullHdJKa+XUho3B1Pird5cjkEPfIuFa52tM6RHWVvMyhGPfo9hJus92rmR//zSRPzr4xm6QyCZEejzmpl7aZ37z8i5nj6b4kmvYeiN8c563fzIe4DU3EGlIqFXSbTbYl+lM9w06UPCgqR3ZryO1tWbO3Tikz94OygVnIrKKtw4fBpO+d+Puu/b7fH2w1/e1G80S3qbdhyzxls+mp6oymuUnCyBUSqEuEMIsVAIUS6EWJD+d40gE0jR+nzqCixdvx0v/2A99Kt8VyV2VBiv6WMnXsy89LpjSvTNnq0b5mzjZPhFoQ9XWmM34iTyr/I8VmfNJAqX3lIrRoxGGjgt/G/dUZHT+i6lxNNj5meOpe0JdEJK/f3zcZ1aP0xYmDtPzO75//r3lbqvL/Kp4YAK100fTsusyWsUQfd/MYhcnPSldYKJbur7IcmAk+GmDwA4HMClAHohtfTFoQD+HUC6yEd2wsxbsXNPdrv1Swy8zzhaoZ3W49krs3sbm9bNbYNw0jKl25NYQC1I934+K+okUAH7LeQhgOW7KtHjtq9w14jfs17XFipm66xHZrfgUVklUaTz5Jy+vMxuMguK3jBQu3X035bk7gsAZdvjHa2S4u/N8Uvw1gTzUQ12Kzgv/7AQz3wXTIUy6aMUdgQ0HzTZZyU5nFQS/wTgeCnl11LK2VLKrwGcBOBUOzsLIV4XQqwQQmwSQswRQlyUfr29EEIKIbao/rtVtV9NIcSL6f1WCiGu0Rz3MCHELCHENiHEaCFEOwffKe9t3VHhKsz86k2pnjyruX9aZmta2TnU+IXZrfF6GYFVxm3V8sZWKH165+0TB4FnuFYiaVU6GCslhICU0vYaenq2pNdFe+mH7GNoU6E34sFu41GVlDisW8vc1xNemAuTXh58wcsTw08IkQm7d/Ttn/6O+74IpkE26fP1f18RzBI2Xk/LN7+vynltlk7jYaFzUkk0KgLaLRreB6C9lLIBgOMB3C2E6Kt6v5GUsl76v7tUr98OoDOAdgCGALhOCDEUAIQQzZCKsHorgCZIRVp9x2Z6CsLzY51HCDzs4TEYcO8ojJ27JvOa9obcsHVnZqFa+6wvlVd/Wmy5jZNKIOst9umd1Z8crH2X8GcZBcCogKM0QqlJmVoT77ZPZvjy2epKmzbP0BvuaPf6vWH4NOzeqFbO60kvzIVJ71TZXcKIyG9GvXVxuKXjkIa4sRvfwoze+qthzkFNCieVxPcAfCqEOEoI0T1dUfso/bolKeUMKaUyQUqm/+toY9fzANwlpdwgpZwJ4DkA56ffOxnADCnle1LKcqQqlL2EEN1sfqe856bgooRinrqszLB3aN+7vsHgB0Y7Oq5VT5Ne5U9vF6u5jRe8Ut0irT/clPQ46TUkssOod+2Qh8bovr5Tc3M7HWqlzkLULdjaoxSZRDe1YjRagh2J9u2wM0GdKCCjDRokpJR4d+LSzL/jsPxE0oebBuG696cGMm2I69/mclJJvA7ASABPAvgFwONILYNxrd0DCCGeEkJsAzALwAoAn6veXiyEWCaEeCndQwghRGMAuwFQL943BUCP9N891O9JKbcCmK96nzywypzWmQwt1aO+/aSUeGfiEmwu36V6zd5x9DLu1ZureybGzK7uAS30wDVO1KtZEnUSKM8YNVJt26kf4Ep7tz7wVfYQrh/n2Q9GdOzj4zJ/a5OhVxbwWuTgcFP7pnC5CorQiwaB+L7+fRWu+2Bq5t9md/TqTeWOGlbXbdmB35ZssL29Ig4V1ULB0mIu00qiEOJQ5T8ABwEYA+ASAMchFcBmdPp1W6SUVwCoD2AQUsNEdwBYC6A/UsNJ+6bffyO9S730/6sjApSlt1He10YLUL+v/i6XCCEmCSEm2U1vvlrgoqvej1YbIURm/cPflm7E9R9Mw00fTneeFp1M8+j/6C+ZwSUw7Ou5e24kWc4zJC+c3mvaOdDfz8muFFoNBzLKp9Sv76qsQrHucFOJmR7mz7AwR5QMemslby7fhW07s6fQmE1tOffFCfjbW79hU7l1EKUVZdvR9+6ROOkp/aU2zLDtSV8Q2e2GbQyIpWXVdfCCwevKzyPSf3ew+4FSykoA44QQZwO4XEr5GFJzCQFglRDiSgArhBD1ASi1mQYAylV/KyWFLel/q6nfV3/uswCeBYCau3Uu6Ntu0qLc1qxxBssFvPFzKvqXHz1y170/BRMXbcCEmw/LRLxapZqbpPej6AeuyW3xcdKrWUjRTZ2oqOIQMPKXo+Vq0oFr1HL+7fDzpZTp41a/tnzDdv3hpjDOB+1gYY4ouf47ci722j27OGmWfS1PR41fuMZ6OZabhk9znS6OUKAomfYkSin3NPivQ/q/PaWUtiuIGiXQn5Oo3BFFUsoNSA1L7aV6vxcAJbLBDPV7Qoi66WP6E/kgT+n1Dj3zfW74ZgFgdrrl3o9W8onpyunqTTsyY7+NMsD6JkMfqySreUHY5XHV3oe/meNTSihfOLmipJQ5DVjabMcqG9pcnt0T8PDXudfkP96bor9On9Sfq2hX0tczIyoUeiWIiiqZk7+YlXuUsoveEi9aK8qqG8OdzjHkCAWKkpM5ia4JIVoIIU4XQtQTQhQLIY4CcAaAUUKI/YQQXYUQRUKIpgAeAzBGSqkMI30VwC1CiMbpgDQXA3g5/d6HAHoKIU4RQtQC8C8AU6WUXBzOhJvIfm+MX+JbIUhKoDh95annLO1SBTOoU7PYcH9n6yQyco1d7Ekkv81xGFL8ns9nZv1bW0CyKjBpF79+buwCzPijDP/6uHpY+9otO3QDFEhIW2u5GmGACaL4cdITp51D/atqnc7yXZVZx9qanletXbYLSDUYPfHtXKzZnIrVqM5vXvtpke306KWJUtgoF45QKolIFcsvB7AMwAYADwG4Wkr5CVJDVb9EaojodKTmKZ6h2vc2pILRLAbwHYAHpZRfAoCUcg2AUwDckz7ufgBOD+H7JJreQtB6LWva+tXqdIZnZwy+mSopMxXV35ZsxB2fpjp++9090tb+Ukrbg1/1tmPWom/e6ty5qms379DZksieuTrXlBPaSuEPFoFrtOXByiqJs58fj3cnLcu8Vr9WCXq1yZ1/K3WGsTvBOiJR/CzbsD3nNaP6xV2f/Z71b6WSt21nBbrd+iUe+Gp2zj6fT1uZ89pvSzfioa/noP89IyGlRK3S6kbvlZucPVNZF6IohRLOMF2ZO9jgvbcAvGWy7w4AF6T/03t/JAAueeGA7lArHdpeOKXAVm4QmdAubcHvpR8W4bbjemQWwna6vxkGXrFvlc7Da9pybVwoovBo7/TRqsjFerT3u97Q9KoqoGm9mrqf5SUEOoeFEcXP4Adzl+pauyX3WSelzBmuDgA7K6pwXDpS8ge/LsMNR1sXN9W9XD8tWIcaxdUt8//7bj5qltjvn+GcRH08K+EIqyeRYkRvCKad8s3dn83E7JWbPQ9/8HpzO1liSy+pHKZgXwUfUBQS7RqJgPNW9Pd/WZb1b73L16gyVyUl5yQSFYD5OsFmjO7eyUs3Zra3mz2oG+K37ajMaXx6asw8ewcCh5sa4WkJByuJBUh3jTAbN9yIaStw1H++1w0f7YSU3iqKTlrs2brvTQUXvaaQfKqz5pgfFa+NmrDmRsNKpYTu0hh2FXphbun6bVEngcg1o9tX1QloO8p7qWqnKilzRjg4iRbPnkSKEiuJBUg3cI1Otc3r3ENj0nLIqt7Qx8zeEfdkFhKvDQJEdukVnIIoHxk1HEnYH4qvf1zXu+aFQQ/kDusjSgrjmOnVecLKTeXYWWHdcKquJOov7eWkodv2pgXlqxm5c0HJf6wkFpjm9Wvq9iT+vGB9zmvPfLfA9edMWrQevyzOPSaQyvSe/i53yQ2tsu36lVQnmaZegbDAG/wdYU8shcVuQK2znv8569/v/7IMPy/IjTBoxLDHj8NNiQqW0e2rbTd675elhseYvXIz/vLmr1mRwvV6Ap2UYQp9hIKR1QyqFwpWEgtMav1B/6K5/LExN3IYAPzf/37CKU//pPuelMBYG4tWGwWyeeSbOboTzPWwFc6brR6DFBF5obcqyw/zsiuE/3xvCk5/9ufcDR1K9SS6359LYBAl19xV+pGYtVnCbJNlfa5+ZzJGTF2RdSy9bMFJgxIbnyhKrCQWGgHsqPCv4D9q1mrT99cZRBHr1qq+5bFfNVlP6I3xiy33T32Wzmu29iSiMOk1/FgVkBavyw1AYWWBTtCK1GdxuClRoZqwSH/kkzbQ36s/GZc9StKtTOoROJVS4oCOzbK2c9STyIyFIsRKYr7TFrIkcNXbk3075LxV5otlT166MXd/ADVV6wYZ+W72GsMhIDP+2GS5f+qz9IabMtMlipupy3KXW7G6Uw9+cIxvny89Djfl0Gyi/OMkR1B6GV/8YWHmtaoqiab1arj+fMaOoyixkpjnfl2yMdDj92iduyi1ml65yW5hSi8kvlMstxEl14qy8tA+S8JbdFNGISQqDBu27tR9XSmzTF9e3YjttSeQjdoUJVYS89y4edlz/xa6GJ6lpe6de/SbOTnv3//FLKsD2Jr7I2XupHGn9DJYZrlEyTdrZfZogvlr9OcU2VUlgcZ1Sm1tu01nri7riET5R68Mcvkbv9je3+sIA45QoCixklhg/M5v9Fr6/6eKXKof/tneEI6Fa7dik0GEU7t0C27Mc4kSbfryMgz9z9is17Z7DLLkpMX+PyPn5rzGwhxR/tFbmsfJCAev+QJXoaIosZJIjjnJ83R78mTuZHCjAtpTY6yXyjD/fE+7E1EMLTeIquzFJ1P+8NR+xEoiUf7R60l0cq9XeBxi8OmUPzztT+QFK4kUKKOFZDs2rxvS5+sNN2VhjijJ9MpoO2wscm1GL3COE3rLdRBRsulWEh3c65yrTEnGSiIFauqyjTmvSQk0qpMd7euFcQtztvOD3rAwIso/Teq6jyCo8NIZWMFaIlFBcBKMprJKmi7nRRRnrCSSY07KUU+Ozh0uKgE8+/2CrNce0QmAExSOCiNKutyb2EtkUj+MnGm+ZiwRJY/enEQnw02rZHa0U6IkYSWRPBt43yhH2+tlsGHO52ElkSjZ1m/NDWjlRx2RQ9GJSG3jttzlLpyMIOVcZUoyVhLJsW07K7L+7XgtM921Ez0kiIgKyk0fTst5rcxjJGQiIq3Vm3fkvOYkErLXwDVEUWIlkRwr2+atMLZYZ63GMCd3s7eAKP/MWbXZ8zHWbsktEBJR4dIrL6zbmtu7COivs/r4KMZFoORiJZFMHbFXy5zXvNbntuouRM3hpkQUra+mr4o6CUQUI07KCwd3aZ7zml55hygpWEkkUxWVuRH7KnVyzclLN9o+5gadVrgwR2R8/TsLgkT5psKHVaeLi6INfkNE8eJoXejgkkEUCVYSyZTe2mN6vX5/eeNX28d8PqDlLoiocK3a5HButI4iVhIp5m48ulvUSSgoExett70tRylRvmElkUzpRQzUm7TtZCHrw7u38JIkIqIcDztYRmeRzrxoAChmHZGIVN6euNTT/t1a1fcpJUThYyWRTOmuEaRTH9ygEybaSMsGtbwkiYjIk20G84TYk0hxF/FyoOTQQZ2aRZ0EItdYSSTH9EZUVDqYVMgRGUQURyWsJBKRS0s3bIs6CUS+YiWRTE1YmDse32skUo7bJ6I4YuAaiju90T0UD78t2Rh1Eoh8xUoimdqpE900zDUNiYjCwwI4ERERwEoiucA6IhEl2Y/z10WdBCJXvMxJfOvi/f1LCBHlPVYSybHN5bs8HoG1TCKKn7cmLIk6CUSBGdixadRJIKIEYSWRHLvxw2lRJ4GIiIgo1kbPXh11EohcYyWRHPMaeIaBa4jM1Shh1kxElHTz1+ivyUqUBCyJUOi8Lk5LlO9qFDNrNjOwA4fNUWESXCiRiELCkggRESXKTwsYeIYKE6uIRBQWVhKJiGKGBUEi0sOORCIKCyuJRERxw4IgEelg1kBEYWElkYiIiCgBOCeRiMLCSiIRUcywGEhEerR1xMO7t4wmIUSU91hJJCIiIkoAbQPSg/+3D/Zu3TCStBBRfmMlkYgoZjikjIh0MW8gopCwkkhEFDMsBxKRHm3WwLyCiILCSiIRERFRArBSSERhYSWRiChmWA4kIj1Ckzto/01E5BdWEomIYubqw7tEnQQiCthZ+7V1vA97EokoLKwkEhHFzHkHtI86CUQUsA7N6zneh3VEIgoLK4lEREQxN//eY/Dcuf3Qv33jqJNCEcrpSWStkYgCwkoiERFRzBUXCRyxV0vs25aVxHzhpn7HOYhEFBZWEomIiBKCVYTC1rxBzax/252j+MJ5/QJIDRHlM1YSiYiIiELw6Gm9Mn+7CUJzUKdmrj53UOfmrvYjosLFSiIRERFRCKSs/ttpHbF5/Zo5r9k9hlGF9JZh3R2mgogKBSuJRERERCHIqiQ67EosErmVQqfH0Gpcp4an/Ykof7GSSERERBQCVR3R0XDTxnVK8a9je+S87nWOKtddJCIjrCQSERERhUCquhKd1M9++9eRGLbPbq4/V/msDy4fmP26zUQc12t3159NRMnESiIRERFRAmiHlzrtCey9h7slVNo1qeNqPyJKrtAqiUKI14UQK4QQm4QQc4QQF6neO0wIMUsIsU0IMVoI0U71Xk0hxIvp/VYKIa7RHNdwXyKiKLRuVDvqJFC+4vBAUrG7bqLR3EW7+5/Wfw/baSKi/BBmT+J9ANpLKRsAOB7A3UKIvkKIZgCGA7gVQBMAkwC8o9rvdgCdAbQDMATAdUKIoQBgY18iIiKiWCguUlXKXEwIzA1c421/u1o2qIWmdZ0FuWFjGVGyhVZJlFLOkFLuUP6Z/q8jgJMBzJBSvielLEeqUthLCNEtve15AO6SUm6QUs4E8ByA89PvWe1LREREFAttGlcP28z3TuFLBneIOglE5EGocxKFEE8JIbYBmAVgBYDPAfQAMEXZRkq5FcB8AD2EEI0B7KZ+P/23EuLLcF+/0vyvY/fy61BEVCAYMZCc6Ni8btRJoJAM2LMJTujtPgiMNm+xm9com2m3LyqyO1zV3ucQUf4ItZIopbwCQH0Ag5AaJroDQD0AZZpNy9Lb1VP9W/seLPbNIoS4RAgxSQgxyct3ICKyol4LjcjK0J6tbG9rdw4Zxc++bRsBAOrUKIk2IWktG9RE/VrxSAsRxU/o0U2llJVSynEA2gC4HMAWAA00mzUAsDn9HjTvK+/BYl/t5z4rpewnpeznKL1ONiYiIiKywU3vXE50U4eNBur9j9nb/ZIaVo71sFwHEcVDlEtglCA1J3EGgF7Ki0KIusrrUsoNSA1L7aXar1d6H5jtG2jKiYiIQnK0g55GSgJvzc//OKJL5m/bw011tnNSwXRanz2oUzOHexBR3IRSSRRCtBBCnC6EqCeEKBZCHAXgDACjAHwIoKcQ4hQhRC0A/wIwVUo5K737qwBuEUI0TgekuRjAy+n3rPYlIkqkvu3srWd27kCu+pPvnj67b9RJIB8pw9H9GDrs5QhBzzOUHHdPlGhh9SRKpIaWLgOwAcBDAK6WUn4ipVwD4BQA96Tf2w/A6ap9b0MqGM1iAN8BeFBK+SUA2NjXM87+ICKn/Ch8fXD5AZh2+5GW23VpmTMFm4gS4qZjvAVjN1r/0Na+Drd3UuVj9ZAo+UKZsZyuzB1s8v5IALo5ZXrZjAvS/znal4goCn610NevVYp2Tetg8bptgX8WEQWrxGYkUSfsHlGvMukk73BaGWW2RJR8Uc5JTAS2hhERUVywUSC5erVpBEA13NSH39LLMYQQqFlivxjo5KOKA6gQE1G4WEm0wGyOiOKMSyIQJcP1R2cPeor6zi0tFhjYoanh+/u0aZj1byeN5nbnVBNRfLGSSAWvZ2vtKipERET+Ki32v8glhIB0OebpikM6QQhhGIn0kC7Nqz/HwXHbNa2DDs3rWW9IRLHGSqIFDjclIqe89O79eusRPqaEkoC9wYXFbaWuen/Nv10erm7NUMJSEFFCsZJogY9uInLKyzyhJnVrONrea4GTkoXPpOQ7Yq/Uupe92zby1EBw6eAOvqSHeQgR6WElkYgowbgUGVGyHLFXS8y/9xh0a+VuqoNSrVSGr3rNA4z2V78sBNc9JCo0rCRaYJZIRE457RuoX8v9sC/mUUTJk4Ton9o6od28hnXJ5KvhIOot5S9eBRbin40TUdw4XVPs9P57uP6sejWLXe9LRPHVrVV9W9t5rZPpVeqeOadv1jBUIQQrf0R5poZFMC1WEi1wTSpyom2TOlEngRLIbeHrvpP3xrH77O5vYogoFjq31K8k5gauCaf2ZvdzvJSbju/F/IwoLBNvPtz0fVYSiXz0xVWDok4CFZAzBrRFaXERFt0/LOqkEJGPtGsUBkkvcI2U0Qw3bVSn1P3ORORIQ4v7reAriQPaNzF9nx2J5ARDihMRkVcP/amX7W2D6kjMOazmhRfP76e7n15P4lWHdcbHfznQl3QREXD90G6Bf0bBVxJf+nN/0/edzi0iIvIz12AORFR4Si3mCgH+TYfRq2SmoplqttNsc2i3lrrHq6fTWPrXQzuh1x6NLNPC/I7Inoa1g+91L/hKotOen78d2imglBBR3vCxpMNYEUT5y6ii17ZJHctsRKnEBbHOoV7F0e6cxGfPze1hZIM7kbFHTrU/ckARxvqmBV9JdOKF8/rhmiO7Rp0MIiIqUCxr5xe9etewvXdDcZEIbckJo921hVC7H9O6UW3XaWFlkig+WEl0gHkXBaFJ3RpRJ4F8VuLjGmjMdohIT5BlEiGQUyv0UhllPhae9y4bGHUSKAQihLuKlUSiiI265uCok0A+e05nuJVbR/VsFfpnElE4/Kjouam77dawlvkxpc5SGx6Gt9n9nlU6NdHdLdJK2fpbBGSk+Cn2sWHZT6wkEkWsMXsS8067pnV9O9Z1R9mLYHbEXvpBJCj+OEolfx3evYXjfZxWxlrUr+lo+3cvHYiPr1RFGjX4uO67pdZpfD7dAFW3hvvo3XaHkeoVlgd1bu76c4mSoFk9Z/cwwDmJscCHN4Xh4C58CBYys6w+ri2M5B8nw/jCGGJE1to1rRN1EjLXzRNn9nG034A9m6BFffPeuSIBnNi7Nb66ejAOTzdAvXNp8MMY/3po58A/oxCds3+7qJNABkb942Ds7mEeb5BYSSSKgRfP74+R1wyOOhmUIG2bRF9IJX+wHSB51D9Zg1pmPWzB/7he57Xr9Uh0360BhBDo2qp+5rVOLeq5Ov55A+1XUOrWLHb1GWSOazjHV8fm7u6rMLCSSBQDxUUCNYr5cCT7vrx6UNRJIL9wyArpMLoqlHl7fjUunNKnTda/595zNPZgIxRRaOL6BGAlkYgoJv4ypKPlNq9dOAAfXD4QdTzMD6J4iWsBgYyp59gFNTPIcGkK5Q2fGhdOH9A269+lxdEVDfWGU7MNxbsw5q9R/mEpwwLzJiIKS6Pa1sPGGMQh/xSxFJy3gvhpM3VE/w8dCFZPose5zPEW10cAexItMHPLf0nJPBvWLo06CUQUgJP7tMbvdx6FOjU45LzQ9G3X2PlOmeGm4T+72qcD9hzWzTpqq15ldux1Q/xPFLlyxoA9ok4CxRwriRp/Oyw7spY65HNSKhPkTFyGYajT0WP3Blnv3XlCD8/BCYgofprWrYE9mtRBnRoltiLZxrXFudA4nbM3qHMz3df3bdsYjeo4awB0OtrUTXh9IyOvORgz7jgKz9pYl1UZFqsemmt13vS+k5Pov2TffSfvE3USKGCXDO7gaX9WEjW0+VPP1g0jSQcVttP7Z7fwndafLX5BOWu/ttYbBWhoj1aZv4OuAAzmUitkU7N6bJQy8/jp+9redv69x+CVPw8wfL9WiX4PsjSoHWUqXzY//2+HdbK5pbWS4iLUrWmvQcNu3a5XG5azqLC56YSy03hySFdvz3xWEjW0Qz+6tqrPNewofJraAnuxg9OrTaNIP/+Cg/YM7bOasjeabBrMua+mGtrs/RNIRa8uchGK1KgQqEQ3tduoFPXTwyqd+6jyYL1NhQDevXQgWjUwX9uRzD12hv2GjbA0dtiLTtWs7quaJUU4oKP+CAa7WEnUULe0H7vPbhGmhMISy6EssUxUftIbbtzPzTwhl4QI7+c26pmgYLEHN1muOszhgu4h31bVw03t1hKjqSYq+Y0fjZwD9myClg1ZSSRSWN1XfmRLrCQ6EXVzHAWiyoc7qW+7xrj/5L29HyitRkn2rcl5SP54+c/9bW33wP+FN1eDP23+e/E86/lbAGw91e0M86P48JJ3G82Xt9PWc/eJPd1/sAMfXnGA5TZOzoHtii+ZOrlP66iTYAt/b/fCOHWsJDrhY2vh//VtY70RhcKP3pU3Ltovs9aU24nC6mQICNx0TDfVv8kPh3TNjcin1xrXoXm9zN9+lMn3bdvI8D0+I/Nficm6c05/f/W1GST2OUfP6NGkRME1i4ZbU9XQGFUWw4EL0Xno/3pl/Ts1YoU/SD4Jo72QlUQTQbZw7NHYWWQ0Cs7h3Vt6Pkat0uqH9U3HdPd8PABZi6WbFTIp/gZ1Mp4X0HuP8Ia2sogQH3pL2uzXoYnlfsdFNA2ifq3CWVY5Lg03RmX6SwZ3wLVHdcXZ+7cz3FcdDTuq76P0hDr5+Jic+sRzMweWkiWMWBUseZrIucd8/D06twynNZis/f2ILlEnQdfp/ffAzcd0x+y7hwJgK2BQolwCpW+7xhw+WKAuHpQbsOjxM/pY7hfW8Cztp9QsYXHBjSAKcrVKi/GXIZ1QatJ42KhOKY7cq2VgabCjegkMf45DROFirm8iyGz1mL0ZFCcu4lJI1z4HS4qLcPHgDqhpEB6d4u2Zc/qiZ+sG1huGiIWt+ND7LWqbDB8MW27y4pFPhsFppSqo28pbA5bI9CZG3TNq1bBRpbkZDu2WOy2A8pPelXHtUV1DT0ciWd3X6dvq1H7up7exkmjCKGO79yRvAUqizrCJKHhH9Wjly1BmIiPa9VSD1KB24Qw3dSqoR7qXRh0hVEtl+JQep+wmX72dEMBTZ2X3qLPMFJxR/zg40s/Xu0a4VJO+SwZ3QIv6NTP/tntbaJf2c4KVRBPKD6C9iM+MePFtKgB8KIbGr961R07tlfNa5tgxKeWwIzG/7NEkvLntr15gvBg8Ad130x814C26qXvqj40q+6mdnqtft4Z5A4M2D1bP8TfdkDzrGFIgLCPaS/OoHi1Rs5RVEz03HdPdcyeVU/wlTDA0L/nBqPAAABeGuJB6ITu1Xxu8f9lA3fesbnM7xZKhPVrh5D65QzqUeaRRjmhuwlZZ8kEbBlsz9eZF+/l+TG89iaJ6TmBErY5n7tcW1w3tiksPNo/4vbtq/UOzctfVMY0fQNkO7NTU9rba33u3hrX9Tk5eaaAKeBZGHaWgK4lfXT1Y93VljTTWEckPB5lkmGcMYK90GC4e1AH92ltHjnTq8O4tsOj+YfjfOX1131fW4Cy2yEyCDJ7z5VWDqj+HLfGxYfRLxGGo1fPn2lzXkVJEMNFfzZbOsVK/Vgl67J5qoGzXNJoKfmlxEa44pFNOz+Bz5/bDF6p86fJDOto63hCdJYzIvrCy/wM6Gkfz1mI529w/NA0jA/asLsdYT0n0/oMXdCXRMOPMtL6l/xnxuH4jtwzzZ6kFigd1AV7vWmPx3p3apcXo3LK+4ftuHpw3Z5Y5Mc8VLjhoTxzWrQXOGagfqt5unjL2uiH2E6fRokEt640odNXXXfZV8MMNh+LjvxwYenrUCmm5C78E0ap/+cH2Kk9aNUuK0LF5PZx3QHt8efUg7NfBfs9OGI7Yq2XWCBsu8VS44laujhu9YGZdQlwdgXemjsxkb83VG7fhp/Vq8kGeBH5dN9oIcGRPozq569E54eW0N6lbAy+c3x+N6njrHfJr7pnfV1BMAgPnlVqlxei1R6NQCwJaRUWCvc4eqAMKeXlOFxUJjPrHwXj9QmdDWQd1TvXkCCHQrVWwEZa9NEK1N+nhfPhPvTI9oZS/Ylasjh298qNe1nzD0d2Mj+GhKl7QlUSji1MZGlG/lrfCpVrH5nU9H+OdS/bP+jdvruTjbxi8IE5xlGsrmvn+2iEYd/0QvHXx/tYb++CCA/fEDzccGspnFZo6FsE+gOCGD1vdM1H3dMadOl+/9bi9PB2rY/N6OKiz/eF7qc8P78HSulFt9GrT0NW+I/42CJNuOVz3vVP6tsFZ++mPwCDnBOL53GpSt6b1RgXAyW+jbFmkqsGpo576qaAriUaO67U7bji6G/55ZGqtFqkZfuqGH5m2dshIVJPRyT8dmtlvPGDDfnwUpe/nGiX278GR1xwc+Nygtk3roE3jOhjYMfjhZQvvOwY3D+uO1o3yN9DA3w7rHNixlUKB0aNBud3NAl+5cf1Q4xZnhRDC9JnVa49GlscYEMAc4LC4KUwbna0GNhqb/S68N/Y4esKp3V3mAXVrlqBZPePCLRtRk8nJ7/bS+f2DS0iCGJXvdKce6WxcFNDNUtCVRKNKVnGRwGUHd8wZCxxlhqU7R4QZaOj+fYp/4YdP7tPasCBmd4gBWQuiVX1Itxa4eNCeuPOEnrb36dSiHhrWNi+8Bd4D4OM1ZFWRIH/ce5L9a8wvJT4MN90rwUMFw26ArfLxvrz9uL3wr+N6+HdAG/hsIrdaNeScecDZo1nZtljVldiwTilqBDC3t6AriXZlWnx9enD4laGyeBa+/+vrfPFqu7+T+rI4umernPcHd3E25IjsMbod37lkf3xypf6wumIhcPOwvUxbwXU/S/NhSh3Lj9EKFIy/DHEXPCRIx/XaHUBwhfN9XA4fzBfe2z68HaBPW/eLX59/4J6e5kH+X9/cpXysRD2M0U7PNtnPL7wOJ2ejgXNGjXJ6eZEyuqR/e1U+IYGJtxyOy1TBrvz4HQq6kqic/KfP6mO6XVVV9vZ2jfnnIbhKNVzpuqFdnR3AAlvxw1W3RjGK3UTqcLjLns3qoq7OQ/7OE3p6inJJ+ox+nv06NMU+bRrp7+Py1jMqTEmDYFl+i7owlzQCwB4BrQ9o+QDPXBO5F8V/TuuNWXcNDSBVwKHdWvDZ4oKXU6a+Fu4+sWek6+c+9KdekX22ltU9MvyKA/Cf03qbLjNFznmtdFd56BqXUrKSaeGh/+uF9y8biN0a1sbBXZpnXm9YuzQrgI1BAG1HCrqSqBjSzd7aO07Pc/tmdXHM3rtl9j13YPvU33z+Epz3TJcWF/kW5ZKqRfk80lZAgs4aBjpYv8qJ/57e23Kbs/bjmqB+KS4SOWvP+cXuNaj0ZpL3+/a6o6obkM/ev11BVtIfP2NfHKopi1WkW+hLDYbR9WnbGCfu29rX4brkHX8Oc91a5S7J5eSc1a5R7GjdZy8NnQVdSbQ/DND+zzfqHwfrf5bwGPjG5msUnKAf3MrE45olBX1bOvbA/+1j+r7Xn0290PMeTVIBGtwOPde2kN6dnm+mvBzUNXbXiT3x5wPb42wfKmpNXC723r6p9wjPUYhzgSeItNk95uNn7BvAp8eDADBY1UKvMFuKwsu9e2p/59MY8s1xvXbHi5ogJrsqU1ejupL4+d8G5ezLnid7wjpPXpfryvc2kncvGxjq53kJZMfSqA2Z693GhduxefbaVn7PZ1TL9xspXxQJgTMGWBcC2jetg78d2gnPndsvhFQlzyl99OfKBH0bqKNB+v2QVZY5yMxJDOjLnLN/O9x2XA9fKqFfXjUIH1we7kOuEDl47JDPhABO2je3p1S7FEUDvYByKLxnc1CVjwPTw0iP2bt6jr5eQKQoh+cmRZDPFq2uLXN7ypxQrqcTe+fnaAW9iMdG91CJT4sR7+UySnZBVxKdFpjcVPT0Cn8F9vzIG0a/2wUHWj+g7jt5Hyy6f5j58YXANUd29TSk9Nh9dnO9b9zZ6dG/9djcNcmsbnO/Czhmy1wYfVZUcwWP6tHS8T4tGtRC33bOlzfo0Tp50S6DLOwH/Yt3alHPeiPy5LtrU3PEtWWJPRPaa+6Weg6928Konm6tGmDR/cMsh9Y1r1/Tt8I02Xf90G6468Ts6MutG9XG0Xv7Uw4phGHXd55gHon4yB65QQzV9E7Rl1enetuP6O78+a5V0JVEhWUh0mS7ujXM54WoC4Verne9m6UA7p94MTjf/7JYLDnMoTBt83TO4msXDjAsVavvjVqlzrM0V2uiGVwLc+85GqOu0R9ybpqGCKKbfv33wXjmnH74/lr7wZBaNXAXrrxj87ro1ip5lcQwBPWbN3cYeZec0+YDs+8eitcv3M9Vz9Yxe7dCjwiXDRnU2f185dtVS24YRYSmcFxlsLbrgZ38n4+unoqhUCKzu31WFBolVoleAadGcRFaWpxHvfJlt1YNMPa6IXjMYkrA8TbmlbOSaEMm8qDOe1YtHVU6EeqctI6oIxXlfDb7JEkjn6dmGH039V2gl2EeuZd5S5yjNFic4NLiIpS4WKuoOgpZePd0l/SQoLYGPZ96w56N5lxb0a45W4isWoz9ZqfxY2CH3LkqfKqkntFuGvdqlhTjoM7NUOSiV+ups/pihM58u7C88ucBmH/vMa72bVinevicm/yP/NOigX7j0AFOg5blc2Eihtx2Jhh1Yu3RpA5qqOJb6BUtWEm0oD1nRuUzZc2i5vVzbz67jwIBd5W64nSilLT944gu1cfk0zxUPN3RsrOOkN49cdMx3S2O6yVVzlh9VJyusSP2yh2qorc0ix0MLKFuMU7z4aToHWLSLYfbXirnsO65kb2dpOqukCu+cZNP13VRkXC3xBMlhvpyfeWCAZm/7zmpp8628bi4/3pop6iTEAq3Z1tZbiSoe7egK4kKpfJWZFDruvaorvjq6sHo0Nz9HA+9OYk3mvQSKpRC2eXpBTIbpSMLdmxe1zAsNPlLyUDdtA5rvXAeg9K4ZRTyX31vdW6RO2HeKvOMw6Mw6MA1QSuEuSN+s7lMouNrolm9mtijSR3dCozRUDS3GtZxF+m2EJyzfzvm9yHyGlEzCf7mscLUXjVqpGHt6t7fIV1zG4uiXFZkUOfmqF1ajAsO3BN92jW23iGBXvpz/6ylo9xGtT9jQCpieVedZTX8EEotQwhRUwjxghBisRBisxBishDi6PR77YUQUgixRfXfrZp9XxRCbBJCrBRCXKM59mFCiFlCiG1CiNFCiNxQS4bp0vzbYLuS4qKcH2CYMjHX4gFePdzUXQGwtFhg0f3DcOnB2WO/99MZJkTOWQV6admgJo5KTxwu9qEgfJgPE4kLkZTAjQY9gsqY/b8f3kX3fVsHt72pt0XvjXpDq4e0+1fZGnvdEHz998G2ttVGkbtyiLPCiNH3UiS1DpnkIf16v4idOcvKN/ZSRoxybl1c3HViT+b3Icr/KiJQXycqppZZntWvfRPdOBp6584qTzf8fIssU5mzCAD1daIDS6RG7c28ayj2btPQVRqSYEjXFjihd+vMv9u5DHY1bJ/dsOj+YWhR33zuottncFhdUSUAlgI4GEBDALcAeFcI0V61TSMpZb30f3epXr8dQGcA7QAMAXCdEGIoAAghmgEYDuBWAE0ATALwjtPEZZapcHASnzhzX1w8aE+8c4m9UPB6N24hZGpxd9/Je5u+37F5PTSqXYp92jTEQ3/qFVKqgjPhpsOiToJr6pZPtQM6NsNbF++PK122srq5D/3uOftTv9TyHgf5GFxgjyZ1MvMOreybHlJ/7sB2WHT/MPxTtbi3Hwqgkd8xpYfby6WkHRLWulHtzN+DdK4lvyvrRgXJfxzpssEmRnjNOvOPI7pkXX9hMxoJlk/0vuLhOkPGzdiNenzzMPOAfH6wOyy+UDj9Lb2yk8WFUkmUUm6VUt4upVwkpaySUn4GYCGAvjZ2Pw/AXVLKDVLKmQCeA3B++r2TAcyQUr4npSxHqkLZSwhhPY4T1QW96mE99jMZIQRuHraX7po9amZDhrw+hPI/Swye2W9+zv7t8PRZfVFSXIRPrjwIQ7qlbuBbhpnPcYuzFnkWcUxpiRzYsSmKi4Tr1k+7gjp633ZNsOj+YYZBZCg6QV1SyggFo/D+btbY/eyvB2X+/ouN3mCzqNmF/HwpgPqG7/56WGf8cMOhkX3+x3850PEIiHxQsySYoGAXHrSn5bJdeqzK0er8tJ7OHPecvdlY4wu3z7FIJrUJIVoC6AJghurlxUKIZUKIl9I9hBBCNAawG4Apqu2mAFBmy/dQvyel3Apgvup9W2qWFGFoj1Z46fz+jr8LoB8F8E99Uz0DmeGmqveUe0i9QCwAnLRva/xlSG5IYYrGXSf2zIralgSF1vp9Wr89HO+jHVrp5py5LUN6/X2Caqn3WrkutOvOq26t6qP7bg3w5dWD8LDBCAVlkeo9mtj/zRvXrZ4jaGcOtf4W6cZTG5+XpLmoHZoHt3ZhHE7Dp1cehBfPL4w5kBcP2jNnFFDP1g3x9yOS34NtJqp8ttcejXw7lnr0g5J/PHpaL9X7hSvI3zcxlUQhRCmANwC8IqWcBWAtgP5IDSftC6B++n0AUPrFy1SHKEtvo7yvfk/7vvpzLxFCTBJCTNJ5D/87p6/rdWS0UQAX3T8MD6Yf/O3T44zPO6B99eelH8LtmtZFE9VD/dHTeuPao7I7QY0ewjF4JuWFfDiPb128f+ZvdQZ8u2b9xu4+LnIcV3bywYdP7Z29T4hPXjfrpynGXT8En18VTIh8JUiB2yFb6qAR56vyuqTzu/DftG52oJdurRoYBmQ6rX9bLLp/GBrFODhMmPeOZw6SmsS5qHu3aYhDuxXGHMibh+2VCdhBwfru2kPw5kX7Zf7d0aKxpXpOs9H8+9xth+1tshRD8m5FU+qoskkQaiVRCFEE4DUAOwFcCQBSyi1SyklSygop5ar060cKIeoD2JLeVV26bQBgc/rvLZr3tO9nSCmflVL2k1IG0tR2+SEd8YbqRlI0rlsDi+4fhpP7tNHdz8tDNkGP54KmzSz1llLxYmBHVRAj1UdpC5/vX2Zv/iwZ81omPrW/855PRZvGdQznZTpRotPDVOUxIM+ezaoLDt13y50HmaS6hNrhPgceefVCfwsIrnrBLX5js/fvO3lvy3ncQDwrWXeekBvm34zRqb3x6G544szUItWV6R+gEObDJUFB/go+fGmzcmi7pnWzlj76+MqDDLd1mh692ybnXkros8NIP5NorWZftVk9b+VGt6cxtEqiSHWJvQCgJYBTpJS7DDZVvkuRlHIDgBUA1ONxeqF6mOoM9XtCiLoAOiJ7GGsorh/azVVPZJRhhim4YUIjrzGOKnmtz0FB7HK7xl2+0f7kdm7Bz/56ED658sDqYyS4NDL6n4fgNU1lRRnR0EozZ9Vug8a+bRujWzoCdFBzZMJWJGA55zyJslryHV7HZwxom9genIM6+xMU6tKDO+LYfVI9H41ql2Lfto3w6Gm9fTk2eVOIxamz9gv3ftSbR6imNBAZ1TvVLysj5azWOi4UetFeAeCl8/vj078eqPueF3Y6qcLsSXwaQHcAx0kptysvCiH2E0J0FUIUCSGaAngMwBgppTKM9FUAtwghGqcD0lwM4OX0ex8C6CmEOEUIUQvAvwBMTQ9jTYTO6UhTI/6m3zpjGDIf2YVd7dBCCo76JzGKeNqkrr+9hXZlZ8CRJCFSblr07fTG9GzdEPu0aRSbBYa92KNJHQzq3DzrtZP2bY3/nt47Zzjso5qhuWY+vOJAfPbXg3QfdIV4LcaR3WWfgvisuOlr0qIvBHBgJ+tlpkqKi/DhFQfi4C7NLbel4BUJoG6NYtx1gqOwFIl2QEdnjR9un2ATbjoM319rHY1Uue/dfk7OKISY5yNOmeWLRqMdhnRrgd0aeotH4HbUYljrJLYDcCmA3gBWqtZDPAtABwBfIjVEdDqAHQDOUO1+G1LBaBYD+A7Ag1LKLwFASrkGwCkA7gGwAcB+AE4P4zt5orpInj+vH16/cD/02F1/PZjcrndleAtQW7XejR8LvRcir8OiDunqvnAQRCGqqsC7ps2Gchhx8jsc3yvVg2BnvaokEULghN6tUVLs/pFQu0YxerZuaBjJOVHz1xBMUJbK9P1ZUuzPsYM4o6cYTI3QU7dGfo5O6NS8HnZrWDvTiEvJIITAjDuH4pyB7Q23MRvlE3du42aoKVMLnK773KJBLc/Rt4dfcYBuo6w6JTlF2WQ9NiyZlTn9mE5ixO0ItlByeCnlYpi3B7xlsu8OABek/9N7fyQAW0texFGjOjVMh8Fo72OlDiAgslovE1b+yntRVdnV0Q3jOC8oaEVFAod0bY4xs9cYbuOl7H/D0d3x18M6Ww65KWRVVfqvVyasAUOp1PrZe6wM51UaG+JoaM9WOa/pRfAGgMNCXtcrLIeng9El64oltc/+ehCOfXxc1msjrxmMTi3srR0bR3vt3gCtG9XG8o3brTc2oOTPes/BejVLMP2Oo1wfG1AFrjG4eU7vvwdGzlxluH++d3g4Kn/4eCoOczm/PpIlMAqVcnG0d9Aak1tJrO5JFEKwpdMjNxWGRh6Xxdg9PWygY3Nvv13/9o0x/qbDsl67ZHAHT8eMKyeFNacNJk62Ly4SaJBnvYh+KzZ4yHsJ2LR7w/xY37NFg1r4/c6jcPEgf+7TP/VtgxY+B8LSM7iLfkOmECIzFzVf1GcDUF7o2Tp3dFYSKoin9tPvyf/Xsf5MKVIed+qyj1JxdFu2ee+ygTlLuhk9tQ/fy7yykvP0yO86o7mAW6nsHJ6VxBDVLCnG8+f2wxsX7W+9cZq2N6h/euFlbauAm8rOuQPbOd+JsoZjGZ12s9/joM7N8M4l++NSjxW6ejVL0FITaKRUPVywkDNXB9o24QL2RipdDFE4uEtz/PPI3PXKhBC4yMMSIGHza7jp13/PHt5Wp0aJb8feo0kdTLj5cF+OVYieT/eQZjXcqn4a9RDpmiUsLlHwtM90hdFSOU7t0TjVSK1u7FQa8P55pL0hiY+e1gsn92md+Xf/9k2wV3qJLSVrO6pH7ogE4/KS0P0bQKK78/U6hJIWCZlNZiGzakXRUs87BFKtYwvuPcaXLnn2QrpTVCTQuE4pNmwzCtBrbb8O1kERrKgzU6/pKSTah1DHFvXQoVldLFi7FX8+sD1O7N3aYM/Cc2DHpjhvYDv8ZUgn2z2BRUUCVx7aGQ99PSfg1CWDUc+qn64f2g1bd1RYbicgsobP2i1/5evQ9T3Ta75lFVINth39z0OCTxCRAbO6xah/HIzDHv4OgM6cPo2HTu2F8QvWYw9V42jtGsVYdP8w22k5ad82OGnf7B5PbXviHcf3wBvjl2S9Zqdx7NBu+TOEvYZOw1LC6oisJMZRn7aN0LddY+zeqDaO0BlHnO9jtsmem4d1z/z95dWDsXT9tuwNEtwC54Wbr92iQU0sWLsVR3RviV57NPI7SYlVUlyEOxyuL2fmgE5N8fy4hb4dj1IuP6Sjre3q1CjOKszlWwAmJ4TB32rqvGT3Rt6iC1J8Jb2RtWPzeph6+5F49Js5OHFf80bOBrVKcYTDzgonlAYlJ0HQ1PffgD2bGL+ZEOcObIdXf1qs22uYtK/D8RMxNPyKA3HzsL3w5wP3ZIUwYG5bdarH9esfIIxAQuo5jS0b1EK/9k1MtiYjwvAf5LdDu7XEftpCgA1BRBq1q4aHiK9AvC4pbeHwZJMCpZf1FLX7x1UmjVnrtMXpF6MwXHlo56iT4FmDWqW47bgevg1LdcrO7e7qztIc+MyQ14V06oFT9sHp/Y3T6Ch/CTgrspNHs5JI5EK7pqlhSkah7KtiUELKhzX9FEG3lcTg58o7XVpWN2KoT+8rFwzI2daqIhZlud2qZd5KXOagdGpRD0KIzDy7Kw7piKIigZYNrIcRx+Mb+E85F+rv9w/1fFrmCwUhyuV56tawV6lTrtGYZCc5TunbBrs1rIXT+u9huE1c0+6nU/vvkVX2Gn7FAfjf2X0y/05avw8riVTQ3M61een8/nju3H6GkS5ZtvCX0zWdnKruUEhYDh5jH/3lQN3X9Vq67zt5b9NjNa0XfARPI6XFRdijifuhhnEtGCnpOmd/6wBm+d67pv5+56rW2Lvq8OT3MFG8/XzTYXjyzD7WG6bFtUGzdaPa+OnGw7LmOtqVb9mL8hsJIdCnbWMM7blb5r2k5aWsJCacl/wiYcuWxUqTujVMx/XHYVH7uD5M3FAePEbrtak5bRUuLSnClUM6AUAmQht5V8fBQutWz83nzunrMTXO+fUoj7LhQT2012j9sisP7aw7hEs9GsLNN4iyd8YundGmWU5gEKu85KRSFrT6tUrR2OOyWklhNapCL4Kwen3dL68e5HuaghT/6qB1Hs1KYsLdMqw7Wjao6ar1Jt/Wt3JDybP2bFY36/X/nt7b03Eb1alhvVHA4l9Es2f3hrUy17ffE+4fOGUftG5UG4O7NMei+4ehYYE8rOPGqj7RwiAsfBLUqhHdY/a1C/fDhJsPQ8Papbjh6G4A9HvN7z0ptydXvTRMwhq/M1pZXDdKRTip34/c6dk6Xo2B+fKsNnNI1+bosXvqvH9w+QG44/gemfeEELh+aDd8cuVBOfvtld7nrP3aolurBq4rXrcM646R1wy23tCl64Z2xTuX2F/ezsjTZ/XBn/rqr5UZBVYSE+6Qri0w/qbDUVMzp6dj87oGe1TbrWFtLLp/WM6C7IXoq6sHY9ZdQ3HGgFSLeo/dcxfidaJGSRGuH9rNj6Tl+OyvB+GnGw91vf9/TuvtX2JC4LTCfc+J5kMXFbVLi3GqyfyJoOzTJnVt2RnmR9FRVxzcdoo1rlOKFvWjq+DWKClCi/q1MOW2IzNr61YPhTLf9+9HVM/NczNEKkkFXw4zLyyVmpE+UXd66/Xad9eManHTkNG3XWMPqfJuSNfmmb9f/vOATD7St11jnHdA+6xtLz+kI7rqdFzs3ihVTr0n3ZDl9qe6aFAH1K2pP7pljIPlbYbqrP944UF74opDOmWWNtPLY/WWw9Bz9N674Y4Telhv6AM78+VZScwT2oL0gZ2a2d7XaPHWQqDcIjVKilCrtBi3HbcX3r10IDr5sIak0hLfvql1hd2Jnq0bYreGxnOkzkoPHTN68LWwEagiydrqLGCrddeJPfHpX3NbLcMw/PIDMOfuo3HXif4tLZFv3vahRTYO4jhcUQmqYFU8KPUY1TXqgrcVIeKfRgqGWYH9FtXSUmHRuw4Nl2VxcNG+d+lAdwnyyUt/zg1SFqXdGtZGqSbY4LC9d0P7ZvbLaPu2bZT175l3DsWtx+6V9Vq7ZqkyyKUHVy9N9PnfDordM79hbeuRU6wk5om9dm+AeqpWknoGLSZkrlZpce46PS4ds3crvHvpQJwecm/V3Sf2xLx7jg71M5PmnP3b+dIQ4EZJcZHtVsWke/yMfV3tt3+6RRaIblh83vcuBTnGUsQruvL9BoGRlFNQWpLnvzVladO4Dv53dt9MhSHqa1Xdk9gw3eBvtF6vm5R2sDGyrFBccNCeWf9+1GBk1XfXHqL7uvb819aJTtugVikW3T8Mx/faPfNapxb1bY8eCuPZ89gZ+2Z6Ps2wJpFH9m3bCGPnrgUA/O2wznhqzPyIUxQfJ+3bGh/+tjzn9SAjTQkhfKtwOv3ckmKR9eA7yWMYfyI3tHN9rTSsXYqH/tQr67Uvrw5uHompPK03mHVEnNzHp3wiPvVDAMDgLqlhb69dOADnvDAh83rXlvVx6eAOOHv/dhDC+5qYFC992zXGL4s36L43tGcrjLv+UCxcuxVTl20MN2Ea6tuldaPa+OyvB6FLy/p4a8KSzOtKxcFJ73dRkcCrFwzIzOuLygEdrSsjYdlNM3LOqMG2nWYE2PArDsCkRevzJuCjugJrhjlinvK6oOqlB3fwKSXB+vvhXaw3Ilw3tGvUSXCNQSWSS2khtyp7K7/xPm0a+h6cKEqNYhgIySii56L7h+GRU3s7P55BoSmOQzkHdW6e9W8hBG48pjv2aFIHbRrXSXSAJMp18SDzckzLBrWwf4emWdeqMk/rSE0+dGeQ88Q090rP1g0NKy9O12Ae3KU5mkW4hNC024/Eyz4OO/VaHFAvcaM2/IoDTONz9GnbGJcM7hjLfC1IrCRSjssP6YhaJd4qmXFzyWD9h0U+1z8KITMzqkAWJ23F2jxVP72OaI/dsgNB9dHM64jjtWq0BqoTVxzSyYeU+CykiJ5R/6R+Be14/cL9YrVkAvlvSLcWmb+VR0dNTUO7NtiNn2xV/NLpivq+cqp+rdJYTa8oKhK6C9r3advYVnwO9TIduzcMplEpTg3j8fnlKFJ7t04V4jq3qIfrh3ZLXEZkRRsprBDE7Tfs1cZbxFgnfrrBffRX8s+ezerivcsG5kRrG37FgXjzov0cHevvh3fBX4Z0tFzWwA+n9dsD719WHfThvpP3dpWHxKlwpFDKul4D01iJsuJ/3dCu+ODyA3w51kGdm2HYPrtZb0ix1tlkDnqXlvXx4vn9sE+bhpnAZ600Ad6cBDdxyuheeeWC6h64gZrImUBuY1uhUpctTlZNrRnStTk6taiXs6SEcgof+L99HH/W2ap5hR/95UDH+ydN/J5gFAnlZklaD4yTCeeP6QTRiFOLTb5r61OUVztrEXHYWHz0b99Ed/j7AaoIzCXF1jfiVYd3xrVHuVtWpqRI4A0HldJ//98+WYXCQZ2b44urkrWQs5FLDu6AMwa0xZ8PbB/ch4jgWtnt4NxCUjtir5b45pqDTbc5tFtLfHLlQRjStQX+e3pv/POo7Ckafdo2zkQO95u6FKMugim94TVKilRrYVdv/ebF+REF2it1T7DafSfvg5HXHIwHNfPclYq2m1gNNUqKAh++q6QvqOL4Ww6uG+akBKB6KEXSKolO2J2omy+chMoOwlNnWQ/ROrx7S/z1UGdD8rpHPAmf/PPoab3QqE5pJhpzUIGkhHC2LJBddWoUY6RF4TNuGtQqxX0n7406NYKNW3f5IR2tNwqY2eVkZ40wSraKqioAzhoNhBA4oXdr1FRNuenVpqGt5QLcUvcINqtfXQFRrlB1saxLy+poz15jTySRXqnGaHRJK4uGKr0coEGt6nwxqoA7lemyW1B51EAH34uVRAIAdG1VH0f3bIWHT021uNSM4TApv117VNdAo5tGzWlkST+df0D7rDldtx67Fy4etGfOdoM6N0OL+s5a5epzeZe8cdK+bTD5X0dmHoZB3Y1BhRT/8YZDc5ZS+eDyaNcmi4uSAHrz2ttYAxWoHubbMz2NorZOYZqVxPynVOzUFSsnBmqWCPDa7HpUD/2gXE3r1cTsu4fipfP7o0/b3Lm06vzr6bP7ekxFsmnbvls1qIXTdJYZa26jXKGXB4y97lD8kJ6u4mfAHSeK0+lSpoFFKf9rAjr8CEiQb0qLi/D02X3RrVWql+bCg3IL9FGK49yeuNNG8jOinRumXWzWjd6aNZ4uPGhP7NOmke62VrT5uBACNxzdLfM3JZ8ybDywgQwmx92/g/1laq7VDEFrlF7TTK1vu/CXvUmq58/thwkmEQW1zjGITKh1ev/UsMBHTu2F9y4biMZ1c3+nIj5S8t6gzs3x6gUDcKXD0SqK64/OHt7udXBOh+bZDUrqXquaJcU5wyarZG6+GGSPZjJk/wg/3HAohBB4WDWk9JMrD7Q1PUCv+NCwTilaN6oNwKzcmU5DQM+r2jWK8f5lA/Hcef18Pa7TBnmgQCuJ7ZrWwZy782+x8RN6OxtfbTafr1ZpMerqLBIalYPSQ8Ue1owtP7onAwqYUYZhmD3cDtAMw/NjPs+JqrH+lkM2LCp6eb+oOaF5vdR1ql7Py8/8x68rSJ2+OK39FRS3EUL72dxvr90b5Mwf1vbMKt68eD/8+YD2lsds3ah2pnBXv1Yp+rfXr7SzJ7EwDO7S3LdpNEfspT/3za2PrzzI9H1lOOnNw/by9XOTTFuW0ftt92nTyHTeoLI0kdtGZmUNRb0RCn7p176J7x1a3/7zEEy65XBH+xRkJRHIz56p/+vbBtPvOAq/3XpE1Enx3X0n743zBrbDoC7ZFZqureqjfi3z4YePnFpdsSyEYbReHbuPs7mbn/3V/EGn9o8jste1FAKGNdibj+nuKB2UXHu3aYjhVxyQte7pN9ccjDcvdhYBVXGQpuFDKQv08DifdZDquBfpDJ9Wq5cHw6LfuGg//OrweXJQp2aZpU/cMGqkOqBjMxTpFAjd5hMchUBOHdrN3zVcraaElBYXYdH9w3BmQAFzkshquRA7nb0f/+VAPHCK88imiufO7YeXzu/vKZ+LQr2aJY6D7rDEnGfq1SzRHVqjx8mckTaNa7tNki9aNqiFO07oiRIbY4Q+ufLArNZodYvxb//Kvwq03+45qaejhoaeDsbN//Wwzln/FkIYZurKkgNmZTkW8/JHn7aNs/Kk3RvVxgEd3QWb6dA8u/Cl9EZfdrC3YColxUU4pGvuMO6R1wzO+vd/T++NEX+z33gSV7VKi9HE4nly9N6tbB/PbpCq/57eGz1bW1foG9QqwcUGa+BayeMYbUR5y6gR20mwl3ZN6+JUnXmMdjWpW8Mwomq+YSUxj1mNyW7uoEXh1QsG5MzHiQ1NLWOfNo1w94k9LXezOyQq31hFRCspLrLd0KBHKUQrw5nN8uxiIXQ7Ev/Utw3qmfQQx3HxdYov5Rr047LRu5x3b5TdiHZC79aZIUn57m+HdrbeyKETerfGoV2tC2Fe1kK84/ge1hsR2XDvSXtHnYSCMbiLfqyFqkyE/jBTk/94OvOYdvHnq1S9OEf3bOVoyG2H5vXwlyHuJn8rtAuamnlcZ01DILuAdmN6UrlVwU9dSVHPb9uvQ/7PKaoOCFL9vXu7DCCj5/lzcydW/y8dfU0Zr9+mkXFEwgM6NtVdquPaodUNEqbtguwNIB3aS0pkXmfrgt+KigSuPaqr71GHq2z8VEbzF+0olEo8Bc9oGssNmsA3dqPzknOH79USuzWshYsHuRtZYOTdSwfi87/lxxq5brCSWEDCmIJx23F74VODydjaBU2NXDmkE0ptNAcpPWLqgl/bJsyE1ZSClnpoVVGRwK3HOp8IP0RnmN2h6SEX6uHIyu/St11j/Oe03rjdoMW+daPaaN+sru7coBb1a5kW6JWIlAcbtCpS4WpUp9RyfSzy11+GdMKTFuuitmxQE5cM7oCvrh5sOje8ab3UKAazwGpAqkdBL++oWWr+7GjftA7OHdjOdBsiQDX/zaLwNGwf/QB6dTUNJ6f22wNvX2J/IXOyr1m9mvjpxsPQ2eVyJ0YG7NkkK2BZoWElsYA0chk6+dlz7K/L8+cD98TebarnqC26fxgePa1XzpwdM5cd0hFG/YNZvYI6Q8jeT69RZrSMQ6HFKlCGYGgLUxcc2N7Rcb75+2C8eH7/rNf2aFI7E0hiuM6wLyEETty3NWobRKlUkqS3xhFQ3fup1+O9b9vGWHDvMa7nrFFyWQUueOz0fXGpZp6acv3r7ao0SHnJGxiB1/r8jb/pcNSvVYqureqjQfpZpBeZ8L+np0aRFKsO2LpR7px4ozmFL5zXX/+NtDHXDsGdJ1hPRyDKDGG0uLaLiwR6aZZ9ApCT4QghsL8PI5jG33QYxl43xPNxkur241KN3COvOTjilOQ/VhILxC3DuuPs/Z21niq9UAd1dlcQP65XaoLxSfu2QacW9lp3SosF6tUsycpbXzpf/6FfPYSs+rUW9VM9CHoL0hai24/vgSZ1a2RCPiuEEHjyzD44y2bUNCFS+3x1dXVlX10w1oaxd6JWabFuIXDv1g1x+SEdM4VGLb1Ih2ov/7k/PrnyQNfponjSDkM8vHtuxEFtUC6jK+XSwR3w0J964YcbDsWkm52FBqdsTkby3nbcXmhat0YmKM47qt4V5bVLVUGG9AqD6iH06nlKVhEjiexqn76WrMpORiOf1K/bfdba0bJBLexRwKOmzj9wTyy6f5in4eZkT/JjdJMtF7kYp6202LtpJZ9+x1Go5WG5CXV5wyyASWrb3NKJEALH9dodn075w3Ua8sFxvXbPVNa1hu2zm+EwGSNdW/k3lMNqiYCiIoHrh3Yz3cbMITYCX1DytG5UC2u37Mj8u2ndGqhfswSbd1QY75QZdZCdV9zo0zIrhTZCwakLD8peLuTYfXbPilKoNz+8bs0S1Cgpws6Kqqzze+ngDnjm+wU4qkd148AL5/VD55u/8D/hVNCa1auJRfcPM93mSpNYDW2b1MEhXZtjzOw1jhvpieKAPYlkSClOuSkA1atZ4miJDYVSITVqlc7qRUgnrD0DEPjmUFVY5w4WLfJeC8YvqHqIrYYQEile0IwsOKx7C4z6p/mwo4dtzoe+ZHAH1DUYHq1Q8iAOMc1mlh/cMsy/NU9vPKY7fr/zKJzWv7pnxs4cdqIgGE2nULz85wH4/c6jsgIJPnJqL9x/MiOiUvwxZy1Qdgr4FxyYav0N8gGsjcBq1OKvqFuzWLspXr/I3YLblOuF86qjlV5zZBeTLd178fx+ePuS/bOGmNpZ24gIQM5iwEf2aIUW9Wthvz2bZL0+/IoDsrYBgGP2Nu85v+mY7phx51DTbZQGDfVw51qlxbjqsM749h+FO0dGeU5oh7YD7heulwZrn9WpwUFQFI3rhmYvBabtJVdrnQ7opr1eT+7TBqcP8G/4KVFQWEkkQzcc3Q0L7ztGN7gAkBpm8fFfvM35+uKqQVnrFerNM1SrWVKMM9KZq1Ju0BYaFXq9UyXp73K8wRDMQmdcmMt9XfvKjzccip9uPNTyMw7t1jJn8v4rFwzAX4Z4W+icCpuSTykVCr15yTVLirF364Y5rztRmQlmkX0H/P2ILujQvHDnyOy3ZxPcfEx33OtjD4mylq/RM4gobFccUj28tKRIVK87rClv9GnbiMusUOKxkkimzFqAD+veQj+il4lDdJZReOWCAarPS/2/+eBDe0MTa6RbttWLx5cUF2HR/cPwmME6jIWqY3Orh1nuOb9JM59r90a1sVvD3AA0dnRqUQ/XHuV+/iHRnSf0xOHdW6Bfe/OgVUrj0WHd3M1ZzVQSWXHJIoTAxYM7oEEtd1G09bx72UD857TePNeUOC09BHMjiguO2ShQUU0Bu+6obhgze03Wa+q1hJR5Pt1NAqRIm3OC/nXsXtitYS3d6IeU7b3LDsCidVuzXquoNL9IlCF8RHHQqUU9PG+x/AFQPafw70e4G069355NMH7heuzGtRgD16ZxHbRpXLhRHCm5jtiL5Q5KPvYk5rmz92+rO4zP7RQwo+Uo7LJaIFlJV+eW9dHDYAHTiwZ1QJvGtXFkD/NMuHHdGrhuaDe2QtvQpG6NnOF5Q3uyEkj5x2iem11XHd4F3117SCY8PhEVpscNRiTNvHMoTu7TJuTUEPmPPYl57u4T9eeHuA0koLewuRNWPZhPntUn87d6mKhapxb1MO767LlvU28/ErLKU9JIo1ZpMTo2r4v5a7Zab0wUgZzAVxoHd2mek2cpeVCRy6ysuEhwrlEAztyvrWVEZTN/PrC94fx0oiAcrQqEpRRtPvrLgZYRT4mSgpXEAhVVNEmrSuIQ1dp2ytwfO2n1cx4MVevUoh7mr9mK2owmSDH0zqX7m76vnu+sqPLYk0j2PXduP3w8ebmtbe89yVvAm9uO6+FpfyIv+rRtjKnLytC0bo2ok0LkGw43LVAn92nt27GchH2vWZq65Pq0bWS5SG1FVaprsLSYhbmoPHxqb7x6wYCs5SoAoFYpsw6KnpvGIWURd/Y6Be+IvVriiTP7WG9IlHA3D+uOr64ejD2acA4t5Q92DxSY58/th84t6/k6XMpJ2PcuLevjoT/1whE2gskM7NAU05dvQov6DBARlXo1SzC4S3ZE2gk3HYaaJRxOQ8n010M74cJBe6JeTT7+iMgfpcVF6GoScI8oifiULDCH+xhxq62qxWzfto0ya1pZ+b++9iZ0Xz+0G84d2B6tGEUwVlowtDdF7L+n90b5rkpX+xYVCVYQiYiILPBJSa4M2LMJmqoqhR9ecaDvn1FSXMShG0SU44Te/g2XJyIiolycWESulHBZCSIiIipAnJdPhYA9ieSKVZRSIiIionwz886hrteaJkoSVhLJEa9rjBk5e/+2KGauS0RERDHGdRCpULCSSI4EtcbY3Sd6WyOLiIiIiIj8wUHV5IhSSRTs9SMiIiIiykusJJIj3Vo1AACc2s/eMhZERERERJQsHG5KjrRqWAuL7h8WdTKIiIiIiCgg7EkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIsoIpZIohKgphHhBCLFYCLFZCDFZCHG06v3DhBCzhBDbhBCjhRDtNPu+KITYJIRYKYS4RnNsw32JiIiIiIjImbB6EksALAVwMICGAG4B8K4Qor0QohmA4QBuBdAEwCQA76j2vR1AZwDtAAwBcJ0QYigA2NiXiIiIiIiIHAgluqmUcitSlT3FZ0KIhQD6AmgKYIaU8j0AEELcDmCtEKKblHIWgPMAnC+l3ABggxDiOQDnA/gSwMkW+xIREREREZEDkcxJFEK0BNAFwAwAPQBMUd5LVyjnA+ghhGgMYDf1++m/e6T/NtxX5zMvEUJMEkJMWrNmjb9fiIiIiIiIKE+EXkkUQpQCeAPAK+nevnoAyjSblQGon34PmveV92CxbxYp5bNSyn5Syn7Nmzf39iWIiIiIiIjyVKiVRCFEEYDXAOwEcGX65S0AGmg2bQBgc/o9aN5X3rPal4iIiIiIiBwKrZIohBAAXgDQEsApUspd6bdmAOil2q4ugI5IzTXcAGCF+v303zOs9g3oaxBRgC4d3AEvnd8/6mQQERERFbQwexKfBtAdwHFSyu2q1z8E0FMIcYoQohaAfwGYqgo88yqAW4QQjYUQ3QBcDOBlm/sSUYLceEx3DOnWIupkEBERERW0sNZJbAfgUgC9AawUQmxJ/3eWlHINgFMA3ANgA4D9AJyu2v02pILRLAbwHYAHpZRfAoCNfYmIiIiIiMgBIaWMOg2h69evn5w0aVLUySAiIiIiIoqEEOIXKWU/vfciWQKDiIiIiIiI4omVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDCGljDoNoRNCbAYwO8CPaAigLEHHDeP4PHb+HZ/H1tcMwNoAjx9E+pN6HSY13UEfO+jjJ/XYQR8/yXlLEu/RpB476OMz7eEfO+jjB3nsrlLK+rrvSCkL7j8AkwI+/rNJOm4Yx+ex8+/4PLbh8ROXvyT1Okxqupl2nheXxw8sb0niPZrUYzPt+XfsJKfdLF/hcNNgfJqw44ZxfB47/47PY0cjiPQn9TpMarqDPnbQx0/qsYM+fpLzliTeo0k9dtDHZ9rDP3bQx48kbynU4aaTpJT9ok4HEeUf5i9EFATmLUTkN7N8pVB7Ep+NOgFElLeYvxBREJi3EJHfDPOVguxJJHJLCPEygGVSyluiTgsR5Q/mLUQUBOYt5Fah9iQSZRFCjBFCXBR1OogovzBvIaIgMG+hoLGSSERERERERBl5WUlk6wq5JYQ4XwgxTvOaFEJ0iipNFC/MX8gN5i1khXkLucG8hYKSl5VEIiIiIiIicievK4lCiMZCiM+EEGuEEBvSf7dRvT9GCHGXEOIHIcRmIcTXQohmUaaZiJKB+QsRBYF5CxHFQV5XEpH6fi8BaAegLYDtAJ7QbHMmgD8DaAGgBoB/hplAIkos5i9EFATmLUQUuZKoExAkKeU6AB8o/xZC3ANgtGazl6SUc9Lvvwvg+PBSSDG0FUAd5R9CiFYRpoVijPkLOcS8hWxh3kIOMW+hQOR1T6IQoo4Q4hkhxGIhxCYA3wNoJIQoVm22UvX3NgD1Qk0kxc0UAD2EEL2FELUA3B5xeiimmL+QQ8xbyBbmLeQQ8xYKRF5XEgH8A0BXAPtJKRsAGJx+XUSXJIoxmW6ZvRPASABzAYwz34UKGPMXsot5CznBvIXsYt5Cgcnr4aYA6iM1ln+jEKIJgNsiTg/FVwMA6wBASnkPgHtU772u/CGlPD/cZFGMMX8hO5i3kFPMW8gO5i0UqHzuSZQA/gOgNoC1AH4G8GWUCaJ4EkL0ANAdwG9Rp4USg/kLWWLeQi4wbyFLzFsoDEJKGXUafCeE+BXAnVLKj6JOC8WbEOLfAM4G8G8p5WNRp4fij/kL2cG8hZxi3kJ2MG+hsORdJTHdujIJQDcp5eKo00NE+YP5CxEFgXkLEcVNXg03TbeufA3gemayROQn5i9EFATmLUQUR3nXk0hERERERETu5VVPIhEREREREXnDSiIRERERERFlJLqSKISoKYR4QQixWAixWQgxWQhxtOr9w4QQs4QQ24QQo4UQ7VTvnSqE+DH93hjNcbsIIT4WQqwRQqwXQnwlhOga4lcjoogFmL80E0L8IIRYJ4TYKIT4SQhxYIhfjYgiElS+ovmMc4UQUghxUcBfh4jyWKIriQBKACwFcDCAhgBuAfCuEKK9EKIZgOEAbgXQBKmoYe+o9l2P1FpE9+sctxGATwB0BdASwAQAHwfyDYgoroLKX7YAuABAcwCNAfwbwKdCiJJgvgYRxUhQ+QoAQAjRGMBNAGYEkXgiKhx5F7hGCDEVwB0AmgI4X0p5QPr1ukgtTLuvlHKWavuLAJwtpTzE5JhNAKwD0ExKuS7A5BNRjPmdvwghigAMQ6pRqqWUcnWw34CI4sbPfEUI8T8AUwGcCuB1KeXzwX8DIspHSe9JzCKEaAmgC1ItaD0ATFHek1JuBTA//bpTgwGsZAWRqHD5nb+kC4blSFUQn2cFkajw+JmvCCEGAOgH4H/+p5SICk3eDG8SQpQCeAPAK1LKWUKIegDWaDYrA1Df4XHbAHgSwDW+JJSIEieI/EVKuY8QohaAkwDU8C2xRJQIfuYrQohiAE8BuFJKWSWE8D29RFRY8qKSmB6y9RqAnQCuTL+8BUADzaYNAGx2cNzmSC1w+5SU8i0fkkpECRNU/gIAUspyAG8JIWYKISZLKadY7kREiRdAvnIFgKlSyp99SyQRFbTEDzcVqeayF5AKMHOKlHJX+q0ZAHqptqsLoCNsTuZOT/7+GsAnUsp7fE00ESVCUPmLjlIAHTwklYgSIqB85TAAJwkhVgohVgI4AMDDQognfE08ERWMxFcSATwNoDuA46SU21WvfwigpxDilPSQrn8h1co2C0gNzUi/XgKgSAhRKz30A0KIBgC+AvCDlPKGML8MEcVKEPnL/kKIg4QQNYQQtYUQ1yNVWBwf5hcjosj4nq8AOD99zN7p/yYhFQzn5uC/DhHlo0RXEtPrB12KVIa4UgixJf3fWVLKNQBOAXAPgA0A9gNwumr3cwBsRyqzHpT++7n0eycB6A/gz6pjbhFCtA3jexFR9ALMX2oiNc95HYDlAI4BMExK+UfgX4qIIhVUviKl3CilXKn8h9Qw1k1SyrKQvhoR5Zm8WwKDiIiIiIiI3Et0TyIRERERERH5i5VEIiIiIiIiymAlkYiIiIiIiDJYSSQiIiIiIqIMVhKJiIiIiIgog5VEIiIiIiIiymAlkYiICIAQom16zbriqNNCREQUJVYSiYioYAkhFgkhDgcAKeUSKWU9KWVliJ9/iBBiWVifR0REZAcriURERERERJTBSiIRERUkIcRrANoC+DQ9zPQ6IYQUQpSk3x8jhLhbCPFj+v1PhRBNhRBvCCE2CSEmCiHaq47XTQjxjRBivRBithDiVNV7xwghfhdCbBZCLBdC/FMIURfAFwB2Tx9/ixBidyHEACHET0KIjUKIFUKIJ4QQNVTHkkKIK4QQc9PHu0sI0TGdzk1CiHeV7ZWeSiHETUKIteme07NCOsVERJRQrCQSEVFBklKeA2AJgOOklPUAvKuz2ekAzgHQGkBHAD8BeAlAEwAzAdwGAOkK3zcA3gTQIr3fU0KIvdLHeQHApVLK+gB6AvhWSrkVwNEA/kgPc60npfwDQCWAvwNoBmAggMMAXKFJ11EA+gLYH8B1AJ4FcDaAPdLHP0O1bav0sVoDOA/As0KIro5OFhERFRRWEomIiIy9JKWcL6UsQ6rXb76UcqSUsgLAewD2TW93LIBFUsqXpJQVUsrfAHwA4E/p93cB2EsI0UBKuUFK+avRB0opf5FS/pw+ziIAzwA4WLPZA1LKTVLKGQCmA/haSrlAlc59NdvfKqXc8f/t3LFqVGEQhuH3K9QmGsUuiIJg0AsQsRCsLGwsFAtD+qS3EhsbxSuwsFVEbCziBWztDaQSgxA2VUIiWAiOxflz3GK32Syo2feBA2fhMDPtMB9bVQPgE/AQSZImcEmUJGmynZH3H2N+L7T3S8CNFhHdS7IHrNBd8QDuA3eBrSSDJDcnNUyynGQjyTDJPvCc7hI4zVwAu+1qeWgLWJrUX5Ikl0RJ0jyrGdX5Bgyq6uzIs1BV6wBV9bmq7tFFUT/yJ9o6rv8rYBO4UlVngCdAjjDbuRaHPXQR2D5CPUnSMeeSKEmaZzvA5RnU2QCWk6wmOdGe60muJTmZZCXJYlX9BPaBXyP9zydZHKl1un3zPclVYH0G8z1rc9yii8Z+mEFNSdIx5ZIoSZpnL4CnLR76YNoiVXUA3KH7w5ptYAi8BE61T1aBry0+ukYXRaWqNoF3wJcWU10CHgOPgAPgNfB+2rmaIbDb5noLrLW+kiSNlapZJW0kSdK/JMlt4E1VXfjLo0iS/iNeEiVJkiRJPZdESZIkSVLPuKkkSZIkqeclUZIkSZLUc0mUJEmSJPVcEiVJkiRJPZdESZIkSVLPJVGSJEmS1HNJlCRJkiT1fgOD879bTFUuuQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7gkyVUmjL+RmVV1bdvpHitpRiOLJCQhCdCHkxAsEny4FQiz2mXNhzD74yfWsAgjFrMLfBghBAtIeCuMkLBCFllkRjNyYzTe9vS073v7+qrKjO+PyBMZmRURGSdv3+rb3fE+Tz/3dt2Kyqw0kXHO+573CCklIiIiIiIiIiIiIiIiIiIAILnQOxARERERERERERERERGxexCDxIiIiIiIiIiIiIiIiAiNGCRGREREREREREREREREaMQgMSIiIiIiIiIiIiIiIkIjBokRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNDILvQOXAhcccUV8vrrr7/QuxEREREREREREREREXFBcMstt5ySUh6y/e2yDBKvv/563HzzzRd6NyIiIiIiIiIiIiIiIi4IhBAPuf4W5aYRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNCIQWJERERERERERERERESExmVZkxgRERERERERERERcXljNBrhyJEj2NzcvNC7sqOYmZnBddddh16vFzwmBokREREREREREREREZcdjhw5gsXFRVx//fUQQlzo3dkRSClx+vRpHDlyBDfccEPwuCg3jYiIiIiIiIiIiIi47LC5uYmDBw9esgEiAAghcPDgQTZbGoPEiIiIiIiIiIiIiIjLEpdygEjo8h1jkBgRERERERERERERETFlLC0t4Td+4zfY4772a78WS0tL53+HDMQgMSIiIiIiIiIiIiIiYspwBYnj8dg77u1vfzv27du3Q3ulEI1rIiIiIiIiIiIiIiIipozXvOY1uO+++/Cc5zwHvV4PMzMz2L9/P+68807cfffd+KZv+iY88sgj2NzcxKtf/Wq86lWvAgBcf/31uPnmm7G6uoqXvexl+NIv/VJ85CMfwbXXXou//du/xezs7Lb3LQaJERERERERERERERGXNX7q72/HHUfPndfP/Lxr9uB/fv0znH//+Z//edx222349Kc/jfe///34uq/7Otx2223ahfT3fu/3cODAAWxsbOAFL3gBXv7yl+PgwYO1z7jnnnvw5je/Gb/927+NV7ziFfjrv/5rvPKVr9z2vscgMSIiIiIiIiIiIiIi4gLjC7/wC2ttKt7whjfgbW97GwDgkUcewT333DMRJN5www14znOeAwB43vOehwcffPC87EsMEiMiIiIiIiIiIiIiLmv4GL9pYX5+Xv/+/ve/H+95z3vw0Y9+FHNzc3jRi15kbWMxGAz072maYmNj47zsSzSuiYiIiIiIiIiIiIiImDIWFxexsrJi/dvy8jL279+Pubk53HnnnfjYxz421X2LTGJERERERERERERERMSUcfDgQXzJl3wJnvnMZ2J2dhZXXnml/ttLX/pS/NZv/Rae/vSn46lPfSq++Iu/eKr7JqSUU93gbsDzn/98efPNN1/o3YiIiIiIiIiIiIiIuED43Oc+h6c//ekXejemAtt3FULcIqV8vu39UW4aERERERERERERERERoRGDxIiIiIiIiIjLFv/pDz6BZ/3kOy/0bkRERETsKkw9SBRCPFkIsSmE+JPy/y8SQhRCiFXj33cZ7z8ghHibEGJNCPGQEOI7G5/3neXra0KIvxFCHJj2d4qIiIiIiIi4OPHeO09gZXN8oXcjIiIiYlfhQjCJ/wfAJxqvHZVSLhj//rDx/iGAKwH8GwC/KYR4BgCUP98I4N+Wf18H8Bs7/QUiIiIiIiIiLi1cjh4NERERES5MNUgUQnw7gCUA7w18/zyAlwN4rZRyVUr5YQB/BxUUAipo/Hsp5QellKsAXgvgXwshFs/7zkdERERERERcstgcFRd6FyIiIiJ2DaYWJAoh9gD4aQD/1fLnw0KI40KIB4QQv1IGhwDwFABjKeXdxns/A4C6XT6j/D8AQEp5HxTr+BTL9l8lhLhZCHHzyZMnz8M3ioiIiIiIiLhUsLQxvNC7EBEREbFrME0m8WcA/K6U8kjj9TsBPAfA1QC+EsDzALyu/NsCgHON9y8DWDT+vuz5u4aU8k1SyudLKZ9/6NChrt8hIiIiIiIi4hLE2bXRhd6FiIiIywxLS0v4jd/oVin3+te/Huvr6+d5jypMJUgUQjwHwFcB+JXm36SUx6SUd0gpCynlAwD+B5TEFABWAexpDNkDYCXw7xERERERERERrYhMYkRExLSxm4PEbMc+uY4XAbgewMNCCEAxgKkQ4vOklF/QeK9EFbzeDSATQjxZSnlP+dqzAdxe/n57+X8AgBDiiQAG5biIiIiIiIiICC8SARQSWF6PTGJERMR08ZrXvAb33XcfnvOc5+Crv/qrcfjwYfzlX/4ltra28M3f/M34qZ/6KaytreEVr3gFjhw5gjzP8drXvhbHjx/H0aNH8eIXvxhXXHEF3ve+9533fZtWkPgmAH9u/P+/QwWN3yeEeDGA+wE8DOA6AD8P4G8BQEq5JoR4K4CfFkL8P1Cy1G8E8H+Vn/OnAD4qhPgyAJ+Eqnl8q5QyMokRERERERERrZjvZ1jZGmNpIwaJERGXNf7pNcCxW8/vZ171LOBlP+/888///M/jtttuw6c//Wm8613vwlve8hbcdNNNkFLiG77hG/DBD34QJ0+exDXXXIN//Md/BAAsLy9j7969eN3rXof3ve99uOKKK87vPpeYitxUSrleykqPSSmPQclEN6WUJwE8F8BHAKyVP28F8P83hn8/gFkAJwC8GcD3SSlvLz/3dgDfCxUsnoCqRfz+aXyniIiIiIiIiIsfWSoAAJuj/ALvSURExOWMd73rXXjXu96F5z73ufiCL/gC3HnnnbjnnnvwrGc9C+9+97vxwz/8w/jQhz6EvXv3TmV/psUk1iCl/Enj99ehMqqxvfcMgG/y/P3PAPzZedy9iIiIiIiIiMsEZRkMhuPYAiMi4rKGh/GbBqSU+JEf+RF8z/d8z8TfPvnJT+Ltb387fvzHfxwveclL8BM/8RM7vj9T7ZMYEREREREREbGbkKgYEVsxSIyIiJgyFhcXsbKiquS+5mu+Br/3e7+H1dVVAMCjjz6KEydO4OjRo5ibm8MrX/lK/NAP/RA++clPTozdCVwQJjEiIiIiIiIiYjegkOpnZBIjIiKmjYMHD+JLvuRL8MxnPhMve9nL8J3f+Z144QtfCABYWFjAn/zJn+Dee+/FD/3QDyFJEvR6Pfzmb/4mAOBVr3oVXvrSl+Kaa665qI1rIiIiIiIiIiJ2HUa5Cg6HeQwSIyIipo8/+7N61dyrX/3q2v9vvPFGfM3XfM3EuB/4gR/AD/zAD+zYfkW5aURERERERMRlCx0kRiYxIiIiQiMGiRERERERERGXLca50pvGmsSIiIiICjFIjIiIiIiIiLgsIaXEuCxKjExiRERERIUYJEZERERERERclhiVLCIAbI1jn8SIiMsRUsr2N13k6PIdY5AYERERERERcVliZJjVRCYxIuLyw8zMDE6fPn1JB4pSSpw+fRozMzOscdHdNCIiIiIiIuKyxNhgEqO7aUTE5YfrrrsOR44cwcmTJy/0rvCweQ4YrQGLVwe9fWZmBtdddx1rEzFIjIiIiIiIiLgsMSoikxgRcTmj1+vhhhtuuNC7wcdP7lU//+cSIMSObCLKTSMiIiIiIiIuS0S5aURExEWNrZUd++gYJEZERERERERclohy04iIiIsaazsnk41BYkRERERERMRliWFkEiMiIi5GzOxTP9dP79gmYpAYERERERERcVmCmMQsEdiKQWJERMTFgtl96ufaqR3bRAwSIyIiIiIiIi5LUE3iXD+NTGJERMTFg9n96ud6DBIjIiIiIiIiIs4rKEhcGGSRSYyIiLh4QEFiZBIjIiIiIiIiIs4vxoWSm84NMgzHOWvs0aUNrG2Nd2K3IiIiIvxI++rnaGPHNhGDxIiIiIiIiIjLElSTONdP2e6m/9fP/zO+47c/thO7FREREeFHUSa1xps7tokYJEZERERERERcliikChJnsm41iZ89sny+dykiIiKiHZKCxK0d20QMEiMiIiIiIiIuS+Sl3HTQS1BIoChky4j6uIiIiIgLgqKUukcmMSIiIiIiIiLi/CIvmcRBlgIARkUYmxidUCMiIi4oaK6KTGJERERERERExPlFYTCJQFWj2IbNEc/kJiIiIsKGzVGOt9xyBFIy1QlTYBKzHfvkiIiIiIiIiIhdDC03zZhBItMJNSIiIsKG33j/fXjDe+/BXD/F1z7r6vCBsSYxIiIiIiIiImJnUHSUm26Notw0IiJi+9gqVQkPnFrjDYw1iRERERERERE2vOO2Yzi7NrzQu3FRg7peRCYxIiLiQuCKhQEA4NQqkxEsOjKJSw8D62eC3hqDxIiIiIiIiIsM5zZH+N4/uQX//vdvutC7clFDG9eUNYmjwF6Jm5FJjIiIOA/YN9cDAJxaZSb8uvZJfP2zgNd/ftBbY5AYERERERFxkYEYr1sfjX36tgNtXFPKTceBrS22onFNRETEecSpFSYjSDWJeQc1yXAl6G0xSIyIiIiIiLjIMC4Zr9iur8IoL3D38bDFD2HSuCaQSYwtMCIiIs4DqC6aLzeNNYkRERERERERDQwDg5nLCa979934V7/yQZYBRDNIHMUWGBEREVMETeUb3Dmla00iAzFIjIiIiIiIuMgQarByOeGOo+cAAA+cWg0eQzWJMz2Smwa6m0YmMSIi4jyA5qCcKwvpWpPIQAwSIyIiIiIiLjKEBjOXEw7M9wEAZ9ZGwWMikxgREXEhQXXRofXQGrFPYkREREREREQTw3G1oGBnoC9R7J9TQeLSeriRg+6TSExioIzXNK4p4vGPiIjoCJq/+UxirEmMiIiIiIiIaMBkErdizz4AwP7SSv4Mo3fkhHFN4ELNbIER60MjIiK6otiu3DQfAjukLIlBYkRERERExEUGs5/fVuzZBwDolYHeWQaTSAszqkkM7ZNoBubx+EdERHRFZyZRGsnBPFByygwmY5AYERERERFxkcGsnYtMlgItsjhMopab6hYYYQu14TgyuREREdsHGdew68wLY94JlZwW4fXaQAwSIyIiIiIiLjqYjNcwOm0CqGoDNxnMHh3GSm4aNtaUpXK2FxEREWGi6FyTmAPZrPo9Dwz+Qt9XIgaJERERERERFxlMxisyWQoUuIVKRgGTSSS5adhCzVzQjaLTbEREREfQdNXJuKZHQWKgeoLMbgIRg8SIiIiIiIiLDKbENPbsU6CAj8OsauOaXncmMfasjIiI6AqSmxaS6ZQsc6A3p34PbYMRg8SIiIiIiIhLG2ZgMg256TgvsDHc3YwlBXybDGaVxvRTXp/EGpMYa0IjIiI6wgwMWfXlNSYxUEZqBomyfa6LQWJERERERMRFhtGUmcRX//mn8fSfeMeOb2c7oIw8p0awkBJCAH2mcY0ZJLKbYEdERESUGHcJEknxwJWbmsFkAKsYg8SIiIiIiIiLDNM2rvnHWx8DAJxeDZQ1XQBQRp5To5kXEqkQyBIBoKvcNDKJERER3VDIDqoQCvDYNYlGkBggUY1BYkRERERExEWG0ZTlpocXBwCAu4+v7vi2umLcxd1USiSJQMaWm1bbCB0TYccjZ9bxvjtPXOjdiIi4IDBVCcFzOfVIZAeJZm/F9jExSIyIiLgosTHM8fr33B2dHSMuS5iM1zTkpk88NA8AuOfEyo5vqyuqFhjhc0JRMom9tGQSA1nBGpMY3U23hX//+zfhP/zBJ1jnbdo4szbE/3nfvXwHyoiIFnQKEjWTWBrXdJGbRiYxIiLiUsUffORBvP499+APP/Lghd6ViIipw1xMDPOdX1wfnFdM4qnV8Eb10wbVJHKC5nEhkSYCWZLo/4egiO6m5w3E/N7x2LkLvCdu/NK77sIvvvMuvPuO4xd6VyIuMZhy02ATrKLBJI47yE3zGCRGRERcoiCjiaNLmxd4TyIipo9xl+zztrantrGb2R5aXw3HRbCVfFEGicQkhi7SxtHd9Lzh6VfvAQDcemT5Au+JGzNlH82HTq9d4D2JuNRgMonBCa5mkNilT2JAYBmDxIiIiIsSVyz0AQAnmUYa/3LvKfzMP9yxE7sUETE1jKfsbkps2W5ug1F0WGzlUgWJQgikiYjuphcAh8p616NLG6xx77r9GG564MxO7NIErtk3AwB4lLmPERFtqBnXhCacdE0iyU0D10G5ESRGJjEiIuJSBfU1O7nCCxL/ze98HL/74Qd2NSMSEdGG4bT7JJaB0MYuvm/GtSAxbD/zAkiEYhGzRLCYRC77GGFH5UrLO46v+uNb8Io3fnQndmkC5H776NkYJEacX2yvJpHbJ9GsSYxMYkRExCUKqj86xQwS9872AABHpvCwH44LfOdvfwyffPjsjm8r4vLC1JnEi0BuambkQx1OldxU/d5LE1ZNIkkQo5nJ9tCllnTaoOvi9BqvJvevbzmCH33brTuxSxGXCMwcE78mkWlcY8pNi/bAMgaJERERFyVoYXaKKTe9eq+SDT1ydv2871MTD5xaw0fuO40ffstnd3xbEZcXRnmBmZ56hE9jcU1tHnZzkJh3YRKlcjcFACHqgaYP40Ji0FNBYjSu2R5yzSTu3muLrn8ZeH0Q/ttffQZ/9vGHd2KXIi4RdOqT2GyBEeBUCqAhN41BYkRExCUKWlhwe5TpIPHMzgeJxFDkzIVFREQbRrlEP03QT5OpyE3zi0BumndkEpNSSpgmItjwJi+kDtJHsQXGtjDuKDedJoi570oa7+bkSsSFRTe5aZNJDJWbju2/OxCDxIiIiIsSNLFypV7755ThzWPLO++KSrsWuvCMiAjFKC/QSxP0s+kEibRI5hrX3PLQGdx/cnUndmkC5n0Wuign4xoASIUIDgLGRYGZyCSeF+iaxI6BFJfd64JRx+cNgat4mSbe+skjuP41/4i1rfagIeL8w0xujUKvLwoSs5nyQwKvL1NiGoPEiIiISxUk0eA2sqas9TQeiLR4j0xixPnGOJfopQkGWTIVmV4lN+Xdby//zY/iK3/5AzuxSxMYdwkSC1NuKoLv1aIABmUbnmhcsz3QHN6VSZwGu01JkmD3yRKUgDjBrJ2fJt70wfsBAA/G9h4XBEUhq7lkp41rzPdFuWlERMSlCloQchO7uQ4Sd35hQYv3qEaLON8YFUXZ3y+ZSpBC981uls2ZTGKoDL2Qptw0nJWqMYnMSWh5PXBBd5mALt8tZgKCsDSF40nnmMva759TRmlcF+4uWN4Y4cW/9H7cfpTXb5LM3OJ1eWGQG0FicNKbahKzASAShnGNMX9HJjEiIuJSRVcJJy2o14c7zyRSZjy6H0acb1AT+CwN7+23HVDd3cVSkxgaOJtMYiJE8L1q1iSOGUH6Zx5ZwrN/+l34x88+FjzmUkeumcTwa8sM5pc3dj64oeuJGyTuK8sbpsEkfuKBM3jg1Bp+6Z13scZRCcbSFI5jxCQKKXXCaRg6l1OAl2RA2g83rqnJTSOTGBERcYmia+Cl5aZTaAq+FeWmETuEXKJiEqeQhKBAlBMkTrsWNy+k7p8aKgvMC2gmMWHVJEoMyhYYHPOsO4+dAwC8764TwWMuddDh48hNzfl/GkEiXf9cafd8X10j0yhvWJzJAAArm7xt7SvZzjPM9h4R5wd5ITHoceWm5ftECqSDjnLTyCRGRERcouhKnnStSXz49DpOnOOZ3VDWeRrGChGXFwopkQiglwoWk9UVtA2O3HRzyi0NVEaeVydYyKpPYpKEB7Z5IZElAmkiWHXR/VJWNg2zoYsFeYeaRDMwn2afUO55owREVyktB73y2uIGiXtKueluNte5lJFL6J6rwXOJZhJTIO117JMYg8SIiIhLFLkxmXJYRVrscoPEL//F9+ELf/a9rDFRbhqxUygKiUQIZMl0ahLHuiaxCA6kplH3a2KcV7KtLnJT5W7KCBJTgSzhyX17aTezm1seOoMfePOnLkmnZM3SMRIQJlPc1RWVAwpKucY12rl1CgkTes6sbHZjVmOQeGFQmExi6FxCNYlJquSmwe6mZpAY5aYRERGXKMxnNSe7S4vd9SnITYcxSIzYIeRlTWIvFSy544mVTfz3v/oMu5VFzTk0cMHL3cZ2Ydb2dDGuSYQIViio45+UxkHhxz8rt8VlpL7nj2/B33/m6CW5kKfAnMMImsePG7h1ASUXR7lkBeqjnP/duoISD1wmkcYtb8QWGBcCeU26zmUSMyDNuvVJjO6mERERlyrMjD8rSJyqcU3pbhpjxIjzDCU3FcjShCV3/JV334O33HIEf/PpR1nbMxcvoffb+mi6i85ag/suxjVJOJM4LiRSAWUcxDj+w46MFBmgnL4E68bGBT+Q6nI9Ela3xuwSADNJwjl34w6mPF2hmUSmSoaY3OGU5eERCrmspOvhQWJ5rkSqAsUi8NxFd9OIiIjLAabEaysPf7httwUGpyaL6lAikxhxvlFjEsfh19dsybStMtmGvJCYK004goPEKTOJuUTFJAbu47g8jgCQCF5NYpokpdw3/PjTseMyS/tmp9dKYdroIsnsGiQurQ/xzP/5TrzhvfeG7yAaz5sOypVp1CR2dTnuWm8ZcX5QGHN58DmkYC/JVKAoQ4PEWJMYERFxGSDvyCSODJfGLsHbY8vh5jWUcY7uphHnG7lUzJdyNw2//hfIAbED20BBYugi2ZSbTsO8qSja5abL66NaPXJRCxKZNYl6YceXSbL77c0rJpEbJN70wBl87P7TrDHTBgVSo1wGz8lmkMgJ2lbLc//HH3uIsYd1QxGecmX6clP+uG77eMtDZ/Hhe0512mZEhVyWQWKShLPUuiYx6c4kRrlpRETEpQoz4895aJuLkC6S0+MMh1PKHl+KZhMRFxZSlnJHpnHK4kAFiVwmcVQUmOursaGLUZNJnErdWGH2G5vc3tY4x7N/+l34j3/wCf0aLdAA6pMYvq00LftUMu5vkvR1bcrO7bf3ijd+FN/+po+xxkwb5pwcyiYOx93mf8oBnFnjHUcz6cCSm+bTl5t2HccNEl/+mx/BK3/34522GVGBTMh6WcJgEsv5W6TKvCY0SJRRbhoREXEZoMYkMh7aJuvSxViDM2ZYymDHRXiGPCIiBDktLFKeu2lZfofVrXAHxKKQkBKV3DQ4SKwWIZvDnQ8Si0JiJnPXJL77juMAgI8/cKY2JiF300QEM555USDt4C471AYovONBrqgnVnhteC4G1ILEQFlmTW7Kmf/L93Kn465M4qhjANYFXful0jGJctMLA5K8Z11qEpMMEAlTbiqM3/2IQWJERMRFifw8MIld2A1OM3FzwTONTHLE5YO8kJXclHEd02J1lSE3pcTKLLMm0UyoTKNnYi6rthS2Y3LOcG+kxuF1JjFcGm4u7DgJIC03Zc499H24DPDFgC5zcle5KYf1rW9ve88bbk3i8saIVf8OoCZ75qhXKklsfEZdCFT15Yz6ZrMFBldummTqX5SbRkREXKroGiSOc9nZhh7gGdfUe3nFLG3E+UMhlSsnX+7It8mnReQ8U25qJlSm0Q6jqLGrk8fE7K16x9Fz5WvQTKJyNw3fVpYod9kuxjWhxjqEada2TRtmYB56bZlzK68mvdvxG+fdEn6jjnLTZ//Uu/CKN36UNWb7Dqzdjs006o0vZdBcrtoZdWASkzSIFVTjxuWYXuyTGBERcemic5BYFJoRCV3cmQ/BrkziNJiUiMsHZvaZU5NIi0dO0EaLz1mmcY15j06NSSzNZGxzgnm/3350GYBqxE5tMxIhghkYqknsMVtgbJHclMlo0fu57NLFADNxFzonj2puo4xr2RjHCW7GRbfk4naC+88eWWa9v+bAykhK0v3dVW56KSYuponaXB46l+gWGAnT3TRXQWXaC2IfY5AYERFxUaJWx8IyEqhcGkOzduaCZJPx8DUXL5xxERFtqNxNBYs10ExWB/MNbgsM8x6dBpM4zpUEt5/ZJbi0P4szGe54TDGJm6NctwVJme6mqVC9zbrITbmMFjGPmx0X5Lu53qyQleFQqFOsycRyk4QEXl9GfgsYc3vTOP7178YPnLsGe2tMp+SIOopyLs/SpGbI5B9UHnOSjoYGl7IMEpM0yk0jIiIuXXRtgTEupHZpDF1cmw9fTia/HlxeegxAxIVD5W6asFow0OJxyGAfiWmo3E0DA6mO92hXVLIte5BI3+Pzr9uLOx9bAaCUARSgCBHuEEnMUteaRLbclCSBHeeRLk7O04JypVXL0S41iV1aIAG8OXmcF5gvnYFZSckpGtd07eWoJbEdry1OfXPEJFTCCehzVAm1msTELTddPQl85i8qW98oN42IiLgc0LUFxjgv2A23uy4sanK7GCRGnEeQu2nGacCMbkzWqCOTaN6j01gkk2wrS4W3JvHGQwt45Ow6pJTYHFXyc+Vu2r4d+l5pkiARvJpQOpacOkbz/V2ZxLUpMLldURQSg4yYxLDjUqtJZCpJCBx1h0ou8pl0up6mYQrTmUkkuWnHek1OfXPEJMiELOOYkJlMok9uetObgLe9CvjYb5TjcvX+tBfdTSMiInY/pJT45Xfdhdse5dVfdK1JHJkP+1Am0XgfK/tcdFuQRFxe+KV33oX/9Q93sMbQwqKfMhowo1uQmGsmkSfTHne8R7uikJXjq+2Y0P48/sAc1oc5zqwNFZOYVTWJIe6m9DlZ2SeR4yRpupvyauK2x/bsZknguJAY9NytS2ygoHm2l7Lq70adVSEFFohJDE4udpO2djWC6VoWQdfzKO/Wqmk3X1sXA2rGNcFyU6pJJHdTxzkYrqqfD5cmSJpJTIE8BokRERG7HFvjAr/2z/fiW3+L5+SWFxK9tDQSYC54t7PY5RjXmPVN0bgmwoVff9+9+J0PP4CzZVuGEHR2NyUmq4NEj9sC40IwiVkZONu+n2JfgccdmAMA3H9qDQAwU34v5W7afixpIZ0IwWYSzbmKxUCO+bJFM9jYzQt51d+SZyZGc/f8IOvMJLJaZ+RGmULgOPP8cgLZrj11u7Z3GneU7hKi3HR7qLXA4BrXUH2hy4RmVfWGxcZSNS5Jo9w0IiLi4gBlc7lSl9wwOwh9sEmpMqWzehxvQQLwM7SDkqXoygBEXD745MNng9+rpZVJUsraAmV6mskKX4jS4pNaYITWZNVqEvNpyO3MFhh2JjFLEly3fxYAcO8JlWWnACURYf3liNWjmsRQsxugPlexJL8dmEQzSFnb2r3zz7iQhuM0zxRprp+yyw0IPFVIgfkB73lD25rvp9ga58H3aNdejrU2HZznVEenWEIMErcHUwERPCc0+yRKx7jVE+rn+plqHLmbRuOaiIiI3Q4OM2eiHuzxMrvcBYn5EGUxiYXUZgdRbhrhQtmmj3WNkCNePyOZXtjCcmsbclMyFwllIacuN9UZeTu7N84LpInA1XtVkPggMYk1d9OQ7aifaaLcTTk1oSZ7FSwtQzUHcWoSzWO+mxfyuWFcE2rc0TVINFuPcE3IZjWTGDZOGz4NMhQyPPir9dfl9GQsugV7JnvFSbgSYr399kBOyT1OfXmtJtFnXENM4tlqnHZEjS0wIiIidjnIGp9bh1HILrWF3WqrarUlHbPP8UEa4QL1X+Ms7Artbkr95cKu5S41icSUaeY+cOzU5aaykm3ZFrvjQiJLBfbN9pAI4NGlDQDAbF8thYQIcyqlRXWWdm+BAfDUE10cKEcdWbOukFLirmMr7HG5rOSmoeqOKnGRMts9GMeEcU0WhcQc8/qn5w23ltEMFDgMcN7xfusiwR1uU6IaUaEy3GLUl9dqEj1y0xVLkKjrGCOTGBERscvRlUkc55XcNHThRFnq2R6vtqSrIUBRGBK9+CCNcCBLSkky4xqp3E1LBobpCtmFSeQy93lRsaTTMa5R2/P1ScwSgSQR2D/Xx9EySKQAJU0QJB2lxNZML1VyX47c1NivLg6zXZnErvMsB2/71KP4mtd/EO+780TwGCoB0H0SA5lEOk+zvbRTuweAb0JGCpRQKWdVN8l8Thn7uMpwDu1qlJMXUisSQgNu89qKz7btoZCqvrmfJgwmkeSmJStoczctcmBrGchmgPEGMNooaxKzKDeNiIi4OEAPakGryUAUUi2S+1kSXCPVlUk0Fy6cxZZiEkluGpnECDuIDeRcI0VBdSwlkxi4uK6YxPA6RgqCelmCRITfN4WsJOHTWEjKWp9Ei9y0kEjLgPzAfB9HlzYBGMY1Iqy+kBbSM70UCZNJNN/LCRJJqpgXMrgvpnnMN6bQAuOessbzjsfOBY+hw8F1NzUl0Lxgu2M7I6nqy4Xg9Ndt1PKGJiXNWlJGf8saI7jjzq3dTHIiJqGYRPUc6FSTKFK73DQvjdAWr1I/N5YaxjXR3TQiImKXY2OoJkWu3JQkGgOHtMyGZk1iqHkHPRB7qWAuLKqANNYkKjx0ei0GzA2kKclNGdl/IyAC+HJTNSbs+td9AYVbymnDuCgq46YpuZsmQjgXW3kudUC+f76PY+fKIJGMawIDPpqzZnspMmaQaC7kWUGiGdx0kAROg0mkhADXEAaopMyh12RuSKA5Ri9dzV2o3rXPuP6pLydfbtqNpRt3lZsajt/BclNTNh2ZxG0hl2afREZNokiUdCJJq0Lp2geXQeLClernxpnKuCZxBJYNxCAxIiLigqKz3JQe2hlv0QpUi5lw4xqSDWW8ILEo0EsT9NMktsCAWmh9xS++H9/zx7dc6F3ZVdA1iSybfBXU0NhQmVLNOIXJ2tD9FrqQzAsgSxPWPbodkJmPq06Q5gwAODjf16/PGkxiSK5qUzOJieqtyGQSKwluN5lq6Bw07ZpEMp/hsJa0tq1aYPDqXQcZQ6KHZiDFYxK51z8t+Od0kBh63roxguO8wDwz2FPbK3SQGCxbj0HieUNRGteEyt3VoFwxiIA74CM5qQ4Sz1bGNbtVbiqEeLIQYlMI8SfGa98phHhICLEmhPgbIcQB428HhBBvK//2kBDiOxuf5xwbERGx+9E1SCxkhyCx0e+N69I43+f15MoLtbAe9JLInqFa6H7g7pMXeE92F2hdwDauScBmEs33BQeJsuoL2HfYtC+tD3VLCb2P5eJnkCadrPU5kHofS0bQstjKiwJZydoeMIJECm5SgaD6QgqCOjGJRcFOUgEqAOCyssMpy001k8gxktFMIq+2lg7dIEuZBkD8+nIpJWRZNzbIws1FKuMargt3N3OjcSHZASlQdwoPViRE45rzBkpApJyEkyxrCwEVLNpqEieYxLOGcc3ulZv+HwCfoP8IIZ4B4I0A/i2AKwGsA/iNxvuH5d/+DYDfLMeEjI2IiNjl2CR3U+Y4so3uMx7alKXrp7zaEtOAgPNAzIsCqRCY6aVRbopocOACJSE4x6co5aYU9IRK7rrUEpktH1xJmVf90S34qtd9oPY3WvwMejvPJNLXT4RabNn6HZpM4g1XzOvXqz6JYTWJlNiimkSW3LHDghxQAccCs7552sY1g/J7kRw3BKZLKcBht4tym0lwjSbQrU+iyaQPsjSY8c+1uU53d1NWv0NDNsptr8I9/l1deiPqMBMQSWKft6yg2kLA3c7CGiQWRguMXRYkCiG+HcASgPcaL/8bAH8vpfyglHIVwGsB/GshxKIQYh7AywG8Vkq5KqX8MIC/gwoKvWOn9JUiIiK2ic5MYsnS8WpEqod9j2E3XRneZMwgUSJNBWZ6CUs2dKniYsk4P3JmHc/6yXdOMGM7BboueVJmCVEGROZntKEoDTiA8PovYjaUTbs9KLr/lDpWn3r4bG0fk0QlZXY6QVAYTGLqYBLHuUSvNK751uc9DouDDE8+vIDr9qu+iWqR1r6tTSNIzJKwwNLcB24rEXrvwkwZbAQGDtMOEula5DCJEz04GTWJNI8H13GhMoXJEhG8n3Qt6SQJU6Y919EVFeC2sijQT3nmUoAyvarM3EKTTZFJPB8w1ySpsM9bVtSCREcLDC03Pax+arlpCqTZ7pKbCiH2APhpAP+18adnAPgM/UdKeR8Uc/iU8t9YSnm38f7PlGPaxkZERFwE6F6TWLDlpnohWRrehGZbuzOJpdwuS2NNIrrb/08b77z9GFY2x/jTjz80le3pHnjMvm1p2c4BCA8Sx3nBllsXsrGQsWzr+U9QlR6fePCMfk21nEgw6PHumy6gfRRCKEbQsjmTSdw718P7f+hFePurv0y3EUmEvybo6NIGfuYf7tCN6Wf7KdJEsJis3GR7mLV0s8w2EV3qGLcDWuBuMqSt3ZlEaCadK9vNEp66gw43ya2HocFlwygtVALatW5ylEtkaaIMUEJbiRSKydItSKLcdKowExCpIwFnBclGAbfcdLylfs7uU/LSddO4prfr+iT+DIDflVIeaby+AGC58doygMXyb00vZfpb29gahBCvEkLcLIS4+eTJWA8TEbFbQLUyUvIcTvPSpIKX2VU/UyHQc/RSs4Gyz+yaRCnLBUkS5aaoLyZWGP2/po3FkrGZ1j7SYpLtbppUTGIom5UXkm0SYt43rno/WgifWh3W9jERYLH9XUG7lJQGELZA1qxJBICDCwNd0wnAaXhD+P4//SR+98MP4JaHFFs6kyWtY5ow++2FBunUS5DbuoeOuRDTqUnUjDjTEAaoSgBCg5RCKpa6lyRsuW+WqtYxoduqFvJgJSVz/dzgmcmY1wW3vCFLBHqJCK7t1I7fTHa71idxFyf8djvMBIRLJq/x6CeBT79Z/W7WJDqZxHIuTgfA3IG6cc1ukpsKIZ4D4KsA/Irlz6sA9jRe2wNgpeVvbWNrkFK+SUr5fCnl8w8dOsTa/4iIiJ2DmeFmMymCJ2WrpB2qnUUXd9NRLoPrBvJcWVvPZOmOG3dcDKi3X9i9C4uFQQ8AsLLZnmndLqSUVU0iq08iBURMJtEIUriyuSSBt94PAM6uG0FibjpC8q7/kytbrKRRkNzUYBJtEELAdxg//cgSAMUoAiowzhzbciEvCjZrRozjPLOVAp23xUE2FbkpbY8TkFIwkyQCvSQJbktEKo1emiAvwufkUV6glyi2jbMtALovL7cGfq7PdDfdRiuLLOUlQGkfB0y5b00SGxOgnWEmIFzzlsZvvxj4m+9Vv5NsFGh3N017wOz+hrtpBuS7JEgE8CIA1wN4WAhxDMB/B/ByIcQnAdwO4Nn0RiHEEwEMANxd/suEEE82PuvZ5Ri0jI2IiABw65Fldg/CacJcvPD6a6nG2F0yu2mS8Pq9NVxRgxfXmkmMxjXAxWObTnHENJhEc20b2v8OICYRup1CsEpJSnZPuprc1NVeorwnzq5XgbViEnmOkICqCX3B/34P3vTB+4PHmMY1iSOQVfJXd5CYeoxrzDn0odPrAJThTWhvRYIpGw1vyq7eN8s8bxS4Lwwy9vzz7juO48TKJmtMVVvLM2ACqAcng90rqLecOp+h8spxrgIpl0uvdR9rxjX8580ssyax3ieRF3BniUCWhNdp0j4OMp7c1Kyli8Y13ZFTkqSct6REe8JDvaldbqqZxL4RJBaqv+Iuk5u+CcCNAJ5T/vstAP8I4GsA/CmArxdCfFlpVPPTAN4qpVyRUq4BeCuAnxZCzAshvgTANwL44/JznWOn9L0iInY1PnLvKXz9r38Yf/iRBy/0rjhRt+RnMAeFWiSzHtqmbChNgmUyVQsMPgOTaLlpZBKHeW78vnsXFpTJn0aQaNaXcZhEYlKIGQuVm6oghdc2Qy8IKQBzsHSAaoVBKEpmg9sn8ZGzKgh7310ngsdUNYndmURfTeKSEfw+tryJfpboPpWsIDGXnYO9rrWkCzO8/q6jvMB3/9HN+I43fSx4DNDNgIkOXaqbiYd/N2VcUwaJDBOmLE06yk2ZfUK1uylTbmo6EDMTRwk32JbdakLpmpzrpcE1mhGTMK8tSmC1KhNG6w0mMQNkgYkmr9Yg0eiTuFvkplLKdSnlMfoHJRPdlFKelFLeDuB7oQK+E1D1hN9vDP9+ALPl394M4PvKMQgYGxFxWePossoEf/ZIs3R398BsKB1qyADUmxuzZXOl4UEenG2tZ/I5meQsERj00hgkolsj9wsBWoRPQ25qBhihi0ipAyKeu2nTpIIbbHgb1Zfn88xavSaR2tSw3E07CB8K4972M4nuZY+PFTyxslX7P80FSSlRDVVr5GZNIpPJ4rbOGBsyVY7clD7/vpNrwWOA6hrk1AjSGCFUz89R4NhxObdSTWloUDTKJXo6IA1k0k25KUOBQuPm2MY1JpMYft9Iw/E19BzQM5DtLmskLnazKmS3g45j1mZCZtYcbq1UBjRA9bNZl1iTm5Y1iVTLmITJTTPWtzlPkFL+ZOP/fwbgzxzvPQPgmzyf5RwbEXG5o89svnwhUGMSGb2dilJumorwoM2UzYX2RAPMB6KaMsObIqvM7kwW5abAxSM3pUXauakwifwg0ZR60cIipCarq0lFjUlMBGzryIpJHNXGJUyJXldUctMqcJvYx7xAOnAve0juZUNTerm8ob5nZizsTFMcF8ZFwQ4S6dhyW2cQI7EwyPDo2Y2gMQBvHrZtj8OsmnNyLxXhiYtybiVn2mAmMScmkZFcbLbA2HG5abeaxLyQGGQqAcr9bp2ZxH66q1Uhux3NBJz5Wg0rx6rfN89VjCCg5KNAKTk15rcak7hPuZsuXlm6m2a7Sm4aERGxTbzkl9+PN7z3HtaYgQ4Sdy+LZWZNQ+tK1LjSuKZLTaJHNufaFlBlhDmZZHI33c3nYFq4WIxryNAidMG6HZhsdqjctGabHipRQrX4mGG2YKj38rIHpLSwXd0a6/NMkth+lvIYkeB3VqjXTdoDlXEhtTzRBp9T6Ylzikl8w3c8FwB0Y3sK0kOYm6KQKCS0uyyXkSJzEe58N9NLWfdb10U/bY/lUm3MySwGrJQO9xKSmwYyiSSBZtY/mvsY3F6CTGGyFIngyE07StBlZQAU7BJL10jGlaCr981Mob3NpQzz2vKqQlaPV79vrSjWUBhyU2BSPmoGiXMHgPEGsLW6++SmERER28d9J9fwunfzPJn66e5nEmtyU0ZNIrEULLc57dLols25tgXwGRiqgYrGNQrmcdvN1yQFhxzXyq7owiSatukJQ27aZBK5Doi++8Z8bWljqF/jmn0A3YKUWp9ER00i7Y8LwlOTSHLTlzztMD7ymq/EW77vhQDqTGIbKtamlEiGzj+yed5485YKEsOv5a4JHNoe574xry0uA5YIU24aLq/M2HJT6H109eC0bqt8n7oHwh2uzeuCcy9IqRKnvSy8BYZuQZIx62Rzg0ncxXP5bkfeWJMAsF9fG2er37eWVZBotsAA2uWmALB+qjSuKVtgtNyrMUiMiLiEQQ/gXb0g79hgvZCVBXoo42MyMC7ZnG/cLJdJlNG4hnBiZRMPn1nX/+csWqcNYrc5srmuyDssCE0DJop5Qtblk/VHoayB+kkMvC0IMNmVs2tqcULmItyaRJLlCbTLNwm1PomeNh2+mkSfu+mp1S3M9lLMDzJcs28WT7tqjxrDYHKbjeND2R7trsxuOF+xRJxgY9tBIkduaiQ8siS8TrwoA36S+PKDS74kU7UpCP9+5rhBL/weoOtitpey2kvkJMFN+HX6WWmcwr225vpZDBK3AdPdN9WqBMvxrAWJVJNYzmUULDYdTpvGNYQkU+6mQCubeEFqEiMiIqYDWohPK0j8i088jFEu8covfkLwmJrclNOovpQNpY5Fq2sMQAvJsDouoFpczzGbIpvmCuNC6nqYyxFf8ysfrLVH2M0LC7pvQuXI24HZ3oC7QOP2SWwyUlxX4KTs5WUblxdSS7+pV+K4kJjpibKXaXiShN4rwmPEoD6JbUyiq5YRAM6uDXFgvj/xuj7+AcENMURUBhDKJGqZcMcgcbafBgekQPd7k7bHSQDVEx6MOnFZ1ggSkxgqAS0qc5e1rbCa4+b9Fvq8MQ1vegzmsuqLyZNpFyQ3TcOZRJMl7THcZc3EaaxJ7A5bfbn1+jKDxImaRBeT2JCbEqhPIlCxjQ5cnquViIiLDF37HNKDc1oL8h/+61vx439zG2uMaZLAWlyUWVOX/E1KiZseOFM7diH93qzb6rC4JifJRAjN3HD64F1qMANEYJfXJBo1dTuNKiOfBjPiUlaLTy03DZgjuvbb033iPIvkcS5xaGEAoGqDQeYigx5PbtolqVUZ11T9xprz5rgovH0Sfe6mZ9aHOLgwGSQG29ajYoh6aYJEMCSSHeXuZnBZyPDruXNNoqQgkZfsAwxXWkYAlgjopBtHXpkmvKBtwvCMWaZA7Q3y0F6O5fvmBxkruULHRCUl+SxpLxVsKfNcnxfIRtRRk/KLULlpsyaxDOW8clOTSUzddYwNxCAxIuIigPlMCn1AAdVEvptNU4Z5UWXWOYuL8mGfJPaFxVs/+She8caP4u8+c7QaEyCbs26rfPhq44iA/aTPzsqaRIBnQnApwSa13c1BIi2wCrnz+2k6V7LdRmt1LAy5Y0d3zSxJnIvkcVHgikUVJFJCIJdlC5hUSe1Ck12dgsRyn6hPIjAZFOV5e59EwJ6UO7M2xP65ySDRa1vfgD6OaVkTF7qQ72hc02Qug81dOkrBKyaRV0cHVNdy6ONNBfwJX25aVHLTLn1COUxibiRz0kQEM8eaSexnPHdTSRLcRJtvtY4pr8E0SVhMoimB5ngJRNRhrkm8Caf1M0BvDoAANpeA8RaQqfk2TG7aYBID5aYxSIyIuAhgZgXPMXq3abnpLjZNGReFlnGG9sgCKulY5nj4nlxVRhO3Gj0iqyJxtSgJXbSSAU0/DWcSzYJ0cjO8XJnEI2fXJ17bzdlnc5G80/tpSgJHuQy6JnMz+8xissogMWMa1zTuG1ejemISSW6aF9DmUmp7gUFih2RKrSbRcUzGhb9Nhc9d8MzaEActclOWcY0RbPcSvrlIL02Qdqgb48pUt1uTGHodm2MUk8io96Nri8kkFgaTyO6vSwoULgOvmUTeOC5LV1C9ZcJxblU/tbtsJ1Ok3TuX73ZUCT8j4WQ7BxtngbkrgJm9KmAcrgL9BfU3LTdtupsSk9iUm6ZRbhoRcSnBnLibsj3/ODV57+oF+Vhiruw/yGk5QPb6LmnZ/jmVKTvb6NsGVIwI56GdGotdTpCYJQK9rCxIv0wfpncdW514bTcvLMzzu9OGQ6ZLIBAWSBXGwo7jbkqMuzZg6tAnTt03k+8Z5xILgxQzvQRn1yhILJAK5ezI2V43uWkVyCYO2RYle1zQPScth/LM2hD7LUFiF3fZrKO7MtXgdXE3BcKD9K6tX7ZjwpQItyrEBhXsVUE6p50FNyCqmYtwFCgNozS2my03SCwqx1dusJcmiuHu0rtzXEiWwimiQlFjm9VrzprEuf0q2Ns4AwzXgP68+pvT3XQIQKi/92aBbEa9LqLcNCLikoL5cOEsWomZG+5iuekor5pLh9ZRABWT6JKWUeBJ9VFAwySB4W5Krog6SMwnj+ev//M9+JG3fhY3PXCmsS2BNGEaVRQS956YDKwuVrz/rhPYM1P3SdvNxjXmdchZpH3onpN49Z9/irWt5kKeI2VOk0paGbJurRZ2JbMX2DTdZHtctVXKSCrB/rl+JTdtJFdCGUI65hzjoJDF1jgvvO6mOrhsjNsc5Vgf5lbjGmImQ+5tYgiqmji+3LGX2o2DfOO4clPzGuzS81BtK3SuUz/TsiYr2LimDPaoJpHDCqZJR7kpM7gvmvdNcFCqfs70UharXkhox1d2exuhEhDhx7Eo97G8thjP7ogKNeMaX8JpuAr0F5VsdL0ZJJLctHEO8qFiEckBjCSnNblpZBIjIi56mJMGZ9FK2dXd3G5gmBcsFoVA7SXc0jL13c8YQaL50Ga5m5Y1iT4m8ZfedTfefNMjeMUbP4pRXtQWhBxJGgD8n/fdi6963Qdw57FzQe/f7fjEg2fwwhsP1l7bzUyiGTxxkjL/9ndvwt9++iiLMabrVN8DgaZIQCXRA3hyR65ssQhYJI9yZQqzZ6aHlU1qgYE6Ax/KJJbHnJNIqPVJdAR7eSG9xjUUXDbHkXzW7m6a6M9uA51rVZPIkJuaTGLGCy7NeatLTSLreWMGiYw2QUDlbhocgJXzP1duqssUGEG6aS7CYTvrwWXCShImQgX3HBOhvJAQpXENt96VEhehx9FkEgFej+OICrbSAev1Nd4Esj4wd9BgEkluShOXRW6aGnNWb1b9zPrKzAYA8sgkRkRc9DAXnZzMIj0ApmHl3xXjXLL7fwHVgs8lLaOF/pJFbsp2Ny1Zkl7JGrQFsx+7/3SDSSRJVNj2bn7oLADgseXNoPfvdqxu5Ti4MMA3Puca/dpuZhJHtfuNv5/rHe5RjnOlmf1nuZvmhgSaw6QYcrvEYS5CLWkWZjKslq0FxkVRNhInJpEnN+UskGmfEmHKTRtBYhlYuODK5J9eVUGizbjGV8fYxNiYfzJO0CDrC3lO65IsSXQgFd6Cofr8jSHPXdP2GW37CJTBfeJwdrSN00wizcmh26tqGcNlu+qnlpsGy0arcRknuDT7izLmn6p3ML/eNWEykLkRyAK7O+m3m2E6R2e+dcJ4qOSicweAtdMls9hgEm1y09RQ8KydUj8PPinKTSMiLiWYiwlOZpcegrs4RsTIYBJDH2xSStUTyuMIRpnU5Q0jSGwsrkMf2uOy1iN1MBQAcP3BOXz5Uw4BAD57ZHnC/hwIZxI1pnTeVLuOndvY5ijHbC/F67/tOXjg574WAILd97aLI2fXWQtdoG6gxHEGJlXP+lb4mHEzSGTUu3LdTatgI2EZd1TGNYqBdzOJCRYGGVY3x+W4UsbGZRLLY85dIAP1ptTN/Sykv/dixUDWXycm0dYCg9On0gzSs1QEy+vH25CpJgnYgZT5Pk6gbj6nuNcWnTcOS0c9AYFw07OikEgFOslNk7JMoZBhMtym4RMnKZCUtbxc4xo2S1qTMifBx5FKMLhy34g6bHJT6z2Qb1UupeeOAJDAoGQSE4dxjdlLEQC2ShO/w59nBIlRbhoRcdFju3LT0EJ7wj989ihe+HPv7Wy0wmrcnBe6frBLCwCXIxjJnUzmNUQ2Z99eoc0mzO3XtpdLXLHQx+HFAR44tTZhmw7wai6niSf+6Nvx3X90y458tpQSG2WQKISAoNqXKTGJX/r/vg///vdvYo0Z1YxrwveTkgjrw7Am3UDd3RQIW8gXFolSWJ/EKkjpMxtn03ZcvQSJ2V+YybBSMolK2ofKuCbwnFNwyDPtUD+FcDelluXi2wUiGZsB95k1D5PYwd00TRLlysxlewTJTRkKiDIhADBqEo3j3kXyq7bFl2Ry2hJVrBmvfdJ25KZpLVEYsC2DAeb0SdT9RbOE5SeQF+r67yX8foe6TpNR76qMlMLUNZcDRnmBL/7Z9+Lttz4WPKbZJgVwzCXU8mLO6HdITCK5mzZbYDSDxF75/gNPNOSmMUiMOE/43GPn2E5/m6Mcf3nzIzvKUlwOMB9mXYxrciZT9BN/ezseW95kOamaYGWfc1kZ13RwWyRHe5vdPVBvO9F0mwvvk1hnbWyT+Lgo0EsSXH9wHg+dXkOdSQyvW7pQeM/nju/I545yibyozjHAy+JvB3TNf7w0EwpFTW7KWKRRcLLOYC4nmMQQ4xqLu2lYn8RC72cvTRjGNVUA7DIXGRUSaSqwaDCJKrisDJ9CjyUFh6xG4nqxVe1rc00uZRUI2uCqCaIg0dsCIyhIr2oSOYwgfQ8ax+sJiA5y045JyQ5y00omzGtUT+1MMmYArNtElHLToJYzteRi/TUTR86u41t+8yO47+Rq7T26TyJD3pomAoNewjr+khxf04QVNAN8lnqcy1K2zu9xfKni3MYIx85t4kffdmvwGNO4yZXcAqCCxLQP7H189Vq/wSQ2jWtkUQWQAPDd7wW+5fdUgBj7JF482BrneN2772ZLoqaJ1a0xXvarH8IP/vmnWeN+9b334H+85bN45+07swC9XNCVSTQzl5xMHy1YOQGp+bDlyMRGeYF57W7Kz366AjdaSJkBct24RgTLcPOytsobJOZq0fKEg3N48PR6g+0E6/vpz9zFQWUoaF4jgwMALPON7aDr8RsVUgc23ZhETva/aVwzuc9SStxzfEVfx6ZtfRXYtG+rVpOY8RwQ6Rp2MfB5IdEjuWmDSaQgJXTu0nJT1gJZ/fS5mxZSQsAdJQpHfefZtSESAeyd7U2M0Qu7AJbIbIvDUTJQcKkcKHkyySxNtic3ZbZg4I4zW5ekjnpX17bMcgPOs8NkwIJcaWvMvTvh93P/dCdufugs/vAjD+p9BCrHUZYpjwAGqQoSg3tONgLg0DHVPobLTfOiQJoKNkt9OYCzbjKdqr1lKfmWqkk8+KTqNc0kknFN4xwUeRVAAsDhpwPPfLn63SVRbSAGibsAb7nlCN7w3nvwa/98z4XeFScoS/S+u06wxlG/LMrERnRDvSaRwVIYDwoOu0e21iub4bK5LvUoUkqMC4nZrnJTQ1rWzP6PLdnwurTJPhk/cGoNf/vpR+uf1TDJsWX6RnmBXprg6n2zOLmypR+a22ESpyHJ3GmWf6N8YM72TCZxOnLTrguX0bjA4kBdk5z7jQK2NYbcVDe4170LJ7f3mr++FV/9Kx/E++86CaBpXKPeEyR3bBqgMHvLAbC6O0op9eJ7caaH9WGOvJB63KAX3l8UqOaSLjWJ9T6Jjf1EGJPYvCVOrw2xf65vNb2pFnbt+1gzrmEsyLdjXJMI/kK+a01ipz6J5lzumJOt40oJNIdJp3FJwmMgtVN1Sy+7zx5ZAqCMywDjfAumu2n53QYMdQFAzHEpG2W6m7Idv6XUBlgAMAxUJVzKoGPJSSw2E9fm59QwHiq56cEnVq81g0Sr3DSFFVFuevGAFk9HlzYu8J64QVkpbpNjrvV2hB21gIfF0vEzu0BVH0WMQNi2DIle4D7S/s0ybbTp+aeMNOwTq7k/mtko30LBpW0yfuXvfByv/vNP17KB9ND2mYToRXIZXJwr2wDU3E2ZQSInQOmKrmzb2tYYr3jjR/G5x/xtOnSQ2K8eN/1sSkFix4XLKC+wUPZ15NxvFENwVCET7qaWff5Mufi8pXS9pWtzppc6kyS+bbFrEovKFdTm7kjXUK90NwXUPVcU9TYFoc8P+nxODa/ZAsPG+EspIWXFFtrgCriXN0ZWFhGAcW9zmMQEvUQwJIEoxwmWAUrekASGskvDjkzidlpgJAnPTCwvAuq4bNsr6rWMIcekVqbgeN5sjXM8elat4Y6VrtTmd8tYNfBVTSIQfg6krJKSUoYdEzMBwXX8To1ra7fW208TXZ6lNn8Fa6CujWvMmsQ2uWlel5uaiH0SLx7sL+scTu9itq3rBEATyG62u78Y0LW5tzmOFSSWC1bqdxYCc0EeGtzQInWml0AIfk2iz0zGfPhXbouGtMmxIKHj+9Dpdf3aOJe62TNgfxiMiqoFAFC5qmaJ6W4a9v1oHcvJSHYFN/FDuP3oOdz0wBm85q8/630fBUwmk5gxFrrbQVfHvVEhsbAdJpGRXKHjMOcxrqHPve2ocqcjOetcP+3UgkHXJAY3966Ma2wLycp9M9FJktWtsWYbuItd+vzQmjG1j+pnLXAwxtKvYe6m9W3mhdTPsiY4QUpNXZAygj1Dbpom4XV7xLZpB9DA42/O5TttXGOawnCCxKKUMuvrP3A6IVVInyHBrbE9joX8I2fWUUjghivmcW5zjHFeaDMnoIO7qXHfcJIriQB6mf+7PXJmXc9rzfrmYMfvvBlsxzVel16RVuOa5jkocsUKZgP1/2/7U+CpX6vko4AhN20yiXnduMaEq21G821B3yJiR0HPrFOruzhI7OhcpYPEOIFsC+YChGVc05FJpPoxDpNonuO2h9r6cIybHjijHyy9NEEvSYLbIowNAw7XIm1sZRLbs6aPP6AazpL5AFAtkpNEQDgkOeO80DVZQBUkmpM/9z6aBpPI6btpgoKazx1b8b5vYzRZk8gxDdoOzIULx1hhNC70eWTVJJbneaNDn8QZTwsMum5ue3QZUkodJM72U5a7aW7WJDJq28bGYlctJJt/p/vYYBI3x6p1TGK0wGAGiUB4sCH1YssuN6Xf/O6mdsMb+h6+MUG1bQaTmyUccxH1U89bjDYRJtsT7G5qSJ5t8mcXuhjX0NtonmTLTXU5VnhwyZabUlIydS/kHzilkorPfdw+AMDSxqjWl5PnbqqCtj4zSKTgspe4v9vmKMeX/cL78MNvUck9s70Hm0lMqz6VUW7ajUxpOq4DloTTeEv9pCDx6f838B1vBgaL6v/CwSQ2axJNUP/EKDfd/aDMzanVrQu8J250zRJxFwcXCnccPber3bm6us3lNQYy/GFPrM85Rk3iiBEkfs8f34JXvPGjeLSUWPcyZa4Qeg60I5gn+2buD9VWNqUdtqzp4w7MAQDuN4JEc5GcWmzai0L1bTSZxKXSGTYzHqTcmsSuLF/XbYQutIBq3mq7tzctNYlZIiZaluwEzGuA49Sbd2QSKWBY20afRNtcS4uPU6tDHD+3hY2Rup7n+hnP3bRjbRuZhKixtoRM9bkLmkkcaWkfJ5AF6p8fuvBqYxJN91MXXPtpMkKuMSGMp25BkjKZxIbcMZhJbAaJgeO6JheLQrJcemkMUPUgDM0d0TXpcqR1IS9bZ3gblzfHGEyi635b3VLzy/VXqDqxpfWhvv4BHpOYk3FN2TomNJFHzq2VbHHyPZT8/JtPH9VjaP84yTvqk9iPTKJGF/dys07ZqQrJy9ggHdg/xFWTKPPqb01EuenFA7q3Tu/iILGrNIwkHbuZSXzw1Bq+9g0fws//050XelecqLubdjOu4QQcxBKtdgwSfQuLopD40D2nAACfLGusegmzSbThCOZ6aJsLItNtEaj6XdkmdXroHTu3WW3PrMmyPOxHmkmp5HYmk8ixyQcqaRynHq4rzOuCZbgSOCdsGKwXgdMPbTswr6dzDOl0IZW7aSK6SX45fRLpup3xLK7HhcR1+xXDfdujy3W5qV4kt2/LrInjOMxSsAHYWeAq+El0kmRlc6zZHq5xk/n54W061PuEwSSa2zNrFl2gP02YYBnfvwlXuw3fPmZJgizh9DusZKrdmESe3NScv7nlDTNMk6J6ABw+R4aYiVm3V/gVKDY06/Zs26Nn7cEFVT50dn2kW1kAYNUkEtupZdpMgylXWygAuPfEau3/Zu/UdBsJiFiT2G2dbJqQuZnEUmWYTbbgUYNdTOLYLTcl45ooN939oAtiCiU6ndE1S0RzVOjD6UKAFlwUuOxGdK1JNAMlTqBOUhxOTWJ9YeGeeNaNrCgZcfTSpHRkC3xAGTVQTibR2B/6Hs3WGfZ+h+o105G3WVvSfJCanztfBonk7NtPE69tuvX7le+bitzU2AZHXhy6mLC5m3LqqrYDUwJFQXsISCY2yFLWOaB7jNUCo7xuKYh2yU2fec1eAIoJMANvl9mKDVXWGmybfM0kWhaSuv9fImpJEinVdrjGTUWHeUsaiy06JuaUEFKT6Ko3KzxMoiuwtKGqSeTJD+t1Y2EBqRrXrW6say17UfgZcesYoybRlbizgRJ3XHfTouwlyGEgzePvYnvoc65YUGzPmbWhbmUBqGdVcJ/EMrmi5aaBiapCtgfAZpA4zouJesvwIL2omSJFuWnHmkRT3eSoiQ5mEttaYJig16PcdPcjVCbRxPvvOoHv/qObz/Pe2FFnpDg1ceqi3ZzCYrcraCLmMA2Ayui/4o0fZdUIdoV5/DnbGweye03QxMVpgRFak7huBCI3lU3OZ3opepwGwBYm0ea4uH9OZctOl/W+hZQQQrEJQkxa3QPVNWsGiSaToBYyzTFVNpbkdo8uKSZyz2yPJW0CuvWJ6wpzAdK15YlPamerScwuQE3iOUaQSDKxmV7CYhLp3uxyr81ktLiePC6jvMC+uR56qcDSxqiqSeyl+loOeY5U9S8JqyaxKBrGNQ4WJUsqufXR8vpfGGQVk86ogSRwm7K7antol4NqEpuJ/LJPqn9M+/EnGfL8ICvl9bygOU2Z5iId5abmIeckF8dFoVu5cK4tQM3JLLmpbEiZmYGzYJy3muGZqwa+qAeJS+vDGgPPYhKles5ouWnAfFIFe1XvTtt3O7lSKdZOrw1rQYpoSUB87rFz+NTDKrE7wVLvYrXYtNCFTa3VKaeOa1nXJM7YP8QnN3Ua14TJTR2jI6aJrlLO//AHn4CUamFiLsB2AuYEMMolBoFXDhmRrDNqdKYNmkg5i0gA+Mm/ux03P3QWtz66jBdcfyB43CNn1rGyOcbnXbMneEy9TyLnoW1k5DuM2wmTHGKrskTgaGkVfnjPAFkqGPKrKvtJC9Dm/DzMC+yf72NrXOCxcjtmvzdbbSFQLXibTGKvlFElFgaAgttemmBRL5JVveXe2R7bpp3O8XSYxOq7sJoA1xbyEv3Mvoimz5zrN4xrpsAkmvMWl0lMmUyilFIfS86CieYfahEytGxvXCjn3L2zPf09ekYj6zYG5uzaULkHGwsSVp9EWS2OE6EW8lJKvdA2a+0oSULX/+JMhpTRuBxoXls8RspcJNtqEj1EojPhlBdSJxOb4Mh96dztne0pJjdwUVnvt8dryq4ax5dBIqMGdZCpRu6shIc0Wrkw53Jf71rXOBqjth0ecNdbJwVsyyY3tbDNAHCwdKtfLo1rTJk2h0kXArq/aMgcZDKyvqbs5hx/cmWr7q7ZkoB42a9+CADw4M9/nZb7RnfTCnljveWaM0w0W8AAlmBTB4kOuakOEi1MoqsFRuyTePGgq+yKHsZLDEOGrjAX7yyXwPK9nFqnaYNu7DWGRAyomBFOTzQA+LJfeB++9g0fYo0xs02cOrWuTCKNY0lbQ5nE8nh98RMP6teuXJxBLwmvkaKJNUtMKdtk4NZPE1y1dwbHy/pC022OKzclyaiNBTMXyfOaSVSL5D0zBpMYGiSW53gaNYnmoqELAwb4FzG2mkSOrGw7MIMgjglTUahFE4dJHOaFZkG6NCAn1sB2jYzzAlmSYM9sD8vrI2wM85p812c4sTHM8dyfeTe+/U0fq1opJLw+icokRP1uWySbSZv5vrr+KTGzONNjtelovo87JwhDEsh3N61/FmFcSOc4jtx3eWOEXiow20tZ5k16IZ/wnIFJkpkx2Z5cSq/82b29Qj8XQwNSs3ctR+5ITp5CS3AZUk4hQB1NOP1Fqb+ubRzdt8Skrw/zmuETT15MSarw+s7cEmzYrknTefn02nDCXTPkOs4LWTGJ5T52dcC/lBCqgHhseQM//JbP4vTqVl3K7GKA2+SmJB21tsBwGdfEFhgXDboulnSQuLHzrTNqNQpdgsRdzCR2Pf70MJyK3LQ8/nN9Xo3UuJCY74dLVsxxagyDSRyHBaTUQ+6FN1ZB4uE9g1JuGiij0jWJbmnNKFfsy9V7Z/DYsgrYTLc5l7spHeuz6yP9AFUMJPS4SblpySQmCXppgpleguWNEYRQTIpmNgIXCV3lpjc/eAZ/dfMjrDFbtVrSrkGie5yWm2b1msTpMInVNlhyU8NdMPQeMI9BKCMOVMeRMvKuxEWWVEzi+nCMuX4l5/AZTrzrjmMAgDuPrUwyiYyWFKbcFGgyN1WQmJSSa7rn9sxk7JrEXEotYwutdTLlpLZAtgoi3Z/hWqT53E190j7CfSdX8XP/9Dn81gfuw97ZHoRQgVuo/LPQ5y1hm4tkHYLEmkspa07g1yRKMwAWwild3xrntb/VVCHMwDlNKrkpx7jGx0DS5/SzBIMswcYwn7hvWH0SjVrSMLmp+uk1QAGwMSp0GcYpg0n0OX6rz69eP7q0gXGu3E17u9yc8AN3n8T3/+ktU9mWuX7xXf/vv+sk/uLmR/D9f/rJWgLIyW63Gde4WmB45aYUJEYmcdeja23ONJnEcY1JDN9fulE4fcOmja5yX3Jxm8Z3o2M+20/Zx3+uvE5Y/a7K88ZZINRrEj3GNSWz9Lwn7EeaCOyf62Gml5ZyU660zP3QHuUFemmCK/fM4Pi5Lf2eem2hW26aF1LXqY4NJlGNq2/MlEwBwFOuVP2LFgcqQGQziR3lpt/yWx/FD73F39x+clvbZxJ9iZKNUY5BltT6zE0tSDS+DydIpMUdi0k0g8QODchpseWSQGdpgn06SMxr8t00mexdCAD/fOdxvPrPPz2xX9ruPrSOyzCusfUSpG3T31SQWNYkzmRe+Zt1e4XUSbjwFhiG3NTieEnrJ5+7qbMmMa/uf9cY32P8u//wZrzxA/erzzICvlBVzoTclBMQiapvHud897MEQnBZ8crdlOOcC1TtJWzXyIOn1vCF//u9+K7f/4RuTVRz3GXUadI4zTYzmURiIG2SZHrPXD/F2nBcu2+yJDy4r4LE8OdG5cDqbuUCAJvDHNftV22eTq9t1Y1rPAqP04ay5oFTayVLDW9Pxt2A7/q9m/D2W49NNZkP+O8bUiktGYloxVKrv09cJ+PSaZ1bk1iMo9z0UoB5QXCknPNTlZtW+8UJUigLvJv7JG6XSewqCeTIjGkfZ3spqzh6nFdMYpeaRJ7cNIxZoprEg/N9PPnwAq7coya+LE0Yxgpm9rP+WrU/qrn94cUZnFjZhJSy5jaXlAvrZubavNbp3jLdDVMrk1gu/MqH+vOesB8ANNvTVpP4X//i0/jTjz+k/0/Hr0v7BS7M65fLUlfj3Pu5OcxrUlOAl/nfDrrWJJKUjcMkmvczZ8FEbyXZlm1eGBUFemVN4pGz6/iHzz6mWQZAsWO2a+tX33tv7f/HymRJlqjFbujCum5cU+63rd6vvLcWZjK9EFqc4dfkmkEi17im1jvPGCo12+n+jMSxn14mMUBuah4rSlZ0Ma4hto3lblomBNQ1wmCOhZIkcxNHJJvu0gLDlTz6i5sfwfLGCB+8+yRe9qsfwpm14WSQyJGbJqa0L2CMPv5uB0rze8z1My031fcNpy9m0Wwdw5CbCr/j6+Y4x8GFPgZZglOrw3oLDE/yjpQBgGISc1kyibtcbkpkCtdzoguadfounCjLX8ZFUVvL0PmeuE7yMkBvk5s253Ovuykxif4yjBgk7gKYDxBO1o4MMpaZctPbHl3GncfOscbUDFA6yE13a5YJ6B4kkqymK5O4zjGFKR8SM7002BAAUOdttgxUurBEXeoY28ZRD7n5QYYf/dqn44e+5qkAVE/N8DoWY2HheGiPS7np/rkeRrnEWlP+42ANzOuhYhILY5E8mbWmwJ0W7l90gzIyol6Lzsm/xFs/9Sh+7G236f9P8745L3JTTzC7MarXzwFTbIFRHr9EcPskqjEDBpPYdR6na6mf2tmeopCQUh2zvbM9nC0TF3cdX9HvsV2TAPDs6/bW/v/ImXUAlWwuOGiTZpBY7qcxD1VST/VzwXA2W5zJVJ0gx3ClJncMZ18AFajaA1n1029co342E0e5lNp8Z3JMOyM1yBI87sBsbT96aRIcNJjsY5owgm3jvGVcuWOiWjBw5wSqdw19TplMlstxmuaXL37iAWyNC3zmkaXGNRnGikup7iXaFu1z6z4GGNdUbZkEZvupkpvKbn0Sc1lvZREiX2+2slCfMzluo1QhXLEwwKnVrYkA2LWLJ85VrqjLGyPDOXd3y00XGn2LdxK1mkTPfXOidJhd3RrXjWss85Z6gYLEnv0DdQsMW01im7tpDBJ3PWo9oRgTMhkEcC/+//vXPoyXvp5nnFJjEhlMFo3bzUyi+X18Vv5NkKymq4xhjdGTTtvk91IW21xIqWVprJrEnM8kmhObj33RNvD9DF/+lEN4ydOvBFDKrxiZbqDMvqX2hzbJTffPlc2N14aNhQXs44qKfT23MdbvqS9IJgNS9R3Ue77kSVfU/h7KpBwzXFjpO3QBZ5x5rnbifK8PLUGiCF+wbge0uNoz22Mx/sSkKCaRd02q7fKD7cyxsBsZCYi9c1VNyg9+1ZP1766Aj+bdP3/VFwMAHjy9pt+feAJ1KSU2RzlOrZJM2+yTiIn9bDaq3zNbLWYomcmpyRoXki1brPdJtBjXGIsxF1wGO2b9WxMhNYmnV4d4/hPqDtjqeDCltAmPhR+3zFsuVNd/uAOu2k91HfczjgkZ9P65HKcLKbF3todf/JZnA1CunFvjAjMli5UIpmw08ZiEWMeV+2gY17jMy0huWhnX0PdTSYGQNYaUqgZeN6oPCRKNRI2uAbaM2xjlmMlSVd+8PmoEwO5n1MpWtc5c2hghpz6Ju1xuOj9Qz56pBImBNYk6SNwc16XMLgaYgj8XK+hyN5V59bcmkkT9LcpNdz+atrmhIHvd3V2TyA82pg3zOc1ZuJKspiuTyGlcrmsSeylrMh7nVZDI7XcFdK9RCzGumRvUJ7xexmjuber4HQu7Ua7ML/aVRfpL6yPkebVocvXJGucFDixUNuYASmmNe7GljWvKh/riTA//+rnX4odf+jQAVQBgu3fMoN9clAPhNvJNcJq5d2cSw8bZWvRMuwXGwiBj9Wolm/yZXoKtwPvbnEe6GNeQnf9Eo3ojAXH13qom5Qe/6in6d5fhxOrWGE+8Yh7Pedw+JAK4/eg5CKHmEdeC/LZHl3HDj7wdT3vtO/D8//UevQ/EGPh6EFIY9eKnHtJ/o3mS4+5YyEq2uB25ad24ptxHT01iNSfUX6fG4Ta4FAmEvJA4uz7EdfsVk/htz38cAKCXqJY/IUGDOd8Jj7lLE6bcMUvCmcu8qBxwOc8A6kPL6cFZ1SS6GXE6/gfLefnhM+uQsnISbQuA/+rmR1TfQpsChcEkJgmc9bX03ZNEBYlN4xrdqingFFBSpkqABshNC8t3s9UkjnLM9FNtgtUMgF0JCEqYCqGepeO8kjInYhfLTWfU8386TGJYTSL1qlwb5vr+8rHUmu1zsYLOmkQPkwgoNjEyibsf5r3VRe7FCTZMcORX5sXPCVI0k7hLs0xA9+9Gaw3OgtwEh0kca7lpuAMoUK/t4TIpAK9GzXwg+a7jtWGOfpbUaqoAWjQFLggNiYy7uXHJJJZ9q86WiwTTEa+534B62B0oGRu6R/LcaJ1hYW2axjUA8Lpvew6+70U36v101QSZ9wY1s9dMYsfkCqctS9c2KeapajOumahJZBhNbAdmkMi5/qlRN4tJNL4Pt0+iEKgkmZbrEVA1u084OGf9DBeTuLY1xvwgw0wvxfVXzAOozJRcC/Lbjy7X/r85yrE5rgJ9G3NmOosCwMufdx2e87h9+LInV4w6l0nkumSawYbVuIbYTs9nON1NjeRSE/Sy63peWh+ikKoG+4Gf+1r8v9/y+QDU+TT324dxIwAITbB0ZRJVf0WViGYFiUXlyskxIaPrXzjqLUnGOtfPMNdP8UDJiC+WAYCPXb33xCp+6C2fxX/7y8/UHECF5Rpxwcb2TD5vqkTiXD/D+qhuXONq1QQoI5MP3H1y4vvS54UknUym3Kdc2RwVmO1VQWKNpfbUdq6Uz8LH7Z/D8oaqCc2MxNE0asy7YKFMRk+DTAmtSVwx1t7HVzbRSxVr72S3teuWq77Q1QJj7GYfARVAxiBx96MmN+0QgHWVOz54ao2xrbCLf3Lc7pebmjdkF3OXrkE6py0IbWu2nwY3YAZKl7pU2VTzrq2SyeoYNLQxifP9yYmLY+RgFtvbFoT0niQR2u777PpQM0SAW1o2LgocXFAF4ucsTKIt29o0rrHBVRNkBi/08KDP7yrh4bDbdcOh8HGhTGKzpx/AM3HYDug6XJzJ2FJaYhJD59euihBTymgz4KjqXQWuPzhv/QyXu+naVq7lVk8tHXf3lveDa0HeZH2PLW9iY1gFibb7xlxoAqo36N/85y/BH/+nL9LvYdVkFVI3Eg+ubbMsks9nn0TXva3ZR8d3I1fIgwuDGovJMU4h2WKX2k46XxlT3poKwQ8Spbo+VHuV8HNdJe7sQZtpHHRwoa/XLlRv5jOuOXJW1eHeeWzFYBKN4x/w9epGafbzbfZEnO2nWN/KG0yuO3D7/j+9Bd/1ezdptkuWx5ESCSHnrWZc4wg2pJS6RnzvbK+UjRoBsCfYW9kcY5AlOLw4wNk1qklM9HGZRo15F1ywmkTPs3tzVGBPyYI/trSJPTM9fW83PweAITd1hGy+FhiuwBIA0izKTS8G5B2DFLq5uzogHjcKkdtgsg2cmriLwbjGDEy4WVOAxwiaYNUklvs400sxCnz4Ag0jgQ7XVhf5YZqIVndTkgmZ6KVJcACctywIgepBu69kBZfWR7WaxMSxSBgXEoulbb9mEot6LaMtsKTv4IJrcWceq5XNsTYqAbrfN2QOFIKuwU2ou+nGqJgIPDi93rYDCoAXBhmPFS/UYovDJJoSQFZNojQSF7Z6V2OBetUeuwW6sMhUgfJeKxdJJHdcHBD7Yl+QNxM1R5c3sDUudKBvcwDVNYkeni5lyR0NJjH4+KuftZpEY3NmiwwXfO6mLiaxLdg7vVoGifP1HmfCEZDaUJu3POYiTYyLQhvucGsSK+MaRuJIqrYIfUct46NLG/iW3/wIbnu0YqsLiVrizi43rQKwKxYGuP2oMt4z5aau4/jQaRUkrg+r+q/EaGURcvw3x3nZEsRtClNjEnuqJrFprkPva+LIWeUcSjJEOo6c1kl2trP+nlEuS3VRgn1zJDc1AmAhIKXdm+Hc5giLMz3sm1PBpZpbqsTRNJJ+XdDVu6MLajWJjnmLAvUrFlUi+ujypq7bdpXOdJebFlFueimg6yKN2gV0ZRK7LghD2xQAVRZ4NzOJeeBitwk6Jp3lpoyFPG1rhtkCgzKw3IwwBWu8IFH9nOv52wasbI70QtUES6LUyH4Ckw9tkjHtm62YxFrW2mLAAUA3Cd4z29N1GHXZVtJqXGODqybIPC+rW+OGbLHbg5clNy1kKf/1B/dNmEGJr25v0yY3nZI8SctNZ3psJjFNlLtp6CKZvs+AUVsL1NkeW52grndNVK/JX3j55+Nv//OX1N7jOp5rw7FulXR4cUa/V2/Lcj3S/PJn361YwKNLmzU22FbvRB/jIekUk8ioOd5On0Svu6kvSCz/OGEuKKV2KJ4cU99+E6fX1MKf1AkEl5LBhrYklQvE7AElk8hgZXULDEbCQ8qqv59tkXzXsXO4+aGz+IZf/3BtW3QMhSNIKQwm9+B8dRz3GItr126SWdPK5lgnuNOEJzfdMPqSuhby5jmaH2Q6KDX7JAKw3gNUN39ipTIuS4Tw1rI3IY3r2yU3JYXJTC/FntkehuMC68NxTe5uGwcA5zbH2DOTYe9sH8vrQ/UcL+W+06ox7wLaKyrl2EnkATWJ9By6opwPji5taKMvOv4TQToFf21y0+a4YuxmH4FSbhqZxF2PrnJTuiA3OwZgnObqo4AMiXVc+d5xIXetHKFrLdF2HSg5MtW8lBt1YQTTDkFilxYYdBxn+6l33MqmnUnkLGJsLnXNh5SUKIv/EyzOZKpxbYO1sY1TrqgCe2ayyrjGXKSJyQVh07jGBjeTWN2HK5ujetKoM5PIq0nMkpI1Y6gSgpnEYY7ZXv24pIyAYTsY5QUSUSYuOtQk9hh1dKYDMVembbLbTuOacpH8ihc8Ds9+3L7ae9pqEgHgUJm5puvNJZujuf5xZcPt4+c2a3Wl9vumYmhc4NQkFtJogREc2EDvg8/d1Gdc43Q3zaXzu7nYRwIxiQcaTCLPXdOQJHsSLFvjHG/71BHcXbZHMWWaacpkEjvKTX01ibTbhazmzLrc1F3vR+/5yW/4PP36woCCFPdxJCZxXEgsUY/KhGdcs7aVa0bKWbdqPCNm+yk2RnlZ20nH390GaW8ZJFCbCRrnYx+bCHkmEqEwWxrXAMCZtVHNlA2wB84rm2MszvZwxUIfJ1e3sDkqsDhoZ3IvNKqez92S+V22BbgTvPQcovl4eWNkYRIbg7TctIVJbNYktspNe0AemcRdj65yU7oIuUwiZe04ssWa3LRDCwxg95rXdF2UbzdIZBnJlJlsTq8roJQb0cOe6YoKqOMRGtzT++b6foneSpmRbKLHsE23Obm53OYAYP9cf4JJdNVtUEH+wYVBJf8p6u6mzWDWZlzThKsmqyk3rfUk7Wpcw5gTSCalrhFOTWJgkGjrk+hw1jzfGOYFsjRhMYLUS01l1hNIGeiAWB6CmV74dQzUmRSrcU35wZknAeFzN12YCBJLNsVVy1vuuzK8SbC8McLGKNc1grb7xgzQXMjScHfTWguMwHug3idxck5omuvY4JKA+moSXewj4fTaEEJA10ZX2+LVxNUkmY7r8e8+fRT/5S8+g+/6vZsgpayN47ibFgVK2Sg34VEmMx3PG3P7955YnfxuDumuGWxdt78yb9JyU4+ZDzGJAHCqnM9rZQqOQ/LXtxzBj//NrdgY5tgYjaskiWMhr9QH5G6dYZRLrG6Oa0wufd8mdJBYMomUpBIlmxhS4tNsZUH7ZEIHiT0zSNzS13DiuSbPbYywZybDjYcW9NqTghtOvfG0QXPONNRsdeMa+/bo2XzlYlU6sIcYWZcqoWsLjGLcIjeNTOJFgZpsi2Uc0S1IJNnMFqe2MCBDYh13EQSJXWsSaQLmTj60EOEGpEnCC6TUOJVB7qe82pJQK+fmPgKKSfEGiVuVTMUEWcIHbav2QPQziYBaoJ1dV3bfTeMaGyuYJQmu3TeLR5c2IKXEcFzoRbptIU/3R89jXJM4AnzzvJzbNOtm+AkIaovTJjf9uX/6HN55+zEAFBQnGGRJJwdcoN3ddKYhN1XypOBNdcY4l+glyjmO2+/Q7MEZlMmXBpPIvLfNerPmUNOkyQXbInmcF9gcFZoBoSCRzpWLAdPbSwUWZ1QvtaFRk2hbJNMzzCflDGUSqSZ3wHQ3tfVJtPZy9HxGCEvUBL3sSnqcXt3C/rn+RJDvkrvb0ExSucZ89P7TAIDHljdx66PL2Cpr6Wg/g5nEMihTzw1mwiNxM4nm9v/l3lMAyp6A5XdzBukOd1nNwDiOSV5IPHJmXZs2kYmQCsAm94nw7juO47/91WfwJx97GL//kQdKJpFqcu3jlAOu+v3afar+96Ez6/r9PndTWpMdW6akZJVEyDwmX2fXhnjJL78fv/bee2q9Sm1MOlCtVXppoueDx5Y3a1JmwMUkKsbrxsML+jUtN21x3H3RL74Pv/3B+51/30loVdQUHjh1g0f79mj+veFQZUJG17Eor8tJd1OSm7qMa3w1idHd9KJHVyaRsktsJjHpvi2A2wJj+6zITqOz3FSzbbwMGk3gXRwQOb211LhCW/l37XkYukigia2NSVzdrNgNE700CTZFMg0IXIxgIaVeEO6b62Npfajq44gRabEyv2bfLB5b3sDmqMC4kHqfbU5utN+uuiX1NzuTUmcSK7kptycmoOTIgF9uuro1xhs/cD++549vUfteFJUkmdVLs/2+yQsVYM/16uc7m5I8iViKmV6KzVEe1pMuIAHh2hYAzGS881Y3t5hc2IXUuyomsf4aXVfEyFENzP7SyMkVENE10EuUTPtk2btTB4mWRTL91lqTyAy2ge31SazLTcu/+0p0LIY3gL9PYuJINhHOrA0npKZqPxhy04Zxjctc5JaHzuJpV6mA6N4TqzUmWTGJ4fOrMm7izQnk8NlP7XW5NGccWhzgdz70gP5uuk1EQL2fCS0BdbCrR5c2MMolnvv4fQCqPrR1JnFy3MfuP43ZXoqnXbWID99zqqxJrI6jbZxZt/q4A4rtXFof6dd8TCIlCqm8QbmiQm/PVYZx/6lV3HdyDb/87rt10qZWp+9KACUCjy/38YFTazV3Zdc+qtYZGZ5UCxLb+1SO8gIPnl7H/37756x/32l0KZ3pvi0jue7YHvXrPTjf1+qCPUbS3MqKt8lNXS0wZEufxLSH6G56EcCcgzlZu0puyrv4adJiNWU3LlpOn75xwE1zPvFXNz+Cj9x3ijWmq3FNFyZRSqkfLmwZT5mhpf+HgAxX+gwmxRzH2U8d3PRTp5GJlFLVNthqEh0LC9+2zNqS5uU8ySQOsWrUaDndTXPFrF27fxajXOL+U0oWZdYNNDO7pgOlCy4mxTwvq1vj2nHkJASAisn0uZt+9shSfd9Nto1TtxcQJFY1MJM1iRyX5K4gmdogS1DIMEbQlCVW7oLt+yp1cMM3rjEXyU7jGp/cVFiCy8Y1eWC+j5/95mfhd77r+XoMYAmI8ooV3zPT0xK42YZxR11uKmt/syHU3ZSu/0HWsQWGKTdl72N9HwCas933dqvcdHU44WxqjguTMk/222sOk1Li6NIGnvv4/Xq7JpPM75NYBoncFhhJaVxjZRLVay952mEcO7eJta2xUndMfDdbAFYd/5/+xmfgaVct1pxDbd+NXEM//7p9ACq5aVpzwJ0cd3ZtiIMLfVy7bxbLGyOsDcfauIaukea1TGofoKrnBeqBlG0cUD0DyPHclNcqJtF+Dszef2dKltR1/dM+AurZd9WeGc0UT8h9Hfs46CXYO9vD4ZKFrDGJjhtg3Wj1xXmWnS/Q8Z7G+jOkJpFUPrO9VJtZmcoqW8KvcjftIDd1sY9AZBIvFnTt09dVbspd/AP1RSCrT18h9eQ6jZv0h97yWXznb3+cNaaru2yXmsS8qNobsDK05UODJEuhi9Ci6OZuOs6r88Z1d5ztZc7vRqycVW6aivAWGMYCOHFIZJT0Sf2+b66PpbUR1odjY9FkHzculHHNdaVkiEwgzMWWrf8U/c0FZ01iGZjtn+thxZCbDjJiUsIfrLR935jbH1X28ZRJzguJNC3Z5g6JI5+b54ZRA2OCY+O/HRADT8cyJFFiyn27MImDXoq8kCyTEK9xjSH/dMEmQaTPMRfX3/lFj9c1XU4m3XCAXJzJtJnGTOY2rtHOip7vGerKSfdWlhAjxWMSXXK7kNMhLIFDbjmOJrTc1LGBU2tbmsU14TMJacJsr+Da3tn1EUa5xI2H5iGEajcBQPfJ9MkWm6D7hm14VtaB9xwGa5SAoHYsjy1v1lgzV52mWbcIAP/uhdfjHT/45fr/rvlkeUMFTk8spX0nSxMhavdAn93EmXXF/lLD+Y1hjrlB3VykeZ8qSTCx9n095+1tOFf6ngHkeK6OY3stqRkkPlL2gzRZUludPlAGyYnAdQfUeahUAu5rcmuc68TNk69UbKIZALuSHatGwvJUefynCToGnCT5drcF+BKn6vVBL8HZMrB/4Y0H9d8Tr9zUFSSm9fcRitwvN01jC4yLAl2NU2hBPZUWGMYikMckmi514du798Qq3n3H8eD3bwf1G5v33dSYnZffarlpuVAMDaaIEeTKhsZFlYEO3c+acY2DkaJm8a4+iVLyFpJJIvSDOW98P/UxxCT2sbI1xvLGqGISLYuEoqhYg2vKIPGuY6u1fbYFe6bUzQU3k6ju3ysWBkpuSsF2nye3U6Ag0T3m+DnFDNGujsrFDbcnGhmu9D11spQ1bfZJzBhOi9sB1UiR6YqvVQfBlJuy+pR1lEnW5HaWYI/mW18CwlYT1MZuu1iDUSHRS5VphmISyyBR12RNLiQrKef2mURzv12tFGyoahK34cBqCRJpf1zfrc2l1Ck3dTC5Nph1vS6ZKjG+V+2dwd7Zng4STZk8y920gwRdloYrPcc42j7JMY8tb2qTFqCq07SaiXnl1vbjT/LNa/fNIkuEVW5qO21n14bYP9fH3jlVk7s2HGOuGUjZmMRyF4UQuHKPSgzsLSWFvpYnJEHUTGIha4Y3LtXFktH775Ez63o7Ptmu+R2I8dxfXp8+dntrXOj61icdUkEiySR9hnrrhov76tYYtzx0Br/6nnus790JTFNuGlSTOK6eib/ybc/Bf/vqp+ALbzig/26Xm5af1SY3tQWXbcY1UW66+2FeEJwATDOJzIufJgBu0KDd5ph1e7MdmMSvet0H8N1/dHPw+7eDrm6SRYfJxwzueD0IZblo4jv+kQEBNyitmMTwgBTw1ySulA8Mm7spMSUh1xe9pSY3nbh1qof2wQX1EDx+bktn1m2LOzo/vTTBNfuU+xgxiQtGcOnK0HrWMciSxNr2gc7LwYW+YhJzCjb49xsthH1STpIlURY6L+ut1IKclyTJksTL9piW6ybajA7OFyomsQwSA65luq+T0t2UPqd9nPo5k/HOW2EwiVYDGuOadMHGblduh/ZxzqbgpXETAOyZre7TiT6JNZYu5PoPczc1j38vC3fkNOuUbXNCxTS6P8Pm7tjGJFbs4+TfRnmBpfWRnn/s22r/futb41r9nblfBGJ8Dy/OYN9sT0st5wfu5JYLtT6JHVpgDBxzAp1LYhKPLm/UWDNbAoLGtQX3tu9GQeK+uR6u3T+LB0+t6ff7GODTZWC/b1YlF1c2x5gbNPokWhQoZk06JRWJSfS1StFMYinNNGtQs9TdGmp5vWLmKEhMEr9zN1Dd+yQbJTm0a04g8zZSZLzghgNYHGS4YrGvv5srSWK2+lofjvHy3/wofuU9d3d2hedCt8CYwvbysr4fcK+vNw256Zc/5RB+4CVPrv1dseLNIDFQbmrWJEqp5Ke+FhhJZBIvCpj6c1adoNGontODsItGe5RLXbjNYdty2Y1JnCbqfSr5DqAsJtE45l36HXLcFul9JDcNDfaklOp8D3hBIh3HfpY4F4PU0NZWk9hj1MrS5yvjmvr29f7I6oH+zGv36tdp0WRbbJkmIYszPeyZyXDXsXqQaMvI6/96FqBtNYlXLAywujnW11WX+0ZLoD3XBzn8nStNcsg5sJcmbCl5kqjgxRVcuuSmaRIms9suqAchR25ascLYJpMYGNzIRp9EB5PIdjfVC0L7GFeQMsqrdg+mLHxCkmYJEn03QAiTNc6Lmrw2S8KZLH3eEvucYNaaumCTrlfHsSVIt3w3kpMd9MhNQ4xr1oxm7q6FPDG+hxcH2DvXx6Ol/NCct8L7VKIys+rQAsM1J9D5v3afYrAeW9qsJUlc12RRuFuQAO4gZXljhDQRWBhkeOIV87inbLuRJu5gDzCYxDJJsm45/pNy0zrbTCZi+2bLAMxTA0kKjlXNJFb710s9ctOyx54QlZSzliRpYRLJ4bSN7aR5k5JtX/esq3Hza79Krwl9LUhME7X1Ya7nMWovtdPokswHgKX1oU4yhGJcyCpJ6HgmmkyiDbaSAyUjFe4MlxDq72ZNYpvZDQCksSbxokBuXlgdTWE6Ga6wAtLKAp1jODEutleTOI1C565MIh0Glmy3o7SYJGnEJoRsk6zkk4RnQEC7OMeUm1L209ZHkKDlpgN7TSIQdg+YkjTXosnsP/eMa/bo9803ZXNmkKgXqOo4X7t/rpJtmU5uE7KOisVwIXUwKbUgcVj1SeQGG0AVUPiYZmISpVS9r8aFRC8te3AylQxZkqCX2U0qgHqRvok0Scr63J29v6kutWISA+Smtmsr4LgU+rzxmMS8KKo+iZbFVohxjRCTSqNCfw8mk1gUeluLhgvxTNMV2JSblj/bmUT7cZRS4tvf9FH8q9d/sMYk9rcrN7Ua17g/ozKhqca1MYn0mbbFPyVkfMY1IezehhGkuAKp06WU8uBCH/tmezhXJuRoXFbecyEoDLnpuJBBSWh9/BPhnBNobpvtp9g/18PJ1c1aksRlyqPKJjxBuiNIWVofYe9sD0II3HiocuVMk8SQm9bHbY5yrA1zHJjvYd9cdd7mjJp0wGYKU3fApWfIvrn2mkSqUyPDsWbvVJ9xzYH5Phb6Gc6Vz1bT3XciSGw8p4hJpL12mbnRWoXmUWHUedM413RXZxJzLW09VpY97DQqUoRXlvWcn343nv1T72KNyQuJfqaurbaaRJpPm1CqkMaLRYtsFFBsolmTqNnHFuOaKDedLv7gXx7A5x47xxpTSKl7QrECMGPhwqlL7CaTlLquh2vU0kVuSphGsXHNOIi1SC7KMeH7OKwxibxzRjU6AI/Z4BrX0Pmd5xrXFCjrJt2M1KqHSaSHasg9QBPtbC91LraKopIx9dJES5yaTKL5rK9aWVDNxqz+m68FRsU+tQSJltO2ZVhiU+AGGEFihySE7/o4vbqlFxFn14e6bjVjmIQAdQm06x5YL+elZp/EKqsevLlO0HLTcu4KcYKu1bvq+y18HJ03jiuwySRONOk2mDUXbBKlNibRxRqM86r+6/Ou2aNfJ/OV1LKQlIFJEtd1+dDpdXzs/jO4/+SalqRniWD1hTXdS30OrG1sJ4DaOaBz76sJFQ53x9OrniCRxSSOtXGKKwAY6YV8qgMTwJjvGExiLiVSUfVdDXnGmXJfFwNMz8wsETi4MMCplWEtINISUItM0nP5l/eNnUkkuafZl67GJDZ2k+oCF2d6mmEDlBkNfT/AwiTK+jVCTCIlyHznu3I3zavvS3JTT/Juqfx+CzOZZr3M5NaEBL2Afg9Q1SJWdc/0XRpMojZbsbNfvpZGptP2+tYYB8rA+/jydIJEXZM4pT6JaZI43X0Bo04/czCJwsJuF2O/AQ2g/m4yiW1mN0ApN41B4lTxk39/B172qx9ijRnnUk8oPpnYxLgyawFUFHYI6ALkSVsL9OjiD9xHKZXD3yzTyMFEW1Pw8wFzAuY5uamfXcxuumzLrEkMCaRMu2uOAQGN4zKJxNr4Hmo+uSnnHiAZ4yBLjEVrfZxEXZ1B5hFVCwz1uk1aRgvyL35i5Tq2YASXzcVWCEvhYhKrmkS1CD9b1gpuR27qGiOlxOm1IW64Qi2YlJtqVZMYuoikbaWJQC/x1CQ6mcT6/u4UcjKuIblpQDLNdADs5G7KrEmstwCYXNjpYK8lAGvuYsWI2h/ztGhtrkdGudTzzIufehhfdMMB/KcvvQHXl9eMbSGpfRU8++hjEk224dGylq5qyh7IfhmJGttCvpKbuj+Ddt/mbuptbyOE1QDl9FrF7tnGmPvtw8Yw18Ypvro9QB3nq/dOJrdCa0IBw7gmZdTylrtDQYqNfTQVIFcs9HFqdavW3sPnHNrGJLrkpnvKIPHgfCX5NcsUXG0islTg2tK87KuefiW+6bnXqtcdEnSzHg2oXGXN+US9b3L/KVE4zAtVPiSr8+xzpd0sGeaFQaaTiyaTOLGPsn4t6/WEEeCbx6C5fzS3NZF4EhCrRguMtWGO/fPqfByfEpM4TeOavHRG9yVOW+WmwiY3baktBBSTaNYkhspNc7/ctIW/jOCAUxdogmR6PhcrG8Z5gYVBhjPjYXB/MymNFgxMd1OqEQndRzoc22ESN0Y59rNH8RDSANU3juzufYsIgrlw5C3+i/IaCc/smouGfpqyZKNAdd5C2VxibbKyhkIahgQEksQsWuSm2rgmYHtboxwzvUQ9SMu3Nx9SUtYXrZTNp8nZ9kDUC8Lyby95+mH89D/cAaCSbdlqBui/ze9rwiWJoppAyngvlWYEJEfpYozkukc3RwW2xgUef2AO955YxbnNka5B49zbQOWcq6Rl9rnP2QKDwaJsB+QSyKotrDEi4RJo+i6UuAuv//Ib15jMpgvCIndsXstNaNamySQWhb4Xk0Tgz1/1xbXrurpvqmuFtu0zhUk9TcHNuiUyXMlaWOomzH2wMYIhNYm2urGQIDER9ud/xSRO1iS6jr8Na0Z/18o4qP6evFDtJ5JE4DmP26tfrzGJjNZJpuFTUHlD4/jbmFWSbWeJwBULA9z26DIOzPctclNbkOjedpoI2PLJ5zZG2FsyVzS/Aio4qpQk7qTMU65cxMd/9CU4vDiYMNexJWXMa+SnvuGZOLgwwJc++YpyXPW+JrZGhepTOy6wPhzX2NXMk4QbFQUWehkWZjLcd1LVWybCF2zXWfFnlbX6L/+Ca2uvN49/syaxidRx/QMVMwsAG8OxLjU5uTqdmsRptsAggyWfmRvVKvZdAbfVuCZEbtpgEtvMbgCE9EmMQeJ5BMf0wUQlJeTJvUaFxD6SqTL7ywF8uWmWEo0e9qCpDDhKRqoDk9i1vcc4L7R8sQ3U20lKvpSWMMoLpG1yADTlpkxpnxDoZ+ViN+AcmEwCR25qtrLg7CdlnzO9QJs0GyDGwNYCQ8tNA67ljVFek/HYFsmFlDVh2f5ysUB1kbYHYnNB/oSD8/jFb/l8fOqRJaNv1eQCSAYtku21JRRs0TEh2RCXgacaVMB9fdDxv3qvcm6lvoz9XoqMcW8DZeJC+OetDYe7KSdo2w4qw6dwdk+zYgnP3ZQ+mljL0AW5ae9vM+AIMlwRPibRPs7tblpvN9BMfOiWM2YApt/r3EUvk7hmSNKOlIYrypXZLdtqwjxONtliSCDrSxz5WzA45KZrW7UEUHNMc1su1I1Tyv2yBDe0j899fJVaJYdaTtsZqoHnyE2bcl/bNF5nEgc4tTrEjYcmmURbLV3mYRKFcARf40L7PZjnYP9c372txn1z5Z6Z2t/pMvD1SQRUK5Kf/eZn6f+7jGuKQmKYF7hm7wyOLm9idWusn/eAqtV3nTe6VxcG2QSTa/9u9X153IE5PPjzXzexjxNM4qglSPTc22YLjLVhru/naTB7QLWe6Lq9UV5468FNmGt51/aGeV47R02klpIDJTdt2YcJuWn5e5Sb7h5wFlgmSErIX6RJwyQhfPIncI1resxAtpIt8hgpExsdg8R1xjgy7kgTwQ7cCKHHsm5cwznXqPUEDHMApYwotNw0hO2mcbPMmkRiRHwOrCubY8z3U+sE2WcY12wM8xo7ZZMbkWkP4SVPvxJA1ePJ9kCkjzD37luf/7jaw95W/xLEUjgepCT3JAkutaaY0X0SQ5My7dcjybdp4bOyOaoYwSQJTjap/UZrcsvVJ5Fj2rEdFNrwiSEb1ZIsM5gNuN/KcYMsPNmh9zGASfTpFGxMVluQ6HY39S+KbIxIUE1i6jbg2LAwiQmpEhjslxqnAtvmMaHf/O6mkyxRW79J+kwbKX6mdMm0scC2mugmTpzbxPL6qGYAJxznzWSyrtwzg9965RfgXf/ly3XSImUY19Dzps9iEqvv5XIvpn0UQuDQ4gCrW2OcXhtW7YU8TKK/B6ddbmoek32N+kJXkN41uWJLilrHNbZHc/WBUpK8Psy1cRCNc90DozIZbpZvCOFuC1WVoNj30XVMKrmpPeBwMceACgxneymEUAEjPSu6rpe5oK/SNUjkOJwW5Vrep65Rcn7fHGQxbJR5gNxUOOSmnnFpr1VuGoPE8wiOVMuE0uST1XG4bNQ0heFkrQmd5Kaenj2ubXWRm1ItRIjRhA2cWsa8zMb5io2t4zocS/r8mR63/5SS22SeQOoTD57Bc376XdpaWj/s0kQHYBzDm9kuBhxCeFtZrGyOrCwigKAAmCzlzebSAMq+e/X3FiVDTHjpM6/CTT/2EnxRWWdYOblNBoncnlzBNYmWw09BGi0Cie3jMonm3OG6R4mxuWpPxSSOc1VHkTIb3OelLLHvqRvbdLbAsC90zzdokVi1GGrfnsmIcGoS6bsMmE7VJmtgSySEJiAmFtaGcZVrjPk+wjhwsVtn4NXPzkyiwTZQHR/NyewWGOaxZDOJ5XutTKIncHYwWadWh9rwZGKMgxEkHD+3iS/82ffiP//ZJwGg1m4AsNSu5nUm66XPvBpPuXJR/9/X8LwJet700/BnAH1/ITzSeiNooz60dxw9p4McV52mybbb4NqeGSTWmERD4to8/M26vSZspki0rZAERPN80/xOrTJWt8a6TyUArxHcKC/QTxMdZNN+p6l9fi2k/1p2XVvDNrmp594e5QUGvQRzvRTrw1x/FichuR3QdkJdeptYMnpRtoFUaT6Z/HBc6PWtDYnNBOsCyk1jkHge0dU9SUuiGDUD2iY/45lbdGG/ACWl7aVJJyZxpoNxDWVauspN1zlBojTlvjwmlxC8kC8/f76fsdxNtdzUI5u7/dFlLK2PcNujy7X9y5iyOZq7uQxwc0Fu29bq1rjWe81E24L8de++G8/9mXfjnuMr2BzlNXcwW/atWZMIqEbTE9uzyk3t35HGTQaJ5X60MomTx5IWQBRIkbnPDNO4ZhxwPdJ9cWjPAEIA50q5qWISmUoGSW62Hie3UQ7TlZcwNbmprAxQ1PZC5KZVkMjpS1rVJPKcqk2WxBbshQQ3wio3Vdt3MTAuNneUF96AyMfAd3U3peuynyU4uzbS+8153jSPU9MAopKE8wLgyvmRz2SdWRtaTWto/wD3fPdXNz8CAPjwvacAYLJPoiUAaNtH30L+6a99B/6y3GZV3hDOJEojuLIl4NTnVm0iPu/qveqz80InDrVM2MOS2uByNzWb0s8ZScVemnidVOl7WLflYnJleyBrHVf+n2TB61u5Ntyi/XDKTcuEjvlMTQ0msXm/tToeO5nEMkh0tG1IHEE6UCkTZvtZTW7Kabe0HZjti7qs0clILgRUy9tPE6e3wigvnPWIgCPhUeTt7qbNFhgywLgmyaLcdJroLjeteuAFLwjzOksXbCZjvI3NJNJDO3BhRxNSlz6JPXJt7dDaA6hnptugF8ncFgCmdDfwu9EidW6QsiYsWgD4Ainqf3fPiZXatkzjjpAG5k0mkRsk+vodrmyOa1lPEz4zEykl3vDeewAA955YVTWJE0zi5KLJL9GbPJYmi+SCPUgMYSnsvaSoBxgd79WtRk1i6PE3jrfrHiU78oVBhoV+hpXNkZYsKWkfh0kvdL2f6/rfGBal1Kh+YKZlXKPqJquglCc3FUb9XcC4BpPIYm0CmMQ2BszW3BtoZxKbcfO4VQ5lYxLpvnHvo49JpCDxqj0zOnOvDLd4QaIQVRDYPJZVIOv+DFsPyBDjGluQDqh2MwcspjXm57l6hR5ttAiYa5Fkjht9+ppQTKL9WN5zXM2pv/COu9Rnl4kLrVwJkVsbyZXUchzVPlZB242H5vW90pSb2syUvO6+NrMP1Fn6iTmopSax9b5pbG6ct0tifdvbUwZ6q1tjFEW1f8q4xhEkluxxk0mkHI+t/hFwP99c11ZlXOOWm7rm8lHp3j8/SLE+HOvP2ukEIcG8BruUPJ1jyE1D1pLDsV/OT/4YNYTITZs1icQQ+sZFuel0welnZsLsgRfOJJJskYxrwsaZNwzLJIcWkkm4A2uzJpEVJJY3EacmsT4Z8Fi6LnJT81yFSwLLY9LL2EF6W5B4qgwS7z2hXM7Mnkh6HKMp+IAbJJbJDp8BjS+L5rMIf/jMuv792LlNR01ifYxEm9lH+T5jXMhtZKu/0CyFJyzNErstPMmdST5LvbIquWnYvT2qyU39TOJsL8XiTKaNa7JyQchqwVNek76F/OY4t0qUXAYJ5xtkJlFJmcODPZ+VvA1Nd1OO4oK2o6RG9b9LtCcu7H0SC+84twEKn0kM60GYeJjEMYQADi0OdOZeM4nj8GDb/K6paMpN1c+24wjU54Q22S5ty3ZvL22MsM9iWmNuy3UPnDi3iaddtYgXXL8fi4MMT7myWUtdf38b2+ZjpEh9cuUeFdBS4qLHUaDQ8TWYRFtARMcxSxM8sawPr5hEhwS0gJZQcr5b4TkmriDdvP9tcLGdRQuT6JOpAtCtOtZIblregsq4xs1K9VKhxwLAFYt95/zazpLSd6m/Tusp37PbzyQK/bypmMTpyE27llh1GWPWwLtrEluYRNu1HNIncaIFRrnfrXJTfxAc3U3PI7r0AQQqSUTGqEnUTCJTytm5JrFQ2eWMIck0M+tC8Kj+LjWJ9e8WvvikWgJfxs41jm7o0O3ReZsbpDixwmMtzf5f9sbNqpaHgkSzCTSnKbiZSe1nSbhxjSGbBuxykryQziyazyL8I/ed1r8fO7eJjVGBA/PV5CeE3d3UxxrYA+7ABXnjMIawFG3uplpuWrLggx4/2CC45abqs+cHGRZnepPGNR3Ybd8Dcex4IHJq/baDolDXlb7+A74fnUvzWg7pL1e5m4YvrIFKEkvbdLVXaat3ci0+XfWFrkXrMJeY6fEZEfWZzmEtNYk55vsZ9s72dGIwFQK9jMMkosY2NVvVhBoAAfXv1ibbpXFWJit313f65nIAOLGyhSv3zOB3v+v5KGS1QHf1GG260jbhq0m847FzAKqELq1JUs9c3kRlXuRupUCqCcKBsmcesWiuxEXewiQmid04yGQuAeBHXvY0bWCTeIJtwH3fCGF30x4XfibRJV2n/+8pA+X14Vg/7wG/cQ3JTa8yHFgPzg/cst0WpcxOuJsSwbB/ro+z60O9DuQkJLeDcaEMHjdHRSe5KU/xVZm5ucaZfWhtcLfAaAsSm+6m5bpN+GpnekAeg8SpYTs1idSTi8sakLtpsANcjUnksAYqu8yxJK+yVgn6HkmaDfRA5DCJ5ndjObeW2c0+Y0ECqAl3tpdidWvMqAkt5ab98L6FgArA+p7G8UDVk+ueE6va2AjwW2Jb99GQ2w0YrTNMl17Azr6oCdv/gJp0KZX4hXfciWdeuwdn10Y4tryJrYbc1CZ3kRJejZ5tkRayILc594WNs0vSyACmV7aYWd2sy02Dpcx5+71NTOJcP8We2QznNsZKXpgkyFK1f0XLYkdvr6gk6K7gy/VAnFaQmMvquwFhC5OKSQBrkazdTZkMsKpjQbnNyYV8qJR5kn1pY0Tsc8k4bzFW8MpN/de/6zrZGI0x209rLo1845q6UVWT8a9ku+0BsM2UxxekuOSmvjo1l3EK4XjJJDZbOfkYKT/bljiVJFSeQaZnKrlSzeWc50ZNbtoMUhqBLJnxaLmp77u1BOm2YNt0DgaA7/mKG2tjzP0mNBvL22CTt7aZ67TJW8lYZ2VrXKunbzOuyZIEV++brLW3BbKtiSPH+iJEbuq6RoZj9QzYO9vDkbMblXHNFJnEuX6GzdEQWx08LkJ7kNO2EqHWr6uOkqetFrmpNUiUAcY1SWJvgeFlEmMLjKmia00iZeT7WXgmn27I2W30SeS4S+mG2xy202SkGPWWQGVcw7mpa0wKMwBLU+Gt2XBtj2vKQ9fIXD9jHY9mZtf2QKSaxJXNMU6ubNVkUhyjELNugRr8hoBcekmqZruWfQ9SV+AwyiXOro/wNZ93Fa7dN4vHljfLPonV9NWsSTSz2i7YAu4gl1LLJB7WTNzPJAJKPk4Plx0xrtmqgsQrFgY4ubqltp9W5i6h/V7JcKWXJc52LsNSatSE7zo+nzBVAgCQh7SO0eZFvEVy092UMyfT8UgTmyOh+tlWk+gy4ODeb2MP+wXY5Y70VdsCWddhVExiqhkloJSbehqJN1EUdblpc3shvUw1S2TOCUXYXGJjEn3skovtAYC//MQjOH5ua6JHH23LNk4lbdxLuix1M4k0x58gZ+xSbqpdgUMMn4xgugo26u9pMnvEXFLCz90EvkVK65A7mjWJTVCblKbctM0BlPazi9zX/HxzHKDWBImojMvo/VkinME9SRep760JG3OvE8dOCbp9Xh62yE1dfUIBNQ/2U6GZRFoDTc24ppBVwrVDYLrFVNe0GW4pR1r/dWI1rmltgdGUmwYyiS2IQaIDeSHx6/98D06VEr4QmItiVzG6a1tkLhLcE6183wwza21KQDlZ/HFRqIw8Yx91JrsMgDvVJDJcSmumPEwmkZqCc2Wquk8lw9wFUA/HUR5uyUwLIB8Dc3Z9iCcemgeg2ES6RthNwWtMYjjjGWJcQ3VsNrgswmmx3csSXLd/FkfOrJdBYloba361UGavub2Qxa4oWRvzHg9xTnQ1mDYD59leitVykTDb50rJzZrENiYxw5V7ZnB8eRPkOOiTCdu3J1vNRUaOrKmPET+fCOndOTHGWEhxkit0b9FCiqPucLVtAKCppi7MBn2mDS6546goJtir2jiLJDCMSXTPP+vDMWb7mXZ4BEomMQuv098aFzX3xaQR7En9up8lbwaXVZDOl5uS26F1jCdR8vbbHgMAvOiph4PHbacmkeb49WGOtbKZOwXpAFi17EJAM+M22aiZgGg6aDvNXdrq/SwybWAyKJ0YZwkuq+emcxiSxMF2ttyj6n3113UyNxWYL83EACNI9NSKk8TYdO3W+2j5bpV7d8ucYElAmPtk+26uuZzcTffP9bC8MdJmhNOUm3bxxSBwe2drx2/HWrKtJrG5lgFQyk1bwjWn3LSlJrEFMUh04AN3n8Avvetu/MI77gweYwYmHBelqm4mPGuqW2B0rEkcZLz6O8oucySZzdo2zs1Gc21Xt1Fuv8M04dW/0Dh9/AMnPPp8PWkxzneWuGU8gDpHT796DwBVl1hlRLstdhNBNYlM45rEzaT4FjIui3CabLNE4AkH53F0eRNL66NGn0Q+I2h7IJJJSIgkrT7Ovy3af+t5K6o6nbl+irVh07iGz9y7Mv/rwzEGpWz5yj0zWNkaY3ljpMxdUl5wo2sZPRJ0V2N2l0X7+YZ+aLcY13zq4bP4b3/5GSxvjGoJBlbrGFnNrWpb3YxrutQkCksCoi1I9LqbtrA2atxkAOZlEj1swzBXcnrTyv/AfJ/l+D0cF7WaqWZQFDInAJOGNyGqBFcLAJq3XdsxP9/E0aUN/KvPuxLPe8L+4HHbcTc1686XSjdHk0nkGDf5yhuaQRsxpfSdKrlp/bODmERXkN4SXLoZeL95k43t9DHw2nHUxe4lAnODVDOJdC/Z5gRAnX9Vk1iVoTzz2j3VPm6DSXQpZVzH0lfvOhqr47Jvrg8pq0TltOSmRYcg0by3uCaIbUxim7upNeEUIjedaIERIDcNYBJjTaID959cA1Bp5kNgLkA2R7kOINpAdTMpwo1axo1gIzj7LynbnWJjGN4mghZ7vF6OVXawn/HkpvRWl4zNPsa8sTsEiR3kplpaxnZ8VdfVMC+CrhOafHxM4riQuGbvDBZnMtx7YhXPum4vADTGBciGyrdUNYk845rUW5Podk50LRAo4OlnCQ4tVnbyVxjW8k0mpZJ/8uQ/lQFNyLjqtaazog2J40FqMonmtcBVCZjqAl+fRJozrtpLToYqW10lEsLlfb1e4k1ukeFVEy73w/ONyfvGvp/f9qaPYTgu8LJnXoV5bcfP6+fYDBI5jtO1nmguKbPnM2yyuTZXTrdJSN1cZHKcJUkSynY6GZECvUTgwFzVU/CKxQGrBcbWuKjVTDWbUleMoP9zmrVcOkhvCTYmvCYMJY11jINZklLiyNkNfOmTDrHGhTCJhbTXHJvPS2pBkhqGT0EKFCO56Gql0Cw3+N6vuBGDLMW3PO+6ciys41oZwcTeXsjsk2gdJyxOqjogcg6buLaAStrugkvKSfN2lgjMDzIsle6+lNiyqgtQzS+U0Pnka796wvHb2QPSEcy62M4qUWX/bi4mF1BrnMVehv3z9YBkGi0wKJCeZQaJ5q5xyA0p1XPDV141ygv9jLHB2s6lGHdogUGyKJ/c1N7Dtfaxre+4TPFIablv03q7YEoOWa0bioqBCQ02JphExsIOUAsZzk1KGVEO22kyiewehOX34Yypm/Iw5aZJwrJbV/so2Qt5Yhy5mS2yJPf1l6PF3ZMOL+CeEyu1489iEo2HJIdJ1EYmiZuR8i1kXO6mdC57aYInHJzXr7/i+Y/Tv4uJ7D+97t5fa21VAGsgLAuZQrbL2FKLRAmoL4BMMx6SMnPkvjTOlcgxk1dmvRO1wKD9CUHtvsmllRFxZU0zz3V8PqGt/D0SaKBK8pxZG1ZZc8FLrlTupu1tiT732Dncd5Ja1Rh9Ei2MVEjiwrVoBdqDlEnmUvoXyJZzFxKAWQ0ZSpBS5br9s/q1xUGmr60QbDXarTSdYkMk4bZxYaoEe2ADuIN013x3dn2E9WGOa41jETLOx1qa+2ELOIa1ILFqQVIxieE1iYlH8dJ0N53ppfi+F91oOLdOjisKCSndLJYa55L7ticuJtk2Sm63SAIt903bttTnu1g61e/w9JoqcaL53yUT1sFlebMemO/Xewdb9rGNSXRdW20mWC4mF6CaxAT75uoByTSYRPoauudz8Pq6eh9Lbmr4iziZxFI14YJVlRDkbtqoSaSAMcpNdwZHzm4AaM86mjAvCk5RbmUl7zaAaKLZAoPLJLKDxFzJGjiZ3VpNItPdlMbymntX34fb26bqE8ebENgmFZoBzlj7ScGVr5cgyY2edGgB955Yq8lYWC6NxgNhkCXB7l5UtO1rNxDi9jex2DIyrU+/ehHf8YWPw9/+5y/B3rlebaw5LGRh7Qr2zL9Z99PysG86K9qQJfY64NyQic0ZD/ksSVi9Oysmy80kmkH6YYOVNYN7zvZSAV2Eb5tPXPUXSeIecz5B31eUAZ/rPqV59NTaVk1atS0m0XMcf/Rtt+In/+52tY8G2+FafAL+hLCtjqWrcU0hpbffp+36Dwpky320JRNGhUomXLd/Tr8myjrxvJDW+6aJrVG9JlExMNXfQ/aR/t5UCdD++MZw678qd9P6uGPLmwDcCWqXC3Q7k+iWTm+NCxyYV4t4ChJrNbnMFhghfRJtsCUgdNKSWZMLtEtw7a1jqs90bs9yvxUtgawrwVvV+6n5n1zKKZnnMuWhtYpNqQGU5Q0OdUGrBL2pZij841xMLqDkpr00qT1vgOkwiRPKLWbCFeCr0hIhvMmtUat79GQJAGQRIDd11ST6FjPRuKYziAnkBBsmvcyuiSuz3eFMonpf115q/dK4JtRgRz3EhdchzbWtqt8eJ3BTP7vKTblMIgWyrPOWV0wip44L6MIkomxSXG7bMonTQ+rJVy7g1OqWftjUGZHwxa5aJIcbHJnXMWCv08w9xjWuTCvdV/0swSBL8XP/+vPx7Mftq70nEZNBG+CX6NnMU0INaMxtqHHtCSVn3ZJxTGpyISYDbwYprgeUGZAcMOW6RpuI4Gs5r5hEwH4tjxy921z1p+cbdN8A/roZOt+nV4f6HAnmfVPVe7fPCadXhzoRabIdtoy8ZsU927bJTdus/F3tBkgy5YLV8EnfN55xDjk5UBlwXNUIjHoZMcDt98DWuL74SoS9Trkt79ucS0KZ3Ob3amUSXcZB5Xed6dlPgteV1isTru+Xia1xjisWyiBxY6j3j1gqjuGZ2QKDLRu1jGuTSAKlkmSCgZe1+9+1vUm2rW6iYx9neQa3rKXaG9yXTGIzSHQwiaRcczPVlsRFACNo3ceWQD2zBNt6P/MCvSzB1XtnG69PL0icbRgktcG8R7iEg35uO8YpdU1bAqKZgRj7s4SAmny7tMBoQQwSHaCTxAlSzIuekyWhDKBqL8ELNqoWGGHjKEMxYIzLS7lHliSlJNY95tzmCL/23nswyouaIxbXuIZu7u5yU87xLypJLEduajCJXHMRvnFNUTOumXiwGfVHTzq8AAC46/iKei3lGRCYkhSVFAhPQNSdVCfHUfNfG5yZVs0ktjmCGQs7ep1ZI6IlUy2MCFDP9smAmsQsddu00zGZsQaJgfd2+Taf1MV04KO+XLRv2riGcb6zxH9tOY1rGMHXdqC+r/rdVU8tpcR6WZ9dk5smhgkTg4En5tSnSji3OcLRpQ3dz5QOkS0jT2ZK3CCF5oi2Zu6TJhWBSRJbcsXHQDqkbEAlQ2yyzhx2e9ioSWwuroOZxETUAu4guWliqQkNDNJtkky1/+52A4CrlrT9vNmO/3Bc4IoFlTQy5aa81knVdpwupS3Mnk0p0yaRBCYlwkA1H7aNmzyO1d9csJrJyLDnhs9MxmyNNWsEia4yBUC5fttgl9Kqn77AEnAziT5W3EVwDMt64/1zjZrEKchN6VnG7Tlsuvl2cjfN3P1dW91NbdLdELlpkmInWmBE4xoHaGHGYqQ6Mom0kOol4dIyep+2yWc4UAKVJCovJNp8U2hbyt3Uv4//55/vxRs/eD+u3T+Lq8qapyxJMPA0F7XuZ4cgcbvGNVy56biQfJOKjvIHYhvcD98q2/qkQ4sAgLuOnVOvlcE9EFYDZj4QfLbpE+OkLBMJlP23B0RcJrGqSWxbJPOYDd9i17cgpN3g1iT6HBDnyvNjNhOnIDHYXZaYrF7qDGrM5tLmeZjppdoAIbjFjaz37rSxgsMyi9zENINEzSSm9prvYV7oBeWp1a2a3CxlGHfQtdNrYWSllDhXuqgurY9q7K6ttioocSE8wYaLNUgmF+S0fyEMvDmuSsq4x/nqqcdGP80/+o9fiIMlq9VWS2pia5xj/3xV9zRpXNM+JwCTbC4d1jYJrk3dAfiYRPWzeThaZcKOROG4KDDoeQwxPPfpVi1IJAWKea5DahKrudOX8PMFX7YSgDaJJP3N6VLa+tyovzYOYhLtvXK9zw3HMTHLQkxDE5NJdCXggCqRYtvepLmResEZ7HmYxPbjYf8brW/NxJPrO51v0GU7N2AGicY54ribUoLN2xbKkTglWI9lkLtpU24aaxJ3FHQxcbIIo1qQyGGyFJPQS/0sXXMMAHYLBpokOAyYzlilKrPuG0P79ejZjZrWnm9cww8SuxrXUPaHLTctpCEt4wX3zf5QQfuYtNc1ZInAtftnkSYCD51W5ks1K/MQRqRRk8Xpi0mBjWtbvobPrsDBNK5xQTknVv/XSosQJrEmSVM/fQtCWyY/pCYxTSaz/7R9WhCazcTTRKDfqSYxwagorFLysUP++fgDc+wWGLpO1sFs0GfZ6i98Y84nyLgGUPOXbWGyOayO7+nViknkups2g2bXmNWtsb7Oji5v1JrA27L/QQkPC9vQZlvvcjeVaA9Im+PaZGyAewEKkMJA7dCXP+UQnnHNXgAwrskwuanPuEbf2y33qWgs0mTA8W+OAVBT0tjgbhNRLuRbg/vJYKMtkALs99zWuMCe2Qy9VGB5o+rT50v4NVFrgeGonTdVE759NM9brpUkbcze5Lbob+5xduMmc19c+2lzAPVJW33HBFDB7MKgWtDP9hO9/1Ja5OR5Nc4GK7vdEuzZnLvp/35G1p1IG+dSy8YJL3naYZaTfFdMMolhAV/N34KzBi3Xab00QSHtx2QrpAXGxAkIcDedaIFxfpjEGCQ6QAszTtBgSlM5VPooN5isUPmhMXFmHqq/icqBL7zWgD47K+uWfItI+rhHzq7XtPZs4xqS+7LcRqvfOdsiCWTbdzNBMrEZXRMavrBORHX8OZmt+sPXlY1UPZMOLw7waFnzRNeWbZxrHwFox93gmsTyIVm5ZFqMazwLGVcATMfWN7EK0b1Gqm5uUWXDXbAzkO1MYprY64DNOp09pgQ04fXuLIx7WzoeUC4HvusPzunzFsqmkwTa5ZIJUNZ0cns+6dv5hHm9pQ65qelEfW5zVAt4uO6mqVAmOb45+dxmpag4tryp2Nby2rYZ1+iaxJZrsrn2p+/qvN8c560t4SGEsNT7te+jL0gZlZK0JnyOnE00W2BMskvtQYMaZ/9ubQknd7DR1vKHx4C5xrW5m3oZ//LY7Znp4azF3ZT73HBJi5vups59NIa1Bdvqbxb5rT7+7n22KWXGIUGpJQArWhh43Sdx4rxVSQGz5Rpdy5njHNC4zPEF7Y7H/mBPM7nNa7nwzwlpknh6oFbz2+//+xfgl7712dg722OZO3YF7VOXvtSEUOM+2p6ZKLc9u9vkplb1VlGEyU1tLTBiTeLOgBbvXNlo9Xv4DTAuCvS0lTzvItaBG1PuSBNQyH5Wi/SSbfMsmE6sKGe2+0+u1ditadQkdjWuoUw+zyRE/axqO0OZRMWk0SQROmnRProWWk2J0tV7VaN0AA12I1w2lCZKbsfpm5cKg32xMonumhRXplUnKVoy0OZDm37z14hU+62/g17s8rKtQUyiw7jDrNPZ05CbctjtkD59riD9cQfmWE6GQPncamESXdKaabbAqIxr7HMX1SPum+thZXNcY9LpnIW6m9I15ZuTz5VMDQA8dHodK5tj7SxpN64JZETYTKJ98RmS8MiSev08/catZSS4rsuEcU1ujfLa4qsp7w4J9ujvdVOq8vh7++a51R2uIMXXS1CNczNEalz99VYm0XMtU/uQxZkMy4a7qVaFBF3/6qcQ/gDYzwiW77Mk/LzBpbX+LuS+sbmU0vn2j7Mx8N7nhiMxRtvLEoEFi9zU5QSt12We56ntu4UxiZPHsjVId1wj5jPgxU87jG953nVlK7WdDxJput9WTWKntaRwjh051DUEa6sgGdoCgyk3TaPctDPo5HJq28y6QA6VTj2ifO57k2OqhXOvRQJqgi6+PodJNDJWiu10jzmxonr8nFkf1h52XYNEznE0byw2k1hmf9g96bRsNzRIL8razm5Momuh1ayjMJ3EzEbpYRlh9ZMs0EPZHsoS+wxQvEwiZTEbEyTdi206fpu7qY8RtAU3YUwiLOPCGArAlV1XYxdNuamgazLw2tJBojtrSmwv4auefiUAtSDRJi1MJtEnI3T1SeTIn7cD06in5zAOIibx8OIAK5uj2uIySYS13q91W5452QwSb3t0GQB0PZgti6wX355t2+pd2xgYl7tmSMIjadROcu4b26Ec5dLKiLQlE/7+M0fxlB/7J6xujTHM63LTRNTr/UJrEtWxNMdVr7sgbDVqhrrDhlb5YUsyzc4k+s29zM8393NU9m5bnOlV7qYJj0mXsrre3FLaQHdTY1x1P7q3Td+tZjjUchzVOH/phgv2fqZhNYku5jJNhK6dAyq/CVfg1uyT2IQQlnVCS02oa07IDdm+Da42HYC6t5tqkh4j+bwd5MZ6V4jw9Za5bzxX/qpPIjDpFZIXsvQBYQaJwXJTM0gMaIERmcTuqJhE/+Lg5MoWfvfDD0BK2WASeUFKL01YjeprdYIMmWTFJDJqEmvSVn/rjJNlkLi0PqoFiZwekEA1uXGb2xM42Z+qlq4DI8tsgUHSYnaQmDfqv1oWFmaPrUOLg9Y6KdtnJQmvwFzr8ctt2e4dnySqzd3Ua1yT2Hub+SZIW7Y7hEm0LWTaTAuAarFoy3hrJnG2yuwlTLmplPV723ZNEttLeOO/fR7u+l8vBdBuuNJEXjKJNrdXgm2BALiZhvONELnpZhkkXrlnBoUEVko5KJ3PJmvm21ZlkuOek28/ek7/fqsOEhWTaKstpP+2OSc2D2UbI0WvN+dyKf01ucDkorBKyrSzFPaaRLssuW3e+u9/9RkM8wIPn15XfRKD3E2du6j+3pASBiWcLDVx7Uxi/fOb41zHUuh7p/56KJPoSsINshR7ZjMtN00Fj0lvJlcAm+Klxd3U8gwIZfbMfTD3ue2Y2IJm8zOt27Pcb4Vsr1sVLYx/jUks53FXgrdKnrrvb665TuK4tgpjbrOO08+AyWNpC4raXPLPF8xz2U8TbDFbxQFME0RZqdKAyTWQ9lfI/PfAxO0W4m46UZMYIDeN7qbdQTdgm2voD7z5k/jY/WfwFU85VAuCWHLTvNBF4uGsDTFHPJmqmVkBwjLkpnGI6TbXt1zoZ9ZUFnJpfajH0XfjLAhpgmcFex2ZRNNwhX0cU5WhCsm00rZ6aaLlBsM8sJC6zOTZWCxgsv7ouv0Vk7g4yHSGOeR8N5uJ+ybzWx46g0ICL7j+gGY7Xb21ikK1UmnPrDsm1rZi7wazR6+7x0w+2Kp2A+5x9oWMP7BU49RP27mjY2Ia1wBgGdfoeuOe2+yjuZBUiYey9oXdAqNkEh3fiz7LKjfVNbJBm+qMQlbn2XV/rw/VPXiobPZsGnfQT1/N9xveew9eeOPBWhsU1c7IPub177kbADDfT3HPiVUAwBXltjsb11gWnzpIdAysFtb119sYEQATPdhMqaFvjHqv5Tpx9Phrq4mjBdzptS1Vk2j0FnS5m7Z1Spx0N6Xj72ekms98s07cOqZzTWK5XxY1SUgA1jyWVHM1yBIsDnqV3DSpmPSQBb3JuLodWFuCDcszQOf7PNs2VSG0qA0KLi3rkhAm0aYuCGmDZLu/zWB23qhJJCbR2Sql5bloUxe0JRJc11ar4Y3BQCbGmSJ5f3Mfe4zn2nbQVLOF1hd27pNYoBEk1sdqcsfD+NsY4CB30y4tMCKT2B0UHLYFKfefXAOgstHmQoKTJRkVSm7aZEOa2BjmeOi02t7IYPdYvdQaTGLIgnBsPLR8BblSSqxsjjDXT1FI4GxppU291DhmPvSQnkZNIk2cpJN3saS1MXn1AOolSbC77LgoGnKEUNZG7aPNNIL+DlQLixsOLei/mU3BuX0S0xYW5eW/+VF86299FMBk3aRrgmyr0ZkIEg3W3IV0oo6o/MwgZqN6jcMk1hcyftMCtb0QJrFXbkP9jVcnS/e2T27qXshwnAyBSjrmWsQodYVdWkNjdlpylBdVD0JXneDGkOSmin2nIFE7jiaTToaEe0+s4nXvvhuvfvOnagspV3JlbWuMc5tjfN+LbsQLbjigXz9Uyk3pGVCrrw0JUiwSpdDatkm5aUCbiKTD/eaRJY9LGX4ToTJ5MgDyuZsSWgNg0XQ3rV73jXHViTtbkDiOR6vc1BFsk9rEuY+OcWTx3y9rEmneMGt5Q2tyAXV83XOC3zjFto+hxx+oqxnajj+Nc9033JrEkERhkniuk4bcdCary01dwaW7xcrkejLU3XTymmy5tx3GeCOHCoijUNoOzPryQZYGkw70PVSZVHgLDHreuGoSzXWjC5OGW1ABX6vcNLUzid6axBgkdoZmElsuqnObakFxbmNUey+vJlEZ17iyOABw5Ow6XvRL78NX/OL7ta4ZoCbY4fpuujF5xjVlTaJZb2ZbAA1zFFLZ6QOq5xhQMVIcJ0MtN+0cJIZviybOvnblDAikjGJzJS0LPP5lCwIKEkPlD83+dhNsVCNrfcPB+drfq8VWuHFNkoiyjss+xux7eW6z6vfWcxzHtsy6a/FDCZvzXZNoY2XDGmfbFzLtWeRye5aHPT1kyYWNako5Mu3CeLAB9ns0L9wW9BwHXNqe2V7F5Uprc3JzjTnfyGv3jX2xu6HlpipQIzUEXW8qSLTfA++8/RgA4Lr9c7WFlCsgfWxZGXs99cpF/NK3Plu/rmsSLXIvifbAhlowmMFlXihG0LVwdbE9EnxGJLRNB+1XE67WLK7ESvO1R5eUk7PP3TREEkv72ZSSq3GeMbYFeWBSzD2ujYGsvz723NuAuwaS2NhBltTcled6pDBwX/8mTAWKy1yntZeg5buZLWmc4ywJj7YkCW2PG6TTZ1oTOe5d1J+ZOxjnpnFNs59t85lf9a92XCeWesuuiYTWekuXCsjx7M5Sf9nS+YIpNx0wfDFo7p7rp2y5qc/dVAetLcdysiYx998AgGIaC6MXeWyBsXOgDDjQTjVvlvT18saotpgLb5IuUUg1EZuUfRMv/qX34/i50hRmbVhvS9EiCWxuD+C1wCA51vwgreSmlocGGTI84WAZJK6UTXmJSWQEifReTrBnPthZxjV5XSYZ1juyyrZyegnSg3yQut228kLiZ/7hDtxbStHoNbo+VE8o/4PtWkNuCvCMQupMovu83XpkufY77aM780nXbFtmvf56m9U3QA/E6v960ep5bNtY2TDWhrZR317bQt6dpa1kYtfsncV3vfAJ+IP/8AIAYJkp0cf66o3zwh0A+JgeGyi4bZMJ2853lbQI2lRnFMZ903OoGagmkeSmx8+pQI6y+tbMbglKhPUyoWty1bbsDPBjyyqYuXrvDK5YGOCDP/Ri/MK3fL5hUqHe1wzAQoI2oG7Ukku/kYnregxlRGzGNW0N59XnTy5AzT6J9X1UP33NxAHodj9Nd9NasEeJ9VYm0V6n3OYuO9GTrjXYo/1yJPycNYn2ca01iQ7jLFoEE5NIMK9/nrupcJ5rZYrUPrdaExC+3rWWOSgkSLSpt0z2ybc9e71rQHLFU4N6o6EA0mNcz9OWWn1bsNFmQOOTQAcxkM1A1iU3ZSibtgPzXHLME+lYz/VS1lpSlte3i0nX16S3nddkfTNk0c4kJmmdStcX5fZaYMSaRAtMijiUnl4umUQqlg92KTUW98K4sHqN82oGISdXtmrjtlOTGDKOgr89Mz1vo3QyfHhCyWKdNJhEWxG1C+bDj8UkGuwey7ZYVu6mapsBD8Ty42kch8mttcCwTEC3PbqM3/3wA3j3Hcfxwf/xYkipEgmmlM0VgJl1VL/w8s/H06/eU3s9JAAwH64+Bvj02pb+/cjZdV3c7rT6Lr9qu7V7M9jwPwwB9XAzAwBdxxIQuDVdStXnecZYvl/IwpoWi7YaGDomSSLwU9/4TP23fsaoSdRyU/d17LNA99WM2UCN6p0yYU/NTDVmZ6NE89i6zGRoLqU2FMdKto+YFJ/cdLWc85bWR7h6b7UAc22LmERiih9/cA6PL5NqgP0cqGvL/z2rxEVVE6SMdDxjPKxB633jXCR7xrTI5mxW/j4m0XzGPnJ2HQAm5Ka1exu0jy0BcAeW1OZK29anz7WwpnsidS3+Heetzd3UdSzHxkLedFcmVitUBVSxNu5zLVuuZatKo/zZdvzNfQBCgz1LsN3SX5T207y9Q9hmGmczdwHUnDE/mFySu56nVdLV5W5qN+XxSh0dLLWvTAGw1/cD7me3qUhrrnXPJ3SrQAFWr24dJA4ynQgMHUeu8Ob2m5/rdYq1MMAqSGzh9JrGNSE1iQEtMGKQaIG5uPIt0LYMrfJSGSTO9VKsbI3D5YcGS0LXRdsa7cTKpmF/LJzSJhtMrbX5fx8o+Nsz2zPqlixMYim9fcY1KjC5+/iK2kdiO0P3UYYd/4lx5efPMLM/tJCsTHnCmcRUcN1li5rc1LafNz90FgDw8Jl1bI5yfczNQKKtTyIAvOIFj9O/6x54QRnhalHkq0k0j9PJlS1sjgvM9JJ2JtGT+bSN08FGCytiD/baF4Tcxtl2ual/Qa72Uf20yXBd7ConAVS5m7p7d5qM9MT+dWASzRYYzuDeJjd1sMbnE02XwixJsD4eT7yPvi8FiUeXNjDIKmm9CojsO7o2rIJEcwGm6rgmxxwvg8Qr9w6sn2c7BzIgAWG6SdJD3WUG49sWbS+EFee2iWhzL/a1wLBLVKsdePi0ChJNJmyylUV7sEfjzM2F9KkUwiY3pcQd17hG/fTVmgG24DKQSXTV4AlR69NKjd3TJMzzwJSb0rsne34Gss0WdUdIfXktuRLAJNpUApUk0LefTQdc9ZOblAQmmeP3/Ncvx6NLm7UxgC3gqP/dtq3mWrKtJpH23xZc+sZljhITU/FmwlSkzWLnokRTYt7PkmDygObuuX4abHYDVPdg5QHhkJv6kneW4D4oSGwa14TITSOT2A3mwt1nLLK2VZ0QYhJn+ypIDJUfmgY0dEE3J5FmIFFnEpNWcxETZiBlbr/5nj+76WFASvzznSfwFU85BEA9gH3GNZXcdB7X7pvFkVICpG4aFQS3ZbLMfXTtnwt0/GZ64cwebc+8scOypuqnYtvCjYOoBQb9s7mb3l7a4gPAxx84gy9+4gG9Lfrpc0izgVMDlte+m7ve0rw3Tq0OsTHMMdtLnVbfbfKfVlmNJdggNBdpoQvCJsMd5iQ5+dAupGxtG+DucVm5mzbBsQqn40YOj065KfP422A61brG0fb7lqSAi0U5nzCVBYC7TpCO76GFAYRQtdUUMNK+utYWK5pJHNZkoa5tbY0LbaJgg+24hLiN0vUqG/dAF4lY0LXcyHaHOrCq99Zf98nQfQZH5oLvaBl8k/kQUGbkLcFGO+PfnBNQjnOPSYRNblp+nmOgaz7IG6oQ5zjLcfQ7ctrvU1MVY9YkzpdyU8Uktj9PzWCTbvkJ1qzlWq4CYHNM/W82CEvg3CbbpXGTwb1i0luNa6xscwhLPbk9oDrfTzq8iCcdXtR/bw84XNeJXe4YMidMXMvSH2xXbVns65JmYlgnrafQJxfglzzRuNleuNkNAO2m7UqIVSy1r3TGorqTeQCT6DCu2WYLjFiTaIG5uPJdIGuGccfyxgjDsdTGE+G29dVCxjWJU43Mj3/d0wEoGafO0KRqQraZ3dhAN8lMz80kfurhs3jt39yG1/7t7XjfXSd1sLc4k+mb3RYUacZxJsOzrt2rX1f1fuFMVi1IZLWyUD/7qXthvbo1xk/+3e34D79/E+4/uaq3lyUJi0kx5Z0c4yAlJU70ftqYxPVhjscfmEM/S/Av954yJBNlkOgttncHG0BgTaKRSVULJvv1RffG4iDD8XOb2BjlmKXss2Uf29zYKLhsPqCGuXsRSWjeA8EmFY2HdlBtlSUjL9HOvrjuAR+TqBj4rjWJk+eMJKI2cOSmZkbUNc4nN9UByg5SiU2XQlcyx0ycHZhTwSHN47SvrmNCz4C1YY7NUVGx/bZsMLo1Ew8J2mxsLjkpu2ALLIGwa3lCbqo/s50lciWBrO6mqZ1FMceZIPMhoJuUnP5u7dPXwmQ5649akzL119uCm0Sft24BwORCvnqW7Z+rkiPEJIYqlcxgzic39bPN9D5eAqJiIKvXmve/fZy9ttP3rKHPtN3frTWJiX17gPvZ7Qw4ApIJ1trCANlo85pUzuXOYdbjT9uz7WMlN93ZcgO6/8k7grtOnh9kqnyMsZ5PE3cQHMIkppbEBWThD/aASeOaoBYYUW7aCebC3SdbXG0EieOi0BNrcE2i4VAloX5vTv4nygb1Nx5ewMIgw8mVLV07QO0lQiViekFE7qaWpy85xREeOrOOQZZgkKVe+Q/JTRdnerjhUOWu2U8TZwBs3ceOtYUVk5I6j/+H7zmFP/jIgwCAL3vySTzx0ALIzMPnvufaVsW2hR1/qlsFKACYHDfKCyzOZOhnc3jkzPrExGLt7dRSR+GyqLahMB6uJAtp9j+i/QSAawzWeLZkqP1W3y0upY7v5nM3bS7kq0Wrc0i5vaZstHy9RQ4CTNaNhQSkQFNKKL2LO+UsGHZtNVtguJhE5zXCkICa59I1buS5JiuTrvZtdYUpfwPgXCSYLPyhxQFOrw1r/cp8GWjzGXDs3KYO0F2BZVszcZvDbIj808Yu5UWL1M5xPYbKW7lsp7vFTfUMnNhHB4sCVPPC4kymE5SH91RMYhcpOe2nrd7SN0w4FuTmd5jYjmZWHeOcfRIdwXZLcOOsFTfuE5NBp0RJcE2iXpADKOyBjTKucX+Gr0+iN0ixJO7092oJ7m3Hv6u7b1ByxSX3dTxzXCZfIUz1BPvYmqQq32c5byFSZqeUvBkklv8PbR3WFVpyLIhJDAz2yv0mQ7FhXniN8/T2SjWJTxIOtK2BLOs0KQPlpmbGu/z9YmmBIYT4EyHEY0KIc0KIu4UQ/0/5+vVCCCmEWDX+vdYYNxBC/F457pgQ4r82PvclQog7hRDrQoj3CSGesN19JbevhUHmZQRNJnF1c6zlpkA4k2j2gHNN/hSozmQp9s6qZrd5mSUmJ6VQ2VbFJKr9bNoxA9AL/t965RcAAN59x3Fd6+GqowAqJnFxJsPVe2fK96v6Rz3RBexnYewjpyaxWiQnzszPyZVK60/BN/XoctVW2WBKPVjGQYXUgZetiB1QE1IvTXD13hkcXdqoyXiAFibR1d5AL7bCH/bUJ9H8fBNVkDiDh8+omiBaWKRi8ruFNClOLXKcUV7UzBBsaBbph9SxAJMMQMhC0sn2tDGJFuMaWy1pfUy4RGaiB6qDNWszDgq5R2sKCIdroi9Drk2KdnCR0DQJSB2Mf27IHcnh1OxXlljYBsLq5lgf7xPnNiuXUmFxqEM4k1hf7LZfx7ZaotbsvyVoCwmIgMn7u821ksbQe03oJJAvmWCbf8oDTO1DZnpJrYVAk0msXDL9aDIwQTVxNtliixywTZbvrEnUzFL1min/dkGPczC5aSJw0AgSzRYwvD6JJpNYf49EC9tsWSeESDltc3JbsE2faZu32pnEyXtUfZ53mPWZXyXF/bWrzbmrSubat0UqoNoY6Q+AyfHbxlIHyX2dbPpkCwzAvv48n2jKTTn19kBlXhbuMK7KOVwKiBDjGqvctAiRmzaMa85TTeI05aY/B+B6KeUeAN8A4H8JIZ5n/H2flHKh/Pczxus/CeDJAJ4A4MUA/ocQ4qUAIIS4AsBbAbwWwAEANwP4i+3uKC1+5wd+PTJlkef6KVa3xhiNJfqpqtEJZZbMwt7EMkECpvuYwL65nmItjb5SqkA5bHsk79ILSQeTuH+uh2v3Va57p1ardhaA/aG9OcohhPpscu8z6+jU9tv305TEFjKM/TL3qZ+5azRPrGwhEcBVe2ZwopTxFoVfImPdR+PByjEOonYbNNa2IB/n6jq6dt8sji5vGteIMW5CouSXnlTfjVFbkghvcElM0VV7Z3UD8lmPI2SbPEZt0yJbLAoviwioSbdej6V+ti52HQtJ/uI6IPtMxjXGPTBuWcikjJpE2h2qSbTNXT7jAlffPBvGxjXiWvxXD+jJ8Vr+vINBopZp033jkYAC6rxSTZvJJLpMaAD1DKCE2ImVLX39C2EPttsWoDaTikLK1sjGVkvkkxarfZwMUug3bnIlhO10za8+xs03J9Nz+ooFFdjMNmwSJ4K98mdIMFs//tXnudBUJKh9bp/vfLL8NgbSPNeu2q/athzri9wI7vbOTi4aVV10+3PDPE4uk5w2xpmOsTlMBhx/23USsiC3tYkYF+2+CV0SCbSfXCbRaVzTElwKCyOVF/5emoBdKt8WXDoTQI56Y18rtfMJ89ruUpNIbrMcV9TUYBJtTC7gl5vaWpx1M66R1esu7CYmUUp5u5SSvGRl+e/GgKHfBeBnpJRnpZSfA/DbAP59+bd/DeB2KeVfSSk3oQLKZwshnradfaULYn6QeWviyLjmqj0zWN0cKwaoZM1CmSVzcrf1ugLqTVP3zvawtDGqSUtc9S++7Q16ae3/Jh49u4Fr98/iwEJ/4m+uQBZAzbikYhKF/n5qewEPmwbbGXos60yiI0g8t4WDCwNcvW+mziQmTOMaQxKbOXqi2TA2Ah5bETugvm+WCly9dxYnV7Z0c2+SGFub5LY8EFM9aYV/t5qZj+V4EuNO7AtQyTNsi6ZwJrERJI5la5DYzOyGLCzo77ZaRt+q3CbtK4ow18T6NgKYRE69a0NuarsHKCFiA+f6N/fbNa66jjxMYmByqwuajYtdrCyxq0IIXdNW67dnSXgAamG4ujXGNftUQmxcyFqSxCVt9bE9rl65oVJmc5N5ILtnNeDwjppcJBcy3IG1U+2q7ViW1zcxiY87MFf7e9II9qqFvHc3JwL8kMSRvf5L/fSayVjYnra53NcTkBtImf/PUmENjnyS97WtMX7nQ/djlBe1FhguUx51nTh3sZI7Mq9JWwDcJvelv9nYtlYm0SFl5t5v5n66/QRc5EF7cNkkD8YtjKD6PPs1GVbvOjnO/DuB45GwHdQNBjk1iWogrWe2AoJEalVmJtdtcmu1P+FO7erDA4LEpnFNUE1iirbZfqrGNUKI3xBCrAO4E8BjAN5u/PkhIcQRIcTvlwwhhBD7AVwN4DPG+z4D4Bnl788w/yalXANwn/F3c9uvEkLcLIS4+eTJk979pIeWkpu6LyqSm165Z0YxiXmBfirQT8PdLivNdmKdINX+qP/XmcRKI93s2ePdnsHSmds3sbI5wr7ZvjZxAIDv+YonAvCzDRujXC+SriqDxMPloou1AJXdgkRdk5ilzoX1iZVNHF4c4MrFGRw/t1nrQchxXDSZlF5LC4xxXuhrxZSb2YrYAfV9e2mCq/epY3jPCWWwQ85znbLPibBr3UvcdWwFr3/P3WWNHPR2Mk/GT+2nwIG5KhtVWyQ7ZGV+JtH2EPUbcAC2RWvYgtAlQfEvCOvbAACJ9oevrd6sOm/uBUJoAqhqgeFWCVBhvQ0s4xrj+ncrINxZU267DQ7+4bNHcf1r/hFn1+vqB3/gpt7z1KuUqyD1MwTqztMmNkcFCln1PASAmb7BpNuYxNy/ALVJAtscIQHHNSn9tbW0PWtypWWDk0xi+z66ald9LJhfyUA1/Or/L7j+QGMfJ+W3QJi7qb29QUuw51BOcBnIcKfq6jWJ9vnOdc+1BZg+yfuPvPVW/K9//Bw+ct9pe3KxMa5NceGTQIfUiZvnzWSRXLCxbW2ScNrPZk0uEJBcsT0XC/+5c/WUNevtrOMsZUghjL+VFZf+OcEmdwfcieHKAHE6TGKalKqcwOeNdsrPOEGi+kn1j8Dk+tr3TCQ0W/CoDw+QmzaNa3RNYltvLj+bONUgUUr5/QAWAXwZlEx0C8ApAC+AkpM+r/z7n5ZDFsqfy8bHLJfvob+bf2v+3dz2m6SUz5dSPv/QoUPe/dRMYj/DMC+cUk6Sm161dwYrmyO9uOdk/yuW0G2cYhp37J3tYWm9ziRy3E21cY2HSSRJwqzh8PcjL1POqr5gb2OU6889ON/H/3jpU/GH/+ELy30MZ7Lo+85oK3/ed2uTmx5eHODwngGOn9usZbo45jqFMfn55GgA8Nq/vR3P+J/vxMfvP43huNBZNFsROwAMc8WckdPcQ2UPMJICefskeqQkmWeS/Ppf/zBe/557cHptWDMg8Mq9xup6328xO7Cx2yH7aAsuKYj3oQsjqPfTGlzyFjJBTIrlHjifNYlmkgSwS2R8clNfvbFrW7U+iYzFJydpxMUvvvMuAMBtZSsZ7W7qkIWbElDq8frgqTX998RxDqhHoumoqY2bbJIhtC9AtUyvcS23XVvCcg7aJGKAvbYwBLZm4iFtMwBbErQquZjYP0/igs7JN3/Btfier3gi/stXP2VibNOBGAhZJLvqm31jbOoO9dM739mkfQazbQO9bGvT0YVJNFUxrnGu+/Qfb30MgEosm/e7y7ijkG1B26TDNacm0Yw5Oj9vAoLESZaaXvcOczCJhfd8u5IrbUxpcx+BdgMa2t4EA1xI+FSqrvu0Ogf2Pok7WW4AGHWbpQQ6vHRJ/aT1TIjcNDfmibbj0WZcY5WbtrqbNo1rAphEoLUuceruplLKHMCHhRCvBPB9Uso3QNUSAsBxIcT/D8BjQohFAKvl63sAbBq/r5S/r5b/N2H+vRO2dE2iOjyjXKKfTd4hTSZxOKYgkcEkFhQAumt7TF333tk+zlFNYlplyIPlpjktJN0WxOOiqmX5+mdfgy+6ocrQuiZ/ANgaVcY9Qgh8/4uepP/WRco543Fp9I3zyU3XtsZYPLSAfbO9Wj9LM/sZEt+bNuVZKrAxcn+vzzyyBAB4x+3HsD7MsTCoHECtC8m8QD9TrDEAbQqzZ7ZqL+G20fY/EG3HvyikngQfObNekzv1PLVjlBTZZzDOxKT4MqZtcjvbIqYtQ9uUDYU+tJOk0VuO6thaFjK0X9X22pkUm3FNey2p6i/aJvdRn6t+9jP3OVNmJrzFiA2mKUe73HRye2SQsBNBIjU/vvu4egzQ93K2pTDqhG+4QuUlX/TUKpHoSsLRvHRwYTJIdDKJpUmWC7b5NST7b2OXCumvx6Jx9vumbSFZPyZhDMUk2wNU10DPclxcGXmgao+0Z6ank5jN7Vklga3BrL3nalsA5npu+1s+2OfJEHMjW3Dvl3I61hcNhcdHXvOVtfvE16u1V0pRT61saWf3JKmOsK1PYhsmE3fqp++s2ZIrQRJci0zYXP+497EZpJfbagsuE1utfrskVr3PFXC4gkS73DGol6PlHm2rraXPN+FixSu56c4yieYzyJcknxhXvq+Sm072s27CVNfoect1zphzSZjctGFcQ3LTtuCyhUm8kC0wMthrEnXCT0p5VgjxGIBnA3h3+fqzAdxe/n47VM0iAEAIMV9+Jv29EzaH6uDSonyUF7UaFcLqcIx+lmD/XA+FVO6evTRBLwmvSayK2xPrg15tnx6iCfbN9TDMC6xsjfSNZquHILzpg/fhSYcX8JVPuxKAenAJUS0kbRbE5oTwa9/x3NrffIGUYhIdsjlGC4Ym2xleNKx+9jN3jeCoDK73zPYgZdW2Qy12y88JeJAVxuTXS/1M4onSUfXWI8tY2xrr5IOrkHqUK7aRmMNHztSZRFuwF5KhcrXqIFkeADxydqP28PHVJA5ziX6WYJ9hdmC6m7prL3iLJol2lq4pGwpf7LqaInvGWLKEikn0bkozKeY5CKlJBKjnnX+yb7qbWltg+JhERp2gbgpssAbcFgCuQGo7WNsa40x5PX/yoSUA1TyS+QI3UmUkAjf96EtqTcWzJPHWxC3OZPqenK0x6ZP7184k2gKAEJaa3lu/ltuuyYn7JkC2SPvZZNJDTDuAyfnV2yrFp2QoX7MlcPU+2iSBbYn1iQCAXvcnjiZ6y3mSJNW2bAk/f5uUakFevaaVZUFMon8/qcbWHOd6vi0MMmyOhji1OsR1+6t6dGcyOeQ6mTiW7cGevS1R+/G3nrdCeh1R6TOb1z/QLjdNrX4CRWvQoN7XGNfy/VyqnPbEqYVJbAku3e6mduMa3QJjSu6mZFwTrLgrj9ssYw0aIrduMykCqJ2Omq+EotXLP3CNa2hS2F6QOBW5qRDisBDi24UQC0KIVAjxNQC+A8B7hRBfJIR4qhAiEUIcBPAGAO+XUi6Xw/8IwI8LIfaXhjTfDeAPyr+9DcAzhRAvF0LMAPgJAJ+VUt65nf3dLLMGe0qjENcFMhwXmMkSLJTtIc6sD9HPBHqeFgxN6AAwEU5dtylJ3V+yS2+/9VgrkyilxM++/U78xz+4GXcdU1n1cSHRSxIdYNqaWfuyRr5Aioxr7OPC3QyrIJHngFgZd9gXdfTZWSL0uSVTmCzhyU3NDJmvT+LGMNfOsLcdXcbZ9aG2aXfJTUel3JSCwocbQaItKRBiCqOymJPnm1qXACogpcWlMGoSbYsEVYOb1Bow+9xNQzLrttYBofVONokSuyar/OkNEnUmv7mP7Ysfc9+A9jpNX1/SJjST7pFp53m7u2nY9V/NSa7FZ6uZEuOhHYp33n4Mw3GBa/bO4KP3nwZQZYPTJLEmO5pmMof3zOjAElDXkDVINBgwuqdnetVC2VamYEpbbbAZ18gAJt3NbocwiZbFbgArOCHTDmQSJ8sp3MY1+jllk5t6ZKp6HzsmjmzBhp+lmzzfrh5xtW1ZEhdtTJZeJ9Tmrfbg3vXsbquBzFLhXMzT6ydXtmo1gG7jmpB+mk25KfTnumBblIcYB9l8AYKYxMZ9Q8e/m3FN+z4Ck+etjSm1KSfC54T6a21OyS7ywPV80y0wdkBJYqLZloVbumH2SQwdkwrhfJZW0u528zI9NMSABpg0rjlPctNp1SRKAN8H4AiAswB+CcAPSin/DsATAbwDSiJ6G1Sd4ncYY/8nlBnNQwA+AOAXpZTvAAAp5UkALwfwv8vP/SIA377dnd0YkoylYhJtIIaRFghSqpOfJcLbJPSmB87omhf9IElNJtH+EM2SBF/9eVfp132Ny4EqAAKA3/+XBwBUAaCLDjffY4Nr8gfqNYlNcBagXY1rKiYlxbiQ1kWa6omY6L6PprmFr/7FtY80zvW9Hl1SAd7LnnmVNrowmURXn8R+JmpBYpaIRgBmz9j5sqau+jYzSHy07Muoe8t5ghQlrxbYP28Y12i5qa8+wZcRttSxBDqH2nuiBSwIawvJ9qy1bZEWwvbY2PS2Y0LHPyTjOulu6mASPUFbc/9cqD9869vX22pjEkX4QzsUtx89h9leil81FBDUziJNPDXYzIU8UJ+Xib313aNAu7uprS5dSTnbmMTJRZrPyZbQXLSGWvnbHC9DmUROgkuz71bFRfu9Y5Vkevdykl0KCS5tCb8QCaLNpKKNybL1sgsJpFzP7rZgwyp/K0HP5lOrW7V9cEvQA+dy87zp/fOMsbDUIcZBdrYttAVG9f/QBIRNKZMXhXd7NF/Y6gQBfz/N5mkLYfxtz+BWualDheJ6vvkM8c4ntAlfyzqtCfoeWm46CmES1U8h3M/SEOOaiWMZakAzYVxDF2Ubk+gXlE4lSJRSnpRSfoWUcp+Uco+U8llSyt8u//ZmKeUNUsp5KeXVUsp/J6U8ZozdklL+x3LclVLK1zU++z1SyqdJKWellC+SUj7YZR9Pr27h+tf8I/75zuPYHJHctGQSXUHiWCJLqoADUNnQXupmEt9+62N4xRs/ihf/8vtx9/EVfZP4mrnTw7CfJjgw38c3PucaACrjDdhr1ADg+Lkt/fvnHjsHALq/om9BmEv3osk3bnPkYxLdjNTE9jWTyJWblscpc2epyPCHzu3SuiE35QSyRobMFaQDSr4JAN/6/Ov0a2aQaJexqVq/mV6qv8ve2Z4OQmxutkHtJRwPe5LcAkqulxsPSZ8shGoSqTUHAF2X4pObeuVXlsA5xDm0WUdEv7YtSFyyoZCsNd+BcvL6aqvT7DEyrnRqvXJTz8Pe1dybsDXO8TefehSbo7x2vTkXny2LZJuT7XYxygvM9BKtFACAuYHBJDoDN/8izSp3NFyn+zpINB2nOwSktmAvhEm3LNJC5KbNRWvo6ZhYyAey/cAk4+x3N3UrXuj67jtWXG7jmrZgthGABQQpwiobpe/gT4rZmKygFgxMtlMfS8e87DPPct2ntSDROE4VI15/f8hc3gy49aZ9LKllDjIDBBeEJbgPIMWRCkxc/0CATNvyXGw73y7Tv5B+mrbERUiQPlE3LP3JDi03DUwAaa+DnZab6mQ+Jcl5a0ktNw3pE2qcD2eSpOV5D1iku8FBYkobKX9eXEzirscdZRD1Wx+4HxujMLnpKC/QywQWBtVB7mXCK8/48L2nAKiJ6B23HdPBRpYIp67blHYBwKHSKOHwYtVewrYgOV42i7/x0DyOlb/nRYHUCEhdzdydCzvPuM1RXnNENaH7xoSYYugg0b3YtcE0rgEcrEGuAns6tyaTaLOfd+6jySQ6gnRA9ZwEgM+7eq9+bbEMEl21pKNyHwFoltrsRWgz0ggJwNLELotdMYLE9WFeOpkRk+gOUihIBICbfvQl+LXveK7eX58Da5tsheuIB0wutkIZkS6LLVvtcAjbY5dE+RdoXZIrut7Y1iexJUvuajgPAD/2ttvwg3/xafzxRx+y1602r8kWuZ2rtcR2MCpbAy0YiTuqk3XXJPobTDcXhOY4QN0jZF4za9TkdnM3nTzfISy1vSaLzyRSJMWXqQYYYjjcTc26fNt2gMlgAzCfi265aTPYBjowWeWvbfV+zUsrlMmyBW2+a6Tax+r/QQ6gzuPfFmy4y1lojjm1OtTrpH6WVPXNFiaxLQITom4mJgNqEm1zshkgOMdZ7tPwpKTtGvEOsybG2hxHXefNLAuxwWbKEzqX2IIbr7tpC0vdvLd1GctOG9cYLLmtBMaFZpAYZFxjrAnbelsGSXc1k8iQm5rvlwUAEZApj0FiEIhRyguJrVEOIerupjYMy0UyLYwBldX0NVe/9cgyvuRJB/Gsa/fiX+49ZTiXGnLTxtCmrIYWJLRdIezBFwWJz37cPlUzUEiMChWA0D1rW6MVAUxiW5/EiXGe2rYmdJCo3U3DFpKTi2RL9rl0FyT2l857jV21HJRHzqzjx952K37krbdinBcTi2QXk3jk7AZ6qcDhxYFerLYxicMy+QBUkuEf/KrK3t1mpGH223TB5loGAOdKuenhxQE2hjlMtzVfTSIZ1wCK1f76Z1+j/+ZzYPUukm0PqIBAomttVfMcyIBxtPtNeWtr9tlyfbW5m+o+cQH3gGllnyV28yxTSmyDjxX/5MNnAai6P/NcumrN2vqUcWpEQjHKJfqNObmSm6pzbWsw3YlJNJJ3V5eqDkqauOaENlMSW69KiRADGlviQrbW5DYXTl0ZEZUkad+WuQ2Cj3GrEhA2JrE9CWHOWyH3NuCuN/N9P5dEz7d/atyk3DSsJq5RA6mDe/cY1/OtzeDF1TrGfC6fXNnCemn4N9tL3c/SwGQat5ZUlwCYwX0Aa2OtvwuQaTcNh7QpUkBSxuYu6y8TmXTFBtrnctFIkpQ7GnSfNo9Ju9x0cv4BPEyilpue3/m/iYl1WiCTSMea0wLDDEhd7exCjGsmFG3EJLa2wKDMDAWJAb0VgVYm0StGFUL8MSqVhhNSyn/Xvie7G0eXFOOTFxKb4wIzWeoNNuj1fjopN+2nbsvo+06u4ttf8HicWdvCpx5ZqkmWXLpu2j5R9M0bzjbxAGriBoBnXbsXb/3kozi1uqWbOfuklb66GV8gtTF01yR2MeDg1iQ2a7Jc2X9TbkpBWK23k2Xc7/3LA/jTjz8MAPjer3jihNzONfccObuOa/bNIkkE5voZ1oc55gdmLenkmHF5XQHAa172NEgJvPSZVS1qknjqv3x9Ei11REBVk3jV3hmsD8c16ZjvvI3GhV/qZcsioyUAs7FLMsCAxlnH0p4RNs9BCANpk1fuNJMYdN8U1ULFtrCTUip2qSVItyWA8kLiyBk1R372yLK+J2tMYnPxGcBQnG/jmnGukkDzhqJhzmhwD0wyh61uki7jGm06luCqvSpIPL1azSe2OaFtQWiTZIbVJKqfTXav/fqfHAMEsA3JJNsWskAG3EyibV+r+Wfy88z+wdbtJXWXQJ66oPp/CJPoMxPz1iRaardD3DUnFRDV6y64jn+bbDFNEmftPKBULidXtnB8ZVMlydOq1YAt4RcWpNiuSc8YC5MewtoI4WbovPvYSLiGBLKAegZvjieTaSH1frZ2Cm3j7O6m/n1UpIPtvPGCdPV/exJ0Wi0wzEQlz7hG/eSUPFmZREfC25vMb5JFoXJTG5PYFlgC265JvBfKNOY+qCb13wQghTKgSQB8I4Cl9r3Y/aAg8ez6sAx2Eh0kbjnlpnKCSVR9Et3a561xgbl+irlBhrWtvCaZceq6czWx0sVDP0lW6WKktsaqSet1++cAAMeWN3XW3FuTWEinRMNfk1i0GteE3KT08GfLTQsKEu1yO5LHZImYMK7JUveNDdQniaX1UXCT1iNnN3BtaSlOwWHlbmqXZxSyWvh871fciO97Ub1TjM3wJqgm0SEbOreh2NRDCwOsD/Paw8dncDQyGM8mhJjMRoZYmbuYxJCFnSWxHiAt6+6kx63/sl1fbQs0ug5C7ptCVp/TSyfVDPQR7b00J18/fm4Tw7zAM6/dg2Fe4Egpoyajrub3Aqp5rEutU1fQ/W1KEE3m3twvggrc/GyDVZZvLIC+8mmHAQBPunKhfM3OgLdJW23SstBFK723GhcmLauzZvR6+/YmnVT9Y2wOrIC/dszPJJIrqvv6UmNluV31elAPSOZ3U7XU9deKlutfbcseXPoWkYBHbtqyj+Z79di2IFE45v/ymUgtMx45s244CU8m0mjbbWZiwhkAu8fY1iX6Gd0mN20cD4mwJEk9kdB+/AF7Yqwt2PMZDrWN6xqk29jmkAREqCmVXlfscE2ieW1znjdNosIVA9THqJ/mWr2TcQ0F3HQsg2sLyziEzGuKKTCJUsqfot+FEO8E8HVSyg8Zr30pgNe278Xux2PLSpr52NKmlk1qStzDJPZSoRchgHpgZWmCteGkhrkoJPJCBZbz/RRrW+OaTbZL1z0qHTkJ3/aCx+HOx87he79CBQ9W9gWVjIpqF5XkVGXafSYVuech5c4GSwzzotW4JsgUZoJJ5GV/XMY19N80SXTPSUoO+BzZABUAE86uD43JL/HKTU+ubOELbzgAoDJ16XuCe7PdiQv2Zrft7qYu45qVzTHm+ykWZjJsjPJaZtNldkD7atZ+1bdlz2LS/rtgazYckv1syr1M900fnH0SvduavE6k9B9717jcuI6s++dZJDeRGwsAW5DYJm1V+2ifEx46rVx6v+zJh3Dbo+dw30nlzpwk7sVnJa1xMIk7EiQWE8wSJY2cwWzR5m5qZ1LGhgrkhTcewk0/9hIcXlSMoquOa1xIzAXZn9evrfbsfyP7jMAFoeP6b4tKJw2f2hf/Lrmp77r0JRerudJRk2gkuLKUt5CfNOVpn39cC2TuQj6sJrEpSa4+z4VWJtEpC3cZN6njf+2+GXzmEeXCbfbJBSYTMhJdpMzleWt5bjS3F1rLOBEkhiQFGglezSSGyLuZcnen4ZBsLx3oUpOYWhK84XJT+zOgOZaT/NwO6i707tZoE+PK9/lMEJswiQMnk1gEXJNNszo9J4ca1xhMYluPROC81iR+MYCPNV77OIAXMj5j14Ikd8O8wLHlTeUsWZ4sr3FNWjGOgLqoeomw0uhmDcv8QC3IyUl1kCXOIGVc1tkQFgYZfvFbn43986o/nYshIhkVLeTXhmOMTJbIOc79UHTtIxX2msfChM3+3wVa6HSVm7pkws0A7AkH5vBA2YokSxKr+QNhs6xTBYDljVEtS2lKmZo4szbEgfI8/V83HgQA7QZqC/ZIwuOScQL24DK0INqWuVvdGmFhJsNcX7HbhXH+6XzbzsHWeHJBrrflyGICbaYwtuAyrN6vubAGAhaESXNBUr4esCCZkPYFLBCABpMY2CcxJFFiLmatcl8qbWi5Rmz3KNU3v/CJ6hq+/+RquX+JN3EE+Baf7uRKV9iCRNG4lm0ugX4JqH0x0zROoQARcCfu2gNSCyMSwCTSR3KDy4n9NLLh7eOMYTJs8Q9MSkd9NXFJIqzyN6Dep9KGrHGfBsa/E60DwpJUlgV5SJBouU7GLc3VbeMqqbl/DOCrk3IfR1ftPABcvVcxiQ+fWa+15TL3C1DBlwwJUizXFhAWANcdp9vHNdud0LhW5r4xd4UmJZsMMO2zv05Z/bSaybS0k2qetjDG38YA+2XTTtNFh1eCz+vgfCJU8dUEvc9ngugaY9bpuxxpQ/okTtQkBstNi+pnEJN4/lpgfArAzwohZgGg/Pm/AXya8Rm7FuRoCgAPnVnDoBdSkygnFiRZQi0wbJm3MohJE22mcLKsYZkfZEaQUh9HdTYuuBZ2tPghN82Vzf+PvT+NtmTbzsLALyL23qfLzJuZt3vvvr650tN7T3pCEtJTh1os0ckGWbRFQRmQjI1MW1AYYfCQGaYQrqrhYVcVyOAqFwUlMwYYsA1VBgRlG1OgKiMjGdGo19Nr7715sztnNxFRP1bMWE2s5ptxmnsyc88xcpyT++y1Y+1o1ppzft/85g5t24+1jSmRil2XPl4KNSht2DmVzNjxgXl9EuvKziHG4Qes8/Cuu8djmxCfgjv97LNtO4pTvPEoQBITwfbjzQ6n2xbP3zBB4h/8JR/Cf/ndX4P3vXAyHnNCGy3U2QCpAMz8zPdbSquprhY1jlcNTjc7T5I7W5PYpmsSY86P3eyTU4x+tx7lTTss0u+J8yHHi9a/ZFZG65Db1zRIit/La7iPUo6uogWGF9zHEIrRGc/PMbYmvDbU7n70Hc+hrgy1TD6r5HymaWwXjyTuuj6zBg3zbKfzLInJ5GoSo4IrGSSxFDQAmNQ7MegXEKtJzI+bIon+56XHhYEsQ9Eb3ju5T8zPvABN7Pxb0bfoHIOkQN/n1SDHeU6+G9c2oOt96jqVuKumNFVXOCx/PF1yK4X2lGixdeL8iz/z9qEet+/hqZuHawkbpIdBCoMAp5IrQImmGj8fWuEadhlr6un9v8sk5c2Y6Zog40r31pzSjZif0HYFddMSkhgMFh+UZYnNNbueGR801T87NHkP04Lqzcdb/A8//tqkdzYQCbYdcCFlk77DdAuMQLima8vQNnChSOJvBvDVAN6squrTMDWKXwPgiRetAUwQ8MLgzP/s66c4WtbjDVKim7p292RlWmBEMiQ7B8mS3l2ffWAy9EfLJpoNBoyKZEm1MnYPj9TWIUh8tN55TkpKpKLLbFLJbHDBIVwEG3bOLB88j+SGJjRJS88I6HajSqz5+3uePx7/Zh5s+zmhne1avDxshvdOt5MFIbaIiIjF8wOSuGhqfPQdz3nHDI9l62zyhc2T4xGOTKpwW2pgjlcNHm9bnG5bHErbgETAbebaJ5HjPJKYz0jG6T+ljW3qIAMEujEDSYwhZ0wgG0USWXVT6rmxnxOrLRwRgxxKmlgTXn+0RlNXuH20xN2TAye5Uhedz7QgxuXQTVP0w7QseVege6Xp/EA8wE99t6JIThQR4Rw78177mgluyoiUtrbNjnOfG279AabnfxSuSQUpiYB749B9s8cb3tcRwbaMUyOyw99DBBIoITDx85FLCsvxwmstn5ey1FpSosWm7n/Zl1+6dTius8dukBigZvIJlLqpMgCOJdjH3zOHiyHADNo59bnKaysQ3/O7rtCCJ3HdDHtFt5eyqHgs4VcSPAMwSXikahKvqgWGm6hcRNbI5LjBl5Rp5/bf7/hTfw+/7vv/Pj41lKzVlS0dmwAVY0Im788Dzh5wnhYYFN10lf0zHST2ff9Tfd9/FYAPAvg2AB/s+/6r5javv272eNPiPc+fjP8/XDajo54qWt1E6HavvnwjWg8EWHqGK3bzmftrHK8a1HW6Jm4XCUZdS6rvDQHh8apBVQEP1ztvA0qJVOToLnUikCoJp9h6LKYFhvk5pwWGywcPx9l2I+bvIugjr6UKxAGj3HqyWuDm4QL3Hm/H5s5CLYitIaKcevfkYPpHxB1y2XjzfdvmLf4lx/Vo1aDvgXuPNyNtqFSTmMs+TxBBMts9pW2Rvc0iQWLJLQzVTTUCEKHgDVP/CKRqEvOOLrOZtp111FOqie5npo6XSnjcOV6hriu8cGM19l1tqiqZOCqrJl6OcI2slW4SyBwvUdtDOGmp5AoQ3/BTawLbJzFMXDCKhECYKGGSJPraNmC6BvXkGCB2/s1PrcDRblh/Ug59mBRg+t8BEeGUjhH7GN7rBTekkmckaKNqEjvddUvtb0XhmjpRPjO8drioxz3OFa5LKecy6LY2AK4T598cL39O5om7TJ+10rHk79HrraTSAoLuFfbSyHdjUXHX+r7UbmOYUyIBFN5bueTzRdp4z2X865i1nTnvVSWCN/H999F6h3/2aVN68bf+yWfMsarK0uQTfnIO4JuUZtEtMES4RtsC4+Lopua4ff8zAP4BgJ+rqqquKmYW199Ot63nVBw5NYmpIMWoO/pf/z13jw09pkA3FRGTzzxYj7/nqJx5RbxET65B6a+qKtxYLfAwQBLryE0sMvklJJFtmiqmWRTks2TDYXnrQhsTJCG8BiG17+VbNngrLSJGubXGneMV7j3ejIGFIJCxMRIkCt00tBySqK1JnEMtExNZ/uPhfL/2cDNpG5BEIDM1iSlkKTfNON2UVzcVx4ChtprjzXe2QiSFcQjDcUwW331fzvo+X2/sot8pi9XJAoZuKoj4izftc3PjcBF10IBykX4si39e2zk1if/N7/46/Nj3fuv4t5SUPEP3igvX+Eknf0x8TShSWxO0UcaxA6Y1YGrhJvmduJen4i6FOSYpaekWGHKs9PqTu25+UqDry8kmIBakMEG6H5CacWUkN03t043j6r0LyZzM+c/VJK4W9bgmTJHE2BzLCQ9tbWGU3UEmJcMliKV3x79bflwUSez1iSPz/9JaHqtJZOqUI89oYS1J0StT95alm14RkljpgkRXYyC1/gAYe4MCwA/99OvD+83/YzT5rvCsAY5/oaabinDNzo6jWmBcEN20qqpXqqr6y1VVvQZgB2Dr/Hvi7WzT4vbRamxXcLjiahLFmb9zbE70oqmxXNTRwNKlm0ofr88+WNu+eREHQY6/LMDTMZ61GxDeOFzg4ZlRU5XPii3+LLKREk65iH5v8p6jlZJuOlAirGMdCNcEc3SFJlwkMUU3PVw2uHuywmuPNl6GLBWkj0jicTxIjBWx29rOPN00PI3GASJQs5Tj2lRjsuL1R5sxQLc1idNrYBTP4seK3VsUbaieUlao7xbQjRhlu9g8KWdrvE/cOXIOIZBCElPJFb4m0d3IY/ckiyTG6aabMdnxwg0bJD5/Y1UWrkkFwIm+necxl5q/WtQesiFBQyzBVaKAxmvi/KSTa0nFaaLdhpmTfW3O/S+/q4Vrgs9jxzFzLN0nub0jldzKCkAESQHmGQXm1yQCPt3UOOT5cVU17ZXLIYmhuEt5vZOPTK0LWeGayD0iLTBWTT2W6sgeIp8XC9qoQCpIdpTGpcTEgPw1CK81QCYlw/t/FAXLDosm78r3ceq5ydPko3vAzGRy2+Vp0zG6u8y5rqZjBWm77BYYsd6FDOjgJmoWdTWpYxfbOAv1Jx26qfxMtypTXG+2BUYoXHNBLTA0KOCfArAB8E0AHgL4EgB/FcC/rviMa2l93+PxtsXRyjZF/oK33RxpS3l1U/OeH/x9X49/8G9/EwBgWVfRwNKtN5M6wc8+tEhikrYVEchxLS2SYOmAJweLgW7q98BL0UZzsvVAJNNEqjSmnMKf+OzDcTOQOR0o6aaSkUuhljJHeUBfchCRXLExYJIIh8sGL908wGfurz2KVKq2U2jKyd6RkSJ2udey9OLYxtaXFUBTtSVG8bYe62Q/93A90k3lnKSSHqnFLqRxAny2eyKbTny3kO7FKHmauegFIOQr98E4Fkl0j8dQMt335cwNCmL3JCOkEcs+A75KrziEq0WNmweLtBPT+99heiy+uTFru7bDKtG7M1mTVQjc6hSSmEnopFDSYkAapfMzKJ35OQeBnEsJ1NYkJoXZCntOU9fRIKXk8IZJAWHWlCwMAPpC7Zc5lvmpFfOJ9crtiCAxhbblDldV1YSmCkhNej4AiJcbDPf/osaLN6Z001htJ4CiwNdElMd5PTnHSALCnhNlINWxdGv7f0lKUv0VI0mSvJBJPHnd9oWEXwQ8oER5In6C8a0yYxIJiFzPz+UgJHMZNrIHZG1RIoluDWYOSVw7gpeffWDq9MW3j9Hk2d6d3jxHJLFENw1bYPRkTeLF0U2/CsC/1vf9PwLQ933/wwB+C4Dfq/iMa2nb1vQvPFo24/L1pe+5O1JJ88I15j23j1d4aVC/XDR1gsMvTkU1oodt14+oYoq2lVMbNeOmympmnIMkHgjd1H5WLNNRUjpL91rK19LlnN1/+qkH+Mb/4O/i//x3f8LMYXiPugXGkP2RRSnMUm2DOT7vICJHyya5GAPA2c7QTV+6dYDPPDjzKFKxwMbMJy9KcpHCNT041Cx2/sdWKcPi1vWWNpRrXdJlNqmmmt6PTCY5ViPS9/lF1XymP0+a/hM6yR2RtU44JCyS6F6DNqiTDW0MbIhnwK2dyrEEcg5vChV/vNmN98fLwzonNRupnqvM/X/hdNOMU2JVWP1zWQrcUkhKqb9fsk680AMVmAYArHDKtCax7OzGHevssAjaw9HYgEhQVNhzUpl8N+GZGgfY563UV04sTLB0/Tx1WbomUUk/jI1jklsybhpsFERJEvvGpjXO6LKp8YGXbgAwyt9iKUpmMeExI3ERr+UlkpKJQKp0wUMEkj7/Vfz8M0ImsYCjWDowGQPiu+kp0Kl619wzumjita7ntf/wb/1zfODf/q+xbbsxme+CAKx4orx/0aT7KwqSePvYonHye0wVmBKuCe/l0XEqOUGSvdbWJF4cktjC0EwB4F5VVS8CeATgHYrPuJYm7S+OVgv8e7/yo/iOL30nvuy9d2yfREULDACDumks8zZFEgGbeUg9aJs2XfsFOHWCwSFbh8Zw8zCBJKbQhgKyMS1Qthmb7LjIeXntocnA/LUf/nlvDgeLGlWlaIExbHapHjwhtc/9jh99x3OFmsQWR8sGL908xBuPtzjbWuc+rIcTY8R8Ug5TSUksVv9FOSQxx3XIsEv/RsBKmY8BdwGpDi0a7M1sbqxRdxxp/MPramfXmX/pWK3SIYxt9sU+iYpaXndji230o9poISMfu0fcdePzXr4JwG8blKIo5Y53GcI1MTExMctm8F/fdV0+cEs4yWPSLyZck0jcFdVNI2uQribRvkbdk/V0jPt5ueO5p6Sj0P743sHsOdHkViGYCpMCXVdGBGVciBLxQbp9jVm3qpgjTyScUuqmVAAWCTZK92Tfx1gvw/3fVPi2j70CwF+n5iCCcjz/u5mfWropxQqJ7lPEeZTjhUnJ/LCJmjAw1EQTyY5YYj4buAXnEeDrlCclH4U5xlgygPUtYpZqbXNe+wv/4GcAAP/jz9wb15q6StdNxswNis36E/dB14Mf+M47R+Nrd4byohhzyyZq08cO+7taddPSTRkI11xQC4w8zujb/wfALwXwlwH8PwH8AIBTAD+k+IxraadD8enRssGH3nYL3/cdHwMA1JW5SAzd1LVVEkm0zZffdusQ73/xBD/x2UcjqpjcRNsOy+wDan6GWRsXSTxZLfDp+2dY1PXo+MdEKkq00VQge56axPtnJvfwyTdPvc+u6wrLpk4G6aFZJFHQF/9Ycv7d7/Y7vuGDeOX2kck0JTJ2fd+bthDLZizQH/nntU9jcJHUsSYrg65OawaGvxWClJhjwSz+cSSxx8Gyxs1DuxxMahIj16DNbBwxtFP+W6INzXOahjkN55N2dicOSdnZitUfMQ7hIrJJhWJK0zGKmkSHJpVDEks1iSkETOb/4VduTf6eqn/JHc/cjxebSd51aSVom0nWIYnpwDnNnnATd+6fi30SZQ0KnN0ySo3heH5wyTjkbhKO9dlCYR4KScwgIu7fY3OMIc5uX9CYRZFEJkgM9kXN+qNFgGPPAEOvryoEcxzTYtlxMQocq67Z9j1q5/PlvjlY1HjX3WP82d/8ZfjoK8/ZcUECgmV3TFE6GVeeo3otd5I51biu96gLzrU9njknY0Ba8MmjfRmJIB2IC9dkWSHOPTkqciN/PoBEW5YCCp96tttMAi7VBeC89pFXnsMn3zzD3/vxz43Jc1EpBfiEq5yzlBAlYAGkd905xo984j4AiyTGkluukE7K6nCe5xGuuWIk8TcC+LvD778LwA8C+BEAv17xGdfSLJLonw6BqBm6qWuLukbXTx8Yl25aVRV+9Ze9CwBw77HR/kk9aLu2rG4KxOleMu6lWwf4+XtnXtuCGLJk4fBSsOe/XhSpyDi79x4bisobw3kYi42ragi4Oc9F1L5S6FdMIOH3fcvn49d/xbsBRGD+wTZth77HWJMImIDWPY/uvHPHcy0aEHXsxjZ1yLWomZjUJLpB4qhumkGycs51Tt209N2mQWLZaQrpXkxAauY5o45FAtJgHHP+Af9cssg9s5ka52aYY52uCc07FolaOqduT4Rrvvhdt+08I4FUCSW9DCRxm1kr0xn5Mm0xKtyR+X6xGjX5P+MQTvskJocAsPdrKKbBIFL+HPnkylTJMz/HVCa/lGBMIQ4lumnoXLtJlJzVVVhvPE+5lT0nE7QHZUc+pEla1Kw8z5jiYg5JbxIlB2FpxDd+6OWx5EbmGOt3SNXtqRFBTObIJiXdY8g45v4H7J7PKrdGhWsKyY4Unb9UJ9jE1gQycRSj4DKofVSZP/VcN+ng6zwmh/vMg7WXGEq1QIqZJ1yTEVgTJPG9L9j2ea6eQ7oLAJHwCIPEklLppE9ie7U1iX3f3+v7/vXh99O+77+37/s/0Pf9J9nPuK72eGMi76Pl9GQ1EXoAYDaOHN0UmDp2YXuDb/6ClwAAP/rz98djmc/2P2/bpSlUQK5O0D4gH33Hc3i43uFffPbhuOg3EUeyVLcUIjbhuDk1iRIcAua8uo7zskkH6aGJbHGqUWuu+bU7x3ChE2rpwaLGK4P67c+8/tij9gGYUDRKAUCsiJ0JUqJtInpOXTO22AkFzqObTtRNp45F1+sCgPG/uSCxmt7/8nrOQoSbzloH81Q1BZ+Myw+MbfYhBTq0ZcJBi5mrbhoTxCjRP4ECkug8Nz/0Pd+MP//bviIYN50PkL52sfXnvJZK3AGRDO1gpcCtruN0u92Y9IvTTYG400Spm4ZIYnLEcLwkup0fF6J0fHJlWrfHjAGme0dJXdM8oxEmQ8HhDdcuU8OVnaKZZ/AMMEImMbopg65WVWRtJRz5MLhnAikgjsqWkMTUHlCqnw/3t76wHoxzrMJ7kksuuu8Nf0+Oi/gzc+jd475dOl40cMhT0IF4oqQtrCVhICvz1CeOygmnEbWM+JM54GB7wUwSAHgwMNMerXfoOrsvp1ogxcxtL7LICOxIXe6H327ZNePxIsyt1kE2UzbxL9RIYmfHMS0wLgpJrKpqWVXVv1tV1U9WVXVWVdVPDP+P6/s/QXY2IonTE2oc8rQIzWoxPYXLBPri0k0B4AMv3sCv+pJ34H//az4GIJ4NA/K8biCPZEm9zBe+4zkAZjORz6ojjmQpq5tTSDNzKdUDTc/lvVNb7H627Typfg0lQbI/qfM/StYn5phSl5X743DZ4B0D9/zn3jgdERW7QCYC58zxYkqe7mdGxyUCMCaLHBXgGO6vY0eZ7kgUd1OOtYP2po41WVcJCmicgsvXJMp5YTPrk6bglGMnDrluHDDd7C9a3dSto0jTTdOfEUMgzfF9ufUXbhz4cvexTHdhQ2wSzv95LKcEHaP7AkTglghu2q5DVcWvXaqd0RwkkauJs58/jiMDt5i4CJMo2XnHIhzrzPkvCgdF7v+icEfw7LDCNUbx2DkOgyQmUBsOSdQ55ECGJl+iO8YCgD5fbybfLVyDrBJ3Yn+boM3mJ5PwiLI7MiNTiXJ3/tFjRRN+c+jd5b1N5hnz03JIrnxuVBQmm3CdJo5YVHwCHpCoZQyoSLd3ungmCQA8WBvQ4eHZziCg456YRxL/3b/2o/h1f/rv4/FmNwIOZlx6nvIMvM9BEsWaJs7Uy4nWyPHkvQDAt8AIhGvYFhgXWJP4JwB8OYDvAvDTAN4D4A8DuAXgdys+59rZ6cZc6KNIq4IU1cVm0aZPnCyaIZLl0k0BsxD97371F49/T/XpK2aMQnh6MGmSDpiA1H6ndJ9EG6Dls91qamXG2b33yCKJ98+2Hm972dRjgXzJRKWtGemmIZKYV2BNqcvKQrBa1Lh1uMStwwXun+3wyu1D77sl24kkFuVYETuFJEYpSlxNXBxJNCiR6yhYJDGuFFust4xmyM3PkpDAVFiBQwSBGfSfCZJS3kRlXJh9ZsaF36+sbho//zEzWVN7nFSNYJ5+NV1HgHky+Yxq30WXpKTqxIFMwqP03Rw0190itplx8ebefZkiGRmnQbIm9yShChyiX+bz8uPcYLauK0pdWcbNUdeMrlt9nrYVJgVY4RqX7iXB2KXVhEbo3RyS5SeprHAKE1zqktCp5Eroz4QWa5Mic8jP0WflaPok+s8Nl3A1x/CPxyYF7H7jv547Xix5V0peJMdlg3v7PjEO8Y8JbhVqEhPMiTySyLPENPZwQBKNUKOLCKYTCQDwn/73PwUA+Hv/4jWfblpnhGsG3zAFMEWRxGLdqjxvwwt0C4xAuKbvObppnQ8DNUHidwD4WN/3rw3//6dVVf3/APwwnvAgUSDjGCoYywYAeaqFIIWh4EqJnmEXrBiSkp5/CurfdR0OBgrtalHj+aERvEUS030S8z1xYj3YynL3QNwBfeOxRRLvn269AERFNx0ebHm4Q8faIom8Y+f+X8a9884x/udP3sfbnzOoYlr+2dBI0kjKdFG1CqCpb5lGEufUQ5h5TpMQUp/b1NVAiUopxaYC7njGGshnkmNOZI8ylXMRLKzyESWXsAoCFeY8AuLc+eNYJNE9L7SacGKTevPxFvfPtnjX3WOvbqSpq4ngFkNJSyWO+oJDnkoclVTcGKU51oSqXmYKhOtCvil1blyp3YZ72UrPjDuu9e6tnpKtB6aBAxPchPWPxspriZmnEe7gkyTTfYoR7ki17mFqEvXCNcO8ehEl4YJtMycfkSodLlx/wjmk5xhXZS4il5E9oETbbSTpndoXc3TTGJJIBERugn1ctxgEXkmdHgOpkJKZnWGkvKErB7JAPEg3yTTinGivW/SccAGwNrjPCRqmvtvRqhlLeS7SRrqpIILD4VPCZaE9XO+8BE8OSZQgcdXU+H/97l/kXY/UnlhKCFjkPnRmtMI1bfmGBIAmTwbVCNekjkbM4nrbNhM8pJDETUAddU2USFNBSpLDn6A7GvpDev5p9St/Uxz7mzk1ienC2gKSWAikJmMSlBXAPtTAgCQ6VEY13bSuxu+XpH8WgvTYJur+/b0vHAOwAh6pcSVBjJSSJ1Di/8dpqkz2P5rwiNRE3DiwFITYM1CiF8cy5FSQkjgnxe8WLKxMuw1gGqgzyoJArJk1Ny4UjmgLiYvlWN8c36S+4T/4O/jaP/GD5rO6YGNLIYmFBFAqcZTt3ZmkQ5Wc/4tzEkrIRqrnJ0sBjTaKziDp4ZjxmcmJhESSaT14ZK/1EBgS2Qho0yCOFyI3XQ/KIYknGMv3STK5VVhL3DkyDhoQZyWwSK57i7AIZKwNklaVmVVzjtUOd5n7GMhTCd2/x8bFgg0mAIspt2aTixHfiaFOx8QCNfRuGcYG6dHawraMcMdoyW3huo1iVu456cqJoymVeXidedaCxzSXyDleLUY9kIs08ScfngUt3zKUZPe1MUh0EMhUuYcEiQfLGp/38k188CXL2GvqaX/XEvor4wDHL+lZumkoXEPWJBboppog8S8C+GtVVX1LVVVfUFXVtwL4L4bXn2jLChAk0BfbIysSWI50U3/cJkNRBazzFkNSGF59SVnq+RsmY3C4sOpLWtqojEsHDanvZmoZUw+o0Bvvn+7G99S1yCTHH9DQZHNN1RaONaGJOaabgss5MRfo2z5mWoPeGNRAYwXiAIY+lfnrluyTmE0KRBwLgpKWzMg7tORXh0Xuaz74gjcuWd+WOGQc7Rw27UJNXPjdTOBGLqwiJCCCYEp0tSfGAFNEkKljkXl2scAh89wAcRGGtuvx+tC8etd2HpoZpe0SlLTZimyJeySbfa6ntOnzmAScaaZGvCalmMyR5zuS9NO0/KHW1ghtlOptFtk7WNSgC+5jeT1/PP++ZJMrKaQ6GzgnGRB5dCNMCpRq78RioiTs+Q8TTlTibpLMYejFetQsdTxauCaRdMqtXV7SYpx7OeAORZFK42KlIjZwKz/bHgJP1ISGzzdD5Ze/971/vBKVH0ggwF0BSRwDWf/5pu6tCLsgN0U5/5Ne0W16bT1ZNXi8aaN/m2tn23b0sx+uW1/dNCMCd89hsz2SfuIEkihsnYMmQjet60TpWP78T/r5juqmSuEatibx7V+cn0/5E0b7/QC+B8B/DOAVAJ8A8P8A8L2Kz7iWlqtVS9ZxCQIQQxIl+x9kyYt00whlCChvGjmapHtDfuKe6UP45e+7AyAeAMu5KNEYJoFUQe5e/pZqyn73ZIVP3DvFm6dBTeJCjySmgm2LJOocklDK/1s+8jL+k//ll+HjH3h+HAP4GTvzvQq1NglEECDQthl1LLHrJvOUe/YHvusrUcHn2MfUvSwlOH4vh7VOgAJJjCCQLI9f7l+Nuqm3IXZ8TWIo3MGMC9cTuWdTTkmujuKff+bB+PtnHqynxfaTZJOxEithipjlkytAugYyHxCl60PEcmql0/em12Rg2jdPrJSRTyOJXZZqByCREMgpEto5iRlEKjnEjIvQvbjgJoHalNaSYM8pSeS742KIbBlxnt4nxRYAQVKARRLDgE+jdulft3JwXyWeG4Ze7Lc7Ia9b5FyWrl0uSQLkdAimVEcz9/IcPZSUKMGI3f+q2sKQFULsG3IM89P/vJS5weXCYTwx6FIs6coIN2kTR7E6faDMbgLKPqhrx6sFfub1x/nJKO3R2qCIh8t6VDeVueX20jcmQSIcJDHdhm29M0HuwTJSqlZHzkef1xcBIueSVTed2wLjPV+Z/XM2SKyq6huDl/7O8K+C9Tm+BsDfLs/k+ppFBeM1ifGiednwp58nTk0Y3PB0U10AkOrvF9bnfOPnv4Sf+OxP4mtefXGYe1xZDShnu5PUEyXaIPOWINETrqkrrBQ1iW1vzsWkz8xgWyKTH1MADRGAqqrwzR9+2flecvyI86k8HwwC5kry+01yyxtNqd/Y3ZMpPz2sEZExAO8gABxtKC7mw6ubdsGmzTi7YT0KLcChdMiBaWKGba4eu24PHZr2z9879c5TTBSGSUCkaKNA+dmOq4bmxtTZIPET907x1X/8b+NP/KtfNPaUzZltMZRANsb11a136um2FDFhsBiTBHASRxFHPssSSDq7OmRDjk3d/wGSbuZYQBsC5F5D5Ywh3FkBmqYa+5G5xtJNx5rEAvI4zjFAcxn0xfaptK9RQXrkeQM9zhsyzCM7bIISAXm0B5gm4MTkOUqd06lyLj/H+DgiUT4JiLj7OKRc08Glk0gwc8yPcxNO4nyX1kkZp6XJxxV3y89AmLigkruJRFquDvj4EpBEQRGfPznAJ+6dYuPUm4c1yq697ognPly3XgIqVxaxcWoSQ4vtb4a1lf8OU7qptgWGo25aEKVhrPQJfybx+rgmDb+//9wzeQtt16aRxJhCEWAXsdiDM2asg+zDNnMcIB3slTapmEMin+M+oH/gl3wIv/3rP4AbB4txXApJLGWoUgFATs1wkXAKd12P54f6vvun2zHbVVW6mkQjXBN3mMz/5bvl5jjlkY/npOB8aqX1s+IuhCMpohEyjsl2x6nTaQEOwCDjU3px580lNsfJfezMI2Xx4JKn/8g8+ZrESAuAsh+JJkBXmfMfO16pR1ZKWRCw9RAA8PNvngU1ibFaJ/OzKFzTh+tWOblixvmvuVnc+Jg8kvgTn30IAPgv/sdPUEHiroQkjnQjZ47D4RkKaIxiX1oTJvcWysE2EDq7evobQFLLQiR9zK5kh01qLruujPbLPCdIYiFIqRN7cIk+GqMEMqD0WF840k3LVNpU43IqaAufGwLtqaoUSqcPNkrBVEwABUBRcCX0E6xKaeGerFLjMmMi6ySDwFv2ln2NqUkMkXQbSOWPF1KZ5TOoIDHi35USfuGx2MSRmm4aOY9mbPqePDlYqILEXdvhB37oZ/Grv+xdSaBF9oDnjpb4xL1TPDjb2T0xAcIAGMs2gCnddNFUOEso7G92Rk07tg7FFd750oFxzWNbYITCNV3L1SQWLBsk9n3/vnMf4QmwEWGKBYkJ9Cu34aeQxLG3YkE4JRaAZbPPSSTRd0CXTT0GYwAmUtPuZ2gFV86LJB4tazR1ZfokOtmnRVPjEbmQWLpp/DyW6DFAnA5VRs3i57+o2hejVg4/WeRYJPkZhzDXAmNOvZn8LTXHZE1cYbOZCt4QTlqQmGEConGewfHYmsRQXIStSdQgibnsp1BdAOBnX3/sZcBjTgVDSYshkPZa54RrpkEpdV9F6M9zrVRzHENE2KQYMH2+c8mVmLopg4iMddEBksje/2pq2QzUwDueE4DFmDihRe+vEpKYW7cy8wxrEmm0MwyAGURq+LO6/isatHG1bTsPETc/S98uRgsv0a1TNG2tMJtmjuF5lNdzFq4nPZFcGa+1khVi6aYyhguAY6wj5r5M7cH59dWfm8yXqe8PEXGgxECxc3ItV75hkEReuOb/+9Nv4A/95R/Be+6e4GtefSH6HtkDbh8bMZY3T7eOL5neS4WmumwqPNxMhWtSycz1rsv683Oebdlnxz2AbYER0k27HbA4SL+fNI1wzVNrgiTGNrkU+uXWzU3GJBQJ2ZrEeGax7MTEgqJSrc1c4ZqpI1muW0r1mxFn62jZ4HTbeovfqqmw3XFIokhCl9TYcuckFtzQbQrC8084yX0fNmUvZ4RjyQS21iCF5OadhHRNYlrdMV5bCDBByjRwZpxdwK8jKh1Lxvkb4uXWJIbPXIkyVFXVRKRCzKXg/fhnHnrPTYw2yiQgYggkU5M4z4nJt8DQxo8j3TTSygiIZ5KZ9S5Vy5KjScacQVbdcRK4gb//tTVxde3vN3b9yR8v3HNKcvzjPCP3V/k+Se/BXBN4W6dM9UkMvpsJNvJj4kkBErWJJIWZpIB/3fx5ZMdF9jfGv5j0yi0hwHU8SJzF7gD3DPjqvlzjePcY4++lcUFQpAmA3XHye064CYgn5kv9RaNtWcCh1LHzn9839GvkycEC27aftGpK2eOtCX7ePN0m3yN78p1jUzZz3wkSU4wvwA0uVxHhmnRN4mbXpfebFGpfopuG142mmwZ9ErvdhSCJ+yARLk1pejPn6riA+KI8NsCOCNdUVTrYqIKFR6zrkF19UmqeRbpjbOHJfK9xXIQSGIq7xMflkazDZW2DxOE7LZualsnvhs/JBW1AnhKbC5xT2b7U4tN2HSeIEWQx3c+Mjos6hPrG8XaeMxqlE4HzlDbNBcBzJOGbIEvIBKRmLnrHWubp1rYxGUI7zh6v9IzKmDiSaI7/jttH+BeffTg4pdU4JtkCo0BRSqr75pIrMYSigBClqPxip4NTwAaLlhbLt7hhGRBAZD3JqJvGpfX9v6UsrMvV1FaF9UcUtS+y/hTRhuD7lajF3vEi91deuCZOEet6UpVTiSRWwXrOInsyJzEKSYwyJ8rXLeXIU4nCyLpQQnLdY4gxz3eUElvydYfkqR1nfpZbN8QSp+R1c10M4rqFa4KmvMEcj08UyripfkSZqQRM27IwVFovcU3oJAgDIhRdbLt0y43jQRyPRRMlKfpwnQ4SJdh7bkAS7z22QWIqkHXH3TlejkEihyS2OFjEA7Hks0bcx4Cz36hrEp0+iRdQk7gPEmFVSGMIX+gMio100wySGA7btnlKTkogASjXcblzEmOc/9jCD+iFaxhHclFX0YyMSEAfLhucbVsvQ6ZpgSGbVipoY4QjYnSoEgJpM8/Tcfr6I2KOkax1z2StI8EGI9yxqKfiQaUeWfG61eFvhSBxSpPk+k+Z94pjx23aYS1LR6AGcryw4TmFJAbPTqlNCpBG3M6GIOqj77iFf/GZh94GFK0JJbLdMeEmNpDS9kmMofauifPQg3v+LVMjfsxYn8RSn0ogvS7nnNAU2g9wiIgveKNXGwX4FgwxtJNFYMYArBAwjOMSdMd8kDKVkmfGhU5hCXkMx42JfCL7Lx+rrkmsp/sNe936yL3FJAUmDBtauEbvX0QRqUICoq4SCDzz3ISJ0/yQKOLPrOW2Bk+SJP7r6eNN9/ySuq+Mm/TdLq6vmByL/W5anyQ2DjB7TmqOJysTwLDlRFJe4fbVDk3O0e0jEyR+5sEZTla25RswTfYBwEbGHa+scI3spU1auCbH1gt1CwCWbhrsN2wLDOl32A5B9AUJ1+yDRORr1WKCDEAeSQlpLmKlzSZPN02Pi9EKAEOjvYzawvM4kqnNftE4QaKz+SybmqYjSDbbOgfB33tmjungMhVIhdQT73vlzmMki2mzpslh0UbdTNZa6K1hFhOYRyWUv8XnmBHlyczRIBv+az0IlHR85qxD6L5eGucqGfK1hQ6SmMmYTscFDkIpSEwgboIkvvf5EzzetKZIf7hFsz04S9n/VAJIicAzCEWuJvHRWqd8J+co3Sdx6uzaBveZ71ZNxwH5ICWF9gN6uh1z/8fqJlkELDbHsnCNHwQzfVqBTDJBuf4w42J9Ei+tJjGSKOTWZH3LKzPHON209O1iqEjXl4M9IF6+UfYTnDkOP5lgbw5NNQxSWCQXiCDw+Sk6TAEZwwWyYQK75Fu442JIIkO3trTpnqvTrKclGPJ6zkK6LyCU2Pj7pc3WqRJJzAaJnSCChm7a9YbWCnBI4u0jiySOtYwZJDHX47Kp4olFNuE37jc0kjgEiZ0EiXu66YWZ1CTGFrxFAUmM002nC4/8Pw/Zm58xZ2uuummx3UO4YTP9DjOOZIn+k6qJa4aaxLNt59ckLjQtMARJtP93jaGtpPp4yfxjFtto3O+VPFaubqmAtgExmmRyiBkXBEQyR/czY7Zo9DWJstH0weYLlGviYr0jmcw64COCMo+chc61prbQzewaR54b594nJUqyjIk9N5JZff6G2RBfe7QZqS+5mtDc94sFexSVfAZCUUeQbddON1q6KVfzra1JTAnXSMud3BgfEeQ8+bqahwhOjkeO8wWYhn2NRUScAIx9biYquCXaYh3P5DN0R8BPHLFoJxCyC7hgUa45QgAA3VBJREFUQ7smx9AXVhU1rDVz55EcF1lLaMZLJHmaP/++k8yUG8gcfYqkjMsOiyr1aoM2gFQ3DfqZ0gFwgGbZ/Tc/bhFpxVZUlw2+Gx9sY4LIAhzdN0Y3Taubmr2KTQYySKKwzoRuao5j1fxlTpNxQ8L1uaOlKXly1vZUuQeQX4NitdSadkbjWs6qm45Ioqib7rg+iQXbB4kw6qaLOt7QOgbzAzaDFAuKxox1Gy7+ZV53+IDKOG3QAOQl2mXuKbqpNrPL1vul6jsN3bTG6ab1guJFzbfAaIdsduo8slLasdpCmX/qe8n3iH2v5LGiFDH/b6k5Avr6iyZGtxvRF11wX2oMHquHwLBpF4P0WPaNUGRz58VQi91xruDNnNpCJmst40Ikq4gkpoLEre0JBQCffbAes7OpfpNAuSlySvFYS11nkls5uukjoZsqg8RU0C1rk4/kltVNk0m/zPMdYwmwTlp4Lqn7P0A2zO9ldHtKNzU/S3fyRLiGDsCm6zITpMTYXm0BvQyf7VxQ788xtibkx9j1Trcmp4S6tG0iaLpjbM8vBntp/6LILogGG9kpRurEh3HEHhAmXBkhHyCgZHZ8UsBF6dzXk8cLzqVlN5WRxFiilmkBI8Pm1q3SFPTYvZwJog6XUpPIBonlmsSQbgpgpJumBB4Bqxdy43BhfNCuHxlbOSQxJ94Uq6VmGBcTf5JVNxVqaTu089jTTS/OhO4YsxzVBYjThGNZXfk/k2maFrLnN6nUzX8eQZLc4p+iPgDIB6X1tAchYB7Qph7oprvWE4TQ1CSazKZzrCSSUpijFkmMbDQyjsnQansS5ahsOYuNKwV7Ms8UkpgW8xneFyCJ2hpBYAjAyAa07egQlpMdQGzTptokTqiSjCKhzCcM0ss1iVMkFzCbZlNXuHNiN8SjpdRfTNcDJgCIbWxSs11KOMXWkvPQTcV5ONtxToSsE6mERy5JwiCJsV6hyT6hMZYAys+2GRtJQBTFPszPWcIpsUCWfm7M/0tKi+O4xJ5Tuk9iSKK73sfHDQJy0hbHcfxKcwTsmsqdR/MzXJOZID18BChVziqOtjH+hTaZmWodYIKU/BzD+1FeL84x8twwqGDYA7WY7Igmc/iaRJtIADfH2j8eiyTG/MJizXdwT3bks50Ss2IC4Jh4WWrcwSLeKs61n37tEf7JJ+8DsEFiFknsrEqpmCCJKZVqwNQkLpt6bMvhIqBNnfZBc2yxWC01W6fszZOlmzbDd+72NYkXbtu2SwrKpOrocsI1qUJvZrOpovSTQmATySIzgiQh99x8BhGkZJHEXFAUd3YtktjgdBMI1ywqbEgkcdfZGsxYCwA2AJtTfwdMM+RtV6gJjWUxyUDWnRfA1ySGxxOqdakFQEi5Lp2TeI0U35R6EoCx321YzO19zAal5v894djJ8cJgg0FSwvuLUzed3luAKKvVuHFgg0RRjGuqary2YgwlLbbecYEUpghkX6Co1tMaWddEuObhmqtZ2ZF002hNIoGkTGuV08FbnH7o/y1lE5SIuP/DgEjGlZ3PKSPBzKE8DnAc0ILDKpYUrikwJ6KJ2gLdtA7myD6jMhUNlXZURHWmyQUbEbSBSqbF9w3GAQ393RwlELAJxFiJiQ5J5O4tEwDPCS6nCVc2uJ+qAufnGO7BmjkCTjJzpPKXFa61yZUYIg5wwbZ7KA3dN3SVc8hZqp+42CffPMXXfd/fwa/7/r8PAFgPQm25/UDWv+NVM7amuDEEiXVk/Rfbtqbf4fFqga43iUlf3TQ+x9waG++BSjC+wr2DDhIjdNN9TeLFWE6hKFdHB6TbZgCxxZ+jrWiLXcPN0P09r1Ian6P5zMKmPdloONpWDOoXWuzRssF613m1Dqumnji7KXM319iiyjhpMVVOK2zES+vLOGoRj2ykuesdQ6oZBb4YclkK9uRvYSatVJMYnSMUQZsSEQkD4I74XsDUSWDOIzD0jgwccorKNgNJjPWpBExm1QSJNlsoSGIsAcRQ0mLJldL9D8SDy1wjZSCeEHDt8VCr8pisWWFbYPg1oeXvlmomnq9HmR5rLtrT9wwiYufkHk8r9mHnWx7nvt+svYVJQqijOmc3tQeX2m6M9GIlJVbeMypXKpJUYQ02F7Tp9nsgxubhkmIxMY1Sn9w5wk3A9Ltp7i0vuCQS1zLPsL8onVx0nzeiJjEUKtIEwO7xGDV5IFWGUd633bmpgu3YusWo0ip83lKQ+A9/6g0Apo0FAJwNSOL9rLqpLTk4HILEULgmlpTctR2Wgw8KAI/Wu/G+XzTpmsQ8kqi/Zu489S0wpE/iXrjmwm3XdVhkFPFiNYl24YoEiQkOP5VFqGOS2ByS6D7YbOP4KYd8+Fv2ePGNxp1LdFydrklc1vVYk+jSNJdNja6PUwRinyPjYtQHxkmLtekYA6mUSEvC2WXovuG48wnXcItPDEnJ1iRGiuaF/pU6Zqq5N+P8AD4qRSGQwTkZ6aba4JI4j8CQyQ+RRGJcmChhaxJjyZX1tsPBosHNQydIHJDElIohUE5AJJHEUp/EyPGyTkyE/uma1CQ+ItXvxNlYLdIJP8BH29j+rkAcSdHc/8yzDUzrj5jkSqwO2wQp5WP1vZ1bP76eHTZ93joySTIJboiauNS+Ubq/ImsCVzcZrgmM82/nJEaJVASomRnH0oT9a+3OPXm82LpQYDOkNQ/SdGtgmvC2vkV2ihEE0vzkVDnD858/1vz+ovLe3vvJBqXy/nEfJfaA6Pkn1q2xTl8RyIZJKoBMbkV8rtQcJUjcJKicP/nZRwCA24MIzYgknqVrEjcjM6oer8Ux2QJjMdBNzTF24/tzNYmluvRZQFG434wtMAoBX1WZQFFaYOz7JF6cmf6F6YxwriYx9gCkkUSuaFtbyxg7HockxsUmgFLdUpz6UFf5xS4G2/d9PzoJR0NNYtdbh7uUber7Hv/4594c5zDSTSMZ69FJy3y7mBNTotLah9p/nVXfiy3IuYUkKdvNblBRJDGHpGTUTVMLZOSc9MT9H6/lKm9sYb3BmMQpIon+Oel6tibR1hv0fW8cSRKl2Hnnv6P6JMaRxBYHSx9JPHaFaybPtvmZZSVENjZG3CVVM1MSKZL3xex0EOZhW+DIPFOooKVA289j1snx3lIkgVK1tQDnJE9pc/kxMm4apJTHAC5tjgxkI8kVim5aR1goxDqZ2oNLSUnAr0mkEkBBoqrvy8JBsRYYbJAecyQ5P8EfA3COfFSFOzMu1l/U/L+8JkRFkYoJD1+siq3lnQTOhEhIbC+leg4H+8b43fLDpjXwwz3G7AETVeCScNNkb5PzWL6X+8i9xZxLjbrpWJOYWN9/8nMPAdhzytQk7py6dDlsSDeNIYlCN5Uk66ONpZumyqSAfKIkhSSy7bxGl3dEEolNoF4GSOI+SLwQ27VpJDHZyDfz4KSCxJ7ZNCKLeCmzGMuGsYIkc5DEWF1JSelM5plC6byaRA9JND9TdYnf/9/+BH7Ff/Tf4Yd+6nXPUckL16TnGA+AC6hZJLCR78YIYsT6JHI1ie44vt4vhiRedE1irJcj46TFa7n04xhaBzDNLvYob4Yybhc4CGxNlrtJlSjJcqx4TaKhm55E6KZx5dDyZp+iAwLlhFNsLWGc+BTdVDLHrLrxdjfMs6DU69//ZVGelHBNDgGzzqd9TYX2BE4aUycbQ5e0NG06kA1pcwQibsbFEdkS4pykm+bW12AN4pHE4fNdJLHE9Iom7jgkq+t9miqFJNZh3ao/95TFEk5tAUm0tVzhHpBv3xOKItH1roF/wSKJ8eemfCzA30vN+c+PG3tTj/sGH4CZ45n3j+sPhQAH578vCTdN90TG6ipExGXupXHxoCj1jFokMREkvvYYgA0OrbppuU/ioqnx3udPAPjsGvOeeJDo0k0B68PkkcS0nxFr8aRBt8drwLbAAIBm6dQk7pHEC7Ntp1c3zdU8pW5GKrM7A6KOblBdeUGOBaQsJU270QOFVgpNhYOhJtF1nEckMZFt+os/9HMAgAdBA9RQ6cx8N4x/S1ks0033SQy/W6vvk8ic/1ggxWxsseRFrkeoOy4Z3BdqEv1aD95pDTPCpQg4bG/QsujLJLgsOxbmeHbTbknnZxznXO82s/a4c4ypO5og0RboA8DRytZfpJDEueq+xfqj2LpVUD8E4pldwDoPXQ+qLlmU7VYZzyn8fmwAHJtnLnmRe7bLiMgUgWTuyZhQCIO+ADZRxQayMQd0juCTfEY5SRVP1Oac66qq/Oe0gDy6cwTcWi6FAMpkTeZQgxC5Kc0yTAhoqMzxvTs9JtUCZldI+oVKyfIbswdoaaPmc4PzTxwrpgqsKd0YnxuyBcmU8eJ/XnKegT9jGVh5YUL3WCCf7dAHZZHEWKmUSdzH3y8AQCoJKLRSGyQONeqbNrkfjArXdYWv/uDz4/uByPnwxnWDuqkNqtw+iW3XT1BSIE/5jWlwsOUsXmKebYEBmKDQRRKZwLI0l3N/wlNgu4K6aaqRr/w9NgaI00a5DKH/WmlcLBvWZebnjkshiaUgcSIHTyIiufYSY9HwxvLBLd007kj+888YSsLYX3F8sONOXfG7JTLdQBptSCHHRSQxGuyVF+TY/cU1AI4EiQySGK1JHM5J4pipXo4MHQqYokvsZu/STbnaQn+zZxxCGSeBsxyTFa7xauK6HseUst30dVE3dW0UrqlsrZlVXuQSEOk+iZngq9JviClpfTHpAwmYgDHF9hAbBXYy71vUfhseSt0083wXkcSIs1XKeISBFBNsAD4C0/c9xVwJg9lY7WvMQjoto6QKxFkoOUoaIEmSSJDY5RFgwE9wlZBHd44yL4Cnjcp7xbgg3fxs+x41bMDItCCJoj0U2jZdy5maxGnfZ6LFViRJUoqAqwgCOScBoauBd8cRtNEguKSVQ4P9zSJf5eAyVoOqYWpoVEoBu3ewSG5dYxJI5Z7t5bB3pcoJts7+um07bz94tG7x3PH0nrXCNTW++xtfxeGiwb/yxe8AkPbLzRxMCwxBHQF4rDSZR3idcgreZu3xvxtDgQYk6Tr8hxWuAQYkcd8C48Itp25qULPp66NjmKGbThdVhtcdC24KDbAj6qYdsR5H6aYsJW2yGOSLqIF4RtiVgD45MA/og7PdePxctsn9rAdnWy9THBOuYUVhYs6gzD9mMSQXGLJMhb6R4TgO7fHnBXCLTywAs4hgzkmYcvJLSYhUvSWTIQemznVpY5uvZAhvnGmkXBzmZQmZhExsnMyTqkeJIYnbbkQR5diTIv3g/AMluvU0QN+SaPPkuSmtWwUkce30RxQqac5knjkRppACRAXAqSAxQ1+ce/7N3+f14HTrsNmgIQyINMEGEDxvpCOvppsmWzDkhVMAn15cQh7FwvpCTd+8aZBSTgrHx5XmOA1IAa4mLob4UwJrysTwFO20r2fnGKxBDEtGPnc6Tr8n9sR1m9JN5fX8HENWQs6PDOfpghW23CM/xn3vGCQSqKU7ziaus8OiCaBcwmNVAABcn2+960ZEEQDuJ8RrXMHGw2WD7/6mV8fALwamuMdaLqxwDWDPX64sIuf3NhHApyWZSl7StVfQTeulQRCBfU3iRZqhm6ZlbKONfGciicwiEgtuSsheeDwmIKqrGGpp/5adY8RhopqCBwuCnNtlU40Fxm882oyO3irTcPWTb56Ovz84C+imEWekx7yFroQ2pILEUgCQUgAF8pt9TE1VhdJpkcTIM1Bqi5ASBGBU3IDIdysKRwzz0jqE4YaI8rFknrtgo2cd0LAmlEPgp69vu35E2l+8cQAAOFymldwYBb5cn9BSfe2UlVBogZHZfAG/VmXdlttgjFSjApIYr93mM/JiDJI4F+3R0hZlnBo1GOmOvkPIIjAeck8lZRJIYoHJAOhbMJixtVM3SaL9w1vcmsRicmu45cIWGKXDyfzdU8IGN/EERDkonZZF5BO8OeGmYuIo4pMUz0k1rbdkkcQwuUgjidrzHwR7DANI5gj4ZRFAWbgmZJhZ/zPP7nCPxSKC1p+E91NLU5Vjp75aSZTQCxK3Lc62dg9I1SVauun0vOSQRCNc49ckunRT+S6h5cSbYixElqnkPd+suikANIO6adcB6LkxBdsHiRC6aWKzjzg/gM1GxBzDEUmcOE3kIh7LxuScrRhqI59XQKRiWUWgQElLoG1lZzdO2TJ/s0Hip+6fjb/n6KY/+7ofJLpIbYwSy9YapIU7Sn0S/ddLAUAsi8xs9imUgt3YtDWJIUXP/YxkM3FZkANRnjlzNNnI7LDx2oz0N9JpDZ1k1pF0UfFxE1WOM8fj1E1jSKI79sWbJkiU5EpYawaQolTjdYskErK91KZOZEnxMrf5AgYplVPDKJxaJJFHxeW8zkFScuhZtLa2zz8z7thJv0OGaTTjngy/G7NvuONcNH2OcBNg7pvU/uvOJSqKQSCJcl+wlNgwACjRMb0xXrBBJLeGP2uR41Td2JwkdNfPpFtnkHRgSLh6czQ/S+ekqoK2LCSSPq1l5JhbgJ65kgqk6OTKME9Jtpae03DfsMmt8hy1iKB8h5ApU0w41b4qqozNBVFNXSXX9s2uG4M2QRIFNEgpnLp9EmPHM++Z7je71ggvHkfopmEdqWs5NkOMhVh61tyxNkiUm4tFErcWTdwHiRdjObppqIYnZiX2p2NSiyorJKARSDBzmGZImAc7JpPfE4tdrP6oVFcCxJViXSTrxtDvreuBG4fL8XUg7iT+7BuPx98tkjjMMfLdqCAlMk7mmDqXc9VNY/0tx80+t/gnqU3pMWaekSCRQRIjzWTtuFTgbH5qnR9bD2FfYzLJoXIrq2QYq9ugaqtqv9YJ4ChRiwBNp5HEyBrk0r2+6gOmSP9gIUiieU8UScwdK4KAcZTMerohdmXU0v380Na7bkwWpShJru3aDlVVcnjh1yQSfRKTfW8ziYjQiTS/iyNfclxjzjVxL1dukMgFDbFWFmYO5WMBNjHWEiwB+dzwcpcEvvJIVv54i8avHWYC2ZBK2BHHCccAw35DqqKGCV4tIjgmgAhEaprMzCeqUs41U3MfE9dhAzA3ccGgL1U1Q900siea/aZ0LPhzJBJw7vGsUFR5/5XP9ZOL/fh6box7DA0i6I9j1624z5sbt2yqJJK4abvRJ1zvOmx2He4erwAAD9dxuuk248/EEjLusZaBUrgkG1NJKnktqVVRTZFEVhgviiRqahKForqnm16MbbsumX1OOWhZ4ZpzZD5j1LKSkxwPGszPEm001UuwqIAY+W5znF2LJPr93uT3sUdT5MF+87FZKG4eLPBwvfUcldh36/q+6GvF1d/MJpq6Bkl100IGOl+3RCQFlI5F7HhcTWKcXux+5mSOCeeHbVLsnxMis97456RlC8SDebKOpEtbLJ0L18JNkapJjNB4xrHD9/5ff8vn4y/8to/jC9/5HIDE+dfcW2pKpj4pVkISN7sON4dkEYUkdn1SgEws7Plp7/+ykxxFUpJrgn2PmEVS8jat+Vb0SRwFmGQepEMYqJuWg0vz09JNFZTYGCLLICJhkEIEpou6HlVvNZRYwJ5DJuFkx/jrFrsm+zRVUgVdmQAC0u2McuclRdMr1SQ2k7pJ81NNd+xYpWpMAme2JneuCJxWuCZM3jFrq4zzNQjK40KatpaCrg2AY6U6XR9n24ktmzrZAmPb9rg5Boktdl2HOycmSMwhiaZH4vSYVVVFNT/MsQzd1EUSbx1ZpXAgEySm9oB62t6GiQGA4FyOLTCIh6BeGBRxRBL3QeKFmIGa4xcgJb+de7hzSGI5SAkXuvKDHc2GER5JCm0rDEsqsJbu4VhtmzjMi7oKgkSr0gjEH1BZXJ6/sTJ0U+eBjQb3PZfFjKu/zXAiC87PXAQ4WbfHZk2VAUDoWANA2+Zpeqk6WTqLPHGaOGfX9i7kHWvAz+xyjqQ9JxZJJILLAJUtoSgyJrlBDWMXTY2vHNBEM79pIoFVNzXjnOMUrrUcL0Y31ar0ivV9j/WuHZ2Eza7DG482Xh1yaNtdlxWtkWPGAuB5dFMks8jxxBF3n4RrV9tx2WcjZqJzCEOnlW2lEF67Us+2cY4RFgqtrhlm5YmEztJFEjNBvX88Oy85DktbnCJSXJDiUgJ7k00rzDGoSQw+jx0nx6aQxIg/UyqniNUksiidi4DNSUBQzJUom4dnrnTBc0MHpU5SUuaePV7AwmJqGacqvdyzHZaK8GtJFVU3zX23VVMnRQnbrsfNwSdcbzu0XY87xyZpmAwSu3y/7lTfc2mBUVXVeP9JgjJXO7/LPDsxmirvlzh7h6YFhiCJEiQyYwq2DxJhbpAUkhJriAk4mZxMxiIepOicGAYRjAUb498KdIS+n2Y/S+OayHdjsnZNna5ta2pLNwWAGwf+Axr7bqJ2dedkhYfrnZfxjTkjbE3ihFZDqLgB00Vk13bFtgGAX8tIXe8EcjwPSeQCgFDKeaTgpoLE2BwJtCHmXPfgKUqj01rYnOw481Ov0uigjwokcVHXaiQxpBqJ5Tao2MYmv+a+Xoym6vYyzc0xpsrMJFdi6+uu6w3tfHASNm2H7/krP4Kv/Pf/Nv6HH38t+nm7Li1AJhaWD7hMhtI8p3THfD2K+/mAju4V1vJS92SEbqp93sZ7hDgW4DugrLppLHlKBenh+ScQvkVTj8EluybImi1rHnOcuACKvnG2RW3K47TJRZlnOMfS3pFKkpQc8pDNQweyseCGSZJUYVCq2RPtayWhQMChF49zHF4vzDE8l3yQGGcAaRBgnl0Abxy7bsX2qa6Q4Fo2dVS5WvZIl266bXvcOc4jicaXz/nKccBh2/YTNuGtwzKS2GXWlLkJbwD4hs9/CR9+5Zb5j1bdtN1Y9PECkMR9n0SUswExeLr0cMfQF7YmMVqQnh0j7/WP5f4tZu7NLw8WG5TOqbdsIgG3m8m/OQSGgF0ccnVL612L1aLGzcMlXn+0Rt9bHnmKEks5aDORRK2THG9dMv2eyeNpUbrIudwSNVmxutxSLcVcaffowtqVJcnDupmWXIxjdFNOgKYenUj5ioyT7CIbwHBvET2y4vLb6e8YC7aZwCGWgBjXuoIjGUMSGdQyyhLY+U7CZtfhn33qAQDgT/+/f9xDTccxbbpsYDxm7dPtNEiipnVDVIF4RJyzU0RTVx4FixZhcq7B6LQqE0dMC6RwHNuTMZyjGK2uGWTkmSBg4ST9eJaAn7xgEkdxVggfEMkwTSAVS0AwfTGj5QYFJon7XndsKUiJUWIZH8h9v/tazpraF0Hh9ht/bgDXcmMagOmeG60ydni9mXH2uYE3V23iQlPfPC2Vyj87y0W8JlFeE59wvWvRdj1ODhos6ipZk7iLBHuupUo3Nju7d8itcOsoQBITycxikBgkypl18o9/+xfZ/4wBH4kkdjvdmILtkURIkJSqSTTBXgijl3rOuNQfdwyTjYlmCHOLcQJZks9LjktkOoCycMr0u+lRUnfOi6bG4dIeVOimYSNw1za7DgeLGjcPFvj0/TUA2ycutWAxmb4Ly3R3hZqszHcr1ZKaz/fnqHUI3d9z2bcY3bFEU419tx48shHW0hU3qOHvvtgE7xBqVRrNvYzxWADZX9FBNgCDRjHy51FFtszYKJIon8dQQCNrSQlN17ILFuOxpn8TloAVrunG8/vf/4vXook7qUfJWUxdFiggnpXv2Inl1rzceSyWHNTTRCGLJE4l+Qtjwvtf1NYLx3Pl61k0JJyjWAlNl73PfQbYY7r0bpYlIN/NFaYq95bD+F4xLimMcW4yxn09Oa72653o1iVB4MaxBPz3ihWvW8BUsoFseY5AUAJArK3ToLR8H8f8C015Q1jLy4j3ucdj9l/A+KFdp7v/baLWT2Zq6zTpALjCxE8u1Q2vmhrraJBoPkeShGfbzux3TY0bh4sM3TS/n6a6FWzbDquFP+6W0E0zycysemvUL+fuZc80IjQh3XRfk3gxlruxRkcmuD9KmZxQxVA+g3Hk3WMxFLFcbRuTyY/J5OdmmQqkSot/DJFyM/nuuZnQTROO5MGixs3DBT77YD2MEwRymvmngo16Wm9ZqplJCdeUMte5WlIWARbTZD/dcSWVUjNumigR2nAxSJmJJHr3JLjNvnFQorbnnVZzPOvIcJS0yqOxuXMvjdu29lwy6qZhbz+xXE1crgcndW8p15Kmjjv/zLFifWgFEXCFa8Qx2LQdPvdoPRmTU6l2jxm//xlnK+Ikp85/NEjnnS33erPKoe53Yx3C0ElmUQNXFENDt07WfOeSVJH9jT2m0LtHWiXzjDb+fcnUMsZaYDD7fXhvsXVj4fF4KmEVDzYy48K11R2rqdWn610l4HbuSQqljlBpi/tNIsFeOp78OUTbSgmgFJJYTrD7QTqz54TJZBoRnBkAR+mmhUDd0E3TSKL4c0a4xrTKuXm4wMMk3TSPJKb20m2kNIgRrmGQxC5I5jPrpGejcA2BCu5bYFyO5WqlUo5MaZOKoWZUjUI1df7N68xiMB2XVUWN1B8xjky8lyODZNWRmsR4Jn+kmybaSwDGcVw1virq8YF9sKfIBtHMvYo4gxlhI3fuWiQlpHUAOgRYXWwfOR5TkxhLlJSQxDoyhgnSU60b2EyyLzZRHhNK1/MiIfb+0tYkAva8UDWJkeSKGZtObqX6VALIOjLRmlAik5yim+aet1wt9XpnNsZRuKbtcP90i/c8fwwA+Pl7Z5MxDN00pLwzzlYsSJGxqXMiL8cSflpxEVY51GWh0GITgSM53iLFhJ+t22O/1zjHwCcsIXyx2lU2MSP07hENJ+Yo19u2zigHlzFEitvvq+G98H7S66QSgQyfU3btMvek/9ouU5PrfmZYb1m6AlO6Y/l7AeY951X8HgPZwrFSFPTSPC0F1JxMJkkLTBFg5rolzz8RkAIuu4C7t6JlSIV9eLWIC9fYJKEVrhGRtxsHS9zPqJuWlKqjNfAR3Ylbh2VdjFyiJBY7MOj2xLoWQGXrk3LWLIF2r2564cbQtqY9wPKOU1PHeqQQ2ZhaX5Aeb8pOjJtLU41ljDpmg5pSVnYBIvWxd90GEGsKHg8SD5bNiDYAwMnKqqLO6ZMYW+iKNYljoOG/XgpuQhRLxgCkuEhwvWkk0ZkoU5MYX+zM8dJtQez7/DmWs5FADIEsL6xulpwXrgmzpqy4hR+QunPPjhvua9kYmUbdqbrofBbT/PSeATLYC8cxa0LM+WfppjEF9JBuerZt8WjT4vNfvgkA+OS9qcrpri23wAgDsO24/jDqmkGQ2KcVPXPPNhM4zKEoudRKGpEK1hIW7VmO93HvoCHlOdZVJNju9Uk4tpbLaAO4lNjyHKX0xBPlKfY7xPheMVPeQJ7/wJFn9in3eHJqysczFNBxnSTWf0D2/AiSWBCzAuzayiLpMTElav0PkytMkF7Hg3SekmmPxYyb1M6TyY5wD2D2HLvfmwvAUtCTojzFc+L3NzZj8/vpsqmjPXCnSKKhmy6bAUlM9UksJPRjAmuAef7CUoWwJjGeqE0nuFKsHG2MiG7HI4L1wiCJooi6DxIvxnKZwjGrOFkgzc9cFiF0fihxlyoVJJYXA7Uq6uwgJYLSUb2F6mJt2/f/xi/Fb/z4e/Al777jvZ4Urhk46mLHK4skRumfyvNvjp3PTkn9Zqxulblu7uLDOGlx2W6+t1O0UTpB9woFVzjlVv+eZOcYCgkwC6sXuBHnwxzP/NSrm1pna0QpCC952fjXnEESTVPe+AaVRBLPkQCajis7F009RftLz5vMI083Nc/z6482AIAPvc0EiZ+IBInbtsNykT+XyZpEok9iVLim5CBEzj9DuQ6plcy95QaXemc3HJc/lgRSu67T000DZ7fvkU2UxIRrxtrJknPdGHo3U9sfHk/6K5ZUqoH49e77cvI/PP96BDgI7gvHswnN3vtZWoMWEX+mtHaFaytb72r3APN/tm3AVM9B0ZdXef7r8LuRz/bY99lZ/wEuSPeQdOK6hclrZv13x01rErPDJig1o5y7bKpon0R5TQCA9a4d0b6bB+maxG2BTRLzXQE/WfttH3sFgFO6lPFBc4mSdFmQMkrsWz7Ym9Qk7ummF2JZ2lbEaQLsQ5p6cGKZN27R0quWpYRMgHJtIRDQTYnFLuT+yzxL3y2m0jjSLYYH7aVbh/jef+WjOFwGfRIjUP9m1w3qpvYBOhkEb+L0N6BEJIktIjSSOAlKS3TfWJDOLcbh8ToikJpfkzgNZo2yXfpYdfS7lbNocbojt7A2jU0MsEFieLySYp/Ywnl2NEiKT9PrKcQzlvAA8ihkPHFUnmeOplpag2J1ypxIzvRvQjeVjfpzD02Q+M67x1jUFV4bgkbXtoXEhRxzF73/y8+3O27M5Kf2jWiyo5wAkrGu80/f//UMummwJrCO5BhItb0KSQ+ZMuH6Hx0TWV/HwLTklA/nkkUeZQzgCNcQ5z+t5kwG6SECTOxTwHwEchqkFJ6bZurP7Lr88x1eN74mzvx0A7fS+QCme/ecmkQ6kTPShHXnf1KTSCZYwv1U7s2s5kETv7fYNcGipP4cknNM+K6lmsRNrCZxaIvhC9eYpIRBEjN9EgsJv5RSuDz3f/I7PoZ/+Ie+eTwPOeEafaJwhnBN1/L9DmtRN933SbxQyzlqYeZHTLjWqU0ghiQyi1Zd+04Tw5GX9T1EX4ACIhVx5Ln6o1j9HUd3bLtAAGWsics7uyFKB5hsk6ibip0Mv8dpBRz9JFZ7pFU3ZbJvKXGLeQqgZYcklpFnGqUvA/oVMIiEKHvL9T1RjxJJCjCqtICfbdXSTT1qGensyjiWagTEaXpFJLHWI4k5xeOcw5WiqZbXrela0hbkvnP1xuutjyS+9tAI1dw6XOBgEXcsGHXT0JFk6HbR71bI5OfqxClxkdBBI+nW2mAvKXdfOJarbqpB0pNS/pmxiwB9Z8eZsabmaU7dsL+W5MdE1ZyJ4HIS7A2v0wm/1r9ufAAwBBvjeSyMi7AZ2H1xpI0Or2sThT2ROAUwqdtjzr+lm8ocyUTOzAA4bCfCqCubcfHnNFsTGiS3WAq6/Flb72rUbKdJydy9lVrLNyPd1AQ5p1uTNFw0puVZtk9iwS+J+a6uv7Ba1Hjx5oE3BkgEib12D+aS1551GiRxMSCJF9cncR8kIu9Qpm6QEgXI3Iz+zc9uGjFkLxtszKWIjRubfc06kmmL9bpisq2xIGVXcNLsYjz923rbjX0SxU4cuulkjoQARAwRYTOmMbn7nEOeogTOpWTOCS4ZCfRUTWLWsY45yRQlWc6lfa0H6SQ7AX7bc9SyMChlg0tLQ+9phxXwaXrMuZfPjQlF5eaaq1POUdJm35OR4L7v8851MzpMOSfBPNuCHN46XGKVcCxKVCM5ZvT+V7IgRvS4tG8okVwZGzpoTC2dm2Bk27KEtZPWkS/fk3Vl1m8Nkh46abuunKRq6mmSiqWPLoc6zTl1w9IHlVGXjbEtuBYY/nrXKymZE7pjCYEMgxsWSUwkT5l9w6Kd3DUI97euJ2sSg8Sw5vyradp1OE6SK7r7RPwaRrzMPR6z54TggRbttK1LuOAy9LnarjxuESlBAmxN4uGiwbKp8GhADpu6wslBWt3U9EnMB84TX75wLmP+FmCp8slStQjAxPZJ9A+0K/PWx8mugHazDxIv2nIB3yKy+ANlZ9I4Ff5r7KIVpYgRDnkMSSwhgkCcblqqW5pT71dHzmWpJi6rbtpO6abHB45wzZya0Ahq0xMJAfNd/DFmHvljybzcOfK0Ufsa+93MuKmTzKibhs4dlUXu/QWyvEGZn7PVTZ3eZiUqmjdPB4Hh2g1Yx7UlnlExl8p2HiSxuLHNXhPi9yT7bGuypjGavJhcx6NBiOre4834/4NFM9JRXdu26X63YtOaRPPdilSqOqGKmvh+ucQRk8wJnUFauENLPwwShWy/PWBA6bpOVe8XliowdWqxJChLHzWtqHS9HEPk0qwlbHJLl1yR6WhpwhO0Ddx1C+nkLJK4qKe9Wkv121MqLbg5TgK3fGmDmAlk7f8Zuu+0bo9MroyBFLyfpesWqptqkcSwdUbeB50KMDFzDBOnmrUk1k6t5DvFatIlSFwtahwsmjFIXDaVSRIO5RqhGb8k064skuwo9nx29uzYOJ0uQJmVMDFNTeLiENitsa9JvGDrOgbJUi6QESSRrVGIIlJK2iiz2J1HuCbWWHoO3ZF90JLqposazx1ZJPF4KTWJ0zHMHOOCN/kFUqYeVYTMLZARJ1mFCAbHO49wDRMEh82std9tTk2i1GRpnWQt3VSuF60k6dzLsllpGnVvWwdJVCpyAvzGFkNfcrOc2zcsHlwWnpuISq+YfL/DZY2qwliDslrUWSRxVcgM1NW0JrFUxwhME2Ml+qJ1/u1rMQn16LHqadDA3MtucGkDt8KYibqp/aySLYfAQVPvF5YqjEgig0hFgkRWuIZ9P+DWDQ9rSSFJCMxf72J0d0DfzohGiYK9iq1JTKl+a8owtCid+wwwNYlVFVm3CmPka09rCwvjgvPI+GnAFEksreNiY8CnUEWVP1m6qbxOJo6C/orMOQkFt0rjYnsbYIPEZVPjYFGP639Tm/8DcbXRbaFXbpgkBOyciz2fJ+y5/JoSUoRljJ5uuuNrCxeHwO50HyRetOX6/aRqEktOcizzZpym/FymdFPuAZ2MG35SEsnd9HhawRVVCwZnnrsxk5avSYwtJOtdh9WiGXunAZbOF6Ob9uA27XCcoA0pqypDvVIH6UIH8egImobz/vFKS08USRzu0VzrgFRNUL4BuX2fWA+F8xM4rcy66m44LbkYh5t9Kfkzjhs3+250DFVUtk6BJEYoMqWNLSqcIn8jEk6TetfsDBPBZeFetj0jp8+2fM6yqXG4aHD/1Gx6BwvjJKyjNYnlgG8RJO/arqPpxV4AIEFH4gvG11Zkx7hjw9pCVnF3ikhxwY0WyQLMWrtrlUhikMnX1CTGgsRSDepSWmAUnhfXmrpCVZlnmxUOqocx7r3FjgMcSqC8XtoDErTR4rigvpxdg0K6NUNTnYrCkHMM0W1ijIzz1hLm/CfnqBvHBESAEzi0/nUr19ba/cY/Xnpc6JdohYNcum/pWMA04GPOpatI7tpmZ9f/g0WNx5t2+H/l1PVH9oAuX3IQiuuYMflrkPJBiwBHJLnOJFwnpqlJXBwazvpuUP/e003PbyLTm75B4lmLUk1Wqo5IC9nTD2hAr2QRQQCT4JLeoJQZknCBBKZ9EkMrqps2Naqqwu/9xZ+Hr331BW9ciAiyKN2kJ2bP1aSoabvJ8885dqEDqg3AzO8dqqqAeEZqx4qKr7EghaEthlSX4PWcuQh3RyKJE0pUIfkjNjZY71xUozhsDGIMkshRjYyyoHJjSyAbQGFNqKbXjXm246qopSbp5me0ubFzbo5XDd48NX2xlk0GSew6LBeMSqObpCq3IAGmzJCSKmdVmaAhpm7KtEUYa2s7zrED/GSCFtmYjCOQm2VTYdv1dGsDeU9U3TSLiPgOsjuuuFYO11vulxXJ9RLnVUNTbapqsieWRoWlIiySGD5v9PUO9g45p0wAEFMFzp3O6RxlfGkPhjdHhiUjc5zQ3UuCPMEerH1uxrq9Li9kGI6bIInKcXJOc6iZjJtbE6oV5Zn0+CaenRhzC3DpphUOlo2DJFaWjbOL7BuFPokx5LJlfdAIUGQ+M36TjT6C0geaWNdyzgUALA/Nz80j8/MCgsTzf8ITbmxtj5ZumqJkMjUKWtl6wNxDUYckS5P0HWQ5nqZoe2B3DgW5+Tk2zTTgpouGE0jiwdJ85nd/06uTcdq+bWZcnFbABZe665YSHCovxpiMo5DcyPG2hJO8DDYo+QxGuEZDPwSm11uDbKyaGtvBGWRpHeGG2BYCm3Dc1kFSOLqpzS6eB0ksbmzRe2T4G0EBdQ9nkivZKU5obPIZVC115Nl2z83RqhmFa1YZJHHbduO9mrJYTWJJOAiYridUM+sqdFpRHDMea0TSFUFKZFx53wiSMuIQkgmPnaccWh6TVjct90mM7Ysl5HhZG7rpGCQWkgj2mOF3Y8+//T+TlAyTOTzabH7aZBp3vVO9C5m66LbVXbeUngB9T7p7ALH+T4IUct8G/PIGQKHCPZw/tpdpVVU+40XOI4GIA25wyQf3YQJIjW4r0FV3KWeOt2jiSGJIN328GWoS6xr94HPG+iuWxMuM6KL/mhWQ44M9wK2LTh/L/XzzGVzCw7Nup0MSAWD9cJjEHkk8t5U2AZvBmdYX5tGXOEWMojtGgg1GtSzmkGiRRAOHl+fozg0QKqcuiwmUM/JhzZhr612bzAzHKXpcpnUyruMyfVqqRbyXmiLTpwzAwkJ2+b2IZEVoEyUkMVW0zd5bE0l+YmGVgnYznqS/Bchl23HjlhHaqKYGctf1RWVfsVx/0dTGFkUECVTqvIq7muudo5K7SOnR0tZVrDJI4q5QjwJgIuXPIonh880ED6EKNFMTCviUqBGlViIpdEA6cZJBzREYHDxP3ZR43mrjSPa9//3yKriR9Yd9dgZK7FobJI6qqMO86fPvK0CzNaFTJLEwbkKTxDBOFxTRbIa69mvZCfrueamc4+FIxzrmA5XPh32ve8wy48X8tME2X2vmAghsPe+4VgYtT5ha2ZCSzN5barpppa8bLtUkLpoaB8sGj9bt+P6VU9cfWrFPYjVNSpaStSnhGhvgF4LLCQiTnF7cNMI1yyPzczMEiUy2r2D7ILHg4Lm0snBcqUdNLEhhsjgxRUIG6lejBnNpi0lHMj9Hq9Dl1gTJAxq/FatgMXZNhGtiVkdoDFyfyviDXQxuJlQjmX/+HgGmjnV5g0qMU4pUAINkdKmOKyrlTPbI6nX3VmrTZvbf5dATTebHqJuG341VH/P7xJU3w3Ccq7hYCmzqukLf+/cku7GFNaEAR4HWKu7OSXikBAHceS/qGscrGyQuB7W7uLop0wIjEKBpSYGjFAJWeL67yPmnxLOGN2uUc92glK7/Cu4Ttk8cYAL2jYukk+fRzM/8nxFvit2TbGJmMVBi1UFibQJgpkXHOM8qLPnQB21skBKeE2Zvc8dNkKxikBgEAEwz92COsu2XE4XDMZx7mXGsw4CDqqWOoZYoP29S7+cmO5j7H/DromnhGqnDG1VRh/kT/uQ0kZCfX/iM8my2hDJ/ZtyirpMCNIBhAhws6lHddNFUWC7MByYThVlWQj0BfMZESeLExNYfoLwHhH0qZcysFhga4RoAOL1nfkrQeA7bB4klZysoGLbjylzrMEikgpQAsufpJ/EHlMnk+7LFvNz9dByXDXPHsbVVsYBPWmCkxk2Ea4ggfW69ZRiUMnSvOW0DgDgFl0JJI05523VEn74pTdggiYxogX1NEwBPnSbSad3JJqpTN/UaZxPHcmsL2Qy5GWePx6qbxlTSSghASCME5lOg+wJrIjWuLVxvGklcTZHEON20LwaJIb2JVjetQ+Ea/zukxvhrOR+4tcH9T1GgnaDU1jKSQYoEpaTzCVgkUXP/N0GiiqFch88owCFZwCBc03bjunDA1iQ2tY8kMmtJ4yOJc8TcaHXT4Hlj9rbY8WjKe+DMU/0twzkOr9MUUC9IJJIkVQV3y+9RftbC2uExkCoezUf8u557ZgAfSezI8x+ygDStM6woEvecjijpDJQ6VnJTKsuKrf9usO4FiXXtJWhDM4nC9PHcXrLjsQpreWz9AcprUMxPY5/TyQS1dNPT1/3/n8P2QWKBKpOqSSwhNym6qRayZ6XMp1SL8oKQ6klXprbGxhF0x0jA3RY2m5Qj2XZGdS7lFNaBU2fmOLffW3kxriufEstsNnHUhs/0hSq42qwpwNHtbG8/HwHOixaYn+ECOTezyyyry0WNjUPH4WT8LbIn81XRTdte6VjbDY510GL3JJvFvJh2OoyUfDzhUULawjFicj0WdYXjld0gV0ONSjyLnHcQAN+xM8fm1E1DKiFD06tSaznhbIVOPI2kBMFG+d7y58buN+azB+XQwh7qH89f85jzGFu3WCdZAnVBnqWGvWQGSXRqEpnzP2GTKGrihmFsUixWt8fcI2ESjqEEAkOwEQnSS3TrcI6MTcTEuGGoK31yF4CniqpB0kPknvX93bpoFkl0a+ABJ5lDjJNjaO+taU1idtjk/mfWBSMQNV3L3f3tYNHg0cbSTcXni9Uk7rp8ojCmVVFqw5MUrimg6bHgkmUqedbtuAUZsMI1p28M/z8/krgXrhFHLXGDxHr7yf+LGZIokpWfT0gbZR2LKoFA5kal6KZ09jOYZ5lGMh23LdSWxGhsAFNLCsT6VNIonZJuF15vq2TIOMn2NYqSWQ/ZT/e6QYGSukEiQbeLO2kFJDGCZPXgnaY56qZzkMQY3ZRCBEcRJsdJpmiqNrhk64HCRsru76Va3gn9in1GldctrIFk+lumnm133k1jaxKXTYW6rrJI4qKEJNbnqEn0kkDE8x2yOxR0u4lwEzFHV5l5VP9UIsBsjRQwqJu2PYWqlo6XuwbR/rpkTaI8b6eDk7lqONqWIM6aeuMwMckkTuVjJ20KCseati7he8kCDpJIJhNMLe+0TCQb3AdzlMWcUQp3j8EqVU90AToy2HNowhrmSl3Z92vopi4qK8G9tsc0Kxblons0bXQM0hGMK/slMR90Tk2im7xwEzvLphrnsQ0VaGCC6Fz5RpgkdI9VLDlL+KClFhjn7pOoqUlcDEHhnm56cVZEElNBYoGCFUcSORpJ791U5meZSjhFbQBdzYAcT5tpYselONpABklMZXEK4xZ1HT3/JUv1e9Orm5qfeSdZ3us78hRqEM1aF8YkkcSCQuCMPonx88jRps17A6eJOCerRWUzrQRFEnBpo3bzZTZ726vJ0u2ooLSeBpdFtCdG5SxsbDF1WYbqkhKumdvfsqT+GR5LTO61ZV2PdFPJEJuaRD9I7PvetMAoOqD1pLazVBNqxgVICoEeh+wONuHhPtsa4ZRFXXk1uaX5AdO1XHUvN34PQkrddIIklo9XZ/YNRrgGwIhEqNRNu14VpIc9OOckTu2+rR1XZpK44yTIppMJtd8aignSk/V+bJAiARi5Jsdq4ph9w1WG16hpu883O0dguE+c869JZoY0VaZUQUsbTSngUsr80Wc0P79YTaK7N7q6Ey6SGBWuKZQcLIJ7BCi34UkL1wwKs4Xg0lUFZpM5ns2qSXxj+P8+SDy3sbziCR+50I8llFoH+D5xUUSqtNlEgobSuLktGJJ1SzODFPdvyTGJBzvnJIdrD+Mkx1FSjtYRng8zj8yYxPlnaVthc+/S4iPF9iFtq9xraaqKuuu6rAMaTyTokaxe4SS7SCJzrQFn8x2da25cTLhG0wJj2/ZFFH2cYwLJdf8Wmr2P7WuaRII2cRFeb6a5dIyiKuYGASJcIw6+oZu2k/f3fZp+LmaETMJ+n0RNYhJJSY9JCTmUbhMRKur7XhWALRcR1UQlkmgVENmgtHe+V3mMvGdEKYh5yjMaozuyVHmR0NcJ19hEDvNsu4gUIPR6LikzDVKUSRliDDBFRUqtdMZxjX//M3TmaQLCvF4+J/4xmAQ0ME3KuJ9VGhdSW7ng0j7f51E3VSUXg+BeJ1yjDdJ1idqQTcWVPNUTUTbAZ4odLBzhsqa2e2iiDVKpvjmpUprYB9LCNeanpsf3/D6JrLqpEyRWNdAslQeb2jMfJO5IXnEUScw5yZEFixVACSkrALGw1vGiYW39kaGkcdlnbXATU8lsO/NQp445kcOWcQUHO1RjM5+haK4bOOTa4F6GU+qOQUCqraMAFEFRIGXOZDJjdMfS5hZPJCjkt2cgia66qaGDl8fId9t6GWF+nNsCgHKsHZoq27tNJLbjSGJqYxveF9yTTCsd8/n2NQoBDsYxCEyKyg/YdXlRW7rpqrFBYogkWvptWd00PI+zWmAQmfwJksgGAM6zoxGFCe9/mXf2WME10CAiy6G9BItaAlOFawZJjDFQ2FouSRqIhD7fAqP26KaUcE0drskKoa4wkFIGidLMvWRh7za2D2Toz2iu20jlpHs5zv9uXe80uGcTrs7e3RN+kztPlzZNI4mOwJFZf8r3ZKjnMPZpJfyZ8LvRdbITdLs8Lt4rupwAmvQU7+zYCZK4iNck9n0/tMDI9Ems0khialgKKCr1qowlt1j/zrOuBeoZSOLiiHOcCvbMB4mljFistxxQ5snHmoQyN0hT24cZ0C2sbRA0AJxwil9/xKGWQIASEfz/tEpmLtg2P2NBOpDng4foIxuku58v4yjZ+ugCmR4TKqvZY2UPNR5PiwADZlMJa3uYRsrmvT6SkuX+j9k3+xpV2xbJkAMkkrjwaxIZx842N3aDS84hBwIkkcoID0Fp248OfarXp1i2v2ghi+nXrTKtLDA5FodA+uMoummCJWA+p0NVmftI6KbyfumH6a6TtvlyOeGhWX/GccF6ziB8TSLhx65BRl1zZpDIOv8hskT0hBWbU7c3qYkb72NlCwy6T6L5u6gjlp61cdyAJGpYAuG91fUcjRNwAikJUgrHClEK1vmc1LaR1y7s1cqMC9cSNgCe3pN8mxr3OOw5cRPszLol5l7vEmjgzTNAEpnYMl2TWL6/bLBtXmPZPPY8cj5oyN6Se7oEppj3Bv6dU+d86PTJXdRun8R4sJcrOYiVgVkRrIQIYmQvdedcKpUKhWvUSGKvCBKlBvH0DYsqntOe+SCRpTvG5G/zfPx6clMxjvwEkRof7HL22a9/KTsX8fojvSMv40rfLUqbKwQpSSS3hKQEWS0zR4UgQEAbYprdxoQt1NetJ6kuVYDSQV9HAXB0uzlIovxJm0Wzyq0yhtugAOMkS3axpKzpmvREs9lZLmgAMDjJ/txLcwRMcM4iibEWGCV1x7hwDU9jmyruktnnCW2OGBNDEh2ET+im8l0OFoai5DoJY1+tonCNGWud5Dw9yY6LI4m581lVfsJPQ9uS98sh2TpZQWCZ+QFxBJgW0hvo3ZZarA9SKETKQe3FWCdZqGoPzrYANEjiPOEadX/doC6dTYrZ2m1nPJlcBKZBIpMo9M4/MS4mZgXom7mzAVh4LjXnJAyImJ2jqW1tISuuA/hrSVtAvtxjAZg83wydPAwsyyKI8I7BJrdC9pZNnqbHxHpnm2MLSgecOC2QFk26BcbIPlGqm5ZooznxSgDJFmLhXsqIuUVtTk1i315IPSKwDxKLNRG5ICUvyjANLBknLaR10FmcOq6kx2Typw5h+VjhOGqO1XRBKGXyY2ibjAPyNVkTdVnoi7bl92Kj+iqk7crr5azplLPObIjTeid2XEj3LaIvEbrjroC4xVAixmmqhvPsUobMH8rf7WChVzcFBIFx6r+0SCJJ/QF82pAEtCXHdUS3HSdtV6glitVDMLStKE2YQCCnIhX+PPJjpn9zr9+NA1NXETZEd+lGY8uM4r3sr0GMui9ggkvXKWHQ4yS7Q3ENbLBXnKKhfw7oI4tuj8kced4K+5p/PBNIyffSIInW2SX67cWSiwQCCQA3Dkwtz+uPTZB4oKpJ1AnXxBJ+jCo5oEuuAPF9ii03AGJIop6mXRoXo40CRMI1TFyQa3kVrl3E+QeGhOvoyA+v0S1gJADj7n/AnDMZtyOftzG5GF43Jnkdnn8S3Q73YMYv9ND+Tsbpnm3AgjBVVeH4wNbjLerKqev3Nw6pNc/5MzEkke05PAGKCtcgXOs0CT/PNDWJbl/EPZJ4MVYqAE5RojoCSYzXJObn09RBQ1g2i5MILnPD5rZgSDdK5xw0TyWt68p1RFWEIlCoJa0rK/4gpqoRmYGuRs9//nATxJOlyEyPp6+jAC6vJjGGUuvuLbvRm8/LDgPg0+0MIkJmdocaEU39kfRXdIU7mOsmTup669QkEm0bgBBJ5JJbk36HSqoXQCa3gjlaByEzRjLWEbrptrW1Os/fWAGwaJCgQ+utFa/ZjHRTEhV3MvKMuqm5R2JB+sXXJNpaca6uR2xMXHRdMYkwOZaD2vAIfO2JuzCPW1iXzvR7GwOb3l+3zLj88SRIfOPRBoCGbmqUW0vJSNdcGiFA7vfBescyh2K12xSTJFjLWQGUMOHBnP/JmkD6MvJn755UJCDcgJs5J/E2EdyaMNYIEgnQcVxdeX152XsLsEkVFkl0a/BYsacwwaipZQz3DSB/b8V0Ksz/7bgbB433fkkSTurSiTUv6ksWnvFkCwwCqABcSji/TnqmqUlcHlnU8QLaXwD7ILH4sC2Ch9Mdl0dSpjc+U9tWV3HIvohk1QnBm5yTFqk/4lRKp+OY4MZuUEFtG+HITCgChQUvRYmdQ6WlEeAAkTVzzw6L1C2RtYWTBZl1EupJsMHWJLbhdStk7IAQXVUo4I4Lq3mdrUnseoyOq4ZuunUQEa0qKkt9AzDWV5xtWzqwqSPnf44qMIUIJino3Dhb21M+J6K2G6Obuk3uXxiCRHlbmFUHrIPAouKuSiClblpXHr11dBAKdbkhSwMo319uUkBT7+r24KRVMidBii654iLwnLhLiIiUe4VG62RJBOxkcDBfe7TBoq5U380TrrkkdkfY7kFLSbbIfdm38McFrVKIWl41khgGsiTjItw7WHR7ci/PSLhGlqKkuTWJnWK/cZMJdE308J5ta6+3fFZ2XDNVPGYEaNz3s+tWGIAx+2IKSXRp78crH0lcJemmwibJCNfU0zKk2SVnhfMZe0aBGXRTTU1iVQHHd83ve7rpxRibkQ9lc7suv9iFzjhAqjvWYbDB3Vih4A2ImsQ43bRXy3aP4wrfLdUUmWnkOy0aJmuyAgouvfkGgRQT3IQBEcAEl3rURo43RRKLw0zyIqAtzkcSyw5CGDhrldU0NSKWAmpqufgakToI9ogxQnnp9OIiTV3hbNeOSGKJAmefG/taad2KCtcoEjlzE0Bax8KlbLm26/ox6Hn+5MAfM7y+cTLJWzLgXgZ0UyZJIp/rI/Dl4CbJ7igcy1WP1gQptudnRyF04bEAHrUBDJq+6+apm4Y1ifl2UnG6e2kc4COJbD2ifK6pUzb/Z2sSQ+GaMnI/vDd4Bth10qVJUkhusJZoWiloaxKnwQYX2EyFU/jzD/h1msyd7Auu6J43CUw05Q1+TWJHjQtLPlh1X7d8SUNRBSwSqCt5sv9nEh4x3wIQv9B85xMXSaydmsQASRSF8lyiMBRgAlAUwUoK1yiBCk0S2jNNTSIAHL9gfu7pphdjpWxHiTOdsngLBi4bE23Knh2VQbJyQWKCEsiiPbvJOG7xmQQbxT59056HvLqjfc0gKbogBeCoiyEdxyK5xLjgWOzG5tOEuWzrtAVGV6zriSVKTE1iZn4RJJH5bmGdmoxmkUTABA+mb2RxCIAh29rqHHKhm3q91Egn4XBR42zLt8CI1fKWarJSSDqTpJL3qsYFTivvWExpPDLvEUm86QeJqwiSuCXon0CcbsdS2bZeDSThJNfhMzq8TqJ7rnANRYF2ajU16odyLPOTd2KWC4MksvexezxNqw75k79v5BtZi51ITaI2SJQWGJrEUV1NkHR6vVM+NxO0jQhIveNJkoRFpAKUtCT/DzgB8DCMFU6RqbjUdWZpbYJxTHmDzDNsQaJHIGeqm/YclXkx47mRv7sqscyY8fwHCT+GBQdMkeNSWZZ7LDGXvXLiIIlNbVtgTNRNBUnM7AFu38hxXGGesSStOy6JJCaSJKSbYE1TkwgAx8+bn3sk8WKMpptG+MjZ/i/nqEn0nSZ2YdUL3sQdQn2PJvkMdmMLM8Ilx66qpotIub+l+TlFssg5KtG9qvID2V6x2YfI8TxqE78hhrShothHpHVJCUmUOYbnkd1oRqepK2cjxVaCMA1Oskrd1EEEKWrfwkFthq/IHu9w2Xh0U1bd1K/lLSS3xqDNvsYmqQBMEhDsmhA2Sdeq+4q564Krbgc4KK4btHVyLvPHWzpoG2CcZQ5JjPeJy7duSKibFul2GObWqxyLlUM3ZWicwPR6sz3pAFMbunbuY0YUZoIkEsG9tKnpouefCxI3bUfXI8rn+vWWxJpcTWmLPN1UNy7cp3oyuRgiN+3oWJeP56GkogjJlBwEa/kcNgm7JwIucsMGl/qG84AVbpJj0khi4yOJbA9OOQ7gMCcUgkOsCFN4T9K+zCRR6H9ezFJIons+TxzhmuNVMyKFYZ/EMVGYuycj+418z9QaFCv3AOz9ybbP0yQg/APteLopYOmmeyTxYoylm8ZurJJwRzxI5IKNfsamEat/yQ2LI4m8kqG2/iLaAoNYXKeBs/tgx8fGhVP4GpFwjuUFMkTN/M/LHS+kBHK00crbDM1nlceFyQu31UByTDNdJKlaxmpab1maY1inpqFouKqXuk3b0OY0tYVujUhPOv9iJkjsRrpMiSKZquU1c0/c/xEaG3P+x2zwJEmSHxcmZeSwDN0xFiS61y8MNGMS6Fsii+zOx6VtcUhiPUmSAIWaxGqaJJHXc+auQSxFDEjQTVm6o4M2sM/N0bLB2a7D2SAgdLAsOzKLAAUenzmCTeIHKdyzesNxMDVI4sGixnqn64HqJuDYNTlFry9FfOE+xV632P1v5l4+/3Po1u6x2DUh9C/Y7ybfwfWdKHVTx79gewnKPEcBrJ5D+8242gsuKSQxaDq/a81aXrxuHt3UvpazEDxg65tj/S1L40JkW8xl6h07ScK7J6tJok9M7sncfhrex2Zc+RmP0VR3he8X1lLLTypG/LH/CvjeF4FP/yjQdzok8ei2+Xn4HD8mY1cWJFZV9eeqqvpkVVX3q6r6Z1VV/Vbnb99UVdWPVVX1uKqqH6yq6j3O3w6qqvqzw7hPVVX1e4LPTY5lrLQJp2oSSw93qIYHkCjdmMUZxow3YnZYUklPKz/cQ4M2+JnFMtowpRZs23ImP5b9YYuNp+qO2UNFA9lSQkCOp0Vy4+PIja2al6FyxwF8kA4EQiFdmYIbUglVAXCwQTHj3FoFlbppbWhz2tpCAB5NlUUSD5a1qUlsTcN4VjgoRvdS1eQS60+Kbjq3llTPnDAWJi/+3G/5Cvz13/m1AOBIoLvrSDloc/8u76drEusKfuseQnAlwe4oHc293poWDC4NixYJCa6bpin44dIknB6tTZDIIHXJZu4U4jwVbmKenaMheNUEiUerBU63rTpIn6Ao9LNt/k9TkkOHXIm2WVl+7jyGyUXmvKSDhvwcJwEwuZbHKO/MreyKwEl/aYaVI8lFAINwTflYgFlLXJVSTb2xUCq3hCq8mWM1ScjQa4L4oMrklte7E/nrnUQSHa0EN9FTVUZ8yuzZM9RN62npEtOGJ6w3BhwkMXHhQ1VmRszNHnAJtBtgezbUJCpCtXs/Y36+52v4MbmpXMincPbvA3hv3/e3AHwbgH+vqqovrarqBQB/CcAfBnAXwA8B+AFn3B8F8CqA9wD4BgC/v6qqbwUAYmzRShnhmIMm47J8/Ehgo1EODeknTAF82ABe5pEek3II83OM1ZsxCOScVgpyvLT8cKEmS+nspmu5ygvkHMGh8D7pe66ZdYxGwuxRYVBqgnRSOMUTLigH9xOUFNyG6I6T0RTdNEQSSWdXREk0SGJTm/6dWgQScGh6O0OBY6mcGuGIFJJeDFBiCSAmuRU8N7TgVopu2vqCDl/z6gv4grffAjB1mMzv5jPKwjWBAETLq5uqm4nX89RN3XPJ9LsVW47otr0nS8/2xLFWIImi1Pvm6dCaZMnXJI59KklE0Ih92P+PAQcxV6Gr3T5aFt8rdrRscLppnWCbWLdia3IxIDI/tQhkWCfFXrdwX5wjgOLOV4ckGh9BvZaQa3l4vB5knWblsnLMa1zg5iCJiufGXUt2Hd+CR94PmHVrSV7vMdgm2RbhPckr7g7jggRvviZxurfJZ8j1dPskii2b2hMuAzjxsiZI9rnHLt3LSVVUEknUJPNHqujuVF+T+Pm/1Pz8wDfyYzJ2ZUFi3/c/2vf9Wv47/PsAgF8F4Ef7vv+Lfd+fwQSFH6uq6kPDe38TgO/t+/6Nvu//CYDvB/Cbh7+VxhatBInH6rFkXAmeDm9GBiUKG8Kep7atNC7e71CxiLsoETHHlJT/nD6JtiYxcawgQw6QNXHRwJlERIJjufPIjZtTk+gGpRq0IdoCg6B6AfrgvpkEzizaOS2216B7p5sWXc83zm6GrKQWEVw2NTZtp0IgAYPAnG07rHedSuwj3qcsn9xqg3uSpQxNadr5OcbUFt3XUxaj/wB5GqhcZ7cmhUH23L+7AhAc3aueIOml403YHSNKkT+WFySOjlZxih4N19II82PChF/X88mOSZA4oyaRrYmrax9JZIJ0Memz9s47x8X3ih2taoMkahJHFdTBxpTapxtnBWhYmnxQJ8UG6Y3vzzB061jiSKOA6yJgGrqpTJOtSXRVObUJ153z3dj1369J1LXAsMktEkmsa48SC+jpplqa/GTvzvnJiT6Jbiue4wiNPUwaAQ67oFACELjl1L0cO14pUTKtSeR8eTN4EJ3ZnuprEr/8O4E/9Gngxov8mIxdaU1iVVX/x6qqHgP4MQCfBPBfA/gIgB+W9/R9/wjAjwP4SFVVdwC83f378PtHht+TY9k50YhUGCQWKBACa4fCBUywIe81P83rTLFxmP0HkG1nUQeZH4BDBGMohaYmMQw2GMpQ+ICWio2jgSxz/qOBc3lzSwXppfUg7D/V9dwGtWhcJT3zGkfl9K8bU5MlwhFz+ltO1E2pOdrrrakJkoDrwdkOAIdsAIMAQdurziMwUBDb3tZ6sM71wgjXbEkxjdgaVFy3ks8od6xpkkSX/WepZakgse36ZEbY7Qdo58gFDcswI9+V1ZXlc2PIZV5JT8/uMHOcqpQyiEiMbkohMM7a1ZLPKICRxilBouZenjRzZ/r0KZIkrr04qOO+8w6v9ne0bNB2Pc62ZRVPscahZNJ068CxpinJwT7FCg4lzz/xfEeFs1R0UxKhG6n8QuVkz7/56VJ+2RKMSQ08mZRxrzevblp76yT7jAL2vG+7PtvqQcwFK+ZS0NmSpzAxz6x3Yd9UMTcxIPfRb/rK99hxzUxEsPZ9QvfYpXs51isdyAjeVP7nq/okLt0gUYkkVtWFidYAgOLI57e+7/+Nqqq+G8BXAvh6AGsANwB8NnjrmwBuDn+T/4d/Q2GsZ1VVfSeA7wSAd7/73ePrpYxrCg4vUSBcp0kyFEaWv7AYT/jg5KZRT5urA5xwzdxeanNVUX2VunKfoKoKe0Aq1B2DAKycocVkXEtct5gAjft56eMF1w0Kiowy0wf4GxTAIymhcAQTXIaBM4PkAsOmHWQjmY30cBEiG1z2bTH0e2MoVN64xvTJ0kpbHy5rPFhvDd1UgyRGkKwkkl4bOqz6GU0kSTTol4xxX09ZSNMWY5DEWEuK8tol2V2duqlb2+OOLyEp7hxZZ8sNgjXBnkc3VdzLrsCUpim4iySuFmXaNOBk11v/+eaQxGmShJnrO24f4R/iDTx/46D4XrGjQXb/4XpLzQ8wDqha7CN43myiitynnHVShUg5SHpVEbWTle+UU1TCyXfjSilCaiWT3AKmyWtVUjIM0snAzWUkHBSUlcUWtV4V1bZcGsYR/Y2BeE0isyab95v/s+h2KlGYe0ZjGhDAdP3/qT/+yybjJjWCBMVe/B9XsZu5l6P9FQt7cKjKrPHTvCCxb3V9Ei/YrlzdtO/7tu/7/w7AOwH8dgAPAdwK3nYLwIPhbwj+Ln9DYWx43D/d9/2X9X3/ZS++aGHYovztcD0nN0iBApGiZJbuD/m7y6s3r5cX8VAkBMgv/sn6u/wUkzL5pTXrXEji5AHN05RC6gmg+27hudQGRHNrsjQUmTk0BpcSBRjUganJWtaVV5PIiPnEezkSc6yryUbDUGlFBe2NxxsAPN1UNlJtbeGyqbDterrWRkzUTTctGSRGEh5MfUns3iqyBIKaaDNOkQAKGBDMuLDWA8gHb6H4jHl/7/0tZTaQskgK61yHfULl9ZTVVUpxujBHJwhmHTTAIom7tqeDdACewJSmtupoZY735ulWRe0GIuqmhWOG518TBH/8/aZv2Es3FUHiEAA/HER52Ho/G9iY19hgb267Aa3gUB2ef0WS0GVGsUi6zE2OpelBu1XW+4VrEJPwBnwWlmVglc1ti6NTN7WsBPa7SdJP/J4t0d8YmNZNAnyi3KrEii9TnqN5P+hxsR7AAAfCtAFwY4GD9PFCEAZg7+Up44Wp+zbJFb2fhoVbk6ikm16wXSmSGDn2BwD8KEzdIQCgqqoTeb3v+zeqqvokgI8B+G+Gt3xsGIPcWHYSpRurqqqBEhjexCUYferYqVA65Y1VBQ45My5Wf8fMMYa2zaGkAWYjOFzqAimgTC2I9UnUOLtaml4YELHOXdhwm+4J5TigbNYasKiZGIukxJDEcnCPgG7Kop3zUFIJEu9JkEjSTWUj1dYWmnoPnUgO4PRJ3J2Dbtr7f4tZHSK5IJ7RuTTVYJyulnr6+i6TKZdz5t3HJN10EQjXaGoStcIdMeEm83rhWI6TXMpW++MkAO6KTAvXwj5xdG2tg9xrEjKAW5PYj3PIzjG4l8W5ZhIzv+YXvgvvunuMr/rA89QcARsAPxyo6yxLowvufzopGQQprCqqJ+6iQBI7ZeDmIj5uTV3uvowFslRN4oikd+NcqXr7CHWXuZXryu4zGgVKt5WFRt10tajHeupN2+HGIeeGL2qTlAQG4RpK8Kb27hEz73JyF/DXciYJKh8b+iVZhC5Rk1jW/KinSOL4/XJI4vTzx7Vc2V+RqfsOE3DADCSxa9/SIPFKkMSqql6qqurXVlV1o6qqpqqqbwHw6wD8LQB/GcBHq6r69qqqDgH8OwD+p77vf2wY/p8B+J6qqu4MgjS/DcD/ZfhbaWzRGMcwJn9rbrL056ZaKTBOEwDHSeZurJhDDuRrElMOIUst06qipgRQqNq2AEksLUDpusn8HOvg/MtnaM8/7yQH55Gsv/CRxOLbR1s0U0SEU1fzN5ueyJxOhWu4hs+uc22RhvK4oxFJlBopkm7a1J4iJI0kLkzrjG3bFVU1XRPhms2OGxevSSwLfoSKbKr1Z2Zyqw2uG9XfNYokpu/LRYRuym7AoXCNQRK5jPw22oIhr6QXCjcBZWdrtbBz1DitXi2jwiEJ1xK6tnblBoncs2b3AJ26aVi7ulMkZqqqwld/8AUa6QcskvhovaPmBxiWhovQMeNibRuAcnA5qfcjmB3ufNyaRCZJMkEgKWpfGGxwaNuY7HDOJXOtp6J/iqRkcN1oddNOhwgCQw/OodaV3QPM8ewevGNbYNSVt9YBXEIGcBFB8jxO6L7mdS2YYsbmfS6TqAj7JJa/XwwYYVghUV0MYg9whYMYdt9oy1C45q3D866KbtrDUEt/DsAbAP4kgN/V9/1f7fv+swC+HcAfG/72FQB+rTP2j8CI0fw0gL8L4Pv6vv8bAECMLRqz2S8i0HZpUZ4r7hIqRLES6Cm6Y+5+jFFiu15Tt+QGN0S9ZWRBmK1uWniwY4Es5ewG2c9xHOPERBxC5njaIF3GuSpuzLGAISBSBumAjyTSPcqaSJ0m891mbtrHQx3RG490dFOhDakyfTC0qG3b0bWFYgeLBuuhTyIzbhF5Til1zQlKXX62qypWy6hoi6Ndt6qpAAGQD95ifRJLIgLhWJeCRSGJdY2+j9TbFPaAOXRrq6jd0cE2YIWbvFpG8tmWNcQkxMpzBBwk8bECSQyTCSQiGAaJLVHLfh6zNYkSJJbHuMG27UlXToACjtjH8Lp2D1YjgkoqZ4hAMutPrE8ic8mklqtVBmCWhYXxuGxS0hVuktdK5vqFGgT+YNFg7SCJ7N7hBnzblmVA+CyBqirfk/I1XESQuW6pvphaMEX+X6r3ngI3ZYXraOkGM66eGZRW/nmU14omdNPtYwD9W1qTeCXh6RDMfV3m738TQLRtxdA2418b/qnGMsYoPsVq4rrCohyD0RknLdWQtMgHn1CbMIwrB7IhAqZ1CM248sIaSgKb34l+e5EsTslJOy9KqkUgqyqsPyKvWz2tJWX7JG6cugZ37jkzipw+IsIiKbvJ8fLjQkoIK4Eea+/BfLdJTSJJNxXakDxzvHCNQWU1Gz1g6KbrLR9cxtpStGMdBbdBAVxNIpBKXLBOqx0jc8hZ7NkGhkx5YnBUuIZYxwEfSen7nneSRzGNDk3djMfOZ59Ddkf5PAIOIrjTJS5cuumIis943tjaKkHuNff/eP6VNaHhPdl2nJjMXAuRRPb8h0kSVrnSojbccxMigkyNeGycNgAbx7V6h5xFOwG/lo5Gsibqpvx3k+dZlkt2TdgqzyNgkpebnWEJsArXgEm6jkgiyV5ZDInMcY4zEUFOcC7uuzJIYhjw7Ur+dT0FDmQ7YNqyRNsZlY7nH84m4nKtMxpb3sMCBwCM47g4AjaPhkFPP5J4bY1GEsMbcgaSSLVgiMg4u5+XHhcqSSqQRDfbzRxrLpVz+LteJdN3doFyTWK03xsUNaEu3ZTIEsaofWCOFzg/dMP5GVlrIEI3bfmaRDmeBKelmoimnrbNYDftztl8Ac7ZOljUqCpLN2UpcMvBSdBQW+Xz17sW621HIymA6du2aTs8XO9m9ZYDNEiiLpEDTGsZu56hv5mf+j6J02cbyNckjgJYs5BEB6UjEfHYMQUVKQmDhTXRjB+5dAJSex6ZcTZ4bjsONTCfbQN1TX3toZOE4ZFEX/K+63kmwwRJZIvAZpgVrlHQTeuYkmT5WHU1LS9hxY28Zu4kJbOuwsBNQXkPe+4V7n85BiD+D3fNlk09MgVMsFceM1E37fjgZspcKR/PpX+WWqK5JgmV9a6j69LleB5NmGyBoZ3jlCbMCs5hPA7A+UAx4EDG5u+taU2i+BpMUNp1/t5RWitjLTA4JHHazotmvS8PgfX94YOe8prE62zWwU6/Jw5tlzMd7ucDXEZs2muGu7Em2X8iAy3PxLSZe+FYUbSNUW6digBRNYnVtCaxVD+WqgllkcSdc/7ZmqzQIQS42pLwPHL8/ym1jxMFqMfaqq7r0fVlRUjAbNpjj6Zh1SuhB6EiIS1AEMusE+OqqsLxsrHCNRp1U0cRkq1dOlo2ON22WCuRxOeOVwCAT98/owJZqwDnb2wlml6Mgk5t9kHCA8z9H6xbHbGuyrjQQQDM90slIWw/wGlNYsmZd4M9tkef+7l+LVf+y4XsDjYjHwZ77vFztnL6JGqCPRfxbDsFkug0uabbzYwMm6FOipTyP09N4hwT4Zr7Z0MLDMKRd6+3RgTLHyev5ceYZ9+ex67jGCjAENwIJbDlArDQn2FqokNfhqXEAqI4bREwtrYQCOs0y8eqHZRIk3BtHHYNm4AD7L60aTts2x5LsnXGsqmw3dnnhkquOGgn295GSg5cdVP2Ppb3AxZ8YBIJUc0PJZJoOxXwiQs5VrF0JrJPsa0zQl+evU+wPAYev25+X51wYy7B9kEiIyVfT8UVSjdW7TgjYoyTFtJUZTSjkhkVrskMk6ziZBxxLPPeeQiYhyQSLRjqyANaQg5iAjTMQj7tteS/nhsXtttw55GysHWJqrdT6JAzaIMTuLGKkOHxtiOSWAgSm2kAzG1STjaSrG0TO1otLJKoppuWM4OuHa4anG512WAAuH20BAB87uEGd0+Wxfe7fVbFGAR+GqT0WSErsWktY7m/WUq4ptwCYJoAks9J1iQGEvnucctBokWyNEiiRW74OqkYu4NCKJyaS51ysYzrVMiGi1CwaCdg+yQC5YRROEdLd+RqC8O+aCyVcK7Jd3vjkVlL3IA4ZW4vNU1w3zjPALvfy/G2zvPGng93LWeSHWaMj/iwTAYzBuNPnm7qI4kadVOv3pVMuI4BkWIPmPQ7JG/Hg+FeGksOSIG1ZWNVUXdkC4yli3aqzr/fzkUVJAZ+SW6oTeZPuweU7q0Jklhgl8XmaI5NruVBWQRzvKaetsWhg8TFIfDoc+Z3EbJ5C2wfJA4XLp+1mELbpRsrRLIEkSoGYAFqQNcoVIFDMvykBAGUjky84TaXJQ9FgHK1R+4cJ3TTwiYVE6CZo9xqs0WlcSG12PxkMsJzkMQoRYZxtoYG8O44uiZRejTtzLhSkBhSQljhAhfJ0lJAj1cN3jxV0k2HrLXGsQOA42WD080O652Obnr72AaGd05Wxfc3wZoADM4182wH9ySzP9VVTLhGlzgaVTkL42IZYSCvumiFa6Y1icUg0ZHX3ynu/zAIZjL502eb7BPn9Unkn20XYW1JpAEIUBtFsHGwqMfkiLZPoh+k6AIpgEdS5pqIYL0+iGAdEgmn2tnbNErJcylpHt1Rg9LVbr0fi+San27LB/N6ziE3Pz26KblMLpuglyCZgAbMd+oUe2KsTyIrAucGiWxS5mCkmxrxMhZJXC1qX7iGZEC0nam/1iRWwiQ0MypE6Zh7JKxRFtsVkkfRtnQksufO0RyrnCiJCde0hG/urlsaKjMAExg+fm34/ZgcdPH2zAeJTPFpHQQAQDm7NeXjD59VQhKHm9UGKeZ1JiMfKukxx5sI3jBoW8A9l+NRAUAQlLZdX6R7xaD+UuF8jBJL0UaDAJilIMaofcw4l+pi5sifx0kgq8x+MuIb7vG0NYlhANCRG6m3QSloW4AVrwF0dVK7tlcp2wFGuON022Kza+mAFABuH9nA8O4xESRGkHvGua6r8J5kBSCmiQut2qIGgQ8TcPI5pWfbFWBi1TytAI0WSRwC0zG4KdfETQWA2CbdjkopkcQUk4BtMyCJLCK+bHxxC/b+r6oKL9ww9y/fk9SvSdTUKYc1qKxTPsdODszz/NqjNQCr5JozN1Gro5tOkysM4r9orOCKJgBw66to4SDxS0IkMfP9QqYSU9svZhIXEtzwwZ6Zo25P9Or7x+CSmGNtA1lWlA1wg0SDJB6QGdBVYwRvALP+MMI1S2e9KwVeroXsAja5CLjCNfJ6JmhL9UksXPNwPQA41fUYw49nhfivCQuiVPIRAj50Kx43SNzTTd8645SNEkhi4eaQ9wE8jWTM2LX+plEO9ux7AYVwSiTbXbqFR4fQddJIBzQMHHZdj2XJ2a2BLoT6C05h2H/KzLGMJMrmMK0RKTu7k3YPxLjG2UTtHOdtbKwim7aXFyDy235wWaJYToRryI3UrUHVontHM4LE5aIa60MA26eOOdbpRt8Cw0US7zJIYmRj65jkSh3ek2xz6VBxV9/f1TrJ5XGxPok5hkFVVVgFrVzYtixjkNJ2472pcZIFKWKC9JBuzdYtLRykVJN9HoPEXUcnZAD/2dbSOF+8eQCAR+0ntGQiiy/jvORif7lI4sGiMfdY22O1qLnklnO9NUiiRzeVfYMOUpxgW4MkOkm4OUgiK4zkXjfdHIcSAEWSxBVOUdUWVtV43jVq2ovG1M53Ha+SDNh96fG6BVBm5IitFjXW2prE2iacWrIHsxnn+xeqIL33n4E56qamfjJ9rHBtlXkCheAymKM5djl4jiGJnOjitN6YXrdWJ8DZPfP7Hkl864xZFMIbhMluhXRTXto6RBIVwV6AGgCk4I2ybm9UpHKeUVoUI6QgEjWJ4XeT45m55NGGzkNXufMITBW6ynRTfZ/KcZxHI2SFa+aJu7iS2HIdSohgOE+6JjGSgNCKVGjRPQ9JJOqIAIMSbHYdzrZm02Yd3iOHbqoTrpkXJGqRxDD72YNENuqwTpYQYAro3WxNYuzZBgg6vyPiYObI3ScukigOtg5JHBC3lhOu0QpnATbY82oSGSetNsHzetepaKMujU2DiABWhOkdt7mamZhK7GzhmksMEgGLJh6yVNpYCYCydOAq6I5uULojaOtmjNQkWsSZeW7c5GlPIoKARelskrA8xl2DNLXsdR3Z7xU1wO1A5eTppua+ejCIIrF7x2phkcQt2QLDVUo2CQHqUF55CZuQmZTqEAnelLppribdfKafJHQ/gxKu8XwuItiLsNk6Zg+u7HnUJCUBAMcv2N/3QeJbZ0zx6dTZNT9L0rfANEgsO03DvILsQxEBq6ZZa3ceyXF1RNxCibZJvSWDgDU1gprEMrc+JlxTrEmMUGIp5dbEdWOQxNg9QiGQc2m7o4Pgzz1ny8bPPpvPImoSnX4/Y5BY2NzC4nJaktwJbrSKYC6Vk0USRaTiwZmRu2c3bVE33ShrEm8e2J5HVE1iJNvKbGwu1QtQJHLCtYQQpQpFKuSWLs8xjiSWmkW7arsA6IDPFU4Rh4u53rFauiK1tQ4TcJwj6QrQaMWUVosa622nQjZ8REpBh4LtI/jBl25Q769rX5VTQ3f0HDtSFfU8duPQPKeHZLLJTXhoeq66SRmmzklsLt1xgkAq7kmvVYo24ddx6w8wqHArFafdZ1RTy+7eW/KTO56L0unppg+GZ4dFEg8WrnANX5M4zlFxj4QlHxrhGg0wkkIS20JAG6tJpJDESMKVSXgYRNB/jVFYNucR3jHpdevGS/b31T5IfMuMWZTDAIDJbk1USsmgIczYaZDEWJ++IpI4cWS4MUCs3pJDsrTOrtukeBxX6pMYIBsAp+4YCnDYIP0Sz7/yfABx4RpKytwJ9liKnrxnrEkchGtKdNMwucJKkrsUXEZG27V33DGIRlXxtA7ZtEXwhlUqPVo16HrTS02DJFZVhVeeOwQAvH34mbNY9pMvtg8QQbom0f6fCe7lVE97ZBHHSiKJ6e+3bKrRYTLv7yj6m0s3lfHMtZNxtnavKye3al+ki0FkAQx1LmaOrWJtBcy9vN61KqfVVU3UoA0AxnYz73+Rr5mZqEIq1x9AgsvLdV9OVvogse8H+qEmSKmsA6qpZQxLB2hRksbfO5hgwwrqOcE9yXhpnQCY75NoEBiNY+2WmGiQ3KaaBjbM8VyUTnP+Zb15qExKejWJZJJEWreIercGbXYTCRRqHPhOmqAtJgpTAm7CmkQNkqjv1e2XzgB8yYfb7sedQ9FOXrS/75HEt86Y4tOplH/55p+rUhpm7OhWCpGstTuP3Dw9wRsCNZiTMXLn6QZ8W0rdtE4WKac2qphjbeguhfklvltpH519/oNxfMNbPdoJSON4IwggWWhaOGI4nu2TqLtubLY7RjdlHVcJvlhkG7BO4P1TXesMkcW/93iraoEBAH/79309/ubv+UV4+3Nlml54T8rvDEoX3pNUTWIdUzfNjwlFKmSqFN20m75uhBlyTkLtCdewWfIokqigbWmRRNcZYdsEVVWFZV1jMzynAFejBgxow66DRu5+6SoeK2sS/61vehUAjyQC/vPNqFsD5l721Wzz98dF2M0BSWTaXwCOKm3XqYKUurLrnKYGe+kkXLuep3IaCpy9jzXtVdzgkkZJHcaRVoG1LezzrtkSk56iOtpxFknU9Bx2Ubqu1yRyzP30cEAS2b3DpZvuum5sBZQzu951qjresJZU14LE/J8BD8KWOGIl9DJWk8goXIe+q/yuLd2Q41FI4jBOWzrjIYlvYZC4KL/l6TZmMw0V+JiFK6VSygZgtpEsiseScX6fPvOzdDu6jZRlHEstCx1ClkrlFs33ffn8pxqn1hnkIC5cw6mNApEAjLhHoue/FFxWU8EbtkZkjmMhmcW2s83EmUyyew3m1CRqKMkuBVerbvqOO/rFVOTtpXG2BkkEgNNtSweW9pgNPvjSTeq9qewnR5EJkiRs9n/OOMexoIVrqiltCCg7octF5fVJZGmLdW2C2V3bjyIQGrqpHJNrgVGr1x8xaQGgCTYAU4e73pnEJx8kOsI1ZNAg9i9/8TvwL3/xO+j3A34PPDaYXTZTxsVlCtcAwMmBIInKHpAOTVIbSGkcSYP2uG0iqGn6VEK23mySJOnGvaR4LGefoinQg+LuWFtIJjIB85xp+4uGSUnmEXADHJbKD9gk5KyaxNaiUlq66U6BJIbnhE0kA5icS0rgMUQFC/dlSD93j8scz91yWCQx1nJDM24UrmEf1JM93fRaGNNvLEabAwoZi0CllKUf2sbZ8MYVna0aAWowzKMU8AVoA9VLMAjAYs2w0/P05bcBot9eM4X6S3S7MJAFuHq/ScaUrImoK/888PTiaUsQDpGdioRwfRLtxmbpGcxmX0/UTZnrNgp9KALZ86ibvu2WQRK/5N23qfcDLpJoMrus4I0rksM2RJ5jIUoHWAZEzsJ7i3VkQnSbFVxx6wvnqiuLlYLgpSPABPAqjYB1QNc7Xqho6SRXZH5lwa2QyaCtyepUKpmApZtqhF3kWIBe3XSOuXtASyKJrkgLYNYgZt06j0mQyK4HI7VPiYDFkmJswm+OcI3bX5GlLcYa1bMIsGVF8WjncqDS2kCjPEY+Wq1u2viJa0CfcNUEwHNrEl26qV64ph8UQ3kkcU6bGnk/wPm8oS8ptmvz93PI0nCPW6KphsfjRcj815hnJ2RNyGdRtkcSr4e1Xbl2aVLbQ2R3QySxV7RSAOwNRdNNg+w/G5SGwjUM2jNyz4OHlM9+6gKAGJJoNsX8cYCpcE2pJjFVb8nRCqbnv7S2hgikhtoxaVpL0U1tbZWGI+8Wim9aLriPZWjZzWa90wUbYh9+5RZ++9d/AL/pK99LvR+wSIG2JtGtVdLUJM6xsJaX2aCi6ppEVVyIbrNN4EORCnktO8faqvSOxxsZBrmaxDqgH/JO2tGAts0RrrHITZnuKNluQ/OthtpOaorm+w3nAeDvf6GkLeqaDkhXbp9EBSVwrrkOHnvdXLVFwNz/l/3M3TzQ1SSGSpIAj4CFlDQWXZ0jXBMGAFxNrh8AlISl7LHgJY7Ye9KooLfq5CLgq5vSdZOOkid7PMsu6FTqprNrEj26qa4FRqusm1zU9YjusfXNoe/EBNzC7IgxxUqIYNQnrPL+q2WK+XtHuZZ9KrDGIKyuumlJkX9iL36+M/HLS0KXbB8kdh1V77fZ+TcVkIeNJyqlLJI4UiYCZ0sRuNV1NdYfaSXoVeqafejIc+Nc+W2AC9LDrNGukP2Jcc97Yo4TKX+SNldXRrRgdAhJBDJEG9jNfm6fRDfbx55/wBdJ2JK1XNKkHtCJG7nqppoWAID5fn/gWz9EvVdMGmXfP9uiqriWIIBfq3TZDmtYy8ts+OEYQ3fkjhU+N9S4aromlDfRqYPArK+Lxhcu0NAPTeuSdlzTGWVaSYi46oKMgwCY895UfE2iOZ5p8SHfkfUrDoZeagcLDZLoIimKTPdMc+uJNMI17vXedj2OlXXAWhMk8Yikm7q0cE2w4bJQNPT6OWgPIOdfV4MaokS7lqSbOmuCSkypNgGwZv1356hTN3UbnpvXqPr+gJXDq5v6NYnsfuMFiW1PnX/pQS1KsZo+ifORRAmKhteLTL1EH/IikjgVuymKuQV1k2aeXOnG5HjEeVk0NuGtFq5Zcm2FLtv2QSJ5g3goEbGQhyqlMpqt9wvRNqYmDhiydah4Jb0J2qAZZ8e4c8hZqGwHzEMSS7QoW5/gXzcmaDZzs8cBOOEgM87UCsylm9K9BKt5dSxjv7fW1iSWFLqARE1iQbjGQxLJYBtAXN30Eh3XA0e4ZtXUdN3YrSPb71DTAmOOuQg8oFi33OemByqy31hInab7KzoIkcyhNCZZW5IZK0ibO4ZGEldD6xKFuqlcX3HSmKDUVbhuBsSUDxKN47RpWzR1RTmEZp7muxnnnxuzbOox8WPmSg2bba5TSCOJTe3XoLbd6ABflr148wAAcLaNKCtFzGVp6IRrqklSkkISnSScBslyNRa0AYB73ShV1NqnoNOU2CEJpGGSuDoEKpVYd46KfUpKDDa7TkWlleTiyFxRIInrYc3aksJNXuA8M5Gg8UnMsTAeE9ArvDPHTCKJhVMpf3fHsjWJIeOFFo8LgCJVEu7X/nng5/8R//5LsH2QSELN2prEpEop8cC476cz8g7UvwCftQ4bZ/PjpnPUohSy6VPqphO0IV/LEssYMc6ufKS2vUd4/nV0U9fZVbQpGLPP/hxyZiWxrSPDqKS5SqWamsTRGVHSeEKa6mWWH43CNadbFSLotq+4iiDRpchQWcyAAdH2PXmtpzRVLbuAdZJjCaAtgXAL0iamcYAOnf6WAEcvluu73vFIYkwFmvUPFkOLj/W2o5u5yzzvnW5Uwd6yqcaAW6tuOsdCWvKKoHMuG//+Z4U7zmNf9I7nAAD/7NMPqPeP9d5K4Rp/vRteY4KbpnJasuj6JLpMJU2jdHm+GeEmGefuU+w6vmhqTyVWrW6qOf+NPnEN2DXh8WZHzxEw+82qqfGZ+2sAfHnDQSPKxZzgH+Ao7g7tdOYkEvhepiGSWKZ/AvF2FqVjxmoSS+wyM84vA5P5zkYSFSCARihwtA/9MvPvLbS9cA2xSE6y+MTCZR0En4/MIll20ULxWO7xOgfdm6NkyDY8d8ex9ZaAT0G0C7Ku356MzbYgGT5y0iexMMVQJERDNzXHk2P5r6csjiTmjwVIhtb8rqHWuAp8+ppE835dTaLtvwYoMusz6i3n2ihcc7ajREzEXrhxMP5++TWJ/qZIbYjNtCeplu4L8DWJvkgFmwCa9kks9UAFBGkLgkTyHjla1jhzgkRGmXYVIIk7QjjFlZ8HeEQWEJSoM9RRsiZO5imOpKZPogQbQpe/TJMAGNAhWe4ezKprnse+8J0mSHRrX3PmJ+DMa7xwjfnd1jKWjzeXbhrqAnDr/8CMEnXfjhMOcv0ETQJiOcxxjrqpvk9iBO0hjif7xummHY5fHALA+Bi3j5f4zIMhSFQgiQBwtjXHY4RrfCSRE4kCpiwglv5s3m/+T9eyBwkg5piNUzMpxqmNmp9z6vtDEW66v2LICrzk9fWi7ZlHEpk+QZPaHmLhslQj838ZzkDvZly4aJXGmZ9uTRBzLxq6l/2/blwIozPjnLoGTU1isFGXMplh5hPgahJlrLq2KnL+AUI4KCIuom1SrAnAvMyiIrPlKsyOfRJLSGIdq/UoHsrLrGsywnNNNvuH6x2ecyikJXPn9J7n+WbicyxWg6elafO0oSC50oHioLsiFWwCIkTSATfjmr6/Fk2NR4NzBgzng60lXZmaxLUKSTT3yHrHBzcW2TD/1yCJ0uJjvWtVKLXUJKqofUHi7jITMoCv0sgiWcsBWRLbdf2l001vHi7xv/32L8TH3nWber/Mx1WOZoI9l5WjE65x6aa887loqpFCy7eOwfh+wLCAGLqju25pauIWQ+9OTQLUltzogr1FZL9n5ikMFFmH2OcNAO4cr/BPB4SaVjdd+K2amHUhVDPXiBu5e/ActLnt+PMf65OYRRKbCJJIKH6HmhNmnn0xURgteSIo142b8NYK11wTe+aDROZCh4W1zMI17XfIISKTZu5kABBSm/qeo3/W1bR1A+vIhzc/tyDUOG1bb67l8x9BEkuc9YhwjQYR0TYFn55/7ro1dUg35TL5EqT3TtaUo5vaTUOcLlo4QhyEndBN+eumUqmL0BYvE91w6XxzaaO/QNFyY44t6tBJ7nCwzC/fTbD5alTqwueNzsgr14QoktiVN1MRthArtcRx7WjZ4N7jrUrd1CKJZu1inGTLCrFCDpqaxG3b4WzbKYPEButtRwdfgAlItcjeeewgUGmcI1xjsv+XT4T6Nb/w3fR7XT0BFd2xmq6TLHLj0U3J07Fq6rHdj3HGGXVTn6Znau+5cTuHTaISbup0iKCc6q7rVUhuU9foe/04SRxp6aYA8NyxTUbeOODccElmSS0jo7or101QWZ7uW2EtiYRCOwqxkG6qEkGM+HclEGDKLlOUZblIYtfjqOTfxeitDN3UCWbVwjXXxJ55uilzoUNxBWbhSqmUagRQACcgJWmqEnD0LNQffDe2JtGnaJjX2Fo6l+vuzj05JpI1KjlBdXD+ZZ50vZ8SJQ3Pvz0n5XHud2P7vS2d+0QjXCObxrbtRroGU6fmSmJv2w5VxSzItYMk8omEpvLFDsxnXT6SCOhpo//Sh1/Gc0dL3DrkEcg5tpyJJLqBFFN/DQzodkCB5lgCrgCHnUPxWJGMMFCmm7o0wJacI+DUJM4Rrmm78WdpXJhZN04yOceFoJ0t3YIBMNTZTdtRDBkxobYCukB2rh0smrFHJdPvE7BJKkm+mT5x18vZirE0WKXqOX0Sl41P5eR7ENpnx/g/5TFhGcy25a7bsqlG7QEN3VT2YG1tJ2BFWsxr5WO5iVOWuQVYJPGxIImK5+aOEyTeOVlRY1YLv5/vERMkOm1ZdOff37upGtmAbsomJVPqpqU+idsJRbXc8zzGMKNEyAI2IUDSW6/Yl7kM2yOJxIWO0baA/MV2s4qArt8eEEES2eByzOTr679U45yHRjZu5tZ369QsYqCH+ku9bWJIorQFKVlUyl+5+GgEb7wianIhXy7EIenVjgUw1CQqEUh5/6btsSRUQN3rxp5HQNBt8/uVqJueA0n8U7/xSxHsHZdii6AGj+mTNUkA9Wxm3Re8UfVJHJNiXOPgEEk3Y8tI4oR+S9Roih0tG5wp6aYSEEp23dBA807aJOGnQOmOVw0++eYWN3Y6JHHV1FgP9ZY3D7ntfdnU6HqMTvllq5uuFvWIvmjUTQFBsCpaXfMqLR5sKJFExTrpOteaRuluK4WWRBJDlGjX9WOQlJ1j4yKJCkpsXc8KtgGzXs1SRe10qqjy/D8aWllonP87xyYwXDYVTlZcEkjWIEESj4hxrgYBW1so49x163DJn3+3BQbdJzSyB5T6JAr6K8dgawTl871jlVpn1PGSJyp2CIRrnrQgcY8kEhc6vImZhatxFiyAV2kcszHOOIqiF3Ct2fqX8Lt1fc/VH7nCNcEcsvN0aEMs/C5Zrb4PncIykuh/N7ZucipJztJNw6xREUmc1CTqags3Xt0Gn21162bYcfL+bdtRjrWMcSmxtHDKBIEsDptti6Yeg2ctklhVlaoWZa4t6sprAcBs+NJGYRzTlyXCgXjiSCtmxQR68vcYjQfI35erph5RPRlDS9CvrLrpasG1PFnUFarKQRKJ4C3GCmGdtOODBU63LdbbTiWmdLA0NYlnWx6BlOBGnPLLRhJXC3vtOiLZ4c7RUrc44ZSrNI+loQhu/D6VfHDp9orToESroW4VMDW2zJoXokQsvdtdt1hGgsxRmtQD/Ppj5qgLEl2fSxOku6rYACeAJXZ7CBJvH6/oUoqxJlGCRA3ddEwA8UiuK4qkOo9a4ZpgD+j7vhhgiv8TsrCYGkEzRx2S6IpLjeMooRynJlfhA10nu16r7FtgLGQcKukB+Zs4pGewTnIY3LQdn/0HfCSLuRWbwCEEGaSYAMD8rhGucTNUrHCNpe7a10p9wMIgHRiQROKsuI6rRQTzY6bnn7/eXW/fz1LSVoFjxxwLcBbXtrMCNKSTsHWEayjRAucZUKnUVb5Eu7x2mSZKpZetUjrXlk09rcEjauLaYBOdo27K1pa47AIZX+zvGqHxMAyDEElkxRUA41ydbg2V84CEzaqqGkVhAAwN6wtBYqS+nEYSlw0eb3Zmjgrn82DRYNf1eLzhg8SVQ5PUCN7MtYNFbeudSCRrWftO4a7jhFOu0mQ+Pt2RRARbfbA39hLsepVy7oETpG9IYaQQJTJBOrffjN9Ncf9L3aqmvZO7B2sToIBJPGuC9ANHFdvMmU/mvHzL7DchgpYzqZ1/4/HG/F9JN2XblgAB40sJVLhMMT4B7TJX7BxyY+QYYmzpmDmGO64rip4tmgTaWfJdI+1VnjThmuvpEV2hURB1M1UABTgkUavS6NIDgMFBo7L/Mjc44xiH0KrvyTw5h9B+JzmmlpLGNnMPBSCAcvbHDVAALjsl5tWIkNctPP/sOZF7aKRXsnTTwLFj5gj450UcBbYpr9A7ti0nP9+4TtM4x+KwaE3oZVM0Xrpleh5qNvqrtFDNjRGccJEGgL+3JuqmPdkD1UMSOVGkEEkHrHpuqSYxpN+ywc3hssHZtqNRFDFXlXO9LY8N0S9NAHC0avB406qFawTdeOPxhu6v6Pb3uxJ1UydIYQV2bPmGFdO47BYYWosJ11CIoFtbSCaFzbga27ZXMUkAvyZx03L3V7ifsn0q3ZpEjbrpwcJQoKV2VaVu2unPP2D8i67nz+NBQP9k6Ldin/fyTQDA64829BhR3v7Um2f08cZaalE8Js+/K9TCCMIAcZ+XBQ7C9jbu56XGuO+V4zH7jTtH+X1O7TxDU3UTQHI+r4J5dJF2vVbZt8CYbIBxZHyHBMgHN5MsslaAxkFSNLx6VzhFG7TJOOYWDushAM6RjCleloRTFvX0wS45hbHzAZCo7Ay1uRTdtIxAYjxO3/MZ4TFI3OkU2RZOcMm2sgB8J2FNOq7LgOoC6Otd7b11uQvr24bM7jFZH3LVtqx9oRa2JnEidjNHzIp0Ltx2OrRwTYCkyzyBfPJi6QRsAE9bBGwtz/3TrSpIPFhawRVNTaJLXafppisrXKPpk3gyKCU+ONvRSKKfcLp8J8YNttngfjkyJ8y53HbdpbfA0JovXGNeYwU/vECKVaAcEBgNagbY89/3PZ0oCe/lLdmncuEEpJp7a6z3U4jCWN9JV8vu1iRqBLAOFjWqygaJmgTjqy/foN8rJhTVT903QSJTk+i27tEgub6fVhaEAVwk1/xfQzeNtphTgDAAXzoGBH0SiX1xEfjJcuxSnsSjkvd7JPGJNMZxiilQAgUksfFvYra2bUJTJZWl5mZxwgwJq25aO2gDK9Ji5lnPqEmcPtilxrD2fJj/d2okS8aZn1pVWhlXrGV0kgIaRFaEazZtp2rA7ArXbMZWFooWAG2HM1JxMUrj0QbpCvTlPCab6YdfuXXpx5pjc/okhjWJHemQzxWzajx2AXe9QyQd4GoSlwGyyvTIEpNanjdPt3pRmF2H3RBMsXRTTyWQpZuuDG304XqnmqMrp88iG7ImCJX2spFEqZsEeCTRb1RvkmlX0QJDY15POkUt9aKufXEjhbiLtt0GYIVrdsN5pOrLg3uZvW7LwElmGcJy755ueFEYeYtL9+XOvwQ3vapNh1DQx5pExXP64lDewPbgBKZIIlOTaAW3WpUCrpso1NBGzft1QkVhXTrDOgqRbYBEEoNkh5lveZzbcswfR7B5xN9VJnOuiz3z6qaslHx4UwEcHG7rUVAc4/7drWNR9ajxKKDzsjiz20RQAdg0cGb6JAIYWzDI2Ny5HDeMoLaN60Fov5OtLcyPSdckFsY5Wcy64gNZryZR4SRIMLRxkMQlsbnJhnS6aWkkMZTfZufoF81fvtMKAJ99sAYAfOhtNy/9WHMsbB6/KyRJgCkiqEk4hWJWWropmwBaOMm0cO3L1yQGLTA6Xt1U0OLXH22USKIJbiTAKdUKRtVNyXv5aGW25jceb1UIxfHKDRJ1SKJ8r8v2YVZNE6hr8vvbru3H637t1E0d4RomkSzWNLbeuyX3e0B6CepEcgATOOy6Hmdbs54wNa9h0ntHqgl79ZaKAMz2IBzopsS4qjLiUl1vnXlNgl0Cbo0Tf7BoHCSRX0uqqsLf+998I24d8a2Tbg9tMz6pCBJlTutdp1LA9ZXJdaUsI5uELW8I96nRv85pTtTeewGeXSNzc4/HCt50PcZEh1m7ssMCdV8+UX6d7Hql4t4Co+imiUxH7mLXYeaNRLJCmupcdVOAbGQaIomkQ+j2UtNQCd3+Owz3HACaiJJVKZNZVZUJgINAlqvJuji6KYsct72ujmJuTy7ZNM627UhxYjLJ4rSeDq0DVEhi11MUErHVwqLNGvrVeewP/tIP4Svf/zw+/v7nL/9gMyxsHs8mt/w6Xr4m191EWQq0L1zDJUnqYL0DuABzOVD0eicJxAYNd4e+ZD/1uUeq/pZC02NbZ0wTfrxKrwSyjIqqaycH9rnk1U0FtWm9/1+WhS0YWEQK8FWZnxbhmmWQcNUoUHprKx1cmuv7cGjdoCk3kHnS4mVuTaIiAD4IexCy52TYu1vFXrrwrpvOiT9c1jZIVNDCAeCV20ce8l8+VoPVosanB7rpIUU3tTWJc/sksiyNULiG3bsXDrvMjBd/JjdmiiQyCZapn8wL0LhzA8weV0qUuPuUzHVPN33CjJWxjXGmGSRxWqOmQxLZRWuCJJLj3HYDgGlnQQWXXgBmXmOl5OVcyMLAqptOlKyI67YdF6zhNVrd0f9u9HVz1GXNuMKxIsX2zBxjwjXMhiiO43rXOXTT8rgRSdy2ONtyinieuikZNMi4sY5Fkf08j33RO2/jL3znxz0k5jpZSDfdEkp1YU0iq1LqNgAGeOp6KFzT1BWRJDE/w8wukEeKQgl0DUohQeKjTTv+zpgoLkpdYskpDNcEjZPm1saywR7g003Z4FJYCRI0aHuFak3UNbuup5QFAUfKv+2cfeN6uS/zhWtqj5I2W7iGXCbl+kp/vxWBVIdJb7ZP5bJ2kJSeRztljg/OZI7ctZa9W6P47X43TZsOwDybc5DEuXb7aDleg0Piui2aGk1dYb3rsN3xisAekqigjQJOiQ+5JqeRxPRYt5TFHcf6kmFNYmktiSUzmaDU7e+qUc69Tna9Vtm3wPiM/BRJZG7iSf+jwkNTVRXqyqebapS9tDWJYQuMOY2zWWqljAvVnlhFqlDdlLlusohYuikxx2qKQGoREXVw2ek2trFP4s7JWiuQxPW2HbPBTHAvTquR5efQDZcSosmsLxrbF1PTW+5ptkVTjwkPYJCgLywM7nkElPSfYE3gaNqBSqMq++xu2oS63djKxX43NkPrBoa6INEI10j7BnWfREUg61LJdEiinm4q1L4HZ8bZvew2MG598xwkUZ6D64ckDok7JQXURfw1bVJEuIdRA3ZtFQRgmoSf7Itsn0o3ucX2aTVzkvYSwz1Jotuyd+sUv81nd0NwqaOb2vraKwkSB8ppU1f0/W/m2NJaAvL5Lk2YeUbDNilsUsCIu/gqpe7npcYAvk+4I9bXKCJI+pKAn8xkSj7COuUnDUUE9kEi9QDUtZX/N2PK/f0k2Jv0eyMXLZfKqeHVyzPT9fraQjuuOMwTvBmRRLIHYUjlLAmnxJSs2KxRGKRrOfJs3eT0/HNBae0sPhra0GphF0lbpE8EiQON52xAEhnRGsAqqQmSSPVoqv0Fkp3j0hmnoSg9zbZqfErOlsjkh/1F2SClriqvLU5Prgluwkm/bk3pprnnWxwkaaXAKNuJzQ0ShSYpx2TVTV3qNI8kOoigQlr/ZEZNoji39xVBw3nMrZNikbOmtkmB8f64Zi0w3PZVmhpsL5BSBCny/SVpwa6TEnBpUDqZ09ZJ8LJ9El1WCF2TuJQ56tpLiOicRt00RIB1dNN5iP9cu31k1qujZUMrfksgy2oJAGE/a6XgjZOUpPaNBJKo7ZPYUXuiMLB0wd7op7m9eYlEqOsDac7jdbLrtcq+BcY4TmEWQaPKGdYkchRQvyaRC/bgHacHWVtYV56yYK8ILjvnWIACSXS47vJazsJ+YwDLI7dUF82m7ao7suje5Pxr1R07qGhDc/skjpLY225AEskg0RWuoZFEm1nUCAmIkI6I8jxpamCXYYvar0nctV2xdYxlM+hQCldcCuBrEl25bzZoiwkJcOqmln4I6Jxrl5KppZuKswWUnWsXoRjnSAvXWIfzWNUCw3VauWd7bAp+ejVIoqwdjzc79D1XyyV7wLazglvXLSvvthfSiFS47aQ0zInxPG4HBVBy3KQmkbjeouS5Vvap9BK1irVc9qk3T6VuknsGJDGvEdNzy1k6hQIoAK+m+SqQxJefM/18NQHpwaLB2XYGkuhdN+5Y3jhyTZ4w9YhnJ0UbLaqNNtYncY9XVK8f/hwiieXWGXaf0rRpuk62DxKJGzlUUmKdcrduT+4tGklUPmhjbZtTE8e1GwiyMbPqjwQ1m4nSEecRCNAGgkfuK3Sdd446zjpPNzU/XeEaSuzAo5vKsYrDRprKetdi0/a0Q2jppnokcdu6c+Q2DXfcnm4qdFN7T3Z9GYF3kQ3gfHRT5t5y5b5ZhzD2bDMMg1hNIuuAumuAFklcuzWJRbopJnNkHdCXbh6Mv7/jzjE9R0/dlFRFtUiivt/bHJtDd1y6SCLJ7rhqc4ONEclineRWl8gBLNr2aK0Td5Hz/1CJHK8W9ZggYdAXwK+31KmbDvfkKArD1yR2vbLlkpNM0yRyAOCOs35ohWvm2Cu3D72fjB0sazxat+h7PrgMfSC2/jcs1bm8mkS/3EDGlZaEsJWLjCv6oI0fA5jfUayndvu7auqNr5Ptg0QqSDQ/3aJtgAhuqspzEADOka+dwK3tdbU9fuNm4lgTuil3I9e1pVaywZ68Z0RkSQroXCUrz2lV0k/Ca11aI0dnd6L4mh/nCdcogu2ocA29ATc4G5BEttbj0BGu0SKJu1bXt8pFidia3Kfdlo11JNkWANO6aF7IYSpcwzmEWyWyF9u0uZpE8zcRX9q0XFNwsbcPGXlNkHi0bEYkHWCCxAFJdDPy5DP6yu2j8fd33+WDRPecsQ7h4YgkXg3ddBUEABq6o3HkBUm8XgtDtE8ik7hrXMYRX1t4uLB14gCPJI5BugJJBKQmtxtq/rggfdlU2LSGSdKRiWvAouAPznSiMKG6qSpRNcxRw1y5e3y1SOI7h3VBo8p8sKjV4jqun6YJ7he17THNJnhdJB3gWF8LZz0YxxFIYl2bMjDrF3LXPOw6YH4nkMRAuOZJpJteTym/KzRO3dTPIrA1YF42Rql25iKJLELkzZGkTYTCNW3H0lsrzyF055AfV4/1nSxKF+uJw2V/pnRfJuBwqbT0HBNIIt0CQ7mx2QyV05OLdS6WppCdlTEHLJJonOSWypoKbXTXOZRYVQCsrxF5Ws2VCZd7unTtlkH2syVpQ1MkkU1cVF7NEquu7M7R/T33fK8CJFGT8ACAv/o7vgZ/7u//NL78fXfpMUcrQ9vajH0SCzWJQQCsQTvd973zzlHmnWmj6aYTJPGy6aaDUI5CTXUUrmn7sZ7o2gnXBH0Sq4p8bhwnmd3vARvcj70ELxlJFHVfKxzEXDfHSVbQFq1wjV7dVARoAB1zZdf243VjzUUSr4JKePvYHI99tgFzLsdnm0YSfT+NvW4GdDD3R69hrrhJScKfSQvQlOcogm6A9Qtphf0+PB43Tkpn9nTTJ9CY2pmwBQOLnIXBHsA5yXWAQKpUAnt7vFmNsxXHC6mcmp5Eu64fkZG5SGJpXLj5yrxL5lFpycBNnAFL91UG90MWU45fMq9PoiIAAyySqBGuERqboZt2OCQ27VUQ7AG6e0S+2z5ItI2zAVuHV06u+NlWmiXg3P9SS8pcgWXjP2/MhtgEz42ZL+8kbEd0tafvZQB48eYBfvcv/jxVy5PjVYPHQ5IEmNEnsZ8nf36i6KUGAM8Pjit7rMMrrkmcI5wyqtl217cFhotStArUWPbgXqmu6dZ2yvEZk/P/cK2jF4tKJtu6CgjQVQ3ddBmgzQp1UwlIAZKFFSRqVUiiEySyQjLnsVdfvgEA+NaPvp0es1rUlrbLIokBKl5C6MZxtS9cw/pAoUopkPdnQpaMHI9S3HUCWQtwlBFIAJOWGxo9DU25wXWyZx5JZBynOnC2WJqkG+yNAQBJyZzD6wYsrZLpIwj4DbABXd2SRduG10gH1Izhm4u6AihiTE2EK+OsoWT6VFoukI2pm1JtA6J00+IwW5PY6vvvHHhIog5t0DQO9rJoiiDdlbvX1Og8zeYqIIq65rKw4bsZ8r7vdaJUY5BoXqNpQzPqH4EUkliuSRyDREXCY64drRY43bY43UqfRF2QyNTMuPbXf+fX4pNvnqrn+Z/8pi/Dv/NXfhQffOkG9f7RIb+imkQJSt98vKGP597Lkiy5bjWJgNOqRpEQWAYOOU/JNOdNahK1dFONcI28bzMo0gIk48VFVxWiMG4LjEVd0Uq2c9RN/X6+/HkEgDvHPF39IuxDb7uFH/qeb8YLNw7Kbx7sYFGPiKymJhGQ+lotkqhLijV1NQm+5LNStkiwy9jjbQNWTtmXHI7Rh0FpCeCwpTNsK5HrZs98kMg0hV0EAQBLr3SDvVYRAITKUlyQOMzNRRLJTH7YAkONtik2DZdLPo4jz39YpMw0Mg1rQlnH1VJp/Tmkxwzz8oSDiofykETNHEeUbqdXAJXaEo1wTV1XOFo2uDc6dgTVyOmH1isyu97CqqwReVpN6jb63rYAWBbvSX+jd18rjXNb8ADcvezSTWkGhKytanVTSUDYwHm5uNz75GgMbrisfIjkajPJX/D2W/iCt99Sz/MXvPsO/tp3fw39fqltk5rEy0YSRYH19Uc8uuEzUIRuer2QRABeb14eSbQiHJqkmFAOx5pE8nRMkFxFonC968bEK3P+Fw5NuCP3RDkWAJxtu7HUgbG69tVNWX8LGNg8Srqppqb5okwTIALzaxIBvZiPJxZIIscu+giAKk2JIYmsmNLSYfjJs1ouHZOgVKeK6iaA2BKM62bPfJDI3MhhM3fW4QqDPWaMvMeFw2cJ15D85xjdlFnI/cbZuu9mjmMRES1tS35neOQTtVEllZZFEmPnX4MkqmsSFy5Kp8t+HixqnG0NbUhTx3W8avD6oyFIJDKSY91Y2490RQ2VdjPU9uxjxGCzIfvEuQqgmnurquzzonlu3BYY7Lplqfz2NUunzQWJAZKorEmcY+KsyjNQoqraPpV2D7iO6nbLpkJVAQ/WV1OTKPTZN4aEE0U3dRAptkzhrTDpC1jXFT0/+2zrEn4Hi1BwiAumJuqydO1qY+imgr4QSO7CWcvbjqeEu/eg5n4UjQVNnf6ISrU6ui8AfOQVk8T52Dufo8dctR0smtGf0SKJUn/N0k0npVLnUTfN3F9237AbB9O3UI5nWYFcO51UyROPJD65rKhnPkhkgqkYbQjgaoJCARSW/iCgWauA7MM5sgGRc9/zNDG3l6BCFGbhbIjbHZcRjvVJZOi0LiKoQUTc68ZSayb1R4oF0ryf760ITNVNNeU5RrjGBGCaRt03Dhf43MM1AF32f9t24/fkqLRu9vnJXFgv2hZOwG2FI9h7shtZECxLwKW703OsHXVTsh6lDhJwAJwgOP0B4hBvdh3YliDnNeld+NoYJBaEawIGhNYBvSqTHngjQqpYE+aYnLc3FHRTd02QXn1XoSapNUHbDhY1ndwKVaC1CqBvKmtJpU/oa4/MWk4jicsaj9Y7mqIHWLaDiOuwc6yqaqwB1iDbkuBV9UUePl5L9wWMkMyPfe+3juvedTT3eeZFikJRJO5YbqmCKbkpj0n1SaSQxNb1Cctqo+PxQrqpks0mqqjFHutOf9fdE0o3vX6r7BVb2zK0RT8AYAprgTiSSAVuDpLYkXUsoXANn8Wx30vqlrS9beb0JGq7Hpu2RUNkXOeqmy6bCNpJOsnuYuDOO2XT889mtTCOm9NLcCPZTxWSKHRTXR3XneMVPvXmGQAuI+kFsprMriNSoXGanmYb6zudZuJ0n0TPaSofy6WbatrbLJ26ybblRATCWl4AlHqiODtSW1t6/0WYBDevPdygqni6qYskXlfhgsNlY5UkL/k8SpAyshIodVO7lpwNjqumofhV2eHSKOB2Cpr8wkH8NUmxsbZTSSUUiuTP3zNrOat4uWp8uiklEjJ8t0dr/b11+8i0edDUyM7pk+jWt7GKnK4dLhvcVLSkuGpz7wv2mZExUn/NrlsuwMH3yq2jNYl6ddNy6ZKMlXHj3lHquR0cj1dFdZDEa7z+52wfJBJI4qRROllLF2ZV3M/KmUuTpPuNDe/pe9242qs/8j+rNE7ezyKrgEvdNVLmzKYRg/p3BFLa1H5zb5l3yVzOulZcxxccKh7Kp5t2vCNfVRVWA7VJW+t0sKixHqT8dUHiEj8/BIk3Dni66bad195js9u3wBBbOkgiqy4YIhQA3yex781aorlupgbYQRKVSRIx5vtJdvxs21khn0sWMhmDxEdrHC0bur2Nln71VphH77vk4EtouhIkMkiRTQp0OBvUZY+uYZAoSKKGNroc7xNd/ddcwaHjVYPDZY3XH22wbCqckDV/BwMDRSiIJeEswD6Tgkhp0F9p96Clm86pwQasLsDTtt+4tHi6Lc5Y72quG4uAeQAHmShxyxQAuxfkrkOc/skiiTW24t8RrBXAqRsOQYcSAjkyIJ5c4ZpnPkhkgo2wRwodOFSW+6xVAHUzFqxj5x6HDi6rqbgOcx8vPF63BGDlcR6SuOP69MXUTRmJfSP2IYiseY2ici78puAA1xMTCJBcxQblFtuzm9SyqbDddWpK5uHSIIlbZQNyV8ntpZuHxfe7dNOxtk1BpR2dpidwYb1oc88li5y5NYka4SD3GdVk5Je1UY3re6m/KA6ZJOAAUDVn4hCvdy22ZHP785pk4V97uKHENKLqptf0XnYRhstGEleLGqumxj1SAAiw81vvTAse97XrZCOSqAg23GRO13H7KODWJOpowlVV4fkTI35y53hFt244WDTY7Lrx/DNBuiSOHw3iOpqk5O2hUb1mjxIV6DHhrWDltF1Hl/c8Sfa8I67DtzsZ6KYDAszeyyHAwapp+7oYw2dlfMMYu4xV9HdbYIw1iSwrJ+wNXvh+nnLxE5qAeOaDRCbYmNaWmBulKHhTV2PQ1ikCKROkWAroHHVTjQT9RMmQrWV02j3IZ5XMhe03bYeVRv7cocWaBaFMEZj2OyweDsumGtEJlm4XOrua2k4Zpw4SF/UoCKBBKI5XDR6udzSSK3bbCRJfvFlWWIvRTdkEBCD9xp6+TXuOuVLy8hyUHC43uaJBEucq7spGK+1tGLGDkJIJANuuH8RUckHigCxtO6e5+mXTTaWWazPWJ+Zs6VCNAF45+q0wOZ9VdTVN6o8PmrEmjkEuXbXLs63QTa+f+zIiiYqEQCgwpVU31dJNAUs51ahzGrppOyK5zPmX/f7xWleTCNikpOZ7HQx74qhuqkhcS6uga9hZ5Vz2grNX00ji2INTahJJJDHoscucSxdwAGzgpkUS6d68DsNs3DtYEGDiT5aBCjPPAUl8Am+u67fKXqGNwQZJG7IZEvM6E1xa6J13tlZzpOQDdU1WScmjlmnq9mo/Q86PsxviZtdhpUASXWcL4BSptiHdlEJELJK4I53rSf0RmTUaWwAoKTKAka439S86uumdkxXuPd7QSK7Y3RNbd/E84VwsXbqp4ru5weWWvEeednOl5AU50xTbt4oEkNc6QzHOFZjqSAchKkDQdkXqukWWeGT1vCbo4ZunWxwvy5pvrgIxIGv55c3vPCbnc9XUV9IU/GS1GBEpquSgqbGoK6x3tk/ldUYSNQIoYTKHHWeuFfCmUt0UsMGhps+f0E3PFOdf9hdBEjVB4nPH+prEg0WD9bZT+iTOeveEoj05c1tm8EjiECRudUFimJhnk5Jdj0lpVu6Ydt9wg0sSSXTorbxSuB+Ujm1uSj6o06rpSW2BcU23rKuxMdhgM/IjlbBDVXEUxF2QeWDpdlYlcJ66KRP8huM0gezSqT9SIYnO8Vi6Yyh3L8dlsjhzxHWWCxtcskiiRQQxjtOcj51z/tmA72jV4HSrRxLvHq+wbXu89mit2rRdJJFpbrxyrpv2/jfjBG1+ppcpANa52rbdWE/Bqpvuun5E/XX0K904D+1khWskueUiiW054+oK14w1iZd8n7j0OgpJDNYttk7zrTA5n1elGHri1DTzLRjqAUm8/uqmGrl7t+enpnRAVGltTSJ/Pp6/MQ9JdOmmh0TAIUGJticjYIVrNM+1CWRbXS11WJN4TZ/RufbCDXuNRTSqZILuC91UgySOYo0dmVyc+Nfm9dyeE0USyWdHeg4DViSNrUk8r3DNdS03yNn1W2Wv0DTBBgBPNpd1tlxkCeCd5I2jrjlX3VQVXPbWIWQyycthwwDsedHUO23bjhZOcYMGwHLWi6qoTTUuAlokS9Aadpz4w25bEH0ri2HetAT6kLUmlVTFxDHYtr1Kle3lW+U6RNfGLNqus+09VIhUN6DNz/QyBcA6Vxp1QRfZ06qbAj4CqWpvM4zT1iiL7bryuuDTTQWRutwN2HWwmJpEV4EY4NvivBUmiNJVoXOumAb7fJta6hbrbYuDxdUgnlqTNVnaYDDmOqDahN/hshn3YU0y7cNvN/39Hg8IH2NTJLF8vCMHfdfOUe5J2YupOTpBOqCj14/1/dfwvjqPuUgie/4ndFMFKu6pOVNskiAAI0qz4vvGjJrEkW5K1iRO5sghibvOJE73QeITZqxKoM30KSmgDvf5PEGKSgDFgewZfralqTo8a+I+XjbzUFJZpDYtL5ziNht2fzJ00zDzQ82xqb3gsq7KgfNcuq8bJGqEgwCzSVu6KTcG8LPHNw/5Vqlf//kv4ju+9J34nd/0KvV+27ahp7KDYhaRGijJ1xAxuGo78OiVXA2elXbXOU2eJP+4bnGUQMBkZ2m6e5BFBjCgkKXNt0ZTV77a4iUnE547Wo7fiRHtqKrKiEs5SOJ1dRLe/+INAMC77x5fyfE8JFHhuEpNIoPkvhXmzpENuF1RKi2SdbzUn0cA+IYPvQQAIwrPmDRll8CS+X4nQzLgzaEnpibh9+Xvu4uPves2/hcff49qjqYm1Pyfed5kbd0MiVrNXvokmOgHfOxdt+kxc1tgNIHPq2VTyTjzevpCuHsUYPytvueBCtlDx4SrouewP8dC7OAATNdZ3TpnvIf4FJptpJlfFdzABuB69AFSE2flgAHOSV4t/CbwWrEJgFNtNeMwjtOKVIxzVIwT5+psY7KtjGMn12ejRPcWdT0uWOKDMmudofva4FLT780KB5H1pwuLNlhxI5JuOmStN60ObbvjBYk8krhsanzfd3yMfr/XpmNEEonjOLVcrLjR024r5xmwNXjcxqatCbWbthXJoQSfHARy1/U41tBNnYzwtu2pdcE45FfXJ7GuK9w5XuJzDznhGpnTru1UPWjfCnv/CycAgBOSjnZeE+r6SoEIiipzXXFUx7fCDoY5apBEj96tRLJuHZm2RE1dUSUAYu9/4QR/7Fd+FL/o1RfpMeIHvalQUxXE/Y3HeiTxY++6jb/yb341/X7AtneyGgTlMYeOKNLTWJN4uGzwn3/XV+JDb79Jj5HAWfpb0kiiq+jfc+qmY6LQ8bmA/J6zCIM2kv4JmDVZgl+2dGPh7KXmuFzS1WNFtR1uKJLy18WevBlfoNHZgCBI4QOwCqdbvxiXUdtyaxJZHnMUyVK1zuhVlEAJpNxeaswDOgaJQxNsHZLYez/LQaLbgkSH5Ar15zzCQWxAChiqi6aOApAG2Fust51OtMCpLbx1yYvWYmjTMbZgUDQ33rV7uqmYOGTrXUvLdrt1jHNqdLT9FcfsbqsXrgnppowKnFDLNjsOWb0Iu3uywufIFhiAXSc15/GtsBdvGbThfUOweNn2toG6fqgIGlZDUqDC9VQ2Bcy81tsWZ9vWo9TmbOEwJ7RtUm6P4i6681FVFX7DV/AIHWD37tcfmYCPQRLlObk3g246x4QS2/U9KoIBBFhRJGHlXFe0/zz25e+7q3q/3E8P1zrBoUVTYb2zgVRJNRTwk5IAV5oV60EL8PodgiDypRtxSmxRPM6pNzZ+2vVct3L2TAeJbE2iXFgXyWKldsMehBTdzkWyyMxWTKKXnSMwqGuqKJn2IdU8oLKxnG5MAMBspG4gJXN1556yWAsMKgB2kCyWRz63J1qsJpF1JA2S2GG9a1Wb790b8+imc0wSHhon2RVyMEji07dpa81HEnXJrW1rg3TOabLPtk7MSujFfAuAaJBI0E0BoZZZJPEq7hOharMBgKkv71S1nW+Ffd2rL+KP/cqP4lf+gndcyfFeHoLSW0c8k0GQxArXU9kUsHTHs22Huye8Yw0Ikqhr+XP7SN8mYq7dOjL3/GfunwHgKNfHId30soPEkW6qr+08G9rpMMyhp90OAtSYfd7cFhi7tqfQ7Zjv5L4esxFJVAoMyntG4ZqWDPaCoJRVvV849ZabVpfMvy72bAeJM5wtQGpLOCpVWLfHBg4bh6aqlZ8HzMOjFa7RBLIuaqAZJxvL6bY1ffqITcOtbQMcmjCFJArdlJ/jygvclP0OB193lnCNsibxYFnjdKMTSQB8AQ4N3XSOLZt6qEnUCNdIvcEeSRSzap7duG6Vnp0RSdzpakJdJFe1JoT1F8r1R2zbcjR0QQ2uim4KWCGHD7zIIW7LAUkXsa3rqpxY13pk6TwmIlgsIgvYGmyA6634Vtjh0uzdp9uWdgjt/tZh13WqPn23Z7SJmGvPDQH9Zx6s0dQV9bwdLk2bjhFJvORn1LALeJZSOG6za59ItOeiTe6n+8oenH4AxrXYmqqbln3lEElkgzbABw8EKNL0HAYsM5AVj9u23Si49aTZkzfjCzQLGZM1iYIkkpnuxhFO0QhHTPokEpuGDWxsUKqhm3Zdr3JkRgquixIxSOLKFkSzffpEAGLXhtTR0oNdO0XU5jVtC4Zd15ECHOanVrhmRIiUdWOACbjXuyFInOk0XT6SaJxkTabPQxL3wjUA7Kbt1iSyglvuM0qplDobsC64txuilqYdqtQxdNPDoSfaVQaJP/6ZhwCAj7//eer9gqR3iiTVs2CiuHhEIrKA9MBrcbZpVTTVqzTXuWZbeyydhCvbNkDMre28bJMg8dP3z+jzX1UVjpcN3nhkkMTLfkYPFg22bY/HG51DLkjivuWSsWVToa70SOJq4feY1ug57CY1iennoKqqqH/NIYnOHEmgaIIkttx+6iZ3jZ/25N1bT96ML9BYRGrap4/Pko83sVY4xaG2aoI2G1yaFhDMHIEBSVRQosY6QccBYh7QsQn2VrJ9bLZ12uC+NE+jwOoHlgyTZI6zOxWuIemmDrVVQ/cFzLk83bTnylBdCZLYdiqZdlEEW+/2m7bYytlsxiCxlNwKEHFgXm0hwNLkneCSZVsI3T1AEhnnQnqiSYuJqwgS/w+/9hfga199AR986Qb1/mVTGSRdWW/8tNsrt48AAN/ykZfpMYfSgmHHK4detUmt5JunW5VjDZgEEFvKIiZIoptkuSy7dWiRRM35Pz5Y4P7QJ/GykRRxwu+f7VTo6sGyxtmufWLrxi7aTA/OZrxubA2w3xqNS7C7dGv3Z2nPcfuQjz4hJYRo/XI2wTgJZEmgYtXUqCs4bXGu57qVs2eabtqSNYmugwbwYjJNXakgdLGFU5PIqp01tcn82CCx48Y5mXyNI+mjbfx3G+mmA02SpZ8YKXk5l3Ldyg+2VTfV0X0B3aYdIiJsLalbb9krg8SjZYOzoQXA/CDxCpDEgY9fVVwioa4r3Dxc4N7jDdqux6p58hbWizZbF92Oz1sJhY+1V9Gqm4qxTYoBS1OlhGvG58a+tmt7imEg7QYkoXYVtORf/OGX8Ys/zAc2kvDTMEmeBXvfCyf4b3//N+Cdd47oMQeLZhQXua7CNeIE7rpe1doDwNgEXiVcM6B7QsO9TBMk8c3TLd5xm79uLqX48msShyBRgeQClpWwT0paO1jWVsmWDG4MkmgDN2YdFz9ubGdB6ke4/Q41ZRGx4LJck+jPkRVrrKoKR5LMV2pHXBd78mZ8gWb7jRWCxIDKuVMI17TOjc+qba2aCptBbEKjdubWMmp6OQKmT6Kql5rUUbQ6B2g5KImdjkgi/90kABY1w1Lz7EVTY9f5Cqxsn0RgEK5RCge5fSo1Drlx5P3PKtnh0qiwPlzrsqYA8Od/61fgV3zsFdy8ZMl7cZKltpCVu3/uaInPPlgDuBoq1XU3D0nccYpsbiJHI9w0V7jGVXIzgk/l6xbStM1xSSQxEK5ZXkOBI6Ffaankz4K96+4xvR4AFkm8f7obUa3rZkcre9+yaJtLJe/I/Ubs7UOw9tpA57xMc0WGNAGYK/J0FcI1AHD/bKtKnI6shH0N/GgHi3qsSdQgieudpXIywjVuCxgZ576eMjfY0yjsLxzwgFc39WsS5Seznx6tGjza7LBt+cTRdbJnHEkkIeOJummnkNp11C7JxX+sURjUztiNdNXU2DrywxzaaX76dFMikHLl9dXBjcP/JxfkReM82B35YI9UNr6vDRCcf7I+ygrX6K639BLctDq6L2CdkDeVWVMA+KoPvoCv+uALqjFzTIL7tbK28PaxDRKZbOTTbu4aJKhsGUmsxjGdItPqCtDII61B4HedUdxl7skwQwuYIPNwyVDXa7z+qBudkuvo3JleubogfW9xEyTxbNuNqNZ1s+dPDsbf2V6Oq7BuSZHw+9oPvoB/9UvfiVeeO9RNdIYdLhusFoZOqOlT6SGJVyBcAxgkkVUgBsy1Oht0EvZJSWMmCbcef+fG2GT+tuuoFhhWhMYXheGQRCvUyIwBLHgA8EDRtOWGnUPJjlYN7j3WIbLXyZ7pIJGtSZxSOTkkcVFX4w3f9TzVaOkEYAaRooZh6TygLG3FpUmqeqK5vZ0UjWuBoZZu22K741QMAR9JZGWLbTPxDlLypJHy3+w6uv7UIrJSSM3VP8rx3DYFmppEAGp106s0Uxcq8s/8HJ87WuJnXz8FcDXy7tfdFsMaZOT1Wxwtm2LyyCYgbHsVDSLoijZp2AW7tsfZtqMk8msnSSW267h14Xi1wKPNDo82pm7mqhrBa0zYHcLc3QvXzLfjVYN7p1v0Pa5tkPg2J1hjE3cu3ZRNrojVdYU/+R0f003yHCYMD835lyCxqi4fSXdrEu84/YBLdris8ZkHW+w6TnH9WTB3PeWRxGos0+n7MgADTJFEvibRaRWnRBIFCWR7DoctN2Qcsy8eLd0g8cm7t568GV+gsTWJgMn2aamcLhze9b0iaHACMBUCaVVRu05Hrdx18wIpgyQaZ5JFPI9WRspcw/+XVgpyTHfupTn6ATBxLA8l5c9/XVmBIk1tyXKh7yUI+H2qrmuGajEUsmtpPLePVnu6qWNVVY1rkEa4I1SXZW4tV8mtU7AE3BrIs21LORbybHl0U1I9+sbhAo/WOzxa79DU1bXcgFeL2tRoXvM+iU+CvXDjYNyjRLDlupm09gBAK4DKfft4Y9pCaVC6q7a3Dd/vfWQLGMAq2WrKDebaHHVZGfdgFNe5vuf/Ks3VK9DUJG7azgm+NEgir24KhDWJvC/vMvzYnsMj4OCAAAD3/Y6WzdgCZq9u+oQZi0gBgWqTIkjsnOwIG2ysnACsI9VNAVEAtZkOrt2ACKcoAylPFEOXIT9aNng8cLR5JNG2wBg560VFKkubm1eTqKsJDYWK2GBvNaCkVlaZr9sTu44OMjCIi0iQqEESj5c4HcQY9kGiMWkBcLrhUDrAJiA0KqWLyHNDtc4Y1q2zAYFnnN2wkTIwqJsSa/KNgwUenO3waN3iZFVGVt8KWw4iZHvhmvPbCzctMnTrmiKJtw5d9IVU7h4UEO+f6pQk3woTwZr3v8AHiSJOdKToiTnX3JYDmmDvcFnj/tnQy3G/3wDw72XWv1g2RidBfGWuT6L57JA6WvKDouqmpM8btrIo+aG25YaPQDLr+eGywZuPTc3wk5iAeKafBtu7jRFJmIEkVk5hrSLYcwMwViQHsCIJfW9qGanWGVLr5LZgUNUf9SqUFDAPjWyIbGbFbYGxJbNUI9rZdbPUTQXdYxxW+WxXqIimFzc1Nrse650Jiljn4s6JdZqua4bqZLXA6WanDxIdJ3CvbmrMRxL5TVvbg9Mt0tf1d7X1QAB3H480bY9uyvXXunGwwHrX4c3TLW5cQ6opYNkde+Ga89uLNyxKd13ppm6iQotkvalsXP5WmNBpNedfAsvLVtIG/DVH2ydR1q19kGhM2mOtmpr2XeXcnW6ML3OuPomFPWfptLLQrK8muLTBHkuDXgTMQHmtZMerBm88fnLvreu5s16RabMPbu9CTt20Hp2sXhk0AAbd01EyqwE1MP/XNS63yCOFNsi4sU2EbkH+zIMzAKDVNZeutHIr6qYFwSGvlYV5jROuGWoShyBdIzgkGTRW3RSwwb0IcLDOxV0nSLyOoh2AqWt4tNZRiwEr7Q48mQvrZdjBYugTt+HppoJSq9RNx1reHota0d5mZYWUAA4RCetRAFHFKx9PamY+ff8Mx9c0SFwMNYn7PonntxdvWlGY6xokAqa9x09+7pEKNV4tLJJ1XXtAAsDv+uZXUVXAL/+iV+gx0hPz5sHlX7NbR3r0CzDnXJagg2u6l161SVCvSXaIH/JIgkRNr+6RysntVZ66qUKYbTmIifV9b9hspO+6qCtbk6hgfR2tmpEVdZ0TQCl78mZ8gSbQMQOJuzWJfFsEn2etqVEDgNNti7braYhaxF12mlpLr+G2zFuBtg31fhrf59bhEp+4Z0RJbpDZRfNgi3ANiyQ6iODoJBPHcnoXaoI9V9mrJWtCzfEqP0gkF5K7xy6SeD0di5MDI/+srkk83geJoa2GIPF0EK5hbEwcadRNG0v/0dC0ZU6vD3L8zD0pn+urm3bUxn3TCRKvo2gNYIP0Pd30/PbCDbve3VaIkly1/Y5v+CAAqNp0+O0GrudaDpjz/kd+xUdU1NF33T0GAHzLR952WdMazT3nGmqfu+deV1bOVdsYJCrOo+zVjwcxMRWSKPWFdPuwegzaxiCR6a87PF+mVRNX2iDzDJFEZp5z0e3rYtdzZ70i2yqyAa66Ztf11ELijtEEDVKT+HBtHjSNuMumtWITqmbure1Nxkxz5QRSmro9AHj+ZIWzrZkkm110W2CMQaKidYnGSXaFg0y/Nx5JdO8RWpVW2kRsW1QVjwrenFEzcNV2vFrg8VovLe4iBfsWGMZWA1J9tm3poEjuLRXd1FEFPuhqepxshm8M9ReMsxv2FwVAU7zlHHzm/tpTlbxOZoSDdO2F9hY3V63ybbeu5/UGgG//0nfii999W1W35zcuv55r+Vx73wsn+Nu/9+vw3uf58zHXLqSX4x5JBGDppr1TClAy8Z1OFUjipE8iyd5yaaMaJFGer7NdqyrnWgz1ljJHmUPJ3BYwT2JN4jMdJGpqEleNL1xzzIxZmALZdui3pwkaAOCRBInkwNVAidXIAcuxNrseBwsN2mCzPxqUFPBr6WgksanxYGvOhy02zh/T7T/VKRARX7lVFySOvTQ1yPEQ3EsrC1aAw6VjXFfH4mTVYNN2eLTZ4fkbB+UBgz135KCk1/S7XbUdLE0vr9Nth7snCrW5Xa+6/21NYk+3CQLsdRK5b0bdMewvCgxIIrHmydrxYL3DiaIn2lWaEUnQKxfvbWp1XeFv/p6vw92T1ZWIoJzHPvDiDdX7V009qmteZyRxrr1feT7m2smqGbUBNPvGnZM9cyU0SUKLT8OY+KqPhyCRSfCGdNOWLDdYNJUj1Kjfp9bbjt5rZJ6ToJShm7pI4hOIUj95M75AU9UkLowjD4hSafnzJWuwGYIUbU2iIInsjbVcDCIJisaiSzfYU9ZoAhiQS12QeNdZkNlidnG2AIsklh7uEUl020uovpsJgNl6y5VTN9lp1U1nNFJ27bpmqKRW7N7j7Wy66XWuP7pKu3W4wMP1zvRJJJ1kQRIFqGNuZVfum21sDBjRjqNlo0IS66H/oyR+ANDZ3RsH9vOvK91UEkeaViJ7S9sHX7rh1WI/LXawsMIpT6IjeV2sqqrRp9AE2y5KvQ8SjQmSKGVWjC0DuinVJ7Hxg0R2/V+4QoEK31V8pfWupevfAVPyJPuUBM6MT3P0hNNNn7wZX6BpahIPmhqbQX3StMDgFFGBQTjlHEEi61xLL0GrDsUfy5XJVwWXSnEXwF+QWbrp0qWbStaohCQGtYUAuYgsLQK5U6rSjgq4qhpUqUls1YvIb/6q9wKwMuPXzcSRf+PxRvXd3MDwbc9dz+921XbrcIk3T7cmSCQdSWFAsBRtAGM9YOvSVOkeqA3efKyrrVo09ahYDIhwDaNuau+Rk4PrmSRZDtnufZ/EveXsYFnjwXrfp+8iTFgFmv3mSRCBu2p730AP/g1f8R56zARJVJQ32HYWHbX+L5zyHg3g4/p3266jQYDGUVMVMIBJKNx06mQ1dcrXxa5n+vWKTFOTuFrUo0JRR2Y6LN2xVaFtchNrJZlFgdUW8RIOoTSOV1LSvOBSEUgBwPOOAAGLJC6cAEz6JZbELVwkcRTlUQhwnG1a+loDppZ04yjgalRRH57tsN526izyH/22j+D3fcvnX9sWAFLr8XjT6tRNHSTxun63q7ZbR0vcP91h13V0ALZcVFhvO6yHGmCqwX1jN21t6wYfSSTXLSdDC5iWNUziznXsrjOSaHqg8kH63p49cwOT69wn8UkwCQ41wba731xXEbirti9853P4x3/0X/KCnJIdLPwgkQn2mqBP4q7lfK5lU43aFpqab7kvzrYGSWQ1Dxa17a/IstkA4O23bf30y9e4ljplz/RqpKlJXDoBwLbrOBUlpyau7XlHSzJhb4wNONkgMejJpWz3IKwCVQuMIUuuqkk81jt3riM5PqCF8+K3wDBjmbhNHPCzbTugxmSQuPCFa3QIZD+bbnqdgygX4dFkaFn1zmfJnjta4v7pFqcbjbppPaLUAIfuSfJlp6SbAibB9cYMJFGCqLbr0ffcmuy2RPjgFdU8aU3q0sVpehLpRnu7fHMDk6exJvEqTRx5TcJ1jyTGTRMgAucTrtk5KB0TfC1qZ99QAD4ukni25dtJuX2wbZBYPp60gAGeTCrzkzfjCzQNRO0GAJtdR/XSCYVTWEamqCGJs6VtgaGhNrktMGzdnn6chm76Pkf1TYWSji0wuCLlqLopWZPY1BXOdi3arpvVJ7Ht+XOyGqjMZ1s93fS6m6cap/hurHjPs2S3jhbYDK1SaCRxSEBIxpW5v2xzY13iCPCD+0N63apGCjnb3ia0j7//edX7r8rsWs63Bdnbs2fuc7kPEs9nv+jzXgAAfPn77tJj9jWJF2Ny7h6NLTA0wjW2wT2z/i8jwjUckmiFa0QskLGF04Zto0AS33H7yS6Xub4QxBVYq8gGuAEAK+fvFsh2ikDqZBT7MI6FLpDqnYCIQUhtsNcrIPtFGCQqkMTbx6ux4TBri8aKwlh10/z3cwVoNHRTwCgznm6GRYSlzTX1qEjbdjz6crxq8HjTqpz/J8VOZgaJAPBrf+G78OrLNy96Sk+suXWa7H2yCpBEJuHkZnY1/UWBIEhUPDfbnV9bwlKA/qNf/wvwN37kU2MvtutmRysr3ATskcS9xc1dG/f3yPnsD//yD+N7ftmHVXup+16XobA3ncm6PdJNGeGasCaRpJsa+ufA3Op5VqBc6/WuNToQc5DEHeeDAsALClX362jPdJCoRRI3ThaBChKXFsnS0BaFoidNqXV9Ejvne3FjAHjiCkxNoifKowwSAeCv/86vHSW/GTtYuMJBHaqqfN1C4SCAo5sCRoDjbED3WERk5Sjgdj3f8uTm4RIPznazhGuuu7m1Htog8Y9/+xdd9HSeaHOL3tnWMcKAWO861BUXfLmKo5r+ogA81VV28100leMg6Gr3fvkXvYJf/kWvUO99K+w46B35tD3fe7sYc/eYpy1ReNU2V/jnr/ybX407x6u9mvY5TPZ4UTed0wJj13FtKdze2Rqf1y0DO9t2Kl0Ml/HS1BXl9zZ1ha943118w4deoo5z3WwfJELfJ3Gz6yjeulBS17vOUFRJB2HV1FjUlTr7vGqqgSKm7wno1u2xwjWLusLptlW19xA7XDaqzfBgUWO9s0E6s4h4wjVdj7riaYwHC9OT7mzb0YiI0EYBnXDNzaG1weNNi5duPl2P5NueO0RVAX2/r/U4r7nOy8tktvtgUeN0I1Tmhr7/F42ppdOskYDv4LK1sst6SiVnkcTrbpLwG9fyfQCwt4i9/TkraMH0F93bxdvH3nX7rZ7CE2+huinFSpMaeIcpxpYFiSq2hj3nCtesdx1eZEs36mpMYpr+ivwe9QPf9ZX0e6+bPdOr0ShcQ1xsD0lk6aZLP0hkkZSqqnC8amYhidu2V0HvVVWNgjeaNhGAoZadbuYhiVo7WDZY7wwldtf2lLSyK1zTKcV1Dpc11ltdYbPLkdcI10gm6/VHm6dO/nzZ1JA+6S/cePr6m12luXUzrErajQOTgNDQpgFDAdq1tpaXpZvKsyJNraljeRlhqUl8Oramo5kiZHt7tkxaGDV19dTc+3t79mxEEtdDCwxG3TTok7jtuBZIizqCJCpYcOtdh7VCB2I1A6h4GuzZ+JYJkxuMUwE1dTPdkF3X1CRudh1NURU7OViMjgXdJ3EIZMfvRR5uOaAGnVKk4nDV4FSpADrXDt3ehS3XR2ds7zGI+WjEUA6XDR5vdqo6QVfcSCNcIzTCzz1cP9WNlL/kPXfe6ik80fbeF2zdHRsk3jxc4vGmxaM1T5sGhg3Y7blKJ47M/cvSYQFflGpHilI9KTYVIXt6n++9zbd33jHP9v7+2NuTbFJucP/MrHdz1E13bcf1V3R0KkT0huo64PiSGv/OlDxZJPFZYUY9G98yYbvO1OkwiI8giYImMgGf2yeRpaiKHa+a8QFgKUoirqOhjXrjlHV7Bm1r1SjdHHMpAhtSItlDEpUKrEfLBm+e6qT8PXVTReAsSOK27Z9KJ+HzXjbtCT70tltv8UyebHPlyFlUVu6t1x7pEhCGbqpfS6TBvaYtS1jrAXAZ6CfBRMjn3ogkPl1Mgb1djL0y9FLbK2vu7Um2m8P6L/R6hs0me8uobtr2tLqpME82ijKFUbhmq1OUX7lB4o7zQZ8Ge7oKoJS263q61kaonNKUmqpJdKR2NXRTwHey2OBS0DYpGmZl5CWTr2kTAQx0022rboExx0IkkVOktfWWnaJPpTleg5+/d+odu3w8S0nueg3d1Gnk+xQ6kX/ht30cn3u4ufREwrNkLCXt1lDH+NkHa1UCYjEouWnXhOeH4FWzgbq1HjtFCcCTYG4LjIoUDtrbs2fvunuMX/jeO/i3vunVt3oqe9vbbDtcmvZhkmDnVEqDPoldhxvLcmhi+iT6gmcqv3zXqXpTrxbN6N9t2w7LxbOxlj/TQWLbcRkLwN5Y0v9FgyQKArlSBABz+suJkp6ohjJFvIARvPH7K+qCxB2J7J3HDh0kcUdet6qqDI+8NYGltibxnhJJPHDppkrhGrETBQLzpNjzNw7w/BMuA31d7C/9G181Ji8Yk3vrcw/XNEUVMEHe2mEXsPfy80NTasm4MubWJI59EtkiyGtuso7fe7TFwaLe9//cW9SWTY2/+K9/1Vs9jb3t7VxWVRVOVs1YKsX4aXVdoaqs+AzLwhItDcDtr8szzNZb0wJDJ0y4r0l8pmzbahqlm/c9HPrgcRkLC2tr6aaiimc+hxsnfPAxuGEFbxZ+f0WWWnawbIxy4q4dM+aXZUKVO9t2JotDB8DmwTbcc/78HyybkSKmQhIHcZ2u5/skukHiy7f2wdTe0vYl776javkg95YWSRThJitcw93Ld4cgca0IEl2Vut1Tpm4qa/KD9e6pZAnsbW9725trUgcP8IySRV05JQccw89tnbRV1LJXVYWDRY3Hm3Yo8eE1J9b7msTLsaqqDqqq+jNVVf10VVUPqqr6R1VV/ZLhb++tqqqvquqh8+8PB2P/bFVV96uq+lRVVb8n+Oxvqqrqx6qqelxV1Q9WVfWe0nz+ySfv4/7Z1rSlUGQRACdIpIRrfFhbQzd9/sQGC+zNaBs3D/Uvmlo6p+E8C7gdLU2biNNNi8NLDhIFSVzv2kF+mOeRS584zfk/Wjbj+ThSnMeutwsWm4C47ahWvk2B9uxtbyUTUaSu11GZDxYN1rvWCDApEHihm6qDxJFu+nSpm7rJs6ex3nhve9vb3lxzS6XYNU+EIQHQ5USLukbb9ej7Xl3LfrRqRjExFgQwbdhM8Lu9AvbcdbGr4rYtAPwsgK8D8DMAfimA/7yqqi903nO77/tYd/U/CuBVAO8B8DYAP1hV1f/c9/3fqKrqBQB/CcBvBfDXAHwvgB8A8PHcZHZdj7NNq+Iji1LmI0WQONJNdx02uxYrRXb81UHsA+Cz+EczGzcv6gpbR/BGQzf91LbD6aalA6m5JpTPs21HFzYDFkncKK61OZ49d2ywLdf7bCc9grhj3XEazr/83D5I3NvFmYtSa5HEs22nVi6+OyS3pF8oY66U+dgn8SmpX1029dga52lWLt7b3va2N8BXtqZ75XqJQq4FhgSS29a0Rasr3nd97miJzzw4A8Dvi6G66dPCdinZlexafd8/6vv+j/Z9/1N933d93/+XAH4SwJcSw38TgO/t+/6Nvu//CYDvB/Cbh7/9KgA/2vf9X+z7/gwmoPxYVVUfKn3o4zFI1CGJjxR000Vdoa6GPonKFhif9/JNAMAthZS8DRJ1tXSCtkmfRDYoPVzWON22ON1efpBo6aYtNmQLDMAqUq13vIoV4KOHbOsAWTTOtsZBZs+jW6ekqRvb295K5ooiseuBvPds26pVgYVuyt77QKIFxlOUpRVHaU833dve9va0m6x3R8tG56e5ojBkCwzAsE+2na5G8LmjJT5zfw1A5ydvWlNOtNntaxIv1aqqehnA5wH4Uefln66q6ueqqvpPB4QQVVXdAfB2AD/svO+HAXxk+P0j7t/6vn8E4Medv7vH/M6qqn6oqqofAoDTbYv1tqUDN3mfiMIw46qqwtGyweNNq1Y3/fy3mSDxO77sXfSYsSZRiSSuBrrpiCSSTuHR0CfxdNuOx74ss3TTDuttN/ZjK44bEBEt3fS5I9e51t0jZ5uhZ4/Cuf7AiycAgJdu7msS93Zx9tzRcsyuapIkB4saZ7sWbadTBb51uMB3fd378ed+y1fQY7zakpFu+vRkafc98Pa2t709KyZB4k0FwGEYX6JUyjHFpP5w2/bqlhQekqgoOet7g3RulaDPk2xXLqVYVdUSwP8dwP+17/sfq6rqBoBfCOAfAXgewH88/P1bAAjn8k3nI94EcHP4/QaAzwaHcP8+Wt/3fxrAnwaAg7e/2p9uW12j9BBJJG+Qm4dL3DvdoOuBVcMHUi/fOsQP/r6vx7vvHpffPNiIJD7SNW4+EJGKsSaRRRIbPF7vcLblz+NcO3SQxMfbHV66ySFuJwcLPNrsVKgx4AeJbAAs98jpVuimvKP7A9/1lfhnn3rwzGSn9nY11tQVXr55gJ9/80xVN3y4bIY1oadrlAGTGPuDv+QLVHP061GEbvr0PAfvfeEE//gTb+6DxL3tbW9Pvc0KEh0k0ZQ4MHTTAUlsO+w6Hf3zuaOlZdwphGsAUz62r0m8JKuqqgbwfwOwAfA7AKDv+4cAfmh4y6erqvodAD5ZVdVNAA+H128BOHN+fzD8/nD4v2vu35N2utE10pQbQoRr2HG3jhb43EOD7GkzD+974UT1frcnF8DX0h0uTON4Szfljne0bPBoULG6dHVTpwXGY0UN5MlqgUfrHdoeuO0EfiW75SKJ5CIigbK0SWGDbQB44cYBXvjgHkXc28WbJDneo0g4HS6bAUnU1STOsWVjle127dOHJL73eXPe931C97a3vT3tdutIgkTe31q5iUIy4JM9QpA9TYmCCwLQSKIXJO5rEi/cKlN49WcAvAzg2/u+3ybeOuBZqPu+fwPAJwF8zPn7x2Bpqj/q/q2qqhMAH4BPY43aqdQkKkVJHq5NUMSigjcPl3jt4dr7jMsycQbfVLbAOBgomVq6qYseXr5wjVWKPdvw9NbjlaH7aqjFQEg31QWJj9d6JHFve7ssEznyD750o/BOaweLYU1QqpvOMdMUeahH6Z6uFhgA8OpQX86KOOxtb3vb25Nqb3/uCIBVqmZsuagskki2wBC2ybYdkD3FPuX6d666fM7EfxSNkT2SePH2fwLwBQC+ue/7sRt0VVVfAeAegH8O4A6A/xDA3+n7Xiim/xmA7xlqCV8G8NsA/K+Gv/1lAN9XVdW3A/ivAPw7AP6nvu9/rDQZoZvqkUQTgLEBx63DBT7xxqlqzFw7cpDEpq7ozMrhIHe/2XWqcR4l89KFaxwkccv3ZRS66bKpVXQvd+F44Qa3iMj5F7RZI96xt71dlsn9qAkSDd20RdteQZDYWHXTEUl8iuimv/Sjb8NL3/nxUYxsb3vb296eVnvnHRMk3nucwoGm5jaqZ1G6EUlsDZK4nAkCvHiDY3BJOZEgifs+iRdoQ+/C7wLwxQA+5fRD/A0A3g/gb8BQRH8EwBrAr3OG/xEYMZqfBvB3AXxf3/d/A///9u48SLKrOtD4d2rprVq9S4LWOpKQQGhAAiSBxmYZCTBbMCAQCCFAWGaRwQ4CDAQDAsxiBk/gGcIsBssaEGI1iw3YCkMYEZ4AwshmMfLIgEBiES20dXepu7q7ljN/vKVSRS+Z1ZX5KjO/X0RFV2W+l3kqO+vdPO+cdy+QmXcAFwLvAO4BzgWe205MRSWx/XbTKsHbVVUSO7gm8a5dRSVxZZffVKtblonoaJKK8dFycpfZjt74W1r+uLq9TmLrmpOdLLmxZsUou/fOsne6syUwWg8i7Sfb921JbmdhV6nb/uL5D+f8Bx5VT6DSjpXjI+yZmWPPzGzXrzceHx2pJ6yZn910cP52xkZHeORJm+uZXyVpUFXjzM6p9pPEaq1uqJbA6Gx206L62P6YsaFl2bEj25wssCpU7Jud7XiinH7Wk0piZt4KHOx/8BMH2Xcv8OLya3/3fxU45JIXCxWzm7afOFTJUzW7abvtUEesGqvX/up2JXF8dKRYc2wuO5/JsKqsdrCWV2uFreuVxLHid9u5Z5q9M3Ntt5tWlcSIWHS7absWtvs6UYWWg/NO2cJ5p2zpaJ9VY6PsK0/ItHtN7mJV6wjC/OymwzIAS9IgOaasJE7u3d+y5/u3YmyEyT0zZCazc+22m87Pbtpp++fxm+bn++h08sq63XRscE5kHszQXiRRtJvOdry8weSeztYgbJ0ApRdT5q5ZMcrOPTMdr4m2d7pacL6DJLHlDEy3J66JCNa1rG3TdrvpijH2TM8xGjMd/W6drE9ZqRLlHeXEQd2uwEjdUp0s2jE13fYxcrHGRkaYnUsyc76SaBVekvrO+tXjXHzOcTztIVvb3mfl2Ah3z87VSyG1c/yvK4mzyUyHSeLpWxfOd9lejFC0m+6Z7v7J0+ViaJPEYjKT9iuJVeXwznISmnVtztzUOg1wL3qYN02sYOeezhKiVeNFqX/3vtmOWjLv027ag4Ro3aoxbt9ZTHLb9uymK6sZR2c7qpKOjY7wR088jd/qoAJTvQbbrSSqz1UD4I6p6fuc6OqG6tg6XV5bAu23eEuSlpc/eeZDOtp+vLwmcf5yg0Mf/6uW1Om5IrnsdAmMTrVOXNOLtcGXi6FMEkciOm6vrBKAbTv2sGbFaAcT1/S2krhl7UpuuWt3R8lete3knumOYmyttvVi5r51q8fZViWJK9p7vjUt23V6TejvP+6Ujrav3iPV+jud/B9Iy0n1Xt4xNd32NRuLdZ9rSwZwdlNJ0oFV6yTOX25w6ON/NbvpzGyyb6azJTAArr7sbNZ0UNyoVzjYM0Pm8HSKDWWSGFFMLrJvtv32ymrSgV37Zrn/+vYWcgfYumF+204WF12sqrrXSdWsaifrtAIZETzqpM2sWz3GqUe3P3PiYq1bNc5P7tgFdNBuunJ+u3aXO1ms6szS9nqdSqsh6k/VcWD77umeTFwDMD2TAzm7qSTpwMbLdRI7udxgfnbT4uRip5dFPO60ozravh4Tpzq75KzfDWWSOBLBjg6rPavGR1m7cox79850VKo+vmUB65O2dD+R2nJEkcx20i/dWjXo9Fq8T7zkkR1tfzjWrR6rZw5tf3bTlkpilyu51eymO+t1KofjIKLBUx0Tpqa7P7vp/MzFs/UENl6TKEnDoaokznRwuUHrjPfTs3NdL8JMlN1yd5erFXT7Wv3lYjh+ywVGI7ijvLawk8RhczmbZyfX6LROO79+TXev7YH5SmInJ+Kr12DHVGftpr3W2rrbbj/45pYZWLudJI6NjrBidGT+msQhOYho8LRW4Fd1+e+m6grYvW+Wmbk5RsI1RiVpWFTrJE53cLlB9Rlwaro4udjt7pPqkqq77i06xbo9o/9yMZSfYkdHop4ApZMP8pvLltMNHSSJvS5JV2fgT+tg4eYqxp1T08v6OrrW5LzdayBbK7m9SIBXjY/Ui8g6cY361REtJ2S6fQyrBtvd+2aL9a6ctEaShkZVSdw3M1f/fCjVuDG1b7ZY3L7LS1JUJzOrAtOwJIlD2W46OhL8akeRJHbSErhpoqjSdToz0juecQabJ7o7+UPlv511DL/asYfX/k77S0dWZfO9HS6B0WutrbAnH9le6+7mlgWsjzqi/WtJF2vV+Ci/ntxbfy/1o/Wr5//Wut1WM39GeIbp2azXv5IkDb6qklgniaOH/uxUJWl7ZmaZmZ3reiVxYsV9K4nD8vluKJPEsdGo34wbJ9pP+KqEo9Mk8ZJzT+ho+8Nx7MY1vOMZ/7mjfVqrh92e3OVwHNdSFWy33TRi/gPn2f9p05LHtFBrXMs54ZYOppeVxOq64arddNy/G0kaGuOjI8xl0ToK7VUSV61orSRmR+skLsbISLBmxWi9DJ5J4gAbbTlT3UmF74LTj+Znd+/mqQ9tf5HQftBaKejFWo6L9YTT7wfASVsmOtrvokccy0/v3NWTZTpaWxCWc+uudDCtkwB0P0mcH+yHaZFiSdJ8UrirnJiwk3bTPdNFu2kvlk2aWDnWUklcvp+Vl9LQJ4lbOlgD7PGnH83jTz+6GyE16j4zgC7jN/7qFaP8w6se3XEl993PemiXIvpNrbFZSVS/uu/Jjl61m3a2dq0kqf9VSeHkniJJbGudxNERxkaCqelZZuayXhKjm9auHOPnd+8G2u9m63dDmSSORTBbft96zdqw2jTRuxlAD9epHUzI04SNa4rXcsXoiDM0qm+1tmn3qpK4e98se6fnrCRK0hBZUSZ4VSWx3c+hq8ZHmdo3x/TMXNfbTaGY9XumnIF1WMap5Z0RdMnoaO8+APWDDS1LcyznJTD6wcYy4V7uybbUrl7ObrpnZtZKoiQNkerSnMk9xczw7UxcA2WSWHag9OKz60RL192wVBKHcjRuba9U8Qc6Ub7hvY7u8GwqJ0Iy2dagmOjyYFi3m+6bsZIoSUOmGgN2TLV/TWKx3wiTe6bZNzvH2h58rm+d12JYxqmh/CQ7NhI882HHcPE5xzUdyrIxUb75rYAdnqrddN/sXMORSIfnggcV118/+tQju/o8K0ZHGB2Jot3USqIkDZWqm2T7VDEpTNtJ4vgod+8q9lnTg4kJ167qj/k7ltLQltTec9GZTYewrGT5by9mAB1kVZI4tW/2EFtKy9v7L3kYc5ldbzeNCNaMjxbtptNzbJoYjsFXkjR/XfqO3WW7aQdJYjXbaLc7XgCO2bAaKD4nD0tBxYxAANxRLgD/8BM2NhxJf6sqsse3rOko9aNetkyvXjHKVF1JHI42HklSa7tpdU1i+xPX/HL7FNCbSuIpR60Fio671sndBtlwpMI6pOrNf/r91zUcSX87+8SNXPCgo/jIi89pOhSpb0ysHGPXvhn2TM8NzRlaSdJ8kri9wyRx9YpR7uxhJbH6nDxMM9dbSRQAn3rJI5ncMzNUb/5u2Lx2JX/5wrObDkPqK+tWjbFzzwx7Z+accVqShsia8SIVqSuJHbSb1o/Rg4lrqiTx1Y8/tevPtVyYJAookpvNa1c2HYakIbRu9Tg7pqaLdlMriZI0NOpKYofXJLYu3zaxsvsnF9esGOOWdz2l68+znDgaS5IatX71ODunptk7PecyPJI0RKokcefUNKMjwWibHW3VRIHg0nbdYpIoSWrU+tXj3LN7H/tm51g1JFOLS5Lm20b3zc61fT0iwKaJ+SSxF5XEYeRoLElq1PrV43WrkZVESRoeoyNRt5h2Mqu2lcTuM0mUJDVq/er5a0u8JlGShku1VmInSeKmta1JoicXu8HRWJLUqNYk0dlNJWm4rCmP+x21m7ZUEsc72E/t81WVJDXKSqIkDa9Vi6gkVu2mR69zZv5usYlXktSoo1oG+fuvX9VgJJKkXts8sYKf3LGro5OEx25czSv/6ylc9IjjuhjZcDNJlCQ16qQta+vvT9gy0WAkkqReu9/61cA93K+Dk4QjI8Grn3Ba94KS7aaSpGZtbJnK/P7rrCRK0jDZWiaHx25c3XAkamWSKElaNkbaXEhZkjQYqiUs1q4cP8SW6iXbTSVJjfvcFeexZ3q26TAkSQ3pZOIadZ9JoiSpcQ87fmPTIUiSGnDpo07gh7dPctl5JzYdilqYJEqSJElqxKaJFbzvkoc1HYYWsK4rSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmomiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqJomSJEmSpJpJoiRJkiSpZpIoSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmqRmU3H0HMRMQn8xyJ2XQ/sWOb7GWOz+/VDjIvdzxib3a8fYlzsfv0Q42L32wLc2aPnWux+/fA6Lna/fohxsfsZY7P79UOMi92vH2Jc7H7GeF+nZeYR+70nM4fuC7hhkft9aLnvZ4z+bsP8u/VDjP5u/RnjYfxuy3686YfX0d/NGJfbfv0Qo7+bMbaxzwHHKNtNO/PFPtjPGJvdrx9iXOx+xtjsfv0Q42L364cYD2e/Xj6Xr39zz9Xr/Yyx2f36IcbF7tcPMS52P2Ns07C2m96QmY9oOg5J0mBzvJEkLVcHG6OGtZL4oaYDkCQNBccbSdJydcAxaigriZIkSZKk/RvWSmJXRMSmiPh8ROyKiFsj4nnl7Y+LiH+LiO0RcVe5zTFNxztoIuIVEXFDROyNiP+z4L7zI+KmiNgdEV+LiBMaCnNgHej1j4hLIuLelq/dEZER8fAGwx0oEbEyIq4qjzuTEfHdiHjSfra7snztL2giTqlbDjT+lve9MiJ+GhE7y2PUbzUZ6yA6yPH/xPKY0zoGvKnBUAfSwcaAiHhkRHwlIu6OiDsi4jMRcf+mYx4khxqDI+LyiPhx+f6/LiK2Nhlvu0wSl9b7gH3A0cAlwAci4sHAvwNPzMwNwFbgR8AHmgpygN0GvB34q9YbI2IL8DngTcAm4AbgUz2PbvDt9/XPzGszc231BVwB/AT41wZiHFRjwM+Bx1BMgf1G4NMRcWK1QUScDDwb+FUTAUpdtt/xNyLOBd4FPIvib+Mq4PMRMdpYpINpv8f/FhtaxoG39TCuYXGwMWAjRUvhicAJwCRwdSNRDq4Dvv4R8VjgncDTKT6D/hT4RDNhdsZ20yUSERPAPcAZmfnD8rZrgF9m5utbtlsJvAV4emae3kSsgy4i3g4cm5kvKn9+CfCizDyv/HmCYt2yszLzpsYCHVALX//93P814PrMfGtPAxsyEfF94K2Z+dny5+uA9wLvBy7PzK82GZ+0VA42/gLfAV6dmee0bHsvsDUzPWGyxPYz/p5I8aF4PDNnGgxt6CwcA1pufxjw9TzQ2nhaEtXrDzwKWJ2Zv1/evpXi2HRKZt7cYIiHZCVx6ZwKzFQDVOl7wIMBIuL4iNgOTAGvAd7d8wiH14Mp/i8AyMxdwM3l7eqhss330cBHm45lkEXE0RTHpBvLn58N7M3Mv2s0MKk7Djb+/j0wGhHnltXDFwPfBbb1PMrhdmtE/CIiri67e9RFC8eABR59gNu1RPbz+kfr3eW/Z/Q0qEUYazqAAbIW2Lngth3AEQCZ+TNgQ0RsAn4PsILVO2uBOxbcVv/fqKdeAPxTZv606UAGVUSMA9cCH8nMmyLiCIpWl8c3G5nUNQcbfyeBzwL/l+LD2XbgSWkbVa/cCZxNkZhvpmgLvhZ4YoMxDbSFY8CC+x4CXEnR+qgu2M8YfB3wyYj4IMXlZlcCCaxpMMy2WElcOvcC6xbcto5igKpl5t3AR4C/iQiT9N5o6/9GPfECive/uiAiRoBrKK7NekV581uAazLzlobCkrrtYMf43wUuo6gqrgCeD3ypXyaO6HeZeW9m3pCZM5l5O8Vx6QnlySstsQOMAdV9p1BU1v8wM/+pgfAG3v5e//LSjjdTnKy6pfyaBH7RSJAdMElcOj8ExiLiAS23PZT9l/THgKP4zUFN3XEjxf8FUF+TcjK2W/RURPwXiomb/rrpWAZRRATFpBxHAxdm5nR51/nAH0TEtojYBhxHcUH96xoKVVpqBxt/zwS+lJk/zMy5zLyOYvKm83ofpigqKODnzyV3kDGgutTjq8DbMvOahkIcaAd7/TPzfZn5gMw8miJZHAN+0Eyk7fOPdImU17l9DvjjiJgoPxA/HbgmIp4ZEadFxEhEHAm8B/hOWVXUEomIsYhYBYxSXIOyqqzWfh44IyIuLO+/Evi+k9YsrYO8/pUXAp/NTCu43fEB4EHA0zJzquX28ymufTiz/LoNeClF25fU9w42/gLfBp4SESdF4fEU1wot+w9o/eRAx//yWtDq889mismzrs/MHc1GPJD2OwZEseTaPwJ/npkfbCq4IXCg139VRJxRHn+Op5hp9n9n5j1NBdouk8SldQWwGvg1xfS2L8/MG4FjgOsoysv/BswBz2gqyAH2RoqJgV5P0VI0BbwxM+8ALgTeQTED3rnAc5sKcoDt9/WH4iAJXIStpl1RniV+KUUSuC3m1yO7JDPvysxt1RcwC9yTmfc2GbO0xA40/n4U+CRwPcV1i+8FXupJwiV3oOP/Scx//vkBsBe4uKEYB9bBxgDgcor/h7e03O7xfwkd4vVfBXycoi3+n4FvUizJtuy5BIYkSZIkqWYlUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1UwSJUmSJEk1k0RJkiRJUs0kUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1QYqSYyIWyLi1xEx0XLb5RFxfYNhSZIGTDneTEXEZERsj4hvRMTLImKgxlVJ0nAaxMFsFPjDpoOQJA28p2XmEcAJwLuA1wFXNRuSJEmHbxCTxD8FXhMRGxbeERHnRcS3I2JH+e955e3PiYgbFmz7qoj4296ELEnqV5m5IzP/FngO8MKIOCMiVkbE/4yIn0XE7RHxwYhYXe0TEU+PiO9GxM6IuDkifqe530CSpPsaxCTxBuB64DWtN0bEJuDLwHuBzcB7gC9HxGbgi8BpEfGAll2eB3y8FwFLkvpfZv4z8Avgtykqi6cCZwKnAMcAVwJExDnAR4E/AjYAjwZu6XW8kiQdyCAmiVAMxK+MiCNbbnsK8KPMvCYzZzLzE8BNFO1Cu4G/AS4GKJPFBwJWEiVJnbgN2AS8BHhVZt6dmZPAO4Hnltv8LvBXmfmVzJzLzF9m5k0NxStJ0m8YyCQxM38AfAl4fcvNW4FbF2x6K8XZXSiqhheX3z8P+EKZPEqS1K5jgDFgDfAv5aQ224HrgOrE5XHAzc2EJ0nSoQ1kklh6M/B7zCeBt1FMLtDqeOCX5fdfAY6MiDMpkkVbTSVJbYuIsynGnC8AU8CDM3ND+bU+M9eWm/4cOLmhMCVJOqSBTRIz88fAp4A/KG/6O+DUiHheRIxFxHOA0ykqjmTmNPAZiolvNlEkjZIkHVRErIuIpwKfBD6Wmd8DPgz8WUQcVW5zTEQ8sdzlKuCyiDg/IkbK+x7YTPSSJP2mgU0SS38MTABk5l3AU4FXA3cBrwWempl3tmz/ceAC4DOZOdPjWCVJ/eWLETFJURn87xQTol1W3vc64MfAtyJiJ/BV4DSoJ7i5DPgzYAfwdX6z00WSpMZEZjYdgyRJkiRpmRj0SqIkSZIkqQMmiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqfZ0kRsTKiLgqIm6NiMmI+G5EPKnl/vMj4qaI2B0RX4uIE1ruuygivlHed/1BnuMFEZERcXmXfx1JkiRJalxfJ4nAGMX6VI8B1gNvBD4dESdGxBbgc8CbgE3ADcCnWva9G/hfwLsO9OARsRF4A3BjN4KXJEmSpOVm4NZJjIjvA28FNgMvyszzytsngDuBszLzppbtLween5mP3c9jfRD4PnAR8LHM/Mvu/waSJEmS1Jx+ryTeR0QcDZxKUfl7MPC96r7M3AXcXN7ezmOdAzwC+ODSRypJkiRJy9PAJIkRMQ5cC3ykrBSuBXYs2GwHcEQbjzUKvB94RWbOLXWskiRJkrRcDUSSGBEjwDXAPuAV5c33AusWbLoOmGzjIa8Avp+Z31qyICVJkiSpD4w1HcDhiogArgKOBp6cmdPlXTcCL2zZbgI4mfYmoTkfeExEPLn8eRNwVkScmZmvOMh+kiRJktTX+j5JBD4APAi4IDOnWm7/PPCnEXEh8GXgSorq4E1Qt5SOU7wGIxGxCpgtk8wXAataHutzwF9TJKOSJEmSNLD6ut20XPfwpcCZwLaIuLf8uiQz7wAuBN4B3AOcCzy3ZfdLgSmKJPO3y+8/DJCZ2zNzW/VF0ca6MzMXXuMoSZIkSQNl4JbAkCRJkiQtXl9XEiVJkiRJS8skUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCQJiIjjy7V2R5uORZKkJpkkSpKGVkTcEhEXAGTmzzJzbWbO9vD5HxsRv+jV80mS1A6TREmSJElSzSRRkjSUIuIa4Hjgi2Wb6WsjIiNirLz/+oh4e0R8o7z/ixGxOSKujYidEfHtiDix5fEeGBFfiYi7I+I/IuKilvueHBH/HhGTEfHLiHhNREwAfw9sLR//3ojYGhHnRMQ3I2J7RPwqIv48Ila0PFZGxBUR8aPy8d4WESeXce6MiE9X21eVyoh4Q0TcWVZOL+nRSyxJ6lMmiZKkoZSZlwI/A56WmWuBT+9ns+cClwLHACcD3wSuBjYB/w94M0CZ8H0F+DhwVLnf+yPi9PJxrgJemplHAGcA/5iZu4AnAbeVba5rM/M2YBZ4FbAFeBRwPnDFgrieCDwceCTwWuBDwPOB48rHv7hl2/uVj3UM8ELgQxFxWkcvliRpqJgkSpJ0YFdn5s2ZuYOi6ndzZn41M2eAzwBnlds9FbglM6/OzJnM/A7wWeDZ5f3TwOkRsS4z78nMfz3QE2bmv2Tmt8rHuQX4C+AxCzZ7d2buzMwbgR8A/5CZP2mJ86wF278pM/dm5teBLwMXIUnSAZgkSpJ0YLe3fD+1n5/Xlt+fAJxbtohuj4jtwCUUVTyAC4EnA7dGxNcj4lEHesKIODUivhQR2yJiJ/BOikrgYuICuKesWlZuBbYe6PklSTJJlCQNs1yix/k58PXM3NDytTYzXw6Qmd/OzKdTtKJ+gfnW1v09/weAm4AHZOY64A1AHEZsG8t22MrxwG2H8XiSpAFnkihJGma3AyctweN8CTg1Ii6NiPHy6+yIeFBErIiISyJifWZOAzuBuZbn3xwR61se64hym3sj4oHAy5cgvreWcfw2RWvsZ5bgMSVJA8okUZI0zP4EeGPZHvqsxT5IZk4CT6CYsOY2YBvwP4CV5SaXAreU7aMvo2hFJTNvAj4B/KRsU90KvAZ4HjAJfBj41GLjKm0D7injuhZ4Wfm8kiTtV2QuVaeNJElaTiLiscDHMvPYhkORJPURK4mSJEmSpJpJoiRJkiSpZrupJEmSJKlmJVGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1f4/WCe+dKm1/scAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "次に、データをトレーニング用に準備するために、データのフィルタリングとスケーリングを実行する必要があります。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "データを(0, 1)の範囲にスケールします。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          load
                                          2014-11-01 00:00:000.101611
                                          2014-11-01 01:00:000.065801
                                          2014-11-01 02:00:000.046106
                                          2014-11-01 03:00:000.042525
                                          2014-11-01 04:00:000.059087
                                          \n", + "
                                          " + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.101611\n", + "2014-11-01 01:00:00 0.065801\n", + "2014-11-01 02:00:00 0.046106\n", + "2014-11-01 03:00:00 0.042525\n", + "2014-11-01 04:00:00 0.059087" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          load
                                          2014-12-30 00:00:000.329454
                                          2014-12-30 01:00:000.290063
                                          2014-12-30 02:00:000.273948
                                          2014-12-30 03:00:000.268129
                                          2014-12-30 04:00:000.302596
                                          \n", + "
                                          " + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.329454\n", + "2014-12-30 01:00:00 0.290063\n", + "2014-12-30 02:00:00 0.273948\n", + "2014-12-30 03:00:00 0.268129\n", + "2014-12-30 04:00:00 0.302596" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [ + "タイムステップを使用したデータの作成\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "私たちのSVRでは、入力データを`[batch, timesteps]`の形式に変換します。そのため、既存の`train_data`と`test_data`を再構築し、新しい次元(タイムステップを指す次元)を追加します。この例では、`timesteps = 5`を採用します。したがって、モデルへの入力は最初の4つのタイムステップのデータであり、出力は5番目のタイムステップのデータになります。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=5" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1412, 5)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0]\n", + "train_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(44, 5)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0]\n", + "test_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 4) (1412, 1)\n", + "(44, 4) (44, 1)\n" + ] + } + ], + "source": [ + "x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]]\n", + "x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]]\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5,\n", + " kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Fit model on training data\n", + "\n", + "model.fit(x_train, y_train[:,0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "モデル予測を行う\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 1) (44, 1)\n" + ] + } + ], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = model.predict(x_train).reshape(-1,1)\n", + "y_test_pred = model.predict(x_test).reshape(-1,1)\n", + "\n", + "print(y_train_pred.shape, y_test_pred.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)\n", + "\n", + "print(len(y_train_pred), len(y_test_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)\n", + "\n", + "print(len(y_train), len(y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:]\n", + "test_timestamps = energy[test_start_dt:].index[timesteps-1:]\n", + "\n", + "print(len(train_timestamps), len(test_timestamps))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABasAAAGDCAYAAAAlN0y0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9eZxtV13m/aw9n7GmOyY3E4QhITIHERkUacjbIrZt+wrd7dCKgratre3Urd2grSD42ohoMwiKAxAwKCAaDGMSEkJIIGRO7s2dx5rrjHtYe6/3j7X2ObvqVtU5dc+vbt3K/X0/n3xy65xTq/Y5Z++113rWs56fUEqBYRiGYRiGYRiGYRiGYRiGYbYSa6sPgGEYhmEYhmEYhmEYhmEYhmFYrGYYhmEYhmEYhmEYhmEYhmG2HBarGYZhGIZhGIZhGIZhGIZhmC2HxWqGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhthwWqxmGYRiGYZgLGiHEzUKIn6B+7agIIZQQ4urz8bc2m+J7EUK8TwjxP8+xnZYQ4im0R8cwDMMwDMNcLAil1FYfA8MwDMMwDPMkQwjRKvxYBhABSM3Pb1JKfeT8HxUtQggF4GlKqQMDXnclgEMAXKWUPB/HtlGGfS8rfucrAP5WKfXBTTswhmEYhmEY5qLC2eoDYBiGYRiGYZ58KKWq+b+FEIcBvFEp9YWVrxNCOBeqgLtd4c+UYRiGYRiG2a5wDAjDMAzDMAxz3hBCfI8Q4rgQ4jeEEKcB/KUQYkII8VkhxIwQYsH8e1/hd74ihHij+fdPCiG+KoT4/8xrDwkh/p9zfO1VQojbhBBNIcQXhBB/JoT423WO/deEEKeEECeFED+14rnvF0J8SwjREEIcE0K8tfD0beb/iyYm47uEEE8VQnxJCDEnhJgVQnxECDG+zt9WQohfFEIcNK//QyGEVXifdwgh3iWEmAPwViGEb973USHEGRPtURryvXxYCPF7hZ9/UAhxn3lvTwghbhBC/D6AlwH4U/Oe/rRwnHmcyJgQ4q/N93pECPHbK455ze+GYRiGYRiGuThhsZphGIZhGIY53+wBMAngCgA/Cz0m/Uvz8+UAugD+dJ3f/04AjwHYAeCdAD4khBDn8NqPArgbwBSAtwL4sbX+oBDiBgC/CuBfAXgagFeteEkbwI8DGAfw/QB+Tgjxb8xzLzf/H1dKVZVSXwMgALwdwCUArgFwmTmG9fghAC8E8HwAPwigKDJ/J4CDAHYD+H0AfwDg6QCeC+BqAJcC+F9Dvpfi+34RgL8G8Gvmvb0cwGGl1G8BuB3AL5j39Aur/Pp7AIwBeAqAV0B/Pv9pxTEP+z0yDMMwDMMwFwEsVjMMwzAMwzDnmwzAW5RSkVKqq5SaU0p9UinVUUo1ocXWV6zz+0eUUn+ulEoB/BWAvdAi7dCvFUJcDuB6AP9LKRUrpb4K4DPr/M3/F8BfKqUeVEq1sUJYVkp9RSn1gFIqU0rdD+Bj670HpdQBpdTnzWcwA+D/DHjPAPAOpdS8UuoogD8G8IbCcyeVUu8x8R8h9CLAL5vXNwG8DcDrh3kvK/hpAH9hjjVTSp1QSj064DghhLDN3/vvSqmmUuowgD/C8gWBjXyPDMMwDMMwzEUAZ1YzDMMwDMMw55sZpVSY/yCEKAN4F4AbAEyYh2tCCNsImSs5nf9DKdUxZtzqKq9b77U7AMwrpTqF1x6DdjivxiUA7i38fKT4pBDiO6HdzNcB8AD4AP5ujbYghNgN4N3QURo1aBPJwlqvLxxf8e9fssZzO6GLWt5bMCoLAPYw72UFlwH45wHHtRo7ALgr2j4C7fDO2cj3yDAMwzAMw1wEsLOaYRiGYRiGOd+oFT//NwDPAPCdSqk6+rEZmxkJcQrApBHKc9YSqvPXF5+/fMXzH4V2Zl+mlBoD8D70j3/l+wW001kB+A7znv8jBr/flX//ZOHn4t+YhY5SeZZSatz8N1YoejnovRQ5BuCpazy32vsqHkMCHe1S/Dsn1vkdhmEYhmEY5iKHxWqGYRiGYRhmq6lBi6uLQohJAG/Z7D+olDoC4B7oYoSeEOK7APzAOr/yCQA/KYS41gjcK4+xBu3UDk3O878vPDcDHX3ylBWvbwFYEkJcCp0JPYhfM8UoLwPwSwA+vsZ7ywD8OYB3CSF2AYAQ4lIhxGuGfC9FPgTgPwkhvk8IYZl2nmmeO7PiPRWPITV/5/eFEDUhxBUAfgXAmgUsGYZhGIZhGIbFaoZhGIZhGGar+WMAJWg37l0APnee/u5/APBdAOYA/B60+But9kKl1M3Qx/klAAfM/4v8PIDfFUI0oQsZfqLwux3oHO47hBCLQogXA/gd6EKJSwD+CcDfD3G8n4aO77jP/M6H1nntb5jjvEsI0QDwBWj3+jDvpYdS6m7ooojvMsd6K/pu6XcD+HdCiAUhxJ+s8uv/Bbrw5EEAX4V2n//F4LfJMAzDMAzDXKwIpdbbvccwDMMwDMMwFwdCiI8DeFQptenO7o0ihFAAnqaUOrDVx8IwDMMwDMMwmwU7qxmGYRiGYZiLEiHE9UKIp5p4ixsA/CCAT23xYTEMwzAMwzDMRYuz1QfAMAzDMAzDMFvEHuj4jSkAxwH8nFLqW1t7SAzDMAzDMAxz8cIxIAzDMAzDMAzDMAzDMAzDMMyWwzEgDMMwDMMwDMMwDMMwDMMwzJbDYjXDMAzDMAzDMAzDMAzDMAyz5VzQmdU7duxQV1555VYfBsMwDMMwDMMwDMMwDMMwDLMO995776xSaucobVzQYvWVV16Je+65Z6sPg2EYhmEYhmEYhmEYhmEYhlkHIcSRUdvgGBCGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhtpwLOrN6NZIkwfHjxxGG4VYfyrYmCALs27cPrutu9aEwDMMwDMMwDMMwDMMwDMNsP7H6+PHjqNVquPLKKyGE2OrD2ZYopTA3N4fjx4/jqquu2urDYRiGYRiGYRiGYRiGYRiG2X4xIGEYYmpqioXqERBCYGpqit3pDMMwDMMwDMMwDMMwDMNcMGw7sRoAC9UE8GfIMAzDMAzDMAzDMAzDMMyFxLYUqy8UPvWpT0EIgUcffXTd1/3xH/8xOp3OOf+dD3/4w/iFX/iFc/59hmEYhmEYhmEYhmEYhmGYCx0Wq0fgYx/7GF760pfiYx/72LqvG1WsZhiGYRiGYRiGYRiGYRiGebLDYvU50mq18NWvfhUf+tCHcOONNwIA0jTFr/7qr+K6667Ds5/9bLznPe/Bn/zJn+DkyZP43u/9Xnzv934vAKBarfbauemmm/CTP/mTAIB//Md/xHd+53fiec97Hl71qlfhzJkz5/19MQzDMAzDMAzDMAzDMAzDbAXOVh/ASLzpTZvT7vvfP/Aln/70p3HDDTfg6U9/OqampnDvvffi7rvvxuHDh3HffffBcRzMz89jcnIS/+f//B98+ctfxo4dO9Zt86UvfSnuuusuCCHwwQ9+EO985zvxR3/0R1TvimEYhmEYhmEYhmEYhmEY5oJle4vVW8jHPvYx/NIv/RIA4PWvfz0+9rGP4dChQ3jzm98Mx9Ef6+Tk5IbaPH78OH70R38Up06dQhzHuOqqq8iPm2EYhmEYhmEY5pyQErj9duA7vgMYYMRhGIZhGIY5F4YWq4UQNoB7AJxQSr1WCPFhAK8AsGRe8pNKqfuEEALAuwH8awAd8/g3TRs/AeC3zet/Tyn1VyMd/RAO6M1gfn4eX/rSl/DAAw9ACIE0TSGEwPXXXz/U7+uPSBOGYe/f/+W//Bf8yq/8Cl73utfhK1/5Ct761rdSHzrDMAzDMAzDMMy5cfvtwI03Ap/8JPCnf7rVR8MwDMMwzJOQjWRW/xKAR1Y89mtKqeea/+4zj/0/AJ5m/vtZAO8FACHEJIC3APhOAC8C8BYhxMQIx75l3HTTTfixH/sxHDlyBIcPH8axY8dw1VVX4TnPeQ7e//73Q0oJQIvaAFCr1dBsNnu/v3v3bjzyyCPIsgz/8A//0Ht8aWkJl156KQDgr/5qNB2fYRiGYRiGYRiGlNOn9f+TZGuPg2EYhmGYJy1DidVCiH0Avh/AB4d4+Q8C+GuluQvAuBBiL4DXAPi8UmpeKbUA4PMAbjjH495SPvaxj+GHfuiHlj32wz/8wzh16hQuv/xyPPvZz8ZznvMcfPSjHwUA/OzP/ixuuOGGXoHFP/iDP8BrX/tavOQlL8HevXt7bbz1rW/Fj/zIj+AFL3jBwHxrhmEYhmEYhmGY88rYWP/fWbZ1x8EwDMMwzJMWoZQa/CIhbgLwdgA1AL9aiAH5LgARgC8C+E2lVCSE+CyAP1BKfdX87hcB/AaA7wEQKKV+zzz+PwF0lVL/34q/9bPQjmxcfvnlLzhy5MiyY3nkkUdwzTXXnPMbZvrwZ8kwDMMwDMMwzNDcfDMe//CdeNrYNMTbfp9zqxmGYRiGWYYQ4l6l1AtHaWOgs1oI8VoA00qpe1c89d8BPBPA9QAmoQXpkVFKfUAp9UKl1At37txJ0STDMAzDMAzDMAwzKlGEN93+H/FEYydw5sxWHw3DMAzDME9ChokB+W4ArxNCHAZwI4BXCiH+Vil1ykR9RAD+EjqHGgBOALis8Pv7zGNrPc4wDMMwDMMwDMNc6EQR4szGA/OXsljNMAzDMMymMFCsVkr9d6XUPqXUlQBeD+BLSqn/aHKoIYQQAP4NgAfNr3wGwI8LzYsBLCmlTgH4FwCvFkJMmMKKrzaPMQzDMAzDMAzDMBc6UYQkF6tnZ7f6aBiGYRiGeRLijPC7HxFC7AQgANwH4M3m8X8G8K8BHADQAfCfAEApNS+E+N8AvmFe97tKqfkR/j7DMAzDMAzDMAxzvohjJJmN++cvBToPbPXRMAzDMAzzJGRDYrVS6isAvmL+/co1XqMA/Oc1nvsLAH+xoSNkGIZhGIZhGIZhtp4oAgAcbOwEut0tPhiGYRiGYZ6MDJNZzTAMwzAMwzAMw1zsRBEEACEUi9UMwzAMw2wKLFafA7Zt47nPfS6uu+46/MiP/Ag6nc45t/WTP/mTuOmmmwAAb3zjG/Hwww+v+dqvfOUruPPOOzf8N6688krMcqYcwzAMwzAMwzCjEEUQQsERGWQ72uqjYRiGYRjmSQiL1edAqVTCfffdhwcffBCe5+F973vfsuellOfU7gc/+EFce+21az5/rmI1wzAMwzAMwzDMyJgYkLITo91It/hgGIZhGIZ5MsJi9Yi87GUvw4EDB/CVr3wFL3vZy/C6170O1157LdI0xa/92q/h+uuvx7Of/Wy8//3vBwAopfALv/ALeMYznoFXvepVmJ6e7rX1Pd/zPbjnnnsAAJ/73Ofw/Oc/H895znPwfd/3fTh8+DDe97734V3vehee+9zn4vbbb8fMzAx++Id/GNdffz2uv/563HHHHQCAubk5vPrVr8aznvUsvPGNb4SOEWcYhmEYhmEYhhmBOAYAVNwInSaL1QzDMAzD0LOhAovMcqSUuPnmm3HDDTcAAL75zW/iwQcfxFVXXYUPfOADGBsbwze+8Q1EUYTv/u7vxqtf/Wp861vfwmOPPYaHH34YZ86cwbXXXouf+qmfWtbuzMwMfuZnfga33XYbrrrqKszPz2NychJvfvObUa1W8au/+qsAgH//7/89fvmXfxkvfelLcfToUbzmNa/BI488gt/5nd/BS1/6Uvyv//W/8E//9E/40Ic+dN4/G4ZhGIZhGIZhnmSEIQDjrG6xIYZhGIZhGHq2vVh9ww0AZRzzjh3A5z63/mu63S6e+9znAtDO6p/+6Z/GnXfeiRe96EW46qqrAAC33HIL7r///l4e9dLSEvbv34/bbrsNb3jDG2DbNi655BK88pWvPKv9u+66Cy9/+ct7bU1OTq56HF/4wheWZVw3Gg20Wi3cdttt+Pu//3sAwPd///djYmJiQ58BwzAMwzAMwzDMWeTOaidGJ7SAJAFcd4sPimEYhmGYJxPbXqweJCxvBnlm9UoqlUrv30opvOc978FrXvOaZa/553/+Z7LjyLIMd911F4IgIGuTYRiGYRiGYRjmLLJMi9MAyiWFtvSBbpfFaoZhGIZhSOHM6k3iNa95Dd773vciMQO6xx9/HO12Gy9/+cvx8Y9/HGma4tSpU/jyl7981u+++MUvxm233YZDhw4BAObn5wEAtVoNzWaz97pXv/rVeM973tP7ORfQX/7yl+OjH/0oAODmm2/GwsLCprxHhmEYhmEYhmEuEoyrGsJCpZyhIz0tVjMMwzAMwxDCYvUm8cY3vhHXXnstnv/85+O6667Dm970Jkgp8UM/9EN42tOehmuvvRY//uM/ju/6ru8663d37tyJD3zgA/i3//bf4jnPeQ5+9Ed/FADwAz/wA/iHf/iHXoHFP/mTP8E999yDZz/72bj22mvxvve9DwDwlre8Bbfddhue9axn4e///u9x+eWXn9f3zjAMwzAMwzDMk4woglKAEgLlEtBOWKxmGIZhmFtv3eojePIhlLpwC2O88IUvVPfcc8+yxx555BFcc801W3RETy74s2QYhmEYhmEYZiimpyF/6y14yT/9Fn7kBQdxWecxvP5PXwrwfIJhGIa5iLn6auDAga0+igsHIcS9SqkXjtIGO6sZhmEYhmEYhmGY9YkiJJkN11EoV9DPrCbgiSeAN72JpCmGYRiGOW8oBZw4of/P0MFiNcMwDMMwDMMwAzl5Evi939vqo2C2jDjWYrWrUKlapJnVi/c+gf13nNFFHBmGYRhmm9DpAGHYqz/MEMFiNcMwDMMwDMMwA5mZAW6/fauPgtkykqTvrK5aaBOK1fFHb8LpEylw990k7TEMwzDM+WBuTv8/DLf2OJ5sbEux+kLO2d4u8GfIMAzDMAzDbAQpgTNntvoomC1DSi1W2wqVmnFWxzFJ03Fq41RnDFhaImmPYRiGYc4HuVjN9YZp2XZidRAEmJubY7F1BJRSmJubQxAEW30oDMMwDMMwzDaBxeqLnDQtZFYLtBMfiCKSpqPMwWJcQZjYJO0xDMMwzPlg7owEwM5qapytPoCNsm/fPhw/fhwzMzNbfSjbmiAIsG/fvq0+DIZhGIZhGGabIKWOAskywNp2lpeLDyl1hmapRNRgHgPiFpzVFGJ1liFO9bT09LyHK0dvkWEYhmE2n6NHMfdHtwB4I4vVxGw7sdp1XVx11VVbfRgMwzAMwzAMc1GRJECa6i2vO3du9dEwg7j5ZuBrXwPe9jaiBnvOavQzqyliQLpdxJkRq88IFqsZhmGY7cHtt2OuW4ZAhjDkVXxK+NNkGIZhGIZhGGYg8r4HAQBnjtJEPzCbSxQBjz9O2KCUkJkFx1GojNl0mdXtNuLURtUNcer06M0xDMMwzHlh927MRRXsLjURtuRWH82TCharGYZhGIZhGIYZiLzlSwCAM5/75hYfCTMMaQrs30/YYF5g0QHKdRdt6ZOJ1VHm4IrqHE5Pc2Y1wzAMs01wHMyHFVxaWUR4dHqrj+ZJBYvVDMMwDMMwDMMMRGYWSnaM6YPtrT4UZgjSMzM4sD8DWV36XKx2gUrdpiuw2G4jTh1cUZ3H6dltl1LJMAzDXKxIibmogn2VBYRHuAI1JSxWMwzDMAzDMAwzEKksXFpZwJmT6VYfCjME6T/8IzpdC6cfmqNpsCBWl+oubQxI5mAqaKHVFqO3xzAMwzDnAykxF1a1s3q2tdVH86SCxWqGYRiGYRiGYQaSZDYurSzizPTFKyjeeSfw0ENbfRTDkSoLjkix/6tEbq+8wKIL2CUPmRI0YnWngyh1UHdDhF0qGzjDMAzDbDJSopkE2Bk00W1nW300TypYrGYYhmEYhmEYZiASLnYGLSx2faDb3erD2RJuvx34xje2+iiGI1UWrqrP4uDDIU2DBWc1fF8/RhED0mohzmzUvRAh1+5kGIZhtgtSQioLNS9E2GGxmhIWqxmGYRhmizh6FLj55q0+CoZhmCHIMkgJTAUtLMUlYHFxq49oS5AS6HS2+iiGQCnIzMLOoInFU0QLC7lY7QHwPAih6GJAUgc1NyTRvhmGYRjmvJCmkJmFqhOxWE0Mi9UMwzAMs0Xcc8/FLVa320BIZPhjGGaTiWNIZWPKb6ORBBetszpJtslbzzKkysKk30FjmtpZLQDP049RqMudDuLM0c7qxNYrAgxDxPw8cOONW30UzLC0WsD09FYfBcMMSZIgVRbKTswxVsSwWM0wDMMwW8TMzDYRPTaJP/9znkAyzLYhjpFkNnbkzuoLvPNSCvj85+nb3TbOaimRKgsTfhuNxQzICBxfRWd1HgMSx/rDHoUwNJnVXUSpu00+YGa7cPTo9hlrSAn84R9u9VFsLbfcAvzZn231UTDMkKS64HTgJCxWE8NiNcMwDMNsERe7WB2GwNzcVh8FwzBDEYaQmc5l7EjvghcUowh49auB97+ftt0kueDfusaI1eNeF42YyAkvJaSy4bgCsG0IAWSp6k3WR2m3l1mdOhf3jfEiJ4qA7/5u2jaTZPs4dcMQeOc7R1//2c5ICSwtbfVRMMyQSAkBoGSzWE0Ni9UMwzAMs0Vc7GJ1kgALC1t9FAzDDEUcQyoLrmWEyQu880oS4OlPV/jMZ2jb3V7OaoEJv4Nm4uvcpVFJU+OsFgCAwEkRpc7oudVJgjh1UPeMs5oiB5vZlnz0o8Cdd46+/lFESj3e2g4kCTA7C5w5Q9vu4uI26bfAYjWzzTCxVYGdIIzEFh/MkwsWqxmGYRhmi5iZoc9s3k5Rn1LqLEmGYbYBUQSZ2XCEiZO40MXqL38VU41DaJyhPc5tk1ktJdLMwoTfQSMu0YjVvRgQPYUM3BRdSSAuS2liQIyzmsXqi5YbbwSe9jSdW0yFlNvHWZ2P4e6/n7bdD3wA+Nu/pW1zs0hTFquZbUQuVjsJwtiiidxiALBYzTAMwzBbxmY4q3/914GPfIS2zc2CndUMs42IIsjMgmNlEACy9oWt2MqbPoUxt4POEVqVans5q01mdRIQi9X6x8DLEKbu6EUWkwRx5qBcsyEzm8Xqi5hOW+HyyxWpWJ0kQKNBUwt0s8nF6gceoG03joGHH6Ztc7NgsZrZVvSc1VIv3nLleDJYrGYYhmGYrWB2FnPHOuRidbMJ/M7vbA+HdZKws5phtg1RhCSz4YgUVTdEayHZ6iNal2TPZXCFyRIgnDxut8zqmhuhTRUDkovVvg0AKPmpFqspYkAyG17VqOAsVl+cnDoFeeAQxjunyJ3VwPaIAkkW27hib4QHHqDNvpWSxer/8B+4TgqzCeQFFu1E3w+3xdar7QGL1QzDMAyzFbzzncDsLOJFAgGhQD4pO3yYtNlNgZ3VDLONiGNIZcO1Uox5XSzNE4bKbgJJUOvnaz/xBFm7281ZbeexLRQH3XNWm8zq3FlNlFnt1Xz9M4vVFycPPIA0ExifP4jWHJ0NOjHrattBrJY3/QMuV0dx5gH6HSHbRazerMzqI0eAb32Lvl3mIqeYWc1iNSksVjMMwzDMFqAWlyCEonG7FUgaXeyYSNFskja7KXBmNcNsI/IYkGqgxeqFCzuXMQlTOJY+RtWg6xC3k7NaZlqsJrvX5AUWfSNW+0pvex41X0FKRJkWq4VQ2yOvgaGnVEKmLNS9EM27HyFrVsa6H9gOudXywccwFbSwdILQWg493jp1anvEa2yWs1pK4JvfpG+XuchZJlY7HANCCIvVDMMwDLMFNJIAdTekdZAtLEDe9yAmpx/ZFmI1O6sZZhsRRZDKglMvY8wLsbRIu02dGhmlcK0UJTtBtECnLku5TYxTxlndE+ybBOJXkiwrsFjyFamz2h8L9M/srL44kRIKQM0N0Tq+SNZs8k+3YMpvYWY/XZsAoDahC0x2XYqqEyFKnb4lnAApgac+FXjsMbImN43NFKvZWc2QY/qtUt3V90MWq8lgsZphGIZhtoDZZBw7ghaUzOhmPDMzSDIbk24TzTMXuPVPKSQP70dzKePC2QyzHcgzq+tl7awmFBP+/M/po4uSKINrpah7XTSm6SaP2zEGJLATRA0Ct3LurA70FDIIQFhg0e7HgBA6q9/yFuDb3yZrblORshd/enFixNmqG6G1RPdByEPHcEllEdP3HCVrEwB+8RfpxU/plvrxRVSdolKQ334Qe5yZbbGbLU31ehW15pdl20OsZ7YZubN6zOcYEGJYrGYYhmGYLaBbmkTZMe6xxUWaRpWCVBYm/A4aj52iaXOz6HQgz8xiwmuhsXRhOzQZhoGJAbHh1ksY87poNAVZ03fdBdx/P1lzAIAkSuFYKWpuhMYsnVN3O8WApErAtpT+DOYIXJomWsTxdIHFwM90DMgoCqtSOgYkdeCNlfRDEd33deQI8NWvkjUHQL/dP/gD2jYB4E//FPjEJ+jb3TYY0afqhmg16cYFUtnYW17CzCxdnwUArRZw4ABpk8vii8i2yLVaSE7OYqJzAs35C7swLtCvvULtrhZC/8cwpEgJAcAfCxBKFqspYbGaYRiGYbYAmSg4VqrzOakmJHGMJLMx4XXQfOICD2fsdpFkNnaXGpg/vh2UH4a5yIljLVSOV7WzumVTNo0TJ8iaAwDIWPWd1RRCbd5uO0QSbQP7q5RIMwt2taQ/g3lJ0qbOrDbO6jwGZBSxOk3NQqsNu+zDs1LEHYJjNcQxcM89ZM0B0FrE7/1eX1Sjot0GTp6kbXNbkSQQAKpORBpllmQ2pvw2+cK4lMDx46RNQsYZHCuFIzIkTSJrcZJAZsbIcITWWv3KV5I2B0B3CZZFLFa328DcLBwZkl+3zEWOuf85YxWkyuIYEEJYrGYYhmGYLSBJANdKYYsMskm0Ch/HkJmNyaCN5gzdYEkp4Kd+CvjlXyZrsidW7yo1sXCSxWqGueAJQ51ZPVbRzseuBaoMnyShF6t7MSBuSCPUAjoK5dGDcFvbIGw/jwGpllB3QzSXCL6rFWJ1L7N6FPXH/K4QAsL34NsJojadmpQkwL33kjXXa7PdBh54gL7dM2do29xW5JnVXohWm84Cmwu11LU8pASOHSNu02Ttj/sdLE0TxeEkid5153XQPEZrV370UfromjRJMTmpaMXqL3wBaLdRmT1MXdecuchRiblfVSpQABcIJoTFaoZhGIbZAmSi4FoZSk6C7iLdhCTJbEz6HRphwhDHehs16cS800GS2dgZNLF4ml0IDHPBY3ZuOCUHpQDoSo9sUkYuViuFJMrgiAx1L0Rjkag/XFrSgr1IoeQF7q7OxepaWX8GDZo2dWZ1HgOiEKbOaGpVXkROCMDzENgSYYfo+1IK8fEzWJhJSKNbcm3+zjvp2gT0RzF9gW+K2lTyzGonohOrs8yMi9potmmlj80Qq/N+a8zrYnGOqI8pGhlOERRaLRBFdEl2Oemtd2AymSaNb8r7qKoToUX4ERw7Bvzu79K1x2w/0kTvhkClAgFwgWBCWKxmGIZhmC0gSQBHpAjsBGGDaGATx5DKwqTfRqMJssKNcQzs2AHSAT46HcjMxpjXRWeOxWqGueBJU8jMhuPZKJWgs4qJxGryGBCTrayd1V0aoRYAmk0kmY2yEyNZoBV9yMkzq8u+/gzaBLEtvQKLfbG6K73RxOpc+RUAfF8Xg6RyVj/6KOITM7hCHcHMDE2TgL5/79sHfP3rdG3m7V7UYnUvszpCs2PTjGGiqDcuanZtUtfjpjqrvS6W5oiuAzM2nPA6pLvuAP0ZzM2RNgk538Ck38bSfsKLoV4HYIp3nqbru6engc9+lqw5ZhsiY73AhEpFP8AxIGSwWM0wDMMw5xulejEgJTtBd4lQrM4dRJFHVgUsmV1COV5AEhPmPZoYkLoborPILgSGueCRElJZcH0LQQAd/0DkICJ3VhsXuOsJ1P0QjRZRZEmjYRbZQnRmLvC95Lmzuuyj5kVodJzRPwOzeycXq0sljB4DssJZ7VM6q1stxKmDcb9D6qxOEuDyyxSpAA7oj/GijgHJndVuhFZCtHMjinQtD7+DZhyQ2oCThDhjXCmTWZ1h3OtgcYFozGXGhhN+B03CeBVAn7Ozs4QNKoXULC4snSYsVFc8t56gu8jiGHjoIbJELGYbktcg6sWAsLOaDBarGYZhGOZ8k6Y911/JidFtEBX/ygss5pMyosC/5G9uhDt9AlgkzGk1MSB1j8VqhtkW9JzVFkplgW5K56xOWhG6VAIl0BNVHVegXlVoxD5IgkobDSSZjZobojt3gWftSwmZ2bA9G/WyRCMJRp9Er+Kspo8BSRCFRCKdbSM2O3jI4rYAJLfeicmTD6A5QyimgZ3VkBICQM0N0UoCmms2DCEzGyVH9wno0n1nUupCgAlV/VYTs+OIVBexXaQUq01ud4euMC6g3zupszpNkSqBqaCFpTOEDlXT91XdCK3DdOp6kmhfyOHDZE0y2wmlIBMFWyigXIZrpUg6dAWdL3ZYrGYYhmGY800+IbEyBLakE6vNjKnudbUwQSVWP3YQniVBWp3IOKvHvC46DS7NzjAXPCZaw/FtLVZLj8ZBND2N5ImjGO+cpCt8ZcQZ1xOojwk04hJNjlGjAQUteHTmaYVKcpIEqRJwPAv1Sqo/g1G2J2cZkGWIMweer92ZQZ5dTuCsVrDondVhqJ3VXhedM3T3r+Sz/4K620X3xDxZm0BfrCZK8Np+mAKL2lnt0+wOC0O9wGKZBRVKsTrJcOmlim6BIYoglW0KLHaxuETkgs5jQPyO3nU3yvW6AnJndRwjzSxM+p1NEqtDtGbp2s1vgQ89RNYks53IMshMwLEyoFRCxYnRblzg9Sy2ESxWMwzDMMz5Ji9SZZzVYYsul1ABqLkRmpRi9diO/kSPim4XUlna8dZksXo78MEPAkeObPVRbC0/8RNbfQTDc//9oxlezyJfZMud1VSZ1SdOIM5sXBrMY/oMnZMwyWy4ro4qbcQBjUhlwq9LTozOPJ1Td1NIUx0D4tmoV1J9Txji+/rCF9bQsszJ1E4DVKp9sTpMXXJnNVnkp1kUrbm0sS1S6Z1RlKIfoD+Kchl0GevbjUJUQzMJyMRqmemiqEIoOrG61YJ87CB2tI9SDbX6RWzzGJAGkVTTiwFp032u0OtXShE7q5MEUuk4u6VZQodqLlY7EVpLdDfGJAGuvhp48EGyJpnthJRIMwuOnQG+j4oTod26WFcb6WGxmmEYhmHON3n2a55ZTSXWmsF4pazQkR5ZNmNSn4JrpXBEhuQMkZOsFwPSRafJLoTtwF130ReT2m7cfvtWH8Hw/Nf/CnziE4QNpqnutwIbQcXWIiWFWG3bSDIbO4IWlo4sjt4esDyzug6904RQrC47MTrzF3gRJTOJtl0L9ZrSgv0QKvDbfzfGmQ/+I3D69FntAUAn9VAu64dKZTF6DIiUSDMB21aA78O3JaIukbPafOdlJyaNbUnqhQVcKhu0UkgefAz7qosXb261Oce8soModWhE1YJbGQBUh0isfuIJSAlMdk+gsUh0vpodIY4rdAxIiyiywzirx72udqwTCfb5Wg25s1oJLVYvKbrrKx8fuzFaTToxMf7Gt7EvO4LZ02y6uChJU0hlwzH3r7ITo9NmsZoKFqsZhmEY5nzTiwFJUXISdFtEYq0ZjItdO6GUoBOrQ12dvupGaO8nqiZkJqF6YMeVabYDUcRFzjsdspjmTUdK4I/+iLZBmdn9GBCqAovdLpQSGPc6WDpIZNGLYz2B9CzUxu3RIzByGg0I6H6rvUCbtf+qV5E2Z2JAtLO6VlVasB908jabkAeOoPnlbwB/93fLnzPKVFv6qFT0Q0EAhHJ0Z3WS2fActSnOasDcZ2YJxWq/CkdkEABdwb5GA8ncEi7BCUyfvvDvifPzwMGDtG2qWDtpxVhdu6AJY0AcK6O9bj0P0hQCbBwhqucRRXpBsOphzOtiseXQtGuc1YGt+wSqvCUpdZFVUmd1HgMStLEUDbcbZNh2AR0D0iYUE5Pb78J4No/OwdODX8w8+cjj0YxYXXHZWU0Ji9UMwzAMM4D3vIdsbK8xk3PXSvXEnMpFlm+nnpzU/yfa6tkXqwmz/ooiQoe2Oj2zOcQxi9WSOLp9M5FSz/MzKt3LOKsd30ap5uisYgohwfQFY14XjaOLo7cHFJzV0JnVyXCu4oEYZ3XNjdBapHXSHThA2lw/BsS1+rndgz6Dxx6DzMxrH3xQK5I5RqyOUheepx8KypZetBglDkNKRJkDz83oCyx2uxBC6UVhygKL5p7oWCniI6doGjXn7KTfRmuWNg99M5zaX/kK8Cd/QttmlugdXBgb0w9QDLyiqFfQuuaGaM4TRUtEEaT5vhoHiEKr8xiQkouKl6AT2zRRM4V4EQBkY0PZTbB7IsbsNG1x3FSZzOq4RBdZEsawhNIxIC26MWdewLVDZTphthdmp6xj68XWihOjzXMaMlisZhiGYZgBfPKTwDe/Sdhg7lC0FEpOjC6VyyOOtdOrVtM/EymLcaR6zmoysbrorA7FRVxRavsQRdvHVbxZbDexenyc8HjTVAsevo2g6pA6qwGg7oVYOkFQBBEoiNUWahOOzmml6A/Nh1lzQzQJc08BrctRfJw9pESqhM6szgX7QRewcWA2kwDHW+PAHXf0nzOLocLS8dKAdlVSZFaH0kXgqX6BxZjonlBcFF2iy79Noqwvfs7QLeAmma2LQRLmawPADTeQNgdA9y/79xO3GaWwrQyoVvXuMIoLouCsrrshmgu0NULG/S6ds9pcf65voVy1dJwbRWSHiQFxRKrHiFQxIJ/+J+yRxzH3KFWFSRSKQbb1ohmVsB5KOCLT41hCMbF3zdJt3GC2E/l8zgYQBHr3BovVZLBYzTAMwzADiCLgW98ibNCIPm7J0ZnVHSKhNndW1+vwbImoRTM51y6yTDtS5onUlKKIkHhkExJm8+AYkO0lVqcpMDVFWKytEANilzxkSpA7q5fm6SKRZGbB8SzYZV8fK4VAUywAt0S7wCYl/Q6eXgzImIXmMJnVxiXWKO/Biz/9m1C3f7Vvzc/7aKs/fQxKgkSs7kgP5SAFhEDgZYhSt38/GwXznZfsmO4+i76zuuZGaM4R3RONqDrmddGmWhQ2zMzQrwen6SaI1XGmndXVKhwrRdIm+GzzaI2xMmoe4SKT6fvqbheNWaJzoNdv2SjXHS1WU4yN8naNs1q1iGJAvn6vPl8pi82aGJDA1n0RqVidmy46dBJYnDraWd1lgfKiJI8BMTFWFTfS5wIbcEhgsZphGIZhBhCGxGJ1HgNSdvX25C5tARnU69gRtDA7RzN4zl1kVTdCc4HInZaL1RWzjZxUpWE2gzhmZ7WUQIvI/Hs+GBsDlpaIGssLw5YcwPO0Q486BqRNNDXJndW+pe2/wOgrLUr1hNuaG6JJfB6Qn1tSarHad+BWdL7ucM5qC3MTV+NEewKHj9nAww/r5/KDs/pF34KyhS5BZrUWq/Vn63uZLtpIEX9gvvOyE5OKSTJK+85qKrE6d1b7HXQWaDvaMKRfaJQSOHSI5mvqtZlkcKwUKJdRcyO0GwTCcu6sHqvoxQWqRSYz3qp7IRpNonMrj+vwLFRqxllN8cXFse4L6hWdqUskLsugCtcybm0q8mMVxJElRWd1OGJ0Ua9RiThzMO51WKy+WCkWWLQsVPwU7cSjWWxlWKxmGIZhmHVRCipO8OADhJl8+Up82TOTaItmFd5sS0W9jp1BCzMLBMV5lEISF2JAFmmLQZZ3lPWEjMXqCx52VmtNjtpZff/9wKc+RdsmlILqdFEvJXRidZoiUwKW5wC+rx+jdlZTFRTLFwQDS1cBBEY/eQviRs0N0aIS1g1JQixWp2nPXY4g0LEKgz6DJIFUNo7M6yip++Yu09nVQO/gVNFZXba0s3oU4acnVut7YOApXbSR0lntJOiGRGKSUkgSwLEy2gzkMITMndXExTuThHCHhSFN9dd++DBhm1Hac1ZX3RCtBsG4y2RLO+MV1NwQjUWisVxPrO7SidVRBKlMDEjurCaKAQEAMTGuz1miKBQZaAc8qYd0s8TqKDXO6hAt6dN8rlHU2w3BtVcuUpIEMrNgmzXccpChLX12dhDBYjXDMAzDrMdDD8GePgl5mrDcuZQ911+1nKFN6J4BANRq2Bk0MbPkjd6mlEhSqy9WU2yhVaonbrBYvX242J3V+WlLLVYfOADcfTdtm3j0UWBmBmN3fx6NaaIVhlyQtG3A97VAQZRZLYRC3etiqU0kVvccijZQKsEWGWRrxM8hF0+F0IJP1yHd6kvurC7EgAy9uGAm3odnqxirpVqsfuwx/VyrhSSz4Hp9Ucb1LSSZPZqzWkp0Uw/lUu6sVogyGme16nShlOjXRqAgd+1bqY6VoCq0aZzVY14XnUVasVpKerFaSr1zgzIKRCZKZ1ZXKnonV4Pg+gpDXWBxooa616Xrv3sxICEaHXvAi4ck77fyugDEYjXGtVjdmKNZYJFeWS8uAHR9YRzrrH2hd/TFS0T52qHU49iyQishEqu7XcSpjYobQyaKox8uRvLC02boUillek5zMQ+WCWGxmmEYhmHW42tfAwC4cWuk+fgypNTuGReoVoFWEpDmqaJex85SC7NL7uhtGueIZ0ntSGkSDMZ7H6RAMB6wWL1NuNid1Xl0L7VYnSRk9a76LOiCX3W3i6U7Hxq9PaX6161tA55ZCCNyVisltLO6Q9BnAb0iXa6vXcV1L0RzaURHpRFPlRCoVhSaiU92QeQf72bFgCAIYAmFrDOEszqzcWS2jFd8j8C35q8ATp7USmerhY70UCn37wHCsXt/65zJndUmrSXwjbOaQKxOuzEcK9WFjCMiQdHcE3uZ1VSxEgWxmiT+osBmLLKlKXDVVcDx43RtFjOrq05Ecz3kAnAeA9KiW7QATAxI16OJlcizpX0bokwUX2TaBWDE6ogst1sKF46VDte3DIspMulYmb4nzBG5wI1rv7KjpMfcFI5tEzHjWRJQ2SbcyJkLHimRZhbyW2GlrHQMCIvVJLBYzWwJr33tVh8BwzBPRrJs82LCAlvSjUONs9pxhRGraVweWZTo7MBqFTuCFmaawehOj3xi7ig9eaQQq/NJnRCw6lW9PZ1QpZmZIWuKKRDHF7dYnZ+21KKPlJswx01TCKF0DvQMwaRJ5a4xoQvs+T4EABUSZ1ZHXn9VYBQKu1cQBNr9OOr2fxODIoRArS50wUKiLy5fB6COAUmzvrO6NkysQpJAKguHp8t43vMtHEt268cPHgRaLbQTH+VKQezL7WQjOqu1WG1iQHzjrB71Zp5liLsSnpVqZ3Vs05xbRWe1S7AIkhOGkMrSzuoWvVi9GTEg1Sph36UUpFT9zGovpLke8qz98Qqqbog2VVxDLla7XSwlJZoF9xWLbAA2QawO0SSKQkkivbhQshN0Ty2StNmLAXH1tbA0SzCoV0ofq5X1d/NROaszB65lrtftUn2ZocOYj/JbYbkMjgEhhMVqZkt4/HGa8SLDMEyRW24Bfv/3iRsVemJTcmK6SVmep+oJVOuWFqsJJiRpmOhBs+9jZ7WLmW519G36+cS86ukYkDZBlevednoAlYr+N6Gz+tWvJmuKKRBFF/f4e1uJ1eYaG/O6NJnVvQUm87PnwbcTRJ3RRbWsG8EywvpSXKIRZ4pidamkc2VHFetMRIbrZKjVhc49JcpTzbvETYsBCQL9GQwSqYyz88Ssj6kpwA0cxKmt3dW5s7pamD7mQZ2jiNVhqMVqI4L7Pmic1cap7LkK5bKg25odRfo8yMVqqv7AnPcVJybdaJRl+j/yfutr30B15hDCLtGETkrtqLUVEAR0zurcHDBWQdmJ0e4SjGGA5c7qOKAZw5ixoePb/cKwmxADQrXAIkMJx8r0rrsTRMURkkTHgIzX9D1hgeBY0xQy1TnzVr2qI6wondW27P3MXGTkNYjyGJCq0NGOF/NgmRAWq5ktIYq4SCrDbBc+/GHg535ueywwdTrA9DRxo2ZSU7IThB3KSZnO/qzUbRpntVJI4ky7kjwPO8djzITV0QfPUYQ4s+H6NqoVk/U36iBfSmPSFJsiVs/OcnTgZsDOav3/7SJWKyW0kEJR/KuwGwIA4Pu6aF179D4xaUVwrRSlAHSCYppq4csVQBCg5kZojPq9GYemYynUxiw0qeKb0P94SdOQ0lSLPj1ndYSlxoBzwQjcWSYwOQk85coMB5s7emJ1W/oo1wrTx3yGPoqwbETw8phuKwhA46yOY8SpA8/NUKpYOv+XSKxOMhtOVbvVyWIlzLlEWnQZ/XUEcmf1gUOoxvPonqYUKS0tVnt6cbxJkQVtRHC37KLspejENBEziCIoJRDYiS4ySqGsm37L9cTmOas9unM2L1pYcWK0zxDdGHNnNaVYnUeLONDWV4BMrI7NLgulBFSHY0AuOvLMapNgVqkozqwmhMVqZktgsZph6FFqE4p0QYu/n/gEcNtt9G1TkyTA/Dxtm7LRgS0y7ayeo3HRIU1N8S8L1TGbpjJ5PiGzM0AI7ByXmOnWRp/o5M5qXx9rM/FHn5TlrkdbF1ISQpGqNFHE0YHkfP7ziNrJRT3+TvXudFr3K3S/Rb4IUHRWNwmG+0bxUiiI1XaCbmdEQU0pxB1d+EpMTujHiPL7lzmr3S4ag4RaAP/4j+vc6/I+1slQrjtoUxXpQl87Iz23smxZgcWKE6E7KF4iSVB2tLA1MQE841kOHl/cvcxZXa4VimDato5xGsVZ3ROrdQ46mbM6jhFnDjxHoVwxzmqKCy2PxqqVtPDXJhKWe87qCO3EJTu38vkW+SKbslF1I4RNogKTZhHftgH4vt7J1SHou3JndeDoPFmqLfpGABaeUakoxjC5S9Prx4BkbWpnNV1utwylzoF2I7TniYqC5sLyeBX1YaKLhm7TuF8pHev57g0rhWdLJM2LeDX/YiXfEdKLARF6bEBRfJoZXqwWQthCiG8JIT5rfr5KCPF1IcQBIcTHhRCeedw3Px8wz19ZaOO/m8cfE0K8hvzdMNsGFqsZhh4pgZe/XLtKqdvds4deoNkMkqRXV4yMaClEYEstzFCJ1YUYkMqYQ+OszosIGSPSzgmJmZBQrPYExsaF3qY/qiPF5KK6juo5q1WLTqzejGJSFzVLS8BNNyFuS7rdBdsQKbWAty2c1b0t6l0stZ0BLx6CnnDYF6sDO0E4agxIFCFJLXhOBpTLunUKQdEsCLq+zteueyEabXugqPjo/TEevm+NSWYuetmAVS3rreQXslhtBGTh2IDrInAShPGAqV+SoObqz39yEnj68yp4fGk3cOYMsLSEduKhMrZcrLaEQpqM0C/kYvWED0BrdGHqjj5RSBLEqa2d1VUb3dQlc6kmmQ237KBWStGMicTPorNaemQnQ35ukTurlUDNDdGlEqvNuMAxYnXNDWnEauN8dH0L5TLQkS6Zwx6AvikAZGJ1bmRAqYSSEyNsEkyY41gvKo2N6d0ARAssMtY50FUnQmuR6DyIY70jZKKm3fUU99sk6ecK+7qfIam3EIaIU51ZXXZidBYu4tX8i5VeDIgeG1Uq0DEgFLs3mA05q38JwCOFn98B4F1KqasBLAD4afP4TwNYMI+/y7wOQohrAbwewLMA3ADg/wohiMoyM9sNFqsZhh4p9bX1F39B3261uj12NElJ76yOFrvw7QSBk6A7T6Qo5QV/fAtuLYDM7NFFjzxP1daiQS8Le9QvLneR+RbGxkCTKdsTfRRQrcK3JaIlOkeKlNtjcWXbYBYnMgiEs9vjg73vPuDAAdo2pQQmxlI0KYqMrmiXXKyWsl9gsUsgVufCZz5z8Dy926Q94mdhMj9dR/Ucb6pLk1ktM0tnvzoO6qUYjchff/CZZZD/8kU0bvyn1fu4PL6pcKyUmdUenT6pyTItUFkWYNsIbIkwGuCojGM4VobAz7RY/SwXj0VX6JO00zEOaLf/ettGyYkRxSM4NY1YXRo3YnVJIEqd0Sf7SdJzVlvlAJkSpDEgrmfpQpuJTyNUmk6g4kvt/iVaFduU+KIsQ5pZqLgRwhals9qG46i+szocvMA0kDwHOnBQqRJml+fOyclJAEQL7vnYMNA582UnRqdJUGwzP1bfR62S6XOW4KYjoxSOSFFxY7QblGK1BXu8buqk0LQpMwuui96uIJJFgG4XcWbDs6T+rhbZTXvRYQos2svEap/FaiKGEquFEPsAfD+AD5qfBYBXArjJvOSvAPwb8+8fND/DPP995vU/COBGpVSklDoE4ACAFxG8B2aboZSeA/DuCIahRUrg6quBW2+lbTdJtFi9HbJqyWNAlELYiPvO6gWiD2GFewYASQxIkk/0AIgSUd5hQawen7S0WE10rLmzmnqQz2I1Md0ulAJ8SyKa2x4f7C23AF/5Cm2b8p77MDF/EM3Dc7Ttbqaz2g2xFBJMnFY6q11X94nRiM7HYl8QBLpoY4NASCoWWARQL0ndd60nUnW7SDoJGqEP3Hzzmm06jurnnhI6qycmNsdZDVsL9oGdIBwkKpvvuV7VYvU11wCPZM/oPd2p7UZlRWZ1YCcbv80sLOh7k1J9Z/WUvhf6PqGzOrN7AhUAshgQqWy4gY36mKDLLjfH5u2e0GI9obO6ViN2VhunatWJ0KUSq82Cu2MDsCxUA4lmHIzed+X59b6NchlkW/SzKNERZhMTqDgxOvN0hWEdVwClkh4bjSoCK9XvCxwH9ZrSn+uoC21KQUYpXCvV0TUNAlEd6IvV9You3EiRWx7H2rXvAAgCVNyIJl4kX2wNbP1dLbET70Lna18DPvpRwgbzhXFX31tLZUETY8UAGN5Z/ccAfh1AflVPAVhUSuXfwnEAl5p/XwrgGACY55fM63uPr/I7zEWElPq+yc5qhqFFSmB8nF702G7OatIYkDBEFAG+nehiYsRidZ6nCmCoL+7b315nwpmmepujbVxIVMV5CpnV5TGXJqc1SUy+thGrbdpBfpJwDAgp3S6kslB1Q4SL2yMMXEpgcZG4zX++BRN+G80TtPvpk2TzCizW3FCLaQRFUQH0tGo4ju4T4xGFhNz96mZAEOg2F+nF6mopHex2MoJGM/GBu+5atU2p+i5wAaI8WfTv39RitRBquVg9aHEhX+SoKYyP63t/x64jfdPPA69/Pdrf9wM9nR5Az7G9oUWLY8eA3/5t4L3v1Sd+lqGjSijX9LkUlC1dYJEiszp14HmKvFhdYsRP7awOaNo1bYhdO/XPhM5q8vgiKZEqgaoboduiKzydKqvnUKyWM5rdYblbueSgXLXQSWmc1Wk3hmulwMQE6l4XjXkCcaogrPfE6lGd1UoBSunauJZFVxw2TbVIZ2XaAd0g2nGU50uPV3W8SEiwMyjPwTYLV1WHTqyOUwfeZJVmYYHZdI4eBe65h7DBvMCiOU39QOjFVharSRg4shBCvBbAtFLq3vNwPBBC/KwQ4h4hxD0zMzPn408y55l8fMBiNcPQIiVQr5PtSu6x3ZzVi4tARhWr22wiTF3jrI4RNojcv/l2V1NERwg11MThAx8AvvnNNZ7sxYBsjljtlWyIMrULHHpC5sZ6F/UoRboMSm0vZ/V737sNri0zIRvzutti0QrQfcHSEm2bsj6Jkp0gTgkmz8V25SacA2aiZFtKxx+MGlOQX5vCqNW2bZy6I2af5vn9xvEWUG3PNgKV42sBtOyn6Ep3/T7GHEsjLukbycovpZBZjVJJu/6IclqTToJxr00joOTkN8Jlzur1p35ZLCEA/M2fNnqT76uvBp6oPgf43u9FR/p5mYFe2yUnHhwvUuDRP/4cfvOOH8Cxe84Ac3qXQgflngjuB8aZRuKsduC56N8PKWNAAlsLfzGtWI0dO/T/idTlJNFJFeTO6swUWOwSnbN5ZrXZHVarKjKxOlMClufoLfoUbSKPwMiAeh11N0RjkeBzyOt5+FY/BmTUqKUk0V20uUR7YvWo94Qo0t9X7qxuEYnVSaIXLaol1LwIzWhAvz0MvTGnADwPVTdCu0nwfZkCi+5EVbvrKSJbmE1FSuLaTkmCtOCstjxHj7lYrCZhmGXw7wbwOiHEYQA3Qsd/vBvAuBAiH63vA3DC/PsEgMsAwDw/BmCu+Pgqv9NDKfUBpdQLlVIv3Llz54bfEHPhw2L15nDHHeuIWMxFgZTapEt9bcn9h1BdOrEtRKok0boJmUjVaiFKnb6zukH04eYCTaDdM66VIm4NFsLXdWCagmL5RA++D0soZB2iGJCAPrLEdRQgBMYrCU3hRvT1me0iVn/848CJs0ZDFxjdLqLUQd0LEY7qpD1P5AtXlKS1cTiWOcEIFlZyNiMGJAtj2FZhMk7grM6UgJXPHIRAyZVaAB5ldXBFDEjJTtClEKuLBRYBlPxMZ9Wud4M07rtGbITN06eXP58vCLraWV1zIzQXaCak8ubPY3zhMFr7T5G0B6B/jprMat+WA8XqNJJwrBQvfnH/sec+V2fAA1rfWuasHlIE77G4iI98+RKc7tbxP+95HfDQQwCALoK+WF22aZzV5j7reYo2BiTfbVRy4FR8pMoavd18lRXoF+yjigE5ehITzSNoThN2MsYFXXUjdKkMErmr2KgL1SrQkjRiNQDAceBVPR2xQiFWh/paQa2mndUUiwH5OM7XmdUVJ0ZnVOd6miJTArZlFgHGLJrM6tytLDKdWU1VIzuPAQlcVCt0Cxa6CB6AINBOcIrLK18QGy/T5Yszm0qaEovV+a5WI1bDcbQBiYUuEgaOLJRS/10ptU8pdSV0gcQvKaX+A4AvA/h35mU/AeDT5t+fMT/DPP8lpZQyj79eCOELIa4C8DQAd5O9E2bbwGL15nDXXcCXvrTVR/HkJE3pq6hvBlKiN8gnI4qQHDiC6tGHEXZpi4ptBlJq4x9ZbnUU9Z3VToxuh8hBVBRSSiXt8lgaPDE3Na7WfFIqSzsUgZ5LMWqN7k7Tx6onT5ZQo299z9t09Tk1WZOYjyokk/P83rJdxOokAaant/ooBtDtIs4c1NwQsRyhkNp5RMpNcFanQosTANQZui9tM8TqnusvV5dHFavzLd92/z5QciW66YhV702usGcE4JITo9skEICLC4IAyiWlxeoBMSBJZqORBDjeGkd2coVYXdwRUi6jRuislvfch3Gvg9YM4YlQFKuHFJV7543bL6L4nOf0xepOB6vHgAy7iHX0KGbCKn7+2lvx+NJunLlDV0HtZKVeu7ZnI80sGmd1asPzAAQBHJEhaRPsjsrPLU/QObazDCoz9td6XT9GFQPysb/DZDaLxv7Tg188LGbhpuqG2lU/ahFEYLmgCC1WN5OAVKwWvqeFpFEzq7MMMlF68bJS0bUBGgT3RrPrLh8blp1Yd92jfL4mvsjJxepJlyYaKo/rcIXeZdImGhsUnPBarA5G/77yz8BBv3gnkVidZDa8CVN7hSoSh9k0pARIwxtWZFb3OjBCQ8PFzChVUX4DwK8IIQ5AZ1J/yDz+IQBT5vFfAfCbAKCUegjAJwA8DOBzAP6zUoq/xYuQfMzBBRZpSZJt4M47D2yGqHzrrcDv/i59u9QksYKTxQAIRWUzGK26EV0EhuEd7yBtDoC+DqamCHOrw9A4q6WekFPpCPngxhRYHDY/b11n9YoCi3BdBE6CcFSBXUrEqdObPNXcEI2F0bdkyqwvrE+NScyFldG3paI/L90umdVxvA3E6sJ1kGUgzNnZPDbDWS1DCUfofM72E3TCz2ZkVssohS0yYGxMZyu3RndW6y3fBbHaGyJaYxDFhSvfR2BLhBRide7SDHQnUw4ydNPBMSAy01vkf/HO1+Obd54dA9LLpjSLjE2inFaZWah5oT5GKooxILat7wfJ+qKyjDO9ION5vceuvRZ45BFtgv7MZ/TPPSxLi+DSHk5QO3oUM90adu5QeN7UMRx8QPf5nczvi+C5UE7grI4zB54nAN9H2Ylpdkfl96/ApnNs59EHlgJqNbhWimSJxrIsWyEqToxYjlgMdVmjxlntRLoPoHAg9epu6B/LVUu3PYpYXXSsOw7g+1BKjC6A50KtDSAIUPdCNJpUYrWJL3IclD2JTmyPdi3kbZqFxtK4rxfuSGJAbDhlDxUnRrtDJFYXCsNuirPa97W4TuastuGOs1i9XSB3VufjAq8vViuOASFjQ3ctpdRXlFKvNf8+qJR6kVLqaqXUjyilIvN4aH6+2jx/sPD7v6+UeqpS6hlKqVXKbDMXA9vNWf2e99C7szYDKVmsBoBXvIK+zdWiKy9E5L98Ee7D99GGVhunWdWNEDVoP4Q/+zP6c1ZKYNcuWmd1lDkIAoWSHdMJSkmCRPVjQKpDViYf6KzOt9MDfSfdqF9bz1mtxeoxr4ulhREH5KbN3IAwOaG0s5pQrKZ2VifJ5ri1t5Oz2rfMh7sNOsRNEaujFI6VYtJvY/4I3WqIlHrRgnINID9WjI2h4kbozI/4na1cDAMQeNnohYRWZFbrHSw0Ls1lzupguBiQxMSAnOqM4dj+1TOrXSNW19yQTKxOMlsXa6NCqWWiT+6AjpL1M8b1ebPcWX355boo1V/+JfC2twFPeUrhF0wcTDjsosXRo5gJa9j5wy/Hnj3Aqc4YAKAj/V7KFNk26jjWrn3jrC47Mbotgs84vxZMzQkAUF2a68u1M6Bc1uLfELuthmraCeBYKUj3xBix2rV0xATJPSFNkSrRK7DoVxxE6YhitTknFYTedpcvwlCI1Xm+tu/rGJA2QUSWlEiU3c/aD1Ldb41yvLmYZsRqstojuWBfclHxJdox3aKFAADH6bvrSZzVxv2aF1jsECzerHRWE9cMYujZHGe1yUMH+s7q7SJ0XeAQLrEyzHBsN7H65pvphYQkAb7+dfo2WawGDh+m33nTbG6P81V+5atwRAY1T2UrRm9AXnVDcme1lMDdxGFQSaLFajJndRwjlC78sqMzq7t02xxlpqvT6/y8EK3mYNFjOGd1vwCab8nR41uKok8QYNzvYGmRqE2jh0xOgkys3qwYkFtuAf7wD2nbBC5wZ3WS4Ja/b+F3b3waotSBZ28fsXpTYkCMs3rSb2NumjazWhDpPTlpbETHsTEtqs6PeBNLU0SpC9/tK+okzuq8L/AA+L7OrCYUFHOxulSCFn0GOauVhUZaweluHceOrFg9yCelruiL1URrFjKz6MXqHKGFusBN9eLCWp9Bluk4sWJ8DLTWDQD33gu88IVn/9rAdoscPYq29FB57tOw9/WvwOnrfwB4+cshy7W+Pk7prE4deIEWKUtUzsf83DJF8EpOjM7SiNdXbyEk67nAqVya0tERKKRBbrlTNc/Fp1jJ74k++kfhe1oIH0WoXFkYliq2xRSYdGxosdoNacRqE7fUW2Tz0sHxRYPIP9c8wimvkDqqsmrqmTiehWpNaAc0xXlQdFbn7ZI4q82YM48BoRCr852HkzWUHcLcbmbTSFM91SDfKWsWmOC6EEJBJeyspoDFaua8k0/GtoP4B+h7OfWx3n038Na30rYpJXD8OG2b24041k466oiZbSNWw4FjZXBVQne8ubPaiRBRFL0qkCTAN75B2iTk/kPY2T6MxQWiaVkYamd1xUbJienEpFxY9u1eZfJWd/BEZ11ndZ4pW3RWO5vkrB5CrP7iF4GvfW3tNqUqiNU7LMxHZRKFWUod+UkdAxJF9E5dYPOc1V/+MvC+943WRvvPPoxv/+EteOShDHGmC7QB2BZi9WbFgNhWhqmgjfkZWrG6WqWNAullD9dq2kW2NHp0T1e6KPv9dkp+pjOrR4wBiVMHnhERAjuhqY+QZ/iXTAzIhjKrSzjVGcPR0ysE2HyR0YXOrPZCNFs0C5gys7SgqIgWRI1NXxX8tD0n/FrflxHrHVP4tsiVVwKHDunF4JUEbqrjSwYJaq2WXkkWFsTuXdh7icAp61I88Oz/ADiF+BMqZ1oxBsTztADcJnTtG7G65oZoLo5+ffWc1b6v2yQ6txLL74vKVOSxJcK0S3FPWJFZ3fvHiEItUDidPU9HrHRGX1zoRWsEAca8LhodGmf1svgiPx28yDaIXr0B811RFcrO3eWeQKVmoS09mp2daaoXVhwHbsmBVBZdDIi5z1SGHHMPJL8OJuqoOBFdFAqzaeTdCVkUiIkvsgtGIc9KkUQcCUMBi9XMeWe7Oas7HXrx88476fMpkwQ4eXJbRIluGvmNh6DI9zK2jVg9sROOldJuRTPVvqtuhLBNu0pcLtOL1cnBo6g1jiOcJ/oAokg7q6uudvxFRLfN4mTXdVFxYrTCAdUxswzJ4ePo7l9jVaq4nR4w274TXfxoFIqFyoxYvdgY/Dncdx/wrW+t8WQu1puCJJM7bcyHFZKJjpTAxAS9s1rKzcnE3yyx+m1vAx588Nx//+8/FuFVb/8+PLawC0eWxrWr1pJa+tomYjW1szqN+s5qsqgh6GOt14nF6jx7uFbTi2GjitWpFk3K/irOaooYEJMrrHewjHaoAHqij+3rDrFUArpDxIDIzIbMLOwst3GsObF8v3Cv3wLguqh5pt8myKZc5lKlYKWjFEPEtpj376yi4TzjGcB1163+a4GXDhcDcuwYZGbB8h1ACOzZo8etL3kJMDdXeB2ps9rcZz1P38MpImaKC7hBgBpFdnnv/q1jJXaWmphe9Ab/3hBI4cKxUl0cOSYaxxWc1UIoMketVHZ/3SKPgyEQq3vXgREqO02CuhvKuJV9X2dWdwjy5osRM9DxRa0kIOlje9e16+pio+GIn0HeX3g2qnVLO6ApJh/5e7ULmfAUYrWy4bh6zF11Td896qQ5jqEAiGoFVS9GK7Qv7on4NiBN9QYLMrG6WIMI6EUwUus8FyssVjPnHRarN0esllKP70lzmLYZueBz0TqrgyockWmxeppIqevFgESI2rT5Kjt2EGZLG5IY+lhbRF9YnlldNTEghGK1zGzt+hNCi0mxt/4g99AhJLMNdO59ePXM0VUmeoEtEYWEMSClEsa9Lpaagz+HJOmLu+997wp9c0UMyNRuB3NRhcxZvRlidZpuTtFGy6Lvt48f18XQRpk3/s5bUizGJTwwfynmwwriVGe/KmBbiNVS6nOQPgfaiNULdA4qKYFajV6sto2zuuaGQ2Xir9+gREd6KBXE6sBXo2dW92JAcrGaLrMaAIRZvbM8R0cKDIgBSTIbk9UY1181h+PtceB0oZCmETxcV8dqVCtK56kSfHHkmdXmfRbPUv19OWt/BisKsRW57jrg+utX/7XSsDEgR49iLqxgalL/uHevHg9XKn0TLQAtUgJQMUVmtQPPLzirKdax83O25PRd0EujX1+9gn2+jz2lBs4sBQQHq/sCNzcynKHKrZHLndVUYnVmLYsyyx8/Z3p9k2nTnAftJtH35SjAtlH3IzSiEeM68naVBbesB0fVQKKdjNhuPjYsFN+ueQQRRnlmtWehOu7ovpDIWS2A5WL1qBO7NO0vNAqBajlDS/okWdgA9A7JcoY2RWQJs6lIqe89ZONu0xf2xOq8uD3FDjGGxWrm/BNFelBKLShuFu027bEqBTzxBH2R2CTR2zQv5iiQXKy+aJ3ViYJjGbH60BmaRgsFFsMOrVtgnRpP54bJ26w6EcIW0QWWO6vrent6Nya6bZqtg5ZnxOog0a6U9SZlSkEqS28JXc0y2tui3i/yMUyBRaWAD3xg/WNd6axeag3ePhlHGRpL+kt+17v0FvKz2jTVsyd2ezqzmkL0SYDx8c1xVm+GWD0+Tpixblhc1EXQznXeGIZAJW3gZXsO4Fh7AmNeF80kgF9xtDuvc+GL1UkCTE3RuuFlnMERKSaDNuYWCbYQ5+1KhWpFka4B6GPNgHodVTca/dzNndVBwVkdqNEzq3tRDehnVocECwFFdx4wXKSAWZydqiV4yuVSO7FXiNXFHSG1KpFYnWWQqYAjjPs1Ihhw5Ks0hY8y8JV2QK/nrFb2cuHY8IY3AL/1W6v/WuBnw8WAmOKKuy7R38muXcBjjwFvfjPwe79XeJ3rwiNcaPUC46x2EnQJI2byAosk2eU9Z3UGeB52lxo43SiTrLblWfsVJ0LrNNGN0YxhHLPAMnKBSaAvgBcKlalBC0xDtAmgfx2YQpsj54HnfYENQAjUqxkacYlE/OxFxAGollItqo6cWW31i2+7Lk3MjBHBXRcoj3t6bEqcWQ3f1+cASca41eu7qxWlheVRb7r55NB1USkrmnxtZlNJU2DPHlqxeqWzukRR3J4BwGI1swVEkXYQUYt/d9wB/P7v07YJ0DurpezHhVEiJXDJJYTbWrYh+Y3nonVWRykcYdwzc0QWvV4MSIioe4FvbQtDJJmNihsj6hA51HJn9ZguzkTmrM5db8b1V/WlHuQO2KKeZLYWUA4fPvv5XoFF8/OQMSBpCrz73eu8IJ/wl3S+9pgfYqk7IENRKSRf+ioan70V8vffgUMHMxw7trzN4sTBr7qIU4fkQpOzi5hoHkVznrYjSNPNiQHZDPJYiXMt9tO4dz/q8Ry+c+9RPO2pGS6rzuOJxk54VQ++JRE1L/zVZin17g2yKJA07S0ITvltzDcIxeqHHkdt+gl0m0SLbEr1CyxWq3rnxhAFXNc/SIlu6i4Xq4cVKddjRQzIMAtsA1GqL/IVxOqBkQKmj52sJ9hzmY5OkCcKC7+56GMW2Wp1QeMm7HR6kQqBnSBaJBR8ijEgg5zwuaDjnH2uCIFVRWwACNxs6BiQmbCKnZfpQbDjADt3As99LvD61xdely+0jrpAHseIC2K1dlbTLIT0FnB9nya7vFdgEYAQ2F3v4ky3TjKgzXeEVN0I7WmiCnDmWrCFgm9LxE0Cga7nrDY/UzqrRd9ZXXFitFsj9odpavLd9Y/1aoZGEowuVK4cG5YzPTYcVaxW1rIYkJobotkecTzbE+kERKWsHxu1L8wyQCm9g8vS161nS8St0RcBpLJ0DAi0WN1KRnRWK7VMrK5WoRcWWKy+oJGS2NDS29W6MaMQMxwsVjPnnc0Sq2+9FThxgrZNgF6sjqL+riZKkoR+G/F2Y3paj20uWmd1nPWd1QtEH0KhwOLI2ccFlKnfJOiaBMLQRJaEdGJ1GJrMag8llyCfNSdvw8x0qoHUg9z1JmVRBJnZ2r1y5MiqbUrVF1J6BRYHfG9JMmDQliSI84m52freGuRIiSIkSx00Ih9HHmxAphaO3nt29mvxWHsHMyLy7/4B9eZxdI7QZmtslrM6h3KnQV5k8lznjY2vPYQxr4t/9R934/U/7uOK6jz2L+2CXzPbGxsXvlidJFqsJiuyGEWQZtv7pN/GfJMmTxYAksUW6lYL3aNE52yaQmZCF9Qql3UMSHtwZ3vmDPDOd67d5urO6tELLJ6VWT2qs7rophQr+phBzurMxmQ9xd4rfewtL+HkocK9dKWzui7QTPzRB16djhZSrFRfXxQ1F1Zx5A4lVhcEuGEp+QOysAH93MwMZsI6dl5R7j28Zw/wnOeseK3ratF+1GFMXryz56yOyVz7PbE6z6weVfgoZlYD2D0eabGaYECbhNrIUHFitGeI6nkUCiwGdoLuEsE9Ic8VzscFtq0XjKLRxGqlsCyzmqTQZpLovOZcrK4p7aweRaFShcU0I9T3oiU2MO787GdXdMl50caCs7pOIVb3BHvRd2GNKlavXGQzMTsjx1ilqf4Mcmc1hbCcLyyY+0y1Chq3NrOppClxQet8kXdlZjXFvYZhsZo5/0SR7iSoxb977qG/PyhFL1bHMfR2V2LyzMuL+R45Pa1zqLaLs/oDH6AVv5Io6xdYXCI64GJmdUJ3401TwBEpFKVCZ5zVNTdCeI5i9dwc8Pa3Fx6I435mdVnoCTnFCZafUAWxeuCEJIqMs9oFjh49+/kVQgpsG74lEcbrf29SDhare/mc0AV/2kMUKksyG80kwP6l3bh24iSO3lrIAVkpVrsuBNH29+TUrM5+Jc5a2pTMaqWAOILnZuQ7eMbGzn3euHSmi7rXxeUv3IWf+29lXHlNCY+lV8OreNox0rzwV++SxTZ2lNp0zmqzWOSUXEwGHcy1fZpAbCMk1NwQ3RbRIlteXNAGEAQ6BmQIsXp6WmcIr9VmR3oolfp9NmVmdZ4rXHJiHbc0ymdrjkcVpzkmUkAl6xyr6eue94wOrnlegMsqCzh2VC17vpeBDPSLihGI1XlmdWAnCJdoXKqZEssWhAdmVueCzgY3DfTOg/UWLWZngSzDjLUbO/f0/8CHPqQj7JbhOPBtOXrmZ5IgSp3erqCyE6MTEkx9i9FYeQxIa3SXarGOw56JCKc7BGJ1lvWMDBUnQmuBqO/OnapWqqN7KHaFrJJZPXLdjXwRP89h9zxUnGj0aOXesep2yzVbj4sIxE+g7+ToZStvoI/99V9f4Wfo5Wv3x1s1L0SzM+LuoLy/8CxdMR0YvS8sCsAA4Ps0BYKNoJiPOStVsytmlElzPgY2B1upWeys3gbIKEWtJOnE6nzRxu/v4tJGIaL2L3JYrGbOO2G4fcTqONbzpW3hrI4y1GvqondW79tHP05oNDZHrH7nO5fHYY6KTFS/iE6DSKgzomPFjRBJuirXyR13wzl+CE5riU5TzGNAnAjROU5yH3wQ+NSnCg/kmdUVB6WKpYViihNMSr3N0cxMq6V0cAyIcXZ2Uk+r6isxEwe3WGBxSGf1unERxWJSACpBOlhYN+dNQ9Vx4JU/g++79FEcO5Iuq7DbkV5vfgPX1YUbh8jCHoTMLNpCZXm7m+CsVvd9G+LMaVTnj51zZMdq5HFT59pvNWZi1N1QV6oUAs/46Zfi/oXL4JcsncV3oYvVSQJ58Ah2PPF1LC4QLYhFkc5o9W2MjyksxSUaa45x1da8EN15yvgms+3biNWtznBFUddcuOo5q/ufZylQJDEgcWrD9S1ACAQ+dKTEKAOvlTm1QE8AjbvrF1iUysJ/ff1pPP8VNVxencex025/24OUaMQB6jX9c23cpsmsbre16GNcquEiwWA2TZEqAdvqf1++j/UXF7JszQKL6xF42cDs8uzkaZxoj2uxemf/8Re+cJUdVoTO6rb0UakJwHVRdmJ0KXaIFe+JQYC61x1d+OuJ1fqz3zWRYDqsjT7eMIYDx0pRcQkKC+YkCdLMgh2YBUyK3TZGWLbdvkPRt0csVNbLljZtmMzq9qhidV5s1TirRUCQrbxKdE9vJ9swfaxSyB5+FAcPquU1QlYWWHQcvRuA4JzVcW4AymXYIoNsjtgXrlIQs+pEaDYoYlvsnvu1XCUYz68Qq6s1cdFmVn/4w8A73rHVRzEc6W1fRfWbt9LFruU7F87KrGZnNQUsVjPnlyxDtP8oqkFCKgBPTwPBiAukq5GvvJM6q7/xbfj7H4RIYrpt31mG5FsPonbf7Re1WD0zo8Vqamd1u00vVs/O6kKblGMamSg4wsSANInEOiN6eJZ2aVFdZPJTn4VjZSg1z9Cds8b5WHWjc87XfuIJLM9WDkNEmQO/4sAvWXqiTyRWA+hv9cyL6AyIAUkzM8BerSKfcXstz02TCAfkbCeJfktrzoVWOKsrpUxHkQzhrG4kAfYfK+GVz53H0caErqYFaNEnCVCvm9e7ro5WaGxw//kqyMzSheWIyTOrKTcDJPd8G66VohIvkIvVrnvux9qYlxjzujrYD8B11+n7rFeyaRfDNotuF0lmY0fQwtJJomDCKOrlc1YnXC1SUnxpnY7ut5yIxlEL9IufOeg5P1tDCBNJArSb6ervS+qCg+V+ggNKJZAUWEwyI1bnbabeaDfyVUQfOI4WKzvrXBSm33LLLuB5uGyqg2ONsf4qlZRYiku9fqs24dCI1csyqyXNeZBlWkwsdP9DidXK3rhYHQx2Vj92bwu/cMfrMZNNLROrVyV3Vo863IhjtBIftTHtrC7ZCTqhPXonnosTgRarK06MdmiN1m4xsxqAV3GRZPbo440w1IvYVoqqG+rrmwJTDNGpBjq6h2JXSJoiXZFZHYx6HuTfVcFZrQttjh41tCxf2/d1Jv4o39cqi2zlkkJ7GGe1UsDf/i1Ove0vEUUCh/YXXt/Lojc/e57eDdAlEKuV3YsBqbkRmvMjTpZMH6IKMSAlJ0HYHvH8WlEEL6g6o4/nV4jVXtXTtVcuQrH6+HFdJPfBB7f6SAYj2xFqboTuLG1+/zJntZ0M3NXKDAeL1cz55ZvfRHTHPagee5RU/JudBa64YnuI1dFHboKXdhEsnqY73m5Xb2tJ5um2EW9DOh1tBKQeJ9g2vVh99936/2THqtTyzGpSsdqGnYt/RMqyLNfhWqmZNJA02XNWV93onK+tJ57Qua29a944q4O6BxH4vcdGRko9H8ljQIYpohNFcK1UD7DD8OzvIt+W6ha30CYD41vkKZ2T255b40Nb6awuK73ddRhndRzg8GHg+d87jvmo3BerkwRLcQljY+b1uVjddNdqcWiksnVhOWKk1PMoyvtM4pS0WO1G5GK1I86xD0gSLDUt1H2T2QUdrzQxAfgVLfh1Wtuj2OqOoIXFo0R2eLOzwfEsWJWSdtFRfGntNpLMRt0L0V0kuiHkW/QdaGeaG6EZugN3xiRf+wbaB04B/+N/nL0gZmJAyoUYEC1WD+gLhjjWYiRQqSy0AD7gQssy4Jd/ee02AawqVq+7/T93pJd0P3TZpRmOtSaA+fleu8V+qzLh6V0mo2YKmPO1FwNC4VJNU50pXHBWO76NNLMGxIBs3FldGiIOJjo1r53V8dhgsZrQWd1MAlTHbMC2UfYSdJN1YlCGpXhPtCxdaHTU3QD5ok1+C/S1U1eNupc8DHsLuBUnRnvUQqs5uQu6XtHnbJumlkfR/dobw4wYA1LMAofj0BTL7hXs64uqAIjE6n6/Zbm2NooM6GNn7z2CxpfuwRONnbi6fgYHv1iwVhezpYF+gcXuiOOtvL8wMSB1r4vm4ujX1jLyorsbKLaaJMA//MPZD+b3bwAQnqvv4aNM7pLkrDz0kRcsCtx9N2ERwE1GSuDSS/X86UInzSwdu0bprF6xIyRwEnQpIqcYFquZ88z0NKLUQc3uIInp7Gl5ccHtIFbHmXaMlNChE+mMMFRzQ5rto9sUKXVsGrWz2qZLv+hx993AJZcQnrP5oFGktGKS+TB7Y2eikzYpj/W3PFN9BkZMqrohoujc+pcnngCe8Qzg5Ml+mx3poVR3+5ORUU8wU0RnWQxIINFKgoECsBD6fd03uw9q/mwxSarlRQsDOxnsrP7YTQCA1nv/Zo0XmEJKgT7WSikb7PSJY8SZjUbk49QpYO+1E7CFQnxmoXesjYJDEa6LyYBGrE5S69yF2nXI9Q3KKJDYCuBZKapOhNYinVtZfvFWOF/5AoQ8h3N1YUFHHYxbvQtfCO2u9sraWd1uXOCLosZNuCNoYfEkUUGxPLPas4FKRT9GJFZLZWHC76C5QBff1Cv+lRdFlYMLPyWPPIFW4qPVVJj77NeWP9np6L6w1t/94HgWpFpH/ByGPAc6MI638nA7WJIE+NKX1nhSSiSZBdcu3AeNSLVuYbU4XtbXXXa5wNHWZF+4NztCxib0sVqVkhaSRr0v5iKd0GI1lUtVKksX2cyxbX0PWavvVsqIWucYA7LOQEnON7RY3SkP76weNbIjSdBKfC1WAygF0LuCRr2Hm/u35Zk6DiU1ersrMqvh+6i40ej1R0yti15mNZX4lY8L6hVtOqAwSKxccM/HMCOK1R3poeynvTZLdoJuQhGBYS9zVo8cA7LaIlt+QgwQq//yT5r45KHn46C6Eq+69FEcOlD4PlYeq+MYsXrEnWx5H+OKXiHf5tLohRABQBQE4I2K1fffD/zWb61yrCuiGop/75zIF5jyxb38HCCa1Pzf/ws8/DBJU5tOXrTwgq+bZeJgyMXqfKcNUNjVys5qClisZs4vExOIUgdVN0TSouvR4njzxGohiJ3VIoBnS5REROoolcqsFFI5s7YhUmoNgfL7ynd1Um79B4BTp4CnPY3QWZ1v88ud1aNWOs9Z+WFSOauDar8wz3rbsjdC7qx2onP+XA8dzPDyF7T7USBRhNmoih17XRrnDKBPpvyEsvRtuFrFYGd1oYN7w5feiIXDKyrH5dmMK1xJ4YBJWTKthZjWI8dWf4E5JuEWnNVDZla3Y09HUuyawPN2HMW9D5rPMHdWj/edPpN+B/Pt0QP9pdIORQHa61ZK/XU1GnRtJu3YOKtjtM/QWWiSbz0IJ4tXzzYfxOIiGkkJ9Ynl58111wF+HgMy6hbqzcYsXO0IWliaJupkTQyIXRSrR67ShV4ExI6gRZevbe4HtrMiS3OQWB3phaibDj4fN/zadyDuFK7xRkOLPhOFa9Rx9A6RESf8UerAL5sYkNxZPeBGLuU6b8cIVBWvcPy2PnfXvYXlLjtTBfuSKz2c7Iyd5ayuj5nzv1TS4u+o50G+jdjKdJ2BFsEkuhcDUjinBgk0vQKLGzsPXRcDFy2SKMPp7hjmG25/kXKdBkeOfwC0WC191Cb6ovLIETOmXQC9z7McZHqHwSjXQb5g4a4Q6UZ12YdhbyGkSrmDJz9n6+UNi4lrkoufhTGMjoMZ4X6Ti9VBX6zWW/SJ8poLYrUlFNLO6GK1KuaAmKi4QedWcvwMFqMSnpj6Trzy0kdx+Ezp7GPNF0LyAouRRxJdkzura25EJlb3PgLP21ix1UcewV2//VkcO5otf2urjI/XXbgbhnyh1TXvmWqOgH4z1OarzULKbSJWJwlSJVB1I3Spaq+YXUzLM6vjgXMvZjhYrGbOL1IiyhxU3QjJzNLg1w9JkuhOkjr+odMBxsaIxeryBHxLouQkdIKicU7U3BDdpe1xZzt+fEU28KhkGeRiExWrS3oehKHOQ6cmivS5RSpWmyI620KsNkXwSk6M7gyRSFeMATmXLZ5RhPj4NK7efzOO3X1Ku8SSBHNhFVN73J6AMfKXZia6ouCeCQIMLlRmvgsFgcPNKZw5uGLWaSYkRWe1b0uE8fqfhbzkcgDQ0R4r9/BlGZCm2i1iJk2eLxClzlBitetk+mObmMDL9+zH7Y/s6B1rz70LAK6LKb+FuRaBWG1EH99Ozjm7fDXSVEc4Uzqrk5aOdqk4EdrTdDkguTjhJF0knQ0OyBcX0YgDjO30lj38i78IvOw7Y92/XOjbG82MadzvYHGWaEISRf0t6pUKbCuDbBCI1aa43pTfwhLVsKiXJap/rNWFzlYeMJOMwwztxMNCXEEjdHHjHxZu0s0mutJFeaogguRCygYn/MtuI6YIXrVqYkCqtu4LBxyrlOt0xVKinfgoF8VqU2BvUAxI/lpAL7LJzD47BmS8Lygu+71zpRDbEtgSYYco/1ctz6zunRADCyxu7E85rtD5ygPE6kxZWGxaZxdUXEke/zBq5meSoBkHqIzr77NUAjqjxnUA2lmtRO88KfmmjsOIwtcyZ3UQILAlotaI/VceAxI4tHFTJrPaHqvqAq4UwzjjUMwX2fq7w0YTq9vSQyUXq4VAyZUDdwIMdazKhuMtX1yImqNl7WuBdXl8EQCoeJ3zIAwhGx0syCoOxZfimp1zOi837+xyoTb/XC0LNT9BMx5QJ2WI4+25lUsl7awedXyU6vo4oiBWb2gH5nveg7sO7EBJdZbfT1dkVg/rWC/y7W8DP/dzhbnryogZ34dtZaMtWBQIw+0Tf71txGqz66zmhuieww7kMAR+/udXPLhaZrXDmdVUXOCzDeZJR5oiSl3U3AjJPN2MP471nIHa/dpua3GCNAbECuDZRqSbI9qebAajdS+kceScBz7xCeAznyFs8O67Ic/Mo3zrzaTfV7OpXfvURBFQrxMORPJt375D63zMoydKRqCgigGJMhMDIhHOEPUF5jqoutE5TXI7n/48KlkLl1UXcOz2Q70LX8K4nahcE6ts9RSOrSe/AzKrlRLoqDLC1MPpIyuOY6VzJJ/oJQNiQKQ+jlYS6ByUtY41j4RwBwgeQE+snqzE2LsXwNgYXn7pE7jt8GX696TEUlLqbafvxYB0hl8ZOnkS+LM/W/Fglulzy0q1UL9AV3FWSnqxOm7F8CyJihuhdYZQrK5N9HdZHJ3d2C8vLmr36M7lCwfPfCawa4+1bZzVADDmdekE4DRFqkRvy3PdDdGcJejAOx1IZWEqaGOxSTQsl1Ifq7lUh3ZWxwptGWDh0uvwA1fcj298frH33KGjto4BmSpUWBwkfq5CGALPec7yY20lPip1E9VQsbRLdUA/O5Sz2i8cl9n+v+65mw8e8oXJyUk4Vgo5u9hrtxGXMDZpJqWuCwEgi0ccd+WiR9nVjqw2wSJblmkx0V7FWb1uDMjGndWOJ7Sov55YbaL/JieGaDt31I7qTDP3Ia+8Iq5jlJzaLNOTDYHezqiyn+p2R3RWF7Pb4ft6wXXULGiz89Kt+qg4MVoduj5GZjaceln3sy0CF2FetLFYd8MZMbs81d9NJTDXVFGsHtUJny3PgS458fAO4NUwu0wCt3BcZhwXh+v0CWahY1HWMD1rYc8VPlwrRXLsdP9Yi659ALVyikYSjHYtFDOri2L1iG7tZbn55hwYZLoAoLe9pSkeXLgE/+qSh3D8YGEyuEoeulJiQ+fA3/0dcPvtwH33mQeSBF3pouSZ7yYItPGAKCaNndWbQNFZfQ67QWZngfe+F3jggcKDUiJMXXil/rggsCW6o+7eYACwWM2cb6TsxYDEbboeODl6Cu7RAwBo1epOR4sTlMX1olDBtxO9HfXEPFGjkSnQ1KXLYNpkTp8mLlpoQoZ9FZKuRDcfOopq8xSoz61crCa7secxIGUXZTdBJxoxRzQnHymNjelJeZvIWR1KHQPixOhO0xVASzIbJSdGLDcupi3un8G438FVtVk89qgCjh8/q3iKJRTSLoUrC8vMM0O5PMyJXSoDAhlOH1txAUmptyT6yyd6gyb8MtR/s514hbDufpsAIIqjhWGO1YgEO+oR9u0DYFm4Yl+KE+1xYHERaLe1szoXRC1Lx4CE5aHdTrffDnz2syse7Hb1xDwvVEYoVqepLjK4GTEgVSdCe5ZQWE8UHCtFxYnRmd9gJ9NqoZEEqE+tkh/uujpHdbs4q70uFjseTVxH7iJzBVCpoOaGaMwR3MSM1XHc62Cp7dCsuq/IKPWrrs6BHrDYmET62jtduhLfc8l+3PdETZ/4SuGVH/1ptKSP8s5K/xfOIffzyBFg/369u0r/0UQ7H2sms7rq6GMdMQakLf1+Ti3QiwFZV6xeEQOCiQnsDFqYPW7+UKeDtvRQHjfPuy6qbohWe3QHsMxsOGVP99lEkQpnOasHOeFz8WmDUbauM0QMSKwgkGHnjiEatG14luwtpG6EhQXgb/4G+j4ipV5szx3QZaEXQkYshAgsjxUuBWrwzqgh2j1brJaji9W5kaHiayGtS9R3G9HHrpUx7nWw2Box/xjon39+McpsxDiYJNG7LIL+NRV4me5jRo5tWZmvPeKxpila0kc1KNxXHGewc90cy0JcwcICMHHVOHaVmph+dL7XrsysvmsfWqxujipWm7/renqXQS1I0IxHvL5W9lvmc42GafKBB6AUYAmFK6tzOHZnYWdQvvMw6LtfLaGQRsNfXwsn2njetRFOmzUAxDFaiY9ayXyGvq+/qwbNjr7t5qyuVLaBWF10Vp/DkHtxUdeb+vM/LzwoJeajCiZ3mT7QshA4EuGouzcYACxWM+cbKRGmjnZWR3QXcPyxm+AdfIy8bG4uVpM6q8MUXp7Vu0DUq5tiUjU3QpfCkXMeIBerJycBAL4tEXfpin9F7/0LBNNHgRad6xEAolNzGFOLpM7qxBT/qtWAZhzQCDQFsdq3E8RNmgOWsXZWl+yEeIeBDUdkfffTBliaiTHmdfGCZ4W4Z+YKyBtv0gPRcj+PrmQnoy8I5Q6qFYWv8ufWJIoghEK57uK6yZM4fWjF55ZnM1YKYrUtEQ3KrDZ9cUv6Z4vV5iJVq2xLHUasnqonuPRS89jkpG5lehpYXEQ39RDsndDPCYHJaoz5qDx0x3DvvehPGnJMpELPtU9YcFZKLVaTO6ttqTOrF+huNDJRcIRxVi9s8JrtdLR7dEUMCADA0Ts32uEF7hgxM6Yxr4uluATMzIzeZjH3s1xG3euiOU9wEzP9dO9YKQYc5ljz7fSiZHYsDCpaaNyvJ2Z8XL43QSvxkE7PQXW6ONEex7HOFMpjBcXD9FsqGb5PPPRQB4Gf4WtfTXvH2k58VOt6SuKWXR0pMcgFnqwfA7IspxboxYB018u/XemsnpjQos9JvRtE2/QFxKTptxw9nm22RhSr83Or7JkYECqxWpzlrLaEQhqvMUbKsl4cyUZwPGtwDEgC7C0vDS6uCGix2pZ60XmD9/H3vAd4xzuAY/cv4O4zV+hzNHdAVwRJIUQAy9TqckAQAyIl4tTuLzb7PnxLImyPOJ7NBeCKFtLaVAuNUiJTFqxaBeN+F4tdf3RhppdZbe4ved2NATvlokiPB9Zqsy19VMr986jkZ0TOanu5C9xORnNW532hv0KsHlQY0yx2LcZlZBlgX7Ibe0oNnNnf6B9rUVgHUCvJ0cXqFUULa1Wl5x6j7MDMxeq833LdoQqFAwDm5xGmLkp2gn3VBRx7uOAsyD+DgrN6Q074dhsLtz+Ea458DmdOZ702m0mAasmcR76vjQdEzurtJlZvH2e13oHbPYcdgouLwA/+IPDVr5oHzFxzKS7sFAVQ8lKEqUMsdFycsFjNrEu7Taz/Soko1U6UJKJzqiaZLqhF3atvhlgdhVpQLTlEFd+BXjGpqhvSTHJWQB2vAmyCWG0mDp4lEc3RnbR5trJICM+tgwcRHZtG/d4vEWdW23A9LagtxOVNEKvl6MV+DDJK++5XquiaMIQQSidWmJ83wtKcxJjXhf3D/wav2LsfX/pagOmwhl27zQs8TzvBCcRqqax+BXFAFyoTav3t5LmzetzDd+09gtPT9nLl1Gx37YnVeQyIHCxWC2Q6BmQNZ/UyG5kpTLNuhmIcI84cTI1J7awGgIkJfQ499ET/PRdsf1qsrmxIrD5LOO529aKNlen3vkR33aaxxHg1oc2szgssOhFaLbqOViYKrsmv37AI3m6vGgMCoJ/7G13gYrW5Vhwr0/EEVGK1MrmflQpqboTGIsH91jir616oxWqK2Z6peF8s/gVg/baV6l16x08KjF1SwdPHprH/niUsnWghyRzsX9qFciEFBI6jt5sPaz44dQqH3vNZvO7Sb+LOvz+lHzNF8Cpj+mBF4Ot9TEM6q1cdn+Rb/1c4q0tOsv6ugLy/yz+4ceNQnBG9c0gVxE94HupeF43WiNOp/P5d2WA+63r0CiwWHsuzoNfK8s+ycyuwOGQMyNVjM9h7yRACgWXBs1PE6cZ2GnS7wE1/p2AhxU1/ehofOfAi9KvKmYiZIVz767JKEbxSCSTiZzMJUKv2828DJ0E0an55Hg9W1rtiWiHR7o3cYe46GK8kWIzLNNntRQE4r7sxQKjcvx9429v0v9/7XuD971/eZkd6KJcKYrWXju6E7y1erhhvjXLt5pFI/vIYkGGc1UlmYzE2cX0TE9hdauD0if6C4LLPFUCtkmlhedTPQPWzems1aAF8lLlHvshmFWJAhigUDgBotbBoRMPLKgs4fqgwlsw/g0Ku8IYKvB84gIW4jGvGTuL0Y0YETxK0Eh/VgqGlQpXfjm0WA7LUQtVqk4vr7343bXv5LmTPknptbYMLbAt3PIyd930eOzCDU6fQvx8I0RsWAGb3xqj3BAYAi9XMAP7mb4C//mvCBvMYECdCEhM6q1MHni3JOwVysVopxJGCZ0mU7BjdUR0TOWZ0VLITdEdZ1V+F+Xng1a8mbRIAcOoUsVidJFAwzuo5OjVJC18p7VaeVgtR6qDuhvQxIJ6NiQlo0Y8iX7ogVo9cPKaAzhXOyBdtlNKDcQVs7P1nGZbmU4x5XeDZz8Z/fPlRfPixl2CmW8POfUboyZ3Vo4rrSYIodeE6hXPKdXVkw3oFP8wosFyx8F3XNXG6UwcOHuw/LyU60kW5WtxCmyBM1p+cyki/72/P7cM7vvyi5Z9bkiDNlg/C4Lp6e/J6k2jjrH7V8xfwgheYx6amMBW0sHDr/frnFfa9yZouZjlMx6CUzo4bG1txaXY6+joQeiEkatCNnOWtd6D28N10RWyVQtJJdAwIZeErAFKqfmb1Rp3V7baeME+tkh/eE6sv8OHjyo6VQqw2DkXb1QUW614XzUWCvstM7B1Li4sks708s7ogpABYf4xkrlkAOHlSYPzyOp42No1DD3Uwc0Qf41y30itfAKDnThs44ZcSuPFGHHvLB3Fofgz/7in34lv3mXPIbNPPxephawPkGsuq3UWSoJ14y7b+w3F0tES8zrHmnYnV70N3TSSY7laBgwd1VHGx+qDrou6GaLRHXLzJBcWKbwQvgnHcSoci0BPU1vy+egUWN5hZnRdYXGecJBOFG/Y91BMVB+E5CnHmbGhc/+m3P4zXuTfjGZ378MnP+jjSnIJX6vdVQdkaPQZklQVc27ORKmvkGJBmEqBeM5+958G3BtxnhyFfuPIdVAJdQJVk8C2lHme5LsZrKZbiYPS+q9jHAkMX2kyWOph/5DTwvvfh7i828b9/N8NsXqrB9AWV0ioxIBv4vtIUuOWWFceq7LPytUcadpv4omppedZ+1Y3Wjxoy4/+Tzbrun8fGsKfc6NfLlhJxVigGCcAtOTq6Z8hzodEAbr11xYPFaCwYZ3UyorNaSqTFIq+9QuFDLHI1m9rhusvXtWeOF8YpqxTBKznx8Ie6fz8WojKeOX4apw8YNdostNbKBWe1S2c82DbO6iiCvPd+VO+4hdxZ/fa3E5sm41jn4luZ7r82eMCL9z6BCSzgFfYduPUTZwp9yPLzM/AVuumIu20YACxWMwOYnSXuKNMUUaZvvAnhamHPWd2rpEwDuVhtimfkzupOk0gAzR2XToIusYhw443AoUOkTQLYBGe1acyzJaJ5OtWnf24RitW2jTB1UffC0fMIc+K4t82vFwNCceLGsRaAN8FZ3cusphKrVw46NuLuaDaxFAUYq2aAbeNFP/YMHGzuwEMLl2DXU0yFTd/X2wZHjdpZrfiXbaPqhmivM8jNwhiWUPhvvxjjVa8CTnfryy/O3EGUi9VCIHDNVrR1RIQkVpjwO/jSmWvxvkdeDnWqkK1h3F71oPC9O47OvlxvQG6Er3//6llcc4157MUvxqTfxtwZqau9rxCrg5JANOS2ufkv3YedncOYrESYL0b/t9vaoWilOvuV6HwFgDSSqHkhumeIKvZFEeLUgmec1e1Rc29zsgxSCjhCO6s7SxvsaM11I6qVs58zMSCdmCCfdDPJBy6XXAIAUDMbLDK5Gkb8czwLKJd1/EODYMCR99O5+EUx21uRWb2R6B7fTjA/D9Qun8DOoInpg03M/M3n4Nv6PAqKaxi2Pdwi+YMPAl/+Mr7/k/8Jnzz0fDxv6hiWlpRedUoSxJkNr+IOf6yFp/OP633vAz79afNkvsskWL4g6FjZ+t3LSrEawK5dwHS3Dhw4YOIECq93HNS9EM3O6GJ1HtWgxWqCvmC1zGrHgbeeEz7LjAC3sT/lemL9zOosQyIFPDvtF6EagOdkiNP13dor+euP+/iJp38Nzxw/ja9PX4X9jV2o1vqfpRWYeJcRxeo4teEVF5vzGK8RndWNOEC9bn7OF4VHnYPlWb2eQLUm0JaDC60ORX4hOQ7G6xkWozJJ8em04NTtLbhH618P8jP/jIXpBPjWt3DgjtP4lSv/Hh/4H4f1k/kui8LtrBQovWixge/r3e8G3vzmwgMmY3x5QesRM6tzZ3Ww3FldcQaI1Wax6/DiGHbsAFCrYU95Cadn+vFy7cTHslt63s8OeS3ccYd2ra/8u0UBuFbJaKJFlH12DMgwxepaLSxGZYzvLeGKySYOz9V6O5dWusB739ewBq/9+5FkNi6rLuD0KXPtJwmacYBqHjETBDoGhGgKum2c1VHUK24fEhmacqQEHn6YsMEkgVQWbGG+w41csGmKhVMhxr0OXrz7EO7+WtozYXrO8r4k8BXHgBDBYjWzLvPzxB2lEWurbkSbA53pAbinIrp+IcvQueNbGF88THesUaQHuZYczo00LKazHfqGvgE+/vGzDJAjkyR6IYT03JISAoBvScQtwuxXZZkMZELXfhwjUwJlJ0a0RLQMnRdo8m2IYIgt38OSf0n1uj6/mjQXmEwyEwNCkMmYkx+r6+o17o24OxYXtSNj3GS8Xv9C/MyLH8TbH/wB7LrCWAl9X1d4HlWs7m1RX8U9s46DIOlKOCLDK77PxSXfMYXZsLo8tHmlWK0PeaCDKIkyjHtdPDy3G7NhFU/cV9iZYNxetRUFfypOvP6A3JzjdqmQe3zJJZjcV8HjS7vxO/e+FrX6it9xXe10GKITb33qC6jLBew59S2cOVX4PsygWceASLLzFQBkZqPqROiu537fCO12bzGs4sZod4jE6tylaWWoOBE6jQ0uiOVf7LK8B0PPWX2Bi9V537dvn15gOrUwepvFbd+VCupuF40mwXeWX5tGTVEhjbN62RZ1W+e4y/V2tJnonomgi1oNsHbvxM5SEzP3n8bMmQzfMXkCZU8uSwTqb30f8DksLgLQO34OtXbgsr0SdiYhT04vixPIjzV/DwPeIgD9VaepdmD1JrXGoVh0U8LW19q6zebild0fR+3aa2O6WwMOHND3iLHC611XF9qkEKuVBbcWaHcmUQyILpZYGGfaeqfYmudBz1m9sT9luTYyJdYW//I6DY5aHim1Dp67QWd1luH0goenjU3jmonT+I7JE5ju1lAbL/RVeRb5KBOFfOu/t/yeCGDkSIVGUkLNrI3D87RBYNTdkoWs3nLNRjshEqvNmBuui7G60jEgQ4jV/+7f9bqDdY8VQCGzen25QjY6WIj0/aqZBHjTM27Fxz/l6VMnL7ZajAHxMy0kbUCs/su/1LfEniFqlRiQkh0PFNbXxeRrV1f0W1U3QquzzmdgBLhMWVqsrtexu9TEmfl+Mey29FGtFs6lYQplF3j44VW+t17GuD62sVqGxWjEugtmV1CvC87d9XIIySp3Vu9wMP6USR2rdeJEr90odeEFyzOrh5omZBlw9CgAoOpGej0/y3rO6mqlH91TcWO02jTy2rZxVpvzr+JECKlqcRmk1GvdZMSxdu5b5yBWnzyJxa6Pcb+DHUELC3PaJDkXVjBVWn4i9RbE2Fk9MixWM+syN0e8KJSmiFIHNTckbTeBq4UvK6YTJ44eRefwNMYf+zrikM4BHWXaWV12YrpiiIV8zjRbZ8JwDrTbWOZIoGB6Wm/f3xxndYqI6vtC31ltZSndx2q+r8BO6ArAxbGJARH9bdQEqwG9wln1us5oXaJZYEkiZQosEi7ayP6xKmBjzuqlJSzGZYxN9l0XP/bx1yKtj2PnLjP5yDOrR71u8y3qxVxC112/iI5SkKHULn/Pg3XJHiSZjcaRggi3ilitV/fXyU1TCjLOMO53kGYWfvxpd+GWLxSGBkmi3V6lFWK1O9hZDaAvDhimXvQU3HrqafiD+16D+viKIUi+yDCMWI0qqm6I3eUGTn+zkLOdu53yPHSqhRClkCqhndVU/XangyTTBbWqbohWl2ih0UwcnDyzeoPFfpJGV0cfrdbx587qAdEyW04+AdmxQxcunCc4D4rbvstl1LxQF9Yb9XMoiNUlJ6bJWTf52nmBxd73tt5Ci3FWj5cijI8D2L0bu4Imprs1zIRVPG/qGMrlFe/VcfSOrkF9+OIi0kxgT6mB//v2Bvxrn4pLKws4+aVH++8/F09MP5Al639nycFjAIDoyGn882/ehslsBjPTqvf+V+bUwnHgiBQyWeNYlep/lwVBddcVJUx3a1BnpnGsNbGsiFIvs7qzQSvySvIFpmqgF9lGEbxyejEghcccRy9arPUZnGOBxd4fWWsHj+mX3Q18TJ6TIR6Qg72MkychVAbs2IEXvesN+H+feg8m/A6qE4U/mi+IjiimtaR/1gJu/tywHDiwouvIndXjfaeub0tEo0bCFIrgWSV/4xFp67QLALBt1OsYOm9/ZgZYWGvtcEXBvn4ExPpyRRIrzEcVtH7pt1B9xj5UqgLPqh/Ho/e2gUZDmwMm+mORIMCGhKQ0TuFnXezcoXSN1fxYVwrrDlFm9YrCsFqsXt9ZLTMbFS/uO6tLSzi9VNLXZJrqdiuFNjYw3gKARx5ZQ6wu5EBPjme6Xs4o11eaLs/adxz9uSb24Httq6XF6ikX2L0bjpUiOWkiwKREM/FRm3B67epdQUMc0+IiVKp3XWJsTOcMLiyY72t5znzZiUnKBQF6qrgtxGpz/lXdCCGVAavfNB56iLDBUZzVR45gMS5jwuvoceWiAqTEfFTBVGX5ieS6Wj9gsXp0WKxm1oXcWd0rsBghkYLmIlYKsdRh+YEtaRxUho70UPdCxHONwS8ehijq5WsPfZMcst2cc8lgWo/N0CNOnQIuu4xYrDbnkmdJxITFO6URq13EdMdrvi/flmQZ0HmBJsezAd/Xg7T2iG0rhTTJtHBVq2HC72Bxicb9KeNCZjWhWC2EAup1WEIha5+Ds3qqP0v3Agsf+YjAy19uHsgzq6liQIoTEttGxY21+LUaSYIkteDYmd6ivns3fut5N+PnP/l9/UmjlOiudFZ7SkdrrNXXGpFkPAhhWQo/cMX9eOKQWPZ8IymhviJDsTyEsxrAWWL15GVV3GtdDyUsjF1aW/47rqu/v2HE6khnfO8uNXHmUGFmkDsUqcXqfDDuROeUWZ6mqxSKCUPEqQO34mmn+nqF3zZCvstCZIMFylUOdL7hYDLorMh7MAiBip9qd96FXDgmvydOTuKS8hL2nyRYcTV5qo5n6azikkQjGjH/1rQLAKhWMeZ1sThLMC5axfVXGZSLXhCrx8YA7N2LnVMZZsIaZro1PPcN16BUW6E25u60Qc7qhQU9oXtKHW/+jTHghS/ElbU5HP7M/XqQUSxaaNoc5CiV934bABD+6QfxV5+s4Nef/mlMHzJvsNvVfWy1cFyOo2NA5BrHqpTOpAaWi9X/+oWYzqbwwPyleNlnfg31qcJn4OjaE43uiGJ1fs1WAxN7YI0++Mqys2NAbL3jQkZrx3Usi48Zlvy7W6tPyMVqb/jxg+cqXWBxyH4mfPQwAjsBrroKVz+7jN/85Rh7d0hUdxVC1vP70SgKkBGoqsHyeyKADfWJP/zDK0SYJEEjCVAfM5+RiT8YlNc8zPEmea5wEOhYNwoFrCBW2yVPO+uHaFfKdTJo88xqb0UMyCBndawLRD96tIyrnyaAffuwr7KAUw/M4vN31dCWHsq7qr3Xl/xMF1gc8vuav+lLmGocxCXp0X4NanPN9s7pPFZilIUmI1b3CvYBgK134647LDLX185aqMVqx8HuHSnOdEwMhpRoS29ZJE5v5WiYic3Jk3jkznl02iv6pBXRGhPjakNFslclj9ty+guHgTtEsTqlTIHFMsZ3ecCuXbi8Oo+jD7d6x9pMguVi9bDRmXNzZqeOAnbv1uPfQ9NAHKOZ+Kjmp5bZebbROM5mE/ipnzr78TDcJjEgRgDWYjXtAY+PEzurk8RkVqd6UXwj88RTp7AQlTH+1CktVi8JoNXCXFjBZHX5Oe96gsVqIlisZtZlfp5eUFTQgmKibJrVfSmRpH1xIlogWtI0A7yqGyKepROro9SBb+nMajKxeqU4Tdbw5jAzA1x66eY4q32bVqxOhAfH0pEVSUhXCBAAfDtB1CL6EPICi74F+D4m/A4WZkevIi8zC66dAaUSJvw2FhoE7k+lIBPVFxSp1lak1BOxWk0XJtrICv/SEpbikh7kFnjJS4Ddu80Pvk9z3ebbUldUfPftZO0s0Xyyn+f4eR5+9EWH8PD8HvQqCUmJMHXhV/pKQ29r/VqD/DiGVFqguvLSBJdV5jE9XZjQJAmaiY96uTDgyotBrtfVriVWTwL3PVHHD/+IjfGpFeeSmTz13Pzr0G5mqLoRdpcaOHN8lYrvgUsrVpuiLFU3QngOGevz88Cv/Mry1JZcHHTLDipegna8sYJPa5L3BabAYnsjYnWng7moiqlKuOZ2/XKQoSOJinRtEirPUZicxBuf+VW8567rR280n5jnxaTqQtcGGDWgsuCsHid0gadquVhdduKzxYYi5nycKMfaWS0Edl27wzira7jmJRN46lNX/M6QOa3TxyKc7Ixj925zPNddhysmmjgyW9H59W5BHc1jhgbE4shQf26nF3wcaU3hVZc+gpnj5kBaLS1QjS0XlteNAcldxfby62XnVVVM15+Gx596A37yX53AT/1yIQfE1bUnmqE7mricLy6UHJQCE1FAsAhylrPaddePAckXZM7VWT0gBmQjWdgbjQFpHJhG3QuBK67QD7z+9djzgktRqxemuhuMPlgV49BcJlabmJ1BY8S/+zvgC1/Qp8qBA8Btt61styBWmxiQaNTxbH5ueRZ61VGJnNUK0N/9kEVRoRRks4PmyTWKoEupd5+W+s7qwEkQJQOc1eZWdM+DAa6+GsC+fbiksoSTjzXxho++Fs04QGV3X6x2fUsLSUOeWzOfugM7gxb2Nh7DqRPm2smvlQ3maxeZnQUef7zwwGrxRfki23qFYc29qSdWA6jv8LTbvdHoO7arZ4vVKh6ioPUf/R+0p9twuyvqdaxwwgcVW5sjRnRWyxX9lu+pwQUxu11dKD2r6R2Su3bhqtocDj2e6AsuTdGVHkrVYmb1kPOP2VksRGVMjGfA7t3YW17CqUeXgDjWC1f5qZXfZ6ONzZNuuQW4+eazH9+WzmrC6D1A14zoFUulwCwy2ULp738jdW1aLSzGJUw8fSfqbhdLLRuYm9Nj5h3Lr/teH8Ni9ciwWM2sy2Y4qwFo4S8jEqtNzqJnG+FrgUioNYPrihMjphIUo6h3rCV7A1WIh2h3GdTleImJY6Ba3TxnNeXNXWZ6IcS1UiSEDnsAepJ/Di7NVckLLBpn9YTXwcL86JMcHamgtFjtdbDQJBCr80G+SGkXbQoxIL69QbF6fh5LcYCxvavk9Ob4Pk1sSb5FPVgxIRHrTEjyLad24fk9e2AJhfTE6V67AJYLP4NEBCNQ7am18eLrM+wqNTG9UPh9KdGIS/1q5+ZYK4OKyKwVAzKltb3f/E3gf//vFb/j6jinpDv4mmi10Beri5nVeQxI2dNbRztEkR0mZqfqRuieQ5tzc9p8d+ONhQeTRN8PPIFq3UIrCWjuifkuC5Gi7oVoraELrEq7rfP3amvf+Hti9QU8CJfdREfmjI/jxXsO4+DiJNqjFjQ2EzLbCMD1OtBICMTq/NqsVOgiS1ZzVg8SgHNndSXp5TLveNFTMBtWMd2tYddeG1/+8orfMTnQg+7lv/OPz8NH9r8Iuy4x/ZHr4sprSrh39gocbk6hVCocl23rCX93gFht3MH3ZM/Hd+06iEm/jfkZ89k1m7qPnfD7v+A4Wqhd67TNhRdr+XnieUAoHTwx+SK88icvxwtfVJg6WRZqXoRGHKxbxHYg+Y4Q30ZQtrWLcNSBTJqa6I0VmdXrZZcrpfsOarG6FwMyvJDX20Y9pKC4dHgBY263V1QVAPbuRV9IMsc5TMTMuuTO6hW7jYapQ3PoEPDEE3rRcudO4PbbC0+ayK3aWDECI0E0aiRMfm55AiiV9O4l4hiQXKwemLf/6KNITs6i+e6/0LkSq7TZkR4qtWJmtUQ4QKzOz+e77/N6YvXe8hIevuU45roVHGtPorKnv5NL5KHsw9zDlpZ0/1dqapHy3pO9310WtWTE6o24aj/6Ue2w7x1Gu62d1ePLF+8cK4Ucwlm9oxb3xGoxVtfftRGr24l/lrPatdLeot96zM1m2Bk0z47Wy+cIfr9fB0ATA1KYavTi7Nb7vlotPLywFwtqTC+27tyJq2qzugZ5fq4KQFj976vkxOgOc33NzWlH7bjoO7Yf6wKLi2glPmq7zC60cyxA/Y//qIcRxa7ORGJvG2d1qnScXdimGxeq4UscDE8cI1X9AuTdjTjBWy19Hjx9F2xLIZMpMDuL+aiMyV3Lv3N2VtPBYjWzLpvhrAa0WB2nDlkBuDxXOHASmrxHoDfAqzgRhlh4Ho7cWe0YkY6i4jvQ/xzNQPxCd1ZLqQuVUBfvVDDOaqp2lUKSAI4wYnWD6HMtOqupbuzFyuS+j8mgPbpYbUQv18mAINBu7bY32qQc6F2zjie0+Eux5Rnoj/RqNVMMcgMnwtycjgHZV1v7NZ439HXbaAAf+cgaT5otmZUVearugMJX2lldGM3u3q0LoD02r3/O37+zfKKT/81VMd/F3rEOPvJxHf8w1/T7rzcFFuuVFWK1G6O9npi0jrMaAK66Sm/vW4b5DJLOgA43y9DqCFScCHvKDZyZKQxlcpGu4sO3JMIukVhttg7W3BDd9dypazA3B7z61Vgu9hW2xns1n24B1zir3aqPca+DxdYGFpg6HcxFFUzV1+6XgpLQW6gvYGd10kl0YdwgAEol7Co10JoZ8bNNUz3JMVvUx8cUFqPhioqtS8FZPeZ1sbhA0BeulVk9YDdEktmYqCa9a9P9nu9GMjaFmb3Pxs6dq/zOoH7LEHUyfOnkM7FrX188vub5Jdx06Pn4n/e8brmIMsxiGPpi9fQlz8XYDS/Wk8cw7m0Hbyc+KpMrxGqRrX3aKmXGkme/l127gDvuwNnOcgD1ss4aHrVoXy76BCWhhZlRz6ssOztuqid8rbMouhnOarNNfEOZ1a5CnG5ArD7W0M7q9cRq46Ycya1sXKq10vIYr2Hq0EgJtJoZ9t94L37gukN46H7ZH07lu4JK5kPyPH0PGxCBMZCi+7Vc1tcAxVh2hVhd80K0FgeMZxsNSGWhlfhofvyf8aY3rRj6GbG6XOu7lX3b5BWvQ37pfeNbjharn/lM7C0v4WvTTwEAPNHahXJ9+SK+UkNGUT74IGbCKnYGRqx+zJhWpERXuihVCi5wO0G4gdiWb39bRyL+1V+ZB5aWdFzHZGHcNGhHiDkWmdn42VcewItfbB6r6wrWaqnRy1nvLQIAPbE67gz+DObDCnYELQSqu3zanpsoAvPZmvHeMG7tnCgCvud7gHvu6b8XvSOk/zkGXrZ+nB0AtFr4z199A74xfYVebN21S4vVJwq7wMTy+0zJTtAdJn7NiNUTO2xg925cXp3HkccjYG5O77LYa6qFWxbKboJO4m5onnTffcB3f7eu55STd//bwllt3MpVJyL1ymUZNn4vGkTurLYyvVjR2MB9u9XSUTJX7dALM5kCjh/HXFjF1CX+spf2xOoLOS5vm8BiNbMmSm2Cs9pctJ5N7ay2TWY1YcE6s2JcdmLECZGobJzVfk0XautQidX53Wx8HAqA6tCK1ZY1uj5ZREq9G3FTnNW2HD3jL8cU1HKtFK5IETeJRg25WG0RFM/JMYNV17cAz9Mu6MURP4d8Am0DsCxM1CQWosroi0x5MUjXQlC29JZnihFOfkLVatpZvZHtXblYffnY2q/xfd3HDMhSBYCTJ4FPfnLt41zVWb3eVs88S9Ra7qzeW1rCqf39TL68rWK7y55bSeG7gOPA3r1DZ0+e7LuHGvEqYrUTob1edfp1xOrJyd48ajmuC2+YuJ1uV7uEjLP69FxBAckXWCrGWU3VFZqdC1U3Oqfb1tx0imfsXsRCUYjMF1o9XbBvw0VB1yIvsFgrYdzvYrG1gYiCdhvzYQVT42t/B8LbQNblFpF0TTHSIADKZS3Uzo0uVhe3PE/W5ej5nCjE3lQqOld6VAc40F+08ftCir5mh3BWV2XPWQ3LQlap49RiqefYW0ZetHA9vSPUBbW/OXsZdu/rX6vXvGwH7njdO/HQwiWojC3vs4ZxVuf9xMySh/rush5UZBlUqw20WrqPnSzkrueiz1qndi7U2md//i94AfAv/7KGWF1JtcN+lPMgFyp9G0HFphGrc+EvWMVZvVkFFikzq70NxIA0m2gsKYyV42WroK95DfCKVyw/zpITIxxld9RqucJG+Fo3Zgf6FGk9cgwHPvUgnr7wdbwsuAf/8umw/6RpC4DOrHaS0cWqYq5wqYSqG6E9T5tZDV8vjA7cFWLGG80kwG1f9/DhDyt88YvLj7Wd+H2xOo8ZStY/IWWiYIsUDz8q9DW6axcu+e2fwjemr4QtUhxpTCyvF7yRjPEHHsB0t45dlwe4pLyEk8f6NULaRQE4LwQ4jLO63Qb++q/x4D8fwXuvfQ8+9D4zXlpaQisJUNlRyFkftMgG9O75L7lmod9Pj4+j5oZoHpkHUl1noroiEsez5VDxhotqDONeF+NuBwszhc5+ZRSK56HuhmguDX8Pe8cvn8Z1e2bxX39J9dpcllkN9BfwBojVSWbjzqP79P2rXMZTdrdxcGFCuwUAmIoEGpNZPVRsy+wsFuIyJnZ7wNVX44r6Ao4elMCZM7rA4r7+vKHsy43FpEUR7LCFS/ZkOHWq/3AYArXaNhGrTR9TdSO6+bdudnmMFQV5ZrUj9GLFBsVqABC1as95ox56GDNhFVP7SsteymI1HSxWM2vSbAKV0edhy8md1SWHVKzuOattSZeXlMeAuLRidZQ68OrBORVhWK9dAMD4uBZ7WnR3NyHMdkzC82AzxOosSmCLDL4l9fdF4dTtxWCYzOpRCxYa0m4MSygzsCU6t4q5hHlm9ahidZ5Z7eiB50Q9xUJUHv26LbisSlVbV2UnEOmUTHsFFjeUB64UsLCAZhKgetnE2q/LM6uH+M6kXEd/NxOHSnkVZ/U6IoJ2VhcmAXv24JLKEk4djvR7WDnZBYaOAemJCE/RTiR14An9c6eDRhKgNrZ8kO8N2sGwhli9Y8fqgk/+WtdKEXcHi9Uts6V1R9DCbNPvX+8FZ3Vgy6EWFoYiSZBmxll9DouMczd9GZc/8jm0ZwvXThwjTm14gaDNEi1EoYyXYyyGGxDS2m2dvzexzmRz0ALIBYCMdZ8N1wUqFS0kLYzugNZRS/q+PT6msBCXR7uRKQWZ6t1mKJdpCriaY80nZACGE4DN+fh9z57Bb/xG/+FqVQt+1mrDlbxg31r9FgAsLiLJbChY2LW78PevuAKXVhZxYGnn8m3vpthsO1x/lpq7uWcWHb34NTWFmhuidXS+L1ZPrRB9rAxyrQKLeR+7irP6BS/Q6x75zpAi9bLU2eWjitXKgltyUKpYWuwYdQG3J1avdFavEwNyrgUWhxWr/Y0UWATiYSf7p05hKS6hPukuc08+97nA85+//DgpiuA1kwDV0vLPtTxEDIiMM7QePIwDjV24uj6Nn3vKv+C9f7Con8zHQOVyr03fkgPzmgeSL7K5elG04kSDHdBDtisA/d0HwXC7QsyYupkE+OKJa/B7L/4n/Pmfxcuel8qCGyx3Vq/7GSiFRAI7ghYmJoAJM4Tb+6xJdFMPz548gUxZvY81b1cINfjckhJ4+GEdA/LSp2tn9RnRe65VjNawbZSGKAYJALjxRiS3fw1SAlc0H8Qlrcdx/7d1ZEc78VDduVq/tX5m9bI4DgC4+mpM+h3M33cUSJK1ndWDxlsAFsMA434H434Hi48X7L/5faYgVk/6bczPD/4IAADHj+PWTy/id/y3wV88o38vL7JZdFb7Spta1htzhCGkstCJ3d561RXXVnCkNQU8+qhu01q+cKdjW4boC+bnMR9WMLnXByoVXPHsMRxpTOjM6jRAdXd/JaQcqA3FpKlbPg/MzWHv8W8sE6ujSJs6tksMiMxsVNxI74KgmH9Df4TkzmpjPLHrFT2fa26gL8y3e1UqwNVX64XPRoxvzFyJ571khVi9wRgrZm1YrH4S8fa307Y3Pw/s2bM5mdVWraJdZFTO6lSLJ4FNGwPSd1YTXSphiDiz4Y8FelJKJFarMNJb2sbG9LYW4mq85GL1Q4+hdORRJOtNcDfaZpzBsTJ4dopIEhQnAvpibZ5ZTSRWR20J39L/ka1CF90zuVjdGPH8KjqrYba9xyUSsTqvTl+qOehKd/Q2s6wv+lSrG1u4WlrSxYIsG1bgrf26PLM6HBxbkiTraA15ZvWKGBBHpOtnVmcW3ILbBHv26MnTMQk0m8gyQNhiuRVhGGe1srQjHwCuvhrjfgdLDxzVP8/PoxkHqO8826G4bsGfNcTqeh34/OfX+J283UGZ1e02WlLnOjr1MtJM6O8Q6J9bFd9s916/qaEpVDsfanJTZH4ec08sYspvA8VdLz23YaHwFZWz2jiAx+sZFuMNRFXklc13rNN3uK6+31zIzupYwbFSff4bZ3V3cXSnatFZ7fg20swavZhUvmMiCLTTiyK6Jne8ef3s14o7XGZ1rQbs29d/eN8+4Ed/dI3fGRQrAQBRhCSzETgJdu0qPF6pwPFt7AhaqEwt71+GyqyOU3hWgul5B7UagKkp7AxamHmi0SuwWNlZUKjyPnYdsVoqe1Vn9QtfCFx99er5mbVKtmFn9WOP6ZzS/pvpO6srNQtt6ZHFgCxzVg/6vrLs3GJA8pWMtbbgmfG06w0/JvE86LjAYSb7J0+ikQQY2x2s/7q8CN4o6wBJcrazesic9WR2Ca0mcCi+FFf91PfiusmTOH5K55qmSy1YltJ2SqBfYHHU+UdRyCyX9e6NRYK+e4WzuuzEg3eFmILOzUufia8uXIufueoLOPJo4Z63MsrMZOLLbJ3PNcsgUwu7Sk1cfXX/dZUKUPMjvHj3QVgi69WAzNsfKgbk4EEgijBj78bO5+3DvsoCjs3qHRx5nFvPrdyLARni+3riCTy+uBvPeEEVCAK8oLYfj307RLLQ0qLyroINvGdkWKe9PPorKIz9nvEMTAVtzO+fA+bndQTleEFQc114lhwsVicJFjo+xr0uJrwOFk+u8315HiaDNuYXhzxnjx/HfFTGVNDGU50jOLBfrVoYdqjManOeA+jtDAqe8wwdH/Ltb+v4hqBwr85z5ocphtjpYDasYsclejx7+fc+FUdaU/jogevRzKrLYqzKvl4kHFakDO9/HIGdYG/3IE4f7ndMYajHy9vCWW3Gx4Gt58xUB70pYnWSIFMC1lhNf//DFkxP0/6u9XIZeOYzMeZ1cbpTR1e6mHra8pVszqymg8XqJwlSAn/2Z7Rt5mI15Xy0t901H4xRiNVmIqSd1QldwTozeQjsBJkCTYcTxz1ntXZo0uxvSeNUT8zrdS2CE4nVSgHIMj1pINS/5R1fR+nY40gadOFWMkrhiAy+nWg3DkWsRM9ZnertcpRitS3NRITSWd3PrB73OlhojHh+5S4XI5BOTIDGWR3HPadPqeagkxI4q/PvylZAubwxZ3VuA7EHjIosCyU/0+L6gP5gXWd1kujto6s5q9dq1rj+lgkp9Tr2jnVwcrEEHD+OMHVQ8leIEEM6q3ui1tVXY1fQxPSD07oDWFxEIwlQ37Nc9BlYVG21SBJDL2JgJXmBxSFiQFpJoF1CU1MAgGx2vvd3pbLg1gJ9P6Aa6McxUmWh5MRIUmtj94OvfQ3zUQVTQRtQhe/PfPaeL8w5KxEtEtwTexEQNsbqZoFpI2J1VMHU7nWuhfw7vVDF6ixDklraIWtZ/RiQxRH77+LuFaC/EDPK2CBv0876i2HnkIl+FnmRTa8vpJSdGJ318jnzXRbB8vvGX/818NKXrvE7JlZi0Bb1JLPxhuc8giuvXPHc296GK59dR2WisKhl2zqypDugqFqUoeLGmJmztbN6xw6d4X9gCQhDdKS/3FltWUb4WmOxcbXdK4YrrwRuuWX146iWMzQ3KFa/+93AO95ReCBfZAsceFVPT3KpYkBKy92Eg2NA7H5hzmHZlBiQjTurxy6prP+6XFDc4I6bU6cKebK5o7ay/P5dchJ0BjmrFxpoJT4W7Km+uJFIqMUltKSP/5+9946XZDurQ1fl6nj65Mkzd8LNSVlXCIEEKBAkFDEPMGCEn8A8kgFjwGCDwAEeGQuEJWEZkBA85CeCJYEkJF3JQlfh5jgzd/LMOXNip8pV74+9d1V1n67au6pr0J37zvf7zW9mOuzeXb1rh/Wtb612zU+Af0WBofiEqTiteWdIE9K1GjFa7VbA9hsDq2uKxwd+KKjaDRoIGjPoGFZiYB9FyfdMXQNFiuAHOeOGjq2l+oDoVadi32ENL371LOoNaTTRpJB9PdO9zwwqh7YaLWHpIAGRh54GrK3F42DEDFL1uGaQke3gvseauGTP4eCdc8DyMubNAdbP9vG69387vrR2aISpy02yAZOZ1bUa5pZVrFl1nN9sIoIMqZPafInutwYDbDk1zBpDIit2JbWxZWufkmZWD4XB6v6ZNTRUsi4fMy/i1Je7iWa1mnxf1VBI4ooDVgPA/tlBIvly++1oaA76j5wl2tLmmCmqCGksIoakV+0WFveTdWruZbfjkc19+I6PvxUXBp0RTkZsQC24HgzkFhqqS4gn96/EjztXNtFuBNcRs1qGKtGxVAXpAglYrfGPXOJBL6jUbonNWSwGA9iBhpoekqz1TTdhRrfw4Qu34Z7jaxjNhgGyrhJS5i6zeurYBaufJdHtApub1ba5sQEsL1cMUnoRYT62WiSrXaHBom7IZKNQsQyIKtOJpqK+ujS7XVNcWG4FYHUUwXPC+LoSY7lqrkHwufugXjwDbXutWmZ1KKOmevAEXKiF23RDAirLAcmkVwhWx8xqHuNTMJxhAEPxCDjlVmQumC5RpyyXqS8BO0BTsLozJxOWZhUyICFxp2/PKqSEeto2498qBGo1cm2HgpsEBlar/PuxZkYErOYACblgNWNWp8tSRTSrIwWaknpekrD3kIbLwxngscd2tknbjTs0KRhAxZjVe/ZgacbG1dWInM43N9F1a2jtTblU8SRLAAR+BEUKM7QDMoIdnhzOwXw4JKWybRmYm8O82cfG09vx9/RDBWqTgtVV+QIwtrJE+1YESDp3Dut2A/NGH2rgJnOp58EN1RhEaGk2ehsVTLSULa/qMrS6Br9I8q7fJ2Yxe3Kc0DQNshQhdJ+hjJEYAKbjk4HV21NeW2ompWh0TGsaVBFDUE6b3hizuhJ/ZFZKrSVgNRcAzgCr9ZxiE5G5gM3Nv/LNn2W5pSTabRw+ru8wwaurLgYOR6fWDdFUHVxdl2IZkOVaDytPdXGuP4s1t416I3X/SxJUlew/Jh4gGatYnvxddvSdhmxo4mZtILfivfcSXC6WUmXrt6kmh95pF/CYWb3TGyEvKXqtDBZHkqICQQwWxZnV224N7f05Bsm0n2Xk197zHpK0AQB0u+j7Blqzo9I1RAYkvx1vgzBnt4IWZo4RceEZuYfuWbLOtpup7ypJMI2IbyzHi7QJXr2Opuagvz0lgBKGQBQRMEaWE4k0noQRnQvOrTcwv5esMbo/JN4t7HeWpKSEQVGgSgGpnsraJ1Mz2RfuPY/v/M7Rp37iJ2W84K13odEY+70VRWyuvXoVALBqt4jB7N69JCnx5AUKVptozozra+fvI52zV/DWT30Xtmp70ZmVgKUlLJh9rD/dxdPdOZzqLo0awzKppbwhwPYnxuhnzx1o4MPnb8cPf/bbAE0dLQ1RFOiyABg6HGLLraOjD4lh8yp9QxSNJiwAQNOIDMi22Nn2yYdd3DhDANrj7VWc+sJmSr4oGUuSJiA9Rp/7x7f/ffI19+3DDXNdPLm9hE2ngdZMql9Ms5rHhLcsIIqw5s1gYYm8VmrUMT/j42v3PkGA6VTUaxEh4Ajes4N1G03NwZ7aNi5fCuPPtH/td9G+8sT1waymCQZZovdoxWC1WcERMY6Ut1FddTHoC56/+31qrEt/15kZzByawV+v34OXve3Wna/nrYm7IRy7YPWzJLa3ydxQJbA8GBAmZZUgpW1FMBQfcdqzilmYGixqs7T0f1Ads5oBlQAqA6udMMWs5piGCAUr95Wj5FDereYa+H/+QahSCH31QrVJi4jKq0zjyD7eJmVWEzaOWpn2qx/JUKVqNasJWE2Z1YFazU3GQDpTBXRqLjctUMfaZBWZDZOY71XArCYHVwlq04QfyZWA1T5jVtdqdC4Q2yS8+09N9FwjAWxzolYDLAHzK89LXvLgg8CpU6N9HXj6DsMfEc3q8RL1fbd2cGnQAT76UWJMNE4sEzJYTIEIkoSlQzX86ckX4sInTxEZEM8cBQE0jcumdD2JzJ1lwGoRZrVvkEMiA6hOUy05Boo0zYTlVIU7rOsiiCQoUkh0OousXZcuEbayOUBH7mJ7Kxrpq2bIgGmirdnoblXQ15QMSAx8FWVW781BKEXlWr5SwdZuqrVfGVgd63MmYPWcMcTmxnRmbSQJFVKw2q3mUMb6WoZZXSuwLxEEUvKAyiNHsGMubGhOfl+jCJ4boanZ6HalmFm9v7GJi6dsfOfHvw9fd/zsDnMmVcsxPcphVueGphH9W8F1/OGHgRfc5eA1XzNIJJEY+7WmFr9nsyKTWR3A93I0qyMZak6uamIoCiQQ34iJkZ7rBEM3JHGDxUuX0HVrmDmS4zlB+2kqfuHt/LlzwOOP0/90CTu6uTAqXSNimu5vE8DDlQzoLQPodLBodnH1gUvouiZazdHXGwam3yOmq+5qNZK0mtbENQgQRSnskxIkuHMX3W88eamJPQc1oNPBwdoaLnz5KuD7FI8eTTApCkjClZMIOTa/hVe/evSpt76VyBg1JuyLhPwBKJ2+75kkoXbLLTjaWsPTHzudkA7aatymqXhcEpJ/4Qo2nAY2jT1EX3t5GfNGH2tnB/BCBYoUjJIO6L4od45NJ7tSMXe4if+9chTn+3OQxjNQbB3nkQMGA2y5tUSzeo12JN5XpZILTLO6K7aGPPGkhJs7V4AXvhDH2ldx8okA8H2S3O+kvjDTGBdhVi+l7hVJwg2HAnzLh/8V3vHoy9CaS01sTLOaRxqjg3rNbZOEBY0PvKuHn/vae9Fsjc5pMbNaEKzur9loqA5hVq/SvmxtwQlUzGgWnKowjWsZdH6K54OKkGV/4EAdbMHUw0ogGADJXNpuo63b6PUE3zcYUPmnZB6aecFN+IezR/GiV0yo6NkFqyuLXbD6WRJMrpP9XUXYPQ9tw6kUpHRcCYbsJwYiFYHVXqhAn20QJl0V5kTATrC6Qn1to21AVSKiwzYtkJI+mJsmWro9PWuChqfVoTJWcYVJCy9UUFNceBWC1UyjVGk3iI5o5czqcDoGXSqcYQBD9iFLlJlSUV/9UCblu6YpbCL00ENEP3NisAMm23dWZQIXl6gryVwwbSaeMhQ1NSRgvSLOnnr/38/jVHdxRHcuK8yaBNvXuJnBNLP6T/+UMLPi8DxyyEmzfaiWaK6eaiiPMqsBHHjzPTjVW8Sfn34ufuJzb0K9ObasixospkCE5311HQ9v7sP/+B8Aej0iA3KgPdJX3pzg+RSsLmLlTTUUuWD1cEjKbzsaMDeH5VoXK+foWsLuA1OFaYr9VkLBAGC5ILPacYCrV4lp4VyEjjbA1lm6UNNEq15TAF1HW7fQ3a6+ygJAIWZ13zPQ2pNTTi+aVPhKRQwA02vZIEY6wyJGOpOC6UsbdEKkLLL1jenM2mIWOCulr6IaYFyyhALAuaaFZcFqKUAWRsn6MomxzeKrvxq4447UAyLMaqYhr5N7mzGrDzS2cOGqgb5n4Lfe8pkdb9M0kOToJCCBAbUlwOookoTnmY2/+yIWH/4Env/Ie/HgfU7MUIyZkaZZTeUhA6vHgC9iiJnxHmawqBU8HspyvhY2nT8LgdW6oEFVrwf0+9gOmmjva+a/lsmAFGRWj4DV29vEYHFpVBqrrroY5mnCex68vou+bwIaTQZSVu3aw1fQ9Wpoz4y+vxKwmjGrY83qAmzCnDaDKGVYZxgk0Tbk3DuehwjAU5fq2LtXAo4excHmJs59aQ0IArihCl0Z/b1VXUYQZVRDAEmiR5v8nZpN4G1vG3uQaZdz5GB+/38dxunuAqCpBIh77nNxtH0VT39hHbBton2rq6NtckhI3sVVrNtNbCoLBKymY+DKWRtzxgDvestHR7dNVLIkVwaEgYXa6GfPH5vFl9YO4lx/FpK+E6zWFZ9PGhoOseXU0dEtdHQLWxv0N/Z9BOGYvApbE7sC2a4owslzOk7MrAK33YZj7as4dckEggAbTgNzM6mxpGnxZ2aG75M0xxgof/NthEX/xbXDaC3uTDBZHCY8O5tcdVpYWEgevu0bD+Oe//Z9OHbz6Het1SAOVvs+Bts+GpqDeXOATcZId13YgYa2bsGtUC7zmsX4d62IWR387UegnHsatavnqmNWs3W61SLVjH3BtaBPqmLS8k8zM+TP/v0TXn8dGJFfL7ELVj9LgoHUW1vVtWn9yV+i9dkPV3ogdRwQZnW9TlgIvQradhy4gQptrkk2CrzNkmgw7dNrwayuq0lt7bSAPQP+KKO0pTnodity4tVqUOWwWrA6imIZkFx364LhuyEp0a9SD50eIGMZkIruBccKyX3ADqVV9DWtWcfAWgHzxr//e+DjH89ukwDg9P+1GiQA4aA6GRAGgEeDKTc3rE0lSjbMA0NIYsV3AlwadhKjnJyoNWRhZjWbMs6eBT6Txk0GAwIizKZKPXnMaiYXMAZWK3sWcefRAX7uvtfhMyvHUG+OUwkFZUBSQNJrvm8fPvD1f4i/+9Ic/t+n78S54cIoCM7T146iBKye5EiWFbRd1+bLgPQ9E82OmoDVF+kERUEszVRgNhRiylPR3B1EMhQpJAkm0Xn7yhUgitCNWmgfmcOsMcDm6c24r/G113XCrO5O39UYGKqpNHFVwMeg3wcASOMUv3Q805nV4/cKM1icdr+RNrEFAE0jBlabU4DLDEhSUzIgJcDqzU3gN35jvK8TNKvzfDKmYlbz9VSz9Iq//uuBV75ytM0Gr6+OAz9U0DTIfd9qAdizB/v3A0/3Foh828GDO95GZEAyAFCW8FQK7ktEgJRUrH/pLOb0AY7XL+Hkg4P4fU6okWtkGJCkCKFVkcFibdQI8JoYLDItbJdjsFgQrBbSrL58GQDQVTqY6XDuHQYoipjgpWJlBcnczJjVY7rCuhzAzdsnOw78UEbPr0GSaT+Xl7Fo9rHyyBr+ywOvxNe+YDDyFsOUyBo2zQY8XdlQr6Op2WyaLx8UrI4lc3SdJNo4BpPwPDRUF92Bij17ABw8iEPNDZx7tB8zlRv66HdVVZpg4knMZCRYJAn4yZ8ce5ABlXka42GIL5yexQPrBxLG8sICjh708R/+8VX4rS+/LOlg3KYH2+cwqzd7sAIdl4cz6HQALC1h3hzg8a09WDT7+O7XrI6+QVXJvcVJCAJI5iIaczfMwA01BJE8arRK29V5RtlAwqxeNjBnDLC2Qa9zEMAONNS11O+l6yQZwvEbAECIEJaGmXYEHDiAlu6gPyS/87rTwPxs6guLAH80ETI+eX3bd6j461f/Lh7e2IfWcirBpChkzLqcyY6ez9xIG5clRr2+8/yk6AqpQBVZD7pdYgSsumhqDnpDOf5MJ1DR1mw4vetAtNrzyFmWRVXM6ocfhyqFMHur14RZ3dJs9AaCa0G/j55rotlMvufMDPDCF2Ycc3aZ1ZXFLlj9LAkGVlepW233fbQ1G26/OsEkAlZ7QKNBSrfXKtBsZszqdg0Nw0fProhJx8A/plFakayEE6gwmlp1pZ4M8FAiWkpuodutRqfVV00iraH41THs6eFck4NKJ/FYD71NGaBVrGxsE8wA+6qY1QysZk5zFYHVac1Lwh7iT/G+j2yAjCZC0szqtm6huzElSMXkVTQp1lAcTGt+lgaoZBl7mn2sDNtCG0bPDnF5OINmh88GqdUAy9cLaVafO0cOu/F5s9cjBovzoywPVQrh5QHAoRKbXabjNa8Kocohtt0a6jNj30GAWT3CwASATgfLr34O+p6BX3vwG3DvD/zpqJoH09fOAqhYX+WwFFjNPTxZFga+juasBszPk/LJy/RzWMmzoRAWfFVgNRuzlFkdWYJtXrxI/tY0SIsLhJl0kQISbO2qyZRZXaAkMS/SppmGQUp31wXn2l6PHDqaOWC1qLb4VyriihA6jmo1AtROa1zIJLfYvcL0OQXNpCZG2hiWGSyW8LI4exaJpARt1w9lKHqip9pQXQzyAGDfJ8xGs8D3iVl/Oa8pKgERM6vzgXU/lNHQyQe32+R9B37q/8Dnt05g/2EVeO1rdzbNZECymNUTEoLcoDIgUS5SmcTGBjBvDnC4uY4zTyfyISFkMl0zhn13eo31oa+hnvKYjIGvPM1qtjYXCTYOsubudGJOMHRDEtKs/sTfDLFuN7AdzcTbv8wQZFZHEfD5zyf/DkNgaYn46mF7myRL96TmSF4SAIjXkKtWMy5Sw223YdHs4W/O3YGG6uLNrx3dVximJMystm3g7W+fkJ9npAtTSQwWhzka0CLBNPEZWE2BWq5ZneehpZO1c+9exGD1+dNeUgkwBlYrmpytMw8kxKIi0jUUqMzdGmxtwQ8kPDg4hoXF5Hsdu1HBo5t78cT2ctwW+1uEWc0SOqev1Amz+sABzB+fxRPbe7F88yzwpjeNviEmB+QnBKNI2gHUzs1LUOUAL1k+PaqDnWpXiFnt1tE50sGeehcrm/RCT/q9dB26LHhetCxYvoZai5AOAEAKfESejw27gbnOaJKN6wvAxsfYQJBvOIwbWutwAnW0YkzTiBSjzxmzA7pfE5W0U1VxD4OtLQw8YrYuSxEiP6ncswMNLd2GW9G585pG6rtKAMJ+RZrVrVmockATYZU0mcylzSYBq4eCa9JwSJjVqWn/4EHg5S/PeP0uWF1Z7ILVz5LY3iYC9FUyq+1AQ0uz4VUtA0KZ1cu1LlbWK9Bsdl1iUlVTsW/WImZjVciL0AkmxloqNFjU6wRQlOhjUwVjlKoRBRNtdKsAPMCY1RXLgDAwSQ6ShbmKZp2AAEmMWV2htEalBotRlFQYzMwQHbaqwGoGCBgGdZHnT/GelyMfxICUFLN6RrfQ25zyOrB2qYZiRx9ia2161mMaoFpuW7hizQjdX74b4NJwBs25PCcxErWmIsSsToPVlgW8+MXAAw/QJ/t9sslfHHN8zyvPZgzMCUDK679/Ae/+mv+OG2dWUJ/ZWeopAdlmeEyndRxI+tZvxS980xfwJ694F/Y/d3lHm7lzQlntV1GwmjKwak2iWX1Dew2nL9fI4ZslmAwFRkMlv1VVzOqQMKsL6dezDLJKgPWOMcTmJStu0w1UaLQaoqXZ6PYr2JaxiggqKTBSupsXYZgczHaIfKbiOmBWx2siAOg6Aat5rL9UTEz8p6UaAMqs7mN9a4qkOwOSlIiwE1UPVkHWJ0AA0BG2JJsvGLBODeBy2crsvs1gQE8MWabgZz6QMklPNTOoGeQwj/HmuvAjBU3Th64nuf/O8QVctmZx6CUHsYMGByoDkmOwOKJ1LhpMU1bEMDoMsd5VMWcMoCsBvIGHiCH9bLNpmkSypQJd4R0yIIwJn8usVqCoxcHq3GqbEprViibnM2ppvO+vmvjc6g3YDhpx/j+vnyIGi54H/Mt/Sf69vU38e26+GXj4oShhVu9N+TjQJEDAAau9UMHqsEUYtQBw111YXJbw9xdvxlftOYkRnQGQc50TioHVa2vAv/t3wC//MnDmTOqJ9P0ny2jUQgw8fsI9Nxizmq3xqiqWaPM8GLIPVY1iZvWJmRU89rQJeB7x8tBHB5GqSUQGJGtwMYmuIgkWVYWpevnM6l4Pfqjggc1DWFpKHn7pV0X4+Df/Oq5aLQJIyckcayoebF/NTQSwJO+piwYBqzUN2i/8DLS6hqXnThDYpvesF/BlQHYwq+eAG24AbvjqA6OVALRdXfbFmNUOAauXa12sbJvk+/k+rEBDTUv9LrpOAGBP4LdwXfL+GggLxDDQUGwMN2ysOw3MdVL9ot8rysuKZsiAoNOB8R1vwoFlD61OanyyOSvvugKAZcENFPFkSBH5h60tQlxZpJN0GJBrS5nVpuJfH2AnG3+1GkzFq0y6xG/NEma1ypfsEW+U/i7NJlq6je5QcF9i24l2PY3Xvhb4kR/JeP0uWF1Z7ILVz5LY3gYOHaoQrA5D2IGKpubAy9t8FYy0ZvVyLZWhnSYYO62uYt+cjYuDTjVg9XhZS5VM3bpeObOayYC0dQvdXjW3NmNWCwFIosHYaVJIFuaKwveIZjWaTcJyGlYoraHL1cmAuC5h12shUK9XKgMSl6hrGkyVupJzNNF9L0L3S0/hj3/u8ZgEGgdLhLBDQK2GtmZje3P6Q7TPQJF6XRxMywumU0sBqj0dGytWiw9WWxb8QMJle47ISnCi1pAJs5rTLjNYdF1A0yLceCLE6dP0SQpW1xZShwe6cc7TrM5iVjcOL+BFR1Zx08wK6gs7DySKFCJwM8ZuEIxctzjqdXzTu9+EQ7/7b4DXv370OZ7hD+3ruPYkN0TBatdFFEmQdA2o13Fsfhunt2bJHM1YVjUVjZZMtAMrWg+YDEgh1mO3Sw46hgTMz2NWH2Jr1Y3bjGUXKLO6ErCascANhTCr9aHY/WVZ8AKJSFLkaY0/05nVbN5OgdUi5mcs1teJNMWkdv0oxVamBouiZlJZfSWyC1FSmu7mgx2TYnMzyTOwdoMxFnjcdlaUAavjA3/OazL0VPPaJMzqnP2h48ALFTRr/gibVpKIfuThw5PfpupyvmZ1ODkhmBv0fnCHYmXfG3YD820PkGUsqetYPe/AC1PAn2GgWYUJHpMBSYPVqko0xrMk2JgUSgmDRVXOMd0tAVaLHvb9vo0zvQVYoQHTzH1pYrDISQj5PuIql3MPbOLQ4DF8R+tD+I1f8/EPF47Dk7RRuRyWbOaZ4IUELI/BalnGwre8BE/3FnHXW24Gjh4deYtRk4WZ1ZYFvOpVBLT+9V9PPcGqzmiSrdGU0PeN6XRlx5nViiLErA4dD7IUoVUPCLN6Zga3HujhkbUl4MknqZfH6HsUVco3WOTIDE0MNm/lnW9puw+sLI8Y60nLS7i5cwUXhx0Y9dT3lSRiBMepBoiZ1QysprGwgBFQPA5ZJvdsKGevC75PiC9jQO3yMvDz/17BgTvnduaf2bzFy7sPh2Q/tziD2ZkQG3adDDaWDBsDqwmzWuC3cBxYvo5aQyYT99wc0W8/N8SG08D83KgxrKH4+XsOJgMyae/y8pfj6M1GzGVibapyAC/Iua70+6/ZTSzMCO75ioDVvR5JfM3pJDMVRUQS0bZhBxpMxZuuAuKfKth3bbcJsNythuXoyzpUmey57dUqNPKQ3Jv0PNuzNbFrbNvktxLwNgKQjINdsHrq2AWrnyWxtUUc1SuTAXEc2L6GmuoBQUUH0igaZVbXu1jZ5DMZuUFNqrS6hr1zDi4NxdiU3GCTL939VgJ+0n5Jhh5rVkfOlH2NS+CYDIiN7qACeRUQBpIqB0SLr18RxZ5pbMshpKom8SgiYLUUAo0GmppTjckkA0AbenVgteMQsNqIEsPCyljgCtSaRjbNTAKBB6pudNE9vYa/+FMH73vv2GYs1gKk/2eAWm9KmRkKgqsagFoNs8YQm1tTtjkGUC13HFwRmQvW1+GFCi55i2g0+X2ImdUCBotBADz9Px/AwY0HceDB/4UL5+mGqN9HBECeSe2cmVFZXnl2Xon629+Om954O+qdsTmVlSdnaYmGIQFKJrGSJIlQyia4yKtSPrDulmFWaxphG/LA6jSLSJKwZzkiFTW93ogMSKOtoO8ZlTGrI5BLUlNd2D3Bg8v2NrbdGjozAObm0DEsbF714+/hpQ0WNas6sDpUYkmgjmFha1NgM97roeeaaNU4h6zrwGBxxBg2ZlaLXdtuF7j/fuyUZEmNLdburDHAZneK9ZZpSysAJAk1E0Lzy3jsYFaPs5lFWGQlwWoRzWoAO1h/maGqaGguhnnl9FQGpFkLdkg/HDiQA1arOaZ9cUVIcbBalwO4lsD90O1i3W5gfq8OzM3hePsqTn5xG5tOA3M1Ok8xZnV3yvtrErM6BlU5Ek5FxgBAxpeUb7BYVAZEFKz2+jYe39qDWktgfAlqVqfB6rN/8GEc9E7jno2/wd7+SfzOwy/HX33Hn+1oNzcJAMTEmo7pjICUi887BAC443uet0M2q4hmtWUBe71z+DHpN3HhTGoO9/0RI8BmExh404PVxGCR/j9OhnH0mh1SpdhsRASsliQot9+COWOAJ//481i1W6i3RtsgBotSrmb1DikzXigKFCniy7aEMk5vzI6CyIuLaGs2Lg1m0GyP9lU3JDiBJgRW2448UgkwP0/A5R0hSbQiJAewz2BWaxrwnd9J5Ap2KHsphFDAXWpY24YBudMmBJvt7Xh+qempPsXMaoHfgjGr63TMz81h3hhg/ZKDdbvJlEFIMPmeQc5cwFlnjh7FKFgtE4+b3CQAEIPVi7OC8zHdL+eywFk4DtGsbkrAzAxamo3+pW7MrDYU//oAqz2PJEvabfI7bVcjH0sqpgPiu3J5q5I243Gi62jVA/Q8Q2y/RcHq1ozgPMPWr12DxaljF6x+lsT2NgGrK2NWU72kmuJWx34NQ9i+ClMlxnLLtR5Wtng0CIFIMavNukw07iqSAZGkCGg2yeJbhckBmxA1LdEVnjYDyQBFFQSs1gtoMHHCd4KEWd2ryN0gZlZXqFkdH/gjWvY+xOZGBQs8A0AbRnXgjOfBCVUYOgDTrJQFni77NmsSbF9ArmKzj65bw7pVxwffN/Ybx4kQupnUNAKoTZsMYUwfTabM6uH0c5fvEwYrxTc67RBbbo2/CdnchB/KuGx1cmV6WRgmva48thfdnzz+7s/icG0VB/qP48IpJ6FcS9JomTpjVmeBSTnMagBAo4FvfnMN99wz9jgFJwIvD6wux0rK7GtsVHbtZEAAxIcSqd2CLEUItvvJfFjTINcMcrCqqCoGQKIn2xPcgHa72HLrmJmVgYUFzBoDbLHKBFplwQx320VKEjl9TTOr25qVLfWTjn4fPc9Eq86Z59jv9AxmVsemhUAMVnP1VGn0eqQg5XOfG3siCODSvQYAQFVhyP502w02F9Ima3VJqHJjPDY3J4DVoQKFmY7FJl0CYHVB9qsqcUBwdu+IuvYxZrWbAz66LvxIRrMWjgIQAI4dA06cmPw2zZCzQZ8wTPYRRUJVoSu+2P5ge5uUuC+pwMICbmit4cxjRHN5rkHnKcMgusKD/Ka4MYlZzZKXPGZ1CbA6l1nM5mVRKRjaJutTZvR68JwIH798M47dJLAvYaAXB6z2POrlsbWFx0/ruLlzBQDw+zf/Jv6fV/4B9h8ce78Is5rOy7N1O2FWA1hcJGN2fBwDgGYqJLkiAFYPrw5Qu3Iae3tP4uKp1J6SdUpJMas9oyIZkBSzWvG4YLXnhFDlAN/6ymHyfb/6q/Hipafxoj96G/7g0ZehMea7Iav0ns2RAfFKyICoeckVIF5HAIwwq7G0BEkiSa9GZ2dfI/rerGD7m2YjHMFVM5nV4CTZ0p+XMce+4AXAK16xs1EhiUfGWNY0oN0mbOS1bSID4uuop2VbqA60m5e8ZOE4BOxu0HtpdpYwq+0GAXBbqXtM06ArPuxhzp6Dcw1+8ieBl7xk9DFVk/LHFgAMhzjdW8CeRXGw2lB8seSl4xDNagpWd3QLWxf6MQZz3TCr2SCamYGpeBh2qwFofTdMZEDWpnWFpcHuIUVBqxGi55licyFjVrcLgtW7zOqpYxesfpbE9jZhklQNVptVMqt9n4B0WgAYBpEB6db47+MF0/1kOtBShNCuAFhmk2+rhRndwvZ6BZMvO4DqelKavD2lGDTTKlZJu23DQdfWK5kgfZcYt+myX5kGVQwkyGGsMTt1xIA9MamaNSoAP4GEodekYLVTlQyIBkOPYuOvwWY1lQB+mDDpDINqHXKyut5mH13PxNDX0Q428Mgj6SfHDgGahhm9AvYnSy4wzWrDwtb29MzqgW+gYZLvKxmUYcwDfWg5+aVeUwisllSxbDk7kJzensf+xhYONDZx4ckh0OvhdHcBgaSOsqh4DEVaoq5p2RvXF7wAO8FqhZjE5jGr/RRYJhSMWZtlTFNWs1qwLDWuRqHVKWi1cKCxiYunUjIgphJXxVQlAwIAaDZJubMoWM2Y1Qsq0OlgqdbH5Q2TzM+eh223hpk5yqzWrcQNfsq+xgxgwyBA7UDgtxgOKVjNee11IgMSAwGaRvWaxa5tvw/s2wfce+/YE8zHgs0Buj69n0MQwA5UmJSdZtak0szqcRmQga+jwZh/DEzLA5WDgFR8KMWZ1bl6qkWZ1YpCNKs9Pfug7jjwQwWNerSDWf2Hfwjceefkt6kacg0WcxOCWaFp0CRxZvWG08DcXgOYnyeGZeccUvbeGGNWTwtWBwHsQINRS4372GCRkxQtWvQoy/n3wrViVm9uwo9kPLqxF8ePC4zbAsxqxwG8k2fx6OZe3PocA/j2b0/W7Jtu2tEuMVjMb9QLFXTq7ghYvbwMvOMdk98i6fSeEWFWf/4h1BSPVCel/QTY9aOLfKcVYMutT7f3ZjIgDKxmBos8c0FKgPntt/eS7c+JE3jjXSfxxhu+jEc29+2oDovn21yDxXIVIUEeE54mbhQ5HAWR6UZx3hygOT92owiU/vtOgJriYnZmdP08cSK/IiRXv53JVmbMscePA294w85GRcwQA8eHLEWk7ZkZLNV6uHrOSrxDjFSfVBW6EsARkCCE6yYyIACwuIh5c4B1m1xfaf++5LUCsi2Rl6FZTeOWW7BjrVB1OXs9YO0OLfz6g9+A73uDYOk6NQge9gX2R7ZNzi0tGZibw4xuYevcGLM6vI7A6lYL88YAGxvVNBu4QSK9J7rn5jaazIetFsTBaschBoszgmuYohASTZYE424Ixy5Y/SyJawNWU3H/qpjVQUBAOi1KwOpeBWA1Y5GZGqDrWDT7uHqlgj4HAVn8m03C/BQpo+ZFGqxmIELBCTgMgZ//+dQZLs2sliS0myG6nlkJm9B3w8RcsCpmdcpgEUClRoiqAgJW6xXISqTbbZoERLOrGQNOoMZg9ZwxwKaAuWAUAT/90/l9DSIZskE2q4quIMwrnWRv6w6x7ZL78Odu/HP8u58ZLR/1QwWqnoDVbd3G9mBK9iczQNMlKgMywGZvyjYpONOs0e+r61ClkG+ER4G9K926EFgNRSEVF7zr+o9fBACs2i10jhHA+sK5EGG3j1f+7Y/gtbecHH0Dc3znsJVVueAY5MmAlGHSxcAXJoNJ15hZ7dkBdMVPDiWtFo6113DqySApCa5pCXO9IhkQ9lk11YXVF1hjogj/8eMvwvn+LDqLGqCqOHHIwVPbi4QK67rYcuvozDMGtI3usAIfh3hNVAHTJCCCiDmN4xCwuiEIVj9TZUCYJv64DIgjNsf0+8A3fzPwoQ+NYca+T/YEbNxR2Rp3GrCastNqBrnmZkMhlRslmNWDQep29H0Cii6kmdUcBnQUke+Xp1c+Hmx+CaRsYLkos1qSUDcCDPycpDuVAZlpBXxTvVSoeaZ9TLO6KFit69BFmXTb23ADFcZ8E1hYwHKtiyuXIvJbNehvXhWzOgggIQX2AXwGNAOri7BU43ZzwCRq+FmUtS/R92YGBYBlKcTx42JtmqoYWA0Avfsex+Nbe3DzC9vA134t8Ku/Cvyn/wR84zeOvkFViaxE3nbedeGHCmYbo2C1LAPf8A0Z79EKgNXn11BXyRjSAyuZQsYYp4uzPtbs5nRyiROZ1S4sT0wGZARUlSQ876tM/NRdH8HJ7iLqs2PGqGzPxWNWF5EBUdX8fRFt1w8V7O8MRsFqSQK+53uwsN9Ec7E++h6B0n/PA5brXczOjN4rv/VbwI03Tn4PVwaEwyqeGILMantIwEIGVi/XSIINQQDL11BPy4BIEgxTghuqQkQRK9BQa9E+HztGmdVNQFYwcpOwvubsOTyHnFeLXANN4yQBADx5Rse82ceJmwTHVxGw2nHQ9wySVN6zBx1jiO3z26Oa1eCfN77ikdKsXqr1sLJeQYUgEsKcqXiw+xWB1WwfpyjFqkwsixgsCngbAUgqUJ+ppI7rKHbB6mdJbG9HOLwwwGYVgCowWoJSJbM6oMxqXScLXn/c8aFEMPMegwDA+xubuHSpGgkIAIkBXLcC8JPpOlGwuqZ4sApOwO9+N/BLv5TS04xN8Mh/2zMSum6tEtM+slBQsLpfJVhNDBYjoLISfVL2jVijdXO7gumNMfTqGjQlhOdjev0pz6Oa1aBg9VAoC+37BDzJfQFSJlaCJh9e1yJgtarhq5aewuqZIdbWkr4OfB11llPSNGLgOa1UQfpwUauR+6uvTFfu5vuknM6k8xWdY1avcOYvOnb8QBYDqwVNM7wV8qNeXbgF7RfchJpKNluP3u/iBYtn8Ivf+qXRNzCzlxwtUT8qaXyVx6wuo1EqSeR+CDN+M9amWhKs5hyehpZEDuXsYjBm9fkwke6hQK0qB/AHFTCr2cGr2aTztliJ58fPH8cDW4cJexpA49A8Br6B6Nz5+P5qzJJKm5Zmo2tXAFazecskIHhNdWGJyJPaNnqewQerReVavlKRTuACpIpJ8TDklKiz6PeJxufrXw/80R/RB0NaCSQhYVcy0N6bYm9AD/w1nVxz4YqQsdjYIJqn8ZkrCNB1a2jPJeuBCLMaAEHPREOSoMmkOiPP/AuAOLMaRPvVDXIqgxwHfqTgyB4H73mPeHc1PafsO06ylZABEb0fmB7PzAywsIA99W1cWZWJDEgzDVY7GEwhKQxgpNw5jrRsy6Tfi/oN6EYJzeq8uZtd26oNFimgeKjTEwOrVULCsXmgKh0e3U8/QAC1m4iuNFotjAhOp9rN9ZxgfY1kdOrexCYmRgGwetgLiM8QgH3qVVy6EMbzlgTE9/VMi0qkTcus3qFZzWdWMxmQHXPBkSM41NxAEClozI/JQ/L2XPRMUXRscZMLdB2948Am9u8fe+6ee7Bw88JOnxOBfbfvhlgye+h0xOcZVZO4MiASYz8LN0rki1zO+mUNI9TYfqvdxp5aF1cu+IlmtTG6X9BNagrKW8NcF2EkQTFpn48cwbzRx7n+HBr1aLTykJl651S3svNqEbBa1WWiWZ3ze1k9H3PGIPEY4gWt5BI6glPN6uaMTMBq3cLWhQFgWWRfQJNPlfhwXctIMauXaxX5kSH5TWsqR6+8UKNJYkeqFai+pPvj5qy498Yzep98HcUuWP0sie0zmzjy3l/E5vmKNH1cF7ZPweqqmNUxWE3A2qbmYOjyXVjDEDh5MucFYzrQ++rbuHixQmC5XicGcN3pM4W+7UORQtJXXafl5MWu73vfC7zylcDly6xRf8QEr9VCpcxqVQoJe6wKzW4gxRClG5wKzQU1jcmADLDVraicnupA6wbdLE67aXBdUpprImZWbwjoa3seJ/+QyhYDEAOrPQ++7ePSsIPWHsIQefmex/HpTyfPr9lNLM7T30rTKPuzAmY109dWVXQaHrac+nRyDUwGpJaA1Uu1HlZXOe+jwBYwwYBmUtDryzNP8alG9Eq0jPbxJUDTIHsOPvkxHy/dc2rnh/EM0Ma0bYVDkPFWSO8RZArLLJ+cllnNOUNbw4gwfZgMCK1+2V4j+n5WoMOsSYmG/1Y1WvMAKLPaE5PV6HbhhQoe6x9AZ5Ze36NHsWT2cPX+i6OJVqZZbVewyU9LApkmAdcFD04910SryZmPnukyIGz8pYxh66qLoSvIrN7y0Vo/g2/cdz/u+3wUtxmx8/MOsHqKvvo+rEBHzUz0tQEIrTOf/3xSab2xQQD2mI07ZqoWzwN5ZlJhSPY8RcBq0BL1ML9EPa88O6vR3AoW6lWimQoWFgo0mwf6RFGS9C4SikJAH4e/jgdbPVJS32oRGRBaYbjhNDDfoX0yTTQ0F4NpJYEsixAC0iCLJEHVcn6vMh4GQJIU5TG2qwar6f73x1/+Zdx+u1ibpuJxwWoGMDyyuReH2ls7ZT8mtKvKYX4Om/b1+N4+DhwQ6CtQjFk9CInPEICD9TWcf5joCgehBDlVkSUbGtkrTglWB2kZEEmiYHX+mY6dKSaB1abqY299C/WFDLZyzvxSilktBfkyIFRS7AM/9GliBjkWi4sT9owiMiBehEPNDRw9UgCsFpABGfl8kWAJJg6YZlkYZVbXu1i5HMZrV90Y7ZNhAK6Izjrb77MKOE3DgtnHl9cPYnlmbMNC55e8Jsswq+P1gKMxrslBsjbzgnouDAcCv69tE5LNjAYsLxMZkCs2YNs4P5jFgcYWkZKwriOwut7FyraR/3rBiDWrFcE9Ny+iCBEjYMoykY4FxGVAPAPNOXE5s12wuprYBaufJeGu99AxLFgr3WoaHGFWVw1Wh4AsQ9I1spHmLGinTxNjhMxg76c60HPGAJuC0lK5wb53rUZkQHpT3i5BgIGroqm5ZPPFGG8iDL1U9PvArbcCV67QBzxvhHHZaCukrKUCZrXnRlBlarBoVVeC40fEYFECEFkVMavHZUCmlZUAEoaiIScu39Pq38bMagKmzRkDbGzyx5bncczbx9lrIk7EdJNv+TrmDjYBWcbX6P8bn/qYF7933W5ifjYBq2d0C11rSvYnSy7Qg+vsTIhNpz7dmPV9DDx9BKyuqQIMWM+DBGp4IwhWG4oPx8rfOPlOiLrqYHVDxcyCBtx0E/bUt/Hu99fw0j0nd4rnyaTawMsCk5hmddESdQHN6hFgTzByy1Jpm3rRvlINRS5YbYEwq9mhpN0muufrVFNYkgieaBiErbxVwSY3LQOiuLCGYixKP1Tw2OaepKL16FHc1FnBE1/oAq6b6EzSBG7fqQCs9jwiCaSrdJ3xMLQEwCfbJjIgE4y+RoKBtM/UTTjba7DzkqqirlEghaejCaD36fvR/NKncOCTf0J05gFqrkj0OOOItdunSI4z3c9URQgAIbD6Z34m2QdsbxOd7X4fZP4YM1WDJEFVpXzAI0wd4goEAVIEStSLTDK89YvKgKhGMbNfWVeJPFZekq3EvKXJgRBY3e0CM7pFAGSq0bpmNwmz+iCtNNR1wqy2cxILE+Kznx0z2WQbhvoo+KcqFPjK0+0uZbCYz6wOIykx/BRsEwAinw9W//N7nkJDpFCTGSzymNWXSJb7/sEJHH/d7XxWJZOV4DGrQxk//8ZH8cIXCvQVKAxW11UXWFjAgcYWLjw1TJJhaqpjdI6JvR/KRBBQM1L6f0lCzQiJ3j6HVbxDBgQADhHm+pHW+g7Nai5YzXwqihrDyiHfYJF5P0yIhQXsHHMiMiAuAavf8wfi11/LSzABCL2AJMEKJgR1OYCb5T1Cw7Kwk1m9KqfWrtFrGJ+VeFWo7CyVAoHn3/J1+PjFm/Ca7xzLQIrIgDBQucA1UDQZQdZcyNr1AE0OxeWxVJX4UYmA1ZRZ3ZhRgaUldAzqj9Xv4+neAo601oiueP+ZDVaHLtULb7WwXOthtWvy3iIUvhclMiAiUna8YOuQHI2a3BeRAZkTBOJFDUx3gxu7YPWzISjF1lA8OFIFGtDAqMFiWJFeEjNY1IsxiFx31DjoHe8AHnhg7AUAWaB0XQhIEu1vFElEBsSwsDUt+Om6ZKIzklLPWsls4d69KWZ1XPJMDhcS02yoQgbEi6BKAQGQqtInjTWrKQjer6BEnxn2aVIiA9Kvppzepwe3hZYzvc4fkGhWm0Svec4cYGObvwnKZVaH4U5WHDsM8EpoIxkNzcH8sgrccgvuWTyJez9mx8+v2U0szEdxm23dxrY1JaBGNasZE2ZuNsK63ZgerPYNUj4IEB1RWUBH1PPQ1sn3FZUBISXa+Yd5z43Q1BysrisEl77jDvz8c/8GP3z7x3HH/o2dtuSSJAQAl2H9KXmHMmqwWBSciN3pM0AfN1BLGyyKyIDUVHcHs3prg34e+yqmibZmo7ddzXrAPqupORj0BTbO/T78SMYTa/OJru4NN+DmzhW89xOHcK7XIZtmWabszABukAP6FeyrpFGwWnFhOQK/L9OsbnNeyzbhz1Rmte/DDVUYRsL600xFjO0FoH/VQlNzSGUG87+gB/O6lnq/ppE5pgIZkHqKWS1JkdDhyfcpOPnUUwhXr2Km7pL/hyTppSnBSCk1t+R5CrA6t0S9DOuPVxnEkt5F2JS03UzGNjObvYYyIIN+hIbqkLmr1YK8MIcokgiz+jjVhpAkNGoh+qLGTyCX6Z/9MwJYswj6FgGwxoBWVZNy15kgkouBygBlkeUzq6NIKja2KAAeeBxd4ahA0oIyq7lGgE89DQB4wj+OffsF7u/YuDLnNa5LkohagQRLERkQi7CbsX8/9jc2cfFpL5EZ0lIdo3JuU62LQYAgkhJmNUDA6jydeTAZkHAnS9UwgF/5FRx56cGd0hpszFTJrOZVnAFJ1WpGu8vL2KmXL8isVuUJ7PKc4MmAeG5EGOuFwWoxcsAOzep1FRgMyNrVHL0+uiGRtZYHVrvJWZjFwqufD1mR8brvnRt9raZxNcY9Jyx8DWLZxLwx65JzsHC7RZL5jkPOLR3iadKZV7Dl1ICLF9F1TcyYLgzFhzt4ZiOegRsQCZZ6nWhW95uV4EYMg6ipnhhBhNsg8XZSWKWJYUCRQr5UYBQBto2+Z6C1IAhWKwo06Rm8T76OYhesfjbEo49CAggrbwry6x//cYp0lDJYlKQI0VQOQjSYwaKeTBLss/LC80bB6s99jrCtR14AxDrQVYHVoeunZEAG04OfnkdKSAz6IzHGm4gJA43hkJw7xsHq2KwOSA4mVcmAUFBZyDxIqFHKgoi1sCsAqxmzmmpWzxoDbA2q035VDQXLsy5WrVYlYLUV6ITsxDSrpwWr2aYwrfFWgFk9Xxtibg7A856HhubiBuMyPv95JGA1IzmoKtqaNb1UwdjhYn4uwrrT4FDHR+PDH8ZoBUVADLnSYLWh+HCGfLC6pniQ5agAWO1y9UR9L0JTdbC6JhGw+gUvwAtfouK7v82B/NM/hUl1wLmgD2O8lWD9qVKO6z0DwYvKgOj55fTTMBR565hlS8nhCQBaLXSMIba6ErwwZfpkmoRZvV0NIwMAUK+jqTnoDQS2TzTZ5fpKwqxuNPC655yD5Wt41+MvRcek87QkQTINwvGfdo5Jmy3RdcayBforClZfJ8xqPe3hVUALut+L0NRsyFKE0PHjNgeejoY+ClZXway2Aq2UDIjnUe+KX/s1YGihcfEpslfyfWw6Dcyao3sAWVMQXitmdQ7rL5ZMKqinCiC3r37J5F2UxawuO8cqCklaCNy2wyGtCtF1sl7ffDMUOcSl4Qzmbk5c3Br1CANPFwarP/hB8pXOnEkes3o++axxZrUaZSct6BgYMWUUCaqFnXkvsLFV0LyTy1hPVb+JtmmqHmyfA1ZTZvWT20sTJSB2hIgmPEsi6gXuA02DBCC0OYMrCMi6qHrA3r1YrvWwcilI5hd9FKxeMPtYW59u3gpYNSMNXUc+SBkQmTNNCSbPMfPzeO2bdJw4Mfa4CLOaeTSIBjPEzAOrPQ8RkEgpjcX3fR/wPd+T0dc8drlXEPwEJ8FEP06Vg2L3F6sI4WlWs3FFweo99S6ubOrAYEASuDOj3yMGgEXB6lTiYnYW+J3fIf4LI8HTxAe5rhNZ+3khojHug7RbgFldBKzuexSsBjBzaAb3rhzHvVeOkc+cmYEuB3D6z2ywOpb30XUsz3lYsdrVYBBeBKViZrUfyVAZkcYwyH5+kzNWfR/veezFODeYQ71d0GDxmbpPvo5iF6x+NgSt+5MkCJW4TooPfxj4ru9KmfY5Dixfh6l45GYbVFCC4nkEANeTSSKKJO6hbFz+4MqVxKMmfgEQl1Ibig/Hnh6sjsvVmAHctOCn6xKw2kzA9boqWE5OY+W8iz3+eezF5Qma1XTDYdLymyoWCj9KDBYrZ1ZXCFYzlpWGRAZkWJ32q2YqWOq4WKkCrPY8wnSpS4lmdY8/tjyPbJom7qnogxFSm05VJRljm6NZHSqYr9tkc/ic5wCKgh878kH81q+RD1yzm1hYTDRa27qNrjOlHhndMLADZq0hww40YQ3Fv/1b4M1vBj7xidHvMvAMNOtJOb1Q4opq07frvrAMSENz0O/nbPAjcghqajaGQ4mwbxoNomf0trch6/SrMRAhi/VXQltaRLO6sJYoOC7qTF+7BENRkwO4bv53HNryqAxIq0VNOjUC0tXo3Mc0q/N+K9Fg37PRIHIdA4E2KesPGDW2P3BzE//ips/gwY396NRS83QBoDI3xsDquurCckTBagOtGc5racn7M3YTzmRAzFGDJpH9BgD0B0BTJeuSGVkkSRgEhAE1CazOA6h4EQSw/FHNakUK4Q/5/WTMai+UocoBmvYa+n3gIx+O8Ndn78BcbSyjxg7bWfNsSbA6ngsy9p+BQ706CuqpAshlgZMkfaGu5gNftM3CAHgBGRBiVpbS2z90CAtmH6e6izj2goRN2GgAA98QBqvvv5+siTFY7XlkntS8HeANkYPJABXZbygVHNMyISBkYj5lzDsVhcgU5F3XoqxaWYapBgSszjkvMTbcE+frYmA1M67kyIAAENe+BQBVJVWzvLFlWQQ4bEjA/Dxhv64gmV+01HjXdSyafVxdnwICoDIgafwuBuGzLgJjwedgfv/sn6E4WF2WWS0FXI3xWKZrQhjGCCl4tK9Z1yCK4PlSMfATqTk2o90YqC1y36pE1oorA2LTSjZVBZpNLDf6WOnVgc1NkghpjV0fjTMOaISWQ04sqYsoy8AP/MDkvmpymMtSjWVACibEAOQzqz0Ukxdh/jM5LPA4bJsk1lvkGtzwvDnIiPDWT/5zHGxsAu02uf+vA7BaodUCnZmIGLhWgEEEbgBVCinhopp9fBCOMqvbusX3tbFtvOeJl2Bvsyc+vAQSLLshFrtg9bMgvL5DDgIApKgcSPvbvw3ccQfR0wNAndblaqUaXJcwq9kBkm3YCjKrV1ZS/aTtxu3pOpnYq5BBZgtfvU5KzKcFP2Owmk6KrDy7CFj94S9juX8Kez70Tly5Qt/neURLk633tRoB6barYFZH1GBRzDxIKJgEhFTh2EpLoTAZkKFZSO9xYvg+vIhsghfnAly1q2FWx4cKplnd548ttuBNZFczxo40ClabPLCWMasbFgGr63Xg1lvx4qXTeOTLTlwN0GjJcZtt3ULXNaa7tuNagGwTKLiqf/azwFveAjzySOrBICB9ZYAzkwHhJa7oZ7bqgZjmpaKgqToYWDnLJzX/ahkuJGmCrmFGqLqczVYuq6fKNKvzZEBKgOC5faVtlmdW5ycCLEdOmD5Aolnt1rDp1DFbT4x7WpqNbq9CsLpeR1Oz0RcxP6Mmd8AoWI29e3GouYEH1w9gtpGaT3SdHN6qAqs1LdZP5JW9A0gMFjuc3fgznVkdBFSzOtU/0URAFKE/kNGi0kAH9BVcPB8CQYChr6ORZijqemlmddoI0fJHmdVCWvugYHUvwmObe3HTzAqaUQ/9XoQ/+3MZf3zyRZirje0BBNjKhaUaAKhKlMv6i/dSVTLeYlmkgteeIwNSmlmt8BmKwBizGgBe+ELsmXXxfd+8AklO3t9sRBj4uvCB37aBW25JgdXDIc705rGv3d8BYBGWZnZSlH2nQsE0gHNkQAq3K2JcSQFF2RAfW6YekuR4nlSDG6KlEfk/UWa1wmNWpyULRUNVadKdMyaHQwIcNmRgbi6RamDzyyRm9caUYHUoQ03fKzygNt6nF/wsIWa1XIxZLaJZzT6vjHxRrr42vQYFgGVFV/Ln2ICcqcowq3nrV1zJRqtBZpZNYoh+/jw5y8yOIfaC+3l7SBizQskbTSPJII4MSFHNapG+el5BLWxNI5XugsxqCYBUIySzoy87gL95ze+ioTm4YXYTaDaJDMiwIs+oaxQxs1pVIdVMso+oQorUR6JZLSJlJ9Ag0dpPwOqWZqPX5ZwTbRteqODj3/ke8c/aBasri12w+lkQg20fDY0ezksCSFeuAHfeOQpWs9DloBq9pLRWLyBs8jEOVucyqw0DhuzDsfnX4eLFfJw8zayeNYbYHE7HJv2Pv1nDpWEHzRrdbLBDaYH5/MqpAfbUuthb38blp2nnfR/bbg0zraT0va3Z/EyhQDBttUqZ1YxdIYcETKxibDHwU5MARcFs3SG6X7wyNKF2ySZYrWkIQrkiGRDKrDZNzJlDbAxNblUED6wm8gepNigjxx7wNavnGg6RAQGAO++EJAFzShfr22RzFjNmJAmaoXDds7nBmLcMrKYgXeiIjQXLAp7//DGwOtasRtymCLOaSRztmfe5HkoAiAyI5uZrVjsO/FBGU/fQboufSXLZylOUvauygMFiQc3qWAYkQ7PaLykDois+YapmrWVM41f3ElBNVdFeMrFNwepOjd6jVAZESLKDF2mwWnXQtwQOhQGpHpltOKPalnv34kBjE0/35tHZmyrRr4pZndYIVlXijSACVjODRR5YTQ+5uQf9r2QwfwwjNaaZFjTv2g6H6LkGmi0Z6HSwv7aJi4916fyio26k7k06Xl1fEd57Pfgg8P3fDywu0q4wAzQ29+g6+b0EweremoMvXD2M5y+eRUOxMVjp44v3y/jcytEkaZPqb/zGCREF5YDKXPATJUEEEWZ1yUqTzHaZaVwJZrUu+0LghGWPgdX1On7h/30u3vYHzx15XasZoeeawglc2wZuugk4e5Y+MBzik5dvxMuOXpzU3VyDRQCFExbxwTwL+AqCUU8NwTa58irpKhLBMI1ICKyeNUhlwr59Yn1VpRB5XpA8pu7EoIaQ3DONZcHyddRbBKyeNwdY76rJ/JJmVjOwerNgQiIdrNLEHJ0Po0jKZUCX2heIMKujbCPEiSFoiClJUWEAGEA+uzyUCxtaS6pCJMIyZNf8UC7OrJakxCcj5/wxTg6QFqhGx9mzhLXfyQCrOWcEqx8QxvYOevqEEJQBUYsmRYWY1RLRGL9GMiAAkmtA5QG/8/g/4raXLwGGQWRABtcBWM3W+FqN3Fv9KQlzUUTAaomME9vNrt4S76hPtPZTzOqG6mLY5TOrvVCBVi82dz+jSR3XUeyC1c+CGHSDuGQ1CorfFOyM1emkQOAUiqvJAbxhBYCi5xGwukaHnWGQAy9H2N73CRvFdYlMydWrKVA9COgBi4CUMAzoSsAvmQPwn//zqBnNju4yw4p6neih2tOB1R/+BwOPbu5NwGrDIIy3AjpMK+ccLNe6hI17iaKWnocNp465WTqJmyZhv25MubixklgpqNZMiwJZcbuCEjO///s5ksZjut21hkxcyStgKMagahUO6rSvlq8TBowkYa7tY8NpcBlUbJM28Rr4PracOjq11L2kKDAVP1/nizJd3vriR/DSl9LHjh8HANzVOo0HLsyTzXp688f+Pc21ZQkLVrapaZjRLWxvio0xyyLJtZMnUw9SMClmMVNmNe+QFzg+VCnEJ/7gSbFztKIQg0UOs9qPZDRNf6cBT04IaVYXVSPiyYCEISmLK2ioRXRq8zWrC8uASBK0PONGIK5MqOmjY0VdmkMQyYRZzdjKhkFka6oGqzUHfUcAHKE37UtvXh9l1+/dC1P1sVTroXM0ZSSk69VrVssyahoxB+Ru9B0HG04DnQXOdxM0wvynih398P3RKi5AfP7udtH3DTRnNWBxEfsbW7j41JCAM56BhpEal5IETctJ2kyIX/gF4DWvAV72Mqq5zwzQ0mC16gqB1Z4H9K/08cW1w3je4lk0NQcrj22gphKQZa4z1gYHRChVSg6+wWIMVj9DNKsz251Ca19XBDWrLXnUHBbAkSM7PBAx0wqx7dUKgdWzShdDZthtWfjU5RP4mptXdnaX6d9mAPYASsmA5IJ/ZUBwKgOSe9hPV5EIBmFWq7n3rOeEmDMGqJkh8ZwQ6KsqhwjymNWlZUAECDjDIVkXmyowNwdZihD5QcKsNkbB6sVaD1c3pzCNDwKi4W+m1pTriVnNNKs5yQUA1YKf7ExR4hpIWe2yKpOihtbU1DvXHDeKYLkKakpKdm1+nsx3fVolOmeOvkcUrB6ECWObFwJgdWG5DtougPzE1bXSrPZ92I4EQ/WTPlMdlB/9xTl8z6/eHleLP9OZ1YGXMrc0TbQ0B/2N6fexfkgS0mZDheVr07O1Gf6Q8rWpqy7fMJ2ezxkDXih2Nasri12w+lkQg26QYlYXBxRXV4HlhQDtVpSAwKldty5XVILCmNUMrNZ1YnTSy9+MM2b1Bz8I/PAPE+OFGFSnoJfGFmkmAyJQLsJA8LzPHdGstsVkJVZXJz++3ZVwureQaOoaBmFQieow+T6uXAywp96FJBFGaBSRjm46DczO0L7VamhrNrpbU4LLzLRQDgm7vgLZcgCJvrQuF0qE/OVfElZ9dpvJBlAyqR76tJpZdHOtmQSs7hhDbK1PeS8wGZAW2fi0ZyR0PVMYrM5iVm86dcymwWrKyOGB1X6o4PlHN7C4SB/buxeo13Fn4xQ+9dAsOro1ulkvINnhuiTJsCMY87amxm3Om32sr3ObBEDuW3aAjLvh+wRMaiXziyEgX+PZxMW60RbfiDY0J59ZTbPwTdMXO+jS0DRkgwhMo7UMWC2F8HMMFtnrioSs5TB9aIlwYdAHSA5PWQcdZhhljM1v1JFn002B1YxZPZyCQcaCfc9ajYDVtsZfD+h7PvSz/ziK/dC68kPNDXROLCSPC0pjcWOMbVgzQpK84xweI8vGmd48Dh4RY1Y/Uzbhr3kNsLGRemCSZrWuE6NRi7OQ9XpErmtOB+bncaCxiQun3UQGxBi9hppJK00EF8izZ4Fv/VZgYYH22SeJhB3M6gF//fZ9oL86xP3rB3D3/AU0VAf3fgZ47uEN3Dp7GbP7Ro31eCCCF8jFNT9Bwc8c48ZYBqRMeXbVzOq8dpm0QQm2tohRGaIIQ0sizGrORN5uhth2a8Ljyl7rw/z934TZXYVlAdFgiHP9WRzZv3Odjpnwk64Bm9NKyIDE+u2T5sVpZEDyLgFjvxYYW4omI8gzGgVJ3MwZQ+xdDMRwe6ZZHeZUBZXoK1QVhuzzt7KWRUDpFgGLUK9DiiKEG1vUYDE1n+g69XiYDqwe+jrqabCajukoyyE5bYReJNiYyUq2jsvKCbapSgGCvCWxBGtfiFkdlbsGmfstRiySi5/5dC0ipphZ+/lYRiaVxJyfx5LZw6rVImvX3FimTRSsHtfvzwuezBCmXGfymNVMY1y0XdHKM8fBlltPPFZY3H03pG/4eiILxZjVPKP4r2SERP5IlUMCttdqhNCzOT2xi90rjbZCPBymBat9H0EkQ2HoJ/V0Gfb5RA4AiSeYSMTVRqV6uhup2AWrnwUx6EdoqGRSKKNZfebzqzhy6bNon30oAattO7ZqKwIo/uzPjkl0pMN1SWluilltKh63vMXzyJ8rV4APfQi48UaMgOpuoEJTEwDYkH2hs34QcMDqlM6iqsvZIFIqogh45SuT9v/n/ySeaqdPA9s9Gae7iyMGcEQGRPBgdPEiVoZNLNfIl59Tu+Sw63kEqJylr6MAzYiud5lgoDIzQhQxixBtN1SgtmqFxhYzkwLIdY7NQIFkE6wnYwtAJaCPHypQTZW4HNe6WFmZUjfL8xJtQQBSvSak78X2kl/8Iin3vffe0X5uuvXRsm9WPiqgWT1iridJwLFjuGv+PP7qzO2Yrw2RINmI3elFmITr68Dv/u6EJ1IJCwCArmPeGGB9Q+zaWhZQWz2LN36jhTe/mZ4NJzCrRRhJvhMUY/0pChqqi4GdczByXfihgmYtKARWq4ylmceeKXHIUaQQftZtVpZJl7fJL9tXcORFAGIcNi7HAMRjdNNpYHaRfjBlVvcsberywdAPybhXVTRrRB+dCyRlHXYNA/jX/xqHnreIzkJq3FE5nKmrN8Y+1zAAh8MkBICTV5o4MbPKZ48wZvUzZBP+1FNjSWLfhxsqo9XFug5d8fnltP0++p6JxrwJzM8TZvX5MJYZGh93qi4ToFYgeWfbxERV/uy9RP5pA4RZzWShaD9rqisGVts++p/+MixfR/O2w2hqDv72S3vxDdaHcNvsJcwdbo2+QYBZrcpBcYNFlaNZPY2WKIdZXVS+SGTeKpwQVFXCAOaBE0EAy1dR13wuaGvWZdg+P8EEAIgi2E+egwkbN2un8chDIbZXHSyYg52UbXCSC2WMEAFAkqDKdBxMmmuDoLgeOjNY5MiARJFUmE3J28P4XohZY4C9y4IgkSQl1UZZa01aslA0CjCrrUBDfYa2vbhICABPrpNKPmMUVObKq4zF6urY12IyILVRZrWep6/refCjctVh7DMnRhkpMwHwsxRYrSiQpQihm51sL1shByDHI0RJSFsFIt5v5Uis7CAHzM9jT72LK9YMLgw62HdsbI4RNFgkYHV1MiCEYFbSyDeHWR4T1wowq1VZQLPacUZl6yaFqFH8VzKYfFaKrdzUHPS3pid2EXlPYLYTYcOpV8Sslkc0q+uqi+FAjFktNFZZxMzqcl3djSR2wepnQQz6UcKsDqPCstVnPvhlHGlcxcz5hxKg2U2Yabmbj7G47z5gbS3jSdel8gd0QyHC/ESyv7t0iTCRbtrfH2FW9z0DTSMprzMEyzF5zOq4JFbThLVEgwAxO/SDHwTe8x4C3n/uc8B2X8HTvXk0G8kkWVNcDG3B2/DqVWzYDczdeQCQZRw1L+P0kz7g+0QGhFWTqyotfZ+STUhZt6pOdAO9qgwWGVDJwGpLbGx5HgGogwD49m8nf0b6mmZZGYaYPqnAh/qRDLWmUbC6h5XVKcHqMWZ1nKkVZFafOgU897kkCRLf675PQLrGGFitCjCrI5mA8em49VbcPX8Bd81dwJ7lMSYQY8+4fHCm2yXa8DuCGqDpNSVuc94cYGNT7NoOrw5Qf8/v4d9K/wmWFRHXe9+HHWgw6wkArgskrnwnIIwA0dODqvJlQByHGCzWg0IyIFzN6qgkszrPSGgKQ60okvK1X4vKgIBcAzcPWGXriDnW9sICGqqLi4MOZm+ljliShFY9IJULU84FgRcSI2NFQbMRoe9PAVYDwI034ugdTSykiNUMUJ1Kxz8Md/ymkibGdLr36X146Z6T/A15zKwu382qIgjIHLO+TuZEAAmzupa6R9mhjwdWd7uIACgzTQpWb+LiZZlWbuijGq1I6fkLgIpPPgncpJwE/sf/wNylh8lewffJeE6D1YonZLzsDV2sWi1y4P+Wb0HT8NDQHHzToYfwb+/+MF72jc3RN/DAalbuXNRgUZRZXaacnmuwWKir+e0ytnaJNnXZ5zOrmYSRyQce4nElIgPS7cIeBDAVDy9ZPoXPfLiHq5d9LJo9Ypo8FrkyIGU1qwGoKpFRmQjWlmVWXwPNahE2pe8BR1rr+PbXixMeYi3wHOAPQDnNal43mAxIm7a9sEDIFU91qQzIKLNaV8SrJft94EUvGpNNDAJCDkiD1cwfIWvuiiUwymlWR1maHey+1QuMWSZbkyfbUnJsqVKORwg7V1UphcI8YOTi+y1di/L3W0y2MD1+5uawp76NC4MO/FCBPjvmIK6qQh40lgUiA1IArM6TGYrZ5QUTYgC4iRBVicQJHWx/xJu6bZswqxt8sNq1nsHMaibXkQKrG5qDwdaUOnGMBa3KUJsmqYapAKwOIjlZhgyDXykLlJu7dw0WK4tdsPpZEP0+Yma1JnmFS3PPnFdwpLVOpCO2yXtDyyFgX6tVGFBMmyGOhOuSzU2TDjsRTV0kc8TFTzyJQ8113Hjmo+h2o7jNnmeiNQZWO+6UMiBRBM+nZS2SJAxW+z6wtUX+/cADwFvfCtxzDzlIdwcKVqyZBKzWddRVF5YreBuur6PnmWgfbAOLizjavopP/k0fv/ShuwhQOUe/s6YRzer+lLd3SgdOU0K4fgXmBrRdL1SgtuuFEiGeR8b6+94HLC2BAJQjfVVGmNVVyYBEkUTAHsPAUq2H1bVi17XbBX7gB1IPMDmcJl30ajVIUoRoKMasvnRqiLvuItLSMbuayYA0UquiqpL7K+8SpGVO0nHXXZClCO/6mvfiv7zt9OhzmkY2+ZYYWL21lTDi05/rjoPVRh/rm2LX1rpEdFlx5QqOtDaIqRTdxcbAnKgMiEO11oowqzUOs5oZLDai6pjV7EBSouxdlQMEOTIghY2vAD7oE8rQtBKHJ53KgHDKUuvjgE+ng44+xNO9eczecSB+uN0M0ROQ2cmNKELgU9YpA6unYVbTePvbga//+tQDuk4qg6Yx02GfKUnJ4UpAlxEA7r+8B89bOMsvdYyZ1RW4s08Zly+Tr3XhAvDOd9IHg2CnZrWmiV3bXo+sHa0WMD+PffVtXLyq0/3LGJMQKCSL9Mhnt3Fb+BAAYH77dCwDYgUa6o0UWK2KgdW+G+Lp3gKWblsCbrwRx9/yXPz8c/8GuhLgps4KOreOOcNxxsFIKW+BiMHPayADkikpMK3BYh6zuoRmtSYHcHn7TpaoHk+0ZbQJQAystm2SqFU8fNWeU/jsp3ysrQRYMPuTwWpWDZBxDQCUAqs1Jco02oyBxoJAksZjVqfNZAu0CyC/9N+NMKsP8a++Xzwjl+vjAEzHrBYAqy1fR22GnlUWFwm54sltAmI3UtedMqtFQZTf/32CJ545k3qQafjXR5nVpuplSxYwQLEoj4ZWhwVexvmD7Y2KgNWKQjWrBTTGC44tVQ6yweqUDm+h4Gjt+6E8HbM6F6zWRskBCwt47sI5/Nmp5+OG9trO8cw0/O38/lgWCsqA5AB/7CyjFrwGvKQoJVcVWhNEwWrKrJ5t5ryQkW6eycxqRkBjYHWtRkzIeaaFvGAV05qUVAhVIANCpIjGmNU5xEX2PgCF5+5nyj75eo9dsPpZEIMB0KAGi7ocwO0VkD6wLJy8YOKG1hpmdAvdVXKgdwY+TMUD2m3SpmBWjwtWpzVlRZnVFHy/eCHCj97+MbzywKOJzrXnEbC6RicSwyAbOx7DBRywmpVqqRSs1jQC6HBWHyZVEQTAww8Dt99OpFTPn0e8kWgu0CyyaZJDqcO/DVdWgLWne+h6JtoHZoC9e3FDax2/954a/uqhw9h2a5iZTa5rW7PRHU6hRwckZiiaRHU55enBXyApw2nXocmhsAwIA6t/+7eBn//5sT0b6+uYDEhkTykDwjQGKbu+oTr8cqGxeOc7gXe9K7XGMgBcT8DquupiuJnf1xis/uRJdDZO43WvAz71KfokA6ubqYOVopD7a5gvAxKEMmR9bKxQ/V9JAswTB0ef0zQyJwgkGZhUyw52Nfvx2MJPmdXrWwKnGMvCcMslup8ADrtPxWA1k2lgbYokrgrLgFBmdd/Oub8chxgsNqJiBotMbihTl7CkwaKUU+4ahsXLs2m7khRxDH8K9hWAZshCMiA7qtuPHUNnUcXTynHMLieHn1YL6Lq1qcFqP5ShSIRdY9QV2IHGlxnigNW6PnbZKTDBWxOFPhOpcS+iIRkEsDwVTd3lH86fQQaL586RW/eRR0hybDhEzKzWzQnMap72I9vANBrA3BxqqkeGTrdLNKs7YzegYMkzAJx8yMKJGaJXMmcOsXE1SAwWGbOaGS/zwGrXhe9FON1bwNINBJC84bteiv/r3m8DvvZrgW/+5p1JB87B3PdBqgdKgNWZjFqUZFarKhQpROhxgK+i2xwGgk9iaZadY1WVMFUFmNUTq0ImhaYROQEOOxEA4DiwA7KfvrlzBY8/pWBtDdlgdY4pKDEsRzlmtRLBjyavX4VNygA+m5I1DJQz78yVASk+ZhVVygTrAUwFVgtpVgcazHYCVt/QWsPJMyqsQEe9kwIENY2AiYLz98oK8PKXE739OGLN6tRYpqziwM1nQBdOBjHzyiywms47klIMrFalID9/yyRmCv5eqhTCd7LHAJEsEW8SgBizugRYresgmtV5YHUwNmfNz+NrDp/FB888B7d0JhgJUZ31XIA1imDZEjFuFAGrY+Av4/n4zM5vaiR4iSt6bQutCQU0qzedOjqtnEHISDf2M5hZPcG0sKk56Hcr8M2KErDaVDxYm1NiEOOa1apKzt88HMb3iWZ8wcTVM2WffL3HLlh9vUcUYWBJaGoO0GoRc8FuAYDu0iU8vLEPt81eQlu3sb1CJgI7DVYrfmXM6hH5AwamceYeb41oflwazuC1Rx7AcxbOJ5qeE8FqD44AWzkIcvrKFj4lYUEDfC1Rtt53u4SFcHi/j/kZH6dPA8cWiYh0c5mW5qoqAas9lctY/rM/A/78Y3MEpNk3C+zbh6OtqzhzycDl7TrCSIJsJMAf0WmdUgaEmRZqEvSaQkrFptWApu2GkQyl3SATueAi7PsE/PR9Yk4lSanLNs5WMAzC8OhPuUqkDxe6LpRcGY/3vQ9485uBhx6iDzCaENugMcM2jnOyd3kNuuzh8nAGnS9+DCfmN/DUU/TJGKxO3acsGcRhVgOpkuN0/NzPAW98I6n/TAc96IjMCUw3/S//Evid30k9wW4UtlHUNKKvuC0wZvt9AkTJpI3DwWlyiHJdsplg11Ulr3G8/Lkg1mktwKxuag6XWe2FCu440sNrXyvWLMAxLWQAcAlGTq4MSFmNUo72aynJEggYLLruzsMTfePNb7gNmJ3DkSPJw+0ZCT3PmA6sDgIEkRQfBiXTiPuSG0XLiFnJN0+flPOZUQREUkGwmo5ZzVT45a6yTBKNQUXVNlPEuXPAbbeR5DCAWBJokgyIiFl0zOTVdWBuDpAkKKGH4OoGBr6O+uxYybKgmRQADDZdtDQyDuf0PtbPDyfKF5mKzycQnTmDMJJwureIpb2p8SVJRCPrW75l53s48gdBAFJlUrUMiFeCWc3mrSzQhwLLhdiUrN0sQC2eY4s1yeQquAwqtgeuCdzfuk7MYbsCr3UcUkmg+JClCHNaDyfPKLlgdZYMSGwmVoZZzWRAJoyDWPe1ILM6d+2iDRc2LRRgVvteWEweDOS65hk3xtJpZZjVPNY+3cvJJt3/LCzgxcun8b9Xj5JkWCc1b9FkIze5QsOygJtv3glWD3wDjfoYWJ3HKk5LKhQJ5ruR0y6AcmMr7/jBfseCCRY1D6iMz1UlK9ly9lulZEAMSUAGZIxZLUmY/fHvxa2dy7j1zgn3nQizmiVpdV/sd2OJq6wjXcyY5Tc13ldZirKTojEIXoxZrUoCnh7MYLGV88KYWf3MMLOeGONs5VqNSGtUAVazNb5ex4LZx/rKlDrYQTAq9cXA6rzzHO0Le71wiDLsd4Mbu2D19R6um+go1mpkU9MTL1sL1rdgByoamou2ZqG7Rt5rD0KYih/LgIgyq103H6y2AupWDcQlY1xm9aWrUKQAFwcddHQr+SAAv/qOJnqegVY9YVcYsg/H5w/tXGZ17Fodxe3qcgC3LwZWX/mP74HZvwr5p38Kc+//rzh9OsKJDhHzbu6nVEtJQq0GWL4uJi+yTn4DaXEBeNGLcLS9hhvaazjU2iSZcbYBVlXyWw5LIEXpSJXgaDWVHEKmLcEBkotUrxcCqz0PWH16gJriAE8+idnZCJubqb5GKaNAKrEy7E2ZjU6zdhgAXgBIYprSX/3VwJe+RB9kvzX7vWo1cijdzF+E3YeewIxu4fKwjY5h4dh978fJk1Hcz013rJysAFg98fB08CBxCx0HrthBR5BZfegQ8F//K/CZz6SeYBvuFAu6pgiajdIvJO3fB9RqOKxewNmnHETbFBlvUVMxRSGMBA6A4NllDBYdDBwOszpUcGS/h2/6JrFmWdsAqjX/ogyiTCwtishhv4RmNYB8pk8Zg0WDU5bq+xj62iQMBj/zM8QfIDabBdBoSuhPq1lNmSMxG0NQFmpHUoYXdMwWKfl88kkigRGH5yFIl2QCfEkFAHAcuKGSSPPkhSQlSYWv8E78/HngOc9JkoFXroCA1WGGZjWHWe3ZAQzFJ/OBqgKLi1iqdbHyhfOkMmx+jK1cAKy2ex4hAQCYMwfYuGzH908sX6RpqCkuLF5uZXsbTc2B7WtYWuJ+9Ghfc2VASmpWZzFKwxCeL0NTCrbLYyiyhFgJg8VMQC2WLyrWZAzOCDGrJ89dk9ps6xa2twT2GzRRKy2TgXCktoL7Hq5jsdYn6/h407qc+XuVApWTLme3y0DwMsAfh1ldmP0qBFaD3AsFFjHCLM8GqwPHLyY5BlCwWkCzetxocnERd85dxAPrB8i5azY1b+k6NQQV9AgZErD63Ln0lwnI2XMcrOaAyn4ZzWpZJgmmHCkz9jrhYAB4zv4wcsslQlSZp1ldznsEQH7VXVEJDFByQEY1BIDEYHG8ku3mm/ETvzyLl/3cyyY2ymVW+z4hX2mCZzSaZMxMCJYBlVPtZv5eZfayMUjJTzBxmdWsWnwaAsO1jnGPGl0nMiA8HWhejMmALJh9rK1MeaYPAgRhSrNaVdFQXQwczrpUpoKHMat3ZUCmjl2w+noPy6K6YREBq2W/ELP65CNOXJY6o1vobvjEWZyatTAZEC/rwDAWucxqxuI0EuajIfPL27zLRKJk4JuYee3XAABkz0UYAr/yznlsOg206kkG3FB8OD5/ZeGB1SMlRcz4igPQsfns8/cBN8lPAYMB5gfn8PTpCHv1NdRVB80Dnfj1tboES6Cc3PdSwOz8PLBnD+afcwhffP0v44h5hSQWUsBfW7fRtSoAq6MxsLoKGZBxsFpQY90bODj//3wes6tPAP/3/41lbTPRrWaZXcayUhQCfg6mz+wCiJnVIuM1Hf0+0GwSQ8QYrGZtMsDLMMjCznFO9gYu2rqNFXsGnVaA5qkHMNgm7xn0QsKsbqfuU2awWBaszgrmJC+QwOp2gVtvJTIg588njztWSACh1JgVzkCzL1SrAQcP4nBzA+eecuBsWaRNBlYzRhKPWe1SzeoC7NeG5vLB6kjeqQXOizzTwrIardSZPPPAPy2zOlOzusTBAYCmc2RAWCl9Xew6yIZG2OpTgtUEAKbzCbt3OfN2DA4XkJgxBKo3oogYDgPAH/8x8Ed/lHqSeQ2kS4LZpjkvMWjbk/XrM4KrdflPFOfOkfn11CmCy125Ajh2RJjV9dR3YWA1JxEwHEREYoiN70OHcKCxhYuPEu3XxsLYqb0IWN2nYLVpYt4YYGPVj2Wh4nZoxZXNK0v1vJilLQxWC8iAlGFWa3qOZjXbSxUxqKJ9FWJplij7VuUQnjMZrCbM6uKsR00OiK9HXjCDxXHgZ1JoGtmTdwVey+ahvXsBRcER4zK+cH4JC/UhcODAjpfHTPjrgVkt5TOr4zm2SoPFKEr6W5BZnadZ7bthsSou2ldTYB+zA0yZm4NqqujoFs7351CbSw06tocrwKw+fBhYXR39vIFvjCZe2D2bWw1RVgYkfy4AUGxsyTJlVmdfg3hvWBCgUvP0tZlnT4mKEAD5VXfTMKuzNt/MYHHCnPV//J8tHDg+wd+CJe/yzgiMsW2Ig9W5wB8Dq0sZkOecQ6kfUqF2RUFKz8OWWxs9t41HLAPyDNesTmvRszPScEqIkZLQVF2mYPUAa1enBO1ZZUOKiEhkQDjrRxmz1V2wurLgjiRJkkxJkj4vSdIDkiQ9IknSf6CP/5EkSU9LknQ//XM3fVySJOm3JUk6KUnSg5IkPTfV1ndLkvQU/fPd1+xbPcvjne8E/uRP6H8cB33PQKMBwDDIAsFh/6bj/gdl3DV3Adi/n8iAbEekLNVTYGp+DCi6gkwvzyMAcBgCf/EXY0+Oyx+IgGkAvK6Fjm6hWQ+hfsPLAQAtqYfLlyJs9VSc7c2hVU82K4biwwmUhNaaEUFA+hpFwJveBGxvj/aVLHxJplDEnMnbIkj9Ixv7cOhWAprNGQNsbcuYibawaPZHwWojxNDXIF1fVwABAABJREFUuQddr2dj0zbJZow5J995J2aNIQ43NzBnDkjJMpAYLE4LVjPTQk2CXlfhhtXJgAAA6nVafiNzfysA8C0P5/qzmNVJhmGPtJKA1QxYZxtAtgAV1JfeEWzMqiopzxYYr+lYXSVAwp13AvfdR75mLCXD7gNNQ0u30R9wGMCWj7ZmIwhldG4jxlkteYhuF3jjvzmGj1y4bXTToygEXM/7yUpqKOqCjPhuF7jlFgImpRNDfUdDU7MngNViJc8AiB7rwYPYV9/CpQsRBlse0e5PMatFZEA8xqAS0c0DqOO9C8vjy4Co9YLChAJs5bKb8cxy17KGWlymT4mSTBDgy81j7FKmj1ApPZCM7WkYwFRnX2GHQcOALEUIrPy1NvQCogEseiFYspXDonnqKeBHfoT8+/LlsaoFthkfY1bXFA9WP//wWAisfoYwq69eJay/KALuvhv4yEeA7/3jr4M7zqxmGvacazsYgIDVbD44fBjH26v48c+9GZ++chz1xcboGwoY4dn9AKbqATffjDljgPW1KHGfbdB2FYVoVguA1bocQFVCLC5yPzpuW87RgY4NFgtWWciqTOQPJknCxCBCScZb1ppAE2KKXjAhmKcnSkuEyxgs6iKHUiYD0hA4vGoaZnQb212B17J9imnGWsVPbS9j4Uhz4tyjGXKmDIjry9CLMqBpqCoymcXlmdU5iVYAgRsUZkBzTdXY+iUXMx6OkwBZ2u12UFhahKwJXv4+DiCeHWkWsCQB+/bhpXtO4qMXbkFtITVvseo4gQpUgIDV9Trdv7Jbg2pWN9LToQCzupSXBTNDzJkLAJRIhAQI8si/blhKvkjJm7eYGV3FxrClkgBIJZ3zmNW+BrNWoL+MKJK31jL5K12wzzz9+imY1VpegqUMCC4wbwGImdU8sFqXn+HMajam2W2ikfNdvwqwOpShaHLCrF6fEvilkn5pZnVddTF08yelyBvzRBKJXbC6shAZSQ6AV0RRdBeAuwG8WpKkF9PnfjKKorvpn/vpY68BcIL++ZcA3gEAkiTNAfgFAC8C8EIAvyBJUqpYdzdE4uRJIiUbszQti+iGNSXANMkCUUCn96mnVdzUWQFuuIEAnH1iojfwDdT0MNF5FMzqMWb1vfcS2cRPfCL15DhYrSgwFQ6YBmLOM6Nb6MyEBIgyTbSVAR79EkENz/bn0WrQ/kkSDD2CE2i5JX5Awqy+7z5y2P/P/3n0i4wsUIyVxQGr/ZNnAACP+cex71V3AC9/OVQ5RFuz0NZs/J+3fhq1ZjIpEhkQgb4OXawM29DTJa/HjwMAjrTWSdk7ozhoGlqag65T1MFjLFgJji5Dq2vVM6tVFQda2zg/mBNipXlOiPP9OczeRGhky+FlUvId91UZZVaLmFTR+PjHgfe+F3jiCYwymdJsFZawKIDXr6wAy8vkDHn0KPDoo4Brh0mZOQCoKpqqg96AA6o6IdpUBqdzG2FLHW+t4ORJ4NJVDRcHs5idSd2nDADOw9PKgNW6Tg46AnNCrwe87GVEr1pJnY17loqW5oxoVhdmVhsGcPAgFDlCYDm43G1guTkcua5EBiR/ExIfSArIgKhyiCDPRZ7KgKi1gsgy1/G9HCOHHPQynp/CYBFAtfraAHSTw6xm5aMNwf6KSnbkBTVlSZc5NlQHw22O4a4TFAP/NI2w6ByONJaXzFOXLxO95rR+vxOo0NMlwapK5sO8ShPfhxuo0A2x3+yZwqy2rETp4O67iT7+xkAn3yUtaUI17Hnz1nBIwWo2Hxw6hB+/8+/x3q99D37p+R/CDbeNaTgUMFi0hyEM2QdOnMCMbmGrqyRgdTPlZaF4sDiHp9AhJepN0y8kA5KpAx1F8ANqsFiEAQ1ibJaptc+SbCV0anlsyggEKC/cbhagFkXl5i02tgTAaivQxKpCNI3IufUFvh/blBgGsLyMI611AMDCTfOTuyvCrC44BmiXrwGzOv+wX9ggmbabOV5pZ0c8UAQjVw4HJfYaQCKpwPHhibwxGRAA2L8frzzwKC4NZ0fBal0nhqAFwOoaLCwuRAm7OggwmARW50lghCGR6yvJrM5kK5fWlg7hB9lkmZgJX5C1n8suZ2dLo/i8JSHDGJZJVcglDBZNWcBgcYIMSF7Q5J2bt4+h+5SaIdhnVhGTw6wmSYAC/WTtisiAFJkLYjNIERmQBjozOdeJMaun2L5e82AyeePSGvb0YHUQjcmAbEzZpu/DCTTENk2U2DZw8gdO4BYkngCjYLUAIW83soP7q0ck6G4aGv2Td9VfB+C99H2fA9CRJGkvgFcB+LsoijaiKNoE8HcAXj1d9///F7//+8CP/Rg5oAKgwLKOZktKZEAKaFYPuj4pJT1yBBozMrFtbDk1zDbdBKQtCFa/733AH/wB8B/+Q+rJca3e2GAxf0L33RAdY0gmdEkClpawaPZx36cIcHe2P4dWMxmSsUkZ5/DIwOq/+Auiqfu3fzv6RUipiBT32VA8rt6lf5qIuj26sQf79oGUZQKYN/uY0S3825d8cuQMoOoywoxDw0i7QxfnB7NoN1Kvo+WdN7TWML+QupWZZrU9ZgRVNNIGiw2tOs3qlF7x4bkezvbmhLRfPQ8415/D7K17AUnCsnseK5eCpK+hDNVQ4rbrqpst8zIWDz4IfOxjwC/9Ekm0xDFusKh6sB3+puX3fg947DHKrJ4PgCjC618PvOMdwFpXH2XuUcM+Xhbac0K0adl3567DAIBj8tM4dQpQIx/fdvQ+tPakTg4i2f2yMiCKL8ysXtY2cI/yeezbF5F5KwzRd3ViCssOrozpwzMRAhAxMVfTBPbsAQAsK2v4zJVjOLGUKo9g7I68A1kQUDZhAQZVzFTOB6u9UIFWrxCsZqBPUY1Wjut9GESQpWIMMgCJDnLG4cmPSrDAQVh/uYxdJgMiClZrGjmMWBUyq3VdyO28cBkxZdE5vGojjySCADLH3HNPysDV97HhNDDXSGXV2HzYzweri4yvGKz+CjOrLQuYlzZQ1z085+Aarl4FejaZW2MdaECYWR2D1exQcvgwVBW4ob2Otxz7IvTFmdE3iDKrowi2FRJm9YkTJMnmBckPmZIvqql8sDpwfGhygFatAFjNAWqDkJTGFwYqReatqrVEw4SgUCgomDSx7JseugvPsZIETQlJYjTvUMqY1U2BuYvKgGz3xMBqCSB7ikYDR1rEH2Xha2+f+HLVUDLlKqaRASGa1dntFtZDF9jDeG5ExmyVzGoKKBatDMr7/nFfSwAeInJmDptb0m3Pz+PFy6fR1OxRzWoqAyIKogzXh6j/8s/iTvkhPPAAfTAIiATlDrA6P8FUquKKx1Yuw6yWCLsylwlfcmzlVoSkKlYLRV7yLoroebVYkwA5g+YmnZkMiKDsGmmU6qwLMavFweprKgMySRaqbLsFZEB6noF2O+c1VIK0iqJmFmEI/N3fVdfeDnNLTSP7Y6vEgJzUrpFiVm9N3+a2W8NMIyHNNVQHQy+/3djbqMhNJhM5Pi8nIbYbYiE0s0uSpEiSdD+AVRDA+R/pU79MpT5+Q5IkhoztB5BSJ8UF+ljW4+Of9S8lSfqCJElfuHr1arFv8ywPzwM++lHgrW9Fwii1bbJhaEpUBiSAOxA/PA57IRqaAxw5AoACD7aNLbeOTsMHdJ0cnARBPwZWf/azwHd/N/n/xgZ5zrc8kplKy4AIGId4boSObmGGnRGXlvCchfP40Ic1zLY8nO3Nj4DVse4rh63MZEA+9Sng1a8mc1D8Fpb9ZocWlt3kaVYPyJd5eqU+BlYPSP+/67tG3yBg9AIAnuWNMsgBsjE7ehSv2Pc43v7LqUWRykqIMqv7fSKDsvNDE3ZJY0ZFzzOqlQFRVRye7+NMf54PVl+6BD+Use40Mbe/Buzdi2VzGysnu3FfvVDZAVaLYuuXLhHW8wMPpORgwpCytyjrVNcJ61EAUH3kEVIFsfqlC1j6xPuBH/9xvOHu0/C9CD/9qW9EbQysbmm2ILPahmFEMI/tB3QdB5RLOHfShRx4eP/X/zfIy6l68Lxy57jR8jIgIgaL3c0ArT/6HeBd78LB5hbRrfZ99DwTLSP1mzMAXICk6fTcWPcVy8sAgBtbV/C352/H8X2piYrJgOQxq8scSlWVMJXzwGrmOG0UYPrQtgHkalaX24xnH/g9Nypens3azTJAC0N4ZWVADP7haejrqImYlAGArqOl2+h1p9gsxprViQxIU3XQ3+YkL72IADSi11bQx8H3E2a175P5+8/+jD7peVi3d4LVNcXLrzTxPGKweB0yq2sf+O9Y1Ldx55f/O9ptwPaSdSAOUbDakkaZ1bUacOxY8oJxuSBVJZIwDuc6DIewPRVmXQHZHABa6GA4CIkWuknBJEUhMkMcsNqzA6hSiMUZF/OTCbQ7I09TlrIeVaU4O0/IGLZouzyjsjAkAG2JeStzXSyrgy1J0LWISKXl7eVook1cBsTCtgizmu2fDAO49Vbsr29hrm7BuO34xJerusxnVpeUAcliVvtBORmQ3NJ/kH1RYRBBVcnYyfqtKFGjaNJC0eRcg0XfR/FrwM5JnH3nYCgRGbT0BmF2Fpoc4p+f+BzmF1Lvl4lkhJsn/8DC82CfW0UtGuJ5/ufxxS/Q+zEIYAVj8hACCabSOvN5OtAlpcxUhVSrZYHVMWu/jMFiLlgtl6qQy7y2NJleeI4FIKn8xI0VaOLkACBea3OPdQysNgT3Zew8k7XvjpOi4t0caTfr92LX9hqB1X3PJGTDrChR0cuLwQD4qZ+qrr1JOtBNzeabFvKCkQY1GajXsWD2cXWrOAPmscdSt3gQYNutodNKzM/rqouhp2XOA0BqnSl4AMvzcdgN8RCafaIoCqIouhvAAQAvlCTpdgD/FsDNAF4AYA7Av6miQ1EUvTOKoudHUfT8RWEhvv9/xBNPAHfcASwsAFtb9MHhkJRitRUqA8Jn/8YRRRgwM6HlZaBWg4wIweo6ttwacajVdXJwEgT9XJeAn6pK9mOvehUB2GlX0RgD6UyFz1T1PGL+2OnQ1y0t4QWLZ/CPj7Rw1w1dwqxupd4gCAD7PjDY9uE6IWo1cgliDeRYs5r+n7pnc5nVboiGaiOKJHIePXAAkCTM1WzMvO3biXhvOgTNmXyLlAu1W2NP/Kt/BeWnfxJz99yUPKYohCUfimXz1teB+++f9KGJtlqtrcEOtMplQPbPWbg46PDB6rU1Mk4BInmyfz/21rdx+ZyX6usoWF1TPGFm9eXLBFx+7LHUvcWAXEkif3SdaAcKgNW+T67rygNXsGx2geEQ9U/8DX7ih2w8sr4HNT21AVZVMWa1G6GtWyMVBgcaW3jgCy4WdIpcLSwkb2Asl6rBasaC5kgVAEDv9GosXXJQOh+D1X3PQNNIJdViGRD+tR1ue2QsmCaRvmm3cePMCv7+4i04fnAUoItlQLLuA+bMXoT1F2sdcsDqEmXE10Rag8MEL82kY0DCpMMTM1ichlmdc3iKACimoMyRppFk0PYUBjU0+aCwS2QYQszqwkCKoGa17xNCbkCr9V/3OuCv/5peMsqsnm+m5lRFIUnnPBkQdtgTLE/mMuD/icIeBKidewJ/8op345B3Er/wb2wgikh1VRoUYtVRnPl7aE0Afb7ma7LfwEp+eZUmtg07UGG2ddJ2u42jrTU8srGPSK4xhjBjVnOYPr7tQ5UDfOK/fEEc+2KashlAbazTWzRoiXrVzGoemzICSs1budcgkoszq0G2tdzkDTNYbAr8YMwou89/rT90CRHEMIDnPx/Kj/5feOe7sydfwqzO0JZmch1lZEB0kHbHr0EUwQtkaEVZ+2ztyrmkhQ2SabvXQgYkBv6ymNVl2OUU+LPzPDLAwGp39Do8//nAiRP4vV+zRraGAJV/yDPWY7G1hTCSIEsRnrdwFl/6LN1j0e8opQWoeTIgZTXheQBwWbBaBYIcYpPnodTYymWXTyEDkmlIH2uBl5i7eTJWBb0sAMSEltx9jOfBDtTYgokbPEmgKRMhecmFwsxqdvbKI7QAgOcRybZ6TqcZUa7CbZbnAWtr1bVHZPKkEWZ1Q3XRt6f0zWLnKGqw2NGH2B4UZ8C84Q0EP2Ntbrs1zDSTyqy6yfcOK8WsBqBp0TOC1HG9R6HZMoqiLQCfAPDqKIouU6kPB8B7QHSoAeAigIOptx2gj2U9vhuCsb1NPPRG9nqDAfqeicacQcBqARPAOIZDDF0N9QZhjaLTIWZlj25hy6mj0yabX1P1hMFqzyMs1VmqRv6KVxDmMu3qDvkDEVmFGKyeo8N1eRl3zl2AKgW4a+Ys7EAfBat5Tt80/KGL4anLwMWLwP/+3zh0CARMox9KmNX0/xSo5IPVAebNAWQ5IqW59Trw9rdj/oXH0J6Z8D0FwWrPIs+3xyqQ0WyOsr4AMkAK6GhubRGwdgeeR0tiVUNJWF8VgdURQA75Ji1H5YHVnkfkakDH1sICDjQ2ceGiFD8/SQbE4kjMsLh0CbjrLvJzpcHqKEJywxkG0VjnaAfSt2JjPcLqORtLNVrm/cgjODB4Ak91l4i8eAqcaGk2+haHSeeEVLudPrC4iAONTXzpfhlL6nr8WBwMmLgWMiCyoAzIuhdLl+y3T+PSJQBBQJjV5iizmjAR+B9v9XzUGLMaAJaXcWNnBUPfwPEbUn2SJBhaCCdQszPmzJizKLNaDuHngdVU+7TMgQRAvolOKRmQ7HHg+yh+gGbtZpVPUtCnjGa1oiv50khFx6ymoa3Zo1r0RSMIiERCSrO6ztOABmVWFznsMukaDqDKZEDW1sgtbxjAi15E/Bfg+1i3G5hvpe4vplmdt46zQ5koWP1MYFZHEcK1dchShK/acwqaHOLHg18FAtqndI061X7lJdmGtjzKrAYI6PPd3w389E/vfAMDq7PKiFm4LmGS1en1XVjAjZ0V3L9+EDUz9V7mt8ABpxjrr90pcN/mlenTe1YpCVZngn+MWV3CtJAkW/8JZUCm0drXonztVyAhQYjIQzGj7CEfJLIH1LhT18n1uO02vPHbsuccVc82WPRCeQpmtQQ/msAii3XLS7DrOXuYuDKoYHUYgFxfhMpN8JBiVheUQollQHLIJwNLJlWy6eug68BP/ATwmtfseL1qKIQFzgOrbUK+AYDjM1fx1BMJs5r1L2lUhSrlECSY78Y1SFwBKAVW58m2xJVRVcuARCWZ1Zy5u4zBIpfcRceHpBe7v7jM6iCA7RdgVstkXsqUVGASTqXWmXDyegDE+6JCvxdLLAR8k2RJikblysaDyYAIkKREw3WnA6vf8Y4xKIBhBWpypm1qDgZOBTIgKc3qtm6jOyzW5uoq8PjjxJSctUnA6mS8G6ZEyHh5YHWZCh4AWk610W6IB/fukyRpUZKkDv13DcA3AHic6lBDkiQJwLcCeJi+5UMA/rlE4sUAtqMougzgIwBeKUnSLDVWfCV9bDcEo9sF2nUf2N6GaVL54H4fXc9Ea8FIDBZFwWrLIvp5LbpYdTo43NrAuSeGRAZkJqLMak8Y9AvDCGcf7WPBuwScPInFxQT8GwxANlMjMiAc8C8M4fnAUq2HpWXah8OHYao+7l44j7vlBwEArZlUG4pCXLE5h+igb2HbNdFUbOC//3cc1Fdw7hx9MmZWJJq6hsI3Z/KdEAtmH8vzfjKnLSzg+39Qwx13THiDquYzPFi7FBgc+Z55IaqjCZIEGQ4T6czkQ1M6VHRs2d0KXB5SzGroOhqag/4WZ8y6LkzFhyyFMVg9ZwywsSknfY3kBGih7DRRZvXmJvDSl5I/sQwIM3dgh3dNI+WYHO1A9hU3zvaw0jWxvEcCvuqrgCiC+b73oK66qDVSG3yqWd3jgdVuhLZmo8NsaZeWsL+xhceeNrGsbxHwlpl00WtADEnyGi2rWS1osNiX4yRDZ3AR26tOilmd6lgMVvOv7bAXEDCJUTL27MGNM6vo6APM7R2laeg64IQqnzVS1OlbosY8WUFlIwqbf+Ul2sKQtKmVkOuQw+qZ1XkgHTOlKbNXFWD6jLyOF7pOmNXTyIDQyo34XE7lsYYiYHWRDa6gNBZjVl++HMu244UvBL74RfLkutPEXCs197PEVRbbC4jnO0UXG1/PCGb1+fNUB6QGvO1tBKi7cCE5zKaz2KoKXQngcJawiWC1JAEveQlwww0738CSdwJgtRuoyRo1P4+bZlbwJydfiNsOjGrtE4NFvoaiKhfQQwfyS8nDcDQhUySuqWY1B6AqCqrmlX2zipASzGpNA2GqcsBqSYp2Sslk9NOQfSEfB7vvE2ksQZqioiuTZUCiCF6gTG+wON7utFIwOQzFUiACBT9DL98ErwygCCDTINkLZZK8LHJtZRmGGpCkOw+sHmdW50QMPgqA1XFXpAgHW5t4/HFkg9UcZrWXBrVEgxks+tlSDaSDxX4vRZXyZVvcchIzuRWNVLO6DJEhk10+DbNaIHEz8jrBNnWedIXvwwnVmHPCDUmCpmFyMgwonxTNk4UCynnF8IB1FiJ7WSoD4gpUnYqG55HbWvR8PB7veheReo1jgmZ1Q3XQnxasZiC4TsDqlmajV5Ct/elPA8ePA08+mbS55VDlABpxsiAPrGZJ0cJg9a4MSBUhMlvuBfAJSZIeBHAfiGb1XwP4E0mSHgLwEIAFAG+nr/9bAKcBnATwhwB+EACiKNoA8Eu0jfsA/CJ9bDcEY3sbmHnks8C/+3fYu+ASs7J+H5avoTZfB0wTuuLDFWA8AgAcB0NfJ3rXANDp4FBzA2dP+eRm7kSJZrUjtrDWNQ9nTodYWHsC+NVfRevx+2JGGymvLSgDQpkoX33wDH711+jr9u4F3vY2fPybfh03d4h4d+toilEqKgNiueh7BpZaFhBFODh4PGFWMwaMnmQKDVmgPNuLsGD2sW9pdNJ7+csTtvlI0PLZ0OXIgNg+WpqF9qzgwUzTSFmuAJDAkgmXLo1/aIppZxhYMntYvVrBgpne5Oo6Djc3cPZM/nWNHHLIa5o+uY7z82S/H/hkL+B5sH0NRiOR1qirLiwBM0QW//pfEx2vNLOabH7CuE1SjslfrHwf2DizjRWrjaW79wHf8i1kQ2LbONjYHC0DZjIgeWYUASl/m6sNk6TN0hKamoO27hD29sLC6CEo3oRlNxu5JLNflJVEzBA5rwuJxqAiR8CePWhrFrZX7Vizummmxryui2m8AbD6AWpqill9++042NjAD9z6KUhjOjm6IREAIbfctyCoKhMTsiDKMSeieqqSUvxAIklRJugDAJJc8B6k/fXDyUZCpbREaV/zylLLyoDECbysucvzCNOrALO6pdvo9qaYu4IAQSQll8gwiDxWngY0CPu1ELOasuh41Ua+T/6c+ccV7L30ReD978fznxfhC18AlQGpY34mdX/xQATWKCB8XblyLf8UwTYXR48Cz3kO0R0DYS960EfBCyYDwrm2A1sZNVjkBZsPLc6+i06YkkH3PwsLuKmzgk9evglveFFq8ZVlsufytdyDbjy2ioLVWeOAmqKq8jXSrFbLAZWZABXTrK5SBmSKJJtuSPxD6bjJeF6wpLAAP8AeBIXA6szDeVlQmYaqSZPlRaYBqyWODAhLCBa8DxQpypVqKLV+cSujqCZ8wUSAqdMKsZz9/MBWiHxRgXkriiT+/O04IwmWf3HL5/Cud2EyWM2TwGDVYaWY1VEmoBgEBEgvuodRVSDIkMMhiRuJzLEFddZVKX/eKitXoUn5+61S5AAeWO15ZJ4tCFYbCqeKiZ7ZhJnVANQ84I/NMWUNFnOY1YW9YiQJmorcRAiA5H7OS16qKnQ1gONla6sXDbamlGVXd7vA3/996gG2d2DXSNMICU3QNyszKAiuaArRwTZ99FyjEEHi3nuB7/3eFFjNmNXt1O8tQO5znSnB6l0ZkKmCu8uLoujBKIqeE0XRnVEU3R5F0S/Sx18RRdEd9LHvjKKoTx+Poij6V1EUHaPPfyHV1rujKDpO/7zn2n2tZ2d0rzpob58HHAd7lau4fBnYWPEwawwJo5LJgAwFJzTHwSDtTN7p4HBzHWfPyYRZ3ZFizWre4RkAwiBCS+rjqt3G4iyVrfjYB9HdCok+9lAalQGhLLJcZjUDjQ15dL9w991otSXMGQMAQPOWlMIMz+mbRuS4qKsulu4k1LSD9lMTZECkuE0RVpbvhjjY2MSbXj3IfyELWp5tDzgGi06ARbOP1pw4QAMQMJIX29vk5Zcvjz2RLler1bBc62J1rbhD/I5Ib36oiVB3i8NQtH1ocoBmLYiZ1QAwq/awuUm+5xWrTVjMtO2a4mJo5fe31wN+71eHqIUDzD76Gez3zyZgte/D8jWYWrIpNxWPGPZxtMA9D1i/YKPrmmjdfYxkKu6+GwBwqLmBeju14DGDRTtnEXQceKGCA50BPvCBBKwGgAP1DSzVujtZf6wkM++gVwbwoKyJzM0di+1tABHQbgPz8+R33ghiZnWrNsr81OQArgizuh+OMqvvvhvKD/xL/MoPXtihCS+rMgE+c1gjhQ8OkkSMlLIOOcBUeqoSMJnxxcZcifJsRUGuRmlhtheQz9adopw+TrRVyKxuazZ6/enAattPOddTGZAhZ5r3PBDwr6gMiACzGgCe/OPPY+/gKeATn8Dt3c/i4YdBDRabmJ9J3V8M9BEBqwXHl8bAua8ks5rpmtRq5G/qNNjSbMjj7D2WcOZc24nM6rxgVSECzGoAyf7nxAncOLOCA40N3HNXiuIkSagZIaxAyz3oxuZfBefuTNZfFFF2VAl2HpvnJh2myxpfMeCLV/pfdN6iIPjEYRtFoxVaBUJIBqRIQogmcEUYdQSs9oXB6kyAKgaVy7HAtCzAfhoZEB6zugzjLU8OB0gqK6tkVjOgtkQyyDDALVMnMiDFkmwAxJnVN94ISBK+ufEJ/N1HI/h9m+wb2NxL28yVwGAmriV9N7IAYN+LSlWHqVoOs5oxoNWCeyOWGM4z7CspMZPHrCZJgBJgpiizuoRUYK50BTNYrIlfByKpkPF7MX3jsprVnGqAotU2qsaXSfNtn3gN5HVakmAYEklWiWQuBYLd8uvr5d4vScA//EPqgXFmtapS36wpyW2+T6qbdRmQJMh1k5yrRHVpQXCNr/96IgPiOEjA6lbq99Y0buKulNwUUnJ5u8zqqaIC5Gk3/qli++kNzFCzsn24hAsXgCfPGrhpZoVoMzIZEB7Dh4Vtw/J1mE06w8zN4VBzA+c2W8RgcU5OmNUiOr2Pn0JH6QMAFv7Z1wGHD6Nhr2OwYaO3FWDVaqGhe8mGgjGr89qmIN0OcweqyzxnDtBQbcgzo+W+shQhcHOuw/Y2pMBHXfOxeMsCYBg4FDyNc6fpLD5ugqGqhJXFkWz2vQgdY4if/qF+/gtZKAop+eWVk1N5kfa8YKZSVaFIIQJHTLP6xInJzGqflUKaJpZqPayuT+nuCyDyg7iPzDyCpwXuWQSsbjGwenYWkCQcMK7ix380xJ88eAc2nAbmluhYZg6/dv64vXgR+KGfqmNf93Hgve/FzAf+EFtbdDPoebg07GD/DEWkJAmGHpFDAyfD7XsRrl6NoEgRpFtuJg8eOQIAONjcQG0m9TsyZrUAWK0ZclI2t2cPuQbNTSzfsUxcJNLBNs15eo9lSmgZsMwDZ9hOaH4emJlBW7exvRnGmtVNM/WbUwNTj2dIAsAahKgxg0UWz30u8P3fv7N8gadfHzt9FwNoFFVCkKerXFJDMde0MAjIhqpom6DajBmHslgGpHJmdTmjMt7hybP8Ykw6ZrAoCFb/zd8ADzww9mAQwAp01Jl0DVsXLX6lTaH7i60zAprVAPDk1VnsrRMJCe1/fQi6HmHYD4lm9Uzqt9a0/AM0APh+IQaVZihfebCaASlsLpibAwC0NGcnbkelvLgGi45SDKwuoFkNIAGrb7oJbd3GY2/595C9UQS9ZoSEWc3RUCzDKM08mI+biBaJPIPFaTSr80AElhCsUgaEMatLJNk0XYIb5lTxAMWqQmhSWAistiLCrBaRFwGypZZisLqcZJLKZBUy2i0sUxCbA2e/pLAvAGtXCuE7ORVXJUFVAPkGySVY67H3Rs7YGjhqMWa1pgnJJfp9m7CW221g3z5okg8dDrauekTWsd1OXswDasuyimWZaFbn+W5IYbWa1SxhUfTIw0uyUd3uUt4jOZrVZGwV7CvAB6snMegF2uRqVlOwWthgEWTayvy9pmBWa3kmrozQUnAuiCWR8u7ZAdAc15mfEIYpkURoRWD1tMzqRoNs++KtH/0tdTam2feJIi6xi0UUYaevDEvssKQhS4wVAKu7XeDQIeDpp4GbbiJtxjK3LAQSd54TQlf8EgaLAsbLu8GNXbD6OoruuS20KVj9Mv1z+OhHIjx5oY4bZ1YSZrXCl6qIg1KMJJOuFvPzONxax9n+HDFYnFdIubPqCsmAuGtdNDUHshRiYVEGDh2CJBFw8t3/LcRvPPR1aKQBKmawKMis3hGdDjq6hbY+hiArCmFQWTmbwl4PUSShUQuwtEcGDh/G3vo2rpylszgzXtPlkTa5PoBOQWdyEeMrEBbVUq2H1qKgwBdje1n8CXJ7G7j1Vg6z2jCwVOthZXNKd18Q1micTRY0rmRg9du/5yRZr1QV6HRwsLGJP3mfhEdWiQxMXN6qaVS+hg/6HGhu4fY5gtTPhJvYXvfjJy8MZnFgNkk8mEYEm6dLCcDvWXhkfQ/2ztpAp0MepGD1oeYG6rOpQyVlVguB1emkTbsN/MAP4GVvWsKJH/lG4g6ZDmYklSOt4bsU8BA95NJ2dYWvpRmtrRMAY34eaLUwo1uEbM2Y1fVRME1I4w0ErK6Pg9VZwauyYEyfgpt8Sc05lNJ2AVRuWliqTeSXu/qBVNpgMROsZpvMa1CWag2jwszXtm6j2xf7fp/9LPCRcTeNIMDQ11FjzGq2LlocuY5SmtV8QJVdmqe6S9jzspvIHLO1hRv3D/HkWR3rTgNzM6NrbS6TkDYaAdeVDEjQt8gcw+YCmqxqaTYMYyezWlc44F8YYuhphKEoej+oKkm0CYDVI5JLqgq02+SwyoTHaRCwWucyq8vJgOSYdJXVPc0zWJxGs1oO4eeU0wMoPcdmMRSjSCruNQCyhPI0qwM3gCJaaaFp0BVfyHTYHoaFZEAyD+dlGdA0MllkLClclPkpSYk/xCSCQBjCCyTCBC9oWqjKAYIs804GUBnFE7gAspnVUblraxjgy4A46k6DxbwQlAGxul6y36J72P2tLp68UCOPp30BWAVPHrM6LCipELebLa3h+eX2MIomZzOrWeKqRIJFkaLsy1o2IcaSopn7rZKya5w9clydW1SzmreP8X3YgVqIWR2zlfPWmYLEk9jbh2OwWLTaRgSs7veBpupwz1+6KcMJtMrB6jLMap/itTfcAJw5Qx8MAnKma6S04/OqrSbEffcB3/EdOz8sJswBQK1G9nsFwOpejxyVf+M3yDbZsSPCrJ5JvUjTyJ7AvobM6l2weqrYBauvo9hesWJm9UtmHsF9n/PxyMUObuwkYLUu+3ALgNWSFCUb3IUFLNd6uDycgRVoMNs6AVO1AJbHB+i8oQdd8VE3AiwuAvFsEAS4uhLgi2uHUTdSEzcty7XzDOsYSFebsFB+7/dC3b+M7/vnY/1ipdR5ACidret6QNQUDh0i4Gbfj58fWaCYIze3PDsqZnrEzJTymNVRBM+L8FN3fQSveI34YUSTA3hDMc3qW27JYVZrEmCaRAZkq0AaPCNigJSC1brMN+vzLB+qFOJNX7eZPHjwIA40NrFv3sFja4swFD+57jGzmm9a+OoDD+MXnvfXwNGjhA0wTIPVHRyYS0q0VY0yajklPV7fxqrVxuGDqe91kEjVvP7I/fimV43eB03NQc/O2bBkVRjcdRf+7a8v4dixCe/hMQZATLrKlJLreRpvNNyVTZKJjpnVFtEN9n30PAPNWuoayETmJ8jQVU7HcBChpnhiYDWPNVJWT1WgXQDVMqvDkMzXpZnVEzZMUQQvkMsZauUZ00wjAyIAVtdUr7jB4lDsug2HwIMPjj0YBMQbwkjA6rrqYshLMhZl/SkKDF61EZJL88TWMva+8CCYe+9NjQt44oyJLbeO2ZnUGIrLswVkQESZ1WZ5ZvVv/uaYQU/JsPv+aJVFGqw2x8aeppEkdh5Y7XnEdNosUPodV5pw9l3jzGoA+PmfB97yFuAVrxjtqsABJ15Hi8qASBkHc2rg+swyWMzxXCgrA8KuwaR2p0gIxprVOb9ZnGgTBavlAK6AobM9DGGqJZjV4xchiqbTrNblyczHsoxtSUrWrgz2a9xukXEgpFldojJIiFldrEmAgtV5rP0ooszqAjIgPCNjGlbXS/ZbrDpQX8W9Zw/hUGtrpwzItWBWx4mryU/HvhslmNWZ+3kGAJfR2hcA7EvLVeQaLJa4b5lkZEb5wsh5TTTYGSFvaPk+nKIyIHkAcLyXF+8mAL4uPjX5KwNWZ7LAafQGMklWc66tUZMrZVZ79HYuw6xm4O/x48DJk/RB6kPUqo9Ka4j6ZgHEF/vTnx67XEzahYHVmgZFCoVwDRbDIZmiXv960ucLVw24oQKjlvo9mcdV7xoYLO4yqyuJXbD6OopuV0Jbs4E9eyBLEb71RVfwt6duxHPmz4/KgIiC1bZNMuvsoDc/D1mK0NIc9DyTMK4lCbW6RFg+nInSG7jQ5AANwyeSwpRRKgUB1ld89D0TjdaoARxhVufs3hhoPA7SAcD+/cC///f4pXcsjD5OD/y5zGqPGMvVDQpW0/LheKYclwFRFH6mGIDvRlClYkw6Uk6e8xrXhR/KODzbRaMtbrCoyQE8AbPN7W3gzjuBU6fGnmA6VKaSyIBsVwBWexTQpwaLIjIgE/U5b7sNL9/3BH73jf+Af1w5jL217eS6s8WHUxHg9hxosk/ugf37yYNeCqzuz+LAfOrH4YGUrL9DF/NGH0eOpj7fMIA77sDRQz5uetly8jiVw7G8nN/WceCGCvRagZOOplFWUg6zOv1biIagweLw6oAczGdmgHabaJh5YWpjM/qbS7qWb6xHw7IhzqzmyYCwg0OJUk9euwBKm39lgUml2gQrd+UYX5UBfbIYKVMaLALIHAeWBXJ4LsCsbmoO+kOxH9myJoPVBMRMJIxqigfLyW+zDLOaC6iCzId11cGKNYO9LzgA3H47AOCm6HE8cb6GIJShmKnrw0CEvARTURkQBlaX2IR/8YvAlSuF37YjrG2XjAUGmNC/W7oNQx/7rrEMSM794/sJWC0agjIgkTMBrG61gK/7up3XXGCd8d2wpGZ1Bls5ngvLa1ZPBDzixFXBNvM0Wmm7En1doWC/VwZYXcprAKTSwOWAE8NhgbmL7uFEfBxsG9VoVseJhSkNFrPkRUrooatqlO0PwQgVRQGqPO121m4kV8usZuzyEoCiaUSEWZ0j1dD3DCKzWCDJJiIDQgyt6X5r714AwMHgDD568Vbcsmdz9PN41zUMy1VcKQqRAclo1/NLGCEitS/KYu2HClS5bEVIxvNhCC+aQgYkR7NaHfdpEGxXk4NMSRzHjggRqIxUoACzegQ05ISmRpNlhoCp9NAzSRe0n9dKs7o/kAhYzWNW15RKNatdl9zKZZjV3S7Ztpw4QXSgAcTSjq1mMWmNdFy+TPbeDz2UenC8wl3X0dYt9LYK6D9HIaRP/gOwtoaDB4HzV02Ce6XnCro3tHP83jwP5cDqXWZ1JbELVl9HsT1QCbP6zjsBAL/4VR/BQ2/6RexbcMmNx8BqDvs3DvZCtsGl0govXHoaEqKYpVRryMTsh9OwZ/nQpAANMyRgNWVW65KLyxdDaLKPxsyosZzG06l1HAJ6TGJWZwVjQeeB9lQ7sFXzSQUuBavVyMOlS8CXn2pi260lcmwMROCWZxdkVjMG8CAfRPDSpTAiwQ5kAmD11hbwnOeQkp6RdSU2AiGa1YtmD6u9WkYr4uG7YVK+zGRA8hILyGAA3347buqs4FvU/wUJEdFuZQsQlVcZcsAkr2uRdptNYJkCyIzK5ftEBmQhNe55ICVrd+hhud7F4VvGpDl+8AeB//gfRw+VqgpJArnnssK2s5M2WRGbE+X005egSQX1imMtzfyXWUPKgNb1RNcwCIDhEFetFqm+SEcW22u8XQviJc9CMiAlDk/XQuePtpvHVi7VJnI0q9khp+iBjPYjT7O68JzFgjF9Mmg5wyGKyYCwhBhn7mZhWWQuHDkXBAGsQEONOdfTeTs3GRaG8AJ6bUXBL7Z2cZjV3noXc8YALd1GY84Ajh4FANwUPIoHT9Oy7PSgVtV8thdQmFmtGgoZUyWY1efOFarkzAyrN8aspsBJS3NgaGNjnYHVeeCf52HgG6jXCtwPggaL7tAnh34R9isvyYaU5FgpGZAMwGMKZrUqhZNlFaZhvOVUBoVBBLmETm1uOf0UCcFYGirnUDq0pILMaj9XxotFrFktClZnrbXstyphAgjky4CUZWyrSrbfQmlwPW+8ApRZXb0MSGnNap7Boudh4OujMou8EASTrJ5P9nGGEcsVHVQv49OXj+OWg2PePKyCJweoLZXEpnvZrOkw9oYomHAnyZVspm6p5J0IYB+WM1jMS7L5kVwqGcRLtjp2BEMuCFbHc1fOa5h5XoF7jC8DUlJiRg7h5RhiltnLCsmADGUxzepatTIgnkfA6jLM6m6XHOdGwGoq7dhspK6hYOUGi8uXgde8Bvj4x1MPUla7oitxm23NRndLcA4NQ2B1FXjf+4Df+i0c3Bfg/BrFMMb2xzy8pDSzehesriR2werrJYIAXUtD23CA224jjz38MPm72SR/UxkQx4GQqH0wsIl+XnqDa1l40dLT6OgWqZkABat9LTEzyghv6EGTA3Sao8zqljLE0+cUvGDxDOpjxnKqFCLIA6vzmNVZwYDlPGkJuuL/t+/6JBHdp8D8vN7HBz4A/OHHj2Fl2Mae5Shpk6d3CcqsLsikq6kurGE+sF64DKkgs7rTAV7ykrHS7PSG3TSJ5rCtCxsmZIXvg1wjRUlKXTkl1J4d7NRWXlggf2wbR1rr2NvqJ5tVynwc5rH2AXg9G7ockMoEClbroUPuIaZZvZgCq0V0/qIIvu1jyezh8F2d0efSWl4s2AEn77rmyeFkBQOo8jSrfRQvn1RV6ErGpjkVw0FKWzgGq0Og2yWaYUtjB2u2ucnbkEURbFsiJc9VyICUPUSLMqtLSGuoObqEAMoxq9mhLNNQqwQ4kcdIoYmusgaLeYcnywYBKAswq0WSK3H7FlHVYMsrgBSzOoz7WFM9DN2c+9H3i5cRM0CVU/rvr21h1hhiT4euye020G7jmHEB/+/n9+ANN3x59Pqww36W/i+QgBaCa5ek0bmwBFh9/jx3OyEUVj/YKQl0/Dhamg19YWb0xYpCx0GOLn5aBkQ0qD4nTxbJHgTiJni8JBtYeXZxsDovGeaHCpQpEldZxo1lja8yy95Bhp0ql6gIYVrQFcuAxHuDHHDCsgrMXXSddQV8HGxHKmawmAVUTsGABug6k2OwWI5ZnW+qRtjKxQFFJc+8k1VWViwD4kflEsOGKeUzq30fA89AwygAiKgqJAChm/+eYS9IKtmaTaDRwIHmJtxQwy037PQLEpIBKTEX5DKrAzk5UxRpNk+zuiwAzOYtHmBfhlnNkwEp6RGSJ8VYllmtKxwJo4LJcUBQBqQUWJ0jNzWtZnUes9pS0NRsvgxIXancYLEsWJ2WAUmD1T3PGJGvj0knghvvy5eBH/5h4L3vJfgya3ekwoX6z/S6gqaNT59JSJarqzjUfRinVxo7DeVZJYCVA1YXNUun8Uzwdnk2xC5Yfb1Ev4+uZ6I9qxDdMEVJqEmNBvlbUWDoEdncCtwYVj/YWU5fr+OepdO4YbEfb9gJWK3zmdUUrP7of7mf7JkpWN2W+7iwquPr9z+OhT1jbC85X6agFEjH2Gl5bF1qdhQzpylYvaht4gtfAC5tmrhitbG8lDDpRNh5sSt1Uc1qO19Hc6QURiQKGiy228ArXwl87GOpJxiz2iAA60zDR9c1p1swoyhhVqtqwnrkSNfEMiDjhzGqoXekScFqFgxA4JTQej07YVZT1khH7uJ97wMC28NVu4mFTuoaisiAdLvwfeBfv+BTuP3FzdzPH2kz7xKUBKt5lQvEmKYgO02kxA8pfc4Us1qJPPjbAwCA1Bq7NiKZ+DCEE6gwVUGAXVHyD2TMVKxqZnXZEnUOmASgWhkQpstYBqymDKJMpk+oQClTlqqqMBQv8/A0tOTCBosibGUWlgW8+c3AX/5l6sEggOXrqJlJ8rKmuLDykmFMRqnIEKCSQLk+DgD89W3MGkPsXUyNv4MHYao+Xnf4fvzQbZ/ASOkCj+2FlIRDgUQrAG6VyXgEAdEnrAysVr1R3dQf/VG0vu0bYcw1Rl8sSTD0iGi/5jAUh75ejFktKItUCKxmJfp5BotlZUCygBSmWV0GqOQk2cqDCDk6tWyvVXSOlWUKAis7y/+nAasVhSurUIhZLUnQNL5pI6IItivDVAsASllr7ZRgdXwwz2JWlwarqzfBU5ks2aSgmtWVGyyWvAbEYDGHWe37hFldK5Fk45wRrEFI5ljTJImhPXtwsLGJlmZh34Gx+4RXwVNWrkImYHQms7oM6QLI96CZcmwFAYepW4JZnTkfTjG2citNQI79huKVkwHh+EOw1wo3m8eEpyzcayED4kdycbDayEmE0OhbipDBolrTyLxaIbN6bg4YDIq/lzGrl5dToDKVARlnVov6ZgEErL71VuD7vx/4wAeSdoMxsLpVgFntbA7JnovGwf5jeOTSLNq6NTruBMh9notdg8WvYOyC1ddL9HpEh3KGGCkyKRAAMWAHkAycE/BZ0AAw6FKwOs2s/r7vw4Hn78H7/yFxp9fqGpl0OWC1O/ShKz7ml+kk0GwCsoy21IeCAP/h+X+Fl3916oZl2XIBZrVqlgGr80ueo0hKJp5WC5BlLCqb+MJ9ES5t1rFmN7G4PGawmAfQRRFlDRcz1OJqVjOWRxF2uWBpMkD0lbUPfgDHDjg4dy79BHPiJZ/baMnoe+Z0KEO8AaSMKCYDwjNYdDIO5ocPAwBeuuckblu+mjzO5BQ4OArRrKZg9eIiMZLU1vGzPxPiH77QRBRJkI1RhiIPRECvhyCS8c3Pu4x6Q2DjFI8VAWZ1vYQ+aZ5mdRljGioDwmVWD1MssnodUBS01SE2zvUJCybOFCXtSkD+os507sb1aHP6mgd8TmN2AyCXWV1K+/QaaVYrqjR540wNtcqW/pOy1Ml9jQDIajmGoi4HmQksy5aKaVazhBinKiZu3yKed3/1VylCI2NW1xKwuq66AszqguAfreBx8vTrkciA7N2Xur7UwPUvvuGd6BgWcODASLt5LFUgNccWWLsAFAarV1bIYSm9jEQR8Hd/V6gZAGN6qiw0Da397YmKCDFDMWvyomB1ozH56YnBOeyzIGC1oAwIvbZZUjikq1Fxg0UGeGQYuJbS70+3mwGklAIqOcCXH0jk+5cxQ1QjuJOSFmXlmwChRLZlS4USbbpJdbDzFlu6Jpp6ARmELGZ1QEB8XSvJrDaUfIPFkmA1l01ZojJKlQMEWfNhGYIIbRfgaLeXWGtlXUWYV9HneYRZXUQGhFUccfbe1iBETUnNsXv2YF9jC9994+cgzezcw/H0mv2opFRDVpKNmkSrUvEqi1hjPS+5UGZs5RnDRlHpscU1tC7NrPYzq1tLM6uZhFFWVQj7MQsMBjFmdZl1JsyWW2IgeMHEVa5kCQ3CrObLgEiGTvCKCpnVnQ45oxWN7maA1pWnIG2kBK+pDMg4s1pX/Fy2cjquXiVH8L17CYGOtTtusNjWbXS7Yn3trTloaQ5w7BgA4ODgcfyvRw/huQvndxjD8vASz5emkwEpUYG4G0nsgtXXS/R65G82G9xzT/Lcq18d/5NoG6lCgpDDXoC6MnbQO3EC+LEfG2Vlsed5zGqmK8xOibIMtNto6zbmDcp6nUmV5rINYyjArC4C0rFy3zxpCTbps4OjLAOzs1gw+3jiSQlrfYMsUDVtpM3c8mw6sWpqAWdyxtDjgNUjE7Zgu6IyIFi7CnzsY1j61F9gZSX1+FgJjlwzCAA3JVjtRynTEl0XlgHJY1b/4G2fxItuTq1gDJzJS4QA8PopsFqSgEOH8O6veS/+8GfP4od+6zi+4cBjoxsJulDlgQjxolRAt5w0WrEMiERY05kGMmyTX1TrjzJyeJI4I9rCkgTMzmJGs3DygQGWaj2M7mwgpqHoebB9DaYueIBgwGeWgecUQAqAa2KwmFVOHwVTMKuzGERTaIkm+toTnptCXzseXxlzgmVLhOlVWAZEnFk9N7ezzNHytYRZzZKMeaAyS/YVZFbrss81VfMtD4ebG7j9ttQ1SiWtUaslpsFAAiLkgdVsji3KrC7IGDl3jhSxpNc8xwF+4icKNQOAACmTzFZbrcnyvSIMxbLMai5YzXSFBZnVOqcs1Wea1aLSD0AKSMmW7plGszqr3bKSCjxmdRmdWgCUsTxZFglAqTZFZECGtkwSbYL3mG4IsLJ8n6yJWjG5IfbekWDEiLLM6iwWWQymFW9X0wA/ypEBicpVRuXJSpT2XFAUyFKE0KvWYDGutMhlVhto1EtUhHDApBFmNQDccgs0OcTvfNX7d0qxsQqerOE6BatYyQGr4+qwgvetrOQwq8tqVvMMFqdgAOdXspXQwabtankyIA6Ka1bLMnQ1JIm2SWcPIBnLBfaImZUbQAqsLsmszvq9fB8RUp4Eos3qSn6CCUDfVtESkAGJ13hhQ7L88DwCxZRiVj90Bu0n7gN+5mcAROTYygwW00c6ti8SqO4GyDBRFLJ3i8FotodmiQJdR1uzhMHq7rpHWNT79wOtFvbgCv7LC/8Cv/KCD8aV1CN9zcJLogiuJ+2UDxEIzZDhRbvM6mljF6y+XqJPwV42G9xxB/CqVwH/4l/EEhYAcY11Q0VoUhv2QzQ0h2/Kwp7naVZb/k5Acf9+tDQb8wpNlaXBalWFIkXw88BqplldkFEqYrAoSdHoItHpYLHWg2mEmDVt8jzb1ItoVlON0kIbZ0WBqXr5l7aM2QtzkhfJatJJdOHxe7G2Fo087qU/l21MpwGrY0CfbmBiGZD8t3lZB/NDh5IN6pvfnDwemwtywOqBC132EymdI0cgSxFesedRXFgz8dab792h/arzkgClweqc15TRTZMkvoFMJBMzpYJgtSYHcDnGTzEDlv1mc3No6zaeOiVhudZNtPZZaBq5BJyDuROqMA3BAwTPbLXsYZejKRsGEZQy5l+x2cvOp8qWugI55ZNlD2Ssr1KGMc0U+trQNBg5ycahXVAGJGZWi/XFtsmSd+utwBNP0AepwWIMYmoa8RrwcvrA5s8iY0tEGgvEUOrFS6fxcz+akj66/fbk3+HYPR3r12e36TkhdMUvNG9xq0wmxLlzJCeeXkZcF9jcLNQMgJSJ6xho8oIXAN/7vTtfb5hSPlPVdeGWqGLSRcDqYUjAakG94prqwhpkHPRpFVdhpk8e8zGKiHRPaWZ1MFlWoWxCkGOw6AdSORkQALoWZYKq7LMLh4DOeDx3Cf5mqqHwWVm+DzsokMAFsvVEyyYWaKh6Ruk7k5sqwfwUkQEpx37N0ayexgiQYzRalv0KgG+wWEQGhPnFcJjVMemAnQOf//yksveGG0ZfzNNrpnNMaYPFSZ4L6WrNghEDkHmGmCUSIWpeVWcYIoyk4lVnedc2vr/KyYBkaviDyYAUBKvBEoL5Ouvs84W7qmVUCALl5y5eNQD7rKIDgVd5FkXoO6oQsxq6TvZaFTKrm81y2HfvyhBtnWzeGmGPkA58H26gQq+l1s0CUqS+n1yudjvhZiZSpGOa1b2JzeyI7maAtmaTyt7DhyFLEX7g1k9BadVHz5+8SnR2/lZROCGWm2DZDeHYBauvk3DWeuQgycBqWQbe8AbgRS8aed3MDLDl1IUAxWF/MitpR5gmYYzwmNWWT4CvdHvf/u1oN0PMmxnMaukaMKvp4sMzk4oiaRT8XF7GgtnH4YUhlhs9zBmDZBFhoFce4MEY0EUyuzE7kWOwGMlQjGJuzCIyIIHjQ5HIZ6tyiGCY+o19H056AaK/a2RPkd1lbG22pmkakQHhrMGZ+pymCfzIjwA/+qMgTpk0GDgjAFbHzGoglhUxL57CI7/1MZyYWd3BrDYUD/aQb95ZRLccAKI8ZjU78BfciGlqxGUilHE71+UAHo9ZbY2VPM/PY0a38OTWMpZrvYkyIACEWGRFZEB0OacUrWzpoKLkGm3G5l9lmdUT5gPPLw/OZB74KzBYnDgOpjQq03MSDJYjk7LkoprVPt+ojIUkkekkDVYP05rVikJkQDw1t8zVL+pOH8sXCXgjyGPJO01LAOs77hh9A8/4CoDrRMWYI6qA2eyEOHOGXNv0FsXzgK2tQs0AoGD1uGY1SP7+Oc/Z+XpdR75RGd0XSHqx/YaQZrUVEWNYQRkQM2+dSSdCCiYaMwFgpg9ZBkyLK0IqZlbnmar5U8iAaFQGZILBIIDS8xaAfINFp1iiTdIE18QSYLUxqXqFHcqLgok0rokMSB5ANVUiJJ9ZXVaqIdMbgCbGCxnusuDtjZjBYkFmta743DNCbArKznWSBPzgDwJvfztwyy072hSRASlzXTMlI2OTzXJ7GADZGshl/DwUhZCwssgc01bdTRpbUQSvLLOarV9ZMiCuVAqs1vV8g8HQ9YnsXxEZkDz9Xza2yjDWpSBbBqQEA3zk9VnrQRCg7xpoGh5/LLA9Q4Wa1bperoCIAMCkLK4jdQnJYFLiQVWhSWJg9fo6sLBA/t1u72RWK/qYZnVPrOPdDZ8A6/U6cPRo8sTy8ugL2Zk2ay6kFUd6keolGjFYvSsDMlXsgtXXSXRXbczo1s7S+bFYnnWxYrWFboxBP0Jd9cSZ1UVlQABgcRHtl9yOeYPWm4yB1QqPRea6RPvULFbqmuv0DUwGFO+5B4tmH4e1i9hX38KeWjdZJBSFgKo8sLroYS82PMoHq4HUwUWwXRGwenBuHQ11FKBO67S6gQqjQT9X12EqHpz+FJNuXBo/LgOS/7ZMzWqAbJizNs1B/hTnDogpaMysptpWOHkSh4yVuI/pdk3Fhz24RszqLOCrpNM1j4lQSpOvCLM6LdcwP4+2buGp7hKRARlnVouA1Z5XmFmtyhlMJ6C84Q8HmCht/pVjWui50XTM6knjoKzjPZACqyc8Nw1DkTG+Ju3LwxBDV0Vd88TbVhRSkhqohdgN42C15esJJirLqKk+MR7OA6uLsvYZmJiXwAUZCxP1ir//+0kS+9u+bXK7HGa1JhWTASnDrD51imDpaRkQ1yVsmkK4dxRRZrVAwp0G0azWsvdHvj9aUSUSbK3lLIuEWS2oWU33BYGbcW1ZYrxERUgmADxNlYUsZ+t+lly7eNVR8RxbVgYkj1ld0mAx7lhGDB0iH1RYaidvcAUBAatF10TarjnJ2HtKsFpSlcnVUWVNNsESrXmmaiVMQekZIZPQwqQayt5fGZrwXlFZKBYCYLUVaOM5O26bIsxqy8LO6hVJIlKR4/deXMHDMRcsc12zCEjsusrl9jCsXzuC+XmUYVbnVTFNAVarcsYcy/byZe5bBtRlVAbZTjmwOp5jM+YuooVdzLhR0WQEvCqLEusMkQHhaGsXHQi85CXVeW7UBPZPFYPVrltMPSwd3c0ALcqs7qh9QjKYBOgX8M3qdoF2tAW8971oXXgsAauDgOA/uhq32dJs9AZi905vOyQyK7XaKHshLXML8PGSNLO6YGimsmuwWEHsgtXXSXTXXFLOwAGrzbqcbyCUih3lXVlBn48sjgwIAxTHZsHWHUcwf+sSOUSnJ3yagQ7CHMYb+x5FdRnlIBugAil/3HEoPXECt9wc4a3H/wH7lBUs17sjMiA6D6BjbKeCzGrC8Mh5TQkjCtGFov/0VVKGRGPWsJJybHbt2QKk62jrNrbXp5h0Y0ZYAlZzjSvBwJkC+pwM9OOA1bF0DQOrZ2dJ1tVxgM98hjxG2dYAYsabY1XIrJYkQJbJeMzSd2MbsYKO1DwDmfLMar4G8HDcTGpuDnfOXcTfXbiF3FsTwGoJQOhwSp59DYYpeI9pGgHpshJXZXVaOUCd55XUU81hzxA2bUmwWpfJgT8DRCgFUMUsqskHSAClGYoTWX8A4HmwAh21ImZiEDDWSwVrdhKzul5PXsd1+WbmMEWAFCatEuSzwGOgblKlyateNbFqIbc8G/QAU1AGRJFC+E4xsPrkSUIAH5cBASCsRcjeNPR11AzxCgYRg0UA1wastiGuWZ1nhEj76UdTAMAZRoiFk+0j7WZrYZcGq3NAHz+UyZ6gjAyIPrlEPfRDwvYrOW/l6goDsFylkAxIprZ0OjyPGiwWSDqrKmoKlZ9LzzPsUF4SyMgE7KdlVnP2MFqJ9ZvHrC6rWZ3LrE5L4BXsLwCupEIM6gi2madVDIAkBB1KOuCdE2mbZH7JWJuZDEiJKotcZnVUnlkdRdLkfTdLhFStWT0NWJ01H05rsKj4mTgokQEpBioDRG8/TwbEsSOSvC3Sbl5yoWT1afJ7ZRssAigvA5I1EFyXJhkF2tLLGSx+8YvEKHw8PMohEiw0HInudkSwKACzSpeA1ZOuUQEZkG4XaK2eBj7zGbT/9PfR2/LjjkaRlFzLrIqgvL7qFgGr9+1Lnhj/LVlfs/ZbUyRxY2b1Llg9VeyC1ddJbG8EhFmdPi1PCl0nBM1xLboJMbQkwqrlsZIMgwCKHEata4dE/3esvRe9WMJrf/wEOUSnQ5IgKxJhYuSAdACKHUg45aMAENjezsO+JGHueTfgzUe/hAONLeyrb0+QAcnpB9OWLgJWxxsQPrO61AGax6y+sIkm03QCsFzrJiaL7NqzzzUMtDUb3c0ptJeCgGjr6QkATxjrfLB6osFiVjBwJsxxo6bt6spYuzffPNLOiHEZBdJsq/rfC0D2glZyIxZrFWeVzZUpn1RV6EoAjyNVEJc8pzSr33jDl3D3/AUcWrB2btapezRPD9wONFEiZTIXZAFqU2xwAWT+Xn5AS9SLAimaRsDKCSyX2I26YmZ1aUOtPBmQaTSraTJkYgJr3OhQMIyaDGdS2f+kiCLgz/8c7VNfxtYW8IlPINasTjPXuCX6ZcA/SUqYhFlrIgDfj7IrTSYFrzwbqWSzaIcVBQ3VxcAq9htvbpJzw7gMCHtOOByHjIUCbEKuBjB7vKAOtC5na36yKGSwyECvrHmLlqWqRQ9Peaw/qtNbSrOarbc5jNLKDRa98pUmWSXq0/gCxHJeWWK1UUSY1UoBsJpJ7fCY1X5BZrUsw1TJXDqyJsSH8nKa1ZlswmnAahW5MiClEix5RqOpdksngzLug9LJIAGWZhRJ5eatvDNCEGDo6ajrvtg9weatrC0cIweUNBec+PXLki5ou6xfk9otVXUWX4NsGRBJiorPMUwirOpEo5pvEOy4UnGDRfDNYePkbUGwOpMkQtevsgmmTBmQsntZjlQgq8QWWhfpJuf/Y+/Pg23Z7rtO8Jtz5h7OcMc3T9KTLdmSLEtGtrEtY4XBZUDF4HZB0w4bUy6qu6MKKNu0HQW0C6q6mKEg6KKhKLo6gDDNFBDuCgzYBhuwMMaWZcuy9aSn4Q333fkMe++cM/uPtVbu3JlrZe71W3n87kPnF/Hi3XvuuXny5s5cudZ3fX+fb73SS0T8kR8BfviH+18nO6vrGucrNMzqI5zg4UPhki921zsazurzkxLL4gEAYOGlOBcaQ1eD4GvEfTX7szMwYV1MEr/ne5gZ7Vu+Zfcb93VWE8TqfYI2L2u8LsXqt0idnVtsgBgbYTiAfnUy/mBsNthvxzwIWNjPaviYzWK3c7y3vQ34+q9X/KU9RDoAei8KdyTpG0CRlnBsiTONB4Z85zt+Gv/nd/2r7fXmrOK0GDgP4aSb2llNET+bncLhidbqzgZzNwPe8Q4AwE3vQSNWV3kJ26p3nNWHfozTE8KkUFRRYJWHWITbtiHfLoeDK6tqu4jcdyVtWbAcu/n7qspziejT5r0+/ngvYHGQJcoOyv5PEatVi5GqQlnbcDRxFZ43vNCjOqsZBmTMWe3ssoWvXoVlAf/8N/9FfO1XbJTHHdyJ5xz1vcVqgT8YWpQS21IBtTBBFj3EeCBZ7BYlXax2PO6sljBaSSgYYD8MiImzWjYh5W7aWah3vrbv7u9MOT0F/sW/AP7qX8Uf+oM1/vP/HFJnNVx3OBCU6PrzfL6xMDC5bZjVGi7o0YDFrIavI1a7LuZeivVm/zEpTdkrNQzlzmotbnWSaLe+NxsMUzqrRZjxyIarlrN6SPzl50nCF405qylIhfZxp3RWi7FbJvrUNXdWE7pXwJ3VVd/113SvEAMWBzdGxRgSaJzzvjkOOhu4vCKf/b2dY5cl0srdPxOiWyrxzwQDMhQSLY6re8+6I7k24lkgiKrKtUfTxaR3SADjOBhZYPxYCeFnyKWY52xDMNjzfdt08KiFWjIGRDiru+YTgWwhzmGGxE/Sudo2XLtmWUyytUdVsbkIcW6omm+RMSAja7A0t/tC5B7l+ZZ0jBXVbN5qbrAoBWBTDIhqc4FimGt//8AG097dG4eHWHgp1vfi8e9t1cc+xv77gR8AfuZntl8XzmpvgIgmrbMznKUBDg7ZxtiRdYqTewXO1zYzvcmc1UPmI17nr55i6bIJoW3V23WVwLK1NIh98kGa467AMCBi4v6BDwB//I8DN27sfmMjrKtRMGQ81j7dUZc1Wpdi9VukTs9t5qweE5Y9DzejM7xxd/yjjVOLiUlji6cwROTkiM8HBp26VmJABmsPkQ6A3ot9jzCpIimYs7p7rhzCHzgFouuLXWa1XSAtRpzVNQUDMiwiXKSzerVmO5miReaGdRd37vA/29hsoBefke/jwI9xdqq/kPnX/5rPMTmnaxltOWD7ONabF4VmmBSAwZdElll9sfrLvxz48IfZrzsBpoL1OCkGBNgrjAPAVoDfs1xvwN1ADZCxbfgO45kPbQRsMnfXWX31KnDzJtzHr8P6P/2e/l8Qos9QWyp3Vu+NARFYBdVz0Ag0+x2uqRGmbBOGSHTPSJnVOZGDDeYolQqgzYKMIE7wz0slfAGgiT5Dbal5zgRKTWf1XqIPgHyTw12dNL//vR+5j6MjtnGXlS68sPXv2ePdRdkIadreVeda18gLG64OX9rzRp3VWQaas1pDrP7c54Dnn0gQru/3mNWAplidprsc8X3K8wZRDc28QPNdGzjFuFidsnnF3mL1EL6ocWXtf5oAtq4/xTNbtsOPdWoIt2QasCg7V8GTtYnMat9CVvY378j4JmDUoci4wlys3vtE+f06pChQAhYBhF7FxOr2sYtC/5lql2qcNcAU7BWwSBConKGsGB42arsUVMMQE57YxSRc+/kwBkR/jVCNi9Wlv//7dqyDR3TzaeLsYFlwbLZB1ROr+caVNgoGGHdWU7sBnBpFrd5g2fnZ+9aQa108XwYBiyoEQhOwqPmQ7eWs1uH3A/thQHTvrWYjBPIuXKqzegQViCzb/3wPD3Hkb3ByeyTcqVOf/SyLCfubfxPbjmlsndWz2W52yGg9eICzLMLy8QVwdITjYIOHr8dcK0h3P0sxjx9h4gPA+asnTGsQVbJ7phGtxXGH8mxkx13ZjK899kIbe3e3NQjd2nPtcVnDRWkauaw3oc7WDktg3cNZ/Vh0hjduH+DFoe+rKqSFg0M/GR+EubN6MFSuZFgAz9Xc3d9TpNPGgNglykI9SJZZKQ+ounJla/v6nb9zu2hxHCbQDYnVwlmt04Y0tCATRWxN3sdZvV6BoWCuXwdcFzftu7j9Wg7Aw+nGY7wn8XODAIcaYvXpKfv/YgF85CPAK68A86LAeR5isdi+hAInH3bp8pe69kSs/ZJQbPLkOeAFnfvAsoBv/3YmWF+50jtm4BQ7rkDpQQGaWD3WYaA5wW0ctVM6q9Fpo5aNSWWJOHcRea32UccBfuiH2PWViQHinh3aiS8KJOUMYbS/M82zSxQqJnpVIa88eJ4m2kaEw6al9CXaYEB0J7iexxywMmd1QRdS/FDBTeP3wILYPupaJTYyHcUEA8InpFIMSJ4zd2J0MWL15tYpIru1IHjpJRwcXMNqw/4dVlvJcxzGt1UJSZx5GWg+X7Zro1SJM/znNe+Zfe+FsfZstFBLGs7qmZthnew/Jr386QovfPbHEf3ZH0WS/EWAXcHmEmqJ1VmGB+kch4vT/f+OGJMVn1m8rtgCWtNZ7TvFKMoqSSzG/twXA2JVKFS5G032g/47UTnfaFrJCZivkS4LIwyIilNb2bRQNQw4q/Naf7Oidb6D7y8+du3tUgU0nNXu/u9EXqFfMgxIR6xOdDqXujXgrC4qAlYD487qgjKHaQwtij/nopWlu3MzlJdjsjEsNsfzSr5op6wRPA++vR4WqwV2a9971mabqI2o3H0/8Q0x7U0AMAG4zPh7sT2vMMndEMcZYlZTNlhcbDnr3ZveAAPCxm7JPWnwfAkcjCqDpnFW62JA/JGAxRT6eJEhJzwP49M19DAnfIW8dJT3rPjZWrWHtrE3tuTwEEfBKzi5V+CpPX/8yQmLLnn3u4GPfpRdb1F5DnjIMJv52Gz6ESfKWq+xKQ4QHYdAbuPI3+DV2ynOa4eJzc7x9ns9D55d7eesfn3VEavZ38nSDl7E8/ZCromKY2B2mI2L1WOd6E2WwwXkDVzWXnXprH6L1OnKYc7qfcTq2Rlu3xsZWDnnLvAlg3O3goA5q1cDg06aXgj7lY4BqQfRGkVawpEtSiwL+K//a+C7v5u1jLTOk2FAxpzVRAzIELNaXBtNxzpbPI5gQNYWc1b7PnDlCo6DDU5usZfG2cZlvKeWWH3gJTjdMwTrL/0lRhf5n/4nxiJdrdA4qxfRVqz27XIYr5JlNH7gHi+JPAfjrMsmTFev9p8Nx2Fc5SHHOtEJb4E5OKVFbB20PYehCpTOEVrgD2vxGwiNEKJiF9dgDwhsrgvPGher09Ld31ntjgcp0ZmXame1CQZE6awu6YFiXmDLw26oIULAdoI35Kw2wYDkkpbfPKc5//ZsxYsfxIjclm3jU5/C0RFwcs6vefva78GoLWp9N+EoC1uHdSiq2RRV/50s5wGLOhgQN8Um2f8zvvtqipuzM4ROgWS9HRsyjvHVYlZnGf7dnefw/ucf7P93PG+QI5lsKtaarDN22zaCPTpN0szSw4DYFQrVe0YsdCnj1qAATA/pGnKUkuaGgq+tDFUjtv5D7fprNmyIHSFj3MtN4elttO3DrBbOah1mNYDIL/sYEFNntUqgoTqgcUHOan5vqXQkE07tsLPahkd5vvhGSBarkQIAtOecvlMMG1p0N4ctazQQEyAIigAcV527UdQOLbhyD6cuWaweuGdJGJChjJC6Rq7b1ds6WSVaoa65WJ3rY0BCZzBg8SKc1QBIc07Pw+g9q/1OGEKWAHrYksUCR0HCDGB7ip6f/CTwZV8GfMd3AL/n9+yK1dmnPgv/r/0VzOo11joYbH4QKwwaZ/XJ3Qznsct0hI6zem9m9Z2YYW45jtStCxQFsElsRG1UjOcx0+CeYnWSWizEcyzrbczcZ4CxuhSrp6lLsfotUmcbhz3M+2JAxsTqokBauQj3cRSGIWZuhs16YMKSJOQFCYDpndUjoYVFWqqZn297G8M/tEU112UYkHLMWa15DfZgiVI5mmwiOvxt69jeitXLJWNS32cnc5YwRvUuBiTB2fl+/77zc+CP/lHGywoC9ntwZ3WDAdkzuJKUUL+PWC1ERd3gxoFNgCbcVNNZ7VgVynTCTRtg+PlqnNV6hwTUAVVNZZk2T3avQI48Z63qwZ4nLRylqnZ6EyFlgIXdYEAIE1yVuG4S/qVMpDYJWBSu9aIvKldFxTyzFLHasjhmRuKmEwxNXTFlzwljfJIydM1iwb7w8Y/j8KDGyVmrO6B1zNDJ1R1HwvFFQMwMnqsI19Pp4BH31UAoak7BgHh6AYsPXk9w7G9YgGZLeMky1tyj46y++0aJmZthfqDxjI2wXxuxWtdF5tVIy4EAz7pGllv7bwbsMW4x4YvA6lXNN/jGFTlgcYxZrTvGWtb2nu1uWlHDgXn5gXyz1YhZvUcrcazrrPY82FaNKtuDWa3trK4RdzEgkiBZrVLNN0zF6gEhifQciM6ogU1sADSxWnVcA/Fz6/yT3ztlWrB8Gc3uS98u98CA6GG3GqFWEeoNgBYS7dQoZfeBwTx2PGCRiAEZ6gYwvbeU3G4CYx3gmxaKrpiyZOYQVx+3NIoBEULiVNk+FZ9zUjB5LpTYliovaXPZkVwbFMX+JizLwuGywkkWbVuWR+rsDDg+Br76q5mcseOsvn8O384xL06wkcQHKStNmbM9CIDjYxz5Gzy8V+HBysdxsJEHLI50dwPA+VnNnNXPPgsAWLobnJ8Dceaw+XhLrGb5IHt8FnmOJLcRenvcYwMmIQBAWSKr3Eux+k2sS7H6LVKnG39vZ/XN6Ay37488VUXBnNUj2jcAwGcD0cPzgYlQmiIrXfghbUAfZVZrsopZeIr6W8pUwaweOE9HhGbIuFbAbnv2vtWwRAf+fSYYkJEdyNXGZhgQzwMWCyZGPyyBusZZzMI6ewGL5/tNBjYb4P3vB/7H/5GF765WAMqSOatn/HP1PIYBKS8YA6I6dG73mdVDNZT2zqvKCrlrf+RcXbtUi9VlSWsdHOpc4MnslMm472PQNUHCNQinz5BYresgGttcoDoUXR7iKrsP6ppjQAg8VTHBkzmrCyJaBC2xWhawSFyQCReVbEFiJPoA8P0aqSycJ8+xKf1Ro0SvNMTqyMmBF19kqeGrFY7qhzhZ8b/fEatZ8PAQs5omKAIYZB2y9lHCpugIBkQ7YNFNsU73f3ge3M5xJVyzx6L178tzlnmjI1b/y48G+KYnflWv42iEAZxsKvb5a65KggDDnSa6i/6xcYuKFLAsuE6FQhb+VddsI9AACSQ1CJiI1SqHouiIIWJAVJ0m2iicdgnn40ArMfmdOIbGKggBi0GFpIsB4ZkQJhgQi5/TTpkELPoDKDPqhuCQAxowFBQVm9giI4QYYMruA/ncKEsqdYegqoYctaKE015HrBZCrUKsJrmKMSAommxcXaSzWpU7QcWANOOh6hrQAxaVAcHC1EbAHzi+IieFFxOrJ3RWG6DnXFdtvmlMIkTGuBQJBGzHrj3XtUdHNU7SGU5eXe31/avV1nMRBB1nNc8Xm9UbLbG6TlL2/AqxOohxclLjM3cP8LaDu7vzJh1n9YZjRG7eBAAs7TXOTqpt7pGYM/k+R9bscc3imL0X5+74nGusE/3SWf2m16VY/RYpJhzuIVb7PkuNjUceTh1nteviWrjCvbOBny3CAi4KA0JgVg8GLAoMyL4vSotNsKz2OfUOWrDWVF1m9UUGLI7saq7azurFgonRJ4wJdpaHOAjS7UAfBFh6Cc5W+/371mvWffO938s2TIWzekes5knUaeGqNwGoSbxjok9db53VGgKNa5VqliiAPCn1BHB+XMeqB510AKblphkwq73A3gsDouXQcoeDXgAARcGwJhruT+Z0GnAo6qJ7WseVYkB4+BeJL+2qA1dNnNV24LHrpgq+okzCwNPEJSJ4kdfkcwWAwKuZmNQVFQ2c1dJ/f6fi0wyRm7OBi2Ogjjav4+HK200lBwDH4TiLAbGaiJjB0LnyTVFv3+4CfsyxTdEsl4TNjhxz7qVazOoHd0tcCfjqqDUmZRlbp+iI1V94zcWLh3e0xWpAHVSWxLU+sxrsFNIuUqFdfL4V+JpBZUPO6prArLYsuA7k4h/fvKS685QM4KpCDZA5tdJzNXh3AS3XX3fcKkAOsd3LWV1qYkA4o1OJfwAY0k8ndJhX6Fd9DEjJONbRjHAPAOqx61HDgDQuVcWfU8Vq2x5kwpOd1UJYVrigs7jUD8HjrOIxDEhc6t0PgwHBBs5qp82B7hyTfF1HAxZpm3eOo3bq1qUBrsKtBzvkSGO34ADL5gZFgbT09n9vtWoMZ5Zk9rRitUGot+fWyu6NPAfNJLIHFkonEPLo2Mar62P8J99xba/vX62A+Zz9uitW5ykzJsyqcy2xOjnPGSaPi9XXwhVu33fx0u0lXjy8zdIcRe2pQQBcrPYT4LHHAAAHOMf5Sck2d/18u44Sm7dD5j5RWcY2Xmd7XN9GrB7KNnK0pprtYwO4FKsN61KsfitUXeM02dNZ3UxARo6p46wWYvVqwG7RTBqnDb4iteA4DhP+hjons4q9gHRGnz1FBO32bGu4PZuKAdnHWb2OmeAA12XOai/GGReVz7IIB2HrRvJ9FrQ5FC7Yqs1m+7JcLDoYkPl2whZ4FWuhVonVdc1Tuff7uU2Jz2sgAK1Z6OwrKg4tynkVSaFGzAycK9uFH8HhUJ3VA+FEFKeP5w+3+ImWZy0HrFiQxXs4q3U3F1QTJpPF7hCbsiZyoB0HnlhEt5+HukZeEtEigHqcFc8AUfRpxOquQ1FgUIhidYNVkDmrCx/RXH8TwEIL0aMoJlZnbODiLYlH1QO88cDvO249b9g5Q2UA74EBKWrCe8YumaNWVnXNQnd0HESOg7lmwOKD+zWOAw5JLHbF6uvX9ZjVaczdhJQsh3iAo0lxVvs1w9YMfGZai37hhB/sCKF1xbgDog8prI4fVDnfoKDcxGFVwldzrtNiQKZxVg8xq2kbuJnCUSuOW9UWbF/vnKNQggERTlqqWK0yCFDd9cC2e2cA1UDtjFJ2XxqYA5wRZrURBkQhfDFnteZ9K/ivI87qjeY8bmxzgeQqBuA6kAcPiw7BqZ3V4rgm6BqFU5c6N3JVbGU+56Q8X7AseE7Fulu7RiyREUMQq8eQW02GA0WsVnSKAqBfV4ULvJkXERnjyg1n8Q7f8zM7uubgFx88idVqv89i2FnN3nOz4lyLWX12UrFu6zAEjo+x8FLE6wqffPAYXrx5LndW7yFWn8Uull4KHB0x3Ki7wdntmL0v24ZK32fvw33Eap0uobGuqLJETpxvjT0Hl7VfXYrVb4UqCpxlIQ6iYnzAFA/z2HOhE8oixOr1wCxbTEYJ7Djx92WVF5Z+Cw5f6JUDzOoyK/VT38eQJZxBpe+sVjgxeFVpznh0FGf1GAYkdrBwO87qMzYZOs0iHEStA/hMsEnS/V6uwlkNAMtlJ2Bxtn2B267NXI9jorLuvSWu10A7vfZu6RhLFJyHruPa58d1rAqFqt1XCJdTMqu5A5iSTu/4DqqBFj9kmfYiZy/GWZ6zzSsdsXosYJGImHGsCkWqcuQ48Jw9ula6xVs9ewJw+xnQdWvz8wXQ/7zqmp4iD9GibcsdigbOat+rkSkwIGVtwws1V/zckTEo+gCIz3ImSs9mwJUrAIDD6iFu3fOYiL1cbr9ZbFjI7gGALk7ssSmaV87+3HZ+zMFN0apCVjF25d6fGQED8vAEUmd1ngMvvAB89rN7HwppUjE3oaazOnDUTtUkrvU5muDOatn9Kkp30b/HuGUW/iV35xWVDcejhaIqu9lMOLUjrf9UDIgfWn0MSBvfRAyGZYLiCLNaA6nAXI8jrdRFwQRAzZshDOo+BoS7/bTGlnY5Diyr7gdFXxQGxMhZPYBFMglYHGBWU8XPMTGl2bgjrBEGxeo81wu0xsVhQBxXwS5v5rHahwQchzHhZSYRwzFWKqyDuKYVx3UUoio/V0e30wZgGSFuJd8QEu8tzfBWAKOh1klqsfe35jrJtmp5R6PJe2ZgQ6zpEiRhQCrkqvmhLgbkqotffPAEkmS/7x8SqxnyrcA8fzicRdap89MKB17CJjxHRwCAdx98Ab9w/ynceKLzOeo4q2OPYUDCEDg4YB3ct9bcWd26f/j7MCv2ZFaX7n5ZDuJcVSK4wWbraIf3Ze1Vl2L1W6GyDKdZhMPFHjf7PrvlQOsltMfP52L1/c0ezmqqi0zxIJNa38VCb8RZ7ei6X8cGHYqI4A4k3ovDJgRhfU+xep3yFF/OrA6cgjmn8xxnWYjDqPWG832ETo443e+zaDurl8uOs7ql+YxeV2rL75joUxTISnfvNiwAWyf8wEZIznlguo4/x6oH+WYASBMmKUOSH5PqztvH/ZlVDrxQ71nw7Gp0YV4DmozxAYeiEQZE4aoV9yuVp+rxNv2OiEB2PQKjzmrSQg8th70KA0JkVgd+LcfM5Dlb7Oqu+F0ekDvk2gcQnxcMAxJFLJ0GwFFxDy+9sWQi68HBzjFdu1SL1eLa6n5mLk+RH3jPFLoBi7bN295teQcLBbXkMp6gFrP61Nk6qzsYkKtX2amdn+93rCytWWDhXpOY7Tn7A/cB2VkdQI6tEVWWyHQ2RvcJWKxt0kbjkLOazKxub4ZIwhDF90x5roz/S3NWe77d3wxrukwIWQP8ZAfnXPzdZQeaqIaBzRVxXPG9OsWc1f7uNeDCt0VKq4OatU5FIgHbc1F2hxEE4OY8FX9uyKyWDt2GGJChMMQsrfUxIAIxM8R/5feG5e9/3DFnNQDyxpXSWU0NiR7rkLuAUNAir9lGPmGMUXY08k0ACmoJYLeN9P3VbLISDjqyRqBiQLyBTdGaf49uea4CjYXW5gLRWa3cvCxLlLUNx9/vfI+u2vjkyeNIMw2x+tZLwA/8AIL//R9txeqybJBvMyvB5sGerdJgzuqll7AJz8EBYNv46psv49nlfVjHR7vfzOdao8ZJAOeptz3ucomr4Qr3XokZNqsnVu+JAeGbw1pi9UDAokkQvQUMhyRf1mhditVvhdJxKYqHeWyA4Jy7fZ3VV8M17q0HTqARq6cVFEkOPeFSHcOATO2sFmFtOsKXENaH1iJpqd+aOrZTyGuVugwDwsVqywKsuuTM6ggHs9aJBQFCN0ey58uy7axeLDoBi/PWfTImfF4QYkZsLmiJ1U3A4jAP3dVlVgtxYsClCYA0YaqBEWa13iEBjF9bvlums8jZx1ndYBy0MCDjDkXKYtex6uF2X6KwLA0tbCZLNHFG2YpGHbd5qRZPeW7AfgVr05cygClIJGAr+myGJ4yb8xKRwzEg8zngeTiyTvDTrz6Fdx3f2lpV+DFdVcgmwJyaNcGNsScGRGsjaCisjv+svHLgexr3l+Ng7mXYZPu/l/IM8Gz2M6yqaHTNLGMf6dd+LfDTP73fsdIECHQxINxZnSby+50qVrP7dThwVttZPTSHaYQUAlZB3AcyZzVVrLbZeFeUkuBGw+ArZcCiwRjrh3Z/3BKdccSxcJ+Axbq2tFENjFW8BxpLc6wNQyDpClRlSdsMFKW6BuI9Q3Gm7ZO7QdhsdqxKbXYzEasHmNXkELwRl2IaV2zjTnONEDjFsPhF2BxunNWyRSg1KByKeRFgxq8Xa0XZO1yMMZQxdkCwJwf2QWzeya8B9boCrJNN6azWyVroniw/Rq/qGklus3wIzXvWtSr5c2CEAVFvLpDnsq4LzxpGSwDYe2Pw8NhBXrlI9wkXBLA6LbD4lz8CPHyI4PXPbuc8mw2b6zklZm6Gzd39OSBn59YWA2LbwOEhPvT4S/jamy83TuummjFr5KBVhTj3MPP4vOvgAE/MTnHrFY4gCnbFaoYB2eOacXrAvobMQb3E5P01xi6/rL3qUqx+K1TKElitcI+nTjzMYwMaXzztxfMRGJB4rv6esmRtxLqC4hgGhPKiEOFnKvdrzRys2oLimIjAXR5ak5umHVH9dxq+9kVgQBKPYUC4WA0AKKsWeqZ1gCBgGJBsv2GjaBk9Gmc1D2zZ2e3cQ6xmDuC9fuz+xxVitaabcJAlipYTXnMS5liKwD4AdUGciI0w3sjp9O5IYJ248TTd5WOBP3la6TmIRCveIAZEE93THFdxH4jrSuSpel7dR2sUBe0Z2B60Oc5OmQhUaC3KVM5q4oF9H4wBLAlYBKAvpnjefs7qVbkNWLQs4MoVHPoxPnt+HV92o5927toDGBDxPiCMW5ZVD+KLCkKr/mB7dlkiKzXHAoEByTQ+i9a/KUDauH3ynH3mH/oQ8D3fA/wv/8v4obKsZtgSHWf1yH0QxyAFLAahJcfWiBJBVfu2049hQKiufbTuAxWzmooEUuFFjJnVFxCwGPKA4I5Qa8LvH51z5Tl7rrVD8Epkis0VAGRndRiCYUA6gj0A8iajMjDcpI16hCtM2my1bbgOe/dLA9MNmNVsviH5M822/50aEauzpGIbd5r31j5itfjevQ8r0GAK9BwAuqCo2mSrbH0zCz8P11YgIw26zhpRWeHUpaKGlKKqQfcKMIBdE85qzfBWdrK8Q0yBg0kKD6Gr3zXt2SVyGS6xqlgXKfE9o8KAkLEt/FyV73DNsfboKvu+JN/v+1evnGBhM+Ra4BRIhVFjs0FWsXObuRnW9+K9jgcAZ2fAgRdv51zHx3jX8S385V//wwNi9chzyUOwrDBgc+7lEo/PTnHrVs3F6tZn4jhwHKCsJZvi3crz/TuZxCbrmLOa8v7aB295WaN1KVa/FUowPfYRfjyPpaWOidUiQXyfdZ7j4NCPcZKG6hA8A4eiOB9ZkTEglmTCLIqLCI4Nbcf20LkyJ52mWO2OByzmKXeBazrI2E7h8LetMw9zL2uY1QBgVSWqrMCDdI6j+S6zOnRyxJnGS/vOHeCHfgiLT3+MidViN7mtuu2xCUCaNLou45ulw2K1H06MmBFCnebCwbUqJQakKms4lFCWvZjVeofcOe6YWE1hKKra5gAk65ItyrSc1aW63Ve0kBLbiFXsPBMhxXUlDiLBEjXFgKic1ZQ2TwBeYEsxICxBXXPDplVBACWzmv1gAgZkwFErKl5XmLnZtiXk+BhHPpvMv+uZ1e4374uYmToYloKbwkh7diP66J3n3ONitWpe0KqqAux6+3mGVoaYr5My/gr61m8F/vJfBj760fEfnyZA4OTTOqszizGrNT+0IABzVg9gQLSc1WMBi4auP5VDsahsOA4tXM9za+VxAVwABsTAWT1z+8zqsmQCiqeY343VRTirxQbuPs5qXQzIzGIYkM6mKIV/3ZRKoLhAZzUJ4wVs+b+K8RCAPqpBPLdKZzWRWS1a6gcwIDRndY40H5hTivtB11mtyjOZYuNK6azWPuQwY5yv58icdcU1KEp6+LQq0Jp8v4rj+pY8ILgs9YKB26WacwKNYzv0NQ0dQgCWOOHJhh5w9J7KCS/Wc0R+/Zizet9n4fAqu57H0X7YjtXrZwzxCS5Wr/nPW6/ZutcumNngfjKq+4o6X4E5q8Wc6+rV7R92xWqhQYx1+QvHgnBOHhzgidkJXr/tsIDF9j1itbo8xg6ss9EmznUg04WaubDFwVw6q03qUqx+K1SWsQnDPouyfdNSxctiH2e1xVhYgxxNaoAKZ+qqeD4N30vTWe3YAwJwnnPH27QucDMMyICz2gADkg1NRKsKq9xnYrXjNGL10t1gdVrilfUxnrqy2X6/7yNy8713dgEAf+7PAbduYflvf7QJWBTn1z5XAGrh0wADMpjGLLjK2hiQYWc1FQPiDLg0GQ6H0IommNVDvEcDDtekzuo9dqDTpNZzPop7YKCd3qSNWMouN2xR93yLORQ7rr+iJjwDogaY1QUla6B1rnJmdaU/brfK9yHFKpQJIWwWAByHBeuNBSxuaoaBEGL1lSs48jdwrRIvPtvpZxzDgAin6sQ5DgID4mqGTA65vZrOKB3MjGVh7hdYF/64ywXA2WmNQ3f7PonsBEnM7meBAXFd4Ou+br+gxSwDfEI2wFDQZpJYZAyIlLEuir9r/EDTWT2EAalpY7fvKwQPA+EPGBCWDdqzHVexwdKE2NLGQ8d3+mJSUSAufUQ+Uazeg1kNQJ8r7KhFSoDNNxzdTi60MCCta1DnBEG9XSoGsEHA4j4YEMpmq+Oox8OqrGkuTcHUVYjVJuaAQQxIUrOxUNdZbReDYrU2dg0YDcQEYMZrVvHrifeWEhNn4qxWdYSAaMBqH1cmgtc1e24NnNXSd4LAV2k0LzXleUy3kD0MRYGkIIjgLssJkQl/JqHeQ11nxszqicRqbxHgWniOq1G8jzcAq5O8JVbnSDf85202bN3LndV/5u8/j7/wF/Y6BZytHBz48VZY/oZv2P5hO88FGHcri0pT1qUrbrKDAzw+O8Xr94K+sxpg9xWA0WA2nfetONcLCli8dFab16VY/RaoOuE7T/ssykTb4JBICWxfFhptqQCbzEqrqpBThC/BjlPgD/KC70LrTG6E61GFARFBQrrv9X1wFbqLPdvmAYuK4CsYYkCGNi14UJcfWOz6RhFg2zhw1ji9z7EDbSHX91kAY+7u5aRDngEnJwCApZ82AYvi/Joa2wQwCO90rQpFMiGzeowlCpa0THZWK+7ZogDNjcFxHbUMik4ValvHVV2IKsnYhIKwwTI0uUkEp3bf4wrnzIjo43j619W1K5QKZrUJX1rqfBTOakraOz9fcRzZuVK1CS+wpZP8IqdzGQGBVegfN9lUiNyMhAHx7XFndRLXWwwIAFy9igM/wVfd+By848XuNwtBUfHuIl9b3hGiDGThm61azGoMu72oYtI8LLHOA/U7sVUPXk9YuGIYNl06yRlbcAhnNcByLR8+HP/ZaWYxJJCus3rgPkhSi3R/BaGCsS5KFwOyj2uf+NwqhXUe+GRgqpUigcxZomoXOHVDsOns6orVhYfIH7+X5Sc7sigVGBDtd2I1uMmWJjWpGyCaWYgLf2fRX2SVEb5JGYB2Uc7qZtyidBjwwD6Z+9XQTanMsiA6dcfmRlnG3JNan5voMhlYK+ZxoT2XbeYvkpMtS7DNZkoInmJj3CgkWpgOBgIWycxqFQO5sOiiqmojwGCMBbizWoUBqVwEEeG43NAiXdvnOcvMIjqrlWI1MSdlDANCMl7sgZZgP3zPGzcM8Ve/7m8jsPNRnRYAVrGLhZcAV68idAqk8VaszisH/tzD+669gv/q634er7++3ymcrR0svXQrLL/jHcCv//VsvvzCC7vfvCeKtIpTtlYUx1wusfRTrDY24sLHLOx81p43jKAUlefsuPuMXWN6CTdzXGJA3ry6FKvfApVvcjZh2NNZ7duFup1BlAiT2ZfV6rpY+glWJ0NcYcKLne+UqsRqkqNUTBhV10CwRHWZsnuIqtpIgbHgKzAMCEX8bAZflbDMmU7NfWVZwMEBDv0Yn//kBsfBZvdFatuwPQdVbY224NQ10PR4A1i4CVbnbFOiN1l1R9JyuXOCem8NOavzytETfYYWI7yo4Z3KoBewxRMJA8KPK722ZcndeQRRdSQYNVmXTPTRdD2yyc0ABiSu9RLExT0wIPoAgOVMyKw2bFH3PO5Q7LSoZ6VmAF67VJuNJu1tYIsnJQaE4PYTxZjV/cXTZl0zTMdFYEDqGnFisYDFKGJfe8c74NoV/s1H/jQD73eO6VoD44voXNCd4Aq318i4pY0BUTlf+blS2K/zoMC6CNTvxFY9fCNl75TZDAhDhE6B+IRtxOf57mvIVmjq7cpywKcGLKbyP04ymwl/mveXFzpyZ5oowf7c16HmjgTDGvBvVc8W6poszgADbkITDIhnMUFR4aakaqrSzbuyRFx6u23HOjXiziI5oN3xHIdkU+m9E3mFc6cXsBjHYO9tKrNaOB+708OqYrk7FFbDGAaEKig66vGQ7NIU/37ZPWBwrqwjRJ1FlKU1Gwt1xi3bRuAyPJGqM6Z53+o4qwNneqQCxMb4QNgqpUOQz+Ok+D2DzQXHVYufDQaEItirMCAXFbAo8FUUZzXvYpLypXn43V6d3Z1jqjjQjUloYgwI2Vk91tmri8QJQ/zOF34egZ0p5y/tWqUe5m4GXLnCnNUip4OL1e6zT+JquMb/8YWP4v79/U7hbOPsMqsB4Du+g3VQHx7ufnODIh0e79KzlL2/Ws5qAEBZYl34mEWd6zeEl2mXDjKw0UsUn/EUzuoxh/llDdalWP0WqHSVs13zfd4YTVrquLMa6LCDR4575G9wcn9iDIjrwrFqtUhHaZkSwt9A0ndRO9DVp+A4wzt6xDbawfZsEMVP24bnKCYgomQ7j8fHOPASfOxnMjy/vLd1GIoKAjYpGtnaTVMgKLYpw0svwfmDAus1WKBjBwPiOwWyeOjeIrj2xYJfFYBGZVYP8dAhnPD6YrVrqzsMyqKmLZ5GnD5kt65oxVJciHhdIdJtp2+caepvoWBABp3wYpFG2gRQjFuGLepSAVi0qAdEIcXz4MscKUJQJYrVUpGuro0S7wEWgJZWfQZwvKnZfaUjUAKNWJ0NceOqCnHuIvJaDjXuFrEs9O/1xlk9wqymbrKpxq0sQ1nb+wXHtA87FLDYdANoitVRxTAgezirNw/TLQ88ihC5GTYnW2d1+x586ing1VeHj5dm9v7zIlEjmxZMrNbHgFge7zRRrUiEQ003YFF1WQ14qsxFJ3coToIB6aJ7iprsphwKFDNl+NfdTfeyZG3HoSkGRIFqiCuS+3UMA5IkIInV0dzuOauZWK1/rKZsmwk0ZcckYeL83MtZrX/YxiQyJVd4QEwzcgCPYUBEl4nmwQO/HmTtN+9bXWa14j1D7hCEouMMaCGRtA/JO1sVgZgGnYdeYKsFezE3IqBQmu4o1YagkbN6AANCDFhU8vaLAklJY1a7ViU9JjkIEcPoGvZ50RCM0o279oH59+1VXNkPrHxcrK5rlBU3+h0f73aTrdm63Hr2GQDAtex13Lu733v0PHYZs7o95xLugm7tKdIm5znbIBU7F9wUcujHeGNziFl3zTOy9myKJFYPM6t1lx07x750VhvVpVj9Fqh0XbDW9z0DFvcSq3VbUER7n2oBTd2FFjvbKmd1SWjBEW7tAVh+WVskZ7Vt1ajyIWc1QaxWTUB45VlN4hU3bXM6IXjHxzj0Y3zsF208v7zPerLb5ftskTfyttycFZgXp+w3N29i4aU4Py1x78TFlWDdE6sDe0CsprY8C/erame7KFhrj46zekxEAB0DMuisLi0ys1q5u0/pBGidr21VyvDKzYoH1Wm6Hlk4rPpbtDEge7BfAdAcVJYiRd4UreFLuIRNizrdWe3ZZb+dXCyg9+2wkZ1r1Wn9b4QkTXxTq4KZw9yfnU2xzUbf6QWgWTilQ9k0ec6clWHrM23/nK6zemx8MWBWqxZkALYbzb6mWD30niFuWnged+nu4axOVzlzLUcREIZYuCnWJ+y+yTpDxfPPj3Ors9wiOauHgsoasZpwfwEYdVbvvTHaBLWpndVUl6Yf2sMBi0TUkMr1Z+J4U4aCGmJAmhu9N8b65s5qxfsrWZf6GyFi3B7YwE0SsA1cXWf1wkVSejtjLFX4bsqy4MpMEibBjXsELFIcb45roVShGnLQWv/F2C0bBsQG0wW485qARV18USDPhhAVr/WxW0POahMEhnI9Y8gCV5o5RJ4H4fNSOqBhgJVAy9ikCrGlOqsDxbUtS1S1DccnmA5Uc06gwWKFgeb4PYBUaPKtTDZCpnRWT8ysFmJuaKVIxjIWswwWeLbLfL67QS/+8sEBcHCAq94Z7t/Zb4P2LPYYs3ofg4AwoY04q5NzPi8Ux+QO7cdnp3jp9AaiWefvj821eBVJwe6HfQYG24bnMJSttMvk0ln9ptelWP0WqHRT7s9m9Dw4dj2OFM5zvSCVMZcqdfE0FHCBVju5prN6zE1ZUNKjx9p6iG1+g+3ZaO3ETy1WZxlzg7Unoleu4KnFQ/zoJ59hzuorVzoHlSzyJLW+vcLMSVlC8LPPMldjXOLzdyI8t7wvdVY3bUrdom6EeN6w6JNlqGoLTqAxy22C9RR/XtdkxrhrK8RP8IkY0emjRAo0zhG9QwIAHEfu1OW1Wdf67Nd9Fuappbcwb0QfxZ9T0+mHRHCBGbKJzGpfIiaVJWub1J3ct85XOnEuCuS1Jre9fdjAQd4NgxQtnh7RoQjAjxzm9OncDPEGNGb1PhiQPGdiVdfJ8Sf+BPDhDwPf+q29Yw6iGgyc1YPvmYzz4DVtHo6rDn2iuv6azqw9xOrkLNuGV4YhFl7aYMXyrIafnDVuzGefBb7wheHjpbmtz6wW94Fsr7Wuyc7qfcTqurZg+7qbbMNOH4pA4weWHAMisjyozGqPB8N2xWoDfv24m5I+HlpWvXvfliXbEDToXmGLUvlnlia1vvvV5Rk0+zirNa9vtOAYkLazOrGYk5bMVwFcp+477CnhkqL2CFgkYUBcsPt1yhC8xlkt+TMDdI/YbFViQHKLBSwSnNXJAGs/jqF9P9iuzTYBFM5qEwyIepONGD495IQX72/Co6AMg6zZs0F1Vg9dA5OARc9XvBNkGUN7H1TRzcePm1Ac20MYEKqoDIVBpHVc16JtXO3FrN73uFzMDaxsNHulmeCEITCb8bkv/zMx3vs+R4QU2/DFoSoKnKUhlv6emKjm3z8iVot5oRCruZnh6x77NP7dnecxuz7vHXewi00cV+Cx9nznDG0woSzZ/M0lrJN4t1FeKoTwy9qrLsXqt0AxDEi+326W47CXYF0PPxi6zmrPg2tXcv4U0OKG7Xe4plwXjj3sKKVjQIaZ1Y49MVaCOHEeSo4GiO5yjAy+wHawby/2j4/xX3zpT+E73/FR/Lobn+s7q8e43bzW9xPGy5rNtoJ3UeKzt2d9sZoLn8oXppGzehgDAkB78Tjo1OXIEtfW5McNYSXQYihSW9FkE0bhpqS400R7siL4Kd4Q2MKiK2RgctOESelgQOxhJBAAMgtcusipa3o6PQAv4ONBFwNSdFy/WgflrvWuWC2EdaqzWmBAOu30SekipPK1AfgzlwXWdVTFZvGs24/HWcVDoo+4xj2O4o0bwLd/O3p/0Liy1JtsJEFROLYHxq3eJuMeZfsDoahEZvUYu75dyTnHmQlntZdifcr+XvaZL8D7638F+MEfBF57DYsFsNkMHy8rbOYmpDCrMzlTNi74JovueDC2iSucpfuO33sFLNIwICxgUS5WFwQWuigVBqQRqwkiQuP4kzqrJ2BWd8bYjSzQad8aYVancaXXFQQ0nQBj3UYUznq4cPsYkIQHjBqI1Q1+rnNtAdDEtH0wIATH21AIHhlXweeceReDAhh3sg0iZlIesKh7D4TDzurNBtrzOGl4KbZfomJAGrSG0llNC+90Ve5XEwyIyigkNix01568GK5Ccs+K3xM72ZTOah2UQreEs1Y25zJgVqvWM0aboqrrWtfGzmrl1IhvYO891loWEASMP30+krAo3NNBsBWrxVS6LVYfHbFf72E2QJriLA8ZUnqf+0yMWSP5acmqYKKyuBksC7h2Db/3S/4troRrzB476B0XwOick4nV+4+JY2I1APpmkCt5J16WVl2K1W+B0nJWW9Z+D7PujumeGBDSwtxSs3pNAhaV469wEOmKdGMiAmc+Op7eY6VsdeXFdnb1J3hjzuoqzRlLsoMBcewa//1X/WO8eHinL1ZzR1IvqK1Tm5OMTXKjCLh6FQBglQVeurVgYnX7Z3KRciyobHKHorguOmLHmFO3KNiChMDXdqxKHvQCoCgNFk8Daedkp48QlhXols0GJGZ1MOAeAoA41WzTF8/sQJeFBZAXpVInvFiQkJnVEg50WZoxq10XniVxrRcFW+wTndVSsbookBQeIn9cwFRVMHfZIrqHAQENA+I4DAMyRC+SYUCGSvDrB9o8SW3EQ90Q/DzF92nVRbBfhUN1H7FaLEo4s3rhpVidsXPJ7q+YM/DhQ+Cv/BWETt7O55VWLriyU4nVeU7vXtjDWS1+/r7HG+0O0wnIbpUX2HI+aaEZut2pZh6jwoBQAsUCe0BYJ4aqAYDn9ZnVprkAI9zLxlmt+U70nT0wIARntTvz2efVxoCkFlvgUwMWAbgirKx90iYOzdGARdo967g8vFOJaiDMt2wW3F7IXHQm862ReyvLeNisrrM6AMuGGHJW62SE8HMFMIzAoKAaZB1ngFnuxpizurJJc6PGAS1zVtcGc0PFGFuV9FwAYJhZzb6BJlZ7qq4Qo4BFOWPcZFNU2cEjjCcUpJ1AAin0ySov9TawASAIEDoFkrNhsTo7T9l8KgyBKIJt1ajFeNQ2qXGx2qmL8SlcmuI8C7Gc7/l+HONA80pWBeuWbZsxr15F5Ob4Nx/503j2yxa947oDCMrmuHGttVZUdkMARiHRAOB9yfPIf9NvMXqvfrHXpVj9FqjGkbHvC0NwhQd2cRqxcd+Hh+9oDguKBPbpkEMRQF7arAVH5wUkzrVSt9AWVLF6SETgrVi2o/dSczxbHXyFCTAgivugYaF3xOqdkjirA6dAthnBgJxkmHspE6u5s/rdN27jRz7+DJ5b3ttNDt53I4QaVDYm+mjjOgZEhKKgLaKHghABFNRJ/tC1NUg7b1r8FJ0WjbNas0U/dHOkA2L1amNj4aX7L8oa0Uc9FtQAmVk9tMihi9W2tI06LjxEEemQagyIEFQNMCC9cxXIEgNndbRwEHd4qoBw/tEDFqUipSi+gNr7Go88s4JRSkJj2QP4IjFxnlispo6xymN2ijGr2xiQBKsz9m/JNzkTWwDg/n1ED18bFqvrGqhrtn7UFqtzufiX56wjQHcBDciduu3SdVE1HSHq7jAyBiSUBLjyY5aVDdsjOqt9+TwmLyx4unM4Xo3o0z3XhotPOtXtPdO+EQQGhNq90jir0XfVQn/xDKDVbaT+FiYwE9AdkmsQp7a5s9rjXN2pxGr+d2pZe1RZoqxtkgYwhN8zwlW4tRSHI+YapFZyx2Eu1dyW3lsNEonKrFYFLMbQvx8G3gmkTlleF8KsviAzh+M7qGQGpKabkTY3UmFATHjNAHsnZJJAa2Nntcq1zg0NNLFaPu9uQlEJg4HjO2zjShHkS/q8RjIMipywiRuGbB67Gnborh5kWHhJ46wGsJ03Zhmbi3heI1ZfiWI8fDjys9OUrRdn+2+4s/ehfMwSxbIcit3OxWvXAABvP7wL6/q13b8wYpRqjjsxBgQAXax+5gnk73yP0Xv1i70uxeq3QDUp4vu+MMT3DdgxirTUC+QQ/N8BDAhpwiBYvTJndV1vg+V0djUFUmEgYLGoHP1xZ49ALfF9OmW5AyIC9RpggG/Gq9nR7DCrd0q0CYlyXeZ62wwv6DanBRMrWxiQD177DH7pzg08u3iwK1YPtHYBMA4qm9ShKO6BgXuLTW70xepBZzW1fVII9hflrFZgQCjto8JZnWSOcnKzTh3M3VQbAzKU8gyAhgFRbVoY8lSlAk1R6Ll+uzXErDYJWFRgQOLS0096bx935vUFDwCbxNa/r4Cto3bMWV34+19jzxtGNVA7QkSnycBxSd0AQ+5fMW4RApKVx+xUs3iIIuasdlOszpjonMUFW7j9ht8AAAjvvTYcIiTuC8/Tey/yBbR006LZrKBhkQYT6nUxCGMtxMR8DIDz4If4pNQFmSpgUbRRU5zVoaTLBOBjrAEGxPfh2BXKuCNW62xWdcuyeEiTI0XwkZ3VdoFsYJONGrCoFKtNmdWuxCShu1nTriEkDr/OFmHXomGsK0RVegieGgFB5grbDNeWl3Lhpwmb1XVWh9ZwwKJgmOvcswPvBGqXKDA2FhBNF2JjWMEYLyqHFjir2hhuNtkMnNUysdpgcwVovRM6F6JKc3owqhi7ZM7qPEdaEZjVngfXkgvAJs5qy3XYsynZXCB/XmNidVax89W5tmG4FwZk9TBnGE7urAawI1YD2BGrr4Ur3L8/8rOFyL2vOcC2mQteFVrIK17zeWH7uLwbm51cR6wWeJkxsTqu+/rGQA12ohsGmHreJQHEtC7F6rdApSm0hWXLqgefjiTmE2fdxdOQs5oyYXBdJiyr2K9iF1pnQWozN3ZZSbhxQCtIiMisHhOrCcIXAKVYzcRP/UAOpSuJV7op+87qw0Pg5s3+uYniYnWyHmFWnxbsZdlyVn/1/OO4EqxwEKQsibh1zNHgShNntUr0obgGBLZmADHDFtGEe8suURZDzGqCa4Cf79BknNo+6dsDzGpK+6htI/Aq1paquMCr2NVzVgtsy8DmgvjZWiVa0WQYEBOnD7hDsdvqWZYMrWHIrJZhQIraJnNqncDtL56Ea8anByxKnY8A4oTg9AKa+3XcWe3qOavHAhapocMj4yGpG+AiMCCOYpEnqWRdssVDO2BxBeD8HFluw1/4wLvfDQCI7n5h2Fnd5i7qlNi0kHVvCAyI7gIaaHAoVTbCrNbCgJSDrH2qQNO4yCTOau225FapGMAmIoLj2ahk95do0adiQIKAsaDb5gtTZjWG3VkNV1iXWT3SEcJCQfWFyqbtuocBMROrPZ87ljuudbLoNbT2MBARWEejOgiQLKp6Cse2qeCh4p5WFef364vrzFmtVlIaxIzmBosKDdXMY4kYEGm2zwR4FdVGiGXVsByaEx6AfNyqGSqGUm7gSJGRJpsAABBEttRh33SDUF40wtCicFZrBQ6LEgKw5JgmAYvKz0vMi4jO6qEu3Dyr9Z3gYcgwIKthc0DTxSYRq/OkZNephQG56p3i3r2Rny3LuBqpMRQp0LrH2sdt/7prv+ddvXuJ1TrO6iFzn6mz+lKsNq5LsfotUFmiiQFxXbaAHBgg0rjSm5SKttQhVAMRA+LapdxRKlqTdV8UljUcWigcbyRn9a+xWF2WTPwkBHKMvSjSTdl/SVgW8H3fB7zjHcBHPiI918jJkcQjzuqzYsus5onE7z56Ff+Xd/0rYLncvUaC7TXmrKaIPkOBmFSxep/2bN2d+GbTRv7HRQE4ZGf1xTCrfadQfmaNA1ZTTAr8enDxtE4cJlbr7O47TNiQ7u6bBizKbi0RpHQRzuoZLUCncTl0WZp8zGlCkTTL8vmz02VWlx6d/QqoxerUoQUscvbr4IQxz1HWNuxAM7xTtmEB0J8vMR4OsLAB0N8zisk4la+tPGankg2fx+yI1TVw/z7yyoF/7QB429sA20Z471UkQwn14r7YJ3S6XY7DnEm5pHsjz9kmC5FZPbR5R8kIYffWcAcPVaDZOSdRuqHb3cP6NnOqdh4yk+ArJV6FmpEiKgj6rcRlqddZIalGrJbM5Vg4sL7wFzoF0lz9rJtgQCwAddpyVmcO22Q2YVYLZ3Fr7C6Sgs1fqM5q1aaggVvZdSFv/YchW9mFUlS2LM3g7Vb5PuT89qJgLlW/1ja02IGnDt0F22DRdu0PvBNMMCCNUCsbCwxMFyqnrhGnVnUNxLkSndVKDEgBIwxIENnMJNK5EPG60nfWixJzLpkJuCjYfUcwHajWM829Rfy8LKuedlNUdDMq5pykLAfhrB7BgGTrnBkc+dobAFCxf8N6VTNEZ0usvmY/HHVWV0nGuOhTi9WyDbF3vIP9v+2wFiWuq0ovEMeNa61N3MFzLUt2v16K1W9aXQJU3gKlnfTsSQSETiVxrZdMLtpvhgRFIp/TUbmVDbiEjtsKouj+G/m5OlMHLFInoyMBMtQ2pO3ERt4ylKxLBE7Vv68ODoDv/V75QTlXOF4PvyjiVckckDPuoL5yBe7mVfyJr/onwNEzvWMyd4PiXqTyVD0Prp2pHwMqs3rEqcu6ASg8dMWmDVptqSRmda58vkyY1Z4dqzEgicU+f12GomhLzXPILK6r1MP8SAMDgpbjr5CE1Aqkgu4kpJk0S/6s4cnSZiduKHErcyGFJKTx2nFmCZHPsPVf2sUjmNW+wexMfE4dbscmtfEYBQPCxcTBCSNFULRK5QaTyTvRVT2z/LjUexbA8HuGEJC8d8BiXG2d1WnKxOr7NnD/PrIqgnf9iC2uDg8R3UkRn+UAFP9GqrPashD42La+t+8jHrAZzggLfsFET2rIMJxlVrCFnpY5YAADQs0I4ccGoBarp3ZWG2BAms9HIfqYYECazIWai3ymG4JojbGSDy5JLZKzmm2uDIjVmU0KWITvY+49wGZdY86/1DCrSZMCfsq+haLcFWvZcXPA1XxeAf4sqOcwAMihakPOajJbWQRMTu2sVm2EFAWy0oXvTR8Mm2S2nlGqfcyhTQDCWNBsqKtQDURmtRK3ZPJ5jWJAaBv5ju9ITVimGBAn9FgHS1espjDLRfF1nZRGSmXYc7e2DOuX53TXftMhpuKha+6Ji2M2zGZJNZxxzYDFwC6QrofnW9k6Z/dDEABzPrpX7J5ZbWws3BTwDhqx+ggPcfKwBjCQF3RSYOklWnMu34ccOdaqBmPVHmNu3gT+2B/rY0iBcWOAOK7YxNVlVitMgwAuxeo3sS6d1W+B0har+S5hE6KoOKbWjvmYq5jK5xxqpxduL8KLfdBZXVUoKc5qgQEZaPsGML2zurLhuYRrIMMJtCrdlPoMxT2d1cmG78gLwbHNwu6+gPYIFGOhhfuf5va4EwcsjjmrG8cXwVk90DJWlsS21BHeI5lXzNmvUh4dgJjIFh4M/KlrrFJPDwPCTlX5HFQFfYPJtUs5/YDji6hCitRZLXiqBkKK71V9IUU408gnKxGTeBikibAuxPS26w9oiR4UsVqGQWmX7njgecMBi1Se6lBrMj/uhWFAqM7qfQIWk3obpCMCFjdCrHbgX+c5BlGEyM0QrwbeeWITQ9dZDcD3amWYVFa68EKaM8sfYPinuuYAMdcYeM+Qw9ou1FndH2dNMCBDDkUT1BJsG75bIitb52sasIgRZzUFA2LbCJwSaSHnYAP6i/KmfB8HXoKz1fZzWWcee2+bOKu9vrO6cc8RRS/l2sPArex4tlxUhllYW/Pvl9yz7AcbMuFl41blUoZC9WYQryS19J3VAx08jaiq6QAHoB4LeJCx9ruLH1P5Dqd2MAGDWAmSmYWX7TlSJ3ye07E1AJQGt3hT053Vnsd5+5I/E+eve1zbhueU/Q5BAHlp0zdFLwgDMpQ7QXVWh26OZDN8PiywutxiQCwLdVUDVYX1Gtvu1DAEfB9hnYwK4GcnFROrNT6z/Z3VEh3iySe3Qnu7xFx+TKzWRBg1eLRLZvUjWZdi9VugmmAWjYWOY1Uo0+EBQnfxNMYVLmtbf/EkgspUzs/KJrmKWYufgqVJDecZEv74ccX36R4XwMC52iQMSNOir5qIUnhk7n4BizthWsBuO087XJEfc5RZTWynHxJ9mnR5nc9rLGCxwYDonWrDwh50VtOZ1arJOLl9cg8MCGWSG4ZAUnrycNiiwLrwMQ/1FjtDG1cmwZWOVcsfLY7u8ShOJ7TaXbscaJPwLwCeUyOT8KUB0MUJWZt+46w2w4BEbrbbwVHX2KQuE1MI7aOeXSKTsYpF6YrVYiwYcL8C0F+Y75uNQHVWqzAgxMwJ8ffHKkm5AzQImFjtpljFNnB+zjAgVxbsG2czxmUcWpBRndUY2BDjXGkSEkc4YBP5M58lFWvL3fe+tdh4P4QvqmuLtnhSCVSGY4HrD7WoE4UUFdKOuoHdKt+tmetL3Et8jA0i+rJonFmt/04M/Fraoi8qyWwmKOp+bp6HpZfgbM2ROHWNW6slHp+dGjGrGVt4l1ndBPURW/SVcxjxHBBFZSkGxCDUXBxXFoJHfh/w8r0aWSl3VqelSxkKR53VaaYQkojHLCqbvAkwtMlGRiI17lfJnwlMFNWpy8+te0yTgEXVNTDBqwDYfr5d7NqmppkD+DGVBoGiYB5ewjjjOpB2ROQm7nLRIaZwwlMxIK4ld4EDzFmtHbDoshB61TxDVLYpthgQywJmM9bBfrrGamMzDIgIp44ilkN1Pqymnp1UOPD1nNV7idW6GCtuDNjJm5BUnFhaAYvNvE8xPyZ1M/K6FKvN61KsfguU9iSXA+jzeARqrzPB9Ty4imADAM2kUTuMQoh0Q0FlFLFahHEo+Zy2/rgjJs0qDAh1MroPBoSydlDxHnmlccU2QXRmuRwDkoy8LJuWb6GuPfvs9g+7ipt4qQ/cW2Vt6zuAR5zwZV7pT5yF+DuIASFMbvgGkzJotORMOorwpUo7N2RWe0PO6ozIrB5Kp89zrPIQi0gvuO9C2n0FtqVEn31rgC8CWqn3HQ50RQmkaR/Xk7Soi+A3U2e1TKyW8RD2Ld/H3M2wXrWurXA++oTPS0xwVc8toN+aKsYX1WvWQFRWPrMAqpxPnC/AWU3JnAAw2MUlKsms7ftmNmMYkI0DxDFzNC+4NXA2Q+RkiAfE6jLOGAN3SrGa0mkjaqTTRNtwYFmsI0QW1AaYOX1U8wLTVtdAPucywoAMsV+pCCtennDYCzWFL0i1OyF2jjkgVmcWKQixCcEbQDVoC4oA4Dg4CFKcpQH77MsSr68P8eTijCyoAhwDUkvEaipeRCBxZPNuA/erMrBPCIpEsdrzFfMNMU+gPl8q4SfPWWdKYOBWVm2EiA3GKZjVdY28tMnXdZQDTWVW26U8G8DEWa3axBUZRNRgWMVx87ymmVlEKTYwGwwIUawO7KJLctv9OYR5p3SMbTaY6GK1NChabOJTPq9mI0R+rzdueJ3PzPcb3NhQZZuCOatFu8V8zv7eww3WMceAiLlTGDKxeiS08ey0xoEfX4hYrXWPibXnXhgQPUMmAOm5lnkF26Bz4VKsNq9LsfotUGlmkVzQQ2mpzTG10ukvxu2lFOnEi50gVjfM6iG3MolZPdD2TZ2MjjneqG1InjcYtNmI1ReCAeFtz0KY/uqvBp56iv26LVwD423vfMJA2lwY+LyyjBD8NOZ4a8I7afdWWSrE6oqHbBI2QobSzk2Y1f7A5lXjgNV1kYmgF5kdI8uwLnwsZnrPQoMBmTJIybLgOrX8PhDccqKQ0jCrOwIw1YkiynP7k/xG+KQeV7bYLQokpWscsDhzM6w3rfs9z7EpfNpxBecuUz8/dZaza6HzThwJWARA5Myrx8OypG+wNAeQHJSKARmcF7SqYet6HrBcInJzxKkNJAkb3+d8dyOK2IbowDsmXfE2V5JYzZ2qEtGnri2yoDa0iEwTTQwI+CbbwBzGsurJHYoAjJzVcsfbBMFXUzOr0XKqCjWFGvrVqmZxLvnMksxmphNdsdqv1WgsAElu0zAgAA6iDGd5xN63aYrXN0d44kqifZx2NQ77qZzVnqcOnDV4DpSb2GJeROQKKzEgJuInBjZCOLM6CCcUgHklua2/RhDdEKqwOkfPbDB6riamC5s5vfPSkpoOAJhhJRQdIVQMiOq4Rc7NLNSxy/fZZ9aZd29i/txSjut523d859qWKd0koRKr88qBZ7oRomSMEz4vm2FJ8rL/7weIGBDPY8LymFgdl+zYwjGyWDRiNXNWt9ZmQqweCrQGcH5W40CTWa0KBG1XIyprzLv3woDo4rGGWPsmIdG4FKunqMuAxbdApZmFA82ARd8pBsXqBmq/78MnFtADzGo6+1XtrKYm8TYtfgr+UElxVvO2b6UDWPBfJw5YLCqblEujXOjx2mJAFlrHDJ0ccTw8IUgSIFy0nNWWBfzgDwIvvwy8/e29Y7p2PMisrmoLtkdwKFpq0Yc0WbCsXRGh+1lT28aaTRvJnzUCOI2b5lrqABnSdQW24p/CSbjJHNY+qOusjmz1wrwosMoDzCNNsVrVlgsDDAjYbVPk/D5o30MNt1z7kAAAbxGw+6ttSRFCigFLlIkzu9eWcYSJIgKw/XzbixzeTm/urE6xXre+xgPwZhFh4SDcGIqwG4AFzupObscCFgGQXOBDuKlcLExtfW43gOFNUV2xWswLkgJjZ5MKUc33gSiCbdWoywpYr5mjdcbfFVGEyMkRx+pjZZtCvyuIlx/YvecAwPb3RK7u0HhI4RUPjVvkuQY/VwC/dszqwqBFfcRZbSJWz8MS6yLYjrOGYj0w7qxe6obVQaCx1CFVSeaQedAHUY7zPGDjd1HgQTqTZlrpVOOwbz1fDaqE+Gx5qnm3gQCsZFaL8FKiWN04yycOWPQDi3UCSDbZjDEgSsQM4d7iSIU6L3bj2gR+kYA03DlXyXWtaovG77cseG69ddi3/52GAYuW4lzzyoE/NQYkJ6xlZMeVBiwSMSCWhdAvt2NX6xhpXJHHLNcFisTePddm3UU0SKiCosUmvkdQGsW9VUvuLYiARU1ndbMpPvxteVLAt6uts3o2Yy73+yusc577I35uEDBzwHpYrD47g3bA4t4YkLk+OSBLh+eqaQrMdXQzcT0kYyFJK2iV5zFN5LLodemsfgtUmukHLI4xfdIUzJm078uCh0nlU/Oahxbm3FFLwoAokunFueaUtrERrMRFBSySd3bHeHSiNVnXWT3iegNaoQlt5IfrAu94R//6jDmrjUQf9edFfQGx9mx1eCedhz6waUOd5A91A5g4fYT4J2MAlyXi3MPMy7WP3WBAZM7qPMe6CDCb6Z1qs7kwJQYEgOsBpcKZZRL+ZUcBS2Zvq3WGQhIgF1Li1EBEAORidVkiLnyzgEXfx9xLsY5bn0ue4zwPtZ31ALgbQ92SCTA+Iyl0eAAJBIA2bg28Z4q8pnE/BbKjUL8TSQHJdqneaBRV10hyZ7sZ4DjAfM42YO7fZ/8XuxuzGRen1IdLVzljMhJSxVQYkDLO4Ng0tEiziJS1PAPI0hq+rrNaYECmDvwZYFZT+b+AWly/KAyIUcAigEVUYSWEWmCaMXbAWZ0KDA7JWa3AgFQVksJF4NLeYctZibOMO6v5+6bZNCLWoLOauhGkYt8aPAfKLAsRkGyg+0mDEKcI6VJiQIjOas9jJgkZYqWutxuMms5qX/ZOMHGpAmoxyaTLBK3PSxWIacBArjLVJtu0zuo843MCg3mc2GBoF3tuCRkhvKKgRlz4vfl8Y5SaylnddCAbXtcpmdUY6LIA0a3LMSBjwmcWV/CdFgZEOKvvr7DKw93cnzDkGSHD/8azc4sxqzXGgia0cMBWvNNxt08NbV62ir1v9VjYAC6d1Y9oXTqr3wKVZhaCSM9ZPcb0yTJNp49wkQ24igGQhFrHqpWs3rxyEBFeFI6n4NHxcyW9gBwHnp2jUIV0XYRYzYXKiLJj7CrCiXg1rkpdZrUTj74s0xS7AYtDJRzrYw5F4kaI6rh5DiZ4OHoW0MH2bLG5oDuyCme1wgFNDRodvAaGgofvKCYMAtcQ6p8vc1YrFuZZhqq24AR6F1fJpkTLpUppI3awdU20y4ShCGyfmY6zGoCZ68+3kK93RYQkAW/P1hf9APDJcNY716QMEEZ07mnDrE54C6VlAXmOu/ES1w8UiuBQCTTWgLM6Xld6oaAN71Lx5waBu0PMahZYR+WsVyizsj/xM8CADHZcicpzFl4XWttF0sEB+/+dO+z/4RYDYlmQY5Z4pZuSYTUoGJDQkmJAms+fIlYPhUnBwFk9hgEhupVtfh+078yqqGCbiD6hK12YNwu9ifnapNDlVi1n5Y5Y3ThBL8hZnWQ2whkBAyI2cGUDQp4jKV22MUhofz+YlThbhUCW4fxugqWH/eZsA+UFNtJuwKLotJrYWV0VFfkzU7aoNwYRorM6kM836tJQrFa5FEXAIpFZHfAw215/ZVWxe8vTfHbFuzatsTOSNggMovt1gAMNgMxZ99waRSp32AMgi9Xint2ZWYm5oamzunOujemC3M7nMTFzU6K9GopTm+6sBhCFNe6e+r2xizmr9Tfu+Kn2n4OpNkIUXRbUsHTPrZWbl6SARY4BUW2Ki2oQl+Jzm89ZAPS9c6xzH4tl63yCAKFzNhxoDSZWH2o6qy3PlQeNtirONLn4rgvf3iBLh5/LLLcQeHomTwDDGws27fn67b99cDp7WXvUpbP6LVCpYN1pOauLQWd1lkHP6dNwNEeY1dSgMpmj1GC31PFsedI3sOVb6b5/R5jVzWKPKlYrnDNkl8dYi1+iv4BuMCDJwMSw7aLbx/nWOKvViBkApHBBb0BMIjGrsYezurL1JzeOA2cgaJTaYQDHYS6XixCr7QKZ7LhZxnANmg5oALBDn7mKZaqP+CA1H9whd4NJirrjqpmXRq4/Idq1nNVVRk9PF+UHkDreqA4XAEAQ9FmHPGCRslnRlGVhHhRYt52PfBNkPiccz7bZ/Vo6ylljvK5Y0IvWBu5AwCJ1sduMW4qOECpWQYjrMmG5LFGDEC7Hu1fGktmFWL2zgbFcAuB7EcBWJOMDRz0wu8/WORkDohL/NuclibMPgIk+qjApXAAGhAdaU93Kss67JOFhWgYBcD1xXTjTHKJY7XmwrRpld24ggq8C+hJmMa9wnofNRlueVmat9Bhue04p/F/wTgAZ/gFgG4OFR+5iOZiXDbP61qsFnpidGIvVbtBxVtf11j1HvF89xRyGtdLT7i0/ULjguUGEKiiq5humqAY/tJENBSyGtOcrdHKksWSsFRuMuvvY3Anf21wwmcfy40rNNyZsafD5fD3grJ7ynjWdGyoENWa6MAtYDOyidx/EiUV/JwKIggpJ6fWd1QnoGBAP/ffiBBgQW+GEZ58XfSNEJVaTjDIjHVyistxi+o449myGx6IzvPr5EqsiYM5qUYJZPdItHcfA3Eu1zW0WMIwByR3W0ajFrC6RjTmrc5u5y6cUq4nP13IJHB6S/upl8boUq98CleaaAYvC5TPkrM41F08CA6JqzaUunlwXjj3iKCW82G3PYTt6Ct4jWay21KKqieMNULRnU13gAOB50tYuUWwBrekkcxy1o1YUD1jb2+3DRZ+he0v8bK3iTsIh9itJrB5xVhe1rY/sEMgS2UfFN21I70nhcpF1A0wwGZcG1glnNWXN63LOusJFBkBfrPYVbErwgEUis9p1Id8QE+MW1fUnxOpW+0LTqWDUom4z5mWbJSqSuA3aR22rRpV2AxY9M2c1GFN2024hFedNcb5a1lacUEyc4xgEZ3WlRosYbuCqWNgNZ53o2Ja+v6i8XnfPgMUsQ1q6u/fEwQEiJ8df+cQ3snu7hQEBMOqs9qnOakX3RryujMRqtoBSnO/UzmoTN6GYH3b42pvEZv9+KrM6cPrBsEXB5y/EcxUOxS5SQOQ4+PQlzHJe7zirNxsY/fuBlltXgpZIC4eGARE5DrJxS2wCEfMBDhYVzjLmrH7tlRpPzE9hFjYABJGzG5Jc14gLDxEBCwag2XDPin6YsQlixvMtufhr0skGqNntOchzDWAkYJGKAXEHgmHznLYR4jhyfr+p+1UlJhl2namua2M+Mhm3ZII9MYcJgNxZXdd8TmCw0eZ5jFvc6Zhlzmq6WB2GQCwTq2MCgrI5Vck8TqyTDZzV0hBXk/U3+AauAkdKGrsEBmQgKBwA8rxmXcPi+i4W+PrHP42f/PgR1nmARdR1Vo+L1QxlpiH+AqOGOUBw8XUxtwWyoZDJumbOap01k+MoO9FNmdWXZV6XYvWjXnWNNHe0mdWiDUtVWWbpOaublufpMSCuVaEs5AtotqtJc5TunFe7TJjVtiIEDwb8W47B6LmH+LmSg4TE7n6iEKsz6L0k+DGVgX2ixAJq30nuCFuaLPrwDRbVuZLFasESHbi3tIVK4ayWGRRNFk9i0qwIbgRggAEp5MfNc8RUsVqIT7IDiwmv5oPreWr2K9tgIorVKi6+cP1RFyQSsZoF3dBdjwDgCbG2jQERSdwGwTzNokw8p2VJb0tuVROAxs83W2VGra6NOKHqNNlQnNXl9MxqsTGsGLfI96wQlmV86bJkDhiqC3wPsTqvHLhB6z5bLvHCwV18bnUV//Rb/9IOBgTAoFidxSXZWR1FPLCus4DerGv2+ZOZ1TlSxSKy2RjWEasFvkj2AqtrOqeVO6t7YnXqMLGW6lCc82DYTtiqyWJ/O4fpjLFFwTAgBmL1YoEdZ3Uzxk6cCwCgGRMDr9IWv1SMdQDGYbYHy7q5Br/8KRcvHt42dlbPFvYup5YH40Y+0fXIg8oG3cqE97cXOkpntYmo2mBAuudqkI+xc74SZ3VSeDRntegIkTmriwJp5erfW42RofP1plOWjgGRul9Ng2EV8/nGyEAZD1VidVnSMm1axwWwew/UNdLSQegV5HurcVZ3BMA4tfU28DsVRWBjQWfsMnFWN/P5TsAi1dgGoNXdK99gITOrVTx0ENEtohNiRKxm+k7r2PM5vv6xl/CTn7rJQupnrX9PGEo3KvrHrPUNAqp8DFHtLmwN46RyTStKrEEcjXmyOFfJIjzLDXI3LmuSuhSrH/WqKqSloxegwtNSBzEgucVaJHQxICpHLTXkgot0UgFYBMtRxod9xGoCs1oZBgmGFCA73lTuNCoDGdguShU7kElikZzVzpCwDOgvoMSC9KIcigNitU91Vg9iQAj3Ft8MUuFwSmr75EALrWmADGMAW31RKc+ZWBsRbloxYZCccBaX+jv7GBZ9jDAgglktCfwhbViIaocW8mtrFFDFy+u2Z6PlnKEe17Lguezf2/Qm8qA2yzOLxJjPKqzzrehx73aJ69E5WUxpnNWKWW5zjTXSw4c2w4zGLXvEWW2wKToYtkrNBRgLWOSfoRW03jUHB/j//Ib/N/7sV/8DFpopfnYjVqvHuzSu6AGLkc1ak7sYkJWBs9rzWEiRIqG+2RTSEatdKINhUZbMBUTkQMvMDOvEMXNWRx4TETr8+rjwEPkjmBhVCdxU13jBRXAjZ/WCO6v5+W5iy0isB1pjbHeMaXebaRbD1ihyHASzmihWLxd146z+F//+AB9+4lfMxeqlzTpixDXggbvkewBQitUmbmUlKtAg2B3ANmBSimqgi9V+aCOTbVoUBZtvhbSNq0FnNWUjRGCGumtFEVxpunHVPa64zgZitXQjxGRzwXXhWXJn9SQYkE73SlJ4CF368yVE0K671og1DyFWS961YqylYEB8SfdK46ymY0Ckc6MG60g7bLN5qcKA6OoF4nkdE6uFuNoSq69HK5xtXDxI51jMd8XqwB4PbUxTMM1IUy8AoBarOTIw9DXGcI4ZGjJjNt0mOtNDrm2UqRwD4huM3ZdlXpdX/lGvPEeqyw3bx1mdazqrPe/C+JyuPcDqpb4oBvhDRs7qAawEmZ83xBKlip/8uIGKRwce3KlzD4hzHbgGALbtg/tOcpu294ld+0NoDRgwq0eCr0gICBE0KnNp1jV98TS0C20iVlsWfA9s8dS9wEQH9M7fkfTTr08LLDQDPgDenj6EASFOQlzPQllb6oBF3bA6UVZLhOIzyDgG47oZCCl+YDFm85TOaoAFTbZFqrKkuz5bNY/qHWf1nVslboTn5DZ19u9XtNMDiDc1u8YaG7iuXaKoLAZe7lQTqEUQgD27hIwKBRgE1g1tihqE2O7rrK5ra/fZ5cxqALsCGceAuCjUY3dSkQMWG8G8M8bEm5otoCnOat9H5GRKsfo09nDoxwRntXzcqkuzgEXf7odBbjJDZ/XMZwvz9qq36bKiuynVDkUzDMhiaTFXsdgMO/VwNVhPI1ZL3K/a83heduCxHAeFWJ2aOKsPLZzlIYpVgs+8FuHFwzsTOKudXXyTMC9QndUAfK9mCKuuAGyAAWk2U6UYEIPW/0COAWnETwNmdVpJxGoiHg3AVvxSOKuTwtPHiziOPGy2Ca7UP01xrqqxQPxcSnkepPPDPKPz0JUdjaYYEP4Z19muWB2XvtHz1QQsdljIcWYjcgwwIJElZVafbxwsvYTmrJblAhjiOhoUZffzMjGLQb3JBhDHA99H4ORIsvFwwR19h8+13nP8Kv7dned7YnXo5khGQxsJ5rYhHQagbbYKE94+zmqd7KgGL9J/jkyZ1ZdlXpdi9aNeec7aB3UmDGLnaYRZ7euIFILPqRogqMKX6zJntWxhbuJwGHJWmzCrB8RPcnu2OK5SrKZjQJSuCQBJZjFxRvPl49oKXIUoEcwS7d8JMNjWI4QgqutPcVzqC4gF6ymc1dRJE0cKSK8rb5+kitUsCFEyfhhO8n0fcheZyeLJ85ioJfnQVmcV5gQ3xlBQWcP/JTqzpMc1QfeIEq3iLbHa3FntyJ3Vjmnre717XEOnk6j5rMa68BsR/O6dGtejFVlM8QJ7EAOi7ay2LLgDY0GZV3As/bb/LWtf/sdFZdM6eIY2RQ2Z1aPOahlvvJ04016t8M83stN2xuhOpZuSuXwo6p8vF6s3G01mebs48zPObOnGxcnGx5G/oWFAFPcWmX/L54fdz2yTmInVzjxkTlWZs5oYADjkpiy6WBnNWiytHWb13VMfN6Jzo3HLjxyl+zUtXQQ+zXSgzHHgjm0SrxjAwc0IZ1mEj/9Cjfc9c48NVcbO6r5YbeSuR0v06VwDk4BF5RrBlFmtCFhsnJQUBjKAaGYhKSQO+8IgfNnzmKFFJlTlOVIKC1uFARHBlVRBUWwOd99fvJOL7KxWzA+NnNUDYrWRs9r3GTaz7f4UXRsGz1fjrG67a+saceaaOatnFmNWdy7Eam1h4aVksbrX0VgU7N6iGkSazvF+NkJuYDyRhg7zYkYZzXkc7+BKR8TqPMdu5zyfa33F1Vfwq6eP7YaUhyHvChsTwLm7eEoMCKV7Q+gFqowrftyscvTet1wvkYrV1FDzy5qsLq/8o15ikquzJhMYkIEQvCy39VrqxWCucL+SXWRcqFU5q8nt9EPtJ1Rn9QhWosGAUB1vivZs8uSGc8hUDvs0s5k7TedCjLmgASDPUQOwfR2H4gW49m0WdFhUElQF6K6cJrxT5aymCJUCrzJx0ChsG55TIS/74URGzmqw20bmdjJyVvOJUC3ZNl+twCa4EwYsmridGmb11BgQoOesNg5CBOCFfQxIk8RtclwhJLSc1aSw3U7NlzbWeQCs1wCAO3eAG9EZ3VkdKlr0ecUJ2MJM4/5qeJdDiBmSqKwObiQLNCPvGfE9+uc68j4AgCxjglt7ofPEE9tftwUy/uvQSpWtqVla67t8RCm4+E3AHmXcsixEfiXlcwLA6YY7qzXOt+ngUdxbLtXpw+eHfWe1yzYDic+tFfJJalesLn1EF+CsrgFYZJsmsDxydpjVd058XA/PjcatYGbvhguKEqYTwt7KoDstzxkijCjaLx5f4jwPceuVAk8fnLEvGgYszg5ctskonoOiYMzqkChSorUhOqGzekisNmJWh470ncCeWSIDGYAbutObA4ShRSZWFwWq2oITaM4NVBgQge6hTjUakap/XJNOLhVnnox1BIad1QaIGfg+M+C0EZ9lyTpZTZzVvo/Q7WxaiOc2MNtg2eHX8zqPXbKzWroZZOiAHsKAGDGrxblKxWrC2kNsLuUjwnJh953Vto33XXsFANuobSoI4Nt7oEVEzhklYHFKsVo4oGUGLFFcN9PKzVFkeQCG75nLmqQuxepHvcTu9tQYEDGY7fvwed6gUEt2+ghmtWxhLgI5iAgMcYxemQYsDjqrDViiKmd1TThXoHFQqZzVaWbpJzILYXloE1/XWTnEVQbooioP5lG50xiHioBA2IOHri1Ucoei0lldE4NGLWs7GZeIqgDoDEUfDCuhWjxRhCQR3Cjh7a/PK8zdVPu4tuco26jz0qYHLPo2c3ioMCBEzh2A7flwa2nj+jXBgIRyZ7UpBsQTbN2pndVHHhM9NhsAwN17Fq6HK7KYwpzVAxiQRN9l3jhnZIJiXtPuLdvmGBD5JptRNoItSbwHfk0wIAB23zVXr/b/nB8TjoPIyRCfK8KBk1rf5SNK4ayOY9AxIADCoJaysAHgNA70MSCBM/juoo5bUudjVWGTe5h5Gd09FCjE6sK7ELGa7CbltTiwd53V5yFzVhuMhY4K2SFQGBFB9BnIcTASKgHYV45QA7h/u8C14Jx90dRZfeD2MSCGYhpDjg0ELFLEtCFnNXXODXVHhEkYJNDClqjmW1Rnta0Qq/Oc5lhWiUllaRaCpxCAy7wyGgtUQdlGjHHVmsZ0bsgF+533LR9bTDoX4LKgzSRtIc1EUDp17EbLWd15164S18hZnXc3g/KctqYXxTfyZRiQoraNnNVSDEhVoSht/fFAZGMUw++oHrPasoDDQ7z3KhOru85qywJQD3/OTc6ZZie20+0EaBfvitjb2MaP6TvlsFhdlsh0O5kuMSCPdF2K1Y96UTAgvPVf6ayua6S5rRewOOL2ativRGeWVKQzcZTuE7Co+wIaCVhs0qMpbOWBgEVyKIngkKkwILnNUng1d0qHwr8A6C+gxDGnDirDsPORnPA7tFssNlh0J022zXE4Ev5t05aqeUxeKudIVfBJPhUDogisK+IctlWT2+kDp0C67l/bxllNWDyxE5s2YDHwa6QyBjIfXxzP4PXawYCcbHwc+DQniigvdJhYKxYOPIk7csxCxVxxf/EVb11MxKw+8rDKQ/bBA7hz32HOR6KYYvuuEjEDAElKcFZfBGLGsti4JdsIgUFLIp+MS+cFJrkAlkIAb1Wd8nuuvdBpC0z37u3+hSBgbcln8l7PJAHbaCWK1RaAKu04qxNL+/NvVxTWLEyq66qta5wIsVrjfB13YCPEMPyrx5QtS2wKHzNP9RLeoxRidVJ6dP1zLFTNYIxZHrtYFUEzxt458VmAq4mzWLERQjKdiBpxVgMg37M4PgYA3Ltb46rPndWGYvX8yOtjQC7QWU12v6quq5hzUzEgArfVec+Y5GMAUG5a5EnJxoKpndXUe0uEb8vE6tqA16zYGE2Tmq1jiHMjpbN6CgzI1AGLvs/MQkkXA+IhpCCGRFkWQr9kXSHiOhQFNoVv9NyGc4eha7oYkI3NnNWE9zfrXOh8Xty1b4wBUTirycxqVcAi1QneYB0H7sm6ZmbEbqDz4SEO/QRf99hL8KLW18VLSYIva1eac4Ojplg9iKSljDGKzI3ucdNK01nNjVKDGJBLsfpNq0ux+lEvEcyizawecFZXFbLKge9qtPeIiYIM1wED14AIllPgD8jt9BcRsCjaqIcwICbOapkI3rQkap4r0OyWSwf1ukaaOyRntfLzEqXr9GgCxRSfc0UXVVkrtVxMIr+ARjZCipoQsMgFKmk6vWHroIotbcR7hBoDEq8rukNROH0kGyzrNQ0DohwLarYAdm1am2MQWkys7ll9WIu67dAxIJZtM4ceF1I+c/cALxzcNXNAd53VNRPXQs+MxeZ1xOo0rowWj6KuPebiXrJoMCBfuBPgmcUDupg05FAEd1ZrYiD2QjWYbLIp0DUkV62KJQoYYUDYIm/ElbPO5U5osVDqfia+j8jNlc5qxnCnjzEzN8Nm1WE2x7aZszqENEwKRYHTLMLRLNMaZ5rNlYlZ+02bfo7tAlWI1b6BWN0WasVxubM6NGVWdx/ZCbo35lcC5qwWnRtnPgtw5QGfpFJlLgh3McVZLf6NCma1+LmkOjrC3M3whTshrjqn7GuGYnV06DOxWiigRcEcmgail69wKBqxRAed1USDCKAMdDYSPwHA86Ts8s2aB8NSnoVGrJb8WwVegzDf8p0SeXc9IzAgVDyacL92DB1pahY+reqQI2Md+bkOBiwaOKubjIjW2M1CbA3EagCBV+8Ky3mOszzE4YL+TghntrTb6DzmzmrCu9ZVBCzGhcGGmKprmmpsE4f1FJkmvFvWczVd654HywLqIWGZC+G+W+/ON46OAAA/9ZE/K88LkXTxtSvLLX2DgJhzDojVNaA3xggckMI4CQAoCuas1tHNfJ9hQC6Z1Y9kjV55y7JCy7J+xrKsX7As6xOWZf13/OvPW5b17yzL+rRlWX/Xsiyffz3gv/80//PnWsf6Qf71X7Us6zdd2L/qP6YiBiwqF6VA8yDrJqUOuV+LgtjyzBnIZQm5o5S6Ez8WsEgJY9gnYNGIWa3CgBDbkPikUcWjS0uXtWbqnC8PAtwLA6LjrLYq5IrrWuUlbOKkcchZfSFitQE7Temk462DJrv70hZaw8WTylkdnxf0xZPvK9PpVyuQMCDKz0s4qGxam2MjVktEcBPHOtC6b4VYff8Ibzu4a+asjtxeEGJSeohM3JRoidX8uHFiGaNFAODa4x7utsTql2/P8cLBPbqY4nlsYqwSqwUSRQfVoFqMoBWoRRy3lCnyBpuiPUctr7pgGyxUvnYx4qxON6W8i+e3/3b2/2/6pt2vBwEiN0N8Kp/ExInFxhhiwOLcS/tidWLTmdVgt2UscZEhz3GaRTicaz5nAyizpkWd8ozZrKsuK1v3bVliXQSYBQat5LYNvpKezlWrEqvFeRuMh+7Rgm0Oi86Ns8gowBWAekNMtKkHhHctF8Br2QTJBAEBAIsFrkVrfOr+FVyt7rKvGYrV3iJg4l+WsfMrywmc1XxjvLvhbpA5ocy1MTGIoIXrUAUsmkzkJMc1Yu03YrVkfUG9txxn6/5sr+moXYeiLAueW/WcqklqGW2Oq9YIDWppSmY1d5eTmdWOA8/hxh5xDZqARQNmNYDQr5izusWaP8tCHMzo7wQ79JnpoocBcchitedLskfynG22hsRrwA1jMtyUCV7EC+wRZ7Xmul6cyNDtUxTMjNi9tFysBgC87W3bX+/jrBZubQKzWsWBBkB3VjsjzOqSdQlo3V7iuPFAN+Ols/pNq31mTimAb6rr+r0AvgLAt1iW9dUA/hSAv1DX9dsBPATw+/j3/z4AD/nX/wL/PliW9S4AvwvAlwH4FgD/T8uyLj/5sSoK9nLTCVAZw4DwwUyX58MERUXoE7Udz7LgOjWbLHR39vjk5sIwIBRmtaXe0SMHqAgRXNGeTW5Dct3BpO+k9PTX+lycKPdxVuuGdyrvLTqfc8j5SN4tHXNWEyc3jmuhlLkpuahKfU823LRu+6iBmAawwLpMctzNumZ8Zaqz2smlzmpygviAs5pthhHF6gBsci/5vAAY7cKHQc1Yf0KsfmAuVvszh4nrHbE6NGASAsCNoxy3NweNky6JzdpyRdkHC+ZS5GJ1nDoM02DqrFYxq1POrNbGgEwcsMhPVTpu1TXyyqZxWpvg5f7n3WROEDFeyrwBXsm6ZO637pjwjd8I/Lf/LfBt37b79SBgbMaV6rMyQHb4PmZOhs16d4xpBHDiyjSMLLmzOstwQhGrB0KiTTcaPbfe7YrhLd9GzmoAsPj5dF21VP3T8+DJOOsTYECwWLD/c7H6/ibE1WBl7KyWuV+NHNB8EZ3Hks/G1FltWbh2mONXTx7D1foeu5/EdaGWZaG2+eeyWm1d5QZ0FRWqgaE16B0GAKbPnFDMN4q82uXI6pZiI8TcWa1eI9S1pX9vcVE564p0RWHGrAbgOXVvLpskYPMNasCiwrVvgohrxOrummaC8G3X4XMDcQ1EwKKps9rvO6ur2tYP2GyXIsz4PPHMMCDtfz/QbIqSh+5mDdr5uhgLqMxqxbjVYEt0jXj8WbTqSi0uczNi77FtD8DPP9/7ujXkrC5LJoB7mni/AQ40ANqGmBDAh8TqPKc7qyU6zKVY/ebX6Chcs1rx33r8vxrANwH4+/zr/xuA38Z//Z/y34P/+Ycty7L413+4ruu0ruvPAvg0gF83xT/iP+riD7Pl6+08MWaY4s+Fs1pz12lQUDRACjiOYmHetONpH3LQlURu7dkjYJEkIoxgQMgTZ44BUU1E09JFEBGRJSpkBxiz2LEqTWb10EaIgUNRlhwNMNGn5Nz2ycVqGy5hctMgSySLp5L6HKC1uz+lKwlskp9JMBgNBoTIrA6dAkkswYBsLMwpbgyV6CM2gmzaJH8IA7Lzcwn12NUMb2wOm4DF2+dzPBadGfFUD48dnOXhVkwTrZOGjpznHk/xudXV5rirDXeomk7sZjPmdDjZ4PQUOPDZtTARqy1A7azOuBiu46z27ZGARSIGRMXCFl0Wdq3/nhHzAsn7IM9qMr9fynrsVLwqEch4h5YFPPNM/+cGwWDAItu4ICI7fJ9hQDpi9SZ16GgRcGe1AgNSVA68kJiNoELBmGw0dsNxBQbExFkNADa/J8U14JviZLHaZuzNrNw1M+RZTXeWi2qL1XmOqgLLGTBJxlU5qwVSgRqCp8geKRODfAhe166U+NzqKq6Ga+C552jdCt0SYvXZ2STM6gZl1hWrDQVFAOqOK6r7VSFW5znRzNI6rmtVKNLd8zVyVnPsWpL1r1+VFezeItyzvithjJclssqlc4XB2OVFJyQ6STmewCRgUYJteSQDFgG4bkew58+XqVgdhth1Vpvy8Pnftax6951Y11ilHh0DErr99Qx/f5HHmKa7We6sJq+9xEaIYozRFqttG7BtZqxWictFgUzmKm6fQ3sOLb6xrlFXivPJMqYZhYSclCFmtRgfCGiRfECDaJBDBJNnJunqzQr7Uqx+k2uvO8+yLMeyrI8BuAPgnwP4DICTuq7Fm+hVAE/yXz8J4BUA4H9+CuBq++uSv9P+Wf+FZVk/a1nWz969e1f7H/QfXZm0SQxhQAgtEq5dKfEPzeKJyBWWOkpNdqEHXEkmAYvS3VdeRUlszW1Y2HJnNdmN4Hms3Vd2H/BFpLbuIybMAwYs1vKt0S40wqxmzmrai0Ip+oiJs0PgFQ/dWwIxQ7hnHQcoZYxSk00bqJ0jRpNxqDEgm1VFF5KEs1qGAdnYWLgGzGqFg4q6KA0iG2npSe+tnZ9LqCdvFHhtfQRsNijyGnZdstvUwPV35ZqN+8mi76yeQqw+v9a4KV+/H+DJ+YmxsxqLBW5GZ3jjtoXPfAZ42wEP4aMqX0PsVwBxRmBW+7Y6YNGAealkVjdhq4R7Vjg0p3SO7BmwGG9qvY2mIEDo5kjWkglHXSPOHda9QUQNzdxMoIqb2mSOGbM6spgzTeKstqx6uk02mIe1NeJfywE9iVjdCYZthBQKq5mXJxG+GLPcsHvD95kLOC9QPzxhLtLZjJRfsD1ZPnZIAhYB0N2vihyHKfIBrj2/BAAWAPolX0I+zk45/L7kzuq48BHNDO4B32JO3R7KjBjsDgCuC9uqUWade76uUdQGIXhKsRpwLTNndejmiDe798F6Y5kzq7P+Z6NEN+1zqm7NjAzt99cEbGXXtXZRZjDHgDRmjl9LZ7WJu9zFrmAv5nEGnQuA3FnNfuAEm3ft8bAocJ6FWEYF6dr2cHb8XDeFb+Ssdu1Kim0xwYAozQwmIvhI9ooQanvTjW/+ZuDpp4Hv/u7dr3MB3LPL3kZY+5hpqRlYCGzzMRTzwyLO2RyZErBY2Gp3OR93LB2Wk9BLusiSukZeWiyw0mRucFlGtddIUdd1Wdf1VwB4CswN/aUXdUJ1Xf+1uq4/UNf1B65fv35RP+atU5Q2P97um0kmIOKYUqbRUI0gMEyEL8bqVe0+El8UfPJay9R16guocRVL/qxmO/6uRRM/mbNa8meGIZPKFr8sY24X3QWEQJYMrGmTjeYCymbc4LzjnhJV5DVZ9Bna2Sa1YQH7OasJn1ezaSOZ2Jgwq/1ghPdIbSUPHekCMt7UdKePYFZL7tnVxp4WAyLCbhwiBiSymbO6ex9M0KL+5FNgYvX5OV55KcHTIljQAC1ydM3FaRb1ndUGjjcAeO6pAp87v9oIX688mLHzNXUhzOd4YnaKW3ddJlYv77CvGzCrAQyI1a42vqZZjMi4wgYt6sqOEB7MQxKreTCNbPOS7AJvOq6Gv61pVd/32vo+IidHvJK/v+PCR+QTupiAbcBiR6yOU8eMWT23mbNawismtdMPhERPkTeQVe5WrC5LbAoP89BMrK67GBAxxpgIlRKxOkkto1A1UZFfISk9vP5LD3BzdmbMaxbdG1XWb/sGYOaslmzgNnMtA0Hp6q97O64Ea+ainUistoRYfX7ewk0ZMKsvKGDRG+DUGovVnXdCmlnanTs75XmInLzXdbaJDfBFnofQyZHm/evXoJsozmqv7odvlyVjK0+Bg2m9xNLcNsrIUOVOGHWvcPEvLzuCGjWAvVW+V+129E2EAekGBKfrggl0hhuCvcDZLMMqD7CY087XC52eu15siM3m9PBOJQaktuH6xDWSilktnL+US+v7gx2CyHOm73SF5cND4I/8EeCDH5QeM3RyJOfqY5KugzBOKpjVpDHGsnhnmCQvqHW+4ufvXcJZ3Z0fC3OjQ+hmvKzJSuvOq+v6BMBPAPgaAEeWZYk74SkAr/FfvwbgaQDgf34I4H7765K/c1mqIjJ9AqeQTkAAMFep7i7ZHu5X6qTRdWu1o5Qo/MFx4FhV3zXBj1vVFmv51DwmcxVLzqdpHSQIX6oWJH6uRU1MjxaOHBnbiS+gbV9f+HOsahADQllAKRmtYF9yiKKP7/UZdwAuTqw2CVj0FMKXeA7Izmo5BsSYWR05bMLQebtvNtz1ZtCWKhOr14lthgFRdW5QndVBp21SlIkwwevJpx28tjkCzs7wiz+X491XXjMWUnphNxM5q599qmRiNT/uK/fneHr+cBJn9eOzU7x6L8Tf+Ts1PnD8GfZ16mp3yFld10hyW5uD3Cx0JcdsOkIo45ai7b2ZOFPGLeFykfzzTTAgrq14d7WqEav3vbZhyBZPMmd1UTABlMpalzmr6xqb3GVho8T7VsWsTlc5W/RP1RECs042oOVU3RGrDQKqRHXF6jxnCCviYh9gTsILcVYDePJ4jc+eX8OP/4sK3/j4p8x41QDfbO13BlVpzgQGimtfmA4kzmo21zITlK49GeDqYx7wW38r8KXT+JCYuGwje8Cc1TWgP9dslaqLyzRgUY1qIAa78+MC6J1rktlGuAohLHed1Y1YbeSs7v9REtcM3USYxzXz7vb7S4S6m2xaSMTqi3JW56VNx7ZY1naTreMuN2EgA8A8YGN1Lyjb0HQQiEwTjp47vV+wbgvD3QXbqlGlu2K1SbeNG3l9ZzV/f5FPlZvxZGI1oOnQbZXj2WzOrTBLaeWGtc4VAGoV51Uwq3XCfHnXhiojRFwYLRwtsOVLD4nVhLWi76O/GdYu/s7RNnnKhPVGKzCcG12WUY3ezZZlXbcs64j/OgLwzQA+CSZai1Sc7wTwj/mv/wn/Pfif/3hd1zX/+u+yLCuwLOt5AC8C+JmJ/h3/8RalFUe1Q9Q6JslZbatFyqblmfBidxz5zrZAKlBdxa5docwlA4xw7xJcZEpXsWgdJLZnKxf8wlVLvAYMA6IQqwH9xRMP1CoHxOo0rrQn5UonIcza6ZmDTO2s9ikvoH0CFonM6lLJbjfgpimY1UauJDCxOq8dqVhtxFBUOatj1wwD0l2V8utKXZQ6occmoioMiImz+oUAr66O8Tf/1Qv4uf9Q431XXwHmc/LxAPTDbiZgiQLA4sjdWTy9ci/C04uHZoscAPA8PL5c4Qc/+hG868UCv+mJX2TX1DSgSoHviQsPoaf3PAw5q002cH1fHd5ZVHwRrVsDzuo8J4o+ouNqJGCR5KyWtLyLkzW6b4WzOm6N0VmGB+kcx7OU7J6JFg7iwu+NM6cPKxz5sf64NYoBMQzHLbvOanOx2hLM6hZeBICR81fprJ5ArP7Ql9zGv7r1In7s30b48JO/Momz2rfLHqOTuigHsBUUlWK1mbP62jXg6hMh8Ft+y2TOsdkM2BQ+fvcffyd++dN8k9Tgs2ryMdrPQlUhF2OhibNaJlYbYNekm0xVhbRwmIuQ2h3leYjcrCHsiNoktnknm4RZ3SBmKBgQjzPxe85qM1xFE2gsE6uNnNX9eXdRmofY9sRq4ag1cFbPwgrrItjpkEsMUUsAEM4dttnKd3FP7uY49GKzMVE4djet8ZCftxXQcFvezOuvZ/h6lrwh1u7ubTvhTcPSVd1RZcmwGh6tQy5wcqQrxaRLrG11Li/fCFOK1VSMldCiVGI18f2lDK4URVmDNUSCztdNDCKXNVnt8wQ+DuAnLMv6OIB/D+Cf13X9IwD+bwD+G8uyPg3GpP4b/Pv/BoCr/Ov/DYAfAIC6rj8B4P8L4JcB/FMA/9e6rg0BeV8EdVHO6krfWe3aJXIFJ4i1EdNbnssBRykVA+JaFYpsQKwmsaUV7vJGRKA5dYcCFsmTG/FSk90HVB6ZuK5Dzuq41ndW+4oNC5g7FKXtQjzd+EIwIMQ2P8dVXANTZ7WKyVeAPbNUR0rkSp3VcQw6+1UsniQL83XiYO4RHESKRHIjHjygnoiKXX0TZ/XbI/yz196F3/ePfyt+5J8H+MprX5jI9VdsFw6moTSigoCJoGt2fV95MMfT8wfmwg+AJ66m8O0CP/T7b7EvhCFdUPE81m2TyKzFOUNLaJ4yY1YrOkIMNnCV41YjpFCd1QVyyfy+yGvawnxfDIhw/2kwqyM3Q7yWvL8FA9fUWZ20/q15jvvJAlcPRlT3gfIil22MdsbD0wclc6gRNoYBTL4RArScqi2xel0E5s5q22LTw65YbSJUShamccr58oYYkA+9+wF+5PPvwc9+aon3XZ1gjFUgO+JVqc3D3zmmglmdGAiKoh5/HHjiCfJfl9ZsbmGdB/jYywf4+KdCY/e3FAPSON6IBxXs066QYjLnBuScXiEoegbPl+sidArEye55GTmrHYfdr4XTQ/AlcW2OAekyqwvPKL/T8yXO6twxC1gMnP6Gc10zHro1gVjduWeL2tZzvXZqHlXMHNAyHSSGjnUACJberrNavLdMPjDfZ+/x9qaz+OyI2RBe5LLPq4MBsQD6OGhZ8JyqnxNC1QpEDYS4ZpVLc1aLNdJaLSxLMSBDNSZWUzedHUedmwWhFeh3bzQmtF8LDIh4z1ADdy9rkhr9JOu6/jiA90m+/jIYv7r79QTA/0FxrP8BwP+gf5pfvFVlhEGYT5izQvFCpMDyLQuug+1LvTMIFCU96MRxeJiUzPlo4Cp2VGI1dbe04TVbTLBviyYmSIEGLyL5MzG5McCAnKdR/3zznPZyH3HYA3y3lNBOr3RWC2Y1RfRRvdRMgjNEG1ZRoncVBAaE0PbMNm3kTt1JAhbzeOfreVoZJRyHc4cxWrvO6tjSxik0JUSqpP+MrRIXCy/Rd+yqWMXc5bKYWKxu7gsDIeXxt8/x0ukSH7zxMl569Rk887UPgOjp8b84VL6Pq+EKD849PAEARYE78RLXD2RQe42KIjwxP8Hrtyw8B+DW2QyPTcF/BfAbv+IO3h/9RXh3fgf7gmFLqsddj70zE25dzVO2fRfVAL6IuoEbBJCPW8070YRZ3R+7GyQQEQOSqzbGeW1iSw/bEAQInaLHZxUnS/msmmrE6tb4lOcMDRbQBTXLZ7zinlh9UuNgYmd1M98ycFaftZnVImDRUKx2XTDsx5RitVsjT2XOajqnVtS73lHg5+49g7/wn/wzOHY9kVjdR3bE60qbh9+U67IW7aT/R3EMJtQZiNXPPAP88A+T/7q0Zgsbd5MlPntvgZ/4uUM8t3zd6B7wQxt5ZQNF612V50YByUpntWFGCPuMy57zk4nVBv4s7qyOd6dx2KQO5pSOMwCwLIYzEwzkljB5IRiQypRZbSHPO2J1Zk+PAanr7XqOuDnejFs9DIgNN6CPW7Owwvq8K1ZP4KxeeEhKAJs1AOD0pGJitck8zvMQOonEWe2SxWoVBqQGjN4HrltvUZTdjWKqs3pQrHbgU/YBhBlR5awuCmSVDz/UxIA4hRy7BvB7zSflBQ11+VOd1Y2ZYyBkEgABA1L2u3pNkKGXNVnRt/cu69ek8rTSDzngA4TSWc2ZRrrJrqPuVyKqQemsFiIdkVnt2qUcAyKc4brnallwHRak2AsCFI43qlgtSyLmxyW7PGwbvluxdrzO+dZpps90EueqcpfzouyWDjKrDRbmfiBpHwWMmdWuNYyYaQKGdA476Kw2CFiM5EGIjWOdeOBg7rJFjspZTVk82TYOwgxnWdCbiKwSjgHRdXqI0KtU4qyuDdiUCrGaNGZ3KpzZuBat8P/6+r+N7/qmL7D1kikGxHFwNdzg/iZk95jgJxq4fAAAyyVuRme4fZv9tiy5SDuBWO09cZ0J35/4BPvC0ZHBwTiTLpZMyLmYoH3KQ6iG0iY7s3wfSEtvWma1bTOXi+R90CCBCGK1lrN63zEhCBA5GWKZWC2c1dSOAN/H3Nt1Vtepmdtr5+92xq3z0woHXjJpwGJe0F37AAuHTSQYENMuizCometvSrHa7/OKG2e1IQbEWi7wyW//v+N33fhx9oUJMCAyjFW8qekbuCJ7ROKsPl/ZOPAT4+tgmoXbrdnSwX+4+wxevPoAP/GxIzy/vG90bb3A7s9hGsOBoVjdDVg06egEtqFyPWe1a5YPwZ3VSgwIdR7XFqvbx92AfM82THwZBsRE+/QtFHWrI6SqkJYOQrcgi8rSgMWiMOOWYwQDYsDwn8/qXWY1z6AyEcABIFj6OxgQtslKMIfsHDToOauLTQbHqsjvWif0WBB9ZzMIgNE46Lry7g0A5hgQScAiw4AQjilc0BvFWCKY1TooSnFMlVhNdVaLObdCrI7XFek9Ln0ftIuCAfF9Jqx3M75M3zOXNUlditWPeKVxxXa3dR463tqVKZAdKApSsuuQ+9WEoej4jtJZTU7MFS5oBQcaADEMEvK2byEokgMW1RgQk0COwK/ZRLQrqMUFfLsktSY7doWimhYD4vpyVAVgthHih7Y8iEFwvSgvIIFtGULMUO4t35Yzq7kbw3GJDg8Vs1qEqhEneFbIReOuszq1ETlEDAiAg1mJsyxCd8W/Tl22KCM4q0NZQJVwwVPbfRViUpyYMRRF/dPv+Dt479VX8ed+y79kXzB1/VkWrswSPEjmrFVwUxg565s6OMDN6By379o4uVdg6Sbs/jcR/kTduMH+/7GPsf+b9KuLgMFEMiHPMlSUwFkxxnUXI3XNN9lMxi05a58F+Wofkh1XETjbYEB07wXbZmNhZfU3cFulzVUNAuYmjSV/ludMWKWKHo7DnNW515zz6qTAwiO6E0XJ2v8BnK+ApZeQ3rU1MLCBS2dWLxbAeRbuCB6loeMPAK4f5biXLCAUtSYEysRVKzace5xac2c1Dg9xFMTbe3cKZ7VEWI7XlXmOg6Qj4nTlMPejyX17ATU/dPEzd5/DR972Cbz0+gLPL++xm45Y0jkMF/5MMCAXwqyWdXIVBZLCMMzY89gGXrr7zG9Sh35vAQhCSxoUvd5YzLFNwYAI52NHqE0KD2FIdwA364Q2r1lkTVAd0KGjFpUN9oBUAYtlbcPx6NLLLKoZs7rlrAYAi/wgsFoeu1jlQUushnnAYhQhcnLEq+01WJ/ydy11fij+Xut90HQzGuKmemHZU2FAZBjK0qURVnyfvWM2amFZm999UcxqEbB4ARgQ2TxWVJnksK1a73yFua/oo2CM3jOXNUlditWPeKVJrd/mZ1ncmaVISyW+3JowKckAwficNOHD9fhuubLl2QADohCAARicq5qvTWdWD2NAqIJa4FXS+yBelbQJrutyZrV66EgSaLflNa79iRfmQxiQrHTpPHR7Yh46WHJ0j5kG8PBO+j2gYlZnuWUkVjeTxo6ovIkNAn8AHC5KnHbF6rpGVYG1ahOc1aErcSIUhVm774BYrYU8UNT7v5S1YzaWZVMhBcDVeYL76QJIU9y6BTw+OzU+TywWzFn9wMO/+YkMX3PzZeaimyKs6+ZN9n/xzjERqwUGQxb2kufMDTcVqqGumTPLpi2ig2CIWU1vffd8OV4kF8gS3XHLsraOJBnDn1ecao4Jvs8WuRL0gXAlBVTRw7Iwi3bdafdul7genpuJfpJFNACcn4EmhLsubKvud4TAnFm9PLCwKoJGVJ4iFBYAblwtcSdeNsfNUsL8tVNel68NIM4ctiFqOnY93UErTcWs7jirN+uazqwWbd8SWtPZysaB9+iJ1bOjAD9560V8y42fR+AWeG5536gziGFA+q7H1MStLJzVRWccMTHJAIDvw7Gr3eeWIzBIjFpRYh6TdpjVQqymOqtDS9oht16DZYRMhQERaxmDDbFmLBDnKhAYBpsAzbpWxpY2cVaLkMmOWF3XlpGwPJ8D67azWpy34dh99TEP99P5lll9Zk0iVs+9FOvV9jqenfBOIwOx2rLqHR2iQRoaOaslOFID8xGAQQxIWrm0SyDeBypmNaWbib+3htza4vu0ynGGMSAEYxsg1vUKfQtAllQkhFHD2pduil46q9/MuhSrH/FK4woBQfhgzEsF04fYmskERYmYBrPFE2vzlLuVawC2R3gJj6Aa6toycFYrUA01HSshdXjw41a1RbsGAIJAMvgC2Kwq2uKJo1DKWu2ka8RqirN6KGCRyqwewoCYhHdO7doXGyGSIMDShFkdudJd6DTjoip1kqsQZ1iLNj306WBe4iwLd8XqogDAd8oJAYuhI2F+ilZP6jpfIVYnqTVJizoOD9n/33iD/X8Ksfogx/2ELUhee7XGU/OHZosRAPA8PHYY4431Aj/14zm+4fFPTYIAAbB1Vot6/HH6sUSASiIZt8SzQQ3BUwUhEkVlP+BuN8l7hpyNAMAXYXXdLovCJrvsPbdWbjSK0nb/hSEiN0ccSwRpfu4WqYeWVVesvnunxvXo/GIwIOfcWU1poZUFwMEMMQMAy0N7x1ldZQUTAAwFj+vXatxNlo3gEW9qI54sAHiB0xOrk9whh7/t1JNP7l5DE8wQwFqJHf6Ztboa4xhmzGqnL1ICwNnGZYKS6XWYuGZLB6f5HB+6+St47vDE3FkdOv15nKlQKTptpBgQejcjfB+uVe128EzmrM77zurMNXNWBxw51V0jJDaZhc0wIG5PAAZgNMZ4XWc1vwcCg+BKN3D67y9TIwPU3G4ARtdgPu9gQAo+dhuOAQfXA2YSEc7qc9ucWR0EOA5iPDx3m/Xi3Ts1roUr+rvW83qYnc2qMtqwARSd46Z4kTFnNTFgcQwDAkDvnMV7S4bIg0GHFOdA99AavJKEJlZ7gS1f1/PK0pqhGDWfM9YR0u/gSQrPbKPxsozrUqx+xKtxVmsOEvs4q3WP6fr2gPuV6MyC2NnvT5aMeFEXhWoQgqLUBU5nVksdHoAxM8v3Lel90LzcKWK12IFWOOmSBNoLScaikzOry9IAA6LgNRuL1XaJIpX8+w2c1V4omTQD24kzkXPXtDl2ni/TYBrG+Cp7O/ymbamHy6rvrBZKM6VvjjM/e5M7nshtIlbbVo0y270PGAZkghb142P2f/Fvn0CsvnJU4UE6B9ZrvPZqjSfnJ5Mc9+a1Erc3B/g3P23j19/8zCTHZAe+uft7U7HaKZCncrHasurpuMImWCi0Ntkk70STDRbPlzu285y+2TyEBxOl7f4TCzIJ+qC5JgZuUiZWb+ccd98ocT1cGQd42laFMumI1SsLS5/GrA6cAmncuYe4a9+1K3L3wvLQxnm+3RC8/8DC1WBtLlZft5izmgse8aY22xAF4AlXbdtZndrGx2UH93Y/l3e+0+x4to3AKZEWu1z4OKbzf1mwXl+kBIDTtcu4so+Ys3q5BH7fB34Brl3hh977j5izegoMSEf4iwsPYWDmrJYxSo0wIILjn1Xbe0Dwmk32hR2Hj4m7eMdGrJ7aWR3bmHt0DIiS/2u0ccW7D9sYEENnteVJcEsCEUcN7wR7JGXXwHRTcDa3sc5bGJAJrisA2IsZE4H52P35uzMc+Ruzd6Jl4eo8YXNOPo+9c9fCDZONYYlJJk4sY7G64aF3hMq6tujHVTGrRcCiTghic6KefF4giqLvCFyHzMgBIItLhg0lzGGkHGheScy1As3j2r4akQYIk6e+biY1eRYF4tLDfHYpVr+ZdSlWP+KVpmDtDLoPnYJDBoAsVjueAgPS8DnpLc9SYd1kJ9514Vj1xbhflc5qGy7FWS3YeTKx2rANKQhqaXiKCUOxcSIoeFENT3JKZjWVh+7ZyvBOMrNaoFAmvrcaTq2CWe0SnT5u6PavbVUhKXgwDbXFzfex9BKcn+9+Oc64MEVlVh9aOMs7zmrxa8rE2fel7bNioUMOFVMEX00V/oW3vW339xMIwNevVribLIDVCq++bjNn9QQu6Js3anxudRXppmQM2Kmc1WEIPP88+/WVK1u3OaUEBkQ2IRcLnwnF6rxyaFgoDDCrTR3bsgU0zLpXGOtRvtEoapNpbmCJYCaJQDeFk2wW1WzB33VWm9y3vs8C0DqbYquNhSWF0SkWpV3WvgiAc+hi9eLI3RGrb9+1cTM6M8eAPGaz8YULHkkCOv6CV89ZXdfMWT2FWA1sx5TlchLOfuBVvbm3Ueiw6yJyMoWz2sHBI+is/i//S+CP/rZfBAD8rrf/LJu/mWBAIge5REhiQiXx/W1Z8JySdXW2uwSFOYCKq+DdhzsGgQlwFbAsREGFuPS3Y21VYZN7mHn0ZyGYOex+7Yzf69jGnHjPss3WPgcagNEz64qxoOUqTksXYWAgJMk6BCc4bhMMK3NWGzyv8zmYs7rDrDYeC8W7b7PB//q/ss//a26+bNx5d+WgYGI177a5e89iyC1DsbpOs2bThoWBGjqrJRiQMivh2JW5WC0xIKWlZ4YBGWBW7/zsfcr3Wc7ZgFhN6fCH6zLHttJZDaYVEI4LYNhZTcGACGxo5z2zKXzMQoOx+7KM61KsfsTLxFmtbJMgisBN262MqSsW5hSxWuzsq5zVRLHat4t+ix+AqqjIu9uuCzmuoiy314BwUGkqOWAc8BD4kLKdNuua3Jbq+I6SXQ6wNaVua0+DmFExq6ktz67LdsYl91Zm6qwe4qETxWpph0ETiEq7ByzPZeEj7eNOEEwD38eBH/fE6k3mGAkUjbO6tXjIzhLm/KQ4q1UBi0WBhBpyAmwnjZ3jJimmcVa/+OLu7w8OzI4HRtW4Ey+Zs/q2O5mz+rHHLfzYa1+KDz79OvvCVGI1AHzf9wHf+73sPxMOtmj7ljirq6xgzwiVWa3IMKBy7hqmpcqxTUUCifbsHgbEImNAlJkTrdqkmu6/IGDCr0ysnsBZvZxXbEOsLVaHK2OxOnIzxOvd++t8ZdMwIIrNMFMUDAAsjxyc58FWrL7n4ObszFj0vP6Eh7ttZ7XAX5g43gTGqiVWx4WHyMvpG63t+r2/l22I/YE/YH4siFBrrydWRw7xncg3W6XO6o3HWvXJL7GLqfkc8K51NhZNnNUzrxeyabzZbFnwHHkInlHwMjgaqbY7uArXmLgVBRWS9lopz3GWh1hGBfndGIQWksKTO6uJAYsXhgEJJAGLppsA4t8ncVOGvjqHYfRcfUkI3AQu6NnC3mFWV7l5uCA78Ixxi89z/IN/APyZb/z/wXfK6cXqBw6uRwYYENvG0k+xyvzmem42MMeA+P0Q16YzyBADUhdyZzU1YDF0ciSxYtyjoEuGEHlgDGi6s3oAA5JaJAyI9JltVZqC6WYkDEhnfswDvWfRpbP6zaxLsfoRr+ahI7QzKDEgVA7TAH/JZPEURLYclm/yYucCsIz32PC1CZM75qxWhOBVxNZB31czq00xIIECA7KhO32aTYtBZ7XeC8j2HOaAHgpYJG5aAFA6q0lcQsGsnjhgsUGWSFv/DRZPsnT6KSb5vo+ll+J8tXte68xjjhwTZ3UWoQ2ZXp/k7JiUibPnMeGry6wWAU1U94zrInDyXvBVnNjThH9F0fYaXrkCPPOM2fEA3Hzcxu34AFiv8enXIrxwcG8SYXlxPYJt1fiGm7/KvjClWO26wDveAVy7ZnYcjgGRhb0kq4KNWVMxq8uSByHSW9TFcXaqSSYnOqtl7dloYUBMNnBVYnVd63NVgwCRkyHO+udT5+butMODegc1dPc+d3sZO6v7i8jzjUNmVkuD9Qzd9QAQHvhISm9XrI7OzZ3VT3q4Ey/x+TfYKrzBX5iI1WHHWT2FS7VdL7wA/MAP9MMWiRX4VQ+rsEksdh0o70QRNioRq89izyys7CJLYKwAdu8bnGNvwwLY3gcm7len6ovV3BzghQYOYLeWOIDNuaehXyEuWs7qosDDdIbjhXwuvk81zurOvHOdOCxgkfC5+YHEVTyBWB3MbDZudTcBpnBWy8wcBp+Xylld15YZs/rA2WFWNyF1Ezirr4Yr3Lnv4LXXajwb3m6+blJXjiqWkyIwIPcd3IjOjMaDK1HMBHD+mTUBzgbvGd/vIyDY+8ugM8h14VgVyrQ/P0xLF35AWNONYUB4iKfWOfO5cW9jnFcWl4wBTXFWCwxI3T82WawW3z8QsOgTAjeb4MZOl8Wm8CcjG14WrS7F6ke8yGJ1ZMuFL4AuAqt2sxpeM53PKXVWm7Q3CT6pxK1ssjBXspUbcYIwufE8uAMBiyaTG9WmhQkGRCp+tipJLXbPahxb6SQ0RMwMiUlmzOpq8s2FZhNAxqw2SVF3Od+rs1uclNxZTa0gYBiQdevfWpZY5z7mPt315i0C9oy1FqZ3bxVMTDJwVqswIGTjiHBWd8XqzGHCxBQt6t/1XcDb3w78oT9k5irmdfUxD/eTBbBe4/N3IzyzeDCNsLxc4rHoDF+/+Hn2+0dxZicwIJINzHhV0tpIVeOL2Lyk3gJDIjh1UxQimKazgK5rhgGxaBuCQ10xAFireuEj8jSQQ0GAyM2R5P3vz+OCvb8NnNWLYw+rPATWawDAZ14N8bzpxo0QFTddsdrAWS3rCOGblx51IwSAFQbMjSfE6vsuHotOzZ3VTwX493efw2/4W98NQPD7J3ZWc1ZxZPLuusAKJHkxcWLTRQ/H4c9Cv6PvLPaZs/pRF6sNXNUA4M89tp7piAimQqXnSZzVPHiZmhECAK7DQ2d3HMAuwsjsHR6FNRNrW85qUxa2Gzgo2xxoXuvEYc5qiljto4e0m2KT8fiKjZN2190U4Wee1+885BshEZWHjpYLvHXcupiAWb2wsS62zOokrqcJm3UcXIkS/ItXvxTv/4qycUIbO6uP611n9YnHuphMxOoZ52Dz+2ATW8YdPGGI3a4FTNAZxIXl3pyzKFDWxDFG0dHZPjYAvXvM8xBchLPasuC7FROAJRlXCaELG8AoBoQRCfSP2+CLOhtMl87qN78uxepHvJqHTpcv7audquRJg2o3iwu1HtVZrWCmGfG9RPuJxEXXtDxTmNUu1Mxqk4BFp0ZRWVIHMAA6s1qwy7vO6tgyCvwBoBarKcF9Kge0aZjUiFhNmi/tgwExcYGrnNXUxZPsuRVCraEjZeklON+0/q15jlUeYDEzc2wD2Fk83Xq9xmOzM9rE2WFs7iR3emzKpDC4BqJNvyNWGwdXtuv97we+//sZv2OCspdzVLWF9CSGbxWwrXoaYfngAP/8N/9FPGZN48a5kPI8hgGRDFvxumLolkmd1Qbu16HgxpqOAZG5h5qNO4eWCzAasEhpo/R9uHaFouyP+fG6Ml6Y2gdcPOMMo8/dDvHc4r7ZfRsEjI2/3n2HnccuFkRmtW+XUme1KQYEvs82MLsYEEPR8+qTIT51egNvrA9QlxVi4Sg2cbzN3F230xTvrgus5hlrB4AJ5x9lvmVZCEMwVnFn8DpNAhaw+CiK1VeubH9twKsGAHfm74q/AN+08I20NN+t+7hELiTZvsEGi+Df7jiAze/ZMGAInB6v2CRg0/eZgNp1VqcuC1gk3Fte6LDr2prP51nNBC8Dofb4ioWH6WzasUDReRgbHtcP+yiULAPJ8dmu+aHLnNV87Gbc32nmm1eXGf7J59+Lr//KDTtv2zY+7pUrwIN0thWrTz268UQcc57uOKs3sXnAYhhxHI7MWW3ArPbtsu+CNukaFx1c3U5RXnWW62d6eB58R66XACyw0Cdkp/HT7QvAvJLUJgUsjmFAmudMFwMSqp3V0czcLHRZ9LoUqx/xogYsDgmKeVIysZaKAZlSqMUws5qcxCtaviUuujyrjfic0oW5WEDSN2D7fDN+XMuqjTAgPQYTgI0I/KEscvYVq3VeQGPizNQOxYrt9lIxIJ5KrBbPBkVYV11XIXxRxWpXwqwWriQDJh98H0u/I1ZnGdsEiAxcxWIS25qN3bpV4/HZKW2Ca1kI/bLnmhALSGNm9UU6q6eu+Ry2VeNXP+PixSv32NemEJaffpohRUQ9omI1c1b3N1KSTUVzPorv787yDdFYQ/gik3ettD27KIzQIspuI1F5jrj0tMVqAKgr7G4wgYvVhqF9WC6ZWLtaIc8Bu67g2LXZfTubIXJybM77YjXdWa3AgBjcAwC2m35dDIjhxpXj2bgWrfHM4gHO7iS4fRqylm+TgMXQYSF44n3AhSQT1+NFlizUOk648494HaKQi5Ttcaausc495n41eRYuqtoBwa+9ZnQoK+CbKz1mtRkH2nMlGBC+7mi6/QjVoJG6YrUps7rjrK4zItKxXYp55zp1yTg3GW5qClzFlevOjqO2CUI0ua6yd7ipkQFAENq9cSBNzK9BdBwysboVYjtV2OyV4xo/9vqX4oNPvMJ/WGTc0Xd81WafGR+/754GZsxqCLF6u2nBQs3NBPsowm7XAlrjtpGzOu/rECZInCZ4Wf7+K9KSdcnpvBN8f5RZrdstvT10Lce8gn1uFxGwSM56CyREgjxHVdtwiJlRlzVNXYrVj3iluU166IYe5iytzI4pw4AYuMiaNk+Js5rcMjUA9m+c1RRmtQhhkAn2JtdAFsbBjwuAjgGJbKWz+sIwIJmt35Y2wEM3QcyMYkAMmNW5RKyuiooJw1M6q3lbKvllqXJWGzL5GmZ17Gx5ZHmuz0vrVhjCsSoUm5az+g2bidXEVUno1z3XROPKobbmKpiycTYRs/oiaj7HlWCNf/PJY7zr+A32tSmE5eee273nH1EMiG8XyLriHzgGxICd14gGogSqgfoYqMZDwaymjFvgGBCJWF1UNh3L6FnM9agSq7mgoMVntKztxlRnI8A49AgAlksAQH2+wqc/Dbz96gP2dZNnIYpwHGzw8MzZ4TOuE5exX6nM6qxz3fgGLnVzAQBzrlsV8ph9ZrcfuLgZnU3y3P7Y7/4b+MprX8Ctz6V45eECT88fmgWKHXo7jNZGSJqKWT1xNSJV68XQbGBSxWohpLSfBf4us3xvEkTU5OV5wFd9Ffv1299udixJt1WDaqAGLIIFIfbWHmKOYCD+NQJNywGdFAZzDV5hiB1nNfm9tXuy7P/tuVFdc7GathHih33RJ0ktY1zF8TXnQpzVPUyeaXgn5CasBpFocG85B6w7TiCsXn8Qso3GCeabVx7zYaHGl9S/wr5gursCIDgImGEqjvH93w+sEoddAxOxepnjQdLCgCTmzOowstgY295gSQ07g4SzWoLyAmAgVudIFc5qEhbGdRmzWjI3BjgGhKIZAfC9PhKoOVeKsY2fLwA1szoDSVz3Q7tv7jPp8L+syepSrH7Ei8qsHgLQZ0lNa+kYwoAYuIobB0NHpGsSdE0CFmUYEENmtVKsrhy4xDmj53ecGKIMMSDN5LbLrDYUq+vaUovVucN2SzUDHgAonNU2XHvidnpDZrVnl8gl91ZRgPG1KZ/XyPPleIYYEAmz2oj15zhYBhnO0nB7n4qfYbh4OvATnJ1uz+3WHcdQrK56rokmYJG6gHScvphU1+z+f1Sd1YsFbkTn+NFPPI0vP2y5Z0zL83bH6S//cvNjTl2+v91c6IS9rFZgLc+6963vM+dM3HkfCO4pdX472Gliw6UGLAaSTdGiwLoIMAsUYvPYqYoN3AFnNdBi8u99shKBClysNhD+AACLBeNL39/gk58E3nnlDvu6ybPgOLg2j1mYVGvVV9c1w+0QmdUyV5axszoIsPQTrM7ZMd54GODGBM5qAHj3c+d4bHaGN17JmVi9eGg0Fh4c2SxwV1zTR91ZHXGxWjBfAWxSh21gEgWaMLL6zmrx60cRASLqO78T+B2/A/iO7zA7ju8zE4BErDYRgD3hgO44qy3K89qq5azEeR7uOoArF0FoJlbP5tbOxs3DeyWOg800zurOtV0XAeYhbS7rzbxeO33TJWwwFhxdc/Gw46w2dqzLxPqiYBgQg+M2RiGZs9rk8xJIHS5W/8rrB3jn0a1pMCBPhvjA9c/DfvnT7AtTzA35MdYPM/z5Pw/EKf/8DdBAV5b5LgZkIrE67mJAEmIAoCgVs9oEA6IKjOdF4mz7PmNWKzAgWVrTmNUQGBC5szrJiFkOwiSSy+ecaWYxjUsbAyJxVk+BWros47oUqx/xSjP9sDoAg0yfZuCZCgPShD4RF08KkS5PKzrjjLvoZHqqCbO6Cc1QOICp3G7PuxhntRe5fdYfgE3K3Z8X4azOHf0X/ICTsDBpp3ccWFaNKlMwqylpzI1Y3T+nIqcjZoac1ZZV09tShXOk10Jr3pa6jAqc58H22DnnpZksoIMAh16Ms5OtGHHrnkfHgAAI/LovVpsuIEUAWlusrirEhY/ILR5Nt9tshpvRGX785WfxTdd/sfnaJPWN38j+/1VfBRwcTHPMKctxsAhyrDK/9w47PweWRK5w6BRI4n6AjglbWowfvcm4GA9dA2e1hNH6MJ3heC4fz0ePORawSJ3sS3BAAOt+NuJIAsByiUM/xt/9qSfw/d8PfPjpT7GvGy7Orx7muJcsdoRKq65ox+ahR2m3O0wgZkzWTmHIumJWQLIu4Vv5dPz62QyPz05x65Ucr5wu8fT8gdFC7/Cai9Ms2t4HE/F/L6qCuctEqtY9EOcO3RwAIJpZiDvO6jrh4r0B+/XCy/OA3/SbgJs3zY7jSzAgE7iVpc7qojAKNQeAo0XJ7tmWA7iqLdie2Qb2/MBh4Xr83nr4oMZxsDYTUmTz+SzDuvDJeqI/64SigjurDYVaJ/KZq3hHrHbNHgFZwKLoPDSYH4eRxFmdmTuru2L1J28d4p3Hb0wiVr/4ngj/6bO/ALz8MvuC6XMLAFEEy6rxqc96+LZvA/7I1/4Y+7pB6OqVg2IHB3OeeFh4yTTO6i4GxNhZLXEsU0IQRQlntUJYZpv5mvOjEWY104wMmNUqZzXF2AY0ZsQiUYjVRJOnHzl9Z3Wes3fPpbP6Ta1LsfoRLyZWE1x6wv0qdVbzlg7dYw6IabnBAlp1XKPgCMdhg29u9Vx0jbOaGCYl5XPWtZE44QaOVKxu3OVEZ3Uzi+u8LTexbcSslgWyAACqCmnBAu20zlnFaOV8TvLcToSqdTm1ZYmsJDKrxYtSggEpCjBe2MTOagD0CW6HTyp+BmNWm7nTlrMS59nWQVQlGZv4G2JADvwEp6fbL92675k5qwOJWM0XkBYViC7EpLZYXRSIi0fX9Sec1d/85C9jYa3ZPTWVY+A3/2bgu78b+K7vmuZ4F1CLqMQqD3rj4fnawoEXk5zVoZMj3ijcrx4dMePLNsSEUEkNWAzt/nsmZy6l47lipTJS+zqrKWK1ZdWoO6uyeFMbCX8AgMUCh36Mn/jkY/hTfwr49denEauvHRa4n853hMq6JIrVglmd2btzmKJAUdvwqPcWANg2Fnzs/pWf2+BLr9xlXzcMwgMARBETq1+vcetsYTRuA8Dyit9zqT5I5zgibq5cdPkzF2npbe+BskSce4h8erhcNLN6GJD4NKPP4d5q1Xa/imeBb7ibuJX9oM9WJgfQt+pwUeIkjfpBiIaCBxOr/a1Yfb+azlndEatNske8uc9En9b9miQw7zgT90GryyI1vAeUzOrSM8vbjeweViJN+Xre5PPyfQBcsM9z/MobR/jSo2nE6vd/0yH+wLt/fPuFxx4zPibCEId+jH//K0u8973Ad73wU+zrHMVFqSuH5Q6z+tbZnL1nTJjVc4lYnRoi/fg7vCcCG2JAQqdAmsrveZJuIhB5qoDFFPCdC3BW50QMiMifUTC21wltc7gJWGzdA8374NJZ/abWpVj9iFeaW7SAxSFmtUhKpYZJyVzFJgxFxXGNGGeWBd+tpGB/E2e15fNdeBVbmWp+VTCry6Kmi5+AupU6M2ibGnJWc7xEGELPWaraCOH3lmsTxT/HYUGbkslCDdCcLp4H15Yzq/PcDANiAajS/jUAQJ8wBQFsq0YVtwS6qZzVi3pHSIjPcvMFtO8z9uvp9ho+OPNwJViTXWRhiH7Aoul1bWNAOgvoR5WnCt/Hb3zbZ/CH3/uj7PcTBOg0FQTABz/4SDsQlrMSqyLojYfnKxtLnxCC53mI3KzvrG7cr3TEjO8UfdYh37wjd6UqmNUP0xmuLGhi9T4BiwD074sgYB0sq92NhdOVjQNDFxWWSxz4MX7p1lU88wyasCpjZ/VxxZzV/HhlycIbAei7li0LgVcxd14nb8AEOSZqOWdj9yd+LsWXHb1GO0dZzWZ4LDrFG7dqVFXN1uMGx7WjgDmbWgLVeRbiYPFojrHBwkNWOtt7Ks9xmkU4mNEwOwAQzmzEbW43gNMHJXsOvhjEasuCJd5TLQGYPIfj5Xl9cSKJCc7ETh0tS5xks50NFgDmYvWhyzZbeZfBw3sljv2N2XPr+7CtGmWyK1aLP6OUHXYc0GDGK+MgwDBk57pJ2ZxL3AO+wXUV3Zdlve1k5agho4DFmSNlVoemzmrLguVY7PpuNnj9ZIYnZifTjN3Xru2e2xRidRThy49fx9/+t8/hHW8r2b1r20bvWiZWb53Vt84XxmJ1OHN6awTj4EbBgu7mTkzArE4UYjUJA+J58vPklaU1eZPFDyx5wGJdI8ldmiGRs8B7JjRem9RhvH1dDEjksvlxa9zKk5JGIrisSetSrH7EK81sGgaEu197wU9gAw8JVaBCNQg+J3VhrhDWTVOOfa/u84fQEquJLwp2EEXIJFWsDmwprsOIgQyondUpD/whOqsByMVqKkNO5aw23AQQbVi9HViTyQJ3VuddDhmAojS4t/jEpuemNG1LDUN2vvFuiFBausat1AeLakesXj3MGfvXpC8zCHAjOsPtB60xr66Ypkp1VodgbrcOBoQchgkAto3AZdzrZpHDWYeRXw7/3TerLAvv+3UePnjjc+z3j2IQ4gXWotMJIOp8bTEMCOE9GzpF31nduF+JJ+q6jCHYHWMM3zOMyafAgCzpzOqhgMUyyWndFkGA0MmRnO++Z85WNg59ggu+XcslDv0Ev3z/Bp5+omT3QzvUkVjXrta438KArB7mWLgxe78RzlcqVue5WScbr+USTKz+pRpftvwC++IUzuo5c7l95mXuSosi+vwFAIKAvf/4HCaLS/aOfUQXj8HC28WAZBnuJQtcWyrSq/aoaG4zIaU1bj28V7IN3C8GsRpALcTqCQXgBuvXuq6bxMbcVKw+rHYxIBOJ1d4yRFnbW7FaOKtNNtlEh9imNWcx5aH7Puu+bDurJwgXhOviKIxxmvDuqLI0RrbAsuA7Fdtgagdilh6imYFrX/KuTXOLlkHVqVlQIS48rO5sENkpmxtPMZdzHOCd79z+/vHHzY955Qr+s7f9LH7y00/iHU8ydAkWCyOTxJUrYGI1fye8vlriCWOxuu+EZ8G4hs5qyTyuzCs4VkUXq7sdna0ioUv4MSVyEYAJmNUyxKno7g1q/XuBr5V782Ne68Rhoda6GJCZ29tg2mxgzEO/LPO6FKsf8Upzm/ZyE6iCtC+axDGR+ei6bFc7lTmrDQRFhfjZMM6oYrWi/cTEWT0oVhu0Z3si+Kp7rlnNXMXUyZhYfPeY1a5RwCI7OZWzmiCCDgQhGt1bfAd26jYszy7l//zMwAnPW7HSeFdYz7PabHEuHIpx0XcAG6bTHy1Lls7OJ43r04LtaBvB/li6+Z0TtlA6PwdbPALkCXnjrO60egIwWuj0xCTOOjRJkb/wev757a+Pjt6003gzajGrmbO6hwFxsPRozurQyfthNwIzRNVTRUeIZJOtMHBse6EEN1UUeJjNcLwgMqtlbu1WxauS9q7xfURujvhs97xOzx0mVhu2vh9GGaraws3ghH1tgi6Dq1ex46w+eSPBkR+Tjx34dS+kS4zdpqih5YGFVR7goz/n4SsPP8PeWVPwj4+O8MziAX7hM3M8u3hgxCYF0Ntw//wXLDy7vP9oBtiCi9XtgEW+ueCFBu+ZmdPbbH1wr8KV8ItHrMavkVi93vDwcYP76/AAOOkwq402xkWJedUOs3oCsdqZWKzubDABLVexoehzZZ4xoXKzQZEUjLVv6lj3c8YCb4nVaenSMm142UE/iD7NbHN3OYDHj2K8tj7CP/vRGt/0+K+wL05lPPiqr9r++sYN8+PduIGvufkyvuzK63j7jTP2NcN3wuKKz0wHnNt9lgZs/mYiVs+dXvdKnDnMpWwQsOg7ZU9YThNibhg/Zujm/SwLXiQ2fMOsVjirM5CZ1Z5vMR2ma0Rrd2HrljChdYPNea2Fs5ogVneDYTer6lKsfgTqUqx+xCvNbVKqqRDpdiYgvOLEoj18IrSw23ohmNWGzupumJTp5MbzIEVrmDCrh8VqE2e105s0A2w+Tj5XAPB9OHa12+IHYJ26bDAnitXdSVhT/AWkzZBTBYqVJUpDZ/VgGrOBs1rFrDZx7QcSgWoTW8ytTJ3gWhY8p94NvJkopOrKcc0WDlytW58WWHiGYjUPAbz9kC2UPv1p4O1H95o/o1QYAkkn6VugYEwmIYFf74rVIkX+UcWAALti9dd93Zt3Hm9CLRe13Fm94WK17uKcC6q9lsyiwKbwMY+I94F4f3cXD1Vl9K5VBSyeZRGWc9q5zmbApvDVYvWaONkPQ6mz+nTtmjurARwe1Hhq/hD2nTfYFwwRIABweMVhjkouJt1+JcNjs1PyuMXGF6/3eSWla4xwevG5HP/gs18JpBkem51NhwQ6OsLST/HJ7/xT+J+//m+bu7X54jyJWZv+Z19x8fzy/iO7eAyWPvvMWhgQAEaishX0AwYf3K9wJdh80YjVlt0Rq00xXlA4q2Pi+qhVR0fYdVZPFdIVRWzuLcTqh2BitSEGJHDynf3bOuXZIwbOagC7YvVEQu3xImcGifUar9128dT8ofEx50HOWODiWeWObXKoOSBdK07iLgfw4uMrvHR2A//kn/r4yNM/z4431Tjwvvcxkfqd75xm8zIMYR8s8Au/449jdo938BjwqgHAmvP7PY6ZAUeYcw2eLyZUtvSCuubOajMMSODkPbMUw2oQ7wPugk4yuSZAdVb7dsEyviSVZgbM6sCSmxmKAnHh03jzfA2udFanHlsza56vE/koK3v3fXDprH4k6lKsfpSrqpCWDm1Q41wjGYB+E1v6TCNgu4CO+26vxCRUTIh/2e7fn8RZLWNWl/bFiNWGGBCVsG7ErA4CRE6O+Hz3GpylPg4ojFZg1FmdVw7cgHK/SnZKi4Ixqw02QqTBEYbOateSO6sZtoX4eQkXeOcFPIXTx/d4m6OwgIq0c0NndXAQsIkIX5ivTkvmgjZRUpZL3IjOcfskAOoaL70EvHjABSWi8CFL+p5isRsEYGJ1axMgLvxHN2ARAN72Nvb5HB0BH/jAm302v6a1WEDurI5dI2d1K0+PFRerZxFxM0gschQYEKpO64QeE006WAkT7ud8DuZKU4jVm3MDZ7WTI17tvhPONi793dWqwxs+nlk8AD7xCf6FQ6PjAYC9mLHry2+IN17J8Vh0RhbCm/Gl66wuzPMGvu03nuHjD57Et73rl9kXpkCAAE23hnf+AId+Yn5cy8JBkOEsZ+LfZz9v4/nlvUd28bi84uEsC5t7IDnPWfaKyf0qyR55cB9fVBgQy7ZQVtbOuxaA0byo6Whst31PIFYfHlk4aQXAlXk5iQO4eej5PO7l1wM8Fp1O7qxOznO29poQA5Jm0wi1xwesEwibDT73mofnJti4WgQFVp0QV8uqzc5Vsk5indKGAYsA3vF0jF85eQw/9wkfH7j+ebZZMWX2yH/33wF/8A9OczwAuHEDjl0DL7/Mfm/abSM2ZzYbnJ+ULG/Eto2ugeV3srPKkoWlewX9uI7DNJPC2aICwbEaJmK1UyDNB8Rq3VBIwaxWHDMRx6SgzEKrj2AEgDxHVjk0sVoVQM6LmfFoc04AO+uDOIZ5oPdlGdelWP0ol0g69olMH5mwDBYaQJqMiUCxbuiTaVibGHw759rsxBNf7L5XM4GuhwExc7+yg0yLAXHHnNXUSZPvY+Zm2Kxa17aqcJ6FWPpEty53a/eCAIHmumg7EsRu8UbW9m6IAbkgZ7XsRZkXllHAYuDkvedrkxiEYW4PveusFg54U+OEECK4WL0+K80xIL6Pm4cJ7myYY/ull4AXZ6+zP6M6qyVidZmVdG4cryAAa9NvhX9N4Vi/0JrPgT/2x4A/8kce2Vb6iyrB6e2Os2cblxywGMrCbsqSidUzuljNnNWdr4v3jGk+RAcDAoA8GXcCl4U9qcTqdU2b7AcBFl6K89Pdd8LpxjPHgAA4eGKBp+cPgZ/9WfaFJ54wOh6AZnyq12w8fOO1krmWjZzVfWb1FGOMc3yA//1b/jK++/mf2Dl34+qihSYQwQ+jlDlVkwQvf46L1Y8ob//JZ128tjlqxOq7b5S4Hp5PL1Y/tL6oxOpFUOyM3U0XnombMnTYGqHLrPb0W8jbdXRsMQwIH2fTuDZayzQVRaxTcp3g1VeBT78+Z2LlBMzqNspqfVaya2CAAQGYQ1uU6XpO1NXDEnfjJROrX3WZWG24czcPCqzzvrPa6FwlaEN2DSZwVj+X4e+//H6894m7bBNk6rHQJGNAVjdvsv9/5jPs/4bOasxmiNwM8UmK1z+X4fHo1NwF3l3bFwXi0tB4wkOSuzpEmoLWMc/PM3RyJJn87yapxTZHde5d32fM6kKBFsls/WPyimYW4m53GEDXCoDtul5ixkRdY525tDWz5D176ax+NOpSrH6Ui4egBT5hUSLwBypnNcXpoRDTjJEC3P3aMbsZDZBAK4W2F7B4Mc7q3IRZLViinQHdOGDR99lLfd26D7IMWeXAjxzajrHrwrUqKQ+dLHyIVl+ZWH0RzGqT0ELBrJa82E0xIDJndRP4Y+IgcrlY3XJW12BcPaOazWABqM4ZO259XjEMiOHE8cYN4E58AJyd4VO/WuHF6FV2rxIXZUys3h0L0qQ2XjiEEceLtBw5celNQRS42Lp61XzB8BasxZJxensYkMRlAYu6963D2kSTwt1xzjTOaiq7XDCru5lsYjykitVexz0ElnbuWpVRq2v3mO1qmH8Esfo42ODhg91r2IjVhk6Xd38gxO984eeA01P2hSnE6ihim8Mn7P564w3gZmQgVquc1RPkDWC5xFOLE4QnvGvlosRqUxcdgINZydzKmw1eu+3g6cXDSbAtF1HB8WyHWX33To3r4erixOopWvXfAvXU8RqvrY+aa5CnFZ37ykvKrE4ccwzIFZttrvBFTRMWP4GzeuZm2JwV+Ft/C/j9X/NxNoU3eRZ8v2cWun+vxrFvgJjxfczdTCCFAQBJPg0G5EufjfHJk8eB9Zo7q+8ZjwWLqGQdVy2hEoCxs7oGLsRZ/eILFT565wV8+OmX2Bem6oq5qLp+nf3/dW46MX0nRBGuBBs8uFfh1udSPDE/Nb8G3Y38PGfOasMuSd/juROt+ZExBsQpkBYKZ3Vq63O2XZcxqxXHTDKOZKVgQGYuQ891F+F5ztbgxO5uT7auBxqjyDws9fUNmVgtOm0undVval2K1Y9y8ZAH0lxUhLVJxGqys1oIf91jtlNdKcWF9a4I3jCrjTAgMmf1BQQsGooIjVjdGX0bDIhBwOLMzbBZt66tOHeysu7BtUsUiUScEMcmtN+Eio0QUyeh7/RZXI0rh/ICEtiaAtvAwu3p0rEt4jnoCFRTLJ48Hz1mNQBzZ+18jkM/xuk99rmvzmvmyDF0ugRX5khLF//V9wf4yZ8E3n5416jVMYjsnrOa8QPNFg6zmYW49Hec1VNMcC/rYipaOIyv3BOrPYYB0X3ZWhbCoEbc3rAAWs5q4omKFHmJs9pkU7T5i60DnzyscRRsLk6sFs5q3eMHAa4Eazw82X3mzxIPB565s/r5D1zFb3vuF7ZfmEisfmF5Dz/1i0cAgNt3YOasFp0bMma1affGwcHu7ycQlQGwd2r73zuFs6WmeKMAAGnCSURBVHpRMvFvvcbd+w5zKj+iYjWiiC2kV+wZu3u7wvXI8HzFPKUtVp/aX1QBi09djfHq+ri5BlMIwLJ5d9PJZrKJfRSysDa+YZHG1SSOWkQR5m6K1XmNz30OeOfxBLz9KGJOzfXWfPLq6zbbEDJwVi+8BOer7didZjYT6AzH7fd+SYxfuP8UsNngs7dCPLe4b7zRNg9LrPNdsdoyxbZ0xc+6RlK47D4wDfJ9eobjYI3fMPt37AuPaJdJU089tft703fNfI4rwRoPHgCvfi7Hk/OHk2Qj7GQxCeOJ4Vw+8OteTkiaWUYBiwwDIh9LSJxt32e4TKVY7ZDHWsv3enkLAOhaAdBoUVIMSJ5jnQdMrNYt34drl8jj7Wc1BRbqsszrUqx+lEuI1QbO6jTp/9EmsWn8IbED3w1tLEvEhW+GAbH7qIYkpw+QAEuhlbmVL4xZXTn00ODARlHbveMWeW2GAeFidbyRiNUGrglnwFltAbR7yy5YiFK7OAaEPMfnzLDuvZVuSkTUF5BlwRVOZclGiGvkrO4LVMxZbRCwiBa/veWsBmD+Ap7N2KTxLjveeg1zZjUALJfIKgcf/Q8e/rPfGjO3tsFkNJw7fbE6NndWRzOLiZ+tTYCUEjB6Wb8mZYVcjO4yqxOfFrAIIArKPg9dOKsNxGrfKXsbV2I8JJs8JM6RhycWc9FdtFhNdFY/6IjVpxufOatNRbrHH9/9/UQYkD/5wX+IP/z3PoA8B9644xgxZZmzus/an8RZffPm7mfytreZHa9dbXf1FGL1QY2znDmrH5y5zFH8qAo0UYSn5id47R7LXLh7u2TOakP3q23VO0HZD06dL6qAxSevJTvO6iSuWeelybwocnrdl5vUMXfSiXuTW4vjxHxjHAAQhlh4KdZnJV59FXgquLv784jneujHODvbfum1Nxw8OT8xWiMsvRSrjd0YOh7EIQuDNBTsn37GxhdWx8Bmg8/cnuP5A3Mk0DyqWO4Cvw+qfIL5sefBQssYU5ZsPe9VxmK19cTj+Eff/D/jWc8Mj/drVi++uPtvfuEFs+NFEVt3PLTwmU/XeGF5bxKxGsCuWF34iKjdcbx8r+51R2UZ2HhAxFCGDu/mq/vnlqScL61zbMGsLhz5McVG04QZV6aGMWkWFf856yKghZv7Pq6FK9w72T73U2A4L8u8LsXqR7mKAmll4KxWYEDIzmqRGq1gVpMHdYWj1DQ92g8stqMpCS00ZVbXWUesLgrGVvZpj5QXudKAxSKvmfhJHSh5SJUIpgfYuZMEZVGuC9dWiNVU1zbHgPQY6/wZILvIhADc2TFerS1aAMP2sPLPqwA8g4BFqbM6NXdWL2YV4z22mNXGTD5g63C4V6GqgPWqZsKyqVh9cIDjYIPv+PAt/Mk/dJt9zWBCHs4dhutoXdw0hXFbajSzmKu2JVbXACz3i4sF/ZYpiVgLAHlpsbRzwss29CXOau7KIQuKjiNPZ69rlLUN26NvXta1tStWPwRzaBqI1bZVo8zkThYy88/3mbP6dPffukq9acaYMATe9z7262vX+k5jSi2XeHx2hndffwOf+hTwxn0PN02d1SpmteE/H74PvPOd29+/612GB2zV8fH21xOI1QcHaJzVZVGzsK5H1VntOHj64BSvnB8BWYa7d4Br4cpMUOKdZ233ayPaf5GI1U9dz3ac1XFs7qyeL22sO502m9Qxxq5hPmfOXC5Wv3YvwBOz00mY1XM3w3pV4403gMfsO83XTY55FMQ4Od8KVa++4eKpuYGz2raxDFKcZ34zdt1aLfH47NRYrLbmMxwHG7z6hQppZrEQV1MMyKzcwYNNMTdscIEJf2aF+cyboOvu8cfxoSde2v7+URero2hXBH3mGbPjzWa4Eq7x4NTBZz5r420HdycRq22r3oqoRTFJl2Tg12xDrI0BycGc1ZT7y7KURjyAOau1A31tG64DFJWzNTK1qkH4UMYv32d6Q2fOnawKZhgz6G5Wi9U+Way+Hq5w92R7Tpdi9aNRl2L1o1zi5UZx6fE24p4zC8Amc2nMat8fxoBQF+airaV9rnXNBl0TsVqGAalrxg0zCDdwrApl2nlJmGJAFGJ1ntVmPFHhrI63X9qc5mbOEc+Da1VScaIR8Sd0Vhu59h2Hsbg6L7XVCkzwoLr2vQFntUV37fsO3y1uTew2qWvclvrE1Yy5ki7AWX01XOP+feBP/2ngT//4+80DFgFgucTveO7n8W3v/2wT3mjkrF64zP3auhGS1HyxO5tbu1iJqa7rZV1MycTqooCFmj2zhGcsDOq+s5oHNJHCY4Bt5kRXrOb3l+XQMwwA7GJATi0zBrTr9lFTrYpj0BYlgll93rmGdcVMWlOwen//7wf+6B8Fvu/7jN1uABrB+z2HX8DHP84clTM3p4vVoSVlVqelyzInTOvFF7e/FlzRKeo979n+egK8yOGRhbMsYsGVNZ9/PsICzdPHK7zC3Z9371kMW2IoVkcdsfrhuYcjE67wW6yeupH1MCCRqVi9sHbxDwDWKTGcq12LBVyrQn7GJt4vvbHEi4d3JnFWz90U6zVQVTWclM+NTMRa28bRLMNpujUzvHrXNxOrASzDAucZD8Ssa9xaHbAuE1MUymyGD1z/PP7Y3/0yfMPTn2u+ZlLzqGabFnw+n8S1PkqhWyLjSaxrRUeMP4FYHUW73SuP8FjY1Fd/Nfv/V36l+bt2NmPM6jMXL7/i4YWDaZzVO2a8ifJnfL+fO5GmFnwDJI4V+HK0BjgGhDAuWgF/1rtd43WN1KTL3Zcfd31Wsk1ByjEFYzuVzDmLAnnlwAsJ44zv43p0jrun23HvEgPyaNSlWP0ol2gpp6zJxGJX8jDHmU0TK4WorHBWk/Up12Uviaz1AhPH9AiQfF6Ns7rDe4xLH5FPPG53t7x1vkXlwA1oEzE3kDOrGwyIibPa3XVWnz0scWAiTnCuk8xZnW0K1t5EDVjsYmvKkm2EGLj2G4diSwBexzYWXmLkrC4qCbalNOCh2zZ8hydHt8LaNqmDuWcmVj95I8frm8MLYVaLdryf+AnAQcWY1aZC0nKJP/SeH8MT/r3GnWQyIfcXPtu4at1gSWrOUIwWDku6bjGrAVxObB7VCgLmAo5b46wYc4OA9E6IIkgxIADozxd3Vu+8E4HtuGCAhQLQSzsnLxoAwHWZgLKRX7vGWU0Qq68Eazw4a51XVbFx3LKmEeksi/E0205gk+LC7HuWn8XP/1y9/byoGBAhVnfmMMBE3Rsf+hDwwQ8C3/M904j13eMul31eKaGuXbfw915+P37hlxwsXD6GP8ICzdM3Evzgz/x2/D/+pIV//UuHeM/V14wxIN2g7KriDvMvFrH6sQKvtjEgqWXurD5wpM5qY3EiinAlXOP+CZvLvXT7gInVpvMtx8E8KHB3M2fdhmLeYWgOODoocZJFjTHg1bsBw4AYoFCWYc66+bhY/UZ8gMfnZ/SweFHzOf7we/8Z/vHHnsE3P/nL7Gumzup5jZU4V7Rc+yafl8v41I0BZ0pnNbCLsXrUAxYB4Hf/buDbvx34zu80P5bj4MoixYNkhrUwHpm+DzwPoVNskZl5zjAghmJ1EKDvrM5AN8wBfR56q+LcpW20SAJBAexmZBA1E9m5rs/5WpGIFgmdHEl3ftz+OZTjCmf12Xb9eh6z+e1lwOKbW5di9aNcfGdvFhJeboJB1HVW1zV3VlMxIGqxOqA6qzksf+dcJ9iF9kO7x6Mzbu3h7Sd52neXX4izOgdcewJndbplx509LMl8VgAMA6JgVifrknGACfdWKLtfBTeMigGxLPhuyYTKVnuTKQbE9W2ps7oo+OdFnIQEXtXbhZ8CA/LkzQKvrY8bsbbIKjO8jCjOrL536uL2beDHftdfx9c99ulJnNUAgLOzrVhtMCGXsYqbgCaDBclsYbMgJb7IqXPObDddlF7WxZTvY+GmWJ9vx+864fcEcYNFFbAIwCjE1ndKpbOavOAXY37rOTB2jrgua01XidXU4wtn9Wo7Ru98VlOKq1OV6wKzGd5z/Ar+2l8HPvT859nXie7iILJZwKJsI2SKDbEgAL77u4EPfMD8WO2yLHbcP/NntmO5QX3rN6zwbS/8B/z5f/gcrkcr9sVHFQMC4EPvfog//zV/D3/nH4a4Md8w4c8YA1LsZI/UVd382RdD3bhe43Z8sBuwaMisXhy5OyIlAGxyz1ystm08c3iGL5wfA3HMxerbk3xWi1mFXz25iaeup2xOH4bGAvDhssZJOmvE6jcehnhsdmrmrJ6VW/RcniMpJkAXAcBshhvROX769/9v+PDNX2q+ZlLzWY117jfj7BThnRfqrAaAp5/e/voR3rhrKgyBD3/YfG3A68pBiS+srmDu8LbhCZzVodMyTBWFGd6UV+DXvQ3nNLcZdo46dgm0RhcDUtdICgehW+iPCao8Ln4dyPetyLiKd4+7OqvoJgnPYwaJWHL9xDUhitU3onPcOd/OLR6sA1w1weRd1iR1KVY/ylUUyEoX///23jxOsusu737OrbvW1vsy+6qRZrTLkmxJ3mQJy6uIwME2tvEbDMbBBpPYway2QgIkL2sSIASIX3jBsYHYscEYG294xbKFF0kjaSTNPtMzvXdX176d/HHuraW7ZyTdc1pd3f18P5/+VNXtrtu3q8+995znPOf5uX7M/NvVAugbDZTqDpJOjItZVDF2uVu7XkdTCiTi5mgmEkoEr3c4SnUvkFDO6hWCom6FX9e9tFjdTMTOrE4ELpqdlYhDtPOSEgkETg3Fqt0SOpbm68g65fidBsdRzurqys+wXJKxndVe4lLOar1OrmuH1Zg7xeqiZSYGpPP/JaVegUWoYhwrCv5U9WNAdmxrqhiQsOfcKi5oILN6yC/gSyf34MgR4MrUObXsXbdDGi1xnJszEgPSEiI7xeqqpT3YDTJ2V4HFQl4qtwA7Nr2J6yLtVJDPta9dpcWqWjYZc2Du+2vjrPYStZVidXR/1BCrbavRVagtdqZ0hG0j5VzGWR2J1c/2842KKOXb7yvNl9W+TESArBWZDLYnF7B9tI6fu+ULrW1xuJyzekNcYwxNKFiZFF69+2F84ZERjHhhJbgeFqvHd7t43f5v47+880m8/54H1EYDzurIpVkqAZ4VnsO9fC4YxEoFKm8/zLRTzmq9PoybcpSRIRooNZso1hy1kk1TAN49VMCZ/CBQKOD0XBp70nNGRMVUCji2OIadWXPnQX8/sFBNtj7beiOsvWJIrJbFksrwNnHOhtfSQ4njsKtFdY3R7G+mM0C+o8BiK2JGM7O6y9wVOavjGm+W833fB9x5p6q7cMMNZva5gRjsb+KrFw9gfzosMqorVnteuy6AlO04CU/vOuB6YkUcabUm4hdYBNou6OUCT8vcFaOIZ1gQdIVYrTvR5DhqVVC+29xWWGqq1c1x7l+OmlAsllf538StmwWEzuolTOfbGetzRbXCj87q9YVidS8TLfeMk3sZOrNWc6oW41a4XS1buuM4Y194hYDnhPEH0b6i+AcNsdrxLHWTWOGsduPv93IxIDJ+gcVVZzWlRKESLkHRydX1ZZeglpurI6NTlMR1kRDy8s7qGJnVqzqrw8kVzXHeCgG4UBJKrI4bA7JagQspUW8KOImYBRax+ix8oepot4Ht29GVWV0pNfWdIwDgujg8OInFioc3v6HejtnQFavHx9XjxYvA0pJ6rjPQ83010O0ssFjVH+wujwHJ5aAmguis7k08Dxmn3GpSAJCbralYpJiiT5AUK8TqZrWuBucak4yu1UClZnUXJtIVKsO6E521AYw5q0urX/OKJcQTq5NJ9b8qt49rcaamN9H6XJDNQgjgkU+cwFjzQmtbHLzAQmWVPHQAG0OsNkUqhX2ZWcwXPYw4C2pbL7sJ+/oAAHcdPI3rBs6qbTrHG66QK+TVeXvsGHDlYCjSGMgE3xCkUrCtBmqLavJ6ctFXKwQ1zgPhLut3Nxoo1FwkvdWLxT4b9oyWcDo/CJkvtFfcmRCrR5J4aG4n9ljnwg36ERD9AwKLVR8oFjE3B6SdUATTEGjSyWaraOHCZAX9bsmMWD04qPpXuVCs933tSbFUqju7vFQWysigc41dXjcqMt6YmlvKZoE3vAF4xzt6+1q4RmwfraPatPHeI59SG3TPg0QCgddAuW6rcUxULD1u3ZEQz5Mr7uHVmohfYBG4dAxIrabMeG6M69fTOavjTrKEUaSdq4KAMAYkTr8wPNaUU0WhYnf3j6HqZonwZ541QmAkXcJ0Od3qa88VfSVWb6X+Vg9CsbqXCS+WcQPo/UQN5cqym3iYw5QMYlx4ohiQVQTF6HfGxXOa3ctd63U1m6cbA7LclVSr6S3tuVQMSKOBmkZmdevC2jlTGrk83JqWyyPwJUqNdlTB0kJDDfjjOnJs+7LOaj+Oszp015dr3XnNrRuljrPahZoI6Wi4+ZKtZnXjOqtdgbq0VkyE1JsJ6ESJrnBWh20g6dS0OuR9QzYWq0HbWW0gAgMAIAQO7Sjgc6/+XbzqjkX1v0sk9G/s6bTqfJbLwGOPqW2jo/H353kQQqJZ6nBWVzTdDQC8tKMmFzrFarfEjk2vEjqrO8Xq2akGBr34hcr8QKgYkI5rgXbxL8tS8UWNlddDAFqxUFm3hKVC+37SEqs1CiyqJZmXEqut2GK1EB1xBwAmztTV8vReFqtD55+VW1ARRkLEjwG5nLN6K02IJZOwhMTVI9MYsRfUtl5uA9HKoMXFlltVS1BKpTDkFTA7r86xRx8FjvSdV9/bQmL1iJ/HzFQTUgJ/8I0b8ZYrvqF3r11ecDY08xgRq7dVcXppCB/7RAK3jx5XG02I1eMZPDi9F3eLz6sN0cS+Bv0DQsWAlEr43OeAu/afDH9ZfAEwk5atzOoLZw1ety2ruxisic80Y7WEdaDDta/prPbtcAwuZaswrucaclZvcXbs93D0X/57XJcJ26qBduB74Sq5YlHpL1JoO2pdV3Qb8QBUagKupWGUiVzQy2NAIt0kzml2qczqUDPx48a8hvEqK8TqvEZ9I8tCyq2pegON7mt1OV+Pp0GEjGQrmC5lWteC2WISg4wBWXcoVvcyOgPTaOlFZdm/OOqMxczB9hK1VaNFYh9niOdBzT52dBrNZFav5qzWiAGJnNXVlVEojaaFhKspVi871kLdQ9Ktr/6eZ0gyCJ3V4WebW5TIajqrbdFEo7byMywVY4rVQsB3myuX04duBC1ndZRd3iFWF0qW+czqcNmYbcfvjK5wVjcaKNZdpLy6llgdZTbLknI+X5xzMeznzdyAoyXuk5Pq0cSARIj2ICza75498ffneeh3S1hYbH+GJgYkrSzs6Nyis7q3CXOQF3Lt++LsdBNDfj5+ZnXkrF5WtFA3usezmysK82iL1YkE+twyFotOSwQvlQ04q53LOKvLMcVqz1PCRFO2/u6jjwpcPXCht6MPIhf1xIR6TKfjr7RJ2WoSv+PeJWsbKAbEFKFodk3/WQz7S0ZyeteU0FmNxcV2jJVOJyaZxEiwhJkF5SR77DHgcCp0bG+E4momCLOKp6eVWD/oF3Gwb1pbUASwUqyOY+ZZxu7tdZxcGsav/eEgfvmGv1Xt1URm9Y4+HMhO4YgXCuCdhfZi0j+UUDEghQI+8xngnt2hQUBbrPZaYvW25KK56J6xsfZzA/tM99so1L3WxFKpLBAk9HPLvYQSqNFsqhiQJsVqY3RmdgNGroO+D2U8KBZRL9WQ0KkXFeL5Qt3DO8XqqmZmteMo801lmbDcaChndcyV8wBWjRZpFViMg+siSNS6VvMBQH4J8Z3VAJJ+s0vXiGgVboz5fxvpq2K63BarcxVPjem2Un+rB+nh3h6RVY3sHdtGkKitFKujZSJx7u/hEuJKVay+NFlnYO5B3dSjGIHWkqn4N3Y3SFw6szqus/pSmdWNhlr2rVEwAUD3hbdeRyESKjUIkqHzLxzwLuWkWj6pm1m9SgxIPg8VMRKjzfpeKNQu+wzKDVvPWR1lhnUEYudLCb0YkNUyq6OMM02jT9cES6OBQk1/wgLpNPq9Iuan1X4eP5/B4YGLZm7A0cDh1Cn1aMrx1ukY6utrCwBx8DyVRTbf/nvLtYR+FMqyLOzcQlPv3CJri6smaWZy7Q7y7HQTQ14hfgxIIFQUTGfOvG60BtThlBuOWVetEMgGVbXKIrzOatdFiJzV5dWPKbZYLQSQTMJN1FFdUILf0ccTuHpgorfPr2jy7vz57tcxsAJPubs67om1SlMtId5Kg6dQiHjHFV/Ai8ef7Om8agDte9XCQlus1nH+OQ6GU2VMF1NAtYpHH2niSOaMagO9PHFjklQKI/4SpmYTOHYMuHE0nAzScT6G1yRZaYvVSzUfaV+zvwVgxw7g8+evwh1XTGE8mVP/fwMZ7vtu6MOPX/XV9q62b9feZ3LAQ6HuopEv4ZvfBG7JHlPf0BGrM8BSVWVWP/6EhYPZaXPX7U6x2oSzelD9/VEx76WSrcYHmqaDroLpjYZyvZrKrN7qrIVYHYiWs3pmVmDEX9K+z7qeUCu8l9UhStka7ctxVMRMYdl1Klw5H1esFujQnTr2WW448WqnhfsN7GprgVFEoQD1GcQUq1NBsyu6p7XfKF4k5n0hnYa6FoR9LimlutZupf5WD0KxuoepFOrw4uT/AuEFYnWxulh34/X1w2zpFctSI2e1xo3d9a2u5fRGRMrIUbtKZnXssU4UA7LcWa3rLl+lAFzk8kj5eksSW87q5VEFcT/c0FldrzZW5EXlC0DajicCe55c1VndlBYsV6OITpBAuUOsB4B8xdGLAfFWcVZHEyxO/P+X50F1bCJxInRWx1oJ0Uk6jRuHzuLBJ9Ug+vGJLK7qNyRWR86exx9v/S4jdIrVOq5qQInVQR7Tix3F2qoGxOqooxVNBC029VYtkLUlCJRYvdD+n8/OQlX7jhsDkrRWOKtLJQPO6miVxbL7l+7S1L6g1hUJZESsdi4tVpeqMcVqQDlK/TwmT6uJxqNPOjiyUZzVZ892v47DaoVhowinrTR4CgLAsnDr6CnsTC/0/vU1igGZnzdWx2FkoK4cX4UCTp1sYm96Vgk0hopY9jyhs3pq3sGJE8D+9JTarnn/TnYKKY0G5iopDGWWLx999th9KYwnF/GuFzyoNhjKFb7+pQN43+1faW8w4KwWKXVsX/xWGi+8QyJRyqtvaPTlMgO2igHJ5/HZrydx947H1sbIYOBakBpwVQxIOLF0YSFQTnBdV+0ysTpf95AKNPvyRLFzZ/v56KjWpHBEELRjQCanLYwF+mK1qjuxrA5RRfWZtMTqRB2V4rKxpk5spuvCTdRRK62MFpFSxB+Dh87qFTEgBagJIR2xuu6uFKvzUqs/Kzy3bRBoNiEQHjdXy64rFKt7GDVDFPNkdl0EidVjQJpSIOHFO5E9D93VswHUq03YQm+5jOcLJSwvd1brFFgM7JWZ1VEMSFxn9WViQADEv6B53XEC0T4LNU87P69VBC7skeeWgIxTid9xtCzYNlBvWCtuFEt5S8NZjRWij4mImXSqW6wHgEI5oTX76ngW6qYjZqCE9eWTNrmaj4xfu/wbn450Gi/a9iS+clwNbB6/2IfD/RfM3IAjZ8+x0I0zNKS/TwC4/vq20HP4sN6+wirPM0tea4Ll4lJKOZ50PoOO8/bECWBuXuhNBJG1JRKrO53Vc8CQFz8GJEhZajLMsLPa91deD5u1BiydFTwA+pK1bmd1JYHARIHFSzmrK2qVV6xrbTKJA9lpnHhC3V/PTTrYmZrv7fMrcv0tLKhHTbFaAl2rgkolqOJfW2nwZFnAlVe2X+/evX7H8kyI/uedReA0Y0uGhyRmyilU5wuwZBMJS26dCBAASKWUWL3g4sRxiX3eRGt7bFwXKbuKfDH839RqaEoByzFwbqXT+NZ9v45DeEK9NlUETwjgla9sv9ap5RERCr7//xd34a1vrKjYCs/Tun9lRnzkax5qc0s4NeHiQHba3CTTvn3t58sdtjGw+1JoSKstVudSRsTq1j28VALqdcxXkuhP67v2CbonUl72MiOTdi3jQbGIyZkExoKcGWf1MtNcvuIoU5dGgUUvUVvprA7rnMW6ftk23Eu4tQHEN0hEBRaXO6uLIn5mNVbGm7b2m5dKN9M4XgBAtYryUq1tGN0qk8I9yhayZmw8tJYz2DYCp45SLRRru6rHOrEvwK4n2tnSYSexXJLagycvsLCwwlmtl1UsHFsN9JYVWCzpFOyLnNU1KNEruoBFjjddZ3XHoDTKrNZ2Vve76qKeV26J4xdSeMuBWa2OY8IOCwxWuidT8kVLw1mNVZ2E6hfGb1uptEC+7nU7q6uOVgzIpTKrSw0H2zRiW9wggWpTdk3azFVSGExrOn1SKdwxdhz/9ZGXAc0mTkxnsPfmWTOiz3JnjymxemwM+PVfBy5cUGtqdbBtjKSKahl1XXU+zub6cN+OOQNidROyXMH73gfYp0fw8uQTve/826oEAYa8PGbyfuv6PTtv4Sa/ALj9sXbpp8LJwM7Mal23MtSpuTwWqVSUesIyQrG60OGsriSMFFg8W7mEWF1NxHdWp1I4kJ3GU09ehZsLQMqtqVtuLzurly/L1xGro+tzp7M6KmK8lZzVAHDDDe1iu7fdtq6H8rTYNjA8DMzMqNcGhMqRoSamSxk89VgNV+wKR/5bpbgiAFgWRrNlPH5mHCefrGP/tkl1TdGJAXEcFWFUVNGGtXIDtqmInZERtWLnrIqWMCZWA8Ddd6taHkNDZiatwgKmj53L4PlHQle15kRIZjyFpZqP7zxs4+YD8+q6bapftH078IEPKFFdt28IhP+bapdYvX14QT8GJGmhUreBQgGyVoeAGpcSQ7zznSp+8CUvMbK7dFYgN+sDhQImZzJKrNYssOglE93O6mYThZqLlKOx8s5x4CfqK3KglQ5hx7t+hTGv1dJKt7YQUqsYpKqf1i32FopCK7M6lZSrxoAUC1J9tgbE6vkLZQx6BY7negA6q3uYQl6qmac4J50QK7KKAWjPkq0mKLYGTxo39lZWVCTSRVVtdfK9LlG0UEsEFwKOLVfkFcu6ZhRKZ2Z1FK1Rr6NYd7SXjY1uS+Bisa8lVh+7mMWV/ZNaQqXtCDSaVnfbArBUCJ3VMdpXqw0sc1ZLQKttpbNhpe+obUlpLgZktYgZDWd1a8lYx3nQaFqwXc1LtWVhZKiJXDXA4sUS0GzCtppmBlBjY92zzqbEakD9f3btMlJMayRTVsuowzZ7dqkPu9Lz2suIvUQdlVIT09PAt08PIeuU2LnpVSwLw9kqZkqpVjuYnU9oFVi0U566FnRMNLac1dr3xGVidcXSE5YB9KUbK5zVRgosVlZ/f7Fqa8WAHMxO4fgJpVMe3tHhVO1VMplugdpEDEhH29qSMSAAcNNN6vPYtq3bZd2rdLo/Bwe1dzc8amG6nMFjjwFHdunHNGxERocamC6nMXmhoYQkXWe5ZSHtVVGouUCjgcmLUi39NyEAL3c8mxSrLQt4y1uAV73KzP76+tDnlvCvrv82RMGMWJ0eS2GxGuDYCQdXb5tXG01et7dvV1EQJhyP0f8mFKsncmkzMSBJW/XnCwVMTwMjBmIlSAfXXQfce6+xYrujI1BjhGIRk1MCY8mcdl9exZF2GJtqNeRrHtJBI37bdRzlrF4lBgRAvDYWRousEKt1ndWOo2JASt1/a75k6WVWp6CKoq4SA6LrrLaERKNUxdyFihKrTV67SSwoVvcwxXxTa+YpSIaFnzrdutGJHfOG2RKrOwbQ5YrQHjylM0IJipH4GcWA6PRtXBcCWKVgn55j23FWitXVilTLRTQG/BCiVTU6OtZCzdPOKx7c5mGukgSWVCX1Ib+olpJritV1mVixBCdfSsR2VvuBWOmsNhEDkrXUDGxH2yrUPFW4MmZn4VKZ1doxIElbLRnrOFYAZjq46TRetv1x/OzPCbx0x1Nqm4mbsON058eZFKsNMtJXxXQprT5bKTFXTqqOiKazOmlXUSo0MTMDPDndrzKre1lM2+IMDzQwU0m3YpFmF22tAosi8NV9plOsNuCs9nyxIsO/WIKK1NCJAVkuVlcNiNV2BYXK6tf8aj0Bx2poxYA8dcrB0aNoix697KwGgJGR9vPOa+OzxfeREE3Ui8v7Wxp9jY1KNgvcfz/w3vdujCW5+/e3n197rfbu/H4flYaNR49ZOLxtQW3cSjEgUO7yi8U+iHq4wsLA359y62rsUa3iwgUYESkBqH5Qp4jWy4LHyAjec+1n8SO7vtgqMqg7EWIN9CFhNfHY2TQODIbX7V6dxE8m4VgNVJdU33CqkMSov2TGVdtUYvXZ003sTs/17mdAMDomMFXKdMSALGlfY5QBqaMfV62iUHeRSuoZ8bxEHZXysrGmjgvaceBaq4jVOgI4ALgu/MTK+mmFUkI5oGP25VIpqBXjy8XqKF5EQ6xOO2UUFmqYm6xh0Cv29rV7i0CxuodpVUuNedIFKQulZVm9rQtPzH22ihZ2itXlcACt0cHL9gG5sHI0AKDRQLWZgONpNNFLFC1sSgHLi98JWc1ZXS5DLc/WEb6EUKbq6LONYkA0ndUik1YdsYUivvUt4NbxM+obumJ10+qeCAGwVErEdlZ7HlY4CWVNPwYknbW6Y0DqdeTrHtIa8SqOn1B//3JndSNmJeaQ1pKx8HOtFBtqEsSE0yedxn37vos/+vMkXr/3AbXNVMe5M1O6V8Xq/lrLWR21K+HYesJHWDykWJCYmwOkFMg4FKt7mf4BgflKsuWims3ZWgUW4ftq9UfHfaYlVus4q5PWyhgQA1nYfVm5TKy2tcXqpF1FsbrK+xsNABIiYcX7LJJJ7M3M4vSFUKwen1Xbe/386utrPz9yJP5+PA8ZpxItigIAlCvQXsm2YRkc3Dhu4k5n9fXX6+8vFE0eO+7hyGgYL7JRPgtDjIwKfO78VXjhwUm1wYCIkPIbyqFXqeDipMC4KbE6keietOplwSOdxiuveArp+gIwNdXapkU2i32ZGXz2iT042B+21169bjsORpIFTOWTQLWKZkOqTHjN/5mfCou7Fwo4c1ZgV2qeYnUPMzputcXqWdvI6g0n5XavvKtWka/5SKf0xGo/UUO5uFoMSMwC3I4Dd7WijSac1XYN5arVXjUOVTcq7ZRj97udwF5RPw2IdDON/mwQIONUsDRbxexkHQMUq3sCitU9TKEANfOk46yudzur66WaVjHE1ZzVpbLQzqzO9lvI1fyu+IOmFBC2geJny3KgAWh1Rh0bK1y1pbK+u9xOSJUDHR1vrYai7gwsAGQy2JOew+kzAn/918BdO8NCeDpitWupY13urC6Gzuo4BRZXiQGpVZpwrYZeZnU20R0DEi3DSsafBLBdCzW5MrO63LC1xGo35XQVWJydkRj288bE6uePnsTb75vGLQNPqX3GFeiW07ksu6fF6jRQLmN+oqQ6IboDB99H4NRRLEgMDTZhiaZyVnNA0rNYqUB16EOxulBKqEnhuG7dVe4z2tEa6Lgedjqry5Z+ZnW22TUxXKtbcCyNAsm2rZaPNroHIwDa13LXjTcplEzCTTRQqQg88ABwZCgUqXpV9Ii4917lpv2lX9KbDPM8ZJwylpbam8oG+hrkOWDXLuWqP3wYGB/X318qBcdq4KHjKhon2raV8Ps8fOKeP8DvvvbzaoMBsT6dVBmyKJVw4aIw56wGuqNAelnwEKItrJ86pR5121Ymg6v6J/HtqR3YH1xQ23q4XzSWKWGylEV9eh62aKh7lm4MSNppO6snEnRW9zijOxxMlTP4L5+6Al88ts2IWC0Cv7tIcuSs1tlt2OeqlLrHsLIWOqvjjBfDuI7lOdj1cl1LM4JlIXAbKNXtrvHyUtlWWkHcFY3uKjGvUM5qrai8dBppp4z8bAXfeySBqwcmeM72ABSrexhdZ7WftlUMSIfjq1WgKW5mdZSp2+kqjmJAdMTqPgtLtfYAulIKRUqdzsIqjjfUakqo0DhWxxVKrF4m2Osuz245tjscwIW6q9/HTadxIDuNj39rB86cAe4afVht1ymw6Fiodx5ryFLJVs7qGCLoam2rVIK2OJPqd5DvaFuo1VS2tE4UTGBfMrNaR0fJDiTUeRB2bGZmoPJ0DcWAWELif/z4g0o/SSbNLac+eFA9Dg/3rJA0OAjMVVRW8dkTNeVy0T1Wy0IyLXCxmMVofxW7M/PMrO51wv+NLIZFymRTr2if76uVK4X2tSBXCgu46sSABNaKybtSWSBp6wmVfVl0OatbAnPczn1Yx6HaSKgYq050XTnhiO59r3wI3/sesCO5QWJAtm0D3vUuJVjqEInV+fZ1ulwJzQEUq3sb2wZ++ZeBn/kZY7m6ezOz+JV/8R04uXCFQX+//n43EqkUXr7zMYiLF1qvDexSOauLRVyYssyK1Z3F/3pZrAZWitW6EwGWhSvHF7EjuQB/4aLa1qN9QwAY6ytjspTF5LEFFf9g4P/lpZ22s/qCQ7G6xxna5mK2nMKHHzyI//HaTyqjkG47iP7fXc5qT+/SFRZYXC5Wl/P1+BPZrqtWyOWX7bPYVP0NjUicwGuqVf4d4+XZQqC3onG1mmSICjdq9L2z2Zaz+sv/nMKLxp/ccpPCvQjF6h5GN3snSCfUBaLD8bW02ERGY5+tYgFdmdXQzlDMDtrIVYPWsZ46m8C+zIx2niwAozEowCViQCr67vKWYzv6bBsNbVEVQEusfv9nX4j/9OsSohp+HhoDftu1VAzGMrE6rzFb6qcSK5yEJiZCEkkPTSm6XPsSelW51yqzemDIUvnia+SsBtBe5mly8OT7wG/8BvALv2Bun4ZJBG6rKOiJJxvYk541MnAIMg7O5AcxnCzizQe/oTpgPTwo2/IEAdJOBYW5CnI5wBHhORz3fPA8DPt5zMy1u1PTSz5GfL1CXa0lxB332mJFPwu7rw9YrHWI1ZHArNEhd12g2uh2zgAAqlWV5x13QBJes9549UN46CFAFMM81V4Xfkzheci4oVgdTiqUq9bWzKze6qRS+PBdf4IfOPI4MD2tti0v4rfZ2b5dPV4IxWoTMSApqJV3xSIuRs5qU4Liy18OXHON6g/v3Wtmn2vF8LB6vBgKywYEmqt2F3Cwb0q5LoCeFmrHBquYLGXx2c8C1wyeN9K2skMOlmo+GktF/OMjQ7h+6FxPfwZbHbs/jXozgUpV4FU7HzaTix+NBTrE6oa04AQa9++wwOJyF7Qyd8UUlm0bgV2LFhy2KBca8Cy9/kbgN9Uq/07dqJ5Qx2pYrC6WLZVIoOWsrmBuqo75nIWx5BLP2R6Avd0eRs0QacSApEPxr0NQnJsXGPAK8WNAlhcLAFCuWNqCYrrfxlJHEbzjZxwcyF7QG5B5HgSK5mNAXIFa+RLOap39RoUbO+IqJADL0RQq02ncMHQWb77yQdxy3Y1qm+dpuX0Gs3XMzKRXOqvLjnJWxxGrowKLXRmt+nno8H21NKrDWQ1Ab8LicpnVGve1/mEbC9Vk21k9J1TxN5Ni9WS4lN70DTibNbs/03ieqvJcrOALX3Fw37YnjXwGyX4HZ6cGMDy4gP9w89+otm+oOjlZA5JJjAU5XJxo4pPfA9545CG1Pa6TzPcx4p/HzHwCoZSC6UISo2NLejEgSUstIe6KAUkgSOiJ1Zk+S8WAVKvqfiibqr1qTLC4bkc0Vse1v1Gqqmtv3AFJ5BxdWMDu3eqxa/tmx7aRdmtYqrgq/9u2jUzgkg3I4KAqjD052Rb/OjORtwKdRSsBI4JqOmth9pwHlEqYnLYwumsJSB3Q3i8AdXw/9VNqQrDX+wTLJz50CsOGXH9VFf9l5i/bG3p4En9ssI6Hz47gbz8yji/f+d+BpP7fPzhmY66Swke/vg0vOXBeGRkofPUu/f2oNWew3V1Aq1CEKbE6LOitxreuXgSj48Cz6suH3ygVmvHHy66LpJ1Hsdh9jpZLUvU3dJzVPlBqdDirpWyv6Iv7OYTvk5XQEBFSKFlIuRoFFjMZpJ1JfPXRIdy4e05t2yrmiB6mx++eW5tCydKKAXHTrnJBd4i18wtCZbXqxoB0OasNuF9TPpodec1PnfVwsG9aW6QEAFluX9Gb1brq8OuIypGrtuNOUa5aapbQRBZ2R4FF9Q29itRIJnHL2Bn88R1/2r4Ba3aYDu0q4cnc6MrM6ooT21ntpewVy95NONbheSr6Jfx/yaq+WG17iZXO6jAGROejbbnAI2f1rFDOat02ALQFnnPn1ONWW9rk+xgJljBzoYavPujhjvHjZpzV/b5yVsvp1u8hPUwyicMDF3D08QT+/M+BH73ya2q7hlg97OcxvdA+R6cKSYwEes5qN2mvnLwz4Kx2kk47wqkQOpVTKa3JS9eFKry8zFldytXU8cYdkAwMqEdVvXTridUAMkG9KyJNOasZA7Ll2LFDCZ4TE+qakEptvUH0jh3dfSETmdVZSxllikVMzyUwGiyZ7xv1ulANADfc0P06inbTwD60H9cOTrQ39HCfc2ykiY+evBEvv+IU+tyykXNrcNzDbDmFrx0bxr1XhrWCKFb3Lp6HoVQZh7KT6n6rOYkPoP3+SC+I+nM6YzrHgW/XUCl3O6vLxWb8voHjIGlXW5p61z41tY3Al8pZHYrVzWodAqEOE/fa6DiqVkqpuyBkoWypRALNGJDvnhnEoeFQrO7h69ZWYQPcQbcuhZKlVWBR+CtjMOYXBAY1xGo3ubICqwmhdnlkx/FzLg5kNcXqsLptrdJsLXVuzRKaEKs7JgFKBtzltoPuHGgDLnAASoRY7qrV7Igd2lvFEwtj3c5qKVGuJ+Al6rHabCsGpHMSoKKfBd6atCip/1dxqaFXLRhhpMTyApP1OkoNB0FSI59y2ZKxmammcmOYGJRGS2ijz3erdZr7+rAtWMRXv+li13BZtVMDwnIwGCixunI+3LDFPteNRhDgmoEJ/MO3BjA8LJGthfmvcTukoVg9k2tf86YLSYxoZs0L11GTbF0xIPqFGzudPvXFAhKiqS36uJ5Q/YJlYnUxV9cTqzMZde0vFID5eeUuTibNTN5tEDLJRlcdA4rVWxTH6S7UuNUiQADV5nfvbr820C/aNtbERKEfKJXC6MXq1hQnstm2c/2668wI7IcPt58fOtTTfaOxbRYeX9iGFw8dVRsMtK2hHT7mKilM51yMuWG9hR7+DAgw2l/Fob6OcbJuvYEggEBHjZTOotNxsW14Vr1r0TjQUZNMQ6wulrr/3kpZ31ntB0LVTwv/9sXpKvrckra7PGlXUcgtE6tLCTW+1yyweHRyCHsyoVjNc3bdoVjdwxTKCS1n9YqsJABziwkVAxLXWZ1MrBIDYqA6/bJjfeqsp8RqnQ6DEPDsZpcAWio0tQv2OX5ihbO6VLHUfnUyqx2BqVLGvFgNtCMajh9Xj4ODWrvbsa2Jc4WBbrE6vBEJ14l1g/eynso97ZwEKBtoW56nZmCL6vNcmGui340/YQN0TAR19hYaDdSaCTiuRucmjKpoltTnOjMDDHkGinwAwNhY9/9lq7my+vownszhb782iNuuNNcJGdiZxPdmd2LECkVPOqt7myDAtYPn8aGv7MJttzTUddbVWJbpuhgJ8pjOB+1J0bqtP4EbHU+ns7oa5vzpTN6l0xBCorGYR2mmoMRkTXHGccWqmdXFXB3JhIZYLUTbRR0V/tpCrmqgQ6wO77Un5gewMz1PsXor0inUbkWxGgDuvLP93ICovHePxKn8EFAsGsnv39C84x3A3XcDb36zmf11ttebbzazzzVibH8KAk280H9QbTDQBjJjSeRqPqZyAUYTYf+QwldPs2O0hiMD5gq4wvO6Chc2SlW1uls3BiSxSgxIUcaPAXEcBKuI1crgp5dZnU6HdQHC8fLsxZqKt9QplO26SNmV1uLAiEJk6NAQqzNOBScXB7EnWIP6TiQWFKt7mEJZ86RbRayezyUw4BbjZ1YnE2ppcqegWE3oZyh6HhKiiXpJieATMx62Jxe0b+x9QRWLHYUbWxdzzbziFTEgtYT2Bd1xgRf/7XsxcV4t7WlU9CNLWmzbph6Phq4BTbHa8l1YQqJe7HAWR59HzBuQCHxIoKttlStCX5zxPKSdcisBZXG+iX4v/jkAYNVzKxJqdAo3wveRdcrI5dTL7zyRxNWDE2Zulq4LDA21X2+1G3B/P7YlF/HZR8Zx7Q5zYvXbfiqFF28/rmKLDO2TrCFBgIN9UyhVE7jturCnq+MsFgLDmQpmyun29SDK49O5brmuynvuyPkr1pSbRGu/mQxG/DxmJhsozpaMiNUqBmQVZ3W+qdeHAdpRICdOqMetJlanml0DvS+d3Y8Xjz9JsXorsmdP+/mOHet3HOvJLbcA//JfKvfvvn3auxvbYWOymEUtV4IdFdvdqmJ1X5/6bPv6zOzPsoA3vEEJ1bffbmafa8TAvn785JEvqZhMwEj/WKSSAATmSx76q6Hwxf5hT/Off+xJvGz74+qFieuA7yPjtIskF3INFZWp6az2E7UVYnW5JONHdlzCWV024KweGLJULaaweuPsVANDfl5bsE91TAJEFMq2nsnTspDOCEhY2NM8qbZttbFyD8Lebg9TqNgqeyfuSeetEgOylMAhP76z2u0L1KC0I9houhDgKn9SO6oh685jaQnwS4CfqCkTqOaNfSBVwXwliV2Rs7oE7fyllli9LAYkSGg6q12BYt3D3KzEdgDFglQXXZNideRO0xSr4fvYl5nB6QkHrVI0kQMw7mzp8kIUAEomikn5PtJOBYW8xBBU7GmfW9YTUIIAQNN48U74Pga8AuYWExCLQK0KDJuKAQFUFEhUnGmr3YD7+jCeXMTEYhrXbZsCJmFk4OD5Ah/64b8DLoRuDA5GeptUCo7VxEv3n8Xzr7KAz0M7BmMkW8HMCVVwtmIFcK3wWqApVgNoi9X1Oop1F4Hb0Fuamk5je/IcJi4I9M+VkbQT2n9/wrNVLNLyyuxLDb0YEKAtVp8MBw5bTazOoOWsnp0FXKuGjFthgcWtyB13qA7M0FDPi39ryt13qy8DKEERmJ4Ghj1DRdVImzvv7HbD9yhiZBi/98Lfa28w0Y+zLMC2IWt1WJWSuf2SNcMdH0SrYp+JMZJlIe3VsFT1MF6pIJ9rKl3HgLO6XO32m5ZKiG/Gc10lVpe791kshoYxJ34fsW/IxkIlCRRUFM7sVF05q03EgKxwVtsqykljfJ/ps+BaNYzXz6m2sNXGyj0IndU9zHzRUy7ouCf0sqxeAJjLOVrOajvtq0FpOEMGAJNLKYwnc9pRDRmnglwOeOIJtIPtNS8SA6ka5ivJdgxIdDE3HANiIrf74M4KXjB6olVDqlCAdrZyi0isjtAVq10XezKzOH2xLUzX8hXYohm/vQaBymjtclYbyEP3faTsqnJWS4mFBaliQExkrJsWqz0PA14R80sJfP7zwF1XGi6G2FnhfavdgPv7MR7k0OeVsCtpOIusc0l2lA1OepNwdcGnf+CP0G+FSxgyGa1dDvfXMV3OAOUyZiYbKq/asvRyP51lmdVhJn7Sa1z+fU9HOo1tyUVcmEpg+kIdGaeifX0R3srIEoBitQnSaagCcJUKvvJliZeMP6G+QbF66+F5wA/8APCSl2yp3PY1JQgwlszh6MkkRrzwfkCxeusxPNz92lAb8Dtr2CQSXBHT63SuPjW0wiAT1FqrowpLTX1ntePAT9RQrnSbFlTMaS3evsO4klK5e5+5vIWsU9Jqt16fr0yOoW40NyNVLSadGBDHQSo0oXVSqoaJBBpxjOl+G7vS82plO8D7QQ/Aq2YPM1NMYtjPa8WAOFYDtUIV0aVrPu9gYEgjrzcSuDrcrxfzaYwFOQPO6jJySwKPHW3i8JCZJVP96Trmq8l2DEgJYWZ1fKHOCSJndVuwL9VsZG09AfT9/+osGo8WMT+v8qWnZhPq/2+ic7NcQNMVqz0PQ14BcwvtG0J+voa0U4l/AwoCSKjJleh2aSRixrKQ9uvIV12gWMTCglAxIDqDPd8HUFqRWQ1A71htGwN+GfNFHw/8UxMv23UaaMCcsHz33eo45+aAm24ys8+NQjqN7alFXNN/HqIQOqjWQqw+eNDMPsnaMDQECAExPwcsLqptms7i4cGmigGpVDB1roIRf0n/nF2eWR06q7XF6kxGidWzLj7xd+N4/YFPAukrzR5rSKlgIAYkEhGi6+sWE6szGWCpqpzVRx9u4rqhc6pPoFv4iRACJJPYmz6Fbx4fwmhUBG+rTeQTdY/q70fLLWSoDQwOClQqHf1NXrd7myNH1AoWxwFe8Qoju+wskpxfksac1ZVV86VjitWRs7rSPX5dKlrI6K5Ejs6lKAZkRmJQ11ntuioGZNlnIJtSicwaQnhm3xD2pEND0+goV0P0AHRW9zDlegK+XdeKAQkSNZTy7cHtfN7Ru0gsu+gAwMVCRt9ZbVnIpurIVX089r0qDvebWVI/kG1gvpIy66wOnG5ntZQo1cKCWjodEc9Dv1vEwqLax/HzvioyaUKsHhnpdvl1zh7HwfMw6BUwl2vf2E6fktidntOKARnyC5ifb28qVw0UWASQjnI/CwUsLAr0u3ozxatlVsuamYKYg6kK5qtJnDzexP5UR1VqE6RSypn1Yz+29WaLLQv7d9Xwkbv+GJgynB/YKaAZyNEka4htK7eulMCZM2qbpljd3ycxX0li4kwd//4/JjAamBGrHavRquOAeh2luovAl5d/3zPY7/ZsHo/PjeLBJzK4Z+dR/WtBdM1f7qwuSH1n9fJJtauuir+vDUhmwFYD3UIBjx9t4Kr+ixTTCDFFEGBvZhYPnBrFiL2g+skUJ7YmneMiQ/3jwdGwPwCwXW0EbBv4kR8B3vjG9qouTTLJplodVS6jkJfK1GXAWV2pLnNWR2a8OGNw10WQqK2IAckVbGSdst64doVY3VTOap1+TBQDUuz4DKQEZJhhreGsPvDC7fjlm/5OvaD5qCegWN2rNBqAhBI/4zo1fR+BXe0Sq+fyjiogEfemGUU1dDir8zVXXXw1l6VmswK5qo8Hv9XEdX2nW79PByVWt2NAphddjAQabnUATmB3i9WNBsoNB77b1BarB7wiFnLqtDx+ITAnVtu2mi2O0HWneR6G/AJmc+3P8YknBQ71TWo5q7cnFzAx076JzxQC1V4121Y6FVYjzuexmBPoc0vanQUAKvojdPzVKg24VkP7/zWQqWO+klLiv3tRbaQ4YQTR34ed6QXgYvi5anRouhgfbz83tU+ydoyMqMcoWkJTrBaB+p9/858TSLp1vO2qr+kPdqNcwlIoTjcaZpzVALaN1PHh47fglXseU7cs3WONrqXLKv4UCzL+stSITKYtWN94IzA2Fn9fG5DMsKfE6lwOTz4FXJGd4v2AEFMkk3jtnofwmRNXqLFBMkn361blllvUvfDmm7uLmWowtM1ri9VbzSBCAKgiyUtV5axeWBRmCizatZWZ1UWpzHg6zurqMmd1KYGMo+msTqVUbMmCMnedO29hPFjUOx9cFym7gkKns7rRULXNNeN2vCMH8NLtYdyaoesA0YNidY9SK9bgWA110YnbcfJ95awutKul1moCbqIRXwROJiGERCMfitXNZltU18nnBJDtEzhf7MfkJLDPm1AbdcXqfuV4ixywp2dSyv2r46xOOt0FFut1lOqOKnylQxCg3ytifjESq1PmxGpAVeV+0YuA175W+38VOatnc+2b4hMnbCVWa2Ssb08uYmKuLfadnB/AvsyMtlidygg8Mr8DzVweC/NNlVmtI1B1tvcoYqYYRcxoitXDCcxVkqiWGvCqYSeX4oQZovgbGQqAppwuV18NvPWtwAc+YGZ/ZG2JxOrT4aRoNqu3P9/HgFfEd486uOfWeVzRZ0BQdF3VwS+G9+9aTd1ndJ3VALaPNXC+MIC7+x9UGzTF+suJ1cm4Tp9O3vQmtSLkrW/V288GJDOWRK7mQy7mUClJtdqO9wNCzBAEODJ4Eb9w46dxZGCCguJW5s47gd/+beDHf9zYuGtwdxojuwNg927g1a82sk+ysUinpJpwLpXwDw+P4yXbn9CPAbHqKNe6x/HlCrRjQEpVuz0+ApArOsi6+s7qfreEhVklJj/4eAo3Dp/V68fYqpBisdNZHWkyuv3NVKodP3fkiN6+iBEoVvcosxdrGNLJqwYA34dvd8eAaC+RCALsSs3j3JS6GJbmSvDtmtqfphvhRdcv4v0P3otX3jzdvugYEKsXqm1n9em5NPakZzVjQFY6q0sNA2J1Oq0u6Dn1OT510bBYbdvAm98MvOY1+vtKpTDkFzC31OGsPuXiUL+Gs9pxsD2dw0Qu3SpWeGqxX4nVmp/BG140ga9cPIj/83dumFld0h+URO29Mw9dN18bwP79wIPTe1SuWRS3wwGUGQ4d6n5tSqwWArj9dhZX3ChEYnWErnsilcKu9By+9GAS+4YNuaiiIjqdzuqGi6TfvPz7ngHj2wSSdgW3jR5XG3SXu14qBqRoSKxOp4F77tmSy6iDkTTKdQdPHrewYzjsc1CsJsQMiQSwcyc+8LxP4vmjp7ZcJj5ZW66+1sK177gD+MVfBK67br0Ph6wDmaxa2VsvVPCPx7bhZduP6ceA2DWUa91jzVJZxF/JJgSSgUSx4Xb145ZKthFndb9XxMK8xEMPAVdvX4BtNfX6yL4fOqvbMmajUFZ51SZWt77vfcp81FmPiKwbFKt7lJnJBkZ0xeogaDurpUS1CiRkKKjGPZldF/v7ZnB8bgCo1zF5poLxIGdkEHnb82r4/Ts+jB+99RE1s+d52g7ggQF0O6vnMtiT0RSrlzurGw2U62EMiA7pNAa8IuZz6thmljy9AptrSTKpnNUFrzUL++QZDwez0/FvwkJge38R5wv9rYmAqWJaLaHTFIB37QJ+/oZP4wsPpLCQs/Sd1cBKZ3XJjLP6ppuAf5rcj339C0q0t+3ebAMbkcOH289HRjgw3ars2tV+7jj6kwyDg9idnsM3Hs1ib5+hIl2uC9+uoVIOxeqowGKg76z2+gP842t+C14izNk3EAslpVjprC5CP7N6q5PN4vt2PoZ3fvgOvOQ6FoAjxDhXdhSYpaBIDHLffWb8QWTjkslaWKr5+NLXHbxw7zkl1GpnVtdRWeasLpUtNQaNue9kSqBY7xarc2XXmLN6fk7iYx8DXntNGL+nI1YHwYrM6sJ8FSm7YkaszmZpPuohKFb3KNMXG0qo1Mw1Gk/n8aePvwCNcg1PHJO4IhNmtcYVl4XAgeEcTiwNA6USJs/XMZ5cNON46uvDffu+i32N43rH2EH/oNUlVk8sprE9uah14bWTbrezul5XzmpPX6zud4tYKDgoFSXcREOZd005q01i2xjM1jFXVq51KTtmdTVcdDsGS5go9gOlEppNAFKqz0BTrEY6jVtHTuIbR9M4M5NUOdiaYrVlCTSaYqWzWvP/ZY0M4e4dj2OvFxYZpTBhjs5s6bvuYjblVmV5kT7d68vwMHan51BvCGwPQkHRQA60Z3VkVkdxUybMxX19uGW0IwJF9x4T9VNWOKuFGWf1ViabxQ/s+zaemu7Du15zSm3jPYEQc3TeD268cf2OgxCy6ciM+Fiq+fjwZwbwxmseURt1tJ1EAl6ihnLdVlGsIaWKgJ+ox953kFwpVi+VQ2e1Th8uqcbcU/MOPv5x4L6rHmttj00QIOVUVhGr2d/cjFCs7lFmppsYCZa0HZX3v+SLeCo3gmMPVXD0oQauHphQA1ONwen+0TyO50aAYhHf+67EvsysmZmsyN11UVNQ72Bg3MN8NQkUCgCApoSa1dT4XAdHbUwU+7rE6nLDge9pOt5cF/2pGhbKPr78hRpu3xvmdusKKWtEss9BoeYBhQJmZ4GRrH5e1Pbhqvpsy2VcvCCxLVhU3zAgVvt2HRm3ihtHz6tKxJpikuPILod9qSxUJI6u8DM0hHdd/UW8dujr6jUjQMwhBPDud6vc9pe8ZL2PhqwXiURboLj+ev39hc7qXX052BV1rzHlrI4W8KBeR0NaSLgG7gedjpEox10Hz4NtNdAoLROrSxSrtclk8PzRU3j4h/4jgjprGBBinEOHgG3blFA9NLTeR0MI2URkxpKYqyTxzWN9uGPbCbVRR6wWAr4HlBtOKzITAMoVC0EivrPa8l00l62Qy5VcZN2Stljd7xbxZw/fhFe+QiKo5dR2nbGt5yHl1FCsJFqC/fSFutLNWOR+0/G0YrUQYpcQ4otCiEeFEEeFEO8Ot98vhDgvhPhu+PWqjvf8vBDiKSHEMSHEPR3bXxFue0oI8XNr8ydtDqanoO+sBmCnPBzITGN+stoWqzVF4APbSziRG0FjqYj/8eEM/tWVXzPmrAYAzM6qRwMDMn84jUrDBnI55HJAxg4LQ2pcePcf9jBXSWFyLhS8Gw0s1Xykk5rOaiGQGXSQq/n4zN818Ir9T6rtPZrTKdLhjSafxxNPAIfGQmFZ47MdH65jotAPlEo4eayq8qo9T98BG7qoP/jDn8PvvPCjapumCJxN1rvy0EtlYSSzGkNDuGX0NG7tO6ZeMzPLLEeOqHWZukVGycbmJ34CuPdeVXhWl6Eh7E7PYV9qujUxasJZ7dt1FQNSr7cHJSZW2nSK1bp51QDgunCtBqqFWtfmUoVitTaeB3ge0qJgtG9ECAnxPOD++4F3vGO9j4QQsslIj6XwxYkr8YIdZ2HVwwl9TW3HD4TSNjrE6lI1ET+zOjwmAbSd1VJiqeIibVf0+nCWhf5UDZ84fT3e+vqymVpMQiCZBAp1Vy1rBnDuHLAztUCxehPyTEbrdQDvkVIeAfACAO8UQkTlMX9HSnlD+PUpAAi/9wYAVwN4BYA/EEIkhBAJAL8P4JUAjgB4Y8d+yDJmpqXKrNYd5Pk+Bv0C5qdqeOQRiWsGz2uLn3u2VXFscQx/9+kEbr86h2G/YEZQXe5oMLHPTEY9Li3h0aMdMSg6F0nHwVuueAAffvxGNaPXaGCmnMZwuvz0730arEwKDWnhi19O4MWjj6uNutnKa0X4GcpCUYnVI+Hyd42bsJdxUW0mIEtlHP1uDVf2T5oZmIfHuj+4AK8ciuqan+vukRLO5gdazup80ULaqeiLSQMD3ULq/v16+yOErCSZBF796vY9Qod0GlcOz+GDL/r/gJmZ9v51EAK+L5R7pliErK2RWJ3N6u/P8+Am6qiWuosMF8sWM6tNELXRaNUZxWpCCCGk58ns7MPJpRHcMXysLdRqCqpeYKm+YeSClhKlagJ+Qk+sBtAWq+t1NKVQq/k0zT39fRLXDJzH4R25tqFDsx+TylhqdXcoVp+fAHak5mmO2IQ8beuTUl6QUn47fL4E4DEAOy7zlu8H8BEpZUVKeRLAUwBuDb+eklKekFJWAXwk/FmyCrdcsaCEZd1BSRBgwC1ifqaBU6eFiuzQFIG9rIebhs7gp39tDD/5mjOt36NNNgscONB+3ZkvG5dMBiN+Hk+dcfE3/6eBV+98SEWA6MSrCIFbdkzg0fltSqis19FoWrBdA07NdBq5qo87b84hKIfirwkxYS1IpZBxy8hPl5RYPTSntuvcKHwf25OLmDjbwAPfFHj+6EkzbSsSpmdm1ASD52mLPnvGKjiTH2zdKCfmA2xPLug7qxOJ7kKA+/bp7Y8QsrYIATEyjD2ZOWXvAIzE93iRWF0oYGFeot8tmYmF6rz/LcuZjoXnwbEaqBbrXZuL5YQq+MPBgx7RqjOK1YQQQsiGIbNDjeFvzzyihFrb1jZJWIGnIjuinLhGA+W6jcBtxO8jui4k0O4TRo8G+m83HSnj/ud9EpieNuOshhKri53O6gsJOqs3Kc9KXRNC7AVwI4AHwk3vEkI8JIT4oBAiWku6A8DZjredC7ddajtZhVdeP4ED2RkzYrVXxNxME7IhYQmpfyInk3jv9Z/FrYcWcXgsFChNXRxuuaX9/O679feXyeAnDn8Zv/XV5+Mz/wDcs+uokYHezqESzhX6gUoFzVoDQkgzjrdMBu++5gv4lTc/qS7oltW7A9NUCtuTC3jqSanE6r5JtV2nLQQBjgxcwKOPCXzvkQSuHzpnJrM5GuzPhxMABtzqu7fVlFgdzmyfm09hZ3peO2ceAHDbbe3ne/bo748QsrYMD6vHyOliIsYqaDurp6YFRoOcmesLAIyNqccrr9TfVxgDUistE6urCcaAmCD6X0WDvF7tExBCCCGkRbovgdHkEg5mp9SGwUH9aEvfV5EdoVCLahWlhmYB7tBZLSuhSB0J4QZWxu2/ysV9+74LnD+vokt0TYMAkpkECvW2s/rcRZvO6k3KMxarhRBpAB8F8DNSyhyA/w7gAIAbAFwA8FsmDkgI8XYhxINCiAenp6dN7HJjYmjmKRKrz01YSPn11jYtBgZwZOAC/urdX2tfKE3lKt92myp49aY3mcnS9Dy89orH0WgAP/zKBSTtmhHxc3S4iclSFigWMTcrMeQVzDje0mm8+9ovIJ0LiyumUvo3tbUilcJPHP4KfuWDO/Doo8AeJzxmHSd4Xx+ODFzAA99x4SYa8BJ1M20rlerej4E2sHt7HafzQ+0lSAsp7DDhrAaAG25QItKLXsRZYkI2Anv3dr82MCHmpxIoN2wgn8fUbAKjwZK5grvvfS/w9rcDz3++/r5cF65VR7XcXbehWLUpVpvg2mu7X1OsJoQQQnqeRAL46js+1B7Kmyhq7fvKBR0JytUqSnUHQVJDL/A8ZTooKLG6UaoiYTXN9N+i2ksnT6pHA32YVJ/dlVl9ftqls3qT8ozEaiGEAyVUf0hK+TEAkFJOSikbUsomgD+GivkAgPMAdnW8fWe47VLbu5BS/pGU8mYp5c0jIyPP9u/ZPJhy0AQBBr0Cjp10MdYXOr50T+QoW3pmpn2hNCVW+z7wkz8JvPjFZvYHwO5L4Y9e/Bd4z2vCgnUGLpJWJgUpBVAoYHJKYCzImXFWRwLHhQvq0USe6lqRSuGl25/Ajmwe738/YBfCLGidY+7rw5GBCfz2J/bj3tsNZb8CSvDvLFRowlm9RyhndZi/dW4hrZzVJtqB4wD/9t8Cb36z/r4IIWvPwYPt52NjRq7dgwMSs+U0UCgoZ7W/ZOb6AqhJxec9z0yh0dUyq6Vsi9XMrNbj8OHu/xPFakIIIWRDcMXhjn7b8vpccYg0lw6xutxw4Cc1+nOui5RTQSGn+nFLczVknLIZsTrS8556Sj0aMIy5GQ+1ZqIlVk8vOBg2UeuN9BxP26qFEALA/wTwmJTytzu2b+v4sfsAPBI+/xsAbxBCeEKIfQCuAPBNAN8CcIUQYp8QwoUqwvg3Zv6MTYhBsXrAK+Kx0wHG+wy5oKML7eyseWf1WhCJBpNhTIWJgV4yiaRdRWGmhIsTTYwlDS3PjuIqTp9Wjz0uVgPA773hq3jD6yWwtKS2a4rV1w+ew2/e+xW87wfDm5qpttU5+WXAtb9zn6OiYPJ5AMBkPqnEJFPOR0LIxqEzW/6aa4ysiNm1vaGKuBaLmJpLqPuMKbHaJK6rMqs7xepaDdWGDcfTL86z5QkCNbEAqLiZqJ9ACCGEkN7miivaz02I1ZHpsEOsrjZsOL7G+NN1kXXKWFpYA7E6ijKLdILOIt9xibSBUIeSTUNRt6TneCajnjsAvAXAw0KI74bbfgHAG4UQNwCQAE4B+AkAkFIeFUL8FYBHAdQBvFNK2QAAIcS7AHwGQALAB6WUR439JZuNqFqqoRiQExeTGMucb23TIsrmnJ1tC5O9fHGIYikisdpEBnIqhZ2peZw/JTB5UWI8yJkRwXeEMe65nHrcAGI1CoVWoUl4np6Lrr8fvl3Hjx75BlC+QW0z5SLrdFZ3FjCMiTOYQaVhIz9TRhqqbmPCkuYyZQkhGwfPU9eVxx5T8T0G2LVT4mxhAChcwNS0hRv9JSDoN7Jvo4TLR7tiQKLsbrqqzfC2twE/9EPqvssJUUIIIWRjcNVV7eeGYkAAdGVWAzaEp9Hfcl1k3RJyixIAMD/TUEW9TfThIt0owkQtpg6xem4O6PNC4b6X9SgSi6cVq6WUXwWwmkXoU5d5z68C+NVVtn/qcu8jHRh1VhfQlBbGU8oBqn0i9/WpwVIu1xZVe9lZHUU+XLyoHk2In2kV+XDu7AAmJ6FiQJL60RLYsUM58qS6WfS0WN1ZtNCEq7pznwsL5otJdbrRjhzR3186jX93/afwjr++C3/87wBfhEUpuESbkK3J29+uJu8MRZjt3JPAucIAkH8SUzMCo8klM5OtpgljQGqVtlhdnK8gYF61OYTQqwdBCCGEkOeeTrOUiT5cEEAAaJYqsBAVRbT1hGXPQ9YpI7eoVsJdvAhsSy6a6cO5LrB/P3DihHq9e7f+PjvE6ocfBq4bCwtYUqzedHBtZq9isMBikKjBs+sYc2bVNt0Bj2W1ZwbPnWv9np4lOlaTYnUyiZ2pBZw9JzA5LdTybBP7dd32chnASLbymtGZXR6J1bptK5tVg/J8vhWvYaxtRQXQkkkznYVMBm++4gE8NdOHRx9pYmdyVh17L58LhJC1I5k0JlQDQHrYR77m4fx54PhEoAos9uI9wbaVs7oKtcQEwMXzDbXiiGI1IYQQQrYqQgD/+l8DL3uZionTxffhJ2qo5NQKtuJiDSmnotffcl1k3TIWc8qfevEiMJ402Ie7/fb2cxNidShKy2IJDz0EXDsYpgf0Yh+ZaEGxuleJYkB0BdBkEkIAA0EZ440Jta1zhi8ukVBZr6vHXp7J2rmz+7WhGJAjAxN45HiAY6cDHMhOmxMpd3XUIe1lJ1U6rW5ipVJ7IkDXWW1Zah9Smp1cAJRY/Z73AB/4gJn9BQEgBF40+gTe+54mXr7z0dY2QgjRJpWCJSTe8IcvhSeqyuXSi85qIeC6EtWmHS5HVWK1MVcOIYQQQshG5YYbgNe/3kwND9+Hl6ijkq8BAGampSouqO2sLrUWzF+csjAeGOzD3XorMD6uxHoT4/ogUJ/BUlU5q7On1HaK1ZsOitW9iqkIhPFxAMCAk8d4JSzaZ0Ks7iwmlUj0dsGfTvEXMHORTKVw68gpfOOJQRy/mMT+zIw5UfWGG9Tj/v3A9deb2edaIEQ7h+rkSfVoQlyP2lIkVpt0Kh86BPT3m9mXZQGpFO7a8Ti+/o0EfnDfdxgBQggxRyqFsSAHS9bxiTf+JQK71rMdcccRqDYSrYI/FyakcuUws5oQQgghxAyhs7q8ZFCsDp3VuaXQWT2dMNuH8zzg/vuBn/opM/tLpZCyK/jmYxl85zvA1UEYMdKjfWQSnx4sK0/QaKjiREKYyZdOpXDn+OMYE1NqfyZO5KuvBv7+79Xzq67qbffU0JD6u6OquYac1f1eCXN5B4fGFpSZ1pRQefPNwHXXbYxB/vAwcP58O4fKRMb24CBw9my7QFcvC8CZDF687Qn8zk+fxMBSEUiZiwAghGxx0mnsSp3Gke0n27FIveisBuAGCeWszueB/n5cvCDprCaEEEIIMUkQKLG60ACg0jhHdMXqdBpZt4QLOVUz6+KsjW3bFs2unDe58ri/H++57mP406++CC+/p4HUfAGwNXO7SU9CZ3Uv0umq1j2xhQB27MDvv/DD8O26ytM0cbHYv7/93ESxurWk0wEMqCKGuoSCwa3bz+GOXWfUNpMO4I1ysY0+1/NhVpQJZ/UVV3S/7mWxOp1G0q7hJ+/4nnrdy8dKCNlYDAzgZ2/8LH50z+eBxUW1rVfF6mQCtWaiVb/gwqSFcYrVhBBCCCHm8H34dg3lvIpinZmBclbrCMvptCqwGGVWz7mqD9erekR/P16x6yg++OI/xa++L8wuSacZxbkJoVjdi5gqrhjRmdlsIgIEUNEf992nhMU77jCzz7Xk5S9XIvW/+TfAwID+/sL/zc/e9Hn8yJEH1batKFR2TgIAwLXX6u/z6qvbz5NJc7Eda0G0SmFyUj32qJBECNmAWBYO7G0g45RVfYgeLuDqplxUmwlEgYcXpyzlrO7VgQ4hhBBCyEbD9+FZdVQKhsXqjhiQxYKNrFPuXcNBKqWc1OWy+gAARoBsUhgD0oukUsAP/ZC5Qd6ePe3ny4sN6vCKV6ivjcDzn6++TBGKkof9k4AVXhy3olh97bXAX/6ler5790rxOg7btrWf33OPuhn1KsvF6q3YBggha8fQEDA7q56nUj3rGnFTDqpTdkusPnHOxc7rFoDklet7YIQQQgghm4XIWV1sAgBm5hO4ws/rmRnSafS5JeQKCUBKyKZU3c1eFauFUGa2mRng3Dm1jWL1pqSHVaAtTDoN3HWXuf3dfDNQKinx+5ZbzO13K+O66qtaBebn1batKFSOjKhiCR/9KPCDP2hmn0IAP/MzwPHjwPd9n5l9rhWDg+pxYkI9bsU2QAhZO4aG2s97eOWGk3JRbdp44MEEGimgWpEYDZZ4TSSEEEIIMUUQwE/U22L1QgLD/ZpiteMgm2pgseJh/kJZFfQGelesBtRKeYrVmx6K1VsB2wbuvHO9j2JzIQQwNqYKAUave/mCvpZcc436Msnhw+qr1+l0gQM9LSYRQjYgnWJ1D3fE3YyHUjOBX/urg/jH/wTc/9pT6hu8JhJCCCGEmMH34SVqqBQbgJSYXnAwMr6kXQwxO2gjVw3w8z8PvPO276iNvRzlFsWEUqze1DCzmpC4dAqVQdCzy7PJGrJcrKaLkBBikg3irHYzHgo1F6enA/yv/wX8yPOOqm/wmkgIIYQQYgbHge9KlKsWUK3i/FwS48mcdk2TzKCDM/lBfOd7Am88+K1wY8bAAa8RFKu3BBSrCYlLp1DJAfnWZGQEsDouo2wHhBCTjI+3n3cWn+0x3KyPL104hNu2n8GrXw0MiTn1jR4W2AkhhBBCNhp+0kKp4aK5kEOlJlRsh6az2u1P4nR+EHffsgiRW1Qb+/oMHO0aMTCgHuuq0CT7m5sTxoAQEpdOESHKLiZbi0RCzeSGRcU4q0sIMcq+fcBb36omR/ftW++juSRONsDnJ67Cl1/6hwCeBxSL6hucwCOEEEIIMYaXsvGjn/kRnPytPPZlwyLcms5qZDLIumW87Mgk8HhBmbF6eVy7f3/361271uc4yJpCZzUhcel0Vr/iFet3HGR9ufJK9Tg+Dhw8uL7HQgjZXAgB3H57TwvVAPC8Fwb4+Mv/O25NPQpICRQK6ht0uhBCCCGEGOP7bpjGb77gf+O3/qQP1/SfVxs1ndVIp3EwO4XbBx9Xr7PZ3o443bu3+zXH4JsSOqsJicv4OHDzzWqJTA8vzyZrzA/+oCoGeeut3ZEghBCyRdi938buq88CuSawsNB2VlOsJoQQQggxxtWHajgy9TX82rHX4ZrsGbXRgLP6q/f+BsTkAfW6lyNAACWk33038LnPqcdeFtZJbChWExIXIYAf//H1Pgqy3gwMAHfcsd5HQQgh68vIiIpEmpwESiW1TXfwRAghhBBC2mSzEAL45dc9ihcuPQHYtvrSYWRE6b3Hj6vXvS5WA8B99wEHDgDXXbfeR0LWCNoACSGEEEKIHiMj6vHMGRUFEgRcbUIIIYQQYpJMBgDw9hsfxLZkzowxoDPeFAD6+/X3udbYNnDTTfpCPelZOIoghBBCCCF6RGL16dPqkcUVCSGEEELMEorVmJxUj7p51QAwOgokEu3XG8FZTTY9FKsJIYQQQogekVh96pR6ZF41IYQQQohZIrF6ako9mnBWJxLA2Fj7NcVq0gNQrCaEEEIIIXqMjqrHmRn1SGc1IYQQQohZsln1WKmoRxPOaqDbZHDokJl9EqIBxWpCCCGEEKLH2Fh3NfZIvCaEEEIIIWYYHOx+baqY9e23q37cm97U7bImZJ1gGjkhhBBCCNEjmQQOHgSefFK9vvba9T0eQgghhJDNRhAA27cDExPq9d69ZvZ7++3AzTcDrmtmf4RoQmc1IYQQQgjR5+qr28+vumr9joMQQgghZLNy8GD7+eHD5vZLoZr0EBSrCSGEEEKIPnfcAQwNAXfeyQEPIYQQQshasH17+/mePet3HISsIYwBIYQQQggh+mSzwK/92nofBSGEEELI5uXWW4GvfQ248UbAov+UbE4oVhNCCCGEEEIIIYQQ0uukUsAv/dJ6HwUhawqnYQghhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsO0JKud7HcEmEENMATq/3cTyHDAOYWe+DIJsSti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7TJ5fe6SUIzo76GmxeqshhHhQSnnzeh8H2XywbZG1gm2LrBVsW4TwPCBrB9sWWSvYtshawbZFyNrRa+cXY0AIIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSre4s/Wu8DIJsWti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7eur8YmY1IYQQQgghhBBCCCGEkHWHzmpCCCGEEEIIIYQQQggh6w7F6ssghNglhPiiEOJRIcRRIcS7w+2DQojPCiGeDB8Hwu1XCSH+SQhREUK8d5X9JYQQ3xFCfPIyv/PTQoiF5T8jhHiXEOIpIYQUQgxf5v37hBAPhD/7l0IIN9z+YiHEt4UQdSHE6+J+JsQMm6xt7Q7/lu8IIR4SQrwq7udC9NmgbWvVnxNCvFQIsSiE+G749f44nwkxwwZtWx8SQhwTQjwihPigEMIJt78pvF49LIT4uhDi+rifC9la9Nh5sGr7XuX9l7p/s2/YQ2yytsW+YQ+xQdsW+4YbgA3attg3JBsCk+eXEOJU2La/K4R48DK/8xXh+fGUEOLnOrY/53okxerLUwfwHinlEQAvAPBOIcQRAD8H4PNSyisAfD58DQBzAH4awG9eYn/vBvDY0/zO3wDwllW2fw3A3QBOP837/zOA35FSHgQwD+Bt4fYzAP4fAP/rad5Pnhs2U9v6JQB/JaW8EcAbAPzB0+yHrC0bsW1d7ue+IqW8Ifz6lafZD1lbNmLb+hCAqwBcCyAA8GPh9pMAXiKlvBbAf0CPZbSRnqaXzoNLte/lsG+4MdhMbYt9w95iI7Yt9g03BhuxbbFvSDYKps+vO8Pr5s2rfVMIkQDw+wBeCeAIgDeGvw9YBz2SYvVlkFJekFJ+O3y+BHXh3AHg+wH8WfhjfwbgX4Q/MyWl/BaA2vJ9CSF2Ang1gD95mt/5eQBLq2z/jpTy1OXeK4QQAF4G4H+vcmynpJQPAWhebh/kuWEztS0AEkA2fN4HYOJy+yJry0ZrW8/m58j6skHb1qdkCIBvAtgZbv+6lHI+/LFvRNsJeTp67DxYtX0v+x3sG24QNlPbAvuGPcVGa1vhz7FvuAHYoG2LfUOyITB5fj1DbgXwlJTyhJSyCuAj4e9aFz2SYvUzRAixF8CNAB4AMCalvBB+6yKAsWewi98F8LNY2wHBEIAFKWU9fH0OqjGTHmYTtK37AbxZCHEOwKcA/NQaHgd5FmyQtvV03CaE+J4Q4u+FEFev43GQDjZa2wqXeL4FwKdX+fbbAPz9c3EcZHPRK+fB07Rv9g03IJugbd0P9g17kg3Stp4O9g17kI3Wttg3JBsJA+eXBPAPQoh/FkK8/RI/swPA2Y7Xz7bPaLTPSbH6GSCESAP4KICfkVLmOr8XzsjJp3n/awBMSSn/ee2OkmxENknbeiOAP5VS7gTwKgB/LoTgtWWd2SRt69sA9kgprwfw3wB8fB2PhYRs0Lb1BwC+LKX8yrJjuRNqQPK+5/BYyCagx86DVds32ZhskrbFvmEPsknaFvuGPcgGbVvsG5INge75FfJCKeVNUBEf7xRCvNj8kZqFnYanIZxx+yiAD0kpPxZunhRCbAu/vw3A1NPs5g4A9wohTkFZ6V8mhPgLIcTzRbs4xL0xj+8z4fv/BMAsgH4hhB1+eyeA83H2S9aeTdS23gbgrwBASvlPAHwAlwzdJ2vPBmtbl0RKmZNS5sPnnwLgXK6gA1l7NmLbEkJ8AMAIgH+77Gevg1pq+v1Sytk4v49sTXrpPFitfbNvuHHZRG2LfcMeY4O1rUvCvmHvsRHbFvuGZKNg6PyClPJ8+DgF4P8AuFWoAo7R+fUOqHv4ro63PW2fcS37nPbT/8jWRQghAPxPAI9JKX+741t/A+CtAP5T+PiJy+1HSvnzAH4+3OdLAbxXSvnm8Ns36ByjlPKeZcf8RQCvg7rIP+2xkfVhk7WtMwDuAvCnQojDUAOSaZ3fTeKzEdvWpRBCjAOYlFJKIcStUBOs7DiuExuxbQkhfgzAPQDuklI2O7bvBvAxAG+RUj6h8zvJ1qKXzoNLtW/2DTcmm6xtsW/YQ2zEtnWZ97Nv2ENsxLbFviHZKJg6v4QQKQCWlHIpfP5yAL8ipTyLjvMrFJmvEELsgxKZ3wDghy+37zXtc0op+XWJLwAvhLLUPwTgu+HXq6CyWD4P4EkAnwMwGP78OFQuSw7AQvg8u2yfLwXwycv8zq9AdeZK4fvvCbf/dPi6DlWk5E8u8f79UIUCngLw1wC8cPst4fsLUDf0o+v9+W7lr03Wto5AVYf9Xvh3vHy9P9+t/LVB29aqPwfgXQCOhm3rGwBuX+/Pdyt/bdC2VQdwvON43x9u/xOoCtXR9gfX+/Pl18b46rHzYNX2vcr72TfcAF+brG2xb9hDXxu0bbFvuAG+NmjbYt+QXxviy9T5BXWv/l74dRTAL17md74KwBPhOfKLHdufcz1ShG8khBBCCCGEEEIIIYQQQtYNZlYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYQQQgghhBBCCFl3KFYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYSQLY8QYkgI8d3w66IQ4nz4PC+E+IM1/L0vFULcvlb7J4QQQgghZCNhr/cBEEIIIYQQst5IKWcB3AAAQoj7AeSllL/5HPzqlwLIA/j6c/C7CCGEEEII6WnorCaEEEIIIeQShM7nT4bP7xdC/JkQ4itCiNNCiB8QQvy/QoiHhRCfFkI44c89TwjxJSHEPwshPiOE2BZu/2khxKNCiIeEEB8RQuwF8A4A/yZ0cb9ICPFaIcQDQojvCCE+J4QYe5a/+1TH9m8KIQ6uywdHCCGEEEJIDChWE0IIIYQQ8sw5AOBlAO4F8BcAviilvBZACcCrQ9H4vwF4nZTyeQA+COBXw/f+HIAbpZTXAXiHlPIUgD8E8DtSyhuklF8B8FUAL5BS3gjgIwB+9pn+7o6fWwy3/x6A3zX89xNCCCGEELJmMAaEEEIIIYSQZ87fSylrQoiHASQAfDrc/jCAvQCuBHANgM8KIRD+zIXwZx4C8CEhxMcBfPwS+98J4C9DN7YL4OSz+N0RH+54/J1n/RcSQgghhBCyTtBZTQghhBBCyDOnAgBSyiaAmpRShtubUEYQAeBo6JS+QUp5rZTy5eHPvBrA7wO4CcC3hBCrGUf+G4DfC53RPwHAfxa/O0Je4jkhhBBCCCE9DcVqQgghhBBCzHEMwIgQ4jYAEEI4QoirhRAWgF1Syi8CeB+APgBpAEsAMh3v7wNwPnz+1pjH8PqOx3+KuQ9CCCGEEEKecxgDQgghhBBCiCGklFUhxOsA/FchRB9Uf/t3ATwB4C/CbQLAf5VSLggh/hbA/xZCfD+AnwJwP4C/FkLMA/gCgH0xDmNACPEQlBP7jbp/EyGEEEIIIc8Vor16kBBCCCGEELKREUKcAnCzlHJmvY+FEEIIIYSQZwtjQAghhBBCCCGEEEIIIYSsO3RWE0IIIYQQQgghhBBCCFl36KwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLuUKwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLu/F9cCxj9aYoWTAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(25,6))\n", + "plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for training data: 1.7195710200875551 %\n" + ] + } + ], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAADSCAYAAAAL37fDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABSYklEQVR4nO3dd3hU1dbA4d9Kofei0qSJ9B6KKIiIgKCoIIoFbAjYr+Varvez92vFhogNRJCqgCC9inRCB+kSpPciqfv7Y53AgAmkn0my3ueZh5kzM2f2HJKTdfZee21xzmGMMcYYY/wV4ncDjDHGGGOMBWXGGGOMMUHBgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwRSHJSJSKiILBOR8d7jb0Vki4hEercG3nYRkX4islFEVohIo4B93CUiG7zbXRn+bYwxxhhjsqmwVLz2MWAtUCRg27+dcyPPet21QDXv1gz4HGgmIiWAF4EIwAFLRGSsc+5gWhtvjDHGGJNTpCgoE5HyQCfgdeCJ87z8BmCQ06q080WkmIiUAVoDU5xzB7x9TgE6AEOT21GpUqVcpUqVUtJEY4wxxhhfLVmyZJ9zrnRa35/SnrIPgaeBwmdtf11EXgCmAc8656KBcsD2gNdEeduS256sSpUqsXjx4hQ20RhjjDHGPyKyLT3vP29OmYhcB+xxzi0566nngBpAE6AE8Ex6GhLweb1FZLGILN67d29G7NIYY4wxJuilJNH/cqCziGwFhgFtROR759xOp6KBb4Cm3ut3ABUC3l/e25bc9jM45wY45yKccxGlS6e5B9AYY4wxJls5b1DmnHvOOVfeOVcJ6A5Md87d6eWJISIC3Ais8t4yFujpzcJsDhx2zu0EJgHtRKS4iBQH2nnbjDHGGGNyvdTMvjzbEBEpDQgQCfT1tk8AOgIbgRPAPQDOuQMi8iqwyHvdK4lJ/6kRGxtLVFQUJ0+eTEfTTb58+Shfvjzh4eF+N8UYY4wxgOgkyeAUERHhzk7037JlC4ULF6ZkyZJoJ51JLecc+/fv5+jRo1SuXNnv5piz7NsH4eFQtKjfLTHGGJMaIrLEOReR1vdnu4r+J0+etIAsnUSEkiVLWm9jEFq7Flq2hCfOV3jGGGNMjpPtgjLAArIMYMcw+MybB7ffDqNGwcaNsH693y0yxhiTlbJlUBYsfvrpJ0SEdevWnfN1H374ISdOnEjz53z77bc8/PDDaX6/8dnBg7B6NcTEJPuSsWPhX/+CceOgVi145RV44YWsa6Ixxhj/WVCWDkOHDuWKK65g6NBkFyUA0h+UmWwsPh7eew/69YMnn4QBA2DJEoiOPvWSL7+EDz+ESZOgfHndduWVcPgwREb60mpjjDE+sKAsjY4dO8bcuXP56quvGDZsGADx8fE89dRT1KlTh3r16vHxxx/Tr18//vrrL6666iquuuoqAAoVKnRqPyNHjuTuu+8GYNy4cTRr1oyGDRvStm1bdu/eneXfy2SwefNg717N3I+J0YBswAB48klc/y94pc8Ofp0Qz4QJULz4mW999VX473/9abYxxpisl56SGP7r0ydz9vvFF+d9yc8//0yHDh249NJLKVmyJEuWLGHhwoVs3bqVyMhIwsLCOHDgACVKlOD9999nxowZlCpV6pz7vOKKK5g/fz4iwsCBA3nnnXd47733MupbmawWFwcTJuj9u++GypVh2TJYsoT4jVt4qF8NQmUDw698i9BvakHjxlCvHuTLB0CTJpAnj8Z1LVr49zWMMcZkjewdlPlo6NChPPbYYwB0796doUOHsmXLFvr27UtYmB7WEiVKpGqfUVFR3HrrrezcuZOYmBgrV5HdzZ0LBw5A2bIacIlA27b8fXlbbu8WQ0Tz7fyn+ihkc4yOU0ZGQlgY1K4NrVpBnTq8+io8+ihMnapvN8YYk3Nl76AsBT1ameHAgQNMnz6dlStXIiLEx8cjIjRp0iRF7w+c+RhYluKRRx7hiSeeoHPnzsycOZOXXnopo5tuskpsLEycqPc7dz4VUR04AF26QM+eebj33qrA03Do0KkeNDZuhOXL9XbTTdRu356yZYWpU+Gaa3z7NsYYY7KA5ZSlwciRI+nRowfbtm1j69atbN++ncqVK1O/fn2++OIL4uLiAA3eAAoXLszRo0dPvf/CCy9k7dq1JCQkMGbMmFPbDx8+TLly5QD47rvvsvAbmQw3Z44GWxUqQIMGAGzfDh06wL//DffeG/DaYsXgqqvgqafg7bfhuus0iBszBoYO5aUXEnjpJQjiOs/GGGMygAVlaTB06FBuuummM7Z17dqVnTt3cvHFF1OvXj3q16/PDz/8AEDv3r3p0KHDqUT/t956i+uuu44WLVpQpkyZU/t46aWX6NatG40bNz5v/pkJYjExp3vJrr8eRFi1Su/26wedOp3jvUWL6gt799ahzFmzqDr5c+rVjufnn7Ok9cYYY3yS7ZZZWrt2LTVr1vSpRTmLHctMMmUKjBwJFSvCc8+xcZPQrRsMGwbVq6diPxs3wmefwfHj7ChehxsnP8j8RaGEhmZay40xxqRDrltmyZigFh2tBcfgVC7ZoEHw3HOpDMgALrkEnnkGSpak3MFVXJlnHsO+OJzhTTbG5C779uk8pIEDYcUKv1tjAmXvRH9jgs2MGXD0KFSpArVr4xyMH6+xVZpceCE8+yx88gnPnhzDNS9V5pY2+wivUTVDm22MyQEmToTffoOePYmveilbt8K6dXpbu1b/PXYMSpWCmjXh4ou1pvWUKX433CSyoMyYjHLyJEyerPe9XrIVy6FaNShYMB37LVIEnnySUgMG0HlVJF/3PUqfD45Aw4YZ0mxjTA6wcSNHR/xKn9l3sH5Aflzpk1SukY+aNaFGDV0lpHp1KFz4zLdNnKiTkCpU8KfZ5kwWlBmTUaZNg+PHNQqrUQOAH3+EW27JgH3nzQsPPcQTeUfQ6rkr6PnpO+S/o4vO2jTG5G4xMfDdd0z8szblS59k0FVvEJY/HB57DKqeu1f9zjthyBDtkDf+s5wyYzLCiROnxwC8XjLn9Cq0Y8cM+oyQEIrefwt33niMz1e30pkDI0darQxjcruff4Y9exi7pzndP7qMsMuaaH5rv36wZcs533rzzXYaCSYpDspEJFRElonIeO/xEBFZLyKrRORrEQn3trcWkcMiEundXgjYRwfvPRtFxOJyk3NMmwZ//609ZJdeCmg92Jo1IX/+DPwcER76uCbf7evI0bj8GggOHKjFao0xuc+mTTBtGnGEsTK2Bg2bhOuybk2aaErFhx/C1q3Jvr1IEZ1TtGxZVjXYnEtqesoeA9YGPB4C1ADqAvmBXgHPzXHONfBur4AGdcCnwLVALeA2EamVnsb7JTQ0lAYNGlCnTh26devGiRMn0ryvu+++m5EjRwLQq1cv1qxZk+xrZ86cybx581L9GZUqVWLfvn1pbqM5j+PHdR0k0F4yz48/wq23ZvzHFSgAfR4vyIcFn9d1Mhcvhk8/1bU2jTG5R2wsfPcdOMdvFbrTonUeXTwkJEQrVDdurIHZRx/Bn38mu5uePWHQoKxrtkleioIyESkPdAIGJm5zzk1wHmAhUP48u2kKbHTObXbOxQDDgBvS1mx/5c+fn8jISFatWkWePHno37//Gc/HpfGP48CBA6lVK/k4Na1BmclkU6boia927VP5G85pZYz27TPnI3v1gtFzSrO/1zN6qbt2LXzzjY1BGJObjB0Lu3dDmTKMO3A5118f8FxICNx3n04IOnECPvhAM/qT0K4dTJ9uHe7BIKU9ZR8CTwMJZz/hDVv2AH4N2HyZiCwXkYkiUtvbVg4I/ImI8rZlay1btmTjxo3MnDmTli1b0rlzZ2rVqkV8fDz//ve/adKkCfXq1eMLb51O5xwPP/ww1atXp23btuzZs+fUvlq3bk1isdxff/2VRo0aUb9+fa6++mq2bt1K//79+eCDD2jQoAFz5sxh7969dO3alSZNmtCkSRN+++03APbv30+7du2oXbs2vXr1IpgLBGd7R4/q2QwIPCMuWgR162pHVmbIkwcefxze+b6srlie2GP2448WmBmTG2zerBeEInD33UyfGUKbNme9JjRUr+Dq1z8dmO3Y8Y9dhYXB1Vefnjxu/HPeoExErgP2OOeWJPOSz4DZzrk53uOlQEXnXH3gY+Cn1DRIRHqLyGIRWbx3797UvDXLxcXFMXHiROrWrQvA0qVL+eijj/jjjz/46quvKFq0KIsWLWLRokV8+eWXbNmyhTFjxrB+/XrWrFnDoEGDkuz52rt3L/fffz+jRo1i+fLljBgxgkqVKtG3b18ef/xxIiMjadmyJY899hiPP/44ixYtYtSoUfTqpSPIL7/8MldccQWrV6/mpptu4s9zdFubdJo8WRNq69aFypVPbR4+PHOGLgPdcYemsu0MqwAPPqhn1hkzTi/xZIzJmQKGLWnXjvXRlahYMZmLwLAwXbatbl1NtfjgA/jrr3+8rEcPGDw485tuzi0lJTEuBzqLSEcgH1BERL53zt0pIi8CpYE+iS92zh0JuD9BRD4TkVLADiCwEkp5b9sZnHMDgAGgyyydr3EdOmh14oxSqhT8+uu5X/P333/TwFtkumXLltx3333MmzePpk2bUtn7wzx58mRWrFhxKl/s8OHDbNiwgdmzZ3PbbbcRGhpK2bJlafOPSxuYP38+rVq1OrWvEiVKJNmOqVOnnpGDduTIEY4dO8bs2bMZPXo0AJ06daJ48eKpOgYmhY4c0SAIzsglS0jQC9jXX8/cjw8N1ZUCXn8dPvmkug5VDBigM7GKFIErrsjcBhhj/DFuHOzaBRddBNdfz9gPzzgF/VNYGPTpA59/DqtXw/vva9XYgLWXGzbUOQOHD+sSvMYf5w3KnHPPAc+BzqwEnvICsl5Ae+Bq59ypYU0RuQjY7ZxzItIU7Y3bDxwCqolIZTQY6w7cnt4vcL4AKjMk5pSdrWBAhVDnHB9//DHtz0oqmjBhQoa1IyEhgfnz55Mvs8bIzLn9+qtesTZooKWxPQsWQKNGWloss3XpAu+9p+fZ2o0awe23a9Gh77+HQoW0bcaYnGPrVu2hF4G77oLwcMaPhxEjzvO+8HB44AGdFLR2rQZmTz2lq4agu0ssj3HffZn+LUwy0lOnrD9wIfD7WaUvbgZWichyoB/Q3ZsPEAc8DExCZ3EOd86tTsfnB7X27dvz+eefE+tlTv7xxx8cP36cVq1a8eOPPxIfH8/OnTuZkdjTEqB58+bMnj2bLV59mQMHDgBQuHBhjh49eup17dq14+OPPz71ODFQbNWqFT/88AMAEydO5ODBg5nyHXO1Q4dg1iy9f0Z2rQ5dZkjB2BQQ0YoYPXrA3r1Aq1baHufgyy9hw4asaYgxJvPFxsK33+rv9zXXQJUq7NunvfMXXJCC94eHa6pDjRra0//eexCQ13zHHXpNZ/yTqqDMOTfTOXeddz/MOVf17NIXzrlPnHO1nXP1nXPNnXPzAt4/wTl3qfe+TB7c8VevXr2oVasWjRo1ok6dOvTp04e4uDhuuukmqlWrRq1atejZsyeXXXbZP95bunRpBgwYQJcuXahfvz63eslJ119/PWPGjDmV6N+vXz8WL15MvXr1qFWr1qlZoC+++CKzZ8+mdu3ajB49mosDenFMBpk4UUtQNG4M5U9PPE5I0Dyvq6/OuqbUqgVvvqmBYHQ00KmTBmdxcXpVHBWVdY0xxmSeX36BnTu1d8sbr5wwIZUFqvPk0cDs0kt1rPL993USAHoqCws7Z1kzk8kkmGfmRUREuMTZiInWrl1LzZo1fWpRzmLHMo0OHID/+z+Ij4cXXoCyZU89NXeuXsgOHJj82zPLp5/qrM9vvgFxCdpTtnSpJog8/bQmTBpjsqetW+Gtt/T+009DlSoAdOsGL72kFXlSJTpaA7KtW6FlS11vCZ0/sH07/Pe/GdXw3EVEljjnItL6fltmyZjUSuwla9LkjIAMMnCtyzR46CFNI3v7bU7XKKpeXa+GP/pIy3cYY7KfuLjTsy3btj0VkEVHa4bCOcpbJi9vXq38HxoKc+acSnXo0gVGj7bKOn6xoMyY1Dh4EObN02SuTp3OeCo+XtPMkphQm2U+/FDbMHo0Og7x4INQoYLmjXz8sRa5NcZkL7/8omUsLrwQbjhdc33WLGjdWk9HaVKmDFx7rd4fPBji4ihcWIO8hQvT3WqTBhaUGZMaU6acziW76KIznpozBy67TGMhv4SF6Trlb74JS5aghYsefRRKl4Zt26B/f1uOyZjsZNs2nekdMNsy0dix5ymFkRLXXqvB3u7dp2oc9uxpNcv8ki2DsmDOg8su7BimwZEjMHu23k+8ugyQlbMuz6VoUR1Gve8+r3h3kSLw2GOnl2NKnL1ljAluicOWCQnaBe8t4wb6KzxnjqaDpUtYmE7fBg3Kdu7k6qv1VBcTk859m1TLdkFZvnz52L9/vwUV6eCcY//+/VbfLLWmTtUp6fXrnzHjEvTcOXcuXHmlT207S5Uq8MknmgR8/DjaU5a4HNOiRbowpzEmuE2dqldWpUvDjTee8dSKFTrMGNBxlnbVqmmx6fh4GDKE0BBH+/a2OIgffBxoSZvy5csTFRVFsC/BFOzy5ctH+bMCC3MOx4/DzJl6P4n557Nm6TnNz6HLs11xBfTtqyMew4dDSIUKcP/9mls2aZImo1hgbkxwOnHi9MXTHXdoKYsAY8f+o0Ri+nTtqpHehg0wdy49erTklVfOSGEzWSCI/oSkTHh4+Knlh4zJMtOn61SnWrWgUqV/PD18uBbTDzY9e8K6dVrB4/XX0XnzVavqeiqzZ0O7dn430RiTlKlTNTC79FIt9nqWiRM1/z/DFCigC/Z++SWMGkW9l+uxfXtRDh4EW6kv62S74UtjstzJkxqUQZK9ZLGx8PvvwbvU5GuvaWA2aBBnzhqdMkUbb4wJLseOaVAGOmx51vTKv/7STu4MD5YaN4Y6deDvv2H4cG65RS84TdaxoMyY85k5U69Yq1XT21lmzNCRwNDQLG9ZioSEaEDWv7/mvVGrFlSsqBMX5s71u3nGmLNNmqQ983XqnJHcn+iXXzJ46DKRiHb558kDixdze8O1tuxSFrOgzJhziY7WHiX4R12yRH4WjE2pggV1weKHH4bNW+T07NFJk6xEhjHB5PBhvdKDZOtdZHg+WaCSJU8lkpWZMogC+RLYtCmTPsv8Q7bLKTMmS82dq0MJlSolmdcRE6OTGb/8MuubllrlysHXX0P37jBrZgPyly2r4yALFsDll/vdPJPdOafrMq5cyfqZO4ncVJgLi0VzQdFoLigRR4mi8YTkDdfpguHh2hsTeL9KFf09S3Ml1Bxi4kRNK2jYUHu0z3LihP7aXnJJJrahTRs9L/z5Jz1qLGLw4Ga89FImfp45xYIyY5ITGwuTJ+v9Tp2S/GORuPh4SDbpc27USEsSvfqa8MaN18JXX+kfgcsuyz5fwgSP6GhNWFy5ElatgoMHWbG/HD1n3sOtVRaz8GRpdv9dhD1/F+ZAdEESCxmVyHucC/Mf5YL8R7kg/xEuyr+bJqXnUKt6PHJZc2jWLHeu1XrggBYfE0m2K2zqVF1pKVOFhOiJ4o03uPH4EK6Y1pAXX8yT6+PlrGBBmTHJ+f13OHRIa5LVrZvkS378Efr0ydpmpdeDD2o9tZW3RlC39FjYuxcWL4amTf1umgl2zsGuXbB6tQZiGzZobSvPmphL6LnwPkZ8+RfVIiL0wiYmRv+N3Q+xsSScjOHgAceefSHs3leQPfsK89fui3llcQPWTi9Fg+HbuabcWK6+/CRl29fV5PMCBXz80llowoTT6+qWK5fkS8aN0yUrM93FF8PVV1Nw6lTq513LvLl1ubylXbhlNgvKjElKfLwubQI64zKJS8ToaFi2DJo3z+K2pVNoKHz2GTz4UAgzX7+W0CGD9I9BkyY2dGSSFhWlPTgrV8L+/ae3i+iwY926/FGgAbf/qwxDJwnVapZIdlchQEnvVjNg+78SEkhYvZbIEbuZMrUEd317KQe/KMgVZefT9oporryjPIWb1gyuYoAZac8e+O23c/aSJSToqGL//lnUps6dYdkyepadxuC3SnB5ywpZ9MG5Vw796TYmnRYs0D8+F12kuR1JmDwZrrkme8Yx9eppGln/yOY8VHyc5gJFRib7XU0uFhUF77yjVyEAhQppvbu6dXUmb8GCbN4Mt3TRWb41a557d8kKCSGkbm0a1a1No/+c5JmlS/l7zlR+m5PA1N9q8NrIguQN30ab5ifo2KMkTTqXyZ6/fMn55ReNulq00LUok7BokaYgZNlM77x54fbbab3vE/41OoSTUfvIVz4XDitnoRT3RYpIqIgsE5Hx3uPKIrJARDaKyI8iksfbntd7vNF7vlLAPp7ztq8XkfYZ/m2MyQgJCafXF7n22mRzrYJlrcu0euEFGPhNKDsaeVflEybYmpjmTAcP6goQ0dG6vNhzz8H//gf33qs9qwUL8uefWgz+66812M8Q+fJBixbkf+ZR2g6+i7feFuY/OJhRV39KrcPzeOmR/Txx+QJip87SOoLZ3c6deiEYGgrXXZfsy8aNy4AFyFOrTh1CmkbQqcIKfnlhgZ0jMllqBogfA9YGPH4b+MA5dwlwELjP234fcNDb/oH3OkSkFtAdqA10AD4TkSCt7GRytSVLdCihVKlk86xOntSRnCZNsrhtGahAAXj7bXjkh8ugcGH4809Ys8bvZplgcfKkLqB66JDW5+vdW2dHBlyk7NihtU3799cenExRvDi0bw8vvECp1x6nW+8SjO/2HWUSdtCu50X89eBr8P33+vObXY0bp8FOy5ZakiIZkyf7tAjHLbfQo+5yBk0vp/mnJtOkKCgTkfJAJ2Cg91iANsBI7yXfATd692/wHuM9f7X3+huAYc65aOfcFmAjYJnFJrg4pz1GAB06JNtL9uuv+nciu4+etGsHBQuH8FPBO3TDL7/YlbDR3uIvv9ShywsugAce+Ecu1+7dWs6qXz+dLJnpRKBCBejWDXn7Lf79SUVevCGSjmP7MOvHXbqO2Jtval5W4lBrdrB9u14Ihoefrh+YhK1bNV4rVCjrmnZKkSLU6n0Fe/4uwr6vx2oPqskUKe0p+xB4GkjwHpcEDjnnEqtORgGJU0XKAdsBvOcPe68/tT2J95hgEh+vZ4B583RmXjLi4vTidN48nYU4dmzWNTHTLF+uRYCKF9cyEckYPlyXicsJ3n8fXhxTnyOhxXVNzA0b/G6S8ZNzMGyYlrgoVAgeeUSrDwfYt09z0d95x6flxcLCICKC1p/fyoSpeXlpc0/+t6YTbstWTWx75hn9Dn/95UPjUinxxHnllVCsWLIvGzcuEwvGpsTll3N36618uqgpDBhwxqxbk3HOm+gvItcBe5xzS0SkdWY3SER6A70BLr744sz+OAN6Vbl5M2zcqLfNmyEmht0nCrPp6AVElWnC9gsaE3WkCNu365BFdLSeF8uW1YoRFSro8pCxsZpfki0F9pK1b5/sLK+oKC3NlFNy4kuXhsefCOH5UX34uOxbegwuvdTvZhm/TJsGs2bpz/+DD2pPWYADBzTt6dVXtcao38o2uIDJkfDMvzvRNfJyvrlqEEX/WqdV8WfM0KHXVq10fDXYZm5u3gwrVmhCfYcO53zpuHFaVtA3ItzzeVOa1zzMA6tnccGYMXDzzT42KGdKyU/o5UBnEekI5AOKAB8BxUQkzOsNKw/s8F6/A6gARIlIGFAU2B+wPVHge05xzg0ABgBERETYOEpmOHr0dAC2YYN2nydoJ+j+kwUZsbk5w7a3QMLDqZV3ExV27qdCoZFENChFhX9FUDaiLPny/XO3ffroSbp27SSL3we/NWtg2zbNr0rm8v/wYQ06P/00+w9dBrrrLvj+u4tZcKg6zdau1Z7SSpX8bpbJasuWwUgvK+Wee/6x7uLhw5po/vzzet0SLMLD4f0PQxkxoiRt3nqcb97cRb290zR5fsMGvQ0frr/X58nbylKJvWRt2uh5JxlHjuixr+BzRYo8JQrx7PPHePXLTnycf5gGvPXr+9uoHEZcKvJHvJ6yp5xz14nICGCUc26YiPQHVjjnPhORh4C6zrm+ItId6OKcu0VEagM/oHlkZYFpQDXnXLJ9oBEREW6xJRWmn3N6RTZ/Pqxfr8kgAU7E52XcsasYsrEZe2OK0u22UG7tmU9rF+7fr+sj/vbb6TUS69TR2l1JLJS7YgXcd59eoPqS+5BWzumssk2bNOpKIps2JkZ7CPr2hS5dfGhjJvvjD+hx3QHmXvk84Q3rai+JyT22boV339Xu7htv/Ed+09Gj+vP/6KPB3Ru+bp0Wo3/0UejR7SQsXKg9f1FR+gIRLefRurWW9PDr6uqPP+C99yB/fnjjjXMWyB0xQkeTX345C9uXjIQEuKLuIQbX+x9VLzqhEXpuXH0hGSKyxDkXkeb3pyMoqwIMA0oAy4A7nXPRIpIPGAw0BA4A3Z1zm733Pw/cC8QB/3LOTTzX51lQlk6HDumV4m+/nRmIhYcTV7Eq005cxpClNVixtQjXdw7h9tvPUWPo0CFdmHv2bI1OAKpX1+CsevUzTmzff69d7cOGZaPepMQTZMGCeoI8qyvQOa2i3agRPPaYP03MCq/9XzTh0ybyTN2J8H//p2PTJufbtw/eeksjr8sv16gm4Jf3+HHtIevVC267zcd2ptCxY3D//Zqi9eGHkDePd2E6c6Ym1SfmQ5UurUObl1/+j7y5TOWcBsAbN+qB7dTpnC/v0UPPOxFp/lOfsaZPc3z5zEaGNn5X1+d8+ungGxr2SZYGZVnNgrI0iIvT7qp58/TSKvH/t0gRXLPmLAptzpAZZZgxM4Qrr4Tbb9eK9CkOno4e1eSx6dNP1weqUkWvquvWPbWjRx7RzY8/nvFfMVN88IFeYidzgvy//9M/TO+/70PbslBMDFxe8wDDmr5H1TaV9C+bydlOnNCM/Z079arskUfOqE66fr0GBf/6l54vsgvntKLHsGHwww8Ba3sfPQpz5+oF5oEDui0sTOvbtG6dNcP2q1frtNVkLgIDxcXpxWBkZHAtT3ttu3heK/c5jfOshKuugu7d/W5SULCgzKioKA3EFizQy0TQ3+D69aFFCw6UrUO3W0MoUwbuuEMXtA0PT8fnnTihV51Tp2q0Atqr0rIlREQQk6cQ7drBK6/ohWjQSkjQk/PQoXpifPPNfwwjDByoJTCGDw+uk2JmmffrEV7uHcWv1/ZDXnk52eriJgeIi9PgYP16nbXz9NM6nOb58UetZff119CggX/NTI958zSgrFQJevbUXLjwcPR3f9UqPY+tXn36DRUrnp4YkBlrbjqn55lt25JNlQg0ezYMGQJffJHxTUmPyEh4+pG/mVTnSSQhXi/ggqUrz0cWlOVmJ05ovsRvv51ZOLFcOV2qo1kzKFyY7ds1B+qll87bS5560dG6Jt7kyZqJChq51K3LX1Vb0vHpOkyYKJQtm8GfmxE2bNC/Otu9Si033KDDsQEmTtQ/ShMnnvG3Ksd74Oo/uNzN5c67QnUWgMl5nNPyEfPmQZEiWq2/hK5ZGR0NTz2lnWdffQVFi/rc1nRyToOIQYN0cunVV+uP9alAc88ePY/99tvpi8zQUO05bNJEL24z6gSwfLkuPlukiNZWy5PnnC9/6intiMrwc3cG6NEDetSNpN2mz/Wi9j//yfUXcRaU5VY7dmiyxJEj+rhAAa0+36IFXHzxqWHE1au1Z6x//0xeODs2VmduzZ+vsxi9n6tZB+ry4qpuTB51lDw1qwZHktn+/TB69OnK1MWL6xVrRMQZ7Vu6VC/+Jk8OnslaWeXQxn1c2ewk067/kFLvPZf7DkBuMGEC/PyzBgVPPXVqfG/bNj1n3Hyz5jEFw69sRoqN1Z7vQYP0u956q37fiy7ynly8+PSkqMS/j2FhOq08IkLXkjrHcGOy4uI0t/err/T83b27RlvnsG2bXicuXhycF4Vbt0L37o55d39JyLIlOlry7LPpHIbJ3iwoy422bYOPPtIrukqVdCyyQYN//CLMmwcPPaT5FGleJDgtjhzRHrz582H7dt5f0ZZtx0rwUefpGhk2a/aP2kdZIjpaz8ZTpujJNzxcxzLat//H1eq2bdpxNmpUkpNMc4WRD07nl2n5+ObFrdkrmcic35IlWgBURKv1e2UNJkzQzo7PPtPru5zuwAHtLP/hB+246tlTf+/z5UNzz5Yu1Yhow4bTAVp4uObPRkToTPS8ec/c6cmTsGuXdjMm3nbt0kLcifsoXhxee+2cyfEjRmhH2qef6jyEYPX449Ckfgy3b3pVexyvuEK70HIpC8pym82bNQfk77/1iq137ySvSsaO1d/50aN9nkD311+43+fT/fmq3FBuEbdfski3V6miJ7WKFbWBabnyTCnnNEgcPVpnkYIOSXTtqifHsxw8qGken36a7NKXuYL7ayc3ttjNY/Vn0ea7u85ZbdxkI3Fx8N//6g96t27Qti1xcfDiixqDDB6cOyscrF+v333cOL12vPde/f0XQVMzli6FRYu0bE6iPHn0PFykyOkALPEcczYRne1ZpozWFkmmOPrx45oDd+SI5pEF+6/dvn3aL7BgVBR5339Tf77uuSeTh2aClwVluckff+h0ouhoTUK9774kr7S++krLUowenWTM4YujhxNoc0U0X98yibp7p/9zbbrSpU8vDZD4b/Hi6R872bpVL4U3b9bHFSvqeEUy3V/R0Tpc8NhjOhEzt9v+xmBu+ehyfv96bXAmtZjU++03HbsrUwZefJFdu4U779Tc9uefP2PiZa6UkKB1Fr/+WgO17t214+dUqtTBg9rTuHgxbNnyzx2EhelY6EUX6TFOvF1wwXnLRixfrqf1Bx7QoDC7DB2//rrWpXys8VyNbPPk0S7XMmX8blqWs6Ast1izRscUYmN1+O/uu/8xFdA5nV29aJFOJgy2HIR16zR3Y9qEaIptjdQNUVG6Pl1iYdpABQqcGaiVKKF/MUJD9buffT9w28mTMH68DqGCXsnedJOuZ5nMmS4hAe68U3vfrW6qZ/VqulwXwyvt5lKn/8PZ56+ESVpCgnaJ7dkD997LrJPNePRRLdHXtq3fjQs+hw5pSY3Bg/W68d57tfrPqcGJ/ft1BkF8/OkgrGTJVE/Tdg4+/liHUb/9NvutiHL8uA53z57lKDrmWz3vlimjk0fOHt7N4Swoyw1WrNB+7Lg4TS64885//NLHx2uXd3S0xm7BWsdv1Ci9SB8zJuArxMdrAuz27Rqkbd+ut8TSHukRFgbXXKPryp1niPTZZ/Xk+Pbb6f/YHCMhgVE3fc/iP0vz5ugaULmy3y0y6bFoEQwciCtZineKvMrEX0MYMkQnbJtzW7kSvvlGqwC1b68BWkbk6u7dq/u65BKt35tdY5gBA/S0/ep/o7Xkx86dOoR599256mLOgrKcbulS+PJLvcJt3Vr70s/6AY+O1u71GjV0GY5g//l/+mnNk/jPf87xIuc0jyMxSIuK0iSLhAQN4hL/Tep+4q16dc0bO0eCjHM6EWrIEL3gHTIkd9QiS42TQ0bR7NGmLOs3l5A7skE5d5M053QV8R07mF7zIT6eVY/hw3P1RLk0iYmBX37R4c2DB7W0RocO2pmf2nPv1Kk68fWNN/5RjSfbiYvTQZzx46EMO/VLxcTo7IlgnqmQwdIblAVpf4oBtBDsN9/oybRdOy02dtZv/ZEjGnd06aJ5CNnBG2/oEEChQnqFHhZ2+hYamnhfCA0tRlhYMcIuqkNoOS1+XaKE1kxKbeCUkKCl3NasOX1bt07nS5QrBw0b6rCBBWT/lK9VU5qU3sbcn/fT6ta44O2GNee2YoVegRQrxvtT6vDGmxaQpUWePJoJcdNN2hk0eLCmO0RF6ZriderorW5dvSWVqB8bq6uELFumNRBzQupVWJjmJL7yCnz+uVel/JtvtOp27drBP2MhSFhPWbD67Tf9bXdOE6yvv/4fAdmmTTqS+eSTWlMoO9m7V39fY2O1gysuTm+B9wMfx8ZqrdwDBzTPwzk9HGFhOh+gRIkzb8WK6Sz0NWs0WTc2VnP8a9U6fatePXMKduc4zjHznu8YuqAKXwwreqp8gslGnNOxsa1bWdvsbv7142VMmuR3o3KeI0d0kYCVK/W2apX2ppUrdzpIK19eJ7/ecIOeu3PShaBzOmFk4ECofqmDzz/X2Qv162uvQbAP42QA6ynLiWbO1Ex9gBtv1G4lz549Wr/mxx81kf+dd3Rlo+ymdGkdxkyv2Fg96R04oLfE+wcPavpTp05QrVrmVtzI8URo1b0sj42rTPTsieS1oCz7WbdOZyIXKsQHvzXliSf8blDOVKSIJrwH1nhzTucyJQZqs2bpUrtNmvjXzswiojMxn38eRo4UrW+4fr0GZsuWadUAc04WlAWbKVNg5Ei9f8stcPXVHDkCP/2kcdrRo7p5+HCvAnUuFx6uM839qEWbm4Q0b0qHCguYOMFx430nrIsxu5kwAYA9ER2J/CCULwb63J5cRER7ysqV09yznK5VK/jf/3QCZvPmxTS35ocf9A9YjRp27jiPHNRxmgNMnXoqIDt5852MOXI13bpBmzaa6/7JJzB3Ljz6qAVkJosVK8Yd7fby/fqI08tTmexh0yatcZg/P5+tapVbRpGMj958UydyOYdGaVWr6tju6NF+Ny3oWVAWLI4exf30M1OjanDvjldo9lRLFizQZNBFi7Q7OLcu92OCQ70ul7DtWEkOzVjmd1NMani9ZH+3uJox48NtxSyT6erU0RzeiRPRK4AePTQBeM4cvUAwybKgLFhMn86YP2rz7uYu3PvshSxbpnm59erZVa0JEg0bcvMlyxk1vbjO1DDBb/t2zTbPk4fBu67hlluybx0sk728/DK89JJXF7xMmdO50YMHazKwSdJ5gzIRySciC0VkuYisFpGXve1zRCTSu/0lIj9521uLyOGA514I2FcHEVkvIhtF5NlM+1bZzcmTMGMGn69pxSefaEX5nDQjx+QQefNyW5doftjYVMu1mOA3cSIACVe04ovv8tG3r8/tMbnGxRdr/nOfPt4wZocOULaszlb75Re/mxe0UvKnPxpo45yrDzQAOohIc+dcS+dcA+dcA+B3IHCweE7ic865VwBEJBT4FLgWqAXcJiK1MvC7ZF+zZrF+ZxHCCuXnkqsr+t0aY5J1cae6OCBq8hrvTGuC1q5dWnw6LIwJ7lqaN9cVgIzJKk8+qXUln30WHb7s0UOHfiZN0sJu5h/OG5Q5lbjeTbh3O3U2FpEiQBvgp/Psqimw0Tm32TkXAwwDbkhLo3OU2FiYMoX+a1rR96FcvhKwCX7Vq3Nb3dUMXVj19CLvJjj9+qsGzi1a8OHAQjz+uN8NMrmNCLz7rl4fvPsuUKWKrkyTkKDDmAkJfjcx6KRokExEQkUkEtgDTHHOBY5d3AhMc84dCdh2mTfcOVFEanvbygHbA14T5W3L3X77jRMHTzJ9X1069a3gd2uMObeQEG6+LZwRmxudXuzdBJ/9+3WIOSSEpRd1pHBhXVvRmKwWEqLFZOfM0VVTuPFGrfi9dSvMmOFv44JQioIy51y8N0xZHmgqInUCnr4NGBrweClQ0Rvu/Jjz96CdQUR6i8hiEVm8N6cnE8fHw6RJ/LipCTffGE9YuGX0m+BXvG1jyhc8xMpfd3hZvCboTJqkvRBNm/Le18V58km/G2Rys/BwGDYMvvsOfp6Uj1NTgH/+WS8gzCmpSid3zh0CZgAdAESkFDos+UvAa44kDnc65yYA4d7rdgCBXUHlvW1nf8YA51yEcy6idOnSqfs22c3ChXDgAAM3XUWv/8sBi5+Z3KFcOe5svpEhK+tpiXITXA4f1mXagO11O7JtW65aD9oEqfz5YcwYrWE262A9iIiA6GgYMsTyUwOkZPZlaREp5t3PD1wDrPOevhkY75w7GfD6i0S0iIOINPU+Yz+wCKgmIpVFJA/QHRibgd8le0lIgIkTWbL3YspWK0iZstZLZrKPjj1KMnF7bRLm2RBm0JkyRXswGzak348X8uijVlbHBIdixTQwe/xxWFbjNq3uv3q1FuM0QMp6ysoAM0RkBRpYTXHOjfee686ZQ5eggdoqEVkO9AO6e5MF4oCHgUnAWmC4c251RnyJbCkyEnbv5vPN7XjguWJ+t8aYVMl3eWOaXrCNOVNOwvHjfjfHJDp+HGbPBuDIFR2ZMkVXuTEmWJQpo+s33/NIITY2v1M3/vgjHDt27jfmEimZfbnCOdfQOVfPOVcnscSF91xr59yvZ73+E+dcbedcfedcc+fcvIDnJjjnLnXOVXXOvZ6xXyUbcQ4mTuRQdH6WnajBVW1t1qXJZooW5Y62uxmyPsKucoPJtGk6JFS7Nl9NuZi77tJKBMYEk6pVNb/slrcbsbNsYw3IRozwu1lBwUqU+mHNGvjzTwZtb02PPgVsaMFkS63uqMD8PZWJ/s3WwgwKXhFqgLh2Hfn2W7jvPn+bZExy6teHjz4Sbvz5Hg7GF9HZ3GvW+N0s31lQ5oeJE3EOBm2/irvutV4ykz2FNGrAtZXWMWFWQdi92+/mmJkz4cQJqFaNUcsvoV07KFLE70YZk7yWLeG/L4dz08LnOBEXrkn/0dF+N8tXFpRltY0bYcMGZh2oS73LClK8uN8NMiaN8uThjptOMMSWXfJfTAxMnQqAu7Yj/frBo4/63CZjUuD66+HeJ4px69xHid1zAH76ye8m+cqCsqzmrUX3+a6beOBhS/Yw2Vu9my9l27GSHJoZadPa/fT773D0KFSsyNz9NalUCSpYLWqTTfS8O4SrbilNr9l34aZNh3Xrzv+mHMqCsqy0fTusWsWu2JJsj72IJk38bpAx6VS9OjfXWsuoJZW0F9j4Y543n6ptW957X6xYrMl2nni1OAnlyjN2W32dBfD33343yRcWlGWlX3Wi6ld/38Z9vS2XzOQAItx+h/CDDWH6Z9cuXbImXz42FGzA0aPQqJHfjTIm9d4dUpYXV3blxJ6jMHy4383xhQVlWWX3bliyhHgJY/jKWnTv7neDjMkYFa6rjwO2z9gIsbF+Nyf3SVyDtHFjPvg0jy08brKtC8uE0Ovh/Ly+/Hrt/Y2M9LtJWc6CsqwyaRI4x4QCN9P66lAKFvS7QcZkkDJluL3pJoauqgsrVvjdmtzFuVM9lPurt2DBAujY0ec2GZMODzxThOknmvPHoQvg++81VzIXsaAsKxw4oIm4IvRf2YK+ff1ukDEZ6+a7CzFyS6PTvTYma2zYoOeXEiX4fHJV+vSBEDurm2wsNBQ++KoIjy6/D3fkKAwenKsmEdmvb1aYMgUSEthSsTXRLi81a/rdIGMyVrE2jahQ6BArZx3IdVe2vvr9dwBiIy5j+AihRw+f22NMBmh+mVCh6UWMjGoOy5fnqos9C8oy29GjMGcOAF9EdaRPH5/bY0xmKFyYO9rsZMgfTWCxVfjPEjExsHQpAOMOt6J9e8if3+c2GZNB3nw/H69tuIWjMXlh2DDYv9/vJmUJC8oy27RpEBtLdM0GTJxbhBtv9LtBxmSOjvdcyMTttUmYl3uuan21fLkurVSpEgOGF+P++/1ukDEZp1QpeOipArwSda/+nH/3Xa4YxrSgLDP9/feptehG0YXOnSE83Oc2GZNJ8jWtR9My25kzPxyiovxuTs7nDV1uqdia2Fi49FKf22NMBut1v/D7sTqsjr4E1q+H6dP9blKms6AsM82erRF+9eoM+OlCevf2u0HGZKLwcO7oclJrlk2Z4ndrcrYjR3Tx5pAQBi5rbL1kJkcKCYGPPgnjkTV9tZNszBity5eDWVCWmRYuBGBlxesoWtSWPTE5X8uH6vH7nirEz18EBw/63Zyca+FCcI7YWvUZNykPN93kd4OMyRyNG0PNJoX5Qe7QOohffw3x8X43K9NYUJZZdu/WIZz8+ek/9RIeeMDvBhmT+UIvLMVltY8y968qmk9pMoc3dDkuuh3t20PevD63x5hM9Npr8M7vV3C4QBnYtu3UGtI50XmDMhHJJyILRWS5iKwWkZe97d+KyBYRifRuDbztIiL9RGSjiKwQkUYB+7pLRDZ4t7sy7VsFA29W1NFLGzNvfgjt2vncHmOySNf7SzByS2OddZxL16/LVFFReitQgAFTKtnQpcnxiheHJ54M4YX9j+mGX37R4CwHSklPWTTQxjlXH2gAdBCR5t5z/3bONfBukd62a4Fq3q038DmAiJQAXgSaAU2BF0WkeEZ9kaCzZAkAQ/66ittus4KOJve4qvuFzDpQh4S/ozWv0mQsr4L/louvJDYuxBL8Ta7Qowcs/7M4kVW7QkICfPNNjlzW7byhglPHvIfh3u1c81JvAAZ575sPFBORMkB7YIpz7oBz7iAwBeiQvuYHqb17Yft2XN58fDO5LPfc43eDjMk64eHQuFkYC/ZU1iHMuDi/m5RzJCScCsoGbrjSeslMrhESAv36waPj2pJwYRnYuRN++snvZmW4FPXfiEioiEQCe9DAaoH31OveEOUHIpKY1VAO2B7w9ihvW3Lbcx5v6HJFyauoWCmE0qV9bo8xWazrvcUYtbcVHD58asKLyQDr1sHhw8SWuJBxc4tZgr/JVerVg8YRIXxb+GGN0qZOhbVr/W5WhkpRUOaci3fONQDKA01FpA7wHFADaAKUAJ7JiAaJSG8RWSwii/fu3ZsRu8x63tDl0K2XcdttPrfFGB9c006YureeTmOfPDlXFH3MEt5yM+NDOtOunViCv8l1Xn4ZPvq+FAdad9ENAwfmqJneqcp0cs4dAmYAHZxzO70hymjgGzRPDGAHEFj8oby3LbntZ3/GAOdchHMuonR27GLavx+2bcPlycuvSy/g2mv9bpAxWS9vXqjVOD/LYmrrMMOqVX43Kfs7eRKWLQNgwPx6VvfQ5EpFisCzz8LzM9pC7dpw7BgMGJBj0iRSMvuytIgU8+7nB64B1nl5YoiIADcCiWfdsUBPbxZmc+Cwc24nMAloJyLFvQT/dt62nMUbuvy94NU0bCTky+dze4zxSdebQxgVc50+mJTzftWz3LJlEBPDlhKNiSGPJfibXKt7d9i4SVhUv5dOzdy8GUaP9rtZGSIlPWVlgBkisgJYhOaUjQeGiMhKYCVQCnjNe/0EYDOwEfgSeBDAOXcAeNXbxyLgFW9bzmJDl8YA0KEDTFxbCZc3H2zYAFu3+t2k7M0buhy4o4Ml+JtcTUST/vs+UYCdNz4AoaE6qcj7+5udpWT25QrnXEPnXD3nXB3n3Cve9jbOubretjsTZ2h6Q5oPOeeqes8vDtjX1865S7zbN5n3tXxy4ABs2UJcWD5mrS5FmzZ+N8gY/xQsCFWqhrC6yvW6wXrL0u7gQVi/nljJw7il5S3B3+R6NWvCBx/AdQ9VZEfrO3Tjd99p4fZszKpnZSQv32Nm+DW0bBVCWJjP7THGZ127wqjdl+uV7LJlsGeP303KnhYsAOcYL9fTrkOIJfgbA7RqpT1m17/Vgu1VroToaOjfX//Npiwoy0iJQ5dbmtnQpTFAp07wy7T80KyZzsCcOtXvJmU/zp0auhywsrkl+BsT4PLL4bPPhM5Du7M1b3X46y/44YdsO+PbgrKMcugQbNpEdEh+Fm8pSYsWfjfIGP8VKQIXXggbLvGmIc+bB0eP+tuo7ObPP2HnTrYkVCQmT2FL8DfmLM2bw4AvQ7hp+iNs/ruMXsTMnet3s9LEgrKM4g1d/koH2ncIsWWVjPF07Qqj5lwAdevqsigzZ/rdpOzF6yX7av8N9LpffG6MMcGpSRP4alA4Xeb/m42HS8OwYdlyfUwLHTJK4tDlxiY2dGlMgM6dYexYoH173TBjBsTE+NqmbCM+HhYtIjYhhLFrq9Gli98NMiZ4NWoE340oyM2/P8H6fSXhiy/gxAm/m5UqFpRlhCNHYONGjrsC/LGvOA0a+N0gY4JHiRJQuDBsDbsEKlWC48d1GNOc3+rVcPQo449cSbuO4Zbgb8x51K8Pg38qwq2zH2LtxnBduDwb5ZdZUJYRli4F5xgbdy2dbwhBbITBmDN07Qqjx8jp3rIpU3RxbXNuiQn+m6+mdx87sRiTEnUbhvHDqLzcNqM3q2buy1bleCwoywheFf+hGyJs6NKYJNx4I/z0E9CgAZQuDfv2ncrDNMk4cQKWL2frsVLEFChmCf7GpEKtFsUY9tVx7pxxLyu+WgR//OF3k1LEgrL0OnoU/viDA7GF2RNdlOrV/W6QMcHnggsgLAz+2hUCbdvqRluo/NyWLIG4OAbu6UyvvuF+t8aYbKdG50sZ8co6es64m2Wv/QKHD/vdpPOyoCy9IiPBOUb/fS1du4X63RpjgtZNN8GYMUCLFlCokC67tGGD380KXvPna4L/ljqW4G9MGlXrezWjek/m3gldWfzC2KBPm7CgLL28WZc/bmzMrbf63BZjgliXLt6awXnywFVX6cZslOuRpfbsgY0bGb+jEe2uy2sJ/sakVUgIVZ/txpiuQ4jbvhO2bPG7RedkQVl6HDsG69ez62QxYvIW5uKL/W6QMcGrXDld/WTvXqB1awgPh1WrtAK3OdP48QAMiLqW+x+w9dqMSZciRaj09C00f/dmqFrV79ackwVl6bF8OSQkMPxYR265zYYujTmfUwn/hQrp+iiguWXmtKgoWLiQrcdLE1PsQstTNSYjVK0KVar43YrzsqAsPbyhyxEbG9Ctm89tMSYb6NrVG8IETfgX0bIPllt22s8/g3MMOHY7vR6wBH9jchMLytLq+HFYu5Ytx0pT8IKCXHCB3w0yJvhVrqzLxB48iJbG6NBBZ2B+9VW2q7ydKTZuhBUrWHakKtN3VKdrV78bZIzJShaUpZU3dDns8LV0v8NyPoxJqeuvh3HjAh5UrqxR2uDBubtEhnMwejTHYvNy/+LefPd9KHny+N0oY0xWOm9QJiL5RGShiCwXkdUi8rK3fYiIrBeRVSLytYiEe9tbi8hhEYn0bi8E7KuD956NIvJs5n2tLOAVjB2zqS433uhvU4zJTrp2hVGjvAehodCrF+TLp79TuXn5pZUrYdMmHll4J488U8ByyYzJhVLSUxYNtHHO1QcaAB1EpDkwBKgB1AXyA70C3jPHOdfAu70CICKhwKfAtUAt4DYRqZVh3yQr/f03rFnDmkNlKXdJfooV87tBxmQf1avrhMujR70NpUrB7bfr/WHDYNcu39rmm4QEGDOGHzY2IfaiCvS8z7rIjMmNzhuUOXXMexju3ZxzboL3nAMWAuXPs6umwEbn3GbnXAwwDLghHW33z/LlEB/P0APtua2HJeIak1odO8IvvwRsaNZMbzExMHAgxMX51jZfLFrEpnUxvLv6Wj4fUdrWzzUml0pRTpmIhIpIJLAHmOKcWxDwXDjQA/g14C2XecOdE0WktretHLA94DVR3rbsZ+lSnIPxW2tz3XV+N8aY7OfmmwOGMBPdfrv2mm3f7pX+zyXi4ogZPZ6eM+5hwBv7KVzcclSNya1SFJQ55+Kdcw3Q3rCmIlIn4OnPgNnOuTne46VARW+482Pgp9Q0SER6i8hiEVm8d+/e1Lw1a5w8CatXs3hfJWo3ykuBAn43yJjsp04d2LTprAmX+fJpfllICEydCqtX+9a+LDVnDs//2pIu9TYRcXed87/eGJNjpWr2pXPuEDAD6AAgIi8CpYEnAl5zJHG40zk3AQgXkVLADqBCwO7Ke9vO/owBzrkI51xE6dKlU/dtssLKlRAXx7D919C9h+V9GJMWItC+fRKrLFWuDJ076/1vvw1IPMuhTp7k1082suZgGR5/+yINSI0xuVZKZl+WFpFi3v38wDXAOhHpBbQHbnPOJQS8/iIRzYgQkabeZ+wHFgHVRKSyiOQBugNjM/j7ZL4lS0hwwtSoGrRr53djjMm+zpiFGah9e7j0UjhyRAOzHFwmY9fIuTw7qwPf3DWTkAb1/G6OMcZnKbksKwPMEJEVaGA1xTk3HugPXAj8flbpi5uBVSKyHOgHdPfmA8QBDwOTgLXAcOdc9hqfiI6GVauYs/MSmrUMtxpCxqRD48ba8RwdfdYTISFw771QoICujTl9ui/ty2wJh49y9/PleLfZSC7o2QHL7jfGnDej1Dm3AmiYxPYk3+uc+wT4JJnnJgATUtnG4LFsGcTGMnRvW257Iq/frTEmWxPRlZZGjIA77zzryeLFoWdP6N9f12WqXh3Kn2+Cd/byvwe30LDEDtp2CINq1fxujjEmCFgCQ0olJMDEicQmhDBvXzVatfK7QcZkf88/D59+ChOSulRr2BBatdLyGF9+qeUycogFkw/zy4wCvBIxFqs+bYxJZEFZSi1ZArt2MeVwM9p0yk9oqN8NMib7K1FC65W99tpZdcsSdesGZcpoQdkRI7K8fZnh8GHoe38c3135NeHNI6BChfO/yRiTK1hQlhIJCTB+PABDj3TkttvtsBmTUUqU0F+v118/9Wt2Wp48WiYjLAxmz9YUgmzMOejT82+eu3Q0lYsdPD3T1BhjsKAsZbxessUx9fjzRGmaNvW7QcbkLImB2RtvJBGYlS8PXbro/UGDdPHybOrrr6Hw/i3cUmWxDs0GY9kfY4xvLCg7H6+XLCY+lAcX9GTAl2KTpIzJBIlDmW++CePGnfVkmzZacfbECejXD/bs8aWN6bF8OfT/6CQfVf9MewA7dfK7ScaYIGNB2fksXgy7dvH6uq50u6sg1av73SBjcq7ixbWn7K23YGxgFUMRuPtuuOgiXc38zTe1XEY2cPgwPP009O3rGNRhKAXCYnXaaZEifjfNGBNkLCg7F6+XbPn+8kw70oQnnrLDZUxmSwzM3n4bfv454InCheG556BBA+0x++QTnbYZpMVl4+NhwAAdpaxRA+Z+sYaah+dDwYJY5WljTFIsyjiXxYuJ3bmXvvPv4ovvC9qMS2OySPHiOpT5zjtnBWb58kHfvnDDDfr455+1ltnJk760MzkzZkCLFrBlC8ydC/feepzQn7zlCzp0gPz5/W2gMSYonbd4bK7l9ZK9E9me6zo6ateziMyYrFSsmAZm112njxPjMESgY0ctJfHVVxAZqcOZDz4IF17oU2vVpk3w739DaCgMG6ZLebJ1K3zxBRw4ACVLwlVX+dpGY0zwsqAsOYsXs3ptCON3NmL2nHJ+t8aYXKlYMR3KvO46HaU8o85q3brwn//A559rntkbb+jyTPXrZ3k7jxzRWmuzZ+uw65VXog2eMVPrq8XHa4R2//0QHp7l7TPGZA82fJmUhATixk6gz5w76f/afsLzWS+ZMX5J7DF77z0YM+asJy+4AJ59Fho10iHMzz7TqZtZlGcWH6+LDbRsqStB/fabF5CdPKlPDBumL2rTBp56SnvKjDEmGeKCNEkWICIiwi1evDjrP3jBAv73WBTHwovz8swrsWQyY/x3+DB07aqrLtWpox1l9erp/cKFHEyerFGbc/rEPffoouaZ0I7ISFi6FH78UUcjn3suYDJlVJQOV+7ZozlwPXvq6uvGmBxPRJY45yLS+n4bvjxbQgLrv5vPiM2dmTt8pwVkxgSJokVh6lStHbtqFaxcqbVkV66EY8eEiy9uT90yjakbNYF6Bzdz6V9vE/ZQHyhbNs2fuWePLiKwdKn+u2GDTgJt2FBvw4fDxRcHvGHePPjhB4iN1aK3vXv7nudmjMk+rKfsLPHzFnD1zcV4t8M0Ir7sY0GZMdmAc/DnnxqgrZx/nJVjt/DHzsI4CaFQ6XwUvLAQBUvmo1AhoWBBKFSIM/5NvB8fDytWaBC2bZuOjjZqpAFYo0ZwySUQklTSR0wMDB2qQRnA5ZfDbbdZ/pgxuUx6e8osKAuUkMBH1/7Krj3Cm58U0ROrMSb7iYmB778n/veFnIjLw/G4vBwvXp5j1RpyvEodjoWX4PhxOH4cjh3j1H3Qkc+GDbUHLEWrd+zercOVO3ZoEHbHHXDZZZn69YwxwcmGLzPQpjErGLy0NnPv/Rqav+B3c4wxaZUnD9xzD6EtW1J44UIKL1kCx9fAqjWwCqhYEZo0gdYRWhQtrRYv1jHU6GgdpuzTB8rZbG1jTNqct6dMRPIBs4G8aBA30jn3oohUBoYBJYElQA/nXIyI5AUGAY2B/cCtzrmt3r6eA+4D4oFHnXOTzvXZWdlTlhCXQLtLt/BqvZFc9nRLrfxojMkZ4uNh7VpYtEiTw6KjdbuIjkk2barjk4UKnX5PQgIcPar1Lg4f1n8Tb4cPa3Lbpk362ogI6NFDE/uNMblWVvSURQNtnHPHRCQcmCsiE4EngA+cc8NEpD8abH3u/XvQOXeJiHQH3gZuFZFaQHegNlAWmCoilzrn4tPa+Iz0xX+2Ub/QZi6rfQSaNfO7OcaYjBQaqtM069SBO+/U5LOFC/XfDRv0NnQoVKqkQ5+HD+u45vnSO0JD4ZZbtA5GisY6jTEmeecNypx2pR3zHoZ7Nwe0AW73tn8HvIQGZTd49wFGAp+IiHjbhznnooEtIrIRaAr8nhFfJD22bUngy8F5mdvxZ+h0uyX3G5OThYdrr1hibbPISA3Q1q6FzZtPv05Ep1oWKaK3okXP/LdIEShTRh8bY0wGSFFOmYiEokOUlwCfApuAQ865OO8lUUBiIkU5YDuAcy5ORA6jQ5zlgPkBuw18j2+cgz63H+HDJj9Q4KKi1ktmTG6SLx80b663o0e1xlihQhpwFS6czFRLY4zJHCkKyrwhxgYiUgwYA9TIrAaJSG+gN8DFZxQAyhxfD0ygWvw6WpXZAJ3usl4yY3KrwoWhZk2/W2GMycVSdRnonDsEzAAuA4qJSGJQVx7Y4d3fAVQA8J4viib8n9qexHsCP2OAcy7CORdRunTp1DQvTeqGrObNOj9AqVLWS2aMMcYY35w3KBOR0l4PGSKSH7gGWIsGZzd7L7sL+Nm7P9Z7jPf8dC8vbSzQXUTyejM3qwELM+h7pE1CAk23DqdQeDR06mS9ZMYYY4zxTUqGL8sA33l5ZSHAcOfceBFZAwwTkdeAZcBX3uu/AgZ7ifwH0BmXOOdWi8hwYA0QBzzk+8zLyEhdR6V0ac0pMcYYY4zxSe6u6J+QAEuWaKHJ+vUz73OMMcYYk+NZRf/0CAnRqt7GGGOMMT6z+d7GGGOMMUHAgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwSCuiSGiOwFtvndjnQqBezzuxFByo5N8uzYJM+OTfLs2CTNjkvy7NgkLy3HpqJzLs3LEQV1UJYTiMji9NQsycns2CTPjk3y7Ngkz45N0uy4JM+OTfL8ODY2fGmMMcYYEwQsKDPGGGOMCQIWlGW+AX43IIjZsUmeHZvk2bFJnh2bpNlxSZ4dm+Rl+bGxnDJjjDHGmCBgPWXGGGOMMUHAgrIAIvK1iOwRkVVnbf+fiKwTkRUiMkZEiiXz/le910SKyGQRKettFxHpJyIbvecbJfP+DiKy3nvdswHbRUReF5E/RGStiDyagV87RYLg2KTr8zNTEB+bBiIy39vvYhFpmkFfOUUy8bjUEJHfRSRaRJ46x+c3FpGV3vHrJyLibS8hIlNEZIP3b/EM/NopEqzHxnvuEa8Nq0XknQz6yikWBMfmdRHZLiLHztr+hIis8fY9TUQqZsDXTZUgPjYXi8gMEVnm7b9jBnzdVJHk/34+7G1zIlLqHO+vLCILvNf+KCJ5vO2tRGSpiMSJyM1p+Pwk95ss55zdvBvQCmgErDprezsgzLv/NvB2Mu8vEnD/UaC/d78jMBEQoDmwIIn3hgKbgCpAHmA5UMt77h5gEBDiPb4gNx2bjPj8XHpsJgPXBuxrZg45LhcATYDXgafO8fkLveMm3nFMPBbvAM9695/NYT8z6T02VwFTgbyJ+8uFx6Y5UAY4dtb2q4AC3v0HgB/t2JzaPgB4wLtfC9iaxcflXH8/GwKVgK1AqXPsYzjQ3bvfP+D7VALqoX+Db07D5ye53+Ru1lMWwDk3GziQxPbJzrk47+F8oHwy7z8S8LAgkJiwdwMwyKn5QDERKXPW25sCG51zm51zMcAw732gJ4BXnHMJ3ufsSf23Sx+fj026Pz8zBeux8fZTxLtfFPgrBV8nw2TWcXHO7XHOLQJik/ts7zgVcc7Nd3o2HATc6D19A/Cdd/+7gO1ZJoiPzQPAW8656MT9peZ7ZQQ/j433uvnOuZ1JbJ/hnDtxvs/PTMF6bPD5XMM5/n4655Y557ae681eT3EbYKS36dR5wTm31Tm3AkhI7eefa7/JCTvXkyZJ9wI/JvekiLwO9AQOo1dWAOWA7QEvi/K2Bf5wJ/WaZt79qsCtInITsBd41Dm3IR3fIbNk1rHJkM/3mR/H5l/AJBF5F01VaJG6JmeJtByXlCiHHq9EiccO4MKAPyy7gAtTsd+s5MexuRRo6e37JNprsig1jc4imXVsUuo+tIcxGPlxbF4CJovII2iw1zaD9ptS5/r7mRIlgUMBgW3g70R6Pj/V+7WeslQQkeeBOGBIcq9xzj3vnKvgvebhDProvMBJp5WFvwS+zqD9Zhgfj02KP98vPh6bB4DHvf0+DnyVQfvNEH7/zHj7d5zumQwaPh6bMKAEOkz1b2B4YL5ZMPD750ZE7gQigP9l5H4zgo/H5jbgW+dceTRVYrCIWHyRBnbQUkhE7gauA+7wTuSIyDdewuSEJN4yBOjq3d8BVAh4rry3LdC5XhMFjPbuj0HHt4NGFhybVH9+sPD52NzF6Z+bEWgXe1BI53FJiR2cOYQTeOx2Jw4De/9m+RDdufh8bKKA0d6Q+UJ0yCbZ5OislgXH5nyf3xZ4HuicOMQbLHw+NvehuVM4534H8pG1PzepPleKyCTv2AwE9qPpIYmjh6k91yb3+anerwVlKSAiHYCn0V/ExJwCnHP3OOcaOOc6eq+rFvC2G4B13v2xQE9RzYHDSYzLLwKqeTM18gDdvfcB/MTpbuYrgT8y7tulTxYdm1R/fjDw+9igeR1XevfbAEEx5J0Bx+W8vON0RESaez09PYGfvafHogEr3r8/J7ELXwTBsfkJ71wjIpeiSctBsVh1Vhyb83x+Q+AL7/ODLZD39dgAfwJXe59REw3K9mbQvlPiXH8/k+Sca+8dm15eEDsDSJxdmdrzQpKfn6b9uiyePRLMN2Aomq8Ti14x3udt34iOF0d6t/7JvH8UsApYAYwDyiVesACforMzVgIRyby/IxpwbQKeD9heDPjFe+/vQP1ceGzS9fm59NhcASxBZwItABrnkONykbe/I8Ah736RJN4f4b1/E/AJp4tllwSmoUHqVKBEDvqZSe+xyQN87z23FGiTC4/NO95zCd6/L3nbpwK7Az5/rB2bU8emFvAbeq6JBNr5cGyS+/v5qNfWOPRCdWAy76+CzkreiI4sJM5AbuK9/zja87U6lZ+f5H6Tu1lFf2OMMcaYIGDDl8YYY4wxQcCCMmOMMcaYIGBBmTHGGGNMELCgzBhjjDEmCFhQZowxxhgTBCwoM8YEBREp6RVzjBSRXSKyw7t/TEQ+y8TPbS0iwbgElTEml7G1L40xQcE5tx9oACAiLwHHnHPvZsFHtwaOAfOy4LOMMSZZ1lNmjAlqXk/WeO/+SyLynYjMEZFtItJFRN4RkZUi8quIhHuvaywis0RkibecSuKySo+KyBoRWSEiw0SkEtAXeNzrlWspIteLyAIRWSYiU0XkwlR+9taA7QtF5BJfDpwxJtuxoMwYk91URZeN6oxWn5/hnKsL/A108oKjj4GbnXONga+B1733Pgs0dM7VA/o657YC/YEPnC65MgeYCzR3zjUEhqHL16ToswNed9jb/gnwYQZ/f2NMDmXDl8aY7Gaicy5WRFYCocCv3vaVQCWgOlAHmKJLOxKKLk0DurzMEBH5CV3nMSnlgR+93rU8wJZUfHaioQH/fpDqb2iMyZWsp8wYk91EAzjnEoBYd3qtuAT0QlPQ9ekaeLe6zrl23ms6oeuJNgIWiUhSF6YfA594PV190MWVU/rZiVwy940xJlkWlBljcpr1QGkRuQxARMJFpLaIhAAVnHMzgGeAokAh4ChQOOD9RYEd3v270tiGWwP+/T2N+zDG5DI2fGmMyVGcczEicjPQT0SKoue5D4E/gO+9bQL0c84dEpFxwEgRuQF4BHgJGCEiB4HpQOU0NKO4iKxAe9ZuS+93MsbkDnK6990YY0x6ichWIMI5t8/vthhjshcbvjTGGGOMCQLWU2aMMcYYEwSsp8wYY4wxJghYUGaMMcYYEwQsKDPGGGOMCQIWlBljjDHGBAELyowxxhhjgoAFZcYYY4wxQeD/AfLJXGzTpAfQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,3))\n", + "plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for testing data: 1.2623790187854018 %\n" + ] + } + ], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "## 完全なデータセット予測\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor shape: (26300, 5)\n", + "X shape: (26300, 4) \n", + "Y shape: (26300, 1)\n" + ] + } + ], + "source": [ + "# Extracting load values as numpy array\n", + "data = energy.copy().values\n", + "\n", + "# Scaling\n", + "data = scaler.transform(data)\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0]\n", + "print(\"Tensor shape: \", data_timesteps.shape)\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]]\n", + "print(\"X shape: \", X.shape,\"\\nY shape: \", Y.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "Y_pred = model.predict(X).reshape(-1,1)\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = scaler.inverse_transform(Y_pred)\n", + "Y = scaler.inverse_transform(Y)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrgAAAHgCAYAAAD+LG2qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5jcxN3Hv7pzBVNsmumYEjoYQkvoEFog1FDCGwiEmkACISSU0EIvCYRuG0wHUwwGA8bYuIMx7r33frbvznfnO1/Z1bx/bNNqVUbS7Eq7+/08zz23K41mZlVmRr+qCSFACCGEEEIIIYQQQgghhBBCSLFQEXYHCCGEEEIIIYQQQgghhBBCCPECFVyEEEIIIYQQQgghhBBCCCGkqKCCixBCCCGEEEIIIYQQQgghhBQVVHARQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiop2YXfAie23317stddeYXeDEEIIIYQQQgghhBBCCCGEFJhJkyZtEELsYLUv0gquvfbaCxMnTgy7G4QQQgghhBBCCCGEEEIIIaTAaJq2zG4fQxQSQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiopI5+AihBBCCCGEEEIIIYQQQgiJKm1tbVi5ciWam5vD7kpR06lTJ+y2225o37699DFUcBFCCCGEEEIIIYQQQgghhPhg5cqV2GqrrbDXXntB07Swu1OUCCFQXV2NlStXokePHtLHMUQhIYQQQgghhBBCCCGEEEKID5qbm7HddttRuRUATdOw3XbbefaCo4KLEEIIIYQQQgghhBBCCCHEJ1RuBcfPOaSCixBCCCGEEEIIIYQQQgghpMj5/PPPoWka5s6d61juf//7H5qamny389Zbb+HWW2/1fbwqqOAihBBCCCGEEEIIIYQQQggpcvr164cTTjgB/fr1cywXVMEVFajgIoQQQgghhBBCCCGEEEIIKWI2bdqE77//Hn379sWHH34IAIjH47jzzjtxyCGH4LDDDsOLL76IF154AatXr8app56KU089FQDQpUuXdD39+/fHNddcAwD48ssvceyxx+KII47Ar371K1RVVRX8dznRLuwOEEIIIYQQQgghhBBCCCGEFD033ZSfenv3di3yxRdf4Oyzz8bPfvYzbLfddpg0aRLGjx+PpUuXYurUqWjXrh1qamrQrVs3PPvssxgxYgS23357xzpPOOEEjBs3Dpqm4fXXX8fTTz+N//73v6p+VWCo4CKEEEIIIYQQQgghhBBCCCli+vXrh9tuuw0AcMUVV6Bfv35YsmQJbr75ZrRrl1AFdevWzVOdK1euxOWXX441a9agtbUVPXr0UN7vIFDBRQghhBBCCCGEEEIIIYQQEhQJT6t8UFNTg+HDh2PGjBnQNA3xeByapuHoo4+WOl7TtPTn5ubm9Oe//OUvuOOOO3D++edj5MiReOihh1R3PRDMwUUIIYQQQgghhBBCCCGEEFKk9O/fH1dddRWWLVuGpUuXYsWKFejRowcOP/xw9O7dG7FYDEBCEQYAW221FRoaGtLH77TTTpgzZw50XceAAQPS2+vq6rDrrrsCAN5+++0C/iI5qOAihBBCCCGEEEIIIYQQQggpUvr164eLLrooa9sll1yCNWvWYI899sBhhx2Gww8/HB988AEA4MYbb8TZZ5+NU089FQDw5JNP4rzzzsMvf/lL7Lzzzuk6HnroIVx66aX4+c9/7pqvKww0IUTYfbDlqKOOEhMnTgy7G4QQQgghhBBCCCGEEEIIITnMmTMHBx54YNjdKAmszqWmaZOEEEdZlacHFyGEEEIIIYSUK1VVQH192L0ghBBCCCGEEM+0C7sDhBBCCCGEEEJCoKEBeOCBxOeQkmETQgghhBBCiF/owUUIIYQQQggh5ci6dWH3gBBCCCGEEEJ8QwUXIYQQQgghhJQjsVjYPSCEEEIIIYQQ31DBRQghhBBCCCHliK6H3QNCCCGEEEII8Q0VXIQQQgghhBBSjlDBRQghhBBCCCliqOAihBBCCCGEkHKithZYuRKIx8PuCSGEEEIIIUQBlZWV6NmzJw455BBceumlaGpq8l3XNddcg/79+wMArr/+esyePdu27MiRIzF27FjPbey1117YsGGD7z6moIKLEEIIIYQQQsqJu+8GHnkE2Lgx7J4QQgghhBBCFNC5c2dMnToVM2fORIcOHdCrV6+s/TGf+Xdff/11HHTQQbb7/Sq4VEEFFyGEEEIIIYSUI599FnYPCCGEEEIIIYo58cQTsXDhQowcORInnngizj//fBx00EGIx+P4xz/+gaOPPhqHHXYYevfuDQAQQuDWW2/F/vvvj1/96ldYt25duq5TTjkFEydOBAAMHjwYRx55JA4//HCcfvrpWLp0KXr16oXnnnsOPXv2xJgxY7B+/XpccsklOProo3H00Ufjhx9+AABUV1fjzDPPxMEHH4zrr78eQgglv7WdkloIIYQQQgghhESX2lpg8mTghBMy2zZvDq8/hBBCCCGEEOXEYjF88803OPvsswEAkydPxsyZM9GjRw/06dMH22yzDSZMmICWlhYcf/zxOPPMMzFlyhTMmzcPs2fPRlVVFQ466CD88Y9/zKp3/fr1uOGGGzB69Gj06NEDNTU16NatG26++WZ06dIFd955JwDgyiuvxN/+9jeccMIJWL58Oc466yzMmTMH//73v3HCCSfggQcewNdff42+ffsq+b1UcBFCCCGEEEJIqfPMM0B1NfDxx2H3hBBCCCGEkJJG09TX6ebwtHnzZvTs2RNAwoPruuuuw9ixY3HMMcegR48eAIAhQ4Zg+vTp6fxadXV1WLBgAUaPHo3f/e53qKysxC677ILTTjstp/5x48bhpJNOStfVrVs3y3589913WTm76uvrsWnTJowePRqfJSNInHvuuejataun328HFVyEEEIIIYQQUupUV4fdA0IIIYQQQsoCRdH3PJHKwWVmyy23TH8WQuDFF1/EWWedlVVm0KBByvqh6zrGjRuHTp06KavTCebgIoQQQgghhBBCCCGEEEIIKWHOOussvPrqq2hrawMAzJ8/H42NjTjppJPw0UcfIR6PY82aNRgxYkTOsccddxxGjx6NJUuWAABqamoAAFtttRUaGhrS5c4880y8+OKL6e8ppdtJJ52EDz74AADwzTffoLa2VslvooKLEEIIIYQQQgghhBBCCCGkhLn++utx0EEH4cgjj8QhhxyCm266CbFYDBdddBH2228/HHTQQbj66qvxi1/8IufYHXbYAX369MHFF1+Mww8/HJdffjkA4De/+Q0GDBiAnj17YsyYMXjhhRcwceJEHHbYYTjooIPQq1cvAMCDDz6I0aNH4+CDD8Znn32GPfbYQ8lv0kQY/nKSHHXUUWLixIlhd4MQQgghhBBCipubbnLe37t3YfpBCCGEEEJIiTFnzhwceOCBYXejJLA6l5qmTRJCHGVVnh5chBBCCCGEEFLuRNjwkRBCCCGEEEKsoIKLEEIIIYQQQgghhBBCCCGEFBVUcBFCCCGEEEJIuaPrYfeAEEIIIYQQQjxBBRchhBBCCCGElDsMUUgIIYQQQohvBNfTgfFzDqngIoQQQgghhBBCCCGEEEII8UGnTp1QXV1NJVcAhBCorq5Gp06dPB3XLk/9IYQQQgghhBBSLPBlnBBCCCGEEF/stttuWLlyJdavXx92V4qaTp06YbfddvN0DBVchBBCCCGEEEIIIYQQQgghPmjfvj169OgRdjfKEoYoJIQQQgghhJByhx5chBBCCCGEkCKDCi5CCCGEEEIIKXeo4CKEEELCYeVKYNmysHtBCCFFCUMUEkIIIYQQQgghhBBCSBg88kji/8svA+0oqiWEEC9IeXBpmrZU07QZmqZN1TRtYnJbN03ThmqatiD5v2tyu6Zp2guapi3UNG26pmlHGur5Q7L8Ak3T/pCfn0QIIYQQQgghxBP04CKEEELCJRYLuweEEFJ0eAlReKoQoqcQ4qjk97sBDBNC7AdgWPI7AJwDYL/k340AXgUSCjEADwI4FsAxAB5MKcUIIYQQQgghhBBCCCGkbKGxCSGEeCZIDq4LALyd/Pw2gAsN298RCcYB2FbTtJ0BnAVgqBCiRghRC2AogLMDtE8IIYQQQgghRAW6HnYPCCGEkPKGCi5CCPGMrIJLABiiadokTdNuTG7bSQixJvl5LYCdkp93BbDCcOzK5Da77YQQQgghhBBCCCGEEFJeGJVaVHARQohnZDMXniCEWKVp2o4AhmqaNte4UwghNE1TMgonFWg3AsAee+yhokpCCCGEEEIIIU5QqEYIIYSEC72pCSHEM1IeXEKIVcn/6wAMQCKHVlUy9CCS/9cli68CsLvh8N2S2+y2m9vqI4Q4Sghx1A477ODt1xBCCCGEEEIIIYQQQkgxQAMTQggJhKuCS9O0LTVN2yr1GcCZAGYCGAjgD8lifwDwRfLzQABXawmOA1CXDGX4LYAzNU3rqmla12Q93yr9NYQQQgghhBBCvEMBGyGEEFJ4jF5bnIsJIcQzMiEKdwIwQNO0VPkPhBCDNU2bAOBjTdOuA7AMwGXJ8oMA/BrAQgBNAK4FACFEjaZpjwCYkCz3sBCiRtkvIYQQQgghhBDiDwrVCCGEEEIIIUWGq4JLCLEYwOEW26sBnG6xXQC4xaauNwC84b2bhBBCCCGEEEIIIYQQUkIYDUxobEIIIZ6RysFFCCGEEEIIIaSEoVCNEEIIKTxUcBFCSCCo4CKEEEIIIYQQQgghhJBCE5ZSa8oU4OOPs3OAEUJIESKTg4sQQgghhBBCSClDq3FCCCGk8ITlwdWrV+L/nnsCxx5buHYJIUQx9OAihBBCCCGEkHKHCi5CCCGk8IQ9/1ZXh9s+IYQEhAouQgghhWXNGqCpKexeEEIIIcRI2AI2QgghpBxhDi5CCAkEFVyEEEISbN4MvPwyMHVq/tqoqgIeegi45578tUEIIYQQQgghhBQDVHARQkggqOAihBCSYMgQYPp04NVX89fG/PmJ/83N+WuDEEIIKWUWLwaefTbhEa0SCtUIIYSQwsP5lxBCAkEFFyGEkASbN+e/DV3PfxuEEEJIKfPUU8C8eZnk8KqggI0QQggpPGF7cHH+J4QUOVRwEUIISaBpYfeAEEIIIbKsXRt2Dwgh+aa5mQZihJQ6VDARQkggqOAihBCSwKjgamzMTxtcvBNCCCHRhHM0IdGiuRm47TbgwQfD7gkhpFDQg4sQQjxDBRchhJAERgXXHXcA69eH1xdCCCGEOLP//mH3gBCST1asSPxfty7cfhBC8kvYIQoJIaTIoYKLEEKINVOnqq+TC3ZCCCEkMR/GYsHrUAnnaEKiBcOHE1IecP4lhJBAUMFFCCEkQYVpSggqeCOEEEKINU8/DdxyC9DSEnZPMlDARki0oIKLEFIIOP8TQoocKrgIIYQkML9E86WaEEIIyQ+LFyf+v/VWIs+OH+jBRUhpw7U4IeUH52JCCPEMFVyEEEISFELBxQU7IYQQkmHyZOD998PuBSGEEEIIIYQUJVRwEUJI2EyeDMyZE3YvCmMlSgUXIYQQko3fNQA9uAgpbejBRUj5EcZczPmfEFLktAu7A4QQUtY0NwO9eyc+v/IKUFkZXl8YopAQQggpHqjgIqS04VqckPKgtTXzmXMxIYR4hh5chBASJm1t1p/DgC/RhBBCSOGhMIsQYgXX5oSUPvX1wP33h9sHrkMIIUUOFVyEEBImup75HI+H1w+AHlyEEEJIGERFsBSVfhBCCCHlwtSp2d/t5uIFC4DHHgNWrMh7lwghpNiggosQQsLEqOAyfg6DQii4KDwjhBBCsvE7N3JOJSQabNoEvPwyMHt22D0hhBQbsu/c//kPsHw58Oqr6vvA9QQhpMihgosQQsLEqNR6912gpSW8vhBCCCEk/0RVkBTVfhESdb74Apg+HXj++bB7Qggpdtzm4uZm9W2GbWhLCCEBoYKLEELCxBiWcNo04JtvwuuLGYYoJIQQQtRjFiT5FSwpUkhpfXpjSf12VHAR4pfNm8PuASGkVAhjLub8TwgpcqjgIoSQsGhpAfr2zd5WWxtOX4DCLGy5eCaEEFLuqLKU9jinPj7lHNww+veW+zY0d+EcTYhfKivD7gEhpFjxOvdyriaEkByo4CKEkLAYNQpYujR7W6l7TXFBTgghpNwxem8DBZv7X551Ml6feyK0Pr1z9lVonJ8J8U2pr98JIYXD7X2Z4QQJISQHKrgIISQsmppytxXyBbmqCnjhhVwlW4oKThGEEEKIclQpuBQajVDBRQghhBQBNBglhJAcKL0khJAoUUgFV//+wKxZwBNPFK5NLsgJIYSUO2br6wh4f1RqtAgnhBBCQieIB9fGjUAsprQ7hBBSDFDBRQghUaKQQq716533R0DgRgghhJQcZg+uCKDRg0sOGuoQQghRiXlecZtn7PZXVwN33QU8/LCafhFCSBFBBRchhISF1eK0kIITvwmxN2wAXnsNWLnS23Hz5gGffeavTUIIIaRUMM/1IYQo/NOYK/HdygOU1VcW6Drw2GPAO++E3RMSNWgURggpFHYeXAsWJP5XVRWuL4QQEhGo4CKEkChRDMKlvn2BiROBp5/2dtyzz+anP4QQQkgxE4KCq9eck/Ha3BN9H1+WLFsGrFgB/PBD2D0h5UifPkBLS9i9IISoxqsHl52Ci4p2QkgZQwUXIYREiSgpuCpspoiamsR/vmQTQggh3gljrndpUwgtWmuQKELhIQmTSZOA777L3rZyJdDQEE5/CCHRgnM4IaSMaRd2BwghpGyxWoQ6JY3NN7KLYjvFFyGEEEK8E4IHFwB8vPgojHp3v0RVoPLGE0JQ4UUKj1GZtW4d8Mgjic+9e4fTH0KIevzO7UHkCFSOEUKKHEopCSGEeIMCHUIIIcQ/qnJwKaBq8zahta2EhobCebAYr1PKm50QoHDPcDye+bxmTWHaJIQUFjdlE9/FCSEkByq4CCEkSoRpPWVu+/33gfnzw+kHrcgIIYSUCyF5cBU9QgB33pn4K/S5oICRhE1lZdg9IISoQNX8ZayHqQQIIWUGFVyEEELs+e9/c7flU4gkBPDMM8Czz+avDUIIIaQUUD0fF7PCjAouQoLT3JwIdzh9etg9IaR88TufGY/761+BtjbXQ2J6BVrjVJYTQoofKrgIISQsrBavxSBcMvZx2jS1dcfjwKJFCc+xYjgXhBBCSDHgMqcW5ZRr7HQsVti2qeAipcjQodBuvgmj/jUk7J4QQuywm3/ME/nata5V/d/w67D3h48p6BQhhIQLFVyEEFKuqJBmvfJK8DrsKLSwihBCCCkCnpx6Fir6vOr5OCedjIAGDBgQoFchoOuZz1wzkDJkSf122NjSWV2FjY0AgOk1u6mrkxDiDRUeXED2HGnDpA17YFVjV3/tEUJIhKCCixBCokQxmFDnO0RhColFOSGksCya04q+z9UDs2Yxvj8hfgk4j07esAcEKtTPx3PnAuvWqa0znxh/f6HXTxV8jSbhs/eHj+P/hl8XdjcIIUFIzl+//uZWPDHlbP/zmfndWaKeCq0IZA+EECIBV+aEEBIWYSuzzKbcYfcHyF6YR6E/hJAsnrxiKq6/Y2sse+y9/HpwElJORGm+KybFdaEVXFG6TiRaaBoW129f2FskuY6vbd1CTX31SeMVQkhhSQ4c36w4FP0WHe0+18iGKJRAA+c1QkhpQAUXIYSERdiCkrDbtyJMa2xCiDutCeH3Xv2ewIKfakLuDCElgsf5Li3a8nycRPmZMz3VGSqF9vo2tkcPLmJE17HPh4/h25UHh90T/9x/f9qDkytwQgqIYf6K6RXAf/+b8Ki2Q6GCS8mxhBASAbgyJ4SQKFEMi8tChSgshnNBSBnTHG8XdhcIKVqmVe+GNU1b+zo2rajyMk+6lE3vnTLFV59CgR5cJAp8/jkwdiwAoKGtY37byuM9WL2xEv8af0He6ieE2GB4ruMiKaLt0ydQPZbfLWCIQkJIqUAFFyGEhMyMml1Q39op8aUYhCdUcBFCCCGB6Pnp/bjsuxt9Hav5FEjZ2HwDAITQUh981R0KRq+tQntwFdN5Ivnlm2/SH+N68YpXhqw8CI9P/XXY3SCk/DDMX2kFlx8vYR8KLoYoJISUCsW7AiOEkGInueg8rP+DuOuni0PuTESg8IgQQkipk5zfWnx6QaYtrj16cEkpxo4/3lefQoEeXCRi6I5qZAUYQ5PZhSlTQGNbR1RV5a16QogRq7nFyWhDVYjCXr3yOYwUjro6oKEh7F4QQkKGCi5CCIkAzfH2YXfBmi0sElfTg4sQQggJjJ6y1Pabg8ujZMrJUlukat1yS091hoYQwIwZ2d8L0SYhDqQ9IRVy8ZCbce/4C50Lvf460NKirM17J1yE7t2VVUcIcUKVB7IXDy4hgClTit+DKx4H/vlP4M47w+4JISRkqOAihJAIUKElF7ZhCk+EwNyNO+W9mf9MOwOt8UrbPlh+JoQQQkqF5PxW6FlOSh9WLHPv1KnAm29mvhciRCEpb1pagCeeAIYNsy2i50HBNWDpEXh/4TG5O5IP9I9V+0C74Xpg+HDlbRNCCouUkrytDfj4Y6uD5RuKxQA4hy4uCpqbM5+LZf1CCMkLVHARQkhYGBZhHyw8Bl3feja09lMc+PHD2NjS2bFM0MXjP376LeZulDAL5SKVEEJICePX2yOvFtfFMvfOm5f9nR5cJN/88AOwdKm1YDlJvkIULt+0Hfb78GHne7CpKVAbvLsJCQk/c4uDol2K1lYA/nN6Roakog5AwpuLEFK2+Av8TgghRCnN8Q5ojncIV3iStARt1V2mBgV9lFpMU5BESOQoektPQiJE3vP1mJBSjBXL3GsWZBXag6tYzhNRh43wVAhgScP2eW9+Yb1LlAXek4QUPYGeYrObttOYUCrKoLa2zGd6chNS1tCDixBCwiIP3lGB2k9+jxstyvPUnwq75TtDFBJSNOQj1wgh5cS06t2x1ZvP+5/vqqqAgQPlygrhqE4ruinXLJwruh9ASoVvVhyCfT58DEB5zIvV1cDq1WH3gpASx2OOTctjnObFpDKo6HNwJT3RAHAdQEiZQwUXIYSQLOK6y9SgYPFYUezhEAiJADU1wLp1YfeCEBKETW2dPB+T5QX99ddK+pFWfxWLgMgYlggojOV2sZwbUjC++w6YvGGPsLsBAHh31B5BoxTmYuHlcdppwK67Km6HEJKNCgWXE8n5zE8zkYIeXISQJFRwEUJIuWLrwZX/qUHThLugyLxI3biRwiVCDJx4bCt22qkEXk4JKTds5t98U1Lhgc0KLubgIvnGYrI94wzg/okXhNAZ5PTn6peOwTffKG5jxYqcTTSsIUQxYcwtpTKfyUR/EYLKL0LKACq4CCEkLKIWojC1GRpWbOqK3w//o6fjvDUtIZE3tjN7NnDXXcBHHwVum5CSIB7H6uVt7uUUsvPOwNvzjytom4QQEytX5m6rrZU6tOhDERmhsIqEwMK6HRDXNQgBHH987n7nQKBy1NQYHKc8rrkL+Rqxfn3h2iKkZInFgAUL8lO304CQ8uBKrQuKVeFl7LfduuDFF4G//S07nCEhpOSggosQQkgWQgDfrToQ7y881lEJd+e4S7CxpbO/NqwEAG1twDvvWB8weHDi/4gRvtojpOQwv8StXZv3JteuBVr19nlvh5Cyw4tg6ZFHcrfdfTewaJHzcU1Nct6epSDkKkQbxXqeSCD2++hRvDHveOg6MHZsftrYbruEPDYSONznO+5YwH4QUqq8/z4wb56aurzMS2kFV5Ejo+CaNQtobgaWLi1Ilwgh4UAFFyGElCNjxyaS01sgoElZef93+pkYs3Y/X80LgdxF+OTJwIwZme/GRWplZebzZ5/5apOQksZOOUwIKTksBVKff+4s3PrnPx3ndqprCJGjavPWtvv6Lz4SL78U/GlatSpwFWqwGFMYFpkQhSQ15Vqf3gCcvUD7LTw6XS4wpWik4fabSvE3E0LSSCu4NE2r1DRtiqZpXyW/v6Vp2hJN06Ym/3omt2uapr2gadpCTdOma5p2pKGOP2iatiD59wflv4YQQoqdQi283n7bvgseqtFlQg1atmFxnDmov/FctGuX+fztt77aJKSksUgETwgpTSxzac2fD0yd6rvORyafiz9//7viFQAVImRhsZ4bEhwhgMZGAIm1r52SZ9CKQ3HrXzT/90qyjbSGy6keapoIKV0snu+5G7s7HyMEZtbskvXdqWyimRKa19zWAZzDiZnx44Hvvgu7F0QRXjy4bgMwx7TtH0KInsm/qclt5wDYL/l3I4BXAUDTtG4AHgRwLIBjADyoaVrXAH0nhJDiJuwcXDZtC6E5L3YNfYwLf47AAsgVyPNFnRBCSDkQcK63nS1HjfJ3HICvlx+GV2efUjwCoDDWDAxRWL689RYwaFD6q+vl37jRXztDhybqnzULeO457/fZlCn+2rXhvc+7KK2PEOKM0yPfvsL07mxR+ND+D2Jpw3bulZVKiEIjbgquOWZxNil7+vYFPvnE/5xNIoWUZFLTtN0AnAvgdYniFwB4RyQYB2BbTdN2BnAWgKFCiBohRC2AoQDO9tlv4sLLLwOnHtMI3HcfY80SQixZv7mLZZiD8wbfiocnnZf44vJi7duDS2jA3/+eSKxrx3PPZSxZmUyekJLhqquAjz4KuxeERAiPQmzbUINOcyokLbWLVXFTrP0mxcG4cemPTiHE0rg8i7YY17tz5wLLl9uXtVLyjh/vr10brvq7c6Kt004DPv5YaZOEEBsqNbn34ZZ4O/dCpfJu7cXwJJXTu6EB+PHHRP5vQgCgpSXsHhAFyJre/w/APwGYR8HHkmEIn9M0rWNy264AVhjKrExus9tO8kD//sDICVsC69cntF2EkOKggAKaplgHy+3z6rpjccMO9gcq8eDSEguJNWty9n29/BBMWLcnUFsLfPllTpuW3wkhRcN77wFvvBF2LwgJEc5hwZH14Fq6NDHg1NcHb5PXjaQYMcJ5v9+wwcacs4Dne64gd2hba/rjiBHAgAGFaJSQMsNijstRcNm8Hw9deSAGrziYIQrtePHFhFfuF1/ktTukiOD6riRwlUxqmnYegHVCiEmmXfcAOADA0QC6AbhLRYc0TbtR07SJmqZNXL9+vYoqiV8LMkJIftE0NLZZK5kKQYdKibEhT2EUszy/TPWdN/gvuHL4dYkvTU3JA0rEyowQVQiR/e4bwsJ87eat4XepxvcIQgx49eCyE0i5KH1sPb+KEfNvtTqHDQ3AE08AP/1EKTwJxIpNXdNRD4asPBD//VeNmordnv0CTpZCIirDd98BsU3NBegNIeVJ2kPUYj6vkFRG/WXs73DON391aSgVorCE1gWy4+WyZYn/M2bkry+kKHhx5qnFnX+WZCFjen88gPM1TVsK4EMAp2ma9p4QYk0yDGELgDeRyKsFAKsA7G44frfkNrvtWQgh+gghjhJCHLXDDg4eBMSZdesyn/mwEhJJ2mIaurz5YvbGAj6vlVoq55b3YxfW7eD7WMBgYdrcDNx9N9CvX1ZlMZG0YE1ZwJobosKLkNA5a9DtOPZYNXWtWcM0fITIknpU3l9wjKPBSM5xMs9Ysb43WPX7zjsznzdtUtLGmDX7oq61U/GeJ+KL5Zu6pT+PrdoXd42/xPkAmfvjgw+Ae+5xDo0UgftMCGDgwMT4ccYZwPrmrcPuEiFlSY6CK8j4YM7BFYGxxhfGfnuVD/j1tCUlwwszTy2u/LPEEVcFlxDiHiHEbkKIvQBcAWC4EOL3ybxa0DRNA3AhgJnJQwYCuFpLcByAOiHEGgDfAjhT07SumqZ1BXBmchvJA9pGg1WZz4f1sMPotUtIPpGK4Z/P9pNDQ5temb3BheUNXbHfR48GbDv526dOTST1HDkya39MT05PdgtVLkJIuRORZ8CvB5dZ0F6jyBiekHIg5cH1+xHXYXXjNpkdbgquUrLUTg4iM2p2weL67d3HRBUadCFw0pf/wKOTzw1eFyGjRiXCcU+fntmWvE9jemUij86SJZ6qlPHCssPOM1QIYN48f3XW1tJJghCvNMXaW273rOAqhxCFXnJwEWIiZfBN4+nSwF/ylATva5o2A8AMANsDSEk7BwFYDGAhgNcA/BkAhBA1AB4BMCH593ByG8kju7//hG/DhBkzgCFD1PaHEJLBcg0WwsIsreCSpDWeKe9XSZc+zphrwOjB5aZ04yKEkEjg24uT76CEeMdscQ3TPOyq4JJvo1g4rP+DOO5zi0j55nWCwt9VXGeIBEFF6jZX2toyn5MKrudnno5ubz8LTJhgf1wRuD3/+c8Jo1k7hABOP71w/SEk6izftB22fOMly30V5hxcZrzkrC4FD66mJuCrrzLfKR8gHkk/U8V4/5McPCm4hBAjhRDnJT+fJoQ4VAhxiBDi90KITcntQghxixBin+T+iYbj3xBC7Jv8e1PtTyFWrGzshljc/+J3wgTgoYfU9YcQUiCEcJ2oU0KxtHAsT/m2LNtOVVthPQ3F3SxQuQghpLA0Niqtbvly4MknlVZJSPHgRQhlJCm8MXpiCQAT1++ZyA9kV08pzpkG4X5zvH3ubzQqDQA1gq9SPI/EkW22AX79a+Bhr157Cu6VpljHwHWoIMhPaXZJ1xWLAcOH+6+fkJLFKgeX2bwiYIjCVY3bYnPc2lvMb50F5aOPgLlz/bfPOb3sqSx2D0aSRRAPLlIGTJgA/PvfYfeCkNIkb2sqXU9Ijvv0cW4/VdxjOBNNZIREfn+CpeeX4YTEBUMUEhIWq1cDL5mNR01hRM0MGpSINirLvHmJ1COEEA+kFFyGF3IhNCyo2zFrvx1FH4rISEUFbh97GYDkmsK8LjCHsOC6gfjkm2+AISsPDrsbAIC1Gzvl5VZuaAA2xzqor9gBXWcKHEK8kBOi0IyXwUEI7Pb+U5hWvXuwTqUYOhT45z+BDRvU1CeDOYQrPbiIR9IeXCF4RC9dyqWpaqjgItY0NeVsmjYN+OyzooiGQEhRkLcQhWvXJmbMyZNd2k95cHlr2m8Oj+emn479Pnw4q027N9uYW9jEWMxXH7LYsCERh9Vs5U2IQhQ7PtmjcIX82mvAX/7i7ZhzzwUefhhYvFhZNwgpH2Sf3+ScaQ5RmDZUUeHBVSxv25qG52cmYptJradUe3AVy3kikeXDhUdhyzdeyN7o8qK9819+iw8+UN+X3XcHrh99teW+fN3qt9wC7LSTe7lVq4ApU4BHHslPPwgpFpTm4FIdxrd//0RM1y++CFaPD/b78GH8bwZjnRLvpKfcENZ0PXoAX35Z8GZLGiq4iDXDhmV/13X07AlcckkovSGkJAlbNpLyotKFw1TgFubQg/fXyDU/w8L6nbKPMyqqDG3pTmETAeDvfwcWLJBu25IXXwQ+/RQYMCBYPYTYMHUq0KVLniov9AAiYd3y3HPAPvsUoC+ElCsWShohXEING47za6ASScwhjt3CPiocM2nrVyb88IP/YyXutx/X7e0ehrBj7v71M9YkPljMy35z49bV2e/L13Jj4sRMjjOnNnbbDTjySOCBB/LTD0KKBc8KLify9WAX8v0k2dbC+p0wbNUBvo8nJCwaGsLuQWlBBRexxuxVsWhROP0gpIQReuFyXlm2L6z/u/XHr4Ds6+WHpj+7hUVMN+t0Pj780Fc/0qxdm/i/cGGwegixYf36AjaWx7FD14HPf5QwsyaE+MNrDi4t2yAkPae6hPUtqSgMbj8mHwouCsPKixA8EcwsWr9V7sbRYwrfkYBoGrBpk/1+PlqEuJMOp2aHF8/lUlBwGWSWUvKJvfbKX18IIaFDBRexxmwVyXi2hBSGQiq4Uh5c0DwFAc5Obm+R98KGuMiEHUxbmNoIqBpjnaD16Z2p26qcijCFhOSRoMLk++7LWDd7RdfVTd3z5gEXPfpzy32NjcF/Z2MjLdhImeFnrt+8GXj9dQCmEIVGgxGXEIVSAqBikTQb3lUENPdwSwp/l1BcH4koQSY3D/fHwhcGJeLwWbS574eP+e+DIsTUaf6PNZwGp5DNfJwIMWEefxYtQoV5DlfpwVWMD6Fh3tc04f4bevTI/l6Mv5mUBqkUGQXLZVAeUMFFrHEL+0EICYzfMCKuGIU8Ds9uxklKA554AqLOpyRdcnz400Ej058vHPInXD3imuzFuxBoirWXr1tVZuqSMmknpcRjjwHff+/v2OOPB847T21/8sUppwC/+EXYvSAk4nz1FTBnDoBcQ5P0d1cFlwTFsuY3KrisvMLNCi+FObjiOl+hS52aGmDqul0K0tZ+Hz2KaXe+6/3AQj2rH32kpBqn7hbLsENIPpC6/59+OjdEYZCKS+GhM6wDnNY3G1s6Y1H99rk7SuEckOJk0KDEfybhUgpX5yVKtmWnjwqo4CIk7+TtsXJLgp7clhIIpRVttbVS1WsiIyQSAtJCo207bE5/3tC8FT5Z/HOgogIPTTwPVU1bAUJgyzdecqyjTa/IhGLiuEQijnkq9YPtbe5y/48bB4wa5b29p57yd5xfNC2RhyMNPcZJOeBn/jIkyTHZhmSEXql6N2wAHnkEmDIla7vmVTgWVVpbgeXL018L7VEVd8pdSkqCv/4VOOKt23wf/9ubunkq39zsELEgZERLq+djUjZoTj8naxwbWcCFByERQ9botTIZovCiITdjbdPWwXJP5suDq5Dv55Lj5Z+/vzLhDUvZATERWm7aVIoMenAphatzQggJCdmcV55x82wytZFSGEnn4PKZ4Na8gEi1++/Jv8EXy3o69lUI4I25v8TWbz6PO8f91lO7lrz1lv9jCZFEhZyq0Pqeu+8GRowwbSxkHs7vvitcW4REBZn5zFAmx4MrNS+nBozhw4GVK4FevdLbn59xGiZv2NN732pro6d4fuklYPHi9FdL4WA+BFkpDy4quEqe+AY5oy87Ph20haKehI/XiBPz5gHt2nls5OOPPR5ASOkg+w6eMmb5fOkR+LFqb/d5rtQ9uCRpaOtkvaOMzgGJFq2610mSyMDVeRmgJAxa1F5sCSkB8ramMj6vVs9ucltqbAjcDcnxwRxWQUADhgxJfBawPiHJbfXNHXDd6D+gOd4B49ftlbXPFz/+6P9YQmRZswZAQtHVr5+/Kvx6cCnlnXcK19bs2YVri5AixWhoImCI3JAaF8we2ULg+ZmnyVVuHFtmzUpovV97zW9X88O8eVlfLdcQybXJ8k1dccIX/1AzZibriDFEYcnTfvHcgrZnGWbTVz1KqgnEunWJ/6efDowZI3fMZ4t7YsaM/PWJkCijS8rrjO/SMStDCy9eWfmS74XkweXkyW3boygMmCQaFPBe+PproOM//XuIE3u4OieEkCihUADjxIcLj8LLs04BAOjJBbKsMlzLWkxq8h5cJgWXLkz1WHmeJetujVemN9WnrLC4KCURYuFCoKkpe5vW74P051mzfFQIQIyVVMZaPA9F+YgUZacJKQBZHlzGzYYcXCmBVceOOcf6MngbPTrxf/Jk78cWGhvB3vh1PfBD1b5Km4qJCo5VJU5lWOE8vbh+F+gedB07bCJHDB8OVFcb6nHo7hXDbsCf/+yjc4QUObrQsMQqP5QFRgVXXA84D5kVXMU4pxllEg5GArb7ivE3k7yw6zGFybkJAEuXFqypsoMKrjJAybhtrmTTJl/VHHooUFWloD+ElAB5W1MZXzRtGrntx8vxn+ln5rcfRtracl6PjS/MutCAWCz3uJS3maGPbXpS2eW34/mKOU7Kmv32A+65x36/59ssmXxWnzzVd5+8EIsB++9fkKac8XiiYjFgwoQ89YWQAnHL6Muwfr18+dwQhakvNnl8hPA31VnNyxHE0tgmlXdMZX4Frhciz4Rek/DEFdOica1WrXLcHb1sWw44uVdNm+arSothyh1DaFJCSoFPFv8c+3/8SO4OyxCFGaVUTFTm7M/ByUur2CM0DRyYcReFN6NbUj5cey0wZ457udVV7XItVUnRQQVXiRI4ibSL9djQJyf50nHNnAnMLWzEB0Iii6+cEUOGAE88ATQ325cxLlht6mtfkVGCpcIi+MkJJj3S3HprbohC88GSgrS0FVaqAq8LdCq4SJ6oq8v+niWE9nCbtbQA01bvACDb0/G997JlOyoFt5s3A/PnK6rMaLJtxvAyaonH57FfP+CYYzwdQkj4mO7zV2aenJv7zkxybV7dvGWWYEs3enDZPT9+5zm3nJ4RwdI6m3N7WfL008C9Hx2eyEEXNqkceAVESWoCc50C0ObPsy8Q96cI95WndNkyX20RElU2tnSWLlthWPfHgnpw5Wt+L9Tc+/XX0kUZorB8eestYMAAycLvv5/PrpACQAVXGTBq9X7BhVYmYfqZj52MF1/0VxXnEUIS+HoWPv004df8/ff2ZdwUXEJkKbi8xv3PqdLth2zeDCBXGC8MU5CABrRvb9uY8YVdGPf16wfcdhtQXy/T9QSlEJKBFJxhw9zLqMrl/MILQM+nfgcgOy7/VVcBDz8sX09otLTY73NxU5m/bltpA7rTTwfuustDvwiJMGKe3GJ9+3eexUuzTs0cB0PYIjsPLi+GIMbBqkgUXAAsjVfu/ukivDrnZOVtqMqXRPKI0zwkgRIDksbG4HVY4LSeGLn6Z/jsM8XteVSa+VJcgctxQtzIycHlZrTp5aEq0gewtmULAM5Gt+kxTMsY9U5Yt2fR/mbiDenLPM/BkCNPBHZMIVlQwVUG/PqrP+Pyy7O3tbQAXbt6qMTCs4LzASHBELq18kmKtjb7fRIeXB0qMs90ykNE+gVWMt51mqSAzOzBZUQXGtDZwoLNQliX7qcQwMiRQGsrMG6cez/s4GBGXGhqAn71K/dyZhmyUcgj4vIC5qROOHGc6RlLt1GI+1ZRG62thi8ukq/9n74O996b+Lxxo3O9w4cDa9YE6hopR4QAxo+P3s0zapTzfptn54WZp+HS725KfLF7ZuNx+Tm+COdEy+Tyuo6npp2NYasOVNiQsP5MokcUwm/5uUcktUNCAOfdlJszpM/ck3DJJR7bzJMizozb6Vi1Cnj88YJ0hZDoYzHfaOYcXF7q8LKvSKhr7YRubz8HwFsOrs+X9sQxn99bEueAuBOF5UAWxWQ8VmRQwVWm1Ne7C47yhV+rLkKIAacHyWOIwrTQSzKufY6QzG1xKJEHQwDWk33aWtqiOYnfacfqxm0wdOWB0Pr09nQcIV7IClE49kfp4yocVme2i/R8vKQ55dxw4PTLumXZxXTsCHz7bfKLxCKgoSHxv2tXJuIleWDRIqBvX+Chh8LuSRauj7DNs7NiU7fMl9QAoWnY0Lxl1nZfXkcVFfhu5QGRlwFJhXxW+CPyEQaOBEfTgGGrD0h8iYAAydKQzQ3JF2VdB74e2cV7/VasXeu4u1DP/7JlwL/+ld82Zs/2aORLSJ6xfeSND56u44Jv/4SLhvw5vSkmKqXfwaVQ9aAXcMHQGm/nq+3qli3dC5GSwe62+P57IC5CUIkMHlz4NssEKrjKhfo61yK/+x1QW5tQfp12d/4SWkT9JZmQQhHoWVCo4Ep7cEn2J0vZ5EHIY9XlIz/9V7JOTdq8JrBgSQicMPAfOHPQ7envhDjhpHAy4mgo2SCfuDLL8ws2Hlwy6AEFfDU1vg4b/kOnHIPw5cv9daFAhuWknKiqCrsHlvid23bqbAjRa/B63uGdZ/HdyqSw36/5qqbhjEF/w8L6Hf0dXyCEQF4VWuY6uWpQz+bNwIYNweupjZDgsmgUoZWV7mXygcwzqjiX2pQp4Rn5EmJFpWY9P2c9HkJg6MqDsvbHrDy4QswzHdMrMHXDbgVrD8j2aHMOUZhN2vuNMoCywM7Y5MQTgRk1hb1nAWSl1nhq6lm4+mreh6qggqtEyfGUMGe+t+DDD4GpUxOGrSOmb2eqsEgW6IQUEZZrKtmFlouC64kpZ2NR/fYOIQotPLgk8fvCbuXBNaV6j0ydkh5ci+p3THheBViU1rcawiFycUtckJ0CzbdS9otXMGWwXRuWpEKYxgIquCIX04EQBUTAs8PqQXZ9tG0GhpjR+tRU74bmpIdHPC6vlLHoW5sekgBcEgGJXCQq2xMa1w6KueYaYIcdwu5FBiV5McK8R7y07WLF4/Vn2K1hBgwwpRBeIWH5smqVt8YJKTLaVVivSXSj17XFejxulYMrRN6ZfxyO+Oz+0Prk5T1LLxbjAxKM5PyhjxsvVdyX17UPjDKx6TW74913uaZUBRVcZUJgC7KIKbgWLOAYQIofqZA6rpWI3Bx5uo57J1yEXrNtEqsLkR2iUCT+amStXrNycDmUmzABeO45YPp0ABI5uKwqc2qgqcmtp7ZkCS44mJQ9jzwCbLONezmVkUCccFRwpV5ynRpTpZjKh4JLYj0R9Dw2Nwc7npQ4xaq4tXl2Plh4bOaLIUQhYBDi6Lq/d4Gk4LsopskCenC9vzB/kS7KFb9evlEmX8+NgOZet5fGXeZlVb/j1luBq64yNCtjbGDuW8RkEoQEpdLm/dis4DKXiukShh1O6x3Fc2ZjrKNzAV0HhgwBqqsDtWOHbRjmn37K2detY1PqoLz0hUSECRMAAGL9eqnioXpdR8H4rgSggqtMcVobWu6L2GLyZz8Dvvgi7F4QEgwlIQr79AFuuSXbSzO5mG3TK20XtlkhCqHhrfm/xK7vP51TrrGtQ26/sz47WJy8/jowdy7wzjuJLjvYj+tCA0aOzN2R8uDSXKYrtxhypiReWX3h4rbsGTcuK1qALUEUXF7uMsvbORm7SZ8+y3vjMuT5OUhVv2Rl+7y209QEdO7sXo6UMVEY8608uPzkyJKoF0DCgyvAzy5Ka+c8Xue4iLZHG0EknnNfwjLJd27XnxdRRb7UZVmxIvNZtQwiJeiM6Pkh5UeFTYjCrFvUwkglFrF5yDWX0WuvAZ9+Ctx7r7I2jesmy6GlrQ14442cfbtvWZOqQFlfSATRUmk4LOYRC0WrrmIdTkKFCi6ShYoxvrY2eB0ybJJPZ0JI6TJ5cvZ/IP0g24YUMnlwPT7lHPxx1B8si65q3Db3cMPU4Ulo7+bBZYXLoKQLDc2xds4vwC0twP33A/37+2qDlCarVgE77ZT4LCs/sZKH6LrB4KK1xf5YD0lsK9auzt04f36inpbWxHeJ+3ZzvIP0b9M++lC2e75pagL2PmOf/FTe0AAgE52REFsiaiVpKQzfuBF46ilg0iS5gco0LqRf6r38ZmMdTsKBlhbg8cfTXtqhU0APLpI/ImZTGQiv4Y7mzgV2uOwURY2ru1cLbtU+c2b+6h44MPE/K1YiIeHRzk7BZZx3LZ5nSw8uM46Wd2rns3iqv3b1GmUVisiRH7h4sDU2J2QjqXnm+u+ukMnkQoqVpMWo8T5Ztiwpr07NBUa4xit6qOAiclg87FOmAO+9l1u0Wzdg8OAC9ImQIsfyxVfhxNqmV1rXN2hQloLr0yVH2taxyS3cgCTLN3VFtUMIRDfrcLvTcu/4C9H5jZftJSJNTcD//pew2Bw6NF1ZKQlQiD/mzwfWrfN2jNV9uGgRcOGFic+tk2dhzZrMPr+3mfbj2Nw206HC8nTz/vhj7jaF45Fmk2ZPGV99lW6HkGLE8nEbOBBYvDjhra1pifyTMpWkQhSmxgu/3gopBZfVaNa7d0JS8PLL/uoOQHOsHeZv3NG5UAFzcpEIYLawDHi9VUwlXhVDU6YAG+pyIydY1j1nrnMBm2e+uhr4xS88dStSHHD1MaipcS4zYYLEWkAyZBUh+abSRsEV100hCk1DmqUha5B5L+CY6cWQTwUxvQLN8UxUCEtj2eRvSuUjzTqnAPrO/gWmvD87f50k4ZJ6dzbMxXvtBVx6qXVxLhOLHyq4iG/698+Oo23Eac0Yi+WmDCKkHPFjEbm2aWs8P+M0i8psksKbt69bBwwebMrB5a0fxn7LJlrf84Mn8eTUc2z32y6KXYRyM2p2TXywC1HYr19COGiCIQpJpeG90FUQkoxfKBpyXYfbGyLufbb0SOyyi3UV3tJhZAr/bvgNOOUUmU76p60N2BzLb+jAvJN03aKCixQrlmsC44JZ5ua2y9Gn61jd1FWyI1YeXBblOqoxgPHDE1PPwf4fP5K90UvuEb8Irh0Kga9TmzJiKmJk56/X5p6A/7uw0bmQzUmcPTsRltkLbtfDtzGPQ2QHO+at2MJqWZ9m6lSmMSDFhV2EEzcPro2tWxQuObAE8QKHd/v98D9ir35PpL/bpU2ob+2E2bU7A7AWF+iDaJkfJVpb7YPueMZmUq2pgXt6i0LDNaUSInZViSpcp5fRoxP/582Tq9DlgauvT0QqkeGMM4rbcowQVVg+Vi7P2r8mXIDbf7zc+ThjiEJzfc3NALJzcDm1aDWW5GP+dYt5bCX4i+sGNZXdImW2tVVW1eZtDJVzQVGOtGsnX1a88SYAQO/7Zs6+9pJ6odQ9PHJkItF6r172Zc13+6hRsFykG7e0xf0v6f7wB2Cnd5/xfXwkSD7HVHCRUuOJKWcnQvH6ID13+nWfdPLg2n57f3UqoL61U+5GC8v1Si2PbqN9+uSv7jLH17IsgoO/198h+xPmbtwZ/Zf83HN/amsTUU+9kq/fIVWBRWVO/TniCOCxx5JfnJTcXPuTiNCuwl8OrriMkWkBPbjieoWSemSZtGGPrO+WBru6jpO+vBOteuJlLSU5yBKbFGOO0RLm229zPaySaai9k17DWmAhO3K7F+bOBfr2td7X2AisXeuxf0Q5VHCVK198nvj/8cdKqttmG+Dqq+XLT5wYvE2uS0mxYzmJutzYb8w7Qbp+SwVXcrVstBZzUi5Z6uA0Yw4uOQ8uN/zk4Gr3ei9MTi1u7d6mrRLyMGwRQbYHlysLFgAA9Lm5RiHarBm527RcT+bUXXbqqYmIXv/7n4f2U5U60OGR+20X3W7MmJGdW6+YiaCMk0QNTcOqxm3DTSZtMe/YzUT3TrgIU6t393Vzp+sMGKKwKBJvWyq4dPv9AdtoWUZJRqSI4ODv7vlU2PVnz57A+edbdcT53P17/Nn4ZsUhSvvSowcwcf2eruU2Nwe4rqNG+T+WEJXMnQu8+aalRbhdiELduC63GEzSCqUoMGqUu6Jo662VvnKbhy3LqoXAwrodco4x9rUo1jdlTF0dsMMO7uVkyBJ9e/TgisWAhx8Grr8+8f3ZZ4F33snsv+46YOedA3SO8iglRGhUJKGQeuFNBbOuqoLWvNlXVQsXZj4X4vmsrQVWr85/O4TkjSAPisSLvGVs7rSCK7OYjgeImb2pTU2IIjcFl92pSnti2ZwPEdfx+dLDcdXwa/H+gmOsy3hMAk6Kn/p6oHH6IgDAb89vcc97nA7TlX2fjRgBfPnINMtDzFZcL8w8HdtIOg5aCr3MnhQWFcyYWt7xf//7X+CKKxKf+Z5AnNjt/afw1rxohROwtD5OzYHQpOb9HJsWP/O7VYhCK8GVuT8tLcB//pNwU80zUroMIVDpIwSaW50pThp4JweaPKHEgytoDi4F907BPZ9cGl++3F9Vz089BcNXHyB/QDJahBNLlwJtuo1navJErFsHbHFirqea9HldtEiyICF55rnnErFBLRLV2ym6zTm4zMREhbvRZqG8GD/4IGM8a1fvIYeg4rXemFUTRAuQwXzenHJwpY+xcvKigivSWNkq++XyZBAku1vU6ZFo3z6R+SLF3/8O3Hln5rsxB7cvuJ5UAhVcZYLt85IKWfJmMuzS++8Db73loYLwuO02YNddw+4FIf5R8VjN27gT/jjyasvKWvXK3IVtspzRgysu7F1Z3EIU/n2cTZZOAK/OPgk9P70PG1s625ZJodtZfcmeJBupQLPoiIuG/BnvLTwOfecdb90EQxOUFTfeCOy2G3D6jfsAAD79sqO0sYT5Xrn4YuDm739vXdbi1k2m8rLdn8LqdtaOPsq9fz+Ndy3jCYVzfyGipLzxBvDVV8HqIOVDbesWobZfYbLadvLq1oU/BVf6u98HwikHF4AmY+6+sWMT3q5GCUCesBQIWvx48zlWyfj1PfKT56tc2VgrVeyHH4CqKosdHrVD8+YBDQ2Z7/feC9x3n6cqXInCPNTcnG2EWhA++sh2l5dz0miTZsy2jlq5eyhVySOP2OcTJyQveIgRag5RaM7VZWnAEmTQ8Xts8jg7T7Q0yTG6avPW/toxV2fuhlVUGSFMucNTZU3HkciiwvBDCC3rgVI1N7e0AIMGJT576acKAxpiDRVc5U7q6TZOtj6DnEZhEU9IMeEnB9cNB4zJ+v7pkiPx5vzjE2/8QOLlLjXTWpHy4AoQFkV2ITho+aGYVr07ur79P/c63XJwuXVXYgBKt2Eqq8c5eJUTr72WLdRy49NPgUcm/RpA7m3mtJjNd97nufMtlnCb/Xlg54sNG4BHHw1Wh+x5iuta1vUQcQqeiQ3JGyXIPKikGx7al7UwzjHeDiq4cfLgqqjAlm+8hNFr9kt8j4XsQWphua48ap0X63jiCa22Jv3Zadw/4YREHsvcCrxd7AMOAG6/PfF5jz2AJ54AHn/cUxWu3Dvu/PTy3C1XtXIha/IkPv44sN9+aqs2M379Xrjppsx3rUpN+E7Pz6/HMeid11vw3ntqPQQIsWLFpq7Y84PHLe9Ru2c/K0ShrluvWfL9siFDdTUAw5rGrs3kA61EuC8E5tV1z9ok48GV2Zyr9CLRYtSoxNisbB33xRfZ363yO3qch+vrgXPPTXz2GPEwF96ISqCCq0xJPbpvTTsCAwYAj4w5JczuEFKW+JnHOlRkL4zTdaRcUJ57Ltu01UYYU2mT0Danj1YbFYeBAfzl4JIhy2rLa9uEAHjoIeDxKecAyF34ui26nQTYxlt7/PiEIk3quOT/A4/uguqWLu6Vh8gXXwD335+nyk2/sd0fr8asWYbdAz7PU8OkVDBbQxeaHOtjh+7IhijUTYYcqkIUOs2Ta5qcQwVbsnAhfndpDD/95L17iabkrl3elZhUcDnSqxfwyis+Dhw92nG35bPiQwqW8qpesSK73uXLbcJ8e+T56afixRcTnzt1CsGTCon8JflmUf2O6NNHXX3PfbanJ0MkO4569AIMH26zU4i0gW+HDsHbIsSJmTW7YPmm7Tytz83zrqVHchQUXMmkxq5rqjwbF1kay0rM0YENgUheOOUUU86soJgnAwUKLqvqvv/edxVEAVRwlTnXfnkxLr4YeGDU6flvzGKCveWWhGCPkHJExZqzvi0Z/u/4ZPg9c9wWm3hFsotLK+FYPtbKcVGButZOuTuM+Ud8oGsZAYVd7iLKp0gai5vBuP71ogxdtw72Cihk34bXXQf89rfGNv09ZHaekJqWrUCz2p9v1q3zJ9wbNw7WOdLMSc5MiNFjHPcTUqGJhPdzGJOAEDnPuZ2XFAC0xNt5U3DZfJftWxqnNv0OHLNmAc88gw/7t8MnTy32V4cVFuudLGMeFYsXt3wnJIs//SnxrucVMeibwG1XHHaw72P33BN4e/4vA/cByL5FamrsywGFmYvTRMzj28gdfQ7Ad9/5ONB0Aict2wHffmtd9K73D0Nty5Y+GiHEO2nlj8V6wy2TSKKQ8GeU45RsyLyO9jufJX+T5paDK+3B5a8ZM2fuNivru2WrQlh6axnXW74MgUj+WDA//TEWU+AZheT1bpfJ+ej5Vp8/371MkhNPdPfYtoTrSSXwaSY5SMW194OFJuuVV4C337Y/pK4OWLIkeNOEFA0uz5pZAPb0tLMSHzpZKIes6hMC8zbuhNVN2/rujtDUTx1vz/8Ftn3refsO+FwNG8M72An/qeAqD2bOBB5/zGUumzPHcbcXD64zzwTO/9ZesuckQ3a624XQfIUCmzrV8yGBMf7G++8HjjxS7jjj+bjhBuDkk10qt9pNi0xiR8qKWBPAO+8AP/4YSjfM+Sos7+jkm31TrIPUPW2r4FLoDW2LpqGxrQPiuktZwzirL8yjgssupJPiNoh6VISYFULLuVxLlyLb07fA8iS39pQquNwa++ILNDYmzkkhWb4cOOggubJ250NsbrbcfvUtuUZFDQvXWhrXPD3wAEcjJEJU4qT8sX0/NYlqLRVcpvqEbirz8cfWwvlJkzJJa53o1w+46SbnuU42/UFyPeMlPLMtQqCdaQ2liwpLuYdbRghGcokYQ4amPwoRcF405pGV0JTZrnXNBuQWCSKN/cxSTstCBZcSqOAickg8cK6Dzxhv1tSaBmy/PbD33p4OI6RosJpEXSMNmL63r3ARdFtUeMDHD+PblXKWrX766Ie1m7ex6YCQa9OmQJaCy+ZQV2EcKQleegn4130u19piRZqV18lDDi4veK7nGxfrdovnoU+fRO6SYkAIAM3N2d89QrkzcSMtZFm1qvCNC+GekB0w5MCSew5EPJ41jgVW9CYFAk65LdIhCgF0efNFPDDxfOc6x40zV6EGC8GWZUgnlVAgkR9cBvAfxui44ALv1ZxyCnDIIf675QdPt0hTU976kUN1Nf76V6BHj8I1mcLFlsgV8fEnltvf/TjX2O/Vz7rnPQcZIW6kZ1AvIQqN45eFB5d0Ta++mrvNKo6aVd9Gjkz8f+89+/pTCq5U/2bPBqZMyS1nNC5SgNT5kMnRraQ3JB+IhYvUVZZjTWqxrrV7ITd4fwGwvK+8KLgoecofVHCVKEqSNxpYvKpj8EpMA8a++7ofYmmk7svnk5DoYbXm8mpFdMtBIxMfbM0cg40FUglb8y3gEcJ3EgFLDy5ziEJaboXOgAH5D82jIsTBru8/hYcfznwP0ufUbbj77sD06R4P9uGOtW4d0snuC4JdXCAZGhqAT6wFWISoIr1WNr+4FohKs3DGai4yhBEzW3NboYsK4N//Nnz34cFlZWHuUK45njx/tbUAgIX1OzrXb0iu41cBJ3uU8nmFHlwFwdaDa948AMDadRUYONC0zyqfhulytbU57w8b7dP+hWtM111DJkaWVN7hAjJmDNCtW8GbJSVC2qDGMkShjQeXOQeXhCpGekzzOndNm2a/Lx7HFd9djxdmnpbZ1qtXbrlUiEII5/okMXuCCaG5yiisQhTaedCR8NHH/ACtbmPii4XXlCvJe25R/Q4YujRj6WD3nDwy7lfWObRM64s9922fvb+tjR5cEYEKrjLFzjW477zj8ers3FhA+1z2c0/1jxoFfPihc5lFSYW852f56689HkBINPGj4DIvwnLe581S/DyEJSpo6C9dB955B2JtlXtZq8PNHlzJ87Fth8wiifKp8Jk9O/9tSCm4XCyymuMdspyRgwhP9Vhi9btyZe4+p/Adq5u2wRdz97fcZ5dnzpVNNtncA4wfQXKoNE+dgyUTq50LuZx8p65feGEw/RspcpL3TjrvwoIFPt9Gg2H2LrKcWysNeSQlwrZtaO6SCKWS/I3xoLklzOfKiPEhGzMGGJoIKxPT5dv0a2AiFU5diCyB4IjFe/pqyxEuIArLihWeihsvz7Bhmcd83pzEjuWz6vHWW9nHXHFFgP5ZYLwtXadUlR5cycbspsqaxo55G/ZUhCBzCk2VDzmgW50//pjW4RPimfS9bBmi0PoYc4SRnDWDhELHFq9zV/v29vt0HR8tPhqLG3ZwriN5EpZt2g4tL/YJ9iBb5DHVrdZQQtjIMgzHUcEVWQQA9O6d+PyWQ14bFz5beiTO/PSm7I0WE8yT40/H7bcnHBY1zT6E7/Iqk/PHoEFZX0N4pSBJqOAqU+wE1B8sPBa95lglu3AgudoThknqjTeA3/3Od/ek2iOkFPG6yEq/RKbCCOmA1qd3pkBAbyvLHFzmbXm2OBE/jMXXyw/1dWy2gkszJMI1lKF8qizwq4wyH6fqdhe19l6JTn2dsL4HLvzgMjWdSOHTQ9INv+fqw0XHYO8Xbs9b2198AXz0UaDqSQmQnm8XL07cFAVGamxJh+nVpOaq9ZuTOWVGjw7WuRTG/AU2feu53cqs8EWfLZVMtof8G8xUVmRO2qp6Bfl26MFVEJTNs4Z6fvWrTBqNAw5KrA0nztsa116bfUw+54aC5uByqXu7e27El18WoOE8kI9xwzVEfMoSy+BVS4gsTh5cduR4cMnk4DIVOX/wn20saj3OXb/4hf0+2bqS48yVw6/H0QPuCaYFELmjgF3UmayfP2YMMHdudhEGjIssQmhpj119gcJwhQ737KRJwFVXJT7L5qjsfOm5GDEi813UbvTdNRIMKrhKkIJrjFMKJ58eFp4pskU4IV5w9eAyfTdbL7XFXYZ1j1IDS2uoQiIElm3aDn8Z66Ixt/ldQjOFKNT1HKtuz/KpZcuATz8FWls9HkjsKIRXvpQHl8XN4DTlaHGXHHg+UZKAOWQaYx3DfUQY6oG4kHWHjB0bVjekEJBTcG3XKTuEi6/HQIhEKIb33zfkALMfCM1tHLfjYuf6t946bYij1HLaxYMrL1baVHA54veVzfZ+81hhFC6P0zOYkxJE5dxfAnOg0lf+tEebz/MyJykUN+QQJESW9H1nGQJYIkShdA6u7K1fLj/cukNWAsNNm3I2/fn73+Hnn93r6sElg9HodEbNbsoHaJm0CkIAeO65rIg49OCKFsZ58JXZJ+PMQbcBUKuIFKvXSE0w6dvHpWxzW7vs1Dp9+/roVPHP2VGACq4SpF07YMjKg7O2mQcEpY/PwoWJ/xT2EuKJQCEKNS37mUuHETIdb148evbgKkyIwp232Gi7L8jCM6evKQWXIcyD5/X1448DQ4YwxplKUmGH8mihIaPg0o48IifNo+OatslHPPAk+VjGph/vCCySd3v/Kdx6q5q6GhuBnXbydozbOBWBU0RCRggNrfFKnP7V38JoPDd/hNU9u/vuqeLQ4+43rXm+9B229IMPEl5gybHZ8ujk5Gnu9xHbL3eu25DzzNdjOG2a9bhs8Ruz5nq7tYQQCTNdc4Imu7JGpkxxP4ZIIaXc8ZhMM+oKLuO+q0Zci8em/Dr/HSoBfI0bVvGgjXW6eXD5aZOQJOnZxzIHlzX+PLgkcmfb9ANz5sCc3HDYqgMweYNLeF9TXV8uOwzNsdzcpuaQi0EHaPP50K1CNpra+O13N2FzrH3WuoUKrmhhvDZTq/fAT+v2TmzXCz8K+31XPK3P5Xj00QI1RrKggosEpq4xnOTcslxwATBypPfjhgzJ1dnNnAkce6ySbhHiKQ63JX/9a444bGNrZ+djPC4mpXJwRWFCtumDcdEqbMr5zlGyfr2/40gO2uRJiQ8TJ+atjYrNcsooYw7bt9+2j9738stAc9zBotEFJwWMXwtjHVrJRs9Zt05tfVEYtkhIGAxCNjR3wfDVB0TihrDsQSr8sKQH17Tq3bCmaWvnOl07kps0yCkJu2fhkC6hdLJDCOCVV+z3mTAKwGx/w6hRwBNPAH36eOsLkCMMJGqwfRzNmk03pcV3w9R0KAANDYmQR4DzMLOofkdMchMk54n11WpFQr69pAw8+ijwpz9Z73Maj2xxG0CjoA0lJUuFgweXHTk5uKxm9Ndf97d+sbvfTbnuLZVqLnWd/+0t+GjxUTnFchRcgUMUmhVc1rlCje9bQ1YejJWNXbOLhB2thkgRxnXyOy3MqNkN/fur7QuRgwquMqFNr8zyqPe1MLRh24tPkytoYwYfj3vMqesxXsHAgcANN3jPCXbWWcDHH2dvGzUKGD/eWz2E2OHLg8tojW1c3CWfi08Xm3JfBMzBZdUf2Sq8tORkWR3kNVlUVGa3kVyprG/OCABlrOIt4cuwepqb81a19uMPno+55hpgkSnkd+r+v/VWoK51C9/9cQxb5LPOV2efgi22ACq3lu9XlUt04WeeAe6dcKHPHoWHqzV2+PoMEhbJi69DS8+pYViGmnGyvJbNwfXb727GlcOuT3/XRUWwmz3pbWUpWEidx2S/F9TtmO4rvvnGvl3DdkuBlBPJY42eWU4YhXO25+/HHxP/p0+Xbt+9UhIIu3vH/A64Zo1jNfrn4Ssghw4FjkrKemtrgY0bkzuWLPFvYCWDh+d+x8N3zl8/fDJlSo6sXQl2MhAx6Bu54wLGTdR1YMaMQFWQIsQpB5fdPWlelpjnPSE0YNUqYMECwzaLiqzereLx7JzdNvhRcAFAdXNuzsscfZbi+TMu671m2tzQ1klpP0ieUPjiJgClIQqt4PIwHKjgKhPmbtzZMTdkmPTpA2y5ZX7bWLgQ+PBD78eZPbgoECP5JqibvKt3ldcQhYF6I09Mr3Qv5ITdAtZwPgQ0y9WG7ncq5ICgHp5TJehmK0kHundPxsK34dFHgc+XHqGiWwWFCi7ixquzT8YpX94BIBovok7WqfeMv0haCTe2au/sDUOGeOtIWxuOGXA3rh5xTTrvhuXzklK+QYMQwM8+eiT5HcDnn9srjLbbLlOFt56lJWSVMkI3U86SvIQh8hgyj8ghnYMr5pwHM2rD/HnnAT//efLL6tV4cZakkahPFiwANq2ozWsbkcHNQMpl0hdjf3Ter8h74PPPgcMOU1IVKSL85eAyzC8WObjSjB6dVc7M8zNOw5CBpudDctFTKWNMYlFXbUuuoV1O1wKGpTd7itp6cLmkW/jz9x6t4Eko+DJEs1FMyY7nQd4VPd/efDFVAlflpUaID8a8up1w1lnB61m2DDjgAA8H1OZv4S4Tjp8Qv/jx4EqTnLA3xTpmVRbTTcN6UAVXgXJwtdkpuKTdxdxDFCY26DllvQo259R2R49+j3Ehkg/yeE5l79r5812NwpVg9Rxdn3S8UJpovlzh80nsSN4bi+p3xML6RHK3giu4hNxMeuHDCeXy4oYdpKtu1dunLbOFAPDZZ5l8uTLU1GDC+h4YtuqAtBe07uLBZbl2SbuqmNh1V0MVHtcTLS14ceapmFGzi21/jBhDOilRcJnboIJLinwZWdY3FF9oqcWLkx8KMEf97GdA38+6uhcsBT74INjxBVozeIpaQ0oPD4uNrJB+FgquxlhHzN+4I1BdnSlmMVff/uPl+Me17mH1jeGNU1Rtzt2Wg8WzYxWm1DIvdgDMv1SHRQ4uieeaObiihd07sN2qOT2nJhk9Wt1wTg+u4oOr8lJj7FjXIiNGAO8tUJ9IqinW0dlIVHJgmDoVmDdPvt0HH+sgX9gjUQhZQ8oL9xCFGZpi7bGsYbus/XttVW06oAAhCq3qlBTepbBVcEFSAGbnwRWLG4rYeHB5WNgKAQxffQCWNmxPAXpA2tospoUInNNf/AL4dQHyvFvdd3375r/dYmbiREjnGHMbgUSbteX/0qWuTgGk2LEYZ6LwIprTrQ0b8MWPO2X2+1iT6kgqn1atkj/IoLRJ9cnOMjqxT0NMZObwxfU74IWZp0qGKPQoNKiqwl/HXoGBy3o6l1u0CHjllayQTkIA+OknoFevHAs2rU9vLK7f3r19Krh8YQyTL4PsUmCbs47Dhg1O9URYcBkw1F2UCeWXzZ4d6HBpr2/TdXvuuYTsghAn0sYWHvJvm+dHs4JrwNIjsP/HjwBHeI+y0BbLfUp3ee8ZTFi3Z9a2dT4VXMfvtMiioIkgCy8hLDy4rA1xrE6vMWf5o0eHH8qWZPAiQZo7F9hnn+xtJ58MLFmSMFjVzjrT/mCZEIWN/i0S4i32L5M0ZM0fXJWXGvPnO+8XAjfeCNwx7rLC9CfJTz8Bv3n9AtdyCxdKvIObBqOH/5uH+IZJDZv2/WiXgoSoRXqtJwSuHnEtBq04NPE1KfjaeYu6nHL+Gkge7vc11aOiIuaQhyCIx5he15D5LCwsu+DtlHzwAXDrD8lQBiUsnCgERiVCVm65CNDYaL9PmVWYlaVhksjcWhG5HimOPhp49lnJwnYncfXqxP/Jky139+gBvPSS976RIsJqHojAK1HOXPfGG9n7fTyO94y/GId88oA3RUyyoZZ4+/QmJ0WUDi3Le3zoqoNw29grpBRcnuf3Dg5Gbcb2nnsOAHJDFL7xRiK5z6RJmbLJsWK9Rc4QVyIzWJcWXu6LtNGDxbUIIym9NPm+dyI2f6vE8rq6nc/k+bDyLDHu99QmgDvuAJ56yrlpIHA0NhJlqqtd75/U7SniFjm4bEMUmhRcdkJx470vEbIfAOpbOlqWa4xZb1eB0hCFdoa0c+Zkf9+wAXGRbUT7yORf47Lvbkp/36KdKScJiSRWt7ad0aOu53p2GVnW0A039znSvkCqzU8/A+DT8LGm2r1MVmOlO2cXkvDf5oha3BZ3M2cWph8mPv8c+Gr23q7l9tsPuOWW/PfHle+/T/xfvsJyt6Yl3o8JCYKfEIVpa9RPPkl4EZnqyjk+4GQpgITbZ9Y2iTY8ths40baxvaoq4N57gR9+gNg1k1tIAJYhCuMe8hWlZOMAKNjKB1zcAYiWZVfUbvOWFrlyZm+XxkagoQEJsz6L/UaqPb6TkCIjCh5clnk4TDQ0ZO/3OSzM2bgLsPvu8gckhU7VLV3S873l2iR50oTQrOdwu5MaxINL8kKJ1jbcP+H8rNVKVlvmJLvw6S0etQEyYng5PVJFLSqMgvelLyoD5p51g+spT1gpHrL2O+yTuc/btQPq6tzLkSJi3DjgppsS75wuyd47VCQk5LVN8gqkXA8um3vUwuvaDTulmq/3cb9jTeAQhdnttsbboe6r0dlWihZGMV8tz06Cx6EyOkybBqxq3NZyn5frJATQ0eFRa4x1Qu+h7rJpUVOLpUuB9r88Wr7xJJ7f5XkjKoEKrlLDbYW1cmVh+qGYX/0qei8wASMhEGKJlxCFWZ9TCi435ZOfHFymRbtUFTYhAeywDH8En2FCv/02IaF+5x3reN8+c3Bt3myy4KFgSwktLZn7vs9Xu+Qt96GXhWYh1pjrNm8NrcL6HrK1MFbBpk3yZYWAs1gnupif/VNOAQ4+GHLx+CO23iD5J5LX3OR1Vf/jLP91eRnULE6GkyfM2/N/gR/W7pO7w846O8uDy2PfPFh8PzrlXDTGMsItXWgYtXo/vDjz1OyCQebynXf2f2xZ4G/+CHi7+qqnkJx2Gko6vGW+jXRWNm7rKeqqDNL3SoDxornZ96Ekgog33sTYtXsnPJhHjnQsm1rXt7TlPvd2t55bDi5D5Vnl7Duc2ZeTs1vicCONjS5NWawZzOVjrQEVXKbzsaKxG7Z96/ns9xwLQ4LaluzoT5H29C0zevYE/vT9/1nu83KdhFAjprn0uxt95xDlfRUOpbuyKlck3fOLjWHDDO+0Fr/xwAMZUogUH5aOTx4mQ6MyzDFPRtZB3haTljm4zH3s1cs5plsAdKHJDVvG39U5E1c76xzBJgeX5FS49dYJI700JSycKCRbbgk8OOl8AMBNzx+EGTPy0w71kUnK0D1J0xL5u1YYnLKdhhWGEipxouDBhVzhTI4HkWnQ+vmAf/lvzMsPNCqg7LzDDTsHrTgUvx78V8d6sjbrxvqt52WZvuUwdWrGq8xKuAbgXxMuxF/HXpG9w4snjbn9gw6SP7bciMcL8t4pJWRdsCDv/fDCiBHgoiQA/zf8ehx+uGljnmUgKvK58ZKXFgvqdsTxA+9C+9dfxfTqXaWO8bK+NM+7trePlisPcGvczoB0ty617h1raUGXLsB7z613L2vA3Lf2e8mdM7vKbM+H8SQXqeyTBEOVgqsp1hFr1wavhxQOSudIXqmpkS87Zozzfqf5ae5cYOhQ+bacGDkS0K6/Tk1lhHhENkSh1qc3plbvkdm+bDnQ2Jh1/JQNFiGJPC70hq46CHWtnWz3/2aPacDy5cCXXwZqxw6/1i9an94YV9UjqxtCwFrBFZfra078Zb6pKsH8smcROargLFyYUGhaUfTvSh4Cie9/w4moqyvO+9ztMjkJq4zDxJo1wLp1avpEIoLFQ+wlVG2+cJvvzFbH3ir36SWVHC88hxIEbBVXxs26jeGJVN9MvNJ/x0TIKFgr5nRdQ/uK5PHG85FUcEmtN4p+AiggmzZJe/IsXJgdGsvWe99jiMJ0LcOHS/WjoOQ5RKHWddu81m/FnrvHsWFDYdqqlZDDe8Ht0U6PDxb3YCyWiI5OyosWvV36c9Vmm5eGJKk1p1UIQLv1qPmetA1RaLgnf/u/45064dhHq75c87OxuYWGDQMALO/3g209a5ucz4cKbKNdZCV5lvjNivpD8kvJL79K/gcWBiq4Sg03jwIhoG1uKkxfAGy3XeK/jBz4pJOCtaVqTJjlEAGG4w5RiZ8cXLZ1zV8A3HVX1vGrm7qits40Jni8iZ+b8StcP+rq7CoMQqDtOyXDAJhyhQAOyXA9IIQPoVPy86zaXbKFW6IiWaEpRKFfq0x6cOUFpxCFa9YUTohgcUsXjPBF7Qnmr+oSdhdySD++eVQwGwWm++wDHHts3poiYWDlwSVp6KCKWQs6YEPzVlnbEhFB89QPL0okQ9nLe5+W2ORnnrT5LcauCKF5NGm3/x23/HBlTlbxZZsyuUp14aLg8nHqy/W9YPFiYK+9XAq1a2e7q1ev7Mu+337AuHWZfBieohk43NpXjfgj3nwT0TRIKsE15PKVlXjjDWD02v0K33jAa/zilBMwerTNTpcUD598AnTv7t6GppXvmFGKvDr7ZOmyqTHNyphGdryrlAhR+PUUa6+oGTW7ZQ2Wdvehea5vV2ExP2/cmN2sRWXXjromZ5vqe1/Kg0sCFd6ZJP94WRf84x/Af5/MU84DEmlKb2VFnBEC2BSi1K4IcFwf19fLlSPEJ+45uKz3d+z7CuItsZzju/28h6kC76vL/kt+bluFgJbwFLOQMKjII6Tr/hVQFZqAqDeNd1YeXH4XthwECs7++wNHHRVuHwohnMhn/gptX4tcOUVE+vy7XAi7F9ZYm8NxqVCrS5ekN23ejIJZpJPwKGiIwrY2HHLuntb78jXAeM3OneSzpUcmNvlRu0t4cAmHcpa4Ca6SCeWt+pul4DLiZS73mcOz1JgyBVi2LHHqvv3WppDDef3Tn4DVq+3rn13THeutol9Z1Dl3rr3+YfCKQ/Daa859CY0SVHABwF13AXeOuzTv7XgeKl0OuGvMefiXXRTYKVPw0KTfeGwwl+OOA26+OXA1JCKs2NRNumzq9rPy4HI7JvXFNgeX7MNgDFFoM6ebt6fX0sY2kmOX07vKEdstl+vTwoVy5cwIYd++h0gVJEJ4yRHtwpdfAl8Obq+sPlI8lObKqpyJ4gJeNXn6jam0JI7vG4MG5aVtUp748eByWsI2xTokwv2Y2bzZuVEXurQ3ZUU21PFj1d448rP7ch8cp4W4B+qaO8oJ1rJNwtP/RENmsWQnSIvLKLhoclk4HASYDQ3A+vXZuZRS3Hqrcy7GfCc9J4VF22Vnx/1240b70060PygVxsqUr6UcllZlhZUHVyEteOfOtdwskEfzfg+amMbNuQthlR5cxiFeFxWZDTNnAq+/DrS02Nfp9jtSObj2zfUgEQIZBZcxLnpSse1LiVemawPjz545U339x3/2d1x+uVzZCy4ATj/dfr8QiKYyKYp9KjIMdqfuRGAiX7wYaEoF0mkqXEQdkh+Mo7+sgapl/m07vZVpTrI1HE1VMH26Yx+s8muambRhD/z0U+a75e9KKbgc3vOv3T83tKFlmwHyI9q27zEHl990CCTB7NmKKnKJO1vyy62S/4GFgSsrUjJYjgmrVkkfv/32idBYEVj/kjImiJCtRW+XEBaZSSbDi8eBb8d5j4l98V5Tsr4bF4Lz6pIxOSxe1FU8SiNW7Ov9nCQHg9rWLbCycdvMZkOuj0O6ZsYGy3NmZsYMb30g/nExJGhpAfbYI3f7yy8Dzz+fpz4VmHzPQ+XqdUAIgPAVXDaC7RwjDJUvux7qWlW7BXbsnC05tjw/bgOVVw+uF18EJkxwzpckOXiJrbfJPVRoGcMbg8vP4pptAQCXfnejRMXZ55GCsfzhRf5vtOOyJIovd1RwBUIIYJvcx9z5ABWoupe++05NPSQ0jJEC2nS5nHpWc4atN5XJg8vVUO+zz5z3Syh+rhl5LY47zrma1DOQ7nWQNZXHcIJphMPs6zlEob8ukAQHHww0N7uXc2PA4M6O+9+fd5Q6ZVoU4Y2oBK6syo1ye3DmzfNUXNez3zei+D5EShvHBaHL89tr9smOllY/fl6Fs+88NEj3Et2wWlJWVOC11wyPnBD2yXA90L4iLrdItjg3d467FGcNuj27iK4DQmC3LhkrIV1mKnSVnhCv2N7ONt4N5US+vc3KIXqHiuXOxImJ/1wLlBgWN4eXsEGBsVNwCZMHl8o1uwettoZcQZqld7jPNo2bdaHllnPSbLj9jtQ5swlHXN/WKfHlrLMSMfbmzcM+zyRihq1p2ta5bmP9JFLoOjBr+VaW+4QAB/FyII/XeMZS63srEOWwECtxjLNBS9w+56Cx7KTVztEH7FsAtu1g8y4qMb/v1LkOF1yRUSDIGmekyxmfr7SCy34+tFTk6R7c16T6ZreD83Sh8XvKR47MRIe/+MbtHcv+edTluOcef+2Q8oEKrnJDxvojorgNnC0twV1khXBeHxfnmSNRxWqh53ifC+GYCPWbFQc736PvvC3dNycs+1hRgRtvBJ58MrNJxatmlw6t3gWPNicxvdg259AwntM2+YSktY0dvPWL5B2n50dFTjgAGDUq/7IyVX21w6/BZBSQfYlS4Vlx9NHyZdescT6vzz4LXHll4C6RPFFQDy4bjF7GiQ3heHBpeu6NbOXp7FqlTYHsn5j5zY1tHbBu81b2CZUA98ErFaLQouljd1uFDhVJoXJlJfD44xD/fda5PhcoRyswNpPvqlXAIX851fNxocKbpzgQAof99ZTM9yjeSyQUjOvM7ls4x8tMvb//X/+LsHixuR7nY9w74j6WVG3eBgO/yeQkcj3E7JJjPCCl4NIs9iWRXlPJGN/YvJvbRmDJ1zqKKOfUU4FnnpEvn3M5izQkCaeR/CEtNdQ0rVLTtCmapn2V/N5D07SfNE1bqGnaR5qmdUhu75j8vjC5fy9DHfckt8/TNO0s5b+GRBYVD7Hb/DR0aMJF1q3hRYvsIxcKwYgRJFzcFoROgu+YXmm92EtO/hX5VNFqubHFVeTg6tKuWUrBta7WkEjUTsFlOLfGz+lzPmlSIpHT6NE5x7a25tY3fNZOrv0iDhTporQU4PueR4T7vbrLLsCrr9rv79sX6NdPYZ+IfywegJdmnYoRI0Loi4G0l3EKlWOkFw8ui/vdcszwubjP+okGpd7/Db8OO737H6C9Q2Jwt8HLkIPTTIfKODqkcnAlF/uBFeEcTO2RPTeFyEVEaVLpo+AaazELQbpNkrmWFuAPVyiIy0WKFuO7ZKdKZwNJ41xj1tfYKbKy5ifFc43r3Dd/vv0+KQ8ui21WHlwua5NB/xyJe475Dli92lSZsG/d49qpFEMNT58OPPVU2L2wZ8aMzJDtJbxhzmPw2aeJ/9OmKelXqHA9qQQvovzbAMwxfH8KwHNCiH0B1AK4Lrn9OgC1ye3PJctB07SDAFwB4GAAZwN4RdM0uWC1hPjFNFBoGrDvvsAJJ1jPfUIAWL++MH0jZY/VgsotRKHTEsw2/vfGjQD8K5yMSrWffkok/7ZDjJ+Q/KAmROEN316CqdW7uffRuMy19eCyJn3O330XA5b0hP7eBzllRk72nruMOCM+/Eh5nRs3Ap9/rrzaglLQ9e3y5QVsrLCc/83NeFuN0yq0Frm3L7vlw6RJnpxDSb6xeMj+M/1M/POf4bUPJNcE+QpR6MWDS+iobu6Stc0qRKFfoZDRCcsYovCLZT0TGw85xFe9iU7ZK7gAoENl0oNL0zB34074ernHsM0UQKhn4EDLzap0UpG9ZJHtWJEicT5/+1ug79wT7AtszihbdT05b9tYxa5eDbzzUSevvSQRZ8IEoHdv78fJ5uACPEQikB0i/BjDBBl/kgYiTka3Vko7yzWDS9+feW9nPDn1HFhZINl6uHlcR5XiSPzcc8Ddd4fdC3uM+spAU+HcZG6MMWOweXMi8nRUKNaoacWOlIJL07TdAJwL4PXkdw3AaQD6J4u8DeDC5OcLkt+R3H96svwFAD4UQrQIIZYAWAjgGAW/gZQJKt8Dli5NRCexbGPQIKk6aAxI8kGQHFw6NOsiHyQUNpVBFE5JF6ZRo2z2//BD4r8hprwKD67Ztbvg3QVu2W6BdhXuvy0tPDSdpLSHmBC4eOifMLs2Nz56xYZ1ch0ucu65p4ApsMaOVV5ldTVw0UXKqy04+Z5e0o+A7QMdXZ56Cth7b/dy46r2xvvvB2jIh8DAbl1w1FHAggUB+kLUYuvlW+B+mNvP2RBeiMKYyF4kW4YodBupJEIUDlzWM+dZO+rGI6X66dimxfMrdJHxZNc0XDfqapz/7S3+24KNRTrxRr11aC+VXoOEAMCnnwLDVx9gX8Bwz/35z8BOOyH3nrOIWEFKh3vvBW6+Wa6s8RZ4bMqvncsaCuuN2bm0CupBlLTEcr1/rQRlKczPhGyIQqtGXdbaaVmChWe3qhxc0qEgiTI6dvR3nO2l1XXccw+w115+e6Qeu+f6hReASev3KHBvygdZD67/AfgngNQItB2AjUKIlCRzJYBdk593BbACAJL765Ll09stjiGq4MI/G8kJLlWsuhrYHGdeHVIYrAQj7h5c9vf0MTssxe+GX5+7o6YGcx/+GIsbdvDTzWTHdOM/W95Z8Iv0Z1WjUatL4l4gswDWdaBqo/WqKcugy7A9dc5bGhNTWsfK3MTPFVMmOVdo4txzgQsucOl0BHnySSjzenHDbuFntz3o9FYss6MQ+bf6EmvW5rX+fBKPA0uWyJUNJIAyeBXQCo8UAiGyPbiUKk+8KGwtykoLq2SqN9dlqmfSvGzvMU9tpjy4bEb8tLBMCPv8HRL1lzvG09CvH3DTTdbljFfhgguAMWOsCuV3dhYi/22QCKA4H8LEiUBtbW69Hw/bLki1aZau28JzPST/aI2bpMsaFSOLG7Z3LmscDU2x4+ymFWnFl5d56Ztv5A5JKrgs17/pEIUOXbLy+rZq02VtMq8umQ6gnUkW4JSXnCEKSxbb+zYeR3V1Qbvim9tuA/rMPSl3B9eXSnBd2Wuadh6AdUIIC+meejRNu1HTtImapk1cz1BxxEAhnvk99wRu/eF3Dn3ITID932nEf/6T/z6R8sJWwaXrCe2DA9+tOgBNMQvljq7jwAcvwxXDbgjQMfvE7QCg9emdXVZRiEIAaJFQcKU61vflZnS/9bfWRZIL2BWrKlDf2jm9PXXOU7+to0UcdStvNKchadAg4Kuv3LtNCkcxKSnyLovzE3+ljHhj3vHY4lJna1wrKEMtEmylSQXKCygZonDuum6F6Y8Elvk0fA6pObKn2lp/FTlUbqccTM3lIhZH3GK9VV8np0BLf6VgDJMmAX36uJcbOBD47DOLHXYDZ31doH6liKzMKLIdK1+0OsNY1NCQ3Jh9fz76diJsupfLJ9pyDed+ee/JnvtH8k/FimSMs2R4fyfO2T2Tn83V9sLwuTUuF84wq0qnBrwodIwxgp2w8eCaORPQLjgfgPN7lVtO8UxB576vauya+NC5c84+q9DJ5jpf/7SrXD9KjGKaXvz09frrgTrTEqHo38GK6aJFGBnTteMBnK9p2lIAHyIRmvB5ANtqmpaSOu4GIBWgeBWA3QEguX8bANXG7RbHpBFC9BFCHCWEOGqHHQJ4GxBrwnhwZs1SVpUQQGOLhLDbR71e+WzwlvjHP5R3hZQ5tgvCRYuweWkVYg4Wx3E/1sgS1LZkrAxFnXUomSyWLIFbvjBP7be6WzmmhFnrvxpnW2ZR/Y6AENijZzeMW5eJcWZeIMf13PNoqeBiSINAKJ2OWlqyvmpaIoFtMVKIaVo0yFuoFjNO51IAaGoybUy+HdW2bInNMe/e3EX/clUu2N0Yy1dYby8Q/5pwYdb3WSu3UVe5h4HFyovZ0ttJ0psqp664abtVaPDp0z3VKYNR6XXwX07FhPU9cspssy0fYmUEncxUmmNzcC57vh2dKyDPwZAsU9TUJD6YFgp+bmvxQb+cbWtqO+Onn7zXRfJLOq9USsHpwK5bbkx/9vLW+9KsU7O+20a0kH3PdPFcziKZSsD1Pq6wliksXZr57DSsqvLgsu2PkweXoaEbHt7duoxbv0gg3ngDeOUV+/1Z944Hp5bUterbF5gyxV/fSGnjKg0VQtwjhNhNCLEXgCsADBdC/B+AEQBSZvJ/APBF8vPA5Hck9w8XQojk9is0TeuoaVoPAPsBGK/sl5DoMmCAkmr22gvo0QPocuOVSuojJGysFn+2Cq54HNu+9RzeNYQAlD42IAOX9cwsnocNdz8guQhVkYMLAJa6hH3Ianpjjef6U4K7zm+8DABYvinXar6dlmvxlq/zTeQYOdKg1zKbcSFaiWajRrm8zLW2AvPmWe/7cNEx2HLL/Pfhlcc3Kq1PCHkDXGKD0wMQy1XuFBRD35R6nXrJwWXRrtV859uDyyVEIQBguMRaw4rUWsWiyufHH5f22pqzcmtf1WsXZsceZg4ub/zvf8A2WycFmlVVif8SyqdFixJ/fhRVDFFIAODsP+7iqXxaeJ4z4drfS6efnmNvlajrB+ucs+NNkrBYDFi40EMniXLS85+E4sX4Hr9th8225aZOTeSUTtHQ1slUjwQSE67UnOzi5exWuWUbQXJwNTZ664cMqWsnm6qEnti+sTvFf/4zcItFitOffrI4ZvJkf4YDpmM4zRNAPgeXFXcBuEPTtIVI5Njqm9zeF8B2ye13ALgbAIQQswB8DGA2gMEAbhFC8BU9BAr+7CuSpK1fnz+BpZhmbSlaTCGtSGlgu8iKxdCq5yZYNZJXhUvyObYNB2CkQ8LzQVWIQhlSw0ylm1LNZhE+eXLm+yNTzs0p061T7gKcgq1g2Obakhx3Tz0VeOcd+/0eQ7BHhkLk4CoXDdeYMcABDvnkZZF9abIqN27A6uAdMHDvvSiIYq4cEUD4Ci4DQsuPV7ZruxbDg6WCy209YDPOxHVrwdfle0/IfG9tda7bDgfh3YC5B2Ftk0KvOOLIF19VWq4Z6xuS9/Wbbyb+SwywBx2U+PNFg0TkAVL0qBZS262SZi7ewnaaGD48IcA1ernE48DRA+6xLG++9V97DdhvP89dJQr5aV2uZ68dxnnx1oNH2JY74gjgpjG/T3+XXYHL3tMff7s19LjI9Y62QssOy2/fuE0o5dVrMlUZfonZEHRja67HpGWVk5yz4HSqtF8L2P6E1AsgXSTzTuqamq+t2eFu0ybg+++B445L/Nc2ZzxjX5h1Gk44wVt7OW1qWvEruMrk3TzfeHpzEkKMFEKcl/y8WAhxjBBiXyHEpUKIluT25uT3fZP7FxuOf0wIsY8QYn8hxDdqfwoBEEnVdSweTp9qaoD9/mDv7ZJFr1757QwhFlgJYGyVVBJCN7uE6deNuspTvyxJW25JPM9CKA1RKEWyf5U+lGpxUYF6g/wjZhGiEFuUtkR52bLoTB9e7hynx4KWXfZwDe2NIArH9g3evUqdmDTJ2kKcyNPn2z0tt0+v3k2Je5wQwJo1LgUsOLH7gvw9nB7qlVVw+cWyrngcndsZ8l/a5kmTM2KxKyZlpOOBY/5+otL6osCgQe6PgcztdOHvOtuuSwFkctxITM6trYm/pmbvSl9RU+teKAw4EatFwfm0nOst6v36K2Hb3MknA4cdlvn+r38BU6v3kGpfIu0TyTM1LV2kyxrnsutHX4ULL5Q7zhwK3+7dWvaWvvyFE7Dy5S/kDPtS463PEMOWiRQtyv53+pkSnXHPR/b3w76z3uEYgzy5zy6Eg7m4VCnixrBhmdvLrOB65hngxORyKRYD8P776X0t8fYYa+3kmkNVFdAvGfFVCGBzLGP8zfd8AgTz4CLFSAiL6fb/vg+PP17wZrFkCbBwlXvuHoCuySQ6pBbLmzcDzz5r2CEh0bQT3LwxT9IsRgIpIVdynFEVolAK2TYtQiHoqMjK9xHTcxfbYptt7ZosCZYsyXwu1AJR9vSNGwfceKNNHRLvN8VGQXJwiUSqiXlr/IXpIiZqkwJUg9n21KkJxbHqcbBY7+socVOvIyy3x0SlkhM8YgSwi7doWACA7lvUYcKkzKvZVh2aA/cljZffZVHWMp+GmxezXQ4u8zpip50AXc+eE/y64NqZEyfp3tnem+dXu8723NyMZaU3hp57bmLeTbHffsAXX9iXLyRbnnqM52OE0CIp+XrmTffw207eCyQb9R5c9vWJWNxxSG02DN3zpstbpHB+D5+9t0rmA5K4GMa5rDnewXqctHjvbF8hZ0hjvgedetQwZip+XL6rVL2AvAdXOidZyvPLw3N22WXAr3/t3OaCuh0d60hFg/l+5rbS7abXD8UayqOIMC655s9PfP7Zz3Jv+xyDVIvUAjJMmQJcmcxWs24d8KfvM6lrIjjNkxCggouULCoGuYa2TtiwIXg9hFjhZCU9dizw978bdkhYlZstwpTiJYFtckFZyBCfmRCFLovZmTNzNulCQ8vgTGiJmIXFsaW3nUtTXGip4e23E2FbvGJ8vnbcEXhj3i/VdSqf+Fz0e0IIvPQScMBdF7iXJdjYuoWtkhUA8PXXAABt+rT0piOOAM45B6hQPA5SAJZnFJzgmlWbfdX1yeKjcMzpW6W/b9UuHAWXdIhCn6cqp66ePRMKLuP2gAouO+Xbjp0bbA+1Mm4hiZxAOSnRli8PpS9+iOqQ+c/ndnYt06myzbUMSVLARbemO7+TZXVl0ya5cuD8HgX26JL0upfJeSXzTpwygDJwyd6Ts75L1ePSn3snXIhT3r/BvZ6UosqrgUpaDmDYZOi3VW2ffAJ88w3gJExrc5l3Uy2ceOexjuWy8KjgkopOU0RoWuLdOfW5qcm5vGoWLChMO1deCUyv2T3xJaVdK2Y4ASiBCi5Scsyb5318sJvk/z7uUnTvbihHTy+SZ1KCn5z3NBlLsnzenxYLW8eyQoTiweWHuNDw78nnGb5bTI2SFu2lQCwGNNjIAJub1elfVLxQOF1243vN+vXAmqZtA7dXCETfNzIWk/lqA/bXuOxocxcg6qLCWclq8xI9Zw7QZ+5JPjtmDd9/8oyKE/zJJ4n/U6cG60pYc4xdwnhFN5/l46LYg8vu3Dn9hJFr9k98cIwvWfykTu38+cCECdZl6upcwqUNHqy6WznoQsOKFYnPQXQXWtAKQqRU15l+2dJK6e83X58FxrPtNFZowtmDK4sK+WsoFi5KfFD4m4g30u+uEnOQZVQTifjoZsMn24i8rj3IMLV6dw+l5T24zHyz/JD05/Tvd6lM9O6T+G8hb4vt6OzubmssKxPCQ/IhLfVxNp92kx5Pdf6Ix4t1ms8Q+kksDajgIiXHAQcA48erq09BOgZCpLFVcPldaKvCSw6ulAdXARVcqTWBpXJKgo0tmWS4Vp5wVovyUl2HPPMMsLVN1KWrrwa23bag3XFE1xMKuV0P385yX1FSAMt4oRetvE89EycGryN5MmW8VmVzNNhRquNOFNi2Q6OSEyw2Jz24JPM/5LByZbIihRc7qAeXVYhCN6GQbIhCAIjHs/I1TZpiM5e7/Y7UwG9TTmqN8Pnn7mWKkBdfTEQGqEwazJ9xBnCMTcS/c89NONYVBJvJaML6HthDLnWRIxwyS5xBgwConxtT45H220ty9rktn7JvafvSOR5cqSgTP/3k3kGSF1Ih8byGKMxsNL18WIxvxrlz40Zgft1OlvV7MQRcvin3PciSVHIknzm4vq/aN1NErkW0rd9oW6Xbujnr9KXWRg79A+C6Dih3mprCt+PJR5SfSL7X8h4sOFRwkZJk82Zvg1ypW26QaGI155329h+wcqU/Dy6/yh0pku27KdE6VrZlPLgKKVaQ7J8dxvOdDk9hxEJb4nZJ4nGgutpXd5Tz6KPAzTfb75ddfy1apKY/gLpxt6UFWL3WIm9aka4pCzIfCRHNF4EwMFqx+L1pNBvDBAuC5rIp1vs6Mji4pWzRrjU0pVIWScmDykvda/RB0mWtum0laHMNcWTB2rXAqIUWeUJ0PWv+PmrAvzzXneiUc4hCqXWShFdnFionRh+0tQE1FssWM3/9aya3669+5W5LsWxZ5nOOIL7A702B5ytOeCWB5WUMQVLrdjtl7XcomxuiMLmB1rWh4cmDy+rimo773+tb5hQxzk433aDjqWlnW9afNc4qXvx59eDSfnMeBg8GZtdmPK50SbmD3pBIyLSpuV3OPlcFl3H/wIGmLto8XEL+GqaLm36vn4hQfpg/Pyt9b14wjzM33eQvT6wVqXP0wAOZ4AWEhAkVXOVGGUlGZN5lzjkHmDbNvRwhhWTCBECrSWpGUpmKJRZpec3BlcRNqCEE0n0taIjCJH7yFZgXyGfsNie3jE8Prr339tydvPDii0Dv3onPCxda5jzOIWzrLhmEsB/ry2i688zYdftg1aqwexENBv3YlfdKGbHpmVdt97WviCsZOH5a18O5gE/L6SD8qV+wUJm+QhRalL/tNuDW/qdYNKDniLlSjnBudVo2bbNWkTKCmTVLqo00IUt17rsP2E7SeD/FsGFy5YIq5FVB/RSxJfnOoVLp+tBDwOqmbWz3a8L5nUzWg8vMg5POT3yooIguLNK5nKUip1hcJ5Ny8m8P5t5HxvfO+okFzh2UysHlwwP7nHNci1iypGF7NDUBB9x9Yc4+N1mBcf8RD18oF6XJaw4u5K5vDjgAOOoo4KqrpKrwzf77A8d6SC/mRkuLxcZ167K+5uP9/rnngBEj7PcXYg4v+nUCX0aVwNmzhBACaGzJtYwwFypk2LCoM3hwIjd8Y6xj2F0hZYjdPBabMQfa228lvqSslfxakqki2b6bcMi4SAwjRGH3LeqdC0qsfuJWluo+f0q9S3fCYL/9gDvvdC+3yy72VuEqFpEq1nGlqOASev5t43/zzS3o1SvPjRQJ5/7zYM/y7Bw8hCgMSuq+1jSm6fBD68p1zgUUxDbdodOmYBV4CQmcB6wMOixDFPq43SvX2UhWdD1HWNinj/f63fJB9J13gvdK3fDq8aUYo6cVkPAcv+MONXUHDakaGYpU8hXWGBBVLOdYhdc29d7y738DNS1dHEoK+fHPgwcXCZ+0QkXiAlsWkVhDGFf5Wtx+/siq36U/O3WWTLQke9PJ/P7U7xDCUWE2o2ZX+2nSpR3jMz+1apcs4wzbNhWFKJw8GXjvvUBVSNHWpkbptHw50KmTxY6UhWse8HOKBw4E+i85Um1Hfv5zoMUiR2PYFKswooihgquEGDgQ6HLtpY5lJizsmt8wZkXIww8D3d56VqosxyhSCMToMRnrwNWrE//DzsGVxE303qa3w73/7ZZY7BbyxVw2RKHVyk/TsrzfLD3hfIQojAo//3mO8VaO4s3ut5hfSArxm1vi7dKOi24UbZ4tF6Zs8JYsmgSjWJ5lILuvlh4uxJE2PTecaRYKboaOlbHEB7/a95BvyHk1O+RsMyqfGhqAFSuAqjorSYoB0+9YtgzQl6+0LWeev/1E6VKyDtoyN6SUIyFrms23y8iRCWvqUoKKAOJGIYdNDYD4ZrD9ftn71a7TvOFDIx1eX1GIQitk71Uv5m5e5z4Vz4tsmy1xewN8x35YhFNPl1eYg0sky771FjBlitQhSqmtVRMy0DYCt09r2+Zm93WYn/vof/8DXph5uq8+2bLrrtAmTFBbp0Luugs47TQAmwIawBFXqOkoIVZavDOaOeauU7HAJpFlKeFk1W/G0pWXkALgtCbIcdn3m+xWFWmLcveiT/TZPn/9sCH1EuB6DiqtczXdeOCY9HcrIwCr310sypXJkzOfHdLPeKZPH2DUKGDqVH/H2724/fqbv+Dgg+XrKTU5gICGZ6afFXY3yorAL/rpHFz5lbAtWpStdC61e78QFELBFdiTLw8ht7xwVv8bcrYZQxRecw2wxx7APv+42FO9e+0FfLT4aNv95rNmOce6XJ/UGiDQZfR6cMj5cgoh2M/XWNPUBLz1/b55bV9AK9rBsr6tc9hdiBQNETkf2uYm4MexsqXtdxkHOeODXKT3aymgefDgMnsdb9uh0bMHl3M5eaQN2GVDFEr8ju/XJsduiXNld0t3ahezP8ii3qxHxu44jyEKdVEBCIFrrwXuvlvqkFBYvBgYM0bt8PC3vwFvv229r3PnRL4uR71RnYvnYAEtDwoRRcMvgwYlQzguXGhfqJisLSMMFVwlBNdCGaZNyxbqFjuy3gykNNA0kZvkNmwPrpSCS1bgtnJlKMI5t3PwxGc/s9y+ZbuMpjtm9ZJgseiwXYbU1jr24ccfgfXrHYt4ZvZsIObwjpCia1d1bd50E3DKKcARR6irEwBiohKLF8uVdVoLFus6UTDuXMFRpazO94i3776J8SPdHtd9nmnV7S2JNQ1qFFxuik63NpIKkyiNYcauVFXJdWz+mq0kK095cGXPvZN/8j4Wpg23gzyN225rvb2hwXp7AS6UrtvLkcK4TyzblEnuaeLrr4Fr+7qHjQwy1hUiPy0Jl1WrgJHLC5f0Vvt8gPN+4/0qG6LQmFyIk3s4CIv3bwfM75wCWvZxNsYPxuHTMo+XD5QruFLpBhyKDFpxqFSTTm1NXbOT/Rym6znnWGa9Xr+pQr4wkj81SgsuC2bPTuRAOylYOtUsvvwy4U3Vq5e9o0TfvsAxx9jXIV5+xbkRGeGECiI4Zi5r6Iabbk58TttXO/Uz4vdgscAVXwkRwec6NP72N+CPfwy7F+ro3Llw8wOJBhXmJLdSFmF5HNLTCi5JCq1hllTA3fvuQTnb/jf9VLwy++T0dythiFW9tiEYXay5f/lL4PbbHYt45uCD7S2wgpDPtZaKqh37VywudiaYc6N4OPJI4IorgJ73nONemESC1gJ4cFXYjG4//ggsWSLRRiyGTz8FTvlKIlligUhZOAOAWL5C6phVNR68LYTIEWT1699B/vgkSjy4Tj7ZevsXX1hvL4BQ4uWX7fVu5uZDk5FE1BpvY2tnviSXOH/+M3Dmh8Ff/GXvEq3VOfxL9u0m6cG1dq1k6ySfpK+WhGdujvJFmBRcqTzaJozrfCfDzKz3AUnv5SjipD+68rPfYqydM6QQaF+RfR3i1RvT++zel1as65guI9c/Q060iJ7Ggw8G5s9XW+f55yf+jxsH7O4SGV/TgKoqix1uIcTKWGnTqrdHn9dMMqWo3mAlBBVcJQSflzwSgcH5/fcTExApHYSN/F0ILSMgSy2wQwyBs/82a9O5XqQtzTStoI9Nqi0/C/xxVXtjek1mZScbojDI78uHwrqpyf+xERjilCOGfhd2F3wRVliyckaYhltZpkwBPvoImLY8uGvkhg3e13Fc93mnICEKba7LL38JXHaZRBu6jvFjo2XVtLAuk5dLtNplizfh8VyqmIaUCPna2Xj52SW9K8AEKhOG/r77EgIoO0ezIFTPXZflYGJJHs9DuYYoJHIovbwSxlGa5pxn2OjF69Q3baFBYs0QhZEgbWAqMZ6Z1+s5Ci4bzY3xOMcUVB7eBzx7cLn9PF3H8uXAovrcnJw5uFS2Y6cGiGXLbfc/8YR9HzpUZK+FxPffu7fpMURhXFQUrVGkEencbj6n6urqXPlFlN5Z8x0mPggc0gsHFVzElU6VDJeEmhr7fQVyrbrmGuCWWwrSFAkZAS0TIiECCq55dd2xxV47AvCwKCq0xsQmSb0fckJOCOC1abn++bY/USZuex7W0eW4eBJLl9qf7hX2L1NRphSVjVFH14Hp04F2F/1G+hirmPR3j/eWkyhFfT0wd27m+9y5wEsv+aqKuNDqkOwcgBoPLs1lgHdp45y7D4c+anTgfqjkvYXHpT//WLWP1DFeT6WUAY2bFXvy1TaQ0MWuDZvtIp5/wViFw6lJdeuxx4Du3fMTweLdwTvi2GPV1yt1j+g6gqg/OaeWOJqmdv2bEqA7Nemyv6FBw5VXuhfWjNEuSkDAXvQIw8zhI0RhXFRkv6/X11set7JxW0Md9oN7jneuw80kreCSqCvFsccCI9fs76leK7p2bIJ4403b/XPm2OywSg+QPOfHnbU1vljW0/owXT7MJADEI+z9pgJVU+DZZ8P7OkAInHQS8Mar0fTwLjgyizkSCCq4iCtR0syHhsOAc+ElFZg2LWHVUOCmSZFjd211oaWtUNKCk4jcCLrseKDrBR070h5ceWgzFgNemfKL3DbdOmP3HWr0lZdfDjz0UPB6gLByeAS/VmLCJNsXyGKFc27hEcIm9IYDTjHpvXLSScCJJyY+//OfwG9/C/zlL+7HlaNSOyiOObgg1HhwOeyTyfUweOL2iLdGT9i5ZLHwdM9lCf+c3IpsDFTO3n0mHnnESw8VhSj0eLCTDO3bbxO584JSDDKR4aNcvCP9MnFiIGNCzqkljmoF16xZ7k1KiIz79cuUloIeXJEg9f6tHX0U9JjzPGyes2J6pZRS5Z7xF2PRIus6/OK1Htd5QwhPaRUdcyJDg15rk0QSQLzRRvlhIUtIff9pUnv7BnVvspOYXhnKRDpqZEQmb0lWrMjNQOH6C4TAmDHAmppO+epWmqIYNTm25x0quEoIPi/5x+ol6YuBFejZE7j55jy1WVxzH1GAcZGaVoRE4UbQdXmlhK4rsxjyghKliek5t1NG3fzBybjqqtztw8eYFt1tmXBOqXFaVsF1112JsENWfPxxfvJuGcnXvFJVBczZuLNc4XXrbHcJAeC119R0ipQ1Uvd6i3PeDekyJhYvznx+5hkp+RrxSXNBPLiEbV2bN8u1sX5zl8D9UM2atQEEaAMGuBY2n5XBKw7BAw+Y0phEMA+JU5vDhiEtyPTL6acD771nvz8Ky0MAOP23wUO1WrJxY6DD1zRti2Xrt1DTFxI9hDfFuyuSlUkrTmX7RgVXJDDm0Gz57GvHsjkRP4BsBddOO9keu+++AGIxR8NM4z02e0F7VDdvaVvWa4hCV4SAkJlcZEI5ChdFSOMm6+0WsgSp+S6VL1TSuzpmyL1dWwt89pnUYYE55dTsa3HZZcC0aXLHLlsmH46YuZ3Dh0N64aCCq4Tgg5NHJGbT1jxFcozKiytRj5MHV4oQIxPmMm6c/AtdSKE28iHcim+0X0FaCZ1yhDwWAm+xbr1U208/DTz1lFRRPPYYcMopcmX79QO6dTNsmD5d6ji/49EbbwBDhmS+X3QRcPKXd0odq82d7dynJUustxfpgn7d5q3C7kL5sXSpo4dEmm+/dS2yse+nrmXmzMmOfMx5vnA8MeUc5wJ5DlE4e7ZcG8aQgFFBxmvBSNbP9KH4TXHBBbapTHJIG27nw5bX5ro5rdOCLIV0PWG/MXw4sDwZcddK1yNWrPDfiE9cz6/ED5e+mxQ8k2c+elLgOkhECWEC9SZzsS9845ir0jZwH/2wq98GiCqEyMrjo//wo3Nxtxxc22zj3N6IEY7vKsY7++DzemBq9R62ZaVzZKeUP25juBDK0hIIaC6/Mzc1QCwGfPJpBT5f2tOxrCXJa5AOVehWHJnrNn48cMklUocp55NPgM8/lyu7117ATTdlbws8FPrwlHZ91y6gPCjKObhST/OgMdbv+Cd0X8CXQUVQwVVC5Gst1BJ3cAEuF4TA1KnAKkPMZDNO51/XgTp7z2y3pkmZYVwIxmP2luAFp7FRvhvxeEEVDPkMURh/uVfACnKlX2L1GunDHcM+GPatXQuMGiVfZ22t4fuw4dL98cN11wF/+lPme1OTmnrfXXAc7vjxUjWVRYT9Pno07C6UHx98ILeGkvAkqJ8wz7XMQQclnokUURjey4XL9pnoXCBfIQqN9RZprhVt5Ajfx26usLc8B+B63ueOtvfkNaIkRKFHnC5nkH6sWwfceGP2tq5dgRkzTG1syFOM9CB8951rESE0T9b4QYjpVBiULELIGahIICsg1eBB+O9CczI62xX/y4RCX1vTAQDQ2AjsuaeadogEQmQ8sAHE23V0LJ7rwVXhaX7/7b8PxcT19hc4n+/RbvdvY5OP0Jp2ReDNAPXpp4H27YHLrtkC36/dL6cuWfS4XOkg53m9nL2qNF7kucb3eCekDX5kLYmS3HcfsN07zzqW0bYsnPd0pGf51asBAOf+yVpJvU2HzXwZVAQVXCUEjX3yyxFHAM/OOMPXsb17A9tu61xG04ANG6TS95ASYXmttRWH8ZKndCORuA8qKjzl4AoDaQs2B8ynOr5idbAKLc5FGGGU/KDyvsuHN+LM2l3Re87J6ismZYcqAZns2KdCyRuJeaHI6NLOxZNIwdxVYSUkXbYs89kQtraY0KZM8lTeeH9ucf2VruW7tLe/Nt1G9M+t1IK0giuIqMOuDTsPLgflSZBntNImpZVZqBVJb+UpU9TVpWKgi1Q4BKIUXS+4DMSTp4APB4edf30Err4auOOOjPcmKQzGy6VXOIc0tnyXM1xQNw+iT3/ojs3xDl66FxzJ8bTLyT9HY6MaJZcQmuOcbJ7DZs50rku2P8MWymmHheEYL4wfD+y4o+fDlOF33LP9qV6SriGhD6MjhBxa3Nk7LpLruCKFCi5CCoBRruHE3nsn4u8aoQCrNHnnHeC3b/zacp8uKtILwUi9k1dWyk/A8XhBc3ClnpN8PC/xoIsOi7fXDc1d8OCDcoe7LWCLxRmgWPpJyhNlCi7JQcj4XHOeLxxOQhYNUOTBZVGHcQAsUgWXZ2TPZbJc50r787LLFnJhEELJwWW4tOvWAUuXZr7nQ8FVKkgrIYXwHB4zp4qWPMWRJ6Gz38NXYfBgNXXF9QosXO8SVg4ePQWqnL1P7caId98F+vRxr37evEARYMuOmhrnSGzGEMPpKCo2WBp9GhVcAZcTazdvnbd3p7yE8bVBF5rj3PyLnRbb7rOqSxZP59/HxTKGGldFPpT1OT+taq1kweIi6DqBlAZUcJUQ9OAqfhoagNGjs7cV+VxTFPzrX8DXznlkPTN0aDKZvA3jx9vvEyJz3edt2A6xWETug4oK6YWl20tBvlARotCsxIvpclKmzZuT+VXMWGgpx6/vgYcf9tO7bJYtKx4hWKEVXIV8eSPFj6c11LBh9vUIuRtdhYLLy3GqBIClTIWmK8rBZVFHe4OVa6QsV+TxOqKmTuVXX0mWd9hnTALvhJIQhR4PNnpwnXkm0KOHXFXTpwPPP2+/307pnhPpQebKRGIRmc3Gls5oHP6Te0FaxxAHFm7YFg32qXI9MXLN/tjvgd+5lvMkSHXJURB0OjjgAOCZZ4LVUU5st51DbmORPZr6MpgwXNCg7yF3jrsUffsGqsKStjZg7Oq91FSWzullP0fHRCVa4vbecMfumJ1L2WGJLXVOv5i8GwBgi0o5za8w506TJB9TUzyeCVvqFelpXiLcutL2iOtd69eLkORCBRchinASjgUZrzjW5Z/HHweefFJtnWeeCbzxhv1+x7xKhmnwuHf+jP/9z+WAQlFRIb1Yn7xsu8K6WyfPj4oQhWbiknU++ihw8MEWOwKugAtx6QtxdxWpTJeUAZ6fsYEDbXd9uqgnUO2eE6fQHlznnFM+jkNOOJ1qTYPSi5FVlXEALNLB0Kt1bOr3u6ZjMlr12BATcpYca+q2yGpbKTaVGvN8pMIHbtqU3Ocw/T/5JHD77Qq6JVNonntuQOVtunDEZ/fjuj7HSjQWvDUavBCVaJq6eyq+aGngOurrnffrOtC9e+BmSoYNG+z3ZeXgcjHWtHzPNQz6KhQg+fAS6tcP+MtoRfmLhYB2nPM4/quv/4a9P3zcdv/fx12aNcy3OjjcyswG933SE3PnAttvIRcLXEBzDqtbQBnMv/8NdO4sV7atDZg/372c9FgVEW+JLu19aviKGK5R1EEFVwkRkTGJKCYKeo1ywClcQT7qdLquuilWdXU1sL7eOdFtQdDkxVtusYZVk8+FgWyIQlsL0gJbHzt5DnrloYeAt99WU5fxNBR0XFuxooCNkWLkbz9ehn//W6KgxI37tx8vA9bahP9QzMEHA7fc4l4u1e18zHPFhpPhhQZ3RYsXsqy/jQNgkXqkeH3PSM3Lk3+S06w6XZuvlh2aKuRYxwNfHZPVtiqqqoALXj3bcp/V5dwqmWLV0Zgpue+TT4A5c3LDmcumApMyJpJdGDhJfpPMnAksqd9erj4FfPL9ztKe9HbwXYqoRINQZhim93ldUU32xOOJMazsSVr5bFFvv0Yzvum6TdVu84yKkLmVG6qUG944KZDC4mRDOmUtZt9BITSp87F2LSBaPVh1paxSJNC0hGxG5rK4KZ+D8N13wP77q69X14Gn78tjx13YZYuNvo6jLJwAVHCVFHyo84jEDFZfDwwfnr1t2jTpw4M0TRSwerWaeoRIePIAzsJEfZV9g+YF8TPPAN2vP09F9wIj65WlLV9WWGuUVIgEBc+Lud+L6ncIVqHDG1I+PCq22ML7MXbXtXdvKAmlCBR+jkrfC6tWFbZhUnT8ULWvu5eJEbeBxmNCL+FT4bFiBTBypHu5VPX04CpMDq5UDVmXtcgVXFfu+5PvU1O5bo1UOadr03vOSZJ1KMDih44bBwyc0cOicHaIwlzlk3szl10GHHQQcMIJ/rpn18TPfpbotxszZhi+SMTDOvRQ4L6JF1rumz9fSkfmicuePkrag88OWkeTqKI3e9c26Lq/aaTsZQqjRgEA2k+dYL3fdIJ8OVsb6hC6gpDH348GFsvnqHJDF5ra+0BRZWPGZD5rLfYePLrQHCxKsxFxuYfENTycxb7f/z4j72lszC0Sjyfm1m22SXjMqZIz+aGutbMX/R3q6oC7Hts6fx1yoVW3D2dZqsgqbok7VHCVEFRw5RGJAWf4cOD00zPfa2qAnj3z0/Rf/0pLLNUsX574v88+Uu/3trS2Avffn/jstDDuPXAX2326KRBQZKIZCRFKAncZUs9JPoQYp331d7nG7XB4C+3QITfa2fz5wLXXZr5rVvlcCoiquSW0dRsnRxJB0rdlWxtETGKQD+AVRg+uDE7jUIXmU2pow4TF22W+JOs9uOuqolRwCaF5znGZEu5pzcHdik/dZV6qI85tqsjBZVmv/T477+Tnnwcm2MhRreo0K6BFo4fwShYsWGAQGjrMg4cdZviSirHok/33TyjsCCllVK7L/bxXnXIKcNZZHtrQs/+XLY2Nnoq7vX9bzguGjcremRW6XAldRF6OXunwfMm+58c3NkiX9ZNSYfDgjAFJly650U4++igzt155JbDrrp6b8IzddT20/4M49VRjOeffG/b9sbTBn4e41zDakSPsE18iUMFFiATazt4DVxsFSao9uF58MTenQXMzMGuW/3bKFtMJXrwY+PZb/9WpCMNW1bQ1jvv8Hv+dyBe6Lr1Y1DR14TsKjfG6KQn3l7wp7O6HJdm5dfH558BbbwGHHpo4IBbTsOWWCvpRbARc6KXvVY/eNIQUlFhMblwdMsRys4z+Vt+YCDWi1zonuy8HHD24lCnzExUd/9AZGQfSpKRM95nMPGz6LToGfedKuhglSZ3rCs0tzlMiNKTTiP+bPadLtZkSKAYxdnn5812xcKF8eaMHl5HbbwfGj7c/zjzFme8/8eZb8p1QhYKHwKMMuSAUNCcsKXlU3k1xUZEbn9SFMWPSzkgA3JfLqf2RMZiMKkKgU7uMpYGvEIVGDy5Vd4ri0MlR9OAyUllhf+Jdva2S6K/JWysLAA2N1u+KGuQMn8yPsNU8mDW9qnZ1BoDRo213eVnTyFKq+pgt26nPAeZmFFGipzIUKPUpIWikHh3Gjwe+/lqu7OTJwOP2eTdtJw/z9X76aeCQQ+TaJAYM2oXUOf3mG//VGV8e9GX2uX+6drSXAMyv28l/B/KJrktbo4U1HKleIPzhDwoqcVFwmUmVmzkzcxab5Ay584JxrLELtzF3bqLf9fUK5yIhsO++wLsLjgtUjZ3wkZC8IfEQpIpMm67l3TNWvJ540dffVJRQr4hxGoZVWX8ahVrpNUGRhygEgNfmnujrOBXnNabLvbKquIK3vvAzPPecfHnj8ys7z59yioQxlaRESkp5IzEm6TqwsUUyu32wpggpajQIqefulFOA0Wv2cyyjC82Xh7aX5yw1LhXp1FNQjNfVSSF44YUCD0+2SB+g2INL9XutritWTORBy3HgtvZhjXVRIdVmXFRId21zrAO2vuLXlvuEpLjc/Dy6PmuvvSZVryfG2Cu4/IwXTvz0k9qc3ypQ5Vnr5EHol6L3LisiqOAiJA/87nfAH/+Y+e40Ufz3v8C//mW/XyywfsE1OyV4ia1bbmyzjUMeAouL49fCbcSIhHdduuqJk2zLtjkkzI5qGEBPi9jOnQtqMZsvK6KlS533X7HPeOkQhVG2dJK2MlxjHUT8wAOBoUOBdetkG5Q4GbqORYuATW2dJCvNZe1aoN1xR/k+nhAjQ2d2x7RpwLtzj3Yu6OFNsudxnRCXyS8TwBPxd71PAeBsdOHEl18mBHWlTj5mrPRQl5oHoCHeVh5SRpH88bttuVGmsOOa4ebvf58u51xN4UMUxn0ouEaNyk0+n+PBJdkXpya9nIeXXgK6PveA/AGElCmyU/yoUUB1SxfHMjr85V7xIrBOCds/+8xzMyVJi12OH5MnsZOS4osv3C+AihxcqimGfIS/2nWu7T4hIPW86EKT/q1OMplMo854VnDlw4NLgpNPBsav3ytwPccd5+yhHgaq7uzGWAdFNcnDHFzqoIKrhKDFXHTwkmTatS6DxiQWA6Yno7TwestTX++QB6FD7iQWj/kTPp12GnDvvZnvdoqqeBy4ej/7zN9e81wUDF2Xtj/R9HDiYKhQqnlZ/HfrKOFalQpN1WZ9TnKEWgrWN17rcCqf1T+HFbvRkuvMMy0KxA1xW1evsijgoVOS1DEiG1HImf85Cz17AlcPvcq5oAcPrqDY1fPgg8CwYYnPA5YeAcC/8cQ332SHQypmXOcIBeOOsQqzgksXGtpdfkngNooBkZwuju+eh9g4NqgIUei9zczrdJDbJ3ctoC5/yCV/38u1zAp/+m9Cyg4NQtkYE5f0Ts3pgw+PjP/7v0RKg3Lnyann2O7L8uDyEwHC8J6kxINLsbFoMYQodPJ2EZAL89ylfYt011RcJ8/v8l6M1iR/iMy9Mno00BTraL2ziIWLKm9DKaNDL5itmSygaksdVHCVEmvt3XlJ4dC03Jw6dqxenZtU2oxxspo+HTj88Ew72eU8dLIMGTMGeP11ix0WCq6OaFHSpt2CqV07YHXTNp6PCx0hsgQ5TuhxeWWYCna/7WI88EA+hFpyv+L554Fp0+yqSNQhPukv12IJPMtDhxq+pBZ2hjiLUr8xcA6uol6rkxJnzhzghhvyV//DDydCFxuJS47fZkopB6DrHKF4ALZScJUbsr9YxZlPne9CzqMy11Qm2qDsfOXFgyvFZ8Ps15yEkPDwa9QYjwMDBiQ+jx4N3H+/fVnjmHHddb6aK3piMaDv0D1cyxnXCHo82ESiJkShYgWX4hCFWmf/UTZykOiYAKRC7XSsdBGwZdWpXsGlNByorYAhm6C/4+d/+QXmzQtURXgIEd0wgGPHRtV0vSShgquU+GZw2D0gFnz6KTJJxk3suivwySfOx9stjvxGKxo7VnqeLCk++cRGmGixmLrhgO+VtOm0sF3VuK3tPr9CyLzjIXbjy9NPLHhS70ceUVNPVgJbmbcAIXD77Q65XZPnTYyyj41tqs6SF15wD5noVocftE3ulkdWfP01cPPNSJuLtsYrMWKEh3Y7Bg8RQAUXCYWqKtciixbZGF3Y4eNmNh/ywszTPNcBAO3b+zoskjh7q6rPwZUmOQ/EVFuGRpgLXvwV3nvPXch32T17K2szdQWrm4LlkvJiRNZnzomu5fbbzz2cT26IQuvzdsstwE03uZcjGVQ924Sopq7Vfaxavz53W1sbcPHFic/jxwOPPmp/vFHYvmCBxw6WCHPnAte/fIRzISGy5qtY3GZsdZgQup5wUKaYgrFZebhdaJEMnQggE/HE4bzpQpOSRzwx5Rwl5//q/X70dRGUXrepUwNXIfMKMXnhNhg7tjgNbSPdZwltp/AZqpbkElEpKvFDZLXWZc5vfwt89JH/4+0mZ7uX786dgZUr7es7/nib8GHlisVk0rmdvNWPE49MOde+WbfFWxSJx6XHmeUNXfPcGWuUvwjIvARI5uCyu66ygrTbbgNefdW9O16ZMQOYvXFn2/1a0vOqRcKx0dj3Pn2A3r2R/oEbW7fEaf7k64QUFdpJJ7oXUtWWw3Rh3vfq7JPy25kiwGnuzYdRRmpM3P+SQwAAMZ/hqIqVXr2AdhXOL/efDNsOI39ojw8XHeNa3/g5Lvlsktfw2OevlO9kQJ6dcUb6s9NywC0hu+xaYN68xPyaKafmvi1l2UqhDa5I6aPqeTnu83tcy+y4Y7A2xA9j05/dIseUKrLXy1jszbm/sC7koGDZ2JDJ76UrELWqFnzrOiDG/qisPqUkf6dT2E4hqeBq0dv5uuZmtmovF9NT1oNr9epkQJOITrjFahgaWaUtIO/OF9F7otgor7esEifsAamL5ARQzjz/lPdzZDfU2V3v5uaEZXi509bmPwyaKgWTLiowYwZw8MFW+5wUXBEdmj14cFU3d0F1S+HjWt0x7jK1FbrcQ1JLkeTCRnbZIp0Py2cdZg47DLhz3KUObSYq69QJmFa9u3S9lZrK+AyEEBmamzPjhGaSA/i1Zi2ldy7Xn6IiB5fhcyoc0PzliTA+rsnMS4wffgC2bOduHXHjnVtJ1XfsLUc77heq84t4RGr+Xr3aen9jg682J67f03efPLNhg2uRsN9HCck3iWBYxXOji48z4WLK9fk0joMX7zXZskz1BoGphvec03eZY11ZLGa93dymFr33eSEAsWx52N2wJrlg7b6FfeQQHXIKrpheIf2Mzq/bybmAxCSao+CqWmdZbtddk9FNXNh7b+nbDACwaRNQ3xo8XKTU+BDRl4LIjm0yHlw0wlFG9EZd4ht6cEWf2+/uJOUFYcRuwHMbxNeujfBAXwA6dADuu0+ioMUk/YRD8lmvHHYYMHt27tzmpOCK6pM8Ye5WWNko55k1pXoPDFzWM78dyhNCKHYTTym4ZBcvra22u9KhSRsbA3Yqwc72jlueMY83FevWWu8oEEJoZT0GkvLAfI8bE8h/800i52MK38Yb1dWJ/x6MHEqVn37yVl6sWJk1ncTKTMEFyClWFyyzSXruEV2Rgsvv3CHV9tix1ttNc7+scK6+LVg4Rk9s3Fi4thTCEIVENUrvqDwJjP/xD+C114AhKzNh88p1XWw8xZ8tPRK3355b5qa/dsDkDRmDAWNEl3ffNdQhqXlQk4NLLbqIsMQwucbsUGF/fmU9uLwYC8/faK/g8qPIvv9+YOh79qHK161zf+SXLDF4fUuMDyeeCJz+9R0eemmNVqSR8qJucMA1SOGggosoozVefi/tfvAsHLELUVi30fE4pzCF5cLjjwNY7mKlpGoWFwK/2Mnedc6ss5habZ/oNqpWHMf88xSMXLN/2N0oKG63h9S1cglRmFPnkKG2+9Ivpi6xjoQAli0D7v2Ls0X42rXu/fH7KlSxeZPtvkLd4+X6Ik9KhBUr0h+HTO9uWcT8fDqNWb49uMZPSHywE8x75J57gEmTlFTlGaexx/gC+vzzwK23Zu9fvRo47jj3vhvbEL16Z6Vkay1HBVcB3+sFFCd3LyA5z7LEMS3N7qWUnn/ZRKARY/mm7cLuAikhhIjuu5qR//wHuPFG4IphmSTUKtbF69cDDf4cTkNj4cLs788/n1umpSX75Jw56HZcey1w6KHA1VcbDIgk4zxG0YMr4VUe0Xs3HfHEvn9rN28tpeDae+v10nOfU84vWYzP1aOPAt+sONSxrMx63MuzOm+efNnAbUZRAyZEpJ093E5rVv53EojojbqkaGnVSygLeR6p8PjU2Y11Wv9PbMtVVdlGQCk/vvoq62uszXRCVU0mLostB6ecHFQstIh/PAuB3e6h5L0hnU8vZn8veQlR+OGHwBMvyYV9UoXxVFTSWomQYNTVpT8OnWnjbrm5Sbq6wNbE9fZhY7zw5JOJ3ExBeeopYMwYb8fI5uC6/Xbg5Zez96cUJ2ecAUeMbejQMHduZl9DIb1tIsLvht/gXkgRQuTH0VA6l0eAac+P4LlTZ+eDlBt5SGgPaVhCiDfGzZAP6T5zZrC2VDyfO+4InHde8HoKSd++7mWExQD+1lsW51zypV6JB5diZVSkZejp92V7vl5+mNQkf8wOS30ZdbU3eY/Jni6vz5Wn61Dgi+baXAStiCJ9X3NRVFCo4Coh6PpYHFR6NN61FYq3mUKZGC7/5ZcDF1zgtWelycgFu2Z9z/F8k5gRGxqAqVNdCrlYjngJTakqBxgJQPq+cL4/pEbdZF3SObgcFuTpNVIBV3Ke1mUGV4V0F8MKUQiGKCRFjsxLpGkscPTgcsr9qEt4mCt8oFRUdffdSU9tD7gOnQ4FUn328m7/zfJD8NBD8uVJMHShKZG9+A9R6H7/2N1jud6Yap43lcuFleslQ0ly8iUlTHO8PRpjasKqAkBTs7tILqVTef+9aMh7ytGQNq1XWbNGqryKuUh16LVEiMKIjs+yJ0xCwdWmV/rKfW057xoLrLPOreVlytM0uZ8axjSqbawtfKOKiKwsXGIRFlmvyiKECi5CCkyFx8HXrjTfHR0wTCSn/i9b06fpcduydjzwAHDEES6FXFYqaQWXMUGKXVWc5CKD24JDCA3fDXO5XimLNJu6zBbnUknqXe7bRPgU527lhZdeMvYihA4QUkIY5hU7AwovITmcvINHjkyE37MiH8KQoGsYu/GtXTvgiSccjnP7LRIKCre+G6u4Y9xlGD3auTyR45rfu4eFqtBEqKnixGb3NZ4d5ttKxXO3fDkwblzgatLs/vuT5QpG2pyakGCcO/hWnPzlncrq69DOXdqdzist8R7phNYS7Ph0PUX2qipSuUSdysgF5AAGDHAumAzlqmIMX7Gpq9LxdG1dZ9S1RtSTXDZntaSCSxZhEImb18k5fXn1Vcs6vCq4VK6rBw92PyVCAJgxw7UubcBn7g1GcH4XemTVtgkjeBf5L0MUqoMKrhIisg81yaJyU517IQN2k3xMr0BTk7FckF6VGA45AnLOk8WJ+799s83Y7d4lNmwwyB9158CCrVVJi5gvv3QolSDuITEqUY8QMNwXzg/W8sZuOOOcdlL12iku//pXoLshvY6UB1cBkRWg2/YtLA8uUXwv4IRkoTgMiNM6wcnLOB/ri6DP5scfW2+Px4Hx4+2PC/JTjH1WFK2ReODt991Dod9y8qy8RM9xegaeObZ/plw8WqF7XnoJOOEEubJ8jyBEjuZ4B6X1dWznLrAfMiSh5Hry+YDKibVy3kdueE25EDoSXlczZzv/qLQSYc89nSuaPRuAGoPVXnMkjQokOeKhC/DQpN8orVMZLiH900iEiIyJCl9eMa7zoI2i1MuadsIE4Iz+N7mWk63znHPcT0k8DmDiRIk2uRBQjqzVFRdhSii2qYmQoqdi6WLH/Tn5eGwm+Uu/uxG77+6vD5oGrF3r79iiwCn5q3mSsZhMzAJ9uwXGDjsYcnTouuOioOXtDxMfNmyw71u6S5TKFwsxXW4abWkB1m7exna/xG0BwFsOrjDIGq9sQhT+6lfA3I3dUQio4CJFjeEGtlU0e0grKRyW/U7HLajfMac/YWOOElNfn+me07tkkPk1Vf/GjcA22wAPPmjTBk3OQmOLDjHoLe6eXp4xe/8b6Nwu2Z7LxOv2+JjXkMUq69Dq6yI1VhASdTqM/961zLRpwGOPBW9L1ZNZbI+4zNy/fIWkguvQQ90aM/4jsshapzS5555NhCj0oeAyrZOb4+3xt39kDFmFHvyirl8PjF61j3tfhPmDf+JxSD20mkxzmzYF7o9qhPAW0aKgyIQo5HuDMqjgIqTAVA7+2nG/eQy0GxPjohI1Ne7lrKiqAna2yVefL267DTj//MK2acVxv+6avcHixJknGaf1QDoGuYsHV8uqpAZDwuTNuSYSJaQWJELgjjuAgz95SLJOezRR+NhLqu/GYcOAmPCYjJCQMsduHsrN26O+7c+XusXo9U5Q4Vgqn+ngwQmj1IaGzL5AIeqcFmG12bkJHn44kZ9z8+YA7RHlxEe5C4vdyBGUfOW8dk8h9fzJ5uAq1rXghvVh94CQoqKQeW9UeWgUnQeXBVdd5a289NoiOcYrSzlQLpqydEh/l3KxmGtVbXqlktO2oG5H/O8lg4LLpk5t5YrgjeURiVOWwbigtmLYsEB9KTvyEVaA2FICUxNJEVmtNcmiQvM2yOXzBXf48IQRRiHyFbzwglR0Pk80NgJ/+pPFjkp74fnEaaawEhYrlfcXHpv13UkQlz7cZfJq1du59i0Fc3CFi4CWvrCTpzmHH5S6VkJg1SoP7TvUWfHj2HSdLk0qex/y/TJcLi9khBQCm+dpyqKts5yW/T52UscpNNkOWlU7w9A8fLh7+ZUrgcMPBx6adJ5r2X7vG+Zzw9wu+n2YU/aII3KFZBz5wkMIQB/4VfCKZs3K/u4Q3spoZR0kxLB5P9eChJBCMGWK92O0NvcwcVEibjGevvce8PbbCY8aqTpWJK1a3QTWKQ8uVTKccnmfkghR2LVjo3OkniRecnA5IZHZAgCg/aQw2aW5LQXXPxaDpAeXAHr1ciyjt4WY6NSGSD8iuu4qpxdCi/iPKB6o4Cohis1VvFypcBngckMU5o/TTwe22grYbrs8NpJHZs2ymYMllEhpPEwmVh7ZsgquRfU7JD4kTd7aV9ib0jAHV/EgK4BSpmyqrXEvpJgZNbtJzS85ZVIPTEgLNgGN8yIpC6qqPBS2eR7tHtPLLjN8CcFk+/rrgR9+yN1uVHDlOF1ZhJDp0QOYPh1Y37y1a5v/figxn1doeraCa/ESy/LLl5vap2IiVJSsodZlP1RSs5gQyq79xx8D/5l+ppK6Ck0Yd3+HijyEpSSkQKjOe7NiBfAbmzRL5udz2TLgyCMTnxsbgZkznetePimhDdICempedpnHtUtAYjYKj2uuAV57Ta6O+FvvJj5IvtcoiGbnqb2iR2GuIr8hCnOaMtVh997/6ZIjcO21gZvLbV8Aq2q3UFKPDJoGiKp1jmXeGb1X4P4oR4jovvO7RHkiaqEUlZACU+GyiM2NjpP/IbGuLnfb3LnR9qitqlLUPyGw3zbOK+zUhDljhuXhCVw68++U1XhSQOikGKFwLFy8vEbILp69vJs4WoBL9k6lB5cXrJpsnu2cdzCfRHaxS4gEk2Z3Tj/HWmuL1DGqPbg++cTwReED9e67UnnC0bcv8M47uduNdiw5fV+4MKe8THiWVr0SG2oq0gOZEMgSuNjN2xMm2OfjIoVF6CI0z6fp04Sll4Asxvn9rruAl2adqqJbBaeutTO+X7JrQdvssVV1QdsjJMqMGgV8JenIatQpPPSQe3qphjUJ4zWniDS1tYl8YR99lMiPacUnnwDjDE4v990HvPhi8HcXXbeuY8v29muojz+Wqzu+KRmP2K2TqRCFuqK5KMoCGZWkPbjs0SD3gquLCiXvwWaZjN07+tiqffHWW1D68h2PA59+Cuz2zysD16XrQEubu+hfg3CVNGxsbB+4P6qJtA5Y4vmNcveLDSq4SgiGKCwOKt1CFJpc/vMhQJfhwAOBzz93LlNVJZXn0xMPPADsv79zmdWrge7dHeYLT9oE97JOMr2RI+XqueeIbxIfkgquOHMQlQSyIQq93JJOdabuxVMu6mpbJmp0PvGosLtASFFy1O8PwPz5yS8O1tLG8cVprLn5wFGZ8KuTgfvv99ghhR5cmzYBX3zhGPkNf/xj4n9rKzBiRPa+yok/pT+3tZki1rQ0++rT/Lru2OHkg7BiTWJ+FqjIkv45rccefhhS5Uj+UaHgmrR+T+myqet9+M/boTHWyb5gyprM4SF1856wo3tnC0u1kJhZuytO7PV/BW2Tb8CkmDmsv1oLCad1gNlbzOiB7JZ6B8gsA6bX7G7rgfX11wmF1RVXJIxZ7PuS+fzYY8Bf/wqMHu3eBye6dQPuvDN3+95bbbA9Zto0ubrTywEXgXXKi5whCr0hYqkcXC7nTVLhJ3v+nTyAZUMUpkkv2oOz7bY2qTh80ukG96RzMt6kUbwdBbTil4VH8cQWIVRwlRCq3dtJfnA1gG7OFsyEOdZZheQz0r17RgClimHD3NcGqYTugwYl/j/yiCldguKTpunZpt9z5mSu44QJyY0ui632FclVsUT4xCAWwEQR0uEnCnutUou3UT92cCxnFaKr0FDIS0hwZCK27LFH4n9bW84SIotuHRvTY9vLLwOPPprxoip0Di4gEaLokENytz/6KLDzzsCbbya+v/cecNpp2WXazZ6e/vzAA4kQhKpoasr8zqNPzCgswh9ViQwqQhQubtg+67sKz3rtw36O++fXdU97T0g9aoaHtrIiuIU/ZSuElAZeHH5OTTqKrl0LtEg4ihvtXB54wL19J7sYq3FOIr2SI3V1wMSJudvP2G1OsIphWI+5DJZzlm8JQOE7YmOjmnoizpwFidjTrvmzJG7w6TW74sQP5LRD3bewcTOEhQeX2zwZ9AY2scFeL5s33Nc7EVwsCBFdWfhOO7kWYQ4udVDBRUgIrFolLycKy4NLts6VK73VqcLLPnXuHnss8f+BB0y5uNw6vi47trCbxYeWjKGgVSdWGRbRjwBdd6xFTwlcJCzgmYMrXLwsMvITotAe2cWb+HqQfIMligBDFJLiJ3UPy9zKV18N7LWX/X4duWNbx47AvfdmQuwNHizRmQAsWpT9vcYireDo0QlhWwqr8IJOAn2VyvWJUzKCFlklB99Rw2Pxhq0xv85dmOCGa7QFA9KXO+nBtWD1lq5FpR61n35yL1Mm0KCGECSSb8HFg8tmxNp5ZyRCrCGRk8ouQssB52SsSazGqblz092wLeOEivnTqk3XeiUajqdCDrqUFUlhhzJjQxnNYwkgYnHMmAHc8oN9SD4NkBImrWrcVrpdJ7mL+Qq6Ki2LfAGowX0+FRGMmCkE8MHCY8LuhjVdu7rKb4r7rokW7dyLEEJUIoRzSJ6c8h7qVY2MMsqrwirVz7q6hADLLRyhFa6LZbdODRyYyFwvSUVrwiS+esZq4Lztrdt3aTO9IJJQcIWVP4IkeHbGGai8N4an/+teNh8hCp2EqNJ3xpAhED3OlW9UAbqencQ5Cos1KrhIsePlHnYLs2McW4z1PvFE5vM55zisJwI+UIsWAfvu615OZrxs50EBQcqHu774JYBfBq7HnC9XlQJl1izgkDvOcy0n9aitWAHguET5SMy44cF1MyFA85padNp9dxcFlzs33gjssgtwruE1YtYsYNIkU10WlR14oHsZmX1e+e4751dxobm8f7e1AXCOjpGu3zUHV7K8qnGpTHJwaULHqFESBSUWiV68rh3zohuemLo6YMb63aXrLUY+WHgMBq84OOxueEcILN+0Xdi9sKbIlZ7FBt0ESggu7UsD8xgoPUFnxehTg8x66scfvdX54ouJMIS33AIccIC/frkuiN0mEmPMJ2EjtjDUkRIcnHfvYZg3z0ZHpVDBRQ+u8Hnm2XZy1nwFvlayQizXF7k8cPHFQM9P70t/r27uUvA+EFJqZDy4gsfF14OGwJDMwTVvnvX2VHhhFXjxsFGFtMcuV+RFj/l5cxSASa7TNU0+b61XwW+533EqQkgSUuz8u3d3AGr0IZ1M6QTvvRf4wx+yt8mMU3fcYR9C2JenlQ1nnAGcdZb9fqFAyJx+53M7wUJxDq5yUXDpcTz5pES5iy50LaN7OPdO88fE9XulP999N3Di5393q0y63SgyYOkR6DvvBMcyKp4l1USwS54QFhE2iD8oRS0hyt16r1hwW+ysb94aY8bIl0+Xq1rnXsgjytZThor+9rfEAsEuv5fMYjmwB1cq6YgDd91lbC/zbNXWZrd/yj7J7LxC5Fj8ZnUptXiSysHFoblYkBKqePXgcnjmpYVeIbguxeNAXGTu7+GrfWqwFUGBFykF/vCHROJ1GVwVXB6FLRs3mjZoGl55Bfilg4PMpk32xit2/TMPVzLjpYqcQ4TYsWzT9jjGEO1GlSW+UvmF4cEJnHuiuto98W6E4RswIUBtfWIN7jTO/FC1r1SaILM9i1Wdr77qXk9TE7B0qf3+trZE3k2VWCvOXMZwXUf7Cot4yAbSObJdF1uJ9Qk9uLyh6RJJZyXxcu5lc5875bhNUw5KijL4iaqhRKJwUIpKSAi4zX0nnSRf1hMSip28YFqYBZW9Wx2ftU0IdKx0WL0bY1nbJKV8+hmD4MCwva0te9HfqTWTmLR7Z/skpWnBoowHl86hORJIPHyyC2jZd5PmZufkutIeXFx8AmCIQlL8/PQT8Oab7uWWLpXx4PI2t4wYnl2hdtKJuP9+Z89tq3xZXpFScIWQTFp2XOXwWxpMmJD4v3Spcz4PWUO0Sk2Xvodk5q7Rs7eXq0yCd/86AXMGL1VWHyGk8KTeSdzGmY8+cq/LPAZ9+aXPTjkQjydCF99/v9p6R45M9N+os3cdp4VA147OLrZCUsGV2q0qBVe5KLgqoLvOfdK5qD2FKKTcxQt3fnhU2F3IIdJyD8UhNYkzzMFFSIHxOv5+ufwwZW2vmFgFQD52sDLhsGlgF8LZmitFPG7t8CQTorBjRQwt8faWux8afBweutO9/XR7hqt28slAO8PIqUsudtOLJwkF17y67vKdI/lD1+FmB+LVI8KNLl2AePxXtvudvASN7Pv+Q6gOSZ8dKVasgJcxj5AosmkT8PjUXzuWsQsBZMQYolBmfm+3aSOArlnbamrcj7NDWkEkUc5bXkP5so71SAjIoGl8US0xEs/WJYHr6TX7JDT8J3A1aU5+8JT056BRPK7+4OyAvQkXhgUlBIjrcgqudLhgh/ecfBqIpTIFXHyxVWoG62Pq6hI5zL2kN9h118RxTvWm0d0NEGTf+VMKKRVrgRO7L8hOrVDCVAj339nY1lGqLi8zouy7fKSVKKT44Q2mBKqrSwhaqpcejzwC3DnuUtdyP/0EVG3e2rXcstXWCh9fbNggX9ZkeTRxIjBtmvMhsVi2IsmI6/jvUqDP+MOzvrsJBozPlhDICu1g9OBxqsVLDi4SEYTAVu2dk8ZIrUU8hCh0e4fZ2NoZM2e617Nu89bl8j7kiPbSi2F3gZDIIABPL1DtNO+DiFP1Kt/dnATaZqFSwYyfZeI+kaKgQ4X8tZS9r9+cfzz691dYIUmjLBQYIUVMymPIbQi58cbkB4fILvmUK/Xqlfgfj+fOz2LWbMtj/vxn4MADvel66g2BVVyV4LruWmZd81ZS7WY8uIKfRAGUjQeXttk9SeXmeAepurwYPcheJ07N4WMXRjTS18YmWlRWkWQ5EhxXSaumaZ00TRuvado0TdNmaZr27+T2tzRNW6Jp2tTkX8/kdk3TtBc0TVuoadp0TdOONNT1B03TFiT//mDTJCEljRdrnqFD5coddxzQf8nPrXcaFkWVFXID54ABif+Oi9uqKrnOAb4G7NQC1nxodTWwetp61/acWlzTILdATVHhkMw+vYASwvHaesnBRSKCEK4LZJmwBgdecwyGDJFozxg604ZHJp+HQw+VqIvQopsQE17DsMiuGYyk5uw//hE5wnzZpcD337uX8ZRfQZGyX3Tt5lwgqeDi2FP8pK7h+PEhND7bWsDrhKzQr1Sh1yQpVs7bY7qyuvSkB5e0PsRhUvaj4Pr2W7lyjiKE777L2fTAA8CkSYnP553nvV+AhEePy3s8AFw7Uk58qdLAUAitbBRcFUMGK1OselkjKjWQoJKCkFCRedNtAXCaEOJwAD0BnK1p2nHJff8QQvRM/k1NbjsHwH7JvxsBvAoAmqZ1A/AggGMBHAPgQU3TsuOekEAEDU9BCkdB575hw9If7TyizIz7MdnBRkUJp30szNLWT6ZDzzgD+MX5OzgeO2t+ezS0dZZuyDXes8M+6RxMqXJ0tSweJDyvZB7lucu3lGtPQsFF5Bmx+mdo1RmJmZAUxkTaUiEKAzw+b74JvP66fPnRozOfZRyhvCiRAgubUtK47i7hg8PKc0ryxrHHhtDorFkQHpPZrZOI4lDK8A2YFCsqhesrqxKRWqTlDA7v5xXw/u4uk34AcA51bNX3Rx4B5s1LfB482N+rtKsSXNddx5H0O4V0iEK5vjkhgLIJUdi+Iq5MTOItB5dCDy4quPKK3XUVyhLe5QEhXOX0NNJRh6uCSyRISbnbJ/+crtAFAN5JHjcOwLaapu0M4CwAQ4UQNUKIWgBDARR3wG9CfFBwy965c9MfZZ2Htli3BACgDRxoX8hLqD0fk/30pEGbeU23aJH7sYdcsr90O7MWdMC6zc4eXU6TknSIQoOnFykSVq509XhQavVF5adSPlx0DD5ZbOPZSki5kpyDZKaidpX+PbiA3DWHU5v/z95Zh8lRpH/8WzOz7prsJht3d3dPiId4QgTiOZwASZCgh7veoXf84LAD7rA73B0O9wQICZIQ192Z/v3RPT3dPS3VMrrv53nyZLu7uqpmprvkVbtW2XZCFbs2fn75ZbFKqw20pOCiaT71sbNWj8m6fudO7+tMY7YesPCuJIgkxctcvi+8nYc//vBGwcUE+xMn7zbmppuMr8VKTsKTQ9OqDK8xeW6mPQMFMwTUHw8uxrxbP9l5r7iisbQHPvvMTY+IWJLU626OzlGIQu/gklAzxvyMsY8A/AZRSfW2dOliKQzhNYyxcMa/RgB+Uty+VTpndJ4g6hfdu8d3/FJoiHitsXP3SyEAzcyoDVaxR44AS5bwdk6n2t27AESsZrUKLq8NpDtNaYkdRjG1pR/KbMHOG/LJbmgoIgnYtctyK0O/a3LjJIcQQaQrSgtBs3XI3o++BwD4X3nRVv333AOcfnrk2I6Cy64Dq2kOLkAlEArWuhQOSYsAq7Xb79u9E2oRiaUuxB9OOiQwLuMrbhijMJcEUU/w2nI/GPRIweXALzKZ00xbfiehkGUZv0UeHbmtoPi9vr+1AVd5S+qJBxcA/PSTdRkegiH+hzHI8Q5++SXwwQcclZGSIjEkcRSczvO74Js9lYnuRr2B680XBCEoCEI3AI0B9GGMdQJwNoB2AHoDKAVwphcdYowtZ4y9xxh77/ffLfLsECqsktcRyYGdeS+8QHIDO+Vk3Hef+DevB1d2QBTSHP/KIhw0yvdpsIrduhW4+271uWAd/4d+7TN15NKtW9XX4+rk8r0o5DPPwQXxR+XNwUWkDn6/pZDJ01GXPLg8x0fzIkFEcfQo8OOPxtevvl60hqnbbE/ScNll6vl/61bg8sv5+2QHszlVm7Mi+MST9ip3yI5fRSEUKSfqF3/7pi9atfKwQloLEES9wev9oS0vGDMF1zdfO2rbS+6+G8jjifLOoQAym5fbF2/j8uBqXfQbR2fEr/Wbb4A1/xzFVd6M+pSDS+jjXUxgOx5cR0MZnrVLxBajoU34zH7u0njx6fe52HbQPDMT7Ru8w5adhSAIuwG8CGCcIAjbpTCERwDcBTGvFgD8DKBGcVtj6ZzReW0btwuC0EsQhF4VFeZ5dgg19FqkITZj8Bvxdtjn8kk+IY9yHbXIKJ+qchWrCIM4dGh00U2XmCwcdu827UubNupjIyWd3UX1rl0chQ4csCwSEhjXwpoUXClIZqbl7+bl73r2+fU7SXwsoAUjQUQIbwyzsoD//tesoFhy2L9PNylkeJvMhx8CZ55pfN02Ci2YpQeXYl4OvfCSq2Y/3FJi2SYAoK4O334rKjyI+sOuI5x5NnlhjPIxEEQ9wcsQhYBof3riibyNmyi4/m2SpsDoHs6P0rZ8h+E15TLh7rthbGirZPt2yyJmy4/irENAKGS5p5vd8j2pMot8OiHBKxFOlEd6OvPOTxZ5Tm2QKLlLOA8eEWe8euESCXn/eYKlgosxVsEYK5b+zgEwGsCXUl4tMMYYgKkAPpVueQLAcUykH4A9giBsB/AsgDGMsRLGWAmAMdI5wiOcuJIT8WfiNSN0lUB6CB4taMILztDWKJ2yLsFQZFHw8MMGzlqKkzffJODDD8W/f9Zp4utvTYaaPXvkP0dxGDp5Ff6glCdcf4a4SDELQxcSfLIgzUz4JS+0aPJKHXw+SyGTlyEK/3wVKbgIgogdt30xFG+8ab3p50nWvHat+ri6WmXrol+vy+mPZWXi1Vet69LmrAi6HKf/2M85NtfWYtMm4KOdTVy1R6QWsVjV0UqRIOoH7/7WzNP6bBl8mhho/uuHrvLfFraoMlx7awBtC3/hKielv7SGQzhgtp8TBIYnnrE2agyHslt0eUfTcp7ro+qJgmvGlQM8q8vtus8pNRM6J6Td+oKRrE2oS+0wnoLgYQK6eg7Pm18F4EXG2McA3oWYg+vfAO5jjH0C4BMA5QAukso/BeB7AN8C+AuA1QAgCMIfAC6U6ngXwAXSOYKoV2zZUZCwMLG8wvgqQa2l0h1vFSvoNTe2x6ZNZu2aNKao/PnnrftmFi7QczJFoZZZbGZuDy7yJEk9QiHrHFz0uyY1tFYkCDVXXMMRq5jjxXnsMfUxhwG1J+/j11LUJFMPLm2IQpfLhrDQyzIBfZ1J3lIibfHaUnz3wUzyPiaIesLe2hxP67NlCGqiOLn4wwny3716mSXt3GujQZEPfq02vObIe5VDq2c2pn67twJTFhXjQF22aR3hvE73Pmfcf0A0EvIqXKPAKWcg1Px2qDDRXSAIIgEErAoIgvAxgO4650cYlBcArDG4dieAO232keCEQranI9Y/Ks+aJ7zY5RUuCbv3WBfSrKDNFtSmhkc2rZLY4UMAPA4HY4T0hZklKg2ByRl9zb5eLz19iDgRDMY1RCHhPSQkJAg1PFMujweXkzXnypX27zHCbOx9YVs7ILRXUdbd/Btuq90F88wLBoMkh6qHeL2+Kzlukqf1EQRB6MK5B//uO5MJ/4kngAULAJivC66/PhI60ZP8uHv3AoWSEoPLg8v42o7DBVxN8noFfbG9GF24SloT0nikEwQRTarv98ke1ztI4koQKU7AUk2tCFHIOfhzbdY1q1htbixlfo+QmcDHroIrnlOAtBquzNlnWCSksBQ3szoz8wIjkpRQCILFNEkKLoIgUgkeQxeBo9DWrfbb/uAD+/c4RqFpcjv/BoOceTsFAc8956opIgUhwQRBEClHKGS5Bz/lFOtq2MIFuPde6e/33zMs94Qipdf8Vu8YluMWVPOEfQGAw4ft1WsC757vwqd6uG5L3TApuAgCMJFRepXDJEFQiELvSO0ngSDSHK/HOVPFlaIxvQXcunXAAw/olweAQ4eAb7+NHI8Zo2zXpFMefcjrrwf27/ekKplwerCcgHHYITkUksXnkL97mrxSB44NRapbDPFQnHkg0V1wDL1tBKGGS07C+eLsM7b9iDmWY68qRKG77Q537mpB4FIOEukFGboQBJEscE9Bb75pGQbm2mv5qvrsM+mPt982LKNMz5AXMM7VMPlZ3UBQ0fz2W+Rvs4WNtJn3YmZ+5ZfWcphkM7xcBggCw1fbKdweQZgh+DjCrycxtHPwDlJwpRFx9WwhUoqws5XpgkuxUNTbrF9xhfjPiCefBFq31r9mKlCzswoUBFOh1ldf8VfFw8dfZISbNeTDnU0AQUCncY3x+A/dDMuRACQF4ZAE14ff1UzBm+w4iuVPEGnMk89Yu33zhCgEYmOvEdrrjaXKVTdm4eBBqU6XhghHa/mMQ1koSDYs9ZD6YOhCEESKwDsJ/fabZ5N4WM5wJGS8vlDq0rxIqyEok2uafY5QCIcOAYtfWuK6zf9s7YjZszn65uE64EBdpnV4ZIKo51TcckGiu+AKWkd6Bym40gjmRTxjIql44/0sT+rhClFYGxFiGwntnS5I3ebguvlm6Q+LFWOvXvx94oI3JIAg4LNvMs2rEni0jERSwZFMpT4ouAiCqF/c91I1mje3Lse7Jjh6lL/tw3c/YF0I1lPp6efn4403xL/denBt25nNN3XT/F4voXUAQRDJgvDFl1zlXvuiTOVV5QUrXl1geE3pCe3FmBkKKuZbs/26IODnn103ZwtBYJ4o8QD+vF8EQaQuggDaQ3gEjZgEUQ9g+8Vk63uP5pgUiqzEjBRhysVaOHyfFaEQ8OSzGeYFLHjwQfH/3X+EsOtIHl/DXiBIubWsrCo4JiQSgKQeZ97Q2LJMfbC4SWUvqPrw+xCE12z5NRdbtliX4xXgZGUBH33EV7Z280+etKmk7YMX2r9JwUl/64Vnn+UoSHky6iU0zxAEkSwc2X2Iq9zgDUNw54P5luVOPtm6rvC8bLZHDyu4gkFg874y60rDLtgGLPnbiMhBMIge5T/oFxSEuMuNvWyPIjQRRPojgHJweQUpuAiiHsAOi4vdSWZxrZUKLgNrIaVgqdmQGq62X3nFogCHQOjll8X/L/0zV5P81JqHXmO8wiqeUHYkAEk5Lr+vkWWZ+qC4TOXlVn34fQgiUYTXBMr8m0Yo02WYwatQ51Eq3HYbX5s87NzJUSgBgjQi8dA8QxBEstBielfusjzbXMt9vIK8wGHDa+GgGHfcAdz51SDryt57z/Tyc19FjBBvvDsfH+xoql/Q40l51y5PqyMIgkhpY+JkgxRcaQS9FoQR4WfjSNDEk0oBT4jC3Xv5kjkOH25RwMbCM2QdMc4eVqtU2YPLAi4PLhpu05H6INhKZet0snwkiNizeLF1GV7PKy9lURbyMVsowysZwQTy4KqPkGCCIIhk4dARvv05wDcv8+SfDHNOj6cMr9XVivPjH39wVmbRue17I95nV99RaFzQY8OTHwwcxVRNetdcSu/BCILgg6QV3kES1zSCBHmEEX/s8eOtt8zL3PdoJHyh1zm4TJFWnVx1ey082rbN9DITBGzfDvzjO4vkXnZCFJJ5d1pRLxRc9MgSBGECjwDsjjv46nr86/bmBfbtA8C3GfRyzcKRkhEIhWi8rIeQhz5BEKmIz8exf+XYejMG/O9/wFnvTDcsU2ceNCUaG5o10z5yTd7e4uU6oD7sM4nY0yiPXA+TmZBAIQq9ghRcBFEP+Otj5ejf37zMaRdErJ+MFlNvv23D8oqTYC2/0spz42iL7Lo7d/tx6aXAG7+2Mq+HY0I6GvJTeo40pD5Y1qXyZ0zlvhNEqsAjh/rHP/jqWvLMbPMCQQ5XKom4K7hoc1ovIQEkQRCpCM/I9b//8dVlFcb3629tih1tTOBWCq5UzsFFHsKEF9DyNLkheYV3kIIrjYiJdw2RUFoX/Rq3tn793S+npDKzRv37371t98AB/knX88nZbx7GYcoZbXDDDRz1cHTs+k9H4owzOPtFpAz1QbC143BBortAEEQSEp76fCyO1htCuG3rsbeuDti925tmX3ie4zOSFUtakZ9hnE9GCQkgCYJIRXzMOw8uHt55B9j6E+dm3oZgy3QbnhAPLu+8Mb7fV+FJPUT9Zl9tdqK7QJhA60jvIAUXQSQx8ba2CC9izfJF8eShsENdXQKtSrKyvKmHU6j14YfeNEckD14puPpVfu9JPQRBEPHGt3NH/BqzsWD48UegpMSbZp9+hmPL5HGuDyKxNMjZy1WOQhQSBJGKeGkczVNX377ATTdzFKyrs9U5Mx3WZ1/6sWcPd1WeIAAQ/vPf+DZKECbsq82xLkQkDAEgNzuPIAUXQSQp558P/Li/NK5thsdVM6G9HQXX1q3WZR5+rthTD67fvt7NVxngnVUX5wcQBP6yRGpgpgy2A+OwoiQIgkg2vvwSeP6TSk/qsmMpnpThPMiDK63gtaitD57cBEGkHzbSXJnCmMeRhL78kqvC/fvF/0Mh47LfbA7guuu86hgnAhB67Y04N0oQRKoigHJweUUg0R0gvINxpdwmUoVNmwAgI65tRjy4jBeKv/3GX19NjXWZzT9ncsuEeMb9Bm2L+SoD4q7gItKPQ8FMT+oJhsjehCCI1EIQgNde866+a6/lKBQK4fBh4L9b23vXsEe0XTUi0V0gPIR3ZUehZQiCSEW8lB15uRXetiMTS86yFiIUFIjtmjVde1SIexqP7/4owc7DefFtlCCIlIVEid5BErU0gjwACLfweHBddZW3bWYEQjY8uDx+xj1ScB0+wFePIACf/5jvSZtEekEhjmIDzYoEEUM8Dsl3zz08bYbw4IPAvd/0965hgtDh5wPFXOXqBPN8rgRBEMmIVx5cgLeprlpPaIX/vF3EXT504JDhtWBdYnYCH+7ksPIlCIIA0KbIhgcBYQopuAiCkAl7UsUz9E+XFgc8DVFoC48SiuV0aM5VThCAjn8iC28iGvLgIggi1RBq6zyNyvfxx9Zl9uxh2MuXGokgXHE0FN8oCnZokr8z0V0gCCLF8dKDy8sc3QcP2dsTmYaJDYXi7sEFeBfCnqjflGfvS3QXiDjw5Iw7gYqKRHcjLaAQhQRByCQifURl8dHEpa3w0tyMg1deiWtzRApBHlyxgb5VgogdQ3vtxw97SuLa5imX0AaQIDJ9HkqTPSbLX4sjweRVDhIEIbLozIae1MMO7kdtbWIilIjKK+O2hWBihAyUm5HwAgqBXE847jigRYtE9yItIAVXGkHDH+GWYBD4z3+As96ZHr9GOUMcffYZsGu3x095nBVcBGHEnqM5ie5CWkIhCgkidny0Jb7KLbtkBoI4Wkfh44j0I56RFuxCuSQIon7BDuxHgwbJGYI/FIx/Di4AOBIkMSvhHppOCcIeNPKmEWOeOjnRXSDSgK++inODO3dyeXB16gQAmZ42feOjVZ7WRxBO2bKvPNFdIAiCSCv8QhAAKbiI9IO8AwiCSCZy4myn17HkZ3y2q5FlOSEYQtu2ceiQhvXvTot/o0TaQXM9QdiDgsMSBJFQhPfeT5i1559uSMCKlyAIgiCImMMY2b4SRLxJ5txlBEF4D0P8PTe5vVhDIbTL3hLTvhBErEhmb22CSEZIwUUQhEyiFE2JaDfTVxv/RgmCIAiCiAsH67IS3QWCiAkk9CIIIlk4eNiHH36Ib5uf76rmKicEQxCeeTbGvSGI2EA5uAjCHqTgIghCBU+c6mee8a49AYwrRCFBEIRdgiFa5hAEQRDpBYU1JggiWbjy3kpMnpzoXugjhATKY0SkLPTsEoQ9SPJDEISMEOKbRseP97hdmr0JgogBG9+bmuguEARBEARBOCbAgtj8/h+J7gZBpBw1+bsS3QWCcAx5axOEPUjBRRBEhARomp7YPwLr1sW9WVowEGlPjv9oortAEARBEARBuIAxAc2akjUgQdil9JOXKcwbQRBEPSGQ6A4QBJE8CMEQ4q33vual7sBLcW0SAMU0JtIfEoUQBEEQBEGkD9W5u7DtYEnM2ynLOYCdh/Ji3g5BxJKgwFAb8ie6GwThiP212YnuAkGkFOTBRRBEhFCIKwdXOhAkBReR5pCXIkEQBEEQRHpQVwdMa/ZR1Pnzp/3P03buvkvA1yuu9rROgkgEPR/diAUvHp/obhAEQRBxgBRcBEHIiB5c9QOBhj8izaHcdgRBEARBEOmBX8cRxcdCOG/6JwCATF+tJ+0EMhgy/PVnT0gQBEEQROpDEl6CICKEaDNDEARBmNO/9e+J7gJBEB7hZ0HdvwmCSCKkEBtm3vk3DnwAX8w613VTRUVA5tIFrushCIIgCMKC+hJCKw6QgosgiAi//ELjK0GkCSGBpngiNrxx3n8S3QWCIDyiUd5u+W8/I0Mngkg2GARDAZggQHbZ9zH3wak3n34TjjkGyOrQEj9+ssdlbQRBEARBEPGBpF8EQcgIt9ya6C4QBOERdQIlVSZiR+O8P1CevS/R3SAIwgXC1degOpeE2ASR0kjKLx9zH5u6WckeWZdWU+O6OoIgCIIgiLhACi6CICKEQintwVWYcSjRXSAIgqgXfP3hQTw6mowiCCJdWNvxxUR3gSAIC7QqLOW+jUEAKy+La38IgiAIgiCSAVJwEQQh4z6wRWLZW5uT6C4QBEHUC3JaN0amvy7R3SCSnExfbaK7QHByw+AHE90FgiCM4LBA9MKDy26bBEEQBEEQyUAg0R0gCCJ56PDQ+ah9LNG9IAiCIAgiHTgaykh0Fwhexo0Dbk90JwiCsIOg0GmJObg8VnIRBEEQBBE7yJjEM0jBRRCEzK4jecCRRPeCIAiCSAVoOU4QBEEQsUUp+xIEnZnXJwbl8bFQ7BomCIIgCIJIYihEYbpQSyFgCIIgCIIgCIJwAAmzCSJ5MXg/GYtcy/bX0WtMEARBEES9hBRc6UJtLY5t/n6ie0EQBEEQRD2BQiERBEEQRPzQzrqCACAkem5l+2tpXiYIgiAIol5CCi6CIAiCIIgUZduCMxLdBYIgUhhZHE6uHwSRvJi9n8OGAQDyB3aNX5sEQRAEQRBJBCm40gVBIHstgiAIgqhnVOXujX+jUlZ7kn0RROoTFGg7SBBeUJBxKDENFxfj9dcEDN4whOZlgiAIgiDqJbSjIQiCIAiCIAiCqG8IAmpDfvFvH20LCcIph49fg/4Nvo9J3UeCGfLfgqDWYIUVWgMGMu+VW6QtIwiCIAgiRaCdTLogCFELXrc0yNmD1R1e8rROgiAIgiDSA8r1QRApDmOoC9F2kCDcEvP50EDZJAjqa677IdC8ThAEQRBE6kE7mnRBECDAWwVXr4ofcNOg+z2tkyAIgiAID+nePf5tklU3QaQN+2uzEt0Fgkg5dv71n+oTVVWeG5uGyfLXyn97vd8nCIIgCIJIB0jBRRhCy2eCIAiCSHJat45bU2Mbf4bgspVAhhguiTGy9CaIVOOa/g9iY/cn5ePSrIPICxwGQMJzguCltKA26lwsZsRs/1HcOug+7vKe2p/EyZjlzSl/xpSmH8WlLYIgCIJIKshw1DNIwZUuCILni2ofC3lcI0EQBEEQnhLHRbGPheBjQmK8xgiC8IRRjb7Ayg6voFnBDgDA8xOvwZZ56xPcK4JIbfw+AUJNE8/rvXHgA1jc9s2kFIDdN+KvnqQzaF30m7i2IAiCIIj6BoUG9gxScKURXodFSL5lNEEQ8WL7gjNwepf/JLobBEFYEUehFwOA886TvcZonUAQqQeDgEadS7F57gage3eUZB1EefYBIBCgvHoEwYtm7vUxAUJuvvfNaN5J3TfUoxxc387ZoP5cFuuLea3eRbviXxy3F8bPQjTyEARBEAThikCiO0B4RAw8uBhZaRNEvaUg4zCy/HWJ7gZBEEkEYwJQWZnobhAE4ZaTTgJ++AFo0waoqwO+/RZo25ZCFBIELz61nXCsbE1kzyazBpQKLhf9aFm4A0Ce6lzzgt+xeV+F80o5CPhCMctfRhAEQRBJTRJ6aKcq5MGVLui4NY5q9LmrKn0Q6GUjiHoK5dYhCEILAzyzFCcIwh39Kr/HrBbv2b6PMQDZ2UDbtuLBqFHAypW05icIOwSi7YRjEWVIXo/7/VIbFu+p205IOTalxvH+9Etwi0kOMC9CC/pZCKE4Krh+WXA6RlR/Gbf2CIIgCIKIPaTgSiO0C97/HnOdq/pIwE0Q9RsKB0wQRBQkBCeIpGB2y/dwbo9/276PFNME4QGdO6uPBSEm6+aavF3iHzoKNT1cv98LF6oOS7IOoix7v2FxL3J2+1kIoTh6jzbI3UdyDoIgCIJIM0jBlS4IgudhRUiERRD1F3r/CSK1yPTVxrwNreCMdF0EkTg8F6bTC00Q/DRrpj5mzPN38tDSNRjR6CtgwQJDBZcXHlQy55wDNGwYdVpvZHhv2sVAx45ixBeX+FkIQSF2YqkMn3HIdWH5ipi1SxB26d/gu0R3gSAIImUhBVca4fU+19MFM0EQulTl7k7KzRUrLEh0FwiC4EESSucE4qDg0qwLPt9VFfM2CYIwxolOijwXCMIDdF4+rVOXU4ozD+CcCe8jOyApZgYPlq8dCaoVXVGhg30eKqpNBpieExoAJ5zgibzAxwRkmSih2hT9gq9nn+O4/qMnrIGfBfUvcnrGEUQ8eGPK5YnuAkEQRMpCCi7CEAphQhCxJ2nfsxh4hRIEETuaF+yIeRvaEWH7wSIAQHXurpi3TRCEGs/naPLgIgjnMIZrrwV+3XiD66r6Vm7BBZPe1b3292/7qY6jQgS6cSPTjgFS3i9dhgwBcnM9UXAxBlw74EGc3e1p3euFmYfRuug3V21ox0s5tcO0aa7qJQiCIAgiOSAFV7ogCNFJZydMcFWlnoXnwaVrXdVJEERqwCAkq+qNIAgNvx93Kk7p/HzM22FMUAnAxtV8BgDYMm895rZ8J+btEwShxomRTG3IRGhNEIQp1bm7cOyxiFYGMQa/H8gKGHsi2WLIEPH/3r1Ni0V1w83q3Y6CS8KTiC9VVWhWsBOX9HlMvw0IQLt27tshCIIgiCTh+Lav4ZvZGxPdjbSCFFzpguC9MFpvwRqPEEgEUe/o2zfRPYiCCe6TRhMEEQd8PpRnH4Dfg0TvVmj9O8qyxMTzfiagzkb+jPbF25IyNCtBpBIMApCVZfu+w3UZMegNQdQPJjT5FA89ZHydeZWIq1Ur4MorgeOPV52e3uwDdXuxNEdjDJg40bSNKA8yJ6xaZXrZ7wsBRUW2qy3MOIR+ld9HX+jUSXX43DHX4MROsTcSIghLGjdOdA8IgogThZmH0arodyBEcjevIAUXYQgFKiGI2EMRgQiCcEVxcdya0gq5wiF/fEwgrxCCiDMBn7MNcXXeHo97QhD1B18c4hvI3tIFBVEbhRaF6nDEPo1ntef7ikmTVIcntHsVj46+JdK+y++juKAOaNDAtIzTNs7u/jTenHoZMHSo+oLmSxrZ6Es0yt3tqA2C8JQePRLdA4Ig4oS8r/bKMIawVnAxxrIZY+8wxv7HGPuMMbZJOt+cMfY2Y+xbxtg/GGOZ0vks6fhb6XozRV1nS+e/YoyNjdmnqo/EIF+OJxZZBEGkJOTBRRApQk4OsHGjblhhr9GGKKwLRZaRpOAiiPjiZyHb3hvC8hVolLdb/yJj0eHOCYJQYRiST5obY51bV1s/g0bB5WWIQh16lP+Iac0/ko/thCgslby+lex6+RPxj/HjDe9zGgYxP3BE/EPnc8k1kmCRSCYSYPn68Khb494mQRAKaB7yDB4PriMARgiC0BVANwDjGGP9AFwG4BpBEFoB2AUg7D9/PIBd0vlrpHJgjHUAMAdARwDjANzMGCNpiIdEbUpdTpC0xSWI+gtjOmMKQRDJB2NATU18mtIcl2fvR/8G3wGwp+DSLk+mNP3IXccIop5Rk/cHBkjvHkEQ8WFOy3cwr1Uk3+RnM8/HX4fcG9c+6KT+SgxSSCVe5dO/xt6If429ybjA1KnAuHG6l5yEYP7k2E1Y0eEVICMD6NYtSn4YCu9xcnMBwHNDYYJIFWa0+DDRXSCIeolsnJpBocO9wlLBJYiEzW0ypH8CgBEAHpbO3wNgqvT3FOkY0vWRjDEmnX9AEIQjgiBsBvAtgD5efAgC+jm43Cq48vOiT44Z46pOgiBSgwAL0maPIAgVWi+x7EAd3phyOQCbCi7FiuXi3o/h4dG3edNBgqgn/Dj/bHQr3+p5vfHwBCWIVOX+kXdgcNW38nGHku1oVrBTPAjvu+Nsia0N3+dq+89xc5avTvxD+py8yqfcwFFk+oPmhQIB3dNOPLg6lW5Dhi8EXHcdkBct0wiF84aWlwOLFtmunyDShjiGOicIQkOrVkCHDonuRdrAlYOLMeZnjH0E4DcA/wXwHYDdgiBIKxxsBdBI+rsRgJ8AQLq+B0CZ8rzOPYRbYrCY9nXpZF2IIAj3JGMirjht0DN9tehVsSUubREEETvchCgM+EL4bs4GD3tDEPWAtWvl5cOqDi9hfqu3XVdJntsEYcGaNZG/zzsvslyWXkYvls/asINKMsMKJol4pBRQdiU7UCv+kZMjtc//gZ1+N64+o19cm6i+TkFAUFAoJAcMiENmNYJIUvqQzwFBJIwzzpDnKcI9XAouQRCCgiB0A9AYotdVu1h1iDG2nDH2HmPsvd9//z1WzaQlXm5Kx9V8imUruB4PgiBcEOtY/U54Y8plcVO69WuwGS9OvDoubREE4Y7N+8oNr5kpuMY2/gwbuj8lHzMAGDYMgOgtCgAtCnd40UWCqB906AB07iwfrmj/KtoU/equzmQ0tiGIZMLnA7p0iRxXV0dFOzgajK2g6sxuz+L1yZfJx4wB8czBBUCcv5s2BeA8P5YMh9bLdRuM6YQoVMs5nMpRijIPojp3l9OeEYSaRMzDNPcTBJEm2NJgCIKwG8CLAPoDKGaMhf3IGwP4Wfr7ZwA1ACBdLwKwU3le5x5lG7cLgtBLEIReFRUVdrpXv9ELUeiC6/r/A/37e1ghQRDGJNnCsn+D73U3g7GAQUhKJR9BpAxxDIf03u/NDK91Ld2K3HBCdw3dy3/Enzq+IB8zFrFOD/hib31OEGlH+L2nxNQEITOh5hPsXnxS7BrQWa/LuZykayXZh3Bpn0e5q5zW7EMw8M+D+ceOw4CG30e6lIg19Ny58ufNM5j3tXCFPzUYz5zk4AIArFpleCmoUWjxhGXvXbEZWf5a1bmN3Z/C+9MvcdY/gkgGfGTUThCJwE9hwT3HcjRjjFUwxoqlv3MAjAbwBURF17FSsUUAHpf+fkI6hnT9BUEQBOn8HMZYFmOsOYDWACJZWgnvcSE0N7w1yQTxBJEW1GMBFY0oBJEGZGTglsH/h98Wnm5YxGj5kOGzyMlBEIQhYeG2LSF39+4GldGMTKQ2Gb4gijIPx7VNrWLE7xNwVrdnue9/dMytqMlXewAxwPh9nDABaNFCPmxVqI54E+scXNoSYxp/jo+P3cRVfbviXzCrxXu2u+XIg6thQ6BbN8PLWg8uHt6Z9meUZe1XnfOzEBnqEakNKbgIIiFkawwmCPfwjGZVAF5kjH0M4F0A/xUE4d8AzgRwKmPsW4g5tu6Qyt8BoEw6fyqAswBAEITPADwI4HMAzwBYIwgCSTW8QhC4LI94oYUaQcSXWS3eQ1HmwUR3I0KcBF2U0J4gXCJtTGOROyc/w0JQOGqU+P/IkfAxAZn+OvPyEso1RsAXBM47D2jf3mk3CYLgpXt34PjjDS/TnEykMrF8fv8z4VouD65w+F07OJ2/n51wLZ6feI13IQodwBjQuXSbdTkABZlH8I9Rf7HdhmMPLrlxBkEj9ory4HKcH4zGTCLFIeMWgkgIpODyHksFlyAIHwuC0F0QhC6CIHQSBOEC6fz3giD0EQShlSAIMwVBOCKdPywdt5Kuf6+o62JBEFoKgtBWEISnY/ex6iGC4Klwiza4BBFf/jHqLxha9XWiuxE3BjT4Vv7baLwp1VhJEgQRe5rk78S3tz2PPYtPwqCGkfc0238UT467QV14xgxgwwZgyhRg7FhTMxul0E25l87wBYHqamDePI8+AUHUP7jX7c2bAxkZhpdjoSgniHgRy6d3dOMvdM/Lb154YhswAPjTn1y1pQzja0ZR5iHkZ2hCBMY4KkSBleGLAVyKN4O+O1IiWXwPsmLSzvd1zDFRp/wsRPoBwjs8epiE5Svi3iZBxIqXJl6J+0b81ZO6CjMOyX9PbvoRdp+buFzwWZyGoQQ/5I+aRni5nLWa5rqW/WRt2U0QROqyerWpV2iGz92E/PqUKwAYjzWDG36DAQ2+N7hKEISMxxvTbH8tWlYdRKEmzNOWuesxocmn6sI+H9Ckifj/9OnwtWllu73ybHeKbFubeIJIM0guRRARfCykCt/nOYFA1KkopTBj4rxoA603kW2UHlwxDFG4ee56HNPkExcN6GChYFrf7Slc0vsx7uoCLIjgspWWYde0IQq5IuEwphOSkvKIEikOhSgkkhBlONhGebtRlHnIpDQfT467Ac8dc4187GNCQpVMAQrT7zk0mqULHltrGVpZSQvf7mU/Yd+Sk1ReGPGmOneXdSGCSHKU26SksZzeuBFo1cpUaX5ipxewfcEZtqu+uPdjYpgXCcb0t5SvTL4STfN32q6fIAh3GFlK81hQM5/+GMag9jAJrzG+nn0OJjX52H4nCYJQ4cnqgbRlRIpjmrvKC1q3jjqlu4q12QfdfFAcdXi+bzBoMzxnNyvY6e7r9ftt37Kg9dtoX/ILfxO+kLheUbal7bQgRJSKkgzFqSTFzwQgP9/h3QShIRHzMGPo3+C7+LfrMb8sMM4DTKQW70y9BDNbvC8f+wzkRXbJ9NWpcj8netXrp6hpnkMKrjRC14LMIVa3+qRY2GEvjHhzSufn8L9jL0xI2wThOR06JLoHcaNn+Q+qMC9mIUu8zCtIEAQfRu8kl4KL85UNF2td9Bv8PlrcEwRBEO4xC9VZknUAgxt+47zyXr2AJUuiTru2MW3dOsqDy/bqV+GBEfc82gbhGFe2fxkjGynW+wzA2WcD5eW2qrebNsEX/vwDByoriSoX5cHFoyxkLKqcj4XAMqI9+wgiZfD58OqkK/DYmJsT3RNXNMjdl+guEB7RtOAP1UzmZyFP5jbG1NOBgMTadrnOL0lEQQqudEEQPA5RaO7BlQwJVUn0TaQNbdqIXlPJAsdM7+n717697unEjzIEkQJ4vDJnTL9Ot/M+q662LHN2t6dx/4i/4LOZ57tqiyDqC+H1etyF2gSRhPhM3oM/dXwRr0y+0nnlxxwD5OVFnR5c9S1O6vQ8EHQYaqikBEE9D65kZf589XGnTsDYsVHFNvZ4Cu2KNJ5XNTXAwoW2mpN/U05Not8XAtasAYYPNy3nOixkuD3OfGkEEVemTuUvyxj8PoGE7URSoTQm8Er27NN5xkMJjKCUDDL1dCOFVlOEKYIQ7e3gyoPL/GUz20DEC9rME2lFTU2iexBBGjusrBmdvIPascVAlg4gsQsOgkgZvFZwQdCNx+9jIeCUU5xXrBBOMabThiDgkj6PYU6r99ChZLvzdgiiHvHLwULvKiMhLZHiMBNlg5M16/UDHrDMOV2SdRDXDnhQrYCx+S7pKrgcvo+xzMGFqipgyBC+qpzs03WUWIwBWCHm2nxv2sXoVbHFtAo/CwHNm1t+FtmDSw5RyPfFaXvoZyHbbnwfH7sJNXl/2LqHqF/4mcvcPHaeSWk9btdbMhXJDRyR/17c5g1c1ueRBPaGMIJBQEgxJvtZyJMlKkP03JTB6tAkf6f7d84meYHD6G0xnxH2IQVXOuNGwWVxPdHaZlJuEelIMoTkK8vaH1Mhl1ZpZraYTpqcZASRAng1fvgUAkLlXOvzMaBdO8f1Rs3b2lwcTuM8DR3q7D6CSAPalfwKgHRTBAF4H93jT51eRJbPIgF9OApBr17OGmEsyqCLd58rgAHnn++s3RgTbdBm8Jks5n4fCwE9egCMoWfFj5bfjU9PyakzQDry4NKpx0norM6l20iSQejDGOpOWIn13Z82LLKs3at4dfLlnrZZX2hWEMnvPaz6K8xv/U4Ce0MYwZgQ5cHlSYhCnToCfgE/zFvvum677Fx0GrqX/xT3dtMdUnClC4IQLQzWscDmxWoASYZFWT2ai4l0J0ke5rO6PY2vZp/L3R9WWmK7jbqwxeSiRWIdRgUrK5NC4UcQSY/J+/rpsefbrw4CkJ0ddd5N6BI/CyHTr0nqG9DkrHCq4EqS8ZMgEkHAJ76Xnhh+0bvEzd+G35noLhA6mHpwxerxXrVK9G4ePdpxY65CFFZVqQ5djQWG351get1o/lYWL8064KxLNsvzrlVO7/JfnNzpOfmYawmi8/nDYzBBeILPB7/PfAdclHkI7Yt/MSkBIGTjufT5LEN6pgP/m3EBVrZ/RT7W8+YhkgMG9bzoVfhMMQeXEH2SSBtIwZVGRA3PjGHz3PV4b9rFmNL0I1t1Gb7n0gV5wOnd21a9XkGCbyIdSfQSqzDjMMqy+TagTheEdSE/MGUKUFkJAPh+XzmtKwiCE4YQfllwOnf5jqUOQ/317Al07ao6xeW5bfAy+1kI2f5aRTGBy4OrOJNvPFrT4UW0LvqVqyxBJBMvTbwSp3X5j+P7Ex1Rob6yoPXbie4CoYNZCH0GAWjc2Hadco1Gi9WsLNG72YVhqZchuRMisNULLajoy4Gla9FxQXf5WlXubu6q5c/D+f0GWIhLYLm200u4ZsBD8rET2cLK9i9jbOPPuPYxNwy4HwtbvykeDB1KsgzCMVzCfrtGY3PmpP0TWZR5KGrNVB/CMqYqQa0Hlwe/FYMAZjCXxHtMJuVqbCAFV7qgN4n5fGhWsBM9K37EY2NvsVWd2Qs3oeYTTGv2kdxGomA50RbmBJHKJDrnlKy4lt7rWEz0tSE/MGGCPGZ9s6eBYVma9glCDWNAg9x90Sc9xMcEICMDWL06+rxD/L4QAn5FDi4IQH6+6T2hZStQlbuHq/4bBz2ALqVbHfePIBLF0OpvcHHvx/HFrHMd3R9ehnslpKF5l0hlzDy4AAAFBbbrjIfQy58VsC4UDzxcTzAI8rohd9xQ0bhNYtuCM9GnYjNXPT4r7zEFl/V5BK9P0QndZnavnIOLD+XzsKH7UyjOOsR139pOL0XCozHm2GmdSE/O6PIsHh9zE5diims9bseDq55AyqzUgZWWyHKpO4bcg9KsA2mngKXnMTaQgitd0AtR6CYHl8kL9+T4GzGhyafiQVmZ4zYIglATchOixANkBVduLgDrNbaTIaY2pPbaMNvgJlrhRxApgccKLqaoU1mzKwVXVC4OAAMHAn37ysnjtesJ7o9FLqBEipPlr0PT/D8c3Rt2hKS3AGiQw6cQJ9IX5fwVdc3hHBYPRcRH//Ph8Yl/kY/dCL5i2l8bIQoZUxjM6hi06HZTpx7ZW0Vq22yv1Ln0Z7Qo3GF4XRdpEK3T7E900Xx+xgCccw53U8FQpO/kwUUoGdTwW0xu9jHXCxwUfGBFheaFBAF5gcO2+pDyHiVDhti+hd7C5IT5ffJ4ubTdG55t9ZgmlxcDoiOKxAkGABs3JqTtdIYUXGlE1JSUkeE4ITzXGDJxIjBggKP63cIgkEyLSAuUm9hELyuDAgPWrOGycHX6/rULxwwPb1TBDBfUUUp7gqjnaN8Vn0cxyVVtGAjW3Ci4AiwYfdLvB5YuFZPHA2KYp8suA664AmjRQuqL4yYJIqVwKlgKvyMNc/fwCUzNhGeMpaywR1i+AoMbfpvobhAJxtKDK34d4S87ZgxatQLalvwWuZ3zVr3X2ZXixGMPLrO+8LbkD+e4ysgAYG78Jndf+zm0x8ovThJuXvnxaFii8bxieblA48bc43edEBGk0h6H0KWBcWSTMFzPmyBg1+JTcFKn5z3oVIpgEVmKIXrMTHmlXprCWHRuylj8VgIAtG/veb08sHZtgZqahLSdzpCCK10QDBaRp5ziyMvKMLavcoE4aVJCQxQSRNogvVf/2drR02qXtn3NlgA8GPIBXbpwl7e70BCWr0D38p9U58w2qmTdSBDmXNL7MXn80JVbz5hhu07DFJwuNhZhAdVNA/9PrMtICFlcDBQWyjn6uEgGYSZBuMTpY5yZIWBxmzdQlGnPUtsIEvUQqYzZa+ToFcvOjqxFPQ8HHEKjRpG8YE7mWD3Dk4R4cOkVLcjHgbpMk6qkjmo6LCxfgXE1n8rHsgf4mDFAWZnptyR/hwb9DLAgDh+/RjwYMUI0pmnVCgBQG7IfJtLWI+HzoS5EchPCgiZNgJUrDS+/NPFKrO/+tPWzl5eHDF+IFDgW0BYieanTKrg8+K2UuSFlxowBjjkm7mFj6d2MDTTL1gdOPx2oqrJ1S4ZPx9oa0DF7SNysQIMCQZhzx9C/oSiTLzY8EG0pE1MFE2PoXvYjRjf6wjjiSexaJ4iUZ1m7V3Fmt2fleTmk9746mKOVyielNxdvVf834q/RdUr/r+74surYE4IG6xWCSAXKy13d7vMBdw27h/+GJJHmVGTvxRV9H050N4g0g8EbD66K7L14ZdIVQJs2MfO0mVDzKbZujdTtpNu6Cq4YrN0rsvebFzAIUTi/1TtY0f5l3VvMeqkM5Scb3ZaVARdeyBe+PKBRVinWNFn+OvHc7NnAmWfaNtZ1/P36/ZF9FiMpBqFG9f537274fAxs+B0KeQxamjYFJk605dmdJMsD53B8AGUReguTFwZBNQ9g1CjP6lUfQ/Ti7d/fcZ0ndnoeJ7R71X5fUv19S1JIwZUu6OXgClNaCowfb6s6QwVXmzbi/1L4IIIgPCBJZrhXfmkd1/Y+mHEx/tz3n4bXKXwHQajRfSPCCi69vBROFFxuNnyMYW6rd6NOv/1bc+d1WtG1KwAaL4gUpVDMo+H4vbMbSSHeJqoGNM7bjdO7/jfR3SDSDLMQhXbesaLMQxhcJYa8jNUbE5VDx8G76bkHl8F3N7Dhd/hj0Smma4rL+jyC9sXbVFUNq/4atw7+PwMFmF58RfGc0uBOFVWGMdMcXIwJYm5PKZyhSUHz65z3hQ+5cqb5/eTBRbgmPI4ZyurkggyYNIlUOAoYhGhb/ZLihPSFMIcxRBS5kyYBxx7LPYczmEcvUg7jgt5Jm/y5zz/RpfRn2/clifgv7aBZNl0QBNsT2KhGn6NTif7LGPAZDAwFBcC11wJnnCEeJ9KDiwYFgrDEzob+3d+aqY7Ncu7EIw8eLcoJggNpt+aV3NoXgxwm81q9Ey2I57G05BkFysvFdQlBpColJc7v9fJdZQxBITHJtr2A1gyE2fxl51WRyzoNxW/R2PDqL7HqsmbqW5SJ7zlzXuqFIY+FggsASrIOGt8nCFjX7T/IDdRad0Q67wt/XuV3LLUfVBisaNMm6Hqrh28HxNyehteNQxhe1Osxw/ss6+PB71eF3KIw7IQunGNObkateQF5b8DxnCVIqJbps/gMcYC8uJITBgG3DLoPm+euB/LzxRyxLnJBy/Uynd/c5fMf8AVxNJS6a+d0gxRc9ZiHR9+ma2kNmFiFMAbk5CRF7i2akIh0INHPcfOC33Fx78cAAOf1/LfqWkz7ptj4GrVDHhkEocbM4tlM6GOrDbEhZzdrwwIBeHnSlZjU9GPVusFyk1Jrc9Obk2OvPEEkC4wBF1wAluvwGfZyPU6WY/xkZSW6B4QODPDknZCVL0Y5ri07Yn7PTQPvtxtcRRefzvrZJyQgbG9YmK44pfoKQqGovxe1eRPTm32g/r2kv3MUijK/xujWLESh4b5FDlGo1zmR3MBRw3oN27PzaFRVqTzTksSZlkgSGAQxTFpRkXk56ZkzM0J11Yc44vf6M1i8kLqX6UVMWgoyj6BZwU71/MGB9nfO8NUZlvUpwhoLDlUjfibgSNDCa5iIG4nXUhDeYBai0IAMX9BwkegzSPzqllM7/xePjr7F0zoJgnBOadZBrO/+NAD7C1tHsrDzzhP/5xhbzIQKtw3+Oz6feZ6DDkT4/bhTMbuFvpKfIJIRBgGYODFyomVLMSE1vFMIq/Ju2b25Q4eoU70qtohrCqWCy2qsmTDBbssyKw3yfRBE0pKZKeaXcYLHHlzxIhYipbgaxUybFr+2CG4YBKCwECvav6zyDtjY/UnRk5gT2TNq6NC4yT+9ysFVnnsQ70272IMeKQh3rrKS/xajt1wSVi5r/xoeGXObuI7R8Lfhd+KNKZcB0AjBGePLwWXZOechCvXGGbOwiTInnIA6svInDGBMABYvti4HThmdrHROXg8uPQ/UeMIY2fUkK6rfRdo/8v5U2rlnUpOPcWbXZ+Rrut7SLh4EHxNwQrvXcOdQG/lwiZhBCq40wu76O8MXRFHmIXs3aV9+m4NB59Kf0aP8R3ttcnaFIAj7KIXZ5Zok0mZeFo7cxEeNAqqrxb85rHG0m9jwQvjXhafjhHavqSw8nVCefSDKMpSovwjLV6BPxWbTMp1Lt8apNyYoJ7916+SFf3gTe2jpGjTI2RNdlrd6hTWbapPAU9ewYWLidlV9Enas6hs3Bq65xtHG/JbB/4dNPZ/AvFZv87dHEAmG18CkffE2/G/GBZETXnpwxTE6g+fW5y1bUsivNEGevxzAmACMG4dbxz2OTH/Ek+mCXk+IluCc+JgAnH8+0LFjTJ4rvTW0cgzQ88zSQ/c9Ki9HzwqHe22jef6cc4AhQ4C5c/Wv6+bYUhwo1/xKD5Urr5TzEAIA/KICqDz7ANoXbxdPaUMUmnlwGV3Srml0CnItlzSfM1xfMCPb+t6SElXfabwi3PLz/HW65xvl7ZLn8/d3NIlnl2zh+TrA4iXWjiVA4iPpEPqofhfJsMLpb1WSdVDO+a6de716Bitz9mFJ2zc8qYtwBym40gUHIRT8TMCqDi+LsU1N6k1G8jKOJLoLBOEd0oJserMP4t502BJx24IzsKz9a6prvBtsbpQLT4W1utF6VBvPuEPxdgjLV6AyZ19MQjMQhNlT9ftxp+L2wX+PW1/0MNu7hQUn2YE6V4ITwxwmPNIfnw/o1cuyGFfv/H7HS5Bzez6JxW3edHYzQSQxjAFdyn5Wn5BQvi/ti7fhpE7P26s8jgouBojhmFIVsrKLGZ/PPB8PjbrN0b0+JojCsE2bVMoExqBWpPDUU1wMIDaegVY18q5xdcstWWLbI7Qsaz9mtnjPuECjRsD8+WIubhOU35WhgUyTJsCiRcCZZ0bXN2IE0KyZ6pRWKG22vuEWgLrwwFSFYQwruOYuML3nlyffj7qXwrATSri9UxiASy8FAFTn6RsDzGz+vvz3m79Ge0ga4ZXStTJnL1c5z98Ai3lZLwULTeXJCWMANmwQ55327SPneO5V/L2h+1M4s9uz0XVLKEMUOkYnPD+ROEjBlS44kAL5mICAL2Ru0ebxqC/AmwSBuYGjZHFBpB2eW/ONGsVdY1Xu3qiNstXr7+odLC8HTj8duDg6jMqQqq8BAD3KfwKDsYcVjQFEPCnIOIJADDz+svy1OKvb0/w3GLyYX+5uKP/tNITPk+NuwP0j/qrIV6F4xxxqm7TvqZ8F0an0Z4PSasjCmagv2F5uh5VRCqWUMg/flf0ewdK2rzurMw4wJgB5ea7rqcrdjS9mnSuGDjMos6bDi67bIeJDaNkKlGYfRLbfvof+9GYfYFm7iKFWlALhoou469JVHNmZA516T5u1r4NuiK+yMmDVKltt3zXsHjw46i+e7vsZA5AteTa1bau+OGAA0KJF9E25ucDZZwOIzP/aLpl7cHF8b5dcAlRVRd/Ls6fQdIb5xONgZXR9ShqUiTlgSKlFGKF9/jJ1lDEAgDZtgNJSw3f13B7/xjUDHpKvdyrhW297xTPjr8M/OdOReCETBIDjWr+JncedYjl+BYy+UyI5adJE9By2MS+VZB1Ah5Jt8vEJ7V5D66Lf5GMGqOZyMphOP0jBlUaYLpo0i/KyrP0GBTUToXazG0czh0Z5u3BVv4d0r2X7jZMFEkQqoXylPJ9iXb6vnsS5V6IVDrRuLSq6FP1kCOHlSVcBjOHsbk+j9oTV8ga+jifGve0u0WaT4CPA+DZGOf6jaCiFWPpx3ll4cNRtWN3hJcPyQxp+g0v7PMZVd6avzvC9fmRzd/lv+d21KbDuW7kZjfN361/s3l3/PC+SRfm+JSfhxn825rqF6/2UkwOry3o+fhFELJDmRdsGG+FxQDEeBEM+TRGbdfp8OKPLsyjJOmDvvgTCIKBd8a+GuXEA4MZBD6gEHt40TONLLHDztV7e7xF0L/9JPlYqfJGfD2RlcdflZyHF3CLhYVQTq/fdcjyQ+mIYacHii2xd9CuKMg/Kx/J86fQH6Nw5ugsQgAsvFI3Z2rSxXWVQ731mDOf0eApzWvLnUwvfJ/YJhuui49q8hbuG3m1ej0HEnLIyoF1ra9mE8l4SqxJmnNL5Obw6+XLjApZWqFJ0mOYfetgrc35beBrG1nyObM4UAl4pF3IDR1GafdByz6PrwUVvYlKi97vw/FZ/LDrV1HmDQVC9Ol7k4HK8NqB1ZEwgBVe6IAi2hucdi04zvPbJTHVs/7enXmrsauzIQo2PSU0+xqldntO9lu2vpTGBIDxALx51GKsxxat3UHfB4vOBMcDvExBcJlqiHg2SCziROHxM4FpcHzz+T+hQIuaOqMnfhZktPkBHj4Srmb6g4YtXqwjp6VS5I1s36rWxcCFfJXr3hnNzDRyInPPPRKAtR8gUxtQCSr0iCBl+H/H2/upW9iPO7/mvuLZJuOeZ8ddhcZvExM3/cta5XPkodQkLcpQGIm4fecZweb9HcW6PJ11WxNGUF2FhCMIEN/oopeBVnkucvqs6WEUBthT8hhVcDgXEX88+F1ObfSQfuzYI6dQJOE0tW2AQxLCQrVs7qjJkYNS2pO0buLDXE7rXrD6FmdK/JOsgFrfVD208t+U72L/kTzrtifXl5ABfvKkfLk6J/D0LAv44km9Znqg/aMeEvIyj6FbmIu+vXi5di7JudfgVOcYG9HroKZxcYeXBpZeDizx4khL9OZLvtzIzjtTWy4wa4+QfI28Hgg6f4yRNBZTqkIIrjYiJJ4Lfjz6VWxxbiNnhwl6P474Rf7Usd1GvxzC75Xs0KBBph9b62jUc72fAFzSMqX9ej3/jvWnRIQQBMYdfLJC7rNP3IyG1giscGsQNNIrUb8Y0/gxtin6xLCcsXwHGbCyuo47tP6vNCnaIiaIV+JixQufsbs/IfxsJhqww3WxmcyRR14E1qQHmzBHHmeOOA2pqOG9kltO8ygpP863He4lwUqcXsKL9K/FtlHBNx5JtKE2Qx1Lb4l9lobnt5XQ45n/Ys7JFi+hcNXb3BXEMUQjAWwWXSYhCALhr6D04rwcpoNOB4dVf4qd5Z0adVz1NjKnnXZvPmnLfK88ldiYVB++S8gnmWWuc0+PfaGqWZsAC5fjg2oMLAFq18nRNbeY1b/T9WAnz8x3m8M701yEv4ygAYNeRSGhVu2Gr5e/ZQ2Upkb648i6S3uVEhGDjGUXennopOnlk/Me7N9O+r+S9lby4+W2Uz7yVJ5gc5tfh3Der5fvWhYi4QgqudMGpJGfgQPPr0gJdrt3lZtTHQoYDVuui39AsP7JQN/pEazu9iJKsgzQpEemD9F71rtwSg6rN35OALwSMHat7rSDziOyJEnUfZ7g2FQbjlO67nJurOpzR/H3MaqFYRJxxhv32CULDP8fcgr6Vmz2pa0LNJ/hj0SkA7AmWGROABg2izm+euwG9K7aozvmYsddDA4WntZXnkx4lWQeQE857ogznA+DK1d/brk+Fw7WDlWJQJYTUlI23BxdZgaYm/hjk1bMFp6BzfM0n6hOjRkkXxov5dv70J5WnKIN+KC1Twmt+xaN859B78PwxV9urhwPP306TEIUA0KdyS1xDNRGxI8MXROP83fjg3MfQVmGgolpLap8Hm/tkpphrT+r0gv08boEARjf6HCOqv9SvX2/dq8wLwhGi8IJe/0KG0fjFMecqW5DXDAHvIiW41V+XZh/Ez/PXAYMHu2+TMcxo/j5O7/Jf40Lr1hnWq+f5AZhHwdBDHpPJSJfQYFuuZbWnlvYVybo27eOhzEN+oy3eKz1lH/mRJwcndnoehRmHTMtw/VZt25oqdbXvmWe/vxNPZYpiEBNIwZUu2AxRKLNwobmSq6TEaY908WninirRxkQ1Ilwky1+H2wf/zbO+EUTCkB78c3o8hQ+m8yfB9oIAC5lamhotuHnDtang3dCVlwOLFqlOPTz6dlzd/yGgqAi44AKgVSt7bevRtKn7OoiUxs8EQ8GFHkZT1MOjbsX9I/+Kkiwxp4X2Sbd8Vxo14m/fIOwIcy7LAyDGLTeag0+bYyNJtTYJuwtjFCtFITNS+FVWJsQEhuXmJKBVwg2WguRYY5GDa3LTj/DutEvw1PgbIyf//GegStXMAAAApaxJREFUpRTmMxAAunUDcnMxq+X7CC5bqa2aH521AIOA8mx7YYd48EroZub1Has2idhjppwNzwvdm/6h+k21j4ATQ48wSgHZ5f0exY2DHpDzSHLBGP7zTjHOUnhWqy/rCFoV3Y2l4v2xMTcD0Hpw+YD27YGMDFd1K383V4aol14KnHIKqtctAGbOjLps+5dlDA+Pvh1ndP2PcZmWLYGRI3UvyYqszEz1eZ9aqWrWPuCdwTCRfuiPCQ7foUsuAfJET0OuNU4insfGjT1bfcljjYPNDxnMJwfXDXgQOYGj8rFuiEKe3yovL7rc1Knyn4eCGdh+sEjRjke//8knA4358kvLkKFDTCAFVxrhyFqZMTFwtJaw98TYseLGWVneBVqNeoeSbeYJNHUID1qMAcvav+aqP06ItwKCSG+iLUk8nOx4QxTGa2HLMZEzCMCZZwKVlfoFLrtMYZXmRZdok1mf8bMQrhnwID6beT4wfLh54fXrDS/V5O9CYeZhR30wewJ1n08DhfTUZh/hibE3AVCEKHTykvTrZ/+eGGE1YmT5dZK6l5QAp5ziOEyjU3yanEKdS7di+wLyNE12EhG+R4WFB1fT/D/Qq+IH9UmNh7OS8OfRfTeskKM2iM/x8navYFSjL+zXw4HbvAdh/Cwkhj+dM8fWPqhZwQ5MavI/5w2TgDo28AqICgqAyZOj18wLFsh/usrBpaz3oouAjRtN3ztdqqttrehtrf/txO/VMKWZ+Nwr35eQwEQBnZvnWhNW2NUrUloKtGsHdOkCZGVFN2XwXdnJN6SL4gNU50ZCRAd8IaBDB2DgQNw++G9yuFO7IQrXdnwJZ3R5Vvx8BKFA76k0fYUmTDC+plDG21njeBX5gPc99GoPzhiAqiqgb19n9xJJhxt5WJ1i/8cyAmKkg06dAABHghmq6CjyXM/xIHQq+RnC8hXRFwYMEI3NGjZ03GfCO0jBlS44WcV37Kh/b1YWcNJJkb81nhQqGEOP8h/Qo/wH4zIKtF4fZVkHMKjhd1JVOh4hOl4aiZ6Iupf/lNgOEOmHl0nibWLlwWWEn4U866utenQKfz9nPW4d9HdvOkOkPWd3exovTbwSgPgcF2UeFkNxanN2KJk6FWja1Fqowhiwdq39TaLBS1Ab8gMAXpx4FQB1Di6t1VmWvw6Tmn4MQG25PrTqK/Rv8B1/X5YsUXTLwdpC68HldJxgzDLxfX4gkk9D7unkyUBpadwN48QcbZHjDF8QDXP3Gt9AJAUJV3DF6EHNDRzVH4fM2tO8rLcNuQ+N83d72zG5Kfefe1qzD3Fej3+L1uo6YV7N6FSyDU+Muxl+J+GWAbK8jRUGHjRKGBPE37ykJNpjSBHOTjAQc8xq8Z5lG6pwwBUV/LkjNRgZWujObIpnKh5bgU6lEc9sq7mWF+XnTYRnBNd4zqHg+s+Ea/HomFvl0wFfUJSNZGZiWfvXMK35RwA0IQo5FjtDrpiEy9ftiISYJQgJ7vclPE4MHQqceGJ0PUx7nLxzlaceXOefr5sreG3HF/HtnA0etUTEC10PLs5p6tweT2JF+5d1r4UEhuxAnZzH0877oVt26lRg/nzuOjQVOruPMIUUXGmErb1Wu3ZizH49Tj4ZaNaMu6r3p1+CGwc+wFXWz0Kuwx/IyQBd1kMQyYinG0Kfz7S+pvk7MLXZR6bvkt7cu7zdKziuzVvc3eha9hP2Lj6Ra5AKCn7uCT/82QoyDzuzVifqJW2KfkWnUjFXjepRKy+3vNcwxG74/M03A50727dK1FT89PjrAQBHQmI+jGHVX0cVM/f8ivz90qSr0b5YP5desmOmKOxVsQWX931EbzdveW+iOHqCwbqLSBh+Fkrss6KMksALxxzZKG+3faG1Qb2xEJB5sda5ot/DWNruDflYW+Owqq9U1rbKT3egTgw1Vrdstet+EB7i8wHXXce3p9UYQaieU5N35B+j/mLdDYUxiRuMPode7iZbzblVsA4fjjO7PotaaU4Kh1d2BVO/1bGU3RnVbZgTi9eQT/pecwJHVeGr/ZoxMPz12/6MbduKwlCSYRAaHIVk4/AEjPvqxiKPX17gMB4fI0ab8MxjjBm/kH4WQqbP2JCFQhQmlm5lP+I7TgUk72/Vs+JHrOn4ku618JohbLxl5wnUNaBo3Vr1zD886laUZ+/jq5AMpWICKbjSBcFmMumePSOLKzsvlwchCpWDkyp2Om8Xwn+0aeOqL47p0SMx7RLpCzPYoHtQr9m48NbUy8Qwn336iBO0Tpx7PdZ3fxo1+busC4a7AQEFmUesC2rhsOR1SzIKwYnYkumvUwt+160DxowRrSGNsJgnGQSga9doIcqECfZjcgMYV/MZAOBIUL1RZBCsBTXdukVZjcc7XJ8KFwt4M0Xhhu5PYWGbt+VjuaQ0nnplkc6LONqar2kyYphXhXCGjwlxf1ZkxowBJk3iK6sMvWOxFheWrzCeoznW8amy5VaFltEJd2S2ngomckwkzNGxwo9Ceo6DKo8h7/DKs9MoD5heaDvlOGTZuo0QhUvavK6+Nm0aMGMGGBP78cuC0zG+5lOrFrnwLAeXGVdcYfjxDX835bqJM0Sh8rMENJ6etscPstQnAFze9xH8U8qBZwlXYnrrMj3Kf+Sux/Ubm5cHbNpk2q3irEOY3EyMNhGPNAEMAmryd+GrWedEX3OST5zwlCx/HVoU7og679Xvoq1HO3bbmet58tnNaPEhd31EbKDVfbogCOaThNlCWBBQk/eH8XXGjDcNOoK2woxDmNfqbZ3CBoOIZH2S7a/lEjLIA9X8+XI81VgwruZT/GPk7TGrnyBklAqueDYLAZg3T1R2n356dMiMRo3075PeY88WhUYr4VmzRGtHq9thLsgCxLjJBAEAVbl71HNNy5bAjBmWVoeASd4HJgCrI54AcqmmTcXcHU5o1AgV2fs17cMwRKES+UrHjkDHjqrPW5hxiLsL8rrChXDG8TjBOO802JjHW3nNmKD6mnwsFAkFTSQtDAlUcHXrZjnuyO+5wXxshtN3IB4KcQa4tl7lHpaqqqQ2FcJrt785CaxjCu+zq/Lg8lBQ6ZWCy+g50/M0Ohr081esk5dKj0Z5u3DnsHvVJ7t3V3kQNcjd59njHBeD9MJC1An635VXHlyaP+HXKCR1FVw2w703yd+Jhjl7bN1DpDbl2fvRrvgX3WtR49dll4FlZbpuc3TjL/TzBsWC4cMto2EoQ7p7tfbimc/bFP/m6D4ithiN2fohCm2EE9Q516rwV1VoXrGcuTsuQ6R/lusCadLgNoCgdWRMIAUXAQD4cf7ZaGyi5DJ8ncMJqRUFVnd8CX8d8jf94iyksXAWxHCJEDX4UQOCzkpZHgtyc0WhZAx4fMxNeGT0rZjV8v2Y1E8QRnhqScSYaX2MwdxrZf16sMqK6PvsdsNmeRV5eZG/+/TR1Mv3Xc1u8S4+mnGh7jWy26pf7Fp0MoZXf21oVW31TNn2sNQmZjKq06DMvcPvwvYFZwAAzuz6DM7u/nREwWXSprxp9PuBE0+U59ZjmnyMnMBR486sXas6dLT59HDBHhZyvjxJzJk2r9XbCC5bydV+3HNwaRrVhjRSbpKI5GBJm9eRE+AzrkooTZpwGXtocfQOrFiBoNYTykE18UArmNB+XLnfHToAZ5+tutaldGtM+0bEB8N3123EERjPy3YwUtTpCfW0HtumLFokRjI5/XTTYqZrGg6jHruovJ5i6LFs9LsbCiD9CoWYhQfXxb0fQ8/yH9Gj/Ec5lFpA83uF9Ix/fD5k+03WVxq+mnUuHhsb7c1D+YLqJ1H7i6IisDatrW6KXYdcYCp7kP/wTuJRF5YfOvg+yIMrsSjnCSsPYCdPu/KR+GbOuWiiiW5gFt7ytsF/x+/HReZYQwOKMCHxOveegkIUxgRScKULgiAPAw1y9uDeYXfKLxkA8wFfulYnJbM3ymehey2s4FINSMbounZKdWb7a1EbsrZei8dENLnZx8gN1OpfpMGI8BClRwYuuMDjyl0ufAMBoKQkulrpHeSt3vYbo6x49mzRC+KUU4Djj9fUK5azWnBoPStUdSS7YJPwlOIs0XvJ6Hd36vGgvUtbv+ViVxDwztRLok7nZxxBw9y9AIA/9/0nVnV4RaHgMnizMjIgQL3ZC7f/73E3Gfdh2TKgc2d1v12ItvMzDiu7YB+Fom5I1Tfy6SgBlkEDcffg0oQoDGhi/iepHKJec+ewexHwhVw9567gfSg2bJCF0YJgcp/GW1T3HbBaw/boER8PLg88ZGSFgM8Hq5DMytzCP847C9cOeNBd47QXSCyS8YgqRKHZ62Txe63q8BJWd3hJPvbOg0v/vN66VRnKuyrXwrOnQQPgtNPE8OJ6cOz7cdFFaiMyD1CufWI55xlZyLsOUcgY1nd/GjmBWvh9ghxKLUcjE9Bt3+/HrkWn4Iq+D5v2PUx2oC5KcQYALXXCdRHpASlT1AoFr9YawRBnPV26qA59JvIBIj4o50Ivl1VR75rBD200Z7wz9RIsafs68gKRedly3SpFJaMQ2ImFvv00Iryx61z6s5iXQjlKmI0YYQFYeGOoMwCYWYqLbWvL67ennUiU9Wb56yIWGCYwJkRZYlpxXo9/2SpPEAmhQQOwfHebzRcnXoVTO/+XqyzPQltvPeDVxp+L4mLgxBNlT08l4QWEn5mLJ2ntSmjxSpEVOW/+TpgtdsP39q78Qe3lY7TrkkMUas4ffzxQUwNMnRp1i9M3VtdK2YpAAB8fuwkPehDiV6so1FVMGoQFeuu35q7btwNjUH1PfhZSHTMIlqFbiMTQsWR7orvgDTU1qrlS+d5PafoRnj/maq5qHviul6tubJO8Ts0IvxmmIdItEEz2LSqCQVWxvMCRmHqXEO4xm7OUv7ZhiEKL+VNL74ofcEGvJ+Rjn5WlNidGq1O9dXST/D8QWrYC383ZgPN7/ttdwzxzdkkJ0Lu3u3Y0xGt3oPUyDeM6RKFOuanNPsSUph9p2tepLxBAdqAOfSq3cHtsJ733MOE5xvsIvXP23yhtvrhEYKYIkMc+n8+z5z/I48HVo0eUoayPcnAlHHnMrqxUKTx1QxS6+a0MZOFGT0zvyh+i8ib7mGAeen7SJGD4cP7nmrSrMYEUXOmCXlJUzYvcseRn/dwb4US9JtYPgqasTEYGkKmOD8xgbA2hKxiXCucGjqr6YGRhz0pLI5aYHANDt7IfcX4v/o3C+9Mv4i5LEJ6gFYK6YECD73BFv0ewf8mfYjZxhheuyve5JOsAhlR9HVX2lM7P4eLej8ekH1V5omeLNjY+QVhRXXIIz4y/zrP6tK+ads588Pue5hVIHteCclmmDKkzfbp1J/r0ET04SkpwQa/HcVGvx+RLKit365oi3XJiheb3o3PpNlTm7LN/r4YXJl4te7at7vASlrV/NbqQViAlhyiMvweXclOjXe/4mACMGRPXPhF8rO7wEn6Yd1ZiO+GV6apiMFK+A/kZRzCi0VdcVWw7UBw5OPtsy3WJNu9uleR1at5Nsc4f55+tu3bgQTvOat95WcimCcXmydKIPLhiCk9EDwAagZjJbxKeJwxyV2k9cH0moYPtYDQPGRmKMQa0KNyBLH+d67YBg/le+bk8fo5VxkMxfEeMZBZcHlxmoRl1FFz/HHMrOpaqjSB0BZiZmcDKlRhS9Q1Cy1fh6Amr0KX0J+O2YKAoo3VC2mLXc9mJTCBDEz0Aa9ZwNOTRutkqhDoUn8nDEIVmRoTymDB+PJCd7VGLhFfIv0+TJoaGC04IT3PyUzZunPj/qFGqucnKaDtUFcl/64Ngng83JweYM4ffg4vWkTGBFFzpgiBEvyOaRdqnMy9Ax9Jt0fdKCiozDy7TGOdXX809IWo3EIwJgCDg9cmXoWPJtuiksYKAq/uJYUTC1nR29xt2rEMYQuhRbr4YJQjP8VDB5WMCfExAXsZRbdU6zXK0pZcHT/pfaSlZnbsbL0+6Kqrs6V3+gwlNPg03aNlcTd4f3C952ALbb2GBxUyu09Ii8ZRn70PnOOdDYQX5GFvzubgYtXMf5xOj9RD7aX+pSZ0Rnhp3PZ4ad714UKHIf1dSInpmTZ1qHaKQMZzT4yls6PG0vA5QzoN2nnlH74fUZnh8cTymMYb2Jb+gd+UPAICbBt2P4dU6gnA5F6h6DTOx6cem1bco+J27KzxlGRNUgoWAxoOrb+VmstZLUhgDSjIPJrobuvgUwiAZnvBjUAt9ZI+UkLVByLdzNuKvQ+4Fhg1ThfbTcna3p/HFrHNx34g7LeuM6qYHsy/X3qN1a1mwIYdXVrZtZo1r3riz+wguDtZlWhdizL5ATCcagFiV+vdsnLeL3+vHBCNvcV2hWgyeKeXnKs/eh6rc3eoCHOOBHeL1WhgJEA09uJRjpt9Eear8zRcsMCxWnr1f/0L37vKfGb6QpaCTJ3INkdy8OPEqvDAxev9rhNHc55W6J0qW1qUL0LWrJ3XzwpWDKzfXsxCFdSZG+owJwAkniLlMNfx3a3vy4Eow8v5UEGIbHrt1a+C664CZM1WntblcteRm1uHZCdcC4I9gxB0yk4gJ9O2nEeFFtPyiFhYqLpq8kH36ADBXYpkOOBkZ2uKmoR30JpIBDb8HY/ohB07p8jxennQl/j78TsP7zfA8DwdjGNjgW7QrTpOQNkRSYVf++c3sjcjyR2LDqzZ3jNlLWq3XHyH6XWYQgNWrVRO9UbflMpWVovWUCc8dcw0+mbmJu2/hui1zcHHXSCSCFgU78PGxF8a30VWrxATtp52mOm1lEGEY9chE2QSoc0iZMb7JZxjf5DOgRQtgzpzIhaZNxfdH8Q5xKag5rCnNcBQ+xCsljkU98lUDa+yWheZKqe/mbjS8VpJ1QPW3WVllf4qzD0NYvgKA5FkqfYY3p/wZL0y8GgiF8PbUSzGt2YeW9RH1AI53RZ5DHSi4lF4w8lkOgXZx1iEc3+51y+Y6l/6MdsW/WtZniEtpuHZ9r1vb6acDBQWqU6qx0+V41SBnj6v7CX0sBV1yfkmb3slDhgCTJ5tViW/nbMC1/R/0ZC4zmkO9CoFoiMYQ5s99HsX3czZg89wN6s8V9DacWbxyX7Yo3IGuZdEGqYYCSMZEy/3hw809uJQ5yQYPBlav1i3WqXQbtnOEYjVVcDVooC8IJUOYlKI48yAKpZyzbtANyWb1KNgxSrfbuAvMEgcwJoh7mnnzPAlRuL7bU1jd8WXD6z4IhqFYj4b8unIOIn7Ic7ggeJoPV3dfHvbgq6yMlFPMGVW5u3VDfI5p/AUA/nmb+3PQWB8TSMGVRoQtGQUwcQGvsCLSllFRVQVccQVemXQl3pp6qe6GM6ixjLbCX1Gme54xtTBaW1udQUiKIVXfoGn+TukemwouG5Mnb0z+16ZcgYdGuc8vQhAAXHlwtSpSC3G1r+ieo7mG9/ocWi2x4iKga1f4fRpvTL02wucvvBAoKjKtNy9wBEWZh/knfEGAsHwF5dJIccLPyOI2b6BZAV9y7XuG3YWFrd901mBmppir5rTTxP8VON1saZ9/7bxTrbWa1tKjh/p48WJRKHvllcA554gJ5SOVW3UmquxNg+7H21MvBYqLbW0f3AirwnfGdP0+d25UmOQwTfJ3ycomO5ze5T/4Y9Gp8jHvOKkdu/0sJAvSyrP3i7HcQyH0qdyCnMBR2/1S8tGMOCuE6wEJ2WfaUXDxEvZIqqxEqUJRK49RHgu0naL85E7DIlVk7wPOMg4tqX0nddcpGRnoV/m9rrDclFAIvy08DRu6P23vPoILXt2nUpDElYPL5wP69Ys6nacYkxvm7EV2wJsQgUYKDt15xak3oRWFhTiz27MoyDwihj5UGqaahVtyAHdoJpeUZB3ERzOiUwqYCiBnzlQbDukxcqTo8bJ8uXist7447jgAQMPcvZZjuJlnCdav1xeEktAzpWCMf61sVoo3LKsVbvJk630Os3X0l7PO1T1v9lkYBODUU4HSUk8UGhf3eRz9G3wvVR5dn/b7EFRzBpFInhp3Pe4adrd4kJdn6fnEvSc9/3z5T93h9MQTxRzvALJ8kbn+uzkb8aCJfJcBXIsTbk80igQQE0jBlS5oX5BZs3TfaMPXqLAQXcp+Rt/KLQYKLv4BRxuGUItPm3hV0c+jSmtTk/jk+gf68EyejaUk11aeIHKb55xDLs1ETHCyr7HyHjHCae6q8GKRZxFtx0o1ZFORrhyrTA3adfICDq3iy0VCxJ7wWH/XsHtEgSUHx7V5CzV5u5w1eKGxcsDSg8swtIjRDQrDE8MiAtCrF7BhQ+Rk+NkuKAAaN7bXJgB06iQq7yRP7sqcfehTuQXo2TPqE0xv9oFheBXH1pWLFzu7zwYCIIZQk2B6ni4GzGrxHnc7TsbJIVVfY1aL94GMDPyx6JSIIYL0e7gVZHQti29ITyJx2BZWDR8OrFwJrFuHLoMKcWipmH9DFqh7GJLMzTpYucZ3UouwfAUqcvYDzZvbbzv8R5MmwOTJeHPqZbisz6O266nI2R+d74TwBMu9m07+aO71s6bg5zPPw/TZGfLz7EZArMUohKJuG4sXi8oVr2nZMvL3jBlqY7Nhw0SZwQUXeNLUln3lntTjFNehobKyxJxFPaW8qXrj5cCB3NVFhYtTkp0NIaCjQNN5kE/p/Bz+MZIMa5MRu/Og0Th1WCfiipM5VveeGAnS2xp4cBsZrAPqsS8e8v1oBVeEloW/kzwvgQyp+gZN8neJThnHHONa4dmqUHoeq6rMC1ZUAPPm4dwe/8bycG5nnw85gVpTo2kv1wZE7CAFVxoRfuV0B2o7ySO1sw1jlkKuqFtMJotc/xFF1YLqZr9q0mNA//7mfeXYzSg180b8NP9sAJqBq7paP/cAY6LA0WbuFoIwxGUOLqfLAR7PBL3+KF+7a/o/aHE/P7Ii3YGCy7QPOguSlyZdLVVB9luJJlMxRtux/tWW7VL6E16ZdIX5TS1ayFZbejiN/619T7RPHNeTqowPz5H7w3SsWLtWVJhp3yUd743WRb/p57aCCwVX//6RfDdevGJLlkT+lnKoaAXL5/Z4EjcOvJ+rOjthlJVeMOZ1RtYzL0+6Cse1eQvIyEBJlpTb6dJLZU88x8pZot6h+6yavVQ+nygsKCgAVq5E9ogB0i0OPLis8v25pU4c+72ah+3kAwYgjpHSfMCV80lJOPefvbsITnjnYkMPLi0mIT7b9yuC74Slcng6L593o8+hKyjLyxND4g0eDCxa5K5ho887Zoy6XCAgei0pvcRd8MWsc3FBr8c9qcsUg5xC8nzrFRaRJ3T3IUuXisYs552HXuU/mObw1LU30Bnfu5f9iGnN3Yc2jnlozHqIjwncihozAbne/OVk/ezI6MJjr0HevVw8Qppqv/OwEvz96RfhnB5PUojCBCL/NitXArm5lgYKZs9VRfZefDMn4lHIE8Z/U69/RQwQ9ULXbtggj/Ezmr+PRW0cRo4xgrx1YwIpuNIFQZAFUbqThfRycs2/OslXrQTPvBNUSdYBZPqDandnxarg2Obv45NjN0lNCcCgQeJC0SGvT74MT46/gbu87MHVty+wfj3AGGpPWKVblsYkwguUeVoA/udqUMNv8PiYm8wLxciDS7n5P7nz8wCA/bVZumV5rV0YQmhWsFM6iEHs4m7ddE/HK18AYUymYjNmGs5F4qlx1wOIXugWZBzB4KpvzW+2eGYME9YLYWUN3/MsaLwR9TauU5p+ZNwvt8ntGdP/rOXlUU+8/A7o7NA9SfjrxkRz+XIx0XvfvsD06cApp8iX8jRh/rqX/4Q1HV/SrWZD96dw5PjVuKrfQ+ha9hMm1HwKANi24Ax0LPnZtAtDq/SVf1q0BjsAItb45eVAaanoVTdrFv7c91HsWXwSV71EjJk3L3Ft84QotEiAbUp2tiwIfuNXyYvDQ5Np7fzerexHbiUzA4ChQ8UuedQfbT3ab0wVNnX4cPFA2vMcCmbAFpq8XoS3mBlXKOdhw3J25tCwIleqyscEy5yxvNjy4Ap3YsECYMAAdw0rP5Pb9YQN2hX/ivE1n8W+oSVLgH798Mz46zCpyf8AKLw6vaRxY2DZMmCjdR5Omb59gSuuAKqr8cDIv+DL2fph3AB+h1q/z30wt0+O3YRFTkN7E4YwCNx7SbNIQV7kzirL2o+BDb+LLsc577teHkj9yTUJw62N+uQpuiEK1d95+E3qUf4TGNOJLEV4xosG0UHCaOdBq1HuaNB+9AvDZ0z7sEtrQfl0u3ai4al04uHRt4uGi0TSQwqudEHQTK7aAZ5nxpo8WYxLrrQil+qyM+kyJuhOML8tPE0MgagsC40Hl09Ap9JtAKRBz+eTBUROBNEdSrajKnevqCjTYWjVV/j9uEiuDT8LiUK0RYvkGOVRrqqk2SI8RLvY5V3s5QWOYnKzj80L6XkgKvDCgyvMEZ3QCoC0sJSEWIYIAkLLV6Emf5dxA7qdi5QzG+LojU1uMv11QEkJAD6rv/FNPosqe/vgv5nGzebFSqFj9CxpH9kuZVuR449s8PTm0MfG3mLckI6hiYysbDMuEsXGjcDUqcDAgcZvvY5nh5sE0J4oj3v2FK3ZGQPGjhU3HNLnDxhZqep8MX4WQqY/iFO7PIePZlyEhW3eBgBxfWBy+yfHbsJNnAJ7ANHSqi5dgNNPV4efHDkSGb4QCjOdJSWvUuRzK83yWJhX3zjnHHl+SniYGkHA34ffEXU6ajnv8L36cneVaKE6YoStPpmhXR+Pq/lMVDJzCOcFQAwjc/XVUdfmtXobj442GR9dwrKzIrl4JOF/JWd4XJnSUmDhQo97lp4cXLrW9j2jG3+Oac1MPFbCIQoVc7bKAMVsDjVCacgydar9+3UwskiP63iTa5yLNxZwhft3S04OMHgwxtZ8jsbhvUOs6NUrKl8rL36fIObfNEAI6TwHOgpJM4UBIHovWNGi8HduIy2CHztrcR8zTuOhJ9y3K3Lasei0SD4qDooyD6Ig45BpHwCgUd4uZPv5c8d2LduKn+ev070WEiIGeJ6FfJs71/CS9hNp93mMAaFl9vP1EtYMM4gOEkY1VzBmuQe3o+a3LGmg4IrCJOoLkZyQgiuNCAuizBbNZpbaOOYY0SJKZza19uDSnhCiklLKVlXatg0sy2ThuwvLM3ngNNikZ/nrUJ6tTMINcWPuZGNEEA7wM2ceXJablI0bgepqDGxg7NHCtbDUeXfkMUa6dmzz9zG75ftiWE9tGxCsLeS1QuFYeHDF4n7CEzJ9QaB3bwDmcdu1KL29upZtRXXeHtd9cWojq513bxn0f/hj0SlyyCOlUPqMLs/i1cmXK+5VMHiwqBThWFB3K/uJv4M1NaJFutncpqPgcrP1dKMc4yFgJESz+V6bGRnkBI7C7xOPh1nk7fvlYJFuiGe0bu2ZgPHqfg9i6/yzAADbF5yBP3V80ZN66y0ZNr12Ysz81u9EndN6tWrXDLa4/nrRm5AXaUwwWm8EmHrMkMP8VVbytxEIRCntWhTswLTmH/HXIWGl/NPdH0lj4qjGX+Lw8WvsNWhgPEeoyQnU2r6nZeEOPDrmVstyNw/8P5zV7WkAmtBcjOHuYXdhdYeXom/Svj+aNSiP8Rcv4TXFG1MuQyNFaNq4Lj/HjgU6dxZzS8WBbmUc4aI9JNZrDVNc7leMPLiaK8IafjD9Ikxu+rGhfOe6AQ/g05nWOdR8ebmu838S0YgeXHyYff+OIia4DOk/q8X72LvkZNHbGwYK+VGjsHX+Wbiy3yO2uma0JxMEJsv2eN/ci3s/hpGNvtC/WFkZycer68Gl8RLSjhdCdJ5uIj7EI6cVtzGJUc7shQvtrWkhelISiYMUXOmCIkShLpmZUjFnI3jQLEmqBjstMABo2lRxInK3WVJIvfJ62B04lVYlhsQ6JwFRr3DqwWW6AV+6VBRoM4bXplyB+0b8NapIcNlKZPqdJUeX3yvpXXho9O24uv9DkaTMemXNUC68mzXTj4OsR6dO4v/t25sKtvwspL+490V/i+XZ+3DDAGuPjePbvhafPANpTpfSnzCn5bvyZscwRKAOSsttq6cs238UW+aebR2i0CJEotH7qRUABxbNR/bw/vL8lheI5J7sWrYVg/RCiABiaKI1ayz7KSxf4SxUAmPRIQrDXdeRtITs5sVTYCefmi0EAWd0eRZdyrZy32I2rmq9UJS/pTxCjBqFFydFe5oo+W5vRbQHvMcwFhlTG+bupU25V5x3XmLa5fgBtWsEV94RvMZbYQV769amxeTuz5mDhjl70Kv8B+6uhBRhXJX7l8v6PIKVHV7hq+TEE1WH2j2OkWJO9bUrDrL81jl7ieRiabs3sLrDywDU4Y7BGBa1eQuTm/5PPjZEmvs8zRspEV5T9G/wvTondOPG3jWih/Qh/CwE5OeLeTnDIXNjDGMQw0WPGhXbhqTFiyehlJ3i0iBWd+/StCm+mHW+nOO4+9x2ouePwXPpZwJXbi0GAeNrPjM1fCTsw5jALV978sdOuvNSw5w96FJqvaY9qdPz3mvHw4Z1iOG6XUEIEVnbP0b9BQ+M/IvlPas7vGTfy1pCu2biCYVPxAfV3owj+pjZe6a9PVx3VCSuMHr5FYcMid4tlpUBF1wghvvmnNO+nH0uXlMYshLxhd7wNCK8SBIUE4dM9+5Au3aRl9bm5PiXIffinmF3GbetGHBMk1sOGhQ9YA0eDMyfD1x4IbAu4s4sC8YzM4G2bQ0HtaVtX8PYxvrxvrWCeC3y2fHjsbL9y+ImiVPBRRBe0LroN0ceXE/91Fn8o0cP9WRcXi7GfwciSdB13h3+3FgmHlxadBYjtq1zzjqL/0tYvFgMM7RsmamCP9NIaKXT34rsfVjb6SXLpntXbMH8VtHW9oQ9/jPhOsxq+b5uuCErlMow+RmfMkW3rI8JaFrwh+Wz5T7LgcSgQaKySmpvQ4+n8Omx58t9SRjMRNXjcYhCwxCCHnB5v0eRa+QVoPMbm/3sdwy5Fxf3fkw+fvj7HvLfcp7CwkLLPh3b4n1gxQqgY0fLsvIY7RSpPwm1XE8Hwg9GdTVYzx7mZWONgYW11vvF9vjhZM16zjmi8qhPH/Oqw6NJTg62L1wnh/7k6pZB/1Z3fBmN8nZbVzB/vuW7ZvTJjRRcRGqgncXCx6b7T7PfOfzuhUMUemjAqHxfHxt7Mx6efK94cNJJnrVhhqGnc6yZM0f0HIsDdgyjkg3tHD5t1F6gc2dk9esOf9tW4sljjzWtg/d5ZQyY2+pdvDYlft519QGfjRxci9vo50DbvnAdWhX9rntNybUDHrTVNysEQNyrSIalumtKD/N2Dq36Cuf3/Jc8Hrcu+s0yOgIgKhEv6v24o9DF2vdjb22OuoCHn4+wh960nOGrE6OA6RhdVuUaR2oxGgcNjcKaNwcmTQJOPjlybv58fXkzY8Dq1cDMmQBEI1OzEPHl2QdQknXQ8DoRW0jBlS5oPbi0I0YgAJxySlTiey4YwwntXhetxQ1DFGrV5jrlmjcXJ9EGDdTnfT5gyBDR/bNFC1FABI1ySpFYXtvOHUP/JgqWdJAFAxyT1y2D/w+X9HmM+7thvtRdUBPJwSOjb8Xdw+5RnbO9sdY+28pjDxNLM0USVvkV4XhXuD6PchFjZ2zKzRUTxUth4IwIW/UKy1eoQyoJ0VZ3ZgKSHuU/4E8dXwAA/HrIWuBNWKMyZACngmv9egDqcIYNcqT8Ay6taa3yHBg9nlZPbW6gFh1LtwNQfGYL7whDXG7GtPny5Pk7Jyeq7MhGX6J98TZH7eRZfJeO4R0jFGsN3XFICmnSrXwrJjaJ5DNsV/yrmOsL9kJVlWfvBwoKgBkzrAsvWSIaHjll1Spg1ixScKU6ymdZ573+YPpFOK3Lf1Xn/HYVXE7Gi/x8UXkkRyzQhzEBuOIKR0oiv8Kq1ml0CS1WnzTcTS8VGF71neBHa8gZNkzRE2QZCZ5Xtn8Z/SqlXDXSGjRc1kud56KlftmSu3PpNgz9q5S3jcNowgv8PhchTd3QqFHc2k2IB9f8+er/rTBYm4ZyIvuX1R1ewqP/LRS/txNOQKib2ujCLIIAzzdNkWdiA2NA26JfMIDDM85qj8GFk729IOCCXo+jUJFvSzytfnLM9mC6nk8VFQCA3hWb8fKkKy3f+U09/4VFJvJEIxiAFoUGoYttRnMa1PBb9b6GFFxJhZlzQvuSX6JS4BgRvt3Qg4sxYOJEoH17J910FhI7qhJ69mIBKbjSBSFiPWKegyu2PD3+eqzt+KL+5JuVJQ4ma9bIyVr9JolXtYkHdQeScFgrM3fjcBgzM2wq/AjCC5oX7EB+xhHVOd7H65we/xb/MArgDniaS04pVJPHGEkpEbnA8MO8szCq0efyKS5rc96QhCaYLTSUHlyq3tj0OGtZ+DuuH/gPAECn0m20WfQAOVTHiBFAx454YuzN1uEq8vKAm27CrJbvYX6rtyEsX4HmhTvFawbPvPxbWbxgx7V+C/kZh+18BHX9RjRrJv/pYyHg5puBadMAOAg5ZvbOc3A4qM47JACioljKg6bkkj6P4fNZmxy107xgB1bp5T9xi9HmvmtXcSyRlFM4/XRuJaJyUz+8OmJNyustc2DpWrQs3CEeSLkMTGFMXBPZRB6y6uqAkSO5rYYJA5J8Pde9/KcoDy5TLxUTYhGWqjDjsGNBvXLcU75lXs6r2lBQ4fcnKhThtdd61ibhEZrwk4YMHiwbu3C/zj4fbhn8f3h50pV4a+qlEQVXDJZ0mYvmYuBxLeXjuI3Z0pfhZT4xJ+3Hg4R4cA0ZAtx4I5/HNmCs4Dpmkvy3duzjXeoxQNdAKapcck93KQuDgNLsg3idwzPOx6mMlLEalBjDjObvY1zNp5ZVndPjKWT51euJqPB9ZgouvWuDBwMAKrL3Y0jVN5Z9sGMgq7rPZh4lJdp1/KSmH0f2NfPmkZIh0axdK/7PGHpXbMaQht/Ix3YwKm2o4DKA9w01fWxW8CnhaFCODaTgSiPClrxcL6adF4rDUiT8ko+r+QzFWYfkhVyGMt54uM0GDYDjjgMAZPsNQgxZXJPhEeCvXWv9eZX1cFrGxFu43aLA2nWdSC1shf9TsH3BGTinx5PigXaGVT7r4RCFLjbU4f4o47vLTRx/fCTxppS4vkn+LtVigktAPHcuUF0NrFzpuJ9mC40MX1AuoPouGjaMKmvWX+VGoHvZj/Y7SUQhC1+ys4ETT0TXsq0YWvW1YflMnzQvBAIY0/gL/H3EnZoKLcZvi7ngzG7P4sWJxrmWjJ4zyyn11FPFZxzSIlwx59hWcOmEEuSGsSgPLgBiOCEPPT4BINMfxM2DrPPZ2cboy161Crj++oigp7BQDgUoC7qHD9etR2mZqszZZxXmOIwqXGJZmai8XLaM48M4pFZsL5VDMyUFybS5tOqLIKBFwe8YzyHI0qs32yikJ08VOuuSH+edJebZkfqmoqAAT467AWd3e1q3vn+NvRF3D7tbPvZK6K+1RtcK95sX7sBV/R6K/qo5hMOECwxCB+sSfpY6dgSmTtUtonoeFyxAXXa+ZXXqCsQHINMfRN/KLVEeXJ7CGFBaKh96YM9ls3khMeNcPNqUc7cmSJyVkWFdJpzP0CDnWqi0XP5b+5V17qw4GDnSJIKAwLV3ZEKCwlWmOUa5HnXLeiE70nh+Pzz6dhzf9nWuW7VjXLQRiM5DJkVJUUbN0PZFDkke3kf066fbvixLsJmawUhJISxfYduDS2bgQGDoUOvGidgRCKgGujenXIanx18vHjidQzSTrKu8tXpoI5Hp0aOH5bjw9exzPOoQoYUUXOmCVYjCcLHwxBZrjyUp9M/2BeuwvttTOh0RX3pHCi6dEGxmnmBgzNo6w0iwp3dfAjYKP847C8vavxr3don4w7P4bZi7Fxk6z/zBpWvVz7KVAnj0aO5+KReI8t+NGom5866/HjjvPPm6UljMpeCqrBTvdxGyS5k7qUn+TsxtGcmPpUw8Lr/SbdoAs2dH5QkqzTpg2EbYi21eq7dRnbcnqWSjqYqPCbY8AHIDR43H4PXrrcdnp2E19RSkVvcoycoSw/Qi+p2wnVNH4Q3mhPtH3iHGwLdDMj3shlIeFj3myTlVJAYNEsetzp1lpTygFpApfw95HWLXG3bcOKBXL3v32EHqe0JCM6UpCXnEmfW6Xcl3czfi3J5P2m7m0dG34PoB/7B9nxk1+bv0L4wfD3TpgglNPsWI6i91i/Rr8D2qcqWwsoyphGp2hIVarO7M8IVwapfnHNcfpip3t6LNJBobE8CZXZ/BY2NuTmgfdENnAWL4zDDK90vrZSsZnwgsRuOpou2SEmDr1tg0o9cmQ4IUXPHwipCiSHQs2R4553J95DkbNwIXXKBScipRiTQ0gthRoxTXZ80CmjbFkjbRigzen5cx8EW1IWxh5+0yXe/ref/r/bjKh0ZWzlugHA9M+hNWBrw77RJ8PvM8PDL6VnHQWrFCf5yVZA5yrr9wJIjjjhPDv2m7AajPn3aaVc8BAJk+g1zaAIeCy0LBQR5cSYPfJ8Dvk34PKcoJL6qIMIg863Y9uCwdLPr2BUaPjqz9HEYxaF30m6NIHoQ1tDNOI3g2WfIY7rGCK6rtoUOBk09GWfaBSLxhnXqa5v9hWKfW2lR3/pGETgtavY0nx92gutRc4/EkLF+BAk3sYZk2bSJ/K/tZpzOhykH847hhyM5GrZ7lDJF2WOV2m99Kk8SdMTncTk6gVq3gMntG58zhyxUjobSAiRLmZ2WJG02p7WOafIpGebv0y8YIZZjSmwf9Hzb2iCjWlQtjITztzZoF5OWpEnA/O+Fa/MMkPF74O7hvxJ3RIY4IRzAmAJdeqj5n8sx0LjXJB9W0qUk70h8uw/t58TRrN1u2rctatRLzUl52mf3GGcPslu9hdst37d+bLNjxNJMVXAIwcqSo3DrnHDFU8rBhojAekdAr81q9jQlNPgEEAbsXnyR6pE+dKluw/rHoFLw08UpvPofTTfXpp8sWhLQvd4lyPEj0l8nhweWUac0/QgelENhrlH2bOlV+R3lzFqbSY/yXIfdiy9z1ie5G0tC66DeMbKSvyIwXhvsjI8FTRgawYYPo9Tt2LDB7NoAYDgHhHB9SvppGjWLUjg4Js01RGJDEjMaNge7dcXa3p3H0hFWicuvkk2Pfrh0KCkwt/qVHAj4WQp+KLeZ1MYY7h90bddrHQly/s88HMapNjx6WZes7V/Z7CENMokko0e5Z5EgTOoghCg0GmnPPjT6nNyh17Rp1ytLYKayI0gj7tV7O1Xl7AAC9Kn5A+5JfML35h2IfevRQjbO3Dvo7XpkUyb8Z8IWAK68UIxgAonyuSZPojwMAkyJhOdGmDVBUZN53AP7iAuOLFoZChmFaw3uJRK/90hkrhbpO1CEAolGAzXGKQRANCiRjUrlam0ZToxp9gYdG3Wb8XGRmAscei9xiKU1HOJJRVH8syMiQ1x6Et5CCK10IhWQPrpgKlA2Eg/0qv8eZXZ+JnGBMtogLGXiNbV9wBi7o9UR0ZdKAkqONE+yLdmsOK7iyA3WY0EQdtuX7uRvV/TFi3TqgZUv9ax06qA7HNP5M/lvPkqVhzh7jdlzAhJC+aziR0ug9llbvb1RINkHAB9Mvxlezzomu1Oy5r67m2/lK76MqB5fFbSd3fh5vTrmMq6xXKD24GICdhyOJm5sX7pDDujGoxxGl92fzgp0ozT5o2IbW24tycLnHB4E7Zs9V/R6KhC4wwmqj0ratZTtOPAi47gmHvdM8N6YeyEa0axcJfeMS3ZAk0YWcN+BSqRiFnUElvJ4I1IpKbcYi/wIBOQRWaZb43t834k45l1ZRppSLTfJIQYMGKMk6iN6VW/TbuvhiJ5/GPoq8YqE4eI+MafwZdh53SszbqffMnGl+PYFCGMtXTjsWWdygnTtVHlyAvZB2yno074PhN6bXPxMDCSV+JiDT7yJMbBrRNH8H+lV+H7sGOJ/5diW/4txwXlptFUZjZJMmQLduwPTpsgFDKFZikQYNgEsuUUU6iCvx1HJdeilw9tmi10esYQxYuRKMid6Z6NQp5cKNDhkC7P3kBwSXrcL81u+YFzZ4H5jJtejCLOW+o0SwtuNLkVxAFmgF6GYGkDVGht0DB0aUQ2bMmiVHSQIgv9shq3V8vhjGVZvDUzs0jGz0Jf5YpL/eqxMicqg2xb+KIYrDkZRYiCv/bFBHdsY1PNlY/7Qv3qbKOWpZvySvJNzRsvC36JOqOKsWKBVcTscoxX1OowFk+oM4tsUHlg/OW+8G8K1JalvLd/Kssww9ewl3kIIrjRBkBResQxQ6zbUhhQPQUpB5BH/u+0/1SXnS9amOwzTM3Wu4SZzb8p0ohZXsCaYkKyti/uSUli2NB7HJk+WNdrOCHXh2wvXyYKSn4Nq+cJ0675iHkAdX/SD8KK7t+CKWt3vF+oZQCC0Kd6BN8W/qCrwirODymXhwhVGE8Yq3KE5pvcYg4Pt9ovXo3sUnYm7Ld+X497KiThtWAdYKq94VP3jZZQIGSl6DR7g48yDyMkxCFJq1A0FUVIwbZ/teJUbKIDchSjyPD24GU6wTJLhCbLnJz+W1YN7m7//M+OuwssPLpmU6lGwXQ7yG0fY5N1e0KDSiVy9XFusV2XuxrJ39MMTxCFGY7a81VfynNIrfOeEhCtu3B665xrhsMlsZt2snCt7WrROPLcYL1RjI1DOvLzMATJjgyMuAS1lvxEknqZTHhDVb5m1Ax9Ltjo19nOYW1v7KWYEgNvWyCLvL8YKXNM6LjpLgFWVlfDmbvMIgJFnMKS1NvjCBSU5BPudvZGAsZBq+TUkyhZpOMNqoP1rsrMsZE1Q51owUXMLyFajK3av/M/DO7+3b60ZqUQnTL7ww+r7p04G2baMUXHrh+0qyNOs9qQ11rlpBdS3gC3I9XzExytIY9n4+axM2dI9EcTEMURiO0nTCCRQqziWfzzwPtwz6v+gLTsccG3tOYfkK3fOxdgxo0sTYPwIguW0iIQVXuiAI8qRhprEe2/hz9Ch3IKQ96SQxlEO+cSJfI8bXfIqhVV+pT5pN5Izh/0begWYFO1WnZat3Qb0x1gqd/CyICTWf6FatFeTpLmCU3gQZGXKS+gALin+PHQsAqA3qvz6uNtgGMB8zjjFPpCx6G8/wuSVtX496B6IIBMQYxccco6gg+vkLevBMKr1ODNcrgwYBNTUAYvMemKFc3Ad8EY/HgswjYn+POQaYOjXKE9Sn8kwzHpd+XXg6VrRXKxzd5AohRPQ2HkYCGfm505s/li61bqxvX9cZ3h3n4FLgOgeXByj7y7WvdqPg8tqDiyfBbxhBwNiaz5EbsIipDsnLK0ytcXndJ8Ch8uHZCdcCEMPC3D7k75blozxU4vDopKtIzCyMUNzQTqYZGeJa00vi8pAwMQRoeLcvjRdGTTMmqEKJKZ9rLz+/ofJebxGTlwf07YsDS9diXM2n0dfDt5Lntid8fOwm3Dfijpi3Y+fXCsyYgr9PfABYuTJm/Ykn7Yu3ieEjSbGR1lTm7KPf2CZaI2otPiZw51dkAHDqqbLBNbfC0QskjxV5D9yhg37ItIIC4KSTVEadgEn4PiXSRK4U2MvyM+m50yrOlBzX+k38uc+jAAw8uHj6EAoBK/QVGXrPvvK3i/qM/fqJ/w8eLP5fWQksXGjdB8IQHxOsPZZ4GDRIzMeel2ddVg/Fs9Cq8Df8fbiDNUbY66x/f2d9kLBUcNGYHTMsJRaMsRrG2IuMsc8ZY58xxk6Szp/PGPuZMfaR9G+C4p6zGWPfMsa+YoyNVZwfJ537ljF2Vmw+Uj1F4BtYruj3CN6ffon9l6pDBzGUgxGTJ0efk9roU7kFL026mr9Ngx2xoRBQIXg7od2r2DJ3PZ4cf6NpEzcMuB+ARsF1+eViaAVtMnllfOE5c2QvtqOhiKB0Qs0n+Gb2RsQMQSBLgHRFM4mHF3pci84bbxStxpTvn8575sWzo/TgMnwX8/LE+MfgcM32mKDCkyHgC+rnCRszJmpRXpgZyctn1uOoGPdDhrjsMQHoPOdSTiRTtM/4vHmyIYIXmD0HXsiKk8GDS9U+T4jEZPLgmjgRGD1aHmtct63dNOfmRt7vcMLsGDGm8RcAIu/BVf0eQvtikzxzGoJx8OBKhAI2HmT6g94rXzm5tv8/8O60S3Sv/Xbc6Vjf7Snda47w4DOGXyPuZzNsVW5oEIBIXiLGVK+p1fM2utHneO4YfU837ifVZD+SG6i1Frg1aCAb8xDOjH18EKzv4507vJpj2rUDrr5aFLClOpInw5X9HnE3f6cSCRrPXePiOf95/jqMafw5356LBKpc9KrYYmvd42OCuP/t1QtAdJ6rTF9txGPMruBe+5trf8O8PGDlSj5lHGM6Hlz8n7NOsd6U75PCKvqZYPh8tSv+BWd2exaAizWrlAdMVk4p0aQT0RL1GRcvFsd5M/cbwhZZ/jr9MUjzTNw48H45nYuwfEX03LRwoWhgYjRWrTfOf6q9xe8TrMO+6rFypZir2aVcgRRciYNnlKkDcJogCB0A9AOwhjEWHkmuEQShm/TvKQCQrs0B0BHAOAA3M8b8jDE/gJsAjAfQAcBcRT2EWwTBnseE1y/VMceI+SfKyoxj57tsk2cD9Zchf0fj/N2W5dZ2egmARrBXVGQYC/WZ8dfhgZF/VZ3rVLoNf+r4AgAgL+MIWhWJoTZi4X7NIKhiHxNpxOWXqw7Dr4mZNVRUYUDOJYNp06KKuQpjJQiY0/IdlVU1j7VVvOdtlQcXC2FczWfRhRiLUnBd2uefeHHiVQAUi2CdsKdy7aWlwKZNwLx5aevZEE+inpOpU8EK9ZMJy89deEF89tliKKuBA63b0W3MPoYeXHamX837kxAPLkV/TZXpBdJv4WYj6LWCKysLOPZYPgEzT9vaUGiXXgoMGACcf76uZ6Du+Ofy2Qo/A6d2eU4Mw8lJPJSjhuFdUpgr+j6MD6dflLCwfx1LtqGXQcjbkqyD+iGOtMZXvHgg9D0iGXR9PmsT3w1SX/WstQGdHFzKHJoWr1Kzgp3cXimG+yKj3106byks3LRJDjeXzJEj44WfYw7rXvajKoS79udrV7wdV/V7yFkHTH4E+RngHaPTRejEm483HQgLIrt0SWw/nMI7RivSRIxu9DkeHHUbqvP2gDGbhow0aJny7rRLbZXP8UtrtrBBtGbNVJO/S/QYKywENm2y5wXM81t1785tVBqWLYTDunUp26ouoCfUlz7XuT2elI1L/Cwk5hAqKgIQnaNaiXKPo9tPi8/48bGbVO9IOPIBAFHhpTTyDXuPG7QPQPw8Tj2ECF2y/bX6ykvN3LOm40sozT5geN2Spk2BKVPw3DHXYExjHTmPFwQCovG4y3mzLg4GiIQ+lt+8IAjbBUH4QPp7H4AvADQyuWUKgAcEQTgiCMJmAN8C6CP9+1YQhO8FQTgK4AGpLOEFyhCFPOVjsdgtLxeT6E6QnPnMNuNBE+G9Qd9kIZyLvmvnUC4vGcYwtuZzdC3bqmq7MOsIrh/4D7GIoniscmLUUojCtIMxISpkWnjha6rgatsWWLBAfW78eOCGG8Qky0quu0713F/Y63F8OetcW+/R/SPVLt48t8oL/jihDVFoJPjVKrhyA7VoUSgqp+VNh5l31qWXAg0bAoxRqCIP0BWem212BgyQN1Ro1kw0qOANO8j5zJv9rsrnbEjV17JVppsQhdkmCak9Rycvh6kH1yWXAJdd5i5hfCKFKXbb9vvFRNmMAVVVsbV8V/RNfg9atLDl/ZqfccTrXkURfl7P6fFvZPmTIKyfB7Qr/kU2SgoTz/Hcaig6vt3ruH7AA+JBONyQU4GMBwquRrm7MajhNwCAJW1ej1ww8qL0+4GTTzb24NKctmOgZ/Y7aesJz+06BU3PW/ZH8QF4w1ilLYsXI8tfh63zzzQt9sGMi7Gu63/kYx9TPx1Tmv4Pp3Z5Tv3b+Hy4f8Rf0Ltis3kfSGAfjVOFeCqycKG4TmnePNE9cQbvfuy44+RcnwUZhzGzxQfypQzGsY5Md0VngsgOh7eW1ouGa+r27SNGYxCNp2e3eNeTPvCuG0c1+gKtCn8FICq5FrV5S11g8WLgoouA226LnJOem7LsA6JxCYAGOXtV71uAhYzld0oFl858afVYdi7dphrjw5EPAABDh6pzG0r7QeUcnq5RCJKJTB+fBxegma4dzt0jG30ZpUhmMPAiTND6QM/ooGPJz5EDGo9jhq2dO2OsGYDuAMIZWNcyxj5mjN3JGAtLPxoB+Elx21bpnNF5wgsEge/97dtXFA527BjzLiEnxzjMg1kydoMPYpp/xSgZ9bBh4v8DBgBAlBdUZc4+436YdkLdDx7ByHdzNthrS4NyoLx+wAN4ZPStruojkhNLD65LLhFjfYdjRytRWPfJZGerFpTVubvRtvhX2xOrXSFOg9x9eGuqPSs4N6hCFLIgKnP24Z5hd0WVm9DkUwyr+kpXcE05teKP3lNl9GgyJgCLFsV2UVhcbHpZ+Zz1rdiMMY0/j/SNE+W8M6L6S8xo/oFJ6dhjauiRmWn5nRhSVSX+n2ZhQDx7/BSKB9kDomFDW8L++a3fxvFtX+Mq62dBjGr0ua0uApHn44Je/4q74UKskN/XBG18fRpDCxmpP43yduNPnV4UQ+Gdd554rahIFD796U/2GmvSRPxfKQSySWn2Qbw6+UoAENcPgJhzy8yLsn17w3WMyrCBaVbQFi+Y2VirvPLa5Mtx3YB/GBS08uDip16vGpo3F/NUZGWhUd5u43I6yhYG9d5JVwjp82FOq/eQG7AYd0jBFU1enrgHnjDBsmjKk5HhfJ2SDNTUiP238kCrqhKj5SB6HCzLOYhdi06OTf8IU7LCnqnS3FWZzSdbGlvzOe4cdg8+PfZ8/sYM5seAz2BNoeHyfo/imznnGhfw+aKjmGhyegnLV6BpwR/67eugHOeNvLo9IxAwlgkSMSM3cFQla+pdsRl/GXKvZX40N+O21mPMMFKLmVNFDNFbt3w68wIw8L2rhHO4RxnGWD6ARwCcLAjCXgC3AGgJoBuA7QCu8qJDjLHljLH3GGPv/f67geUdEY0goCTrIAALQduSJcCf/yzmmIg1jKkT9SoHmKIiMfzPlVdG3xe2CNFYq7Yo+B2rOryk39by5dFxeSdNAmbNEv9u2RK48kocCUY2+F/MOhdX9nuY73NYFrHeXLUo3GHdlkkXVnd4GRu7PwkA6Fz6M1oU0PuRjig9uLyyDG5esDNSP9P+YdUhsZyTnFp9K7fYvscpWg8uxoDjwpZpkyaJ/zOG+0bciRcm6ucEZACwQV8RrafE5vkKx9d8giFVX1sXrKd4blnn9+OliVdirF7oAp4fTBIeGFGn2Jwp+/77If2wilp+WXC66A0MAIKA5ydeg2HV8X8+lHNWzKwbTz4ZmDEDmDs3NvXzYNd7xYbHVuO8P6wLmaHom4+FRM/RmTMRlMayt3UMBLSeqe2Kf8Vfh/6Nq7kGOXvx32Ous91N5fORdt4qCsF4PPNGGiqVtUqooiK1h2r//tFe2laUlwPnnit6OHjASZ2exztT9fOHack0UHBpv2k7zxVvyaLMQ8gwErpZKETsKJlthYdPN3gVSzpzb8AXVIfK1ZuHJMXYy9vbOukdAMWzVR+FSXPnGqcNIJKHjAwxOsTq1c7rYAzFWYcMLweXKfLaeKQQLudU5KQknAYhL028En5fJHx63Qkr0bzAQN4jrfmUY11uoBYdS7cbN2CVg0tiSNU3GNjgW/PO2h0DzzxTjBZjZqQW9u7K2h9dv87ndZyDS2ctz6DjNcZYVF5dsn+ILcLyFcgO1GFE9Vf465B7AYgeVie0e93Ag0s6V1wMrFplv0GpTjkEYLt2+uXChjUJegD6Vm7R9WwXwuqX+rgmiRNcowxjLAOicus+QRAeBQBBEH4VBCEoCEIIwF8ghiAEgJ8BKE36GkvnjM6rEAThdkEQegmC0KtCJw8KYYAg4Kf5Z1uXYyz+yWaPO050yT72WPX5qiqVq7ZMaSlwwQWii7SC7EAdbh50v34bjImxjZU0a6a2GpTayvSJruTtin+1letCbkeHeLg/96z4ERf2fgKAKOSKRa4vIvEoPbiCnO7eVoyr+Qy1J4iLCFlRwzvhS4ngbQk2Bw2y0z1PUAonVZbEJSXAxImqsozBQMElRKzd9Tj99OjyFjw1/kbU5O2yLFdf0fsOXUXUCgQwtPob56HUAgHTV8ynUQyF+1+evd+67rIyNMjdF3n2EpUQ/corVVaUMcvjVFwMjBkjenMnihjE2Q//5l/NPhfn9/yXeNLJBkoZ3sUXAubNA3JzZW/tPjoGAma/1QntXsX0ZsbegDkBZ++ESsGVbsJ8Rd7VnMz4WXkajjGMiaGGvaZRI8/ehexAHXpX/sC1Fsn06YfNisrBZeP1MffgsghLtGaN+D0YCZI5PLi07aed0tcJc+aYX8/OVh2+PfVStCzcoQ6VGx7bNCEKuVi9Wvxd16yJulSdu9teXQSRCHw+5wLPmhrLQVQ1HoZCcg4mp/Rv8B1+P+5064JJiDKntCGcv8XQ6m9U9/h9gvGcIP1GjfN24fXJ3hichGlWsBOvTbnC0zrRooV+tBhAlNNJfDtnA85QhJ+VkT5veJxvU/QLupX9FF2OByFadmG0lxevmYdFJLynMPMwjm8nhrCWv3HG8N8J1+CEdq/K5eTfY82aSKQPB8j7WGVoWuXzUF0tdUwjH44jpp7tRMywXO0xxhiAOwB8IQjC1YrzyidyGoBPpb+fADCHMZbFGGsOoDWAdwC8C6A1Y6w5YywTwBypLOEFNsPlxZWBA4ErrogMNDw0aGDsZWa0SdEu7nSUZ+NrPlHFrObCaJGj+s5ji/Y39bNQzHJ9EYlF6cHlpSt/OHyAvOjj3exPnAjMmGHPun3hQpu9c0/YKkxYvoIv9Kjiva6TBMpm+xm/LwS0bq06xysw1n53fp7NVT1BN1y2mxFVJ/66U3Yedwqaazxle5T/KHsvMAiylWfD3L3WFY4YAfTpEwkxligFV0GBKlxvWsen79dPXINYWQmGDaoaNDAv17u3/KcPAs7q9gy2zD3b2W85YgQwdy5OaPcqVrV/WX4ZlJ7mWsx+q+XtXsX67k8bXs9xqPT1sZCceDytnpR4RTPQQV7T6T03ylDDiRojeOAQAHYr/wnX9o8OE5jpV8yBNoW6ZqWV477uXqhLF+Cqq8Q8prqVW/dFO7fE0/MvaRkwIBJKUw9pfA1vm/SU9/LYpnLr4lyntmsn/q46Id56ru6LoyesAmbP5quLIFKJ6mrgrLP4ytrw4Bpe/SWKMw+46FhysqnnE9i9+GSusrbtlqTxyvC2/v0BiD/DgIbfu2zMAV55jEyapFortyzcoZ7TNYTH9q9mn4fmhTujrh8NcuQL1FFwATD8TEeDEc/3xvVYyeBWka3HnUPvsSyjnM9HNf4SNw/6P3w9+xyxT24fdWmNrPUGDGgjBqxcKe7ZTjnFZYPe4zPJWUe4hycz+0AACwF8whj7SDq3HsBcxlg3iOP4FgArAEAQhM8YYw8C+BxAHYA1giAEAYAxthbAswD8AO4UBEEnhhDhiGT3v/XyJTaqq3HjyN+zZwNNm0YVeWr8je7aM7IUgQDceCPw1VfA7fabsIvfF6JNdRpg9guKHlyRyTvbfxRl2Qe8eZd69hQts3gIBIAhQxASOBIYJyPKsdHgXd5xOF88ZSK+9esIlvMCRxx1qVfFD3hr6mVgt99mXbge4mpskxROWos9xgySz+oQfg6KMg9h8z61JzljEL0XIHlwVYj5JLksQnNzgeOPjxwncN4O1pcEzH6/6EVuxYknAk89BRxzjHm5448H+0hcuvqYgEx/UMxFEGxsfp8egQAwbBj+cs87gK+7fPpw0HhpbvZbGSY2l8h26MGlfGvSylulpCRhTWeHlY1WCqwUV3DlBmpxUucXcPKbauWC9jlWPVcWQlizeVqZ28vwXTF10Q0LKPmfc1qLS2RlGV8z+M5DqnlI51k3yBet68Vn9LuOGoWMoUNd5aAjiKSjRPI+PvZYcS1hZ29o4VUvLF+BYIjhH9/3wvwXTtAtk3TG1Jxk+IJ80XsYsx9OT/oNdA3sLrwwKpeVCqO5nlOhExfOOw/44ANg7Fj96xwhCvVomLsX/xp7IyY9u9a4UDjUKuea6LBkKHZw6VrH0QsIfZa0fQNLX15kWsan8cjO8IXQuug36ZrLsWPQIOCzzxB8XP28ReWBKy8HTtAfvxKNae5rwjWWI7cgCK8JgsAEQegiCEI36d9TgiAsFAShs3R+siAI2xX3XCwIQktBENoKgvC04vxTgiC0ka6ZJ7og7BFHb6KEY2TR16sXMHw4sG6daBlthlU4DZ62FYkRGZMs+Vu1clavTfxMoKExTVGGKFRu/u8dfhc2z13vun5BYGLOOpuL5HDYLG7ivAgvyDisf8FIiaDoXzg0jqnwWEf4kukPyiFPzaB31R5GAkOuJ6pLF6BFC/0Npl1PAYvi2nCFtjHb7MaYoEEusXpLZSWweHF0cm0tjMmCUtWY4CaJcZ8+4vpFom3xr6jJ+0PMX6bB6Ld6cNRt6Fq61bQZpx5cjAmR0G3p/KjE8cPJAhcrYY3f5rwbazSh5pzw+3GnRp2zoySS3wGdvCAZCgteRwJYSfBr1h8KUajA5pyq/a7ChiglWQcwoIHk0VBeHilQUQFccQXaFZvkqOGBlFtEmtFuXDMxr2JYCcyT1iMst5g82TKXo98npF9IYiWLF5tfD4VU+977RvwV67o+a36P5BmsO/MoxzU9ahOkhLETXam6WozqohxPzdZN0rXSLHNPQMaAiU0/MS5w4oliuHNAtWZiMDZcnNbsQzw6+hbXyq22Rb+4uj9d2dTzCYxq9LnhdVmBo/N85AZspofRkpUFnHhiRAEtPQMBFkwur6hp0wwvkQdXbKEYZ2mIWXz6tCYQEBVXZskww9iJxa4cgJTChlWr5M1+rAWE2jGQQhQmN7NavIef5kUnluRBGaJQKQwIsJCYMN3lhOh0fJjZ4n0MaviNdcFIQ47acUqU90KzZuL/HKGIwu+vmUAsyvVd4sgJJhZnhCNcWcQHAsCZZ3oSc131PBjkbPMxAW9MuczZ415WBpx6KnD++Y776BRliMKY5eBKc7Q5LbziqXE34MvZ5wI+Hy7u/RjGNI4EOzD6rWa2+CCS6FyHGwbcj/tG3OGoP4LAVAo4ALim/4OO6koWdF9XQZBzVcaanPAG32gtGo5A0LVrXPrDjVJYYUMh2K8yEo6pPJsz7JWUJ+atqZdGh8Q57zxdwZzSgpcxACNHcvcRgOjd3qePdTkFaa301RAOMSTDEeECgPwlqTwi8vJkAfofi07FyEZfAvPnA23aqO8tLCQvOYJQcPAgsOkCpjK0xfLl5vlsiooi3gz5+ZFQ2SaYKe9T3jDKauBu316l4BrV6EsMbPCtftlwRJSmTYFzz3VmYGdiJPX7caciwyCfpe12wkydKoZp3riRr7yT9rKz8eO8szC31bvu2igtjbSjCBNu1n52oA7Tmn/kqtkPpl+Evwz5m6s6Ug3eFArn9nxS9sgyRec982o2jw5RmGRKo3HjgKVLdS/5bESVIexDEvJ0IZnDmHhFeCAoK3Nflx0Fl1KppRyMGjSQExozvetaPExyKCq4aGBMVooyD6Fx/m7LcnoKlfCGQkxUqyjr0WbC6VNzx9C/4aWJV+HsbsY5XlSEFc1Nmjhs0R4ZWgXU2rWiwnvePP0bwu/qkiXyuyQrRXQWZHohCnlJayvIGBD1W0rYscjXjo927q2TFs2q4VznmQgLU/s3+D7qGjdt27pKsuuUehOiMAaEx2jV8+HGg0tDdqAOuYFaICcH67s/jTkt35OvRf1WGgtBI8OXAQ2/Q03+Lued6tIFOO88+bOf3Pl553UlAbrPvCBEhziJEbIFq1JAqeTkk8X1pV0FTayYO1f9P2BLs/Pm1MvQNH+H4fXwczWk6uuo+vtWbsGStm/IuSRCAjO0Oj+72zM4vu1rACQL2VmzuPso3uQDjj/e1pxdnzy4TAVaZvsfKdfdLZ8PEY+zs4GNG6O/uyFDdG+vT98xQViRk6Pj3FteDqxebXzTmjV8Xl6AHF3AbIgPpLNhVMeOwOLFKgVXgAX1x6GuXdXKwkaNoopwrbHrDBRYgoDy7AP6OQrd0LOnGKbZrZe4WX86dULN2A7wLV1s7jFox0qke3d1vkevvg+pD4MbfiMbcBVkHK5Xc88vC06PeFJLTGzyMT6cfqF83LroV/lvs3WS/L011oRv79fPEwNUAKjT5KlPyjGpoEB9XFMDgPbdsYYUXETqsGGDmOjcyq2cBzsKLmXCby2CteeHjFXYRBMYBJWVjY8JpOBKYtx4RCgn7GObf4A5Ld8BoJi4nZgLn3GG/GeLwt/t388iSrdL+jzGd8+yZcD48eYbLg9Z0uYNvDDxqsiJggIxZKlRrPnworhfPwQLigGow7ZpcbMY0S6Q6c01p0HuPnw/x104TjchCr/a3VD+e0bz98MViv9LYWjntXobM1u8L1rCAqLnWAqhDlGYhJuCJCaQ6UObcNiS1q3F/3v08K6BGTNEhZIkEFAm4I6aW8aNA/r1kw9jti5golIhXZT1WQ7DNdphUMNvMLnpR7rXijMPAevXR29+w+Tmis+AnbVqLBk2DLj+eqB//8g5m2PewTqTtbTEy5OusixTmGkQjhjAyEZfYlOvfwFwN8/aEcDQWpyDpk2BGTOwr1Zajw0fDpSWcn93T467Ec9OuDZ2/SOIdMArYb8krzAT7vt9IXFeSDH8ir30RzMuxLCqr6ILjRgB5OWpFFx+X0hf0tO1q6zAD6P93vzacGR6kYaMFFwSDXL2oiJ7r/VvzKvE9CoHaWWl6GHVvn30NcbEHLj9+pmvZTp3NrwU5VHEjA1cvKBv5Wac3Pl57F18IloVOZCXuOSyPo84jgBkRFHmQeRy5AxvkLsvak4uzDyEbuVi+PP3p1+Er2efK1/rUGIcOlgAxJQx2t9KEDC35buY2ORj7v4bERWi0JdkIQr16NIFZ3R5Fuf2eDL5+5rCJMnOiXBNfcjBVVMjunoaWbzaQbMYMSUQEENIXXihYREu7xq3A1lNjRxruzp3t/3kp0TcKM46yFVO75EozDyMEdVfAgB6VvyI+0eKYaUqcvaJBZwouFq1AkaMgLB8BQY1/M7+/U4oKhJDIHi1iLYgO1CH4dVfWxcMo0iI3qL4DwDR7u5eof3FSKFggSCgeeHOqNN2hlDbOeMUDKmSQnEWF2NI1TdomLMn4iW9ejXQrRvuG3En2hb/CixZIoZUWptaoSr7VG7B/434KwB33on1Ed+qFfhqzQ1iXoA//Qk47TRvBT1jxojW1pJlrfJZtlK08wqMV7R/Wd5Ef3LsJqzq8JJ8rTjTOIScV5aXiSZTz0tUMbeWZe3HK5OucNXGpX3+iSv6PhLdzPIVYl6IcBjCVCE8Z4aNtQy8bYxY0PodzG/1tu61gF5YHIPIFNkWysmwwVm8LGTrk4V3FDqTcstCAy+vMWMiHnrSfbzjVeui39C3cnPkhNYqnCCIKITlK0wF22VZ++W/N89dj87hPJ6SR7rZCJqqoa3leaFhQ3Qt24rZLd8zzPGnXHvl2cgbFL3n05xZuRKYMEGdl8tig/PO1Evx6cwLjAusWwcMHCjuu8249lrgyiu9y0uYkQFcfLG4HnbK7Nm6OWdXd3gJfxt+l+4t7Yu3oXPpz3xGQJwyv+PbviavUQoyxfcm3iGIG+XtRkXOfuuCNvj5yf/h/3RClC9s/WbUuahnVzpzcqfn0L5YnY9sbccXcdQgrHdI8ImKXO1zHQrhzG7P4l/jbuL/AAbcM+xu/GvsjXIbRtFfkgrGcHm/R3Fmt2dJwRVDSEKeLqgUXCSsMiTsit2li+gNNns2331VVbLLvgrZg4sDFwOZcnEkLF+B0uyDUa65APD8MVc7boPwjmw/Z6xsHTL8ITw/8RrVuZ/nr0Pfyi3iQSISPmif3WRPOjFpkvG1uXPFsEWKxX15jijQlRVcMf58pFCIPad2eQ4buj8lH9sZfhvl7ZZDMpzY6UVsX7gu8kzk5ak8ZlBWJio49KwXk5iALyTHxc/xu0z4W99o1kzc0HfsKAr927SJzUZFqlOt4NIRKilCvxgJjOWzUk6nAAuhKPMQAKBN0a8ozxY31LUnrELPih/l+woyDqGfImRJuqwvs/TmaMW4n5dxBIOrDPJt1HdmzwZuvtl2uPCr+z+Ev4+4UzyQ8teGyfTrCCZ0vNtenXw5TuvyX6723DyrdjwVyYMrwr4lJ+Kqfg8bXm+lUX45Vg6WlDq7jyDSGZ11iDw+6exrvp+7AfcOE8fkZgU7I7KGggKgSxfTcdDPQsm/F9TBz0LAOefI89fKDq/gi1nn65YNr71enXw5Ar4Q97ygLRelDCwsBKZMEdeRK1eKMiaLcPoNcvehMmzoqkfLlqK3lGZujSInx9hz3Ck+n7WiyWyNnJUle4ev7/YUXpSisRzX5k1xn6Jz73vTL8HrUy7n69/FF1uXYQx/Hfo32VspTPVwgzzeHvH65Mtw86D7AIhKZqf5yh4dfQseHHVb9IVJk5A3qr9uHvF7h98NAGiYs0f2ZNSGOQ+PCdcMeEg0zALkZ5UxiLnhAdEob9kysd5hd2JtxxcdfQ47dC//CRObfiIfJ10OLitSqa8pRmrF1CGMScFFRkK49lrxu/L7DRP/2cLnw1+H3IuhVV8DGGQ+WHmh4FLUoedtMqKRjqs9EXd6lv/g/Gad56Q6b0/kwOm77ibUkfZeD/PNeE7btsDEicbXDTwtupf9iAY5e8UDve/Ywfs7vdkHUnXqe5PFgysvcBgH6iw2Q4nA4Lu2I7Cc1PRjTGr6MS7+cIJlvXp0K98KCEWRE2ma5/KD6RehU+nPABYkuiuEFmkcUim49N6Bnj1FT/Nbb7X2sFKEmPNLG1Nl3qmAL5Lfc3j1l3hBNraYL7afJsp53RCFinDUmbwJ3U34cX8pGpgJpFIZN3k7srNVYZMBjeVtOG/WjBnAoUPARx/Jl+x4oLvJW2p2p/YdTI83wgMYQ37GEV1BWhh5LSTNxUEbykFlSUlPTxCEEp29i6xE1ln/FmYejgitoQhdzRiwZg2Eh+4xbCpVDfV8TBA9QHdZ5yTNzxC9eMLzDq9CXvvNmO5duncX/xmh3X+nqlCcQwF25PjVCPhC8jrT7JPmhp9bq++jcWM+Dy6DelqfMhFC9xfBRgy3rsMBpdkHZO/AZgVi5BKevW7fyu/x/d5y/H64UKwn6wD2HDVIyQDj/LwA0KdyMx4fe4tUTiuv0OmL9rc8+eSIkefvv2PhY49Frmm/1+bNgXclJZ7HsuukzMGl/fyp+v6mGOTBlS6QgouPzExVaDLXMIbj270e8zi9svWPYmDsXv4TxjT+LKbt1jeiYj07QFi+QmVRYobuIiZWk5+b0J6ppOByIngTBHww42LkZRyVj5UsbvOG7SrbF2/DI2NuAwoKrMNVJIj9S0/SDw0VJ3YtOln/QgzyzjAI9t8t5XNg9HeK0738p4gFHpFcSF6mx7d7Xbay9uv9Vj6fKCBZt87QwphBEDf5incg/JePCSphVbiOFzSexEB0UudURTdE4YwZsqd+WLDlhunNPiTvHj1WrYoKMScrFNesAQYNEv8uKBDL2iSs2NJVBnNi6rmgeQfTJS+dFR1KtrmuQ6uAP1ynCJNVau6VFV4vH1q6xixiPEHUX3TWpiHBWMEFqJUxdZqcNmZL3ZT24AK4ZEFX938I383ZIB/zftxoDy4X31Oy5OF0y5gx4v8jRxoWyfQHVftjrr2y1b6Od99n9D0z5r3HmwI/ExytVN6aehlOV3izZ/qDUfPr17PP4QoH3LboV/lvbR26BrnK72rdOnUEE+337feLRscDB4qeX8NjoChMpRxcSlKprylGmoyaBDp1ki1A3FgtEjbh0Mz3rtiMZ8Zf50opoKfgqszZh2cnXK8uqAi5OKP5+3hv2sWeJHKsDwjLV6Bb2VbrgrHGSkHj1JNk2DBgwAAxZ4xdtM+1RTLchOJkwWCxa7lr2D2265UX5hUV1uEqEkgiZ4virEP6F6R34PXJl+H4tq/Jp91Z5Lt8LtLUg4tIYrKygLVrUZZ9AAvbiHkBTIX2LVuaP+dXXin/6WOCymtG+bfZW3Y0lOGJIUii0Q1RWFICnCnmJVNatTtBWL4C2YE6HHWRCzCtUApEdOZbWeGYY2yBbBc3sgM7Hly7jtjI6ZuinNL5OXw2c1O0cFLnSzb72rVroeHVX+GuoXeLB5s2Gd+oUIhm+evSRuZLEF7z2czzcVa3p+VjKwVXO0VeHa0BS3g9ISxfga9nn4P3p1+Ef465GUBy7WPsIO/NcnPF/fC6dWI+LB3yM46gReEO+Zh3H3E4qM5v5Uouly6DXYsWwPXXRzy0tWiez009n0Cnkp+t67Wa6HmNXvXqCStuHChyBzb4Fr8tPM2yXIAFMa3ZR7hFClMI8D9np3X5L/YsPgmA+D4q59dWhb+iddFvCm9p9XMUzs23a9HJ+HPff0batmuw07Kl+ljve5w0SQyfOXSo5VrQDUnpwaWFlFpxIU1GTQKNGonCayK+cCw8upf9hLE1n7tSCnB7fEgDZ/OC3/Hw6NvRs+LHhOXM6Fr2U0LadUNx1kHvKnOaQN5KEWoVX9uIjAxg0SJVvhZutBNyMntweaHg4l10mbRl9s7S8kaBXu6qBWK4vAENv0eFyxBfV/Z7KHLgxoNLKXht0UL8X5kgmiBiQefOqkOn3p+/HipUbfQzfEExp8TyFQCAEzu9gOeOET22osIfa5J/J7Ngq03RL/hi1rmW5eRwtFqkMcKrz6j0UJnY5GMcWrrGk3pThlatxP+VihEdYwHD3wMALrpIzJvLydGgGH3fVQ4uk1la68H1168GOW6Hl9zAETTN32FdMEb4WEhcO06eDADIzzjMJbzTov1FsgN1WNz2TdF7SxEiNIqzzpIty0k+RBDGdCjZjlLFXtZUWL5gATqXbpPXAXWCtEYIe3ApirYu+g09yn/C1Gb/AyCNg6nswQWIY5pWQG8C76c9pFFwuYrakS4hCgFzrznNuuDcnk8iOyDJzczkZ1YKLLN5xaR9DBzoyIM8TIYviIqc/ZblAr4QCjMPY2WHV+RzvK+V3yegMPOwVE8QHUu2oTp3FzJ8dWha8IeqrNKD69TO/8Xvx4m5o4uzDkWezzZtop5x3dCGZt+5HYWsV4ajUpsp4cGl7F+y9zWFIQVXOiFYx6wlPKa6WlQcVFWJxzqDlV7+LLvIC7JevcT/O3aUQ+mI14P65RHtbhwPOpb8jI9mXBT3dt3yyOhbsX3BGdYFeeCwGtK16grH4u7RIyqMD5YuFZPTJgJlDOtkVnA1aGD/Hh4Fl97727GjYZXyex8KRW0wQ2DOFZUek9D5omlTYPny6POdOiEcg0hpTeakr6d1eU6618EG0+cTE0B37QqMGhU5X1wMXHWVucU5QcQAXc8jBeGh6/s56zGj+fvy+fYl21XlAhohfX7GEYxs9CUA4ECtRggRDi0D4ImxN+GJsTcDCxbg2zkbcErn5+x+hJiS5a9Du+JfTcsIy1cYe2hJG2W7Y83T46/XPX80FEl17GehiMCmvrBmDXDCCcCUKZE1q47xz1+G/A3fz1mvX0dFBbB6NTB3LleT4Zx1Wit6O5hZMWs9uD6ecQHO6/Evx23xMLz6K2yZt8G6YIzwQRC9HSRhIYMgCu9s7mvO7PosrhvwQPQay6qejAyE/JyCSoKor0jvlTK3XUgTdlDF4MGqQ60HV1AvJHFAnNPMjEBO6/If7FtyIk+P445umGdJ0K6bmzPMeeep5oWTOj1vaLByz7C7xcg9Em7C5aaVgssMIyVWu3aiEb+WQYPEvVlZmf59K1eKMroFnPmFa2oif48aJd4XVsjFUJEb8AWBU08V971z5wIXX4zsBkV4aeKV0WVZECOqv0TdCSujrlXl7kGb4t/w84Kz8OvCM/C45Gmp58GV6a8Tc5hpDUwLC6NCGermo+3UCWjTBhg7NvqanefT7fc6YIC4H5cMATNM8n8mDaTgigsB6yJEqkEhCuNIdjZw+eURCxEdpQZjgphUccgQx834fdJv2qePOGE3bAjs2QPcfjuE5Ssw87/L8fDmnpHyimcgyho7DiTLkN2j/Ad8sEMtTCnP3ocdh/XjKRdlHkaRZA2j5cyuz2BUoy8w+qlTPO+nihkzxIVDx47i5HfXXcAHH4jX+vaNbdtmXHaZs/CG8WLjRuCtt0RXeLvwhDDQW4gsXaoK+6UqHt7Q6Czg6kK+iLI6wSR0tujd2zj5r/SbOM5hM3Ys8OyzDjsmkZdnnAA6P99d3Ymma1fgf6IlruEGkUgqXp98Gfo12GxaJqxMb164E03zIxac2hwQhqFfxo/HnvuNw8RNahoOedwDLQt3xGVD2bP8B/Rv8D1u/Mw6dr/rECWSMEk374AJ42r086EqQxSq1uanxHgdkSzk5orjPACcfz5w5IjumF+QeQQFmSZ5zxgDioqs21u9GsFLHgEAFGYahMDlwDREoeZdal64E+f3+jc2fcC39nhx4lUY/m973k+J9pqUFeKyZ4c0LyvXThzCqo6l29GxdDsgjLfdh0TsZQgiFZEVU61bY0T1l9JYWGF+U00NHh19K3YdzQUgeqXqGgmcfDJwszTXGrzzfiYgL+A+j2Us0FU2SZ/jjiH3SnP5UvX1CROA6mp53Lu492NY2PotQ4OVmvxdqs/vyoOrb1/gww8jx+kqFM/LUx83bQqcfbbx51240Lw+o72bEZWVotFiYWH0GsWGImbr/DPR+L7LRMWVwhBdyQW9HsfC1m+j+f2XiGvztm3Ff2EyMzG0+puo++4dfhdmt3wPvnWniwbQmzcD114re2CGKdGJRhTSMxbt0AF49FHx7+7dgdmzUXheJGTpixOvQvfyH0UP+o+ltf+cOeL+9zSDNYwdA+iASzXEcceJ/+8Qvdv7Vm4BWAd3dcYa5ZrJSc54ggtaLaYhlNQ6zuTmRgZpPQ8uCMBZZwG5ubhp4P9hebtXospYofICq6kRvcbKy+WcW0GNhZbSQknXAivGJIuS9f3pl6iOt8w9G1Oa/s9RXW2KfkUHjRW8KRYLounNPlAJIGUyMkTvrawsUXG6dCkwfjywIXHWuwDEvrRpI/7dpEli+6JHTQ0wc6Yzz6hweNfwYph3MZuXp/bsUaDc0Ghrq7OZl6Uo08PQmUpikezVDhwbNUe5swBg+vSIZ62N9gCIC/fmzfW9y9KF448H1q4FzjtP/EckPQMafm8pKFFevbD34/hpnphTSikg37v4RCxo/bY6xObGjcC4ccAxx6Bd8S9oUfC7eWc4ktB7xeyW7+GGgQ9wlW1d9JvhtcENv8H+JRZGGrKCi++DFWUeRH6GvlEMIIaoXtbuVfXJqVNFq+T6ht9vbNAQxuyB4nnYunZFXYkoyC3PPmCjc9qmnIUf5mFY9de279EqqONBfsZhWXCmVbDJ+wqlUDLGwpqCzCNomLMnpm0QREoje3BJ72d+Pp475ho8OvpW6/VvRQV6V/6AMY2/kE8tbfs6Hgt7ggDAJZfIxl1m46CPhcAYogTvyYCuB5f0vWX7a1GmN29oQqmt7/40avJ3cbU3sMG3WNr2ddv9lOneHThXEXY5w7lnclKTmQn8+c+R44KC+CvzGja0XqMYcG3/f2D34pPQKG83AOC5nztER+GRKM06iGYFO/HkuBtQka0Thv+EE3SVYxm+oPjelZWJso727cVQimZI76vSQEQAxHxoBQpj75UrgcJCPDr6Vnw3R5Q3dS79WTT6XrVKNHC+5hpruUE4sk11tXGZ8ePF59qtLIkx+V/tCatwepf/uKsvhrQr3o4XJl6lPkkKrphBCq4042/D78TFvR9PdDcIBfL87PdjdceXMUqxeOTFakN9df+H8OyEawEAzx1zDf4x8i/ihVatcMvg+3D/iL/YbtMNRuHATuvyH/Qo/yGufVHStOAPVx4r3ML29u0BQYCwfAUaGGzIHxlzG18i+4wMUSCWDEqlZctES7bVqxPdE2+ZOFG0SlwqWe3pCdJyjL0a9JDf2T59ooRltSE/t2TYz4LYvdietf9nM8/HjQPv1732yqQr8M3sjfhm9sao0Bd3DLkHS9u+hprC3Zja7EPd++OG9P24EusxjcUa72apTRvRKMFsgZ7qZGWJYR2qq83j4hOJ55xzHN2WG6hF4/zdANRriILMI+KroFRw1dQA06YBGRl4bOzN+HzW+eJ5I69hrSeHQ3gEYO2L+QxLXp18Oe4edrfh9YAviLyMo+aVSBvOHLNQRRI3D7oPP8w7G78uPN2wTHHWIdw+5O8AksezPWXhtAxuUrgbfSu/d9WU2bzz1m/NHder9Axc1eElvDDxKvSpMPfK1N4XL5TGktqQprJ1+qxZkZPSu8MVDjgspA2HlA7najMhKxDE9oXrrOsmiPqKtKZXhsYNy4ANWb8e6NdPHQJW2u8UZB7BlGYKo1CFt3+d4EvKHFw3DrwfXUqNc4DrenBpcwFpP5e0VnLycR8ZfSuWtX/N/o1KlHsR3pxSqUhJSeTvZPJU4/jhM/11hhGAlJzY83VMafoRAGBCk0/1P2bjxsDZZ+Pg0rW4sFdEputjghj2Wfk9ma2LRo4U320AhRkaj/asLN17y7IPoEXhDnQp/QkFYeMtn08MS8ij/GvcWFSErzcIOQ2IMq2VK737jX0+BHyiUj2pnhuJwoxDmNbsIwwPGzfNmiXmM02SVBXpCCm40owFrd9Gp9Jtie4GoUDemDIGjBvnLhazFmlR1qxgp2x1NbLRl5FnoEsXtCzcgfFNPvWuTQ6M5pc/9/knupUZLzzjgW7CzDAdOojxfHVgjHNxW1kJnHSSfPjV7HNx97C77HUyWSksFHNpKBdX6YDfLyolwxsHvR96/nzu6kY3+hwnd3peXIiOGKF64+8f8RfcNEhf+aSHE2vx5gU7kG0goB1c9S1aFf2OVkW/R72oS9u9gTuG/g0/nnQ1/jnmVu72hOUr0DhPxxtRh6fHX4/pzT7gqFRScKnCKtj8LhS/o67VJkGkAo0bc3tbluqEJgGgPx7MmSN6Ep15pup0hi8k5voaPDgSAsSAWIu3Di5di4lNP+Eq2zBnr8poZGP3J/Ha5MvlY65tL2P45NhNuGf4XcDcuXhn6iWGwrJVHV5BUeZhMZcBT9XhbyuZc1gmGjPhRNga2iKsTUHmEbw19TJX3TBT3B6uc25BH1Dky21d+BuGV3+Nt6f9GRf3fgz/HHMzHh6lP+86Cb0pLF+BwQ2jwxzxUpolejL4WAh9KyUlHGPoU7FZzNd32mnq9XJuLtCli3ne35kzRWFteDw78URR0DNvnnWHyNqZIMwpLwdatsS4mk8xvkYzbxqNrU2bAkuWiPu7FSvEqBQdzMN8PTP+OlzW59FIVA8N8rp95kx8euz5OLfHv+1+Eses6fgSbht8H24edJ/udTMPrqjjjRtFwx/JS6ZF4Q7ufoS/bk/CODMmjp2zZqWvB1eYsBK1U6fE9sMmBRn6ITn/N+MC5AUiiq/rRv1LNjwzJTMTOYHaiJIJ0hqySxd1OW0kBqXhquJ5mdT0Y/ww7yypHonSUlH2ocnFBwD/O/YiZPodPrtlZfF9TrV56pKM3YtPxsW9H4ucGDkSOOaYhPWnPkA5uAgixqiWlNOmYcpTq/DetIvR658ehJzTCkqUVkjLlomh7h59NO6Ww0aCaD8LmYZ+iQcNcvYaXGgghuwysTrhygHg96u0YUWZh9GphJTOKc2qVUC3btzFbxl8H1oW7gDazI9aeM1p9Z74h6CTNFcH20od2NtQ6QryOBaLC1u/iU/+aISPdoqehbyhccfVfIZHN0uhIM2EmR55iIQRBYskICNSFE7T4a5lW7Fn8Umqc/uX/Enfc6mqyjwXVKtWlsoEu+FW7aJUWGX46lAbMu6PNoxaWfYBtCn6VT7m8oJhLGIgFAqhd+UPrkPSRaqW6iGrTWPM5p6qKtGb0crAxgOvgqNB4+fajbGE0hNKOf2t7/604T2PjbkZvSu2WNbdqeRnfLqrERrm7JE9nZyGrH909C2yUiu4bJXq2ltTw2GkNEpExoA1a1Dx3KXGFY8apQ7rXF7OL+jJzQUOOc+rRhBpj88HrFuHQStW4KnxNwJQ5CDi8Wzo0UP8Z8HYms/FP/r0wbZnPsYvtz+Bj3bWYOnLiwBI487GjUDjxuj40EP4U+4L2HUkFzd8NsKy7i6lP+HjP2qs+2pCvwab0aviB6x+Ldow0cyDq2GuJB8Iy1ZqasR/En0qt9gOu+hZnlKDcPhpx1lnAd98Yy9/VqzRevhp+G7OBjQr2Kl7rUvZz+oQw7wGToEAMGcOVgUfwqhGX6DTw+frr0XHjQMOHAB69hSf1ZNPBq6+OqoYY0ATbVhNxsTyqY5y3ZiEHlxJ2KW0J7lVnoQ9ktBVnIj2wAj4QuhZ8aM3lWt/86wsoGVL0fqqV6+EWTVoP3NYsMSYdwJrXtZ3ewrruz0lH1/Q6wlsX3BGdMH8fFMLUQbBnqBr6lT5z54VPyK4bCX/vURiEQSc0eVZVOdKi0Gz90hn3A0ovTZhnM/j1cmXo9JI4eoC7oT0Rp/LwnoTAK7t/yBGVH8lHx81ETxrORzkKCv1bUT1l2gtCaltLxIV8c/9TKBVJpG6VFgkiA8zdCgKMw/L+TkBWIflM8LsfZGEPrUxVnApOXrCGtPrWsVDpq9OlQ/Udh4jaWznVRK8OPEqtaV6ixbRhXr1AoYMsdeP+oTVGN24cXQy+hhwOBixPn5/+kW4YUDE63pc489s1cUQeS6VczNv2MFjmnyC6rxIqOs5Ld/RDUH8ycwL8M3sjXhnWkTBZOpNJfHtnGhjuxaFO1RtKtfGViHPeldskUOme8ry5eK4c4bO+p0gCHOceFT07m1+3edD1dgu6F7+E4Yr9gPNCnaK76o0UJRnH8D1A/9h2dxfh9yLlyZFC+e9xMhA4dDSNRjY8DvxwEgJoTfwGQyGYeNEbXhXwoLCQlFZk+ReOUpaFO7Qlw/16QNAM9fX1Ymfj4fhw5HpD6Jj6XZk+WvRUc9YOiNDjMbQujV3f20ZzqbCvpm8uwkNqTN6ENaQgispyfTVcZcd3ehznNjpef7Km+vkAjjjDDHshwInXiBuUE6Hfx9+B16ddEXC+nJxn8dxZrdn5eNMfzBipaWHwXvEmICa/F3YMvdsADDMrSXToQNwVSShpFdW4ER8uLzfo8gNcAiGdZ4X2WJPWqAbKXUHNfwO/5txId6eamzx7MT6z/V6dPJklYLWso1hw3CgNpLH6d/jbsCSNuqkysWZB2TLRy6vD2kzPrHpJ/h69rkWhQ2YPRsYMECszisrSoJIBMOGifkPzeLaA+JG97zzuEMamqI3F7ZuLYYfqa4Grr8eR03e5U4lP2NVh5fc9aF9e+6iWsvsTL967cWYICbAbtwYOP5444pKSsRwtVIeEl6jnGHVX6MmXwrVWlEhhnBT9o8Jomd9OufQcIsXYW082Asdqov8RhXZ++W1gLB8BUY1/pK7nhM7PY+6ZWLO0juH3oPHxtwiX+MNO6hUih3X+k3cNPB+TG76P92yrYp+R43CSttIOXvb4L/LireWOmG35DZnzAAuuEDXItwIxiCHTPeUZs1ErxCOfF0EQWgoKrJ/z9KlEQ+Prl3F/w3G6PCwe2DpWqzq8LL9tmBPXmJFWNYwpOprOczwXUPvxjFN9EMeZwcUbRt57GzYEJ2PuW1b/falPT/tPdIAQcBNA/8PFdlq2dGEmk8iHn0nnigq5yR6V2wW35nzz0dFzn5VXVi2DDjhBPGY01Pt8PFr0WqZB+t6ACUGocwBANOnq4+vucaTNmOKUiCR7Ao5Wv/HBVJwEUQMWdbuVSxs/RZX2U4lP2Nlh1dw3YAH+RvIzgZuvDFyHDatNBngCzIOYVGbN/jbcIDSaros+4AqzNAV/R7B65Pd5Ufgpl07AEBh5mF8P2c9/r+9O4+Tojr3P/59elYYBhj2QYYdQRBkU0GFACK4gAsKroDgLipuUVzBuPyMGpNoEhOTeNUbE5NobhKNiZrExOQmmrhdjRrXaJS4xIgLLiDM+f1xqnuqu6uXmemZnh4+79eL13RXVVdVD9PVp85zzvOotjavl5014b60ZfHf6JDad9V43An611Hn6uOVp+hX+3xVPSs/atow3DDu1s3X5EJpCe7UXvygf4tenhixl0izFyEIfg3o+oEGdE0Pln5wtA9St/TmKCqQfENqTvqGhuiAc3W171DPsf/tat7zTwYO1OBu76ouqNkxvd/Lqg2K7T666DJJLXgftbXSwoVJi57eUN/8fQSN9fLY1o7f8AUyKS/39Q+HDMm+XSzmg09m0rp16etb2/l/1lm+w7u8XKqq0uYsszGXjHhEX57+48h1M+uf1wWT7olcl+T00/Ouf5g+g2uruoRqj8XkfCfERRclRtZGuuIKf1MfXC9um/Nd/Wqfr6ZvN3p0WorHxIy2AQPS0jsWtP5qZzNjhg9cbJdf6t6sChHgCs3g6l75SV4zoaKUW6Ni5vTtmbfq6O3/pDnbNc1yyHemdfhr65bZN6tX9cdZA8thqQGuLmU+UHf8Dn/QESP/qoWDowNlCePH+/TdpNUESo+Z/y67+uqWDR6Ixfwgk699zadql3xa0fnzpcMPT9o0PhCka/lnsl6hNLLNCI5Xlm1NqlNYCHfu9U1dMvUuSdLRo/8cXTMzdbZQpu+QhgYfnIi78sqmmlEpupX7mkxl1phW5xSl5+Rxv08aPCKF+rp22MEPngp8ZfoP9aVpd/gn9fX6w8Kr9c8j1uiZxWt9bW4zPzvyssv8zOR8jBzpaze10iuHn6fV47MMpJ8/P7muV2pAtyMKz+DqaDP/wg24+npp2rTincs2pIP9FQCl74tflL4w9WeSpBtnfk/jer2R1+seXXS5Fg17vPkHzKPRGr6+Tui1XjfPuqX5x2mGcKd5mTUm3WT3rv5Iuw14WXfM/aZ6VGYZRVIIobROw7r/J6+aP5J0zbQ701YnRmYHm8bMqUv5Z5rf8ExidO/6I8/x08/DLrkk8zHnzcvxBlAULWggnb7jr/XnA3xtisQNWra/t9AxoraqrYzfHPnP0q79XlZDzbsRW3rnT7xHjxx0eWI0WVSH3IljH/QPhg71o8emTk3clD4WBKKaTsrUUPOuzppwnzYsPz1p1X6Dn1Rtxadava5O//7hb6UZM/TQgVfq6cXr/FsLBbgn93lNvao2amxd03UwsTZXwGnBguzrm4FRlNjm1Nf7ovGSNCeofdHazn+zpMBNthSFMbmMM7bPGP9rXbbzz7Ie6td3BoH/mTPTC2tHSKQgDNK/VMS2qqZis54/9CJ/PvnOoo7Fkt7j+F7/StQceeqQS/TPI9boi7vc6YONY8b47/igrZH2+wil02MWdxZHHeWzDxSic6IAAa5+XT5Uj8qPtXHFqepR+am2NmY5rywp8+JBrGPH/G/a111ranllCyxLSgQKU+vGTuv/cqKN8L05N+nne38j8uX8pQKdQEWFr10XmlnS4v2EL2CLFqUNgku6Zlx6adPjPFPKrptyl+YPelq1lZuaXecqm6rYFjXmqp+9667Jz7P9vsLfL1nqQZbFnNzxJ/hfW1S6YpSODG2KxKCleEAo2G71+N9qRv2Lic9M/64fqqHbBu1ww2nJqQT79s2/zZNvuybT3+7220vyg7QrOlvazPDvsCOnK1y3jsFC7YQAV2fC6PQO4ZxzpHN2ui+5FkMeWtX5MWuWn60wcWLk6kydTEO6vaNlo/6sO+Z+M23drbNuih61nEE4x7BJ0uzZmlX/nHbq/XraTbYkHTw8ezCvR+XH6l6Ru6B0mW2NrGVw1MiImXMZGghHjHy4aV3ENh+uOE2zBz6f8Rzi729gzfvpubsjGi8LB/+ftGJF+lRwdAz1fqbQQwf+P31n5q3Zt3VOnx6zStdO/7Gm9fdF2VNzrkfW4MqzURv/237owC9qfK/1Gbfboe7NpNp+GTuey8ul887zo8fMNLH3a9qxbr0m9fEpPHTUUf5nZaX+ueqLumbanepZlfw5vHvvr6ss5lQ2f676LJkjxWLqWfWJ+lT7NAxVKanBXj78At2zz/Xp55LPd9b++0uShtX+W6eM+13u7TMco4IZXNgWTZ7sR28vWeKfFziVddYAV5Y2TaJjYMkSPbvkYp067rdp2+w5M2KkdRaJdsCIEZKa0h2N6vF28vp8RXQUlMe2qqHbBp1zWfemGaYDBiTSOKWlXz3zzMTDvGsjouj+sPBqvXjYhYn6dVlncI0cmTElaLYgVrk1+s9nXH2OGcqhWYeje76ln+x1Q+ZtzzpLGj487/pxqRJtlmzfmXmk2rlo8t16tg2yFQLIQyFmxOZj6tTk+5wWzBZbO+XutHuNbMb3el1njr8/fcXAgdK55yYuXZVlW3NfB4cMka65Rjr5ZGmffRLZX1rs5JNb93p0LEG7OfVe3sz57/6DDvILcvXptCa4kW/bvb5eWr5cOvvs5OUnneRnZHdGpZSiEO2CAFdnMmhQsc8AgaqyLYkp8fnK1BlUm0eQR4cf7juxunZNX7d4cdLT+A335Tv/VC8cdpFumX1zZLCpZ9Un+dUgkvSNPW7ThuVnqDpIf+IkqbZWDyy8Vv26fKgt4dGvQeeTlKHjP/DYosv1pQzpjcK2HHeyXjj0Iv1+4TWJZYNq3tV/z/kv/yScTqCx0Td+U9w256amJxGjP7pVbMp+DuFOrUzFaQOXTv2ZHzVbW8sXcUe1887SEUdo136v6Jgx/5tz86qyLUn/leWxrdL06Ym/pVc39kp+wdln5x3gMpOvvaP00dhhvas2Jj0fGEp7OKDL+zpuzB/8k5Qg+B/3v9oXpW9o8NNPZ8zwK2Ixn4qsGeI1RVJnS/Wo/NSnBenvUz5m+9yn2W8/afp0vXz4herX5cNmnY+k5AAXsC3q3r3puyZTbYkoeVyjsgW48grolJVpTM+3VJPyHVvWgjRFZeakq65KdAR0SUlF1OxBRGPHps0iTcwS22uv5A7+4He1JXWmz6BB0okntuz4aJnUWfQt0Kv6Y/Wpbko9nbNuZIbOp8g6W0Ha6pg5n35z7lz/Xbtunf++yyT0eYyZ00HDnsi8bXW1dO65aR27O0YVqY8671ijrw3SPyJN87Jl/ryj7jdS7Nb/5Vb3FQNopnPP9RlCCpDSLC/HHitX3b6pzGYPfE5fmn5H9MrhwxMDBipjW/IL9NfW+ppJBx6Y/d48nzbUTjvlHrCAkjas9t/a+/jBvu5tfJbibrslp6OM/x2tWOH76fKczRipOW333XZLnikm+e/rqVPze32BB8K1ufJy3yZZvrzYZ5IuyyxPtB0CXJ1Jnz7+wnr55cU+E7Qgx2qmWVYfrDg9vy+bTA2yuXNlQwYnnlbGtkhLl+r8Sb9smqacIYd0rkZhPCVZddkWda/8VJ8cc6qkHJ0BZ56ZCMZmGxVbHtuqZaMe0h/3vyrrOUjS8O7vaFSPtxLPkzrWwl/osZh0/vm+Mz9V/PcXBBOiTyo6LczW8O9p+vSs55r4f84RCEMRmUmf+1yLX15ujdLRRyeeP70hZRTlqFFJnVXZPmfh68KWDAGu1488V3s3PN20YMgQ7T/k//TRylMkSTfMuE03zvyef0/LloV2bupS/pnvCD7xRKlnz+QdV1UlHj635CLVd30v43kGu9PfDlmXNoMt4Ygjsr4+o1amrRpXt97/fggoY1vXnELzedSsPHDoE76YdoSYuaR6nGGJj2IwonXT1uQR32mf1Ayf3XN2uld/PegKScH3fvD+/rD/VZo/6OmkbZtdA8ssrQ5gmTX6zqsM57fFRbd9DhvxFx016uHmHR8ts+OO/mcBIytJgcsc7fuu5Zu0cYVvC0d+FwaDTJzk67QuXtwUSDLTj+d+S0Nr35GkpvbvpZfm/v5assR/vy9blhhcEx4U8+GK03RtfNBYuF28fLmOGPmw9h/yRGJRdVnQJog65u67+7ShOWxYfnpyuwRA+xg+XDr44Iz3rAVnlr2bIkN2mUi9euXeRrm/z2Pm9N7Rq2UmfRpuX6xcmf+5RBkc9Kek3i+h84rP4AotevnwC3XS+RF/q926pS+bNi1nXeucWhMca654n2Aeg1g6jJkzfWCvo+nf39dZO++8Yp/JNoUAV2czfHhycUAUx5FH+pQ1xx4bXeg9cPyYB/X4Ip+rOuu9a3NGbkSI19k5eezvdNqOD/gvgRUrmjaIT68OKbPGnIW143V1UoNzvauTZ5NM6L1ehw7/q39SXp4YwZqtQVxujaos26rdB7wUuT5mjTp8xF/8KOu0dSk7Xr3afy5OPtmnTgiOH2nGjPSp3XEZGsaJTq0DD/T/UoXT0CRe1PpRxmgnedZuk6Sder+W1qk1uc+r6a8L5WQvL8v8QbDQMVJnB4zv9bo2LD9d29W85ze5+mo/42DVKpkpUUw5cSP4uc8lBa2SZPowBh1Z2/d8O2MQPixrzcHBgxOzGZqllQGuvy3+gr7QzBm1QKc0apR0yCE+hVkmxx7rZ5XkESA4evSf9cCC6CLyMXMZWxD9u3zgjzFypKTMA3wSFi+O7FBqqHlXU4Lra2IPjY3aY8BLKosl77PFM6hCQa4ya4xOPxSkZGqMSu3WpYt+sOd3tdcgcrW1i8MO80GeEwpXxyXRxtt556TBK1HKrFE1FZt18tjf6dARf/V1NiLa2JlmMh8y/DF1CbIhJNq//frl11m9++7+XyA8eKZbxaamtomZbytMmyYNHKjb5tykGQNelCQ9s3ithnd/J/excmhOujEApS3rd/gxx/hZzxEm9v5ncs2tTPcoKarLc6cw7lH5qSSpZ7ze98CB6fW2mqtnT+nKK5PrjKFzC+5Bp/T5Z44N1er71TSrV/v6WUuXFna/2Rx9tB+sfc457XfMzmzKFF/7HO2GABfQFiorpR128DfDWaapD+/+jkZ0/3fu/bXyCzM+Wejre/xAC4c86fcXHoUakUu/zBpzF2aVdMfcb2rJiEcSz9cfeY7u2OtbSdt0q9ik2+d+p2lB0JmeabSzlGHka8jeg57W9/f8buJ5uKsgLTXS2LF+ZmNEoVdTyrZmUt++emzRZbp615T0B1OmSF//uu9AGDYssThRgHzMmOgClytXptdoIMDVOaR8Np84+LK0jtRf7nN9er2MyZN9+swrrtB23d7XC4demLw+GIVu5hJpPVNThppccidS96AuTMosjcT5ZOsgyxTgOuIIn+pEBZgAVV0tTZqUCLjnvcPWXP+YtQU0MfMdTUHB6Ug77+wDSi347PTv8r7eXX6GJH/dKa+M6Z1lZ+q7M2/RPg1PSZI2rjhVu/R7JSl98ropdyUG+/jXpnwv9+0rXXaZduv/onqF0rGa+X9f2/0Hqo2nOcxwLcs0myynBQsS6V4ypl3s1k06+ujoLr7Ro32nWrwOGtpWdbVvoxVw9HFiln5FRc7PRUO3DZJ8e3tMz7ekyy6T5s9v2qCxUSfu8HvNG/RM805i4ULfQRuehS1p8fBHdO++X4l8ScY2/OzZfn+hgW7x7+Ud6t5s3nkB2OaVZ0srHPSJjOz+VtqM76T7pfjs2xweOehyXTjpnrzPbeGQJ/XJylV5b59TXV1eNQjRSQQDsW6c+T39fcnF7XvssWP9gLT2THXXu7cPcpFmEyWKABfQ3k47LfEwZk5JY5yrq32B01SHHtqqQ9ZWbdaP534rfcWee0oTJkTWpYqZS/QT7bXdM/r1fl/W84delLbdwcMfT8wUUc+eGljzvh81lUdaxePG/DEpLUpYamM5PqJVks6feI8unnK3fxJ0NoSPlnOkdujcKsuC40yalLTJpD6vaVDNhogTK/cdDGvWJNLYbWrMMbK2okIaOVKXTf2plm7/kF9Gw6F0ZPtbjkpHkKJflw81uNu7yQvNfJqgIBXAyB4pge66Ot251zf1/Tnf9aO3167V92bflPQZTOpni/gMN20XnH+2FAeZZomatSgVR9ro9CuuSASqPr/Tfbpi5//Jf2eFGhEXFXwG0CrhwFHMnOqqPg4eN0qDBql39UdaOeZPmt7/ZUlSTUUoUB9cW2srN2lin9eT9hPlj/tfrR/PvbHp2ME3/6pxv4t+TSjY3+wUhRHKsg28mT5dO/d9NXrQzMqV7VcPBa2Xkuo93xpcn59wr/64/9Xp68Nf1lu26IYZ39fAmvfTt4sSf22PHtLatUkztCRpdI+3NC/D7MBbZ/+X7pj7TY3v1fTZ0jXXJNXCbdN6GxEz1wB0PlVluQdtvnDYxWmzYBJXxoYG6ZRT8krfP6XvP5PbEfK1tz89JjqIZSZVlzOoFC00YIC0dq1i5lTf9X3VlH+aeduOXL+qS/vWyQOKhQAX0N7GjUsULo9ZY3KXyzXXpNe9WL487Ya2ucx82pM0S5ZIq1ZFjkiNmUukKLxvv69qz+3+rlE93s5+oHB6vqgv+fhxgjy51+9+u67Y+aeRuwrP4Nq44lQtGPJk4vnp43+jXfu94p9MmCBde626VzQ1OPJJRfTFXe6UFNQkO/jgyM6n/l0/yL6T4P00upjKso1eC1ww+Zca3G2DdMYZ0XXA0DFlC7CMHetna+aQV5HjFIuGPa5ZA5/3f2cDB6pX9cdJn8FEh21DQ8b8zj+a+y3NGficTw2YLRgX1MKJFPVZjgrEZ7J8eVKdv6l9X9V5k36V/41AoQJchU4dASBJ+Ls3Jpf0Gd/aGPH5i7gGrJtyV3TaQzOZJV9LI5Mghvd54YWJ0bdZg1O5BPvMFSTbu+FpNR5/UsuPg44hntJakhYuTEsPnCb4++hd/VEiwJtRHgMtMif3TBefMRZll36v6ODhj+vJQ4LZkfPnp99jxAeJFbpfbtw4ae+9C7xTAB3RwG4f6MlDLsm5XWot4cQAmW7d/LUozxSFOvdcqbxc39jjNt025zu6edYtPsgWv75mm6XeHlpZWgIdTDCItHvlp9q4cnXm7erq/N9xhtr2RTV+fHqJEqATaqfqkwCixFJvYysq0u8y27OwZEjMGrUly8wkU6N08cXS/ff7BmnPnsk1OyZOlO6+WxoyRPrPf6SNG5tmgkyYIF1yibR2bcY0heHRYDUVm5NmhCSCX6tX+2PGYqqpjckdf4Lsxm/lDnCZ6ZyJ92lTY7nqKj+WdpqTHOQLHs8e+LzeWpqhHleK6rLc+cATClj8HO0gW2CkosLX28tR7yOffPEDu27Qvz6OSEOQITBl5nxw69RT09NlVFdLn36qxfHAdsoMxYTDDpM++CD7LK3Ua9KyZfkXc12wIPO2+d4Ajh0r/eY3LSvqHP6/I8AFtKlwACh1QExSTc+gtl+8dlXYvEHPaFr/f6Qtj9sa6iDb6swHI94J1QwKX6+6d/epEM9RM0IGmbW4jhdKz047SdddJ1VVac8br9bPX90pZ3rC/l1SBkXNmdP0+KSTpPfekzYnzzzIKcv33jvLzswdUAtbtCh9WfCetuaRkjwvkydLjz3m69kC2DY0Nmp8r3/l3ixlsF9a7a5jjpG+/OWkRY8uukyL7jtRr24M1ZgfPlwaO1YnbXkw+fXxdv7ChU3pai8O0srlU8ewUEaMkN56y7dP0Pl07x69vLxcuv76jpkxJBbzA06BTo4AF1BEZn40yOOLLm3qoG7r6c2hgulh29VsULfyTXru/QGSpLLU9ImSD1oFqsu2+M6pcMHtDaGRpA0NvhBrba30+uvSnXdKhx/etH6AP07UyNjG407w99zr1kl//7t0++1JTeDK2BZpjz18x3dc6PeWqJMRUXNLUuKG/qLJ8Rzec6K3k08vJ0k6OyLQFYw0m97/JZ/O0GjIdkr5BEYuvVS6KD2FZ9z4Xv/SS4ddEL0y+Ntdf9QaHf/gUfr232f4ZVdcIW3alHF2lUnS5z8fPeJx1SrpS1/Kfd6pteGynF/iRnTgwPSOvj339EGotJMsQLfyuHH+fbYkrWc48EeAC2hT8dpZW4870QeD3ODEukQ9oHHjpCOP9I/r6nyb5K67JEn/PGJNdGpgKTRjuumaEpNLvz727Zv13FokOHaXPAYqoBMJvltn1L+oxw6+XFL2bAp9qoP6cFdckT6CO95+vidL7ZigU2zmgBea/s5Dac1T9a7+qOnJ6NFZzy2j4Htxc3hA2zHHtGxfkq8tumFDxxzBDqBt5FlXOjWQnvg2j7fV6+ulc87Rlb//iR7412jd+/o4Te7zmvp3+VCvbuwjd3xoMGFUf0m/fv5nbW16QL89A1yHHCL16tXqDDzoQEaPlp57Tho0SDr22MzbRQzcAtB+6O0BiihmjdK6dZr4uR6+A1dKb7AVooM4PFMiSI+Y6vUj12jpqIeSzi0trZpzunXWTerf5X2N6/Wv9HNLLepdV+cblEOH+iKZEXWCUtMVSKHd1tdHNmArYlulpUuTF4beY8ycH6UyfXraa5MPkOF5quHDE0Xmk8yfL02YoD8dcJV+NPfbHTv3MpqvVy//c/Dg7NtJ/qYqniYwQ8284d3fiVwe/rtJPIqnOAh/ZlauTHqZmcv8t7v99oUbQZ3PNWjJkvzzey9e7APg+d74mfk0Yy2ZzRqL+c/pvHmFuZYCSBL+VMVnOMXM+TpG4RSF8fZEaidTqE3S0G1D5o9psCK+fvseb2pG/Yu+o6G+viml3JQp/hpzQfKAgr7x4ENLOKfNx56kbhWb8tue9ESdU6Y2nnN6d/kZ2m/wU/55tg6u+GzqqNTGs2ZJgwbpWzNv03OHrvUzw6Pqa555ZvLzCy/0nW4tEcwQO3jYYzpm9B99bdBddmnZviT/nUtwC9i2zJ3rf2aqNRlcO9NmcJnz167Fi5OWnzvxXk3p82ri+c/mf0MvH3Z+8j7rUjJeTJ2aPJA2VXvOqqmp8YN34veRKH2nny5ddZUfzEoddaDDYgYXUERl5vyXZJYRmgXplM0z8BJOIVRmTqN7vtm08vzzpV/8Qku3f1j7D/0/f+52cfIOqqqkNWuaNVOiIpajdlVw7uEUhZGvCb1Hk/OdXJl+d7l+p/mef02NnymTIz1ds/aJjuPSS306odTAbSZDh0o33ND8/2uz/D6ju+4q/eUviVScY3q8Kdl2zTtWSwSfl9p4nbvWXpPmzm26GW4PUWmZABTcPz4MZk8NHepT8yxY4K+Jkk8H3BrBdTU+Q/u5Q9f65fX1frZ3nFny9eWzz/TqEWvUr/pDSXu1+PAVzanhledodpSYLIHLRKpAs+z1Luvr/ezqqHZF166+8yxXm3L0aH/fcN11/nmmmq4HH+yzJ8RfE6W2Vjr7bO14zTX6zuf+W9LU7McGgFQHHeTvuzMNCAyunakzuGLmfIA+4r4i3CcxIKom9oEHSh9+KD3+uH++fHl6uvawjpg2DqUjFpN69Cj2WQDIgQAXUESRKXOc028XfEmfbKnU25/USlaAm81co4kTI6uaGp5l1qgR3d/x6QB69vS1tILtelRm6egeNqxZpzax9+u6a/7XtPDeU7JuZ6HaF5H960mzYHJ0wOf6fbR0enm2/RLgKj3l5c1PaZHr/3mffdKXnX56Ws75XEGkD44+zdepy3Z92JojeJyv4IbxNwu+rE9GTpCGHBW9HbMWgG3LqlXSV29MPB3f63X/YOed/c+JE6Vrr5XOPFNnTPi1Fg55UlL/3PutqkofnR2Y2vdVLR315/zPccAADe62oXXpiZo7O5sAV+eUz3fc9dfnbgdkC4AV0rx5fkbF00/7Wd2ZhDMUMNMZQHPFYn5gSybB/Uh4BlfPyo80vd/LklLKCcTrAkaUMEhSUyOdeKL0xhs+nXum4NaKFT7QnzJLDADQ+dDjChRRLLW4qiQ5p9kDn9e+g/+mo0f/uTA3m/F0IxMmRK+PSB0QM9d0kx4fadoGKfhi5rRgyFPpK+I33MGIq3jwbfn2f4reUejcGp1l/72lpm5LHdVVXZ1cqyzf/4NsAYV3MqSnw7Zj3jzpgAPSl48Z42dISprc55+qjOWu81JbuUmVZTkCWP3z6EjOx/Tp0tixqj9uoYavXdrymZEAOpcJE2QjR0iS3jzqbD15yKXS8cdLc0J1LWtqpLVrVRFr1A51b0bvJ16TK+7aa6NHW0+dqrqqj3Xr7JvzP8faWl8PNJ+ahJnk2/aJ1yRtTQ0jdFyZ0vCG/z4KWX+jEN+pZWW+7Z+hlicAtLmIwa9vLztbXzrvnYzXudTZXgmheuCS/KzYbMG1adN8armWpnEFAJQMAlxAEeWaiSSpMDN/5s/3NbCOOy56fUTqgDJrlM4913e+x1/XFueWom/1B75GwamnBgt8yqMu5ZslSTfPuiX6hcG57NL3H9q34W/ZDzJmjHTJJU3PozrSMtQqy+qzLIGJsWObvz90LvX1OTusThr7oDYdm302Y9723NMH1Naubd1+Kiqk1aulmTOzb3fKKf7zetZZrTsegJITr7+lsWPT2wbhOkJR7YaZM307JS7TbKtMbZhc6urap4N/+nTpW9+i7kZnc+KJvmZW1ACVYqGQPYBS0bOndNVVSZliYnLRNbOC+6SFQ57Unts9K02e3LRu/nw/I6u5GIAHANsEUhQCxRB08ESmKExViEZZLJY9PUmmGVxDh0pnnNH642cydqz0zDOJpxdPvlvnTfylNGqRT1EU3+aww3T9p7fr4sm/yLyv4Pf08EFXBs8zFLqN69ev6XGuQF2+/wfZUiANHOjzjNPxte3Klrs79W8w37+5bDnlKyqkfffNbz+FMGqUdNllwZPX2++4AIoukUY407Xr4IOlu+4qbJCgvWr5kX512zZpkv+XSRtkN8hp1Chfl7OZacFzKsZ7AdD59eihJcMf0YefVemXr41vGhSTKmhDzBr4vGYNfF5SKMC1++7MRgUAZESACyiiHpWf5N6oPUYdde8uKTnAVZahPlhBnXaaHxkbGNXjbVWXp9SuMJNmz1av229Xr+osReqnT5cefDD/Y4cDCrlqc+QKgC1YIL30UnIdgyiZCoGjczv1VP/3kW0WX2oHaj6f++uu6/ijEjv6+QEoiMQnPdNnft48aa+9Mq9vbhCpV6/2q6kxcqT0yivJA2OAuLb6nss2gMVMWrmyfY8JAK1w8PDHdfDwx7NvlO0alG2gIABgm0eACyiGXXfVi4ddoGGzI0ZepgaR2qODuKZGWrNGjQc+n1gUObKq0AGu0Hv7aOUp6lL2WdryvC1Z4msO/fjH+b+mrk765JPMdRXq6qQNG3xqmmzC9bqAVDvu6P9l09Dg/732Wv77jc9yBIAiiX9dJ9oM2QaEZPtu37Il87oobZAiOaP99/fpV1NrfwBtqRjBJgJcANrDfvtFL09Nvzptmv8O3ryZ2VsAgKyowQUUQ58+GnHzxYodF1GIvFjpQYYNU2PTGGz1rtqYvk0bBt+6ln/WtLtcI7mXLk1fVlEhjR/fvHO7/HJfeD7TtmvWSMuW+ZHnQFuKxaQLLsi9HemDAHRApuDalGtGdCY77+x/jhlTmBMqpKoqadYsX0cESFXo7+UxY3y7dMSIwu43m3i6z/ZK+wlg27Xnnj5oFSUc4Lr0UmmnnXwN4yFD2ufcAAAlixlcQLFkmn2ReqPcjrUf4sVf3fEnRG/QrVv7nMjIkZnXLVok7bFH9LrwiO58RqHm2qZnT5/vG2gP4UBrXV30Nlu3ts+5FAopCoFtgpmTTjih5Z/5ESOkK6/MPwUR1xZ0FPPmSf/7v9I++xRmf6ef7r/rWxosbonFi6WDDmrfYwLYNmXLQBG+N+/bt+3PBQDQadCKBTqarl2Tnw8Y0G6H3upydBgtWSJt2iQ9+aR/XogUQd26SRuD2WLnn+/3ma1WVbab73AwkM4vlKLPf1569FE/ujHKkCHS3/8u1da273k1kxOfP2BbYI0+6B6TkyZPzrF1DpkC+2E77CA9+2zrjwUUyoAB0g03FC5tpllxAk0EtwAUm5l00kl+wC/38gCAZqAlC3Q0M2ZIL73kO3FGjWrXlDjbdX0v+wbdu0urVvlR2lJhbobPOEO6+24/MyufAu7ZGruZamkBpWLkyOwzGBcs8NeEDl4LhkyKwDYimFXabv1QJ57oA1zhlMRAsbVnTTgA6Mw6+D0OAKBjIsAFdDQVFdJxxxXl0GdNuF8njf29fzJ0aO4XFKLY66BBvsMqX9k6Ebp39/vq3r315wV0RJWV0pw5xT6LnLY6OvuAbcIRR0gXS3b08vY5XnW1NGlS+xwLAAAUFjOzAABtgAAXgISymFNt5SZfA+OMMzJveO21Ph1gRxyxSscXUHQEuIBtQ8XwBs2YIVXtNqXYpwIAADq6jth/AAAoeQS4AKTbYYfss7NqatrvXFIx6gvo8HLW8wPQKZhJDz5Y7LMAAAAlYcSIYp8BAKATIsAFoLSUlRX7DADksKWRzykAAAAASVdcIa1f7wfSAgBQYMwPBpCuI6YOiDeGd9yxuOcBIKfN8QAXMy4BAACAbVvv3tKECcU+CwBAJ8UMLgClYfVqafNmqaqq2GcCIIfNW2leAAAAAAAAoG11wGkaAIquI866MCO4BZSIzY0EuAAAAAAAANC2CHABaDJokP85cWJRTwNAafuMGlwAAAAAAABoYwyxBtDknHOkt96SGhqKfSYASthmAlwAAAAAAABoYwS4ADSpqpIGDy72WQAocdTgAgAAAAAAQFujBwoAABTUkhGPqEflJ8U+DQAAAAAAAHRi1OACAAAFddqOD+gX+3yt2KcBAAAAAACATixngMvMGszsATN7xsyeNrPVwfJeZna/mb0Q/KwLlpuZXWdmL5rZk2Y2ObSv5cH2L5jZ8rZ7WwAAAAAAAAAAAOis8pnBtUXSWc65sZKmSVplZmMlrZH0G+fcKEm/CZ5L0j6SRgX/jpd0g+QDYpLWStpV0i6S1saDYgAAoBNqbCz2GQAAAAAAAKCTyhngcs694Zx7LHj8oaRnJW0n6QBJtwSb3SLpwODxAZJudd5DknqaWb2k+ZLud86965zbIOl+SXsX8s0AAIAOZOvWYp8BAAAAAAAAOqlm1eAys6GSJkl6WFJ/59wbwao3JfUPHm8n6bXQy14PlmVannqM483sETN75N///ndzTg8AAHQkzOACAAAAAABAG8k7wGVm3STdKel059wH4XXOOSfJFeKEnHM3OuemOuem9u3btxC7BAAAxcAMLgAAAAAAALSRvAJcZlYhH9y6zTn3k2DxW0HqQQU/3w6Wr5fUEHr5oGBZpuUAAKAzIsAFAAAAAACANpIzwGVmJum7kp51zl0bWvVzScuDx8sl/Sy0fJl50yS9H6QyvFfSPDOrM7M6SfOCZQAAoDPZf3+ppkbaa69inwkAAAAAAAA6qfI8ttld0lJJT5nZE8Gy8yVdKelHZnaMpFclLQnW3SNpX0kvSvpY0gpJcs69a2aXSvprsN0XnHPvFuJNAACADmS//aR995XMin0mAAAAAAAA6KTMl8/qmKZOneoeeeSRYp8GAAAAAAAAAAAA2pmZPeqcmxq1Lq8aXAAAAAAAAAAAAEBHQYALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSQoALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSYs65Yp9DRmb2b0mvFvs8SkwfSe8U+yQAbLO4BgEoJq5BAIqN6xCAYuIaBKCYuAahrQxxzvWNWtGhA1xoPjN7xDk3tdjnAWDbxDUIQDFxDQJQbFyHABQT1yAAxcQ1CMVAikIAAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuDqfG4t9AgC2aVyDABQT1yAAxcZ1CEAxcQ0CUExcg9DuqMEFAAAAAAAAAACAksIMLgAAAAAAAAAAAJQUAlydhJntbWbPmdmLZram2OcDoPMws1fM7Ckze8LMHgmW9TKz+83sheBnXbDczOy64Fr0pJlNDu1nebD9C2a2vFjvB0DHZ2Y3mdnbZva30LKCXXfMbEpwXXsxeK217zsE0JFluAatM7P1QXvoCTPbN7TuvOB68pyZzQ8tj7xHM7NhZvZwsPyHZlbZfu8OQEdnZg1m9oCZPWNmT5vZ6mA5bSEAbS7LNYi2EDokAlydgJmVSfq6pH0kjZV0uJmNLe5ZAehkZjvnJjrnpgbP10j6jXNulKTfBM8lfx0aFfw7XtINkr8Zk7RW0q6SdpG0Nn5DBgARbpa0d8qyQl53bpB0XOh1qccCsG27WdHXhS8H7aGJzrl7JCm47zpM0rjgNd8ws7Ic92hfDPY1UtIGSce06bsBUGq2SDrLOTdW0jRJq4LrB20hAO0h0zVIoi2EDogAV+ewi6QXnXMvO+c2S7pd0gFFPicAndsBkm4JHt8i6cDQ8lud95CknmZWL2m+pPudc+865zZIul/cRAHIwDn3oKR3UxYX5LoTrOvunHvI+WK0t4b2BQCZrkGZHCDpdufcJufcPyS9KH9/FnmPFsySmCPpjuD14esZAMg594Zz7rHg8YeSnpW0nWgLAWgHWa5BmdAWQlER4OoctpP0Wuj568p+4QGA5nCS7jOzR83s+GBZf+fcG8HjNyX1Dx5nuh5xnQLQWoW67mwXPE5dDgC5nBKk/7opNAuiudeg3pLec85tSVkOAGnMbKikSZIeFm0hAO0s5Rok0RZCB0SACwCQyx7Oucny08pXmdnM8Mpg1J8rypkB2CZx3QFQBDdIGiFpoqQ3JH2pqGcDoNMzs26S7pR0unPug/A62kIA2lrENYi2EDokAlydw3pJDaHng4JlANBqzrn1wc+3Jf2P/DTzt4LUFgp+vh1snul6xHUKQGsV6rqzPnicuhwAMnLOveWc2+qca5T0bfn2kNT8a9B/5NOHlacsB4AEM6uQ71i+zTn3k2AxbSEA7SLqGkRbCB0VAa7O4a+SRpnZMDOrlC/s9/MinxOATsDMasysNv5Y0jxJf5O/xiwPNlsu6WfB459LWmbeNEnvB2k07pU0z8zqgmns84JlAJCvglx3gnUfmNm0IP/7stC+ACBSvFM5cJB8e0jy16DDzKzKzIZJGiXpL8pwjxbMunhA0iHB68PXMwBQ0D75rqRnnXPXhlbRFgLQ5jJdg2gLoaMqz70JOjrn3BYzO0W+8VIm6Sbn3NNFPi0AnUN/Sf/j2zcql/R959yvzOyvkn5kZsdIelXSkmD7eyTtK19U9GNJKyTJOfeumV0q38CRpC845/It3g5gG2NmP5A0S1IfM3td0lpJV6pw152TJd0sqYukXwb/AEBSxmvQLDObKJ8S7BVJJ0iSc+5pM/uRpGckbZG0yjm3NdhPpnu0cyXdbmaXSXpcvhMJAOJ2l7RU0lNm9kSw7HzRFgLQPjJdgw6nLYSOyHzQFAAAAAAAAAAAACgNpCgEAAAAAAAAAABASSHABQAAAAAAAAAAgJJCgAsAAAAAAAAAAAAlhQAXAAAAAAAAAAAASgoBLgAAAAAAAAAAAJQUAlwAAAAA0Axm1tvMngj+vWlm64PHG83sG2143Flmtltb7R8AAAAASkl5sU8AAAAAAEqJc+4/kiZKkpmtk7TROXdNOxx6lqSNkv7UDscCAAAAgA6NGVwAAAAAUADBDKu7g8frzOwWM/uDmb1qZovM7Coze8rMfmVmFcF2U8zs92b2qJnda2b1wfLTzOwZM3vSzG43s6GSTpR0RjBbbIaZLTSzh83scTP7tZn1b+axXwkt/4uZjSzKLw4AAAAAWoAAFwAAAAC0jRGS5kjaX9L3JD3gnBsv6RNJ+wWBpuslHeKcmyLpJkmXB69dI2mSc26CpBOdc69I+qakLzvnJjrn/iDpj5KmOecmSbpd0jn5Hju03fvB8q9J+kqB3z8AAAAAtBlSFAIAAABA2/ilc+4zM3tKUpmkXwXLn5I0VNJoSTtKut/MFGzzRrDNk5JuM7OfSvpphv0PkvTDYNZXpaR/NOPYcT8I/fxys98hAAAAABQJM7gAAAAAoG1skiTnXKOkz5xzLljeKD/Y0CQ9HczImuicG++cmxdss5+kr0uaLOmvZhY1OPF6SV8LZmCdIKm6GceOcxkeAwAAAECHRoALAAAAAIrjOUl9zWy6JJlZhZmNM7OYpAbn3AOSzpXUQ1I3SR9Kqg29voek9cHj5S08h0NDP//cwn0AAAAAQLsjRSEAAAAAFIFzbrOZHSLpOjPrIX9/9hVJz0v6XrDMJF3nnHvPzO6SdIeZHSDpVEnrJP3YzDZI+q2kYS04jToze1J+xtfhrX1PAAAAANBerClTBQAAAABgW2Fmr0ia6px7p9jnAgAAAADNRYpCAAAAAAAAAAAAlBRmcAEAAAAAAAAAAKCkMIMLAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpPx/Taa0BNrWmiUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(30,8))\n", + "plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(Y_pred, color = 'blue', linewidth=1)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE: 2.0572089029888656 %\n" + ] + } + ], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "f8f3967282314d3995245835bdaa8418", + "translation_date": "2025-09-04T01:53:01+00:00", + "source_file": "7-TimeSeries/3-SVR/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/3-SVR/working/notebook.ipynb b/translations/ja/7-TimeSeries/3-SVR/working/notebook.ipynb new file mode 100644 index 000000000..4dfad4068 --- /dev/null +++ b/translations/ja/7-TimeSeries/3-SVR/working/notebook.ipynb @@ -0,0 +1,699 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "このノートブックでは、以下を実演します:\n", + "\n", + "- SVM回帰モデルのトレーニング用に2D時系列データを準備する方法 \n", + "- RBFカーネルを使用したSVRの実装 \n", + "- プロットとMAPEを用いたモデルの評価 \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## モジュールのインポート\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [ + "## データの準備\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### データを読み込む\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                          \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                          load
                                          2012-01-01 00:00:002698.0
                                          2012-01-01 01:00:002558.0
                                          2012-01-01 02:00:002444.0
                                          2012-01-01 03:00:002402.0
                                          2012-01-01 04:00:002403.0
                                          \n", + "
                                          " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "次に、データのフィルタリングとスケーリングを実行して、トレーニング用のデータを準備する必要があります。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "データを(0, 1)の範囲にスケールします。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [ + "タイムステップでデータを作成する\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "私たちのSVRでは、入力データを`[batch, timesteps]`の形式に変換します。そのため、既存の`train_data`と`test_data`を再構築し、新しい次元(タイムステップを指す次元)を追加します。この例では、`timesteps = 5`とします。したがって、モデルへの入力は最初の4つのタイムステップのデータであり、出力は5番目のタイムステップのデータになります。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [], + "source": [ + "x_train, y_train = None\n", + "x_test, y_test = None\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [], + "source": [ + "# Fit model on training data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "モデル予測を行う\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = None\n", + "y_test_pred = None" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = None\n", + "test_timestamps = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(25,6))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(10,3))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "## フルデータセット予測\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [], + "source": [ + "# Extracting load values as numpy array\n", + "data = None\n", + "\n", + "# Scaling\n", + "data = None\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=None\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = None, None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = None\n", + "Y = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(30,8))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "e86ce102239a14c44585623b9b924a74", + "translation_date": "2025-09-04T01:55:41+00:00", + "source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/ja/7-TimeSeries/README.md b/translations/ja/7-TimeSeries/README.md new file mode 100644 index 000000000..77fcf2cfa --- /dev/null +++ b/translations/ja/7-TimeSeries/README.md @@ -0,0 +1,37 @@ + +# 時系列予測の入門 + +時系列予測とは何でしょうか?過去の傾向を分析することで未来の出来事を予測することです。 + +## 地域別トピック: 世界の電力使用量 ✨ + +この2つのレッスンでは、時系列予測について紹介します。これは機械学習の中でもあまり知られていない分野ですが、産業やビジネスの応用をはじめとするさまざまな分野で非常に価値があります。ニューラルネットワークを使用してこれらのモデルの有用性を向上させることもできますが、ここでは過去のデータに基づいて未来のパフォーマンスを予測するための古典的な機械学習の文脈で学びます。 + +地域別の焦点は世界の電力使用量です。この興味深いデータセットを使って、過去の負荷パターンに基づいて将来の電力使用量を予測する方法を学びます。このような予測はビジネス環境で非常に役立つことがわかるでしょう。 + +![電力網](../../../translated_images/electric-grid.0c21d5214db09ffae93c06a87ca2abbb9ba7475ef815129c5b423d7f9a7cf136.ja.jpg) + +ラジャスタンの道路にある電力塔の写真は、[Peddi Sai hrithik](https://unsplash.com/@shutter_log?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) によるもので、[Unsplash](https://unsplash.com/s/photos/electric-india?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) に掲載されています。 + +## レッスン + +1. [時系列予測の入門](1-Introduction/README.md) +2. [ARIMA時系列モデルの構築](2-ARIMA/README.md) +3. [時系列予測のためのサポートベクター回帰モデルの構築](3-SVR/README.md) + +## クレジット + +「時系列予測の入門」は [Francesca Lazzeri](https://twitter.com/frlazzeri) と [Jen Looper](https://twitter.com/jenlooper) によって ⚡️ 書かれました。このノートブックは、元々 [Francesca Lazzeri](https://twitter.com/frlazzeri) によって書かれた [Azure "Deep Learning For Time Series" リポジトリ](https://github.com/Azure/DeepLearningForTimeSeriesForecasting) に初めてオンラインで公開されました。SVRのレッスンは [Anirban Mukherjee](https://github.com/AnirbanMukherjeeXD) によって書かれました。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当社は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/1-QLearning/README.md b/translations/ja/8-Reinforcement/1-QLearning/README.md new file mode 100644 index 000000000..92f820dfa --- /dev/null +++ b/translations/ja/8-Reinforcement/1-QLearning/README.md @@ -0,0 +1,256 @@ + +# 強化学習とQ-Learningの紹介 + +![機械学習における強化学習の概要を示すスケッチノート](../../../../translated_images/ml-reinforcement.94024374d63348dbb3571c343ca7ddabef72adac0b8086d47164b769ba3a8a1d.ja.png) +> スケッチノート: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +強化学習には、エージェント、いくつかの状態、そして各状態における一連のアクションという3つの重要な概念があります。特定の状態でアクションを実行することで、エージェントは報酬を得ます。例えば、コンピュータゲーム「スーパーマリオ」を想像してみてください。あなたはマリオで、ゲームのレベル内で崖の端に立っています。上にはコインがあります。マリオとして、ゲームレベル内の特定の位置にいる状態が「状態」です。右に1歩進む(アクション)と崖から落ちてしまい、低い数値のスコアを得ることになります。しかし、ジャンプボタンを押すとポイントを獲得し、生き残ることができます。これはポジティブな結果であり、ポジティブな数値スコアが与えられるべきです。 + +強化学習とシミュレーター(ゲーム)を使用することで、ゲームをプレイして報酬を最大化する方法、つまり生き残りながらできるだけ多くのポイントを獲得する方法を学ぶことができます。 + +[![強化学習の紹介](https://img.youtube.com/vi/lDq_en8RNOo/0.jpg)](https://www.youtube.com/watch?v=lDq_en8RNOo) + +> 🎥 上の画像をクリックして、Dmitryが強化学習について話す様子を視聴してください + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/45/) + +## 前提条件とセットアップ + +このレッスンでは、Pythonでいくつかのコードを試してみます。このレッスンのJupyter Notebookコードを、コンピュータ上またはクラウド上で実行できる必要があります。 + +[レッスンノートブック](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/notebook.ipynb)を開き、このレッスンを進めながら構築してください。 + +> **Note:** クラウドからこのコードを開く場合、ノートブックコードで使用される[`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py)ファイルも取得する必要があります。このファイルをノートブックと同じディレクトリに追加してください。 + +## はじめに + +このレッスンでは、ロシアの作曲家[セルゲイ・プロコフィエフ](https://en.wikipedia.org/wiki/Sergei_Prokofiev)による音楽童話「[ピーターと狼](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)」にインスパイアされた世界を探求します。**強化学習**を使用して、ピーターが環境を探索し、美味しいリンゴを集め、狼に遭遇しないようにする方法を学びます。 + +**強化学習**(RL)は、**エージェント**がある**環境**内で最適な行動を学ぶための学習手法で、多くの実験を通じて学習します。この環境内のエージェントは、**報酬関数**によって定義された**目標**を持つ必要があります。 + +## 環境 + +簡単のため、ピーターの世界を`幅` x `高さ`の正方形のボードと考えます。このような感じです: + +![ピーターの環境](../../../../translated_images/environment.40ba3cb66256c93fa7e92f6f7214e1d1f588aafa97d266c11d108c5c5d101b6c.ja.png) + +このボードの各セルは以下のいずれかになります: + +* **地面**: ピーターや他の生物が歩ける場所。 +* **水**: 明らかに歩けない場所。 +* **木**または**草**: 休憩できる場所。 +* **リンゴ**: ピーターが見つけて喜ぶ食べ物。 +* **狼**: 危険で避けるべき存在。 + +この環境で作業するためのコードを含む、別のPythonモジュール[`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py)があります。このコードは概念を理解する上で重要ではないため、モジュールをインポートしてサンプルボードを作成します(コードブロック1): + +```python +from rlboard import * + +width, height = 8,8 +m = Board(width,height) +m.randomize(seed=13) +m.plot() +``` + +このコードは、上記のような環境の画像を出力するはずです。 + +## アクションとポリシー + +この例では、ピーターの目標は狼や他の障害物を避けながらリンゴを見つけることです。そのため、彼は基本的に歩き回ってリンゴを見つける必要があります。 + +したがって、任意の位置で、彼は以下のアクションのいずれかを選択できます:上、下、左、右。 + +これらのアクションを辞書として定義し、それを対応する座標変化のペアにマッピングします。例えば、右に移動する(`R`)はペア`(1,0)`に対応します。(コードブロック2): + +```python +actions = { "U" : (0,-1), "D" : (0,1), "L" : (-1,0), "R" : (1,0) } +action_idx = { a : i for i,a in enumerate(actions.keys()) } +``` + +このシナリオの戦略と目標をまとめると以下の通りです: + +- **戦略**: エージェント(ピーター)の戦略は、いわゆる**ポリシー**によって定義されます。ポリシーは、任意の状態でアクションを返す関数です。この場合、問題の状態はボードとプレイヤーの現在位置によって表されます。 + +- **目標**: 強化学習の目標は、問題を効率的に解決するための良いポリシーを最終的に学ぶことです。ただし、ベースラインとして、最も単純なポリシーである**ランダムウォーク**を考えます。 + +## ランダムウォーク + +まず、ランダムウォーク戦略を実装して問題を解決してみましょう。ランダムウォークでは、許可されたアクションから次のアクションをランダムに選択し、リンゴに到達するまで繰り返します(コードブロック3)。 + +1. 以下のコードを使用してランダムウォークを実装します: + + ```python + def random_policy(m): + return random.choice(list(actions)) + + def walk(m,policy,start_position=None): + n = 0 # number of steps + # set initial position + if start_position: + m.human = start_position + else: + m.random_start() + while True: + if m.at() == Board.Cell.apple: + return n # success! + if m.at() in [Board.Cell.wolf, Board.Cell.water]: + return -1 # eaten by wolf or drowned + while True: + a = actions[policy(m)] + new_pos = m.move_pos(m.human,a) + if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water: + m.move(a) # do the actual move + break + n+=1 + + walk(m,random_policy) + ``` + + `walk`の呼び出しは、対応する経路の長さを返すはずです。この長さは実行ごとに異なる場合があります。 + +1. ウォーク実験を複数回(例えば100回)実行し、結果の統計を出力します(コードブロック4): + + ```python + def print_statistics(policy): + s,w,n = 0,0,0 + for _ in range(100): + z = walk(m,policy) + if z<0: + w+=1 + else: + s += z + n += 1 + print(f"Average path length = {s/n}, eaten by wolf: {w} times") + + print_statistics(random_policy) + ``` + + 経路の平均長さは約30〜40ステップであることに注意してください。これは、最寄りのリンゴまでの平均距離が約5〜6ステップであることを考えるとかなり多いです。 + + また、ランダムウォーク中のピーターの動きを以下のように視覚化することもできます: + + ![ピーターのランダムウォーク](../../../../8-Reinforcement/1-QLearning/images/random_walk.gif) + +## 報酬関数 + +ポリシーをより賢くするためには、どの動きが他より「良い」のかを理解する必要があります。そのためには、目標を定義する必要があります。 + +目標は、各状態に対してスコア値を返す**報酬関数**によって定義できます。この数値が高いほど、報酬関数は良いとされます。(コードブロック5) + +```python +move_reward = -0.1 +goal_reward = 10 +end_reward = -10 + +def reward(m,pos=None): + pos = pos or m.human + if not m.is_valid(pos): + return end_reward + x = m.at(pos) + if x==Board.Cell.water or x == Board.Cell.wolf: + return end_reward + if x==Board.Cell.apple: + return goal_reward + return move_reward +``` + +報酬関数の興味深い点は、多くの場合、*ゲームの最後にのみ実質的な報酬が与えられる*ということです。つまり、アルゴリズムは最終的なポジティブな報酬につながる「良い」ステップを覚えてその重要性を高める必要があります。同様に、悪い結果につながるすべての動きは抑制されるべきです。 + +## Q-Learning + +ここで説明するアルゴリズムは**Q-Learning**と呼ばれます。このアルゴリズムでは、ポリシーは**Q-テーブル**と呼ばれる関数(またはデータ構造)によって定義されます。これは、特定の状態での各アクションの「良さ」を記録します。 + +Q-テーブルと呼ばれるのは、テーブルや多次元配列として表現するのが便利だからです。ボードの寸法が`幅` x `高さ`であるため、Q-テーブルは形状`幅` x `高さ` x `len(actions)`のnumpy配列として表現できます。(コードブロック6) + +```python +Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions) +``` + +Q-テーブルのすべての値を等しい値(この場合は0.25)で初期化することに注意してください。これは「ランダムウォーク」ポリシーに対応します。なぜなら、各状態でのすべての動きが等しく良いとされるからです。Q-テーブルを`plot`関数に渡して、ボード上でテーブルを視覚化できます:`m.plot(Q)`。 + +![ピーターの環境](../../../../translated_images/env_init.04e8f26d2d60089e128f21d22e5fef57d580e559f0d5937b06c689e5e7cdd438.ja.png) + +各セルの中央には、移動の好ましい方向を示す「矢印」があります。すべての方向が等しい場合、点が表示されます。 + +次に、シミュレーションを実行し、環境を探索し、Q-テーブルの値のより良い分布を学習します。これにより、リンゴへの経路をはるかに速く見つけることができるようになります。 + +## Q-Learningの本質: ベルマン方程式 + +移動を開始すると、各アクションには対応する報酬があります。つまり、理論的には、最も高い即時報酬に基づいて次のアクションを選択できます。しかし、ほとんどの状態では、移動がリンゴに到達するという目標を達成するわけではないため、どの方向が良いかを即座に判断することはできません。 + +> 即時の結果ではなく、シミュレーションの最後に得られる最終的な結果が重要です。 + +この遅延報酬を考慮するために、**[動的計画法](https://en.wikipedia.org/wiki/Dynamic_programming)**の原則を使用します。これにより、問題を再帰的に考えることができます。 + +現在の状態を*s*とし、次の状態*s'*に移動したいとします。このとき、報酬関数によって定義される即時報酬*r(s,a)*を受け取り、さらに将来の報酬を得ることになります。Q-テーブルが各アクションの「魅力」を正確に反映していると仮定すると、状態*s'*では*Q(s',a')*の最大値に対応するアクション*a'*を選択します。したがって、状態*s*で得られる可能性のある最良の将来の報酬は、`max` + +## ポリシーの確認 + +Q-Tableは各状態での各アクションの「魅力」を示しているため、これを使って効率的なナビゲーションを定義するのは非常に簡単です。最も単純な場合、Q-Tableの値が最も高いアクションを選択します。(コードブロック 9) + +```python +def qpolicy_strict(m): + x,y = m.human + v = probs(Q[x,y]) + a = list(actions)[np.argmax(v)] + return a + +walk(m,qpolicy_strict) +``` + +> 上記のコードを何度か試してみると、時々「停止」してしまい、ノートブックのSTOPボタンを押して中断する必要があることに気付くかもしれません。これは、2つの状態が最適なQ-Valueの観点で互いに「指し示す」状況があり、その場合、エージェントがその状態間を無限に移動し続けるためです。 + +## 🚀チャレンジ + +> **タスク 1:** `walk`関数を修正して、パスの最大長を特定のステップ数(例えば100)で制限し、上記のコードが時々この値を返す様子を観察してください。 + +> **タスク 2:** `walk`関数を修正して、以前に訪れた場所に戻らないようにしてください。これにより`walk`がループするのを防ぐことができますが、エージェントが脱出できない場所に「閉じ込められる」可能性は依然としてあります。 + +## ナビゲーション + +より良いナビゲーションポリシーは、トレーニング中に使用したものです。これは、利用と探索を組み合わせたものです。このポリシーでは、Q-Tableの値に比例した確率で各アクションを選択します。この戦略では、エージェントがすでに探索した位置に戻る可能性はありますが、以下のコードからわかるように、目的地までの平均パスが非常に短くなります(`print_statistics`はシミュレーションを100回実行します):(コードブロック 10) + +```python +def qpolicy(m): + x,y = m.human + v = probs(Q[x,y]) + a = random.choices(list(actions),weights=v)[0] + return a + +print_statistics(qpolicy) +``` + +このコードを実行すると、以前よりもはるかに短い平均パス長が得られ、3〜6の範囲になります。 + +## 学習プロセスの調査 + +前述の通り、学習プロセスは探索と問題空間の構造に関する知識の活用のバランスです。学習の結果(エージェントが目標への短いパスを見つける能力)が改善されたことがわかりますが、学習プロセス中の平均パス長の挙動を観察するのも興味深いです: + +学習内容を以下のようにまとめることができます: + +- **平均パス長の増加**。最初は平均パス長が増加することが見られます。これは、環境について何も知らない場合、悪い状態(水や狼)に閉じ込められる可能性が高いためです。より多くを学び、この知識を使い始めると、環境を長く探索できるようになりますが、まだリンゴの場所をよく知らない状態です。 + +- **学習が進むにつれてパス長が減少**。十分に学習すると、エージェントが目標を達成するのが簡単になり、パス長が減少し始めます。ただし、まだ探索を続けているため、最適なパスから外れて新しい選択肢を探索することがあり、パスが最適よりも長くなることがあります。 + +- **突然のパス長の増加**。グラフで観察されるもう一つの特徴は、ある時点でパス長が突然増加することです。これはプロセスの確率的な性質を示しており、Q-Tableの係数が新しい値で上書きされることで「損なわれる」可能性があることを意味します。これを最小化するには、学習率を減少させる(例えば、トレーニングの終盤ではQ-Tableの値を小さな値でのみ調整する)ことが理想的です。 + +全体として、学習プロセスの成功と質は、学習率、学習率の減衰、割引率などのパラメータに大きく依存することを覚えておくことが重要です。これらは**ハイパーパラメータ**と呼ばれ、トレーニング中に最適化する**パラメータ**(例えば、Q-Tableの係数)とは区別されます。最適なハイパーパラメータ値を見つけるプロセスは**ハイパーパラメータ最適化**と呼ばれ、別のトピックとして扱う価値があります。 + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/46/) + +## 課題 +[より現実的な世界](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/1-QLearning/assignment.md b/translations/ja/8-Reinforcement/1-QLearning/assignment.md new file mode 100644 index 000000000..c77669dbf --- /dev/null +++ b/translations/ja/8-Reinforcement/1-QLearning/assignment.md @@ -0,0 +1,41 @@ + +# より現実的な世界 + +私たちの状況では、ピーターはほとんど疲れたり空腹になったりすることなく移動することができました。しかし、より現実的な世界では、ピーターは時々座って休む必要があり、また食事を取る必要があります。以下のルールを実装することで、私たちの世界をより現実的にしてみましょう。 + +1. 一つの場所から別の場所へ移動することで、ピーターは**エネルギー**を失い、**疲労**を蓄積します。 +2. ピーターはリンゴを食べることでエネルギーを回復できます。 +3. ピーターは木の下や草の上で休むことで疲労を解消できます(つまり、木や草がある場所に移動する - 緑のフィールド)。 +4. ピーターはオオカミを見つけて倒す必要があります。 +5. オオカミを倒すためには、ピーターは一定のエネルギーと疲労レベルを持っている必要があり、そうでない場合は戦いに敗北します。 + +## 手順 + +元の [notebook.ipynb](notebook.ipynb) ノートブックを解決策の出発点として使用してください。 + +ゲームのルールに従って報酬関数を修正し、強化学習アルゴリズムを実行してゲームに勝つための最適な戦略を学習し、ランダムウォークの結果とアルゴリズムの結果を比較してください。勝敗の数を基準に評価します。 + +> **Note**: 新しい世界では状態がより複雑になり、人間の位置に加えて疲労とエネルギーレベルも含まれます。状態を (Board,energy,fatigue) のタプルとして表現するか、状態のクラスを定義することができます(`Board` から派生させることも可能です)。または、元の `Board` クラスを [rlboard.py](../../../../8-Reinforcement/1-QLearning/rlboard.py) 内で修正することもできます。 + +解決策では、ランダムウォーク戦略に関するコードを保持し、最後にアルゴリズムの結果をランダムウォークと比較してください。 + +> **Note**: ハイパーパラメータを調整する必要があるかもしれません。特にエポック数を調整してください。ゲームの成功(オオカミとの戦い)は稀なイベントであるため、トレーニング時間がかなり長くなることが予想されます。 + +## 評価基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------- | +| | 新しい世界のルールの定義、Q-Learningアルゴリズム、いくつかのテキスト説明を含むノートブックが提示されている。Q-Learningがランダムウォークと比較して結果を大幅に改善している。 | ノートブックが提示され、Q-Learningが実装されており、ランダムウォークと比較して結果を改善しているが、改善が大幅ではない。または、ノートブックの文書化が不十分でコードが整理されていない。 | 世界のルールを再定義しようとする試みはあるが、Q-Learningアルゴリズムが機能していない、または報酬関数が完全に定義されていない。 | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当社は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/1-QLearning/notebook.ipynb b/translations/ja/8-Reinforcement/1-QLearning/notebook.ipynb new file mode 100644 index 000000000..3159e5ad1 --- /dev/null +++ b/translations/ja/8-Reinforcement/1-QLearning/notebook.ipynb @@ -0,0 +1,411 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "17e5a668646eabf5aabd0e9bfcf17876", + "translation_date": "2025-09-04T02:52:41+00:00", + "source_file": "8-Reinforcement/1-QLearning/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# ピーターと狼: 強化学習入門\n", + "\n", + "このチュートリアルでは、経路探索の問題に強化学習を適用する方法を学びます。この設定は、ロシアの作曲家[セルゲイ・プロコフィエフ](https://en.wikipedia.org/wiki/Sergei_Prokofiev)による音楽童話[ピーターと狼](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)に触発されています。この物語は、若き開拓者ピーターが勇敢にも家を出て、森の空き地で狼を追いかける話です。私たちは、ピーターが周囲を探索し、最適なナビゲーションマップを作成するのを助ける機械学習アルゴリズムを訓練します。\n", + "\n", + "まずは、便利なライブラリをいくつかインポートしましょう:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## 強化学習の概要\n", + "\n", + "**強化学習** (RL) は、多くの実験を通じて、ある**環境**内での**エージェント**の最適な行動を学習するための学習手法です。この環境内のエージェントは、**報酬関数**によって定義された何らかの**目標**を持つ必要があります。\n", + "\n", + "## 環境\n", + "\n", + "簡単のために、ピーターの世界を `幅` x `高さ` のサイズを持つ正方形のボードと考えましょう。このボードの各セルは以下のいずれかになります:\n", + "* **地面** - ピーターや他の生物が歩ける場所\n", + "* **水** - 当然ながら歩けない場所\n", + "* **木** または **草** - 休むことができる場所\n", + "* **リンゴ** - ピーターが見つけて食べると嬉しいもの\n", + "* **オオカミ** - 危険で避けるべきもの\n", + "\n", + "この環境を操作するために、`Board` というクラスを定義します。このノートブックが煩雑にならないように、ボードを操作するためのすべてのコードは、別の `rlboard` モジュールに移動しました。これを今インポートします。このモジュールの内部実装について詳しく知りたい場合は、中を確認してみてください。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "さあ、ランダムなボードを作成して、その見た目を確認してみましょう:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 1" + ] + }, + { + "source": [ + "## アクションとポリシー\n", + "\n", + "この例では、ピーターの目標はリンゴを見つけることであり、オオカミやその他の障害物を避けることです。これらのアクションを辞書として定義し、それらを対応する座標の変化のペアにマッピングします。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 2" + ] + }, + { + "source": [ + "エージェント(Peter)の戦略は、いわゆる**ポリシー**によって定義されます。ここでは、最も単純なポリシーである**ランダムウォーク**について考えてみましょう。\n", + "\n", + "## ランダムウォーク\n", + "\n", + "まずは、ランダムウォーク戦略を実装して問題を解決してみましょう。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "# Let's run a random walk experiment several times and see the average number of steps taken: code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 4" + ] + }, + { + "source": [ + "## 報酬関数\n", + "\n", + "ポリシーをより賢くするためには、どの動きが他より「良い」のかを理解する必要があります。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 5" + ] + }, + { + "source": [ + "## Q-ラーニング\n", + "\n", + "Q-テーブル、または多次元配列を作成します。ボードのサイズが `width` x `height` であるため、Q-テーブルは形状が `width` x `height` x `len(actions)` のnumpy配列で表現できます:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 6" + ] + }, + { + "source": [ + "Q-テーブルを`plot`関数に渡して、ボード上でテーブルを視覚化します。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "name 'm' is not defined", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mQ\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'm' is not defined" + ] + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Q-Learningの本質: ベルマン方程式と学習アルゴリズム\n", + "\n", + "学習アルゴリズムの疑似コードを記述します:\n", + "\n", + "* すべての状態と行動に対して、Q-テーブルQを同じ値で初期化する\n", + "* 学習率 $\\alpha\\leftarrow 1$ を設定する\n", + "* シミュレーションを何度も繰り返す\n", + " 1. ランダムな位置から開始する\n", + " 1. 以下を繰り返す\n", + " 1. 状態 $s$ で行動 $a$ を選択する\n", + " 2. 行動を実行して新しい状態 $s'$ に移動する\n", + " 3. ゲーム終了条件に達するか、総報酬が非常に小さい場合はシミュレーションを終了する \n", + " 4. 新しい状態で報酬 $r$ を計算する\n", + " 5. ベルマン方程式に従ってQ関数を更新する: $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$ とする\n", + " 7. 総報酬を更新し、$\\alpha$ を減少させる\n", + "\n", + "## 探索 vs. 活用\n", + "\n", + "最善のアプローチは、探索と活用のバランスを取ることです。環境について学習が進むにつれて、最適なルートを選択する可能性が高くなりますが、時折未探索の道を選ぶことも重要です。\n", + "\n", + "## Pythonによる実装\n", + "\n", + "これで学習アルゴリズムを実装する準備が整いました。その前に、Q-テーブル内の任意の数値を対応する行動の確率ベクトルに変換する関数が必要です:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 7" + ] + }, + { + "source": [ + "元のベクトルに少量の `eps` を加えることで、初期状態でベクトルのすべての成分が同一の場合にゼロでの除算を回避します。\n", + "\n", + "実際の学習アルゴリズムは、**エポック**とも呼ばれる5000回の実験を実行します:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "# code block 8" + ] + }, + { + "source": [ + "このアルゴリズムを実行した後、Qテーブルは各ステップでのさまざまな行動の魅力を定義する値で更新されるはずです。ここでテーブルを視覚化してください:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUxd7H8c9sS7KbShJCL1IEBAURFEUBxXoVVFBARS7YQETgiooFsaGAXgUsIGIDHzuCXiuKICDKpYoiHUJJAmkk2Wzfc+b5YzcRrgSQZHM2ZN6+8kr27ObMlyX8nMyZmSOklCiKoig1h8noAIqiKMrfowq3oihKDaMKt6IoSg2jCreiKEoNowq3oihKDaMKt6IoSg0TscIthLhCCLFVCLFDCDE+Uu0oiqLUNiIS87iFEGZgG3ApsB9YDQySUv5R5Y0piqLUMpHqcXcFdkgpd0kp/cAHQN8ItaUoilKrRKpwNwT2HfZ4f/iYoiiKUkmWCJ1XHOXYEWMyQog7gTsBrFZr5zPPPDNCUSrP5/PhdDpJS0szOkqFioqKsFqtOBwOo6NUKCcnh7p162I2m42OUqG9e/fSpEkTo2NUKBgMkpeXR/369Y2OUqHS0lKCwSDJyclGR6lQXl4eiYmJxMTEGB2lQps2bcLj8RytloKUsso/gG7At4c9fgh4qKLX161bV0az7du3y9mzZxsd45gWLFggV65caXSMY3rqqadkYWGh0TEqpOu6vOeee4yOcUwFBQVy0qRJRsc4phUrVsiFCxcaHeOYZs2aJbdv3250jGMK18Wj1sxIDZWsBloJIZoLIWzAQODzCLWlKIpSq0SkcEspg8A9wLfAZuAjKeWmSLSlKMqpZf369Xi9XqNjRLVIjXEjpfwK+CpS51cU5dSSlZXFq6++SkxMDPPnz6dVq1YMGTLE6FhRSa2cVBTFcFJKcnJy2LZtG8OHD6d79+589NFHZdfIlP+hCreiKIYLBAJMnjyZF198kX/961+cccYZDBgwgLfeesvoaFEpYkMliqIoJ8pmszF+/Hhuu+02OnTowMcff8z333/PV1+p0dajqXE97l27dvHRRx8ZHUNRlCrWtGlT+vfvj9lsZsqUKdx7771GR4paNarH3adPH2JjYzn33HPp0KEDS5YsiepFMYqinLj09HTuuOMO9u3bx6JFi+jVq5fRkaJWjelx79q1i9jYWGbNmkW/fv24/PLL+f33342OpShKFWvcuDHffPMN/fv3NzpKldu0aRO6rlf6PDWmcK9du5auXbtSUlLCW2+9Rb169Vi+fLm66qwop6D4+HjOPPNMVq1aZXSUKrNkyRLee+89NE2r9LlqzFDJDTfcQIcOHThw4AD169dn3Lhx5OTkIMTRl/IrilJzORwOLrjgAn744QfOPfdco+NU2s8//8zPP//MuHHjsFqtlT5fjelxQ+j/WFdffTUul4sDBw4wfPhwioqKjI6lKEoExMTEIKXE7/cbHeWkSSnZsmUL8+bNY/To0aSkpFTJeWtU4U5LS6Nnz55MmDCBjIwM3n77bSZMmMCOHTuMjqYoShW75JJLcDqd/PLLL0ZHOWmrVq1i2rRpvPLKK1W6c2eNKtxlyoZHkpOTGT16NPPmzSMzM9PYUIqiKIdZsmQJ33//PS+88EKVD+nWyMJ9uJYtWzJ06FAee+wx3G53xNurigsLkSSlrJKr1pFUEzLquq4ufEeB4cOH8/rrr1fLv+2qIqVkw4YN/PDDD4wcORK73V7lbdT4wg3QrFkzZs2axa233kpOTk7E2snKyqJfv35s3ryZgoKCiLVTGevXr+eOO+5gy5YtUfnDHgwGee+993jhhRfYsmVLVBZwp9PJxIkT+fLLL9m1a5fRcaJWdnZ2xMefmzZtihCC3bt3R7SdqrRlyxamT5/OhAkTqmxM+3+dEoUbwG6389JLL/HSSy+xffv2iLTx+eef89JLLzFmzBhmz54dkTYq6/PPP2f06NEMGDCAdevWGR3nL9xuN4WFhTRt2pSLL744Krfv3LFjB927d2fDhg1cd911RseJOkVFRcyZM4eXXnqJ2bNn88UXX0S0vbfffptbbrklom1UlWXLljFnzhzeeOMNbDZbxNqpMdMBT0T9+vUZOnQob7zxBmPHjiUjI6NKzz9ixAjGjBmDpml88sknbNmy5aTPFRcXx8yZM6t87Ou+++5j1KhR6LrOpEmTqFu37kmfq127djz44INVmA4SExPp3r0706ZNQ9M07rzzzkrdyuy6667j2muvrcKE0KlTJ95//322bdtGVlZWpbcWHT9+PG3btq2idMY7cOAA8+bN44033uC///0vzz33HFdffbXRsQy3fPlyVq5cyWOPPYbJFNk+8SlVuAFatWrF2LFjGTFiBPPmzavSK7kej4dRo0bx9ddfk5mZyV133XXS5/J6vXTu3LlKxlHbt29Pv379gND42vjx45kyZQqXX345nTt3Punz/v7773Tq1KnS+QAGDx5cnq9x48Y88MADbNy4kQcffJDY2NiTPu/HH3/ME088USUZp02bBoSGc3r06EGbNm1Yt24djz76aKXO+8QTT7BpU9XcR+STTz6p8LnS0lIuuuiiiI/Ne71ecnNzueGGG1iwYAFms5mXX36Ze+65JyLtCSGYPn06DzzwAFOnTo1IG5UhpWTz5s0sWLCAxx9/nMTExIi3ecoVboCMjAzmzZvHPffcw2OPPUbz5s2r5LzPPvss7du35+OPP+aOO+6gVatWJ30uKSVr1qypklwQGiIBGDlyJD169GDXrl20a9euUhlbtmxJ3759qySfEIJJkyZRVFTE1KlTSU1NJTk5mVatWlWqcD/00EOMHz++yjJ+8skn/PLLLyxfvpxNmzbRuXPnSr2HAHPnzq2SfMAx1y04HI4q/ZmqyJYtW7j//vuZM2cO27ZtY+bMmSxZsiRi7QkhqFevHgcPHoxYG5WxYcMGXnrpJebMmRPxnnaZU7JwQ+iH+LHHHuOdd95h8ODBtGjRotLnfPLJJ3nppZdYunRppYc4hBARWfU5a9Ys5s+fz48//ljpc0UiY0pKCqNHjyY/P59JkyZV+nxVmbGsp9q9e3ecTie33HILjRs3rvR5q+sfc6R+pv5Xeno6HTt2ZPbs2QQCAW6++eaIt1unTh2aNWvGhg0b6NixY0Tb+jt++OEHli5dyqxZs6rt7xlO4cIN0Lx5cwYPHsxzzz3HlClTSEpKqvQ5R40aVQXJIsfhcHDrrbcaHeOYasJ475VXXml0hKiVnp7OpEmT2LhxIy1atKjS4ciKpKWlcdppp7FmzRrOOussw7e6kFKyevVqVq5cydixYyN6IfJoTplZJRVp0aIFU6dOZciQIVE7hU9RaqIzzzyzWop2mQEDBrBmzZqoWCm9detW5syZw3333RexKX/HcsoXbgjNZHjzzTd5+umnIzZVUFGUyIqNjSUYDBq+CO7nn39mxowZvPbaa8TFxRmSoVYUbgiNkY0cOZJ58+axd+9eo+MoinISBg4cyNy5c6t94dbzzz+PpmksWbKEJUuW8Nxzzxk6XFNrCjeEZknccccdjB8/PipXFSqKcmy9e/fmm2++qbbtCL7++mvOPfdcTjvtNLp168a3337LiBEjqnWI6GhqVeGG0N013njjDYYOHcr+/fuNjqMoyt/UsmXLahnn9vl8ZGZmMnbsWFq2bEkwGERKWa2zRypifAIDxMXF8cILL7BixQqjoyiK8je9/fbb3H777RFvx+l0sm/fPjp06MDXX3/Nl19+icPhiIp9U2pl4QZo2LAhAwcONDqGoih/k81mY9CgQbz33nsRbSctLY0zzjiDf/7zn9xwww0MGzaMoqKiqJhHfkrP41YU5dRjsVjo2LEjn332GTfddFNE2+rbty8XXHAB9913Hy+//LIhU/+ORhVuRVFqnKSkJKxWK3l5eaSnp0esnfj4eOLj48v3iDF64U+ZWjtUoihKzXXGGWeQkJBQbbc1q67tBE6U6nErilIjDRgwwPBpeUapVOEWQmQCTkADglLKc4QQdYAPgWZAJnCjlPJQ5WIqiqIcqVmzZkZHMExVDJX0klJ2lFKeE348HlgspWwFLA4/VhRFUapIJMa4+wLvhL9+B6ja25MoiqLUcpUt3BJYJIRYK4S4M3wsQ0qZAxD+fPL3zlIURVH+orIXJy+QUmYLIeoC3wkhTvgmjOFCfyeEptxE8659+/fvp6ioKKoz5ufno+t6VGd0uVzs3r2b/Px8o6NUyO/3R/V7WFJSgsvliuqMBw4ciPp/L0VFRezbt6/a9jw5GcfaSKtShVtKmR3+nCuEWAB0BQ4KIepLKXOEEPWB3Aq+dzYwGyA1NVUuXbq0MlEiqqioiP379xPNGXfu3Indbo/qPcfz8/NZuXIlMTExRkepUGlpaVT/PXu9Xn7O+5nPln5mdJQK2XPsXOK5pNp38Ps7srKyWLt2bVTs7V2RY75/UsqT+gAcQMJhX68ErgCeA8aHj48Hph7vXHXr1pXRbPv27XL27NlGxzimBQsWyJUrVxod45ieeuopWVhYaHSMCum6Lu+55x6jYxxTQUGB7DypsySK/6u3op5cuHCh0W/VMc2aNUtu377d6BjHFK6LR62ZlRnjzgBWCCF+Bf4LfCml/AaYDFwqhNgOXBp+rPyPyy67LKp7JIqiRK+THiqRUu4CzjrK8QLgksqEqg3y8vKMjqAoSg2llrwriqLUMKpwK4qi1DCqcCuKotQwqnAriqLUMKpwK4qi1DC1snB7vV42btzIU089hdvtVtPyjqK0tJShQ4caHUNRaoTdu3fz8MMPV1t7tbJw9+jRg+eff5527drRvHlz9u7da3SkqKNpmnpfFOUE+f1+Dhw4UG3t1brCvXjxYi677DImT55MQkICL774Ip9++mlU71mgnNreeust9fNXw1X331+tK9wZGRlkZWXx8MMPU79+fbKysmjcuLHRsZRaaOHChVxzzTWYTCb69OlTfl9DRTmeWnfrsiZNmpCZmUkwGOSXX37hlVdeYfny5VF1Pznl1Fe2C+FNN91Er169cDgcbN++Hb/fj81mMzqeEuVqVY87OzubyZMnM3v2bObOnYumaWRmZqoet1LtMjMzKSoqwm63M3HiRLp3747b7Y7q3eqU6FFretzFxcW8+uqr9OvXj5YtWwIwfPhwg1MptVVsbCw//fQTzzzzDNu2bePuu++ma9eutGvXzuhoSg1QKwq3pmkMHz6cJ554gtatWxsdR6nlPB4PDz/8MJMnhzbOfPjhh3nggQdo0qSJwcmUmuKUL9x5eXk8+OCDTJs2jYyMDKPjKLVcdnY2Y8aM4e2338ZutwPw7rvvRvXNJaKBz+cjPz+fhg0bGh3lqKr7GtkpPcadk5PDq6++yr/+9S9VtBUgNG1r/vz51d5uSUkJs2fP5pVXXuHFF18sL9qAKtonYM+ePdW6wOXvUtMBq4jX62Xy5Mn06dOH9u3bGx1HiQIfffQRQ4YM4cCBAwwePLjablEmpWTChAnExcUxZMiQqO01KjXHKTlU4vF4GDx4MNOmTaNRo0ZGx6mRhBDExMTg8/mqrUdYWloa0Z7LqlWr6NmzJ9deey1+v5+tW7dy4YUXYjabI9amz+fj7rvvZty4cbRt2zZi7ZzKpJR4vV7i4uKMjlIhk8mE2WwmEAhgtVoj3t4pV7hzcnKYOnUq06ZNi+qeTceOHfn111/p1KmT0VGOKiEhgfvuu49nnnmGJ554olraHDFiBFlZWRE7/86dO1myZAlLlixh6tSpPPfcc2RlZUXsomBhYSHTp09n5MiRtGnTJiJtnOp27dpFZmYmw4cP57XXXiMnJ4f69esbHesvWrVqRbdu3fi///s//vnPf0a8vVOqcOfn5zN79mxuvfXWqO9pz5gxgz59+rBkyRKjoxyVEAIhRLWO3c2bNy+i53/ooYfIz8/nqaeeYuTIkVx55ZURK9ozZsygqKiInj17cvbZZ0ekjdrg9ddfZ//+/ZSUlPDiiy/Sp08fbr/9dqNj/UXZxcnq+vdyyoxxa5rGuHHj6N+/f9T2YhVjDR06lH79+nH//fdz5513csUVV1R5G1JKJk2aRIMGDbjqqqvo1atXlbdRW/z3v//Fbrczbdo0GjRowMyZM9m8eTP79u0zOprhToked1FREXfffTcvvviimj2iVKh169blv9ImJSVV+fn9fj9vvPEGbdq04dprr43o2Hlt0LFjRxYuXMjy5ctZtGgRH374Ia1ataJBgwZGRzNcjS/cWVlZzJo1i8cff1wVbeW4hBARKdqLFi0iMzOTmJgY+vXrV+Xnr41sNhvt27fn/fff5+DBgyxbtoy77rpL/Q+RGj5U4nQ6eemll7juuuvUikjFMB9//DEbN24kMTGRYcOGGR3nlHLTTTfxwQcfkJSUxIcffsjFF19sdKSoUGN73MFgkNtvv51nnnmGFi1aGB1HqaUWL17Mvn37uPvuu49YVKNUHSEEAwcONDpGVKmRhTs3N5dHH32U6dOnU69ePaPjKLVYz5496dmzp/r1XalWNa5wHzhwgNmzZ3PPPfeooq0YThVsxQg1rnBbrVb69OnDmWeeaXSUU9qoUaP47bffyMvLY+vWrbzxxhvEx8cbHUtRoo6u6/zzn/9ky5YtACxZsoS3334bkylylxBrXOFOTU0lNTXV6BinNJfLxdq1axk1ahSrVq1i27ZtFBYWqsKtKEfhdDrZsWMHN954I0II5s+fj9PpjMjspTI1rnArkffyyy8zbtw4mjdvTiAQ4JZbbuHJJ59kzpw5RkdTlKjz5JNPMmnSJPx+P0IIzj77bJ588kn+/e9/R6xNVbiVv3jwwQdp27Yt999/P82bN2fAgAGsWbPG6FiKEpWmTp1K8+bNmT59OlJKxowZw+7duyPa5nEHYYQQbwohcoUQvx92rI4Q4jshxPbw55TwcSGEmCGE2CGE2CiEUJs01FBvvvkmAD/++CNz5sxRwySKUgGTycS8efPIzMxk7969zJs3L6Lj23BiPe63gZeBuYcdGw8sllJOFkKMDz9+ELgSaBX+OBeYGf6s1DDdunWjS5cuBINBYmNjjY6j1DDVfUcYIwkh6NGjB926dQNCKz4j7bj/W5BSLgMK/+dwX+Cd8NfvANcednyuDPkFSBZCRN8ejMoJsVgsqmgrJ6W67wgTDWw2W7UUbTj5Je8ZUsocgPDnuuHjDYHDt+7aHz6mKIqiVJGqHog52u9HR/1frxDiTiHEGiHEGo/HU8UxottDDz3ERRddxNq1a+nUqRMrVqwwOpKiKDXIyRbug2VDIOHPueHj+4HGh72uEZB9tBNIKWdLKc+RUp4Tzbckqmq5ubk4nU7mzZvH2WefzciRI9mxYwfBYNDoaIqi1BAnOx3wc2AIMDn8+bPDjt8jhPiA0EXJ4rIhlWPRNI2FCxeeZJTIy8/PZ+fOnVWS8ZdffiElJYVNmzZhs9lIS0tj9uzZ2Gy2Sm1S9Pvvv7Nnzx4OHjxY6YyRcuDAAb755puovndgSUlJVP8sut1uHDkOTlt4mtFRKpSQmcDvrt+jepx7165dWCwWfv/99+O/2CCaplX43HELtxDifaAnkCaE2A9MJFSwPxJC3AbsBW4Iv/wr4CpgB+AGhp5IQL9fMGJE9O6lbbfrDBlir5L9vvv27Vv+ddm9HCdMmFDp8+7Zs4dZs5IoKore97FlyxiuvTYdh8NhdJQKWSyWqN7XvbS0lC4xXZicMdnoKBXacmgLTpMzqt9Hu93OM3WewZ3hNjpKhfzCX+Fzxy3cUspBFTx1yVFeK4GRJ5ys/PtMHDjQ7e9+W7VJStpB/foF5dN9otHBgwcpKsqI6vexUaPFdO7cGZvNhtPpJKVOMgcPZZPgSKIkkMuiQ3PZ5d6EKWAhRsQjdDM5zmzOS7mCy5oPxO/20Si9CSUlJTgcDg4dOoTdbicQCKBpGg6HAyklcXFx5Uv0y5Yelz32+XwkJSXh8/mQUhIbG4vJZCq/v+Z7771XJX/Puq6zaNEi9uzZw4ABA3A6nbzwwgs888wzlfqNo7CwkNWrV0f1z6Ku6+Tn50d1xo0bN1LQoYDilsVGR6lQvKnitRM1+kYKSs0jpU5BIJstrl9YVfgVM7Lv5MPsKXx28DU0P7S2nYtdT6e01EdD2+mcl3oFiTEp3L/kZiavu5/Nub/h1/0EAgFMJhO6rgOhRRCapqFpGj6fDyEEmqYhhCh/bdljv9+Ppmnouh6xawtut5vPPvuMXr160a9fPywWC02aNGHp0qURae/vWrZsWVQPZSjHppa8K9VKIlmfu4rp6yeR4cigSVJTioMBft39B5nZ+2jXsjHWgI1tu3aQ37qI5kltEewnRiYSJxJ5f8ObnF6nA5e3vIZYWxxCCMxmM7qulxeiQCCA1WpF0zQsFguaphETE4MQAovFUl6spZQEAoGIzL2Nj4/nuuuu47bbbmPv3r08/PDD+P1+xo4dW+Vt/R0//fQT//nPf0hISOCrr77isssuU3eVqYFUj1upViZh5py0i6kf6MymrYVs3JTH+o05lGTbiHHXw7XPTtY2P5vW57Fq/Xo27VrNsnVL8biCrNz5M7nOAmatfIVCXz5OpxMI/Wru8XiwWCyYTAK7PQ6v14PVasXn8xEbG4vL5SrvbTscjvIiHsm71nTt2pXJkyeTlpbGoEGDmDhxYsTaOhFSStauXUtCQgL33nsvGRkZrFy5UvW8ayBVuJVqpes6DpOdGdfMoHlqcxbv+I5PNsznxx0/sjFrI1+tXkrdpMbcdulweqXdQANPV9xuF96SAvILD7E9ZyfBgJm+M69Bs4V6zjabjZSUFHxeD+u/fpJ5Dzfhs8kdWPvFYyQmJuJ0OklNTUXXdeLi4sjPz0fTNPx+P4WF/7souOokJydzwQUXkJyczLnnnmv4fVG3bNlSfpu1Sy+9lGHDhuH3+1m3bp2huZS/TxVupVqZTCZiYmLwlnp4rd8srmrzDyxmM6eln8Z5Lc/jzGbt2ZO3h01Zv1PgLCSnIAdHQVNcW5PokNgWT3E+6F60YsHtM25HCIHX66WwsADnwU3s3LSCQyVeGrbvQ3KDjjhLSoiPjycvLw8hBC6Xi7S0NCwWCxaLheTkZKPfkmrTtm1bGjduzCOPPEJWVhaPP/44NpuNzp07Gx1N+ZvUGLdSraSU+P1+UlJSCAQCzOz3Ko/GTeDTtZ9SVFqEw+zALuLwCT+5BVsoPlRMgjWRvt36UuosJY46FOTlYkrJxn8wgKYFsVqtLFkwjdzMnziUs49OF4/lwj5jCQZDz3k8HlJSUtA0DbvdTnFxMWazGSklpaWlEd3wPtr07t2bhIQEPvjgA77//nveffddoyMpJ0H1uJVqZzKZMJlMSClJiavDk5c/yYBzBlEacLErbze/Z/3B6t2r2XtoH6c1akGTBk3YlbMLp9dJgkila5OLyF/jI6btAd5aOIeA38vqpfPx+iz0vetNulx6Z/n5y6b5ld0bsuxxmdq0ix1Au3btGDp0KIsXL6Zhw4acddZZRkdSToLqcSvVzmQyUVpaisPhwOVykRiTyOR/PMOTV07kuleu51DJIXbs20XdhDQKSwuItybgdXshIMnLKyDe6uDSzn3Yv38by+UCfhnxFima5Ipet9C0bTesVitut5uYmJjyi5OlpaXYbDb8fj92u718OqDVajX67TBE06ZNjY6gVIIq3Eq1klLi8/lITU2lsLCQ5ORkXC4XNqsNf6mfL0Z+QWZhJv9Z+x9cXhemoAmHzU5JUQlIgcftJcZsY0DvAZxz1jks27iI11c+Ro9/DOCs865G0zRKS0upU6cOJSUlJCUlUVRURFpaGk6nk7i4OAoKCrDb7UgpcblcUb3CL1JiY2M555xzWLlyJeeff77RcZS/SRVupVoJIYiJiaGwsJC4uDiKi4uxWq0Eg0Hi4+ORUtKybktGXToKKSU2i5kDK77nwH8/xR4TS2qvK0nudgnWmBgOHTpE4EAQT5Hggt79sNlsSClJTk4mPzOT1W+8TOH+vaS0aEvnIXeQXDe9fLxb1/XyWSa1kd1up3v37vzwww+qcNdAqnAr1aqsx52UlERxcTGJiYm43W4sFkv5XGz8Xkw+L1seG4X0e2l03c2c89Cz6MKE1Wxi9+wpFPy6lqCmsyO/iJi8XHy/r2bNT8vI3biOgKbRdsAwOl0/EL/Pi+b18f6dgyktKaXPY0+Q2LwFGY2bYDKZcLlcxMTEGP22KMrfogq3Uu3MZjOBQKB8FWPZhUSz2YzmLCZ79nO49u6g7b+exJqQSKDoEN5d20GAT0LD62+h6a0jCbqcNPxxMeds20zBT8toduHFdLjpdoJBP65Dh/A7i9Ek6Ej6PPI4QU1n+f/NZeOKFdw1521OO7tz+UXL2igjIwNN08jLyyM9Pd3oOMrfoAq3Uq2EEEfsI1K2daWUEoJB9sx8Fu1gNqfdPBx/3gGCeQcQSMomfwgJ/r278UqJDiSe3pbkjp3R/EE8RQWU7NmJJiWaBE1KdCnRdNClJKhLzr66DwFd5//G/YuBz06l1bm195aonTp1Yv78+fzxxx/06NHD6DjK36AKt1KtpJQEg0FSUlKOuDhpsVjYt+BdPDs20/yW4RDwInQQIvxxxDlCBRwkmtuFX8pQsQ4XaE2X6JLy4h3UJJrUCYZf0/6iXvi8fmaNuIuxH35M27PPNujdUJSTowq3Uq1MJhOxsbHk5OSQmppKfn4+DocDn9tF4fefc/rNI9HcxUgTIASmcA/dFK7cUspQ71wSquBlRVqX6LokKHU0XaJpEAwX7oCuE5QQ1HU0XaDpOm3Pv4Dc/fvx5OdH/M+s9gJRqpoq3Eq1Kutxx8XFEQgEyi8MFqz4HpsjHm9+FmaTwGQOrQ0TZjAfVrh1GepVS12ApqNLHSlB6uGetl5WoCUBPTQ8EtQlQUmogOuhYZRAUCe1UVNeHX0vr2/6AxHBse5oXuTTtWtX1qxZQ7du3SJ6h/Lvv/+eHTt20LBhQ6655pqItVNbqMIdhSZOnMiECRNCMyxOQWWFrOyzlBLnupXYm7VE87gQJoE0mULrek0CYRKYw5Vb6hIhJVIHqcnwtD7Cn0PFW9NDRQuL1LoAACAASURBVPrPwq0T0P8s3AEt1Atv0KoFW1avMuptiAp9+vShV69e3HnnnREt3LGxsSQkJLBr1y5uvvnmI54bOnQovXv3jljbp6JTszLUUF9++SXjxo1j2rRpdOnShWuuuYYnn3zS6FhVqmz/bKfTid1ux+VyYbfbMZtNSM2P5nFhMgl0kwlpIlTAzaHiDYS73ICuo5cVbglBLVSUg1qoxx0M97gDuiQQ1AhKiV+XBDRBQNPCRZzyGzEokdW9e3e6d++Ox+OhT58+Rzz32muvMW7cuCOOzZ8/n7S0tPLHJpOJhISEaslaE6jCHWF5eXn89ttvJ/TaVatW0bt3b2w2Gx9++CFz5szh4MGDp9TKPl3X8fl8JCcn43a7SUxMxO/34/f5kQUHiQnvYyLMApNJIMwCYTIR6n5LgoCm66HirMlwgQ59HZDh3rQWKtj+YKg4l5QUY7Y78GtlxTv8fHgRTm3XqVMn1q5dS8+ePSPeVlxcHM2bNz/i2LPPPsuzzz57xLGBAweSf9j1hzp16jBixIgjXtOkSRNatmx5Qu1mZmaSkJBAamrqSSaPLqpwR1hBQcEJ367qjz/+wOVysWzZMm6//Xbsdjt5eXmnVOE2mUzYbDYKCgpIT0/n0KFDJCQkEJuYRM6P32AzmSA5GcLFG1NoSknQ70PExKFTNvwBPpcTd34efk3HF9Tx6xKfpuMLSjSTBUtaBgEExdn7sddriF/XCWjg0zSCOuTlHMDv9Rr9lhju+eefp3Pnzqxfv96Q9o92DeDDDz884nFBQQHTp08/4ljZZmWHGzZsGI0aNSp/7PP5mDJlCrquI4QgKSmJMWPGVGF6Y6jCHWFt2rQ54eGOjz76iIkTJ/LCCy8waNAgzjzzTNq3bx/hhNVL13X8fj/p6aHl58nJyfj9fupffyt5Py2maOtvaA2b4Eiri24S6CZBUEBw306sjVsgAc/BbAIlxXh9PrylpXiDGn5N4glKfEENr6bjR6Dv24sfM3GNm1Cck4NwOAho4NV0igsL2bXpDzpefS1E8cVDJSQ1NfUv/452797N9u3bjzj2yCOPkJOTU/44GAxSUFDAJ598QklJCYMHD2b06NHVkjmSVOGOItdeey2XXnopd999N5988gnx8RXf5bkm03W9/D6RZdusxjRogm6xEXC5Yfd20DRs8fEEpIYZ8JcUIzb+NzRXW9MIaDp+Tcev/Tk8EpR6eO42BDQNb1EhvqBOQX4+noCGH0Fi42YcOnSI3KwDeP1Brh4xIqpnfVSXtLQ0CgoKatRQQvPmzf8y7HLeeeeVL+oCuOqqq9i5cyf9+/fn1VdfZdasWTzwwAMnPMQSrVThjiI2mw2bzcb7779vdJSIEUJgs9lwOp3ExMTg8XjKi7gWE4dfl8iAhrmkmKAWQMveF54OKBCAhixfZOPXdYKawK8fPnatl495B8MzTIJaAE2DQFDDU1pKYc5BdAkIE3HxDqPfEsOZTCZmzpzJ2LFjmTt3rtFxKiUxMfGIx4sWLeK8885j3rx5FBYWMmLECDZv3sxrr71mUMKqoW6koFSrsjvgJCcn4/F4SEhIQNd1LBYLzW6+HV94nNpVWIi71IlP0/FqOh5Nx63peIM6nmDosV8DX7jXfUTPW9dDKyZ1WT67JBiefVJSeCh0R3iTiS79rkfE1s7dAWuLmJgY7r77bhYsWMCqVasYP3680ZGqhOpxK9WqbFvX/Px84uPjKSoqwmazEQgEaHDBpazXQZc6ugygO90Q1EPXJ0WojyGlHl6EA8HwYht/+GKlXy+bLSLxa6HnA2UFXEpEbCxejy/0Gi1Ix549aXLaaQa/I0ok2Ww2Ro4cycGDB4mLi/tLj7ymUj1upVpJKQkEAqSlpeF2u0lKSiq/E43T5Sahy0WhXnZQo9RZijsQ6mG7A3r4axnqcQd1PEENT3hGiTeo4Qtq+DQNf1Di1zT8mn7YXG4dV6kbv89PQno6lw+/C3NsXETv8l6TxMTEkJiYeMQUvFNJRkbGKVO0QRVupZqVLcBxu91YrVa8Xm/5LoFxCQm0vuk2vEEZLtAa3vBsEW9QwxvUDivaoSEUb1CWD6/4NIkvPFzi1wR+HfyaPGK+d0BKMlq1oqTwEN2u6VNrb6Twvxo3bkzXrl1ZsGCB0VGUE6AKt1LtpJTl27qWLYCRUmKxWEhpeTqNLusTLtThXnUwNLb95/i2xBMIPe8Lv84XnmUSCBfv0HCJFiriusSvh1ZXtruoJ5qwcH6//lgsllp7z0mlZlOFW6lWZUXbbrcTCASIi4srv4mCx+PB5IgntX1H/JhCvW4tNDTiDmq4y4t4MHSxsvxxqDfu1UJzuH26xBsMLbbx6xq+cG9bFyZSGjbE6Syhw0UXoWkaLpfL6LckathsNoLBIMFg0OgoynGowq1Uq7JtXXNzc3E4HBQUFJTfESc5OZm4uDhaD7iVjPMuDA2N+DXcAQ13UA99BHTcfokvKPEGZXi4JNQL9wbBo0l8wdCUQG94+CSgaUiLlfYXX8rqxUt5dsFCYmJjsVqtNWrecqQNGDCAdevWsW3bNqOjKMehCrdSrcouTsbHx+Pz+XA4HOULcrxeL36/H5MQtO3TH80ai0cLj20HNDyBP3vX7sPHvLU/i7gvPGxy+DTBICYan9mJAIIL+/dDs/7ZsywtLTX6LYkaaiFSzXHcwi2EeFMIkSuE+P2wY48LIbKEEBvCH1cd9txDQogdQoitQojLIxVcqbnMZjOapmG1WgkEAuWrJy0WS/k9IJtcfDn2NmfgDUrcQVne4y6/MBk+Xjb+7QuExrt95Rct/xz3rtuyNfaUOmRu+oMOvXrhiI8v3+fiVN0692SV/V2omz9EtxPpcb8NXHGU4y9KKTuGP74CEEK0AwYCZ4S/51UhRO29G6vyF2X3nPT7/Ufce1JKecSmQbqu84+nnseUknpYwS4bMpG4whclvYE/i7lHA0+4aHs1Dd1iJbFRUyzxCRQXFnL96Hs5vWtXzGZzeQ51cfJIM2bM4K677jpi2bgSfY5buKWUy4ATnezaF/hASumTUu4GdgBdK5FPOcX871CJ3W5H13VMJhMej4dAIACELpQ1aNmKga++SUKTZngCevgjNETiK5vfXT7GrZfPRPEFQ2Pgfinw+gOUFB6iU+9L6T10KLFxcTidTjRNUxcnjyI2NhaPx2N0DOU4KjPGfY8QYmN4KCUlfKwhsO+w1+wPH/sLIcSdQog1Qog1gYD6QaktylZOFhUVERsbS0lJCRDaxc3hcBATE4OUEq/Xi9PppGXX87j6yWfpdP2N+KQon2XiN1tofmHP8imC3qBGbFpd4us1wKtpoeXwvgA2u53rRo3i0mHDEELg9XpJTk7GbDZjsVjU5vxH8eijj/5lu1QlupzsAN9M4ClCt2x9Cvg3MIwjb8Zd5qiDZVLK2cBsgISEDOnznWQSpcax2WzUrVsXs9lMenp6+UWxsmJhsViw2+3lxzpfegXtu3XnmvtD+0xICcIksCcnU3rYykeLLQaEOGKPbVtsLHWbNEEPTzmMi4tDCFG+8EZdkPur6667zugIynGcVOGWUh4s+1oI8TrwRfjhfqDxYS9tBGSfdDrllHT4WPbRenbm/7lxr8lkwpqSQnxKyl9em5JR74TaLDtjWXvVWbDVhT6lqp3U70NCiPqHPbwOKJtx8jkwUAgRI4RoDrQC/lu5iIpSs914443ld7NXlKogjtcbEEK8D/QE0oCDwMTw446EhkEygbuklDnh1z9CaNgkCIyRUn59vBBJSXVk69b/Otk/Q8RZrS7OOCOfpk2bGh2lQgcOHODXX2Pwev/aK40WKSnb6NateVTP5Pjtt9/o0KGD0TEqFAgEyMzMpFWrVkZHqVBhYSF+v5969U7styEjZGZm8kf6HwQcAaOjVGjbC9soLiw+6q+Gxy3c1SEhoa70+7caHaNCiYmZNGjwE1u23Gx0lAo1bfoNr76aTufOnY2OUqFp06YxdOhQkpKSjI5SoUceeYRJkyYZHaNCRUVFzJ07l3vvvdfoKBVas2YNBQUFXH559C7jmDdvHhdddFFUd8ZOP/10cnNzj1q4o2T1gcDvj96eYiBQgKbFRHVGTYvD4XCQcpRx4GhhtVpJSkqK2oxle6ZEaz4IZbRarVGd0W6343a7ozpjTEwM8fHxUZ3xWNdh1JwfRVGUGkYVbkVRlBpGFW5FUaKalJLdu3cbHSOqRMkYt6Ioyl+tXr2aX3/9tXy2z4UXXsjpp59udCzDqR63oihR69NPP2XXrl089thjrFq1iuXLlxsdKSqowq0oSlRasWIFDoeD8ePHM3ToUCZPnsxvv/2mhk1QhVtRlCh1wQUX4HK5ePvtt9m8eTP//ve/6dChA82aNTM62l+43W62bq2+tShqjFtRlKgkhKBXr14sXboUp9OJEIKOHTtG3cZgc+fOZc+ePQSDQWw2G8OHD4/4LfFUj1tRKqEm3C2mJmSsyGWXXcbTTz9N/fr1mTRpEuecc47RkY4gpWTOnDmcd9553HHHHSxdupS8vLyIt6sKt6KcBCkl2dnZfPjhh8yaNYusrKyoK47BYJD9+/fz6KOPsnz5cnJzc42OdMqZPn069957L02bNmXKlCm8+eabjB8/Hl3XI9quKtyKcpK6dOlCVlYWVquVTp064ff7jY50hOzsbLp160b37t1ZuHAhV1111fG/SflbxowZw4wZM/jss8/YtGkTt956K5MnT474jShU4VaUkzBr1iwef/xxLr74Ylq3bs20adOYMWOG0bHKSSmZPXs2s2fPxuVyMWbMGAYNGsT8+fONjnbKGTVqFEVFRbjdbq699loyMjIi3qYq3LXEU089Rc+ePfH5fDXmRrCBQIDvvvuO9957j0AgEFVDEb1792bRokU0atSIzz//nOnTp9O7d2+jYx3h4osv5scff+Scc87h3nvvZcWKFVG9e2RNdcMNNzB48GDatWvH6NGjq2XjKlW4a4nx48fz2Wef0aNHD5544gl+/fVXgsGg0bEqJKWkZcuWfPfdd2RlZdGgQYOoGopo2bIlubm5TJw4EQCfz8fTTz/N/v37DU4WIoSgbdu2LFq0iIULF6LrOpmZmcyaNYuioiKj4ymVpAp3LVG2peovv/xC9+7dee2113j11Vf55ptvjI52VF9++SW33nord911Fw6HgyFDhvDpp58aHaucEIIff/yR22+/nauvvpoNGzYwbdo0XnvtNXbs2GF0PADq16/PunXrqF+/Pq+88grr16/niiuuYObMmZSWlhodT6kEVbhrocsuu4xXXnmFRo0a8ccffzBo0CB27txpdKwjxMfH43Q6sdlspKSk4HQ6mTp1qtGx/uLss8+mZ8+eADRu3JjBgwczc+ZM8vPzjQ12mAEDBtC4cehWsD179uTCCy/koYceiqqhJ+XvUQtwaikhBNdffz0ul4vrr7+ecePGsWPHDq655hruu+8+EhIS/nLT3urUo0cP7rzzTnRdp27duvznP//hnXfeoWPHjkyYMIHevXuTmJgYdYsxWrduzfjx4xk4cCDNmjXj5ZdfJjY21uhYR+jevTupqal06tSJ2267jREjRmCxqFJQGdX9c6h63LWcw+GgWbNmfPzxx6xfv55zzz2X/v37s3DhQtatW2dYLiEEW7dupX///rRt25asrCx69+7N+vXr2bJlCzfffDOLFy9m165dhmWsSHp6Ot999x3Dhw9n6tSpFBYWGh3pL9q0acP69euJj49n3rx5UX29oyao7t9eVOFWgFChFEJw9dVX8/3337N//34+//xzJk6caNgwihCCiy66iH79+pXnE0LwyCOP8Mknn/DTTz8xd+5cHn/8cbxeryEZKyKE4JxzzuHCCy9kxowZUZlPCMHQoUMRQvDKK68YHalCQghuuOEGFixYYHSUCqWlpdGkSRPWr19fLe2pwq0c1ejRo7n33nu58MILmTx5MjfddFP50uloGBuNjY1l4sSJ3HrrrXTv3p3+/fvzzDPPRE2+Mr169eKaa65h5MiRUZetzJAhQ2jSpAlTpkyJyoxCiPLfAqNVWeHesGFDtbSnCrdSoTp16tC7d2+mTZvG448/TqdOnejUqRNLliwhKyvL6HgAnHbaaVxyySW89957nH766XTq1ImlS5eSnZ1tdLRyZ599Nvfffz+dOnVi9uzZUTWtEUKFsU+fPjRv3pxOnTqxYsWKqCveypFU4VaOy+Fw0Lp1azZs2MCGDRv47rvvePrpp3nvvffYu3fvEa9dvHgxgUCgWvMJIUhMTKRfv35s2LCBb7/9lqeeeuqo+YwghKBNmzZs2LABi8XC3LlzI76Xxd9lNpu58cYb2bBhA19++SXffvut0ZGUY1CFW/nbnn32WZ588kmKi4t59dVXGTduHJs2bWLEiBGsW7eOsWPH8s477xiWb/LkyTzxxBMUFxdX+/9Ejue2227D4XDw/PPPGx2lQk8//TR//PGHWh4fxVThVk5Keno6I0aMYMSIEVx//fX07dsXs9nMsGHDuPrqq1myZImhS+vr1q3LiBEjaNGihWEZKjJgwABOP/10unTpwnfffRd1wxIWi4Xhw4eza9cuunTpQk5OjtGRlP+hCrdSKU2bNuWMM87g/PPPp06dOlxzzTV07dqVzp0788UXXxgdLyqZTCb69OnDypUr+f7771m2bFnUFW+73c59993HypUrGTt2LNu3bzc6knIYVbiVSktKSuKmm25izZo1fPjhh7z88susXr2avn37Gh0tagkhsFqtTJkyhVWrVhkd56hMJhNWq5XXX3+dH3/80eg4ymHUcimlSnTs2JFhw4bx7LPPctFFF3HllVcaHanGeOCBB4yOcEwJCQncfvvtRsdQDqMKt1Il6tWrR//+/enZsyd16tSJ+EbyihJtYmNjq23puyrcSpVKS0szOoKiGGLQoEHV1tZxu0VCiMZCiCVCiM1CiE1CiNHh43WEEN8JIbaHP6eEjwshxAwhxA4hxEYhxNmR/kMoiqIYrWwbgepwIr/PBoH7pJRtgfOAkUKIdsB4YLGUshWwOPwY4EqgVfjjTmBmladWFEWpxY5buKWUOVLKdeGvncBmoCHQFyhbZfEOcG34677AXBnyC5AshKhf5ckVRak1bDYb9erVMzpG1PhbV5CEEM2ATsAqIENKmQOh4g7UDb+sIbDvsG/bHz72v+e6UwixRgixJhDw/P3kiqLUGs2aNWPKlClGx4gaJ1y4hRDxwHxgjJSy5FgvPcqxv6wukFLOllKeI6U8x2qNO9EYiqIotd4JFW4hhJVQ0f4/KWXZjf8Olg2BhD/nho/vBxof9u2NgOjZqk1RFKWGO5FZJQJ4A9gspXzhsKc+B4aEvx4CfHbY8VvDs0vOA4rLhlQURVGUyjuRedwXAIOB34QQZbuEPwxMBj4SQtwG7AVuCD/3FXAVsANwA0OrNLGiKEotd9zCLaVcwdHHrQEuOcrrJTDy70eJrk12ji76M0bbZkVHE+0Zoz0fqIxVpSZkPBoRDcGTklJkx463GB2jQmazn6SkUmy2OkZHqVAwWEJysgW73W50lArl5uaSmppq6N3jj2f//mwslgZGxzgGjYApG2tdq9FBKqS7deKD8SQmJhodpUKFhYXEx8djs9mMjlKhd999l0OHDh210xwVhTshIUOWlh40OkaFkpJ28NxzS7jjjjuMjlKhhQsXkpGRwbnnnovP58Nqtf55lxWTzgHfHg4FDyJ1iQUbIPAE3NjNibRIPAOhm7HZrGiahhCCYDCIEAKTyUQwGMRms5V/Ljt/MBjEbDYf8dqy1WPBYBCrNVRcylaTPf3004wcOZKUlBSD3qVjk1Jy44338sknLxkdpUIxMYW0f+wy1j681ugoFar3Uz1m5c+K6t0hX3vtNS655BJatmxpdJQKZWRkcPDgwaMWbrVXySlG0zQKCgqITbDx30NfUDe2KUGTl52lv5Lj34PTW4rTW0yDuBZ4/B7qWhuxPXYzuwt2cM+5j+D3BRBCUFpaihCCmJgYSktLSUtLo7S0lDp16lBcXEydOnUoKSnB4XBQVFSE1WrFZrNhs9mwWCyUlpZGbYFWlKqWm5vLkiVLGDBgQLW0pwr3KWZH0a/MP/QiolhwwLcHq4wlGJQ4SCEtpiHJpFDkduHRA9SJaQS6la93fkqcJYGnfniAge1vo4G9MQkJCUgpCQaDpKam4nK5iImJIT8/n/j4eEpKSoiLi8Pn85GcnIyUEk3TcLvdQGilW0FBAcnJyVgs6sdMObUVFhby7bffqsKtnJx0e1M+WLyeOrF1ODP9TE6r24Zd2Zm8s+J9WrZOIt0Rz/aNOZgbBrmg3UWYg7HEWZIpdOYTY0/gzf/O5B9tr+WMlLOwWKxYrVby8vKoW7cuLpeLOqmpFBYUkJSURHFxMQ6Hg5KSEqzW0GsdDgcmkwmXy0VKSora3lWpFaprc6ky6l9VNdF1nU8//fT4L6ykOOzM/seb6Jrgyz++ZvoPL7Poj0VkpNTDn5eM70A9WtU9j9iihmhFOitW/Mzu/E2s3bmeLdk7WL13HfM3zMer+7BYLAghiI+Px+/343PmsO2Xuexe+wF7f/8PVmtoTDw2Nra8V+33+/F6vZhMJrxeb5VdtV+4cKGh97BUlGOp7muFqnBXE13XeeaZZyLejslkonWdljx68SOYLIKdBTs55DlEfKwDt9+NO+Cicd3GtE3rSKKnJc0S2+HcJhF+HTM+9uZm8+1vi5n0xdNA6AdS13WQGll/fMvSD8aw9qtHWbvo3wj5559N1/XyH16TyYSUskp+mFevXs3gwYPZt28fw4YNM/Tu8Yrx5syZQ3a2WoitCnc1io2Nxev1RrQNq9VKwB+gW6NuzL9pPmnxqZjMZoq8xVhtFnyanz/2byLPmcfWvVtYvuZnmtrb0ydjML8u3kqXNo2xO818/PXHBIIBAJwlReTuWc2yL1+iyB1Dl/5vcOmw/yOghWaV+P3+8hksZRcpdV0nLi6uUr9C6rrOzp07adWqFTfffDODBg1izZo1BAKBKnmvlJojMzOTNm3aoGkad9xxBzfccMPxv+kUpgp3NTGbzcyaNYvRo0dHtJ3i4mLq1q2LkIK29drx070rSHYkk+M8wIGSg2QX57Dv0H5+3vYzy7csJy0lHU1qHMzNp8/ZA3BsbkVSjIW6SXHs3LcNKSU/LnieOZOHEZvciktueYX2Xa8miAO73Y7X66VOnTrY7fby2ShFRUXYbDby8/MrNbxRWFjIsmXLGDp0KP/4xz/o0qULTZo0Yfny5VX4jinRTkrJhg0bGDJkCD169GDu3LnY7XZ27txpdDTDqMJdTcrmN0d6LKzsYqEQAq/XS4a9Hm8OepO7e9yNXw+QWZDJlpwt+HU/rRq2Jq1OGrlFuRwqLSQrLxu3101CYTPiEgVPfDaGT/8zh22bN5Jcrx3X3Dad9l2vwuv1Yrfb8fv9WK1W3G43fr8fgLi4OOx2O5qmkZCQUKmLk2lpaVx88cXcddddXHrppUycOJHdu3dz8cUXV9XbpdQQv/32G2eccQbPP/882dnZtGzZkh07dhgdyzBqVokBpJQRuwrt9XqJi4sjEAiUL8I5Pb01rXuNpWvDLhx0HeSZT54hKz+bXQd3Uic2FRs2CvLz8bkDeEs9jLh2BKPOv4di+37efnEKKbka9z31OinpjXG73cTFxeH1eomJiSlflFM2zl1WwMsKekxMTKX+PBdeeCEJCQm8++67/Pzzz3z++edV8TYpNYgQggEDBtCrVy+EEGzatAmTycSECROMjmYYVbirUZs2bejYsSMfffRRxOZ76rqOxWLB7/cfcZFQSuh2Wjdi42K5ot0VWG1WSp2l2MyCrF3bSE9KxSfBXiedWFssKckplJQcYmvzDfQa9g+ateqIEAJN0zCZTJTm5xGwmAloOqkNGmIymcqLN1D+2sr+hpGRkcHll1/Oeeedx6ZNm3jrrbd47rnnquKtUmqQFi1a8Msvv/D4449z991306pVK6MjGUoV7mpkNpvLi2qkxMbGls+r9vl85e0CxMTE4Pf7SYhNIH/NSmIDHpy5B0nI3kNJ0SGSO3QiseN5lGbuYLfHw74Dufy2/CfOO7s7gay9ZG/fQmxcHCXxKexZvpi9v/9KfHp97Ke1Jj41jYZnnEFGq9PLl8EnJSVV2TzupKQkGjZsiMViYe/evTRp0qRKzqvUDGazmR9++IFu3brRuXNno+MYThXuU4zL5SI1NZXS0lJiY2PRdR2fz4cQAo/HQ6zHye7/m4UjJRV/nJ2k9Hoknt8DKQQC8OzfgywuJEYP4ti9jfN9buTiL8jOykSYLBwK+Imr25DWl1xBi0suR2o6W39axoHff2Xv+rU4PV6ufXgCKWlpFBcXk5qaWmXFu2nTpjRu3JiffvpJFW6lVlOFu5pdf/31TJw4kZ49e9K4cePjf8PflJiYGNqrJDYWt9uNyWTCarUipcRhNbNh1B0kndaKlIsuw2S2gNTwZ+0NbdwrJWazhaSWbdClxNG4BS2vH4im6fjcJVji4tGkTiAQxFNciC5B0yWN2p9FfSkpLijg8+kv8Mbdd3HP2++SnJxc5TsB3nDDDUyYMIEePXrQoEE07+KnKJGjZpVUs7S0NEpKSsqHMapaSUkJaWlpSCmx2+2hed2BAN5DBay6/VrsDRpS/8p+6M5i9OJCpLMY4S1FeErB60K6StAK8wgW5qG7nASLC9CchxB+P/6iQgKHDhF0lhB0uQi6XQTcLvylTnyloeGZvmPuo/RADi//81b27dxZ5asd09PTSU5OZuvWrTV2L2VFqSzV4z7FxMbG4nK5EEIQCASQUmI2m8n5z0fUadyCBpf3IZCfgzk8PdEkwnfJEAIhJbqUIAUCCbqOlKBJSVAHTdfRpUSXhB9LNF0SkBJN6gR1ga5Lzh94E9+99SablvxA89NPr/I/4+TJk+nYsSPr51Q7CwAAIABJREFU16+v8nMr0amoqIj9+/fTq1cvo6NEBdXjPsXY7XaKiooA8Hg8oVkePg/ObRtJbtOeYP4B8LrB60b4XJh8bsx+N2afG5Pfg/C5ET43eFxIrxvpdSHdbqTHheZxE3S7CLpcBFxOAq5S/O5Sgi4X/lIXfpcTn9uJCWjW4SxWffYZxXl5xr4hyikhNzeXbdu2cf755xsdJSqowm2AadOmMWLEiD9vdFCFiouLycjIQEpJfHw8FouFnKXfgs+PrgXQPC6kJ1SYhdeNyevC7HNj8bkweV0I3/+zd+ZxTlbX/3/f7DOZZFb2fVMRFEUQgUIFVERxq7VudbdqrbYI6qB+RbG1isoiboigIra/Qq1KXepSRS2KqIAiiGwCOjIDwyyZ7HmW+/sjyeOMggyQITNw369XXkme58l9TrZPTs4995yUWMeiyEgEMxzBjIYxokHMSFK8tegPYRItHCIeCREPB0mEQ8RCYaKhOtr27EmwuppQTU3GnyPAwoULufjii5tkbIWiuaNCJVmguLiYnTt3NsnY+fn5bN++HZ/PRzgcxm63k+t2EnTZMRMxTB2kzQY2kDYBNoHNbkMIkCYIU4IpkabENAxMKyRiYpigG8nQSMKU6IZEN000EzTTREvdT5ipsImuQRPFodu3b4/X62XTpk306NGjSc6hUDRXlHAfZESjUXw+H4C1ajEWi2HGY0nP2QZ2mx3TBqZdYNpsmDaBDYEpU4JtmhimxDSkJdq6KZMCbSRv60ZSsBOGmRJriWaAZsqUiJsYTVgMKi8vj/PPP5/nn3+eu+66q8nOo1A0R1SoJEvMmDGDCRMmZHxcu91OJBKxutdIKXHYnQQ3rCVevRMjHEaPhNDT8epICC0cIWFliYTQIxGMSAgtEkILh9DCye1aKEQilAyJJMIh4qEQ279eQ7S2hlgoSCwUJBoKJsMlwVCTV/Hr378/UkpWrFjRpOdRZBfTNLnnnnuYOHFitk3ZLekSFgcq00l53Fmif//+3H333RkfN503nS5oZZom7pJW4HRRt/ZLRI9eSLcbabMh7QIpJIlwEOHOBacTQ9fREjrxWITar9eQ0HViuiRuSmK6QcwwiRvg69UXw+XCmZtLLBxBFwLNkMSNZMhk27dbCVRWIpqwo3tRUREFBQVs3ryZfv36Nevu8Ycama7Fs2bNGnr37p3RMTNJz549GTx4MH//+98PyNyLEu6DjHRZ12AwiNfrRdd1OPp4igePZPt/XsCIhino2gMjNxfDJrALibH9e4TDDS4XiWCA+M4dJIxkHDtumOiGJKFLNMNA1yWaYfL9qk+J6+AoaUNc08GbBy4PCSmo3VnN1g0bOPHK31HUrl2TPt9x48Zx0kknMWrUKAoKCpr0XIrGc6jl2Nvtdqs2/YFAhUqyhNvtZuzYsSxatCij4+bm5hIIBKyyrrqebHYQjSfQTUk8Eia4fRuxUB11326mbss3hGtqCX3/LXWbNxLekRTttOesGZJEatJRNyW6KTFkesLSILDtewIVFVSsX09NeTk7tm6h/JtNmCZ0P+pocvLyMvr8dsW4ceOYOnVqk59HoWguKOHOEi6XiwEDBvDpp59mdNxEIoHX60VKicvlwm63J7vRdOiAbneS0E2iwSDhQC3hqkrCVZVEIlGiuklMN4kZBlHdIG6YxI3kpGMilTGimaBJMzkxmV6EIyUGyUnMeCxGNBjGFAJ3np9YPN4kKY8/5vTTT+eVV15p8vMoskMikcDlcmXbjGaFEu6DkPTf1Pp/V7v/9npsJW2JGAaRSIxwIEBUM4hqJlHNJKKbRDSDiG4S1SVxHeK6SVw3SeikskaS2SKaKTH0H7zwhGFiIgjXhYlGo+i6Sb/TT2X4xRcdsOfcq1evQ7qw/sHM6aefzltvvZVtM5oVSrgPMlwuF9FoFCEEuq5jmmayLrewYStohW4kJxkjoUhStA2TqG4Q1c2U1y2JGaZ1SXrdqeuUBx43zWTKn0wKumGCDhgkQyhHDB2OHRu5npyMVQb8OYQQPPjgg0yaNKnJz6U48BiGoSaef4QS7izSp08fnE5nRmtuxGIx/H4/kKxb4nA4knnZhkHXS39P3BDEdJNoLJEU7pRgRzUjGSrRDWJa6tqQxI2kkCf0lHjrJrouSZikFtyk4uCaTiwWw+5xY3M7OfWaa6mrq8t4kand0bp1awYMGMAbb7xxQM6nUGQTJdxZpKSkBLvdzvbt2zM2ps/ns1ZlhkIh4vE4drsdp9NJt0FDMXPziKXCIsl4tiSa8q6juklEk8lwiSGJ6kkxjxsmMTMp4gkD4iYkTIO4kVx0o5smCUMiHU4Gn3cBNTur6NK3L61atcLhODCJS7m5uXTp0oUNGzYkM2kUioOYPQq3EKKTEGKxEGKtEGKNEOJPqe13CyG+F0J8nrqcVu8xtwkhNgoh1gkhRjflE1A0JBQKkZ+fj5QSj8eD0+nEMAxM0ySiaYx8+BkrHztiJGPbUc0kkopzR1OTkz944CYxzSChGz+ESgyThJ5e3m4QN0E3TI4Y8guWL17MDU/OxuVyEQqFDsjkZJpf/epXfPXVV3z11VcH7JyKpuXrr7/msMMOU6GSH9EYj1sHJkgpewMnAH8QQhyZ2jddSnlM6vI6QGrfBUAf4FTgcSGEetV3w8iRI1myZAmRSCQj47lcLmKxmNXzMR3jFkLgcrlwt25D26EjU4Kc8rJ1g6iuW5kl6fBITP9h0U3ykgqbGKaVMhg3JJpp4PbnE40lGHTaabTt0gXDMHA6nU3WFHlXCCE4++yzeeGFFw5YiEbRtMybN4/f/va35OTkZNuUZsUehVtKWS6lXJG6HQTWAh1+5iFnAf+QUsallJuBjcDxmTD2YGTIkCF89tlnxGKxjIzn8XgIBoMIIUgkEpimaS0OyM3NxVFQRPvjhxDXZSqrJOlZR3WZvE5lmUR1k7hhpMSa1OUHsY6bkriRrF1iCgd9Rp5ENJFgyJln4/P7MQwDr9d7QIUbYPTo0bz55psqXKI4qNmrGLcQoitwLLAstekGIcQqIcTTQojC1LYOwHf1HlbGzwu9AtiyZUtGxqmrq6NVq1aYppkUaocDTdPQNI2amhq8ubn0ueAyOo44haiZ9LDDmkE4YRBJpQdGUqGScErAY5pBTNeJawbx9MSlnvS8DbuTw3/xS6p3VtH/pJPp0LcvtbW1OJ1Odu7cmRXP96233mL0aBWhOxgoKSlR3vYuaLRwCyHygH8B46SUdcATQA/gGKAcSC9d25WL9ZP1r0KIa4QQnwkhPtO06F4bfrDw+eefU1ZWxkknncTcuXP3Oz7r9/uprq7GZrMRiUTQNA2n04nT6aSgoIBIJILd6aTzyaehO3OsvO2okZyUjBip+7r8IePEShOURNMxblOCx0PrHj2RDjuRugAdjjgCf34+BQUFaJpGUVFRVmKTubm5nHzyyQf8vIrMM2HCBAYOHJhtM5odjRJuIYSTpGj/TUr5IoCUcruU0pBSmsBT/BAOKQPqd8HtCGz78ZhSytlSygFSygFO56H7i/rqq68yevRovF4vy5cv55133tmv8SKRCH6/35qcdDgc6LqOrutW53cpJcefcx7DbypNetn6DxcrJdAwf5icNGRKuA3iejLerUuBy18ILjflm7fw27vu5oSxpxONRgmHwzgcDoLB4AGdnEzjdDq54447Dvh5FYoDRWOySgQwF1grpZxWb3v96kHnAKtTt/8NXCCEcAshugG9gE8yZ/LBw/Lly0kkEkyaNIkOHTpw7733snXrVtauXbvPY+bk5FBXV4eU0qpVYrPZsNlseL1eYrEYUkrq6ur45ZXXcsr/3Y1udya96VQ+d1Q3SQh7KiUwleNtmCSkjZhuENclcQSRaIyKLd9yyV2T6TVoULISoduNx+NB1/WsxLgVikOBxiTZDgUuAb4UQnye2nY7cKEQ4hiSYZAtwLUAUso1QoiFwFckM1L+IKVUU/y7oH///vznP/9h7ty5vP3228yYMYMuXbpwxBFH7POYdrsdh8OBw+Gwlrynb9ff53A4cLndDL74cnoedwJvP/EodTuT/SElMPiii/nf355HSjBNiSMnl05HHcXapUsxJUgERe3acvHtt1PUqRMOp9MaN31Oh8OhhFuhaAL2KNxSyiXsOm79+s885l7g3v2w65BACMGQIUN46623mDlzJuFwmFGjRu2X2NlsNkpKSna7Pz8/HwCv1wskVxy2bt2aPsOH/+TYU664ep/tcDqd+/xYhaIlYZom06dP5+OPPwagurqam266qUnLPah63Flm5MiRjBgxgiVLljBs2LBsm6NQKPYSKSWzZ89mzJgxCCGYPXs248aNa9JzNhPhlrjd1dk2Yre4XHXEYjGqq5vOxj59+uzX+JFIhFAo1KQ27i+aplFbW9vMi+wbzfqz6HbXYtfsuKvd2TZlt7hCLiKRSLP+LMZiMerq6jJi4xVXXMGLL77I+++/jxCCq6++ml/96lc888wz+zXuz31PRHP4EhUVFcmbb74522bslnA4TGVlJV27ds22KbulvLwct9tNUVFRtk3ZLevWraN79+7NOozyxRdf0K9fv2ybsVs0TWPJkm+oqTk826bsFo+nmmOPjdOuibsf7Q+bN2+mdevWVsiwOfLQQw9RXV2967iplDLrl9atW8vmzIYNG+Ts2bOzbcbP8tJLL8mPPvoo22b8LH/+859ldXV1ts3YLaZpyhtuuCFj43399dfyzTfflFJKuXPnTjl//vz9HrOqqkoed9y9EmSzvbRtu0S+/PLL+/1c0zzyyCMyFotJKaX8xz/+ISsqKvZ7zFmzZskNGzbs9zhNSUoXd6mZqjqgQtEE1NXVcd9999G7d2+uv/56AGpra3n55ZezbFnL4oknnqCwsJDy8nImT57MgAED+NOf/tQsa9G88sorB6wTUzOJcSsUBxc+n4/zzz+fqVOnsnz5ct577z2WLVvGddddl23TWhRXX301Y8aMwe12s2LFCtauXcvtt99+QBp07C2VlZUHLP21+T17heIgQAhBly5diMVilJWV8dprrzFixIgDVp/8YMHpdDJmzBj+9a9/8fXXX1NQUEDr1q0P+fUB6lOkUDQRRx55JLNmzWLDhg1Mnz7dyqFX7B0TJkxg/fr13HvvvcyaNSvb5jQLlMetUCgULQwl3AqFQtHCaFHCrWnafie1KxQKRUunxQj39OnTOeussxBCcMopp/DRRx9l2ySFQqHICi1icjIcDrNx40buuece2rVrRyAQYPPmzQwaNEg1EVUoFIccLcLjXr58OZ07d6ZLly7cd999tGnThs8++4xgMJht0xRNSDQa5cMPP8y2GQpFs6NFCPfw4cPZuHEjN998MxdddBEXXnghJ554IgUFBdk2rUl46KGHDvlmt48//ji33XYbH3zwATfccAPffvtttk1SKJoNLUK4ASZNmsQNN9zAo48+ysqVK3nttdcoLy/PtlkZxTAMpkyZwuGHH94sV4YdKHRd5/XXX+e8887jd7/7HcFgkPLy8mZeVVChOHC0GHXo1KkTAwYM4LnnnuOYY47h8ccfZ9y4cWzatCnbpmWMl156idzcXE4//fRDWriff/55zj33XLp3786dd97JH/7wB2bMmIGmadk2TaFoFrQodRBCNGiNNWfOHObMmcPy5cuzbNn+EwwGWb9+Pf369TukRRvg8ssvZ+HChSxcuJBRo0YxaNAgOnXqdMi/LgpFmhb9TfD5fNx444289NJLrFu3Ltvm7DNSSkpLSxkxYgTDd9FC7FDk9ttvp7CwkA8//JCFCxcyYMAAbr/99mybpVA0C1pEOuDP0b59e26++Wauv/56pk+fTps2bbJt0l4RjUa58cYbufXWWznssMOybc4+YZomNTU1QPJHaOzYsUSjUSZNmsS55567T2MOGzaMIUOGcPrpp1NcXIyUkvbt2zNp0iTuuOMO3O7m2wFGoWhqWrxwAxQUFDB//nyuvvpqJkyYQN++fbNtUqOZOnUqv/71r+nVq1e2TdkrAoEAS5cuBZJtoNLFf4QQvPvuu+Tk5Oz3Oex2O8XFxda4Q4cOpaamhlmzZtG3b19Gjhx5yFeJUxyaHBTCDckv+YMPPshjjz1GIpGgf//+2TZpj2zevBld1+nVq1ezF6Da2loefPBB677NZsPj8QDg8Xj4z3/+0+TPQQjBGWecwUsvvcTSpUvZunUrV155ZZOeU6Fojhw0wg1QUlLCNddcw5QpU2jVqhUdO3ZstoIYDoe55557mDRpEt26dcu2ORbp1kgAK1euJN0LND8/n5tuusk6Li8vj+OOOy4rNp5zzjmcccYZzJ8/n2effZbLLrus2b7PKoVx/0l/Jpvreww/vM8HysaDSrgB2rVrx3333ccll1zCjBkz6NixY7ZN+gnbt2/n97//PfPnz2/SZqVSSsrKyujUqdNujwmFQlRUVFj33377bWbPng1A//79+fe//w0kP5B5eXlNZuve4nA4uOSSS3jsscd4+eWXOfPMM5tl+YN7772XW265Bb/fn21TWixSSq644greeeedbJuyWzZs2MDSpUt5/PHHD8j5DjrhBsjJyeH5559n4sSJXHbZZRx77LHZNsli/fr1zJ07lyeeeKJJRXv58uWsXr2aTz75hEGDBjFkyBB69uwJwOrVq1mxYgUAO3bsYNWqVdbjRowYwcqVK5vMrkzicDj405/+xJQpU5g3bx69evVi2LBh2TarAfF4HLfb3ay9xZZANBrNyLxJU2GaJoZh4HQ6D8j5DkrhhmTctbS0lNmzZ+N0OpvNhOV7771H3759mzz75Z///CcAkydP5uabb2bu3LlW1kq7du0sL7xfv35WOKSlcuutt/Lcc8/x4YcfYhgGJ554YrZNUiialINWuCEpUNdffz2lpaX89a9/pW3btlmzRUrJ2rVrWb9+Pf/3f//XpOdasmSJleN+2mmnUVZWxrZt2ygtLaVr164UFxe3uLTJn0MIwWWXXUYgEODee++lpKSEPn36KC9XcdDSohfgNIZWrVrx1FNPcdNNN7F+/fqs2fHll1/ywAMPMGXKlCYvjjV06FCCwSALFizgtdde46KLLuKJJ55gzJgxHHnkkQeVaNcnPz+f+++/n2nTprF06VK2bNmSbZMUiibhoBduSKYKzpo1i+eee+6ALo8Ph8O89NJLvPfeeyxYsICnnnrqgEygCSEYNmwY69ev5/HHHyeRSHD00UcfEh6ozWZj9uzZLFq0iGeeeSarP9YKRVNxUIdK6pOfn8/111/Po48+Sn5+vjVR11T85S9/YfXq1QwdOpRbbrmF559//oBNXACcfvrpnHbaabz//vuHXMzX4XAwZcoUNm3axMyZM5k0aZK1kEehOBjYo8cthPAIIT4RQnwhhFgjhJic2t5NCLFMCLFBCLFACOFKbXen7m9M7e/atE+h8bRv357bbruNO+64o0EKXKYJh8OsWrWKSZMm0apVK4LBIKFQ6IDn9AohDjnRrk+PHj2YPHnyQVu3XXHo0phQSRwYKaXsBxwDnCqEOAGYAkyXUvYCaoCrUsdfBdRIKXsC01PHNRt8Ph9/+9vfuPPOOxukwWWSN954g+HDh1NUVMSmTZt49913WbhwoSpLmgUKCgqaZX63QrE/7FG4ZZJQ6q4zdZHASOCF1PZ5wNmp22el7pPaP0o0s+Cqw+Hg3nvv5eWXX+bzzz/P+Pjnnnsub775JjNmzODss8/m8ssv58orr8TlcmX8XAqF4tCjUTFuIYQdWA70BB4DNgG1Usp0f60yoEPqdgfgOwAppS6ECADFwM4M2r3ftG7dmmuuucaq751pHnjgAb799ltmzpzJww8/TJ8+fZrkPAqF4tCjUaolpTSAY4QQBcBLQO9dHZa63pV3/ZPgrhDiGuAaSIYvskFT5nX37t2bI444ghNPPFGVIFUoFBllr9IBpZS1wHvACUCBECIt/B2BbanbZUAngNT+fKB6F2PNllIOkFIOaM5LWfcHIYQSbYVCkXEak1XSKuVpI4TIAU4C1gKLgV+nDrsMWJS6/e/UfVL735WqRJpCoVBkjMaEStoB81JxbhuwUEr5qhDiK+AfQoi/ACuBuanj5wLzhRAbSXraFzSB3QqFQnHIskfhllKuAn5SXk9K+Q1w/C62x4DzMmKdQqFQKH7CIbHkXaFQKJqK5557jieffJIvvviCe++9l6qqqiY/pxJuhUKh2EeklMyZM4cePXpQXFzMe++9R2VlZZOfVwm3QqFo9rRu3TrbJuyShx9+mD/+8Y+MHj2avn378vTTTzNx4kRM02zS8zaLIlOmafLhhx9m24zdUlFRQXl5ebO2ccuWLdTU1DT5B2Z/qK6u5tNPP23Szj/7SyQSyej7HAgE2LBhQ8ZWzYZCITyeatq2bb6fxcLCdWzZEszo6zhp0qSMjldeXs6qVavYvn37fo0zcOBAJk2axB133MG5555LaWkpF198MUuXLt1vG3/uu9wshFtKeUDiQvtKIBAgGo02axvD4TDPPGMjGGy+NnbunGDQoBpisVi2TdktNTU6l1ySydfwJF59FSAzYzocEdqd+ik5t76YkfGaAtdmP+Hwb5r19yUWi/F/tf9HzJGBz+Kf4OrQ1RACLoCP+Tgjb3dcxne7r1kIt91u58wzz9zvcaSUvPzyy7hcLkaPHs2XX37J0qVLue6667DZ9j0qtHHjRgzDyIiNTYVpmuzY0YaKisHZNmW3FBev4pRTTqGwsDDbpuwSKSXz57/N5s3N9312u6vxt32IzWduzrYpu6Xth23ps7PPfn9fTNPk8ccfZ+jQoRx11FG8+eabJBIJzj777P2uLV9eXs624dsI9Azs1zhNSZ599825D6oY99atW3n//fet5rjdu3enqqqKjz/+ONumKRSKvWTp0qXU1tbSvXt3hg4dyqBBg3j//ffZunVrtk3LOgeVcHft2pW+ffsyfvx4ysvLufvuu4nFYgwZMiTbpikUir1k6NChhMNh7r77brZt28b48ePp27cvXbt2zbZpWeegEm6AESNGMGbMGOx2OwMHDuT888/PtkkKhWIfueCCCxg4cCB2u50xY8YwYsSIbJvULDjohLtHjx5ceOGFFBYWcsEFF3D00Udn2ySFQrGP9OvXjwsuuIDCwkIuvPBCevTokW2TmgUHnXArFArFwY4SboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWHHC++uorPvjgg2yboVC0WJRw7ydSSkzT5IEHHmDLli2N7vmYftzuLuvXr+fEE09scHnuueea+Nk0PTU1NcycOZM333yTESNGNOs2ZgpFc6VZtC7LNBUVFbRr1+6AnGvTpk0MHz6cadOm8cc//pFwOMw777wDwDfffIOu67t8XCwW4/LLL0dKucv9vXr14tVks0KLTDWczSYFBQX85S9/oaKigtdff53169fj8XiybZaFYRjZNkGxC9q1a0dFRQVt27bNtinNgoNSuEtLS3n44Yf3q89kY5BSsnjxYiZPnkznzp0ZO3YsDz30EPPmzQNgyZIlJBKJXT42JyeH5cuX73fvvJaGEILvvvuOGTNmsG3bNh544AHsdnu2zbIIh7NtgeLH2Gw2ZsyYQWlpqfXdOtQ5KIX7QGKaJg6HA9M0LW8t7WXPnDmTnJycbJrX7Kirq2PJkiWMHTuWt956i9mzZ5Obm5tts4DkD/FvfvPHbJuhUOwRJdz7gRCCUaNGMWzYMB5++GHeeOMNOnbsyFVXXZVt05otubm5FBUVsXXrVhYvXtyswiQKRUtBCfd+0qNHD8rKynjwwQeZMWMGXbp0ybZJzRqHw8FFF12ElLLJQ1kKxcGKEu79RAiB3W5n4sSJ2TalxSCEOORi+wpFJtmjyyOE8AghPhFCfCGEWCOEmJza/qwQYrMQ4vPU5ZjUdiGEmCmE2CiEWCWE6N/UT0KhUCgOJRrjcceBkVLKkBDCCSwRQvwnte8WKeULPzp+DNArdRkEPJG6VigUCkUG2KPHLZOEUnedqcuuk4+TnAU8l3rcx0CBEOLAJFUrFArFIUCjZoeEEHYhxOfADuBtKeWy1K57U+GQ6UIId2pbB+C7eg8vS21TKBQKRQZolHBLKQ0p5TFAR+B4IURf4DbgCGAgUASUpg7f1azTTzx0IcQ1QojPhBCfRaPRfTJeoVAoDkX2Kh9LSlkLvAecKqUsT4VD4sAzwPGpw8qATvUe1hHYtouxZkspB0gpB6hFKgqFQtF4GpNV0koIUZC6nQOcBHydjluLZF7X2cDq1EP+DVyayi45AQhIKcubxHqFQqE4BGlMVkk7YJ4Qwk5S6BdKKV8VQrwrhGhFMjTyOXBd6vjXgdOAjUAEuCLzZisUCsWhyx6FW0q5Cjh2F9tH7uZ4Cfxh/01TKBQKxa5Qa44VCoWihaGEW6FQKFoYSrgVCoWihaGEW6FQKFoYSrgVCkWzx+fzMWiQKnmUplmUddV1nSeffDJj40UiEV588UUKCgoyMl4gEKCsrCyjNmaab775hs6dcykpWZVtU3aL37+F+fPn43a793xwltD1avr2bb7vs90eI39zPn2f7JttU3ZLbnkuS2NLqaioyOi4drs9Y9/B1atX0yPQg0T+rlsLNge+1b/d7b5mIdx2u51Ro0ZlbLxMjgVQVlaGzWbL+LiZxOFwcMIJRRx11FEZGU/XdRyO5MfDMIyM9IWcO3cLf/7zMDTNt99jNRUnn7yCl15qvu9zXV0d//rXDq4YtevlERKJxERKiUhVn5CpihM2Ybe2NSWrVq2itraW4cOHZ2S8+p+/TH0WA4EAU4+fSseOHfd7rKZisG3wbvc1C+EWQtCzZ89sm/GzbNiwoVnbuHr1atq0aZMRG7du3crtt9/OnDlzCIdjCDOLAAAgAElEQVTD/PWvf+XSSy9l4MCB+zWu1+slGOxKPF643zY2DRKbzZXR97m8vJy8vDx8vsz8WFVXV+P1eunWrRtVVVXJjTkadeFa8vML+GLHYj6MvEowVoOpC7y2IsLxMJF4mKu6T8bjzKFdXkcKvcUEAgGcTiehUIiSkhJ27tyJ3+8nEolQUlJCOBzGbrejaZolmOFw2NqXn59PZWUlJSUlAFZHo+3bt2O32zPyOm7bto3S0lJmzpxJXV0dCxYsYMCAAZxyyin71YwjPz+fjh070qlTJ0KhEDk5OYTDYZxOJw6Hg2g0is/ns/bF43GEEDidTiKRCH6/n2AwSE5ODpqm4Xa7SS5hAZfLRSgUIi8vj3A4TG5uLrquY5ombrebYDCIz+cjEong8XgwTdNylDwej/W8fq5DVLMQbkXzYvHixfzyl7/k008/5f333+ekk07i1Vdf3W/hPhR5/PHHGTlyJCNGjMjouFE9xJfR9wjpAcrq1lAVq8BT7UOYDlrbutEh5yi+2vkpDruPvr5jsOXZ+aJ6Ka9uXMDoLucxqstY2ng6IKXE4/EQj8ctEUmLk2malhilRSR9rBCCSCSCy+Wyrl0uV0afI8Cnn37K0UcfTXl5OVOmTOGyyy7jrbfe4uSTT85IF6VQKER+fj6hUIjCwkJ0XUfTNIqKiqipqaGwsNASYSkl8XickpISampqKCoqIhKJkJubSzQaRQiBaZrWmFVVVeTn5xMIBHA4HNhsNqqrqykoKKCqqgq/309dXR1CCNxuN9FoFLfb3ajnpYRb8RMuv/xyDj/8cNq1a0dlZSWzZ89m7dq12TZLUQ+bsDHzk8fQjDgd/R3pXtgdt93Ls+/Ox+9zcViXdlRtDVMVX0O/vrUUuVqjGSbtcnqwpmIV6A5audsw+rAzASzRSd+22WyYponNZkPX9QbnTreeS4u5zWZrslZ0Z511Fr/85S95++232bBhA//73/94/fXXM9avNCcnh1AohMPhoK6uDrvdjs1mIxAIcOONNzJgwACuvfZaIpGI9Zxra2vxeDzU1dXhcDiIxWJWWNFms1k/bvn5+SQSCbxeL6ZpMm/ePN555x2efPJJ8vPz0TTN2ielbLRogxJuxW5YvHgxH3zwAR9//DHjx48nPz8/2yYp6uG25/KXgY9z9oKz2OEy2OioJlfkUiS6kBtzE9mSx87vo3xdsQN37pd4qoqoKdqJ11GEw+YiUBcjlkhwQsfhOKQTr9dLOBxGCJH86++UJGJhnA47CA+mlNjtduLxOF6vF13XcTqdhMNhfD5fk/YQXbhwIV9//TWPPPII06ZNo127zPVlCYfDFBYWUldXR15eHoZhoGkafr+f119/nUWLFmEYBpdeeikFBQXE43H8fr/lcYdCIVwuF7FYDMDyuAsKCqitrSU/P5/vv/+ed955h9LSUuLxOM888wy1tbX4/X5CoWSPmrTY5+TkKI9bse+0b9+e1q1b4/f76dy5c7bNUfyIWCxG91ZdWfibhVz4z/NZvmU5Tt1BsasImQAzYXLfhffz8ZdL6ezvzJtr3qRDp0K2fFuJ25dHeWUVsYTOfW//lbvGTiYcDuP3+4nH4zhljOfvPA5Tj4GQ/OqWleQUtMU0TQoKCgiHwzgcDgKBALm5udTU1JCbm0tubm6TPNc2bdoQCATwer0Z/yw6nU50Xcdut2MYRnJSt14z62g0SmlpKXfeeSdvvfUWxx57rBWP1nUdm82GlNL615EOe0gpcblcrFq1ilNPPZVAIAAkkwjsdrsVVnI6ncAP/3KUx61QHMTk5uZSWVlJB297nvjVLG5ceCM7anbQs7gXdmnHTBj888MFeO1eorEILoeT7Z84OKLLALbt2ERd8Q5KtE78vzcXcErXUzlt0GlUVlbiccHyNx8mENJo3XkAvY45CeHMJR6PY7fbqa6utiYni4qKqKyspLi4uEk97qbE4XCgaRo2mw1N06zn8fTTT1teNEAikeCiiy7ikksu4ZxzzqFr165MmTIFKSWGYVgC7HQ6+d3vfsf27dv5+9//zj/+8Q9LtCGZFTN79mx+97vfYZomDofDmkfYm2wZJdwKRQskEomQl5cHwADPAP7fJX/nrKfO5usd6/A5fOSIHOIiTmV8JxWV5VTvrOb0gWMpcbXHxM7ReQN464v/UOR24LY5CQaDBHZs5JV/z2DH1s9o3aE/w34zlYLWXbEJgd1uxzRNiouLLY+7qqoKn8/X5B53UxKNRikqKqKurg6/34+u6yQSCf7+97+TSDTM8d62bRtTpkzhtddew+v18tlnn2EYRoNjbDYbr732GlJKVq5c+ZPzSSmZPXs2F1xwAQUFBYRCIYQQeDweEomE5fHviUN25WQ8Hmfnzp3ZNkOh2CfS3pmUEpuw0bOoF+9c9w492x5GXayOdRXr+WzrClZ9twpfnp+BfQYS1aJ8u30rwmGj7vsEJ/YYQ16ugzufv4HN2zby7cbVfP3lcoadeRvn3jCf4rbdEST/xqcFJZ0WKITA4XBgmiZ2u/0n3mJL8cDTPzxut5vq6moikQgAmqZZx0ybNq3BGo7Vq1ezbNmyn4g2JGPcK1asaCDabdq0Yd68edZ9h8NBq1at0DSN/Px8vF4vkPwXpUIlP8Prr7/O1q1b+e677zjyyCM5++yzLe9FoWgJ2Gw2YrEYIuUNa5pG2/y2vHHtq7z25Wu8+uXrLF3zERVV24kkwlSZduL2BGbCBB3WrvuKUwaOZnjJr2k9WHDjtAs5vNLOMQNGcdhxY8jNy7dEOp31IIQgkUjgdDoxDAOXy2VNUv5YcNJ//5s76TTAuro6ioqKLI87HfqApIi/9NJLFBYW7lKs98SoUaMa/BDous7OnTspKCggEAhYHrdKB9wDkydPZty4cQwfPpzLL7+cX/ziF0q4FS2KWCxmhSai0Sher5fa2lp8Ph8je47i3IG/5o0Vb1ARrCARS+Dz5BGNRIlHEyAF+gidzm06MfL4kRQVFuGvKOK7j77g5F/9gZLW7amqqsLr9aJpGg6HwxLpdH6yx+OhtrbWWrjj8/maJI+7qUmnAzqdyXBReoKwvkDn5OSwrw3Nr7zySh544AHeeusta5vdbsfv9zdIB4Tkwh3lce+GqVOnUlpaSq9evXj11VdZsGABEyZM4IUXXmgxf+8UitzcXOrq6oDkFz69Gi8dsw2Hw4w+djSB2lpyXS6itVV8O+9RYhvX4mnXgSNu+jMJpxM7sLOinIqV23B7W9Opc0/qqqsp9PlIaBobX3mR5f+cj3B6OOLM39DjxJEUFhdjGAYlJSWEQiGKi4utPOaWRjweJy8vj0gkQk5OjrWK0ePxWMckEgncbreVebI3nHXWWQANJjqllITDYbxer7Xd5XI18Mr3RMt8tfeDcePGMXjwYDRN4/XXX+fKK6/k0UcfzbZZCsVeEQ6HrdV80WiUvLw8K284fb195TJE2Wa2vLYQZ46XoydPB5sTYbdh7Kxg7Z0TMYQNM2Zirv2S1kf3Z8sLz/LdB4uJBOvI69SNw8++kDPumYqpa3z17ts8f8WFuPILGfnH8eS1bU+XXr0IBALk5OS0yH+t9eP3UkorxPPyyy/Ttm1bgsEgW7duZcWKFT9ZiNQYNm7cyHHHHcfGjRut851zzjnWnED91MO9cRwPOeH+3//+x8iRI5FS8tRTT9G7d28KCwuVt61oUbjd7gYx7kQigcfjQdM0PB4POz94k61T76TTBVfT59a/IgSE160l/TGXQtD3zmlIAbGKcgo/XkIikcAubAy44VZwOIlHIySiESJVOzClpMtxA+l83PEEqqv516Q78HfqzGUPzSDH72+xHrfT6SQej2Oz2ayl/EKIBh7yI488wiOPPLJP40+YMIFt27YxdepUIDk3MW7cONxuN6Zp4nK5rB+LvXkNW+arvY8sXbqUjz76iNLSUmw2G5s3b+aYY47JtlkKxV6TzuaAHyrmpReSVL73Bt89eT89LroWb9cexL/fgkBgQyIEqVqBguimrzGlxARaHz8YE0hEIkQrKzBN0KXElBIDMEyJYYIpk+f95SWX8v78+cy5/vdc+/QzDSbzWhLpglrplYzpycmpU6fuc1z7x6RFG5Lv25133smdd95pTYqml8knEolGZ5YcEsItpWT9+vXMnz+fBx54wPpLp0Rb0VJJZ3UIIayVfJFIBFG1ne0vP0/nsy/GXVSCGajChg0hUisCAQGYSDCTtzEliUgIQ0p0MynSppSYMnlbT1+bEgMTzQCXO4dfXPRbFj08nUevvIKb//7/svuC7CPp5esej4eamhqklDz22GM89NBDDUIjhYWF2O32BmmRNTU1uxwzPz8fp9OJaZpWDZj0sVJK5syZg91u56677rIyVQzD2Kt0wEMij/uTTz5h2rRpPPbYYy0yDqdQ/Jh0TDtdeS4QCFCQn0/Flyvxl7TFW1CMGaqFWAQRD2GLR7DHw9jikeQlFkbEwhANQywE0TBmJIyMhDAiIfRICD0cJBEOoYWCJEJBEuEg8WDyOhaqw9Q1Tr7qamrKygju2JHtl2SfCAaDFBQUkEgk8Pl8PPnkk9xzzz0NFt8ceeSRrFixgrKyMjZt2sSOHTv47LPPdlkts3fv3rz77ruUlZXx5ZdfUlZWxieffEK/fv2sYwzD4PHHH+eBBx5g27ZthMNhIOn9NzaN8qAX7nfffZe3336b6dOnqzi24qAhXZDI7XZjGEYyrS1QS+37b2DL8aAFayAWQUYjEEsKtS0ewREPY49HELEIxCPWMUYkjIxGMKNhzGgEMxJBj0TQIyG0SJhE+jocJhEOkQiHiIdDaLEETm8e7/2jZXrcOTk5RCIRHA4H27dvZ9KkSQ329+nTh1mzZlFUVGTFwuvq6mjVqhVTp06lV69e1rFut5ubb76ZXr16EY/H8fl8aJpGmzZtmDt3Lscff3yDsadOnUo4HLY6Qql0QJJ/ST7//HPef/99xo0b1yKW40oprZzONJMnT2bx4sUAXH311Vx22WXZME3RzEiHRiD5hU8kErhtgtg3X1E8aixmNIxhs2G3iaR7ZgO7zY7NBqYEYUowJdKUSNNEGhLTBMM0k/FtU6KZEk2aaEYyhKKbZnKbKdGN1G0Jbbt2QctQPPhAo2kaubm5xGIxrrvuOiu7JE15eTm33norhmFwxBFH8Oijj+LxeIhEIhx77LGccsopbNiwAYBTTjmFESNGkEgkrB+Eu+++m5UrV2KaJlu3bm1wbiEEf/jDH3jxxRdxuVx7lWp40Ar32rVreeSRR5g1a9YBWRhQUVFBYWFho/spmqbJhg0bGnxIli1bxsMPP9zguMmTJ1NaWgrQYieAFJmnfvqaldJmE0jTwIxF0G1gs9kxbQJpE2ATSLuAtDCZIM2ko2AayWvdBN0w0SVouokuk3HthGEmhdww0U2ThCnQDIlmmmiGSSwcyvbLsc+kGxg4HA7mzp3L+++/z0UXXWTtr66u5uOPP6ZHjx7cf//92O12IpEIbrebeDzeIBPE5/PRqlUrK8vH6/UyadIkxowZw4oVK35y7pkzZ3LhhRc2aGDRWA5K4f7ggw9YtGgRc+bMyVjB9d0RCAR44YUX2LRpE+3bt6dLly6cccYZPznulVdeYUe9OKBhGCxbtqzBMQMGDNjlG5wNEokEn3/+Of3798+2KYpdkEgkLIfEMAw8Hg+xQC1GOEJs+zZy/PkYNjs2u0DYQNgFCBsmNkwkupQYZlKQdSPtVUt0aZIwQEt71EZyMjIajRLXNHDnkDBlSrhBMw3ikQhNucBdSsnixYsz1sPyx2OnwxN2u50PPvjgJ8f07t2bBQsWkJeXh8Ph4O2332bHjh0UFBTQr18/LrvsMnRdZ9CgQSxbtowtW7aQk5PD2WefjcfjYdGiRYwdO5Yvvviiwbiffvop5513nuW87U2ZgINOuD/44AM++ugj7rrrriYXbUj213vmmWd4+umnWbFiBVOmTMFut/PPf/6zwXHHHntsg76DbrebOXPmNNu4ezQa5bXXXuOdd97JtiktmnPOOYf58+dzwgknkJOTk7FxPR4PO3bsQAiB1+tN9kH05WFKqPt6DfZeRyByPGCzpTztVCaJpiPcHgxpJoVX1wlv+45YOEzMMEkYkrguiZsGcR2cxW3A5ycWiRJPJBC6QSJ1nGZKErrB1tWr6Tnw+D0bvY9IKZk1a9Yuq+1lgnSnn1AoxKxZszjzzDNZt24d69ats84/depUHnzwQYQQVFVVMX78eIYMGcILL7zAOeecY5Vnvfbaa3nhhReYNm0akKxLcueddzYQ5Q4dOjBq1Cief/55SktLyc3NbXRVwDQHjXBLKVm7di2LFi1i0qRJ+P3+Jj+naZpMnDiRv/3tb8ybN48XX3yRjRs3smzZMiZOnNjg2M6dO2f0i6toGfTv359bbrnFintminSz3vRiEZ/PRzAU5MjSe1kzeRzGl2FKDu+LdLswbAJDgIhHMGtrsLdpj6kbBDeuwdAlsXicuKYRN0ziOkR1g7huEjNMtIptaNiR3nzs+QXISAzd7kAzIGGYbPxyFTZXLkf+YljGntuBJN3Y1+Px4PF4+OSTTygpKeG3v/2tdczXX3/NunXr+OCDDzj//PO56qqrKCoqstL9DMOwmicYhkFeXh5nnHEGTz/9NNOnT2fLli0N5q4KCgqYPn06N954I926dbO6Dh2SC3C++OILHn74YebOnXtAPG1Ixhnvu+8+rr/+eubMmcOIESO47bbbDpi3rzi0MQzD+pwlvUY7wleIppvYwmGqv/qc/J5HYDN07KaB0OJold9DeVkyV9sEzTRJmEkPOqEnvWiDVO62hEQ8QUwziAWCxL/7jphhojvdeNu2Z9uWrQSDEboefxh9myCMcSBIN/aNx+MUFRVRWFjId999RywWs/puQtIx3Lx5M/fffz9r1qzh3//+N8888wxSSnJycqz0wb59+3LzzTczceJEFixY8JPwh81mIxqNUl5eTu/eva1FPk6nk1gs1ug5skYLtxDCDnwGfC+lHCuE6Ab8AygCVgCXSCkTQgg38BxwHFAFnC+l3NLY8+wLixcv5t133+XJJ588oIIphKC4uJijjjqKp556ilgsxkUXXaREW9HkpJdqp8U7XV41BJgeD4l4DDSdcG0NhOsQoSA2m8CGQCIxpIkpk8Ktm6Ri1j/ErvV0/NtMxsNNU2LI5OpJQ9MI1dQSi0Sxuz1I2XLqb/+YvLw8qxt7bW0tLpeLTZs2MWTIEEaPHk1dXZ01gTlr1iyklLzyyisMHjyY0tJSq9u91+tFSsmECROYP39+A9G+4YYbLI88XRxs48aNtG/fHr/fj2EYe/2PbG887j8Ba4F0DGIKMF1K+Q8hxCzgKuCJ1HWNlLKnEOKC1HHn78V5Go2UkmXLlvHhhx8yfvz4rJSVLCkp4f7772fVqlV0795dLfBRHBDi8bhVwS4SiZCbm5sss9r7KAp/cQrb33wZEx1ZVYVDmNh0E2ETiJRwm7KeEEuZjG0bsoGA6/UmL3WZnLA0pETXJPGaAKYEu8fDGbfeYtVIaWmkQ06JRIL8/HyklAwbNoyRI0cSi8Wspeg2m41evXoxfvx4AGbMmMFNN91kpRMmEglrleS0adMs0b7rrrv4/e9/j8fjsVa5ejweYrGYVdURsLrFN1bDGuUaCiE6AqcDc1L3BTASeCF1yDzg7NTts1L3Se0fJZro53j9+vU8++yzjB8/nsLCwqY4RaM5+uijlWgrDhher5dQKNSglnR+fj5xYcffpSe6CXHNJBqJEo0miBgmUd0koievo7pJTE+KdVSTyYlJ0ySRSv/TpCRuSnRDoktBIuVxa6aJzZuXDCW4ctB0ncEnj24R6yR2RW5uboPXMB3yqKurIycnh7q6Oqu7fe/eva3H6bpu9ZKMxWI4nc4GTYDT9OrVi8LCQpxOJzabDb/fTzQaJT8/36rHnfa098bxbKzHPQO4FUinRRQDtVLK9GL+MqBD6nYH4DsAKaUuhAikjs9on7ClS5cyf/58nnjiiRb7N02h2FcikYiVpZS+HQgE8Pl82Lr2wtaqPbGKMjSZwI7AbiNVGTDpq0nZ0OtOL66xskUMA81IinfCTOdzS3QDYjW1mAKOHjUCT1ExlZWVFBQUNMiaaimk67yk86jTYU6Hw2E1AZZSYrfbG0weCiGsvOt0DZP6lzTpbvDpbZqmWXne6RBXOo7+48V3P8cePW4hxFhgh5Ryef3NuzhUNmJf/XGvEUJ8JoT4bG+rcC1evJjFixdb6TkKxaFGOu4ajUatCa/03/ouQ0/E06EzUcMklsoOSXrYJjFdJ6brRHWDqG78sN8S6dREpSGT+dxpMU/leWtmMoRS0rUb36xew9jrb8Dv97fI7jfwQypgWpzr53SnKzBKKbHZbHTr1q1BY4T//ve/AFaIJB3/rqqqApIty/r27WvtS2ed2Gw2DMNo8DjIfB73UOBMIcRpgIdkjHsGUCCEcKS87o7AttTxZUAnoEwI4QDygeofDyqlnA3MBmjTpk2jLV6zZg3//e9/ufnmm60mmwrFoUb6i5/+8qczINKCM+CWe3jlt2cQjYawC5GcmJRYZV1NwExXAUSi68lMkqQ4m+gGJMykmGummco+SQq42+endc/DadWzJ0Xt2lntvloi6SbBfr+fQCCAy+XC6XRanYSqq6vx+XxEIhEKCgoYNmwYixYtIhwOc8MNN9CpUydL2AHKysqsSoDHHXcc7dq1s+qkp2vK1NTUWJ3l063LEolEZtMBpZS3AbcBCCFOBG6WUl4shPgn8GuSmSWXAYtSD/l36v7S1P53ZQY7h/bu3Zu7775bLf9WtBiaonGuYRjWFz39lz4SieByuYhGoxR070Fu527sWPM5NmHDbpV0NZHYkCLlAaYmJ5P1tpMrJ5P1SITlaWumScxIhkwSpoHPX4DN5aJbv374CgqsmtIt0etOVweMxWIUFBRgmiaGYVBUVGS1ZYtGo/h8PqSUVn0YgMrKSiorK3c7dvpfUCAQwG63Y7PZqKmpwev1Ul1dbcXQ02GXdLPgxrA/eWulwHghxEaSMey5qe1zgeLU9vHAxN08fp+w2WxKtBUtiqbwRr1eL8FgkFAohMPhsPKRI5EIxcXFRCIRxjz2DHHNJK4bRDUjFR6RyeuESVRLhk/i6TCKIYkaENMFMd0kYZjEjeR2zTBJ6AaFHTrTa+gwPLleTrngAoLBICUlJS12ctLn81FTU4PL5aKmpsbKq043QN65cyd2u526ujoikQgDBw6kU6dOexy3bdu2jBgxwvpBcLvd2Gw2qx9oSUmJlcmSjhzszWu4V8ItpXxPSjk2dfsbKeXxUsqeUsrzpJTx1PZY6n7P1P5v9uYcCoViz0SjUXJzc8nJybGK8KdXAAYCATweD9Lhot8lVyeF2kgKd0T7IbadzC4xkvFvQ9YT8eSy9rhuErfi3RJ/2w50H3A827Zs4aQrriAQDJGTk0NtbW2DVl8tiUgkYnVc9/v9VkpjQUGBFR4xDAOv14vH42Ho0KHMmzePgoKC3Y7pcrmYM2cOJ554Im63m2AwiKZpSCmtbJWamppk3n0oZP1Y7M1rqFaKKBQtELfbjaZpVpZCNBq1VvDl5eUlGwMUFlEyeDi2Vu2I6pKIbhIxkimBP6QFyh9uGyYxzUh62XoyRTBuGCRMicufT+uevajasZ1IMET3Y47B5/MRj8fxer0t9l+wx+MhHA7jcDgIh8NWOmD6RzAYDGK324nFYlZPyt69e7Ny5UqeffZZ/H4/Pp8Pv9+P3+9n+vTprFu3jsGDB+Pz+ax2ZA6Hw6orky5RoOs6ubm5DepxN5aDZsm7QnEoUX8pdjojon7tjPSkZbfjBzPg0qt5d/qDaJGw9XiZWogjZXKS0iAd7072mtStBTgmnqIS8tq0IxKN4nZ7mPL2W5YN9SdFWyL124ulqd+erP6+dPlcm81G69atGTNmDN9++y26rlsrIwFrviFdX9s0TSt7pP57BMn5ifpZJ41FCbdC0QJJNwhOi0G6WbDNZkPTNOva5XIx7KrrMKTk1b9MRjYQqGSGiSFJ5nSnl7XLH+py61JgMySBmhq6tmvH1Q8+iC1VCS8ej1s5yUKIFtnpvb7oplc3QtITT5fLhYbecHpf/YUz9VP6NE3D6XRamSKaplmPTSQS1r70e1b/h6KxqFCJQtECSedsx2Ixq7h/elteXp61BD0YDGKz2Tj+okv59UMz6XjswGQ8O3XpMOB4PG3aEjPM1EXSa/iJxE2SS+BNiEWi9D/5JK647z5yU81CTNMkLy+PeDxOXl5ei8woASxhTS+GSYtnfdFNL1VPe+DpSn7psEo6N1sIYSVPpJs5m6aJw+Gw9judTnRdb7Av/YO3N/9aWt5PpELRQohGo1RWVhKLxSgrK0PTNEpKSjI2flFREZD8C5+Tk4MQwtpWWFiIEIL27dtb+0deejnDzjsfo54HaHc6MU0D0/jBE3e4XGj1muUCuDweXB6P5R36/X6ryFpLzeGG5A+g2+1u8BrCD+GS9L76pLux72pfmp+LW+9LTPvHKOFWKJqI//3vf0yYMIEdO3YwYcIEiouL+dvf/pax8etXoUwLyJ6u7Y2sp+PZzeK23Y3bUkkvYkrfrr/9x9sas+9AoUIlCkUTEIlEeOedd3j66afp27cvTz31FH369GHJkiXZNk1xECCaYlXX3lJYWCgvueSSbJuxW+LxuLWKqrkSCARwOBwZKwNgGAZbtmyhR48eGRkPkm3etm8vQcrmm4FQUPA9Xbp02POBe8AwDLZu3Ur37t3ZtGkTXbt2pa6uDtM09+tzZBgGVVVVtG7der9tbCrC4TCGYWS0C9X69es57LDDMjZeVVUVeXl5jV6pmA3mz59PTU3NLt36ZiHcQohKIEyGKwhmkBKUbfuCsm3fULbtGwebbV2klK12taNZCDeAEOIzKeWAbNuxK2bvclkAAAUsSURBVJRt+4aybd9Qtu0bh5JtKsatUCgULQwl3AqFQtHCaE7CPTvbBvwMyrZ9Q9m2byjb9o1DxrZmE+NWKBQKReNoTh63QqFQKBpB1oVbCHGqEGKdEGKjECKjTRf20Z4tQogvhRCfCyE+S20rEkK8LYTYkLo+IC3lhRBPCyF2CCFW19u2S1tEkpmp13GVEKJ/luy7Wwjxfer1+zzV8i6977aUfeuEEKOb0K5OQojFQoi1Qog1Qog/pbZn/bX7Gduy/rqlzuURQnwihPgiZd/k1PZuQohlqddugRDCldruTt3fmNrfNQu2PSuE2FzvtTsmtT0b3wm7EGKlEOLV1P2med1+3J34QF4AO7AJ6A64gC+AI7Ns0xag5EfbHgAmpm5PBKYcIFuGA/2B1XuyBTgN+A/JZs0nAMuyZN/dJNvb/fjYI1Pvrxvolnrf7U1kVzugf+q2D1ifOn/WX7ufsS3rr1vqfALIS912AstSr8lC4ILU9v/f3tmEalGFcfz3LLQiI1FCxLsoQ1AIsUgJFBGTyAqvwl0IQS4EwWohLQQR3Lms3IiC9qF9KWmhuDK6iisx/Eiv+NGFgsSLd6XpxtL+Lc4z3uH1fV8VmznzwvOD4T1zZmD+/N85z8x5zsyc7cBaL78PbPfySmBvBm1fAgNt9s/RJj4CvgUO+XolvuW+454HDCvNpvM3af7K/sya2tEP7PLyLmB5HQeVdIz7J1rupKUf2K3EcdJkzlMz6OtEP7BH0m1JvwPDpP+/Cl0jkk55+SZwAZhGA7zroq0TtfnmmiTplq+O80XAYmCf17d6V3i6D3jdrJqPeHTR1ola24SZ9QFvAzt93ajIt9yBexrwZ2n9Ct1P4joQcNjMTprZGq+bImkEUsMDcr5v3ElLk7z80Lumn5fSSln0eRf0ZdLdWaO8a9EGDfHNu/tngFHgJ9Jd/nVJd9pouKfPt98gzUFbizZJhXeb3btPzax4j71u77YA64HiU4uTqci33IG73RUm92Mu8yW9AiwFPjCzhZn1PCxN8XIb8CIwBxgBPvb62vWZ2QRgP7BO0l/ddm1TV7e2xvgm6a6kOUAf6e5+VhcNtepr1WZmLwEbgJnAXGASaSLzWrWZ2TvAqKST5eoux38sbbkD9xWgPGVyH3A1kxYAJF3131HgR9KJe63oYvnvaD6FHbU0wktJ17xx/QvsYKxbX6s+MxtHCozfSPrBqxvhXTttTfGtjKTrwFFSfniimRWfgS5ruKfPtz/Lw6fP/g9tb3r6SUoTln9BHu/mA8vM7A9Syncx6Q68Et9yB+5fgBk+8jqelKQ/mEuMmT1tZs8UZeANYMg1rfLdVgEH8iiELloOAu/5SPprwI0iLVAnLTnEFST/Cn0rfTT9BWAGcKIiDQZ8BlyQ9ElpU3bvOmlrgm+u4zkzm+jlp4AlpDz8EWDAd2v1rvB0ABiUj7jVpO1i6WJspBxy2bta/ldJGyT1SXqeFMcGJb1LVb5VPcr6oIU08nuZlEfbmFnLdNII/q/A+UIPKff0M/Cb/06qSc93pG7zP6Qr9OpOWkhdr63u4zng1Uz6vvLjn/WTc2pp/42u7xKwtEJdC0jdzrPAGV/eaoJ3XbRl982PNRs47TqGgE2ltnGCNDj6PfCE1z/p68O+fXoGbYPu3RDwNWNPntTeJvy4ixh7qqQS3+LNySAIgh4jd6okCIIgeEQicAdBEPQYEbiDIAh6jAjcQRAEPUYE7iAIgh4jAncQBEGPEYE7CIKgx4jAHQRB0GP8B3ecKdiRIWmrAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## ポリシーの確認\n", + "\n", + "Q-Tableは各状態における各アクションの「魅力」を示しているため、これを使って効率的なナビゲーションを定義するのは非常に簡単です。最も単純な場合、Q-Tableの値が最も高いアクションを選択するだけで済みます。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "# code block 9" + ] + }, + { + "source": [ + "コードを何度か試してみると、時々「動かなくなる」ことがあり、ノートブックのSTOPボタンを押して中断する必要があることに気付くかもしれません。\n", + "\n", + "> **タスク 1:** `walk`関数を修正して、パスの最大長を一定のステップ数(例えば100)に制限してください。そして、上記のコードが時々この値を返すのを確認してください。\n", + "\n", + "> **タスク 2:** `walk`関数を修正して、以前に訪れた場所には戻らないようにしてください。これにより、`walk`がループするのを防ぐことができますが、エージェントが脱出できない場所に「閉じ込められる」可能性は依然としてあります。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 5.31, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "# code block 10" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 57 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5wU5Z3v8c8vEk1islETkuPtlcFdT3LMvjbRsF5iTnajibdkQ5KjOeRKjKsnWT3rms1mwVw8q/EWL6gJXlAwxBsqQSWCIgJeuDPc5TrDfQBhhoFhYBiYgef80U8PPT19qe7p7qrp+r5fL5jup6qrnuqq/tVTTz31POacQ0RE4uE9YWdAREQqR0FfRCRGFPRFRGJEQV9EJEYU9EVEYqRf2BnI5aMf/airqakJOxsiIn3KggULmpxz/TNNi3TQr6mpoba2NuxsiIj0KWa2Mds0Ve+IiMSIgr6ISIwo6IuIxIiCvohIjCjoi4jEiIK+iEiMKOiLiMSIgr5IlXr1nW007T0QdjYkYhT0RapQy/4OfvLkQn78x/lhZ0UiRkFfpAp1HjoMQMOu/SHnRKJGQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYCBX0zu8HMlpvZO2b2jJm9z8wGmNlcM6szs2fN7Gg/7zH+fb2fXpOynGE+fbWZXVyeTRIRkWzyBn0zOxn4V2Cgc+5vgaOAwcCdwHDn3OnALuAq/5GrgF3Oub8Bhvv5MLMz/Oc+DVwCPGhmR5V2c0REJJeg1Tv9gPebWT/gA8A24AJgnJ8+BviGfz3Iv8dPv9DMzKePdc4dcM6tB+qBs3u/CSIiElTeoO+c2wLcDWwiEexbgAXAbudcp5+tATjZvz4Z2Ow/2+nn/0hqeobPdDGza8ys1sxqGxsbi9kmERHJIkj1zvEkSukDgJOAY4FLM8zqkh/JMi1bevcE50Y65wY65wb2798/X/ZEpACz1+7k0bfWhZ0NCVG/APN8GVjvnGsEMLPxwOeB48ysny/NnwJs9fM3AKcCDb466MNAc0p6UupnRKQCvvPoHACu/uJpIedEwhKkTn8TcK6ZfcDXzV8IrACmA5f7eYYAL/nXE/x7/PRpzjnn0wf71j0DgNOBeaXZDBERCSJvSd85N9fMxgELgU5gETASmAiMNbPf+rRR/iOjgCfMrJ5ECX+wX85yM3uOxAmjE7jWOXeoxNsjIiI5BKnewTl3E3BTWvI6MrS+cc61A1dkWc6twK0F5lFEREpET+SKiMSIgr6ISIwo6IuIxEigOn0R6du27t7PrLU7w86GRICCvkgMDB45h03NbWFnQyKgqqt3duxp56xbprBme2vYWREJVWPrgbCzIAENHjmb+1+vK9vyqzroT1m5neZ9B3l85oawsyIiEsicdc0Mf31N2ZZf1UFfRES6U9AXEYkRBX0RkRhR0BcRiREFfZEq1GOgChFPQV+kimUauUjiTUFfpIqpxC/pFPRFqpBK+JJNTIL+kfLOV+59k/ELG0LMi4hIeKo66FuG8k7djr387LklIeRGRCR8VR30RUSkOwV9EZEYUdAXEYkRBX2RGHBqvCmegr6ISIwo6IuIxIiCvohIjMQq6Dunek2Jp0zPrEg8xSLoK9aLiCRUddA3FW5ERLqp6qAvIiLdVXXQV7WOiEh3VR30k1TNIyJRc+iw47/+spyGXW0VXW8sgr6ISNQs3ryLx2du4IZnF1d0vQr6IiIhSFY/H65wNbSCvkiVeLuukUfeXBt2NiTiAgV9MzvOzMaZ2SozW2lm55nZCWY2xczq/N/j/bxmZg+YWb2ZLTWzs1KWM8TPX2dmQ8q1USJx9INR87j9lVVhZ0MiLmhJ/37gVefcp4DPACuBocBU59zpwFT/HuBS4HT/7xrgIQAzOwG4CTgHOBu4KXmiqBS15hGRuMsb9M3sr4AvAqMAnHMHnXO7gUHAGD/bGOAb/vUg4E8uYQ5wnJmdCFwMTHHONTvndgFTgEtKujVZKNhL3OiQl2yClPRPAxqBx81skZk9ZmbHAh93zm0D8H8/5uc/Gdic8vkGn5YtvRszu8bMas2strGxseAN6r6sXn1cpM9L/gTUn74kBQn6/YCzgIecc2cC+zhSlZNJplDrcqR3T3BupHNuoHNuYP/+/QNkT0REggoS9BuABufcXP9+HImTwHZfbYP/uyNl/lNTPn8KsDVHuoiUicr3ki5v0HfOvQtsNrNP+qQLgRXABCDZAmcI8JJ/PQH4oW/Fcy7Q4qt/JgMXmdnx/gbuRT5NREpMNZuSTb+A8/1f4CkzOxpYB1xJ4oTxnJldBWwCrvDzTgIuA+qBNj8vzrlmM7sFmO/nu9k511ySrRARkUACBX3n3GJgYIZJF2aY1wHXZlnOaGB0IRkUEZHS0RO5IiIxEqugr5taIhJVlRrONRZBXw9nSdxpjNxo++sbJ/Gth2ZVZF1VHfR1mItIVKWWRQ8ddizatLsi663qoC8iIt0p6IuIhCCsmggFfRGRGFHQFxGJkaoO+mq0IyLSXVUH/SR1sSxx5Zzj91Pr2N9xKOysSETEIugnVerhB5Go2NXWwT1T1oSdDYmQWAV9kUrae6CTZQ0trNy2hzteWaVCh0RC0F42+zT91iQMV4+pZfa6nRzT7z0c6DzMtV/6az70vveGnS2Juaou6asqX8K0cNMuADoPJ0odpptLEgFVHfRFRKQ7BX2REL2xegf7D5a2ZY3uHUguCvoiIVn9bis/enw+v3rxnZIu97ZJK0u6PKkuCvoiIWlt7wBgw859JV3uk3M26cFEyUpBX0SkAhpbD1AzdCK1GxJDg4d1Yo5V0FfpRyopebwl2+yorj3e5q1PBPvRM9d3S690m65YBX2RMKilpkSJgr6ISIgqff0Xi6DvVLEjMaOLi+jTICploMtqEZHuqjroi4hIdwr6ImWmRjsSJQr6IiIxEqugf+iwilxSebq3JFESq6B/9+TVYWdBpAc9tCWVFKug/+ryd8POgkgXXQFIGKo66KsAJVFWruNTJ5PqsHPvgbIst6qDfpLpURWpgB2t7cxZt7Pgz5V6RC0VdqIt1/7pPHS463W5bkHGIujriVyphG+OmMXgkXPCzob0YXe+uqrs6wgc9M3sKDNbZGYv+/cDzGyumdWZ2bNmdrRPP8a/r/fTa1KWMcynrzazi0u9MT3zXO41iByxZff+nNNV9BA4EpcyHQ9zfU+cienlOWIKKelfD6QOyXMnMNw5dzqwC7jKp18F7HLO/Q0w3M+HmZ0BDAY+DVwCPGhmR/Uu+yIR5n+zql6UXCLZtbKZnQJ8FXjMvzfgAmCcn2UM8A3/epB/j59+oZ9/EDDWOXfAObceqAfOLsVGBKWSv4RCx50UI+Q6/fuAXwDJuwwfAXY75zr9+wbgZP/6ZGAzgJ/e4ufvSs/wmS5mdo2Z1ZpZbWNjYwGbIiIi+eQN+mb2NWCHc25BanKGWdMHCkqfluszRxKcG+mcG+icG9i/f/982SuIWjVI2DoOHWZWfVPY2ZAIyRqWynSFGKSkfz7wdTPbAIwlUa1zH3CcmfXz85wCbPWvG4BTAfz0DwPNqekZPiNSvVJ+1fdOWcN3H5vbNU5qqbR3HCrp8qT88sb0sKp3nHPDnHOnOOdqSNyIneac+x4wHbjczzYEeMm/nuDf46dPc4nnzCcAg33rngHA6cC8km1JACrpS5gMWLtjLwBNew+WdNnN+0q7PCmf1vbOrNMqcfunN+30/xP4mZnVk6izH+XTRwEf8ek/A4YCOOeWA88BK4BXgWudcyqexMg9r61mWUNL2NkI7K7Jq3hhUUPJlucobeHtF+OWUDN0YgmXKJXwdl336r0FG3dVdP398s9yhHPuDeAN/3odGVrfOOfagSuyfP5W4NZCM9lbyRK+Wu+E6/fT6vn9tHo23PHVsLMSyIjpawH45pmn9G5BeY67Yjtce642+wkp6BI7Dh3m1y++w79eeDonHff+ovIh5VGuiomqfiJX7aMlalKPyPRCyN4DnSzc1PtSXyGFm7frGhk7fzM3vrCs1+uVvqGqg75I1OQqvV371EK+9eAs9rR3VCw/SSoeRUPq8VGufaKgLxICs54NC5ZtSdzv6Og8nOET0tcVWr2s6h2RKpIa8EvRy6buV1WHqLfeEYmFGXVN7G7rO00inVN1TRRFpcm4gr5IHt8fNZerxtT2ejmpP/rmfQfZvKut18sslYjEo9hbktKkuVwnCQV9kQDWbG8t+rOZSt03vrCMG55dknH+Yn7rqQFif4Cncy9/aJbPm64JwhLWiVZBXySICvxCexN+t+bpyz9dbYUfCJLCles+jYK+VESxDyBFRVGl7wqW5fIN4CJ9j6p3eiH53fXxuBOqhZt20XGo+psSjphezx2v9ByyrvNwdW67hhINx4qte3hyzsZQ1l1QNwx9jqorS2Lltj1868FZXP0/B/DLr54RdnbK6q7JqwEYeumnuqW3dwQP+sPGL2XHngNd74OGVYXf+LjsgbdDW3d1B/20X5HaMhenaW8igK3cVvzNzGp36PCRg+2ZeZszzpPt+OvrVV9SHlEYI7fPUqyXchs2fmmg+XLF9zCO02ufWhTCWiVMsQj65eacU2kt5nL1eJkUtUPkzTWNgZp3SjjK1Zw2VkG/HD+6toOdDBg2iT9Mqy/9wiNGN/2KU4qf7oqte/iHu6bT0pa5M7b0Y3vKiu15l7moBD16SnCF972j6p1I2u1/hE/P2xRyTnqvdkMzO/ce6JGuB3h6pxQ/3Qem1rFxZxuz1gYbX/eXL76Td577Xq/reh21qxApHwX9Eho+ZQ33vLY67GwU7fKHZ3PFI7NLvtz7X69jwLBJJV9utSpFAFZ1o2QTq6Bf7tY790+t4/d9vJpnXeO+ki9zzOwNJV9mNUn2sqnWZZJKD2dJn1Xtpc69B7IPdF1q2b5J3W+Jvqj8DGIR9CPyXcdWNX//k5Zt429vmlySZeVszlnmATh0lRE96nunGClf2uHDrixn2moOaNLTo2+t4+a/rOh6/9aaxuAfDniwhBGAo1IKlSMmLXu3LMut7qCf4rQbJ2XslOqRN9fy0uItgZbxz2Pm89mbX8s4bVtLe6/yJ6WxoWkfNUMnsrRhd1mWf+uklYyeuR6APe0dge6BFBrDcwXgbNPS0xXE+75bXl6Rf6YixCboZ3P7K6u4fuziQPO+vnJHVxPNOEoGknELGlj17p6M83QeOsySzd0DbiUD0LRVOwAYvzDYiTyb1G4Vsvn2w7OZt6G5wCVnX25qCb9ue2ugtvYihYp90O+tOFSFplc3/Pz5JVxyX+YOo+5+bQ2DRsxk+daWjNP7iuZ9+YdHXPVusL6IijnnfWX4W1z9p56jdanuXXpLQT/mWto6WNu4t6jPDhk9r0fVWDLYN+3tO2PKVox1/ddNtbdukmhR0I+5r4+YwYX3vFlU4HlzTWPgqrFstu9pp2V/6arMol8S7l2AL9f5Qaed+FDQ76W+/mPZuDP44NzFBpxcJ5RzbpvKF+6cVtyCC9TecYimvQdoj3gnY+lt7mfUNfUYo7fQ4RFFkqq7P/0y29kHAkhQ5axhyLfo1vbgDzftbjvIuAUNXPWFAV1PsmZcZ4YN+tSvXwXg7075MBOu+0LgdZaMSzQGyC7z9nx/1NweaZ+/o/uJUjVE0fDtR2bzoWP6MepHf99jWlSuQhX0e+Fzv32dE449OuxsVEwUDtrP3jwl8ffU4xhYc0KP6UGyuLShuJvM/3DX9KI+F4GvLa++kMe+YN76QltzVV4sqnfKWQoK0sqjL0j9ivpC1cHBEMbrLaQqLFXwwy//nOpuQXqrqoO+Si+5ZRvoPL3qIKnok2c54lQBy2xsPcDztZmHMIyChZt2d6uzT+3KumboxIrkQaeS+FD1Toz95qUjfa7nutlazMkzSs0Q/88TtSzcVJ4ndEvlouFv8dEPJqoKc5Xms41tEJ1vW6Kuqkv6kluuJz63tezPWHUVpWCeS2oud7T2HBgmmvKfXh2OXwcYIEUSxs7bxKvvlKcPm0JF5aeTN+ib2almNt3MVprZcjO73qefYGZTzKzO/z3ep5uZPWBm9Wa21MzOSlnWED9/nZkNKd9mJUTkO+4T0r+r826fxlm3TOkx33MBq0neWH2kI7JK1u7katFTDa57ehFPzNkYdjb6jKHjl/GTJxeEnY1ICVLS7wT+3Tn3P4BzgWvN7AxgKDDVOXc6MNW/B7gUON3/uwZ4CBInCeAm4BzgbOCm5Imi3MKIA+ffMa3qSmQOR932zE/vvrx0K7tSrgz+OGtDhXIVfQc7E/dOdBNWoiBv0HfObXPOLfSvW4GVwMnAIGCMn20M8A3/ehDwJ5cwBzjOzE4ELgamOOeanXO7gCnAJSXdmgppyjCObLotu/cXVCL77csrutWxl0vDrjbWbG/11TRHzoa9ufTc1rKf655exE+fCl6iembeJs7M0mNpKaRuT5UX/gGYsGRrrz7fm2q78++Yxr1T1hT12T3tHRVvLfbKsm1sbk60xNqyez81QyeyMEaDxBdUp29mNcCZwFzg4865bZA4MQAf87OdDKTWATT4tGzp6eu4xsxqzay2sbGAvsorKFlyK6XHZqznT7PLf9n+hTunc9Hwt3hm3mYKrXgxLGMATX4fW3cH71562Phl7Cqwx9Ig33scAnwmBfXrX2Jbdu/ngal1+WfM4OLhb2VtLVYuP31qIZfdn+gwcEZd4nsbO29TSdfR0tbB6BnrI3kPLHDQN7MPAn8G/s05l7lfXT9rhjSXI717gnMjnXMDnXMD+/fvHzR7FRW93RjM9FVHngZNDxLlrHoo1YG/cluuwy65rpKsiu17QhwfIYQDLKx7IWGNQ9Fa5iEuh72wlJtfXkHtxuhdQQQK+mb2XhIB/ynn3HifvN1X2+D/JiNKA3BqysdPAbbmSC+7CJ5sQzFtVXoXAIX90B2uqOBQlhu5Zd6nC8rwY83W3DLdna+uLvm6o6alrYPdbdXxYGMmyaveYh/oK6cgrXcMGAWsdM7dmzJpApBsgTMEeCkl/Ye+Fc+5QIuv/pkMXGRmx/sbuBf5tLJJ/sTmbdjZq+V0HjrMw2+u7XofxUu2pBcWNXDFw7MK/lzOTUqJVZm2PUpfRzVU7/x5YUPF17k6y6A45fKZm1/r6lIjTOU6dhf7gYTumryqKy0qx2aQh7POB34ALDOzZD+6NwJ3AM+Z2VXAJuAKP20ScBlQD7QBVwI455rN7BZgvp/vZudcRTqq2Nxc/I2izkOHOfu2qX2mu4Ubnl2SdVpqFc6ry4O1XT4cYASpsI2esZ7jj30v3zzzlK601G3NVsLuOHSY68cu4voL/zuf/G8fKns+o2z7nr7yLEPpjJm1gZsmLC/rOqJUIErKG/SdczPIXg9wYYb5HXBtlmWNBkYXksGwvbmmMWPAzzZcYLVJ7+MmU/VOvhJM+oH/qxeX9TZb3dzsxxL95pmn8Nry4EMMrti6h0nL3qVh1/6K9Lp54FDuHlmDtAqrViOm1/P9cz7Bhz/w3oqt8+m5pb15m0lUSvep9ERuHpnGSnWOijzl19rewYqtxZ1cnHPM39DM7LW9q9pKDdj5Si2bmttYmFYXvqe9g/1p3U8/Oafnj62zRB2ozahv6vb+3ZZ2NjX3rFd1zvGbHKW8Fxf3bozdTK4e03P4w1LoC1djSTv3HmBHa8+bt3dNXs2vKtBkWRT08ypFq4ZtLfsZMb2+4HsBVz4+n8seyDwWbT7OwRUPz+Y7j84JPH82qdUj+b6NfQe7B/gfPz4/y5zdFTp6Vr7WRsnt+drvZ2Sc/lzt5h4DuKdaVIa+epYU2aVzPoWMR1Col5duZUPTvkDzBjn5fO63r3P2rVMzTmsrc4uaMESxekdBv0hBW2IA/PTJhdw1eTV1Owobi7Y3zb0OpRxt+w/2bqCXoAE2k8U5AmsQW3bv59aJK4ouzWarMvnPP5e2iilMo2asK9uyr3t6ERfd91bZlp8qzPhYyO+5EBGM+fEN+hOXbqvYupJB93CRp/1iWgulVkt9+5HZrGvcmzM4z12fvxrIrPCD+D0Br5Q6DmVe8vXPLOLRt9ezpKH7yeOFhVtwzmUthT5V5vraJ2ZvKOvyC/HAtPqyLr8cDyNWQiGNL54tU9fbhVSPVkpsg/61Ty+s+DorudNTb8Au29LCBfe8yZYcj7v/KEA1jHMw8q2epcpccf09AY+wc2/vfsm/o7Wd7Xva6chSwh+/aAuTl7/LzLVNGaeX269fKm+rj76ot4f37raD1AydyMtLjzy+s2Z7K/uKrPZpzNC76gV3v1Fs9qpGbIN+ujezPMZeiou+Qm4LzN/QsxVr0JPFz58/0lwzU510as+XhejNpW/Qkn6q1vYOzr51KufclrnuN6llf0dkSk/VYH3Auvtsevv8yjq//lEz1nct76Lhb3HVmGD3hQpZRy6z1jbxwqLKPytRKQr63pDR8zI+hZkpZjlXmqZYre0dfOvBmaxrPFLXf8XDs3uUyA8eOsyNLyzLe7k6bsGRA/W495em6Vtqff7qlNGdgiom6N82aVX+maTkdgZsMvrioi3UDJ3Yo6O0XCF/4859jJheWDVU8hwyZ11xj/PkuxeV7Xj+7qNzuz3v8vLSrTya4Qq3r6rqoF9oy5v/9dCswKWVl3I06UvvtyVZJ/r4zPXd0qet2sHCTbsZ/nr3zqrOT+uAasLirTw9dxO3T1oZKG8Ag0bMDDxvLtv3HGCXf1x+d5YO0nK2/Cni5Higo+eN50zNLqF7oPl/RT5ok8zijLpwqoqiImg5PfnEcCENE74/ai53Tc7dvUSxFwqz1jZ161eq1K57ehG3FvDb6y56l6JVG/Snr97BnHWFt1F/fkH+yzqHY21j9svE9GqJPe2JYPlcbXGXjMkbwNkasMysb6LtYHmau33p7jf4l6eKv/9RTEk/U23S9WMX93hQbOe+g7yR8mNP78O/vsDWUoti1L1uPqve3ZO1yjOb13OMxBakBVl6s90g4XJ90z6+++hcrvxjzyqgYk4iuQpzNUMnsnFn4ne/YGMzNUMnUuevFkZMr+ebD5amoFVuVTtG7pUB24enW76lBQaemn/GgvSMYm0HO3lweqI/n3yllGxx0znHym2tfO+xuXz9Myf1OpfFSg/G5XLFw7O7vf9dno7Jvnzvm+XMTlW75L78z4ekH5Y/fWohG+74Kks272bnvgNc8KmP9yoPQa66v5RyY3b+hmb+vuYEnHNFD5F5/djFOacvbWjhEx85lr8sSbT+e6uuidM//qG8VzEQnadzq7akXyrFPhGbz/Apa7rqFPfmaZ2Q7dj/3eTVXQ9vFfoMQCllC77rGvcW9NDVlBXbmVvE1VmpRO9CvLJyxdgOf2Lfvqedt/NUgw0aMZMf/zHx9PH6pn28sXpHUaXu9I+s3LYnY0OHpCsens3m5jYeeWsd59w2tceN6VJ0lJhcwtKGYM+fpK4yW/VopVVtSb9YyX00d91OTj3hA9yTYUSgH4ya16t17G47yMz63gW3WfVNPPTGkZ4/g/Q1Xy6vr8x8WX/BPYWVtK/+UyJQfOusI2Pr5HpqtpSmrNjeZ9ujV8L3HpvLoM+elHW4zKT2tPsxXyphE8lL/cAntwz6ND84rybjPHvaO7ruzWxOuQ/0wqIGBn2mx5hNef3kicyjwS30reMKOZFsbO5d66hSUdDP4n+PzN59Qbabipn8/PklPZ4KHTxyDqveLbwljMOxo7WdptaDLNtSnkf6o6C3TQcLtaShpeuEE2cz6xNNFedv6HlvY976Zuat717KzlRd8alfv1qSvHz/sbl8+qS/yjjtpgnL+d45n+A97+mZgQUbd3XlMzUc3/DsEv7p7wqvAg3SG+2yMnWvUS4K+mlKXe02Lu3G8KX3vx0o4Kc2H92YcpL5x7veoO3gIf7j4k+WLpMRU45+byS/sfM3RaaL5Rn1Td06z0ttrnzYwR2vrmJthirN3+R4aK5c1Xf/9IfM/TtBorEBJJrD5rtKqhQF/TRjZm8sawdWQathxqS0REmtxmnzrSCC3DgSKUSh3RuVq7+aTM66pfuAK5meDM9nXY4Wd5DorqRQnQG/tC/f+2bBY0KXS6xv5KaXwpPGLyp9t7oiUVfojc58fUlNydGEsxLS85evSW569VUmvxy/jJqhE7veBy18RSXgQ8yDfmq3BVGT2v9Il7g3L5Gyatpb2Ohw/zEu9++n2PskpareS29VVujPZ1tLz76q0gdUzzTeRtTFOuhHWR88liRmolL/H1ShLTbPu31a/pn6IAX9PkTVTiLFu/GFcMZQuPkvK0JZbzYK+iJStFINc1nNRqf1uRU2BX0RKdq/R/i+mGSmoC8iRXtpcYYGBxJpCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxoqAvIhIjCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxUvGgb2aXmNlqM6s3s6GVXr+ISJxVNOib2VHACOBS4AzgO2Z2RqnX07I/OkOTiYhESaVL+mcD9c65dc65g8BYYFCpV7KuMRqjzouIRE2lg/7JwOaU9w0+rYuZXWNmtWZW29jYWNRKPnvqccXnUEQkAp695tyyLLdfWZaanWVI6zZypXNuJDASYODAgUWNFGtmbLjjq8V8VESkqlW6pN8AnJry/hRAozCIiFRIpYP+fOB0MxtgZkcDg4EJFc6DiEhsVbR6xznXaWbXAZOBo4DRzrnllcyDiEicVbpOH+fcJGBSpdcrIiJ6IldEJFYU9EVEYkRBX0QkRhT0RURixJwr6vmnijCzRmBjLxbxUaCpRNnpC+K2vaBtjgttc2E+4Zzrn2lCpIN+b5lZrXNuYNj5qJS4bS9om+NC21w6qt4REYkRBX0RkRip9qA/MuwMVFjcthe0zXGhbS6Rqq7TFxGR7qq9pC8iIikU9EVEYqQqg341Db5uZqea2XQzW2lmy83sep9+gplNMbM6/y+8XRcAAAQhSURBVPd4n25m9oDf9qVmdlbKsob4+evMbEhY2xSEmR1lZovM7GX/foCZzfV5f9Z3zY2ZHePf1/vpNSnLGObTV5vZxeFsSTBmdpyZjTOzVX5fnxeDfXyDP6bfMbNnzOx91bafzWy0me0ws3dS0kq2X83sc2a2zH/mATPLNFBVd865qvpHosvmtcBpwNHAEuCMsPPVi+05ETjLv/4QsIbEoPK/A4b69KHAnf71ZcArJEYpOxeY69NPANb5v8f718eHvX05tvtnwNPAy/79c8Bg//ph4Kf+9b8AD/vXg4Fn/esz/L4/Bhjgj4mjwt6uHNs7Bvhn//po4Lhq3sckhkldD7w/Zf/+qNr2M/BF4CzgnZS0ku1XYB5wnv/MK8ClefMU9pdShi/5PGByyvthwLCw81XC7XsJ+AqwGjjRp50IrPavHwG+kzL/aj/9O8AjKend5ovSPxIjqk0FLgBe9gd0E9AvfR+TGJvhPP+6n5/P0vd76nxR+wf8lQ+AlpZezfs4OV72CX6/vQxcXI37GahJC/ol2a9+2qqU9G7zZftXjdU7eQdf76v8Je2ZwFzg4865bQD+78f8bNm2vy99L/cBvwAO+/cfAXY75zr9+9S8d22Xn97i5+9L23sa0Ag87qu0HjOzY6nifeyc2wLcDWwCtpHYbwuo7v2cVKr9erJ/nZ6eUzUG/byDr/dFZvZB4M/Avznn9uSaNUOay5EeKWb2NWCHc25BanKGWV2eaX1ie71+JKoAHnLOnQnsI3HZn02f32Zfjz2IRJXMScCxwKUZZq2m/ZxPodtY1LZXY9CvusHXzey9JAL+U8658T55u5md6KefCOzw6dm2v698L+cDXzezDcBYElU89wHHmVlypLfUvHdtl5/+YaCZvrO9kMhrg3Nurn8/jsRJoFr3McCXgfXOuUbnXAcwHvg81b2fk0q1Xxv86/T0nKox6FfV4Ov+bvwoYKVz7t6USROA5F38ISTq+pPpP/QtAc4FWvwl5GTgIjM73peyLvJpkeKcG+acO8U5V0Ni301zzn0PmA5c7mdL397k93C5n9/59MG+1ccA4HQSN70ixzn3LrDZzD7pky4EVlCl+9jbBJxrZh/wx3hym6t2P6coyX7101rN7Fz/Hf4wZVnZhX2To0w3Ti4j0cplLfDLsPPTy235AolLtqXAYv/vMhL1mVOBOv/3BD+/ASP8ti8DBqYs68dAvf93ZdjbFmDb/5EjrXdOI/FjrgeeB47x6e/z7+v99NNSPv9L/z2sJkCrhpC39bNArd/PL5JopVHV+xj4L2AV8A7wBIkWOFW1n4FnSNyz6CBRMr+qlPsVGOi/v7XAH0hrDJDpn7phEBGJkWqs3hERkSwU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEb+P5qkdQkuhnG4AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "## 演習\n", + "## より現実的な「ピーターと狼」の世界\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/1-QLearning/solution/Julia/README.md b/translations/ja/8-Reinforcement/1-QLearning/solution/Julia/README.md new file mode 100644 index 000000000..a98bceafa --- /dev/null +++ b/translations/ja/8-Reinforcement/1-QLearning/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてお考えください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/1-QLearning/solution/R/README.md b/translations/ja/8-Reinforcement/1-QLearning/solution/R/README.md new file mode 100644 index 000000000..f45e88a7e --- /dev/null +++ b/translations/ja/8-Reinforcement/1-QLearning/solution/R/README.md @@ -0,0 +1,15 @@ + +これは一時的なプレースホルダー + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb b/translations/ja/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb new file mode 100644 index 000000000..c663879e9 --- /dev/null +++ b/translations/ja/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb @@ -0,0 +1,474 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "eadbd20d2a075efb602615ad90b1e97a", + "translation_date": "2025-09-04T03:02:32+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# ピーターとオオカミ: リアルな環境\n", + "\n", + "この状況では、ピーターはほとんど疲れたり空腹になったりせずに移動することができました。しかし、より現実的な世界では、時々座って休んだり、食事を取ったりする必要があります。以下のルールを実装して、私たちの世界をよりリアルにしてみましょう:\n", + "\n", + "1. 一つの場所から別の場所へ移動することで、ピーターは**エネルギー**を失い、**疲労**を蓄積します。\n", + "2. ピーターはリンゴを食べることでエネルギーを回復できます。\n", + "3. ピーターは木の下や草の上で休むことで疲労を解消できます(つまり、木や草がある場所 - 緑のフィールドに移動する)。\n", + "4. ピーターはオオカミを見つけて倒す必要があります。\n", + "5. オオカミを倒すためには、ピーターは一定のエネルギーと疲労のレベルを持っている必要があり、そうでない場合は戦いに敗北します。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math\n", + "from rlboard import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "## 状態の定義\n", + "\n", + "新しいゲームルールでは、各ボード状態でエネルギーと疲労を追跡する必要があります。そのため、現在の問題状態に関するすべての必要な情報を保持するオブジェクト `state` を作成します。この情報には、ボードの状態、現在のエネルギーと疲労のレベル、そして終端状態でオオカミに勝てるかどうかが含まれます。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class state:\n", + " def __init__(self,board,energy=10,fatigue=0,init=True):\n", + " self.board = board\n", + " self.energy = energy\n", + " self.fatigue = fatigue\n", + " self.dead = False\n", + " if init:\n", + " self.board.random_start()\n", + " self.update()\n", + "\n", + " def at(self):\n", + " return self.board.at()\n", + "\n", + " def update(self):\n", + " if self.at() == Board.Cell.water:\n", + " self.dead = True\n", + " return\n", + " if self.at() == Board.Cell.tree:\n", + " self.fatigue = 0\n", + " if self.at() == Board.Cell.apple:\n", + " self.energy = 10\n", + "\n", + " def move(self,a):\n", + " self.board.move(a)\n", + " self.energy -= 1\n", + " self.fatigue += 1\n", + " self.update()\n", + "\n", + " def is_winning(self):\n", + " return self.energy > self.fatigue" + ] + }, + { + "source": [ + "ランダムウォークを使用して問題を解決し、成功するかどうか試してみましょう:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(state):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(board,policy):\n", + " n = 0 # number of steps\n", + " s = state(board)\n", + " while True:\n", + " if s.at() == Board.Cell.wolf:\n", + " if s.is_winning():\n", + " return n # success!\n", + " else:\n", + " return -n # failure!\n", + " if s.at() == Board.Cell.water:\n", + " return 0 # died\n", + " a = actions[policy(m)]\n", + " s.move(a)\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 5, won: 1 times, drown: 94 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " elif z==0:\n", + " n+=1\n", + " else:\n", + " s+=1\n", + " print(f\"Killed by wolf = {w}, won: {s} times, drown: {n} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## 報酬関数\n", + "\n", + "### 概要\n", + "報酬関数は、エージェントが環境内でどのように行動するかを導く重要な要素です。適切に設計された報酬関数は、エージェントが望ましい目標を達成するための行動を学習するのを助けます。\n", + "\n", + "### 目的\n", + "報酬関数の目的は、エージェントが特定のタスクを効率的かつ効果的に完了するように動機付けることです。これには、以下のような要素が含まれます:\n", + "- 目標達成を促進する\n", + "- 不適切な行動を抑制する\n", + "- 学習プロセスを加速する\n", + "\n", + "### 設計のベストプラクティス\n", + "報酬関数を設計する際には、以下の点を考慮してください:\n", + "1. **明確な目標を設定する** \n", + " 報酬関数は、エージェントが達成すべき目標を明確に反映する必要があります。\n", + "\n", + "2. **バランスを取る** \n", + " 報酬を与える基準が厳しすぎたり緩すぎたりすると、エージェントの学習が妨げられる可能性があります。\n", + "\n", + "3. **負の報酬を慎重に使用する** \n", + " 負の報酬は、エージェントが望ましくない行動を避けるのに役立ちますが、過度に使用すると学習が停滞する可能性があります。\n", + "\n", + "4. **スパース報酬を避ける** \n", + " 報酬が稀にしか与えられない場合、エージェントが目標に到達するための適切な行動を学ぶのが難しくなることがあります。\n", + "\n", + "### 例\n", + "以下は、報酬関数の例です:\n", + "\n", + "```python\n", + "def reward_function(params):\n", + " # 車両がトラックの中央に近いほど高い報酬を与える\n", + " if params['distance_from_center'] < params['track_width'] * 0.1:\n", + " reward = 1.0\n", + " else:\n", + " reward = 0.5\n", + "\n", + " # 車両が進行方向に正しく向いている場合、追加の報酬を与える\n", + " if params['is_heading_correct']:\n", + " reward += 0.5\n", + "\n", + " return reward\n", + "```\n", + "\n", + "### 注意事項\n", + "- 報酬関数が複雑すぎると、エージェントが学習するのに時間がかかる可能性があります。\n", + "- 報酬関数をテストして、エージェントが期待通りの行動を示すかどうかを確認してください。\n", + "\n", + "### 結論\n", + "報酬関数は、エージェントの学習プロセスにおいて重要な役割を果たします。慎重に設計することで、エージェントが効率的に目標を達成できるようになります。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def reward(s):\n", + " r = s.energy-s.fatigue\n", + " if s.at()==Board.Cell.wolf:\n", + " return 100 if s.is_winning() else -100\n", + " if s.at()==Board.Cell.water:\n", + " return -100\n", + " return r" + ] + }, + { + "source": [ + "## Q-Learningアルゴリズム\n", + "\n", + "実際の学習アルゴリズムはほとんど変わりません。ただし、単なる盤面の位置ではなく、`state`を使用します。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " s = state(m)\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = s.board.human\n", + " v = probs(Q[x,y])\n", + " while True:\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " if s.board.is_valid(s.board.move_pos(s.board.human,dpos)):\n", + " break \n", + " s.move(dpos)\n", + " r = reward(s)\n", + " if abs(r)==100: # end of game\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUVd7H8c+Zmt5J6CC9qVQpKoqIoggIuouCoojCIkXQXUV3F0XEh10bYAFBUQFBwRXXroggIjYiKkWE0EsI6Zle7j3PH5mMsBBqkjsJ580rr2Tu3Mz9zoT8cubcc88RUkoURVGU6sNkdABFURTlzKjCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs2owq0oilLNVFrhFkL0FUL8LoTIEkJMrqzjKIqinG9EZYzjFkKYge1AH+AA8CNwq5Rya4UfTFEU5TxTWS3uS4AsKeUuKaUfeAsYWEnHUhRFOa9UVuGuB+w/6vaB0DZFURTlHFmMOrAQYhQwCsBqtXa66KKLjIpySj6fD4fDQVpamtFRylVUVITVaiU2NtboKOXKzs4mPT0ds9lsdJRy7du3j4YNGxodo1zBYJDc3Fzq1KljdJRyOZ1OgsEgSUlJRkcpV25uLgkJCdjtdqOjlGvLli14PB5xwjullBX+AXQHPjvq9sPAw+Xtn56eLiPZjh075Lx584yOcVIrVqyQ69evNzrGSU2bNk0WFBQYHaNcuq7LcePGGR3jpPLz8+X06dONjnFS69atk++9957RMU5q7ty5cseOHUbHOKlQXTxhzaysrpIfgeZCiAuEEDbgFuD9SjqWoijKeaVSukqklEEhxDjgM8AMLJBSbqmMYymKopxvKq2PW0r5MfBxZT2+oijK+UpdOakoilLNqMKtKIpSzajCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs3U2MK9cOHCsqs2FaXKeb1eli9fbnSM0/L222/j9/uNjlGut956K6LzGaHGFe6VK1cycOBAgsEggwYNYvHixYbkkFJy3333GXJsxVhPPfUUw4cPJzc3l4EDB7Jp0yajI53QTz/9xMCBAyksLGTo0KHMnDnT6EjHyMzMZODAgRQVFTF06FBmzZpldKSIUaMKdzAYJCsrixtuuIF+/foxatQotm3bhs/nq9IcL7zwAq1ateKWW26hZcuWzJkzp0qPX9mklBQUFBgdIyK53W42bdrEI488wk033cTFF1/Mnj170HXd6GjH0HWdPXv20LlzZwYNGsTkyZPZvHkzbrfb6GhAab7du3fTtWtXBg0axIMPPsjmzZvxeDxGR4sINapwHz58mF27dtG3b1/69u1Lly5dsNlsbN68ucoyFBQUUFRUxKJFi/D5fCxcuJCCggIKCwurLENlW716NdOnTzc6RkRavXo1HTt2JD09ndtvv52hQ4fy0Ucf4fV6jY52DJfLxRdffMGQIUO45ZZbqF+/Pq1bt2bdunVGRwNKZxhcvXo1f/rTnxgyZAiNGjWiVatWfP3110ZHiwiGTetaGerXr0/Lli0ZPXo0hw4dYvz48TRt2pROnTpVWQaPx4OmacTFxfH999+zb98+4uLi8Hg8JCcnV1mOyrJixQq2b9/Ov//9b6OjRKR+/foxZMgQfv/9d6644gruuusupk+fTkxMjNHRjhEfH8+AAQMYOXIke/fu5aGHHkJKyQMPPGB0NAASEhLo168fI0eOZM+ePTz44IMAEZPPaDWqcAP079+fNm3acOeddzJ+/HgaNGhQpcevV68eMTEx/OlPf2LZsmVcdNFFNG7cmMGDB5ORkRHRc1GXR0qJrut8+eWX7Ny5k3HjxlXJ8whPYWmqXm8Mp02bxv79+5k4cSLdunWjY8eORkc6oa5du/Kvf/2LcePGcfvtt9OoUSOjIx2je/fuzJgxg3HjxvHll1/y5ZdfGh0pYlSv34jTkJGRQY8ePYiNjaV79+6GTIo/ceJEfvjhB6ZOnYrD4WDTpk38+9//ZtCgQWRnZ1d5nnO1f/9+rrzySj7//HPuu+++KlmsYf/+/Xz33Xfce++9bNu2rVr1bbZo0YKrrrqKWbNm0aBBAyyWyGwfJScn06NHDxITE+natSvNmzc3OtIxyvKtW7eOtLS0iMhXUFCAw+EwOkbNa3FHAqvVitVqZdmyZeFtixYt4uDBgzz//PM0adKEP//5zyQkJBiY8vT89NNPvPnmm3z66adVurrOqFGjaNq0Kffccw8333wzr7/+Op07d66y458rIQRXXXUVq1ev5ocffqBXr15GR6q2oqKijI5AMBhk4cKFHDx4ELvdTt26dRk2bBhCnHiBmsqmCncVqlevHnfeeSfffvstjz76KM8++6xhP/jTsXXrVt5//30eeOCBKi3aH3zwAX369GHo0KE89NBD6LrOY489Rmpq6nH7Dho0iBtvvLHKsinnp2AwyIwZM3jzzTdxOp2MGjWKYcOGHbPP119/zSuvvHLC7+/cuTPjx4+vsDw1snA/+OCDzJ49OyKLYosWLWjRogVdu3Zl5MiRzJo1i+jo6Ih7O33kyBFmzJjBc889d8KCWZkuvfRSlixZwk033cTkyZN54oknuPnmm2nXrt1x+y5fvpypU6ee9PE+++wz0tPTKyvuSU2cOJHRo0fTuXNn4uPjDclwKgsXLuTWW2/lww8/NDrKCQkhmDVrFg8++KBhJ8VHjBjBf//7XzZs2MCzzz7LgQMHjjt30atXL/7xj3+c8Pvj4uIqNE9kVYsKkpOTQ+3atSOycJdp2bIl48ePp3///gwfPpzbb78dq9VqdCwAtm3bxrRp01i0aJEhJwZTUlKoX78+48aN4/rrr+fAgQO0adPmhH2cDz/8MJMnTz7p4xn5/yA1NZXCwsKIG8d9tHr16nHw4EGjY5RLCEHt2rXJyckxLMOrr75K9+7deffdd+nQoQM333wzmZmZx+1XVb8vNbJwVwdCCDp06MCaNWt4/fXX+de//kWbNm0YPHiwYZmOHDnC/Pnz8fv9PP/884aO5njqqacoKSnhww8/5Kuvvip3PyFERP+BBhg6dCiLFi1i3LhxRkdRzpLVamXAgAHhqTSGDx9u6P89VbgjwB133MGqVavCfcr9+/evkv8QUkrWr1/PkSNH6N+/P5MnT+ZPf/oTF198MSkpKZV+/FNJSEhg6NChRsc4ZyNGjKBjx46qcJ8jIQRSSkOKpdVqZdq0aezevZuYmBgyMjKqPMPRatxwwOpICMHVV1/N6NGjyczMpFOnTpX+1lVKSZs2bVi6dCnr1q2jXr16/N///R/XXXcddevWrdRjn2+EEKSmpqppAs5B06ZNueyyy3jzzTcNzXHBBRcYXrRBFe6IYrfbmTp1Kj/88APPP/98pR5r/fr19O7dm4cffpioqCh69uzJxo0bK/WY5yshBPPnz6/QUQXnG7PZjNVqjbipA4xSI7tKhg0bRq1atYyOcdYsFgszZsyo1GPk5eWRlpaGx+Ph5ptvZvXq1eTm5lbqMc9nqamp3H777UbHOCEhBH/729+MjnFKXbp0UVM1h9TIwn3NNdcYHSHiDRgwgAkTJuDxeMjIyODJJ5/kwIEDRseqsRITE+nbt6/RMU5ICFEtziW0adPG6AgRo0YWbuXUhBDs2LGDNWvWkJOTw8GDB7HZbEbHUhTlNKjCfR6z2Wzq3YmiVEPq5KSiKEo1owq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXNOo0qEEHsAB6ABQSllZyFECvA20BjYA/xZSllzVspVFEUxWEW0uHtJKdtLKcuWJ5kMrJJSNgdWhW4riqIoFaQyukoGAm+Evn4DUMuTKIqiVKBzLdwS+FwIkSmEGBXaliGlLFsR9zBg/FRaiqIoNci5Xjl5mZTyoBAiHVgphNh29J1SSimEOOGsMKFCPwpKl/XZsWPHOUapPAcOHKCoqCiiM+bl5aHrekRndLlc7N69m7y8PKOjlMvv90f0a1hSUoLL5YrojIcPH47435eioiL2798f0ZNWnWzVpHMq3FLKg6HPR4QQK4BLgBwhRB0pZbYQog5wpJzvnQfMA0hNTZVr1qw5lyiVqqioiAMHDhDJGXfu3ElMTAz5+flGRylXXl4e69evx263Gx2lXE6nM6J/zl6vl29zv+W/a/5rdJRyxWTH0NvTO6KXazt48CCZmZlkZWUZHaVcJ339pJRn9QHEAvFHfb0e6As8BUwObZ8M/PtUj5Weni4j2Y4dO+S8efOMjnFSK1askOvXrzc6xklNmzZNFhQUGB2jXLquy3Hjxhkd46Ty8/Nlp+mdJBH8r/a62vK9994z+qU6qblz58odO3YYHeOkQnXxhDXzXFrcGcCK0DJCFmCJlPJTIcSPwDIhxEhgL/DncziGoiiK8j/OunBLKXcBF59gez7Q+1xCKYqiKOVTV04qiqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDM1rnBLKZk5cyaHDh2K6AlkFEVRzlaNKtw7duzgggsuIC0tjbvuuosbb1RTgSuKUvPUmMItpeSHH37gr3/9K23atGHx4sXUqVOH3377zehoNcaBAwfYtWuX0TEU5bx3rvNxRwwpJYcPH6ZBgwbMmjWLBx98kJSUlIie5rS6kFIyZcoUpJSYTCZ8Ph9PPvkkZrPZ6Gh89tlnNGnShObNmxsdRVGqTI0p3CaTiX79+tGrVy80TeOXX34hOTmZJ5980uhoQGnx03U9IordmdJ1nXfffZcVK1ZgsVgYNGgQU6dONfS5OBwOrrnmGq677jqWLl1KcXExK1asMCyPolSlGtNVAtCiRQt27drFNddcw+LFi/n000+NjgSUrgiyadMmhgwZwpYtWygqKjI60hmZMGECc+fO5euvv2bDhg0sWrSI0aNHG5pp586dtG7dmrvvvptnnnmGYDDIgQMHDM2kKFWlRhVuk8lEdHQ0ZrMZu90eMSutPPXUUzz22GM888wzjBkzhg8++MDoSGfk+uuvp2/fvqxcuZJ69eoxaNAg5s+fb2imd955h5tuuomXX36ZjRs30r9/f0P/UGuaxiuvvMI333xjWIaaYNOmTRF/HuXzzz/H5XIZmqHGdJVEqszMTJKSkpgzZw6PPPIIl156KZs3byYnJ4eMjMhfR3nFihXs3buXuXPncvjwYb766isef/xxLBZj/+uUnYSuVasW69evZ+/evWzfvt2wPEIIoqOj+eqrr5g7dy6xsbHMmTOH0EIjyikEAgHuuece6tevj9frxe128+KLL0bU67dz504ee+wx2rdvz7Jly2jdujUPPPCAIVlqZOGOjo7G6/UipTT8B9+qVSuWLVtGVlYWkydP5r333uOpp55i9erVrFy5MvwuwehC+L+klHz11Vds3bqVSZMmERMTg8PhQNd1EhMTjY5HfHw8q1ev5sUXX6Rbt25ceumlhuYxmUwMGzaM4uJicnNzcblcdOzYEYCZM2fSsWNHLBYL0dHRuFwuNm/ezJdffsm4ceOIjY3FZKpRb37PmNPpZMeOHTz55JO4XC4GDBiAw+EI//7u37+fYcOGnfB7V61aRUpKSqXmk1Jy8OBB4uPjueOOO9i6dSvTp09n1KhR4X0+/vhjZsyYcdz3pqWlsXLlygrNE1nVooLMmTOHTp06sWHDBsMLd2xsLI0aNWLKlCmMHDmSjz/+mEWLFnHZZZcxYMAApJQMHTqUtm3b0r17d0OzHm3t2rV88MEHPP300+HXMD4+3uBUfzCbzRw4cIDU1FRuvfVWw3/OZRITE0lMTERKSWZmJlD67mDq1Km0a9eOwYMHc/fdd9OnTx969epF06ZN+fnnn6lbt67ByY01efJknn32Wb799ltefPFF9u/ff8x1GPXq1Qu/nv+rKn72gUCAV199lX/84x/Mnj2bL7/8km3btjFw4MDwPtdee225GStajSzcQoiIumry3nvv5S9/+Qsvv/wyq1evDm9ftWoVAG+88Qbr1q2LiML9008/8fHHHwMcU7QjUdnPOBIzCiHCuZ599lkAfvnlF0aMGEHv3r2pV68eycnJzJw5k6VLl3L//fdH5POoKrNnz6Zly5bMmzePe++9lz179rBq1aqIeU1sNhv33nsvd955J6+++ipRUVEkJiby0UcfGZKnRhbuSGQymRgzZswJ77vjjjuqOM3xpJTs2bOHpUuXcvXVV3P55ZdHzC9NeSI93/+6+OKLWbx4MTNmzKBTp040aNCA9evX06lTJ6OjGc5qtTJ//nw2bNhAfHw8r776qtGRjtOqVSumTJnC888/T+/evenbt69hWVThVoDSUREPPfQQr732GrGxsUbHOS09e/akR48eRsc4I23atCE7O5sFCxbQs2dPFi5cyF/+8pdq90eooplMJvr06cPll1+OyWTCZrMZHek4iYmJXHvttfTo0cPw8xKqcCsAWCwWli1bZnSMM2K1WrFarUbHOGMrV64kKyuL9evXs3PnTqPjRJSoqCijI5xSJJzrUYVbUQzQrFkzmjVrZnQMpZqqsWOQlixZct6//VQUpWaqsS3u1q1bGx1BURSlUtTYFreiKEpNpQq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXPKwi2EWCCEOCKE2HzUthQhxEohxI7Q5+TQdiGEmC2EyBJC/CqE6FiZ4RVFUc5Hp9Pifh3434vyJwOrpJTNgVWh2wDXAc1DH6OAORUTU1GU6kRdQ1G5Tlm4pZRrgYL/2TwQeCP09RvAjUdtXyhLfQckCSHqVFRYRVGqh0ianbMmOts+7gwpZXbo68NA2VIu9YD9R+13ILRNURRFqSDnfHJSlv5pPeM/r0KIUUKIDUKIDR6P51xjKIqinDfOtnDnlHWBhD4fCW0/CDQ4ar/6oW3HkVLOk1J2llJ2jo6OPssYiqIo55+znavkfeAOYEbo83+P2j5OCPEW0BUoPqpLpVyapvHee++dZZTKl5eXx86dOyM64+bNm9m7dy85OTlGRynX4cOH+fTTT4nkP9QlJSUR/XN2u93EZsfS5L0mRkcpV/yeeDa7Nkd0P/euXbuwWCxs3rz51DsbRNO0cu87ZeEWQiwFrgTShBAHgEcpLdjLhBAjgb3An0O7fwxcD2QBbmDE6QT0+wVjxkTuiucxMTp33BET0auy7927l8TExIjOaLfbqVWrVkQv1GCxWCL6NXQ6nXSxd2FGxvGL0kaKbYXbcJgcEf06xsTE8GTKk7gz3EZHKZdf+Mu975SFW0p5azl39T7BvhIYe9rJwt9n4vBh49dbLE9iYhZ16uRHxJqQ5cnJySEjI+OsM0op+f777xk8ePAx20ePHs3DDz9cISuSrFq1ik6dOmGz2XA4HCSnJJFTeIj42ERKAkf4vHAhu9xbMAUs2EUcQjeT7ThEt+S+XHPBLfjdPurXakhJSQmxsbEUFhYSExNDIBBA0zRiY2ORUhIdHU1BQQFxcXE4HA4SExPDt30+H4mJifh8PqSUREVFYTKZwuuULlmyJKJ/zgUFBfz4448RnVHXdfLy8iI646+//kr+hfkUNys2Okq54kxx5d5XY6d1VU5fMBhk/fr1XHPNNfh8vmPue+yxx7BarUycOJGYmJhzPpaUOvmBQ+xybcGEzvvZL9EstiN+3Y+NaFrYunLIt49iTxGtkjrQKPUiEqzJ/G31MOKtqYzt8A9q2epgC9gwmUzoug6ULn2laRpSSnw+H0IINE1DCEEgEAjfL4TA7/eH34YGg8GIXCZLUU5GFe7znKZprFixgokTJx5XtMs8+uijFBcX88QTT5zzUmESycYj3zNr43QyYjNomNiI4mCAX3ZvZc+h/bRp1gBrwMb2XVnktSjigsTWCA5glwlEiwSW/ryAlikXcm2z/kTZohFCYDab0XU93KcaCASwWq1omobFYkHTNOx2O0IILBYLwWCwNIuUBAIBVbiVakfNVXKeE0Lw3XffkZ1d/jnkYDDIO++8UyGLo5qEmc5pV1En0Iktvxfw65ZcNv6aTckhG3Z3bVz7Yzi43c+Wjbl8v3EjW3b9yNqf1uBxBVm/81uOOPKZu/5FCnx5OBwOoPStucfjwWKxYDIJYmKi8Xo9WK1WfD4fUVFRuFyucGs7NjY2XMQr4l2EolQ11eI+z2VnZ/P777+fcgRASUkJGzZsoGvXrud0PF3XiTXHMLv/bO5aMYJPNn+M7oNoGYVN2vgpS+NPl9zEyD5dKHYVYfPYOOD+BG9JPnkFhezQdhIMmBk4pz8rx68GwGazERUVhdfjZvOqGWT9uJhgUKN19zvodMPjOBwOUlNT8Xq9REdHk5eXh91uJxgM4na7SU1NPafnpChVTbW4z3Nms/m0ugpOd79TMZlM2O12vE4PL980l+tb9cNiNtOkVhO6NevGRY3bsTd3L1sObibfUUB2fjax+Y1w/Z7IhQmt8RTnge5FKxbcPftuhBB4vV4KCvJx5Gxh55Z1FJZ4qdduAEl12+MoKSEuLo7c3FyEELhcLtLS0rBYLFgsFpKSks75OSlKVVMt7vNcrVq1aNCgwSn3s9vttG3b9pyPJ6XE7/eTnJxMIBBgzk0v8Y/of/Ju5rsUOYuINccSI6LxCT9H8rdRXFhMvDWBgd0H4nQ4iSaF/NwjmJIP4c8JoGlBrFYrq1fM5MiebyjM3k+HqyZx+YBJBIOl93k8HpKTk9E0jZiYGIqLizGbzUgpcTqdJCYmnvPzUpSqpFrc5zmTycSIESNo1qzZSfd76qmnsFgq5u+8yWTCZDIhpSQ5OoXHr32cIZ1vxRlwsSt3N5sPbuXH3T+yr3A/Teo3pWHdhuzK3oXD6yBepHJJw57kbfBhb32Y1957hYDfy49r/oPXZ2Hg6AV06TMq/Phlw/zMZjNA+HYZNYudUh2pFvd5TghBu3btuOyyyzCZTGzfvv2Y+zMyMmjUqBG9e/eukJOTUFq4nU4nsbGxuFwuEuwJzOj3JI9f9yiDXhxMYUkhWft3kR6fRoEznzhrPF63FwKS3Nx84qyx9Ok0gAMHtvO1XMF3Y14jWZP07XUbjVp3x2q14na7sdvt4ZOTTqcTm82G3+8nJiYGTdPQdf2cR8mcqaysLOrUqRPRFyEpkU8VbgWz2cycOXO4++67ycrKCo+NBmjYsCHz588nJSWlQo5VNs46NTWVgoICkpKScLlc2Kw2/E4/H479kD0Fe/gg8wNcXhemoIlYWwwlRSUgBR63F7vZxpCrh9D54s6s/fVz5q+fwhX9hnBxtxvQNA2n00lKSgolJSUkJiZSVFREWloaDoeD6Oho8vPziYmJQUqJy+Wqkiv8ioqKmDt3bvgPSoMGDRg+fHilH1epmVThPs9JKZFSMnnyZJYuXXpM0Qb48ccfGTVqFCtXriQuLu6cuxaEENjtdgoKCoiOjqa4uBir1UowGCQuLg4pJc3SmzG+z3iklNgsZg6v+4LDP7xLjD2K1F7XkdS9N1a7ncLCQgKHg3iKBJdefRM2mw0pJUlJSeTt2cOPr75AwYF9JDdtTac77iEpvVa4v1vXdXRdr7J5UwoKCvjss894/fXX2bFjB//85z+5/fbbVVeNclZU4T5PlRXs/fv388gjj7B8+fLjinaZ77//ni5duvD666/TuXNnzGbzWRecshZ3YmIixcXFJCQk4Ha7sVgs4bHY+L2YfF62TRmP9HupP2gYnR/+P3Rhwmo2sXvev8j/JZOgppOVV4Q99wi+zT+y4Zu1HPn1JwKaRushd9Fh8C34fV40r4+lo27HWeJkwJSpJFzQlIwGDTGZTLhcLux2+7m8lKf1nCdNmsQbb7zBrFmzGDlyJA899BDPPPMMf/3rXyv12KcjPz+f5OTkCusKUyqfKtznISkluq7z7rvvsnz5ct59992TzkQG8Pvvv/OXv/yFUaNGMWTIEFJSUs66eJvNZgKBQPgqxrITiWazGc1RzKF5T+Hal0Xr+x/HGp9AoKgQ764dIMAnod7g22g0fCxBl4N6X62i8/bfyP9mLY0vv4oLh95NMOjHVViI31GMJkFHMuDvjxHUdL5+cyG/rlvH6Fdep0nHTuGTlpVJCMFzzz3HbbfdRvfu3Vm7di1vvPEG3377baUf+2RycnL45ptvWLlyJVdeeSVNmzalc+fOhmZSTo8q3OeZspb2vHnzuP/++8OTLZ2OX375hbFjx7J+/XoWLFiA1Wo94+IthDhmHpGyPxhSSggG2Tvn/9ByDtFk2F/w5x4mmHsYgaTsMEKCf99uvFKiAwktW5PUvhOaP4inKJ+SvTvRpESToEmJLiWaDrqUBHVJxxsGENB13vzr/dzyf/+m+TleUHS6UlNTadiwIZmZmaSmpjJhwoQqOe7JbNy4kVdeeYWXX36ZBQsW8NFHH7Fw4UKjYymnQRXu84ymabz66qs8/PDDeL3es3qMJUuWoGkar732GlFRUWf0vVJKgsEgycnJx5yctFgs7F+xGE/Wb1xw218g4EXoIETo45jHKC3gINHcLvxSlhbrUIHWdIkuCRfvoCbRpE4wtE+7nr3wef3MHTOaSW8vp3XHjmf1OpyJsvHiEyZMoF27doZfal9SUsLbb7/NvHnzmD59Ok888QRLlizh/fffZ8CAAYZmU05NFe7ziK7rvPXWW4wdO/aUXSMnI6XkP//5DykpKTz55JNndAGLyWQiKiqK7OxsUlNTycvLIzY2Fp/bRcEX79Ny2Fg0dzHSBAiBKdRCN4k/ji2lLF0sT0ooK9K6RNclQamj6RJNg2CocAd0naCEoK6j6QJN12nd41KOHDiAJy/vrF+H0yWlZMeOHcTFxXHJJZdU+vFOR3x8PDfffDPPPPMMmZmZrFmzhszMTMaMGWN0NOU0qMJ9HlmyZAnDhw8/pmuk7GKYshnzymMymcJ901A6A99LL72Epmk8/fTTxMWVP3fw0cpa3NHR0QQCgfCJwfx1X2CLjcObdxCzSWAyl54oE2YwH1W4dVnaqpa6AE1HlzpSgtRDLW29rEBLAnpp90hQlwQlpQVcL+1GCQR1Uus34qX7JjB/y1ZEJfZ1SymZOHEiP//8c6Ud40wJIWjcuDEej4eDBw/y8ccfc+WVV1bYRVZK5VKnkSPQo48+espCehHdQoQAACAASURBVKYWLFjAhAkTjuvP7tKlC/369TtlX3VGRgZjxx6/Rsb8+fO57777zmiZqrJjlX2WUuL4aT0xjZuheVzoHhfS7QKvCzxuhNeN2efB7PMgvKW3pdeF9LrRPW50txvd7UJ3u9DcTjS3m4DbddSHE7/rjw+vw4HX5aBu86ZovrPrLqoJ2rZty9y5c2nRogUzZ87kzjvvNDqScppU4Y4gH330Ea1bt6ZHjx506dKFKVOmnPNjlnWP3H///RQWFoa3R0VF0aRJE959911atGhxyseJi4tj2rRprF+/njZt2hzz+G+88QYjRow4rT82ZfNne71eLBYLfr8/tM2E1Pzhwq17XEiPC+lxQ6hYC2/p13g8cNR+utdF0BP6cLsJup0EQ0Xb73bhczrxuxz4XE68TjdepxOv04mnuLjcIZAV6bbbbuPtt9+u9ONUZw6Hgx9++IEnnniC4hP8XDRNo7i4+JiPOXPm0L59e3r3Pm4xrhpPvS+qZLm5uWzatOm09v3++++5+uqrsdlsvP3227zyyivhJcnOhpSSnJwcXnrpJYqL/1iiqW7duvzrX//ixhtvPKNLr+Pi4ujWrRvLly/n1ltvZdOmTUgp0TSNL774gk8//fSUrXdd1/H5fCQlJeF2u0lISMDv9+P3+ZH5OdhDXTfCLDCZBMIsECYTpW0MSRDQdJ2grhPUSrtBAqGvA1IS0EIfusQf1AnqUFJSjDkmFr8m8etH3R+6CKcy7dq1i+joaOrXr1+pxzkXHTp0IDMzkyuvvNKwDD179qRr16706dOHFi1a8Pzzz5OWlha+v6CggDlz5hzzPUOGDGHjxo1VHTUiqMJdyfLz81mzZs1p7bt161ZcLhdr167l7rvvJiYmhtzc3HO6JFvXdQKBQHhypfT0dKZMmcKgQYPOar4MIQStW7fmhRde4K9//Ss//PBD+D6/v/zFTcuYTCZsNhv5+fnUqlWLwsJC4uPjiUpIJPurT7GZTJCUBKHijal0SEnQ70PYo9Ep67cGn8uBOy8Xv6bjC+r4dYlP0/EFJZrJgiUtgwCC4kMHiKldD7+uE9DAp2kEdcjNPoz/LEfWnK7XXnuN2267LaLnJnn66afp1KmTYUXwo48+YtCgQdx1110sWLCAtLQ07rzzzmMuTkpNTWXVqlWG5ItEqnBXslatWvH444+f1r7Lli3j0Ucf5dlnn+XWW2/loosuol27dmd9bCEE6enpTJs2jb/97W9kZWXxn//8hw4dOpxTIRFC0L17d1577TXGjRvH999/z6OPPkrv3r1P2Veu6zp+v59atUovP09KSsLv91Nn8HByv1lF0e+b0Oo1JDYtHd0k0E2CoIDg/p1YGzRFAp6cQwRKivH6fKXdHkENvybxBCW+oIZX0/Ej0Pfvw4+Z6AYNKc7ORsTGEtDAq+kUFxSwa8tW2t9wI1TSZeeZmZlYLBYuvvjiSnn8mqJJkyYsX76cmJgYunXrxsqVK3n88ccZPHiwmhKgHKpwR5Abb7yRPn36cO+99/LOO++c9kiNk7FarfTq1YvVq1cTDAZJTU095peh7CrKUymb26PssmiLxUKbNm147733wl0fpzvTnq7r4XUiy94J2Os2RLfYCLjcsHsHaBq2uDgCUsMM+EuKEb/+UDpWW9MIaDp+Tcev/dE9EpR6aOw2BDQNb1EBvqBOfl4enoCGH0FCg8YUFhZy5OBhvP4gN4wZU2nFIT8/H5PJVGETdNVUrVu3Jjs7m3vuuYdevXqRnZ3NpZdeqor2SajCHUFsNhs2m42lS5dW6OOazeZyV3rRNI1GjRoRHx9PSUlJuY/RsWPHY4bvlUlISDijLEIIbDYbDocDu92Ox+MJF3HNHo1fl8iAhrmkmKAWQDu0PzQcUCAADRm+yMav6wQ1gV8/uu9aD/d5B/XSC26CWgBNg0BQw+N0UpCdgy4BYSI6rnK6MPx+P7///nuFLD5xPvjss8/YtWsXX3/9NVlZWUbHiXhqVMl5zmKxMHjwYBo2bFjuPkIIHnjggQqZjKlsBZykpCQ8Hg/x8fHouo7FYqHxsLvxhfqpXQUFuJ0OfJqOV9PxaDpuTccb1PEES2/7NfCFWt3HtLx1vfSKSb3s5GXpNl1CSUFh6YrwJhNdbhqMiKqc2QFdLhcffPABgwcPrpTHr4maNGnCHXfcYXSMakG1uJXTmu2voiZjKpvWNS8vj7i4OIqKirDZbAQCAepe2oeNOuhSR5cBdIcbgnrp+UlR2saQUg9dhAPB0MU2/tDJSr9eNlpE4tdK7w+UFXApEVFReD2+0n20IO2vvJKGTZpUyPP6XyNHjjxuFESkEkLw1ltvGR1DOQOqxa1UKSklgUCAtLQ03G43iYmJ4ZVoHC438V16lraygxpOhxN3oLSF7Q7ooa9laYs7qOMJanhCI0q8QQ1fUMOnafiDEr+m4dd0AqFiHgjquJxu/D4/8bVqce1fRmOOiqagoKDCn+OuXbuA0hZkdSCEoGXLlkbHUM6AKtxKlSq7AMftdmO1WvF6veFZAqPj42kxdCTeoAwVaA1vaLSIN6jhDWpHFe3SLhRvUIa7V3yaxBfqLvFrAr8Ofk0eM947ICUZzZtTUlBI9/4DKmUhhYcffpiZM2eqk2tKpVGFW6lyZRftCCHCI1qklFgsFpKbtaT+NQNChTrUqg6W9m3/0b8t8QRK7/eF9vOFRpkEQsW7tLtEKy3iusSvQ1DTadPzSjRhocdNN2OxWCplzclJkyYdc/GIolQ0VbiVKlVWtGNiYggEAkRHR4cXUfB4PJhi40ht1x4/ptJWt1baNeIOarjDRTxYerIyfLu0Ne7VSsdw+3SJN1h6sY1f1/CFWtu6MJFcrx4ORwkX9uyJpmm4XK4Kf47dunUzfNpWpWZTJyeVKlU2reuRI0dITU0lPz+fuLg4AoEASUlJaJpGiyHD2bluDXvXrkIgwnNyA0gpwhNaBeUfQwMDUhLUQicjQ5e0+8r6uDUdabHRrmcvfly1hhe//QZbVBRSyjMezqgokUC1uJUqVXZyMi4uDp/PR2xsbPiCHK/Xi9/vxyQErQfcjGaNwqOF+rYDGp7AH61r99F93prEG5Slre1Qt8nRwwSDmGhwUQcCCC6/+SY0q41gMEgwGMTpdBr9kijKGTtl4RZCLBBCHBFCbD5q22NCiINCiJ9DH9cfdd/DQogsIcTvQohrKyu4Un2ZzWY0TcNqtR4zj4rFYgkPO2x41bXEtGqLNyhxByXuoI776BOToe1l/d++QGl/ty980vKPfu/0Zi2ISU5hz5atXNirF7FxceF5yNX800p1dDot7teBvifY/pyUsn3o42MAIUQb4Bagbeh7XhJCVP5qrMo5OZO5tM9V2ZqTZdO5lp2klFKGiymUXhbfb9rTmJJTjyrYWqiAS1yhk5LewB/F3KOBJ1S0vZqGbrGSUL8Rlrh4igsKGHzfBFpeckl43LoQolJOTipKZTtl4ZZSrgVOd7DrQOAtKaVPSrkbyAIiY60mpVx2uz1cMKG0RXx0QZNSVtiwuf/tKomJiQnPgeLxeMIr7NhsNuo2a84tLy0gvmFjPAE99FHaReIrG99ddjWlpodHoviCEl9Q4pcCrz9ASUEhHa7uw9UjRhAVHY3D4UDTtEo7Oakole1c+rjHCSF+DXWlJIe21QP2H7XPgdC24wghRgkhNgghNgQCnnOIoZyrpKQkkpNLf4Rms5nRo0fz/PPPhy9xj42NpXbt2hVyrLIrJ4uKioiKigrPjxIMBomNjcVutyOlxOv14nA4aHZJN254/P/oMPjP+KQIjzLxmy1ccPmV4SGC3qBGVFo6cbXr4tW00svhfQFsMTEMGj+ePnfdhRACr9dLUlISZrMZi8VCfHx8hTwvRalKZ9vBNweYRumSrdOAZ4C7zuQBpJTzgHkA8fEZ0uc7yyTKORNC8Prrr+NyuRBCULduXeLi4rjiiivCJw7PZEHgU7HZbKSnp2M2m6lVq1b4QpWjZx4sG05nMpno1Kcv7bpfRv+/TQZCq7ybBDFJSTiPuvLRYrODEMfMsW2LiiK9YUP00JDD6OhohBDhdxDqIhmlOjqrwi2lzCn7WggxH/gwdPMg0OCoXeuHtikRTAhBo0aNjtveqlWrSjne0X3ZR3fRlPnfeVFMJhPW5GTikpOP2zc54/TeCZQ9YtnxVMFWqrOz6ioRQtQ56uYgoGzEyfvALUIIuxDiAqA58MP/fr+iKIpy9sSpRhQIIZYCVwJpQA7waOh2e0q7SvYAo6WU2aH9/05pt0kQmCil/ORUIRITU2SLFvef7XOodFari7Zt807YKo0Uhw8fxm63h/uqI9H27du54IILInokx6ZNm7jwwguNjlGuQCDAnj17aN68udFRylVQUIDf76+w8yKVYc+ePWyttZVAbMDoKOXa/ux2iguKT/jW8JSFuyrEx6dLv/93o2OUKyFhD3XrfsO2bcOMjlKuRo0+5aWXatGpUyejo5Rr5syZjBgxokL7yyva3//+d6ZPn250jHIVFRWxcOFCJkyYYHSUcm3YsIH8/HyuvTZyL+NYtGgRPXv2jOjGWMuWLTly5MgJC3eEXH0g8Psjt6UYCOSjafaIzqhp0cTGxkZ0i9tqtZKYmBixGcvmTInUfFCa0Wq1RnTGmJgY3G53RGe02+3ExcVFdMaTnYdRl7wriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnCfpzZv3hyeiU9RlOolQsZxK1Vl//79LFy4EJ/Ph81mo1WrVtx8881Gx1IU5QyoFvd5RErJ3r17+eWXXxg3bhwtW7Zk6dKlVbqQgqIo504V7vOI1+tl9uzZzJo1i8cff5zWrVtz/fXXs3jxYqOjnRWv1xuez1tRzieqq+Q8Eh0dzYQJE7j33nt56aWXuOiii7j88st59913jY52xj755BN27dpFbm4uF154If3798dmsxkdS1GqhGpxn2eaNGnClVdeyezZs3n44Yfp3Lkza9asMTrWGbv//vupU6cOffv25ZFHHsHtdhsdqVwvvPACHk9krvL00UcfkZWVZXQM5Qypwn2eqVu3Lvfddx933XUX48ePZ8yYMXz++ef8+uuv1aav+5///CczZ86kfv36/Prrr6xYsYJ7773X6FjlWrFiBX6/3+gYJ/Ttt99y8GDkr3Wyb98+HnvsMaNjlGvPnj1MnTq1yo6nCvd5qnnz5uFZ5h5//HGee+45tmzZYnSs0zJlyhQmT57Mxo0b2bhxI6NHj2bWrFlGx6qWateuzeHDh9E0zegoJ+X1etm9e7fRMcrl9XrZu3dvlR1PFW4Fi8XCK6+8wsKFC6tFt4nVauWGG27g448/JjMzk4suuojY2FijY1VL48aNY+7cuRHd1aQcTxVuBShd5/GRRx7hu+++Y926dUbHOaVp06Yxfvx4+vXrx4svvhheXFhRzgeqcCthSUlJjB07lmXLlrFt27Zq0+etKEar6sWnVeFWjhEfH8+sWbN46qmn+Omnn4yOoyjVQlU3clThVo4jhODFF1/kww8/ZPXq1UbHKVeTJk2QUrJr1y6jo5Tryy+/pGfPntjtdqOjlOuOO+5gwYIFRscol5SS5cuXM2jQIKOjlCstLY2GDRuycePGKjmeKtzKCUVFRTF+/HjWrl3Lhg0bIrLbpDoU7tWrV9OzZ0+ioqKMjlKu4cOH8/rrrxsdo1xSSt555x1uvPFGo6OUq6xw//zzz1VyPFW4lXKlpKTw0EMPMXfuXLZt22Z0HEVRQlThVk4qKiqK+fPnM2fOHL755huj4yiKgircymkQQjB9+nTWrl1bLcZ5K2cuNzeXN954w+gYx3nvvfcYO3YsBw4cYMyYMRHZeNB1nYkTJ7Jo0SIWLVrExIkT0XW9Uo+pCrdyWuLj4xkzZgyffPIJmzdvjsg+70hSUlJChw4dePXVVxkzZgzXX3+90ZHKdffdd5OXl8cDDzxAhw4d2Llzp9GRgNKC+P3333PJJZeQmppKgwYN2Lp1a6UXxTPl9/tZs2YNvXr1olevXqxZs6bSpzhQhVs5bUlJSTz55JM888wzbN682eg4ANSrV4+EhASjYxxny5Yt9OjRgxEjRjB79myio6Mj8iTqwYMH8fl8rF+/nuuuu47Bgwfz22+/RcQf5u+++47Y2FgGDRpEp06duPvuu9myZQv79u0zOtoxJk2axLx582jfvj3t27dn3rx5TJo0qVKPqQq3ckbMZjPz589nyZIlEdFtMmrUKC655BKjYxzniy++oHfv3lx66aU0btyYK664IiLf5v/yyy9cdNFF1K5dm759+9K9e3fWr18fEYW7R48euFwupkyZwnPPPcekSZNo164djRs3NjraMV544QWGDBlCdHQ0drudIUOG8MILL1TqMdV83MoZs1gsPPjgg8yZMwe73U737t2NjhRxxo0bR+vWrXn++ed58803Wbp0Kdu3bzc61nGuv/56/v3vf7Nr1y5uvfVWRowYwUcffYTJFBltumHDhrFt2zb+/ve/h1vekcZkMvHcc8+FhwI+99xzlf76qcKtnJXk5GQmTJjAQw89xAUXXEDt2rWNjhRREhMTyczMZNGiRXTr1i2ip51955132LNnD0uWLGHdunWkp6cbHSmsXbt2tG3blp49e0ZUrqMJIbjxxhvDE3VVxbw5qnArZy0uLq7S3xJWVyaTiXr16vHQQw8BVT+XxZlIS0sjNTWVTp06RWROIUTEFu2jVeVEZ6dszwshGgghVgshtgohtggh7gttTxFCrBRC7Ah9Tg5tF0KI2UKILCHEr0KIjpX9JBTjCCEi8pc9UlSX16e65FRKnU5HTBB4QErZBugGjBVCtAEmA6uklM2BVaHbANcBzUMfo4A5FZ5aURTlPHbKwi2lzJZS/hT62gH8BtQDBgJlI/bfAMomEhgILJSlvgOShBB1Kjy5oijKeeqMTn0KIRoDHYDvgQwpZXborsNARujresD+o77tQGjb/z7WKCHEBiHEhkAgMhdSVRRFiUSnXbiFEHHAf4CJUsqSo++TpYM+z2jgp5RynpSys5Sys9UafSbfqiiKcl47rcIthLBSWrTflFK+G9qcU9YFEvp8JLT9INDgqG+vH9qmKIqiVIDTGVUigFeB36SUzx511/vAHaGv7wD+e9T24aHRJd2A4qO6VBRFUZRzdDrjuC8Fbgc2CSHKZgl/BJgBLBNCjAT2An8O3fcxcD2QBbiBERWaWFEU5Tx3ysItpVwHlDfAs/cJ9pfA2DOPYvzcCKcW+RkjYY6JU4n0jJGeD1TGilIdMp6IiITgiYnJsn3724yOUS6z2U9iohObLcXoKOUKBktISrJU6dVbZ+rIkSOkpqZiNpuNjlKuAwcOYbHUNTrGSWgETIewpluNDlIu3a0TF4yLyFkbyxQUFBAXF4fNZjM6SrkWL15MYWHhCRvNEVG44+MzpNOZY3SMciUmZvHUU6u55557jI5Srvfee4+MjAy6du2Kz+fDarX+MW+xSeewby+FwRykLrFgAwSegJsYcwJNE9oidDM2mxVN0xBCEAwGEUJgMpkIBoPYbLbw57LHDwaDmM3mY/YtuwIvGAxitZYWl7Ir8p544gnGjh1LcnKyQa/SyUkp+fOfJ/DOO88bHaVcdnsB7aZcQ+YjmUZHKVftb2ozN28uAwcONDpKuV5++WV69+5Ns2bNjI5SroyMDHJyck5YuNVcJTWMpmnk5+cTFW/jh8IPSY9qRNDkZafzF7L9e3F4nTi8xdSNborH7yHdWp8dUb+xOz+LcV3/jt8XQAiB0+lECIHdbsfpdJKWlobT6SQlJYXi4mJSUlIoKSkhNjaWoqIirFYrNpsNm82GxWLB6XRGbIFWlOpOFe4aJqvoF/5T+ByiWHDYtxerjCIYlMSSTJq9HkkkU+R24dEDpNjrg27lk53vEm2JZ9qXD3JLu5HUjWlAfHw8UkqCwSCpqam4XC7sdjt5eXnExcVRUlJCdHQ0Pp+PpKQkpJRomhaeIc1ms5Gfn09SUhIWi/pvpigVSf1G1TC1Yhrx1qqNpESlcFGti2iS3opdh/bwxrqlNGuRSK3YOHb8mo25XpBL2/TEHIwi2pJEgSMPe0w8C36YQ7/WN9I2+WIsFitWq5Xc3FzS09NxuVykpKZSkJ9PYmIixcXFxMbGUlJSgtVaum9sbCwmkwmXy0VycnLEzOusKDWJKtw1TDQxzOu3gAc//xsfbf2EzzZ/gV23kZFcG3+uHZ8jjebpjThUtButSOfbn7+lfrsUsg4folmqnyJ3MV6fRtMrWpFkiUYIQVxcHH6/H58jm+3b3sdR4iAlvS5pTXqjaRpRUVHhfuyytfZMJhNer5fo6Gg165yiVDDVHKphTCYTLVKa8Y+r/o7JItiZv5NCTyFxUbG4/W7cARcN0hvQOq09CZ5mNE5og2O7RPh1zPjYd+QQn21axfQPnwBKT9jpug5S4+DWz1jz1kQyP/4HmZ8/gwid19Z1HV3Xw0OrTCYTUspqO9RKUSKdKtw1jNVqJeAP0L1+d/4z9D+kxaViMpsp8hZjtVnwaX62HthCriOX3/dt4+sN39Ioph0DMm7nl1W/06VVA2IcZpZ/spxAMACAo6SII3t/ZO1Hz1PkttPl5lfpc9ebBLTSUSV+vz88gqXsJKWu66q1rSiVRHWV1DDFxcXh/ujWtdvwzYR1DH7lZrLzs7FLGzZpJwo7ufm5SL9ORnJtNKmRcySPAR2HUPRbEYn2InyJ0ezcv51WF7TlqxVPsy3zQxpc0JrLrh5Fu0tuoKSkhLiYGLxeLykpKWiaRiAQwOl0IqUkJiaGvLw8UlNT1clJRalg6jeqhik7WWixWPB6vWTE1GbBrQv4YNMHzPlyDocKssEvibfE06ZeG2zCxpGiI8RYonGUOBAaxBc3xpFQxNT/TuRPTYeQ9duvJNVuQ/+RM0nNaITX6yUmJga/34/VasXtdofHb0dHl870qGka8fHx6uSkolQCVbhrmLITgoFAIHwRTstaLWjRaxKX1OtCjiuHJ995koN5h9iVs5OUqFRs2MjPy8PnDuB1ehhz4xjG9xhHccwBXn/uXyQf0Xhg2nySazXA7XYTHR2N1+vFbreHL8op6+cuOzlZVtDtdrvBr4ii1DyqcNcwuq5jsVjw+/3HnCSUEro36U5UdBR92/TFarPidDixmQUHd22nVmIqPgkxKbWIskWRnJRMSUkhv1/wM73u6kfj5u0RQqBpGiaTCWdeLgGLmYCmk1q3HiaTKVy8gfC+6gSlcq6OHDlCWlqaevd2FFW4a5ioqKjwuGqfzwcQnhvEbrfj9/uJj4onb8N6ogIeHEdyiD+0l5KiQpIu7EBC+24492Sx2+Nh/+EjbPr6G7p1vIzAwX0c2rGNqOhoSuKS2fv1KvZt/oW4WnWIadKCuNQ06rVtS0bzluHL4BMTE9Uvm3LWsrOzWbt2LWvXrqVHjx40a9aMrl27Gh0rIqjCXcO4XC5SU1NxOp1ERUWh6zo+nw8hBB6PhyiPg91vziU2ORV/dAyJtWqT0OMKpBAIwHNgL7K4ALseJHb3dnr43MhVH3Lo4B6EyUJhwE90ej1a9O5L097XIjWd379Zy+HNv7BvYyYOj5cbH/knyWlpFBcXk5qaqoq3clY2btzIm2++yZw5c1iwYAGff/65KtwhqnDXMAkJCaVzlURF4Xa7MZlMWK1WpJTEWs38PP4eEps0J7nnNZjMFpAa/oP7SifulRKz2UJis1boUhLboCnNBt+Cpun43CVYouPQpE4gEMRTXIAuQdMl9dtdTB0pKc7P5/1Zz/LqvaMZ9/pikpKSKm0mwEAggMViUcMNa6iioiKWL1/OnDlzmDp1KjNmzGDx4sW8//77DBgwwOh4hlNNoRqmpKSEtLS08JA8q9VKIBDAW5jP93ffSEzdetS57iZ0RzF6cQHSUYzwOhEeJ3hdSFcJWkEuwYJcdJeDYHE+mqMQ4ffjLyogUFhI0FFC0OUi6HYRcLvwOx34nKXdMwMnPoDzcDYv3Dmc/Tt3omlahT6/vLw8Nm7cyC233MLPP//M4cOHK/TxlciQmJjI4MGDefrpp/npp59YuXIlGzdupF+/fkZHiwiqcNcwUVFRuFwuhBAEAgE0TcNsNpP7wTJSGjSl3rWDCORlg9eN8Loxed0Irwfh82LyehAeF8JTeh8eJ9LtRHM7CHrcBN1Ogh4nuidUtJ1Ogk4nPpcTv8uJz+Ui4PHS45ah5OzeyZbVX1Z4i3jZsmU89NBDzJo1i6lTp/Lyyy9X6OMrkUEIQZMmTQgEAhw6dIjRo0dz1VVXRfRc7lVJFe4aJiYmhqKiIgA8Hk/pKA+fB8f2X0lq1Y5g3mHwuksLt8+FyefG7Hdj9rkx+T0Inxvhc4PHhfS6kV4X0u1GelxoHjdBt4ugy0XA5SDgcuJ3Owm6XPidLvwuBz63AxPQ+MKL+f6//6U4N7fCntvevXvZv38/r7zyCrNnz2bu3LlIKdm0aVOFHUOJHG3btuWFF15g0aJFNGjQgNtvv93oSBFDFe4IIKWkqKiIFStWsHTp0nN6rOLiYjIyMpBSEhcXh8ViIXvNZ+Dzo2sBNI8L6SktzKUtbhdmnxuLz4XJ60L4QsXa60G63eguN7rHheZxoLtLi3fA80c3ScDlxOd24nM58LuceJ0uPM4SajdrhqOgAGdhYQW9SlCnTh1q167NunXrGDFiRPhEVfPmzSvsGErk6dWrV7W8+tbr9VJYWMjgwYMpLCzE6/VW2GNXv1ejhtm5cydZWVm89NJLXHLJJTzyyCPn9HiJiYnk5OQQHx+Py+XCbDYTY7fisJnR/V70IEiTCUwgTQJMApPZhBAgdRC6BF0idYmuaeh66QlITdfRdAhqkoCU+HVJUJMEdZ2ADgFdJxC67dd1grpADwagAsdx22w2mjRpwgsvvICu66SnpyOEICoqqsKOUNx5nAAAIABJREFUoSgVZebMmSxfvpzly5dz1VVXMXz4cCZNmlQhj60Kt0F8Ph/Tp0/HZDJh/n/2zjxMiur63++t3qene1b2fTMoRECWQNxQIqIRlyRuuH0JKjHiL0YFJLgnGjdcokYkiiARxYhbNCFxjcEFRVAEkQAyyLDNMHvvtdzfH91dzigDA0zTPXjf5+mnq6uqqz59u/vUrXPPPcfh4Nlnn7Wnix8I0WiUQCAAYM9ajMViWPFYsuesgUNzYGlgOQSWpmFpAg2BJVMG27IwLYllSttoG5ZMGmgzuWyYSYOdMK2UsZboJuiWTBlxC1PXD/jzfJvx48czfvx45syZwx//+Efee++9Vj+HQrE/rFixghdffNF+/f7773PYYYfx/PPPs3DhQhYtWkR5eTldu3Y94HMpw51B0rMWH3vsMY4//nj69+8PwF133cW7777L1KlT6dmzJ7179261czocDrs6TXpg0ulw0bB+Lb5AAcLnw3BoCEey1y00AcKBACySRtewwLRMdFMmH5ZElxa6AQnTxJBJg50woWLzJvLad0TXHOgmyZ64BQkjmXQqU1x++eVUV1ezdOlSVqxYwVFHHZWxcymyixCCm266iTvvvJPrr78+23K46aabdtthGDRoEOPHj7df79y5k549e3L00UdTWVmJx+NptQLKynBnkIqKCgYPHsytt97Kr3/9a1avXk3Xrl2ZOXMmV155JYFAoNWjLtKj7kIIO5e2p7QduNzUr/0c0acf0uNBahrSIZBCkgg3IDx54HJhGgZ6wiAei1D75RoShkHMkMQtScwwiZkWcRMC/QZiut248vKIhSMYQqCbkriZdJls+3ozdZWViAxGARQXF1NYWMimTZsYNGiQijjIIVrzdy2EYMCAAbz00kutdswD4frrr99tp8Ttdje5a163bh0PP/wwo0aNYsqUKVx77bXKcLcF3njjDaZNm8bQoUNZtWoV/fv35//+7/8YOXJkxs6ZTuva0NCA3+/HMAw4cgQlo05k5z+fx4yGKezZBzMvD1MTOITE3LkV4fSA202ioY74rgoSZtKPHTctDFOSMCS6aWIYEt202LrqY+IGOEs7ENcN8OeD20tCCmp3VbN5/XpG//Iyijt1ythnBbj66qv5yU9+wpgxYygsLMzouRQt51DOUZOXl9ei/X71q18xefJkZs6cyZo1a1pVg4oqyRBSSjuDXiKRYObMmQQCATt7XqbIy8ujrq4OIQSxWAzDSBY7iMYTGJYkHgnTsHMbsVA99V9vor7sK8I1tYS2fk39pg2EK5JGO91z1k1JIjXoaFgSw5KYMj1gaVK3bSt1O3aw43//o2b7dio2l7H9q41YFvT+4ZH48vMz+nkhabxnzZqV8fMoFPuKEII77rij1Y+retwZQgjBaaedxg9/+EPuvvtuHn30UdasWcM999yT0fMmEgny8/OJRqO43W5M08Q0TXxdumA4XGDoiIYGpNuNrKrEIS2E0JIz3gFTJgcm9bSv2pIkUhEjugW6tFKRJSR94VJikhzEjMdiRENRLCHw5AeJxeNYlpXxXCU//elP7fEDxaGJpmlomoZhGG0yNLC1UT3uDNK+fXu2bdtGXV0d1113HcuWLTso503fpja+Xe194a/RSjsSMU0ikRjhujqiuklUt4jqFhHDIqKbRAyLqCGJGxA3LOKGRcIgFTWSjBbRLYlpfNMLT5gWFoJwfZhoNIphWAz66TiOu2DCQfm8Qgj69u17UM6lyA59+vTh+OOP56mnnsq2lJxAXboyiBACp9PJb37zm4N2TrfbTTQatXsn8E3xXq2wHcbXm5DSxAxF0EwLh5AIJKQHMwFLymTMtmXZPe94ymgnrORApW5Z6DJp0E0LDMAk6ULpf/RxONDI8/pUZkBFq5CusJTO9/59RxnuQ4x0Dch0WlfDMNB1Hcuy6HnxFXz824/RLAvDSqAhcGiSZELXJBYyOelGSgxJKn5bohvJiTUJ08IwIWGRmnCT8oNbJnHDwuH1oHlcjLt8MvX19Xi9XmW8Fa3C6NGjD+lBz31BGe5DjEAgwK5du/B6vYRCIYQQuFwuHA4HvX50NMvy8kk01KEJcGoCzRIIIdNZXTFlssdtkexxmxYYqZmSycHKpNFOWCZxE3QzuV/ClEinix+ffR7rVn5Kj4ED8fv9yh+paDV69OiRbQk5w167QkKIbkKIt4UQXwgh1gghfpNaf4sQYqsQ4tPU49RG75khhNgghFgnhDg5kx9A0ZRQKERBQQFSSrxeLy6XC9M0sSyLiK5z4oNP2vHYETPp247qFpGUnztqmkQNk6huEjOs5EM3SRhmctJNKkQwYaSnt5vELTBMi/4/PoZP3n6bKY/Nwe12EwqF1K2tQpEBWtIdMoBrpZQrhBAB4BMhxOupbfdLKe9tvLMQ4gjgPGAA0Bl4QwhxmJSydRMzK3aL2+0mFos1qfmYdlW43W487TvQ8egT+fq/b6Kl/IaCpJ9boiGRqZ530ndtWhaGlN9Mebe+CRFMWBZxM+nv9gQLiMYS/OjUU+nYowemaeJyuVShA4UiA+y1xy2l3C6lXJFabgDWAl328JYzgGellHEp5SZgAzCiNcQq9o7X66WhoQEhBIlEAsuycDgcyWRTeXk4C4vpPOLHxA2ZiipJ9qyjhkw+p6JMooZF3DSJmZKYSeqR7G3HzeQAZdJVYmEJJwNO/AnRRIIfn34mgWAQ0zTx+/3KcCsUGWCfRo2EED2BIUA6rm2KEGKVEGKuEKIota4LsKXR28rZs6FXtCL19fW0a9cOy7KShtrpRNd1dF2npqYGf14eA867hK4njCVqJV0hYd0knDCJpMIDIylXSThlwGO6ScwwiOsmcd1KulqM5ECl6XDxg2OOp3pXFUf95CS6DBxIbW0tLpeLXbt2tXoFHIVCsQ+GWwiRDywGrpZS1gOPAn2AwcB2YJ+mrgkhLhdCLBdCLNf16L68VbEHgsEg1dXVaJpGJBJB13VcLhcul4vCwkIikQgOl4vuJ52K4fLZcdtRUyZjuc3Ua0MSNSz7ETMkMVMSTfu4LQleL+379EU6HUTq6+jSvz/BggIKCwvRdZ3i4mKVP0ShyAAtGvIXQrhIGu2npZQvAEgpdzba/hfg1dTLrUC3Rm/vmlrXBCnlHGAOQCDQQcbj+yNf8W0ikQjBlKsiXeU9Hc+dSCTwer2YpsmIs84mWl3Fq7fcQFNvxjfx3KYlkwWBU1PcDZnMHKhbFlI4yA8WgdvD9k1lXH7PPQw49lii0agdv97Q0EAwGFTGW6FoZVoSVSKAJ4C1Usr7Gq1vnD3oLGB1avkV4DwhhEcI0QvoB3zUepIVe8Ln81FfX2/nSjEMw54u7Pf7icViSCmpr6/n+F9OZuwNt2A4XMnetGEl/d6GRUI4iDZaFzMtElIjZpjEDUkcQSQaY0fZ11x08630+9GPkpkIPR47flz5uBWKzNCSHvfRwEXA50KIT1PrfgecL4QYTDLFRRkwGUBKuUYI8RzwBcmIlCtVRMnBw+Fw4HQ6cTqd9mSF9HLjbU6nE7fHw6gL/o++Q0fy+qMPU78rWR9SAqMmXMB/n/4rUoJlSZy+PLr98Ies/eADLAkSQXGnjlzwu99R3K0bTpfLPm76nE6nUxluhSID7NVwSymXArv79/1jD++5Hbj9AHQp9hNN0ygtLW12e0FBAQB+vx9I5lNp3749A4477jv7jp146X7rcLlc+/1ehUKxZ9RcZIVCoWhj5Mh8ZInHU51tEc3idtcTi8Wors5djZFIhFAolNMadV2ntrY2x/NNmDn9W/R4anHoDjzVnmxLaRZ3yE0kEsnp32IsFqO+vj6nNe7pfyJy4U9UXFwsr7vuumzLaJZwOExlZSU9e/bMtpRm2b59Ox6Ph+Li4mxLaZZ169bRu3fvnHajfPbZZwwaNCjbMppF13WWLv2KmpofZFtKs3i91QwZEqdThqsfHQibNm2iffv2tsswF7n33nuprq7e/SBRuqBtNh/t27eXucz69evlnDlzsi1jj7z44ovy/fffz7aMPfL73/9eVldXZ1tGs1iWJadMmZJtGXukqqpKDh16u0ymBMvNR8eOS+VLL72U7abaI7Nnz5br16/Ptow9krKLu7WZysetUCgUbQxluBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrWhCKBQiHA5nW4ZCodgDOZKrRJFtLMti8eLFbNy4EafTSa9evfjZz36m0rIqFDmI6nErADBNk+nTpzNy5EgGDRrE1KlTsy1JoVA0gzLcCgAmT57M4sWL2bVrF7qu88wzzzBlypRsy1IoFLtBuUoUADzyyCOMGjWKSy65BI/Hw/Tp01mxYkW2Ze2Vbdu2kZ+fTzAYzLaU3bJt2zYCgQCBQCDbUhSHEKrHrQDA7XYzZswYqqurmTt3LkcffbRdhiyXeeyxx/joo9wtafroo4+yfPnybMtQHGIow60AkrUqZ82axcSJE/H5fEybNk0NTCraBLW1tdx1113ZlnFQUYb7IGIYBqFQKNsy9kjv3r156aWXuOyyy3K8Uo1CARMnTuT000+nT58+9OvX76C597JdyUkZ7oPEhx9+yKJFi7j11ltZsmQJkUgk25KapaSkhD59+vDxxx9nW4pC0SxfffUVPp+Pq6++mt69ezN16lQ+//xzTNPM2DnLyspYsmQJU6ZM4V//+hdfffVVxs61J9q04Q6FQixYsGCv+0kpuf3225k5cybvv//+QVD2Xa655hpqa2uZMGECM2bMYNu2bVnR0VLuueceZsyYkW0ZCsV3SCQS3HDDDVx66aXs2rWLL774go0bN9KtWze2bNmCZVkZO/cLL7zAggULmDVrFgsXLuS5557L2Ln2RO6PPjXDzJkz+eyzzzj99NMZPXo0Dz30EAMGDLC3X3zxxWzdutV+PW3aNPLy8ujevftB1/roo49y5ZVXMnLkSC699FK2b9/OZZddxhtvvGH7kYUQOedTFkIgpcw5XWnSt6q5qk9xYKTLdAGUl5dzySWXAOByuZgxYwYnnXQSv/vd74hGo4wePZoJEybwt7/9LWM1TdeuXUtlZSUPPPAAV1xxBf/73/947733+Ne//gXAuHHjdjv/IRP/7TZpuGtra/n666958MEH0XWd9957j5EjR9K3b180LXkTsXDhQrp27Wq/x+/329sONhMnTuTUU09l2LBh/PWvf2Xy5MnMnDmT4cOH2z/Md955h4KCgqzo2x3BYJBrr72WO+64g5kzZ2Zbzm75z3/+g6ZpHH/88dmW0izFxcVUV1djWVbWfn9tidraWnbt2gXAypUrueOOOwDo2rUrr7zyir1ffn4+Qghef/11Kisruffee1mzZg15eXkZ03bYYYdRUlLCSy+9xJw5c3j66aeprq7mmmuuAeAf//gHQ4cO/c773nrrLYqKilpVS5s03B988AGDBw8mPz+fqVOnsmLFCkaPHs0LL7yAx+PJtrzv4PV6Of7443nwwQfp1q0bxcXF9O7dO6fjpIUQeDwe4vF4tqU0i2EYADkdtvjb3/6WMWPG8JOf/CSnLsy5hmmaLFy4kM2bN/O///0PgEGDBrFy5co9vi8vL48ePXrw0EMPZVyjw+Fg4MCBLFy4EF3X+fjjjznnnHPsGP1zzz2Xc889N+M6oI0a7lNOOYXZs2ezYcMGrrnmGi655BJmzpyZk0Y7zc0330xNTQ2rV69uM77j/v378+677/LFF19wxBFHZFuO4hAnkUgwZswYbrjhhmxLaZZx48Yxbtw4Fi9ezPz587PmpmuThhvg4Ycfpry8nEceeYRnnnmGnj17ZlvSXikqKuLYY4/NtowW07lzZ9xuN2VlZRx++OE55UuOxWIkEgl0XScajeL1enNKn2LfcDgcTJo0KdsyWszPf/7zrJ6/zRrubt260bVrV0aMGIHD4ci2nEOW66+/nlNPPZVRo0a1up/uQDjyyCNxu93U19fz6KOPsnHjRgoLC7Mtqwm1tbV8+eWX1NXVsXz5cnr06EHfvn2zLUtxCNBmDTck/bDKaGcWTdMyGl61P7z66qtMmDCBY445hvfee4+OHTuyaNEiJk+enG1pTfjoo4+47bbbqKio4KmnnsIwDJ5++ulsy1IcAqhhbsVeueWWW3IqsqRjx45s27aNI488knPPPZetW7c2iSDKBUKhEC+99BJPPPEE/fr1484772To0KF26JhCcSDs1XALIbxCiI+EEJ8JIdYIIW5Nre8lhFgmhNgghFgkhHCn1ntSrzektvfM7EdQZJpRo0bx5ZdfZluGzbBhw1i5ciVTp07l73//O/PmzeOYY47Jtqwm5OXlMXbsWBYtWsTChQvZtm0bq1evblNjHIrcpSWukjhwopQyJIRwAUuFEP8ErgHul1I+K4SYDUwCHk0910gp+wohzgPuAg5OjIwiIwghePPNN7MtowkfffQRq1at4osvvmDz5s05NzCpaRo9evRg7ty5tG/fnjfeeINRo0ZlNM5Y8f1hr4ZbJmeIpDMjuVIPCZwITEitnw/cQtJwn5FaBngeeFgIIaTKWNSmyTXDKIRg0KBBDBo0KNtSmmXIkCG88sorLFq0iKeffjqnw1UVbYsW+biFEA4hxKdABfA6sBGolVIaqV3KgS6p5S7AFoDU9jqgpDVFKxRtiXPPPVcZbUWr0iLDLaU0pZSDga7ACKD/gZ5YCHG5EGK5EGJ5NBo90MMpFArF94Z9iiqRUtYCbwOjgEIhRNrV0hVIZ3TaCnQDSG0vAKp2c6w5UsphUsphPp9vP+UrFArF94+WRJW0E0IUppZ9wEnAWpIG/Bep3S4BXk4tv5J6TWr7W8q/rVAoFK1HS6JKOgHzhRAOkob+OSnlq0KIL4BnhRB/AFYCT6T2fwJYIITYAFQD52VAt0KhUHxvaUlUySpgyG7Wf0XS3/3t9THg7FZRp1AoFIrvoGZOKhQKRRtDGW6FQqFoYyjDrVAoFG2MnMgOaFkW7733XrZlNMuOHTvYvn17TmssKyujpqYm5zL5Naa6upqPP/4Yv9+fbSnNEolEcvp7DoVCeL3VdOyYuxqLitZRVtaQ0+24fft2Vq1axc6dO7MtpVn29F/OCcMtpaSq6juh3jlDXV0d0Wg0pzWGw2GefFKjoSF3NXbvnuBHP6ohFotlW0qz1NQYXHRR7rah0xmh07iP8U17IdtSmsW9KUg4fE5O/19isRg31N5AzJm7v8W4bL5sYE4YbofDwemnn55tGc2yYcMGTNPMaY2WZVFR0YEdO0ZlW0qzlJSsYuzYsTlVkKExUkoWLHidTZty93v2eKoJdryXTadvyraUZun4XkcG7BqQ0/+X7du3s+24bdT1rcu2lGbJd+Q3u035uBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrVAoFG0MZbgVCoWijXHIGO5Zs2aRSCSyLUOhUCgyTps33O+88w5HHXUUPXv2ZPTo0dxyyy3ZlqRQKBQZpU0bbl3X2bhxI//v//0/jjjiCObNm0dNTQ27du3KtjSFQqHIGG3acMdiMTZu3MjAgQP597//zWuvvUa7du346quvsi1tryQSCZ5//vlsy1AoFG2QNm24A4EAI0eOZOLEiZx00knMnDmTsrIyRoz4TinMnCMej/PII49kW4ZCkXPce++9VFdXZ1tGTtOmDTfA2LFjWbJkCX/4wx946aWXsi1HoVDsJ6tWraJPnz50796dn/3sZ1x00UXZlpSztHnD7fV66dKlC08//TSHH344hYWFlJeXZ1uWQqHYByzL4tNPP2XatGn07duX5557jvz8fDZu3JhtaTlJmzfcaYQQdOvWjf79+/Pmm29mW44iy5SXl/Pqq69mW4aihViWxdatW+nSpQtlZWU88MADlJaWUlFRkW1pOckhY7jT/PSnP2XFihWq1/09ZuLEiUybNo01a9Zw/PHHqyijNoDT6WTs2LFcccUVFBcX89RTT/Hoo48yY8YMPv3005yupZoNcqJ0WWvSqVMnvF4vmzZtokuXLgghsi1pt2zZsoUuXbpkW0ab4euvv25xrcrly5czb948OnXqRFlZGZs2baKkpCRnfwuKJIMHD2bt2rXceOONLF26lNLSUgCmTJlCRUUFDzzwAB06dKCgoCDLSrPPIWe4Ae666y6GDBnCJ598krN/1gsuuIBPPvkk2zLaDHPnzmXTppbVWdy+fTsPPvggJ598Mueccw7PPvssw4YNy7BCxYHicDjIz8/n/vvvb7J+3rx57Nixg+nTp9O/f3+6devGhAkT0LRDzmHQYg5Jww0wffp07rnnHqZPn55tKYpWYF9mxA4ZMoTevXvTvn17fvnLX7J06dKcvYArWkbHjh2ZP38+S5cuZe3atVx22WWMGzeOs88+O9vSssIhe8k67bTTeOONN1T+ku8hL7zwAiNGjOCdd97hn//8J+3bt8+2JEUrccwxxzBp0iSmTp1KWVkZ7777brYlZYVDtsft9/u54YYbuO222/jDH/6QbTk2O3bsYOPGjYTDYd5//326detGjx49si3rkKJXr1707NmTcePGfa9vpw9VNE2jf//+HHbYYd/bO6lD9ledDg90Op05NQX+lVde4Y9//CN1dXU88sgj/OUvf8m2pEMSIYQy2oc4mqYpw90cQgivEOIjIcRnQog1QohbU+vnCSE2CSE+TT0Gp9YLIcSfhBAbhBCrhBBHZfpDNEfv3r1xuVysW7cuWxKasHnzZjZs2MDs2bPp3Lkzf/rTn3C73axYsSLb0hQKRRuiJV2SOHCilHIQMBgYJ4QYmdo2VUo5OPX4NLXuFKBf6nE58Ghri94Xrr76ahYvXkxNTU02ZQDQpUsXevTowZIlS1iyZAnLli1D13UGDBiQbWkKhaINsVcft5RSAqHUS1fqIffwljOAp1Lv+1AIUSiE6CSl3H7AavcDv9/P448/no1Tfwen00nfvn3585//jKZpvPLKK5x99tl4PJ5sS1MoFG2IFjkBhRAOIcSnQAXwupRyWWrT7Sl3yP1CiLT16QJsafT28tQ6BXDyySfz8ssv43Q6efHFF7nggguyLUmhULQxWmS4pZSmlHIw0BUYIYQYCMwA+gPDgWJgnwKmhRCXCyGWCyGWR6PRfZTd9rn44ou/twMrCoXiwNinYXcpZS3wNjBOSrldJokDTwLpJNhbgW6N3tY1te7bx5ojpRwmpRzm8/n2T71CoVB8D2lJVEk7IURhatkHnAR8KYTolFongDOB1am3vAJcnIouGQnUZcu/rVAoFIciLZmA0wmYL4RwkDT0z0kpXxVCvCWEaAcI4FPgV6n9/wGcCmwAIsDE1petUCgU319aElWyChiym/UnNrO/BK48cGkKhUKh2B1qaplCoVC0MZThVigUijaGMtwKhULRxlCGW6FQKNoYynArFApFGyMn8nEbhsFjjz2WbRnNUldXR3l5eU5r/Oqrr+jePY/S0lXZltIswWAZCxYsyOncLIZRzcCBufs9OxwxCjYVMPCxgdmW0ix52/P4IPYBO3bsyLaUZlm9ejV96vqQKMjdQitfG183uy0nDLfD4WDMmDHZltEs5eXlaJqW0xqdTicjRxbzwx/+MNtSmuWJJ8r4/e+PRdcD2ZbSLCedtIIXX8zd77m+vp7FiyuYOGb30yMkEomFlBKBsNcBaMJhr8skq1atora2luOOOy7j59pf6urqmDViFl27ds22lGYZpY1qdltOGG4hBH379s22jD2yfv36nNa4evVqOnTokNMa/X4/DQ09iceLsi2lGSSa5m7VNty+fTv5+fkEAq1zsaqursbv99OrVy+qqqqSK3069eFaCgoK+azibd6LvEpDrAbLEPi1YsLxMJF4mEm9b8Xr8tEpvytF/hLq6upwuVyEQiFKS0vZtWsXwWCQSCRCaWkp4XAYh8OBruuYponD4SAcDtvbCgoKqKystKuxpwtX7Ny5E4fDkdO/xYKCArp27Uq3bt0IhUL4fD7C4TAulwun00k0GiUQCNjb4vE4QghcLheRSIRgMEhDQwM+nw9d1/F4PCSnsIDb7SYUCpGfn084HCYvLw/DMLAsC4/HQ0NDA4FAgEgkgtfrxbIsDMPA6XTi9XrtHEZ7KgSSE4ZboThU+fOf/8yJJ57ICSec0KrHjRohPo++Q8ioo7x+DVWxHXirAwjLSXutF118P+SLXR/jdAQYGBiMlu/gs+oPeHXDIk7ucTZjepxGB28XpJR4vV7i8bhtRNLGybIs2xiljUh6XyEEkUgEt9ttP7vd7lb9jAeDUChEQUEBoVCIoqIiDMNA13WKi4upqamhqKjINsJSSuLxOKWlpdTU1FBcXEwkEiEvL49oNIoQAsuy7GNWVVVRUFBAXV0dTqcTTdOorq6msLCQqqoqgsEg9fX1CCHweDxEo1E8Hk+Lks8pw61QtEE0ofGnjx5BN+N0DXald1FvPA4/895aQDDg5rAenajaHKYqvoZBA2spdrdHNy06+fqwZscqMJy083Tg5MNOB7CNTnpZ0zQsy0LTNAzDaHJuIUST0nBtuYSYz+cjFArhdDqpr6/H4XCgaRp1dXVcddVVDBs2jMmTJxOJROzPXFtbi9frpb6+HqfTSSwWw+lMmlJN0+yLW0FBAYlEAr/fj2VZzJ8/nzfffJPHHnuMgoICdF23t0kpW2y0QRluhaJN4nHk8Yfhf+bMRWdQ4TbZ4KwmT+RRLHqQF/MQKctn19YoX+6owJP3Od6qYmqKd+F3FuPU3NTVx4glEozsehxO6cLv9xMOhxFCJG/9XZJELIzL6QDhxZISh8NBPB7H7/djGAYul4twOEwgEGizhjscDlNUVER9fT35+fmYpomu6wSDQf7xj3/w8ssvY5omF198MYWFhcTjcYLBoN3jDoVCuN2O+SXYAAAgAElEQVRuYrEYgN3jLiwspLa2loKCArZu3cqbb77J9OnTicfjPPnkk9TW1hIMBgmFkjVq0sbe5/O1qC1VOKBC0QaJxWL0bteT5855jnq9lrc3vMO/1/6bL3as4eOvVvD6Z+9wyUmXcsbgczg2eD7VO6Czv4ianZXUh+r4onwdX5Sv54+v34Hm1QiHwwSDQUzTxCVj/PXGH7D4D0fw7K2HoYercLvdCCEoLCwkHA7bvdK8vDxqampsw5Vp1qxZYxu71sDlcmEYBg6HA9M0k4O6qTsKgGg0yvTp0+nRowfLli1DCGH7ow3DQNM0pJRomobD4cDhcNj+brfbzapVqxg+fDhXXHEF4XAYSAZjpN1KLpcLl8tl9+ZVj1uhOITJy8ujsrKSLv7OPPqz2Vz13FVU1FTQt6QfDunASpj87b1F+B1+orEIbqeLnR856d9jGNsqNlJfUkGp3o1n/rWIsT3HceqPTqWyshKvGz7514PUhXTadx9Gv8E/QbjyiMfjOBwOqqur7cHJ4uJiKisrKSkpyXiPu6qqigceeACn04lpmnTr1o3LLrvsgI/rdDrRdR1N09B13f4cc+fObXIxSiQSTJgwgYsuuoizzjqLnj17ctdddyGlTF7sXC4gaYgvu+wydu7cycKFC3n22Wepq6uzj2OaJnPmzOGyyy7DsiycTqc9juBwOFqu+4A/uUKhOOhEIhHy8/MBGOYdxjMXLeSMv5zJlxXrCDgD+ISPuIhTGd/FjsrtVO+q5qfDT6PU3RkLB0fmD+Pfn/2TYo8Tj+aioaGBuooN/P2VB6jYvJz2XY7i2HNmUdi+J5oQOBwOLMuipKSEcDiM0+mkqqqKQCBATU0NeXl55OXlZeSzSimpqqri448/Zu7cuaxfv54bbriBSy+99IAvGNFolOLiYurr6wkGgxiGQSKRYOHChSQSTWO8t23bxl133cVrr72G3+9n+fLlmKbZZB9N03jttdeQUrJy5crdfpY5c+Zw3nnnUVhYSCgUQgiB1+slkUjYPf69oVwlCkUbJN07k1KiCY2+xf1481dv0rfjYdTH6lm3438s37yCVVtWEcgPMnzAcKJ6lK93bkY4Neq3Jhjd5xTy85zc+NcpbNq2ga83rObLzz/h2NNn8PMpCyjp2BtBcjAybVDSYYFCCJxOJ5Zl2S6CxrRmD1xKyfTp05kzZw533HEHHTp04De/+Q0PPvjgAR87feHxeDxUV1cTiUQA0HXd3ue+++5rModj9erVLFu27DtGG5I+7hUrVjQx2h06dGD+/Pn2a6fTSbt27dB1nYKCAvx+P5C8i1KuEoXiEEbTNGKxGCLVG9Z1nY4FHVky+VVe+/w1Xv38H3yw5n12VO0kkghTZTmIOxJYCQsMWLvuC8YOP5njSn9B+1GCq+47nx9UOhg8bAyHDT2FvPwC20inox6EECQSCVwuF6Zp4na77UHKbxuc9O1/a33Wu+66iwsuuACHw8Hzzz/PkiVLWLp06QEfOx0GWF9fT3Fxsd3jTrs+IGnEX3zxRYqKinZrrPfGmDFjmlwIDMNg165dFBYWUldXZ/e4VTigQnGIE4vFbNdENBrF7/dTW1tLIBDgxL5j+PnwX7BkxRJ2NOwgEUsQ8OYTjUSJRxMgBcYJBt07dOPEESdSXFRMcEcxW97/jJN+diWl7TtTVVWF3+9H13WcTqdtpNPxyV6vl9raWnviTiAQyGgcd4cOHbjwwgtZsGABpmly3XXXtcpx0+GALlfSXZQeIGxsoH0+H/tb0PyXv/wld999N//+97/tdQ6Hg2Aw2CQcELAHgFvCIWe4DcOweyEKxaFKXl4e9fX1QPIPn56Nl/bZhsNhTh5yMnW1teS53URrq/h6/sPENqzF26kL/X/7exIuFw5g147t7Fi5DY+/Pd2696W+upqiQICErrPh7y/wyd8WIFxe+p9+Dn1Gn0hRSQmmaVJaWkooFKKkpMSOY84UBQUFdOzYkXPOOYfJkye3Wr6beDxOfn4+kUgEn89nz2L0er32PolEAo/HY0ee7AtnnHEGQJOBTikl4XAYv99vr3e73U165XvjkDHcUkqWL1/OBx98gKZpjBw5kqFDh7bZ+FKFYk+Ew2F7Nl80GiU/P9+OG04/71y5DFG+ibLXnsPl83PkrfeD5kI4NMxdO1h74/WYQsOKWVhrP6f9kUdR9vw8trz7NpGGevK79eIHZ57P+NtmYRk6X7z1On+deD7ugiJO/H/XkN+xMz369aOurg6fz2cPlmaK2tpa8vLyWjVJWWP/vZTSdvG89NJLdOzYkYaGBjZv3syKFSu+MxGpJWzYsIGhQ4eyYcMG+3xnnXWW3bFsHHq4L7bqkDHclmVx1llnMWvWLHt58+bNynArDkk8Hk8TH3cikcDr9aLrOl6vl13v/ovNs26k23mXMmDaHQgB4XVrSf8dpBAMvPE+pIDYju0UfbiURCKBQ2gMmzINnC7i0QiJaIRIVQWWlPQYOpzuQ0dQV13N4ptmEuzWnUvufQBfMJjxHnemcLlcxONxNE2zp/ILIZr0kB966CEeeuih/Tr+tddey7Zt25g1axaQ9NdfffXVeDweLMvC7XbbF4t9acNDJqrkxhtv5PHHH6ekpISOHTvy2GOPcdNNN2VbVpslEolw8803Z1uGohnS0RyNJ4BYloUQgsp3lrD+gVvoOWEywd6HEd9aRrx8MyIWRsTCEAtDNEx045dE1q/FaKil/YhRdD7meAq69yJauYPw1i3EqnZhhMMY0Qh6JEK8IUSsvg6Hw8HxF11M/ZYtPP7rK+wwtrZIOqwy7W9OG9JZs2btt1/726SNNiS/txtvvJG6umQ7hkIhotGonQelpe3YNi+Tu+Hqq6/m/PPPZ/z48TidThYvXsxzzz2XbVltFl3XW2XUXpEZ0lEdjWfyRSIRRNVOdr70V7qfeQGe4lKsuio0NIRIzQgEBGAhwUouY0kSkRCmlBgWmJbEkhJLJpeN9LMlMbHQTXB7fBwz4UJefvB+Hv7lRK5b+EzGP28ikcDn87XqcdPT171eLzU1NUgpeeSRR7j33nubuEaKiopwOBxNwiJramp2e8yCggJcLpd9IbUsy95XSsnjjz+Ow+Hg5ptvtiNVTNPcp3DAQ6bHXVpaSmFhIU8++SRXXXUVPp+PkpKSbMtSKDJC2qedzjxXV1dHYUEBOz5fSbC0I/7CEqxQLcQiiHgILR7BEQ+jxSPJR7r3HQ1DLATRMFYkjIyEMCMhjEgII9xAIhxCDzWQCDWQCDcQb0g+x0L1WIbOSZMupaa8nIaKiox+3o0bN7J06VIuuOCCVj1uQ0MDhYWFJBIJAoEAjz32GLfddluTyTdHHHEEK1asoLy8nI0bN1JRUcHy5csZPnz4d453+OGH89Zbb1FeXs7nn39OeXk5H330EYMGDbL3MU2TP//5z9x9991s27bNngofiURa3OM+ZAy3pmksXryYp556iqOOOooHH3xwj/lsc5WXX36ZrVu3ZluGIsdJJyTyeDyYppkMa6urpfY/S9B8XvSGGohFkNEIxJKGWotHcMbDOOIRRCwC8Yi9jxkJI6MRrGgYKxrBikQwIhGMSAg9EiaRfg6HSYRDJMIh4uEQeiyBy5/PO89mtsedprXHrHw+H5FIBKfTyc6dO7/jXh0wYACzZ8+muLjY9oXX19fTrl07Zs2aRb9+/ex9PR4P1113Hf369SMejxMIBNB1nQ4dOvDEE08wYsSIJseeNWsW4XDYHmz9XocDDho0iIEDc7esU3Ps3LmTn//855x55pk888wzeL1e5s2bl21Zihwl7RqB5B8+kUjg0QSxr76gZMxpWNEwpqbh0ESye6aBQ3OgaWBJEJYESyItibQspCmxLDAtC8sCw5LolkSXFrqZdKEYlpVcZ0kMM7UsoWPPHuit5A8+2Oi6Tl5eHrFYjF/96ld2dEma7du3M23aNEzTpH///jz88MN4vV4ikQhDhgxh7NixrF+/HoCxY8dywgkn2C6dSCTCLbfcwsqVK7Esi82bNzc5txCCK6+8khdeeAG3271PoYaHnOFuK1iWxfr16+0fyY4dO/D5fIwbN45LLrmESZMmsXPnTjp06JBlpYpcpHH4mh3SpgmkZWLFIhgaaJoDSxNITYAmkA4BacNkgbQklmVhmclnwwLDtDAk6IaFIZN+7YRpJQ25aWFYFglLoJsS3bLQTYtYuPWy9R1s0gUMnE4nTzzxBP/5z3+YMGGCvb26upoPP/yQPn36cOedd+JwOIhEIng8HuLxeJNIkEAgQLt27ewoH7/fz0033cQpp5zCihUrvnPuP/3pT5x//vlNCli0lEPScB933HG8/fbb9O3bN+vhgJs3b+aNN974znrTNFm2bJn9OhwOs2HDBu6//35uuOEGTj75ZN54441W9+kpDg0SiYQ9U9E0TbxeL7G6WsxwhNjObfiCBZiaA80hEBoIhwChYaFhITGkxLSSBtkw071qiSEtEibo6R61mRyMjEajxHUdPD4SlkwZbtAtk3gkQiZjSqSUvP322xmpYdk4qZPD4eDdd9/9zj6HH344ixYtIj8/H6fTyeuvv05FRQWFhYUMGjSISy65BMMw+NGPfsSyZcsoKyvD5/Nx5pln4vV6efnllznttNP47LPPmhz3448/5uyzz7Y7b/sSmXNIGu5JkyYxZMiQVskedqA0rhTSGI/Hw+OPP27r27JlC8cddxznn38+Tz75JK+99hqffPLJwZZr4/P5GD9+PC+++CJnnXVW1nS0dc466ywWLFjAyJEjWzUiwuv1UlFRgRACv9+frIMYyMeSUP/lGhz9+iN8XtC0VE87FUmiGwiPF1NaScNrGIS3bSEWDhMzLRKmJG5I4pZJ3ABXSQcIBIlFosQTCYRhkkjtp1uShGGyefVq+g4fsXfR+4mUktmzZ+82215rkK70EwqFmD17Nqeffjrr1q1j3bp19vlnzZrFPffcgxCCqqoqrrnmGn784x/z/PPPc9ZZZ9npWSdPnszzzz/PfffdByRnct94441NjHKXLl0YM2YMf/3rX5k+fTp5eXktzgqY5pA03LlE9+7dmThx9xW5G9OxY0eWLFnCvHnzGD16NJMmTToI6prH7XZz5JFH8s477yjDfQAcddRRTJ06tdVD2dLFetOTRQKBAA2hBo6Yfjtrbr0a8/MwpT8YiPS4MTWBKUDEI1i1NTg6dMYyTBo2rME0JLF4nLiuEzct4gZEDZO4YREzLfQd29BxIP0FOAoKkZEYhsOJbkLCtNjw+So0dx5HHHNsq322g0m6sK/X68Xr9fLRRx9RWlrKhRdeaO/z5Zdfsm7dOt59913OPfdcJk2aRHFxsR3uZ5qmXTzBNE3y8/MZP348c+fO5f7776esrMzORwJQWFjI/fffz1VXXUWvXr3sqkP7MgFHGe4cweVy8YMf/IDbb7+9yTRYhaI5TNO07+aSvUYHIlCEblho4TDVX3xKQd/+aKaBwzIRehy9citsL0/GalugWxYJK9mDThjJXrRJKnZbQiKeIKabxOoaiG/ZQsy0MFwe/B07s61sMw0NEXqOOIyBGXBjHAzShX3j8TjFxcUUFRWxZcsWYrGYPakJkr3uTZs2ceedd7JmzRpeeeUVnnzySaSU+Hw+O3xw4MCBXHfddVx//fUsWrToO+4PTdOIRqNs376dww8/3J7k43K5iMViLZ7O32LDLYRwAMuBrVLK04QQvYBngRLgE+AiKWVCCOEBngKGAlXAuVLKspaep7W44IILeOaZZ9qcj7gthjAqDj7pqdpp451OrxoCLK+XRDwGukG4tgbC9YhQA5om0BBIJKa0sGTScBsWKZ/1N75rI+3/tpL+cMuSmFJiWmDqOqGaWmKRKA6PFylbP0zvYJGfn29XY6+trcXtdrNx40Z+/OMfc/LJJ1NfX28PYM6ePRspJX//+98ZNWoU06dPt6vd+/1+pJRce+21LFiwoInRnjJlit0jTycH27BhA507d7bLxe3rHdm+9Lh/A6wFgqnXdwH3SymfFULMBiYBj6aea6SUfYUQ56X2O3cfztMqTJ48mfHjx7c5w50rTJo0iTVr1lBVVcUnn3xiD84ocoN4PG5nsItEIuTl5SXTrB7+Q4qOGcvOf72EhYGsqsIpLDTDQmgCkTLclmxkiKVM+rZN2cSAG40GLw2ZHLA0pcTQJfGaOiwJDq+X8dOm2jlSMsGMGTO4++67M3LstMspkUhQUFCAlJJjjz2WE088kVgsZlem0TSNfv36cc011wDwwAMP8Nvf/tYOJ0wkEvYsyfvuu8822jfffDNXXHEFXq/XnuXq9XqJxWJ2VkfArhbf0tS4LereCSG6Aj8FHk+9FsCJwPOpXeYDZ6aWz0i9JrV9jMjC5VgIoWZO7ic1NTVs3LiRadOmccYZZ+D1etmxY0e2ZSka4ff7CYVCTXJJFxQUEBcOgj36YlgQ1y2ikSjRaIKIaRE1LCJG8jlqWMSMpLGO6jI5MGlZJFLhf7qUxC2JYUoMKUikety6ZaH585OuBLcP3TAYddLJGStbBrBs2TJGjRqVkWPn5eU1acO0y6O+vh6fz0d9fb1d3f7www+332cYhl1LMhaL4XK5mhQBTtOvXz+KiopwuVxomkYwGCQajVJQUGDnR0n3tPcln3lLe9wPANOAQOp1CVArpUxP5i8HuqSWuwBbAKSUhhCiLrX/rharagXy8/NZvHjxwTzlIcP8+fO5/PLL6du3L4lEgjPPPJMHH3xwvzOkKVqfSCRCIBBoslxXV0cgEEDr2Q+tXWdiO8rRZQIHAodGKjNgsq8mZdNed3pyjR0tYproZtJ4J6x0PLfEMCFWU4sl4MgxJ+AtLqGyspLCwkJbT1sineclHUeddlWmixK7XC6klDgcjiaDh0IIO+46ncOk8SNNuhp8ep2u63acd9rFlfajNx7A3Bt77XELIU4DKqSUrRqbJoS4XAixXAixvLWycClah6uvvprbbruN//73vxQVFXHhhRdy2223ZVuWohFpv2s0GrUHvNK39T2OHo23S3eipkUsFR2S7GFbxAyDmGEQNUyihvnNdttIpwYqTZmM504b81Sct24lXSilPXvx1eo1nPbrKQSDwYxWv8kk6VDAtHFuHNOdzsCYzr7Yq1evJoUR0vMz0i6StP+7qqoKSJYsGzhwoL0tHXWiaRqmaTZ5H7R+HPfRwOlCiFMBL0kf94NAoRDCmep1dwXSCTa2At2AciGEEyggOUjZBCnlHGAOQIcOHdpmTshDmEWLFrF69Wo+/PBDnnvuuTbZmzqUSf/x03/+dARE2uAMm3obf79wPNFoCIcQyYFJmex1S8ACrHQWQCSGkYwkSRpnC8OEhJU05rplpaJPkgbcEwjSvu8PaNe3L8WdOtnlvjL1OTM5YJ8uEhwMBqmrq8PtduNyuexKQtXV1QQCASKRCIWFhRx77LG8/PLLhMNhpkyZQrdu3WzDDlBeXm5nAhw6dCidOnWy86Snc8rU1NTYleXTpcsSiUTrhgNKKWcAMwCEEKOB66SUFwgh/gb8gmRkySXAy6m3vJJ6/UFq+1uyrSbr/R6Tzvmyr1NxFd8lEz9/0zTtP3r6lj4SieB2u4lGoxT27kNe915UrPkUTWg47JSuFhINKVI9wNTgpGnJVArXdD4SYfe0dcsiZiZdJgnLJBAsRHO76TVoEIHCQurr69E0LSO97ltuuYUbbrjBroTe2qSzA8ZiMQoLC7EsC9M0KS4utsuyRaNRAoEAUko7PwxAZWUllZWVzR47fReUzr2taRo1NTX4/X6qq6ttH3ra7ZIuFtwSDuRSNh24RgixgaQP+4nU+ieAktT6a4DrD+AciizicDiU0W4FMtEb9fv9NDQ0EAqFcDqddjxyJBKhpKSESCTCKY88SVy3iBsmUd1MuUdk8jlhEdWT7pN42o1iSqImxAxBzLBImBZxM7leNy0ShklRl+70O/pYvHl+xp53Hg0NDZSWlmZscDLtg85Ujz4QCFBTU4Pb7aampsaOq04XQN61axcOh4P6+noikQjDhw+nW7duez1ux44dOeGEE+wLgsfjQdM0ux5oaWmpHcmSvijtSxvuk+GWUr4jpTwttfyVlHKElLKvlPJsKWU8tT6Wet03tf2rfTmHQqHYO9FolLy8PHw+n52EPz0DsK6uDq/Xi3S6GXTRpUlDbSYNd0T/xredjC4xk/5vUzYy4slp7XHDIm77uyXBjl3oPWwE28rK+MnEidQ1hPD5fNTW1jYp9dWWiEQidsX1YDBohzQWFhba7hHTNPH7/Xi9Xo4++mjmz59PYWFhs8d0u908/vjjjB49Go/HQ0NDA7quI6W0o1VqamqScfepCjjAPrWhmu2hULRBPB4Puq7bUQrRaNSewZefn58sDFBUTOmo49DadSJqSCKGRcRMhgR+ExYov1k2LWK6mexlG8kQwbhpkrAk7mAB7fv2o6piJ5GGEL0HDyYQCBCPx/H7/Rm7M5s6dep38li3Jl6vl3A4jNPpJBwO2+GA6YtgQ0MDDoeDWCxm16Q8/PDDWblyJfPmzSMYDBIIBAgGgwSDQe6//37WrVvHqFGjCAQCJBIJ8vLy7LuGdGX3QCCAYRhNih9nIhxQoVDkEI2nYqcjIhrnzkgPWvYaMYphF1/KW/ffgx4J2++XqYk4UiYHKU3S/m6S6VztCTgW3uJS8jt0IhKN4vF4uev1f9saGg+KZoLi4uKMHDdN4/JiaRqXJ2u8LZ0+V9M02rdvzymnnMLXX3+NYRj2zEjAHm9I59e2LMuOHmn8HUFyfKJx1ElLUYZboWiDmKZph6qlDadhGGiahq7r9rPb7ebYSb/ClJJX/3ArsomBSkaYmJJkTHd6Wrv8Ji+3IQWaKamrqaFnp05ces89aKlMePF43I5JFkK0yUrvjY1uenYjJHvi6XS50LQ3nN7WeOJM45A+XddxuVx2pIiu6/Z7E4mEvS39nTW+ULQU5SpRKNog6ZjtWCxmJ/dPr0tXLU/f6muaxogJF/OLe/9E1yHDk/7s1KPLsBF4O3QkZlqph6TfcaOJWySnwFsQi0Q56qSfMPGPfySvqAiPx4NlWeTn5xOPx8nPz2+zcdxpw5qeDJM2no2NbnqqeroHns7kl3arpEMW0ymcXS6XXczZsiycTqe93eVyYRhGk23pC96+3LW0vUukQtFGiEajVFZWEovFKC8vR9d1SktLW+34aTeCEAKfz4cQwl5XVFSEEILOnTvb20+8+P849uxzMRv1AB0uF5ZlYpnf9MSdbjd6o2K5AG6vF7fXa/cOg8GgnVairSaYguQF0OPxNGlD+MZdkt7WmHQ19t1tS7Mnv/X++LS/jTLcCkWG+O9//8u1115LRUUF1157LSUlJTz99NOtdvzGE1PSBmRvz44WJgrzNhM33dxx2yqNUyg3/ix7+ny58NmVq0ShyACRSIQ333yTuXPnMnDgQP7yl78wYMAAli5dmm1pikMAkQuTGouKiuRFF12UbRnNEo/H7VlUuUpdXR1OpzNjM8xag507d7JzZylSZiYCoTUoLNxKjx5d9r7jXjBNk82bN9O7d282btxIz549qa+vx7KsA/odmaZJVVUV7du3P2CNmSIcDmOaJsFgcO87Z4mqqiry8/NbPFMxGyxYsICamprddutzwnALISqBMAc5g+A+UIrStj8obfuH0rZ/HGraekgp2+1uQ04YbgAhxHIp5bBs69gdStv+obTtH0rb/vF90qZ83AqFQtHGUIZboVAo2hi5ZLjnZFvAHlDa9g+lbf9Q2vaP7422nPFxKxQKhaJl5FKPW6FQKBQtIOuGWwgxTgixTgixQQiR9aILQogyIcTnQohPhRDLU+uKhRCvCyHWp56LDpKWuUKICiHE6kbrdqtFJPlTqh1XCSGOypK+W4QQW1Pt92mq5F1624yUvnVCiJMzqKubEOJtIcQXQog1QojfpNZnve32oC3r7ZY6l1cI8ZEQ4rOUvltT63sJIZaldCwSQrhT6z2p1xtS23tmQds8IcSmRm03OLU+G/8JhxBipRDi1dTrzLTbt6sTH8wH4AA2Ar0BN/AZcESWNZUBpd9adzdwfWr5euCug6TlOOAoYPXetACnAv8EBDASWJYlfbeQLG/37X2PSH2/HqBX6nt3ZEhXJ+Co1HIA+F/q/Flvuz1oy3q7pc4ngPzUsgtYlmqT54DzUutnA1ekln8NzE4tnwcsyoK2ecAvdrN/Nv4T1wALgVdTrzPSbtnucY8ANshkNZ0EyfqVZ2RZ0+44A5ifWp4PnHkwTiqlfBeobqGWM4CnZJIPSRZz7pQFfc1xBvCslDIupdwEbCD5/WdC13Yp5YrUcgOwFuhCDrTdHrQ1x0Frt5QmKaUMpV66Ug8JnAg8n1r/7bZLt+nzwBghMpPEYw/amuOg/ieEEF2BnwKPp14LMtRu2TbcXYAtjV6Xs+cf8cFAAv8WQnwihLg8ta6DlHJ7ankH0CE70vaoJZfackrq1nRuI7dSVvSlbkGHkOyd5VTbfUsb5Ei7pW73PwUqgNdJ9vJrpZTGbjTY+lLb60jWoD0o2qSU6ba7PdV29wsh0vPYD3bbPQBMA9KpFkvIULtl23DnIsdIKY8CTgGuFEIc13ijTN7b5EQoTi5pacSjQB9gMLAdmJUtIUKIfGAxcLWUsr7xtmy33W605Uy7SSlNKeVgoCvJ3n3/bGn5Nt/WJoQYCMwgqXE4UEyykPlBRQhxGlAhpfzkYJwv24Z7K9C4ZHLX1LqsIaXcmnquAF4k+cPdmb7FSj1XZE9hs1pyoi2llDtTfy4L+Avf3NYfVH1CCBdJw/i0lPKF1OqcaLvdacuVdmuMlLIWeBsYRdLNkE4D3ViDrS+1vQCoOojaxqXcT1ImC5Y/SXba7mjgdCFEGUmX74nAg2So3bJtuD8G+qVGXt0knfSvZEuMEMIvhAikl4GxwOqUpktSu10CvJwdhR0Bo5UAAAF0SURBVLAHLa8AF6dG0kcCdY3cAgeNb/kQzyLZfml956VG03sB/YCPMqRBAE8Aa6WU9zXalPW2a05bLrRbSkc7IURhatkHnETSD/828IvUbt9uu3Sb/gJ4K3U3c7C0fdnoYixI+pAbt91B+V6llDOklF2llD1J2rG3pJQXkKl2+//t2z1uwkAQhuG3g5qOlgNQpUxBC9fIMZByi5wgkVJwBeAANBAgRX5ukibFDIIGJBf2stL7SC7ASPtphEfyjt3GZLXJQUx+v4l9tHnhLCNigv8BfJ7yEHtPK+AHWAKDjvK8E7fNf8T+2NO1LMTk/CXreAAeCuV7zfX3+eccXvx+nvm+gGmLuR6JbZA9sMtjdg+1u5GteN1yrTGwzRxH4Pni2tgQw9EF0Mvv+/n5N8+PCmRbZ+2OwBvnJ086vyZy3Qnnp0paqZtvTkpSZUpvlUiSGrJxS1JlbNySVBkbtyRVxsYtSZWxcUtSZWzcklQZG7ckVeYf2tkbinO+r1AAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## 結果\n", + "\n", + "ピーターがオオカミと戦う訓練に成功したかどうか見てみましょう!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 1, won: 9 times, drown: 90 times\n" + ] + } + ], + "source": [ + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [ + "溺死のケースは今ではかなり減りましたが、ピーターはまだ必ずしもオオカミを殺すことができるわけではありません。ハイパーパラメータを調整して、この結果を改善できるか試してみてください。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAcD0lEQVR4nO3df3BV553f8fdHPxHCQgJkIEACrIkd4raxrcZksrOTCVmM3UzwH04Gz86azXrDtHHa7HZnEryZ1tMknkna7XrDrONdN2aDM1kTrzetaYpLKHYm05nasRw7trFNkLExkrGRkQAbJPTjfvvHeSQuQjrge4UkxOc1c9E53/Occ5/nHul+OD+kq4jAzMxsLBWT3QEzM5vaHBRmZpbLQWFmZrkcFGZmlstBYWZmuaomuwPjbd68ebF06dLJ7oaZ2UXlmWeeeScimkdbNu2CYunSpbS2tk52N8zMLiqSDoy1zKeezMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4NihOO9/Tz6XMdkd8PMbMqYdr9wV66vP/I8j734FlcuuIyrFjRMdnfMzCadjyhGePNYLwA9fYOT3BMzs6nBQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0ExhpjsDpiZTRHnDApJWyQdlvTiKMv+XFJImpfmJWmzpDZJz0u6tqjtBkn70mNDUf06SS+kdTZLUqrPkbQrtd8lqWl8hnyO8U7Ek5iZXUTO54jih8DakUVJS4A1wBtF5RuBFemxEbgvtZ0D3AVcD3wcuKvojf8+4EtF6w091yZgd0SsAHaneTMzm2DnDIqI+CXQNcqie4CvceZZmnXAg5F5EmiUtBC4AdgVEV0R0Q3sAtamZQ0R8WREBPAgcHPRtram6a1FdTMzm0AlXaOQtA7oiIjfjFi0CDhYNN+eann19lHqAPMj4lCafguYn9OfjZJaJbV2dna+3+GYmVmO9x0UkmYCfwH8x/HvzujS0caY15cj4v6IaImIlubm5onqlpnZJaGUI4rfAZYBv5H0OrAY+LWkBUAHsKSo7eJUy6svHqUO8HY6NUX6eriEvpqZWZned1BExAsRcXlELI2IpWSni66NiLeA7cBt6e6nVcCxdPpoJ7BGUlO6iL0G2JmWHZe0Kt3tdBvwaHqq7cDQ3VEbiupmZjaBzuf22IeA/wdcKald0u05zXcA+4E24L8BXwaIiC7gW8DT6fHNVCO1+UFa51XgsVT/DvD7kvYBn0nzZmY2warO1SAibj3H8qVF0wHcMUa7LcCWUeqtwNWj1I8Aq8/VPzMzu7D8m9lmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBMYYY8xO6zcwuLQ6KEaTJ7oGZ2dRyPh+FukXSYUkvFtX+i6RXJD0v6b9LaixadqekNkl7Jd1QVF+bam2SNhXVl0l6KtV/Iqkm1WvTfFtavnS8Bm1mZufvfI4ofgisHVHbBVwdEf8c+C1wJ4CklcB64KNpne9LqpRUCdwL3AisBG5NbQG+C9wTEVcA3cDQZ3LfDnSn+j2pnZmZTbBzBkVE/BLoGlH7eUQMpNkngcVpeh2wLSJORcRrQBvw8fRoi4j9EdEHbAPWSRLwaeCRtP5W4OaibW1N048Aq1N7MzObQONxjeKPgcfS9CLgYNGy9lQbqz4XOFoUOkP1M7aVlh9L7c8iaaOkVkmtnZ2dZQ/IzMxOKysoJH0DGAB+PD7dKU1E3B8RLRHR0tzcPJldMTObdqpKXVHSHwGfBVZHDN9M2gEsKWq2ONUYo34EaJRUlY4aitsPbatdUhUwO7U3M7MJVNIRhaS1wNeAz0XEyaJF24H16Y6lZcAK4FfA08CKdIdTDdkF7+0pYJ4AbknrbwAeLdrWhjR9C/B4USCZmdkEOecRhaSHgE8B8yS1A3eR3eVUC+xK15efjIh/HRF7JD0MvER2SuqOiBhM2/kKsBOoBLZExJ70FF8Htkn6NvAs8ECqPwD8SFIb2cX09eMwXjMze5/OGRQRceso5QdGqQ21vxu4e5T6DmDHKPX9ZHdFjaz3Ap8/V//MzOzC8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMyZ+RZGYGDoqzaLI7YGY2xTgozMws1zmDQtIWSYclvVhUmyNpl6R96WtTqkvSZkltkp6XdG3ROhtS+32SNhTVr5P0Qlpns9Jnq471HGZmNrHO54jih8DaEbVNwO6IWAHsTvMANwIr0mMjcB9kb/pkn7V9PdnHnt5V9MZ/H/ClovXWnuM5zMxsAp0zKCLil0DXiPI6YGua3grcXFR/MDJPAo2SFgI3ALsioisiuoFdwNq0rCEinoyIAB4csa3RnsPMzCZQqdco5kfEoTT9FjA/TS8CDha1a0+1vHr7KPW85ziLpI2SWiW1dnZ2ljAcMzMbS9kXs9ORwAW9l/RczxER90dES0S0NDc3X8iumJldckoNirfTaSPS18Op3gEsKWq3ONXy6otHqec9h5mZTaBSg2I7MHTn0gbg0aL6benup1XAsXT6aCewRlJTuoi9BtiZlh2XtCrd7XTbiG2N9hxmZjaBqs7VQNJDwKeAeZLaye5e+g7wsKTbgQPAF1LzHcBNQBtwEvgiQER0SfoW8HRq982IGLpA/mWyO6vqgMfSg5znMDOzCXTOoIiIW8dYtHqUtgHcMcZ2tgBbRqm3AlePUj8y2nOYmdnE8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQjCEu6EcxmZldPBwUI2Qfi2FmZkMcFGZmlstBYWZmuRwUZmaWq6ygkPRnkvZIelHSQ5JmSFom6SlJbZJ+Iqkmta1N821p+dKi7dyZ6nsl3VBUX5tqbZI2ldNXMzMrTclBIWkR8O+Aloi4GqgE1gPfBe6JiCuAbuD2tMrtQHeq35PaIWllWu+jwFrg+5IqJVUC9wI3AiuBW1NbMzObQOWeeqoC6iRVATOBQ8CngUfS8q3AzWl6XZonLV+t7BajdcC2iDgVEa8BbcDH06MtIvZHRB+wLbU1M7MJVHJQREQH8JfAG2QBcQx4BjgaEQOpWTuwKE0vAg6mdQdS+7nF9RHrjFU/i6SNkloltXZ2dpY6JDMzG0U5p56ayP6Hvwz4AFBPdupowkXE/RHREhEtzc3Nk9EFM7Npq5xTT58BXouIzojoB34KfBJoTKeiABYDHWm6A1gCkJbPBo4U10esM1bdzMwmUDlB8QawStLMdK1hNfAS8ARwS2qzAXg0TW9P86Tlj0dEpPr6dFfUMmAF8CvgaWBFuouqhuyC9/Yy+mtmZiWoOneT0UXEU5IeAX4NDADPAvcD/wvYJunbqfZAWuUB4EeS2oAusjd+ImKPpIfJQmYAuCMiBgEkfQXYSXZH1ZaI2FNqf83MrDQlBwVARNwF3DWivJ/sjqWRbXuBz4+xnbuBu0ep7wB2lNNHMzMrj38z28zMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMYQk90BM7MpwkExgia7A2ZmU4yDwszMcjkozMwsl4PCzMxyOSjMzCxXWUEhqVHSI5JekfSypE9ImiNpl6R96WtTaitJmyW1SXpe0rVF29mQ2u+TtKGofp2kF9I6m9Nnc19QrQe6L/RTmJldVMo9ovge8L8j4irgXwAvA5uA3RGxAtid5gFuBFakx0bgPgBJc8g+TvV6so9QvWsoXFKbLxWtt7bM/pqZ2ftUclBImg38HvAAQET0RcRRYB2wNTXbCtycptcBD0bmSaBR0kLgBmBXRHRFRDewC1ibljVExJMREcCDRdsyM7MJUs4RxTKgE/h7Sc9K+oGkemB+RBxKbd4C5qfpRcDBovXbUy2v3j5K/SySNkpqldTa2dlZxpDMzGykcoKiCrgWuC8irgFOcPo0EwDpSOCC/5JzRNwfES0R0dLc3Hyhn87M7JJSTlC0A+0R8VSaf4QsON5Op41IXw+n5R3AkqL1F6daXn3xKHUzM5tAJQdFRLwFHJR0ZSqtBl4CtgNDdy5tAB5N09uB29LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVW62+m2om2ZmdkEqSpz/X8L/FhSDbAf+CJZ+Dws6XbgAPCF1HYHcBPQBpxMbYmILknfAp5O7b4ZEV1p+svAD4E64LH0MDOzCVRWUETEc0DLKItWj9I2gDvG2M4WYMso9Vbg6nL6aGZm5fFvZpuZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMIS74H0c3M7s4OCjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxylR0UkiolPSvpZ2l+maSnJLVJ+kn6mFQk1ab5trR8adE27kz1vZJuKKqvTbU2SZvK7auZmb1/43FE8VXg5aL57wL3RMQVQDdwe6rfDnSn+j2pHZJWAuuBjwJrge+n8KkE7gVuBFYCt6a2ZmY2gcoKCkmLgX8F/CDNC/g08EhqshW4OU2vS/Ok5atT+3XAtog4FRGvAW3Ax9OjLSL2R0QfsC21NTOzCVTuEcVfA18DCml+LnA0IgbSfDuwKE0vAg4CpOXHUvvh+oh1xqqfRdJGSa2SWjs7O8sckpmZFSs5KCR9FjgcEc+MY39KEhH3R0RLRLQ0NzdPdnfMzKaVqjLW/STwOUk3ATOABuB7QKOkqnTUsBjoSO07gCVAu6QqYDZwpKg+pHidsepmZjZBSj6iiIg7I2JxRCwluxj9eET8AfAEcEtqtgF4NE1vT/Ok5Y9HRKT6+nRX1DJgBfAr4GlgRbqLqiY9x/ZS+2tmZqUp54hiLF8Htkn6NvAs8ECqPwD8SFIb0EX2xk9E7JH0MPASMADcERGDAJK+AuwEKoEtEbHnAvTXzMxyjEtQRMQvgF+k6f1kdyyNbNMLfH6M9e8G7h6lvgPYMR59NDOz0vg3s83MLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkoxpD9dREzM3NQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlKjkoJC2R9ISklyTtkfTVVJ8jaZekfelrU6pL0mZJbZKel3Rt0bY2pPb7JG0oql8n6YW0zmZJKmewZmb2/pVzRDEA/HlErARWAXdIWglsAnZHxApgd5oHuBFYkR4bgfsgCxbgLuB6so9QvWsoXFKbLxWtt7aM/pqZWQlKDoqIOBQRv07T7wIvA4uAdcDW1GwrcHOaXgc8GJkngUZJC4EbgF0R0RUR3cAuYG1a1hART0b29zQeLNqWmZlNkHG5RiFpKXAN8BQwPyIOpUVvAfPT9CLgYNFq7amWV28fpT7a82+U1CqptbOzs6yxmJnZmcoOCkmzgH8C/jQijhcvS0cCF/yv60XE/RHREhEtzc3NF/rpzMwuKWUFhaRqspD4cUT8NJXfTqeNSF8Pp3oHsKRo9cWplldfPErdzMwmUDl3PQl4AHg5Iv6qaNF2YOjOpQ3Ao0X129LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVV6rtuKtmVmZhOkqox1Pwn8IfCCpOdS7S+A7wAPS7odOAB8IS3bAdwEtAEngS8CRESXpG8BT6d234yIrjT9ZeCHQB3wWHqYmdkEKjkoIuL/AmP9XsPqUdoHcMcY29oCbBml3gpcXWofzcysfP7NbDMzy+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgGMMF/wNVZmYXCQeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgfFGArhG2TNzMBBMab/+vPfTnYXzMymBAfFGJ450D3ZXTAzmxKmfFBIWitpr6Q2SZsmuz9mZpeaKR0UkiqBe4EbgZXArZJWTmQfBgtT+1rFwGCBvoHC+1pnsBDEJXQNJuLSGu9oLobxXwx9vFSV/JnZE+TjQFtE7AeQtA1YB7w03k+0efc+Hn2u44zaVf/hMXr7z34TvuLyWWfVRn6THzrWS0//IALmN8xgRnUlFcr+hlQEvPbOCQCWzatHQHt3D32DBRY11tFxtIfFTXVUV1Yg4GTfIDNrK6nU2R9Rvu/wewDMm1XL7Lqq4b9RNdQy0j9Kz10oBK8fOQnA7zTXD2+nkNoMtR3p1c4Tw9M1lRX0DRZYPi9bv79QoL27h4UNM6itrkSCrhN9HD3Zz4KGGdRWV9A3UODQsV4AFjTMQILKCtHe3TO83eWpP719g7yZ2i6fV4+Uhduxnn7m1NecHleaCLKbDw6kcS2dOxOACgnpdN+XN2evdSGgQiCJUwODHOw63Ye59TUcOdE3vJ3uk/3MrqumQtA3UKDrZN/w98TyefVUVJz5YrWl/TE0lo7uHhrqqmmYUdqPmkbbGTkKEezvPEF1pVjUWDe8rwEuq62iqb6GqgpxaqBA57un6BssUFNZweKmOoJsnxQiOPJeH8d6+gFY1FhHbXXF8Is+UAj6BgrU11ZSCHi3d4BZtZWcGijQ2z9IVWUFM2sqqa48+/+hEcGrnSe4bEYV82bV0j9YoLJCw/uuvqaSGdWVw/sAsp+RUh3v6efIiT5m1lTSN1BgoBDMrqumb6BAT//gcLs59TXMrqtGguM9A0DwzntZHySYXVdNY101kqgs2ucDg9l2evsLzK2vQYI3j/ayYPYM3u0d4J33TgHZz5okIrLv41MDBebNqh3e1pH3TvFu7wAfnDuT4z39w889ZOHsGcysqSTIfrbf6DrJ5ZdlP1uQ/Vyf7Btk863XsGr53JJfr7FM9aBYBBwsmm8Hrh/ZSNJGYCPABz/4wZKeaH5DLVctaOCNrpP0DwZz62uoqhS9/aeQsh+W9u4eFjXW8eH5sxCj/AAXlWZUV7LnzeME2ZvGrNoqqioqUHqDmlVbxQsdx1j5gQYEvPNe9kP7sSWNdBztYW59DUvmZG94zxzoZs7MGi5vqD3rKdu7e+jpH6SupoKrFjScmRA63a1I8xUSrx85ycqFDSxrrh/9rx/mBMW/XNpE32Dwm4NH+UjquyQOdvXwobn1zJ2VvZGf7Bvk8VcO87EljdRWVzBYCH72/CEAPrakkRnVFQwGw0Exb1YNH1nYMPxDMBQUH1l4ekyvdZ5gyZw6qtIb0FA3h95MD6RxrZg/iwjoHyxQIfFq5wmuuHwWVy64DAIqKkQhHSkOFuKMoLjuQ038/KW3uX7ZHN463svcWTU0zaxhUWMW3Md7+3nu4FE63z3F/IYZw8E1ZOiNeuXCBgI4drKfmsoKrlrYMMoLfQ4l/gd7f+cJls+bxfLm+uGgqKmqYFFTHR+efxmDEVRI/M/fvAlA32CBD8+/jKpKMfT/nc53T/Gr17uA7GfjA411w13qGyiw66W3uemfLUASz7cf5YrLZ6XgLXDkvVO8ffwU1y+bPWr/Xu08wbu9A3zqysuprhADheDNoz3MqKpkUVMdr3a+N9x2xeWzsu+BEh3v7ecXezupTM8DWRj29A8yt76GhY0zeLHjONcsaaS+torBQnC0p4/X3zkdsBFZP4719PPh+ZdRiDjj5//p17s41tPP714xDwQLZs/g7eOnuHLBLN5py4LiqgWnx/D28V5aD3RzxeWz+MDs7HVt7e1noBCsXNjAqfT6DrnuQ010dPec/h5K4VyIGH5tKiXqqitpnFld8muVR1P5cE/SLcDaiPiTNP+HwPUR8ZWx1mlpaYnW1taJ6qKZ2bQg6ZmIaBlt2ZS+RgF0AEuK5henmpmZTZCpHhRPAyskLZNUA6wHtk9yn8zMLilT+hpFRAxI+gqwE6gEtkTEnknulpnZJWVKBwVAROwAdkx2P8zMLlVT/dSTmZlNMgeFmZnlclCYmVkuB4WZmeWa0r9wVwpJncCBElefB7wzjt25GHjMlwaP+dJQzpg/FBHNoy2YdkFRDkmtY/1m4nTlMV8aPOZLw4Uas089mZlZLgeFmZnlclCc6f7J7sAk8JgvDR7zpeGCjNnXKMzMLJePKMzMLJeDwszMcjkoEklrJe2V1CZp02T3p1SSlkh6QtJLkvZI+mqqz5G0S9K+9LUp1SVpcxr385KuLdrWhtR+n6QNkzWm8yWpUtKzkn6W5pdJeiqN7SfpT9UjqTbNt6XlS4u2cWeq75V0w+SM5PxIapT0iKRXJL0s6RPTfT9L+rP0ff2ipIckzZhu+1nSFkmHJb1YVBu3/SrpOkkvpHU2S+fxebtDHzx/KT/I/oT5q8ByoAb4DbBysvtV4lgWAtem6cuA3wIrgf8MbEr1TcB30/RNwGNknyy6Cngq1ecA+9PXpjTdNNnjO8fY/z3wD8DP0vzDwPo0/bfAv0nTXwb+Nk2vB36SplemfV8LLEvfE5WTPa6c8W4F/iRN1wCN03k/k3008mtAXdH+/aPptp+B3wOuBV4sqo3bfgV+ldoqrXvjOfs02S/KVHgAnwB2Fs3fCdw52f0ap7E9Cvw+sBdYmGoLgb1p+u+AW4va703LbwX+rqh+Rrup9iD79MPdwKeBn6UfgneAqpH7mOzzTT6RpqtSO43c78XtptoDmJ3eNDWiPm33cwqKg+nNryrt5xum434Glo4IinHZr2nZK0X1M9qN9fCpp8zQN+CQ9lS7qKVD7WuAp4D5EXEoLXoLmJ+mxxr7xfaa/DXwNaCQ5ucCRyNiIM0X9394bGn5sdT+YhrzMqAT+Pt0uu0HkuqZxvs5IjqAvwTeAA6R7bdnmN77ech47ddFaXpkPZeDYpqSNAv4J+BPI+J48bLI/isxbe6LlvRZ4HBEPDPZfZlAVWSnJ+6LiGuAE2SnJIZNw/3cBKwjC8kPAPXA2knt1CSYjP3qoMh0AEuK5hen2kVJUjVZSPw4In6aym9LWpiWLwQOp/pYY7+YXpNPAp+T9Dqwjez00/eARklDn+JY3P/hsaXls4EjXFxjbgfaI+KpNP8IWXBM5/38GeC1iOiMiH7gp2T7fjrv5yHjtV870vTIei4HReZpYEW6e6KG7MLX9knuU0nSHQwPAC9HxF8VLdoODN35sIHs2sVQ/bZ098Qq4Fg6xN0JrJHUlP4ntybVppyIuDMiFkfEUrJ993hE/AHwBHBLajZyzEOvxS2pfaT6+nS3zDJgBdmFvyknIt4CDkq6MpVWAy8xjfcz2SmnVZJmpu/zoTFP2/1cZFz2a1p2XNKq9BreVrStsU32RZup8iC7e+C3ZHdAfGOy+1PGOH6X7LD0eeC59LiJ7NzsbmAf8H+AOam9gHvTuF8AWoq29cdAW3p8cbLHdp7j/xSn73paTvYG0Ab8I1Cb6jPSfFtavrxo/W+k12Iv53E3yCSP9WNAa9rX/4Ps7pZpvZ+B/wS8ArwI/IjszqVptZ+Bh8iuwfSTHTnePp77FWhJr9+rwN8w4oaI0R7+Ex5mZpbLp57MzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCzX/wfjiuCHCiJzlAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/1-QLearning/solution/notebook.ipynb b/translations/ja/8-Reinforcement/1-QLearning/solution/notebook.ipynb new file mode 100644 index 000000000..0c33872e4 --- /dev/null +++ b/translations/ja/8-Reinforcement/1-QLearning/solution/notebook.ipynb @@ -0,0 +1,577 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "488431336543f71f14d4aaf0399e3381", + "translation_date": "2025-09-04T02:57:34+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# ピーターと狼: 強化学習入門\n", + "\n", + "このチュートリアルでは、経路探索の問題に強化学習を適用する方法を学びます。この設定は、ロシアの作曲家[セルゲイ・プロコフィエフ](https://en.wikipedia.org/wiki/Sergei_Prokofiev)による音楽童話[ピーターと狼](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)に触発されています。この物語は、若き開拓者ピーターが勇敢にも家を出て、森の空き地で狼を追いかける話です。私たちは、ピーターが周囲のエリアを探索し、最適なナビゲーションマップを作成するのを助ける機械学習アルゴリズムを訓練します。\n", + "\n", + "まずは、いくつかの便利なライブラリをインポートしましょう:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## 強化学習の概要\n", + "\n", + "**強化学習** (RL) は、多くの実験を通じて、ある**環境**内での**エージェント**の最適な行動を学習するための手法です。この環境内のエージェントは、**報酬関数**によって定義された何らかの**目標**を持つ必要があります。\n", + "\n", + "## 環境\n", + "\n", + "簡単のために、ピーターの世界を `幅` x `高さ` の正方形のボードと考えましょう。このボードの各セルは次のいずれかになります:\n", + "* **地面** - ピーターや他の生物が歩ける場所\n", + "* **水** - 当然ながら歩けない場所\n", + "* **木** または **草** - 休憩できる場所\n", + "* **リンゴ** - ピーターが見つけて食べると嬉しいもの\n", + "* **オオカミ** - 危険なので避けるべきもの\n", + "\n", + "環境を操作するために、`Board` というクラスを定義します。このノートブックが煩雑にならないように、ボードを操作するためのすべてのコードは、別の `rlboard` モジュールに移動しました。これを今インポートします。このモジュールの内部実装について詳しく知りたい場合は、中を確認してみてください。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from rlboard import *" + ] + }, + { + "source": [ + "さあ、ランダムなボードを作成して、その見た目を確認してみましょう:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "source": [ + "## アクションとポリシー\n", + "\n", + "この例では、ピーターの目標はリンゴを見つけることであり、オオカミやその他の障害物を避けることです。そのために、彼は基本的に歩き回ってリンゴを見つけることができます。したがって、どの位置においても、次のアクションのいずれかを選ぶことができます:上、下、左、右。これらのアクションを辞書として定義し、それを対応する座標の変化のペアにマッピングします。例えば、右に移動する(`R`)場合は、ペア `(1,0)` に対応します。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "私たちのエージェント(Peter)の戦略は、いわゆる**ポリシー**によって定義されます。ここでは、最も単純なポリシーである**ランダムウォーク**について考えてみましょう。\n", + "\n", + "## ランダムウォーク\n", + "\n", + "まず、ランダムウォーク戦略を実装することで問題を解決してみましょう。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "18" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(m):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(m,policy,start_position=None):\n", + " n = 0 # number of steps\n", + " # set initial position\n", + " if start_position:\n", + " m.human = start_position \n", + " else:\n", + " m.random_start()\n", + " while True:\n", + " if m.at() == Board.Cell.apple:\n", + " return n # success!\n", + " if m.at() in [Board.Cell.wolf, Board.Cell.water]:\n", + " return -1 # eaten by wolf or drowned\n", + " while True:\n", + " a = actions[policy(m)]\n", + " new_pos = m.move_pos(m.human,a)\n", + " if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water:\n", + " m.move(a) # do the actual move\n", + " break\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "source": [ + "ランダムウォーク実験を何度か実行し、平均ステップ数を確認してみましょう:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 32.87096774193548, eaten by wolf: 7 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " else:\n", + " s += z\n", + " n += 1\n", + " print(f\"Average path length = {s/n}, eaten by wolf: {w} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## 報酬関数\n", + "\n", + "ポリシーをより賢くするためには、どの動きが他より「良い」のかを理解する必要があります。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "move_reward = -0.1\n", + "goal_reward = 10\n", + "end_reward = -10\n", + "\n", + "def reward(m,pos=None):\n", + " pos = pos or m.human\n", + " if not m.is_valid(pos):\n", + " return end_reward\n", + " x = m.at(pos)\n", + " if x==Board.Cell.water or x == Board.Cell.wolf:\n", + " return end_reward\n", + " if x==Board.Cell.apple:\n", + " return goal_reward\n", + " return move_reward" + ] + }, + { + "source": [ + "## Q-ラーニング\n", + "\n", + "Q-テーブル、または多次元配列を作成します。ボードのサイズが `width` x `height` であるため、Q-テーブルは形状が `width` x `height` x `len(actions)` のnumpy配列で表現できます。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "source": [ + "Q-テーブルをプロット関数に渡して、ボード上でテーブルを視覚化します:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhU5f3+8fczk8m+BwIYBGQRZIkoiKIsIm6tuwVEZSkiqC1SXHAB259VYhUVqrUVUURA3FGwFLQKrsAXxJZNBQIkICEEkpBl9plznt8fmaRESEBJODPh8/LKlcmZ5dwkmduT5yyP0lojhBAictisDiCEEOLnkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMI1W3EqpK5VS25RSO5RSDzXWeoQQ4lSjGuM4bqWUHdgOXAbsBb4BbtZaf9/gKxNCiFNMY21x9wF2aK13aa39wFvAdY20LiGEOKU0VnFnAT8e9vXe0DIhhBAnKMqqFSulxgPjARwOR6/s7GyrohyTz+ejsrKSZs2aWR2lTmVlZTgcDhISEqyOUqfCwkIyMzOx2+1WR6nTnj17aNOmjdUx6hQMBjl48CCtWrWyOkqdnE4nwWCQ1NRUq6PU6eDBgyQnJxMTE2N1lDp99913eDweddQ7tdYN/gH0BT4+7OuHgYfrenxmZqYOZ7m5uXr27NlWx6jXBx98oFevXm11jHo9/vjjurS01OoYdTJNU0+YMMHqGPUqKSnROTk5Vseo19dff60XL15sdYx6zZo1S+fm5lodo16hXjxqZzbWUMk3QCel1BlKqWhgOPBhI61LCCFOKY0yVKK1DiqlJgAfA3bgVa31d42xLiGEONU02hi31noZsKyxXl8IIU5VcuakEEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsI02eLOy8urvhZ4WDIMgz179lgdo14ul4uDBw9aHaNeBw8exOVyWR2jXnv27MEwDKtj1ElrTV5entUx6uX3+9m3b5/VMepVVlZGWVnZSVmXZTPgNJZt27bx1VdfsXnzZnr06EHPnj3p3bu31bFq+fzzz9m2bRvbtm2ja9euXHnllbRu3drqWLW8/fbbFBQUUFFRQevWrRk5cmRYzRbi8/lYsGABe/fuJSkpiaysLIYPH251rFoKCgpYvnw533//PZ07d+bMM89k0KBBVseqZf369WzYsIFNmzaRnZ1Nv3796NKli9Wxalm6dCn5+fkUFBTQoUMHhgwZElaz62itmTdvHoWFhQC0atWK0aNHo9TRJ69pCE1ui/urr75i7dq1/OlPf2LXrl188MEHVkc6wpw5c3C73TzwwAMsX76cLVu2WB3pCI899hjdunXjhhtu4K9//Stut9vqSLV4PB5mzpzJ9ddfT/fu3XnsscesjnSE7777jmXLljF58mS8Xi+vvPKK1ZGOsHjxYnbt2sWjjz7KunXr+Oqrr6yOdISnn36ajIwMxo4dy4IFC9i/f7/VkWoxTZNp06YxYMAA+vfvz7Rp0zBNs1HX2aSKOy8vj82bNxMTE8O1117LQw89RGxsLKtWrbI6Wo1FixbRt29fPvroIx555BH+/ve/s3DhQsrLy62OVmPKlCn85S9/4aGHHmL16tUsXryY22+/3epYtdx+++1MmTKFMWPGkJqayt///ncefvhhq2PVqKioYP78+XTv3p2rrrqKkSNH0q9fP9577z2ro9VYvXo10dHR7Nq1i9GjR/Pkk0+yZcsWdu3aZXW0Gs8//zx33XUXzz33HPPnz2fBggVMmTIlrIaexo8fzzPPPMOECRMoLS3lvffeY/z48Y26ziY1VNKuXTt69OjBzp07Wb58OfPnz8fr9XLhhRdaHa3GjTfeyOjRo7ntttu4/PLLeeCBB7jllltITk62OlqNadOm0bNnT+bNm0daWho33XQTy5aF15wYL7/8Mpdffjnvv/8+FRUV3H777WzcuNHqWDWSkpIYNWoUb7/9Np9++ikrV65k1apVLFiwwOpoNfr27cuyZcu48MIL+e1vf8tTTz1F9+7dOeOMM6yOVuPuu+9m0KBBPPnkk3Tu3Jnx48fz1FNPYbOFzzbnSy+9RHZ2Nu+//z5Q9R7ftGlTo66zSRW3UoqePXuSl5fHc889h9fr5eKLL27UsaafSynFNddcw8aNG9m2bRuZmZl06NAhrDLabDZGjRrFBx98gM1m49JLLyU+Pt7qWLXExsZy+eWXM2/ePEzTZNSoUWH1ZlZK0b59e1q2bMkLL7yA3+/n2muvDaufs1KKgQMH8vnnn/Pcc88B0LNnz7DLeOutt/Lpp5/yxRdfkJ2dTfPmzcMqo81mY9iwYbz55psADBs2rNF/F5tUcQP07t2b3r17s2rVKi688MKw+gFXGzp0KDfccAPffvst559/vtVxjur++++npKSE0tJSOnXqZHWcI8TFxZGTk0Nubi5paWk0a9bM6khH6NixIzk5Oaxbt45zzjkHh8NhdaQjXHbZZVx66aWsXr2aiy66yOo4RzVu3DhcLhc7d+4kOzvb6jhHsNlsPProo+zduxfgpBxo0OSKu1q4/hJWi4qKCtvSrpaRkUFGRobVMeoVjv9T+ak+ffpYHaFeSqmwf78kJCSEZWkf7mQeGRY+f1sKIYQ4LlLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWFO6JR3pVQ+UAkYQFBr3VsplQ68DbQD8oFhWutDJxZTCCFEtYbY4h6kte6pta6eZuYhYIXWuhOwIvS1EEKIBtIYQyXXAfNCt+cB1zfCOoQQ4pR1osWtgX8rpb5VSlVP+dBCa10Yur0faHGC6xBCCHGYE72saz+tdYFSKhP4RCm19fA7tdZaKXXUqdZDRT8eIDExkdzc3BOM0nj27t1LWVlZWGcsLi7GNM2wzuhyucjLy6O4uNjqKHXy+/1h/T2sqKjA5XKFdcb9+/eH/fulrKyMH3/8Ea2PWk9hob55K0+ouLXWBaHPB5RSHwB9gCKlVCutdaFSqhVwoI7nzgZmA2RkZOjPP//8RKI0qrKyMvbu3Us4Z9y5cyfx8fGUlJRYHaVOxcXFrF69Oqxmi/8pp9MZ1j9nr9fLmoNrWPL5Equj1Cm+MJ7BnsGNPmHuiSgoKODbb79lx44dVkepU73fP631L/oAEoCkw26vBq4EngYeCi1/CJh+rNfKzMzU4Sw3N1fPnj3b6hj1+uCDD/Tq1autjlGvxx9/XJeWllodo06maeoJEyZYHaNeJSUluldOL00Y/9fy65Z68eLFVn+r6jVr1iydm5trdYx6hXrxqJ15IlvcLYAPQlODRQFvaK0/Ukp9A7yjlBoL7AaGncA6hBBC/MQvLm6t9S7g7KMsLwEGn0goIYQQdZMzJ4UQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3IsWLQrraYn8fj9Lly61Oka9CgoKWL9+vdUx6vXtt99SUFBgdYx6LV26FL/fb3WMiFZeXh7WMxMBbNu2jW3btp2UdZ3onJNh5/PPP2fOnDn07duX0aNHc8011zB06FCrY9Uya9Ys1q5dS8+ePRk5ciSTJ08mOzvb6li13HvvvRiGQVpaGs8//zwvvvgiCQkJVseq4Xa7ufPOO2nfvj1lZWUopZg5c6bVsWrZvHkz06dPp3fv3txxxx306dOHu+66y+pYEScnJ4c9e/bQvn175syZw1NPPcVpp51mdawapmkyfvx4mjVrhtaakpISZs+ejc3WeNvFTWqL2zAMtm3bRteuXbnpppu4+uqr2bhxI8Fg0OpoNfx+P2vXrmXo0KGMGDGCrKws8vPzw+qvA4/Hw9dff81dd93FnXfeWTP5azipnux1zJgx3HvvvaxatQqPx2N1rBpaa3bv3k2zZs24+eabue222/i///s/2fL+mXw+H1988QXjxo1jzJgxKKUoKioKq/eL2+1m48aNjBs3jokTJ7J582bcbnejrrNJFXdBQQHbtm2jqKiIUaNGcemllxIdHc1//vMfq6PV+Pe//03Pnj2ZM2cOjz/+OHfeeSf//Oc/qaystDpajRkzZnDPPffwu9/9juXLlzN9+nSmTp1qdaxapk6dyogRIxgzZgwHDx7kj3/8I88++6zVsWo4nU4WL15McnIyw4cP56yzzqJXr158/PHHVkeLKPPnz+fmm29m6tSpvPrqq0yZMoUZM2aE1UTEU6dO5Z577mHcuHFs3ryZZ555ptHfL01qqKRNmzZ07dqV5cuXM2fOHB588EEyMzPp06eP1dFqXH311YwcOZJOnTpx5513cvvtt3P//feTnJxsdbQaU6dO5ayzzmLKlCm0bduWoUOHsm7dOqtj1TJz5kx69+7Nq6++yg8//MC0adPYunWr1bFqJCUlMWzYMKZPn86rr77KjBkz2L17NxMnTrQ6WkQZN24cAwcO5IYbbmDQoEGMGDGC119/HbvdbnW0GjNmzKB9+/a88MIL+P1+7rjjDnbt2tWo62xSxQ1w5ZVXcvrppzN58mRuvfVWOnToYHWkIzzwwAPk5+czbdo0Jk+eTK9evayOdISXXnqJ7du3s2LFCl544QUSExOtjlRLQkICf//731m5ciVZWVnMnj3b6khHOPfcc5k8eTI5OTlce+21DB8+3OpIEenpp58mLy+PefPmkZOTQ+vWra2OVIvNZmPOnDls2rQJgDlz5jTq+DY0weJu3bo1rVu35oILLiA5OZnQLPRhpUePHnTv3p2BAweG1Zb24QYMGEDfvn0JBoPExcVZHecIDoeDK664ggEDBhAVFYXD4bA60hGaNWvGFVdcQd++fUlKSgrL38VI0KdPH3r16sVVV10VdhsQAEopLr30Uvr37w9ATExMo6+zyRV3tZSUFKsj1EspFbalXc3hcIRlIR4uHP+n8lPh/nOOBHa7PSxL+3Ano7CrNamdk0IIcSqQ4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCHLO4lVKvKqUOKKW2HLYsXSn1iVIqN/Q5LbRcKaWeV0rtUEptUkqd25jhhRDiVHQ8W9yvAVf+ZNlDwAqtdSdgRehrgF8BnUIf44EXGyamECKSyOn9jeuYxa21/hIo/cni64B5odvzgOsPWz5fV/k/IFUp1aqhwgohIkM4XS+7KfqlY9wttNaFodv7gRah21nAj4c9bm9omRBCiAZywjsnddX/Wn/2/16VUuOVUuuVUuvDaeYSIYQId7+0uIuqh0BCnw+ElhcApx/2uNahZUfQWs/WWvfWWveOhCu8CSFEuPill3X9EBgNPBn6vOSw5ROUUm8B5wPlhw2p1MkwDBYvXvwLozS+4uJidu7cGdYZt2zZwu7duykqKrI6Sp3279/PRx99FNaXYq2oqAjrn7Pb7SahMIH2i9tbHaVOSflJbHFtCetx7l27dhEVFcWWLVuO/WCLGIZR533HLG6l1JvAxUAzpdRe4P9RVdjvKKXGAruBYaGHLwN+DewA3MCY4wno9yvuuqvFsR9okfh4k9Gj42nRInwz7t69m1mzUigrC9+MHTvGcP31zcNqtvifioqKCuufs9Pp5LyY83iyxZNWR6nT1kNbqbRVhvX3MT4+nifSn8DdonEn9T0RflX3xNLHLG6t9c113DX4KI/VwO+PO1nN82zs39/35z7tpElJ2UGrViX07Ru+GYuKiigraxHW38fWrVfQq1cv0tLSftHzg8Egs2bN4oknnqi1fPbs2fz6178+4emitNa88cYbYf1zLi0t5ZtvvgnrjKZpUlxcHNYZN23aREmPEso7llsdpU6JtronjmiyM+CIpsXv9/Pqq68yceLEI/4Ev/baa/nwww+58soriYqSX2nR9Mkp7yLsBQIBZsyYwaRJk446bqq1ZtSoUSxYsIBgMGhBQiFOLiluEfZsNhuLFy/G5/PV+ZhDhw6xcuXKRp9dW4hwIL/lIuxt2bKFgwcPHvNx+fn55OXlnYREQlhLiluEPYfDcVxj18f7OCEinRS3CHudOnUiKSnpmI9r0aIFWVlyhQXR9Elxi7Bnt9vJycnB4XDU+ZjmzZszadIk7Hb7SUwmhDWkuEXYs9ls9O/fn/PPP/+oW9Tt27fnwgsv5Nxzz5XLiYpTghS3iAhxcXHMnz+fDh061CpnpRTdu3dn3rx5Mr4tThlS3CLsaa0JBoOMGzeOL7/8stax3FprPvzwQ+6++2601mF9fQwhGooUtwhbWmsMw2DDhg1cdNFFrFixos7HvvHGG1x33XXk5uZimqYUuGjS5G9LEZa01rhcLt544w1ee+011q9fX+/jDcNg2bJlaK256aabuPnmm7Hb7TLmLZokKW4RdrTWmKbJww8/zAsvvHDczzNNk2XLlvHRRx9RUFDA5MmTsdlsUt6iyZGhEhF2/H4/d999N7NmzfrZz60eXnn88ceZPn26XLtENElS3CKsuFwuHn74YV566aUTKl23280TTzzBnDlzCAQCDZhQCOtJcYuwEQgE+POf/8zMmTMxTbNmeVRU1HFdPCoqKqrWCThOp5O77rqLWbNmyc5K0aRIcVvE4/GQk5NjdYywMmXKFJ599tkjlo8YMYIzzzzzmM/v378/gwcPPmJM+6GHHuK5555rsJw/1xNPPIHbHb4zrWitmTJlitUx6rV///5fNHTWVElxW+Dee+/l4osvJjs7m7POOosvvvjC6kiWCgaD3H///Tz//PO1trTj4+O5/vrrmTFjBunp6fW+hlKKNm3asHDhQpYtW0Zi4v9mD3G73TzyyCP8/e9/r/X6je2rr76iS5cudO/enUsuuYRJkyadtHUfr2effZbs7GwuvfRSunbtyltvvWV1pCPcdNNNjBkzhujoaDp37szOnTutjmQ5Ke6TrKCgAMMwmDx5MllZWUyZMoXt27efsuOwWmvWrFnDhx9+iN9fNceeUorOnTuzcuVK3nrrLVJTU4/79Zo1a8Zll13GG2+8Qdu2bWu2vl0uF6+99hq5ubknZdgkEAiwbds2br75ZhITE3nnnXcwTZOCgoJGX/fxKikpoby8nHvvvZfY2FhmzpxJQUEBLpfL6mg1du7cSXx8PBMnTuSCCy5g3LhxbNiw4ZQf+pLiPskKCwtJS0tj8+bNbNiwgbZt27J3795T+uiHQCBQa0u4R48e/PWvf6V3797ExMT87MP57HY7l112GTk5ObRp06ZmeTAYrHfm7IYUDAb58ccf0VrzxRdfEB0dTXp6OoWFhSdl/cejtLQUm81Gfn4+69ato2XLllRWVoZVce/atYt27dqxZs0atm7dSufOnfnhhx+kuK0OcKrp3bs3u3btYs2aNZx77rmMHTuWvn37EhcXZ3U0Syil6NOnD48++igZGRmcc845LFiwgEsuueSErvQXGxvLjTfeyDvvvEOLFi3o1KkTjz32GO3btz8px3XHxcVx0UUX8frrr3P99dczevRocnNz6d27d6Ov+3h16tSJYDDI8uXLufrqqxkxYgRZWVlkZmZaHa3GZZddxsqVK8nPzycxMZG77rqLIUOGnPIzHckJOBZ48cUXKSsrY8qUKaxbt67WeOypKDExkZtuuqlmst+fDo2YpnnMsenqk3a01jXFHBcXR58+ffjuu+9QSpGcnHxSL0Q1aNAgvvnmG+69917mzJnzi2e3b0xTp07lnnvuYfz48Xz55ZfEx8dbHekIS5cuJT8/nwULFrB582aSk5OtjmQ5KW4LJCQkkJCQwLx586yOEjYcDgfNmjU76n3BYJCzzz6bdevW1VngsbGxNVuQP71ud0ZGRoPnPR4Oh4O0tDTmzp1ryfqPR1xcHHFxcSxatMjqKHVKSkqiR48eTJ8+3eooYePU/ntDRITo6GgmTpxY79Zyeno6o0aNqneyBSGaCiluERGONcShlJLZb8QpQ4pbCCEijBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhDlmcSulXlVKHVBKbTls2aNKqQKl1IbQx68Pu+9hpdQOpdQ2pdQVjRVcCCFOVcezxf0acOVRls/UWvcMfSwDUEp1BYYD3ULP+YdSSg6uFSfsWBcVOtUvOiROLccsbq31l0Dpcb7edcBbWmuf1joP2AH0OYF8QgAccQ2NqKioWifl2Gw2YmJiTnYsISxxImPcE5RSm0JDKdVXz8kCfjzsMXtDy46glBqvlFqvlFofCHhOIIY4FWRmZtZcjMvhcPDUU09x//3315R3SkqKZdckEeJk+6UXmXoReBzQoc/PArf9nBfQWs8GZgMkJbXQPt8vTCJOCQ6HgzVr1hAMBlFK0bFjR/x+P6NGjUJrTWxs7Em5XKsQ4eAXFbfWuqj6tlLqZWBp6MsC4PTDHto6tEyIE2Kz2Y6Yd9LhcHDWWWdZlEgI6/yioRKlVKvDvrwBqD7i5ENguFIqRil1BtAJWHdiEYUQQhxOHWtvvFLqTeBioBlQBPy/0Nc9qRoqyQfu0FoXhh4/laphkyAwSWu9/FghUlLS9Zln3vtL/w2NzuFw0a1bMW3btrU6Sp3279/Pxo0xeL3hd7H+amlp2+nb94ywvvTq5s2b6dGjh9Ux6hQIBMjPz6dTp05WR6lTaWkpfr+fli1bWh2lTvn5+Xzf/HsCCeE71+v2GdspLy0/6vjfMYv7ZEhKytR+/zarY9QpOTmf005bxdatt1odpU5t237EP/7RnF69elkdpU5//etfGTNmDCkpKVZHqdPUqVPJycmxOkadysrKmD9/PhMnTrQ6Sp3Wr19PSUkJV1wRvqdxLFiwgAEDBoT1xljnzp05cODAUYs7TGbAUfj94bulGAiUYBgxYZ3RMOJISEgIy+mxqjkcDlJSUsI2o9Yau90etvmgKmP1zDrhKj4+HrfbHdYZY2JiSExMDOuM9e1sl1PehRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLjFUVVUVLBy5UpmzJhBWVkZpmlaHakWrTVlZWXMnDmTFStWUFFRYXWkIwQCAcrKyhgzZgwFBQW4XC6rIx3B6/Vy6NAhhgwZQllZGT6fz+pIR3A6nWzZsoUHH3yQsrIyDMOwOlItWmvKy8t58803efPNNykvL6exZxaT4hZH1bt3b5YtW0bz5s3p2LEj5eXlVkeqpby8nI4dO5KRkcFHH30UllO2ff755/Tu3Zu7776bMWPGcMcdd1gd6Qg5OTlcfvnlPPnkk/Tr14/58+dbHekIV111FU8++SSXXHIJ3bp1Izc31+pItZimSadOndi7dy979+6lU6dOjb6hI8UtjrBo0SJuueUWEhISaN26NTNnzmTu3LlWx6pl7ty5TJgwgZ07d3LnnXcyduxY3nvvPatj1fB4PKxatYoRI0bw4YcfMn/+fDp27Mj69eutjlZjx44d2O12rrrqKv71r3+xcOFCCgoKOHDggNXRanz66acMGjSIDh064Ha7efHFF1m0aFFY/QX42muv8bvf/Q6n08mll17Kn/70J1577bVGXacUtzhC586d2b59O/369aNNmzZs2bKF7Oxsq2PVkp2dzY8//kj//v1JTU3l+++/p0uXLlbHqhEVFUXr1q1RStG/f38CgQCHDh2iVatWVkerkZaWhmmatGnThvPOO4+ioiKSkpKIj4+3OlqNdu3asWfPHs4//3zOPPNMtm/fTufOneudj/Fky87OJjc3l/79+9OiRQs2btzY6O8XKW5xhO7du1NQUMD8+fN57733eP/99znvvPOsjlXLeeedx5dffsn69eu55557yMvLo3v37lbHquFwOOjcuTNvvvkmLpeLoUOHopQiKyvL6mg1MjIySElJYebMmXi9XiZNmkRWVhaJiYlWR6vRsWNHXC4Xf/vb31i7di0vv/wy55xzTlgVd69evdi4cSPLly/nmWeeYc2aNY0+dBcms7yLcPPFF1/w3Xff8cMPP4TdmCJAcnIyubm5vPfee1x99dVhVdrV+vfvz9atW8nJyWHlypVhtSVb7b777uPee+9lypQpfP/991bHOaq3336bwsJClixZwrZt26yOcwSbzcaWLVv4/PPPUUoxY8aMRl+nFLeoU7du3ejWrZvVMeo1ZMgQqyMc09SpU62OUC+lFH/5y1+sjlGvVq1aceedd1odo14XX3zxSVuXDJUIIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMMcsbqXU6Uqpz5RS3yulvlNK/SG0PF0p9YlSKjf0OS20XCmlnldK7VBKbVJKndvY/wghhDiVHM8WdxC4T2vdFbgA+L1SqivwELBCa90JWBH6GuBXQKfQx3jgxQZPLYQQp7BjFrfWulBr/Z/Q7UrgByALuA6YF3rYPOD60O3rgPm6yv8BqUqp8LlAgxBCRLifNcatlGoHnAOsBVporQtDd+0HWoRuZwE/Hva0vaFlP32t8Uqp9Uqp9YGA52fGFkKIU9dxF7dSKhFYBEzSWte6ar2uumr4z7pyuNZ6tta6t9a6t8MR93OeKoQQp7TjKm6llIOq0l6otX4/tLioeggk9Ln6Ir4FwOmHPb11aJkQQogGcDxHlShgDvCD1vrwy159CIwO3R4NLDls+ajQ0SUXAOWHDakIIYQ4QcdzdcCLgJHAZqXUhtCyKcCTwDtKqbHAbmBY6L5lwK+BHYAbGNOgiYUQ4hR3zOLWWn8N1HXV8sFHebwGfv/zozTu5JoNI/wzNvYkpQ0h3DOGez6QjA0lEjIejQqH4CkpabpnzxFWx6iT3e4nJcVJdHS61VHqFAxWkJoaFZYX66924MABMjIysNvtVkep0969+4iKOs3qGPUwCNj24ch0WB2kTqbbJDGYSHJystVR6lRaWkpiYiLR0dFWR6nT66+/zqFDh4660RDZX9YAACAASURBVBwWxZ2U1EI7nUVWx6hTSsoOnn76M8aNG2d1lDotXryYFi1acP755+Pz+XA4HP+bUNVmst+3m0PBIrSpiSIaUHgCbuLtyXRI7oYy7URHOzAMA6UUwWAQpRQ2m41gMEh0dHTN5+rXDwaD2O32Wo9VStU83+GoKpfqaaamTZvG73//e9LS0iz6LtVPa82wYRN5772/WR2lTjExpXT/0+V8O+Vbq6PUqeWqlswqnsV1111ndZQ6vfTSSwwePJiOHTtaHaVOLVq0oKio6KjFLTPgNDGGYVBSUkJsUjTrDi0lM7YtQZuXnc6NFPp3U+l1Uukt57S4Dnj8HjIdrcmN/YG8kh1MOH8qfl8ApRROpxOlFDExMTidTpo1a4bT6SQ9PZ3y8nLS09OpqKggISGBsrIyHA4H0dHRREdHExUVhdPpDNuCFiLSSXE3MTvKNrLo0ExUuWK/bzcOHUswqEkgjWYxWaSSRpnbhccMkB7TGkwHy3e+T1xUEo+vfIDh3cdyWvzpJCUlobUmGAySkZGBy+UiJiaG4uJiEhMTqaioIC4uDp/PR2pqKlprDMPA7XYDEB0dTUlJCampqURFya+ZEA1J3lFNTPP4try14r+kx6aT3Tyb9pld2LUvn3lfv0nHM1NonpBI7qZC7FlBLuo6AHswlrioVEori4mJT+LVdS9y1VnX0y3tbKKiHDgcDg4ePEhmZiYul4v0jAxKS0pISUmhvLychIQEKioqcDiqHpuQkIDNZsPlcpGWlobNJhegFKKhSXE3MXHEM/uqV3ng35P51/fL+XjLp8SY0bRIa4n/YAy+ymZ0ymzLvrI8jDKTNRvW0Lp7Ojv276Njhp8ydzlen0GHgV1IjYpDKUViYiJ+vx9fZSHbt35IZUUl6Zmn0az9YAzDIDY2tmYc2+/3A1UzX3u9XuLi4mruE0I0DNkcamJsNhtnpnfkkUumYotS7CzZySHPIRJjE3D73bgDLk7PPJ2zmvUk2dORdsldqdyuUX4TOz72HNjHx5tXkLN0GlC1w840TdAGBd9/zOdvTeLbZY/w7b+fRYX2a5umiWmaNYdW2Ww2tNYRe6iVEOFOiruJcTgcBPwB+rbuy6JbFtEsMQOb3U6ZtxxHdBQ+w8/3e7/jYOVBtu3Zylfr19A2vjvXthjJxhXbOK/L6cRX2nl3+bsEggEAKivKOLD7G778198oc8dw3pA5XHbbQgJG1VElfr+/5giW6p2UpmnK1rYQjUSGSpqY8vLymvHos1p2ZdXEr7nxlSEUlhQSo6OJ1jHEEsPBkoNov0mLtJYY2qDoQDHXnnsTZT+UkRJThi8ljp0/bqfLGd344oNn2PrtUk4/4yz6XTqe7n2upqKigsT4eLxeL+np6RiGQSAQwOl0orUmPj6e4uJiMjIyZOekEA1M3lFNTPXOwqioKLxeLy3iW/Lqza/yz83/5MWVL7KvtBD8mqSoJLpmdSVaRXOg7ADxUXFUVlSiDEgqb0dlchl/XjKJoR1uYscPm0ht2ZVrxv6VjBZt8Xq9xMfH4/f7cTgcuN3umuO34+KqrvRoGAZJSUmyc1KIRiDF3cRU7xAMBAI1J+F0bn4mZw66hz5Z51HkKuKJ956goHgfu4p2kh6bQTTRlBQX43MH8Do93HX9Xdx94QTK4/fy2synSDtgcN/jL5PW/HTcbjdxcXF4vV5iYmJqTsqpHueu3jlZXegxMTEWf0eEaHqkuJsY0zSJiorC7/fX2kmoNfRt35fYuFiu7HoljmgHzkon0XZFwa7tNE/JwKchPr05sdGxpKWmUVFxiG1nbGDQbVfRrlNPlFIYhoHNZsNZfJBAlJ2AYZJxWhY2m62mvIGax8oOSiEanhR3ExMbG1tzXLXP5wOouTZITEwMfr+fpNgkitevJjbgofJAEUn7dlNRdojUHueQ3PMCnPk7yPN4+HH/ATZ/tYoLzu1HoGAP+3K3EhsXR0ViGru/WsGeLRtJbN6K+PZnkpjRjKxu3WjRqXPNafApKSkyVCJEI5DibmJcLhcZGRk4nU5iY2MxTROfz4dSCo/HQ6ynkryFs0hIy8AfF09K85YkXzgQrRQK8OzdjS4vJcYMkpC3nQt9bvSKpewryEfZojgU8BOXmcWZg6+kw+Ar0IbJtlVfsn/LRvb891sqPV6un/JH0po1o7y8nIyMDClvIRqYFHcTk5ycXHWtkthY3G43NpsNh8OB1poEh50Nd48jpX0n0gZcjs0eBdrAX7Cn6sK9WmO3R5HSsQum1iSc3oGONw7HMEx87gqi4hIxtEkgEMRTXoqpwTA1rbufTSutKS8p4cPnZjDnd3cw4bXXSU1NDesrAQoRqWRTqImpqKigWbNmNYfkORwOAoEA3kMlrL39euJPy6LVr36DWVmOWV6KrixHeZ0ojxO8LrSrAqP0IMHSg5iuSoLlJRiVh1B+P/6yUgKHDhGsrCDochF0uwi4XfidlficVcMz1026D+f+Ql747Sh+3LkTwzCs/pYI0eTIFncTExsbi8vlQilFIBBAa43dbqfwn++QfnoHTrviWgLFhdhDh+/ZVGiWDKVQWmNqDVqh0GCaaA2G1gRNMEwTU2tMTehrjWFqAlpjaJOgqTBNzYXDb+GTua/y3WcrOaNzZ6u/JUI0OVLcTUx8fDyFhYWkpKTg8XiIjo7GFvBRuX0TLc7qSbB4PzabqipqG9hC5U1VVaNNE7QKlXboiBSj6tT3qqI2MU0ImCaGCUGtMUJfB7XG0Bob0K7H2axdsoT+vxlCesuW1n5ThGhipLgtorXG6XSSlJTUoK9bXl5OixYt8Hg8JCYmYpomBZ98CD4/phHA8LhQNhsoUPaq0rbbqnZMGpqqLWoTtAnaMDHNqq1wQxuYhgptfWuChknQhKBpEtAQMAwMDQGz6nbLjh3ZnZuL89ChRi1uj8dDVFRUzaQNomkyDAOv10tCQoLVUepUfRTXyTh3QYrbAps3byY/P58lS5YwdOhQevXqRbNmzRrktVNSUigqKiIpKQmXy4Xdbic+xkFltB3T78UMgrbZwAbapsCmsNltKFVV1srUYGq0qTENA7NmSCS0hW1UDY34TU3Q0FXFHdriDoS+9puhYZNgABrpOO5AIMDKlStZs2YNWVlZdO7cmQEDBjTKuoS11q1bR15eHmvXruWKK67goosuIjEx0epYNbTWrFixgk2bNgGQnZ3N4MGDG/U6PbJz0gLTp0/n66+/5pFHHuHpp59m/fr1DfbaHo+nZis+Jiam5tR30+fF9LgwPC5Mj7vqw+vG9HowPW60O/TZ4z7scR4MjxvD4yLocRPwuAl4qnZKBl1OAm4XPpcLv6sSn8uJz+XC63Ljc7nxOisxAoEG+3f9lMvl4ve//z2DBg0iNjaW8ePHN9q6hLUmT57Mvn37GD16NFOmTGHv3r1WR6rFNE3Gjh1Lx44d6dixI2PHjv3ftIGNRIr7JFu6dCm9e/dmx44dPPfcc7zyyissWrSIioqKBnl9u92O2+2umb1Ga02U3UFl7g/4SosxXC6CbidBj7uqgN1OAi43/pqjRJwE3W4Mt5OA20nA5STgqloecDrxOyvxu5z4XU58TidFW7/DU3YIr7MSr7MSj7MSr9OFp9JJoBGL+5577uHhhx/mscceo1u3bkyfPp2cnJxGW5+wxiuvvMJvf/tbPv74Yz766CNef/11cnJywupopfvuu4+//OUvPPfcc0RHR/P6669z3333Neo6ZajkJLv88su54447uP322znvvPOYMWMG11xzTYONdVcfN62UqrmWdkyz5uCIpuKHzagOndAxMWibDW1XaKXxuypRMfHgcGAEgwT8QXxeN2Vbv8MfDOINanymxhs08BomPgOSOnXHiI7GER+P1+UmqBQBQ+MzqoZM9u3ZTfnBg6hGOo572rRpjBw5krlz52Kz2bjrrrv47LPPGmVd4udrqGGCESNGcN1115GTk0ObNm144IEHuOeee8LqpK7HH3+cwYMH8+abbxIbG8tvfvMbPvnkk0ZdpxT3SRYdHc3555/P22+/TW5uLnv27GH48OEN9otefVnXyspKEhISCAaDkN2HjL6XULT8PQyPi9R2HTDi4zFsCrvSGEUFqKgYiI7GX1mOr/gAfqNqHNtnmAQNjT+oCRgGwaAmYJgUbPoGXxCimrXAFwhCQiJEx+LXirLiUnbn5nLxbeNIb9WqQf5dP5WWlkZWVhZz587l0KFD9O3bl/j4+EZZl/j5GuoaNbGxsfTv35+XX36Z9u3bEwwGadmyZVhd5z0hIYEePXowe/ZsALp169boO1GluC1w5513ctttt/Hxxx8zceLEBn3t+Ph4ysvLsdvteL1eoGor3OPzEzQ1PreLyqJ9xDfPxFNWil2b4HWD34dJ1Y5IU4cK24SAofGHdjoGzaojSgz9vx2Wrn0F+AyNxzCJyWiOy+enpOggpgnte2QT10g7keLj41mwYAHr16+nVatWZGVlNcp6hPUeeeQRysvL+c9//sODDz5odZwj2Gw25syZw9atW1FK0fkknLsgxW2R6OhorrnmmgZ/Xb/fT2JiYs0x3IZhYBgGcVlZBO0OCAZQlZXo6Gh0yUHs2kQpW9UZ74ChzaqTasyqk278psYfOmIkYEJAm6EjS0In4WiNQdUx3j6vF4/Tg6kUMYnJeH0+TNNs1D9re/fu3WivLcJHSkoKgwYNsjpGvbp06XLS1hU+A0WiwVT/mXr4n6vtR/wOW7OWuA0Dt9uLq7wcT8DAEzDxBEzcQRN3wMAdNPEENb4g+IImvqCJP1hV4AHDrPowNUbwf1vhfsPEROGqcOHxeAgGTc6+6koG3HqLVd8CIZo02eJuYqKjo/F4PNhstqrxbf43ea8ttTnBPXlobWA43dgME7vSVedMVu/MpOokHKP65JrQlrcvVNp+s2pHZSB04o3fDD0WMKgaQuly0QDs2IiPjQurnUhCNBXyrmpivF4vycnJQNWOnaioKEzTxDAM2o26C5+h8AZNPF5/1dZ2MPQRMPAGzaojRwKhz4bGZ2i8hok/aOILfQ4GNf7Q+HfQ1FXj4IEgXq8Xe2wMthgHV46/g4qKirA6bEuIpkK2uJuYpKQkiouLiY2Nxel0opTC4XBgt9s54/yLWBufiL+yHJuCKJvCZiqU0tVXdf3fae9UbXFXX4/EHyrogAF+E/ymgc+AgFH1OL+h0VEOLhw6nG3/3UDb7t1JSEiQiYKFaATH3OJWSp2ulPpMKfW9Uuo7pdQfQssfVUoVKKU2hD5+fdhzHlZK7VBKbVNKXdGY/wBRm9PpJCUlBa01sbGxOBwODMPANE3cgQCXPDe35nhst1E1tu0JmLhD49wew8ATNA7bAjfxBgz8QQN/9VCJYeIPVp/ebuAzIWiYdLmwH99+9hkTXppNdHQ0Tqez0c8gE+JUdDybQ0HgPq31f5RSScC3Sqnqo8tnaq2fOfzBSqmuwHCgG3Aa8KlS6kyttfzNfBJER0fj9XprzflYPc4cHR1NTGYLWl50CXu+WoEtdGlXRdU4t8aGRtdcytUIXco1GLqwVNU1SXTNIYJ+08RnVI13xySn4PH6Of/Xv6Zl27YYhoHD4Qir422FaCqOucWttS7UWv8ndLsS+AGo76DZ64C3tNY+rXUesAPo0xBhxbHFxsZSWVmJUgq/349pmtjt9qqLTcXHE5Wazml9LsQX1KGjSqq2rD1BXfU5dJSJJ2jiM6rGub0GoY+qrW2fUbWDsmqoxMRUUXS75FI8fj8XXns9ScnJGIZBQkKCFLcQjeBn7ZxUSrUDzgHWhhZNUEptUkq9qpRKCy3LAn487Gl7qb/oRQOqqKigefPmmKZZVdRRUQQCAQKBAIcOHSIhPp5uw0fTetDleMyqoRBXwMDlN3CHDg90h4ZKXKEC9wYMvMEgvoCBr3rHZdDEb5gYdged+w2ktLiEcy+9jKzu3SkrK8PhcFBcXCw7J4VoBMdd3EqpRGARMElrXQG8CHQAegKFwLM/Z8VKqfFKqfVKqfWBgOfnPFXUIzk5mdLSUmw2G263m0AggMPhwOFwkJqaitvtxu5w0OayXxN0xNUct+0xdNWx3Ebo66D+3xEnQRNvUOM1NJ7qMW5TQ2wsmR06oqPsuCvKyerSheSUFFJTUwkEAqSnp8uck0I0guPa5a+UclBV2gu11u8DaK2LDrv/ZWBp6MsC4PTDnt46tKwWrfVsYDZAUlILHboGuThBbreb5NBQRfUs79XHc/v9fmJjYzEMgz43DMVTWsLSRx+h9mjG/47nrjr9nZpT3IM6dBq8aaKVncTkNIiOoTAvn/FPP023/v3xeDwopYiKiqKyspLk5GQpbyEa2PEcVaKAOcAPWusZhy0//OpBNwBbQrc/BIYrpWKUUmcAnYB1DRdZ1CcuLo6Kigq01ni9XoLBIDabDZvNRkJCAl6vF601FRUVDLztDi5/5FGCdkfV1nToeG5P0MSv7HgOW+Y1TPzahjdo4AtqfCjcHi/78/cw8v/9mU7nn191JcKYGGJjYwkGgzLGLUQjOZ4t7ouAkcBmpdSG0LIpwM1KqZ5UXeIiH7gDQGv9nVLqHeB7qo5I+b0cUXLy2O12oqKiiIqKqjnlvfr24fdFRUURHRND31t/S8deF/DJiy9QUXwQqPqB9r3lVr5a+Dpag2lqouLiOb1HD35YswZTg0aR3qolt06ZQvrppxPlcNS8bvU6o6KipLiFaATHLG6t9deEJgL/iWX1PCcHkKvaW8Bms9U7DVpKSgpAzWUnMzMzyczMpNtRpv26fMztvziHzAEpROORU96FECLChMn5yJqYmFKrQ9QpOroCr9dLaWn4ZnS73TidzrDOGAgEKCsra7CL7DcOI6x/F2NiyrAH7MSUNv5M4r9UtDMat9sd1r+LXq+XioqKsM5Y3/tEhcObKD09Xd9///1Wx6iTy+Xi4MGDtGvXzuoodSosLCQmJob09HSro9Rp27ZttG/fPqyHUTZu3MjZZ59tdYw6BQIBvv56F4cONf7F+n+p2NhSzjnHR6tGmv2oIeTl5ZGZmdnoM9WciGeeeYbS0tKj7yTSWlv+kZmZqcNZbm6unj17ttUx6vXBBx/o1atXWx2jXo8//rguLS21OkadTNPUEyZMsDpGvUpKSnSvXjm66pJg4fnRsuXXevHixVZ/q+o1a9YsnZuba3WMeoV68aidKWPcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwTba4V69eHdZTZAWDQdatW2d1jHqVlJSQm5trdYx67dixg5KSEqtj1Oubb74hGAxaHSOiuVwuNm/ebHWMeu3du5eCgoKTsq4wmXOy4axfv54PPviA2NhY/vWvf3HxxRdz2WWXWR2rlnfffZeNGzcSHR3NkiVLGD16NGeeeabVsWp55plnqKiowGazEQgEeOSRR4iLi7M6Vg2Px8O0adNwOByYpklSUhKTJ0+2OlYtO3bsYO7cucTExLBkyRKys7MZNmyY1bEizssvv8zu3btxOBy89dZbTJo0iebNm1sdq4Zpmjz22GM1G4pKKf70pz9hszXednGT2uLWWrNhwwZM0+QPf/gDLVu25PPPPw+rLW+tNf/85z/p3r07d999N0VFRezatSvsMs6bN48bbriB3/72t3zyySe43W6rY9Xi9Xr597//zejRo7nxxhuZP39+2H0Pd+3axf79+5kwYQJnn302H374YVhljARaaxYuXMill17K+PHj2bhxI8XFxWH1fTRNk7fffpvhw4dz8803884772CaZqOus0kVd35+Pps2baKyspJf/epXjB49mtjYWFavXm11tBrvv/8+F1xwAXPnzmXy5MlMmzaNhQsXUlFRYXW0GlOnTiUnJ4fbbruN5cuX88YbbzB+/HirY9Uybtw4Jk2axI033ojP5+P5559nypQpVseqUVlZyfz588nKymLw4MEMHjyYiy66iEWLFlkdLaL87W9/48477+Shhx7ixRdf5B//+AdTp05t9GL8OcaPH8+TTz7JLbfcwvbt20/K+6VJDZWcccYZZGdns27dOv75z3/y1FNPAXDRRRdZnOx/fvOb3zBy5Eh+9atfMXz4cCZMmMDtt99OSkqK1dFqPPHEE3Tr1o0ZM2bQsmVLbrjhBr788kurY9Xyyiuv0K9fPxYuXEhRURGTJk3i+++/tzpWjeTkZEaNGsVLL73EsmXLeP3111m7di0LFy60OlpEmThxIgMHDmTSpEmcd955jBw5kpdeegm73W51tBovv/wynTt3Zt68eQAMGTKEbdu2Neo6m1RxA/Tr1w+tNX/+85/p3r07PXv2tDrSEcaOHcvWrVt5+umnueKKK+jWrZvVkY7wxz/+kS1btrBmzRomTpxIfHy81ZFqiYuL4w9/+AMffPABSUlJ/PGPf7Q60hG6du3KlVdeyTPPPEOnTp24/fbbrY4Uke6//37y8/N55ZVXGDFiBC1btrQ6Ui02m42pU6fyxRdfoJRi6tSpjTq+DU2wuLt06UKXLl3YtWsXZ5xxBkopqyMd4eKLL6Z///78+OOPtGvXzuo4RzV8+HBcLhcul4vMzEyr4xwhJiaGcePGceDAAeLj40lMTLQ60hFat27NuHHjyM/P5/TTTw+rrcRIcs011+Dz+SguLiYrK8vqOEdQSjFmzBjKysoASE1NbfR1Nrnirta+fXurI9TLbreHbWlXS0hIICEhweoY9QrH/6n8VLj/nCNBTExMWJb24U5GYVdrUjsnhRDiVCDFLYQQEeaYxa2UilVKrVNKbVRKfaeU+nNo+RlKqbVKqR1KqbeVUtGh5TGhr3eE7m/XuP8EIYQ4tRzPFrcPuERrfTbQE7hSKXUB8BQwU2vdETgEjA09fixwKLR8ZuhxQgghGsgxi1tXcYa+dIQ+NHAJ8F5o+Tzg+tDt60JfE7p/sArHQzuEECJCHdcYt1LKrpTaABwAPgF2AmVa6+or5+wFqnf5ZgE/AoTuLwcyGjK0EEKcyo6ruLXWhta6J9Aa6AN0OdEVK6XGK6XWK6XWezyeE305IYQ4Zfyso0q01mXAZ0BfIFUpVX0ceGug+nqGBcDpAKH7U4AjrruptZ6tte6tte4dTledE0KIcHc8R5U0V0qlhm7HAZcBP1BV4ENCDxsNLAnd/jD0NaH7V+pwupSXEEJEuOM5c7IVME8pZaeq6N/RWi9VSn0PvKWUmgb8F5gTevwcYIFSagdQCgxvhNxCCHHKOmZxa603AeccZfkuqsa7f7rcCwxtkHRCCCGOIGdOCiFEhJHiFkKICCPFLYQQESYsLutqmiarVq2yOkad9u/fT2FhYVhnzM/P59ChQ2E1pdNPlZaW8s0334T1pWLdbndY/5ydTiexsaW0bBm+GdPStpGfXxnW38fCwkI2bdpEUVGR1VHqVN97OSyKW2tNSckRh3qHjfLycjweT1hndLlczJ1ro7IyfDO2aePn/PMP4fV6rY5Sp0OHgowcGb7fw6goN62u/Ia4B963OkqdovOScbmGhfX7xev18kjZI3ijwvd30ad9dd4XFsVtt9u59tprrY5Rpx07dmAYRlhnNE2TAwdasH9/X6uj1CkjYxOXX345aWlpVkc5Kq01CxZ8Ql5e+P6cY2JKSW75DHnX5lkdpU4tV7WkW3G3sH6/FBYWsm/APso7llsdpU6J9rpndZIxbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3M8//zxaa6tj1Mnn8/Hyyy9bHSPiffrpp+zYscPqGKKRFRcX8+6771odI2w0ueJeunQpAwcOpEWLFgwaNCgsyzEnJ4drrrmG6OhoBg4cyNq1a62OFHGcTicDBw5k1apVPPHEEwwbNszqSKKR3H333dxxxx3s27ePgQMHsnv3bqsjWS4spi5rKH6/n/z8fG644QbOOeccHnvsMf7973/jcrnCZoLa8vJy9uzZw7333stZZ53FoUOHyMvLo3fv3tjtdqvjRYz8/HyaNWvGkCFDaNmyJbfeeiuFhYW0atXK6miiARUXF1NQUMCDDz5IVlYWBQUF5OXl0aZNG5RSVsezTJPa4q7+Ie/fv59nn32WTp064XA42Llzp9XRavz3v/+lffv2LF68mDfeeINBgwaxbt06PB6P1dEiyoIFC+jXrx/Tp09n//79DBs2jCVLllgdSzSwzz77jAEDBvDSSy+xfPlyrr/+ehYvXhzWw6AnQ5Pa4j7ttNPo0KED8+fP5/XXX2fcuHGcffbZZGdnWx2txsUXX8ycOXMAuOGGG7j11lvJyckhMbHuiUHFkR5++GG6devGP/7xD5YvX87s2bPZvn271bFEAxs6dCgDBw6kT58+dO3alTFjxrBkyRJstia1zfmzNaniBhgyZAj9+vVj0qRJTJ8+nebNm1sd6QhPPfUURUVFTJs2jYULF9K6dWurI0WcpKQkVqxYwaJFi+jcuTPLli2zOpJoJPPnzycvL493332XJUuWcMYZZ1gdyXJNrrhTU1NJTU3l3XffxWazheU42GmnnUarVq2YP3/+Kb/l8EvZ7Xa6dOnCww8/jFIqLH/OomG0bduWNm3aMGDAAHm/hDS54q4W7jv6pGwahryRTw3yfqntmL/1SqlYpdQ6pdRGpdR3Sqk/h5a/ppTKU0ptCH30DC1XSqnnlVI7lFKblFLnNvY/QgghTiXHs8XtAy7RWjuVUg7ga6XU8tB9k7XW7/3k8b8COoU+zgdeDH0WQgjRAI65xa2rOENfOkIf9R2Lcx0wP/S8/wNSlVJycK0QQjSQ4xogVErZEnWskwAAIABJREFUlVIbgAPAJ1rr6lP9ckLDITOVUjGhZVnAj4c9fW9omRBCiAZwXMWttTa01j2B1kAfpVR34GGgC3AekA48+HNWrJQar5Rar5RaLyefCCHE8ftZu+S11v+/vTOPs6OqEv/31tvXfr1kIwtJSIyBsCeRiCAkEMBBFmUUdYAfi6BjQAWGwDgBZUYENBBxcADZQhBBkQgCKkhAPsPIEgJkkURCSEhn6e708paq9+rVcn9/1EJ3yNKJSV4/qO/n8z5Vr+7tqtP3vXfq1LnnntMDPA+cLKXc5LpDdOA+YKrbbQMwstefjXCPbX2uu6SUk6WUkxOJxO5JHxAQEPAxpD9RJYOEEDl3PwGcCKz0/NbCidE5A1ju/skTwLludMlRQF5KuWmvSB8QEBDwMaQ/USXDgPlCiBCOov+1lPJJIcQiIcQgQABvAt9w+z8NfA5YDWjA+Xte7ICAgICPLztV3FLKpcDh2zg+fTv9JfCtf1y0gICAgIBtESw7CwgICKgzAsUdEBAQUGcEijsgICCgzggUd0BAQECdESjugICAgDpjQKR1NU2TO++8s9ZibJd8Pk9ra+uAlnHNmjWMGpWkpWVprUXZLtnsWhYsWEAsFtt55xphml1MmjRwP+dQqELDew1MunNSrUXZLslNSf5a+SubN2+utSjbZfny5RyQP4BqQ7XWomyX9833t9s2IBR3KBRixowZtRZju7S2tqIoyoCWMRwOc9RRTRx88MG1FmW73HPPWv7zP4/BMDK1FmW7nHjiEhYuHLifc6FQ4Le/bef8GdteHiGRSGyklAiEfwxAESH/2N5k6dKl9PT0cOyxx+71a+0u+XyeuVPnDujqU9OUadttGxCKWwjBuHHjai3GDnnnnXcGtIzLly9nyJAhA1rGVCpFsTgaXW+stSjbQaIo0QE9hl1dXaRSKcaMGUNnZ6dzMGFQUHtoaMjxVvvzvKQ9SbHSjW0KUkoTqq6i6SoXjv0B8UiCYekRNKaayefzRCIRSqUSLS0tbNmyhWw2i6ZptLS0oKoqoVAIwzCwLItQKISqqn5bQ0MDHR0dtLS0AB8UtWhrayMUCg3ocWxoaGDEiBGMHDmSUqlEIpFAVVUikQjhcJhyuUwmk/HbdF1HCEEkEkHTNLLZLMVikUQigWEYxGIxv4BxNBqlVCqRTqdRVZVkMolpmti2TSwWo1gskslk0DSNeDyObduYpkk4HCYej/sFI3ZUJGRAKO6AgIBdo2yWWFZ+gZKZp7Wwgs7KZuJdGYQdZrAyhuGJg/nbltcIhzJMyhyGkg7xVtdfeXL1I5y0/z8zY/9TGRIfjpSSeDyOruu+EvGUk23bvjLylIjXVwiBpmlEo1F/G41Gazkku0WpVKKhoYFSqURjYyOmaWIYBk1NTXR3d9PY2OgrYSkluq7T0tJCd3c3TU1NaJpGMpmkXC4jhMC2bf+cnZ2dNDQ0kM/nCYfDKIpCV1cXuVyOzs5OstkshUIBIQSxWIxyuUwsFutXpZ9AcQcE1CGKULjt1dsxLJ0R2RGMbRxLLJTi/kULyGaifGL/YXSuU+nUV3DopB6aooMxLJthiQNYsXkpmGEGxYZw0idOA/CVjrevKAq2baMoCqZp9rm2V0bMU+YDtbZrf0gkEpRKJcLhMIVCgVAohKIo5PN5Lr30UiZPnswll1yCpmn+/9zT00M8HqdQKBAOh6lUKoTDjipVFMW/uTU0NFCtVkmlUti2zfz583nuuee48847aWhowDAMv01K2W+lDYHiDgioS2KhJP815eec8cjptEctVoe7SIokTWJ/kpUY2to0WzaUWbm5nVhyGfHOJrqbtpAKNxFWouQLFSrVKkeNOJawjJBKpVBVFSGE8+gfkVQrKpFwCEQcW0pCoRC6rpNKpTBNk0gkgqqqZDKZulXcqqrS2NhIoVAgnU5jWRaGYZDNZnn66ad5/PHHsSyLc889l1wuh67rZLNZ3+IulUpEo1EqlQqAb3Hncjl6enpoaGhgw4YNPPfcc8yePRtd17nvvvvo6ekhm81SKjk1ajxln0gkAos7IOCjSqVSYeyg0fz6S7/mK7/5Mq+vfZ2IGaY52oSsgl21+dFXbuTlZX9lVHYUf1rxJ4aPbGTt+x3EMmk2dXRSqZr86NkbuO7UH6CqKtlsFl3XicgKD845EtusgJB84d/eIJEbim3b5HI5VFUlHA6Tz+dJJpN0d3eTTCZJJpO1HpZdJhKJYJomoVAIy7KcSd1ehYnL5TKzZ89mzpw5PPPMMxx++OG+P9o0TRRFQUrpP3V4bg8pJdFolKVLl3LyySeTz+cBJ4ggFAr5bqVIJAJ88JQTWNwBAR9hkskkHR0dDE/tx/984Q4u/fWltHe3M655PCEZwq5a/OalR0iFUpQrGtFwhLZXw3xy/8lsbH+XQnM7LcZIfvWnR5g5+mQ+96nP0dHRQTwKr//pp+RLBoNHTWb8YScgIkl0XScUCtHV1eVPTjY1NdHR0UFzc3PdWtzhcBjDMFAUBcMw/P/j3nvv9a1ogGq1yle/+lXOOecczjzzTEaPHs1NN92ElBLLsnwFHIlE+PrXv05bWxsPPfQQDz/8sK+0ASzL4q677uLrX/86tm0TDof9eYRQKNR/uffEPx8QELBv0TSNdDoNwOT4ZH51zkOc/oszWNm+ikw4Q0Ik0IVOh76FzR2b6NrSxT9NOZWW6H7YhDgkPZln3voDTbEwMSVCsVgk376a3z8xj/Z1ixk8/AiO+dJccoNHowhBKBTCtm2am5t9i7uzs5NMJlPXFne5XKapqYlCoUA2m8U0TarVKg899BDVat8Y740bN3LTTTfx1FNPkUqlWLx4MZZl9emjKApPPfUUUkreeOOND11PSsldd93F2WefTS6Xo1QqIYQgHo9TrVZ9i39nBCsnAwLqEM86k1KiCIVxTeN57hvPMW7oJyhUCqza/HcWr1vC0vVLyaSzTDloCmWjzPtt6xBhhcKGKscdcArpZJg5D87ivY2reX/1clYue51jTruGL85aQPPQsQicx3hPoXhhgUIIwuEwtm0TCoU+ZC3WiwXu3XhisRhdXV1omgaAYRh+n1tuuaXPGo7ly5fzyiuvfEhpg+PjXrJkSR+lPWTIEObPn++/D4fDDBo0CMMwaGhoIJVKAc5TVOAqCQj4CKMoCpVKBeFaw4ZhMLRhKH+85EmeWvYUTy57mr+u+D82d7ahVVU67RB6qIpdtcGEt1f9jZlTTuLYlrMYPE1w6S1fYUJHiMMmz+ATR55CMt3gK2kv6kEIQbVaJRKJYFkW0WjUn6TcWuF4j/8DHS8MsFAo0NTU5FvcnusDHCW+cOFCGhsbt6msd8aMGTP63AhM02TLli3kcjny+bxvcQfhgAEBH3EqlYrvmiiXy6RSKXp6eshkMkwfN4MvTjmLPy75I5uLm6lWqmTiacpaGb1cBSkwjzcZNWQk06dOp6mxiezmJtb/31uc+IVv0TJ4Pzo7O0mlUhiGQTgc9pW0F58cj8fp6enxF+5kMpm6jOP2wgEjEcdd5E0Q9lbQiUSC3S1ofsEFF3DzzTfzzDPP+MdCoRDZbLZPOCA4C3cCizsg4CNMMpmkUCgAzg/eW43n+WxVVeWkw08i39NDMhql3NPJ+/P/m8rqt4kPG84nv/ufVCMRQsCWzZvY/MZGYqnBjBw1jkJXF42ZDFXDYPXvH+P13yxAROJ88rQvccBx02lsbsayLFpaWiiVSjQ3N/txzPWGruuk02k0TSORSPirGOPxuN+nWq0Si8X8yJNd4fTTTwfoM9EppURVVVKplH88Go32scp3Rn2OdkDAxxxVVf3VfOVymXQ67ccNe9u2N15BtL7H2qd+TSSR4pAf3ApKBBFSsLZs5u05V2MJBbtiY7+9jMGHHMHaR+9n/YvPoxULpEeOYcIZX+Hz18/FNg3+tuhZHjz/K0QbGpl+2eWkh+7H/uPHk8/nSSQS/mRpPdHbfy+l9F08v/vd7xg6dCjFYpF169axZMmSDy1E6g+rV6/myCOPZPXq1f71zjzzTH9OoHfo4a7MCwSKOyCgDonFYn183NVqlXg8jmEYxONxtrz4J9bNncPIsy/ioKtuQAhQV72NpxukEEyacwtSQGXzJhpf/l+q1SohoTB51lUQjqCXNaplDa2zHVtK9j9yCqOOnEq+q4vfXvs9siNHcd5P5pHIZuvW4o5EIui6jqIo/lJ+IUQfC/lnP/sZP/vZz3br/FdccQUbN25k7ty5gDM38Z3vfIdYLIZt20SjUf9msStjGESVBATUIV40R+8FILZtI4Sg44U/8s687zP6q5eQHfsJ9A1r0VvXISoqoqJCRYWySvndlWjvvI1Z7GHw1Gns95nP0jBqDOWOzagb1lPp3IKpqphlDUPT0IslKoU8oVCIz55zLoX167n7X7/ph7HVI15Ypedv9hTp3Llzd9uvvTWe0gbnc5szZw75vDOOpVKJcrns50Hp7zjW520yIOBjjhfVIYTwV/JpmobobKPtdw8y6oyvEWtqwc53oqAghLsiEBCAjQTb2ceWVLUSlpSYNli2xJYSWzr7pre1JRY2hgXRWILPfPVfePynt/LfF5zPlQ/9qrYDspt4y9fj8Tjd3d1IKbn99tv5yU9+0sc10tjYSCgU6hMW2d3dvc1zNjQ0EIlE/Bupbdt+Xykld999N6FQiOuuu86PVLEsa5fCAQOLOyCgDvF82l7muXw+T66hgc3L3iDbMpRUrhm71AMVDaGXUHSNkK6i6Jrz8qzvsgqVEpRVbE1FaiUsrYSplTDVIlW1hFEqUi0VqapF9KKzrZQK2KbBiRdeRHdrK8X29loPyW5RLBbJ5XJUq1UymQx33nkn119/fZ/FNwceeCBLliyhtbWVd999l/b2dhYvXsyUKVM+dL6JEyeyaNEiWltbWbZsGa2trbz66qsceuihfh/Lsvj5z3/OzTffzMaNG1FVFXCs//5a3IHiDgioQ7yERLFYDMuynLC2fA89f/kjSiKOUeyGioYsa1BxFLWia4R1lZCuISoa6Jrfx9JUZFnDLqvYZQ1b0zA1DVMrYWgqVW+rqlTVElW1hK6WMCpVIqk0LzxcnxZ3IpFA0zTC4TBtbW1ce+21fdoPOugg7rjjDpqamnxfeKFQYNCgQcydO5fx48f7fWOxGFdeeSXjx49H13UymQyGYTBkyBDuuecepk6d2ufcc+fORVVVvyLUroQDfuQUt5c74IILLvCTlw80bNumWCxy2WWX+YltBhqWZfHaa69x9913D1gZBzred/Hb3/42hUJhj34XvSRHXqKjarVKRBFU1vyNaHMLdlnFKmuORV12/NqhSplQtYyiawi97Cjtiuq8XIvb0pytqakYmopR9pS25ihsTUVXVfRSiUqphF7RGDp6f4w95A/eFrZts27dOn74wx/u8e+iYRhEo1Fs2+Yb3/jGhxTnpk2buOqqqzjhhBOYNWuWn7/cNE0OP/xwZs6c6fedOXMmxx9/PNVqlXA4jK7rXHPNNZx88snMmjWLdevW9Tm3EIJvfetbfhjgroQafuQU9/z585kwYQKXXXYZhxxyCNdff32tRfoQF198MSeccAJf+tKXGDt2LH/+859rLdKHOOyww7jzzjvRdZ1hw4bR09NTa5HqjkWLFjF27FjOOussZs6cyUUXXbTHzu2Fr3l+VD+kzbawKxpmueQo47JjSVMuIysqlDVk2du6FrbmbM2yo7DNsoqheu4Sz8IuopeKVEsFV2mrVEolKoUCFbW0x/6vbeEpvgkTJjBy5Ej+/ve/77FzewUMQqEQ99xzD7/85S/7tHd1dfHyyy/T1dXFjTfeSCgUQtM0YrGYvzjJI5PJMGjQIJLJpD/Zee2111KpVHj55Zdpa2vrc+7bbruNxx57zI8Z771ac2d8pBR3T08PGzdu5MILL2Tp0qUsXLgQKSWtra21Fs1n5cqVtLS0cO6555LP57n99ttZunQpuq7XWjSfF154geOPP55p06Yxbdo0Zs+ezdNPP11rseoKXdd56623uOCCC3jnnXd47LHHGDx4MCtXrtwj569Wq0SjUd9VEo/HqZQrWKpGpW0jlqo6L011FHC5hKGqGCUNU9UwNdX1ZTvthqpiqk6/qlrC0JxttVTEKKlonZ2UOtpdhV10XyoVtYSuaeyt57HFixdz0EEHcdpppzF48GBuuOEGnn/++T329NI7qVMoFOLFF1/8UJ+JEyeycOFC0uk04XCYv/zlLzz44IM8++yzHHrooZx33nl87Wtf46ijjuKVV17hoYce8hNNxeNxHn/88T4+bo/XXnsN0zT9J4hdeZL4yEWV9K7OMRAf7z3rSFGUD6WSHCj0rn7S25oL2DV61w70FnfsqXGMx+O0t7cjhCCVSjl1EDNpbAmFlSsIjf8kIhEHRUGGBAg3ksQwEbE4lrQxbDBME3XjeiqqSsWyqVoS3ZTotoVuQqR5CGSyVLQyerWKMC2qbj/DllRNi3XLlzNuytSdC70b9P69eBEae/q76H3XS6USd9xxB6eddhqrVq1i1apVAH544I9//GOEEHR2dnL55Zfz6U9/mkcffZQzzzzTT896ySWX8Oijj3LLLbcATl6SOXPm9NFFw4cPZ8aMGTz44IPMnj2bZDK5y9+Nj5TFncvlGDZsGL/4xS846KCD+MIXvoCiKAOqkvOECRPo7OzkvvvuI51Oc+mll3LwwQf7ExQDgWOPPZYXX3yRl156iZdeeombb76ZU045pdZi1RWxWIxDDjmEe++9l7Fjx/LFL36Rjo4OJkyYsEfO7xXrbWhowDRNMpkMRb3KgbN/iNbVwZZlr6Pn875PuqKqaF1bKK1/D62Yp9zTQ/eSl8gveZnSujWom1rRNrWibtxAceN6iq2tFDa8z+YVb7D+5f9ly7ur0QoFSp2daMUi5WIJrVBk5Ssvo0SiHPiZY/bI/7U1Rx55JG+//TYLFy6kra2N//iP/+C4447bYSHdXSEajfo+6Xg8zquvvsq8efNobm72+6xcuZIHHniAT33qU9xwww189rOfpampyb+JeMm4vCXx6XSaz3/+89x7771MmTKFBx54gKVLl/rny+Vy3HrrrbzyyiuMGTPGT9K1KwtwPnIW93nnncc555zDxRdfzNKlS/fYB7wnueuuu9A0jX//939nzZo1A1LGN998kyVLlvDWW2+xadOmASnjQGf69OmsWbOGK664gmeffdZP37mnsCzL/1wcqzGEyDRimDaKqtL1tzdpGPdJFMskZFsIQ8fo2ACbWp1YbRsM26ZqOxZ01XSsaAs3dltCVa9SMSwq+SL6+vVULBszEiM1dD82rl1HsagxeuonmHTssXv0f+vNH/7wB1pbW1mwYAHr16/fo99Fr7Cvrus0NTXR2NjI+vXrqVQq/pMnOFb3e++9x4033siKFSt44oknuO+++5BSkkgk/PDBSZMmceWVV3L11VfzyCOPfOipX1EUyuUymzZtYuLEif4in0gkQqVS6bcB12/FLYQIAYuBDVLKU4UQY4CHgWbgdeAcKWVVCBEDHgCOBDqBL0sp1/b3Ov8o3hLge+65Z19dcpdRFIV0Os1tt91Wa1G2i6IoTJ48mcmTJ9dalLrF+y7Omzdvj5/bW6rtKW8vvWoJsONxqnoFDBO1pxvUAqJURFEECgKJxJI2tnQUt2mD4bo+nC2Yto3pLroxpcS2JZaUWDZYhkGpu4eKViYUiyPl3s2/rSgKo0aN4nvf+94eP3c6nfarsff09BCNRnn33Xf59Kc/zUknnUShUPAnMO+44w6klPz+97/35368avepVAopJVdccQULFizoo7RnzZrllzPzkoOtXr2a/fbbj2w2i2VZVKtVEolEv+XeFYv728DbQNZ9fxNwq5TyYSHEHcCFwP+4224p5TghxNluvy/vwnUCAgJ2gq7rfjSCpmkkk0knzerEg2n8zEza/vQ7bExkZydhYaOYNkIRCFdx27KXIpbS8W1bso8C95W3ZWNKMCzbWV1pSPTuPLaEUDzO56/6Nz9HSr3huZyq1SoNDQ1IKTnmmGOYPn06lUrFr0yjKArjx4/n8ssvB2DevHl897vfxTAMkskk1WrV98HfcsstvtK+7rrr+OY3v0k8HvdXucbjcSqVip/VEfCrxfc3NW6/njmEECOAfwLudt8LYDrwqNtlPnCGu3+6+x63fYYIZrYCAvYoqVSKUqnUJ5d0Q0MDugiR3X8cpg26YVPWypTLVTTLpmzaaKazLZs2FdNR1mVDOhOTtk3VllQtG0NKdFtiWhJTCqquxW3YNkoq7bgSogkM02TaiSfVZdkycNLj9h5Dz+VRKBRIJBIUCgW/uv3EiRP9vzNN068lWalUiEQifYoAe4wfP57GxkYikQiKopDNZimXyzQ0NPghg56lvSv5zPtrcc8DrgIy7vtmoEdK6S3mbwWGu/vDgfUAUkpTCJF3+2/pt1QBAQE7RNM0MplMn/18Pk8mk0EZPR5l0H5UNrdiyCohBCEFNzOgY6tJ2dfqNm3biRLxokUsC8NylHfVdZlULYlpQaW7B1vAITOOJ97UTEdHB7lczpennvDyvNi27StXcCxgrwiwlJJQKNRn8lAI4cddezlMer88vIVS3jHDMPxsjp6Ly/Oj70qI404tbiHEqUC7lPL1fp+1HwghLhZCLBZCLN5TWbgCAj4ueH7XcrnsT3h5j/X7H30c8eGjKFs2FdOmYnkWtk3FNKmYJmXTomxaH7T7StqdqLQkVYsPlLnlKG/DdlwoLaPHsGb5Ck7911lks9m6rH4DH4QCesq5d0y3l4HRC0ccM2ZMn8II3sI5z0Xi+b87OzsBp2TZpEmT/DZvJa2iKFiW1efvYM/HcR8NnCaE+BwQx/Fx/xTICSHCrtU9Atjg9t8AjARahRBhoAFnkrIPUsq7gLsAhgwZMvACrgMCBjDeD9/78XsREJ7Cmfxv1/P7f/k85XKJkBDOxKR0rG4J2IDtZQFEYppOJImjnG1MC6q2o8wN23ajTxwFHstkGTxuAoPGjaNp2DA/xroe8YoEZ7NZ8vk80WiUSCTiVxLq6uoik8mgaRq5XI5jjjmGxx9/HFVVmTVrFiNHjvQVO0Bra6ufCfDII49k2LBhfp50L6dMd3e3X1neK13mhST2l532lFJeA1wDIIQ4DrhSSvk1IcRvgLNwIkvOAx53/+QJ9/1f3fZFciCuhAkIqGMsy/J/6N4jvaZpRKNRyuUyubEHkBw1hvYVb6IIhZCf0tVGoiCFawG6k5OWLd0Uro7LxLCFb2kbtk3FclwmVdsik82hRKOMOfRQMrkchUIBRVHq0ur2sgNWKhVyuRy2bWNZFk1NTX5ZtnK5TCaTQUrpV4EH6OjooKOjY7vn9p6CvNzbiqLQ3d1NKpWiq6vL96F7bhevWHB/+EcCImcDlwshVuP4sL34u3uAZvf45cDV/8A1AgICtkEqlaJYLFIqlQiHw348sqZpNDc3o2kap9x+H7pho5sWZcNy3SPS2VZtyobjPtE9N4olKVtQMQUV06Zq2eiWc9ywbKqmRePwUYw/+hjiyRQzzz6bYrFIS0tL3U5OZjIZuru7iUajdHd3+3HVXgHkLVu2EAqFKBQKaJrGlClTGDly5E7PO3ToUI4//nj/hhCLxVAUxa8H2tLS4keyePH9uzKGu6S4pZQvSClPdffXSCmnSinHSSn/WUqpu8cr7vtxbvuaXblGQEDAzimXyySTSRKJhJ+Ev1Qq+RZePB5HhqMces5FjqK2HMWtGR/4tp3oEsvxf1uylxJ3lrXrpo3u+7sl2aHDGTt5KhvXruWE888nXyyRSCTo6enpU+qrntA0za+4ns1m/ZDGXC7nu0csyyKVShGPxzn66KOZP38+uVxuu+eMRqPcfffdHHfcccRiMYrFIoZhIKX0o1W6u7uduHu3Ag6wS2MYLIcLCKhDvOx0XpRCuVz2V/Cl02mnMEBjEy3TjkUZNIyyKdFMG81yQgI/CAuUH+xbNhXDcqxs0wkR1C2Lqi2JZhsYPG48ne1taMUSYw87jEwmg67rpFKpXcpsN5CIx+Ooqko4HEZVVT8c0LsJFotFQqEQlUrFr0k5ceJE3njjDe6//36y2SyZTIZsNks2m+XWW29l1apVTJs2jUwmQ7VaJZlMEg6H/bwylUqFTCaDaZokk8k++bj7y0duyXtAwMeB3kuxvYiI3rkzvEnLMVOnMfnci1h0648xNNX/e+kuxJHSmaS08PzdYEo3ftu2MW2beFML6SHD0MplYrE4Nz37jC9D70nReqR3eTGP3uXJerf1Tng1ePBgTjnlFN5//31M0/RXRgL+fIOXX9u2bT96pPdnBM78RO+ok/4SKO6AgDrES2zkKYNQKOQXVTAMw99Go1GOufAbWFLy5H/9ANlHQTkRJpbEien2lrVL/NWSphQoliTf3c3oYcO46Mc/RnEz4em67sck72qSpIFCb6XrrW4ExxL30uVCX2vYa+u9cKZ3SJ9hGEQiET9SxCuUAE46Xq/N+8x63yj6S+AqCQioQ7yY7Uql4if39455Vcu9R31FUZj61XM56ye3MeLwKY4/230NnzyV+JChVCzbfUnGH3scuo2zBN6GilbmiBNP4Pwf/YhkYyOxWAzbtkmn0+i6TjqdrsuIEsBXrN5iGE959la63lJ1zwL3Cih4bhUvNttLJx2JRPxizrZtEw6H/fZIJIJpmn3avBverjy11N8tMiAgAICmpibAeYRPJBIIIfxjjY2NCCHYb7/9/Pbp5/4/jvnnL2P1sgBDkQi2bWFbH1ji4WgUo1exXIBoPE40Hvetw2w2ixCC5ubmuo3hBucGGIvF+owhfOAu8dp641Vj31abx4781rvj096aQHEHBNQpvdObegpkZ9tQOt2vc8e3k4J2e+etV7xFTN5+7+NbH+tP274icJUEBAQE1BliICxqbGxslOecc06txdguuq77q6iTozRIAAAFj0lEQVQGKvl8nnA4vMeT9e9J2traaGtrQcqBG4GQy21g//2H77xjjbAsi87OTgYPHlxrUbaLqqpYlkU2m9155xrR2dlJOp0eUJWntmbBggV0d3dv06wfEIpbCNEBqAzcDIItBLLtDoFsu0cg2+7xUZNtfynloG01DAjFDSCEWCylHJDlVgLZdo9Att0jkG33+DjJFvi4AwICAuqMQHEHBAQE1BkDSXHfVWsBdkAg2+4RyLZ7BLLtHh8b2QaMjzsgICAgoH8MJIs7ICAgIKAf1FxxCyFOFkKsEkKsFkLUvOiCEGKtEGKZEOJNIcRi91iTEOJZIcQ77rZxH8lyrxCiXQixvNexbcoiHG5zx3GpEOKIGsn3fSHEBnf83nRL3nlt17jyrRJCnLQX5RophHheCPE3IcQKIcS33eM1H7sdyFbzcXOvFRdCvCqEeMuV7wfu8TFCiFdcOR4RQkTd4zH3/Wq3fXQNZLtfCPFer7E7zD1ei99ESAjxhhDiSff93hm3rasT78sXEALeBcYCUeAt4MAay7QWaNnq2M3A1e7+1cBN+0iWY4EjgOU7kwX4HPAHQABHAa/USL7v45S327rvge7nGwPGuJ97aC/JNQw4wt3PAH93r1/zsduBbDUfN/d6Aki7+xHgFXdMfg2c7R6/A/imu/+vwB3u/tnAIzWQ7X7grG30r8Vv4nLgIeBJ9/1eGbdaW9xTgdXSqaZTxalfeXqNZdoWpwPz3f35wBn74qJSyheBrn7KcjrwgHR4GaeY87AayLc9TgcellLqUsr3gNU4n//ekGuTlHKJu18E3gaGMwDGbgeybY99Nm6uTFJKWXLfRtyXBKYDj7rHtx47b0wfBWYIsXeSeOxAtu2xT38TQogRwD8Bd7vvBXtp3GqtuIcD63u9b2XHX+J9gQSeEUK8LoS42D02REq5yd3fDAypjWg7lGUgjeUs99H03l5upZrI5z6CHo5jnQ2osdtKNhgg4+Y+7r8JtAPP4lj5PVJKcxsy+PK57XmcGrT7RDYppTd2P3TH7lYhhLeOfV+P3TzgKsBLtdjMXhq3WivugchnpJRHAKcA3xJCHNu7UTrPNgMiFGcgydKL/wEOAA4DNgFzayWIECIN/Bb4jpSy0Lut1mO3DdkGzLhJKS0p5WHACBzr/pO1kmVrtpZNCDEJuAZHxilAE04h832KEOJUoF1K+fq+uF6tFfcGoHfJ5BHusZohpdzgbtuBhThf3DbvEcvdttdOwu3KMiDGUkrZ5v64bOAXfPBYv0/lE0JEcBTjL6WUj7mHB8TYbUu2gTJuvZFS9gDPA9Nw3AxeGujeMvjyue0NQOc+lO1k1/0kpVOw/D5qM3ZHA6cJIdbiuHynAz9lL41brRX3a8B4d+Y1iuOkf6JWwgghUkKIjLcPzASWuzKd53Y7D3i8NhLCDmR5AjjXnUk/Csj3cgvsM7byIZ6JM36efGe7s+ljgPHAq3tJBgHcA7wtpbylV1PNx257sg2EcXPlGCSEyLn7CeBEHD/888BZbretx84b07OARe7TzL6SbWWvm7HA8SH3Hrt98rlKKa+RUo6QUo7G0WOLpJRfY2+N296YWd2VF87M799x/Gjfq7EsY3Fm8N8CVnjy4PiengPeAf4MNO0jeX6F89hs4PjHLtyeLDgz57e747gMmFwj+Ra411/qfjmH9er/PVe+VcApe1Guz+C4QZYCb7qvzw2EsduBbDUfN/dahwBvuHIsB67t9dt4FWdy9DdAzD0ed9+vdtvH1kC2Re7YLQce5IPIk33+m3CvexwfRJXslXELVk4GBAQE1Bm1dpUEBAQEBOwigeIOCAgIqDMCxR0QEBBQZwSKOyAgIKDOCBR3QEBAQJ0RKO6AgICAOiNQ3AEBAQF1RqC4AwICAuqM/w9pIihoDh14YgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Q学習の本質: ベルマン方程式と学習アルゴリズム\n", + "\n", + "学習アルゴリズムの疑似コードを記述します:\n", + "\n", + "* 全ての状態と行動に対して、Q-テーブル Q を同じ値で初期化する\n", + "* 学習率 $\\alpha\\leftarrow 1$ を設定する\n", + "* シミュレーションを何度も繰り返す\n", + " 1. ランダムな位置から開始する\n", + " 1. 繰り返す\n", + " 1. 状態 $s$ で行動 $a$ を選択する\n", + " 2. 行動を実行し、新しい状態 $s'$ に移動する\n", + " 3. ゲーム終了条件に達するか、総報酬が小さすぎる場合 - シミュレーションを終了する \n", + " 4. 新しい状態で報酬 $r$ を計算する\n", + " 5. ベルマン方程式に従ってQ関数を更新する: $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$ に更新する\n", + " 7. 総報酬を更新し、$\\alpha$ を減少させる\n", + "\n", + "## 探索と活用のバランス\n", + "\n", + "最適なアプローチは、探索と活用のバランスを取ることです。環境について学習が進むにつれ、最適なルートを選ぶ可能性が高くなりますが、時には未探索の道を選ぶことも重要です。\n", + "\n", + "## Pythonでの実装\n", + "\n", + "これで学習アルゴリズムを実装する準備が整いました。その前に、Q-テーブル内の任意の数値を対応する行動の確率ベクトルに変換する関数が必要です:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "source": [ + "元のベクトルに少量の `eps` を加えることで、初期状態でベクトルのすべての成分が同一の場合にゼロでの除算を回避します。\n", + "\n", + "実際の学習アルゴリズムは、**エポック**とも呼ばれる5000回の実験を実行します。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " m.random_start()\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " m.move(dpos,check_correctness=False) # we allow player to move outside the board, which terminates episode\n", + " r = reward(m)\n", + " cum_reward += r\n", + " if r==end_reward or cum_reward < -1000:\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "source": [ + "このアルゴリズムを実行した後、Qテーブルは各ステップでのさまざまな行動の魅力を定義する値で更新されるはずです。ここでテーブルを視覚化してください:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXwURd7H8U/NmUzug4Rb7kMRQW4RFRFFlwVdXFRUdlFRQTxQ8FgUFVRQ1xMeZBE8F0VXF1R0PUCUS+VQhKDcoCQkQO7MPdNdzx+ZzMJKAMlMepLUm1deyXSa7u8M5Jea6qpqIaVEURRFqTtMRgdQFEVRfh9VuBVFUeoYVbgVRVHqGFW4FUVR6hhVuBVFUeoYVbgVRVHqmKgVbiHEECHEdiHELiHE/dE6j6IoSkMjojGOWwhhBnYAg4FcYD1wjZTyp4ifTFEUpYGJVou7N7BLSrlHSukHFgHDo3QuRVGUBiVahbsZsP+Ix7mhbYqiKEoNWYw6sRDiZuBmAKvV2qNr165GRTkhn89HRUUFmZmZRkepVmlpKVarlYSEBKOjVCs/P5+srCzMZrPRUar166+/0rJlS6NjVCsYDHL48GGaNGlidJRqOZ1OgsEgqampRkep1uHDh0lOTsZutxsdpVpbt27F4/GIY35TShnxD6Af8NkRjx8AHqhu/6ysLBnLdu7cKefNm2d0jONavHixXLt2rdExjmv69OmyuLjY6BjV0nVdTpgwwegYx1VUVCQff/xxo2Mc1+rVq+WSJUuMjnFcc+fOlTt37jQ6xnGF6uIxa2a0ukrWA+2FEK2FEDbgauDDKJ1LURSlQYlKV4mUMiiEmAB8BpiBV6SUW6NxLkVRlIYman3cUspPgE+idXxFUZSGSs2cVJQo0HWd9evX8/rrr6PretW1HkWJCFW4FSUKunbtyrx58yguLqZJkyZUVFQYHekomqZx4MABo2Mop8iw4YCKUl99/fXXDB48mMmTJ1NYWIjP5+PTTz9l5MiRRkcDKvPt2rWLnJwcunfvzsUXX0zjxo2NjqX8DnWuxb1nzx7effddo2MoSrWCwSAWi4WcnBw++OADrFYrgUDA6Fhhs2fPxul0cvfdd/POO++wfft2oyMpv1OdanEPGzaMuLg4+vTpw5lnnsmKFStielKM0jANGjSICRMmsGTJElwuF4FAgN27dxsdC4BFixYxePBgrrjiCqZMmcK8efOYPHkyPXv2jOnJW0eSUuL1elm4cCGtWrWif//+xMfHGx2rVtWZFveePXuIi4tj7ty5jBgxgksuuYScnByjYynKMeXk5DBr1ixuueUW8vPzSUpKMjoSACNHjmTZsmUsX74cv9/P1KlTGTt2LA6Hw+hoJ83j8dC8eXN8Ph+fffYZnTt3NjpSraszhXvjxo307t2b8vJyXn31VRo3bsyqVavU1XolJpnNZkwmEyaTCYvFghDHnrlc20wmE0OHDuX777/HarWyfft2WrZsGTP5Tsbbb7/No48+Sq9evbj11lu58cYbWbx4sdGxalWd6Sr585//zJlnnklBQQFNmjRh0qRJ5Ofn16n/cErD0q1bN9asWcOWLVs488wzjY4TNnr0aPx+P0888QSnnXYabdu2NTrS79K8eXNeeuklCgoKmDBhAnl5eVx88cVGx6pVdabFDbBixQqGDh2Ky+WioKCAW2+9ldLSUqNjKcoxZWVloes6hYWFRkf5DZvNxvnnn4+UEr/fb3Sc32XAgAF8+umnBINBpk6dyjfffEOfPn2MjlWr6lThzszM5IILLuChhx4iOzub1157jYceeohdu3YZHU1R6pyBAwfi8/n45ptvjI7yu/Xq1YtevXpx0003sWnTJqPj1Lo6VbirVHWPpKamcuedd/Lmm2+yb98+Y0MpilIr5syZw6233sqIESPo3bt3g+wurZOF+0jt2rVjzJgxTJ06FbfbbXQc5RQsXbqUAQMGcPHFFxMIBNA0DU3T1IXnWmAymerUlPwZM2bQoUMHRo0aZXQUQ9X5wg3QqlUr5s6dy+jRo8nPz4/qufbu3RvT/8mDwSD79+8/8Y4xZMiQIXz22We89dZb9OvXj169etG7d282bNjAtm3b2LZtGx6Px+iY9dKDDz7IjBkzcDqdRkc5obKyMg4cOECXLl0aZCv7SHVmVMmJOBwOZs2axaxZsxgzZgzt27eP+DmWL1/OBx98QNeuXenVqxdnnXVWxM9RU2+99RabN2+mU6dODB06tE5MZbZYLFgsFhwOBxs2bAAqJ1lMnDgxXFDOPPPM8ASRgQMH1rmRELHKZrPF1KzO6pSVlTFnzhxGjhxJmzZtDMuxZcsWkpKSaNWq1Unt/9lnn7F//35atWrFRRddFLEc9aZwAzRp0oQxY8awYMECJk6cSHZ2dkSPbzKZeOSRR3jsscc4fPhwjQq3x+Nh3LhxEWm9t23blqpbv6WmpnLXXXdxyy230KlTpxoV7p9++oknn3yyxvmgslX9ewgheP7558OPly5dSlFREQD/+Mc/OHjwIABXXHEFl19+eUQyKrHr4MGDbNu2jQceeMCQ8wcCAW655RaaNm2K1+vF6/Uya9aso1r+q1atYv78+Uf9vbPOOouMjIyI366vXhVugPbt2zNx4kTGjRvHm2++GdFpvAMHDuTiiy9m9+7deDyeGq2ZEh8fz2uvvRaRt3xxcXFs3LgRqBwqdeGFF3LgwAFuuOGGGj3/Ll26MHXq1BrnA0hLS6vRtO+hQ4eGvy4oKAivtvevf/2LRx99FICLLroonNdsNh93NmBVK9NqtZ5yppNR9Uu0Z8+eMTN78n+98cYbXHPNNSxdutToKMek6zp33nknr732mmEZKioq2LFjB4899hgul4sBAwawbNmyo6baDxw4kAcffPCov9e0adOoLCVQ7wo3QHZ2Nm+++SYTJkxg6tSptG7dOiLH/emnn3j//feZM2cOmqZx//331+h4QoiI9dVVFe49e/bwxRdfcMcddzBu3Dj69+9fo+OaTLF3GaRx48bhdxIPPPBA+N9h+fLl/PGPfwQqf2BuvfVWoLI49+3bFyEEUkrWrl3Lhg0b0HWdXr160b9//6j1mWZkZFBSUoKu61E5fiQ0a9aMvLw8o2NUa/PmzWRnZ0f8HfTvcd999/H888+zevVq5syZg9PpZPTo0cycOfOo/Wrr56VeFm6AhIQEpk6dyuuvv871118fkT7RTZs28f777+P1ern44otjsqgtW7YMn89H69atadmyZUxmjKQjf/kNHjyYwYMHA5CXl8ecOXPC+3z55ZdAZd/57NmzmT17NmazmVGjRrF3796YvvN8Q7ZixQpWrFjBP/7xD0NzzJo1i06dOjF//nwmTJjAvffey5NPPmnYRdJ6W7gBWrduzfXXX8/TTz/Nk08+SUpKSo2ON2rUKFavXh3VFlpNTZw4kc2bN9OzZ0+joxiqWbNmPP744wD4/X6WL18OwL333ktFRQULFiwIv/2+9957eeaZZ4yMayghBFOmTOHvf/87kyZNMjpOmJSSzz//nEsvvRS73W5oFqvVyty5c1m3bh3Jycm8/PLLhuap14UbKi/cPfXUU4wePZoFCxaQkZFRo+Ode+65EUoWHTabrcEX7f9ls9m49NJLAejbty/9+/fnxRdfJCkpiT//+c988MEHBic0lhCCbt268eGHHxodJUzTND766COaNm1Kv379jI6D2WxmyJAhnH/++ZhMJsN/kdT7wg2QnJzMK6+8wvTp0xk/fnxUhgoqdUNKSgrdu3dn3rx5CCFo0aIFqampRsdS/kdJSQnz5s3jk09i637jsbLud4Mo3ADp6encdtttvPHGG9x00020bNnS6EiKAUwmEwsXLuSnn35CSskZZ5xhdKSYkJmZSceOHfnmm29iooU7e/ZsbrnlFqNjxKz6feXqf7Rr146xY8dy//33q+nxDdzpp59ea0XbbDajaVqtnOtUpaam0qJFi5i4OUkwGOTDDz9k2LBhRkeJWQ2qcAO0aNGCBQsWMGbMGHJzc42OozQAS5cu5ZJLLjE6Rp3x4IMP8tFHH8XsAIBY0OAKN1T2Uz377LOsXr3a6ChKA2CxWOrEtPKOHTty6NAhiouLDc0xc+ZMmjVrZmiGWNcgCzdUDhe7+uqrjY6hKDGjT58+7Nu3j4KCAqOjKCfQYC5OKopyYjNmzCA5OdnoGMoJqMKtKFEmhKgzt9bKzMw0OoJyEhpsV4mi1BYhhOFTtpX6RRVuRVGUOqZGXSVCiH1ABaABQSllTyFEOvAO0ArYB4yUUpbULKaiKIpSJRIt7oFSym5SyqoFMu4Hlksp2wPLQ48VRVGUCIlGV8lw4PXQ168D6vYkiqIoEVTTwi2Bz4UQG4UQN4e2ZUspq+7YWwAYt/q5oihKPVTT4YDnSinzhBBZwBdCiG1HflNKKYUQx7ypYqjQ3wyQmJjIzp07axglenJzcyktLY3pjIWFhei6HtMZXS4Xe/fupbCw0Ogo1fL7/TH9GpaXl+NyuWI6Y0FBQcz/vJSWlrJ///6I3PM1Wo5316QaFW4pZV7o8yEhxGKgN3BQCNFESpkvhGgCHKrm784D5gFkZGTIr776qiZRoqq0tJTc3FxiOePu3btxOBzhG+rGosLCQtauXWv4WsbH43Q6Y/rf2ev18s3hb/jgq9hdQ9yR72CQZ1BM364tLy+PjRs3smvXLqOjVOu4r5+U8pQ+gAQg6Yiv1wJDgKeB+0Pb7weeOtGxsrKyZCzbuXOnnDdvntExjmvx4sVy7dq1Rsc4runTp8vi4mKjY1RL13U5YcIEo2McV1FRkezxeA9JDP9pvLqxXLJkidEv1XHNnTtX7ty50+gYxxWqi8esmTXp484GVgshfgTWAR9LKT8FZgKDhRA7gYtCj5X/4XQ6ufLKK42OoShKBOzevZu777671s53yl0lUso9wFnH2F4EDKpJqIZAShnT3RqKopy8QCBAaWlprZ1PzZxUFEWpY1ThVhRFqWNU4VYURaljVOFWFEWpY+pV4c7Pz+e1114zOoaiKEpU1avCXVZWpu4jGSFOp5MxY8YYHaNeCwQCBINBo2ModZC6A45yTJqm8euvvxodo17SdZ1vv/2WVatWkZaWRrdu3ejVq5e6q3kdVtv/dvWqxZ2enk7Tpk3JyckxOoqiVMvv93PVVVdxxhlnEBcXx1VXXWV0JKWGZC2veVKvCndWVhYtW7Zk48aNRkdRlGrdd999LFy4kGAwSPv27XnhhReYNm2a0bGUOqReFW5FqQvuv/9+rr76atasWUPr1q156qmnuPPOO42OpdQhqnArSi1LS0sjEAhgs9l44oknaNOmDSkpKUbHUuoQdXFSUWrZ7Nmzef755+nYsSMpKSm0b9/e6EhKHVPvWtzDhg1j48aN7N+/3+goSh2gaVqtXVjSdZ0nn3ySDh06MGrUKHr27KmKtnJK6l3hzsrKoqysDK/Xa3QUJYaVlpaydetWRo4cSU5ODgUFBVE9n9/vZ8GCBbRq1YqhQ4eqoX/1jBoOqCi14IMPPmDcuHE8++yzTJ06leeeey6q56u6g9JVV12FyaR+7Oqb2h4OqPq4lQbj3Xff5aOPPgJgz5496LrO9OnTmTt3LvPmzWPTpk1ROa+UkhdeeIFx48ZF5fh10cyZM9m6dWv4sdVqZd68eVgskSlJK1aswGq1cu6550bkeLGmXhbu+Ph4vF4vUsqYfUvqdruJj483Oka1hBDY7XZ8Pl+t3yPS5/Ph9/tPat9XXnnlpNenGTVqFA8//DAA//73v3G5XFx33XXs3LkTt9tNhw4dTjVytXw+H+PHj2fSpEl07tw54sevq0aPHo3b7Q4/DgaD9O3bF03Tjrl/8+bNeeutt6o9nsViIT4+Hk3T6NatG0OGDMHv93P77bezcePGqL/LMZlMmM1mAoEAVqs1queCelq4X3rpJXr06MGGDRtitnBfeumlrF+/3ugY1UpKSuKee+7hiSee4NFHH43KOaSUrFq16jc3RV21ahUrVqw4qWOMHj36pCdcCSHC/x+6du3Kk08+SadOnZg/fz4jR47E4XD8vidwAsXFxbzwwgvcdtttdOrUKaLHruuaNm161GMpJevWrat2/7y8PIYPH17t9zt27MhVV12Fpmn4/X4uu+wyOnXqRHl5OT/++CPdu3ePWPZjad++Pf369WPhwoX89a9/jeq5oJ4WbiFErfc5/V6x/G4A/lvkovk6SilZsWIFgUDgqO3nn38+Dz30UNTOCzBkyBCGDBnCnDlz+OKLLzCZTBF9rh6Ph9mzZ3PBBRdw9tlnR+y49dWRv1SPpUWLFnz55ZfVfv/nn39m4cKF6LpOeXk5y5cvJy0tjZ49e7Jx48aoF+6q7LVVd+pl4VbqBpPJFO66MMr48eOjclyPx8Pq1auZOnVqVI6vHK1z58489thjBINBXn75ZTIzM/n888955plnyM/PNzpexKnL24oSYYWFhdx444289957RkdpcMxmM9u3byc9PZ2WLVuybdu2mH5ne6rqbYv7wgsv5KuvvuLCCy80OorSgOzcuZO5c+fy8ssvk5ycbHScBkcIQXp6OqNHjzY6SlTV2xb3I488olZcU2pVbm4ub7zxBrfeeiuZmZlGx1HqsXpbuBWlNkkpKSgooLy8XE1jV6Ku3naVKEpt+vnnn5k1axYLFiwwOorSAKgWt6JEwCeffMKCBQsiNvNPUY6n3v4vi4uLY+TIkSxatIirr77a6Dh1zu23386WLVs4fPgw27dvZ8GCBSQmJhodK2ZNmjTJ6AhKA1JvC/dFF11EXl4eFRUVTJkyhfXr15Oenm50rDrB5XKxceNGbr/9dr777jt27NhBcXGxKtyKEiPqZeHesmULrVu35tFHH+WLL74AYN26dQwZMsTgZHXD7NmzmTRpEq1btyYQCHDdddcxbdo05s+fb3Q0RVGop4V7z549tGvXjlatWnHRRRexf/9+fv75Z1W4T9J9991H586dmTx5Mq1bt+aqq65iw4YNRsdSFCXkhBcnhRCvCCEOCSFyjtiWLoT4QgixM/Q5LbRdCCFeFELsEkJsFkIYskjD8OHDWbhwIc8//zx5eXncfffdXH/99UZEqbNeeeUVAL7++mvmz5+vukkUJYacTIv7NWA28MYR2+4HlkspZwoh7g89vg+4FGgf+ugDvBT6XOvWrVvHpk2bWLduHbt37yYpKcmIGHVWv3796NWrF8FgkLi4OKPjKHVMfZxmHktOWLillCuFEK3+Z/Nw4ILQ168DX1FZuIcDb8jKJbK+FUKkCiGaSClrfZWXpKQkBgwYwIABA2r71PWGxWJRw9uUUxLrq3PWdaf6U5l9RDEuALJDXzcDjrxLb25oW/1bnusUrVq1in/+85/s37+fcePGcdlllx13nWFFUWKbruvceeedbNmyBYDvv/+eF154Iao3b6jxkUOt69/961UIcbMQYoMQYoPH46lpjDpB13W2bt1K27ZtyczMpF+/fqxfv77au34oihL7fD4fq1evZtCgQVx00UWsXr0an88X1XOeauE+KIRoAhD6fCi0PQ9occR+zUPbfkNKOU9K2VNK2TOWb+EVSfv27WPHjh389a9/pVevXlx++eXYbLaYvhOOoijHd8899zB37ly6detGt27dmDt3Lvfcc09Uz3mqXSUfAn8BZoY+f3DE9glCiEVUXpQsO5n+bU3TWLJkySlGib7CwkJ2794dkYw2m41Zs2YxYsQIFixYQF5eHgUFBTU+dk5ODr/88gsHDx6sccZoKSgo4NNPP43pe22Wl5fH9P9Ft9tNQn4CbZa0MTpKtZL2JZHjyonpfu49e/ZgsVjIyck58c4nMHjwYCZPnszdd98NwOTJk5k4cWKN/x8d7534CQu3EOJtKi9EZgohcoGHqSzY7wohbgR+AUaGdv8EuAzYBbiBMScT0O8XjBuXfeIdDeJw6PzlLw6ys2ue8cj+7OzsbM4555waHxPgl19+Ye7cFEpLY/d1bNfOzuWXNyIhIcHoKNWyWCwR+XeOFqfTSS97L2ZmzzQ6SrW2lWyjwlQR06+jw+HgifQncGe7T7zzyXgSxjEu/PV4an5nJb+o/obZJzOq5JpqvjXoGPtK4LaTThb+eyYKCvr93r9Wa1JSdtGkSRH9+sVuxoMHD1Jamh3Tr2Pz5svp0aMHNpuNiooK0tJTOVhygKSEFMoDh/i85A32uLdiCliwi0SEbia/4gB904Zwceur8bt9NG/UkvLychISEigpKcHhcBAIBNA0jYSEBKSUxMfHh6foV1RUkJKSEn7s8/lISUnB5/MhpSQuLg6TyRS+v+Zbb70VsX9nv99PIBCI6C+q4uJi1q9fX+OMuq7z6aefkpuby8iRIykvL+fFF19k+vTpNX5HpOs6hYWFMf3zsnnzZorOLKKsXZnRUaqVaKp+7oQa66XUKil1igIH2OPaigmdD/Pn0C7hbPy6HxvxdLD14YDvV8o8pXRK7c5pGV1JtqYxecW1JFkzuK37gzSyNcEWsGEymcJ3iDeZTGiahpQSn8+HEAJN0xBCEAgEwt8XQuD3+8NvQ4PBIDabLeLPc/ny5ezcuZODBw/So0cPLrnkEqxWa8TPc6pcLhcfffQRd999N1dccQVvv/02TZs2ZeXKlVxyySVGx1NOQC3rqtQqieSHQ98xbcMDvLThRczOZpSVBfh280+88ekS1uz4mtxf89j43Y+s3ruCX4p/IefgFuwymXiRzNubXuGzXR/i9FZgs9kQQmA2m4+6S3sgEMBqtaJpGhaLBU3TsNvtCCGwWCwEg8HKLFL+5g7zkTJ+/HhSU1O58MILueuuu3C7I/SWPEKSkpIYPnw4N954I3v27OGBBx5g06ZNdaJo+/1+5s6da3QMQ6nCrdQqkzDTM/NCmgR6sHV7MZu3HuaHzfmUH7BhdzfGtd9B3g4/W384zHc//MDWPetZ+f1XeFxB1u7+hkMVRcxd+38U+wqpqKgAKt+aezweLBYLJpPA4YjH6/VgtVrx+XzExcXhcrnCre2EhIRwEXc4HBF/jg8//DDPP/88bdq0YdeuXbz//vvcfvvtET9PTfXp04cZM2aQkZHBqFGjeOihh4yOdEIzZ85kyJAhJCUlce6557J69WqjIxlCdZUotUrXdRLMDl7844vcsHgM/8n5BN0H8TIOm7Tx/S6NP/cewY2De1HmKsXmsZHr/g/e8iIKi0vYqe0mGDAz/KU/8sXtK4DKkTpxcXF4PW5yls9k1/p/EgxqdO73F3oMnUZFRQUZGRl4vV7i4+MpLCzEbrcTDAZxu91kZGRE9Dn+7W9/o3///owfP54ff/yR119/nXfeeSei54iEtLQ0+vfvT0pKCn379o35ZSHKysrIzc3lxRdfJCEhgbKyMvbu3Uvfvn0b3Axf1eJWapXJZMJut+N1evjHiLlc1ukPWMxm2jRqQ992fenaqgu/HP6FrXk5FFUUk1+UT0LRabi2p3Bmcmc8ZYWge9HKBDe9eBNCCLxeL8XFRVQc3MruraspKffSrMswUpt2o6K8nMTERA4fPowQApfLRWZmZng6f2pqasSfo91uZ+DAgbz77rusXr2atm3bqju+R0BOTg5NmzYN38X93HPP5ccff4y5bqja0LB+TSmGk1Li9/tJS0sjEAjw0og5PBj/EP/e+G9KnaUkmBNwiHh8ws+hom2UlZSRZE1meL/hOCucxJNO0eFDmNIO4D8YQNOCWK1WVix+nkP71lCSv5/uF05kwLCJBIOV3/N4PKSlpaFpGg6Hg7KyMsxmM1JKnE4nKSkpEX+eTz/9NJ9//jnfffddneiCqAv69+/Pq6++yq233sqOHTu44YYbePjhhxvkL0VVuJVaZzKZwhcT0+LTmXbJNKzCzr/WvcvB4kMQABEAoQm6N+9OvDmePfl7iLfEk2TNoG3LTrz9+eu0ubiAV5fMZ/TQv7D+q/fJbtKc4be8QnarruHjVw3zM5vN4VElR04MUavY1S2PPfYY/fv3p23btrz66qs0a9bM6EiGUIVbqXUmkwmn00lCQgIul4tkezIz//AE0y59mCv+70+UlJewa/8espIyKXYWkWhNwuv2QkBy+HARidYEBvcYRm7uDlbJxXw77lXSNMmQgddxWud+WK1W3G43drs9fHHS6XRis9nw+/04HA40TUPX9agO0UtNTUXXdUpLS6PSJdMQNW7cmJSUFL7++uuYGl5Z21ThVmpV1TjrjIwMiouLSU1NxeVyYbPa8Dv9LL1tKfuK9/HRxo9weV2YgiYSbA7KS8tBCjxuL3azjasuuoqeZ/Vk5ebPeXntVM7/w1Wc1XcomqbhdDpJT0+nvLyclJQUSktLyczMpKKigvj4eIqKinA4HEgpcblcUZvh17t3bz766CN++OEHBg4cGJVzNFTRXHmvLlCFW6lVQgjsdjvFxcXEx8dTVlaG1WolGAySmJiIlJJ2We24ffDtSCmxWcwUrF5Gwbp/47DHkTHwUlL7DcJqt1NSUkKgIIinVND/ohHYbDaklKSmplK4bx/rF8ymOPdX0tp2psdfxpKa1Sjc363rOrqux/S6KcpvvfDCC0yePFkVbqMDKA1LVYs7JSWFsrIykpOTcbvdWCyW8Fhs/F5MPi/bpt6O9HtpfsW19HxgBrowYTWb2DvvSYp+3EhQ09lVWIr98CF8OevZsGYlhzZ/T0DT6HzVDXT/09X4fV40r4+3b74eZ7mTYVMfJbl1W7JbtMRkMuFyubDb7Ua/LMpJ2rJlC5MmTWrw1yZU4VZqndlsJhAIhGcxVl1INJvNaBVlHJj3NK5fd9H57mlYk5IJlJbg3bMTBPgkNPvTdZw2+jaCrgqafb2cnjt+pmjNSloNuJAzR91EMOjHVVKCv6IMTYKOZNiURwhqOqsWvsHm1au5Zf5rtDm7B2az2eiXQ1F+N1W4lVolhDhqHZGqNUOklBAM8stLM9AOHqDNtbfiP1xA8HABAklVA0tI8P+6F6+U6EByx86kduuB5g/iKS2i/JfdaFKiSdCkRJcSTQddSoK65OyhwwjoOgsn3c3VM56ifR9DbomqnIJ169Zx2mmnkZWVZXQUw6nCrdQqKSXBYJC0tLSjLk5aLBb2L/4nnl0/0/q6W5oHB38AACAASURBVCHgReggROjjqGNUFnCQaG4Xfikri3WoQGu6RJeEi3dQk2hSJxjap8t5A/F5/cwddwsT3/kXnc8+26BXQ/k9fv75Z5o0aUJ6errRUQynCrdSq0wmE3FxceTn55ORkUFhYSEJCQn43C6Kl31Ix2tvQ3OXIU2AEJhCLXRTqHJLKStb55LKCl5VpHWJrkuCUkfTJZoGwVDhDug6QQlBXUfTBZqu0/mc/hzKzcVTWGjky6Eop0QVbqVWVbW44+PjCQQC4QuDRauXYUtIxFuYh9kkMJkrRw0IM5iPKNy6rGxVS12ApqNLHSlB6qGWtl5VoCUBvbJ7JKhLgpLKAq5XdqMEgjoZzU9jzp138PLWnxCqrzumlZaWkpeXx/nnn290lJjQsMfUxKiHH344vPRofVQ1IqDqs5SSiu/X4mjVDs3jQve4kG4XeF3gcSO8bsw+D2afB+GtfCy9LqTXje5xo7vd6G4XutuF5naiud0E3K4jPpz4Xf/98FZU4HVV0LR9WzSf18iXQjlJhw4dYvv27fTv39/oKDFBFe4Y8vHHH9O5c2fOOeccevXqxdSpU42OFHFV62d7vV4sFgt+vz+0zYTU/OHCrXtcSI8L6XFDqFgLb+XXeDxwxH6610XQE/pwuwm6nQRDRdvvduFzOvG7KvC5nHidbrxOJ16nE09ZWfhGDIpSl6iukig7fPgwW7ZsOal9v/vuOy666CJsNhvvvPMO8+fP5+DBgzF9777fS9d1fD4fqampuN1ukpOT8fv9+H1+ZNFB7KF1TIRZYDIJhFkgTCYq2xiSIKDpOkFdJ6hVdoMEQl8HpCSghT50iT+oE9ShvLwMsyMBvybx60d8PzQJJ5ratGnD3r17GTBgQMwuPdq9e3c2btzIBRdcYHSUY5JSsnXrVk4//XSjo8SM2PyfVI8UFRXx1VdfndS+P/30Ey6Xi5UrV3LTTTfhcDg4fPhwvSrcJpMJm81GUVERjRo1oqSkhKSkJOKSU8j/+lNsJhOkpkKoeGOqHFIS9PsQ9nh0qvqtweeqwF14GL+m4wvq+HWJT9PxBSWayYIlM5sAgrIDuTgaN8Ov6wQ08GkaQR0O5xfg90a3q2TMmDEMGjSIESNGRGUVwkj4+9//To8ePfjhhx+MjnJMUkqmTZsWs/mMoAp3lHXq1Ilp06ad1L7vvvsuDz/8MM8++yzXXHMNXbt2pUuXLlFOWLt0Xcfv99OoUeX089TUVPx+P03+NJrDa5ZTun0LWrOWJGRmoZsEukkQFBDcvxtri7ZIwHPwAIHyMrw+X2W3R1DDr0k8QYkvqOHVdPwI9P2/4sdMfIuWlOXnIxISCGjg1XTKiovZs/Unug29HBr4LDyl7lGFO4ZcfvnlDB48mPHjx/Pee++RmFj9XZ7rMl3XMZvN6LoeXmbV3rQlusVGwOWGvTtB07AlJhKQGmbAX16G2Lyucqy2phHQdPyajl/7b/dIUOqhsdsQ0DS8pcX4gjpFhYV4Ahp+BMktWlFSUsKhvAK8/iBDx41r8NOnY92hQ4fq1bvOSFCFO4bYbDZsNhtvv/220VGiRgiBzWajoqICu92Ox+MJF3HNHo9fl8iAhrm8jKAWQDuwPzQcUCAADRmeZOPXdYKawK8f2Xeth/u8g3rlhJugFkDTIBDU8DidFOcfRJeAMBGfmGD0S6KcwNVXX83SpUuNjhFT1KgSpVZV3QEnNTUVj8dDUlISuq5jsVhode1N+EL91K7iYtzOCnyajlfT8Wg6bk3HG9TxBCsf+zXwhVrdR7W8db1yxqRedfGycpsuoby4BF3XkSYTvUb8CRGnVgdU6h7V4lZqVdWyroWFhSQmJlJaWorNZiMQCNC0/2B+0EGXOroMoFe4IahXXp8UlW0MKfXQJBwIhibb+EMXK/161WgRiV+r/H6gqoBLiYiLw+vxVe6jBel2wQW0bNPG4FdEOZ5gMKgWAjsG1eJWapWUkkAgQGZmJm63m5SUlPCdaCpcbpJ6nVfZyg5qOCucuAOVLWx3QA99LStb3EEdT1DDExpR4g1q+IIaPk3DH5T4NQ2/phMIFfNAUMfldOP3+Ulq1IhLbr0Fc1w8xcXFRr8kynE88sgjPPjggyQkqC6tI6nCrdSqqgk4brcbq9WK1+sNrxIYn5REh1E34g3KUIHW8IZGi3iDGt6gdkTRruxC8QZluHvFp0l8oe4Svybw6+DX5FHjvQNSkt2+PeXFJfT74zB1I4UYp2kaZrNZXUD+H6pwK7VOShle1rVqAoyUEovFQlq7jjS/eFioUIda1cHKvu3/9m9LPIHK7/tC+/lCo0wCoeJd2V2iVRZxXeLXIajpnH7eBWjCwjkjrsRisTTo+xYqdZcq3EqtqiraDoeDQCBAfHx8+CYKHo8HU0IiGV264cdU2erWKrtG3EENd7iIBysvVoYfV7bGvVrlGG6fLvEGKyfb+HUNX6i1rQsTac2aUVFRzpnnnYemabhcLqNfEqUaX375JUlJSfRRa6b/hircSq2qWtb10KFDJCQkUFRUFL4jTmpqKvHx8XS4ajTZfQdUdo34NdwBDXdQr/wI6Lj9El9Q4g3KUHdJZSvcGwSPJvEFK4cEekPdJwFNQ1qsdLlwMOuXf8WMxUuwx8VhtVrJyMiI+nPu2bMn69ati/p56puqbjR1a7nfUqNKlFpVdXEyMTERn89HQkJCeEKO1+tFSolJCDoPu5I936wh4HUf0br472qCOqGbJoQm3ISXbz1iCKA/tCZJEBOtunYngGDAlSPQrDaCwSBSSpxOJ0lJSVF9zjNmzODss89m06ZNUT2P0nCcsMUthHhFCHFICJFzxLZHhBB5QohNoY/LjvjeA0KIXUKI7UKIS6IVXKm7zGYzmqZhtVoJBALh2ZMWiyU89KvlhZfg6HQG3qDEHZThFnf4wmRoe1X/ty9Q2d/tC1+0/G+/d1a7DjjS0tm39SfOHDiQhMRETKHFrGJ14aeGrqysjMWLF3PttdcaHSUmnUxXyWvAkGNsf05K2S308QmAEOJ04GrgjNDfmSOEUIMwlbCqe05WLedadZFSShkuplA5Lf4P0/+OKS3jiIJd1WUicYUuSnoD/y3mHg08oaLt1TR0i5Xk5qdhSUyirLiYP915Bx179w6PUhBCqIuTMSoQCJCXl0fLli2NjhKTTli4pZQrgZMd7DocWCSl9Ekp9wK7gN41yKfUM//bVeJwONB1HZPJhMfjIRAIAJXT/5u2a8/Vc14hqWUrPAE99FF5IdJXNb473Meth0ei+IKVfeB+KfD6A5QXl9D9osFcNGYMcfHxVFRUoGmaujgZw+x2O4MGDTI6RsyqycXJCUKIzaGulLTQtmbA/iP2yQ1t+w0hxM1CiA1CiA2BgKcGMZS6pOpiU2lpKXFxcZSXlwOVM+QSEhKw2+1IKfF6vVRUVNCud1+GTptB9z+NxCdFeJSJ32yh9YALwkMEvUGNuMwsEhs3xatpldPhfQFsDgdX3H47g2+4ASEEXq+X1NRUzGYzFosl6v3byqlJSkrinnvuMTpGzDrVDr6XgOlU3rJ1OvAMcMPvOYCUch4wDyApKVv6fKeYRKlzbDYbWVlZmM1mGjVqFJ5cUdVNYrFYcDgc4W09Bg+hS79z+ePk+4HQXd5NAkdqKs4jZj5abHYQ4qg1tm1xcWS1bIkeGnIYHx+PECI88aY2JnYIIXj//fejfh6l4Tilwi2lPFj1tRDiZaBq6a48oMURuzYPbVOUsCP7sqs+H+l/16YwmUxY09JITEv7zb5p2Y1P6pxVR6w6X23OxBNC0LZt21o7n1L/nVJXiRCiyREPrwCqRpx8CFwthLALIVoD7QE1gFVRYpgQgtGjRxsdQ/kdhJTy+DsI8TZwAZAJHAQeDj3uRmVXyT7gFillfmj/KVR2mwSBu6SU/zlRiJSUdNmhw92n+hyizmp1ccYZhZx22mlGR6lWQUEBP/5ox+v9bas0VqSl7aBfv9YxPZJjy5YtnHnmmUbHqFYgEGDfvn20b9/e6CjVKi4uxu/307jxyb0bMsK+ffv4qdFPBBICRkep1o5nd1BWXHbMt4YnLNy1ISkpS/r9242OUa3k5H08/PCaGo8pPXTo0FGPrVYracd4+38qPv30Uxo1akSPHj0icrxoeP755xkzZkzM3nsRYMqUKTz++OMROZbf7ycQCJCQkBAewZKcnFyjY5aWlvLGG29wxx13RCRjNGzYsIGioiIuuSR2p3G8+eabnHfeeTHdGOvYsSOHDh06ZuGOkdkHAr8/dluKgUARdru9RkX266+/ZvDgweHhbgBnnHEG7733Hp06dapxxvj4eBISEiL2iyAQCLB+/XrOOeeciBwPKn9RpaSkRCxjpFWtmRKJfH6/n0WLFpGenk6LFi1o2bIlL7zwAnfccQetWrWqUcZI/sKPBofDgdvtjumMdrudxMTEiGV0Op3s3LmT7t27R+R4cPzrMGqtkigLBoN8+OGHXHvttUcVbYCtW7cyduxYtmzZQiy88zmS2+3moYceMjpGnaXrOsXFxWRkZPDQQw+FW96lpaVGR1OiIDc3l1mzZtXa+VThjiIpJV9++SW33noreXnHHlyzZs0a/vznP/+mG0Wp2+Li4ujduzdjx45l48aNjBgxgn379tGtWzejoyn1QIx0ldRPUkpKS0uPW5SllOzZs+c3rXGl7rvwwgvZunUrl112GYsWLYrprgOlblEt7ijy+XysWbMGTdOOu18gEGDZsmW1lEqpLWazGYfDEZ74o5YnVSJFFe4oslgstGvX7oSTPcxmM6effnotpVIUpa5ThTuKzGYzTZo0OeFdqi0WC82aHXNJF0VRlN9QhTuKhBAMHjyYUaNGHXe/5557juzs7FpKpShKXacKdxQJIUhKSuJPf/oTN9xww29mDDZp0oRx48Zx3nnnnbBVrig1oWkar732mtExjuk///kPBw8ePPGOSpgq3FEkpUQIwdChQytvtxW6o3kVt9vNmWeeSefOnQ1KqDQEc+bMYfjw4UgpufTSS1m1apXRkQA4ePAgl156KVu2bGHSpEkxPRs01qjhgFFWXl7Oo48+yptvvvmb0SVlZWVMmjSJjIwMhg4dGl7KVFEixe12s2PHDh544AFat26N0+lk79699OvXz9Dbtkkpyc3NpXnz5owePRpN07jxxhspLS0lNTXVsFx1hWpxR4mu6+zbt4/x48fz/PPPEwwGj7mf2+3mmmuu4bnnnqO4uDjmZlAqddsPP/xAdnY2HTt2ZPr06TRp0oQffvghJmZwzp8/n7Fjx/Lhhx/yn//8hxEjRrB48WKjY9UJqsUdYVVdIvPmzWPp0qV89tlnJyzGuq7z5JNPkpOTw9ixY7ngggvC90RUlJro378/b7/9NhMnTuT222+nT58+vPvuu2RmZhqaSwjBfffdxyWXXMKCBQsYP348NpuNDRs2GJqrrlCFO4KqivYrr7zC/fffH74t18moqKhg0aJFrF69mo8++oiuXbuqwn2EYDAYvsmv8vvce++95Ofn89xzz3HvvfcipQxffzFSkyZNWLhwIe+88w6PPfYYmqbxzDPPMHHixGPeYEP5L1W4I0jXdV599VXGjRt3wtmS1cnNzeWcc85h7dq1al0LKpcx3bdvHzNnzmTSpEk0btyY5s2bGx2rTmnZsiUtWrTg9ddfx2w288ADD9C4cWMGDBhgaPG22+307NmTbt26hQv1W2+9xWuvvUbv3r0544wzDP/lEqvUr7UIevPNN7n55ptPuWhX8Xg8XHPNNaxcuTJCyequZcuWMWHCBGbMmMFzzz3HE088YXSkOkkIgc1mw2w289RTT7Fs2TKWLl164r9YCywWS/h2dtdddx2apjFv3jw+/vhjo6PFLFW4I2TBggXcddddR/VnCyFwOBwnbDUIIUhISDhq27Zt27j55pv57rvvopK3LiguLmbt2rUsWLCAl19+mcTERFq0aMHatWuNjlbnTZkyhT179sTkxcCxY8fy9NNPs3v3bj744AOj48QkVbhrSNM03n77bSZPnkxZWdlR32vVqhWzZ88+YX+d1WplyZIlpKSkHDVJZ/v27Vx55ZXs2LGjQY42SU5O5qyzzmLZsmWMGzeOyy67jBdffJFdu3ZRVlbWIF+TSLHb7XTp0oWcnJxqRzwZyW63M3bsWDZv3szKlStj/t+6trt0VOGuASklK1eu5Prrr6ekpCS8vXHjxvTv359vv/2WzMzMk/pHPfvss/n111+55557jmp95+bm0q9fP/Lz86PyHGKZxWKhdevWLF68mBUrVjBnzhzuv/9+9u/fz7XXXsvy5cvZs2eP0THrrAsvvJDmzZvz5ptvxmTxdjgcPPjggyxZsiTmuw1r+xeLKtw1oOs6f//734/q027atCnTpk3jk08+oVGjRid9rKrp8ZMmTeK22247agnQiooK5s6dG/Otjmg477zzWLZsGX6/n48//pg777yTKVOm8N5777FmzRreeOMNHnnkEbxer9FRj+nLL7/kvPPOi8klXYUQjBkzBiEE//d//2d0nGMSQvDMM8+wZs2amOzWqZKZmUnLli354YcfauV8qnDXgBCCVq1ahdcZsVqtTJ8+nVGjRpGcnPy73z4JIcjIyOC+++5j/Pjx4e12u73WR1IkJCQwatSomFnf4qabbjpqpl9cXBwPP/wwo0eP5txzz+XKK6/kiSeeCA91ixUrVqzgvPPOIy4uzugo1frLX/5Cy5YtefLJJ2PqtasihOCuu+7il19+4ZNPPonJjFWFe9OmTbVyPlW4a0AIwfTp05k8eTJt27Zl/fr1jB49+jcXGn/vf7S0tDRmzJjByy+/TJs2bZg9e3a4ZVRbqropYr0rok2bNgwaNIi33nqLjh070r17d7766isOHDhgdLQ6QwjBsGHDaNSoEW+88YbRcY7J4XAwfvx41qxZw9q1a2OyeNcmVbhrQAhBWloajz/+ONu2baNr165HtQqllAQCgZOaOXnkrcuEENjtdm644Qa2b9/O6NGjDV1XItYJIUhOTmbEiBFs2rSJzz77LGbf+scqs9lM+/btyc/P/81F9lhhs9l4/PHH+fDDD/n888+NjmMoVbhrSAiByWTCYrEcs0Xctm1bevTocdxjXHHFFcfsAz3yuGoiwsmbOXMmjz/+uNEx6pwBAwbQt29fHn/88d+sZBlLHnvsMbZu3cq4cePYvHmz0XEMoQp3FAkhaN269QlvSzZo0KDfdK8oihEuuOACRo8ezU033RSTI02g8lrSLbfcwrhx43jxxRcpKCgwOlKtU4U7yk6mtaxa1EosOeOMM7jpppv429/+ZnSUaiUkJNC1a1fmzp3LXXfdxc6dO42OVKtU4VYU5ShCCJo2bUpcXBy7d+82Os5xWSwW5s2bx6uvvsrGjRuNjlNrVOFWFOU3WrVqxXXXXceLL74YE2t3H09ycjITJkxg8eLF7Nixw+g4tUINVVAU5Zg6dOjA1KlTSUpKMjrKCTVt2pTJkycTHx9vdJRaoQq3oijVysjIMDrCSUtJSTE6Qq05YVeJEKKFEGKFEOInIcRWIcSdoe3pQogvhBA7Q5/TQtuFEOJFIcQuIcRmIcTZ0X4SiqIoDcnJ9HEHgXuklKcDfYHbhBCnA/cDy6WU7YHloccAlwLtQx83Ay9FPLWiKEoDdsLCLaXMl1J+H/q6AvgZaAYMB14P7fY6cHno6+HAG7LSt0CqEKJJxJMriqI0UL9rVIkQohXQHfgOyJZSVq01WgBkh75uBuw/4q/lhrb977FuFkJsEEJsCAQ8vzN23XEyix7put7g115QFOXknXThFkIkAu8Dd0kpj7oLrqysOr+r8kgp50kpe0ope1qt9fdKcFxc3FGzIs1mM/Hx8UdNuMnIyFA3R1UU5aSdVLUQQlipLNoLpZT/Dm0+WNUFEvp8KLQ9D2hxxF9vHtrWIFksFrKzs0lOTiYxMZG//vWvbNq0ibPOOguHw0FGRgYZGRlq5qSi1FFSStxuN36/H7/fj9vtjvo76BMOBxSVFWUB8LOU8tkjvvUh8BdgZujzB0dsnyCEWAT0AcqO6FJpcIQQPPjgg0yZMiX82GQysWHDhvA+sdja3rhxIzk5Oezfv581a9bQp08ftUKhohyDruu0atWK1NRUhBA89NBD5Ofnh9fpj4aT+UnsD1wPbBFCVK0S/jcqC/a7QogbgV+AkaHvfQJcBuwC3MCYiCauY6pbhySa/6iRcO2119KtWzf279/Pddddx/fff09aWprRsRQl5ixatIh7772X9PR0hBAUFRWxaNEirr322qid84SFW0q5GqjuffygY+wvgdt+f5TYvzhXFy4gRiLjs88+y7Rp08jIyODrr7/m0ksv5W9/+xtz5syJQMLYfx0jme/aa68lMzMz4s851l9DaDgZTzvtNL799ltGjhyJEIKnnnqKvn37RvX5i1h4cVNS0mS3btcZHaNaZrOfJk2cpKenGx2lWuXl5VgsFhwOR0SOlZCQgKZpBAIBEhISKC4urvHzP3ToEBkZGTH9biM39wAWS1OjYxyHRsB0AGuW1egg1dLdOonBRJKTk42OUq3i4mISExOx2WwRO17Vz0ckflYA/vnPf1JSUnLMRnNMFO6kpGzpdB40Oka1UlJ28fTTKxg7dqzRUaq1ZMkSsrOz6dOnDz6fD6vV+t/F8E06Bb5fKAkeROoSCzZA4Am4cZiTaZt8BkI3Y7NZ0TQNIQTBYDDcHx8MBrHZbOHPVccPBoOYzeaj9q3qGgoGg1itlcWlqqvoscce47bbbovZLhcpJSNH3sF7780yOkq17PZiuky9mI1/i92V8BqvaczcwrkMHz7c6CjV+sc//sGgQYNo166d0VGqlZ2dzcGDB49ZuNXVpnpG0zSKioqIS7KxrmQpWXGnETR52e38kXz/L1R4nVR4y2ga3xaP30OWtTk7435mb9EuJvSZgt8XQAiB0+kM30LN6XSSmZmJ01n5rqOsrIz09PRwy7y0tBSr1YrNZsNms2GxWHA6nTFboBUlGtatW4cQgl69ekX9XKpwG8TlcjF58uSI9RtX2VX6I++XPIcoExT4fsEq4wgGJQmkkWlvRipplLpdePQA6fbmoFv5z+5/E29JYvqX93J1lxtp6mhBUlISUkqCwSAZGRm4XC7sdjuFhYUkJiZSXl5OfHw8Pp+P1NRUpJRomobb7QYq7w9YVFREamqqGo2iNAg5OTmqcNd3uq7z888/R/y4jRynsWj5D6THpdO1UVfaZHViz4F9vL76bdp1SKFRQiI7N+djbhak/+nnYQ7GEW9JpbiiELsjiVfWvcQfOl/OGWlnYbFYsVqtHD58mKysLFwuF+kZGRQXFZGSkkJZWRkJCQmUl5djtVbum5CQgMlkwuVykZaWFpNDHRWlrlOFu56Jx8G8P7zCvZ9P5uOf/sNnOcuw6zay0xrjP2zHV5FJ+6zTOFC6F61U55tN39C8Szq7Cg7QLsNPqbsMr0+j7fmdSLVUzvBMTEzE7/fjq8hnx7YPqSivID2rKZltBqFpGnFxceF+bL/fD1SOTfd6vb+ZJaooSs2p5lA9YzKZ6JDejgcvnILJIthdtJsSTwmJcQm4/W7cARctslrQObMbyZ52tEo+nYodEuHXMePj10MH+GzLch5f+hhQecFO13WQGnk/fcZXi+5i4ycPsvHzZxCh69q6rh+13orJZDqpNVoURTk1qnDXM1arlYA/QL/m/Xh/1PtkJmZgMpsp9ZZhtVnwaX5+yt3K4YrDbP91G6s2fMNpji4My76eH5dvp1enFjgqzPzrP/8iEAwAUFFeyqFf1rPy41mUuu30unIBg29YSECrHFXi9/vDI1iqLlLquh7x1ramaVRUVDBp0iR27twZ7k9XlIZGFe56pqysjKysLIQUdG58OmvuWE1qQir5FQUUlB/kQFk++0ty+WbHN6zatorMtEZoUuPgoUKGnX0VCT+3J8VuISslnt37dyCl5OvFf2f+zBuIS23PoOv+jy69hxIkAYfDgdfrJT09HYfDER6NUlpais1mo7CwEE3TIvbctm7dSufOncMTgmJ5uJmiRJMq3PVM1cVCIQRer5dsR2NeueYVxp8/Hr8eYF/RPrblb8Ov+2nfrAOZ6ZkcKj1EibOYvMMHcHvdJBW3Ij5Z8OgHd/Hvj+az4+fNpDY+nT/e+AJdel+G1+vF4XDg9/uxWq3hBXYA4uPjcTgcaJpGUlJSxC5OaprG0qVLeemllygvL2fWrFmcc845rFy5MiLHV5S6RF2crGeqLggGAoHwJJyOjTrQYeBEejfrxUHXQZ547wnyCg+w5+Bu0uMysGGjqLAQnzuA1+lh3OXjuP2cCZQ5cnntuSdJO6Rxz/SXSWvUArfbTXx8PF6vF7vdHp6UU9XPXVXAqwq63W6PyPMSQtC6dWv27dvH2rVrad++PQcOHKBZs98s9a4o9Z4q3PWMrutYLBb8fv9RFwmlhH5t+hEXH8eQ04dgtVlxVjixmQV5e3bQKCUDnwRHeiPibHGkpaZRXl7C9tabGHjDH2jVvhtCCDRNw2Qy4Sw8TMBiJqDpZDRthslkChdvILxvpC5QmkwmunXrxrBhwygsLOTTTz9lyJAhtG3bNiLHV5S6RBXueiYuLi48rtrn8wH/XYnQbrfj9/tJikuicMNa4gIeKg4dJOnAL5SXlpB6ZneSu/XFuW8Xez0e9hccYsuqNfQ9+1wCeb9yYOc24uLjKU9M45dVy/k150cSGzXB0aYDiRmZNDvjDLLbdwxPg09JSYnoOO7OnTuzc+dOXnjhBZ566ineeuutiB1bUeoSVbjrGZfLRUZGBk6nk7i4OHRdx+fzIYTA4/EQ56lg78K5JKRl4I93kNKoMcnnnI8UAgF4cn9BlhVj14Mk7N3BOT43cvlSDuTtQ5gslAT8xGc1o8OgIbQddAlS09m+ZiUFOT/y6w8bqfB4ufxvD5GWmUlZ2Fk8WgAAIABJREFUWVlU7u5z55138uqrr0b0mEr9smbNGqxWK7179zY6SlSowl3PJCcnV65VEheH2+3GZDJhtVqRUpJgNbPp9rGktGlP2nkXYzJbQGr4836tXLhXSsxmCyntOqFLSUKLtrT709Vomo7PXY4lPhFN6gQCQTxlxegSNF3SvMtZNJGSsqIiPnzhWRaMv4UJr/2T1NTUqK0EWNWqr1rISlGg8iL2gAED6NevH4FAgEmTJvHVV1/Vuxm89evZKJSXl4fXf3Y4HJXjugMBvCVFfHfT5TiaNqPJpSPQK8rQy4qRFWUIrxPhcYLXhXSVoxUfJlh8GN1VQbCsCK2iBOH34y8tJlBSQrCinKDLRdDtIuB24XdW4HNWds8Mv+senAX5zP7raPbv3h3R4YBH+vTTTxk2bFhUjq3UXTt37iQrK4trrrmGBx98kKysLHbt2mV0rIhThbueiYuL+3/2zjs+qir9/+9zpyaTmRRClw6KgFJl7QUUddfG7irY145tXQUEf2tdtwgK2MWGuigKVlx1LevqV3HXgqAUhSU0qSGkTDJzp9xyfn/MzDVR0AAJMwnn/XrNa+6ce+fcZ24yn3nuc55zHqLRKEIIDMPAsixcLhcV/5hHSZdedD5xNMb2LRDXEXEdLa4j4jFEIo4WjyFiUUQstY9YBKlHsPQ6zJiOqUcwYxHsWFq0IxHMSIRENEIyGiERjWLE4hw+9hzK165m+Qf/brbp7pkfJIWiPhdffDGHHXYYTz/9NOvWrePUU0/lrbfeyrZZTY4S7lZGfn4+NTU1AMRisVSWRyJG3f+WUNR3AOb2rRDXU8KdiKIldFxJHVdCR0vGEAkdkdAhFkXGdWQ8itR1ZCyKFdMx9ShmNIoRrcOIRkjqEcxolGQkSjJaR0KvQwO6HzSQz+bPJ1xRkd0Lotgn+OKLLxgzZgznnnsu99xzDwcffDCff/45kydP5ve//322zWtylHC3MsLhMO3bt0dKSUFBAW63my0fvgOJJLZlYMWiyFhKmFMedxRXQsediKLFo4hEWqzjMaSuY0d17FgUK1aHrafE24h9HyYxohESeoREtI5kNEI8EiUWqaVD797UVVURqa5uls8ZCoW46qqrmDFjRrP0r8htTNOkurqaK6+8koEDB/L4449z9913c+mll7Jo0SKEEASDQWeN7NaGGpxsZRQWFlJeXk4wGCQajeJyucj3eajzurCTcWwTpKaBBlIToAk0l4YQIG0QtgRbIm2JbVnYdmoA0rJtLBtMS2JISdKWmJbEtG0MGwzbxki/Tto2pi2wTQOaaaEpTdMIhULU1tY2S/+K3GT58uVs3LiRLVu28Pzzz3PHHXc4a9pnBLpLly5ceumlDdpaG0q4WxmxWIxgMAjgzFqMx+PYiXjKc9bApbmwNbBdAlvTsDWBhsCWacG2bSxbYlvSEW3TlimBtlLbppUS7KRlp8VaYlhg2DIt4jaWikErmojKykruvfde3G43mqax33778c477+z0+NYq2BmUcGeJ6667jmnTpjV5vy6Xy6lOkxmYdLs81K36lrxgISIvD9OlIVwpr1toAoQLAdikRNe0wbItDEumHrbEkDaGCUnLwpQpwU5asG39WvLbdcDQXBgWKU/chqRpNfvg4ZAhQ1iwYAGLFi1iyJAhzXouxd6l/rLAN9xwA5s2beKqq67igAMOoFOn3Cvm/N1337F06VJuvPHGvXI+JdxZYvHixQwaNKjJ+83kTQshnLW0faVtweOl9tuliF59kD4fUtOQLoEUkmS0DuHLB48HyzQxkiaJuE7NiuUkTZO4KUnYkrhpEbdsEhYE+wzA8nrx5OcTj+qYQmBYkoSVCpls/m494YoKRDNWdC8pKUFKSVVVVbOdQ7F77InHW15eztatW7nwwgsBeOCBBxg0aJBzJ5mL6LpOOBymY8eOe+V8SrhbGZllXevq6ggEApimCQcPp81hIyj/50tYsShF3Xth5edjaQKXkFjlmxBuH3i9JOvCJLZvI2ml4tgJy8a0JElTYlgWpikxLJtNS74gYYK7tD0Jw4RAAXj9JKWgZnsV61et4tiLL6NkL/0jK3KLXV2jxrIs5s6di23bfPXVV0SjURYvXtzqQx67ixLuVkZ+fj7hcBiXy0U8HgdSXngskcS0JQk9Sl35ZvLbtiNWU4VL2qn0wGQCm9RApC3Tgm2DYUmS6UFH05aYtsSS3w9YRjdvImFJYpaNr01bookkleUV2Db0POhg8goKmvXznnrqqcydO5fDDz+c/Pz8Zj2XonmYM2cOH330EYMGpRYyu+qqq+jZs2e2zcpplHC3MpLJJAUFBcRiMbxeL5ZlYVkWeZ07Y7o8YBqIujqk14usrMAlbYTQUjPeAUumBiaNTKzaliTTGSOGDYa005klpGLhUmKRGsRMxOPEIjFsIfAVhIgnEti23azTjYcNG8bkyZNJJpNKuFsQyWSSTZs2ceaZZ3LBBRdw7bXX0q9fP+VhNxIl3K2QzG1q/dvVnuddxYa3/4G+aR2WHsdyhxGGhUtKhABE6ngLmU4BpEG2SOo5lS1i2GCZ33vhScvGRhCvjRJLJDBNm6GjT+Loc8/J0hVQ5DoTJkxg48aNfPrpp2ia1urWEmlulHC3MrxeL7FYDE3TUvFtvi/eqxW1xfxuLVJaWBEdzbJxCYlAQmYwE7CldIQ743kn0qKdtFMDlYZtY8iUoFs2mIBFKoTS94ijcaGR78/bK1/I3/zmN8ybN4/LL7+82c+laBruv//+bJvQolE/c62MeDxOKBQCUuuWuN3uVF62ZdH9gitJWIK4aROLJ4kZNjEz/TAs4qadyhwx0s+WJGFJ4pZN0rRJpJ9NU5JMx79NO5UymDRM4vE4Lr8PzefhpMuvoLa2ttkWmarPuHHjnEkYCsW+gPK4WxnBYJDt27fj9/uJRCIIIfB4PLhcLnr84gg+yy8gWRdGE+DWBJotEEJmVnXFkimP2yblcVs2mOmZkqm8bkjakLQtEhYYVjqkYkmk28PhZ45l5eKv6DZgAIFAALdb/YspFE3Nz3rcQoguQogPhBDfCCGWCyGuS7ffLoTYJIT4Kv34Zb333CSEKBNCrBRCnNicH0DRkEgkQmFhIVJK/H4/Ho8Hy7KwbRvdMBhx31NOPrZu2eimTcyw0Y30tmURM616HrhN3LBImlZq0k06RTBpZqa3WyRsMC2bvocfyZcffMA1jz6G1+slEok4pcyam2HDhrFo0aK9ci6FIts0JlRiAuOllP2AQ4GrhRD90vtmSCkHpR9vAaT3jQX6AycBDwshmm8WhqIBXq+XeDzu1HzMZHUIIfB6vfjatafDESPSgpwKk+imRcw0iaWFOhMeiZvfT7pJPdJhEyvlYSes1LGGbeELFRKLJ/nFL39Jh27dsCwLj8ezV7IEhBDcfPPN3HPPPc1+LoUiF/hZ4ZZSbpFSLkpv1wHfAj9VWvt04AUpZUJKuRYoA1pn/aAcxO/3U1dXhxCCZDKJbdu4XK7UYlP5+biLSug0/HASpiRmfO9Zx0yZejZsJ/adsKy0WJN+fC/WCVumQyU2tnDTf8TxxJJJDj/tDIKhEJZlEQgE9mp6l8pMUGSLvZ3GuEv/6UKI7sBg4LN00zVCiCVCiFlCiOJ0W2dgQ723beSnhV7RhNTW1tK2bVts204JtduNYRgYhkF1dTWB/Hz6j72Q/Y4bRcxOedhRwyKatNANKxU2SYdKomkBjxsWcdMkYVgkMgOXZsrztlweDjjyGKq2VzLk+BPoPGAANTU1eDwetm/fvlcGJwG6du3Kk08+uVfOpVD8kF2dKbqnNFq4hRAFwMvAH6SUtcAjQC9gELAF2KUVk4QQlwshFgohFhpGbFfeqvgJQqEQVVVVaJqGrusYhoHH48Hj8VBUVISu67g8Hrqe8EtMT14qrm1KYpZEN1Nx75gp04/vs07ipiRuSWKZGLctwe+nXa/eSLcLvTZM5759CRUWUlRUhGEYlJSUNFvNyR+iaZqzGqJC0dpp1JC/EMJDSrSfk1K+AiClLK+3/3HgjfTLTUCXem/fL93WACnlY8BjAMFge5lI7I75ih+i6zqhdKgiU+U9k8+dTCbx+/1YlsXw0WcSq6rkjdtvpuFd3vf53Knp7zhT3E2ZngZv20jhoiBUDF4fW9au4/K776b/UUcRi8UQQuB2u6mrqyMUCu018VYo9hUak1UigCeBb6WU0+u11189aDSwLL39OjBWCOETQvQA+gCfN53JLRvDMIhEIliWRTQaJZlMNmn/eXl51NbWIqUkHo9jmqYzMy0QCBCPx5FSUltbyzEXX8Gom2/HdHlS3nQ6nztm2iSFi1i9trhlk5QacdMiYUoSCPRYnK3rvuP82+6gzy9+kVqJ0OfD7/djmuZej3ErFPsKjfG4jwDOB5YKIb5Kt/0/4GwhxCBSS1ysA64AkFIuF0LMA74hlZFytZRy7wQ6WwBPP/0006dPZ8OGDRx55JGcdtpp3HnnnU3Wv8vlwu1243a7nbhbZrv+Prfbjdfn47Bzf0fvoYfy3iMPUrs9VR9SAoedcy4fP/csUoJtS9x5+XQ56CC+/e9/sSVIBCUdO3Du//t/lHTpgtvjcfrNnNPtdivhVrR6lixZwrJlyygvL2fBggUMGTKk2dfN+VnhllIuAHb07dtp6WQp5V+Av+yBXa2SiooKtmzZwnPPPccll1zCSy+9xOzZs1mzZk2TrYamaRqlpaU73V9YWAhAIBAAoF27drRr147+Rx/9o2NHXXTpbtvh8Xh2+70KRUvi6quvpnfv3mzYsIErr7ySF198kb59+zbrOVX+1F7E7/eTl5dHTU0N999/P7quY9t2Ti8Qr1Aods5TTz3F7373OyZMmMCwYcN49tlnufvuu5t94lmOzEeW+Hy5W8XE660lHo83SaUVn8/HmDFjmD9/PqNGjeKCCy7A5XLtcd+6rhOJRHK6GoxhGNTU1Oz11Kldw8rp/0WfrwaX4cJXlbsZNN6IF13Xc/p/MR6PU1tbu8c2Hn/88YwbN44TTjiB2267jalTp3LOOedQU1Ozxzb+1PdE5MKXqKSkRE6YMCHbZuyUaDRKRUUF3bt3z7YpO2XLli34fD5KSkqybcpOWblyJT179szpMMrXX3/NwIEDs23GTjEMgwUL1lBdfUC2Tdkpfn8Vgwcn9loZr91h7dq1tGvXzgkZ5iL33HMPVVVVOx4kyhTlzOajXbt2MpdZtWqVfOyxx7Jtxk/y6quvyv/85z/ZNuMnufPOO2VVVVW2zdgptm3La665Jttm/CSVlZVy6NC/yNSSYLn56NBhgXzttdeyfal+kpkzZ8pVq1Zl24yfJK2LO9TMVhnjvuOOO9iwYcPPH6hQKBQtkFYp3GvWrHHqLSoUCkVro1UKt0KhUOxtVqxYwYoVK/bKuXIkq0ShUChaJrZtc+mll9K2bVsgNV/jiSeeaNbVKpVwKxQKxR4QiUT45ptveOWVVwD49a9/TSQScUoINgcqVKJQKBR7wK233srUqVN55513ePfdd5k6dSq33nprs55TedwKhUKxB0ybNo2ePXsyePBghBAsWrSINWvWNOs5lcetyDkyuarjxo1zthWKXEXTNGbNmkXv3r3p1asXs2bNavZqTEq4FTnH9OnT6du3L5deein7778/M2fOzLZJCsVOEUIwcuRI+vXrR//+/Rk5cmSzr4qphFuRU2zbto1oNMrcuXPZvn07zz77LFVVVTm97oVCsbdRwq3IKUzTREqJx+Nh/fr1zJ49u0EVH4VCoYRbkWN06tQJn8/Hb3/7Ww499FAef/xxCgoKfnKNcYViX0MJtyLnmDhxIl9//TVTp06lrq4O27Z5/fXXm32N4+Zg8+bN1NXVZdsMRStDCbci53C5XHi9Xp577jm8Xi/jx4+nrKyMOXPmZNu0XeaRRx5h4cKF2TZD0cpQwq1oEdxwww0kk0meeOKJbJuiUGQdJdyKFoGmaZx33nmYpsmLL76IZan604p9FyXcu8gnn3yS0xNCkskkX375ZbbNaBa8Xi9XXHEFq1ev5vXXX8/pv4PixxiGwdtvv+08DMPItkktFjXlfReYM2cOq1ev5q233mLUqFEcc8wx2TbpR8yYMYNEIsErr7zC5ZdfTrdu3bJtUpMihGDy5Mk8+OCDPPXUU1x88cXZNknRSCzLauBULFiwYIc/vmeffTYDBgzYm6a1OJRw7wIDBw7k1FNP5aGHHuKTTz7hqKOOyrZJDpkvwMiRI+nevTu///3v+e677+jSpctu97l48WKaqhboWWed1ST9ZBg3bhyzZ8/m6aef5sILL2z2mWqKPcfv9/PHP/4RSP2//uc//9lhfv7DDz/Mt99+26Ctc+fO/P3vf//RsUKInf7tpZREo1Fuvvlmpk+f/pPH7imZ79/e+j9slcLdvn17ysvL6d27d5NeyP79+zNq1ChWr15NLBbjxRdfbLK+95SCggKmTp1Kr169GDFiBJs3b+aLL76goKBgt/scMmQIr7/+epPY5/F4uOeee5qkLwC3283555/PQw89xGuvvcZpp52Gy+Vqsv6bipKSEqqqqrBtu9nXr2hJCCE44ogjdrhv+PDhPxL0DRs2MHTo0B8dO3ny5B22h0Ihbr75Zr766ivuueceevbsyRNPPMHxxx/fNB/gB6xatYr//ve/PPzww83S/w9plcI9depUBg8ezJdfftmkwv3hhx8yd+5c/vznP1NaWspNN93UZH3vKa+99hqQuv38xz/+wbhx45g8eTJHHnlkli1rPtxuN9dddx1TpkzhpZdeYsyYMdk26Udcf/31jBw5kuOPP57CwsJsm9MiyMvL+1Fbv379WLx48Y/aZ8yYwZtvvvmj9s6dO7N8+XLOPPNMYrEY9913H0uXLuWoo47C5/M1uc22bWNZFh6Pp8n73hGtUribC9M0uf322xkwYACHHHJIts3ZIVVVVdx3332cfvrp9O7dO9vm7BVuvPFGHn/8cR5//HEuu+yybJuj2Itcf/31O2xfsWIFH374IYZhYBgGbre7VWUiKeHeBY4//nh69OhBz549czameu6557J582a6du2abVP2GkIIfve73zF79mzmzJnD2LFjVVhiH6dv377069eP+fPnc8wxx3DOOefwxBNPNIu3nQ3Uf/cu0qtXr5wVbUiFD/Yl0c7g9Xq56KKL2LRpU85Mj6+pqeHTTz8lHA6zcOFCysrKsm3SPsVjjz3Ge++9x/PPP8/q1aubLb6dDZRwK1oNmqYxceJE1qxZw7PPPpttc/j888+ZMGEC27Zt4+9//zu33XZbtk3ap3C5XIRCIR588EHcbndOO1y7ihJuRavjuuuuw7KsrE6Pj0QivPbaazz55JP06dOHu+66i6FDh/LOO+9kzSZF6+FnhVsI4RdCfC6E+FoIsVwIcUe6vYcQ4jMhRJkQYq4Qwptu96Vfl6X3d2/ej6BQNMTlcnHeeedhGAYvvfRSVgal8vPzGTVqFHPnzmXOnDls3ryZZcuW5VTuv6Ll0hiPOwGMkFIOBAYBJwkhDgWmADOklL2BauCS9PGXANXp9hnp4xSKvYrH42HcuHGUlZUxf/78vT49XtM0unXrxsKFC3n11Vf529/+Rv/+/cnPz9+rdihaJz8r3DJFJP3Sk35IYATwUrr9GeCM9Pbp6dek948UrSm4pGgxZKbH19bWZuX8gwcP5vXXX6e4uJjnnnuO8ePHZ8UOReujUTFuIYRLCPEVsA14D1gN1EgpM9ObNgKd09udgQ0A6f1hoE1TGq1Q7Aq/+93vsjowNWbMmFaThqbIDRol3FJKS0o5CNgPGA703dMTCyEuF0IsFEIsjMVie9qdQqFQ7DPsUlaJlLIG+AA4DCgSQmQm8OwHbEpvbwK6AKT3FwKVO+jrMSnlMCnlsB1NcVUoFArFjmlMVklbIURRejsPOAH4lpSA/zZ92IXA/PT26+nXpPf/W6qFkxUKhaLJaMyU947AM0IIFymhnyelfEMI8Q3wghDiz8Bi4Mn08U8Cs4UQZUAVMLYZ7FYoFIqcoWfPnvztb3/ba+f7WeGWUi4BBu+gfQ2pePcP2+PAmU1inUKhULQAvF4v7du332vnUzMnFQqFooXR6oT77bff5uSTT2b16tX86le/4plnnvn5NykUCkULolUJt2EYrFmzhrPOOotu3bpx3XXXsWrVKuLxeLZNUygUiiYjJ9bjtm2bTz75ZI/72bRpE//5z3+48sorCQaDFBQUEIvFePLJJxk0aNBu97t161a2bNnSJDY2F+vWraO6ujonljPdGVVVVXzxxRcEAoFsm7JTdF3P6b9zJBLB76+iQ4fctbG4eCXr1tXl9HXcsmULS5Ysoby8PNum7JSf+i7nhHBLKams/FGq9y7j9/s566yzqKysZPLkyVRVVTmV2Pek/3A4TCwWaxIbm4toNMpTT2nU1eWujV27JvnFL6pz+g6outrk/PNz9xq63TodT/qCvBtfybYpO8W7NkQ0elZOf1/i8Tg319xM3J27/4sJmdjpvpwQbpfLxWmnnZZtM3ZKWVkZlmXltI22bbNtW3u2bj0s26bslDZtljBq1CiKi4uzbcoOkVIye/Z7rF2bu39nn6+KUId7WHva2mybslM6fNKB/tv75/T3ZcuWLWw+ejPh3uFsm7JTClw7L/TdqmLcCoVCsS+ghFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4s4SUkkQiwWOPPcZHH31EIrHzdQkUCoWiPkq4s0QkEqFTp05YlsXLL7/MgAEDsm2SQqFoIeTEIlP7Ii+++CK33347Q4YM4eSTTyYUCvHmm2/yq1/9KtumKRSKHCcnPe7Fixfz0ksvZduMZqVt27ZUVFTw3nvvsWLFCrZv306bNm2ybZZCoWgB5JxwDx8+nAceeIBVq1bRo0cPIpFItk1qFo477jgeffRRqqurefbZZ/n000859NBDs22WQqFoAeSUcC9atIiDDjqIKVOmMHDgQILBIB9//HG2zWoWAoEA8+bNY/78+Vx//fUsWrQo2yYpFK2eWCzG4sWLs23GHpNTMe7169fTo0cP6urq+Prrr4lEIpxzzjmMGzfOOaZLly5cddVVWbSyaUgmk/zrX/9i1qxZDB06NNvmtDo2btzIV199xSmnnJJtUxQ5wqxZsygrK8Pv97NmzRoYmW2Ldp+cEu7Ro0czYcIEwuEwBxxwAOFwmOeff578/HznmI0bN3Lsscc2eN8VV1zBmDFjGrQJIRBC7A2zd4tkMsmCBQu48847s21Kq+Oiiy4ikUgwcOBA7r77bl5++WVKS0uzbZZiD5BSIqXcoz7mzZvHDTfcwKBBg3jooYeayLLskFPCDbBkyRI+/fRTVq5cyfr16wkEAg0EeEclxB555JEfea333XcfHTp0cF673W569uzZvMbvAhs2bKBz587ZNqPF8N133zW6VuXChQt5+umn6dixI+vWrWPt2rW0adMmp3/IWyNSSsrKyvZYcCFVsPu6667boz5Wr17N5s2bOemkk+jVq9ce25RNck64A4EAI0eOZOTIHd/HuFwuCgoa1mKbOHEiEydObNB24403Nqjg7PP5OOKIIxocc8ABB2RtQPDcc8/lyy+/zMq5WyKzZs1i7drG1VncsmUL9913HyeeeCJnnXUWL7zwAsOGDWtmCxU/xLIspkyZgmEYe9xXhw4d9jg2fdJJJzF27FiOPfZY7r33XhUqyUWmTp3a4HU0GuWFF15o0Pb+++/z+OOPN2gbP348/fr1a3b7FLvG7bff3uhjBw8eTM+ePWnXrh0XX3wxCxYsUN52FnC73TzxxBPZNsPh+uuvZ82aNTz88MNNcheQTVqtcP+QQCDAJZdc0qCturq6gVcO8Ne//pVly5Zx0kkn8de//rVZbJk0aRL33nuvEpNm4pVXXuHbb7/lww8/5J///Cft2rXLtkmKHODEE0/EMAy2bdvGG2+8kW1z9oh9Rrh3RHFxMcXFxQ3ann76aaSUzSqqmzdvpnPnzkq4m4kePXrQvXt3TjrpJDQtpzJeFVnG4/G0irGlfVq4d0Rzf9G/+uorunfv/qMfDEXTkutZRQrFnvCzKiWE8AshPhdCfC2EWC6EuCPd/rQQYq0Q4qv0Y1C6XQgh7hdClAkhlgghhjT3h2hJfP755+y///5qertCodhtGuNxJ4ARUsqIEMIDLBBC/DO9b6KU8oeLipwM9Ek/fgE8kn5WAOeff362TVAoFC2cnxVumRp+zSwY4kk/fmpI9nTg7+n3fSqEKBJCdJRSbtlja1sBeXl52TZBoVC0cBoV0BVCuIQQXwHbgPeklJ+ld/0lHQ6ZIYTwpds6AxvqvX1juk2hUCgUTUCjhFtKaUkpBwH7AcOFEAOAm4C+wCFACTBpV04shLhcCLFQCLEwFovtotkKhUKx77JLKRRSyhrgA+AkKeUWmSIBPAUMTx+2CehS7237pdt+2NdjUsphUsphKnygUCgUjacxWSVthRBF6e084ARghRCiY7pNAGcAy9JveR24IJ1dcigQVvFthUKhaDoak1XSEXhGCOEiJfTzpJRvCCH+LYRoCwjgKyCz9upbwC+BMkAHLmp6sxUKhWLfpTFZJUuAwTtoH7GT4yVw9Z6bplAoFIodoeYDKxQKRQtDCbdCoVC0MJRwKxQKRQtDCbdCoVC0MJRwKxQKRQsjJ5Z1NU2TRx99NNtm7JRwOMzGjRtz2sY1a9bQtWs+paVLsm3KTgmF1jF79mx8Pt/PH5wlTLOKAQNy9+/scsUpXFvIgEcHZNuUnZK/JZ//xv/L1q1bs23KTlm2bBm9wr1IFiazbcpO+c78bqf7ckK4XS7XTmtM5gIbN25E07ScttHtdnPooSUcdNBB2TZlpzz55DruvPMoDCOYbVN2ygknLOKNcU+HAAAgAElEQVTVV3P371xbW8vLL2/jopE7nh4hkUjsVDEQhNMGoAmX09acLFmyhJqaGo4++ugm6c+yLFwu14+294RwOMy04dPYb7/99riv5uIw7bCd7ssJ4RZC0Lt372yb8ZOsWrUqp21ctmwZ7du3z2kbA4EAdXXdSSRytYiERNO8TXoNt2zZQkFBAcFg0/xYVVVVEQgE6NGjB5WVlanGPIPaaA2FhUV8ve0DPtHfoC5ejW0KAloJ0UQUPRHlkp534Pfk0bFgP4oDbQiHw3g8HiKRCKWlpWzfvp1QKISu65SWlhKNRnG5XBiG4QhmNBp19hUWFlJRUUFpaSnwfRGS8vJyXC5Xk1zHzZs3M2nSJO6//35qa2uZO3cuw4YNY9SoUXtUKKOwsJD99tuPLl26EIlEyMvLIxqN4vF4cLvdxGIxgsGgsy+RSCCEwOPxoOs6oVCIuro68vLyMAwDn8/n1LH0er1EIhEKCgqIRqPk5+djmia2bePz+airqyMYDKLrOn6/H9u2MU0Tt9uN3+93PtdPFXXJCeFWKForDz/8MCNGjOC4445r0n5jZoSlsQ+JmGE21i6nMr4Vf1UQYbtpp/Wgc95BfLP9C9yuIAOCg9AKXHxd9V/eKJvLid3OZGS3U2jv74yUEr/fTyKRcEQkI062bTtilBGRzLFCCHRdx+v1Os9er7dJPyPAF198wcEHH8yWLVuYMmUKF154Ie+++y4nnHBCk1Q4ikQiFBYWEolEKC4uxjRNDMOgpKSE6upqiouLHRGWUpJIJCgtLaW6upqSkhJ0XSc/P59YLIYQAtu2nT4rKyspLCwkHA7jdrvRNI2qqiqKioqorKwkFApRW1uLEAKfz0csFsPn8zXqcynhVihaIJrQuP/zhzCsBPuF9qNncU98rgBP/3s2oaCX/bt1pHJ9lMrEcgYOqKHE2w7DsumY14vlW5eA6aatrz0n7n8agCM6mW1N07BtG03TME2zwbkzZeEyYq5pWrOViTv99NM55phjeO+991i1ahUff/wxb731VpOVGMzLyyMSieB2u6mtrcXlcqFpGuFwmGuvvZZhw4ZxxRVXoOu685lramrw+/3U1tbidruJx+O43Skp1TTN+XErLCwkmUwSCASwbZtnnnmG999/n0cffZTCwkIMw3D2SSkbLdqghFuhaJH4XPn8+ZCHOWPu6WzzWpS5q8gX+ZSIbuTHfejrCti+KcaKrdvw5S/FX1lCdcl2Au4S3JqXcG2ceDLJofsdjVt6CAQCRKNRhBCpW3+PJBmP4nG7QPixpcTlcpFIJAgEApimicfjIRqNEgwGm7W+57x581ixYgUPPPAA06dPp2PHjk3WdzQapbi4mNraWgoKCrAsC8MwCIVCvPXWW8yfPx/LsrjgggsoKioikUgQCoUcjzsSieD1eonH4wCOx11UVERNTQ2FhYVs2rSJ999/n0mTJpFIJHjqqaeoqakhFAoRiaRq1GTEPi8vT3ncCkVrJR6P07Ntd+adNY+zXxzDl+u+xGO6aeMtQSbBTtr87ey7+HTpf+ka6so7y9+hc5di1n1XgS9YwJaKSuJJk7+991duO+UOotEooVCIRCKBR8Z59pah2GYchOTXExeTV9QB27YpKioiGo3idrsJh8Pk5+dTXV1Nfn4++fn5zfJZ27dvTzgcJhAI0LVr1ybt2+PxYJomLpcLy7JSg7r1Ck3HYjEmTZrELbfcwrvvvsvgwYOdeLRpmmiahpTSuevIhD2klHi9XpYsWcJJJ51EOBwGUkkELpfLCSt5PB7g+7sc5XErFK2Y/Px8Kioq6BzoxCO/nsm1865lW/U2erfpg0u6sJMWL34yl4ArQCyu43V7KP/cTd9uw9i8bTW1bbZRanTh+XfmMqr7SfzyF7+koqICvxe+fOc+whGDdl2H0WfQ8QhPPolEApfLRVVVlTM4WVJSQkVFBW3atGlWj7s5cbvdGIaBpmkYhuF8jlmzZjleNEAymeScc87h/PPPZ/To0XTv3p0pU6YgpcSyLEeAPR4Pl112GeXl5cyZM4cXXnjBEW1IZcU89thjXHbZZdi2jdvtdsYRdiVbRgm3QtEC0XWdgoICAIb5h/H8+XM4/fEzWLFtJUF3kDyRR0IkqEhsZ2vFFqq2V/GrQ06h1NsJGxcHFwzj3a//SYnPjU/zUFdXR3hbGf94/V62rV9Iu85DOOqsaRS1644mBC6XC9u2adOmjeNxV1ZWEgwGm93jbk5isRglJSXU1tYSCoUwTZNkMsmcOXNIJhvmeG/evJkpU6bw5ptvEggEWLhwIZZlNThG0zTefPNNpJQsXrz4R+eTUvLYY48xduxYioqKiEQiCCHw+/0kk0nH4/851MxJhaIFkvHOpJRoQqN3SR/eH/c+vTvsT228lpVb/8fC9YtYsmEJwYIQh/Q/hJgR47vy9Qi3Ru2mJMf2OpmCfDe3PHsNazeX8V3ZMlYs/ZKjTruJ31wzmzYdeiJI3cZnBCWTFiiEwO12Y9s2LpfrR95iS/HAMz88Pp+PqqoqdF0HwDAM55jp06c3mMOxbNkyPvvssx+JNqRi3IsWLWog2u3bt+eZZ55xXrvdbtq2bYthGBQWFhIIBIDUXZQKlSgUrRhN04jH44i0N2wYBh0KO/D2FW/w5tI3eWPpW/x3+X/YWlmOnoxSabtIuJLYSRtM+HblN4w65ESOLv0t7Q4TXDv9bA6ocDFo2Ej2H3oy+QWFjkhnsh6EECSTSTweD5Zl4fV6nUHKHwpO5vY/18mkAdbW1lJSUuJ43JnQB6RE/NVXX6W4uHiHYv1zjBw5ssEPgWmabN++naKiIsLhsONxq3RAhaKVE4/HndBELBYjEAhQU1NDMBhkRO+R/OaQ3/L2orfZWreVZDxJ0F9ATI+RiCVBCszjTLq278KI4SMoKS4htLWEDf/5mhN+fTWl7TpRWVlJIBDAMAzcbrcj0pn8ZL/fT01NjTNxJxgMNksed3OTSQf0eFLhoswAYX2BzsvLY3cLml988cVMnTqVd99912lzuVyEQqEG6YCQmrijPG6FohWTn59PbW0tkPrCZ2bjZWK20WiUEwefSLimhnyvl1hNJd898yDxsm/xd+xM3+vvJOnx4AK2b93C1sWb8QXa0aVrb2qrqigOBkkaBmX/eIUvX5yN8Pjpe9pZ9Dp2BMVt2mBZFqWlpUQiEdq0aePkMbc0EokEBQUF6LpOXl6eM4vR7/c7xySTSXw+n5N5siucfvrpAA0GOqWURKNRAoGA0+71eht45T9Hy7zaCsU+TjQadWbzxWIxCgoKnLzhzHP54s8QG9ey7s15ePICHHzHDNA8CJeGtX0r394yGUto2HEb+9ultDt4COteepoNH32AXldLQZceHHDG2Zz6p2nYpsE3/36PZy86G29hMSN+fwMFHTrRrU8fwuEweXl5zmBpS6J+/F5K6YR4XnvtNTp06EBdXR3r169n0aJFP5qI1BjKysoYOnQoZWVlzvlGjx7tjAnUTz3clXGBFi3cf//73zn//PNbzECIQtFU+Hy+BjHuZDKJ3+/HMAz8fj/bP3qH9dNuocvYS+l/418RAqIrvyXzVZFCMOCW6UgB8a1bKP50AclkEpfQGHbNjeD2kIjpJGM6euU2bCnpNvQQug4dTriqipdv/SOhLl258J57yQuFWqzH7fF4SCQSaJrmTOUXQjTwkB944AEeeOCB3ep//PjxbN68mWnTpgGpsYk//OEP+Hw+bNvG6/U6Pxa7cg1bZFbJ/PnzGT16NKZp8utf/5rXXnst2ya1OnRd57bbbsu2GYqdkMnmqD8BxLZthBBUfPg2q+69ne7nXEGo5/4kNq0jsXE9Ih5FxKMQj0IsSmz1CvRV32LW1dBu+GF0OvIYCrv2IFaxleimDcQrt2NGo5gxHUPXSdRFiNeGcblcHHP+BdRu2MATV13ppLG1RDJplZl4c0ZIp02btttx7R+SEW1I/d1uueUWwuHUdYxEIsRiMWcdlMZexxb3M2kYBv/73/8488wzOf744/H7/axcuRLDMBqMBCv2DMMwWLBgQbbNUOyETFaHEMKZyafrOqKynPLXnqXrGefiKynFDleioSFEekYgIAAbCXZqG1uS1CNYUmLaYNkSW0psmdo2M8+2xMLGsMDry+PIc85j/n0zePDii5gw5/nsXpDdJDN93e/3U11djZSShx56iHvuuadBaKS4uBiXy9UgLbK6unqHfRYWFuLxeJwfUtu2nWOllDzxxBO4XC5uu+02J1PFsqxdSgdscR73mjVrqKmpYcSIEdx8883O8oqZGJJCsS+QiWlnVp4Lh8MUFRaydeliQqUdCBS1wY7UQFxHJCJoCR1XIoqW0FOPjPcdi0I8ArEoth5F6hEsPYKpRzCjdSSjEYxIHclIHcloHYm61HM8UottGpxwyaVUb9xI3bZt2b4ku0VdXR1FRUUkk0mCwSCPPvoof/rTnxpMvunXrx+LFi1i48aNrF69mm3btrFw4UIOOeSQH/V34IEH8u9//5uNGzeydOlSNm7cyOeff87AgQOdYyzL4uGHH2bq1Kls3ryZaDQKpLz/xnrcLU64DzjgAEpKSrj66quZNGkSp556Kp988kmLnLWlUOwumQWJfD4flmWl0trCNdT839toeX6MumqI68iYDvGUUGsJHXciiiuhI+I6JHTnGEuPImM6diyKHdOxdR1T1zH1CIYeJZl5jkZJRiMkoxES0QhGPIknUMCHL7RMjzsvLw9d13G73ZSXl3Prrbc22N+/f39mzpxJSUmJEwuvra2lbdu2TJs2jT59+jjH+nw+JkyYQJ8+fUgkEgSDQQzDoH379jz55JMMHz68Qd/Tpk0jGo06FaFafTrg2LFjOfTQQ7npppuc2/k//vGPQGrAsqmWfMx1bNsmkUhwww03MGrUqGybo9iLZEIjkPrCJ5NJfJogvuYb2ow8BTsWxdI0XJpIuWcauDQXmga2BGFLsCXSlkjbRloS2wbLtrFtMG2JYUsMaWNYqRCKadupNltiWultCR26d8Noonjw3sYwDPLz84nH44wbN87JLsmwZcsWbrzxRizLom/fvjz44IP4/X50XWfw4MGMGjWKVatWATBq1CiOO+44ksmk84Nw++23s3jxYmzbZv369Q3OLYTg6quv5pVXXsHr9e5SqmGLFO7OnTvTuXNnhgwZQl5eHgBDhgxh7dq1TJw4kcsuu4yePXu2yAkBu8J1113HggULmDlzJhMnTmTKlCnZNkmxl6ifvuaktGkCaVvYcR1TA01zYWsCqQnQBNIlICNMNkhbYts2tpV6Nm0wLRtTgmHamDIV105adkrILRvTtknaAsOSGLaNYdnEo5FsX47dJlPAwO128+STT/J///d/nHPOOc7+qqoqPv30U3r16sVdd92Fy+VC13V8Ph+JRKJBJkgwGKRt27ZOlk8gEODWW2/l5JNPZtGiRT869/3338/ZZ5/doIBFY2mRwp0hI9qZ7X79+nH66adz9913M2TIELp3786vfvWrJj3n888/73g62Wbp0qWMHj2a8vJybrjhhmybo9iLJJNJxzGxLAu/3088XIMV1YmXbyYvVIiludBcAqGBcAkQGjYaNhJTSiw7JcimlfGqJaa0SVpgZDxqKzUYGYvFSBgG+PJI2jIt3GDYFgldpzlzSqSUfPDBB01Ww/KHfWfCEy6Xi48++uhHxxx44IHMnTuXgoIC3G437733Htu2baOoqIiBAwdy4YUXYpomv/jFL/jss89Yt24deXl5nHHGGfj9fubPn88pp5zC119/3aDfL774gjPPPNPx8HclM6dFC/eOOProozn66KN5+eWXWbVqFS+//DK/+c1vmqx/TdNyKhSTsSczbbapyMvL49RTT+XVV19l9OjRTdr3vsTo0aOZPXs2hx56aANHY0/x+/1s27YNIQSBQCBVBzFYgC2hdsVyXH36IvL8oGlpTzudSWKYCJ8fS9op4TVNops3EI9GiVs2SUuSMCUJ2yJhgqdNewiGiOsxEskkwrRIpo8zbEnStFi/bBm9Dxn+80bvJlJKZs6cucPV9pqCTKWfSCTCzJkzOe2001i5ciUrV650zj9t2jTuvvtuhBBUVlZyww03cPjhh/PSSy8xevRoZ3nWK664gpdeeonp06cDqXVJbrnllgai3LlzZ0aOHMmzzz7LpEmTyM/Pb/SqgBlanXBn+M1vfoOu6zzwwAMMGTKEN954g06dOu1xv2PGjGkC65qGxYsX8/LLL3P88cdz4403NmmoxOv1cvDBB/Phhx8q4d4DhgwZwsSJE524Z1ORKdabmSwSDAapi9TRb9JfWH7HH7CWRik9YADS58XSBJYAkdCxa6pxte+EbVrUlS3HMiXxRIKEYZCwbBImxEyLhGkTt2yMrZsxcCEDhbgKi5B6HNPlxrAgadmULV2C5s2n35FHNdln25tkCvv6/X78fj+ff/45paWlnHfeec4xK1asYOXKlXz00UeMGTOGSy65hJKSEifdz7Isp3iCZVkUFBRw6qmnMmvWLGbMmMG6desaOFZFRUXMmDGDa6+9lh49ejhVh3ZlAk6rFW5IrecwceJEJkyYwAUXXMCVV15Jjx496Ny5c7ZNaxLuvfdeEokE48eP5/rrr8+2OYq9jGVZzt1fymt0IYLFGKaNFo1S9c1XFPbui2aZuGwLYSQwKjbBlo2pXG0bDNsmaac86KSZ8qIt0rnbEpKJJHHDIh6uI7FhA3HLxvT4CHToxOZ166mr0+k+fH8GNEMYY2+QKeybSCQoKSmhuLiYDRs2EI/HG9zJSilZu3Ytd911F8uXL+f111/nqaeeQkpJXl6ekz44YMAAJkyYwOTJk5k7d+6Pwh+aphGLxdiyZQsHHnigM8nH4/EQj8edDJOfo9HCLYRwAQuBTVLKU4QQPYAXgDbAl8D5UsqkEMIH/B0YClQCY6SU6xp7nqYm84/9yCOP8Ne//pW8vDyuuOIKOnTokC2TmgxN08jLy+Phhx9Ws0f3MTJTtTPinVleNQLYfj/JRBwMk2hNNURrEZE6NE2gIZBILGljy5RwmzbpmPX3sWszE/+2U/Fw25ZYUmLZYBkGkeoa4noMl8+PlC1n/e0fUlBQ4FRjr6mpwev1snr1ag4//HBOPPFEamtrnQHMmTNnIqXkH//4B4cddhiTJk1yqt0HAgGklIwfP57Zs2c3EO1rrrnG8cgzi4OVlZXRqVMnQqEQlmXt8h3Zrnjc1wHfAqH06ynADCnlC0KImcAlwCPp52opZW8hxNj0cVmPL4RCIe666y6++eabJr1lba1ccsklLF++nMrKSr788ktncEaRGyQSCWcFO13Xyc/PTy2zeuBBFB85ivJ3XsPGRFZW4hY2mmkjNIFIC7ct6wmxlKnYtiUbCLhZb/DSlKkBS0tKTEOSqA5jS3D5/Zx640RnjZSWRibklEwmKSwsRErJUUcdxYgRI4jH405lGk3T6NOnj5MEcO+993L99dc76YTJZNKZJTl9+nRHtG+77TauvPJK/H6/M8vV7/cTj8edVR0Bp1p8YzPhGjXKJoTYD/gV8ET6tQBGAC+lD3kGOCO9fXr6Nen9I0UO/Rz369ePwsLCbJuR01RXV7N69WpuvPFGTj/9dPx+P1u3bs22WYp6BAIBIpFIg7WkCwsLSQgXoW69MW1IGDYxPUYslkS3bGKmjW6mnmOmTdxMiXXMkKmBSdsmmU7/M6QkYUtMS2JKQTLtcRu2jRYoSIUSvHkYpslhJ5zYYifA5efnN7iGmZBHbW0teXl51NbWOtXtDzzwQOd9pmk6tSTj8Tgej6dBEeAMffr0obi4GI/Hg6ZphEIhYrEYhYWFzvooGUdyV9KXG+tx3wvcCATTr9sANVLKzGT+jUAmcNwZ2AAgpTSFEOH08dsbbZUiqzzzzDNcfvnl9O7dm2QyyRlnnMF999232yukKZoeXdcJBoMNtsPhMMFgEK17H7S2nYhv3Yghk7gQuDTSKwOmfDUpG3rdmck1TraIZWFYKfFO2pl8bolpQby6BlvAwSOPw1/ShoqKCoqKihx7WhKZdV4yedSZ0Krb7XaKAEspcblcDQYPhRBO3nVmDZP6jwyZavCZNsMwnDzvTIgrE0fflcywn/W4hRCnANuklF82utdGIIS4XAixUAixsKlW4VI0DX/4wx/405/+xMcff0xxcTHnnXcef/rTn7JtlqIembhrLBZzBrwyt/XdjjgWf+euxCybeDo7JOVh28RNk7hpEjMtYqb1/X5HpNMDlZZM5XNnxDyd523YqRBKafcerFm2nFOuuoZQKNRiJ7tlUgEz4lw/pzuzAmNm9cUePXo0KIzwr3/9C8AJkWTi35WVlUCqZNmAAQOcfZmsE03TsCyrwfug6fO4jwBOE0L8EvCTinHfBxQJIdxpr3s/YFP6+E1AF2CjEMINFJIapGyAlPIx4DGA9u3bt8w1IVsxc+fOZdmyZXz66afMmzevRXpTrZnMFz/z5c9kQGQEZ9jEP/GP804lFovgEiI1MClTXrcEbMDOrAKIxDRTmSQpcbYxLUjaKTE3bDudfZIScF8wRLveB9C2d29KOnZ0yn21RDJFgkOhEOFwGK/Xi8fjcSoJVVVVEQwG0XWdoqIijjrqKObPn080GuWaa66hS5cujrADbNy40VkJcOjQoXTs2NFZJz2zpkx1dbVTWT5TuiyZTDZtOqCU8ibgJgAhxLHABCnluUKIF4HfksosuRCYn37L6+nX/03v/7dsqYv17sMMHDjQ8RbUcrl7RnP8+1uW5XzRM7f0uq7j9XqJxWIU9exFftcebFv+FZrQcDlLutpINKRIe4DpwUnLluklXDPrkQjH0zZsm7iVCpkkbYtgqAjN66XHwIEEi4qora1F07QW6XVnVgeMx+MUFRVh2zaWZVFSUuKUZYvFYgSDQaSUDWZNV1RUUFFRsdO+M3dBmbW3NU2jurqaQCBAVVWVE0PPhF0yxYIbw55MAZwE3CCEKCMVw34y3f4k0CbdfgMweQ/OocgiLpdLiXYT0BzeaCAQoK6ujkgkgtvtdvKRdV2nTZs26LrOyQ89RcKwSZgWMcNKh0dk6jlpEzNS4ZNEJoxiSWIWxE1B3LRJWjYJK9VuWDZJ06K4c1f6HHEU/vwAo8aOpa6ujtLS0hY7OBkMBqmursbr9VJdXe3kVWcKIG/fvh2Xy0VtbS26rnPIIYfQpUuXn+23Q4cOHHfccc4Pgs/nQ9M0px5oaWmpk8kSCAQAduka7pJwSyk/lFKekt5eI6UcLqXsLaU8U0qZSLfH0697p/ev2ZVzKBSKnycWi5Gfn09eXp6zCH9mBmA4HMbv9yPdXgaef2lKqK2UcOvG97HtVHaJlYp/W7KeiKemtSdMm4QT75aEOnSm57DhbF63juMvuohwXYS8vDxqamoalPpqSei67lRcD4VCTkpjUVGREx6xLItAIIDf7+eII47gmWeeoaioaKd9er1ennjiCY499lh8Ph91dXUYhoGU0slWqa6uTuXdpyvgALt0DXNn0Q2FQtFofD4fhmE4WQqxWMyZwVdQUJAqDFBcQulhR6O17UjMlOimjW6lUgK/TwuU329bNnHDSnnZZipFMGFZJG2JN1RIu959qNxWjl4XoeegQQSDQRKJBIFAoMXemfn9fqLRKG63m2g06qQDZn4E6+rqcLlcxONxpyblgQceyOLFi3n66acJhUIEg0FCoRChUIgZM2awcuVKDjvsMILBIMlkkvz8fNxut7OuTGaJAtM0yc/Pb7Aed2Np1VPeFYrWSv2p2JmMiPprZ2QGLXsMP4xhF1zKv2fcjaFHnffL9EQcKVODlBaZeDep5VydCTg2/pJSCtp3RI/F8Pn8THnvXceG+oOiLZH65cUy1C9PVn9fZvlcTdNo164dJ598Mt999x2maTozIwFnvCGzvrZt2072SP2/EaTGJ+pnnTQWJdwKRQvEsiwnVS0jnKZpomkahmE4z16vl6MuGYclJW/8+Q5kA4FKZZhYklROd2Zau/x+XW5TCjRLEq6upnvHjlx6991o6ZXwEomEk5MshGiRld7ri25mdiOkPPHMcrnQ0BvO7Ks/caZ+Sl+m/m0mU8QwDOe9yWTS2Zf5m9X/oWgsKlSiULRAMjnb8XjcWdw/05apWp651dc0jeHnXMBv77mf/QYfkopnpx+dhw3H374DcctOPyR9jj6WhE1qCrwNcT3GkBOO56K//Y384mJ8Ph+2bVNQUEAikaCgoKBFZpQAjrBmJsNkxLO+6Gamqmc88MxKfpmwSiY3WwiBpml4PB6nmLNt27jdbme/x+PBNM0G+zI/eLty19LyfiIVihZCLBajoqKCeDzOxo0bMQyD0tLSJuu/pKQESN3C5+XlIYRw2oqLixFC0KlTJ2f/iAt+x1FnjsGq5wG6PB5s28K2vvfE3V4vRr1iuQBevx+v3+94h6FQCCEEbdq0abE53JD6AfT5fA2uIXwfLsnsq0+mGvuO9mX4qbj17sS0f4gSboWimfj4448ZP34827ZtY/z48bRp04bnnnuuyfqvX9AjIyA/9+xq5EJh/nSK2g/ZWb8tlcwkpsx2/fYftjVm395ChUoUimZA13Xef/99Zs2axYABA3j88cfp37+/U9xaodgTRC5MaiwuLpbnn39+ts3YKYlEwplFlauEw2HcbreTzJ+LlJeXU15eipS5m4FQVLSJbt32vNCGZVmsX7+enj17snr1arp3705tbS22be/R/5FlWVRWVtKuXbs9trG5iEajWJZFKBT6+YMbyf/+9z/233//JuuvsrKSgoKCRs9UzAazZ8+murp6h259Tgi3EKICiJK7KwiWomzbHZRtu4eybfdobbZ1k1K23dGOnBBuACHEQinlsGzbsSOUbbuHsm33ULbtHvuSbSrGrVAoFC0MJdwKhULRwsgl4X4s2wb8BMq23UPZtnso23aPfca2nIlxKxQKheV94zkAAATgSURBVKJx5JLHrVAoFIpGkHXhFkKcJIRYKYQoE0JkveiCEGKdEGKpEOIrIcTCdFuJEOI9IcSq9HPxXrJllhBimxBiWb22HdoiUtyfvo5LhBBDsmTf7UKITenr91W65F1m301p+1YKIU5sRru6CCE+EEJ8I4RYLoS4Lt2e9Wv3E7Zl/bqlz+UXQnwuhPg6bd8d6fYeQojP0nbMFUJ40+2+9Ouy9P7uWbDtaSHE2nrXblC6PRvfCZcQYrEQ4o306+a5bj+sTrw3H4ALWA30BLzA10C/LNu0Dij9QdtUYHJ6ezIwZS/ZcjQwBFj2c7YAvwT+CQjgUOCzLNl3O6nydj88tl/67+sDeqT/7q5msqsjMCS9HQT+lz5/1q/dT9iW9euWPp8ACtLbHuCz9DWZB4xNt88ErkxvXwXMTG+PBeZmwbangd/u4PhsfCduAOYAb6RfN8t1y7bHPRwok6lqOklS9StPz7JNO+J04Jn09jPAGf+/vbMJsaoM4/jvWdgHJYkRMngXqQgtQlQUikRkRGk0kmAWQaCLoE0uWgkiuHNpH4toUSloodCY6NKPEVqFYY02MlaCQg2jA4qjbaSPf4v3OTOHy9xLszjnPQeeH1zu+bhwfvzvPc+97/Pee08dB5X0HXD/f7rsAo4p8T3pYs4DGfx6sQs4KemxpFvATdLzX4XXlKQfffkRMAEspwHZ9XHrRW25uZMk/emri/wmYBAY8e3d2RWZjgBbzar5E48+br2o9Zwwsw6wE/jC142KcstduJcDv5fW/6D/i7gOBJwzsytm9p5vWyZpypfvAMvyqPV1aVKWe31oeqTUVsri50PQdaRPZ43KrssNGpKbD/fHgGngPOlT/gNJf8/jMOvn+2dI16CtxU1Skd0hz+4jMyt+x153dh8D+4Dirxafp6LcchfuJrJJ0npgCHjfzDaXdyqNbRrxVZwmuZT4DFgFrAWmgMO5RMzsWeAU8IGkh+V9ubObx60xuUn6R9JaoEP6dP9SLpduut3M7GVgP8lxI7CUdCHzWjGzN4BpSVfqOF7uwj0JlC+Z3PFt2ZA06ffTwGnSC/duMcTy++l8hj1dGpGlpLt+cv0LfM7csL5WPzNbRCqMX0v61jc3Irv53JqSWxlJD4BLwKukNkPxN9Blh1k/3/8ccK9Gt9e9/SSlC5YfJU92rwFvmtltUst3EPiEinLLXbh/AFb7zOsTpCb92VwyZvaMmS0uloHtwLg77fGH7QHO5DGEPi5ngd0+k/4KMFNqC9RGVw/xLVJ+hd/bPpu+AlgNXK7IwYAvgQlJH5Z2Zc+ul1sTcnOPF8xsiS8/DWwj9eEvAcP+sO7sikyHgVEfzdTldqP0ZmykHnI5u1qeV0n7JXUkvUiqY6OS3qGq3KqYWV3IjTTz+yupj3Ygs8tK0gz+VeB64UPqPV0EfgMuAEtr8jlBGjb/ReqPvdvLhTRz/qnn+DOwIZPfcT/+NX9xDpQef8D9fgGGKvTaRGqDXAPG/LajCdn1ccuemx9rDfCTe4wDB0vnxmXS5Og3wJO+/Slfv+n7V2ZwG/XsxoGvmPvmSe3nhB93C3PfKqkkt/jlZBAEQcvI3SoJgiAIFkgU7iAIgpYRhTsIgqBlROEOgiBoGVG4gyAIWkYU7iAIgpYRhTsIgqBlROEOgiBoGf8BWrDWh9zMdxMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## ポリシーの確認\n", + "\n", + "Q-Tableは各状態における各アクションの「魅力」を示しているため、これを使って効率的なナビゲーションを定義するのは非常に簡単です。最も単純な場合、Q-Tableの値が最も高いアクションを選択するだけで済みます。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "def qpolicy_strict(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = list(actions)[np.argmax(v)]\n", + " return a\n", + "\n", + "walk(m,qpolicy_strict)" + ] + }, + { + "source": [ + "コードを何度か試してみると、時々「停止」してしまい、ノートブックのSTOPボタンを押して中断する必要があることに気付くかもしれません。\n", + "\n", + "> **タスク 1:** `walk`関数を修正して、パスの最大長を特定のステップ数(例えば100)に制限し、上記のコードが時々この値を返す様子を確認してください。\n", + "\n", + "> **タスク 2:** `walk`関数を修正して、以前に訪れた場所に戻らないようにしてください。これにより`walk`がループするのを防ぐことができますが、エージェントが脱出できない場所に「閉じ込められる」可能性は依然としてあります。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 3.45, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 15 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de3xcdZ3/8deHVlBxf1ykPxYBN3XF9Yd3rAKL666i3HdxFRV+/rCrII+foj9FH6th2ZW7UAEREAqFVoHl0gqVFgK9t/RCL6T3W9qm1zSkbdqkSZu0uX5/f8x3kkkykzmTzMyZzHk/H488cuZ7zsx8z5yZz/me7+2Ycw4REYmGY8LOgIiI5I+CvohIhCjoi4hEiIK+iEiEKOiLiETI8LAz0J9TTjnFlZSUhJ0NEZEhZfny5fudcyOSrSvooF9SUkJ5eXnY2RARGVLMbGeqdareERGJEAV9EZEIUdAXEYkQBX0RkQhR0BcRiRAFfRGRCFHQFxGJEAV9EQlswZZadh5oCjsbMggFPThLRArLteOXAbDj3stDzokMlEr6IiIRoqAvIhIhCvoiIhGioC8iEiEK+iIiEaKgLyISIYGCvpndZGbrzWydmb1gZu82s5FmttTMKs1sopkd67c9zj+u9OtLEl7nZp++ycwuzs0uiYhIKmmDvpmdDvw/YJRz7uPAMOBqYAzwoHPuw0A9cJ1/ynVAvU9/0G+HmZ3tn/cx4BLgMTMblt3dERGR/gSt3hkOvMfMhgPvBWqALwMv+fVPA1/zy1f6x/j1F5qZ+fQXnXMtzrntQCXw+cHvgoiIBJU26DvnqoH7gV3Egn0DsBw46Jxr95vtBk73y6cDVf657X779yemJ3lOFzO7wczKzay8trZ2IPskIiIpBKneOYlYKX0k8AHgeGLVMznhnBvnnBvlnBs1YkTS+/qKiMgABane+Qqw3TlX65xrAyYDFwAn+uoegDOAar9cDZwJ4NefABxITE/yHBERyYMgQX8XcJ6ZvdfXzV8IbADmAlf5bUYDU/zyVP8Yv36Oc8759Kt9756RwFnAsuzshoiIBJF2lk3n3FIzewlYAbQDK4FxQBnwopnd5dPG+6eMB541s0qgjliPHZxz681sErETRjtwo3OuI8v7IyIi/Qg0tbJz7lbg1l7J20jS+8Y5dxT4ZorXuRu4O8M8iohIlmhErohIhCjoi4hEiIK+iEiEKOiLiESIgr6ISIQo6IuIRIiCvohIhCjoi8iAHG3r4NDRtrCzIRlS0BeRAbnwgTf5xG0zws6GZEhBX0QGpPrgkbCzIAOgoC8iEiEK+iIiEaKgLyISIQr6IiIRoqAvEhGfu3sW4+ZvDTsbEjIFfZGIqD3Uwm9erwg7GxIyBX0RkQgp2qD/y5dW8/Ly3WFnQ0SkoBRt0J9Uvptf/Hl12NkQESkoRRv0RUSkLwV9EZEIUdAXkUHp7HTc8eoGquqaw86KBKCgLyKDsqGmkQmLtnPj8yvCzooEoKAvIoPiXOx/Z3xBCpqCvohIhCjoi4hEiIK+iEiEKOiLiESIgr6IdGlqaef6p9+mpkG3QixWCvoi0qVsbQ2zNu7jgRmbw86K5IiCvohIhCjoi4hEiIK+iGSFxmYNDQr6IjIoZmHnQDKhoC8iEiEK+iIRN2vDXta/0xB2NiRPFPRFIu76Z8q5/OGFg36d9e80crilPQs5klxS0BeRrHl9bU3YWZA0AgV9MzvRzF4yswoz22hm55vZyWY208y2+P8n+W3NzB42s0ozW2Nm5yS8zmi//RYzG52rnRKR/FGvnaElaEn/IWCac+6jwKeAjUApMNs5dxYw2z8GuBQ4y//dAIwFMLOTgVuBc4HPA7fGTxQiIpIfaYO+mZ0AfBEYD+Cca3XOHQSuBJ72mz0NfM0vXwk842KWACea2WnAxcBM51ydc64emAlcktW9ERGRfgUp6Y8EaoE/mtlKM3vKzI4HTnXOxSvw9gCn+uXTgaqE5+/2aanSezCzG8ys3MzKa2trM9sbERHpV5CgPxw4BxjrnPsM0ER3VQ4AzjkHZKVmzzk3zjk3yjk3asSIEdl4SRER8YIE/d3AbufcUv/4JWIngb2+2gb/f59fXw2cmfD8M3xaqnQREcmTtEHfObcHqDKzv/NJFwIbgKlAvAfOaGCKX54KfNf34jkPaPDVQNOBi8zsJN+Ae5FPE5EhTNMwDC3DA273E+A5MzsW2AZ8j9gJY5KZXQfsBL7lt30duAyoBJr9tjjn6szsTuBtv90dzrm6rOyFiIgEEijoO+dWAaOSrLowybYOuDHF60wAJmSSQREZvLqm1vy8kfrsFzyNyBWJgB88Ux52FqRAKOiLRMDu+uawsyAFQkFfRLJqxa56Gprbws6GpKCgLyJZ9fXH3uI745eEnQ1JQUFfJAKM/ParXFfdmNf3k+AU9EVEIkRBX0QkQhT0RSJAo2YlTkFfRCRCFPRFJJCfvbgy7TZOQ3ILnoK+SAQMtHZnwZZafvJCLNi/suqd7GVIQqOgLyIpXTt+Ga+uVrAvJgr6IhFgaskVT0FfRCRCFPRFJGuc2nELnoK+iAxK4xFNrjaUKOiLSMZmrN/TtVw6eW2IOZFMKeiLSMZueHZ51/Kuuu65+lW7U/gU9EWkj5b2TqrqdOOVYhT0xugiEiGvrn5H/fOLlEr6IpI1ib13Nu05FF5GJCUFfZEICGNs1hWPLMj/m0paCvoikhNtHWrWLUQK+iIiEaKgLxIBmnpH4hT0RUQiREFfRLJGN1EpfAr6IhFgA76NSozTTGpFQ0FfRCRCFPRFRCJEQV8kAtR7R+IU9EUka1T1X/gU9EVEIkRBX0QkQhT0RUQiREFfRNIKWlevKv3Cp6AvEgF567yjltyCp6AvIt1SxOw9jUfzmw/JmcBB38yGmdlKM3vNPx5pZkvNrNLMJprZsT79OP+40q8vSXiNm336JjO7ONs7IyK58ff3zgk7C5IlmZT0fwpsTHg8BnjQOfdhoB64zqdfB9T79Af9dpjZ2cDVwMeAS4DHzGzY4LIvIkFY0NFZGsRV9AIFfTM7A7gceMo/NuDLwEt+k6eBr/nlK/1j/PoL/fZXAi8651qcc9uBSuDz2dgJEREJJmhJ//fAL4FO//j9wEHnXLt/vBs43S+fDlQB+PUNfvuu9CTP6WJmN5hZuZmV19bWZrArIiKSTtqgb2ZXAPucc8vzkB+cc+Occ6Occ6NGjBgx6Nc72NyahVyJDG35qrWZWF6VfiMJVZCS/gXAv5jZDuBFYtU6DwEnmtlwv80ZQLVfrgbOBPDrTwAOJKYneU7OrKw6mOu3EBFvXXVj2FmQNNIGfefczc65M5xzJcQaYuc4574DzAWu8puNBqb45an+MX79HBe7A8NU4Grfu2ckcBawLGt7IiIiaQ1Pv0lKvwJeNLO7gJXAeJ8+HnjWzCqBOmInCpxz681sErABaAdudM51DOL9RSQo9coRL6Og75ybB8zzy9tI0vvGOXcU+GaK598N3J1pJkUk90pKy/i///i3YWdDckwjckWky9pqtYEVOwV9kQhQ7Y7EKeiLiESIgr6ISIQo6ItIl/2HNJix2Cnoi0iXTXsPhZ0FybGiD/pqwBLJYJZNKXpFH/R1Hx8RkW6DGZErIkPYC8t2cYwuACJHQV8kApLF9psnr817PiR8RV+9IyIi3RT0RYpce0cn2/c3hZ0NKRAK+iJF7rfTN9HeqS4NEqOgL1Lkxs3f1ietpuFICDmRQqCgLxIx9U2tnH/PnLCzISFR0BeJmMajbWFnQUJU9EFf3ZBFRLoVfdAXEZFuRR/01WdBRKRb0Qd9ERHppqAvEjGmlq5IU9AXiZjaw0fDzoKESEFfJGK+MXZx2FmQECnoi4hEiIK+iEiEKOiLiERI0Qd99VMQEelW9EFfRES6KeiLiESIgr6ISIQUfdDX3Dsi4SkpLWPmhr1hZ0MSFH3QF5Fw3Tx5TdhZkAQK+iJSMK54ZAGvrKwOOxtFTUFfRArGuupGfjZxVdjZKGoK+iIiEaKgLyI5piGShaTog76+biJhUx+6QlL0QV+kmIydt5XyHXVhZ0OGsLRB38zONLO5ZrbBzNab2U99+slmNtPMtvj/J/l0M7OHzazSzNaY2TkJrzXab7/FzEbnbrdEitOYaRVc9bjmw5eBC1LSbwd+4Zw7GzgPuNHMzgZKgdnOubOA2f4xwKXAWf7vBmAsxE4SwK3AucDngVvjJwoRKWaqZC0kaYO+c67GObfCLx8CNgKnA1cCT/vNnga+5pevBJ5xMUuAE83sNOBiYKZzrs45Vw/MBC7J6t6IiEi/MqrTN7MS4DPAUuBU51yNX7UHONUvnw5UJTxtt09Lld77PW4ws3IzK6+trc0ke0mpCUlEpFvgoG9m7wNeBn7mnGtMXOecc2QpvjrnxjnnRjnnRo0YMSIbLykiIl6goG9m7yIW8J9zzk32yXt9tQ3+/z6fXg2cmfD0M3xaqnQJ2a4DzextPBp2NmQA5lbso76pNexsyBASpPeOAeOBjc653yWsmgrEe+CMBqYkpH/X9+I5D2jw1UDTgYvM7CTfgHuRT5OQffG+uZz7m9lhZ2PIOHC4hY/c8gbLd9aHmo+GI218709vc/0z5aHmQ4aWICX9C4BrgS+b2Sr/dxlwL/BVM9sCfMU/Bngd2AZUAk8CPwJwztUBdwJv+787fJrIkLJsex2tHZ08OX9bqPlo7+gEYPv+plDzIUPL8HQbOOcWkrrP1YVJtnfAjSleawIwIZMMDpY6i4kUp4o9jXz0r/9H2NkYcjQiV2SAXIH0DYuVswqX5aDkNW1dDZf8fgGvrn4n+y9e5BT0RRK0dXRy8+Q1vHPwSMptchHEBsIKJSMh2Lz3sP9/KOScDD0K+iIJFlbu54VlVZROXpt227AL2IVewk9Ue6iF+6ZX0Nk5dPJcrBT0RZKIbhk6N0pfXsOjc7eyeNuBlNsM5CQ2hM57BUNBXySJoRBLhlL1Tkt7rKdRZ5ai9NDZ88KTtveOyFBV03CEdw8fxknHHxto+zte3cDra2vSb1hgIWconKDislUyP9rekZ0XiqCiL+kPpR+EZNf598zh3HuCDzqbsGg7e4bQyOTCOvWkVnuoJeuN34/O3ZrdFywADUfaKCktY/KK3Tl9n6IP+ku2pq5DlOLX6qsV0mkZQMmxd4Gis9PRoYbKotbW0Unj0bYBPW9pP+0ZAFV1zQA8tWD7gPIWVNEH/flb9oedBRkCWgKeHHbXN6dscPw/45fyt//x+oDev2xNDWOmVQzoub2t3FUf+hQR+ZLvsRI3PreCT942I+PnPTBjM98et4RVVQdzkKvMFH3QHyqXwEFtqz3MjPV7eHPz4KedHgp2hDTFQLLAXlXXzBfGzOXBWZuTPuetQVxV3vj8CsbOy06Vxb8+9hbfGPtWVl4r2/oL0YXQE2f5znpKSsvYdyh5Nd+MDXsBOHS0jYbm4CX+LX48wf5DLYPP5CAVfdAvNl9+4E1ueHY5oycsY9Oe4ANTnHM8MGMTW2sP5zB3PTU0t/GRW97gra0Du9qasqqaf7p/XsGc4Pb5H2x8YFCuTHq7ig3vNKbfMI343DyFqqbhCCWlZazYlf2rkpLSMq5/OvOJ6CYsilWtLNnWc1qwlvYO5id8Dz9zx0w+dUfmJf4COK8Vf9AvhA85Vw5lULdYe7iFR+ZUcu1TS3OYo57WVB+ktaOTR+dWDuj5a3c3ALA5g5NbEB2djvumV3DgcOpS1xr/3v3JVcn0ly+v4bKHFwTePlU+CqlRuq2jb5fNBb7q9fmluwb12gcOt9BwpO9vYdbGvUxZVU1JaVngm8nHawZ6X+nd/uoGvjthWdfj9iHcdlP0QV88/x1t7cjfl9X8T2iwwTFZvW1bRydH2wbWbW9h5X4enbuV//hL6lG38SCyac8hLnxgHg3NbRn3QIn3xphbEbvVREt7BzN99UBQN09ew6i7ZiZdly4/zsGsDN8vV+Il55fK+/ZMSfX9aO/opLqf6TDiPnvXLM65M/ln9PNJqwEC30z+mBQf6vo0V15XjX0ra9VzuVb0QX9jzeAvk4tCnho3nHNdpaT472egQb+/oHbxg/P56H9Ny+j1SkrLKCkt66r2SGy8TZXHh+dsYWttE/M27+Prj2VWTx6vfntsXuxKZ8wbm/jBM+Us2x58RvEXllWx/3Dym6QE+VyXpOkxkm+JJfJ0X8k7X9vABffO6feKLP4ZDLTX1KGjbT16bsW/cw/P3pLR65TvrO+3Ib6QxtEVfdCX/Lr0oQV85D/fALp/1Iu3HehRH5oN2wbRwJvs0vxIa/KrhncPHwZAS9vg6sedc131xfXNrextPNrVRS+I3fU9tx1K8+4kSnbV9vKK3Un3J96W03i0fcDvly7WfuK2GVw1tvsqIL791tqe369sxexddc2hF0QV9CWrKvYcoq3D0dreSVtCcE2sDy00zjn+9NaOPul/mLOF494V+4mk68e/Jclsj4mBrLVXo+q5v5nNP/x2Lm+sraEuwO0Oxy/czrZejfDJSo/J6raHghW76lO2v8U/x6q6ZtZV92xraU5xsu56bpK0zk7X4yS6NuE1X1mV+VTN//lK+sn54u58bQOXPhS8vSYXFPSLRF1TKyWlZUxZle62w/kpIZ5z50xGZynQ57JQe8G9c/jof03j8Tf71sfeP2NzmhJed8a++uD8wO+5NKFnyA+fW8H1T7/d9ThVT6U/LtrRI1ik+kxqE7oaPrlgG0OlvfHWqetZVdWzF0/vuYX+4bdzueKRhT3SEk/W2/c3sbhXt9lk1T6Pz9/KF8bMpXJf/72w9h9uCdRu9N9LBtcQvXjrAfb3U4WVbQr6Q1ji1zleCnxm8c5+n7P/cCt3l21Iuu7f/7w6W1njcMvAL8lTmblhL+ffMzvQKNsgU/g6B9UHj/Q7MOtQvGphAJWyiUHLEk4f8WqeuMTGyv5OlIn5vPyRhXz6jljjpXOO7fub+lwxPLN4Z5/3ClviySrx81lX3cg3xqZubA1SnfWl++dxzZNL+p0/6WhbB1NWxkrz6RqJR901i+//6W2f17RvD8SutJLnNfULXPPkEr71xOKuE8xARvxmQkF/CHs2SYAP8uN4MsUw7z8v7+5Z8Vbl/gH3jgni7F9P46kFmd1j9rap66lpOJpy4EyilVka+Tg1fmemJJ9rPCnV55TLevfe9cJfun8eX/ztXAp9OGLQj+QXk7oLII5YQ2lQyX4XcT/87+Vs8lVxQY5PpgPuPnX7DMYmuWpMJd7Yv622iReWVQGwuz59j6XBUNAP2Z/Lq3qMADx0NNbN7y8r00+6NDXhVnHpSiKWQTCo2NPI/35qKXe8lvyKIG5ddQMlpWVU7Mm8Yaq5tYO7yjb2SX9m8Y6uElj85NT7pxkscKTeKNux+N43evbaONjcmlFj3d7G7Fza5+LqKiwvr9jddcP3xiNtVGTweaaavrmj0zF3U3Y7FCQb7Pj62hpeXf0Ozjne3FzLj59fweyKnl1ndx5oYuy8rfwhYQxLR2f3ldwbgWZ7HRgF/ZBNKo+d3edv3k9JaRlPvBkr/T4+L7NScDLlO+oC1PH3ddAPL09X5zlt3R4AZq7PTl/w/Ydb+PWU9fzbhGVZv8roWbebedQ/mqT3jhlcPW5xn0bgrz26iEsfWjDo+e57108Xg4F8JKUvr+XY4cFDVaqj+9XfvZnyOQP9rL/9RN8qqXXVjfzkhZXc/uoGRk9YxmtravoUNK4dv4wx03oOEEzc5IfPrRhQfoJQ0A9ZvAQeH3Y/ZXUsSMd/HLVp5uroXXed+Oiqxxfz0xdXJX3ehnca09ZpLtte1+/8Isf4PAZtLDzgG8ZSXVbHA3PDkTb+/aU1XekT367qdyqGICXcB2Zs6loeSEl/x4G+XUSd6ztcP7ZtrGfI7xPm6Pn62EUZv+c1Ty7J+DmF1B88mR51+gGfU9fcyruGdYeq/u5fHHuT5Mm9u/kmbpbus06V11RjKAC27Es9knxXku66+Tp0kQ76902v6Cqthq3dX9ol/ijmVOzlc3fP6jfg9a6CWbkrWF32ZQ8v4IJ756Td7kfPL2f5zjqfN9czYPsI8+CszYG6HX72rllcO35pj32ctWFv12CpxPTVCXXy2/c3pWzg3LTnEB+/dTpXj1tMSWlZV5fFHz+/ssd2Cyu75/8ZyF2ckp3YZvuRtqkk1gevq85P3+yFBT6rbKdzTCqv4puPv9U1l1E6HZ2OYcd0h8S/T/O9zdbdufIhjJN0pO+cFb8Rw457Lwdi9emfuG0GY77xCb79uQ/mJQ/L/JwgvXvd1DW18vLyWKl/1a6D/ONHRiR9/p/e2sEFHz6Fk49/V1eac65P1UImX67EYLWo8gCLKhez497LueeNCsbN38bW31zGsGOMhN8h5TvquuZS6c/bO+p7/Civf6acn154FjsPNHGMf0Gz5PlNlhZvT4iXuG+auIpLPvbX1DT0bOwdnpDZ219dDxAov73fpxAlhrhbp64PLR9BLN1ex1I/IvntHcEaZ48x65rKIoigIb8+QEFlMIKcexZVdv/W+rZd9f0dZ0OkS/q9xQNFupsYHDjcQklpGTPWd18lHGzu7iff2t5Jc+vgGtX2HWqhLGBjzg+eKSfx4vCuso18NmEukoPNrSlHnCaTagj6hIWxzyVeDdN7npJnl/TfXTSu95e7qr6ZV1a9w+QVvmorgwvd3tVXcyr28cuX1/RIe2T2lh4/nvoMpsSNC3oFJdl3jGU2aCrovQR+Pil7XZSTybTnT++TRK4uWBT0gR8/v4LW9s7AH3KF72b1u5nddbbxngYTFm7n2+MWc/avpw8oLwM90A1Hukst4xdu50BCKebTd8zkn/+wMNnTAnt0bmWfkvZAyyB9Bsz0ehhkIrFMPDAz3SCr3Eo3anSwDg1imoKhIGg1UC7l4yb0fUr6OXqfyAb9xMag19bUUL6zrmtekKDHtyJhyt/EL0W2S4VB7g70/T/1P3f4wRSl29518akGhvxx0Y6u5U/ePp3New91VcfE8hjczyf1LJ33fm5Nw9GkQbrQGylTSTdDoxSG+6YnnzDtD3O2hHInslyN84hs0D/ST5dAw7i7bENXcFr/TgOXPbSAppZ2rnx0Ed9JMid91zzcad73wOEW7nljI3sakg8wStYItauuOdAI04HoPSVtqlvB7T/cQpuflvloWyfP9arKGTc/eBfT19f2bDwP2vAW78Y8kFvkZTK4R6Ip1c3W75+R/E5p2fbq6p5VWLkq6UeqIXfsvK3s2N/EmKs+2e/lfuPRtq6BQb/71qe5/OFY1cijcyt79CpJFHQa4V+9vJZZG/fyxJvbWPirL/VZ37sBEmDyimr+5uTj+fQHT+z/xfMssU5/MCWhZJ9ZssvpeLXQr6cUdmOlSDaoTj8LxkyrYKIfDJVM/ENOFngBHgtwk4T+SqGdnY5ZG7sHMn1hzNy0rxe3dPuBrE1glg2O7M3VHvS7He/WWii3TxTJpVzd9D0SQT9I3VjZmuQ9ZUpKy/p9XlNLO00t7fxrkhts3DRxFfdNr8A5R0enY9r6gY8JGMxNt3NhTsW+rAXfPQ19B9tsTzJf/kBvlCEyFOWqpB+p6p24+Ztr+wSV55buYuQpx2f8WjdNXMU1536wKyAlDsL5y8pYF8QPnPgebvnLuiHbEJlMNieFCtpfeyBdLUWkp0gE/abWDt53XPeuprqhR7IJwNLZuKcxbXfAW/6yDsjtvPAiUlxyNbI4EkH/47dO54pPnpaT166qy+00qCISTWrIHaTXUtTZZ8OOQdyvVUQkmVyV9CMT9HPptlf7n3deRCRTN01MPkPuYCnoi4gUoFkbg08ylwkFfRGRCMl70DezS8xsk5lVmllpvt9fRCTK8hr0zWwY8ChwKXA2cI2ZnZ3PPIiIRFm+S/qfByqdc9ucc63Ai8CV2X6T3fV9b0UmIiL5D/qnA4mT3+z2aV3M7AYzKzez8tragQ3zz/ZNtUVE8u0r/+vUnLxuwQ3Ocs6NA8YBjBo1akAdVT/8P/+q6xaIIiLSLd8l/WrgzITHZ/g0ERHJg3wH/beBs8xspJkdC1wNTM1zHkREIiuv1TvOuXYz+zEwHRgGTHDO6Y4YIiJ5kvc6fefc68Dr+X5fERHRiFwRkUhR0BcRiRAFfRGRCFHQFxGJEAty0/CwmFktsHMQL3EKsD9L2RkKora/oH2OCu1zZv7GOTci2YqCDvqDZWblzrlRYecjX6K2v6B9jgrtc/aoekdEJEIU9EVEIqTYg/64sDOQZ1HbX9A+R4X2OUuKuk5fRER6KvaSvoiIJFDQFxGJkKIM+sV083UzO9PM5prZBjNbb2Y/9eknm9lMM9vi/5/k083MHvb7vsbMzkl4rdF++y1mNjqsfQrCzIaZ2Uoze80/HmlmS/1+TfRTc2Nmx/nHlX59ScJr3OzTN5nZxeHsSTBmdqKZvWRmFWa20czOj8Axvsl/p9eZ2Qtm9u5iO85mNsHM9pnZuoS0rB1XM/usma31z3nYzCxtppxzRfVHbMrmrcCHgGOB1cDZYedrEPtzGnCOX/4rYDOxm8r/Fij16aXAGL98GfAGYMB5wFKffjKwzf8/yS+fFPb+9bPfPweeB17zjycBV/vlx4Ef+uUfAY/75auBiX75bH/sjwNG+u/EsLD3q5/9fRq43i8fC5xYzMeY2G1StwPvSTi+/1Zsxxn4InAOsC4hLWvHFVjmtzX/3EvT5insDyUHH/L5wPSExzcDN4edryzu3xTgq8Am4DSfdhqwyS8/AVyTsP0mv/4a4ImE9B7bFdIfsTuqzQa+DLzmv9D7geG9jzGxezOc75eH++2s93FP3K7Q/oATfAC0XunFfIzj98s+2R+314CLi/E4AyW9gn5WjqtfV5GQ3mO7VH/FWL2T9ubrQ5W/pP0MsBQ41TlX41ftAeJ3UU61/0Ppc/k98Eug0z9+P3DQOdfuHyfmvWu//PoGv/1Q2t+RQC3wR1+l9ZSZHU8RH2PnXDVwP7ALqCF23JZT3Mc5LlvH9XS/3Du9X8UY9IuSmb0PeBn4mXOuMXGdi53mi6LvrZldAexzzi0POy95NJxYFcBY59xngCZil/1diukYA/h67CuJnfA+ABwPXBJqpuR29Y8AAAHSSURBVEIQxnEtxqBfdDdfN7N3EQv4zznnJvvkvWZ2ml9/GrDPp6fa/6HyuVwA/IuZ7QBeJFbF8xBwopnF7/SWmPeu/fLrTwAOMHT2F2IltN3OuaX+8UvETgLFeowBvgJsd87VOufagMnEjn0xH+e4bB3Xar/cO71fxRj0i+rm6741fjyw0Tn3u4RVU4F4K/5oYnX98fTv+p4A5wEN/lJyOnCRmZ3kS1kX+bSC4py72Tl3hnOuhNixm+Oc+w4wF7jKb9Z7f+Ofw1V+e+fTr/a9PkYCZxFr9Co4zrk9QJWZ/Z1PuhDYQJEeY28XcJ6Zvdd/x+P7XLTHOUFWjqtf12hm5/nP8LsJr5Va2I0cOWo4uYxYL5etwC1h52eQ+/IFYpd/a4BV/u8yYvWZs4EtwCzgZL+9AY/6fV8LjEp4re8Dlf7ve2HvW4B9/ye6e+98iNiPuRL4M3CcT3+3f1zp138o4fm3+M9hEwF6NYS8r58Gyv1xfoVYL42iPsbA7UAFsA54llgPnKI6zsALxNos2ohd0V2XzeMKjPKf31bgD/TqDJDsT9MwiIhESDFW74iISAoK+iIiEaKgLyISIQr6IiIRoqAvIhIhCvoiIhGioC8iEiH/H6G+/rPuz7xgAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "最初に平均経路長が増加しているのが見て取れます。これは、おそらく環境について何も知らない状態では、悪い状態(水やオオカミ)に陥りやすいからでしょう。しかし、知識を得てそれを活用し始めると、環境をより長く探索できるようになりますが、それでもまだリンゴの場所を正確に把握しているわけではありません。\n", + "\n", + "十分に学習が進むと、エージェントが目標を達成するのが容易になり、経路長は減少し始めます。ただし、まだ探索を続けているため、最適な経路から外れて新しい選択肢を試すことがあり、その結果、経路が最適よりも長くなることがあります。\n", + "\n", + "また、このグラフで観察できるのは、ある時点で経路長が急激に増加していることです。これはプロセスの確率的な性質を示しており、新しい値でQ-テーブルの係数を上書きすることで「台無し」にしてしまう可能性があることを意味します。これを最小限に抑えるためには、学習率を下げることが理想的です(つまり、トレーニングの終盤ではQ-テーブルの値を小さな値でのみ調整するようにします)。\n", + "\n", + "全体として、学習プロセスの成功と質は、学習率、学習率の減衰、割引率といったパラメータに大きく依存することを覚えておくことが重要です。これらはしばしば**ハイパーパラメータ**と呼ばれ、トレーニング中に最適化する**パラメータ**(例: Q-テーブルの係数)とは区別されます。最適なハイパーパラメータ値を見つけるプロセスは**ハイパーパラメータ最適化**と呼ばれ、これ自体が別のトピックに値する重要なテーマです。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "## 演習\n", + "#### より現実的な「ピーターと狼」の世界\n", + "\n", + "私たちのシナリオでは、ピーターはほとんど疲れたり空腹になったりすることなく自由に動き回ることができました。しかし、より現実的な世界では、ピーターは時々座って休む必要があり、また自分自身に食べ物を与える必要があります。以下のルールを実装して、私たちの世界をより現実的にしてみましょう:\n", + "\n", + "1. 一つの場所から別の場所へ移動することで、ピーターは**エネルギー**を失い、**疲労**を蓄積します。\n", + "2. ピーターはリンゴを食べることでエネルギーを回復できます。\n", + "3. ピーターは木の下や草の上で休むことで疲労を解消できます(つまり、木や草がある場所(緑のフィールド)に移動する)。\n", + "4. ピーターは狼を見つけて倒す必要があります。\n", + "5. 狼を倒すためには、ピーターは一定のエネルギーと疲労レベルを持っている必要があります。そうでない場合、戦いに負けてしまいます。\n", + "\n", + "ゲームのルールに従って報酬関数を修正し、強化学習アルゴリズムを実行してゲームに勝つための最適な戦略を学習し、ランダムウォークとあなたのアルゴリズムを比較して、勝敗の数を評価してください。\n", + "\n", + "> **Note**: ハイパーパラメータを調整する必要があるかもしれません。特にエポック数です。ゲームの成功(狼との戦い)は稀なイベントであるため、より長いトレーニング時間が必要になることが予想されます。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があることをご承知おきください。原文(元の言語で記載された文書)が信頼できる情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/2-Gym/README.md b/translations/ja/8-Reinforcement/2-Gym/README.md new file mode 100644 index 000000000..2c9aaa02f --- /dev/null +++ b/translations/ja/8-Reinforcement/2-Gym/README.md @@ -0,0 +1,333 @@ + +## 前提条件 + +このレッスンでは、**OpenAI Gym**というライブラリを使用して、さまざまな**環境**をシミュレーションします。このレッスンのコードはローカル環境(例: Visual Studio Code)で実行することができ、その場合シミュレーションは新しいウィンドウで開きます。オンラインでコードを実行する場合は、[こちら](https://towardsdatascience.com/rendering-openai-gym-envs-on-binder-and-google-colab-536f99391cc7)に記載されているように、コードにいくつかの調整が必要になる場合があります。 + +## OpenAI Gym + +前回のレッスンでは、ゲームのルールと状態が自分で定義した`Board`クラスによって提供されていました。今回は、垂直の棒をバランスさせる物理をシミュレーションする特別な**シミュレーション環境**を使用します。強化学習アルゴリズムをトレーニングするための最も人気のあるシミュレーション環境の1つが[Gym](https://gym.openai.com/)であり、これは[OpenAI](https://openai.com/)によって管理されています。このGymを使用することで、カートポールのシミュレーションからアタリゲームまで、さまざまな**環境**を作成できます。 + +> **Note**: OpenAI Gymで利用可能な他の環境は[こちら](https://gym.openai.com/envs/#classic_control)で確認できます。 + +まず、Gymをインストールし、必要なライブラリをインポートしましょう(コードブロック1): + +```python +import sys +!{sys.executable} -m pip install gym + +import gym +import matplotlib.pyplot as plt +import numpy as np +import random +``` + +## 演習 - カートポール環境を初期化する + +カートポールのバランス問題に取り組むには、対応する環境を初期化する必要があります。各環境には以下が関連付けられています: + +- **観測空間**: 環境から受け取る情報の構造を定義します。カートポール問題では、棒の位置、速度、その他の値を受け取ります。 + +- **アクション空間**: 可能なアクションを定義します。この場合、アクション空間は離散的で、**左**と**右**の2つのアクションで構成されています。(コードブロック2) + +1. 初期化するには、以下のコードを入力してください: + + ```python + env = gym.make("CartPole-v1") + print(env.action_space) + print(env.observation_space) + print(env.action_space.sample()) + ``` + +環境がどのように動作するかを確認するために、100ステップの短いシミュレーションを実行してみましょう。各ステップで、`action_space`からランダムに選択したアクションを提供します。 + +1. 以下のコードを実行して結果を確認してください。 + + ✅ このコードはローカルのPythonインストールで実行することを推奨します!(コードブロック3) + + ```python + env.reset() + + for i in range(100): + env.render() + env.step(env.action_space.sample()) + env.close() + ``` + + 以下の画像のような結果が表示されるはずです: + + ![バランスが取れていないカートポール](../../../../8-Reinforcement/2-Gym/images/cartpole-nobalance.gif) + +1. シミュレーション中に、どのように行動するかを決定するために観測値を取得する必要があります。実際には、`step`関数は現在の観測値、報酬関数、およびシミュレーションを続行するかどうかを示すフラグを返します。(コードブロック4) + + ```python + env.reset() + + done = False + while not done: + env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + print(f"{obs} -> {rew}") + env.close() + ``` + + ノートブックの出力で以下のような結果が表示されるはずです: + + ```text + [ 0.03403272 -0.24301182 0.02669811 0.2895829 ] -> 1.0 + [ 0.02917248 -0.04828055 0.03248977 0.00543839] -> 1.0 + [ 0.02820687 0.14636075 0.03259854 -0.27681916] -> 1.0 + [ 0.03113408 0.34100283 0.02706215 -0.55904489] -> 1.0 + [ 0.03795414 0.53573468 0.01588125 -0.84308041] -> 1.0 + ... + [ 0.17299878 0.15868546 -0.20754175 -0.55975453] -> 1.0 + [ 0.17617249 0.35602306 -0.21873684 -0.90998894] -> 1.0 + ``` + + シミュレーションの各ステップで返される観測ベクトルには以下の値が含まれています: + - カートの位置 + - カートの速度 + - 棒の角度 + - 棒の回転速度 + +1. これらの数値の最小値と最大値を取得してください。(コードブロック5) + + ```python + print(env.observation_space.low) + print(env.observation_space.high) + ``` + + また、各シミュレーションステップでの報酬値が常に1であることに気付くかもしれません。これは、目標ができるだけ長く生き残ること、つまり棒を垂直に近い位置に保つことだからです。 + + ✅ 実際、CartPoleシミュレーションは、100回連続の試行で平均報酬が195に達した場合に解決されたと見なされます。 + +## 状態の離散化 + +Q-Learningでは、各状態で何をすべきかを定義するQ-テーブルを構築する必要があります。これを行うには、状態を**離散化**する必要があります。つまり、有限の離散値を含む必要があります。そのため、観測値を**離散化**し、有限の状態セットにマッピングする必要があります。 + +これを行う方法はいくつかあります: + +- **ビンに分割する**: 特定の値の範囲がわかっている場合、その範囲をいくつかの**ビン**に分割し、その値を属するビン番号に置き換えることができます。これはnumpyの[`digitize`](https://numpy.org/doc/stable/reference/generated/numpy.digitize.html)メソッドを使用して行うことができます。この場合、選択したビンの数に応じて状態サイズを正確に把握できます。 + +✅ 線形補間を使用して値を有限の範囲(例えば-20から20)に持っていき、丸めることで整数に変換することができます。この方法では、入力値の正確な範囲がわからない場合でも、状態サイズを少し制御できます。例えば、今回のケースでは、4つの値のうち2つは上限/下限が定義されていないため、状態の数が無限になる可能性があります。 + +この例では、2番目の方法を使用します。後で気付くかもしれませんが、上限/下限が定義されていないにもかかわらず、これらの値が特定の有限範囲を超えることはほとんどありません。そのため、極端な値を持つ状態は非常にまれです。 + +1. 以下は、モデルからの観測値を受け取り、4つの整数値のタプルを生成する関数です。(コードブロック6) + + ```python + def discretize(x): + return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int)) + ``` + +1. ビンを使用した別の離散化方法も試してみましょう。(コードブロック7) + + ```python + def create_bins(i,num): + return np.arange(num+1)*(i[1]-i[0])/num+i[0] + + print("Sample bins for interval (-5,5) with 10 bins\n",create_bins((-5,5),10)) + + ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter + nbins = [20,20,10,10] # number of bins for each parameter + bins = [create_bins(ints[i],nbins[i]) for i in range(4)] + + def discretize_bins(x): + return tuple(np.digitize(x[i],bins[i]) for i in range(4)) + ``` + +1. 短いシミュレーションを実行し、これらの離散化された環境値を観察してみましょう。`discretize`と`discretize_bins`の両方を試して違いがあるか確認してください。 + + ✅ `discretize_bins`は0ベースのビン番号を返します。そのため、入力変数が0付近の値の場合、範囲の中央(10)の番号を返します。一方、`discretize`では出力値の範囲を気にせず、負の値を許容しているため、状態値はシフトされず、0が0に対応します。(コードブロック8) + + ```python + env.reset() + + done = False + while not done: + #env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + #print(discretize_bins(obs)) + print(discretize(obs)) + env.close() + ``` + + ✅ 環境の実行を確認したい場合は、`env.render`で始まる行をコメント解除してください。そうでない場合はバックグラウンドで実行することができ、これにより速度が向上します。この「非表示」実行をQ-Learningプロセス中に使用します。 + +## Q-テーブルの構造 + +前回のレッスンでは、状態は0から8までの単純な数字のペアであり、そのためQ-テーブルを形状が8x8x2のnumpyテンソルで表現するのが便利でした。ビンの離散化を使用する場合、状態ベクトルのサイズもわかっているため、同じアプローチを使用して状態を形状が20x20x10x10x2の配列で表現することができます(ここで2はアクション空間の次元であり、最初の次元は観測空間内の各パラメータに使用するビンの数に対応します)。 + +ただし、観測空間の正確な次元がわからない場合があります。`discretize`関数の場合、元の値の一部が制限されていないため、状態が特定の制限内に留まることを保証することはできません。そのため、少し異なるアプローチを使用し、Q-テーブルを辞書で表現します。 + +1. *(state,action)*のペアを辞書のキーとして使用し、その値をQ-テーブルのエントリ値に対応させます。(コードブロック9) + + ```python + Q = {} + actions = (0,1) + + def qvalues(state): + return [Q.get((state,a),0) for a in actions] + ``` + + ここでは、`qvalues()`関数も定義しており、指定された状態に対応するすべての可能なアクションに対するQ-テーブル値のリストを返します。Q-テーブルにエントリが存在しない場合、デフォルト値として0を返します。 + +## Q-Learningを始めましょう + +これで、ピーターにバランスを取る方法を教える準備が整いました! + +1. まず、いくつかのハイパーパラメータを設定しましょう。(コードブロック10) + + ```python + # hyperparameters + alpha = 0.3 + gamma = 0.9 + epsilon = 0.90 + ``` + + ここで、`alpha`は**学習率**であり、各ステップでQ-テーブルの現在の値をどの程度調整するべきかを定義します。前回のレッスンでは1から始め、トレーニング中に`alpha`を低い値に減少させました。この例では簡単にするために一定に保ちますが、後で`alpha`値を調整して実験することができます。 + + `gamma`は**割引率**であり、現在の報酬よりも将来の報酬をどの程度優先するべきかを示します。 + + `epsilon`は**探索/活用率**であり、探索を優先するか活用を優先するかを決定します。このアルゴリズムでは、`epsilon`の割合でQ-テーブル値に基づいて次のアクションを選択し、残りのケースではランダムなアクションを実行します。これにより、これまで見たことのない探索空間の領域を探索することができます。 + + ✅ バランスを取るという観点では、ランダムなアクション(探索)を選択することは、間違った方向へのランダムなパンチのようなものであり、棒はこれらの「間違い」からバランスを回復する方法を学ぶ必要があります。 + +### アルゴリズムを改善する + +前回のレッスンからアルゴリズムを2つ改善することができます: + +- **平均累積報酬を計算する**: 複数のシミュレーションにわたって平均累積報酬を計算します。5000回の反復ごとに進捗を表示し、その期間の累積報酬を平均化します。これにより、195ポイント以上を獲得した場合、問題が解決されたと見なすことができ、必要条件を超える高品質な結果が得られます。 + +- **最大平均累積結果を計算する**: `Qmax`を計算し、その結果に対応するQ-テーブルを保存します。トレーニングを実行すると、平均累積結果が低下し始めることがあり、トレーニング中に観察された最良のモデルに対応するQ-テーブルの値を保持したいと考えています。 + +1. 各シミュレーションで累積報酬を`rewards`ベクトルに収集し、後でプロットします。(コードブロック11) + + ```python + def probs(v,eps=1e-4): + v = v-v.min()+eps + v = v/v.sum() + return v + + Qmax = 0 + cum_rewards = [] + rewards = [] + for epoch in range(100000): + obs = env.reset() + done = False + cum_reward=0 + # == do the simulation == + while not done: + s = discretize(obs) + if random.random() Qmax: + Qmax = np.average(cum_rewards) + Qbest = Q + cum_rewards=[] + ``` + +これらの結果から以下のことがわかります: + +- **目標に近い**: 100回以上の連続したシミュレーションで195の累積報酬を達成する目標に非常に近づいているか、実際に達成している可能性があります。たとえ小さい数値を得たとしても、5000回の実行で平均化しているため、正式な基準では100回の実行のみが必要です。 + +- **報酬が低下し始める**: 報酬が低下し始めることがあり、これはQ-テーブルに既に学習された値を上書きして状況を悪化させる可能性があることを意味します。 + +この観察はトレーニングの進捗をプロットするとより明確になります。 + +## トレーニング進捗のプロット + +トレーニング中に、各反復で累積報酬値を`rewards`ベクトルに収集しました。これを反復番号に対してプロットすると以下のようになります: + +```python +plt.plot(rewards) +``` + +![生の進捗](../../../../translated_images/train_progress_raw.2adfdf2daea09c596fc786fa347a23e9aceffe1b463e2257d20a9505794823ec.ja.png) + +このグラフからは何も判断できません。これは確率的なトレーニングプロセスの性質上、トレーニングセッションの長さが大きく異なるためです。このグラフをより理解しやすくするために、100回の実験にわたる**移動平均**を計算します。これを`np.convolve`を使用して便利に計算できます。(コードブロック12) + +```python +def running_average(x,window): + return np.convolve(x,np.ones(window)/window,mode='valid') + +plt.plot(running_average(rewards,100)) +``` + +![トレーニング進捗](../../../../translated_images/train_progress_runav.c71694a8fa9ab35935aff6f109e5ecdfdbdf1b0ae265da49479a81b5fae8f0aa.ja.png) + +## ハイパーパラメータの調整 + +学習をより安定させるために、トレーニング中にいくつかのハイパーパラメータを調整することが理にかなっています。特に: + +- **学習率**`alpha`については、1に近い値から始め、その後徐々にこのパラメータを減少させることができます。時間が経つにつれて、Q-テーブルに良い確率値が得られるようになり、新しい値で完全に上書きするのではなく、わずかに調整するべきです。 + +- **epsilonを増加させる**: `epsilon`を徐々に増加させ、探索を減らし、活用を増やすことが理にかなっています。低い値の`epsilon`から始め、ほぼ1に近づけるのが良いでしょう。 +> **タスク 1**: ハイパーパラメータの値を調整して、より高い累積報酬を得られるか試してみましょう。195を超えていますか? +> **タスク 2**: 問題を正式に解決するには、100回連続の実行で平均報酬195を達成する必要があります。トレーニング中にそれを測定し、問題を正式に解決したことを確認してください! + +## 結果を実際に確認する + +トレーニングされたモデルがどのように動作するかを見るのは興味深いでしょう。シミュレーションを実行し、トレーニング中と同じ行動選択戦略を採用して、Q-Tableの確率分布に従ってサンプリングしてみましょう:(コードブロック 13) + +```python +obs = env.reset() +done = False +while not done: + s = discretize(obs) + env.render() + v = probs(np.array(qvalues(s))) + a = random.choices(actions,weights=v)[0] + obs,_,done,_ = env.step(a) +env.close() +``` + +以下のような結果が表示されるはずです: + +![バランスを取るカートポール](../../../../8-Reinforcement/2-Gym/images/cartpole-balance.gif) + +--- + +## 🚀チャレンジ + +> **タスク 3**: ここでは、Q-Tableの最終版を使用していましたが、それが必ずしも最良のものとは限りません。最もパフォーマンスの良いQ-Tableを`Qbest`変数に保存していることを思い出してください!`Qbest`を`Q`にコピーして、最良のQ-Tableを使用した場合に違いがあるかどうか試してみてください。 + +> **タスク 4**: ここでは各ステップで最良の行動を選択するのではなく、対応する確率分布に基づいてサンプリングしていました。Q-Tableの値が最も高い行動を常に選択する方が理にかなっているでしょうか?これは、`np.argmax`関数を使用してQ-Table値が最も高い行動番号を見つけることで実現できます。この戦略を実装して、バランスが改善されるかどうか確認してください。 + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/48/) + +## 課題 +[マウンテンカーをトレーニングする](assignment.md) + +## 結論 + +私たちは、ゲームの望ましい状態を定義する報酬関数を提供し、探索空間を賢く探索する機会を与えることで、エージェントをトレーニングして良い結果を達成する方法を学びました。Q-Learningアルゴリズムを離散環境と連続環境のケースで成功裏に適用しましたが、行動は離散的でした。 + +行動状態も連続的である場合や、観測空間がより複雑である場合(例えば、Atariゲーム画面の画像など)についても研究することが重要です。そのような問題では、良い結果を得るためにニューラルネットワークのようなより強力な機械学習技術を使用する必要があることがよくあります。これらのより高度なトピックは、今後のより高度なAIコースのテーマとなります。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/2-Gym/assignment.md b/translations/ja/8-Reinforcement/2-Gym/assignment.md new file mode 100644 index 000000000..93d5839f8 --- /dev/null +++ b/translations/ja/8-Reinforcement/2-Gym/assignment.md @@ -0,0 +1,57 @@ + +# 山登りカーを訓練する + +[OpenAI Gym](http://gym.openai.com) は、すべての環境が同じAPIを提供するように設計されています。つまり、`reset`、`step`、`render`という同じメソッドと、**アクションスペース**および**観測スペース**の同じ抽象化を備えています。そのため、最小限のコード変更で異なる環境に同じ強化学習アルゴリズムを適用することが可能です。 + +## 山登りカー環境 + +[山登りカー環境](https://gym.openai.com/envs/MountainCar-v0/) では、谷に閉じ込められた車が登場します。 + +目標は谷を抜け出して旗を捕まえることです。そのために、各ステップで以下のいずれかのアクションを実行します: + +| 値 | 意味 | +|---|---| +| 0 | 左に加速 | +| 1 | 加速しない | +| 2 | 右に加速 | + +しかし、この問題の主なポイントは、車のエンジンが一度の試行で山を登りきるほど強力ではないことです。そのため、成功する唯一の方法は、勢いをつけるために前後に走ることです。 + +観測スペースは以下の2つの値で構成されています: + +| 番号 | 観測値 | 最小値 | 最大値 | +|-----|--------------|--------|--------| +| 0 | 車の位置 | -1.2 | 0.6 | +| 1 | 車の速度 | -0.07 | 0.07 | + +山登りカーの報酬システムは少し複雑です: + + * エージェントが山頂の旗(位置 = 0.5)に到達した場合、報酬0が与えられます。 + * エージェントの位置が0.5未満の場合、報酬-1が与えられます。 + +エピソードは、車の位置が0.5を超えるか、エピソードの長さが200を超えると終了します。 + +## 手順 + +既存の強化学習アルゴリズムを適応させて山登りカー問題を解決してください。既存の[notebook.ipynb](notebook.ipynb)コードから始め、新しい環境を置き換え、状態の離散化関数を変更し、既存のアルゴリズムを最小限のコード変更で訓練できるようにしてください。ハイパーパラメータを調整して結果を最適化してください。 + +> **Note**: アルゴリズムを収束させるためには、ハイパーパラメータの調整が必要になる可能性があります。 + +## 評価基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | --------- | -------- | ----------------- | +| | Q-LearningアルゴリズムがCartPoleの例から成功裏に適応され、最小限のコード変更で旗を200ステップ以内に捕まえる問題を解決できる。 | インターネットから新しいQ-Learningアルゴリズムを採用したが、十分に文書化されている;または既存のアルゴリズムを採用したが、期待される結果に到達していない。 | 学生はアルゴリズムを成功裏に採用することができなかったが、解決に向けて大きな進展を遂げた(状態の離散化、Q-Tableデータ構造の実装など)。 | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。原文(元の言語で記載された文書)が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の利用に起因する誤解や誤認について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/2-Gym/notebook.ipynb b/translations/ja/8-Reinforcement/2-Gym/notebook.ipynb new file mode 100644 index 000000000..940df803e --- /dev/null +++ b/translations/ja/8-Reinforcement/2-Gym/notebook.ipynb @@ -0,0 +1,394 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.4 64-bit ('base': conda)" + }, + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "coopTranslator": { + "original_hash": "f22f8f3daed4b6d34648d1254763105b", + "translation_date": "2025-09-04T03:04:52+00:00", + "source_file": "8-Reinforcement/2-Gym/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## カートポールスケート\n", + "\n", + "> **問題**: ピーターがオオカミから逃げたい場合、オオカミより速く動ける必要があります。ここでは、ピーターがスケートを学び、特にバランスを保つ方法をQ学習を使って見ていきます。\n", + "\n", + "まず、gymをインストールし、必要なライブラリをインポートしましょう:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 1" + ] + }, + { + "source": [ + "## カートポール環境を作成する\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 2" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "環境がどのように機能するかを見るために、100ステップの短いシミュレーションを実行してみましょう。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "シミュレーション中、行動を決定するために観測を取得する必要があります。実際には、`step` 関数は現在の観測値、報酬関数、およびシミュレーションを続行する意味があるかどうかを示す `done` フラグを返します。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 4" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "これらの数値の最小値と最大値を取得できます:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "#code block 5" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 6" + ] + }, + { + "source": [ + "他のビンを使用した離散化方法も探ってみましょう。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "#code block 7" + ] + }, + { + "source": [ + "では、短いシミュレーションを実行し、それらの離散的な環境値を観察しましょう。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -2, -2)\n(0, 1, -2, -5)\n(0, 2, -3, -8)\n(0, 3, -5, -11)\n(0, 3, -7, -14)\n(0, 4, -10, -17)\n(0, 3, -14, -15)\n(0, 3, -17, -12)\n(0, 3, -20, -16)\n(0, 4, -23, -19)\n" + ] + } + ], + "source": [ + "#code block 8" + ] + }, + { + "source": [ + "## Q-テーブル構造\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 9" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 10" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 22.0, alpha=0.3, epsilon=0.9\n", + "5000: 70.1384, alpha=0.3, epsilon=0.9\n", + "10000: 121.8586, alpha=0.3, epsilon=0.9\n", + "15000: 149.6368, alpha=0.3, epsilon=0.9\n", + "20000: 168.2782, alpha=0.3, epsilon=0.9\n", + "25000: 196.7356, alpha=0.3, epsilon=0.9\n", + "30000: 220.7614, alpha=0.3, epsilon=0.9\n", + "35000: 233.2138, alpha=0.3, epsilon=0.9\n", + "40000: 248.22, alpha=0.3, epsilon=0.9\n", + "45000: 264.636, alpha=0.3, epsilon=0.9\n", + "50000: 276.926, alpha=0.3, epsilon=0.9\n", + "55000: 277.9438, alpha=0.3, epsilon=0.9\n", + "60000: 248.881, alpha=0.3, epsilon=0.9\n", + "65000: 272.529, alpha=0.3, epsilon=0.9\n", + "70000: 281.7972, alpha=0.3, epsilon=0.9\n", + "75000: 284.2844, alpha=0.3, epsilon=0.9\n", + "80000: 269.667, alpha=0.3, epsilon=0.9\n", + "85000: 273.8652, alpha=0.3, epsilon=0.9\n", + "90000: 278.2466, alpha=0.3, epsilon=0.9\n", + "95000: 269.1736, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "#code block 11" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "このグラフからは何も判断することはできません。なぜなら、確率的なトレーニングプロセスの性質上、トレーニングセッションの長さが大きく異なるからです。このグラフをより理解しやすくするために、例えば100回の実験にわたる**移動平均**を計算することができます。これには`np.convolve`を便利に使用することができます。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "#code block 12" + ] + }, + { + "source": [ + "## ハイパーパラメータを変えて結果を確認する\n", + "\n", + "さて、実際に学習済みモデルがどのように動作するかを見るのは興味深いですね。シミュレーションを実行してみましょう。トレーニング中と同じ行動選択戦略を使用します。つまり、Q-Tableの確率分布に基づいてサンプリングを行います。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 13" + ] + }, + { + "source": [ + "## 結果をアニメーションGIFとして保存する\n", + "\n", + "友達を驚かせたい場合、バランス棒のアニメーションGIF画像を送るのがおすすめです。そのためには、`env.render`を呼び出して画像フレームを生成し、それをPILライブラリを使ってアニメーションGIFとして保存します。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/2-Gym/solution/Julia/README.md b/translations/ja/8-Reinforcement/2-Gym/solution/Julia/README.md new file mode 100644 index 000000000..1cbfdf04f --- /dev/null +++ b/translations/ja/8-Reinforcement/2-Gym/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてお考えください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/2-Gym/solution/R/README.md b/translations/ja/8-Reinforcement/2-Gym/solution/R/README.md new file mode 100644 index 000000000..f852cfd5e --- /dev/null +++ b/translations/ja/8-Reinforcement/2-Gym/solution/R/README.md @@ -0,0 +1,15 @@ + +これは一時的なプレースホルダー + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の利用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/2-Gym/solution/notebook.ipynb b/translations/ja/8-Reinforcement/2-Gym/solution/notebook.ipynb new file mode 100644 index 000000000..7116eb2ed --- /dev/null +++ b/translations/ja/8-Reinforcement/2-Gym/solution/notebook.ipynb @@ -0,0 +1,526 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "5c0e485e58d63c506f1791c4dbf990ce", + "translation_date": "2025-09-04T03:07:26+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/notebook.ipynb", + "language_code": "ja" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## カートポールスケート\n", + "\n", + "> **問題**: ピーターがオオカミから逃げたい場合、オオカミより速く動ける必要があります。ここでは、ピーターがスケートを学び、特にバランスを保つ方法をQ学習を使って見ていきます。\n", + "\n", + "まず、gymをインストールし、必要なライブラリをインポートしましょう:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: gym in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.18.3)\n", + "Requirement already satisfied: Pillow<=8.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (7.0.0)\n", + "Requirement already satisfied: scipy in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.10.4 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.19.2)\n", + "Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.6.0)\n", + "Requirement already satisfied: pyglet<=1.5.15,>=1.4.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.5.15)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n" + ] + } + ], + "source": [ + "import sys\n", + "!pip install gym \n", + "\n", + "import gym\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random" + ] + }, + { + "source": [ + "## カートポール環境を作成する\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env = gym.make(\"CartPole-v1\")\n", + "print(env.action_space)\n", + "print(env.observation_space)\n", + "print(env.action_space.sample())" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Discrete(2)\nBox(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)\n0\n" + ] + } + ] + }, + { + "source": [ + "環境がどのように機能するかを見るために、100ステップの短いシミュレーションを実行してみましょう。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "for i in range(100):\n", + " env.render()\n", + " env.step(env.action_space.sample())\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/gym/logger.py:30: UserWarning: \u001b[33mWARN: You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.\u001b[0m\n warnings.warn(colorize('%s: %s'%('WARN', msg % args), 'yellow'))\n" + ] + } + ] + }, + { + "source": [ + "シミュレーション中、行動を決定するために観測を得る必要があります。実際には、`step` 関数は現在の観測値、報酬関数、およびシミュレーションを続行する意味があるかどうかを示す `done` フラグを返します。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " print(f\"{obs} -> {rew}\")\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[ 0.03044442 -0.19543914 -0.04496216 0.28125618] -> 1.0\n", + "[ 0.02653564 -0.38989186 -0.03933704 0.55942606] -> 1.0\n", + "[ 0.0187378 -0.19424049 -0.02814852 0.25461393] -> 1.0\n", + "[ 0.01485299 -0.38894946 -0.02305624 0.53828712] -> 1.0\n", + "[ 0.007074 -0.19351108 -0.0122905 0.23842953] -> 1.0\n", + "[ 0.00320378 0.00178427 -0.00752191 -0.05810469] -> 1.0\n", + "[ 0.00323946 0.19701326 -0.008684 -0.35315131] -> 1.0\n", + "[ 0.00717973 0.00201587 -0.01574703 -0.06321931] -> 1.0\n", + "[ 0.00722005 0.19736001 -0.01701141 -0.36082863] -> 1.0\n", + "[ 0.01116725 0.39271958 -0.02422798 -0.65882671] -> 1.0\n", + "[ 0.01902164 0.19794307 -0.03740452 -0.37387001] -> 1.0\n", + "[ 0.0229805 0.39357584 -0.04488192 -0.67810827] -> 1.0\n", + "[ 0.03085202 0.58929164 -0.05844408 -0.98457719] -> 1.0\n", + "[ 0.04263785 0.78514572 -0.07813563 -1.2950295 ] -> 1.0\n", + "[ 0.05834076 0.98116859 -0.10403622 -1.61111521] -> 1.0\n", + "[ 0.07796413 0.78741784 -0.13625852 -1.35259196] -> 1.0\n", + "[ 0.09371249 0.98396202 -0.16331036 -1.68461179] -> 1.0\n", + "[ 0.11339173 0.79106371 -0.1970026 -1.44691436] -> 1.0\n", + "[ 0.12921301 0.59883361 -0.22594088 -1.22169133] -> 1.0\n" + ] + } + ] + }, + { + "source": [ + "これらの数値の最小値と最大値を取得できます:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "print(env.observation_space.low)\n", + "print(env.observation_space.high)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def discretize(x):\n", + " return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int))" + ] + }, + { + "source": [ + "他のビンを使用した離散化方法も探ってみましょう。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "def create_bins(i,num):\n", + " return np.arange(num+1)*(i[1]-i[0])/num+i[0]\n", + "\n", + "print(\"Sample bins for interval (-5,5) with 10 bins\\n\",create_bins((-5,5),10))\n", + "\n", + "ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter\n", + "nbins = [20,20,10,10] # number of bins for each parameter\n", + "bins = [create_bins(ints[i],nbins[i]) for i in range(4)]\n", + "\n", + "def discretize_bins(x):\n", + " return tuple(np.digitize(x[i],bins[i]) for i in range(4))" + ] + }, + { + "source": [ + "では、短いシミュレーションを実行し、それらの離散的な環境値を観察してみましょう。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -1, -3)\n(0, 0, -2, 0)\n(0, 0, -2, -3)\n(0, 1, -3, -6)\n(0, 2, -4, -9)\n(0, 3, -6, -12)\n(0, 2, -8, -9)\n(0, 3, -10, -13)\n(0, 4, -13, -16)\n(0, 4, -16, -19)\n(0, 4, -20, -17)\n(0, 4, -24, -20)\n" + ] + } + ], + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " #env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " #print(discretize_bins(obs))\n", + " print(discretize(obs))\n", + "env.close()" + ] + }, + { + "source": [ + "## Q-テーブル構造\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "Q = {}\n", + "actions = (0,1)\n", + "\n", + "def qvalues(state):\n", + " return [Q.get((state,a),0) for a in actions]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# hyperparameters\n", + "alpha = 0.3\n", + "gamma = 0.9\n", + "epsilon = 0.90" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 108.0, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v\n", + "\n", + "Qmax = 0\n", + "cum_rewards = []\n", + "rewards = []\n", + "for epoch in range(100000):\n", + " obs = env.reset()\n", + " done = False\n", + " cum_reward=0\n", + " # == do the simulation ==\n", + " while not done:\n", + " s = discretize(obs)\n", + " if random.random() Qmax:\n", + " Qmax = np.average(cum_rewards)\n", + " Qbest = Q\n", + " cum_rewards=[]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "このグラフからは何も判断することはできません。なぜなら、確率的なトレーニングプロセスの性質上、トレーニングセッションの長さが大きく異なるからです。このグラフをより理解しやすくするために、例えば100回の実験にわたる**移動平均**を計算することができます。これには`np.convolve`を便利に使用することができます。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                          ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "def running_average(x,window):\n", + " return np.convolve(x,np.ones(window)/window,mode='valid')\n", + "\n", + "plt.plot(running_average(rewards,100))" + ] + }, + { + "source": [ + "## ハイパーパラメータを変えて結果を確認する\n", + "\n", + "さて、実際に訓練されたモデルがどのように動作するかを確認するのは興味深いですね。シミュレーションを実行してみましょう。訓練中と同じ行動選択戦略を使用します。つまり、Q-Tableの確率分布に従ってサンプリングを行います。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "obs = env.reset()\n", + "done = False\n", + "while not done:\n", + " s = discretize(obs)\n", + " env.render()\n", + " v = probs(np.array(qvalues(s)))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + "env.close()" + ] + }, + { + "source": [ + "## 結果をアニメーションGIFとして保存する\n", + "\n", + "友達を驚かせたい場合、バランス棒のアニメーションGIF画像を送るのがおすすめです。そのためには、`env.render`を呼び出して画像フレームを生成し、それをPILライブラリを使ってアニメーションGIFとして保存します。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてお考えください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当方は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/8-Reinforcement/README.md b/translations/ja/8-Reinforcement/README.md new file mode 100644 index 000000000..fcdaa7a26 --- /dev/null +++ b/translations/ja/8-Reinforcement/README.md @@ -0,0 +1,67 @@ + +# 強化学習の紹介 + +強化学習(RL)は、教師あり学習や教師なし学習と並ぶ基本的な機械学習のパラダイムの一つとされています。RLは意思決定に関するものであり、正しい決定を下す、または少なくともそこから学ぶことを目指します。 + +例えば、株式市場のようなシミュレーション環境を考えてみましょう。特定の規制を導入した場合、何が起こるでしょうか?それがプラスの効果をもたらすのか、マイナスの効果をもたらすのか?もしマイナスの結果が生じた場合、その「負の強化」を受け入れ、それを学び、方向を変える必要があります。逆に、プラスの結果が得られた場合、その「正の強化」を基にさらに進める必要があります。 + +![ピーターと狼](../../../translated_images/peter.779730f9ba3a8a8d9290600dcf55f2e491c0640c785af7ac0d64f583c49b8864.ja.png) + +> ピーターと彼の友達は空腹の狼から逃げなければなりません!画像提供:[Jen Looper](https://twitter.com/jenlooper) + +## 地域の話題: ピーターと狼(ロシア) + +[ピーターと狼](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)は、ロシアの作曲家[セルゲイ・プロコフィエフ](https://en.wikipedia.org/wiki/Sergei_Prokofiev)によって書かれた音楽童話です。この物語は、若き開拓者ピーターが勇敢に家を出て森の中で狼を追いかける話です。このセクションでは、ピーターを助けるための機械学習アルゴリズムを訓練します: + +- **探索** 周辺地域を調査し、最適なナビゲーションマップを作成する +- **学習** スケートボードの使い方とバランスの取り方を学び、より速く移動できるようにする + +[![ピーターと狼](https://img.youtube.com/vi/Fmi5zHg4QSM/0.jpg)](https://www.youtube.com/watch?v=Fmi5zHg4QSM) + +> 🎥 上の画像をクリックしてプロコフィエフの「ピーターと狼」を聴いてみましょう + +## 強化学習 + +前のセクションでは、機械学習問題の2つの例を見てきました: + +- **教師あり学習**:解決したい問題に対するサンプル解を示すデータセットがある場合。[分類](../4-Classification/README.md)や[回帰](../2-Regression/README.md)は教師あり学習のタスクです。 +- **教師なし学習**:ラベル付きのトレーニングデータがない場合。教師なし学習の主な例は[クラスタリング](../5-Clustering/README.md)です。 + +このセクションでは、ラベル付きトレーニングデータを必要としない新しいタイプの学習問題を紹介します。このような問題にはいくつかの種類があります: + +- **[半教師あり学習](https://wikipedia.org/wiki/Semi-supervised_learning)**:大量のラベルなしデータを使用してモデルを事前学習する場合。 +- **[強化学習](https://wikipedia.org/wiki/Reinforcement_learning)**:エージェントがシミュレーション環境で実験を行いながら行動を学習する場合。 + +### 例 - コンピュータゲーム + +例えば、コンピュータにチェスや[スーパーマリオ](https://wikipedia.org/wiki/Super_Mario)のようなゲームをプレイさせたいとします。コンピュータがゲームをプレイするには、各ゲーム状態でどの動きをするべきかを予測する必要があります。一見するとこれは分類問題のように思えるかもしれませんが、実際にはそうではありません。なぜなら、状態と対応するアクションを含むデータセットが存在しないからです。チェスの試合やスーパーマリオのプレイヤーのプレイ記録のようなデータがあるかもしれませんが、それらのデータが十分な数の可能な状態を網羅しているとは限りません。 + +既存のゲームデータを探す代わりに、**強化学習**(RL)は「コンピュータに何度もプレイさせ、その結果を観察する」というアイデアに基づいています。したがって、強化学習を適用するには以下の2つが必要です: + +- **環境**と**シミュレーター**:ゲームを何度もプレイできるようにするもの。このシミュレーターはゲームのルールや可能な状態とアクションを定義します。 + +- **報酬関数**:各動きやゲーム中にどれだけうまくいったかを教えてくれるもの。 + +他の機械学習の種類とRLの主な違いは、RLでは通常ゲームが終了するまで勝敗が分からないことです。そのため、特定の動きが単独で良いかどうかを判断することはできません。報酬はゲーム終了時にのみ得られます。そして、私たちの目標は、不確実な条件下でモデルを訓練できるアルゴリズムを設計することです。このセクションでは、**Q学習**というRLアルゴリズムについて学びます。 + +## レッスン + +1. [強化学習とQ学習の紹介](1-QLearning/README.md) +2. [ジムシミュレーション環境の使用](2-Gym/README.md) + +## クレジット + +「強化学習の紹介」は[Dmitry Soshnikov](http://soshnikov.com)によって♥️を込めて書かれました。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があることをご承知おきください。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/9-Real-World/1-Applications/README.md b/translations/ja/9-Real-World/1-Applications/README.md new file mode 100644 index 000000000..f93279c3b --- /dev/null +++ b/translations/ja/9-Real-World/1-Applications/README.md @@ -0,0 +1,156 @@ + +# 後書き: 実世界における機械学習 + +![実世界における機械学習の概要をスケッチノートで表現](../../../../translated_images/ml-realworld.26ee2746716155771f8076598b6145e6533fe4a9e2e465ea745f46648cbf1b84.ja.png) +> スケッチノート: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +このカリキュラムでは、データをトレーニング用に準備し、機械学習モデルを作成するさまざまな方法を学びました。回帰、クラスタリング、分類、自然言語処理、時系列モデルといった一連のクラシックなモデルを構築しましたね。おめでとうございます!さて、これらのモデルが実際にどのように活用されるのか気になりませんか?実世界での応用例はどのようなものなのでしょうか? + +業界では通常ディープラーニングを活用するAIが注目されていますが、クラシックな機械学習モデルにも依然として価値ある応用例があります。実際に、今日すでにこれらの応用例を利用しているかもしれません。このレッスンでは、8つの異なる業界や専門分野がこれらのモデルを活用して、アプリケーションをより高性能で信頼性が高く、知的で価値あるものにしている方法を探ります。 + +## [講義前クイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/49/) + +## 💰 金融 + +金融業界では、機械学習を活用する多くの機会があります。この分野の多くの問題は、MLを使用してモデル化し解決するのに適しています。 + +### クレジットカード詐欺検出 + +コースの以前のセクションで[k-meansクラスタリング](../../5-Clustering/2-K-Means/README.md)について学びましたが、これをクレジットカード詐欺に関連する問題の解決にどのように活用できるでしょうか? + +k-meansクラスタリングは、**外れ値検出**と呼ばれるクレジットカード詐欺検出技術で役立ちます。外れ値、つまりデータセットの観測値の逸脱は、クレジットカードが通常通り使用されているか、何か異常が発生しているかを教えてくれます。以下の論文で示されているように、k-meansクラスタリングアルゴリズムを使用してクレジットカードデータを分類し、外れ値の程度に基づいて各取引をクラスタに割り当てることができます。その後、最もリスクの高いクラスタを評価し、詐欺的な取引と正当な取引を区別します。 +[参考文献](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.680.1195&rep=rep1&type=pdf) + +### 資産管理 + +資産管理では、個人や企業が顧客の代わりに投資を管理します。長期的に資産を維持し成長させることが仕事であるため、良好なパフォーマンスを示す投資を選ぶことが重要です。 + +特定の投資がどのようにパフォーマンスを発揮するかを評価する方法の1つは、統計的回帰を使用することです。[線形回帰](../../2-Regression/1-Tools/README.md)は、ファンドが特定のベンチマークに対してどのようにパフォーマンスを発揮するかを理解するための貴重なツールです。また、回帰の結果が統計的に有意であるかどうか、つまり顧客の投資にどの程度影響を与えるかを推測することもできます。さらに、複数回帰を使用して分析を拡張し、追加のリスク要因を考慮することも可能です。特定のファンドに対してこれがどのように機能するかの例については、以下の論文をご覧ください。 +[参考文献](http://www.brightwoodventures.com/evaluating-fund-performance-using-regression/) + +## 🎓 教育 + +教育分野もまた、MLを適用できる非常に興味深い領域です。試験やエッセイでの不正行為を検出したり、意図的であれ無意識であれ、採点プロセスにおけるバイアスを管理したりするなど、興味深い問題があります。 + +### 学生の行動予測 + +オンラインオープンコースプロバイダーの[Coursera](https://coursera.com)は、多くのエンジニアリング決定について議論する素晴らしい技術ブログを持っています。このケーススタディでは、低いNPS(Net Promoter Score)評価とコースの継続率や中途退学率との間に相関があるかどうかを探るために回帰線をプロットしました。 +[参考文献](https://medium.com/coursera-engineering/controlled-regression-quantifying-the-impact-of-course-quality-on-learner-retention-31f956bd592a) + +### バイアスの軽減 + +[Grammarly](https://grammarly.com)は、スペルや文法のエラーをチェックするライティングアシスタントで、製品全体で高度な[自然言語処理システム](../../6-NLP/README.md)を使用しています。同社は、機械学習におけるジェンダーバイアスにどのように対処したかについて、技術ブログで興味深いケーススタディを公開しました。このトピックは、[公平性に関する導入レッスン](../../1-Introduction/3-fairness/README.md)で学びましたね。 +[参考文献](https://www.grammarly.com/blog/engineering/mitigating-gender-bias-in-autocorrect/) + +## 👜 小売 + +小売業界は、顧客体験の向上から在庫管理の最適化まで、MLの恩恵を受けることができます。 + +### 顧客体験のパーソナライズ + +家具などの家庭用品を販売するWayfairでは、顧客が自分の好みやニーズに合った商品を見つけることが重要です。この記事では、同社のエンジニアがMLとNLPを使用して「顧客に適切な結果を表示する」方法について説明しています。特に、同社のQuery Intent Engineは、エンティティ抽出、分類器トレーニング、資産および意見抽出、顧客レビューの感情タグ付けを使用しています。これは、オンライン小売におけるNLPの典型的な使用例です。 +[参考文献](https://www.aboutwayfair.com/tech-innovation/how-we-use-machine-learning-and-natural-language-processing-to-empower-search) + +### 在庫管理 + +[StitchFix](https://stitchfix.com)のような革新的で機敏な企業は、MLを活用して推奨や在庫管理を行っています。同社のスタイリングチームは、商品チームと協力しています。「あるデータサイエンティストが遺伝的アルゴリズムをいじり、それをアパレルに適用して、現在存在しない成功する可能性のある衣服を予測しました。それを商品チームに持ち込み、彼らはそれをツールとして使用できるようになりました。」 +[参考文献](https://www.zdnet.com/article/how-stitch-fix-uses-machine-learning-to-master-the-science-of-styling/) + +## 🏥 医療 + +医療分野では、研究タスクの最適化や患者の再入院管理、病気の拡散防止などの物流問題にMLを活用できます。 + +### 臨床試験の管理 + +臨床試験における毒性は、製薬会社にとって大きな懸念事項です。どの程度の毒性が許容されるのでしょうか?この研究では、さまざまな臨床試験方法を分析し、臨床試験結果の確率を予測する新しいアプローチを開発しました。具体的には、ランダムフォレストを使用して[分類器](../../4-Classification/README.md)を作成し、薬剤グループを区別することができました。 +[参考文献](https://www.sciencedirect.com/science/article/pii/S2451945616302914) + +### 病院の再入院管理 + +病院でのケアは費用がかかりますが、特に患者が再入院しなければならない場合はさらに高額です。この論文では、MLを使用して再入院の可能性を予測する会社について議論しています。[クラスタリング](../../5-Clustering/README.md)アルゴリズムを使用して、共通の原因を共有する可能性のある再入院グループを発見するのに役立ちます。 +[参考文献](https://healthmanagement.org/c/healthmanagement/issuearticle/hospital-readmissions-and-machine-learning) + +### 病気の管理 + +最近のパンデミックは、機械学習が病気の拡散を防ぐのに役立つ方法に注目を集めました。この論文では、ARIMA、ロジスティック曲線、線形回帰、SARIMAの使用例が紹介されています。「この研究は、このウイルスの拡散率を計算し、死亡者数、回復者数、確認された症例を予測する試みであり、より良い準備をして生き残るのに役立つ可能性があります。」 +[参考文献](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979218/) + +## 🌲 生態学とグリーンテクノロジー + +自然と生態学は、動物と自然の相互作用が焦点となる多くの敏感なシステムで構成されています。これらのシステムを正確に測定し、森林火災や動物の個体数減少などの問題が発生した場合に適切に対応することが重要です。 + +### 森林管理 + +以前のレッスンで[強化学習](../../8-Reinforcement/README.md)について学びました。これは自然のパターンを予測する際に非常に役立ちます。特に、森林火災や外来種の拡散などの生態学的問題を追跡するために使用できます。カナダでは、研究者グループが衛星画像を使用して森林火災の動態モデルを構築するために強化学習を使用しました。革新的な「空間的拡散プロセス(SSP)」を使用して、森林火災を「景観内の任意のセルでのエージェント」として想定しました。「火災が任意の時点で特定の場所から取ることができる行動のセットには、北、南、東、西への拡散や拡散しないことが含まれます。」 + +このアプローチは、対応するマルコフ決定プロセス(MDP)の動態が即時の火災拡散に対する既知の関数であるため、通常のRLセットアップを逆転させます。以下のリンクで、このグループが使用したクラシックアルゴリズムについて詳しく読むことができます。 +[参考文献](https://www.frontiersin.org/articles/10.3389/fict.2018.00006/full) + +### 動物の動きのモーションセンシング + +深層学習は動物の動きを視覚的に追跡する革命をもたらしましたが([ホッキョクグマトラッカー](https://docs.microsoft.com/learn/modules/build-ml-model-with-azure-stream-analytics/?WT.mc_id=academic-77952-leestott)を自分で構築できます)、クラシックなMLもこのタスクで役割を果たしています。 + +農場動物の動きを追跡するセンサーやIoTはこの種の視覚処理を利用していますが、より基本的なML技術はデータの前処理に役立ちます。例えば、この論文では、羊の姿勢を監視し、さまざまな分類器アルゴリズムを使用して分析しました。ページ335にROC曲線が表示されているのを確認できます。 +[参考文献](https://druckhaus-hofmann.de/gallery/31-wj-feb-2020.pdf) + +### ⚡️ エネルギー管理 + +[時系列予測](../../7-TimeSeries/README.md)のレッスンでは、供給と需要を理解することで町の収益を生み出すスマート駐車メーターの概念を取り上げました。この論文では、クラスタリング、回帰、時系列予測を組み合わせて、スマートメーターを基にしたアイルランドの将来のエネルギー使用量を予測する方法について詳しく説明しています。 +[参考文献](https://www-cdn.knime.com/sites/default/files/inline-images/knime_bigdata_energy_timeseries_whitepaper.pdf) + +## 💼 保険 + +保険業界は、MLを使用して実行可能な財務および保険数理モデルを構築し最適化する分野です。 + +### ボラティリティ管理 + +生命保険プロバイダーのMetLifeは、財務モデルにおけるボラティリティを分析し軽減する方法について率直に説明しています。この論文では、バイナリおよび順序分類の可視化が見られます。また、予測の可視化も発見できます。 +[参考文献](https://investments.metlife.com/content/dam/metlifecom/us/investments/insights/research-topics/macro-strategy/pdf/MetLifeInvestmentManagement_MachineLearnedRanking_070920.pdf) + +## 🎨 芸術、文化、文学 + +芸術分野、例えばジャーナリズムでは、多くの興味深い問題があります。フェイクニュースの検出は大きな課題であり、人々の意見に影響を与えたり、民主主義を揺るがしたりすることが証明されています。博物館も、アーティファクト間のリンクを見つけたり、リソース計画を行ったりする際にMLを活用できます。 + +### フェイクニュース検出 + +今日のメディアでは、フェイクニュースの検出はいたちごっこになっています。この論文では、学んだML技術を組み合わせたシステムをテストし、最適なモデルを展開することを提案しています。「このシステムは、データから特徴を抽出するための自然言語処理に基づいており、これらの特徴はNaive Bayes、Support Vector Machine (SVM)、Random Forest (RF)、Stochastic Gradient Descent (SGD)、Logistic Regression (LR)などの機械学習分類器のトレーニングに使用されます。」 +[参考文献](https://www.irjet.net/archives/V7/i6/IRJET-V7I6688.pdf) + +この論文は、異なるML分野を組み合わせることで、フェイクニュースの拡散を防ぎ、実際の被害を防ぐ興味深い結果を生み出す方法を示しています。この場合、COVID治療に関する噂の拡散が暴力を引き起こしたことがきっかけでした。 + +### 博物館のML + +博物館は、コレクションのカタログ化やデジタル化、アーティファクト間のリンクを見つける技術が進歩するにつれて、AI革命の最前線にいます。[In Codice Ratio](https://www.sciencedirect.com/science/article/abs/pii/S0306457321001035#:~:text=1.,studies%20over%20large%20historical%20sources.)のようなプロジェクトは、バチカンのアーカイブなどのアクセス不可能なコレクションの謎を解き明かすのに役立っています。しかし、博物館のビジネス面もMLモデルの恩恵を受けています。 + +例えば、シカゴ美術館は、観客が何に興味を持ち、いつ展示会に訪れるかを予測するモデルを構築しました。目標は、ユーザーが博物館を訪れるたびに個別化され最適化された体験を提供することです。「2017年度中、モデルは入場者数と入場料を1%以内の精度で予測しました」と、シカゴ美術館の上級副社長Andrew Simnick氏は述べています。 +[参考文献](https://www.chicagobusiness.com/article/20180518/ISSUE01/180519840/art-institute-of-chicago-uses-data-to-make-exhibit-choices) + +## 🏷 マーケティング + +### 顧客セグメンテーション + +最も効果的なマーケティング戦略は、さまざまなグループに基づいて顧客を異なる方法でターゲットにします。この論文では、差別化された +別の分野を特定し、このカリキュラムで学んだ技術のいくつかがその分野でどのように役立っているかを調べてみましょう。そして、その分野がどのように機械学習を活用しているかを発見してください。 + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/50/) + +## レビューと自己学習 + +Wayfairのデータサイエンスチームは、彼らの会社で機械学習をどのように活用しているかについての興味深い動画をいくつか公開しています。[ぜひチェックしてみてください](https://www.youtube.com/channel/UCe2PjkQXqOuwkW1gw6Ameuw/videos)! + +## 課題 + +[機械学習スカベンジャーハント](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や解釈の誤りについて、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/9-Real-World/1-Applications/assignment.md b/translations/ja/9-Real-World/1-Applications/assignment.md new file mode 100644 index 000000000..5bb2c1886 --- /dev/null +++ b/translations/ja/9-Real-World/1-Applications/assignment.md @@ -0,0 +1,27 @@ + +# 機械学習スカベンジャーハント + +## 指示 + +このレッスンでは、古典的な機械学習を使用して解決された多くの実際のユースケースについて学びました。深層学習、新しい技術やツール、ニューラルネットワークの活用がこれらの分野で役立つツールの生産を加速させる一方で、このカリキュラムで学んだ古典的な機械学習の技術は依然として大きな価値を持っています。 + +この課題では、ハッカソンに参加していると仮定してください。このカリキュラムで学んだ内容を活用して、このレッスンで議論された分野の問題を古典的な機械学習を使って解決する提案をしてください。アイデアを実現する方法を議論するプレゼンテーションを作成してください。サンプルデータを収集し、コンセプトをサポートするための機械学習モデルを構築できれば、ボーナスポイントが得られます! + +## 評価基準 + +| 基準 | 優秀な成果 | 十分な成果 | 改善が必要 | +| -------- | ------------------------------------------------------------------- | ------------------------------------------------- | ---------------------- | +| | PowerPointプレゼンテーションが提示される - モデル構築でボーナス | 革新的でない基本的なプレゼンテーションが提示される | 作業が未完成 | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/9-Real-World/2-Debugging-ML-Models/README.md b/translations/ja/9-Real-World/2-Debugging-ML-Models/README.md new file mode 100644 index 000000000..0c78df13e --- /dev/null +++ b/translations/ja/9-Real-World/2-Debugging-ML-Models/README.md @@ -0,0 +1,171 @@ + +# 後書き: 責任あるAIダッシュボードコンポーネントを使用した機械学習モデルのデバッグ + +## [講義前のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/) + +## はじめに + +機械学習は私たちの日常生活に影響を与えています。AIは、医療、金融、教育、雇用など、個人や社会に影響を与える重要なシステムに浸透しています。例えば、医療診断や詐欺検出など、日々の意思決定に関わるシステムやモデルが存在します。このようにAIの進歩と急速な普及は、社会的期待の変化や規制の強化を伴っています。AIシステムが期待を裏切る場面が頻繁に見られ、新たな課題が浮き彫りになり、政府はAIソリューションの規制を始めています。そのため、これらのモデルを分析し、公平で信頼性があり、包括的で透明性が高く、責任ある結果を提供することが重要です。 + +このカリキュラムでは、モデルに責任あるAIの問題があるかどうかを評価するための実用的なツールを紹介します。従来の機械学習デバッグ技術は、集計された精度や平均誤差損失などの定量的計算に基づいていることが多いです。しかし、モデル構築に使用するデータが人種、性別、政治的見解、宗教などの特定の属性を欠いている場合や、これらの属性が偏って表現されている場合に何が起こるかを想像してみてください。また、モデルの出力が特定の属性を優遇するように解釈される場合はどうでしょうか。このような状況は、モデルの公平性、包括性、信頼性に問題を引き起こす可能性があります。さらに、機械学習モデルはブラックボックスと見なされることが多く、モデルの予測を駆動する要因を理解し説明することが難しいです。これらは、モデルの公平性や信頼性を評価するための適切なツールを持たないデータサイエンティストやAI開発者が直面する課題です。 + +このレッスンでは、以下の方法でモデルをデバッグする方法を学びます: + +- **エラー分析**: データ分布内でモデルのエラー率が高い箇所を特定する。 +- **モデル概要**: 異なるデータコホート間で比較分析を行い、モデルのパフォーマンス指標の格差を発見する。 +- **データ分析**: データの過剰または不足表現がモデルを特定のデータ属性に偏らせる可能性がある箇所を調査する。 +- **特徴の重要性**: モデルの予測をグローバルまたはローカルレベルで駆動する特徴を理解する。 + +## 前提条件 + +前提条件として、[開発者向け責任あるAIツール](https://www.microsoft.com/ai/ai-lab-responsible-ai-dashboard)をレビューしてください。 + +> ![責任あるAIツールのGIF](../../../../9-Real-World/2-Debugging-ML-Models/images/rai-overview.gif) + +## エラー分析 + +従来のモデルパフォーマンス指標は、正確性を測定するために正しい予測と誤った予測に基づく計算が主流です。例えば、モデルが89%の精度でエラー損失が0.001であると判断される場合、良好なパフォーマンスと見なされることがあります。しかし、エラーは基礎となるデータセット内で均一に分布しているわけではありません。モデルの精度が89%であっても、データの特定の領域でモデルが42%の確率で失敗していることが判明する場合があります。このような特定のデータグループにおける失敗パターンの結果は、公平性や信頼性の問題につながる可能性があります。モデルが良好に機能している箇所やそうでない箇所を理解することが重要です。モデルの不正確さが多いデータ領域は、重要なデータ属性である可能性があります。 + +![モデルエラーを分析・デバッグ](../../../../translated_images/ea-error-distribution.117452e1177c1dd84fab2369967a68bcde787c76c6ea7fdb92fcf15d1fce8206.ja.png) + +RAIダッシュボードのエラー分析コンポーネントは、ツリーの視覚化を通じてモデルの失敗がさまざまなコホートにどのように分布しているかを示します。これにより、データセット内でエラー率が高い特徴や領域を特定するのに役立ちます。モデルの不正確さの大部分がどこから来ているかを確認することで、根本原因の調査を開始できます。また、データコホートを作成して分析を行うことも可能です。これらのデータコホートは、あるコホートでモデルのパフォーマンスが良好である理由や、別のコホートで誤りが発生する理由を特定するデバッグプロセスに役立ちます。 + +![エラー分析](../../../../translated_images/ea-error-cohort.6886209ea5d438c4daa8bfbf5ce3a7042586364dd3eccda4a4e3d05623ac702a.ja.png) + +ツリーマップの視覚的指標は、問題箇所を迅速に特定するのに役立ちます。例えば、ツリーノードの赤色が濃いほど、エラー率が高いことを示します。 + +ヒートマップは、1つまたは2つの特徴を使用してエラー率を調査し、データセット全体やコホート内でモデルエラーの原因を特定するための別の視覚化機能です。 + +![エラー分析ヒートマップ](../../../../translated_images/ea-heatmap.8d27185e28cee3830c85e1b2e9df9d2d5e5c8c940f41678efdb68753f2f7e56c.ja.png) + +エラー分析を使用する場面: + +* モデルの失敗がデータセット全体や複数の入力・特徴次元にどのように分布しているかを深く理解する。 +* 集計パフォーマンス指標を分解し、誤りのあるコホートを自動的に発見して、ターゲットを絞った緩和策を講じる。 + +## モデル概要 + +機械学習モデルのパフォーマンスを評価するには、その挙動を包括的に理解する必要があります。これを達成するには、エラー率、精度、リコール、精度、MAE(平均絶対誤差)など、複数の指標を確認し、パフォーマンス指標間の格差を見つけることが重要です。1つの指標が良好に見えても、別の指標で不正確さが露呈することがあります。さらに、データセット全体やコホート間で指標を比較して格差を確認することで、モデルが良好に機能している箇所やそうでない箇所を明らかにすることができます。特に、敏感な特徴(例:患者の人種、性別、年齢)と非敏感な特徴の間でモデルのパフォーマンスを確認することで、モデルが持つ潜在的な不公平性を明らかにすることができます。例えば、敏感な特徴を持つコホートでモデルがより誤りを犯していることを発見することで、モデルの不公平性が明らかになる場合があります。 + +RAIダッシュボードのモデル概要コンポーネントは、データコホート内のデータ表現のパフォーマンス指標を分析するだけでなく、異なるコホート間でモデルの挙動を比較する機能を提供します。 + +![RAIダッシュボードのデータセットコホート - モデル概要](../../../../translated_images/model-overview-dataset-cohorts.dfa463fb527a35a0afc01b7b012fc87bf2cad756763f3652bbd810cac5d6cf33.ja.png) + +このコンポーネントの特徴ベースの分析機能により、特定の特徴内のデータサブグループを絞り込み、詳細レベルで異常を特定することができます。例えば、ダッシュボードには、ユーザーが選択した特徴(例:*"time_in_hospital < 3"* または *"time_in_hospital >= 7"*)に基づいてコホートを自動生成するインテリジェンスが組み込まれています。これにより、ユーザーは大規模なデータグループから特定の特徴を分離し、それがモデルの誤った結果の主要な影響要因であるかどうかを確認できます。 + +![RAIダッシュボードの特徴コホート - モデル概要](../../../../translated_images/model-overview-feature-cohorts.c5104d575ffd0c80b7ad8ede7703fab6166bfc6f9125dd395dcc4ace2f522f70.ja.png) + +モデル概要コンポーネントは、以下の2種類の格差指標をサポートしています: + +**モデルパフォーマンスの格差**: これらの指標は、選択したパフォーマンス指標の値の格差(差異)をデータのサブグループ間で計算します。以下はその例です: + +* 精度率の格差 +* エラー率の格差 +* 精度の格差 +* リコールの格差 +* 平均絶対誤差(MAE)の格差 + +**選択率の格差**: この指標は、サブグループ間での選択率(好ましい予測)の差異を含みます。例えば、ローン承認率の格差がこれに該当します。選択率とは、各クラスのデータポイントのうち、1(バイナリ分類の場合)に分類された割合や、予測値の分布(回帰の場合)を指します。 + +## データ分析 + +> 「データを十分に拷問すれば、何でも白状する」 - ロナルド・コース + +この言葉は極端に聞こえるかもしれませんが、データはどんな結論を支持するようにも操作可能であるという点で真実です。このような操作は時に意図せずに行われることもあります。人間は誰しもバイアスを持っており、データにバイアスを導入していることを意識的に認識するのは難しいことがあります。AIや機械学習における公平性を保証することは依然として複雑な課題です。 + +データは従来のモデルパフォーマンス指標にとって大きな盲点です。高い精度スコアを持っていても、それがデータセット内の潜在的なデータバイアスを反映しているとは限りません。例えば、ある企業の役員ポジションにおける従業員のデータセットが、女性が27%、男性が73%である場合、このデータでトレーニングされた求人広告AIモデルは、主に男性を対象にしたシニアレベルの求人をターゲットにする可能性があります。このようなデータの不均衡は、モデルの予測を特定の性別に偏らせ、公平性の問題を引き起こします。 + +RAIダッシュボードのデータ分析コンポーネントは、データセット内で過剰または不足している表現を特定するのに役立ちます。これにより、データの不均衡や特定のデータグループの表現不足から生じるエラーや公平性の問題の根本原因を診断することができます。ユーザーは予測結果や実際の結果、エラーグループ、特定の特徴に基づいてデータセットを視覚化することができます。時には、表現不足のデータグループを発見することで、モデルが十分に学習していないことが明らかになり、それが高い不正確さの原因である場合もあります。データバイアスを持つモデルは、公平性の問題だけでなく、包括性や信頼性の欠如を示しています。 + +![RAIダッシュボードのデータ分析コンポーネント](../../../../translated_images/dataanalysis-cover.8d6d0683a70a5c1e274e5a94b27a71137e3d0a3b707761d7170eb340dd07f11d.ja.png) + +データ分析を使用する場面: + +* 異なるフィルターを選択してデータをさまざまな次元(コホート)に分割し、データセット統計を探索する。 +* データセットの分布を異なるコホートや特徴グループ間で理解する。 +* 公平性、エラー分析、因果関係(他のダッシュボードコンポーネントから得られる)に関連する発見がデータセットの分布によるものかどうかを判断する。 +* 表現問題、ラベルノイズ、特徴ノイズ、ラベルバイアスなどの要因から生じるエラーを緩和するために、どの領域でデータを収集するべきかを決定する。 + +## モデルの解釈性 + +機械学習モデルはブラックボックスと見なされることが多いです。モデルの予測を駆動する主要なデータ特徴を理解することは困難です。モデルが特定の予測を行う理由に透明性を提供することが重要です。例えば、AIシステムが糖尿病患者が30日以内に再入院するリスクがあると予測した場合、その予測に至った根拠となるデータを提供するべきです。このような根拠データの指標は、医師や病院が十分な情報に基づいた意思決定を行うのに役立ちます。また、個々の患者に対するモデルの予測理由を説明することで、医療規制に対する責任を果たすことができます。人々の生活に影響を与える方法で機械学習モデルを使用する場合、モデルの挙動を駆動する要因を理解し説明することが重要です。モデルの説明可能性と解釈性は、以下のようなシナリオで疑問に答えるのに役立ちます: + +* モデルのデバッグ: なぜモデルがこの誤りを犯したのか?モデルをどのように改善できるのか? +* 人間とAIの協力: モデルの決定をどのように理解し信頼できるのか? +* 規制遵守: モデルは法的要件を満たしているか? + +RAIダッシュボードの特徴の重要性コンポーネントは、モデルの予測がどのように行われるかを包括的に理解しデバッグするのに役立ちます。また、機械学習の専門家や意思決定者がモデルの挙動に影響を与える特徴の証拠を説明し、規制遵守のために示すのに役立つツールです。次に、ユーザーはグローバルおよびローカルの説明を探索し、モデルの予測を駆動する特徴を検証できます。グローバル説明は、モデルの全体的な予測に影響を与えた主要な特徴をリストします。ローカル説明は、個々のケースに対するモデルの予測理由を表示します。ローカル説明を評価する能力は、特定のケースをデバッグまたは監査し、モデルが正確または不正確な予測を行った理由をよりよく理解し解釈するのに役立ちます。 + +![RAIダッシュボードの特徴の重要性コンポーネント](../../../../translated_images/9-feature-importance.cd3193b4bba3fd4bccd415f566c2437fb3298c4824a3dabbcab15270d783606e.ja.png) + +* グローバル説明: 例えば、糖尿病患者の病院再入院モデルの全体的な挙動に影響を与える特徴は何か? +* ローカル説明: 例えば、60歳以上で以前に入院した糖尿病患者が30日以内に再入院すると予測された理由は何か? + +異なるコホート間でモデルのパフォーマンスを調査するデバッグプロセスでは、特徴の重要性がコホート全体で特徴がどの程度影響を与えているかを示します。特徴がモデルの誤った予測を駆動する影響度を比較する際に異常を明らかにするのに役立ちます。このコンポーネントは、特徴や特徴値がモデルの結果にどのように正または負の影響を与えたかを示すことができます。例えば、モデルが不正確な予測を行った場合、このコンポーネントは予測を駆動した特徴や特徴値を特定する能力を提供します。この詳細レベルは、デバッグだけでなく、監査状況での透明性と責任を提供するのに役立ちます。最後に、このコンポーネントは公平性の問題を特定するのにも役立ちます。例えば、民族性や性別などの敏感な特徴がモデルの予測を駆動する主要な影響要因である場合、これはモデルに人種や性別のバイアスがある兆候である可能性があります。 + +![特徴の重要性](../../../../translated_images/9-features-influence.3ead3d3f68a84029f1e40d3eba82107445d3d3b6975d4682b23d8acc905da6d0.ja.png) + +解釈性を使用する場面: + +* AIシステムの予測がどの程度信頼できるかを判断するために、予測に最も重要な特徴を理解する。 +* モデルを +- **過剰または不足の表現**。特定のグループがある職業で見られない場合、その状況を促進し続けるサービスや機能は害を与えることに寄与していると考えられます。 + +### Azure RAI ダッシュボード + +[Azure RAI ダッシュボード](https://learn.microsoft.com/en-us/azure/machine-learning/concept-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu) は、Microsoftを含む主要な学術機関や組織によって開発されたオープンソースツールを基盤としており、データサイエンティストやAI開発者がモデルの挙動をより深く理解し、AIモデルから生じる望ましくない問題を発見し軽減するのに役立ちます。 + +- RAIダッシュボードの異なるコンポーネントの使い方を学ぶには、[ドキュメント](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu)をチェックしてください。 + +- Azure Machine Learningでより責任あるAIシナリオをデバッグするためのRAIダッシュボードの[サンプルノートブック](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks)を確認してください。 + +--- +## 🚀 チャレンジ + +統計的またはデータバイアスが最初から導入されるのを防ぐために、以下を行うべきです: + +- システムに取り組む人々の背景や視点の多様性を確保する +- 社会の多様性を反映したデータセットに投資する +- バイアスが発生した際にそれを検出し修正するためのより良い方法を開発する + +モデル構築や使用において不公平が明らかになる実際のシナリオについて考えてみてください。他に何を考慮すべきでしょうか? + +## [講義後のクイズ](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/6/) +## 復習と自己学習 + +このレッスンでは、機械学習に責任あるAIを組み込むための実践的なツールについて学びました。 + +以下のワークショップを視聴して、トピックをさらに深く掘り下げてください: + +- Besmira NushiとMehrnoosh Samekiによる「Responsible AI Dashboard: 実践でRAIを運用するためのワンストップショップ」 + +[![Responsible AI Dashboard: 実践でRAIを運用するためのワンストップショップ](https://img.youtube.com/vi/f1oaDNl3djg/0.jpg)](https://www.youtube.com/watch?v=f1oaDNl3djg "Responsible AI Dashboard: 実践でRAIを運用するためのワンストップショップ") + +> 🎥 上の画像をクリックして動画を視聴してください: Besmira NushiとMehrnoosh Samekiによる「Responsible AI Dashboard: 実践でRAIを運用するためのワンストップショップ」 + +責任あるAIについてさらに学び、より信頼性の高いモデルを構築する方法を知るために以下の資料を参照してください: + +- MLモデルをデバッグするためのMicrosoftのRAIダッシュボードツール: [責任あるAIツールのリソース](https://aka.ms/rai-dashboard) + +- 責任あるAIツールキットを探索する: [Github](https://github.com/microsoft/responsible-ai-toolbox) + +- MicrosoftのRAIリソースセンター: [責任あるAIリソース – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- MicrosoftのFATE研究グループ: [FATE: AIにおける公平性、説明責任、透明性、倫理 - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +## 課題 + +[RAIダッシュボードを探索する](assignment.md) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/9-Real-World/2-Debugging-ML-Models/assignment.md b/translations/ja/9-Real-World/2-Debugging-ML-Models/assignment.md new file mode 100644 index 000000000..aece0a9d7 --- /dev/null +++ b/translations/ja/9-Real-World/2-Debugging-ML-Models/assignment.md @@ -0,0 +1,25 @@ + +# 責任あるAI(RAI)ダッシュボードを探る + +## 手順 + +このレッスンでは、RAIダッシュボードについて学びました。これは、データサイエンティストがエラー分析、データ探索、公平性評価、モデルの解釈性、反事実/仮定評価、因果分析をAIシステムで行うのを支援するために、「オープンソース」ツールを基盤として構築されたコンポーネント群です。この課題では、RAIダッシュボードのサンプル[ノートブック](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks)をいくつか探索し、それに基づいて得られた知見をレポートまたはプレゼンテーション形式で報告してください。 + +## 評価基準 + +| 基準 | 優秀 | 適切 | 改善が必要 | +| -------- | --------- | -------- | ----------------- | +| | RAIダッシュボードのコンポーネント、実行したノートブック、およびその実行から得られた結論について議論するレポートまたはパワーポイントプレゼンテーションが提出されている | 結論が含まれていないレポートが提出されている | レポートが提出されていない | + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/9-Real-World/README.md b/translations/ja/9-Real-World/README.md new file mode 100644 index 000000000..820bbd59c --- /dev/null +++ b/translations/ja/9-Real-World/README.md @@ -0,0 +1,32 @@ + +# 後書き: 古典的機械学習の実世界での応用 + +このカリキュラムのこのセクションでは、古典的な機械学習の実世界での応用例を紹介します。インターネットを徹底的に調査し、ニューラルネットワークやディープラーニング、AIをできるだけ避けた上で、これらの戦略を使用した応用に関するホワイトペーパーや記事を見つけました。機械学習がビジネスシステム、生態学的応用、金融、芸術や文化などでどのように活用されているかを学びましょう。 + +![chess](../../../translated_images/chess.e704a268781bdad85d1876b6c2295742fa0d856e7dcf3659147052df9d3db205.ja.jpg) + +> 写真提供: Alexis Fauvet on Unsplash + +## レッスン + +1. [機械学習の実世界での応用](1-Applications/README.md) +2. [責任あるAIダッシュボードコンポーネントを使用した機械学習モデルのデバッグ](2-Debugging-ML-Models/README.md) + +## クレジット + +「機械学習の実世界での応用」は、[Jen Looper](https://twitter.com/jenlooper) と [Ornella Altunyan](https://twitter.com/ornelladotcom) を含むチームによって執筆されました。 + +「責任あるAIダッシュボードコンポーネントを使用した機械学習モデルのデバッグ」は、[Ruth Yakubu](https://twitter.com/ruthieyakubu) によって執筆されました。 + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/CODE_OF_CONDUCT.md b/translations/ja/CODE_OF_CONDUCT.md new file mode 100644 index 000000000..0950820eb --- /dev/null +++ b/translations/ja/CODE_OF_CONDUCT.md @@ -0,0 +1,23 @@ + +# Microsoft オープンソース行動規範 + +このプロジェクトは [Microsoft オープンソース行動規範](https://opensource.microsoft.com/codeofconduct/) を採用しています。 + +リソース: + +- [Microsoft オープンソース行動規範](https://opensource.microsoft.com/codeofconduct/) +- [Microsoft 行動規範 FAQ](https://opensource.microsoft.com/codeofconduct/faq/) +- 質問や懸念がある場合は [opencode@microsoft.com](mailto:opencode@microsoft.com) にお問い合わせください + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/CONTRIBUTING.md b/translations/ja/CONTRIBUTING.md new file mode 100644 index 000000000..0adbee616 --- /dev/null +++ b/translations/ja/CONTRIBUTING.md @@ -0,0 +1,24 @@ + +# 貢献について + +このプロジェクトでは、貢献や提案を歓迎しています。ほとんどの貢献には、Contributor License Agreement (CLA) に同意する必要があります。CLAでは、あなたがその貢献を使用する権利を私たちに与える権利を持っていること、そして実際にその権利を与えることを宣言します。詳細については、https://cla.microsoft.com をご覧ください。 + +> 重要: このリポジトリ内のテキストを翻訳する際には、機械翻訳を使用しないようにしてください。翻訳はコミュニティによって検証されますので、十分に習熟している言語でのみ翻訳をボランティアしてください。 + +プルリクエストを送信すると、CLAボットが自動的にCLAを提供する必要があるかどうかを判断し、PRに適切な装飾(例: ラベルやコメント)を行います。ボットの指示に従うだけで問題ありません。CLAは、すべてのリポジトリで一度だけ提供すれば済みます。 + +このプロジェクトは[Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)を採用しています。 +詳細については、[Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)をご覧いただくか、追加の質問やコメントがある場合は [opencode@microsoft.com](mailto:opencode@microsoft.com) にお問い合わせください。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/PyTorch_Fundamentals.ipynb b/translations/ja/PyTorch_Fundamentals.ipynb new file mode 100644 index 000000000..098ea8ad9 --- /dev/null +++ b/translations/ja/PyTorch_Fundamentals.ipynb @@ -0,0 +1,2830 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "authorship_tag": "ABX9TyOgv0AozH1FKQBD+RkgT2bV", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU", + "coopTranslator": { + "original_hash": "0ca21b6ee62904d616f2e36dc1cf0da7", + "translation_date": "2025-09-04T01:01:01+00:00", + "source_file": "PyTorch_Fundamentals.ipynb", + "language_code": "ja" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EHh5JllMh1rG", + "outputId": "f55755ad-c369-414c-85ec-6e9d4f061a02", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.2.1+cu121'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import torch\n", + "torch.__version__" + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"I am excited to run this\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UPlb-duwXAfz", + "outputId": "cfd687e4-1238-49f4-ab6b-ee1305b740d2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "I am excited to run this\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "print(torch.__version__)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "byWVlJ9wXDSk", + "outputId": "fd74a5c4-4d4a-41b2-ef3c-562ea3e4811f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2.2.1+cu121\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "Osm80zoEYklS" + } + }, + { + "cell_type": "code", + "source": [ + "# scalar\n", + "scalar = torch.tensor(7)\n", + "scalar" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-o8wvJ-VXZmI", + "outputId": "558816f5-1205-4de1-fe1f-2f96e9bd79e6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(7)" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mCZ2tXC4Y_Sg", + "outputId": "2d86dbdc-56e1-45c6-d3dd-14515f2a457a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ssN00By0ZQgS", + "outputId": "490f40d1-5135-4969-a6d3-c8c902cdc473" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "7" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# vector\n", + "vector = torch.tensor([7, 7])\n", + "vector\n", + "#vector.ndim\n", + "#vector.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Bws__5wlZnmF", + "outputId": "944e38f9-5ba1-4ddc-a9c6-cfb6a19bb488" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([7, 7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "vector.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9pjCvnsZZzNG", + "outputId": "e030a4da-8f81-4858-fbce-86da2aaafe52" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([2])" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Matrix\n", + "MATRIX = torch.tensor([[7, 8],[9, 10]])\n", + "MATRIX" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "a747hI9SaBGW", + "outputId": "af835ddb-81ff-4981-badb-441567194d15" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[ 7, 8],\n", + " [ 9, 10]])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XdTfFa7vaRUj", + "outputId": "0fbbab9c-8263-4cad-a380-0d2a16ca499e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX[0]\n", + "MATRIX[1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TFeD3jSDafm7", + "outputId": "69b44ab3-5ba7-451a-c6b2-f019a03d0c96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Tensor\n", + "TENSOR = torch.tensor([[[1, 2, 3],[3,6,9], [2,4,5]]])\n", + "TENSOR" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ic3cE47tah42", + "outputId": "f250e295-91de-43ec-9d80-588a6fe0abde" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]]])" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Wvjf5fczbAM1", + "outputId": "9c72b5b8-bafe-4ae7-9883-b051e209eada" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([1, 3, 3])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mwtXZwiMbN3m", + "outputId": "331a5e36-b1b0-4a5f-a9b8-e7049cbaa8f9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "3" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vzdZu_IfbP3J", + "outputId": "e24e7e71-e365-412d-ff50-fc094b56d2f3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]])" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "A8OL9eWfcRrJ" + } + }, + { + "cell_type": "code", + "source": [ + "random_tensor = torch.rand(3,4)\n", + "random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hAqSDE1EcVS_", + "outputId": "946171c3-d054-400c-f893-79110356888c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.4414, 0.7681, 0.8385, 0.3166],\n", + " [0.0468, 0.5812, 0.0670, 0.9173],\n", + " [0.2959, 0.3276, 0.7411, 0.4643]])" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "g4fvPE5GcwzP", + "outputId": "8737f36b-6864-4059-eaed-6f9156c22306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XsAg99QmdAU6", + "outputId": "35467c11-257c-4f16-99aa-eca930bcbc36" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.size()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cii1pNdVdB68", + "outputId": "fc8d2de6-9215-43de-99f7-7b0d7f7d20fa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_image_tensor = torch.rand(size=(3, 224, 224)) #color channels, height, width\n", + "random_image_tensor.ndim, random_image_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aTKq2j0cdDjb", + "outputId": "6be42057-20b9-4faf-d79d-8b65c42cc27e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([3, 224, 224]))" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor_ofownsize = torch.rand(size=(5,10,10))\n", + "random_tensor_ofownsize.ndim, random_tensor_ofownsize.shape\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IyhDdj-Pd6nC", + "outputId": "43e5e334-6d4d-4b67-f87d-7d364c6d8c67" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([5, 10, 10]))" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "UOJW08uOert_" + } + }, + { + "cell_type": "code", + "source": [ + "zero = torch.zeros(size=(3, 4))\n", + "zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGvXtaXyefie", + "outputId": "d40d3e28-8667-4d2f-8b62-f0829c6162ad" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "zero*random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OyUkUPkDe0uH", + "outputId": "26c2e4be-36ba-4c6c-9a90-2704ec135828" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones = torch.ones(size=(3, 4))\n", + "ones\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "y_Ac62Aqe82G", + "outputId": "291de5d9-b9df-49de-c9d1-d098e3e9f4d8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1., 1., 1., 1.],\n", + " [1., 1., 1., 1.],\n", + " [1., 1., 1., 1.]])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TvGOA9odfIEO", + "outputId": "45949ef4-6649-4b6c-d6af-2d4bfb8de832" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones*zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "--pTyge-fI-8", + "outputId": "c4d9bb7e-829b-43db-e2db-b1a2d64e61f0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "qDcc7Z36fSJF" + } + }, + { + "cell_type": "code", + "source": [ + "one_to_ten = torch.arange(start = 1, end = 11, step = 1)\n", + "one_to_ten" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "w3CZB4zUfR1s", + "outputId": "197fcba1-da0a-4b4a-ed11-3974bd6c01aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 27 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ten_zeros = torch.zeros_like(one_to_ten)\n", + "ten_zeros" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WZh99BwVfRy8", + "outputId": "51ef8bfb-6fa0-4099-ff66-b97d65b2ddea" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "テンソルデータ型\n" + ], + "metadata": { + "id": "pGGhgsbUgqbW" + } + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor = torch.tensor([3.0, 6.0,9.0], dtype = None, device = None, requires_grad = False)\n", + "float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JORJl4XkfRsx", + "outputId": "71114171-0f49-481f-b6fc-6cb48e2fb895" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3., 6., 9.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6wOPPwGyfRLn", + "outputId": "f23776a1-b682-404a-9f67-d5bcb0402666" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor = float_32_tensor.type(torch.float16)\n", + "float_16_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tFsHCvmZfOYe", + "outputId": "d3aa305a-7591-47f5-97fd-61bff60b44bd" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float16" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TQiCGTPuwq0q", + "outputId": "98750fce-1ca3-4889-e269-8b753efdea96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor = torch.tensor([3, 6, 9], dtype = torch.int32)\n", + "int_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5hlrLvGUw5D_", + "outputId": "41d890a0-9aee-446c-d906-631ce2ab0995" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9], dtype=torch.int32)" + ] + }, + "metadata": {}, + "execution_count": 33 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ihApD9u3xTNW", + "outputId": "d295eed0-6996-4e0f-8502-ff4b55cd1373" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(0,100,10)" + ], + "metadata": { + "id": "utKhlb_KxWDQ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p78D74E9Rj7Y", + "outputId": "781a1614-a900-41f5-9e5d-358f0b2390aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])" + ] + }, + "metadata": {}, + "execution_count": 36 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.min()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4BcSs5NeRkcj", + "outputId": "3f24a8dc-58e9-4a5f-9834-e85856a34f9d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.max()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hinqvXVLRm4q", + "outputId": "5c7d8a53-3913-4ac1-bba3-5ba8ff68250a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 38 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mean(x.type(torch.float32))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "k7okc0_vRpnB", + "outputId": "91e5494f-dc57-417c-ea4d-25dbc547c893" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 39 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.type(torch.float32).mean()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "29QcDTjHRq10", + "outputId": "62937c6c-78e0-49f2-dde3-1543ee8f7907" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 40 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.sum()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wlpY_G_sbdKF", + "outputId": "475d8258-af65-4011-a258-b93d4d8142d4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(450)" + ] + }, + "metadata": {}, + "execution_count": 41 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmax()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GT6HJzwhbk4n", + "outputId": "2e455c20-c322-4bcf-d07c-1259d3ccefc6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmin()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "egL3oi2Mb19P", + "outputId": "f71fb32f-6338-44a3-b377-75bea0a3ab54" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 43 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p2U8DZKib3DP", + "outputId": "b9f613b9-74e9-45f4-ed01-05babb6a6793" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 44 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[9]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "24qBFlGYcABe", + "outputId": "5813cfcb-7f63-4bd7-ee46-f95ccbfda939" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 45 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(1, 10)\n", + "x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0GPOxEzkcBHO", + "outputId": "aefbd903-4f4c-4d2c-c90f-eccd682fe018" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([9])" + ] + }, + "metadata": {}, + "execution_count": 46 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped = x.reshape(1,9)\n", + "x_reshaped, x_reshaped.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "spmRgQjwddgp", + "outputId": "85a7c55c-2909-4ea2-fc68-386dddc65742" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]]), torch.Size([1, 9]))" + ] + }, + "metadata": {}, + "execution_count": 47 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped.view(1,9)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tH2ahWGydqqP", + "outputId": "65d92263-4fc4-434a-c06d-c5e08436f7fe" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 48 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked = torch.stack([x, x, x, x], dim = 1)\n", + "x_stacked" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jgCeJcaud_-1", + "outputId": "7f293a37-6ef1-43b6-aee5-9d6d91c94f9e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 49 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XhJHIK6cfPse", + "outputId": "06c47b89-3a9e-453e-bcc3-00cbcb0b8b49" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 50 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ej2c3Xxzf0tq", + "outputId": "94024061-eb37-446d-c4a8-e4d16cb6de81" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 52 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4DJYo1a0f5M0", + "outputId": "efca2b47-1b14-44de-9a9a-2c83629d153f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 53 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=-2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "J4iEjn2ah2HL", + "outputId": "22395593-7c16-4162-beae-dd2bbe7bda35" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 55 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "tensor = torch.tensor([1, 2, 3])\n", + "tensor = tensor - 10\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cFfiD7Nth7Z_", + "outputId": "1139e1f8-fc1a-46ca-d636-f2bc4fd2eef6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-9, -8, -7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mul(tensor, 10)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dyA7BM_GHhqE", + "outputId": "0e3b9671-d9e8-4a32-87bb-59bc05986142" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-90, -80, -70])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.sub(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "owtUsZ1KNegI", + "outputId": "189b7b23-0041-4e09-b991-cd209a48506a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-109, -108, -107])" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.add(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "K5STXlQONsyc", + "outputId": "00cbb79a-0a1d-4e21-86ec-5c91c37a2d01" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([91, 92, 93])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.divide(tensor, 2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xqMGnzIUNvp0", + "outputId": "c894cf3e-f148-45f8-cfc8-d78740735306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-4.5000, -4.0000, -3.5000])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(tensor, tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ruGzKpV8NyBc", + "outputId": "fddb63bf-006f-48b6-ae28-287fbcda8bc5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8GS3r9yTeGfD", + "outputId": "c80b12ac-30b5-4f3d-c38c-9e41ba511b0e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "QmuYHqXTemC0", + "outputId": "402fe3ba-70b5-4bb2-c83b-254db84ff810" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 622 µs, sys: 0 ns, total: 622 µs\n", + "Wall time: 516 µs\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "torch.matmul(tensor,tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dGr1fzdNepd8", + "outputId": "97bd6c91-bc25-4b38-cdf5-f22dcdef243e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 424 µs, sys: 998 µs, total: 1.42 ms\n", + "Wall time: 1.43 ms\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.rand(3,2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pGYDoK2gevfo", + "outputId": "2c8783d5-0453-47c5-c7ed-af10d25d6989" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5999, 0.0073],\n", + " [0.9321, 0.3026],\n", + " [0.3463, 0.3872]])" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(torch.rand(3,2), torch.rand(2,3))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KGBGQoB8e2DP", + "outputId": "4c2ef361-a2d0-41ee-c328-3992cbbc138d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.3528, 0.1893, 0.0714],\n", + " [1.2791, 0.7110, 0.2563],\n", + " [0.8812, 0.4553, 0.1803]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch" + ], + "metadata": { + "id": "ib8DMtkBe_LJ" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x = torch.rand(2,9)" + ], + "metadata": { + "id": "nJo8ZBdrQY1b" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wi6oRv4MQfgf", + "outputId": "55c99f55-31f6-4cf5-ba4e-19a47c3a0167" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5894, 0.4391, 0.2018, 0.5417, 0.3844, 0.3592, 0.9209, 0.9269, 0.0681],\n", + " [0.0746, 0.1740, 0.6821, 0.6890, 0.0999, 0.7444, 0.2391, 0.4625, 0.8302]])" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "y=torch.randn(2,3,5)\n", + "y" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zpx8myAUQgoc", + "outputId": "07756d70-56bd-437c-c74e-9aecc1a77311" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[ 1.5552, -0.4877, 0.5175, -1.7958, -0.6187],\n", + " [-0.3359, -1.9710, 0.0112, -1.7578, -1.5295],\n", + " [ 0.0932, 1.4079, 0.9108, 0.3328, -0.6978]],\n", + "\n", + " [[-0.9406, -1.0809, -0.2595, 0.1282, 1.6605],\n", + " [ 1.1624, 1.0902, 1.7092, -0.2842, -1.3780],\n", + " [-0.1534, -1.2795, -0.5495, 0.9902, 0.1822]]])" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original = torch.rand(size=(224,224,3))\n", + "x_original" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "s4U-X9bJQnWe", + "outputId": "657a7a76-962c-4b41-a76b-902d0482266c" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[0.4549, 0.6809, 0.2118],\n", + " [0.4824, 0.9008, 0.8741],\n", + " [0.1715, 0.1757, 0.1845],\n", + " ...,\n", + " [0.8741, 0.6594, 0.2610],\n", + " [0.0092, 0.1984, 0.1955],\n", + " [0.4236, 0.4182, 0.0251]],\n", + "\n", + " [[0.9174, 0.1661, 0.5852],\n", + " [0.1837, 0.2351, 0.3810],\n", + " [0.3726, 0.4808, 0.8732],\n", + " ...,\n", + " [0.6794, 0.0554, 0.9202],\n", + " [0.0864, 0.8750, 0.3558],\n", + " [0.8445, 0.9759, 0.4934]],\n", + "\n", + " [[0.1600, 0.2635, 0.7194],\n", + " [0.9488, 0.3405, 0.3647],\n", + " [0.6683, 0.5168, 0.9592],\n", + " ...,\n", + " [0.0521, 0.0140, 0.2445],\n", + " [0.3596, 0.3999, 0.2730],\n", + " [0.5926, 0.9877, 0.7784]],\n", + "\n", + " ...,\n", + "\n", + " [[0.4794, 0.5635, 0.3764],\n", + " [0.9124, 0.6094, 0.5059],\n", + " [0.4528, 0.4447, 0.5021],\n", + " ...,\n", + " [0.0089, 0.4816, 0.8727],\n", + " [0.2173, 0.6296, 0.2347],\n", + " [0.2028, 0.9931, 0.7201]],\n", + "\n", + " [[0.3116, 0.6459, 0.4703],\n", + " [0.0148, 0.2345, 0.7149],\n", + " [0.8393, 0.5804, 0.6691],\n", + " ...,\n", + " [0.2105, 0.9460, 0.2696],\n", + " [0.5918, 0.9295, 0.2616],\n", + " [0.2537, 0.7819, 0.4700]],\n", + "\n", + " [[0.6654, 0.1200, 0.5841],\n", + " [0.9147, 0.5522, 0.6529],\n", + " [0.1799, 0.5276, 0.5415],\n", + " ...,\n", + " [0.7536, 0.4346, 0.8793],\n", + " [0.3793, 0.1750, 0.7792],\n", + " [0.9266, 0.8325, 0.9974]]])" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted=x_original.permute(2, 0, 1)\n", + "print(x_original.shape)\n", + "print(x_permuted.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DD19_zvbQzHo", + "outputId": "1d64ce1b-eb48-47e3-90b6-7f1340e7f2b2" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "torch.Size([224, 224, 3])\n", + "torch.Size([3, 224, 224])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NnPmMk4ZRF7w", + "outputId": "2cd5da7f-4a23-4a76-8c4a-bb982113f2a4" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z0ylNoAARgTo", + "outputId": "ddca0298-cddf-4048-9b71-a791655e5bed" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]=0.989" + ], + "metadata": { + "id": "RXw0xXsDRi4L" + }, + "execution_count": 13, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1sFdV6wzRo3f", + "outputId": "1cf87d2c-6d88-453a-d136-0f625a2800f1" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xTX-hx2SR1wp", + "outputId": "0d4908c4-c3bc-44e3-8ec6-1487104cc209" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x=torch.arange(1,10).reshape(1,3,3)\n", + "x, x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mZomOe7gR4Q8", + "outputId": "0b3c922f-ec11-46de-b8a5-9f9533d866ad" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]]]),\n", + " torch.Size([1, 3, 3]))" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3y7v4SQvSBs1", + "outputId": "8c53307d-e628-404d-db66-56c6bdffab7c" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hf9uG4xLSNya", + "outputId": "3075bc42-9ffa-426b-8a86-95628ffcd824" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zA4G2Se4SRB3", + "outputId": "324312d2-ed0a-49eb-f81f-e904e53992fe" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(1)" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][2][2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Mwy3zmKKSdbk", + "outputId": "d35172c3-b099-40a6-ddf1-a453c2adfa44" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[:,1,1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fE3nCM1KS7XT", + "outputId": "01f5d755-9737-4235-9f73-dce89ff6ba16" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([5])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,0,:]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "luNDINKNTTxp", + "outputId": "091195ef-2f71-4602-e95f-529a69193150" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,:,2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KG8A4xbfThCL", + "outputId": "5866bc41-9241-4619-be7b-e9206b3f80ab" + }, + "execution_count": 26, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np" + ], + "metadata": { + "id": "CZ3PX0qlTwHJ" + }, + "execution_count": 27, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array = np.arange(1.0, 8.0)" + ], + "metadata": { + "id": "UOBeTumiT3Lf" + }, + "execution_count": 28, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RzcO32E9UCQl", + "outputId": "430def24-c42c-461f-e5e7-398544c695d3" + }, + "execution_count": 29, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1., 2., 3., 4., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.from_numpy(array)\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JJIL0q1DUC6O", + "outputId": "8a3b1d7c-4482-4d32-f34f-9212d9d3a177" + }, + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1., 2., 3., 4., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "array[3]=11.0" + ], + "metadata": { + "id": "j3Ce6q3DUIEK" + }, + "execution_count": 33, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dc_BCVdjUsCc", + "outputId": "65537325-8b11-4f36-fc73-e56f30d6a036" + }, + "execution_count": 34, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 1., 2., 3., 11., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VG1e_eITUta2", + "outputId": "a26c5198-23b6-4a6d-d73a-ba20cd9782b8" + }, + "execution_count": 35, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1., 2., 3., 11., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 35 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.ones(7)\n", + "tensor, tensor.dtype\n", + "numpy_tensor = tensor.numpy()\n", + "numpy_tensor, numpy_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Swt8JF8vUuev", + "outputId": "c9e5bf6a-6d2c-41d6-8327-366867ffdd2d" + }, + "execution_count": 37, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(array([1., 1., 1., 1., 1., 1., 1.], dtype=float32), dtype('float32'))" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "random_tensor_A = torch.rand(3,4)\n", + "random_tensor_B = torch.rand(3,4)\n", + "print(random_tensor_A)\n", + "print(random_tensor_B)\n", + "print(random_tensor_A == random_tensor_B)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGcagTteVFTD", + "outputId": "49405790-08e7-4210-b7f1-f00b904c7eb9" + }, + "execution_count": 38, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.9870, 0.6636, 0.6873, 0.8863],\n", + " [0.8386, 0.4169, 0.3587, 0.0265],\n", + " [0.2981, 0.6025, 0.5652, 0.5840]])\n", + "tensor([[0.9821, 0.3481, 0.0913, 0.4940],\n", + " [0.7495, 0.4387, 0.9582, 0.8659],\n", + " [0.5064, 0.6919, 0.0809, 0.9771]])\n", + "tensor([[False, False, False, False],\n", + " [False, False, False, False],\n", + " [False, False, False, False]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "RANDOM_SEED = 42\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_C = torch.rand(3,4)\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_D = torch.rand(3,4)\n", + "print(random_tensor_C)\n", + "print(random_tensor_D)\n", + "print(random_tensor_C == random_tensor_D)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HznyXyEaWjLM", + "outputId": "25956434-01b6-4059-9054-c9978884ddc1" + }, + "execution_count": 46, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[True, True, True, True],\n", + " [True, True, True, True],\n", + " [True, True, True, True]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!nvidia-smi" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vltPTh0YXJSt", + "outputId": "807af6dc-a9ca-4301-ec32-b688dbde8be8" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Thu May 23 02:57:59 2024 \n", + "+---------------------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |\n", + "|-----------------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|=========================================+======================+======================|\n", + "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", + "| N/A 60C P8 11W / 70W | 0MiB / 15360MiB | 0% Default |\n", + "| | | N/A |\n", + "+-----------------------------------------+----------------------+----------------------+\n", + " \n", + "+---------------------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=======================================================================================|\n", + "| No running processes found |\n", + "+---------------------------------------------------------------------------------------+\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "torch.cuda.is_available()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "L6mMyPDyYh1j", + "outputId": "279c5dd8-c2a8-4fbd-f321-2f5d7c6e90e6" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "device" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "oOdiYa7ZYytx", + "outputId": "d73b04fc-8963-4826-9722-08d118d5ab91" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'cuda'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.cuda.device_count()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vOdsazLqZFM5", + "outputId": "8189cd6a-9017-4663-a652-3e15c517d9c3" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.tensor([1,2,3], device = \"cpu\")\n", + "print(tensor, tensor.device)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cdik9Vw3ZMv0", + "outputId": "044a68fd-83a1-409d-8e3b-655142ca0270" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([1, 2, 3]) cpu\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu = tensor.to(device)\n", + "tensor_on_gpu" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zmp835rrZp-z", + "outputId": "37fa3413-18a3-47bf-ae51-5b36ff85a3ef" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3], device='cuda:0')" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu.numpy()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 159 + }, + "id": "jhriaa8uZ1yM", + "outputId": "bc5a3226-1a12-4fea-8769-a44f21cdc323" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "error", + "ename": "TypeError", + "evalue": "can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtensor_on_gpu\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first." + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_cpu = tensor_on_gpu.cpu().numpy()" + ], + "metadata": { + "id": "LHGXK3GgaOzL" + }, + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "j-El4LlCajfq" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知おきください。元の言語で記載された原文が公式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の使用に起因する誤解や誤認について、当方は一切の責任を負いません。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ja/README.md b/translations/ja/README.md new file mode 100644 index 000000000..2238091fc --- /dev/null +++ b/translations/ja/README.md @@ -0,0 +1,177 @@ + +[![GitHub license](https://img.shields.io/github/license/microsoft/ML-For-Beginners.svg)](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE) +[![GitHub contributors](https://img.shields.io/github/contributors/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/) +[![GitHub issues](https://img.shields.io/github/issues/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/issues/) +[![GitHub pull-requests](https://img.shields.io/github/issues-pr/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/pulls/) +[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) + +[![GitHub watchers](https://img.shields.io/github/watchers/microsoft/ML-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/ML-For-Beginners/watchers/) +[![GitHub forks](https://img.shields.io/github/forks/microsoft/ML-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/ML-For-Beginners/network/) +[![GitHub stars](https://img.shields.io/github/stars/microsoft/ML-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/ML-For-Beginners/stargazers/) + +### 🌐 多言語対応 + +#### GitHub Actionによるサポート(自動更新&常に最新) + +[French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](./README.md) | [Korean](../ko/README.md) | [Hindi](../hi/README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md) + +#### コミュニティに参加しよう + +[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr) + +# 初心者向け機械学習 - カリキュラム + +> 🌍 世界中を旅しながら、各国の文化を通じて機械学習を学びましょう 🌍 + +Microsoftのクラウドアドボケイトチームは、**機械学習**に関する12週間、26レッスンのカリキュラムを提供します。このカリキュラムでは、主にScikit-learnライブラリを使用し、**クラシック機械学習**と呼ばれることのある手法を学びます。深層学習については、[AI for Beginnersのカリキュラム](https://aka.ms/ai4beginners)で扱っています。また、このレッスンを['Data Science for Beginners'カリキュラム](https://aka.ms/ds4beginners)と組み合わせて学ぶこともできます。 + +世界中のデータを使ってクラシックな手法を適用しながら、私たちと一緒に旅をしましょう。各レッスンには、事前・事後のクイズ、レッスンを完了するための書面による指示、解答、課題などが含まれています。プロジェクトベースの教育法により、学びながら構築することができ、新しいスキルを定着させる効果的な方法です。 + +**✍️ 著者の皆さんに感謝** Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu, Amy Boyd + +**🎨 イラストレーターの皆さんにも感謝** Tomomi Imura, Dasani Madipalli, Jen Looper + +**🙏 特別な感謝 🙏 Microsoft Student Ambassadorの著者、レビュー担当者、コンテンツ提供者の皆さん** Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila, Snigdha Agarwal + +**🤩 Microsoft Student Ambassadors Eric Wanjau, Jasleen Sondhi, Vidushi GuptaによるRレッスンにも特別な感謝!** + +# 始め方 + +以下の手順に従ってください: +1. **リポジトリをフォークする**: このページの右上にある「Fork」ボタンをクリックします。 +2. **リポジトリをクローンする**: `git clone https://github.com/microsoft/ML-For-Beginners.git` + +> [このコースの追加リソースはMicrosoft Learnコレクションで見つけることができます](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +**[学生の皆さん](https://aka.ms/student-page)**、このカリキュラムを使用するには、リポジトリ全体を自分のGitHubアカウントにフォークし、個人またはグループで演習を完了してください: + +- レクチャー前のクイズから始めましょう。 +- レクチャーを読み、各知識チェックで一時停止して反省しながら活動を完了してください。 +- レッスンを理解しながらプロジェクトを作成してみてください。ただし、解答コードは各プロジェクト指向レッスンの`/solution`フォルダーにあります。 +- レクチャー後のクイズを受けましょう。 +- チャレンジを完了してください。 +- 課題を完了してください。 +- レッスングループを完了した後、[Discussion Board](https://github.com/microsoft/ML-For-Beginners/discussions)にアクセスし、適切なPATルーブリックを記入して「学びを共有」してください。PAT(Progress Assessment Tool)は、学習をさらに進めるために記入するルーブリックです。他のPATに反応することで、共に学ぶことができます。 + +> さらに学びたい場合は、これらの[Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott)モジュールと学習パスをフォローすることをお勧めします。 + +**教師の皆さん**、このカリキュラムの使用方法について[いくつかの提案を含めています](for-teachers.md)。 + +--- + +## ビデオウォークスルー + +一部のレッスンは短い形式のビデオとして利用可能です。これらはレッスン内でインラインで見つけることができます。または、Microsoft Developer YouTubeチャンネルの[ML for Beginnersプレイリスト](https://aka.ms/ml-beginners-videos)で見ることができます。以下の画像をクリックしてください。 + +[![ML for beginners banner](../../translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.ja.png)](https://aka.ms/ml-beginners-videos) + +--- + +## チーム紹介 + +[![Promo video](../../images/ml.gif)](https://youtu.be/Tj1XWrDSYJU) + +**Gif作成者** [Mohit Jaisal](https://linkedin.com/in/mohitjaisal) + +> 🎥 上の画像をクリックすると、プロジェクトと作成者についてのビデオが見られます! + +--- + +## 教育法 + +このカリキュラムを構築する際に、2つの教育的原則を選びました: **プロジェクトベース**であること、そして**頻繁なクイズ**を含むことです。また、このカリキュラムには共通の**テーマ**があり、統一感を持たせています。 + +プロジェクトに合わせてコンテンツを整えることで、学生にとってより魅力的なプロセスとなり、概念の定着が促進されます。また、授業前の低リスクなクイズは、学生がトピックを学ぶ意図を設定し、授業後のクイズはさらに定着を促します。このカリキュラムは柔軟で楽しいものとして設計されており、全体または部分的に受講することができます。プロジェクトは小さなものから始まり、12週間のサイクルの終わりには徐々に複雑になります。このカリキュラムには、機械学習の実世界での応用に関する後書きも含まれており、追加のクレジットとして使用したり、議論の基礎として使用することができます。 + +> [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md)ガイドラインをご覧ください。建設的なフィードバックを歓迎します! + +## 各レッスンには以下が含まれます + +- オプションのスケッチノート +- オプションの補足ビデオ +- ビデオウォークスルー(一部のレッスンのみ) +- レクチャー前のウォームアップクイズ +- 書面によるレッスン +- プロジェクトベースのレッスンの場合、プロジェクトを構築するためのステップバイステップガイド +- 知識チェック +- チャレンジ +- 補足読書 +- 課題 +- レクチャー後のクイズ + +> **言語についての注意**: これらのレッスンは主にPythonで書かれていますが、多くはRでも利用可能です。Rレッスンを完了するには、`/solution`フォルダーに移動し、Rレッスンを探してください。これらには、R Markdownファイルを表す`.rmd`拡張子が含まれています。R Markdownは、`コードチャンク`(Rや他の言語のコード)と`YAMLヘッダー`(PDFなどの出力形式をガイドするもの)を`Markdownドキュメント`に埋め込むことを簡単に定義できます。そのため、データサイエンスのための優れた著作フレームワークとして機能し、コード、出力、考えをMarkdownに書き込むことができます。さらに、R MarkdownドキュメントはPDF、HTML、Wordなどの出力形式にレンダリングできます。 + +> **クイズについての注意**: すべてのクイズは[Quiz Appフォルダー](../../quiz-app)に含まれており、合計52個のクイズがあり、各クイズは3問で構成されています。これらはレッスン内からリンクされていますが、クイズアプリはローカルで実行することもできます。`quiz-app`フォルダーの指示に従ってローカルホストまたはAzureにデプロイしてください。 + +| レッスン番号 | トピック | レッスングループ | 学習目標 | リンクされたレッスン | 著者 | +| :-----------: | :------------------------------------------------------------: | :-------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------: | +| 01 | 機械学習の概要 | [Introduction](1-Introduction/README.md) | 機械学習の基本的な概念を学ぶ | [レッスン](1-Introduction/1-intro-to-ML/README.md) | Muhammad | +| 02 | 機械学習の歴史 | [Introduction](1-Introduction/README.md) | この分野の歴史を学ぶ | [レッスン](1-Introduction/2-history-of-ML/README.md) | Jen and Amy | +| 03 | 公平性と機械学習 | [Introduction](1-Introduction/README.md) | 学生がMLモデルを構築・適用する際に考慮すべき公平性に関する重要な哲学的問題とは? | [レッスン](1-Introduction/3-fairness/README.md) | Tomomi | +| 04 | 機械学習の手法 | [Introduction](1-Introduction/README.md) | ML研究者がMLモデルを構築する際に使用する手法とは? | [レッスン](1-Introduction/4-techniques-of-ML/README.md) | Chris and Jen | +| 05 | 回帰分析の紹介 | [Regression](2-Regression/README.md) | PythonとScikit-learnを使った回帰モデルの入門 | +
                                          • [Python](2-Regression/1-Tools/README.md)
                                          • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html)
                                          |
                                          • Jen
                                          • Eric Wanjau
                                          | +| 06 | 北米のカボチャ価格 🎃 | [Regression](2-Regression/README.md) | 機械学習の準備としてデータを可視化し、クリーニング |
                                          • [Python](2-Regression/2-Data/README.md)
                                          • [R](../../2-Regression/2-Data/solution/R/lesson_2.html)
                                          |
                                          • Jen
                                          • Eric Wanjau
                                          | +| 07 | 北米のカボチャ価格 🎃 | [Regression](2-Regression/README.md) | 線形回帰モデルと多項式回帰モデルの構築 |
                                          • [Python](2-Regression/3-Linear/README.md)
                                          • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html)
                                          |
                                          • Jen and Dmitry
                                          • Eric Wanjau
                                          | +| 08 | 北米のカボチャ価格 🎃 | [Regression](2-Regression/README.md) | ロジスティック回帰モデルの構築 |
                                          • [Python](2-Regression/4-Logistic/README.md)
                                          • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html)
                                          |
                                          • Jen
                                          • Eric Wanjau
                                          | +| 09 | Webアプリ 🔌 | [Web App](3-Web-App/README.md) | 学習済みモデルを使用するWebアプリの構築 | [Python](3-Web-App/1-Web-App/README.md) | Jen | +| 10 | 分類の紹介 | [Classification](4-Classification/README.md) | データのクリーニング、準備、可視化;分類の紹介 |
                                          • [Python](4-Classification/1-Introduction/README.md)
                                          • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) |
                                            • Jen and Cassie
                                            • Eric Wanjau
                                            | +| 11 | 美味しいアジアとインド料理 🍜 | [Classification](4-Classification/README.md) | 分類器の紹介 |
                                            • [Python](4-Classification/2-Classifiers-1/README.md)
                                            • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) |
                                              • Jen and Cassie
                                              • Eric Wanjau
                                              | +| 12 | 美味しいアジアとインド料理 🍜 | [Classification](4-Classification/README.md) | さらに多くの分類器 |
                                              • [Python](4-Classification/3-Classifiers-2/README.md)
                                              • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) |
                                                • Jen and Cassie
                                                • Eric Wanjau
                                                | +| 13 | 美味しいアジアとインド料理 🍜 | [Classification](4-Classification/README.md) | モデルを使用した推薦Webアプリの構築 | [Python](4-Classification/4-Applied/README.md) | Jen | +| 14 | クラスタリングの紹介 | [Clustering](5-Clustering/README.md) | データのクリーニング、準備、可視化;クラスタリングの紹介 |
                                                • [Python](5-Clustering/1-Visualize/README.md)
                                                • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) |
                                                  • Jen
                                                  • Eric Wanjau
                                                  | +| 15 | ナイジェリアの音楽の嗜好を探る 🎧 | [Clustering](5-Clustering/README.md) | K-Meansクラスタリング手法を探る |
                                                  • [Python](5-Clustering/2-K-Means/README.md)
                                                  • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) |
                                                    • Jen
                                                    • Eric Wanjau
                                                    | +| 16 | 自然言語処理の紹介 ☕️ | [Natural language processing](6-NLP/README.md) | 簡単なボットを構築してNLPの基礎を学ぶ | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Stephen | +| 17 | 一般的なNLPタスク ☕️ | [Natural language processing](6-NLP/README.md) | 言語構造を扱う際に必要な一般的なタスクを理解してNLPの知識を深める | [Python](6-NLP/2-Tasks/README.md) | Stephen | +| 18 | 翻訳と感情分析 ♥️ | [Natural language processing](6-NLP/README.md) | ジェーン・オースティンを使った翻訳と感情分析 | [Python](6-NLP/3-Translation-Sentiment/README.md) | Stephen | +| 19 | ヨーロッパのロマンチックなホテル ♥️ | [Natural language processing](6-NLP/README.md) | ホテルレビューを使った感情分析 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen | +| 20 | ヨーロッパのロマンチックなホテル ♥️ | [Natural language processing](6-NLP/README.md) | ホテルレビューを使った感情分析 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen | +| 21 | 時系列予測の紹介 | [Time series](7-TimeSeries/README.md) | 時系列予測の紹介 | [Python](7-TimeSeries/1-Introduction/README.md) | Francesca | +| 22 | ⚡️ 世界の電力使用 ⚡️ - ARIMAによる時系列予測 | [Time series](7-TimeSeries/README.md) | ARIMAによる時系列予測 | [Python](7-TimeSeries/2-ARIMA/README.md) | Francesca | +| 23 | ⚡️ 世界の電力使用 ⚡️ - SVRによる時系列予測 | [Time series](7-TimeSeries/README.md) | サポートベクター回帰による時系列予測 | [Python](7-TimeSeries/3-SVR/README.md) | Anirban | +| 24 | 強化学習の紹介 | [Reinforcement learning](8-Reinforcement/README.md) | Q-Learningを使った強化学習の紹介 | [Python](8-Reinforcement/1-QLearning/README.md) | Dmitry | +| 25 | ピーターをオオカミから守ろう! 🐺 | [Reinforcement learning](8-Reinforcement/README.md) | 強化学習Gym | [Python](8-Reinforcement/2-Gym/README.md) | Dmitry | +| Postscript | 実世界の機械学習シナリオと応用 | [ML in the Wild](9-Real-World/README.md) | 古典的な機械学習の興味深く、示唆に富む実世界の応用 | [Lesson](9-Real-World/1-Applications/README.md) | Team | +| Postscript | RAIダッシュボードを使ったMLモデルのデバッグ | [ML in the Wild](9-Real-World/README.md) | 責任あるAIダッシュボードコンポーネントを使用した機械学習モデルのデバッグ | [Lesson](9-Real-World/2-Debugging-ML-Models/README.md) | Ruth Yakubu | + +> [このコースの追加リソースはMicrosoft Learnコレクションで見つけることができます](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +## オフラインアクセス + +このドキュメントをオフラインで実行するには、[Docsify](https://docsify.js.org/#/)を使用します。このリポジトリをフォークし、[Docsifyをインストール](https://docsify.js.org/#/quickstart)してローカルマシンにセットアップしてください。その後、このリポジトリのルートフォルダで`docsify serve`と入力します。ウェブサイトはローカルホストのポート3000で提供されます: `localhost:3000`. + +## PDF + +リンク付きのカリキュラムPDFは[こちら](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf)で見つけることができます。 + +## 🎒 その他のコース + +私たちのチームは他にもコースを提供しています!以下をチェックしてください: + +- [Generative AI for Beginners](https://aka.ms/genai-beginners) +- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet) +- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript) +- [Generative AI with Java](https://github.com/microsoft/Generative-AI-for-beginners-java) +- [AI for Beginners](https://aka.ms/ai-beginners) +- [Data Science for Beginners](https://aka.ms/datascience-beginners) +- [ML for Beginners](https://aka.ms/ml-beginners) +- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101) +- [Web Dev for Beginners](https://aka.ms/webdev-beginners) +- [IoT for Beginners](https://aka.ms/iot-beginners) +- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners) +- [Mastering GitHub Copilot for Paired Programming](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming) +- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers) +- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/SECURITY.md b/translations/ja/SECURITY.md new file mode 100644 index 000000000..b6ddd569f --- /dev/null +++ b/translations/ja/SECURITY.md @@ -0,0 +1,51 @@ + +## セキュリティ + +Microsoftは、ソフトウェア製品やサービスのセキュリティを非常に重要視しています。これには、[Microsoft](https://github.com/Microsoft)、[Azure](https://github.com/Azure)、[DotNet](https://github.com/dotnet)、[AspNet](https://github.com/aspnet)、[Xamarin](https://github.com/xamarin)、および[弊社のGitHub組織](https://opensource.microsoft.com/)で管理されているすべてのソースコードリポジトリが含まれます。 + +もし、Microsoftが所有するリポジトリにおいて[Microsoftのセキュリティ脆弱性の定義](https://docs.microsoft.com/previous-versions/tn-archive/cc751383(v=technet.10)?WT.mc_id=academic-77952-leestott)に該当するセキュリティ脆弱性を発見した場合は、以下の手順に従って報告してください。 + +## セキュリティ問題の報告 + +**セキュリティ脆弱性を公開されたGitHubのIssueで報告しないでください。** + +代わりに、Microsoft Security Response Center (MSRC) に以下のリンクから報告してください:[https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report)。 + +ログインせずに提出したい場合は、[secure@microsoft.com](mailto:secure@microsoft.com)にメールを送信してください。可能であれば、メッセージを弊社のPGPキーで暗号化してください。PGPキーは[Microsoft Security Response Center PGP Keyページ](https://www.microsoft.com/en-us/msrc/pgp-key-msrc)からダウンロードできます。 + +通常、24時間以内に返信を受け取ることができます。もし返信がない場合は、元のメッセージが届いているか確認するためにメールで再度お問い合わせください。追加情報は[こちら](https://www.microsoft.com/msrc)で確認できます。 + +以下の情報を可能な限り提供してください。これにより、問題の性質と範囲をより正確に理解することができます: + + * 問題の種類(例: バッファオーバーフロー、SQLインジェクション、クロスサイトスクリプティングなど) + * 問題が発生する関連ソースファイルの完全なパス + * 影響を受けるソースコードの場所(タグ/ブランチ/コミットまたは直接URL) + * 問題を再現するために必要な特別な設定 + * 問題を再現するための手順 + * 概念実証やエクスプロイトコード(可能であれば) + * 問題の影響、攻撃者がどのように問題を悪用する可能性があるか + +これらの情報を提供することで、報告の優先順位付けが迅速に行われます。 + +バグ報奨金プログラムに報告する場合、より詳細な報告は高額な報奨金につながる可能性があります。現在のプログラムについては[Microsoft Bug Bounty Program](https://microsoft.com/msrc/bounty)ページをご覧ください。 + +## 推奨言語 + +すべてのコミュニケーションは英語で行うことを推奨します。 + +## ポリシー + +Microsoftは[Coordinated Vulnerability Disclosure](https://www.microsoft.com/en-us/msrc/cvd)の原則に従っています。 + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてお考えください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/SUPPORT.md b/translations/ja/SUPPORT.md new file mode 100644 index 000000000..be1f42038 --- /dev/null +++ b/translations/ja/SUPPORT.md @@ -0,0 +1,24 @@ + +# サポート +## 問題の報告方法とヘルプの取得 + +このプロジェクトでは、GitHub Issuesを使用してバグや機能リクエストを追跡しています。重複を避けるために、新しい問題を報告する前に既存の問題を検索してください。新しい問題を報告する場合は、バグや機能リクエストを新しいIssueとして提出してください。 + +このプロジェクトの使用に関するヘルプや質問については、Issueを提出してください。 + +## Microsoftのサポートポリシー + +このリポジトリのサポートは、上記のリソースに限定されています。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤った解釈について、当方は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/docs/_sidebar.md b/translations/ja/docs/_sidebar.md new file mode 100644 index 000000000..b7b117ec3 --- /dev/null +++ b/translations/ja/docs/_sidebar.md @@ -0,0 +1,57 @@ + +- はじめに + - [機械学習の紹介](../1-Introduction/1-intro-to-ML/README.md) + - [機械学習の歴史](../1-Introduction/2-history-of-ML/README.md) + - [機械学習と公平性](../1-Introduction/3-fairness/README.md) + - [機械学習の技術](../1-Introduction/4-techniques-of-ML/README.md) + +- 回帰 + - [ツールの概要](../2-Regression/1-Tools/README.md) + - [データ](../2-Regression/2-Data/README.md) + - [線形回帰](../2-Regression/3-Linear/README.md) + - [ロジスティック回帰](../2-Regression/4-Logistic/README.md) + +- Webアプリの構築 + - [Webアプリ](../3-Web-App/1-Web-App/README.md) + +- 分類 + - [分類の紹介](../4-Classification/1-Introduction/README.md) + - [分類器 1](../4-Classification/2-Classifiers-1/README.md) + - [分類器 2](../4-Classification/3-Classifiers-2/README.md) + - [応用機械学習](../4-Classification/4-Applied/README.md) + +- クラスタリング + - [データの可視化](../5-Clustering/1-Visualize/README.md) + - [K-Means](../5-Clustering/2-K-Means/README.md) + +- 自然言語処理 (NLP) + - [自然言語処理の紹介](../6-NLP/1-Introduction-to-NLP/README.md) + - [NLPのタスク](../6-NLP/2-Tasks/README.md) + - [翻訳と感情分析](../6-NLP/3-Translation-Sentiment/README.md) + - [ホテルレビュー 1](../6-NLP/4-Hotel-Reviews-1/README.md) + - [ホテルレビュー 2](../6-NLP/5-Hotel-Reviews-2/README.md) + +- 時系列予測 + - [時系列予測の紹介](../7-TimeSeries/1-Introduction/README.md) + - [ARIMA](../7-TimeSeries/2-ARIMA/README.md) + - [SVR](../7-TimeSeries/3-SVR/README.md) + +- 強化学習 + - [Q-Learning](../8-Reinforcement/1-QLearning/README.md) + - [Gym](../8-Reinforcement/2-Gym/README.md) + +- 実世界の機械学習 + - [応用例](../9-Real-World/1-Applications/README.md) + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてお考えください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当社は責任を負いません。 \ No newline at end of file diff --git a/translations/ja/for-teachers.md b/translations/ja/for-teachers.md new file mode 100644 index 000000000..817d0a9d5 --- /dev/null +++ b/translations/ja/for-teachers.md @@ -0,0 +1,37 @@ + +## 教育者向け + +このカリキュラムを教室で使用してみませんか?ぜひご活用ください! + +実際、GitHub Classroomを使えばGitHub上で直接利用することができます。 + +そのためには、このリポジトリをフォークしてください。各レッスンごとにリポジトリを作成する必要があるので、各フォルダーを個別のリポジトリに分ける必要があります。そうすることで、[GitHub Classroom](https://classroom.github.com/classrooms)が各レッスンを個別に認識できるようになります。 + +こちらの[詳細な手順](https://github.blog/2020-03-18-set-up-your-digital-classroom-with-github-classroom/)を参考にして、教室をセットアップする方法をご確認ください。 + +## リポジトリをそのまま使用する場合 + +GitHub Classroomを使用せずに、このリポジトリを現在の状態のまま利用したい場合も可能です。その場合、どのレッスンを一緒に進めるかを学生に伝える必要があります。 + +オンライン形式(Zoom、Teamsなど)では、クイズ用にブレイクアウトルームを作成し、学生が学習準備を整えられるように指導することができます。その後、学生をクイズに招待し、指定された時間に回答を「issue」として提出してもらうことができます。同様に、課題についても、学生がオープンな環境で共同作業を行う場合に適用できます。 + +よりプライベートな形式を希望する場合は、学生にカリキュラムをレッスンごとにフォークし、自分のGitHubリポジトリにプライベートリポジトリとして保存するよう依頼してください。そして、あなたにアクセス権を付与してもらいます。その後、学生はクイズや課題をプライベートに完了し、教室用リポジトリのissueを通じて提出することができます。 + +オンライン教室形式でこれを実現する方法はたくさんあります。ぜひ、あなたにとって最適な方法を教えてください! + +## ご意見をお聞かせください! + +このカリキュラムがあなたや学生にとって役立つものになるようにしたいと考えています。[フィードバック](https://forms.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR2humCsRZhxNuI79cm6n0hRUQzRVVU9VVlU5UlFLWTRLWlkyQUxORTg5WS4u)をぜひお寄せください。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があることをご承知ください。元の言語で記載された文書が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤解釈について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/quiz-app/README.md b/translations/ja/quiz-app/README.md new file mode 100644 index 000000000..8b03f2de9 --- /dev/null +++ b/translations/ja/quiz-app/README.md @@ -0,0 +1,127 @@ + +# クイズ + +これらのクイズは、https://aka.ms/ml-beginners にあるMLカリキュラムの講義前後のクイズです。 + +## プロジェクトのセットアップ + +``` +npm install +``` + +### 開発用のコンパイルとホットリロード + +``` +npm run serve +``` + +### 本番環境用のコンパイルと最小化 + +``` +npm run build +``` + +### ファイルのリントと修正 + +``` +npm run lint +``` + +### 設定のカスタマイズ + +[Configuration Reference](https://cli.vuejs.org/config/) を参照してください。 + +クレジット: このクイズアプリのオリジナルバージョンに感謝します: https://github.com/arpan45/simple-quiz-vue + +## Azureへのデプロイ + +以下は、始めるためのステップバイステップガイドです: + +1. GitHubリポジトリをフォークする +静的ウェブアプリのコードをGitHubリポジトリに保存してください。このリポジトリをフォークします。 + +2. Azure Static Web Appを作成する +- [Azureアカウント](http://azure.microsoft.com) を作成します。 +- [Azureポータル](https://portal.azure.com) にアクセスします。 +- 「リソースの作成」をクリックし、「Static Web App」を検索します。 +- 「作成」をクリックします。 + +3. Static Web Appを設定する +- 基本設定: + - サブスクリプション: Azureのサブスクリプションを選択します。 + - リソースグループ: 新しいリソースグループを作成するか、既存のものを使用します。 + - 名前: 静的ウェブアプリの名前を入力します。 + - リージョン: ユーザーに最も近いリージョンを選択します。 + +- #### デプロイメントの詳細: + - ソース: 「GitHub」を選択します。 + - GitHubアカウント: AzureにGitHubアカウントへのアクセスを許可します。 + - 組織: GitHubの組織を選択します。 + - リポジトリ: 静的ウェブアプリを含むリポジトリを選択します。 + - ブランチ: デプロイするブランチを選択します。 + +- #### ビルドの詳細: + - ビルドプリセット: アプリが構築されているフレームワークを選択します(例: React、Angular、Vueなど)。 + - アプリの場所: アプリコードが含まれるフォルダを指定します(例: ルートにある場合は /)。 + - APIの場所: APIがある場合はその場所を指定します(オプション)。 + - 出力の場所: ビルド出力が生成されるフォルダを指定します(例: build または dist)。 + +4. 設定の確認と作成 +設定を確認し、「作成」をクリックします。Azureが必要なリソースを設定し、GitHub Actionsのワークフローをリポジトリに作成します。 + +5. GitHub Actionsワークフロー +Azureは自動的にリポジトリ内にGitHub Actionsワークフローファイル (.github/workflows/azure-static-web-apps-.yml) を作成します。このワークフローがビルドとデプロイプロセスを処理します。 + +6. デプロイの監視 +GitHubリポジトリの「Actions」タブに移動します。 +ワークフローが実行されているのが確認できます。このワークフローが静的ウェブアプリをAzureにビルドしてデプロイします。 +ワークフローが完了すると、提供されたAzure URLでアプリが公開されます。 + +### ワークフローファイルの例 + +以下はGitHub Actionsワークフローの例です: +name: Azure Static Web Apps CI/CD +``` +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened, closed] + branches: + - main + +jobs: + build_and_deploy_job: + runs-on: ubuntu-latest + name: Build and Deploy Job + steps: + - uses: actions/checkout@v2 + - name: Build And Deploy + id: builddeploy + uses: Azure/static-web-apps-deploy@v1 + with: + azure_static_web_apps_api_token: ${{ secrets.AZURE_STATIC_WEB_APPS_API_TOKEN }} + repo_token: ${{ secrets.GITHUB_TOKEN }} + action: "upload" + app_location: "/quiz-app" # App source code path + api_location: ""API source code path optional + output_location: "dist" #Built app content directory - optional +``` + +### 追加リソース +- [Azure Static Web Apps Documentation](https://learn.microsoft.com/azure/static-web-apps/getting-started) +- [GitHub Actions Documentation](https://docs.github.com/actions/use-cases-and-examples/deploying/deploying-to-azure-static-web-app) + +--- + +**免責事項**: +この文書はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された文書を正式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当方は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/sketchnotes/LICENSE.md b/translations/ja/sketchnotes/LICENSE.md new file mode 100644 index 000000000..48ee8920d --- /dev/null +++ b/translations/ja/sketchnotes/LICENSE.md @@ -0,0 +1,193 @@ + +著作権表示-継承 4.0 国際 + +======================================================================= + +クリエイティブ・コモンズ・コーポレーション(以下「クリエイティブ・コモンズ」)は法律事務所ではなく、法的サービスや法的助言を提供しません。クリエイティブ・コモンズのパブリックライセンスの配布は、弁護士とクライアントの関係やその他の関係を構築するものではありません。クリエイティブ・コモンズは、そのライセンスおよび関連情報を「現状のまま」で提供します。クリエイティブ・コモンズは、そのライセンス、ライセンス条件に基づいてライセンスされた素材、または関連情報に関していかなる保証も行いません。クリエイティブ・コモンズは、それらの使用によって生じる損害について、可能な限り最大限の範囲で責任を否認します。 + +クリエイティブ・コモンズのパブリックライセンスの使用 + +クリエイティブ・コモンズのパブリックライセンスは、著作権および以下のパブリックライセンスで指定された特定の権利の対象となるオリジナルの著作物やその他の素材を共有するために、クリエイターや権利保持者が使用できる標準的な条件を提供します。以下の考慮事項は情報提供のみを目的としており、包括的ではなく、ライセンスの一部を構成するものではありません。 + + ライセンサー向けの考慮事項: 私たちのパブリックライセンスは、著作権および特定の権利によって制限される素材の使用を一般に許可する権限を持つ人々による使用を意図しています。私たちのライセンスは取消不能です。ライセンサーは、ライセンスを適用する前にその条件を読み、理解する必要があります。また、ライセンサーはライセンスを適用する前に必要なすべての権利を確保し、一般が期待通りに素材を再利用できるようにする必要があります。ライセンサーは、ライセンスの対象外の素材を明確に表示する必要があります。これには、他のCCライセンス素材や著作権の例外や制限の下で使用される素材が含まれます。ライセンサー向けのさらなる考慮事項については以下をご覧ください: + wiki.creativecommons.org/Considerations_for_licensors + + 一般向けの考慮事項: 私たちのパブリックライセンスを使用することで、ライセンサーは指定された条件の下でライセンスされた素材を使用する許可を一般に与えます。ライセンサーの許可が不要な場合(例えば、適用される著作権の例外や制限がある場合)、その使用はライセンスによって規制されません。私たちのライセンスは、ライセンサーが許可を与える権限を持つ著作権および特定の権利の下でのみ許可を与えます。ライセンスされた素材の使用は、他の理由で制限される場合があります。例えば、他者がその素材に著作権やその他の権利を持っている場合などです。ライセンサーは特別な要求をする場合があります。例えば、すべての変更を明示または説明するよう求めることなどです。これらの要求はライセンスによって義務付けられていませんが、合理的な範囲でそれらを尊重することが推奨されます。一般向けのさらなる考慮事項については以下をご覧ください: + wiki.creativecommons.org/Considerations_for_licensees + +======================================================================= + +クリエイティブ・コモンズ著作権表示-継承 4.0 国際パブリックライセンス + +ライセンスされた権利(以下に定義)を行使することで、あなたはこのクリエイティブ・コモンズ著作権表示-継承 4.0 国際パブリックライセンス(以下「パブリックライセンス」)の条件に拘束されることに同意します。このパブリックライセンスが契約として解釈される範囲で、あなたはこれらの条件を受け入れることを考慮してライセンスされた権利を付与され、ライセンサーはこの条件の下でライセンスされた素材を利用可能にすることによる利益を考慮してあなたにその権利を付与します。 + +セクション 1 -- 定義 + + a. 改変素材とは、ライセンサーが保有する著作権および類似の権利の下で許可が必要な方法で翻訳、変更、編曲、変形、またはその他の方法で修正されたライセンスされた素材に基づく素材を指します。このパブリックライセンスの目的では、ライセンスされた素材が音楽作品、演奏、または音声録音である場合、ライセンスされた素材が動画像と同期されると常に改変素材が生成されます。 + + b. 改変者のライセンスとは、このパブリックライセンスの条件に従って、改変素材へのあなたの貢献における著作権および類似の権利に適用されるライセンスを指します。 + + c. BY-SA互換ライセンスとは、creativecommons.org/compatiblelicensesに記載されているライセンスで、クリエイティブ・コモンズによってこのパブリックライセンスと本質的に同等であると承認されたものを指します。 + + d. 著作権および類似の権利とは、著作権および/または著作権に密接に関連する類似の権利を指します。これには、演奏、放送、音声録音、そして独自のデータベース権が含まれますが、権利のラベルや分類方法に関係なく適用されます。このパブリックライセンスの目的では、セクション2(b)(1)-(2)で指定された権利は著作権および類似の権利ではありません。 + + e. 有効な技術的措置とは、適切な権限がない場合に、1996年12月20日に採択されたWIPO著作権条約第11条の義務を満たす法律および/または類似の国際協定の下で回避できない措置を指します。 + + f. 例外および制限とは、公正使用、公正取引、および著作権および類似の権利に適用されるその他の例外または制限を指します。 + + g. ライセンス要素とは、クリエイティブ・コモンズパブリックライセンスの名称に記載されているライセンス属性を指します。このパブリックライセンスのライセンス要素は、著作権表示と継承です。 + + h. ライセンスされた素材とは、ライセンサーがこのパブリックライセンスを適用した芸術作品、文学作品、データベース、またはその他の素材を指します。 + + i. ライセンスされた権利とは、このパブリックライセンスの条件に従ってあなたに付与される権利を指します。これらの権利は、ライセンスされた素材の使用に適用されるすべての著作権および類似の権利に限定され、ライセンサーがライセンスする権限を持つものです。 + + j. ライセンサーとは、このパブリックライセンスの下で権利を付与する個人または団体を指します。 + + k. 共有とは、ライセンスされた権利の下で許可が必要な方法またはプロセスによって素材を一般に提供することを指します。これには、複製、公開表示、公開演奏、配布、伝播、通信、または輸入が含まれます。また、一般の人々が自分で選んだ場所や時間に素材にアクセスできるようにする方法も含まれます。 + + l. 独自のデータベース権とは、1996年3月11日の欧州議会および理事会指令96/9/ECに基づくデータベースの法的保護に関する権利を指します。これには、改正および/または後継されたもの、ならびに世界中のその他の本質的に同等の権利が含まれます。 + + m. あなたとは、このパブリックライセンスの下でライセンスされた権利を行使する個人または団体を指します。「あなたの」は対応する意味を持ちます。 + +セクション 2 -- 範囲 + + a. ライセンスの付与 + + 1. このパブリックライセンスの条件に従い、ライセンサーは以下のライセンスされた権利を行使するための世界的、ロイヤリティフリー、サブライセンス不可、非独占的、取消不能なライセンスをあなたに付与します: + + a. ライセンスされた素材を全体または一部複製し、共有すること。 + + b. 改変素材を生成し、複製し、共有すること。 + + 2. 例外および制限: あなたの使用に例外および制限が適用される場合、このパブリックライセンスは適用されず、その条件に従う必要はありません。 + + 3. 期間: このパブリックライセンスの期間はセクション6(a)に記載されています。 + + 4. メディアおよび形式; 技術的変更の許可: ライセンサーは、現在知られているまたは今後作成されるすべてのメディアおよび形式でライセンスされた権利を行使することを許可し、これを行うために必要な技術的変更を行うことを許可します。ライセンサーは、ライセンスされた権利を行使するために必要な技術的変更を禁止する権利または権限を放棄し、または主張しないことに同意します。このパブリックライセンスの目的では、このセクション2(a)(4)で許可された変更を行うだけでは改変素材は生成されません。 + + 5. 下流の受領者: + + a. ライセンサーからの申し出 -- ライセンスされた素材: ライセンスされた素材のすべての受領者は、このパブリックライセンスの条件に従ってライセンスされた権利を行使するためのライセンサーからの申し出を自動的に受け取ります。 + + b. ライセンサーからの追加の申し出 -- 改変素材: あなたから改変素材を受け取ったすべての受領者は、改変素材におけるライセンスされた権利を行使するためのライセンサーからの申し出を自動的に受け取ります。 + + c. 下流の制限なし: あなたは、ライセンスされた素材の受領者がライセンスされた権利を行使することを制限するような追加または異なる条件を提供または課すことはできません。また、有効な技術的措置を適用することもできません。 + + 6. 承認なし: このパブリックライセンスのいかなる部分も、あなたがライセンサーまたはセクション3(a)(1)(A)(i)で指定された他者と関連している、またはライセンスされた素材の使用がライセンサーまたは指定された他者によって承認、支援、公式の地位を付与されていると主張または暗示する許可を構成するものではありません。 + + b. その他の権利: + + 1. 道徳的権利(例えば、作品の完全性の権利)は、このパブリックライセンスの下でライセンスされていません。また、パブリシティ権、プライバシー権、およびその他の類似の人格権もライセンスされていません。ただし、可能な限り、ライセンサーはこれらの権利を放棄し、またはライセンスされた権利を行使するために必要な範囲でこれらの権利を主張しないことに同意します。 + + 2. 特許権および商標権は、このパブリックライセンスの下でライセンスされていません。 + + 3. 可能な限り、ライセンサーは、任意のまたは放棄可能な法定または強制的なライセンススキームの下で、ライセンスされた権利の行使に対してあなたからロイヤリティを収集する権利を放棄します。ただし、その他のすべての場合において、ライセンサーはそのようなロイヤリティを収集する権利を明示的に留保します。 + +セクション 3 -- ライセンス条件 + +ライセンスされた権利の行使は、以下の条件に明示的に従うものとします。 + + a. 著作権表示: + + 1. ライセンスされた素材を共有する場合(変更された形式を含む)、以下を保持する必要があります(ライセンサーがライセンスされた素材とともに提供した場合): + + a. ライセンスされた素材の作成者および著作権表示を受けるよう指定された他者の識別情報(仮名で指定された場合を含む)。 + + b. 著作権表示。 + + c. このパブリックライセンスに言及する通知。 + + d. 保証の否認に言及する通知。 + + e. ライセンスされた素材へのURIまたはハイパーリンク(合理的に実行可能な範囲で)。 + + 2. セクション3(a)(1)の条件は、ライセンスされた素材を共有する媒体、手段、および文脈に基づいて合理的な方法で満たすことができます。例えば、必要な情報を含むリソースへのURIまたはハイパーリンクを提供することで条件を満たすことが合理的である場合があります。 + + 3. ライセンサーの要求がある場合、セクション3(a)(1)(A)で必要とされる情報を合理的に実行可能な範囲で削除する必要があります。 + + b. 継承: + + セクション3(a)の条件に加えて、あなたが生成した改変素材を共有する場合、以下の条件も適用されます。 + + 1. あなたが適用する改変者のライセンスは、同じライセンス要素を持つクリエイティブ・コモンズライセンス(このバージョンまたは後のバージョン)、またはBY-SA互換ライセンスでなければなりません。 + + 2. あなたが適用する改変者のライセンスのテキスト、URI、またはハイパーリンクを含める必要があります。この条件は、改変素材を共有する媒体、手段、および文脈に基づいて合理的な方法で満たすことができます。 + + 3. 改変者のライセンスで付与された権利の行使を制限するような追加または異なる条件を提供または課すことはできません。また、有効な技術的措置を改変素材に適用することもできません。 + +セクション 4 -- 独自のデータベース権 + +ライセンスされた権利に独自のデータベース権が含まれており、それがライセンスされた素材のあなたの使用に適用される場合: + + a. 明確化のために、セクション2(a)(1)は、データベースの内容全体またはその重要な部分を抽出、再利用、複製、および共有する権利をあなたに付与します。 + + b. あなたがデータベースの内容全体またはその重要な部分を含むデータベースを作成する場合、それに独自のデータベース権が適用される場合があります。 +権利、そしてあなたが特有のデータベース権を有するデータベース(ただしその個々の内容は含まない)は、改変された素材に該当します。 + +セクション3(b)の目的を含めて;そして +c. あなたがデータベースの内容全体またはその大部分を共有する場合、セクション3(a)の条件を遵守しなければなりません。 + +明確にするために、このセクション4はあなたの義務を補足するものであり、ライセンスされた権利が他の著作権や類似の権利を含む場合、この公的ライセンスの下での義務を置き換えるものではありません。 + + +セクション5 -- 保証の否認および責任の制限 + +a. ライセンサーが別途明示的に行わない限り、可能な限り、ライセンサーはライセンスされた素材を「現状のまま」および「利用可能な状態」で提供し、ライセンスされた素材に関していかなる種類の表明や保証も行いません(明示的、黙示的、法定的、その他を問わず)。これには、タイトル、商品性、特定の目的への適合性、非侵害、潜在的またはその他の欠陥の不存在、正確性、またはエラーの有無(既知または発見可能かどうかを問わず)に関する保証が含まれますが、これに限定されません。保証の否認が全面的または部分的に許可されていない場合、この否認はあなたに適用されない場合があります。 + +b. 可能な限り、ライセンサーは、いかなる法的理論(過失を含むがこれに限定されない)またはその他の理由に基づいても、この公的ライセンスまたはライセンスされた素材の使用に起因する直接的、特別、間接的、付随的、結果的、懲罰的、模範的、またはその他の損失、費用、経費、損害について、あなたに対して責任を負いません。ライセンサーがそのような損失、費用、経費、損害の可能性を通知されていた場合でも同様です。責任の制限が全面的または部分的に許可されていない場合、この制限はあなたに適用されない場合があります。 + +c. 上記の保証の否認および責任の制限は、可能な限り、すべての責任を完全に否認し、放棄するものとして解釈されるべきです。 + + +セクション6 -- 期間および終了 + +a. この公的ライセンスは、ここでライセンスされた著作権および類似の権利の期間中適用されます。ただし、あなたがこの公的ライセンスを遵守しない場合、あなたの権利は自動的に終了します。 + +b. セクション6(a)の下でライセンスされた素材を使用する権利が終了した場合、それは以下の条件で復活します: + +1. 違反が発見されてから30日以内に修正される場合、自動的に復活します;または +2. ライセンサーによる明示的な復活の承認がある場合。 + +明確にするために、このセクション6(b)は、ライセンサーがあなたの違反に対して救済を求める権利に影響を与えるものではありません。 + +c. 明確にするために、ライセンサーは別の条件でライセンスされた素材を提供したり、ライセンスされた素材の配布を停止したりすることができます。ただし、これによりこの公的ライセンスが終了することはありません。 + +d. セクション1、5、6、7、および8は、この公的ライセンスの終了後も存続します。 + + +セクション7 -- その他の条件 + +a. ライセンサーは、あなたが伝達した追加または異なる条件に拘束されることはありません。ただし、明示的に同意した場合を除きます。 + +b. ここに記載されていないライセンスされた素材に関する取り決め、理解、または合意は、この公的ライセンスの条件とは別であり、独立しています。 + + +セクション8 -- 解釈 + +a. 明確にするために、この公的ライセンスは、ライセンスされた素材を合法的に使用する際に許可が不要な場合、その使用を減少、制限、制約、または条件付けするものではなく、そのように解釈されるべきではありません。 + +b. 可能な限り、この公的ライセンスのいかなる条項が執行不能とみなされた場合、それは執行可能にするために必要最小限の範囲で自動的に修正されます。条項が修正できない場合、それはこの公的ライセンスから切り離され、残りの条件の執行可能性に影響を与えません。 + +c. この公的ライセンスのいかなる条項も、ライセンサーが明示的に同意しない限り、放棄されることはなく、遵守しないことが許可されることもありません。 + +d. この公的ライセンスのいかなる内容も、ライセンサーまたはあなたに適用される特権および免除(いかなる管轄権または権限の法的手続きからのものを含む)を制限または放棄するものとして解釈されるべきではありません。 + + +======================================================================= + +クリエイティブ・コモンズはその公的ライセンスの当事者ではありません。ただし、クリエイティブ・コモンズがその公的ライセンスの1つを公開する素材に適用することを選択した場合、その場合は「ライセンサー」とみなされます。クリエイティブ・コモンズの公的ライセンスの文書は、CC0パブリックドメイン献呈の下でパブリックドメインに捧げられています。クリエイティブ・コモンズのポリシー(creativecommons.org/policiesに掲載)で許可されている場合を除き、クリエイティブ・コモンズの商標「Creative Commons」またはその他の商標やロゴを、クリエイティブ・コモンズの事前の書面による同意なしに使用することはできません。これには、いかなる公的ライセンスの無許可の改変や、ライセンスされた素材の使用に関するその他の取り決め、理解、または合意に関連する場合が含まれますが、これに限定されません。明確にするために、この段落は公的ライセンスの一部ではありません。 + +クリエイティブ・コモンズへの連絡は、creativecommons.orgで可能です。 + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ja/sketchnotes/README.md b/translations/ja/sketchnotes/README.md new file mode 100644 index 000000000..03f5ad424 --- /dev/null +++ b/translations/ja/sketchnotes/README.md @@ -0,0 +1,21 @@ + +すべてのカリキュラムのスケッチノートはここからダウンロードできます。 + +🖨 高解像度で印刷する場合、TIFFバージョンが[このリポジトリ](https://github.com/girliemac/a-picture-is-worth-a-1000-words/tree/main/ml/tiff)で利用可能です。 + +🎨 作成者: [Tomomi Imura](https://github.com/girliemac) (Twitter: [@girlie_mac](https://twitter.com/girlie_mac)) + +[![CC BY-SA 4.0](https://img.shields.io/badge/License-CC%20BY--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-sa/4.0/) + +--- + +**免責事項**: +この文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確さが含まれる可能性があります。元の言語で記載された原文が正式な情報源と見なされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の使用に起因する誤解や誤認について、当社は一切の責任を負いません。 \ No newline at end of file diff --git a/translations/ko/1-Introduction/1-intro-to-ML/README.md b/translations/ko/1-Introduction/1-intro-to-ML/README.md new file mode 100644 index 000000000..405226d3b --- /dev/null +++ b/translations/ko/1-Introduction/1-intro-to-ML/README.md @@ -0,0 +1,159 @@ + +# 머신 러닝 소개 + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/1/) + +--- + +[![초보자를 위한 머신 러닝 소개](https://img.youtube.com/vi/6mSx_KJxcHI/0.jpg)](https://youtu.be/6mSx_KJxcHI "초보자를 위한 머신 러닝 소개") + +> 🎥 위 이미지를 클릭하면 이 강의를 다루는 짧은 영상을 볼 수 있습니다. + +초보자를 위한 고전적인 머신 러닝 과정에 오신 것을 환영합니다! 이 주제에 완전히 처음이든, 아니면 특정 영역을 복습하려는 경험 많은 ML 실무자이든, 여러분을 환영합니다! 우리는 여러분의 ML 학습을 시작하기 위한 친근한 출발점을 제공하고자 하며, 여러분의 [피드백](https://github.com/microsoft/ML-For-Beginners/discussions)을 평가하고, 응답하며, 반영할 준비가 되어 있습니다. + +[![ML 소개](https://img.youtube.com/vi/h0e2HAPTGF4/0.jpg)](https://youtu.be/h0e2HAPTGF4 "ML 소개") + +> 🎥 위 이미지를 클릭하면 MIT의 John Guttag가 머신 러닝을 소개하는 영상을 볼 수 있습니다. + +--- +## 머신 러닝 시작하기 + +이 커리큘럼을 시작하기 전에, 여러분의 컴퓨터를 설정하고 로컬에서 노트북을 실행할 준비를 해야 합니다. + +- **이 비디오를 사용하여 컴퓨터를 설정하세요**. [Python 설치 방법](https://youtu.be/CXZYvNRIAKM)과 [텍스트 편집기 설정 방법](https://youtu.be/EU8eayHWoZg)을 배우기 위해 아래 링크를 사용하세요. +- **Python 배우기**. 데이터 과학자에게 유용한 프로그래밍 언어인 [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)에 대한 기본적인 이해가 필요합니다. 이 과정에서 Python을 사용합니다. +- **Node.js와 JavaScript 배우기**. 이 과정에서 웹 앱을 구축할 때 몇 번 JavaScript를 사용하므로 [node](https://nodejs.org)와 [npm](https://www.npmjs.com/)을 설치하고, Python과 JavaScript 개발을 위해 [Visual Studio Code](https://code.visualstudio.com/)를 사용할 수 있어야 합니다. +- **GitHub 계정 만들기**. 여러분이 이미 [GitHub](https://github.com)에 있다면 계정이 있을 가능성이 높지만, 그렇지 않다면 계정을 만들고 이 커리큘럼을 포크하여 사용하세요. (별을 주시면 감사하겠습니다 😊) +- **Scikit-learn 탐색하기**. 이 강의에서 참조하는 ML 라이브러리 세트인 [Scikit-learn](https://scikit-learn.org/stable/user_guide.html)을 익숙하게 사용하세요. + +--- +## 머신 러닝이란 무엇인가? + +'머신 러닝'이라는 용어는 오늘날 가장 인기 있고 자주 사용되는 용어 중 하나입니다. 기술에 대해 약간의 친숙함이 있다면, 여러분이 어떤 분야에서 일하든 이 용어를 적어도 한 번은 들어봤을 가능성이 높습니다. 그러나 머신 러닝의 작동 방식은 대부분의 사람들에게는 미스터리입니다. 머신 러닝 초보자에게는 이 주제가 때로는 압도적으로 느껴질 수 있습니다. 따라서 머신 러닝이 실제로 무엇인지 이해하고 실용적인 예제를 통해 단계적으로 배우는 것이 중요합니다. + +--- +## 유행 곡선 + +![ml hype curve](../../../../translated_images/hype.07183d711a17aafe70915909a0e45aa286ede136ee9424d418026ab00fec344c.ko.png) + +> Google Trends는 '머신 러닝' 용어의 최근 유행 곡선을 보여줍니다. + +--- +## 신비로운 우주 + +우리는 매혹적인 신비로 가득 찬 우주에 살고 있습니다. Stephen Hawking, Albert Einstein과 같은 위대한 과학자들은 우리 주변 세계의 신비를 밝히는 의미 있는 정보를 찾기 위해 평생을 바쳤습니다. 이것이 바로 인간의 학습 조건입니다: 인간의 아이는 새로운 것을 배우고 성장하면서 해마다 자신의 세계 구조를 밝혀냅니다. + +--- +## 아이의 뇌 + +아이의 뇌와 감각은 주변 환경의 사실을 인식하고 점차 숨겨진 패턴을 학습하여 논리적 규칙을 만들어 학습한 패턴을 식별합니다. 인간 뇌의 학습 과정은 인간을 이 세상에서 가장 정교한 생명체로 만듭니다. 숨겨진 패턴을 발견하고 그 패턴을 혁신적으로 발전시키며 지속적으로 학습하는 것은 평생 동안 우리를 더 나아지게 만듭니다. 이러한 학습 능력과 진화 가능성은 [뇌 가소성](https://www.simplypsychology.org/brain-plasticity.html)이라는 개념과 관련이 있습니다. 표면적으로, 인간 뇌의 학습 과정과 머신 러닝 개념 사이에는 몇 가지 동기적 유사점을 그릴 수 있습니다. + +--- +## 인간의 뇌 + +[인간의 뇌](https://www.livescience.com/29365-human-brain.html)는 현실 세계에서 정보를 인식하고, 인식한 정보를 처리하며, 합리적인 결정을 내리고, 상황에 따라 특정 행동을 수행합니다. 이것이 바로 지능적으로 행동하는 것이라고 합니다. 지능적 행동 과정을 기계에 프로그램하면 이를 인공지능(AI)이라고 합니다. + +--- +## 몇 가지 용어 + +용어가 혼동될 수 있지만, 머신 러닝(ML)은 인공지능의 중요한 하위 집합입니다. **ML은 특수 알고리즘을 사용하여 인식된 데이터에서 의미 있는 정보를 발견하고 숨겨진 패턴을 찾아 합리적인 의사 결정 과정을 입증하는 데 중점을 둡니다**. + +--- +## AI, ML, 딥 러닝 + +![AI, ML, deep learning, data science](../../../../translated_images/ai-ml-ds.537ea441b124ebf69c144a52c0eb13a7af63c4355c2f92f440979380a2fb08b8.ko.png) + +> AI, ML, 딥 러닝, 데이터 과학 간의 관계를 보여주는 다이어그램. [Jen Looper](https://twitter.com/jenlooper)가 [이 그래픽](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)에서 영감을 받아 제작한 인포그래픽 + +--- +## 다룰 개념 + +이 커리큘럼에서는 초보자가 반드시 알아야 할 머신 러닝의 핵심 개념만 다룰 것입니다. 우리는 주로 학생들이 기본을 배우는 데 사용하는 훌륭한 라이브러리인 Scikit-learn을 사용하여 '고전적인 머신 러닝'을 다룹니다. 인공지능이나 딥 러닝의 더 넓은 개념을 이해하려면 머신 러닝에 대한 강력한 기초 지식이 필수적이며, 이를 여기에서 제공하고자 합니다. + +--- +## 이 과정에서 배우게 될 내용: + +- 머신 러닝의 핵심 개념 +- ML의 역사 +- ML과 공정성 +- 회귀 ML 기법 +- 분류 ML 기법 +- 군집화 ML 기법 +- 자연어 처리 ML 기법 +- 시계열 예측 ML 기법 +- 강화 학습 +- ML의 실제 응용 사례 + +--- +## 다루지 않을 내용 + +- 딥 러닝 +- 신경망 +- AI + +더 나은 학습 경험을 위해, 신경망, 딥 러닝(신경망을 사용한 다층 모델 구축), 그리고 AI의 복잡성을 피할 것입니다. 이러한 주제는 다른 커리큘럼에서 다룰 예정입니다. 또한 데이터 과학에 초점을 맞춘 커리큘럼도 곧 제공할 예정입니다. + +--- +## 왜 머신 러닝을 공부해야 할까? + +시스템 관점에서 머신 러닝은 데이터를 통해 숨겨진 패턴을 학습하여 지능적인 결정을 내리는 데 도움을 주는 자동화 시스템을 만드는 것으로 정의됩니다. + +이 동기는 인간의 뇌가 외부 세계에서 인식한 데이터를 기반으로 특정한 것을 학습하는 방식에서 느슨하게 영감을 받았습니다. + +✅ 비즈니스가 하드코딩된 규칙 기반 엔진을 만드는 대신 머신 러닝 전략을 사용하려는 이유를 잠시 생각해 보세요. + +--- +## 머신 러닝의 응용 + +머신 러닝의 응용은 이제 거의 모든 곳에 있으며, 스마트폰, 연결된 장치, 기타 시스템에서 생성되는 데이터만큼이나 널리 퍼져 있습니다. 최첨단 머신 러닝 알고리즘의 엄청난 잠재력을 고려할 때, 연구자들은 다차원적이고 다학문적인 실제 문제를 해결하기 위해 그 능력을 탐구하고 있으며, 매우 긍정적인 결과를 얻고 있습니다. + +--- +## 적용된 ML의 예 + +**머신 러닝은 다양한 방식으로 사용할 수 있습니다**: + +- 환자의 의료 기록이나 보고서를 통해 질병 가능성을 예측합니다. +- 날씨 데이터를 활용하여 기상 현상을 예측합니다. +- 텍스트의 감정을 이해합니다. +- 가짜 뉴스를 감지하여 선전의 확산을 막습니다. + +금융, 경제, 지구 과학, 우주 탐사, 생물 의학 공학, 인지 과학, 심지어 인문학 분야에서도 머신 러닝을 채택하여 해당 분야의 어려운 데이터 처리 문제를 해결하고 있습니다. + +--- +## 결론 + +머신 러닝은 실제 데이터 또는 생성된 데이터에서 의미 있는 통찰력을 발견하여 패턴 발견 과정을 자동화합니다. 이는 비즈니스, 건강, 금융 응용 분야 등에서 매우 가치가 있음을 입증했습니다. + +가까운 미래에는 머신 러닝의 기본을 이해하는 것이 모든 분야의 사람들에게 필수적이 될 것입니다. 이는 그 채택이 널리 퍼지고 있기 때문입니다. + +--- +# 🚀 도전 + +[Excalidraw](https://excalidraw.com/)와 같은 온라인 앱이나 종이를 사용하여 AI, ML, 딥 러닝, 데이터 과학의 차이에 대한 여러분의 이해를 스케치하세요. 각 기술이 해결하기에 적합한 문제에 대한 아이디어를 추가하세요. + +# [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/2/) + +--- +# 복습 및 자기 학습 + +클라우드에서 ML 알고리즘을 사용하는 방법에 대해 더 알아보려면 이 [학습 경로](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)를 따라가세요. + +ML의 기본에 대한 [학습 경로](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott)를 확인하세요. + +--- +# 과제 + +[시작하기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/1-Introduction/1-intro-to-ML/assignment.md b/translations/ko/1-Introduction/1-intro-to-ML/assignment.md new file mode 100644 index 000000000..2ebfce06a --- /dev/null +++ b/translations/ko/1-Introduction/1-intro-to-ML/assignment.md @@ -0,0 +1,23 @@ + +# 시작하기 + +## 지침 + +이 비평가 없는 과제에서는 Python을 복습하고 환경을 설정하여 노트북을 실행할 수 있도록 준비해야 합니다. + +이 [Python 학습 경로](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)를 따라가고, 아래의 입문 동영상을 통해 시스템을 설정하세요: + +https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6 + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/1-Introduction/2-history-of-ML/README.md b/translations/ko/1-Introduction/2-history-of-ML/README.md new file mode 100644 index 000000000..e7002135b --- /dev/null +++ b/translations/ko/1-Introduction/2-history-of-ML/README.md @@ -0,0 +1,164 @@ + +# 머신 러닝의 역사 + +![머신 러닝 역사의 요약 스케치노트](../../../../translated_images/ml-history.a1bdfd4ce1f464d9a0502f38d355ffda384c95cd5278297a46c9a391b5053bc4.ko.png) +> 스케치노트: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/3/) + +--- + +[![초보자를 위한 머신 러닝 - 머신 러닝의 역사](https://img.youtube.com/vi/N6wxM4wZ7V0/0.jpg)](https://youtu.be/N6wxM4wZ7V0 "초보자를 위한 머신 러닝 - 머신 러닝의 역사") + +> 🎥 위 이미지를 클릭하면 이 강의를 다룬 짧은 영상을 볼 수 있습니다. + +이 강의에서는 머신 러닝과 인공지능의 역사에서 주요 이정표를 살펴봅니다. + +인공지능(AI) 분야의 역사는 머신 러닝의 역사와 밀접하게 얽혀 있습니다. 머신 러닝을 뒷받침하는 알고리즘과 계산적 발전이 AI 개발에 기여했기 때문입니다. 이 두 분야가 독립적인 연구 영역으로 구체화되기 시작한 것은 1950년대이지만, 중요한 [알고리즘적, 통계적, 수학적, 계산적, 기술적 발견](https://wikipedia.org/wiki/Timeline_of_machine_learning)은 이 시기 이전에도 존재했으며, 이 시기와 겹쳐졌습니다. 사실, 사람들은 [수백 년 동안](https://wikipedia.org/wiki/History_of_artificial_intelligence) '생각하는 기계'라는 아이디어에 대해 고민해 왔습니다. 이 글은 '생각하는 기계'라는 개념의 역사적 지적 기반을 논의합니다. + +--- +## 주요 발견 + +- 1763, 1812 [베이즈 정리](https://wikipedia.org/wiki/Bayes%27_theorem)와 그 선구자들. 이 정리와 그 응용은 사전 지식을 바탕으로 사건이 발생할 확률을 설명하는 추론의 기초를 제공합니다. +- 1805 [최소제곱법](https://wikipedia.org/wiki/Least_squares) 프랑스 수학자 Adrien-Marie Legendre에 의해 개발됨. 이 이론은 회귀 단원에서 배우게 될 데이터 적합에 도움을 줍니다. +- 1913 [마르코프 체인](https://wikipedia.org/wiki/Markov_chain), 러시아 수학자 Andrey Markov의 이름을 딴 것으로, 이전 상태를 기반으로 가능한 사건의 순서를 설명합니다. +- 1957 [퍼셉트론](https://wikipedia.org/wiki/Perceptron), 미국 심리학자 Frank Rosenblatt에 의해 발명된 선형 분류기의 일종으로, 딥러닝 발전의 기초가 됩니다. + +--- + +- 1967 [최근접 이웃](https://wikipedia.org/wiki/Nearest_neighbor), 원래 경로를 매핑하기 위해 설계된 알고리즘. 머신 러닝에서는 패턴을 감지하는 데 사용됩니다. +- 1970 [역전파](https://wikipedia.org/wiki/Backpropagation), [피드포워드 신경망](https://wikipedia.org/wiki/Feedforward_neural_network)을 훈련시키는 데 사용됩니다. +- 1982 [순환 신경망](https://wikipedia.org/wiki/Recurrent_neural_network), 피드포워드 신경망에서 파생된 인공 신경망으로, 시간적 그래프를 생성합니다. + +✅ 조금 더 조사해 보세요. 머신 러닝과 AI의 역사에서 중요한 다른 날짜는 무엇인가요? + +--- +## 1950: 생각하는 기계 + +Alan Turing은 2019년 [대중 투표](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century)에서 20세기의 가장 위대한 과학자로 선정된 놀라운 인물로, '생각할 수 있는 기계'라는 개념의 기초를 마련한 공로를 인정받고 있습니다. 그는 이 개념에 대한 경험적 증거를 얻기 위해 [튜링 테스트](https://www.bbc.com/news/technology-18475646)를 만들었으며, 이는 NLP 강의에서 탐구하게 될 것입니다. + +--- +## 1956: 다트머스 여름 연구 프로젝트 + +"다트머스 여름 연구 프로젝트는 인공지능 분야의 기념비적인 사건이었으며, 이곳에서 '인공지능'이라는 용어가 만들어졌습니다." ([출처](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)) + +> 학습의 모든 측면이나 지능의 다른 특징은 원칙적으로 매우 정확하게 설명될 수 있으며, 이를 통해 기계가 이를 모방하도록 만들 수 있습니다. + +--- + +수석 연구자인 수학 교수 John McCarthy는 "학습의 모든 측면이나 지능의 다른 특징은 원칙적으로 매우 정확하게 설명될 수 있으며, 이를 통해 기계가 이를 모방하도록 만들 수 있다"는 가설을 바탕으로 연구를 진행하기를 희망했습니다. 참가자들 중에는 이 분야의 또 다른 거장인 Marvin Minsky도 포함되어 있었습니다. + +이 워크숍은 "상징적 방법의 부상, 제한된 도메인에 초점을 맞춘 시스템(초기 전문가 시스템), 그리고 연역적 시스템 대 귀납적 시스템"을 포함한 여러 논의를 시작하고 장려한 것으로 평가받고 있습니다. ([출처](https://wikipedia.org/wiki/Dartmouth_workshop)) + +--- +## 1956 - 1974: "황금기" + +1950년대부터 70년대 중반까지, AI가 많은 문제를 해결할 수 있을 것이라는 낙관론이 높았습니다. 1967년 Marvin Minsky는 "한 세대 안에 ... '인공지능'을 만드는 문제는 실질적으로 해결될 것이다"고 자신 있게 말했습니다. (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall) + +자연어 처리 연구가 번성했고, 검색이 정교해지고 강력해졌으며, '마이크로월드'라는 개념이 만들어져 간단한 작업이 평범한 언어 지시를 사용하여 완료될 수 있었습니다. + +--- + +정부 기관의 연구 자금이 풍부했고, 계산 및 알고리즘에서 진보가 이루어졌으며, 지능형 기계의 프로토타입이 만들어졌습니다. 이러한 기계들 중 일부는 다음과 같습니다: + +* [Shakey 로봇](https://wikipedia.org/wiki/Shakey_the_robot), '지능적으로' 작업을 수행하는 방법을 결정하고 이동할 수 있었습니다. + + ![Shakey, 지능형 로봇](../../../../translated_images/shakey.4dc17819c447c05bf4b52f76da0bdd28817d056fdb906252ec20124dd4cfa55e.ko.jpg) + > 1972년의 Shakey + +--- + +* Eliza, 초기 '채터봇'으로 사람들과 대화하고 원시적인 '치료사' 역할을 할 수 있었습니다. NLP 강의에서 Eliza에 대해 더 배우게 될 것입니다. + + ![Eliza, 봇](../../../../translated_images/eliza.84397454cda9559bb5ec296b5b8fff067571c0cccc5405f9c1ab1c3f105c075c.ko.png) + > Eliza의 한 버전, 채터봇 + +--- + +* "블록스 월드"는 블록을 쌓고 정렬할 수 있는 마이크로월드의 예로, 기계가 결정을 내리는 방법을 가르치는 실험이 테스트될 수 있었습니다. [SHRDLU](https://wikipedia.org/wiki/SHRDLU)와 같은 라이브러리를 사용하여 구축된 발전은 언어 처리를 더욱 발전시켰습니다. + + [![SHRDLU와 블록스 월드](https://img.youtube.com/vi/QAJz4YKUwqw/0.jpg)](https://www.youtube.com/watch?v=QAJz4YKUwqw "SHRDLU와 블록스 월드") + + > 🎥 위 이미지를 클릭하면 영상: SHRDLU와 블록스 월드를 볼 수 있습니다. + +--- +## 1974 - 1980: "AI 겨울" + +1970년대 중반까지 '지능형 기계'를 만드는 복잡성이 과소평가되었고, 사용 가능한 컴퓨팅 능력으로 인해 그 약속이 과장되었다는 것이 분명해졌습니다. 자금이 고갈되고 이 분야에 대한 신뢰가 감소했습니다. 신뢰에 영향을 미친 몇 가지 문제는 다음과 같습니다: +--- +- **제한 사항**. 컴퓨팅 능력이 너무 제한적이었습니다. +- **조합 폭발**. 컴퓨터에 더 많은 것을 요구할수록 훈련해야 할 매개변수의 양이 기하급수적으로 증가했지만, 컴퓨팅 능력과 역량은 병행하여 발전하지 않았습니다. +- **데이터 부족**. 알고리즘을 테스트, 개발 및 개선하는 과정을 방해하는 데이터 부족이 있었습니다. +- **우리가 올바른 질문을 하고 있는가?**. 연구자들이 접근 방식에 대해 비판을 받기 시작하면서, 제기된 질문 자체가 의문시되었습니다: + - 튜링 테스트는 '중국 방 이론'을 포함한 여러 아이디어를 통해 의문을 제기받았습니다. 이 이론은 "디지털 컴퓨터를 프로그래밍하면 언어를 이해하는 것처럼 보일 수 있지만 실제 이해를 생성할 수는 없다"고 주장했습니다. ([출처](https://plato.stanford.edu/entries/chinese-room/)) + - ELIZA와 같은 인공지능 '치료사'를 사회에 도입하는 윤리가 도전받았습니다. + +--- + +동시에 다양한 AI 학파가 형성되기 시작했습니다. ["지저분한 AI" vs. "깔끔한 AI"](https://wikipedia.org/wiki/Neats_and_scruffies) 관행 간의 이분법이 확립되었습니다. _지저분한_ 연구소는 원하는 결과를 얻을 때까지 프로그램을 몇 시간 동안 조정했습니다. _깔끔한_ 연구소는 "논리와 공식적인 문제 해결"에 초점을 맞췄습니다. ELIZA와 SHRDLU는 잘 알려진 _지저분한_ 시스템이었습니다. 1980년대에는 ML 시스템을 재현 가능하게 만들려는 수요가 증가하면서, 결과가 더 설명 가능한 _깔끔한_ 접근 방식이 점차 주류로 자리 잡았습니다. + +--- +## 1980년대 전문가 시스템 + +이 분야가 성장함에 따라 비즈니스에 대한 이점이 명확해졌고, 1980년대에는 '전문가 시스템'의 확산도 이루어졌습니다. "전문가 시스템은 최초로 성공적인 형태의 인공지능(AI) 소프트웨어 중 하나였습니다." ([출처](https://wikipedia.org/wiki/Expert_system)) + +이 유형의 시스템은 실제로 _하이브리드_로, 비즈니스 요구 사항을 정의하는 규칙 엔진과 규칙 시스템을 활용하여 새로운 사실을 추론하는 추론 엔진으로 구성됩니다. + +이 시기에는 신경망에 대한 관심도 증가했습니다. + +--- +## 1987 - 1993: AI '냉각기' + +전문화된 전문가 시스템 하드웨어의 확산은 지나치게 전문화되는 부작용을 초래했습니다. 개인용 컴퓨터의 부상은 이러한 대형, 전문화된 중앙 시스템과 경쟁했습니다. 컴퓨팅의 민주화가 시작되었으며, 이는 결국 빅데이터의 현대적 폭발을 위한 길을 열었습니다. + +--- +## 1993 - 2011 + +이 시기는 데이터와 컴퓨팅 능력 부족으로 인해 이전에 발생했던 문제를 해결할 수 있는 새로운 시대를 열었습니다. 데이터의 양이 급격히 증가하고 더 널리 이용 가능해졌으며, 이는 긍정적이든 부정적이든 스마트폰이 2007년경 등장하면서 더욱 가속화되었습니다. 컴퓨팅 능력은 기하급수적으로 확장되었고, 알고리즘도 함께 발전했습니다. 이 분야는 과거의 자유분방한 시기를 지나 진정한 학문으로서 성숙해지기 시작했습니다. + +--- +## 현재 + +오늘날 머신 러닝과 AI는 우리의 삶의 거의 모든 부분에 영향을 미칩니다. 이 시대는 이러한 알고리즘이 인간의 삶에 미치는 위험과 잠재적 영향을 신중히 이해할 것을 요구합니다. Microsoft의 Brad Smith는 "정보 기술은 프라이버시와 표현의 자유와 같은 기본적인 인권 보호의 핵심으로 이어지는 문제를 제기합니다. 이러한 문제는 이러한 제품을 만드는 기술 회사의 책임을 높이며, 우리의 관점에서는 신중한 정부 규제와 허용 가능한 사용에 대한 규범 개발을 요구합니다"라고 말했습니다. ([출처](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)) + +--- + +미래가 어떻게 될지는 아직 알 수 없지만, 이러한 컴퓨터 시스템과 그들이 실행하는 소프트웨어 및 알고리즘을 이해하는 것이 중요합니다. 이 커리큘럼이 여러분이 더 나은 이해를 얻고 스스로 판단할 수 있도록 돕기를 바랍니다. + +[![딥러닝의 역사](https://img.youtube.com/vi/mTtDfKgLm54/0.jpg)](https://www.youtube.com/watch?v=mTtDfKgLm54 "딥러닝의 역사") +> 🎥 위 이미지를 클릭하면 영상: Yann LeCun이 딥러닝의 역사를 논의하는 강의를 볼 수 있습니다. + +--- +## 🚀도전 + +이 역사적 순간 중 하나를 깊이 파고들어 그 뒤에 있는 사람들에 대해 더 알아보세요. 매력적인 인물들이 있으며, 어떤 과학적 발견도 문화적 진공 상태에서 만들어지지 않았습니다. 무엇을 발견했나요? + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/4/) + +--- +## 복습 및 자기 학습 + +다음 항목을 시청하고 들어보세요: + +[Amy Boyd가 AI의 진화를 논의하는 팟캐스트](http://runasradio.com/Shows/Show/739) + +[![Amy Boyd의 AI 역사](https://img.youtube.com/vi/EJt3_bFYKss/0.jpg)](https://www.youtube.com/watch?v=EJt3_bFYKss "Amy Boyd의 AI 역사") + +--- + +## 과제 + +[타임라인 만들기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/1-Introduction/2-history-of-ML/assignment.md b/translations/ko/1-Introduction/2-history-of-ML/assignment.md new file mode 100644 index 000000000..9ae581442 --- /dev/null +++ b/translations/ko/1-Introduction/2-history-of-ML/assignment.md @@ -0,0 +1,25 @@ + +# 타임라인 만들기 + +## 지침 + +[이 저장소](https://github.com/Digital-Humanities-Toolkit/timeline-builder)를 사용하여 알고리즘, 수학, 통계, AI 또는 ML의 역사와 관련된 어떤 측면에 대한 타임라인을 만드세요. 한 사람, 한 가지 아이디어, 또는 오랜 시간에 걸친 사고를 중심으로 집중할 수 있습니다. 멀티미디어 요소를 반드시 추가하세요. + +## 평가 기준 + +| 기준 | 우수한 사례 | 적절한 사례 | 개선이 필요한 사례 | +| --------- | ------------------------------------------------ | ------------------------------------- | ---------------------------------------------------------------- | +| | GitHub 페이지로 배포된 타임라인이 제시됨 | 코드가 불완전하며 배포되지 않음 | 타임라인이 불완전하고, 연구가 부족하며 배포되지 않음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문 번역가에 의한 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/1-Introduction/3-fairness/README.md b/translations/ko/1-Introduction/3-fairness/README.md new file mode 100644 index 000000000..e931ecd88 --- /dev/null +++ b/translations/ko/1-Introduction/3-fairness/README.md @@ -0,0 +1,169 @@ + +# 책임 있는 AI를 활용한 머신 러닝 솔루션 구축 + +![머신 러닝에서 책임 있는 AI의 요약을 담은 스케치노트](../../../../translated_images/ml-fairness.ef296ebec6afc98a44566d7b6c1ed18dc2bf1115c13ec679bb626028e852fa1d.ko.png) +> 스케치노트: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/) + +## 소개 + +이 커리큘럼에서는 머신 러닝이 우리의 일상생활에 어떤 영향을 미치고 있는지 알아보기 시작합니다. 현재도 시스템과 모델은 의료 진단, 대출 승인, 사기 탐지와 같은 일상적인 의사 결정 작업에 관여하고 있습니다. 따라서 이러한 모델이 신뢰할 수 있는 결과를 제공하기 위해 잘 작동하는 것이 중요합니다. 모든 소프트웨어 애플리케이션과 마찬가지로, AI 시스템은 기대에 미치지 못하거나 바람직하지 않은 결과를 초래할 수 있습니다. 그렇기 때문에 AI 모델의 행동을 이해하고 설명할 수 있는 것이 필수적입니다. + +모델을 구축하는 데 사용하는 데이터가 인종, 성별, 정치적 견해, 종교와 같은 특정 인구 통계가 부족하거나 불균형적으로 대표되는 경우 어떤 일이 발생할 수 있을지 상상해 보세요. 모델의 출력이 특정 인구 통계를 선호하도록 해석된다면 애플리케이션에 어떤 영향을 미칠까요? 또한 모델이 부정적인 결과를 초래하여 사람들에게 해를 끼친다면 어떻게 될까요? AI 시스템의 행동에 대한 책임은 누구에게 있을까요? 이러한 질문들은 이 커리큘럼에서 탐구할 내용입니다. + +이 강의에서 여러분은 다음을 배우게 됩니다: + +- 머신 러닝에서 공정성의 중요성과 공정성 관련 피해에 대한 인식을 높입니다. +- 신뢰성과 안전성을 보장하기 위해 이상치와 특이한 시나리오를 탐구하는 실습에 익숙해집니다. +- 포괄적인 시스템을 설계하여 모두를 지원해야 하는 필요성을 이해합니다. +- 데이터와 사람들의 프라이버시와 보안을 보호하는 것이 얼마나 중요한지 탐구합니다. +- AI 모델의 행동을 설명하기 위해 투명성을 갖는 것이 얼마나 중요한지 확인합니다. +- AI 시스템에 대한 신뢰를 구축하기 위해 책임감이 필수적이라는 점을 인식합니다. + +## 사전 요구 사항 + +사전 요구 사항으로 "책임 있는 AI 원칙" 학습 경로를 수강하고 아래의 주제에 대한 비디오를 시청하세요: + +[학습 경로](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)를 통해 책임 있는 AI에 대해 더 알아보세요. + +[![Microsoft의 책임 있는 AI 접근 방식](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "Microsoft의 책임 있는 AI 접근 방식") + +> 🎥 위 이미지를 클릭하여 비디오를 시청하세요: Microsoft의 책임 있는 AI 접근 방식 + +## 공정성 + +AI 시스템은 모든 사람을 공정하게 대하고 유사한 그룹의 사람들에게 다른 방식으로 영향을 미치는 것을 피해야 합니다. 예를 들어, AI 시스템이 의료 치료, 대출 신청 또는 고용에 대한 지침을 제공할 때, 유사한 증상, 재정 상황 또는 전문 자격을 가진 모든 사람에게 동일한 권장 사항을 제공해야 합니다. 우리 각자는 인간으로서 우리의 결정과 행동에 영향을 미치는 내재된 편견을 가지고 있습니다. 이러한 편견은 우리가 AI 시스템을 훈련시키는 데 사용하는 데이터에서 드러날 수 있습니다. 이러한 조작은 때로는 의도치 않게 발생할 수 있습니다. 데이터를 통해 편견을 도입하고 있는지 의식적으로 알기 어려운 경우가 많습니다. + +**“불공정성”**은 인종, 성별, 연령 또는 장애 상태와 같은 기준으로 정의된 특정 그룹에 대한 부정적인 영향 또는 “피해”를 포함합니다. 주요 공정성 관련 피해는 다음과 같이 분류할 수 있습니다: + +- **할당**: 예를 들어, 특정 성별이나 민족이 다른 성별이나 민족보다 선호되는 경우. +- **서비스 품질**: 특정 시나리오에 대해 데이터를 훈련시켰지만 현실은 훨씬 더 복잡한 경우, 서비스 성능이 저하됩니다. 예를 들어, 어두운 피부를 가진 사람을 감지하지 못하는 손 비누 디스펜서. [참조](https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773) +- **비난**: 부당하게 비판하거나 특정 대상이나 사람을 잘못 평가하는 경우. 예를 들어, 이미지 라벨링 기술이 어두운 피부를 가진 사람들의 이미지를 고릴라로 잘못 라벨링한 사례. +- **과잉 또는 과소 대표**: 특정 직업에서 특정 그룹이 보이지 않는다는 아이디어와 이를 계속 촉진하는 서비스나 기능이 피해를 초래하는 경우. +- **고정관념**: 특정 그룹을 미리 정해진 속성과 연관시키는 경우. 예를 들어, 영어와 터키어 간의 언어 번역 시스템이 성별과 관련된 고정관념으로 인해 부정확성을 가질 수 있습니다. + +![터키어로 번역](../../../../translated_images/gender-bias-translate-en-tr.f185fd8822c2d4372912f2b690f6aaddd306ffbb49d795ad8d12a4bf141e7af0.ko.png) +> 터키어로 번역 + +![영어로 다시 번역](../../../../translated_images/gender-bias-translate-tr-en.4eee7e3cecb8c70e13a8abbc379209bc8032714169e585bdeac75af09b1752aa.ko.png) +> 영어로 다시 번역 + +AI 시스템을 설계하고 테스트할 때, AI가 인간이 금지된 편향적이거나 차별적인 결정을 내리지 않도록 보장해야 합니다. AI와 머신 러닝에서 공정성을 보장하는 것은 여전히 복잡한 사회기술적 과제입니다. + +### 신뢰성과 안전성 + +신뢰를 구축하려면 AI 시스템이 정상적이고 예상치 못한 조건에서도 신뢰할 수 있고 안전하며 일관성이 있어야 합니다. 특히 이상치 상황에서 AI 시스템이 다양한 상황에서 어떻게 행동할지 아는 것이 중요합니다. AI 솔루션을 구축할 때, AI 솔루션이 직면할 수 있는 다양한 상황을 처리하는 방법에 상당한 초점을 맞춰야 합니다. 예를 들어, 자율주행차는 사람들의 안전을 최우선으로 고려해야 합니다. 따라서 차량을 구동하는 AI는 밤, 폭풍우, 눈보라, 길을 건너는 아이들, 애완동물, 도로 공사 등 차량이 직면할 수 있는 모든 가능한 시나리오를 고려해야 합니다. AI 시스템이 다양한 조건을 신뢰할 수 있고 안전하게 처리할 수 있는 능력은 데이터 과학자나 AI 개발자가 시스템 설계 또는 테스트 중에 고려한 예상 수준을 반영합니다. + +> [🎥 여기를 클릭하여 비디오를 시청하세요: ](https://www.microsoft.com/videoplayer/embed/RE4vvIl) + +### 포괄성 + +AI 시스템은 모든 사람을 참여시키고 지원하도록 설계되어야 합니다. AI 시스템을 설계하고 구현할 때 데이터 과학자와 AI 개발자는 시스템에서 사람들을 의도치 않게 배제할 수 있는 잠재적 장애물을 식별하고 해결합니다. 예를 들어, 전 세계적으로 10억 명의 장애인이 있습니다. AI의 발전으로 인해 이들은 일상생활에서 더 쉽게 다양한 정보와 기회를 접할 수 있습니다. 장애물을 해결함으로써 모든 사람에게 혜택을 주는 더 나은 경험을 제공하는 AI 제품을 혁신하고 개발할 기회를 창출합니다. + +> [🎥 여기를 클릭하여 비디오를 시청하세요: AI에서의 포괄성](https://www.microsoft.com/videoplayer/embed/RE4vl9v) + +### 보안과 프라이버시 + +AI 시스템은 안전해야 하며 사람들의 프라이버시를 존중해야 합니다. 프라이버시, 정보 또는 생명을 위험에 빠뜨리는 시스템에 대한 신뢰는 낮아집니다. 머신 러닝 모델을 훈련할 때, 최상의 결과를 도출하기 위해 데이터를 활용합니다. 이를 수행하는 과정에서 데이터의 출처와 무결성을 고려해야 합니다. 예를 들어, 데이터가 사용자 제출 데이터인지 또는 공개적으로 이용 가능한 데이터인지 확인해야 합니다. 다음으로, 데이터를 처리하는 동안 기밀 정보를 보호하고 공격에 저항할 수 있는 AI 시스템을 개발하는 것이 중요합니다. AI가 점점 더 널리 사용됨에 따라 프라이버시를 보호하고 중요한 개인 및 비즈니스 정보를 안전하게 유지하는 것이 점점 더 중요하고 복잡해지고 있습니다. 프라이버시와 데이터 보안 문제는 AI에서 특히 주의 깊게 다뤄야 합니다. 데이터에 대한 접근은 AI 시스템이 사람들에 대한 정확하고 정보에 입각한 예측과 결정을 내리는 데 필수적이기 때문입니다. + +> [🎥 여기를 클릭하여 비디오를 시청하세요: AI에서의 보안](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- 업계는 GDPR(일반 데이터 보호 규정)과 같은 규정에 의해 크게 촉진된 프라이버시와 보안에서 상당한 발전을 이루었습니다. +- 그러나 AI 시스템에서는 시스템을 더 개인적이고 효과적으로 만들기 위해 더 많은 개인 데이터를 필요로 하는 것과 프라이버시 간의 긴장을 인정해야 합니다. +- 인터넷으로 연결된 컴퓨터의 탄생과 마찬가지로 AI와 관련된 보안 문제의 급증을 목격하고 있습니다. +- 동시에 AI가 보안을 개선하는 데 사용되는 사례도 있습니다. 예를 들어, 대부분의 현대적인 안티바이러스 스캐너는 오늘날 AI 휴리스틱에 의해 구동됩니다. +- 데이터 과학 프로세스가 최신 프라이버시 및 보안 관행과 조화를 이루도록 보장해야 합니다. + +### 투명성 + +AI 시스템은 이해할 수 있어야 합니다. 투명성의 중요한 부분은 AI 시스템과 그 구성 요소의 행동을 설명하는 것입니다. AI 시스템에 대한 이해를 개선하려면 이해관계자가 시스템이 어떻게 작동하고 왜 작동하는지 이해하여 잠재적인 성능 문제, 안전 및 프라이버시 문제, 편향, 배제적 관행 또는 의도치 않은 결과를 식별할 수 있어야 합니다. 또한 AI 시스템을 사용하는 사람들은 시스템을 언제, 왜, 어떻게 사용하는지, 그리고 사용하는 시스템의 한계를 솔직하게 공개해야 한다고 믿습니다. 예를 들어, 은행이 소비자 대출 결정을 지원하기 위해 AI 시스템을 사용하는 경우, 결과를 검토하고 시스템의 권장 사항에 영향을 미치는 데이터를 이해하는 것이 중요합니다. 정부는 산업 전반에 걸쳐 AI를 규제하기 시작하고 있으므로 데이터 과학자와 조직은 AI 시스템이 규제 요구 사항을 충족하는지, 특히 바람직하지 않은 결과가 발생했을 때 이를 설명해야 합니다. + +> [🎥 여기를 클릭하여 비디오를 시청하세요: AI에서의 투명성](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- AI 시스템이 매우 복잡하기 때문에 시스템이 어떻게 작동하는지 이해하고 결과를 해석하기 어렵습니다. +- 이러한 이해 부족은 시스템이 관리, 운영 및 문서화되는 방식에 영향을 미칩니다. +- 더 중요한 것은 이러한 이해 부족이 시스템이 생성하는 결과를 사용하여 내리는 결정에 영향을 미친다는 점입니다. + +### 책임감 + +AI 시스템을 설계하고 배포하는 사람들은 시스템이 어떻게 작동하는지에 대해 책임을 져야 합니다. 책임감의 필요성은 특히 얼굴 인식과 같은 민감한 기술을 사용할 때 중요합니다. 최근에는 실종 아동을 찾는 것과 같은 용도로 기술의 잠재력을 보는 법 집행 기관에서 얼굴 인식 기술에 대한 수요가 증가하고 있습니다. 그러나 이러한 기술은 특정 개인에 대한 지속적인 감시를 가능하게 함으로써 시민의 기본적인 자유를 위협할 수 있는 방식으로 정부에 의해 사용될 가능성이 있습니다. 따라서 데이터 과학자와 조직은 AI 시스템이 개인이나 사회에 미치는 영향에 대해 책임을 져야 합니다. + +[![AI 연구자가 얼굴 인식을 통한 대규모 감시에 대해 경고](../../../../translated_images/accountability.41d8c0f4b85b6231301d97f17a450a805b7a07aaeb56b34015d71c757cad142e.ko.png)](https://www.youtube.com/watch?v=Wldt8P5V6D0 "Microsoft의 책임 있는 AI 접근 방식") + +> 🎥 위 이미지를 클릭하여 비디오를 시청하세요: 얼굴 인식을 통한 대규모 감시에 대한 경고 + +결국, AI를 사회에 도입하는 첫 번째 세대로서 우리 세대가 직면한 가장 큰 질문 중 하나는 컴퓨터가 사람들에게 계속 책임을 질 수 있도록 하고 컴퓨터를 설계하는 사람들이 다른 모든 사람들에게 책임을 질 수 있도록 하는 방법입니다. + +## 영향 평가 + +머신 러닝 모델을 훈련하기 전에 AI 시스템의 목적, 의도된 사용, 배포 위치 및 시스템과 상호작용할 사람들을 이해하기 위해 영향 평가를 수행하는 것이 중요합니다. 이는 시스템을 평가하는 리뷰어 또는 테스터가 잠재적 위험과 예상 결과를 식별할 때 고려해야 할 요소를 아는 데 도움이 됩니다. + +영향 평가를 수행할 때 초점을 맞춰야 할 영역은 다음과 같습니다: + +* **개인에 대한 부정적 영향**: 시스템 성능을 저해하는 제한 또는 요구 사항, 지원되지 않는 사용 또는 알려진 제한 사항을 인식하여 시스템이 개인에게 해를 끼칠 수 있는 방식으로 사용되지 않도록 보장합니다. +* **데이터 요구 사항**: 시스템이 데이터를 사용하는 방법과 위치를 이해하면 리뷰어가 고려해야 할 데이터 요구 사항(예: GDPR 또는 HIPPA 데이터 규정)을 탐구할 수 있습니다. 또한 데이터의 출처나 양이 훈련에 충분한지 검토합니다. +* **영향 요약**: 시스템 사용으로 인해 발생할 수 있는 잠재적 피해 목록을 수집합니다. ML 라이프사이클 전반에 걸쳐 식별된 문제가 완화되었거나 해결되었는지 검토합니다. +* **적용 가능한 목표**: 여섯 가지 핵심 원칙 각각에 대한 목표를 평가하고 목표가 충족되었는지, 그리고 어떤 격차가 있는지 확인합니다. + +## 책임 있는 AI로 디버깅하기 + +소프트웨어 애플리케이션을 디버깅하는 것과 마찬가지로, AI 시스템을 디버깅하는 것은 시스템의 문제를 식별하고 해결하는 데 필요한 과정입니다. 시스템이 예상대로 또는 책임감 있게 작동하지 않는 이유에 영향을 미치는 많은 요인이 있습니다. 대부분의 전통적인 모델 성능 메트릭은 모델 성능의 정량적 집계로, 책임 있는 AI 원칙을 위반하는 방식을 분석하기에는 충분하지 않습니다. 게다가 머신 러닝 모델은 결과를 유도하는 요인을 이해하거나 실수를 했을 때 설명을 제공하기 어려운 블랙박스입니다. 이 과정에서 우리는 책임 있는 AI 대시보드를 사용하여 AI 시스템을 디버깅하는 방법을 배우게 됩니다. 대시보드는 데이터 과학자와 AI 개발자가 다음을 수행할 수 있는 포괄적인 도구를 제공합니다: + +* **오류 분석**: 시스템의 공정성 또는 신뢰성에 영향을 미칠 수 있는 모델의 오류 분포를 식별합니다. +* **모델 개요**: 데이터 코호트 간의 모델 성능에서 불균형이 있는 곳을 발견합니다. +* **데이터 분석**: 데이터 분포를 이해하고 공정성, 포괄성 및 신뢰성 문제를 초래할 수 있는 데이터의 잠재적 편향을 식별합니다. +* **모델 해석 가능성**: 모델의 예측에 영향을 미치거나 영향을 주는 요인을 이해합니다. 이는 모델의 행동을 설명하는 데 중요하며, 투명성과 책임감을 위해 필요합니다. + +## 🚀 도전 과제 + +피해가 처음부터 도입되지 않도록 하기 위해 우리는 다음을 수행해야 합니다: + +- 시스템 작업에 참여하는 사람들 간에 다양한 배경과 관점을 확보합니다. +- 우리 사회의 다양성을 반영하는 데이터 세트에 투자합니다. +- 머신 러닝 라이프사이클 전반에 걸쳐 책임 있는 AI를 감지하고 수정하는 더 나은 방법을 개발합니다. + +모델 구축 및 사용에서 모델의 신뢰할 수 없는 점이 드러나는 실제 시나리오를 생각해 보세요. 우리는 무엇을 더 고려해야 할까요? + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/6/) +## 복습 및 자기 학습 +이 수업에서는 머신 러닝에서 공정성과 불공정성 개념의 기본 사항을 배웠습니다. + +다음 워크숍을 시청하여 주제를 더 깊이 탐구하세요: + +- 책임 있는 AI를 추구하며: 원칙을 실천으로 옮기기 - Besmira Nushi, Mehrnoosh Sameki, Amit Sharma + +[![Responsible AI Toolbox: 책임 있는 AI를 구축하기 위한 오픈 소스 프레임워크](https://img.youtube.com/vi/tGgJCrA-MZU/0.jpg)](https://www.youtube.com/watch?v=tGgJCrA-MZU "RAI Toolbox: 책임 있는 AI를 구축하기 위한 오픈 소스 프레임워크") + +> 🎥 위 이미지를 클릭하면 Besmira Nushi, Mehrnoosh Sameki, Amit Sharma가 발표한 "RAI Toolbox: 책임 있는 AI를 구축하기 위한 오픈 소스 프레임워크" 영상을 볼 수 있습니다. + +또한 읽어보세요: + +- Microsoft의 RAI 리소스 센터: [Responsible AI Resources – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- Microsoft의 FATE 연구 그룹: [FATE: 공정성, 책임성, 투명성, 윤리성 - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +RAI Toolbox: + +- [Responsible AI Toolbox GitHub 저장소](https://github.com/microsoft/responsible-ai-toolbox) + +Azure Machine Learning의 공정성을 보장하는 도구에 대해 읽어보세요: + +- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott) + +## 과제 + +[RAI Toolbox 탐색하기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/1-Introduction/3-fairness/assignment.md b/translations/ko/1-Introduction/3-fairness/assignment.md new file mode 100644 index 000000000..d36cb3cfb --- /dev/null +++ b/translations/ko/1-Introduction/3-fairness/assignment.md @@ -0,0 +1,25 @@ + +# 책임 있는 AI 도구 상자 탐색하기 + +## 지침 + +이 수업에서는 책임 있는 AI 도구 상자에 대해 배웠습니다. 이는 "데이터 과학자가 AI 시스템을 분석하고 개선할 수 있도록 돕는 오픈 소스, 커뮤니티 주도 프로젝트"입니다. 이번 과제에서는 RAI 도구 상자의 [노트북](https://github.com/microsoft/responsible-ai-toolbox/blob/main/notebooks/responsibleaidashboard/getting-started.ipynb) 중 하나를 탐색하고, 그 결과를 논문이나 발표 자료로 작성하세요. + +## 평가 기준 + +| 기준 | 우수 | 적절 | 개선 필요 | +| -------- | --------- | -------- | ----------------- | +| | Fairlearn의 시스템, 실행한 노트북, 실행 결과에서 도출된 결론을 논의하는 논문 또는 파워포인트 발표 자료가 제출됨 | 결론 없이 논문만 제출됨 | 논문이 제출되지 않음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/1-Introduction/4-techniques-of-ML/README.md b/translations/ko/1-Introduction/4-techniques-of-ML/README.md new file mode 100644 index 000000000..19913d5dc --- /dev/null +++ b/translations/ko/1-Introduction/4-techniques-of-ML/README.md @@ -0,0 +1,132 @@ + +# 머신 러닝 기법 + +머신 러닝 모델을 구축, 사용, 유지 관리하는 과정과 그 모델이 사용하는 데이터는 다른 개발 워크플로우와 매우 다릅니다. 이번 강의에서는 이 과정을 이해하기 쉽게 설명하고, 알아야 할 주요 기법들을 개괄적으로 소개합니다. 여러분은 다음을 배우게 됩니다: + +- 머신 러닝의 기본 과정을 높은 수준에서 이해합니다. +- '모델', '예측', '훈련 데이터'와 같은 기본 개념을 탐구합니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/7/) + +[![초보자를 위한 머신 러닝 - 머신 러닝 기법](https://img.youtube.com/vi/4NGM0U2ZSHU/0.jpg)](https://youtu.be/4NGM0U2ZSHU "초보자를 위한 머신 러닝 - 머신 러닝 기법") + +> 🎥 위 이미지를 클릭하면 이번 강의를 다루는 짧은 영상을 볼 수 있습니다. + +## 소개 + +머신 러닝(ML) 프로세스를 만드는 기술은 다음과 같은 여러 단계로 구성됩니다: + +1. **질문 결정하기**. 대부분의 ML 프로세스는 간단한 조건부 프로그램이나 규칙 기반 엔진으로 답할 수 없는 질문을 제기하는 것으로 시작됩니다. 이러한 질문은 종종 데이터 집합을 기반으로 한 예측과 관련이 있습니다. +2. **데이터 수집 및 준비**. 질문에 답하기 위해서는 데이터가 필요합니다. 데이터의 품질과 때로는 양이 초기 질문에 얼마나 잘 답할 수 있는지를 결정합니다. 데이터를 시각화하는 것은 이 단계에서 중요한 부분입니다. 이 단계에는 데이터를 훈련 및 테스트 그룹으로 나누어 모델을 구축하는 작업도 포함됩니다. +3. **훈련 방법 선택**. 질문과 데이터의 특성에 따라 데이터를 가장 잘 반영하고 정확한 예측을 할 수 있는 모델을 훈련시키는 방법을 선택해야 합니다. 이 단계는 특정 전문 지식이 필요하며 종종 많은 실험이 요구됩니다. +4. **모델 훈련**. 훈련 데이터를 사용하여 다양한 알고리즘을 통해 데이터의 패턴을 인식하도록 모델을 훈련시킵니다. 모델은 데이터의 특정 부분을 우선적으로 고려하여 더 나은 모델을 구축하기 위해 내부 가중치를 조정할 수 있습니다. +5. **모델 평가**. 수집된 데이터 중 이전에 본 적 없는 데이터를 사용하여 모델의 성능을 평가합니다. +6. **매개변수 조정**. 모델의 성능에 따라 알고리즘의 동작을 제어하는 매개변수 또는 변수를 변경하여 프로세스를 다시 실행할 수 있습니다. +7. **예측**. 새로운 입력을 사용하여 모델의 정확성을 테스트합니다. + +## 어떤 질문을 할 것인가 + +컴퓨터는 데이터에서 숨겨진 패턴을 발견하는 데 특히 능숙합니다. 이 유용성은 특정 도메인에 대해 간단한 조건 기반 규칙 엔진을 만들어 쉽게 답할 수 없는 질문을 가진 연구자들에게 매우 유용합니다. 예를 들어, 보험 업무에서는 데이터 과학자가 흡연자와 비흡연자의 사망률에 대한 수작업 규칙을 만들 수 있습니다. + +하지만 다른 많은 변수가 방정식에 포함되면, 과거 건강 기록을 기반으로 미래의 사망률을 예측하는 데 ML 모델이 더 효율적일 수 있습니다. 더 긍정적인 예로는 위도, 경도, 기후 변화, 해양 근접성, 제트 기류 패턴 등을 포함한 데이터를 기반으로 특정 지역의 4월 날씨를 예측하는 것이 있습니다. + +✅ 이 [슬라이드 자료](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf)는 날씨 분석에서 ML을 사용하는 역사적 관점을 제공합니다. + +## 모델 구축 전 작업 + +모델을 구축하기 전에 완료해야 할 몇 가지 작업이 있습니다. 질문을 테스트하고 모델의 예측을 기반으로 가설을 형성하려면 몇 가지 요소를 식별하고 구성해야 합니다. + +### 데이터 + +질문에 확실히 답하기 위해서는 적절한 유형의 충분한 데이터가 필요합니다. 이 단계에서 해야 할 두 가지 작업은 다음과 같습니다: + +- **데이터 수집**. 데이터 분석의 공정성에 대한 이전 강의를 염두에 두고 데이터를 신중하게 수집합니다. 데이터의 출처, 내재된 편향, 출처를 문서화하는 것에 주의하세요. +- **데이터 준비**. 데이터 준비 과정에는 여러 단계가 포함됩니다. 다양한 출처에서 온 데이터를 통합하고 정규화해야 할 수도 있습니다. 문자열을 숫자로 변환하거나 데이터를 생성하는 등 다양한 방법으로 데이터의 품질과 양을 개선할 수 있습니다. 데이터를 정리하고 편집하거나 무작위화 및 섞는 작업도 필요할 수 있습니다. + +✅ 데이터를 수집하고 처리한 후, 데이터의 형태가 의도한 질문을 해결할 수 있는지 확인하세요. 데이터가 주어진 작업에서 잘 작동하지 않을 수도 있습니다. 이는 [클러스터링](../../5-Clustering/1-Visualize/README.md) 강의에서 발견됩니다! + +### 특징과 목표 + +[특징](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection)은 데이터의 측정 가능한 속성입니다. 많은 데이터셋에서 '날짜', '크기', '색상'과 같은 열 제목으로 표현됩니다. 특징 변수는 일반적으로 코드에서 `X`로 표현되며, 모델을 훈련시키는 데 사용되는 입력 변수입니다. + +목표는 예측하려는 것입니다. 목표는 일반적으로 코드에서 `y`로 표현되며, 데이터에 대해 묻고자 하는 질문의 답을 나타냅니다. 예를 들어, 12월에 가장 저렴한 호박의 **색상**은 무엇인가? 샌프란시스코에서 가장 좋은 부동산 **가격**을 가진 지역은 어디인가? 목표는 레이블 속성이라고도 합니다. + +### 특징 변수 선택 + +🎓 **특징 선택과 특징 추출** 모델을 구축할 때 어떤 변수를 선택해야 할지 어떻게 알 수 있을까요? 특징 선택 또는 특징 추출 과정을 거쳐 가장 성능이 좋은 모델을 위한 적절한 변수를 선택하게 될 것입니다. 두 과정은 동일하지 않습니다: "특징 추출은 원래 특징의 함수에서 새로운 특징을 생성하는 반면, 특징 선택은 특징의 하위 집합을 반환합니다." ([출처](https://wikipedia.org/wiki/Feature_selection)) + +### 데이터 시각화 + +데이터 과학자의 도구 키트에서 중요한 측면은 Seaborn이나 MatPlotLib과 같은 훌륭한 라이브러리를 사용하여 데이터를 시각화하는 능력입니다. 데이터를 시각적으로 표현하면 활용할 수 있는 숨겨진 상관관계를 발견할 수 있습니다. 시각화는 또한 편향이나 불균형 데이터를 발견하는 데 도움을 줄 수 있습니다. + +### 데이터셋 분할 + +훈련 전에 데이터셋을 불균등한 크기의 두 부분 이상으로 나누어야 합니다. 이 데이터는 여전히 데이터를 잘 대표해야 합니다. + +- **훈련**. 데이터셋의 이 부분은 모델에 맞춰 훈련됩니다. 이 세트는 원래 데이터셋의 대부분을 차지합니다. +- **테스트**. 테스트 데이터셋은 독립적인 데이터 그룹으로, 종종 원래 데이터에서 수집되어 구축된 모델의 성능을 확인하는 데 사용됩니다. +- **검증**. 검증 세트는 모델의 하이퍼파라미터 또는 아키텍처를 조정하여 모델을 개선하는 데 사용되는 더 작은 독립적인 예제 그룹입니다. 데이터의 크기와 질문에 따라 이 세 번째 세트를 만들 필요가 없을 수도 있습니다. + +## 모델 구축 + +훈련 데이터를 사용하여 목표는 다양한 알고리즘을 사용하여 데이터를 **훈련**시켜 모델, 즉 데이터의 통계적 표현을 구축하는 것입니다. 모델 훈련은 데이터를 노출시켜 발견된 패턴을 가정하고 이를 검증하며 수용하거나 거부할 수 있도록 합니다. + +### 훈련 방법 결정 + +질문과 데이터의 특성에 따라 훈련 방법을 선택합니다. [Scikit-learn의 문서](https://scikit-learn.org/stable/user_guide.html)를 살펴보면 다양한 방법으로 모델을 훈련시킬 수 있습니다. 경험에 따라 가장 적합한 모델을 구축하기 위해 여러 방법을 시도해야 할 수도 있습니다. 데이터 과학자는 모델의 성능을 평가하기 위해 보지 못한 데이터를 제공하고 정확성, 편향, 기타 품질 저하 문제를 확인하며 주어진 작업에 가장 적합한 훈련 방법을 선택하는 과정을 거칠 가능성이 높습니다. + +### 모델 훈련 + +훈련 데이터를 준비한 후, 이를 사용하여 모델을 '적합'시킬 준비가 됩니다. 많은 ML 라이브러리에서 'model.fit'이라는 코드를 볼 수 있습니다. 이 시점에서 특징 변수(일반적으로 'X')와 목표 변수(일반적으로 'y')를 값 배열로 전달합니다. + +### 모델 평가 + +훈련 과정이 완료되면(큰 모델을 훈련시키는 데는 여러 반복 또는 '에포크'가 필요할 수 있음), 테스트 데이터를 사용하여 모델의 품질을 평가할 수 있습니다. 이 데이터는 모델이 이전에 분석하지 않은 원래 데이터의 하위 집합입니다. 모델의 품질에 대한 메트릭 표를 출력할 수 있습니다. + +🎓 **모델 적합** + +머신 러닝의 맥락에서 모델 적합은 모델의 기본 함수가 익숙하지 않은 데이터를 분석하려는 정확성을 나타냅니다. + +🎓 **과소적합**과 **과적합**은 모델의 품질을 저하시키는 일반적인 문제로, 모델이 훈련 데이터에 대해 너무 잘 맞거나 너무 느슨하게 맞는 경우를 말합니다. 과적합된 모델은 데이터의 세부 사항과 노이즈를 너무 잘 학습했기 때문에 훈련 데이터를 너무 잘 예측합니다. 과소적합된 모델은 훈련 데이터와 이전에 '본 적 없는' 데이터를 정확히 분석할 수 없기 때문에 정확하지 않습니다. + +![과적합 모델](../../../../translated_images/overfitting.1c132d92bfd93cb63240baf63ebdf82c30e30a0a44e1ad49861b82ff600c2b5c.ko.png) +> [Jen Looper](https://twitter.com/jenlooper)의 인포그래픽 + +## 매개변수 조정 + +초기 훈련이 완료되면 모델의 품질을 관찰하고 '하이퍼파라미터'를 조정하여 개선을 고려합니다. 자세한 내용은 [문서](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott)를 참조하세요. + +## 예측 + +이제 완전히 새로운 데이터를 사용하여 모델의 정확성을 테스트할 수 있는 순간입니다. '적용된' ML 환경에서는 모델을 프로덕션에서 사용하기 위해 웹 자산을 구축하는 과정이 포함될 수 있습니다. 이 과정은 사용자 입력(예: 버튼 클릭)을 변수로 설정하고 이를 모델에 전달하여 추론 또는 평가를 수행하는 것을 포함할 수 있습니다. + +이 강의에서는 데이터 과학자로서 준비, 구축, 테스트, 평가, 예측을 수행하는 방법을 배우게 됩니다. 또한 '풀스택' ML 엔지니어로 성장하는 여정에서 더 많은 것을 배우게 될 것입니다. + +--- + +## 🚀도전 + +ML 실무자의 단계들을 반영하는 흐름도를 그려보세요. 현재 자신이 이 과정에서 어디에 있다고 생각하나요? 어려움을 겪을 것으로 예상되는 부분은 어디인가요? 쉬워 보이는 부분은 무엇인가요? + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/8/) + +## 복습 및 자기 학습 + +데이터 과학자가 자신의 일상 업무에 대해 이야기하는 인터뷰를 온라인에서 검색해보세요. [여기](https://www.youtube.com/watch?v=Z3IjgbbCEfs) 하나의 예가 있습니다. + +## 과제 + +[데이터 과학자 인터뷰하기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/1-Introduction/4-techniques-of-ML/assignment.md b/translations/ko/1-Introduction/4-techniques-of-ML/assignment.md new file mode 100644 index 000000000..0023610e2 --- /dev/null +++ b/translations/ko/1-Introduction/4-techniques-of-ML/assignment.md @@ -0,0 +1,25 @@ + +# 데이터 과학자 인터뷰 + +## 지침 + +여러분의 회사, 사용자 그룹, 친구들 또는 동료 학생들 중에서 전문적으로 데이터 과학자로 일하는 사람과 이야기를 나눠보세요. 그들의 일상적인 업무에 대해 500자 분량의 짧은 글을 작성하세요. 그들이 전문 분야에 특화되어 있는지, 아니면 '풀스택'으로 일하는지 알아보세요. + +## 평가 기준 + +| 기준 | 우수한 경우 | 적절한 경우 | 개선이 필요한 경우 | +| --------- | -------------------------------------------------------------------------------- | ---------------------------------------------------------------- | --------------------- | +| | 올바른 길이의 에세이가 출처를 명시하여 .doc 파일로 제출된 경우 | 에세이가 출처를 제대로 명시하지 않았거나 요구된 길이보다 짧은 경우 | 에세이가 제출되지 않은 경우 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/1-Introduction/README.md b/translations/ko/1-Introduction/README.md new file mode 100644 index 000000000..0e86931ed --- /dev/null +++ b/translations/ko/1-Introduction/README.md @@ -0,0 +1,37 @@ + +# 머신 러닝 소개 + +이 커리큘럼 섹션에서는 머신 러닝 분야의 기본 개념, 그것이 무엇인지, 그리고 연구자들이 이를 다루기 위해 사용하는 기술에 대해 배우게 됩니다. 함께 이 새로운 ML 세계를 탐험해 봅시다! + +![globe](../../../translated_images/globe.59f26379ceb40428672b4d9a568044618a2bf6292ecd53a5c481b90e3fa805eb.ko.jpg) +> 사진 제공: Bill Oxford on Unsplash + +### 강의 목록 + +1. [머신 러닝 소개](1-intro-to-ML/README.md) +1. [머신 러닝과 AI의 역사](2-history-of-ML/README.md) +1. [공정성과 머신 러닝](3-fairness/README.md) +1. [머신 러닝 기술](4-techniques-of-ML/README.md) + +### 크레딧 + +"머신 러닝 소개"는 [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom), [Jen Looper](https://twitter.com/jenlooper)를 포함한 팀이 ♥️를 담아 작성했습니다. + +"머신 러닝의 역사"는 [Jen Looper](https://twitter.com/jenlooper)와 [Amy Boyd](https://twitter.com/AmyKateNicho)가 ♥️를 담아 작성했습니다. + +"공정성과 머신 러닝"은 [Tomomi Imura](https://twitter.com/girliemac)가 ♥️를 담아 작성했습니다. + +"머신 러닝 기술"은 [Jen Looper](https://twitter.com/jenlooper)와 [Chris Noring](https://twitter.com/softchris)가 ♥️를 담아 작성했습니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/2-Regression/1-Tools/README.md b/translations/ko/2-Regression/1-Tools/README.md new file mode 100644 index 000000000..63b4b6ebc --- /dev/null +++ b/translations/ko/2-Regression/1-Tools/README.md @@ -0,0 +1,239 @@ + +# Python 및 Scikit-learn을 사용한 회귀 모델 시작하기 + +![스케치노트로 본 회귀 요약](../../../../translated_images/ml-regression.4e4f70e3b3ed446e3ace348dec973e133fa5d3680fbc8412b61879507369b98d.ko.png) + +> 스케치노트 제공: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/9/) + +> ### [이 강의는 R에서도 제공됩니다!](../../../../2-Regression/1-Tools/solution/R/lesson_1.html) + +## 소개 + +이 네 가지 강의에서는 회귀 모델을 구축하는 방법을 배웁니다. 회귀 모델이 무엇을 위해 사용되는지 곧 논의할 예정입니다. 하지만 시작하기 전에, 프로세스를 시작할 수 있는 적절한 도구가 준비되어 있는지 확인하세요! + +이 강의에서 배우게 될 내용: + +- 로컬 머신 러닝 작업을 위해 컴퓨터를 설정하는 방법 +- Jupyter 노트북 사용법 +- Scikit-learn 설치 및 사용법 +- 실습을 통해 선형 회귀 탐구 + +## 설치 및 설정 + +[![초보자를 위한 머신 러닝 - 머신 러닝 모델 구축을 위한 도구 설정](https://img.youtube.com/vi/-DfeD2k2Kj0/0.jpg)](https://youtu.be/-DfeD2k2Kj0 "초보자를 위한 머신 러닝 - 머신 러닝 모델 구축을 위한 도구 설정") + +> 🎥 위 이미지를 클릭하면 컴퓨터를 ML에 맞게 설정하는 짧은 비디오를 볼 수 있습니다. + +1. **Python 설치**. [Python](https://www.python.org/downloads/)이 컴퓨터에 설치되어 있는지 확인하세요. Python은 데이터 과학 및 머신 러닝 작업에 많이 사용됩니다. 대부분의 컴퓨터 시스템에는 이미 Python이 설치되어 있습니다. 일부 사용자에게는 설정을 간소화하기 위해 유용한 [Python Coding Packs](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott)도 제공됩니다. + + 그러나 Python의 일부 사용 사례는 특정 버전을 요구할 수 있습니다. 따라서 [가상 환경](https://docs.python.org/3/library/venv.html)에서 작업하는 것이 유용합니다. + +2. **Visual Studio Code 설치**. 컴퓨터에 Visual Studio Code가 설치되어 있는지 확인하세요. [Visual Studio Code 설치](https://code.visualstudio.com/) 지침을 따라 기본 설치를 완료하세요. 이 강의에서는 Visual Studio Code에서 Python을 사용할 것이므로 [Visual Studio Code를 Python 개발에 맞게 설정하는 방법](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott)을 익히는 것이 좋습니다. + + > Python에 익숙해지려면 이 [Learn 모듈 컬렉션](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott)을 살펴보세요. + > + > [![Visual Studio Code로 Python 설정](https://img.youtube.com/vi/yyQM70vi7V8/0.jpg)](https://youtu.be/yyQM70vi7V8 "Visual Studio Code로 Python 설정") + > + > 🎥 위 이미지를 클릭하면 VS Code에서 Python을 사용하는 방법에 대한 비디오를 볼 수 있습니다. + +3. **Scikit-learn 설치**. [이 지침](https://scikit-learn.org/stable/install.html)을 따라 Scikit-learn을 설치하세요. Python 3을 사용해야 하므로 가상 환경을 사용하는 것이 권장됩니다. M1 Mac에 이 라이브러리를 설치하는 경우, 위 링크된 페이지에 특별한 지침이 있습니다. + +4. **Jupyter Notebook 설치**. [Jupyter 패키지](https://pypi.org/project/jupyter/)를 설치해야 합니다. + +## ML 작성 환경 + +Python 코드를 개발하고 머신 러닝 모델을 생성하기 위해 **노트북**을 사용할 것입니다. 이 파일 유형은 데이터 과학자들이 자주 사용하는 도구이며, `.ipynb` 확장자로 식별할 수 있습니다. + +노트북은 개발자가 코드를 작성하고 코드에 대한 문서화를 추가할 수 있는 인터랙티브 환경을 제공합니다. 이는 실험적이거나 연구 지향적인 프로젝트에 매우 유용합니다. + +[![초보자를 위한 머신 러닝 - 회귀 모델 구축을 위한 Jupyter 노트북 설정](https://img.youtube.com/vi/7E-jC8FLA2E/0.jpg)](https://youtu.be/7E-jC8FLA2E "초보자를 위한 머신 러닝 - 회귀 모델 구축을 위한 Jupyter 노트북 설정") + +> 🎥 위 이미지를 클릭하면 이 연습을 진행하는 짧은 비디오를 볼 수 있습니다. + +### 연습 - 노트북 작업하기 + +이 폴더에서 _notebook.ipynb_ 파일을 찾을 수 있습니다. + +1. Visual Studio Code에서 _notebook.ipynb_를 엽니다. + + Jupyter 서버가 Python 3+로 시작됩니다. 노트북의 특정 영역에서 `run`할 수 있는 코드 조각을 찾을 수 있습니다. 코드 블록을 실행하려면 재생 버튼처럼 생긴 아이콘을 선택하세요. + +2. `md` 아이콘을 선택하고 약간의 마크다운을 추가한 후 **# Welcome to your notebook** 텍스트를 입력하세요. + + 다음으로 Python 코드를 추가합니다. + +3. 코드 블록에 **print('hello notebook')**을 입력하세요. +4. 화살표를 선택하여 코드를 실행하세요. + + 출력 결과로 다음과 같은 문장이 표시됩니다: + + ```output + hello notebook + ``` + +![노트북이 열린 VS Code](../../../../translated_images/notebook.4a3ee31f396b88325607afda33cadcc6368de98040ff33942424260aa84d75f2.ko.jpg) + +코드와 함께 주석을 추가하여 노트북을 스스로 문서화할 수 있습니다. + +✅ 웹 개발자의 작업 환경과 데이터 과학자의 작업 환경이 얼마나 다른지 잠시 생각해 보세요. + +## Scikit-learn 시작하기 + +이제 Python이 로컬 환경에 설정되었고 Jupyter 노트북에 익숙해졌으니, Scikit-learn에도 익숙해져 봅시다. Scikit-learn은 ML 작업을 수행하는 데 도움을 주는 [광범위한 API](https://scikit-learn.org/stable/modules/classes.html#api-ref)를 제공합니다. + +[Scikit-learn 웹사이트](https://scikit-learn.org/stable/getting_started.html)에 따르면, "Scikit-learn은 감독 학습 및 비감독 학습을 지원하는 오픈 소스 머신 러닝 라이브러리입니다. 또한 모델 적합, 데이터 전처리, 모델 선택 및 평가, 기타 다양한 유틸리티를 제공합니다." + +이 강의에서는 Scikit-learn 및 기타 도구를 사용하여 '전통적인 머신 러닝' 작업을 수행하는 머신 러닝 모델을 구축할 것입니다. 신경망과 딥러닝은 다루지 않으며, 이는 곧 제공될 'AI for Beginners' 커리큘럼에서 더 잘 다룰 예정입니다. + +Scikit-learn은 모델을 구축하고 평가하여 사용할 수 있도록 간단하게 만들어줍니다. 주로 숫자 데이터를 사용하는 데 초점을 맞추며, 학습 도구로 사용할 수 있는 여러 준비된 데이터셋을 포함하고 있습니다. 또한 학생들이 시도해볼 수 있는 사전 구축된 모델도 포함되어 있습니다. 이제 Scikit-learn을 사용하여 기본 데이터를 활용한 첫 번째 ML 모델을 탐구해 봅시다. + +## 연습 - 첫 번째 Scikit-learn 노트북 + +> 이 튜토리얼은 Scikit-learn 웹사이트의 [선형 회귀 예제](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py)에서 영감을 받았습니다. + +[![초보자를 위한 머신 러닝 - Python에서 첫 번째 선형 회귀 프로젝트](https://img.youtube.com/vi/2xkXL5EUpS0/0.jpg)](https://youtu.be/2xkXL5EUpS0 "초보자를 위한 머신 러닝 - Python에서 첫 번째 선형 회귀 프로젝트") + +> 🎥 위 이미지를 클릭하면 이 연습을 진행하는 짧은 비디오를 볼 수 있습니다. + +이 강의와 관련된 _notebook.ipynb_ 파일에서 모든 셀을 '휴지통' 아이콘을 눌러 삭제하세요. + +이 섹션에서는 학습 목적으로 Scikit-learn에 내장된 당뇨병 관련 소규모 데이터셋을 사용합니다. 당뇨병 환자를 대상으로 치료를 테스트하려고 한다고 가정해 보세요. 머신 러닝 모델은 변수 조합을 기반으로 어떤 환자가 치료에 더 잘 반응할지 결정하는 데 도움을 줄 수 있습니다. 매우 기본적인 회귀 모델이라도 시각화하면 이론적인 임상 시험을 조직하는 데 도움이 되는 변수에 대한 정보를 제공할 수 있습니다. + +✅ 회귀 방법에는 여러 종류가 있으며, 선택하는 방법은 찾고자 하는 답변에 따라 다릅니다. 특정 나이의 사람의 예상 키를 예측하려면 **숫자 값**을 찾고 있으므로 선형 회귀를 사용합니다. 특정 요리가 비건인지 아닌지를 확인하려면 **범주 할당**을 찾고 있으므로 로지스틱 회귀를 사용합니다. 데이터를 통해 물어볼 수 있는 질문과 어떤 방법이 더 적합할지 잠시 생각해 보세요. + +이 작업을 시작해 봅시다. + +### 라이브러리 가져오기 + +이 작업을 위해 몇 가지 라이브러리를 가져옵니다: + +- **matplotlib**. 유용한 [그래프 도구](https://matplotlib.org/)로, 선형 그래프를 생성하는 데 사용할 것입니다. +- **numpy**. [numpy](https://numpy.org/doc/stable/user/whatisnumpy.html)는 Python에서 숫자 데이터를 처리하는 데 유용한 라이브러리입니다. +- **sklearn**. 이것은 [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) 라이브러리입니다. + +작업을 돕기 위해 몇 가지 라이브러리를 가져옵니다. + +1. 다음 코드를 입력하여 가져오기 작업을 수행하세요: + + ```python + import matplotlib.pyplot as plt + import numpy as np + from sklearn import datasets, linear_model, model_selection + ``` + + 위 코드에서는 `matplotlib`, `numpy`를 가져오고, `sklearn`에서 `datasets`, `linear_model`, `model_selection`을 가져옵니다. `model_selection`은 데이터를 학습 및 테스트 세트로 분할하는 데 사용됩니다. + +### 당뇨병 데이터셋 + +내장된 [당뇨병 데이터셋](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset)에는 당뇨병과 관련된 442개의 샘플 데이터가 포함되어 있으며, 10개의 특징 변수 중 일부는 다음과 같습니다: + +- age: 나이(연도 기준) +- bmi: 체질량지수 +- bp: 평균 혈압 +- s1 tc: T-세포(백혈구의 일종) + +✅ 이 데이터셋에는 당뇨병 연구와 관련된 중요한 특징 변수로 '성별' 개념이 포함되어 있습니다. 많은 의료 데이터셋에는 이러한 유형의 이진 분류가 포함되어 있습니다. 이러한 분류가 인구의 특정 부분을 치료에서 배제할 가능성에 대해 잠시 생각해 보세요. + +이제 X와 y 데이터를 로드합니다. + +> 🎓 이것은 지도 학습이며, 명명된 'y' 타겟이 필요합니다. + +새로운 코드 셀에서 `load_diabetes()`를 호출하여 당뇨병 데이터셋을 로드합니다. 입력값 `return_X_y=True`는 `X`가 데이터 매트릭스가 되고, `y`가 회귀 타겟이 되도록 신호를 보냅니다. + +1. 데이터 매트릭스의 모양과 첫 번째 요소를 표시하기 위해 몇 가지 print 명령을 추가하세요: + + ```python + X, y = datasets.load_diabetes(return_X_y=True) + print(X.shape) + print(X[0]) + ``` + + 반환값은 튜플입니다. 여기서 튜플의 첫 번째 두 값을 각각 `X`와 `y`에 할당합니다. [튜플에 대해 더 알아보기](https://wikipedia.org/wiki/Tuple). + + 이 데이터는 442개의 항목으로 구성되어 있으며, 각 항목은 10개의 요소로 이루어진 배열로 되어 있음을 확인할 수 있습니다: + + ```text + (442, 10) + [ 0.03807591 0.05068012 0.06169621 0.02187235 -0.0442235 -0.03482076 + -0.04340085 -0.00259226 0.01990842 -0.01764613] + ``` + + ✅ 데이터와 회귀 타겟 간의 관계에 대해 잠시 생각해 보세요. 선형 회귀는 특징 X와 타겟 변수 y 간의 관계를 예측합니다. 당뇨병 데이터셋의 [타겟](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset)을 문서에서 찾을 수 있나요? 이 데이터셋은 무엇을 보여주고 있나요? + +2. 다음으로, 데이터셋의 일부를 선택하여 플롯합니다. 데이터셋의 3번째 열을 선택하려면 `:` 연산자를 사용하여 모든 행을 선택한 다음, 인덱스(2)를 사용하여 3번째 열을 선택합니다. 또한 `reshape(n_rows, n_columns)`을 사용하여 데이터를 2D 배열로 재구성할 수 있습니다. 매개변수 중 하나가 -1이면 해당 차원이 자동으로 계산됩니다. + + ```python + X = X[:, 2] + X = X.reshape((-1,1)) + ``` + + ✅ 언제든지 데이터를 출력하여 모양을 확인하세요. + +3. 이제 데이터를 플롯할 준비가 되었으니, 머신이 이 데이터셋의 숫자들 사이에서 논리적인 분리를 결정할 수 있는지 확인할 수 있습니다. 이를 위해 데이터(X)와 타겟(y)을 테스트 및 학습 세트로 분할해야 합니다. Scikit-learn은 이를 간단하게 수행할 수 있는 방법을 제공합니다. 특정 지점에서 테스트 데이터를 분할할 수 있습니다. + + ```python + X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33) + ``` + +4. 이제 모델을 학습시킬 준비가 되었습니다! 선형 회귀 모델을 로드하고 `model.fit()`을 사용하여 X와 y 학습 세트를 학습시킵니다: + + ```python + model = linear_model.LinearRegression() + model.fit(X_train, y_train) + ``` + + ✅ `model.fit()`은 TensorFlow와 같은 많은 ML 라이브러리에서 볼 수 있는 함수입니다. + +5. 그런 다음, 테스트 데이터를 사용하여 `predict()` 함수를 사용해 예측을 생성합니다. 이는 데이터 그룹 간의 선을 그리는 데 사용됩니다. + + ```python + y_pred = model.predict(X_test) + ``` + +6. 이제 데이터를 플롯으로 표시할 시간입니다. Matplotlib은 이 작업에 매우 유용한 도구입니다. 모든 X와 y 테스트 데이터의 산점도를 생성하고, 모델의 데이터 그룹 사이에서 가장 적절한 위치에 선을 그리기 위해 예측을 사용합니다. + + ```python + plt.scatter(X_test, y_test, color='black') + plt.plot(X_test, y_pred, color='blue', linewidth=3) + plt.xlabel('Scaled BMIs') + plt.ylabel('Disease Progression') + plt.title('A Graph Plot Showing Diabetes Progression Against BMI') + plt.show() + ``` + + ![당뇨병 관련 데이터 포인트를 보여주는 산점도](../../../../translated_images/scatterplot.ad8b356bcbb33be68d54050e09b9b7bfc03e94fde7371f2609ae43f4c563b2d7.ko.png) +✅ 여기서 무슨 일이 일어나고 있는지 잠시 생각해 보세요. 많은 작은 데이터 점들 사이로 직선이 지나가고 있습니다. 하지만 이 직선이 정확히 무엇을 하고 있는 걸까요? 이 직선을 사용하여 새로운, 보지 못한 데이터 포인트가 플롯의 y축과 어떤 관계를 맺어야 하는지 예측할 수 있다는 것을 이해할 수 있나요? 이 모델의 실질적인 사용 방법을 말로 표현해 보세요. + +축하합니다! 첫 번째 선형 회귀 모델을 구축하고, 이를 사용해 예측을 생성한 뒤 플롯에 표시했습니다! + +--- +## 🚀도전 과제 + +이 데이터셋에서 다른 변수를 플롯해 보세요. 힌트: 이 줄을 수정하세요: `X = X[:,2]`. 이 데이터셋의 목표를 고려했을 때, 당뇨병이 질병으로서 어떻게 진행되는지에 대해 무엇을 발견할 수 있나요? + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/10/) + +## 복습 및 자기 학습 + +이 튜토리얼에서는 단변량 또는 다변량 선형 회귀가 아닌 간단한 선형 회귀를 사용했습니다. 이러한 방법들 간의 차이에 대해 조금 읽어보거나 [이 비디오](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef)를 확인해 보세요. + +회귀의 개념에 대해 더 읽어보고 이 기술로 어떤 종류의 질문에 답할 수 있는지 생각해 보세요. 이 [튜토리얼](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott)을 통해 이해를 심화해 보세요. + +## 과제 + +[다른 데이터셋](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/2-Regression/1-Tools/assignment.md b/translations/ko/2-Regression/1-Tools/assignment.md new file mode 100644 index 000000000..339608e65 --- /dev/null +++ b/translations/ko/2-Regression/1-Tools/assignment.md @@ -0,0 +1,27 @@ + +# Scikit-learn을 사용한 회귀 분석 + +## 지침 + +Scikit-learn의 [Linnerud 데이터셋](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html#sklearn.datasets.load_linnerud)을 살펴보세요. 이 데이터셋은 여러 [타겟](https://scikit-learn.org/stable/datasets/toy_dataset.html#linnerrud-dataset)을 포함하고 있습니다: '이 데이터셋은 피트니스 클럽에 다니는 중년 남성 20명으로부터 수집된 세 가지 운동(데이터) 및 세 가지 생리학적(타겟) 변수로 구성되어 있습니다.' + +허리둘레와 수행된 윗몸 일으키기 횟수 간의 관계를 나타내는 회귀 모델을 생성하는 방법을 자신의 말로 설명하세요. 이 데이터셋의 다른 데이터 포인트에 대해서도 동일한 작업을 수행하세요. + +## 평가 기준 + +| 기준 | 우수 | 적절함 | 개선 필요 | +| ------------------------------ | --------------------------------- | ----------------------------- | -------------------------- | +| 설명 문단 제출 | 잘 작성된 문단이 제출됨 | 몇 문장만 제출됨 | 설명이 제출되지 않음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역을 사용함으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/2-Regression/1-Tools/notebook.ipynb b/translations/ko/2-Regression/1-Tools/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/ko/2-Regression/1-Tools/solution/Julia/README.md b/translations/ko/2-Regression/1-Tools/solution/Julia/README.md new file mode 100644 index 000000000..70a056a2c --- /dev/null +++ b/translations/ko/2-Regression/1-Tools/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 신뢰할 수 있는 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb b/translations/ko/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb new file mode 100644 index 000000000..7345d5846 --- /dev/null +++ b/translations/ko/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb @@ -0,0 +1,448 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_1-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "c18d3bd0bd8ae3878597e89dcd1fa5c1", + "translation_date": "2025-09-04T01:32:53+00:00", + "source_file": "2-Regression/1-Tools/solution/R/lesson_1-R.ipynb", + "language_code": "ko" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "YJUHCXqK57yz" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 회귀 분석 소개 - 1강\n", + "\n", + "#### 관점을 넓혀보기\n", + "\n", + "✅ 회귀 방법에는 여러 가지가 있으며, 어떤 방법을 선택할지는 여러분이 찾고자 하는 답에 따라 달라집니다. 예를 들어, 특정 나이에 따른 예상 키를 예측하고 싶다면, **숫자 값**을 찾는 것이므로 `선형 회귀`를 사용할 것입니다. 반면, 특정 요리가 비건으로 간주되어야 하는지 여부를 알고 싶다면, 이는 **카테고리 할당**을 찾는 것이므로 `로지스틱 회귀`를 사용할 것입니다. 로지스틱 회귀에 대해서는 나중에 더 배우게 될 것입니다. 데이터를 통해 어떤 질문을 할 수 있을지, 그리고 이 방법들 중 어떤 것이 더 적합할지에 대해 잠시 생각해 보세요.\n", + "\n", + "이 섹션에서는 [당뇨병에 관한 작은 데이터셋](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)을 다룰 것입니다. 당뇨병 환자를 위한 치료법을 테스트하고 싶다고 상상해 보세요. 머신러닝 모델은 변수들의 조합을 기반으로 어떤 환자가 치료에 더 잘 반응할지 결정하는 데 도움을 줄 수 있습니다. 심지어 아주 기본적인 회귀 모델이라도 시각화하면 이론적인 임상 시험을 구성하는 데 도움이 되는 변수에 대한 정보를 보여줄 수 있습니다.\n", + "\n", + "그럼, 이 작업을 시작해 봅시다!\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    @allison_horst의 작품
                                                    \n", + "\n", + "\n" + ], + "metadata": { + "id": "LWNNzfqd6feZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. 도구 세트 준비하기\n", + "\n", + "이 작업을 위해 다음 패키지가 필요합니다:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/)는 데이터 과학을 더 빠르고, 쉽고, 재미있게 만들어주는 [R 패키지 모음](https://www.tidyverse.org/packages)입니다!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 프레임워크는 모델링과 머신러닝을 위한 [패키지 모음](https://www.tidymodels.org/packages/)입니다.\n", + "\n", + "다음 명령어로 패키지를 설치할 수 있습니다:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\"))`\n", + "\n", + "아래 스크립트는 이 모듈을 완료하는 데 필요한 패키지가 설치되어 있는지 확인하고, 누락된 경우 자동으로 설치해줍니다.\n" + ], + "metadata": { + "id": "FIo2YhO26wI9" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse, tidymodels)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "id": "cIA9fz9v7Dss", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2df7073b-86b2-4b32-cb86-0da605a0dc11" + } + }, + { + "cell_type": "markdown", + "source": [ + "이제 이 멋진 패키지들을 로드하고 현재 R 세션에서 사용할 수 있도록 합시다. (이는 단순한 예시일 뿐이며, `pacman::p_load()`가 이미 이를 수행했습니다)\n" + ], + "metadata": { + "id": "gpO_P_6f9WUG" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# load the core Tidyverse packages\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# load the core Tidymodels packages\r\n", + "library(tidymodels)\r\n" + ], + "outputs": [], + "metadata": { + "id": "NLMycgG-9ezO" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. 당뇨병 데이터셋\n", + "\n", + "이번 연습에서는 당뇨병 데이터셋을 사용하여 회귀 분석 기술을 활용해 예측을 수행해 보겠습니다. [당뇨병 데이터셋](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt)은 당뇨병과 관련된 `442개의 샘플` 데이터를 포함하고 있으며, 10개의 예측 변수(`나이`, `성별`, `체질량지수`, `평균 혈압`, `6가지 혈청 측정값`)와 결과 변수 `y`를 포함하고 있습니다. 결과 변수 `y`는 기준 시점으로부터 1년 후 질병 진행 정도를 정량적으로 측정한 값입니다.\n", + "\n", + "|관측치 수|442|\n", + "|----------------------|:---|\n", + "|예측 변수 수|처음 10개의 열은 숫자로 된 예측 변수|\n", + "|결과/목표|11번째 열은 기준 시점으로부터 1년 후 질병 진행 정도를 정량적으로 측정한 값|\n", + "|예측 변수 정보|- 나이 (연령)\n", + "||- 성별\n", + "||- bmi 체질량지수\n", + "||- bp 평균 혈압\n", + "||- s1 tc, 총 혈청 콜레스테롤\n", + "||- s2 ldl, 저밀도 지단백\n", + "||- s3 hdl, 고밀도 지단백\n", + "||- s4 tch, 총 콜레스테롤 / HDL\n", + "||- s5 ltg, 아마도 혈청 중성지방 수치의 로그값\n", + "||- s6 glu, 혈당 수치|\n", + "\n", + "\n", + "> 🎓 기억하세요, 이는 지도 학습(supervised learning)이며, 'y'라는 이름의 목표 변수가 필요합니다.\n", + "\n", + "R로 데이터를 조작하기 전에, 데이터를 R의 메모리로 가져오거나, R이 원격으로 데이터를 액세스할 수 있도록 데이터와 연결을 설정해야 합니다.\n", + "\n", + "> [readr](https://readr.tidyverse.org/) 패키지는 Tidyverse의 일부로, 직사각형 형태의 데이터를 R로 빠르고 간편하게 읽어오는 방법을 제공합니다.\n", + "\n", + "이제 다음 소스 URL에서 제공된 당뇨병 데이터셋을 불러옵시다: \n", + "\n", + "또한, `glimpse()`를 사용하여 데이터에 대한 간단한 검사를 수행하고, `slice()`를 사용해 처음 5개의 행을 표시해 보겠습니다.\n", + "\n", + "진행하기 전에, R 코드에서 자주 접하게 될 🥁🥁 파이프 연산자 `%>%`를 소개하겠습니다.\n", + "\n", + "파이프 연산자 (`%>%`)는 객체를 함수나 호출 표현식으로 전달하여 논리적인 순서로 작업을 수행합니다. 코드에서 파이프 연산자는 \"그리고 나서\"라고 생각하면 됩니다.\n" + ], + "metadata": { + "id": "KM6iXLH996Cl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import the data set\r\n", + "diabetes <- read_table2(file = \"https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt\")\r\n", + "\r\n", + "\r\n", + "# Get a glimpse and dimensions of the data\r\n", + "glimpse(diabetes)\r\n", + "\r\n", + "\r\n", + "# Select the first 5 rows of the data\r\n", + "diabetes %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "Z1geAMhM-bSP" + } + }, + { + "cell_type": "markdown", + "source": [ + "`glimpse()`를 사용하면 이 데이터가 442개의 행과 11개의 열로 구성되어 있으며, 모든 열의 데이터 타입이 `double`임을 알 수 있습니다.\n", + "\n", + "
                                                    \n", + "\n", + "> `glimpse()`와 `slice()`는 [`dplyr`](https://dplyr.tidyverse.org/) 패키지의 함수입니다. Tidyverse의 일부인 dplyr은 데이터 조작을 위한 문법으로, 가장 일반적인 데이터 조작 문제를 해결하는 데 도움을 주는 일관된 동사 세트를 제공합니다.\n", + "\n", + "
                                                    \n", + "\n", + "이제 데이터를 확보했으니, 이번 연습에서는 특정 특징(`bmi`)에 초점을 맞춰 보겠습니다. 이를 위해 원하는 열을 선택해야 합니다. 그렇다면, 어떻게 해야 할까요?\n", + "\n", + "[`dplyr::select()`](https://dplyr.tidyverse.org/reference/select.html)는 데이터 프레임에서 열을 *선택*하고 (선택적으로 이름을 변경할 수도 있음) 사용할 수 있도록 해줍니다.\n" + ], + "metadata": { + "id": "UwjVT1Hz-c3Z" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select predictor feature `bmi` and outcome `y`\r\n", + "diabetes_select <- diabetes %>% \r\n", + " select(c(bmi, y))\r\n", + "\r\n", + "# Print the first 5 rows\r\n", + "diabetes_select %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "RDY1oAKI-m80" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. 학습 및 테스트 데이터\n", + "\n", + "지도 학습에서는 데이터를 두 개의 하위 집합으로 *분할*하는 것이 일반적인 관행입니다. 하나는 모델을 학습시키는 데 사용하는 (일반적으로 더 큰) 데이터 세트이고, 다른 하나는 모델의 성능을 확인하기 위해 사용하는 더 작은 \"보류\" 데이터 세트입니다.\n", + "\n", + "이제 데이터를 준비했으니, 이 데이터 세트에서 숫자들을 논리적으로 분할하는 데 머신이 도움을 줄 수 있는지 확인해 봅시다. 이를 위해 Tidymodels 프레임워크의 일부인 [rsample](https://tidymodels.github.io/rsample/) 패키지를 사용할 수 있습니다. 이 패키지를 사용하면 데이터를 *어떻게* 분할할지에 대한 정보를 포함하는 객체를 생성할 수 있으며, 이후 두 개의 rsample 함수를 사용하여 생성된 학습 및 테스트 세트를 추출할 수 있습니다:\n" + ], + "metadata": { + "id": "SDk668xK-tc3" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\r\n", + "# Split 67% of the data for training and the rest for tesing\r\n", + "diabetes_split <- diabetes_select %>% \r\n", + " initial_split(prop = 0.67)\r\n", + "\r\n", + "# Extract the resulting train and test sets\r\n", + "diabetes_train <- training(diabetes_split)\r\n", + "diabetes_test <- testing(diabetes_split)\r\n", + "\r\n", + "# Print the first 3 rows of the training set\r\n", + "diabetes_train %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "EqtHx129-1h-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. Tidymodels로 선형 회귀 모델 학습하기\n", + "\n", + "이제 모델을 학습할 준비가 되었습니다!\n", + "\n", + "Tidymodels에서는 `parsnip()`을 사용하여 세 가지 개념을 지정함으로써 모델을 정의합니다:\n", + "\n", + "- 모델 **유형(type)**: 선형 회귀, 로지스틱 회귀, 결정 트리 모델 등과 같은 모델을 구분합니다.\n", + "\n", + "- 모델 **모드(mode)**: 회귀(regression)와 분류(classification)와 같은 일반적인 옵션을 포함하며, 일부 모델 유형은 둘 중 하나를 지원하거나 하나의 모드만 가질 수 있습니다.\n", + "\n", + "- 모델 **엔진(engine)**: 모델을 학습시키는 데 사용되는 계산 도구입니다. 종종 **`\"lm\"`** 또는 **`\"ranger\"`**와 같은 R 패키지가 사용됩니다.\n", + "\n", + "이러한 모델링 정보는 모델 사양에 캡처되므로, 이제 하나를 만들어 봅시다!\n" + ], + "metadata": { + "id": "sBOS-XhB-6v7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- \r\n", + " # Type\r\n", + " linear_reg() %>% \r\n", + " # Engine\r\n", + " set_engine(\"lm\") %>% \r\n", + " # Mode\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Print the model specification\r\n", + "lm_spec" + ], + "outputs": [], + "metadata": { + "id": "20OwEw20--t3" + } + }, + { + "cell_type": "markdown", + "source": [ + "모델이 *지정*된 후, [`fit()`](https://parsnip.tidymodels.org/reference/fit.html) 함수를 사용하여 모델을 `추정`하거나 `훈련`할 수 있습니다. 일반적으로 공식과 일부 데이터를 사용합니다.\n", + "\n", + "`y ~ .`은 `y`를 예측 값/목표로 설정하고, 모든 예측 변수/특징(즉, `.`)에 의해 설명된다는 것을 의미합니다. (이 경우, 우리는 하나의 예측 변수인 `bmi`만 가지고 있습니다.)\n" + ], + "metadata": { + "id": "_oDHs89k_CJj" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>%\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Train a linear regression model\r\n", + "lm_mod <- lm_spec %>% \r\n", + " fit(y ~ ., data = diabetes_train)\r\n", + "\r\n", + "# Print the model\r\n", + "lm_mod" + ], + "outputs": [], + "metadata": { + "id": "YlsHqd-q_GJQ" + } + }, + { + "cell_type": "markdown", + "source": [ + "모델 출력에서 우리는 훈련 중 학습된 계수를 확인할 수 있습니다. 이 계수들은 실제 변수와 예측 변수 간의 전체 오류를 가장 낮게 만드는 최적의 선형 적합 계수를 나타냅니다.\n", + "
                                                    \n", + "\n", + "## 5. 테스트 세트에 대한 예측 수행\n", + "\n", + "이제 모델을 훈련했으니, 이를 사용하여 테스트 데이터셋의 질병 진행 y를 [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html)를 통해 예측할 수 있습니다. 이는 데이터 그룹 간의 선을 그리는 데 사용됩니다.\n" + ], + "metadata": { + "id": "kGZ22RQj_Olu" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\r\n", + "predictions <- lm_mod %>% \r\n", + " predict(new_data = diabetes_test)\r\n", + "\r\n", + "# Print out some of the predictions\r\n", + "predictions %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "nXHbY7M2_aao" + } + }, + { + "cell_type": "markdown", + "source": [ + "우와! 💃🕺 우리는 방금 모델을 훈련시키고 이를 사용해 예측을 했어요!\n", + "\n", + "예측을 할 때, tidymodels의 관례는 항상 표준화된 열 이름을 가진 tibble/데이터 프레임 형태로 결과를 생성하는 것입니다. 이렇게 하면 원본 데이터와 예측 결과를 결합하여 이후의 작업(예: 시각화)에서 사용하기 쉬운 형식으로 만들 수 있습니다.\n", + "\n", + "`dplyr::bind_cols()`는 여러 데이터 프레임의 열을 효율적으로 결합합니다.\n" + ], + "metadata": { + "id": "R_JstwUY_bIs" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Combine the predictions and the original test set\r\n", + "results <- diabetes_test %>% \r\n", + " bind_cols(predictions)\r\n", + "\r\n", + "\r\n", + "results %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "RybsMJR7_iI8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 6. 모델링 결과 시각화\n", + "\n", + "이제 결과를 시각적으로 확인해볼 시간입니다 📈. 테스트 세트의 모든 `y`와 `bmi` 값을 산점도로 표시한 다음, 예측값을 사용해 모델의 데이터 그룹 사이에 가장 적절한 위치에 선을 그려보겠습니다.\n", + "\n", + "R에는 그래프를 만드는 여러 가지 시스템이 있지만, `ggplot2`는 가장 우아하고 다재다능한 도구 중 하나입니다. 이 도구를 사용하면 **독립적인 구성 요소를 결합하여** 그래프를 만들 수 있습니다.\n" + ], + "metadata": { + "id": "XJbYbMZW_n_s" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plot\r\n", + "theme_set(theme_light())\r\n", + "# Create a scatter plot\r\n", + "results %>% \r\n", + " ggplot(aes(x = bmi)) +\r\n", + " # Add a scatter plot\r\n", + " geom_point(aes(y = y), size = 1.6) +\r\n", + " # Add a line plot\r\n", + " geom_line(aes(y = .pred), color = \"blue\", size = 1.5)" + ], + "outputs": [], + "metadata": { + "id": "R9tYp3VW_sTn" + } + }, + { + "cell_type": "markdown", + "source": [ + "✅ 여기서 무슨 일이 일어나고 있는지 잠시 생각해 보세요. 직선 하나가 많은 작은 데이터 점들 사이를 지나가고 있습니다. 그런데 이 직선이 정확히 무엇을 하고 있는 걸까요? 이 직선을 사용해서 새로운, 보지 못한 데이터 포인트가 플롯의 y축과 어떤 관계를 가지는지 예측할 수 있는 방법을 이해할 수 있나요? 이 모델의 실질적인 활용 방법을 말로 표현해 보세요.\n", + "\n", + "축하합니다! 첫 번째 선형 회귀 모델을 만들고, 이를 사용해 예측을 생성한 뒤, 플롯에 표시했습니다!\n" + ], + "metadata": { + "id": "zrPtHIxx_tNI" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/2-Regression/1-Tools/solution/notebook.ipynb b/translations/ko/2-Regression/1-Tools/solution/notebook.ipynb new file mode 100644 index 000000000..1468df085 --- /dev/null +++ b/translations/ko/2-Regression/1-Tools/solution/notebook.ipynb @@ -0,0 +1,675 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "필요한 라이브러리 가져오기\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from sklearn import datasets, linear_model, model_selection\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "당뇨병 데이터셋을 로드하여 `X` 데이터와 `y` 특성으로 나눕니다\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 10)\n", + "[ 0.03807591 0.05068012 0.06169621 0.02187239 -0.0442235 -0.03482076\n", + " -0.04340085 -0.00259226 0.01990749 -0.01764613]\n" + ] + } + ], + "source": [ + "X, y = datasets.load_diabetes(return_X_y=True)\n", + "print(X.shape)\n", + "print(X[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "이 연습을 위해 하나의 기능만 선택하세요.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442,)\n" + ] + } + ], + "source": [ + "# Selecting the 3rd feature\n", + "X = X[:, 2]\n", + "print(X.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 1)\n", + "[[ 0.06169621]\n", + " [-0.05147406]\n", + " [ 0.04445121]\n", + " [-0.01159501]\n", + " [-0.03638469]\n", + " [-0.04069594]\n", + " [-0.04716281]\n", + " [-0.00189471]\n", + " [ 0.06169621]\n", + " [ 0.03906215]\n", + " [-0.08380842]\n", + " [ 0.01750591]\n", + " [-0.02884001]\n", + " [-0.00189471]\n", + " [-0.02560657]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [ 0.01211685]\n", + " [-0.0105172 ]\n", + " [-0.01806189]\n", + " [-0.05686312]\n", + " [-0.02237314]\n", + " [-0.00405033]\n", + " [ 0.06061839]\n", + " [ 0.03582872]\n", + " [-0.01267283]\n", + " [-0.07734155]\n", + " [ 0.05954058]\n", + " [-0.02129532]\n", + " [-0.00620595]\n", + " [ 0.04445121]\n", + " [-0.06548562]\n", + " [ 0.12528712]\n", + " [-0.05039625]\n", + " [-0.06332999]\n", + " [-0.03099563]\n", + " [ 0.02289497]\n", + " [ 0.01103904]\n", + " [ 0.07139652]\n", + " [ 0.01427248]\n", + " [-0.00836158]\n", + " [-0.06764124]\n", + " [-0.0105172 ]\n", + " [-0.02345095]\n", + " [ 0.06816308]\n", + " [-0.03530688]\n", + " [-0.01159501]\n", + " [-0.0730303 ]\n", + " [-0.04177375]\n", + " [ 0.01427248]\n", + " [-0.00728377]\n", + " [ 0.0164281 ]\n", + " [-0.00943939]\n", + " [-0.01590626]\n", + " [ 0.0250506 ]\n", + " [-0.04931844]\n", + " [ 0.04121778]\n", + " [-0.06332999]\n", + " [-0.06440781]\n", + " [-0.02560657]\n", + " [-0.00405033]\n", + " [ 0.00457217]\n", + " [-0.00728377]\n", + " [-0.0374625 ]\n", + " [-0.02560657]\n", + " [-0.02452876]\n", + " [-0.01806189]\n", + " [-0.01482845]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [-0.06979687]\n", + " [ 0.03367309]\n", + " [-0.00405033]\n", + " [-0.02021751]\n", + " [ 0.00241654]\n", + " [-0.03099563]\n", + " [ 0.02828403]\n", + " [-0.03638469]\n", + " [-0.05794093]\n", + " [-0.0374625 ]\n", + " [ 0.01211685]\n", + " [-0.02237314]\n", + " [-0.03530688]\n", + " [ 0.00996123]\n", + " [-0.03961813]\n", + " [ 0.07139652]\n", + " [-0.07518593]\n", + " [-0.00620595]\n", + " [-0.04069594]\n", + " [-0.04824063]\n", + " [-0.02560657]\n", + " [ 0.0519959 ]\n", + " [ 0.00457217]\n", + " [-0.06440781]\n", + " [-0.01698407]\n", + " [-0.05794093]\n", + " [ 0.00996123]\n", + " [ 0.08864151]\n", + " [-0.00512814]\n", + " [-0.06440781]\n", + " [ 0.01750591]\n", + " [-0.04500719]\n", + " [ 0.02828403]\n", + " [ 0.04121778]\n", + " [ 0.06492964]\n", + " [-0.03207344]\n", + " [-0.07626374]\n", + " [ 0.04984027]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03207344]\n", + " [ 0.00457217]\n", + " [ 0.02073935]\n", + " [ 0.01427248]\n", + " [ 0.11019775]\n", + " [ 0.00133873]\n", + " [ 0.05846277]\n", + " [-0.02129532]\n", + " [-0.0105172 ]\n", + " [-0.04716281]\n", + " [ 0.00457217]\n", + " [ 0.01750591]\n", + " [ 0.08109682]\n", + " [ 0.0347509 ]\n", + " [ 0.02397278]\n", + " [-0.00836158]\n", + " [-0.06117437]\n", + " [-0.00189471]\n", + " [-0.06225218]\n", + " [ 0.0164281 ]\n", + " [ 0.09618619]\n", + " [-0.06979687]\n", + " [-0.02129532]\n", + " [-0.05362969]\n", + " [ 0.0433734 ]\n", + " [ 0.05630715]\n", + " [-0.0816528 ]\n", + " [ 0.04984027]\n", + " [ 0.11127556]\n", + " [ 0.06169621]\n", + " [ 0.01427248]\n", + " [ 0.04768465]\n", + " [ 0.01211685]\n", + " [ 0.00564998]\n", + " [ 0.04660684]\n", + " [ 0.12852056]\n", + " [ 0.05954058]\n", + " [ 0.09295276]\n", + " [ 0.01535029]\n", + " [-0.00512814]\n", + " [ 0.0703187 ]\n", + " [-0.00405033]\n", + " [-0.00081689]\n", + " [-0.04392938]\n", + " [ 0.02073935]\n", + " [ 0.06061839]\n", + " [-0.0105172 ]\n", + " [-0.03315126]\n", + " [-0.06548562]\n", + " [ 0.0433734 ]\n", + " [-0.06225218]\n", + " [ 0.06385183]\n", + " [ 0.03043966]\n", + " [ 0.07247433]\n", + " [-0.0191397 ]\n", + " [-0.06656343]\n", + " [-0.06009656]\n", + " [ 0.06924089]\n", + " [ 0.05954058]\n", + " [-0.02668438]\n", + " [-0.02021751]\n", + " [-0.046085 ]\n", + " [ 0.07139652]\n", + " [-0.07949718]\n", + " [ 0.00996123]\n", + " [-0.03854032]\n", + " [ 0.01966154]\n", + " [ 0.02720622]\n", + " [-0.00836158]\n", + " [-0.01590626]\n", + " [ 0.00457217]\n", + " [-0.04285156]\n", + " [ 0.00564998]\n", + " [-0.03530688]\n", + " [ 0.02397278]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [-0.0547075 ]\n", + " [-0.00297252]\n", + " [-0.06656343]\n", + " [-0.01267283]\n", + " [-0.04177375]\n", + " [-0.03099563]\n", + " [-0.00512814]\n", + " [-0.05901875]\n", + " [ 0.0250506 ]\n", + " [-0.046085 ]\n", + " [ 0.00349435]\n", + " [ 0.05415152]\n", + " [-0.04500719]\n", + " [-0.05794093]\n", + " [-0.05578531]\n", + " [ 0.00133873]\n", + " [ 0.03043966]\n", + " [ 0.00672779]\n", + " [ 0.04660684]\n", + " [ 0.02612841]\n", + " [ 0.04552903]\n", + " [ 0.04013997]\n", + " [-0.01806189]\n", + " [ 0.01427248]\n", + " [ 0.03690653]\n", + " [ 0.00349435]\n", + " [-0.07087468]\n", + " [-0.03315126]\n", + " [ 0.09403057]\n", + " [ 0.03582872]\n", + " [ 0.03151747]\n", + " [-0.06548562]\n", + " [-0.04177375]\n", + " [-0.03961813]\n", + " [-0.03854032]\n", + " [-0.02560657]\n", + " [-0.02345095]\n", + " [-0.06656343]\n", + " [ 0.03259528]\n", + " [-0.046085 ]\n", + " [-0.02991782]\n", + " [-0.01267283]\n", + " [-0.01590626]\n", + " [ 0.07139652]\n", + " [-0.03099563]\n", + " [ 0.00026092]\n", + " [ 0.03690653]\n", + " [ 0.03906215]\n", + " [-0.01482845]\n", + " [ 0.00672779]\n", + " [-0.06871905]\n", + " [-0.00943939]\n", + " [ 0.01966154]\n", + " [ 0.07462995]\n", + " [-0.00836158]\n", + " [-0.02345095]\n", + " [-0.046085 ]\n", + " [ 0.05415152]\n", + " [-0.03530688]\n", + " [-0.03207344]\n", + " [-0.0816528 ]\n", + " [ 0.04768465]\n", + " [ 0.06061839]\n", + " [ 0.05630715]\n", + " [ 0.09834182]\n", + " [ 0.05954058]\n", + " [ 0.03367309]\n", + " [ 0.05630715]\n", + " [-0.06548562]\n", + " [ 0.16085492]\n", + " [-0.05578531]\n", + " [-0.02452876]\n", + " [-0.03638469]\n", + " [-0.00836158]\n", + " [-0.04177375]\n", + " [ 0.12744274]\n", + " [-0.07734155]\n", + " [ 0.02828403]\n", + " [-0.02560657]\n", + " [-0.06225218]\n", + " [-0.00081689]\n", + " [ 0.08864151]\n", + " [-0.03207344]\n", + " [ 0.03043966]\n", + " [ 0.00888341]\n", + " [ 0.00672779]\n", + " [-0.02021751]\n", + " [-0.02452876]\n", + " [-0.01159501]\n", + " [ 0.02612841]\n", + " [-0.05901875]\n", + " [-0.03638469]\n", + " [-0.02452876]\n", + " [ 0.01858372]\n", + " [-0.0902753 ]\n", + " [-0.00512814]\n", + " [-0.05255187]\n", + " [-0.02237314]\n", + " [-0.02021751]\n", + " [-0.0547075 ]\n", + " [-0.00620595]\n", + " [-0.01698407]\n", + " [ 0.05522933]\n", + " [ 0.07678558]\n", + " [ 0.01858372]\n", + " [-0.02237314]\n", + " [ 0.09295276]\n", + " [-0.03099563]\n", + " [ 0.03906215]\n", + " [-0.06117437]\n", + " [-0.00836158]\n", + " [-0.0374625 ]\n", + " [-0.01375064]\n", + " [ 0.07355214]\n", + " [-0.02452876]\n", + " [ 0.03367309]\n", + " [ 0.0347509 ]\n", + " [-0.03854032]\n", + " [-0.03961813]\n", + " [-0.00189471]\n", + " [-0.03099563]\n", + " [-0.046085 ]\n", + " [ 0.00133873]\n", + " [ 0.06492964]\n", + " [ 0.04013997]\n", + " [-0.02345095]\n", + " [ 0.05307371]\n", + " [ 0.04013997]\n", + " [-0.02021751]\n", + " [ 0.01427248]\n", + " [-0.03422907]\n", + " [ 0.00672779]\n", + " [ 0.00457217]\n", + " [ 0.03043966]\n", + " [ 0.0519959 ]\n", + " [ 0.06169621]\n", + " [-0.00728377]\n", + " [ 0.00564998]\n", + " [ 0.05415152]\n", + " [-0.00836158]\n", + " [ 0.114509 ]\n", + " [ 0.06708527]\n", + " [-0.05578531]\n", + " [ 0.03043966]\n", + " [-0.02560657]\n", + " [ 0.10480869]\n", + " [-0.00620595]\n", + " [-0.04716281]\n", + " [-0.04824063]\n", + " [ 0.08540807]\n", + " [-0.01267283]\n", + " [-0.03315126]\n", + " [-0.00728377]\n", + " [-0.01375064]\n", + " [ 0.05954058]\n", + " [ 0.02181716]\n", + " [ 0.01858372]\n", + " [-0.01159501]\n", + " [-0.00297252]\n", + " [ 0.01750591]\n", + " [-0.02991782]\n", + " [-0.02021751]\n", + " [-0.05794093]\n", + " [ 0.06061839]\n", + " [-0.04069594]\n", + " [-0.07195249]\n", + " [-0.05578531]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03315126]\n", + " [ 0.04984027]\n", + " [-0.08488624]\n", + " [ 0.00564998]\n", + " [ 0.02073935]\n", + " [-0.00728377]\n", + " [ 0.10480869]\n", + " [-0.02452876]\n", + " [-0.00620595]\n", + " [-0.03854032]\n", + " [ 0.13714305]\n", + " [ 0.17055523]\n", + " [ 0.00241654]\n", + " [ 0.03798434]\n", + " [-0.05794093]\n", + " [-0.00943939]\n", + " [-0.02345095]\n", + " [-0.0105172 ]\n", + " [-0.03422907]\n", + " [-0.00297252]\n", + " [ 0.06816308]\n", + " [ 0.00996123]\n", + " [ 0.00241654]\n", + " [-0.03854032]\n", + " [ 0.02612841]\n", + " [-0.08919748]\n", + " [ 0.06061839]\n", + " [-0.02884001]\n", + " [-0.02991782]\n", + " [-0.0191397 ]\n", + " [-0.04069594]\n", + " [ 0.01535029]\n", + " [-0.02452876]\n", + " [ 0.00133873]\n", + " [ 0.06924089]\n", + " [-0.06979687]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [ 0.01858372]\n", + " [ 0.00133873]\n", + " [-0.03099563]\n", + " [-0.00405033]\n", + " [ 0.01535029]\n", + " [ 0.02289497]\n", + " [ 0.04552903]\n", + " [-0.04500719]\n", + " [-0.03315126]\n", + " [ 0.097264 ]\n", + " [ 0.05415152]\n", + " [ 0.12313149]\n", + " [-0.08057499]\n", + " [ 0.09295276]\n", + " [-0.05039625]\n", + " [-0.01159501]\n", + " [-0.0277622 ]\n", + " [ 0.05846277]\n", + " [ 0.08540807]\n", + " [-0.00081689]\n", + " [ 0.00672779]\n", + " [ 0.00888341]\n", + " [ 0.08001901]\n", + " [ 0.07139652]\n", + " [-0.02452876]\n", + " [-0.0547075 ]\n", + " [-0.03638469]\n", + " [ 0.0164281 ]\n", + " [ 0.07786339]\n", + " [-0.03961813]\n", + " [ 0.01103904]\n", + " [-0.04069594]\n", + " [-0.03422907]\n", + " [ 0.00564998]\n", + " [ 0.08864151]\n", + " [-0.03315126]\n", + " [-0.05686312]\n", + " [-0.03099563]\n", + " [ 0.05522933]\n", + " [-0.06009656]\n", + " [ 0.00133873]\n", + " [-0.02345095]\n", + " [-0.07410811]\n", + " [ 0.01966154]\n", + " [-0.01590626]\n", + " [-0.01590626]\n", + " [ 0.03906215]\n", + " [-0.0730303 ]]\n" + ] + } + ], + "source": [ + "#Reshaping to get a 2D array\n", + "X = X.reshape(-1, 1)\n", + "print(X.shape)\n", + "print(X)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`X`와 `y`에 대해 훈련 데이터와 테스트 데이터를 분리하십시오.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "모델을 선택하고 훈련 데이터에 맞게 조정하십시오\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    LinearRegression()
                                                    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
                                                    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
                                                    " + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = linear_model.LinearRegression()\n", + "model.fit(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "테스트 데이터를 사용하여 선을 예측합니다\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "결과를 플롯에 표시하십시오\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbmUlEQVR4nO3de3wU1f0//tcQIHIxiQmBALsQUdSigNYLxn6iSaECaj/5NKTawAfRWi2IbUBRS71gtIrKp5rUj5dqK7ZfXfwAWcVS8ALuYtCIQEERvAC/cAtJoCBJQAhkc35/rLtmk92dmd2Z2ZnZ1/Px2Edl92Tm7CTd894z7/M+khBCgIiIiMhEuiW6A0RERESdMUAhIiIi02GAQkRERKbDAIWIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHS6J7oDsWhvb8f+/ftx+umnQ5KkRHeHiIiIFBBCoKWlBYMGDUK3btHnSCwZoOzfvx9OpzPR3SAiIqIY7N27Fw6HI2obSwYop59+OgD/G0xLS0twb4iIiEiJ5uZmOJ3O4DgejSUDlMBtnbS0NAYoREREFqMkPYNJskRERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpqMqQHn++ecxatSo4OqZvLw8rFy5Mvh6QUEBJEkKeUyfPj3kGHv27MG1116L3r17o3///rj77rvR1tamzbshIiIiW1C1zNjhcODxxx/H8OHDIYTA3/72NxQVFWHTpk04//zzAQC33norHn744eDP9O7dO/jfPp8P1157LXJycvDRRx+hvr4eN954I3r06IHHHntMo7dEREREVicJIUQ8B8jMzMSCBQtwyy23oKCgABdeeCEqKirCtl25ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5m5ubkZ6ejqamJtZBISIisgg143fMOSg+nw+vv/46jh07hry8vODzr732Gvr164cLLrgAc+fOxbfffht8raamBiNHjgwGJwAwfvx4NDc3Y+vWrRHP1draiubm5pAHERERac/n88Hr9WLRokXwer3w+XwJ6YfqSrJbtmxBXl4eTpw4gb59++KNN97AiBEjAACTJ0/G0KFDMWjQIHz22We499578dVXX8HtdgMAGhoaQoITAMF/NzQ0RDzn/PnzUV5errarREREpILb7UZZWRn27dsXfM7hcKCyshLFxcWG9kX1LZ6TJ09iz549aGpqwtKlS/GXv/wFa9asCQYpHb3//vsYO3YsduzYgbPOOgu33XYbdu/ejXfeeSfY5ttvv0WfPn2wYsUKTJw4Mew5W1tb0draGvx3oJY/b/EQERFpw+12o6SkBJ3DgkBZ+qVLl8YdpOh6i6dnz544++yzcfHFF2P+/PkYPXo0Kisrw7YdM2YMAGDHjh0AgJycHDQ2Noa0Cfw7Jycn4jlTU1ODK4e4/w4REZG2fD4fysrKugQnAILPzZo1y9DbPXHXQWlvbw+Z3eho8+bNAICBAwcCAPLy8rBlyxYcOHAg2Oa9995DWlpa2BkYIiIi0l91dXXIbZ3OhBDYu3cvqqurDeuTqhyUuXPnYuLEiRgyZAhaWlrgcrng9XrxzjvvYOfOnXC5XLjmmmuQlZWFzz77DLNnz8aVV16JUaNGAQCuvvpqjBgxAlOnTsWTTz6JhoYG3H///Zg5cyZSU1N1eYNEREQUXX19vabttKAqQDlw4ABuvPFG1NfXIz09HaNGjcI777yDn/zkJ9i7dy9WrVqFiooKHDt2DE6nE5MmTcL9998f/PmUlBQsX74cM2bMQF5eHvr06YNp06aF1E0hIiIiYwXudGjVTgtx10FJBNZBISIi0o7P50Nubi7q6urC5qFIkgSHw4Ha2lqkpKTEfB5D6qAQERGRPaSkpAQXvARW7QQE/l1RURFXcKIWAxQiIiJCcXExli5disGDB4c873A4NFlirBZv8RAREVGQz+dDdXU16uvrMXDgQOTn52s2c6Jm/FZdSZaIiIjsKyUlBQUFBYnuBm/xEBERkfkwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREptM90R0gIjIzn8+H6upq1NfXY+DAgcjPz0dKSkqiu6W5ZHmfZB0MUIiIInC73SgrK8O+ffuCzzkcDlRWVqK4uDiBPdNWsrxPshbe4iEiCsPtdqOkpCRk0AaAuro6lJSUwO12J6hn2kqW90nWIwkhRKI7oVZzczPS09PR1NSEtLS0RHeHiGzG5/MhNze3y6AdIEkSHA4HamtrLX0bJFneJ5mHmvGbMyhERJ1UV1dHHLQBQAiBvXv3orq62sBeaS9Z3idZEwMUIqJO6uvrNW1nVsnyPsmaGKAQEXUycOBATduZVbK8T7ImBihERJ3k5+fD4XBAkqSwr0uSBKfTifz8fIN7pq1keZ+kzokTwMaNwPHjie0HAxQiok5SUlJQWVkJAF0G78C/KyoqLJ84mizvk5Q5dgzIzQV69QIuucT/37t2Ja4/DFCIiMIoLi7G0qVLMXjw4JDnHQ4Hli5dapv6IMnyPikyIYCbbgL69gV27/7++QMHgBdeSFi3uMyYiCiaZKmwmizvk0L95S/ArbdGfv2ZZ4A77tDufLotM37++ecxatQopKWlIS0tDXl5eVi5cmXw9RMnTmDmzJnIyspC3759MWnSJDQ2NoYcY8+ePbj22mvRu3dv9O/fH3fffTfa2trUdIOIyDApKSkoKChAaWkpCgoKbDtoJ8v7JL9PPgEkKXpw0rcvMGOGcX3qTFWA4nA48Pjjj2Pjxo3YsGEDfvzjH6OoqAhbt24FAMyePRv/+Mc/sGTJEqxZswb79+8PmR70+Xy49tprcfLkSXz00Uf429/+hldeeQUPPvigtu+KiIiIujh40B+YjBkTvd0f/wi0tACJjFPjvsWTmZmJBQsWoKSkBNnZ2XC5XCgpKQEAfPnll/jBD36AmpoaXH755Vi5ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5eYuHiIhIubY24OqrAY8neruiIsDtBrrplKFqSCVZn8+H119/HceOHUNeXh42btyIU6dOYdy4ccE25513HoYMGYKamhoAQE1NDUaOHBkMTgBg/PjxaG5uDs7CEBERkXbKy4EePaIHJ+npwOHDwJtv6hecqKV6N+MtW7YgLy8PJ06cQN++ffHGG29gxIgR2Lx5M3r27ImMjIyQ9gMGDEBDQwMAoKGhISQ4CbweeC2S1tZWtLa2Bv/d3NystttEZAJMxCQyzooVwLXXyrf79FNg1Cj9+6OW6gDl3HPPxebNm9HU1ISlS5di2rRpWLNmjR59C5o/fz7Ky8t1PQcR6cvtdqOsrCxk7xeHw4HKykouZf0OAzjSwv/3/wFnnSXfzuUCSkv170+sVE/k9OzZE2effTYuvvhizJ8/H6NHj0ZlZSVycnJw8uRJHDlyJKR9Y2MjcnJyAAA5OTldVvUE/h1oE87cuXPR1NQUfOzdu1dtt4kogdxuN0pKSrpsTFdXV4eSkhK43e4E9cw83G43cnNzUVhYiMmTJ6OwsBC5ubm8NqTYt98CZ58tH5z85jdAe7u5gxNAg0Jt7e3taG1txcUXX4wePXpg9erVwde++uor7NmzB3l5eQCAvLw8bNmyBQcOHAi2ee+995CWloYRI0ZEPEdqampwaXPgQUTW4PP5UFZWhnD5+IHnZs2aBZ/PZ3TXTIMBHMVDCOBXvwL69AF27ozcbuRIf/n6P/3Jv5LH7FSt4pk7dy4mTpyIIUOGoKWlBS6XC0888QTeeecd/OQnP8GMGTOwYsUKvPLKK0hLS8NvfvMbAMBHH30EwP9BdeGFF2LQoEF48skn0dDQgKlTp+JXv/oVHnvsMcWd5ioeSiROw6vj9XpRWFgo287j8aCgoED/DpmMz+dDbm5ul+AkQJIkOBwO1NbW8u+Muli4EPjlL+Xb7d4NDBmif3/kqBm/VeWgHDhwADfeeCPq6+uRnp6OUaNGBYMTAHj66afRrVs3TJo0Ca2trRg/fjyee+654M+npKRg+fLlmDFjBvLy8tCnTx9MmzYNDz/8cAxvk8h4zKNQr76+XtN2dlNdXR0xOAH8s0x79+5FdXV1UgZwFN7Gjf79cuSsWgWMHat/f/SgKkD561//GvX10047Dc8++yyeffbZiG2GDh2KFStWqDktkSkEpuE7TzoGpuG5b0l4AwcO1LSd3TCAIzX+/W9g4EB/XZNonngCuOceY/qkF5OsdiYyN+ZRxC4/Px8Oh6PLbrkBkiTB6XQiPz/f4J6ZAwM4UiJQaC07O3pwcu21/tetHpwADFCIFFEzDU+hUlJSUFlZCQBdgpTAvysqKpI2vyI/P7/LTsIdJXsAR8Cjj/oLrb33XuQ2ffoAhw4By5cntjy9lhigECnAafj4FBcXY+nSpV0GYofDkfS3xpYtW4YTJ06EfY0BXHJ75x3/apv774/ebtMm4OhRIDPTmH4ZRXWhNqJkxGn4+BUXF6OoqIgroDqIlNcUkJmZiRdffDGpA7hkVFsLDBsm3+7//T/gv/9b//4kStybBSYClxmT0QJLQevq6sIOJlwKSmrJLS8G/DNMu3bt4t9Ukvj2W+DCC4Ht26O3mzEDePZZa9Qy6cyQzQKJkgnzKEhrcnlNALBv3z7mNSUBIYDp0/15JNGCkx/8wB/EPPecNYMTtRigECnEPArSEvOaCAD+/nf/7sF//nP0drW1wLZtQK9exvTLDJiDQqSC2jwKVp2lSJjXlNw2bQJ++EP5du++C3xXCzXpMAeFSCesOkvRMK8pOR06BAweDLS2Rm/36KPA739vTJ+MxBwUogSz0+ZvPp8PXq8XixYtgtfrZTE6jTCvKbn4fMCECUC/ftGDk/Hj/YXW7BicqMUAhUhjdqo663a7kZubi8LCQkyePBmFhYXIzc21VIBlZsxrSg7z5wPdu/vrmkSSmuovY//22/YptBYv3uIh0phddu+NVKMj8O2eA6h2zJCrZIY+2M2qVcryRzZuVJaPYge67WZMRPLssDpDbhZIkiTMmjULRUVFHMQ0kJKSktBglflS2tq9G8jNlW+3cCFw001698a6eIuHSGNGrs7QKz+Eew8lDzvlSyXa8ePAiBHywcmttwLt7QxO5DBAIdKYUbv36pkfYodZIJJnp3ypRBICuP12oHdv4IsvIrcbPhw4dgx48cXkKLQWLwYoRBozYnWG3t96WaMjMjutauJMWfxcLn+hteefj95u507g66/9QQwpwwCFSAd6rs4w4luvUbNAVmO3VU1azJTZKWBT49NP/bMgU6ZEb7dypX+GRcnmfxSKAQqRToqLi7Fr1y54PB64XC54PB7U1tbGnXSo97fewGqOwAoe1ujws2OuRrwzZXYL2JQ4fBjo29e/qV80jzziD0wmTDCkW/YkLKipqUkAEE1NTYnuCpHhXC6XACD7cLlcqo9dVVUlHA5HyHFSUlJC/u10OkVVVZUO78y82traulyXjg9JkoTT6RRtbW2J7qoqgfclSZLq91VVVRX25yRJEpIk2e5vpK1NiGuvFcIfdkR+/OQnQpw6lejempea8ZszKEQWo1d+SKQZgsCU/axZszSbBbIau+ZqxJovlWzJtQsW+Aut/fOfkdukpAAHDvj3zunOAh6aYIBCZDF65IdEG3ACx6yqqkra4l12XtUUS76UXQO2zt5/359ncs890dutX+8vT5+dbUy/kgXjPCKLCXzrLSkpgSRJIUFFrPkhagYcM1e/1YvdVzWp3aVbq4DNrNVr9+wBhg6Vb/fXvwK//KX+/UlWnEEhsiCtVwnZeYZAC8mwqilQzba0tBQFBQVRAwUtAjYzJtieOAGMGiUfnNxyi7/QGoMTfTFAIbIoLVcJ2X2GIF7RcjUA/wzTH//4R1N8+zdCvAGb2VZECQH89rdAr17Ali2R2511FnD0KPCXv7DQmhG4WSARwefzITc3F3V1dWHzUCRJgsPhQG1tbdIMwuGE27MmINn2rgkEGQDC3maMNJMX+FuLdEvR6L+1118HSkvl2+3Y4Q9QKD5qxm/OoBCRIdVv7aC4uBhPP/102NesXA8lFrHeZjRLgu2WLf5ZELngZPly/wwLgxPjMUAhIgDfDziDBg0KeX7w4MEhA06yVg4F/O999uzZYV+z4/JaObHcZkx0vtORI0BGhj/XJJp58/yBybXX6tINUoCreIgoRKS8AiD8LY5kurXB1U5dBZJrlUpUvlN7O1BcDCxbFr1dYSFrmZgFZ1CICIB84uI999xjqsTGREj0t38ziHcGLRErop5+2l9ITS44aWz01z5hcGIODFCISLYyqBACTz31VNJUDo0k2Vc7abE02Mh8J6/Xn2dy553R261b57+d079/3KckDTFAISLZWxcAogYfdqkcKicZ6qFEouXSYD13+waAffv8gUlhYfR2L77oD0wuuyyu05FOGKAQkWa3JOx8awNI3tVOeuy9o8du362twA9/CDid0dtNm+bPSbn11phPRQbgnTYiE0lU6W+tbknY9dZGR4Fv/+GShSsqKmyZLKxXcrDaBNto7rzTn2sSzdChwOefA337qj++Wcvy2xkDFCKTCLdCJjMzE2VlZbjvvvt0/TAM3LqQu80TSaC4lh1vbYSjdu8aqzNzcvCSJcD118u3+/prYPjw2M6R7KvXEkZYUFNTkwAgmpqaEt0VIiGEEG1tbcLj8QiXyyU8Ho9oa2tT9fNVVVVCkiQBIOwjKytLVFVV6dT77/sQ6fzRHpIkCUmSdO8fyYv37zASj8ej6G/B4/Focj4lPv9cCH8GSfTHW2/Fd55I/9/k331s1IzfDFCI4lRVVSUcDkfIh5fD4VD8wdXW1tbl5yM99P4wLC8vVx2gOJ1OfkibQLx/h9EE/kYjBdGSJAmn06lZQBTNN98IccYZ8oHJ/ffHfy65/28a+b7tggEKkUG0+Hal9NtpIBjQ88NQyQeyw+EQq1at0vxbOsXOiG/5gXN0Po9RMwk+nxCTJskHJvn5Qpw8qc05zThzZHVqxm+u4iGKkVYrG9Tct9d7KW9glYokSRFXqVRWVmLs2LEoLS1FQUGBbfMurEKPFTbh6L00OJo//clfaK2qKnq7hgbggw+AHj20Oa+Zc2+SAQMUohhptemZ2pUven8YJnIgIvWM3HxPj6XB0VRX++uZlJVFb/fRR/75kwEDtD1/shfmSzSu4iGKkVbfrtSuoDHiwzDZVqlYmdHf8rVcGhxJXR3gcMi3e/55YPp0/foR+P9mXV1d2BmqZFu9ZjTOoBDFSKtvVx1vq0RjdJXSwEDEWznmZqdv+SdPApdeKh+cTJniL7SmZ3ACJG9hPrNggEIUIy3Lngduq2RlZUU8FsAPQ+rKLuX3Z80CUlOBDRsitxk8GGhuBl591X/rxwi85Zk4DFCIYqT1t6vi4mI0NjaivLwcmZmZIa/xw5Aisfq3/D/8wR9sfPcWIvryS/8eO6efbky/OjI694a+o2Z50GOPPSYuueQS0bdvX5GdnS2KiorEl19+GdLmqquu6rIE69e//nVIm927d4trrrlG9OrVS2RnZ4s5c+aIU6dOKe4HlxmTmYSrPxFvbRC9Cm6Rfenxd6inNWuUFVp7881E95S0pGb8loQIk/kTwYQJE/CLX/wCl156Kdra2vD73/8en3/+ObZt24Y+ffoAAAoKCnDOOefg4YcfDv5c7969kZaWBsC/JO7CCy9ETk4OFixYgPr6etx444249dZb8dhjjynqR3NzM9LT09HU1BQ8LlEicZ8OMgMr/B0ePAj07y/fbu5cQOGQQBaiZvxWFaB0dvDgQfTv3x9r1qzBlVdeCcAfoFx44YWoqKgI+zMrV67Eddddh/3792PAd2vCXnjhBdx77704ePAgevbsKXteBihERNbS3u6vT9LeHr3doEFAbS2gYCggC1IzfseVg9LU1AQAXe6Xv/baa+jXrx8uuOACzJ07F99++23wtZqaGowcOTIYnADA+PHj0dzcjK1bt4Y9T2trK5qbm0MeRERkDTfd5C+0JhecfP21f4kxgxMC4qiD0t7ejlmzZuFHP/oRLrjgguDzkydPxtChQzFo0CB89tlnuPfee/HVV1/B7XYDABoaGkKCEwDBfzc0NIQ91/z581FeXh5rV4mIKAFefx0oLVXW7oYb9O8PWUvMAcrMmTPx+eefY+3atSHP33bbbcH/HjlyJAYOHIixY8di586dOOuss2I619y5c3HnnXcG/93c3Ayn0xlbx4mISFdffw2ce658u5tuAhYu1L07ZFExBSh33HEHli9fjg8++AAOmYo6Y8aMAQDs2LEDZ511FnJycvDJJ5+EtGlsbAQA5OTkhD1GamoqUlNTY+kqEZGurJCYapQTJ4BeveTb9ejhb9uNhS4oClV/HkII3HHHHXjjjTfw/vvv48wzz5T9mc2bNwP4vophXl4etmzZggMHDgTbvPfee0hLS8OIESPUdIeIKKHcbjdyc3NRWFiIyZMno7CwEP3798fDDz8c9+Z8VnPZZcqCk4MH/RVjGZyQHFV/IjNnzsSrr74Kl8uF008/HQ0NDWhoaMDx48cBADt37sQjjzyCjRs3YteuXXjrrbdw44034sorr8SoUaMAAFdffTVGjBiBqVOn4tNPP8U777yD+++/HzNnzuQsCRFZhtvtRklJSZc9lA4fPox58+ZhwIABwdw7O3v8cX+htfXro7d75JE1EALo18+YfpENqCmwgk4F2AKPhQsXCiGE2LNnj7jyyitFZmamSE1NFWeffba4++67uxRk2bVrl5g4caLo1auX6Nevn7jrrrtYqI2ILKOtra1LUbRwD0mSTFsoLV5r1yortAb8XkiSJJxOJwsOkn6F2syCdVCIKJG8Xi8KCwsVtXU6naitrbVNXsqhQ0pnQf4F4OKQZzwej+47IZO5GVYHhYgoGdXX1ytuu3fvXlRXV+vYG2O0t/s381MWnPRC5+AEUHfdiBigEBGpFEj6V8rqA/Mtt/gLrZ08KdfyXAASgBNhX1V73Si5MUAhIlIpPz9ftsRCR1YdmBcv9ifAvvxy9HZ//3s7HA4nJGl72NclSYLT6UR+fr4OvSS7YoBCRKRSSkoKKisrZdtZdWDeudMfmMhVd50yxZ8GO3Vqt+D1kCQppE3g3xUVFbbJwyFjMEAhshmfzwev14tFixbB6/UmXT0OoxQXF6OqqgpZWVlhX7fiwNza6g9Mzj5bvq3PB7z66vf/Li4uxtKlSzF48OCQdg6HA0uXLkVxcbHGvSW74yoeIhtxu90oKysLqc3hcDhQWVnJAUInPp8Pjz76KCorK3H48OHg806nExUVFZa57ldcAdTUyLdrbAT694/8OivrUjRqxm8GKEQ2ESgc1vn/0oFv8vwWqy+rDswLFgD33CPfzuMBuEI4dlb9+9AaAxSiJOPz+ZCbm9ulqmmAJElwOBy2qscRDQcDeR9/DOTlybd76CFg3jzdu2NrnNn8HuugECWZ6urqiMEJ4N9Hyy71OOSE2x8nNzc3KcrOK3H4sD/PRC44ueACfwIsg5P4RNoSoa6uDiUlJfy7jIIBCpENKK2zYfV6HHJiGQySJalYCOD004EIOb0hjh0DtmzRv0925/P5UFZW1uW2K4Dgc7NmzbLt31y8GKAQmZDaQVNpnQ2r1uNQIpbBIFlmW6ZP9+8efPRo9HZbt/oDmd69jemX3XFmMz4MUIhMJpZBM1A4rHMNigCr1uNQQ+1gkAxT7263/3bOn/8cvd0rr/gDkxEjDOlW0uDMZnwYoBCZSKyDZsfCYclaKEvNYGD3qffaWn9gMmlS9HbXX+8PTKZNM6ZfyYYzm/FhgEJkEvEOmsleKEvNYGDXqfeTJ/2BybBh8m3b2oD/+z/9+5TMOLMZHwYoRCahxaBZXFyMXbt2wePxwOVywePxoLa21vbBCaBuMLDj1PtVV/l3G5ZTX++fNbHxZJppcGYzPgxQiExCq0EzJSUFBQUFKC0tRUFBQdJ8+KkZDOw09V5R4Z81+eCD6O1Wr/YHJjk5hnSLvpPsM5vxYIBCZBJ2GjQTRelgYIep9/Xr/YHJ7NnR2z3wgD8w+fGPjekXdZXMM5vxYCVZIpMIVIOtq6sLm4eSbNVg46GkkmwgIRlAyPU2+9YAR44AZ5wh3+7cc4Evv9S9O0SqsJIskQXxfrV2lNzmstrUuxD+ImtKgpOjRxmckPVxBoXIZMLt22G1nXGtxAr79vzmN8D//q98uy1b/CXqicyKmwUSWZwVBk0jJev1eOstoKhIvt3LLwM336x/f4jipWb87m5Qn4hIhcAtCkrOnWB37wZyc+XbFRcDVVW6d4coIRigEJFpBRJZO0/0BirrmjFXJB4nTyqrZQL4C60lwSQSJTEmyRKRKdm9HH1nP/mJsuCkro6F1ig5MEAhIlOyazn6zv73f/31TFatit7u3Xf9gcmgQcb0iyjReIuHiEzJKuXoY03g3bgRuOQS+ePPnQs89pgGHSWyGAYoFpSsKxoouVihsm4sCbxNTUBGhvyxhw0Dduzwz64QJSMuM7aYZFzRQMnJ7JV1IyXwRqpEG9gH58AB+WO3tAB9+2raXSJTYCVZmwp8IHa+Lx9Y0eB2uxPUM7Iyn88Hr9eLRYsWwev1mibp1MyVddUm8N55J9Ctm3xw8umn/kCGwQkRAxTLSLYVDWQMt9uN3NxcFBYWYvLkySgsLERubq5pgl2zlqNXmsD75JNbIUnA009HP96LL/oDk1GjNO4okYXxFo9FeL1eFBYWyrbzeDws8EWKqL1FkUhmy7tatGgRJk+eHKWFA8Be2eP89Kf+arFEyYKVZG3IKisaKPGUDOZyM3KSJGHWrFkoKioyRQK22SrrRk7M7Q7glKJjnDoFdOcnMFFEvMVjEVZY0UCJp/SWTbLUGNFLfn4+HA5Hp9yYf0JJcLJ3r/92DoMTougYoFhE+A/E70mSBKfTifz8fIN7RmahJok60TNyZk3MVapjAi8wHYAAcE3Un1m50h+YOBx6947IHhigWISZVzRQ4qlNok7kjJzZE3OVGjasGEK0A3g+ars5c/yByYQJxvSLyC6YJGsx4eqgOJ1OVFRUmCahUQmzJT3GwkzvQW0SdaJqjFgpMTeS5mYgPV2+3ZAhwK5dLLRG1JGq8VtYUFNTkwAgmpqaEt2VhGhraxMej0e4XC7h8XhEW1tborukSlVVlXA4HAL+eXEBQDgcDlFVVZXorilmtvfgcrlC+hLp4XK5Qt6DJElCkqSQNoHntH4vbW1tXa5Z5/M6nU7T/j23twsxeLAQ/vmQ6I8k/WgikqVm/GaAQoYKDIrhBic9BkU9mPE9eDweRQGKx+Pp8l46Bw1Op1OX9xBrH81gzhxlgcm//pXonhKZm5rxm7d4yDCB2wqRVo8kunS5EmZ9D/HcsjHqVpV87RA/l8uF0tJSzc8fi7ffBiZOlG/33HPAjBn694fI6ljqnkzJDktbzfoe4kmiDtQYKS0tRUFBgS7Bic/nQ2Njo6K2ZlgqX1fnzx2RC04mTPDPnTA4IdIeAxQyTKKXtmph2bJlitol4j2YtSx8YNXO7Nmzo7Yzw1L5tjZ/YKJkKfDJk/6lw0SkD5YKIsMYvbRV61sXbrcbFRUVitomahaguLgYRUVFplldFGnVTmdmWCpfVKSs7PyePYDTqX9/zMZMq9YoSahJbnnsscfEJZdcIvr27Suys7NFUVGR+PLLL0PaHD9+XNx+++0iMzNT9OnTRxQXF4uGhoaQNrt37xbXXHON6NWrl8jOzhZz5swRp06dUtwPJslaU2AVR7gEU2i4iqOtrU2Ul5eLzMxMzVbZyK1A0fo92IHSawYdE3OVeOklZQmwy5cnpHumYLZVa2Rduq3iGT9+vFi4cKH4/PPPxebNm8U111wjhgwZIo4ePRpsM336dOF0OsXq1avFhg0bxOWXXy6uuOKK4OttbW3iggsuEOPGjRObNm0SK1asEP369RNz587V5Q2Suei9tLWqqkpkZWVFDB5iPYfSFSgA+KH9HaXX7Omnn1Yd0Gmx1P7TT5UFJrNmqT60rZhx1RpZl2HLjA8cOCAAiDVr1gghhDhy5Ijo0aOHWLJkSbDNF198IQCImpoaIYQQK1asEN26dQuZVXn++edFWlqaaG1tVXReBijWptfS1qqqKt1mOJTWGZmV7KNZB7HUZlEi3m/zLS3KApOcHH/tk2Rm9do1ZD5qxu+4kmSbmpoAAJmZmQCAjRs34tSpUxg3blywzXnnnYchQ4agpqYGAFBTU4ORI0diwIABwTbjx49Hc3Mztm7dGvY8ra2taG5uDnmQdRUXF2PXrl3weDxwuVzweDyora2NK4kzUOpdjohxlY3SnJKioiJVx7UzPXKO1Ow31JkQwLBhwOmny5/nyBGgvp5VYM26ao2SQ8wBSnt7O2bNmoUf/ehHuOCCCwAADQ0N6NmzJzIyMkLaDhgwAA0NDcE2HYOTwOuB18KZP38+0tPTgw9nMmao2YzWS1vlPkg7U7vKhps1qqf1NVO731BHc+cC3boBtbXRz7Fhgz+QUVLKPhnYYeUdWVfMAcrMmTPx+eef4/XXX9eyP2HNnTsXTU1NwcfevXt1PydZi9oPSLWrbLhZo3paXzOl3+afeeaZYJDy7rv+WZDHH49+7Gee8QcmF1+sqCtJI5GbShLFFKDccccdWL58OTweDxwdCgbk5OTg5MmTOHLkSEj7xsZG5OTkBNt0LtgU+HegTWepqalIS0sLeRB1pOYDMtaZDrPWGTEzLa+Z0iB09uzZcDovgyQB48dHbzt2rD8wueMOxd1IKpw5pIRSk9zS3t4uZs6cKQYNGiS+/vrrLq8HkmSXLl0afO7LL78MmyTb2NgYbPPnP/9ZpKWliRMnTijqB5NkqTO5JczokNQXbzKu1TdrTAQtrpmyVUHdFCXAAkIozMlPekZvKkn2ptsqnhkzZoj09HTh9XpFfX198PHtt98G20yfPl0MGTJEvP/++2LDhg0iLy9P5OXlBV8PLDO++uqrxebNm8Xbb78tsrOzucyY4hbpgzTwyMrK4oephckHoUsVBSa7diX6nViPkZtKkr3pFqBE+taycOHCYJtAobYzzjhD9O7dW/zsZz8T9fX1IcfZtWuXmDhxoujVq5fo16+fuOuuu1iojTQR7oM0MzNTlJeX22KmI9lnb8IHoTcrCkyWLUt0760t2f/2SBvczZiSml1LcrvdbpSVlYUkijocDlRWViZV/sv31wEA5BPmf/KTr/Huu+fo3i8ikqdm/GaAQmQBkfa0CSQvJlOSbmsrMGaMwKefyhUpOQSgHzweDwoKCgzoGRHJUTN+czdjIpOLp/6H3cyaBZx2GhQEJxmQpGyuMCGyMAYoRCbHap7A//2fv57Jd2VVorgUgARJ8lebZm0aIutigEJkcslczXPLFn9g8otfRG+XlTUNgARgAwDWpiGyg+6J7gBRR3ZNcI1HMlbzPHIEyM0FvtvuK6J584CHHgJ8vpdRXX0z/26IbIRJsmQaXKUSns/nQ25uLurq6sLmoUiSBIfDgdraWssPyu3twKRJwJtvRm931VXAe+8BPXoY0i0i0giTZMly4tml1u6SZR+gigogJUU+OGlsBLxeBidEdscAhRKOq1TkmXkfIJ/PB6/Xi0WLFsHr9ar+Pa1Z488zmT07ert16/wl1/r3j6OzRGQZvMVDCef1elFYWCjbjvUszJejE89tuX37AKdT/hwvvgjcemu8PSUiM1AzfjNJlhIumVepqJWSkmKaIC1S8bjAbblIMzutrcAVVwD/+lf040+dCvztb/7ZFSJKPrzFQwmXjKtUrC7W23Jz5vgLrUULTpxOoKUF+PvfGZwQJTPOoFDC5efnw+FwyK5S6VwR1Cy3O8zSDyOpKR5XUFCApUuBn/9c/rhffQWcw21ziAicQSETiGWVitvtRm5uLgoLCzF58mQUFhYiNzfX8NU+ZumH0ZTeblu//hgkST44eestfwKslYKTeJODiUiGxjspG0LNds1kHVVVVcLhcAgAwYfT6RRVVVVd2kmSFNIOgJAkSUiS1KW9nv01Qz8SwePxdHnfoY80ARwU/rAj8uO++xL9TmIT7m/V4XDY+ndOpAU14zdX8ZCpyN0uCRQti3R7waiiZWbpR6JELh4nAXgdwPVRfz4/H1i92pq1TLizNFHs1IzfDFDIUsyyJNks/UikwEANBBJj7wDwjOzPNTQAAwbo2ze98oKSPTAlihcryZJtmWVJsln6kUiB4nH9+v0X/Hc5ogcnH33kv7Gjd3CiZ14Qd5YmMg4DFLIUsyxJNks/Emn/fmDSpGIcPBh94H/+eX9gkpenf5/03jKBgSmRcRigkKVcccUV6NevX8TXJUmC0+nssiRZa4Gl0Z1XHRndj0Q4eRK47DKgU9X9LqZM8W/+N326MStejNgygYEpkXEYoJBluN1unHXWWfj3v/8d9vV4N85TM4gmywZ+nd1zD5CaCqxfH7nN4MFAczPw6qv+QmtGLcU24vZLMgemRIbTaymRnrjM2K+trU14PB7hcrmEx+MRbW1tie6SbiIt6e34CCxJjuW6xLpsVOnSaKurqoq+XDjw+PLLzj9n3FJsl8sls/TZ/3C5XHGdJ/CeOr+vZFheThQvNeM3AxSLSqY6DG1tbV3ea+dHdna2aG1tjem6xDuI2jlQ/OILZYHJG290/Vm535skScLpdGp2veRrs/gfHo8n7nMlS2BKpDUGKDaXbAXClA485eXlqq+LFoOoHQOUpiYhBgyQD0x+97vIxzAyYBDi+99lpJk2rQMiO/7eifTGAMXGjP5WagZKp+4zMzNVX5d4B1G7zWS1twtxww3ygUlenhCtrdGPZdQtl454+4XI3NSM30yStZhkrMOgdEXE4cOHI74W6brEs2xU7yWtRnv2WaBbN+D//i96u/37/TVNevaM3i4RK14CtVkGd1pi5HA4WOGVyGIYoFhMMtZhULJyIisrS9GxOl+X/v37K/q5zu2MWNJqlA8/9K+2ueOO6O3WrvXPnyiNJxK14qW4uBi7du2Cx+OBy+WCx+NBbW0tgxMii2GAYjHJWIdByZLe3/72t4qOpdV1scNMVkODPzD5j/+I3u6ZZ/yByY9+pO74iVyKnZKSgoKCApSWlqKgoMB2y72JkgEDFItJ1joMclP39913X0zX5cCBA4rO37mdlWeyTp0CrrhCfibkhhsAn09+ZiUa3nIholh1T3QHSJ3At9KSkhJIkhRyi8HOBcIA/2BXVFQUcRO4WK5LrDNSVp3J+v3vgfnzo7cZMAD4+mtAq3045X5vZqHXBoNEFCM9s3X1ksyreAJiqcOQDMsi1V6XWJemGr2kNV5vvqmsnsm2bYnuaWLYbTUWkVlxmXGSUBNwJNMHsNpALNalqVZY0vrVV8oCk6VLE93TxEm2ukJEicQAhULwA1herJVBzVpRtLlZiMGD5QOTOXMS2s2ES8a6QkSJpGb8loQIs07S5Jqbm5Geno6mpiakaXWj3KZ8Ph9yc3MjrjiRJAkOhwO1tbVJf7891hwEM+UuCAFMnQq89lr0dpde6l82LFfLxO68Xi8KCwtl23k8HhQUFOjfISKbUzN+M0nWpLQa9NQsh032D+DA0lSjfk5rf/4zMH26fLu6OmDQIP37YwVWXo1FZHcMUEzI7XajrKwsJLBwOByorKxUvSyTH8D29/HHQF6efLsPPgBstvo8blZdjUWUDFgHxWS0Lp/OD2D7amz0F1qTC04qKvy3fhicdJWsdYWIrIABionoUT6dH8D2c+oUcOWVQE5O9HaTJvkLrZWVGdMvK0pktVsiio4BionoUT6dH8D28sAD/sTWaH8CWVnAkSPA0qX+zf8oOla7JTIn5qCYiNI8kLq6Oni9XsUJtIEP4HB5LRUVFfwAtoDly4Gf/lS+3eefA+efr39/7MYq1W6JkgmXGZuI0iWP2dnZOHjwYPDfShNozbQcVg92fH/btwPnnCPfbvFi4Oc/178/RETxUDN+M0AxkUDNkrq6urB5KJEEbtUk83S0liufzODoUeCCC4Ddu6O3u/NO4I9/DH3OjoGaFfC6E8lTNX7rVS1OT3auJBupfLrcI5krXtqpUm57uxDTpslXgL34YiFOnOj688m0pYGZ8LoTKaNrqfs1a9aI6667TgwcOFAAEG+88UbI69OmTesyUIwfPz6kzaFDh8TkyZPF6aefLtLT08Uvf/lL0dLSorgPdg5QhAj/YZedna0oUPF4PInuvqGUlCp3OBxi1apVsnvzJHozxZdeUrZvzt694X/eioFaoq+5Fqx43YkSRdcAZcWKFeK+++4Tbrc7YoAyYcIEUV9fH3wcPnw4pM2ECRPE6NGjxccffyyqq6vF2WefLUpLSxX3we4BihBdP7hfffVVRQGKy+VKdNcN5fF4VM00Rfpmm8hvwOvWKQtMvN7Ix7DinjJ2mHWw4nUnSiTDNguMFKAUFRVF/Jlt27YJAGL9+vXB51auXCkkSRJ1dXWKzpsMAUpnSgfiZJtBcblcqgOUzt9sE/UNuLFRWWDy1FPyx7La34ddZh2sdt2JEk3N+K1LlQSv14v+/fvj3HPPxYwZM3Do0KHgazU1NcjIyMAll1wSfG7cuHHo1q0b1q1bp0d3bIEF18KLpQKu6FD07uTJk5oXx5PT1gYUFAADBkRv97Of+QutzZ4tf0wrbWmgR0HCRLHSdSeyGs0DlAkTJuDvf/87Vq9ejSeeeAJr1qzBxIkTgx82DQ0N6N+/f8jPdO/eHZmZmWhoaAh7zNbWVjQ3N4c8kg0LroUnF7hFIr4revfcc89pXhwvmoceAnr0ANasidwmIwP45hvA7VZeaM1KWxroUZAwUax03YmsRvMA5Re/+AX+8z//EyNHjsR//dd/Yfny5Vi/fj28Xm/Mx5w/fz7S09ODD6fTqV2HLYQVL7uKFrgpsXPnTkXt4v0GvGKFf9+c8vLo7T77zB+cZGSoO76VZtjsNOtgpetOZDW6F8IeNmwY+vXrhx07dgAAcnJycODAgZA2bW1tOHz4MHIibC4yd+5cNDU1BR979+7Vu9umVVxcjF27dsHj8cDlcsHj8aC2tjYpg5OASIGbEmeddZaidrF+A9650x+YXHtt9HaLFvkzTkaOjOk0lpphs9Osg5WuO5HlxJPsgjBJsp3t3btXSJIkli1bJoT4Pkl2w4YNwTbvvPMOk2Qpbh1XPq1atSrq6goAwul0itbWVuFwOCLWnYl1FcbRo0KceaZ8AmxZmbbXINLKmPLyctMs5Q2sfNH6midSuOvudDotk+xLZBRdV/G0tLSITZs2iU2bNgkA4qmnnhKbNm0Su3fvFi0tLWLOnDmipqZG1NbWilWrVokf/vCHYvjw4eJEh6pSEyZMEBdddJFYt26dWLt2rRg+fDiXGZPm7r777qgByt133y2EiFwcL5YVJe3tQtx8s3xgMnq0EMeP6/O+OwZq5eXlYvDgwSHva/DgwQkPWLS85mZhh5ouRHrTNUCJtKxu2rRp4ttvvxVXX321yM7OFj169BBDhw4Vt956q2hoaAg5xqFDh0Rpaano27evSEtLEzfffDMLtZGm5OpTBL7hBgYRLb4Bv/yysmXDe/bo9a5DRVrK2/mRqNojesw6MEggMjc14zf34iFTindfE6UbL3o8HhQUFMR1zg0bgEsvle/T6tXAj38s304LgX2doq2WCUjkXk5a7l9jt/2YiOyIe/GQpWlRYVRpAbd4Ku8eOCBESor8jMmCBTGfImZqK+xaMe+jI7sUfiOyu4QXaiP78/l88Hq9WLRoEbxer2ZFtdxuN0pKSrp886+rq0NJSQncbrei4+i5UqStDRg3Dujf319ILZKf/tTfds4c1aeQJXf91S7RFRaqPdKZnQq/EVEHekdLeuAMSmLptYeKlvua6LVS5JFH5GdMTj9diE7bT2lKyfWPZY8ixDmjlCgsN09kHZxBId1oNcMRjpYVRrWuT/HOO/56Jg88EL3d5s1AczNwxhmKDqua0usfa4VdK9Qe6czowm96zR4SUSgGKKSY3lPpWg80WlTera31ByYTJkRv9+qr/vmT0aMVdS0maq6/2gq7Vq54amThN7fbjdzcXBQWFmLy5MkoLCxEbm5uXIE5EUWg72SOPniLRxtql2TqPZWu1/FjWXp67JgQw4fL386ZOdNf+8QIsVyfcLeDOj+snkhqVOE3JuISxU/XOihmwAAlfrHkkei9MsYMFUbb24W47Tb5wOT884X49lvduhFWrNe/c+E2O1Y81bvwm5b5UUTJjAEKRRXrN0EjkhETWWH0b39TVmht1y7duhCVVtffrsXM9Cw3z0RcIm0wQKGI4vkmaORUupHf8v/1L2WBybvv6nJ6xcwww2R2egVfRtTVIUoGasbv7qCkomalTKDCakAg8bKkpASSJIUka2q5c2txcTGKioo0qzDaWaB66ddfH8Idd/wMp05FzxWfPx/43e80OXVcjLr+VpaSktLl71YLRu/ArGWFXSLL0jta0gNnUGKnxTdBK+/cWlVVJQYPHiKAlbIzJhMnCmHGyQgrX3+rMnL2Sq86Q0RmwL14KKJY9qgJx4rf8NxuNyZN2gDgsajtevUC9u4FsrKM6VcsrHj9jaDndQnUoAEQdvZKi72MAufo/LGcyP2SiLTEvXgoomTNY1i5sk1Rnsn69fZ638nEiJkHPWevuFKIkgEryVJEWldYNbtdu/yF1iZOlHs/UwFIOHrUenvRdJSsVU71rHDcUXFxMXbt2gWPxwOXywWPx4Pa2lpNZjW0rKRMZAcMUJKQFhVWze74cWDECODMM+VaPgdAAvAqAO3KoSdCslY5NXqzwEAibmlpKQoKCjQL5o0u2U9kdgxQkpSe3wQTSQjg9tuB3r2BL76I1vJLAL0AzAx51op70QDGzSCYkV1mHoxeKURkdlxmnMT0WpKZKK++CkydqqTlmQB2hTwjSRIcDocl96KRm0GQJAmzZs1CUVGRbW7ddWSXmYfABo91dXVhf5dW/hsligVnUMjyNm/255nIBScPPLAWktQNkrQ75Hmr597YZQYhVnaZeUi2/DAiOQxQyLIOH/bfyrnooujtHn3Uf+vn4Yf/w5a5N4meQUh0Ym5g5iHSrs1W2qk5GfLDiJTiLR6yHJ8PKCoC/vnP6O2uvhpYsQLo+IVT7yq1iZDIGQS3242ysrKQGRyHw4HKykrDBlO7Vdi1498oUSxYqI0sZcEC4J57orfp0QPYvx/o18+YPiWaz+dDbm6ubO5CbW2tpoOc2YqKhQuWnE4nKioqOPNAZBJqxm8GKGQJq1cD48bJt9uwAbj4Yv37YzZGVDntKBAURcp90SsoUtIvzjwQmZea8Zs5KGRqe/b4E2DlgpOFC/15JskYnADG5y6YNTFXrxolRGQ85qCQKZ04AVx6KfD559HbFRbuwAMP7MOVV+YDSO7ByMjchUQn5hKR/TFAIVMRAigrA555Jnq77t1r0dZ2Pjye4/B4jE/MNCujatvYZWkvEZkXc1DINBYtAiZPVtLybAA7Q54x+26vdsuNSFRiLhFZG3NQyFI++8yfZyIXnPzjHz44HE50Dk4AffZc0Yod98hhUTEi0hsDFEqYI0eA9HRg9Ojo7crL/bd++vY1Z2JmNHbeI4dFxYhIT8xBIcO1twPFxcCyZdHbjR0LvP020P27v1KrJWaq2SMHgCVvAbGoGBHphQEKGeqpp4C77oreRpKAhgagf//Q562WmKl0Ke6jjz6Kl156KaHVWONht00nicgceIuHDOH1+gMPueDkk0/8MyydgxPAenuuKJ3JmTdvni1vARERxYMBCulq3z5/YFJYGL3dX/7izzO59NLIbayWmBnPTI6Zk34pvERvmkhkNwxQSBetrcAPfwg4ndHb3Xyzf8bklluUHddKiZlyMz5yzJj0S+HZcaUWUaIxQCHN3XkncNppwKZNkduceSZw9Cjw8sv+GRY1iouLsWvXLng8HrhcLng8HtTW1poqOAGUzfgoYZakXwrPziu1iBKJhdpIM4sXAzfcIN9u+3bg7LP1749ZhNtlNysrC4cOHVL08x6PJ5iEareCb1Zn1k0TicyKhdrIUFu3+mdB5IKTf/zDn2eSTMEJ0HXGZ9WqVejVq5fsz3VO+uVtBPMx66aJRHbAAIViduQIkJkJXHBB9HYPPugPTK67zpBumVLHXXZTUlKiDmoBQohg0i9vI5iT1WrzEFkJAxRSLVBo7YwzgG++idzuqquAkyf9lWDpe0oHq1mzZqG4uFi24FugLVeNGM9qtXmIrISF2jrg/X15FRXA7Nny7RoagAEDdO+OrvT6e1A6WHWsMKv0NgILphkrsFJLbtNEs9TmIbISzqB8h/f3o/vgA3+eiVxw8vHH/ts5geDEqrUh9Px7UFtwjrcRzMtqtXmILEVYUFNTkwAgmpqaNDleVVWVkCRJAAh5SJIkJEkSVVVVmpzHivbtE8IfckR/vPhi15+tqqoSDocj5Jo6HI6w17OtrU14PB7hcrmEx+MRbW1tBry78Iz4ewico/N5wp3D4/F06Uu4h8fjibtfFJtwf+tOpzOpPzuIwlEzfid9gNLW1tblg6XzgOF0OoMDppkGUj2dOCHExRfLByZTpwrR3t7159UM8moCGb2p/XuIh9JBLdCncNdT6z5R7JLls4EoHgxQVFDz7dRMA6me7rpLPjBxOoVoaQn/82oGebPNXhk9W6F0UFMz40JEZFZqxm/VOSgffPABfvrTn2LQoEGQJAlvvvlmyOtCCDz44IMYOHAgevXqhXHjxmH79u0hbQ4fPowpU6YgLS0NGRkZuOWWW3D06FG1XdGE0vv2y5Yts/0yz6VL/Xkmf/xj9HZffQXs2QP07Rv+daVJnV6v13SrU4zO9+i4/LigoCBiroKVSvybiVVzoIgohiTZY8eOYfTo0Xj22WfDvv7kk0/iT3/6E1544QWsW7cOffr0wfjx43HixIlgmylTpmDr1q147733sHz5cnzwwQe47bbbYn8XcVC6ouLVV1811UCqpS++8AcmP/959HbLlvnnT845J3o7pYO31+s1XZErMy8btUqJf7Ng4juRxcUzVQNAvPHGG8F/t7e3i5ycHLFgwYLgc0eOHBGpqali0aJFQgghtm3bJgCI9evXB9usXLlSSJIk6urqFJ1XjxyUaPf3s7OzbZmk2NQkRHa2/O2c++5Td1ylt0nuv/9+Re1cLpc+FyAMub8HfHdbr+OtGOYemI/Zbh0SkZ+ut3iiqa2tRUNDA8aNGxd8Lj09HWPGjEFNTQ0AoKamBhkZGbjkkkuCbcaNG4du3bph3bp1YY/b2tqK5ubmkIdWlCwTnDJliqJjGbXMMzBt/dprr6GiogKvvfaaqunr9nbg+uuB9HTg4MHI7X70I3+htT/8QV3/lC6jVVqzw8jZimh/DwHHjx/HsmXLAFj7W7pdb3+wsB2RTcQTCaHTDMqHH34oAIj9+/eHtPv5z38urr/+eiGEEI8++qg455xzuhwrOztbPPfcc2HPM2/evLDfZLVaZixE9BUVZlrmGa6f6PDNXu6b4TPPKFs2XF8ffz/lkjrNvDqlqqpKZGVlReyXJEni7rvvtuy3dDsnfJvp/69EFMqwVTxGBSgnTpwQTU1NwcfevXs1D1CEiDxVb5aBNNK0dee+hBtk1q5VFph89JG2/ZVbRmvW1SlKViKlpKREfd2sS3/tfvvD5XIpClCMvHVIRH4Ju8WTk5MDAGhsbAx5vrGxMfhaTk4ODhw4EPJ6W1sbDh8+HGzTWWpqKtLS0kIeeoi0osIM1SKjTVt31nH6ur7enwD7H/8R/Weef94fouTladFbv2hJnYHbC62trXjooYdMtzpFyUqkaLcIhEl3sU2G2x9mTnQmIhXiiYSA8Emy//M//xMSLYVLkt2wYUOwzTvvvJOwJFk1ElktUum0deDx7rteMWaM/IzJ5MnhC63pKdx1HDx4sCgvL9cl0TSWJFal38LlHoFv6WZJpE2G2x9mmfEkoq50vcXT0tIiNm3aJDZt2iQAiKeeekps2rRJ7N69WwghxOOPPy4yMjLEsmXLxGeffSaKiorEmWeeKY4fPx48xoQJE8RFF10k1q1bJ9auXSuGDx8uSktLdXmDWkvUQKNuwJwvG5gMHChEc7MhXQ9h9O2FWHMt1AaE0QZ6M+V7JMvtDyNuHZol6CSyEl0DlEgf3NOmTRNC+GdRHnjgATFgwACRmpoqxo4dK7766quQYxw6dEiUlpaKvn37irS0NHHzzTeLlkhlScNIZICSKMoGzP+SDUwAIb74IjHvwcgy8kLEFwwp+RauJAdlyZIlpsr3SIYZlAA9ZzzNFHQSWQlL3dtQ9MH9HEWBSYe7cbr0T+7bpJGDoxbBkNy38MAqnkivL1682NCATM11SZbbH3rMctg9yZhITwxQbKrrB2NfAdTJBia/+53+/VLybdLI2wtaBUNy38Ktsjy983sy48opKzB6FpDIbhig2FhVVZUYPNghgNdkA5MxY4Robf3+ZxP9bVLrATva+9EyGJK7bpFeN3O+RyITvq3MrEEnkVWoGb+7gyylsbEYdXXyS2/r6oBBg77/t9vtRllZWcjSWYfDgcrKypiX8sotWZUkCbNmzUJRURFSUlKCFWbr6urC/owkSXA4HMjPzw97rurqatTX12PgwIE4ePAg7rzzzojvR8ulpoHl52pfV9qHzptpGqG4uBhFRUUh1zQ/P1/XpfJ2YPRmkkRJTe9oSQ/JOIPy0UfKCq2tXdv1ZxcvXhxxOjqeKf1Yvk3GcnshWvXcSMcwQ66Fkn19Ag/OXFgDZ1CI4sNbPDZSX68sMHnmmfA/v2TJEt0qnsZ6C0PN7QUl1XMjvR8z5Foorf7LvAVrMEPgS2RlDFBs4ORJIX70I/nA5IYbhPD5wh+jqqpK8cAeyze+eL5NKsmHkUtIlDtnW1ubKC8vF5mZmYqCIb2Ul5fzW7eNmCHwJbIq5qBY3H33AY89Fr1Ndjawfbt/R+JwAvkhSsVyzzyenBK5vA5Avtx8NMuWLcPUqVNDfj4zMxNlZWW47777DM21GD58uKJ2zFuwhuLiYixdujRsTldFRUXCtmcgshsGKCby1ltAUZF8u61bgREjordRO7jHsi9JYI+ikpISSJIUEqRosUdRPAN2RUVFl+e++eYbPPTQQ7jgggsMHUS4N4z9MMmYSH+abhZIsfn6a/+GfnLBydKl/hs7csEJoG5wdzqdYWc5lAh8m9Rjs79YBmxJkiIOEoEAyujN8AIzTZ03mgyQJCmu3wElRqTNRYlIGwxQEujoUcDhAM49N3q7OXP8gcmkScqPrWZwj3cn5mi7FsdDbmDvLDCLY7Zdhs2wGzYRkdUwQEkAIYD//m/g9NP99UoiufRS4MQJYMEC9edQMrinpKRg8eLFmtzu0OPbZLSBPRyHw4FZs2YpOrbR+R56zjQREdmRJMJlN5pcc3Mz0tPT0dTUhLS0tER3R5UXXwR+/Wv5dvv2AZ3GMtXcbjdKSkoAIGwS65IlS4Kvm1mkInNPP/00+vXrF5IDUF1djcLCQtljejwe2SRdPXQuOMe8BSJKJmrGbybJGmTdOuDyy+XbffABoFUqQqTVBk6n03KrDToHWEIIdOvWrUuQEc/KIiMoWb1EREScQdFdYyOQkyPfrqICULEqWBUrf2sPzAJ1/jMN3PIJd3sk0sxRtJ8hIiL9qRm/GaDo5NQpYOxYQC4Xc9IkYPFioBuzgbrw+XzIzc2NuFw6MBtSW1vbJeAKd1vIijNHRER2wgAlwebNAx5+OHqbrCxg587IhdbsIp7ZG6/XG1c+iZVnjoiI7Ig5KAnyz38C110n3+7zz4Hzz9e/P0aIFgTEu4NyrDvHdu7T9ddfz8CEiMhiGKBoYMcOQEk188WLgZ//XP/+GCVaAAIgbO5IXV0dSkpKFOWBxFKBNd6giIiIzIG3eOJw7Jh/JmT37ujtZs8GnnrKmD51pOctjmjJq0IIZGVl4dChQ2F/NlruSOf+5+bmyq7ICRwnloRaIiIyjprxm6mZMRACuPlmoG/f6MHJRRf5C60lIjhxu93Izc1FYWEhJk+ejMLCQuTm5sLtdsd97MBGhOGChsBzkYKTQBsl1VzVVGCV65MQArfddhtWr15taJl7IiKKDQMUlf76V/+Km1deid5u717gX/8CUlMN6VaIwExC59Uvgdsr8QYp8ewy3JGSHBOlFViV9OnQoUMYN26cZoEa6cfn88Hr9WLRokXwer0MKomSEAMUhdav92/o96tfRW/n8fhnWBwOY/rVmZLZjXg3y9OqTLzSHBMle/2o6ZNWgRrpQ8/ZPyKyDibJyjh4EBgwwB90RPPHPwJ33mlMn6KRm0noeHsl1oqmsewy3FEs1VzlKrCq6ZMQApIkYdasWSgqKjJ0hQ+XPkcXKY9ITXK1Vvi7IkowYUFNTU0CgGhqatLtHKdOCfHjHwvhD00iP4qKhPD5dOuGai6XSwCQfbhcrpjP0dbWJhwOh5AkKeyxJUkSWVlZQpKkLm0Cz1VVVWn4ruX7FOnh8Xg07Uc0VVVVwuFwhJzf4XBofi2sKvA7jPS7kiRJOJ1O0dbWpntf+Lsi0oea8Zu3eMJ45BGgRw/g/fcjt0lPBw4fBt5801xVYGNZmquWkuTVF1980dDde9XufBxg1K7GeucF2YGa2T898XdFZBL6x0va02sGZe1a+RkTQIjPPtP0tJpSMruh1bfQcN8ynU5nyLfMtrY24fF4hMvlEh6PR7S2tob8W+tvw+H6FO1hxAyKmWYGzMyI2T85/F0R6UvN+M0A5Tv79wvRq1f0wGTRIs1Op6uqqqqwt1cCjyVLlmh2rs4BSOCDO9zzRk2bt7W1iVWrVonMzExTDDQej8c0wZKZmeE6maEPRHbGACUGr78eOTD5zW+EaG/X7FSKRBr4lYo2k5CZmSnKy8t1G5zDnTsrKytioKBHTkqgH0bmwURihpkBKzBy9i8S/q6I9MUAJQbbtgmRkhIamIwcKcTx45qdQjGtZhoWL14c9UM2KytL80E6EBQovcWi98Cj5DaU3vitXLlEB5X8XRHpiwFKjN59V4gbbxRi6lQhdu/W9NCKRRrg1X5Ay91L7/jQ6kNfzTmN/NCPdzZKi/MnembAShIZVPJ3RaQvNeM39+IxkcDeM5FWMijdwwYAvF4vCgsLFZ3X6XQqOqYcNecMx+VyobS0NK4+mFVgZQiAkBof3CcovETWIOHvikg/3IvHorRcZqlm+axWSzfjXbIbbwG4RJIrza60ZL9W57O6QGG+0tJSFBQUGFogTevfFRHFhpVkTUTpAF9XVwev1xv126XawV6LeiCxBhixVJY1E7fbjbKyspDg0uFwoLKyMmQwKy4uRlFRUVwzAz6fD48++igqKytx+PDhqOej2GnxuyKiOOl7t0kfRlSSTQSlCXr9+vWTTaBVmw+iRf5HLNVcjV5Ro7WqqipD8nsC50rEaigiIq0wB8WiAjkodXV1YTf7iyTSvfFI+5p0/lmleS1KRLt/L4RAVlYWDh06FHze6XSioqLCkt/8fT4fBgwYEPJ+OsvKykJjY2Pc19btdmPSpElR22j9uyQi0hpzUCxKSQn5cAKBQOddigP30rOyssL+XOCYFRUVmg1o0e7fV1VVobGxMequxFbi9XqjBicAcOjQIXi93rjOE9ihWo4wqBQ8EZERGKCYTKQBPlKQERBpcCouLkZjYyPKy8uRmZkZ8ppeSX/FxcXYtWtX2EAkkcmPWlMaeMQboMglT3dm1P5CRER6YpKsCXVO0Nu+fXtwZkVOuMEpJSUFDz74IO677z7Dkv4CgUi8uOW9+oDDyquhiIgCGKCYVGCAd7vdeOihhxTnpEQbnLQKGowSbnVMZmYmysrKcN999+keqMgFRwUFBfjDH/4ge5x4r7magMPpdFp2NRQRUUdMkjUxucJtHdklQTIQFCxbtgwVFRUR22VlZeHFF1/ULX9FydJho5JklSZPS5KU0DodnO0iIjmqxm99FhLpy0zLjPUso6502TG+W2Zq9SWm0TY4jPTQc5PBcNe483U2apmx3A7VeuyrpLZ/RuxUTUTWxr14DKL3h7LSnVUzMzMtPxDEsskgAM33RZGrHxNuL5aqqioxePBg3QfncH9veu9MrbRfWuwfRUT2l9AAZd68eV0+qM4999zg68ePHxe33367yMzMFH369BHFxcWioaFB1TnMEKAY8aGsdAZl1apVGryjxDHTJoOx7mZr1IaEid74MFx/1AZ0RJS81IzfuiwzPv/881FfXx98rF27Nvja7Nmz8Y9//ANLlizBmjVrsH//fsvVwQjUpRBh8gFEhJokscjPz4fD4YhYA0WSJDidTkslvoajdhltZ1ouq1V6rM7t7LR8Wg0t948iIupIl1U83bt3R05OTpfnm5qa8Ne//hUulws//vGPAQALFy7ED37wA3z88ce4/PLL9eiO5tR8KMcTPAQKt5WUlAQrsQboUWQtFlokRpppk0Glx0rEUl6le/4YKdaAjohIji4zKNu3b8egQYMwbNgwTJkyBXv27AEAbNy4EadOncK4ceOCbc877zwMGTIENTU1EY/X2tqK5ubmkEciGfmhbOadVd1uN3Jzc1FYWIjJkyejsLAQubm5cLvdqo4TzyaDWi+rVTprZfRS3sAWAp0D47q6OpSUlKi+5loxc0BHRBan9f2lFStWiMWLF4tPP/1UvP322yIvL08MGTJENDc3i9dee0307Nmzy89ceuml4p577ol4zHB5LUhgDkqseQrxMFvugZY5OGbbZDDSiplEJX2aOc9D7nfHHBQi6shUq3i++eYbkZaWJv7yl7/EHKCcOHFCNDU1BR979+5NaIBi1g9lIxM1tR4w5ZbR9u3bN+TfTqdT10Ah3IoZvc8ZSSICYjXMFtARkXklPEm2o4yMDJxzzjnYsWMHcnJycPLkSRw5ciSkTWNjY9iclYDU1FSkpaWFPBJJyaZ+RueGaHW7RQk9EiMj3cpyOp2oqqrCkSNHDN1kMNp+QkYze56HmW9DEpGF6R0ttbS0iDPOOENUVlaKI0eOiB49eoilS5cGX//yyy8FAFFTU6P4mGZYZiyEeb5lG12HQml9FpfLpfrYZruVZQZmn0EJ4O+OiOSoGb81L3U/Z84c/PSnP8XQoUOxf/9+zJs3D5s3b8a2bduQnZ2NGTNmYMWKFXjllVeQlpaG3/zmNwCAjz76SPE5zFTqPtHlveXK4Sspga/2PXi9XhQWFsr2zePxBFcxJfo6WZlcqXu7bHNARPaX0FL3N9xwgxg4cKDo2bOnGDx4sLjhhhvEjh07gq8HCrWdccYZonfv3uJnP/uZqK+vV3UOs8ygmEG8365jqYarNgeHZdDjxzwPIrIDUyXJ6oEByvfiud0Sz60hpQMmy6Brxyy3FImIYpXQWzxGMNMtnkSL5XYLoM2toXCFw5xOJyoqKlBcXKzJOSgUb5URkZWpGb8ZoFhcrPkJsQY24c4facDU6hxERGQPasZvXUrdk3FiLYev1dLVwB40sfys2nZERJQ8dK+DQvqLpQ6FESXKWQadiIhixVs8NqImP8GIpatcHktERB2pGb85g2IjgdstpaWlKCgoiDroG1EN14wVd4mIyBoYoCQxI0qUsww6ERHFgrd4yJClq1weS0REXGZMlCAMxIiIIuMyY6IECFe4zuFwoLKykreyiIhUYg4KkQbcbjdKSkq6VM2tq6tDSUkJ3G53gnpGRGRNDFCI4uTz+VBWVhZ2KXXguVmzZsHn8xndNSIiy2KAQhSn6urqiPsNAf4gZe/evaiurjawV0RE1sYAhShOLOlPRKQ9BihEcWJJfyIi7TFAIYpTfn4+HA5Hl2q5AZIkwel0Ij8/3+CeERFZFwMUojixpD8RkfYYoBBpgCX9iYi0xUqyRBpiJVkioshYSZYoQQI7ShMRUXx4i4eIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHQYoBAREZHpMEAhIiIi02GAQkRERKbDAIWIiIhMx5KVZAPV+ZubmxPcEyIiIlIqMG4r2WXHkgFKS0sLAMDpdCa4J0RERKRWS0sL0tPTo7ax5GaB7e3t2L9/P04//XS0tLTA6XRi79693DhQR83NzbzOBuB1Ng6vtTF4nY1hlesshEBLSwsGDRqEbt2iZ5lYcgalW7ducDgcAABJkgAAaWlppv6l2AWvszF4nY3Da20MXmdjWOE6y82cBDBJloiIiEyHAQoRERGZjuUDlNTUVMybNw+pqamJ7oqt8Tobg9fZOLzWxuB1NoYdr7Mlk2SJiIjI3iw/g0JERET2wwCFiIiITIcBChEREZkOAxQiIiIyHdMHKIcPH8aUKVOQlpaGjIwM3HLLLTh69GjUn3nxxRdRUFCAtLQ0SJKEI0eOaHJcu4vlmpw4cQIzZ85EVlYW+vbti0mTJqGxsTGkjSRJXR6vv/66nm/FVJ599lnk5ubitNNOw5gxY/DJJ59Ebb9kyRKcd955OO200zBy5EisWLEi5HUhBB588EEMHDgQvXr1wrhx47B9+3Y934IlaH2db7rppi5/txMmTNDzLViCmuu8detWTJo0Cbm5uZAkCRUVFXEfM1lofZ0feuihLn/P5513no7vQAPC5CZMmCBGjx4tPv74Y1FdXS3OPvtsUVpaGvVnnn76aTF//nwxf/58AUB88803mhzX7mK5JtOnTxdOp1OsXr1abNiwQVx++eXiiiuuCGkDQCxcuFDU19cHH8ePH9fzrZjG66+/Lnr27ClefvllsXXrVnHrrbeKjIwM0djYGLb9hx9+KFJSUsSTTz4ptm3bJu6//37Ro0cPsWXLlmCbxx9/XKSnp4s333xTfPrpp+I///M/xZlnnpk01zQcPa7ztGnTxIQJE0L+bg8fPmzUWzIltdf5k08+EXPmzBGLFi0SOTk54umnn477mMlAj+s8b948cf7554f8PR88eFDndxIfUwco27ZtEwDE+vXrg8+tXLlSSJIk6urqZH/e4/GEDVDiPa4dxXJNjhw5Inr06CGWLFkSfO6LL74QAERNTU3wOQDijTfe0K3vZnbZZZeJmTNnBv/t8/nEoEGDxPz588O2v/7668W1114b8tyYMWPEr3/9ayGEEO3t7SInJ0csWLAg+PqRI0dEamqqWLRokQ7vwBq0vs5C+AOUoqIiXfprVWqvc0dDhw4NO3DGc0y70uM6z5s3T4wePVrDXurP1Ld4ampqkJGRgUsuuST43Lhx49CtWzesW7fOdMe1sliuycaNG3Hq1CmMGzcu+Nx5552HIUOGoKamJqTtzJkz0a9fP1x22WV4+eWXFW21bXUnT57Exo0bQ65Pt27dMG7cuC7XJ6CmpiakPQCMHz8+2L62thYNDQ0hbdLT0zFmzJiIx7Q7Pa5zgNfrRf/+/XHuuedixowZOHTokPZvwCJiuc6JOKbV6XlNtm/fjkGDBmHYsGGYMmUK9uzZE293dWXqAKWhoQH9+/cPea579+7IzMxEQ0OD6Y5rZbFck4aGBvTs2RMZGRkhzw8YMCDkZx5++GEsXrwY7733HiZNmoTbb78dzzzzjObvwWz+/e9/w+fzYcCAASHPd74+HTU0NERtH/hfNce0Oz2uMwBMmDABf//737F69Wo88cQTWLNmDSZOnAifz6f9m7CAWK5zIo5pdXpdkzFjxuCVV17B22+/jeeffx61tbXIz89HS0tLvF3WTUJ2M/7d736HJ554ImqbL774wqDe2JsZrvUDDzwQ/O+LLroIx44dw4IFC/Db3/5W1/MSxeMXv/hF8L9HjhyJUaNG4ayzzoLX68XYsWMT2DMi9SZOnBj871GjRmHMmDEYOnQoFi9ejFtuuSWBPYssIQHKXXfdhZtuuilqm2HDhiEnJwcHDhwIeb6trQ2HDx9GTk5OzOfX67hmpOe1zsnJwcmTJ3HkyJGQWZTGxsao13HMmDF45JFH0Nraaqt9Izrr168fUlJSuqxqinZ9cnJyorYP/G9jYyMGDhwY0ubCCy/UsPfWocd1DmfYsGHo168fduzYkZQBSizXORHHtDqjrklGRgbOOecc7NixQ7Njai0ht3iys7Nx3nnnRX307NkTeXl5OHLkCDZu3Bj82ffffx/t7e0YM2ZMzOfX67hmpOe1vvjii9GjRw+sXr06+NxXX32FPXv2IC8vL2KfNm/ejDPOOMPWwQkA9OzZExdffHHI9Wlvb8fq1asjXp+8vLyQ9gDw3nvvBdufeeaZyMnJCWnT3NyMdevWRb3mdqbHdQ5n3759OHToUEhgmExiuc6JOKbVGXVNjh49ip07d5r77znRWbpyJkyYIC666CKxbt06sXbtWjF8+PCQpa/79u0T5557rli3bl3wufr6erFp0ybx0ksvCQDigw8+EJs2bRKHDh1SfNxkFMu1nj59uhgyZIh4//33xYYNG0ReXp7Iy8sLvv7WW2+Jl156SWzZskVs375dPPfcc6J3797iwQcfNPS9Jcrrr78uUlNTxSuvvCK2bdsmbrvtNpGRkSEaGhqEEEJMnTpV/O53vwu2//DDD0X37t3F//zP/4gvvvhCzJs3L+wy44yMDLFs2TLx2WefiaKiIi4z1vg6t7S0iDlz5oiamhpRW1srVq1aJX74wx+K4cOHixMnTiTkPZqB2uvc2toqNm3aJDZt2iQGDhwo5syZIzZt2iS2b9+u+JjJSI/rfNdddwmv1ytqa2vFhx9+KMaNGyf69esnDhw4YPj7U8r0AcqhQ4dEaWmp6Nu3r0hLSxM333yzaGlpCb5eW1srAAiPxxN8bt68eQJAl8fChQsVHzcZxXKtjx8/Lm6//XZxxhlniN69e4uf/exnor6+Pvj6ypUrxYUXXij69u0r+vTpI0aPHi1eeOEF4fP5jHxrCfXMM8+IIUOGiJ49e4rLLrtMfPzxx8HXrrrqKjFt2rSQ9osXLxbnnHOO6Nmzpzj//PPFP//5z5DX29vbxQMPPCAGDBggUlNTxdixY8VXX31lxFsxNS2v87fffiuuvvpqkZ2dLXr06CGGDh0qbr311qQeNAPUXOfAZ0bnx1VXXaX4mMlK6+t8ww03iIEDB4qePXuKwYMHixtuuEHs2LHDwHekniREEqz3JCIiIksx9TJjIiIiSk4MUIiIiMh0GKAQERGR6TBAISIiItNhgEJERESmwwCFiIiITIcBChEREZkOAxQiIiIyHQYoREREZDoMUIiIiMh0GKAQERGR6TBAISIiItP5/wEp1b8yUKjSwAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test, y_test, color='black')\n", + "plt.plot(X_test, y_pred, color='blue', linewidth=3)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "16ff1a974f6e4348e869e4a7d366b86a", + "translation_date": "2025-09-04T01:29:32+00:00", + "source_file": "2-Regression/1-Tools/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ko/2-Regression/2-Data/README.md b/translations/ko/2-Regression/2-Data/README.md new file mode 100644 index 000000000..de5eb7578 --- /dev/null +++ b/translations/ko/2-Regression/2-Data/README.md @@ -0,0 +1,226 @@ + +# Scikit-learn을 사용한 회귀 모델 구축: 데이터 준비 및 시각화 + +![데이터 시각화 인포그래픽](../../../../translated_images/data-visualization.54e56dded7c1a804d00d027543f2881cb32da73aeadda2d4a4f10f3497526114.ko.png) + +인포그래픽 제작: [Dasani Madipalli](https://twitter.com/dasani_decoded) + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/11/) + +> ### [이 강의는 R에서도 제공됩니다!](../../../../2-Regression/2-Data/solution/R/lesson_2.html) + +## 소개 + +Scikit-learn을 사용하여 머신러닝 모델을 구축하기 위한 도구를 준비했으니, 이제 데이터를 분석하고 질문을 던질 준비가 되었습니다. 데이터를 다루고 머신러닝 솔루션을 적용할 때, 올바른 질문을 던져 데이터셋의 잠재력을 제대로 활용하는 것이 매우 중요합니다. + +이 강의에서는 다음을 배웁니다: + +- 모델 구축을 위한 데이터 준비 방법 +- Matplotlib을 사용한 데이터 시각화 방법 + +## 데이터에 올바른 질문 던지기 + +답을 얻고자 하는 질문은 어떤 유형의 머신러닝 알고리즘을 사용할지 결정합니다. 그리고 얻는 답변의 품질은 데이터의 특성에 크게 좌우됩니다. + +이 강의에서 제공된 [데이터](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv)를 살펴보세요. 이 .csv 파일을 VS Code에서 열어볼 수 있습니다. 빠르게 훑어보면 빈칸과 문자열 및 숫자 데이터가 섞여 있다는 것을 알 수 있습니다. 또한 'Package'라는 이상한 열이 있는데, 데이터가 'sacks', 'bins' 등 다양한 값으로 구성되어 있습니다. 사실 이 데이터는 약간 엉망입니다. + +[![초보자를 위한 머신러닝 - 데이터셋 분석 및 정리 방법](https://img.youtube.com/vi/5qGjczWTrDQ/0.jpg)](https://youtu.be/5qGjczWTrDQ "초보자를 위한 머신러닝 - 데이터셋 분석 및 정리 방법") + +> 🎥 위 이미지를 클릭하면 이 강의를 위한 데이터 준비 과정을 다룬 짧은 영상을 볼 수 있습니다. + +사실, 머신러닝 모델을 바로 사용할 수 있도록 완전히 준비된 데이터셋을 받는 경우는 드뭅니다. 이 강의에서는 표준 Python 라이브러리를 사용하여 원시 데이터를 준비하는 방법을 배우게 됩니다. 또한 데이터를 시각화하는 다양한 기술도 배웁니다. + +## 사례 연구: '호박 시장' + +이 폴더의 루트 `data` 폴더에는 [US-pumpkins.csv](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv)라는 .csv 파일이 포함되어 있으며, 이는 도시별로 그룹화된 호박 시장에 대한 1757개의 데이터 라인을 포함하고 있습니다. 이 데이터는 미국 농무부가 배포한 [특수 작물 터미널 시장 표준 보고서](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice)에서 추출한 원시 데이터입니다. + +### 데이터 준비 + +이 데이터는 공공 도메인에 속합니다. USDA 웹사이트에서 도시별로 여러 개의 파일로 다운로드할 수 있습니다. 너무 많은 파일을 방지하기 위해 모든 도시 데이터를 하나의 스프레드시트로 결합했으므로, 이미 데이터를 약간 _준비_한 상태입니다. 이제 데이터를 좀 더 자세히 살펴보겠습니다. + +### 호박 데이터 - 초기 결론 + +이 데이터에서 무엇을 발견할 수 있나요? 이미 문자열, 숫자, 빈칸 및 이상한 값이 섞여 있다는 것을 확인했습니다. + +회귀 기법을 사용하여 이 데이터에 어떤 질문을 던질 수 있을까요? 예를 들어, "특정 월에 판매되는 호박의 가격을 예측하라"는 질문은 어떨까요? 데이터를 다시 살펴보면, 이 작업에 필요한 데이터 구조를 만들기 위해 몇 가지 변경이 필요하다는 것을 알 수 있습니다. + +## 실습 - 호박 데이터 분석 + +[판다스(Pandas)](https://pandas.pydata.org/)를 사용해 봅시다. 판다스는 데이터를 분석하고 준비하는 데 매우 유용한 도구입니다. 이를 사용하여 호박 데이터를 분석하고 준비해 보겠습니다. + +### 첫 번째 단계: 누락된 날짜 확인 + +먼저 누락된 날짜를 확인하기 위한 작업을 수행해야 합니다: + +1. 날짜를 월 형식으로 변환합니다(미국 날짜 형식은 `MM/DD/YYYY`입니다). +2. 월을 새 열로 추출합니다. + +Visual Studio Code에서 _notebook.ipynb_ 파일을 열고 스프레드시트를 새 판다스 데이터프레임으로 가져옵니다. + +1. `head()` 함수를 사용하여 처음 다섯 줄을 확인합니다. + + ```python + import pandas as pd + pumpkins = pd.read_csv('../data/US-pumpkins.csv') + pumpkins.head() + ``` + + ✅ 마지막 다섯 줄을 확인하려면 어떤 함수를 사용해야 할까요? + +1. 현재 데이터프레임에 누락된 데이터가 있는지 확인합니다: + + ```python + pumpkins.isnull().sum() + ``` + + 누락된 데이터가 있지만, 현재 작업에는 큰 영향을 미치지 않을 수도 있습니다. + +1. 데이터프레임을 더 쉽게 작업할 수 있도록 `loc` 함수를 사용하여 필요한 열만 선택합니다. `loc` 함수는 원래 데이터프레임에서 특정 행(첫 번째 매개변수로 전달)과 열(두 번째 매개변수로 전달)을 추출합니다. 아래의 `:` 표현은 "모든 행"을 의미합니다. + + ```python + columns_to_select = ['Package', 'Low Price', 'High Price', 'Date'] + pumpkins = pumpkins.loc[:, columns_to_select] + ``` + +### 두 번째 단계: 호박의 평균 가격 결정 + +특정 월에 호박의 평균 가격을 결정하는 방법을 생각해 보세요. 이 작업에 어떤 열을 선택해야 할까요? 힌트: 3개의 열이 필요합니다. + +해결 방법: `Low Price`와 `High Price` 열의 평균을 계산하여 새 Price 열을 채우고, Date 열을 월만 표시하도록 변환합니다. 다행히 위의 확인에 따르면 날짜와 가격에 누락된 데이터는 없습니다. + +1. 평균을 계산하려면 다음 코드를 추가하세요: + + ```python + price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2 + + month = pd.DatetimeIndex(pumpkins['Date']).month + + ``` + + ✅ `print(month)`를 사용하여 데이터를 확인할 수 있습니다. + +2. 변환된 데이터를 새 판다스 데이터프레임에 복사합니다: + + ```python + new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price}) + ``` + + 데이터프레임을 출력하면 새 회귀 모델을 구축할 수 있는 깨끗하고 정돈된 데이터셋을 확인할 수 있습니다. + +### 그런데! 이상한 점이 있습니다 + +`Package` 열을 보면, 호박은 다양한 구성으로 판매됩니다. 일부는 '1 1/9 bushel' 단위로, 일부는 '1/2 bushel' 단위로, 일부는 호박 개별 단위로, 일부는 파운드 단위로, 그리고 일부는 다양한 크기의 큰 상자 단위로 판매됩니다. + +> 호박은 일관되게 무게를 측정하기가 매우 어려운 것 같습니다. + +원래 데이터를 살펴보면, `Unit of Sale`이 'EACH' 또는 'PER BIN'인 경우에도 `Package` 유형이 인치 단위, 빈 단위 또는 'each'로 표시됩니다. 호박은 일관되게 무게를 측정하기가 매우 어려운 것 같으니, `Package` 열에 'bushel' 문자열이 포함된 호박만 선택하여 필터링해 봅시다. + +1. 초기 .csv 가져오기 아래에 필터를 추가하세요: + + ```python + pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)] + ``` + + 데이터를 출력하면 'bushel'이 포함된 약 415개의 데이터 행만 가져오는 것을 확인할 수 있습니다. + +### 그런데! 해야 할 일이 하나 더 있습니다 + +버셸 양이 행마다 다르다는 것을 눈치챘나요? 가격을 표준화하여 버셸 단위로 가격을 표시하도록 수학적 계산을 수행해야 합니다. + +1. 새 데이터프레임을 생성하는 블록 아래에 다음 줄을 추가하세요: + + ```python + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9) + + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2) + ``` + +✅ [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308)에 따르면, 버셸의 무게는 농산물의 종류에 따라 다릅니다. 이는 부피 측정 단위입니다. "예를 들어, 토마토 한 버셸은 56파운드로 간주됩니다... 잎과 채소는 더 많은 공간을 차지하지만 무게는 적기 때문에 시금치 한 버셸은 20파운드에 불과합니다." 이는 매우 복잡합니다! 버셸에서 파운드로의 변환은 생략하고 대신 버셸 단위로 가격을 표시합시다. 그러나 호박의 버셸을 연구하면서 데이터의 특성을 이해하는 것이 얼마나 중요한지 알게 됩니다! + +이제 버셸 측정 단위를 기준으로 가격을 분석할 수 있습니다. 데이터를 한 번 더 출력하면 표준화된 데이터를 확인할 수 있습니다. + +✅ 반 버셸로 판매되는 호박이 매우 비싸다는 것을 눈치챘나요? 왜 그런지 알아낼 수 있나요? 힌트: 작은 호박은 큰 호박보다 훨씬 비쌉니다. 이는 큰 속이 빈 파이 호박 하나가 차지하는 공간 때문에 버셸당 더 많은 작은 호박이 들어가기 때문입니다. + +## 시각화 전략 + +데이터 과학자의 역할 중 하나는 자신이 작업하는 데이터의 품질과 특성을 보여주는 것입니다. 이를 위해 종종 흥미로운 시각화, 즉 플롯, 그래프, 차트를 만들어 데이터의 다양한 측면을 보여줍니다. 이렇게 하면 관계와 격차를 시각적으로 보여줄 수 있어, 그렇지 않으면 발견하기 어려운 점을 드러낼 수 있습니다. + +[![초보자를 위한 머신러닝 - Matplotlib을 사용한 데이터 시각화 방법](https://img.youtube.com/vi/SbUkxH6IJo0/0.jpg)](https://youtu.be/SbUkxH6IJo0 "초보자를 위한 머신러닝 - Matplotlib을 사용한 데이터 시각화 방법") + +> 🎥 위 이미지를 클릭하면 이 강의를 위한 데이터 시각화 과정을 다룬 짧은 영상을 볼 수 있습니다. + +시각화는 데이터에 가장 적합한 머신러닝 기법을 결정하는 데도 도움이 됩니다. 예를 들어, 선을 따라가는 것처럼 보이는 산점도는 데이터가 선형 회귀 연습에 적합하다는 것을 나타냅니다. + +Jupyter 노트북에서 잘 작동하는 데이터 시각화 라이브러리 중 하나는 [Matplotlib](https://matplotlib.org/)입니다(이전 강의에서도 보았습니다). + +> 데이터 시각화에 대한 경험을 더 쌓고 싶다면 [이 튜토리얼](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott)을 확인하세요. + +## 실습 - Matplotlib 실험하기 + +방금 생성한 새 데이터프레임을 표시하기 위해 기본 플롯을 만들어 보세요. 기본 선형 플롯은 무엇을 보여줄까요? + +1. 파일 상단의 Pandas 가져오기 아래에 Matplotlib을 가져옵니다: + + ```python + import matplotlib.pyplot as plt + ``` + +1. 노트북 전체를 다시 실행하여 새로 고칩니다. +1. 노트북 하단에 데이터를 박스 형태로 플롯하는 셀을 추가합니다: + + ```python + price = new_pumpkins.Price + month = new_pumpkins.Month + plt.scatter(price, month) + plt.show() + ``` + + ![가격과 월 관계를 보여주는 산점도](../../../../translated_images/scatterplot.b6868f44cbd2051c6680ccdbb1510697d06a3ff6cd4abda656f5009c0ed4e3fc.ko.png) + + 이 플롯이 유용한가요? 놀라운 점이 있나요? + + 이 플롯은 특정 월에 데이터가 퍼져 있는 점으로만 표시되므로 특별히 유용하지 않습니다. + +### 유용하게 만들기 + +유용한 데이터를 표시하려면 데이터를 그룹화해야 합니다. y축에 월을 표시하고 데이터가 분포를 나타내는 플롯을 만들어 봅시다. + +1. 그룹화된 막대 차트를 생성하는 셀을 추가합니다: + + ```python + new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar') + plt.ylabel("Pumpkin Price") + ``` + + ![가격과 월 관계를 보여주는 막대 차트](../../../../translated_images/barchart.a833ea9194346d769c77a3a870f7d8aee51574cd1138ca902e5500830a41cbce.ko.png) + + 이 시각화는 더 유용합니다! 호박의 최고 가격이 9월과 10월에 발생한다는 것을 나타내는 것 같습니다. 이것이 예상에 부합하나요? 왜 그런지 생각해 보세요. + +--- + +## 🚀도전 과제 + +Matplotlib이 제공하는 다양한 시각화 유형을 탐색해 보세요. 회귀 문제에 가장 적합한 유형은 무엇인가요? + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/12/) + +## 복습 및 자기 학습 + +데이터를 시각화하는 다양한 방법을 살펴보세요. 사용 가능한 다양한 라이브러리 목록을 작성하고, 2D 시각화와 3D 시각화와 같은 특정 작업에 가장 적합한 라이브러리를 기록하세요. 무엇을 발견했나요? + +## 과제 + +[시각화 탐구](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/2-Regression/2-Data/assignment.md b/translations/ko/2-Regression/2-Data/assignment.md new file mode 100644 index 000000000..dc820fe19 --- /dev/null +++ b/translations/ko/2-Regression/2-Data/assignment.md @@ -0,0 +1,23 @@ + +# 시각화 탐구 + +데이터 시각화를 위해 사용할 수 있는 다양한 라이브러리가 있습니다. 이 강의의 Pumpkin 데이터를 사용하여 샘플 노트북에서 matplotlib과 seaborn을 활용해 몇 가지 시각화를 만들어 보세요. 어떤 라이브러리가 더 사용하기 쉬운가요? + +## 평가 기준 + +| 기준 | 우수 | 적절 | 개선 필요 | +| -------- | --------- | -------- | ----------------- | +| | 두 가지 탐구/시각화가 포함된 노트북이 제출됨 | 한 가지 탐구/시각화가 포함된 노트북이 제출됨 | 노트북이 제출되지 않음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/2-Regression/2-Data/notebook.ipynb b/translations/ko/2-Regression/2-Data/notebook.ipynb new file mode 100644 index 000000000..932fc2a3a --- /dev/null +++ b/translations/ko/2-Regression/2-Data/notebook.ipynb @@ -0,0 +1,46 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "coopTranslator": { + "original_hash": "1b2ab303ac6c604a34c6ca7a49077fc7", + "translation_date": "2025-09-04T01:36:19+00:00", + "source_file": "2-Regression/2-Data/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/2-Regression/2-Data/solution/Julia/README.md b/translations/ko/2-Regression/2-Data/solution/Julia/README.md new file mode 100644 index 000000000..fc797b4e2 --- /dev/null +++ b/translations/ko/2-Regression/2-Data/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/2-Regression/2-Data/solution/R/lesson_2-R.ipynb b/translations/ko/2-Regression/2-Data/solution/R/lesson_2-R.ipynb new file mode 100644 index 000000000..1b01fccc5 --- /dev/null +++ b/translations/ko/2-Regression/2-Data/solution/R/lesson_2-R.ipynb @@ -0,0 +1,673 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_2-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "f3c335f9940cfd76528b3ef918b9b342", + "translation_date": "2025-09-04T01:40:56+00:00", + "source_file": "2-Regression/2-Data/solution/R/lesson_2-R.ipynb", + "language_code": "ko" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# 회귀 모델 구축: 데이터 준비 및 시각화\n", + "\n", + "## **호박을 위한 선형 회귀 - 2강**\n", + "#### 소개\n", + "\n", + "이제 Tidymodels와 Tidyverse를 사용하여 머신러닝 모델을 구축할 준비가 되었으니, 데이터를 탐구하며 질문을 시작할 차례입니다. 데이터를 다루고 머신러닝 솔루션을 적용할 때, 데이터셋의 잠재력을 제대로 발휘하기 위해 올바른 질문을 하는 방법을 이해하는 것이 매우 중요합니다.\n", + "\n", + "이 강의에서 배우게 될 내용:\n", + "\n", + "- 모델 구축을 위해 데이터를 준비하는 방법.\n", + "\n", + "- `ggplot2`를 사용하여 데이터를 시각화하는 방법.\n", + "\n", + "답을 얻고자 하는 질문은 어떤 유형의 머신러닝 알고리즘을 사용할지 결정하게 됩니다. 그리고 얻는 답변의 품질은 데이터의 특성에 크게 좌우됩니다.\n", + "\n", + "실제 연습을 통해 이를 살펴보겠습니다.\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    @allison_horst의 작품
                                                    \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "Pg5aexcOPqAZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. 호박 데이터 가져오기와 Tidyverse 호출하기\n", + "\n", + "이 강의를 진행하기 위해 다음 패키지가 필요합니다:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/)는 데이터 과학을 더 빠르고, 쉽고, 재미있게 만들어주는 [R 패키지 모음](https://www.tidyverse.org/packages)입니다!\n", + "\n", + "다음 명령어로 설치할 수 있습니다:\n", + "\n", + "`install.packages(c(\"tidyverse\"))`\n", + "\n", + "아래 스크립트는 이 모듈을 완료하는 데 필요한 패키지가 설치되어 있는지 확인하고, 누락된 경우 자동으로 설치해줍니다.\n" + ], + "metadata": { + "id": "dc5WhyVdXAjR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse)" + ], + "outputs": [], + "metadata": { + "id": "GqPYUZgfXOBt" + } + }, + { + "cell_type": "markdown", + "source": [ + "이제 몇 가지 패키지를 실행하고 이 강의를 위해 제공된 [데이터](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv)를 로드해 봅시다!\n" + ], + "metadata": { + "id": "kvjDTPDSXRr2" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n =50)" + ], + "outputs": [], + "metadata": { + "id": "VMri-t2zXqgD" + } + }, + { + "cell_type": "markdown", + "source": [ + "`glimpse()`를 사용하면 데이터에 빈칸이 있고 문자열(`chr`)과 숫자 데이터(`dbl`)가 섞여 있다는 것을 바로 확인할 수 있습니다. `Date`는 문자형 데이터이고, `Package`라는 이상한 열도 있는데, 이 열의 데이터는 `sacks`, `bins` 및 기타 값들이 섞여 있습니다. 사실, 데이터가 꽤 엉망입니다 😤.\n", + "\n", + "사실, 완전히 준비된 상태의 데이터셋을 받아서 바로 ML 모델을 만들 수 있는 경우는 드뭅니다. 하지만 걱정하지 마세요. 이번 레슨에서는 표준 R 라이브러리를 사용하여 원시 데이터셋을 준비하는 방법을 배우게 됩니다 🧑‍🔧. 또한 데이터를 시각화하는 다양한 기술도 배우게 될 것입니다.📈📊\n", + "
                                                    \n", + "\n", + "> 복습: 파이프 연산자 (`%>%`)는 객체를 함수나 호출 표현식으로 전달하여 논리적 순서로 작업을 수행합니다. 코드에서 파이프 연산자는 \"그리고 나서\"라고 말하는 것과 같은 역할을 한다고 생각할 수 있습니다.\n" + ], + "metadata": { + "id": "REWcIv9yX29v" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. 누락된 데이터 확인하기\n", + "\n", + "데이터 과학자들이 자주 직면하는 문제 중 하나는 불완전하거나 누락된 데이터입니다. R은 누락되었거나 알 수 없는 값을 특별한 센티널 값인 `NA`(Not Available)로 나타냅니다.\n", + "\n", + "그렇다면 데이터 프레임에 누락된 값이 포함되어 있는지 어떻게 알 수 있을까요? \n", + "
                                                    \n", + "- 가장 간단한 방법은 기본 R 함수인 `anyNA`를 사용하는 것입니다. 이 함수는 논리 객체 `TRUE` 또는 `FALSE`를 반환합니다.\n" + ], + "metadata": { + "id": "Zxfb3AM5YbUe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " anyNA()" + ], + "outputs": [], + "metadata": { + "id": "G--DQutAYltj" + } + }, + { + "cell_type": "markdown", + "source": [ + "좋아요, 일부 데이터가 누락된 것 같네요! 그것부터 시작하면 좋을 것 같습니다.\n", + "\n", + "- 또 다른 방법은 `is.na()` 함수를 사용하는 것으로, 이 함수는 각 열 요소 중 누락된 데이터를 논리값 `TRUE`로 표시합니다.\n" + ], + "metadata": { + "id": "mU-7-SB6YokF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "W-DxDOR4YxSW" + } + }, + { + "cell_type": "markdown", + "source": [ + "이와 같은 큰 데이터 프레임에서는 모든 행과 열을 개별적으로 검토하는 것은 비효율적이고 사실상 불가능합니다😴.\n", + "\n", + "- 더 직관적인 방법은 각 열의 결측값 합계를 계산하는 것입니다:\n" + ], + "metadata": { + "id": "xUWxipKYY0o7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " colSums()" + ], + "outputs": [], + "metadata": { + "id": "ZRBWV6P9ZArL" + } + }, + { + "cell_type": "markdown", + "source": [ + "훨씬 좋아졌습니다! 데이터가 일부 누락되었지만, 작업에는 큰 영향을 미치지 않을 수도 있습니다. 추가 분석 결과를 지켜보죠.\n", + "\n", + "> R은 훌륭한 패키지와 함수 세트뿐만 아니라 매우 좋은 문서를 제공합니다. 예를 들어, `help(colSums)` 또는 `?colSums`를 사용하여 해당 함수에 대해 더 알아볼 수 있습니다.\n" + ], + "metadata": { + "id": "9gv-crB6ZD1Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Dplyr: 데이터 조작을 위한 문법\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    @allison_horst의 작품
                                                    \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "o4jLY5-VZO2C" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`dplyr`](https://dplyr.tidyverse.org/)은 Tidyverse에 포함된 패키지로, 데이터 조작을 위한 문법을 제공하며 가장 일반적인 데이터 조작 문제를 해결할 수 있도록 일관된 동사를 제공합니다. 이 섹션에서는 dplyr의 동사들에 대해 알아보겠습니다! \n", + "
                                                    \n" + ], + "metadata": { + "id": "i5o33MQBZWWw" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::select()\n", + "\n", + "`select()`는 `dplyr` 패키지에 포함된 함수로, 유지하거나 제외할 열을 선택하는 데 도움을 줍니다.\n", + "\n", + "데이터 프레임을 더 다루기 쉽게 만들기 위해, `select()`를 사용하여 필요한 열만 남기고 여러 열을 제거할 수 있습니다.\n", + "\n", + "예를 들어, 이번 연습에서는 `Package`, `Low Price`, `High Price`, `Date` 열을 분석에 사용할 것입니다. 이 열들을 선택해 봅시다.\n" + ], + "metadata": { + "id": "x3VGMAGBZiUr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(Package, `Low Price`, `High Price`, Date)\n", + "\n", + "\n", + "# Print data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "F_FgxQnVZnM0" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::mutate()\n", + "\n", + "`mutate()`는 `dplyr` 패키지에 있는 함수로, 기존 열을 유지하면서 새로운 열을 생성하거나 기존 열을 수정할 수 있도록 도와줍니다.\n", + "\n", + "`mutate`의 일반적인 구조는 다음과 같습니다:\n", + "\n", + "`data %>% mutate(new_column_name = what_it_contains)`\n", + "\n", + "`Date` 열을 사용하여 다음 작업을 수행하며 `mutate`를 직접 사용해 보겠습니다:\n", + "\n", + "1. 날짜(현재 문자형)를 월 형식으로 변환합니다(이 날짜는 미국 형식이므로 `MM/DD/YYYY` 형식입니다).\n", + "\n", + "2. 날짜에서 월을 추출하여 새로운 열에 저장합니다.\n", + "\n", + "R에서는 [lubridate](https://lubridate.tidyverse.org/) 패키지가 날짜-시간 데이터를 더 쉽게 다룰 수 있도록 도와줍니다. 따라서 `dplyr::mutate()`, `lubridate::mdy()`, `lubridate::month()`를 사용하여 위의 목표를 달성하는 방법을 살펴보겠습니다. 이후 작업에서 더 이상 필요하지 않으므로 Date 열은 삭제할 수 있습니다.\n" + ], + "metadata": { + "id": "2KKo0Ed9Z1VB" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load lubridate\n", + "library(lubridate)\n", + "\n", + "pumpkins <- pumpkins %>% \n", + " # Convert the Date column to a date object\n", + " mutate(Date = mdy(Date)) %>% \n", + " # Extract month from Date\n", + " mutate(Month = month(Date)) %>% \n", + " # Drop Date column\n", + " select(-Date)\n", + "\n", + "# View the first few rows\n", + "pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "5joszIVSZ6xe" + } + }, + { + "cell_type": "markdown", + "source": [ + "우와! 🤩\n", + "\n", + "다음으로, 호박의 평균 가격을 나타내는 새로운 열 `Price`를 만들어 봅시다. 이제 `Low Price`와 `High Price` 열의 평균을 계산하여 새로운 Price 열을 채워보세요.\n", + "
                                                    \n" + ], + "metadata": { + "id": "nIgLjNMCZ-6Y" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new column Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(Price = (`Low Price` + `High Price`)/2)\n", + "\n", + "# View the first few rows of the data\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "Zo0BsqqtaJw2" + } + }, + { + "cell_type": "markdown", + "source": [ + "예스!💪\n", + "\n", + "\"잠깐만요!\", 당신은 `View(pumpkins)`로 전체 데이터 세트를 훑어본 후 말할 겁니다. \"여기 뭔가 이상한 게 있어요!\"🤔\n", + "\n", + "`Package` 열을 보면, 호박은 여러 가지 다른 구성으로 판매됩니다. 일부는 `1 1/9 bushel` 단위로, 일부는 `1/2 bushel` 단위로, 일부는 호박 개수로, 일부는 무게 단위로, 그리고 일부는 폭이 다양한 큰 상자에 담겨 판매됩니다.\n", + "\n", + "이것을 확인해 봅시다:\n" + ], + "metadata": { + "id": "p77WZr-9aQAR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Verify the distinct observations in Package column\n", + "pumpkins %>% \n", + " distinct(Package)" + ], + "outputs": [], + "metadata": { + "id": "XISGfh0IaUy6" + } + }, + { + "cell_type": "markdown", + "source": [ + "놀라워요!👏\n", + "\n", + "호박은 일관되게 무게를 재기가 매우 어려운 것 같으니, `Package` 열에 *bushel*이라는 문자열이 포함된 호박만 선택하여 새로운 데이터 프레임 `new_pumpkins`에 넣어 봅시다.\n", + "
                                                    \n" + ], + "metadata": { + "id": "7sMjiVujaZxY" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::filter()와 stringr::str_detect()\n", + "\n", + "[`dplyr::filter()`](https://dplyr.tidyverse.org/reference/filter.html): 조건을 만족하는 **행**만 포함하는 데이터의 부분 집합을 생성합니다. 이 경우, `Package` 열에 *bushel* 문자열이 포함된 호박 데이터를 필터링합니다.\n", + "\n", + "[stringr::str_detect()](https://stringr.tidyverse.org/reference/str_detect.html): 문자열에서 특정 패턴의 존재 여부를 감지합니다.\n", + "\n", + "[`stringr`](https://github.com/tidyverse/stringr) 패키지는 일반적인 문자열 작업을 위한 간단한 함수들을 제공합니다.\n" + ], + "metadata": { + "id": "L8Qfcs92ageF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Retain only pumpkins with \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(Package, \"bushel\"))\n", + "\n", + "# Get the dimensions of the new data\n", + "dim(new_pumpkins)\n", + "\n", + "# View a few rows of the new data\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "hy_SGYREampd" + } + }, + { + "cell_type": "markdown", + "source": [ + "우리는 약 415줄 정도의 데이터를 좁혀서 한 바구니에 담긴 호박 데이터를 확인할 수 있습니다.🤩 \n", + "
                                                    \n" + ], + "metadata": { + "id": "VrDwF031avlR" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::case_when()\n", + "\n", + "**하지만 잠깐! 해야 할 일이 하나 더 있습니다**\n", + "\n", + "행마다 부셸 양이 다르다는 것을 눈치채셨나요? 가격을 1 1/9 부셸이나 1/2 부셸이 아닌, 부셸당 가격으로 표준화해야 합니다. 이제 수학을 활용해 이를 표준화할 시간입니다.\n", + "\n", + "[`case_when()`](https://dplyr.tidyverse.org/reference/case_when.html) 함수를 사용하여 조건에 따라 Price 열을 *변경(mutate)*할 것입니다. `case_when`은 여러 `if_else()` 문을 벡터화하여 처리할 수 있도록 도와줍니다.\n" + ], + "metadata": { + "id": "mLpw2jH4a0tx" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(Price = case_when(\n", + " str_detect(Package, \"1 1/9\") ~ Price/(1 + 1/9),\n", + " str_detect(Package, \"1/2\") ~ Price/(1/2),\n", + " TRUE ~ Price))\n", + "\n", + "# View the first few rows of the data\n", + "new_pumpkins %>% \n", + " slice_head(n = 30)" + ], + "outputs": [], + "metadata": { + "id": "P68kLVQmbM6I" + } + }, + { + "cell_type": "markdown", + "source": [ + "이제 우리는 부셸 측정을 기반으로 단위당 가격을 분석할 수 있습니다. 하지만 이 모든 호박 부셸에 대한 연구는 `데이터의 본질을 이해하는 것`이 얼마나 `중요한지`를 보여줍니다!\n", + "\n", + "> ✅ [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308)에 따르면, 부셸의 무게는 부피 측정 단위이기 때문에 농산물의 종류에 따라 달라집니다. \"예를 들어, 토마토 한 부셸은 56파운드로 간주됩니다... 잎채소와 같은 경우는 공간을 더 많이 차지하지만 무게는 적기 때문에 시금치 한 부셸은 20파운드에 불과합니다.\" 꽤 복잡하죠! 부셸을 파운드로 변환하려고 애쓰지 말고, 부셸 단위로 가격을 매기는 게 낫습니다. 하지만 이 모든 호박 부셸에 대한 연구는 데이터의 본질을 이해하는 것이 얼마나 중요한지 다시 한번 보여줍니다!\n", + ">\n", + "> ✅ 반 부셸 단위로 판매되는 호박이 매우 비싸다는 것을 눈치채셨나요? 왜 그런지 알아낼 수 있나요? 힌트: 작은 호박이 큰 호박보다 훨씬 비쌉니다. 아마도 큰 속이 빈 파이 호박 하나가 차지하는 공간 때문에, 부셸당 훨씬 더 많은 작은 호박이 들어가기 때문일 것입니다.\n" + ], + "metadata": { + "id": "pS2GNPagbSdb" + } + }, + { + "cell_type": "markdown", + "source": [ + "이제 마지막으로, 모험심을 발휘해 💁‍♀️, Month 열을 첫 번째 위치로 옮겨봅시다. 즉, `Package` 열 `앞`으로 이동시키는 것입니다.\n", + "\n", + "`dplyr::relocate()`는 열의 위치를 변경하는 데 사용됩니다.\n" + ], + "metadata": { + "id": "qql1SowfbdnP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new data frame new_pumpkins\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(Month, .before = Package)\n", + "\n", + "new_pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "JJ1x6kw8bixF" + } + }, + { + "cell_type": "markdown", + "source": [ + "좋아요!👌 이제 새로운 회귀 모델을 구축할 수 있는 깔끔하고 정돈된 데이터셋이 준비되었습니다! \n", + "
                                                    \n" + ], + "metadata": { + "id": "y8TJ0Za_bn5Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. ggplot2를 활용한 데이터 시각화\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    다사니 마디팔리의 인포그래픽
                                                    \n", + "\n", + "\n", + "\n", + "\n", + "다음과 같은 *현명한* 격언이 있습니다:\n", + "\n", + "> \"단순한 그래프는 데이터 분석가의 머릿속에 다른 어떤 도구보다 더 많은 정보를 전달해준다.\" --- 존 튜키\n", + "\n", + "데이터 과학자의 역할 중 하나는 자신이 다루고 있는 데이터의 품질과 특성을 보여주는 것입니다. 이를 위해, 데이터 과학자들은 종종 데이터의 다양한 측면을 보여주는 흥미로운 시각화, 즉 플롯, 그래프, 차트를 만듭니다. 이렇게 하면, 다른 방법으로는 발견하기 어려운 관계나 격차를 시각적으로 보여줄 수 있습니다.\n", + "\n", + "시각화는 또한 데이터에 가장 적합한 머신 러닝 기법을 결정하는 데 도움을 줄 수 있습니다. 예를 들어, 직선을 따르는 것처럼 보이는 산점도는 데이터가 선형 회귀 분석에 적합하다는 것을 나타냅니다.\n", + "\n", + "R은 그래프를 만드는 여러 시스템을 제공하지만, [`ggplot2`](https://ggplot2.tidyverse.org/index.html)는 가장 우아하고 다재다능한 도구 중 하나입니다. `ggplot2`는 **독립적인 구성 요소를 결합**하여 그래프를 구성할 수 있게 해줍니다.\n", + "\n", + "이제 Price와 Month 열을 사용하여 간단한 산점도를 만들어 봅시다.\n", + "\n", + "이 경우, 먼저 [`ggplot()`](https://ggplot2.tidyverse.org/reference/ggplot.html)를 사용하여 데이터셋과 미적 매핑을 제공하고 ([`aes()`](https://ggplot2.tidyverse.org/reference/aes.html) 사용), 그런 다음 산점도를 위한 레이어 ([`geom_point()`](https://ggplot2.tidyverse.org/reference/geom_point.html))를 추가합니다.\n" + ], + "metadata": { + "id": "mYSH6-EtbvNa" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plots\n", + "theme_set(theme_light())\n", + "\n", + "# Create a scatter plot\n", + "p <- ggplot(data = new_pumpkins, aes(x = Price, y = Month))\n", + "p + geom_point()" + ], + "outputs": [], + "metadata": { + "id": "g2YjnGeOcLo4" + } + }, + { + "cell_type": "markdown", + "source": [ + "이게 유용한 그래프일까요 🤷? 뭔가 놀라운 점이 있나요?\n", + "\n", + "특별히 유용하지는 않습니다. 이 그래프는 특정 월에 데이터가 점으로 퍼져 있는 모습을 보여주는 것뿐입니다.\n", + "
                                                    \n" + ], + "metadata": { + "id": "Ml7SDCLQcPvE" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **어떻게 유용하게 만들 수 있을까요?**\n", + "\n", + "차트에 유용한 데이터를 표시하려면 데이터를 어떤 방식으로든 그룹화해야 하는 경우가 많습니다. 예를 들어, 우리의 경우 각 달의 호박 평균 가격을 찾으면 데이터의 기본 패턴에 대한 더 많은 통찰력을 제공할 수 있습니다. 이는 또 하나의 **dplyr** 기능을 사용하게 만듭니다:\n", + "\n", + "#### `dplyr::group_by() %>% summarize()`\n", + "\n", + "R에서 그룹화된 집계는 다음을 사용하여 쉽게 계산할 수 있습니다:\n", + "\n", + "`dplyr::group_by() %>% summarize()`\n", + "\n", + "- `dplyr::group_by()`는 분석 단위를 전체 데이터셋에서 개별 그룹(예: 월별)으로 변경합니다.\n", + "\n", + "- `dplyr::summarize()`는 그룹화 변수마다 하나의 열과 지정한 요약 통계마다 하나의 열을 포함하는 새로운 데이터 프레임을 생성합니다.\n", + "\n", + "예를 들어, `dplyr::group_by() %>% summarize()`를 사용하여 **Month** 열을 기준으로 호박을 그룹화한 다음 각 달의 **평균 가격**을 찾을 수 있습니다.\n" + ], + "metadata": { + "id": "jMakvJZIcVkh" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price))" + ], + "outputs": [], + "metadata": { + "id": "6kVSUa2Bcilf" + } + }, + { + "cell_type": "markdown", + "source": [ + "간단하게!✨\n", + "\n", + "월과 같은 범주형 특징은 막대 그래프 📊로 표현하는 것이 더 적합합니다. 막대 그래프를 그리는 데 사용되는 레이어는 `geom_bar()`와 `geom_col()`입니다. 자세한 내용은 `?geom_bar`를 참고하세요.\n", + "\n", + "하나 만들어볼까요!\n" + ], + "metadata": { + "id": "Kds48GUBcj3W" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month then plot a bar chart\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price)) %>% \r\n", + " ggplot(aes(x = Month, y = mean_price)) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"Pumpkin Price\")" + ], + "outputs": [], + "metadata": { + "id": "VNbU1S3BcrxO" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩이것은 훨씬 더 유용한 데이터 시각화입니다! 이는 호박의 최고 가격이 9월과 10월에 발생한다는 것을 나타내는 것 같습니다. 이것이 당신의 예상과 일치하나요? 왜 그런가요, 아니면 왜 그렇지 않은가요?\n", + "\n", + "두 번째 강의를 마친 것을 축하합니다 👏! 데이터를 모델 구축을 위해 준비한 후, 시각화를 통해 더 많은 인사이트를 발견했네요!\n" + ], + "metadata": { + "id": "zDm0VOzzcuzR" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/2-Regression/2-Data/solution/notebook.ipynb b/translations/ko/2-Regression/2-Data/solution/notebook.ipynb new file mode 100644 index 000000000..ba857b49a --- /dev/null +++ b/translations/ko/2-Regression/2-Data/solution/notebook.ipynb @@ -0,0 +1,437 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                                                    70BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    71BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    72BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    73BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1617.017.017.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    74BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/8/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    \n", + "

                                                    5 rows × 26 columns

                                                    \n", + "
                                                    " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade \\\n", + "70 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "71 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "72 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "73 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "74 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "\n", + " Date Low Price High Price Mostly Low ... Unit of Sale Quality \\\n", + "70 9/24/16 15.0 15.0 15.0 ... NaN NaN \n", + "71 9/24/16 18.0 18.0 18.0 ... NaN NaN \n", + "72 10/1/16 18.0 18.0 18.0 ... NaN NaN \n", + "73 10/1/16 17.0 17.0 17.0 ... NaN NaN \n", + "74 10/8/16 15.0 15.0 15.0 ... NaN NaN \n", + "\n", + " Condition Appearance Storage Crop Repack Trans Mode Unnamed: 24 \\\n", + "70 NaN NaN NaN NaN N NaN NaN \n", + "71 NaN NaN NaN NaN N NaN NaN \n", + "72 NaN NaN NaN NaN N NaN NaN \n", + "73 NaN NaN NaN NaN N NaN NaN \n", + "74 NaN NaN NaN NaN N NaN NaN \n", + "\n", + " Unnamed: 25 \n", + "70 NaN \n", + "71 NaN \n", + "72 NaN \n", + "73 NaN \n", + "74 NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "City Name 0\n", + "Type 406\n", + "Package 0\n", + "Variety 0\n", + "Sub Variety 167\n", + "Grade 415\n", + "Date 0\n", + "Low Price 0\n", + "High Price 0\n", + "Mostly Low 24\n", + "Mostly High 24\n", + "Origin 0\n", + "Origin District 396\n", + "Item Size 114\n", + "Color 145\n", + "Environment 415\n", + "Unit of Sale 404\n", + "Quality 415\n", + "Condition 415\n", + "Appearance 415\n", + "Storage 415\n", + "Crop 415\n", + "Repack 0\n", + "Trans Mode 415\n", + "Unnamed: 24 415\n", + "Unnamed: 25 391\n", + "dtype: int64" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Month Package Low Price High Price Price\n", + "70 9 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "71 9 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "72 10 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "73 10 1 1/9 bushel cartons 17.00 17.0 15.30\n", + "74 10 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "... ... ... ... ... ...\n", + "1738 9 1/2 bushel cartons 15.00 15.0 30.00\n", + "1739 9 1/2 bushel cartons 13.75 15.0 28.75\n", + "1740 9 1/2 bushel cartons 10.75 15.0 25.75\n", + "1741 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "1742 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "\n", + "[415 rows x 5 columns]\n" + ] + } + ], + "source": [ + "\n", + "# A set of new columns for a new dataframe. Filter out nonmatching columns\n", + "columns_to_select = ['Package', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Get an average between low and high price for the base pumpkin price\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "# Convert the date to its month only\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "\n", + "# Create a new dataframe with this basic data\n", + "new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price})\n", + "\n", + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9)\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2)\n", + "\n", + "print(new_pumpkins)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcXklEQVR4nO3dfZRcdZ3n8fdnKg80GbAJdLKkSQyTycnoEodoLQlGOXE0JiauZNiZFRbOoqPkuIddnWE3M7BwxmEOOcTJLOJZ96wbkBFHJjrjYGTFMWRRhlkXohUTCYoRkAh0kPQY4gO2Etrv/lG3YqW6bj3d7qrum8/rnD5d9btP3/u7v/p09a3bfRURmJlZfv1arwswM7OJ5aA3M8s5B72ZWc456M3Mcs5Bb2aWc9N6XUA9Z511VixcuLDXZZiZTRl79uz554gYqDdtUgb9woULKZVKvS7DzGzKkPT9tGk+dWNmlnMOejOznHPQm5nlnIPezCznHPRmZjnX9KobSXcAbwcOR8R5SdtW4F8DLwFPAu+OiKN1ll0LfAQoALdHxJbxK717Lr/tIb765JHjz1cums1dV104Zr7VtzzA44dfPP588ZxZ7LpmVTdKTLVj7xBbdx7g0NER5vX3sWnNEjYsG+xpTWbWXa28o/8EsLambRdwXkS8BvgucF3tQpIKwP8A3ga8GrhM0qszVdsDtSEP8NUnj3D5bQ+d0FYb8gCPH36R1bc8MNElptqxd4jr7t7P0NERAhg6OsJ1d+9nx96hntVkZt3XNOgj4kHgSE3bfRHxcvL0YeCcOoteADwREd+LiJeATwMXZ6y362pDPq29NuSbtXfD1p0HGDk2ekLbyLFRtu480KOKzKwXxuMc/R8A/1CnfRB4pur5s0lbXZI2SipJKg0PD49DWXbo6Ehb7WaWT5mCXtL1wMvAXVkLiYhtEVGMiOLAQN2/4rU2zevva6vdzPKp46CX9C7KH9JeHvVvUzUEzK96fk7SNqWsXDS7pfbFc2bVnS+tvRs2rVlC3/TCCW190wtsWrOkRxWZWS90FPTJ1TR/DLwjIn6WMtvXgcWSzpU0A7gUuKezMnvnrqsuHBPq9a662XXNqjGh3uurbjYsG+TmS5Yy2N+HgMH+Pm6+ZKmvujE7yajZPWMlbQdWAWcBzwMfpHyVzUzgh8lsD0fE+yTNo3wZ5bpk2XXArZQvr7wjIja3UlSxWAz/UzMzs9ZJ2hMRxbrTJuPNwR30ZmbtaRT0/stYM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzTYNe0h2SDkt6tKrt9yV9S9IvJdX9R/fJfAcl7Ze0T5LvJGJm1gOtvKP/BLC2pu1R4BLgwRaWf1NEnJ925xMzM5tY05rNEBEPSlpY0/YYgKQJKsvMzMbLRJ+jD+A+SXskbWw0o6SNkkqSSsPDwxNclpnZyWOig/4NEfFa4G3A1ZIuSpsxIrZFRDEiigMDAxNclpnZyWNCgz4ihpLvh4HPARdM5PbMzGysCQt6SbMknVZ5DLyV8oe4ZmbWRa1cXrkdeAhYIulZSe+R9LuSngUuBO6VtDOZd56kLyaLzgX+r6RvAl8D7o2IL03MbpiZWZpWrrq5LGXS5+rMewhYlzz+HvDbmaozM7PM/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznmt54RNIdwNuBwxFxXtL2+8CfAa8CLoiIUsqya4GPAAXg9ojYMk51j7Fj7xBbdx7g0NER5vX3sWnNEjYsG2x7PatveYDHD794/PniObN4avhFXo5fzTNN8MTN68csu/Dae8e0Hdwydr5qN+zYz/bdzzAaQUHisuXzuWnD0pZqbWWf6+3PrmtWtbR+K8tyjJZv3sXzP3np+PO5p81g9/WrgebjpdF2x2u8t6vR/jSTpR+b6VV/TBWKiMYzSBcBPwU+WRX0rwJ+Cfwv4L/UC3pJBeC7wGrgWeDrwGUR8e1mRRWLxSiV6v7sqGvH3iGuu3s/I8dGj7f1TS9w8yVL2zrYtaHYSG3Y13vRVqSF/Q079vOph58e037FigVNXwCt7HPa/jjsW5flGNWGYsXc02bUba84uGV9w+0WXzl7XMZ7uxrtT7Owz9KPzYzX63+qk7QnIor1pjU9dRMRDwJHatoei4gDTRa9AHgiIr4XES8BnwYubrHmtmzdeeCEgwwwcmyUrTublXiiVkMeOOEdfqe2736mrfZqrexz2v60s58nuyzHKC3MG4V8K9sdr/Heronan6x61R9TyUSeox8Eqo/is0lbXZI2SipJKg0PD7e1oUNHR9pqnyxGU36bSmuvNlX3earJcowmartT8dhPZD9Oxf7otknzYWxEbIuIYkQUBwYG2lp2Xn9fW+2TRUFqq73aVN3nqSbLMZqo7U7FYz+R/TgV+6PbJjLoh4D5Vc/PSdrG3aY1S+ibXjihrW96gU1rlrS1nsVzZrU877RxeJ1ftnx+W+3VWtnntP1pZz9PdlmO0dzTZrTV3up2x2u8t2ui9ierXvXHVDKRQf91YLGkcyXNAC4F7pmIDW1YNsjNlyxlsL8PAYP9fR19ELPrmlVjQnDxnFljQr3eVTdpH7g2uurmpg1LuWLFguPvagpSyx9OtbLPafvjD2Jbl+UY7b5+9ZgQrHxw2Wy8NNrueI33djXan2ay9GMzveqPqaSVq262A6uAs4DngQ9S/nD2vwMDwFFgX0SskTSP8mWU65Jl1wG3Ur688o6I2NxKUe1edWNmdrJrdNVN06DvBQe9mVl7Ml1eaWZmU5uD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnNNg17SHZIOS3q0qm22pF2SHk++n5Gy7KikfcnXhNxdyszMGmvlHf0ngLU1bdcC90fEYuD+5Hk9IxFxfvL1js7LNDOzTjUN+oh4kPKtA6tdDNyZPL4T2DC+ZZmZ2Xjp9Bz93Ih4Lnn8A2BuynynSCpJeljShkYrlLQxmbc0PDzcYVlmZlYr84exUb7pbNqNZ1+Z3MPw3wG3SlrUYD3bIqIYEcWBgYGsZZmZWaLToH9e0tkAyffD9WaKiKHk+/eAB4BlHW7PzMw61GnQ3wNcmTy+Evh87QySzpA0M3l8FrAS+HaH2zMzsw61cnnlduAhYImkZyW9B9gCrJb0OPCW5DmSipJuTxZ9FVCS9E3gK8CWiHDQm5l12bRmM0TEZSmT3lxn3hLw3uTx/wOWZqrOzMwy81/GmpnlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Oca3rjEQBJdwBvBw5HxHlJ22zgM8BC4CDwbyPihTrLXgnckDy9KSLuzF72WKtveYDHD794/PniObPYdc0qAHbsHWLrzgMcOjrCvP4+Nq1ZwoZlg22tr9bBLevHrDvtDun1TBM8cfN6Lr/tIb765JHj7SsXzeauqy5saR3LN+/i+Z+8dPz53NNmsPv61Q33o7pf8mThtfeOaasco6zLvuaDX+LHvxg9/vz0mQUeuXEt0HxsNVp3s+22u+xgf19LY/yGHfvZvvsZRiMoSFy2fD43bWjtHkHnXnvvCeNcwFPj1M/dcrK8Jqoponk8SboI+Cnwyaqg/wvgSERskXQtcEZE/EnNcrOBElAEAtgDvK7eD4RqxWIxSqVSyzuRFsqL58zi6jct5rq79zNy7Fcv1L7pBW6+ZGnqC6FZyFfc+s7zx6x7PLQS9rUhX1Ed9o36JU8Du16AVDQLkmbL1oZ8xekzC/z5hqUNx1ajdTdycMv6jpetV0e1G3bs51MPPz1m/itWLGga9rUhX9FK2Gc5RuMpz68JSXsiolhvWkunbiLiQeBITfPFQOXd+Z3AhjqLrgF2RcSRJNx3AWtb2WY70kL58cMvsnXngTFBPHJslK07D7S9vlr11j0eqt/hp6kX8rXtjfrFWlMv5CvtnYytbkmrY/vuZ+rOn9ZeLe0tYTu/yfbayfqayHKOfm5EPJc8/gEwt848g0D1CHo2aRtD0kZJJUml4eHhDGWd6NDRkbbax2PddnKYyLE1HurVMZryG3xau+XDuHwYG+XzP5lGSkRsi4hiRBQHBgbGoywA5vX3tdU+Huu2k8NEjq3xUK+OglR33rR2y4csQf+8pLMBku+H68wzBMyven5O0jauFs+Zldq+ac0S+qYXTmjvm15g05olba+vVr11j4eVi2Y3nWfuaTOatjfqF2vN6TPrH9/TZxY6GlvdklbHZcvn15k7vb1a2o+CqfQj4mR9TWQJ+nuAK5PHVwKfrzPPTuCtks6QdAbw1qRtXO26ZtWYA1X5cGXDskFuvmQpg/19iPKVCY0+iE1bX62DW9aPWXc7pqm8jtpQb/Wqm93Xrx4T9rVX3TTqlzxJ+zCvlQ/5mi37yI1rx4R95aqbZmOr0bqbbbeTZVsZ4zdtWMoVKxYcfwdfkFr6IBbKH7jWjvNWr7rJcozG08nymqjV6lU324FVwFnA88AHgR3A3wILgO9TvrzyiKQi8L6IeG+y7B8A/zVZ1eaI+Ktm22v3qhszs5Ndo6tuWgr6bnPQm5m1J/PllWZmNnU56M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczy7lMQS/pA5IelfQtSX9YZ/oqST+StC/5+tMs2zMzs/ZN63RBSecBVwEXAC8BX5L0hYh4ombWf4qIt2eo0czMMsjyjv5VwO6I+FlEvAz8I3DJ+JRlZmbjJUvQPwq8UdKZkk4F1gHz68x3oaRvSvoHSf8ybWWSNkoqSSoNDw9nKMvMzKp1fOomIh6T9CHgPuBFYB8wWjPbN4BXRsRPJa0DdgCLU9a3DdgG5ZuDd1qXmZmdKNOHsRHx8Yh4XURcBLwAfLdm+o8j4qfJ4y8C0yWdlWWbZmbWnqxX3cxJvi+gfH7+b2qm/wtJSh5fkGzvh1m2aWZm7en41E3i7yWdCRwDro6Io5LeBxARHwN+D/gPkl4GRoBLI8KnZczMuihT0EfEG+u0fazq8UeBj2bZhpmZZeO/jDUzyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcy/T96SR8ArgIE3BYRt9ZMF/ARyjcO/xnwroj4RpZtdssNO/azffczjEYgoHK3lILErBm/xo9/8avb4y6eM4td16zi8tse4qtPHmlp/QKe2rIeYMxyKxfN5q6rLgTgt67/Ij8f/dW9Wk4piO9sXgfA8s27eP4nLx2fNve0Gey+fvUJtVcM9vexac0SNiwbbHv/CxKXLZ/PTRuWtrTs6lse4PHDLx5/XukfgB17h9i68wCHjo4wr6qmTrbX6BhVlm9lvQuvvXfMug9uWV+3HwsSK37jDA7+cIRDR0c4dUaBn700StRst+I1H/zSCWPl9JkFHrlxbcPtVjQaF82WbaTRmGom7fhN9LJZNBsDjepqdAza1Wg7E9036vSGT5LOAz4NXAC8BHwJeF9EPFE1zzrgP1EO+uXARyJiebN1F4vFKJVKHdU1Hm7YsZ9PPfx0W8ucUtAJL55WCHj9otl1fzisXDSbPQdfqLvOUwriFadOPyHkW6mjb3qBmy9Z2nQApe3/FSsWNA3f2pCvWDxnFle/aTHX3b2fkWO/Cr6+6QVeu+AVdfug0fZaOUaL58yqW0v1eusFZlaV9deGfMXpMwt12ysOblmf+qZhZcp4qV62kdqQr2gl7HfsHap7/FoZU1mWzaLZWG5U19+Vnk49Bu2GfaPtAOPSN5L2RESx3rQsp25eBeyOiJ9FxMvAP1K+b2y1i4FPRtnDQL+kszNssyu2736m7WXaDXkovwNNe9F+9ckjqev8+WjUDflmdYwcG2XrzgNN60rb/1b6pV6wVtq37jxwwmCu1JTWB422l6WWTo5vOyrrTwvzRiFf0WhcZNFoTDWTdvxaGVNZls2i2VhuVNd4HoNG2+lG32QJ+keBN0o6U9KplN+1z6+ZZxCo7ulnk7YxJG2UVJJUGh4ezlBWdqM5vq3toaMjTedJ2/+s/dLKtlvdXpZaJvr45nX8pB2/Vo5rlmWzaDaWu1VXo+10o4aOgz4iHgM+BNxH+bTNPqD5W5X09W2LiGJEFAcGBjpdzbgoSD3d/kSa19/XdJ60/c/aL61su9XtZalloo9vXsdP2vFr5bhmWTaLZmO5W3U12k43ash01U1EfDwiXhcRFwEvAN+tmWWIE9/ln5O0TWqXLa/9xaS5Uwrtv7hF+XxfPSsXzU5d5ykFMfe0GW3X0Te9wKY1S5rWlbb/rfTL4jmzUts3rVlC3/TCmJrS+qDR9rLU0snxbUdl/afPLNSdntZerdG4yKLRmGom7fi1MqayLJtFs7HcqK7xPAaNttONvskU9JLmJN8XUD4//zc1s9wD/HuVrQB+FBHPZdlmN9y0YSlXrFhw/Kd+9UugII15oS6eM4vvbF7X1gCoXHVz11UXjlmu8mHPdzavG/MCrHxotvv61WPCfu5pM/jO5nUn1F4x2N/X8oc7tftfkFr6IBZg1zWrxgRs5aqbDcsGufmSpQz296Gqmu666sK2t9fsGF2xYgG7rlnVdL1pH14e3LK+bj8WJFYumn18H2bNKBzfdu36H7lx7ZixUrnqptF2gYbjotmyjTQaU82kHb9WxlSWZbNoNpYb1dXoGLSr0Xa60TcdX3UDIOmfgDOBY8A1EXG/pPcBRMTHkssrPwqspXx55bsjounlNL2+6sbMbKppdNVNpuvoI+KNddo+VvU4gKuzbMPMzLLxX8aameWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5zLeivBP5L0LUmPStou6ZSa6e+SNCxpX/L13mzlmplZuzoOekmDwPuBYkScBxSAS+vM+pmIOD/5ur3T7ZmZWWeynrqZBvRJmgacChzKXpKZmY2njoM+IoaAvwSeBp4DfhQR99WZ9d9IekTSZyXNT1ufpI2SSpJKw8PDnZZlZmY1spy6OQO4GDgXmAfMknRFzWz/G1gYEa8BdgF3pq0vIrZFRDEiigMDA52WZWZmNbKcunkL8FREDEfEMeBu4PXVM0TEDyPiF8nT24HXZdiemZl1IEvQPw2skHSqJAFvBh6rnkHS2VVP31E73czMJt60TheMiN2SPgt8A3gZ2Atsk/TnQCki7gHeL+kdyfQjwLuyl2xmZu1QRPS6hjGKxWKUSqVel2FmNmVI2hMRxXrT/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznOr7DFICkPwLeCwSwH3h3RPy8avpM4JOU7xX7Q+CdEXEwyzbzaMfeIbbuPMChoyPM6+9j05olbFg22HSaWSc8pk4+HQe9pEHg/cCrI2JE0t8ClwKfqJrtPcALEfGbki4FPgS8M0O9ubNj7xDX3b2fkWOjAAwdHeG6u/cfn542zS9M60Sj8eYxlV9ZT91MA/okTQNOBQ7VTL8YuDN5/FngzcmNxC2xdeeB4y+6ipFjo2zdeaDhNLNOeEydnDoO+ogYAv4SeBp4DvhRRNxXM9sg8Ewy/8vAj4Az661P0kZJJUml4eHhTsuacg4dHUltbzTNrBMeUyenjoNe0hmU37GfC8wDZkm6otP1RcS2iChGRHFgYKDT1Uw58/r7UtsbTTPrhMfUySnLqZu3AE9FxHBEHAPuBl5fM88QMB8gOb3zCsofylpi05ol9E0vnNDWN73ApjVLGk4z64TH1Mkpy1U3TwMrJJ0KjABvBko189wDXAk8BPwe8OWIiAzbzJ3KB2CNroLwFRI2XloZb5Y/ypK7km6kfBXNy8BeypdaXg+UIuIeSacAfw0sA44Al0bE95qtt1gsRqlU+zPDzMzSSNoTEcW60ybjG2wHvZlZexoFvf8y1sws5xz0ZmY556A3M8s5B72ZWc5Nyg9jJQ0D328y21nAP3ehnHZMxppgctblmlo3GeuajDXB5KyrWzW9MiLq/rXppAz6VkgqpX3C3CuTsSaYnHW5ptZNxromY00wOeuaDDX51I2ZWc456M3Mcm4qB/22XhdQx2SsCSZnXa6pdZOxrslYE0zOunpe05Q9R29mZq2Zyu/ozcysBQ56M7OcmxJBL+kOSYclPVrVNlvSLkmPJ9/PmAQ1/ZmkIUn7kq91Xa5pvqSvSPq2pG9J+kDS3rO+alBTr/vqFElfk/TNpK4bk/ZzJe2W9ISkz0iaMQlq+oSkp6r66vxu1VRVW0HSXklfSJ73rJ+a1NXTvpJ0UNL+ZNulpK2nWQVTJOgp33B8bU3btcD9EbEYuD953uuaAD4cEecnX1/sck0vA/85Il4NrACulvRqettXaTVBb/vqF8DvRMRvA+cDayWtoHwD+w9HxG8CL1C+wX2vawLYVNVX+7pYU8UHgMeqnveyn6rV1gW976s3JduuXDvf66yaGkEfEQ9S/n/21apvPH4nsGES1NRTEfFcRHwjefwTyi+AQXrYVw1q6qko+2nydHryFcDvUL6RPXS/r9Jq6ilJ5wDrgduT56KH/ZRW1yTW06yCKRL0KeZGxHPJ4x8Ac3tZTJX/KOmR5NRO139Fq5C0kPINX3YzSfqqpibocV8lv/bvAw4Du4AngaPJjewBnqXLP5Rqa4qISl9tTvrqw5JmdrMm4Fbgj4FfJs/PpMf9lFJXRS/7KoD7JO2RtDFp6/nrbyoH/XHJ7Ql7/s4H+J/AIsq/dj8H/LdeFCHp14G/B/4wIn5cPa1XfVWnpp73VUSMRsT5wDnABcBvdbuGWrU1SToPuI5ybf8KmA38SbfqkfR24HBE7OnWNlvRoK6e9VXiDRHxWuBtlE9TXlQ9sVevv6kc9M9LOhsg+X64x/UQEc8nL9RfArdRDo+ukjSdcqDeFRF3J8097at6NU2GvqqIiKPAV4ALgX6Vb2QP5bAd6nFNa5PTXxERvwD+iu721UrgHZIOAp+mfMrmI/S+n8bUJelTPe4rImIo+X4Y+Fyy/Z5n1VQO+sqNx0m+f76HtQDHD2LF7wKPps07QdsX8HHgsYi4pWpSz/oqraZJ0FcDkvqTx33AasqfH3yF8o3soft9Va+m71SFhCif3+1aX0XEdRFxTkQsBC4FvhwRl9PDfmpQ1xW97CtJsySdVnkMvDXZfu+zKiIm/RewnfKv98conw98D+XzhPcDjwP/B5g9CWr6a2A/8Ajlg3t2l2t6A+VfCx8B9iVf63rZVw1q6nVfvYbyDe0fofxi/NOk/TeArwFPAH8HzJwENX056atHgU8Bv97NvqqqbxXwhV73U5O6etZXSZ98M/n6FnB90t7TrIoI/wsEM7O8m8qnbszMrAUOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/N8s9l//aWz4AAAAASUVORK5CYII=", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "price = new_pumpkins.Price\n", + "month = new_pumpkins.Month\n", + "plt.scatter(price, month)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Pumpkin Price')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAARAElEQVR4nO3de5AlZX3G8e8joKigiIwbVNYVQ6ErwcVaiRW0CgUNikEQKxFTijHJahlUSsvUqknE/LVE0KoYNVkDigloNCoQLt5AxUuCLrrhIhqUQgMiLBGE0goR+OWP0+sMszOzZ8ft0zO830/VqTndfc7phwae6XlPX1JVSJLa8aChA0iSJsvil6TGWPyS1BiLX5IaY/FLUmMsfklqzK5DBxjHPvvsU6tWrRo6hiQtK1dcccVtVTU1e/6yKP5Vq1axadOmoWNI0rKS5IdzzXeoR5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYZXECl3auVesvHDoCN2w4eugIUrMsfjXNX4JqkUM9ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqTG/Fn2S/JF9M8p0k1yR5Yzf/lCQ3JdncPV7YVwZJ0rZ27fGz7wHeXFXfSrIncEWSz3fL3lNVp/W4bknSPHor/qq6Gbi5e35XkmuBx/W1PknSePrc4/+VJKuAQ4DLgcOAk5K8EtjE6K+C2yeRQ9L8Vq2/cOgI3LDh6KEjNKH3L3eT7AF8Eji5qu4EPgA8CVjD6C+C0+d537okm5Js2rJlS98xJakZvRZ/kt0Ylf7ZVfUpgKq6parurar7gA8Ch8713qraWFVrq2rt1NRUnzElqSl9HtUT4Azg2qp694z5+8542XHA1X1lkCRtq88x/sOAVwBXJdnczXsbcEKSNUABNwCv6TGDJGmWPo/q+SqQORZd1Nc6F+IXV5I04pm7ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JakxvxZ9kvyRfTPKdJNckeWM3f+8kn09yXffzUX1lkCRtq889/nuAN1fVauCZwJ8lWQ2sBy6pqgOAS7ppSdKE9Fb8VXVzVX2re34XcC3wOODFwFndy84Cju0rgyRpWxMZ40+yCjgEuBxYUVU3d4t+AqyY5z3rkmxKsmnLli2TiClJTei9+JPsAXwSOLmq7py5rKoKqLneV1Ubq2ptVa2dmprqO6YkNWOs4k/y0CQH7uiHJ9mNUemfXVWf6mbfkmTfbvm+wK07+rmSpMXbbvEn+T1gM/CZbnpNkvPHeF+AM4Brq+rdMxadD5zYPT8ROG8HM0uSfg3j7PGfAhwK3AFQVZuBJ47xvsOAVwDPTbK5e7wQ2AA8L8l1wJHdtCRpQnYd4zW/rKqfjXbgf2XOcfn7vaDqq0DmWXzEGOuVJPVgnOK/JsnLgV2SHAC8Afh6v7EkSX0ZZ6jn9cBTgbuBc4CfASf3mEmS1KPt7vFX1S+At3cPSdIyN85RPZ9PsteM6Ucl+WyvqSRJvRlnqGefqrpj60RV3Q48prdEkqRejVP89yVZuXUiyRMY46geSdLSNM5RPW8Hvprky4wOz3w2sK7XVJKk3ozz5e5nkjyd0aWVYXTNndv6jSVJ6su8Qz1Jntz9fDqwEvhx91jZzZMkLUML7fG/idGQzulzLCvgub0kkiT1at7ir6p1SR4E/EVVfW2CmSRJPVrwqJ6qug/4uwllkSRNwDiHc16S5PjMukqbJGl5Gqf4XwN8Arg7yZ1J7kpy5/beJElamsY5nHPPSQSRJE3GQodzHpDkvCRXJzknyeMmGUyS1I+FhnrOBC4Ajge+Dbx3IokkSb1aaKhnz6r6YPf8XUm+NYlAkqR+LVT8uyc5hOnbJz505nRV+YtAkpahhYr/ZuDdM6Z/MmPaM3claZla6Mzd50wyiCRpMsY5jl+S9ABi8UtSYyx+SWrMOHfgojt56wkzX19Vl/UVSpLUn+0Wf5JTgT8AvgPc280uwOKXpGVonD3+Y4EDq+runrNIkiZgnOK/HtgN2KHiT3Im8CLg1qo6qJt3CvCnwJbuZW+rqot25HMlqW+r1l84dARu2HB0b589TvH/Atic5BJmlH9VvWE77/swo5u4fGTW/PdU1Wk7ElKStPOMU/znd48dUlWXJVm1w4kkSb0a53r8Z+3kdZ6U5JXAJuDNVXX7XC9Kso7Rzd5ZuXLlTo4gSe1a6Hr8H+9+XpXkytmPRa7vA8CTgDWMrgV0+nwvrKqNVbW2qtZOTU0tcnWSpNkW2uN/Y/fzRTtrZVV1y9bnST7I6Hr/kqQJmnePv6pu7p6urqofznwAL1jMypLsO2PyOODqxXyOJGnxxvly9y+T3F1VlwIk+XPgOcDfL/SmJB8FDgf2SXIj8A7g8CRrGJ0AdgOjG7lLkiZonOI/BrggyVuAo4AnAy/e3puq6oQ5Zp+xY/EkSTvbOEf13JbkGOALwBXAS6uqek8mSerFvMWf5C5GQzJbPRjYH3hpkqqqR/QdTpK08y10B649JxlEkjQZ416W+SXAsxj9BfCVqjq3z1CSpP5s90YsSd4PvBa4itHhl69N8r6+g0mS+jHOHv9zgads/UI3yVnANb2mkiT1ZpxbL34fmHmxnP26eZKkZWicPf49gWuTfKObfgawKcn5AFV1TF/hJEk73zjF/1e9p5AkTcw4J3B9GSDJI7j/zdZ/2mMuSVJPxrnZ+jrgr4H/Be4Dwuiwzv37jSZJ6sM4Qz1vAQ6qqtv6DiNJ6t84R/X8gNF9dyVJDwDj7PG/Ffh6ksvZsZutS5KWoHGK/x+ASxmduXtfv3EkSX0bp/h3q6o39Z5EkjQR44zxX5xkXZJ9k+y99dF7MklSL8bZ4996J623zpjn4ZyStEyNcwLXEycRRJI0GeOcwPXKueZX1Ud2fhxJUt/GGep5xoznuwNHAN8CLH5JWobGGep5/czpJHsBH+srkCSpX+Mc1TPbzwHH/SVpmRpnjP/fGB3FA6NfFKuBj/cZSpLUn3HG+E+b8fwe4IdVdWNPeSRJPZu3+JPszugm67/J6HINZ1TVPZMKJknqx0Jj/GcBaxmV/guA0yeSSJLUq4WGelZX1W8BJDkD+MYCr91GkjOBFwG3VtVB3by9gX8BVgE3AL9fVbfveGxJ0mIttMf/y61PFjnE82HgqFnz1gOXVNUBwCXdtCRpghYq/qclubN73AUcvPV5kju398FVdRkw+768L2Y0hET389jFhJYkLd68Qz1VtUsP61tRVTd3z38CrOhhHZKkBSzmBK6doqqK6fMDttFdCnpTkk1btmyZYDJJemCbdPHfkmRfgO7nrfO9sKo2VtXaqlo7NTU1sYCS9EA36eI/Hzixe34icN6E1y9Jzeut+JN8FPh34MAkNyb5Y2AD8Lwk1wFHdtOSpAka55INi1JVJ8yz6Ii+1ilJ2r7BvtyVJA3D4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYXYdYaZIbgLuAe4F7qmrtEDkkqUWDFH/nOVV124Drl6QmOdQjSY0ZqvgL+FySK5KsGyiDJDVpqKGeZ1XVTUkeA3w+yXer6rKZL+h+IawDWLly5RAZJekBaZA9/qq6qft5K/Bp4NA5XrOxqtZW1dqpqalJR5SkB6yJF3+ShyfZc+tz4PnA1ZPOIUmtGmKoZwXw6SRb139OVX1mgByS1KSJF39VXQ88bdLrlSSNeDinJDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGjNI8Sc5Ksn3knw/yfohMkhSqyZe/El2Ad4HvABYDZyQZPWkc0hSq4bY4z8U+H5VXV9V/wd8DHjxADkkqUmpqsmuMHkpcFRV/Uk3/Qrgt6vqpFmvWwes6yYPBL430aDb2ge4beAMS4XbYprbYprbYtpS2RZPqKqp2TN3HSLJOKpqI7Bx6BxbJdlUVWuHzrEUuC2muS2muS2mLfVtMcRQz03AfjOmH9/NkyRNwBDF/03ggCRPTPJg4GXA+QPkkKQmTXyop6ruSXIS8FlgF+DMqrpm0jkWYckMOy0BbotpbotpbotpS3pbTPzLXUnSsDxzV5IaY/FLUmMsfklqzJI9jn9IM442+nFVfSHJy4HfAa4FNlbVLwcNOGFJ9gdewugw3HuB/wLOqao7Bw0maVH8cncOSc5m9EvxYcAdwB7Ap4AjGG2zE4dLN1lJ3gC8CLgMeCHwbUbb5DjgdVX1pcHCSVoUi38OSa6sqoOT7Mro5LLHVtW9SQL8Z1UdPHDEiUlyFbCm++d/GHBRVR2eZCVwXlUdMnDEiUnySOCtwLHAY4ACbgXOAzZU1R2DhVtCklxcVS8YOsekJHkEo/8uHg9cXFXnzFj2/qp63WDh5uFQz9we1A33PJzRXv8jgZ8CDwF2GzLYQHZlNMTzEEZ//VBVP0rS2rb4OHApcHhV/QQgyW8AJ3bLnj9gtolK8vT5FgFrJhhlKfgQcB3wSeDVSY4HXl5VdwPPHDTZPCz+uZ0BfJfRCWZvBz6R5HpG/xI/NmSwAfwj8M0klwPPBk4FSDLF6JdhS1ZV1akzZ3S/AE5N8uqBMg3lm8CXGRX9bHtNNsrgnlRVx3fPz03yduDSJMcMGWohDvXMI8ljAarqx0n2Ao4EflRV3xg02ACSPBV4CnB1VX136DxDSfI54AvAWVV1SzdvBfAq4HlVdeSA8SYqydXAcVV13RzL/ruq9pvjbQ9ISa4FnlpV982Y9yrgLcAeVfWEobLNx+KXxpTkUcB6RvePeEw3+xZG15raUFW3D5Vt0rrLq19VVdtcLj3JsVV17uRTDSPJ3wCfq6ovzJp/FPDeqjpgmGTzs/ilnSDJH1XVh4bOsRS4LaYt1W1h8Us7QZIfVdXKoXMsBW6LaUt1W/jlrjSmJFfOtwhYMcksQ3NbTFuO28Lil8a3AvhdYPZYfoCvTz7OoNwW05bdtrD4pfFdwOgojc2zFyT50sTTDMttMW3ZbQvH+CWpMV6dU5IaY/FLUmMsfglIUkn+ecb0rkm2JLlgkZ+3V5LXzZg+fLGfJe1sFr808nPgoCQP7aafx+jKrIu1F7DkrsoogcUvzXQRcHT3/ATgo1sXJNk7yblJrkzyH0kO7uafkuTMJF9Kcn13/wKADcCTkmxO8q5u3h5J/jXJd5Oc3V3mW5o4i1+a9jHgZUl2Bw4GLp+x7J3At7t7MbwN+MiMZU9mdBz3ocA7ustVrwd+UFVrquot3esOAU4GVgP7A4f1+M8izcvilzpVdSWwitHe/kWzFj8L+KfudZcCj+5uwAFwYVXdXVW3Mboxy3xna36jqm7sruK4uVuXNHGewCXd3/nAacDhwKPHfM/dM57fy/z/X437OqlX7vFL93cm8M6qumrW/K8AfwijI3SA27Zzs/m7gD37CCj9utzjkGaoqhuBv51j0SnAmd0FuX7B6HaLC33O/yT5WnfDkouBC3d2VmmxvGSDJDXGoR5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSY/4fZDFW+b6+4WkAAAAASUVORK5CYII=", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar')\n", + "plt.ylabel(\"Pumpkin Price\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "95726f0b8283628d5356a4f8eb8b4b76", + "translation_date": "2025-09-04T01:36:37+00:00", + "source_file": "2-Regression/2-Data/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ko/2-Regression/3-Linear/README.md b/translations/ko/2-Regression/3-Linear/README.md new file mode 100644 index 000000000..a883fd16a --- /dev/null +++ b/translations/ko/2-Regression/3-Linear/README.md @@ -0,0 +1,381 @@ + +# Scikit-learn을 사용하여 회귀 모델 구축: 네 가지 방법으로 회귀 분석하기 + +![선형 회귀 vs 다항 회귀 인포그래픽](../../../../translated_images/linear-polynomial.5523c7cb6576ccab0fecbd0e3505986eb2d191d9378e785f82befcf3a578a6e7.ko.png) +> 인포그래픽 제작: [Dasani Madipalli](https://twitter.com/dasani_decoded) +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/13/) + +> ### [이 강의는 R에서도 제공됩니다!](../../../../2-Regression/3-Linear/solution/R/lesson_3.html) +### 소개 + +지금까지 호박 가격 데이터셋을 사용하여 회귀 분석이 무엇인지 탐구하고, Matplotlib을 사용하여 시각화하는 방법을 배웠습니다. + +이제 머신러닝을 위한 회귀 분석을 더 깊이 탐구할 준비가 되었습니다. 시각화를 통해 데이터를 이해할 수 있지만, 머신러닝의 진정한 힘은 _모델 훈련_에서 나옵니다. 모델은 과거 데이터를 기반으로 데이터 간의 의존성을 자동으로 포착하며, 이전에 본 적 없는 새로운 데이터에 대한 결과를 예측할 수 있습니다. + +이번 강의에서는 두 가지 유형의 회귀 분석, 즉 _기본 선형 회귀_와 _다항 회귀_에 대해 배우고, 이러한 기술의 수학적 기초를 살펴볼 것입니다. 이러한 모델을 사용하여 다양한 입력 데이터를 기반으로 호박 가격을 예측할 수 있습니다. + +[![초보자를 위한 머신러닝 - 선형 회귀 이해하기](https://img.youtube.com/vi/CRxFT8oTDMg/0.jpg)](https://youtu.be/CRxFT8oTDMg "초보자를 위한 머신러닝 - 선형 회귀 이해하기") + +> 🎥 위 이미지를 클릭하면 선형 회귀에 대한 짧은 영상 개요를 볼 수 있습니다. + +> 이 커리큘럼에서는 수학에 대한 최소한의 지식을 가정하며, 다른 분야에서 온 학생들이 이해할 수 있도록 접근성을 높이기 위해 노트, 🧮 수학 팁, 다이어그램 및 기타 학습 도구를 제공합니다. + +### 사전 요구사항 + +이제 우리가 분석할 호박 데이터의 구조에 익숙해졌을 것입니다. 이 강의의 _notebook.ipynb_ 파일에서 미리 로드되고 정리된 데이터를 찾을 수 있습니다. 이 파일에서는 호박 가격이 새로운 데이터 프레임에서 부셸당 표시됩니다. Visual Studio Code의 커널에서 이 노트북을 실행할 수 있는지 확인하세요. + +### 준비 + +데이터를 로드하는 이유는 질문을 던지기 위함입니다. + +- 호박을 구매하기 가장 좋은 시기는 언제인가요? +- 미니어처 호박 한 상자의 가격은 얼마일까요? +- 반 부셸 바구니로 구매하는 것이 좋을까요, 아니면 1 1/9 부셸 상자로 구매하는 것이 좋을까요? +이 데이터를 계속 탐구해 봅시다. + +이전 강의에서는 Pandas 데이터 프레임을 생성하고 원본 데이터셋의 일부를 표준화하여 부셸당 가격을 계산했습니다. 그러나 그렇게 함으로써 약 400개의 데이터 포인트만 얻을 수 있었고, 가을철 데이터만 포함되었습니다. + +이번 강의의 노트북에 미리 로드된 데이터를 살펴보세요. 데이터는 미리 로드되어 있으며, 초기 산점도가 월별 데이터를 보여주도록 차트화되어 있습니다. 데이터를 더 정리하면 데이터의 특성을 조금 더 자세히 알 수 있을지도 모릅니다. + +## 선형 회귀선 + +1강에서 배운 것처럼, 선형 회귀 분석의 목표는 다음을 가능하게 하는 선을 그리는 것입니다: + +- **변수 관계를 보여주기**. 변수 간의 관계를 보여줍니다. +- **예측하기**. 새로운 데이터 포인트가 이 선과의 관계에서 어디에 위치할지 정확히 예측합니다. + +**최소 제곱 회귀**는 이러한 유형의 선을 그리는 데 일반적으로 사용됩니다. '최소 제곱'이라는 용어는 회귀선 주변의 모든 데이터 포인트를 제곱한 다음 합산한다는 것을 의미합니다. 이상적으로는 최종 합계가 가능한 한 작아야 합니다. 이는 오류가 적다는 것을 의미하며, 즉 `최소 제곱`을 원합니다. + +우리는 데이터 포인트와 선 사이의 누적 거리가 가장 적은 선을 모델링하고자 합니다. 또한 방향보다는 크기에 관심이 있기 때문에 항목을 제곱한 후 합산합니다. + +> **🧮 수학을 보여주세요** +> +> 이 선은 _최적의 적합선_이라고 하며, [다음 방정식](https://en.wikipedia.org/wiki/Simple_linear_regression)으로 표현할 수 있습니다: +> +> ``` +> Y = a + bX +> ``` +> +> `X`는 '설명 변수'이고, `Y`는 '종속 변수'입니다. 선의 기울기는 `b`이고, `a`는 y절편으로, 이는 `X = 0`일 때 `Y`의 값을 나타냅니다. +> +>![기울기 계산](../../../../translated_images/slope.f3c9d5910ddbfcf9096eb5564254ba22c9a32d7acd7694cab905d29ad8261db3.ko.png) +> +> 먼저 기울기 `b`를 계산합니다. 인포그래픽 제작: [Jen Looper](https://twitter.com/jenlooper) +> +> 즉, 호박 데이터의 원래 질문인 "월별로 부셸당 호박 가격을 예측한다"를 참조하면, `X`는 가격을 나타내고 `Y`는 판매 월을 나타냅니다. +> +>![방정식 완성](../../../../translated_images/calculation.a209813050a1ddb141cdc4bc56f3af31e67157ed499e16a2ecf9837542704c94.ko.png) +> +> `Y` 값을 계산합니다. 약 $4를 지불하고 있다면, 아마도 4월일 것입니다! 인포그래픽 제작: [Jen Looper](https://twitter.com/jenlooper) +> +> 선의 기울기를 계산하는 수학은 y절편, 즉 `X = 0`일 때 `Y`의 위치에 따라 달라집니다. +> +> 이러한 값의 계산 방법은 [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html) 웹사이트에서 확인할 수 있습니다. 또한 [최소 제곱 계산기](https://www.mathsisfun.com/data/least-squares-calculator.html)를 방문하여 숫자 값이 선에 어떤 영향을 미치는지 확인하세요. + +## 상관관계 + +이해해야 할 또 다른 용어는 주어진 X와 Y 변수 간의 **상관 계수**입니다. 산점도를 사용하면 이 계수를 빠르게 시각화할 수 있습니다. 데이터 포인트가 깔끔한 선으로 흩어져 있는 플롯은 높은 상관관계를 가지며, 데이터 포인트가 X와 Y 사이에 무작위로 흩어져 있는 플롯은 낮은 상관관계를 가집니다. + +좋은 선형 회귀 모델은 높은 상관 계수(0보다 1에 가까운 값)를 가지며, 최소 제곱 회귀 방법과 회귀선을 사용합니다. + +✅ 이번 강의의 노트북을 실행하고 월별 가격 산점도를 확인하세요. 호박 판매의 월별 가격 데이터는 산점도를 시각적으로 해석했을 때 높은 상관관계를 가지는 것처럼 보이나요? `Month` 대신 더 세분화된 측정값(예: *연도의 일수*, 즉 연초부터의 일수)을 사용하면 결과가 달라지나요? + +아래 코드에서는 데이터를 정리하고 `new_pumpkins`라는 데이터 프레임을 얻었다고 가정합니다. 데이터는 다음과 비슷합니다: + +ID | Month | DayOfYear | Variety | City | Package | Low Price | High Price | Price +---|-------|-----------|---------|------|---------|-----------|------------|------- +70 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364 +71 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636 +72 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636 +73 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 17.0 | 17.0 | 15.454545 +74 | 10 | 281 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364 + +> 데이터를 정리하는 코드는 [`notebook.ipynb`](notebook.ipynb)에 있습니다. 이전 강의와 동일한 정리 단계를 수행했으며, 다음 표현식을 사용하여 `DayOfYear` 열을 계산했습니다: + +```python +day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days) +``` + +이제 선형 회귀의 수학적 기초를 이해했으니, 호박 패키지 중 가장 좋은 가격을 가진 패키지를 예측할 수 있는 회귀 모델을 만들어 봅시다. 휴일 호박 패치를 위해 호박을 구매하려는 사람은 패치에 최적화된 호박 패키지를 구매하기 위해 이 정보를 원할 수 있습니다. + +## 상관관계 찾기 + +[![초보자를 위한 머신러닝 - 상관관계 찾기: 선형 회귀의 핵심](https://img.youtube.com/vi/uoRq-lW2eQo/0.jpg)](https://youtu.be/uoRq-lW2eQo "초보자를 위한 머신러닝 - 상관관계 찾기: 선형 회귀의 핵심") + +> 🎥 위 이미지를 클릭하면 상관관계에 대한 짧은 영상 개요를 볼 수 있습니다. + +이전 강의에서 월별 평균 가격이 다음과 같다는 것을 보았을 것입니다: + +월별 평균 가격 + +이는 상관관계가 있을 가능성을 시사하며, `Month`와 `Price` 또는 `DayOfYear`와 `Price` 간의 관계를 예측하기 위해 선형 회귀 모델을 훈련시킬 수 있습니다. 아래는 후자의 관계를 보여주는 산점도입니다: + +가격 vs 연도의 일수 산점도 + +`corr` 함수를 사용하여 상관관계를 확인해 봅시다: + +```python +print(new_pumpkins['Month'].corr(new_pumpkins['Price'])) +print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price'])) +``` + +상관관계는 `Month` 기준으로 -0.15, `DayOfYear` 기준으로 -0.17로 비교적 낮아 보이지만, 다른 중요한 관계가 있을 수 있습니다. 가격이 호박 품종에 따라 다른 클러스터로 나뉘는 것처럼 보입니다. 이 가설을 확인하기 위해 각 호박 카테고리를 다른 색상으로 표시해 봅시다. `scatter` 플롯 함수에 `ax` 매개변수를 전달하여 모든 포인트를 동일한 그래프에 표시할 수 있습니다: + +```python +ax=None +colors = ['red','blue','green','yellow'] +for i,var in enumerate(new_pumpkins['Variety'].unique()): + df = new_pumpkins[new_pumpkins['Variety']==var] + ax = df.plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var) +``` + +가격 vs 연도의 일수 산점도 + +우리의 조사 결과는 판매 날짜보다 품종이 전체 가격에 더 큰 영향을 미친다는 것을 시사합니다. 이를 막대 그래프로 확인할 수 있습니다: + +```python +new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar') +``` + +품종별 가격 막대 그래프 + +잠시 동안 '파이 타입'이라는 하나의 호박 품종에만 집중하여 날짜가 가격에 미치는 영향을 살펴봅시다: + +```python +pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE'] +pie_pumpkins.plot.scatter('DayOfYear','Price') +``` +가격 vs 연도의 일수 산점도 + +이제 `corr` 함수를 사용하여 `Price`와 `DayOfYear` 간의 상관관계를 계산하면 약 `-0.27` 정도가 나옵니다. 이는 예측 모델을 훈련시키는 것이 의미가 있다는 것을 나타냅니다. + +> 선형 회귀 모델을 훈련시키기 전에 데이터가 깨끗한지 확인하는 것이 중요합니다. 선형 회귀는 결측값과 잘 작동하지 않으므로 모든 빈 셀을 제거하는 것이 좋습니다: + +```python +pie_pumpkins.dropna(inplace=True) +pie_pumpkins.info() +``` + +또 다른 접근법은 빈 값을 해당 열의 평균 값으로 채우는 것입니다. + +## 간단한 선형 회귀 + +[![초보자를 위한 머신러닝 - Scikit-learn을 사용한 선형 및 다항 회귀](https://img.youtube.com/vi/e4c_UP2fSjg/0.jpg)](https://youtu.be/e4c_UP2fSjg "초보자를 위한 머신러닝 - Scikit-learn을 사용한 선형 및 다항 회귀") + +> 🎥 위 이미지를 클릭하면 선형 및 다항 회귀에 대한 짧은 영상 개요를 볼 수 있습니다. + +선형 회귀 모델을 훈련시키기 위해 **Scikit-learn** 라이브러리를 사용할 것입니다. + +```python +from sklearn.linear_model import LinearRegression +from sklearn.metrics import mean_squared_error +from sklearn.model_selection import train_test_split +``` + +먼저 입력 값(특징)과 예상 출력(레이블)을 별도의 numpy 배열로 분리합니다: + +```python +X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1) +y = pie_pumpkins['Price'] +``` + +> 입력 데이터를 Linear Regression 패키지가 올바르게 이해할 수 있도록 `reshape`를 수행해야 했다는 점에 유의하세요. 선형 회귀는 2D 배열을 입력으로 기대하며, 배열의 각 행은 입력 특징 벡터에 해당합니다. 우리의 경우 입력이 하나뿐이므로 데이터셋 크기 N×1의 배열이 필요합니다. + +그런 다음 데이터를 훈련 및 테스트 데이터셋으로 분리하여 훈련 후 모델을 검증할 수 있도록 합니다: + +```python +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) +``` + +마지막으로 실제 선형 회귀 모델을 훈련시키는 데는 코드 두 줄만 필요합니다. `LinearRegression` 객체를 정의하고 `fit` 메서드를 사용하여 데이터를 적용합니다: + +```python +lin_reg = LinearRegression() +lin_reg.fit(X_train,y_train) +``` + +`fit`이 완료된 후 `LinearRegression` 객체는 회귀의 모든 계수를 포함하며, `.coef_` 속성을 사용하여 접근할 수 있습니다. 우리의 경우 계수는 하나뿐이며, 약 `-0.017` 정도일 것입니다. 이는 시간이 지남에 따라 가격이 약간 하락하는 경향이 있음을 나타내며, 하루에 약 2센트 정도입니다. 회귀가 Y축과 교차하는 지점을 `lin_reg.intercept_`를 사용하여 접근할 수 있으며, 우리의 경우 약 `21` 정도로, 연초의 가격을 나타냅니다. + +모델의 정확성을 확인하려면 테스트 데이터셋에서 가격을 예측한 다음, 예측 값과 예상 값이 얼마나 가까운지 측정할 수 있습니다. 이는 평균 제곱 오차(MSE) 메트릭을 사용하여 수행할 수 있으며, 이는 예상 값과 예측 값 간의 모든 제곱 차이의 평균입니다. + +```python +pred = lin_reg.predict(X_test) + +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') +``` +우리의 오류는 약 2개의 포인트에서 발생하는 것으로 보이며, 이는 약 17%입니다. 그다지 좋지 않은 결과입니다. 모델 품질의 또 다른 지표는 **결정 계수**로, 다음과 같이 얻을 수 있습니다: + +```python +score = lin_reg.score(X_train,y_train) +print('Model determination: ', score) +``` +값이 0이면 모델이 입력 데이터를 고려하지 않고, 단순히 결과의 평균값을 예측하는 *최악의 선형 예측기*로 작동한다는 것을 의미합니다. 값이 1이면 모든 예상 출력값을 완벽하게 예측할 수 있음을 나타냅니다. 우리의 경우, 결정 계수는 약 0.06으로 매우 낮습니다. + +또한 테스트 데이터를 회귀선과 함께 플롯하여 우리의 경우 회귀가 어떻게 작동하는지 더 잘 볼 수 있습니다: + +```python +plt.scatter(X_test,y_test) +plt.plot(X_test,pred) +``` + +선형 회귀 + +## 다항 회귀 + +선형 회귀의 또 다른 유형은 다항 회귀입니다. 때로는 변수 간에 선형 관계가 있을 수 있습니다. 예를 들어, 호박의 부피가 클수록 가격이 높아지는 경우가 있습니다. 하지만 이러한 관계가 평면이나 직선으로 표현될 수 없는 경우도 있습니다. + +✅ [여기](https://online.stat.psu.edu/stat501/lesson/9/9.8)에서 다항 회귀를 사용할 수 있는 데이터의 몇 가지 예를 확인할 수 있습니다. + +날짜와 가격 간의 관계를 다시 살펴보세요. 이 산점도가 반드시 직선으로 분석되어야 할 것처럼 보이나요? 가격은 변동할 수 있지 않을까요? 이 경우, 다항 회귀를 시도해볼 수 있습니다. + +✅ 다항식은 하나 이상의 변수와 계수를 포함할 수 있는 수학적 표현입니다. + +다항 회귀는 곡선을 생성하여 비선형 데이터를 더 잘 맞춥니다. 우리의 경우, 입력 데이터에 `DayOfYear` 변수의 제곱을 포함하면, 연중 특정 지점에서 최소값을 가지는 포물선 곡선으로 데이터를 맞출 수 있습니다. + +Scikit-learn에는 데이터 처리의 여러 단계를 결합할 수 있는 유용한 [파이프라인 API](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html?highlight=pipeline#sklearn.pipeline.make_pipeline)가 포함되어 있습니다. **파이프라인**은 **추정기**의 체인입니다. 우리의 경우, 먼저 모델에 다항식 특성을 추가한 다음 회귀를 학습시키는 파이프라인을 생성할 것입니다: + +```python +from sklearn.preprocessing import PolynomialFeatures +from sklearn.pipeline import make_pipeline + +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) + +pipeline.fit(X_train,y_train) +``` + +`PolynomialFeatures(2)`를 사용하면 입력 데이터에서 모든 2차 다항식을 포함하게 됩니다. 우리의 경우, 이는 단순히 `DayOfYear`2를 의미하지만, 두 개의 입력 변수 X와 Y가 주어지면 X2, XY, Y2를 추가합니다. 더 높은 차수의 다항식을 사용하고 싶다면 사용할 수도 있습니다. + +파이프라인은 원래의 `LinearRegression` 객체와 동일한 방식으로 사용할 수 있습니다. 즉, 파이프라인을 `fit`하고, `predict`를 사용하여 예측 결과를 얻을 수 있습니다. 아래는 테스트 데이터와 근사 곡선을 보여주는 그래프입니다: + +다항 회귀 + +다항 회귀를 사용하면 약간 낮은 MSE와 약간 높은 결정 계수를 얻을 수 있지만, 큰 차이는 없습니다. 다른 특성을 고려해야 합니다! + +> 최소 호박 가격이 할로윈 즈음에 관찰되는 것을 볼 수 있습니다. 이를 어떻게 설명할 수 있을까요? + +🎃 축하합니다! 파이 호박의 가격을 예측하는 데 도움이 되는 모델을 만들었습니다. 아마도 모든 호박 종류에 대해 동일한 절차를 반복할 수 있겠지만, 이는 번거로울 것입니다. 이제 모델에서 호박 종류를 고려하는 방법을 배워봅시다! + +## 범주형 특성 + +이상적인 상황에서는 동일한 모델을 사용하여 다양한 호박 종류의 가격을 예측할 수 있기를 원합니다. 그러나 `Variety` 열은 `Month`와 같은 열과는 다릅니다. 이 열은 숫자가 아닌 값을 포함하고 있습니다. 이러한 열을 **범주형**이라고 합니다. + +[![초보자를 위한 ML - 선형 회귀를 사용한 범주형 특성 예측](https://img.youtube.com/vi/DYGliioIAE0/0.jpg)](https://youtu.be/DYGliioIAE0 "초보자를 위한 ML - 선형 회귀를 사용한 범주형 특성 예측") + +> 🎥 위 이미지를 클릭하면 범주형 특성을 사용하는 짧은 비디오 개요를 볼 수 있습니다. + +여기에서 평균 가격이 종류에 따라 어떻게 달라지는지 확인할 수 있습니다: + +종류별 평균 가격 + +종류를 고려하려면 먼저 이를 숫자 형태로 변환하거나 **인코딩**해야 합니다. 이를 수행하는 방법은 여러 가지가 있습니다: + +* 간단한 **숫자 인코딩**은 다양한 종류의 테이블을 생성한 다음, 종류 이름을 해당 테이블의 인덱스로 대체합니다. 이는 선형 회귀에 가장 좋은 방법은 아닙니다. 선형 회귀는 인덱스의 실제 숫자 값을 가져와 결과에 추가하고 특정 계수를 곱하기 때문입니다. 우리의 경우, 인덱스 번호와 가격 간의 관계는 명확히 비선형적이며, 특정 방식으로 인덱스를 정렬하더라도 마찬가지입니다. +* **원-핫 인코딩**은 `Variety` 열을 각 종류에 대해 4개의 다른 열로 대체합니다. 각 열은 해당 행이 특정 종류인 경우 `1`을 포함하고, 그렇지 않은 경우 `0`을 포함합니다. 이는 선형 회귀에서 각 호박 종류에 대해 "시작 가격"(혹은 "추가 가격")을 담당하는 4개의 계수를 생성합니다. + +아래 코드는 종류를 원-핫 인코딩하는 방법을 보여줍니다: + +```python +pd.get_dummies(new_pumpkins['Variety']) +``` + + ID | FAIRYTALE | MINIATURE | MIXED HEIRLOOM VARIETIES | PIE TYPE +----|-----------|-----------|--------------------------|---------- +70 | 0 | 0 | 0 | 1 +71 | 0 | 0 | 0 | 1 +... | ... | ... | ... | ... +1738 | 0 | 1 | 0 | 0 +1739 | 0 | 1 | 0 | 0 +1740 | 0 | 1 | 0 | 0 +1741 | 0 | 1 | 0 | 0 +1742 | 0 | 1 | 0 | 0 + +원-핫 인코딩된 종류를 입력으로 사용하여 선형 회귀를 학습시키려면, `X`와 `y` 데이터를 올바르게 초기화하기만 하면 됩니다: + +```python +X = pd.get_dummies(new_pumpkins['Variety']) +y = new_pumpkins['Price'] +``` + +나머지 코드는 위에서 선형 회귀를 학습시키는 데 사용한 코드와 동일합니다. 이를 시도해보면 평균 제곱 오차는 거의 동일하지만, 결정 계수가 훨씬 높아진다는 것을 알 수 있습니다(~77%). 더 정확한 예측을 위해서는 `Month`나 `DayOfYear`와 같은 숫자 특성을 포함하여 더 많은 범주형 특성을 고려할 수 있습니다. 하나의 큰 특성 배열을 얻으려면 `join`을 사용할 수 있습니다: + +```python +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] +``` + +여기에서는 `City`와 `Package` 유형도 고려하여 MSE 2.84(10%)와 결정 계수 0.94를 얻습니다! + +## 모든 것을 종합하기 + +최상의 모델을 만들기 위해 위의 예에서 다항 회귀와 함께 결합된 (원-핫 인코딩된 범주형 + 숫자형) 데이터를 사용할 수 있습니다. 아래는 편의를 위해 전체 코드입니다: + +```python +# set up training data +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] + +# make train-test split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + +# setup and train the pipeline +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) +pipeline.fit(X_train,y_train) + +# predict results for test data +pred = pipeline.predict(X_test) + +# calculate MSE and determination +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') + +score = pipeline.score(X_train,y_train) +print('Model determination: ', score) +``` + +이를 통해 거의 97%의 결정 계수와 MSE=2.23(~8% 예측 오류)을 얻을 수 있습니다. + +| 모델 | MSE | 결정 계수 | +|------|-----|-----------| +| `DayOfYear` 선형 | 2.77 (17.2%) | 0.07 | +| `DayOfYear` 다항 | 2.73 (17.0%) | 0.08 | +| `Variety` 선형 | 5.24 (19.7%) | 0.77 | +| 모든 특성 선형 | 2.84 (10.5%) | 0.94 | +| 모든 특성 다항 | 2.23 (8.25%) | 0.97 | + +🏆 잘하셨습니다! 한 수업에서 네 가지 회귀 모델을 만들고 모델 품질을 97%로 개선했습니다. 회귀에 대한 마지막 섹션에서는 범주를 결정하기 위한 로지스틱 회귀에 대해 배울 것입니다. + +--- + +## 🚀도전 과제 + +이 노트북에서 여러 변수를 테스트하여 상관관계가 모델 정확도와 어떻게 연결되는지 확인하세요. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/) + +## 복습 및 자기 학습 + +이 수업에서는 선형 회귀에 대해 배웠습니다. 다른 중요한 회귀 유형도 있습니다. Stepwise, Ridge, Lasso 및 Elasticnet 기법에 대해 읽어보세요. 더 많은 것을 배우기 위해 공부할 수 있는 좋은 과정은 [Stanford Statistical Learning course](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning)입니다. + +## 과제 + +[모델 만들기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/2-Regression/3-Linear/assignment.md b/translations/ko/2-Regression/3-Linear/assignment.md new file mode 100644 index 000000000..9761e2167 --- /dev/null +++ b/translations/ko/2-Regression/3-Linear/assignment.md @@ -0,0 +1,25 @@ + +# 회귀 모델 생성하기 + +## 지침 + +이 강의에서는 선형 회귀와 다항 회귀를 사용하여 모델을 구축하는 방법을 배웠습니다. 이 지식을 활용하여 데이터셋을 찾거나 Scikit-learn의 내장 데이터셋 중 하나를 사용하여 새로운 모델을 만들어 보세요. 왜 해당 기법을 선택했는지 노트북에서 설명하고, 모델의 정확도를 입증하세요. 만약 정확도가 낮다면 그 이유를 설명하세요. + +## 평가 기준 + +| 기준 | 우수한 사례 | 적절한 사례 | 개선이 필요한 사례 | +| --------- | ---------------------------------------------------------- | -------------------------- | ------------------------------- | +| | 완전한 노트북과 잘 문서화된 솔루션을 제시함 | 솔루션이 불완전함 | 솔루션에 결함이 있거나 버그가 있음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/2-Regression/3-Linear/notebook.ipynb b/translations/ko/2-Regression/3-Linear/notebook.ipynb new file mode 100644 index 000000000..6e0247907 --- /dev/null +++ b/translations/ko/2-Regression/3-Linear/notebook.ipynb @@ -0,0 +1,128 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 호박 가격 책정\n", + "\n", + "필요한 라이브러리와 데이터셋을 로드합니다. 데이터를 다음 조건에 맞는 데이터프레임으로 변환합니다:\n", + "\n", + "- 부셸 단위로 가격이 책정된 호박만 가져옵니다\n", + "- 날짜를 월로 변환합니다\n", + "- 높은 가격과 낮은 가격의 평균을 계산하여 가격을 산출합니다\n", + "- 가격을 부셸 수량 기준으로 변환합니다\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "기본 산점도는 우리가 8월부터 12월까지의 월별 데이터만 가지고 있음을 상기시켜줍니다. 결론을 선형적으로 도출하려면 아마도 더 많은 데이터가 필요할 것입니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.scatter('Month','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "plt.scatter('DayOfYear','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서(원어로 작성된 문서)를 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "b032d371c75279373507f003439a577e", + "translation_date": "2025-09-04T01:01:46+00:00", + "source_file": "2-Regression/3-Linear/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ko/2-Regression/3-Linear/solution/Julia/README.md b/translations/ko/2-Regression/3-Linear/solution/Julia/README.md new file mode 100644 index 000000000..a23d17437 --- /dev/null +++ b/translations/ko/2-Regression/3-Linear/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 신뢰할 수 있는 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb b/translations/ko/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb new file mode 100644 index 000000000..bf5451c27 --- /dev/null +++ b/translations/ko/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb @@ -0,0 +1,1086 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_3-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "5015d65d61ba75a223bfc56c273aa174", + "translation_date": "2025-09-04T01:10:16+00:00", + "source_file": "2-Regression/3-Linear/solution/R/lesson_3-R.ipynb", + "language_code": "ko" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "EgQw8osnsUV-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 호박 가격 책정을 위한 선형 및 다항 회귀 - 3강\n", + "

                                                    \n", + " \n", + "

                                                    다사니 마디팔리의 인포그래픽
                                                    \n", + "\n", + "\n", + "\n", + "\n", + "#### 소개\n", + "\n", + "지금까지 여러분은 이번 강의에서 사용할 호박 가격 데이터셋을 활용하여 회귀 분석이 무엇인지 탐구해 보았습니다. 또한, 이를 `ggplot2`를 사용해 시각화해 보았습니다. 💪\n", + "\n", + "이제 머신러닝을 위한 회귀 분석을 더 깊이 탐구할 준비가 되었습니다. 이번 강의에서는 *기본 선형 회귀*와 *다항 회귀*라는 두 가지 회귀 유형과 이 기술들에 기반한 일부 수학적 개념에 대해 배울 것입니다.\n", + "\n", + "> 이 커리큘럼 전반에 걸쳐, 우리는 수학에 대한 최소한의 지식을 가정하며, 다른 분야에서 온 학생들도 이해할 수 있도록 접근성을 높이고자 합니다. 따라서 주석, 🧮 참고 사항, 다이어그램 및 기타 학습 도구를 활용하여 이해를 돕고자 합니다.\n", + "\n", + "#### 준비\n", + "\n", + "다시 한 번 상기하자면, 이 데이터를 로드하는 이유는 질문을 던지고 답을 찾기 위함입니다.\n", + "\n", + "- 호박을 사기에 가장 좋은 시기는 언제일까요?\n", + "\n", + "- 미니어처 호박 한 상자의 예상 가격은 얼마일까요?\n", + "\n", + "- 반 버셸 바구니로 사는 것이 좋을까요, 아니면 1과 1/9 버셸 상자로 사는 것이 좋을까요? 이 데이터를 더 깊이 파헤쳐 봅시다.\n", + "\n", + "이전 강의에서, 여러분은 `tibble`(데이터 프레임의 현대적 재구성)을 생성하고, 원본 데이터셋의 일부를 활용하여 이를 채웠으며, 버셸 단위로 가격을 표준화했습니다. 하지만 그렇게 함으로써 약 400개의 데이터 포인트만 수집할 수 있었고, 그것도 가을철 데이터에 한정되었습니다. 데이터를 더 깨끗하게 정리하면 데이터의 성격에 대해 더 많은 세부 정보를 얻을 수 있을까요? 한번 알아봅시다... 🕵️‍♀️\n", + "\n", + "이 작업을 위해 다음 패키지가 필요합니다:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/)는 데이터 과학을 더 빠르고, 쉽고, 재미있게 만들어주는 [R 패키지 모음](https://www.tidyverse.org/packages)입니다!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 프레임워크는 모델링과 머신러닝을 위한 [패키지 모음](https://www.tidymodels.org/packages/)입니다.\n", + "\n", + "- `janitor`: [janitor 패키지](https://github.com/sfirke/janitor)는 더러운 데이터를 검사하고 정리하는 간단한 도구를 제공합니다.\n", + "\n", + "- `corrplot`: [corrplot 패키지](https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html)는 변수 간 숨겨진 패턴을 감지하는 데 도움을 주는 자동 변수 재정렬을 지원하는 상관 행렬 시각화 도구입니다.\n", + "\n", + "다음 명령어로 패키지를 설치할 수 있습니다:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"corrplot\"))`\n", + "\n", + "아래 스크립트는 이 모듈을 완료하는 데 필요한 패키지가 설치되어 있는지 확인하고, 누락된 경우 자동으로 설치합니다.\n" + ], + "metadata": { + "id": "WqQPS1OAsg3H" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, corrplot)" + ], + "outputs": [], + "metadata": { + "id": "tA4C2WN3skCf", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "c06cd805-5534-4edc-f72b-d0d1dab96ac0" + } + }, + { + "cell_type": "markdown", + "source": [ + "우리는 나중에 이 멋진 패키지들을 로드하여 현재 R 세션에서 사용할 수 있도록 만들 것입니다. (`pacman::p_load()` 함수가 이미 이 작업을 수행했으므로, 이는 단순한 예시일 뿐입니다.)\n", + "\n", + "## 1. 선형 회귀선\n", + "\n", + "Lesson 1에서 배운 것처럼, 선형 회귀의 목표는 *최적의 적합선*을 그리는 것입니다. 이를 통해:\n", + "\n", + "- **변수 간의 관계를 보여줍니다**. 변수들 간의 관계를 시각적으로 나타냅니다.\n", + "\n", + "- **예측을 수행합니다**. 새로운 데이터 포인트가 이 선과의 관계에서 어디에 위치할지 정확히 예측합니다.\n", + "\n", + "이러한 유형의 선을 그리기 위해 **최소제곱 회귀법(Least-Squares Regression)**이라는 통계 기법을 사용합니다. `최소제곱`이라는 용어는 회귀선을 둘러싼 모든 데이터 포인트의 거리를 제곱한 후 이를 합산하는 것을 의미합니다. 이상적으로는 이 최종 합계가 가능한 한 작아야 합니다. 왜냐하면 우리는 오류가 적은, 즉 `최소제곱`을 원하기 때문입니다. 따라서 최적의 적합선은 제곱된 오류 합계가 가장 낮은 값을 제공하는 선입니다. 이것이 *최소제곱 회귀법*이라는 이름의 유래입니다.\n", + "\n", + "우리는 데이터 포인트와 선 사이의 누적 거리가 가장 적은 선을 모델링하고자 합니다. 또한, 방향보다는 크기에 관심이 있기 때문에 합산하기 전에 각 항목을 제곱합니다.\n", + "\n", + "> **🧮 수학적으로 살펴보기**\n", + ">\n", + "> 이 선, 즉 *최적의 적합선*은 [다음 방정식](https://en.wikipedia.org/wiki/Simple_linear_regression)으로 표현됩니다:\n", + ">\n", + "> Y = a + bX\n", + ">\n", + "> `X`는 '`설명 변수` 또는 `예측 변수`'를 의미합니다. `Y`는 '`종속 변수` 또는 `결과 변수`'를 의미합니다. 선의 기울기는 `b`이고, `a`는 y절편으로, 이는 `X = 0`일 때의 `Y` 값을 나타냅니다.\n", + ">\n", + "\n", + "> ![](../../../../../../2-Regression/3-Linear/solution/images/slope.png \"기울기 = $y/x$\")\n", + " Jen Looper 제작 인포그래픽\n", + ">\n", + "> 먼저, 기울기 `b`를 계산합니다.\n", + ">\n", + "> 다시 말해, 우리의 호박 데이터의 원래 질문인 \"월별로 부셸당 호박 가격을 예측하라\"를 참조하면, `X`는 가격을, `Y`는 판매 월을 나타냅니다.\n", + ">\n", + "> ![](../../../../../../translated_images/calculation.989aa7822020d9d0ba9fc781f1ab5192f3421be86ebb88026528aef33c37b0d8.ko.png)\n", + " Jen Looper 제작 인포그래픽\n", + "> \n", + "> `Y` 값을 계산합니다. 만약 약 \\$4를 지불하고 있다면, 이는 4월일 것입니다!\n", + ">\n", + "> 이 선을 계산하는 수학은 선의 기울기를 보여주어야 하며, 이는 또한 절편, 즉 `X = 0`일 때 `Y`의 위치에 따라 달라집니다.\n", + ">\n", + "> 이러한 값들의 계산 방법은 [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html) 웹사이트에서 확인할 수 있습니다. 또한, [최소제곱 계산기](https://www.mathsisfun.com/data/least-squares-calculator.html)를 방문하여 숫자 값이 선에 어떤 영향을 미치는지 확인해 보세요.\n", + "\n", + "그렇게 무섭지 않죠? 🤓\n", + "\n", + "#### 상관관계\n", + "\n", + "이제 이해해야 할 또 다른 용어는 주어진 X와 Y 변수 간의 **상관계수(Correlation Coefficient)**입니다. 산점도를 사용하면 이 계수를 빠르게 시각화할 수 있습니다. 데이터 포인트가 깔끔한 선으로 흩어져 있는 플롯은 높은 상관관계를 가지지만, 데이터 포인트가 X와 Y 사이에 아무렇게나 흩어져 있는 플롯은 낮은 상관관계를 가집니다.\n", + "\n", + "좋은 선형 회귀 모델은 최소제곱 회귀법을 사용하여 회귀선을 그릴 때 상관계수가 높고(1에 가까운 값) 0에 가까운 값이 아닌 모델입니다.\n" + ], + "metadata": { + "id": "cdX5FRpvsoP5" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **2. 데이터와의 춤: 모델링에 사용할 데이터 프레임 생성하기**\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    @allison_horst의 작품
                                                    \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "WdUKXk7Bs8-V" + } + }, + { + "cell_type": "markdown", + "source": [ + "필요한 라이브러리와 데이터셋을 로드합니다. 데이터를 특정 부분만 포함하는 데이터 프레임으로 변환합니다:\n", + "\n", + "- 부셸 단위로 가격이 매겨진 호박만 가져옵니다.\n", + "\n", + "- 날짜를 월로 변환합니다.\n", + "\n", + "- 높은 가격과 낮은 가격의 평균을 계산하여 가격을 산출합니다.\n", + "\n", + "- 가격을 부셸 단위의 수량에 맞게 변환합니다.\n", + "\n", + "> 이러한 단계는 [이전 수업](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/2-Data/solution/lesson_2-R.ipynb)에서 다뤘습니다.\n" + ], + "metadata": { + "id": "fMCtu2G2s-p8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "library(lubridate)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "ryMVZEEPtERn" + } + }, + { + "cell_type": "markdown", + "source": [ + "순수한 모험 정신으로, 더러운 데이터를 조사하고 정리하는 간단한 기능을 제공하는 [`janitor 패키지`](../../../../../../2-Regression/3-Linear/solution/R/github.com/sfirke/janitor)를 탐구해 봅시다. 예를 들어, 우리의 데이터에 대한 열 이름을 살펴보겠습니다:\n" + ], + "metadata": { + "id": "xcNxM70EtJjb" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "5XtpaIigtPfW" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤔 우리는 더 잘할 수 있습니다. 이 열 이름들을 `janitor::clean_names`를 사용하여 [snake_case](https://en.wikipedia.org/wiki/Snake_case) 규칙으로 변환하여 `friendR`로 만들어 봅시다. 이 함수에 대해 더 알아보려면: `?clean_names`\n" + ], + "metadata": { + "id": "IbIqrMINtSHe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Clean names to the snake_case convention\n", + "pumpkins <- pumpkins %>% \n", + " clean_names(case = \"snake\")\n", + "\n", + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "a2uYvclYtWvX" + } + }, + { + "cell_type": "markdown", + "source": [ + "더 깔끔하게 정리하기 🧹! 이제 이전 강의에서처럼 `dplyr`을 사용해 데이터를 다뤄봅시다! 💃\n" + ], + "metadata": { + "id": "HfhnuzDDtaDd" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(variety, city_name, package, low_price, high_price, date)\n", + "\n", + "\n", + "\n", + "# Extract the month from the dates to a new column\n", + "pumpkins <- pumpkins %>%\n", + " mutate(date = mdy(date),\n", + " month = month(date)) %>% \n", + " select(-date)\n", + "\n", + "\n", + "\n", + "# Create a new column for average Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(price = (low_price + high_price)/2)\n", + "\n", + "\n", + "# Retain only pumpkins with the string \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(string = package, pattern = \"bushel\"))\n", + "\n", + "\n", + "# Normalize the pricing so that you show the pricing per bushel, not per 1 1/9 or 1/2 bushel\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(price = case_when(\n", + " str_detect(package, \"1 1/9\") ~ price/(1.1),\n", + " str_detect(package, \"1/2\") ~ price*2,\n", + " TRUE ~ price))\n", + "\n", + "# Relocate column positions\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(month, .before = variety)\n", + "\n", + "\n", + "# Display the first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "X0wU3gQvtd9f" + } + }, + { + "cell_type": "markdown", + "source": [ + "좋아요!👌 이제 새로운 회귀 모델을 구축할 수 있는 깔끔하고 정돈된 데이터 세트를 얻었습니다!\n", + "\n", + "산점도는 어떠신가요?\n" + ], + "metadata": { + "id": "UpaIwaxqth82" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set theme\n", + "theme_set(theme_light())\n", + "\n", + "# Make a scatter plot of month and price\n", + "new_pumpkins %>% \n", + " ggplot(mapping = aes(x = month, y = price)) +\n", + " geom_point(size = 1.6)\n" + ], + "outputs": [], + "metadata": { + "id": "DXgU-j37tl5K" + } + }, + { + "cell_type": "markdown", + "source": [ + "산점도를 보면 우리가 8월부터 12월까지의 월별 데이터만 가지고 있다는 것을 상기시켜줍니다. 선형적으로 결론을 내리기 위해서는 더 많은 데이터가 필요할 가능성이 높습니다.\n", + "\n", + "모델링 데이터를 다시 한번 살펴봅시다:\n" + ], + "metadata": { + "id": "Ve64wVbwtobI" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Display first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "HFQX2ng1tuSJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "우리가 호박의 `price`를 예측하려고 하는데, `city`나 `package` 같은 문자형 열을 기반으로 한다면 어떻게 해야 할까요? 아니면 더 간단하게, 예를 들어 `package`와 `price` 간의 상관관계를 찾고 싶다면 어떻게 해야 할까요? (상관관계는 두 입력 값이 모두 숫자형이어야 합니다.) 🤷🤷\n", + "\n", + "머신러닝 모델은 텍스트 값보다는 숫자형 특징과 더 잘 작동하므로, 일반적으로 범주형 특징을 숫자형 표현으로 변환해야 합니다.\n", + "\n", + "즉, 모델이 효과적으로 사용할 수 있도록 예측 변수를 재구성하는 방법을 찾아야 하는데, 이를 `feature engineering`이라고 합니다.\n" + ], + "metadata": { + "id": "7hsHoxsStyjJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. 모델링을 위한 데이터 전처리 with recipes 👩‍🍳👨‍🍳\n", + "\n", + "모델이 데이터를 효과적으로 활용할 수 있도록 예측 변수 값을 재구성하는 작업을 `특징 공학(feature engineering)`이라고 합니다.\n", + "\n", + "모델마다 요구하는 전처리 방식이 다릅니다. 예를 들어, 최소제곱법(least squares)은 `월(month)`, `품종(variety)`, `도시 이름(city_name)`과 같은 `범주형 변수`를 `인코딩`해야 합니다. 이는 단순히 `범주형 값`이 포함된 열을 하나 이상의 `숫자 열`로 변환하여 원래 열을 대체하는 작업을 의미합니다.\n", + "\n", + "예를 들어, 데이터에 다음과 같은 범주형 특징이 포함되어 있다고 가정해 봅시다:\n", + "\n", + "| city |\n", + "|:-------:|\n", + "| Denver |\n", + "| Nairobi |\n", + "| Tokyo |\n", + "\n", + "여기에 *순서 인코딩(ordinal encoding)*을 적용하여 각 범주에 고유한 정수 값을 대체할 수 있습니다. 결과는 다음과 같습니다:\n", + "\n", + "| city |\n", + "|:----:|\n", + "| 0 |\n", + "| 1 |\n", + "| 2 |\n", + "\n", + "이제 우리의 데이터에도 동일한 작업을 적용해 보겠습니다!\n", + "\n", + "이 섹션에서는 또 다른 멋진 Tidymodels 패키지인 [recipes](https://tidymodels.github.io/recipes/)를 살펴볼 것입니다. 이 패키지는 모델을 학습시키기 **전에** 데이터를 전처리하는 데 도움을 주기 위해 설계되었습니다. 기본적으로, 레시피(recipe)는 데이터 세트를 모델링에 적합하도록 준비하기 위해 어떤 단계를 적용해야 하는지 정의하는 객체입니다.\n", + "\n", + "이제 예측 변수 열의 모든 관측값에 고유한 정수를 대체하여 데이터를 모델링에 적합하게 준비하는 레시피를 만들어 봅시다:\n" + ], + "metadata": { + "id": "AD5kQbcvt3Xl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\n", + "pumpkins_recipe <- recipe(price ~ ., data = new_pumpkins) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "# Print out the recipe\n", + "pumpkins_recipe" + ], + "outputs": [], + "metadata": { + "id": "BNaFKXfRt9TU" + } + }, + { + "cell_type": "markdown", + "source": [ + "우와! 👏 우리는 방금 결과값(가격)과 그에 해당하는 예측 변수들을 지정하고, 모든 예측 변수 열을 정수 집합으로 인코딩하도록 하는 첫 번째 레시피를 만들었어요 🙌! 이제 빠르게 내용을 살펴볼게요:\n", + "\n", + "- `recipe()` 호출 시 공식(formula)을 사용하면 `new_pumpkins` 데이터를 참조하여 변수들의 *역할*을 레시피에 알려줍니다. 예를 들어, `price` 열은 `outcome` 역할로 지정되었고, 나머지 열들은 `predictor` 역할로 지정되었습니다.\n", + "\n", + "- `step_integer(all_predictors(), zero_based = TRUE)`는 모든 예측 변수를 0부터 시작하는 번호로 정수 집합으로 변환하도록 지정합니다.\n", + "\n", + "아마 이런 생각이 들 수도 있어요: \"이거 정말 멋지다!! 그런데 레시피가 내가 기대한 대로 작동하는지 확인하려면 어떻게 해야 하지? 🤔\"\n", + "\n", + "정말 좋은 질문이에요! 보세요, 레시피가 정의되면 데이터를 실제로 전처리하는 데 필요한 매개변수를 추정하고, 처리된 데이터를 추출할 수 있습니다. 일반적으로 Tidymodels를 사용할 때는 이렇게 할 필요가 없어요(곧 `workflows`라는 일반적인 사용 방식을 살펴볼 거예요). 하지만 레시피가 예상대로 작동하는지 확인하고 싶을 때는 유용할 수 있답니다.\n", + "\n", + "이를 위해 두 가지 동사가 더 필요해요: `prep()`과 `bake()`. 그리고 항상 그렇듯이, [`Allison Horst`](https://github.com/allisonhorst/stats-illustrations)의 작은 R 친구들이 이를 더 잘 이해할 수 있도록 도와줄 거예요!\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    @allison_horst의 작품
                                                    \n" + ], + "metadata": { + "id": "KEiO0v7kuC9O" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`prep()`](https://recipes.tidymodels.org/reference/prep.html): 훈련 데이터 세트에서 필요한 매개변수를 추정하여 이후 다른 데이터 세트에 적용할 수 있도록 합니다. 예를 들어, 특정 예측 변수 열에서 어떤 관측값이 정수 0, 1, 2 등으로 할당될지 결정합니다.\n", + "\n", + "[`bake()`](https://recipes.tidymodels.org/reference/bake.html): 준비된 레시피를 사용하여 어떤 데이터 세트에든 작업을 적용합니다.\n", + "\n", + "그렇다면, 우리의 레시피를 준비하고 적용하여 내부적으로 예측 변수 열이 모델이 적합되기 전에 먼저 인코딩된다는 것을 확실히 확인해 봅시다.\n" + ], + "metadata": { + "id": "Q1xtzebuuTCP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep the recipe\n", + "pumpkins_prep <- prep(pumpkins_recipe)\n", + "\n", + "# Bake the recipe to extract a preprocessed new_pumpkins data\n", + "baked_pumpkins <- bake(pumpkins_prep, new_data = NULL)\n", + "\n", + "# Print out the baked data set\n", + "baked_pumpkins %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "FGBbJbP_uUUn" + } + }, + { + "cell_type": "markdown", + "source": [ + "우와! 🥳 처리된 데이터 `baked_pumpkins`의 모든 예측 변수가 인코딩되어, 우리가 정의한 전처리 단계(레시피)가 예상대로 작동한다는 것을 확인할 수 있습니다. 이로 인해 읽기는 조금 더 어려워졌지만, Tidymodels에게는 훨씬 더 이해하기 쉬운 데이터가 되었습니다! 어떤 관측값이 어떤 정수로 매핑되었는지 시간을 내어 확인해 보세요.\n", + "\n", + "또한, `baked_pumpkins`는 우리가 계산을 수행할 수 있는 데이터 프레임이라는 점도 언급할 가치가 있습니다.\n", + "\n", + "예를 들어, 데이터의 두 지점 간에 좋은 상관관계를 찾아서 잠재적으로 훌륭한 예측 모델을 구축해 봅시다. 이를 위해 함수 `cor()`를 사용할 것입니다. 함수에 대해 더 알고 싶다면 `?cor()`를 입력해 보세요.\n" + ], + "metadata": { + "id": "1dvP0LBUueAW" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the correlation between the city_name and the price\n", + "cor(baked_pumpkins$city_name, baked_pumpkins$price)\n", + "\n", + "# Find the correlation between the package and the price\n", + "cor(baked_pumpkins$package, baked_pumpkins$price)\n" + ], + "outputs": [], + "metadata": { + "id": "3bQzXCjFuiSV" + } + }, + { + "cell_type": "markdown", + "source": [ + "도시와 가격 사이에는 약한 상관관계만 있는 것으로 나타났습니다. 하지만 패키지와 가격 사이에는 조금 더 나은 상관관계가 있습니다. 그럴듯하지 않나요? 일반적으로, 생산물 상자가 클수록 가격이 높아지는 것이 당연하니까요.\n", + "\n", + "이왕 하는 김에, `corrplot` 패키지를 사용하여 모든 열의 상관관계 행렬을 시각화해 봅시다.\n" + ], + "metadata": { + "id": "BToPWbgjuoZw" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the corrplot package\n", + "library(corrplot)\n", + "\n", + "# Obtain correlation matrix\n", + "corr_mat <- cor(baked_pumpkins %>% \n", + " # Drop columns that are not really informative\n", + " select(-c(low_price, high_price)))\n", + "\n", + "# Make a correlation plot between the variables\n", + "corrplot(corr_mat, method = \"shade\", shade.col = NA, tl.col = \"black\", tl.srt = 45, addCoef.col = \"black\", cl.pos = \"n\", order = \"original\")" + ], + "outputs": [], + "metadata": { + "id": "ZwAL3ksmutVR" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 훨씬 더 좋네요.\n", + "\n", + "이 데이터에 대해 이제 물어볼 좋은 질문은 다음과 같습니다: '`특정 호박 패키지의 가격은 얼마일까?`' 바로 시작해봅시다!\n", + "\n", + "> Note: **`new_data = NULL`**로 **`pumpkins_prep`** 레시피를 **`bake()`**하면, 처리된(즉, 인코딩된) 훈련 데이터를 추출할 수 있습니다. 예를 들어 테스트 세트와 같은 다른 데이터 세트가 있고 레시피가 이를 어떻게 전처리할지 확인하고 싶다면, **`new_data = test_set`**로 **`pumpkins_prep`**을 간단히 bake하면 됩니다.\n", + "\n", + "## 4. 선형 회귀 모델 구축하기\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    Dasani Madipalli의 인포그래픽
                                                    \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "YqXjLuWavNxW" + } + }, + { + "cell_type": "markdown", + "source": [ + "이제 레시피를 작성하고 데이터가 적절히 전처리될 것임을 확인했으니, 회귀 모델을 만들어 다음 질문에 답해봅시다: `주어진 호박 패키지의 예상 가격은 얼마인가?`\n", + "\n", + "#### 훈련 세트를 사용하여 선형 회귀 모델 학습하기\n", + "\n", + "이미 짐작했겠지만, *price* 열은 `결과` 변수이고 *package* 열은 `예측자` 변수입니다.\n", + "\n", + "이를 위해 먼저 데이터를 80%는 훈련 세트로, 20%는 테스트 세트로 나누고, 예측자 열을 정수 집합으로 인코딩하는 레시피를 정의한 뒤 모델 사양을 작성할 것입니다. 레시피를 준비하고 굽는 과정은 생략할 텐데, 이미 데이터가 예상대로 전처리될 것임을 알고 있기 때문입니다.\n" + ], + "metadata": { + "id": "Pq0bSzCevW-h" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\n", + "# Split the data into training and test sets\n", + "pumpkins_split <- new_pumpkins %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "\n", + "# Extract training and test data\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "\n", + "\n", + "# Create a recipe for preprocessing the data\n", + "lm_pumpkins_recipe <- recipe(price ~ package, data = pumpkins_train) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "\n", + "# Create a linear model specification\n", + "lm_spec <- linear_reg() %>% \n", + " set_engine(\"lm\") %>% \n", + " set_mode(\"regression\")" + ], + "outputs": [], + "metadata": { + "id": "CyoEh_wuvcLv" + } + }, + { + "cell_type": "markdown", + "source": [ + "좋아요! 이제 레시피와 모델 사양을 준비했으니, 이를 하나의 객체로 묶어 데이터를 먼저 전처리(백그라운드에서 prep+bake 수행), 전처리된 데이터로 모델을 학습시키고, 추가적인 후처리 작업도 가능하게 만들어야 합니다. 마음이 한결 편안해지지 않나요!🤩\n", + "\n", + "Tidymodels에서는 이 편리한 객체를 [`workflow`](https://workflows.tidymodels.org/)라고 부르며, 모델링 구성 요소를 간편하게 담을 수 있습니다! 이는 *Python*에서 흔히 말하는 *파이프라인*과 같은 개념입니다.\n", + "\n", + "그럼 이제 모든 것을 workflow로 묶어봅시다!📦\n" + ], + "metadata": { + "id": "G3zF_3DqviFJ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Hold modelling components in a workflow\n", + "lm_wf <- workflow() %>% \n", + " add_recipe(lm_pumpkins_recipe) %>% \n", + " add_model(lm_spec)\n", + "\n", + "# Print out the workflow\n", + "lm_wf" + ], + "outputs": [], + "metadata": { + "id": "T3olroU3v-WX" + } + }, + { + "cell_type": "markdown", + "source": [ + "게다가, 워크플로우는 모델을 학습시키거나 훈련시키는 방식과 거의 동일한 방식으로 설정하거나 훈련시킬 수 있습니다.\n" + ], + "metadata": { + "id": "zd1A5tgOwEPX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Train the model\n", + "lm_wf_fit <- lm_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the model coefficients learned \n", + "lm_wf_fit" + ], + "outputs": [], + "metadata": { + "id": "NhJagFumwFHf" + } + }, + { + "cell_type": "markdown", + "source": [ + "모델 학습 중에 얻어진 계수를 보면, 이는 실제 값과 예측 값 간의 전체 오차를 최소화하는 최적의 선형 적합선의 계수를 나타냅니다.\n", + "\n", + "#### 테스트 세트를 사용하여 모델 성능 평가하기\n", + "\n", + "이제 모델이 얼마나 잘 작동했는지 확인해볼 시간입니다 📏! 어떻게 하면 될까요?\n", + "\n", + "모델을 학습시켰으니, 이제 `parsnip::predict()`를 사용하여 test_set에 대한 예측을 수행할 수 있습니다. 그런 다음, 이 예측값을 실제 레이블 값과 비교하여 모델이 얼마나 잘 작동하는지 (혹은 잘 작동하지 않는지!) 평가할 수 있습니다.\n", + "\n", + "우선 테스트 세트에 대한 예측을 수행한 다음, 해당 열을 테스트 세트에 결합해 봅시다.\n" + ], + "metadata": { + "id": "_4QkGtBTwItF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\n", + "predictions <- lm_wf_fit %>% \n", + " predict(new_data = pumpkins_test)\n", + "\n", + "\n", + "# Bind predictions to the test set\n", + "lm_results <- pumpkins_test %>% \n", + " select(c(package, price)) %>% \n", + " bind_cols(predictions)\n", + "\n", + "\n", + "# Print the first ten rows of the tibble\n", + "lm_results %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "UFZzTG0gwTs9" + } + }, + { + "cell_type": "markdown", + "source": [ + "네, 이제 모델을 훈련시키고 이를 사용해 예측을 수행했습니다! 🔮 모델이 얼마나 잘 작동하는지 평가해봅시다!\n", + "\n", + "Tidymodels에서는 `yardstick::metrics()`를 사용해 이를 수행합니다! 선형 회귀의 경우, 다음 지표들에 초점을 맞춰봅시다:\n", + "\n", + "- `Root Mean Square Error (RMSE)`: [MSE](https://en.wikipedia.org/wiki/Mean_squared_error)의 제곱근입니다. 이는 절대적인 지표로, 라벨(이 경우 호박의 가격)과 동일한 단위를 가집니다. 값이 작을수록 모델이 더 좋습니다 (단순히 말해, 예측이 평균적으로 얼마나 틀렸는지를 나타냅니다!)\n", + "\n", + "- `Coefficient of Determination (일반적으로 R-squared 또는 R2로 알려짐)`: 상대적인 지표로, 값이 클수록 모델의 적합도가 더 좋습니다. 본질적으로, 이 지표는 예측값과 실제 라벨 값 간의 분산 중 모델이 설명할 수 있는 비율을 나타냅니다.\n" + ], + "metadata": { + "id": "0A5MjzM7wW9M" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Evaluate performance of linear regression\n", + "metrics(data = lm_results,\n", + " truth = price,\n", + " estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "reJ0UIhQwcEH" + } + }, + { + "cell_type": "markdown", + "source": [ + "모델 성능이 저하되었습니다. 패키지와 가격의 산점도를 시각화한 다음, 예측값을 사용해 최적의 적합선을 덧씌워 더 나은 지표를 확인해 봅시다.\n", + "\n", + "이를 위해 테스트 세트를 준비하고 처리하여 패키지 열을 인코딩한 후, 이를 모델이 생성한 예측값과 결합해야 합니다.\n" + ], + "metadata": { + "id": "fdgjzjkBwfWt" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Encode package column\n", + "package_encode <- lm_pumpkins_recipe %>% \n", + " prep() %>% \n", + " bake(new_data = pumpkins_test) %>% \n", + " select(package)\n", + "\n", + "\n", + "# Bind encoded package column to the results\n", + "lm_results <- lm_results %>% \n", + " bind_cols(package_encode %>% \n", + " rename(package_integer = package)) %>% \n", + " relocate(package_integer, .after = package)\n", + "\n", + "\n", + "# Print new results data frame\n", + "lm_results %>% \n", + " slice_head(n = 5)\n", + "\n", + "\n", + "# Make a scatter plot\n", + "lm_results %>% \n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\n", + " geom_point(size = 1.6) +\n", + " # Overlay a line of best fit\n", + " geom_line(aes(y = .pred), color = \"orange\", size = 1.2) +\n", + " xlab(\"package\")\n", + " \n" + ], + "outputs": [], + "metadata": { + "id": "R0nw719lwkHE" + } + }, + { + "cell_type": "markdown", + "source": [ + "훌륭합니다! 보시다시피, 선형 회귀 모델은 패키지와 해당 가격 간의 관계를 잘 일반화하지 못합니다.\n", + "\n", + "🎃 축하합니다! 이제 몇 가지 종류의 호박 가격을 예측할 수 있는 모델을 만들었습니다. 덕분에 당신의 휴일 호박밭은 아름다울 것입니다. 하지만 아마 더 나은 모델을 만들 수도 있을 거예요!\n", + "\n", + "## 5. 다항 회귀 모델 구축하기\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    다사니 마디팔리의 인포그래픽
                                                    \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "HOCqJXLTwtWI" + } + }, + { + "cell_type": "markdown", + "source": [ + "때로는 데이터가 선형 관계를 가지지 않을 수 있지만, 여전히 결과를 예측하고 싶을 때가 있습니다. 다항 회귀는 더 복잡한 비선형 관계에 대해 예측을 도와줄 수 있습니다.\n", + "\n", + "예를 들어, 호박 데이터 세트에서 패키지와 가격 간의 관계를 생각해봅시다. 변수 간에 선형 관계가 있을 때도 있지만(예: 호박의 부피가 클수록 가격이 높아지는 경우), 이러한 관계가 항상 평면이나 직선으로 나타낼 수 있는 것은 아닙니다.\n", + "\n", + "> ✅ [다항 회귀를 사용할 수 있는 데이터의 몇 가지 예시](https://online.stat.psu.edu/stat501/lesson/9/9.8)를 확인해보세요.\n", + ">\n", + "> 이전 그래프에서 품종(Variety)과 가격(Price) 간의 관계를 다시 살펴보세요. 이 산점도가 반드시 직선으로 분석되어야 할 것처럼 보이나요? 아마도 그렇지 않을 겁니다. 이 경우, 다항 회귀를 시도해볼 수 있습니다.\n", + ">\n", + "> ✅ 다항식은 하나 이상의 변수와 계수로 구성될 수 있는 수학적 표현식입니다.\n", + "\n", + "#### 훈련 세트를 사용하여 다항 회귀 모델 훈련하기\n", + "\n", + "다항 회귀는 비선형 데이터를 더 잘 맞추기 위해 *곡선*을 생성합니다.\n", + "\n", + "다항 모델이 예측 성능을 더 잘 발휘할 수 있는지 확인해봅시다. 이전에 했던 절차와 약간 유사한 과정을 따를 것입니다:\n", + "\n", + "- 데이터를 모델링에 적합하도록 준비하기 위해 수행해야 할 전처리 단계를 지정하는 레시피를 생성합니다. 예: 예측 변수를 인코딩하고 차수 *n*의 다항식을 계산하기\n", + "\n", + "- 모델 사양을 작성합니다.\n", + "\n", + "- 레시피와 모델 사양을 워크플로우에 묶습니다.\n", + "\n", + "- 워크플로우를 맞춤(fitting)으로써 모델을 생성합니다.\n", + "\n", + "- 테스트 데이터를 사용하여 모델 성능을 평가합니다.\n", + "\n", + "바로 시작해봅시다!\n" + ], + "metadata": { + "id": "VcEIpRV9wzYr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\r\n", + "poly_pumpkins_recipe <-\r\n", + " recipe(price ~ package, data = pumpkins_train) %>%\r\n", + " step_integer(all_predictors(), zero_based = TRUE) %>% \r\n", + " step_poly(all_predictors(), degree = 4)\r\n", + "\r\n", + "\r\n", + "# Create a model specification\r\n", + "poly_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>% \r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Bundle recipe and model spec into a workflow\r\n", + "poly_wf <- workflow() %>% \r\n", + " add_recipe(poly_pumpkins_recipe) %>% \r\n", + " add_model(poly_spec)\r\n", + "\r\n", + "\r\n", + "# Create a model\r\n", + "poly_wf_fit <- poly_wf %>% \r\n", + " fit(data = pumpkins_train)\r\n", + "\r\n", + "\r\n", + "# Print learned model coefficients\r\n", + "poly_wf_fit\r\n", + "\r\n", + " " + ], + "outputs": [], + "metadata": { + "id": "63n_YyRXw3CC" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### 모델 성능 평가\n", + "\n", + "👏👏 다항식 모델을 만들었으니, 이제 테스트 세트에 대해 예측을 해봅시다!\n" + ], + "metadata": { + "id": "-LHZtztSxDP0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make price predictions on test data\r\n", + "poly_results <- poly_wf_fit %>% predict(new_data = pumpkins_test) %>% \r\n", + " bind_cols(pumpkins_test %>% select(c(package, price))) %>% \r\n", + " relocate(.pred, .after = last_col())\r\n", + "\r\n", + "\r\n", + "# Print the results\r\n", + "poly_results %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "YUFpQ_dKxJGx" + } + }, + { + "cell_type": "markdown", + "source": [ + "우후, `yardstick::metrics()`를 사용하여 test_set에서 모델 성능을 평가해 봅시다.\n" + ], + "metadata": { + "id": "qxdyj86bxNGZ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "metrics(data = poly_results, truth = price, estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "8AW5ltkBxXDm" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 훨씬 더 나아진 성능.\n", + "\n", + "`rmse`가 약 7에서 약 3으로 감소했습니다. 이는 실제 가격과 예측 가격 간의 오차가 줄어들었다는 것을 나타냅니다. 이를 *대략적으로* 해석하면, 평균적으로 잘못된 예측이 약 \\$3 정도의 오차를 가진다는 의미입니다. `rsq`는 약 0.4에서 0.8로 증가했습니다.\n", + "\n", + "이 모든 지표는 다항식 모델이 선형 모델보다 훨씬 더 잘 작동한다는 것을 보여줍니다. 잘했어요!\n", + "\n", + "이제 이를 시각화할 수 있는지 확인해봅시다!\n" + ], + "metadata": { + "id": "6gLHNZDwxYaS" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Bind encoded package column to the results\r\n", + "poly_results <- poly_results %>% \r\n", + " bind_cols(package_encode %>% \r\n", + " rename(package_integer = package)) %>% \r\n", + " relocate(package_integer, .after = package)\r\n", + "\r\n", + "\r\n", + "# Print new results data frame\r\n", + "poly_results %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_line(aes(y = .pred), color = \"midnightblue\", size = 1.2) +\r\n", + " xlab(\"package\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "A83U16frxdF1" + } + }, + { + "cell_type": "markdown", + "source": [ + "데이터에 더 잘 맞는 곡선을 볼 수 있습니다! 🤩\n", + "\n", + "`geom_smooth`에 다항식 공식을 전달하여 이를 더 부드럽게 만들 수 있습니다. 예를 들어:\n" + ], + "metadata": { + "id": "4U-7aHOVxlGU" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_smooth(method = lm, formula = y ~ poly(x, degree = 4), color = \"midnightblue\", size = 1.2, se = FALSE) +\r\n", + " xlab(\"package\")" + ], + "outputs": [], + "metadata": { + "id": "5vzNT0Uexm-w" + } + }, + { + "cell_type": "markdown", + "source": [ + "마치 부드러운 곡선처럼!🤩\n", + "\n", + "새로운 예측을 만드는 방법은 다음과 같습니다:\n" + ], + "metadata": { + "id": "v9u-wwyLxq4G" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a hypothetical data frame\r\n", + "hypo_tibble <- tibble(package = \"bushel baskets\")\r\n", + "\r\n", + "# Make predictions using linear model\r\n", + "lm_pred <- lm_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Make predictions using polynomial model\r\n", + "poly_pred <- poly_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Return predictions in a list\r\n", + "list(\"linear model prediction\" = lm_pred, \r\n", + " \"polynomial model prediction\" = poly_pred)\r\n" + ], + "outputs": [], + "metadata": { + "id": "jRPSyfQGxuQv" + } + }, + { + "cell_type": "markdown", + "source": [ + "`polynomial model` 예측은 `price`와 `package`의 산점도를 보면 타당해 보입니다! 그리고 이전 모델보다 더 나은 모델이라면, 동일한 데이터를 보았을 때 더 비싼 호박에 대한 예산을 세워야 할 것입니다!\n", + "\n", + "🏆 잘하셨습니다! 한 수업에서 두 개의 회귀 모델을 만들었습니다. 회귀에 대한 마지막 섹션에서는 범주를 결정하기 위해 로지스틱 회귀에 대해 배울 것입니다.\n", + "\n", + "## **🚀도전 과제**\n", + "\n", + "이 노트북에서 여러 다른 변수를 테스트하여 상관관계가 모델 정확도에 어떻게 영향을 미치는지 확인하세요.\n", + "\n", + "## [**강의 후 퀴즈**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/)\n", + "\n", + "## **복습 및 자기 학습**\n", + "\n", + "이번 수업에서는 선형 회귀에 대해 배웠습니다. 다른 중요한 회귀 유형도 있습니다. Stepwise, Ridge, Lasso, Elasticnet 기법에 대해 읽어보세요. 더 배우고 싶다면 [Stanford Statistical Learning course](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning)가 좋은 과정입니다.\n", + "\n", + "Tidymodels 프레임워크를 사용하는 방법에 대해 더 배우고 싶다면 다음 리소스를 확인하세요:\n", + "\n", + "- Tidymodels 웹사이트: [Tidymodels 시작하기](https://www.tidymodels.org/start/)\n", + "\n", + "- Max Kuhn과 Julia Silge, [*Tidy Modeling with R*](https://www.tmwr.org/)*.*\n", + "\n", + "###### **감사합니다:**\n", + "\n", + "[R의 놀라운 삽화를 만들어 R을 더 친근하고 매력적으로 만들어 주신 Allison Horst](https://twitter.com/allison_horst?lang=en)에게 감사드립니다. 그녀의 [갤러리](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)에서 더 많은 삽화를 찾아보세요.\n" + ], + "metadata": { + "id": "8zOLOWqMxzk5" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문 번역가에 의한 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/2-Regression/3-Linear/solution/notebook.ipynb b/translations/ko/2-Regression/3-Linear/solution/notebook.ipynb new file mode 100644 index 000000000..28faf2eba --- /dev/null +++ b/translations/ko/2-Regression/3-Linear/solution/notebook.ipynb @@ -0,0 +1,1111 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 호박 가격 책정을 위한 선형 및 다항 회귀 - 3강\n", + "\n", + "필요한 라이브러리와 데이터셋을 로드합니다. 데이터를 다음 조건을 만족하는 데이터프레임으로 변환합니다:\n", + "\n", + "- 부셸 단위로 가격이 매겨진 호박만 가져오기\n", + "- 날짜를 월로 변환하기\n", + "- 높은 가격과 낮은 가격의 평균으로 가격 계산하기\n", + "- 가격을 부셸 수량 기준으로 변환하기\n" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                                                    0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                                    1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                                    2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    \n", + "

                                                    5 rows × 26 columns

                                                    \n", + "
                                                    " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 167, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    MonthDayOfYearVarietyCityPackageLow PriceHigh PricePrice
                                                    709267PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
                                                    719267PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
                                                    7210274PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
                                                    7310274PIE TYPEBALTIMORE1 1/9 bushel cartons17.017.015.454545
                                                    7410281PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
                                                    \n", + "
                                                    " + ], + "text/plain": [ + " Month DayOfYear Variety City Package Low Price \\\n", + "70 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "71 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "72 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "73 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 17.0 \n", + "74 10 281 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "\n", + " High Price Price \n", + "70 15.0 13.636364 \n", + "71 18.0 16.363636 \n", + "72 18.0 16.363636 \n", + "73 17.0 15.454545 \n", + "74 15.0 13.636364 " + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "new_columns = ['Package', 'Variety', 'City Name', 'Month', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "산점도는 우리가 8월부터 12월까지의 월별 데이터만 가지고 있음을 상기시켜줍니다. 선형적으로 결론을 내리기 위해서는 아마도 더 많은 데이터가 필요할 것입니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkT0lEQVR4nO3dfXRV9Z3v8fc3EB7kYcAQA+Wh0IZSUWLqzWVARi+W+lQdodXOtHcQZ41dOGumc1tn5graXqc67Ywybe2009Urtb3F2mnrkhYVtEIj1NoRNTAQEFQyhRpoCBihgEJIyPf+cXZiHs5Jzsbss0/O/rzWOivnfM/Z53zdhm9+57d/D+buiIhIchTFnYCIiOSWCr+ISMKo8IuIJIwKv4hIwqjwi4gkzOC4E8jGuHHjfOrUqXGnISIyoGzZsuUNdy/tHh8QhX/q1KnU1NTEnYaIyIBiZr9NF1dXj4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EuHphPNbK8/StOJ5rhTEZEIDYjhnBK9x7YdYNnqWoqLimhpa2PFDRVcXzkx7rREJAJq8QtNJ5pZtrqWUy1tHG9u5VRLG7evrlXLX6RAqfAL+4+cpLio669CcVER+4+cjCkjEYmSCr8waexwWtrausRa2tqYNHZ4TBmJSJRU+IWSkUNZcUMFQwcb5xQPYuhgY8UNFZSMHBp3aiISARV+ASC1AaeBBT9FpGBFWvjNbJ+Z7TCzbWZWE8TONbMNZrYn+Dk2yhykb+0Xd5tb23j79BmaW3VxV6SQ5aLFf7m7V7p7VfB4OVDt7tOB6uCxxEgXd0WSJY6unoXAquD+KmBRDDlIJ7q4K5IsURd+B9ab2RYzWxrEyty9ASD4eV7EOUgf2i/uDisuYtTQwQwrLtLFXZECFvXM3Xnu/jszOw/YYGavZHtg8IdiKcCUKVOiyk8C11dOZF75OPYfOcmkscNV9EUKWKQtfnf/XfDzEPAzYDbQaGYTAIKfhzIcu9Ldq9y9qrS0x85hEoGSkUO5aPIYFX2RAhdZ4TezEWY2qv0+cCWwE3gcuDl42c3AY1HlICIiPUXZ1VMG/MzM2j/n393952b2EvCImd0CvA58IsIcRESkm8gKv7v/BrgoTbwJWBDV54qISO80c1dEJGFU+KVDzd4mvrb+VWr2NsWdiohESBuxCACLH9zMc3Wpgv+NZ+q4tLyEH3x6TsxZiUgU1OIXavY2dRT9dr+qa1LLX6RAqfALz+55I1RcRAY2FX7hsunjQsVFZGBT4ReqppVwaXlJl9il5SVUTSvJcISIDGQq/ALAjVWTGTKoiCGDjCGDivhE1eS4UxKRiKjwS8dGLKfPtHH6jHP6jDZiESlkKvyijVjOUvWugyx7dDvVuw7GnYpIKBrHL9qI5Sxcef8mXmt8C4Cf1OxnRtkInr5tfqw5iWRLLX7p2IhlyCBj6OBUP782YsmsetfBjqLf7tXGt9TylwFDhV8AqNn3JqfPOM2tqX7+mt++GXdKeWv9rsZQcZF8o8Iv1DUe56HNr3eJPfT869Q1Ho8po/x25cyyUHGRfKPCL2yrPxoqnnQLZo5nRtmILrEZZSNYMHN8TBmJhKOLu0Ll5DGh4gJP3zaf6l0HWb+rkStnlqnoy4ASeYvfzAaZ2X+a2drg8RfN7ICZbQtuH406B+ldedkolsztuqH9krlTKC8bFVNGA8OCmeO578aLVPSz1HSime31RzU/JA/kosX/WWA3MLpT7H53/0oOPluydM/CWSyZM5Vt9UepnDxGRV/61WPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaiRVpi9/MJgHXAg9G+TnSP8rLRnFj1WQVfelX7TPDT7W0cby5lVMtmhket6i7er4O3A60dYt/xsxqzex7ZjY23YFmttTMasys5vDhwxGnKSJR0czw/BNZ4Tez64BD7r6l21PfBt4PVAINwFfTHe/uK929yt2rSktLo0pTRCKmmeH5J8oW/zzgejPbB/wY+LCZPezuje5+xt3bgO8AsyPMQURi1j4zfFhxEaOGDmZYcZFmhscssou77n4HcAeAmc0H/t7dF5vZBHdvCF72MWBnVDmISH64vnIi88rHsf/ISSaNHa6iH7M4xvGvMLNKwIF9wK0x5CAiOVYycqgKfp7ISeF3903ApuD+Tbn4TBERSU9LNoiIJIwKv4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EsHLZsbztLvv8AHv/AkS7//QtypDAh1jcd5tKZeO7vlAW3EIoCWzQ1r6vJ1HffXv/IGU5evY9+918aYUX67a82OLtt7Lpk7hXsWzooxo2RTi1+0bG5ImVr4avmnpz2d848Kv2jZ3JCerWsKFU867emcf1T4RcvmhnRZeUmoeNJpT+f8o8IvWjY3pJV//oeh4kmnPZ3zj7l73Dn0qaqqymtqauJOo+A1nWjWsrkhLP3+Czxb18Rl5SUq+lmoazyuPZ1zzMy2uHtVj7gKv4hIYcpU+NXVIyKSMJEXfjMbZGb/aWZrg8fnmtkGM9sT/Ey72brkniZwhfPlJ3Yy959/wZef0CZy2ViztZ5Pr3qJNVvr404l8SLv6jGzvwWqgNHufp2ZrQDedPd7zWw5MNbdl/X2HurqiZ4mcIXzvuXr6DwOqgj4jSZwZTTnnzZw8NjpjscTRg/h+TuviDGjZIilq8fMJgHXAg92Ci8EVgX3VwGLosxB+qYJXOF8+YmdtHWLtQVx6WnN1vouRR+g4dhptfxjFHVXz9eB26HLv5Oy9s3Wg5/npTvQzJaaWY2Z1Rw+fDjiNJNNE7jCWbvzYKh40q3dkeF8ZYhL9CIr/GZ2HXDI3beczfHuvtLdq9y9qrS0tJ+zk840gSuc6y4cHyqedNfNynC+MsQlelG2+OcB15vZPuDHwIfN7GGg0cwmAAQ/D0WYg2RBE7jC+fwfX9jjH05REJeeFl08mQmjh3SJTRg9hEUXT44pI8nJOH4zmw/8fXBx91+Apk4Xd89199t7O14Xd3NDE7jC+fITO1m78yDXXTheRT8La7bWs3bHQa6bNV5FP0dincDVrfCXAI8AU4DXgU+4+5u9Ha/CLyISXqbCn5P1+N19E7ApuN8ELMjF54qISE+auSsikjAFXfg1EzWcBzbu4Zp/fZYHNu6JO5UBQVsJykBVsFsvaiZqOOd/4UlOtqau9+xuOM7Xq/ew+0sfjTmr/KWtBGUgK8gWv2aihvPAxj0dRb/dyVZXyz8DbSUoA11BFn7NRA1nTW1DqHjSaStBGegKsvBrJmo4iyomhIonnbYSlIGuIAu/ZqKGc+vl0xk+2LrEhg82br18ekwZ5TdtJSgDXUHvwKWZqOE8sHEPa2obWFQxQUU/C9pKUPKdtl4U6WdqWEi+i3Xmrkih0XBhGcgKso9fJEoaLiwDnQq/dFj0zV/yvuXrWPTNX8adSl7TcOGzo5n0+UNdPQLA1OXrOu5vO3CCqcvXsU97yKY1aexwjje3dokdb27VcOFeqGssv6jFLxlb+Gr5p/dnK/8jVDzp1DWWf1T4hdoDJ0LFk+6VQ2+HiiedusbyT5R77g4zsxfNbLuZvWxmdwfxL5rZATPbFty0EljMKiaODBVPug+ed06oeNJpJn3+ibLF3wx82N0vAiqBq81sTvDc/e5eGdyejDAHycKav/kfoeJJ9/O/vTxUPOnaZ9IPHVzUcdNM+nhFVvg9pb2voDi45f9ssYT6o/KSLo8v7fZY5N2o2fcmza1tHbea3/a626pELNI+fjMbZGbbgEPABnd/IXjqM2ZWa2bfM7OxUeYgfavZ28RzdU1dYr+qa6Jmb1OGI5Jt6fdfCBVPOi1jnX8iLfzufsbdK4FJwGwzuxD4NvB+Ut0/DcBX0x1rZkvNrMbMag4fPhxlmon37J43QsWT7tm69H8QM8WTTstY55+cjOpx96OkNlu/2t0bgz8IbcB3gNkZjlnp7lXuXlVaWpqLNBPrsunjQsWT7rIM3WCZ4kmnZazzT5SjekrNbExwfzjwEeAVM+u8yPvHgJ1R5SDZqZqWvmBliifdyj//w1DxpMu0cqlWNI1PlC3+CcBGM6sFXiLVx78WWGFmO4L45cBtEeYgWfj7n2wNFU+6//nAr0PFk06/X/knsiUb3L0W+FCa+E1RfaacnQ27D4WKJ92Lvz0aKp50+v3KP5q5K1xx/nmh4kk3+71jQsWTTr9f+UeFX/jKn14cKp50/37rvFDxpNPvV/5R4RcA/mDYoF4fi7wb40cP6fJ4QrfHklsq/MLD/7GX35860yX2+1NnePg/9saUUX6r+Id1oeJJt2ZrPQePne4Sazh2mjVb62PKSLIq/Gb2ATOrNrOdweMKM/tCtKlJrjxW2xAqnnTHMqwmnCmedGt3HAwVl+hl2+L/DnAH0AIdI3Y+GVVSklsLKyaEiifd6Axri2WKJ911s8aHikv0si3857j7i91irWlfKQPO4kumpe3jX3zJtJgyym+1d6ffmSxTPOkWXTy5R5/+hNFDWHTx5JgykmwL/xtm9n6C1TXN7EZS6+xIgVjYbRu8hR/Stni9+ddPVnZ5/I1uj6Wr5++8gq//SQUfOf88vv4nFTx/5xVxp5Ro5t73Sslm9j5gJXAJcATYCyx2932RZheoqqrympqaXHxUItU1Hucj9z/bI/6L2y7TtPo0mk40M+++ZzjV8s7mIsOKi/j1sg9rjXnJK2a2xd2rusezmrnr7r8BPmJmI4Aid9d6qgWkt9UTVfh7at9K8BTvFP72rQRV+GUgyHZUzz+Z2Rh3f8vdj5vZWDP7UtTJSW5o9cRwtJWgDHTZ9vFfEyytDIC7HwG0V26BGDtiCIOKrEtsUJExdoQm2aTTvpVgEWCk/hFpK8G+1TUe59Gaem3AkgeyXaRtkJkNdfdm6FhmWb/lBWL/kZMUGXSewlVkqOuiF/9nzY6Ojh4PHl9fqQvimdy1ZkeXXbiWzJ3CPQtnxZhRsmXb4n8YqDazW8zsL4ANwKro0pJcamk9Q8uZrhf5W844La1nMhyRbJrpHI62Xsw/WRV+d18BfBk4H7gA+McgJgXghb3pN77OFE86zXQOR1sv5p+s1+N396eApyLMRWRAWFgxgZf2HUkbl540eCD/9NriN7Pngp/HzexYp9txMzvWx7HDzOxFM9tuZi+b2d1B/Fwz22Bme4KfY/vvP0fOxlUXpJ86nymedJrpHE552SiWzJ3SJbZk7hQNFY5Rry1+d/+j4OfZ/B9qBj7s7ifMrBh4zsyeAj4OVLv7vWa2HFgOLDuL95d+oj1Rw0vXxy+Z3bNwFkvmTGVb/VEqJ4/R71bM+uzjN7Oi9lU5w/CUE8HD4uDmwELeuTC8ClgU9r2lf12+ojpUPOm05+7ZKS8bxY1Vk1X080Cfhd/d24DtZjalr9d2Z2aDzGwbcIjUZusvAGXu3hC8dwOQdv81M1tqZjVmVnP48OGwHy0h7H3zVKh40mnPXRnosh3OOQF4OViT//H2W18HufsZd68EJgGzzezCbBNz95XuXuXuVaWlpdkeJmdh2rnDQsWTTnvuykCX7aieu9/Nh7j7UTPbBFwNNJrZBHdvMLMJpL4NSIw23r6Aqct77h618fYFMWST//791nlpz5f23JWBoq9RPcPM7HPAJ4APAr9291+23/o4ttTMxgT3hwMfAV4BHgduDl52M/DYu/ovkH6x795rmRismT5x9BD23au15Xuz795ruWTaGAYXwSXTxuh8yYDSV4t/Faldt34FXAPMBD6b5XtPAFaZ2SBSf2Aecfe1ZvY88IiZ3QK8TuqPisTsrjU7OBDsi3rg2GnuemyHptT3QS18Gaj6Kvwz3X0WgJl9F+i+C1dGwfaMH0oTbwLUh5BHMk2pXzJnqkZgiBSgvi7utrTfcXdttVigNKVeJFn6avFf1GmGrgHDg8dGaqj+6Eizk5zQlPqz84Wfbueplxu55oIyvvTxi+JORyRrfc3cHdTb81IYystGMaNsBK82vtURm1E2Qt08veg8qufhF/fz8Iv7dYFXBoxsx/FLAatrPN6l6AO82viWls3N4As/3R4qLpJvVPhFffwhPfVyY6i4SL5R4RfGnlMcKp5011xQFioukm9U+IUjb7eEiiddpgu5usArA4UKv2hUz1nYd++1LJ49iZIRxSyePUkXdmVAyXoHLilc7RtlPPR8182wNaqnd1/6+EV86eNxZyESngq/ANooQyRJVPilQ3nZKBV8kQRQH7+ISMKo8EuHusbjPFpTr4lbIgVOXT0CpJZl7rxC55K5U7Qss0iBUotfMi7LrJa/SGGKrPCb2WQz22hmu83sZTP7bBD/opkdMLNtwe2jUeUg2dGSDSLJEmVXTyvwd+6+1cxGAVvMbEPw3P3u/pUIP1tC0AQukWSJrPC7ewPQENw/bma7gYlRfZ6cvbEjhqQ2WOgUsyAuIoUnJ338ZjaV1DaMLwShz5hZrZl9z8zGZjhmqZnVmFnN4cOHc5FmYu0/cpKRQ7u2AUYOHcz+IydjykhEohR54TezkcBq4HPufgz4NvB+oJLUN4KvpjvO3Ve6e5W7V5WWlkadZqJNGjuclra2LrGWtjYmjR0eU0YiEqVIC7+ZFZMq+j90958CuHuju59x9zbgO8DsKHOQvpWMHMqKGyoYbDDIYLDBihsqKBk5NO7URCQCUY7qMeC7wG53/1qn+IROL/sYsDOqHCR7/7ZxD60OZxxaHb61cU/cKYlIRKIc1TMPuAnYYWbbgtidwKfMrJLUtcR9wK0R5iBZqN51kNfSbL1YvesgC2aOjykrEYlKlKN6niM1OKS7J6P6TDk763el3zJw/a5GFX6RAqSZu8KVM9NvGZgpLiIDmwq/sGDmeGaUjegSm1E2Qq19kQKlRdoEgKdvm0/1roOs39XIlTPLVPRFCpgKv3RYMHO8Cr5IAqirR0QkYVT4RUQSRoVfOmgHLpFkUB+/ANqBSyRJ1OIX7cAlkjAq/KIduEQSRoVftAOXSMKo8AvlZaNYMndKl9iSuVMoLxsVU0YiEiVd3BUA7lk4iyVzprKt/iiVk8eo6IsUMBV+6VBeNkoFPwQtcRGOzld4TSea2X/kJJPGDu/XjZFU+EXOwpX3b+rYw+AnNfuZUTaCp2+bH2tO+UznK7zHth1g2epaiouKaGlrY8UNFVxfObFf3jvKHbgmm9lGM9ttZi+b2WeD+LlmtsHM9gQ/0262LpKvetu4RnrS+Qqv6UQzy1bXcqqljePNrZxqaeP21bU0nWjul/eP8uJuK/B37n4+MAf4azObCSwHqt19OlAdPJY8ULO3ia+tf5WavU1xp5LXetu4RnrS+Qpv/5GTFBd1Lc/FRUXsP3KyX94/ssLv7g3uvjW4fxzYDUwEFgKrgpetAhZFlYNkb/GDm7nxgc1845k6bnxgMzc9uDnulPKWNq4JR+crvEljh9PS1tYl1tLWxqSxw/vl/XMynNPMpgIfAl4Ayty9AVJ/HIDzcpGDZFazt4nn6rq28n9V16SWfwbauCYcna/wSkYOZcUNFQwrLmLU0MEMKy5ixQ0V/XaBN/KLu2Y2ElgNfM7dj5ml24Y37XFLgaUAU6ZM6ePV8m48u+eNjPGqaSU5zmZg0MY14eh8hXd95UTmlY+LZFSPuXu/vVmPNzcrBtYCT7v714LYq8B8d28wswnAJnef0dv7VFVVeU1NTWR5Jl3N3iZufKBn186jt85R4RcZwMxsi7tXdY9HOarHgO8Cu9uLfuBx4Obg/s3AY1HlINmpmlbCpeVdC/yl5SUq+n1Ys7WeT696iTVb6+NOZUBoOtHM9vqj/TYyRc5elF0984CbgB1mti2I3QncCzxiZrcArwOfiDAHydKeQ11X4qw7pJU5ezPnnzZw8NhpAH6x+xD3/fwVnr/zipizyl9RjkmX8KIc1fOcu5u7V7h7ZXB70t2b3H2Bu08Pfr4ZVQ6SnTVb6zuKWLuGY6fVks1A5yucqMekS3gFvUibvlpmZ+2O9BNpMsWTTucrnKjHpEt4BVv4H9t2gHn3PcPiB19g3n3P8Pi2A3GnlLeum5V+hEWmeNLpfIUT9Zh0Ca8gC7++WobT+PtToeJJt+jiyUwYPaRLbMLoISy6eHJMGeW3qMekS3gFuUhb+1fLU7zTymj/aqlftp7W1DZkjN96+fQcZzMwPH/nFazZWs/aHQe5btZ4Ff0+RDkmXcIryMKvr5bhLKqYwO6GnqN4FlVMiCGbgWPRxZNV8EMoGTlUBT9PFGRXT/tXy6GDjXOKBzF0sOmrZS9uvXw6wwd3nVE9fLCptS9SoAqy8AOk5iMbWPBTevXfpp7b5XFVt8fSk1YzDaeu8TiP1tRT16g5InEryK6e9ou7za3vdPfcvrqWeeXj1OpPo7dF2jR7N73FD27uOGffeKaOS8tL+MGn58ScVf66a80OHtr8esfjJXOncM/CWTFmlGwF2eLXuOFwelukTXrSaqbh1DUe71L0AR56/nW1/GNUkIVfF3fDuWz6uFDxpNMfynC21R8NFZfoFWTh17jhcDJ156ibJz39oQyncvKYUHGJXkH28YPGDYfx5Sd2Zox//o8vzHE2+e9Xrx3KGNcfy57Ky0axZO4UHnq+ax9/edmoGLNKtoIt/KBxw9lauzPD2jM7D6rwp/HIlv0Z47dddX6OsxkY7lk4iyVzprKt/iiVk8eo6MesILt6JJzrLsyw9kyGeNJNGnNOqLiklJeN4saqySr6eUCFX/jT2e8NFU+68d3W6ekrLil/8/BLXHDXU/zNwy/FncqAUb3rIMse3U71rv5d+bWgu3okO8/VHc4YV+usp5r634eKC0xdvq7j/hM7D/HE8nXsu/faGDPKf1fev4nXGt8C4Cc1+5lRNoKnb5vfL+8d5daL3zOzQ2a2s1Psi2Z2wMy2BbePRvX5kr2jb7eEiifdmdYzoeJJl6mFr5Z/ZtW7DnYU/XavNr7Vby3/KLt6vg9cnSZ+f+cduSL8fMnSW6dbQ8WTrunt9OclUzzpnnkt/fyGTHGB9bsaQ8XDinLrxWcBbas4AFw1M/1F3EzxpJv1npGh4kn34Q+kn9+QKS5w5cyyUPGw4ri4+xkzqw26gsZmepGZLTWzGjOrOXw4fR+09I+qaSVpV+fUmPT07l50Uah40n1z8X8PFRdYMHM8M8pGdInNKBvBgn5qjOW68H8beD9QCTQAX830Qndf6e5V7l5VWlqao/SSqXrXQU62epfYyVbv95EEhWLS2OEMK+76T2dYcZGWBOnFvnuvpXxc6vyUjxuuC7tZePq2+dxx1Qc4f8Io7rjqA/12YRdyXPjdvdHdz7h7G/AdYHYuP1/Si7o/sdCUjBzKqZaua0GdamnTZMFeTL9jHXVvpBZJrHvjJNPvWNfHEbL4wc3889OvsbvhOP/89Gvc9ODmfnvvnBZ+M+u8pdPHgPRrBUhOzXrP6FDxpPvCT7eHiifd/U/vpqXrF0paPBWX9KJeATbK4Zw/Ap4HZpjZfjO7BVhhZjvMrBa4HLgtqs+X7A0bkn46R6Z40j31cvpvQpniSfdYbfouw0xxiX4F2ChH9XzK3Se4e7G7T3L377r7Te4+y90r3P16d0+/y7fklFZPDOeaC9KPrMgUT7qFFekvSGaKS/QrwGrJBpGQLv9g+gKfKZ50mRau04J2mVVNK+HS8q6j6i4tL+m3kXb6Li+9bpShJRt66u1ieH8NtyskmUaHVe86qPPVix98eg41e5t4ds8bXDZ9XL8Or1aLX9TVE1LUk2sKjUaNnb2qaSX87ZUz+n1OjQq/dGyU0Zk2ysgs6sk1hUZ/KPOPuXvfr4pZVVWV19TUxJ1GwatrPK6NMkKo3nWQ9bsauXJmmYp+H666fxOvdlp0rD9XmpTMzGyLu1f1iKvwi0gu6A9l7mUq/Lq4K3KWmk40a0/nEBbMHK+CnydU+EXOwmPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaIlnRxV2RkJpONLNsdS2nWto43tzKqZY2bl9dS9OJ5rhTE8mKCr9ISPuPnKS4qOs/neKiIvYfORlTRiLhqPCLhDRp7HBa2rquztnS1qZlmWXAUOEXCalk5FBW3FBBcREMKoLiIlhxQ4Uu8Pah6UQz2+uPqkssD+jirshZ+LeNe2hfkv8M8K2Ne3Rxtxe6GJ5f1OIXCal610Fe6zQZCeDVxre0Y1kGuhief1T4RULS2jPh6GJ4/olyI5bvmdkhM9vZKXaumW0wsz3Bz4ybrYvkK609E44uhuefKFv83weu7hZbDlS7+3SgOngsMqBokbZw2i+GDysuYtTQwQwrLtLF8JhFulaPmU0F1rr7hcHjV4H57t4Q7L+7yd1n9PU+WqtH8pHWnglHS1zkXr6s1VPWvt1iUPzPy/RCM1sKLAWYMmVKppeJxEZrz4RTMnKoCn6eyNuLu+6+0t2r3L2qtLQ07nRERApGrgt/Y9DFQ/DzUI4/X0Qk8XJd+B8Hbg7u3ww8luPPFxFJvCiHc/4IeB6YYWb7zewW4F7gCjPbA1wRPBYRkRyK7OKuu38qw1MLovpMERHp24DYetHMDgO/PcvDxwFv9GM6/UV5haO8wlFe4eRrXvDucnuvu/cYHTMgCv+7YWY16caxxk15haO8wlFe4eRrXhBNbnk7nFNERKKhwi8ikjBJKPwr404gA+UVjvIKR3mFk695QQS5FXwfv4iIdJWEFr+IiHSiwi8ikjAFU/jN7DYze9nMdprZj8xsWLfnzcy+YWZ1ZlZrZhfnSV7zzez3ZrYtuN2Vo7w+G+T0spl9Ls3zcZ2vvvLKyfl6NxsJmdnVZvZqcO76dc+Jd5nXPjPbEZy3fl3nPENenwj+P7aZWcbhiDGcr2zzyvX5+hczeyX49/YzMxuT4dh3f77cfcDfgInAXmB48PgR4M+7veajwFOAAXOAF/Ikr/mk9izI5fm6ENgJnENq9vYvgOl5cL6yySsn5wu4DLgY2NkptgJYHtxfDtyX5rhBwH8B7wOGANuBmXHnFTy3DxiXw/N1PjAD2ARUZTgujvPVZ14xna8rgcHB/fui/P0qmBY/qUIx3MwGkyocv+v2/ELgIU/ZDIxpXyk05rzicD6w2d3fdvdW4JfAx7q9Jo7zlU1eOeHuzwJvdgsvBFYF91cBi9IcOhuoc/ffuPtp4MfBcXHnFal0ebn7bnd/tY9Dc36+sswrUhnyWh/83gNsBialObRfzldBFH53PwB8BXgdaAB+7+7ru71sIlDf6fH+IBZ3XgBzzWy7mT1lZhdEmVNgJ3CZmZWY2TmkWveTu70m5+cry7wg9+erXZeNhIB0GwnFcd6yyQvAgfVmtsVSGx3lgzjOV7biPF9/Qeobd3f9cr4KovAHfZoLgWnAe4ARZra4+8vSHBrpWNYs89pKaj2Ni4BvAmuizAlSLR5SXyU3AD8n9XWxtdvLcn6+sswr5+crpJyftxDmufvFwDXAX5vZZXEnhM5XD2b2eVK/9z9M93SaWOjzVRCFH/gIsNfdD7t7C/BT4JJur9lP19bjJKLvdukzL3c/5u4ngvtPAsVmNi7ivHD377r7xe5+GamvnHu6vSSO89VnXnGdr0A2GwnFcd6y2uDI3X8X/DwE/IxUt0HcYvk9y0Yc58vMbgauA/7Mg079bvrlfBVK4X8dmGNm55iZkVr6eXe31zwOLAlGq8wh1e3SEHdeZjY+eA4zm03q/0lTxHlhwX7HZjYF+Djwo24vieN89ZlXXOcrkM1GQi8B081smpkNAT4ZHBdrXmY2wsxGtd8ndSFxZ/fXxSCO89WnOM6XmV0NLAOud/e3M7ysf85XFFes47gBdwOvkPqf8wNgKPCXwF8GzxvwLVJXxHfQy9X8HOf1GeBlUt0am4FLcpTXr4BdwecuCGL5cL76yisn54vUH5wGoIVUK+sWoASoJvUtpBo4N3jte4AnOx37UeC14Nx9Ph/yIjUKZHtwezlHeX0suN8MNAJP58n56jOvmM5XHan++23B7f9Gdb60ZIOISMIUSlePiIhkSYVfRCRhVPhFRBJGhV9EJGFU+EVEEkaFXwQwMzezH3R6PNjMDpvZ2rN8vzFm9ledHs8/2/cS6W8q/CIpbwEXmtnw4PEVwIF38X5jgL/q60UicVDhF3nHU8C1wf1P0WnWsKXWvF8TrJW+2cwqgvgXg7XVN5nZb8zsfwWH3Au8P1jL/V+C2EgzezRYc/2H7TOQRXJNhV/kHT8GPmmpzXIqgBc6PXc38J/uXgHcCTzU6bkPAleRWsvlH8ysmNS6+P/l7pXu/r+D130I+Bwwk9TM0HkR/reIZKTCLxJw91pgKqnW/pPdnv4jUktu4O7PACVm9gfBc+vcvdnd3yC1QFpZho940d33u3sbqSn5U/v1P0AkS4PjTkAkzzxOag+F+aTWwGnX23K4zZ1iZ8j87yrb14lESi1+ka6+B9zj7ju6xZ8F/gxSI3SAN9z9WC/vcxwYFUWCIu+WWhwinbj7fuBf0zz1ReD/mVkt8DbvLIOc6X2azOzXwWbaTwHr+jtXkbOl1TlFRBJGXT0iIgmjwi8ikjAq/CIiCaPCLyKSMCr8IiIJo8IvIpIwKvwiIgnz/wEDeg/76NO6rgAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('Month','Price')" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAshElEQVR4nO3dfZyU5Xno8d+1y7IgiwLLunJkV2xWSangRreKIVoVQ03qEdKon74YTKMlzan9pCatmLTHGtvaiE3M6UlOq4k59SVNJJiA9ZgIEqxRwThQXhQ0bAOyGFhwBd01sO7Ldf6YZ5aZ3ZndmWfuZ+aemev7+Sw7c+8z19zP7HDtM/erqCrGGGMqR1WxK2CMMaawLPEbY0yFscRvjDEVxhK/McZUGEv8xhhTYcYVuwLZmD59us6aNavY1TDGmJKyefPmN1W1YXh5SST+WbNmEYvFil0NY4wpKSLyerpya+oxxpgKY4nfGGMqjCV+Y4ypMJb4jTGmwljiN8aYCmOJ32TU1dPLto6jdPX0FrsqxhiHSmI4pym8NVvfYPlj26mpqqJvcJAVH5/H1a2nF7taxhgH7IrfjNDV08vyx7ZzvG+Q7t5+jvcNcutj2+3K35gyYYnfjLD/yDFqqlLfGjVVVew/cqxINTLGuGSJ34wwc+pE+gYHU8r6BgeZOXVikWpkjHHJEr8Zob6ulhUfn8eEmiom145jQk0VKz4+j/q62rziWmexMX6wzl2T1tWtp7OgZTr7jxxj5tSJeSd96yw2xh+RJn4R2Qt0AwNAv6q2icg04FFgFrAXuE5Vj0RZDxNOfV1t3gkfUjuLjxNvQrr1se0saJnuJL4xJjeFaOq5TFVbVbUtuH8bsF5VzwLWB/dNGbPOYmP8Uow2/sXAg8HtB4ElRaiDKSDrLDbGL1EnfgXWishmEVkWlDWq6gGA4PupEdfBFFlUncXGmHCi7txdoKq/FJFTgXUi8mq2Dwz+UCwDaG5ujqp+pkBcdxYbY8KL9IpfVX8ZfD8E/BC4AOgUkRkAwfdDGR57v6q2qWpbQ8OIncNMCaqvq+XcpimW9I0pssgSv4hMEpHJidvAIuBl4HHghuCwG4A1UdXBGGPMSFE29TQCPxSRxPP8m6r+WEReAlaKyI3APuDaCOtgjDFmmMgSv6r+Ajg3TXkXsDCq5zXGGDM6W7LBGGMqjCX+InK9do3v8YwxfrC1eorE9do1vsczxvjDrviLwPVGJ77HM8b4xRJ/Ebheu8b3eMYYv1jiLwLXa9f4Hs8Y4xdL/EXgeu0a3+MlWGexMX4QVS12HcbU1tamsVis2NVwrqun1+naNT7Hs85iYwpPRDYnLYk/xEb1FJGrjU58j2cbsRjjF2vqMZEr5c5i181T7Z3drIp10N7Z7SSeNZ+ZMOyK30SuVDuLXTdP3b56Bw9t2jd0f+lFzdy5eK439TOVw674Tc5yvWotxY1YXM9laO/sTkn6AA9t3Bf6yt/mWph82BW/yUnYq9ZS24gl0TyV6JOAE81TYeq+teNoxvKWxslFr5+pLHbFb7KW71VrKW3E4rp5qrVpSk7lYynV5jPjB0v8JmujXbWWG9fNUy2Nk1l6UeoWoksvag51tR9F/UxlsaYekzXXV62+c908defiuSydP4utHUdpbZoSOulHVT9TOSJP/CJSDcSAN1T1KhG5A/hj4HBwyBdV9cmo62Hyl7hqfWhjaht/vgnMZ67nRrQ0Tnb6ermun+tJgMZPhbji/yywCzg5qexeVf3HAjy3ccz1Vavxhw0PrRyRtvGLyEzgd4BvRfk8prBaGidzTVuTJf0yYsNDK0vUnbtfA24FBoeV3ywi20Xk2yIyNd0DRWSZiMREJHb48OF0hxhjHCnl2dUmd5ElfhG5CjikqpuH/eifgfcBrcAB4CvpHq+q96tqm6q2NTQ0RFVNYww2PLTSRHnFvwC4WkT2At8DLheRR1S1U1UHVHUQ+CZwQYR1MMZkwYaHVpbIOndV9QvAFwBE5FLgL1T1ehGZoaoHgsM+BrwcVR2MMdmz4aGVoxjj+FeISCugwF7g00WogzEmDdfDQ42fCpL4VfUZ4Jng9icK8ZzGGGPSsyUbjDGmwljiN8aYCmOJ3xhjKowlfmOMqTCW+I0xpsJY4jfGmApjid8UTFdPL9s6jka68Nf6nQdZvmob63cerIh4rl9T3+MZN0RVi12HMbW1tWksFit2NUweCrHk76J7n+Hnne8O3Z/dOImnbrm0bOO5fk19j2dyJyKbVbVteLld8ZvIFWLJ3/U7D6YkVYDXOt8NfWXtezzXr6nv8YxblvhN5Aqx5O/anZ05lZd6PNevqe/xjFuW+E3kCrHk76I5jTmVl3o816+p7/GMW5b4TeQKseTvwjmnMbtxUkrZ7MZJLJxzWlnGc/2a+h7PuGWdu6ZgCrGR9/qdB1m7s5NFcxpDJ9VSiuf6NfU9nslNps5dS/zGGFOmbFSPMcYYoACJX0SqReQ/ReSJ4P40EVknIruD72k3Wzf+cjkpZ/WWDm568CVWb+lwULPKmzAU29PFV9e+RmxPl5fx2ju7WRXroL2z20k840bkTT0i8jmgDThZVa8SkRXAW6r6ZRG5DZiqqstHi2FNPf5wOSln/l3rOPjOe0P3Z5w8no1f/LAXdSsF139rE8+1n0jQF7fU8/BN872Jd/vqHTy0ad/Q/aUXNXPn4rmh45ncFaWpR0RmAr8DfCupeDHwYHD7QWBJlHUw7riclLN6S0dK0gc48M57oa/8K23CUGxPV0qSBvhpe1foK3XX8do7u1OSPsBDG/fZlb8nom7q+RpwK5A8oLcxsdl68P3UdA8UkWUiEhOR2OHDhyOupsmGy0k5T+xIP2M1U3kh61YKnt39Zk7lhY63teNoTuWmsCJL/CJyFXBIVTeHebyq3q+qbara1tDQ4Lh2JgyXk3Kumpt+KGOm8kLWrRRcctb0nMoLHa+1aUpO5aaworziXwBcLSJ7ge8Bl4vII0CniMwACL4firAOxiGXk3KWnNfEjJPHp5TNOHk8S85rKnrdSkHbmfVc3FKfUnZxSz1tZ9ZneERh47U0TmbpRc0pZUsvaqalcXKoeMatgozjF5FLgb8IOnfvAbqSOnenqeqtoz3eOnf94nJSzuotHTyx4yBXzT0tdNKPqm6lILani2d3v8klZ00PnaSjjNfe2c3WjqO0Nk2xpF8ERZ3ANSzx1wMrgWZgH3Ctqr412uMt8RtjTO4yJf5xhXhyVX0GeCa43QUsLMTzGmOMGclm7hpjTIUp68Tv+yxO1/VzPUvS93iFYFsRmnJUkKaeYvB9Fqfr+rmeJel7vEKwrQhNuSrLK37fZ3G6rp/rWZK+xysE24rQlLOyTPy+z+J0XT/XsyR9j1cIthWhKWdlmfh9n8Xpun6uZ0n6Hq8QbCtCU87KMvH7PovTdf1cz5L0PV4h2FaEppyV9Q5cvs/idF0/17MkfY9XCLYVoSlltvWiqQiWWI05oagzd40pBBsuaUx2yrKN31QeGy5pTPYs8ReR61mc63ceZPmqbazfGW4zk2zjhX2edI9zteduVMMlfd/T1vXv3GYWVwZr4y8S180Si+59hp93vjt0f3bjJJ665VLn8cI+T7rHvX2sz9meu109vbT93dMkv5sFiP31FaHb+n3f09b179yayspPUfbcNem5bpZYv/NgSgIAeK3z3dBXgZni3fvUrlDPkymeyz13t+47wvBLGA3Kw/B9T1vXv3NrKqsslviLwHWzxNqdnTmVh423Znv6pDLW8+RSj7B77rp+DXzf09b1+drM4soS5Z67E0TkZyKyTUReEZEvBeV3iMgbIrI1+PpoVHXwletZnIvmNOZUHjbe4nnp98Md63lyqUfYPXddvwa+72nr+nxtZnFlifKKvxe4XFXPBVqBK0Uk0aB5r6q2Bl9PRlgHL7mexblwzmnMbpyUUja7cRIL54RLopni3fLbvx7qeTLFc7nnruvXwPc9bV2fb1Qzi21Zaz9FNo5f473GPcHdmuDL/57kArm69XQWtEx3NtnoqVsuZf3Og6zd2cmiOY2hE8BY8RomT+C1pLblUydPCB1v/l3r8qrjcK7fXJ3dx1PuHxp2P1cP3zTf6Z62rn/nrt+Ttqy1vyId1SMi1cBmoAX4hqouF5E7gE8C7wAx4POqOmoPXDmO6ilFsT1dXHPfphHlqz49P+cktnpLB3++cvuI8q9dNy/UVf/6nQe58aHNI8ofWHp+qIToOl6l6erpZcHdP+F434nmowk1VTy//PJQf1Bcx6sURRnVo6oDqtoKzAQuEJFzgH8G3ke8+ecA8JV0jxWRZSISE5HY4cOHo6ymyZLLDspMnbi+dO66jldpbFlrvxVkVI+qHiW+2fqVqtoZ/EEYBL4JXJDhMferapuqtjU0NBSimmPyfTKPa8PbU/PtoEyOl6kT15fOXdfxEh55YQ/X/ssLPPLCnrziRBXP1YQ6W9bab5G18YtIA9CnqkdFZCJwBXC3iMxQ1QPBYR8DXo6qDi4lT775p5+0O53M4yKea5naU0+ZUM3bxweGjjtlQnVWzTzp4qWLlU/n7oyTx3Ng2ISwfDq4XcYDOPeOHw+d70t7j3DP2tfYdseV3sSbf9e6obkVT+86xN0/fjX0hLr6ulrOmDYxpT/ojGnh+w3q62ppnjYxZe5CPvEqXZRX/DOADSKyHXgJWKeqTwArRGRHUH4ZcEuEdXDC98k8rmWazLN+58GURA3w9vGBMeudLt5frtrO8f7UK7jeAc1ra8Mjx/pTyo4c6/cm3iMv7En72oW9Uncdb/WWDqcT6mJ7ulKSPsQnmOXzfybdhDVf/s+UmsgSv6puV9UPqOo8VT1HVe8Myj+hqnOD8quTrv695ftkHtcytadmat8eq97p4lVXCdXibxuw63hrtqd/m2cqL3Q8130ulfZ/ptTYzN0s+D6Zx7VM7amZ2rfHqne6eAODyoD62wbsOt7ieTNyKi90PNd9LpX2f6bUWOLPgu+TeVzLNJln4ZzTQtU7Ea92nHBSTTW144R7rpnHPdecSzXxN2E1ONnasJr44myu4klwX/KMd/0Hz+SUCdUpZadMqOb6D57pRbwl5zU5nVBXaf9nSo1txJIl15NvXMdzLdNknt2HulOOax92P5P4bBGJZ1CNp9O7ntxJciv1Pzy5M68JOf9z9Y6heAPB/XziLV+1bWhSmAb3fZowNHF8auf4SeOrRzl6bK5n9FTa/5lSYlf8OWg7s57PLZrt7A3nOp5r9XW1nNs0ZSjph+0ATHTu9vYP8qv3BujtH+Tz39/mtDPRdWfnfRt2c6w/NRUe61fu27Dbi/q57ox1HS+h0v7PlIqsEr+InC0i60Xk5eD+PBH562irZnwTtgMwXUfpYIbLy7Cdia47O1dneFym8rH43hnrOp7xW7ZX/N8EvgD0QXzEDvB7UVXK+ClsB2C6jtIqSX9s2M5E152dSzI8LlP5WHzvjHUdz/gt28R/kqr+bFhZf9ojTdZKbeXCsB2A6TqLv3LtuU47E113dn76srOYOC71r9PEccKnLzvLi/q57ox1Hc/4LatF2kTkR8DNwPdV9TwRuQa4UVU/EnUFoTwXaSvllQtXb+ngiR0HuWruaTklhq6e3hGdxWFjZfLIC3tYs/0Ai+fNCJ1Uk923YTertx9gybwZoZN+VPVbs/UNPve9rSjxPvN7f68179+569+HKa5Mi7Rlm/h/Dbgf+CBwBNgDXK+qex3XM61yS/y2cqHJl/3OTTbyWp1TVX+hqlcADcD7VfVDhUr65cj3WaZh2AYZheXD79yUrqzG8YvIXcCKYJVNRGQq8XX0bWRPCL7PMs2VbZBReMX+nZvSlm3n7kcSSR8g2Dil4vbKdcX1NneF3jYvuTzTgm7ZXvn73sHta7zE73x8NdRWVzG+Or+ZxQntnd2sinXQ3pndxDxTmrKduVstIrWq2gsQLLNsDYl5cL3NXaG2zRte/qeXtlBTVcVxTlx9Vouw4dVDXPb+UwEy1sn3Dm7f48X2vsV7A0Dw2sdefyuveLev3sFDm/YN3V96UTN3Lp4bOp7xV7adu7cCVwP/l/jM7k8Bj6vqimirF1dunbu+y9Rx+MTNH+Kqrz+XUl47TgChd9gSy3W11RzvG0BEmDCuekSi872D2/d47Z3dXHHvsyPKn77lEloaJxc9nvFDvp27K4C/B34d+A3gbwuV9E3hZeo43NpxdET5+Opqbr6shQk1VUxKWiump3eA/kHoG9C0TUC+d3D7Hm9rx9Gcygsdz/gt60XaVPVHwI8irIvxRKaOw9amKWnL/+DCZv7gwmY2vHqIO/79FXp6U9ekSUgkuvq6Wu87uH2P19o0JafyQsczfhv1il9Engu+d4vIO0lf3SLyzhiPnSAiPxORbSLyioh8KSifJiLrRGR38H2qu9OpbK728D3RcVjF+GphfHW8s7ilcXKwvHLV0FeiQ/HIu+/R09tP30DmpsNj7/XzlbWvsXpLB0fefY+Pf2Am4wRqqoXx1eKkg7umCqqroKbKzbLM46vFaf1cxWtpnMzSi5pTypZe1By6WcZ1POO3Ua/4VfVDwfcwv/1e4HJV7RGRGuC5YAbw7wLrVfXLInIbcBuwPER8k8T1Hr4rYx28N5C4QlW+H+vg6tbTie19K6U9P/b6W8T2vpXSKZhJv8Z3TBqxa1LwxyLxHGF9fcNuEk3oA8A3NuzOK178NTjxhyzf+rmO53od5TsXz2Xp/Fls7ThKa9MUS/plbMw2fhGpSqzKmQuN6wnu1gRfCiwGHgzKHwSW5BrbpCrUnsCrt3SMSPAPbdyXVdLPRj51Xr/zYNo9WdfvDLe6pO/7LLd3dqf9XeQ7DLOlcTLXtDVZ0i9zYyZ+VR0EtolI81jHDici1SKyFThEfLP1F4HGxD67wfdTMzx2mYjERCR2+PDhXJ+6ohRqf9NCLNEbts6Z9gPOVB62Hr7sGWudsSYf2U7gmgG8EqzJ/3jia6wHqeqAqrYCM4ELROScbCumqverapuqtjU0NGT7sIpUqP1NC7FEb9g6Z9oPOFN52Hr4smesdcaafGSb+L8EXAXcCXwl6SsrwazfZ4ArgU4RmQEQfD+UfXVNOoXa33TJeU1pOwCHl4WVT50XzjmN2Y2TUspmN05i4Zxwf6x83zPWOmNNPkadwCUiE4A/AVqAHcADqprVOvwi0gD0qerRYKbvWuBu4LeArqTO3WmqeutosWwCV3Zc70eaKV57Z/eIDsDkMiDt7U3/9ebQksTvn3Eyz+5+k1PrxnOo5z1ndV6/8yBrd3ayaE5j6KSfrFCvaVjpfhfGJIRalllEHiW+69ZPgY8Ar6vqZ7N8wnnEO2+riX+yWKmqd4pIPbASaAb2Adeq6lujxbLEX/qSlys41tefcUavMcadTIl/rAlcc1R1bhDgAWD4LlwZBdszfiBNeRewMNs4pvQlL+R2Yk0fpW8g/uHx1se2s6Bluq0jb0yBjNXG35e4kW0TjzHDpVuuIJmtI29MYY2V+M9Nnq0LzMt25q4pX7ku3ZtuuYJkx/sH6OtPv8xD1HWzeKYSjTVzt3q0n5vKE2bp3sRyBbcOa+OH+CJufQPKNfdtynsZYNfLCldaPFM5sh3OaUzWs0WHb9SyreMoC1qm8/zyy3nkpgt58YtX8N2bLhyxrk8+M09dz2SttHimsmS9Oqcxo80WTQwlzHb0zoZX00/fSI7lum4Wz5g4u+I3WRtrtujwbRhHW4/f92WFKy2eqSyW+E3WxpotmsvoHd+XFa60eKayZLX1YrHZBC6/ZJotmm57wWTpthp0PfPU4hlzQqiZu76wxF86Ht/6xojROzZD15jiCDtz15icXN16OgtaprP/yLGhbQUTt21mrjF+sMRvnKuvq01J8pbwjfGLde4aY0yFsSt+UzBdPb3WBGSMByzxm4KwZZmN8Yc19ZjI5TKxyxgTvcgSv4g0icgGEdklIq+IyGeD8jtE5A0R2Rp8fTSqOpjCSV6fZzhbltkYv0TZ1NMPfF5Vt4jIZGCziKwLfnavqv5jhM9tCii5GSdd081YyzL3DQ4OtfsbY6IX2RW/qh5Q1S3B7W5gF2ANuWVmeDNOuqabxLLME2qqmFw7jnFVUFMtTK4dx4SaKlZ8fJ518BpTQAXp3BWRWcS3YXwRWADcLCJLgRjxTwVH0jxmGbAMoLm5efiPjScSzTgntlQ80XSTnMxtYpcx/oi8c1dE6oDHgD9X1XeAfwbeB7QCB4CvpHucqt6vqm2q2tbQ0BB1NU1I6ZpxMjXd1NfVcm7TlKEJXonbxpjCijTxi0gN8aT/HVX9AYCqdqrqgKoOAt8ELoiyDiZaw5txRmu6Sd4m0LYMNKZ4Imvqkfjeeg8Au1T1q0nlM1T1QHD3Y8DLUdXBFMbwZpx0SX/4NoHJbMtAYworyjb+BcAngB0isjUo+yLw+yLSCiiwF/h0hHUwBTJ8fZ5k6bYJTPbQxn0snT/LlhU2pkAiS/yq+hwgaX70ZFTPafyUaZvA4cdY4jemMGzmrolcNtsB2paBxhSOJX4TuXTbBCazLQONKSxbpM0UxJ2L57J0/qyhbQIB2zLQmCKxxG8KpqVxckqSt4RvTHFYU48xxlQYS/zGGFNhLPGbjEZbatmHeMaYcKyN36Q11lLLxY5njAnPrvjNCNkstVzMeMaY/FjiNyOk2zErn12yXMczxuTHEr8ZIZellosRzxiTH0v8ZoRcllouRjxjTH5EVYtdhzG1tbVpLBYrdjUqTldPr9NdslzHM8aMTkQ2q2rb8HIb1WMyGm2pZR/ipeP7HyuLZ/F8YInflA3fh6BaPIvni8ja+EWkSUQ2iMguEXlFRD4blE8TkXUisjv4PjWqOpjK4fsQVItn8XwSZeduP/B5Vf11YD7wpyIyB7gNWK+qZwHrg/sVyfeZsaU009b3IagWz+L5JModuA4AB4Lb3SKyCzgdWAxcGhz2IPAMsDyqevjK94+ZpfSxFfwfgmrxLJ5PCjKcU0RmAR8AXgQaE5utB99PLUQdfOL7x8xS+9gK/g9BtXgWzyeRD+cUkTrgP4C/V9UfiMhRVZ2S9PMjqjqinV9ElgHLAJqbm89//fXXI61nIW3rOMr133qR7t7+obLJteN45KYLOTfEFoS+xysk30dpWDyLV0hFGc4pIjXAY8B3VPUHQXGniMxQ1QMiMgM4lO6xqno/cD/Ex/FHWc9C8/1jZql9bE3m+xBUi2fxfBDlqB4BHgB2qepXk370OHBDcPsGYE1UdfBV4mNh7bgqThpfTe04Nx8z3ccTTqqppnacpMQL2+mb7nG+d0hbPFOOorziXwB8AtghIluDsi8CXwZWisiNwD7g2gjr4C1N/KsydM+/eAJCEDMubKdvuscpeN0hbfH87tA34dmSDUXQ1dPLgrt/wvG+E80pE2qqeH755aGu0gsV74mbP8RVX38u5+dJF692XBWg9PafeP+Vwmtg8UwpydTGX9aLtPn6Mdj3McSZ4m3tOBrqedLFq64SqqX0XgOLZ8pB2S7Z4PPH4JlTJ3K8fyCl7Hj/QF6dsT1JI3AAenr7ncdrbZoSqtM33fn2DQxSJanH+dQhbfFKp0Pf5K4sr/hLYVz78Ca2fJrcjrz73ohWfQ3KXcYDQo9VTne+t//33/B2HLXF83scuslPWV7xJz62HufEFUziY2uYN3IU8SbWjEsZJz+xZlzoeFs7jmYsb2mc7DTeNW1NLGiZntNY5Uzne85/O4Xnl1/ubNzz1a2n51w3ixddPOOvskz8vn8Mdh2vNcOkqkzl+cbLdazyaOfr+zhqi2fKUVk29Yw1Dj1sPF8/Vrc0TmbpRc0pZUsvag51tR9FPNfzDIwx+SnLK37IPA49LN8/Vp9/xjS+97N9CFUog7SdMc2reK7nGRSK71P6Ky2ecaMsx/FX2phk38d0l+rvw+eRYZUYz+SuosbxV9qYZN/HdJfi78P3kWGVFs+4VZaJP6oxyb5OCCt053Ou9R4tnuvXdPWWDm568CVWb+nIK47vf/wqLZ5xqyzb+BOdibcO+5iZT7OCzx+D6+tqaZ42kZ93vjtUdsa08G2q9XW1tJ0xlefau4bKfvOMqdTX1Yaqd31dLdedP5OHNu0bKruubSbPtb/p9DWdf9c6Dr4Tn7vw9K5D3P3jV9n4xQ+HijVz6kR+1Zc66exXfflNsvN5ZJjv8YxbZXnFD/HO0+eXX84jN13I88svzyuh+P4xOLanKyXpA7zW+S6xPV0ZHjG69s7ulKQP8NP2LmJ7ukLVu6unl5Wb96eUPfrSfm5dtc3Za7B6S8dQ0k848M57oa/8j7z7HgODqf1fA4MaelJcfV0t17XNTCm7rm2mNyPDfI9n3CrLK/4EV2OSfZ8Q9uzuNzOWt51Zn3O8TBO4nt39Zqh6pzvf6ioJRvicuKrO5zX44dZfZixfcl5TzvGeaz+csTzMsNaunl5WxlL/+K2M7eezC88O/R71faSZTQjzV9le8bvk+8fgS86anlP5WDJN4LrkrOkc60tdw+dY39hrAqU734FBHdGU0p3H+kIfyFDnTOVjmV43IafysUTV5l1fV8u5TVOcJVXf4xk3LPFnwfePwW1n1nNxS+qV/cUt9aGu9gGmThofvyJPUl0lTDlpPPH9dU4Yfj+ddM0cl53dkPbYPYd7cqxt3NzTT8mpfCwTa9L/18hUPpao2rxddWYnrN95kOWrtrF+50En8WJ7uvjq2tdCNztGHa+9s5tVsQ7aO7srIl5CWTf1uOT7x+CHb5pPbE8Xz+5+k0vOmh466UP86vSkmuqUtXVOqqlma8fRtO3eYzXPpGvmWLerM+2xYZuntu1/O2P5wjmnFT1efV0ttdXC8b4TZbXVktfv3WVnNsCie58Z6it6NLaf2Y2TeOqWS0PHu/5bm4b6iv7pJ+1c3FLPwzfN9ybe7at3pAw4WHpRM3cunlu28ZJFufXit0XkkIi8nFR2h4i8ISJbg6+PRvX8UfD9Y3DbmfV8btHsvJI+ZL46HVcFw/I+gwpvdh8fNV66Zo5xGd55vzb9pJzrO9rjfIm3eksHbx9Pbdp6+/hA6Ct1153Z63ceTDtAIOyVf2xPV8YBAj7Ea+/sTkmqAA9t3Bf6ytr3eMNF2dTzr8CVacrvVdXW4OvJCJ/fhJSpKeoXb/4q7fGZro4T0rbxk76JqH8wbfGYMj3Ol3hP7EifQDOVFzre2p3pP4FlKh/LaAMOfIg32gq05RhvuMgSv6o+C7wVVXwTratbT+eRT13AHy2YxSOfuoCrW08P3YmcvEhb4uvW356d9tioVhQtdryr5qZvHspUPpZLM7zmmcrHsmhOY07lY3E94KBQAxh8eb+4jjdcMTp3bxaR7UFT0NRMB4nIMhGJiUjs8OH0Q+tMdG5fvYNr7tvEP/2knWvu28Tta3bk1Ykc2/sWvf2DQ1/7j/zK6xVFXcdbcl4TM04en1I24+TxoYaaAsxtSv9fJ1P5WBbOOY3ZjZNSymY3TgrVnwHuBxy4juf7+8V1vOEiXaRNRGYBT6jqOcH9RuBN4ssz/i0wQ1U/NVacctts3Xftnd1cce+zI8qfvuUSWhons3pLB0/sOMhVc0/LKnGNFu/1rndZu7OTRXMaQyeZZOt3HvQ63n0bdrN6+wGWzJvBpy87K3ScqBa+e+SFPazZfoDF82Zw/QfPDB0nIdf3SqHj+f5+yXfARqZF2go6qkdVhxoMReSbwBOFfH6TndHaFx/auHeo0+npXYfY0nF0zJEGmeLdvuZlXvhFvDXw0dh+p6MgfI+360A3b7xzPHS80ZbVcFG/l/Ye4eeHe5ydb7bvlWLF8/H9krw8yv0//YXT1U0L2tQjIjOS7n4MeDnTsaZ4MrUjTj2pJtRIg0zxEkk/l1iZ+D6qIop46Ua5+FQ/ixc+XtSrm0Y5nPO7wEZgtojsF5EbgRUiskNEtgOXAbdE9fwmvEzti0d+1Zf2+LFGGqSL98H3pd/YxZdREBbP4hUzXtSrm0bW1KOqv5+m+IGons+4defiuSydP4utHUdpbZpCS+PkjFcv2Yw0OP+MaTz60n4S+29devapvPBfIwd9+TIKwuJZvGLGi3p1U1uywWTU0jiZa9qahkYSTJ00fsToewnKR5P42NrbP8jxYFTPV5/+Ode1pbZX5jNqIWzdLF5cS+PktKNm8hmVUmnxotinOqrVTW3JBpO1/UeOUVc7LmUph7racaFW56ypquIPL5zFsovfl/KpotB1s3hxXT29vPT6kZSyl14/QldPr8XLUrpPyfmIcnVTS/wma2E/fo72uPq6Widjk31fQdX3eL4vPe57vISWxsnOxtqDu6Xlh7OmHpO1sB8/C7Eph+8rqPoez/c/TL7HKzWRTuByxSZw+aWrpzfUx8+wjytE3SwePL71jRHbleYzbrzS4vko0wQuS/zGmCE+/2EqhXi+8WLmrjGlptwTw3Cu25QrLV6psMRvTAbJU+bLtSnAVCbr3DUmjainzBtTTJb4jUkj6inzxhSTJX5j0qj04X6mvFniNyaNqOYetHd2syrW4WzvVNfxunp62dZx1Jq0ypx17hqTgesp88nrtQNO1393Ec86syuHXfEbM4r6ulrObZri5Eq/ktd/N36xxG9MAVT6+u/GL1FuxPJtETkkIi8nlU0TkXUisjv4Hm5naGNKTKWv/278EuUV/78CVw4ruw1Yr6pnAeuD+8aUPdfrtZfa+u/GL5Gu1SMis4AnVPWc4P5rwKWqeiDYf/cZVZ09Vhxbq8eUi/bObmfrtUcRr9KWqCh3vqzV06iqBwCC5H9qpgNFZBmwDKC5uTnTYcaUFNfrtZfK+u/GL9527qrq/arapqptDQ0Nxa6OMcaUjUIn/s6giYfg+6ECP78xxlS8Qif+x4Ebgts3AGsK/PzGGFPxohzO+V1gIzBbRPaLyI3Al4EPi8hu4MPBfWOMMQUUWeeuqv5+hh8tjOo5jTHGjK0ktl4UkcPA6xE+xXTgzQjj+6Dcz7Hczw/sHMtFIc/xDFUdMTqmJBJ/1EQklm6sazkp93Ms9/MDO8dy4cM5ejuc0xhjTDQs8RtjTIWxxB93f7ErUADlfo7lfn5g51guin6O1sZvjDEVxq74jTGmwljiN8aYClP2iV9EmkRkg4jsEpFXROSzw37+FyKiIjI9qewLItIuIq+JyG8Xvta5Ge0cReTPgvN4RURWJJWXxTmKSKuIbBKRrSISE5ELkh5Tauc4QUR+JiLbgnP8UlCecQOjUjrHUc7vHhF5VUS2i8gPRWRK0mNK5vwg8zkm/dyPfKOqZf0FzADOC25PBn4OzAnuNwFPEZ8cNj0omwNsA2qBM4H/AqqLfR5hzhG4DHgaqA1+dmoZnuNa4CNB+UeJ7/FQqucoQF1wuwZ4EZgPrABuC8pvA+4uxXMc5fwWAeOC8rtL9fxGO8fgvjf5puyv+FX1gKpuCW53A7uA04Mf3wvcCiT3cC8Gvqeqvaq6B2gHLsBjo5zjZ4Avq2pv8LPEaqjldI4KnBwcdgrwy+B2KZ6jqmpPcLcm+FLi5/JgUP4gsCS4XVLnmOn8VHWtqvYH5ZuAmcHtkjo/GPV3CB7lm7JP/MmCHcE+ALwoIlcDb6jqtmGHnQ50JN3fz4k/FN5LPkfgbOBiEXlRRP5DRH4zOKyczvHPgXtEpAP4R+ALwWEleY4iUi0iW4kvWb5OVV9k2AZGQGIDo5I7xwznl+xTwI+C2yV3fpD+HH3LNxWT+EWkDniMeKLoB/4KuD3doWnKSmLMa/I5quo7xBfhm0r84/RfAitFRCivc/wMcIuqNgG3AA8kDk3zcO/PUVUHVLWV+FXvBSJyziiHl9w5jnZ+IvJXxP9vfidRlC5E5JXMU5pznIdn+aYiEr+I1BBPFt9R1R8A7yPenrZNRPYS/wVtEZHTiP/FbUp6+ExONB94K805QvxcfhB8/PwZMEh8gahyOscbgMTt73PiY3JJnmOCqh4FngGuJPMGRiV7jsPODxG5AbgK+EMNGr8p4fODlHNcjG/5ppgdIYX4Iv4X9SHga6Mcs5cTnS2/QWpnyy8ojQ6lEecI/AlwZ3D7bOIfKaXMznEXcGlweyGwuYR/jw3AlOD2ROCnxJPhPaR27q4oxXMc5fyuBHYCDcOOL6nzG+0chx1T9HxT6M3Wi2EB8AlgR9DuBvBFVX0y3cGq+oqIrCT+RuwH/lRVBwpS0/DSniPwbeDbIvIy8B5wg8bfbeV0jn8M/C8RGQccB5ZByf4eZwAPikg18U/jK1X1CRHZSLyZ7kZgH3AtlOQ5Zjq/duKJb128JZJNqvonJXh+kOEcMx1crHO0JRuMMabCVEQbvzHGmBMs8RtjTIWxxG+MMRXGEr8xxlQYS/zGGFNhLPGbsiUiA8Gqna8EqyV+TkRCv+dF5EPByouvBl/Lkn7WECyN8Z8SX0X0M0k/uzBYebIShk+bEmBvRFPOjml86jwicirwb8QXcvubXAMFsyz/DViiqluCZXWfEpE3VPX/EZ889qqq3iAijcBGEVkFdAFfB/6HnliILNfnFuJDrwfDPN6Y4WwcvylbItKjqnVJ938NeIn4shVnAA8Dk4If36yqL4jIw8AqVV0TPOY7wKPAbxJffPH2pHgLgTuAPwMeJz5T8w3gIuCPgse8BJxPfGLZl4FLiU9W+oaq3hesPbSG+JpKNcBfq+qaYCG6HwEbgnhLVPV1l6+PqVyW+E3ZGp74g7IjwPuBbmBQVY+LyFnAd1W1TUR+i/iib0tE5BRgK3AWsBJ4MPEHIYh1CrBHVaeJyCeBNlW9OfhZFbCR+EqabcDHie+H8HciUgs8T3wGbgdwkqq+E3yK2BQ83xnEp+9/UFU3RfICmYplTT2m0iRWQ6wBvi4ircAA8bWMUNX/EJFvBE1Dvws8pqr9QXNLuquktFdOqjooIvcR/2PQJSKLgHkick1wyCnEE/x+4C4RuYT4InqnA43BMa9b0jdRsMRvKkbQ1DNAfHXLvwE6gXOJD3I4nnTow8AfAr9HfH14gFeIX7k/nnTc+cTXWMlkMPiC+B+cP1PVp4bV6ZPEF/Y6X1X7gtUbJwQ/fjf7szMmezaqx1QEEWkA/gX4erBQ3SnAgaDD9BNAddLh/0p83wZU9ZWg7BvAJ4NPCIhIPfFtAleQnaeAzwRLSyMiZ4vIpKAeh4KkfxnxJh5jImVX/KacTQxW8qwhvvLhw8BXg5/9H+AxEbmWeAfq0NW1qnaKyC5gdVLZARG5HvimiEwmfgX/NVX99yzr8i1gFvF12AU4THwLxe8A/y4iMeL9Ca+GOVFjcmGdu8YMIyInATuIb+7+drHrY4xr1tRjTBIRuYL4Vff/tqRvypVd8RtjTIWxK35jjKkwlviNMabCWOI3xpgKY4nfGGMqjCV+Y4ypMP8fFF03YlhPduQAAAAASUVORK5CYII=", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.14878293554077535\n", + "-0.16673322492745407\n" + ] + } + ], + "source": [ + "print(new_pumpkins['Month'].corr(new_pumpkins['Price']))\n", + "print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "상관관계는 꽤 작아 보이지만, 더 중요한 다른 관계가 있는 것 같습니다. 위의 플롯에서 가격 지점들이 몇 가지 뚜렷한 클러스터를 형성하는 것처럼 보입니다. 이제 다양한 호박 품종을 보여주는 플롯을 만들어 봅시다:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA7VklEQVR4nO2deXxU5fX/34cQzACyR6WyBEEpyBIlYF3rAlQtAi61Rtx+xq9tNZbar1q7iHxb7FdxrVr7VZt+QYGIS12wdcMvtmqtLIoIRFHbhCKUhMhO2M/vj3uTzCQzSWbmzsydmfN+ve7rzj1z7+c+T2Zy5rnneZ7ziKpiGIZhZA/tUl0AwzAMI7mY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFlG+1QXoC306tVLCwoKUl0MwzCMtGLZsmWbVDW/qT0tHH9BQQFLly5NdTEMwzDSChGpCme3UI9hGEaWYY7fMAwjyzDHbxiGkWWkRYzfMBLJvn37WLduHbt37051UQwjJvLy8ujTpw+5ubltOt8cv5H1rFu3jkMPPZSCggJEJNXFMYyoUFVqa2tZt24dAwYMaNM1FuoxIlJTA0uWOPtMZvfu3fTs2dOcvpGWiAg9e/aM6onVHL8RlvJy6N8fxo1z9uXlqS5RYjGnb6Qz0X5/zfEbzaipgZISqKuDrVudfUlJ5rf8DSNbMMdvNKOyEjp0CLXl5jp2IzHk5ORQWFjIsGHD+M53vsOuXbsA6Ny5MwCVlZUEAgEKCwsbtieeeCJE4/zzz6ewsJBBgwbRtWvXhvPOPPNMfvKTnzScV1VVxVFHHcWWLVs4/fTTGTx4MCNHjuTkk0/m008/BWiw12tcdNFFSfpLGElBVX2/jRo1So3kUV2tGgioQuMWCDj2TGT16tWpLoJ26tSp4fWll16q9957b4j9n//8px577LFt0lq0aJF++9vfbjjetWuXDh48uKGekyZN0jlz5qiq6je/+U1dsmSJqqo++uijet555zWzG+lBuO8xsFTD+FRr8RvNyM+HsjIIBKBLF2dfVubY4yGjOosTWJlTTz2Vzz//3DO9QCDAfffdx3XXXccrr7zC9u3bmTJlSrPzTjvtNE/va/gXc/xGWIqLoaoKFi509sXF8ellVGdxAiuzf/9+XnnlFYYPH97svS+++CIk1PP222+3Wffcc8+lR48eXHHFFTzyyCNhz1mwYEHIfadMmdJwr5tvvjn6yhi+JaHj+EWkEtgOHAD2q2qRiPQA5gMFQCVwsapuTmQ5jNjIz4+/lQ+hncV1dY6tpATGjvVGP6kkqDJ1dXUUFhYCTou/pKSk2TkDBw5k+fLlMd/j+uuvp66ujsGDB4fYp0yZQiAQoKCggIceeqjBPnfuXIqKimK+n+FfkjGB6wxV3RR0fCvwpqreKSK3usc/CX+pkQnUdxbX+0lo7CxOO8efoMoEAoG4nHpbaNeuHe3aNX/INweffaQi1DMJmO2+ng1MTkEZjCRSUAB794ba9u1z7GlHRlXGyFYS7fgVeF1ElonIta7tcFXdAODuD0twGYwUk6jO4pSQwso0jfE/+OCDCb1fcIx/7NixCb2XkVzEGfGTIHGRr6nqehE5DHgDuAF4SVW7BZ2zWVW7h7n2WuBagH79+o2qqgq7noCRRtTUOBGRggJ/Of2KigqGDBkS3UV+rYyRtYT7HovIMlVtFsdLaIxfVde7+2oReR4YA2wUkd6qukFEegPVEa59DHgMoKioKHG/TkbS8Kqz2BdkVGWMbCNhoR4R6SQih9a/BsYDK4GXgCvd064EXkxUGQzDMIzmJLLFfzjwvJs8qD0wT1VfFZElwNMiUgKsBb6TwDIYhmEYTUiY41fVfwAjw9hrgbMSdV/DMAyjZWzmrmEYRpZhjj+FeJ3uxe96hmH4A3P8KcLrdC9+1zNaRkS4/PLLG473799Pfn4+EyZMAGDWrFmUlpYCMH36dDp27Eh1deOAuPr0zU1fA9x///3k5eWxdetWamtrG8bmH3HEERx55JENx2vWrGHYsGEh106fPp177rkHgKuuuooBAwZQWFjIyJEjefPNNxvOszTO6YU5/hTg9UInftczWqdTp06sXLmSOjcVxBtvvMGRRx4Z8fxevXpx7733tkm7vLyc0aNH8/zzz9OzZ0+WL1/O8uXL+f73v8+NN97YcNyh6SIMYbj77rtZvnw5DzzwAN///vdD3ps7d26D1rPPPtumshmpwRx/CvB6oRO/62UiiQiDnXPOOfzpT38CHGdd3EJK1Kuvvpr58+fz1Vdftaj5xRdfsGPHDmbMmEG5h49tJ554Il9++aVnekZyMcefArxO9+J3vUwjUWGwSy65hKeeeordu3ezYsUKTjjhhIjndu7cmauvvprf/OY3rZTV+QE59dRT+fTTT0PCQ/Hw6quvMnny5BCbpXFOH8zxpwCv0734Xa+eTOgsTmQYbMSIEVRWVlJeXs65557b6vk//OEPmT17Ntu2bYt4zlNPPcUll1xCu3btuOCCC3jmmWcinhtpwe5g+80338xRRx3FZZddxs9+9rOQ84JDPXfffXer5TdSRzLSMhthKC52Urh7le7F73rl5Y6D7NDBeZooK4t/cZdUkOgU0xMnTuSmm27irbfeora2tsVzu3XrxqWXXhpxYZUVK1bw2WefMW7cOAD27t3LUUcdxfXXXx/2/J49e7J5c+jSGF999RUDBgxoOL777ru54IILePDBB7nyyitZtmxZNNUzfIK1+FNIfj6MHu1dyhe/6mVSZ3Giw2BXX30106ZNC7sCVzh+/OMf8+ijj7J///5m75WXlzN9+nQqKyuprKxk/fr1fPnll0RKeNi5c2d69+7dMFrnq6++4tVXX+WUU04JOa9du3ZMnTqVgwcP8tprr0VZQ8MPmOM3Ek46dxbv2wc7dzp7iD8MVlcHmzaFPjEE06dPH6ZOndrm8nXt2osJE85nz549zd576qmnOP/880Ns559/Pk899VREvSeeeIIZM2ZQWFjImWeeye23387AgQObnSci/OIXv2DmzJkNNkvjnD4kNC2zVxQVFenSpUtTXQwjRmpqnE7QYGcXCDhr+fohwWWktMy1tU4ZRUDVqUPPns57sWRlXrsWgvtWDzsM+vWLvdwtlc/IPqJJy2wtfiNqKipg9mxn3xbScSGWffscp3rwIBw44OyrqkJb/tGEwerqQp0+OMeRWv7xls8wWsI6d42ouOEGePjhxuPSUghanzsiXncWJ5q9e52WdDAijj03N3q9nTsj2wOB1JfPyC6sxW+0mYqKUKcPznE0LX8vO58TSYcOTvgkGNXmfRVtpVOn6Oyt4XX5jOzCHL/RZhYvjs6ezuTmOjHzdu0gJ8fZ9+8fe2s6EHBi+sEcdlhsrf1ElM/ILizUY7SZMWOis6c7PXs6fRJ79zot6Xidar9+ztPOzp1OSz9Wp5+o8hnZQ8Jb/CKSIyIfisjL7vF0EflSRJa7W+tTFA1fMGSIE9MPprTUsWcqubmOk/bKqQYC0KtX/E6/Hq/L13T4qpGZJCPUMxVoGgW+X1UL3e3PSSiD4REPPQSrV8OsWc6+LR27Ruvk5OQ0jIEvLCyk0p3kEJxSuZ633norJF1zfn4+hYWFfP3rX+f+++9n9+7dfP3rX+fjjz9uuGbmzJmcddZZDfo9evRoSLFcP+Z+0aIP6dBBmDXrNT7+2BkuCs3TPIOTrjk4pXNhYSFbtmxJzB/H8JyEhnpEpA/wbeAO4MeJvJeRPIYMyexWfioIBAIsX768mT04pfJVV10V9trvfve7PPzww9TW1jJ48GAuuugiHnjgAa677jr++te/sn79eh599FGWLl1K9+7dASe3/oQJExry5u/bB7NmlVNYeAqvvFLOCSd8i6oqJ5QUiRtvvJGbbrop3qobKSDRLf4HgFuAg03spSKyQkT+ICLdw10oIteKyFIRWVqTjnP7jYymZmcNS75cQs3OxH03o02p3LNnTwYNGsSGDRs4++yz6d27N0888QQ33ngj06dPb3D64dizR3nzzWe5/fZZvP/+6+zZs7theKiReSTM8YvIBKBaVZtmcfodMBAoBDYAYVeTUNXHVLVIVYvy02H8n5E1lH9cTv8H+jPuyXH0f6A/5Svjz8tcV1fXEDKpT7MQbUrltWvXsnv3bkaMGAHAAw88wM9//nNqampCVvcKx9Kl7/K1rw2gT5+BjBp1Ou++++dWh4fef//9DWU+44wzoquwkVIS2eI/GZgoIpXAU8CZIjJHVTeq6gFVPQg8DmTomBAjE6nZWUPJSyXU7a9j656t1O2vo+TFkrhb/vWhnuXLl/P8888DbU+pPH/+fI499liOOuoopk6dSl5eHgBf+9rXOPPMM/nBD37Q6v2feaac4uJLaNcOzj77El5/vbzV4aHBq3ctWrQo+kobKSNhMX5V/SnwUwAROR24SVUvE5HeqrrBPe18YGWiymAYXlO5pZIOOR2o29+YayE3J5fKLZXkd/LuyTSalMr1Mf733nuPb3/725xzzjkcccQRgJNJs127ltt3Bw4c4LnnniM39yV+85s7OHhQ+eqrWjp02A4c6lmdDP+QiglcM0XkYxFZAZwB3JiCMhhGTBR0K2DvgdDA974D+yjoVuDpfaJNqQzOcoiXX355q6tyNWXhwoWMHDmSf/3rX1RWVrJ2bRUXXnghL7zwQpy1MPxKUhy/qr6lqhPc15er6nBVHaGqE4Na/4bhe/I75VM2qYxA+wBdDulCoH2Askllnrb2IbaUygA/+clP+N///V+2b9/e5nuVl5c3u9eFF17IvHnzANi1axd9+vRp2O677z4gNMYfPATV8D+WltnIeiKlZW6Jmp01VG6ppKBbgedO3zBiIZq0zJaywTBiIL9Tvjl8I22xJG2GYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvJI2aGliyxNknipdfhmuucfZesGWLs1ykV4knvdbzOo2y3/UMbzDHbySF8nJnhahx45x9G3KORc3w4XDeec5C7uedB27KmphZtQo+/xw2bXL2q1YlTk9EQvLp7N+/n/z8/JD0y6XuYgg//OEP+dWvfkVtLXz8Mdxyyx1MmXI9tbVO1s36dMuFhYWcdNJJDdfn5+dz3HHHcfTRR/Otb32Lv/3tbyHlq9f78Y+nc/PN9zSkZQYoKChg06ZNQPMU0nfeeScAp59+OvXDrgsKChg6dDhDh47gtNO+yeuvV7WY5nnr1q1cccUVDBw4kIEDB3LFFVeEpKJetWoVZ555JscccwxHH300v/rVr6gfij5r1ixEhDfffLPh/Oeffx4R4dlnnw25z6xZsyguLg6xbdq0ifz8fPbs2QPApEmTOPHEE0POCU5DPXTo0JCkeVdddVXDfU4//XQGDx7c8Le56KKLuOOOOxqOg/92Dz74INOnT+eee+5p0An32W3cuJEJEyYwcuRIhg4dyrnnxr+EiQ3nNBJOTQ2UlEBdnbOBczx2rHfr7778Mqxskvzj448du+s7o2LLlsay1lNX59i7dfNer1OnTqxcuZK6ujoCgQBvvPEGRx55ZFitGTNmUFhYyMiRU1AVXnjh98yZ8yFVVXDwINx9990N6ZaDqU/tALBo0SIuuOACFi1axJAhQ9i3j4brVZ2tPi1z03w9kVJIN+WhhxbRtWsvHn30dh5/fAa9ez8eMc1zSUkJw4YN44knngDg9ttv55prruGZZ56hrq6OiRMn8rvf/Y7x48eza9cuLrzwQh555JGGFBbDhw+nvLycs846C3AmwI0cObLZfS644AJuuukmdu3aRceOHQF49tlnmThxIocccghbtmzhgw8+oHPnzvzzn/9kwIABDdfWp6H+7LPPGDVqFBdddBG5YZIZzZ07l6Ki0KHzP//5zwHnRy/4bzd9+vSQ88J9dtOmTWPcuHFMnToVcNJ5xIu1+I2EU1nZPMtjbq5j94pI2QVizToQKRTTaK8Blrh7L/TgnHPO4U9/+hPQmJkzHF26dOG22+5g5sxSZs68nu9975ccemg3RBzH3RbOOOMMrr32Wh577DHASb8sEnpOPGmZVRv1hg8/kZqaLyPqff755yxbtozbbrutwTZt2jSWLl3KF198wbx58zj55JMZP348AB07duThhx9ueNIAOPXUU1m8eDH79u1jx44dfP755xQWFja7V5cuXTjttNNYsGBBg+2pp55q+Fs/99xznHfeeVxyySURZ0kfffTRdOzYkc2bN0f7Z4mJDRs20KdPn4bjEfE+ymKO30gCBQXN/+H37XPsXjF5cnT21ojUqnfs5UB/YJy7bz1u1bKeQ72z2b17NytWrOCEE06IqHfZZcVs27aZnTu3ce65TohI1Vl0/eabb24IF0yZMiWixvHHH88nn3wCOD/MwZP4y8vv55JLCjnpJEdn/fr1De8Fp5AuLCxk/vz5zbRFGvXee+9VvvnNyRHTPK9evbohDFJPfUhk1apVrFq1ilGjRoVcM3DgQHbs2MG2bdvc+wljx47ltdde48UXX2TixIkR611cXNzg1NevX8+aNWsa0krX/+AWFxdHXAPhgw8+4Oijj+awww4L+/6UKVMa/jY333xzxHKEI9xnd/3111NSUsIZZ5zBHXfcEfJZxIqFeoyEk5/vxN1LSpyW/r59zrGXyyxMmODE+INWG2T48NjCPOA45EAgNDwTCEC3bjVACVDnbrjHY4HIFYqs13g8YsQIKisrKS8vbzWOu3HjOrZu/TcHDgh79uwgEOhM//6O448U6mlKcLqW3Fyn76WqynHal156I7fddhM9ezrvFwT9Src11HPDDWfw739vpEePw7j++hkR0zyrKtL0cSPIHul9IMR+ySWX8OCDD7J161buvfdefv3rX4e9ZsKECVx33XVs27aNp59+mosuuoicnBw2btzI559/zimnnIKI0L59e1auXMmwYcMAJzfR448/zj/+8Q9effXViPUOF+ppK+E+u29961sN93zllVc47rjjWLlyJfGsU2ItfiMpFBc7TmXhQmcfIYoRFytWwIIFzg/MggXOcTwceywMGuQsjj5okHMMlUDTZmuua49FL5SJEydy0003RQzz1DN16lR++cvpFBdfzDPP/BfDh9PgpNvKhx9+GJLbpWdPGnR6945eryl//esiKiurGDnyWJ59dlpEvWOPPZYPP/yQg0FxqoMHD/LRRx8xZMgQjj32WJrm6vrHP/5B586dOfTQxrTRY8aMYeXKlWzatIljjjkmYrkCgQBnn302zz//fEiYZ/78+WzevJkBAwZQUFBAZWVlSLjnxhtv5NNPP2X+/PlcccUV7N69O5Y/S0z06NGDSy+9lCeffJLRo0fz17/+NS49c/xG0sjPh9GjvW3pN2XCBPj972Nv6TelWzcnJNXYMi8Amgaq97n2WPRCufrqq5k2bRrDhw+PqPHKK69QXV3NFVdcwfTpt/Hyy8/z2Wer23T/ev7yl7/w2GOP8R//8R8h9txcJxwTFHWJiy5dAjz88APMmfMEX331VdhzBg0axHHHHceMGTMabDNmzOD4449n0KBBTJkyhXfeeYeFCxcCTqjphz/8Ibfcckszrf/+7/+O2NIPpri4mPvuu4+NGzfyjW98A3DCPK+++mpDKuxly5aFjfNfcMEFFBUVMXv27Db9DeLl//7v/9i1axcA27dv54svvqBfv35xaZrjN4yoyAfKgADQxd2X0VKYJxr69OnTMHojHLt37+ZHP/oRjzzyCCJCp06dmDlzZsNQTwiNExcWFrLX7WCZP38+hYWFHHPMMfz617/mueeeizorKTSP8d96660tnt+7d2+Ki4v57W9/C4RP81xWVsaaNWsYNGgQAwcOZM2aNZSVlQFOC/3FF19kxowZDB48mOHDhzN69OiQOtdzzjnntGkZyPHjx7N+/Xq++93vIiLuOgRrG34EAAYMGECXLl14//33m10/bdo07rvvvpCnlHqCY/xjx45ttSzBhPvsli1bRlFRESNGjODEE0/kmmuuYfTo0VHpNiXhaZlFJAdYCnypqhNEpAcwH6eJVAlcrKotdo9bWmZ/UVPjjMgpKIi/9T53Ljz9NFx8MbTQD5nQssWSltkZzVOJ8zVOXZbOHTtg61bo2hXCDI9PuV5dnTOBq1Mnp0/DSBzRpGVORot/KlARdHwr8KaqHg286R4baYKXE7H69oXLLoOXXnL2cT69JmWSWCP5wGhS6fTXrIFPPoENG5z9mjX+0lu71pmkVlnp7NeujU/P8I6EOn4R6QN8G/h9kHkSUB8cmw1MTmQZDO8Inoi1dauzLymJLQXD3Lmwbl2o7V//cuypLls6sGMHuCMZG9i2zbH7Qa+uDqqrQ23V1c0nsRmpIdEt/geAW4DgQNjh9cstuvuwg2FF5FoRWSoiS2sy9b83zfByItbTT0dnb414y5YOK9EFE5TNoE32ZOvt3Bmd3YiPaL+/CXP8IjIBqFbVZbFcr6qPqWqRqhbFM17V8A4vJ2JdfHF09taIp2x5eXnU1tamlfPv2jU6e7L1OnWKzm7EjqpSW1tLXl5em69J5ASuk4GJInIukAd0EZE5wEYR6a2qG0SkN1DdoorhG7yciDVlCvz0p054p56+fWPv4I2nbH369GHdunWk25Pljh0QPJQ8Ly/075lqvT17IHjN90MP9TZNh9FIXl5eSFqH1kjKYusicjpwkzuq526gVlXvFJFbgR6q2nxAbhA2qsdfZNqonnTm3Xfh9ddh/Hg4+WT/6VVUwOLFMGYMxDBy1IiTSKN6UuH4ewJPA/2AtcB3VDX8zA4Xc/yGYRjRE8nxJyVXj6q+Bbzlvq4FzkrGfQ3DMIzm2MxdwzCMLCOjHX8ylvqLB6/LV1EBs2c7+2zQSwZef0Z+/04aWYKq+n4bNWqURsu8eaqBgGrXrs5+3ryoJRKK1+UrLa1fN8nZSkszWy8ZeP0Z+f07aWQewFIN41OT0rkbL9F27tbUOFP2m+Y+r6ryx0gPr8tXUQFDhza3r14d20gKv+slA68/I79/J43MJJW5epJOMpb6iwevy7d4cXT2dNdLBl5/Rn7/ThrZRUY6/mQs9RcPXpdvzJjo7Omulwy8/oz8/p00souMdPz1szgDAejSxdl7vdRfPHhdviFDoGlq8tLS2MMoftdLBl5/Rn7/ThrZRUbG+Ovx+yxOr8vn9SxJv+slA68/I79/J43MIqUzd+PFZu4abcUcq2E0klWdu0Z2ktyFWAwjfTHHb2QE2bYQi2HEgzn+FOL1LM6XX4ZrrnH2idSL9T7hrps7FyZNin3lrXoSNVzy3Xfh9tudvRd4ref1Z24zi7OEcLO6/LbFMnPX73g9i3PYsNCZscOHJ0Yv1vuEu65Pn1Bb376xl7e6WlUkVE/EscfKuHGheuPHx66VCD2vP3ObWZx5EGHmbsqdelu2THP81dXOP1bwP20gELuTWrAgVKt+W7DAW73bbovtPpH0wm1z5nhb5lj/Bu+8E17vnXf8oed1fb3+Thr+IJLjt1BPCvA6LPHCC9HZY9WbPz+2+0RTjljX3PX6b/D669HZk63ndX1tZnF2kcg1d/NEZLGIfCQiq0Tkv1z7dBH5UkSWu9u5iSqDX/F6FufkydHZY9X77ndju0805Yh1zV2v/wbjx0dnT7ae1/W1mcVZRrjHAC82QIDO7utc4H3gG8B0nNW4sjbUo9oYT+3SxZt46vDhoY/p8cZ7I+nFep9w1/XtG2qLJ8YfT9kiMX58qF68MXmv9byur9ffSVUnVLR4sXchI6/1Mh2SHepx77vDPcx1N//PFksSxcVOZsaFC519cXF8eitWwIIFzhDGBQuc40ToHXFE6Hm9e8eupx5/G7zWW78+9HjDhvj0XnsN3nkHpk1z9q+9Fp+e15+5199Jr+dV2DwNDwn3a+DVBuQAy4EdwF2ubTpQCawA/gB0b00nE1v86YiXHZRz5oTX8kvnrtd62YbXncXW+RwbpKJzV1UPqGoh0AcYIyLDgN8BA4FCYANwb7hrReRaEVkqIktrbFCxL/CygzJSJ65fOne91ss2LK21v0nKqB5V3YKz2PrZqrrR/UE4CDwOhE3Oq6qPqWqRqhbl+yTpit8n83hN08k88XZQButF6sT1S+eu13r1/O53cNppzt4LvNbzakKdpbX2OeEeA7zYgHygm/s6ALwNTAB6B51zI/BUa1p+CPX4fTKP10SazNO9e2i5e/SIXa9Hj9i0IuF1Z7HXerH+7ZKl5+WEOlXvO5+9nrCWDZDsCVzACOBDnFj+SmCaa38S+Ni1vxT8QxBpS7Xj9/tkHq+JFE+NFPdurdyR9PLymtv8EgP2Wu+RR8L/7R55xB96Xve5ZNv/jF+J5PgTOapnhaoep6ojVHWYqv7StV+uqsNd+0RVjXOsROLx+2Qer4kUT40U326t3OH02rWDnJzm9/BLDNhrvUgjUGIdmeK1ntd9Ltn2P5Nu2MzdNuD3yTxeEymeGim+3Vq5w+kdPAgHDjS/h19iwF7rRRoaGeuQSa/1vO5zybb/mbQj3GOA37ZUh3pU/T+Zx2siTeaJtdzz5jmhnU6dnP28ec7Wvr1qTo6zj3fCUL1eu3be6eXkOMnecnLi1/O6T8PvfSTZ9j/jR4gQ6rEVuKLg3XedR8vx4+Hkk/2n5zXhVrPq2xfWrWs8p29fWLu2da3ycmeiUbt2Tmu/rAxuuSU2rUj06AGbN4ce19bGrtepE+zaFXq8Y0fk85Ndvlg/i2TpQfb9z/iNSCtwpbw135bNDy1+I/YOwHAdpR06xKYVCa87O++6K7zeXXf5o3xed8Z6rWf4A+Lp3BWRY0TkTRFZ6R6PEJFfePvbZPidWDsAw3WUHjwYm1Yk/N556vfOWK/1DH/T1s7dx4GfAvvAGbEDXJKoQhn+JNYOwHAdpe0ifPNi7Uz0e+ep3ztjvdYzfE64x4CmG7DE3X8YZFvelmu92DI11JOOmQtj7QAM11nsdWei152dnTqF6nXq5K/y+X3CmpF6iHMc/yYRGQhOdk0RuQgnz44RI+mauXDtWpgzByZOdPZt7fwLl/kxVq1I1NbCI4/Aqac6+3g6TsHpyL3rLigsdPbxdOwmonx33QXt2zvzIdq3d47jwevPw/AvbRrVIyJHAY8BJwGbgX8Cl6lqZUJL5+KXUT1eUVPjOOe6ukZbIOA4xFjSEnmtZ/gf+8yNthBpVE+bWvyq+g9VHYuTf+frqnpKspx+JuL3Waax0DShm5FY/PCZG+lLW0f1/FpEuqnqTlXdLiLdRWRGoguXqfh9lmm02AIZySfVn7mR3rQ1xn+OOqmVAVDVzUDWrZXrFfn5zgSmQAC6dHH2ZWWxP6J7rVdPpFZ8zc4alny5hJqdNdTUOBOz6upg61ZnX1LS9pZ/sJYXZIte/Wd+SPca8gYu4ZDuNZ585hVra5j9xhIq1tqjWybTvo3n5YjIIaq6B0BEAsAhiStW5lNcDGPHNp8Z6xe9+pm2HTo4LcuyMuce5R+XU/JSCR1yOrD3wF5+NqyMDh2KQ2LNOTnw5z/DuW7TIFKZmmqVTSqjeFjs6/1lm97ftpWz57oSONABcvbyt21lFBO73g2PlvPwv0rgYAf4y15K+5bx0PfiXH/R8CVt7dy9BZgI/C/OyJ6rgZdUdWZii+eQaZ27fidSx+GyT2oY9WR/6vY3vhFoH0Dvq2L3V6Fe/dBDYfduEHGuDf7xAKfl2/+B5lpVP6oiv1P0v1rZplextoahj/WH3KAPaV+A1ddWMaRf6vUMfxBv5+5M4A5gCHAs8KtkOX0j+UTqOFz8aSUdckLfyM3J5ef3VBIIQOfOjfbt252Y89694UNAlVvCa1VuqYytzFmmt/jTSqdlHszBXMfuAz3D37Q5LbOqvqKqN6nqf6rqa4kslJFaInUcjhlcwN4DoW/sO7CP711cQFUVPPyw09KPRPCok4Ju4bUKuhXEVuYs0xszuADaNZ0Ovc+x+0DP8DctOn4RecfdbxeRbUHbdhHZ1sq1eSKyWEQ+EpFVIvJfrr2HiLwhIp+5++7eVSe78WoN34aOw0Mat7IyGNIvn7JJZeTlBAhIF/JyApRNKiO/Uz6bNsG2bc4PRCTq6mDaNGc9101r87myWxkdJMAh2oVD2jVqxVTmTk7ZOkiA3INd6CDe6B3SztvyeaU3pF8+pX3LYF8AdneBfQFK+5bFHJYJ0dsTv57hc8JN5/ViAwTo7L7OBd4HvgHMBG517bcCd7WmlakpG7wkWWsCl5aq0rFa+dpipWO1lpa6tjCZHdu0BWnFW+Zhw0L14l2Tddw4b8vntV64zyJeVldV66zXF+vqqgTm/TCSBrGuuYvzVLCytfNa0egIfACcAHyKu84u0Bv4tLXrzfG3TLLWN42UutfLLdYyR1oPeMECb/8GflkzdvXq8HqrV8emZ2QmkRx/qzF+VT0IfCQi/aJ9mhCRHBFZDlQDb6jq+8Dh6q6z6+4Pi3DttSKyVESW1th00BZJ1vqmyUjRG2uZI60HHMkeazn8smbs4sXR2Q0jmLZ27vYGVrk5+V+q31q7SFUPqGoh0AcYIyLD2lowVX1MVYtUtSjfko+0SLLWN01Git5YyxxpPeBI9ljL4Zc1Y8eMic5uGCGEewxougHfDLe15dogjduBm7BQT0JI1vqmTeP5ccf4PSzz8OGhevHG+P2+Zmy4z8IwgiGWNXdFJA/4PjAI+BgoU9X9bflBEZF8YJ+qbnFn+r4O3OX+aNSq6p0icivQQ1VvaUnLJnC1jWStb1pR4YQUxoyBIUOa2yD867fecmYEFxfDiBGO9hFHwL//7V2ZX37ZCe9MngwTJsSv5/c1Y8N9FoZRT6QJXK05/vk4q269DZwDVKnq1DbecAQwG8jBCSk9raq/FJGewNNAP2At8B1V/aolLXP86U9wCohduyLP6DUMwztidfwfq+pw93V7YLGqHp+4YobHHH96Ey4FRDCWR94wEkOsKRsapuO0NcRjGE0JlwIiGMsjbxjJpTXHPzJ4ti4woq0zd43MpaICZs929m0hXAqIYHbvbvn9aIi2bKZnZCXhenz9ttmoHv8Q60iS4MXWc3NVO3RwNi9HpXg9yiXb9IzMg1hG9fgFi/H7g4oKGDq0uX316tARJTU1jTn4IfzrNWvglFNa1/K6bKZnZBNxpWU2DGjbbNHgZRiPPBL69GlcknHhQhg92unE/fzz6O7hRdlMzzAczPEbbaa12aJNl2FsKR+/1zNPTS8+PSO7MMdvtJkhQ6C0NNRWWtoYWohm9E5rWl6XzfQMoxGL8RtRE2m2aCzj9b2eeWp6htFITBO4/II5/vShfoZubq7zAyACeXlO2Mdm6BpGconk+NunojBG5lJcDGPHhh/JYzNzDcMfmOM3PCc/P9TJm8M3DH9hnbuGYRhZhrX4jaQRaWKXPREYRnIxx28kBUvLbBj+wUI9RsKJZmKXYRiJJ2GOX0T6isgiEakQkVUiMtW1TxeRL0Vkubudm6gyGMmjpgaWLAnvwC0ts2H4i0S2+PcD/6mqQ4BvANeLSH1aqftVtdDd/pzAMhhJIDg/T//+znEwraVl3revMe5vGEbiSZjjV9UNqvqB+3o7UAEcmaj7GamhaRgnXOgmP9+J4wcC0KWL08Lv0MF5HQg471kHr2Ekj6TE+EWkADgOeN81lYrIChH5g4h0j3DNtSKyVESW1lgA2LeEC+OEC90UFzvpGhYuhC+/hHXrnNdVVdaxaxjJJuEpG0SkM/AX4A5V/aOIHA5sAhT4FdBbVa9uScNSNviXcPl5bA1dw/AHKcnHLyK5wHPAXFX9I4CqblTVA6p6EHgcsESyaUzTME5LoZvgZQJtyUDDSB0JG8cvIgKUARWqel+QvbeqbnAPzwdWJqoMRnJomp8nnNO/4QZ4+OHw15eWwkMPJbKEhmEEk7BQj4icArwNfAwcdM0/A4qBQpxQTyXwvaAfgrBYqCe9ibRMYDC2ZKBheE/Ss3Oq6juAhHnLhm9mGW1ZDnDxYnP8hpEsbOaukXDashygLRloGMnDHL+RcMItExiMLRloGMnFkrQZSeGhh+C66xqXCQRbMtAwUoU5fiNpDBkS6uTN4RtGarBQj2EYRpZhjt8wDCPLMMdvRKalXMt+0DMMIybM8RvhaS3Xcqr1DMOImYQnafMCm7mbZLzOvGaZ3AwjJaQkSZuRprQ113Kq9AzDiAtz/EZzwi2ZFc8yWV7rGYYRF+b4jeZEk2s5FXqGYcSFxfiNyNTUtJxrOdV6hmG0SNKzcxoZQH6+tw7aa71w+P3HyvRMzw+oqu+3UaNGqWG0yrx5qoGAateuzn7ePNMzvfTV8wBgqYbxqQlz1kBfYBFQAawCprr2HsAbwGfuvntrWub4jVaprnb+2aBxCwQcu+mZXrrpeUQkx5/Izt39wH+q6hDgG8D1IjIUuBV4U1WPBt50j7MTv8+MTaeZtn4fgmp6pucjEub4VXWDqn7gvt6O0/I/EpgEzHZPmw1MTlQZfI3fZ8am20xbvw9BNT3T8xPhHgO83oACYC3QBdjS5L3NrV2fcaEevz9m+vSxtVXqY6xdungbszU900uFngcQIdST8OGcItIZ+Atwh6r+UUS2qGq3oPc3q2r3MNddC1wL0K9fv1FVVVUJLWdSWbLEaUlv3dpo69IFFi6E0aMzTy+Z+H2UhumZXhKJNJwzoY5fRHKBl4HXVPU+1/YpcLqqbhCR3sBbqjq4JZ2MG8fv91w4llvHMDKCpOfqEREByoCKeqfv8hJwpfv6SuDFRJXBtwTPZO3UyduZsV7q5eU5enl5oXqxdvqGu87vHdKmZ2QgiRzVczJwOXCmiCx3t3OBO4FxIvIZMM49zk7qn7a8euryWk8kdA+xd/qGu87vHdKmF5+e4V/CBf79tlnnrk/0Vq+O7T6R9PLy0u9vYHpGGkEKxvGnHr8+BidqDHEvoAhnnwi9xYtjK3e4+rZrBzk50WtFcw/TS52e4Wsy1/H7+TG4oCC04xRg9+74xhBP2A5VOHOhq4AJO7zXGzMmtrHK4eq7dy8cOBC9Vkv38PO47GzTM/xNuMcAv21Rh3r8/hhcXa2amxuql5sbu17NatWdTf5sO3HsXuvFMlY5Un3/53/8PY7a9OLTM1IOEUI9mZmds/6xNbiVWf/YGstIl0TodewYOk4+EIhdr3qxMyc6mH2uvdcQb/WKr4SxY6Mbqxypvscf7wwR9Wrcc3Fx9GUzvcTpGb4lMx2/3x+DvdY7bAzkNrHluvZE6EWbXrml+vo99bPpGRlIZsb4WxuHHqueX1ek6jUEPiyFXcBWnP2HpbG19hOh5/U8A8Mw4iIzHX894cahx0pxsROWWLjQ2RcX+0tv7Ukw+BA4L8/Zrz3JX3rg/TyDZODXkWHZqmd4Q7jAv9+2lHfu+p106MxOx8/D7wt1ZJueETUkeyEWL7eoHf/ixc6XLdjRdOni2DMRr+vrd71k4Pcfv2zTM2IikuPPzFBPosYk+/UxONmdz9GWuyU9j/+mL8/dzDWTqnl57ub4hNyRXBUMZjZXUMFgf02QyjY9w1vC/Rr4bYspZUOixjj79TF42LDQ1tXw4fHpjRsXqjd+fHzlLi0N1Sst9fxvMKxPrcLBhm1439rYxaqrtbTdb0P0Sts97J8WcLbpGTFBVoV66qmudsIJ8X7Z/P5P8c47oVr12zvvxKa3enVkPZ/m6lkw5yvXQQdLHtQFc76KSc/5EzTXWx3jnDhVDf/jFw9+n8BlE8JSTiTHn5mhnnry852FQ+IdNuj3x+DXX4/O3hqLF0fW82munhfm7IjK3hqLF26Lyt4qNTXOENZgysriC3H5faSZ13qGZ2S24/cKv0/gGj8+OntrjIkw8Wv8eNi1K9RWV9e2XD1791JDL5ZQRA294OBB2Lkz9Lxt22L+G0w+aWNU9tYYc3j4Fd8i2VslUTFvrxo36aJneII5/rbg9wlcJ5/c3MmPH+/YY6FXL2jfZFJ3+/bQo0fzORFtmSORn095yRv0p4pxLKQ/VZSf+0T4c9esianIE477N8NZDmjDNpzlTDju3zHpDelYRSkPhuiV8iBDOsbo+BM14GDuXJg0ydl7wcsvwzXXOHsvePdduP12Z+9HvYoKmD3b2WeDXj3h4j9+23yTj9+rPoNE6b3zjuq0abHH9uuJNPxy1izVnJxQe05Oq8Myw4b42+/Rano170eYNi22Mk+bpgq6gLO1hEd1AWd7oreawTqLK3Q1g+PTU1Xt3j20rj16xK6lqtqnT6he377x6SVrgIBf9Lzuc/GhHsnu3AX+AFQDK4Ns04EvgeXudm5btHzj+LOFSJ2xc+Y0d9SgumBBi3Jhf0cCe3QxRc215syJrcyRymZ6bWPBgpg+24h4PeAgWQMYYu2996leJMefyFDPLODsMPb7VbXQ3f6cwPsbsRIpFBUpDLNkSYtyYaMcB9pRQGXzk/fvj6nIEa/zi97TT0dnT7beCy9EZ28NrwccJGsAQyR7uus1IWGOX1X/CnyVKH0jwRQXwxtvwI9+5OyLi2PuRG74Hck7SJfAXgJ5Bym749/ks6n5yZE6llsj0nV+0bv44ujsrXF2uDZVC/bWmDw5OntreD3gIFkDGPzyffFarynhHgO82oACmod6KoEVOKGg7i1cey2wFFjar1+/6B6TjPiJFF8cPz7U3tY4a2mpVtNLF1PkxPZLS30ZE02oXt++oXrxxOQXLw4fCognDcbw4aFa8cb4Y/2uJEvP79+XdIzxa3jHfziQg/OkcQfwh7boWIw/ybQWX5wzR3XixLbHk1vSW7BAtaQk9lhyU/yud9ddqoWFzj4eEjUz9pFHVE891dl7QbTflWTr+f37EueADV84/ra+13Qzx59kZs0K76hnzYqtFRJJ76yzfNdCSis9G+WS2XoepDTxheMHege9vhF4qi065viTTKQWeqSRH62NNIik58NREKZner7Q8+iJLpLjT1jnroiUA+8Bg0VknYiUADNF5GMRWQGc4Tp/w28MGQKlpaG20lKorQ1/fmsjDcLpnXVWbFqR8PuoCtMzvWhIcHbThK25q6rhEnOUhbEZfuShh+C665wv7pgxjvOONHuwLSMNTjoJfv97Z6avqjP65M03Y9OKpgymZ3rpqJeomd71hHsM8NtmoR6fUF2t2q5d6ONnu3axZ+csKQm1xRMTjbVspteI30fh+F3Ph9lXycrsnIa3VFbCoYeG2jp3ji07Z24ufO97sHo1zJrl7B96KPllMz2Hmhp4++1Q29tvx549NNv0wPn+evV9hoRmN01YqMfIQGJ9/Gzpuvx8J4yUqrKZnkP9j3NdXaOtPqYcS/LAbNOrZ8gQb77P9eTnJySzqbX4jbYTa1ZRr7ORJuMe2abn9x8mv+ulG+HiP37bLMbvM2LNKup1NtJk3COb9Py+Apff9XwIEWL84rznb4qKinTp0qWpLoZhZD41NU64oz4MZ3ppjYgsU9WipnaL8RtGS2S4Y2iG1zHlbNNLEyzGbxiRKC+H/v1h3DhnX16e6hIZhieY4zeMcNTUQEmJM+pj61ZnX1IS33A/w/AJ5vgNIxwJnjJvGKnEHL9hhCPbh/sZGY05fsMIR6LmHlRUwOzZkfMepVqvpsZZStNCWhmNOX7DiITXU+ZvuAGGDoWrrnL2N9zgLz3rzM4abBy/YSSDigrHOTdl9erYpvh7rVdT4zj74BQGgYDzg5eFwx0zhUjj+K3FbxjJIMvzvxv+IpELsfxBRKpFZGWQrYeIvCEin7n77om6v2H4imzP/274ikS2+GcBZzex3Qq8qapHA2+6x4aR+URa1SzWTI5e6yUjkZ7hGxIa4xeRAuBlVR3mHn8KnK6qG0SkN/CWqg5uTcdi/EbGUFERuqqZ3/SyLUVFhhMpxp9sx79FVbsFvb9ZVcOGe0TkWuBagH79+o2qqqpKWDkNwzAykbTr3FXVx1S1SFWL8q3lYRiG4RnJdvwb3RAP7r46yfc3DMPIepLt+F8CrnRfXwm8mOT7G4ZhZD2JHM5ZDrwHDBaRdSJSAtwJjBORz4Bx7rFhGIaRRBK2EIuqRprfflai7mkYhmG0TlqkbBCRGiCRw3p6AZsSqO8HMr2OmV4/sDpmCsmsY39VbTY6Ji0cf6IRkaXhhjxlEplex0yvH1gdMwU/1NG3wzkNwzCMxGCO3zAMI8swx+/wWKoLkAQyvY6ZXj+wOmYKKa+jxfgNwzCyDGvxG4ZhZBnm+A3DMLKMjHf8ItJXRBaJSIWIrBKRqU3ev0lEVER6Bdl+KiKfi8inIvKt5Jc6Olqqo4jc4NZjlYjMDLJnRB1FpFBE/i4iy0VkqYiMCbom3eqYJyKLReQjt47/5dojLmCUTnVsoX53i8gnIrJCRJ4XkW5B16RN/SByHYPe94e/UdWM3oDewPHu60OBNcBQ97gv8BrO5LBerm0o8BFwCDAA+ALISXU9YqkjcAawEDjEfe+wDKzj68A5rv1cnDUe0rWOAnR2X+cC7wPfAGYCt7r2W4G70rGOLdRvPNDetd+VrvVrqY7usW/8Tca3+FV1g6p+4L7eDlQAR7pv3w/cAgT3cE8CnlLVPar6T+BzIMb17JJDC3X8AXCnqu5x36vPhppJdVSgi3taV2C9+zod66iqusM9zHU3xanLbNc+G5jsvk6rOkaqn6q+rqr7XfvfgT7u67SqH7T4GYKP/E3GO/5g3IVhjgPeF5GJwJeq+lGT044E/hV0vI7GHwrfE1xH4BjgVBF5X0T+IiKj3dMyqY4/Au4WkX8B9wA/dU9LyzqKSI6ILMdJWf6Gqr4PHK6qG8D5AQQOc09PuzpGqF8wVwOvuK/Trn4Qvo5+8zdZ4/hFpDPwHI6j2A/8HJgW7tQwtrQY8xpcR1XdhpOErzvO4/TNwNMiImRWHX8A3KiqfYEbgbL6U8Nc7vs6quoBVS3EafWOEZFhLZyednVsqX4i8nOc/8259aZwEgkvZJyEqeMIfOZvssLxi0gujrOYq6p/BAbixNM+EpFKnA/oAxE5AucXt2/Q5X1oDB/4ljB1BKcuf3QfPxcDB3ESRGVSHa8E6l8/Q+NjclrWsR5V3QK8BZxN5AWM0raOTeqHiFwJTACmqBv8Jo3rByF1nITf/E0qO0KSseH8oj4BPNDCOZU0drYcS2hnyz9Ijw6lZnUEvg/80n19DM4jpWRYHSuA093XZwHL0vhzzAe6ua8DwNs4zvBuQjt3Z6ZjHVuo39nAaiC/yflpVb+W6tjknJT7m4Tl4/cRJwOXAx+7cTeAn6nqn8OdrKqrRORpnC/ifuB6VT2QlJLGTtg6An8A/iAiK4G9wJXqfNsyqY7/AfxGRNoDu4FrIW0/x97AbBHJwXkaf1pVXxaR93DCdCXAWuA7kJZ1jFS/z3Ec3xtOJJK/q+r307B+EKGOkU5OVR0tZYNhGEaWkRUxfsMwDKMRc/yGYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvZCwicsDN2rnKzZb4YxGJ+TsvIqe4mRc/cbdrg97Ld1NjfChOFtEfBL13gpt5MhuGTxtpgH0RjUymTp2p84jIYcA8nERut0cr5M6ynAdMVtUP3LS6r4nIl6r6J5zJY5+o6pUicjjwnog8C9QCDwPXaWMismjvLThDrw/Gcr1hNMXG8RsZi4jsUNXOQcdHAUtw0lb0B54EOrlvl6rq30TkSeBZVX3RvWYuMB8YjZN8cVqQ3lnAdOAG4CWcmZpfAicC/8+9ZgkwCmdi2Z3A6TiTlX6rqo+6uYdexMmplAv8QlVfdBPRvQIscvUmq2qVl38fI3sxx29kLE0dv2vbDHwd2A4cVNXdInI0UK6qRSLyTZykb5NFpCuwHDgaeBqYXf+D4Gp1Bf6pqj1E5CqgSFVL3ffaAe/hZNIsAi7EWQ9hhogcAryLMwP3X0BHVd3mPkX83b1ff5zp+yep6t8T8gcyshYL9RjZRn02xFzgYREpBA7g5DJCVf8iIr91Q0MXAM+p6n433BKulRS25aSqB0XkUZwfg1oRGQ+MEJGL3FO64jj4dcCvReQ0nCR6RwKHu+dUmdM3EoE5fiNrcEM9B3CyW94ObARG4gxy2B106pPAFOASnPzwAKtwWu4vBZ03CifHSiQOuhs4Pzg3qOprTcp0FU5ir1Gqus/N3pjnvr2z7bUzjLZjo3qMrEBE8oH/AR52E9V1BTa4HaaXAzlBp8/CWbcBVV3l2n4LXOU+ISAiPXGWCZxJ23gN+IGbWhoROUZEOrnlqHad/hk4IR7DSCjW4jcymYCbyTMXJ/Phk8B97nuPAM+JyHdwOlAbWtequlFEKoAXgmwbROQy4HERORSnBf+Aqi5oY1l+DxTg5GEXoAZnCcW5wAIRWYrTn/BJLBU1jGiwzl3DaIKIdAQ+xlncfWuqy2MYXmOhHsMIQkTG4rS6HzKnb2Qq1uI3DMPIMqzFbxiGkWWY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFnG/wfSVo6szTyIxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax=None\n", + "colors = ['red','blue','green','yellow']\n", + "for i,var in enumerate(new_pumpkins['Variety'].unique()):\n", + " ax = new_pumpkins[new_pumpkins['Variety']==var].plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAGKCAYAAAAVEBpAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcxklEQVR4nO3df5h3dV3n8ecrwEBEARm4bhW8UxEDfwDekqztpiiFmiGGCW5GZhduLRVpJaX5a7e9bP25musurAiRgqaopGEiF+TiKnrzQ4SQIEMSEG615BbzB/DeP8538sswv+c7c85n5vm4rrnm/PjOzIvx/r488znnfE6qCklSe36s7wCSpOWxwCWpURa4JDXKApekRlngktSoHdfyh+211161efPmtfyRktS8yy677BtVNTVz+5oW+ObNm9m6deta/khJal6Sr862fcEhlCQ7J/l8ki8muSbJ60bbX5vk5iRXjj6eNenQkqS5LeYI/PvAEVX1nSQ7AZckOX+0761V9abViydJmsuCBV7drZrfGa3uNPrw9k1J6tmirkJJskOSK4HbgQuq6tLRrpOSXJXk9CR7rFZISdJ9LarAq+ruqjoYeBhwWJLHAu8CHgkcDNwKvHm2r01yYpKtSbZu27ZtIqElSUu8Dryq/gW4GDiqqm4bFfs9wGnAYXN8zalVtaWqtkxN3ecqGEnSMi3mKpSpJLuPlncBngF8OcmmsZcdA1y9KgklSbNazFUom4Azk+xAV/gfqKqPJTkrycF0JzRvBF66aiklSfexmKtQrgIOmWX7i1YlkSRpUdb0TkwN3+ZTPt53hAXd+IZn9x1BGgQns5KkRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1KjmH6nWwiPAwMeASZo8j8AlqVEWuCQ1asECT7Jzks8n+WKSa5K8brR9zyQXJLl+9HmP1Y8rSZq2mCPw7wNHVNUTgIOBo5I8GTgFuLCq9gcuHK1LktbIggVene+MVncafRRwNHDmaPuZwHNXI6AkaXaLGgNPskOSK4HbgQuq6lJgn6q6FWD0ee85vvbEJFuTbN22bduEYkuSFlXgVXV3VR0MPAw4LMljF/sDqurUqtpSVVumpqaWGVOSNNOSrkKpqn8BLgaOAm5Lsglg9Pn2SYeTJM1tMVehTCXZfbS8C/AM4MvAecAJo5edAHx0lTJKkmaxmDsxNwFnJtmBrvA/UFUfS/JZ4ANJXgLcBDx/FXNKkmZYsMCr6irgkFm2fxN4+mqEkiQtzDsxJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhq1YIEn2TfJRUmuTXJNkt8ZbX9tkpuTXDn6eNbqx5UkTdtxEa+5C3h5VV2eZDfgsiQXjPa9taretHrxJElzWbDAq+pW4NbR8vYk1wIPXe1gkqT5LWkMPMlm4BDg0tGmk5JcleT0JHvM8TUnJtmaZOu2bdtWllaS9G8WXeBJHgB8CDi5qu4A3gU8EjiY7gj9zbN9XVWdWlVbqmrL1NTUyhNLkoBFFniSnejK+71VdS5AVd1WVXdX1T3AacBhqxdTkjTTYq5CCfBu4NqqesvY9k1jLzsGuHry8SRJc1nMVShPAV4EfCnJlaNtfwQcn+RgoIAbgZeuQj5J0hwWcxXKJUBm2fXXk48jSVos78SUpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJatSCBZ5k3yQXJbk2yTVJfme0fc8kFyS5fvR5j9WPK0matpgj8LuAl1fVTwJPBv5zkgOBU4ALq2p/4MLRuiRpjSxY4FV1a1VdPlreDlwLPBQ4Gjhz9LIzgeeuUkZJ0iyWNAaeZDNwCHApsE9V3QpdyQN7TzydJGlOiy7wJA8APgScXFV3LOHrTkyyNcnWbdu2LSejJGkWiyrwJDvRlfd7q+rc0ebbkmwa7d8E3D7b11bVqVW1paq2TE1NTSKzJInFXYUS4N3AtVX1lrFd5wEnjJZPAD46+XiSpLnsuIjXPAV4EfClJFeOtv0R8AbgA0leAtwEPH9VEkqSZrVggVfVJUDm2P30ycaRJC2Wd2JKUqMscElqlAUuSY2ywCWpURa4JDXKApekRi3mOnBJy7D5lI/3HWFRbnzDs/uOoGXyCFySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjXIyK0lNcHKw+/IIXJIaZYFLUqMWLPAkpye5PcnVY9tem+TmJFeOPp61ujElSTMt5gj8DOCoWba/taoOHn389WRjSZIWsmCBV9WngW+tQRZJ0hKsZAz8pCRXjYZY9pjrRUlOTLI1ydZt27at4MdJksYtt8DfBTwSOBi4FXjzXC+sqlOraktVbZmamlrmj5MkzbSsAq+q26rq7qq6BzgNOGyysSRJC1lWgSfZNLZ6DHD1XK+VJK2OBe/ETHI28FRgryRfA14DPDXJwUABNwIvXb2IkqTZLFjgVXX8LJvfvQpZJElL4J2YktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY1asMCTnJ7k9iRXj23bM8kFSa4ffd5jdWNKkmZazBH4GcBRM7adAlxYVfsDF47WJUlraMECr6pPA9+asflo4MzR8pnAcycbS5K0kOWOge9TVbcCjD7vPdcLk5yYZGuSrdu2bVvmj5MkzbTqJzGr6tSq2lJVW6amplb7x0nShrHcAr8tySaA0efbJxdJkrQYyy3w84ATRssnAB+dTBxJ0mIt5jLCs4HPAgck+VqSlwBvAI5Mcj1w5GhdkrSGdlzoBVV1/By7nj7hLJKkJfBOTElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGLfhU+vkkuRHYDtwN3FVVWyYRSpK0sBUV+MjTquobE/g+kqQlcAhFkhq10gIv4JNJLkty4iQCSZIWZ6VDKE+pqluS7A1ckOTLVfXp8ReMiv1EgP3222+FP06SNG1FR+BVdcvo8+3Ah4HDZnnNqVW1paq2TE1NreTHSZLGLLvAk+yaZLfpZeBngasnFUySNL+VDKHsA3w4yfT3eV9VfWIiqSRJC1p2gVfVV4AnTDCLJGkJvIxQkhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1akUFnuSoJNcluSHJKZMKJUla2LILPMkOwDuBZwIHAscnOXBSwSRJ81vJEfhhwA1V9ZWq+gFwDnD0ZGJJkhaSqlreFybHAkdV1a+P1l8E/FRVnTTjdScCJ45WDwCuW37cNbMX8I2+Q6wj/j4nx9/lZLXy+3x4VU3N3LjjCr5hZtl2n/83qKpTgVNX8HPWXJKtVbWl7xzrhb/PyfF3OVmt/z5XMoTyNWDfsfWHAbesLI4kabFWUuBfAPZP8hNJ7gccB5w3mViSpIUsewilqu5KchLwN8AOwOlVdc3EkvWrqSGfBvj7nBx/l5PV9O9z2ScxJUn98k5MSWqUBS5JjbLAJalRG77Akzxwnn37rWUWaS5JHpzkmCRP7DtLi5J8YGz5T2fs++TaJ5qMDV/gwMXTC0kunLHvI2uapHHr9U3ShyQfS/LY0fIm4Grg14CzkpzcZ7ZG7T+2fOSMffe5w7EVFvi97yjdc559Wti6fJP05Ceq6urR8ouBC6rqOcBP0RW5lma+y+2avRRvJbfSrxc1x/Js65rfunyT9OSHY8tPB04DqKrtSe7pJ1LT7p/kELqD1l1Gyxl97NJrshWwwGHvJC+j+x9yepnRukeNS7Mu3yQ9+ackv0U3ZcWhwCcAkuwC7NRnsEZ9HXjLLMvT603a8DfyJHnNfPur6nVrlaV1SS6ab39VPW2tsrQuyd7A64FNwDur6pOj7U8DnlhVb+ozn4Zhwxf4fJKcXFVv6zuHNC7JjlV1V985WpJkf+CNwKOALwG/V1U395tq5TyJOb+XLfwSLSTJkUku6DtHS5JcMrZ81ozdn1/jOOvB6cDHgV8ELgfe0W+cybDA5+dVKEuQ5Igkf5/kO0n+IsmBSbYCbwDe1Xe+xuw6tnzQjH3+u1y63arqtKq6rqreCGzuO9AkeBJzfo4vLc2b6Z6+9Fm6Z6V+DvjjqvofvaZqk1f0TNbOYyfV4d4n2amqy3tLtgIbvsCTbGf2N0SA+69xnNZVVV08Wv5Ikm2W97LtnuQYur+Sd0/yvNH2AA/qL1azZrvyZHq9gCPWPNEEeBJTE5PkK8DvjW160/h6VZ275qEaleQ98+2vqhevVZb1IMkDq+qOvnNMmgU+iyS7As8FXlhVz+45TjMWKJ2qKu8gVC+S/APwyqo6p+8sk2SBj4weC/cs4IXAUcCHgHOr6q96DaYNaeyGsllV1Vvm2697S/Jw4G3AA4DfqKob+k00GY6BJ0cCxwM/B1wEnAUc5p+oSzdL6RTwDeCSqvrHHiK1bLe+A6wnVfVV4JgkRwGfSfIF4J6x/b/QW7gV2PAFTvdMz/8L/PR0ySTxxNvyzFY6m4FXJnntevvzdZV9s6r+rO8Q60mSA4A/oHu/v5OxAm/Vhh9CGV1KdBxwLPAV4Bzg1VX18F6DrSNJ9gQ+VVWH9p2lFUku9/c1OUneAPwC8PKqOr/vPJOy4W/kqaorquoVVfVI4LXAIcD9kpyf5MR+060PVfUtvPlE/doCHLqeyhss8Hs9aKCqPlNVJwEPpTvhcXhfudaTJEcA/9x3jsY8Pskds3xsT7LuLodbA3tW1ff6DjFpjoHPMmVsVd1DNzb+N2sfp11JvsR9b4raE7gF+JW1T9S0L1XVIX2H0LBZ4PCgsbvc7sObT5bkecAPxtaL7mTcnT3lkaY9Isl5c+30KpR2PQj4eWYfoy3AAl+893vibWL+su8A68w2url61hULHG7yDsGJ8UTl5Bw8vZDkT6vqFWPrn6yqn+0lVbu2V9Xf9h1i0ixwZ3abpKn57iD07sEledTY8pHAK8bWfdTf0t3Yd4DVYIHDt9brRDc92IHuVmWPxFeXBx1LVFVznudqmQUOnwQuS/Kaqnpf32Ead2tVvb7vEOuED4jWgjb8nZgASR5KNzfwXnRPjhmfI8GTmIuU5IrZLn1Lsi9w3OhJKFqEJBczz5G2D4gWeAQOQFXdnOTjwJ8Az+FHBe5VKEvz9OmFJHsBz6ebKOxh+Htckqp6at8Z1pMkv1xVfzFafkpVfWZs30mtzjuz4Y/AkxxEd9R9C/C7VXVrz5GalWQ34Bi6KXkfDXwYeEFVPazXYA2a794E8C/DpRqfW2bmPDMtzzvjETh8EDi5qu5z12WSXb0JZUlup3ti+qvoppCt0WPBtHTPmWeffxkuXeZYnm29GRZ4d73tXkm2AFdV1Q+S7A2cDPwq8JD+ojXnj+hmdnwX8L4k7+85T7Ocj37iao7l2dabseEnswL+E3Al8A7gc0lOAK6lO9P/xB5zNaeq3lpVP0U3bWeAjwAPSfKKJI/uNVyDkuwwOpcwvX6/JCcmubbPXI16TJKrRvP1TC9Prx/Qd7jlcgw8+Tu6hzl8K8l+wA3Af6iqz/UcbV1I8ji6MfFfGk3Zq0VIchzwv4E7gevppjo+C/gC8F+q6vL+0rVn9Ei1OY2e2NMcC/y+JzSurqrH9plJSnI18NyquiHJocBn6S7F/HDP0TQgFnhyO91TeKYdN75eVb+95qEalWQ7s48nhu6p9A9c40jNmuXA4stV9Zg+M7Vs7N/m9AnL6X+nTf/b9CQm/P6M9ct6SbEOVJUP4p2cvWfMK/OA8XXnlVma9fpvc8MfgUtDlOQ18+wupyxYmiQ7012w8CjgKuD0qrqr31Qrt+ELPMlfMf8ty01O9N6HWf5MZbS+I3C/qvIvvglI8qSq+kLfOVoyuqT1h3RPpH8m8NWq+p1+U62cbyh4U98B1ouZf6aO7sz8TeCldHdlapmSHEh3fuZ44Nt0D+nV4h1YVY8DSPJuuhvOmrfhC3yuSd6nJ2AC1t0k8Kstye50N0L9CvA+4ElV9c0+M7VodOnb8aOPu4CHA1uq6sY+czXqh9MLVXVX0uzNl/ey4Qt83IwJmB6KR41LMvr9vRx4AXA6cEhVfbvfVG1K8v/oHvd3DnBsVV2f5B8t72V7QpLpOf9DN0XvHXgVStvmmIDpEU7AtCxfpXv24HuA7wIvGT/S8cqJJdlGN4vjPnRP4Lmehm/57ltV7dB3htWw4QscJ2CapDfyo5JZl5dtrZWqOjrJg4BfBF6X5FHA7kkOq6p1MX6rlfMqlOR36ca6d6Ubr30/cEFVPaLXYNrQkuxUVT8cW9+bbmjqeGDfqtq3t3AajA1f4NOSPILuzXEcsD/wGuDDVfX3vQZrSJK3z7ffu1oXb3SH8EeBs4GLauyNmuThrc7docna8AWeZL+qumnGtsfRlfkLnIBp8UYzOc6pqs5cqyytS/Jg4Fh+dEDxQeDsqrq012AaFAv83k/q+FBV/WLfmaRxSR5Cd3XUccDewDlV9cp+U2kILPCxB/HO9VBeLU6S8+bb712ty5fkAcDzgJcBm6pqn54jaQC8CmX+J3VoaQ4H/olu3PZSGn5U1RCM5u94Dt1w3lOATwB/CHyyz1waDo/Ak7vpJs0P3VN4vju9i4Yv8O9Dkh2AI+kK5/HAx+nGba/pNViDkrwPeAbwabqbeT5WVd/rN5WGZsMXuFZHkh+nK/I3Aq+vqnf0HKkpoxPC51bV9r6zaLgscE3UqLifTVfem4Hz6KbuvLnPXNJ6ZIFrYpKcCTwWOJ/uSomre44krWsWuCYmyT105xPg3ieEPZ8grQILXBqgJM+bb39VnbtWWTRcFrg0QKO/Zq4cfcCMpxxV1a+tdSYNjwUuDdBoRswX0D3D8aN0l2Pe0G8qDY0FLg1Ykl2Bo+nK/MHAK+d6ipQ2nh/rO4CkeX2P7hmYd9BNebxzv3E0JB6BSwOU5Gl019IfBnyK7rLMrf2m0tBY4NIAjU5iXgVcQndJ5r3eqM6tLnAyK2moXtx3AA2fR+DSwI2mkq2qunPBF2tD8SSmNFBJfiPJTcBXgZuSfDXJb/adS8NhgUsDlORVdHOBP7WqHlxVDwaeBjxztE9yCEUaoiTXAU+YOQd4kl2AL1bVo/tJpiHxCFwaqNke4FBV/wrc00McDZAFLg3T15I8febGJEcAt/aQRwPkEIo0QEkOopsD5RLgMrrrwJ9E92zMo31MncAClwZr9FDjFwIH0c1GeA3wXp+NqWneyCMNVFV9L8lFwO10R+DXWt4a5xG4NEBJHgj8H+CJdHOC/xjwBLrhlJdU1R39pdNQWODSACU5A7gReH1V3TPaFuCPgUdV1a/0l05DYYFLA5Tk+qraf6n7tLF4GaE0TFn4JdroLHBpmD6T5NWjYZN/k+SPgc/1lEkD4xCKNECjk5jvBg6lO4lZwCHAFXQnMb/dXzoNhQUuDViSRwIHMroOvKr+IcnJVfW2fpNpCCxwqTFJbqqq/frOof45Bi61xxOcAixwqUX+2SzAW+mlQUqyndmLOsAuaxxHA+UYuCQ1yiEUqSFJdk/yyr5zaBgscGmAkuyb5NQkH0vy60nun+TNwPXA3n3n0zA4Bi4N058Dfwt8CDiK7u7La4DHVdXX+wym4XAMXBqgJF+sqieMrd8G7FdV3+8xlgbGI3BpoJLswY+u+f46cP8kuwJU1bd6C6bB8AhcGqAkN9I9fX62m3aqqh6xtok0RBa4JDXKIRRpgJIcOt/+qrp8rbJouDwClwZo9DDjuVRVHbFmYTRYFrgkNcobeaQBSvIHY8vPn7Hvv619Ig2RBS4N03Fjy384Y99RaxlEw2WBS8OUOZZnW9cGZYFLw1RzLM+2rg3Kk5jSACW5G7iTH83//d3pXcDOVbVTX9k0HBa4JDXKG3mkAUqy53z7nQtF4BG4NEhJ/pFurDvAJuAWfnTy0rlQBFjg0uAluaKqDuk7h4bHq1Ck4fMoS7OywCWpUZ7ElAYoycvGVveesU5VvWWNI2mALHBpmHYbWz5txroEeBJTkprlGLgkNcoCl6RGWeCS1ChPYkoDleQA4ETgMaNN1wKnVdV1/aXSkHgELg1QksOBi4HtwKl0V6LcCVyU5Mk9RtOAeBWKNEBJzgf+tKounrH9Z4BTquqZvQTToFjg0gAl+fuqevQc+66rqgPWOpOGxyEUaZi2z7PvzjVLoUHzJKY0TPsmefss2wM8dK3DaJgscGmYfn+efVvXLIUGzTFwqTFJdqyqu/rOof45Bi4NUJJLxpbPmrH782scRwNlgUvDtOvY8kEz9gUJC1waqvnGNh33FOBJTGmodk9yDN1B1u5JnjfaHuBB/cXSkHgSUxqgJGcwz5F2Vb147dJoqCxwSWqUY+DSACV5R5L7PEYtyWOSfKqPTBoeC1wapq8DVyZ5IUCS+yf578B5wDt7TabBcAhFGqgkPwH8Gd0DjR8CfAD4r1X13V6DaTA8ApeGa/roake69+q1lrfGWeDSACV5FfAp4M+r6t8B/x44OsnfJjmw33QaCq8Dl4ZpCjikqrYDVNXNwLFJngl8CPjJPsNpGBwDlxqT5Mer6vt951D/PAKXBmiOucDH/faaBNGgWeDSMF3WdwANn0MoktQoj8ClAUpy3nz7q+oX1iqLhssCl4bpcOCfgLOBS3EOcM3CIRRpgJLsABwJHA88Hvg4cHZVXdNrMA2KN/JIA1RVd1fVJ6rqBODJwA3AxUl+q+doGhCHUKSBSvLjwLPpjsI3A28Hzu0zk4bFIRRpgJKcCTwWOB84p6qu7jmSBsgClwYoyT3AnaPV8TdpgKqqB659Kg2NBS5JjfIkpiQ1ygKXpEZZ4JLUKAtczUtycZKfm7Ht5CT/c5Ff//okz1jgNb+a5CErySlNmgWu9eBs4LgZ244bbZ9Xkh2q6tVVtdCT3n+V7rmU0mBY4FoPPgj8/OjGF5JspivbFybZmuSaJK+bfnGSG5O8OsklwPOTnJHk2NG+J44eW3ZZkr9Jsmm0bwvw3iRXJnl2kg+Pfb8jk3iDjdacBa7mVdU3gc8DR402HQe8H3hlVW2hm0vkZ5I8fuzLvldVP11V50xvSLIT8A7g2Kp6InA68CdV9UFgK/Afq+pg4K+Bn0wyNfrSFwPvWbX/QGkOFrjWi/FhlOnhk19KcjlwBXAQMP4w4PfP8j0OoLv78YIkVwKvAh4280XV3TxxFvDLSXanmznw/In8V0hL4FwoWi8+ArwlyaHALsA/A78HPKmq/jnJGcDOY6+/8z7fobvL8ZqqOnwRP+89wF8B3wP+sqruWkF2aVk8Ate6UFXfAS6mG/Y4G3ggXUl/O8k+wDMX8W2uA6aSHA7dkEqSg0b7tgO7jf28W4Bb6I7Sz5jMf4W0NB6Baz05m262vuOq6stJrgCuAb4CfGahL66qH4xOWL49yYPo3h9vG32PM4D/leRfgcOr6l+B9wJTVfV3q/EfIy3EuVCkZUryZ8AVVfXuvrNoY7LApWVIchndEM2RVfX9vvNoY7LAJalRnsSUpEZZ4JLUKAtckhplgUtSoyxwSWrU/wdO32Yxjk19aAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.2669192282197318\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 174, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcL0lEQVR4nO3df5RcZZ3n8fenSduJJJDQCTEnPwxOhFkWYpSWhYkogsPiHA5wNuiZOSK4OpOVHT3i6iaic3D1zHpMMqszLu4ZGWUJLMMsQxAcZjiQBZTBJUCTyQ9+KdlBSCKE0CRDtyZth/7uH3U7qW6qOl3Vdavurft5ndMnVU9Vfe/zVFe+dfu5z/1eRQRmZlYcHa3ugJmZNZcTv5lZwTjxm5kVjBO/mVnBOPGbmRXMlFZ3YCJmz54dixcvbnU3zMxy5Yknnng1IuaMbc9F4l+8eDG9vb2t7oaZWa5IeqFSu6d6zMwKxonfzKxgnPjNzArGid/MrGCc+M3MCia1xC9poaQHJT0j6SlJn0va10l6VtI2ST+UNDOtPtjk9A0MsnXnfvoGBjMZz8zqk+ZyzkPAFyJis6QZwBOSNgIbgWsi4pCkNcA1wOoU+2F1uGvLblZv2EZnRwdDw8OsXbGUi5fNz0w8M6tfanv8EfFSRGxObvcDzwDzI+K+iDiUPG0TsCCtPlh9+gYGWb1hGweHhukfPMTBoWFWbdhW9556o+OZ2eQ0ZY5f0mLg3cCjYx76JHBPldeslNQrqXfv3r0p99DK7dp3gM6O0R+Nzo4Odu07kIl4ZjY5qSd+SdOBDcDVEfF6WftXKE0H3VLpdRFxfUT0RETPnDlvOuPYUrRg1jSGhodHtQ0ND7Ng1rRMxDOzyUk18UvqpJT0b4mIO8rarwQuAj4WvgRY5nRP72LtiqVM7exgRtcUpnZ2sHbFUrqnd2UinplNjtLKu5IErAdei4iry9ovBL4FfCAiJjSH09PTE67V03x9A4Ps2neABbOmNSRJNzqemY1P0hMR0TO2Pc1VPcuBjwPbJW1J2r4MfAfoAjaWvhvYFBGfTrEfVqfu6V0NTdCNjmdm9Ukt8UfEw4AqPPQPaW3TzMyOzmfumpkVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/tZW+gUG27txP38Cg4zle7uOlJbWLrZs1211bdrN6wzY6OzoYGh5m7YqlXLxsvuM5Xi7jpcl7/NYW+gYGWb1hGweHhukfPMTBoWFWbdhW956X4zleK+OlzYnf2sKufQfo7Bj9ce7s6GDXvgOO53i5i5c2J35rCwtmTWNoeHhU29DwMAtmTXM8x8tdvLQ58Vtb6J7exdoVS5na2cGMrilM7exg7YqldE/vcjzHy128tCkiWt2Ho+rp6Yne3t5Wd8NyoG9gkF37DrBg1rSG/KdzPMdrZbzJkvRERPS8qd2J38ysPVVL/KlN9UhaKOlBSc9IekrS55L2EyRtlPRc8u+stPqQdVlfQ5yXNclmVps01/EfAr4QEZslzQCekLQR+ARwf0R8U9KXgC8Bq1PsRyZlfQ1xntYkm1ltUtvjj4iXImJzcrsfeAaYD1wCrE+eth64NK0+ZFXW1xDnbU2ymdWmKat6JC0G3g08CsyNiJeg9OUAnFjlNSsl9Urq3bt3bzO62TRZX0OctzXJZlab1BO/pOnABuDqiHh9oq+LiOsjoicieubMmZNeB1sg62uI87Ym2cxqk2ril9RJKenfEhF3JM17JM1LHp8HvJJmH7Io62uI87Ym2cxqk9pyTkmiNIf/WkRcXda+DugrO7h7QkSsGi9Wuy7nzPoa4qytSTaz2lRbzpnmqp7lwMeB7ZK2JG1fBr4J3CbpU8CLwEdS7EOmdU/vamhCzXo8M8uG1BJ/RDwMqMrD56e1XTMzG59r9ZiZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBN/C2X9ilnV4tW7nUqvy+t74HiWZ2nW6rFxZP2KWdXi1budSq8LyOV74HiWd77Yegv0DQyyfM0DHBw6UvN+amcHP119Xl1F0ZoV7+7PvI+Lrnu45u1Uitc1pQMIBg8d+fzl4T1wPMuTpl9s3arL+hWzqsXbsnN/XdupFO+YDnGM8vceOJ61A0/1tEDWr5hVLd6yhTPr2k6leG8MBzD6r808vAeOZ+3Ae/wtkPUrZlWLt2TujLq2UyneusuWsu6yd+XuPXA8awee42+hrF8xq1q8erdT6XV5fQ8cz/Kg2hy/E7+ZWZvywV0zMwOc+M3MCseJ38ysYJz4zcwKxonfzKxgnPjNzAqmrRN/1isXOp6ZtULblmzIeuVCx3PlR7NWacs9/r6BQVZv2MbBoWH6Bw9xcGiYVRu21b2n6XjZimdmk5Na4pd0g6RXJD1Z1rZM0iZJWyT1SjozjW1nvXKh47nyo1krpbnHfyNw4Zi2tcDXImIZcG1yv+GyXrnQ8Vz50ayVUkv8EfEQ8NrYZuC45PbxwC/T2HbWKxc6nis/mrVSqkXaJC0G7o6I05L7/wq4FxClL53fiYgXjhan3iJtWa9c6HhmlqaWVOeskPi/A/wkIjZI+iiwMiI+VOW1K4GVAIsWLTrjhReO+v1gZmZlslKd80rgjuT23wJVD+5GxPUR0RMRPXPmzGlK58zMiqDZif+XwAeS2+cBzzV5+2ZmhZfaCVySbgXOBWZL2gV8Ffgj4C8kTQEOkkzlmJlZ86SW+CPiD6o8dEZa2zQzs6NryzN3zcysOid+M7OCceI3MysYJ34zs4Jp68RftPrvWa+fX7Tfh1lWuR5/m8h6/fyi/T7Msqwt9/iLVv896/Xzi/b7MMu6tkz8Rav/nvX6+UX7fZhlXVsm/qLVf896/fyi/T7Msq4tE3/R6r9nvX5+nn8fWT/AXbR41hiplmVulKzU48+6rNfPz9vvI+sHuIsWz2rXknr8jVJv4jerV9/AIMvXPMDBoSNTVFM7O/jp6vPq+tJyvMnFs/pkpR6/WS5k/QB30eJZY00o8Us6WdL9kp5M7i+V9Cfpds2sdbJ+gLto8ayxJrrH/1fANcAQQERsA34/rU6ZtVrWD3AXLZ411oTm+CU9HhHvlfRPEfHupG1LRCxLu4PgOX5rnawf4C5aPKtNtTn+iZZseFXSbwGRBLsMeKmB/TPLpO7pXQ1NWI5nWTDRxP/HwPXAb0vaDTwPXJ5ar8zMLDUTSvwR8c/AhyQdC3RERH+63TIzs7RMdFXPNyTNjIhfRUS/pFmS/jTtzpmZWeNNdFXPhyNi/8idiNgH/F4qPTIzs1RNNPEfI+nwERpJ04DCHbHJeh2T3uf7+NZ9P6P3+b6GxNuxp5/be3eyY8/omb16+13pdVl/T83a0UQP7v4v4H5J/5PSyp5PAutT61UGZb2OyeXf38TDO0oJ/zsP7OCcJd3c/Idn1R3v2ju3c9OmFw/fv+LsRXz9ktPr7nel1wVk+j01a1cTrtUj6cPA+YCA+yLi3jQ7Vq7V6/izXsek9/k+Lvvepje13/4fzqLnpO6a4+3Y08+Hvv1QxXiX3/BYzf2uNN6uKR1AMHjoyOcvS++pWTuYdK2eiLgnIr4YEV9oZtLPgqzXMXnouVdraj+aLTv3V41XT78rjfeYDnGMsvuemrWzcRO/pIeTf/slvV720y/p9eZ0sfWyXsfk/e+cXVP70SxbOLNqvHr6XWm8bwwHb0R239MRPgZh7WjcxB8R70v+nRERx5X9zIiI45rTxdbLeh2TnpO6OWfJ6Cmdc5Z01zXNA7Bk7gyuOHvRqLYrzl5Ez0nddfW70njXXbaUdZe9q6Hv6UfPWDCq7aM9CyY1zXPXlt0sX/MAl3//UZaveYAfbdldd6w04pnV66hz/JI6gG0RcVpNgaUbgIuAV8pfK+mzwGeAQ8DfR8Sqo8Vq9Rz/iKzXMel9vo+HnnuV979zdt1Jv9yOPf1s2bmfZQtnsmTujMPt9fa70usa9R5k/TiMj0FYK9RdqycihiVtlbQoIl482vPL3AhcB9xU1okPApcASyNiUNKJNcRruazXMek5qf69/EqWzJ0xKuGPqLfflV7XqPdgZI7/IEcS68gcfz3xsx7PbDImupxzHvCUpMeAX400RsTF1V4QEQ9JWjym+SrgmxExmDznldq6a81UbW+8kX+pNOqvlKwfh3F9esuSiSb+rzVoeycD50j6r8BB4IsR8XilJ0paCawEWLRoUaWnWIqqrYlv5Fr5Rp570D29i0UnTOPnew7vl/D2E+r/Ykoj3toVS1k15r3z3r61wriJX9JU4NPAEmA78IOIODTJ7c0CzgLeC9wm6R1R4UBDRFxPqSIoPT092b8wcBvpGxhk9YZtHBwaPjw1sWrDNk6dd1zF9uVLZtecwHqf7zuc9Ef8444+ep/vq2vPv/f5vlFJGuBne36VmXgAFy+bz/Ils12f3lruaOv41wM9lJL+h4H/Nsnt7QLuiJLHgGGgvjWHlppqa+K37NzfsLXyjT73IOvxRnRP7+JdC2c66VtLHS3xnxoRl0fE94DLgHMmub07gfOgdB1f4C3A5P4nWcNVm49etnBmw+apG33uQdbjmWXJ0RL/0MiNWqd4JN0KPAKcImmXpE8BNwDvSC7a/jfAlZWmeay1qp1nsGTujIadf9Docw+yHs8sS8Zdxy/pDY6s4hEwDfh1cjuadRJXVtbxF02eVvXkJZ5ZM1Vbxz/hIm2t5MRvZla7SRdpMxvRyLr/1Wr+t2u8Ozfv5A/XP86dm3dmMt79T7/M6tu3cv/TLzckXqOvEdGsa060a7wR3uO3mpSvvQcmtfa+Ws3/emU93lnf2MjLr//m8P15x72FR778u5mJd8G3fzxqCespc4/l3s+fW3e8Rn5W0oiX9c9LI+J5j98mbby197Xasad/1Ica4KZHXqx7zybr8e7cvHNUkgZ46fXf1L2n3uh49z/9csXzFurd82/kZyWNeFn/vDQ63lhO/DZhjVzbXq3mf7X2vMe7e3vlBFqtvdnx7nt6T03tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9q7XmPd9Hpb6upvdnxLjh1bk3tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9K1UDbId6l71nIvOPeMqpt3nFv4dL3LMxEvPNPfRunzD12VNspc4/l/FPr+yLJ+nkVWf+8NDreWD64azVr5Nr2ajX/2zXenZt3cvf2l7no9LfVnaTTjHf/0y9z39N7uODUuXUn/XJZP68i65+XycbzOn4zs4Lxqh6zNuRr+Fo9JlqP38wyppHXRrBi8R6/WQ6VXzOhf/AQB4eGWbVhm/f8bUKc+M1yqNo1E+q5NoIVjxO/WQ75Gr42GU78ZjlU7ZoJvrKXTYQP7prllK/ha/Vy4jfLse7pXU74VjNP9VhVeaktbma18R6/VZTF2uJm1hje47c3yVttcTOrjRO/vUneaoubWW2c+O1N8lZb3Mxq48Rvb5K32uJmVhuXZbaqslZb3MxqU60ss1f1WFVL5s5oaIJudDwzq4+neqxmjVyPn/VzBRzP8VoZL63rLXiP32rSyPX4WT9XwPEcr5Xx0rzeQmp7/JJukPSKpCcrPPZFSSFpdlrbt8Zr5Hr8rJ8r4HiO18p4aV9vIc2pnhuBC8c2SloI/C7w4tjHLNsauR4/6+cKOJ7jtTJe2tdbSC3xR8RDwGsVHvo2sArI/nIiG6WR6/Gzfq6A4zleK+Olfb2Fph7clXQxsDsitk7guSsl9Urq3bt3bxN6Z0fTyPX4WT9XwPEcr5Xx0r7eQqrr+CUtBu6OiNMkvRV4ELggIv5F0i+Anoh49WhxvI4/Wxq5Hj/r5wo4nuO1Ml7fwOCkrrdQbR1/MxP/6cD9wK+ThxcAvwTOjIiXx4vjxG9mVrtqib9pUz0RsT0iToyIxRGxGNgFvOdoSd+yp961xWmtSU5zG0WLZ8WQ2jp+SbcC5wKzJe0CvhoRP0hre9Yc9a4tTnNNclrbKFo8Kw7X6rEJ6xsYZPmaBzg4dGS1wdTODn66+rxx5x/rfV0z+uZ41s5aPtVj+Vfv2uK01ySnsY2ixbNiceK3Cat3bXHaa5LT2EbR4o3I+jGIrMfLCyd+m7B61xanvSY5jW0ULR6UjhksX/MAl3//UZaveYAfbdldd6wixssTz/FbzepdWzzZNcmt2EZR4mX9GETW42WV6/Fbw3RP76rrP0e9r2vlNooSb+SYwUGOJMKRYwb1xC9avLzxVI+ZZf4YRNbj5Y0Tv5ll/hhE1uPljef4zeywrB6DyEu8rPEcv5kdVVaPQeQlXl54qsfMrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgUkv8km6Q9IqkJ8va1kl6VtI2ST+UNDOt7ZuZWWVp7vHfCFw4pm0jcFpELAV+DlyT4vbNzKyC1BJ/RDwEvDam7b6IOJTc3QQsSGv7ZmZWWSvn+D8J3FPtQUkrJfVK6t27d28Tu2Vm1t5akvglfQU4BNxS7TkRcX1E9EREz5w5c5rXObMyfQODbN25n76BwVZ3xaxhpjR7g5KuBC4Czo+IaPb2zSbqri27Wb1hG50dHQwND7N2xVIuXja/1d0ym7Sm7vFLuhBYDVwcEb9u5rbNatE3MMjqDds4ODRM/+AhDg4Ns2rDNu/5W1tIcznnrcAjwCmSdkn6FHAdMAPYKGmLpL9Ma/tmk7Fr3wE6O0b/9+js6GDXvgMt6pFZ46Q21RMRf1Ch+Qdpbc+skRbMmsbQ8PCotqHhYRbMmtaiHpk1js/cNauge3oXa1csZWpnBzO6pjC1s4O1K5bSPb2r1V0zm7SmH9w1y4uLl81n+ZLZ7Np3gAWzpjnpW9tw4jcbR/f0Lid8azue6jEzKxgnfjOzgnHiNzMrGCd+M7OCceI3MysYJ34zs4Jx4jczKxgnfjOzgnHiN2uiHXv6ub13Jzv29Gcynq8/UAw+c9esSa69czs3bXrx8P0rzl7E1y85PTPxfP2B4vAev1kT7NjTPypJA9z0yIt176k3Op6vP1AsTvxmTbBl5/6a2psdz9cfKBYnfrMmWLZwZk3tzY7n6w8UixO/WRMsmTuDK85eNKrtirMXsWTujEzE8/UHikV5uN55T09P9Pb2trobZpO2Y08/W3buZ9nCmXUn6TTj9Q0M+voDbUTSExHRM7bdq3rMmmjJ3BkNSdBpxfP1B4rBUz1mZgXjxG9mVjBO/GZmBePEb2ZWME78ZmYFk4vlnJL2Ai+kuInZwKspxs+Cdh9ju48PPMZ20cwxvj0i5oxtzEXiT5uk3kprXdtJu4+x3ccHHmO7yMIYPdVjZlYwTvxmZgXjxF9yfas70ATtPsZ2Hx94jO2i5WP0HL+ZWcF4j9/MrGCc+M3MCqbtE7+khZIelPSMpKckfW7M41+UFJJml7VdI2mHpJ9J+rfN73VtxhujpM8m43hK0tqy9rYYo6RlkjZJ2iKpV9KZZa/J2xinSnpM0tZkjF9L2k+QtFHSc8m/s8pek5sxjjO+dZKelbRN0g8lzSx7TW7GB9XHWPZ4NvJNRLT1DzAPeE9yewbwc+DU5P5C4F5KJ4fNTtpOBbYCXcBJwP8Djmn1OOoZI/BB4P8AXcljJ7bhGO8DPpy0/x7w4xyPUcD05HYn8ChwFrAW+FLS/iVgTR7HOM74LgCmJO1r8jq+8caY3M9Mvmn7Pf6IeCkiNie3+4FngPnJw98GVgHlR7gvAf4mIgYj4nlgB3AmGTbOGK8CvhkRg8ljryQvaacxBnBc8rTjgV8mt/M4xoiIgeRuZ/ITlMayPmlfD1ya3M7VGKuNLyLui4hDSfsmYEFyO1fjg3F/h5ChfNP2ib+cpMXAu4FHJV0M7I6IrWOeNh/YWXZ/F0e+KDKvfIzAycA5kh6V9BNJ702e1k5jvBpYJ2kn8GfANcnTcjlGScdI2gK8AmyMiEeBuRHxEpS+AIETk6fnboxVxlfuk8A9ye3cjQ8qjzFr+aYwiV/SdGADpURxCPgKcG2lp1Zoy8Wa1/IxRsTrlK6wNovSn9P/GbhNkmivMV4FfD4iFgKfB34w8tQKL8/8GCPijYhYRmmv90xJp43z9NyNcbzxSfoKpf+bt4w0VQqReicnqcIYl5KxfFOIxC+pk1KyuCUi7gB+i9J82lZJv6D0C9os6W2UvnEXlr18AUemDzKrwhihNJY7kj8/HwOGKRWIaqcxXgmM3P5bjvyZnMsxjoiI/cCPgQuBPZLmAST/jkzZ5XaMY8aHpCuBi4CPRTL5TY7HB6PGeAlZyzetPBDSjB9K36g3AX8+znN+wZGDLf+a0Qdb/pl8HFB60xiBTwNfT26fTOlPSrXZGJ8Bzk1unw88kePf4xxgZnJ7GvCPlJLhOkYf3F2bxzGOM74LgaeBOWOen6vxjTfGMc9peb4pwsXWlwMfB7Yn824AX46If6j05Ih4StJtlD6Ih4A/jog3mtLT+lUcI3ADcIOkJ4HfAFdG6dPWTmP8I+AvJE0BDgIrIbe/x3nAeknHUPpr/LaIuFvSI5Sm6T4FvAh8BHI5xmrj20Ep8W0szUSyKSI+ncPxQZUxVntyq8bokg1mZgVTiDl+MzM7wonfzKxgnPjNzArGid/MrGCc+M3MCsaJ39qWpDeSqp1PJdUS/5Okuj/zkt6XVF58NvlZWfbYnKQ0xj+pVEX0qrLH/k1SebIIy6ctB/xBtHZ2IEqnziPpROCvKRVy+2qtgZKzLP8auDQiNidlde+VtDsi/p7SyWPPRsSVkuYCj0i6HegDrgP+YxwpRFbrtkVp6fVwPa83G8vr+K1tSRqIiOll998BPE6pbMXbgZuBY5OHPxMR/1fSzcDtEXFX8ppbgP8NvJdS8cVry+KdD/wX4LPAjyidqbkbOBv498lrHgfOoHRi2TeBcymdrPTdiPheUnvoLko1lTqBP4mIu5JCdPcADybxLo2IFxr5/lhxOfFb2xqb+JO2fcBvA/3AcEQclPRO4NaI6JH0AUpF3y6VdDywBXgncBuwfuQLIYl1PPB8RJwg6RNAT0R8JnmsA3iEUiXNHmAFpesh/KmkLuCnlM7A3Qm8NSJeT/6K2JRs7+2UTt//nYjYlMobZIXlqR4rmpFqiJ3AdZKWAW9QqmVERPxE0neTqaF/B2yIiEPJdEulvaSKe04RMSzpe5S+DPokXQAslXRZ8pTjKSX4XcA3JL2fUhG9+cDc5DkvOOlbGpz4rTCSqZ43KFW3/CqwB3gXpUUOB8ueejPwMeD3KdWHB3iK0p77j8qedwalGivVDCc/UPrC+WxE3DumT5+gVNjrjIgYSqo3Tk0e/tXER2c2cV7VY4UgaQ7wl8B1SaG644GXkgOmHweOKXv6jZSu20BEPJW0fRf4RPIXApK6KV0mcC0Tcy9wVVJaGkknSzo26ccrSdL/IKUpHrNUeY/f2tm0pJJnJ6XKhzcD30oe+x/ABkkfoXQA9fDedUTskfQMcGdZ20uSLgf+StIMSnvwfx4RfzfBvnwfWEypDruAvZQuoXgL8HeSeikdT3i2noGa1cIHd83GkPRWYDuli7v/S6v7Y9ZonuoxKyPpQ5T2uv+7k761K+/xm5kVjPf4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCub/A2eoKqxqO9IQAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']\n", + "print(pie_pumpkins['DayOfYear'].corr(pie_pumpkins['Price']))\n", + "pie_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 선형 회귀\n", + "\n", + "우리는 Scikit Learn을 사용하여 선형 회귀 모델을 훈련할 것입니다:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n", + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.77 (17.2%)\n" + ] + } + ], + "source": [ + "X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1)\n", + "y = pie_pumpkins['Price']\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "lin_reg = LinearRegression()\n", + "lin_reg.fit(X_train,y_train)\n", + "\n", + "pred = lin_reg.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXXElEQVR4nO3df3BV5Z3H8feXEDGKEF0QTYCmdTEtv4R6tW5/rL+qYVerjF21bmeHrW5ZXWvXtmJFO63tdEdrnFY722mHGRl1a9mqpGzX1kZrtdqtQC+gBtBYLYgkKFGM+CMCCd/9495gSHJzf+Se3HuefF4zjDfPPfecJ1/hc899znOfY+6OiIiEYUypOyAiIsWjUBcRCYhCXUQkIAp1EZGAKNRFRAIydiQPNmnSJK+rqxvJQ4qIxN66detec/fJuWw7oqFeV1dHMpkcyUOKiMSemb2U67YafhERCYhCXUQkIAp1EZGAKNRFRAKiUBcRCUjW2S9mNg24GzgG2A8sc/fbzawR+AywF3gR+IK7d0bYVxkBqza00djcSntnFzXVVSxpqGfh/NpSd0tEcpTLmXo38DV3/whwCnClmc0EHgZmu/tc4HlgaXTdlJGwakMbS5taaOvswoG2zi6WNrWwakNbqbsmIjnKGuruvsPd16cfvwU8C9S6+0Pu3p3ebDUwNbpuykhobG6la1/PQW1d+3pobG4tUY9EJF95jambWR0wH1jT76lLgQczvGaxmSXNLNnR0VFQJ2VktHd25dUuIuUn51A3s/HASuBqd9/dp/0GUkM09wz2Ondf5u4Jd09MnpzTt1ylRGqqq/JqF5Hyk1Oom1klqUC/x92b+rQvAs4FPu+6hVLsLWmop6qy4qC2qsoKljTUl6hHIpKvXGa/GHAH8Ky7f79P+wLg68Cp7v5udF2UkdI7y0WzX0Tiy7KdYJvZJ4EngBZSUxoBrgd+CIwDXk+3rXb3y4faVyKRcC3oJSKSHzNb5+6JXLbNeqbu7n8AbJCnfp1vx0REJFr6RqmISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gEJOs9SkWitmpDG43NrbR3dlFTXcWShnoWzq8t+33LQKp36SnUpaRWbWhjaVMLXft6AGjr7GJpUwvAsMMgyn3LQKp3edDwi5RUY3PrgRDo1bWvh8bm1rLetwykepcHhbqUVHtnV17t5bJvGUj1Lg8KdSmpmuqqvNrLZd8ykOpdHhTqUlJLGuqpqqw4qK2qsoIlDfVlvW8ZSPUuD7pQKiXVewEtihkTUe5bBlK9y4O5+4gdLJFIeDKZHLHjiYiEwMzWuXsil22znqmb2TTgbuAYYD+wzN1vN7OjgJ8DdcBW4CJ3f6PQTpeC5tSKSGhyGVPvBr7m7h8BTgGuNLOZwHXAI+4+A3gk/XNs9M6pbevswnl/Tu2qDW2l7pqISMGyhrq773D39enHbwHPArXA+cBd6c3uAhZG1MdIaE6tiIQor9kvZlYHzAfWAFPcfQekgh84OsNrFptZ0sySHR0dw+xu8WhOrYiEKOdQN7PxwErganffnevr3H2ZuyfcPTF58uRC+hgJzakVkRDlFOpmVkkq0O9x96Z086tmdmz6+WOBndF0MRqaUysiIcoa6mZmwB3As+7+/T5P/RJYlH68CPif4ncvOgvn13LTBXOora7CgNrqKm66YI5mv4hIrGWdp25mnwSeAFpITWkEuJ7UuPq9wHRgG3Chu+8aal+apy4ikr+izlN39z8AluHpM/PpmIiIREtrv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBET3KBUpkO6cJeVIoS5SgN47Z/XeaKX3zlmAgl1KSsMvIgXQnbOkXCnURQqgO2dJuVKoixRAd86ScqVQFymA7pwl5UoXSkUK0HsxVLNfpNwo1EUKtHB+rUJcyo6GX0REAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJSNlPaYzrSnhx7beIxFtZh3pcV8KLa79FJP7KevglrivhxbXfIhJ/WUPdzJab2U4z29inbZ6ZrTazp8wsaWYnR9G5uK6EF9d+i0j85XKmfiewoF/bLcC33X0e8M30z0UX15Xw4tpvEYm/rKHu7o8Du/o3AxPSjycC7UXuFxDflfDi2m8Rib9CL5ReDTSb2a2k3hg+XrQe9RHXlfDi2m8RiT9z9+wbmdUBD7j77PTPPwR+7+4rzewiYLG7fzrDaxcDiwGmT59+4ksvvVSsvouIjApmts7dE7lsW+jsl0VAU/rxfUDGC6XuvszdE+6emDx5coGHExGRXBQa6u3AqenHZwB/Lk53RERkOLKOqZvZCuA0YJKZbQe+BXwRuN3MxgLvkR5eERGR0soa6u5+SYanTixyX0REZJjK+hulIiKSH4W6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhACr1H6Yhq3vQK//pf6w5qO/yQCmbVTGRmzQRm1UxgVs1EZkwZT2WF3qdEZPSKRahPPbJqQNs7e3tYu3UXa7fuyvr6D006nJk1E9JvABOZVTOBSePHRdFVEZGSyunG08WSSCQ8mUwWZV9vvLOXzTt2s6n9TTa172ZT+25e2Pl2Ufbd6/JTj+NLZ/w148fF4r1PRAKVz42nYxvqueru2c+LHe+wecebbGrbnX4DeJPd73UX7Rizaydw42dmkag7qmj7FBHppVAv0Notu/jOA5vY2LY7smM0zJrCrReewBGHVkZ2DBEJi0I9Ym/v6ebHj73Ajx59MdLj3PmFkzit/uhIjyEi5U+hXkb+9+l2rlqxIdJjfOaEGm6+YA6Ha+xfJEgK9Ryt2tBGY3Mr7Z1d1FRXsaShnoXza0vSl9ff3sPVP3+KJ/78WqTH+d5n53DxSdMjPYaIFJdCPQerNrSxtKmFrn09B9qqKiu46YI5JQv2XK1ct52v3fd0pMeoPqySJ649XWP/ImVAoZ6DT9z8O9o6uwa011ZX8X/XnVGCHhXfltfe4fRbH4v8OLd/bh7nzyvvN0KROFOo5+CD1/2KwX5zA7bcfM5Id6fkbvzlJu7849ZIj3HMhEP53TWnctghGvsXyUc+oT5q/3XVVFcNeqZeUz3w26ujwY3nzeLG82Zl3e75V9/i7B88XtAxXtn9HjO/2ZzTtj+8ZD7nnVBT0HFERrNRe6Ye5zH1OHB3rr3/Ge5btz3S4xx1+CH88bozOLSyItLjiJRSUYdfzGw5cC6w091n92m/CvgS0A38yt2vzXawcgp1KK/ZL6NVpmsbUfj+RSdwwUenjsixRIqp2KH+t8DbwN29oW5mpwM3AOe4+x4zO9rdd2Y7WLmFupRePtc29u93/vnOP/H48x2R96v1uwsYN1Zn/1Ieijqm7u6Pm1ldv+YrgJvdfU96m6yBLtGL4yePfK5tjBlj3H3pyTntN7l1F//wkycL7lf9N36T03Y/+sePcs7cYws+jkixFXqh9HjgU2b2H8B7wDXu/qfBNjSzxcBigOnT9aWXqPS/RtDW2cXSphaAsg720z88mZ+u3jZo+3Ak6o7itovnZb1u0t2zn0/d8ig73nyvoONc+bP1XPmz7NtVVVbwzI1na71/iVyhoT4WOBI4BTgJuNfMPuSDjOW4+zJgGaSGXwrtqAytsbn1oPAC6NrXQ2Nza1mH+qPPDT6Ukqk9H7nUZGzFGJ5cemZO+/vt5lf5l7sLGz7s2tfDjBsezGnbOxYlOPMjUwo6jkihob4daEqH+Foz2w9MAqIf7JRBtWe42JipvVxE2e9i7/vTM6ewNYfvMOzt3s+J332Ytwpc3vmyu3J745g/vZr7L/84FWOsoONImAoN9VXAGcBjZnY8cAgQ7aIlMqS4zruPst+lqskhY8fQcmNDTts+8Ew7X/pZYQu+bdjWyXHX/zqnbVde8Tec+AGt9z8aZA11M1sBnAZMMrPtwLeA5cByM9sI7AUWDTb0IiNnSUP9oOPHSxrqS9ir7KLsdxxqcu7cGs6dm/1LVnu6e1hw2xNsee2dgo7z2R/ndtH4ytOP45qz6zHT2X9cjdovH4UojrNfINp+x7Umw/GbjTu4/KfrIz1G9WGVrPq3T1A36fBIjyMpWvtFRLLa093D9U0bWbk+mm/9jh1jXJiYxkWJqcybVq2z/2HQ2i+jVFzPSuPa7yiN5KeX2y6el3Xfa/7yOhcvW53Xcbr3OyvWbmPF2oFTVvubP72aixLTOHfusVrueZh0ph6IuK5lE9d+RynKmkRd7/f29XDzg8/x3Cu7Wf2XXcPeX3/jxo7hosQ0LkpMY3bthFFz9q/hl1EoruvDx7XfUYqyJuVU7+1vvEvT+jbuTb7M9jeKP/U28YEjuTAxlXPm1jA+5rd61PDLKKR56uGI09z94Zh65GF8+cwZfPnMGUNut69nP4+1dnBf8mUe2vxqzvtPvvQGyZfe4OsrW4bc7vBDKrgwMY3PnTyNDx8zIef9lyuFeiA0Tz0cIc7dH47KijGcNXMKZ83M/i3bba+/y/3rt3N/8mXac1z64Z29Pdz5x60ZbxIzftxYZtZMYFbNBGYeO4FZNROZMWV82S75oFAPRBzmZA8mrv2O0mifuz8c0//qML561vF89azjh9xub/d+fvfcTu5Lvswjzw29HuHbe7pZu2UXa7dkv0bwoUmHp98AJqbeBGomMGn8uLx+h+HSmHpA4jqLJK79jpLm7pePznf3snnHbja372ZT+242tb/J86++nfd+Hrjqk8yunVhQH3ShVERkhHX37GfLa+8cCP7NO1JvAp3v7gPgD18/nalHHlbQvnWhVERkhI2tGMOMKUcwY8oRJf3kU54j/SIiUhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIB0Tx1OYi+bSgSbwp1OaD/WtttnV0sbUqtcKdgF4kHDb/IAY3NrQct9ATQta+HxubWEvVIRPKlUJcDymmtbREpjEJdDsi0pnY5r7UtIgdTqMsBSxrqqaqsOKgtpLW2RUYDXSiVA3ovhmr2i0h8KdTlIAvn1yrERWJMoS4lp7nxA8X1zkf6fznQSNdEoS4lpbnxA0VZk7juO65KUZOsF0rNbLmZ7TSzjYM8d42ZuZlNiqR3EjzNjR8oyprEdd9xVYqa5DL75U5gQf9GM5sGnAVsK3KfZBTR3PiBoqxJXPcdV6WoSdZQd/fHgV2DPPUD4Fpg5O5cLcHR3PiBoqxJXPcdV6WoSUHz1M3sPKDN3Z/OYdvFZpY0s2RHR0chh5OAaW78QFHWJK77jqtS1CTvC6VmdhhwA3B2Ltu7+zJgGUAikdBZvRxEc+MHirImcd13XJWiJuaePWfNrA54wN1nm9kc4BHg3fTTU4F24GR3f2Wo/SQSCU8mk8PrsYjIKGNm69w9kcu2eZ+pu3sLcHSfg20FEu7+Wr77Eoma5k3LaJPLlMYVwJNAvZltN7PLou+WyPD1zhFu6+zCeX+O8KoNbaXumkhksp6pu/slWZ6vK1pvRIpoqDnCOluXUGmVRgmW5k3LaKRlAiRYNdVVtA0S4KN53nTU4noNI679HozO1CVYmjc9suJ6DSOu/c5EoS7BWji/lpsumENtdRUG1FZXcdMFc2J7Blbu4rr2S1z7nYmGXyRoWh9+5MT1GkZc+52JztRFpCjiuvZLXPudiUJdRIoirtcw4trvTDT8IiJFEde1X+La70xyWvulWLT2i4hI/vJZ+0XDLyIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAcka6ma23Mx2mtnGPm2NZvacmT1jZr8ws+pIeykiIjnJ5Uz9TmBBv7aHgdnuPhd4Hlha5H6JiEgBsoa6uz8O7OrX9pC7d6d/XA1MjaBvIiKSp2KMqV8KPJjpSTNbbGZJM0t2dHQU4XAiIpLJsELdzG4AuoF7Mm3j7svcPeHuicmTJw/ncCIiksXYQl9oZouAc4Ez3d2L1yURESlUQaFuZguArwOnuvu7xe2SiIgUKpcpjSuAJ4F6M9tuZpcB/wkcATxsZk+Z2U8i7qeIiOQg65m6u18ySPMdEfRFRESGSd8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAUvPSuiETnG6taWLHmZXrcqTDjko9N47sL5xRl36s2tNHY3Ep7Zxc11VUsaahn4fzaouxbSk+hLlJmvrGqhZ+u3nbg5x73Az8PN9hXbWhjaVMLXft6AGjr7GJpUwuAgj0QGn4RKTMr1rycV3s+GptbDwR6r659PTQ2tw5731IeFOoiZaYnw43EMrXno72zK692iR+FukiZqTDLqz0fNdVVebVL/CjURcrMJR+blld7PpY01FNVWXFQW1VlBUsa6oe9bykPulAqUmZ6L4ZGMful92KoZr+Ey7wI43S5SiQSnkwmR+x4IiIhMLN17p7IZVsNv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBGREZ7+YWQfwEjAJeG3EDly+VAfVAFSDXqpD5hp8wN0n57KDEQ31Awc1S+Y6PSdkqoNqAKpBL9WhODXQ8IuISEAU6iIiASlVqC8r0XHLjeqgGoBq0Et1KEINSjKmLiIi0dDwi4hIQBTqIiIBKXqom9k0M3vUzJ41s01m9u/9nr/GzNzMJvVpW2pmL5hZq5k1FLtPpTBUHczsqvTvusnMbunTHlQdMtXAzOaZ2Woze8rMkmZ2cp/XBFUDADM71MzWmtnT6Tp8O91+lJk9bGZ/Tv/3yD6vCaoOQ9Sg0cyeM7NnzOwXZlbd5zVB1QAy16HP88PPR3cv6h/gWOCj6cdHAM8DM9M/TwOaSX8BKd02E3gaGAd8EHgRqCh2v0b6T6Y6AKcDvwXGpZ87OtQ6DFGDh4C/S7f/PfBYqDVI/14GjE8/rgTWAKcAtwDXpduvA74Xah2GqMHZwNh0+/dCrsFQdUj/XJR8LPqZurvvcPf16cdvAc8CvSvw/wC4Fuh7dfZ84L/dfY+7bwFeAE4m5oaowxXAze6+J/3czvRLgqvDEDVwYEJ6s4lAe/pxcDUA8JS30z9Wpv84qd/3rnT7XcDC9OPg6pCpBu7+kLt3p9tXA1PTj4OrAQz5dwGKlI+RjqmbWR0wH1hjZucBbe7+dL/NaoG+t0nfzvtvAkHoWwfgeOBTZrbGzH5vZielNwu6Dv1qcDXQaGYvA7cCS9ObBVsDM6sws6eAncDD7r4GmOLuOyD1Bggcnd48yDpkqEFflwIPph8HWQMYvA7FzMfIQt3MxgMrSf0D7gZuAL452KaDtAUzz7JvHdx9N6lbCB5J6qPnEuBeMzMCrsMgNbgC+Iq7TwO+AtzRu+kgLw+iBu7e4+7zSJ2Jnmxms4fYPMg6DFUDM7uBVE7c09s02C4i7+QIGKQOcyliPkYS6mZWSeof8T3u3gQcR2o86Gkz20rql1lvZseQeufpe0fdqbz/cTzWBqkDpH7fpvTHsLXAflKL+ARZhww1WAT0Pr6P9z9OBlmDvty9E3gMWAC8ambHAqT/2zsUF3Qd+tUAM1sEnAt83tMDyQReAzioDudTzHyM6ELA3cBtQ2yzlfcvBMzi4AsBfyGcCyID6gBcDnwn/fh4Uh+tLMQ6DFGDZ4HT0o/PBNYF/ndhMlCdflwFPEEqxBo5+ELpLaHWYYgaLAA2A5P7bR9cDYaqQ79thpWPY4fI+0J9AvgnoCU9bgRwvbv/erCN3X2Tmd1L6n9sN3Clu/dE0K+RNmgdgOXAcjPbCOwFFnnq/16IdchUgy8Ct5vZWOA9YDEE/XfhWOAuM6sg9en4Xnd/wMyeJDX8dhmwDbgQgq1Dphq8QCqwHk6NQrLa3S8PtAaQoQ6ZNi6kDlomQEQkIPpGqYhIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiATk/wHell9jjLoNCQAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test,y_test)\n", + "plt.plot(X_test,pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "선형 회귀 계수로부터 직선의 기울기를 구할 수 있습니다:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([-0.01751876]), 21.133734359909326)" + ] + }, + "execution_count": 178, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lin_reg.coef_, lin_reg.intercept_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 179, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([16.64893156])" + ] + }, + "execution_count": 179, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Pumpkin price on programmer's day\n", + "\n", + "lin_reg.predict([[256]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 다항 회귀\n", + "\n", + "특성과 결과 간의 관계가 본질적으로 비선형일 때가 있습니다. 예를 들어, 호박 가격은 겨울(1월, 2월)에 높았다가 여름(5월~7월)에 떨어지고 다시 상승할 수 있습니다. 선형 회귀는 이러한 관계를 정확히 찾아내지 못할 수 있습니다.\n", + "\n", + "이 경우 추가적인 특성을 고려할 수 있습니다. 간단한 방법은 입력 특성에서 다항식을 사용하는 것으로, 이를 통해 **다항 회귀**를 수행할 수 있습니다. Scikit Learn에서는 파이프라인을 사용하여 다항 특성을 자동으로 미리 계산할 수 있습니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.73 (17.0%)\n", + "Model determination: 0.07639977655280217\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 180, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbw0lEQVR4nO3de3Cc1Znn8e+jm93ClmRb8kWyjYBgDb6ATQQhFwIhFzu7meBQNVOVyu5Sm9RQSWWnJlMTZ3BIZWq2dpcMnprZzM5WTbEDFVLDsJOZOM4USTAEkkBYMJExjOwYY8AXkGRLsi35otb92T+6JbfurXa3ut+j36eqS2+ffvvto0f2T6/Oe/q0uTsiIhKGonx3QEREskehLiISEIW6iEhAFOoiIgFRqIuIBKRkLl+surra6+vr5/IlRUQib//+/Z3uXpPOvnMa6vX19TQ1Nc3lS4qIRJ6ZnUh3Xw2/iIgERKEuIhIQhbqISEAU6iIiAVGoi4gEZMbZL2a2Bvg+sBIYBh529++a2S7gd4F+4G3gP7t7Vw77KnNgz4EWdu09QmtXnNqqGDu2NrB9S12+uyUiaUrnTH0Q+BN3vwG4Dfiqma0HngE2uvuNwJvAztx1U+bCngMt7NzdTEtXHAdauuLs3N3MngMt+e6aiKRpxlB39zZ3fzW5fQE4DNS5+9PuPpjc7WVgde66KXNh194jxAeGxrTFB4bYtfdInnokIrM1qzF1M6sHtgD7xj30ReBnUzznPjNrMrOmjo6OjDopc6O1Kz6rdhEpPGmHupktAn4IfM3dz6e0P0BiiObxyZ7n7g+7e6O7N9bUpPUuV8mT2qrYrNpFpPCkFepmVkoi0B93990p7fcCnwG+4PoIpcjbsbWBWGnxmLZYaTE7tjbkqUciMlvpzH4x4BHgsLv/VUr7NuBPgTvcvSd3XZS5MjLLRbNfRKLLZjrBNrOPAC8AzSSmNAJ8E/gbYAFwJtn2srt/ebpjNTY2uhb0EhGZHTPb7+6N6ew745m6u/8asEke+ulsOyYiIrmld5SKiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQGb8jFKRXNtzoIVde4/Q2hWntirGjq0NbN9SV/DHlolU7/xTqEte7TnQws7dzcQHhgBo6Yqzc3czwBWHQS6PLROp3oVBwy+SV7v2HhkNgRHxgSF27T1S0MeWiVTvwqBQl7xq7YrPqr1Qji0Tqd6FQaEueVVbFZtVe6EcWyZSvQuDQl3yasfWBmKlxWPaYqXF7NjaUNDHlolU78KgC6WSVyMX0HIxYyKXx5aJVO/CYO4+Zy/W2NjoTU1Nc/Z6IiIhMLP97t6Yzr4znqmb2Rrg+8BKYBh42N2/a2ZLgX8C6oHjwO+7+7lMO50PmlMrIqFJZ0x9EPgTd78BuA34qpmtB+4HnnX364Fnk/cjY2RObUtXHOfynNo9B1ry3TURkYzNGOru3uburya3LwCHgTrgbuCx5G6PAdtz1Mec0JxaEQnRrGa/mFk9sAXYB6xw9zZIBD+wfIrn3GdmTWbW1NHRcYXdzR7NqRWREKUd6ma2CPgh8DV3P5/u89z9YXdvdPfGmpqaTPqYE5pTKyIhSivUzayURKA/7u67k82nzWxV8vFVQHtuupgbmlMrIiGaMdTNzIBHgMPu/lcpD/0rcG9y+17gx9nvXu5s31LHg/dsoq4qhgF1VTEevGeTZr+ISKTNOE/dzD4CvAA0k5jSCPBNEuPqPwDWAieB33P3s9MdS/PURURmL6vz1N3914BN8fDHZ9MxERHJLa39IiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEH1GqUiG9MlZUogU6iIZGPnkrJEPWhn55CxAwS55peEXkQzok7OkUCnURTKgT86SQqVQF8mAPjlLCpVCXSQD+uQsKVS6UCqSgZGLoZr9IoVGoS6Soe1b6hTiUnA0/CIiEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQAp+SmNUV8KLar9FJNoKOtSjuhJeVPstItFX0MMvUV0JL6r9FpHomzHUzexRM2s3s4MpbZvN7GUze83Mmszs1lx0Lqor4UW13yISfemcqX8P2Dau7SHgz919M/Dt5P2si+pKeFHtt4hE34yh7u7PA2fHNwMVye1KoDXL/QKiuxJeVPstItGX6YXSrwF7zewvSfxi+FDWepQiqivhRbXfIhJ95u4z72RWDzzp7huT9/8G+JW7/9DMfh+4z90/McVz7wPuA1i7du37T5w4ka2+i4jMC2a2390b09k309kv9wK7k9v/DEx5odTdH3b3RndvrKmpyejFuuMD9A8OZ/RcEZH5JNNQbwXuSG7fBRzNTncm97+ePcqt/+PnfGtPM/tPnCWdvy5EROajGcfUzewJ4E6g2szeA/4M+APgu2ZWAvSSHF7JlbtuWE77hT7+Zf97/MPLJ1m7tDzxAQWba7m2ZlEuX1pEJFLSGlPPlsbGRm9qasr4+Rf7Btl78BR7Xmvhxbc6GXa4aU0Vn9tcy+/eVMuyRQuy2FsRkcIwmzH1SIV6qtPne/nX11r50YEWftt2nuIi4451NWzfUscnb1hBrKx45oOIiETAvAj1VEdOXWDPay38+EALrd29XFVWzLaNq/jcljo+eN0yioss668pIjJX5l2ojxgedvYdO8ueAy38tLmNC32DrKhYwN2b69i+uY4bVi3GTAEvItEyb0M9Ve/AEM+90c6PDrTwyyPtDAw5DSsWs31LHXdvrtVb9kUkMhTq45y71M+TzW3sOdDC/hPnMIPbrlnG57bUsW3TSioWls55n0RE0qVQn8aJM5f4cfIC67HOS5SVFHFXw3I+vWklH/ud5Qp4ESk4CvU0uDuvv9c9Ov7efqGP0mLjw++rZtuGlXxi/QqqNUVSRAqAQn2WhoedA+92sffQKZ46eIqTZ3soMrilfinbNq5k64aVGoMXkbxRqF8Bd+dw2wWeOnSKvQdPceT0BQBuWl3JpzasZNvGlVynd7GKyBxSqGfROx0X2XvoNE8dOsXr73YBcP3yRaNn8BtqKzRNUkRySqGeI23dcZ4+dJqnDp5i37EzDDusXhJjW/IM/ua1SyjSG51EJMsU6nPgzMU+nj3czlOHTvHro530Dw1Ts3gBn1q/gm0bV3LbtcsoLS7oz/UWkYhQqM+xC70D/OJIB3sPnuIXR9rp6R+iYmEJn7hhBZ9Yv4IPX1dNZbmmSopIZhTqedQ7MMQLRzt56uApfn74NN3xAYossZrk7dfX8NHrq9m8pooSncWLSJoU6gVicGiY197t4vmjnbxwtIPX3+1i2GHxghI+9L5lyZCvYe2y8nx3VUQKmEK9QHX3DPDi24mAf/7NTlq64gBcvaycj15fw+3XV/PB65axWO9qFZEUCvUIcHeOdV7ihaOdPP9mBy+9c4ae/iGKi4yb11YlQn5dDZvqKrV0sMg8p1CPoP7BYV49eY4XjnbwwtFOmlu6cYfKWCkfeV81t19fze3raqjTO1tF5h2FegDOXOzjxbfP8MKbiZA/db4XgOtqrkqMxa+r5rZrl1FeNuPHzIpIxCnUA+PuvNV+kV8lA37fsTP0DgxTWmw0Xr2U29dV89Hra1i/qkJvfhIJkEI9cL0DQ+w/cY7nkxdcD7edB2DpVWWjQzUfuGYZa5bGtISBSAAU6mnac6CFXXuP0NoVp7Yqxo6tDWzfUpfvbs1a+4VeXnyrkxfe7OT5o510XuwDYPniBdxSv5TG+iXcUr+U31m5WPPjRSJIoZ6GPQda2Lm7mfjA0GhbrLSYB+/ZFMlgHzE87LzZfoGm4+doOn6W3xw/Nzp18qqyYm6+egmNVyeCfvOaKq5aoDF5kUKnUE/Dh7/z3GjYpaqrivHi/XfloUe509oVp+nE5ZB/49R53KG4yNhQW0Hj1Uu5pX4J769fwvLFC/PdXREZZzahPm9P01onCfTp2qOstirGZ6tifPamWgDO9w5w4GRXMuTP8o+vnODRF48BUL+snMb6pdy0poqNtRXcsKqChaXF+ey+iMzCvA312qrYpGfq8+ETjioWlnLHuhruWFcDJObIH2rtpun4OX5z/CzPvdHOv+x/D4Aig/ctX8TG2krW11awsS7xNZuf5RrKtQ2RQjBvh19CHVPPBnentbuXgy3dHGrp5lDreQ62dnP6fN/oPlcvK2djbSUb6irYUFvJxtoKlmXwma76OYjMLKvDL2b2KPAZoN3dN6a0/yHwX4BB4Cfu/o0M+5sXI4GhM8SJzIy6qhh1VTG2blg52t5xoY9DrcmQb+mmuaWbnzS3jT6+qnIhG2qTIV9XyYbaClZVLpx2WuWuvUfGBDpAfGCIXXuP6GchkoF0hl++B/wt8P2RBjP7GHA3cKO795nZ8tx0L7e2b6lTcMxCzeIF3NmwnDsbLv+4u3sGONTWzW+TQX+w9TzPvdHOcPIPwKVXlaUEfeLr1UvLR98kNZ+ubYjMhRlD3d2fN7P6cc1fAb7j7n3Jfdpz0DeZpXyMTVeWl/Kh66r50HXVo209/YMcbruQOKtvSQzdPPLrdxgYSiT9ogUlrK+tYENtBVXlpZzrGZhw3Gxd29B4vcw3mV4oXQfcbmb/HegFvu7uv5lsRzO7D7gPYO3atRm+nMxk/Nh0S1ecnbubAeY8xMrLSnj/1Ut4/9VLRtv6Boc4evoih1q7OZgM+ideOUnvwPCkx7imupyDLd3UV1/Fogzn0hdSTUTmSloXSpNn6k+OjKmb2UHgOeCPgFuAfwKu9RkOVkgXSkMTxXn3Q8POBx98lvYLfdPut3zxAq6pvmrM7dqaq1iztJwFJVNPt4xiTSQcQ8NOW3eck2d7ePdsDx9rWM7yiszeBzIX89TfA3YnQ/wVMxsGqoGODI8nVyiKY9PFRUbHNIH+d//hZt7pvMSxjksc67zEM789zZlL/aOPFxmsXlI+JuhHtmsrY5GsiUTL+d4BTp5JhPbJlNu7Z3to6YqPDjkC/J//1Mgn1+f+zX2Zhvoe4C7gl2a2DigDOrPVKZm9qM67n6rfdVUxtm1cNaG9u2eAY2cucazzIsc6LvFO5yWOn7lE0/GzXOq/PIumrKSI4iJjcHjiH48rKxbi7lrsTGY0MDRMW1fv5bA+dzm0T57toWvc9aCq8lLWLi1nQ10ln960irVLy0dvqyrn5t3a6UxpfAK4E6g2s/eAPwMeBR5NDsP0A/fONPQiubVja8Ok8713bG3IY69mNtt+V5aXsrm8is1rqsa0uzsdF/oSZ/bJ2/97q5NDrecZ/w+z7Xwv67+9l5WVC1lZsZBVlQtZUZn4urJiYaK9ciHVVy3QUsaBcncu9Q/R1dNPV88AXT0DnO3p571zY8+6W7t6GUo5MSgtNlYvKWfN0nJuXF05GthrkrdsvikvU/P2zUchiupMj1z2e8+BFh566g1au3upXlTGv9+0ijVLyznV3Uvb+V5OdSdup8/3TjirLykyVqSE/MgvgJUp4b988ULKSrTyZT71Dgxxrqefc5cG6IpfDulzPf10xwc4d6mfrvjAaICf6xmgO94/ZmgkVfWiskRILykfE9prl5WzsmJhXj5eUgt6iczS8LDTeamP0919tHXHOZUS+G3J0G/tjk+YrWMGVbFSqsrLqIiVUhUrpTJ5qyq/vH25rWz0Ma2pM1b/4HAieKcJ4smCu29w8hlUAAtLi6iKlVFVnqj5kvKR7TKqYon7lcn2JeWl1FbFCnLlUi3oNU/pTD1zRUXG8sWJM+9Nqysn3cfdOR8fpO18fEzgd17sozs+kDgr7Onn+JlLo/enO2cqKylKBHzKL4GK5HZbdy8vvX2G7vgAS8pL2b6ljtuvr6asuJiykqLErTjxdUHylto+3br5uaq3uzM07Ay5c7F3cFwQpwb05cA+d+ly3Xr6h6Y8dmmxjQnixPBHMpxHwjo27v48/cWpM/VARHUNlaj2Ox3Dw86FvkG6ewZGQ74r3j+6PdLelfJ4d3yAzot90559pqPIGA34BaXFia8lRcQHhjh1vnfMLxszWF0VY/HCUoZHgjkZzkPDzvDoNqOPj7QNpmynEyVFxmjwTnamXJn8Ov7suryseF5f2NaZ+jwU1TVUotrvdBQV2eiwy2xMNb++ZtEC/vcXbqZ/cJj+oSH6BobpHxqmb3A40TaYuJ+63TcwNGafnx8+PSF83aH9Qh8NKxdTZEZxUcrNjKLUr0WMaSsuTn4tsjHPXbSgZNJhjsULSnTxOccU6oGI6pzsqPY7l6b63jsv9nHrNUuv6NjX3P+TSdv7B4f5+3tvuaJjS2HQZftATDUfPQrz1GfTPh/ksiaqd/gU6oHYsbWB2LiLQlGZpx7FfudSLmuieodPwy+BiOr68FHtdy7lsiaqd/g0+0VEpMDNZvaLhl9ERAKiUBcRCYhCXUQkIAp1EZGAKNRFRAKiUBcRCYhCXUQkIAp1EZGA6B2lMkYhrG0uIplTqMuo8Wubt3TF2bm7GUDBLhIRGn6RUdOtbS4i0aBQl1Fa21wk+hTqMkprbYtEn0JdRmmtbZHo04VSGaW1tkWiT6EuY2zfUqcQF4kwhbrknebGT5TLmkT12FE11zVRqEteaW78RLmsSVSPHVX5qMmMF0rN7FEzazezg5M89nUzczOrzknvJHiaGz9RLmsS1WNHVT5qks7sl+8B28Y3mtka4JPAySz3SeYRzY2fKJc1ieqxoyofNZkx1N39eeDsJA/9NfANYO4+uVqCo7nxE+WyJlE9dlTloyYZzVM3s88CLe7+ehr73mdmTWbW1NHRkcnLScA0N36iXNYkqseOqnzUZNYXSs2sHHgA+FQ6+7v7w8DDAI2NjTqrlzE0N36iXNYkqseOqnzUxNxnzlkzqweedPeNZrYJeBboST68GmgFbnX3U9Mdp7Gx0Zuamq6sxyIi84yZ7Xf3xnT2nfWZurs3A8tTXuw40OjunbM9lkiuad60zDfpTGl8AngJaDCz98zsS7nvlsiVG5kj3NIVx7k8R3jPgZZ8d00kZ2Y8U3f3z8/weH3WeiOSRdPNEdbZuoRKqzRKsDRvWuYjLRMgwaqtitEySYDP53nTuRbVaxhR7fdkdKYuwdK86bkV1WsYUe33VBTqEqztW+p48J5N1FXFMKCuKsaD92yK7BlYoYvq2i9R7fdUNPwiQdP68HMnqtcwotrvqehMXUSyIqprv0S131NRqItIVkT1GkZU+z0VDb+ISFZEde2XqPZ7Kmmt/ZItWvtFRGT2ZrP2i4ZfREQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQCMmOom9mjZtZuZgdT2naZ2Rtm9m9m9iMzq8ppL0VEJC3pnKl/D9g2ru0ZYKO73wi8CezMcr9ERCQDM4a6uz8PnB3X9rS7DybvvgyszkHfRERklrIxpv5F4GdTPWhm95lZk5k1dXR0ZOHlRERkKlcU6mb2ADAIPD7VPu7+sLs3untjTU3NlbyciIjMoCTTJ5rZvcBngI+7u2evSyIikqmMQt3MtgF/Ctzh7j3Z7ZKIiGQqnSmNTwAvAQ1m9p6ZfQn4W2Ax8IyZvWZmf5fjfoqISBpmPFN3989P0vxIDvoiIiJXSO8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYBkvPSuiOTOt/Y088S+dxlyp9iMz39gDf9t+6asHHvPgRZ27T1Ca1ec2qoYO7Y2sH1LXVaOLfmnUBcpMN/a08w/vHxy9P6Q++j9Kw32PQda2Lm7mfjAEAAtXXF27m4GULAHQsMvIgXmiX3vzqp9NnbtPTIa6CPiA0Ps2nvkio8thUGhLlJghqb4ILGp2mejtSs+q3aJHoW6SIEpNptV+2zUVsVm1S7Ro1AXKTCf/8CaWbXPxo6tDcRKi8e0xUqL2bG14YqPLYVBF0pFCszIxdBczH4ZuRiq2S/hMs/COF26Ghsbvampac5eT0QkBGa2390b09lXwy8iIgFRqIuIBEShLiISEIW6iEhAFOoiIgGZ09kvZtYBnACqgc45e+HCpTqoBqAajFAdpq7B1e5ek84B5jTUR1/UrCnd6TkhUx1UA1ANRqgO2amBhl9ERAKiUBcRCUi+Qv3hPL1uoVEdVANQDUaoDlmoQV7G1EVEJDc0/CIiEhCFuohIQLIe6ma2xsx+YWaHzeyQmf3RuMe/bmZuZtUpbTvN7C0zO2JmW7Pdp3yYrg5m9ofJ7/WQmT2U0h5UHaaqgZltNrOXzew1M2sys1tTnhNUDQDMbKGZvWJmryfr8OfJ9qVm9oyZHU1+XZLynKDqME0NdpnZG2b2b2b2IzOrSnlOUDWAqeuQ8viV56O7Z/UGrAJuTm4vBt4E1ifvrwH2knwDUrJtPfA6sAC4BngbKM52v+b6NlUdgI8BPwcWJB9bHmodpqnB08Cnk+3/DvhlqDVIfl8GLEpulwL7gNuAh4D7k+33A38Rah2mqcGngJJk+1+EXIPp6pC8n5V8zPqZuru3ufurye0LwGFgZAX+vwa+AaRenb0b+L/u3ufux4C3gFuJuGnq8BXgO+7el3ysPfmU4OowTQ0cqEjuVgm0JreDqwGAJ1xM3i1N3pzE9/tYsv0xYHtyO7g6TFUDd3/a3QeT7S8Dq5PbwdUApv23AFnKx5yOqZtZPbAF2GdmnwVa3P31cbvVAakfk/4el38JBCG1DsA64HYz22dmvzKzW5K7BV2HcTX4GrDLzN4F/hLYmdwt2BqYWbGZvQa0A8+4+z5ghbu3QeIXILA8uXuQdZiiBqm+CPwsuR1kDWDyOmQzH3MW6ma2CPghif/Ag8ADwLcn23WStmDmWabWwd3Pk/gIwSUk/vTcAfzAzIyA6zBJDb4C/LG7rwH+GHhkZNdJnh5EDdx9yN03kzgTvdXMNk6ze5B1mK4GZvYAiZx4fKRpskPkvJNzYJI63EgW8zEnoW5mpST+Ez/u7ruB60iMB71uZsdJfDOvmtlKEr95Uj9RdzWX/xyPtEnqAInvd3fyz7BXgGESi/gEWYcpanAvMLL9z1z+czLIGqRy9y7gl8A24LSZrQJIfh0Zigu6DuNqgJndC3wG+IInB5IJvAYwpg53k818zNGFgO8D/3OafY5z+ULABsZeCHiHcC6ITKgD8GXgvya315H408pCrMM0NTgM3Jnc/jiwP/B/CzVAVXI7BrxAIsR2MfZC6UOh1mGaGmwDfgvUjNs/uBpMV4dx+1xRPpZMk/eZ+jDwH4Hm5LgRwDfd/aeT7ezuh8zsByR+sIPAV919KAf9mmuT1gF4FHjUzA4C/cC9nvjphViHqWrwB8B3zawE6AXug6D/LawCHjOzYhJ/Hf/A3Z80s5dIDL99CTgJ/B4EW4epavAWicB6JjEKycvu/uVAawBT1GGqnTOpg5YJEBEJiN5RKiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgH5/+EaqS+WjFbpAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)\n", + "\n", + "plt.scatter(X_test,y_test)\n", + "plt.plot(sorted(X_test),pipeline.predict(sorted(X_test)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 다양한 품종 인코딩\n", + "\n", + "이상적인 상황에서는 동일한 모델을 사용하여 다양한 호박 품종의 가격을 예측할 수 있기를 원합니다. 품종을 고려하기 위해서는 먼저 이를 숫자 형태로 변환하거나 **인코딩**해야 합니다. 이를 수행하는 방법은 여러 가지가 있습니다:\n", + "\n", + "* 간단한 숫자 인코딩은 다양한 품종의 테이블을 생성한 다음, 품종 이름을 해당 테이블의 인덱스로 대체하는 방식입니다. 하지만 선형 회귀에는 적합하지 않은 방법입니다. 왜냐하면 선형 회귀는 인덱스의 숫자 값을 고려하는데, 이 숫자 값이 가격과 수치적으로 상관관계가 없을 가능성이 높기 때문입니다.\n", + "* 원-핫 인코딩은 `Variety` 열을 4개의 다른 열로 대체하며, 각 품종에 대해 하나의 열을 생성합니다. 해당 행이 특정 품종에 속하면 1을, 그렇지 않으면 0을 포함합니다.\n", + "\n", + "아래 코드는 품종을 원-핫 인코딩하는 방법을 보여줍니다:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    FAIRYTALEMINIATUREMIXED HEIRLOOM VARIETIESPIE TYPE
                                                    700001
                                                    710001
                                                    720001
                                                    730001
                                                    740001
                                                    ...............
                                                    17380100
                                                    17390100
                                                    17400100
                                                    17410100
                                                    17420100
                                                    \n", + "

                                                    415 rows × 4 columns

                                                    \n", + "
                                                    " + ], + "text/plain": [ + " FAIRYTALE MINIATURE MIXED HEIRLOOM VARIETIES PIE TYPE\n", + "70 0 0 0 1\n", + "71 0 0 0 1\n", + "72 0 0 0 1\n", + "73 0 0 0 1\n", + "74 0 0 0 1\n", + "... ... ... ... ...\n", + "1738 0 1 0 0\n", + "1739 0 1 0 0\n", + "1740 0 1 0 0\n", + "1741 0 1 0 0\n", + "1742 0 1 0 0\n", + "\n", + "[415 rows x 4 columns]" + ] + }, + "execution_count": 181, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.get_dummies(new_pumpkins['Variety'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 다양한 품종에 대한 선형 회귀\n", + "\n", + "이제 위와 동일한 코드를 사용할 것이지만, `DayOfYear` 대신 원-핫 인코딩된 품종을 입력으로 사용하겠습니다:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "metadata": {}, + "outputs": [], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety'])\n", + "y = new_pumpkins['Price']" + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 5.24 (19.7%)\n", + "Model determination: 0.774085281105197\n" + ] + } + ], + "source": [ + "def run_linear_regression(X,y):\n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + " lin_reg = LinearRegression()\n", + " lin_reg.fit(X_train,y_train)\n", + "\n", + " pred = lin_reg.predict(X_test)\n", + "\n", + " mse = np.sqrt(mean_squared_error(y_test,pred))\n", + " print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + " score = lin_reg.score(X_train,y_train)\n", + " print('Model determination: ', score)\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "우리는 또한 동일한 방식으로 다른 기능들을 사용해보고, `Month`나 `DayOfYear`와 같은 수치형 기능들과 결합할 수 있습니다:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.84 (10.5%)\n", + "Model determination: 0.9401096672643048\n" + ] + } + ], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety']) \\\n", + " .join(new_pumpkins['Month']) \\\n", + " .join(pd.get_dummies(new_pumpkins['City'])) \\\n", + " .join(pd.get_dummies(new_pumpkins['Package']))\n", + "y = new_pumpkins['Price']\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 다항 회귀\n", + "\n", + "다항 회귀는 원-핫 인코딩된 범주형 특성과 함께 사용할 수도 있습니다. 다항 회귀를 학습시키는 코드는 위에서 본 것과 본질적으로 동일합니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.23 (8.25%)\n", + "Model determination: 0.9652870784724543\n" + ] + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d77bd89ae7e79780c68c58bab91f13f8", + "translation_date": "2025-09-04T01:03:27+00:00", + "source_file": "2-Regression/3-Linear/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ko/2-Regression/4-Logistic/README.md b/translations/ko/2-Regression/4-Logistic/README.md new file mode 100644 index 000000000..828e9290e --- /dev/null +++ b/translations/ko/2-Regression/4-Logistic/README.md @@ -0,0 +1,414 @@ + +# 카테고리 예측을 위한 로지스틱 회귀 + +![로지스틱 vs. 선형 회귀 인포그래픽](../../../../translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.ko.png) + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/) + +> ### [이 강의는 R에서도 제공됩니다!](../../../../2-Regression/4-Logistic/solution/R/lesson_4.html) + +## 소개 + +이번 회귀에 대한 마지막 강의에서는 기본적인 _고전적인_ 머신러닝 기법 중 하나인 로지스틱 회귀를 살펴보겠습니다. 이 기법은 패턴을 발견하여 이진 카테고리를 예측하는 데 사용됩니다. 이 사탕이 초콜릿인가 아닌가? 이 질병이 전염성인가 아닌가? 이 고객이 이 제품을 선택할 것인가 아닌가? + +이번 강의에서 배우게 될 내용: + +- 데이터 시각화를 위한 새로운 라이브러리 +- 로지스틱 회귀 기법 + +✅ 이 [학습 모듈](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott)을 통해 이 회귀 유형에 대한 이해를 심화하세요. + +## 사전 준비 + +호박 데이터를 다루면서, 이제 `Color`라는 이진 카테고리를 작업할 수 있다는 것을 충분히 이해하게 되었습니다. + +이제 로지스틱 회귀 모델을 구축하여 몇 가지 변수에 따라 _주어진 호박의 색상이 무엇일 가능성이 높은지_ 예측해 봅시다 (주황색 🎃 또는 흰색 👻). + +> 왜 회귀에 대한 강의에서 이진 분류를 다루고 있을까요? 언어적 편의를 위해서입니다. 로지스틱 회귀는 [사실 분류 방법](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression)이며, 선형 기반이긴 하지만요. 다음 강의 그룹에서 데이터를 분류하는 다른 방법에 대해 알아보세요. + +## 질문 정의하기 + +우리의 목적을 위해 이를 이진으로 표현하겠습니다: '흰색' 또는 '흰색이 아님'. 데이터셋에 '줄무늬' 카테고리도 있지만, 해당 사례가 적기 때문에 사용하지 않을 것입니다. 어쨌든 데이터셋에서 null 값을 제거하면 사라집니다. + +> 🎃 재미있는 사실: 우리는 때때로 흰색 호박을 '유령' 호박이라고 부릅니다. 조각하기가 쉽지 않아서 주황색 호박만큼 인기가 많지는 않지만, 멋지게 생겼습니다! 따라서 질문을 이렇게 다시 표현할 수도 있습니다: '유령' 또는 '유령이 아님'. 👻 + +## 로지스틱 회귀에 대하여 + +로지스틱 회귀는 이전에 배운 선형 회귀와 몇 가지 중요한 점에서 다릅니다. + +[![초보자를 위한 머신러닝 - 로지스틱 회귀를 통한 데이터 분류 이해하기](https://img.youtube.com/vi/KpeCT6nEpBY/0.jpg)](https://youtu.be/KpeCT6nEpBY "초보자를 위한 머신러닝 - 로지스틱 회귀를 통한 데이터 분류 이해하기") + +> 🎥 위 이미지를 클릭하여 로지스틱 회귀에 대한 간단한 비디오 개요를 확인하세요. + +### 이진 분류 + +로지스틱 회귀는 선형 회귀와 같은 기능을 제공하지 않습니다. 전자는 이진 카테고리("흰색 또는 흰색이 아님")에 대한 예측을 제공하는 반면, 후자는 연속적인 값을 예측할 수 있습니다. 예를 들어, 호박의 원산지와 수확 시기를 기준으로 _가격이 얼마나 오를지_ 예측할 수 있습니다. + +![호박 분류 모델](../../../../translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.ko.png) +> 인포그래픽: [Dasani Madipalli](https://twitter.com/dasani_decoded) + +### 기타 분류 + +로지스틱 회귀에는 다항 및 순서형을 포함한 다른 유형도 있습니다: + +- **다항**: 여러 카테고리가 있는 경우 - "주황색, 흰색, 줄무늬". +- **순서형**: 카테고리가 논리적으로 순서가 있는 경우, 예를 들어 호박의 크기가 제한된 수의 크기(미니, 소, 중, 대, 특대, 초특대)로 정렬된 경우. + +![다항 vs 순서형 회귀](../../../../translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.ko.png) + +### 변수는 반드시 상관관계가 있을 필요 없음 + +선형 회귀가 더 많은 상관관계가 있는 변수와 잘 작동했던 것을 기억하시나요? 로지스틱 회귀는 반대입니다 - 변수들이 반드시 일치할 필요가 없습니다. 이는 상관관계가 약한 이 데이터에 적합합니다. + +### 많은 양의 깨끗한 데이터가 필요함 + +로지스틱 회귀는 더 많은 데이터를 사용할수록 더 정확한 결과를 제공합니다. 우리의 작은 데이터셋은 이 작업에 최적이 아니므로 이를 염두에 두세요. + +[![초보자를 위한 머신러닝 - 로지스틱 회귀를 위한 데이터 분석 및 준비](https://img.youtube.com/vi/B2X4H9vcXTs/0.jpg)](https://youtu.be/B2X4H9vcXTs "초보자를 위한 머신러닝 - 로지스틱 회귀를 위한 데이터 분석 및 준비") + +> 🎥 위 이미지를 클릭하여 선형 회귀를 위한 데이터 준비에 대한 간단한 비디오 개요를 확인하세요. + +✅ 로지스틱 회귀에 적합한 데이터 유형에 대해 생각해 보세요. + +## 실습 - 데이터 정리하기 + +먼저 null 값을 제거하고 몇 가지 열만 선택하여 데이터를 약간 정리합니다: + +1. 다음 코드를 추가하세요: + + ```python + + columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color'] + pumpkins = full_pumpkins.loc[:, columns_to_select] + + pumpkins.dropna(inplace=True) + ``` + + 새 데이터프레임을 확인할 수도 있습니다: + + ```python + pumpkins.info + ``` + +### 시각화 - 카테고리 플롯 + +이제 [시작 노트북](./notebook.ipynb)에 호박 데이터를 다시 로드하고 몇 가지 변수, 특히 `Color`를 포함하는 데이터셋을 유지하도록 정리했습니다. 이번에는 다른 라이브러리를 사용하여 데이터프레임을 노트북에서 시각화해 봅시다: [Seaborn](https://seaborn.pydata.org/index.html). 이는 이전에 사용한 Matplotlib을 기반으로 구축되었습니다. + +Seaborn은 데이터를 시각화하는 멋진 방법을 제공합니다. 예를 들어, `Variety`와 `Color`의 데이터 분포를 카테고리 플롯에서 비교할 수 있습니다. + +1. 호박 데이터 `pumpkins`를 사용하여 `catplot` 함수를 사용하고 각 호박 카테고리(주황색 또는 흰색)에 대한 색상 매핑을 지정하여 플롯을 생성하세요: + + ```python + import seaborn as sns + + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + + sns.catplot( + data=pumpkins, y="Variety", hue="Color", kind="count", + palette=palette, + ) + ``` + + ![시각화된 데이터의 그리드](../../../../translated_images/pumpkins_catplot_1.c55c409b71fea2ecc01921e64b91970542101f90bcccfa4aa3a205db8936f48b.ko.png) + + 데이터를 관찰함으로써 Color 데이터가 Variety와 어떻게 관련되어 있는지 확인할 수 있습니다. + + ✅ 이 카테고리 플롯을 보고 어떤 흥미로운 탐구를 상상할 수 있나요? + +### 데이터 전처리: 특징 및 라벨 인코딩 +우리의 호박 데이터셋은 모든 열에 문자열 값을 포함하고 있습니다. 카테고리 데이터를 다루는 것은 인간에게는 직관적이지만 기계에게는 그렇지 않습니다. 머신러닝 알고리즘은 숫자와 잘 작동합니다. 따라서 인코딩은 데이터 전처리 단계에서 매우 중요한 단계입니다. 이는 카테고리 데이터를 숫자 데이터로 변환할 수 있게 해주며, 정보를 잃지 않습니다. 좋은 인코딩은 좋은 모델을 구축하는 데 도움이 됩니다. + +특징 인코딩에는 두 가지 주요 유형의 인코더가 있습니다: + +1. 순서형 인코더: 순서형 변수에 적합합니다. 순서형 변수는 데이터가 논리적 순서를 따르는 카테고리 변수입니다. 예를 들어, 데이터셋의 `Item Size` 열이 이에 해당합니다. 각 카테고리가 열의 순서에 따라 숫자로 표현되도록 매핑을 생성합니다. + + ```python + from sklearn.preprocessing import OrdinalEncoder + + item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']] + ordinal_features = ['Item Size'] + ordinal_encoder = OrdinalEncoder(categories=item_size_categories) + ``` + +2. 카테고리 인코더: 명목 변수에 적합합니다. 명목 변수는 데이터가 논리적 순서를 따르지 않는 카테고리 변수입니다. 데이터셋에서 `Item Size`를 제외한 모든 특징이 이에 해당합니다. 이는 원-핫 인코딩으로, 각 카테고리가 이진 열로 표현됩니다: 인코딩된 변수는 호박이 해당 Variety에 속하면 1이고 그렇지 않으면 0입니다. + + ```python + from sklearn.preprocessing import OneHotEncoder + + categorical_features = ['City Name', 'Package', 'Variety', 'Origin'] + categorical_encoder = OneHotEncoder(sparse_output=False) + ``` +그런 다음, `ColumnTransformer`를 사용하여 여러 인코더를 단일 단계로 결합하고 적절한 열에 적용합니다. + +```python + from sklearn.compose import ColumnTransformer + + ct = ColumnTransformer(transformers=[ + ('ord', ordinal_encoder, ordinal_features), + ('cat', categorical_encoder, categorical_features) + ]) + + ct.set_output(transform='pandas') + encoded_features = ct.fit_transform(pumpkins) +``` +한편, 라벨을 인코딩하기 위해 scikit-learn의 `LabelEncoder` 클래스를 사용합니다. 이는 라벨을 정규화하여 0에서 n_classes-1(여기서는 0과 1) 사이의 값만 포함하도록 돕는 유틸리티 클래스입니다. + +```python + from sklearn.preprocessing import LabelEncoder + + label_encoder = LabelEncoder() + encoded_label = label_encoder.fit_transform(pumpkins['Color']) +``` +특징과 라벨을 인코딩한 후, 이를 새로운 데이터프레임 `encoded_pumpkins`로 병합할 수 있습니다. + +```python + encoded_pumpkins = encoded_features.assign(Color=encoded_label) +``` +✅ `Item Size` 열에 순서형 인코더를 사용하는 장점은 무엇인가요? + +### 변수 간 관계 분석 + +이제 데이터를 전처리했으니, 특징과 라벨 간의 관계를 분석하여 모델이 특징을 기반으로 라벨을 얼마나 잘 예측할 수 있을지에 대한 아이디어를 얻을 수 있습니다. +이러한 분석을 수행하는 가장 좋은 방법은 데이터를 시각화하는 것입니다. Seaborn의 `catplot` 함수를 다시 사용하여 `Item Size`, `Variety`, `Color` 간의 관계를 카테고리 플롯에서 시각화합니다. 데이터를 더 잘 시각화하기 위해 인코딩된 `Item Size` 열과 인코딩되지 않은 `Variety` 열을 사용합니다. + +```python + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size'] + + g = sns.catplot( + data=pumpkins, + x="Item Size", y="Color", row='Variety', + kind="box", orient="h", + sharex=False, margin_titles=True, + height=1.8, aspect=4, palette=palette, + ) + g.set(xlabel="Item Size", ylabel="").set(xlim=(0,6)) + g.set_titles(row_template="{row_name}") +``` +![시각화된 데이터의 카테고리 플롯](../../../../translated_images/pumpkins_catplot_2.87a354447880b3889278155957f8f60dd63db4598de5a6d0fda91c334d31f9f1.ko.png) + +### 스웜 플롯 사용하기 + +Color는 이진 카테고리(흰색 또는 흰색이 아님)이므로 '시각화를 위한 [특별한 접근법](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar)'이 필요합니다. 이 카테고리가 다른 변수와의 관계를 시각화하는 다른 방법도 있습니다. + +변수를 나란히 시각화할 수 있는 Seaborn 플롯을 사용할 수 있습니다. + +1. 값의 분포를 보여주는 '스웜' 플롯을 시도해 보세요: + + ```python + palette = { + 0: 'orange', + 1: 'wheat' + } + sns.swarmplot(x="Color", y="ord__Item Size", data=encoded_pumpkins, palette=palette) + ``` + + ![시각화된 데이터의 스웜](../../../../translated_images/swarm_2.efeacfca536c2b577dc7b5f8891f28926663fbf62d893ab5e1278ae734ca104e.ko.png) + +**주의**: 위 코드는 경고를 생성할 수 있습니다. Seaborn이 많은 데이터 포인트를 스웜 플롯에 표현하지 못하기 때문입니다. 가능한 해결책은 'size' 매개변수를 사용하여 마커 크기를 줄이는 것입니다. 그러나 이는 플롯의 가독성에 영향을 미칠 수 있다는 점을 유의하세요. + +> **🧮 수학을 보여주세요** +> +> 로지스틱 회귀는 [시그모이드 함수](https://wikipedia.org/wiki/Sigmoid_function)를 사용하여 '최대 가능도' 개념에 의존합니다. 플롯에서 '시그모이드 함수'는 'S' 모양으로 보입니다. 값 하나를 받아 0과 1 사이의 값으로 매핑합니다. 이 곡선은 '로지스틱 곡선'이라고도 불립니다. 공식은 다음과 같습니다: +> +> ![로지스틱 함수](../../../../translated_images/sigmoid.8b7ba9d095c789cf72780675d0d1d44980c3736617329abfc392dfc859799704.ko.png) +> +> 여기서 시그모이드의 중간점은 x의 0 지점에 위치하며, L은 곡선의 최대값, k는 곡선의 가파름을 나타냅니다. 함수 결과가 0.5보다 크면 해당 라벨은 이진 선택의 '1' 클래스에 할당됩니다. 그렇지 않으면 '0'으로 분류됩니다. + +## 모델 구축하기 + +Scikit-learn에서 이진 분류를 찾는 모델을 구축하는 것은 놀라울 정도로 간단합니다. + +[![초보자를 위한 머신러닝 - 데이터 분류를 위한 로지스틱 회귀](https://img.youtube.com/vi/MmZS2otPrQ8/0.jpg)](https://youtu.be/MmZS2otPrQ8 "초보자를 위한 머신러닝 - 데이터 분류를 위한 로지스틱 회귀") + +> 🎥 위 이미지를 클릭하여 선형 회귀 모델 구축에 대한 간단한 비디오 개요를 확인하세요. + +1. 분류 모델에서 사용할 변수를 선택하고 `train_test_split()`을 호출하여 학습 및 테스트 세트를 분리하세요: + + ```python + from sklearn.model_selection import train_test_split + + X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])] + y = encoded_pumpkins['Color'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + + ``` + +2. 이제 학습 데이터를 사용하여 `fit()`을 호출하여 모델을 학습시키고 결과를 출력할 수 있습니다: + + ```python + from sklearn.metrics import f1_score, classification_report + from sklearn.linear_model import LogisticRegression + + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('F1-score: ', f1_score(y_test, predictions)) + ``` + + 모델의 점수표를 확인하세요. 데이터가 약 1000행밖에 없다는 점을 고려하면 나쁘지 않습니다: + + ```output + precision recall f1-score support + + 0 0.94 0.98 0.96 166 + 1 0.85 0.67 0.75 33 + + accuracy 0.92 199 + macro avg 0.89 0.82 0.85 199 + weighted avg 0.92 0.92 0.92 199 + + Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 + 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 + 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 + 0 0 0 1 0 0 0 0 0 0 0 0 1 1] + F1-score: 0.7457627118644068 + ``` + +## 혼동 행렬을 통한 더 나은 이해 + +위에서 항목을 출력하여 [용어](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report)를 보고 점수표를 확인할 수 있지만, 모델을 더 쉽게 이해하려면 [혼동 행렬](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix)을 사용하여 모델 성능을 이해할 수 있습니다. + +> 🎓 '[혼동 행렬](https://wikipedia.org/wiki/Confusion_matrix)'(또는 '오류 행렬')은 모델의 실제 vs. 예측된 긍정 및 부정을 표현하는 표로, 예측 정확도를 측정합니다. + +1. 혼동 행렬을 사용하려면 `confusion_matrix()`를 호출하세요: + + ```python + from sklearn.metrics import confusion_matrix + confusion_matrix(y_test, predictions) + ``` + + 모델의 혼동 행렬을 확인하세요: + + ```output + array([[162, 4], + [ 11, 22]]) + ``` + +Scikit-learn에서 혼동 행렬의 행(축 0)은 실제 라벨이고 열(축 1)은 예측된 라벨입니다. + +| | 0 | 1 | +| :---: | :---: | :---: | +| 0 | TN | FP | +| 1 | FN | TP | + +여기서 무슨 일이 일어나고 있을까요? 모델이 호박을 두 가지 이진 카테고리, '흰색'과 '흰색이 아님'으로 분류하도록 요청받았다고 가정해 봅시다. + +- 모델이 호박을 흰색이 아니라고 예측했는데 실제로 '흰색이 아님' 카테고리에 속한다면 이를 참 부정(true negative)이라고 하며, 왼쪽 상단 숫자로 표시됩니다. +- 모델이 호박을 흰색이라고 예측했는데 실제로 '흰색이 아님' 카테고리에 속한다면 이를 거짓 부정(false negative)이라고 하며, 왼쪽 하단 숫자로 표시됩니다. +- 모델이 호박을 흰색이 아니라고 예측했는데 실제로 '흰색' 카테고리에 속한다면 이를 거짓 긍정(false positive)이라고 하며, 오른쪽 상단 숫자로 표시됩니다. +- 모델이 호박을 흰색이라고 예측했는데 실제로 '흰색' 카테고리에 속한다면 이를 참 긍정(true positive)이라고 하며, 오른쪽 하단 숫자로 표시됩니다. + +예상하셨겠지만, 참 긍정과 참 부정의 숫자가 많고 거짓 긍정과 거짓 부정의 숫자가 적을수록 모델 성능이 더 좋다는 것을 의미합니다. +혼동 행렬은 정밀도와 재현율과 어떻게 관련이 있을까요? 위에서 출력된 분류 보고서는 정밀도(0.85)와 재현율(0.67)을 보여줍니다. + +정밀도 = tp / (tp + fp) = 22 / (22 + 4) = 0.8461538461538461 + +재현율 = tp / (tp + fn) = 22 / (22 + 11) = 0.6666666666666666 + +✅ Q: 혼동 행렬에 따르면 모델의 성능은 어땠나요? +A: 나쁘지 않습니다. 참 음성(true negatives)이 꽤 많지만, 몇 개의 거짓 음성(false negatives)도 있습니다. + +혼동 행렬의 TP/TN 및 FP/FN 매핑을 통해 이전에 본 용어들을 다시 살펴봅시다: + +🎓 정밀도(Precision): TP/(TP + FP) +검색된 인스턴스 중에서 관련 있는 인스턴스의 비율 (예: 잘 분류된 레이블) + +🎓 재현율(Recall): TP/(TP + FN) +검색된 인스턴스 중에서 관련 있는 인스턴스의 비율, 잘 분류되었는지 여부와 관계없이 + +🎓 f1-score: (2 * 정밀도 * 재현율)/(정밀도 + 재현율) +정밀도와 재현율의 가중 평균, 최고는 1, 최악은 0 + +🎓 지원(Support): 검색된 각 레이블의 발생 횟수 + +🎓 정확도(Accuracy): (TP + TN)/(TP + TN + FP + FN) +샘플에 대해 정확히 예측된 레이블의 비율 + +🎓 매크로 평균(Macro Avg): +레이블 불균형을 고려하지 않고 각 레이블에 대한 비중 없는 평균 지표 계산 + +🎓 가중 평균(Weighted Avg): +레이블 불균형을 고려하여 각 레이블에 대한 평균 지표를 지원(각 레이블의 실제 인스턴스 수)으로 가중 계산 + +✅ 거짓 음성(false negatives)의 수를 줄이고 싶다면 어떤 지표를 주의 깊게 봐야 할지 생각해볼 수 있나요? + +## 이 모델의 ROC 곡선 시각화 + +[![초보자를 위한 머신러닝 - ROC 곡선을 사용한 로지스틱 회귀 성능 분석](https://img.youtube.com/vi/GApO575jTA0/0.jpg)](https://youtu.be/GApO575jTA0 "초보자를 위한 머신러닝 - ROC 곡선을 사용한 로지스틱 회귀 성능 분석") + +> 🎥 위 이미지를 클릭하면 ROC 곡선에 대한 짧은 영상 개요를 볼 수 있습니다. + +이른바 'ROC' 곡선을 보기 위해 한 번 더 시각화를 진행해 봅시다: + +```python +from sklearn.metrics import roc_curve, roc_auc_score +import matplotlib +import matplotlib.pyplot as plt +%matplotlib inline + +y_scores = model.predict_proba(X_test) +fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1]) + +fig = plt.figure(figsize=(6, 6)) +plt.plot([0, 1], [0, 1], 'k--') +plt.plot(fpr, tpr) +plt.xlabel('False Positive Rate') +plt.ylabel('True Positive Rate') +plt.title('ROC Curve') +plt.show() +``` + +Matplotlib을 사용하여 모델의 [수신 운영 특성(ROC)](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc) 또는 ROC를 그립니다. ROC 곡선은 분류기의 출력(참 양성 대 거짓 양성)을 확인하는 데 자주 사용됩니다. "ROC 곡선은 일반적으로 Y축에 참 양성 비율, X축에 거짓 양성 비율을 표시합니다." 따라서 곡선의 가파름과 중간선과 곡선 사이의 공간이 중요합니다. 곡선이 빠르게 위로 올라가고 선을 넘어가는 것이 이상적입니다. 우리의 경우, 처음에는 거짓 양성이 있지만 이후 곡선이 제대로 위로 올라가고 넘어갑니다: + +![ROC](../../../../translated_images/ROC_2.777f20cdfc4988ca683ade6850ac832cb70c96c12f1b910d294f270ef36e1a1c.ko.png) + +마지막으로 Scikit-learn의 [`roc_auc_score` API](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score)를 사용하여 실제 '곡선 아래 면적(AUC)'을 계산합니다: + +```python +auc = roc_auc_score(y_test,y_scores[:,1]) +print(auc) +``` +결과는 `0.9749908725812341`입니다. AUC는 0에서 1 사이의 값을 가지며, 예측이 100% 정확한 모델은 AUC가 1이 됩니다. 이 경우, 모델은 _꽤 괜찮습니다_. + +향후 분류에 대한 수업에서는 모델의 점수를 개선하기 위해 반복하는 방법을 배우게 될 것입니다. 하지만 지금은 축하합니다! 이 회귀 수업을 완료했습니다! + +--- +## 🚀도전 과제 + +로지스틱 회귀에 대해 더 알아볼 것이 많습니다! 하지만 배우는 가장 좋은 방법은 실험하는 것입니다. 이 유형의 분석에 적합한 데이터셋을 찾아 모델을 만들어 보세요. 무엇을 배우게 될까요? 팁: [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets)에서 흥미로운 데이터셋을 찾아보세요. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/16/) + +## 복습 및 자기 학습 + +[스탠포드의 이 논문](https://web.stanford.edu/~jurafsky/slp3/5.pdf)의 첫 몇 페이지를 읽고 로지스틱 회귀의 실용적인 사용 사례를 살펴보세요. 지금까지 공부한 회귀 유형 중 어떤 작업에 더 적합할지 생각해 보세요. 어떤 것이 가장 잘 작동할까요? + +## 과제 + +[이 회귀 다시 시도하기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/2-Regression/4-Logistic/assignment.md b/translations/ko/2-Regression/4-Logistic/assignment.md new file mode 100644 index 000000000..fe23f1aa4 --- /dev/null +++ b/translations/ko/2-Regression/4-Logistic/assignment.md @@ -0,0 +1,25 @@ + +# 회귀 재시도 + +## 지침 + +이 강의에서는 호박 데이터의 일부를 사용했습니다. 이제 원래 데이터를 다시 사용하여, 정리되고 표준화된 전체 데이터를 활용해 로지스틱 회귀 모델을 만들어 보세요. + +## 평가 기준 + +| 기준 | 우수한 사례 | 적절한 사례 | 개선이 필요한 사례 | +| --------- | -------------------------------------------------------------------- | ----------------------------------------------------------- | ---------------------------------------------------------- | +| | 잘 설명되고 성능이 우수한 모델이 포함된 노트북이 제출됨 | 최소한의 성능을 보이는 모델이 포함된 노트북이 제출됨 | 성능이 부족한 모델이 포함된 노트북이 제출되거나 제출되지 않음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 신뢰할 수 있는 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/2-Regression/4-Logistic/notebook.ipynb b/translations/ko/2-Regression/4-Logistic/notebook.ipynb new file mode 100644 index 000000000..bdeae50f1 --- /dev/null +++ b/translations/ko/2-Regression/4-Logistic/notebook.ipynb @@ -0,0 +1,269 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 호박 품종과 색상\n", + "\n", + "필요한 라이브러리와 데이터셋을 불러옵니다. 데이터를 데이터프레임으로 변환하여 데이터의 일부를 포함하도록 만듭니다:\n", + "\n", + "색상과 품종 간의 관계를 살펴봅시다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                                                    0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                                    1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                                    2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    \n", + "

                                                    5 rows × 26 columns

                                                    \n", + "
                                                    " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서(원어로 작성된 문서)를 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "dee08c2b49057b0de8b6752c4dbca368", + "translation_date": "2025-09-04T01:18:11+00:00", + "source_file": "2-Regression/4-Logistic/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ko/2-Regression/4-Logistic/solution/Julia/README.md b/translations/ko/2-Regression/4-Logistic/solution/Julia/README.md new file mode 100644 index 000000000..67e98094d --- /dev/null +++ b/translations/ko/2-Regression/4-Logistic/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb b/translations/ko/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb new file mode 100644 index 000000000..574177cae --- /dev/null +++ b/translations/ko/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb @@ -0,0 +1,686 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 로지스틱 회귀 모델 구축 - 레슨 4\n", + "\n", + "![로지스틱 vs. 선형 회귀 인포그래픽](../../../../../../translated_images/linear-vs-logistic.ba180bf95e7ee66721ba10ebf2dac2666acbd64a88b003c83928712433a13c7d.ko.png)\n", + "\n", + "#### **[강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/)**\n", + "\n", + "#### 소개\n", + "\n", + "이번 회귀에 대한 마지막 레슨에서는 기본적인 *클래식* 머신러닝 기법 중 하나인 로지스틱 회귀(Logistic Regression)를 살펴보겠습니다. 이 기법은 이진 범주를 예측하기 위해 패턴을 발견하는 데 사용됩니다. 이 사탕이 초콜릿인가 아닌가? 이 질병이 전염성인가 아닌가? 이 고객이 이 제품을 선택할 것인가 아닌가?\n", + "\n", + "이 레슨에서 배우게 될 내용:\n", + "\n", + "- 로지스틱 회귀 기법\n", + "\n", + "✅ 이 유형의 회귀를 다루는 방법에 대한 이해를 [Learn 모듈](https://learn.microsoft.com/training/modules/introduction-classification-models/?WT.mc_id=academic-77952-leestott)에서 심화하세요.\n", + "\n", + "## 사전 요구 사항\n", + "\n", + "호박 데이터를 다루면서, 이제 우리는 이 데이터에서 작업할 수 있는 이진 범주가 하나 있다는 것을 충분히 알게 되었습니다: `Color`.\n", + "\n", + "이제 로지스틱 회귀 모델을 구축하여 몇 가지 변수를 기반으로 *주어진 호박의 색상이 무엇일 가능성이 높은지* 예측해 봅시다 (주황색 🎃 또는 흰색 👻).\n", + "\n", + "> 왜 회귀에 대한 레슨에서 이진 분류를 이야기할까요? 단지 언어적 편의를 위해서입니다. 로지스틱 회귀는 [사실 분류 방법](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression)이며, 선형 기반 기법이긴 하지만요. 데이터 분류의 다른 방법에 대해서는 다음 레슨 그룹에서 배울 수 있습니다.\n", + "\n", + "이 레슨에서는 다음 패키지가 필요합니다:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/)는 데이터 과학을 더 빠르고, 쉽고, 재미있게 만들어주는 [R 패키지 모음](https://www.tidyverse.org/packages)입니다.\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 프레임워크는 모델링과 머신러닝을 위한 [패키지 모음](https://www.tidymodels.org/packages/)입니다.\n", + "\n", + "- `janitor`: [janitor 패키지](https://github.com/sfirke/janitor)는 더러운 데이터를 검사하고 정리하는 간단한 도구를 제공합니다.\n", + "\n", + "- `ggbeeswarm`: [ggbeeswarm 패키지](https://github.com/eclarke/ggbeeswarm)는 ggplot2를 사용하여 벌떼 스타일의 플롯을 생성하는 방법을 제공합니다.\n", + "\n", + "다음 명령어로 패키지를 설치할 수 있습니다:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"ggbeeswarm\"))`\n", + "\n", + "또는 아래 스크립트는 이 모듈을 완료하는 데 필요한 패키지가 있는지 확인하고, 없는 경우 설치해 줍니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, ggbeeswarm)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **질문 정의하기**\n", + "\n", + "우리의 목적을 위해, 질문을 이진 형태로 표현하겠습니다: 'White' 또는 'Not White'. 데이터셋에는 'striped'라는 카테고리도 있지만, 해당 사례가 거의 없으므로 사용하지 않을 것입니다. 어차피 데이터셋에서 null 값을 제거하면 이 카테고리는 사라집니다.\n", + "\n", + "> 🎃 재미있는 사실: 우리는 때때로 흰색 호박을 '유령' 호박이라고 부릅니다. 흰색 호박은 조각하기가 쉽지 않아서 주황색 호박만큼 인기가 많지는 않지만, 멋지게 생겼습니다! 따라서 질문을 이렇게 바꿔볼 수도 있습니다: 'Ghost' 또는 'Not Ghost'. 👻\n", + "\n", + "## **로지스틱 회귀에 대하여**\n", + "\n", + "로지스틱 회귀는 이전에 배운 선형 회귀와 몇 가지 중요한 점에서 다릅니다.\n", + "\n", + "#### **이진 분류**\n", + "\n", + "로지스틱 회귀는 선형 회귀와 동일한 기능을 제공하지 않습니다. 로지스틱 회귀는 `이진 카테고리` (\"주황색 또는 주황색이 아님\")에 대한 예측을 제공하는 반면, 선형 회귀는 예를 들어 호박의 원산지와 수확 시기를 기반으로 *가격이 얼마나 오를지*와 같은 `연속적인 값`을 예측할 수 있습니다.\n", + "\n", + "![Dasani Madipalli의 인포그래픽](../../../../../../translated_images/pumpkin-classifier.562771f104ad5436b87d1c67bca02a42a17841133556559325c0a0e348e5b774.ko.png)\n", + "\n", + "### 기타 분류\n", + "\n", + "로지스틱 회귀에는 다항 및 순서형을 포함한 다른 유형도 있습니다:\n", + "\n", + "- **다항 회귀**: 여러 카테고리가 포함된 경우 - \"주황색, 흰색, 줄무늬\".\n", + "\n", + "- **순서형 회귀**: 순서가 있는 카테고리를 포함하며, 결과를 논리적으로 정렬해야 할 때 유용합니다. 예를 들어, 호박을 크기별로 정렬하는 경우 (미니, 소, 중, 대, 특대, 초대형).\n", + "\n", + "![다항 회귀 vs 순서형 회귀](../../../../../../translated_images/multinomial-vs-ordinal.36701b4850e37d86c9dd49f7bef93a2f94dbdb8fe03443eb68f0542f97f28f29.ko.png)\n", + "\n", + "#### **변수는 반드시 상관관계를 가질 필요가 없습니다**\n", + "\n", + "선형 회귀가 변수 간 상관관계가 높을수록 더 잘 작동했던 것을 기억하시나요? 로지스틱 회귀는 그 반대입니다 - 변수들이 반드시 정렬될 필요가 없습니다. 이는 상관관계가 약한 이 데이터에 적합합니다.\n", + "\n", + "#### **많은 양의 깨끗한 데이터가 필요합니다**\n", + "\n", + "로지스틱 회귀는 더 많은 데이터를 사용할수록 더 정확한 결과를 제공합니다. 우리의 작은 데이터셋은 이 작업에 최적화되어 있지 않으니, 이 점을 염두에 두세요.\n", + "\n", + "✅ 로지스틱 회귀에 적합한 데이터 유형에 대해 생각해 보세요.\n", + "\n", + "## 연습 - 데이터 정리하기\n", + "\n", + "먼저 데이터를 약간 정리하고, null 값을 제거한 후 일부 열만 선택하세요:\n", + "\n", + "1. 다음 코드를 추가하세요:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Load the core tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the data and clean column names\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\") %>% \n", + " clean_names()\n", + "\n", + "# Select desired columns\n", + "pumpkins_select <- pumpkins %>% \n", + " select(c(city_name, package, variety, origin, item_size, color)) \n", + "\n", + "# Drop rows containing missing values and encode color as factor (category)\n", + "pumpkins_select <- pumpkins_select %>% \n", + " drop_na() %>% \n", + " mutate(color = factor(color))\n", + "\n", + "# View the first few rows\n", + "pumpkins_select %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "새 데이터프레임을 확인하려면 아래와 같이 [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) 함수를 사용할 수 있습니다:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "pumpkins_select %>% \n", + " glimpse()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "우리가 실제로 이진 분류 문제를 다루고 있는지 확인해 봅시다:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Subset distinct observations in outcome column\n", + "pumpkins_select %>% \n", + " distinct(color)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 시각화 - 범주형 플롯\n", + "지금까지 호박 데이터를 다시 불러오고, Color를 포함한 몇 가지 변수를 포함하는 데이터셋을 유지하도록 정리했습니다. 이제 ggplot 라이브러리를 사용하여 노트북에서 데이터프레임을 시각화해 봅시다.\n", + "\n", + "ggplot 라이브러리는 데이터를 시각화하는 멋진 방법들을 제공합니다. 예를 들어, 범주형 플롯에서 각 Variety와 Color에 대한 데이터 분포를 비교할 수 있습니다.\n", + "\n", + "1. geombar 함수를 사용하여 호박 데이터를 기반으로 하고, 각 호박 카테고리(주황색 또는 흰색)에 대한 색상 매핑을 지정하여 이러한 플롯을 생성하세요:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "# Specify colors for each value of the hue variable\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# Create the bar plot\n", + "ggplot(pumpkins_select, aes(y = variety, fill = color)) +\n", + " geom_bar(position = \"dodge\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(y = \"Variety\", fill = \"Color\") +\n", + " theme_minimal()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "데이터를 살펴보면 Color 데이터가 Variety와 어떻게 연관되어 있는지 알 수 있습니다.\n", + "\n", + "✅ 이 범주형 플롯을 통해 어떤 흥미로운 탐구를 상상할 수 있나요?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 데이터 전처리: 특성 인코딩\n", + "\n", + "우리의 호박 데이터셋은 모든 열에 문자열 값을 포함하고 있습니다. 범주형 데이터를 다루는 것은 사람에게는 직관적이지만, 기계에게는 그렇지 않습니다. 머신러닝 알고리즘은 숫자 데이터와 잘 작동합니다. 따라서 범주형 데이터를 숫자 데이터로 변환하는 인코딩은 데이터 전처리 단계에서 매우 중요한 과정입니다. 이 과정에서 정보를 잃지 않고 변환하는 것이 핵심입니다. 좋은 인코딩은 좋은 모델을 구축하는 데 기여합니다.\n", + "\n", + "특성 인코딩에는 두 가지 주요 유형의 인코더가 있습니다:\n", + "\n", + "1. **순서형 인코더(Ordinal encoder)**: 순서형 변수에 적합합니다. 순서형 변수는 데이터가 논리적인 순서를 따르는 범주형 변수입니다. 예를 들어, 데이터셋의 `item_size` 열이 이에 해당합니다. 순서형 인코더는 각 범주를 숫자로 매핑하며, 이 숫자는 해당 열에서 범주의 순서를 나타냅니다.\n", + "\n", + "2. **범주형 인코더(Categorical encoder)**: 명목형 변수에 적합합니다. 명목형 변수는 데이터가 논리적인 순서를 따르지 않는 범주형 변수입니다. 데이터셋에서 `item_size`를 제외한 모든 특성이 이에 해당합니다. 이 인코딩 방식은 원-핫 인코딩(one-hot encoding)으로, 각 범주가 이진 열로 표현됩니다. 즉, 특정 호박이 해당 품종에 속하면 인코딩된 변수는 1이 되고, 그렇지 않으면 0이 됩니다.\n", + "\n", + "Tidymodels는 또 다른 유용한 패키지를 제공합니다: [recipes](https://recipes.tidymodels.org/) - 데이터 전처리를 위한 패키지입니다. 우리는 모든 예측 열이 정수 집합으로 인코딩되도록 지정하는 `recipe`를 정의하고, 필요한 양과 통계를 추정하기 위해 `prep`을 실행한 후, 새로운 데이터에 계산을 적용하기 위해 `bake`를 실행할 것입니다.\n", + "\n", + "> 일반적으로 recipes는 모델링을 위한 전처리기로 사용되며, 데이터셋을 모델링에 적합하게 준비하기 위해 어떤 단계가 적용되어야 하는지를 정의합니다. 이 경우, `prep`과 `bake`를 수동으로 사용하는 대신 **`workflow()`를 사용하는 것이 강력히 권장**됩니다. 이 모든 과정을 곧 살펴보겠습니다.\n", + ">\n", + "> 하지만 지금은 데이터를 분석할 준비를 하기 위해 recipes + prep + bake를 사용하여 데이터셋에 적용할 단계를 지정하고, 적용된 단계를 포함한 전처리된 데이터를 추출할 것입니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Preprocess and extract data to allow some data analysis\n", + "baked_pumpkins <- recipe(color ~ ., data = pumpkins_select) %>%\n", + " # Define ordering for item_size column\n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " # Convert factors to numbers using the order defined above (Ordinal encoding)\n", + " step_integer(item_size, zero_based = F) %>%\n", + " # Encode all other predictors using one hot encoding\n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE) %>%\n", + " prep(data = pumpkin_select) %>%\n", + " bake(new_data = NULL)\n", + "\n", + "# Display the first few rows of preprocessed data\n", + "baked_pumpkins %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "✅ 항목 크기(Item Size) 열에 대해 순서형 인코더를 사용하는 장점은 무엇인가요?\n", + "\n", + "### 변수 간의 관계 분석\n", + "\n", + "이제 데이터를 전처리했으니, 특징(feature)과 라벨(label) 간의 관계를 분석하여 주어진 특징으로 모델이 라벨을 얼마나 잘 예측할 수 있을지에 대한 아이디어를 얻을 수 있습니다. 이러한 분석을 수행하는 가장 좋은 방법은 데이터를 시각화하는 것입니다. \n", + "우리는 다시 ggplot의 geom_boxplot_ 함수를 사용하여, 항목 크기(Item Size), 품종(Variety), 색상(Color) 간의 관계를 범주형 플롯으로 시각화할 것입니다. 데이터를 더 잘 시각화하기 위해 인코딩된 항목 크기(Item Size) 열과 인코딩되지 않은 품종(Variety) 열을 사용할 것입니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Define the color palette\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins_select_plot<-pumpkins_select\n", + "pumpkins_select_plot$item_size <- baked_pumpkins$item_size\n", + "\n", + "# Create the grouped box plot\n", + "ggplot(pumpkins_select_plot, aes(x = `item_size`, y = color, fill = color)) +\n", + " geom_boxplot() +\n", + " facet_grid(variety ~ ., scales = \"free_x\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(x = \"Item Size\", y = \"\") +\n", + " theme_minimal() +\n", + " theme(strip.text = element_text(size = 12)) +\n", + " theme(axis.text.x = element_text(size = 10)) +\n", + " theme(axis.title.x = element_text(size = 12)) +\n", + " theme(axis.title.y = element_blank()) +\n", + " theme(legend.position = \"bottom\") +\n", + " guides(fill = guide_legend(title = \"Color\")) +\n", + " theme(panel.spacing = unit(0.5, \"lines\"))+\n", + " theme(strip.text.y = element_text(size = 4, hjust = 0)) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 스웜 플롯 사용하기\n", + "\n", + "Color는 이진 카테고리(White 또는 Not)이므로 시각화를 위해 '[특화된 접근법](https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf)'이 필요합니다.\n", + "\n", + "item_size에 따라 Color의 분포를 보여주기 위해 `스웜 플롯`을 사용해 보세요.\n", + "\n", + "우리는 [ggbeeswarm 패키지](https://github.com/eclarke/ggbeeswarm)를 사용할 것입니다. 이 패키지는 ggplot2를 사용하여 비스웜 스타일의 플롯을 생성하는 방법을 제공합니다. 비스웜 플롯은 일반적으로 겹칠 수 있는 점들을 서로 옆에 배치하여 시각화하는 방법입니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create beeswarm plots of color and item_size\n", + "baked_pumpkins %>% \n", + " mutate(color = factor(color)) %>% \n", + " ggplot(mapping = aes(x = color, y = item_size, color = color)) +\n", + " geom_quasirandom() +\n", + " scale_color_brewer(palette = \"Dark2\", direction = -1) +\n", + " theme(legend.position = \"none\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "이제 색상의 이진 범주와 더 큰 크기 그룹 간의 관계를 이해했으니, 로지스틱 회귀를 사용하여 특정 호박의 색상을 예측해 봅시다.\n", + "\n", + "## 모델 구축하기\n", + "\n", + "분류 모델에 사용할 변수를 선택하고 데이터를 학습용 세트와 테스트 세트로 나누세요. [rsample](https://rsample.tidymodels.org/)은 Tidymodels의 패키지로, 효율적인 데이터 분할과 재샘플링을 위한 인프라를 제공합니다:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Split data into 80% for training and 20% for testing\n", + "set.seed(2056)\n", + "pumpkins_split <- pumpkins_select %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "# Extract the data in each split\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "# Print out the first 5 rows of the training set\n", + "pumpkins_train %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "🙌 이제 훈련 특징을 훈련 레이블(색상)에 맞추어 모델을 학습시킬 준비가 되었습니다.\n", + "\n", + "먼저 데이터를 모델링에 적합하게 준비하기 위해 수행해야 할 전처리 단계를 지정하는 레시피를 만들어 보겠습니다. 예를 들어 범주형 변수를 정수 집합으로 인코딩하는 작업입니다. `baked_pumpkins`와 마찬가지로 `pumpkins_recipe`를 생성하지만, 몇 단계 후에 워크플로에 포함될 것이므로 `prep`과 `bake`는 수행하지 않습니다.\n", + "\n", + "Tidymodels에서 로지스틱 회귀 모델을 지정하는 방법은 여러 가지가 있습니다. `?logistic_reg()`를 참조하세요. 지금은 기본 `stats::glm()` 엔진을 사용하여 로지스틱 회귀 모델을 지정하겠습니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create a recipe that specifies preprocessing steps for modelling\n", + "pumpkins_recipe <- recipe(color ~ ., data = pumpkins_train) %>% \n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " step_integer(item_size, zero_based = F) %>% \n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE)\n", + "\n", + "# Create a logistic model specification\n", + "log_reg <- logistic_reg() %>% \n", + " set_engine(\"glm\") %>% \n", + " set_mode(\"classification\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "이제 레시피와 모델 사양을 준비했으니, 이를 하나의 객체로 묶어 데이터를 먼저 전처리(백그라운드에서 prep+bake 수행), 전처리된 데이터에 모델을 학습시키고, 추가적인 후처리 작업도 가능하게 하는 방법을 찾아야 합니다.\n", + "\n", + "Tidymodels에서는 이러한 편리한 객체를 [`workflow`](https://workflows.tidymodels.org/)라고 하며, 모델링 구성 요소를 간편하게 관리할 수 있습니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Bundle modelling components in a workflow\n", + "log_reg_wf <- workflow() %>% \n", + " add_recipe(pumpkins_recipe) %>% \n", + " add_model(log_reg)\n", + "\n", + "# Print out the workflow\n", + "log_reg_wf\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "워크플로가 *지정*된 후, [`fit()`](https://tidymodels.github.io/parsnip/reference/fit.html) 함수를 사용하여 모델을 `훈련`시킬 수 있습니다. 워크플로는 레시피를 평가하고 훈련 전에 데이터를 전처리하므로, 우리가 prep과 bake를 사용하여 이를 수동으로 처리할 필요가 없습니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Train the model\n", + "wf_fit <- log_reg_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the trained workflow\n", + "wf_fit\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "모델 학습 과정에서 학습된 계수를 출력합니다.\n", + "\n", + "이제 학습 데이터를 사용해 모델을 훈련했으니, [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html)를 사용하여 테스트 데이터에 대한 예측을 수행할 수 있습니다. 먼저, 모델을 사용해 테스트 세트의 레이블과 각 레이블에 대한 확률을 예측해 봅시다. 확률이 0.5를 초과하면 예측 클래스는 `WHITE`이고, 그렇지 않으면 `ORANGE`입니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make predictions for color and corresponding probabilities\n", + "results <- pumpkins_test %>% select(color) %>% \n", + " bind_cols(wf_fit %>% \n", + " predict(new_data = pumpkins_test)) %>%\n", + " bind_cols(wf_fit %>%\n", + " predict(new_data = pumpkins_test, type = \"prob\"))\n", + "\n", + "# Compare predictions\n", + "results %>% \n", + " slice_head(n = 10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "정말 좋네요! 로지스틱 회귀가 어떻게 작동하는지에 대한 추가적인 통찰을 제공합니다.\n", + "\n", + "### 혼동 행렬을 통한 더 나은 이해\n", + "\n", + "각 예측값을 해당 \"실제값\"과 비교하는 것은 모델이 얼마나 잘 예측하고 있는지를 판단하는 데 있어 효율적인 방법이 아닙니다. 다행히도, Tidymodels에는 이를 보완할 몇 가지 유용한 도구가 있습니다. 그중 하나가 [`yardstick`](https://yardstick.tidymodels.org/)입니다. 이 패키지는 성능 지표를 사용하여 모델의 효과를 측정하는 데 사용됩니다.\n", + "\n", + "분류 문제와 관련된 성능 지표 중 하나는 [`혼동 행렬`](https://wikipedia.org/wiki/Confusion_matrix)입니다. 혼동 행렬은 분류 모델이 얼마나 잘 작동하는지를 설명합니다. 혼동 행렬은 각 클래스에서 모델이 올바르게 분류한 예제의 수를 표로 정리합니다. 우리의 경우, 혼동 행렬은 주황색 호박이 주황색으로 분류된 수와 흰색 호박이 흰색으로 분류된 수를 보여줍니다. 또한, **잘못된** 카테고리로 분류된 수 역시 보여줍니다.\n", + "\n", + "yardstick의 [**`conf_mat()`**](https://tidymodels.github.io/yardstick/reference/conf_mat.html) 함수는 관측된 클래스와 예측된 클래스 간의 교차 표를 계산합니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Confusion matrix for prediction results\n", + "conf_mat(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "혼동 행렬을 해석해 봅시다. 우리의 모델은 호박을 두 가지 이진 카테고리, `white`와 `not-white`로 분류하도록 요청받았습니다.\n", + "\n", + "- 모델이 호박을 white로 예측했을 때 실제로 'white' 카테고리에 속한다면 이를 `true positive`라고 하며, 이는 왼쪽 상단 숫자로 표시됩니다.\n", + "\n", + "- 모델이 호박을 not white로 예측했을 때 실제로 'white' 카테고리에 속한다면 이를 `false negative`라고 하며, 이는 왼쪽 하단 숫자로 표시됩니다.\n", + "\n", + "- 모델이 호박을 white로 예측했을 때 실제로 'not-white' 카테고리에 속한다면 이를 `false positive`라고 하며, 이는 오른쪽 상단 숫자로 표시됩니다.\n", + "\n", + "- 모델이 호박을 not white로 예측했을 때 실제로 'not-white' 카테고리에 속한다면 이를 `true negative`라고 하며, 이는 오른쪽 하단 숫자로 표시됩니다.\n", + "\n", + "| 실제값 |\n", + "|:-----:|\n", + "\n", + "\n", + "| | | |\n", + "|---------------|--------|-------|\n", + "| **예측값** | WHITE | ORANGE |\n", + "| WHITE | TP | FP |\n", + "| ORANGE | FN | TN |\n", + "\n", + "예상하셨겠지만, `true positive`와 `true negative`의 숫자가 많고, `false positive`와 `false negative`의 숫자가 적을수록 모델의 성능이 더 좋다는 것을 의미합니다.\n", + "\n", + "혼동 행렬은 분류 모델의 성능을 더 잘 평가할 수 있도록 도와주는 다른 지표를 도출할 수 있기 때문에 유용합니다. 몇 가지를 살펴보겠습니다:\n", + "\n", + "🎓 정밀도(Precision): `TP/(TP + FP)`로 정의되며, 예측된 양성 중 실제로 양성인 비율을 나타냅니다. [양성 예측 값](https://en.wikipedia.org/wiki/Positive_predictive_value \"Positive predictive value\")이라고도 합니다.\n", + "\n", + "🎓 재현율(Recall): `TP/(TP + FN)`로 정의되며, 실제로 양성인 샘플 중 양성 결과의 비율을 나타냅니다. `민감도(sensitivity)`라고도 합니다.\n", + "\n", + "🎓 특이도(Specificity): `TN/(TN + FP)`로 정의되며, 실제로 음성인 샘플 중 음성 결과의 비율을 나타냅니다.\n", + "\n", + "🎓 정확도(Accuracy): `TP + TN/(TP + TN + FP + FN)`로 샘플에 대해 정확히 예측된 레이블의 비율을 나타냅니다.\n", + "\n", + "🎓 F 측정(F Measure): 정밀도와 재현율의 가중 평균으로, 최상의 값은 1이고 최악의 값은 0입니다.\n", + "\n", + "이 지표들을 계산해 봅시다!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Combine metric functions and calculate them all at once\n", + "eval_metrics <- metric_set(ppv, recall, spec, f_meas, accuracy)\n", + "eval_metrics(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 이 모델의 ROC 곡선 시각화\n", + "\n", + "이제 한 가지 더 시각화를 진행하여 [`ROC 곡선`](https://en.wikipedia.org/wiki/Receiver_operating_characteristic)이라고 불리는 것을 살펴보겠습니다:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make a roc_curve\n", + "results %>% \n", + " roc_curve(color, .pred_ORANGE) %>% \n", + " autoplot()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "ROC 곡선은 분류기의 출력 결과를 참 양성 대 거짓 양성의 관점에서 살펴보는 데 자주 사용됩니다. ROC 곡선은 일반적으로 Y축에 `True Positive Rate`/민감도, X축에 `False Positive Rate`/1-특이도를 표시합니다. 따라서 곡선의 가파름과 중간선과 곡선 사이의 공간이 중요합니다. 곡선이 빠르게 위로 올라가 중간선을 넘어가는 형태가 이상적입니다. 우리의 경우, 처음에는 거짓 양성이 존재하지만 이후 곡선이 올바르게 위로 올라가 중간선을 넘어갑니다.\n", + "\n", + "마지막으로, 실제 곡선 아래 면적(Area Under the Curve)을 계산하기 위해 `yardstick::roc_auc()`를 사용해 봅시다. AUC를 해석하는 한 가지 방법은 모델이 임의의 긍정적인 예제를 임의의 부정적인 예제보다 더 높은 순위로 평가할 확률로 보는 것입니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Calculate area under curve\n", + "results %>% \n", + " roc_auc(color, .pred_ORANGE)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "결과는 약 `0.975`입니다. AUC는 0에서 1 사이의 값을 가지며, 점수가 클수록 좋습니다. 모델이 예측을 100% 정확히 수행한다면 AUC는 1이 됩니다. 이 경우, 모델은 *꽤 괜찮은* 성능을 보이고 있습니다.\n", + "\n", + "앞으로의 분류 관련 수업에서, 이 점수를 개선하는 방법(예: 이 경우 불균형 데이터 처리)을 배우게 될 것입니다.\n", + "\n", + "## 🚀도전 과제\n", + "\n", + "로지스틱 회귀에는 더 많은 내용이 있습니다! 하지만 배우는 가장 좋은 방법은 직접 실험해 보는 것입니다. 이 분석 유형에 적합한 데이터셋을 찾아 모델을 만들어 보세요. 무엇을 배우게 될까요? 팁: [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets)에서 흥미로운 데이터셋을 찾아보세요.\n", + "\n", + "## 복습 및 자기 학습\n", + "\n", + "[스탠포드의 이 논문](https://web.stanford.edu/~jurafsky/slp3/5.pdf)의 첫 몇 페이지를 읽어보세요. 로지스틱 회귀의 실질적인 활용 사례에 대해 다루고 있습니다. 지금까지 공부한 회귀 유형 중 어떤 작업에 더 적합할지 생각해 보세요. 어떤 방법이 가장 효과적일까요?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "langauge": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "feaf125f481a89c468fa115bf2aed580", + "translation_date": "2025-09-04T01:23:48+00:00", + "source_file": "2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/ko/2-Regression/4-Logistic/solution/notebook.ipynb b/translations/ko/2-Regression/4-Logistic/solution/notebook.ipynb new file mode 100644 index 000000000..83b903364 --- /dev/null +++ b/translations/ko/2-Regression/4-Logistic/solution/notebook.ipynb @@ -0,0 +1,1255 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 로지스틱 회귀 - 4강\n", + "\n", + "필요한 라이브러리와 데이터셋을 불러옵니다. 데이터를 데이터프레임으로 변환하여 데이터의 일부만 포함하도록 합니다:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
                                                    0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                                    1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
                                                    2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
                                                    \n", + "

                                                    5 rows × 26 columns

                                                    \n", + "
                                                    " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \\\n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \\\n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    City NamePackageVarietyOriginItem SizeColor
                                                    2BALTIMORE24 inch binsHOWDEN TYPEDELAWAREmedORANGE
                                                    3BALTIMORE24 inch binsHOWDEN TYPEVIRGINIAmedORANGE
                                                    4BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
                                                    5BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
                                                    6BALTIMORE36 inch binsHOWDEN TYPEMARYLANDmedORANGE
                                                    \n", + "
                                                    " + ], + "text/plain": [ + " City Name Package Variety Origin Item Size Color\n", + "2 BALTIMORE 24 inch bins HOWDEN TYPE DELAWARE med ORANGE\n", + "3 BALTIMORE 24 inch bins HOWDEN TYPE VIRGINIA med ORANGE\n", + "4 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "5 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "6 BALTIMORE 36 inch bins HOWDEN TYPE MARYLAND med ORANGE" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Select the columns we want to use\n", + "columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color']\n", + "pumpkins = full_pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Drop rows with missing values\n", + "pumpkins.dropna(inplace=True)\n", + "\n", + "pumpkins.head()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 우리의 데이터를 살펴봅시다!\n", + "\n", + "Seaborn을 사용해 시각화해 봅시다\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHpCAYAAACVw6ZvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3klEQVR4nO3deVRU5f8H8PeFkQFZZXNQ2RQBwy3NNRVGMTCz3JW0JJcyjdwXLJcwBSszTcU0wKxccl9KyoVxS0VTEhXXRM1A+7qwmOz394eH+/M6A7IKV9+vc+7Jee6zfO7IkXfP3JkRRFEUQURERKRgRlVdABEREVF5MdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdDQc0sURaSnp4MfxUREpHwMNPTcysjIgLW1NTIyMqq6FCIiKicGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8VVUXQFTVrq5qAkszZnsipXIbdqWqS6BqgP+KExERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdCUU3BwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp8PPz8/g/MWHo0bN4ZGo8HcuXP1xvbv3x9t27ZFfn4+Zs2aJY1RqVRwc3PDuHHjkJmZKavP0PH4c0dERM8+BpqnRBRFDBw4EGFhYRgzZgySkpKg0+ng7OwMPz8/bNmyBQDg7e0NjUYDnU4njc3IyMCJEyfg4OAg+2V9+PBhZGdno3PnzlJbYGAgUlJSkJycjJ07d0Kr1WLMmDF47bXXkJeXJ6spLCwMKSkpsiMkJETWJyMjA1988UWJr3PTpk3SXPHx8QCA3bt3S2379+/H8uXL8cknnyAxMVEat379euzYsQPfffcdjI2NAQA+Pj7StcybNw/Lly/HhAkTZOs9Onfh0bJlyxLXS0REzwZVVRfwvPjpp5+wYcMGbNu2DT169JDaly9fjtu3b2P48OHo2rUrzM3NodVqodPpMHXqVADAwYMH4enpiU6dOkGn08HPzw/Aw10gV1dXuLu7S/Op1WpoNBoAQN26ddGiRQu0bdsWXbp0wcqVKzF8+HCpr6WlpdS3KCEhIfjyyy8xevRoODo6PvE6bW1tpT8X7ibZ2dnJ1nn99dfx5ptvYsiQITh69Cju3buH0aNHIyIiAl5eXlI/lUoljRswYAD27NmDbdu24ZtvvpH6PD43ERE9n7hD85SsXr0anp6esjBTaMKECbh9+zZ27doFANBqtTh48KC0oxIXFwc/Pz/4+voiLi5OGhcXFwetVvvEtTt37oxmzZph06ZNpa47KCgIHh4eCAsLK/XY4ixcuBC3b9/G7NmzMWrUKDRu3Fhvd+hxZmZmyMnJKfOa2dnZSE9Plx1ERPRs4A5NBdixYwcsLCxkbfn5+bLHFy5cQKNGjQyOL2y/cOECgIeB5v79+zh27BjatWsHnU6HSZMmoUOHDhgyZAiysrIgiiLi4+NlOy7F8fb2xqlTp2RtU6ZMwccffyxr27lzJzp27Cg9LryvpkePHhg3bhwaNGhQovWexMrKCjExMXjllVdgbm6OU6dOQRCEIvv/8ccfWL16tezlNQBo3749jIzkubzwPpvHhYeH45NPPtFrd307EVZWVmW4CiIiqi4YaCqAVqtFZGSkrO3o0aMYPHiwrE0UxRLN5+HhgXr16kGn08HHxwcnT56Er68vHB0d4eLigsOHD0MURWRnZ5doh6Zw7ccDw6RJkxAcHCxrq1u3rt7YgIAAdOjQAdOnT8fq1atLtF5JdO7cGW3btkXz5s3h6uqqdz4xMREWFhbIz89HTk4OunfvjsWLF8v6rFu3rsig+LjQ0FCMHz9eepyeng5nZ+fyXQQREVULDDQVwNzcHB4eHrK2v//+W/bY09MTSUlJBscXtnt6ekptfn5+iIuLQ9OmTdGwYUPp/pXCl51EUYSHh0eJfyEnJSXJ7rUBAHt7e726ixIREYF27dph0qRJJepfUiqVCiqV4R9DLy8vbNu2DSqVCnXq1IGJiYleH2dn5xJfg1qthlqtLle9RERUPfEemqdk4MCBuHjxIrZv3653bv78+bCzs0PXrl2lNq1Wi99//x27du2SbgIGIN0YrNPpSrw7s3fvXiQmJqJPnz5lrr9169bo3bu3dKPy02BiYgIPDw+4ubkZDDNERESFuEPzlAwcOBDr16/HkCFD8Pnnn6NLly5IT0/HkiVLsG3bNqxfvx7m5uZS/8L7aKKjo7FixQqp3dfXV7pvZtSoUXrrZGdnIzU1Ffn5+bh58yZiY2MRHh6O1157DW+//basb0ZGBlJTU2VtNWvWLPJ+kjlz5sDHx6fIHZWqcPv2bb1rsLGxgampaRVVREREVYE7NE+JIAj46aefMG3aNCxYsABeXl7o2LEjrl69Cp1Op/fhfO7u7nB1dUVGRgZ8fX2ldhcXF9SpUwc5OTmynZtCsbGxcHJygpubGwIDAxEXF4dFixZh69at0ue7FJoxYwacnJxkx+TJk4u8Bk9PTwwdOlT24X5Vzd/fX+8aCj/Th4iInh+CWNI7VYmeMenp6bC2tkZaWhrf5UREpHDcoSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVTVXUBRFXt6qomsDRjtq8obsOuVHUJRPQc4r/iREREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0z5ng4GAIggBBEGBiYgIPDw+EhYUhLy8PAKDT6SAIAu7duyd7bOhITU3Vm3/WrFlF9i88/P39ERAQoDd26dKlsLGxwd9//623bu3atdGnTx/89ddfUn83NzeD80dERFTOk0dERNWWqqoLoKcvMDAQMTExyM7Oxi+//ILRo0ejRo0aCA0NLXLM+fPnYWVlJWtzdHTU6zdx4kSMHDlSetyqVSu8++67GDFihNSWm5uLJk2a4JtvvsF7770HALhy5QomT56MyMhI1KtXD5cuXZLWtbS0xMWLF/Huu++iR48eOHXqFIyNjQEAYWFhsrkBwNLSspTPCBERKR0DzXNIrVZDo9EAAN5//31s3rwZ27ZtKzbQODo6wsbG5olzW1hYwMLCQnpsbGwMS0tLab1CCxcuxAcffIBXXnkFbm5uGDZsGF555RW89dZbBtd1cnLCjBkzMGjQIFy6dAleXl4AYHDuomRnZyM7O1t6nJ6eXqJxRERU/THQEMzMzHD79u2nuuaQIUOwefNmDB06FL1798bp06dx5syZYseYmZkBAHJycsq0Znh4OD755BO9dssOi2BlaQ7bBv5lmpeIiKoe76F5jomiiN27d+PXX39F586di+1br149affFwsICPj4+5V5/+fLlOH36NMaOHYvly5fDwcGhyL4pKSn44osvULduXWl3BgCmTJkiq8vCwgIHDhwwOEdoaCjS0tKk4/r16+W+BiIiqh64Q/Mc2rFjBywsLJCbm4uCggK8+eabmDVrVrFjDhw4ILs3pUaNGuWuw9HREe+99x62bNmCnj17GuxTr149iKKI//77D82aNcPGjRthYmIinZ80aRKCg4NlY+rWrWtwLrVaDbVaXe66iYio+mGgeQ5ptVpERkbCxMQEderUgUr15B8Dd3f3Et1DU1oqlarY9Q8cOAArKys4OjoavNnX3t4eHh4eFV4XEREpCwPNc8jc3FwxIaCyghQRET1bGGioRG7duoWsrCxZm52dXYW89FQeGRkZep+HU7NmTb23mBMR0bONNwVTiXh5ecHJyUl2/PHHH1VdFmbMmKFX1+TJk6u6LCIiesoEURTFqi6CqCqkp6fD2toaV05u4du2iYgUjjs0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/LZteu7Z1tfy27mJiBSOOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmYlz/Zuw65UYjVERFQW3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCml4OBgCIIgHXZ2dggMDMSpU6dk/QRBwJYtW2RtcXFxeO211+Dg4ABTU1M0aNAAAwYMwP79+4td083NDYIgYO3atXrnfHx8IAgCVq5cqXcuPDwcxsbG+Pzzzw3Om5qaipCQENSvXx9qtRrOzs7o0aMH9uzZI1v7q6++kh6LooiJEyfCysoKOp2uyFqLOt58803UrFkTq1evlo0rKChA+/bt0bdvXwDy59nExAQeHh4ICwtDXl4eAECn0xW5RmpqarHPJxERPXsYaMogMDAQKSkpSElJwZ49e6BSqfDaa68VO2bp0qXo0qUL7OzssG7dOpw/fx6bN29G+/btMW7cuCeu6ezsjJiYGFnbkSNHkJqaCnNzc4NjoqOjMXnyZERHR+udS05ORsuWLbF37158/vnnSExMRGxsLLRaLUaPHm1wvvz8fAwbNgyrVq1CXFwc/Pz89PocO3ZMem42btwIADh//rzUFhkZiYiICISEhCAlJUUaN3/+fPz1119YtmyZ1Fb4PF+8eBETJkzArFmz9MLZo3MXHo6OjoafRCIiemapqroAJVKr1dBoNAAAjUaDqVOnomPHjvj333/h4OCg1//atWsYO3Ysxo4diy+//FJ2rmnTpvjwww+fuOagQYOwYMECXL9+Hc7OzgAeBpZBgwZh1apVev337duHBw8eICwsDKtWrcLvv/+O9u3bS+dHjRoFQRAQHx8vC0Q+Pj4YOnSo3nzZ2dkICgrC8ePHceDAAXh5eRms89Hrt7W1BQA4OjrCxsZGag8JCcGWLVswYsQI7NixA+fOncOMGTOwbt062NvbS/0efZ7ff/99bN68Gdu2bUNoaKjU5/G5iYjo+cQdmnLKzMzEDz/8AA8PD9jZ2Rnss3HjRuTm5mLy5MkGzwuC8MR1ateujYCAAHz33XcAgP/++w/r1q0zGD4AICoqCkFBQahRowaCgoIQFRUlnbtz5w5iY2MxevRog7s7jweEzMxMdO/eHWfPnsWhQ4eKDDMlJQgCYmJicODAAaxYsQLBwcEYOHAgXn/99WLHmZmZIScnp8zrZmdnIz09XXYQEdGzgTs0ZbBjxw5YWFgAAO7fvw8nJyfs2LEDRkaG8+GFCxdgZWUl7TYAD0POkCFDpMeHDx9GkyZNil136NChmDBhAj766CNs2LABDRo0QPPmzfX6paenY8OGDTh8+DAAYPDgwejYsSMWLlwICwsLXLp0CaIowtvbu0TXO3v2bFhaWiIpKcngDlRZuLq64quvvsLw4cNRr149/Pbbb0X2FUURe/bswa+//oqQkBDZuXr16unNe+bMGYPzhIeH45NPPtFrt+ywCFaW+sHOtoF/SS6FiIiqAe7QlIFWq0VCQgISEhIQHx+PgIAAdOvWDVevXi1yzOO7MAEBAUhISMDPP/+M+/fvIz8//4nrdu/eHZmZmdi/fz+io6OL3J1Zs2YNGjRogGbNmgEAmjdvDldXV6xbtw7Aw4BQGq+88gru37+PuXPnlmrck7zzzjtwcnJCSEgIrKys9M4XBkdTU1N069YNAwYMwKxZs2R9Dhw4IP1dJCQk4JdffilyvdDQUKSlpUnH9evXK/R6iIio6nCHpgzMzc3h4eEhPf72229hbW2NFStW4NNPP9Xr37BhQ6SlpSE1NVXapbGwsICHhwdUqpL/FahUKrz11luYOXMmjh49is2bNxvsFxUVhTNnzsjmLigoQHR0NIYNG4aGDRtCEAScO3euROt26dIFISEheOONN1BQUICFCxeWuOYnUalURT4HWq0WkZGRMDExQZ06dQz2c3d3L/E9NGq1Gmq1ujzlEhFRNcUdmgogCAKMjIzw4MEDg+f79u2LGjVqYN68eeVea+jQodi3bx/eeOMN1KpVS+98YmIijh8/Dp1OJ9u50Ol0OHz4MM6dOwdbW1sEBARgyZIluH//vt4c9+7d02t75ZVXsH37dqxYsaJENzFXhMLg6OLiUqrgR0REzx/+liiD7Oxs6bNO7t69i8WLFyMzMxM9evQw2N/FxQXz58/HmDFjcOfOHQQHB8Pd3R137tzBDz/8AAAwNjYu0dqNGjXC//73P9SsWdPg+aioKLRu3RqdOnXSO9eqVStERUXh888/x5IlS/Dyyy+jdevWCAsLQ9OmTZGXl4ddu3YhMjISSUlJeuP9/f2xY8cO9OjRAwUFBVi8eHGJaq5Mt27dQlZWlqzNzs4ONWrUqKKKiIioKnCHpgxiY2Ph5OQEJycntGnTBseOHcP69esNfi5LoZCQEPz222/4999/0bdvXzRs2BCvvvoqrly5gtjY2CfeEPwoOzs7mJmZ6bXn5OTghx9+QJ8+fQyO69OnD1atWoXc3FzUr18fJ06cgFarxYQJE9C4cWN07doVe/bsQWRkZJFrd+7cGT///DNWrlyJ0aNHl/p+nIrm5eUl/V0UHn/88UeV1kRERE+fIFb1bySiKpKeng5ra2tcObmF73IiIlI47tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeLx27bpuWdbXwsrK6uqLoOIiMqBOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmaVl+3dhl2ptLmJiOgh7tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0ChMcHAwBEHAyJEj9c6NHj0agiAgODhY6tuzZ0+9sREREbJxW7ZsgSAI0mOdTgdBEHDv3j29Nby9vaFWq5GamirrW9yh0+kwa9YsNG/eXG++5ORkCIKAhIQEg/M5ODjg1VdfRWJiosHn4fEjMDCwBM8iERE9axhoFMjZ2Rlr167FgwcPpLasrCysXr0aLi4uxY41NTXFvHnzcPfu3VKve/DgQTx48AB9+/bFd999BwBo3749UlJSpKN///4IDAyUtbVv377Ua50/fx4pKSn49ddfkZ2dje7duyMnJ0fW5/F1UlJSsGbNmlKvRUREysdAo0AtWrSAs7MzNm3aJLVt2rQJLi4uePHFF4sd6+/vD41Gg/Dw8FKvGxUVhTfffBNvvfUWoqOjAQAmJibQaDTSYWZmBrVaLWszMTEp9VqOjo7QaDRo0aIFxo4di+vXr+PcuXOyPo+vo9FoUKtWrVKvRUREysdAo1BDhw5FTEyM9Dg6OhrvvPPOE8cZGxtj7ty5+Prrr/H333+XeL2MjAysX78egwcPRteuXZGWloYDBw6UqfbSSEtLw9q1awGgTMHoUdnZ2UhPT5cdRET0bFBVdQFUNoMHD0ZoaCiuXr0KADh06BDWrl0LnU73xLG9evVC8+bNMXPmTERFRZVovbVr16Jhw4bw8fEBAAwcOBBRUVHo2LFjma+hOPXq1QMA3L9/HwDw+uuvw9vbW9Znx44dsLCwkLVNmzYN06ZNMzhneHg4PvnkE712yw6LYGVpXhFlG3Tn8u4n9rFt4F9p6xMRPQ8YaBTKwcEB3bt3x8qVKyGKIrp37w57e/sSj583bx46d+6MiRMnlqh/dHQ0Bg8eLD0ePHgwfH198fXXX8PS0rLU9T/JgQMHULNmTRw5cgRz587FsmXL9PpotVpERkbK2mxtbYucMzQ0FOPHj5cep6enw9nZueKKJiKiKsNAo2BDhw7FBx98AABYsmRJqcZ26tQJAQEBCA0Nld4VVZSzZ8/iyJEjiI+Px5QpU6T2/Px8rF27FiNGjHjielZWVkhLS9NrL3wnlbW1tazd3d0dNjY28PLywq1btzBgwADs379f1sfc3BweHh5PXLuQWq2GWq0ucX8iIlIO3kOjYIGBgcjJyUFubi4CAgJKPT4iIgLbt2/H4cOHi+0XFRWFTp064c8//0RCQoJ0jB8/vsQvWXl5eeHvv//GzZs3Ze0nTpyAqalpse/OGj16NE6fPo3NmzeXaC0iInr+cIdGwYyNjZGUlCT9ubSaNGmCQYMGYdGiRUX2yc3Nxffff4+wsDA0btxYdm748OH48ssvcebMGenemqIEBATAy8sLQUFB+PTTT6HRaHDixAl8/PHHGDNmTLH116xZEyNGjMDMmTPRs2dP6TNzsrOzpc/DKaRSqUr10hsRET0buEOjcFZWVrCysirz+LCwMBQUFBR5ftu2bbh9+zZ69eqld65Ro0Zo1KhRiXZpVCoVfvvtN7i4uCAoKAiNGzfGzJkzMWbMGMyePfuJ4z/44AMkJSVh/fr1UltsbCycnJxkR4cOHZ44FxERPXsEURTFqi6CqCqkp6fD2toaV05uqdR3OZUE3+VERFQ+3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFU1V1AURVzba+tlzfWE5ERFWPOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4pQ40cXFxlVEHERERUZmVOtAEBgaiQYMG+PTTT3H9+vXKqImIiIioVEodaG7cuIEPPvgAGzZsQP369REQEICffvoJOTk5lVEfUaW7uqoJkqPcq7oMIiIqh1IHGnt7e4wbNw4JCQk4evQoPD09MWrUKNSpUwcffvgh/vzzz8qok4iIiKhI5bopuEWLFggNDcUHH3yAzMxMREdHo2XLlujYsSPOnDlTUTUSERERFatMgSY3NxcbNmzAq6++CldXV/z6669YvHgxbt68iUuXLsHV1RX9+vWr6FqJiIiIDCr1l1OGhIRgzZo1EEURb731Fj777DM0btxYOm9ubo4vvvgCderUqdBCiYiIiIpS6kBz9uxZfP311+jduzfUarXBPvb29nx7NxERET01pX7JaebMmejXr59emMnLy8P+/fsBACqVCr6+vhVTIREREdETlDrQaLVa3LlzR689LS0NWq22QooiIiIiKo1SBxpRFCEIgl777du3YW5uXiFFEREREZVGie+h6d27NwBAEAQEBwfLXnLKz8/HqVOn0L59+4qvkIiIiOgJShxorK2tATzcobG0tISZmZl0zsTEBG3btsWIESMqvkIiIiKiJyhxoImJiQEAuLm5YeLEiXx5iYiIiKqNMr3LSa1WY/fu3fjmm2+QkZEBAPjnn3+QmZlZ4QUSERERPUmpP4fm6tWrCAwMxLVr15CdnY2uXbvC0tIS8+bNQ3Z2NpYtW1YZdRIREREVqdQ7NGPGjMFLL72Eu3fvyu6j6dWrF/bs2VOhxREREVHpzZo1C82bN6/qMp6qUgeaAwcO4OOPP4aJiYms3c3NDTdu3KiwwoiIiJ5XqampCAkJQf369aFWq+Hs7IwePXpw46AYpQ40BQUFyM/P12v/+++/YWlpWSFFPY+e9MPr5uaGr776Surv5uYGQRBw5MgR2Txjx46Fn5+f9HjWrFkQBAGCIEClUsHe3h6dOnXCV199hezsbNlYPz8/qe+jx8iRI6U+j7ZbWVmhVatW2Lp1q2yelStXGpzH1NRU6hMcHIyePXsW+Xw8fr1FWbNmDYyNjTF69Ogn9iUiUoLk5GS0bNkSe/fuxeeff47ExETExsZCq9U+1X/rcnNzn9paFaHUgeaVV16R/aIRBAGZmZmYOXMmXn311Yqs7blR1h9eU1NTTJky5Ynz+/j4ICUlBdeuXUNcXBz69euH8PBwtG/fXrqpu9CIESOQkpIiOz777DNZn5iYGKSkpOD48eN4+eWX0bdvXyQmJsr6WFlZ6c1z9erVUjwrJRMVFYXJkydjzZo1yMrKqvD5iYietlGjRkEQBMTHx6NPnz7w9PSEj48Pxo8fL/1P7LVr1/DGG2/AwsICVlZW6N+/P27evFnknAUFBQgLC0O9evWgVqvRvHlzxMbGSueTk5MhCALWrVsHX19fmJqa4scff6z0a61IpQ408+fPx6FDh/DCCy8gKysLb775pvRy07x58yqjxmdeSX54DXn33Xdx5MgR/PLLL8XOr1KpoNFoUKdOHTRp0gQhISHYt28fTp8+rfd3VrNmTWg0GtlhZWUl62NjYwONRgNPT0/Mnj0beXl5el9GKgiC3jy1a9cu5TNTvCtXruD333/H1KlT4enpiU2bNhXbPzs7G+np6bKDiKg6uXPnDmJjYzF69GiDH49iY2ODgoICvPHGG7hz5w727duHXbt24a+//sKAAQOKnHfhwoWYP38+vvjiC5w6dQoBAQF4/fXXcfHiRVm/qVOnYsyYMUhKSkJAQECFX19lKnWgqVevHv78809MmzYN48aNw4svvoiIiAicPHkSjo6OlVHjM60kP7xFcXd3x8iRIxEaGoqCgoJSrevt7Y1u3bo9MQQUJy8vD1FRUQCgd0/V0xATE4Pu3bvD2toagwcPlmopSnh4OKytraXD2dkZAGDZYRGs/FY8jZKJiIp16dIliKIIb2/vIvvs2bMHiYmJWL16NVq2bIk2bdpg1apV2LdvH44dO2ZwzBdffIEpU6Zg4MCB8PLywrx589C8eXO9l/bHjh2L3r17w93dHU5OThV5aZWu1IEGePh//IMHD8Znn32GpUuXYvjw4bJ3PFHJleSHtzgff/wxrly5UqatQW9vbyQnJ8vali5dCgsLC9nx+NxBQUGwsLCAWq3GuHHj4Obmhv79+8v6pKWl6c3TrVu3UtdYlIKCAqxcuRKDBw8GAAwcOBAHDx7ElStXihwTGhqKtLQ06bh+/XqF1UNEVBFEUXxin6SkJDg7O0v/UwYAL7zwAmxsbJCUlKTXPz09Hf/88w9efvllWfvLL7+s1/+ll14qY+VVr0SfQ7Nt2zZ069YNNWrUwLZt24rt+/rrr1dIYc+LkvzwFsfBwQETJ07EjBkzit1uLGrtx79odNCgQfjoo49kbY+/VLRgwQL4+/vjr7/+wrhx47Bo0SLY2trK+lhaWuLEiROytooMvbt27cL9+/el+7bs7e3RtWtXREdHY/bs2QbHqNVq2XeQERFVNw0bNoQgCDh37lyVrK/kbwEoUaDp2bMnUlNT4ejoWOw7UwRBMPgOKCpaRfzwjh8/HkuXLsXSpUtLNS4pKQnu7u6yNmtra3h4eBQ7TqPRwMPDAx4eHoiJicGrr76Ks2fPyl5yNDIyeuI85REVFYU7d+7IQlJBQQFOnTqFTz75BEZGZdp8JCKqUra2tggICMCSJUvw4Ycf6gWMe/fuoVGjRrh+/TquX78u7dKcPXsW9+7dwwsvvKA3p5WVFerUqYNDhw7B19dXaj906BBat25duRf0FJXoX/2CggLpl1VBQUGRB8NM6T36w3v//n298/fu3XviHBYWFpg+fTrmzJmj966lopw7dw6xsbHo06dPaUuWad26NVq2bIk5c+aUa57SuH37NrZu3Yq1a9ciISFBOk6ePIm7d+/it99+e2q1EBFVtCVLliA/Px+tW7fGxo0bcfHiRSQlJWHRokVo164d/P390aRJEwwaNAgnTpxAfHw83n77bfj6+hb5ktGkSZMwb948rFu3DufPn8fUqVORkJCAMWPGPOWrqzyl+uqD3NxcBAYGYtmyZWjYsGFl1fTcWbJkCV5++WW0bt0aYWFhaNq0KfLy8rBr1y5ERkYafE30ce+++y4WLFiA1atXo02bNrJzeXl5SE1NRUFBAW7fvg2dTodPP/0UzZs3x6RJk2R9//vvP6Smpsra1Go1atWqVeTaY8eORa9evTB58mTUrVsXwMOXsx6fBwAcHR2l3ZO0tDQkJCTIztvZ2Un/x3Hjxg29866urvj+++9hZ2eH/v37671k9uqrryIqKgqBgYFF1ktEVJ3Vr18fJ06cwJw5czBhwgSkpKTAwcEBLVu2RGRkJARBwNatWxESEoJOnTrByMgIgYGB+Prrr4uc88MPP0RaWhomTJiAW7du4YUXXsC2bduerd/lYinZ29uLFy5cKO0weoJ//vlHHD16tOjq6iqamJiIdevWFV9//XUxLi5OFEVRdHV1FRcsWCD1f/yxKIri6tWrRQCir6+v1DZz5kwRgAhANDY2Fm1tbcUOHTqICxYsELOysmTjfX19pb6PHgEBAVIfAOLmzZtl4woKCkRvb2/x/fffF0VRFGNiYgzOA0BMSUkRRVEUhwwZYvD8sGHDpOszdP77778XmzRpIo4aNcrg87hu3TrRxMRE/Pfff5/4nKelpYkAxCsnt4i3L+16Yn8iIqq+BFEs3V2p48aNg1qtRkRERPmSFFEVS09Ph7W1Na6c3AIrS3PYNvCv6pKIiKiMSv1t23l5eYiOjsbu3bvRsmVLvRuWvvzyyworjoiIiKgkSh1oTp8+jRYtWgAALly4IDv3+P0MRERERE9DqQPN4x9xT0RERFTV+GEdREREpHil3qEBgOPHj+Onn37CtWvXkJOTIztXnu8GIiIiIiqLUu/QrF27Fu3bt0dSUhI2b96M3NxcnDlzBnv37oW1tXVl1EhERERUrFIHmrlz52LBggXYvn07TExMsHDhQpw7dw79+/eHi4tLZdRIREREVKxSB5rLly+je/fuAAATExPcv38fgiBg3LhxWL58eYUXSERERPQkpb6HplatWtL3BdWtWxenT59GkyZNcO/ePfz3338VXiAREdHTlBzl/uROFcRt2JWnttazrsQ7NKdPnwYAdOrUCbt27QIA9OvXD2PGjMGIESMQFBSELl26VE6VREREJLl+/TqGDh2KOnXqwMTEBK6urhgzZgxu374t9fHz84MgCBAEAaampvD09ER4eDgMfUHA4cOHYWxsLL0C86jk5GQIggBHR0e9L0Bu3rw5Zs2aJWu7dOkShg4dChcXF6jVatStWxddunTBjz/+iLy8PKlfYW2PH2vXri3Tc1LiQNO0aVO0adMGTZo0Qb9+/QAAH330EcaPH4+bN2+iT58+iIqKKlMRREREVDJ//fUXXnrpJVy8eBFr1qzBpUuXsGzZMuzZswft2rXDnTt3pL4jRoxASkoKzp8/j9DQUMyYMQPLli3TmzMqKgohISHYv38//vnnH4PrZmRk4Isvvii2tvj4eLRo0QJJSUlYsmQJTp8+DZ1Oh+HDhyMyMhJnzpyR9Y+JiUFKSors6NmzZ+mfFAAl/i6nAwcOICYmBhs2bEBBQQH69OmD4cOHo2PHjmVamKiqFX6XU1paGqysrKq6HCKqJqr7S07dunXD6dOnceHCBZiZmUntqampaNCgAd5++21ERkbCz88PzZs3x1dffSX1admyJVxdXWUfsZKZmQknJyccP34cM2fORNOmTTFt2jTpfHJyMtzd3TFp0iRERkbi8uXLcHR0BPBwh6Znz56YNWsWRFGEj48Patasifj4eBgZ6e+ZiKIofauAIAjYvHlzmQPM40q8Q9OxY0dER0cjJSUFX3/9NZKTk+Hr6wtPT0/MmzcPqampFVIQERERGXbnzh38+uuvGDVqlCzMAIBGo8GgQYOwbt06vZeVRFHEgQMHcO7cOZiYmMjO/fTTT/D29oaXlxcGDx6M6Ohogy9LBQUFwcPDA2FhYQZrS0hIQFJSEiZOnGgwzACV+xVJpX6Xk7m5Od555x3s27cPFy5cQL9+/bBkyRK4uLjg9ddfr4waiYiICMDFixchiiIaNWpk8HyjRo1w9+5d/PvvvwCApUuXwsLCAmq1Gp06dUJBQQE+/PBD2ZioqCgMHjwYABAYGIi0tDTs27dPb25BEBAREYHly5fj8uXLeucLv9/Ry8tLart16xYsLCykY+nSpbIxQUFBsvMWFha4du1aKZ6R/1eurz7w8PDAtGnT8PHHH8PS0hI///xzeaYjIiKiEijh3SIYNGgQEhIScOjQIXTr1g0fffQR2rdvL50/f/484uPjERQUBABQqVQYMGBAkffEBgQEoEOHDpg+fXqJ1rezs0NCQgISEhJgY2Oj9+0CCxYskM4XHnXq1CnR3I8r01cfAMD+/fsRHR2NjRs3wsjICP3798ewYcPKOh0RERE9gYeHBwRBQFJSEnr16qV3PikpCbVq1YKDgwMAwNraGh4eHgAevrTk4eGBtm3bwt/fH8DD3Zm8vDxZiBBFEWq1GosXLzb4DQARERFo164dJk2aJGtv2LAhgIch6cUXXwQAGBsbS+urVPqRQ6PRSOfLq1Q7NP/88w/mzp0LT09P+Pn54dKlS1i0aBH++ecfrFixAm3btq2QooiIiEifnZ0dunbtiqVLl+LBgweyc6mpqfjxxx8xYMAAg/eqWFhYYMyYMZg4cSJEUUReXh5WrVqF+fPny3ZI/vzzT9SpUwdr1qwxWEPr1q3Ru3dvTJ06Vdb+4osvwtvbG1988QUKCgoq7qJLqMQ7NN26dcPu3bthb2+Pt99+G0OHDpW9TkZERESVb/HixWjfvj0CAgLw6aefwt3dHWfOnMGkSZNQt25dzJkzp8ix7733HmbPno2NGzdCpVLh7t27GDZsmN5OTOFHsYwcOdLgPHPmzIGPj49s10UQBMTExKBr1654+eWXERoaikaNGiE3Nxf79+/Hv//+C2NjY9k89+7d03tTkaWlJczNzUv7tABiCfXo0UPcsmWLmJeXV9IhRNVaWlqaCEBMS0ur6lKIiEolOTlZHDJkiFi7dm2xRo0aorOzsxgSEiL+73//k/r4+vqKY8aM0Rv73nvviT4+PuJrr70mvvrqqwbnP3r0qAhA/PPPP8UrV66IAMSTJ0/K+rz77rsiAHHmzJmy9vPnz4tDhgwR69WrJ6pUKtHa2lrs1KmT+M0334i5ublSPwAGj/Dw8DI9JyX+HBqiZw0/h4aI6NlRrnc5EREREVUHZX6XE9Gz4uqqJrA008/2/NI4IiLl4A4NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/h4aIiOgRdy7vfmpr2Tbwf2prPeu4Q0NERKQQy5Ytg6WlJfLy8qS2zMxM1KhRA35+frK+Op0OgiDg8uXLcHNzw1dffaU336xZs9C8eXODj93c3CAIQpFHcHAwABR5fu3atRV89cXjDg0REZFCaLVaZGZm4vjx42jbti0A4MCBA9BoNDh69CiysrJgamoKAIiLi4OLiwsaNGhQprWOHTuG/Px8AMDvv/+OPn364Pz589J335mZmUl9Y2JiEBgYKBtvY2NTpnXLioGGiIhIIby8vODk5ASdTicFGp1OhzfeeAN79+7FkSNHpJ0anU4HrVZb5rUcHBykP9va2gIAHB0dDQYVGxsbaDSaMq9VEfiSExERkYJotVrExcVJj+Pi4uDn5wdfX1+p/cGDBzh69Gi5Ao3SMNAQEREpiFarxaFDh5CXl4eMjAycPHkSvr6+6NSpE3Q6HQDg8OHDyM7OlgWaKVOmwMLCQnbMnTu3QmoKCgrSm/vatWsVMndJ8SUnIiIiBfHz88P9+/dx7Ngx3L17F56ennBwcICvry/eeecdZGVlQafToX79+nBxcZHGTZo0SbqRt9CiRYuwf//+cte0YMEC+PvL37FVp06dcs9bGtyheQYEBwcbvMP80qVLAIDw8HAYGxvj888/1xu7cuVK2euhK1eulMYbGRnByckJAwYMwLVr1yCKIvz9/REQEKA3z9KlS2FjYwN/f/9i74p3c3OTxpSmrpJe8+M3pRERPWs8PDxQr149xMXFIS4uDr6+vgAeBghnZ2f8/vvviIuLQ+fOnWXj7O3t4eHhITsK740pL41Goze3SvV090wYaJ4RgYGBSElJkR3u7u4AgOjoaEyePBnR0dElmsvKygopKSm4ceMGNm7ciPPnz6Nfv34QBAExMTE4evQovvnmG6n/lStXMHnyZHz99dfYuHGjrAbg4d3vhY+PHTsmjSttXSW55jVr1pRpLiIiJdFqtdDpdNDpdLK3a3fq1Ak7d+5EfHz8c3X/DMBA88xQq9XQaDSyw9jYGPv27cODBw8QFhaG9PR0/P7770+cSxAEaDQaODk5oX379hg2bBji4+ORnp4OZ2dnLFy4EBMnTsSVK1cgiiKGDRuGV155BW+99Rasra1lNQD/f/e7RqOR7povS10lueZatWqVeh4iIqXRarU4ePAgEhISpB0aAPD19cU333yDnJycpxpo7t27h9TUVNlx//79p7Y+wHtonnlRUVEICgpCjRo1EBQUhKioKLRv377E42/duoXNmzfD2NgYxsbGAIAhQ4Zg8+bNGDp0KHr37o3Tp0/jzJkzT7WussjOzkZ2drb0OD09vVLXIyJlUsKn92q1Wjx48ADe3t6oXbu21O7r64uMjAzp7d1PyzvvvKPXFh4ejqlTpz61GiCS4g0ZMkQ0NjYWzc3NpaNv375iWlqaaGZmJiYkJIiiKIonT54ULSwsxIyMDGlsTEyMaG1tLXsMQDQ3Nxdr1qwpAhABiB9++KFszZs3b4r29vaikZGRuHnz5iJrA6B3vix1leSazc3NxTlz5hQ5ZubMmdL1PHpcOblFvH1pV5HjiIio+uMOzTNCq9UiMjJSemxubo41a9agQYMGaNasGQCgefPmcHV1xbp16zBs2LAi57K0tMSJEyeQm5uLnTt34scff8ScOXNkfRwdHfHee+9hy5Yt6NmzZ6lqLWtdj3v8mgEUe4NbaGgoxo8fLz0ufAmNiIiUj4HmGWFubg4PDw9ZW1RUFM6cOSO707ygoADR0dHFBgcjIyNprkaNGuHy5ct4//338f3338v6qVSqMt3FXta6HmfomoujVquhVqtLVSsRESkDA80zKjExEcePH4dOp5PtWty5cwd+fn44d+4cvL29SzTX1KlT0aBBA4wbNw4tWrSoNnUREREVYqB5RkVFRaF169bo1KmT3rlWrVohKirK4Oe/GOLs7IxevXphxowZ2LFjx1OrKz8/HwkJCbI+arUajRo1AvDwJt/U1FTZeZVKBXt7+3LVSEREysO3bT+DcnJy8MMPP6BPnz4Gz/fp0werVq1Cbm5uieccN24cfv75Z8THxz+1ujIzM/Hiiy/Kjh49ekj9Y2Nj4eTkJDs6dOhQ5vqIiEi5BFEUxaougqgqpKenw9raGldOboGVpbki3qpJRESGcYeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUT1XVBRBVNdv6WlhZWVV1GUREVA7coSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgoefe1VVNkBzlXtVlEBFROTDQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQKFRwcDAEQZAOOzs7BAYG4tSpU7J+giBgy5YteuOTk5MhCAISEhL0zvn5+WHs2LHSYzc3N9lahUdERESR8xZ3zJ49G+bm5rh06ZJs7D///INatWph8eLFeuuam5ujRYsWWL9+vdR/1qxZBuf39vYuxTNJRETPAgYaBQsMDERKSgpSUlKwZ88eqFQqvPbaa5WyVlhYmLRW4RESEqLXz9nZWdZnwoQJ8PHxkbVNnDgRAQEBCA4ORkFBgTR2xIgRaNmyJUaPHq237smTJ9GqVSsMGDAAv//+u3T+8blTUlJw8ODBSnkOiIio+lJVdQFUdmq1GhqNBgCg0WgwdepUdOzYEf/++y8cHBwqdC1LS0tpreIYGxvL+llYWEClUumN/eabb+Dj44Mvv/wSEydOxMqVK3Ho0CEkJiZCEAS9dTUaDZYsWYIffvgB27dvR/v27QHA4NxFyc7ORnZ2tvQ4PT29ROOIiKj6Y6B5RmRmZuKHH36Ah4cH7OzsqrqcJ3JwcMDy5csRFBSEZs2aYdy4cVi4cCGcnZ2LHKNSqVCjRg3k5OSUac3w8HB88skneu2ubyfCysqqTHMSEVH1wJecFGzHjh2wsLCAhYUFLC0tsW3bNqxbtw5GRhX/1zplyhRprcLjwIED5ZqzZ8+e6N+/PwIDA+Hr64shQ4YU2TcnJwfh4eFIS0tD586dpfbExES9ukaOHGlwjtDQUKSlpUnH9evXy1U/ERFVH9yhUTCtVovIyEgAwN27d7F06VJ069YN8fHxcHV1rdC1Jk2ahODgYFlb3bp1yz3v9OnTsWrVKnz88ccGz0+ZMgUff/wxsrKyYGFhgYiICHTv3l067+XlhW3btsnGFLXbolaroVary10zERFVPww0CmZubg4PDw/p8bfffgtra2usWLECn376abFjC3/pp6Wl6Z27d+8erK2tZW329vaytSqKSqWS/fdxhUHKwsICtWvXlt1fAwAmJiaVUhcRESkLX3J6hgiCACMjIzx48OCJfW1tbWFvb48//vhD1p6eno5Lly7B09OzssoslcIgpdFo9MIMERFRIe7QKFh2djZSU1MBPHzJafHixcjMzESPHj1k/a5cuaL3eTMNGzbE+PHjMXfuXNSuXRtt27bF7du3MXv2bDg4OKB3796y/hkZGdJahWrWrFnlN9Pm5eXp1SUIAmrXrl1FFRERUVVgoFGw2NhYODk5AXj49mZvb2+sX78efn5+sn7jx4/XG3vgwAFMnjwZFhYWmDdvHi5fvgxbW1u8/PLLiIuLg5mZmaz/jBkzMGPGDFnbe++9h2XLllXsRZXSmTNnpOegkFqtRlZWVhVVREREVUEQRVGs6iKIqkJ6ejqsra2RlpZW5TtNRERUPryHhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+Bhp57V1c1QXKUe1WXQURE5cBAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BTCsHBwejZs6esbcOGDTA1NcX8+fOlPoIgICIiQtZvy5YtEARBerxy5UrY2NgYXEcQBGzZskXWtnHjRvj5+cHa2hoWFhZo2rQpwsLCcOfOnSLnS0pKgrOzM/r164ecnJxi13y09sePwMDAIsfMmjULzZs312tPTk6GIAhISEiQPTZ0HDlyRDb2wYMHsLW1hb29PbKzs/XmdnNzk8aamZnBzc0N/fv3x969e4usk4iInm0MNOXw7bffYtCgQYiMjMSECROkdlNTU8ybNw93796tkHU++ugjDBgwAK1atcLOnTtx+vRpzJ8/H3/++Se+//57g2OOHTuGjh07IjAwEOvWrYOJiUmJ1goMDERKSorsWLNmTYVcBwDs3r1bb/6WLVvK+mzcuBE+Pj7w9vbWC3aFwsLCkJKSgvPnz2PVqlWwsbGBv78/5syZU2G1EhGRcqiqugCl+uyzzzBz5kysXbsWvXr1kp3z9/fHpUuXEB4ejs8++6xc68THx2Pu3Ln46quvMGbMGKndzc0NXbt2xb179/TG7N27F2+88QZGjRqFefPmlWo9tVoNjUZTrpqLY2dn98T5o6KiMHjwYIiiiKioKAwYMECvj6WlpTSPi4sLOnXqBCcnJ8yYMQN9+/aFl5dXpdRPRETVE3doymDKlCmYPXs2duzYoRdmAMDY2Bhz587F119/jb///rtca/3444+wsLDAqFGjDJ5//CWkzZs3o3v37vj4449LHWaqg8uXL+Pw4cPo378/+vfvjwMHDuDq1aslGjtmzBiIooitW7caPJ+dnY309HTZQUREzwYGmlLauXMnPvvsM2zduhVdunQpsl+vXr3QvHlzzJw5s1zrXbx4EfXr10eNGjWe2DczMxP9+vXDpEmTMGXKlDKtt2PHDlhYWMiOuXPnFjsmMTFRb4yPj4/Bvu3bt9fr+6jo6Gh069YNtWrVgq2tLQICAhATE1Oi2m1tbeHo6Ijk5GSD58PDw2FtbS0dzs7OAADXtxPhNuxKidYgIqLqiS85lVLTpk3xv//9DzNnzkTr1q31fiE/at68eejcuTMmTpxY5vVEUSxxXzMzM3To0AErVqxAUFAQGjVqVOr1tFotIiMjZW22trbFjvHy8sK2bdtkbTdu3ICfn59e33Xr1hVZV35+Pr777jssXLhQahs8eDAmTpyIGTNmwMjoyflbFEXZzdePCg0Nxfjx46XH6enpUqghIiJlY6Appbp162LDhg3QarUIDAzEzp07YWlpabBvp06dEBAQgNDQUAQHB8vOWVlZ4f79+ygoKJD9oi68J8ba2hoA4OnpiYMHDyI3N/eJuzTGxsbYsmULevfuDa1Wi7i4uFKHGnNzc3h4eJRqjImJid4Ylcrwj5azs3OR8//666+4ceOG3j0z+fn52LNnD7p27VpsHbdv38a///4Ld3d3g+fVajXUanWxcxARkTLxJacycHV1xb59+5CamorAwEBkZGQU2TciIgLbt2/H4cOHZe1eXl7Iy8uT3tZc6MSJEwAeBhkAePPNN5GZmYmlS5canP/xm4LVajU2bdqEVq1aQavV4uzZs6W8uqoTFRWFgQMHIiEhQXYMHDgQUVFRTxy/cOFCGBkZ6b21noiInn3coSkjZ2dn6HQ6aLVaBAQEIDY2FlZWVnr9mjRpgkGDBmHRokWydh8fH7zyyisYOnQo5s+fj/r16+P8+fMYO3YsBgwYgLp16wIA2rRpg8mTJ2PChAm4ceMGevXqhTp16uDSpUtYtmwZOnToIHv3E/Aw1GzcuBH9+vWDVqvF3r17pXta8vPz9UKUWq2WdnKys7ORmpoqO69SqWBvb1+u56vQ7du39ea3sbFBRkYGtm/fjm3btqFx48ay82+//TZ69eqFO3fuSC9/ZWRkIDU1Fbm5ubhy5Qp++OEHfPvttwgPDy/1DhMRESkfA0051KtXTxZqfv31V4P9wsLCsG7dOr32devWYebMmXjvvffwzz//oF69eujVqxemT58u6zdv3jy0bNkSS5YswbJly1BQUIAGDRqgb9++GDJkiME1TUxMsGHDBvTv318KNcDDG4dffPFFWd8GDRrg0qVLAIDY2Fg4OTnJznt5eeHcuXMle1KewN/fX69tzZo1uHHjBszNzQ3eaN2lSxeYmZnhhx9+wIcffggAmDFjBmbMmAETExNoNBq0bdsWe/bsgVarrZA6iYhIWQSxNHedEj1D0tPTYW1tjbS0NIO7a0REpBy8h4aIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUr0oDTXBwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp+P8tZfkufy0cePXrOhw83NDQDg5+dn8PzIkSMNXkdxcwqCAK1Wixo1auDgwYOycffv30f9+vUxceJEvXVNTU3xwgsvYOnSpVL/lStXGpzf1NTUYF1ERPTsUsQOjSiKGDhwIMLCwjBmzBgkJSVBp9PB2dkZfn5+2LJlCwDA29sbGo0GOp1OGpuRkYETJ07AwcFBFhQOHz6M7OxsdO7cWWoLDAxESkoKkpOTsXPnTmi1WowZMwavvfYa8vLyZDWFhYUhJSVFdoSEhMj6ZGRk4IsvvijxdZa3/tJauHChrH4AiImJkR4fO3ZM6jtixAi96/3ss88Mzvton6+++gpWVlaytu3btyMkJATBwcG4f/++NG7y5MkwMzPDp59+qrfu2bNn0b9/f4wePRpr1qyRzj8+d0pKCq5evVrm54SIiJRJEYHmp59+woYNG7Bq1SoMHz4c7u7uaNasGZYvX47XX38dw4cPl34xarVaWSA4ePAgPD090aNHD1m7TqeDq6sr3N3dpTa1Wg2NRoO6deuiRYsWmDZtGrZu3YqdO3di5cqVsposLS2h0Whkh7m5uaxPSEgIvvzyS9y6davE11qe+kvL2tpaVj8A2NjYSI8dHBykvjVr1tS7XisrK4PzPtrH2toagiDI2iwsLDB37lyYmJhgypQpAIC4uDh8++23WLVqlWyHpXDd+vXrY9asWWjYsCG2bdsmnX98bo1Gg9q1axusKzs7G+np6bKDiIieDYoINKtXr5Z+qT9uwoQJuH37Nnbt2gXgYSA4ePCgtKMSFxcHPz8/+Pr6Ii4uThoXFxcHrVb7xLU7d+6MZs2aYdOmTaWuOygoCB4eHggLCyvxmIquv7oyNTXFqlWrsHz5cmzduhVDhw7FtGnT0LJly2LHmZmZIScnp0xrhoeHw9raWjqcnZ0BAHf+isOdy7sr9CAioqerygPNjh07YGFhITu6desm63PhwgU0atTI4PjC9gsXLgB4GAju378vvVyi0+ng6+uLTp064ejRo8jKysKDBw8QHx9f4kDg7e2N5ORkWduUKVP06j5w4ICsT+F9NcuXL8fly5dLtFZ56i/Jc1lWS5cu1Zv7xx9/LNecL730EkJDQ9G7d2/Y2dnho48+KrJvfn4+fvjhB5w6dUr2MltaWlqJrzk0NBRpaWnScf369XLVT0RE1YeqqgvQarWIjIyUtR09ehSDBw+WtYmiWKL5PDw8UK9ePeh0Ovj4+ODkyZPw9fWFo6MjXFxccPjwYYiiiOzs7BIHGlEUIQiCrG3SpEkIDg6WtdWtW1dvbEBAADp06IDp06dj9erVlVp/SZ/Lshg0aJBe4CjqpZ3SmD59OsLCwjB16lSoVPo/jkuXLsW3336LnJwcGBsbY9y4cXj//fel85aWljhx4oRsjJmZmcG11Go11Gp1uWsmIqLqp8oDjbm5OTw8PGRtf//9t+yxp6cnkpKSDI4vbPf09JTa/Pz8EBcXh6ZNm6Jhw4ZwdHQEAOllG1EU4eHhIb3k8CRJSUl696rY29vr1V2UiIgItGvXDpMmTSpR/7LWX5Lnsqysra1LfL2lURhiDIUZ4P+DlJmZGZycnGBkJN9UNDIyqpS6iIhIWar8JaeSGDhwIC5evIjt27frnZs/fz7s7OzQtWtXqU2r1eL333/Hrl274OfnJ7V36tQJOp0OOp2uxLsze/fuRWJiIvr06VPm+lu3bo3evXtj6tSpJepfkfUrXWGQqlu3rl6YISIiKlTlOzQlMXDgQKxfvx5DhgzB559/ji5duiA9PR1LlizBtm3bsH79etk7jArvQ4mOjsaKFSukdl9fXwwfPhwAMGrUKL11srOzkZqaivz8fNy8eROxsbEIDw/Ha6+9hrffflvWNyMjA6mpqbK2mjVrFvnOnzlz5sDHx6fInYhHlbX+yvTff//pXa9arUatWrWeah2PE0VRry4AcHR0ZAAiInqOKOJffEEQ8NNPP2HatGlYsGABvLy80LFjR1y9ehU6nU7vA+Xc3d3h6uqKjIwM+Pr6Su0uLi6oU6cOcnJyZDsfhWJjY+Hk5AQ3NzcEBgYiLi4OixYtwtatW2FsbCzrO2PGDDg5OcmOyZMnF3kNnp6eGDp0qOzD8YpS1vor04oVK/SuNygo6KnWYEh6erpeXU5OTqV6qzwRESmfIJb0bluiZ0x6ejqsra1x5eQWWFmaP3lAKdg28K/Q+YiIqHiK2KEhIiIiKg4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESmeIr5tm6gy2dbXFvkt6UREpAzcoSEiIiLFY6AhIiIixWOgISIiIsXjPTT03BJFEQCQnp5exZUQ0dNmaWkJQRCqugyqQAw09Ny6ffs2AMDZ2bmKKyGipy0tLY1vBnjGMNDQc8vW1hYAcO3aNVhbW1dxNSWXnp4OZ2dnXL9+XTH/ICuxZkCZdSuxZuDp121paVnpa9DTxUBDzy0jo4e3kFlbWyvqH/5CVlZWiqtbiTUDyqxbiTUDyq2bqh5vCiYiIiLFY6AhIiIixWOgoeeWWq3GzJkzoVarq7qUUlFi3UqsGVBm3UqsGVBu3VR9CGLhe1eJiIiIFIo7NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDT03FqyZAnc3NxgamqKNm3aID4+vspq2b9/P3r06IE6depAEARs2bJFdl4URcyYMQNOTk4wMzODv78/Ll68KOtz584dDBo0CFZWVrCxscGwYcOQmZlZaTWHh4ejVatWsLS0hKOjI3r27Inz58/L+mRlZWH06NGws7ODhYUF+vTpg5s3b8r6XLt2Dd27d0fNmjXh6OiISZMmIS8vr9LqjoyMRNOmTaUPcGvXrh127txZrWt+XEREBARBwNixY6t13bNmzYIgCLLD29u7WtdMCiYSPYfWrl0rmpiYiNHR0eKZM2fEESNGiDY2NuLNmzerpJ5ffvlF/Oijj8RNmzaJAMTNmzfLzkdERIjW1tbili1bxD///FN8/fXXRXd3d/HBgwdSn8DAQLFZs2bikSNHxAMHDogeHh5iUFBQpdUcEBAgxsTEiKdPnxYTEhLEV199VXRxcREzMzOlPiNHjhSdnZ3FPXv2iMePHxfbtm0rtm/fXjqfl5cnNm7cWPT39xdPnjwp/vLLL6K9vb0YGhpaaXVv27ZN/Pnnn8ULFy6I58+fF6dNmybWqFFDPH36dLWt+VHx8fGim5ub2LRpU3HMmDFSe3Wse+bMmaKPj4+YkpIiHf/++2+1rpmUi4GGnkutW7cWR48eLT3Oz88X69SpI4aHh1dhVQ89HmgKCgpEjUYjfv7551LbvXv3RLVaLa5Zs0YURVE8e/asCEA8duyY1Gfnzp2iIAjijRs3nkrdt27dEgGI+/btk2qsUaOGuH79eqlPUlKSCEA8fPiwKIoPg5yRkZGYmpoq9YmMjBStrKzE7Ozsp1K3KIpirVq1xG+//bba15yRkSE2bNhQ3LVrl+jr6ysFmupa98yZM8VmzZoZPFddaybl4ktO9NzJycnBH3/8AX9/f6nNyMgI/v7+OHz4cBVWZtiVK1eQmpoqq9fa2hpt2rSR6j18+DBsbGzw0ksvSX38/f1hZGSEo0ePPpU609LSAPz/l37+8ccfyM3NldXt7e0NFxcXWd1NmjRB7dq1pT4BAQFIT0/HmTNnKr3m/Px8rF27Fvfv30e7du2qfc2jR49G9+7dZfUB1fu5vnjxIurUqYP69etj0KBBuHbtWrWvmZSJX05Jz53//e9/yM/Pl/0jCQC1a9fGuXPnqqiqoqWmpgKAwXoLz6WmpsLR0VF2XqVSwdbWVupTmQoKCjB27Fi8/PLLaNy4sVSTiYkJbGxsiq3b0HUVnqssiYmJaNeuHbKysmBhYYHNmzfjhRdeQEJCQrWtee3atThx4gSOHTumd666Ptdt2rTBypUr4eXlhZSUFHzyySfo2LEjTp8+XW1rJuVioCGichs9ejROnz6NgwcPVnUpJeLl5YWEhASkpaVhw4YNGDJkCPbt21fVZRXp+vXrGDNmDHbt2gVTU9OqLqfEunXrJv25adOmaNOmDVxdXfHTTz/BzMysCiujZxFfcqLnjr29PYyNjfXeTXHz5k1oNJoqqqpohTUVV69Go8GtW7dk5/Py8nDnzp1Kv6YPPvgAO3bsQFxcHOrVqyerOycnB/fu3Su2bkPXVXiuspiYmMDDwwMtW7ZEeHg4mjVrhoULF1bbmv/44w/cunULLVq0gEqlgkqlwr59+7Bo0SKoVCrUrl27Wtb9OBsbG3h6euLSpUvV9rkm5WKgoeeOiYkJWrZsiT179khtBQUF2LNnD9q1a1eFlRnm7u4OjUYjqzc9PR1Hjx6V6m3Xrh3u3buHP/74Q+qzd+9eFBQUoE2bNpVSlyiK+OCDD7B582bs3bsX7u7usvMtW7ZEjRo1ZHWfP38e165dk9WdmJgoC2O7du2ClZUVXnjhhUqp25CCggJkZ2dX25q7dOmCxMREJCQkSMdLL72EQYMGSX+ujnU/LjMzE5cvX4aTk1O1fa5Jwar6rmSiqrB27VpRrVaLK1euFM+ePSu+++67oo2NjezdFE9TRkaGePLkSfHkyZMiAPHLL78UT548KV69elUUxYdv27axsRG3bt0qnjp1SnzjjTcMvm37xRdfFI8ePSoePHhQbNiwYaW+bfv9998Xra2tRZ1OJ3tb7n///Sf1GTlypOji4iLu3btXPH78uNiuXTuxXbt20vnCt+W+8sorYkJCghgbGys6ODhU6ttyp06dKu7bt0+8cuWKeOrUKXHq1KmiIAjib7/9Vm1rNuTRdzlV17onTJgg6nQ68cqVK+KhQ4dEf39/0d7eXrx161a1rZmUi4GGnltff/216OLiIpqYmIitW7cWjxw5UmW1xMXFiQD0jiFDhoii+PCt29OnTxdr164tqtVqsUuXLuL58+dlc9y+fVsMCgoSLSwsRCsrK/Gdd94RMzIyKq1mQ/UCEGNiYqQ+Dx48EEeNGiXWqlVLrFmzptirVy8xJSVFNk9ycrLYrVs30czMTLS3txcnTJgg5ubmVlrdQ4cOFV1dXUUTExPRwcFB7NKlixRmqmvNhjweaKpj3QMGDBCdnJxEExMTsW7duuKAAQPES5cuVeuaSbkEURTFqtkbIiIiIqoYvIeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiKgUkpOTIQgCEhISqroUInoEAw0REREpHgMNESlKQUEBPvvsM3h4eECtVsPFxQVz5swBACQmJqJz584wMzODnZ0d3n33XWRmZkpj/fz8MHbsWNl8PXv2RHBwsPTYzc0Nc+fOxdChQ2FpaQkXFxcsX75cOu/u7g4AePHFFyEIAvz8/CrtWomo5BhoiEhRQkNDERERgenTp+Ps2bNYvXo1ateujfv37yMgIAC1atXCsWPHsH79euzevRsffPBBqdeYP38+XnrpJZw8eRKjRo3C+++/j/PnzwMA4uPjAQC7d+9GSkoKNm3aVKHXR0Rlo6rqAoiISiojIwMLFy7E4sWLMWTIEABAgwYN0KFDB6xYsQJZWVlYtWoVzM3NAQCLFy9Gjx49MG/ePNSuXbvE67z66qsYNWoUAGDKlClYsGAB4uLi4OXlBQcHBwCAnZ0dNBpNBV8hEZUVd2iISDGSkpKQnZ2NLl26GDzXrFkzKcwAwMsvv4yCggJpd6WkmjZtKv1ZEARoNBrcunWr7IUTUaVjoCEixTAzMyvXeCMjI4iiKGvLzc3V61ejRg3ZY0EQUFBQUK61iahyMdAQkWI0bNgQZmZm2LNnj965Ro0a4c8//8T9+/eltkOHDsHIyAheXl4AAAcHB6SkpEjn8/Pzcfr06VLVYGJiIo0louqDgYaIFMPU1BRTpkzB5MmTsWrVKly+fBlHjhxBVFQUBg0aBFNTUwwZMgSnT59GXFwcQkJC8NZbb0n3z3Tu3Bk///wzfv75Z5w7dw7vv/8+7t27V6oaHB0dYWZmhtjYWNy8eRNpaWmVcKVEVFoMNESkKNOnT8eECRMwY8YMNGrUCAMGDMCtW7dQs2ZN/Prrr7hz5w5atWqFvn37okuXLli8eLE0dujQoRgyZAjefvtt+Pr6on79+tBqtaVaX6VSYdGiRfjmm29Qp04dvPHGGxV9iURUBoL4+AvKRERERArDHRoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUrz/A+sUfVTiRBWAAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "# Specify colors for each values of the hue variable\n", + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# Plot a bar plot to visualize how many pumpkins of each variety are orange or white\n", + "sns.catplot(\n", + " data=pumpkins, y=\"Variety\", hue=\"Color\", kind=\"count\",\n", + " palette=palette, \n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 데이터 전처리\n", + "\n", + "특성과 레이블을 인코딩하여 데이터를 더 잘 시각화하고 모델을 훈련시켜 봅시다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['med', 'lge', 'sml', 'xlge', 'med-lge', 'jbo', 'exjbo'],\n", + " dtype=object)" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the different values of the 'Item Size' column\n", + "pumpkins['Item Size'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OrdinalEncoder\n", + "# Encode the 'Item Size' column using ordinal encoding\n", + "item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']]\n", + "ordinal_features = ['Item Size']\n", + "ordinal_encoder = OrdinalEncoder(categories=item_size_categories)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OneHotEncoder\n", + "# Encode all the other features using one-hot encoding\n", + "categorical_features = ['City Name', 'Package', 'Variety', 'Origin']\n", + "categorical_encoder = OneHotEncoder(sparse_output=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_MICHIGANcat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIA
                                                    21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                                                    31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.01.0
                                                    43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                                                    53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                                                    61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
                                                    \n", + "

                                                    5 rows × 48 columns

                                                    \n", + "
                                                    " + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_MICHIGAN cat__Origin_NEW JERSEY \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NEW YORK cat__Origin_NORTH CAROLINA cat__Origin_OHIO \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_PENNSYLVANIA cat__Origin_TENNESSEE cat__Origin_TEXAS \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VERMONT cat__Origin_VIRGINIA \n", + "2 0.0 0.0 \n", + "3 0.0 1.0 \n", + "4 0.0 0.0 \n", + "5 0.0 0.0 \n", + "6 0.0 0.0 \n", + "\n", + "[5 rows x 48 columns]" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.compose import ColumnTransformer\n", + "ct = ColumnTransformer(transformers=[\n", + " ('ord', ordinal_encoder, ordinal_features),\n", + " ('cat', categorical_encoder, categorical_features)\n", + " ])\n", + "# Get the encoded features as a pandas DataFrame\n", + "ct.set_output(transform='pandas')\n", + "encoded_features = ct.fit_transform(pumpkins)\n", + "encoded_features.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIAColor
                                                    21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                                                    31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.01.00
                                                    43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                                                    53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                                                    61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
                                                    \n", + "

                                                    5 rows × 49 columns

                                                    \n", + "
                                                    " + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_NEW JERSEY cat__Origin_NEW YORK \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NORTH CAROLINA cat__Origin_OHIO cat__Origin_PENNSYLVANIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_TENNESSEE cat__Origin_TEXAS cat__Origin_VERMONT \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VIRGINIA Color \n", + "2 0.0 0 \n", + "3 1.0 0 \n", + "4 0.0 0 \n", + "5 0.0 0 \n", + "6 0.0 0 \n", + "\n", + "[5 rows x 49 columns]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "# Encode the 'Color' column using label encoding\n", + "label_encoder = LabelEncoder()\n", + "encoded_label = label_encoder.fit_transform(pumpkins['Color'])\n", + "encoded_pumpkins = encoded_features.assign(Color=encoded_label)\n", + "encoded_pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['ORANGE', 'WHITE']" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the mapping between the encoded values and the original values\n", + "list(label_encoder.inverse_transform([0, 1]))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAYpCAYAAABBoEQQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxVdf7H8ff1IuAI4oqAIqiIuORS5lqCpqnTkE2NOo6ZYlk5uOVYaf1m1MbCpkUrNbMhW8a0Tdtm1FwAzTRFpVxJDVMTRBNZHEGB8/vDh3e8gXpZT6f7ej4e5zH3nu853/vhjMGbL9/zPTbDMAwBAAAAFlLD7AIAAACAsiLEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcD7MLAAAAwK9fTEyMS8ctWbLEpeMIsQAAAKhy2dnZTu/PnTunDRs2KDo6ulz92QzDMCqjMAAAAMBVaWlp6tChg3Jzc8t1PnNiAQAAUO0qOo5KiAUAAIDlEGIBAABgOdzYBQAAgCqXlJTk9P7HH39UUVGREhMTZbPZHPsjIyNd6o8buwAAAFDl7Ha7DMNwCqw/ZxiGiouLXeqPkVgAAABUuaysrErtj5FYAAAAWA43dgEAAKDaLF++XHfddZfatm2rtm3b6q677tJ7771X5n4YiQUAAECVKy4u1pAhQ/Txxx+rVatWatOmjWw2m/bv36/U1FTdc889eu+991SjhmtjrMyJBQAAQJWbN2+ekpKS9Omnn+qOO+5wavvPf/6jkSNH6qWXXtIjjzziUn+MxAIAAKDKdejQQZMnT9aYMWNKbV+yZInmzp2rb7/91qX+CLEAAACocrVq1dKBAwcUEhJSavsPP/ygiIgInT9/3qX+uLELAAAAVc7b21vZ2dlXbc/JyVGtWrVc7o8QCwAAgCrXo0cPLViw4Krt8+fPV/fu3V3ujxu7AAAAUOX+9re/KTIyUqdPn9Zf/vIXtW3bVpK0f/9+vfDCC/r000+VmJjocn/MiQUAAEC1+Oyzz3T//ffr9OnTTvsbNmyof/7zn7rzzjtd7osQCwAAgGpz/vx5rV27Vt99950kKTw8XP379y/TfFiJEAsAAIBfiNTUVLVu3dqlY5kTCwAAAFMcPnxYCQkJji0jI0PFxcUunUuIBQAAQLU4cuSII7AmJibq+PHj8vHx0S233KLJkycrKirK5b6YTgAAAIAq17x5c/3www+qXbu2evXqpT59+igqKko333yzatQo+6qvhFgAAABUOQ8PD/n4+CgmJkb9+/fXrbfeKl9f33L3R4gFAABAlcvMzFRSUpKSkpKUmJio7777Tp07d1ZUVJT69OmjW265RT4+Pi73R4gtJ8MwlJubK19fX9lsNrPLAQAAsJSffvpJiYmJjlCbmpqqzp07a+vWrS6dz41d5ZSbmys/Pz9lZ2erTp06ZpfjVgzDUEFBgdllAKa48t+/l5cXv0SbhGsPVFyDBg3Uq1cvFRcXq7i4WNnZ2frmm29cPp8QC8spKCjQkCFDzC4DgBv74IMP5O3tbXYZgOUcO3ZMSUlJ2rhxozZu3KgffvhB3bp1U9++ffXOO++oe/fuLvdFiAUAAECVa9GihU6cOKFu3bopKipKr732mnr06CFPT89y9UeIhaU9M2i/PO2uLYoM/BoUFNr05Oq2kqSnB+6Tlwe3NVSXC0U19MSqNmaXAVjW0aNHVbNmTRmGIcMwHNMIyosQC0vztBfzQxxuy8vD4N9/teIXZqAifvzxRyUmJiohIUHvvfeenn76aXl6eqpr167q06ePIiMj1bNnT3l5ebnUHyG2gljcAQAA/Npdvqm0InPBGzdurGHDhmnYsGGSLoXay0/vevvtt/X3v/9dnp6eOn/+vEv9EWIriLvkAQDAr93lm6o/++yzSuuzSZMmuvfee3XvvfdKujTdYP369S6fX/ZnfOnSnWVjxoxRUFCQPD09FRISokmTJumnn35yHBMVFSWbzSabzSZvb2+Fh4crLi6u1JHLLVu2yG6364477ijRduTIEdlsNvn7+ys3N9eprVOnTpo5c6bTvkOHDmnMmDFq1qyZvLy81KRJE912221aunSpCgsLHcddru3n2/Lly8tzSQAAAFABzZo1U0xMjMvHl3kk9vvvv1ePHj0UHh6uZcuWqXnz5tq7d68effRRrVq1Slu3blX9+vUlSWPHjtVTTz2lgoICbdiwQQ8++KDq1q2rcePGOfUZHx+vCRMmKD4+XidOnFBQUFCJz83NzdXzzz+vWbNmXbW2bdu2qV+/fmrXrp0WLFigiIgISVJycrIWLFig9u3bq2PHjo7jlyxZooEDBzr1Ubdu3bJeEgAAAFyHKwHVMAy9+eabLvVX5hAbGxsrT09PffHFF6pVq5akS8m5c+fOatmypZ588km9+uqrkqTf/OY3CggIcBQ+f/58rV271inE5uXl6b333lNycrIyMjL05ptv6oknnijxuRMmTNCLL76o2NhY+fv7l/pFjx49WuHh4dq8ebNq1PjfIHOrVq00fPjwEqPAdevWddRXXvn5+crPz69QHyibK683U5IBVJcrv9/wfR/upjL+zb/99tsaOHDgVW/cKigo0KpVq6omxJ45c0Zr1qzR008/7QiwlwUEBGjEiBF67733tHDhQqc2wzD05Zdf6sCBA2rVqpVT2/vvv6+IiAi1bt1a9957ryZPnqzp06eXeBLK8OHDtXbtWj311FOaP39+idpSUlK0f/9+LVu2zCnAXqkiT1cpKChwmv+ak5MjSXrwwQdVs2bNcveLirlQZJN3TZIsgKp3oeh/P0NGjhxpYiWAdb3xxhtq3LhxqW2nTp0q0+BimebEHjx4UIZhqE2b0tfJa9OmjbKysnTq1ClJ0sKFC+Xj4yMvLy/17t1bxcXFmjhxotM58fHxjgm9AwcOVHZ2tpKSkkr0bbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAAA/4+HhoaKioqu2FxYWym63u95feYpwdVmpESNG6Mknn1RWVpZmzJihnj17qmfPno721NRUbdu2TStXrrxUjIeHhg0bpvj4eEVFRZXob8CAAbrlllv017/+Ve++++51P79BgwZKSUmRdOlGswsXLji1z507V/369XPaV9p8XEmaPn26pkyZ4nifk5Oj4OBgLV68uNTpDag6+fn5jlEQTzujsACqx5Xfb9555x0eOwu3cuXP3vKqV6+eTp48edWsdfLkScd9Va4oU4gNCwuTzWbT/v379fvf/75E+/79+1WvXj01atRIkuTn56ewsDBJl6YNhIWFqXv37o7gGB8fr8LCQqcvxjAMeXl5af78+fLz8yvxGXPmzFGPHj306KOPOu2/PE0hNTVVnTt3liTZ7XbH53t4lPxSAwICHO3X4+XlVeocDm9vb76RmagCM0QAoEyu/H7D936g7Dp27KhVq1Y5ctrPrV69Wh06dHC5vzJNJ2jQoIH69++vhQsXlliINiMjQ0uXLtWwYcNKnXvq4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/++Qo9wgwAAACVb8SIEZozZ442bNhQoi0hIUHPPPOMhg8f7nJ/ZZ5OMH/+fPXs2VMDBgzQ7NmznZbYatKkiZ5++umrnvvQQw/p73//uz766CN5eHgoKytL999/f4kR13vuuUfx8fF6+OGHS+3n6aefVrt27ZxGV202m5YsWaL+/furV69emj59utq0aaOLFy9q48aNOnXqVIl5FmfPnlVGRobTPl9fX9WuXbuslwUAAADXcN9992nFihXq16+fbrjhBrVp00Y2m00HDhzQN998o9/+9rcaPXq0y/2V+WEHrVq1UnJyslq0aKGhQ4eqZcuWevDBB9WnTx9t2bLlmnMZ6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMKbHcQ/fu3bVjxw61bt1asbGxatu2rXr27Klly5Zp7ty5JdanjYmJUWBgoNP2yiuvlPWSAAAAwAUrV67Um2++qZCQEO3du1e7d+9WkyZN9M9//lOffvppmVaSshmu3qUFJzk5OfLz89PZs2dLDeKoOvn5+RoyZIgk6fnf7ZWXB/+E4T4KCm2a+nk7Sfz7r25XXvsPPviAObFwK4ZhqKCg4Bf1775cqxPgfyqy9iwq7kJRDUnMgYb7KCi0lfoaVe/S9xvAPdlstl9UgJUIsbC4J1aVvmYx4A6eXN3W7BIAwGXNmze/7jGGYejIkSMu9UeIBQAAQJU7evSonnrqKfn6+kqSTp8+reeee07PPvusJCkvL0//93//53J/zIktp8tzYrOzs1WnTh2zy3Erl+flAO7oyn//Xl5eTGkyCdceKDu73a4TJ044Hjv7/fffq2PHjsrNzZV06UmrAQEBLi+VykgsLOeXOC8HqE61atUyuwQAMB2z1AEAAGA5hFgAAACY4ufTcsoyTYcQCwAAgCr30EMP6Te/+Y3jfZMmTbRq1SrHe19fX8XFxbncHzd2lRM3dgEAAJiHG7sAAABQ5X744QeXjgsJCXHpOEIsAAAAqlyLFi1kGIZsNpuunAjw8/euLrFV5XNiFy1aJF9fXxUWFjr25eXlqWbNmoqKinI6NjExUTabTYcPH1ZoaKjmzZtXor+ZM2eqU6dOpb4PDQ2VzWa76jZ69GhJumr78uXLK/mrBwAAgCTt2rVLKSkpjv+9vO3cuVOPPfaYatWqJX9/f5f7q/KR2D59+igvL0/Jycnq3r27JGnTpk0KCAjQ119/rfz8fMeanwkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjrmrF65tuKSJUs0cOBAp/Pr1q1brs8FAADAtXXo0KHEvi+++ELTp0/XoUOH9Nhjj2nq1Kku91flIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFA+27dv17Rp0/Tll1/qwQcf1Jo1a9SwYcMy9VEtS2z16dNHCQkJjvcJCQmKiopSZGSkY//58+f19ddfVyjEAgAA4Jfr4MGDGjZsmHr27KnAwEAdOHBAr7zySpkDrFSNIXbz5s0qLCxUbm6udu3apcjISPXu3VuJiYmSpC1btqigoMApxD7++OPy8fFx2p555plKqWn48OEl+j569OhVjy8oKFBOTo7TBgAAANc8/PDDateunbKzs7V9+3b961//UvPmzcvdX7WsThAVFaVz585p+/btysrKUnh4uBo1aqTIyEjFxMQoPz9fiYmJatGihZo1a+Y479FHH3XcjHXZyy+/rI0bN1a4prlz56pfv35O+4KCgq56fFxcnGbNmlXhzwUAAHBHr7/+ury9vZWZmamYmJirHrdr1y6X+quWEBsWFqamTZsqISFBWVlZioyMlHQpNAYHB+urr75SQkKC+vbt63Rew4YNFRYW5rTv8lzXigoICCjR97VMnz5dU6ZMcbzPyclRcHBwpdQCAADwazdjxoxK7a/a1ont06ePEhMTlZWVpUcffdSxv3fv3lq1apW2bdumcePGVVc5Zebl5SUvLy+zywAAALCkv/3tb5XaX7WG2NjYWF28eNExEitJkZGRGj9+vC5cuFCtN3WdPXtWGRkZTvt8fX1Vu3btaqsBAAAA5VMtN3ZJl0Ls+fPnFRYWpsaNGzv2R0ZGKjc317EUV3WJiYlRYGCg0/bKK69U2+cDAACg/GzGlc/5gstycnLk5+en7Oxsx8MUAAAAUD2qbSQWAAAAqCyEWAAAAJju7NmzZbo/ihALAAAA0124cEFJSUkuH0+IBQAAgOVU2xJbvzaX74fj8bMAAMCd+Pr6ymazlfm8H3744Zrtp06dKlN/rE5QTt9//71atmxpdhkAAADVKjMzU40aNSrzeXa7XYZhyGazqbT4eXl/cXGxS/0xEltOlx9/e/ToUfn5+Zlcjfu5/NjfY8eOscSZCbj+5uL6m4drby6uv7kuX39PT89ynb9r165rtp85c0Z9+/Z1uT9CbDnVqHFpOrGfnx//IZmoTp06XH8Tcf3NxfU3D9feXFx/c5VnKoEkdejQ4ZrtmZmZZeqPG7sAAADwi1CWgEyIBQAAgOk8PT3Vtm1bl48nxJaTl5eXZsyYIS8vL7NLcUtcf3Nx/c3F9TcP195cXH9zVfX137Rpk06fPu3y8axOAAAAANPk5uZq0qRJevfddzVjxgxNnz7dpfO4sQsAAACmSEhI0JgxY1S/fn3t2LFD7dq1c/lcQiwAAACqXN++fZ3Why0sLNTWrVv1xBNP6G9/+5vsdnuZ+iPEAgAAoMp16tTJ6X1hYaH27Nmj/fv368yZM2V+gAJzYgEAAGCK48ePKyYmRt9++63mz5+vIUOGuHwuqxOU04IFCxQaGipvb29169ZN27ZtM7skt7Bx40ZFR0crKChINptNH3/8sdkluY24uDjdfPPN8vX1lb+/v+666y6lpqaaXZbbePXVV9WhQwfHIu89evTQqlWrzC7Lbc2ZM0c2m02TJ082uxS3MHPmTNlsNqctIiLC7LLcyo8//qh7771XDRo0UK1atXTDDTcoOTm5wv02bdpUa9eu1d/+9jfFxMRo6NChLp9LiC2H9957T1OmTNGMGTO0c+dOdezYUQMGDCjzkyZQdufOnVPHjh21YMECs0txO0lJSYqNjdXWrVu1du1aXbx4UbfffrvOnTtndmluoWnTppozZ4527Nih5ORk9e3bV4MHD9bevXvNLs3tbN++Xa+99tp1nz6EytWuXTulp6c7ti+//NLsktxGVlaWevXqpZo1a2rVqlXat2+fXnjhBdWrV6/SPiM2NlYpKSk6fvy4y+cwnaAcunXrpptvvlnz58+XJBUXFys4OFgTJkzQtGnTTK7OfdhsNq1cuVJ33XWX2aW4pVOnTsnf319JSUnq3bu32eW4pfr16+u5557T/fffb3YpbiMvL0833nijFi5cqNmzZ6tTp06aN2+e2WX96s2cOVMff/yxUlJSzC7FLU2bNk2bN2/Wpk2bqvyzDMNw+ald3NhVRhcuXNCOHTuc1jCrUaOG+vXrpy1btphYGVC9srOzJV0KUqheRUVF+uCDD3Tu3Dn16NHD7HLcSmxsrO644w7169dPs2fPNrsct3Lw4EEFBQXJ29tbPXr0UFxcnJo1a2Z2WW7h008/1YABAzRkyBAlJSWpSZMm+vOf/6yxY8eWqZ9Zs2Zd9xjDMDRz5kyX+iPEltHp06dVVFSkxo0bO+1v3LixDhw4YFJVQPUqLi7W5MmT1atXL7Vv397sctzG7t271aNHD+Xn58vHx0crV64s0yMaUTHLly/Xzp07tX37drNLcTvdunXTm2++qdatWys9PV2zZs3Srbfeqj179sjX19fs8n71vv/+e7366quaMmWKnnjiCW3fvl0TJ06Up6enRo0a5XI/n3zyieP1hQsXdODAAadpOZdXKyDEAqgysbGx2rNnD3PSqlnr1q2VkpKi7Oxsffjhhxo1apSSkpIIstXg2LFjmjRpktauXStvb2+zy3E7gwYNcrzu0KGDunXrppCQEL3//vtMp6kGxcXF6tKli5555hlJUufOnbVnzx4tWrSoTCF2586djtdpaWnq2LGj075Tp04pICDA5f64sauMGjZsKLvdrpMnTzrtP3nyZJkuPGBV48eP1+eff66EhAQ1bdrU7HLciqenp8LCwnTTTTcpLi5OHTt21EsvvWR2WW5hx44dyszM1I033igPDw95eHgoKSlJL7/8sjw8PFRUVGR2iW6lbt26Cg8P16FDh8wuxS0EBgaW+GW5TZs2Onr0aLn7tNvtKiwsdNp38eJF1ajhejQlxJaRp6enbrrpJq1fv96xr7i4WOvXr2duGn7VDMPQ+PHjtXLlSm3YsEHNmzc3uyS3V1xcrIKCArPLcAu33Xabdu/erZSUFMfWpUsXjRgxQikpKWV+0hAqJi8vT4cPH1ZgYKDZpbiFXr16lVhS8bvvvlNISEi5+wwKCtLFixe1Y8cOx77NmzeXaXCE6QTlMGXKFI0aNUpdunRR165dNW/ePJ07d04xMTFml/arl5eX5/Sbd1pamlJSUlS/fn0m+Fex2NhYvfvuu/rkk0/k6+urjIwMSZKfn59q1aplcnW/ftOnT9egQYPUrFkz5ebm6t1331ViYqLWrFljdmluwdfXt8T879q1a6tBgwbMC68GU6dOVXR0tEJCQnTixAnNmDFDdrtdw4cPN7s0t/DII4+oZ8+eeuaZZzR06FBt27ZNixcv1uLFi8vdp4eHh373u99p0KBBGj58uPLz87V06VI9+OCDrndioFxeeeUVo1mzZoanp6fRtWtXY+vWrWaX5BYSEhIMSSW2UaNGmV3ar15p112SsWTJErNLcwtjxowxQkJCDE9PT6NRo0bGbbfdZnzxxRdml+XWIiMjjUmTJpldhlsYNmyYERgYaHh6ehpNmjQxhg0bZhw6dMjsstzKZ599ZrRv397w8vIyIiIijMWLF1e4z8zMTGPYsGFGw4YNjaCgIOPhhx828vLyXD6fdWIBAABgOUwnAAAAQJX74YcfXDrO1bm2jMQCAACgytntdscTuUqLn5f3FxcXu9QfI7EAAACoFuvWrVPDhg0lScePH9fQoUP11VdfSZLOnDmjvn37utwXIRYAAADVol27do6nnvr4+Mhmszme2pWZmVmmvlgnFgAAAJZDiAUAAECVq+zbsAixAAAAqHI2m+26+0o75moIsQDgBo4cOSKbzaaUlBSzSwHgppYtW6a6des63rdo0UI5OTmO9w0aNNCWLVtc7o8QCwDlMHr0aN11112O91FRUZo8ebJp9aSlpelPf/qTgoKC5O3traZNm2rw4ME6cOCAJCk4OFjp6ek8IhWAaYYOHSovL6+rttvtdnXt2tXl/lidAAAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZd+OAQEBJhbKABUIkZiAaCCRo8eraSkJL300kuy2Wyy2Ww6cuSIJGnPnj0aNGiQfHx81LhxY40cOVKnT592nBsVFaUJEyZo8uTJqlevnho3bqzXX39d586dU0xMjHx9fRUWFqZVq1Zd9fP37t2rw4cPa+HCherevbtCQkLUq1cvzZ49W927d5dUcjrB6NGjHbVeuSUmJkqSCgoKNHXqVDVp0kS1a9dWt27dHG0A8EtAiAWACnrppZfUo0cPjR07Vunp6UpPT1dwcLDOnj2rvn37qnPnzkpOTtbq1at18uRJDR061On8t956Sw0bNtS2bds0YcIEjRs3TkOGDFHPnj21c+dO3X777Ro5cqT++9//lvr5jRo1Uo0aNfThhx+qqKjI5Zov15qenq5JkybJ399fERERkqTx48dry5YtWr58ub799lsNGTJEAwcO1MGDByt2sQCgkvDYWQAoh9GjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxl59WI12au9qgQQPdcMMNjn2Xn25zrafZxMbGKiMjQ0uXLlWPHj30wQcfqF27dlq7du01a9y1a5dGjhyp+fPnq1evXpKk3bt3q6ioSOHh4U61JyUlOdUNAGbixi4AqCJ5eXmKjo7Ws88+W6ItMDDQ8bpmzZpObTabzWnf5XUTi4uLr/l5vr6+io6OVnR0tGbPnq0BAwZo9uzZ6t+/f6nHZ2Rk6M4779QDDzyg+++/36luu92uHTt2yG63O53j4+NzzRoAoLoQYgGgEnh6epaYj3rjjTfqo48+UmhoqDw8qvfbrc1mU0REhL766qtS2/Pz8zV48GBFREToxRdfdGrr3LmzioqKlJmZqVtvvbU6ygWAMmM6AQBUgtDQUH399dc6cuSITp8+reLiYsXGxurMmTMaPny4tm/frsOHD2vNmjWKiYlx+QYsV6SkpGjw4MH68MMPtW/fPh06dEjx8fF64403NHjw4FLPeeihh3Ts2DG9/PLLOnXqlDIyMpSRkaELFy4oPDxcI0aM0H333acVK1YoLS1N27ZtU1xcnP79739XWt0AUBGMxAJAJZg6dapGjRqltm3b6vz580pLS1NoaKg2b96sxx9/XLfffrsKCgoUEhKigQMHqkaNyhtDaNq0qUJDQzVr1izHUlqX3z/yyCOlnpOUlKT09HS1bdvWaX9CQoKioqK0ZMkSzZ49W3/5y1/0448/qmHDhurevbt+97vfVVrdAFARrE4AAAAAy2E6AQAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBwPswsAAADAr19MTIxLxy1ZssSl42yGYRgVKQgAAAC4nrvvvtvx+ty5c9qwYYOio6Md+woKCrRq1SoVFxe71B8hFgAAANUqLS1NHTp0UG5urmPfqVOnFBAQoKKiIpf6YE4sAAAAqlXNmjV18eJFp335+fny8HB9pishtpwMw1BOTo4YyAYAACiboKAgGYahdevWOfb95z//UbNmzVzugxu7yik3N1d+fn46efKk6tSpY3Y5bsUwDBUUFEiSvLy8ZLPZTK7IfXH9AQDlUaNGDY0YMULR0dEaMGCAzp8/r3Xr1mnmzJku98Gc2HLKycmRn5+fBgwYoJo1a5pdDmCKDz74QN7e3maXAQCwoPPnz2vWrFlav369PD09deedd+rRRx9VjRquTRRgJBYAAADVrlatWpozZ065zyfEVtCM/t+pvo/ZVbiXgkKbnlzdVpL09MB98vLgjwnV6UJRDT2xqo3ZZQAALCYpKcml4yIjI106jhBbQTVrFMvLgzmBZvHyMAix1c619fuAXxvm4wMV07dvXxmGcc3/dgzDcHmdWEJsBV0o4psYALiDgoICDRkyRBLzwYHyyMrKqtT+CLEAAACocpW9mlO51ok9duyYxowZo6CgIHl6eiokJESTJk3STz/95DgmKipKNptNNptN3t7eCg8PV1xcXKnrqm7ZskV2u1133HFHibYjR47IZrPJ39/f6akOktSpU6cSSzEcOnRIY8aMUbNmzeTl5aUmTZrotttu09KlS1VYWOg47nJtP9+WL19enksCAACAa0hKSnJpc1WZR2K///579ejRQ+Hh4Vq2bJmaN2+uvXv36tFHH9WqVau0detW1a9fX5I0duxYPfXUUyooKNCGDRv04IMPqm7duho3bpxTn/Hx8ZowYYLi4+N14sQJBQUFlfjc3NxcPf/885o1a9ZVa9u2bZv69eundu3aacGCBYqIiJAkJScna8GCBWrfvr06duzoOH7JkiUaOHCgUx9169Yt6yUBAADAdZQ2J7a091U2JzY2Nlaenp764osvVKtWLUlSs2bN1LlzZ7Vs2VJPPvmkXn31VUnSb37zGwUEBEiSYmJiNH/+fK1du9YpxObl5em9995TcnKyMjIy9Oabb+qJJ54o8bkTJkzQiy++qNjYWPn7+5doNwxDo0ePVnh4uDZv3uy0xlirVq00fPjwEqPAdevWddQHwDVX/meUn59vXiFANbvy3ztLrAPlk5qaqsaNG0u69Nf2W265RceOHZPNZtOpU6cUHh7ucl9lCrFnzpzRmjVr9PTTTzsC7GUBAQEaMWKE3nvvPS1cuNCpzTAMffnllzpw4IBatWrl1Pb+++8rIiJCrVu31r333qvJkydr+vTpJe5cGz58uNauXaunnnpK8+fPL1FbSkqK9u/fr2XLll11kdyK3ElaUFDguCtVuvSwA8AdXXkz48iRI02sBDBPQUFBiZ+DAK6vTp06jrmxPj4+MgxDfn5+ki79oliWXxDLNCf24MGDMgxDbdqUvkZkmzZtlJWVpVOnTkmSFi5cKB8fH3l5eal3794qLi7WxIkTnc6Jj4/XvffeK0kaOHCgsrOzS50PYbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAABVrFyrE7iakkeMGKEnn3xSWVlZmjFjhnr27KmePXs62lNTU7Vt2zatXLnyUjEeHho2bJji4+MVFRVVor8BAwbolltu0V//+le9++671/38Bg0aKCUlRdKlG80uXLjg1D537lz169fPaV9p83Elafr06ZoyZYrjfU5ODkEWbsnT/r///t955x2WGYLbyM/Pd/z1wcvLy+RqAOup7Gk4ZQqxYWFhstls2r9/v37/+9+XaN+/f7/q1aunRo0aSZL8/PwUFhYm6dK0gbCwMHXv3t0RHOPj41VYWOgUHA3DkJeXl+bPn+8YXr7SnDlz1KNHDz366KNO+y9PU0hNTVXnzp0lSXa73fH5Hh4lv9SAgABH+/V4eXnxTQuQdOWsHG9vb0Is3BIPOgDK7uf/3dSsWVOhoaHXPOZayjSdoEGDBurfv78WLlyo8+fPO7VlZGRo6dKlGjZsWKkF+Pj4aNKkSZo6daoMw1BhYaHefvttvfDCC0pJSXFs33zzjYKCgrRs2bJSa+jatavuvvtuTZs2zWl/586dFRERoeeff97lu9oAAABQPbZs2aIGDRo43gcHB2v37t2O9/7+/kpPT3e5vzJPJ5g/f7569uypAQMGaPbs2U5LbDVp0kRPP/30Vc996KGH9Pe//10fffSRPDw8lJWVpfvvv7/EiOs999yj+Ph4Pfzww6X28/TTT6tdu3ZOo6s2m01LlixR//791atXL02fPl1t2rTRxYsXtXHjRp06dUp2u92pn7NnzyojI8Npn6+vr2rXrl3WywIAAIBr6Nq163WPKW0Fqqsp88MOWrVqpeTkZLVo0UJDhw5Vy5Yt9eCDD6pPnz7asmWLY43Y0tSvX1/33XefZs6cqfj4ePXr16/UKQP33HOPkpOT9e2335baT3h4uMaMGVNieZ/u3btrx44dat26tWJjY9W2bVv17NlTy5Yt09y5c0usTxsTE6PAwECn7ZVXXinT9bhyfiAA4NfLy8tLH3zwgT744AOmlwG/ADaDxe7KJScnR35+fkqeG6IGvsyNqk4FhTZN/bydJOn53+2Vlwf/hKvTldef58cDAMxSrtUJ8D8XimqooPD6x6HyFBTaSn2N6nGhqFxPqwYAoFIRYito1tpw1axZ0+wy3NaTq9uaXQIAAKgE//3vf/Xcc89pxowZLh3PkAoAAABMl5eXp1mzZrl8PCOxFfT22287Hp+G6mEYhuMRwF5eXqzXaCJubgEAVKay/EwnxFYQi72bg2eWm+fKXyIAAKhMZVlvgBALoEwKCgo0ZMgQSaxOAABwXYsWLa4ZUouKisrUHyEWQJlcuT5zfn4+IRYA4JLJkydfsz0vL0//93//53J/hFgAAABUuYkTJ16zPTMzs0whltUJAAAAYDmEWABlUlxcXOprAAAqqiyrExBiAZRJbm5uqa8BAKiICxcuqG/fvi4fX+UhdtGiRfL19VVh4f+ezZqXl6eaNWsqKirK6djExETZbDYdPnxYoaGhmjdvXon+Zs6cqU6dOpX6PjQ0VDab7arb6NGjJemq7cuXL6/krx4AAADX8/bbb6tDhw6y2+0un1PlN3b16dNHeXl5Sk5OVvfu3SVJmzZtUkBAgL7++munu5sTEhLUrFkztWzZslyftX37dsfyDF999ZXuuecepaamOh5GcOXaokuWLNHAgQOdzq9bt265PhcAAABld+rUKT300ENat26dXnjhBY0dO9blc6s8xLZu3VqBgYFKTEx0hNjExEQNHjxYGzZs0NatWx0jsomJierTp0+5P6tRo0aO1/Xr15ck+fv7lxpO69atq4CAgHJ/FgAAAFz380fKFhYW6rXXXlP79u21e/duhYSElKm/alliq0+fPkpISNC0adMkXRpxfeyxx1RUVKSEhARFRUXp/Pnz+vrrrzVmzJjqKKnMCgoKnJ5SlJOTY2I1AAAA1vLJJ584vS8sLFRWVpbuvvvuMgdYqRpD7OTJk1VYWKjz589r165dioyM1MWLF7Vo0SJJ0pYtW1RQUOA0Evv444+XWC/swoULatu2bYVrGj58eIl5F/v27VOzZs1KPT4uLq7EbxAAAABwzc6dO0vs++yzzzR27FitWLFC8fHxat68ucv9VcvqBFFRUTp37py2b9+uTZs2KTw8XI0aNVJkZKRjXmxiYqJatGjhFCIfffRRpaSkOG0PP/xwpdQ0d+7cEn0HBQVd9fjp06crOzvbsR07dqxS6gAAAHBX0dHR2rt3rxo0aKAOHTpo4cKFLp9bLSOxYWFhatq0qRISEpSVlaXIyEhJUlBQkIKDg/XVV18pISGhxLIKDRs2VFhYmNO+y3NdKyogIKBE39fi5eUlLy+vSvlsAAAAXNKgQQN98MEHevfddxUbG6s///nPLp1XbevE9unTR4mJiUpMTHRaWqt3795atWqVtm3bVqGbugAAAGBdf/rTn7R3716Xj6+WkVjpUoiNjY3VxYsXHSOxkhQZGanx48frwoUL1Rpiz549q4yMDKd9vr6+ql27drXVAAAA4C6SkpJcOu5a0zuvVK0h9vz584qIiFDjxo0d+yMjI5Wbm+tYiqu6xMTElNgXFxfnWEEBAAAAladv374yDMPxaNkrX19mGIbLjzS3GYZhVHqVbiAnJ0d+fn7Kzs52PEwBcAdnzpzRqFGjJElvvfVWpc1TBwD8ul25POmRI0d0yy236Pjx4459p06dUnh4uOPBVddTbSOxAH4datSoUeprAACu5cpBP19fXxUXFzvtO3/+vMoytspPIAAAAFQrf39/nT9/Xunp6Y59Bw8elL+/v8t9MBILoEy8vb1LfQ0AgKtq166tTp066Q9/+IOmTp2q/Px8PfXUU7rllltc7oM5seXEnFi4K8MwHI9g9vLyKjEpHwAAV2zfvl333HOPfvzxR0lS27Zt9emnn7r81C5CbDllZ2erbt26OnbsGCEWAAC4DV9f30obwCgsLFRqaqo8PT0VFhZWpn4JseX0/fffq2XLlmaXAQAAUK0yMzPVqFEjs8tgTmx5XV5W6OjRo/Lz8zO5GveTk5Oj4OBgRsJNwvU3F9ffPFx7c3H9zXX5+nt6epbrfFemCRiGoSNHjrjUHyG2nC4vLeTn58d/SCaqU6cO199EXH9zcf3Nw7U3F9ffXOWdSnD06FE99dRT8vX1lSSdPn1azz33nJ599llJUl5env7v//7P5f4IsQAAAKgWDzzwgOPJrd9//73mzp2riRMnSro0TaEsIZZ1YgEAAGA5hNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrl/a9Wd1AgAAAFQ5u92uEydOOE0n6NSpk3JyciRdmk4QGBiooqIil/pjJBYAAABV7qGHHtJvfvMbx/smTZpo1apVjve+vr6Ki4tzuT9GYgEAAGA5jMQCAADAcgix5bRgwQKFhobK29tb3bp107Zt28wuyS1s3LhR0dHRCgoKks1m08cff2x2SW4jLi5ON998s3x9feXv76+77rpLqampZpflNl599VV16NDBsT5mjx49nP4Mh+o1Z84c2Ww2TZ482exS3MLMmTNls9mctoiICLPLcis//vij7r33XjVo0EC1atXSDTfcoOTkZFNrIsSWw3vvvacpU6ZoxowZ2rlzpzp27KgBAwYoMzPT7NJ+9c6dO6eOHTtqwYIFZpfidpKSkhQbG6utW7dq7dq1unjxom6//XadO3fO7NLcQtOmTTVnzhzt2LFDycnJ6tu3rwYPHqy9e/eaXZrb2b59u1577TV16NDB7FLcSrt27ZSenu7YvvzyS7NLchtZWVnq1auXatasqVWrVmnfvn164YUXVK9ePVPrYk5sOXTr1k0333yz5s+fL0kqLi5WcHCwJkyYoGnTpplcnfuw2WxauXKl7rrrLrNLcUunTp2Sv7+/kpKS1Lt3b7PLcUv169fXc889p/vvv9/sUtxGXl6ebrzxRi1cuFCzZ89Wp06dNG/ePLPL+tWbOXOmPv74Y6WkpJhdiluaNm2aNm/erE2bNpldihNGYsvowoUL2rFjh/r16+fYV6NGDfXr109btmwxsTKgemVnZ0u6FKRQvYqKirR8+XKdO3dOPXr0MLsctxIbG6s77rjD6WcAqsfBgwcVFBSkFi1aaMSIETp69KjZJbmNTz/9VF26dNGQIUPk7++vzp076/XXXze7LEJsWZ0+fVpFRUWONc4ua9y4sTIyMkyqCqhexcXFmjx5snr16qX27dubXY7b2L17t3x8fOTl5aWHH35YK1euVNu2bc0uy20sX75cO3fuLNMSQKgc3bp105tvvqnVq1fr1VdfVVpamm699Vbl5uaaXZpb+P777/Xqq6+qVatWWrNmjcaNG6eJEyfqrbfeMrUuD1M/HYAlxcbGas+ePcxJq2atW7dWSkqKsrOz9eGHH2rUqFFKSkoiyFaDY8eOadKkSVq7dq28vb3NLsftDBo0yPG6Q4cO6tatm0JCQvT+++8znaYaFBcXq0uXLnrmmWckSZ07d9aePXu0aNEijRo1yrS6GIkto4YNG8put+vkyZNO+0+ePKmAgACTqgKqz/jx4/X5558rISFBTZs2Nbsct+Lp6amwsDDddNNNiouLU8eOHfXSSy+ZXZZb2LFjhzIzM3XjjTfKw8NDHh4eSkpK0ssvvywPDw+XnzCEylG3bl2Fh4fr0KFDZpfiFgIDA0v8stymTRvTp3QQYsvI09NTN910k9avX+/YV1xcrPXr1zM3Db9qhmFo/PjxWrlypTZs2KDmzZubXZLbKy4uVkFBgdlluIXbbrtNu3fvVkpKimPr0qWLRowYoZSUFNntdrNLdCt5eXk6fPiwAgMDzS7FLfTq1avEkorfffedQkJCTKroEqYTlMOUKVM0atQodenSRV27dtW8efN07tw5xcTEmF3ar15eXp7Tb95paWlKSUlR/fr11axZMxMr+/WLjY3Vu+++q08++US+vr6OOeB+fn6qVauWydX9+k2fPl2DBg1Ss2bNlJubq3fffVeJiYlas2aN2aW5BV9f3xLzv2vXrq0GDRowL7waTJ06VdHR0QoJCdGJEyc0Y8YM2e12DR8+3OzS3MIjjzyinj176plnntHQoUO1bds2LV68WIsXLza3MAPl8sorrxjNmjUzPD09ja5duxpbt241uyS3kJCQYEgqsY0aNcrs0n71SrvukowlS5aYXZpbGDNmjBESEmJ4enoajRo1Mm677Tbjiy++MLsstxYZGWlMmjTJ7DLcwrBhw4zAwEDD09PTaNKkiTFs2DDj0KFDZpflVj777DOjffv2hpeXlxEREWEsXrzY7JIM1okFAACA5TAnFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgDcwJEjR2Sz2ZSSkmJ2KQBQKQixAFAOo0eP1l133eV4HxUVpcmTJ5tWT1pamv70pz8pKChI3t7eatq0qQYPHqwDBw5IkoKDg5Wenq727dubViMAVCYPswsAAFTMxYsX1b9/f7Vu3VorVqxQYGCgjh8/rlWrVuns2bOSJLvdroCAAHMLBYBKxEgsAFTQ6NGjlZSUpJdeekk2m002m01HjhyRJO3Zs0eDBg2Sj4+PGjdurJEjR+r06dOOc6OiojRhwgRNnjxZ9erVU+PGjfX666/r3LlziomJka+vr8LCwrRq1aqrfv7evXt1+PBhLVy4UN27d1dISIh69eql2bNnq3v37pJKTicYPXq0o9Yrt8TERElSQUGBpk6dqiZNmqh27drq1q2bow0AfgkIsQBQQS+99JJ69OihsWPHKj09Xenp6QoODtbZs2fVt29fde7cWcnJyVq9erVOnjypoUOHOp3/1ltvqWHDhtq2bZsmTJigcePGaciQIerZs6d27typ22+/XSNHjtR///vfUj+/UaNGqlGjhj788EMVFRW5XPPlWtPT0zVp0iT5+/srIiJCkjR+/Hht2bJFy5cv17fffqshQ4Zo4MCBOnjwYMUuFgBUEpthGIbZRQCA1YwePVpnz57Vxx9/LOnSiGqnTp00b948xzGzZ8/Wpk2btGbNGse+48ePKzg4WKmpqQoPD1dUVJSKioq0adMmSVJRUZH8/Px099136+2335YkZWRkKDAwUFu2bHGMrP7cggUL9Nhjj8lut6tLly7q06ePRowYoRYtWki6NBLbvHlz7dq1S506dXI6d8WKFRoxYoTWrVunXr166ejRo2rRooWOHj2qoKAgx3H9+vVT165d9cwzz1T08gFAhTESCwBV5JtvvlFCQoJ8fHwc2+WRzsOHDzuO69Chg+O13W5XgwYNdMMNNzj2NW7cWJKUmZl51c+KjY1VRkaGli5dqh49euiDDz5Qu3bttHbt2mvWuGvXLo0cOVLz589Xr169JEm7d+9WUVGRwsPDnWpPSkpyqhsAzMSNXQBQRfLy8hQdHa1nn322RFtgYKDjdc2aNZ3abDab0z6bzSZJKi4uvubn+fr6Kjo6WtHR0Zo9e7YGDBig2bNnq3///qUen5GRoTvvvFMPPPCA7r//fqe67Xa7duzYIbvd7nSOj4/PNWsAgOpCiAWASuDp6VliPuqNN96ojz76SKGhofLwqN5vtzabTREREfrqq69Kbc/Pz9fgwYMVERGhF1980amtc+fOKioqUmZmpm699dbqKBcAyozpBABQCUJDQ/X111/ryJEjOn36tIqLixUbG6szZ85o+PDh2r59uw4fPqw1a9YoJibG5RuwXJGSkqLBgwfrww8/1L59+3To0CHFx8frjTfe0ODBg0s956GHHtKxY8f08ssv69SpU8rIyFBGRoYuXLig8PBwjRgxQvfdd59WrFihtLQ0bdu2TXFxcfr3v/9daXUDQEUwEgsAlWDq1KkaNWqU2rZtq/PnzystLU2hoaHavHmzHn/8cd1+++0qKChQSEiIBg4cqBo1Km8MoWnTpgoNDdWsWbMcS2ldfv/II4+Uek5SUpLS09PVtm1bp/0JCQmKiorSkiVLNHv2bP3lL3/Rjz/+qIYNG6p79+763e9+V2l1A0BFsDoBAAAALIfpBAAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAy/EwuwAAAAD8+sXExLh03JIlS1w6zmYYhlGRggAAAIDrsdvtGjhwoLy8vCRJ586d04YNGxQdHS1JKigo0KpVq1RcXOxSf4RYAAAAVDm73a4TJ06ocePGkqS0tDR16NBBubm5kqRTp06pcePGLodY5sQCAACg2v18HLWs46qEWAAAAFQ5X19fZWVlOd5nZWXp3LlzysvLkyRlZGSofv36LvdHiAUAAECVi4iI0CuvvKLi4mIVFxdr4cKFCgoK0tSpU7V582Y9+eSTuvnmm13ujzmxAAAAqHIff/yx/vCHP6h27doqLi5W7dq1tXr1av3xj3/UwYMHFRwcrM8++0w33HCDS/0RYgEAAFAtNm7cqM8++0y1atXS2LFjFRwcLEn66aef1KBBgzL1RYgFAACA5TAnFgAAAJbDE7sAAABQ5ex2u0vLaLm6TiwhFgAAAFVu5cqVldofc2IBAABgOYzEAgAAoNocO3ZMH374oQ4ePChJatWqlf7whz84VipwFSOxAAAAqBbz58/XX/7yFxUWFsrPz0+GYSgnJ0ceHh6aO3eu/vznP7vcF6sTAAAAoMpt2LBBkydP1vjx45Wenq4zZ84oKytL6enpmjhxoiZMmKCEhASX+2MkFgAAAFXud7/7nRo2bKg333yz1PYxY8bo1KlT+uyzz1zqj5FYAAAAVLmvv/5ao0ePvmr7fffdp6+//trl/gixAAAAqHI5OTlq3ry54/1///tfrVixwvG+ZcuWys3Ndbk/QiwAAACqXIMGDXTmzBnH+4yMDI0aNcrxPjs7W02bNnW5P5bYAgAAQJXr0aOH3nnnHdWrV082m03Hjx93at+wYYO6dOnicn/c2AUAAIAqt27dOg0YMMDx6Fmbzabf/OY3jikEN998s1588UXdeuutLvVHiAUAAEC12Lt3r4qKihzv7Xa72rVrV66+CLEAAACwHG7sAgAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOILSfDMJSTkyPuiwMAAKh+POygnHJzc+Xn56fs7GzVqVPH7HIAAAB+0Vq0aHHdwT/DMHTkyBGX+iPEAoCFGIahgoICs8twS1de+zp16qhGDf6YCZTF5MmTr9p28uRJLV26VEePHnW5P0IsAFhIQUGBhgwZYnYZbu+dd95R3bp1zS4DsJSJEyc6vS8qKtK///1vLVmyRGvWrFFkZKT+8Y9/uNwfIRYAAADV5sCBA3rjjTf0r3/9S7Vr11ZMTIzmz5+vJk2alKkfQiwAWNQzg/bL015sdhluI6/ArplrI8wuA7C0rKwstWvXTr1799by5cvVu3fvcvdFiAUAC7nypoiaNYrl5cEKKdWloJBfGMx05ZxkLy8v2Ww2kytCefzmN7/RH//4R3388ceaMWOGYmJiNGTIENWqVavMfTErHQAs5Mqbui4U8UMc7uPyfPAhQ4Zwc6OFeXl5aenSpUpPT9fQoUP18ssvKzAwUA899JC+/vrrMvVVrhB77NgxjRkzRkFBQfL09FRISIgmTZqkn376yXFMVFSUbDabbDabvL29FR4erri4uFKXVtiyZYvsdrvuuOOOEm1HjhyRzWaTv7+/cnNzndo6deqkmTNnOu07dOiQxowZo2bNmsnLy0tNmjTRbbfdpqVLl6qwsNBx3OXafr4tX768TNdi7ty5ZToelePZZ59VdHS0nn32WbNLAQAAZVSnTh2NGzdOycnJ2rhxo2rVqqU77rhD7dq1c7mPMofY77//Xl26dNHBgwe1bNkyHTp0SIsWLdL69evVo0cPnTlzxnHs2LFjlZ6ertTUVE2fPl1/+9vftGjRohJ9xsfHa8KECdq4caNOnDhR6ufm5ubq+eefv2Zt27Zt04033qj9+/drwYIF2rNnjxITE/XAAw/o1Vdf1d69e52OX7JkidLT0522u+66q0zXY8uWLcrMzCzTOaiYzMxMffnll5KkL7/8kusPAIAF1K9fX/Xq1SuxRUZG6u2339aFCxe0f/9+l/sr85zY2NhYeXp66osvvnDMX2jWrJk6d+6sli1b6sknn9Srr74q6dK8h4CAAEly3Hm2du1ajRs3ztFfXl6e3nvvPSUnJysjI0NvvvmmnnjiiRKfO2HCBL344ouKjY2Vv79/iXbDMDR69GiFh4dr8+bNTuv3tWrVSsOHDy8xCly3bl1HfRXx+OOPa8mSJRXuB655/PHHS7zn+gMA8Mv20ksvVeqTTssUYs+cOaM1a9bo6aefLjEBNyAgQCNGjNB7772nhQsXOrUZhqEvv/xSBw4cUKtWrZza3n//fUVERKh169a69957NXnyZE2fPr3EhO3hw4dr7dq1euqppzR//vwStaWkpGj//v1atmzZVRegrqpJ4KdPn9b69et12223VUn/+J/169fr9OnTTvu4/gCqxRU/e/Pz85Wfn29eLW7oyuvNI9+t6Y9//KNq1qxZaf2VKcQePHhQhmGoTZs2pba3adNGWVlZOnXqlCRp4cKF+uc//6kLFy7o4sWL8vb2LrHQbXx8vO69915J0sCBA5Wdna2kpCRFRUU5HWez2TRnzhxFR0frkUceUcuWLZ3av/vuO0lS69atHfsyMzPVokULx/t//OMf+vOf/+x4P3z4cNntdqd+9u3bp2bNmpX42goKCpwmkufk5Di1v/LKK4qKiirRHypPUVGRXnnllVLbuP4AqtqVN9KNHTvWxEpQUFBQrrvZYa4mTZroT3/6k+6//37dcMMNFe6vXDd2ufob0IgRI5SSkqLNmzdr0KBBevLJJ9WzZ09He2pqqrZt26bhw4dLkjw8PDRs2DDFx8eX2t+AAQN0yy236K9//atLn9+gQQOlpKQoJSVFdevW1YULF5za586d62i/vAUFBZXaV1xcnPz8/BxbcHCwU3tRUZFWr17tUl0on9WrV6uoqKjUNq4/AAC/bNOmTdO2bdvUuXNndevWTa+99lqJm/bLokwjsWFhYbLZbNq/f79+//vfl2jfv3+/6tWrp0aNGkmS/Pz8FBYWJunStIGwsDB1795d/fr1k3RpFLawsNApOBqGIS8vL82fP19+fn4lPmPOnDnq0aOHHn30Uaf9l6cppKamqnPnzpIku93u+HwPj5JfakBAgKP9eqZPn64pU6Y43ufk5DgFWbvdroEDB7rUF8pn4MCBev3110sNslx/AFXN0/6/AZzXX3+dx85Ws/z8fI0cOVLSpWWaYD1TpkzRlClTtHnzZkVGRio/P19TpkzRH/7wB40ZM0aRkZFl6q9MIbZBgwbq37+/Fi5cqEceecRpKD8jI0NLly7VfffdV+rcUx8fH02aNElTp07Vrl27VFRUpLffflsvvPCCbr/9dqdj77rrLi1btkwPP/xwiX66du2qu+++W9OmTXPa37lzZ0VEROj555/X0KFDrzovtry8vLyu+R/NxIkT+VN2FbPb7ZowYYLmzZtXoo3rD6DKXfGjzdvbW97e3ubV4uZ40IG11atXTzabTd9884327Nmjd955RyNHjpS3t7diYmI0ffp0l/opc9KbP3++CgoKNGDAAG3cuFHHjh3T6tWr1b9/fzVp0kRPP/30Vc996KGH9N133+mjjz7S559/rqysLN1///1q376903bPPfdcdUqBJD399NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJkHP27FllZGQ4befOnSvrJVHDhg3Vt2/fMp+HsrvtttvUsGFDp31cfwAArKl9+/Z69tlnlZaWpiFDhrg8ZVQqR4ht1aqVkpOT1aJFCw0dOlQtW7bUgw8+qD59+mjLli2qX7/+Vc+tX7++7rvvPs2cOVPx8fHq169fqVMG7rnnHiUnJ+vbb78ttZ/w8HCNGTOmxJ2h3bt3144dO9S6dWvFxsaqbdu26tmzp5YtW6a5c+c6Le0lXVr2KzAw0Gm72o1D18KC+9Xr59eb6w8AgDV98803evTRRxUSEqKPP/64TD/Ty7xOrCSFhITozTffvOYxiYmJpe4v7WEHP9e1a1enm8dKu5Hstdde02uvvVZif3h4+HVru1qf5dGjR49S161F1fH399ctt9yiL7/8UrfccgvXH27lymlNV87RBH7tvLy89MEHHzhew7p++uknGYahG264QUePHtWQIUP04Ycfqnv37mXqp1whFv/zyCOPmF2CW3r88cdLPPQAcAdXzgVkWiDcyeXH2MO6nnvuOX300UdKTk5Wjx49NGbMGA0bNky/+c1vytUfIRYALOpCUQ1JxWaX4TYuFlXuDcOAu3nxxRc1cuRIvf322woPD69wf4RYALCoJ1aV/uAZAPglOn78uOMm+6ysLB08eFA2m01hYWGqV69emfvj10oAAABUObvdrrS0NP32t79Vw4YN1b17d3Xr1k0NGzbUb3/7W/3www9l6s9m8ADicsnJyZGfn5+ys7NVp04ds8sB4CYMw3B6BDaqz5XXvk6dOpW+Hjnwa3fy5EndeOONstvtio2NVUREhKRLD6qaP3++ioqKtHPnTjVu3Nil/gix5USIBWAGQizcFb9EWN/EiROVkJCgbdu2OT0wS7r0RLabb75ZUVFRLi93SogtJ0IsADPk5+dryJAhZpcBmOqdd97hsb8W1KJFCz3//PO6++67S23/+OOP9Ze//EWHDx92qT9+jQEAAECVS09PV4cOHa7a3r59e/34448u98fqBABgUa/8fay8PGuaXQZQLXLy/qupf3/T7DJQAY0aNVJhYeFV2y9evOjyfFiJEAsLunJelJeXl9Pi74A78fKsKS8vQizcg2fB/yILMyGt6aabbtIXX3zhuKHr51avXq2OHTu63B/TCWA5BQUFGjJkiIYMGcINLgDgJi5c/N8IHt/7remRRx7Ra6+9puzs7BJtOTk5ev311zV58mSX+2MkFgAAAFWud+/e2rt3b6ltderU0b59+8rUX5WPxC5atEi+vr5OcyDy8vJUs2ZNRUVFOR2bmJgom82mw4cPKzQ0VPPmzSvR38yZM9WpU6dS34eGhspms111Gz16tCRdtX358uWV/NUDAACgKlT5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr68vb0lSQkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjqWwLpyTbIlS5Zo4MCBTuezXAcAAEDVaNGihUvzmdPS0lzqr8pDbOvWrRUYGKjExERHiE1MTNTgwYO1YcMGbd261TEim5iYqD59+pT7sxo1auR4Xb9+fUmSv79/qeG0bt26CggIKPdnwTxX/geQn59vYiVA9bvy3zw3twCwkp/Pd12/fr3WrFmjv/71r/L19S1zf9UyJ7ZPnz5KSEjQtGnTJF0acX3sscdUVFSkhIQERUVF6fz58/r66681ZsyY6iipzAoKCpwmkufk5JhYjXu78v+HkSNHmlgJYK4LFwvl7e1pdhkA4JKJEyc6Xq9bt07Tp09XnTp1lJiYqH//+9/y9Czb97NqWZ2gT58+2rx5swoLC5Wbm6tdu3YpMjJSvXv3VmJioiRpy5YtKigocBqJffzxx+Xj4+O0PfPMM5VS0/Dhw0v0ffTo0aseHxcXJz8/P8cWHBxcKXUAAAC4k/Xr1+vOO+/UQw89pP379+vHH3/UH//4RxUXF5epn2oZiY2KitK5c+e0fft2ZWVlKTw8XI0aNVJkZKRiYmKUn5+vxMREtWjRQs2aNXOc9+ijjzpuxrrs5Zdf1saNGytc09y5c9WvXz+nfUFBQVc9fvr06ZoyZYrjfU5ODkHWJF5eXo7X77zzjmNONeAO8vPzHX+B8KzJAjMArCUhIUF33nmnHnzwQb344ouSLo3K9uzZUw888IDeeOMNl/uqlu+AYWFhatq0qRISEpSVlaXIyEhJl0JjcHCwvvrqKyUkJKhv375O5zVs2FBhYWFO+y7Pda2ogICAEn1fi5eXl1N4gnmufLiBt7c3IRZuiwd9ALCSpKQkRUdH64EHHnBagSooKEjr1q3TLbfcoqlTp+r55593qb9qe9hBnz59lJiYqMTERKeltXr37q1Vq1Zp27ZtFbqpCwAAAL9c0dHRiomJ0UsvvVSiLSwsTKtXr9Y///lPl/urtr9F9enTR7Gxsbp48aJjJFaSIiMjNX78eF24cKFaQ+zZs2eVkZHhtM/X11e1a9euthoAAADcxahRo/TKK69ctb1Tp0769NNPXe6vWkPs+fPnFRERocaNGzv2R0ZGKjc317EUV3WJiYkpsS8uLs6xggJ+uby8vPTBBx84XgMAfv2unAPO935rulaAvax3794u92czWGiwXHJycuTn56fs7GzHwxQAoKrl5+dryJAhkqTFz/5ZXl41Ta4IqB45uf/VhL++LunSTb08oAjc2goAFlVw4aLZJQDVhn/v+DlCLABY1OVRKQBwR9W2OgEAAABwNT/99JOaN2/u8vHMiS2n7Oxs1a1bV8eOHWNOLIBqYxiG06OXAXdx5b/9OnXqqEYNxuHM4uvrWyXrVGdmZiogIMDlJ3cxnaCcfvrpJ0niqV0AAMCtZGZmqlGjRmaXQYgtr8tPDjt69Kj8/PxMrsb9XH7sLyPh5uD6m4vrbx6uvbm4/ua6fP09PT3LdX5SUtI128+cOVOm/gix5XT5zxh+fn78h2SiOnXqcP1NxPU3F9ffPFx7c3H9zVXeqQR9+/aVYRiVNhWBEAsAAIAql5WVdc32U6dOqVWrVi73R4gFAABAlbve6Hl+fn6Z+uPWvnLy8vLSjBkzePSdSbj+5uL6m4vrbx6uvbm4/uaqjutflqkGLLEFAAAA0+Xm5urhhx/W0qVLXTqekVgAAACY7q233tLHH3/s8vHMiQUAAIBpjh49qjFjxiglJUXx8fEun8dILAAAAEzx1ltvqWPHjqpVq5b27t2rP/7xjy6fy0gsAAAAqlyLFi105a1YhYWFSk9P16JFi/TAAw+UuT9GYstpwYIFCg0Nlbe3t7p166Zt27aZXZJb2Lhxo6KjoxUUFCSbzVamuTOomLi4ON18883y9fWVv7+/7rrrLqWmpppdltt49dVX1aFDB8ci7z169NCqVavMLsttzZkzRzabTZMnTza7FLcwc+ZM2Ww2py0iIsLsstzKjz/+qHvvvVcNGjRQrVq1dMMNNyg5OblMfUyePFmPPPKI0xYcHKz4+HgdOHCgzDUxElsO7733nqZMmaJFixapW7dumjdvngYMGKDU1FT5+/ubXd6v2rlz59SxY0eNGTNGd999t9nluJWkpCTFxsbq5ptvVmFhoZ544gndfvvt2rdvn2rXrm12eb96TZs21Zw5c9SqVSsZhqG33npLgwcP1q5du9SuXTuzy3Mr27dv12uvvaYOHTqYXYpbadeundatW+d47+FBhKkuWVlZ6tWrl/r06aNVq1apUaNGOnjwoOrVq1emfiZOnFhi34MPPqjJkyfrxhtv1KxZszR16lSXl9liia1y6Natm26++WbNnz9fklRcXKzg4GBNmDBB06ZNM7k692Gz2bRy5UrdddddZpfilk6dOiV/f38lJSWpd+/eZpfjlurXr6/nnntO999/v9mluI28vDzdeOONWrhwoWbPnq1OnTpp3rx5Zpf1qzdz5kx9/PHHSklJMbsUtzRt2jRt3rxZmzZtqrLP+Pe//62xY8cqNDRUX331lUvnMJ2gjC5cuKAdO3aoX79+jn01atRQv379tGXLFhMrA6pXdna2pEtBCtWrqKhIy5cv17lz59SjRw+zy3ErsbGxuuOOO5x+BqB6HDx4UEFBQWrRooVGjBiho0ePml2S2/j000/VpUsXDRkyRP7+/urcubNef/31Sv2MO+64Q3v37lXTpk1dPocQW0anT59WUVGRGjdu7LS/cePGysjIMKkqoHoVFxdr8uTJ6tWrl9q3b292OW5j9+7d8vHxkZeXlx5++GGtXLlSbdu2Nbsst7F8+XLt3LlTcXFxZpfidrp166Y333xTq1ev1quvvqq0tDTdeuutys3NNbs0t/D999/r1VdfVatWrbRmzRqNGzdOEydO1FtvvVWpn1OvXj29//77Lh/PhBIAZRYbG6s9e/boyy+/NLsUt9K6dWulpKQoOztbH374oUaNGqWkpCSCbDU4duyYJk2apLVr18rb29vsctzOoEGDHK87dOigbt26KSQkRO+//z7TaapBcXGxunTpomeeeUaS1LlzZ+3Zs0eLFi3SqFGjXO4nJibmuscYhqE333zTpf4YiS2jhg0bym636+TJk077T548qYCAAJOqAqrP+PHj9fnnnyshIaFMf/ZBxXl6eiosLEw33XST4uLi1LFjR7300ktml+UWduzYoczMTN14443y8PCQh4eHkpKS9PLLL8vDw0NFRUVml+hW6tatq/DwcB06dMjsUtxCYGBgiV+W27RpU+YpHdnZ2Y7txIkT+te//uW0LzMzU2+//bbL/TESW0aenp666aabtH79escNRcXFxVq/fr3Gjx9vbnFAFTIMQxMmTNDKlSuVmJio5s2bm12S2ysuLlZBQYHZZbiF2267Tbt373baFxMTo4iICD3++OOy2+0mVeae8vLydPjwYY0cOdLsUtxCr169Siyp+N133ykkJKRM/axYscLxOi0tTR06dHDad+rUqTINCBJiy2HKlCkaNWqUunTpoq5du2revHk6d+6cS8PkqJi8vDyn37zT0tKUkpKi+vXrq1mzZiZW9usXGxurd999V5988ol8fX0dc8D9/PxUq1Ytk6v79Zs+fboGDRqkZs2aKTc3V++++64SExO1Zs0as0tzC76+viXmf9euXVsNGjRgXng1mDp1qqKjoxUSEqITJ05oxowZstvtGj58uNmluYVHHnlEPXv21DPPPKOhQ4dq27ZtWrx4sRYvXlzuPmvWrKmLFy867cvPzy/b0mkGyuWVV14xmjVrZnh6ehpdu3Y1tm7danZJbiEhIcGQVGIbNWqU2aX96pV23SUZS5YsMbs0tzBmzBgjJCTE8PT0NBo1amTcdtttxhdffGF2WW4tMjLSmDRpktlluIVhw4YZgYGBhqenp9GkSRNj2LBhxqFDh8wuy6189tlnRvv27Q0vLy8jIiLCWLx4cYX6KyoqMjw9PY21a9c69i1atMgICwtzuQ/WiQUAAEC1GzNmjJYtW6YBAwbo/PnzWrdunWbOnKm//vWvLp1PiAUAAEC1O3/+vGbNmqX169fL09NTd955px599FHVqOHaugOEWAAAAFgON3YBAACgyiUlJbl0XGRkpEvHMRILAACAKme322UYhmw2m2Nfae+Li4td6o+HHQAAAKBapKamKisrS1lZWdq1a5d8fHx05swZZWVl6bvvvnMKtNfDdAIAAABUizp16qhOnTqSJB8fHxmGIT8/P0mX1oktywQBRmIBAABgOYRYAAAAVLnKvg2LEAsAbuDIkSOy2WxKSUkxuxQAburn811r1qyp0NDQax5zLYRYACiH0aNH66677nK8j4qK0uTJk02rJy0tTX/6058UFBQkb29vNW3aVIMHD9aBAwckScHBwUpPT1f79u1NqxGAe9uyZYsaNGjgeB8cHKzdu3c73vv7+ys9Pd3l/rixCwAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZeWtgkICDC3UABurWvXrtc9xt/f3+X+GIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKwhO7AKAcRo8erbNnz+rjjz+WdGlEtVOnTpo3b57jmNmzZ2vTpk1as2aNY9/x48cVHBys1NRUhYeHKyoqSkVFRdq0aZMkqaioSH5+frr77rv19ttvS5IyMjIUGBioLVu2OEZWf27BggV67LHHZLfb1aVLF/Xp00cjRoxQixYtJF0aiW3evLl27dqlTp06OZ27YsUKjRgxQuvWrVOvXr109OhRtWjRQkePHlVQUJDjuH79+qlr16565plnKnr5AKDCGIkFgCryzTffKCEhQT4+Po7t8kjn4cOHHcd16NDB8dput6tBgwa64YYbHPsaN24sScrMzLzqZ8XGxiojI0NLly5Vjx499MEHH6hdu3Zau3btNWvctWuXRo4cqfnz56tXr16SpN27d6uoqEjh4eFOtSclJTnVDQBm4sYuAKgieXl5io6O1rPPPluiLTAw0PG6Zs2aTm02m81p3+UlZ673PHFfX19FR0crOjpas2fP1oABAzR79mz179+/1OMzMjJ055136oEHHtD999/vVLfdbteOHTtkt9udzvHx8blmDQBQXQixAFAJPD09S8xHvfHGG/XRRx8pNDRUHh7V++3WZrMpIiJCX331Vant+fn5Gjx4sCIiIvTiiy86tXXu3FlFRUXKzMzUrbfeWh3lAkCZMZ0AACpBaGiovv76ax05ckSnT59WcXGxYmNjdebMGQ0fPlzbt2/X4cOHtWbNGsXExLh8A5YrUlJSNHjwYH344Yfat2+fDh06pPj4eL3xxhsaPHhwqec89NBDOnbsmF5++WWdOnVKGRkZysjI0IULFxQeHq4RI0bovvvu04oVK5SWlqZt27YpLi5O//73vyutbgCoCEZiAaASTJ06VaNGjVLbtm11/vx5paWlKTQ0VJs3b9bjjz+u22+/XQUFBQoJCdHAgQNVo0bljSE0bdpUoaGhmjVrlmMprcvvH3nkkVLPSUpKUnp6utq2beu0PyEhQVFRUVqyZIlmz56tv/zlL/rxxx/VsGFDde/eXb/73e8qrW4AqAhWJwAAAIDlMJ0AAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOV4mF0AAAAA3EdMTMx1jzEMQ2+++eY1j7EZhmFUUk0AAADANd19991XbTMMQ7t27dLRo0dVXFx8zX4YiQUAAEC1WbFiRYl9p0+f1tKlS/XGG28oJydHDz/88HX7YSQWAAAA1a64uFirV6/WkiVL9Pnnn+uWW27RmDFjdPfdd8vLy+u65xNiAQAAUK3y8vIUEREhT09PjR49WjExMQoODi5TH6xOAAAAgGpnt9tls9lkGMZ157+WhhALAACAauXj46MjR45o4cKF2rt3r9q2bav+/ftr2bJlKigocKkPphMAAADAVGfOnNG//vUvLVmyRD/88IOGDx+uBQsWXPMcQiwAAACqze9///urttlsNu3atUs//PADS2wBAADgl6N+/fq61hhqnz59XOqHkVgAAABYDiOxAAAAqDauPHZWkpYsWXLNdkIsAAAAqk12dnal9MN0gnIyDEO5ubny9fWVzWYzuxwAAAC3wjqx5ZSbmys/Pz/l5OSYXQoAAIDbYTpBBbm6IC8AAABcmxNrGIbefPPNax5DiK2g/Px8s0sAAACwjGvNiS0qKtK6det0/vx5QiwAAAB+OVasWFHq/k8++URPPPGEvL29NWPGjOv2w5xYAAAAmGbTpk3q2bOnhg8frt/97nf6/vvv9dhjj133PEJsBV3vkWgAAAAoac+ePYqOjtZtt92mdu3a6dChQ3r22Wfl5+fn0vmE2ArKy8szuwQAbmbcuHGKjo7WuHHjzC4FAMrshx9+0KhRo9SpUyd5eHho9+7dev311xUUFFSmfsoVYo8dO6YxY8YoKChInp6eCgkJ0aRJk/TTTz85jomKipLNZpPNZpO3t7fCw8MVFxdX6rNyt2zZIrvdrjvuuKNE25EjR2Sz2eTv76/c3Fyntk6dOmnmzJlO+w4dOqQxY8aoWbNm8vLyUpMmTXTbbbdp6dKlKiwsdBx3ubafb8uXLy/PJQGAanH48GEdP35cknT8+HEdPnzY5IoAoGxat26tDz74QFOnTtXo0aN14MABffLJJyW26ynzjV3ff/+9evToofDwcC1btkzNmzfX3r179eijj2rVqlXaunWr6tevL0kaO3asnnrqKRUUFGjDhg168MEHVbdu3RKjB/Hx8ZowYYLi4+N14sSJUpN4bm6unn/+ec2aNeuqtW3btk39+vVTu3bttGDBAkVEREiSkpOTtWDBArVv314dO3Z0HL9kyRINHDjQqY+6deuW9ZIAQLWZOnVqifcrV640qRoAKLvCwkIZhqHnnnvuqscYhnHdKZtlHomNjY2Vp6envvjiC0VGRqpZs2YaNGiQ1q1bpx9//FFPPvmk49jf/OY3CggIUEhIiGJiYtShQwetXbvWqb+8vDy99957GjdunO64446rLqcwYcIEvfjii8rMzCy13TAMjR49WuHh4dq8ebOio6PVqlUrtWrVSsOHD9eXX36pDh06OJ1Tt25dBQQEOG3e3t5lvSQAUC2WLFni9Bcl6dIPg+s9XxwAfkkKCwtVVFR0zc2Ve47KFGLPnDmjNWvW6M9//rNq1arl1BYQEKARI0bovffeKzFlwDAMbdq0SQcOHJCnp6dT2/vvv6+IiAi1bt1a9957r954441SpxwMHz5cYWFheuqpp0qtLSUlRfv379fUqVNVo0bpX1ZFHg9bUFCgnJwcpw0AqsvFixevuizNihUrdPHixWquCADMVabpBAcPHpRhGGrTpk2p7W3atFFWVpZOnTolSVq4cKH++c9/6sKFC7p48aK8vb01ceJEp3Pi4+N17733SpIGDhyo7OxsJSUlKSoqyuk4m82mOXPmKDo6Wo888ohatmzp1P7dd99JujTP4rLMzEy1aNHC8f4f//iH/vznPzveDx8+XHa73amfffv2qVmzZiW+tri4uGtOZQCAqvT6669ft/3K728A8EuVlJTk0nGRkZHXbC/Xww5KGyktzYgRI/Tkk08qKytLM2bMUM+ePdWzZ09He2pqqrZt2+aYz+Xh4aFhw4YpPj6+RIiVpAEDBuiWW27RX//6V7377rvX/fwGDRooJSVF0qUbzS5cuODUPnfuXPXr189p39XujJs+fbqmTJnieJ+Tk6Pg4ODr1gAAlWHs2LFatWrVNdsBwAr69u0rwzCu+RdyV+bElinEhoWFyWazaf/+/fr9739fon3//v2qV6+eGjVqJEny8/NTWFiYpEvTBsLCwtS9e3dHcIyPj1dhYaFTcDQMQ15eXpo/f36p64TNmTNHPXr00KOPPuq0v1WrVpIuBePOnTtLkux2u+PzPTxKfqkBAQGO9uvx8vKSl5eXS8cCQGWrWbOm7r777lKnFNxzzz2qWbOmCVUBQNllZWVVSj9lmhPboEED9e/fXwsXLtT58+ed2jIyMrR06VINGzas1GTt4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/+eR5AAOBXKSYmpsQv5B4eHho9erQ5BQFAOaxbt061atVSnTp1rrldT5lXJ5g/f74KCgo0YMAAbdy4UceOHdPq1avVv39/NWnSRE8//fRVz33ooYf03Xff6aOPPtLnn3+urKws3X///Wrfvr3Tds899yg+Pv6q/Tz99NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJ+a9nz55VRkaG03bu3LmyXhIAqDbPP//8Nd8DwC/dsGHD1LRpU02dOlX79+8vdz9lDrGtWrVScnKyWrRooaFDh6ply5Z68MEH1adPH23ZssWxRmxp6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMUX5+vtP+7t27a8eOHWrdurViY2PVtm1b9ezZU8uWLdPcuXNLrE8bExOjwMBAp+2VV14p6yUBgGrTsmVLNW3aVJLUtGnTEje5AsAv3YkTJzR79mzt2LFD7dq1U8+ePfX666+X+SmoNsPVu7TgJCcnR35+fkpLS1NoaKjZ5QAAAFjK/v371aFDB/3jH//Qv/71L3333XcaMmSI7r//fvXq1eu655frsbP4n6utSQsAAICruzyO+sgjj2jHjh3avn27AgMDde+99zqeunotJDAAAACYLjw8XL1799Ytt9yiH3744brHE2IriMfUAgAAlF9ycrKmTJmiJk2aaNKkSbrhhhtcCrHletgB/oe1YwEAAMrmwIEDeuONN1RcXKyoqCgNHTpUH374oUtzYS8jxFbQtZ42AQAAAGft27fXvn371L17dy1evFh//OMfVbt2bUd7YWGhNm/eXDWPncX/sLgDAACA6wYOHKgPPvhAbdq0KbX9zJkz6tOnT+U+dhYlFRQUmF0CAACAZbjykBZX/tLNjV0V9PMHLgAAAKBiXPlLNyOxAAAAqDYxMTHXbD9//rxL/RBiK+h68zUAAADwP9nZ2ddsd3WqJiG2gsr6nF8AAAB3tmLFimu2nzp1So0bN75uP1U+J3bRokXy9fVVYWGhY19eXp5q1qypqKgop2MTExNls9l0+PBhhYaGat68eSX6mzlzpjp16lTq+9DQUNlstqtuo0ePlqSrti9fvrySv3oAAACUhasrP1X5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr7jqVcJCQlq1qyZWrZsWa7P2r59u4qKiiRJX331le655x6lpqaqTp06kqRatWo5jl2yZIkGDhzodH7dunXL9bkAAACoPK6sTlDlIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFD56tevr4SEhOseVy1zYvv06aOEhARNmzZN0qUR18cee0xFRUVKSEhQVFSUzp8/r6+//lpjxoypjpIAAABgkqKiIq1Zs0apqanKyckp9ZjevXtfs49qC7GTJ09WYWGhzp8/r127dikyMlIXL17UokWLJElbtmxRQUGB00js448/rv/7v/9z6uvChQtq27ZthWsaPny47Ha70759+/apWbNmpR5fUFDgdLfc1S44AAAAri4jI0O33367UlNT1bRpU/n5+ZU4xjAMzZgx45r9VEuIjYqK0rlz57R9+3ZlZWUpPDxcjRo1UmRkpGJiYpSfn6/ExES1aNHCKUQ++uijjpuxLnv55Ze1cePGCtc0d+5c9evXz2lfUFDQVY+Pi4vTrFmzKvy5AAAA7uyJJ56Qv7+/1q9f7zQVtKyqJcSGhYWpadOmSkhIUFZWliIjIyVdCo3BwcH66quvlJCQoL59+zqd17BhQ4WFhTntuzzXtaICAgJK9H0t06dP15QpUxzvc3JyFBwcXCm1AAAAuIuEhAS9++67FQqwUjWuE9unTx8lJiYqKytLjz76qGN/7969tWrVKm3btk3jxo2rrnLKzMvLS15eXmaXAQAAYGmnTp2qlJvrqzXExsbG6uLFi46RWEmKjIzU+PHjdeHChQqtTFBWZ8+eVUZGhtM+X19f1a5du9pqAAAAcDfNmzfXjh071Lx58wr1U60h9vz584qIiHB6CkNkZKRyc3MdS3FVl9Ke2xsXF+dYQQEAAACVb9SoUZo0aZJycnJ00003XXWd/pCQkGv2YzNcfSwCnOTk5MjPz09paWkKDQ01uxwAAABLKCoq0t/+9jfNmzdP+fn5JZ7QZbPZZBiGiouLr9kPIbacLofYH3744arLcgEAAKB0hmHo6NGjys7OLrW9Q4cO1zy/2qYTAAAAAJfZbLbrThm4FkIsAAAAqk1SUpJLx125EEBpCLEV5O3tbXYJAAAAltG3b18ZhiGbzebYV9r7682JJcSW0+WpxAUFBTyCFgAAuA1fX1+nwFlWWVlZTu+PHDmiW265RceOHZPNZtOpU6cUHh5+3X4IseX0008/SRI3dQEAALeSmZlZoadt1alTx+l9rVq1ZBiG/Pz8JKnUFQtKQ4gtp8uPvz169KjjoqP6XH7s77Fjx0r8x4Cqx/U3F9ffPFx7c3H9zXX5+nt6elZqv1u3btW5c+eUnZ0tPz8/nThxQg0bNrzueYTYcqpRo4Ykyc/Pj/+QTFSnTh2uv4m4/ubi+puHa28urr+5KjKV4Ernz5/XggULFB8fL0n685//rOHDh2vevHm6+eabr3t+jUqpAgAAAHDB8ePHNW3aNDVt2lSfffaZEhMTddddd2n58uUaPHiwDh06pGefffa6/TASCwAAgGrTsmVLRURE6I033tDgwYMlSStWrNB3332nCxcuKCIiQh4e14+ohNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrsq6/kuXLtUf/vCHEvtdWZHgSjx2FgAAAJbDSCwAAACqTUxMjEvHLVmy5JrtjMQCAACg2tjtdg0cONAxLeHcuXPasGGDoqOjJV16kNSqVauu+8QuQiwAAACqjd1u14kTJ9S4cWNJUlpamjp06KDc3FxJ0qlTpxQQEKCioqJr9sMSWwAAADDNz8dTDcNw6YldhNhyWrBggUJDQ+Xt7a1u3bpp27ZtZpfkFjZu3Kjo6GgFBQXJZrPp448/NrsktxEXF6ebb75Zvr6+8vf311133aXU1FSzy3Ibr776qjp06OBY5L1Hjx5atWqV2WW5rTlz5shms2ny5Mlml+IWZs6cKZvN5rRFRESYXZZb+fHHH3XvvfeqQYMGqlWrlm644QYlJyebWhMhthzee+89TZkyRTNmzNDOnTvVsWNHDRgwQJmZmWaX9qt37tw5dezYUQsWLDC7FLeTlJSk2NhYbd26VWvXrtXFixd1++2369y5c2aX5haaNm2qOXPmaMeOHUpOTlbfvn01ePBg7d271+zS3M727dv12muvqUOHDmaX4lbatWun9PR0x/bll1+aXZLbyMrKUq9evVSzZk2tWrVK+/bt0wsvvKB69epV2mf8/ClgLj0VzECZde3a1YiNjXW8LyoqMoKCgoy4uDgTq3I/koyVK1eaXYbbyszMNCQZSUlJZpfiturVq2f885//NLsMt5Kbm2u0atXKWLt2rREZGWlMmjTJ7JLcwowZM4yOHTuaXYbbevzxx41bbrml0vpr06aNcfr0acf7rKwspwx19uxZY9CgQdfth5HYMrpw4YJ27Nihfv36OfbVqFFD/fr105YtW0ysDKhe2dnZkqT69eubXIn7KSoq0vLly3Xu3Dn16NHD7HLcSmxsrO644w6nnwGoHgcPHlRQUJBatGihESNG6OjRo2aX5DY+/fRTdenSRUOGDJG/v786d+6s119/vdz97du3Tw0aNHC8r1u3rqZNm+Z47+fnp//85z/X7YcQW0anT59WUVGR4466yxo3bqyMjAyTqgKqV3FxsSZPnqxevXqpffv2ZpfjNnbv3i0fHx95eXnp4Ycf1sqVK9W2bVuzy3Iby5cv186dOxUXF2d2KW6nW7duevPNN7V69Wq9+uqrSktL06233uq4mx1V6/vvv9err76qVq1aac2aNRo3bpwmTpyot956y9S6eNgBgDKLjY3Vnj17mJNWzVq3bq2UlBRlZ2frww8/1KhRo5SUlESQrQbHjh3TpEmTtHbtWnl7e5tdjtsZNGiQ43WHDh3UrVs3hYSE6P3339f9999vYmXuobi4WF26dNEzzzwjSercubP27NmjRYsWadSoUabVxUhsGTVs2FB2u10nT5502n/y5EkFBASYVBVQfcaPH6/PP/9cCQkJatq0qdnluBVPT0+FhYXppptuUlxcnDp27KiXXnrJ7LLcwo4dO5SZmakbb7xRHh4e8vDwUFJSkl5++WV5eHhcdz1LVK66desqPDxchw4dMrsUtxAYGFjil+U2bdqYPqWDEFtGnp6euummm7R+/XrHvuLiYq1fv565afhVMwxD48eP18qVK7VhwwY1b97c7JLcXnFxsQoKCswuwy3cdttt2r17t1JSUhxbly5dNGLECKWkpMhut5tdolvJy8vT4cOHFRgYaHYpbqFXr14lllT87rvvFBISYlJFlzCdoBymTJmiUaNGqUuXLuratavmzZunc+fOufwsYJRfXl6e02/eaWlpSklJUf369dWsWTMTK/v1i42N1bvvvqtPPvlEvr6+jjngfn5+qlWrlsnV/fpNnz5dgwYNUrNmzZSbm6t3331XiYmJWrNmjdmluQVfX98S879r166tBg0aMC+8GkydOlXR0dEKCQnRiRMnNGPGDNntdg0fPtzs0tzCI488op49e+qZZ57R0KFDtW3bNi1evFiLFy82t7BKWy/BzbzyyitGs2bNDE9PT6Nr167G1q1bzS7JLSQkJBiSSmyjRo0yu7RfvdKuuyRjyZIlZpfmFsaMGWOEhIQYnp6eRqNGjYzbbrvN+OKLL8wuy62xxFb1GTZsmBEYGGh4enoaTZo0MYYNG2YcOnTI7LLcymeffWa0b9/e8PLyMiIiIozFixebXZJhMwwXnusFAAAA/IIwJxYAAACWQ4gFAACA5RBiAQAAYDmEWAAAAFgOIRYAAACWQ4gFAACA5RBiAQAAYDmEWABwA0eOHJHNZlNKSorZpQBApSDEAkA5jB49WnfddZfjfVRUlCZPnmxaPWlpafrTn/6koKAgeXt7q2nTpho8eLAOHDggSQoODlZ6ejqPSAXwq+FhdgEAgIq5ePGi+vfvr9atW2vFihUKDAzU8ePHtWrVKp09e1aSZLfbFRAQYG6hAFCJGIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKYjMMwzC7CACwmtGjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxHTp0cLy22+1q0KCBbrjhBse+xo0bS5IyMzOv+lmxsbHKyMjQ0qVL1aNHD33wwQdq166d1q5de80ad+3apZEjR2r+/Pnq1auXJGn37t0qKipSeHi4U+1JSUlOdQOAmbixCwCqSF5enqKjo/Xss8+WaAsMDHS8rlmzplObzWZz2mez2SRJxcXF1/w8X19fRUdHKzo6WrNnz9aAAQM0e/Zs9e/fv9TjMzIydOedd+qBBx7Q/fff71S33W7Xjh07ZLfbnc7x8fG5Zg0AUF0IsQBQCTw9PUvMR73xxhv10UcfKTQ0VB4e1fvt1mazKSIiQl999VWp7fn5+Ro8eLAiIiL04osvOrV17txZRUVFyszM1K233lod5QJAmTGdAAAqQWhoqL7++msdOXJEp0+fVnFxsWJjY3XmzBkNHz5c27dv1+HDh7VmzRrFxMS4fAOWK1JSUjR48GB9+OGH2rdvnw4dOqT4+Hi98cYbGjx4cKnnPPTQQzp27JhefvllnTp1ShkZGcrIyNCFCxcUHh6uESNG6L777tOKFSuUlpambdu2KS4uTv/+978rrW4AqAhGYgGgEkydOlWjRo1S27Ztdf78eaWlpSk0NFSbN2/W448/rttvv10FBQUKCQnRwIEDVaNG5Y0hNG3aVKGhoZo1a5ZjKa3L7x955JFSz0lKSlJ6erratm3rtD8hIUFRUVFasmSJZs+erb/85S/68ccf1bBhQ3Xv3l2/+93vKq1uAKgIVicAAACA5TCdAAAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWI6H2QUAAADA/WRlZengwYOy2WwKCwtTvXr1ynQ+I7EAAACoNmlpafrtb3+rhg0bqnv37urWrZsaNmyo3/72t/rhhx9c7sdmGIZRhXUCAAAAkqSTJ0/qxhtvlN1uV2xsrCIiIiRJqampmj9/voqKirRz5041btz4un0RYgEAAFAtJk6cqISEBG3btk21atVyasvPz9fNN9+sqKgovfLKK9fti+kEAAAAqBaff/65Zs2aVSLASpK3t7f+/ve/6z//+Y9LfRFiAQAAUC3S09PVoUOHq7a3b99eP/74o0t9EWIBAABQLRo1aqTCwsKrtl+8eNGl+bASIRYAAADV5KabbtIXX3xx1fbVq1erY8eOLvVFiAUAAEC1mDJlil577TVlZ2eXaMvJydHrr7+uyZMnu9QXqxMAAADAcnhiFwAAAKpFixYt5Mr4aVpa2nWPIcQCAACgWrg6VcAVTCcAAACA5XBjFwAAACyH6QQAAACoFq7MiTUMQ0eOHLluX4RYAAAAVItrzYlNS0vT4sWLdf78eZf6Yk4sAAAATHP69Gk9/fTTWrRokbp3765nn31WXbt2ve55jMQCAACg2p07d04vvviinn/+eTVv3lwrV67UwIEDXT6fEAsAAIBqU1hYqMWLF2v27NmqVauWFi5cqBEjRpS5H0IsAAAAqsXy5cv117/+VdnZ2XryyScVGxsrD4/yxVHmxJaTYRjKzc2Vr6+vbDab2eUAAAD84tntdnl5eelPf/qTfH19r3rc3Llzr9sXI7HllJubKz8/P2VnZ6tOnTpmlwMAqGKGYaigoECS5OXlxQAGUA5RUVEyDEPff//9VY9xdXyVkdhyysnJIcQCgBvJz8/XkCFDJEkffPCBvL29Ta4IcG88sQsAABfk5+eX+hqAOZhOAAAAgGoxa9Ysl46bMWPGdY8hxAIA4ILi4uJSXwNw3VNPPaV27dpddUWCwsJC7dmzhxALAEBlyc3NdXpdv359E6sBrGvt2rVq3LhxqW2nTp1SQECAS/2Ua07ssWPHNGbMGAUFBcnT01MhISGaNGmSfvrpJ8cxUVFRstlsstls8vb2Vnh4uOLi4kq942zLli2y2+264447SrQdOXJENptN/v7+Tt9AJKlTp06aOXOm075Dhw5pzJgxatasmby8vNSkSRPddtttWrp0qQoLCx3HXa7t59vy5cvLc0kAAABwHXa7/Zp/ySgqKlKNGq7F0zKH2O+//15dunTRwYMHtWzZMh06dEiLFi3S+vXr1aNHD505c8Zx7NixY5Wenq7U1FRNnz5df/vb37Ro0aISfcbHx2vChAnauHGjTpw4Uern5ubm/j979x5WVZX/cfxzPAiaECpeAC8gIuAlFTMVKQHT1CnTLHMYNEQrc9DUxkprJq1UbKaL5TUbMptKLc2aZgbNFNBMRUzM+y1MTRCvXBxFgf37w8fz6wTqAYEzp/N+Pc9+Ovu2zpf9mH5crr2WXn/99RvWlpaWpk6dOmnv3r2aO3eudu3apZSUFD3++OOaP3++du/ebXX9okWLlJWVZbUNHDiwvI8EAAAANvD09LTq9Py1M2fOqG7duja1Ve7hBPHx8XJ1ddXXX3+t2rVrS5KaN2+u0NBQtWzZUi+++KLmz58vSbrtttssXcJxcXGaM2eO1qxZo9GjR1vaKygo0LJly5Senq7s7Gx98MEHeuGFF0p979ixY/Xmm28qPj5ejRo1KnXeMAwNHz5cQUFB2rhxo1WKb9WqlaKjo0v1AtetW9fmLmsAAADcmjZt2ig5OVnt2rUr83xKSoratGljU1vl6ok9e/asVq9erT/+8Y+WAHuNt7e3YmJitGzZslJh0TAMbdiwQfv27ZOrq6vVuU8//VQhISEKDg7W0KFD9f7775c55CA6OlqBgYF65ZVXyqwtIyNDe/fu1cSJE6/bDc3E1AAAAPbzyCOPaPr06dq3b1+pc/v379err76qQYMG2dRWuULswYMHZRiGWrduXeb51q1b69y5czp16pQkad68eXJ3d5ebm5t69OihkpISPf3001b3JCYmaujQoZKkvn37Kjc3V6mpqaXaNplMmjlzphYuXKjDhw+XOn/gwAFJUnBwsOVYTk6O3N3dLdu8efOs7omOjrY67+7urqNHj5b5sxUWFiovL89qAwAAgO2eeuoptWjRQh06dNCAAQM0adIkTZ48WQ899JA6dOigpk2bWv2L/Y1U6MUuWxf5iomJUUZGhjZu3Kh+/frpxRdfVPfu3S3n9+/fr7S0NEVHR0uSXFxcNGTIECUmJpbZXp8+fXT33XfrL3/5i03f7+XlpYyMDGVkZKhu3bq6fPmy1fm33nrLcv7a5uvrW2ZbCQkJ8vT0tGzNmjWzqQYAAABcVbNmTa1du1YvvviiMjMzNXfuXM2ePVsHDx7Uc889p9TU1FL/an895RoTGxgYKJPJpL179+qhhx4qdX7v3r2qV6+eGjZsKOnq4N3AwEBJV4cNBAYGqlu3burVq5ekq72wRUVFVsHRMAy5ublpzpw58vT0LPUdM2fOVFhYmJ599lmr461atZJ0NRiHhoZKuvoG3LXvL2s+Mm9vb8v5m5k8ebKeeeYZy35eXh5BFgAAoJxuu+02vfTSS3rppZduqZ1y9cR6eXmpd+/emjdvni5evGh1Ljs7Wx9//LGGDBlS5thTd3d3jRs3ThMnTpRhGCoqKtKHH36oN954w6ondMeOHfL19dWSJUvKrKFLly4aNGiQJk2aZHU8NDRUISEhev3116tkEmo3NzfdfvvtVhsAAADso9yzE8yZM0fdu3dXnz59NG3aNLVo0UK7d+/Ws88+qyZNmmj69OnXvXfUqFF69dVXtWLFCrm4uOjcuXMaOXJkqR7Xhx9+WImJiXrqqafKbGf69OmlVnswmUxatGiRevfurfDwcE2ePFmtW7fWlStXtH79ep06dUpms9mqnfPnzys7O9vqmIeHh+rUqVPexwIAAICbiIqKuuk1hmEoJSXlpteVe0xsq1atlJ6eroCAAD366KNq2bKlnnzySUVFRWnTpk03XMGkfv36euyxxzR16lQlJiaqV69eZQ4ZePjhh5Wenq4ffvihzHaCgoI0YsQIXbp0yep4t27dtG3bNgUHBys+Pl5t2rRR9+7dtWTJEr311lulBgrHxcXJx8fHaps9e3Z5HwkAAABssH79egUHBys0NFShoaEKCAjQd999Z9kPDg7W+vXrbWrLZNj6lhas5OXlydPTU7m5uQwtAAAncPbsWcXGxkqSFi9ezLKzQAWYzWadOHHCsuzsjz/+qA4dOlhWZc3JyZG3t7dNQ0MrNDsBAADO5pdzkNu6LCaAqsP/hQAAAHA4hFgAAADYza9ntbJ1hVVCLAAANqhVq1aZnwHYrk+fPnJzc7PsN27cWO+++65l/7bbbtOoUaNsaosXuyqIF7sAwLkYhqHCwkJJV+cOt7W3CEDVoCcWAAAADqfcix0AAOCMCgsLNXjwYEnSZ599xpACoALMZrNsGQRgyxRbhFgAAGzwywV2Ll26RIgFKmDlypVW+ydPntT48eO1ZMkSSVJubq5lPuabIcQCAACgWjz44INW+z/++KNq1KhhOZ6Tk2NzW4yJBQAAgF38+OOPunjxooqLiyVdfXHew8PDpnsJsQAA2OCXY/RsGa8H4Ma2bt2qCRMmqKSkRLNnz1ZBQYHmzp2r4OBgm+4nxAIAYINra7v/+jOA8lm1apX69u2r3/3ud3rnnXcUEBCgZ555Rrfffrvmzp2rP//5zza1U+UhdsGCBfLw8FBRUZHlWEFBgWrWrKnIyEira1NSUmQymXT48GH5+/tr1qxZpdqbOnWqOnbsWOa+v7+/TCbTdbfhw4dL0nXPL126tJJ/egAAAFzTtm1bPfTQQ2rdurX27t2rqKgopaena8GCBXrnnXe0ffv2UuNmr6fKX+yKiopSQUGB0tPT1a1bN0nShg0b5O3trS1btli94ZmcnKzmzZurZcuWFfqurVu3WsZUfPfdd3r44Ye1f/9+y2IEtWvXtly7aNEi9e3b1+r+unXrVuh7AQAAcHNRUVH65ptv5OPjYzlWt25dPfnkk+Vuq8pDbHBwsHx8fJSSkmIJsSkpKRowYIDWrVunzZs3W3pkU1JSFBUVVeHvatiwoeVz/fr1JUmNGjUqM5zWrVtX3t7eFf4uAAAAlM+cOXMqra1qmWIrKipKycnJmjRpkqSrPa7PPfeciouLlZycrMjISF28eFFbtmzRiBEjqqOkcissLLQsNyhdfXsOAAAAtlu8eLFN19kyV2y1hdjx48erqKhIFy9e1Pbt2xUREaErV65owYIFkqRNmzapsLDQqif2+eefLzW49/Lly2rTps0t1xQdHS2z2Wx1bM+ePWrevHmZ1yckJOjll1++5e8FAABwViNGjNDtt98uk8kk6epMH3l5eZZ/NTcMw+YFD6olxEZGRurChQvaunWrzp07p6CgIDVs2FARERGKi4vTpUuXlJKSooCAAKsQ+eyzz1pexrrmnXfe0fr162+5prfeeku9evWyOubr63vd6ydPnqxnnnnGsp+Xl6dmzZrdch0AAADOZN++fWrcuLEkKTMzUx06dNDZs2clSadOnbJ5uGe1hNjAwEA1bdpUycnJOnfunCIiIiRdDY3NmjXTd999p+TkZPXs2dPqvgYNGigwMNDq2LWxrrfK29u7VNs34ubmJjc3t0r5bgAAAFzteTUM47r7N1Jt88RGRUUpJSVFKSkpVlNr9ejRQ0lJSUpLS7ull7oAAADgPKqlJ1a6GmLj4+N15coVS0+sJEVERGjMmDG6fPlytYbY8+fPKzs72+qYh4eH6tSpU201AAAAOBNbe1ltUa09sRcvXlRgYKBlHIR0NcTm5+dbpuKqLnFxcfLx8bHaZs+eXW3fDwAA4GyuvdB1Te3atdWjRw+r89fWD7hpW0ZlRmInkpeXJ09PT+Xm5loWUwAA/HadPXvW8sb04sWLK+0dDcCZ5OTkqFGjRpXSVrX1xAIA4Mhq1KhR5mcAtqusACtV45hYAAAAOLe4uDibrlu0aNFNryHEAgBgg1+O07N1zB4Aax9++KEiIiIsixvcCsbEVlBubq7q1q2rY8eOMSYWAJyAYRiW5cfd3NxKvaACOAsPD48K//o3m836/vvv1aFDh1uug57YCjpz5owksWoXAABwKjk5OWrYsKG9yyDEVtS1t1KPHj0qT09PO1fjfK4t+0tPuH3w/O2L528/PHv74vnb17Xn7+rqau9SJBFiK+zam6menp78j2RHt99+O8/fjnj+9sXztx+evX3x/O3rf2UoDXOEAAAAoFqMHDlSXl5eldIWPbEAAACoFgsXLqy0tgixFeTm5qYpU6bIzc3N3qU4JZ6/ffH87Yvnbz88e/vi+dtXZTz/Fi1a2HRdZmbmTa9hii0AAABUC7PZrIkTJ6pJkyY3vO7pp5++aVuEWAAAAFSLypwnlhe7AAAA4HAIsQAAAHA4hFgAAAA4HEJsBc2dO1f+/v6qVauWunbtqrS0NHuX5BTWr1+v/v37y9fXVyaTSV988YW9S3IaCQkJuuuuu+Th4aFGjRpp4MCB2r9/v73Lchrz589X+/btLZO8h4WFKSkpyd5lOa2ZM2fKZDJp/Pjx9i7FKUydOlUmk8lqCwkJsXdZTuXnn3/W0KFD5eXlpdq1a+uOO+5Qenp6udv5xz/+IT8/v0qpiRBbAcuWLdMzzzyjKVOmWAYn9+nTRzk5OfYu7TfvwoUL6tChg+bOnWvvUpxOamqq4uPjtXnzZq1Zs0ZXrlzRfffdpwsXLti7NKfQtGlTzZw5U9u2bVN6erp69uypAQMGaPfu3fYuzels3bpV7777rtq3b2/vUpxK27ZtlZWVZdm+/fZbe5fkNM6dO6fw8HDVrFlTSUlJ2rNnj9544w3Vq1ev3G399a9/1QcffKCzZ8/eemEGyq1Lly5GfHy8Zb+4uNjw9fU1EhIS7FiV85FkrFy50t5lOK2cnBxDkpGammrvUpxWvXr1jL///e/2LsOp5OfnG61atTLWrFljREREGOPGjbN3SU5hypQpRocOHexdhtN6/vnnjbvvvrtS2ho7dqzRpEkTw83NzRg8eLCxatUqo6SkpEJt0RNbTpcvX9a2bdvUq1cvy7EaNWqoV69e2rRpkx0rA6pXbm6uJKl+/fp2rsT5FBcXa+nSpbpw4YLCwsLsXY5TiY+P1/3332/1ZwCqx8GDB+Xr66uAgADFxMTo6NGj9i7Jafzzn/9U586dNXjwYDVq1EihoaF67733KtTWO++8o+PHj+ujjz7SihUrNHToUPn7+2vKlCk2LXDwS4TYcjp9+rSKi4vVuHFjq+ONGzdWdna2naoCqldJSYnGjx+v8PBwtWvXzt7lOI2dO3fK3d1dbm5ueuqpp7Ry5Uq1adPG3mU5jaVLl+r7779XQkKCvUtxOl27dtUHH3ygVatWaf78+crMzNQ999yj/Px8e5fmFH788UfNnz9frVq10urVqzV69Gg9/fTTWrx4cYXbbNOmjWrUqKHs7GzNnTtX+/bt0x133KHevXtryZIlNrXBsrMAyi0+Pl67du1iTFo1Cw4OVkZGhnJzc7V8+XLFxsYqNTWVIFsNjh07pnHjxmnNmjWqVauWvctxOv369bN8bt++vbp27So/Pz99+umnGjlypB0rcw4lJSXq3LmzZsyYIUkKDQ3Vrl27tGDBAsXGxt5S22azWQ888IAeeOAB5efna+bMmRo2bJiio6Nvei8htpwaNGggs9mskydPWh0/efKkvL297VQVUH3GjBmjf/3rX1q/fr2aNm1q73KciqurqwIDAyVJd955p7Zu3aq3335b7777rp0r++3btm2bcnJy1KlTJ8ux4uJirV+/XnPmzFFhYaHMZrMdK3QudevWVVBQkA4dOmTvUpyCj49Pqb8st27dWitWrKiU9s+cOaOlS5fqo48+0sGDBzV69Gib7mM4QTm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIIMBWs4KCAh0+fFg+Pj72LsUphIeHl5pS8cCBA7c0VVZxcbEMw1D//v3VtGlTrVy5UuPGjdOJEyc0e/Zsm9qgJ7YCnnnmGcXGxqpz587q0qWLZs2apQsXLiguLs7epf3mFRQUWP3NOzMzUxkZGapfv76aN29ux8p+++Lj4/XJJ5/oyy+/lIeHh2UMuKenp2rXrm3n6n77Jk+erH79+ql58+bKz8/XJ598opSUFK1evdrepTkFDw+PUuO/69SpIy8vL8aFV4OJEyeqf//+8vPz04kTJzRlyhSZzWab/skZt27ChAnq3r27ZsyYoUcffVRpaWlauHChFi5cWO62PvvsM61YsUJJSUlq2rSpOnXqpDlz5lQsEFfKfAlOaPbs2Ubz5s0NV1dXo0uXLsbmzZvtXZJTSE5ONiSV2mJjY+1d2m9eWc9dkrFo0SJ7l+YURowYYfj5+Rmurq5Gw4YNjXvvvdf4+uuv7V2WU2OKreozZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXFihdmrVqmUMHjzYWL169S3XZDIMwyh/9AUAAADK5+zZs5U2NSMhFgAAAA6HF7sAAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCgBM4cuSITCaTMjIy7F0KAFQKQiwAVMDw4cM1cOBAy35kZKTGjx9vt3oyMzP1hz/8Qb6+vqpVq5aaNm2qAQMGaN++fZKkZs2aKSsrS+3atbNbjQBQmVzsXQAA4NZcuXJFvXv3VnBwsD7//HP5+Pjo+PHjSkpK0vnz5yVJZrNZ3t7e9i0UACoRPbEAcIuGDx+u1NRUvf322zKZTDKZTDpy5IgkadeuXerXr5/c3d3VuHFjDRs2TKdPn7bcGxkZqbFjx2r8+PGqV6+eGjdurPfee08XLlxQXFycPDw8FBgYqKSkpOt+/+7du3X48GHNmzdP3bp1k5+fn8LDwzVt2jR169ZNUunhBMOHD7fU+sstJSVFklRYWKiJEyeqSZMmqlOnjrp27Wo5BwD/CwixAHCL3n77bYWFhemJJ55QVlaWsrKy1KxZM50/f149e/ZUaGio0tPTtWrVKp08eVKPPvqo1f2LFy9WgwYNlJaWprFjx2r06NEaPHiwunfvru+//1733Xefhg0bpv/+979lfn/Dhg1Vo0YNLV++XMXFxTbXfK3WrKwsjRs3To0aNVJISIgkacyYMdq0aZOWLl2qH374QYMHD1bfvn118ODBW3tYAFBJTIZhGPYuAgAczfDhw3X+/Hl98cUXkq72qHbs2FGzZs2yXDNt2jRt2LBBq1evthw7fvy4mjVrpv379ysoKEiRkZEqLi7Whg0bJEnFxcXy9PTUoEGD9OGHH0qSsrOz5ePjo02bNll6Vn9t7ty5eu6552Q2m9W5c2dFRUUpJiZGAQEBkq72xLZo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYflWOPGjSVJOTk51/2u+Ph4ZWdn6+OPP1ZYWJg+++wztW3bVmvWrLlhjdu3b9ewYcM0Z84chYeHS5J27typ4uJiBQUFWdWemppqVTcA2BMvdgFAFSkoKFD//v312muvlTrn4+Nj+VyzZk2rcyaTyeqYyWSSJJWUlNzw+zw8PNS/f3/1799f06ZNU58+fTRt2jT17t27zOuzs7P14IMP6vHHH9fIkSOt6jabzdq2bZvMZrPVPe7u7jesAQCqCyEWACqBq6trqfGonTp10ooVK+Tv7y8Xl+r97dZkMikkJETfffddmecvXbqkAQMGKCQkRG+++abVudDQUBUXFysnJ0f33HNPdZQLAOXGcAIAqAT+/v7asmWLjhw5otOnT6ukpETx8fE6e/asoqOjtXXrVh0+fFirV69WXFyczS9g2SIjI0MDBgzQ8uXLtWfPHh06dEiJiYl6//33NWDAgDLvGTVqlI4dO6Z33nlHp06dUnZ2trKzs3X58mUFBQUpJiZGjz32mD7//HNlZmYqLS1NCQkJ+ve//11pdQPAraAnFgAqwcSJExUbG6s2bdro4sWLyszMlL+/vzZu3Kjnn39e9913nwoLC+Xn56e+ffuqRo3K60No2rSp/P399fLLL1um0rq2P2HChDLvSU1NVVZWltq0aWN1PDk5WZGRkVq0aJGmTZumP/3pT/r555/VoEEDdevWTQ888ECl1Q0At4LZCQAAAOBwGE4AAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADsfF3gUAAADAecTFxdl03aJFi2543mQYhlEZBQEAAAA3M2jQIKv9CxcuaN26derfv78kqbCwUElJSSopKblhO4RYAAAA2E1mZqbat2+v/Px8SdKpU6fk7e2t4uLiG97HmFgAAADYza/7Uw3DKHWsLIRYAAAAVJsrV65USjuEWAAAAFSbJk2aaPz48dq5c6ckqU6dOvrd735ndY3JZLppO4RYAAAAVJtJkyYpLS1NoaGh6tq1q7744gv9/e9/t5xv2LChDh48eNN2eLELAAAA1W7jxo2KiIhQ27ZtdejQIT3yyCMaMWKEIiIibLqfnlgAAABUu3r16slkMmnHjh3asmWLvL29NWzYMAUFBSkhIeGm99MTCwAAgGq3Z88edejQwepFr+LiYr300kt67bXXVFRUdMP7WbELAAAAdrVjxw599NFHWrJkiTw9PfXaa6/d9B5CbAUZhqH8/Hx5eHjY9AYdAAAA/t+ZM2dkGIbuuOMOHT16VIMHD9by5cvVrVs3m+4nxFZQfn6+PD09dfLkSd1+++32LgeoNoZhqLCwUJLk5ubGX+LglPi1D1Tc3/72N61YsULp6ekKCwvTiBEjNGTIEN12223laocxsRWUl5cnT09P9enTRzVr1rR3OQCAavTZZ5+pVq1a9i4DcEg+Pj567LHHNHLkSAUFBVW4HXpiAQAAUG2OHz8us9l8y+0QYm/RlN4HVN/d3lUA1aewyKQXV7WRJE3vu0duLvxjDpzD5eIaeiGptb3LABzeRx99ZNN1sbGxNzxPiL1FruYSubkwLgrOyc3FIMTCiZTYuwDgN2HChAk3vcYwDEJsVWNEMQA4h1/+fs/rJEDFnT17tlLaYcWuW3S5mF5YAHAGv/z9/toMHQDsp0Ih9tixYxoxYoR8fX3l6uoqPz8/jRs3TmfOnLFcExkZKZPJJJPJpFq1almWECvrb6+bNm2S2WzW/fffX+rckSNHZDKZ1KhRI+Xn51ud69ixo6ZOnWp17NChQxoxYoSaN28uNzc3NWnSRPfee68+/vhjq5UfrtX2623p0qUVeSQAAACwweLFi23abqbcwwl+/PFHhYWFKSgoSEuWLFGLFi20e/duPfvss0pKStLmzZtVv359SdITTzyhV155RYWFhVq3bp2efPJJ1a1bV6NHj7ZqMzExUWPHjlViYqJOnDghX1/fUt+bn5+v119/XS+//PJ1a0tLS1OvXr3Utm1bzZ07VyEhIZKk9PR0zZ07V+3atVOHDh0s1y9atEh9+/a1aqNu3brlfSQAAACw0a/HxJaUlCgvL8+SwQzDUG5ubuWPiY2Pj5erq6u+/vpr1a5dW5LUvHlzhYaGqmXLlnrxxRc1f/58SdJtt90mb29vSVJcXJzmzJmjNWvWWIXYgoICLVu2TOnp6crOztYHH3ygF154odT3jh07Vm+++abi4+PVqFGjUucNw9Dw4cMVFBSkjRs3qkaN/+9kbtWqlaKjo0v1AtetW9dSHwAAAKrer8fEZmZmqkOHDpbjp06dsimflWs4wdmzZ7V69Wr98Y9/tATYa7y9vRUTE6Nly5aVCouGYWjDhg3at2+fXF1drc59+umnCgkJUXBwsIYOHar333+/zCEH0dHRCgwM1CuvvFJmbRkZGdq7d68mTpxoFWB/6VZWVyksLFReXp7VBgAAgFtz+fJllZT8/+wfv/x8I+UKsQcPHpRhGGrduux58lq3bq1z587p1KlTkqR58+bJ3d1dbm5u6tGjh0pKSvT0009b3ZOYmKihQ4dKkvr27avc3FylpqaWattkMmnmzJlauHChDh8+XOr8gQMHJEnBwcGWYzk5OXJ3d7ds8+bNs7onOjra6ry7u7uOHj1a5s+WkJAgT09Py9asWbPrPSYAAADYKCkpSf/973+Vk5Mj6WrPbOPGjW96X4Ve7LJ1apGYmBhlZGRo48aN6tevn1588UV1797dcn7//v1KS0tTdHS0JMnFxUVDhgxRYmJime316dNHd999t/7yl7/Y9P1eXl7KyMhQRkaG6tatq8uXL1udf+uttyznr21ljceVpMmTJys3N9eyHTt2zKYaAAAAUNrx48c1ZswYffzxxzKZTPr973+vOXPmaPTo0erRo8dN7y9XiA0MDJTJZNLevXvLPL93717Vq1dPDRs2lCR5enoqMDBQd911lz799FPNmTNH33zzjeX6xMREFRUVydfXVy4uLnJxcdH8+fO1YsUK5ebmlvkdM2fO1LJly7R9+3ar461atZJ0NRhfYzabFRgYqMDAQLm4lB7+6+3tbTl/o+skyc3NTbfffrvVBgAAgPLZsmWLfv/736tly5bKy8tTamqqxo0bp2+//Vbjxo1TrVq19Prrr9+0nXKFWC8vL/Xu3Vvz5s3TxYsXrc5lZ2fr448/1pAhQ8oce+ru7q5x48Zp4sSJMgxDRUVF+vDDD/XGG29Y9YTu2LFDvr6+WrJkSZk1dOnSRYMGDdKkSZOsjoeGhiokJESvv/66zWMpAAAAUL26d++uCxcuaMuWLfrwww9122236c0337T8a/emTZvUtGnTm7ZT7tkJ5syZo+7du6tPnz6aNm2a1RRbTZo00fTp069776hRo/Tqq69qxYoVcnFx0blz5zRy5Eh5enpaXffwww8rMTFRTz31VJntTJ8+XW3btrXqNTWZTFq0aJF69+6t8PBwTZ48Wa1bt9aVK1e0fv16nTp1Smaz2aqd8+fPKzs72+qYh4eH6tSpU97HAgAAABts2bJFnTt3LnX82qQBx48fV1xcnNasWXPDdso9JrZVq1ZKT09XQECAHn30UbVs2VJPPvmkoqKitGnTJsscsWWpX7++HnvsMU2dOlWJiYnq1atXqQArXQ2x6enp+uGHH8psJygoSCNGjNClS5esjnfr1k3btm1TcHCw4uPj1aZNG3Xv3l1LlizRW2+9VWp+2ri4OPn4+Fhts2fPLu8jAQAAgI3KCrDXfPjhh2rfvn2pjseymAwWgK6QvLw8eXp6auubfmpwO0vPwnkUFpk08V9tJUmvP7Bbbi78FgLncOmKSc/+++qv/U8//bTUVJMAKu7UqVMaNWqUvvnmG73xxht64oknbnpPuYcTwNqVkhoqLLr5dcBvRWGRqczPwG/dlZL//8fLW5l3HHB2v159taioSO+++67atWunnTt3ys/Pz6Z2CLG36OU1QapZs6a9ywDs4sVVbexdAgDAwXz55ZdW+0VFRTp37pwGDRpkc4CVCLEAAACoRt9//32pY1999ZWeeOIJff7550pMTFSLFi1u2g5jYivo2pjYkydPMmcsnIphGCosLJR0df5k/lkVzohf+0DlO3v2rEaNGqVVq1bptdde0x//+McbXk+IraBrITY3N5cQCwAAUEk++eQTxcfH69y5cze8rkLLzgIA4GwMw9ClS5d06dIlm5dfB1B+/fv3v+E0XNcQYgEAsEFhYaEGDx6swYMHW4bUAKh8Fy9e1Nq1a296HSEWAAAb/HKBnV8vtgOg+hFiAQAA4HCYYgsAABuUlJSU+RlA+ZjN5koZV06IBQDABvn5+Vaf69evb8dqAMe1cuXKG57Pzc1VbGzsTdup8uEECxYskIeHh4qK/n9t1oKCAtWsWVORkZFW16akpMhkMunw4cPy9/fXrFmzSrU3depUdezYscx9f39/mUym627Dhw+XpOueX7p0aSX/9AAAAPilBx988IZbnz59bGqnyntio6KiVFBQoPT0dHXr1k2StGHDBnl7e2vLli26dOmSatWqJUlKTk5W8+bN1bJlywp919atW1VcXCxJ+u677/Twww9r//79lnlca9eubbl20aJF6tu3r9X9devWrdD3AgAAwDZXrlxRzZo1b7mdKu+JDQ4Olo+Pj1JSUizHUlJSNGDAALVo0UKbN2+2Oh4VFVXh72rYsKG8vb3l7e1t+WeeRo0aWY55enparq1bt67l+LXtWpgGAABA1WjSpInGjx+vnTt3lnnebDbL39//pu1Uy+wEUVFRSk5OtuwnJycrMjJSERERluMXL17Uli1bbinEAgAA4H/bpEmTlJaWptDQUHXt2lXvvvuu1ZhzLy8v/fjjjzdtp9pC7MaNG1VUVKT8/Hxt375dERER6tGjh6WHdtOmTSosLLQKsc8//7zc3d2tthkzZlRKTdHR0aXaPnr06HWvLywsVF5entUGAACA8nnmmWf03XffKTU1Vdu2bdO8efPk7e2t2NhYpaam2txOtYTYyMhIXbhwQVu3btWGDRsUFBSkhg0bKiIiwjIuNiUlRQEBAWrevLnlvmeffVYZGRlW21NPPVUpNb311lul2vb19b3u9QkJCfL09LRszZo1q5Q6AAAAnFG9evVkMpm0Y8cObdmyRd7e3ho2bJiCgoKUkJBw0/urJcQGBgaqadOmSk5OVnJysiIiIiRJvr6+atasmb777jslJyerZ8+eVvc1aNBAgYGBVltlTWni7e1dqm0Xl+u/5zZ58mTl5uZatmPHjlVKHQAAAM6uXbt2eu2115SZmanBgwfrL3/5y03vqbZ5YqOiopSSkqJz587p2WeftRzv0aOHkpKSlJaWptGjR1dXOeXm5uYmNzc3e5cBAADwm7Njxw599NFHWrJkiTw9PfXaa6/d9J5qDbHx8fG6cuWKpSdWkiIiIjRmzBhdvny5Wl/qOn/+vLKzs62OeXh4qE6dOtVWAwAAgLM6c+aMDMPQHXfcoaNHj2rw4MFavny5ZUrWm6nWEHvx4kWFhISocePGluMRERHKz8+3TMVVXeLi4kodS0hI0KRJk6qtBgAAAGfzt7/9TStWrFB6errCwsI0YsQIDRkyRLfddlu52jEZlbF4rRPKy8uTp6encnNzLYspAAB+u86ePWtZCnPx4sUsOwtUkI+Pjx577DGNHDlSQUFBFW6n2npiAQBwZDVq1CjzM4DyOX78uMxm8y23Q4gFAABAtfnoo49suu7av3xcDyEWAAAA1WbEiBGqU6fODac2NQyDEAsAQGWoVatWmZ8BlN+GDRvUoUOHW2qDEFtB196HY/lZAHAOhmEoMTFR0tWlyC9fvmznigD78PDwkMlksncZhNiKOnPmjCSx/CwAAHAqOTk5atiwob3LIMRW1LWpVY4ePSpPT087V+N88vLy1KxZMx07dowpzuyA529fPH/74dnbF8/fvq49f1dXV3uXIokQW2HXplfx9PTkfyQ7uv3223n+dsTzty+ev/3w7O2L529ftzqUoGXLlnJzc7vlOgixAAAAqDYHDhyolHYIsQAAAKg2cXFxNl23aNGiG55nyZEKcnNz05QpUyqlOxzlx/O3L56/ffH87Ydnb188f/uqrOf/4YcfKicnR7m5ucrNzdWJEyf00UcfWfZzcnK0ePHim7ZjMq7NFQUAAABUMbPZrBMnTqhx48aSpMzMTLVv3175+fmSpFOnTsnb21vFxcU3bIeeWAAAANjNr/tTDcModawshFgAAAA4HEIsAAAA7OrX03bZMo0XIRYAAADVJjg4WC4u/z9BVv369fXCCy9Y9t3c3NSnT5+btkOIraC5c+fK399ftWrVUteuXZWWlmbvkpzC+vXr1b9/f/n6+spkMumLL76wd0lOIyEhQXfddZc8PDzUqFEjDRw4UPv377d3WU5j/vz5at++vWWS97CwMCUlJdm7LKc1c+ZMmUwmjR8/3t6lOIWpU6fKZDJZbSEhIfYuy6n8/PPPGjp0qLy8vFS7dm3dcccdSk9Pr1Bbe/bskZeXl2W/bt26mjRpkmXf09NT//nPf27aDiG2ApYtW6ZnnnlGU6ZM0ffff68OHTqoT58+ysnJsXdpv3kXLlxQhw4dNHfuXHuX4nRSU1MVHx+vzZs3a82aNbpy5Yruu+8+Xbhwwd6lOYWmTZtq5syZ2rZtm9LT09WzZ08NGDBAu3fvtndpTmfr1q1699131b59e3uX4lTatm2rrKwsy/btt9/auySnce7cOYWHh6tmzZpKSkrSnj179MYbb6hevXp2rYsptiqga9euuuuuuzRnzhxJUklJiZo1a6axY8da/U0CVctkMmnlypUaOHCgvUtxSqdOnVKjRo2UmpqqHj162Lscp1S/fn397W9/08iRI+1ditMoKChQp06dNG/ePE2bNk0dO3bUrFmz7F3Wb97UqVP1xRdfKCMjw96lOKVJkyZp48aN2rBhg71LsUJPbDldvnxZ27ZtU69evSzHatSooV69emnTpk12rAyoXrm5uZKuBilUr+LiYi1dulQXLlxQWFiYvctxKvHx8br//vut/gxA9Th48KB8fX0VEBCgmJgYHT161N4lOY1//vOf6ty5swYPHqxGjRopNDRU7733nr3LIsSW1+nTp1VcXGyZoPeaxo0bKzs7205VAdWrpKRE48ePV3h4uNq1a2fvcpzGzp075e7uLjc3Nz311FNauXKl2rRpY++ynMbSpUv1/fffKyEhwd6lOJ2uXbvqgw8+0KpVqzR//nxlZmbqnnvusUyOj6r1448/av78+WrVqpVWr16t0aNH6+mnn7ZpVa2q5HLzSwDAWnx8vHbt2sWYtGoWHBysjIwM5ebmavny5YqNjVVqaipBthocO3ZM48aN05o1a1SrVi17l+N0+vXrZ/ncvn17de3aVX5+fvr0008ZTlMNSkpK1LlzZ82YMUOSFBoaql27dmnBggWKjY21W130xJZTgwYNZDabdfLkSavjJ0+elLe3t52qAqrPmDFj9K9//UvJyclq2rSpvctxKq6urgoMDNSdd96phIQEdejQQW+//ba9y3IK27ZtU05Ojjp16iQXFxe5uLgoNTVV77zzjlxcXG66PCYqV926dRUUFKRDhw7ZuxSn4OPjU+ovy61bt7b7kA5CbDm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIkNlstneJTqWgoECHDx+Wj4+PvUtxCuHh4aWmVDxw4ID8/PzsVNFVDCeogGeeeUaxsbHq3LmzunTpolmzZunChQuKi4uzd2m/eQUFBVZ/887MzFRGRobq16+v5s2b27Gy3774+Hh98skn+vLLL+Xh4WEZA+7p6anatWvbubrfvsmTJ6tfv35q3ry58vPz9cknnyglJUWrV6+2d2lOwcPDo9T47zp16sjLy4tx4dVg4sSJ6t+/v/z8/HTixAlNmTJFZrNZ0dHR9i7NKUyYMEHdu3fXjBkz9OijjyotLU0LFy7UwoUL7VuYgQqZPXu20bx5c8PV1dXo0qWLsXnzZnuX5BSSk5MNSaW22NhYe5f2m1fWc5dkLFq0yN6lOYURI0YYfn5+hqurq9GwYUPj3nvvNb7++mt7l+XUIiIijHHjxtm7DKcwZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXGjvkgzmiQUAAIDDYUwsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAHACR44ckclkUkZGhr1LAYBKQYgFgAoYPny4Bg4caNmPjIzU+PHj7VZPZmam/vCHP8jX11e1atVS06ZNNWDAAO3bt0+S1KxZM2VlZbFEKoDfDBd7FwAAuDVXrlxR7969FRwcrM8//1w+Pj46fvy4kpKSdP78eUmS2WyWt7e3fQsFgEpETywA3KLhw4crNTVVb7/9tkwmk0wmk44cOSJJ2rVrl/r16yd3d3c1btxYw4YN0+nTpy33RkZGauzYsRo/frzq1aunxo0b67333tOFCxcUFxcnDw8PBQYGKikp6brfv3v3bh0+fFjz5s1Tt27d5Ofnp/DwcE2bNk3dunWTVHo4wfDhwy21/nJLSUmRJBUWFmrixIlq0qSJ6tSpo65du1rOAcD/AkIsANyit99+W2FhYXriiSeUlZWlrKwsNWvWTOfPn1fPnj0VGhqq9PR0rVq1SidPntSjjz5qdf/ixYvVoEEDpaWlaezYsRo9erQGDx6s7t276/vvv9d9992nYcOG6b///W+Z39+wYUPVqFFDy5cvV3Fxsc01X6s1KytL48aNU6NGjRQSEiJJGjNmjDZt2qSlS5fqhx9+0ODBg9W3b18dPHjw1h4WAFQSk2EYhr2LAABHM3z4cJ0/f15ffPGFpKs9qh07dtSsWbMs10ybNk0bNmzQ6tWrLceOHz+uZs2aaf/+/QoKClJkZKSKi4u1YcMGSVJxcbE8PT01aNAgffjhh5Kk7Oxs+fj4aNOmTZae1V+bO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKs9sS1atND27dvVsWNHq3s///xzxcTE6JtvvlF4eLiOHj2qgIAAHT16VL6+vpbrevXqpS5dumjGjBm3+vgA4JbREwsAVWTHjh1KTk6Wu7u7ZbvW03n48GHLde3bt7d8NpvN8vLy0h133GE51rhxY0lSTk7Odb8rPj5e2dnZ+vjjjxUWFqbPPvtMbdu21Zo1a25Y4/bt2zVs2DDNmTNH4eHhkqSdO3equLhYQUFBVrWnpqZa1Q0A9sSLXQBQRQoKCtS/f3+99tprpc75+PhYPtesWdPqnMlksjpmMpkkSSUlJTf8Pg8PD/Xv31/9+/fXtGnT1KdPH02bNk29e/cu8/rs7Gw9+OCDevzxxzVy5Eirus1ms7Zt2yaz2Wx1j7u7+w1rAIDqQogFgErg6upaajxqp06dtGLFCvn7+8vFpXp/uzWZTAoJCdF3331X5vlLly5pwIABCgkJ0Ztvvml1LjQ0VMXFxcrJydE999xTHeUCQLkxnAAAKoG/v7+2bNmiI0eO6PTp0yopKVF8fLzOnj2r6Ohobd26VYcPH9bq1asVFxdn8wtYtsjIyNCAAQO0fPly7dmzR4cOHVJiYqLef/99DRgwoMx7Ro0apWPHjumdd97RqVOnlJ2drezsbF2+fFlBQUGKiYnRY489ps8//1yZmZlKS0tTQkKC/v3vf1da3QBwK+iJBYBKMHHiRMXGxqpNmza6ePGiMjMz5e/vr40bN+r555/Xfffdp8LCQvn5+alv376qUaPy+hCaNm0qf39/vfzyy5aptK7tT5gwocx7UlNTlZWVpTZt2lgdT05OVmRkpBYtWqRp06bpT3/6k37++Wc1aNBA3bp10wMPPFBpdQPArWB2AgAAADgchhMAAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAw3GxdwEAAAD47YuLi7PpukWLFtl0nckwDONWCgIAAABuxmw2q2/fvnJzc5MkXbhwQevWrVP//v0lSYWFhUpKSlJJSYlN7RFiAQAAUOXMZrNOnDihxo0bS5IyMzPVvn175efnS5JOnTqlxo0b2xxiGRMLAACAavfrftTy9qsSYgEAAFDlPDw8dO7cOcv+uXPndOHCBRUUFEiSsrOzVb9+fZvbI8QCAACgyoWEhGj27NkqKSlRSUmJ5s2bJ19fX02cOFEbN27Uiy++qLvuusvm9hgTCwAAgCr3xRdf6JFHHlGdOnVUUlKiOnXqaNWqVfr973+vgwcPqlmzZvrqq690xx132NQeIRYAAADVYv369frqq69Uu3ZtPfHEE2rWrJkk6cyZM/Ly8ipXW4RYAAAAOBzGxAIAAMDhsGIXAAAAqpzZbLZpGi1b54klxAIAAKBavPXWW2rRokWltMWY2AoyDEP5+fny8PCQyWSydzkAAAD/08xms77//nt16NChUtpjTGwF5efny9PT07JUGgDgt80wDF26dEmXLl0q98pCACofIRYAABsUFhZq8ODBGjx4sAoLC+1dDuD0CLEAANjg0qVLZX4GYB+82AUAAIAqt2HDBrVq1UqSdO7cOeXl5ZV5nZ+fn03tEWIBAABQ5cLCwvTaa6/pzTff1OnTp0udN5lMMgyDKbYAAKhMv/yD1dY/ZAH8v3nz5unNN9/UCy+8oDvvvFOenp631B4hFgAAG/xyNpr8/HzVr1/fjtUAjue9997TrFmz9Ic//KFS2qvQi13Hjh3TiBEj5OvrK1dXV/n5+WncuHE6c+aM5ZrIyEiZTCaZTCbVqlVLQUFBSkhIKHNakk2bNslsNuv+++8vde7IkSMymUxq1KhRqemsOnbsqKlTp1odO3TokEaMGKHmzZvLzc1NTZo00b333quPP/5YRUVFluuu1fbrbenSpRV5JAAAALiBw4cPq1u3bpXWXrlD7I8//qjOnTvr4MGDWrJkiQ4dOqQFCxZo7dq1CgsL09mzZy3XPvHEE8rKytL+/fs1efJkvfTSS1qwYEGpNhMTEzV27FitX79eJ06cKPN78/Pz9frrr9+wtrS0NHXq1El79+7V3LlztWvXLqWkpOjxxx/X/PnztXv3bqvrFy1apKysLKtt4MCB5X0kAAAAuIn69euXORa2osodYuPj4+Xq6qqvv/5aERERat68ufr166dvvvlGP//8s1588UXLtbfddpu8vb3l5+enuLg4tW/fXmvWrLFqr6CgQMuWLdPo0aN1//3364MPPijze8eOHas333xTOTk5ZZ43DEPDhw9XUFCQNm7cqP79+6tVq1Zq1aqVoqOj9e2336p9+/ZW99StW1fe3t5WW61atcr7SAAAAHAT4eHhevXVV687K0F5lSvEnj17VqtXr9Yf//hH1a5d2+qct7e3YmJitGzZslJDBgzD0IYNG7Rv3z65urpanfv0008VEhKi4OBgDR06VO+//36ZQw6io6MVGBioV155pczaMjIytHfvXk2cOFE1apT9Y93K8rCFhYXKy8uz2gAAAGCbmTNnau/evWrSpIlCQ0MVFRVV5marcoXYgwcPyjAMtW7duszzrVu31rlz53Tq1ClJV99Cc3d3l5ubm3r06KGSkhI9/fTTVvckJiZq6NChkqS+ffsqNzdXqamppdo2mUyaOXOmFi5cqMOHD5c6f+DAAUlScHCw5VhOTo7c3d0t27x586zuiY6Otjrv7u6uo0ePlvmzJSQkyNPT07I1a9bseo8JAAAAv9K8eXPt3r1bCxcu1MCBAxUaGlrmZqsKzU5g65rRMTExevHFF3Xu3DlNmTJF3bt3V/fu3S3n9+/fr7S0NK1cufJqMS4uGjJkiBITExUZGVmqvT59+ujuu+/WX/7yF33yySc3/X4vLy9lZGRIuvqi2eXLl63Ov/XWW+rVq5fVMV9f3zLbmjx5sp555hnLfl5eHkEWAACgHNzc3BQdHV0pbZUrxAYGBspkMmnv3r166KGHSp3fu3ev6tWrp4YNG0qSPD09FRgYKOnqsIHAwEB169bNEhwTExNVVFRkFRwNw5Cbm5vmzJlT5vxhM2fOVFhYmJ599lmr49dWgNi/f78lxZvNZsv3u7iU/lG9vb0t52/Gzc1Nbm5uNl0LAACAqlWu4QReXl7q3bu35s2bp4sXL1qdy87O1scff6whQ4aUOfbU3d1d48aN08SJE2UYhoqKivThhx/qjTfeUEZGhmXbsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/11JqEGAAD4H9OiRYubbv7+/ja3V+7hBHPmzFH37t3Vp08fTZs2TS1atNDu3bv17LPPqkmTJpo+ffp17x01apReffVVrVixQi4uLjp37pxGjhxZqsf14YcfVmJiop566qky25k+fbratm1r1btqMpm0aNEi9e7dW+Hh4Zo8ebJat26tK1euaP369Tp16pTMZrNVO+fPn1d2drbVMQ8PD9WpU6e8jwUAAAA3cPToUb3yyivy8PCQJJ0+fVp/+9vf9Nprr0m6OmPVn//8Z9sbNCrgyJEjRmxsrNG4cWOjZs2aRrNmzYyxY8cap0+ftlwTERFhjBs3rtS9o0aNMtq2bWs88MADxu9+97sy29+yZYshydixY4eRmZlpSDK2b99udc2TTz5pSDKmTJlidXz//v1GbGys0bRpU8PFxcXw9PQ0evToYbz77rvGlStXLNdJKnNLSEiw6Rnk5uYakozc3FybrgcAOLYjR44YDzzwgPHAAw8YR44csXc5gMOpUaOGkZ2dbdk/fPiw4e7ubtk/efKkYTKZbG7PZBg2vqUFK3l5efL09FRubq5uv/12e5cDAKhiZ8+eVWxsrCRp8eLFLDsLlJPZbNaJEyfUuHFjSVcX0OrQoYNlRdacnBx5e3vbPCy0QsvOAgDgbH45B/n15iMHUH34vxAAAAB28evJAMqzMBUhFgAAG/xyWXKWKAfKb9SoUbrtttss+02aNFFSUpJl38PDQwkJCTa3x5jYCmJMLAA4F8MwVFhYKOnq3OG3spQ5gFtXoRW7AABwNiaTiR5Y4H8IwwkAAADgcAixAAAAcDiEWAAAANidYRj66aefbL6eEAsAAAC7O3XqlFq0aGHz9YRYAAAA/E9gnlgAAAA4nPLM/FrlU2wtWLBAzz77rM6dOycXl6tfV1BQoHr16ik8PFwpKSmWa1NSUhQVFaVDhw7p3nvv1fjx4zV+/Hir9qZOnaovvvhCGRkZpfb9/f1vOJYiNjZWH3zwwXVT/pIlS/T73//+ln5eAAAAlPbyyy/f8HxBQUG52qvyEBsVFaWCggKlp6erW7dukqQNGzbI29tbW7Zs0aVLlyzz7iUnJ6t58+Zq2bJlhb5r69atKi4uliR99913evjhh7V//37LYgS1a9e2XLto0SL17dvX6v66detW6HsBAABwY19++eUNzxcVFZWrvSoPscHBwfLx8VFKSoolxKakpGjAgAFat26dNm/erMjISMvxqKioCn9Xw4YNLZ/r168vSWrUqFGZ4bRu3bry9vau8HcBAADAdt9///0Nz586dUqNGze2ub1qGRMbFRWl5ORky35ycrIiIyMVERFhOX7x4kVt2bLllkJsVSosLFReXp7VBgAAgMpRnvGwUjWG2I0bN6qoqEj5+fnavn27IiIi1KNHD8uY2E2bNqmwsNAqxD7//PNyd3e32mbMmFEpNUVHR5dq++jRo9e9PiEhQZ6enpatWbNmlVIHAAAArirP7ARVPpxAkiIjI3XhwgVt3bpV586dU1BQkBo2bKiIiAjFxcXp0qVLSklJUUBAgJo3b26579lnn9Xw4cOt2nrnnXe0fv36W67prbfeUq9evayO+fr6Xvf6yZMn65lnnrHs5+XlEWQBAAAqiaen501f/vqlagmxgYGBatq0qZKTk3Xu3DlFRERIuhoamzVrpu+++07Jycnq2bOn1X0NGjRQYGCg1bFrY11vlbe3d6m2b8TNzU1ubm6V8t0AAAD4f6dPn9ZTTz2lVatW6c9//rNN91TbPLFRUVFKSUlRSkqK5UUuSerRo4eSkpKUlpb2PzseFgAAAFXjyy+/VLt27XTy5En98MMPNt9XLT2x0tUQGx8frytXrlh6YiUpIiJCY8aM0eXLl6s1xJ4/f17Z2dlWxzw8PFSnTp1qqwEAAMBZ/Hou/6KiIr366qv67LPP9Oqrr1oN27RFtYbYixcvKiQkxGr6hIiICOXn51um4qoucXFxpY4lJCRo0qRJ1VYDAACAswgICJBhGDKZTJb/mkwmrVq1qtR7SrYwGeWdzwCSrr7Y5enpqdzcXMtiCgAAACjbr4cKFBUVafr06UpOTtabb75Z6mX+myHEVhAhFgAA4NZ99NFHevrppxUWFqb33nvvhrNF/VK1vdgFAAAA/NrQoUO1a9cuFRUVqV27djbfV21jYgEAAICy+Pr6avXq1Zo3b57N9zCcoIIYTgAAAGA/9MRW0LXsn5eXZ+dKAAAAqo+Hh0e5loe95trsBDdiGIaOHDliU3uE2Ao6c+aMJLH0LAAAcCo5OTlq2LBhue8bP3685fPp06f1t7/9Ta+99prlWEFBgc2rdUkMJ6iw8+fPq169ejp69Kg8PT3tXY7TycvLU7NmzXTs2DGGc9gBz9++eP72w7O3L56/fV17/ufPn7/l7PPjjz+qQ4cOys/PtxzLycmRt7e3SkpKbGqDntgKqlHj6sQOnp6e/I9kR7fffjvP3454/vbF87cfnr198fztqyJDCX7N3d1dly5d0uXLl+Xq6irpaki+7bbbbG6DKbYAAABQrRo1aiQPDw+98cYbkqTi4mK9/vrrCg4OtrkNemIBAABQ7V544QU9//zz+utf/6orV67o4sWLWrZsmc33E2IryM3NTVOmTJGbm5u9S3FKPH/74vnbF8/ffnj29sXzt6/Kfv4TJ05Uu3bttHbtWrm6uqp///7q1q2bzffzYhcAAAAcDj2xAAAAqHIvv/yyTddNmTLFpuvoiQUAAECVM5vNatu2rVxcrvahXr58Wfv27VP79u0lSUVFRdq1a5fNU2wRYgEAAFDlzGazTpw4ocaNG0uSMjMz1b59e8tcsadOnZK3t7eKi4ttao8ptgAAAFDtft2PahjGTZel/SVCbAXNnTtX/v7+qlWrlrp27aq0tDR7l+QU1q9fr/79+8vX11cmk0lffPGFvUtyGgkJCbrrrrvk4eGhRo0aaeDAgdq/f7+9y3Ia8+fPV/v27S2TvIeFhSkpKcneZTmtmTNnymQyWS2jiaozdepUmUwmqy0kJMTeZTmVn3/+WUOHDpWXl5dq166tO+64Q+np6XatiRBbAcuWLdMzzzyjKVOm6Pvvv1eHDh3Up08f5eTk2Lu037wLFy6oQ4cOmjt3rr1LcTqpqamKj4/X5s2btWbNGl25ckX33XefLly4YO/SnELTpk01c+ZMbdu2Tenp6erZs6cGDBig3bt327s0p7N161a9++67lnF8qB5t27ZVVlaWZfv222/tXZLTOHfunMLDw1WzZk0lJSVpz549euONN1SvXr1ytVNWL+strf5loNy6dOlixMfHW/aLi4sNX19fIyEhwY5VOR9JxsqVK+1dhtPKyckxJBmpqan2LsVp1atXz/j73/9u7zKcSn5+vtGqVStjzZo1RkREhDFu3Dh7l+QUpkyZYnTo0MHeZTit559/3rj77rtvuZ3atWsbJ0+etOyfOnXKGD16tGX/zJkzRuvWrW1uj57Ycrp8+bK2bdumXr16WY7VqFFDvXr10qZNm+xYGVC9cnNzJUn169e3cyXOp7i4WEuXLtWFCxcUFhZm73KcSnx8vO6//36rPwNQPQ4ePChfX18FBAQoJiZGR48etXdJTuOf//ynOnfurMGDB6tRo0YKDQ3Ve++9V+52/vvf/6pRo0aW/QYNGmjevHmW/fr162vPnj02t0eILafTp0+ruLjY8mbdNY0bN1Z2dradqgKqV0lJicaPH6/w8HC1a9fO3uU4jZ07d8rd3V1ubm566qmntHLlSrVp08beZTmNpUuX6vvvv1dCQoK9S3E6Xbt21QcffKBVq1Zp/vz5yszM1D333GN5qx1V68cff9T8+fPVqlUrrV69WqNHj9bTTz+txYsX27UuFjsAUG7x8fHatWsXY9KqWXBwsDIyMpSbm6vly5crNjZWqampBNlqcOzYMY0bN05r1qxRrVq17F2O0+nXr5/lc/v27dW1a1f5+fnp008/1ciRI+1YmXMoKSlR586dNWPGDElSaGiodu3apQULFig2NtZuddETW04NGjSQ2WzWyZMnrY6fPHlS3t7edqoKqD5jxozRv/71LyUnJ6tp06b2LsepuLq6KjAwUHfeeacSEhLUoUMHvf322/Yuyyls27ZNOTk56tSpk1xcXOTi4qLU1FS98847cnFxsXleS1SOunXrKigoSIcOHbJ3KU7Bx8en1F+WW7dubfchHYTYcnJ1ddWdd96ptWvXWo6VlJRo7dq1jE3Db5phGBozZoxWrlypdevWqUWLFvYuyemVlJSosLDQ3mU4hXvvvVc7d+5URkaGZevcubNiYmKUkZEhs9ls7xKdSkFBgQ4fPiwfHx97l+IUwsPDS02peODAAfn5+dmpoqsYTlABzzzzjGJjY9W5c2d16dJFs2bN0oULFxQXF2fv0n7zCgoKrP7mnZmZqYyMDNWvX1/Nmze3Y2W/ffHx8frkk0/05ZdfysPDwzIG3NPTU7Vr17Zzdb99kydPVr9+/dS8eXPl5+frk08+UUpKilavXm3v0pyCh4dHqfHfderUkZeXF+PCq8HEiRPVv39/+fn56cSJE5oyZYrMZrOio6PtXZpTmDBhgrp3764ZM2bo0UcfVVpamhYuXKiFCxfat7Bbni/BSc2ePdto3ry54erqanTp0sXYvHmzvUtyCsnJyYakUltsbKy9S/vNK+u5SzIWLVpk79KcwogRIww/Pz/D1dXVaNiwoXHvvfcaX3/9tb3LcmpMsVV9hgwZYvj4+Biurq5GkyZNjCFDhhiHDh2yd1lO5auvvjLatWtnuLm5GSEhIcbChQvtXZJhMoxyrO8FAAAA/A9gTCwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAcAJHjhyRyWRSRkaGvUsBgEpBiAWAChg+fLgGDhxo2Y+MjNT48ePtVk9mZqb+8Ic/yNfXV7Vq1VLTpk01YMAA7du3T5LUrFkzZWVlsUQqgN8MF3sXAAC4NVeuXFHv3r0VHByszz//XD4+Pjp+/LiSkpJ0/vx5SZLZbJa3t7d9CwWASkRPLADcouHDhys1NVVvv/22TCaTTCaTjhw5IknatWuX+vXrJ3d3dzVu3FjDhg3T6dOnLfdGRkZq7NixGj9+vOrVq6fGjRvrvffe04ULFxQXFycPDw8FBgYqKSnput+/e/duHT58WPPmzVO3bt3k5+en8PBwTZs2Td26dZNUejjB8OHDLbX+cktJSZEkFRYWauLEiWrSpInq1Kmjrl27Ws4BwP8CQiwA3KK3335bYWFheuKJJ5SVlaWsrCw1a9ZM58+fV8+ePRUaGqr09HStWrVKJ0+e1KOPPmp1/+LFi9WgQQOlpaVp7NixGj16tAYPHqzu3bvr+++/13333adhw4bpv//9b5nf37BhQ9WoUUPLly9XcXGxzTVfqzUrK0vjxo1To0aNFBISIkkaM2aMNm3apKVLl+qHH37Q4MGD1bdvXx08ePDWHhYAVBKTYRiGvYsAAEczfPhwnT9/Xl988YWkqz2qHTt21KxZsyzXTJs2TRs2bNDq1astx44fP65mzZpp//79CgoKUmRkpIqLi7VhwwZJUnFxsTw9PTVo0CB9+OGHkqTs7Gz5+Pho06ZNlp7VX5s7d66ee+45mc1mde7cWVFRUYqJiVFAQICkqz2xLVq00Pbt29WxY0erez///HPFxMTom2++UXh4uI4ePaqAgAAdPXpUvr6+lut69eqlLl26aMaMGbf6+ADgltETCwBVZMeOHUpOTpa7u7tlu9bTefjwYct17du3t3w2m83y8vLSHXfcYTnWuHFjSVJOTs51vys+Pl7Z2dn6+OOPFRYWps8++0xt27bVmjVrbljj9u3bNWzYMM2ZM0fh4eGSpJ07d6q4uFhBQUFWtaemplrVDQD2xItdAFBFCgoK1L9/f7322mulzvn4+Fg+16xZ0+qcyWSyOmYymSRJJSUlN/w+Dw8P9e/fX/3799e0adPUp08fTZs2Tb179y7z+uzsbD344IN6/PHHNXLkSKu6zWaztm3bJrPZbHWPu7v7DWsAgOpCiAWASuDq6lpqPGqnTp20YsUK+fv7y8Wlen+7NZlMCgkJ0XfffVfm+UuXLmnAgAEKCQnRm2++aXUuNDRUxcXFysnJ0T333FMd5QJAuTGcAAAqgb+/v7Zs2aIjR47o9OnTKikpUXx8vM6ePavo6Ght3bpVhw8f1urVqxUXF2fzC1i2yMjI0IABA7R8+XLt2bNHhw4dUmJiot5//30NGDCgzHtGjRqlY8eO6Z133tGpU6eUnZ2t7OxsXb58WUFBQYqJidFjjz2mzz//XJmZmUpLS1NCQoL+/e9/V1rdAHAr6IkFgEowceJExcbGqk2bNrp48aIyMzPl7++vjRs36vnnn9d9992nwsJC+fn5qW/fvqpRo/L6EJo2bSp/f3+9/PLLlqm0ru1PmDChzHtSU1OVlZWlNm3aWB1PTk5WZGSkFi1apGnTpulPf/qTfv75ZzVo0EDdunXTAw88UGl1A8CtYHYCAAAAOByGEwAAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACH42LvAgAAAPDbFxcXZ9N1ixYtsuk6QiwAAACqXG5urtX+zz//rB07duh3v/tdhdojxAIAAKDKff7555bPx44dU2RkpK5cuaKgoCDNnDmz3O0xJhYAAADV5vjx44qMjFSTJk20du1azZ8/X3/961/L3Q49sQAAAKgWJ06cUFRUlHx9fZWUlKQ6deroyy+/1P3336/69evr8ccft7ktQiwAAACqXFZWliIjI9W4cWOtWrVKderUkSRFRkZqyZIlGjJkiOrWratHHnnEpvZMhmEYVVkwAAAAEBISIi8vL61evVru7u6lzn/44YcaNWqULl68aFN79MQCAACgynl5eWnVqlVlBlhJeuyxx3TmzBmb26MnFgAAAFWuoKDgugG2IgixAAAAqHK2LHZgGIY++OADm9ojxAIAAKDKDRo06LrniouL9c033+jixYsqKSmxqT3GxAIAAKDK/XKxg1/68ssv9cILL6hWrVqaMmWKze2x2AEAAACq3YYNG9S9e3dFR0frgQce0I8//qjnnnvO5vsJsQAAAKg2u3btUv/+/XXvvfeqbdu2OnTokF577TV5enqWqx1CLAAAAKrcTz/9pNjYWHXs2FEuLi7auXOn3nvvPfn6+laoPV7sAgAAQJWrVauWatSooaefflphYWHXvW7AgAE2tUeIBQAAQJVzcXHRzWKnYRg2z05AiAUAAIDDYUwsAAAAHA7zxAIAAKDa7NmzR/v371deXl6Z52NjY21qh+EEAAAAqHJ5eXl69NFHtWbNGrm4uKhOnTqlrjEMQ+fOnbOpPXpiAQAAUOWmTJminJwcbdu2TR07drzl9uiJBQAAQJULCgrSggUL1LNnz0ppjxe7AAAAUOVOnDihgICASmuPEAsAAIAq17RpU+3bt6/S2mNMLAAAAKrcoEGDNGHCBLm6uurOO++Up6fnLbXHmFgAAABUuf/+97964okntHTp0huu3MWKXQAAAPifk5WVpQMHDig3N7fM8w8++KBN7RBiK8gwDOXn58vDw0Mmk8ne5QAAADgVxsRWUH5+vjw9PZWbm6vbb7/d3uUAAAA4hLS0NH3yySc6cOCATCaTAgMDFRMToy5dupSrHWYnAADABoZh6NKlS7p06dINx/MBuL5JkyYpLCxMixYtUlZWlk6cOKEPPvhA3bp104svvliutgixAADYoLCwUIMHD9bgwYNVWFho73IAh7N8+XK9+eabmjVrls6ePavt27dr+/btOnv2rN555x399a9/1YoVK2xujxALAIANLl26VOZnALaZO3euJkyYoLFjx8psNluOm81mjRkzRn/60580Z84cm9sjxAIAAKDKbd++XQ899NB1zw8cOFDbt2+3uT1CLAAANvjl3JW2zmMJ4P+VlJTI19f3uud9fX1VXFxsc3uEWAAAbJCfn1/mZwC2admypQ4ePHjd8wcPHlTLli1tbq9CIfbYsWMaMWKEfH195erqKj8/P40bN05nzpyxXBMZGSmTySSTyaRatWopKChICQkJZb7RuWnTJpnNZt1///2lzh05ckQmk0mNGjUq9ZtGx44dNXXqVKtjhw4d0ogRI9S8eXO5ubmpSZMmuvfee/Xxxx+rqKjIct212n69LV26tCKPBAAAADfwyCOP6N13373u+QULFujhhx+2ub1yh9gff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W11+b3uGX28CBA8v7SAAAAHATY8eO1T333FPmSl15eXnq0aOHxowZY3N75V7sID4+Xq6urvr6669Vu3ZtSVLz5s0VGhqqli1b6sUXX9T8+fMlSbfddpu8vb0lSXFxcZozZ47WrFmj0aNHW9orKCjQsmXLlJ6eruzsbH3wwQd64YUXSn3v2LFj9eabbyo+Pl6NGjUqdd4wDA0fPlxBQUHauHGjatT4/3zeqlUrRUdHl+oFrlu3rqU+AAAAVJ3bb79dY8eOLfe56ylXiD179qxWr16t6dOnWwLsNd7e3oqJidGyZcs0b948q3OGYejbb7/Vvn371KpVK6tzn376qUJCQhQcHKyhQ4dq/Pjxmjx5cqmlXKOjo7VmzRq98sorZU6/kJGRob1792rJkiVWAfaXWB4WAADAPhYvXmzTdbGxsTZdV64Qe/DgQRmGodatW5d5vnXr1jp37pxOnTolSZo3b57+/ve/6/Lly7py5Ypq1aqlp59+2uqexMREDR06VJLUt29f5ebmKjU1VZGRkVbXmUwmzZw5U/3799eECRNKDfw9cOCAJCk4ONhyLCcnRwEBAZb9v/71r/rjH/9o2Y+Ojraap0yS9uzZo+bNm5f62QoLC60mt87LyyvzGQAAAKC0CRMmWO0XFRXp4sWL8vDwsBwzDMPmEFuhF7tsXW4vJiZGGRkZ2rhxo/r166cXX3xR3bt3t5zfv3+/0tLSFB0dLUlycXHRkCFDlJiYWGZ7ffr00d13362//OUvNn2/l5eXMjIylJGRobp16+ry5ctW59966y3L+Wvb9aZ+SEhIkKenp2Vr1qyZTTUAAADg6r/oX9tOnjype+65R5L0/vvvW46fO3fO5vbKFWIDAwNlMpm0d+/eMs/v3btX9erVU8OGDSVJnp6eCgwM1F133aVPP/1Uc+bM0TfffGO5PjExUUVFRfL19ZWLi4tcXFw0f/58rVixosxBv5I0c+ZMLVu2rNRkuNeGKezfv99yzGw2KzAwUIGBgXJxKd3p7O3tbTl/o+skafLkycrNzbVsx44du8GTAgAAQFkuX76shx56SBkZGXrxxRf1hz/8QevWrSt3O+UKsV5eXurdu7fmzZunixcvWp3Lzs7Wxx9/rCFDhpQ59tTd3V3jxo3TxIkTZRiGioqK9OGHH+qNN96w6gndsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/31KpmE2s3NTbfffrvVBgAAANsVFRXpkUce0bZt27R27VpNnTpVr7zyigYOHKitW7eWq61yz04wZ84cde/eXX369NG0adPUokUL7d69W88++6yaNGmi6dOnX/feUaNG6dVXX9WKFSvk4uKic+fOaeTIkfL09LS67uGHH1ZiYqKeeuqpMtuZPn262rZta9VrajKZtGjRIvXu3Vvh4eGaPHmyWrdurStXrmj9+vU6depUqfGv58+fV3Z2ttUxDw8P1alTp7yPBQAAADdQXFysRx55RFu3blVycrJCQkIkSRMnTtTZs2f1u9/9TuvXr7/uu1e/Vu4xsa1atVJ6eroCAgL06KOPqmXLlnryyScVFRWlTZs2qX79+te9t379+nrsscc0depUJSYmqlevXqUCrHQ1xKanp+uHH34os52goCCNGDFCly5dsjrerVs3bdu2TcHBwYqPj1ebNm3UvXt3LVmyRG+99ZbV1F7S1Wm/fHx8rLbZs2eX95EAAADgJgYPHqzNmzdr3bp1lgB7zYwZM/Twww+rT58+NrdnMmx9SwtW8vLy5OnpqdzcXIYWAIATOHv2rOWt6cWLF9+w0wZAad7e3lq3bp3atGlz3WuGDBmiZcuW2dRehWYnAADA2fxyDvLrzUcO4PpuFmAl6eOPP7a5vXKPiQUAAADKa+vWrTd9eevaCqy2IMQCAACgyo0YMUJ16tS57nSmEiEWAIBKV6tWrTI/A7Ddhg0b1KFDh0ppixALAIAN3Nzc9Nlnn1k+A7AvQiwAADYwmUz0wAL/Q3i9EgAAAA6HEAsAAIAq17Jly0odisNwAgAAAFS5AwcOVGp7hFgAAABUubi4OJuuW7RokU3XsexsBbHsLAAAgO3MZrP69u1rGVJw4cIFrVu3Tv3795ckFRYWKikpSSUlJTa1R4itIEIsAACA7cxms06cOKHGjRtLkjIzM9W+fXvl5+dLkk6dOiVvb28VFxfb1F6Vv9i1YMECeXh4qKioyHKsoKBANWvWVGRkpNW1KSkpMplMOnz4sPz9/TVr1qxS7U2dOlUdO3Ysc9/f318mk+m627UVIK53funSpZX80wMAAKAsv+5HNQyj1LEbqfIxsVFRUSooKFB6erq6desm6epqDd7e3tqyZYsuXbpkmXcvOTlZzZs3V8uWLSv0XVu3brWk9++++04PP/yw9u/fb+kprV27tuXaRYsWqW/fvlb3161bt0LfCwAAgOpV5SE2ODhYPj4+SklJsYTYlJQUDRgwQOvWrdPmzZstPbIpKSmKioqq8Hc1bNjQ8rl+/fqSpEaNGpUZTuvWrStvb+8KfxcAAABujclkuuH+jVTLPLFRUVFKTk627CcnJysyMlIRERGW4xcvXtSWLVtuKcRWpcLCQuXl5VltAAAAsE1wcLBcXP6//7R+/fp64YUXLPtubm7q06ePze1VW4jduHGjioqKlJ+fr+3btysiIkI9evRQSkqKJGnTpk0qLCy0CrHPP/+83N3drbYZM2ZUSk3R0dGl2j569Oh1r09ISJCnp6dla9asWaXUAQAA4Az27NkjLy8vy37dunU1adIky76np6f+85//2NxetcwTGxkZqQsXLmjr1q06d+6cgoKC1LBhQ0VERCguLk6XLl1SSkqKAgIC1Lx5c8t9zz77rOVlrGveeecdrV+//pZreuutt9SrVy+rY76+vte9fvLkyXrmmWcs+3l5eQRZAAAAO6mWEBsYGKimTZsqOTlZ586dU0REhKSrobFZs2b67rvvlJycrJ49e1rd16BBAwUGBloduzbW9VZ5e3uXavtG3NzcKnWpNAAAAFRctQwnkK4OKUhJSVFKSorV1Fo9evRQUlKS0tLS/mfHwwIAAOB/S7UtOxsVFaX4+HhduXLF0hMrSRERERozZowuX75crSH2/Pnzys7Otjrm4eGhOnXqVFsNAAAAqJhq7Ym9ePGiAgMDLSs1SFdDbH5+vmUqruoSFxcnHx8fq2327NnV9v0AAACoOJadrSCWnQUAALDdyy+/bNN1U6ZMsek6QmwFEWIBAABs16lTJ6v9y5cva9++fWrfvr3lmGEY2r59u03tEWIriBALAABQcZmZmWrfvr3y8/MrdH+1jYkFAAAArrnVftRqm53gt+bag2f5WQAA4Ew8PDxkMpnsXQYhtqLOnDkjSazaBQAAnEpOTo4aNmxo7zIIsRV1beWwo0ePytPT087VOJ9ry/4eO3aMMcl2wPO3L56//fDs7Yvnb1/Xnr+rq2uF7v/pp5+s9o8fPy7DMHTkyBGrnl0/Pz+b2iPEVlCNGleHE3t6evI/kh3dfvvtPH874vnbF8/ffnj29sXzt6+KDiUICAiwGgd7rZ2AgADLvmEYKikpsak9QiwAAACqnK1TZ9mKEAsAAIAq98v5YCsDIbaC3NzcNGXKFLm5udm7FKfE87cvnr998fzth2dvXzx/+7rV5//rMbHXY+uYWBY7AAAAQJUzm80yDMMy9vXXGBMLAACA/0nffPONGjRoIOnq7ASPPvqovvvuO0nS2bNn1bNnT5vbIsQCAACgWrRt21aNGzeWJLm7u8tkMlnGyubk5JSrLZadBQAAgMMhxAIAAKDKVfZrWITYCpo7d678/f1Vq1Ytde3aVWlpafYuySmsX79e/fv3l6+vr0wmk7744gt7l+Q0EhISdNddd8nDw0ONGjXSwIEDtX//fnuX5TTmz5+v9u3bWyZ5DwsLU1JSkr3LclozZ86UyWTS+PHj7V2KU5g6dapMJpPVFhISYu+ynMrPP/+soUOHysvLS7Vr19Ydd9yh9PT0crVR1iIJvz5WnoUUCLEVsGzZMj3zzDOaMmWKvv/+e3Xo0EF9+vQp91gOlN+FCxfUoUMHzZ07196lOJ3U1FTFx8dr8+bNWrNmja5cuaL77rtPFy5csHdpTqFp06aaOXOmtm3bpvT0dPXs2VMDBgzQ7t277V2a09m6davefffdSp/zEjfWtm1bZWVlWbZvv/3W3iU5jXPnzik8PFw1a9ZUUlKS9uzZozfeeEP16tUrVztLlixR3bp1LfsBAQHKy8uz7Ht5eWnTpk02t8cUWxXQtWtX3XXXXZozZ44kqaSkRM2aNdPYsWM1adIkO1fnPEwmk1auXKmBAwfauxSndOrUKTVq1Eipqanq0aOHvctxSvXr19ff/vY3jRw50t6lOI2CggJ16tRJ8+bN07Rp09SxY0fNmjXL3mX95k2dOlVffPGFMjIy7F2KU5o0aZI2btyoDRs23FI7b775poYNG6aGDRtWSl30xJbT5cuXtW3bNvXq1ctyrEaNGurVq1e5/vYAOLrc3FxJV4MUqldxcbGWLl2qCxcuKCwszN7lOJX4+Hjdf//9Vn8GoHocPHhQvr6+CggIUExMjI4ePWrvkpzGP//5T3Xu3FmDBw9Wo0aNFBoaqvfee6/c7UyfPl1NmzbVI488oqSkJJvng70eQmw5nT59WsXFxZbpIa5p3LixsrOz7VQVUL1KSko0fvx4hYeHq127dvYux2ns3LlT7u7ucnNz01NPPaWVK1eqTZs29i7LaSxdulTff/+9EhIS7F2K0+natas++OADrVq1SvPnz1dmZqbuuece5efn27s0p/Djjz9q/vz5atWqlVavXq3Ro0fr6aef1uLFi8vVTk5Ojv71r3/Jzc1N999/v/z8/PTnP/9Zhw8frlBdzBMLoNzi4+O1a9cuxqRVs+DgYGVkZCg3N1fLly9XbGysUlNTCbLV4NixYxo3bpzWrFmjWrVq2bscp9OvXz/L5/bt26tr167y8/PTp59+ynCaalBSUqLOnTtrxowZkqTQ0FDt2rVLCxYsUGxsrM3tmM1m9e7dW02aNNFnn32md955Rx999JHuuOMOdevWTSNHjtTDDz9s8/9j9MSWU4MGDWQ2m3Xy5Emr4ydPnpS3t7edqgKqz5gxY/Svf/1LycnJatq0qb3LcSqurq4KDAzUnXfeqYSEBHXo0EFvv/22vctyCtu2bVNOTo46deokFxcXubi4KDU1Ve+8845cXFxUXFxs7xKdSt26dRUUFKRDhw7ZuxSn4OPjU+ovy61bt76lIR2GYeihhx7SihUrlJ2drejoaC1cuFC+vr42t0GILSdXV1fdeeedWrt2reVYSUmJ1q5dy9g0/KYZhqExY8Zo5cqVWrdunVq0aGHvkpxeSUmJCgsL7V2GU7j33nu1c+dOZWRkWLbOnTsrJiZGGRkZMpvN9i7RqRQUFOjw4cPy8fGxdylOITw8vNSUigcOHJCfn1+ltF9cXCzDMGQYhlxcbB8kwHCCCnjmmWcUGxurzp07q0uXLpo1a5YuXLiguLg4e5f2m1dQUGD1N+/MzExlZGSofv36at68uR0r++2Lj4/XJ598oi+//FIeHh6WMeCenp6qXbu2nav77Zs8ebL69eun5s2bKz8/X5988olSUlK0evVqe5fmFDw8PEqN/65Tp468vLwYF14NJk6cqP79+8vPz08nTpzQlClTZDabFR0dbe/SnMKECRPUvXt3zZgxQ48++qjS0tK0cOFCLVy48JbaXb58uT755BOtWrVK99xzj8aOHVu+GYcMVMjs2bON5s2bG66urkaXLl2MzZs327skp5CcnGxIKrXFxsbau7TfvLKeuyRj0aJF9i7NKYwYMcLw8/MzXF1djYYNGxr33nuv8fXXX9u7LKcWERFhjBs3zt5lOIUhQ4YYPj4+hqurq9GkSRNjyJAhxqFDh+xdllP56quvjHbt2hlubm5GSEiIsXDhwnK3cfnyZSMpKcn4wx/+YNSoUcPw9/c3Xn75ZePo0aMVqol5YgEAAFDlvLy89N///lcPPfSQRo4cqXvvvfeW2iPEAgAAoMrNmTNHQ4cOtVq161YQYgEAAOBweLELAAAAVc6WWW0Mw9CRI0dsao+eWAAAAFQ5s9msV155RR4eHmWeLygo0J///Gebl6MlxAIAAKDKmc1mnThxQo0bNy7zfE5Ojry9vW0OsSx2AAAAgCrn6uqqK1euXPf85cuXy7WsMyEWAAAAVc7b21uZmZnXPX/kyJHr9tKWhRALAACAKtetWzf94x//uO75f/zjH+rSpYvN7RFiAcAJHDlyRCaTSRkZGfYuBYCTGj16tN5//3299NJLOnv2rOX4uXPnNHXqVP3973/XU089ZXN7hFgAqIDhw4dbrfEdGRmp8ePH262ezMxM/eEPf5Cvr69q1aqlpk2basCAAdq3b58kqVmzZsrKylK7du3sViMA59ajRw/NnDlTM2fOVMOGDeXt7S0fHx81aNBA06dP17Rp0xQVFWVze8wTCwAO7sqVK+rdu7eCg4P1+eefy8fHR8ePH1dSUpLOnz8v6epbwd7e3vYtFIDTmzhxogYNGqQvvvhCmZmZMgxD/v7+GjBggFq1alW+xgwAQLnFxsYaAwYMsHyWZLVlZmYahmEYO3fuNPr27WvUqVPHaNSokTF06FDj1KlTlnYiIiKMMWPGGOPGjTPq1q1rNGrUyFi4cKFRUFBgDB8+3HB3dzdatmxp/Oc//7luLdu3bzckGUeOHLnuNZmZmYYkY/v27detWZKRnJxsGIZhXLp0yfjTn/5k+Pr6GrfddpvRpUsXyzkA+F/AcAIAuEVvv/22wsLC9MQTTygrK0tZWVlq1qyZzp8/r549eyo0NFTp6elatWqVTp48qUcffdTq/sWLF6tBgwZKS0vT2LFjNXr0aA0ePFjdu3fX999/r/vuu0/Dhg3Tf//73zK/v2HDhqpRo4aWL1+u4uJim2u+VmtWVpbGjRunRo0aKSQkRJI0ZswYbdq0SUuXLtUPP/ygwYMHq2/fvjp48OCtPSwAqCQsdgAAFTB8+HCdP39eX3zxhaSrY2I7duyoWbNmWa6ZNm2aNmzYoNWrV1uOHT9+XM2aNdP+/fsVFBSkyMhIFRcXa8OGDZKk4uJieXp6atCgQfrwww8lSdnZ2fLx8dGmTZvUrVu3MuuZO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKsvdrVo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYfl2LV5E3Nycq77XfHx8crOztbHH3+ssLAwffbZZ2rbtq3WrFlzwxq3b9+uYcOGac6cOQoPD5ck7dy5U8XFxQoKCrKqPTU11apuALAnXuwCgCpSUFCg/v3767XXXit1zsfHx/K5Zs2aVudMJpPVMZPJJEk3XYrRw8ND/fv3V//+/TVt2jT16dNH06ZNU+/evcu8Pjs7Ww8++KAef/xxjRw50qpus9msbdu2yWw2W93j7u5+wxoAoLoQYgGgEri6upYaj9qpUyetWLFC/v7+cnGp3t9uTSaTQkJC9N1335V5/tKlSxowYIBCQkL05ptvWp0LDQ1VcXGxcnJydM8991RHuQBQbgwnAIBK4O/vry1btujIkSM6ffq0SkpKFB8fr7Nnzyo6Olpbt27V4cOHtXr1asXFxdn8ApYtMjIyNGDAAC1fvlx79uzRoUOHlJiYqPfff18DBgwo855Ro0bp2LFjeuedd3Tq1CllZ2crOztbly9fVlBQkGJiYvTYY4/p888/V2ZmptLS0pSQkKB///vflVY3ANwKemIBoBJMnDhRsbGxatOmjS5evKjMzEz5+/tr48aNev7553XfffepsLBQfn5+6tu3r2rUqLw+hKZNm8rf318vv/yyZWWua/sTJkwo857U1FRlZWWpTZs2VseTk5MVGRmpRYsWadq0afrTn/6kn3/+WQ0aNFC3bt30wAMPVFrdAHArmJ0AAAAADofhBAAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcFzsXQAAAAB+++Li4my6btGiRTZdR4gFAABAlcvNzbXav3DhgtatW6f+/ftXqD2TYRhGZRQGAAAA2CozM1Pt27dXfn5+he5nTCwAAACq3a32oxJiAQAA4HAIsQAAAHA4vNgFAACAKpeammq1//PPP6u4uFgpKSkymUyW4xERETa1x4tdAAAAqHJms1mGYVgF1l8zDEMlJSU2tUdPLAAAAKrcuXPnKrU9emIBAADgcHixCwAAANVm6dKlGjhwoNq0aaM2bdpo4MCBWrZsWbnboScWAAAAVa6kpESDBw/WF198oVatWql169YymUzau3ev9u/fr4cffljLli1TjRq29bEyJhYAAABVbtasWUpNTdU///lP3X///Vbn/vOf/2jYsGF6++23NWHCBJvaoycWAAAAVa59+/YaP368RowYUeb5RYsW6a233tIPP/xgU3uEWAAAAFS52rVra9++ffLz8yvz/E8//aSQkBBdvHjRpvZ4sQsAAABVrlatWsrNzb3u+by8PNWuXdvm9gixAAAAqHJhYWGaO3fudc/PmTNH3bp1s7k9XuwCAABAlXvppZcUERGh06dP609/+pPatGkjSdq7d6/eeOMN/fOf/1RKSorN7TEmFgAAANXiq6++0siRI3X69Gmr4w0aNNDf//53Pfjggza3RYgFAABAtbl48aLWrFmjAwcOSJKCgoLUu3fvco2HlQixAAAA+B+xf/9+BQcH23QtY2IBAABgF4cPH1ZycrJly87OVklJiU33EmIBAABQLY4cOWIJrCkpKTp+/Ljc3d119913a/z48YqMjLS5LYYTAAAAoMq1aNFCP/30k+rUqaPw8HBFRUUpMjJSd911l2rUKP+sr4RYAAAAVDkXFxe5u7srLi5OvXv31j333CMPD48Kt0eIBQAAQJXLyclRamqqUlNTlZKSogMHDig0NFSRkZGKiorS3XffLXd3d5vbI8QCAACg2p05c0YpKSmWULt//36FhoZq8+bNNt3Pi10AAACodl5eXgoPD1dJSYlKSkqUm5urHTt22Hw/PbEAAACoFseOHVNqaqrWr1+v9evX66efflLXrl3Vs2dPRUZGqlu3bnJ1dbWpLUIsAAAAqlxAQIBOnDihrl27KjIyUj179lRYWJjNofXXyj+fAQAAAFBOR48elclkkmEYMgzDMoygouiJBQAAQJU7efKkUlJSLIsdHDp0SK6ururSpYuioqIUERGh7t27y83Nzab2CLEAAACodj///LPVkrM//fSTXF1ddfHiRZvuJ8QCAADA7o4ePaq1a9cqLi7OpusJsQAAAHA4zBMLAACAKmdLD6thGPrggw9sao+eWAAAAFQ5s9msvn37XvfFrcLCQiUlJdk8YwEhFgAAAFXObDbrxIkTaty4cZnnT506JW9vbxUXF9vUHvPEAgAAoMq5uLjcMKAWFRXJbDbb3B4hFgAAAFWuXr16Onny5HXPnzx5UvXr17e5PUIsAAAAqlyHDh2UlJR03fOrVq1S+/btbW6PEAsAAIAqFxMTo5kzZ2rdunWlziUnJ2vGjBmKjo62uT1e7AIAAEC1GDhwoP75z3/qjjvuUOvWrWUymbRv3z7t2LFDv/vd7/TVV1/JZDLZ1BYhFgAAANXCMAz94x//0PLly5WZmSnDMOTv769BgwZp+PDhqlHD9kEChFgAAAA4HMbEAgAAwOGw7CwAAACqXIsWLW56jWEYOnLkiE3tMZwAAAAAVc5sNuuVV16Rh4eHJOn06dP629/+ptdee02SVFBQoD//+c8sOwsAAID/Hb9edvbHH39Uhw4dlJ+fL0nKycmRt7e3zSGWMbEAAABwOIRYAAAAOBxCbAUZhqG8vDwxGgMAAKBifr2wga0LHUiE2ArLz8+Xp6enZRwHAAAArm/UqFG67bbbLPtNmjRRUlKSZd/Dw0MJCQk2t8eLXRWUl5cnT09P5ebm6vbbb7d3OQAAAE6FeWIBAABQ5X766SebrvPz87PpOkIsAAAAqlxAQIAMw5DJZLJ6p+jX+7ZOsUWIBQAAQJXbvn17mccNw9CSJUs0e/Zsy0IItiDEAgAAoMq1b9++1LGvv/5akydP1qFDh/Tcc89p4sSJNrdHiAUAAEC12rp1qyZNmqRvv/1WTz75pFavXq0GDRqUq40KTbF17NgxjRgxQr6+vnJ1dZWfn5/GjRunM2fOWK6JjIyUyWSSyWRSrVq1FBQUpISEhDLnVd20aZPMZrPuv//+UueOHDkik8mkRo0alZrOqmPHjpo6darVsUOHDmnEiBFq3ry53Nzc1KRJE9177736+OOPVVRUZLnuWm2/3pYuXVqRRwIAAICbOHjwoIYMGaLu3bvLx8dH+/bt0+zZs8sdYKUKhNgff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W1y9atEhZWVlW28CBA8v7SAAAAHATTz31lNq2bavc3Fxt3bpVH330kVq0aFHh9so9T2y/fv20a9cuHThwQLVr17Ycz87OVsuWLfXYY49p/vz5ioyMVMeOHTVr1izLNXfeeaf8/Pz0+eefW44VFBTIx8dH6enpmjJlitq3b68XXnjBcv7IkSNq0aKFnn32Wc2fP1+HDx9Wo0aNJF3tiR04cKCmTp0qwzDUtm1b3XbbbUpLS1ONGqXz+bU34qSrPbErV66scGhlnlgAAADbmc1m1apVS8HBwTdc8fR6L4D9WrnGxJ49e1arV6/W9OnTrQKsJHl7eysmJkbLli3TvHnzrM4ZhqFvv/1W+/btU6tWrazOffrppwoJCVFwcLCGDh2q8ePHa/LkyaWWHYuOjtaaNWv0yiuvaM6cOaVqy8jI0N69e7VkyZIyA6xUvqXMfq2wsFCFhYWW/by8vAq3BQAA4GymTJlSqe2VK8QePHhQhmGodevWZZ5v3bq1zp07p1OnTkmS5s2bp7///e+6fPmyrly5olq1aunpp5+2uicxMVFDhw6VJPXt21e5ublKTU1VZGSk1XUmk0kzZ85U//79NWHCBLVs2dLq/IEDByRJwcHBlmM5OTkKCAiw7P/1r3/VH//4R8t+dHS0zGazVTt79uxR8+bNS/1sCQkJevnll8v8uQEAAHBjL730UqW2V6EXu2wdgRATE6OMjAxt3LhR/fr104svvqju3btbzu/fv19paWmKjo6WJLm4uGjIkCFKTEwss70+ffro7rvv1l/+8hebvt/Ly0sZGRnKyMhQ3bp1dfnyZavzb731luX8tc3X17fMtiZPnqzc3FzLduzYMZtqAAAAQOUrV09sYGCgTCaT9u7dq4ceeqjU+b1796pevXpq2LChJMnT01OBgYGSrg4bCAwMVLdu3dSrVy9JV3thi4qKrIKjYRhyc3PTnDlz5OnpWeo7Zs6cqbCwMD377LNWx68NU9i/f79CQ0MlXR17ce37XVxK/6je3t6W8zfj5uYmNzc3m64FAABA1SpXT6yXl5d69+6tefPm6eLFi1bnsrOz9fHHH2vIkCFljj11d3fXuHHjNHHiRBmGoaKiIn344Yd64403rHpCd+zYIV9fXy1ZsqTMGrp06aJBgwZp0qRJVsdDQ0MVEhKi119/3eblygAAAOCYyr3YwZw5c9S9e3f16dNH06ZNU4sWLbR79249++yzatKkiaZPn37de0eNGqVXX31VK1askIuLi86dO6eRI0eW6nF9+OGHlZiYqKeeeqrMdqZPn662bdta9a6aTCYtWrRIvXv3Vnh4uCZPnqzWrVvrypUrWr9+vU6dOlVq/Ov58+eVnZ1tdczDw0N16tQp72MBAABANSr3mNhWrVopPT1dAQEBevTRR9WyZUs9+eSTioqK0qZNm1S/fv3r3lu/fn099thjmjp1qhITE9WrV68yhww8/PDDSk9P1w8//FBmO0FBQRoxYoQuXbpkdbxbt27atm2bgoODFR8frzZt2qh79+5asmSJ3nrrLY0ePdrq+ri4OPn4+Fhts2fPLu8jAQAAQCXYv3+/zdeWe55YXMU8sQAAALfm8OHDSk5OtmzZ2dk2Dwst93ACAAAAoCKOHDliCawpKSk6fvy43N3ddffdd2v8+PGlpli9EUIsAAAAqlyLFi30008/qU6dOgoPD1d8fLwiIyN11113XXehqhshxAIAAKDKHTt2TLfffrvi4uLUu3dv3XPPPfLw8KhwexVa7AAAAAAojxMnTui9997TlStX9Nxzz8nLy0tdu3bV888/r1WrVqmgoKBc7fFiVwXxYhcAAEDFnTlzRikpKUpNTVVKSoplwarNmzfbdD/DCeBwDMNQYWGhvcsA7OKXv/7d3NzKXFwG+K3j1/5vg5eXl8LDw1VSUqKSkhLl5uZqx44dNt9PiIXDKSws1ODBg+1dBgDATj777DPVqlXL3mWgAo4dO6bU1FStX79e69ev108//aSuXbuqZ8+e+sc//qFu3brZ3BYhFgAAAFUuICBAJ06cUNeuXRUZGal3331XYWFhcnV1rVB7hFg4tNmvPiE315r2LgOoNoWXr2jsX96TxK9/OJdf/tqHYzp69Khq1qwpwzBkGIZlGEFFEWJvEe/F2Zeba025ufGHOJwTv/7hTH755y1/9jqmn3/+WSkpKUpOTtayZcs0ffp0ubq6qkuXLoqKilJERIS6d+8uNzc3m9ojxN4iXjACAKDqXb5SZPlcWFio2rVr27EaVETjxo01ZMgQ/V97dx7U1PX2AfwbAgEUBBcIIEtcitQqoKKojLKIWyvitKOORQxorbVxQes6OhV/MmBra9W64liq4zhWrVq7oLWa4C6KUrepVcBxA8EphkUIGPL+4ZDXFNSwJLeY72cmM7kn9548nkmbJ4fnnjN+/HgAz5Pa2t27duzYgRUrVkAikaCiosKo/ky+TuzmzZvh6OiIZ8/+/8NXVlYGGxubOluLqVQqiEQi5OTkQCaTYc2aNXX6S0xMRGBgYL3HMpkMIpHopY+4uDgAeOnru3fvbuZ/PRERERHVp2PHjpg4cSK2bduG3Nxc5OXlYePGjUZfb/KZ2PDwcJSVleHixYv6O85OnjwJNzc3nD9/HpWVlfo7DJVKJby9vdGlS5dGvdeFCxeg1WoBAGfOnMEHH3yAmzdv6tdxffFXW1paGkaMGGFwvbOzc6Pel4iIiIiaxtvbG/Hx8Uafb/Iktlu3bnB3d4dKpdInsSqVCtHR0Th+/DjOnTunn5FVqVQIDw9v9Hu5uLjon7dr1w4A4OrqWm9y6uzsDDc3t0a/B2svWgAAEfNJREFUFxEREREZz9gENS0tzajzzFITGx4eDqVSiUWLFgF4PuO6YMECaLVaKJVKhIWFoaKiAufPn8fkyZPNEVKzqaysRGVlpdBhWJQXx5vF/URERC2DWq02OC4vL8fx48cRFRXVqP7MlsQmJCTg2bNnqKiowOXLlxEaGorq6mps3rwZAHD27FloNBqDmdiFCxdi6dKlBn1VVVWhe/fuTY5pwoQJEIvFBm03btyAt7d3vedrNBqDm7hKSkoAAB9//DFsbHh3sFCqqp/Bzq5x68sRERGR+ezfv9/gOC8vD/7+/nXajWWWJDYsLAzl5eW4cOECiouL4evrCxcXF4SGhiI+Ph6VlZVQqVTo3LmzQRI5f/58/c1YtdatW4cTJ040OaZvvvkGkZGRBm0eHh4vPT8lJQXLly9v8vsSERERUdP/mmqWJLZr167w9PSEUqlEcXExQkNDATxPGr28vHDmzBkolUpEREQYXNehQwd07drVoK221rWp3Nzc6vT9KosXL8bcuXP1xyUlJfDy8kJqaipcXV2bJSYyTmVlJWJjYwEAEhuuEkdERGSJzJYBhIeHQ6VSobi4GPPnz9e3Dx48GOnp6cjMzMT06dPNFU6D2dra1rv4rp2dHfdvFpBIJBI6BCIiIhKAWZNYhUKB6upq/UwsAISGhmLGjBmoqqpq0soEDfXkyRMUFBQYtDk6OqJ169Zmi4GIiIjIUmRkZBgcP3jwAFqtVr9PQK0X88RXMWsSW1FRAT8/P0ilUn17aGgoSktL9UtxmUt9yzykpKToV1AgIiIiouYTEREBnU5X56+oQ4YM0T/X6XSoqakxqj+zJbEymazeAl4fH5962+/cuVNvP4mJiUhMTHzpca2wsLCXFgw357JMxu7vS0RERI334j0Q/O5tmYqLi5u1P94V00SsySQiIjK9F79v+d3bMtXuoNpcmMRSi6apqhY6BCKzevEzz88/WRJ+3lu+f9fEvoyxNbEiHbc8apSSkhI4OTlBrVY3+y8LerXKykqMHTtW6DCIiEgge/fu5cpALZBYLK63JvZF/8maWCIiIiKyXM1dE8uZ2EZSq9VwdnbGvXv3OBNrZjqdzmALYCJL8uLn39bWlrWBZJH42ReWo6OjSca/tLQUs2bNQlpamlHnM4ltpNzcXHTp0kXoMIiIiIjMqrCwEC4uLibp183NjeUEpla7/e3du3fh5OQkcDSWp3bbX86EC4PjLyyOv3A49sLi+AurdvwlEonJ3qMhM7xMYhvJysoKAODk5MT/kATUpk0bjr+AOP7C4vgLh2MvLI6/sExZytGQAgEmsURERERkcrWrEzQXJrFEREREZHIHDhx45etqtRpyudzo/pjENpKtrS2WLVvGre8EwvEXFsdfWBx/4XDshcXxF1ZTx3/06NGvfL2wsLBB/XF1AiIiIiISXENXJ7AycTxERERERK8lFoshk8mMPp8zsURERETU4rAmloiIiIhMLjw8/LXn6HQ6qFQqo/rjTCwRERERmZxYLMbUqVPRqlUrAM9XI9i5cycUCgUA4OnTp0hNTWVNrKlt2LABMpkMdnZ2CA4ORmZmptAhWYQTJ04gKioKHh4eEIlEOHjwoNAhWYyUlBT07dsXjo6OcHV1xZgxY3Dz5k2hw7IYmzZtgr+/v36R9wEDBiA9PV3osCzWypUrIRKJkJCQIHQoFiExMREikcjg4efnJ3RYFuXBgweYOHEi2rdvD3t7e/Ts2RMXL15scD/Lly/H6tWrsXr1aixZsgQSiUR//L///a9BfTGJbYQffvgBc+fOxbJly3Dp0iUEBARg+PDhDV4aghquvLwcAQEB2LBhg9ChWJyMjAwoFAqcO3cOR48eRXV1NYYNG4by8nKhQ7MInp6eWLlyJbKysnDx4kVEREQgOjoa169fFzo0i3PhwgVs2bIF/v7+QodiUd555x3k5+frH6dOnRI6JItRXFyMkJAQ2NjYID09HTdu3MDXX3+Ntm3bChoXywkaITg4GH379sX69esBADU1NfDy8sLMmTOxaNEigaOzHCKRCAcOHMCYMWOEDsUiFRUVwdXVFRkZGRg8eLDQ4Vikdu3aYdWqVZgyZYrQoViMsrIy9O7dGxs3bkRSUhICAwOxZs0aocN64yUmJuLgwYPIzs4WOhSLtGjRIpw+fRonT55sUj9isRgPHz6EVCoFAOTm5iIgIAClpaUAuMSWyVVVVSErKwuRkZH6NisrK0RGRuLs2bMCRkZkXmq1GsDzRIrMS6vVYvfu3SgvL8eAAQOEDseiKBQKvPfeewbfAWQet27dgoeHBzp37oyYmBjcvXtX6JAsxqFDhxAUFISxY8fC1dUVvXr1wtatW5ulb5FI9MrjV2ES20CPHz+GVqvV/4qoJZVKUVBQIFBUROZVU1ODhIQEhISEoEePHkKHYzGuXr0KBwcH2Nra4pNPPsGBAwfQvXt3ocOyGLt378alS5eQkpIidCgWJzg4GN9//z0OHz6MTZs2IS8vD4MGDdLP4JFp5ebmYtOmTXjrrbdw5MgRTJ8+HbNmzcL27dsb1M/w4cMNdvuSSqXYsmWL/rhVq1aYNm2a0f1xiS0iajCFQoFr166xJs3MunXrhuzsbKjVauzbtw9yuRwZGRlMZM3g3r17mD17No4ePQo7Ozuhw7E4I0eO1D/39/dHcHAwfHx8sGfPHpbTmEFNTQ2CgoKQnJwMAOjVqxeuXbuGzZs3Qy6XG93Pb7/9ZnDcunVrTJgwQX/s4OCAjRs3Gt0fZ2IbqEOHDhCLxXj06JFB+6NHj+Dm5iZQVETmM2PGDPzyyy9QKpXw9PQUOhyLIpFI0LVrV/Tp0wcpKSkICAjA2rVrhQ7LImRlZaGwsBC9e/eGtbU1rK2tkZGRgXXr1sHa2hparVboEC2Ks7MzfH19cfv2baFDsQju7u51fiy//fbbgpd0MIltIIlEgj59+uDYsWP6tpqaGhw7doy1afRG0+l0mDFjBg4cOIDjx4+jU6dOQodk8WpqaqDRaIQOwyIMGTIEV69eRXZ2tv4RFBSEmJgYZGdnQywWCx2iRSkrK0NOTg7c3d2FDsUihISE1FlS8e+//4aPj49AET3HcoJGmDt3LuRyOYKCgtCvXz+sWbMG5eXliI+PFzq0N15ZWZnBL++8vDxkZ2ejXbt28Pb2FjCyN59CocCuXbvw008/wdHRUV8D7uTkBHt7e4Gje/MtXrwYI0eOhLe3N0pLS7Fr1y6oVCocOXJE6NAsgqOjY53679atW6N9+/asCzeDefPmISoqCj4+Pnj48CGWLVsGsVhs8KdoMp05c+Zg4MCBSE5Oxrhx45CZmYnU1FSkpqYKG5iOGuXbb7/VeXt76yQSia5fv366c+fOCR2SRVAqlToAdR5yuVzo0N549Y07AF1aWprQoVmEyZMn63x8fHQSiUTn4uKiGzJkiO73338XOiyLFhoaqps9e7bQYViE8ePH69zd3XUSiUTXsWNH3fjx43W3b98WOiyL8vPPP+t69Oihs7W11fn5+elSU1OFDknHdWKJiIiISHBcJ5aIiIiIWiSuE0tERERELU5DCgR4YxcRERERmdzrNkeo3QnSWKyJJSIiIiKTe9025TqdDmq12uiaWCaxRERERCS4oqIiSKVS3thFRERERC1HQ+dVmcQSERER0X8CVycgIiIDd+7cgUgkQnZ2ttChEBHVy8HBAaGhoUafzySWiKgR4uLiMGbMGP1xWFgYEhISBIsnLy8PH374ITw8PGBnZwdPT09ER0fjr7/+AgB4eXkhPz+fW6QS0X+SRqPB559/jlOnThl9DZfYIiJq4aqrqzF06FB069YN+/fvh7u7O+7fv4/09HQ8efIEACAWi+Hm5iZsoERE9cjKyoJcLodGo4FKpTL6Os7EEhE1UVxcHDIyMrB27VqIRCKIRCLcuXMHAHDt2jWMHDkSDg4OkEqliI2NxePHj/XXhoWFYebMmUhISEDbtm0hlUqxdetWlJeXIz4+Ho6OjujatSvS09Nf+v7Xr19HTk4ONm7ciP79+8PHxwchISFISkpC//79AdQtJ4iLi9PH+uKj9gtEo9Fg3rx56NixI1q3bo3g4OAGfbkQEb2OVqvF8uXLERISgoiICFy5cgUDBw40+nomsURETbR27VoMGDAAU6dORX5+PvLz8+Hl5YUnT54gIiICvXr1wsWLF3H48GE8evQI48aNM7h++/bt6NChAzIzMzFz5kxMnz4dY8eOxcCBA3Hp0iUMGzYMsbGxePr0ab3v7+LiAisrK+zbtw9ardbomGtjzc/Px+zZs+Hq6go/Pz8AwIwZM3D27Fns3r0bV65cwdixYzFixAjcunWraYNFRBZLLBbDyspK/7CxscGKFSuwZ88erFu3Dvb29g3qj+vEEhE1QlxcHJ48eYKDBw8CeD6jGhgYiDVr1ujPSUpKwsmTJ3HkyBF92/379+Hl5YWbN2/C19cXYWFh0Gq1OHnyJIDnMxNOTk54//33sWPHDgBAQUEB3N3dcfbsWf3M6r9t2LABCxYsgFgsRlBQEMLDwxETE4POnTsDeD4T26lTJ1y+fBmBgYEG1+7fvx8xMTH4448/EBISgrt376Jz5864e/cuPDw89OdFRkaiX79+SE5OburwEZEFOnTokMGxVqvFypUrUVRUhG3btiE8PLxB/bEmlojIRP78808olUo4ODjUeS0nJwe+vr4AAH9/f327WCxG+/bt0bNnT32bVCoFABQWFr70vRQKBSZNmgSVSoVz585h7969SE5OxqFDhzB06NCXXnf58mXExsZi/fr1CAkJAQBcvXoVWq1WH18tjUaD9u3bG/EvJyKqa/To0XXaoqOjkZycjHfffReTJ0/GqlWr0KpVK6P6YxJLRGQiZWVliIqKwhdffFHnNXd3d/1zGxsbg9dEIpFBW+26ia/bxcbR0RFRUVGIiopCUlIShg8fjqSkpJcmsQUFBRg9ejQ++ugjTJkyxSBusViMrKwsiMVig2vqS8iJiBrLysoKS5cuxahRoxAbG4sePXogNzfXqGuZxBIRNQOJRFKnHrV379748ccfIZPJYG1t3v/dikQi+Pn54cyZM/W+XllZiejoaPj5+WH16tUGr/Xq1QtarRaFhYUYNGiQOcIlIgsXGBiIS5cuYcmSJUZfwxu7iIiagUwmw/nz53Hnzh08fvwYNTU1UCgU+OeffzBhwgRcuHABOTk5OHLkCOLj442+AcsY2dnZiI6Oxr59+3Djxg3cvn0b27Ztw3fffYfo6Oh6r5k2bRru3buHdevWoaioCAUFBSgoKEBVVRV8fX0RExODSZMmYf/+/cjLy0NmZiZSUlLw66+/NlvcREQvsrGxwZdffmn0+ZyJJSJqBvPmzYNcLkf37t1RUVGBvLw8yGQynD59GgsXLsSwYcOg0Wjg4+ODESNGwMqq+eYQPD09IZPJsHz5cv1SWrXHc+bMqfeajIwM5Ofno3v37gbtSqUSYWFhSEtLQ1JSEj777DM8ePAAHTp0QP/+/TFq1Khmi5uILEtERARet56ATqczejk/rk5ARERERCY3d+5c/XO1Wo2dO3dCoVDo254+fYrU1NTX1v/XYhJLRERERGaVm5uLgIAAlJaW6tuKiooglUqNTmJZE0tEREREZmVvb4+qqiqDhLW8vBy2trZG98EkloiIiIjMyt3dHdbW1ti1a5e+bfv27foNWozBG7uIiIiIyOw+/fRTyOVyfPXVV6ioqMCtW7ewYcMGo69nTSwRERERCWLz5s04duwYJBIJRo8ejfHjxxt9LZNYIiIiImpxWE5ARERERCa3fft2o86Ty+VGnceZWCIiIiIyObFYjDZt2kAkEgEAampqUFJSAmdnZwDPNzpQq9VcJ5aIiIiI/jvEYjEePnwIqVQKAMjLy0NAQABKSkoAPF8n1s3NzehtubnEFhERERGZnU6nM9iG9t/Hr8MkloiIiIhaHCaxRERERGRyzV3ByiSWiIiIiEyu9oauWvb29hg8eLDB63Z2dsb3xxu7iIiIiMjUCgsL4eLiUieZbSwmsURERETU4rCcgIiIiIhaHCaxRERERNTiMIklIiIiohaHSSwRERERtThMYomIiIioxWESS0REREQtDpNYIiIiImpxmMQSERERUYvzf6ZZxmSdoxyiAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size']\n", + "\n", + "g = sns.catplot(\n", + " data=pumpkins,\n", + " x=\"Item Size\", y=\"Color\", row='Variety',\n", + " kind=\"box\", orient=\"h\",\n", + " sharex=False, margin_titles=True,\n", + " height=1.8, aspect=4, palette=palette,\n", + ")\n", + "# Defining axis labels \n", + "g.set(xlabel=\"Item Size\", ylabel=\"\").set(xlim=(0,6))\n", + "g.set_titles(row_template=\"{row_name}\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9+0lEQVR4nO3deXQc1Z33/3dV9aatZcnaF1tesTEYL3gLdmzAxDAOkEDCPgES8jwTiJMZMkxgzu8MhFmAMUlIgkOWYSDJQIAwLE54MAEvbLHBbGFzAjZeZFuLV+1qqZffH1dSd6m7Zcu2UBs+r3N0wP3tunVv1e263666V7JisVgMERERkQxkD3cFRERERNJRoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLM9wV+BoRKNRdu/eTV5eHpZlDXd1RERE5DDEYjFaWlqoqKjAtge+Z3JcJyq7d++murp6uKshIiIiR6C2tpaqqqoB33NcJyp5eXmAaWgwGBzm2oiIiMjhaG5uprq6um8cH8hxnaj0Pu4JBoNKVERERI4zhzNtQ5NpRUREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0J/165dfPe73+Xpp5+mvb2d8ePHc99993HqqacOd9U+2SIhqP1fOPg25E2E0ZeAJzseb3wR6laBNwg1l0N2wh+Nat0G238L4Tao/DwUzY3HultNrHULFMyA6i+C7TWxWBR2r4I9L0KgDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHoKMOihdAxdlg9eTZ0W6ofRwOvAG542D0peDNjW+7dwPs+gN4ckwstyYea99pyu1uhvKzoWRBPBZuh+0PQ8tfYcRUqL4QHH9PW2JQ/xw0rAF/sWlLoGSwZ0FERA7BisViseHa+YEDB5g+fTqnn3463/jGNyguLubDDz9k3LhxjBs37pDbNzc3k5+fT1NTk/7Wz2B07oXVi6DpvfhrOTWweB1kj4JXroGP/jses31w2sNQ/QXY9hCs/1uIhePxCdfBrLuhZTM8twg6dsVjBdPhzNXg5MAL55vkp5c3HxY9DcXzYNOd8OYN7npO+0848QaTaKw9G7qb4rHyJfDZlRBph9VnmiSlV1YlnLkWghPgtWXwwd3xmOWBeb+Gmkth55Pw0kUQ7YrHx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kUpD7mIiMQNZvwe1kTlxhtv5OWXX+bFF188ou2VqByhjd+ED1ckvz7qyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4dzM8f647qep16gqTSGxanhyrWGr2u3pRcsyTB+dtgacmmzs1/S18CrbeDzt+lxybcB2MnAUbrkqO5Y6Fcz+M3+kREZGUBjN+D+sVdeXKlZx66ql8+ctfpqSkhOnTp/PLX/4y7ftDoRDNzc2uHzkCiXcCXK8/CbueTB0L7YMP70mdpIB5jFT3dPr97UxTbtN7sOW/k5MUMK9tvjd1knKocuuehh3/mzoWbjFtSZWk9JW7Mk3s8fT7bP0IDr6TOiYiIkdkWBOVjz76iHvuuYcJEybwzDPP8I1vfINvfetb/OpXv0r5/ttuu438/Py+n+rq6o+5xp8QvfMs+rP95iftdtkDxAJgedPH0u0TwMlKH/McYp/pyrW84AkMsO0hyrV9g4/BwMdPREQGbVgTlWg0yowZM/iP//gPpk+fzv/5P/+Hr3/96/zsZz9L+f6bbrqJpqamvp/a2tqPucafEDWXp3n9MvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7rJgHoz/abWPGC5Nihyh11EdRcYerWX6DMtCWnJvW2NQOUW3N5+ljBDMiflDomIiJHZFgTlfLyck488UTXa5MnT2bHjh0p3+/3+wkGg64fOQJT/hkqPu9+rXgBTLvDrOCZdkd8pQ6YgX3+I+YOxYJHwV8Uj9k+mHkXFJwCM38II+e4y62+ECZdD6MvhonLcCUOeRNg3v0QKIbPPGAmpPby5JjXAsXmPXkTEwq1TKJRc4kpu/pL7n2OnGPqUjAVZv7IfQfEXwTzf2faMv937sTL8sC023uOwe3JCVLFUnPsqs6Fyf/knouSU2PqKyIix9SwTqa97LLLqK2tdU2m/Yd/+AdeeeUV/vSnPx1ye02mPUr73+hZnnyCWXmTqKPOLL/1BqH8HHASBvtIJ+x+2ixPLv9c8rLcxpegdbO5w1Aw1R1r2QJ7XoKscihb7B7su5tNuQAV55h994pFTX066qB4PuT1WxV24O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrHL3tnvWx5cnF85wx1q3QePzpv1lZ4E97Kv9RUSOC8fNqp+NGzfymc98hu9973tcdNFFvPrqq3z961/nF7/4BZdfnub2egIlKiIiIsef42bVz6xZs3j88cf57W9/y0knncS//uu/ctdddx1WkiIiIiKffMN6R+Vo6Y6KiIjI8ee4uaMiIiIiMhAlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3Du/JZbbuF73/ue67UTTjiBv/zlL8NUo34e9ANd8X9f3AHbH4Gm9yB/Coy+CJxAPN6wFuqeBX8h1FwOWeXxWMsW2P4QRDqh+gtQODMe626GbQ9C2zYYORsqzwO759TEorDrKdj7MmRVwZjLwVcQ3/bAn6H2MbAcGH0xBE+IxzobYev/QGgPlJ4OZWeBZZlYJAS1/wsH34a8iTD6EvBkx7dtfBHqVoE3aNqSXRWPtW6D7b+FcBtUfh6K5ia0pdXEWrdAwQyo/iLY3nhbdq+CPS9CoAzGXAH+kfFtD74HtY+a/6/+EoyYEo+F9sG2B6CjDooXQMXZYPXk2dFuqH0cDrwBueNg9KXgzY1vu3cD7PoDeHJMLLcmHmvfacrtbobys6FkQTwWboftD0PLX2HEVKi+EBx/T1tiUP8cNKwBf7FpS6Akvm3zX822sQhUXwAFp8RjXQdg6wPQsROKPmOOYV9bwrBrJex7FXJqoOYycw567X8dap8w9Rh9KeSNi8c66kxbQvuh/CxzzntFOo9d3930X7D9Z/H4uO/AnDv5pIt07CXSsRfL8eLJqcTyxI9ftLuNSNtuYrEonuxSbP+Ivlgs2k24dTexcDu2fwROdilWz/mOxWJEOhqJdu7H8gRMuY4vXm6omXB7HRYWTk4Fti/er2OREOHWXcQiIZxAEXZWEVbP5zsWixBpqyfa1YztzcHJqcSynXhbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7bUEe1uwfbm4eSUu8738c6KxWKx4dr5LbfcwqOPPspzzz3X95rH46GoqGiAreKam5vJz8+nqamJYDB46A0G40Hr0O/JmwBnroOsMvjTFWaA7uVkwYLHzIC65T549etm0Oo1+Z9g+h1mcF5zJnQ2xGMj58IZfwTLA+v+BhrXxWP+kXD6H6FwBrxzK7xzc0KFLDj1JzDxOmhYB8+fC+HWeLjqfJj/KHQdhNWLzKDVK6cGFq+D7FHwyjXw0X/HY7YPTnvYDFLbHoL1fwuxcDw+4TqYdTe0bIbnFkHHrnisYDqcuRqcHHjhfJP89PLmw6KnoXgebLoT3rzBfXyn/SeceINJNNaeDd1N8Vj5EvjsSoi0w+ozTZLSK6sSzlwLwQnw2jL44O6EQ+SBeb+Gmkth55Pw0kUQTUhGx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kXwwU/htW8CCR+tk2+Bk2+G/W/C2rNM4tWrZKE5DrEIrDkL9m2IxwIlcMYak7S9dSO8f0dCW2yY/UsY91XY/Qy8+EWIdMTjoy+Bzzxg+tZzC6Hlw3jsaPpuKp6RcNHegd9znIrFYnTteZNI2+74i5aNv+RUnOwSwi21dO19m8Tz7ckfh69wMtGuFjrrN5gvBj1s/wj8ZXMBi1DDq0Q7E/qC7SVQNhfbn0/3gQ/oPviBqy7ekSfhDdYQ6dhLqGGj67w42aX4SmZCNExn3Xpi3S3x6nqy8JfNw/Jk0bX3bSKttQml2vhKZuDJKSPcuouuPW+525I3Gl/RyUS72wjVrScW6YyX6wsSKJsLtodQw0aiHXsSivXgL52DEyigu2kL3fs3udtSMBnviHFEOg8QanjFJOm9m2YV4y+dBdEInfUbiHXFP/uWE8BfPhfbm0vXvncJN29LKNXCVzwNT24l4bZ6uhrfAKLxY5Rbja9oKrFwB6H69cTC8c+L5c0jUD4XbC9dja8TaU+4JlsO/tJZOFlFdDdvo3vfu+62jJiIt2Ai0VCTOd/R7nhbAoX4S+cAMUL1G4iGDiYcIx+B8nnYvjy69m8i3LTFVa6vaCqevFFE2hsJNb5mvuz1tiWnAl/xdIiEzPkOt8Wr68nBXz4POyGZzjSDGb+HPVF54okneOutt45o+yFLVH4/HVoOs05jr4KKpWbg6i+rAs5+E1aONt9G+1uy0QzOiYlIr5NvMYNf/8EboHAWzLsfnpqSHLO9cN5WeO6z0PpRcnzu/bBvI3y4Ijk26ssw5ip4fmlyzD8Slm6CleMg3JIcP3MdbFoOu59Kjk2+wSRCr12XHMufAgt/D78f7/oQAmYgPnezSbgSk6pep64wicSm5cmxiqVmv6sXJcc8eXDeFnhqsjth6LXwKdh6P+z4XXJswnUwchZsuCo5ljsWFr8AK8e4LlR9lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpnLZsF1KhlS4bXfPgOdmOX78FQvo3Lkmue8C/or5dO/f5E5EenhHTATbSRq8AWxfPr7iaXTuej5FbSwCVWf0DLLtSVFf0SnmW3nL9qSYk1OOJ7fKJDhJO/USqFpEZ+1a95eQ3raUzaO7aQvRjsakmCd/LJYnO2nwBjP4+0tnmWOUQqDqDEING11JVS/vyJOIhdsJNyVfx+ysErz54wjVr08u1PIQqDqdzl3rUn4O/aWzCLfu7Lu742pL3mhs/wi69v45RbHZ+Mvm9bQlua8HKhfStectoglJVV9bCidDNJKUeALYgZF4CycT2v1SirbY5hjtfpFYQrLby1cyg0h7I5HWnUkxJ7cKf/G05DIzxGDG72F99APw4YcfUlFRQSAQYN68edx2222MGjUq5XtDoRChUPxkNTc3D02lDjdJAXMbPtWgBGbg+PCe9Bf67b9NnaSA+bbuyUkd278Rtv4mdSzaDZt/kTpJ6S13X4oLFZg7DImPlRKF9pm2pEpSwDxGqns6/T5zxqSONb0HW+5NeaEnFoXN96ZOUnrLbUu+IAOmLjljU8fCLaYtqZKU3nJ3rkwTezx1QgDmmG/+Rfr+sPXXqZMUMI+uEu+GJGpcZx69pBLphM33pK9T7ePpz8vR9N1PkUhbQ8rXY5GQSQhS9V0g0ro7ZZICEG6v73vM0F+0q4lwioGnZ6+EW7anTFIAIu31REPJAyWYdiQ+ZnDvtNvcmUiRpACE2+pSJil95SY8bnHVtruFcMuO1PsEwi07UiYpptx6Ymk+E9GORsKe1PskFibcsi1t3w63N7jvliTus70+ZUJgim0n3LqDVEkKQLh1Z8okBXrakuauZLRzH+HWXSljxKLmGKWpU6StnkjiXazEWJo2Ho+GdTLtnDlzuP/++1m1ahX33HMPW7duZcGCBbS0pO64t912G/n5+X0/1dXVH3ONU3D8YPvTx9MlGwBOtplbkoo9ULmW2TbtPgeI2f74PItB7ZOB9+kEwEpzEXQC6fd5qHIHastA5VpeGOi256HaYvsGH4ND1DcHSPNIcaByLcc8jkm7z4H62EBtOcT59g5Q7qeJlf4yaVkDfNezbNKdb8uyByw37XXhkPt00pd7iH0esi0DlGsdYVsYYB6FmWNxpG0Z6PjZA5Q7wPEDLAZoy0DtHPAYWQPWd+ByD3G+PyGGtSXnnHMOX/7yl5k6dSpLlizh//2//8fBgwd55JFHUr7/pptuoqmpqe+ntrY25fuO2ui/O/z31lxuflIJTjLzRXyFyTHLhjFfMfNGBltu+edg3NVmvkV/nlwY/3dmIutgy625zPykklMDE79pJsEmsUyZoy5Kve3oy9Lvs3gBjP+6e2JnL9tvYsULkmOHKnfURVBzBSkHikCZaUtOTeptawYod6DjVzDDHHtPbnLM8phzVr5k8OVWnQ9jr0x94fEVwIRrITh58OUequ9OSNN3P2U8uZUpX7e8uXiCNfHJ4v23y6vCyS5NGXNyKtOWa2cV48mrJmXftRw8+aOxfPmpy82txElTrie3AicnTVs8WTjBmrSJvze3CienPGXMk1uZtlzbX4g3OCp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntTJ/UDHfqDjZ/ny8eSPTpM4WHjyqrGzilNuO9AxcrJLe853CrYXb7AGy5vimtJTridNuelePx5lVMo1YsQIJk6cyObNm1PG/X4/wWDQ9TMkTrvn8N5Xthim3gplZ5g5JYkdOLsKTnsIPFkw/xH3IxXbD7N+biZ7nrrCTDhNVHO5GXzGXg3jrsF1wcqfYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt3hvvgGykwbPAFY8Cj4EyY72z6YeZdZ1TLzhzByjrvc6gth0vVmRdLEZe625E0wc20Cxaa+iXcGPDnmtUCxeU/exIRCLZNo1Fxiyq7+knufI+eYuhRMhZk/ct9R8BeZeRuegPlvYuJleWDa7T3H4PbkBKliqTl2VeeaydCJF9+cGlNfX76ZeJy4UsfJgrn3mXM2+xfmHCa2Zdw15lxPuLYnuUpQMM30kbzxps8k3gHxFfS0Jduc98SVWZYDJ91s+ubUW01fTXSkfTfdHaHyNEnqJ4CTVWTmlCS03XIC+ItnYNkO/pKZ7s+LZeMrmortzcU38iQsn/s65eRU4gnW4ORW4+S6ByjLm2e29WThKz7F3ccsD/6SGVi2F3/xdKx+d+88+WPxZJfizR+PnVXiitn+QryFk3ECBXgLJrnaguPHVzITu68tiXfgbLyFU7D9QXyFU1yrmQCc7DKz39wKk7QltsWTg6/4FCzHbyZ9JvYxy8FXPL0ndgpWv7t3nmCNGYTzx+JkuxMk2z/C1MUXxFs4BdcwZvvw97TFVzKzX+Jl4S2YZI5B4aSkBMnMexmPJ7sUT/44V8zyZJljbnvxl8xwf0m0bHzFp5hzVjQVy5vn2rb3PHuCNUnJiuUL4ht5ErY3B1/RVPf5tr34S2b29LEZWK4vcxaeERNM3yyYiB1wL0CxA+b1T4phnUzbX2trK6NGjeKWW27hW9/61iHfP6SrfgBeuBJ2/tr8f9YY+OJHsPdVaH4fgidC0Wz3+9t3Qv0as8SzfIn74hVuh91Pm2f+FWe7l+XGYtD4vJkYWjjLvSwXzFLXvRvMAFJ6RnyJMZilrrtXmeXM5ee4l+VGw1D/rFmmXLLQvSwXYP8bPcuTTzArbxJ11Jnlt96gKTdhmSGRTtOWcJu5uxNwXxRpfAlaN5s7DAVT3bGWLbDnJbP8tWyx+4PZ3WzKBag4xz3Yx6KmPh11UDzfvSwX4MDb8eXJJf0SjM5GqPujSX4qznHfvYl0mZVI3U2mPln9vjXuWR9fnlzY7y5V6zZz3gIlZul3wpJJulvN3JBo2JzvxME+FjPLmttroWiee0k5QNP78eXJJQvd5zu0z5xvJ2DakjhYRbuh7hmzPLnsDHfiAse27yauivuETqLtLxruINqxD8vxYmcVu27lx6IRIh2NEIvgZJW4luWapa77iIU7sP0jXMtywSx1jYYOYHmysAMj+5ayglnqGunYA5Zlyk3oY7FYlGjHXmKREHZgpGtZLkA01ES0qxnLm+taYgxmqWukYy/YHpzskgHaUuxalgsQ6dxPrLsN25+P3S8Ji3a3maXWTsC1XNqU202k3cyncLKLXfNlzNLmvcQindiBQteyXHOMmomGmrC82a4lxuYYhXqOkdNzjJyEcqNE2hshGsbJKnItKTdtOUCsZ3my7XffpYp2txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHiIQOEOtqxfLl4vjTzDXMIMfNqp9//Md/5Nxzz2X06NHs3r2bm2++mbfeeov333+f4uLUt9ASDXmiIiIiIsfccbPqZ+fOnVx66aXs27eP4uJi5s+fz4YNGw4rSREREZFPvmFNVB56KM2SSxEREREybDKtiIiISCIlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3BXINHtt9/OTTfdxLe//W3uuuuu4a4OPGi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qolwL54nHK4bDcyeLFYjEhHI9HO/VieAJ6cSizH1xePhpoJt9dhYeHkVGD74v06FgkRbt1FLBLCCRRhZxVh9Xy+Y7EIkbZ6ol3N2N4cnJxKLNvp2zbSuY9I+x4s24OTW4ntyYrvs7udSNtuYtEwTnYpTiB+vYlFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW+VuS1cLkbY6AJyccmxfXkJbunra0okTKMTOKkloS7SnLU3Ynmyc3EosOz50RToPEGlvMG3JqcD2xq9j0XAHkdZdPW0pxgnErzexaIRI226i3a3YvmBPW5x4Wzr3EunY29OWSqzezz4Q7Wo1x4gYnuxybH/8MxqLdBFu20Us3IntL8DJLnW3pb2BaOgglicbT24FVu/1EYiGDhJub8DCxsmtwPbmpOw3nzZWLBaLDXclADZu3MhFF11EMBjk9NNPP6xEpbm5mfz8fJqamggGg4d8/6D0T1JSyZsAZ66DrDL40xVmgO7lZMGCx8yAuuU+ePXrZtDqNfmfYPodZnBecyZ0NsRjI+fCGX8EywPr/gYa18Vj/pFw+h+hcAa8cyu8c3NChSw49Scw8TpoWAfPnwvh1ni46nyY/yh0HYTVi8yg1SunBhavg+xR8Mo18NF/x2O2D0572AxS2x6C9X8LsXA8PuE6mHU3tGyG5xZBx654rGA6nLkanBx44XyT/PTy5sOip6F4Hmy6E968wX18p/0nnHiDSTTWng3dTfFY+RL47EqItMPqM02S0iurEs5cC8EJ8Noy+ODuhEPkgXm/hppLYeeT8NJFEO2Kx8deDXPuhfYdpi1t2+Kx/CmmXF8BvPRl2PlEPObJgYV/gNJF8MFP4bVvAgkfrZNvgZNvhv1vwtqzTOLVq2ShOQ6xCKw5C/ZtiMcCJXDGGpO0vXUjvH9HQltsmP1LGPdV2P0MvPhFiHTE46Mvgc88YPrWcwuh5cN47Gj6bjqXZcSl5LgRi0YINbxKtDOhL9heAmVzsf35dB/4gO6DH7i28Y48CW+whkjHXkING13nxckuxVcyE6JhOuvWE+tu6YtZniz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPWyT2XU/eaHxFJxPtbiNUt55YpDNeri9IoGwu2B5CDRuJduxJKNaDv3QOTqCA7qYtdO/f5G5LwWS8I8YR6TxAqOEVk6T3bppVjL90FkQjdNZvINYV/+xbTgB/+Vxsby5d+94l3LwtoVQLX/E0PLmVhNvq6Wp8A4jGj1FuNb6iqcTCHYTq1xMLxz8vljePQPlcsL10Nb5OpD3hmmw5+Etn4WQV0d28je5977rbMmIi3oKJRENNdNZvMF+eetsSKMRfOgeIEarfQDR0MOEY+QiUz8P25dG1fxPhpi2ucn1FU/HkjeKTaDDjd0YkKq2trcyYMYOf/vSn/Nu//RvTpk0b3kTlcJKUXmOvgoqlZuDqL6sCzn4TVo4230b7W7LRDM6JiUivk28xg1//wRugcBbMux+empIcs71w3lZ47rPQ+lFyfO79sG8jfLgiOTbqyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4d7NJuBKTql6nrjCJxKblybGKpWa/qxclxzx5cN4WeGqyO2HotfAp2Ho/7PhdcmzCdTByFmy4KjmWOxYWvwArx7guVH2Wvgfrr4L9G5Nj05ebO1Tv3JIcK1lk4s/MSo45AThvO6yaDh0p7mrM/505Jx/dnxw7mr6bihKVQUk1eAPYvnx8xdPo3PV8iq0sAlVn9Ayy7UlRX9Ep5lt5y/akmJNTjie3yiQ4STv1EqhaRGftWveXkB7+snl0N20h2tGYFPPkj8XyZCcN3mAGf3/pLDp3rknRFkxbGja6kqpe3pEnEQu3E25Kvo7ZWSV488cRql+fXKjlIVB1Op271qX8HPpLZxFu3dl3d8fVlrzR2P4RdO39c4pis/GXzetpS3JfD1QupGvPW0QTkqq+thROhmgkKfEEsAMj8RZOJrT7pRRtscmqXuy6M/VJMZjxOyMe/Vx33XUsXbqUxYsX82//9m9p3xcKhQiFQn3/bm5u/jiqN7DaJ1IPSmAGjg/vSX+h3/7b1EkKmG/rnjS3/fZvhK2/SR2LdsPmX6ROUnrL3ZfiQgXmDkPiY6VEoX2mLamSFDCPkeqeTr/PnDGpY03vwZZ7k5MUMK9tvjd1ktJbblvyBRkwdckZmzoWbjFtSZWk9Ja7c2Wa2OOpEwIwx3zzL9L3h62/SZ2kgHl0lXg3JFHjOvPoJZVIp2lLujrVPp7+vBxN35WjFmmrT/l6tKuJcOvONFvFCLfuSJmkAETa64mGkgdKs78G12MG9067zZ2JFEkKQLitLmWS0lduwuMWV227Wwi37Ei9TyDcsiNlkmLKrSeW5jMR7Wgk7Em9T2Jhwi3b0vbtcHuD+25J4j7b64lFQiljsXB7T1tSJ+Th1p0pkxToaUuau5LRzn1EWtN8fmNRIh178ORWpo5/Sgx7ovLQQw/xxhtvsHFjmgt4gttuu43vfe97H0OtBsHxg+1PH0+XbAA42WZuSaoObA9UrmW2HajcdGx/fJ7FoPZ5iHKdAFheiKX4kDuB9Ps8VLnpLkaHKtfygieQOnaofToB87grmqYt9gDfbg55XixSXuicQPrHK5YD9gBtGbCPDVDfo+m7cvSsAdYyWE760AAxLCd9uZY94D4ta4DhoHfbVF8oLLtvnkraOqVjD9BO2yEWOdK2DHT8bMw6klRtGeD49dQpfXCgmI1FLE2KYx2iL2jNy7AegdraWr797W/zwAMPEAgMcCHucdNNN9HU1NT3U1tbe8htjszIQ7+lV83l5ieV4CQzX8RXmByzbBjzFTNvZLDlln8Oxl1t5lv058mFCX9nJrIOttyay8xPKjk1MPGbZhJsEsuUOeqi1NuOviz9PosXwPivuyd29rL9Jla8IDl2qHJHXQQ1V5i69RcoM23JqUm9bc0A5Q50/ApmmGPvyU2OWR5zzsqXDL7cqvNh3FWpL1i+Aph4LQQnD77cI+27ckyk+5ZsZxXjyasmZd+1HDzB0Vi+/JTbOrmVOGnK9eRW4OSkjlmeLJxgTdrE35tbhZNTnjLmya1MW67tL8QbHJW671o23rxR2P7UfczJqUh7jJyccrx5VSljOH6c4BishAnC7m0r05c7wPGzfPl4gqPTJCQWnrxq7KzilNsOdIyc7NKe852C7cXJKkkd+xQZ1kTl9ddfp7GxkRkzZuDxePB4PDz//PP8+Mc/xuPxEIm4v2H6/X6CwaDrZ0hctvfw3le2GKbeCmVnmDkliR04uwpOewg8WTD/EfcjFdsPs35uJnueusJMOE1UczlMuNZM7Bx3Da4LVv4UM4Eyu8rMN3ESPozeoNmnL99Mokx83GLZZs5G1bkw5Z+h4vPufRYvgGl3mBU80+6Ir9QBM7DPf8TcoVjwKPiLEtrig5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVSY+SP3HQV/kZm34QmY/yYmXpYHpt3ecwxuT06QKpaaY1d1rpkMnXjxzakx9fXlm4nHiSt1nCyYe585Z7N/Yc5hYlvGXWPO9YRre5KrBAXTTB/JG2/6TOIdEF9BT1uyzXlPXJllOXDSzaZvTr3V9NVER9p300o9KEh6Tm41Tq57gLK8efiKpmJ7svAVn+LuY5YHf8kMLNuLv3g6Vr+7jZ78sXiyS/Hmj8fuN7jZ/kK8hZNxAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPcbcguM/vNrcATrHG3xZODr/gULMePr3i6u49ZDr7i6T2xU7D6rW7xBGvw5FbiyR+Lk+1OkGz/CFMXXxBv4RRcw5jtw9/TFl/JzH6Jl4W3YJI5BoWTkhIkM+9lPJ7sUjz541wxy5NljrntxV8yw/0l0bLxFZ9izlnRVCxvnmvb3vPsCdYkJSuWL4hv5EnY3hx8RVPd59v24i+ZOfBdnE+JYZ1M29LSwvbt7jkGV199NZMmTeK73/0uJ5100oDbD+mqH4AHg0DC89PLYrD3VWh+H4InQtFs9/vbd0L9GrPEs3yJe7APt8Pup80z/4qz3ctyYzFofN5MDC2c5V6WC2ap694NZgApPSO+xBjMUtfdq8xy5vJz3Mtyo2Gof9YsUy5Z6F6WC7D/jZ7lySeYlTeJOurM8ltv0JSbOJkr0mnaEm4zd3cC/TL+xpegdbO5w1Aw1R1r2QJ7XjLLX8sWuz+Y3c2mXICKc9yDfSxq6tNRB8Xz3ctyAQ68HV+eXNIvwehshLo/muSn4hz33ZtIl1mJ1N1k6pPV71vjnvXx5cmF/e5StW4z5y1QYpZ+JyyZpLvVzA2Jhs35ThzsYzGzrLm9FormuZeUAzS9H1+eXLLQfb5D+8z5dgKmLYmDVbQb6p4xy5PLznAnLnBs+27ihHNNoj0q0a5WoqEDWJ4s7MDIvqWsYJa6Rjr2gGXhZJW4luXGYlGiHXuJRULYgZGuZbkA0VAT0a5mLG+ua4kxQCzcSaRjL9genOwS16ObWDRCpKMRYhGcrGLXslyASOd+Yt1t2P58bJ/7uhvtbjNLrZ2Aa7m0KbebSLtZFeRkF7vmy5ilzXuJRTqxA4VJy3KjXc1EQ01Y3mzXEmNzjEI9x8jpOUZOQrlRIu2NEA3jZBVh9XscHOk8QKxnebLtd9+lina3E+3ch+X4e9qSeIzCPcco1nOM4tdHs7R5H7FwB7a/wLWk3LSlpWd5crrz3ZiyLZ80x92qn0SLFi0a/lU/IiIiMmQGM35rlo6IiIhkrGFf9dPfunXrhrsKIiIikiGO6I7KwYMH+a//+i9uuukm9u/fD8Abb7zBrl27DrGliIiIyOEb9B2Vt99+m8WLF5Ofn8+2bdv4+te/TmFhIY899hg7duzg17/+9VDUU0RERD6FBn1H5frrr+eqq67iww8/dP3uk7/5m7/hhRdeOKaVExERkU+3QScqGzdu5P/+3/+b9HplZSX19al/JbSIiIjIkRh0ouL3+1P+jZ0PPviA4uLUv5VPRERE5EgMOlE577zzuPXWW+nuNn/wybIsduzYwXe/+10uvPDCY15BERER+fQadKLy/e9/n9bWVkpKSujo6GDhwoWMHz+evLw8/v3f/30o6igiIiKfUoNe9ZOfn8+zzz7LSy+9xNtvv01rayszZsxg8eLFh95YREREZBAGnajs2LGD0tJS5s+fz/z58/tej8Vi1NbWMmrUqGNaQREREfn0GvSjn5qaGmbMmMGWLVtcrzc2NjJmzJg0W4mIiIgM3hH9ZtrJkycze/ZsVq9e7Xo9w/6+oYiIiBznBp2oWJbFT3/6U/6//+//Y+nSpfz4xz92xURERESOlUHPUem9a/IP//APTJo0iUsvvZR33nmHf/mXfznmlRMREZFPt6P668nnnHMOf/rTnzjvvPN49dVXj1WdRERERIAjSFQWLlyIz+fr+/eJJ57IK6+8wgUXXKA5KiIiIocpEon0/fLUTyKfz4dtH9FUWBcrdhxnF83NzeTn59PU1EQwGBzu6oiIiBxSLBajvr6egwcPDndVhpRt24wZM8Z1c6PXYMbvw7qj0tzc3FdQqr/zk0gJg4iISHq9SUpJSQnZ2dmfyIUo0WiU3bt3U1dXx6hRo46qjYeVqBQUFFBXV0dJSQkjRoxIucNYLIZlWUQikSOujIiIyCdZJBLpS1JGjhw53NUZUsXFxezevZtwOIzX6z3icg4rUVmzZg2FhYUArF279oh3JiIi8mnWOyclOzt7mGsy9Hof+UQikaFPVBYuXJjy/0VERGTwPomPe/o7Vm087Om4e/fuZfv27a7X3nvvPa6++mouuugiHnzwwWNSIREREZFeh52oLFu2zPVbaBsbG1mwYAEbN24kFApx1VVX8Zvf/GZIKikiIiKfToedqGzYsIHzzjuv79+//vWvKSws5K233uLJJ5/kP/7jP1ixYsWQVFJERESOzi233MK0adOGuxqDdtiJSn19PTU1NX3/XrNmDRdccAEej5nmct555/Hhhx8e8wqKiIiIGYeXLVvG2LFj8fv9VFdXc+655yb9geBPmsNOVILBoOuX07z66qvMmTOn79+WZREKhY5p5URERAS2bdvGzJkzWbNmDcuXL+edd95h1apVnH766Vx33XUfWz2G4zfpHnaiMnfuXH784x8TjUZ59NFHaWlp4YwzzuiLf/DBB1RXVw9JJUVERD7Nrr32WizL4tVXX+XCCy9k4sSJTJkyheuvv54NGzYAsGPHDs4//3xyc3MJBoNcdNFFNDQ0pC0zGo1y6623UlVVhd/vZ9q0aaxataovvm3bNizL4uGHH2bhwoUEAgEeeOCBIW9rf4edqPzrv/4rK1euJCsri4svvph/+qd/oqCgoC/+0EMPaemyiIjIMbZ//35WrVrFddddR05OTlJ8xIgRRKNRzj//fPbv38/zzz/Ps88+y0cffcTFF1+cttwf/ehHfP/73+fOO+/k7bffZsmSJSmncdx44418+9vfZtOmTSxZsuSYt+9QDvuPEk6dOpVNmzbx8ssvU1ZW5nrsA3DJJZdw4oknHvMKioiIfJpt3ryZWCzGpEmT0r5n9erVvPPOO2zdurXv6cavf/1rpkyZwsaNG5k1a1bSNnfeeSff/e53ueSSSwC44447WLt2LXfddZdrcczf//3fc8EFFxzjVh2+Qf315KKiIs4///yUsaVLlx6TComIiEjc4fzt4E2bNlFdXe2agnHiiScyYsQINm3alJSoNDc3s3v3bk477TTX66eddhp//vOfXa+deuqpR1H7o3f0f39ZREREhsyECROwLIu//OUvw7L/VI+bPk5KVERERDJYYWEhS5YsYcWKFbS1tSXFDx48yOTJk6mtraW2trbv9ffff5+DBw+mnJYRDAapqKjg5Zdfdr3+8ssvZ9w0jkE9+hEREZGP34oVKzjttNOYPXs2t956K1OnTiUcDvPss89yzz338P7773PyySdz+eWXc9dddxEOh7n22mtZuHBh2kc3N9xwAzfffDPjxo1j2rRp3Hfffbz11lvDsrJnIEpUREREMtzYsWN54403+Pd//3e+853vUFdXR3FxMTNnzuSee+7BsiyefPJJli1bxmc/+1ls2+bss8/mJz/5Sdoyv/Wtb9HU1MR3vvMdGhsbOfHEE1m5ciUTJkz4GFt2aFbscGbppNDY2EhjYyPRaNT1+tSpU49JxQ5Hc3Mz+fn5NDU1EQwGP7b9ioiIHInOzk62bt3KmDFjCAQCw12dITVQWwczfg/6jsrrr7/OlVdeyaZNm/pmIluWRSwWw7IsIpHIYIsUERERSWnQicpXv/pVJk6cyL333ktpaSmWZQ1FvUREREQGn6h89NFH/O///i/jx48fivqIiIiI9Bn08uQzzzwz6ZfBiIiIiAyFQd9R+a//+i+uvPJK3n33XU466SS8Xq8rft555x2zyomIiMin26ATlfXr1/Pyyy/z9NNPJ8U0mVZERESOpUE/+lm2bBlXXHEFdXV1RKNR14+SFBERETmWBp2o7Nu3j3/4h3+gtLR0KOojIiIi0mfQicoFF1zA2rVrh6IuIiIiIi6DnqMyceJEbrrpJl566SVOPvnkpMm03/rWt45Z5UREROTT7YhW/eTm5vL888/z/PPPu2KWZSlRERER+ThEI7DnReiog6xyKF4AtjPku12xYgXLly+nvr6eU045hZ/85CfMnj17yPY36ERl69atx2zn99xzD/fccw/btm0DYMqUKfzLv/wL55xzzjHbx1F5sN9v3b24A7Y/Ak3vQf4UGH0ROAl/v6BhLdQ9C/5CqLncdJxeLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQW9v0k4EoLa/4WDb0PeRBh9CXiy49s2vgh1q8AbNG3JrorHWrfB9t9CuA0qPw9FcxPa0mpirVugYAZUfxFsb7wtu1eZD1agDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHzAeyeAFUnA1Wz5PLaDfUPg4H3oDccTD6UvDmxrfduwF2/QE8OSaWWxOPte805XY3Q/nZULIgHgu3w/aHoeWvMGIqVF8Ijr+nLTGofw4a1oC/2LQlUBLftvmvZttYBKovgIJT4rGuA7D1AejYCUWfMcewry1h2LUS9r0KOTVQc5k5B732vw61T5h6jL4U8sbFYx11pi2h/VB+ljnnvSKdx67vrur/l1i9cFkXcvyIdO4j0r4Hy/bg5FZie7L6YtHudiJtu4lFwzjZpTiB+PUmFg0Tad1FNNyO7cvHySnD6um7sViMaEcjkc79WI4fT24VluOLl9vVQqStDgAnpxzblxcvN9JFuHUXsUgnTqAQO6uk77eex2JRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3mDaklOB7Y1fx6LhDiKtu3raUowTiF9vYtEIkbbdRLtbsX3BnrY48bZ07iXSsbenLZVYvZ/9TFH7GLz+bXMN65VdBTN/ZK45Q+Thhx/m+uuv52c/+xlz5szhrrvuYsmSJfz1r3+lpKTk0AUcgSP+o4RdXV1s3bqVcePG4fEc2R9h/v3vf4/jOEyYMIFYLMavfvUrli9fzptvvsmUKVMOuf2Q/lHC/klKKnkT4Mx1kFUGf7rCDNC9nCxY8JgZULfcB69+3QxavSb/E0y/wwzOa86EzoZ4bORcOOOPYHlg3d9A47p4zD8STv8jFM6Ad26Fd25OqJAFp/4EJl4HDevg+XMh3BoPV50P8x+FroOwepEZtHrl1MDidZA9Cl65Bj7673jM9sFpD5tBattDsP5vIRaOxydcB7PuhpbN8Nwi6NgVjxVMhzNXg5MDL5xvkp9e3nxY9DQUz4NNd8KbN7iP77T/hBNvMInG2rOhuykeK18Cn10JkXZYfaZJUnplVcKZayE4AV5bBh/cnXCIPDDv11BzKex8El66CKIJg+zYq2HOvdC+w7SlbVs8lj/FlOsrgJe+DDufiMc8ObDwD1C6CD74Kbz2TSDho3XyLXDyzbD/TVh7lkm8epUsNMchFoE1Z8G+DfFYoATOWGOStrduhPfvSGiLDbN/CeO+CrufgRe/CJGOeHz0JfCZB0zfem4htHwYjx1N303nsiO6lMjHKBaL0bX3bSKttQmv2vhKZuDJKSPcuouuPW+R2Hc9eaPxFZ1MtLuNUN16YpHOvpjlCxIomwu2h1DDRqIdexKK9eAvnYMTKKC7aQvd+ze56uItmIx3xDginQcINbxikvTeTbOK8ZfOgmiEzvoNxLrin33LCeAvn4vtzaVr37uEm7cllGrhK56GJ7eScFs9XY1vAPE/nOvkVuMrmkos3EGofj2xcPzzYnnzCJTPBdtLV+PrRNoTrsmWg790Fk5W0WEe6fSOyR8lrH0MXvwSrmsMAD3j1oJHhyxZmTNnDrNmzeLuu811NRqNUl1dzbJly7jxxhtd7z1Wf5Rw0IlKe3s7y5Yt41e/+hUAH3zwAWPHjmXZsmVUVlYmVXSwCgsLWb58OV/72tcO+d4hS1QOJ0npNfYqqFhqBq7+sirg7Ddh5WjzbbS/JRvN4JyYiPQ6+RYz+PUfvAEKZ8G8++GpFMmc7YXztsJzn4XWj5Ljc++HfRvhwxXJsVFfhjFXwfNLk2P+kbB0E6wcB+GW5PiZ62DTctj9VHJs8g0mEXrtuuRY/hRY+Hv4/XhzxyWRZcO5m03ClZhU9Tp1hUkkNi1PjlUsNftdvSg55smD87bAU5PdCUOvhU/B1vthx++SYxOug5GzYMNVybHcsbD4BVg5xtzl6W/pe7D+Kti/MTk2fbm5Q/XOLcmxkkUm/sys5JgTgPO2w6rp0LE7OT7/d+acfHR/cuxo+m4qSlQyXqS9gVBDiv5newlULaKzdq37S0gPf9k8upu2EO1oTIp58sdiebLp3vduUszy5uEvnUXnzjUp6xOoOoNQw0Zi3cnXFO/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoOp3OXetSfg79pbMIt+7su7vjakveaGz/CLr2Jv/2dcuTTaDq9KP++3ZHnahEI7Cyxn0nxcUyd1bO23rMHwN1dXWRnZ3No48+yhe+8IW+16+88koOHjzIk08+6Xr/sP315Jtuuok///nPrFu3jrPPPrvv9cWLF3PLLbcccaISiUT43e9+R1tbG/PmzUv5nlAoRCgU6vt3c3PzEe3rmKp9IvWgBGbg+PCe9Bf67Q+lTlLAfFv35KSO7d8IW3+TOhbths2/SJ2k9Ja7L8WFCswdhsTHSolC+0xbUiUpYB4j1SX/EsC+feaMSR1reg+23JucpIB5bfO9qZOU3nLbtqeO1T1tHgOlEm4xbUmVpPSWu3NlmtjjqRMCMMd88y/S94etv06dpIB5dJV4NyRR4zrTV1KJdJq2pKtT7ePpz8vR9F05LrnuEiSKdps7EymSFIBwe13KJAUg0taAlfC4JVGsu4Vwy4609Qm37EiZpJhy64ml+UxEOxoJe1Lvk1iYcMu2tH073N6Q9jhE2uuJRUIpY7FwO7GuFiz/Mb57P1h7XhwgSQGIQXuteV/pomO667179xKJRJJ+PUlpaSl/+ctfjum+Eg06UXniiSd4+OGHmTt3riuznDJlClu2bBl0Bd555x3mzZtHZ2cnubm5PP7445x44okp33vbbbfxve99b9D7GFKOH+wBnl160yQbYG6xW07q2+r2QOVa4KT5kMLAMdsfn2cxqH0eolwnAJYXYik+5E4g/T4PVW66i9GhyrW8R75PJ2Aed0XTtMX2Jb/ea8D65mBuzaa48+AE0j9esRzTV9Luc6A+NkB9D9V3BypXjk9W+t9IYVnphwML22yb6guFZffNU0m98QDf6geIWbZDLJKmXMs+RFsGKNeyMb+ZI1VbnAHLHTD2celIvhN0VO87Dgz6qO/ZsyflhJm2trYjuiV2wgkn8NZbb/HKK6/wjW98gyuvvJL3338/5Xtvuukmmpqa+n5qa2tTvu9jVXO5+UklOMk8KvAVJscsG8Z8xcwbGWy55Z+DcVeb+Rb9eXJhwt+ZiayDLbfmMvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7r7omdvWy/iRUvSI4dqtxRF0HNFfQ9s00UKDNtyalJvW3NAOUOdPwKZsD4vzPnoD/LY85Z+ZLBl1t1Poy9MvVF0lcAE6+F4OTBl3uovjsxTd+V45aTU5nydcuThROsSZvce3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV4clOX6+SU482rShnD8eMEx2B5Uif3Tk5l+nJzK3HSxCxfPrYvxWf745aV+jwc8fsGoaioCMdxaGhw35FqaGigrCzV2HBsDDpROfXUU3nqqfg8hN7k5L/+67/SPrIZiM/nY/z48cycOZPbbruNU045hR/96Ecp3+v3+wkGg66fIXG4z9rLFsPUW6HsDDOnJDGLz66C0x4CTxbMf8T9SMX2w6yfm8mep64wE04T1VwOE641EzvHXYNrsM2fYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt0RX6kDZmCf/wh4AmaSlj9hQpntg5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVQzAz7xjoK/yMzb8ATMfxMTL8sD027vOQa3JydIFUvNsas610yGTrz45tSY+vryzcTjxJU6ThbMvc+cs9m/MOcwsS3jrjHnesK1PclVgoJppo/kjTd9JvEOiK+gpy3Z5rwnrsyyHDjpZtM3p95q+mqiI+27clxzAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPc5WWX4ckfiye3Ak+wxhWzPDn4ik/Bcvz4iqe7+5jl4Cue3hM7BavfnWdPsAZPbiWe/LE42e4B1/aPMHXxBfEWTsE1jNk+/D1t8ZXM7Jd4WXgLJpljUDgpKUEy817G48kuxZPvfmxsebLwF/e7Tg+X4gU9n/V0NwYsyK5O/wXvKPh8PmbOnMnq1av7XotGo6xevfqIxv/DNejJtC+99BLnnHMOV1xxBffffz//9//+X95//33+9Kc/8fzzzzNz5sxDFzKAM844g1GjRnH//fcf8r1DuuoHkifVXhaDva9C8/sQPBGK+q0bb98J9WvMEs/yJe7BPtwOu582z/wrznYvy43FoPF5MzG0cJZ7WS6Ypa57N5jOWXpGfIkxmKWuu1eZ5czl57iX5UbDUP+sWaZcstC9LBdg/xs9y5NPMCtvEnXUmeW33qApN2GZIZFO05Zwm7m7E+h3h63xJWjdbO4wFEx1x1q2wJ6XTLZfttg92Hc3m3IBKs5xD/axqKlPRx0Uz3cvywU48HZ8eXJJvw9oZyPU/dEkPxXnuO/eRLrMSqTuJlOf/t9C9qyPL08u7HeXqnWbOW+BErP0O2HJJN2tZm5INGzOd+JgH4uZZc3ttVA0z72kHKDp/fjy5JKF7vMd2mfOtxMwbUl81BTthrpnzPLksjPciQsc276b+NnQJNrjTizcSaRjL9genOwS16ObWDRCpKMRYhGcrOKkZbmRzv3Eutuw/fnYPvd1N9rdRrRzP5YTwM4qct1lj0W7ibSbVUFOdjFWQh8zS5v3Eot0YgcKsfslLtGuZqKhJixvtmuJMUAsEiLSsQcsByerBCthAmksFiXS3gjRME5WEZbHfec20nmAWM/yZNuf368t7UQ792E5/p62HJvHPsd21Q+4HyUP/aqfhx9+mCuvvJKf//znzJ49m7vuuotHHnmEv/zlL0lzV4Zt1Q/Ali1buP322/nzn/9Ma2srM2bM4Lvf/S4nn3zyoMq56aabOOeccxg1ahQtLS08+OCD3HHHHTzzzDOcddZZh9x+yBMVERGRY+iYJCqQ5veoVJs73EP4e1QA7r777r5f+DZt2jR+/OMfM2fOnKT3DWuicqx87WtfY/Xq1dTV1ZGfn8/UqVP57ne/e1hJCihRERGR48sxS1Rg2H4z7eEatuXJjuNQV1eXNKF23759lJSUEIkcxi+G6nHvvfcOdvciIiICJik5xkuQM9GgH7qluwETCoXw+QZYtikiIiIySId9R+XHP/4xYFb59P5hwl6RSIQXXniBSZMmHfsaioiIyKfWYScqP/zhDwFzR+VnP/sZjhN/Dubz+aipqeFnP/vZsa+hiIiIfGoddqLS+1eTTz/9dB577DEKCvS7FURERGRoDXoy7dq1a4eiHiIiIiJJDjtRuf766w/rfT/4wQ+OuDIiIiIiiQ47UXnzzTcP+Z6j/fPXIiIiIokOO1HRIx8RERH5uA3Z36wOBoN89NFHQ1W8iIiIfAoMWaIyjL+ZX0RE5BMvFosR6dhLuHUXkY69Qz7uvvDCC5x77rlUVFRgWRZPPPHEkO6v16BX/YiIiMjwCrfV0b3vPWKRzr7XLCeAd+QUPDnlA2x55Nra2jjllFP46le/ygUXDO0fPkykREVEROQ4Em6ro6vx9aTXY5FO83rJzCFJVs455xzOOeecY17uoQzZox8RERE5tmKxGN373hvwPd373vtETb9QoiIiInKciHbucz3uSSUW6STaue9jqtHQU6IiIiJynIhFQsf0fceDIUtUOjo66OjoGKriRUREPnUsx39M33c8GLJEJSsri6ysrKEqXkRE5FPHDozEcgIDvsdyAtiBkR9TjYaeVv2IiIgcJyzLwjtySspVP728I6cMyZ+0aW1tZfPmzX3/3rp1K2+99RaFhYWMGjXqmO+vlxIVERGR44gnpxxKZn7sv0fltdde4/TTT+/7d+8fK77yyiu5//77h2SfoERFRETkuOPJKcfJLutZBRTCcvzmsdAQ/nHgRYsWDcuy5yFLVPSXlEVERIaOZVk4WUXDXY0hp7/1IyIiIhlryBKVp59+msrKyqEqXkRERD4FDuvRT++EmcPxgx/8AID58+cfWY1EREREehxWovLmm2+6/v3GG28QDoc54YQTAPjggw9wHIeZM2ce+xqKiIh8wkSj0eGuwpA7VlNADitRWbt2bd///+AHPyAvL49f/epXFBQUAHDgwAGuvvpqFixYcEwqJSIi8knk8/mwbZvdu3dTXFyMz+f7RC4+icVi7Nmzx/zeF6/3qMqyYoNMeSorK/njH//IlClTXK+/++67fO5zn2P37t1HVaHBaG5uJj8/n6amJoLB4Me2XxERkSPV1dVFXV0d7e3tw12VIWVZFlVVVeTm5ibFBjN+D3p5cnNzM3v27El6fc+ePbS0tAy2OBERkU8Vn8/HqFGjCIfDRCKR4a7OkPF6vTiOc9TlDDpR+eIXv8jVV1/N97//fWbPng3AK6+8wg033MAFF1xw1BUSERH5pOt9JHK0j0U+DQadqPzsZz/jH//xH7nsssvo7u42hXg8fO1rX2P58uXHvIIiIiLy6TWoOSqRSISXX36Zk08+GZ/Px5YtWwAYN24cOTk5Q1bJdDRHRURE5PgzZHNUHMfhc5/7HJs2bWLMmDFMnTr1qCoqIiIiMpBB/2bak046iY8++mgo6iIiIiLiMuhE5d/+7d/4x3/8R/7whz9QV1dHc3Oz60dERETkWBn071Gx7Xhuk/hLamKxGJZlfaxLrTRHRURE5PgzpL9HJfG31IqIiIgMpUEnKgsXLhyKeoiIiIgkGXSiAnDw4EHuvfdeNm3aBMCUKVP46le/Sn5+/jGtnIiIiHy6DXoy7Wuvvca4ceP44Q9/yP79+9m/fz8/+MEPGDduHG+88cZQ1FFEREQ+pQY9mXbBggWMHz+eX/7yl3g85oZMOBzmmmuu4aOPPuKFF14Ykoqmosm0IiIix5/BjN+DTlSysrJ48803mTRpkuv1999/n1NPPfVj/WuQSlRERESOP4MZvwf96CcYDLJjx46k12tra8nLyxtscSIiIiJpDTpRufjii/na177Gww8/TG1tLbW1tTz00ENcc801XHrppUNRRxEREfmUGvSqnzvvvBPLsvjKV75COBwGwOv18o1vfIPbb7/9mFdQREREPr0GPUelV3t7u+uvJ2dnZx/Tih0OzVERERE5/gzpb6btlZ2dzcknn3ykmwNw22238dhjj/GXv/yFrKwsPvOZz3DHHXdwwgknHFW5x8yDlvvfF3fA9keg6T3InwKjLwInEI83rIW6Z8FfCDWXQ1Z5PNayBbY/BJFOqP4CFM6Mx7qbYduD0LYNRs6GyvPA7jk1sSjsegr2vgxZVTDmcvAVxLc98GeofQwsB0ZfDMGEY9fZCFv/B0J7oPR0KDsLev/sQSQEtf8LB9+GvIkw+hLwJCSbjS9C3SrwBk1bsqvisdZtsP23EG6Dys9D0dyEtrSaWOsWKJgB1V8E2xtvy+5VsOdFCJTBmCvAPzK+7cH3oPZR8//VX4IRU+Kx0D7Y9gB01EHxAqg4G6yeJ5fRbqh9HA68AbnjYPSl4M2Nb7t3A+z6A3hyTCy3Jh5r32nK7W6G8rOhZEE8Fm6H7Q9Dy19hxFSovhAcf09bYlD/HDSsAX+xaUugJL5t81/NtrEIVF8ABafEY10HYOsD0LETij5jjmFfW8KwayXsexVyaqDmMnMOeu1/HWqfMPUYfSnkjYvHOupMW0L7ofwsc857RTqPXd9941ZoXBmPV1wKix5EMkcsFiHSVk+0qxnbm4OTU4llO33xSOc+Iu17sGwPTm4ltierLxbtbifStptYNIyTXYoTiF9vYtEwkdZdRMPt2L58nJwyrJ6+G4vFiHY0Euncj+X48eRWYTm+eLldLUTa6gBwcsqxffE5jbFIF+HWXcQinTiBQuyskr4/0RKLRXva0oTtycbJrcSy40NXpPMAkfYG05acCmxv/DoWDXcQad3V05ZinED8ehOLRoi07Sba3YrtC/a0xYm3pXMvkY69PW2pxOr97MvH7ojvqBwLZ599NpdccgmzZs0iHA7zz//8z7z77ru8//775OTkHHL7Ib2j0j9JSSVvApy5DrLK4E9XmAG6l5MFCx4zA+qW++DVr5tBq9fkf4Lpd5jBec2Z0NkQj42cC2f8ESwPrPsbaFwXj/lHwul/hMIZ8M6t8M7NCRWy4NSfwMTroGEdPH8uhFvj4arzYf6j0HUQVi8yg1avnBpYvA6yR8Er18BH/x2P2T447WEzSG17CNb/LcTC8fiE62DW3dCyGZ5bBB274rGC6XDmanBy4IXzTfLTy5sPi56G4nmw6U548wb38Z32n3DiDSbRWHs2dDfFY+VL4LMrIdIOq880SUqvrEo4cy0EJ8Bry+CDuxMOkQfm/RpqLoWdT8JLF0G0Kx4fezXMuRfad5i2tG2Lx/KnmHJ9BfDSl2HnE/GYJwcW/gFKF8EHP4XXvgkkfLROvgVOvhn2vwlrzzKJV6+SheY4xCKw5izYtyEeC5TAGWtM0vbWjfD+HQltsWH2L2HcV2H3M/DiFyHSEY+PvgQ+84DpW88thJYP47Gj6bsp+eGyzkO8Rz4OsUgXnXXriXW39L1mebLwl83D8mTRtfdtIq21CVvY+Epm4MkpI9y6i649b5HYdz15o/EVnUy0u41Q3Xpikfh5tnxBAmVzwfYQathItGNPQrEe/KVzcAIFdDdtoXv/Jlc9vQWT8Y4YR6TzAKGGV0yS3rtpVjH+0lkQjdBZv4FYV/yzbzkB/OVzsb25dO17l3DztoRSLXzF0/DkVhJuq6er8Q0g2hd1cqvxFU0lFu4gVL+eWDj+ebG8eQTK54LtpavxdSLtCddky8FfOgsnq+hQh18O05AuTx5Ke/bsoaSkhOeff57Pfvazh3z/kCUqv6uA7rrDe+/Yq6BiqRm4+suqgLPfhJWjzbfR/pZsNINzYiLS6+RbzODXf/AGKJwF8+6Hp6Ykx2wvnLcVnvsstH6UHJ97P+zbCB+uSI6N+jKMuQqeX5oc84+EpZtg5TgItyTHz1wHm5bD7qeSY5NvMInQa9clx/KnwMLfw+/HmzsuiSwbzt1sEq7EpKrXqStMIrFpeXKsYqnZ7+pFyTFPHpy3BZ6a7E4Yei18CrbeDzt+lxybcB2MnAUbrkqO5Y6FxS/AyjHmLk9/S9+D9VfB/o3JsenLzR2qd25JjpUsMvFnZiXHnACctx1WTYeO3cnx+b8z5+Sj+5NjR9N3U7ksYy4ln2pde98h3LI96XUnpxxPbhWhhhT9z/YSqFxE58617i8hPfxl8+hu2kK0ozEp5skfi+XJpnvfu0kxy5uHv3QWnTvXpKxroOoMQg0bXUlVL+/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoPp3OnetSfg79pbMIt+7su7vjakveaGz/CLr2/jlFsdkEqk53/TFeOXIfy6OfodDUZLLmwsLClPFQKEQoFOr7d3Nz89BU5HCTFDC34VMNSmAGjg/vSX+h3/5Q6iQFzLd1T5q7Svs3wtbfpI5Fu2HzL1InKb3l7ktxoQJzhyHxsVKi0D7TllRJCpjHSHVPp99nzpjUsab3YMt/JycpYF7bcm/qJKW33LbkCzJg6pIzNnUs3GLakipJ6S1358o0scdTJwRgjvnmX6TvD1t/kzpJAfPoKvFuSKLGdaavpBLpNG1JV6fax9Ofl6Ppu5KxXHcCEl9va8DqfQzbX7TbJDcpkhSAcHtdyiSlr1xv6jmKse4Wwi3Jv86ir9yWHSmTFFNuPbE0n4loRyPhNPskFibcvD1t3w63N6Q/Ru31xCKhlLFYuJ1YVwuWX/MhP26DXp48VKLRKH//93/PaaedxkknnZTyPbfddhv5+fl9P9XV1R9zLVNw/GAP8OwyXbIB5ha75aSO2QOVa4EzwORlzwAx2x+fZzGofTLwPp0AWGkugk4g/T7BHIcj3We6ci0veAKpY4dTru0bfOyQ5WYDab6NDVSu5YA9QFsG7GMDteUo+q5kLivNZd2y08egb65JyhgDbGvZA26b9hp3iJiZUzPAPgcYvqyByrXsAcp1BjxGA8ZkyGTMUb/uuut49913eeihNN8cgZtuuommpqa+n9ra2rTvPSrFKR59pFNzuflJJTjJzBfxpbhDZNkw5itm3shgyy3/HIy72sy36M+TC+P/zkxkHWy5NZeZn1RyamDiN80k2CSWKXPURam3HX1Z+n0WL4DxX3dP7Oxl+02seEFy7FDljroIaq4gZWIQKDNtyalJvW3NAOUOdPwKZsCEvzPnoD/LY85Z+ZLBl1t1Poy7KvVF0lcAE6+F4OTBl3ukfVcympNbmfJ1T24FTk7qmOXJwgmOSZv4e3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV40rTFySnHk1eVMobjxwnWYHlSfwFycirTl5tbmfb4Wb58bF+Kz7YMuYxIVL75zW/yhz/8gbVr11JVlabzAX6/n2Aw6PoZEmf94fDeV7YYpt4KZWeYOSWJWXx2FZz2EHiyYP4j7kcqth9m/dxM9jx1hZlwmqjmcphwrZnYOe4aXINt/hQzgTK7ysw3Sbwb4Q2affryzSTKxMctlm3mbFSdC1P+GSo+795n8QKYdodZwTPtjvhKHTAD+/xHzB2KBY+CP2FCme2DmXeZVS0zfwgj57jLrb4QJl1vViRNXOZuS94EM9cmUGzqm/gN3pNjXgsUm/fkTUwo1DKJRs0lpuzqL7n3OXKOqUvBVJj5I/cdBX+RmbfhCZj/JiZelgem3d5zDG5PTpAqlppjV3WumQydePHNqTH19eWbiceJK3WcLJh7nzlns39hzmFiW8ZdY871hGt7kqsEBdNMH8kbb/pM4h0QX0FPW7LNeU9cmWU5cNLNpm9OvdX01URH2nfTKZh/6PfIx8KbPx47q8T1mu0vxFs4GSdQgLdgEq7PoePHVzIT23bwl8zsdwfOxls4BdsfxFc4Bds/wlWuk12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wULK/77p0nWIMntxJP/licbHeCZPtHmLr4gngLp+Aaxmwf/p62+Epm9ku8LLwFk8wxKJyUlCCZeS/j8WSX4skf54pZniz8xf2u0/KxGdbJtLFYjGXLlvH444+zbt06JkyYMKjth/z3qKw6A/avNf9vBeHSJtj7KjS/D8EToWi2+/3tO6F+jVniWb7EPdiH22H30+aZf8XZ7mW5sRg0Pm8mhhbOci/LBbPUde8GM4CUnhFfYgxmqevuVWY5c/k57mW50TDUP2uWKZcsdC/LBdj/Rs/y5BPMyptEHXVm+a03aMpNWGZIpNO0Jdxm7u4E3BdFGl+C1s3mDkPBVHesZQvsecksfy1b7B7su5tNuQAV57gH+1jU1KejDornu5flAhx4O748uaRfgtHZCHV/NMlPxTnuuzeRLrMSqbvJ1Cer37fGPevjy5ML+92lat1mzlugxCz9TlgySXermRsSDZvznTjYx2JmWXN7LRTNcy8pB2h6P748uWSh+3yH9pnz7QRMWxIf80W7oe4Zszy57Ax34gLHtu8mrorTJNqMFA01Ee1qxvLmupYYA8TCnUQ69oLtwckucT26iUUjRDoaIRbBySpOWpYb6dxPrLsN25+P7XNfd6PdbUQ792M5AeysItfE01i0m0i7WRXkZBe75suYpc17iUU6sQOF2P0Sl2hXM9FQE5Y327XEGCAWCRHp2AOWg5NV4lqGHYtFibQ3QjSMk1WE1e9xcKTzALGe5cm2P79fW9qJdu7Dcvw9bcmI7/WfGMfNqp9rr72WBx98kCeffNL1u1Py8/PJyhpg3kIP/cI3ERGR489xk6ikW+Z13333cdVVVx1yeyUqIiIix5/jZnlyBv0KFxEREclAeugmIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhnLM5w7f+GFF1i+fDmvv/46dXV1PP7443zhC18Yziq5PWi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qqlQEM8TjVctgP55ItFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW4Xl+Pq2jXa1EGmrA8DJKcf25cXLjXQRbt1FLNKJEyjEzirB6rlWxWJRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3oBle3ByKrC98etYNNxBpHUXsWgYJ7sYJ5BwvZHjhhWLxWLDtfOnn36al19+mZkzZ3LBBRcMOlFpbm4mPz+fpqYmgsHgoTcYjP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6EC//IuXDGH8HywLq/gcZ18Zh/JJz+RyicAe/cCu/cnFAhC079CUy8DhrWwfPnQrg1Hq46H+Y/Cl0HYfUiM2j1yqmBxesgexS8cg189N/xmO2D0x42g9S2h2D930IsHI9PuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDdimRj0G0u41Q3Xpikc6+1yxfkEDZXLA9hBo2Eu3YE9/A9uAvnYMTKKC7aQvd+ze5yvMWTMY7YhyRzgOEGl4xSXrvplnF+EtnQTRCZ/0GYl3xz77lBPCXz8X25tK1713CzdsSSrXwFU/Dk1tJuK2ersY3gGhf1Mmtxlc0tS8JkuEzmPF7WBOVRJZlZU6icjhJSq+xV0HFUjNw9ZdVAWe/CStHm2+j/S3ZaAbnxESk18m3mMGv/+ANUDgL5t0PT01JjtleOG8rPPdZaP0oOT73fti3ET5ckRwb9WUYcxU8vzQ55h8JSzfBynEQbkmOn7kONi2H3U8lxybfYBKh165LjuVPgYW/h9+PN3dcElk2nLvZJFyJSVWvU1eYRGLT8uRYxVKz39WLkmOePDhvCzw12Z0w9Fr4FGy9H3b8Ljk24ToYOQs2XJUcyx0Li1+AlWPMXZ7+lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpqJE5ROts/5Voh2NSa978sdiebLp3vduUszy5uEvnUXnzjUpywxUnUGoYSOx7uRrinfkScTC7YSbkq9jdlYJ3vxxhOrXJxdqeQhUnU7nrnUpP4f+0lk42aUp6yMfn8GM38P66GewQqEQoVCo79/Nzc3DWJsetU+kHpTADBwf3pP+Qr/9odRJCphv656c1LH9G2Hrb1LHot2w+Repk5TecvelGCjB3GFIfKyUKLTPtCVVkgLmMVLd0+n3mTMmdazpPdhyb3KSAua1zfemTlJ6y23bnjpW97R5DJRKuMW0JVWS0lvuzpVpYo+nTgjAHPPNv0jfH7b+JnWSAubRVeLdkESN60xfSSXSCZvvSV+n2sfTn5ej6bvyqRKLRVMmKQCRtgashMctru26Wwi3pH8sGG7ZkTJJMeXWE0vzmYh2NBJOs09iYcIt29L27XB7gxKV48xxNZn2tttuIz8/v++nurp6uKtk5grY/vRxb5pkA8wtdstJHbMHKtcCJ82HFAaO2f74PItB7fMQ5ToBsLzpY+n2eahyPYfYZ7pyLe+R79MJmMddg40dstxsIM3duoHKtRywA6ljkD6hPVS5h+q7A5Urnz5WmuHCsvvmqaSOp7nGAdjpY5btkHaIsmysAYYva4B9DlhXyUjH1Rm76aabaGpq6vupra0doj0NItuuudz8pBKcZB4V+AqTY5YNY75i5o0Mttzyz8G4q818i/48uTDh78xE1sGWW3OZ+UklpwYmftNMgk1imTJHXZR629GXpd9n8QIY/3X3xM5ett/Eihckxw5V7qiLoOYKUiYGgTLTlpya1NvWDFDuQMevYIY59p7c5JjlMeesfMngy606H8ZdlXqg8BXAhGshOHnw5R6q705M03flU8eybJyc8pQxT24lTk5lypjtL8QbHJW671o23rxR2P7UfczJqcCTm7pcJ6ccT15VyhiOHyc4BsuTlWbb1GVK5jquEhW/308wGHT9DInL6g/vfWWLYeqtUHaGmVOSmMVnV8FpD4EnC+Y/4n6kYvth1s/NZM9TV5gJp4lqLjeDz9irYdw1uAbb/ClmAmV2lZlv4iR8GL1Bs09fvplEmfi4xbLNnI2qc2HKP0PF5937LF4A0+4wK3im3RFfqQNmYJ//CHgCsOBR8BcltMUHM+8yq1pm/hBGznGXW30hTLrerEiauMzdlrwJZq5NoNjUN/EbvCfHvBYoNu/Jm5hQqGUSjZpLTNnVX3Lvc+QcU5eCqTDzR+47Cv4iM2/DEzD/TUy8LA9Mu73nGNyenCBVLDXHrupcMxk68eKbU2Pq68s3E48TV+o4WTD3PnPOZv/CnMPEtoy7xpzrCdf2JFcJCqaZPpI33vSZxDsgvoKetmSb8564Msty4KSbTd+ceqvpq4mOtO+mlXfot8hxzVc4Bds/wvWak12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wUrH53nj3BGjy5lXjyx+JkuxMk2z/C1MUXxFs4BdcwZvvwl8zEth18JTP73VW18BZMwgkcTn+WTKLJtAN5sBA4EP/3ZTHY+yo0vw/BE6Fotvv97Tuhfo1Z4lm+xD3Yh9th99PmmX/F2e5lubEYND5vJoYWznIvywWz1HXvBjOAlJ4RX2IMZqnr7lVmOXP5Oe5ludEw1D9rlimXLHQvywXY/0bP8uQTzMqbRB11ZvmtN2jKTVhmSKTTtCXcZu7uJC7LBWh8CVo3mzsMBVPdsZYtsOcls/y1bLF7sO9uNuUCVJzjHuxjUVOfjjoonu9elgtw4O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrH7fGvesjy9PLux3l6p1mzlvgRKz9DthySTdrWZuSDRsznfiYB+LmWXN7bVQNM+9pByg6f348uSShe7zHdpnzrcTMG1JfDQW7Ya6Z8zy5LIz3IkLHNu+mzjhXJNoP1UinfuJdbdh+/Oxfe7rbrS7jWjnfiwngJ1V5FpdE4t2E2k3q4Kc7GKshD5mljbvJRbpxA4UYvdLXKJdzURDTVje7KQlxrFIiEjHHrAcnKySnkdGveVGibQ3QjSMk1WE5RngEap8rI6bVT+tra1s3rwZgOnTp/ODH/yA008/ncLCQkaNGnXI7Yc8UREREZFj7rhZ9fPaa69x+unxX0p1/fXXA3DllVdy//33D1OtREREJFMMa6KyaNEiMuTJk4iIiGSg42oyrYiIiHy6KFERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkY3mGuwIAK1asYPny5dTX13PKKafwk5/8hNmzZw93teBBy/3viztg+yPQ9B7kT4HRF4ETiMcb1kLds+AvhJrLIas8HmvZAtsfgkgnVH8BCmfGY93NsO1BaNsGI2dD5Xlg95yaWBR2PQV7X4asKhhzOfgK4tse+DPUPgaWA6MvhuAJ8VhnI2z9HwjtgdLToewssHraFAlB7f/CwbchbyKMvgQ82fFtG1+EulXgDZq2ZFfFY63bYPtvIdwGlZ+HorkJbWk1sdYtUDADqr8Itjfelt2rYM+LECiDMVeAf2R824PvQe2j5v+rvwQjpsRjoX2w7QHoqIPiBVBxNlg9eXa0G2ofhwNvQO44GH0peHPj2+7dALv+AJ4cE8uticfad5pyu5uh/GwoWRCPhdth+8PQ8lcYMRWqLwTH39OWGNQ/Bw1rwF9s2hIoiW/b/FezbSwC1RdAwSnxWNcB2PoAdOyEos+YY9jXljDsWgn7XoWcGqi5zJyDXvtfh9onTD1GXwp54+KxjjrTltB+KD/LnPNekc5j13dXnYqbA5eFOd60b/2D699Zo88h0lZHtLsF25uHk1OOZTt98UjHXiIde7EcL56cSixP/PhFu9uItO0mFoviyS7F9o/oi8Wi3YRbdxMLt2P7R+Bkl2L1nO9YLEako5Fo534sT8CU6/ji5YaaCbfXYWHh5FRg++L9OhYJEW7dRSwSwgkUYWcVYfV8vmOxCJG2eqJdzdjeHJycSndbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7Ycm77bWf8XiO7ti+MpJbt6FsPJisViseGswMMPP8xXvvIVfvaznzFnzhzuuusufve73/HXv/6VkpKSAbdtbm4mPz+fpqYmgsHggO8dtP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6GeGzkXDjjj2B5YN3fQOO6eMw/Ek7/IxTOgHduhXduTqiQBaf+BCZeBw3r4PlzIdwaD1edD/Mfha6DsHqRGbR65dTA4nWQPQpeuQY++u94zPbBaQ+bQWrbQ7D+byGWMDBNuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDeikZlP5JSiqWJwd/+Twsx0/XnjeJtO1OCNr4S07FyS4h3FJL1963STzfnvxx+AonE+1qobN+g/li0MP2j8BfNhewCDW8SrQzoS/YXgJlc7H9+XQf+IDugx+46uQdeRLeYA2Rjr2EGja6zouTXYqvZCZEw3TWrSfW3ZLQliz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPW+625I3GV3Qy0e42QnXriUU64+X6ggTK5oLtIdSwkWjHnoRiPfhL5+AECuhu2kL3/k3uthRMxjtiHJHOA4QaXjFJeu+mWcX4S2dBNEJn/QZiXfHPvuUE8JfPxfbm0rXvXcLN2xLPGr7iaXhyKwm31dPV+AYQjR+j3Gp8RVOJhTsI1a8nFo5/XixvHoHyuWB76Wp8nUh7wjXZcvCXzsLJKqK7eRvd+951t2XERLwFE4mGmsz5jnbH2xIoxF86B4gRqt9ANHQw4Rj5CJTPw/bl0bV/E+GmLa5yfUVT8eSNItLeSKjxNfNlr7ctORX4iqdDJGTOd7gtXt2j6LvpZI/5/CHfMxiDGb+HPVGZM2cOs2bN4u67zWASjUaprq5m2bJl3HjjjQNuO2SJyuEkKb3GXgUVS83A1V9WBZz9Jqwcbb6N9rdkoxmcExORXiffYga//oM3QOEsmHc/PDUlOWZ74byt8NxnofWj5Pjc+2HfRvhwRXJs1JdhzFXw/NLkmH8kLN0EK8dBuCU5fuY62LQcdj+VHJt8g0mEXrsuOZY/BRb+Hn4/3vUhBMxAfO5mk3AlJlW9Tl1hEolNy5NjFUvNflcvSo558uC8LfDUZHfC0GvhU7D1ftjxu+TYhOtg5CzYcFVyLHcsLH4BVo5xXaj6LH0P1l8F+zcmx6YvN3eo3rklOVayyMSfSfGtxgnAedth1XTo2J0cn/87c04+uj85djR9N5XjJFFp3/pHoOuQ7wNwcqtwskt6Bjw3y/Hjr1hA5841yX0X8FfMp3v/Jnci0sM7YiLYTtLgDWD78vEVT6Nz1/MpamQRqDqjZ5BtT4r6ik4x38pbtie3JaccT26VSXCSduolULmIzp1r3V9CettSNo/upi1EOxqTYp78sVie7KTBG8zg7y+dZY5RCoGqMwg1bHQlVb28I08iFm4n3JR8HbOzSvDmjyNUvz65UMtDoOp0OnetS/k59JfOIty6s+/ujqsteaOx/SPo2vvnFMVm4y+b19OW5L4eqFxI1563iCYkVX1tKZwM0UhS4glgB0biLZxMaPdLKdpim2O0+0ViCcluL1/JDCLtjURadybFjqbvpjKcicqwPvrp6uri9ddf56abbup7zbZtFi9ezPr1yR0wFAoRCsVPVnNz88dSzwHVPpF6UAIzcHx4T/oL/fbfpk5SwHxb9+Skju3fCFt/kzoW7YbNv0idpPSWuy/FhQrMHYbEx0qJQvtMW1IlKWAeI9U9nX6fOWNSx5regy3/nfrDEovClntTJym95bYlX5ABU5ecsalj4RbTllRJSm+5O1emiT2eOiEAc8w3/yJ9f9j6m9RJCphHV4l3QxI1rjOPXlKJdJq2pKtT7ePpz8vR9N3j2uElKYD5Vp3mu1wsEjIJQZoLfbh1V8okBSDcXt/3mKG/aFcT4RQDT89eCbfuSJmkmPrWEw0lD5QAkbYG12MG9067e9qS+hFeuL0uZZLSV27C4xZXbbtbCLfsSL1PINyyI2WSYsqtJ5bmMxHtaCTsSb1PYmHCLdvS9u1we4P7bkniPtvrUyYEpth2wq07SHf3Idy6M2WSAj1tSXNXMtq5j3DrrpQxYlFzjNLUKdJWTyTxLlZi7Cj6bqYZ1sm0e/fuJRKJUFpa6nq9tLSU+vr6pPffdttt5Ofn9/1UV1d/XFVNz/GD7U8fT5dsADjZZm5JKvZA5Vpm27T7HCBm++PzLAa1TwbepxMAK81F0Amk3yeYRw1Hus905VpeSHgOO+hybd/gYzDwsXeygTR36wYq13LAHqAtA/axgdpyiPPtHaDcTwvLjs8fShlP/13PJCKpz7d1yHLTXBf6yh1gu3TlHmKf1kAxBtjWsgfcFnuA+g4QM3MsjrQtAx0/e4ByBzh+gMUhjn3a2EDHyDpEfYfqfGfEFNXDclyt+rnppptoamrq+6mtrT30RkOt5nLzk0pwkpkv4itMjlk2jPmKmTcy2HLLPwfjrk59kfTkwvi/MxNZB1tuzWXmJ5WcGpj4TTMJNollyhx1UeptR1+Wfp/FC2D8190TO3vZfhMrXpAcO1S5oy6CmitIOVAEykxbcmpSb1szQLkDHb+CGebYe3KTY5bHnLPyJYMvt+p8GHdV6ouOrwAmXgvByYMv91B9d0Kavnu8s4sO/Z4enpxKPLmVKWOWNxdvsCY+Wbz/tnlVONmlKWPOAOXaWcV48qpJ2XctB09wNJYvP3W5uZU4acr15Fbg5KRpiycLJzgmbeLvya3CySlPE6tMW67tL8SbNyp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntRfgAY69gMdP8uXjyd/dJqExMKTV42dVZxy24GOkZNd2nO+U7C9eII1WN4U15Secj1pyj1U3/UM0HczzbAmKkVFRTiOQ0OD+zZcQ0MDZWXJA6Lf7ycYDLp+hsThPmsvWwxTb4WyM8ycksQOnF0Fpz0EniyY/4j7kYrth1k/N5M9T11hJpwmqrkcJlxrJnaOuwbXBSt/iplAmV1l5psk3o3wBs0+fflmEmXi4xbLNnM2qs6FKf8MFf2eNxYvgGl3mBU80+5wd+BAmWmDJwALHgV/woXe9sHMu8yqlpk/hJFz3OVWXwiTrjcrkiYuc7clb4KZaxMoNvVNvDPgyTGvBYrNe/ImJhRqmUSj5hJTdvWX3PscOcfUpWAqzPyR+46Cv8jM2/AEzH8TEy/LA9Nu7zkGtycnSBVLzbGrOtdMhk68+ObUmPr68s3E48SVOk4WzL3PnLPZvzDnMLEt464x53rCtT3JVYKCaaaP5I03fSbxDoivoKct2ea8J67Mshw46WbTN6feavpqoiPtu58A2aPnHvpNgB0owlswESeryMwpSei7lhPAXzwDy3bwl8x0f14sG1/RVGxvLr6RJ2H53NcpJ6cST7AGJ7caJ9c9QFnePLOtJwtf8SnuPmZ58JfMwLK9+IunY/W7e+fJH4snuxRv/njsLPdCBNtfiLdwMk6gAG/BJFdbcPz4SmZi97Ul8Q6cjbdwCrY/iK9wims1E4CTXWb2m1thBr7Etnhy8BWfguX4zaTPxD5mOfiKp/fETsHqd/fOE6wxg3D+WJxsd4Jk+0eYuviCeAun4BrGbB/+nrb4Smb2S7wsvAWTzDEonJSUIJl5L+PxZJfiyR/nilmeLHPMbS/+khnuL4mWja/4FHPOiqZiefNc2/aeZ0+wJilZsXxBfCNPwvbm4Cua6j7fthd/ycyePjYDy/VlzsIzYoLpmwUTsQPu5PuI+25aqRPjj0tGTKadPXs2P/nJTwAzmXbUqFF885vfHL7JtL36T6q9LAZ7X4Xm9yF4IhT1W0LdvhPq15glnuVL3B0g3A67nzbP/CvOdi/LjcWg8XkzMbRwlntZLpilrns3mAGk9Iz4EmMwS113rzLLmcvPcS/LjYah/lmzTLlkoXtZLsD+N3qWJ59gVt4k6qgzy2+9QVNuwjJDIp2mLeE2c3cn4L4o0vgStG42dxgKprpjLVtgz0tm+WvZYvcHs7vZlAtQcY57sI9FTX066qB4vntZLsCBt+PLk0v6JRidjVD3R5P8VJzjvnsT6TIrkbqbTH2y+n1r3LM+vjy5sN9dqtZt5rwFSszS74Qlk3S3mrkh0bA534mDfSxmljW310LRPPeScoCm9+PLk0sWus93aJ85307AtCVxsIp2Q90zZnly2RnuxAWObd9N/GwcJ5No+2vf9ieI7e/5l032mL8hEjpArKsVy5eL43cnaNFwB9GOfViOFzur2HUrPxaNEOlohFgEJ6vEtSzXLHXdRyzcge0f4VqWC2apazR0AMuThR0Y2beUFcxS10jHHrAsU25CH4vFokQ79hKLhLADI13LcgGioSaiXc1Y3lzXEmMwS10jHXvB9uBklwzQlmLXslyASOd+Yt1t2P587H5JWLS7zSy1dgKu5dKm3G4i7WY+hZNd7JovY5Y27yUW6cQOFLqW5Zpj1Ew01ITlzXYtMTbHKNRzjJyeY+QklBsl0t4I0TBOVpFrWa5pywFiPcuTbb97MI52txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHjmnfTVwVd6wn0fY6rlb9PPzww1x55ZX8/Oc/Z/bs2dx111088sgj/OUvf0mau9LfkCcqIiIicswdN6t+AC6++GL27NnDv/zLv1BfX8+0adNYtWrVIZMUERER+eQb9jsqR0N3VERERI4/gxm/j6tVPyIiIvLpokRFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0L/aPT+Ut3m5uZhromIiIgcrt5x+3B+Of5xnai0tLQAUF1dfYh3ioiISKZpaWkhPz9/wPcc13/rJxqNsnv3bvLy8lx/Kls+mZqbm6murqa2tlZ/20nkE0af70+XWCxGS0sLFRUV2PbAs1CO6zsqtm1TVVU13NWQj1kwGNSFTOQTSp/vT49D3Unppcm0IiIikrGUqIiIiEjGUqIixw2/38/NN9+M3+8f7qqIyDGmz7ekc1xPphUREZFPNt1RERERkYylREVEREQylhIVERERyVhKVERERCRjKVGR48aKFSuoqakhEAgwZ84cXn311eGukogcpRdeeIFzzz2XiooKLMviiSeeGO4qSYZRoiLHhYcffpjrr7+em2++mTfeeINTTjmFJUuW0NjYONxVE5Gj0NbWximnnMKKFSuGuyqSobQ8WY4Lc+bMYdasWdx9992A+TtP1dXVLFu2jBtvvHGYaycix4JlWTz++ON84QtfGO6qSAbRHRXJeF1dXbz++ussXry47zXbtlm8eDHr168fxpqJiMhQU6IiGW/v3r1EIhFKS0tdr5eWllJfXz9MtRIRkY+DEhURERHJWEpUJOMVFRXhOA4NDQ2u1xsaGigrKxumWomIyMdBiYpkPJ/Px8yZM1m9enXfa9FolNWrVzNv3rxhrJmIiAw1z3BXQORwXH/99Vx55ZWceuqpzJ49m7vuuou2tjauvvrq4a6aiByF1tZWNm/e3PfvrVu38tZbb1FYWMioUaOGsWaSKbQ8WY4bd999N8uXL6e+vp5p06bx4x//mDlz5gx3tUTkKKxbt47TTz896fUrr7yS+++//+OvkGQcJSoiIiKSsTRHRURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEMtott9zCtGnThrsaIjJMlKiIyJCqr69n2bJljB07Fr/fT3V1Neeee67rj0yKiKSjP0ooIkNm27ZtnHbaaYwYMYLly5dz8skn093dzTPPPMN1113HX/7yl4+lHt3d3Xi93o9lXyJybOmOiogMmWuvvRbLsnj11Ve58MILmThxIlOmTOH6669nw4YNAOzYsYPzzz+f3NxcgsEgF110EQ0NDWnLjEaj3HrrrVRVVeH3+5k2bRqrVq3qi2/btg3Lsnj44YdZuHAhgUCABx54YMjbKiJDQ4mKiAyJ/fv3s2rVKq677jpycnKS4iNGjCAajXL++eezf/9+nn/+eZ599lk++ugjLr744rTl/uhHP+L73/8+d955J2+//TZLlizhvPPO48MPP3S978Ybb+Tb3/42mzZtYsmSJce8fSLy8dCjHxEZEps3byYWizFp0qS071m9ejXvvPMOW7dupbq6GoBf//rXTJkyhY0bNzJr1qykbe68806++93vcskllwBwxx13sHbtWu666y5WrFjR976///u/54ILLjjGrRKRj5vuqIjIkIjFYod8z6ZNm6iuru5LUgBOPPFERowYwaZNm5Le39zczO7duznttNNcr5922mlJ7z/11FOPsOYikkmUqIjIkJgwYQKWZX1sE2b7S/W4SUSOP0pURGRIFBYWsmTJElasWEFbW1tS/ODBg0yePJna2lpqa2v7Xn///fc5ePAgJ554YtI2wWCQiooKXn75ZdfrL7/8csr3i8jxT3NURGTIrFixgtNOO43Zs2dz6623MnXqVMLhMM8++yz33HMP77//PieffDKXX345d911F+FwmGuvvZaFCxemfXRzww03cPPNNzNu3DimTZvGfffdx1tvvaWVPSKfUEpURGTIjB07ljfeeIN///d/5zvf+Q51dXUUFxczc+ZM7rnnHizL4sknn2TZsmV89rOfxbZtzj77bH7yk5+kLfNb3/oWTU1NfOc736GxsZETTzyRlStXMmHChI+xZSLycbFihzPjTURERGQYaI6KiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMb6/wHCnL2DXQSZ/gAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Suppressing warning message claiming that a portion of points cannot be placed into the plot due to the high number of data points\n", + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')\n", + "\n", + "palette = {\n", + " 0: 'orange',\n", + " 1: 'wheat'\n", + "}\n", + "sns.swarmplot(x=\"Color\", y=\"ord__Item Size\", hue=\"Color\", data=encoded_pumpkins, palette=palette)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**주의하세요**: 경고를 무시하는 것은 절대 좋은 방법이 아니며, 가능하면 피해야 합니다. 경고에는 종종 코드 개선과 문제 해결에 도움이 되는 유용한 메시지가 포함되어 있습니다. \n", + "우리가 이 특정 경고를 무시하는 이유는 플롯의 가독성을 보장하기 위함입니다. 모든 데이터 포인트를 작은 마커 크기로 플롯하면서 팔레트 색상과의 일관성을 유지하면 명확하지 않은 시각화를 생성하게 됩니다.\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "# X is the encoded features\n", + "X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])]\n", + "# y is the encoded label\n", + "y = encoded_pumpkins['Color']\n", + "\n", + "# Split the data into training and test sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.94 0.98 0.96 166\n", + " 1 0.85 0.67 0.75 33\n", + "\n", + " accuracy 0.92 199\n", + " macro avg 0.89 0.82 0.85 199\n", + "weighted avg 0.92 0.92 0.92 199\n", + "\n", + "Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0\n", + " 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0\n", + " 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1\n", + " 0 0 0 1 0 0 0 0 0 0 0 0 1 1]\n", + "F1-score: 0.7457627118644068\n" + ] + } + ], + "source": [ + "from sklearn.metrics import f1_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "# Train a logistic regression model on the pumpkin dataset\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "# Evaluate the model and print the results\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('F1-score: ', f1_score(y_test, predictions))" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[162, 4],\n", + " [ 11, 22]])" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import confusion_matrix\n", + "confusion_matrix(y_test, predictions)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAIjCAYAAABBOWJ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgUElEQVR4nO3dd1gUV8MF8LOUZelqsItBjTV2jcYKKgoWFDWKJUKIvUc0tqjYoibWxKDGFqwRNGqMjQiC3WhE7CX2BiixgHR27/eHL/tJBGVxl9lyfs/DE3aY2T07ETjcuTMjE0IIEBEREWmRmdQBiIiIyPiwYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBCZgODgYMhkMvWHhYUFypYtiy+++AIPHz7MdRshBDZs2ICWLVuiSJEisLGxQa1atTBz5kwkJyfn+Vo7duxA+/bt4eTkBLlcjjJlyqBnz544ePBgvrKmpaVh8eLFaNy4MRwdHaFQKFClShWMGDEC169fL9D7J6LCJ+O9SIiMX3BwMPz9/TFz5kxUqFABaWlpOHnyJIKDg+Hi4oKLFy9CoVCo11cqlejTpw9CQ0PRokULdOvWDTY2Njhy5Ag2b96MGjVqIDw8HCVLllRvI4TAl19+ieDgYNSrVw+fffYZSpUqhdjYWOzYsQNnzpzBsWPH0LRp0zxzJiQkwNPTE2fOnEGnTp3g7u4OOzs7XLt2DVu2bEFcXBwyMjJ0uq+ISEsEERm9X375RQAQp0+fzrF8woQJAoAICQnJsXzOnDkCgBg3btwbz7Vr1y5hZmYmPD09cyyfP3++ACC++uoroVKp3thu/fr14q+//nprzo4dOwozMzOxbdu2N76WlpYmxo4d+9bt8yszM1Okp6dr5bmIKHcsGEQmIK+CsXv3bgFAzJkzR70sJSVFFC1aVFSpUkVkZmbm+nz+/v4CgDhx4oR6m2LFiolq1aqJrKysAmU8efKkACAGDhyYr/VdXV2Fq6vrG8v9/PzEhx9+qH58+/ZtAUDMnz9fLF68WFSsWFGYmZmJkydPCnNzczF9+vQ3nuPq1asCgFi6dKl62bNnz8To0aNFuXLlhFwuF5UqVRLz5s0TSqVS4/dKZAo4B4PIhN25cwcAULRoUfWyo0eP4tmzZ+jTpw8sLCxy3c7X1xcAsHv3bvU2T58+RZ8+fWBubl6gLLt27QIA9OvXr0Dbv8svv/yCpUuXYtCgQVi4cCFKly4NV1dXhIaGvrFuSEgIzM3N0aNHDwBASkoKXF1dsXHjRvj6+uLHH39Es2bNMGnSJAQEBOgkL5Ghy/2nBxEZpRcvXiAhIQFpaWn466+/MGPGDFhZWaFTp07qdS5fvgwAqFOnTp7Pk/21K1eu5PhvrVq1CpxNG8/xNg8ePMCNGzdQvHhx9TIfHx8MHjwYFy9eRM2aNdXLQ0JC4Orqqp5jsmjRIty8eRNnz55F5cqVAQCDBw9GmTJlMH/+fIwdOxbOzs46yU1kqDiCQWRC3N3dUbx4cTg7O+Ozzz6Dra0tdu3ahXLlyqnXSUpKAgDY29vn+TzZX0tMTMzx37dt8y7aeI636d69e45yAQDdunWDhYUFQkJC1MsuXryIy5cvw8fHR71s69ataNGiBYoWLYqEhAT1h7u7O5RKJQ4fPqyTzESGjCMYRCYkKCgIVapUwYsXL7B27VocPnwYVlZWOdbJ/gWfXTRy898S4uDg8M5t3uX15yhSpEiBnycvFSpUeGOZk5MT2rRpg9DQUMyaNQvAq9ELCwsLdOvWTb3eP//8g/Pnz79RULI9fvxY63mJDB0LBpEJadSoERo2bAgA8Pb2RvPmzdGnTx9cu3YNdnZ2AIDq1asDAM6fPw9vb+9cn+f8+fMAgBo1agAAqlWrBgC4cOFCntu8y+vP0aJFi3euL5PJIHI5y16pVOa6vrW1da7Le/XqBX9/f8TExKBu3boIDQ1FmzZt4OTkpF5HpVKhbdu2GD9+fK7PUaVKlXfmJTI1PERCZKLMzc0xd+5cPHr0CD/99JN6efPmzVGkSBFs3rw5z1/W69evBwD13I3mzZujaNGi+PXXX/Pc5l28vLwAABs3bszX+kWLFsXz58/fWH737l2NXtfb2xtyuRwhISGIiYnB9evX0atXrxzrVKpUCS9fvoS7u3uuH+XLl9foNYlMAQsGkQlzc3NDo0aNsGTJEqSlpQEAbGxsMG7cOFy7dg3ffPPNG9vs2bMHwcHB8PDwwKeffqreZsKECbhy5QomTJiQ68jCxo0bcerUqTyzNGnSBJ6enli9ejV27tz5xtczMjIwbtw49eNKlSrh6tWrePLkiXrZuXPncOzYsXy/fwAoUqQIPDw8EBoaii1btkAul78xCtOzZ0+cOHECYWFhb2z//PlzZGVlafSaRKaAV/IkMgHZV/I8ffq0+hBJtm3btqFHjx5Yvnw5hgwZAuDVYQYfHx/89ttvaNmyJbp37w5ra2scPXoUGzduRPXq1REREZHjSp4qlQpffPEFNmzYgPr166uv5BkXF4edO3fi1KlTOH78OJo0aZJnzidPnqBdu3Y4d+4cvLy80KZNG9ja2uKff/7Bli1bEBsbi/T0dACvzjqpWbMm6tSpg/79++Px48dYsWIFSpYsicTERPUpuHfu3EGFChUwf/78HAXldZs2bcLnn38Oe3t7uLm5qU+ZzZaSkoIWLVrg/Pnz+OKLL9CgQQMkJyfjwoUL2LZtG+7cuZPjkAoRgVfyJDIFeV1oSwghlEqlqFSpkqhUqVKOi2QplUrxyy+/iGbNmgkHBwehUCjExx9/LGbMmCFevnyZ52tt27ZNtGvXThQrVkxYWFiI0qVLCx8fHxEVFZWvrCkpKWLBggXik08+EXZ2dkIul4vKlSuLkSNHihs3buRYd+PGjaJixYpCLpeLunXrirCwsLdeaCsviYmJwtraWgAQGzduzHWdpKQkMWnSJPHRRx8JuVwunJycRNOmTcWCBQtERkZGvt4bkSnhCAYRERFpHedgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1pncvUhUKhUePXoEe3t7yGQyqeMQEREZDCEEkpKSUKZMGZiZvX2MwuQKxqNHj+Ds7Cx1DCIiIoN1//59lCtX7q3rmFzByL699P3799W3hyYiIqJ3S0xMhLOzs/p36duYXMHIPizi4ODAgkFERFQA+ZliwEmeREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1khaMw4cPw8vLC2XKlIFMJsPOnTvfuU1UVBTq168PKysrfPTRRwgODtZ5TiIiItKMpAUjOTkZderUQVBQUL7Wv337Njp27IhWrVohJiYGX331FQYMGICwsDAdJyUiIiJNWEj54u3bt0f79u3zvf6KFStQoUIFLFy4EABQvXp1HD16FIsXL4aHh4euYhoVIQSi7z3Dk6R0qaMQEVEhaFLJCY7WloX+upIWDE2dOHEC7u7uOZZ5eHjgq6++ynOb9PR0pKf//y/TxMREXcUzCCdvPUXvVSeljkFERIVk76gWLBjvEhcXh5IlS+ZYVrJkSSQmJiI1NRXW1tZvbDN37lzMmDGjsCLqvQsPnwMAnOys4PKBjbRhiIhI52zk5pK8rkEVjIKYNGkSAgIC1I8TExPh7OwsYSJp3XuaAgDo9YkzxnlUlTgNERFp05kzZ/DTTz9h5cqVsLQs/FGL1xlUwShVqhTi4+NzLIuPj4eDg0OuoxcAYGVlBSsrq8KIZxDuPU0FAJQvxtELIiJjcvr0abRr1w7Pnz9H+fLlJR+9N6jrYDRp0gQRERE5lh04cABNmjSRKJHhuf+/EQxnFgwiIqNx6tQptG3bFs+fP0ezZs0wbtw4qSNJWzBevnyJmJgYxMTEAHh1GmpMTAzu3bsH4NXhDV9fX/X6Q4YMwa1btzB+/HhcvXoVy5YtQ2hoKMaMGSNFfIOjVAk8ePaqYJTn/AsiIqPw119/oW3btnjx4gWaN2+Offv2wd7eXupY0haMv//+G/Xq1UO9evUAAAEBAahXrx6mTZsGAIiNjVWXDQCoUKEC9uzZgwMHDqBOnTpYuHAhVq9ezVNU8yn2RSoylQKW5jKUclBIHYeIiN7TyZMn0a5dOyQmJqJFixZ6Uy4AQCaEEFKHKEyJiYlwdHTEixcv4ODgIHWcQnX8ZgL6rPoLFZxsETnOTeo4RET0HlJTU1GpUiXExsbC1dUVu3fvhp2dnU5fU5PfoQY1B4PeD+dfEBEZD2tra2zevBkdO3bEnj17dF4uNGVQZ5HQ+8k+RfVDFgwiIoOVmZmpPgXVzc0Nbm5u0gbKA0cwTAhPUSUiMmxHjx5FtWrVcPHiRamjvBMLhgm5x0MkREQG68iRI/D09MStW7fw7bffSh3nnVgwTEj2HAyOYBARGZbDhw+jffv2SE5Ohru7O9auXSt1pHdiwTARSWmZeJqcAQBwLpb7VU+JiEj/HDp0SF0u2rZti127duV59Wp9woJhIrIPjxSzlcNeIe316YmIKH8iIyPRoUMHpKSkwMPDA7///rtBlAuABcNk8BRVIiLDIoTA3LlzkZKSAk9PT+zcudNgygXAgmEyeIoqEZFhkclk2LZtGyZMmIAdO3ZAoTCsKzCzYJiIe5zgSURkEO7evav+3MHBAfPmzTO4cgGwYJgMXgODiEj/HThwANWqVcO8efOkjvLeWDBMBOdgEBHptz///BNeXl5IS0vD8ePHoVQqpY70XlgwTABv005EpN/CwsLQuXNnpKeno0uXLti2bRvMzc2ljvVeWDBMAG/TTkSkv/bt24cuXbogPT0d3t7eCA0NhVwulzrWe2PBMAHZEzzLFbWBuZlM4jRERJRt79698Pb2Rnp6Orp27YqQkBCjKBcAC4ZJ4CXCiYj0040bN5CRkYHu3bsbVbkAeLt2k8BTVImI9NOoUaNQoUIFeHp6qm/Bbiw4gmECeIoqEZH+OHjwIJ49e6Z+7OXlZXTlAmDBMAn3/k0GwFNUiYik9vvvv8PT0xPt2rVDYmKi1HF0igXDBPAQCRGR9Hbs2IHPPvsMmZmZqFy5MmxsjPtnMguGkUtMy8SzlEwAvAYGEZFUtm/fjp49eyIrKwt9+vTB+vXrYWFh3NMgWTCMXPYZJB/YymFnZdz/mImI9NFvv/0GHx8fZGVloW/fviZRLgAWDKPHS4QTEUln586d6nLRr18/rFu3zuCv0Jlfxl+hTBznXxARSad69eooUaIE2rZti7Vr15pMuQBYMIweCwYRkXSqVq2KU6dOoXTp0iZVLgAeIjF6d/9lwSAiKky//vor/vzzT/XjcuXKmVy5ADiCYfQ4B4OIqPBs2rQJvr6+kMvlOHXqFGrVqiV1JMlwBMOIvbpN+/+u4slTVImIdGrjxo3w9fWFSqXC559/jo8//ljqSJJiwTBisS9SkaUSkJub8TbtREQ6tGHDBnW5GDhwIH7++WeYmZn2r1geIjEiT5LSkZKRpX4cc/85AKBcUWvepp2ISEfWrVsHf39/CCEwaNAgLF++3OTLBcCCYTR2n3+EEZvP5vo1zr8gItKNqKgodbkYMmQIgoKCWC7+hwXDSFx+9OqmOZbmMlhZ/P9sZbmFGbrVLytVLCIio9a8eXP4+PigaNGiCAoKgkzG0eJsLBhG5vNPP0Sgl2lPLCIiKiwWFhbYsGEDzM3NWS7+g+M4REREGli9ejUGDBgAlUoF4FXJYLl4E0cwiIiI8mnlypUYPHgwAMDd3R29evWSOJH+4ggGERFRPvz888/qcjF69Gj4+PhInEi/sWAQERG9w/LlyzFkyBAAwJgxY7B48WIeFnkHFgwiIqK3CAoKwrBhwwAAY8eOxcKFC1ku8oEFg4iIKA93795FQEAAAGDcuHGYP38+y0U+cZInERFRHj788EOEhobi1KlTmD17NsuFBlgwiIiI/iMpKQn29vYAgC5duqBLly4SJzI8PERCRET0msWLF6NmzZq4ffu21FEMGgsGERHR/yxatAgBAQG4d+8efvvtN6njGDQWDCIiIgALFy7E2LFjAQBTp05Vf04Fw4JBREQmb/78+Rg3bhwAYNq0aZgxYwYndL4nFgwiIjJp33//PcaPHw8AmD59OsuFlvAsEiIiMllpaWnYtGkTAGDGjBmYNm2axImMBwsGERGZLIVCgfDwcGzfvl19nxHSDh4iISIik3P27Fn158WLF2e50AEWDCIiMimzZs1C/fr1sXLlSqmjGDUWDCIiMhmvz7N4+vSpxGmMG+dgEBGRScg+QwQA5s2bhwkTJkicyLixYBARkVETQmD69OmYOXMmgFenpX799dcSpzJ+LBhERGS0hBCYNm0aZs+eDQBYsGABr9BZSFgwiIjIJCxatAhjxoyROobJYMEgIiKjJZPJMHPmTLRv3x5NmzaVOo5J4VkkRERkVIQQWLVqFVJSUgC8KhksF4WPBYOIiIyGEAITJkzAoEGD0LlzZyiVSqkjmSweIiEiIqMghMD48eOxYMECAEDXrl1hbm4ucSrTxYJBREQGTwiBcePGYdGiRQCAoKAgDBs2TOJUpo0Fg4iIDJoQAgEBAViyZAkAYPny5RgyZIi0oYgFg4iIDNvUqVPV5WLFihW8cZme4CRPIiIyaN26dUOxYsXw888/s1zoEY5gEBGRQatfvz7++ecfFCtWTOoo9BqOYBARkUHJPlvk5MmT6mUsF/qHBYOIiAyGSqXC8OHDMX/+fLRv3563XNdjPERCREQGQaVSYdiwYfj5558hk8mwZMkSjlzoMRYMIiLSeyqVCkOHDsXKlSshk8kQHBwMX19fqWPRW7BgGAkhdQAiIh1RqVQYPHgwVq9eDTMzM6xbtw6ff/651LHoHVgwjMSp26+OQ5Z2VEichIhIu4KCgtTlYv369ejbt6/UkSgfWDCMwLW4JJy5+wwWZjJ41ysrdRwiIq0aOHAgwsLC0KdPH/Tp00fqOJRPLBhG4NdT9wAA7tVLooQ9RzCIyPCpVCrIZDLIZDIoFAr88ccfkMlkUsciDfA0VQOXmqHEb9EPAAC9G5eXOA0R0ftTKpXw9/fH119/DSFezTBjuTA8kheMoKAguLi4QKFQoHHjxjh16tRb11+yZAmqVq0Ka2trODs7Y8yYMUhLSyuktPpnz4VYJKVloVxRa7T4yEnqOERE7yW7XKxfvx5LlizB+fPnpY5EBSRpwQgJCUFAQAACAwMRHR2NOnXqwMPDA48fP851/c2bN2PixIkIDAzElStXsGbNGoSEhGDy5MmFnFx/ZB8e6d2oPMzM2PCJyHAplUr4+flhw4YNMDc3x5YtW1CnTh2pY1EBSVowFi1ahIEDB8Lf3x81atTAihUrYGNjg7Vr1+a6/vHjx9GsWTP06dMHLi4uaNeuHXr37v3OUQ9j9frkzh4Ny0kdh4iowLKysuDr64tNmzbBwsICISEh+Oyzz6SORe9BsoKRkZGBM2fOwN3d/f/DmJnB3d0dJ06cyHWbpk2b4syZM+pCcevWLezduxcdOnTI83XS09ORmJiY48NYcHInERmD7HKxefNmWFhYIDQ0FN27d5c6Fr0nyc4iSUhIgFKpRMmSJXMsL1myJK5evZrrNn369EFCQgKaN28OIQSysrIwZMiQtx4imTt3LmbMmKHV7Prg9cmdfTi5k4gM2LFjx7BlyxZYWFhg69at8Pb2ljoSaYHkkzw1ERUVhTlz5mDZsmWIjo7G9u3bsWfPHsyaNSvPbSZNmoQXL16oP+7fv1+IiXUne3KnczFrNOfkTiIyYK6urggODsa2bdtYLoyIZCMYTk5OMDc3R3x8fI7l8fHxKFWqVK7bTJ06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZmb/YlKysrWFlZaf8NSCz78EivTzi5k4gMT2ZmJp4/f47ixYsDAO8rYoQkG8GQy+Vo0KABIiIi1MtUKhUiIiLQpEmTXLdJSUl5o0SYm5sDgPpcaVPAyZ1EZMgyMzPRu3dvtGzZEnFxcVLHIR2R9EqeAQEB8PPzQ8OGDdGoUSMsWbIEycnJ8Pf3B/Cq0ZYtWxZz584FAHh5eWHRokWoV68eGjdujBs3bmDq1Knw8vJSFw1TsO3Mq8M8bWtwcicRGZbMzEz06tUL27dvh1wux8WLF/MctSbDJmnB8PHxwZMnTzBt2jTExcWhbt262L9/v3ri571793KMWEyZMgUymQxTpkzBw4cPUbx4cXh5eeHbb7+V6i1I4u+7zwAAHh/zm5KIDEdGRgZ69eqFHTt2QC6XY8eOHTnOJCTjIhOmdGwBQGJiIhwdHfHixQs4ODhIHUdjWUoVak4PQ1qmChFjXVGpuJ3UkYiI3ikjIwM9e/bE77//DisrK+zcuROenp5SxyINafI7lDc7MzA3nrxEWqYKdlYWqPCBrdRxiIjeKSMjAz169MCuXbtgZWWF33//HR4eHlLHIh0zqNNUCbjw4AUA4OMyDjx7hIgMwtOnT3Hp0iUoFArs2rWL5cJEcATDwFx8+Kpg1CrrKHESIqL8KVWqFCIjI3Hjxg20atVK6jhUSDiCYWDOZxeMciwYRKS/0tPTERUVpX7s7OzMcmFiWDAMSJZShSuxr+6lUpMjGESkp9LS0tCtWze4u7tj69atUschibBgGBBO8CQifZeWloauXbti7969kMvl+OCDD6SORBLhHAwDwgmeRKTPUlNT4e3tjT///BM2NjbYs2cP3NzcpI5FEmHBMCAXOMGTiPRUamoqunTpggMHDsDGxgZ79+6Fq6ur1LFIQiwYBuQCJ3gSkR5KT09H586dER4eDltbW+zduxctW7aUOhZJjHMwDAQneBKRvpLL5ahcuTJsbW2xb98+lgsCwIJhMDjBk4j0lUwmw08//YTo6Gi0aNFC6jikJ1gwDAQneBKRPklOTsbMmTORmZkJADAzM0OVKlUkTkX6hHMwDAQneBKRvkhOTkbHjh1x6NAh3Lp1C8HBwVJHIj3EEQwDwQmeRKQPXr58iQ4dOuDQoUNwcHDAkCFDpI5EeoojGAbg9QmeHMEgIqlkl4sjR47AwcEBf/75Jxo3bix1LNJTHMEwAK9P8HThBE8ikkBSUhLat2+PI0eOwNHREQcOHGC5oLfiCIYBOM8JnkQkISEEevTogaNHj6JIkSI4cOAAGjZsKHUs0nMcwTAAvEU7EUlJJpNh0qRJKFu2LMLDw1kuKF84gmEAOMGTiKTm6uqKGzduQKFQSB2FDARHMPQcJ3gSkRRevHgBLy8vXLx4Ub2M5YI0wREMPccJnkRU2J4/fw4PDw+cOnUKN27cwMWLF2Fubi51LDIwLBh6jhM8iagwPX/+HO3atcPp06fxwQcfYMuWLSwXVCA8RKLnOMGTiArLs2fP0LZtW5w+fRpOTk44ePAg6tSpI3UsMlAcwdBjSpVAxJXHAIB65YtKnIaIjNnTp0/Rtm1bREdHq8tFrVq1pI5FBowjGHrs8D9P8PB5KhytLdGmegmp4xCREZs8eTKio6NRvHhxREZGslzQe2PB0GO//nUPANCtflkoLHkMlIh0Z/78+fD29sbBgwdRs2ZNqeOQEeAhEj0Vn5iGiKuvDo/0aVRe4jREZIxSU1NhbW0NALC3t8eOHTskTkTGhCMYeir09H0oVQKfuBRF5ZL2UschIiOTkJCATz/9FHPnzpU6ChkpFgw9pFQJbDl9HwDQpzFHL4hIu548eYLWrVvj/Pnz+OGHH/D06VOpI5ERYsHQQ69P7mxfs7TUcYjIiDx+/BitW7fGhQsXUKpUKURFRaFYsWJSxyIjxDkYeoiTO4lIF7LLxaVLl1C6dGlERkaiatWqUsciI8URDD3DyZ1EpAvx8fFo1aoVLl26hDJlyiAqKorlgnSKIxh6hpM7iUgXwsLCcPnyZXW5qFy5stSRyMixYOgRTu4kIl3x9fVFWloaWrVqxXJBhYIFQ49wcicRaVNcXBysrKxQtOirWw0MGjRI4kRkSjgHQ49s/t/kzu71y3FyJxG9l9jYWLi5uaFdu3Z4/vy51HHIBLFg6Im4F2k4mD25s7GzxGmIyJA9evQIbm5uuHbtGuLj4/Hs2TOpI5EJYsHQE6F/v5rc2cilGD4qwcmdRFQwDx8+hJubG65fv44PP/wQhw4dQoUKFaSORSaIczD0gFIlEPK/yZ29OXpBRAX04MEDtGrVCjdu3MCHH36IqKgouLi4SB2LTBRHMPTA4euc3ElE7+f+/ftwc3PDjRs34OLiwnJBkmPB0AObT3FyJxG9n9TUVKSkpKBChQosF6QXeIhEYpzcSUTaUKVKFURGRsLa2hrly/M6OiQ9jmBIjJM7iaig7t69i4iICPXjqlWrslyQ3mDBkNDrkzt55U4i0sSdO3fg5uaGjh074uDBg1LHIXoDC4aEXp/c6VmzlNRxiMhAZJeLO3fuwNnZmTctI73EgiEhTu4kIk3dvn0brq6uuHv3LipXroyoqCiULVtW6lhEb2DBkAgndxKRpm7dugU3Nzfcu3cPVapUYbkgvcazSAqRSiVw/Oa/eJmeicirTzi5k4jyLfvy3/fv30fVqlURGRmJ0qV53RzSXywYhWjTX3cx9fdLOZZxcicR5UeJEiXQrFkzxMTE4ODBgywXpPdYMAqJEALrTtwFAFQpaQcHhSVcnGzRoRZ/SBDRu1lYWGDDhg14/vw5nJycpI5D9E4sGIXk77vPcOPxS1hbmuO3oU1hr7CUOhIR6bnr169j1apV+O6772BmZgYLCwuWCzIYLBiFZPNfr84Y6VynDMsFEb3TtWvX0KpVK8TGxsLOzg6BgYFSRyLSCM8iKQTPUzKw50IsAKA351wQ0TtcvXpVXS5q1qyJoUOHSh2JSGMcwSgEv0U/REaWCjVKO6BOOUep4xCRHssuF3FxcahVqxYiIiJQvHhxqWMRaYwjGDomhMCv/7ugVu/G5SGTySRORET66sqVK3Bzc0NcXBxq166NgwcPslyQwWLB0LHTd/5/cqd33TJSxyEiPZWWlgYPDw/Ex8ejbt26OHjwICd0kkFjwdCx7NELTu4kordRKBQICgpC48aNER4ejg8++EDqSETvhQVDh54lc3InEb2dEEL9uZeXF44fP85yQUbhvQpGWlqatnIYpe1nObmTiPJ2/vx5NGzYELdu3VIvMzPj331kHDT+l6xSqTBr1iyULVsWdnZ26m+MqVOnYs2aNVoPaKiEENj816srd3JyJxH917lz59C6dWtER0dj3LhxUsch0jqNC8bs2bMRHByM77//HnK5XL28Zs2aWL16tVbDGbLTd57h5pNkTu4kojfExMSgTZs2+Pfff9GwYUP+cUZGSeOCsX79eqxcuRJ9+/aFubm5enmdOnVw9epVrYYzZNmjF5zcSUSvO3v2rLpcfPLJJzhw4ACKFi0qdSwirdO4YDx8+BAfffTRG8tVKhUyMzO1EsrQPUvOwN6LcQB4t1Qi+n/R0dFo06YNnj59ikaNGuHAgQMoUqSI1LGIdELjglGjRg0cOXLkjeXbtm1DvXr1tBLK0L0+ubM2J3cSEV7Nyxo7diyePXuGxo0b488//4SjI38+kPHS+FLh06ZNg5+fHx4+fAiVSoXt27fj2rVrWL9+PXbv3q2LjAaFkzuJKDcymQxbt27FhAkTsHjxYjg4OEgdiUinNB7B6NKlC/744w+Eh4fD1tYW06ZNw5UrV/DHH3+gbdu2ushoUDi5k4he9++//6o/d3Jywpo1a1guyCQU6GZnLVq0wIEDB7SdxShwcicRZTt9+jQ8PDwwb948DBo0SOo4RIVK4xGMihUr5mjk2Z4/f46KFStqJZSh4uROIsp26tQpuLu749mzZ9i0aROUSqXUkYgKlcYF486dO7l+o6Snp+Phw4daCWWofot+wMmdRIS//voLbdu2RWJiIlq0aIE9e/bkOK2fyBTk+xDJrl271J+HhYXlmP2sVCoREREBFxcXrYYzJK/flr0PJ3cSmawTJ07Aw8MDSUlJaNmyJfbs2QM7OzupYxEVunwXDG9vbwCvZkL7+fnl+JqlpSVcXFywcOFCrYYzJKduP1VP7uzCyZ1EJun48ePw9PREUlIS3NzcsHv3btja2kodi0gS+S4YKpUKAFChQgWcPn0aTk5OOgtliHhbdiKKjIxEUlISWrVqhT/++IPlgkyaxmeR3L59Wxc5DBondxIRAEyePBllypSBj48PbGxspI5DJKkC3Rc4OTkZe/fuxYoVK/Djjz/m+NBUUFAQXFxcoFAo0LhxY5w6deqt6z9//hzDhw9H6dKlYWVlhSpVqmDv3r0FeRtawyt3Epmu6OhoJCcnA3h1CNnf35/lgggFGME4e/YsOnTogJSUFCQnJ6NYsWJISEiAjY0NSpQogVGjRuX7uUJCQhAQEIAVK1agcePGWLJkCTw8PHDt2jWUKFHijfUzMjLQtm1blChRAtu2bUPZsmVx9+5dya/lf+nRCwCAZ81SnNxJZEIOHz6MDh06oFGjRti9ezeLBdFrNB7BGDNmDLy8vPDs2TNYW1vj5MmTuHv3Lho0aIAFCxZo9FyLFi3CwIED4e/vjxo1amDFihWwsbHB2rVrc11/7dq1ePr0KXbu3IlmzZrBxcUFrq6uqFOnjqZvQyesLAo0IEREBujQoUNo3749kpOTYWlpyT8uiP5D49+IMTExGDt2LMzMzGBubo709HQ4Ozvj+++/x+TJk/P9PBkZGThz5gzc3d3/P4yZGdzd3XHixIlct9m1axeaNGmC4cOHo2TJkqhZsybmzJnz1gvYpKenIzExMccHEdH7iIqKUo/kenh4YOfOnbC2tpY6FpFe0bhgWFpawszs1WYlSpTAvXuvzp5wdHTE/fv38/08CQkJUCqVKFmyZI7lJUuWRFxcXK7b3Lp1C9u2bYNSqcTevXsxdepULFy4ELNnz87zdebOnQtHR0f1h7Ozc74zEhH918GDB9XlwtPTk+WCKA8az8GoV68eTp8+jcqVK8PV1RXTpk1DQkICNmzYgJo1a+oio5pKpUKJEiWwcuVKmJubo0GDBnj48CHmz5+PwMDAXLeZNGkSAgIC1I8TExNZMoioQA4ePIhOnTohNTUV7du3x/bt26FQKKSORaSXNC4Yc+bMQVJSEgDg22+/ha+vL4YOHYrKlStjzZo1+X4eJycnmJubIz4+Psfy+Ph4lCpVKtdtSpcuDUtLyxyX3K1evTri4uKQkZEBuVz+xjZWVlawsrLKdy4iorwUKVIECoUCrVu3xm+//cafLURvoXHBaNiwofrzEiVKYP/+/QV6YblcjgYNGiAiIkJ9lVCVSoWIiAiMGDEi122aNWuGzZs3Q6VSqQ/TXL9+HaVLl861XBARaVP9+vVx/PhxVKhQgeWC6B20dtpDdHQ0OnXqpNE2AQEBWLVqFdatW4crV65g6NChSE5Ohr+/PwDA19cXkyZNUq8/dOhQPH36FKNHj8b169exZ88ezJkzB8OHD9fW2yAiyuHPP//E8ePH1Y+rVavGckGUDxqNYISFheHAgQOQy+UYMGAAKlasiKtXr2LixIn4448/4OHhodGL+/j44MmTJ5g2bRri4uJQt25d7N+/Xz3x8969e+qRCgBwdnZGWFgYxowZg9q1a6Ns2bIYPXo0JkyYoNHrEhHlx/79++Ht7Q25XI4TJ07g448/ljoSkcHId8FYs2YNBg4ciGLFiuHZs2dYvXo1Fi1ahJEjR8LHxwcXL15E9erVNQ4wYsSIPA+JREVFvbGsSZMmOHnypMavQ0SkiX379qFr165IT09H+/btUblyZakjERmUfB8i+eGHH/Ddd98hISEBoaGhSEhIwLJly3DhwgWsWLGiQOWCiEgf7d27F97e3khPT0fXrl0RGhrKeV5EGsp3wbh58yZ69OgBAOjWrRssLCwwf/58lCtXTmfhiIgK2+7du9G1a1dkZGSge/fuCAkJgaUl75BMpKl8F4zU1FT1dfZlMhmsrKxQunRpnQUjIipsx48fR7du3ZCRkYHPPvsMv/76K8sFUQFpNMlz9erVsLOzAwBkZWUhODgYTk5OOdbR5GZnRET6pH79+nB3d4ednR02bdrEckH0HvJdMMqXL49Vq1apH5cqVQobNmzIsY5MJmPBICKDpVAosH37dlhYWMDCQuPLBBHRa/L9HXTnzh0dxiAiksaOHTtw8uRJzJs3DzKZjJf+JtISVnQiMlnbt2+Hj48PsrKyULduXfTu3VvqSERGQ2tX8iQiMiTbtm1Dz549kZWVhb59+6rPkiMi7WDBICKTs3XrVvTq1QtKpRL9+vXDunXrOOeCSMtYMIjIpISEhKB3795QKpXw9fXFL7/8kuMOzUSkHSwYRGQy7t+/j379+kGpVMLPzw9r165luSDSkQIVjJs3b2LKlCno3bs3Hj9+DODVdfsvXbqk1XBERNrk7OyM1atXo3///lizZg3LBZEOaVwwDh06hFq1auGvv/7C9u3b8fLlSwDAuXPnEBgYqPWARETvKzMzU/25r68vVq9ezXJBpGMaF4yJEydi9uzZ6tu2Z2vdujXvckpEemfjxo2oV68e4uLipI5CZFI0LhgXLlxA165d31heokQJJCQkaCUUEZE2bNiwAX5+frh06RJWrlwpdRwik6JxwShSpAhiY2PfWH727FmULVtWK6GIiN7XunXr4OfnB5VKhcGDB2PKlClSRyIyKRoXjF69emHChAmIi4uDTCaDSqXCsWPHMG7cOPj6+uoiIxGRRoKDg+Hv7w8hBIYMGYJly5bBzIwnzREVJo2/4+bMmYNq1arB2dkZL1++RI0aNdCyZUs0bdqUfyEQkeR++eUXfPnllxBCYNiwYSwXRBLR+NJ1crkcq1atwtSpU3Hx4kW8fPkS9erVQ+XKlXWRj4go39LS0jB37lwIITB8+HAsXboUMplM6lhEJknjgnH06FE0b94c5cuXR/ny5XWRiYioQBQKBSIiIrBu3Tp88803LBdEEtJ43LB169aoUKECJk+ejMuXL+siExGRRm7fvq3+3NnZGVOmTGG5IJKYxgXj0aNHGDt2LA4dOoSaNWuibt26mD9/Ph48eKCLfEREb/Xzzz+jSpUqCA0NlToKEb1G44Lh5OSEESNG4NixY7h58yZ69OiBdevWwcXFBa1bt9ZFRiKiXC1fvhxDhgxBVlYWTp8+LXUcInrNe02trlChAiZOnIh58+ahVq1aOHTokLZyERG91bJlyzBs2DAAwNixY/H9999LnIiIXlfggnHs2DEMGzYMpUuXRp8+fVCzZk3s2bNHm9mIiHL1008/Yfjw4QCAr7/+GvPnz+ecCyI9o/FZJJMmTcKWLVvw6NEjtG3bFj/88AO6dOkCGxsbXeQjIsph6dKlGDVqFABg/PjxmDdvHssFkR7SuGAcPnwYX3/9NXr27AknJyddZCIiytO1a9cAvLrx4pw5c1guiPSUxgXj2LFjushBRJQvS5cuRbt27eDl5cVyQaTH8lUwdu3ahfbt28PS0hK7du1667qdO3fWSjAiomy///472rdvD7lcDplMxp8zRAYgXwXD29sbcXFxKFGiBLy9vfNcTyaTQalUaisbEREWLlyIcePGwdvbG9u2bYO5ubnUkYgoH/JVMFQqVa6fExHp0vz58zF+/HgAQO3atXnTMiIDovF36/r165Genv7G8oyMDKxfv14roYiIvvvuO3W5CAwMxIwZMzjngsiAaFww/P398eLFizeWJyUlwd/fXyuhiMi0zZs3DxMnTgQATJ8+HdOnT5c2EBFpTOOzSIQQuf4V8eDBAzg6OmolFBGZrvnz52PSpEkAgJkzZ2Lq1KkSJyKigsh3wahXrx5kMhlkMhnatGkDC4v/31SpVOL27dvw9PTUSUgiMh2NGjWCjY0NJk2ahClTpkgdh4gKKN8FI/vskZiYGHh4eMDOzk79NblcDhcXF3Tv3l3rAYnItLi6uuLKlSsoX7681FGI6D3ku2AEBgYCAFxcXODj4wOFQqGzUERkWhYsWABPT0/UrFkTAFguiIyAxpM8/fz8WC6ISGumT5+Or7/+Gq1bt8a///4rdRwi0pJ8jWAUK1YM169fh5OTE4oWLfrWU8WePn2qtXBEZLyEEJg+fTpmzpwJ4NWNyz744AOJUxGRtuSrYCxevBj29vbqz3kuOhG9DyEEpk2bhtmzZwN4dYhk7NixEqciIm3KV8Hw8/NTf/7FF1/oKgsRmQAhBKZOnYpvv/0WALBo0SKMGTNG4lREpG0az8GIjo7GhQsX1I9///13eHt7Y/LkycjIyNBqOCIyPqtXr1aXi8WLF7NcEBkpjQvG4MGDcf36dQDArVu34OPjAxsbG2zdulV9WV8iorz06tULzZo1w5IlS/DVV19JHYeIdETjK3lev34ddevWBQBs3boVrq6u2Lx5M44dO4ZevXphyZIlWo5IRIbu9SsA29vbIyoqKsfF+ojI+Gg8giGEUN9RNTw8HB06dAAAODs7IyEhQbvpiMjgCSHw9ddfY+7cueplLBdExk/j7/KGDRti9uzZcHd3x6FDh7B8+XIAwO3bt1GyZEmtByQiwyWEwLhx47Bo0SIAgKenJ+rVqydxKiIqDBqPYCxZsgTR0dEYMWIEvvnmG3z00UcAgG3btqFp06ZaD0hEhkkIgYCAAHW5WL58OcsFkQnReASjdu3aOc4iyTZ//nyYm5trJRQRGTYhBMaMGYMffvgBAPDzzz9j0KBBEqciosJU4AOhZ86cwZUrVwAANWrUQP369bUWiogMlxACo0ePxtKlSwEAK1euxMCBAyVORUSFTeOC8fjxY/j4+ODQoUMoUqQIAOD58+do1aoVtmzZguLFi2s7IxEZkEOHDmHp0qWQyWRYtWoV+vfvL3UkIpKAxnMwRo4ciZcvX+LSpUt4+vQpnj59iosXLyIxMRGjRo3SRUYiMiBubm5YsmQJVq9ezXJBZMI0HsHYv38/wsPDUb16dfWyGjVqICgoCO3atdNqOCIyDCqVCsnJyep7Fo0ePVriREQkNY1HMFQqFSwtLd9Ybmlpqb4+BhGZDpVKhWHDhqFVq1Z4/vy51HGISE9oXDBat26N0aNH49GjR+plDx8+xJgxY9CmTRuthiMi/aZSqTBkyBD8/PPPiI6OxuHDh6WORER6QuOC8dNPPyExMREuLi6oVKkSKlWqhAoVKiAxMVE9a5yIjJ9KpcLgwYOxatUqmJmZYf369ejcubPUsYhIT2g8B8PZ2RnR0dGIiIhQn6ZavXp1uLu7az0cEeknlUqFgQMHYu3atepy0bdvX6ljEZEe0ahghISEYNeuXcjIyECbNm0wcuRIXeUiIj2lUqkwYMAA/PLLLzAzM8OGDRvQp08fqWMRkZ7Jd8FYvnw5hg8fjsqVK8Pa2hrbt2/HzZs3MX/+fF3mIyI9Exsbi/3798PMzAybNm1Cr169pI5ERHoo33MwfvrpJwQGBuLatWuIiYnBunXrsGzZMl1mIyI9VLZsWURGRmLr1q0sF0SUp3wXjFu3bsHPz0/9uE+fPsjKykJsbKxOghGR/lAqlYiJiVE/rlq1Krp16yZdICLSe/kuGOnp6bC1tf3/Dc3MIJfLkZqaqpNgRKQflEolvvjiC3z66acICwuTOg4RGQiNJnlOnToVNjY26scZGRn49ttv4ejoqF6WfWtmIjJ8WVlZ8PPzw+bNm2FhYYGXL19KHYmIDES+C0bLli1x7dq1HMuaNm2KW7duqR/LZDLtJSMiSWVlZcHX1xe//vorLCwsEBISwsMiRJRv+S4YUVFROoxBRPokKysLn3/+OUJCQmBhYYHQ0FB07dpV6lhEZEA0vtAWERm3rKws9O3bF6GhobC0tMTWrVvRpUsXqWMRkYFhwSCiN5ibm8PS0hLbtm3j5b+JqEA0vhcJERk3CwsLrF+/HseOHWO5IKICY8EgImRmZmLZsmVQKpUAXpWMTz75ROJURGTIWDCITFxGRgZ8fHwwfPhwDB8+XOo4RGQkClQwjhw5gs8//xxNmjTBw4cPAQAbNmzA0aNHtRqOiHQru1zs2LEDVlZWnMxJRFqjccH47bff4OHhAWtra5w9exbp6ekAgBcvXmDOnDlaD0hEupGRkYEePXpg586dsLKyws6dO9G+fXupYxGRkdC4YMyePRsrVqzAqlWrYGlpqV7erFkzREdHazUcEelGeno6PvvsM+zatQsKhQK7du2Cp6en1LGIyIhofJrqtWvX0LJlyzeWOzo64vnz59rIREQ61rdvX/zxxx/qctG2bVupIxGRkdF4BKNUqVK4cePGG8uPHj2KihUrFihEUFAQXFxcoFAo0LhxY5w6dSpf223ZsgUymQze3t4Fel0iU+Xn5wdHR0f88ccfLBdEpBMaF4yBAwdi9OjR+OuvvyCTyfDo0SNs2rQJ48aNw9ChQzUOEBISgoCAAAQGBiI6Ohp16tSBh4cHHj9+/Nbt7ty5g3HjxqFFixYavyaRqfPy8sKdO3fg7u4udRQiMlIaF4yJEyeiT58+aNOmDV6+fImWLVtiwIABGDx4MEaOHKlxgEWLFmHgwIHw9/dHjRo1sGLFCtjY2GDt2rV5bqNUKtG3b1/MmDGjwKMmRKYkLS0N/fv3z3FzwiJFikgXiIiMnsYFQyaT4ZtvvsHTp09x8eJFnDx5Ek+ePMGsWbM0fvGMjAycOXMmx19RZmZmcHd3x4kTJ/LcbubMmShRogT69+//ztdIT09HYmJijg8iU5KamoouXbpg7dq16NSpk/piWkREulTge5HI5XLUqFHjvV48ISEBSqUSJUuWzLG8ZMmSuHr1aq7bHD16FGvWrEFMTEy+XmPu3LmYMWPGe+UkMlTZ5eLAgQOwtbXFihUrYG5uLnUsIjIBGheMVq1aQSaT5fn1gwcPvlegt0lKSkK/fv2watUqODk55WubSZMmISAgQP04MTERzs7OuopIpDdSUlLQpUsXhIeHw9bWFvv27eOcJSIqNBoXjLp16+Z4nJmZiZiYGFy8eBF+fn4aPZeTkxPMzc0RHx+fY3l8fDxKlSr1xvo3b97EnTt34OXlpV6mUqkAvLp3wrVr11CpUqUc21hZWcHKykqjXESGLiUlBZ07d0ZERATs7Oywb98+NG/eXOpYRGRCNC4YixcvznX59OnT8fLlS42eSy6Xo0GDBoiIiFCfaqpSqRAREYERI0a8sX61atVw4cKFHMumTJmCpKQk/PDDDxyZIPqf8ePHq8vF/v370axZM6kjEZGJKfAcjP/6/PPP0ahRIyxYsECj7QICAuDn54eGDRuiUaNGWLJkCZKTk+Hv7w8A8PX1RdmyZTF37lwoFArUrFkzx/bZM+H/u5zIlE2fPh3nzp3Dd999h6ZNm0odh4hMkNYKxokTJ6BQKDTezsfHB0+ePMG0adMQFxeHunXrYv/+/eqJn/fu3YOZGW/6SvQuSqVSPYHTyckJhw8ffut8KSIiXdK4YHTr1i3HYyEEYmNj8ffff2Pq1KkFCjFixIhcD4kAQFRU1Fu3DQ4OLtBrEhmTly9folOnTujduzcGDx4MACwXRCQpjQuGo6NjjsdmZmaoWrUqZs6ciXbt2mktGBHlT1JSEjp06ICjR4/i3Llz6N69e77PsiIi0hWNCoZSqYS/vz9q1aqFokWL6ioTEeVTUlIS2rdvj2PHjsHR0RFhYWEsF0SkFzSa3GBubo527drxrqlEeiAxMRGenp7qcnHgwAE0atRI6lhERAAKcKnwmjVr5rifAREVvuxycfz4cRQpUgTh4eH45JNPpI5FRKSmccGYPXs2xo0bh927dyM2Npb3+SCSQGhoKE6cOIGiRYsiPDwcDRs2lDoSEVEO+Z6DMXPmTIwdOxYdOnQAAHTu3DnHLHUhBGQyGW+kRFQI+vfvjydPnsDDwwP169eXOg4R0RvyXTBmzJiBIUOGIDIyUpd5iCgPL168gIWFBWxtbSGTyTBp0iSpIxER5SnfBUMIAQBwdXXVWRgiyt3z58/Rrl072NnZYffu3bCxsZE6EhHRW2k0B4MX7iEqfM+ePUPbtm1x+vRpnD9/Hvfu3ZM6EhHRO2l0HYwqVaq8s2Q8ffr0vQIR0f97+vQp2rZti+joaDg5OSEiIgLVqlWTOhYR0TtpVDBmzJjxxpU8iUg3nj59Cnd3d5w9exZOTk44ePAgatWqJXUsIqJ80ahg9OrVCyVKlNBVFiL6n3///Rfu7u6IiYlB8eLFcfDgQd4xmIgMSr7nYHD+BVHhefToEe7evYsSJUogMjKS5YKIDI7GZ5EQke7VqlUL4eHhUCgUqFGjhtRxiIg0lu+CoVKpdJmDyOQlJCTg9u3b6kt+8wJaRGTINL5UOBFp35MnT9C6dWu0adMGJ0+elDoOEdF7Y8Egktjjx4/RunVrXLhwAXZ2dihatKjUkYiI3ptGZ5EQkXZll4tLly6hTJkyiIyMRJUqVaSORUT03jiCQSSR+Ph4tGrVCpcuXULZsmURFRXFckFERoMjGEQSePLkCVq1aoUrV66oy8VHH30kdSwiIq1hwSCSgL29PVxcXJCUlITIyEiWCyIyOiwYRBJQKBTYvn07Hj9+jPLly0sdh4hI6zgHg6iQPHr0CN999536onUKhYLlgoiMFkcwiArBw4cP0apVK/zzzz9QqVSYNGmS1JGIiHSKIxhEOvbgwQO4ubnhn3/+wYcffojevXtLHYmISOdYMIh06P79+3Bzc8ONGzfg4uKCQ4cOwcXFRepYREQ6x4JBpCPZ5eLmzZuoUKECoqKi8OGHH0odi4ioULBgEOlAeno62rRpg1u3bqFixYosF0RkclgwiHTAysoK06ZNQ5UqVRAVFcWzRYjI5LBgEOnI559/jvPnz8PZ2VnqKEREhY4Fg0hLbt++DU9PT8TGxqqXWVlZSZiIiEg6LBhEWnDr1i24ubkhLCwMQ4YMkToOEZHkWDCI3tPNmzfh5uaGe/fuoUqVKli+fLnUkYiIJMcreRK9h+xy8eDBA1StWhWRkZEoXbq01LGIiCTHEQyiArpx4wZcXV3x4MEDVKtWDVFRUSwXRET/w4JBVEADBgzAw4cPUb16dURGRqJUqVJSRyIi0hssGEQFtGHDBnh5ebFcEBHlgnMwiDSQmpoKa2trAICzszN27dolcSIiIv3EEQyifLp27RqqVq2K0NBQqaMQEek9FgyifLh69Src3Nxw//59zJs3D1lZWVJHIiLSaywYRO9w5coVuLm5IS4uDrVr18aff/4JCwseXSQiehsWDKK3uHz5Mtzc3BAfH486deogIiICTk5OUsciItJ7LBhEebh06RJatWqFx48fo27duiwXREQaYMEgysPmzZvx+PFj1KtXDxEREfjggw+kjkREZDB4IJkoD7Nnz0aRIkXQv39/FCtWTOo4REQGhSMYRK+5ceMGMjIyAAAymQxff/01ywURUQGwYBD9z7lz5/Dpp5+iZ8+e6pJBREQFw4JBBCAmJgatW7fGv//+i0ePHiE1NVXqSEREBo0Fg0ze2bNn0aZNGzx9+hSNGzfGgQMH4OjoKHUsIiKDxoJBJi06OlpdLj799FOEhYWxXBARaQELBpmsM2fOoE2bNnj27BmaNGnCckFEpEUsGGSykpOTkZGRgaZNm2L//v1wcHCQOhIRkdHgdTDIZLVs2RKRkZGoXr067O3tpY5DRGRUWDDIpJw6dQoKhQK1a9cGADRq1EjiRERExomHSMhknDx5Em3btkWbNm1w9epVqeMQERk1FgwyCSdOnEC7du2QmJiIGjVqoFy5clJHIiIyaiwYZPSOHz8ODw8PJCUlwdXVFXv37oWdnZ3UsYiIjBoLBhm1Y8eOqcuFm5sb9uzZA1tbW6ljEREZPRYMMlpnzpyBp6cnXr58idatW7NcEBEVIp5FQkarSpUqqFOnDhQKBXbt2gUbGxupIxERmQwWDDJa9vb22LdvH8zNzVkuiIgKGQ+RkFE5dOgQ5s+fr35sb2/PckFEJAGOYJDRiIyMRKdOnZCSkoLy5cvDx8dH6khERCaLIxhkFA4ePIiOHTsiJSUFnp6e6NKli9SRiIhMGgsGGbyIiAh06tQJqamp6NChA3bs2AGFQiF1LCIik8ZDJGTQwsPD4eXlhbS0NHTo0AHbt2+HlZWV1LGIiEweRzDIYD18+BCdO3dGWloaOnbsyHJBRKRHOIJBBqts2bKYN28ewsPDsXXrVpYLIiI9whEMMjhCCPXno0aNws6dO1kuiIj0DAsGGZR9+/ahRYsWePbsmXqZmRn/GRMR6Rv+ZCaDsXfvXnh7e+PYsWM5LqZFRET6hwWDDMLu3bvRtWtXZGRkoHv37pgxY4bUkYiI6C1YMEjv/fHHH+jWrRsyMjLw2Wef4ddff4WlpaXUsYiI6C30omAEBQXBxcUFCoUCjRs3xqlTp/Jcd9WqVWjRogWKFi2KokWLwt3d/a3rk2HbtWsXunfvjszMTPTo0QObN29muSAiMgCSF4yQkBAEBAQgMDAQ0dHRqFOnDjw8PPD48eNc14+KikLv3r0RGRmJEydOwNnZGe3atcPDhw8LOTnpWnp6OkaPHo3MzEz4+PiwXBARGRDJC8aiRYswcOBA+Pv7o0aNGlixYgVsbGywdu3aXNfftGkThg0bhrp166JatWpYvXo1VCoVIiIiCjk56ZqVlRXCwsIwcuRIbNy4ERYWvGwLEZGhkLRgZGRk4MyZM3B3d1cvMzMzg7u7O06cOJGv50hJSUFmZiaKFSuW69fT09ORmJiY44P0W0JCgvrzKlWq4Mcff2S5ICIyMJIWjISEBCiVSpQsWTLH8pIlSyIuLi5fzzFhwgSUKVMmR0l53dy5c+Ho6Kj+cHZ2fu/cpDvbtm1DhQoVEBYWJnUUIiJ6D5IfInkf8+bNw5YtW95698xJkybhxYsX6o/79+8XckrKr61bt6JXr154+fIltm3bJnUcIiJ6D5KOOzs5OcHc3Bzx8fE5lsfHx6NUqVJv3XbBggXq+1DUrl07z/WsrKx4GWkDEBoaij59+kCpVMLX1xcrVqyQOhIREb0HSUcw5HI5GjRokGOCZvaEzSZNmuS53ffff49Zs2Zh//79aNiwYWFEJR3asmWLulz4+flh7dq1MDc3lzoWERG9B8lnzgUEBMDPzw8NGzZEo0aNsGTJEiQnJ8Pf3x8A4Ovri7Jly2Lu3LkAgO+++w7Tpk3D5s2b4eLiop6rYWdnBzs7O8neBxXMr7/+is8//xwqlQr+/v5YtWoVywURkRGQvGD4+PjgyZMnmDZtGuLi4lC3bl3s379fPfHz3r17OW5mtXz5cvUVHV8XGBiI6dOnF2Z00oJ9+/ZBpVLhyy+/xKpVq3jjMiIiIyF5wQCAESNGYMSIEbl+LSoqKsfjO3fu6D4QFZq1a9fC1dUV/v7+LBdEREaEP9Gp0B09ehRKpRIAYGFhgf79+7NcEBEZGf5Up0K1bt06tGzZEv3791eXDCIiMj4sGFRogoOD4e/vDyEErK2tIZPJpI5EREQ6woJBhWLt2rX48ssvIYTA0KFDERQUxMMiRERGjD/hSefWrFmDAQMGQAiBYcOGsVwQEZkA/pQnnXq9XIwYMQI//fQTD40QEZkAvThNlYxXiRIlYGlpiaFDh2LJkiUsF0REJoIFg3TKy8sLZ86cQc2aNVkuiIhMCA+RkNatW7cON2/eVD+uVasWywURkYlhwSCtWrZsGb744gu0atUKCQkJUschIiKJsGCQ1gQFBWH48OEAXt1j5oMPPpA4ERERSYUFg7Ri6dKl6vvJjB8/Ht9//z0PixARmTAWDHpvP/74I0aNGgUAmDBhAubNm8dyQURk4lgw6L1s3LgRo0ePBgBMmjQJc+fOZbkgIiKepkrvx9PTE7Vr14aXlxdmzZrFckFERABYMOg9OTk54fjx47CxsWG5ICIiNR4iIY3Nnz8fK1asUD+2tbVluSAiohw4gkEa+e677zBx4kQAwCeffIIGDRpInIiIiPQRRzAo3+bNm6cuFzNmzGC5ICKiPLFgUL7MmTMHkyZNAgDMmjUL06ZNkzgRERHpMx4ioXf69ttvMWXKFPXnkydPljgRERHpOxYMeqvDhw+ry8XroxhERERvw4JBb9WyZUtMmzYNNjY2mDBhgtRxiIjIQLBg0BuEEMjMzIRcLgfwakInERGRJjjJk3IQQiAwMBAeHh5ISUmROg4RERkoFgxSE0Jg2rRpmDVrFqKiorB7926pIxERkYHiIRIC8KpcTJkyBXPmzAEALFq0CD179pQ4FRERGSoWDIIQApMnT8a8efMAAIsXL8ZXX30lbSgiIjJoLBgmTgiBSZMm4bvvvgMA/PDDDxg1apTEqYiIyNCxYJi4R48eYeXKlQCApUuXYsSIERInIiIiY8CCYeLKli2LiIgI/P333xg4cKDUcYiIyEiwYJggIQTu3LmDChUqAADq1auHevXqSZyKiIiMCU9TNTFCCIwdOxZ16tTBiRMnpI5DRERGigXDhAghMGbMGCxevBhJSUm4dOmS1JGIiMhI8RCJiRBCYPTo0Vi6dCkAYOXKlRgwYIDEqYiIyFixYJgAIQRGjhyJoKAgAMCqVatYLoiISKdYMIycEAIjRozAsmXLIJPJsHr1anz55ZdSxyIiIiPHgmHkMjMzcefOHchkMqxZswb+/v5SRyIiIhPAgmHk5HI5fvvtNxw6dAgeHh5SxyEiIhPBs0iMkEqlwtatWyGEAAAoFAqWCyIiKlQsGEZGpVJhyJAh6NmzJ8aPHy91HCIiMlE8RGJEVCoVBg0ahDVr1sDMzAx169aVOhIREZkoFgwjoVKpMHDgQKxduxZmZmbYsGED+vTpI3UsIiIyUSwYRkCpVGLAgAEIDg6GmZkZNm3ahF69ekkdi4iITBjnYBiBQYMGITg4GObm5ti8eTPLBRERSY4Fwwi0atUKcrkcmzdvho+Pj9RxiIiIeIjEGHz++edwdXWFs7Oz1FGIiIgAcATDIGVlZWHixImIjY1VL2O5ICIifcKCYWCysrLg6+uL7777Dh4eHsjKypI6EhER0Rt4iMSAZGVloV+/ftiyZQssLCwwc+ZMWFjwfyEREekf/nYyEFlZWejbty9CQ0NhaWmJrVu3okuXLlLHIiIiyhULhgHIzMxE3759sXXrVlhaWuK3336Dl5eX1LGIiIjyxDkYBmDChAnYunUr5HI5tm/fznJBRER6jwXDAAQEBODjjz/G9u3b0alTJ6njEBERvRMPkegpIQRkMhkAoFy5coiJieGETiIiMhgcwdBDGRkZ6NGjB0JCQtTLWC6IiMiQsGDomfT0dHz22Wf47bff0L9/fzx58kTqSERERBrjn8V6JLtc7N69GwqFAtu3b0fx4sWljkVERKQxFgw9kZ6eju7du2PPnj1QKBTYtWsX2rZtK3UsIiKiAmHB0ANpaWno3r079u7dC4VCgT/++APu7u5SxyIiIiowzsHQA+vWrcPevXthbW2N3bt3s1wQEZHB4wiGHhg0aBCuX7+Ojh07onXr1lLHISIiem8sGBJJTU2Fubk55HI5ZDIZFi5cKHUkIiIireEhEgmkpqaiS5cu6NmzJzIyMqSOQ0REpHUcwShkKSkp6NKlC8LDw2Fra4urV6+idu3aUsciIiLSKhaMQpSSkgIvLy8cPHgQtra22LdvH8sFEREZJR4iKSTJycno1KkTDh48CDs7O+zfvx8tWrSQOhYREZFOcASjEGSXi6ioKNjb22P//v1o2rSp1LGIiIh0hgWjEFy9ehWnT5+Gvb09wsLC0KRJE6kjERER6RQLRiFo0KAB9uzZA7lcznJBREQmgQVDR16+fIkHDx6gWrVqAABXV1eJExERERUeTvLUgaSkJLRv3x4tWrTAhQsXpI5DRERU6FgwtCwxMRGenp44evQoMjMzkZaWJnUkIiKiQqcXBSMoKAguLi5QKBRo3LgxTp069db1t27dimrVqkGhUKBWrVrYu3dvISV9u7T0dHh6euL48eMoUqQIwsPD8cknn0gdi4iIqNBJXjBCQkIQEBCAwMBAREdHo06dOvDw8MDjx49zXf/48ePo3bs3+vfvj7Nnz8Lb2xve3t64ePFiISd/0+pVq3DixAkULVoU4eHhaNiwodSRiIiIJCETQggpAzRu3BiffPIJfvrpJwCASqWCs7MzRo4ciYkTJ76xvo+PD5KTk7F79271sk8//RR169bFihUr3vl6iYmJcHR0xIsXL+Dg4KCV9zBy42n8cfExnkWuhfk/kQgPD0f9+vW18txERET6QpPfoZKOYGRkZODMmTNwd3dXLzMzM4O7uztOnDiR6zYnTpzIsT4AeHh45Ll+eno6EhMTc3xom0z26r/WNjaIiIhguSAiIpMnacFISEiAUqlEyZIlcywvWbIk4uLict0mLi5Oo/Xnzp0LR0dH9Yezs7N2wr+mcqkiqFfOAVPHjkS9evW0/vxERESGxuivgzFp0iQEBASoHycmJmq9ZIxsUxkj21TW6nMSEREZMkkLhpOTE8zNzREfH59jeXx8PEqVKpXrNqVKldJofSsrK1hZWWknMBEREeWLpIdI5HI5GjRogIiICPUylUqFiIiIPC+p3aRJkxzrA8CBAwd4CW4iIiI9IvkhkoCAAPj5+aFhw4Zo1KgRlixZguTkZPj7+wMAfH19UbZsWcydOxcAMHr0aLi6umLhwoXo2LEjtmzZgr///hsrV66U8m0QERHRayQvGD4+Pnjy5AmmTZuGuLg41K1bF/v371dP5Lx37x7MzP5/oKVp06bYvHkzpkyZgsmTJ6Ny5crYuXMnatasKdVbICIiov+Q/DoYhU0X18EgIiIyBQZzHQwiIiIyTiwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdZLfrr2wZd88NjExUeIkREREhiX7d2d+bsRucgUjKSkJAODs7CxxEiIiIsOUlJQER0fHt64jE/mpIUZEpVLh0aNHsLe3h0wm08pzJiYmwtnZGffv34eDg4NWntPUcZ9qH/epdnF/ah/3qXbpYn8KIZCUlIQyZcrAzOztsyxMbgTDzMwM5cqV08lzOzg48JtCy7hPtY/7VLu4P7WP+1S7tL0/3zVykY2TPImIiEjrWDCIiIhI61gwtMDKygqBgYGwsrKSOorR4D7VPu5T7eL+1D7uU+2Sen+a3CRPIiIi0j2OYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWDkU1BQEFxcXKBQKNC4cWOcOnXqretv3boV1apVg0KhQK1atbB3795CSmo4NNmnq1atQosWLVC0aFEULVoU7u7u7/x/YGo0/TeabcuWLZDJZPD29tZtQAOk6T59/vw5hg8fjtKlS8PKygpVqlTh9/5rNN2fS5YsQdWqVWFtbQ1nZ2eMGTMGaWlphZRW/x0+fBheXl4oU6YMZDIZdu7c+c5toqKiUL9+fVhZWeGjjz5CcHCw7gIKeqctW7YIuVwu1q5dKy5duiQGDhwoihQpIuLj43Nd/9ixY8Lc3Fx8//334vLly2LKlCnC0tJSXLhwoZCT6y9N92mfPn1EUFCQOHv2rLhy5Yr44osvhKOjo3jw4EEhJ9dPmu7PbLdv3xZly5YVLVq0EF26dCmcsAZC032anp4uGjZsKDp06CCOHj0qbt++LaKiokRMTEwhJ9dPmu7PTZs2CSsrK7Fp0yZx+/ZtERYWJkqXLi3GjBlTyMn11969e8U333wjtm/fLgCIHTt2vHX9W7duCRsbGxEQECAuX74sli5dKszNzcX+/ft1ko8FIx8aNWokhg8frn6sVCpFmTJlxNy5c3Ndv2fPnqJjx445ljVu3FgMHjxYpzkNiab79L+ysrKEvb29WLduna4iGpSC7M+srCzRtGlTsXr1auHn58eC8R+a7tPly5eLihUrioyMjMKKaFA03Z/Dhw8XrVu3zrEsICBANGvWTKc5DVV+Csb48ePFxx9/nGOZj4+P8PDw0EkmHiJ5h4yMDJw5cwbu7u7qZWZmZnB3d8eJEydy3ebEiRM51gcADw+PPNc3NQXZp/+VkpKCzMxMFCtWTFcxDUZB9+fMmTNRokQJ9O/fvzBiGpSC7NNdu3ahSZMmGD58OEqWLImaNWtizpw5UCqVhRVbbxVkfzZt2hRnzpxRH0a5desW9u7diw4dOhRKZmNU2L+bTO5mZ5pKSEiAUqlEyZIlcywvWbIkrl69mus2cXFxua4fFxens5yGpCD79L8mTJiAMmXKvPHNYooKsj+PHj2KNWvWICYmphASGp6C7NNbt27h4MGD6Nu3L/bu3YsbN25g2LBhyMzMRGBgYGHE1lsF2Z99+vRBQkICmjdvDiEEsrKyMGTIEEyePLkwIhulvH43JSYmIjU1FdbW1lp9PY5gkMGZN28etmzZgh07dkChUEgdx+AkJSWhX79+WLVqFZycnKSOYzRUKhVKlCiBlStXokGDBvDx8cE333yDFStWSB3NIEVFRWHOnDlYtmwZoqOjsX37duzZswezZs2SOhrlE0cw3sHJyQnm5uaIj4/PsTw+Ph6lSpXKdZtSpUpptL6pKcg+zbZgwQLMmzcP4eHhqF27ti5jGgxN9+fNmzdx584deHl5qZepVCoAgIWFBa5du4ZKlSrpNrSeK8i/0dKlS8PS0hLm5ubqZdWrV0dcXBwyMjIgl8t1mlmfFWR/Tp06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZm/PtYU3n9bnJwcND66AXAEYx3ksvlaNCgASIiItTLVCoVIiIi0KRJk1y3adKkSY71AeDAgQN5rm9qCrJPAeD777/HrFmzsH//fjRs2LAwohoETfdntWrVcOHCBcTExKg/OnfujFatWiEmJgbOzs6FGV8vFeTfaLNmzXDjxg11WQOA69evo3Tp0iZdLoCC7c+UlJQ3SkR2eRO8hVaBFPrvJp1MHTUyW7ZsEVZWViI4OFhcvnxZDBo0SBQpUkTExcUJIYTo16+fmDhxonr9Y8eOCQsLC7FgwQJx5coVERgYyNNU/0PTfTpv3jwhl8vFtm3bRGxsrPojKSlJqregVzTdn//Fs0jepOk+vXfvnrC3txcjRowQ165dE7t37xYlSpQQs2fPluot6BVN92dgYKCwt7cXv/76q7h165b4888/RaVKlUTPnj2legt6JykpSZw9e1acPXtWABCLFi0SZ8+eFXfv3hVCCDFx4kTRr18/9frZp6l+/fXX4sqVKyIoKIinqeqDpUuXivLlywu5XC4aNWokTp48qf6aq6ur8PPzy7F+aGioqFKlipDL5eLjjz8We/bsKeTE+k+Tffrhhx8KAG98BAYGFn5wPaXpv9HXsWDkTtN9evz4cdG4cWNhZWUlKlasKL799luRlZVVyKn1lyb7MzMzU0yfPl1UqlRJKBQK4ezsLIYNGyaePXtW+MH1VGRkZK4/F7P3o5+fn3B1dX1jm7p16wq5XC4qVqwofvnlF53l4+3aiYiISOs4B4OIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg8jIBAcHo0iRIlLHKDCZTIadO3e+dZ0vvvgC3t7ehZKHiAqGBYNID33xxReQyWRvfNy4cUPqaAgODlbnMTMzQ7ly5eDv74/Hjx9r5fljY2PRvn17AMCdO3cgk8kQExOTY50ffvgBwcHBWnm9vEyfPl39Ps3NzeHs7IxBgwbh6dOnGj0PyxCZKt6unUhPeXp64pdffsmxrHjx4hKlycnBwQHXrl2DSqXCuXPn4O/vj0ePHiEsLOy9nzuv23e/ztHR8b1fJz8+/vhjhIeHQ6lU4sqVK/jyyy/x4sULhISEFMrrExkyjmAQ6SkrKyuUKlUqx4e5uTkWLVqEWrVqwdbWFs7Ozhg2bBhevnyZ5/OcO3cOrVq1gr29PRwcHNCgQQP8/fff6q8fPXoULVq0gLW1NZydnTFq1CgkJye/NZtMJkOpUqVQpkwZtG/fHqNGjUJ4eDhSU1OhUqkwc+ZMlCtXDlZWVqhbty7279+v3jYjIwMjRoxA6dKloVAo8OGHH2Lu3Lk5njv7EEmFChUAAPXq1YNMJoObmxuAnKMCK1euRJkyZXLcJh0AunTpgi+//FL9+Pfff0f9+vWhUChQsWJFzJgxA1lZWW99nxYWFihVqhTKli0Ld3d39OjRAwcOHFB/XalUon///qhQoQKsra1RtWpV/PDDD+qvT58+HevWrcPvv/+uHg2JiooCANy/fx89e/ZEkSJFUKxYMXTp0gV37tx5ax4iQ8KCQWRgzMzM8OOPP+LSpUtYt24dDh48iPHjx+e5ft++fVGuXDmcPn0aZ86cwcSJE2FpaQkAuHnzJjw9PdG9e3ecP38eISEhOHr0KEaMGKFRJmtra6hUKmRlZeGHH37AwoULsWDBApw/fx4eHh7o3Lkz/vnnHwDAjz/+iF27diE0NBTXrl3Dpk2b4OLikuvznjp1CgAQHh6O2NhYbN++/Y11evTogX///ReRkZHqZU+fPsX+/fvRt29fAMCRI0fg6+uL0aNH4/Lly/j5558RHByMb7/9Nt/v8c6dOwgLC4NcLlcvU6lUKFeuHLZu3YrLly9j2rRpmDx5MkJDQwEA48aNQ8+ePeHp6YnY2FjExsaiadOmyMzMhIeHB+zt7XHkyBEcO3YMdnZ28PT0REZGRr4zEek1nd2nlYgKzM/PT5ibmwtbW1v1x2effZbrulu3bhUffPCB+vEvv/wiHB0d1Y/t7e1FcHBwrtv2799fDBo0KMeyI0eOCDMzM5GamprrNv99/uvXr4sqVaqIhg0bCiGEKFOmjPj2229zbPPJJ5+IYcOGCSGEGDlypGjdurVQqVS5Pj8AsWPHDiGEELdv3xYAxNmzZ3Os89/by3fp0kV8+eWX6sc///yzKFOmjFAqlUIIIdq0aSPmzJmT4zk2bNggSpcunWsGIYQIDAwUZmZmwtbWVigUCvWtsBctWpTnNkIIMXz4cNG9e/c8s2a/dtWqVXPsg/T0dGFtbS3CwsLe+vxEhoJzMIj0VKtWrbB8+XL1Y1tbWwCv/pqfO3curl69isTERGRlZSEtLQ0pKSmwsbF543kCAgIwYMAAbNiwQT3MX6lSJQCvDp+cP38emzZtUq8vhIBKpcLt27dRvXr1XLO9ePECdnZ2UKlUSEtLQ/PmzbF69WokJibi0aNHaNasWY71mzVrhnPnzgF4dXijbdu2qFq1Kjw9PdGpUye0a9fuvfZV3759MXDgQCxbtgxWVlbYtGkTevXqBTMzM/X7PHbsWI4RC6VS+db9BgBVq1bFrl27kJaWho0bNyImJgYjR47MsU5QUBDWrl2Le/fuITU1FRkZGahbt+5b8547dw43btyAvb19juVpaWm4efNmAfYAkf5hwSDSU7a2tvjoo49yLLtz5w46deqEoUOH4ttvv0WxYsVw9OhR9O/fHxkZGbn+opw+fTr69OmDPXv2YN++fQgMDMSWLVvQtWtXvHz5EoMHD8aoUaPe2K58+fJ5ZrO3t0d0dDTMzMxQunRpWFtbAwASExPf+b7q16+P27dvY9++fQgPD0fPnj3h7u6Obdu2vXPbvHh5eUEIgT179uCTTz7BkSNHsHjxYvXXX758iRkzZqBbt25vbKtQKPJ8Xrlcrv5/MG/ePHTs2BEzZszArFmzAABbtmzBuHHjsHDhQjRp0gT29vaYP38+/vrrr7fmffnyJRo0aJCj2GXTl4m8RO+LBYPIgJw5cwYqlQoLFy5U/3Wefbz/bapUqYIqVapgzJgx6N27N3755Rd07doV9evXx+XLl98oMu9iZmaW6zYODg4oU6YMjh07BldXV/XyY8eOoVGjRjnW8/HxgY+PDz777DN4enri6dOnKFasWI7ny57voFQq35pHoVCgW7du2LRpE27cuIGqVauifv366q/Xr18f165d0/h9/teUKVPQunVrDB06VP0+mzZtimHDhqnX+e8IhFwufyN//fr1ERISghIlSsDBweG9MhHpK07yJDIgH330ETIzM7F06VLcunULGzZswIoVK/JcPzU1FSNGjEBUVBTu3r2LY8eO4fTp0+pDHxMmTMDx48cxYsQIxMTE4J9//sHvv/+u8STP13399df47rvvEBISgmvXrmHixImIiYnB6NGjAQCLFi3Cr7/+iqtXr+L69evYunUrSpUqlevFwUqUKAFra2vs378f8fHxePHiRZ6v27dvX+zZswdr165VT+7MNm3aNKxfvx4zZszApUuXcOXKFWzZsgVTpkzR6L01adIEtWvXxpw5cwAAlStXxt9//42wsDBcv34dU6dOxenTp3Ns4+LigvPnz+PatWtISEhAZmYm+vbtCycnJ3Tp0gVHjhzB7du3ERUVhVGjRuHBgwcaZSLSW1JPAiGiN+U2MTDbokWLROnSpYW1tbXw8PAQ69evFwDEs2fPhBA5J2Gmp6eLXr16CWdnZyGXy0WZMmXEiBEjckzgPHXqlGjbtq2ws7MTtra2onbt2m9M0nzdfyd5/pdSqRTTp08XZcuWFZaWlqJOnTpi37596q+vXLlS1K1bV9ja2goHBwfRpk0bER0drf46XpvkKYQQq1atEs7OzsLMzEy4urrmuX+USqUoXbq0ACBu3rz5Rq79+/eLpk2bCmtra+Hg4CAaNWokVq5cmef7CAwMFHXq1Hlj+a+//iqsrKzEvXv3RFpamvjiiy+Eo6OjKFKkiBg6dKiYOHFiju0eP36s3r8ARGRkpBBCiNjYWOHr6yucnJyElZWVqFixohg4cKB48eJFnpmIDIlMCCGkrThERERkbHiIhIiIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi07v8A1k+hWenkwRsAAAAASUVORK5CYII=", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import roc_curve, roc_auc_score\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "y_scores = model.predict_proba(X_test)\n", + "# calculate ROC curve\n", + "fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])\n", + "\n", + "# plot ROC curve\n", + "fig = plt.figure(figsize=(6, 6))\n", + "# Plot the diagonal 50% line\n", + "plt.plot([0, 1], [0, 1], 'k--')\n", + "# Plot the FPR and TPR achieved by our model\n", + "plt.plot(fpr, tpr)\n", + "plt.xlabel('False Positive Rate')\n", + "plt.ylabel('True Positive Rate')\n", + "plt.title('ROC Curve')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.9749908725812341\n" + ] + } + ], + "source": [ + "# Calculate AUC score\n", + "auc = roc_auc_score(y_test,y_scores[:,1])\n", + "print(auc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "vscode": { + "interpreter": { + "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" + } + }, + "coopTranslator": { + "original_hash": "ef50cc584e0b79412610cc7da15e1f86", + "translation_date": "2025-09-04T01:19:13+00:00", + "source_file": "2-Regression/4-Logistic/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ko/2-Regression/README.md b/translations/ko/2-Regression/README.md new file mode 100644 index 000000000..c8ffc6510 --- /dev/null +++ b/translations/ko/2-Regression/README.md @@ -0,0 +1,54 @@ + +# 머신 러닝을 위한 회귀 모델 +## 지역 주제: 북미 지역 호박 가격을 위한 회귀 모델 🎃 + +북미에서는 호박을 종종 할로윈을 위해 무서운 얼굴로 조각합니다. 이 매력적인 채소에 대해 더 알아봅시다! + +![jack-o-lanterns](../../../translated_images/jack-o-lanterns.181c661a9212457d7756f37219f660f1358af27554d856e5a991f16b4e15337c.ko.jpg) +> 사진 제공: Beth Teutschmann on Unsplash + +## 학습 내용 + +[![회귀 소개](https://img.youtube.com/vi/5QnJtDad4iQ/0.jpg)](https://youtu.be/5QnJtDad4iQ "회귀 소개 영상 - 클릭하여 시청하세요!") +> 🎥 위 이미지를 클릭하면 이 레슨에 대한 간단한 소개 영상을 볼 수 있습니다. + +이 섹션의 레슨에서는 머신 러닝의 맥락에서 다양한 회귀 유형을 다룹니다. 회귀 모델은 변수 간의 _관계_를 결정하는 데 도움을 줄 수 있습니다. 이러한 유형의 모델은 길이, 온도, 나이와 같은 값을 예측할 수 있으며, 데이터 포인트를 분석하면서 변수 간의 관계를 밝혀냅니다. + +이 레슨 시리즈에서는 선형 회귀와 로지스틱 회귀의 차이점을 발견하고, 언제 각각을 사용하는 것이 더 적합한지 배울 수 있습니다. + +[![초보자를 위한 머신 러닝 - 회귀 모델 소개](https://img.youtube.com/vi/XA3OaoW86R8/0.jpg)](https://youtu.be/XA3OaoW86R8 "초보자를 위한 머신 러닝 - 회귀 모델 소개") + +> 🎥 위 이미지를 클릭하면 회귀 모델에 대한 짧은 소개 영상을 볼 수 있습니다. + +이 레슨 그룹에서는 머신 러닝 작업을 시작하기 위한 준비를 하게 됩니다. 여기에는 데이터 과학자들이 자주 사용하는 환경인 노트북을 관리하기 위해 Visual Studio Code를 설정하는 과정이 포함됩니다. 또한 Scikit-learn이라는 머신 러닝 라이브러리를 발견하고, 이 챕터에서 회귀 모델에 초점을 맞춘 첫 번째 모델을 구축하게 됩니다. + +> 회귀 모델 작업을 배우는 데 도움이 되는 유용한 로우코드 도구가 있습니다. [Azure ML을 사용해 보세요](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +### 레슨 + +1. [필수 도구](1-Tools/README.md) +2. [데이터 관리](2-Data/README.md) +3. [선형 및 다항 회귀](3-Linear/README.md) +4. [로지스틱 회귀](4-Logistic/README.md) + +--- +### 크레딧 + +"회귀를 활용한 머신 러닝"은 [Jen Looper](https://twitter.com/jenlooper)가 ♥️를 담아 작성했습니다. + +♥️ 퀴즈 기여자: [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan) 및 [Ornella Altunyan](https://twitter.com/ornelladotcom) + +호박 데이터셋은 [이 Kaggle 프로젝트](https://www.kaggle.com/usda/a-year-of-pumpkin-prices)에서 제안되었으며, 데이터는 미국 농무부가 배포한 [특수 작물 터미널 시장 표준 보고서](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice)에서 가져왔습니다. 우리는 분포를 정규화하기 위해 품종에 따라 색상 관련 데이터를 추가했습니다. 이 데이터는 퍼블릭 도메인에 속합니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/3-Web-App/1-Web-App/README.md b/translations/ko/3-Web-App/1-Web-App/README.md new file mode 100644 index 000000000..73eb4c265 --- /dev/null +++ b/translations/ko/3-Web-App/1-Web-App/README.md @@ -0,0 +1,359 @@ + +# 웹 앱을 만들어 ML 모델 사용하기 + +이 강의에서는 _지난 세기 동안의 UFO 목격 사례_라는 독특한 데이터 세트를 사용하여 ML 모델을 훈련합니다. 이 데이터는 NUFORC의 데이터베이스에서 가져왔습니다. + +배울 내용: + +- 훈련된 모델을 '피클링'하는 방법 +- Flask 앱에서 모델을 사용하는 방법 + +노트북을 사용하여 데이터를 정리하고 모델을 훈련하는 작업을 계속 진행하겠지만, 이를 한 단계 더 발전시켜 웹 앱에서 모델을 사용하는 방법을 탐구할 수 있습니다. + +이를 위해 Flask를 사용하여 웹 앱을 구축해야 합니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/17/) + +## 앱 구축하기 + +ML 모델을 소비하는 웹 앱을 구축하는 방법은 여러 가지가 있습니다. 웹 아키텍처는 모델 훈련 방식에 영향을 미칠 수 있습니다. 데이터 과학 팀이 훈련한 모델을 앱에서 사용해야 하는 비즈니스 환경을 상상해 보세요. + +### 고려 사항 + +다음과 같은 질문을 해야 합니다: + +- **웹 앱인가 모바일 앱인가?** 모바일 앱을 구축하거나 IoT 환경에서 모델을 사용해야 한다면 [TensorFlow Lite](https://www.tensorflow.org/lite/)를 사용하여 Android 또는 iOS 앱에서 모델을 사용할 수 있습니다. +- **모델은 어디에 위치할 것인가?** 클라우드에 있거나 로컬에 있을 수 있습니다. +- **오프라인 지원.** 앱이 오프라인에서도 작동해야 하는가? +- **모델 훈련에 사용된 기술은 무엇인가?** 선택한 기술이 필요한 도구에 영향을 미칠 수 있습니다. + - **TensorFlow 사용.** 예를 들어 TensorFlow를 사용하여 모델을 훈련하는 경우, [TensorFlow.js](https://www.tensorflow.org/js/)를 사용하여 웹 앱에서 모델을 사용할 수 있도록 변환할 수 있습니다. + - **PyTorch 사용.** [PyTorch](https://pytorch.org/)와 같은 라이브러리를 사용하여 모델을 구축하는 경우, [ONNX](https://onnx.ai/) (Open Neural Network Exchange) 형식으로 내보내 JavaScript 웹 앱에서 사용할 수 있습니다. 이 옵션은 Scikit-learn으로 훈련된 모델을 다루는 향후 강의에서 탐구할 예정입니다. + - **Lobe.ai 또는 Azure Custom Vision 사용.** [Lobe.ai](https://lobe.ai/) 또는 [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott)과 같은 ML SaaS(Software as a Service) 시스템을 사용하여 모델을 훈련하는 경우, 이 소프트웨어는 클라우드에서 온라인 애플리케이션이 쿼리할 수 있는 맞춤형 API를 구축하는 등 다양한 플랫폼으로 모델을 내보낼 수 있는 방법을 제공합니다. + +또한 웹 브라우저에서 직접 모델을 훈련할 수 있는 전체 Flask 웹 앱을 구축할 수도 있습니다. 이는 JavaScript 환경에서 TensorFlow.js를 사용하여도 가능합니다. + +우리의 경우, Python 기반 노트북을 사용해 왔으므로, 노트북에서 훈련된 모델을 Python으로 구축된 웹 앱에서 읽을 수 있는 형식으로 내보내는 단계를 탐구해 보겠습니다. + +## 도구 + +이 작업을 위해 필요한 도구는 Flask와 Pickle입니다. 둘 다 Python에서 실행됩니다. + +✅ [Flask](https://palletsprojects.com/p/flask/)란 무엇인가요? Flask는 제작자들이 '마이크로 프레임워크'라고 정의한 것으로, Python과 템플릿 엔진을 사용하여 웹 페이지를 구축하는 웹 프레임워크의 기본 기능을 제공합니다. Flask를 사용하여 앱을 구축하는 연습을 하려면 [이 학습 모듈](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott)을 확인하세요. + +✅ [Pickle](https://docs.python.org/3/library/pickle.html)이란 무엇인가요? Pickle 🥒은 Python 객체 구조를 직렬화하고 역직렬화하는 Python 모듈입니다. 모델을 '피클링'하면 웹에서 사용할 수 있도록 구조를 직렬화하거나 평탄화합니다. 주의하세요: Pickle은 본질적으로 안전하지 않으므로 파일을 '언피클링'하라는 요청을 받을 경우 주의해야 합니다. 피클링된 파일은 `.pkl` 확장자를 가집니다. + +## 실습 - 데이터 정리하기 + +이번 강의에서는 [NUFORC](https://nuforc.org) (National UFO Reporting Center)에서 수집한 80,000건의 UFO 목격 데이터를 사용합니다. 이 데이터에는 흥미로운 목격 설명이 포함되어 있습니다. 예를 들어: + +- **긴 설명 예시.** "밤에 풀밭에 빛이 비추는 가운데 한 남자가 빛 속에서 나타나 텍사스 인스트루먼트 주차장으로 달려갑니다." +- **짧은 설명 예시.** "빛이 우리를 쫓아왔습니다." + +[ufos.csv](../../../../3-Web-App/1-Web-App/data/ufos.csv) 스프레드시트에는 목격이 발생한 `city`, `state`, `country`, 물체의 `shape`, 그리고 `latitude`와 `longitude`에 대한 열이 포함되어 있습니다. + +이 강의에 포함된 빈 [노트북](notebook.ipynb)에서: + +1. 이전 강의에서 했던 것처럼 `pandas`, `matplotlib`, `numpy`를 가져오고 ufos 스프레드시트를 가져옵니다. 샘플 데이터 세트를 확인할 수 있습니다: + + ```python + import pandas as pd + import numpy as np + + ufos = pd.read_csv('./data/ufos.csv') + ufos.head() + ``` + +1. ufos 데이터를 새 제목으로 작은 데이터프레임으로 변환합니다. `Country` 필드의 고유 값을 확인하세요. + + ```python + ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']}) + + ufos.Country.unique() + ``` + +1. 이제 null 값을 제거하고 1-60초 사이의 목격만 가져옴으로써 처리해야 할 데이터 양을 줄일 수 있습니다: + + ```python + ufos.dropna(inplace=True) + + ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)] + + ufos.info() + ``` + +1. Scikit-learn의 `LabelEncoder` 라이브러리를 가져와 국가의 텍스트 값을 숫자로 변환합니다: + + ✅ LabelEncoder는 데이터를 알파벳 순서로 인코딩합니다. + + ```python + from sklearn.preprocessing import LabelEncoder + + ufos['Country'] = LabelEncoder().fit_transform(ufos['Country']) + + ufos.head() + ``` + + 데이터는 다음과 같이 보여야 합니다: + + ```output + Seconds Country Latitude Longitude + 2 20.0 3 53.200000 -2.916667 + 3 20.0 4 28.978333 -96.645833 + 14 30.0 4 35.823889 -80.253611 + 23 60.0 4 45.582778 -122.352222 + 24 3.0 3 51.783333 -0.783333 + ``` + +## 실습 - 모델 구축하기 + +이제 데이터를 훈련 및 테스트 그룹으로 나누어 모델을 훈련할 준비를 합니다. + +1. 훈련할 세 가지 특징을 X 벡터로 선택하고 y 벡터는 `Country`로 설정합니다. `Seconds`, `Latitude`, `Longitude`를 입력하여 국가 ID를 반환할 수 있도록 합니다. + + ```python + from sklearn.model_selection import train_test_split + + Selected_features = ['Seconds','Latitude','Longitude'] + + X = ufos[Selected_features] + y = ufos['Country'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + ``` + +1. 로지스틱 회귀를 사용하여 모델을 훈련합니다: + + ```python + from sklearn.metrics import accuracy_score, classification_report + from sklearn.linear_model import LogisticRegression + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('Accuracy: ', accuracy_score(y_test, predictions)) + ``` + +정확도는 **(약 95%)** 나쁘지 않습니다. 이는 `Country`와 `Latitude/Longitude`가 상관관계가 있기 때문입니다. + +이 모델은 혁신적이지는 않지만, 정리된 원시 데이터를 사용하여 모델을 훈련하고 이를 웹 앱에서 사용하는 좋은 연습이 됩니다. + +## 실습 - 모델 '피클링'하기 + +이제 모델을 _피클링_할 시간입니다! 몇 줄의 코드로 이를 수행할 수 있습니다. 모델이 _피클링_되면, 피클링된 모델을 로드하고 초, 위도, 경도 값을 포함하는 샘플 데이터 배열에 대해 테스트합니다. + +```python +import pickle +model_filename = 'ufo-model.pkl' +pickle.dump(model, open(model_filename,'wb')) + +model = pickle.load(open('ufo-model.pkl','rb')) +print(model.predict([[50,44,-12]])) +``` + +모델은 **'3'**을 반환하며, 이는 영국의 국가 코드입니다. 놀랍네요! 👽 + +## 실습 - Flask 앱 구축하기 + +이제 Flask 앱을 구축하여 모델을 호출하고 더 보기 좋은 방식으로 결과를 반환할 수 있습니다. + +1. _notebook.ipynb_ 파일 옆에 **web-app**이라는 폴더를 만듭니다. 이 폴더에는 _ufo-model.pkl_ 파일이 있어야 합니다. + +1. 해당 폴더에 **static** 폴더와 그 안에 **css** 폴더, 그리고 **templates** 폴더를 만듭니다. 이제 다음과 같은 파일 및 디렉토리가 있어야 합니다: + + ```output + web-app/ + static/ + css/ + templates/ + notebook.ipynb + ufo-model.pkl + ``` + + ✅ 완성된 앱의 모습을 보려면 솔루션 폴더를 참조하세요. + +1. _web-app_ 폴더에서 첫 번째 파일로 **requirements.txt**를 만듭니다. JavaScript 앱의 _package.json_처럼 이 파일은 앱에 필요한 종속성을 나열합니다. **requirements.txt**에 다음 줄을 추가합니다: + + ```text + scikit-learn + pandas + numpy + flask + ``` + +1. 이제 _web-app_으로 이동하여 이 파일을 실행합니다: + + ```bash + cd web-app + ``` + +1. 터미널에서 `pip install`을 입력하여 _requirements.txt_에 나열된 라이브러리를 설치합니다: + + ```bash + pip install -r requirements.txt + ``` + +1. 이제 앱을 완성하기 위해 세 개의 파일을 더 만듭니다: + + 1. 루트에 **app.py**를 만듭니다. + 2. _templates_ 디렉토리에 **index.html**을 만듭니다. + 3. _static/css_ 디렉토리에 **styles.css**를 만듭니다. + +1. _styles.css_ 파일을 몇 가지 스타일로 작성합니다: + + ```css + body { + width: 100%; + height: 100%; + font-family: 'Helvetica'; + background: black; + color: #fff; + text-align: center; + letter-spacing: 1.4px; + font-size: 30px; + } + + input { + min-width: 150px; + } + + .grid { + width: 300px; + border: 1px solid #2d2d2d; + display: grid; + justify-content: center; + margin: 20px auto; + } + + .box { + color: #fff; + background: #2d2d2d; + padding: 12px; + display: inline-block; + } + ``` + +1. 다음으로 _index.html_ 파일을 작성합니다: + + ```html + + + + + 🛸 UFO Appearance Prediction! 👽 + + + + +
                                                    + +
                                                    + +

                                                    According to the number of seconds, latitude and longitude, which country is likely to have reported seeing a UFO?

                                                    + +
                                                    + + + + +
                                                    + +

                                                    {{ prediction_text }}

                                                    + +
                                                    + +
                                                    + + + + ``` + + 이 파일의 템플릿을 살펴보세요. `{{}}`와 같은 변수 주위의 '머스태시' 구문을 확인할 수 있습니다. 이 변수는 앱에서 제공됩니다. 예를 들어 예측 텍스트: `{{}}`. 또한 `/predict` 경로에 예측을 게시하는 폼도 있습니다. + + 이제 모델 소비와 예측 표시를 담당하는 Python 파일을 작성할 준비가 되었습니다: + +1. `app.py`에 다음을 추가합니다: + + ```python + import numpy as np + from flask import Flask, request, render_template + import pickle + + app = Flask(__name__) + + model = pickle.load(open("./ufo-model.pkl", "rb")) + + + @app.route("/") + def home(): + return render_template("index.html") + + + @app.route("/predict", methods=["POST"]) + def predict(): + + int_features = [int(x) for x in request.form.values()] + final_features = [np.array(int_features)] + prediction = model.predict(final_features) + + output = prediction[0] + + countries = ["Australia", "Canada", "Germany", "UK", "US"] + + return render_template( + "index.html", prediction_text="Likely country: {}".format(countries[output]) + ) + + + if __name__ == "__main__": + app.run(debug=True) + ``` + + > 💡 팁: Flask를 사용하여 웹 앱을 실행할 때 [`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode)를 추가하면 서버를 다시 시작하지 않고도 애플리케이션에 대한 변경 사항이 즉시 반영됩니다. 주의하세요! 프로덕션 앱에서는 이 모드를 활성화하지 마세요. + +`python app.py` 또는 `python3 app.py`를 실행하면 로컬에서 웹 서버가 시작되고 짧은 폼을 작성하여 UFO 목격이 어디에서 발생했는지에 대한 답을 얻을 수 있습니다! + +그 전에 `app.py`의 구성 요소를 살펴보세요: + +1. 먼저 종속성이 로드되고 앱이 시작됩니다. +1. 그런 다음 모델이 가져옵니다. +1. 그런 다음 홈 경로에서 index.html이 렌더링됩니다. + +`/predict` 경로에서 폼이 게시되면 여러 가지 일이 발생합니다: + +1. 폼 변수는 수집되어 numpy 배열로 변환됩니다. 그런 다음 모델로 보내져 예측이 반환됩니다. +2. 우리가 표시하려는 국가들은 예측된 국가 코드에서 읽을 수 있는 텍스트로 다시 렌더링되며, 그 값이 index.html로 다시 보내져 템플릿에서 렌더링됩니다. + +Flask와 피클링된 모델을 사용하여 모델을 사용하는 것은 비교적 간단합니다. 가장 어려운 점은 모델에서 예측을 얻기 위해 보내야 할 데이터의 형태를 이해하는 것입니다. 이는 모델이 어떻게 훈련되었는지에 따라 달라집니다. 이 모델은 예측을 얻기 위해 입력해야 할 세 가지 데이터 포인트를 가지고 있습니다. + +전문적인 환경에서는 모델을 훈련하는 사람들과 이를 웹 또는 모바일 앱에서 소비하는 사람들 간의 원활한 의사소통이 얼마나 중요한지 알 수 있습니다. 우리의 경우, 그 모든 작업을 한 사람이 수행합니다! + +--- + +## 🚀 도전 과제 + +노트북에서 작업하고 모델을 Flask 앱으로 가져오는 대신, Flask 앱 내에서 모델을 훈련할 수 있습니다! 데이터를 정리한 후 노트북의 Python 코드를 앱 내에서 `train`이라는 경로에서 모델을 훈련하도록 변환해 보세요. 이 방법을 추구하는 장단점은 무엇인가요? + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/18/) + +## 복습 및 자기 학습 + +ML 모델을 소비하는 웹 앱을 구축하는 방법은 여러 가지가 있습니다. JavaScript 또는 Python을 사용하여 ML을 활용하는 웹 앱을 구축할 수 있는 방법 목록을 작성해 보세요. 아키텍처를 고려하세요: 모델이 앱에 있어야 할까요, 아니면 클라우드에 있어야 할까요? 후자의 경우, 어떻게 접근할 수 있을까요? 적용된 ML 웹 솔루션에 대한 아키텍처 모델을 그려보세요. + +## 과제 + +[다른 모델 시도하기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/3-Web-App/1-Web-App/assignment.md b/translations/ko/3-Web-App/1-Web-App/assignment.md new file mode 100644 index 000000000..41327cc32 --- /dev/null +++ b/translations/ko/3-Web-App/1-Web-App/assignment.md @@ -0,0 +1,25 @@ + +# 다른 모델 시도하기 + +## 지침 + +이전에 학습된 회귀 모델을 사용하여 웹 앱을 하나 만들었다면, 이전 회귀 수업에서 배운 모델 중 하나를 사용하여 이 웹 앱을 다시 만들어 보세요. 스타일을 유지하거나 호박 데이터를 반영하도록 다르게 디자인할 수 있습니다. 모델의 학습 방법에 맞게 입력값을 변경하는 것을 잊지 마세요. + +## 평가 기준 + +| 기준 | 우수 | 적절 | 개선 필요 | +| -------------------------- | --------------------------------------------------------- | --------------------------------------------------------- | -------------------------------------- | +| | 웹 앱이 예상대로 작동하며 클라우드에 배포됨 | 웹 앱에 결함이 있거나 예상치 못한 결과를 보임 | 웹 앱이 제대로 작동하지 않음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/3-Web-App/1-Web-App/notebook.ipynb b/translations/ko/3-Web-App/1-Web-App/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/ko/3-Web-App/1-Web-App/solution/notebook.ipynb b/translations/ko/3-Web-App/1-Web-App/solution/notebook.ipynb new file mode 100644 index 000000000..a5d6ecb3b --- /dev/null +++ b/translations/ko/3-Web-App/1-Web-App/solution/notebook.ipynb @@ -0,0 +1,267 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5fa2e8f4584c78250ca9729b46562ceb", + "translation_date": "2025-09-04T02:22:06+00:00", + "source_file": "3-Web-App/1-Web-App/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " datetime city state country shape \\\n", + "0 10/10/1949 20:30 san marcos tx us cylinder \n", + "1 10/10/1949 21:00 lackland afb tx NaN light \n", + "2 10/10/1955 17:00 chester (uk/england) NaN gb circle \n", + "3 10/10/1956 21:00 edna tx us circle \n", + "4 10/10/1960 20:00 kaneohe hi us light \n", + "\n", + " duration (seconds) duration (hours/min) \\\n", + "0 2700.0 45 minutes \n", + "1 7200.0 1-2 hrs \n", + "2 20.0 20 seconds \n", + "3 20.0 1/2 hour \n", + "4 900.0 15 minutes \n", + "\n", + " comments date posted latitude \\\n", + "0 This event took place in early fall around 194... 4/27/2004 29.883056 \n", + "1 1949 Lackland AFB, TX. Lights racing acros... 12/16/2005 29.384210 \n", + "2 Green/Orange circular disc over Chester, En... 1/21/2008 53.200000 \n", + "3 My older brother and twin sister were leaving ... 1/17/2004 28.978333 \n", + "4 AS a Marine 1st Lt. flying an FJ4B fighter/att... 1/22/2004 21.418056 \n", + "\n", + " longitude \n", + "0 -97.941111 \n", + "1 -98.581082 \n", + "2 -2.916667 \n", + "3 -96.645833 \n", + "4 -157.803611 " + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    datetimecitystatecountryshapeduration (seconds)duration (hours/min)commentsdate postedlatitudelongitude
                                                    010/10/1949 20:30san marcostxuscylinder2700.045 minutesThis event took place in early fall around 194...4/27/200429.883056-97.941111
                                                    110/10/1949 21:00lackland afbtxNaNlight7200.01-2 hrs1949 Lackland AFB&#44 TX. Lights racing acros...12/16/200529.384210-98.581082
                                                    210/10/1955 17:00chester (uk/england)NaNgbcircle20.020 secondsGreen/Orange circular disc over Chester&#44 En...1/21/200853.200000-2.916667
                                                    310/10/1956 21:00ednatxuscircle20.01/2 hourMy older brother and twin sister were leaving ...1/17/200428.978333-96.645833
                                                    410/10/1960 20:00kaneohehiuslight900.015 minutesAS a Marine 1st Lt. flying an FJ4B fighter/att...1/22/200421.418056-157.803611
                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 23 + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "ufos = pd.read_csv('../data/ufos.csv')\n", + "ufos.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array(['us', nan, 'gb', 'ca', 'au', 'de'], dtype=object)" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ], + "source": [ + "\n", + "ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']})\n", + "\n", + "ufos.Country.unique()\n", + "\n", + "# 0 au, 1 ca, 2 de, 3 gb, 4 us" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nInt64Index: 25863 entries, 2 to 80330\nData columns (total 4 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 Seconds 25863 non-null float64\n 1 Country 25863 non-null object \n 2 Latitude 25863 non-null float64\n 3 Longitude 25863 non-null float64\ndtypes: float64(3), object(1)\nmemory usage: 1010.3+ KB\n" + ] + } + ], + "source": [ + "ufos.dropna(inplace=True)\n", + "\n", + "ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)]\n", + "\n", + "ufos.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Seconds Country Latitude Longitude\n", + "2 20.0 3 53.200000 -2.916667\n", + "3 20.0 4 28.978333 -96.645833\n", + "14 30.0 4 35.823889 -80.253611\n", + "23 60.0 4 45.582778 -122.352222\n", + "24 3.0 3 51.783333 -0.783333" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    SecondsCountryLatitudeLongitude
                                                    220.0353.200000-2.916667
                                                    320.0428.978333-96.645833
                                                    1430.0435.823889-80.253611
                                                    2360.0445.582778-122.352222
                                                    243.0351.783333-0.783333
                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 26 + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "\n", + "ufos['Country'] = LabelEncoder().fit_transform(ufos['Country'])\n", + "\n", + "ufos.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "Selected_features = ['Seconds','Latitude','Longitude']\n", + "\n", + "X = ufos[Selected_features]\n", + "y = ufos['Country']\n", + "\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", + " FutureWarning)\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", + " \"this warning.\", FutureWarning)\n", + " precision recall f1-score support\n", + "\n", + " 0 1.00 1.00 1.00 41\n", + " 1 1.00 0.02 0.05 250\n", + " 2 0.00 0.00 0.00 8\n", + " 3 0.94 1.00 0.97 131\n", + " 4 0.95 1.00 0.97 4743\n", + "\n", + " accuracy 0.95 5173\n", + " macro avg 0.78 0.60 0.60 5173\n", + "weighted avg 0.95 0.95 0.93 5173\n", + "\n", + "Predicted labels: [4 4 4 ... 3 4 4]\n", + "Accuracy: 0.9512855209742895\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import accuracy_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('Accuracy: ', accuracy_score(y_test, predictions))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[3]\n" + ] + } + ], + "source": [ + "import pickle\n", + "model_filename = 'ufo-model.pkl'\n", + "pickle.dump(model, open(model_filename,'wb'))\n", + "\n", + "model = pickle.load(open('ufo-model.pkl','rb'))\n", + "print(model.predict([[50,44,-12]]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/3-Web-App/README.md b/translations/ko/3-Web-App/README.md new file mode 100644 index 000000000..c345ea189 --- /dev/null +++ b/translations/ko/3-Web-App/README.md @@ -0,0 +1,35 @@ + +# ML 모델을 활용한 웹 앱 만들기 + +이 커리큘럼 섹션에서는 Scikit-learn 모델을 파일로 저장하여 웹 애플리케이션 내에서 예측에 사용할 수 있는 방법을 배우는 실용적인 머신러닝 주제를 소개합니다. 모델을 저장한 후에는 Flask로 구축된 웹 앱에서 이를 사용하는 방법을 배우게 됩니다. 먼저 UFO 목격 데이터를 사용하여 모델을 생성합니다! 그런 다음, 특정 시간(초)과 위도 및 경도 값을 입력하여 어느 국가에서 UFO를 목격했는지 예측할 수 있는 웹 앱을 구축합니다. + +![UFO 주차장](../../../translated_images/ufo.9e787f5161da9d4d1dafc537e1da09be8210f2ee996cb638aa5cee1d92867a04.ko.jpg) + +사진 제공: Michael Herren on Unsplash + +## 강의 목록 + +1. [웹 앱 만들기](1-Web-App/README.md) + +## 크레딧 + +"웹 앱 만들기"는 [Jen Looper](https://twitter.com/jenlooper)가 ♥️를 담아 작성했습니다. + +♥️ 퀴즈는 Rohan Raj가 작성했습니다. + +데이터셋은 [Kaggle](https://www.kaggle.com/NUFORC/ufo-sightings)에서 제공되었습니다. + +웹 앱 아키텍처는 [이 기사](https://towardsdatascience.com/how-to-easily-deploy-machine-learning-models-using-flask-b95af8fe34d4)와 [이 저장소](https://github.com/abhinavsagar/machine-learning-deployment)에서 Abhinav Sagar가 제안한 내용을 일부 참고했습니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/4-Classification/1-Introduction/README.md b/translations/ko/4-Classification/1-Introduction/README.md new file mode 100644 index 000000000..22e475371 --- /dev/null +++ b/translations/ko/4-Classification/1-Introduction/README.md @@ -0,0 +1,313 @@ + +# 분류 소개 + +이 네 가지 강의에서는 고전적인 머신 러닝의 핵심 주제인 _분류_를 탐구합니다. 아시아와 인도의 다양한 요리 데이터를 사용하여 여러 분류 알고리즘을 살펴볼 것입니다. 배가 고프셨으면 좋겠네요! + +![한 꼬집만!](../../../../translated_images/pinch.1b035ec9ba7e0d408313b551b60c721c9c290b2dd2094115bc87e6ddacd114c9.ko.png) + +> 이 강의에서 범아시아 요리를 축하하세요! 이미지 제공: [Jen Looper](https://twitter.com/jenlooper) + +분류는 [지도 학습](https://wikipedia.org/wiki/Supervised_learning)의 한 형태로, 회귀 기법과 많은 공통점을 가지고 있습니다. 머신 러닝이 데이터셋을 사용하여 값이나 이름을 예측하는 것이라면, 분류는 일반적으로 두 가지 그룹으로 나뉩니다: _이진 분류_와 _다중 클래스 분류_. + +[![분류 소개](https://img.youtube.com/vi/eg8DJYwdMyg/0.jpg)](https://youtu.be/eg8DJYwdMyg "분류 소개") + +> 🎥 위 이미지를 클릭하면 MIT의 John Guttag가 분류를 소개하는 영상을 볼 수 있습니다. + +기억하세요: + +- **선형 회귀**는 변수 간의 관계를 예측하고 새로운 데이터 포인트가 그 선과의 관계에서 어디에 위치할지 정확히 예측하는 데 도움을 줍니다. 예를 들어, _9월과 12월에 호박의 가격이 얼마일지_ 예측할 수 있습니다. +- **로지스틱 회귀**는 "이진 카테고리"를 발견하는 데 도움을 줍니다: 이 가격대에서, _이 호박이 주황색인지 아닌지_를 예측할 수 있습니다. + +분류는 다양한 알고리즘을 사용하여 데이터 포인트의 레이블이나 클래스를 결정하는 방법을 제공합니다. 이 요리 데이터를 사용하여 재료 그룹을 관찰함으로써 해당 요리의 출처를 결정할 수 있는지 살펴보겠습니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/) + +> ### [이 강의는 R에서도 제공됩니다!](../../../../4-Classification/1-Introduction/solution/R/lesson_10.html) + +### 소개 + +분류는 머신 러닝 연구자와 데이터 과학자의 기본 활동 중 하나입니다. 간단한 이진 값 분류("이 이메일이 스팸인지 아닌지")에서 복잡한 이미지 분류 및 컴퓨터 비전을 사용한 세분화까지, 데이터를 클래스별로 정렬하고 질문을 던질 수 있는 능력은 항상 유용합니다. + +과정을 좀 더 과학적으로 설명하자면, 분류 방법은 입력 변수와 출력 변수 간의 관계를 매핑할 수 있는 예측 모델을 생성합니다. + +![이진 vs. 다중 클래스 분류](../../../../translated_images/binary-multiclass.b56d0c86c81105a697dddd82242c1d11e4d78b7afefea07a44627a0f1111c1a9.ko.png) + +> 분류 알고리즘이 처리해야 할 이진 문제와 다중 클래스 문제. 인포그래픽 제공: [Jen Looper](https://twitter.com/jenlooper) + +데이터를 정리하고 시각화하며 머신 러닝 작업을 준비하기 전에, 머신 러닝이 데이터를 분류하는 데 활용될 수 있는 다양한 방법에 대해 알아봅시다. + +[통계](https://wikipedia.org/wiki/Statistical_classification)에서 파생된 고전적인 머신 러닝을 사용한 분류는 `smoker`, `weight`, `age`와 같은 특징을 사용하여 _X 질병에 걸릴 가능성_을 결정합니다. 이전에 수행한 회귀 연습과 유사한 지도 학습 기법으로, 데이터는 레이블이 지정되어 있으며 ML 알고리즘은 이러한 레이블을 사용하여 데이터셋의 클래스(또는 '특징')를 분류하고 그룹이나 결과에 할당합니다. + +✅ 요리에 대한 데이터셋을 상상해 보세요. 다중 클래스 모델은 어떤 질문에 답할 수 있을까요? 이진 모델은 어떤 질문에 답할 수 있을까요? 특정 요리가 페누그릭을 사용할 가능성을 결정하고 싶다면 어떻게 할까요? 아니면 스타 아니스, 아티초크, 콜리플라워, 고추냉이가 가득 든 장바구니를 선물받았을 때, 전형적인 인도 요리를 만들 수 있을지 알고 싶다면 어떻게 할까요? + +[![미스터리 바구니](https://img.youtube.com/vi/GuTeDbaNoEU/0.jpg)](https://youtu.be/GuTeDbaNoEU "미스터리 바구니") + +> 🎥 위 이미지를 클릭하면 'Chopped' 쇼의 미스터리 바구니에서 셰프들이 무작위 재료로 요리를 만드는 과정을 볼 수 있습니다. 머신 러닝 모델이 도움이 되었을지도 모르겠네요! + +## 안녕하세요, '분류기' + +이 요리 데이터셋에서 우리가 묻고 싶은 질문은 사실 **다중 클래스 질문**입니다. 여러 국가 요리 중에서, 주어진 재료 그룹이 어떤 클래스에 속할지 알아보는 것입니다. + +Scikit-learn은 문제 유형에 따라 데이터를 분류하는 데 사용할 수 있는 여러 알고리즘을 제공합니다. 다음 두 강의에서는 이러한 알고리즘 중 몇 가지를 배울 것입니다. + +## 실습 - 데이터 정리 및 균형 맞추기 + +이 프로젝트를 시작하기 전에 첫 번째 작업은 데이터를 정리하고 **균형을 맞추는 것**입니다. 이 폴더의 루트에 있는 빈 _notebook.ipynb_ 파일에서 시작하세요. + +첫 번째로 설치해야 할 것은 [imblearn](https://imbalanced-learn.org/stable/)입니다. 이 패키지는 Scikit-learn의 일부로, 데이터를 더 잘 균형 맞추는 데 도움을 줍니다(이 작업에 대해 곧 더 배우게 될 것입니다). + +1. `imblearn`을 설치하려면 `pip install`을 실행하세요: + + ```python + pip install imblearn + ``` + +1. 데이터를 가져오고 시각화하는 데 필요한 패키지를 가져오고, `imblearn`에서 `SMOTE`를 가져오세요. + + ```python + import pandas as pd + import matplotlib.pyplot as plt + import matplotlib as mpl + import numpy as np + from imblearn.over_sampling import SMOTE + ``` + + 이제 데이터를 가져올 준비가 되었습니다. + +1. 다음 작업은 데이터를 가져오는 것입니다: + + ```python + df = pd.read_csv('../data/cuisines.csv') + ``` + + `read_csv()`를 사용하면 _cusines.csv_ 파일의 내용을 읽고 변수 `df`에 저장합니다. + +1. 데이터의 형태를 확인하세요: + + ```python + df.head() + ``` + + 처음 다섯 행은 다음과 같습니다: + + ```output + | | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | + | --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | + | 0 | 65 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 1 | 66 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 2 | 67 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 3 | 68 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 4 | 69 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + ``` + +1. `info()`를 호출하여 데이터에 대한 정보를 얻으세요: + + ```python + df.info() + ``` + + 출력은 다음과 같습니다: + + ```output + + RangeIndex: 2448 entries, 0 to 2447 + Columns: 385 entries, Unnamed: 0 to zucchini + dtypes: int64(384), object(1) + memory usage: 7.2+ MB + ``` + +## 실습 - 요리에 대해 배우기 + +이제 작업이 더 흥미로워지기 시작합니다. 요리별 데이터 분포를 알아봅시다. + +1. `barh()`를 호출하여 데이터를 막대로 시각화하세요: + + ```python + df.cuisine.value_counts().plot.barh() + ``` + + ![요리 데이터 분포](../../../../translated_images/cuisine-dist.d0cc2d551abe5c25f83d73a5f560927e4a061e9a4560bac1e97d35682ef3ca6d.ko.png) + + 요리의 수는 유한하지만 데이터 분포는 고르지 않습니다. 이를 수정할 수 있습니다! 수정하기 전에 조금 더 탐색해 보세요. + +1. 요리별로 사용 가능한 데이터 양을 확인하고 출력하세요: + + ```python + thai_df = df[(df.cuisine == "thai")] + japanese_df = df[(df.cuisine == "japanese")] + chinese_df = df[(df.cuisine == "chinese")] + indian_df = df[(df.cuisine == "indian")] + korean_df = df[(df.cuisine == "korean")] + + print(f'thai df: {thai_df.shape}') + print(f'japanese df: {japanese_df.shape}') + print(f'chinese df: {chinese_df.shape}') + print(f'indian df: {indian_df.shape}') + print(f'korean df: {korean_df.shape}') + ``` + + 출력은 다음과 같습니다: + + ```output + thai df: (289, 385) + japanese df: (320, 385) + chinese df: (442, 385) + indian df: (598, 385) + korean df: (799, 385) + ``` + +## 재료 발견하기 + +이제 데이터를 더 깊이 탐구하여 요리별로 일반적인 재료를 알아볼 수 있습니다. 혼란을 초래하는 반복 데이터를 제거해야 하므로 이 문제에 대해 알아봅시다. + +1. Python에서 `create_ingredient()` 함수를 만들어 재료 데이터프레임을 생성하세요. 이 함수는 도움이 되지 않는 열을 제거하고 재료를 개수별로 정렬합니다: + + ```python + def create_ingredient_df(df): + ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value') + ingredient_df = ingredient_df[(ingredient_df.T != 0).any()] + ingredient_df = ingredient_df.sort_values(by='value', ascending=False, + inplace=False) + return ingredient_df + ``` + + 이제 이 함수를 사용하여 요리별로 가장 인기 있는 상위 10개 재료를 확인할 수 있습니다. + +1. `create_ingredient()`를 호출하고 `barh()`를 호출하여 시각화하세요: + + ```python + thai_ingredient_df = create_ingredient_df(thai_df) + thai_ingredient_df.head(10).plot.barh() + ``` + + ![태국](../../../../translated_images/thai.0269dbab2e78bd38a132067759fe980008bdb80b6d778e5313448dbe12bed846.ko.png) + +1. 일본 데이터를 동일하게 처리하세요: + + ```python + japanese_ingredient_df = create_ingredient_df(japanese_df) + japanese_ingredient_df.head(10).plot.barh() + ``` + + ![일본](../../../../translated_images/japanese.30260486f2a05c463c8faa62ebe7b38f0961ed293bd9a6db8eef5d3f0cf17155.ko.png) + +1. 중국 재료를 확인하세요: + + ```python + chinese_ingredient_df = create_ingredient_df(chinese_df) + chinese_ingredient_df.head(10).plot.barh() + ``` + + ![중국](../../../../translated_images/chinese.e62cafa5309f111afd1b54490336daf4e927ce32bed837069a0b7ce481dfae8d.ko.png) + +1. 인도 재료를 시각화하세요: + + ```python + indian_ingredient_df = create_ingredient_df(indian_df) + indian_ingredient_df.head(10).plot.barh() + ``` + + ![인도](../../../../translated_images/indian.2c4292002af1a1f97a4a24fec6b1459ee8ff616c3822ae56bb62b9903e192af6.ko.png) + +1. 마지막으로 한국 재료를 시각화하세요: + + ```python + korean_ingredient_df = create_ingredient_df(korean_df) + korean_ingredient_df.head(10).plot.barh() + ``` + + ![한국](../../../../translated_images/korean.4a4f0274f3d9805a65e61f05597eeaad8620b03be23a2c0a705c023f65fad2c0.ko.png) + +1. 이제 `drop()`을 호출하여 서로 다른 요리 간 혼란을 초래하는 가장 일반적인 재료를 제거하세요: + + 모두가 쌀, 마늘, 생강을 좋아합니다! + + ```python + feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1) + labels_df = df.cuisine #.unique() + feature_df.head() + ``` + +## 데이터셋 균형 맞추기 + +데이터를 정리한 후에는 [SMOTE](https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html) - "Synthetic Minority Over-sampling Technique" -를 사용하여 데이터를 균형 맞추세요. + +1. `fit_resample()`을 호출하세요. 이 전략은 보간법을 통해 새로운 샘플을 생성합니다. + + ```python + oversample = SMOTE() + transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df) + ``` + + 데이터를 균형 맞추면 분류 시 더 나은 결과를 얻을 수 있습니다. 이진 분류를 생각해 보세요. 대부분의 데이터가 한 클래스에 속한다면, ML 모델은 단순히 데이터가 더 많기 때문에 해당 클래스를 더 자주 예측할 것입니다. 데이터를 균형 맞추면 이러한 불균형을 제거하는 데 도움이 됩니다. + +1. 이제 재료별 레이블 수를 확인할 수 있습니다: + + ```python + print(f'new label count: {transformed_label_df.value_counts()}') + print(f'old label count: {df.cuisine.value_counts()}') + ``` + + 출력은 다음과 같습니다: + + ```output + new label count: korean 799 + chinese 799 + indian 799 + japanese 799 + thai 799 + Name: cuisine, dtype: int64 + old label count: korean 799 + indian 598 + chinese 442 + japanese 320 + thai 289 + Name: cuisine, dtype: int64 + ``` + + 데이터가 깔끔하고 균형 잡혀 있으며 매우 맛있어 보입니다! + +1. 마지막 단계는 레이블과 특징을 포함한 균형 잡힌 데이터를 새 데이터프레임에 저장하여 파일로 내보내는 것입니다: + + ```python + transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer') + ``` + +1. `transformed_df.head()`와 `transformed_df.info()`를 사용하여 데이터를 한 번 더 확인하세요. 이 데이터를 저장하여 향후 강의에서 사용하세요: + + ```python + transformed_df.head() + transformed_df.info() + transformed_df.to_csv("../data/cleaned_cuisines.csv") + ``` + + 이 새 CSV는 이제 루트 데이터 폴더에서 찾을 수 있습니다. + +--- + +## 🚀도전 과제 + +이 커리큘럼에는 여러 흥미로운 데이터셋이 포함되어 있습니다. `data` 폴더를 탐색하여 이진 또는 다중 클래스 분류에 적합한 데이터셋이 있는지 확인하세요. 이 데이터셋에 대해 어떤 질문을 던질 수 있을까요? + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/) + +## 복습 및 자기 학습 + +SMOTE의 API를 탐구하세요. 어떤 사용 사례에 가장 적합하며, 어떤 문제를 해결할 수 있을까요? + +## 과제 + +[분류 방법 탐구하기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/4-Classification/1-Introduction/assignment.md b/translations/ko/4-Classification/1-Introduction/assignment.md new file mode 100644 index 000000000..9dde85b51 --- /dev/null +++ b/translations/ko/4-Classification/1-Introduction/assignment.md @@ -0,0 +1,25 @@ + +# 분류 방법 탐구 + +## 지침 + +[Scikit-learn 문서](https://scikit-learn.org/stable/supervised_learning.html)에서는 데이터를 분류하는 다양한 방법을 확인할 수 있습니다. 이 문서에서 간단한 탐색을 진행하세요. 목표는 분류 방법을 찾아서 이 커리큘럼의 데이터셋, 해당 데이터셋에 대해 물어볼 수 있는 질문, 그리고 분류 기법을 연결하는 것입니다. 스프레드시트 또는 .doc 파일에 표를 만들어 데이터셋이 분류 알고리즘과 어떻게 작동할지 설명하세요. + +## 평가 기준 + +| 기준 | 우수 | 적절 | 개선 필요 | +| --------- | --------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| | 5개의 알고리즘과 분류 기법을 개요로 설명한 문서가 제출되며, 개요는 잘 설명되고 상세합니다. | 3개의 알고리즘과 분류 기법을 개요로 설명한 문서가 제출되며, 개요는 잘 설명되고 상세합니다. | 3개 미만의 알고리즘과 분류 기법을 개요로 설명한 문서가 제출되며, 개요는 잘 설명되지 않았거나 상세하지 않습니다. | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/4-Classification/1-Introduction/notebook.ipynb b/translations/ko/4-Classification/1-Introduction/notebook.ipynb new file mode 100644 index 000000000..3c45197ae --- /dev/null +++ b/translations/ko/4-Classification/1-Introduction/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d544ef384b7ba73757d830a72372a7f2", + "translation_date": "2025-09-04T02:39:57+00:00", + "source_file": "4-Classification/1-Introduction/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/4-Classification/1-Introduction/solution/Julia/README.md b/translations/ko/4-Classification/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..dfada7543 --- /dev/null +++ b/translations/ko/4-Classification/1-Introduction/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb b/translations/ko/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb new file mode 100644 index 000000000..9bccab7d7 --- /dev/null +++ b/translations/ko/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb @@ -0,0 +1,725 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_10-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "2621e24705e8100893c9bf84e0fc8aef", + "translation_date": "2025-09-04T02:46:23+00:00", + "source_file": "4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb", + "language_code": "ko" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# 분류 모델 구축: 맛있는 아시아 및 인도 요리\n" + ], + "metadata": { + "id": "ItETB4tSFprR" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 분류 소개: 데이터 정리, 준비, 시각화\n", + "\n", + "이 네 가지 강의에서는 고전적인 머신 러닝의 핵심 주제인 *분류*를 탐구합니다. 아시아와 인도의 다양한 요리를 다룬 데이터셋을 사용하여 여러 분류 알고리즘을 살펴볼 것입니다. 배고프지 않으신가요?\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    이 강의에서 범아시아 요리를 기념하세요! 이미지: Jen Looper
                                                    \n", + "\n", + "\n", + "\n", + "\n", + "분류는 [지도 학습](https://wikipedia.org/wiki/Supervised_learning)의 한 형태로, 회귀 기법과 많은 공통점을 가지고 있습니다. 분류에서는 모델을 훈련시켜 특정 항목이 어떤 `카테고리`에 속하는지 예측합니다. 머신 러닝이 데이터셋을 사용하여 값이나 이름을 예측하는 것이라면, 분류는 일반적으로 *이진 분류*와 *다중 클래스 분류*로 나뉩니다.\n", + "\n", + "기억하세요:\n", + "\n", + "- **선형 회귀**는 변수 간의 관계를 예측하고 새로운 데이터 포인트가 그 선과 어떤 관계에 있는지 정확히 예측하는 데 도움을 줍니다. 예를 들어, *9월과 12월에 호박의 가격이 얼마일지*를 예측할 수 있습니다.\n", + "\n", + "- **로지스틱 회귀**는 \"이진 카테고리\"를 발견하는 데 도움을 줍니다. 예를 들어, 특정 가격에서 *이 호박이 주황색인지 아닌지*를 예측할 수 있습니다.\n", + "\n", + "분류는 다양한 알고리즘을 사용하여 데이터 포인트의 레이블이나 클래스를 결정하는 방법을 제공합니다. 이 요리 데이터를 사용하여 재료 그룹을 관찰함으로써 해당 요리가 어떤 지역에서 유래했는지 알아낼 수 있는지 살펴봅시다.\n", + "\n", + "### [**강의 전 퀴즈**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/)\n", + "\n", + "### **소개**\n", + "\n", + "분류는 머신 러닝 연구자와 데이터 과학자의 기본 활동 중 하나입니다. 간단한 이진 값 분류(\"이 이메일이 스팸인가 아닌가?\")에서부터 복잡한 이미지 분류 및 컴퓨터 비전을 사용한 세분화까지, 데이터를 클래스로 분류하고 질문을 던질 수 있는 능력은 항상 유용합니다.\n", + "\n", + "과정을 좀 더 과학적으로 설명하자면, 분류 방법은 입력 변수와 출력 변수 간의 관계를 매핑할 수 있는 예측 모델을 생성합니다.\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    분류 알고리즘이 처리하는 이진 문제와 다중 클래스 문제. 인포그래픽: Jen Looper
                                                    \n", + "\n", + "\n", + "\n", + "데이터를 정리하고 시각화하며 머신 러닝 작업을 준비하는 과정을 시작하기 전에, 머신 러닝이 데이터를 분류하는 데 사용될 수 있는 다양한 방법에 대해 알아봅시다.\n", + "\n", + "[통계학](https://wikipedia.org/wiki/Statistical_classification)에서 파생된 고전적인 머신 러닝을 사용한 분류는 `흡연 여부`, `체중`, `나이`와 같은 특징을 사용하여 *질병 X에 걸릴 가능성*을 결정합니다. 이전에 수행한 회귀 연습과 유사한 지도 학습 기법으로, 데이터는 레이블이 지정되어 있으며, 머신 러닝 알고리즘은 이러한 레이블을 사용하여 데이터셋의 클래스(또는 '특징')를 분류하고 이를 그룹이나 결과에 할당합니다.\n", + "\n", + "✅ 요리에 대한 데이터셋을 상상해 보세요. 다중 클래스 모델은 어떤 질문에 답할 수 있을까요? 이진 모델은 어떤 질문에 답할 수 있을까요? 특정 요리가 호로파를 사용할 가능성을 결정하고 싶다면 어떻게 할까요? 아니면, 별미, 아티초크, 콜리플라워, 고추냉이가 가득 든 장바구니를 선물받았을 때, 전형적인 인도 요리를 만들 수 있을지 알고 싶다면 어떻게 할까요?\n", + "\n", + "### **'분류기'를 만나보세요**\n", + "\n", + "이 요리 데이터셋에서 우리가 던지고 싶은 질문은 사실 **다중 클래스 질문**입니다. 여러 국가 요리 중에서, 주어진 재료 묶음이 어떤 클래스에 속할지 데이터를 통해 알아낼 수 있을까요?\n", + "\n", + "Tidymodels는 문제 유형에 따라 데이터를 분류하는 데 사용할 수 있는 여러 알고리즘을 제공합니다. 다음 두 강의에서는 이러한 알고리즘 중 몇 가지를 배울 것입니다.\n", + "\n", + "#### **사전 요구 사항**\n", + "\n", + "이 강의를 위해 데이터를 정리하고 준비하며 시각화하기 위해 다음 패키지가 필요합니다:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/)는 데이터 과학을 더 빠르고, 쉽고, 재미있게 만들어주는 [R 패키지 모음](https://www.tidyverse.org/packages)입니다.\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 프레임워크는 모델링과 머신 러닝을 위한 [패키지 모음](https://www.tidymodels.org/packages/)입니다.\n", + "\n", + "- `DataExplorer`: [DataExplorer 패키지](https://cran.r-project.org/web/packages/DataExplorer/vignettes/dataexplorer-intro.html)는 EDA(탐색적 데이터 분석) 과정과 보고서 생성을 단순화하고 자동화하기 위해 설계되었습니다.\n", + "\n", + "- `themis`: [themis 패키지](https://themis.tidymodels.org/)는 불균형 데이터 처리를 위한 추가 레시피 단계를 제공합니다.\n", + "\n", + "다음 명령어로 패키지를 설치할 수 있습니다:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "또는 아래 스크립트를 사용하여 이 모듈을 완료하는 데 필요한 패키지가 설치되어 있는지 확인하고, 누락된 경우 설치할 수 있습니다.\n" + ], + "metadata": { + "id": "ri5bQxZ-Fz_0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, DataExplorer, themis, here)" + ], + "outputs": [], + "metadata": { + "id": "KIPxa4elGAPI" + } + }, + { + "cell_type": "markdown", + "source": [ + "나중에 이 멋진 패키지들을 로드하여 현재 R 세션에서 사용할 수 있도록 하겠습니다. (이는 단순한 예시일 뿐이며, `pacman::p_load()`가 이미 이를 수행했습니다)\n" + ], + "metadata": { + "id": "YkKAxOJvGD4C" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 연습 - 데이터를 정리하고 균형 맞추기\n", + "\n", + "이 프로젝트를 시작하기 전에 첫 번째로 해야 할 일은 데이터를 정리하고 **균형을 맞추는 것**입니다. 이렇게 하면 더 나은 결과를 얻을 수 있습니다.\n", + "\n", + "데이터를 살펴봅시다!🕵️\n" + ], + "metadata": { + "id": "PFkQDlk0GN5O" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# View the first 5 rows\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": { + "id": "Qccw7okxGT0S" + } + }, + { + "cell_type": "markdown", + "source": [ + "흥미롭네요! 보아하니 첫 번째 열은 일종의 `id` 열인 것 같아요. 데이터에 대해 조금 더 알아봅시다.\n" + ], + "metadata": { + "id": "XrWnlgSrGVmR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Basic information about the data\r\n", + "df %>%\r\n", + " introduce()\r\n", + "\r\n", + "# Visualize basic information above\r\n", + "df %>% \r\n", + " plot_intro(ggtheme = theme_light())" + ], + "outputs": [], + "metadata": { + "id": "4UcGmxRxGieA" + } + }, + { + "cell_type": "markdown", + "source": [ + "출력 결과를 보면 `2448`개의 행과 `385`개의 열이 있으며, 결측값은 `0`개입니다. 또한, 하나의 이산형 열인 *cuisine*이 있습니다.\n", + "\n", + "## 연습 - 요리 유형에 대해 배우기\n", + "\n", + "이제 작업이 더 흥미로워지기 시작합니다. 요리 유형별로 데이터 분포를 알아봅시다.\n" + ], + "metadata": { + "id": "AaPubl__GmH5" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Count observations per cuisine\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(n)\r\n", + "\r\n", + "# Plot the distribution\r\n", + "theme_set(theme_light())\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " ggplot(mapping = aes(x = n, y = reorder(cuisine, -n))) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"cuisine\")" + ], + "outputs": [], + "metadata": { + "id": "FRsBVy5eGrrv" + } + }, + { + "cell_type": "markdown", + "source": [ + "요리 종류는 유한하지만 데이터 분포는 고르지 않습니다. 이를 수정할 수 있습니다! 수정하기 전에 조금 더 탐색해보세요.\n", + "\n", + "다음으로, 각 요리 종류를 개별 tibble로 할당하고, 요리 종류별로 사용 가능한 데이터(행, 열)가 얼마나 되는지 확인해봅시다.\n", + "\n", + "> [tibble](https://tibble.tidyverse.org/)은 현대적인 데이터 프레임입니다.\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    @allison_horst의 작품
                                                    \n" + ], + "metadata": { + "id": "vVvyDb1kG2in" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create individual tibble for the cuisines\r\n", + "thai_df <- df %>% \r\n", + " filter(cuisine == \"thai\")\r\n", + "japanese_df <- df %>% \r\n", + " filter(cuisine == \"japanese\")\r\n", + "chinese_df <- df %>% \r\n", + " filter(cuisine == \"chinese\")\r\n", + "indian_df <- df %>% \r\n", + " filter(cuisine == \"indian\")\r\n", + "korean_df <- df %>% \r\n", + " filter(cuisine == \"korean\")\r\n", + "\r\n", + "\r\n", + "# Find out how much data is available per cuisine\r\n", + "cat(\" thai df:\", dim(thai_df), \"\\n\",\r\n", + " \"japanese df:\", dim(japanese_df), \"\\n\",\r\n", + " \"chinese_df:\", dim(chinese_df), \"\\n\",\r\n", + " \"indian_df:\", dim(indian_df), \"\\n\",\r\n", + " \"korean_df:\", dim(korean_df))" + ], + "outputs": [], + "metadata": { + "id": "0TvXUxD3G8Bk" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **연습 - dplyr을 사용하여 요리별 주요 재료 발견하기**\n", + "\n", + "이제 데이터를 더 깊이 탐구하여 요리별로 대표적인 재료가 무엇인지 알아볼 수 있습니다. 요리 간 혼란을 일으키는 반복적인 데이터를 정리해야 하므로, 이 문제에 대해 배워봅시다.\n", + "\n", + "R에서 `create_ingredient()`라는 함수를 만들어 재료 데이터프레임을 반환하세요. 이 함수는 도움이 되지 않는 열을 제거하고, 재료를 개수에 따라 정렬하는 것으로 시작합니다.\n", + "\n", + "R 함수의 기본 구조는 다음과 같습니다:\n", + "\n", + "`myFunction <- function(arglist){`\n", + "\n", + "**`...`**\n", + "\n", + "**`return`**`(value)`\n", + "\n", + "`}`\n", + "\n", + "R 함수에 대한 깔끔한 소개는 [여기](https://skirmer.github.io/presentations/functions_with_r.html#1)에서 확인할 수 있습니다.\n", + "\n", + "바로 시작해봅시다! 이전 수업에서 배운 [dplyr 동사들](https://dplyr.tidyverse.org/)을 활용할 것입니다. 복습하자면:\n", + "\n", + "- `dplyr::select()`: **열**을 선택하거나 제외하는 데 도움을 줍니다.\n", + "\n", + "- `dplyr::pivot_longer()`: 데이터를 \"길게\" 만들어 행의 수를 늘리고 열의 수를 줄이는 데 도움을 줍니다.\n", + "\n", + "- `dplyr::group_by()`와 `dplyr::summarise()`: 그룹별로 요약 통계를 찾고, 이를 깔끔한 표로 정리하는 데 도움을 줍니다.\n", + "\n", + "- `dplyr::filter()`: 조건을 만족하는 행만 포함하는 데이터의 하위 집합을 만듭니다.\n", + "\n", + "- `dplyr::mutate()`: 열을 생성하거나 수정하는 데 도움을 줍니다.\n", + "\n", + "Allison Horst가 만든 [*예술*-가득한 learnr 튜토리얼](https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome)을 확인해보세요. 이 튜토리얼은 dplyr *(Tidyverse의 일부)*의 유용한 데이터 정리 함수들을 소개합니다.\n" + ], + "metadata": { + "id": "K3RF5bSCHC76" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Creates a functions that returns the top ingredients by class\r\n", + "\r\n", + "create_ingredient <- function(df){\r\n", + " \r\n", + " # Drop the id column which is the first colum\r\n", + " ingredient_df = df %>% select(-1) %>% \r\n", + " # Transpose data to a long format\r\n", + " pivot_longer(!cuisine, names_to = \"ingredients\", values_to = \"count\") %>% \r\n", + " # Find the top most ingredients for a particular cuisine\r\n", + " group_by(ingredients) %>% \r\n", + " summarise(n_instances = sum(count)) %>% \r\n", + " filter(n_instances != 0) %>% \r\n", + " # Arrange by descending order\r\n", + " arrange(desc(n_instances)) %>% \r\n", + " mutate(ingredients = factor(ingredients) %>% fct_inorder())\r\n", + " \r\n", + " \r\n", + " return(ingredient_df)\r\n", + "} # End of function" + ], + "outputs": [], + "metadata": { + "id": "uB_0JR82HTPa" + } + }, + { + "cell_type": "markdown", + "source": [ + "이제 이 함수를 사용하여 요리별로 가장 인기 있는 재료 상위 10개를 알아볼 수 있습니다. `thai_df`로 한번 시험해 봅시다.\n" + ], + "metadata": { + "id": "h9794WF8HWmc" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Call create_ingredient and display popular ingredients\r\n", + "thai_ingredient_df <- create_ingredient(df = thai_df)\r\n", + "\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "agQ-1HrcHaEA" + } + }, + { + "cell_type": "markdown", + "source": [ + "이전 섹션에서는 `geom_col()`을 사용했으며, 이제 `geom_bar`를 사용하여 막대 그래프를 만드는 방법을 살펴보겠습니다. 추가 읽기를 위해 `?geom_bar`를 사용하세요.\n" + ], + "metadata": { + "id": "kHu9ffGjHdcX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a bar chart for popular thai cuisines\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10) %>% \r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"steelblue\") +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "fb3Bx_3DHj6e" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "RHP_xgdkHnvM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Japanese cuisines and make bar chart\r\n", + "create_ingredient(df = japanese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"darkorange\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "019v8F0XHrRU" + } + }, + { + "cell_type": "markdown", + "source": [ + "중국 요리는 어떤가요?\n" + ], + "metadata": { + "id": "iIGM7vO8Hu3v" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Chinese cuisines and make bar chart\r\n", + "create_ingredient(df = chinese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"cyan4\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lHd9_gd2HyzU" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "ir8qyQbNH1c7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Indian cuisines and make bar chart\r\n", + "create_ingredient(df = indian_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#041E42FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "ApukQtKjH5FO" + } + }, + { + "cell_type": "markdown", + "source": [ + "마침내 한국 재료를 플롯하세요.\n" + ], + "metadata": { + "id": "qv30cwY1H-FM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Korean cuisines and make bar chart\r\n", + "create_ingredient(df = korean_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#852419FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lumgk9cHIBie" + } + }, + { + "cell_type": "markdown", + "source": [ + "데이터 시각화를 통해 서로 다른 요리 간 혼란을 야기하는 가장 흔한 재료들을 이제 `dplyr::select()`를 사용하여 제거할 수 있습니다.\n", + "\n", + "모두가 쌀, 마늘, 생강을 좋아하죠!\n" + ], + "metadata": { + "id": "iO4veMXuIEta" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "iHJPiG6rIUcK" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 레시피를 사용한 데이터 전처리 👩‍🍳👨‍🍳 - 불균형 데이터 다루기 ⚖️\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    @allison_horst의 작품
                                                    \n", + "\n", + "이 강의가 요리에 관한 것이므로, `recipes`를 맥락에 맞게 살펴봐야 합니다.\n", + "\n", + "Tidymodels는 또 하나의 깔끔한 패키지를 제공합니다: 데이터 전처리를 위한 패키지인 `recipes`입니다.\n" + ], + "metadata": { + "id": "kkFd-JxdIaL6" + } + }, + { + "cell_type": "markdown", + "source": [ + "우리의 요리 분포를 다시 한번 살펴봅시다.\n" + ], + "metadata": { + "id": "6l2ubtTPJAhY" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "old_label_count <- df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "old_label_count" + ], + "outputs": [], + "metadata": { + "id": "1e-E9cb7JDVi" + } + }, + { + "cell_type": "markdown", + "source": [ + "음식 종류의 수에서 상당히 불균형한 분포가 있다는 것을 알 수 있습니다. 한국 요리는 태국 요리의 거의 3배에 달합니다. 불균형한 데이터는 종종 모델 성능에 부정적인 영향을 미칩니다. 이진 분류를 생각해봅시다. 만약 대부분의 데이터가 한 클래스에 속한다면, 머신러닝 모델은 단순히 해당 클래스의 데이터가 더 많기 때문에 그 클래스를 더 자주 예측하게 됩니다. 데이터를 균형 있게 조정하면 이러한 불균형을 제거하는 데 도움이 됩니다. 많은 모델은 관측치의 수가 동일할 때 가장 잘 작동하며, 따라서 불균형한 데이터에서는 어려움을 겪는 경향이 있습니다.\n", + "\n", + "불균형 데이터 세트를 처리하는 주요 방법은 두 가지가 있습니다:\n", + "\n", + "- 소수 클래스에 관측치를 추가하는 방법: `오버샘플링` 예: SMOTE 알고리즘 사용\n", + "\n", + "- 다수 클래스에서 관측치를 제거하는 방법: `언더샘플링`\n", + "\n", + "이제 `recipe`를 사용하여 불균형 데이터 세트를 처리하는 방법을 시연해 보겠습니다. 레시피는 데이터 분석을 준비하기 위해 데이터 세트에 어떤 단계를 적용해야 하는지를 설명하는 청사진으로 생각할 수 있습니다.\n" + ], + "metadata": { + "id": "soAw6826JKx9" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = df_select) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "cuisines_recipe" + ], + "outputs": [], + "metadata": { + "id": "HS41brUIJVJy" + } + }, + { + "cell_type": "markdown", + "source": [ + "우리의 전처리 단계를 살펴봅시다.\n", + "\n", + "- `recipe()`를 공식과 함께 호출하면, `df_select` 데이터를 참조하여 변수들의 *역할*을 레시피에 지정합니다. 예를 들어, `cuisine` 열은 `outcome` 역할로 지정되었고, 나머지 열들은 `predictor` 역할로 지정되었습니다.\n", + "\n", + "- [`step_smote(cuisine)`](https://themis.tidymodels.org/reference/step_smote.html)는 레시피 단계의 *명세*를 생성하며, 소수 클래스의 새로운 예제를 해당 사례의 가장 가까운 이웃을 사용해 합성적으로 생성합니다.\n", + "\n", + "이제, 전처리된 데이터를 확인하고 싶다면, [**`prep()`**](https://recipes.tidymodels.org/reference/prep.html)과 [**`bake()`**](https://recipes.tidymodels.org/reference/bake.html)를 사용해야 합니다.\n", + "\n", + "`prep()`: 훈련 데이터 세트에서 필요한 매개변수를 추정하여 이후 다른 데이터 세트에 적용할 수 있도록 준비합니다.\n", + "\n", + "`bake()`: 준비된 레시피를 사용하여 어떤 데이터 세트에든 해당 작업을 적용합니다.\n" + ], + "metadata": { + "id": "Yb-7t7XcJaC8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep and bake the recipe\r\n", + "preprocessed_df <- cuisines_recipe %>% \r\n", + " prep() %>% \r\n", + " bake(new_data = NULL) %>% \r\n", + " relocate(cuisine)\r\n", + "\r\n", + "# Display data\r\n", + "preprocessed_df %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Quick summary stats\r\n", + "preprocessed_df %>% \r\n", + " introduce()" + ], + "outputs": [], + "metadata": { + "id": "9QhSgdpxJl44" + } + }, + { + "cell_type": "markdown", + "source": [ + "이제 우리의 요리 분포를 확인하고 불균형 데이터와 비교해 봅시다.\n" + ], + "metadata": { + "id": "dmidELh_LdV7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "new_label_count <- preprocessed_df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "list(new_label_count = new_label_count,\r\n", + " old_label_count = old_label_count)" + ], + "outputs": [], + "metadata": { + "id": "aSh23klBLwDz" + } + }, + { + "cell_type": "markdown", + "source": [ + "음! 데이터가 깔끔하고, 균형 잡혀 있으며, 정말 맛있네요 😋!\n", + "\n", + "> 일반적으로, 레시피는 모델링을 위한 전처리기로 사용되며, 데이터 세트를 모델링에 적합하게 준비하기 위해 어떤 단계를 적용해야 하는지를 정의합니다. 이 경우, 레시피를 수동으로 추정하는 대신 `workflow()`를 사용하는 것이 일반적입니다 (이전 수업에서 이미 본 것처럼요).\n", + ">\n", + "> 따라서 tidymodels를 사용할 때는 보통 **`prep()`**과 **`bake()`**를 사용할 필요가 없지만, 레시피가 예상대로 작동하는지 확인하는 데 유용한 함수들입니다. 우리의 경우처럼 말이죠.\n", + ">\n", + "> **`new_data = NULL`**로 준비된 레시피를 **`bake()`**하면, 레시피를 정의할 때 제공했던 데이터가 반환되지만, 전처리 단계를 거친 상태로 제공됩니다.\n", + "\n", + "이제 이 데이터를 저장하여 앞으로의 수업에서 사용할 수 있도록 해봅시다:\n" + ], + "metadata": { + "id": "HEu80HZ8L7ae" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Save preprocessed data\r\n", + "write_csv(preprocessed_df, \"../../../data/cleaned_cuisines_R.csv\")" + ], + "outputs": [], + "metadata": { + "id": "cBmCbIgrMOI6" + } + }, + { + "cell_type": "markdown", + "source": [ + "이 새로운 CSV는 이제 루트 데이터 폴더에서 찾을 수 있습니다.\n", + "\n", + "**🚀도전 과제**\n", + "\n", + "이 커리큘럼에는 여러 흥미로운 데이터셋이 포함되어 있습니다. `data` 폴더를 탐색하여 이진 또는 다중 클래스 분류에 적합한 데이터셋이 있는지 확인해 보세요. 이 데이터셋에 대해 어떤 질문을 할 수 있을까요?\n", + "\n", + "## [**강의 후 퀴즈**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/)\n", + "\n", + "## **복습 및 자기 학습**\n", + "\n", + "- [themis 패키지](https://github.com/tidymodels/themis)를 확인해 보세요. 불균형 데이터 문제를 해결하기 위해 어떤 다른 기술을 사용할 수 있을까요?\n", + "\n", + "- Tidy models [참고 웹사이트](https://www.tidymodels.org/start/).\n", + "\n", + "- H. Wickham과 G. Grolemund, [*R for Data Science: Visualize, Model, Transform, Tidy, and Import Data*](https://r4ds.had.co.nz/).\n", + "\n", + "#### 감사의 인사:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/)에게 R을 더 친근하고 매력적으로 만들어주는 놀라운 삽화를 만들어 주셔서 감사합니다. 그녀의 [갤러리](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)에서 더 많은 삽화를 확인하세요.\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview)와 [Jen Looper](https://www.twitter.com/jenlooper)에게 이 모듈의 원래 Python 버전을 만들어 주셔서 감사합니다 ♥️\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    @allison_horst의 작품
                                                    \n" + ], + "metadata": { + "id": "WQs5621pMGwf" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/4-Classification/1-Introduction/solution/notebook.ipynb b/translations/ko/4-Classification/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..af2e0e64b --- /dev/null +++ b/translations/ko/4-Classification/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,703 @@ +{ + "cells": [ + { + "source": [ + "# 맛있는 아시아 및 인도 요리\n", + "\n", + "## 소개\n", + "아시아와 인도 요리는 전 세계적으로 사랑받는 독특한 풍미와 다양한 재료로 유명합니다. 이 문서에서는 몇 가지 인기 있는 요리와 그 특징에 대해 살펴보겠습니다.\n", + "\n", + "## 아시아 요리\n", + "아시아 요리는 지역마다 매우 다양하며, 각 나라의 문화와 전통을 반영합니다. 다음은 몇 가지 대표적인 요리입니다:\n", + "\n", + "### 스시\n", + "스시는 일본 요리의 대표적인 예로, 신선한 생선과 밥을 주재료로 사용합니다. 다양한 종류의 스시가 있으며, 각기 다른 재료와 조리법으로 만들어집니다.\n", + "\n", + "### 팟타이\n", + "태국의 팟타이는 쌀국수, 새우, 두부, 땅콩, 숙주나물 등을 사용하여 만들어지는 달콤하고 짭짤한 볶음 요리입니다. 간단하면서도 깊은 맛을 자랑합니다.\n", + "\n", + "### 딤섬\n", + "딤섬은 중국 광둥 지역에서 유래한 작은 크기의 요리로, 찐만두, 구운 빵, 튀김 요리 등 다양한 종류가 있습니다. 보통 차와 함께 즐깁니다.\n", + "\n", + "## 인도 요리\n", + "인도 요리는 풍부한 향신료와 강렬한 맛으로 유명합니다. 다음은 몇 가지 인기 있는 요리입니다:\n", + "\n", + "### 치킨 티카 마살라\n", + "치킨 티카 마살라는 구운 닭고기를 크리미한 토마토 소스와 함께 조리한 요리로, 전 세계적으로 사랑받는 인도 요리 중 하나입니다.\n", + "\n", + "### 사모사\n", + "사모사는 감자, 완두콩, 향신료로 채워진 삼각형 모양의 튀김 요리입니다. 간단한 간식으로 인기가 많습니다.\n", + "\n", + "### 난\n", + "난은 인도의 전통적인 빵으로, 탄두르 오븐에서 구워집니다. 커리와 함께 곁들여 먹는 경우가 많습니다.\n", + "\n", + "## 결론\n", + "아시아와 인도 요리는 그 풍부한 맛과 다양성으로 인해 많은 사람들에게 사랑받고 있습니다. 각 요리는 고유의 문화와 역사를 담고 있어, 음식을 통해 새로운 문화를 경험할 수 있는 기회를 제공합니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "Imblearn을 설치하여 SMOTE를 활성화하세요. 이는 분류 작업 시 불균형 데이터를 처리하는 데 도움을 주는 Scikit-learn 패키지입니다. (https://imbalanced-learn.org/stable/)\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: imblearn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.0)\n", + "Requirement already satisfied: imbalanced-learn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imblearn) (0.8.0)\n", + "Requirement already satisfied: numpy>=1.13.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.19.2)\n", + "Requirement already satisfied: scipy>=0.19.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.4.1)\n", + "Requirement already satisfied: scikit-learn>=0.24 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.24.2)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.16.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.24->imbalanced-learn->imblearn) (2.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install imblearn" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "import numpy as np\n", + "from imblearn.over_sampling import SMOTE" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../../data/cuisines.csv')" + ] + }, + { + "source": [ + "이 데이터셋은 주어진 요리 세트에서 다양한 요리의 모든 종류의 재료를 나타내는 385개의 열을 포함하고 있습니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 65 indian 0 0 0 0 0 \n", + "1 66 indian 1 0 0 0 0 \n", + "2 67 indian 0 0 0 0 0 \n", + "3 68 indian 0 0 0 0 0 \n", + "4 69 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 385 columns]" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    065indian00000000...0000000000
                                                    166indian10000000...0000000000
                                                    267indian00000000...0000000000
                                                    368indian00000000...0000000000
                                                    469indian00000000...0000000010
                                                    \n

                                                    5 rows × 385 columns

                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 2448 entries, 0 to 2447\nColumns: 385 entries, Unnamed: 0 to zucchini\ndtypes: int64(384), object(1)\nmemory usage: 7.2+ MB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "korean 799\n", + "indian 598\n", + "chinese 442\n", + "japanese 320\n", + "thai 289\n", + "Name: cuisine, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "df.cuisine.value_counts()" + ] + }, + { + "source": [ + "막대 그래프로 요리 보여주기\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD4CAYAAAAtrdtxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAASY0lEQVR4nO3df7TldV3v8eerGZkRRoeAiXtE5UgNIkUCjlwQIzAiC7NscdcSbcmsfkxl5SXX0juuyzK9d3UvlXnpplajma0kMtCUhluImNcr8msGBmb4pZaTQCFQOYom0fi+f+zPkd14hpnzOWefvYfzfKy113z35/vde7/22fvMa3++3733SVUhSVKPbxt3AEnSgcsSkSR1s0QkSd0sEUlSN0tEktRt+bgDLKYjjjiipqenxx1Dkg4oW7dufbiq1sy2bkmVyPT0NFu2bBl3DEk6oCT5u72tc3eWJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqduS+sT69vt3Mb3xqnHH0ALZefG5444gLXnORCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktRtIkokyaFJXtuWz0yyeY6X/29Jzh5NOknS3kxEiQCHAq/tvXBVvbmqPraAeSRJ+2FSSuRi4DuTbAN+E1iV5Iokdye5NEkAkrw5yc1JdiTZNDT+viTnjTG/JC1Jk1IiG4G/qaoTgTcAJwEXAscDxwCnt+3eUVUvrKrvAZ4KvGxfV5xkQ5ItSbbs/tqu0aSXpCVqUkpkTzdV1X1V9Q1gGzDdxs9KcmOS7cBLgO/e1xVV1aaqWldV65YdvHp0iSVpCZrUL2B8dGh5N7A8yUrgXcC6qro3yVuAleMIJ0kamJSZyFeAp+1jm5nCeDjJKsBjIJI0ZhMxE6mqf0xyXZIdwL8AX5xlmy8leTewA3gAuHmRY0qS9jARJQJQVa/ay/gvDS1fBFw0yzbrR5dMkrQ3k7I7S5J0ALJEJEndLBFJUjdLRJLUzRKRJHWbmHdnLYYTjlrNlovPHXcMSXrScCYiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6rZ83AEW0/b7dzG98apxx9CY7Lz43HFHkJ50nIlIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG77VSJJPj3qIJKkA89+lUhVvWjUQSRJB579nYk8kmRVkmuT3JJke5Ifa+umk9yd5NIkdyW5IsnBbd2bk9ycZEeSTUnSxj+R5NeT3JTkM0m+r40vS/Kb7TK3J/m5Nj6V5JNJtrXrmtn+nCTXt0yXJ1k1ih+SJGl2czkm8nXgFVV1MnAW8FszpQA8F3hXVT0P+DLw2jb+jqp6YVV9D/BU4GVD17e8qk4BLgR+tY39NLCrql4IvBD42STPAV4FXF1VJwLPB7YlOQK4CDi7ZdoCvH4ud16SND9z+dqTAP8jyRnAN4CjgCPbunur6rq2/H7gdcDbgLOSvBE4GDgMuAP4i7bdh9q/W4HptnwO8L1JzmvnVwNrgZuB9yZ5CvDhqtqW5PuB44HrWpcdBFz/LaGTDcAGgGVPXzOHuytJ2pe5lMirgTXAC6rqsSQ7gZVtXe2xbSVZCbwLWFdV9yZ5y9D2AI+2f3cP5Qjwy1V19Z433srrXOB9Sd4O/DNwTVWd/0Shq2oTsAlgxdTaPXNKkuZhLruzVgMPtgI5Czh6aN2zk5zWll8FfIrHC+PhdqziPPbtauAX2oyDJMcmOSTJ0cAXq+rdwHuAk4EbgNOTfFfb9pAkx87h/kiS5ml/ZyIFXAr8RZLtDI4/3D20/h7gF5O8F7gT+N2q+lqSdwM7gAcY7JLal/cw2LV1Szve8hDw48CZwBuSPAY8Arymqh5Ksh64LMmKdvmLgM/s532SJM1Tqp54D0+Sw4FbqurovayfBja3g+cTbcXU2pq64JJxx9CY+FXwUp8kW6tq3WzrnnB3VpJnMDhY/bZRBJMkHdiecHdWVf098ITHGapqJzDxsxBJ0sLzu7MkSd0sEUlSN0tEktRtLh82POCdcNRqtvgOHUlaMM5EJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd2WjzvAYtp+/y6mN1417hhSt50XnzvuCNK/40xEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3Ra0RJK8L8l5s4w/I8kVC3lbkqTxW5QPG1bV3wPfUi6SpAPbvGYiSV6T5PYktyX54zZ8RpJPJ/nbmVlJkukkO9ry+iQfSvJXST6b5DeGru+cJNcnuSXJ5UlWtfGLk9zZbuttbWxNkg8mubmdTp/PfZEkzV33TCTJdwMXAS+qqoeTHAa8HZgCXgwcB1wJzLYb60TgJOBR4J4kvwP8S7u+s6vqq0n+C/D6JO8EXgEcV1WV5NB2Hb8N/K+q+lSSZwNXA8+bJecGYAPAsqev6b27kqRZzGd31kuAy6vqYYCq+qckAB+uqm8AdyY5ci+XvbaqdgEkuRM4GjgUOB64rl3PQcD1wC7g68AfJNkMbG7XcTZwfNsW4OlJVlXVI8M3VFWbgE0AK6bW1jzuryRpD6M4JvLo0HL2Y5vdLUeAa6rq/D03TnIK8AMMjqv8EoMC+zbg1Kr6+kKEliTN3XyOiXwc+E9JDgdou7Pm4wbg9CTf1a7vkCTHtuMiq6vq/wC/Ajy/bf9R4JdnLpzkxHneviRpjrpnIlV1R5JfA/5vkt3ArfMJUlUPJVkPXJZkRRu+CPgK8JEkKxnMVl7f1r0OeGeS2xncj08CPz+fDJKkuUnV0jlMsGJqbU1dcMm4Y0jd/HsiGockW6tq3Wzr/MS6JKmbJSJJ6maJSJK6WSKSpG6WiCSp26J8AeOkOOGo1Wzx3S2StGCciUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6LR93gMW0/f5dTG+8atwxJM3RzovPHXcE7YUzEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUbWQlkuTTc9z+zCSb2/LLk2wcTTJJ0kIZ2edEqupF87jslcCVCxhHkjQCo5yJPNL+PTPJJ5JckeTuJJcmSVv30jZ2C/ATQ5ddn+QdbflHk9yY5NYkH0tyZBt/S5L3tuv+2ySvG9V9kSTNbrGOiZwEXAgcDxwDnJ5kJfBu4EeBFwD/YS+X/RRwalWdBPwp8MahdccBPwScAvxqkqeMJr4kaTaL9bUnN1XVfQBJtgHTwCPA56vqs238/cCGWS77TOADSaaAg4DPD627qqoeBR5N8iBwJHDf8IWTbJi53mVPX7OQ90mSlrzFmok8OrS8m7mV1+8A76iqE4CfA1bO5XqralNVrauqdcsOXj2Hm5Uk7cs43+J7NzCd5Dvb+fP3st1q4P62fMHIU0mS9tvYSqSqvs5gN9NV7cD6g3vZ9C3A5Um2Ag8vUjxJ0n5IVY07w6JZMbW2pi64ZNwxJM2RXwU/Xkm2VtW62db5iXVJUjdLRJLUzRKRJHWzRCRJ3SwRSVK3xfrE+kQ44ajVbPFdHpK0YJyJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrotH3eAxbT9/l1Mb7xq3DEkaVHtvPjckV23MxFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1W9ASSTKdZMdCXqckaXJNxEwkyZL60KMkPVmMrESSHJPk1iTfl+QPk2xv589q69cnuTLJx4Fr29gbktyc5PYkbx26rg8n2ZrkjiQbhsYfSfJrSW5LckOSI0d1fyRJ32okJZLkucAHgfXAKUBV1QnA+cAfJVnZNj0ZOK+qvj/JOcDatv2JwAuSnNG2+6mqegGwDnhdksPb+CHADVX1fOCTwM/OkmVDki1Jtuz+2q5R3F1JWrJGUSJrgI8Ar66q24AXA+8HqKq7gb8Djm3bXlNV/9SWz2mnW4FbgOMYlAoMiuM24AbgWUPj/wpsbstbgek9w1TVpqpaV1Xrlh28eqHuoySJ0XwB4y7gCwzK4859bPvVoeUA/7Oqfn94gyRnAmcDp1XV15J8ApiZyTxWVdWWd7PEvlBSksZtFDORfwVeAbwmyauA/we8GiDJscCzgXtmudzVwE8lWdW2PSrJdwCrgX9uBXIccOoIMkuSOozklXtVfTXJy4BrgP8OnJBkO/BvwPqqejTJnpf5aJLnAde3dY8APwn8FfDzSe5iUD43jCKzJGnu8vjeoCe/FVNra+qCS8YdQ5IW1Xz/nkiSrVW1brZ1E/E5EUnSgckSkSR1s0QkSd0sEUlSN0tEktRtSX0474SjVrNlnu9SkCQ9zpmIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqtqT+KFWSrzD7n+adFEcAD487xBMw3/yYb37MNz/zyXd0Va2ZbcWS+u4s4J69/XWuSZBki/n6mW9+zDc/SzWfu7MkSd0sEUlSt6VWIpvGHWAfzDc/5psf883Pksy3pA6sS5IW1lKbiUiSFpAlIknqtmRKJMlLk9yT5HNJNo4pw3uTPJhkx9DYYUmuSfLZ9u+3t/Ek+d8t7+1JTl6EfM9K8tdJ7kxyR5L/PEkZk6xMclOS21q+t7bx5yS5seX4QJKD2viKdv5zbf30KPO121yW5NYkmycw284k25NsS7KljU3EY9tu89AkVyS5O8ldSU6blHxJntt+bjOnLye5cFLytdv8lfZ7sSPJZe33ZfTPv6p60p+AZcDfAMcABwG3AcePIccZwMnAjqGx3wA2tuWNwK+35R8B/hIIcCpw4yLkmwJObstPAz4DHD8pGdvtrGrLTwFubLf7Z8Ar2/jvAb/Qll8L/F5bfiXwgUX4Gb4e+BNgczs/Sdl2AkfsMTYRj227zT8CfqYtHwQcOkn5hnIuAx4Ajp6UfMBRwOeBpw4979YvxvNvUX7o4z4BpwFXD51/E/CmMWWZ5t+XyD3AVFueYvCBSIDfB86fbbtFzPoR4AcnMSNwMHAL8B8ZfAp3+Z6PNXA1cFpbXt62ywgzPRO4FngJsLn9BzIR2drt7ORbS2QiHltgdftPMJOYb49M5wDXTVI+BiVyL3BYez5tBn5oMZ5/S2V31swPeMZ9bWwSHFlV/9CWHwCObMtjzdymtycxeLU/MRnb7qJtwIPANQxmmF+qqn+bJcM387X1u4DDRxjvEuCNwDfa+cMnKBtAAR9NsjXJhjY2KY/tc4CHgD9suwPfk+SQCco37JXAZW15IvJV1f3A24AvAP/A4Pm0lUV4/i2VEjkg1OBlwdjfc51kFfBB4MKq+vLwunFnrKrdVXUig1f9pwDHjSvLsCQvAx6sqq3jzvIEXlxVJwM/DPxikjOGV475sV3OYFfv71bVScBXGewe+qZxP/cA2jGFlwOX77lunPnasZgfY1DGzwAOAV66GLe9VErkfuBZQ+ef2cYmwReTTAG0fx9s42PJnOQpDArk0qr60CRmBKiqLwF/zWCKfmiSme+BG87wzXxt/WrgH0cU6XTg5Ul2An/KYJfWb09INuCbr1apqgeBP2dQwpPy2N4H3FdVN7bzVzAolUnJN+OHgVuq6ovt/KTkOxv4fFU9VFWPAR9i8Jwc+fNvqZTIzcDa9k6FgxhMR68cc6YZVwIXtOULGByHmBl/TXuXx6nArqFp80gkCfAHwF1V9fZJy5hkTZJD2/JTGRyvuYtBmZy3l3wzuc8DPt5eLS64qnpTVT2zqqYZPL8+XlWvnoRsAEkOSfK0mWUG+/V3MCGPbVU9ANyb5Llt6AeAOycl35DzeXxX1kyOScj3BeDUJAe33+OZn9/on3+LcSBqEk4M3i3xGQb70P/rmDJcxmB/5WMMXnn9NIP9kNcCnwU+BhzWtg3wzpZ3O7BuEfK9mMF0/HZgWzv9yKRkBL4XuLXl2wG8uY0fA9wEfI7BboYVbXxlO/+5tv6YRXqcz+Txd2dNRLaW47Z2umPmd2BSHtt2mycCW9rj+2Hg2ycs3yEMXq2vHhqbpHxvBe5uvxt/DKxYjOefX3siSeq2VHZnSZJGwBKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd3+PxNFbW14TY8fAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df.cuisine.value_counts().plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "thai df: (289, 385)\njapanese df: (320, 385)\nchinese df: (442, 385)\nindian df: (598, 385)\nkorean df: (799, 385)\n" + ] + } + ], + "source": [ + "\n", + "thai_df = df[(df.cuisine == \"thai\")]\n", + "japanese_df = df[(df.cuisine == \"japanese\")]\n", + "chinese_df = df[(df.cuisine == \"chinese\")]\n", + "indian_df = df[(df.cuisine == \"indian\")]\n", + "korean_df = df[(df.cuisine == \"korean\")]\n", + "\n", + "print(f'thai df: {thai_df.shape}')\n", + "print(f'japanese df: {japanese_df.shape}')\n", + "print(f'chinese df: {chinese_df.shape}')\n", + "print(f'indian df: {indian_df.shape}')\n", + "print(f'korean df: {korean_df.shape}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def create_ingredient_df(df):\n", + " # transpose df, drop cuisine and unnamed rows, sum the row to get total for ingredient and add value header to new df\n", + " ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value')\n", + " # drop ingredients that have a 0 sum\n", + " ingredient_df = ingredient_df[(ingredient_df.T != 0).any()]\n", + " # sort df\n", + " ingredient_df = ingredient_df.sort_values(by='value', ascending=False, inplace=False)\n", + " return ingredient_df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAeAklEQVR4nO3de7RVdb338fcHRFAhTPBCeNnogzckQJcdb11ES01QSxGLUtNHjl1EM2twhmbUo+PY5dhN07DHII+nuKSPFKe0FPEasTcCG1TUEk8QCmjuJIRg+33+WL+ti82+AWvvORfr8xpjjT3Xb/7mnN85x2J/+M0595qKCMzMzPKiW9YFmJmZlXIwmZlZrjiYzMwsVxxMZmaWKw4mMzPLlV2yLmBn0L9//6ipqcm6DDOzitG/f3/uv//++yPi9ObzHExlUFNTQ21tbdZlmJlVFEn9W2r3qTwzM8sVB5OZmeWKg8nMzHLF15jMzLrApk2bWLFiBRs2bMi6lC7Xq1cv9t9/f3r06NGh/g6mMqhf2UDNxNlZl2G2Q5bfdGbWJezUVqxYQZ8+faipqUFS1uV0mYjg1VdfZcWKFQwaNKhDy/hUnplZF9iwYQP9+vWrqlACkES/fv22aaRYEcEkaYqk81pof4+kme0su7y1WxLNzLpStYVSk23d74o+lRcRfwW2CiwzM6tcuQwmSRcC1wABLAYagQ9IuhrYD/hKRMyUVAP8OiKOktQd+CZwOvAWcEdE/LBknbsB9wD3RMQdkj4FTAB2BeYBn4uIRknrgO8Do4A3gbMj4pWu2G8zqx7lvi5d7muEvXv3Zt26dWVdZ0fl7lSepCHAdcDIiBgGXJlmDQBOohgYN7Ww6HigBhgeEe8F7i6Z1xv4FfDzFEpHAGOBEyNiOMXgG5f67gH8IW37EeCyVuocL6lWUm3j+obt3l8zM9tS7oIJGAnMiIi1ABHxWmr/fxHxVkQ8DezbwnKnAj+OiM3NlgO4D/hpRPwsvT8FOAaYL2lhen9wmvdP4Ndpuo5i2G0lIiZHRCEiCt1377sdu2lm1nUmTpzIrbfe+vb7SZMmccMNN3DKKadw9NFHM3ToUO67776tlnv44YcZNWrU2++/8IUvMGXKFADq6ur44Ac/yDHHHMNpp53GqlWrylJrHoOpNRtLprf1CuLjwOl65wqcgKkRMTy9DouISWnepnjnefON5PR0p5nZthg7dizTp09/+/306dO56KKLuPfee1mwYAFz5szhS1/6Eu/8+mvbpk2buOKKK5g5cyZ1dXVccsklXHvttWWpNY+/dB8C7pV0c0S8KmmvDi73O+BfJc2JiM2S9ioZNV2fXrcCnwMeBO6T9N2IWJ220SciXir3zpiZ5cGIESNYvXo1f/3rX1mzZg3vfve72W+//fjiF7/II488Qrdu3Vi5ciWvvPIK++23X7vrW7ZsGUuWLOHDH/4wAI2NjQwYMKAsteYumCJiqaQbgbmSGoGnOrjoT4BDgcWSNgF3ALeUzL8SuFPStyLiK5KuAx6Q1A3YBHwecDCZ2U5rzJgxzJw5k5dffpmxY8dy9913s2bNGurq6ujRowc1NTVb/b3RLrvswltvvfX2+6b5EcGQIUN48skny15n7oIJICKmAlPbmN87/VwOHJWmNwNXp1dp35qSt58paZ8GTGtt3Wl6JtDm30mZmVWKsWPHctlll7F27Vrmzp3L9OnT2WeffejRowdz5szhpZe2/r/5QQcdxNNPP83GjRt58803efDBBznppJM47LDDWLNmDU8++STHH388mzZt4rnnnmPIkCE7XGcug6nSDB3Yl1p/nYuZbYMsvgJqyJAhvPHGGwwcOJABAwYwbtw4Ro8ezdChQykUChx++OFbLXPAAQdw/vnnc9RRRzFo0CBGjBgBwK677srMmTOZMGECDQ0NbN68mauuuqoswaSOXuiy1hUKhfCDAs2sLc888wxHHHFE1mVkpqX9l1QXEYXmfSvprjwzM6sCDiYzM8sVB5OZWRep1ksn27rfDiYzsy7Qq1cvXn311aoLp6bnMfXq1avDy/iuPDOzLrD//vuzYsUK1qxZk3UpXa7pCbYd5WAyM+sCPXr06PATXKudT+WZmVmuOJjMzCxXHExmZpYrvsZUBvUrG8r+NEqzvMriq3SsunjEZGZmuVJ1wSTpvyXtmXUdZmbWsqo6lZeeYDsqIt5qt7OZmWVipx8xSaqRtEzSz4AlQKOk/mnehZIWS1ok6a7UtrekX0qan14nZlm/mVm1qZYR02Dgooj4g6TlAJKGANcBJ0TE2pJHuH8f+G5EPCbpQOB+YKvvqpc0HhgP0P1de3fBLpiZVYdqCaaXIuIPzdpGAjMiYi1ARLyW2k8Fjiye9QPgXZJ6R8S60oUjYjIwGaDngMHV9eVXZmadqFqC6R/b0LcbcFxEbGi3p5mZld1Of42pDQ8BYyT1Ayg5lfcAcEVTJ0nDM6jNzKxqVW0wRcRS4EZgrqRFwM1p1gSgkG6KeBq4PKsazcyqkart2SCdoVAoRG1tbdZlmJlVFEl1EVFo3l61IyYzM8snB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Uq1fLt4p6pf2UDNxNlZl2GWmeU3nZl1CbYT8YjJzMxyxcFkZma5UjHBJOksSRPLtK5Jkq4px7rMzKy8KuIak6RdImIWMCvD7W/OYttmZtWmy0dMki5MD+FbJOkuSTWSHkptD0o6MPWbIul2SfOAb0m6WNItad5oSfMkPSXp95L2Te2TJN0p6WFJf5Y0oWS710p6TtJjwGEl7YdI+q2kOkmPSjq8pe134SEyM6tqXTpikjQEuA44ISLWpseZTwWmRsRUSZcAPwDOSYvsn/o2Srq4ZFWPAcdFREj638BXgC+leYcDJwN9gGWSbgPeC1wADKe4zwuAutR/MnB5RDwv6V+AHwEjm2+/hX0ZD4wH6P6uvXfksJiZWYmuPpU3EpgREWsBIuI1SccDH0/z72LL0cmMlkKBYmBMkzQA2BV4sWTe7IjYCGyUtBrYF3g/cG9ErAeQNCv97A2cAMyQ1LR8zw5sn4iYTDHU6DlgsB8DbGZWJnm/xvSPVtp/CNwcEbMkfQiYVDJvY8l0I23vYzfg9YgYvo3bNzOzTtLV15geAsZI6geQTuU9QfE0G8A44NEOrKcvsDJNX9SB/o8A50jaTVIfYDRARPwdeFHSmFSPJA3r6M6YmVn5demIKSKWSroRmCupEXgKuAL4qaQvA2uAz3RgVZMonn77G8WwG9TOdhdImgYsAlYD80tmjwNuk3Qd0AP4RepnZmYZUIQvj+yoQqEQtbW1WZdhZlZRJNVFRKF5e8X8ga2ZmVUHB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Urev128ItSvbKBm4uysyzDL3PKbzsy6BNsJeMRkZma54mAyM7NcyTSYJJ0j6cgO9Jsi6bwW2j8k6ddlrKcg6Qdp+mJJt5Rr3WZm1jFZj5jOAdoNpq4SEbURMSHrOszMqlmbwSTpJkmfL3k/SdI1kr4sab6kxZK+XjL/q5KWSXpM0s8lXZPaD5H0W0l1kh6VdLikE4CzgG9LWpj6XJbWu0jSLyXtXlLOqZJqJT0naVQLte4h6U5Jf5T0lKSz29ivXpJ+Kqk+9T05tXd4BCZpfKqntnF9Q0cWMTOzDmhvxDQNOL/k/fkUnzI7GHgfMBw4RtIHJB0LnAsMA84ASh/+NBm4IiKOAa4BfhQRTwCzgC9HxPCI+BNwT0QcGxHDgGeAS0vWUZO2eSZwu6RezWq9FngoIt4HnEwx8PZoZb8+D0REDAU+AUxtYX1tiojJEVGIiEL33ftuy6JmZtaGNm8Xj4inJO0j6T3A3sDfgKHARyg+Fh2gN8Wg6gPcFxEbgA2SfgUgqTdwAsVHoTetumcrmzxK0g3Anmm995fMmx4RbwHPS/ozcHizZT8CnNU0SgN6AQdSDLjmTgJ+mPbxWUkvAYe2dSzMzKxrdOTvmGYA5wH7URxBHQT8e0T8uLSTpKtaWb4b8HpEDO/AtqYA50TEIkkXAx8qmdf8GfDN3ws4NyKWdWA7ZmaWUx25+WEacAHFcJpBcRRzSRoJIWmgpH2Ax4HR6fpNb2AUQET8HXhR0pjUX5KGpXW/QXGk1aQPsEpSD2BcszrGSOom6RDgYKB5AN0PXKE0LJM0oo19erRp/ZIOpTiycqCZmeVAu8EUEUspBsbKiFgVEQ8A/wU8KakemAn0iYj5FK8ZLQZ+A9QDTXcFjAMulbQIWAo03ZjwC+DL6QaEQ4CvAvMohtyzzUr5H+CPad2Xp1OGpf4P0ANYLGlpet+aHwHdUv3TgIsjYmN7x8LMzDqfIpqfEduBlUm9I2JdupvuEWB8RCwo2wZyqlAoRG1tbdZlmJlVFEl1EVFo3l7u78qbnP5gthcwtRpCyczMyquswRQRnyzn+naUpNOAbzZrfjEiPpZFPWZm1r6d+tvFI+J+trzl3MzMci7rryQyMzPbgoPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrO/XfMXWV+pUN1EycnXUZZhVh+U1nZl2C5ZxHTGZmlisOplZIGi7po1nXYWZWbRxMrRsOOJjMzLpY7oJJ0oWSFktaJOkuSTWSHkptD0o6MPXbV9K9qd8iSSek9qslLUmvq1JbjaRnJN0haamkByTtluY9LKmQpvtLWi5pV+AbwFhJCyWNzeZomJlVn1wFk6QhwHXAyIgYBlwJ/JDiIzTeC9wN/CB1/wEwN/U7Glgq6RjgM8C/AMcBl5U8yXYwcGtEDAFeB85trY6I+CdwPTAtIoZHxLQWah0vqVZSbeP6hq1XYmZm2yVXwQSMBGZExFqAiHgNOJ7iE3MB7gJOKul7W+rXGBENad69EfGPiFgH3AO8P/V/MSIWpuk6oGZHCo2IyRFRiIhC99377siqzMysRN6CqTOVPjq9kXduld/MO8ehV5dWZGZmW8lbMD0EjJHUD0DSXsATwAVp/jjg0TT9IPDZ1K+7pL5p3jmSdpe0B/Cxkv6tWQ4ck6bPK2l/A+izQ3tjZmbbLFfBFBFLgRuBuZIWATcDVwCfkbQY+DTF606knydLqqd4au7I9Cj3KcAfgXnATyLiqXY2+x3gs5KeAvqXtM8BjvTND2ZmXUsRkXUNFa/ngMEx4KLvZV2GWUXwNz9YE0l1EVFo3u6vJCqDoQP7Uut/bGZmZZGrU3lmZmYOJjMzyxUHk5mZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFX8lURnUr2ygZuLsrMswq2j+Dj1r4hGTmZnlSsUHk6RvSDo16zrMzKw8Kv5UXkRc39nbkNQ9Iho7eztmZlZhIyZJX5W0TNJjkn4u6RpJUySdl+Yvl/R1SQsk1Us6PLXvLel3kpZK+omklyT1T/M+JemP6YGAP5bUPbWvk/Qf6YGFx2e202ZmVaZigknSscC5wDDgDGCrh0slayPiaOA24JrU9jXgoYgYAswEDkzrPAIYC5wYEcOBRoqPbwfYA5gXEcMi4rEW6hkvqVZSbeP6hrLso5mZVdapvBOB+yJiA7BB0q9a6XdP+lkHfDxNnwR8DCAifivpb6n9FOAYYL4kgN2A1WleI/DL1oqJiMnAZCg+wXZ7dsjMzLZWScHUURvTz0ba3z8BUyPi31qYt8HXlczMul7FnMoDHgdGS+olqTcwahuXPR9A0keAd6f2B4HzJO2T5u0l6aAy1mxmZtuoYkZMETFf0ixgMfAKUA909OLO14GfS/o08CTwMvBGRKyVdB3wgKRuwCbg88BLZd8BMzPrEEVUzuURSb0jYp2k3YFHgPERsaADy/UEGiNis6TjgdvSzQ5lUSgUora2tlyrMzOrCpLqImKrG9kqZsSUTJZ0JNCL4rWhdkMpORCYnkZF/wQu66wCzcxsx1RUMEXEJ7dzueeBEWUux8zMOkEl3fxgZmZVwMFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeVKRf2BbV7Vr2ygZuLsrMswqzrLbzoz6xKsE3jEZGZmueJgMjOzXKmIYJJ0uaQL0/QUSedt53qGS/poeaszM7NyqohrTBFxe5lWNRwoAP/dfIakXSJic5m2Y2Zm2ymXwZRGR9cAQfHBgH8C1kXEd5r1ux4YDewGPAH8a0SEpIeBecDJwJ7Apen9N4DdJJ0E/DtwBHAIcDDwP5I+A9xGMbw2A1dHxJzO3VszMyuVu1N5koYA1wEjI2IYcGUb3W+JiGMj4iiK4VT6uPVdIuJ9wFXA1yLin8D1wLSIGB4R01K/I4FTI+ITFJ9eGxExFPgEMFVSr1bqHC+pVlJt4/qOPkjXzMzak7tgAkYCMyJiLUBEvNZG35MlzZNUn5YbUjLvnvSzDqhpYx2zIuLNNH0S8J9pu89SfMT6oS0tFBGTI6IQEYXuu/dtZ5fMzKyjcnkqryPSSOZHQCEi/iJpEsUn2zbZmH420vZ+/qNzKjQzs+2RxxHTQ8AYSf0AJO3VSr+mEForqTfQkTv13gD6tDH/UWBc2u6hFB/JvqwjRZuZWXnkLpgiYilwIzBX0iLg5lb6vQ7cASwB7gfmd2D1c4AjJS2UNLaF+T8CuqVTg9OAiyNiYwv9zMyskygisq6h4hUKhaitrc26DDOziiKpLiIKzdtzN2IyM7Pq5mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeWKg8nMzHLFwWRmZrniYDIzs1yp2G8Xz5P6lQ3UTJyddRlm1omW33Rm1iVUDY+YzMwsVxxMZmaWKw4mMzPLlVwEk6QLJS2WtEjSXZJGp0emPyXp95L2ldRN0vOS9k7LdJP0gqS90+uXkuan14mpzyRJd0p6WNKfJU1I7TWSnpF0h6Slkh6QtFuad4ik30qqk/SopMOzOzJmZtUn82CSNAS4DhgZEcOAK4HHgOMiYgTwC+ArEfEW8J+kJ8wCpwKLImIN8H3guxFxLHAu8JOSTRwOnAa8D/iapB6pfTBwa0QMAV5PywFMBq6IiGOAayg+PLClusdLqpVU27i+YYePg5mZFeXhrryRwIyIWAsQEa9JGgpMkzQA2BV4MfW9E7gP+B5wCfDT1H4qxSfTNq3zXelx6wCz01NoN0paDeyb2l+MiIVpug6oScucAMwoWVfPloqOiMkUQ4yeAwb7aYtmZmWSh2BqyQ+BmyNilqQPAZMAIuIvkl6RNJLiCKhp9NSN4ghrQ+lKUriUPhq9kXf2uXn7bmk9r0fE8LLujZmZdVjmp/KAh4AxkvoBSNoL6AusTPMvatb/JxRP6c2IiMbU9gBwRVMHSdsVLBHxd+BFSWPSeiRp2Pasy8zMtk/mwRQRS4EbgbmSFgE3UxwhzZBUB6xttsgsoDfvnMYDmAAU0g0UTwOX70BJ44BLUy1LgbN3YF1mZraNFFFZl0ckFSje6PD+rGtp0nPA4Bhw0feyLsPMOpG/+aH8JNVFRKF5e16vMbVI0kTgs7xzbSkXhg7sS60/tGZmZZH5qbxtERE3RcRBEfFY1rWYmVnnqKhgMjOznZ+DyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFQeTmZnlSkV9JVFe1a9soGbi7KzLMLOdWDV9V59HTGZmlitVEUySJkh6RtLf0hfBttbvYkm3dGVtZma2pWo5lfc54NSIWJF1IWZm1radfsQk6XbgYOA3kr7YNCKSNEbSEkmLJD1Sssh7JP1W0vOSvpVJ0WZmVWynD6aIuBz4K3Ay8LeSWdcDp0XEMOCskvbhwFhgKDBW0gEtrVfSeEm1kmob1zd0TvFmZlVopw+mNjwOTJF0GdC9pP3BiGiIiA3A08BBLS0cEZMjohARhe679+2Ccs3MqkPVBlMaSV0HHADUSeqXZm0s6dZI9VyHMzPLhar9pSvpkIiYB8yTdAbFgDIzs4xV7YgJ+LakeklLgCeARVkXZGZmVTJiioiaNDklvYiIj7fQ9e35qc+oTi3MzMy2UhXB1NmGDuxLbRV9XYiZWWeq5lN5ZmaWQw4mMzPLFQeTmZnlioPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYr/uaHMqhf2UDNxNlZl2Fm1qWWd9I33njEZGZmueJgMjOzXKnaYJJ0saRb0vTlki7MuiYzM6vSa0ySttjviLg9q1rMzGxLFR1Mkr4KfApYA/wFqAMagPHArsALwKcjYr2kKcAGYATwOLC4ZD2TgHUR8R1J/wu4Hdib4qPVx0TEn7pqn8zMql3FnsqTdCxwLjAMOAMopFn3RMSxETEMeAa4tGSx/YETIuLqNlZ9N3BrWv4EYFUr2x8vqVZSbeP6hh3cGzMza1LJI6YTgfsiYgOwQdKvUvtRkm4A9gR6A/eXLDMjIhpbW6GkPsDAiLgXIK27RRExGZgM0HPA4NihPTEzs7dV7IipDVOAL0TEUODrQK+Sef/IpCIzM+uwSg6mx4HRknpJ6g2MSu19gFWSegDjtmWFEfEGsELSOQCSekravZxFm5lZ2yo2mCJiPjCL4k0MvwHqKd748FVgHsXgenY7Vv1pYIKkxcATwH5lKdjMzDpEEZV7eURS74hYl0Y1jwDjI2JBV9dRKBSitra2qzdrZlbRJNVFRKF5eyXf/AAwWdKRFK8jTc0ilMzMrLwqOpgi4pNZ12BmZuVVsdeYzMxs5+RgMjOzXHEwmZlZrlT0XXl5IekNYFnWdWyH/sDarIvYDq67a7nurlUtda8FiIjTm8+o6JsfcmRZS7c85p2kWtfddVx313LdXaucdftUnpmZ5YqDyczMcsXBVB6Tsy5gO7nuruW6u5br7lplq9s3P5iZWa54xGRmZrniYDIzs1xxMO0ASadLWibpBUkTs66nNZIOkDRH0tOSlkq6MrVPkrRS0sL0+mjWtTYnabmk+lRfbWrbS9LvJD2ffr476zpLSTqs5JgulPR3SVfl9XhLulPSaklLStpaPMYq+kH6zC+WdHTO6v62pGdTbfdK2jO110h6s+TY356zulv9bEj6t3S8l0k6LZuqW617WknNyyUtTO07drwjwq/teAHdgT8BBwO7AouAI7Ouq5VaBwBHp+k+wHPAkcAk4Jqs62un9uVA/2Zt3wImpumJwDezrrOdz8nLwEF5Pd7AB4CjgSXtHWPgoxSffybgOGBezur+CLBLmv5mSd01pf1yeLxb/Gykf6eLgJ7AoPQ7p3te6m42/z+A68txvD1i2n7vA16IiD9HxD+BXwBnZ1xTiyJiVaRHgkTxKb3PAAOzrWqHnA1MTdNTgXMyrKU9pwB/ioiXsi6kNRHxCPBas+bWjvHZwM+i6A/AnpIGdE2lW2qp7oh4ICI2p7d/APbv8sLa0crxbs3ZwC8iYmNEvAi8QPF3T5drq25JAs4Hfl6ObTmYtt9A4C8l71dQAb/sJdUAIyg+5RfgC+m0x515OyWWBPCApDpJ41PbvhGxKk2/DOybTWkdcgFb/mPN+/Fu0toxrqTP/SUUR3dNBkl6StJcSe/Pqqg2tPTZqJTj/X7glYh4vqRtu4+3g6mKSOoN/BK4KiL+DtwGHAIMB1ZRHIrnzUkRcTRwBvB5SR8onRnF8wa5/JsHSbsCZwEzUlMlHO+t5PkYt0bStcBm4O7UtAo4MCJGAFcD/yXpXVnV14KK/GyU+ARb/gdsh463g2n7rQQOKHm/f2rLJUk9KIbS3RFxD0BEvBIRjRHxFnAHGZ0iaEtErEw/VwP3UqzxlabTR+nn6uwqbNMZwIKIeAUq43iXaO0Y5/5zL+liYBQwLoUq6VTYq2m6juK1mkMzK7KZNj4blXC8dwE+DkxratvR4+1g2n7zgcGSBqX/GV8AzMq4phal87//F3gmIm4uaS+9NvAxYEnzZbMkaQ9JfZqmKV7YXkLxOF+Uul0E3JdNhe3a4n+ReT/ezbR2jGcBF6a7844DGkpO+WVO0unAV4CzImJ9Sfvekrqn6YOBwcCfs6lya218NmYBF0jqKWkQxbr/2NX1teNU4NmIWNHUsMPHO4u7O3aWF8U7lJ6j+L+Ba7Oup406T6J4KmYxsDC9PgrcBdSn9lnAgKxrbVb3wRTvSFoELG06xkA/4EHgeeD3wF5Z19pC7XsArwJ9S9pyebwphucqYBPFaxiXtnaMKd6Nd2v6zNcDhZzV/QLFazJNn/PbU99z02doIbAAGJ2zulv9bADXpuO9DDgjT3Wn9inA5c367tDx9lcSmZlZrvhUnpmZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWK/8fnSxrKwF+wYgAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "thai_ingredient_df = create_ingredient_df(thai_df)\r\n", + "thai_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 11 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAdqUlEQVR4nO3de5xXdb3v8dcbREhBvICJeBkvKAocbmN57eb9btsLFpmkD3nUMT1mdg4dtWNnu/fW3NXOtHQ6JewyE1DTorwcNDVF5TfcBi9gKZ5AVLAaRcQQP+eP9Z36McwMg/5m1vrN7/18PObBWt91+X3WmoE337XWrK8iAjMzs6LolXcBZmZm5RxMZmZWKA4mMzMrFAeTmZkVioPJzMwKZau8C+gJBg0aFHV1dXmXYWZWNQYNGsR99913X0Qc13qZg6kC6urqKJVKeZdhZlZVJA1qq92X8szMrFAcTGZmVigOJjMzKxTfYzIz6wbr169n+fLlrFu3Lu9Sul2/fv3Ybbfd6NOnT6fWdzBVQNOKZuqmzMq7DHufll1zYt4lWA1Yvnw5AwYMoK6uDkl5l9NtIoLXX3+d5cuXs9dee3VqG1/KMzPrBuvWrWOnnXaqqVACkMROO+20RT3FmgomSb+RtH3edZhZbaq1UGqxpcddU5fyIuKEvGswM7OO9ahgkvQ14J2IuF7Sd4HREfEpSZ8CzgcOA+qB/sBvgd8DhwIrgFMj4m1J+wA3AoOBtcAFEfFcDodjZj1Ype9LV/peaf/+/VmzZk1F99lZPe1S3qPAEWm6HugvqU9qe6TVusOAGyNiBPBX4PTU3gBcFBHjgcuAH7T1QZImSypJKm1Y21zhwzAzq109LZgagfGStgPeAeaQBdQRZKFV7sWIWFC2XZ2k/mQ9qBmSFgA3A0Pa+qCIaIiI+oio773NwC44FDOzypkyZQo33njj3+evuuoqrr76ao488kjGjRvHqFGjuPvuuzfZ7ne/+x0nnXTS3+e//OUvM3XqVAAaGxv5+Mc/zvjx4zn22GNZuXJlRWrtUcEUEeuBF4FJwONkYfRJYF/g2Varv1M2vYHssmYv4K8RMabs64AuL9zMrItNmDCB6dOn/31++vTpnHvuudx1113MmzePhx56iK9+9atERKf2t379ei666CJmzpxJY2Mj5513HpdffnlFau1R95iSR8kuwZ0HNAHfARojIjb3ZEhEvCHpRUlnRsQMZRv8l4hY2OVVm5l1obFjx/Laa6/x8ssvs2rVKnbYYQd22WUXvvKVr/DII4/Qq1cvVqxYwauvvsouu+yy2f0tWbKExYsXc/TRRwOwYcMGhgxp8wLTFuupwXQ5MCci3pK0jk0v43VkIvBDSVcAfYBfAA4mM6t6Z555JjNnzuSVV15hwoQJ3HrrraxatYrGxkb69OlDXV3dJr9vtNVWW/Hee+/9fb5leUQwYsQI5syZU/E6e1wwRcRsskBpmd+vbLouTa4GRpa1/3vZ9IvAJuODmJlVuwkTJnDBBRewevVqHn74YaZPn87OO+9Mnz59eOihh3jppZc22WbPPffkmWee4Z133uHtt99m9uzZHH744ey///6sWrWKOXPmcMghh7B+/XqWLl3KiBEjPnCdPS6Y8jBq6EBKfq2NmW2BPF6FNWLECN58802GDh3KkCFDmDhxIieffDKjRo2ivr6e4cOHb7LN7rvvzllnncXIkSPZa6+9GDt2LABbb701M2fO5OKLL6a5uZl3332XSy65pCLBpM7e6LL21dfXhwcKNLOOPPvssxxwQO0+S9XW8UtqjIj61uv2qKfyzMys+jmYzMysUBxMZmbdpFZvnWzpcTuYzMy6Qb9+/Xj99ddrLpxaxmPq169fp7fxU3lmZt1gt912Y/ny5axatSrvUrpdywi2neVgMjPrBn369On0CK61zpfyzMysUBxMZmZWKA4mMzMrFN9jqoCmFc0VH43SiiuPV8mY1RL3mMzMrFBqNpgkTZJ0Q5r+oqTP512TmZnV6KU8SRsdd0TclFctZma2saoOJklXAp8DVgF/AhqBZmAysDXwB+CciFgraSqwDhgLPAYsKtvPVcCaiPh3SfsCNwGDyYZcPzMi/thdx2RmVuuq9lKepIOA04HRwPFAy6vT74yIgyJiNPAscH7ZZrsBh0bEpR3s+lbgxrT9ocDKdj5/sqSSpNKGtc0f8GjMzKxFNfeYDgPujoh1wDpJv0rtIyVdDWwP9AfuK9tmRkRsaG+HkgYAQyPiLoC07zZFRAPQANB3yLDaevmVmVkXqtoeUwemAl+OiFHAN4HyNwe+lUtFZmbWadUcTI8BJ0vqJ6k/cFJqHwCslNQHmLglO4yIN4Hlkk4DkNRX0jaVLNrMzDpWtcEUEXOBe8geYvgt0ET24MOVwJNkwfXc+9j1OcDFkhYBjwO7VKRgMzPrFFXz2CCS+kfEmtSreQSYHBHzuruO+vr6KJVK3f2xZmZVTVJjRNS3bq/mhx8AGiQdSHYfaVoeoWRmZpVV1cEUEZ/NuwYzM6usqr3HZGZmPZODyczMCsXBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrlKr+BduiaFrRTN2UWXmXYVVo2TUn5l2CWeG4x2RmZoXiYDIzs0Kp+mCS9L8lHZV3HWZmVhlVf48pIr7R1Z8hqXdHQ7KbmVnlVFWPSdKVkpZI+r2k2yRdJmmqpDPS8mWSvilpnqQmScNT+2BJD0h6WtL/kfSSpEFp2eckPSVpgaSbJfVO7WskfVvSQuCQ3A7azKzGVE0wSToIOB0YDRwPbDK4VLI6IsYBPwQuS23/C3gwIkYAM4E90j4PACYAh0XEGGAD/xiOfVvgyYgYHRG/b6OeyZJKkkob1jZX5BjNzKy6LuUdBtwdEeuAdZJ+1c56d6Y/G4F/StOHA58GiIh7Jf0ltR8JjAfmSgL4EPBaWrYBuKO9YiKiAWgA6DtkWPUOA2xmVjDVFEyd9U76cwObPz6RjXz79TaWrfN9JTOz7lc1l/KAx4CTJfWT1B84aQu3PQtA0jHADql9NnCGpJ3Tsh0l7VnBms3MbAtVTY8pIuZKugdYBLwKNAGdvbnzTeA2SecAc4BXgDcjYrWkK4D7JfUC1gMXAi9V/ADMzKxTFFE9t0ck9Y+INZK2AR4BJkfEvE5s1xfYEBHvSjoE+GF62KEi6uvro1QqVWp3ZmY1QVJjRGzyIFvV9JiSBkkHAv3I7g1tNpSSPYDpqVf0N+CCrirQzMw+mKoKpoj47Pvc7nlgbIXLMTOzLlBNDz+YmVkNcDCZmVmhOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoVSVb9gW1RNK5qpmzIr7zKsB1l2zYl5l2CWG/eYzMysUHpcMEmqk7Q4TX9C0q/T9CmSpuRbnZmZbU7NXMqLiHuAe/Kuw8zMOla4HpOkbSXNkrRQ0mJJEyQdJOnx1PaUpAGpZ/SopHnp69DN7HeSpBvSdJ2kByUtkjRb0h6pfaqk69NnvSDpjO44ZjMz+4ci9piOA16OiBMBJA0E5gMT0mCB2wFvA68BR0fEOknDgNuATcb1aMf3yYbNmCbpPOB64LS0bAhwODCcrIc1s60dSJoMTAbovd3gLT9KMzNrU+F6TGQj0x4t6VpJR5CNpbQyIuYCRMQbEfEu0Af4kaQmYAZw4BZ8xiHAz9P0T8mCqMUvI+K9iHgG+HB7O4iIhoioj4j63tsM3IKPNjOzjhSuxxQRSyWNA04ArgYebGfVr5ANsT6aLGDXVaiEd8qmVaF9mplZJxWuxyRpV2BtRPwMuA74KDBE0kFp+QBJWwEDyXpS7wHnAL234GMeB85O0xOBRytVv5mZfTCF6zEBo4DrJL0HrAe+RNZz+b6kD5HdXzoK+AFwh6TPA/cCb23BZ1wE3CLpa8Aq4AsVrN/MzD4ARUTeNVS9vkOGxZBz/yPvMqwH8ZsfrBZIaoyITR5aK2KPqeqMGjqQkv8hMTOriMLdYzIzs9rmYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxQHk5mZFYqDyczMCsXBZGZmheJgMjOzQvEriSqgaUUzdVNm5V2G9XB+f57VCveYzMysUBxMZmZWKA4mMzMrlB4fTJI+J+kpSQsk3Sypt6TzJS1N7T+SdENadx9JT0hqknS1pDV5129mVmt6dDBJOgCYABwWEWOADWRDqV8JHAwcBgwv2+R7wPciYhSwfDP7niypJKm0YW1zl9RvZlaLenQwAUcC44G5khak+UuBhyPizxGxHphRtv4hZfM/72jHEdEQEfURUd97m4FdULqZWW3q6cEkYFpEjElf+wNX5VyTmZl1oKcH02zgDEk7A0jaEZgPfFzSDpK2Ak4vW/+Jsvmzu7VSMzMDengwRcQzwBXA/ZIWAQ8AQ4B/BZ4CHgOWAS03iS4BLk3r7lvWbmZm3aTHv/khIm4Hbi9vk7Q4IhpSj+ku4Jdp0Qrg4IgISWcD+3dvtWZm1uODqR1XSToK6Afczz+CaTxwgyQBfwXO68zORg0dSMmvizEzq4iaDKaIuKyd9keB0d1cjpmZlenR95jMzKz6OJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaHU5JsfKq1pRTN1U2blXYbViGV+/ZX1cO4xmZlZodRsMEn6naT6vOswM7ON1WwwmZlZMfWoYJK0raRZkhZKWixpgqRvSJqb5hvSkBbl2/SSNFXS1Wn+GElzJM2TNENS/3yOxsysNvWoYAKOA16OiNERMRK4F7ghIg5K8x8CTipbfyvgVuD5iLhC0iCyEW+PiohxQAm4tK0PkjRZUklSacNaD3RrZlYpPS2YmoCjJV0r6YiIaAY+KelJSU3Ap4ARZevfDCyOiH9J8wcDBwKPSVoAnAvs2dYHRURDRNRHRH3vbQZ22QGZmdWaHvW4eEQslTQOOAG4WtJs4EKgPiL+JOkqslFrWzxOFlzfjoh1gIAHIuIz3V27mZllelSPSdKuwNqI+BlwHTAuLVqd7hWd0WqTHwO/AaZL2gp4AjhM0r5pf9tK2q97qjczM+hhPSZgFHCdpPeA9cCXgNOAxcArwNzWG0TEdyQNBH4KTAQmAbdJ6ptWuQJY2vWlm5kZgCIi7xqqXn19fZRKpbzLMDOrKpIaI2KT3yftUZfyzMys+jmYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKxcFkZmaF4mAyM7NCcTCZmVmhOJjMzKxQetq78nLRtKKZuimz8i7DrBCWXXNi3iVYlXOPyczMCsXBZGZmhZJrMEk6TdKBnVhvqqTWYykh6ROSfl3BeuolXZ+mJ0m6oVL7NjOzzsm7x3Qa2VDmhRARpYi4OO86zMxqWYfBJOkaSReWzV8l6TJJX5M0V9IiSd8sW36lpCWSfi/pNkmXpfZ9JN0rqVHSo5KGSzoUOIVsYL8FaZ0L0n4XSrpD0jZl5RwlqSRpqaST2qh1W0k/kfSUpPmSTu3guPpJukVSU1r3k6m9oj0wMzPbcpvrMd0OnFU2fxawChgGfAQYA4yX9DFJBwGnA6OB44HywZ8agIsiYjxwGfCDiHgcuAf4WkSMiYg/AndGxEERMRp4Fji/bB916TNPBG6S1K9VrZcDD0bER4BPkgXetu0c14VARMQo4DPAtDb21yFJk1NQljasbd6STc3MrAMdPi4eEfMl7SxpV2Aw8Bey4cuPAean1fqTBdUA4O6IWAesk/QrAEn9gUOBGZJadt2Xto2UdDWwfdrvfWXLpkfEe8Dzkl4Ahrfa9hjglJZeGtAP2IMs4Fo7HPh+OsbnJL0E7NfRuWgtIhrIApe+Q4Z5GGAzswrpzO8xzQDOAHYh60HtCfxbRNxcvpKkS9rZvhfw14gY04nPmgqcFhELJU0CPlG2rPU//q3nBZweEUs68TlmZlZQnXn44XbgbLJwmkHWizkv9YSQNFTSzsBjwMnp/k1/4CSAiHgDeFHSmWl9SRqd9v0mWU+rxQBgpaQ+wMRWdZwpqZekfYC9gdYBdB9wkVK3TNLYDo7p0Zb9S9qPrGflQDMzK4DNBlNEPE0WGCsiYmVE3A/8HJgjqQmYCQyIiLlk94wWAb8FmoCWmy8TgfMlLQSeBloeTPgF8LX0AMI+wJXAk2Qh91yrUv4f8FTa9xfTJcNy/wz0ARZJejrNt+cHQK9U/+3ApIh4Z3PnwszMup4iKnd7RFL/iFiTnqZ7BJgcEfMq9gEFVV9fH6VSKe8yzMyqiqTGiKhv3V7pd+U1pF+Y7QdMq4VQMjOzyqpoMEXEZyu5vw9K0rHAta2aX4yIT+dRj5mZbV6Pfrt4RNzHxo+cm5lZweX9SiIzM7ONOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXSo3+Pqbs0rWimbsqsvMswqyrLrjkx7xKsoNxjMjOzQqmKYJK0q6SZeddhZmZdryqCKSJejogz8vhsSb7caWbWjQoXTJKukXRh2fxVki6TtDjNT5J0p6R7JT0v6Vtl6x4jaY6keZJmlA1meIKk5yQ1Srpe0q9T+0fS+vMlPS5p/7LPuEfSg8Dsbj0BZmY1rnDBRDZw31ll82eRDR5YbgwwARgFTJC0u6RBwBXAURExDigBl0rqB9wMHB8R44HBZft5DjgiIsYC3wD+tWzZOOCMiPh4W0VKmiypJKm0YW1zW6uYmdn7ULjLVBExX9LOknYlC5G/AH9qtdrsiGgGkPQMsCewPXAg8FgaXX1rYA4wHHghIl5M294GTE7TA4FpkoYBQTYCbosHIuLPHdTZADQA9B0yrHKjLZqZ1bjCBVMyAzgD2IWsB9Va+TDoG8iOQ2Rh8pnyFSWN6eBz/hl4KCI+LakO+F3Zsre2uGozM/vAingpD7IwOpssnGZ0cpsngMMk7QsgaVtJ+wFLgL1T8EB2CbDFQGBFmp70wUo2M7NKKGQwRcTTwABgRUSs7OQ2q8jC5TZJi0iX8SLibeC/AvdKagTeBFpuCn0L+DdJ8ylu79HMrKYoouffHpHUPyLWKLv5dCPwfER8t1L77ztkWAw59z8qtTuzmuA3P5ikxoiob91eK72ECySdS/ZAxHyyp/QqZtTQgZT8l8zMrCJqIphS76hiPSQzM+s6hbzHZGZmtcvBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKpSbe/NDVmlY0UzdlVt5lmFkX8Dv9up97TGZmVig1F0ySfiNp+7zrMDOzttXUpbw07MVJEfFe3rWYmVnbenyPSVKdpCWS/hNYDGyQNCgt+7ykRZIWSvppahss6Q5Jc9PXYXnWb2ZWa2qlxzQMODcinpC0DEDSCOAK4NCIWC1px7Tu94DvRsTvJe0B3Acc0HqHkiYDkwF6bze4Gw7BzKw21EowvRQRT7Rq+xQwIyJWA0TEn1P7UcCB2VU/ALZrGQG3fOOIaAAaIBvBtssqNzOrMbUSTG9twbq9gIMjYl1XFWNmZu3r8feYOvAgcKaknQDKLuXdD1zUspKkMTnUZmZWs2o2mCLiaeBfgIclLQS+kxZdDNSnhyKeAb6YV41mZrWox1/Ki4hlwMiy+bqy6WnAtFbrrwYmdFN5ZmbWSo8Ppu4wauhASn5tiZlZRdTspTwzMysmB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxS/+aECmlY0UzdlVt5lmJl1q2Vd9MYb95jMzKxQHExmZlYoDiYzMysUB5OZmRVKlwaTpG0lzZK0UNJiSRMkHSlpvqQmST+R1FfSpyT9smy7oyXd1c4+e0uamvbXJOkrqf0CSXPTZ90haZvUPlXSGWXbrymb/h9pHwslXZPa9pF0r6RGSY9KGt5V58fMzDbV1T2m44CXI2J0RIwE7gWmAhMiYhTZU4FfAh4ChksanLb7AvCTdvY5BhgaESPTPm5J7XdGxEERMRp4Fji/o8IkHQ+cCnw0bfOttKgBuCgixgOXAT9oZ/vJkkqSShvWNnd8FszMrNO6OpiagKMlXSvpCKAOeDEilqbl04CPRUQAPwU+J2l74BDgt+3s8wVgb0nfl3Qc8EZqH5l6OE3ARGDEZmo7CrglItYCRMSfJfUHDgVmSFoA3AwMaWvjiGiIiPqIqO+9zcDNnQczM+ukLv09pohYKmkccAJwNfBgB6vfAvwKWAfMiIh329nnXySNBo4FvgicBZxH1hM7LSIWSpoEfCJt8i4pgCX1ArbuoIZewF8jYkxnjs/MzCqvq+8x7QqsjYifAdeR9YTqJO2bVjkHeBggIl4GXgau4B+X59ra5yCgV0TckdYdlxYNAFZK6kPWY2qxDBifpk8B+qTpB4AvlN2L2jEi3gBelHRmalMKQTMz6yZd/eaHUcB1kt4D1pPdTxpIdqlsK2AucFPZ+rcCgyPi2Q72ORS4JfV+AL6e/rwSeBJYlf4ckNp/BNwtaSHZPa63ACLiXkljgJKkvwG/Af4nWaj9UNIVZCH2C2Dh+zx+MzPbQspu7xSDpBuA+RHx47xr2RL19fVRKpXyLsPMrKpIaoyI+tbthXlXnqRGst7MV/OuxczM8lOYYEqPZ29E0pNA31bN50REU/dUZWZm3a0wwdSWiPho3jWYmVn38iuJzMysUBxMZmZWKIV6Kq9aSXoTWJJ3HZ00CFiddxFbwPV2LdfbdaqpVuj+elcDRMRxrRcU+h5TFVnS1iOPRSSpVC21guvtaq6361RTrVCsen0pz8zMCsXBZGZmheJgqoyGvAvYAtVUK7jeruZ6u0411QoFqtcPP5iZWaG4x2RmZoXiYDIzs0JxMH0Ako6TtETSHyRNybue1iTtLukhSc9IelrSf0vtV0laIWlB+joh71pbSFomqSnVVUptO0p6QNLz6c8d8q4TQNL+ZedwgaQ3JF1SpPMr6SeSXpO0uKytzfOZxh+7Pv08L0qDfOZd63WSnkv13JVGuEZSnaS3y87xTe3vuVvrbfd7L+nr6dwukXRsQeq9vazWZWnk7vzPb0T46318Ab2BPwJ7k42KuxA4MO+6WtU4BBiXpgcAS4EDgauAy/Kur52alwGDWrV9C5iSpqcA1+ZdZzs/D68Aexbp/AIfIxtMc/HmzifZSNO/BQQcDDxZgFqPAbZK09eW1VpXvl6Bzm2b3/v0924h2Uup90r/dvTOu95Wy78NfKMI59c9pvfvI8AfIuKFiPgb2YCCp+Zc00YiYmVEzEvTbwLPkg20WG1OBaal6WnAaTnW0p4jgT9GxEt5F1IuIh4B/tyqub3zeSrwn5F5Athe0pDuqbTtWiPi/oh4N80+AezWXfVsTjvntj2nAr+IiHci4kXgD2T/hnSbjuqVJOAs4LburKk9Dqb3byjwp7L55RT4H31JdcBYstF9Ab6cLo/8pCiXxpIA7pfUKGlyavtwRKxM068AH86ntA6dzcZ/qYt6fqH981n0n+nzyHp0LfaSNF/Sw5KOyKuoNrT1vS/6uT0CeDUini9ry+38OphqgKT+wB3AJRHxBvBDYB9gDLCSrAtfFIdHxDjgeOBCSR8rXxjZdYZC/Y6DpK2BU4AZqanI53cjRTyfbZF0OfAucGtqWgnsERFjgUuBn0vaLq/6ylTN976Vz7Dxf6xyPb8OpvdvBbB72fxuqa1QJPUhC6VbI+JOgIh4NSI2RMR7wI/o5ksKHYmIFenP14C7yGp7teWSUvrztfwqbNPxwLyIeBWKfX6T9s5nIX+mJU0CTgImpiAlXRJ7PU03kt2z2S+3IpMOvveFPLcAkrYC/gm4vaUt7/PrYHr/5gLDJO2V/sd8NnBPzjVtJF03/jHwbER8p6y9/L7Bp4HFrbfNg6RtJQ1omSa78b2Y7Lyem1Y7F7g7nwrbtdH/Not6fsu0dz7vAT6fns47GGguu+SXC0nHAf8dOCUi1pa1D5bUO03vDQwDXsinyn/o4Ht/D3C2pL6S9iKr96nurq8dRwHPRcTylobcz29eT130hC+yp5iWkv1v4vK862mjvsPJLtMsAhakrxOAnwJNqf0eYEjetaZ69yZ7cmkh8HTLOQV2AmYDzwP/F9gx71rLat4WeB0YWNZWmPNLFpgrgfVk9zXOb+98kj2Nd2P6eW4C6gtQ6x/I7s20/PzelNY9Pf2MLADmAScX5Ny2+70HLk/ndglwfBHqTe1TgS+2WjfX8+tXEpmZWaH4Up6ZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVij/H6ovFeU7ywQTAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "japanese_ingredient_df = create_ingredient_df(japanese_df)\r\n", + "japanese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfeElEQVR4nO3deZwV1Z338c8XbCEKYlSMiEurISECsl1NULO5xD2aCYgT4hLzkkcn4pgEnyGPJoMTM+OSbTRGJRmFUUcF1GjCqHGUuBL1NggNKmgiPmGJ4tZiEILwmz/qtN603U033O5bl/6+X69+dd1Tp079Thfxl3Oqbh1FBGZmZnnRrdIBmJmZlXJiMjOzXHFiMjOzXHFiMjOzXHFiMjOzXNmm0gFsDXbZZZeora2tdBhmZlWlrq7u1Yjo27TciakMamtrKRaLlQ7DzKyqSHqpuXJP5ZmZWa44MZmZWa44MZmZWa74HpOZWSdYv349y5YtY+3atZUOpdP17NmTPfbYg5qamjbVd2Iqg/rlDdROmlXpMKyDLb30uEqHYFVs2bJl9O7dm9raWiRVOpxOExG89tprLFu2jH322adNx3gqz8ysE6xdu5add965SyUlAEnsvPPO7RopOjGZmXWSrpaUGrW3305MZmaWK7m4xyTpNGAiEMACYDpwEbAt8BowDlgFLAYOjohVkroBS4BRqZlrgb3S9vkR8Zikyals3/T7pxFxpaRa4B7gUeBgYDlwYkS8I2k/4GqgL7AGOCsinuu43ptZV1Tu+9Llvgfaq1cv3n777bK22VYVHzFJGkSWhA6LiKHAP5IljE9FxHDgVuD/RsRG4CayJAVwBDA/IlYB/w78JCIOBL4M/LLkFAOBo4CDgH+W1PhYyADg6ogYBLyZjgOYAkyIiJFkyfLnLcQ9XlJRUnHDmoYt/juYmVmm4okJOAyYERGvAkTE68AewH2S6oELgEGp7vXAaWn7TOCGtH0E8DNJTwN3AztI6pX2zYqIdan9V4CPpPIXI+LptF0H1KZjDgZmpLauA/o1F3RETImIQkQUum/XZwv/BGZmHWvSpElcffXV732ePHkyl1xyCYcffjgjRoxgyJAh3HXXXR847ne/+x3HH3/8e5/PPfdcpk6dCkBdXR2f/exnGTlyJEcddRQrV64sS6x5SEzNuQr4WUQMAf4P0BMgIv4EvCzpMLIR0D2pfjeyEdaw9NM/IhrHoOtK2t3A+9OXzZV3A94saWdYRHyiIzpoZtaZxo4dy/Tp09/7PH36dE4//XTuvPNO5s6dy+zZs/n2t79NRLSpvfXr1zNhwgRmzpxJXV0dZ555JhdeeGFZYs3DPaYHgTsl/TgiXpO0E9CH7L4PwOlN6v+SbErvxojYkMp+C0wArgCQNKxkNNRmEfGWpBcljYmIGcoeJTkgIuZvRr/MzHJj+PDhvPLKK6xYsYJVq1bx4Q9/mN12241vfvObPPzww3Tr1o3ly5fz8ssvs9tuu22yvcWLF7Nw4UKOPPJIADZs2EC/fs1OMLVbxRNTRCyS9APgIUkbgHnAZLLptDfIElfpt7LuJpvCu6Gk7DzgakkLyPr0MHD2ZoY0DrhG0kVADdk9LicmM6t6Y8aMYebMmfz5z39m7Nix3HzzzaxatYq6ujpqamqora39wPeNttlmGzZu3Pje58b9EcGgQYOYM2dO2eOseGICiIhpwLQmxR+c7MwMJXvo4b0n5dL9o7HNtDu5yefBJR8Hl5T/sGT7ReDotsZuZlYtxo4dy1lnncWrr77KQw89xPTp09l1112pqalh9uzZvPTSB1eh2HvvvXnmmWdYt24d77zzDg888ACHHnooH//4x1m1ahVz5sxh1KhRrF+/niVLljBo0KBmztw+uUhMbSVpEnAO7z+ZlwtD+veh6NfVmFk7VOIVV4MGDWL16tX079+ffv36MW7cOE444QSGDBlCoVBg4MCBHzhmzz335OSTT2bw4MHss88+DB8+HIBtt92WmTNnct5559HQ0MC7777L+eefX5bEpLbe6LKWFQqF8EKBZtaaZ599lk98ous+S9Vc/yXVRUShad28PpVnZmZdlBOTmZnlihOTmVkn6aq3TtrbbycmM7NO0LNnT1577bUul5wa12Pq2bNnm4+pqqfyzMyq1R577MGyZctYtWpVpUPpdI0r2LaVE5OZWSeoqalp8wquXZ2n8szMLFecmMzMLFecmMzMLFd8j6kM6pc3lH01SsuvSrxKxqwr8YjJzMxypcslJkn/LWnHSsdhZmbN61JTeWnhv+MjYuMmK5uZWUVs9SMmSbWSFkv6T2AhsEHSLmnfaZIWSJov6cZU1lfS7ZKeSj+HVDJ+M7OupquMmAYAp0fE7yUtBZA0CLgIODgiXk1LugP8O/CTiHhU0l7AfcAH3lUvaTwwHqD7Dn07oQtmZl1DV0lML0XE75uUHQbMSKvfEhGvp/IjgP2zWT8AdpDUKyLeLj04IqYAUwB69BvQtV5+ZWbWgbpKYvpLO+p2Az4VEWs3WdPMzMpuq7/H1IoHgTGSdgYomcr7LTChsZKkYRWIzcysy+qyiSkiFgE/AB6SNB/4cdp1HlBID0U8A5xdqRjNzLoidbW1QTpCoVCIYrFY6TDMzKqKpLqIKDQt77IjJjMzyycnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzy5Wu8nbxDlW/vIHaSbMqHYblxNJLj6t0CGZVzSMmMzPLFScmMzPLlapITJJ2lzSz0nGYmVnHq4rEFBErImJ0Jc4tyffhzMw6Ue4Sk6RLJX2j5PNkSRMlLUyfz5B0h6R7JT0v6fKSul+QNEfSXEkzJPVK5cdKek5SnaQrJf0mlR+U6s+T9Likj5ec425JDwIPdOofwMysi8tdYgJuA04u+Xwy8ESTOsOAscAQYKykPSXtAlwEHBERI4Ai8C1JPYHrgGMiYiTQt6Sd54BPR8Rw4HvAv5bsGwGMjojPNhekpPGSipKKG9Y0bG5fzcysidxNU0XEPEm7StqdLIm8AfypSbUHIqIBIC1/vjewI7A/8JgkgG2BOcBA4I8R8WI69hZgfNruA0yTNAAIoKbkHPdHxOutxDkFmALQo98ALwNsZlYmuUtMyQxgNLAb2QiqqXUl2xvI+iGyZPL3pRUlDWvlPN8HZkfElyTVAr8r2feXdkdtZmZbLI9TeZAlo1PIktOMNh7ze+AQSR8FkLS9pI8Bi4F9U+KBbAqwUR9gedo+Y8tCNjOzcshlYoqIRUBvYHlErGzjMavIksstkhaQpvEi4h3gH4B7JdUBq4HGm0KXA/8maR75HT2amXUpitj6b49I6hURbyu7+XQ18HxE/KRc7RcKhSgWi+VqzsysS5BUFxGFpuW5HDF1gLMkPQ0sIpu+u67C8ZiZWQu6xPRVGh2VbYRkZmYdp6uMmMzMrEo4MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa50iS/YdrT65Q3UTppV6TDM2mTppcdVOgSzVnnEZGZmuVL1iUnS+ZK2K1Nbn2tcdt3MzCqj6hMTcD7QrsQkqXsHxWJmZluoqhJTWvxvlqT5khZK+mdgd2C2pNmpzjWSipIWSbq45Nilki6TNBcYI+mjkv4ntTVX0n6pai9JMyU9J+nmtFSGmZl1kmp7+OFoYEVEHAcgqQ/wNeDzEfFqqnNhRLyeRkUPSDogIhakfa9FxIh07BPApRFxp6SeZEl6T2A4MAhYATwGHAI82jQQSeOB8QDdd+jbMb01M+uCqmrEBNQDR6aRz6cjoqGZOienUdE8sgSzf8m+2wAk9Qb6R8SdABGxNiLWpDpPRsSyiNgIPA3UNhdIREyJiEJEFLpv16csnTMzsyobMUXEEkkjgGOBSyQ9ULpf0j7ARODAiHhD0lSgZ0mVv7ThNOtKtjdQZX8jM7NqV1UjJkm7A2si4ibgCmAEsBronarsQJZ8GiR9BDimuXYiYjWwTNJJqd0e5Xqyz8zMtky1jQaGAFdI2gisB84BRgH3SloREZ+XNA94DvgT2T2ilpwKXCfpX1JbYzo2dDMzawtFRKVjqHo9+g2Ifqf/tNJhmLWJ3/xgeSGpLiIKTcurbcSUS0P696Ho/7GbmZVFVd1jMjOzrZ8Tk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YpfSVQG9csbqJ00q9JhmLWL35lneeURk5mZ5YoTk5mZ5UpFE5OkkyTt34Z6UyWNbqb8c5J+U8Z4CpKuTNtnSPpZudo2M7O2qfSI6SRgk4mps0REMSLOq3QcZmZdWauJSdKlkr5R8nmypImSLpD0lKQFki4u2f9dSYslPSrpFkkTU/l+ku6VVCfpEUkDJR0MfJFsRdqnU52zUrvzJd3eZLnzIyQVJS2RdHwzsW4v6XpJT0qaJ+nEVvrVU9INkupT3c+n8jaPwCSNT/EUN6xpaMshZmbWBpsaMd0GnFzy+WRgFTAAOAgYBoyU9BlJBwJfBoYCxwClqxJOASZExEhgIvDziHgcuBu4ICKGRcQfgDsi4sCIGAo8C3y9pI3adM7jgGsl9WwS64XAgxFxEPB5soS3fQv9+gYQETEE+HtgWjPttSoipkREISIK3bfr055DzcysFa0+Lh4R8yTtKml3oC/wBjAE+AIwL1XrRZaoegN3RcRaYK2kXwNI6gUcDMyQ1Nh0jxZOOVjSJcCOqd37SvZNj4iNwPOS/ggMbHLsF4AvNo7SgJ7AXmQJrqlDgatSH5+T9BLwsdb+FmZm1jna8j2mGcBoYDeyEdTewL9FxHWllSSd38Lx3YA3I2JYG841FTgpIuZLOgP4XMm+aFK36WcBX46IxW04j5mZ5VRbHn64DTiFLDnNIBvFnJlGQkjqL2lX4DHghHT/phdwPEBEvAW8KGlMqi9JQ1Pbq8lGWo16Aysl1QDjmsQxRlI3SfsB+wJNE9B9wASlYZmk4a306ZHG9iV9jGxk5YRmZpYDm0xMEbGILGEsj4iVEfFb4L+AOZLqgZlA74h4iuye0QLgHqAeaHwqYBzwdUnzgUVA44MJtwIXpAcQ9gO+CzxBluSeaxLK/weeTG2fnaYMS30fqAEWSFqUPrfk50C3FP9twBkRsW5TfwszM+t4img6I7YFjUm9IuLt9DTdw8D4iJhbthPkVKFQiGKxWOkwzMyqiqS6iCg0LS/3u/KmpC/M9gSmdYWkZGZm5VXWxBQRXylne1tK0lHAZU2KX4yIL1UiHjMz27St+u3iEXEff/vIuZmZ5VylX0lkZmb2N5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV7bq7zF1lvrlDdROmlXpMMw6xNJLj6t0CNbFeMRkZma54sRkZma54sTUhKSzJZ2WtqdKGl3pmMzMuhLfY2oiIq6tdAxmZl1ZWUdMkraXNEvSfEkLJY2VNFLSQ5LqJN0nqV+qe56kZyQtkHRrKjtI0py0cODjkj6eys+Q9CtJ90taKulcSd9K9X4vaadUbz9J96ZzPSJpYCux1kp6MJ3/AUl7pfLJkia2oa/jJRUlFTesadhUdTMza6NyT+UdDayIiKERMRi4F7gKGB0RI4HrgR+kupOA4RFxAHB2KnsO+HREDAe+B/xrSduDgb8DDkxtrEn15gCnpTpTgAnpXBPJVqptyVVka0YdANwMXNmejkbElIgoRESh+3Z92nOomZm1otxTefXAjyRdBvwGeIMsodwvCaA7sDLVXQDcLOlXwK9SWR9gmqQBQJAtld5odkSsBlZLagB+XXLOAyT1Ag4GZqRzAfRoJdZRZIkO4Ebg8vZ318zMyq3cCwUukTQCOBa4BHgQWBQRo5qpfhzwGeAE4EJJQ4DvkyWgL0mqBX5XUn9dyfbGks8byfrRDXgzIoaVrUNmZtbpyn2PaXeyKbabgCuATwJ9JY1K+2skDZLUDdgzImYD/0Q2UuqVfi9PzZ3RnnNHxFvAi5LGpHNJ0tBWDnkcOCVtjwMeac/5zMysY5R7Km8IcIWkjcB64BzgXeBKSX3S+X4KLAFuSmUCroyINyVdTjaVdxGwOa9SGAdck46vAW4F5rdQdwJwg6QLgFXA1zbjfAAM6d+Hor8db2ZWFoqISsdQ9QqFQhSLxUqHYWZWVSTVRUShabm/YGtmZrmy1X/BVtKFwJgmxTMi4gfN1Tczs8ra6hNTSkBOQmZmVcJTeWZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitb/ePinaF+eQO1kzbnDUpmtqWW+nVgWx2PmMzMLFecmMzMLFe2usSUlkxfmLY/J+k3afuLkiZVNjozM9uULnOPKSLuBu6udBxmZta63I2YJG0vaZak+ZIWShor6UBJj6eyJyX1TiOjRyTNTT8Hb6LdMyT9LG3XSnpQ0gJJD0jaK5VPlXRlOtcfJY3ujD6bmdn78jhiOhpYERHHAaTFBOcBYyPiKUk7AO8ArwBHRsRaSQOAW4APrOvRgquAaRExTdKZwJXASWlfP+BQYCDZCGtmcw1IGg+MB+i+Q9/299LMzJqVuxETUA8cKekySZ8G9gJWRsRTkC2hHhHvkq1Q+wtJ9cAMYP92nGMU8F9p+0ayRNToVxGxMSKeAT7SUgMRMSUiChFR6L5dn3ac2szMWpO7EVNELJE0AjgWuAR4sIWq3wReBoaSJdi1ZQphXcm2ytSmmZm1Ue5GTJJ2B9ZExE3AFcAngX6SDkz7e0vaBuhDNpLaCJwKdG/HaR4HTknb44BHyhW/mZltmdyNmIAhwBWSNgLrgXPIRi5XSfoQ2f2lI4CfA7dLOg24F/hLO84xAbhB0gXAKuBrZYzfzMy2gCKi0jFUvUKhEMVisdJhmJlVFUl1EfGBh9ZyN5VnZmZdmxOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlSh7flVd16pc3UDtpVqXDMLMyWnrpcZUOocvyiMnMzHKlyyamJkutn53eUm5mZhXWJafy0npO74mIaysVi5mZ/a2qTkySvgt8lWxNpT8BdUADMB7YFngBODUi1kiaSrbK7XDgMWBBSTuTgbcj4oeSPgpcC/QFNgBjIuIPndUnM7Ourmqn8tKKtl8mW1r9GKBxTY87IuLAiBgKPAt8veSwPYCDI+JbrTR9M3B1Ov5gYGUL5x8vqSipuGFNwxb2xszMGlXziOkQ4K6IWAuslfTrVD5Y0iXAjkAv4L6SY2ZExIaWGpTUG+gfEXcCpLabFRFTgCkAPfoN8GqLZmZlUrUjplZMBc6NiCHAxUDPkn3tWX7dzMwqoJoT02PACZJ6SuoFHJ/KewMrJdUA49rTYESsBpZJOglAUg9J25UzaDMza13VJqaIeAq4m+whhnuAerIHH74LPEGWuJ7bjKZPBc6TtAB4HNitLAGbmVmbKKJ6b49I6hURb6dRzcPA+IiY29lx9Og3IPqd/tPOPq2ZdSC/+aHjSaqLiELT8mp++AFgiqT9ye4jTatEUgIY0r8PRf8jNjMri6pOTBHxlUrHYGZm5VW195jMzGzr5MRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma5UtVvfsiL+uUN1E6aVekwzKwD+J15nc8jJjMzy5WqT0yS/kXSEZWOw8zMyqPqp/Ii4nsdfQ5J3Vtbkt3MzMqnqkZMkr4rabGkRyXdImmipKmSRqf9SyVdLGmupHpJA1N5X0n3S1ok6ZeSXpK0S9r3VUlPSnpa0nWSuqfytyX9SNJ8YFTFOm1m1sVUTWKSdCDwZWAocAzwgcWlklcjYgRwDTAxlf0z8GBEDAJmAnulNj8BjAUOiYhhwAbeX459e+CJiBgaEY82E894SUVJxQ1rGsrSRzMzq66pvEOAuyJiLbBW0q9bqHdH+l0H/F3aPhT4EkBE3CvpjVR+ODASeEoSwIeAV9K+DcDtLQUTEVOAKZCtYLs5HTIzsw+qpsTUVuvS7w1sun8iW/n2O83sW+v7SmZmna9qpvKAx4ATJPWU1As4vp3Hngwg6QvAh1P5A8BoSbumfTtJ2ruMMZuZWTtVzYgpIp6SdDewAHgZqAfaenPnYuAWSacCc4A/A6sj4lVJFwG/ldQNWA98A3ip7B0wM7M2qZrElPwwIiZL2g54GKiLiF807oyI2pLtIvC59LEBOCoi3pU0CjgwItalercBtzU9UUT06rBemJlZi6otMU2RtD/Qk+ze0Nw2HrcXMD2Niv4KnFXOoIb070PRry0xMyuLqkpMEfGVzTzueWB4mcMxM7MOUE0PP5iZWRfgxGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrlSVV+wzav65Q3UTppV6TDMzDrV0g56441HTGZmlitOTGZmlitOTGZmlitOTGZmlisdmpgkbS9plqT5khZKGivpcEnzJNVLul5SD0mHSfpVyXFHSrqzhTa7S5qa2quX9M1Ufpakp9K5bk9rNpHqji45/u2S7X9KbcyXdGkq20/SvZLqJD0iaWBH/X3MzOyDOnrEdDSwIiKGRsRg4F5gKjA2IoaQPRV4DjAbGCipbzrua8D1LbQ5DOgfEYNTGzek8jsi4sCIGAo8C3y9tcAkHQOcCHwyHXN52jUFmBARI4GJwM9bOH68pKKk4oY1bV1I18zMNqWjE1M9cKSkyyR9GqgFXoyIJWn/NOAzERHAjcBXJe0IjALuaaHNPwL7SrpK0tHAW6l8cBrh1APjgEGbiO0I4IaIWAMQEa9L6gUcDMyQ9DRwHdCvuYMjYkpEFCKi0H27Ppv6O5iZWRt16PeYImKJpBHAscAlwIOtVL8B+DWwFpgREe+20OYbkoYCRwFnAycDZ5KNxE6KiPmSzuD9ZdXfJSXgtILttq3E0A14MyKGtaV/ZmZWfh19j2l3YE1E3ARcQTYSqpX00VTlVOAhgIhYAawALuL96bnm2twF6BYRt6e6I9Ku3sBKSTVkI6ZGS4GRafuLQE3avh/4Wsm9qJ0i4i3gRUljUplSEjQzs07S0W9+GAJcIWkjsJ7sflIfsqmybYCngGtL6t8M9I2IZ1tpsz9wQxr9AHwn/f4u8ASwKv3uncp/AdwlaT7ZPa6/AETEvZKGAUVJfwX+G/h/ZEntGkkXkSWxW4H5m9l/MzNrJ2W3d/JB0s+AeRHxH5WOpT0KhUIUi8VKh2FmVlUk1UVEoWl5bt6VJ6mObDTz7UrHYmZmlZObxJQez/4bkp4AejQpPjUi6jsnKjMz62y5SUzNiYhPVjoGMzPrXH4lkZmZ5YoTk5mZ5UqunsqrVpJWA4srHUcZ7QK8Wukgysx9yr+trT+w9fWp3P3ZOyL6Ni3M9T2mKrK4uUceq5Wk4tbUH3CfqsHW1h/Y+vrUWf3xVJ6ZmeWKE5OZmeWKE1N5TKl0AGW2tfUH3KdqsLX1B7a+PnVKf/zwg5mZ5YpHTGZmlitOTGZmlitOTFtA0tGSFkt6QdKkSsezuSQtlVQv6WlJxVS2k6T7JT2ffn+40nG2RtL1kl6RtLCkrNk+pHW2rkzXbUFazDJXWujPZEnL03V6WtKxJfu+k/qzWNJRlYm6ZZL2lDRb0jOSFkn6x1RezdeopT5V83XqKelJSfNTny5O5ftIeiLFfpukbVN5j/T5hbS/tiyBRIR/NuMH6A78AdiXbFXc+cD+lY5rM/uyFNilSdnlwKS0PQm4rNJxbqIPnyFbNHLhpvpAtqLyPYCATwFPVDr+NvZnMjCxmbr7p39/PYB90r/L7pXuQ5MY+wEj0nZvYEmKu5qvUUt9qubrJKBX2q4hW9vuU8B04JRUfi1wTtr+B+DatH0KcFs54vCIafMdBLwQEX+MiL+SLSh4YoVjKqcTgWlpexpwUgVj2aSIeBh4vUlxS304EfjPyPwe2FFSv86JtG1a6E9LTgRujYh1EfEi8ALZv8/ciIiVETE3ba8GniVb9LOar1FLfWpJNVyniIi308ea9BPAYcDMVN70OjVev5nA4ZK0pXE4MW2+/sCfSj4vo/V/lHkWwG8l1Ukan8o+EhEr0/afgY9UJrQt0lIfqvnanZumtq4vmV6tqv6k6Z7hZP9vfKu4Rk36BFV8nSR1l/Q08ApwP9nI7s2IeDdVKY37vT6l/Q3AzlsagxOTARwaESOAY4BvSPpM6c7IxulV/b2CraEPwDXAfsAwYCXwo8qG036SegG3A+dHxFul+6r1GjXTp6q+ThGxISKGAXuQjegGdnYMTkybbzmwZ8nnPVJZ1YmI5en3K8CdZP8YX26cOkm/X6lchJutpT5U5bWLiJfTfzQ2Ar/g/WmgquiPpBqy/4DfHBF3pOKqvkbN9anar1OjiHgTmA2MIptKbXy3amnc7/Up7e8DvLal53Zi2nxPAQPS0yrbkt34u7vCMbWbpO0l9W7cBr4ALCTry+mp2unAXZWJcIu01Ie7gdPSk1+fAhpKppNyq8k9li+RXSfI+nNKekJqH2AA8GRnx9eadN/hP4BnI+LHJbuq9hq11Kcqv059Je2Ytj8EHEl272w2MDpVa3qdGq/faODBNPLdMpV+CqSaf8ieHFpCNgd7YaXj2cw+7Ev2pNB8YFFjP8jmiR8Angf+B9ip0rFuoh+3kE2brCebA/96S30ge/Lo6nTd6oFCpeNvY39uTPEuSP9B6FdS/8LUn8XAMZWOv5n+HEo2TbcAeDr9HFvl16ilPlXzdToAmJdiXwh8L5XvS5ZEXwBmAD1Sec/0+YW0f99yxOFXEpmZWa54Ks/MzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLlfwHH5sUVMquziAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "chinese_ingredient_df = create_ingredient_df(chinese_df)\r\n", + "chinese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfTElEQVR4nO3de5RXdb3/8ecLHEEdQkU0fngZNBRFBGH0eMtMTSs17QjiL0tMj/ws01ylHUrr4MnWsU4Xu1iGHsPMo1zSBcVKLe+aF2ZAbhJqggWSgOUkGoTj+/fH/ox8HecK35m9v8zrsdZ3zd6f/dmf/d6f9WXefPbesz+KCMzMzIqiV94BmJmZlXJiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtku7wC2BbvttlvU1NTkHYaZWUWpr69fFxEDm5c7MZVBTU0NdXV1eYdhZlZRJL3YUrkv5ZmZWaE4MZmZWaE4MZmZWaH4HpOZWTfYtGkTK1euZMOGDXmH0u369u3LnnvuSVVVVYfqOzGVwaJVDdRMmpN3GLaNWnHtKXmHYGWwcuVK+vXrR01NDZLyDqfbRASvvPIKK1euZMiQIR3ax5fyzMy6wYYNGxgwYECPSkoAkhgwYECnRopdnpgkXSppqaTbuvpY5SBphaTd8o7DzLY9PS0pNenseXfHpbzPAidGxMpuONbbJG0XEW925zHNzGzrdWliknQDsC/wG0l3APsBBwNVwOSImCXpPOBjwI5p+10R8aW0//qIqE7LY4FTI+I8SfsBtwE7AbOAyyKiWtJxwNeBvwHDgP0lfRK4FNgeeBL4bEQ0SjoJuBroA/wR+HRErC+JfQfgTuDOiLixyzrJzHqkct+XLve9yOrqatavX99+xS7QpZfyIuIi4CXgg2RJ5P6IODyt/7eknVLVUcB4YAQwXtJe7TT9feD7ETECaD4SGw18PiL2l3RgavfoiBgFNALnpEt1V5GN5EYDdcAXStqoBn4F3N5aUpI0UVKdpLrGNxra7wwzM+uQ7nz44SRgkqSngQeBvsDeadt9EdEQERuAZ4B92mnrSGBGWv7fZtueiojlafkEYAwwNx33BLIR3BHAQcBjqXxCs2POAn4WET9vLYCImBIRtRFR23vH/u2Ea2aWr0mTJnH99de/vT558mSuueYaTjjhBEaPHs2IESOYNWvWu/Z78MEHOfXUU99e/9znPsfUqVMBqK+v5wMf+ABjxozh5JNPZvXq1WWJtTsTk4AzI2JU+uwdEUvTto0l9RrZfImxdN73vh08zuvNjnlLyTEPiIjJqfy3JeUHRcQFJfs9BnxYPfVOpZltc8aPH8/06dPfXp8+fToTJkzgrrvuYt68eTzwwAN88YtfJCLaaGWzTZs2cckllzBz5kzq6+s5//zzufLKK8sSa3cmpnuAS5p+2Us6tAP7vCzpQEm9gI+XlD8BnJmWz25j//uAsZJ2T8fcVdI+af+jJb0vle8kaf+S/b5Gdp/q+uYNmplVokMPPZQ1a9bw0ksvsWDBAnbZZRfe+9738pWvfIVDDjmEE088kVWrVvHyyy93qL1ly5axePFiPvShDzFq1CiuueYaVq4szzNu3fkHtl8HrgMWpkSzHDi17V2YBPwaWEt2H6g6lV8G/ELSlcDdQIs3eSLiGUlXAfemY24CLo6IJ9JDF7dL6pOqXwU8W7L754GbJX2r6WEMM7NKNm7cOGbOnMlf/vIXxo8fz2233cbatWupr6+nqqqKmpqad/290Xbbbcdbb7319nrT9ohg+PDhPP7442WPs8sTU0TUlKz+vxa2TwWmlqyfWrI8E5jZQrOrgCMiIiSdDRyQ6j9Idv+qtP1pwLQWjns/cFg78X66hWObmVWk8ePHc+GFF7Ju3Toeeughpk+fzu67705VVRUPPPAAL7747lko9tlnH5555hk2btzIP/7xD+677z6OOeYYDjjgANauXcvjjz/OkUceyaZNm3j22WcZPnz4VsdZqa8kGgP8KF0WfBU4P89gRgzuT51fG2NmnZDHq6aGDx/Oa6+9xuDBgxk0aBDnnHMOp512GiNGjKC2tpZhw4a9a5+99tqLs846i4MPPpghQ4Zw6KHZXZjtt9+emTNncumll9LQ0MCbb77JZZddVpbEpI7e6LLW1dbWhicKNLO2LF26lAMPPDDvMHLT0vlLqo+I2uZ1/a48MzMrFCcmMzMrFCcmM7Nu0lNvnXT2vJ2YzMy6Qd++fXnllVd6XHJqmo+pb9+OviOhcp/KMzOrKHvuuScrV65k7dq1eYfS7ZpmsO0oJyYzs25QVVXV4RlcezpfyjMzs0JxYjIzs0JxYjIzs0LxPaYyWLSqoeyzUZptiTxec2NWbh4xmZlZoTgxmZlZoTgxtUMZ95OZWTcp9C9cSTWS/iDpNklLJc2UtKOkMZIeklQv6R5Jg1L9ByV9X9LTkhZLOjyVT5Z0q6THJT0n6cKSY1whaa6khZKuLjnuMkk/BxYDe+Vx/mZmPVElPPxwAHBBRDwm6WbgYrJp1k+PiLWSxgPfYPOcTDtGxChJxwI3Awen8kOAI4CdgPmS5qRtQ4HDAQGz035/SuUTIuKJloKSNBGYCND7PQPLfc5mZj1WJSSmP0fEY2n5F8BXyBLKb7N5AukNrC6pfztARDws6T2Sdk7lsyLiH8A/JD1AloyOAU4C5qc61WQJ6U/Ai60lpdT+FGAKQJ9BQ3vWy6/MzLpQJSSm5r/0XwOWRMSRHawfbZQL+K+I+GnpBkk1wOudjtTMzLZaoe8xJXtLakpCnwCeAAY2lUmqklQ6l+/4VH4M0BARDan8dEl9JQ0AjgPmAvcA50uqTvsMlrR7l5+RmZm1qhJGTMuAi9P9pWeAH5IllB9I6k92DtcBS1L9DZLmA1Vsvu8EsBB4ANgN+HpEvAS8JOlA4PF0WXA98EmgscvPyszMWqQizw2SLqn9OiIObqdqU/0Hgcsjoq5Z+WRgfUR8u8whAlBbWxt1dXXtVzQzs7dJqo+I2ubllXApz8zMepBCX8qLiBVsfty7I/WPa6V8cnkiMjOzruYRk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFUqh/8C2Uixa1UDNpDl5h2HWI6y49pS8Q7Au5hGTmZkVihOTmZkVSq6JSdIZkg7qQL2pksa2UH6cpF+XMZ5aST9Iy+dJ+lG52jYzs47Je8R0BtBuYuouEVEXEZfmHYeZWU/WZmKSdK2ki0vWJ0u6XNIVkuZKWijp6pLtX5W0TNKjkm6XdHkq30/S3ZLqJT0iaZiko4CPAf8t6elU58LU7gJJv5S0Y0k4J0qqk/SspFNbiHUnSTdLekrSfEmnt3FefSX9TNKiVPeDqbysIzAzM+u89kZM04CzStbPAtYCQ4HDgVHAGEnHSjoMOBMYCXwEKJ38aQpwSUSMAS4HfhwRvwdmA1dExKiI+CNwZ0QcFhEjgaXABSVt1KRjngLcIKlvs1ivBO6PiMOBD5IlvJ1aOa+LgYiIEcD/BW5pob02SZqYEmVd4xsN7e9gZmYd0ubj4hExX9Lukv4PMBD4GzACOAmYn6pVkyWqfsCsiNhANr35rwAkVQNHATPS9OUAfVo55MGSrgF2Tu3eU7JtekS8BTwn6QVgWLN9TwI+1jRKA/oCe5MluOaOIZuinYj4g6QXgf3b6ovmImIKWcKlz6ChxZ0G2MyswnTk75hmAGOB95KNoPYB/isiflpaSdJlrezfC3g1IkZ14FhTgTMiYoGk84DjSrY1/+XffF3AmRGxrAPHMTOzgurIww/TgLPJktMMslHM+WkkhKTBknYHHgNOS/dvqoFTASLi78BySeNSfUkamdp+jWyk1aQfsFpSFXBOszjGSeolaT9gX6B5AroHuERpWCbp0DbO6ZGm9iXtTzayckIzMyuAdhNTRCwhSxirImJ1RNwL/C/wuKRFwEygX0TMJbtntBD4DbAIaLr5cg5wgaQFwBKg6cGEO4Ar0gMI+wFfBZ4kS3J/aBbKn4CnUtsXpUuGpb4OVAELJS1J6635MdArxT8NOC8iNrbXF2Zm1vUUUb7bI5KqI2J9epruYWBiRMwr2wEKqra2Nurq6vIOw8ysokiqj4ja5uXlflfelPQHs32BW3pCUjIzs/Iqa2KKiE+Us72tJelk4JvNipdHxMfziMfMzNq3Tb9dPCLu4Z2PnJuZWcHl/UoiMzOzd3BiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtmm/46puyxa1UDNpDl5h2HWY6y49pS8Q7Au5BGTmZkVSsUnJkn/KenEvOMwM7PyqPhLeRHxta4+hqTeEdHY1ccxM7MKGzFJ+qqkZZIelXS7pMslTZU0Nm1fIelqSfMkLZI0LJUPlPRbSUsk3STpRUm7pW2flPSUpKcl/VRS71S+XtJ30hxSR+Z20mZmPUzFJCZJhwFnAiOBjwDvmsMjWRcRo4GfAJensv8A7o+I4WQTG+6d2jwQGA8cnaZ+b2TzzLk7AU9GxMiIeLSFeCZKqpNU1/hGQ/PNZma2hSrpUt7RwKw0c+0GSb9qpd6d6Wc98K9p+Rjg4wARcbekv6XyE4AxwNw0I/sOwJq0rRH4ZWvBRMQUYApAn0FDyzfboplZD1dJiamjmqZIb6T98xPZhIZfbmHbBt9XMjPrfhVzKQ94DDhNUl9J1cCpndz3LABJJwG7pPL7gLGSdk/bdpW0TxljNjOzTqqYEVNEzJU0G1gIvAwsAjp6c+dq4HZJnwIeB/4CvBYR6yRdBdwrqRewCbgYeLHsJ2BmZh1SMYkp+XZETJa0I/AwUB8RNzZtjIiakuU64Li02gCcHBFvSjoSOCwiNqZ604BpzQ8UEdVddhZmZtaqSktMUyQdBPQluzc0r4P77Q1MT6OifwIXljOoEYP7U+dXpJiZlUVFJaaI+MQW7vcccGiZwzEzsy5QSQ8/mJlZD+DEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmhVJRb34oqkWrGqiZNCfvMMxsK63wq8UKwSMmMzMrlB6bmCSdJ+lHafkiSefmHZOZmfXQS3mS3nHeEXFDXrGYmdk7VXRikvRV4JPAWuDPQD3Z3EsTge2B54FPRcQbkqYCG8jeMv4Y2YSDTe1MBtZHxLclvQ+4ARhINj37uIj4Y3edk5lZT1exl/IkHQacCYwEPgLUpk13RsRhETESWApcULLbnsBREfGFNpq+Dbg+7X8UsLqV40+UVCeprvGNjk6ka2Zm7ankEdPRwKyI2ABskPSrVH6wpGuAnYFq4J6SfWZERGNrDUrqBwyOiLsAUtstiogpwBSAPoOGxladiZmZva1iR0xtmAp8LiJGAFeTzXbb5PVcIjIzsw6r5MT0GHCapL6SqoFTU3k/YLWkKuCczjQYEa8BKyWdASCpj6Qdyxm0mZm1rWITU0TMBWaTPcTwG2AR2YMPXwWeJEtcf9iCpj8FXCppIfB74L1lCdjMzDpEEZV7e0RSdUSsT6Oah4GJETGvu+PoM2hoDJpwXXcf1szKzG9+6F6S6iOitnl5JT/8ADBF0kFk95FuySMpAYwY3J86f6HNzMqiohNTRHwi7xjMzKy8KvYek5mZbZucmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFAq+s0PRbFoVQM1k+bkHYaZdTG/S697eMRkZmaF4sRkZmaF4sRkZmaFUojEJOlcSQslLZB0q6TTJD0pab6k30naQ1IvSc9JGpj26SXpeUkD0+eXkuamz9GpzmRJN0t6UNILki5N5TWSlkq6UdISSfdK2iFt20/S3ZLqJT0iaVh+PWNm1vPknpgkDQeuAo6PiJHA54FHgSMi4lDgDuBLEfEW8As2T5d+IrAgItYC3we+FxGHAWcCN5UcYhhwMnA48B9pynWAocD1ETEceDXtBzAFuCQixgCXAz9uJe6Jkuok1TW+0bDV/WBmZpkiPJV3PDAjItYBRMRfJY0ApkkaBGwPLE91bwZmAdcB5wM/S+UnAgdJamrzPZKq0/KciNgIbJS0BtgjlS+PiKfTcj1Qk/Y5CphR0lafloKOiClkSYw+g4ZW7jTAZmYFU4TE1JIfAt+NiNmSjgMmA0TEnyW9LOl4shFQ0+ipF9kIa0NpIym5bCwpamTzOTcv3yG182pEjCrr2ZiZWYflfikPuB8YJ2kAgKRdgf7AqrR9QrP6N5Fd0psREY2p7F7gkqYKkrYosUTE34HlksaldiRp5Ja0ZWZmWyb3xBQRS4BvAA9JWgB8l2yENENSPbCu2S6zgWo2X8YDuBSoTQ9QPANctBUhnQNckGJZApy+FW2ZmVknKaKybo9IqiV70OH9ecfSpLa2Nurq6vIOw8ysokiqj4ja5uVFvcfUIkmTgM+w+d6SmZltY3K/lNcZEXFtROwTEY/mHYuZmXWNikpMZma27XNiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQqmoNz8U1aJVDdRMmpN3GGbWDVZce0reIWzzPGIyM7NCcWIyM7NCqZjEJOlj6SWu5WhrsqTLy9GWmZmVV0XcY5K0XUTMJpuLKa/jv5nHsc3MeppuHzFJOjdN6LdA0q2SaiTdn8ruk7R3qjdV0g2SngS+Jek8ST9K206T9KSk+ZJ+J2mPVD5Z0s2SHpT0gqRLS457paRnJT0KHFBSvp+kuyXVS3pE0rCWjt+NXWRm1qN164hJ0nDgKuCoiFiXplG/BbglIm6RdD7wA+CMtMueqW6jpPNKmnoUOCIiQtK/AV8Cvpi2DQM+CPQDlkn6CXAIcDYwiuyc5wH1qf4U4KKIeE7SvwA/Bo5vfvwWzmUiMBGg93sGbk23mJlZie6+lHc8MCMi1gFExF8lHQn8a9p+K+8cncxoKSmQJYxpkgYB2wPLS7bNiYiNwEZJa4A9gPcDd0XEGwCSZqef1cBRZNO4N+3fpwPHJyKmkCU1+gwaWlnTAJuZFVjR7zG93kr5D4HvRsRsSccBk0u2bSxZbqTtc+wFvBoRozp5fDMz6yLdfY/pfmCcpAEA6VLe78kus0E2ZfojHWinP7AqLU/oQP2HgTMk7SCpH3AaQET8HVguaVyKR5JGdvRkzMys/Lp1xBQRSyR9A3hIUiMwH7gE+JmkK4C1wKc70NRksstvfyNLdkPaOe48SdOABcAaYG7J5nOAn0i6CqgC7kj1zMwsB4rw7ZGtVVtbG3V1dXmHYWZWUSTVR0Rt8/KK+QNbMzPrGZyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUIr+dvGKsGhVAzWT5uQdhpkVzIprT8k7hIrkEZOZmRVKj0pMkv5T0ol5x2FmZq3rUZfyIuJrecdgZmZtq/gRk6QvSFqcPpdJqpG0VNKNkpZIulfSDqnuVElj0/IJkuZLWiTpZkl9UvkKSVdLmpe2Dcvz/MzMepqKTkySxpBNLPgvwBHAhcAuwFDg+ogYDrwKnNlsv77AVGB8RIwgGzl+pqTKuogYDfwEuLyVY0+UVCeprvGNhrKel5lZT1bRiQk4BrgrIl6PiPXAncD7geUR8XSqUw/UNNvvgFTn2bR+C3BsyfY729gXgIiYEhG1EVHbe8f+W30iZmaWqfTE1JqNJcuNdP5eWtP+W7KvmZlthUpPTI8AZ0jaUdJOwMdTWXuWATWS3pfWPwU81EUxmplZJ1T0aCAi5kmaCjyVim4C/taB/TZI+jQwQ9J2wFzghi4L1MzMOkwRkXcMFa/PoKExaMJ1eYdhZgXjNz+0TVJ9RNQ2L6/oEVNRjBjcnzp/Ac3MyqLS7zGZmdk2xonJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxa8kKoNFqxqomTQn7zDMrAL4/Xnt84jJzMwKJdfEJGlnSZ/NM4YUx02SDso7DjMzy3/EtDPQqcQkqXc5A5DUOyL+LSKeKWe7Zma2ZfJOTNcC+0l6WtJcSb9u2iDpR5LOS8srJH1T0jxgnKQHJX1PUp2kpZIOk3SnpOckXVPSxiclPZXa/2lTUpO0XtJ3JC0Ajkzt1aZtH5Y0T9ICSfd1Z2eYmVn+iWkS8MeIGAVc0U7dVyJidETckdb/mSaYugGYBVwMHAycJ2mApAOB8cDRqf1G4Jy0707AkxExMiIebTqApIHAjcCZETESGNdaMJImpsRY1/hGQ2fP28zMWlFJT+VNa7Y+O/1cBCyJiNUAkl4A9gKOAcYAcyUB7ACsSfs0Ar9s4RhHAA9HxHKAiPhra8FExBRgCmQz2G7B+ZiZWQuKlJje5J0juL7Ntr/ebH1j+vlWyXLT+naAgFsi4sstHGtDRDRuRaxmZtZF8r6U9xrQLy2/CBwkqY+knYETtrLt+4CxknYHkLSrpH3a2ecJ4FhJQ5r22coYzMysk3IdMUXEK5Iek7QY+A0wHVgMLAfmb2Xbz0i6CrhXUi9gE9l9qBfb2GetpInAnWmfNcCHtiYOMzPrHEX49sjW6jNoaAyacF3eYZhZBfCbHzaTVJ8eYnuHIt1jqlgjBvenzl82M7OyyPsek5mZ2Ts4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4zQ9lsGhVAzWT5uQdhplZt+qq1yt5xGRmZoXixGRmZoXS4xOTpIsknZt3HGZmlunx95gi4oa8YzAzs80qbsQk6VxJCyUtkHSrpKmSxpZsX59+HifpIUmzJL0g6VpJ50h6StIiSfulepMlXZ6WH5T0zVTnWUnvz+cszcx6ropKTJKGA1cBx0fESODz7ewyErgIOBD4FLB/RBwO3ARc0so+26U6lwH/0UYsEyXVSaprfKOhk2diZmatqajEBBwPzIiIdQAR8dd26s+NiNURsRH4I3BvKl8E1LSyz53pZ30bdYiIKRFRGxG1vXfs38HwzcysPZWWmFryJuk8JPUCti/ZtrFk+a2S9bdo/f5aU53GNuqYmVkXqbTEdD8wTtIAAEm7AiuAMWn7x4CqfEIzM7NyqKgRQUQskfQN4CFJjcB84N+BWZIWAHcDr+cZo5mZbR1FRN4xVLza2tqoq6vLOwwzs4oiqT4iapuXV9qlPDMz28Y5MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4qbwykPQasCzvODphN2Bd3kF0guPtWpUWL1RezI63ZftExMDmhRX1d0wFtqylRx6LSlKd4+06jrfrVVrMjrdzfCnPzMwKxYnJzMwKxYmpPKbkHUAnOd6u5Xi7XqXF7Hg7wQ8/mJlZoXjEZGZmheLEZGZmheLEtBUkfVjSMknPS5qUdzwtkbRC0iJJT0uqS2W7SvqtpOfSz11yjvFmSWskLS4pazFGZX6Q+nyhpNEFiXeypFWpn5+W9NGSbV9O8S6TdHIO8e4l6QFJz0haIunzqbyQfdxGvIXsY0l9JT0laUGK9+pUPkTSkymuaZK2T+V90vrzaXtNQeKdKml5Sf+OSuXd/32ICH+24AP0JpuufV+yWXMXAAflHVcLca4AdmtW9i1gUlqeBHwz5xiPBUYDi9uLEfgo8BtAwBHAkwWJdzJweQt1D0rfjT7AkPSd6d3N8Q4CRqflfsCzKa5C9nEb8Rayj1M/VaflKuDJ1G/TgbNT+Q3AZ9LyZ4Eb0vLZwLRu7t/W4p0KjG2hfrd/Hzxi2nKHA89HxAsR8U/gDuD0nGPqqNOBW9LyLcAZOcZCRDwM/LVZcWsxng78PDJPADtLGtQ9kWZaibc1pwN3RMTGiFgOPE/23ek2EbE6Iual5deApcBgCtrHbcTbmlz7OPXT+rRalT4BHA/MTOXN+7ep32cCJ0hSN4XbVryt6fbvgxPTlhsM/LlkfSVt/+PJSwD3SqqXNDGV7RERq9PyX4A98gmtTa3FWOR+/1y61HFzyeXRQsWbLhsdSva/5ML3cbN4oaB9LKm3pKeBNcBvyUZtr0bEmy3E9Ha8aXsDMCDPeCOiqX+/kfr3e5L6NI836fL+dWLa9h0TEaOBjwAXSzq2dGNkY/VC/81AJcQI/ATYDxgFrAa+k2847yapGvglcFlE/L10WxH7uIV4C9vHEdEYEaOAPclGa8NyDqlNzeOVdDDwZbK4DwN2Bf49r/icmLbcKmCvkvU9U1mhRMSq9HMNcBfZP5qXm4bi6eea/CJsVWsxFrLfI+Ll9I/9LeBGNl9KKkS8kqrIfsnfFhF3puLC9nFL8Ra9jwEi4lXgAeBIskteTe8jLY3p7XjT9v7AK90cKvCOeD+cLqFGRGwEfkaO/evEtOXmAkPTkzfbk93EnJ1zTO8gaSdJ/ZqWgZOAxWRxTkjVJgCz8omwTa3FOBs4Nz0pdATQUHI5KjfNrrl/nKyfIYv37PQk1hBgKPBUN8cm4H+ApRHx3ZJNhezj1uItah9LGihp57S8A/AhsvtiDwBjU7Xm/dvU72OB+9OINc94/1DynxSR3Q8r7d/u/T509dMV2/KH7GmVZ8muJ1+ZdzwtxLcv2dNKC4AlTTGSXc++D3gO+B2wa85x3k52aWYT2fXrC1qLkezJoOtTny8CagsS760pnoVk/5AHldS/MsW7DPhIDvEeQ3aZbiHwdPp8tKh93Ea8hexj4BBgfoprMfC1VL4vWYJ8HpgB9EnlfdP682n7vgWJ9/7Uv4uBX7D5yb1u/z74lURmZlYovpRnZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF8v8BEBScEicaSW4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "indian_ingredient_df = create_ingredient_df(indian_df)\r\n", + "indian_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAAD4CAYAAABYIGfSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5xXVb3/8dcbHCEFp1SyCbQho0hAQAYTNPV4KfOSdhTpRF7SXxz9HbFOWnHSftFJfz/NfuZdo1JILQXKS3KCTPBOyowIwyWsRI8gKd5GkSCEz/ljr5Ev48www56ZLzPf9/PxmMfs79prr/XZCx58WGvv796KCMzMzGz7dCt2AGZmZp2ZE6mZmVkOTqRmZmY5OJGamZnl4ERqZmaWw07FDsA61p577hmVlZXFDsPMrFOpqal5JSL6NLbPibTEVFZWUl1dXewwzMw6FUnPN7XPS7tmZmY5OJGamZnl4ERqZmaWg6+RmpnZe2zcuJGVK1eyfv36YofSoXr27Em/fv0oKytr8TFOpCWmdlUdlRNnFjsM68Keu+y4YodgbWDlypX07t2byspKJBU7nA4REbz66qusXLmS/v37t/g4L+2amdl7rF+/nj322KNkkiiAJPbYY49Wz8KdSDuYpJMk7deCelMkndJI+eGS7muf6MzMtiilJFpve87ZibTjnQRsM5GamVnn4GukDUi6DHghIq5PnycBawEBpwI9gLsi4ntp/3eBLwNrgBeAmoj4kaR9geuBPsA64KvA7sDngcMkXQycDBwBjAd2Bv4CnBYR61I4R0maCOwGfCMitpqJStoVuBYYDJQBkyLinjYfFDMreW19b0VbX0vv1asXa9eubdM2W8oz0ve6kyxh1juVLEkOAA4EhgEjJB0qaSRZMhwKfA6oKjhuMjAhIkYAFwI3RMTjwL3ANyNiWET8FfhNRIyMiKHAMuDsgjYqU5/HATdJ6tkg1ouAORFxIPBPwBUpuW5F0nhJ1ZKqN62r244hMTOzpjiRNhARC4APSvqwpKHA68AQ4DPAAuApYCBZYj0YuCci1kfEW8BvAST1AkYD0yU9DfwEqGiiy8GSHpFUC4wDBhXsmxYRmyPiz8Czqd9CnwEmpj4eBHoC+zRyTpMjoioiqrrvUt7KETEz63gTJ07k+uuvf/fzpEmTuOSSSzjyyCM54IADGDJkCPfc894FuAcffJDjjz/+3c/nnXceU6ZMAaCmpobDDjuMESNG8NnPfpbVq1e3SaxOpI2bDpwCjCWboQr4f2kWOSwiPhYRP2/m+G7AGwX1h0XEJ5uoOwU4LyKGAN8nS4b1okHdhp8FnFzQxz4Rsaxlp2hmtuMaO3Ys06ZNe/fztGnTOOOMM7jrrrt46qmnmDt3LhdccAERDf9ZbNzGjRuZMGECM2bMoKamhrPOOouLLrqoTWJ1Im3cncAXyZLpdGA2cFaaaSKpr6QPAo8BJ0jqmfYdDxARbwIrJI1J9ZVmtwBvAb0L+uoNrJZURjYjLTRGUrd0vfWjwPIG+2cDE5RuM5M0vA3O3cys6IYPH87LL7/Miy++yMKFC/nABz7Ahz70Ib7zne+w//77c9RRR7Fq1SpeeumlFrW3fPlyFi9ezNFHH82wYcO45JJLWLlyZZvE6puNGhERSyT1BlZFxGqyRPdJYF7KWWuBL0fEfEn3AouAl4BaoP4i5DjgxnRTURlwB7Aw/f6ppPPJEvV3gSfIrsM+wdZJ9r+BJ8luNjonItY3uDX7B8BVwCJJ3YAVpGRuZtbZjRkzhhkzZvC3v/2NsWPHcvvtt7NmzRpqamooKyujsrLyPd/53Gmnndi8efO7n+v3RwSDBg1i3rx5bR6nE2kT0lJr4eergasbqfqjiJgkaRfgYaAm1V8BHNNIu4+x9ddfbkw/Deud2URcD5JdDyUi/g786zZPxsysExo7dixf/epXeeWVV3jooYeYNm0aH/zgBykrK2Pu3Lk8//x732z2kY98hKVLl7Jhwwb+/ve/88ADD3DIIYfwiU98gjVr1jBv3jxGjRrFxo0beeaZZxg0aFAjPbeOE2l+k9MDFnoCUyPiqWIH1Jwhfcup9iPczKyVivHox0GDBvHWW2/Rt29fKioqGDduHCeccAJDhgyhqqqKgQMb3n8Je++9N6eeeiqDBw+mf//+DB+eXfHaeeedmTFjBueffz51dXW88847fP3rX2+TRKqWXqi1rqGqqir8Ym8z25Zly5bxyU82dY9k19bYuUuqiYiqxur7ZiMzM7McnEjNzMxycCI1M7NGleKlv+05ZydSMzN7j549e/Lqq6+WVDKtfx9pz54Nn8baPN+1a2Zm79GvXz9WrlzJmjVrih1Kh+rZsyf9+vVr1TFOpGZm9h5lZWX079+/2GF0Cl7aNTMzy8GJ1MzMLAcnUjMzsxx8jbTE1K6qa/M33Zu1VDEeM2fW3jwjNTMzy8GJ1MzMLIeiJFJJJ6U3prT2uLXtEU9XIWmKpFOKHYeZWSlpVSJVpi2S70ls/U5OMzOzTmmbSVFSpaTlkn4BLAZOk1QrabGkywvq3SipWtISSd8vKL9M0lJJiyT9SNJo4PPAFZKelrRv+pklqUbSI5IGpmP7S5qX+rtkG3FWSHo4tblY0qdT+WdSG09Jmi6pV2NxpbITJD0haYGkP0jaK5VPkjQ1xfa8pH+W9MMU1yxJZaneCEkPpfOYLamimXjPL+j/jlS2q6SbJT2ZYjgxlXeXdIWk+an+v6ZySbou/fn8AfhgE32NT3821ZvW1TX7521mZq3T0rt2BwBnAP8N/BEYAbwO/F7SSRFxN3BRRLwmqTvwgKT9gVXAF4CBERGS3h8Rb0i6F7gvImYASHoAOCci/izpU8ANwBHA1cCNEfELSf+2jRi/BMyOiEtTDLtI2hO4GDgqIt6W9G3gG5KubxhXauNR4KBU9r+AbwEXpH37Av9ENpOeB5wcEd+SdBdwnKSZwLXAiRGxRtJY4FLgrCbinQj0j4gNBf1fBMyJiLNS2ZMpQY4D6iJipKQewGOSfg8MBz6RYtoLWArc3LCjiJgMTAboUTGgdB6caWbWAVqaSJ+PiD+mGdKDEbEGQNLtwKHA3cCpksanNivI/nFfCqwHfi7pPuC+hg2nGeJoYLqk+uIe6ffBwMlp+1bgcpo2H7g5zQ7vjoinJR2W4ngstb0zWRKsayKufsCdaSa5M7CioP3fRcRGSbVAd2BWKq8FKskS2mDg/tRXd2B1M/EuAm6XdDfZ+AF8Bvi8pAvT557APql8f225/llO9p+bQ4FfRcQm4EVJc5rpz8zM2kFLE+nbze2U1B+4EBgZEa9LmgL0jIh3JB0IHAmcApxHNtMs1A14IyKGNdF8i2ZQEfGwpEOB44Apkq4kmzXfHxH/0kjMjcV1LXBlRNwr6XBgUsEhG1I/myVtjC2vRNhMNo4ClkTEqJbEm+I8FDgBuEjSkNTGyRGxvEGsAiZExOwG5ce2sC8zM2snrb1x6EngMEl7puXTfwEeAnYjS7Z16bri5+Dd2WZ5RPwX8O/A0NTOW0BvgIh4E1ghaUw6RpLq6z0GfDFtj2suMEkfAV6KiJ8CPwMOIFuGPljSx1KdXSV9vJm4ysmWoyFbym6N5UAfSaNSX2WSBjURazdg74iYC3w79dsLmA1MSIkTScPTIbOBcwuuxX5c0q7Aw8DYdA21gmzp2czMOlCrnmwUEaslTQTmks2eZkbEPQCSFgB/Al4gS4CQJct7JPVM9b+Ryu8AfirpfLIZ4TjgRkkXA2Vp/0Lga8Av07XNe7YR3uHANyVtBNYCp6drlWcCv0rXFiG7ZvpWE3FNIltifh2YA7T41QcR8Y+09HqNpHKysb0KWNJI9e7AbamegGvSteMfpGMWpWS7Ajie7D8GlcBTKcmuIbvz+S6ymfRSsuvX87YV55C+5VT76TJmZm1GpfTSVoOqqqqorq4udhhmZp2KpJqIqGpsn59sZGZmlkOne2h9uinn1gbFGyLiU8WIZ1vSV20OblB8dUTcUox4zMysbXW6RBoRtUBTd/jucCJiW99/NTOzTsxLu2ZmZjk4kZqZmeXgRGpmZpaDE6mZmVkOTqRmZmY5OJGamZnl0Om+/mL51K6qo3LizGKHYbaV5/zYSuvEPCM1MzPLwYnUzMwsByfSIpC0ttgxmJlZ23AiNTMzy8GJtJXSy8FnSlooabGksZKOlLRAUq2kmyX1kHSEpLsLjjta0l0Fn38saYmkByT1SWX7SpolqUbSI5IGpvITJD2R+vhDenk6kial/h6U9Gx6v6uZmXUgJ9LWOwZ4MSKGRsRgYBYwBRgbEUPI7oQ+l+zl5wPrkyTwFeDmtL0rUB0Rg4CHgO+l8snAhIgYAVwI3JDKHwUOiojhZC89/1ZBPAOBzwIHAt+TVNYwYEnjJVVLqt60ri73AJiZ2RZOpK1XCxwt6XJJnwYqgRUR8UzaPxU4NLI3pt8KfFnS+4FRwO9Snc3AnWn7NuAQSb2A0cB0SU8DPwEqUp1+wGxJtcA3gUEF8cyMiA0R8QrwMrBXw4AjYnJEVEVEVfddyttgCMzMrJ6/R9pKEfGMpAOAY4FLgDnNVL8F+C2wHpgeEe801SzZf2reiIjGXhF3LXBlRNwr6XBgUsG+DQXbm/CfqZlZh/KMtJUkfRhYFxG3AVeQzTQrJX0sVTmNbLmWiHgReBG4mCyp1usGnJK2vwQ8GhFvAiskjUn9SNLQVKccWJW2z2iXEzMzs+3i2UvrDQGukLQZ2Eh2PbScbEl2J2A+cFNB/duBPhGxrKDsbeBASReTLceOTeXjgBtTeRnZ9dCFZDPQ6ZJeJ5sB92+nczMzs1ZSdinP2ouk64AFEfHzYscCUFVVFdXV1cUOw8ysU5FUExFVje3zjLQdSaohm31eUOxYzMysfTiRtqP0NRYzM+vCfLORmZlZDk6kZmZmOTiRmpmZ5eBEamZmloMTqZmZWQ5OpGZmZjk4kZqZmeXgRGpmZpaDH8hQYmpX1VE5cWaxwzBrV89ddlyxQ7AS4hmpmZlZDk6kOzhJ/5VeDG5mZjsgL+3uwCQJOD4iNhc7FjMza5xnpDsYSZWSlkv6BbAY2CRpz7TvdEmLJC2UdGsq6yPp15Lmp5+Dixm/mVmp8Yx0xzQAOCMi/ijpOQBJg4CLgdER8Yqk3VPdq4EfR8SjkvYBZgOfLGxM0nhgPED33fp00CmYmZUGJ9Id0/MR8ccGZUcA0yPiFYCIeC2VHwXsl60CA7CbpF4Rsba+ICImA5MBelQM8JvczczakBPpjuntVtTtBhwUEevbKxgzM2uar5F2HnOAMZL2AChY2v09MKG+kqRhRYjNzKxkOZF2EhGxBLgUeEjSQuDKtOt8oCrdhLQUOKdYMZqZlSIv7e5gIuI5YHDB58qC7anA1Ab1XwHGdlB4ZmbWgBNpiRnSt5xqPz7NzKzNeGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7Mc/IjAElO7qo7KiTOLHYZZUT3nx2RaG/KM1MzMLAcnUjMzsxy6XCKVVClpcSPlD0qq2o72zpR0XdtEZ2ZmXU2XS6QGknzt28ysg3TVRLqTpNslLZM0Q9IuhTsl3SipWtISSd8vKB8p6XFJCyU9Kal3g+OOkzRP0p6NdSppiqSbUtvPSDo+lXeXdIWk+ZIWSfrXVH64pIclzZS0PB3bLe1bK+nHKcYHJPVJ5ftKmiWpRtIjkgY26PsJ4IcN4hqfYqretK4u9+CamdkWXTWRfgK4ISI+CbwJ/O8G+y+KiCpgf+AwSftL2hm4E/haRAwFjgL+Xn+ApC8AE4FjI+KVZvquBA4EjgNuktQTOBuoi4iRwEjgq5L6p/oHAhOA/YB9gX9O5bsC1RExCHgI+F4qnwxMiIgRwIXADQV99wNGR8Q3CgOKiMkRURURVd13KW8mdDMza62uugT4QkQ8lrZvA85vsP9USePJzr+CLIkFsDoi5gNExJsAkgCOAKqAz9SXN2NaRGwG/izpWWAg8Blgf0mnpDrlwADgH8CTEfFs6utXwCHADGAzWWKvP4ffSOoFjAamp7gAehT0PT0iNm0jPjMza0NdNZFGU5/TTPBCYGREvC5pCtBzG+39Ffgo8HGgejv6FtkscnbhDkmHNxdrI+XdgDciYlgTdd7eRmxmZtbGuurS7j6SRqXtLwGPFuzbjSzh1EnaC/hcKl8OVEgaCSCpd8FNO88DJwO/kDRoG32PkdRN0r5kyXc5MBs4V1JZavvjknZN9Q+U1D9dGx1bEGs3oH4G+yXg0TQbXiFpTGpHkoa2dFDMzKztddVEuhz4N0nLgA8AN9bviIiFwALgT8AvgcdS+T/IEtm1khYC91MwU42IPwHjyJZV922m7/8GngR+B5wTEeuBnwFLgafSV3N+wpbVgPnAdcAyYAVwVyp/myzJLiZbWv7PVD4OODvFuAQ4sVUjY2ZmbUoRTa0kWmulZeL7ImJGC+sfDlwYEcc3sm9tRPRq2wihqqoqqqu3tTptZmaFJNWkm1Tfo6vOSM3MzDpEV73ZqF1JuggY06B4ekSc2Zp2IuJB4MEm9rX5bNTMzNqeE+l2iIhLgUuLHYeZmRWfl3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWbNeO6y44odgrWCZ6RmZmY5OJGamZnl4ETayUk6R9LpaXuKpFO2dYyZmbUdXyPt5CLipmLHYGZWykp6RippV0kzJS2UtFjSWEkjJD0kqUbSbEkVqe75kpZKWiTpjlR2oKR5khZIelzSJ1L5mZLulnS/pOcknSfpG6neHyXtnurtK2lW6usRSQObibVS0pzU/wOS9knlkyRduI3zHC+pWlL1pnV1bTV8ZmZGiSdS4BjgxYgYGhGDgVnAtcApETECuJktb3mZCAyPiP2Bc1LZn4BPR8Rw4P8A/7eg7cHAPwMjUxvrUr15wOmpzmRgQurrQuCGZmK9Fpia+r8duKalJxkRkyOiKiKquu9S3tLDzMysBUp9abcW+P+SLgfuA14nS4D3SwLoDqxOdRcBt0u6G7g7lZUDUyUNAAIoK2h7bkS8BbwlqQ74bUGf+0vqBYwGpqe+AHo0E+sossQMcCvww9afrpmZtbWSTqQR8YykA4BjgUuAOcCSiBjVSPXjgEOBE4CLJA0BfkCWML8gqZKtX9K9oWB7c8HnzWTj3g14IyKGtdkJmZlZhyvppV1JHyZbcr0NuAL4FNBH0qi0v0zSIEndgL0jYi7wbbKZaK/0e1Vq7szW9B0RbwIrJI1JfUnS0GYOeRz4YtoeBzzSmv7MzKx9lPSMFBgCXCFpM7AROBd4B7hGUjnZ+FwFPAPclsoEXBMRb0j6IdnS7sXA9jwuaBxwYzq+DLgDWNhE3QnALZK+CawBvrId/TGkbznVfmqKmVmbUUQUOwbrQFVVVVFdXV3sMMzMOhVJNRFR1di+kl7aNTMzy6vUl3Z3OJIuAsY0KJ4eEZc2Vt/MzIrLiXQHkxKmk6aZWSfhpV0zM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvDXX0pM7ao6Kiduz9MMzayUPOdHibaYZ6RmZmY5OJGamZnl4ERqZmaWgxOpmZlZDk6kBSTtKmmmpIWSFksaK+lISQsk1Uq6WVIPSUdIurvguKMl3dVEm90lTUnt1Ur691T+VUnzU1+/lrRLKp8i6ZSC49cWbH87tbFQ0mWpbF9JsyTVSHpE0sD2Gh8zM3svJ9KtHQO8GBFDI2IwMAuYAoyNiCFkdzmfC8wFBkrqk477CnBzE20OA/pGxODUxi2p/DcRMTIihgLLgLObC0zS54ATgU+lY36Ydk0GJkTECOBC4IZGjh0vqVpS9aZ1ddseBTMzazEn0q3VAkdLulzSp4FKYEVEPJP2TwUOjext6LcCX5b0fmAU8Lsm2nwW+KikayUdA7yZygenGWQtMA4YtI3YjgJuiYh1ABHxmqRewGhguqSngZ8AFQ0PjIjJEVEVEVXddylvyTiYmVkL+XukBSLiGUkHAMcClwBzmql+C/BbYD3Z+0LfaaLN1yUNBT4LnAOcCpxFNtM9KSIWSjoTODwd8g7pPziSugE7NxNDN+CNiBjWkvMzM7O25xlpAUkfBtZFxG3AFWQzzUpJH0tVTgMeAoiIF4EXgYvZslzbWJt7At0i4tep7gFpV29gtaQyshlpveeAEWn780BZ2r4f+ErBtdTdI+JNYIWkMalMKWmbmVkH8Yx0a0OAKyRtBjaSXQ8tJ1s63QmYD9xUUP92oE9ELGumzb7ALWl2CfAf6fd3gSeANel371T+U+AeSQvJrtG+DRARsyQNA6ol/QP4L+A7ZEn4RkkXkyXdO4CF23n+ZmbWSsou99n2kHQdsCAifl7sWFqqqqoqqqurix2GmVmnIqkmIqoa2+cZ6XaSVEM2W7yg2LGYmVnxOJFup/R1k61IegLo0aD4tIio7ZiozMysozmRtqGI+FSxYzAzs47lu3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWZdzHOXHVfsEIrGM1IzM7McnEjNzMxycCI1MzPLwYm0lSSdLmmRpIWSbpV0gqQnJC2Q9AdJe0nqJunPkvqkY7pJ+oukPunn15Lmp5+DU51Jkm6W9KCkZyWdn8orJS2T9FNJSyT9XtL70r59Jc2SVCPpEUkDizcyZmalyYm0FSQNAi4GjoiIocDXgEeBgyJiONlLtb8VEZuB28heug1wFLAwItYAVwM/joiRwMnAzwq6GAh8FjgQ+J6kslQ+ALg+IgYBb6TjACYDE9KbaC4Ebmgi7vGSqiVVb1pXl3sczMxsC9+12zpHANMj4hWAiHhN0hDgTkkVwM7AilT3ZuAe4CrgLOCWVH4UsJ+k+jZ3k9Qrbc+MiA3ABkkvA3ul8hUR8XTargEq0zGjgekFbTV8hRspzslkSZceFQP8JnczszbkRJrftcCVEXGvpMOBSQAR8YKklyQdQTbDrJ+ddiObwa4vbCQlww0FRZvY8ufTsPx9qZ03ImJYm56NmZm1ipd2W2cOMEbSHgCSdgfKgVVp/xkN6v+MbIl3ekRsSmW/BybUV5C0XYkwIt4EVkgak9qRpKHb05aZmW0/J9JWiIglwKXAQ5IWAleSzUCnS6oBXmlwyL1AL7Ys6wKcD1SlG5aWAufkCGkccHaKZQlwYo62zMxsOyjCl8zai6QqshuLPl3sWOr1qBgQFWdcVewwzKyL6epPNpJUExFVje3zNdJ2ImkicC5bro3uEIb0Lae6i/+FNzPrSF7abScRcVlEfCQiHi12LGZm1n6cSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvAjAktM7ao6KifOLHYYZlYCuvrzd+t5RmpmZpaDE2mRSaqUtDhtHy7pvrT9+fTgezMz24F5aXcHFRH3kr3P1MzMdmCekeYkaVdJMyUtlLRY0lhJIyU9nsqelNQ7zTwfkfRU+hm9jXbPlHRd2q6UNCe9DPwBSfuk8imSrkl9PSvplI44ZzMz28Iz0vyOAV6MiOMAJJUDC4CxETFf0m7A34GXgaMjYr2kAcCvgEZfEtuIa4GpETFV0lnANcBJaV8FcAgwkGwGO6PhwZLGA+MBuu/WZ/vO0szMGuUZaX61wNGSLpf0aWAfYHVEzAeIiDcj4h2gDPippFpgOrBfK/oYBfwybd9Kljjr3R0RmyNiKbBXYwdHxOSIqIqIqu67lLfq5MzMrHmekeYUEc9IOgA4FrgEmNNE1X8HXgKGkv0HZn0bhbChYFtt1KaZmbWQZ6Q5SfowsC4ibgOuAD4FVEgamfb3lrQTUE42U90MnAZ0b0U3jwNfTNvjgEfaKn4zM8vHM9L8hgBXSNoMbATOJZsZXivpfWTXR48CbgB+Lel0YBbwdiv6mADcIumbwBrgK20Yv5mZ5aCIKHYM1oF6VAyIijOuKnYYZlYCutKTjSTVRESjN4h6RlpihvQtp7oL/eU2Mys2XyM1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBTzYqMbWr6qicOLPYYZiZdaj2fFyhZ6RmZmY5OJGamZnl4ETaSUg6U9J1afuc9Do2MzMrMl8j7QTSi8HfFRE3FSsWMzPbmhNpB5L0XeDLZC/nfgGoAeqA8cDOwF+A0yJinaQpwHpgOPAYsKignUnA2oj4kaSPATcBfYBNwJiI+GtHnZOZWanz0m4HkTQSOBkYCnwOqH9B7G8iYmREDAWWAWcXHNYPGB0R32im6duB69Pxo4HVjfQ9XlK1pOpN6+ra4GzMzKyeZ6Qd52DgnohYD6yX9NtUPljSJcD7gV7A7IJjpkfEpqYalNQb6BsRdwGktt8jIiYDkwF6VAyI3GdiZmbv8oy0+KYA50XEEOD7QM+CfW8XJSIzM2sxJ9KO8xhwgqSeknoBx6fy3sBqSWXAuNY0GBFvASslnQQgqYekXdoyaDMza54TaQeJiPnAvWQ3Df0OqCW70ei7wBNkifZP29H0acD5khYBjwMfapOAzcysRRThS2YdRVKviFibZo0PA+Mj4qmOjKGqqiqqq6s7skszs05PUk1EVDW2zzcbdazJkvYjuw46taOTqJmZtT0n0g4UEV8qdgxmZta2fI3UzMwsBydSMzOzHJxIzczMcvBduyVG0lvA8mLHsQPZE3il2EHsQDweW3gstlbq4/GRiOjT2A7fbFR6ljd1C3cpklTt8djC47GFx2JrHo+meWnXzMwsBydSMzOzHJxIS8/kYgewg/F4bM3jsYXHYmsejyb4ZiMzM7McPCM1MzPLwYnUzMwsByfSEiLpGEnLJf1F0sRix9MRJN0s6WVJiwvKdpd0v6Q/p98fSOWSdE0an0WSDihe5G1P0t6S5kpaKmmJpK+l8pIbj/Re4CclLUxj8f1U3l/SE+mc75S0cyrvkT7/Je2vLLtjiJIAAALmSURBVGb87UVSd0kLJN2XPpf0eLSUE2mJkNQduB74HLAf8C/pTTRd3RTgmAZlE4EHImIA8ED6DNnYDEg/44EbOyjGjvIOcEFE7AccBPxb+jtQiuOxATgiIoYCw4BjJB0EXA78OCI+BrwOnJ3qnw28nsp/nOp1RV8DlhV8LvXxaBEn0tJxIPCXiHg2Iv4B3AGcWOSY2l1EPAy81qD4RGBq2p4KnFRQ/ovI/BF4v6SKjom0/UXE6vpX90XEW2T/YPalBMcjndPa9LEs/QRwBDAjlTcci/oxmgEcKUkdFG6HkNQPOA74WfosSng8WsOJtHT0BV4o+LwylZWivSJiddr+G7BX2i6ZMUpLccOBJyjR8UjLmE8DLwP3A38F3oiId1KVwvN9dyzS/jpgj46NuN1dBXwL2Jw+70Fpj0eLOZFaSYvs+18l9R0wSb2AXwNfj4g3C/eV0nhExKaIGAb0I1uxGVjkkIpG0vHAyxFRU+xYOiMn0tKxCti74HO/VFaKXqpfoky/X07lXX6MJJWRJdHbI+I3qbhkxwMgIt4A5gKjyJav659BXni+745F2l8OvNrBobang4HPS3qO7LLPEcDVlO54tIoTaemYDwxId+HtDHwRuLfIMRXLvcAZafsM4J6C8tPT3aoHAXUFS56dXrqG9XNgWURcWbCr5MZDUh9J70/b7wOOJrtmPBc4JVVrOBb1Y3QKMCe60NNsIuI/IqJfRFSS/dswJyLGUaLj0Vp+slEJkXQs2XWQ7sDNEXFpkUNqd5J+BRxO9gqol4DvAXcD04B9gOeBUyPitZRoriO7y3cd8JWIqC5G3O1B0iHAI0AtW66DfYfsOmlJjYek/clululONqGYFhH/KemjZDOy3YEFwJcjYoOknsCtZNeVXwO+GBHPFif69iXpcODCiDje49EyTqRmZmY5eGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHL4Hx9S2FkSapv/AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "korean_ingredient_df = create_ingredient_df(korean_df)\r\n", + "korean_ingredient_df.head(10).plot.barh()" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    00000000000...0000000000
                                                    11000000000...0000000000
                                                    20000000000...0000000000
                                                    30000000000...0000000000
                                                    40000000000...0000000010
                                                    \n

                                                    5 rows × 380 columns

                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 15 + } + ], + "source": [ + "feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1)\n", + "labels_df = df.cuisine #.unique()\n", + "feature_df.head()\n" + ] + }, + { + "source": [ + "SMOTE 오버샘플링을 사용하여 데이터를 가장 높은 클래스에 맞게 균형을 맞추세요. 자세한 내용은 여기를 참조하세요: https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "oversample = SMOTE()\n", + "transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "new label count: korean 799\nchinese 799\njapanese 799\nindian 799\nthai 799\nName: cuisine, dtype: int64\nold label count: korean 799\nindian 598\nchinese 442\njapanese 320\nthai 289\nName: cuisine, dtype: int64\n" + ] + } + ], + "source": [ + "print(f'new label count: {transformed_label_df.value_counts()}')\r\n", + "print(f'old label count: {df.cuisine.value_counts()}')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    00000000000...0000000000
                                                    11000000000...0000000000
                                                    20000000000...0000000000
                                                    30000000000...0000000000
                                                    40000000000...0000000010
                                                    \n

                                                    5 rows × 380 columns

                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "transformed_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy \\\n", + "0 indian 0 0 0 0 0 0 \n", + "1 indian 1 0 0 0 0 0 \n", + "2 indian 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 thai 0 0 0 0 0 0 \n", + "3991 thai 0 0 0 0 0 0 \n", + "3992 thai 0 0 0 0 0 0 \n", + "3993 thai 0 0 0 0 0 0 \n", + "3994 thai 0 0 0 0 0 0 \n", + "\n", + " apricot armagnac artemisia ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 ... 0 0 0 \n", + "3991 0 0 0 ... 0 0 0 \n", + "3992 0 0 0 ... 0 0 0 \n", + "3993 0 0 0 ... 0 0 0 \n", + "3994 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 0 0 0 0 \n", + "3991 0 0 0 0 0 0 0 \n", + "3992 0 0 0 0 0 0 0 \n", + "3993 0 0 0 0 0 0 0 \n", + "3994 0 0 0 0 0 0 0 \n", + "\n", + "[3995 rows x 381 columns]" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisia...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    0indian000000000...0000000000
                                                    1indian100000000...0000000000
                                                    2indian000000000...0000000000
                                                    3indian000000000...0000000000
                                                    4indian000000000...0000000010
                                                    ..................................................................
                                                    3990thai000000000...0000000000
                                                    3991thai000000000...0000000000
                                                    3992thai000000000...0000000000
                                                    3993thai000000000...0000000000
                                                    3994thai000000000...0000000000
                                                    \n

                                                    3995 rows × 381 columns

                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "# export transformed data to new df for classification\n", + "transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer')\n", + "transformed_df" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 3995 entries, 0 to 3994\nColumns: 381 entries, cuisine to zucchini\ndtypes: int64(380), object(1)\nmemory usage: 11.6+ MB\n" + ] + } + ], + "source": [ + "transformed_df.info()" + ] + }, + { + "source": [ + "파일을 저장하여 나중에 사용하십시오\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "transformed_df.to_csv(\"../../data/cleaned_cuisines.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생할 수 있는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "1da12ed6d238756959b8de9cac2a35a2", + "translation_date": "2025-09-04T02:41:06+00:00", + "source_file": "4-Classification/1-Introduction/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/ko/4-Classification/2-Classifiers-1/README.md b/translations/ko/4-Classification/2-Classifiers-1/README.md new file mode 100644 index 000000000..b0d57c10b --- /dev/null +++ b/translations/ko/4-Classification/2-Classifiers-1/README.md @@ -0,0 +1,253 @@ + +# 요리 분류기 1 + +이 강의에서는 이전 강의에서 저장한 균형 잡히고 깨끗한 요리 데이터셋을 사용하게 됩니다. + +이 데이터셋을 다양한 분류기와 함께 사용하여 _재료 그룹을 기반으로 특정 국가의 요리를 예측_합니다. 이를 통해 분류 작업에 알고리즘을 활용하는 방법에 대해 더 깊이 배우게 될 것입니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/) +# 준비 + +[Lesson 1](../1-Introduction/README.md)을 완료했다고 가정하고, _cleaned_cuisines.csv_ 파일이 이 네 개의 강의를 위해 루트 `/data` 폴더에 존재하는지 확인하세요. + +## 연습 - 국가별 요리 예측하기 + +1. 이번 강의의 _notebook.ipynb_ 폴더에서 Pandas 라이브러리와 함께 해당 파일을 가져옵니다: + + ```python + import pandas as pd + cuisines_df = pd.read_csv("../data/cleaned_cuisines.csv") + cuisines_df.head() + ``` + + 데이터는 다음과 같이 보입니다: + +| | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | +| 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + + +1. 이제 몇 가지 추가 라이브러리를 가져옵니다: + + ```python + from sklearn.linear_model import LogisticRegression + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + from sklearn.svm import SVC + import numpy as np + ``` + +1. X와 y 좌표를 두 개의 데이터프레임으로 나누어 훈련합니다. `cuisine`은 레이블 데이터프레임이 될 수 있습니다: + + ```python + cuisines_label_df = cuisines_df['cuisine'] + cuisines_label_df.head() + ``` + + 데이터는 다음과 같이 보일 것입니다: + + ```output + 0 indian + 1 indian + 2 indian + 3 indian + 4 indian + Name: cuisine, dtype: object + ``` + +1. `Unnamed: 0` 열과 `cuisine` 열을 `drop()`을 사용하여 제거합니다. 나머지 데이터를 훈련 가능한 특징으로 저장하세요: + + ```python + cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) + cuisines_feature_df.head() + ``` + + 특징 데이터는 다음과 같이 보일 것입니다: + +| | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| ---: | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: | +| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | + +이제 모델을 훈련할 준비가 되었습니다! + +## 분류기 선택하기 + +데이터가 깨끗하고 훈련 준비가 되었으니, 어떤 알고리즘을 사용할지 결정해야 합니다. + +Scikit-learn은 분류를 지도 학습(Supervised Learning)으로 분류하며, 이 범주에서 다양한 분류 방법을 제공합니다. [다양한 방법](https://scikit-learn.org/stable/supervised_learning.html)은 처음 보면 꽤 혼란스러울 수 있습니다. 다음 방법들은 모두 분류 기술을 포함합니다: + +- 선형 모델(Linear Models) +- 서포트 벡터 머신(Support Vector Machines) +- 확률적 경사 하강법(Stochastic Gradient Descent) +- 최근접 이웃(Nearest Neighbors) +- 가우시안 프로세스(Gaussian Processes) +- 결정 트리(Decision Trees) +- 앙상블 방법(Ensemble methods, 투표 분류기 포함) +- 다중 클래스 및 다중 출력 알고리즘(다중 클래스 및 다중 레이블 분류, 다중 클래스-다중 출력 분류) + +> [신경망을 사용하여 데이터를 분류](https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification)할 수도 있지만, 이는 이번 강의의 범위를 벗어납니다. + +### 어떤 분류기를 선택할까? + +그렇다면 어떤 분류기를 선택해야 할까요? 종종 여러 분류기를 실행해보고 좋은 결과를 찾는 것이 테스트 방법이 될 수 있습니다. Scikit-learn은 KNeighbors, SVC 두 가지 방식, GaussianProcessClassifier, DecisionTreeClassifier, RandomForestClassifier, MLPClassifier, AdaBoostClassifier, GaussianNB 및 QuadraticDiscriminationAnalysis를 비교한 [비교 자료](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html)를 제공합니다. 결과는 시각화되어 있습니다: + +![분류기 비교](../../../../translated_images/comparison.edfab56193a85e7fdecbeaa1b1f8c99e94adbf7178bed0de902090cf93d6734f.ko.png) +> Scikit-learn 문서에서 생성된 플롯 + +> AutoML은 클라우드에서 이러한 비교를 실행하여 데이터에 가장 적합한 알고리즘을 선택할 수 있도록 문제를 깔끔하게 해결합니다. [여기](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)에서 시도해보세요. + +### 더 나은 접근법 + +무작위로 추측하는 것보다 더 나은 방법은 이 다운로드 가능한 [ML Cheat Sheet](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott)를 따르는 것입니다. 여기에서 다중 클래스 문제에 대해 몇 가지 선택지가 있음을 알 수 있습니다: + +![다중 클래스 문제를 위한 치트 시트](../../../../translated_images/cheatsheet.07a475ea444d22234cb8907a3826df5bdd1953efec94bd18e4496f36ff60624a.ko.png) +> Microsoft의 알고리즘 치트 시트의 일부로, 다중 클래스 분류 옵션을 설명합니다. + +✅ 이 치트 시트를 다운로드하여 출력하고 벽에 걸어두세요! + +### 추론 + +제약 조건을 고려하여 다양한 접근 방식을 추론해 봅시다: + +- **신경망은 너무 무겁다**. 깨끗하지만 최소한의 데이터셋과 로컬 노트북을 통해 훈련을 실행한다는 점을 고려할 때, 신경망은 이 작업에 너무 무겁습니다. +- **이진 분류기는 사용하지 않는다**. 이진 분류기를 사용하지 않으므로 one-vs-all은 제외됩니다. +- **결정 트리 또는 로지스틱 회귀가 적합할 수 있다**. 결정 트리가 적합할 수 있으며, 다중 클래스 데이터에 대해 로지스틱 회귀도 적합할 수 있습니다. +- **다중 클래스 부스팅 결정 트리는 다른 문제를 해결한다**. 다중 클래스 부스팅 결정 트리는 비모수적 작업, 예를 들어 순위를 생성하는 작업에 가장 적합하므로 우리에게는 적합하지 않습니다. + +### Scikit-learn 사용하기 + +우리는 Scikit-learn을 사용하여 데이터를 분석할 것입니다. 그러나 Scikit-learn에서 로지스틱 회귀를 사용하는 방법은 여러 가지가 있습니다. 전달해야 할 [매개변수](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression)를 확인하세요. + +본질적으로 두 가지 중요한 매개변수 - `multi_class`와 `solver` - 를 지정해야 합니다. Scikit-learn에 로지스틱 회귀를 수행하도록 요청할 때 이 두 가지가 필요합니다. `multi_class` 값은 특정 동작을 적용합니다. solver 값은 사용할 알고리즘을 나타냅니다. 모든 solver가 모든 `multi_class` 값과 함께 사용할 수 있는 것은 아닙니다. + +문서에 따르면, 다중 클래스의 경우 훈련 알고리즘은: + +- **one-vs-rest (OvR) 방식**을 사용합니다. `multi_class` 옵션이 `ovr`로 설정된 경우 +- **교차 엔트로피 손실**을 사용합니다. `multi_class` 옵션이 `multinomial`로 설정된 경우 (`multinomial` 옵션은 현재 ‘lbfgs’, ‘sag’, ‘saga’, ‘newton-cg’ solver에서만 지원됩니다). + +> 🎓 여기서 '방식'은 'ovr'(one-vs-rest) 또는 'multinomial'일 수 있습니다. 로지스틱 회귀는 본래 이진 분류를 지원하도록 설계되었기 때문에, 이러한 방식은 다중 클래스 분류 작업을 더 잘 처리할 수 있도록 합니다. [출처](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/) + +> 🎓 'solver'는 "최적화 문제에서 사용할 알고리즘"으로 정의됩니다. [출처](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression). + +Scikit-learn은 solver가 다양한 데이터 구조에서 발생하는 문제를 어떻게 처리하는지 설명하는 다음 표를 제공합니다: + +![solver](../../../../translated_images/solvers.5fc648618529e627dfac29b917b3ccabda4b45ee8ed41b0acb1ce1441e8d1ef1.ko.png) + +## 연습 - 데이터 나누기 + +이전 강의에서 배운 로지스틱 회귀를 첫 번째 훈련 시도로 사용할 수 있습니다. +`train_test_split()`을 호출하여 데이터를 훈련 및 테스트 그룹으로 나누세요: + +```python +X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) +``` + +## 연습 - 로지스틱 회귀 적용하기 + +다중 클래스 사례를 사용하고 있으므로 어떤 _방식_을 사용할지와 어떤 _solver_를 설정할지 선택해야 합니다. 다중 클래스 설정과 **liblinear** solver를 사용하여 LogisticRegression을 훈련하세요. + +1. `multi_class`를 `ovr`로 설정하고 solver를 `liblinear`로 설정하여 로지스틱 회귀를 생성하세요: + + ```python + lr = LogisticRegression(multi_class='ovr',solver='liblinear') + model = lr.fit(X_train, np.ravel(y_train)) + + accuracy = model.score(X_test, y_test) + print ("Accuracy is {}".format(accuracy)) + ``` + + ✅ 기본값으로 자주 설정되는 `lbfgs`와 같은 다른 solver를 시도해보세요. +> 참고로, 데이터가 필요할 때 Pandas [`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html) 함수를 사용하여 데이터를 평탄화하세요. +정확도가 **80%** 이상으로 좋습니다! + +1. 데이터의 한 행(#50)을 테스트하여 이 모델의 작동을 확인할 수 있습니다: + + ```python + print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}') + print(f'cuisine: {y_test.iloc[50]}') + ``` + + 결과가 출력됩니다: + + ```output + ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object') + cuisine: indian + ``` + + ✅ 다른 행 번호를 시도하고 결과를 확인해 보세요. + +1. 더 깊이 탐구하여 이 예측의 정확도를 확인할 수 있습니다: + + ```python + test= X_test.iloc[50].values.reshape(-1, 1).T + proba = model.predict_proba(test) + classes = model.classes_ + resultdf = pd.DataFrame(data=proba, columns=classes) + + topPrediction = resultdf.T.sort_values(by=[0], ascending = [False]) + topPrediction.head() + ``` + + 결과가 출력됩니다 - 인도 요리가 가장 높은 확률로 예측되었습니다: + + | | 0 | + | -------: | -------: | + | indian | 0.715851 | + | chinese | 0.229475 | + | japanese | 0.029763 | + | korean | 0.017277 | + | thai | 0.007634 | + + ✅ 모델이 왜 이 요리가 인도 요리라고 확신하는지 설명할 수 있나요? + +1. 회귀 수업에서 했던 것처럼 분류 보고서를 출력하여 더 많은 세부 정보를 확인하세요: + + ```python + y_pred = model.predict(X_test) + print(classification_report(y_test,y_pred)) + ``` + + | | precision | recall | f1-score | support | + | ------------ | --------- | ------ | -------- | ------- | + | chinese | 0.73 | 0.71 | 0.72 | 229 | + | indian | 0.91 | 0.93 | 0.92 | 254 | + | japanese | 0.70 | 0.75 | 0.72 | 220 | + | korean | 0.86 | 0.76 | 0.81 | 242 | + | thai | 0.79 | 0.85 | 0.82 | 254 | + | accuracy | 0.80 | 1199 | | | + | macro avg | 0.80 | 0.80 | 0.80 | 1199 | + | weighted avg | 0.80 | 0.80 | 0.80 | 1199 | + +## 🚀도전 과제 + +이번 수업에서는 정리된 데이터를 사용하여 재료 목록을 기반으로 국가별 요리를 예측하는 머신 러닝 모델을 구축했습니다. Scikit-learn이 제공하는 다양한 데이터 분류 옵션을 읽어보며 시간을 가져보세요. 'solver' 개념을 더 깊이 탐구하여 내부적으로 어떤 일이 일어나는지 이해해 보세요. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/22/) + +## 복습 및 자기 학습 + +[이 강의](https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf)에서 로지스틱 회귀의 수학적 배경을 조금 더 깊이 탐구해 보세요. +## 과제 + +[solver에 대해 공부하기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/4-Classification/2-Classifiers-1/assignment.md b/translations/ko/4-Classification/2-Classifiers-1/assignment.md new file mode 100644 index 000000000..c4ec7bbac --- /dev/null +++ b/translations/ko/4-Classification/2-Classifiers-1/assignment.md @@ -0,0 +1,24 @@ + +# 해결 방법 연구하기 +## 지침 + +이 수업에서는 알고리즘과 머신 러닝 프로세스를 결합하여 정확한 모델을 생성하는 다양한 해결 방법에 대해 배웠습니다. 수업에서 언급된 해결 방법들을 살펴보고 두 가지를 선택하세요. 자신의 말로 이 두 해결 방법을 비교하고 대조해 보세요. 이들은 어떤 종류의 문제를 해결하나요? 다양한 데이터 구조와 어떻게 작동하나요? 왜 하나를 다른 것보다 선택할 수 있을까요? + +## 평가 기준 + +| 기준 | 우수 | 적절 | 개선 필요 | +| --------- | --------------------------------------------------------------------------------------------- | -------------------------------------------- | ----------------------------- | +| | 두 해결 방법 각각에 대해 비교하며 깊이 있는 두 개의 단락으로 작성된 .doc 파일이 제출됨 | 하나의 단락만 작성된 .doc 파일이 제출됨 | 과제가 불완전함 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/4-Classification/2-Classifiers-1/notebook.ipynb b/translations/ko/4-Classification/2-Classifiers-1/notebook.ipynb new file mode 100644 index 000000000..4bebf1199 --- /dev/null +++ b/translations/ko/4-Classification/2-Classifiers-1/notebook.ipynb @@ -0,0 +1,41 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "68829b06b4dcd512d3327849191f4d7f", + "translation_date": "2025-09-04T02:22:47+00:00", + "source_file": "4-Classification/2-Classifiers-1/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# 분류 모델 구축\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보에 대해서는 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/4-Classification/2-Classifiers-1/solution/Julia/README.md b/translations/ko/4-Classification/2-Classifiers-1/solution/Julia/README.md new file mode 100644 index 000000000..006fbde46 --- /dev/null +++ b/translations/ko/4-Classification/2-Classifiers-1/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb b/translations/ko/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb new file mode 100644 index 000000000..9dac923ca --- /dev/null +++ b/translations/ko/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb @@ -0,0 +1,1302 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_11-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "6ea6a5171b1b99b7b5a55f7469c048d2", + "translation_date": "2025-09-04T02:26:52+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb", + "language_code": "ko" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# 분류 모델 구축: 맛있는 아시아 및 인도 요리\n" + ], + "metadata": { + "id": "zs2woWv_HoE8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 요리 분류기 1\n", + "\n", + "이번 강의에서는 *재료 그룹을 기반으로 특정 국가의 요리를 예측*하는 다양한 분류기를 탐구합니다. 이를 통해 분류 작업에 알고리즘을 활용하는 방법에 대해 더 깊이 배워볼 것입니다.\n", + "\n", + "### [**강의 전 퀴즈**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/)\n", + "\n", + "### **준비**\n", + "\n", + "이번 강의는 [이전 강의](https://github.com/microsoft/ML-For-Beginners/blob/main/4-Classification/1-Introduction/solution/lesson_10-R.ipynb)를 기반으로 진행됩니다. 이전 강의에서는:\n", + "\n", + "- 아시아와 인도의 다양한 요리 데이터를 사용하여 분류에 대해 간단히 소개했습니다. 😋\n", + "\n", + "- 데이터를 준비하고 정리하기 위해 [dplyr 동사](https://dplyr.tidyverse.org/)를 탐구했습니다.\n", + "\n", + "- ggplot2를 사용하여 아름다운 시각화를 만들었습니다.\n", + "\n", + "- [recipes](https://recipes.tidymodels.org/articles/Simple_Example.html)를 사용하여 불균형 데이터를 전처리하는 방법을 시연했습니다.\n", + "\n", + "- `prep`과 `bake`를 사용하여 레시피가 의도한 대로 작동하는지 확인하는 방법을 보여주었습니다.\n", + "\n", + "#### **사전 요구 사항**\n", + "\n", + "이번 강의에서는 데이터를 정리하고 준비하며 시각화하기 위해 다음 패키지가 필요합니다:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/)는 데이터 과학을 더 빠르고, 쉽고, 재미있게 만들어주는 [R 패키지 모음](https://www.tidyverse.org/packages)입니다.\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 프레임워크는 모델링과 머신러닝을 위한 [패키지 모음](https://www.tidymodels.org/packages/)입니다.\n", + "\n", + "- `themis`: [themis 패키지](https://themis.tidymodels.org/)는 불균형 데이터를 처리하기 위한 추가 레시피 단계를 제공합니다.\n", + "\n", + "- `nnet`: [nnet 패키지](https://cran.r-project.org/web/packages/nnet/nnet.pdf)는 단일 은닉층을 가진 피드포워드 신경망과 다항 로지스틱 회귀 모델을 추정하는 기능을 제공합니다.\n", + "\n", + "다음과 같이 패키지를 설치할 수 있습니다:\n" + ], + "metadata": { + "id": "iDFOb3ebHwQC" + } + }, + { + "cell_type": "markdown", + "source": [ + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "또는 아래 스크립트는 이 모듈을 완료하는 데 필요한 패키지가 설치되어 있는지 확인하고, 누락된 경우 이를 설치합니다.\n" + ], + "metadata": { + "id": "4V85BGCjII7F" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, themis, here)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "an5NPyyKIKNR", + "outputId": "834d5e74-f4b8-49f9-8ab5-4c52ff2d7bc8" + } + }, + { + "cell_type": "markdown", + "source": [ + "이제 바로 시작해봅시다!\n", + "\n", + "## 1. 데이터를 학습용 세트와 테스트 세트로 나누기\n", + "\n", + "이전 강의에서 다뤘던 몇 가지 단계를 선택하여 시작해봅시다.\n", + "\n", + "### 서로 다른 요리 간에 혼란을 일으키는 가장 흔한 재료들을 제거하기 위해 `dplyr::select()`를 사용하세요.\n", + "\n", + "모두가 쌀, 마늘, 생강을 좋아하죠!\n" + ], + "metadata": { + "id": "0ax9GQLBINVv" + } + }, + { + "cell_type": "code", + "execution_count": 3, + "source": [ + "# Load the original cuisines data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger)) %>%\r\n", + " # Encode cuisine column as categorical\r\n", + " mutate(cuisine = factor(cuisine))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Display distribution of cuisines\r\n", + "df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "New names:\n", + "* `` -> ...1\n", + "\n", + "\u001b[1m\u001b[1mRows: \u001b[1m\u001b[22m\u001b[34m\u001b[34m2448\u001b[34m\u001b[39m \u001b[1m\u001b[1mColumns: \u001b[1m\u001b[22m\u001b[34m\u001b[34m385\u001b[34m\u001b[39m\n", + "\n", + "\u001b[36m──\u001b[39m \u001b[1m\u001b[1mColumn specification\u001b[1m\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", + "\u001b[1mDelimiter:\u001b[22m \",\"\n", + "\u001b[31mchr\u001b[39m (1): cuisine\n", + "\u001b[32mdbl\u001b[39m (384): ...1, almond, angelica, anise, anise_seed, apple, apple_brandy, a...\n", + "\n", + "\n", + "\u001b[36mℹ\u001b[39m Use \u001b[30m\u001b[47m\u001b[30m\u001b[47m`spec()`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to retrieve the full column specification for this data.\n", + "\u001b[36mℹ\u001b[39m Specify the column types or set \u001b[30m\u001b[47m\u001b[30m\u001b[47m`show_col_types = FALSE`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to quiet this message.\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 indian 0 0 0 0 0 0 0 0 \n", + "2 indian 1 0 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 0 0 \n", + "5 indian 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 0 0 \n", + "2 0 ⋯ 0 0 0 0 0 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 1 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                                    A tibble: 5 × 381
                                                    cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    <fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
                                                    indian0000000000000000000
                                                    indian1000000000000000000
                                                    indian0000000000000000000
                                                    indian0000000000000000000
                                                    indian0000000000000000010
                                                    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 799\n", + "2 indian 598\n", + "3 chinese 442\n", + "4 japanese 320\n", + "5 thai 289" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 799 |\n", + "| indian | 598 |\n", + "| chinese | 442 |\n", + "| japanese | 320 |\n", + "| thai | 289 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 799\\\\\n", + "\t indian & 598\\\\\n", + "\t chinese & 442\\\\\n", + "\t japanese & 320\\\\\n", + "\t thai & 289\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                                    A tibble: 5 × 2
                                                    cuisinen
                                                    <fct><int>
                                                    korean 799
                                                    indian 598
                                                    chinese 442
                                                    japanese320
                                                    thai 289
                                                    \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 735 + }, + "id": "jhCrrH22IWVR", + "outputId": "d444a85c-1d8b-485f-bc4f-8be2e8f8217c" + } + }, + { + "cell_type": "markdown", + "source": [ + "이제 데이터를 70%는 학습용으로, 30%는 테스트용으로 나누어 봅시다. 또한 데이터를 나눌 때 `계층화` 기법을 적용하여 `각 요리의 비율`이 학습 및 검증 데이터셋에서 유지되도록 할 것입니다.\n", + "\n", + "[rsample](https://rsample.tidymodels.org/)은 Tidymodels의 패키지로, 효율적인 데이터 분할 및 재샘플링을 위한 인프라를 제공합니다:\n" + ], + "metadata": { + "id": "AYTjVyajIdny" + } + }, + { + "cell_type": "code", + "execution_count": 4, + "source": [ + "# Load the core Tidymodels packages into R session\r\n", + "library(tidymodels)\r\n", + "\r\n", + "# Create split specification\r\n", + "set.seed(2056)\r\n", + "cuisines_split <- initial_split(data = df_select,\r\n", + " strata = cuisine,\r\n", + " prop = 0.7)\r\n", + "\r\n", + "# Extract the data in each split\r\n", + "cuisines_train <- training(cuisines_split)\r\n", + "cuisines_test <- testing(cuisines_split)\r\n", + "\r\n", + "# Print the number of cases in each split\r\n", + "cat(\"Training cases: \", nrow(cuisines_train), \"\\n\",\r\n", + " \"Test cases: \", nrow(cuisines_test), sep = \"\")\r\n", + "\r\n", + "# Display the first few rows of the training set\r\n", + "cuisines_train %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Display distribution of cuisines in the training set\r\n", + "cuisines_train %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training cases: 1712\n", + "Test cases: 736" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 chinese 0 0 0 0 0 0 0 0 \n", + "2 chinese 0 0 0 0 0 0 0 0 \n", + "3 chinese 0 0 0 0 0 0 0 0 \n", + "4 chinese 0 0 0 0 0 0 0 0 \n", + "5 chinese 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 1 0 \n", + "2 0 ⋯ 0 0 0 0 1 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 0 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                                    A tibble: 5 × 381
                                                    cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    <fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
                                                    chinese0000000000000100000
                                                    chinese0000000000000100000
                                                    chinese0000000000000000000
                                                    chinese0000000000000000000
                                                    chinese0000000000000000000
                                                    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 559\n", + "2 indian 418\n", + "3 chinese 309\n", + "4 japanese 224\n", + "5 thai 202" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 559 |\n", + "| indian | 418 |\n", + "| chinese | 309 |\n", + "| japanese | 224 |\n", + "| thai | 202 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 559\\\\\n", + "\t indian & 418\\\\\n", + "\t chinese & 309\\\\\n", + "\t japanese & 224\\\\\n", + "\t thai & 202\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                                    A tibble: 5 × 2
                                                    cuisinen
                                                    <fct><int>
                                                    korean 559
                                                    indian 418
                                                    chinese 309
                                                    japanese224
                                                    thai 202
                                                    \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 535 + }, + "id": "w5FWIkEiIjdN", + "outputId": "2e195fd9-1a8f-4b91-9573-cce5582242df" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. 불균형 데이터 처리하기\n", + "\n", + "원본 데이터 세트와 학습 데이터 세트를 살펴보면, 요리 종류의 수가 상당히 불균형하게 분포되어 있다는 것을 알 수 있습니다. 한국 요리는 태국 요리의 *거의* 3배에 달합니다. 불균형 데이터는 모델 성능에 부정적인 영향을 미치는 경우가 많습니다. 많은 모델은 관측치의 수가 동일할 때 가장 잘 작동하며, 따라서 불균형 데이터에서는 어려움을 겪는 경향이 있습니다.\n", + "\n", + "불균형 데이터 세트를 처리하는 주요 방법은 두 가지가 있습니다:\n", + "\n", + "- 소수 클래스의 관측치를 추가하는 방법: `오버샘플링` 예를 들어, SMOTE 알고리즘을 사용하여 소수 클래스의 새로운 예제를 이들의 가까운 이웃을 기반으로 합성하여 생성하는 방식입니다.\n", + "\n", + "- 다수 클래스의 관측치를 제거하는 방법: `언더샘플링`\n", + "\n", + "이전 강의에서 우리는 `recipe`를 사용하여 불균형 데이터 세트를 처리하는 방법을 시연했습니다. `recipe`는 데이터 분석을 준비하기 위해 데이터 세트에 어떤 단계를 적용해야 하는지를 설명하는 청사진으로 생각할 수 있습니다. 우리의 경우, `training set`에서 요리 수의 분포를 균등하게 맞추고자 합니다. 바로 시작해 봅시다.\n" + ], + "metadata": { + "id": "daBi9qJNIwqW" + } + }, + { + "cell_type": "code", + "execution_count": 5, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing training data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "# Print recipe\r\n", + "cuisines_recipe" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Data Recipe\n", + "\n", + "Inputs:\n", + "\n", + " role #variables\n", + " outcome 1\n", + " predictor 380\n", + "\n", + "Operations:\n", + "\n", + "SMOTE based on cuisine" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 200 + }, + "id": "Az6LFBGxI1X0", + "outputId": "29d71d85-64b0-4e62-871e-bcd5398573b6" + } + }, + { + "cell_type": "markdown", + "source": [ + "이 레시피가 예상대로 작동하는지 확인하려면 (prep과 bake를 사용하여) 직접 확인해보세요. 모든 요리 레이블에 `559`개의 관측값이 있는지 확인하면 됩니다.\n", + "\n", + "이 레시피를 모델링을 위한 전처리기로 사용할 예정이므로, `workflow()`를 사용하면 prep과 bake를 모두 자동으로 처리해주기 때문에 레시피를 수동으로 추정할 필요가 없습니다.\n", + "\n", + "이제 모델을 훈련할 준비가 되었습니다 👩‍💻👨‍💻!\n", + "\n", + "## 3. 분류기 선택하기\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    @allison_horst의 작품
                                                    \n" + ], + "metadata": { + "id": "NBL3PqIWJBBB" + } + }, + { + "cell_type": "markdown", + "source": [ + "이제 어떤 알고리즘을 사용할지 결정해야 합니다 🤔.\n", + "\n", + "Tidymodels의 [`parsnip 패키지`](https://parsnip.tidymodels.org/index.html)는 다양한 엔진(패키지)에서 모델을 일관되게 사용할 수 있는 인터페이스를 제공합니다. [모델 유형 및 엔진](https://www.tidymodels.org/find/parsnip/#models)과 해당 [모델 인수](https://www.tidymodels.org/find/parsnip/#model-args)를 탐색하려면 parsnip 문서를 참조하세요. 처음에는 그 다양성이 꽤 혼란스러울 수 있습니다. 예를 들어, 다음 방법들은 모두 분류 기법을 포함합니다:\n", + "\n", + "- C5.0 규칙 기반 분류 모델\n", + "\n", + "- 유연한 판별 모델\n", + "\n", + "- 선형 판별 모델\n", + "\n", + "- 정규화된 판별 모델\n", + "\n", + "- 로지스틱 회귀 모델\n", + "\n", + "- 다항 회귀 모델\n", + "\n", + "- 나이브 베이즈 모델\n", + "\n", + "- 서포트 벡터 머신\n", + "\n", + "- 최근접 이웃\n", + "\n", + "- 의사결정 트리\n", + "\n", + "- 앙상블 방법\n", + "\n", + "- 신경망\n", + "\n", + "목록은 계속됩니다!\n", + "\n", + "### **어떤 분류기를 선택할까?**\n", + "\n", + "그렇다면 어떤 분류기를 선택해야 할까요? 종종 여러 가지를 실행해보고 좋은 결과를 찾는 것이 테스트 방법이 될 수 있습니다.\n", + "\n", + "> AutoML은 클라우드에서 이러한 비교를 실행하여 데이터에 가장 적합한 알고리즘을 선택할 수 있도록 함으로써 이 문제를 깔끔하게 해결합니다. [여기](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)에서 시도해보세요.\n", + "\n", + "또한 분류기 선택은 문제에 따라 달라집니다. 예를 들어, 결과가 `두 개 이상의 클래스`로 분류될 수 있는 경우, 우리 사례처럼 `이진 분류`가 아닌 `다중 클래스 분류 알고리즘`을 사용해야 합니다.\n", + "\n", + "### **더 나은 접근법**\n", + "\n", + "그러나 무작위로 추측하는 것보다 더 나은 방법은 이 다운로드 가능한 [ML 치트 시트](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott)의 아이디어를 따르는 것입니다. 여기에서 우리는 다중 클래스 문제에 대해 몇 가지 선택지가 있다는 것을 발견합니다:\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    Microsoft의 알고리즘 치트 시트의 일부로, 다중 클래스 분류 옵션을 자세히 설명
                                                    \n" + ], + "metadata": { + "id": "a6DLAZ3vJZ14" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **이유**\n", + "\n", + "제약 조건을 고려하여 다양한 접근 방식을 논리적으로 검토해 봅시다:\n", + "\n", + "- **딥 뉴럴 네트워크는 너무 무겁다**. 데이터셋이 깨끗하지만 최소한의 데이터만 있고, 노트북에서 로컬로 학습을 실행하는 상황에서는 딥 뉴럴 네트워크는 이 작업에 비해 지나치게 무겁습니다.\n", + "\n", + "- **이진 분류기는 사용하지 않는다**. 이진 분류기를 사용하지 않으므로 one-vs-all 방식은 제외됩니다.\n", + "\n", + "- **결정 트리나 로지스틱 회귀는 가능하다**. 결정 트리는 가능성이 있으며, 다중 클래스 데이터를 위한 다항 회귀/다중 클래스 로지스틱 회귀도 가능성이 있습니다.\n", + "\n", + "- **다중 클래스 부스팅 결정 트리는 다른 문제를 해결한다**. 다중 클래스 부스팅 결정 트리는 비모수적 작업(예: 순위 생성 작업)에 가장 적합하므로, 우리에게는 적합하지 않습니다.\n", + "\n", + "또한, 일반적으로 앙상블 방법과 같은 복잡한 머신러닝 모델을 시도하기 전에, 가능한 가장 간단한 모델을 구축하여 데이터의 특성을 파악하는 것이 좋습니다. 따라서 이번 학습에서는 `다항 회귀` 모델로 시작하겠습니다.\n", + "\n", + "> 로지스틱 회귀는 결과 변수가 범주형(또는 명목형)일 때 사용하는 기법입니다. 이진 로지스틱 회귀에서는 결과 변수가 두 개이고, 다항 로지스틱 회귀에서는 결과 변수가 두 개 이상입니다. 추가 학습을 원한다면 [고급 회귀 방법](https://bookdown.org/chua/ber642_advanced_regression/multinomial-logistic-regression.html)을 참조하세요.\n", + "\n", + "## 4. 다항 로지스틱 회귀 모델 학습 및 평가\n", + "\n", + "Tidymodels에서 `parsnip::multinom_reg()`는 선형 예측 변수를 사용하여 다항 분포를 통해 다중 클래스 데이터를 예측하는 모델을 정의합니다. 이 모델을 학습시키기 위해 사용할 수 있는 다양한 방법/엔진은 `?multinom_reg()`를 참조하세요.\n", + "\n", + "이번 예제에서는 기본 [nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf) 엔진을 사용하여 다항 회귀 모델을 학습시킬 것입니다.\n", + "\n", + "> `penalty` 값을 다소 임의로 선택했습니다. 이 값을 선택하는 더 나은 방법은 `resampling`과 모델 `튜닝`을 사용하는 것으로, 이는 이후에 다룰 예정입니다.\n", + ">\n", + "> 모델 하이퍼파라미터를 튜닝하는 방법에 대해 더 알고 싶다면 [Tidymodels: 시작하기](https://www.tidymodels.org/start/tuning/)를 참조하세요.\n" + ], + "metadata": { + "id": "gWMsVcbBJemu" + } + }, + { + "cell_type": "code", + "execution_count": 6, + "source": [ + "# Create a multinomial regression model specification\r\n", + "mr_spec <- multinom_reg(penalty = 1) %>% \r\n", + " set_engine(\"nnet\", MaxNWts = 2086) %>% \r\n", + " set_mode(\"classification\")\r\n", + "\r\n", + "# Print model specification\r\n", + "mr_spec" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 166 + }, + "id": "Wq_fcyQiJvfG", + "outputId": "c30449c7-3864-4be7-f810-72a003743e2d" + } + }, + { + "cell_type": "markdown", + "source": [ + "멋져요 🥳! 이제 레시피와 모델 사양을 준비했으니, 이 둘을 하나의 객체로 묶는 방법을 찾아야 합니다. 이 객체는 먼저 데이터를 전처리하고, 전처리된 데이터에 모델을 학습시키며, 추가적으로 후처리 작업도 가능하게 해줍니다. Tidymodels에서는 이 편리한 객체를 [`workflow`](https://workflows.tidymodels.org/)라고 부르며, 여러분의 모델링 구성 요소를 간편하게 담아줍니다! 이는 *Python*에서 *파이프라인(pipelines)*이라고 부르는 것과 유사합니다.\n", + "\n", + "그럼 이제 모든 것을 workflow로 묶어봅시다!📦\n" + ], + "metadata": { + "id": "NlSbzDfgJ0zh" + } + }, + { + "cell_type": "code", + "execution_count": 7, + "source": [ + "# Bundle recipe and model specification\r\n", + "mr_wf <- workflow() %>% \r\n", + " add_recipe(cuisines_recipe) %>% \r\n", + " add_model(mr_spec)\r\n", + "\r\n", + "# Print out workflow\r\n", + "mr_wf" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow ════════════════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 333 + }, + "id": "Sc1TfPA4Ke3_", + "outputId": "82c70013-e431-4e7e-cef6-9fcf8aad4a6c" + } + }, + { + "cell_type": "markdown", + "source": [ + "워크플로 👌👌! **`workflow()`**는 모델과 거의 동일한 방식으로 적합할 수 있습니다. 자, 이제 모델을 훈련할 시간입니다!\n" + ], + "metadata": { + "id": "TNQ8i85aKf9L" + } + }, + { + "cell_type": "code", + "execution_count": 8, + "source": [ + "# Train a multinomial regression model\n", + "mr_fit <- fit(object = mr_wf, data = cuisines_train)\n", + "\n", + "mr_fit" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow [trained] ══════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Call:\n", + "nnet::multinom(formula = ..y ~ ., data = data, decay = ~1, MaxNWts = ~2086, \n", + " trace = FALSE)\n", + "\n", + "Coefficients:\n", + " (Intercept) almond angelica anise anise_seed apple\n", + "indian 0.19723325 0.2409661 0 -5.004955e-05 -0.1657635 -0.05769734\n", + "japanese 0.13961959 -0.6262400 0 -1.169155e-04 -0.4893596 -0.08585717\n", + "korean 0.22377347 -0.1833485 0 -5.560395e-05 -0.2489401 -0.15657804\n", + "thai -0.04336577 -0.6106258 0 4.903828e-04 -0.5782866 0.63451105\n", + " apple_brandy apricot armagnac artemisia artichoke asparagus\n", + "indian 0 0.37042636 0 -0.09122797 0 -0.27181970\n", + "japanese 0 0.28895643 0 -0.12651100 0 0.14054037\n", + "korean 0 -0.07981259 0 0.55756709 0 -0.66979948\n", + "thai 0 -0.33160904 0 -0.10725182 0 -0.02602152\n", + " avocado bacon baked_potato balm banana barley\n", + "indian -0.46624197 0.16008055 0 0 -0.2838796 0.2230625\n", + "japanese 0.90341344 0.02932727 0 0 -0.4142787 2.0953906\n", + "korean -0.06925382 -0.35804134 0 0 -0.2686963 -0.7233404\n", + "thai -0.21473955 -0.75594439 0 0 0.6784880 -0.4363320\n", + " bartlett_pear basil bay bean beech\n", + "indian 0 -0.7128756 0.1011587 -0.8777275 -0.0004380795\n", + "japanese 0 0.1288697 0.9425626 -0.2380748 0.3373437611\n", + "korean 0 -0.2445193 -0.4744318 -0.8957870 -0.0048784496\n", + "thai 0 1.5365848 0.1333256 0.2196970 -0.0113078024\n", + " beef beef_broth beef_liver beer beet\n", + "indian -0.7985278 0.2430186 -0.035598065 -0.002173738 0.01005813\n", + "japanese 0.2241875 -0.3653020 -0.139551027 0.128905553 0.04923911\n", + "korean 0.5366515 -0.6153237 0.213455197 -0.010828645 0.27325423\n", + "thai 0.1570012 -0.9364154 -0.008032213 -0.035063746 -0.28279823\n", + " bell_pepper bergamot berry bitter_orange black_bean\n", + "indian 0.49074330 0 0.58947607 0.191256164 -0.1945233\n", + "japanese 0.09074167 0 -0.25917977 -0.118915977 -0.3442400\n", + "korean -0.57876763 0 -0.07874180 -0.007729435 -0.5220672\n", + "thai 0.92554006 0 -0.07210196 -0.002983296 -0.4614426\n", + " black_currant black_mustard_seed_oil black_pepper black_raspberry\n", + "indian 0 0.38935801 -0.4453495 0\n", + "japanese 0 -0.05452887 -0.5440869 0\n", + "korean 0 -0.03929970 0.8025454 0\n", + "thai 0 -0.21498372 -0.9854806 0\n", + " black_sesame_seed black_tea blackberry blackberry_brandy\n", + "indian -0.2759246 0.3079977 0.191256164 0\n", + "japanese -0.6101687 -0.1671913 -0.118915977 0\n", + "korean 1.5197674 -0.3036261 -0.007729435 0\n", + "thai -0.1755656 -0.1487033 -0.002983296 0\n", + " blue_cheese blueberry bone_oil bourbon_whiskey brandy\n", + "indian 0 0.216164294 -0.2276744 0 0.22427587\n", + "japanese 0 -0.119186087 0.3913019 0 -0.15595599\n", + "korean 0 -0.007821986 0.2854487 0 -0.02562342\n", + "thai 0 -0.004947048 -0.0253658 0 -0.05715244\n", + "\n", + "...\n", + "and 308 more lines." + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "GMbdfVmTKkJI", + "outputId": "adf9ebdf-d69d-4a64-e9fd-e06e5322292e" + } + }, + { + "cell_type": "markdown", + "source": [ + "모델이 학습 중에 학습한 계수를 출력합니다.\n", + "\n", + "### 학습된 모델 평가하기\n", + "\n", + "이제 테스트 세트를 사용하여 모델이 어떻게 성능을 발휘했는지 평가할 시간입니다 📏! 먼저 테스트 세트에 대한 예측을 만들어 봅시다.\n" + ], + "metadata": { + "id": "tt2BfOxrKmcJ" + } + }, + { + "cell_type": "code", + "execution_count": 9, + "source": [ + "# Make predictions on the test set\n", + "results <- cuisines_test %>% select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test))\n", + "\n", + "# Print out results\n", + "results %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class\n", + "1 indian thai \n", + "2 indian indian \n", + "3 indian indian \n", + "4 indian indian \n", + "5 indian indian " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | .pred_class <fct> |\n", + "|---|---|\n", + "| indian | thai |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & .pred\\_class\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t indian & thai \\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                                    A tibble: 5 × 2
                                                    cuisine.pred_class
                                                    <fct><fct>
                                                    indianthai
                                                    indianindian
                                                    indianindian
                                                    indianindian
                                                    indianindian
                                                    \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "CqtckvtsKqax", + "outputId": "e57fe557-6a68-4217-fe82-173328c5436d" + } + }, + { + "cell_type": "markdown", + "source": [ + "훌륭해요! Tidymodels에서는 [yardstick](https://yardstick.tidymodels.org/)을 사용하여 모델 성능을 평가할 수 있습니다. yardstick은 성능 지표를 사용하여 모델의 효과를 측정하는 데 사용되는 패키지입니다. 로지스틱 회귀 수업에서 했던 것처럼, 혼동 행렬을 계산하는 것부터 시작해 봅시다.\n" + ], + "metadata": { + "id": "8w5N6XsBKss7" + } + }, + { + "cell_type": "code", + "execution_count": 10, + "source": [ + "# Confusion matrix for categorical data\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class)\n" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " Truth\n", + "Prediction chinese indian japanese korean thai\n", + " chinese 83 1 8 15 10\n", + " indian 4 163 1 2 6\n", + " japanese 21 5 73 25 1\n", + " korean 15 0 11 191 0\n", + " thai 10 11 3 7 70" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 133 + }, + "id": "YvODvsLkK0iG", + "outputId": "bb69da84-1266-47ad-b174-d43b88ca2988" + } + }, + { + "cell_type": "markdown", + "source": [ + "여러 클래스를 다룰 때, 일반적으로 이를 열 지도처럼 시각화하는 것이 더 직관적입니다.\n" + ], + "metadata": { + "id": "c0HfPL16Lr6U" + } + }, + { + "cell_type": "code", + "execution_count": 11, + "source": [ + "update_geom_defaults(geom = \"tile\", new = list(color = \"black\", alpha = 0.7))\n", + "# Visualize confusion matrix\n", + "results %>% \n", + " conf_mat(cuisine, .pred_class) %>% \n", + " autoplot(type = \"heatmap\")" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deWBU9b3//0+ibApWrbYuvYorXaxoaatWvVqpqG2HsCmLBAqoVXBDjCKbKMqOQUDFFVxKqyhVFLUqWKJsxg3Lz2IFGilLiEqptMX0hpzvnJkMCbx5/W5vz5k5Z+D5/OOc85nEz3w8Mw9mMjmo84gocC7qBRDtCQGJKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQijHkLb+NUZVRb2Ahn26OeoVNCxWpyZWi/mbeGbnGNJl42PUmbNiVM+7nohRlz4ao/o/HqOuFc/sHEMasShGdfwsRt3+1qYYNXJ9jLq9MkZNE89sIMUkIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSbI+EVLQktatJvB8FpNGtv9LoqMteTx7d/f2vND6h5M3oIS07xT0XxjyhQJpx+sGNj79pbfCJgkJ6o7V72t/f4FKdFSmkRa3dnNTBgnYHNPneY7GCVPvB1ggg3ezaTZraq+C8RYvGF7a64cbW7rLIIU1sdmR8IE1ynX4957qC9pFDGtvsiDSkywsn+D0eJaRxycWkIC1pcdzYSecUzIwTpP+0YJBOONJ/CTqncP6iI49YsGjRwqMOjhrSS03GTY0PpJNaVia3P92nImJIc5vcWZqG1LVFoInCgPRCkzF3pyF1bLa8snLdd1pGC+nTOy8uvvdLr+iVEZ2KF/hv7WoTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZgHS8cf624sKF5RdO84/+plbEDGk8oWfxQjSt7/pb7vu80ngmYJBWvTa+jpIPz0ickhLFlSmIa1vVuSPR7lXI4V0w9jN6wdM94qu+fCfj3XZ5v+MVDRwi/dKl23eoPFfVD/es3pj+/e3b7xudmaYDUjD3C+fmz+6aee64Zsnfz3QdOF82BAjSFPckOV/nrFfv+AzBf6woQ7SWa3Wr18dLaRkaUiL3FB/MMdNjhLS6sTG5KbcK3ra8zYmKlKQ5nrepsQnqxKbkz8zdStblVjtedu9zDD5zyxpn+wPIUJadFsz5wp7pz5i+P1vH2i372gg7dT9+yfPz/WVwScKC1Lrlh0PdAddvyYOkJ5zd/mDN9ywKCG92b42tS9anHwvl/g4BSl9WJZINbv2ng4ls9Z7mWHye9/4cbL3QoR0T/MzRt91SWHqI4bJzh0+KdBsex6kZw/4yYzfXL7PzfGB1LKw20P3F7mL4gDpSTfVHyxzN0YJaVH77WlIS+ohpQ+XJjJv4zbNG9mhrH64uwJBeuPwE/0Xo66FTya3L44f2ragF5AatPGo7/ovRlcULo0NpLff87dd3ZwYQHrOTfIHZW54lJDWJCo876MXdgNpbWJl8usbvZotyd30wZlhFiA97VJwJrjMLL9wDwGpvrfddf7uCXdPbCCle8IFmi8kSEvcLf7gqfQLU1SQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpgVSD383Wg3+PkbHkyTugVI9ZW7/v7uEXdXbCCtXOlv73fjYgBpQ4uf+4MhrixSSFvu6NJz2rbdQdo8ruslJSu82ll9Ova6+++ZYRYgvdH8mDeSuw7usRcLT/WPLnGTgVTfxq+02pjc9Xa/jwukdwsv9AfnFbwRA0iVlzZ5p7Jy7bHfDjTXHnGt3UB32qgJFxe2XbSo2H332pLzC77zRsSQ5pWW9nADSkvfiQOkTXe6Hz/wxOWFRcFnCgbp2QkTurorJ0xYvL6Paztu1OmuX6DpgkGaO2lSN9d/0qRlle8dfPTQO37QaA6QFo06qWmjlleWLVr0Zkmrps2O7fFqoNlCgNQ7fS2ZezAWkDY9+P39Gp8wZH3wiYJB6ll3Vu5dv3ZM6xZNT5kYaLaAkHrVLWZ6ZeWiC1s0Pe2ZQLPtIZDCjau/ZVz9rQKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEiqmEDqOSJGnXJfjOpw+z0xqtOUGNU76rPRsMvEMzvHkEa+GqMuHBajznv8tRg1IOoFNGzgKzFqiHhm5xjSvZ/GqF/MjFHd3on6zWXD7ox6AQ27oypG3Sue2UCKSUCSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyhQTpraYHhzDLL/7zp/3YY9zg1MFDHQ7Z92sXz0ge3fTt5o2O6j0jWkjLTnHPhTFPGJDmt23e/OTSquAThQFpXcl/NW45bFPwiUKEVJN4f6fxpkTFrjdlGVLVmS5aSL0bH1wH6QeFF155puswc+b1BUf37HWi6xQppInNjowNpJcbtbx90jnuluAzhQEpsc9V0y9xJcEnChFS7Qdbd4W0601ZhjSp8bmRQhrWqPiyNKQS1y25/f43Z8z82qEPzJz58GEHRAnppSbjpsYG0o8O+ONnn1V9Z7+NgWcKAdJsd1ty+/Mzg78kZfGtXRLSv/29oUD6wwEll0YKadyomXWQftT0ofRND/e4zt+d7R6IEFL5ws/iA2nydH/bx/0p8EwhQOrSfF3wSVKF+9auNrFwRP++8z1v9aAuVy9Mv7WrGN6964gN3o4vZQ/SRSeujxZSsjpIh540c2aDH4tmnPDV/3TCkD5siA+kdOceGnyOECAdfW5VVWXwaapC/xmpaOAW75Uu22r7lW6rGpKGdGXptn+MKfEyX8oepIcK5n0aE0gzCs7t8/WC/S9KvQw9dNfw0/e5BkgNe9jdHnyS4JA2FfaadEzBQf0/iR+kuf5buk/+mNjoeUvSkLZ+6XmLO9RmvpT8xgVtkr0dNqQ/HdL307hAut8deuxVN15Y0Ma/qcS5Q274jyfcIyH9utlFsfjUrsId9b0Hnrqq8Gfxg7TY8zYnPi5rv93zPklDWj6kuLhboibzpeQ3lvdM9mHYkLoeviY2kB50zacndz9xtya3U6+/7LSCBJDqG7dPpw0hTBMc0l/cQWuSu8vcK7GDtCSlZX77Ws9bk4K0odPsam+pD2lJBtJuCg7pqYKHKyoquh1csS4GkGY2+6a/HeT61N3cPkUKSKmudIM+DWOeEH5GanGmv/2NuyvwTNmBtDxR6XllKUhlRTWe92j2IfVzdZ0fB0itDvO317orphQP948Gur5AqmtgQWkIs3wWCqQzjve3j7l7As+UHUjVPUq3rrs5BWllYsW/Fg5OVGUb0tsv+LU74IU34wCplytJbs8oHD+14Jv+p3ftUmMgJXvahfWJRQiQxrunk9su+7wVeKbsQPI+ur7z1e8k/uzfNKN7jylbB3bblGVI6aL9GWlonz5nu4v69Jkw86GWTdr3+6E7f+bMn7nju/c+veC4//QaoTAgzSst7eEGlJYGnyq4gcrjDipN9V7gqUKAtK71foPuLnKXB59pz7rWLmJIP657d3nVzJn3tv3KPocVJ/XM6H1046bfuGj6fzpnGJB6163rwcAzBYf0UeYt+GOBpwrjEqGP+3yt0XFj43WtXZC4+lvF1d8yrv62AUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAcl28S9jVKt2Mer4blGfjob9KOoFNOxnV8Soi8QzO8eQ7loVo7r/JUYNf/KNGDXkTzFq1PoYNU08s3MMafLaGNUz6rcJDbvtmWUxanhFjIrV+8z7xDMbSDEJSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIs/yBt6n1EoUsFpFwHJFn+Qbp437a9+6UCUq4Dkiz/IH312WwBAtL/FpBk+QdpvyogRRWQZPkH6ezXgRRVQJLlH6S3f7gYSBEFJFn+QTrzv9x+R6cCUq4Dkiz/IJ3dNhOQch2QZPkHKfsBSQUkWT5C+uyFBx56+Qsg5T4gyfIP0vZBjfzLGvYfD6ScByRZ/kEa7zo+/OIL91/gHgVSrgOSLP8gfeuG9P6K7wEp1wFJln+QmsxP7+c1A1KuA5Is/yDt/3x6/2xzIOU6IMnyD9JZP672d9vanQukXAckWf5Bmldw1JWjbr/8iMJXgZTrgCTLP0jeb7/pf/z93XnZcgQkGZBkeQjJ89a/VV6ZNUZA0gFJlpeQshyQVECS5RmkVqO9VjsCUq4DkizPIJ1W6p22IyDlOiDJ8gxSTgKSCkiy/IPU5sP0/ulvASnXAUmWf5BceWr3P7c1BlKuA5Is3yC5+rhoNecBSZZvkN6/2xWl/uuQl434C5ByHZBk+QbJ8y74U7YAAel/C0iy/IPkbZyS3FTdtglIOQ9IsvyDtPIw/1OGCnfYaiDlOiDJ8g9Sh+Pf8ncfHt8JSLkOSLL8g3ToI+n9/S2AlOuAJMs/SM2eSO9/tV9MIc07t3nzk8ZW+Ie/P9k9GT2kkvSvC86OGtJrmV9cjF+2bNoPvtL4xMFLo4T0/Dn773/SmDUVFdenV3Vm9JCWneKeC2OefwvSjy6o8Xdf/ODMzC01ifdjBOnZfY8eNuYsd2PycHSzI+IA6ZeFd/n9OmpIbw5JdX7Br5ZNKmx1402nuCsihPTbfY8eOvosN6iiom/hWL+ZkUOa2OzIHEJ6ueDYASNH9Dm08OXMLbUfbI0RpNNbvLt2bcW391uz9rdNRk2KA6TuBwSfI10Yb+1eP7TDsmXfOLJs2bJFRx8cIaTTWrxdUbHmW/utqri4RaCJQoP0UpNxU3MIyXuljf9CfHJc/4bs+Lv9bbFbvrbsd2tjAelnRwafI10YkC458NVliwdO9A9/7sqigzRusr/t6d6ruPDweEAqX/hZTiF53mcf/H8N/4vF/lu7iuHdu47Y4FUnXh7cr+9SLzOuTSwc0b/vfM/bPL5Xl8GrPO+1qzoX31u9Y5gFSOnOPiS1iwWks1tVVa0NPk1VKJCeLCzJHC5tfVigqcL4sOHsQyoqzjyxomJlDCAlyzGkXfIhXVm67R9jSpKH1/3Ve7XDlszYKxq4xXulyzZv0Pgvqh/vWb2x/fvbN143OzNM/sP/XJfsy7Ah3eeGxQfSKcd0PsgdNOgvsYB0/qFvpPZvzH34gn3HRg3pHje0ouLklkUHuoOu/WhvgrTbvyHrQ9qatLC4Q21N4jnP2971lczYK5rreZsSn6xKbE7+LNWtbFVidfLrXmaY/IcXtEn2dsiQZjZrVxEfSMcU9pj5UEf30+AzBYf0ZOGg9MFU5w4vDTZXcEiPNDt/TUVFy8JL7r8n4S7YmyDt9m/I+pCWDyku7paoqUksS95w1azM2CtanHxbl/i4LJFqdu09HUpmrfcyw+T3rrg52c4XSQSGNGqfotVr4wPp/RX+trubG3im4JC6Nn49ffC7icPPL/hFtJBu36f9x8ndknJ/cLF7ai+CtNuSkDZ0ml3tLfUh+f9fzCt+nRl7RUtSkJYmquu+edO8kR3K6oe7Kyikfu7aT9bGCFK637hRgecIDGnp13/UYNTXzYgSUl93zZ/rR4+6EUB6v6yoxvMe9SE97XnVnV/LjDOQ1iZWJr9xo1ezJbmbPjgzzAqkqwvG7jiOBaTVq/3tQ25i4JkCQ3rE3eLvXip5xN/d5YZGCGlAwZj0wYoV/vYeN3ovgrR/g3b8DdkkpJWJFf9aODhRVZMYUFE9q+PfMuMMJG9oSVXNi10+f7XPx7Wbh0zJDLMB6VduZP0gDpA+KLzI37UtWBI9pKvdr/zd7wq/tyS56+qmRgfp8cwr0LLCdv7u3ILX9yJIXZO1anRG5w6nFLS5ugEkb0b3HlO2Duy2IfHiTZ37lXuZ8aYMpM3jul5SssKrndWnY6+7/54ZZgHSmmMPHDvOb8naOePGXeJ+OW7cm9FCqurnzp8w+gx3efCZAkP6uft9at/bnXz9ze0KTloSGaRVxxw4JnVBw6KK3u680SN/6PoEmS4MSPNKS3u4AaWl7+QAUrLZJ23wdyu/ObchpB2H74g5/g8FgvR+5oKyB9deWnc0LWJIG8efckDTU0uDTxQc0tmF6f3Swa2aNjuu5+uBJgsE6d3M4/RAxeo7Tm7RtPW4QI7CgNQ788zJDaSTnkrv72tdd8P2jxI7PnWLHlLYcfW3jKu/Vf8WpMavpfezm9TdsLDDqFog5SQgyfIP0hGXpna1XQ8PTgZI/7eAJMs/SLe67147atSAb7nBQMp1QJLlH6TacYf7P5EdMrwGSLkOSLL8g5Sk9Mmypau3Z4sRkHRAkuUjpG1vzfnU+x8g5T4gyfIQ0sQWzi3xhvwia5SApAKSLP8gPeDaT09CenTf8UDKdUCS5R+kk6/0tiUhebecCKRcByRZ/kFq+moa0u8aASnXAUmWf5C+9nwa0lMHACnXAUmWf5B+cs4/fUifn9QOSLkOSLL8g/T6Psdf5/r2PqDRm0DKdUCS5R8k77VT/Ssbfvj7bDkCkgxIsjyE5Hmb3ntvc9YYAUkHJFn+QToje/+JVSD9LwFJln+QvjEJSFEFJFn+QXruW7/9F5CiCUiy/IN09ndd4yOO9gNSrgOSLP8gnXle27qAlOuAJMs/SNkPSCogyfIO0rZlb24BUkQBSZZvkCa3cK5R/y/FNwIpuwFJlmeQnnEtbxh2lrtafCOQshuQZHkG6eyW/v8utm+jvwEpioAkyzNIzYf727dc1i5YBdL/X0CS5Rkkd7+/3eBeFt8JpKwGJFm+QXrQ3250LwEpioAkAxKQ/v2AJMs3SLcsSTbPlfo7IOU6IMnyDVLDgJTrgCTLM0i3NgxIuQ5IsjyDlJOApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZOvQM0Yd/4sYdWq7TjHqB5fGqJ/2iVEXimd2jiFNWR+jij+PUaOWboxRiWkxanTUj03DYvKKBCQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiRbUEhvtHZP+/sbXKqzIodUduEBTdr8KoSJAkNa1No9s+tRFJBGHOWuSx1cf3zjxifcsPNtkUEK7XEKBVJN4p1oIY1tdkQa0uWFE/wejxrS2y2OmzD53IIngs8UFNK45Kl5ZpejKCB1a3xQGs2V7shLLj1s35sa3hYZpPAepz0C0twmd5amIXVtEWii0CB1bvbh559vOumY4DMFhPR8k9GT03zqj6KANKjRJT3TaA498K5p0ya0aNXwtsgghfc47RGQFr22vg7ST4+IBaSqZh393Wj3euCpAkJaPH9jHZ/6oygg3XrLtDSaMe4sf9y2YHz9bZFBCvFxCg1SzbCRNX8d36tzyYfe9sTv+k32No/v1WXwKs+rGN6964gNXm1i4Yj+fednBVKyOkhntVq/fnX0kJa54f5urpsaeKrgHzbU84kQUrI0mjvcef6gixtYf1tkkEJ8nEKDVFrypTfo1i1fPtz1b17RwFX/9AaN/6L68Z7V3pWl2/4xpsRL3rjFe6XLtuS3f74s2d+yAql1y44HuoOuXxMxpBfc3f5uiRsReKo9DdLU/Y7yB23cZTGAFOLjFBakJ/p/4a1OrPW86osXeEVPet6qxGbPq+1W5m390vMWd6j1iuZ63qbEJ8lvX9Am2dtZgdSysNtD9xe5iyKG9Iy7z9+9424KPNWeBmlawv33yNsuaOH6xgBSiI9TSJDGJv7geW+2r00O+v/GKyrzvLJEqtne8iHFxd0SNV7RYs/bnPcB240AABDoSURBVPg4+R2rpyRblxVIb7/nb7u6OdFCmucm+7vF7tbAU+1xkO4+r8C5b13qrowBpBAfp5Ag9RsxsKYO0lVPeEVLPG9pojr1tQ2dZlcnBzWpG9OQdlNYkNI94UZGC+ltN8zfzUn/gReoPQ7StGljS+5M/ow0LAaQQnycQoJUvrXPI94a/43bts7zU2bWJlYmv7LRKyuq8bxHcwVp5Up/e78bFy2kT1sk/N1wtzjwVHsgJL/v7jclBpBCfJxC+7BhRYd3vZKRX2y7r+c/Uma8oSVVNS92+XxlYsW/Fg5OVOUE0ruFF/qD8wreiBbS58VNln/++YZjvxN8pj0O0umHTp42bXDhORZX7iGF+DiF93ukx4u3VN3R89Lbkj/8pCBtHtf1kpIVnjeje48pWwd225RFSM9OmNDVXTlhwuL1fVzbcaNOd/0CTRcCpD98teXwMT9sNDf4TAEhzZ04sZu7auLEpQ2OooB0Q48ep7u2PXqMnHZFwQnFHZp/dWzD2yKDFN7jtEdca9czfYWdu3f92jGtWzQ9ZWKg2UK51m7ZRS2anvFcCBMFhFRcd2rua3AUBaSz6u69z7Rpfb7RqPlpd+58W1SQwnuc9ghIIcfV3zKu/lYByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSRUTSB2LY9SJfWJUm469Y1TLs2NUIurHpmEXimd2jiFNq4xRvaP+c79ht77zWYwatSlGXV8eo24Xz2wgxSQgyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSLagkBa1dnNSBwvaHdDke49FCym5mGd2PYoW0pz/PrjJSZM+DT5RcEh/cnXNjBbSgsw6JpSXzzq7eeOT7oo1pKIlOw1rEu9nBdK4ZkekIS1pcdzYSecUzIwSkr+YZ3Y5ihbSrMKTx0443Q2OA6R1d6UqKng9WkiLh6Y6v2BW+Zz9j7p56GkFE+MKafnHBlLtB1uzAemFJmPuTkPq2Gx5ZeW677SMENLzTUZPTvOpP4oYUsuj13322cbjD40DpHSrDy8OPkkIb+0WHtqxvPyCpi+Vly894RtxhXTbiwaSLBikJQsq05DWNyvyx6Pcq9FBWjx/Yx2f+qNoIVXe8YS/6+HWxQbSZQd/FHySECB1PXB++bKm5/uHg9wT8YQ0pH2n672iV0Z0Kl7geRXDu3cdsSFrb+0q6yAtckP9wRw3OTpIyer5xAJSuk9P+0bwSUKC9Gbh2BBmCQ5pduHN5eVPuwH+8XQ3Ip6QvH7+K9I1H/7zsS7bvCtLt/1jTEkdpPXPJKvKBqTn3F3+4A03DEg7tWH5y50bzQw+T0iQOhz+lxBmCQ6p3aGLyssfcMP846fc1XGG9LTnbUxUeFu/9LzFHWrTkBa0SfZ2NiA96ab6g2XuRiDt1DPOHfWbEOYJB9KbhXeGMU1gSLMLb0xup7nb/MGz7vI4Q1rseZsTH3vLhxQXd0vUZP8VaZI/KHPDgbRTH/1qaseCgcHnCQfS5Y1XhzFNYEjdGi9Mbh90Q/3BU+6aOENakoK0odPsam9pBtJuCgnSEneLP3gq/cIEpJ0a5F4NPEcokCqP+EkY0wSG9NbXz/R3c1x/f3dP+oUp3pDKimo879HsQ9rQ4uf+YIgrA1J9fxz3O3/3azc5HpBecpPCmCYwpBnpl6Jl+5/n7wa4p2IKqf/Df89AWplY8a+FgxNV2YZUeWmTdyor1x777UBz7WmQPio8syq5+6V7Jh6Qhrvgv4z1CwrpGjcrte/Q+Pny8kX/dUKgybIIaW7nPhlI3ozuPaZsHdhtQ3YgzZ00qZvrP2nSssr3Dj566B0/aDQnQkhzJ07s5q6aOHFpg6NoIX12nfvhqImdCr5fFQ9I3d2aMKYJDCnhFqb28w48csCgk/edHldI/5eCQepVd9nU9MrKRRe2aHraM4FmCwipuG4x9zU4ihjSp5NObrb/t66uCD5TKJAuKAxjluCQ/ruw7uDpc/Zvcup9wSbbIyCFHFd/y7j6WwUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkVUwgzXg8Rg2MegENGzY16hU07NqoF9CwWD1O08QzO8eQiPbMgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQghIRCGUl5CmTY56BQ2ad+emqJdQ34d3Lo16CfV9eeesqJfQoBl3ZnX6vISUaBf1Chp0R5uPo15Cfa+2eTzqJdS3tc3VUS+hQb2/n9XpgRQ0IKmAFPeApAKSDEg2IKmAJAMSUfwDElEIAYkohPIDUtGS1K4m8X7ECzFL2JSoyPmqYnAaTDWJd6Jegq7u6ZMpK+cvryDVfrA14oWYJSQh5XxVMTgNpthCWv6xgZSV85dXkGJYElLUS4hFsYV024u5efrEHNKnd15cfO+XXtErIzoVL/Bfk2sTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZruGS1g9qMvVC9Nv7SqGd+86YoO340vZXkPmDqsTLw/u13epZxaQ69PjQ6oZNrLmr+N7dS750Nue+F2/yTvuNadnZ+eGtO90febpk1nH3vjW7oaxm9cPmO4VXfPhPx/rss0/A0UDt3ivdNnmDRr/RfXjPas3tn9/+8brZmeGWV9QgyXU9ivdVjUkDenK0m3/GFPi7Vhd1tdQd4c1iev+6r3aYYtZQK5Pjw+ptORLb9CtW758uOvfkutY9c8d95rTs7NL/fxXpPTTp/6k7XWQVic2JjflXtHTnrcx/ZQtmuu/n/pkVWJz8s1ut7JVidWet93LDLO+ogZL+KO/uCXpVW390vMWd6jNfCn7a6i7w5rEc8l//a6v7LqAnJ+eJKQn+n+RfMDWel71xQu8oie9+nvN6dnZpRSk9NOn/qTtdZDebF+b2hctTr5ZSXycehanD8sSqWbX3tOhZNZ6LzPM+ooaLqH9ds/7JA1p+ZDi4m6JmsyXsr+GujusSSxL3nDVrF0XkPPTU5MYm/hD5gHr/xuvKIl2x73m9OzsUgpS3f3uOGl7HaRF/nPVS/+0mIGUPlyayLxP2TRvZIey+mGWa7CE+f6TZk0K0oZOs6u9pf5TZUluIGXusCaRfI54V/x61wXk/PTUJPqNGFhTB+mqJ1LryNxrbs/OLvV7ccfTp/6k7XWQ1vifiX30wm4grU2sTH59o1ezJbmbPjgzzHoNlrA8Uen/qetDKiuq8bxHcwgpc4c1ieS7lurOr+26gJyfnppE+dY+jyQfsOQbt22d56fWkbnX3J6dXWoAqf6k7XWQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpj1BTVYQnWP0q3rbk5BWplY8a+FgxNVOYOUucOaxICK6lkd/2YWkOvT43/YsKLDu17JyC+23dfzH+lPnOvuNbdnZ5f6P/z3zP3Wn7S9D9KWO7r0nLZtd5A2j+t6SckKr3ZWn4697v57Zpj1Gi7ho+s7X/1O4s/+TTO695iydWC3TbmClLnDDYkXb+rcr9wzC8j16Un9Hunx4i1Vd/S89LZ1db+6ydxrTs/OLs3t3GfHA7bjpO19kGg3NfgTNba/B93rAlLetf0j/zPtdECKS0DKuxZ2GFWbOQZSXAISUQgBiSiEgEQUQkAiCiEgEYUQkPK3X7pMp+32622Pzu169uqAlL+9PnXq1Gtd5+TWXNb9nv+4AimHASm/e92V7u7mKUDKcUDK7+ognXn28984w2vd2j8u+qp3QfLtXhuv7XFrLmze/JLsX8lLQMr36iCdd/I373mhHtKfilz5h17blq1HP3tjwS+iXeFeEpDyuzpIbd2c5HYHJK+f23Hjj74W4fL2noCU32UgNf6XZyE19a/J61UY4fL2noCU32UgHeFvd4V0tD/sx0OcizjL+V0G0tH+FkjRxVnO73aCdOpJ/vY0IEUQZzm/2wnSeYckfyja1CwJ6TL3P0DKaZzl/G4nSJPdmMp3f/ydJKQR7rangZTLOMv53U6Qqm84sknr5we08Ly/nNqoFZByGWeZKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYXQ/wMhANIDIZLX1QAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 436 + }, + "id": "HsAtwukyLsvt", + "outputId": "3032a224-a2c8-4270-b4f2-7bb620317400" + } + }, + { + "cell_type": "markdown", + "source": [ + "혼동 행렬 플롯에서 더 어두운 사각형은 많은 사례 수를 나타내며, 예측 레이블과 실제 레이블이 동일한 경우를 나타내는 어두운 사각형의 대각선 라인을 확인할 수 있을 것입니다.\n", + "\n", + "이제 혼동 행렬에 대한 요약 통계를 계산해 보겠습니다.\n" + ], + "metadata": { + "id": "oOJC87dkLwPr" + } + }, + { + "cell_type": "code", + "execution_count": 12, + "source": [ + "# Summary stats for confusion matrix\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class) %>% \n", + "summary()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " .metric .estimator .estimate\n", + "1 accuracy multiclass 0.7880435\n", + "2 kap multiclass 0.7276583\n", + "3 sens macro 0.7780927\n", + "4 spec macro 0.9477598\n", + "5 ppv macro 0.7585583\n", + "6 npv macro 0.9460080\n", + "7 mcc multiclass 0.7292724\n", + "8 j_index macro 0.7258524\n", + "9 bal_accuracy macro 0.8629262\n", + "10 detection_prevalence macro 0.2000000\n", + "11 precision macro 0.7585583\n", + "12 recall macro 0.7780927\n", + "13 f_meas macro 0.7641862" + ], + "text/markdown": [ + "\n", + "A tibble: 13 × 3\n", + "\n", + "| .metric <chr> | .estimator <chr> | .estimate <dbl> |\n", + "|---|---|---|\n", + "| accuracy | multiclass | 0.7880435 |\n", + "| kap | multiclass | 0.7276583 |\n", + "| sens | macro | 0.7780927 |\n", + "| spec | macro | 0.9477598 |\n", + "| ppv | macro | 0.7585583 |\n", + "| npv | macro | 0.9460080 |\n", + "| mcc | multiclass | 0.7292724 |\n", + "| j_index | macro | 0.7258524 |\n", + "| bal_accuracy | macro | 0.8629262 |\n", + "| detection_prevalence | macro | 0.2000000 |\n", + "| precision | macro | 0.7585583 |\n", + "| recall | macro | 0.7780927 |\n", + "| f_meas | macro | 0.7641862 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 13 × 3\n", + "\\begin{tabular}{lll}\n", + " .metric & .estimator & .estimate\\\\\n", + " & & \\\\\n", + "\\hline\n", + "\t accuracy & multiclass & 0.7880435\\\\\n", + "\t kap & multiclass & 0.7276583\\\\\n", + "\t sens & macro & 0.7780927\\\\\n", + "\t spec & macro & 0.9477598\\\\\n", + "\t ppv & macro & 0.7585583\\\\\n", + "\t npv & macro & 0.9460080\\\\\n", + "\t mcc & multiclass & 0.7292724\\\\\n", + "\t j\\_index & macro & 0.7258524\\\\\n", + "\t bal\\_accuracy & macro & 0.8629262\\\\\n", + "\t detection\\_prevalence & macro & 0.2000000\\\\\n", + "\t precision & macro & 0.7585583\\\\\n", + "\t recall & macro & 0.7780927\\\\\n", + "\t f\\_meas & macro & 0.7641862\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                                    A tibble: 13 × 3
                                                    .metric.estimator.estimate
                                                    <chr><chr><dbl>
                                                    accuracy multiclass0.7880435
                                                    kap multiclass0.7276583
                                                    sens macro 0.7780927
                                                    spec macro 0.9477598
                                                    ppv macro 0.7585583
                                                    npv macro 0.9460080
                                                    mcc multiclass0.7292724
                                                    j_index macro 0.7258524
                                                    bal_accuracy macro 0.8629262
                                                    detection_prevalencemacro 0.2000000
                                                    precision macro 0.7585583
                                                    recall macro 0.7780927
                                                    f_meas macro 0.7641862
                                                    \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 494 + }, + "id": "OYqetUyzL5Wz", + "outputId": "6a84d65e-113d-4281-dfc1-16e8b70f37e6" + } + }, + { + "cell_type": "markdown", + "source": [ + "만약 정확도, 민감도, 양성 예측도(ppv)와 같은 몇 가지 지표에 초점을 맞춘다면, 시작치고는 나쁘지 않은 결과네요 🥳!\n", + "\n", + "## 4. 더 깊이 파고들기\n", + "\n", + "한 가지 미묘한 질문을 던져봅시다: 특정 유형의 요리를 예측 결과로 선택하는 기준은 무엇일까요?\n", + "\n", + "사실, 로지스틱 회귀와 같은 통계적 머신러닝 알고리즘은 `확률`에 기반을 둡니다. 따라서 분류기가 실제로 예측하는 것은 가능한 결과 집합에 대한 확률 분포입니다. 이 중 가장 높은 확률을 가진 클래스가 주어진 관찰값에 대해 가장 가능성 높은 결과로 선택됩니다.\n", + "\n", + "이제 하드 클래스 예측과 확률을 모두 만들어보며 이를 실제로 확인해봅시다.\n" + ], + "metadata": { + "id": "43t7vz8vMJtW" + } + }, + { + "cell_type": "code", + "execution_count": 13, + "source": [ + "# Make hard class prediction and probabilities\n", + "results_prob <- cuisines_test %>%\n", + " select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test)) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test, type = \"prob\"))\n", + "\n", + "# Print out results\n", + "results_prob %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class .pred_chinese .pred_indian .pred_japanese .pred_korean\n", + "1 indian thai 1.551259e-03 0.4587877 5.988039e-04 2.428503e-04\n", + "2 indian indian 2.637133e-05 0.9999488 6.648651e-07 2.259993e-05\n", + "3 indian indian 1.049433e-03 0.9909982 1.060937e-03 1.644947e-05\n", + "4 indian indian 6.237482e-02 0.4763035 9.136702e-02 3.660913e-01\n", + "5 indian indian 1.431745e-02 0.9418551 2.945239e-02 8.721782e-03\n", + " .pred_thai \n", + "1 5.388194e-01\n", + "2 1.577948e-06\n", + "3 6.874989e-03\n", + "4 3.863391e-03\n", + "5 5.653283e-03" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 7\n", + "\n", + "| cuisine <fct> | .pred_class <fct> | .pred_chinese <dbl> | .pred_indian <dbl> | .pred_japanese <dbl> | .pred_korean <dbl> | .pred_thai <dbl> |\n", + "|---|---|---|---|---|---|---|\n", + "| indian | thai | 1.551259e-03 | 0.4587877 | 5.988039e-04 | 2.428503e-04 | 5.388194e-01 |\n", + "| indian | indian | 2.637133e-05 | 0.9999488 | 6.648651e-07 | 2.259993e-05 | 1.577948e-06 |\n", + "| indian | indian | 1.049433e-03 | 0.9909982 | 1.060937e-03 | 1.644947e-05 | 6.874989e-03 |\n", + "| indian | indian | 6.237482e-02 | 0.4763035 | 9.136702e-02 | 3.660913e-01 | 3.863391e-03 |\n", + "| indian | indian | 1.431745e-02 | 0.9418551 | 2.945239e-02 | 8.721782e-03 | 5.653283e-03 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 7\n", + "\\begin{tabular}{lllllll}\n", + " cuisine & .pred\\_class & .pred\\_chinese & .pred\\_indian & .pred\\_japanese & .pred\\_korean & .pred\\_thai\\\\\n", + " & & & & & & \\\\\n", + "\\hline\n", + "\t indian & thai & 1.551259e-03 & 0.4587877 & 5.988039e-04 & 2.428503e-04 & 5.388194e-01\\\\\n", + "\t indian & indian & 2.637133e-05 & 0.9999488 & 6.648651e-07 & 2.259993e-05 & 1.577948e-06\\\\\n", + "\t indian & indian & 1.049433e-03 & 0.9909982 & 1.060937e-03 & 1.644947e-05 & 6.874989e-03\\\\\n", + "\t indian & indian & 6.237482e-02 & 0.4763035 & 9.136702e-02 & 3.660913e-01 & 3.863391e-03\\\\\n", + "\t indian & indian & 1.431745e-02 & 0.9418551 & 2.945239e-02 & 8.721782e-03 & 5.653283e-03\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
                                                    A tibble: 5 × 7
                                                    cuisine.pred_class.pred_chinese.pred_indian.pred_japanese.pred_korean.pred_thai
                                                    <fct><fct><dbl><dbl><dbl><dbl><dbl>
                                                    indianthai 1.551259e-030.45878775.988039e-042.428503e-045.388194e-01
                                                    indianindian2.637133e-050.99994886.648651e-072.259993e-051.577948e-06
                                                    indianindian1.049433e-030.99099821.060937e-031.644947e-056.874989e-03
                                                    indianindian6.237482e-020.47630359.136702e-023.660913e-013.863391e-03
                                                    indianindian1.431745e-020.94185512.945239e-028.721782e-035.653283e-03
                                                    \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "xdKNs-ZPMTJL", + "outputId": "68f6ac5a-725a-4eff-9ea6-481fef00e008" + } + }, + { + "cell_type": "markdown", + "source": [ + "훨씬 더 좋네요!\n", + "\n", + "✅ 첫 번째 관찰이 태국 요리라고 모델이 확신하는 이유를 설명할 수 있나요?\n", + "\n", + "## **🚀도전 과제**\n", + "\n", + "이번 강의에서는 정리된 데이터를 사용하여 재료 목록을 기반으로 국가별 요리를 예측할 수 있는 머신러닝 모델을 구축했습니다. Tidymodels가 데이터를 분류하기 위해 제공하는 [다양한 옵션](https://www.tidymodels.org/find/parsnip/#models)과 다항 회귀를 적용하는 [다른 방법들](https://parsnip.tidymodels.org/articles/articles/Examples.html#multinom_reg-models)을 읽어보는 시간을 가져보세요.\n", + "\n", + "#### 감사의 말씀:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/)에게 R을 더 친근하고 매력적으로 만들어주는 멋진 삽화를 제작해 주셔서 감사합니다. 그녀의 [갤러리](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)에서 더 많은 삽화를 확인할 수 있습니다.\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview)와 [Jen Looper](https://www.twitter.com/jenlooper)에게 이 모듈의 원래 Python 버전을 만들어 주셔서 ♥️ 감사합니다.\n", + "\n", + "
                                                    \n", + "음식 관련 농담을 던지고 싶었지만, 음식 말장난은 도넛(도저히) 이해가 안 되네요 😅.\n", + "\n", + "
                                                    \n", + "\n", + "즐거운 학습 되세요,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Gold Microsoft Learn Student Ambassador.\n" + ], + "metadata": { + "id": "2tWVHMeLMYdM" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서(원어로 작성된 문서)를 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/4-Classification/2-Classifiers-1/solution/notebook.ipynb b/translations/ko/4-Classification/2-Classifiers-1/solution/notebook.ipynb new file mode 100644 index 000000000..acaa96fda --- /dev/null +++ b/translations/ko/4-Classification/2-Classifiers-1/solution/notebook.ipynb @@ -0,0 +1,281 @@ +{ + "cells": [ + { + "source": [ + "# 분류 모델 구축\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    00indian00000000...0000000000
                                                    11indian10000000...0000000000
                                                    22indian00000000...0000000000
                                                    33indian00000000...0000000000
                                                    44indian00000000...0000000010
                                                    \n

                                                    5 rows × 382 columns

                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "from sklearn.svm import SVC\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    00000000000...0000000000
                                                    11000000000...0000000000
                                                    20000000000...0000000000
                                                    30000000000...0000000000
                                                    40000000000...0000000010
                                                    \n

                                                    5 rows × 380 columns

                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy is 0.8181818181818182\n" + ] + } + ], + "source": [ + "lr = LogisticRegression(multi_class='ovr',solver='liblinear')\n", + "model = lr.fit(X_train, np.ravel(y_train))\n", + "\n", + "accuracy = model.score(X_test, y_test)\n", + "print (\"Accuracy is {}\".format(accuracy))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "ingredients: Index(['artemisia', 'black_pepper', 'mushroom', 'shiitake', 'soy_sauce',\n 'vegetable_oil'],\n dtype='object')\ncuisine: korean\n" + ] + } + ], + "source": [ + "# test an item\n", + "print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')\n", + "print(f'cuisine: {y_test.iloc[50]}')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0\n", + "korean 0.392231\n", + "chinese 0.372872\n", + "japanese 0.218825\n", + "thai 0.013427\n", + "indian 0.002645" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    0
                                                    korean0.392231
                                                    chinese0.372872
                                                    japanese0.218825
                                                    thai0.013427
                                                    indian0.002645
                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "#rehsape to 2d array and transpose\n", + "test= X_test.iloc[50].values.reshape(-1, 1).T\n", + "# predict with score\n", + "proba = model.predict_proba(test)\n", + "classes = model.classes_\n", + "# create df with classes and scores\n", + "resultdf = pd.DataFrame(data=proba, columns=classes)\n", + "\n", + "# create df to show results\n", + "topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])\n", + "topPrediction.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.75 0.73 0.74 223\n indian 0.93 0.88 0.90 255\n japanese 0.78 0.78 0.78 253\n korean 0.87 0.86 0.86 236\n thai 0.76 0.84 0.80 232\n\n accuracy 0.82 1199\n macro avg 0.82 0.82 0.82 1199\nweighted avg 0.82 0.82 0.82 1199\n\n" + ] + } + ], + "source": [ + "y_pred = model.predict(X_test)\r\n", + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생할 수 있는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "9408506dd864f2b6e334c62f80c0cfcc", + "translation_date": "2025-09-04T02:23:17+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/ko/4-Classification/3-Classifiers-2/README.md b/translations/ko/4-Classification/3-Classifiers-2/README.md new file mode 100644 index 000000000..e81a27826 --- /dev/null +++ b/translations/ko/4-Classification/3-Classifiers-2/README.md @@ -0,0 +1,249 @@ + +# 요리 분류기 2 + +이 두 번째 분류 수업에서는 숫자 데이터를 분류하는 더 많은 방법을 탐구합니다. 또한, 특정 분류기를 선택했을 때의 결과에 대해 배우게 됩니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/) + +### 사전 요구사항 + +이전 수업을 완료하고, 이 4개 수업 폴더의 루트에 있는 `data` 폴더에 _cleaned_cuisines.csv_라는 정리된 데이터셋이 있다고 가정합니다. + +### 준비 + +정리된 데이터셋을 _notebook.ipynb_ 파일에 로드하고, 이를 X와 y 데이터프레임으로 나누어 모델 구축 프로세스를 준비했습니다. + +## 분류 지도 + +이전에 Microsoft의 치트 시트를 사용하여 데이터를 분류하는 다양한 옵션에 대해 배웠습니다. Scikit-learn은 이와 유사하지만 더 세부적인 치트 시트를 제공하여 추정기(분류기의 또 다른 용어)를 좁히는 데 도움을 줄 수 있습니다: + +![Scikit-learn의 ML 지도](../../../../translated_images/map.e963a6a51349425ab107b38f6c7307eb4c0d0c7ccdd2e81a5e1919292bab9ac7.ko.png) +> 팁: [온라인에서 이 지도를 방문](https://scikit-learn.org/stable/tutorial/machine_learning_map/)하여 경로를 따라가며 문서를 읽어보세요. + +### 계획 + +이 지도는 데이터를 명확히 이해한 후 경로를 따라가며 결정을 내리는 데 매우 유용합니다: + +- 샘플이 50개 이상입니다. +- 카테고리를 예측하고 싶습니다. +- 라벨이 있는 데이터가 있습니다. +- 샘플이 100K 미만입니다. +- ✨ Linear SVC를 선택할 수 있습니다. +- 이것이 작동하지 않으면, 숫자 데이터가 있으므로 + - ✨ KNeighbors Classifier를 시도할 수 있습니다. + - 이것이 작동하지 않으면 ✨ SVC와 ✨ Ensemble Classifiers를 시도할 수 있습니다. + +이 경로를 따라가는 것은 매우 유용합니다. + +## 연습 - 데이터 나누기 + +이 경로를 따라가며 필요한 라이브러리를 가져오는 것으로 시작해야 합니다. + +1. 필요한 라이브러리를 가져오세요: + + ```python + from sklearn.neighbors import KNeighborsClassifier + from sklearn.linear_model import LogisticRegression + from sklearn.svm import SVC + from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + import numpy as np + ``` + +1. 훈련 데이터와 테스트 데이터를 나누세요: + + ```python + X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) + ``` + +## Linear SVC 분류기 + +Support-Vector Clustering(SVC)는 Support-Vector Machines(SVM) ML 기술의 하위 기술입니다(아래에서 더 알아보세요). 이 방법에서는 라벨을 클러스터링하는 방법을 결정하기 위해 '커널'을 선택할 수 있습니다. 'C' 매개변수는 '정규화'를 의미하며 매개변수의 영향을 조정합니다. 커널은 [여러 가지](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC) 중 하나를 선택할 수 있습니다. 여기서는 'linear'로 설정하여 Linear SVC를 활용합니다. 확률은 기본적으로 'false'로 설정되며, 여기서는 확률 추정을 수집하기 위해 'true'로 설정합니다. 데이터를 섞어 확률을 얻기 위해 랜덤 상태를 '0'으로 설정합니다. + +### 연습 - Linear SVC 적용하기 + +분류기 배열을 생성하는 것으로 시작하세요. 테스트하면서 이 배열에 점진적으로 추가할 것입니다. + +1. Linear SVC로 시작하세요: + + ```python + C = 10 + # Create different classifiers. + classifiers = { + 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0) + } + ``` + +2. Linear SVC를 사용하여 모델을 훈련하고 보고서를 출력하세요: + + ```python + n_classifiers = len(classifiers) + + for index, (name, classifier) in enumerate(classifiers.items()): + classifier.fit(X_train, np.ravel(y_train)) + + y_pred = classifier.predict(X_test) + accuracy = accuracy_score(y_test, y_pred) + print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100)) + print(classification_report(y_test,y_pred)) + ``` + + 결과는 꽤 좋습니다: + + ```output + Accuracy (train) for Linear SVC: 78.6% + precision recall f1-score support + + chinese 0.71 0.67 0.69 242 + indian 0.88 0.86 0.87 234 + japanese 0.79 0.74 0.76 254 + korean 0.85 0.81 0.83 242 + thai 0.71 0.86 0.78 227 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +## K-Neighbors 분류기 + +K-Neighbors는 ML 방법의 "이웃" 계열에 속하며, 지도 학습과 비지도 학습 모두에 사용할 수 있습니다. 이 방법에서는 미리 정의된 수의 포인트를 생성하고 데이터를 이러한 포인트 주변에 모아 일반화된 라벨을 예측할 수 있습니다. + +### 연습 - K-Neighbors 분류기 적용하기 + +이전 분류기는 좋았고 데이터와 잘 작동했지만, 더 나은 정확도를 얻을 수 있을지도 모릅니다. K-Neighbors 분류기를 시도해보세요. + +1. 분류기 배열에 한 줄을 추가하세요(Linear SVC 항목 뒤에 쉼표를 추가하세요): + + ```python + 'KNN classifier': KNeighborsClassifier(C), + ``` + + 결과는 조금 더 나쁩니다: + + ```output + Accuracy (train) for KNN classifier: 73.8% + precision recall f1-score support + + chinese 0.64 0.67 0.66 242 + indian 0.86 0.78 0.82 234 + japanese 0.66 0.83 0.74 254 + korean 0.94 0.58 0.72 242 + thai 0.71 0.82 0.76 227 + + accuracy 0.74 1199 + macro avg 0.76 0.74 0.74 1199 + weighted avg 0.76 0.74 0.74 1199 + ``` + + ✅ [K-Neighbors](https://scikit-learn.org/stable/modules/neighbors.html#neighbors)에 대해 알아보세요. + +## Support Vector 분류기 + +Support-Vector 분류기는 [Support-Vector Machine](https://wikipedia.org/wiki/Support-vector_machine) 계열의 ML 방법에 속하며, 분류 및 회귀 작업에 사용됩니다. SVM은 "훈련 예제를 공간의 포인트로 매핑"하여 두 카테고리 간의 거리를 최대화합니다. 이후 데이터는 이 공간에 매핑되어 카테고리를 예측할 수 있습니다. + +### 연습 - Support Vector 분류기 적용하기 + +Support Vector 분류기를 사용하여 더 나은 정확도를 시도해보세요. + +1. K-Neighbors 항목 뒤에 쉼표를 추가한 후 다음 줄을 추가하세요: + + ```python + 'SVC': SVC(), + ``` + + 결과는 꽤 좋습니다! + + ```output + Accuracy (train) for SVC: 83.2% + precision recall f1-score support + + chinese 0.79 0.74 0.76 242 + indian 0.88 0.90 0.89 234 + japanese 0.87 0.81 0.84 254 + korean 0.91 0.82 0.86 242 + thai 0.74 0.90 0.81 227 + + accuracy 0.83 1199 + macro avg 0.84 0.83 0.83 1199 + weighted avg 0.84 0.83 0.83 1199 + ``` + + ✅ [Support-Vectors](https://scikit-learn.org/stable/modules/svm.html#svm)에 대해 알아보세요. + +## Ensemble 분류기 + +이전 테스트가 꽤 좋았지만, 경로를 끝까지 따라가 봅시다. Random Forest와 AdaBoost라는 'Ensemble Classifiers'를 시도해보세요: + +```python + 'RFST': RandomForestClassifier(n_estimators=100), + 'ADA': AdaBoostClassifier(n_estimators=100) +``` + +결과는 매우 좋습니다, 특히 Random Forest가: + +```output +Accuracy (train) for RFST: 84.5% + precision recall f1-score support + + chinese 0.80 0.77 0.78 242 + indian 0.89 0.92 0.90 234 + japanese 0.86 0.84 0.85 254 + korean 0.88 0.83 0.85 242 + thai 0.80 0.87 0.83 227 + + accuracy 0.84 1199 + macro avg 0.85 0.85 0.84 1199 +weighted avg 0.85 0.84 0.84 1199 + +Accuracy (train) for ADA: 72.4% + precision recall f1-score support + + chinese 0.64 0.49 0.56 242 + indian 0.91 0.83 0.87 234 + japanese 0.68 0.69 0.69 254 + korean 0.73 0.79 0.76 242 + thai 0.67 0.83 0.74 227 + + accuracy 0.72 1199 + macro avg 0.73 0.73 0.72 1199 +weighted avg 0.73 0.72 0.72 1199 +``` + +✅ [Ensemble Classifiers](https://scikit-learn.org/stable/modules/ensemble.html)에 대해 알아보세요. + +이 ML 방법은 "여러 기본 추정기의 예측을 결합"하여 모델의 품질을 향상시킵니다. 우리의 예제에서는 Random Trees와 AdaBoost를 사용했습니다. + +- [Random Forest](https://scikit-learn.org/stable/modules/ensemble.html#forest)는 평균화 방법으로, '결정 트리'의 '숲'을 생성하며 과적합을 방지하기 위해 무작위성을 추가합니다. n_estimators 매개변수는 트리의 수를 설정합니다. + +- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html)는 데이터셋에 분류기를 맞추고, 동일한 데이터셋에 그 분류기의 복사본을 맞춥니다. 잘못 분류된 항목의 가중치에 초점을 맞추고, 다음 분류기의 적합성을 조정하여 수정합니다. + +--- + +## 🚀도전 과제 + +이 기술들 각각은 조정할 수 있는 많은 매개변수를 가지고 있습니다. 각 기술의 기본 매개변수를 조사하고, 이러한 매개변수를 조정하면 모델 품질에 어떤 영향을 미칠지 생각해보세요. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/) + +## 복습 및 자기 학습 + +이 수업에는 많은 전문 용어가 포함되어 있으니, [이 용어 목록](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott)을 검토하며 시간을 가져보세요! + +## 과제 + +[매개변수 조정](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/4-Classification/3-Classifiers-2/assignment.md b/translations/ko/4-Classification/3-Classifiers-2/assignment.md new file mode 100644 index 000000000..9c8222bc6 --- /dev/null +++ b/translations/ko/4-Classification/3-Classifiers-2/assignment.md @@ -0,0 +1,25 @@ + +# 매개변수 활용 + +## 지침 + +이 분류기들을 사용할 때 기본적으로 설정된 많은 매개변수들이 있습니다. VS Code의 Intellisense를 활용하여 이를 깊이 탐구할 수 있습니다. 이 강의에서 제공된 머신러닝 분류 기법 중 하나를 채택하여 다양한 매개변수 값을 조정하며 모델을 재훈련하세요. 어떤 변경이 모델 품질을 향상시키고, 어떤 변경이 품질을 저하시키는지 설명하는 노트북을 작성하세요. 답변은 상세히 작성해야 합니다. + +## 평가 기준 + +| 기준 | 우수 | 적절함 | 개선 필요 | +| -------- | ---------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------- | ----------------------------- | +| | 분류기가 완전히 구축되고 매개변수가 조정된 후 변경 사항이 텍스트 박스에 상세히 설명된 노트북이 제출됨 | 노트북이 부분적으로 제출되거나 설명이 부족함 | 노트북에 오류가 있거나 결함이 있음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/4-Classification/3-Classifiers-2/notebook.ipynb b/translations/ko/4-Classification/3-Classifiers-2/notebook.ipynb new file mode 100644 index 000000000..6f666e150 --- /dev/null +++ b/translations/ko/4-Classification/3-Classifiers-2/notebook.ipynb @@ -0,0 +1,163 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    00indian00000000...0000000000
                                                    11indian10000000...0000000000
                                                    22indian00000000...0000000000
                                                    33indian00000000...0000000000
                                                    44indian00000000...0000000010
                                                    \n

                                                    5 rows × 382 columns

                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    00000000000...0000000000
                                                    11000000000...0000000000
                                                    20000000000...0000000000
                                                    30000000000...0000000000
                                                    40000000000...0000000010
                                                    \n

                                                    5 rows × 380 columns

                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "15a83277036572e0773229b5f21c1e12", + "translation_date": "2025-09-04T02:32:06+00:00", + "source_file": "4-Classification/3-Classifiers-2/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/ko/4-Classification/3-Classifiers-2/solution/Julia/README.md b/translations/ko/4-Classification/3-Classifiers-2/solution/Julia/README.md new file mode 100644 index 000000000..b1f7188fe --- /dev/null +++ b/translations/ko/4-Classification/3-Classifiers-2/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb b/translations/ko/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb new file mode 100644 index 000000000..0a4306ab5 --- /dev/null +++ b/translations/ko/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb @@ -0,0 +1,650 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "lesson_12-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "fab50046ca413a38939d579f8432274f", + "translation_date": "2025-09-04T02:35:47+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb", + "language_code": "ko" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "jsFutf_ygqSx" + }, + "source": [ + "# 분류 모델 구축: 맛있는 아시아 및 인도 요리\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HD54bEefgtNO" + }, + "source": [ + "## 요리 분류기 2\n", + "\n", + "이 두 번째 분류 수업에서는 범주형 데이터를 분류하는 `다양한 방법`을 탐구합니다. 또한, 한 분류기를 다른 분류기 대신 선택했을 때의 결과에 대해 배워볼 것입니다.\n", + "\n", + "### [**강의 전 퀴즈**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/)\n", + "\n", + "### **사전 요구사항**\n", + "\n", + "이전 수업을 완료했다고 가정합니다. 이번 수업에서는 이전에 배운 개념을 이어서 사용할 것입니다.\n", + "\n", + "이번 수업을 위해 다음 패키지가 필요합니다:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/)는 데이터 과학을 더 빠르고, 쉽고, 재미있게 만들어주는 [R 패키지 모음](https://www.tidyverse.org/packages)입니다.\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 프레임워크는 모델링과 머신러닝을 위한 [패키지 모음](https://www.tidymodels.org/packages/)입니다.\n", + "\n", + "- `themis`: [themis 패키지](https://themis.tidymodels.org/)는 불균형 데이터 처리를 위한 추가 레시피 단계를 제공합니다.\n", + "\n", + "다음 명령어를 사용하여 패키지를 설치할 수 있습니다:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"kernlab\", \"themis\", \"ranger\", \"xgboost\", \"kknn\"))`\n", + "\n", + "또는 아래 스크립트를 사용하면 필요한 패키지가 설치되어 있는지 확인하고, 누락된 경우 자동으로 설치합니다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vZ57IuUxgyQt" + }, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, themis, kernlab, ranger, xgboost, kknn)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z22M-pj4g07x" + }, + "source": [ + "## **1. 분류 지도**\n", + "\n", + "[이전 강의](https://github.com/microsoft/ML-For-Beginners/tree/main/4-Classification/2-Classifiers-1)에서 우리는 \"여러 모델 중에서 어떻게 선택할 것인가?\"라는 질문에 대해 다뤄보았습니다. 이는 데이터의 특성과 우리가 해결하려는 문제 유형(예: 분류 또는 회귀)에 크게 좌우됩니다.\n", + "\n", + "이전에, 데이터를 분류할 때 사용할 수 있는 다양한 옵션에 대해 Microsoft의 치트 시트를 통해 배웠습니다. Python의 머신러닝 프레임워크인 Scikit-learn은 이와 유사하지만 더 세분화된 치트 시트를 제공하여 분류기(또는 추정기)를 선택하는 데 도움을 줄 수 있습니다:\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u1i3xRIVg7vG" + }, + "source": [ + "> Tip: [이 온라인 지도를 방문하세요](https://scikit-learn.org/stable/tutorial/machine_learning_map/) 그리고 경로를 따라가며 문서를 읽어보세요.\n", + ">\n", + "> [Tidymodels 참조 사이트](https://www.tidymodels.org/find/parsnip/#models)에서도 다양한 모델 유형에 대한 훌륭한 문서를 제공합니다.\n", + "\n", + "### **계획** 🗺️\n", + "\n", + "이 지도는 데이터를 명확히 이해한 후에 매우 유용합니다. 경로를 따라가며 결정을 내릴 수 있습니다:\n", + "\n", + "- 샘플이 \\>50개 있습니다.\n", + "\n", + "- 카테고리를 예측하고 싶습니다.\n", + "\n", + "- 라벨이 있는 데이터가 있습니다.\n", + "\n", + "- 샘플이 100K개 미만입니다.\n", + "\n", + "- ✨ Linear SVC를 선택할 수 있습니다.\n", + "\n", + "- 만약 작동하지 않는다면, 숫자 데이터가 있으므로\n", + "\n", + " - ✨ KNeighbors Classifier를 시도할 수 있습니다.\n", + "\n", + " - 그래도 작동하지 않으면 ✨ SVC와 ✨ Ensemble Classifiers를 시도해보세요.\n", + "\n", + "이 경로는 따라가기 매우 유용합니다. 이제 [tidymodels](https://www.tidymodels.org/) 모델링 프레임워크를 사용해 바로 시작해봅시다. 이는 좋은 통계적 실천을 장려하기 위해 개발된 일관되고 유연한 R 패키지 모음입니다 😊.\n", + "\n", + "## 2. 데이터를 분리하고 불균형 데이터 세트를 처리하기.\n", + "\n", + "이전 수업에서 우리는 각 요리에서 공통적으로 사용되는 재료 세트를 배웠습니다. 또한, 요리의 수가 매우 불균등하게 분포되어 있다는 것도 알게 되었습니다.\n", + "\n", + "이를 다음과 같이 처리할 것입니다:\n", + "\n", + "- 서로 다른 요리 간 혼란을 초래하는 가장 일반적인 재료를 `dplyr::select()`를 사용해 제거합니다.\n", + "\n", + "- 데이터를 모델링에 적합하게 준비하기 위해 `recipe`를 사용하여 데이터를 전처리하고 `over-sampling` 알고리즘을 적용합니다.\n", + "\n", + "이전 수업에서 이미 위 내용을 다뤘으니 이번에는 쉽게 진행할 수 있을 것입니다 🥳!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "6tj_rN00hClA" + }, + "source": [ + "# Load the core Tidyverse and Tidymodels packages\n", + "library(tidyverse)\n", + "library(tidymodels)\n", + "\n", + "# Load the original cuisines data\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\n", + "\n", + "# Drop id column, rice, garlic and ginger from our original data set\n", + "df_select <- df %>% \n", + " select(-c(1, rice, garlic, ginger)) %>%\n", + " # Encode cuisine column as categorical\n", + " mutate(cuisine = factor(cuisine))\n", + "\n", + "\n", + "# Create data split specification\n", + "set.seed(2056)\n", + "cuisines_split <- initial_split(data = df_select,\n", + " strata = cuisine,\n", + " prop = 0.7)\n", + "\n", + "# Extract the data in each split\n", + "cuisines_train <- training(cuisines_split)\n", + "cuisines_test <- testing(cuisines_split)\n", + "\n", + "# Display distribution of cuisines in the training set\n", + "cuisines_train %>% \n", + " count(cuisine) %>% \n", + " arrange(desc(n))" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zFin5yw3hHb1" + }, + "source": [ + "### 불균형 데이터 처리하기\n", + "\n", + "불균형 데이터는 종종 모델 성능에 부정적인 영향을 미칩니다. 많은 모델은 관측값의 수가 동일할 때 가장 잘 작동하며, 따라서 불균형 데이터에서는 어려움을 겪는 경향이 있습니다.\n", + "\n", + "불균형 데이터 세트를 처리하는 주요 방법은 두 가지입니다:\n", + "\n", + "- 소수 클래스에 관측값을 추가하기: `오버샘플링` 예를 들어, SMOTE 알고리즘을 사용하여 소수 클래스의 새로운 예제를 이 사례들의 가장 가까운 이웃을 기반으로 합성적으로 생성합니다.\n", + "\n", + "- 다수 클래스에서 관측값을 제거하기: `언더샘플링`\n", + "\n", + "이전 강의에서는 `recipe`를 사용하여 불균형 데이터 세트를 처리하는 방법을 시연했습니다. `recipe`는 데이터 분석을 준비하기 위해 데이터 세트에 어떤 단계를 적용해야 하는지를 설명하는 청사진으로 생각할 수 있습니다. 우리의 경우, `training set`에서 요리의 수가 균등하게 분포되도록 하고 싶습니다. 바로 시작해봅시다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cRzTnHolhLWd" + }, + "source": [ + "# Load themis package for dealing with imbalanced data\n", + "library(themis)\n", + "\n", + "# Create a recipe for preprocessing training data\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>%\n", + " step_smote(cuisine) \n", + "\n", + "# Print recipe\n", + "cuisines_recipe" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KxOQ2ORhhO81" + }, + "source": [ + "이제 모델을 훈련할 준비가 되었습니다 👩‍💻👨‍💻!\n", + "\n", + "## 3. 다항 회귀 모델을 넘어서\n", + "\n", + "이전 강의에서는 다항 회귀 모델에 대해 살펴보았습니다. 이제 분류를 위한 더 유연한 모델들을 탐구해 봅시다.\n", + "\n", + "### 서포트 벡터 머신(Support Vector Machines)\n", + "\n", + "분류의 맥락에서, `서포트 벡터 머신(Support Vector Machines)`은 클래스들을 \"최적\"으로 분리하는 *초평면(hyperplane)*을 찾으려는 머신 러닝 기법입니다. 간단한 예를 살펴보겠습니다:\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    https://commons.wikimedia.org/w/index.php?curid=22877598
                                                    \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C4Wsd0vZhXYu" + }, + "source": [ + "H1~는 클래스를 분리하지 않습니다. H2~는 분리하지만, 간격이 작습니다. H3~는 최대 간격으로 클래스를 분리합니다.\n", + "\n", + "#### 선형 서포트 벡터 분류기\n", + "\n", + "서포트 벡터 클러스터링(SVC)은 머신러닝 기법 중 서포트 벡터 머신(SVM) 계열에 속하는 하위 기술입니다. SVC에서는 초평면이 훈련 관측값의 `대부분`을 올바르게 분리하도록 선택되지만, 일부 관측값은 `잘못 분류될 수` 있습니다. 일부 점이 잘못된 쪽에 위치하도록 허용함으로써 SVM은 이상치에 대해 더 강건해지고 새로운 데이터에 대한 일반화 능력이 향상됩니다. 이러한 위반을 조정하는 매개변수를 `cost`라고 하며, 기본값은 1입니다 (`help(\"svm_poly\")`를 참조하세요).\n", + "\n", + "다항식 SVM 모델에서 `degree = 1`로 설정하여 선형 SVC를 만들어봅시다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vJpp6nuChlBz" + }, + "source": [ + "# Make a linear SVC specification\n", + "svc_linear_spec <- svm_poly(degree = 1) %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svc_linear_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svc_linear_spec)\n", + "\n", + "# Print out workflow\n", + "svc_linear_wf" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rDs8cWNkhoqu" + }, + "source": [ + "이제 전처리 단계와 모델 사양을 *워크플로*에 담았으니, 선형 SVC를 학습시키고 결과를 평가해봅시다. 성능 지표로는 `정확도(accuracy)`, `민감도(sensitivity)`, `양성 예측 값(Positive Predicted Value)`, 그리고 `F 측정값(F Measure)`을 평가할 수 있는 지표 세트를 만들어 보겠습니다.\n", + "\n", + "> `augment()`는 주어진 데이터에 예측 결과를 담은 열(column)을 추가합니다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "81wiqcwuhrnq" + }, + "source": [ + "# Train a linear SVC model\n", + "svc_linear_fit <- svc_linear_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svc_linear_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0UFQvHf-huo3" + }, + "source": [ + "#### 서포트 벡터 머신\n", + "\n", + "서포트 벡터 머신(SVM)은 클래스 간의 비선형 경계를 처리하기 위해 서포트 벡터 분류기를 확장한 것입니다. 본질적으로, SVM은 *커널 트릭*을 사용하여 특징 공간을 확장함으로써 클래스 간의 비선형 관계에 적응합니다. SVM에서 사용되는 인기 있고 매우 유연한 커널 함수 중 하나는 *방사 기저 함수*입니다. 이제 이것이 우리의 데이터에서 어떻게 작동하는지 살펴보겠습니다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-KX4S8mzhzmp" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Make an RBF SVM specification\n", + "svm_rbf_spec <- svm_rbf() %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svm_rbf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svm_rbf_spec)\n", + "\n", + "\n", + "# Train an RBF model\n", + "svm_rbf_fit <- svm_rbf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svm_rbf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QBFSa7WSh4HQ" + }, + "source": [ + "훨씬 더 좋아요 🤩!\n", + "\n", + "> ✅ 참고하세요:\n", + ">\n", + "> - [*Support Vector Machines*](https://bradleyboehmke.github.io/HOML/svm.html), Hands-on Machine Learning with R\n", + ">\n", + "> - [*Support Vector Machines*](https://www.statlearning.com/), An Introduction to Statistical Learning with Applications in R\n", + ">\n", + "> 추가 학습을 위해.\n", + "\n", + "### 최근접 이웃 분류기\n", + "\n", + "*K*-최근접 이웃(KNN)은 각 관측값이 다른 관측값과의 *유사성*을 기반으로 예측되는 알고리즘입니다.\n", + "\n", + "우리 데이터에 이를 적용해 봅시다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "k4BxxBcdh9Ka" + }, + "source": [ + "# Make a KNN specification\n", + "knn_spec <- nearest_neighbor() %>% \n", + " set_engine(\"kknn\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "knn_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(knn_spec)\n", + "\n", + "# Train a boosted tree model\n", + "knn_wf_fit <- knn_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "knn_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HaegQseriAcj" + }, + "source": [ + "이 모델의 성능이 그다지 좋지 않은 것 같습니다. 아마도 `help(\"nearest_neighbor\")`를 참고하여 모델의 매개변수를 변경하면 성능이 향상될 수 있습니다. 꼭 시도해 보세요.\n", + "\n", + "> ✅ 참고 자료:\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> 위 자료를 통해 *K*-Nearest Neighbors 분류기에 대해 더 알아보세요.\n", + "\n", + "### 앙상블 분류기\n", + "\n", + "앙상블 알고리즘은 여러 개의 기본 추정기를 결합하여 최적의 모델을 생성하는 방식으로 작동합니다. 방법은 다음과 같습니다:\n", + "\n", + "`bagging`: 기본 모델들의 집합에 *평균 함수*를 적용하는 방식\n", + "\n", + "`boosting`: 예측 성능을 개선하기 위해 서로를 기반으로 구축하는 일련의 모델을 생성하는 방식\n", + "\n", + "우선, 랜덤 포레스트(Random Forest) 모델을 시도해 봅시다. 이 모델은 다수의 결정 트리를 생성한 후, 평균 함수를 적용하여 더 나은 전체 모델을 만듭니다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "49DPoVs6iK1M" + }, + "source": [ + "# Make a random forest specification\n", + "rf_spec <- rand_forest() %>% \n", + " set_engine(\"ranger\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "rf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(rf_spec)\n", + "\n", + "# Train a random forest model\n", + "rf_wf_fit <- rf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "rf_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RGVYwC_aiUWc" + }, + "source": [ + "잘했어요 👏!\n", + "\n", + "Boosted Tree 모델도 실험해 봅시다.\n", + "\n", + "Boosted Tree는 일련의 순차적인 결정 트리를 생성하는 앙상블 방법을 정의합니다. 각 트리는 이전 트리의 결과에 따라 달라지며, 점진적으로 오류를 줄이려는 시도를 합니다. 이 방법은 잘못 분류된 항목의 가중치에 초점을 맞추고, 다음 분류기가 이를 수정하도록 적합성을 조정합니다.\n", + "\n", + "이 모델을 적합시키는 방법에는 여러 가지가 있습니다 (`help(\"boost_tree\")`를 참조하세요). 이 예제에서는 `xgboost` 엔진을 사용하여 Boosted Tree를 적합시킬 것입니다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Py1YWo-micWs" + }, + "source": [ + "# Make a boosted tree specification\n", + "boost_spec <- boost_tree(trees = 200) %>% \n", + " set_engine(\"xgboost\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "boost_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(boost_spec)\n", + "\n", + "# Train a boosted tree model\n", + "boost_wf_fit <- boost_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "boost_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zNQnbuejigZM" + }, + "source": [ + "> ✅ 참고하세요:\n", + ">\n", + "> - [사회과학자를 위한 머신러닝](https://cimentadaj.github.io/ml_socsci/tree-based-methods.html#random-forests)\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> - - AdaBoost 모델을 탐구하며, xgboost의 좋은 대안이 될 수 있습니다.\n", + ">\n", + "> 앙상블 분류기에 대해 더 알아보세요.\n", + "\n", + "## 4. 추가 - 여러 모델 비교하기\n", + "\n", + "이번 실습에서는 꽤 많은 모델을 적용해 보았습니다 🙌. 다양한 전처리기와/또는 모델 사양을 사용하여 여러 워크플로를 생성하고, 성능 지표를 하나씩 계산하는 작업은 번거롭거나 부담스러울 수 있습니다.\n", + "\n", + "이를 해결하기 위해, 훈련 세트에서 여러 워크플로를 적용하고 테스트 세트를 기반으로 성능 지표를 반환하는 함수를 만들어 보겠습니다. 이를 통해 [purrr](https://purrr.tidyverse.org/) 패키지의 `map()` 및 `map_dfr()`를 사용하여 리스트의 각 요소에 함수를 적용할 수 있습니다.\n", + "\n", + "> [`map()`](https://purrr.tidyverse.org/reference/map.html) 함수는 많은 for 루프를 더 간결하고 읽기 쉬운 코드로 대체할 수 있도록 도와줍니다. [`map()`](https://purrr.tidyverse.org/reference/map.html) 함수에 대해 배우기에 가장 좋은 장소는 R for Data Science의 [반복(iteration) 챕터](http://r4ds.had.co.nz/iteration.html)입니다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Qzb7LyZnimd2" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "# Define a function that returns performance metrics\n", + "compare_models <- function(workflow_list, train_set, test_set){\n", + " \n", + " suppressWarnings(\n", + " # Fit each model to the train_set\n", + " map(workflow_list, fit, data = train_set) %>% \n", + " # Make predictions on the test set\n", + " map_dfr(augment, new_data = test_set, .id = \"model\") %>%\n", + " # Select desired columns\n", + " select(model, cuisine, .pred_class) %>% \n", + " # Evaluate model performance\n", + " group_by(model) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class) %>% \n", + " ungroup()\n", + " )\n", + " \n", + "} # End of function" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Fwa712sNisDA" + }, + "source": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "3i4VJOi2iu-a" + }, + "source": [ + "# Make a list of workflows\n", + "workflow_list <- list(\n", + " \"svc\" = svc_linear_wf,\n", + " \"svm\" = svm_rbf_wf,\n", + " \"knn\" = knn_wf,\n", + " \"random_forest\" = rf_wf,\n", + " \"xgboost\" = boost_wf)\n", + "\n", + "# Call the function\n", + "set.seed(2056)\n", + "perf_metrics <- compare_models(workflow_list = workflow_list, train_set = cuisines_train, test_set = cuisines_test)\n", + "\n", + "# Print out performance metrics\n", + "perf_metrics %>% \n", + " group_by(.metric) %>% \n", + " arrange(desc(.estimate)) %>% \n", + " slice_head(n=7)\n", + "\n", + "# Compare accuracy\n", + "perf_metrics %>% \n", + " filter(.metric == \"accuracy\") %>% \n", + " arrange(desc(.estimate))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KuWK_lEli4nW" + }, + "source": [ + "[**workflowset**](https://workflowsets.tidymodels.org/) 패키지는 사용자가 많은 모델을 생성하고 쉽게 적합시킬 수 있도록 해주며, 주로 `교차 검증`과 같은 재샘플링 기법과 함께 사용하도록 설계되었습니다. 이 접근법은 아직 다루지 않았습니다.\n", + "\n", + "## **🚀도전 과제**\n", + "\n", + "이 기법들 각각은 조정할 수 있는 많은 매개변수를 가지고 있습니다. 예를 들어, SVM의 `cost`, KNN의 `neighbors`, 랜덤 포레스트의 `mtry`(무작위로 선택된 예측 변수) 등이 있습니다.\n", + "\n", + "각 모델의 기본 매개변수를 조사하고, 이러한 매개변수를 조정하는 것이 모델의 품질에 어떤 영향을 미칠지 생각해 보세요.\n", + "\n", + "특정 모델과 그 매개변수에 대해 더 알아보려면 다음을 사용하세요: `help(\"model\")` 예: `help(\"rand_forest\")`\n", + "\n", + "> 실제로는, `모의 데이터 세트`에서 여러 모델을 훈련시키고 이 모델들이 얼마나 잘 수행하는지 측정하여 *최적의 값*을 *추정*하는 경우가 많습니다. 이 과정을 **튜닝**이라고 합니다.\n", + "\n", + "### [**강의 후 퀴즈**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/)\n", + "\n", + "### **복습 및 자기 학습**\n", + "\n", + "이 강의들에는 전문 용어가 많이 등장하니, [이 목록](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott)의 유용한 용어들을 검토하는 시간을 가져보세요!\n", + "\n", + "#### 감사의 말씀:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/)에게 R을 더 친근하고 매력적으로 만들어주는 멋진 삽화를 만들어 주신 것에 대해 감사드립니다. 더 많은 삽화는 그녀의 [갤러리](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)에서 확인할 수 있습니다.\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview)와 [Jen Looper](https://www.twitter.com/jenlooper)에게 이 모듈의 원래 Python 버전을 만들어 주신 것에 대해 감사드립니다 ♥️\n", + "\n", + "즐거운 학습 되세요,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Gold Microsoft Learn Student Ambassador.\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    @allison_horst의 작품
                                                    \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/4-Classification/3-Classifiers-2/solution/notebook.ipynb b/translations/ko/4-Classification/3-Classifiers-2/solution/notebook.ipynb new file mode 100644 index 000000000..582efbcfc --- /dev/null +++ b/translations/ko/4-Classification/3-Classifiers-2/solution/notebook.ipynb @@ -0,0 +1,302 @@ +{ + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    00indian00000000...0000000000
                                                    11indian10000000...0000000000
                                                    22indian00000000...0000000000
                                                    33indian00000000...0000000000
                                                    44indian00000000...0000000010
                                                    \n

                                                    5 rows × 382 columns

                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 2 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    00000000000...0000000000
                                                    11000000000...0000000000
                                                    20000000000...0000000000
                                                    30000000000...0000000000
                                                    40000000000...0000000010
                                                    \n

                                                    5 rows × 380 columns

                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "다양한 분류기를 시도해보세요\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.svm import SVC\n", + "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "C = 10\n", + "# Create different classifiers.\n", + "classifiers = {\n", + " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n", + " 'KNN classifier': KNeighborsClassifier(C),\n", + " 'SVC': SVC(),\n", + " 'RFST': RandomForestClassifier(n_estimators=100),\n", + " 'ADA': AdaBoostClassifier(n_estimators=100)\n", + " \n", + "}\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy (train) for Linear SVC: 76.4% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.64 0.66 0.65 242\n", + " indian 0.91 0.86 0.89 236\n", + " japanese 0.72 0.73 0.73 245\n", + " korean 0.83 0.75 0.79 234\n", + " thai 0.75 0.82 0.78 242\n", + "\n", + " accuracy 0.76 1199\n", + " macro avg 0.77 0.76 0.77 1199\n", + "weighted avg 0.77 0.76 0.77 1199\n", + "\n", + "Accuracy (train) for KNN classifier: 70.7% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.65 0.63 0.64 242\n", + " indian 0.84 0.81 0.82 236\n", + " japanese 0.60 0.81 0.69 245\n", + " korean 0.89 0.53 0.67 234\n", + " thai 0.69 0.75 0.72 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.73 0.71 0.71 1199\n", + "weighted avg 0.73 0.71 0.71 1199\n", + "\n", + "Accuracy (train) for SVC: 80.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.71 0.69 0.70 242\n", + " indian 0.92 0.92 0.92 236\n", + " japanese 0.77 0.78 0.77 245\n", + " korean 0.87 0.77 0.82 234\n", + " thai 0.75 0.86 0.80 242\n", + "\n", + " accuracy 0.80 1199\n", + " macro avg 0.80 0.80 0.80 1199\n", + "weighted avg 0.80 0.80 0.80 1199\n", + "\n", + "Accuracy (train) for RFST: 82.8% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.80 0.75 0.77 242\n", + " indian 0.90 0.91 0.90 236\n", + " japanese 0.82 0.78 0.80 245\n", + " korean 0.85 0.82 0.83 234\n", + " thai 0.78 0.89 0.83 242\n", + "\n", + " accuracy 0.83 1199\n", + " macro avg 0.83 0.83 0.83 1199\n", + "weighted avg 0.83 0.83 0.83 1199\n", + "\n", + "Accuracy (train) for ADA: 71.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.60 0.57 0.58 242\n", + " indian 0.87 0.84 0.86 236\n", + " japanese 0.71 0.60 0.65 245\n", + " korean 0.68 0.78 0.72 234\n", + " thai 0.70 0.78 0.74 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.71 0.71 0.71 1199\n", + "weighted avg 0.71 0.71 0.71 1199\n", + "\n" + ] + } + ], + "source": [ + "n_classifiers = len(classifiers)\n", + "\n", + "for index, (name, classifier) in enumerate(classifiers.items()):\n", + " classifier.fit(X_train, np.ravel(y_train))\n", + "\n", + " y_pred = classifier.predict(X_test)\n", + " accuracy = accuracy_score(y_test, y_pred)\n", + " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n", + " print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문 번역가에 의한 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "7ea2b714669c823a596d986ba2d5739f", + "translation_date": "2025-09-04T02:32:35+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/ko/4-Classification/4-Applied/README.md b/translations/ko/4-Classification/4-Applied/README.md new file mode 100644 index 000000000..48fc1f3d6 --- /dev/null +++ b/translations/ko/4-Classification/4-Applied/README.md @@ -0,0 +1,329 @@ + +# 요리 추천 웹 앱 만들기 + +이 강의에서는 이전 강의에서 배운 기술과 이 시리즈에서 사용된 맛있는 요리 데이터셋을 활용하여 분류 모델을 구축합니다. 또한 저장된 모델을 사용하여 Onnx의 웹 런타임을 활용한 작은 웹 앱을 구축합니다. + +머신 러닝의 가장 실용적인 활용 중 하나는 추천 시스템을 구축하는 것입니다. 오늘 그 방향으로 첫걸음을 내딛어 보세요! + +[![웹 앱 소개](https://img.youtube.com/vi/17wdM9AHMfg/0.jpg)](https://youtu.be/17wdM9AHMfg "Applied ML") + +> 🎥 위 이미지를 클릭하면 제니 루퍼가 분류된 요리 데이터를 사용하여 웹 앱을 구축하는 영상을 볼 수 있습니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/25/) + +이 강의에서 배우게 될 내용: + +- 모델을 구축하고 Onnx 모델로 저장하는 방법 +- Netron을 사용하여 모델을 검사하는 방법 +- 웹 앱에서 모델을 사용하여 추론하는 방법 + +## 모델 구축하기 + +응용 머신 러닝 시스템을 구축하는 것은 비즈니스 시스템에서 이러한 기술을 활용하는 중요한 부분입니다. Onnx를 사용하면 웹 애플리케이션 내에서 모델을 사용할 수 있으며, 필요할 경우 오프라인 환경에서도 사용할 수 있습니다. + +[이전 강의](../../3-Web-App/1-Web-App/README.md)에서는 UFO 목격에 대한 회귀 모델을 구축하고 이를 "피클링"하여 Flask 앱에서 사용했습니다. 이 아키텍처는 매우 유용하지만, 전체 스택 Python 앱이며 JavaScript 애플리케이션을 사용해야 할 수도 있습니다. + +이번 강의에서는 추론을 위한 기본 JavaScript 기반 시스템을 구축합니다. 먼저 모델을 훈련시키고 Onnx로 변환해야 합니다. + +## 실습 - 분류 모델 훈련하기 + +먼저, 우리가 사용했던 정리된 요리 데이터셋을 사용하여 분류 모델을 훈련합니다. + +1. 유용한 라이브러리를 가져옵니다: + + ```python + !pip install skl2onnx + import pandas as pd + ``` + + Scikit-learn 모델을 Onnx 형식으로 변환하는 데 도움이 되는 '[skl2onnx](https://onnx.ai/sklearn-onnx/)'가 필요합니다. + +1. 이전 강의에서 했던 것처럼 `read_csv()`를 사용하여 CSV 파일을 읽습니다: + + ```python + data = pd.read_csv('../data/cleaned_cuisines.csv') + data.head() + ``` + +1. 첫 번째 두 개의 불필요한 열을 제거하고 나머지 데이터를 'X'로 저장합니다: + + ```python + X = data.iloc[:,2:] + X.head() + ``` + +1. 레이블을 'y'로 저장합니다: + + ```python + y = data[['cuisine']] + y.head() + + ``` + +### 훈련 루틴 시작하기 + +우리는 정확도가 좋은 'SVC' 라이브러리를 사용할 것입니다. + +1. Scikit-learn에서 적절한 라이브러리를 가져옵니다: + + ```python + from sklearn.model_selection import train_test_split + from sklearn.svm import SVC + from sklearn.model_selection import cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report + ``` + +1. 훈련 세트와 테스트 세트를 분리합니다: + + ```python + X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3) + ``` + +1. 이전 강의에서 했던 것처럼 SVC 분류 모델을 구축합니다: + + ```python + model = SVC(kernel='linear', C=10, probability=True,random_state=0) + model.fit(X_train,y_train.values.ravel()) + ``` + +1. 이제 `predict()`를 호출하여 모델을 테스트합니다: + + ```python + y_pred = model.predict(X_test) + ``` + +1. 모델의 품질을 확인하기 위해 분류 보고서를 출력합니다: + + ```python + print(classification_report(y_test,y_pred)) + ``` + + 이전에 본 것처럼 정확도가 좋습니다: + + ```output + precision recall f1-score support + + chinese 0.72 0.69 0.70 257 + indian 0.91 0.87 0.89 243 + japanese 0.79 0.77 0.78 239 + korean 0.83 0.79 0.81 236 + thai 0.72 0.84 0.78 224 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +### 모델을 Onnx로 변환하기 + +올바른 텐서 번호로 변환을 수행해야 합니다. 이 데이터셋에는 380개의 재료가 나열되어 있으므로 `FloatTensorType`에서 해당 숫자를 명시해야 합니다. + +1. 텐서 번호를 380으로 설정하여 변환합니다. + + ```python + from skl2onnx import convert_sklearn + from skl2onnx.common.data_types import FloatTensorType + + initial_type = [('float_input', FloatTensorType([None, 380]))] + options = {id(model): {'nocl': True, 'zipmap': False}} + ``` + +1. onx를 생성하고 **model.onnx** 파일로 저장합니다: + + ```python + onx = convert_sklearn(model, initial_types=initial_type, options=options) + with open("./model.onnx", "wb") as f: + f.write(onx.SerializeToString()) + ``` + + > 참고로, 변환 스크립트에서 [옵션](https://onnx.ai/sklearn-onnx/parameterized.html)을 전달할 수 있습니다. 이 경우 'nocl'을 True로 설정하고 'zipmap'을 False로 설정했습니다. 이는 분류 모델이므로 ZipMap을 제거하여 딕셔너리 목록을 생성하지 않도록 설정할 수 있습니다(필요하지 않음). `nocl`은 모델에 클래스 정보를 포함하는 것을 나타냅니다. `nocl`을 'True'로 설정하여 모델 크기를 줄일 수 있습니다. + +전체 노트북을 실행하면 Onnx 모델이 생성되고 이 폴더에 저장됩니다. + +## 모델 보기 + +Onnx 모델은 Visual Studio Code에서 잘 보이지 않지만, 많은 연구자들이 모델이 제대로 구축되었는지 확인하기 위해 사용하는 매우 좋은 무료 소프트웨어가 있습니다. [Netron](https://github.com/lutzroeder/Netron)을 다운로드하여 model.onnx 파일을 열어보세요. 380개의 입력과 분류기가 나열된 간단한 모델을 시각화할 수 있습니다: + +![Netron 시각화](../../../../translated_images/netron.a05f39410211915e0f95e2c0e8b88f41e7d13d725faf660188f3802ba5c9e831.ko.png) + +Netron은 모델을 보는 데 유용한 도구입니다. + +이제 이 멋진 모델을 웹 앱에서 사용할 준비가 되었습니다. 냉장고를 열어 남은 재료를 조합하여 모델이 결정한 요리를 만들 수 있는 웹 앱을 만들어 봅시다. + +## 추천 웹 애플리케이션 만들기 + +모델을 웹 앱에서 직접 사용할 수 있습니다. 이 아키텍처를 사용하면 로컬에서 실행하거나 필요할 경우 오프라인에서도 실행할 수 있습니다. `model.onnx` 파일이 저장된 동일한 폴더에 `index.html` 파일을 생성하세요. + +1. 이 파일 _index.html_에 다음 마크업을 추가합니다: + + ```html + + +
                                                    + Cuisine Matcher +
                                                    + + ... + + + ``` + +1. 이제 `body` 태그 내에서 몇 가지 재료를 반영하는 체크박스 목록을 표시하는 약간의 마크업을 추가합니다: + + ```html +

                                                    Check your refrigerator. What can you create?

                                                    +
                                                    +
                                                    + + +
                                                    + +
                                                    + + +
                                                    + +
                                                    + + +
                                                    + +
                                                    + + +
                                                    + +
                                                    + + +
                                                    + +
                                                    + + +
                                                    + +
                                                    + + +
                                                    +
                                                    +
                                                    + +
                                                    + ``` + + 각 체크박스에 값이 지정된 것을 확인하세요. 이는 데이터셋에 따라 재료가 발견되는 인덱스를 반영합니다. 예를 들어, 사과는 이 알파벳 순서 목록에서 다섯 번째 열을 차지하므로 값이 '4'입니다(0부터 시작). [재료 스프레드시트](../../../../4-Classification/data/ingredient_indexes.csv)를 참조하여 특정 재료의 인덱스를 확인할 수 있습니다. + + index.html 파일에서 작업을 계속하며, 마지막 닫는 `` 뒤에 모델을 호출하는 스크립트 블록을 추가합니다. + +1. 먼저 [Onnx Runtime](https://www.onnxruntime.ai/)을 가져옵니다: + + ```html + + ``` + + > Onnx Runtime은 다양한 하드웨어 플랫폼에서 Onnx 모델을 실행할 수 있도록 하며, 최적화와 API를 제공합니다. + +1. 런타임이 설정되면 이를 호출할 수 있습니다: + + ```html + + ``` + +이 코드에서는 여러 가지 작업이 이루어집니다: + +1. 380개의 가능한 값(1 또는 0)을 설정하고, 선택된 재료 체크박스에 따라 모델에 보내기 위해 `ingredients` 배열을 생성합니다. +2. 애플리케이션이 시작될 때 호출되는 `init` 함수에서 체크박스 배열을 생성하고 체크 여부를 확인합니다. 체크박스가 체크되면 `ingredients` 배열이 선택된 재료를 반영하도록 변경됩니다. +3. 체크박스가 체크되었는지 확인하는 `testCheckboxes` 함수를 생성합니다. +4. 버튼이 눌리면 `startInference` 함수를 사용하여 추론을 시작합니다. 체크박스가 체크되었으면 추론을 시작합니다. +5. 추론 루틴에는 다음이 포함됩니다: + 1. 모델을 비동기로 로드 설정 + 2. 모델에 보낼 텐서 구조 생성 + 3. 훈련 시 생성한 `float_input` 입력을 반영하는 'feeds' 생성(Netron을 사용하여 이름 확인 가능) + 4. 이 'feeds'를 모델에 보내고 응답을 기다림 + +## 애플리케이션 테스트하기 + +Visual Studio Code에서 index.html 파일이 있는 폴더에서 터미널 세션을 엽니다. [http-server](https://www.npmjs.com/package/http-server)가 전역적으로 설치되어 있는지 확인하고 프롬프트에서 `http-server`를 입력하세요. 로컬호스트가 열리며 웹 앱을 볼 수 있습니다. 다양한 재료를 기반으로 추천된 요리를 확인하세요: + +![재료 웹 앱](../../../../translated_images/web-app.4c76450cabe20036f8ec6d5e05ccc0c1c064f0d8f2fe3304d3bcc0198f7dc139.ko.png) + +축하합니다! 몇 가지 필드가 있는 '추천' 웹 앱을 만들었습니다. 이 시스템을 확장하는 데 시간을 투자해 보세요! + +## 🚀도전 과제 + +웹 앱이 매우 간단하므로 [ingredient_indexes](../../../../4-Classification/data/ingredient_indexes.csv) 데이터의 재료와 인덱스를 사용하여 계속 확장해 보세요. 어떤 맛 조합이 특정 국가 요리를 만드는 데 적합한지 알아보세요. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/26/) + +## 복습 및 자기 학습 + +이 강의에서는 음식 재료 추천 시스템을 만드는 유용성에 대해 간단히 다뤘지만, 이 분야의 머신 러닝 응용 프로그램은 매우 풍부한 예제를 제공합니다. 이러한 시스템이 어떻게 구축되는지에 대해 더 읽어보세요: + +- https://www.sciencedirect.com/topics/computer-science/recommendation-engine +- https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-recommendation-engines/ +- https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/ + +## 과제 + +[새로운 추천 시스템 만들기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/4-Classification/4-Applied/assignment.md b/translations/ko/4-Classification/4-Applied/assignment.md new file mode 100644 index 000000000..7c0070113 --- /dev/null +++ b/translations/ko/4-Classification/4-Applied/assignment.md @@ -0,0 +1,25 @@ + +# 추천 시스템 만들기 + +## 지침 + +이 강의에서 진행한 연습을 바탕으로, Onnx Runtime과 변환된 Onnx 모델을 사용하여 JavaScript 기반 웹 애플리케이션을 만드는 방법을 이제 알게 되었습니다. 이 강의에서 제공된 데이터나 다른 출처에서 가져온 데이터를 활용하여 새로운 추천 시스템을 만들어 보세요(출처를 반드시 명시하세요). 예를 들어, 다양한 성격 특성을 기반으로 한 반려동물 추천 시스템이나, 사람의 기분에 따라 음악 장르를 추천하는 시스템을 만들어 볼 수 있습니다. 창의력을 발휘해 보세요! + +## 평가 기준 + +| 기준 | 우수한 경우 | 적절한 경우 | 개선이 필요한 경우 | +| --------- | -------------------------------------------------------------------- | ------------------------------------- | --------------------------------- | +| | 웹 애플리케이션과 노트북이 모두 잘 문서화되어 실행 가능한 상태로 제공됨 | 둘 중 하나가 누락되었거나 결함이 있음 | 둘 다 누락되었거나 결함이 있음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/4-Classification/4-Applied/notebook.ipynb b/translations/ko/4-Classification/4-Applied/notebook.ipynb new file mode 100644 index 000000000..b79799792 --- /dev/null +++ b/translations/ko/4-Classification/4-Applied/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2f3e0d9e9ac5c301558fb8bf733ac0cb", + "translation_date": "2025-09-04T02:31:21+00:00", + "source_file": "4-Classification/4-Applied/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/4-Classification/4-Applied/solution/notebook.ipynb b/translations/ko/4-Classification/4-Applied/solution/notebook.ipynb new file mode 100644 index 000000000..2929296a7 --- /dev/null +++ b/translations/ko/4-Classification/4-Applied/solution/notebook.ipynb @@ -0,0 +1,290 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "49325d6dd12a3628fc64fa7ccb1a80ff", + "translation_date": "2025-09-04T02:31:43+00:00", + "source_file": "4-Classification/4-Applied/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: skl2onnx in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (1.8.0)\n", + "Requirement already satisfied: protobuf in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (3.8.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.19.2)\n", + "Requirement already satisfied: onnx>=1.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.9.0)\n", + "Requirement already satisfied: six in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from skl2onnx) (1.12.0)\n", + "Requirement already satisfied: onnxconverter-common<1.9,>=1.6.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.8.1)\n", + "Requirement already satisfied: scikit-learn>=0.19 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (0.24.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.4.1)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from protobuf->skl2onnx) (45.1.0)\n", + "Requirement already satisfied: typing-extensions>=3.6.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from onnx>=1.2.1->skl2onnx) (3.10.0.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (2.1.0)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (0.16.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install skl2onnx" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd \n" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    00indian00000000...0000000000
                                                    11indian10000000...0000000000
                                                    22indian00000000...0000000000
                                                    33indian00000000...0000000000
                                                    44indian00000000...0000000010
                                                    \n

                                                    5 rows × 382 columns

                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 60 + } + ], + "source": [ + "data = pd.read_csv('../../data/cleaned_cuisines.csv')\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
                                                    00000000000...0000000000
                                                    11000000000...0000000000
                                                    20000000000...0000000000
                                                    30000000000...0000000000
                                                    40000000000...0000000010
                                                    \n

                                                    5 rows × 380 columns

                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 61 + } + ], + "source": [ + "X = data.iloc[:,2:]\n", + "X.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine\n", + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    cuisine
                                                    0indian
                                                    1indian
                                                    2indian
                                                    3indian
                                                    4indian
                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 62 + } + ], + "source": [ + "y = data[['cuisine']]\n", + "y.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.svm import SVC\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SVC(C=10, kernel='linear', probability=True, random_state=0)" + ] + }, + "metadata": {}, + "execution_count": 65 + } + ], + "source": [ + "model = SVC(kernel='linear', C=10, probability=True,random_state=0)\n", + "model.fit(X_train,y_train.values.ravel())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.72 0.70 0.71 236\n indian 0.91 0.88 0.89 243\n japanese 0.80 0.75 0.77 240\n korean 0.80 0.81 0.81 230\n thai 0.76 0.85 0.80 250\n\n accuracy 0.80 1199\n macro avg 0.80 0.80 0.80 1199\nweighted avg 0.80 0.80 0.80 1199\n\n" + ] + } + ], + "source": [ + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from skl2onnx import convert_sklearn\n", + "from skl2onnx.common.data_types import FloatTensorType\n", + "\n", + "initial_type = [('float_input', FloatTensorType([None, 380]))]\n", + "options = {id(model): {'nocl': True, 'zipmap': False}}\n", + "onx = convert_sklearn(model, initial_types=initial_type, options=options)\n", + "with open(\"./model.onnx\", \"wb\") as f:\n", + " f.write(onx.SerializeToString())\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 자료로 간주해야 합니다. 중요한 정보에 대해서는 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/4-Classification/README.md b/translations/ko/4-Classification/README.md new file mode 100644 index 000000000..988c7e9e3 --- /dev/null +++ b/translations/ko/4-Classification/README.md @@ -0,0 +1,41 @@ + +# 분류 시작하기 + +## 지역 주제: 맛있는 아시아 및 인도 요리 🍜 + +아시아와 인도에서는 음식 전통이 매우 다양하고 정말 맛있습니다! 지역 요리에 대한 데이터를 살펴보며 그 재료를 이해해 봅시다. + +![태국 음식 판매자](../../../translated_images/thai-food.c47a7a7f9f05c21892a1f9dc7bf30669e6d18dfda420c5c7ebb4153f6a304edd.ko.jpg) +> 사진 제공: Lisheng Chang on Unsplash + +## 학습 내용 + +이 섹션에서는 이전에 공부했던 회귀 분석을 기반으로 다른 분류기를 배우고, 데이터를 더 잘 이해하기 위해 사용할 수 있는 방법을 익히게 됩니다. + +> 분류 모델 작업을 배우는 데 도움이 되는 유용한 로우코드 도구가 있습니다. [Azure ML을 사용해 이 작업을 시도해 보세요](https://docs.microsoft.com/learn/modules/create-classification-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +## 강의 목록 + +1. [분류 소개](1-Introduction/README.md) +2. [더 많은 분류기](2-Classifiers-1/README.md) +3. [또 다른 분류기](3-Classifiers-2/README.md) +4. [응용 머신러닝: 웹 앱 만들기](4-Applied/README.md) + +## 저작권 + +"분류 시작하기"는 [Cassie Breviu](https://www.twitter.com/cassiebreviu)와 [Jen Looper](https://www.twitter.com/jenlooper)가 ♥️를 담아 작성했습니다. + +맛있는 요리 데이터셋은 [Kaggle](https://www.kaggle.com/hoandan/asian-and-indian-cuisines)에서 제공되었습니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생할 수 있는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/5-Clustering/1-Visualize/README.md b/translations/ko/5-Clustering/1-Visualize/README.md new file mode 100644 index 000000000..dd7a6f838 --- /dev/null +++ b/translations/ko/5-Clustering/1-Visualize/README.md @@ -0,0 +1,347 @@ + +# 클러스터링 소개 + +클러스터링은 데이터셋이 라벨링되지 않았거나 입력값이 미리 정의된 출력값과 연결되지 않은 상태를 가정하는 [비지도 학습](https://wikipedia.org/wiki/Unsupervised_learning)의 한 유형입니다. 다양한 알고리즘을 사용하여 라벨링되지 않은 데이터를 분류하고 데이터에서 감지된 패턴에 따라 그룹을 제공합니다. + +[![PSquare의 No One Like You](https://img.youtube.com/vi/ty2advRiWJM/0.jpg)](https://youtu.be/ty2advRiWJM "PSquare의 No One Like You") + +> 🎥 위 이미지를 클릭하면 비디오를 볼 수 있습니다. 클러스터링을 활용한 머신 러닝을 공부하는 동안, 나이지리아 댄스홀 음악을 즐겨보세요. 이는 PSquare가 2014년에 발표한 높은 평가를 받은 곡입니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/) + +### 소개 + +[클러스터링](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124)은 데이터 탐색에 매우 유용합니다. 나이지리아 청중들이 음악을 소비하는 방식에서 트렌드와 패턴을 발견할 수 있는지 살펴봅시다. + +✅ 클러스터링의 활용 사례에 대해 잠시 생각해보세요. 현실 세계에서 클러스터링은 빨래 더미를 가족 구성원의 옷으로 분류해야 할 때 발생합니다 🧦👕👖🩲. 데이터 과학에서는 사용자의 선호도를 분석하거나 라벨링되지 않은 데이터셋의 특성을 결정하려고 할 때 클러스터링이 발생합니다. 클러스터링은 혼란을 이해하는 데 도움을 주는 방법으로, 마치 양말 서랍을 정리하는 것과 같습니다. + +[![ML 소개](https://img.youtube.com/vi/esmzYhuFnds/0.jpg)](https://youtu.be/esmzYhuFnds "클러스터링 소개") + +> 🎥 위 이미지를 클릭하면 비디오를 볼 수 있습니다: MIT의 John Guttag가 클러스터링을 소개합니다. + +전문적인 환경에서는 클러스터링을 사용하여 시장 세분화와 같은 것을 결정할 수 있습니다. 예를 들어, 어떤 연령대가 어떤 아이템을 구매하는지 알아내는 것입니다. 또 다른 활용 사례는 이상 탐지로, 신용카드 거래 데이터셋에서 사기를 감지하는 데 사용할 수 있습니다. 또는 의료 스캔 데이터에서 종양을 식별하는 데 클러스터링을 사용할 수도 있습니다. + +✅ 은행, 전자상거래 또는 비즈니스 환경에서 '야생'에서 클러스터링을 접한 경험이 있는지 잠시 생각해보세요. + +> 🎓 흥미롭게도 클러스터 분석은 1930년대 인류학과 심리학 분야에서 시작되었습니다. 당시에는 어떻게 사용되었을지 상상해보세요. + +또는 검색 결과를 그룹화하는 데 사용할 수도 있습니다. 예를 들어 쇼핑 링크, 이미지 또는 리뷰로 그룹화하는 것입니다. 클러스터링은 대규모 데이터셋을 축소하고 더 세부적인 분석을 수행하려는 경우에 유용하며, 이를 통해 다른 모델을 구축하기 전에 데이터에 대해 배울 수 있습니다. + +✅ 데이터가 클러스터로 정리되면 클러스터 ID를 할당할 수 있습니다. 이 기술은 데이터셋의 프라이버시를 보호할 때 유용합니다. 더 드러나는 식별 가능한 데이터 대신 클러스터 ID로 데이터 포인트를 참조할 수 있습니다. 클러스터 ID를 사용하여 클러스터의 다른 요소 대신 식별하는 이유를 생각해볼 수 있나요? + +클러스터링 기술에 대한 이해를 심화하려면 [Learn 모듈](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott)을 확인하세요. + +## 클러스터링 시작하기 + +[Scikit-learn은 다양한 방법](https://scikit-learn.org/stable/modules/clustering.html)을 제공하여 클러스터링을 수행할 수 있습니다. 선택한 방법은 사용 사례에 따라 달라집니다. 문서에 따르면 각 방법은 다양한 이점을 가지고 있습니다. Scikit-learn에서 지원하는 방법과 적합한 사용 사례를 간단히 정리한 표는 다음과 같습니다: + +| 방법 이름 | 사용 사례 | +| :--------------------------- | :--------------------------------------------------------------------- | +| K-Means | 일반적인 목적, 귀납적 | +| Affinity propagation | 많은, 불균형 클러스터, 귀납적 | +| Mean-shift | 많은, 불균형 클러스터, 귀납적 | +| Spectral clustering | 적은, 균형 클러스터, 전이적 | +| Ward hierarchical clustering | 많은, 제한된 클러스터, 전이적 | +| Agglomerative clustering | 많은, 제한된, 비유클리드 거리, 전이적 | +| DBSCAN | 비평면 기하학, 불균형 클러스터, 전이적 | +| OPTICS | 비평면 기하학, 밀도가 가변적인 불균형 클러스터, 전이적 | +| Gaussian mixtures | 평면 기하학, 귀납적 | +| BIRCH | 이상값이 있는 대규모 데이터셋, 귀납적 | + +> 🎓 클러스터를 생성하는 방법은 데이터 포인트를 그룹으로 모으는 방식과 밀접한 관련이 있습니다. 몇 가지 용어를 살펴봅시다: +> +> 🎓 ['전이적' vs. '귀납적'](https://wikipedia.org/wiki/Transduction_(machine_learning)) +> +> 전이적 추론은 특정 테스트 사례에 매핑된 관찰된 학습 사례에서 도출됩니다. 귀납적 추론은 일반적인 규칙에 매핑된 학습 사례에서 도출되며, 그런 다음 테스트 사례에 적용됩니다. +> +> 예: 데이터셋이 부분적으로 라벨링된 상태라고 가정해봅시다. 일부는 '레코드', 일부는 'CD', 일부는 공백입니다. 공백에 라벨을 제공하는 것이 당신의 작업입니다. 귀납적 접근법을 선택하면 '레코드'와 'CD'를 찾는 모델을 학습시키고, 라벨링되지 않은 데이터에 이러한 라벨을 적용합니다. 이 접근법은 실제로 '카세트'인 항목을 분류하는 데 어려움을 겪을 것입니다. 반면에 전이적 접근법은 유사한 항목을 그룹화한 다음 그룹에 라벨을 적용하여 이러한 미지의 데이터를 더 효과적으로 처리합니다. 이 경우 클러스터는 '둥근 음악 물건'과 '네모난 음악 물건'을 반영할 수 있습니다. +> +> 🎓 ['비평면' vs. '평면' 기하학](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering) +> +> 수학적 용어에서 파생된 비평면 vs. 평면 기하학은 클러스터 내의 점들 간의 거리를 '평면'([유클리드](https://wikipedia.org/wiki/Euclidean_geometry)) 또는 '비평면'(비유클리드) 기하학적 방법으로 측정하는 것을 의미합니다. +> +>'평면'은 유클리드 기하학(일부는 '평면' 기하학으로 가르침)과 관련되며, '비평면'은 비유클리드 기하학과 관련됩니다. 기하학이 머신 러닝과 어떤 관련이 있을까요? 두 분야 모두 수학에 뿌리를 두고 있기 때문에 클러스터 내의 점들 간의 거리를 측정하는 공통 방법이 필요하며, 데이터의 특성에 따라 '평면' 또는 '비평면' 방식으로 측정할 수 있습니다. [유클리드 거리](https://wikipedia.org/wiki/Euclidean_distance)는 두 점 사이의 선분 길이로 측정됩니다. [비유클리드 거리](https://wikipedia.org/wiki/Non-Euclidean_geometry)는 곡선을 따라 측정됩니다. 데이터가 시각화되었을 때 평면에 존재하지 않는 것처럼 보인다면, 이를 처리하기 위해 특수 알고리즘을 사용해야 할 수 있습니다. +> +![평면 vs 비평면 기하학 인포그래픽](../../../../translated_images/flat-nonflat.d1c8c6e2a96110c1d57fa0b72913f6aab3c245478524d25baf7f4a18efcde224.ko.png) +> 인포그래픽 제공: [Dasani Madipalli](https://twitter.com/dasani_decoded) +> +> 🎓 ['거리'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf) +> +> 클러스터는 거리 행렬, 즉 점들 간의 거리로 정의됩니다. 이 거리는 몇 가지 방법으로 측정될 수 있습니다. 유클리드 클러스터는 점 값의 평균으로 정의되며, '중심점' 또는 중심점을 포함합니다. 거리는 따라서 그 중심점까지의 거리로 측정됩니다. 비유클리드 거리는 '클러스트로이드', 즉 다른 점들에 가장 가까운 점으로 측정됩니다. 클러스트로이드는 다양한 방식으로 정의될 수 있습니다. +> +> 🎓 ['제약'](https://wikipedia.org/wiki/Constrained_clustering) +> +> [제약 클러스터링](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf)은 이 비지도 방법에 '반지도 학습'을 도입합니다. 점들 간의 관계는 '연결 불가' 또는 '연결 필수'로 표시되어 데이터셋에 일부 규칙이 강제됩니다. +> +>예: 알고리즘이 라벨링되지 않았거나 반라벨링된 데이터 배치에서 자유롭게 작동하도록 설정되면 생성된 클러스터는 품질이 낮을 수 있습니다. 위의 예에서 클러스터는 '둥근 음악 물건', '네모난 음악 물건', '삼각형 물건', '쿠키'를 그룹화할 수 있습니다. 일부 제약 조건이나 규칙("항목은 플라스틱으로 만들어져야 한다", "항목은 음악을 생성할 수 있어야 한다")이 주어지면 알고리즘이 더 나은 선택을 하도록 도울 수 있습니다. +> +> 🎓 '밀도' +> +> '노이즈가 많은' 데이터는 '밀도가 높다'고 간주됩니다. 각 클러스터 내의 점들 간의 거리는 더 밀도가 높거나 낮은 것으로 판명될 수 있으며, 따라서 이러한 데이터는 적절한 클러스터링 방법으로 분석해야 합니다. [이 기사](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html)는 불균형 클러스터 밀도가 있는 노이즈 데이터셋을 탐색하기 위해 K-Means 클러스터링과 HDBSCAN 알고리즘을 사용하는 차이를 보여줍니다. + +## 클러스터링 알고리즘 + +클러스터링 알고리즘은 100개 이상 있으며, 사용은 데이터의 특성에 따라 달라집니다. 주요 알고리즘 몇 가지를 살펴봅시다: + +- **계층적 클러스터링**. 객체가 멀리 떨어진 객체보다 가까운 객체와의 근접성에 따라 분류되면, 클러스터는 다른 객체와의 거리로 형성됩니다. Scikit-learn의 집계 클러스터링은 계층적입니다. + + ![계층적 클러스터링 인포그래픽](../../../../translated_images/hierarchical.bf59403aa43c8c47493bfdf1cc25230f26e45f4e38a3d62e8769cd324129ac15.ko.png) + > 인포그래픽 제공: [Dasani Madipalli](https://twitter.com/dasani_decoded) + +- **중심점 클러스터링**. 이 인기 있는 알고리즘은 'k', 즉 형성할 클러스터 수를 선택한 후, 알고리즘이 클러스터의 중심점을 결정하고 해당 점 주위에 데이터를 모읍니다. [K-평균 클러스터링](https://wikipedia.org/wiki/K-means_clustering)은 중심점 클러스터링의 인기 있는 버전입니다. 중심은 가장 가까운 평균에 의해 결정되며, 따라서 이름이 붙여졌습니다. 클러스터에서의 제곱 거리가 최소화됩니다. + + ![중심점 클러스터링 인포그래픽](../../../../translated_images/centroid.097fde836cf6c9187d0b2033e9f94441829f9d86f4f0b1604dd4b3d1931aee34.ko.png) + > 인포그래픽 제공: [Dasani Madipalli](https://twitter.com/dasani_decoded) + +- **분포 기반 클러스터링**. 통계 모델링에 기반하여, 분포 기반 클러스터링은 데이터 포인트가 클러스터에 속할 확률을 결정하고 이에 따라 할당합니다. 가우시안 혼합 방법은 이 유형에 속합니다. + +- **밀도 기반 클러스터링**. 데이터 포인트는 밀도, 즉 서로 주위에 그룹화된 정도에 따라 클러스터에 할당됩니다. 그룹에서 멀리 떨어진 데이터 포인트는 이상값 또는 노이즈로 간주됩니다. DBSCAN, Mean-shift 및 OPTICS는 이 유형의 클러스터링에 속합니다. + +- **그리드 기반 클러스터링**. 다차원 데이터셋의 경우, 그리드를 생성하고 데이터를 그리드의 셀로 나누어 클러스터를 생성합니다. + +## 실습 - 데이터 클러스터링 + +클러스터링 기술은 적절한 시각화에 크게 도움을 받으므로, 음악 데이터를 시각화하는 것으로 시작해봅시다. 이 실습은 데이터의 특성에 가장 효과적으로 사용할 클러스터링 방법을 결정하는 데 도움을 줄 것입니다. + +1. 이 폴더의 [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/notebook.ipynb) 파일을 엽니다. + +1. 데이터 시각화를 위해 `Seaborn` 패키지를 가져옵니다. + + ```python + !pip install seaborn + ``` + +1. [_nigerian-songs.csv_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/data/nigerian-songs.csv)에서 노래 데이터를 추가합니다. 노래에 대한 데이터를 포함한 데이터프레임을 로드합니다. 라이브러리를 가져오고 데이터를 출력하여 탐색할 준비를 합니다: + + ```python + import matplotlib.pyplot as plt + import pandas as pd + + df = pd.read_csv("../data/nigerian-songs.csv") + df.head() + ``` + + 데이터의 첫 몇 줄을 확인합니다: + + | | name | album | artist | artist_top_genre | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature | + | --- | ------------------------ | ---------------------------- | ------------------- | ---------------- | ------------ | ------ | ---------- | ------------ | ------------ | ------ | ---------------- | -------- | -------- | ----------- | ------- | -------------- | + | 0 | Sparky | Mandy & The Jungle | Cruel Santino | alternative r&b | 2019 | 144000 | 48 | 0.666 | 0.851 | 0.42 | 0.534 | 0.11 | -6.699 | 0.0829 | 133.015 | 5 | + | 1 | shuga rush | EVERYTHING YOU HEARD IS TRUE | Odunsi (The Engine) | afropop | 2020 | 89488 | 30 | 0.71 | 0.0822 | 0.683 | 0.000169 | 0.101 | -5.64 | 0.36 | 129.993 | 3 | +| 2 | LITT! | LITT! | AYLØ | indie r&b | 2018 | 207758 | 40 | 0.836 | 0.272 | 0.564 | 0.000537 | 0.11 | -7.127 | 0.0424 | 130.005 | 4 | +| 3 | Confident / Feeling Cool | Enjoy Your Life | Lady Donli | nigerian pop | 2019 | 175135 | 14 | 0.894 | 0.798 | 0.611 | 0.000187 | 0.0964 | -4.961 | 0.113 | 111.087 | 4 | +| 4 | wanted you | rare. | Odunsi (The Engine) | afropop | 2018 | 152049 | 25 | 0.702 | 0.116 | 0.833 | 0.91 | 0.348 | -6.044 | 0.0447 | 105.115 | 4 | + +1. 데이터프레임에 대한 정보를 얻으려면 `info()`를 호출하세요: + + ```python + df.info() + ``` + + 출력은 다음과 같습니다: + + ```output + + RangeIndex: 530 entries, 0 to 529 + Data columns (total 16 columns): + # Column Non-Null Count Dtype + --- ------ -------------- ----- + 0 name 530 non-null object + 1 album 530 non-null object + 2 artist 530 non-null object + 3 artist_top_genre 530 non-null object + 4 release_date 530 non-null int64 + 5 length 530 non-null int64 + 6 popularity 530 non-null int64 + 7 danceability 530 non-null float64 + 8 acousticness 530 non-null float64 + 9 energy 530 non-null float64 + 10 instrumentalness 530 non-null float64 + 11 liveness 530 non-null float64 + 12 loudness 530 non-null float64 + 13 speechiness 530 non-null float64 + 14 tempo 530 non-null float64 + 15 time_signature 530 non-null int64 + dtypes: float64(8), int64(4), object(4) + memory usage: 66.4+ KB + ``` + +1. `isnull()`을 호출하고 합계가 0인지 확인하여 null 값을 다시 확인하세요: + + ```python + df.isnull().sum() + ``` + + 좋아 보입니다: + + ```output + name 0 + album 0 + artist 0 + artist_top_genre 0 + release_date 0 + length 0 + popularity 0 + danceability 0 + acousticness 0 + energy 0 + instrumentalness 0 + liveness 0 + loudness 0 + speechiness 0 + tempo 0 + time_signature 0 + dtype: int64 + ``` + +1. 데이터를 설명하세요: + + ```python + df.describe() + ``` + + | | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature | + | ----- | ------------ | ----------- | ---------- | ------------ | ------------ | -------- | ---------------- | -------- | --------- | ----------- | ---------- | -------------- | + | count | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | + | mean | 2015.390566 | 222298.1698 | 17.507547 | 0.741619 | 0.265412 | 0.760623 | 0.016305 | 0.147308 | -4.953011 | 0.130748 | 116.487864 | 3.986792 | + | std | 3.131688 | 39696.82226 | 18.992212 | 0.117522 | 0.208342 | 0.148533 | 0.090321 | 0.123588 | 2.464186 | 0.092939 | 23.518601 | 0.333701 | + | min | 1998 | 89488 | 0 | 0.255 | 0.000665 | 0.111 | 0 | 0.0283 | -19.362 | 0.0278 | 61.695 | 3 | + | 25% | 2014 | 199305 | 0 | 0.681 | 0.089525 | 0.669 | 0 | 0.07565 | -6.29875 | 0.0591 | 102.96125 | 4 | + | 50% | 2016 | 218509 | 13 | 0.761 | 0.2205 | 0.7845 | 0.000004 | 0.1035 | -4.5585 | 0.09795 | 112.7145 | 4 | + | 75% | 2017 | 242098.5 | 31 | 0.8295 | 0.403 | 0.87575 | 0.000234 | 0.164 | -3.331 | 0.177 | 125.03925 | 4 | + | max | 2020 | 511738 | 73 | 0.966 | 0.954 | 0.995 | 0.91 | 0.811 | 0.582 | 0.514 | 206.007 | 5 | + +> 🤔 클러스터링은 라벨이 없는 데이터를 필요로 하지 않는 비지도 학습 방법인데, 왜 라벨이 있는 데이터를 보여주고 있을까요? 데이터 탐색 단계에서는 유용하지만, 클러스터링 알고리즘이 작동하는 데 필수적이지는 않습니다. 열 헤더를 제거하고 열 번호로 데이터를 참조해도 됩니다. + +데이터의 일반적인 값을 살펴보세요. 인기(popularity)가 '0'일 수 있다는 점에 주목하세요. 이는 순위가 없는 곡을 나타냅니다. 이를 곧 제거해 보겠습니다. + +1. 바 플롯을 사용하여 가장 인기 있는 장르를 찾아보세요: + + ```python + import seaborn as sns + + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top[:5].index,y=top[:5].values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + ![most popular](../../../../translated_images/popular.9c48d84b3386705f98bf44e26e9655bee9eb7c849d73be65195e37895bfedb5d.ko.png) + +✅ 더 많은 상위 값을 보고 싶다면, 상위 `[:5]`를 더 큰 값으로 변경하거나 제거하여 모두 확인하세요. + +참고로, 상위 장르가 'Missing'으로 표시되면 Spotify에서 이를 분류하지 않았다는 의미이므로 이를 제거합시다. + +1. 누락된 데이터를 필터링하여 제거하세요: + + ```python + df = df[df['artist_top_genre'] != 'Missing'] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + 이제 장르를 다시 확인하세요: + + ![most popular](../../../../translated_images/all-genres.1d56ef06cefbfcd61183023834ed3cb891a5ee638a3ba5c924b3151bf80208d7.ko.png) + +1. 이 데이터셋에서 상위 세 장르가 압도적으로 많습니다. `afro dancehall`, `afropop`, `nigerian pop`에 집중하고, 데이터셋에서 인기 값이 0인 항목(데이터셋에서 인기가 분류되지 않았으며 우리의 목적에 맞지 않는 노이즈로 간주될 수 있음)을 제거하세요: + + ```python + df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')] + df = df[(df['popularity'] > 0)] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + +1. 데이터가 특별히 강하게 상관관계가 있는지 빠르게 테스트하세요: + + ```python + corrmat = df.corr(numeric_only=True) + f, ax = plt.subplots(figsize=(12, 9)) + sns.heatmap(corrmat, vmax=.8, square=True) + ``` + + ![correlations](../../../../translated_images/correlation.a9356bb798f5eea51f47185968e1ebac5c078c92fce9931e28ccf0d7fab71c2b.ko.png) + + `energy`와 `loudness` 사이에만 강한 상관관계가 있으며, 이는 예상할 수 있는 결과입니다. 일반적으로 큰 소리의 음악은 에너지가 높기 때문입니다. 그 외에는 상관관계가 비교적 약합니다. 클러스터링 알고리즘이 이 데이터를 어떻게 처리할지 흥미로울 것입니다. + + > 🎓 상관관계가 인과관계를 의미하지는 않는다는 점을 기억하세요! 우리는 상관관계의 증거는 있지만 인과관계의 증거는 없습니다. [재미있는 웹사이트](https://tylervigen.com/spurious-correlations)는 이 점을 강조하는 시각 자료를 제공합니다. + +이 데이터셋에서 곡의 인기도와 춤추기 쉬운 정도(danceability)에 대한 수렴이 있나요? FacetGrid를 보면 장르에 상관없이 동심원이 나타나는 것을 확인할 수 있습니다. 나이지리아의 취향이 이 장르에서 특정 수준의 춤추기 쉬운 정도로 수렴하는 것일까요? + +✅ 다른 데이터 포인트(예: energy, loudness, speechiness)와 더 많은 음악 장르를 시도해 보세요. 무엇을 발견할 수 있나요? `df.describe()` 테이블을 살펴보고 데이터 포인트의 일반적인 분포를 확인하세요. + +### 연습 - 데이터 분포 + +이 세 장르가 인기도와 춤추기 쉬운 정도에 대한 인식에서 유의미하게 다른가요? + +1. 상위 세 장르의 데이터 분포를 주어진 x축과 y축에 따라 조사하세요. + + ```python + sns.set_theme(style="ticks") + + g = sns.jointplot( + data=df, + x="popularity", y="danceability", hue="artist_top_genre", + kind="kde", + ) + ``` + + 동심원이 일반적인 수렴 지점을 중심으로 나타나는 것을 발견할 수 있습니다. 이는 데이터 포인트의 분포를 보여줍니다. + + > 🎓 이 예제는 연속 확률 밀도 곡선을 사용하여 데이터를 나타내는 KDE(커널 밀도 추정) 그래프를 사용합니다. 이는 여러 분포를 다룰 때 데이터를 해석하는 데 유용합니다. + + 일반적으로 세 장르는 인기도와 춤추기 쉬운 정도 측면에서 느슨하게 정렬됩니다. 이 느슨하게 정렬된 데이터에서 클러스터를 결정하는 것은 도전 과제가 될 것입니다: + + ![distribution](../../../../translated_images/distribution.9be11df42356ca958dc8e06e87865e09d77cab78f94fe4fea8a1e6796c64dc4b.ko.png) + +1. 산점도를 생성하세요: + + ```python + sns.FacetGrid(df, hue="artist_top_genre", height=5) \ + .map(plt.scatter, "popularity", "danceability") \ + .add_legend() + ``` + + 동일한 축의 산점도는 유사한 수렴 패턴을 보여줍니다. + + ![Facetgrid](../../../../translated_images/facetgrid.9b2e65ce707eba1f983b7cdfed5d952e60f385947afa3011df6e3cc7d200eb5b.ko.png) + +일반적으로 클러스터링을 위해 산점도를 사용하여 데이터 클러스터를 표시할 수 있으므로 이러한 유형의 시각화를 마스터하는 것이 매우 유용합니다. 다음 강의에서는 이 필터링된 데이터를 사용하여 k-means 클러스터링을 통해 흥미로운 방식으로 겹치는 그룹을 발견할 것입니다. + +--- + +## 🚀도전 과제 + +다음 강의를 준비하면서, 프로덕션 환경에서 발견하고 사용할 수 있는 다양한 클러스터링 알고리즘에 대한 차트를 만들어 보세요. 클러스터링이 해결하려는 문제는 무엇인가요? + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/) + +## 복습 및 자기 학습 + +클러스터링 알고리즘을 적용하기 전에, 데이터셋의 특성을 이해하는 것이 좋습니다. 이 주제에 대해 더 알아보세요 [여기](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html). + +[이 유용한 기사](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/)는 다양한 데이터 모양에 따라 다양한 클러스터링 알고리즘이 어떻게 작동하는지 설명합니다. + +## 과제 + +[클러스터링을 위한 다른 시각화 방법 조사하기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문 번역가에 의한 번역을 권장합니다. 이 번역 사용으로 인해 발생할 수 있는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/5-Clustering/1-Visualize/assignment.md b/translations/ko/5-Clustering/1-Visualize/assignment.md new file mode 100644 index 000000000..2e160282f --- /dev/null +++ b/translations/ko/5-Clustering/1-Visualize/assignment.md @@ -0,0 +1,25 @@ + +# 클러스터링을 위한 다른 시각화 방법 연구 + +## 지침 + +이 강의에서는 클러스터링을 준비하기 위해 데이터를 시각화하는 몇 가지 기술을 배웠습니다. 특히 산점도는 객체 그룹을 찾는 데 유용합니다. 산점도를 생성하는 다양한 방법과 라이브러리를 조사하고, 작업 내용을 노트북에 기록하세요. 이 강의의 데이터, 다른 강의의 데이터, 또는 직접 수집한 데이터를 사용할 수 있습니다(단, 노트북에 데이터 출처를 명시해야 합니다). 산점도를 사용하여 데이터를 시각화하고 발견한 내용을 설명하세요. + +## 평가 기준 + +| 기준 | 우수한 사례 | 적절한 사례 | 개선이 필요한 사례 | +| --------- | ------------------------------------------------------------ | ------------------------------------------------------------------------------------ | --------------------------------- | +| | 다섯 개의 잘 문서화된 산점도를 포함한 노트북이 제출됨 | 다섯 개 미만의 산점도를 포함하며 문서화가 부족한 노트북이 제출됨 | 불완전한 노트북이 제출됨 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/5-Clustering/1-Visualize/notebook.ipynb b/translations/ko/5-Clustering/1-Visualize/notebook.ipynb new file mode 100644 index 000000000..8f991e48b --- /dev/null +++ b/translations/ko/5-Clustering/1-Visualize/notebook.ipynb @@ -0,0 +1,50 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python383jvsc74a57bd0e134e05457d34029b6460cd73bbf1ed73f339b5b6d98c95be70b69eba114fe95", + "display_name": "Python 3.8.3 64-bit (conda)" + }, + "coopTranslator": { + "original_hash": "40e0707e96b3e1899a912776006264f9", + "translation_date": "2025-09-04T01:57:47+00:00", + "source_file": "5-Clustering/1-Visualize/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서(원어로 작성된 문서)를 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문 번역가에 의한 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/5-Clustering/1-Visualize/solution/Julia/README.md b/translations/ko/5-Clustering/1-Visualize/solution/Julia/README.md new file mode 100644 index 000000000..de4518e43 --- /dev/null +++ b/translations/ko/5-Clustering/1-Visualize/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 신뢰할 수 있는 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb b/translations/ko/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb new file mode 100644 index 000000000..1a27fab3e --- /dev/null +++ b/translations/ko/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb @@ -0,0 +1,493 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## **스포티파이에서 수집된 나이지리아 음악 - 분석**\n", + "\n", + "클러스터링은 데이터셋이 라벨이 없거나 입력값이 미리 정의된 출력값과 일치하지 않는다고 가정하는 [비지도 학습](https://wikipedia.org/wiki/Unsupervised_learning)의 한 유형입니다. 클러스터링은 다양한 알고리즘을 사용하여 라벨이 없는 데이터를 분류하고 데이터에서 발견된 패턴에 따라 그룹을 제공합니다.\n", + "\n", + "[**강의 전 퀴즈**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/)\n", + "\n", + "### **소개**\n", + "\n", + "[클러스터링](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124)은 데이터 탐색에 매우 유용합니다. 나이지리아 청중들이 음악을 소비하는 방식에서 트렌드와 패턴을 발견하는 데 클러스터링이 도움이 되는지 살펴봅시다.\n", + "\n", + "> ✅ 클러스터링의 용도에 대해 잠시 생각해 보세요. 현실에서 클러스터링은 빨래 더미를 가족 구성원의 옷으로 분류해야 할 때 발생합니다 🧦👕👖🩲. 데이터 과학에서는 사용자의 선호도를 분석하거나 라벨이 없는 데이터셋의 특성을 결정하려고 할 때 클러스터링이 발생합니다. 클러스터링은 일종의 혼란 속에서 질서를 찾는 데 도움을 줍니다. 마치 양말 서랍을 정리하는 것처럼요.\n", + "\n", + "전문적인 환경에서는 클러스터링을 사용하여 시장 세분화를 결정하거나, 예를 들어 어떤 연령대가 어떤 아이템을 구매하는지 파악할 수 있습니다. 또 다른 용도로는 신용카드 거래 데이터셋에서 사기를 탐지하는 이상치 감지가 있을 수 있습니다. 또는 의료 스캔 데이터에서 종양을 식별하는 데 사용할 수도 있습니다.\n", + "\n", + "✅ 은행, 전자상거래, 또는 비즈니스 환경에서 클러스터링을 '자연스럽게' 접한 경험이 있는지 생각해 보세요.\n", + "\n", + "> 🎓 흥미롭게도, 클러스터 분석은 1930년대 인류학과 심리학 분야에서 시작되었습니다. 당시에는 어떻게 사용되었을지 상상해 보세요.\n", + "\n", + "또한 검색 결과를 그룹화하는 데 사용할 수도 있습니다. 예를 들어 쇼핑 링크, 이미지, 리뷰 등을 그룹화하는 방식입니다. 클러스터링은 대규모 데이터셋을 줄이고 더 세부적인 분석을 수행하려는 경우에 유용하며, 다른 모델을 구축하기 전에 데이터를 학습하는 데 사용할 수 있습니다.\n", + "\n", + "✅ 데이터가 클러스터로 정리되면 클러스터 ID를 할당할 수 있습니다. 이 기술은 데이터셋의 프라이버시를 보호하는 데 유용할 수 있습니다. 더 구체적이고 식별 가능한 데이터를 사용하는 대신 클러스터 ID로 데이터 포인트를 참조할 수 있기 때문입니다. 클러스터 ID를 다른 요소 대신 사용하는 이유를 더 생각해 볼 수 있을까요?\n", + "\n", + "### 클러스터링 시작하기\n", + "\n", + "> 🎓 클러스터를 생성하는 방식은 데이터 포인트를 그룹으로 묶는 방식과 밀접한 관련이 있습니다. 몇 가지 용어를 살펴봅시다:\n", + ">\n", + "> 🎓 ['전이적' vs. '귀납적'](https://wikipedia.org/wiki/Transduction_(machine_learning))\n", + ">\n", + "> 전이적 추론은 특정 테스트 사례와 일치하는 관찰된 학습 사례에서 도출됩니다. 귀납적 추론은 일반적인 규칙으로 매핑되는 학습 사례에서 도출된 후 테스트 사례에 적용됩니다.\n", + ">\n", + "> 예: 데이터셋이 부분적으로만 라벨이 지정되어 있다고 가정해 봅시다. 일부는 '레코드', 일부는 'CD', 일부는 공백입니다. 공백에 라벨을 제공하는 것이 여러분의 작업입니다. 귀납적 접근 방식을 선택하면 '레코드'와 'CD'를 찾는 모델을 학습시키고 해당 라벨을 라벨이 없는 데이터에 적용합니다. 이 접근 방식은 실제로 '카세트'인 항목을 분류하는 데 어려움을 겪을 수 있습니다. 반면, 전이적 접근 방식은 유사한 항목을 그룹화한 다음 그룹에 라벨을 적용하는 방식으로 이와 같은 미지의 데이터를 더 효과적으로 처리합니다. 이 경우 클러스터는 '둥근 음악 물건'과 '네모난 음악 물건'을 반영할 수 있습니다.\n", + ">\n", + "> 🎓 ['평면' vs. '비평면' 기하학](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering)\n", + ">\n", + "> 수학 용어에서 파생된 평면 vs. 비평면 기하학은 점들 간의 거리를 '평면'([유클리드](https://wikipedia.org/wiki/Euclidean_geometry)) 또는 '비평면'(비유클리드) 기하학적 방법으로 측정하는 것을 의미합니다.\n", + ">\n", + "> 여기서 '평면'은 유클리드 기하학(일부는 '평면' 기하학으로 가르침)을 의미하며, '비평면'은 비유클리드 기하학을 의미합니다. 기하학이 기계 학습과 무슨 관련이 있을까요? 두 분야 모두 수학에 뿌리를 두고 있기 때문에 클러스터 내 점들 간의 거리를 측정하는 공통된 방법이 필요하며, 데이터의 특성에 따라 '평면' 또는 '비평면' 방식으로 측정할 수 있습니다. [유클리드 거리](https://wikipedia.org/wiki/Euclidean_distance)는 두 점 사이의 선분 길이로 측정됩니다. [비유클리드 거리](https://wikipedia.org/wiki/Non-Euclidean_geometry)는 곡선을 따라 측정됩니다. 데이터가 시각화되었을 때 평면에 존재하지 않는 것처럼 보인다면, 이를 처리하기 위해 특수 알고리즘이 필요할 수 있습니다.\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    다사니 마디팔리의 인포그래픽
                                                    \n", + "\n", + "> 🎓 ['거리'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf)\n", + ">\n", + "> 클러스터는 점들 간의 거리 행렬, 즉 점들 간의 거리로 정의됩니다. 이 거리는 몇 가지 방법으로 측정될 수 있습니다. 유클리드 클러스터는 점 값의 평균으로 정의되며, '중심점' 또는 중심점을 포함합니다. 거리는 따라서 그 중심점까지의 거리로 측정됩니다. 비유클리드 거리는 '클러스트로이드', 즉 다른 점들에 가장 가까운 점을 참조합니다. 클러스트로이드는 다양한 방식으로 정의될 수 있습니다.\n", + ">\n", + "> 🎓 ['제약'](https://wikipedia.org/wiki/Constrained_clustering)\n", + ">\n", + "> [제약 클러스터링](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf)은 이 비지도 방법에 '반지도 학습'을 도입합니다. 점들 간의 관계는 '연결 불가' 또는 '연결 필수'로 표시되어 데이터셋에 몇 가지 규칙이 강제됩니다.\n", + ">\n", + "> 예: 알고리즘이 라벨이 없거나 부분적으로 라벨이 지정된 데이터 배치에서 자유롭게 작동하도록 설정되면 생성된 클러스터의 품질이 낮을 수 있습니다. 위의 예에서 클러스터는 '둥근 음악 물건', '네모난 음악 물건', '삼각형 물건', '쿠키'를 그룹화할 수 있습니다. 일부 제약 조건이나 따라야 할 규칙(\"항목은 플라스틱으로 만들어져야 한다\", \"항목은 음악을 생성할 수 있어야 한다\")이 주어지면 알고리즘이 더 나은 선택을 하도록 '제약'할 수 있습니다.\n", + ">\n", + "> 🎓 '밀도'\n", + ">\n", + "> '노이즈'가 많은 데이터는 '밀도가 높다'고 간주됩니다. 각 클러스터 내 점들 간의 거리는 더 밀도가 높거나 낮은 것으로 나타날 수 있으며, 따라서 이러한 데이터는 적절한 클러스터링 방법으로 분석해야 합니다. [이 기사](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html)는 불균일한 클러스터 밀도를 가진 노이즈 데이터셋을 탐색하기 위해 K-Means 클러스터링과 HDBSCAN 알고리즘을 사용하는 차이를 보여줍니다.\n", + "\n", + "클러스터링 기술에 대한 이해를 심화하려면 이 [학습 모듈](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott)을 확인하세요.\n", + "\n", + "### **클러스터링 알고리즘**\n", + "\n", + "100개 이상의 클러스터링 알고리즘이 있으며, 그 사용은 데이터의 특성에 따라 달라집니다. 주요 알고리즘 몇 가지를 살펴봅시다:\n", + "\n", + "- **계층적 클러스터링**. 객체가 멀리 떨어진 객체보다 가까운 객체와의 근접성에 따라 분류되는 경우, 클러스터는 다른 객체와의 거리로 인해 형성됩니다. 계층적 클러스터링은 두 클러스터를 반복적으로 결합하는 방식으로 특징지어집니다.\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    다사니 마디팔리의 인포그래픽
                                                    \n", + "\n", + "- **중심점 클러스터링**. 이 인기 있는 알고리즘은 'k', 즉 형성할 클러스터 수를 선택한 후, 알고리즘이 클러스터의 중심점을 결정하고 해당 점 주위에 데이터를 모읍니다. [K-평균 클러스터링](https://wikipedia.org/wiki/K-means_clustering)은 중심점 클러스터링의 인기 있는 버전으로, 데이터셋을 미리 정의된 K 그룹으로 분리합니다. 중심은 가장 가까운 평균에 의해 결정되며, 따라서 이름이 붙여졌습니다. 클러스터에서의 제곱 거리가 최소화됩니다.\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    다사니 마디팔리의 인포그래픽
                                                    \n", + "\n", + "- **분포 기반 클러스터링**. 통계 모델링에 기반을 둔 분포 기반 클러스터링은 데이터 포인트가 클러스터에 속할 확률을 결정하고 이에 따라 할당합니다. 가우시안 혼합 방법이 이 유형에 속합니다.\n", + "\n", + "- **밀도 기반 클러스터링**. 데이터 포인트는 밀도, 즉 서로 주위에 그룹화된 정도에 따라 클러스터에 할당됩니다. 그룹에서 멀리 떨어진 데이터 포인트는 이상치 또는 노이즈로 간주됩니다. DBSCAN, Mean-shift, OPTICS가 이 유형에 속합니다.\n", + "\n", + "- **그리드 기반 클러스터링**. 다차원 데이터셋의 경우, 그리드를 생성하고 데이터를 그리드의 셀에 나누어 클러스터를 생성합니다.\n", + "\n", + "클러스터링을 배우는 가장 좋은 방법은 직접 시도해 보는 것입니다. 이번 연습에서 바로 그렇게 해볼 것입니다.\n", + "\n", + "이 모듈을 완료하려면 몇 가지 패키지가 필요합니다. 다음 명령어로 설치할 수 있습니다: `install.packages(c('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork'))`\n", + "\n", + "또는 아래 스크립트를 사용하여 필요한 패키지가 설치되어 있는지 확인하고, 누락된 경우 설치할 수 있습니다.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork')\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## 연습 - 데이터를 클러스터링하기\n", + "\n", + "클러스터링은 적절한 시각화를 통해 크게 도움을 받을 수 있는 기술입니다. 따라서 음악 데이터를 시각화하는 것부터 시작해 봅시다. 이 연습은 이 데이터의 특성에 가장 효과적으로 사용할 수 있는 클러스터링 방법을 결정하는 데 도움을 줄 것입니다.\n", + "\n", + "데이터를 가져오는 것으로 바로 시작해 봅시다.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core tidyverse and make it available in your current R session\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# Import the data into a tibble\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\")\r\n", + "\r\n", + "# View the first 5 rows of the data set\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "때로는 데이터에 대해 조금 더 많은 정보를 알고 싶을 때가 있습니다. [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) 함수를 사용하여 `데이터`와 `그 구조`를 살펴볼 수 있습니다:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Glimpse into the data set\r\n", + "df %>% \r\n", + " glimpse()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "잘했어요!💪\n", + "\n", + "`glimpse()`를 사용하면 총 행(관측치)과 열(변수)의 수를 확인할 수 있으며, 변수 이름 뒤에 각 변수의 첫 몇 개 항목이 행 단위로 표시됩니다. 또한, 변수의 *데이터 유형*은 각 변수 이름 바로 뒤에 `< >` 안에 표시됩니다.\n", + "\n", + "`DataExplorer::introduce()`는 이 정보를 깔끔하게 요약해줍니다:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe basic information for our data\r\n", + "df %>% \r\n", + " introduce()\r\n", + "\r\n", + "# A visual display of the same\r\n", + "df %>% \r\n", + " plot_intro()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "멋져요! 우리의 데이터에 누락된 값이 없다는 것을 방금 확인했어요.\n", + "\n", + "이 기회에, 일반적인 중심 경향 통계(예: [평균](https://en.wikipedia.org/wiki/Arithmetic_mean)과 [중앙값](https://en.wikipedia.org/wiki/Median)) 및 산포도 측정(예: [표준편차](https://en.wikipedia.org/wiki/Standard_deviation))를 `summarytools::descr()`를 사용하여 탐색해볼 수 있어요.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe common statistics\r\n", + "df %>% \r\n", + " descr(stats = \"common\")\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "데이터의 일반적인 값을 살펴봅시다. 인기(popularity)가 `0`일 수 있다는 점에 주의하세요. 이는 순위가 없는 곡들을 나타냅니다. 곧 이러한 곡들을 제거할 예정입니다.\n", + "\n", + "> 🤔 클러스터링은 라벨이 없는 데이터를 필요로 하지 않는 비지도 학습 방법인데, 왜 라벨이 있는 데이터를 보여주고 있을까요? 데이터 탐색 단계에서는 라벨이 유용할 수 있지만, 클러스터링 알고리즘이 작동하는 데 필수적인 것은 아닙니다.\n", + "\n", + "### 1. 인기 있는 장르 탐색\n", + "\n", + "이제 가장 인기 있는 장르 🎶를 찾아봅시다. 이를 위해 해당 장르가 등장하는 횟수를 세어보겠습니다.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Popular genres\r\n", + "top_genres <- df %>% \r\n", + " count(artist_top_genre, sort = TRUE) %>% \r\n", + "# Encode to categorical and reorder the according to count\r\n", + " mutate(artist_top_genre = factor(artist_top_genre) %>% fct_inorder())\r\n", + "\r\n", + "# Print the top genres\r\n", + "top_genres\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "그거 잘 됐네요! 사진 한 장이 데이터 프레임의 천 줄보다 더 가치 있다는 말이 있죠 (사실 아무도 그런 말 안 해요 😅). 하지만 무슨 말인지 감은 오시죠?\n", + "\n", + "범주형 데이터(문자형 또는 팩터 변수)를 시각화하는 한 가지 방법은 막대 그래프를 사용하는 것입니다. 상위 10개의 장르를 막대 그래프로 만들어 봅시다:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Change the default gray theme\r\n", + "theme_set(theme_light())\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "이제 `missing` 장르가 있다는 것을 훨씬 쉽게 확인할 수 있네요 🧐!\n", + "\n", + "> 좋은 시각화는 예상하지 못했던 것을 보여주거나 데이터에 대한 새로운 질문을 제기합니다 - Hadley Wickham과 Garrett Grolemund, [R For Data Science](https://r4ds.had.co.nz/introduction.html)\n", + "\n", + "참고로, 최상위 장르가 `Missing`으로 표시된 경우, 이는 Spotify가 이를 분류하지 않았다는 것을 의미하므로 제거해 봅시다.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " filter(artist_top_genre != \"Missing\") %>% \r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "간단한 데이터 탐색을 통해 상위 세 장르가 이 데이터셋에서 큰 비중을 차지한다는 것을 알 수 있습니다. 이제 `afro dancehall`, `afropop`, `nigerian pop`에 집중하고, 인기도 값이 0인 항목(즉, 데이터셋에서 인기도로 분류되지 않았으며 우리의 목적상 노이즈로 간주될 수 있는 항목)을 제거하도록 데이터셋을 필터링해 봅시다.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "nigerian_songs <- df %>% \r\n", + " # Concentrate on top 3 genres\r\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \r\n", + " # Remove unclassified observations\r\n", + " filter(popularity != 0)\r\n", + "\r\n", + "\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "nigerian_songs %>%\r\n", + " count(artist_top_genre) %>%\r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "우리 데이터 세트의 수치형 변수들 간에 어떤 명확한 선형 관계가 있는지 살펴봅시다. 이 관계는 [상관 통계량](https://en.wikipedia.org/wiki/Correlation)에 의해 수학적으로 정량화됩니다.\n", + "\n", + "상관 통계량은 -1에서 1 사이의 값으로, 관계의 강도를 나타냅니다. 0보다 큰 값은 *양의* 상관관계(한 변수의 값이 높을수록 다른 변수의 값도 높은 경향이 있음)를 나타내며, 0보다 작은 값은 *음의* 상관관계(한 변수의 값이 높을수록 다른 변수의 값이 낮은 경향이 있음)를 나타냅니다.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Narrow down to numeric variables and fid correlation\r\n", + "corr_mat <- nigerian_songs %>% \r\n", + " select(where(is.numeric)) %>% \r\n", + " cor()\r\n", + "\r\n", + "# Visualize correlation matrix\r\n", + "corrplot(corr_mat, order = 'AOE', col = c('white', 'black'), bg = 'gold2') \r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "데이터는 `energy`와 `loudness` 사이에서만 강한 상관관계를 보이며, 이는 큰 소리의 음악이 일반적으로 에너지가 넘친다는 점에서 이해할 수 있습니다. `Popularity`는 `release date`와도 연관이 있는데, 이는 더 최근에 발매된 곡들이 아마도 더 인기가 많을 것이라는 점에서 역시 이해할 수 있습니다. 길이와 에너지 또한 상관관계를 보이는 것 같습니다.\n", + "\n", + "이 데이터를 클러스터링 알고리즘이 어떻게 처리할지 보는 것도 흥미로울 것 같습니다!\n", + "\n", + "> 🎓 상관관계가 인과관계를 의미하지 않는다는 점을 유념하세요! 우리는 상관관계의 증거는 있지만 인과관계의 증거는 없습니다. 이 점을 강조하는 [재미있는 웹사이트](https://tylervigen.com/spurious-correlations)가 몇 가지 시각 자료를 제공하고 있습니다.\n", + "\n", + "### 2. 데이터 분포 탐색\n", + "\n", + "좀 더 미묘한 질문을 던져봅시다. 장르별로 인기도를 기준으로 춤 가능성에 대한 인식이 크게 다를까요? 주어진 x축과 y축을 따라 [밀도 그래프](https://www.khanacademy.org/math/ap-statistics/density-curves-normal-distribution-ap/density-curves/v/density-curves)를 사용하여 상위 세 개 장르의 인기도와 춤 가능성에 대한 데이터 분포를 살펴보겠습니다.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Perform 2D kernel density estimation\r\n", + "density_estimate_2d <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre)) +\r\n", + " geom_density_2d(bins = 5, size = 1) +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " xlim(-20, 80) +\r\n", + " ylim(0, 1.2)\r\n", + "\r\n", + "# Density plot based on the popularity\r\n", + "density_estimate_pop <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " theme(legend.position = \"none\")\r\n", + "\r\n", + "# Density plot based on the danceability\r\n", + "density_estimate_dance <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = danceability, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\")\r\n", + "\r\n", + "\r\n", + "# Patch everything together\r\n", + "library(patchwork)\r\n", + "density_estimate_2d / (density_estimate_pop + density_estimate_dance)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "우리는 장르에 상관없이 동심원이 정렬되는 것을 볼 수 있습니다. 이 장르에서 나이지리아인의 취향이 특정 수준의 춤추기 좋은 정도에서 수렴하는 것일까요?\n", + "\n", + "일반적으로, 세 가지 장르는 인기도와 춤추기 좋은 정도 측면에서 일치합니다. 이 느슨하게 정렬된 데이터에서 클러스터를 결정하는 것은 도전 과제가 될 것입니다. 산점도가 이를 뒷받침할 수 있는지 확인해 봅시다.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# A scatter plot of popularity and danceability\r\n", + "scatter_plot <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre, shape = artist_top_genre)) +\r\n", + " geom_point(size = 2, alpha = 0.8) +\r\n", + " paletteer::scale_color_paletteer_d(\"futurevisions::mars\")\r\n", + "\r\n", + "# Add a touch of interactivity\r\n", + "ggplotly(scatter_plot)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "같은 축의 산점도는 유사한 수렴 패턴을 보여줍니다.\n", + "\n", + "일반적으로, 클러스터링을 위해 산점도를 사용하여 데이터의 클러스터를 시각화할 수 있습니다. 따라서 이러한 유형의 시각화를 숙달하는 것은 매우 유용합니다. 다음 강의에서는 이 필터링된 데이터를 사용하여 k-평균 클러스터링을 통해 흥미로운 방식으로 겹치는 그룹을 발견할 것입니다.\n", + "\n", + "## **🚀 도전 과제**\n", + "\n", + "다음 강의를 준비하며, 프로덕션 환경에서 발견하고 사용할 수 있는 다양한 클러스터링 알고리즘에 대한 차트를 만들어 보세요. 클러스터링이 해결하려는 문제는 어떤 종류인가요?\n", + "\n", + "## [**강의 후 퀴즈**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/)\n", + "\n", + "## **복습 및 자기 학습**\n", + "\n", + "우리가 배운 것처럼, 클러스터링 알고리즘을 적용하기 전에 데이터셋의 특성을 이해하는 것이 중요합니다. 이 주제에 대해 더 알아보세요: [여기](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html)\n", + "\n", + "클러스터링 기법에 대한 이해를 심화하세요:\n", + "\n", + "- [Tidymodels와 관련 도구를 사용하여 클러스터링 모델 학습 및 평가하기](https://rpubs.com/eR_ic/clustering)\n", + "\n", + "- Bradley Boehmke & Brandon Greenwell, [*Hands-On Machine Learning with R*](https://bradleyboehmke.github.io/HOML/)*.*\n", + "\n", + "## **과제**\n", + "\n", + "[클러스터링을 위한 다른 시각화 방법 조사하기](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/assignment.md)\n", + "\n", + "## 감사의 말씀:\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) - 이 모듈의 원래 Python 버전을 만들어 주신 분 ♥️\n", + "\n", + "[`Dasani Madipalli`](https://twitter.com/dasani_decoded) - 머신러닝 개념을 더 쉽게 이해할 수 있도록 멋진 일러스트를 제작해 주신 분.\n", + "\n", + "즐거운 학습 되세요,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Gold Microsoft Learn Student Ambassador.\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서(원어로 작성된 문서)를 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "99c36449cad3708a435f6798cfa39972", + "translation_date": "2025-09-04T02:03:56+00:00", + "source_file": "5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/ko/5-Clustering/1-Visualize/solution/notebook.ipynb b/translations/ko/5-Clustering/1-Visualize/solution/notebook.ipynb new file mode 100644 index 000000000..d1c39c6ec --- /dev/null +++ b/translations/ko/5-Clustering/1-Visualize/solution/notebook.ipynb @@ -0,0 +1,819 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Defaulting to user installation because normal site-packages is not writeable\n", + "Requirement already satisfied: seaborn in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (0.11.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (3.5.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.21.4)\n", + "Requirement already satisfied: pandas>=0.23 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.3.4)\n", + "Requirement already satisfied: scipy>=1.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.7.2)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (4.28.1)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.4.7)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (1.3.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (8.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (0.11.0)\n", + "Requirement already satisfied: packaging>=20.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (21.2)\n", + "Requirement already satisfied: setuptools-scm>=4 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (6.3.2)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.3 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from pandas>=0.23->seaborn) (2021.3)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from python-dateutil>=2.7->matplotlib>=2.2->seaborn) (1.16.0)\n", + "Requirement already satisfied: tomli>=1.0.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (1.2.2)\n", + "Requirement already satisfied: setuptools in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (59.1.1)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                                    0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                                                    1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                                    2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                                                    3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                                    4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                                    \n", + "
                                                    " + ], + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "데이터프레임에 대한 정보 가져오기\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 530 entries, 0 to 529\n", + "Data columns (total 16 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 530 non-null object \n", + " 1 album 530 non-null object \n", + " 2 artist 530 non-null object \n", + " 3 artist_top_genre 530 non-null object \n", + " 4 release_date 530 non-null int64 \n", + " 5 length 530 non-null int64 \n", + " 6 popularity 530 non-null int64 \n", + " 7 danceability 530 non-null float64\n", + " 8 acousticness 530 non-null float64\n", + " 9 energy 530 non-null float64\n", + " 10 instrumentalness 530 non-null float64\n", + " 11 liveness 530 non-null float64\n", + " 12 loudness 530 non-null float64\n", + " 13 speechiness 530 non-null float64\n", + " 14 tempo 530 non-null float64\n", + " 15 time_signature 530 non-null int64 \n", + "dtypes: float64(8), int64(4), object(4)\n", + "memory usage: 66.4+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "name 0\n", + "album 0\n", + "artist 0\n", + "artist_top_genre 0\n", + "release_date 0\n", + "length 0\n", + "popularity 0\n", + "danceability 0\n", + "acousticness 0\n", + "energy 0\n", + "instrumentalness 0\n", + "liveness 0\n", + "loudness 0\n", + "speechiness 0\n", + "tempo 0\n", + "time_signature 0\n", + "dtype: int64" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "데이터의 일반적인 값을 확인하세요. 인기가 '0'일 수 있다는 점에 유의하세요 - 그리고 해당 값이 있는 행이 많습니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    release_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                                    count530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000
                                                    mean2015.390566222298.16981117.5075470.7416190.2654120.7606230.0163050.147308-4.9530110.130748116.4878643.986792
                                                    std3.13168839696.82225918.9922120.1175220.2083420.1485330.0903210.1235882.4641860.09293923.5186010.333701
                                                    min1998.00000089488.0000000.0000000.2550000.0006650.1110000.0000000.028300-19.3620000.02780061.6950003.000000
                                                    25%2014.000000199305.0000000.0000000.6810000.0895250.6690000.0000000.075650-6.2987500.059100102.9612504.000000
                                                    50%2016.000000218509.00000013.0000000.7610000.2205000.7845000.0000040.103500-4.5585000.097950112.7145004.000000
                                                    75%2017.000000242098.50000031.0000000.8295000.4030000.8757500.0002340.164000-3.3310000.177000125.0392504.000000
                                                    max2020.000000511738.00000073.0000000.9660000.9540000.9950000.9100000.8110000.5820000.514000206.0070005.000000
                                                    \n", + "
                                                    " + ], + "text/plain": [ + " release_date length popularity danceability acousticness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 2015.390566 222298.169811 17.507547 0.741619 0.265412 \n", + "std 3.131688 39696.822259 18.992212 0.117522 0.208342 \n", + "min 1998.000000 89488.000000 0.000000 0.255000 0.000665 \n", + "25% 2014.000000 199305.000000 0.000000 0.681000 0.089525 \n", + "50% 2016.000000 218509.000000 13.000000 0.761000 0.220500 \n", + "75% 2017.000000 242098.500000 31.000000 0.829500 0.403000 \n", + "max 2020.000000 511738.000000 73.000000 0.966000 0.954000 \n", + "\n", + " energy instrumentalness liveness loudness speechiness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 0.760623 0.016305 0.147308 -4.953011 0.130748 \n", + "std 0.148533 0.090321 0.123588 2.464186 0.092939 \n", + "min 0.111000 0.000000 0.028300 -19.362000 0.027800 \n", + "25% 0.669000 0.000000 0.075650 -6.298750 0.059100 \n", + "50% 0.784500 0.000004 0.103500 -4.558500 0.097950 \n", + "75% 0.875750 0.000234 0.164000 -3.331000 0.177000 \n", + "max 0.995000 0.910000 0.811000 0.582000 0.514000 \n", + "\n", + " tempo time_signature \n", + "count 530.000000 530.000000 \n", + "mean 116.487864 3.986792 \n", + "std 23.518601 0.333701 \n", + "min 61.695000 3.000000 \n", + "25% 102.961250 4.000000 \n", + "50% 112.714500 4.000000 \n", + "75% 125.039250 4.000000 \n", + "max 206.007000 5.000000 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsIElEQVR4nO3debyt9dz/8ddbpzI20EETGRKZwpHMGVJyU6ZUJN25C0Uh81CmW4RkCLmLTCXTLXT/lFA3bkPSQETRdKSOBkMpOn1+f3yvzXKcOtN3t9Y++/V8PPbjrH2ta639qWvvtd7rO6aqkCRJ0oq72bgLkCRJWlkYrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJ0ybhzyNf1yf8ZeT7Z4+7PknqLS4QKummkHAe8PwqvjHuWpZHwpwqrht3HZImmy1Wkm5yCasnvDfht8PXexNWH+7bMuGihNcm/D7hvBtr3Uq4S8LJCX9K+EbCBxM+NXL/FgnfS7gy4fSELUfu+3bCWxK+Ozz++IR1hvs2SqiE3RMuAL45HP/3hJ8nXJHw9YQ7D8eTcHDCpQl/TDgz4T7T839Q0qQyWEkah9cBWwCbAfcHNgdeP3L/HYF1gPWBXYHDEja5gef6DPBD4HbAAcAuU3ckrA98DXgrcFtgP+ALCXNHHr8zsBtwe2C14ZxRjwbuBWydsB3wWuBpwFzgf4GjhvOeADwKuAewJrADcNkS/j9IWskYrCSNw7OBN1dxaRULgDcxEogGb6ji2ipOooWjHRZ9koQ7AQ8G3ljFX6v4DnDsyCnPAY6r4rgqrq/iBOAUYNuRcz5WxS+r+AtwDC3sjTqgiquG+18AvL2Knw/dgv8JbDa0Wv0NuA1wTyDDORcv+/8aSTOZwUrSOKwHnD/y/fnDsSlXVHHVjdw/+jyXV3H1yLELR27fGXjm0A14ZcKVwCOAdUfO+d3I7auBWy/yMxZ9vkNGnutyIMD6VXwT+ADwQeDShMMS1lhMzZJWYgYrSePwW1pImXKn4diUtRNudSP3T7kYuG3CLUeObThy+0Lgk1WsNfJ1qyoOXIZaR2f4XAjsucjz3aKK7wFU8b4qHgRsSusSfMUy/BxJKwGDlaRxOAp4fcLcYbD4G+EfA84Hb0pYLeGRwL8Bn1v0Sao4n9a1d8Bw7kOBJ4+c8ingyQlbJ6yScPNhcPwGy1n3h4HXJNwbIGHNhGcOtx+c8JCEVYGrgGuA65fz50iaoeaMuwBJs9JbgTWAM4bvPzccm/I74ApaK9XVwAuq+MUNPNezgY/TBor/EPgssApAFRcOA87fSQtzC4dzXrg8RVfxpYRbA0cP46r+AJww1L8GcDBwV1qo+jpw0PL8HEkzl+tYSZoow3IIn6pavlalhM8Cv6hi/66FSdJSsCtQ0ow2dMHdLeFmCdsA2wH/PeayJM1SdgVKmunuCHyRto7VRcALq/jJeEuSNFvZFShJktSJXYGSJEmdGKwkSZI6mYgxVuuss05ttNFG4y5DkiRpiX784x//vqrmLu6+iQhWG220Eaeccsq4y5AkSVqiJOff0H12BUqSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpkz7gKW1YNe8YlxlzAr/Pig5467BEmSZhxbrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHWyxGCV5OZJfpjk9CQ/S/Km4fhdkvwgyTlJPptkteH46sP35wz3bzTN/w2SJEkTYWlarK4FHltV9wc2A7ZJsgXwDuDgqro7cAWw+3D+7sAVw/GDh/MkSZJWeksMVtX8efh21eGrgMcCnx+OHwlsP9zebvie4f7HJUmvgiVJkibVUo2xSrJKktOAS4ETgHOBK6vquuGUi4D1h9vrAxcCDPf/Abhdx5olSZIm0lIFq6paWFWbARsAmwP3XNEfnGSPJKckOWXBggUr+nSSJEljt0yzAqvqSuBbwEOBtZLMGe7aAJg/3J4PbAgw3L8mcNlinuuwqppXVfPmzp27fNVLkiRNkKWZFTg3yVrD7VsAWwE/pwWsZwyn7Qp8ebh97PA9w/3frKrqWLMkSdJEmrPkU1gXODLJKrQgdkxVfTXJWcDRSd4K/AQ4fDj/cOCTSc4BLgd2nIa6JUmSJs4Sg1VVnQE8YDHHf00bb7Xo8WuAZ3apTpIkaQZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKmTJQarJBsm+VaSs5L8LMk+w/EDksxPctrwte3IY16T5JwkZyfZejr/AyRJkibFnKU45zrg5VV1apLbAD9OcsJw38FV9a7Rk5NsCuwI3BtYD/hGkntU1cKehUuSJE2aJbZYVdXFVXXqcPtPwM+B9W/kIdsBR1fVtVX1G+AcYPMexUqSJE2yZRpjlWQj4AHAD4ZDeyc5I8kRSdYejq0PXDjysItYTBBLskeSU5KcsmDBgmWvXJIkacIsdbBKcmvgC8C+VfVH4EPA3YDNgIuBdy/LD66qw6pqXlXNmzt37rI8VJIkaSItVbBKsiotVH26qr4IUFWXVNXCqroe+Cj/6O6bD2w48vANhmOSJEkrtaWZFRjgcODnVfWekePrjpz2VOCnw+1jgR2TrJ7kLsDGwA/7lSxJkjSZlmZW4MOBXYAzk5w2HHstsFOSzYACzgP2BKiqnyU5BjiLNqNwL2cESpKk2WCJwaqqvgNkMXcddyOPeRvwthWoS5IkacZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktTJEoNVkg2TfCvJWUl+lmSf4fhtk5yQ5FfDv2sPx5PkfUnOSXJGkgdO93+EJEnSJFiaFqvrgJdX1abAFsBeSTYFXg2cWFUbAycO3wM8Edh4+NoD+FD3qiVJkibQEoNVVV1cVacOt/8E/BxYH9gOOHI47Uhg++H2dsAnqvk+sFaSdXsXLkmSNGmWaYxVko2ABwA/AO5QVRcPd/0OuMNwe33gwpGHXTQcW/S59khySpJTFixYsKx1S5IkTZylDlZJbg18Adi3qv44el9VFVDL8oOr6rCqmldV8+bOnbssD5UkSZpISxWskqxKC1WfrqovDocvmeriG/69dDg+H9hw5OEbDMckSZJWakszKzDA4cDPq+o9I3cdC+w63N4V+PLI8ecOswO3AP4w0mUoSZK00pqzFOc8HNgFODPJacOx1wIHAsck2R04H9hhuO84YFvgHOBqYLeeBUuSJE2qJQarqvoOkBu4+3GLOb+AvVawLkmSpBnHldclSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInSwxWSY5IcmmSn44cOyDJ/CSnDV/bjtz3miTnJDk7ydbTVbgkSdKkWZoWq48D2yzm+MFVtdnwdRxAkk2BHYF7D485NMkqvYqVJEmaZEsMVlV1MnD5Uj7fdsDRVXVtVf0GOAfYfAXqkyRJmjFWZIzV3knOGLoK1x6OrQ9cOHLORcOxf5FkjySnJDllwYIFK1CGJEnSZFjeYPUh4G7AZsDFwLuX9Qmq6rCqmldV8+bOnbucZUiSJE2O5QpWVXVJVS2squuBj/KP7r75wIYjp24wHJMkSVrpLVewSrLuyLdPBaZmDB4L7Jhk9SR3ATYGfrhiJUqSJM0Mc5Z0QpKjgC2BdZJcBOwPbJlkM6CA84A9AarqZ0mOAc4CrgP2qqqF01K5JEnShFlisKqqnRZz+PAbOf9twNtWpChJkqSZyJXXJUmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJ0sMVkmOSHJpkp+OHLttkhOS/Gr4d+3heJK8L8k5Sc5I8sDpLF6SJGmSLE2L1ceBbRY59mrgxKraGDhx+B7gicDGw9cewIf6lClJkjT5lhisqupk4PJFDm8HHDncPhLYfuT4J6r5PrBWknU71SpJkjTRlneM1R2q6uLh9u+AOwy31wcuHDnvouGYJEnSSm+FB69XVQG1rI9LskeSU5KcsmDBghUtQ5IkaeyWN1hdMtXFN/x76XB8PrDhyHkbDMf+RVUdVlXzqmre3Llzl7MMSZKkybG8wepYYNfh9q7Al0eOP3eYHbgF8IeRLkNJkqSV2pwlnZDkKGBLYJ0kFwH7AwcCxyTZHTgf2GE4/ThgW+Ac4Gpgt2moWZIkaSItMVhV1U43cNfjFnNuAXutaFGSJEkzkSuvS5IkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE6WuNyC1NMFb77vuEtY6d3pjWeOuwRJmrVssZIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpmzIg9Och7wJ2AhcF1VzUtyW+CzwEbAecAOVXXFipUpSZI0+VYoWA0eU1W/H/n+1cCJVXVgklcP37+qw8+RNGYPf//Dx13CSu+7L/7uuEuQtAKmoytwO+DI4faRwPbT8DMkSZImzooGqwKOT/LjJHsMx+5QVRcPt38H3GEFf4YkSdKMsKJdgY+oqvlJbg+ckOQXo3dWVSWpxT1wCGJ7ANzpTndawTIkSZLGb4VarKpq/vDvpcCXgM2BS5KsCzD8e+kNPPawqppXVfPmzp27ImVIkiRNhOUOVkluleQ2U7eBJwA/BY4Fdh1O2xX48ooWKUmSNBOsSFfgHYAvJZl6ns9U1f9L8iPgmCS7A+cDO6x4mZIkSZNvuYNVVf0auP9ijl8GPG5FipIkSZqJXHldkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUyZxxFyBJmn4nPerR4y5hpffok08adwmaALZYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6mTPuAiRJ0o37wMu/Mu4SVnp7v/vJXZ7HFitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqZNqCVZJtkpyd5Jwkr56unyNJkjQppiVYJVkF+CDwRGBTYKckm07Hz5IkSZoU09VitTlwTlX9uqr+ChwNbDdNP0uSJGkipKr6P2nyDGCbqnr+8P0uwEOqau+Rc/YA9hi+3QQ4u3shk2Md4PfjLkLLzes3c3ntZjav38y1sl+7O1fV3MXdMbaV16vqMOCwcf38m1KSU6pq3rjr0PLx+s1cXruZzes3c83mazddXYHzgQ1Hvt9gOCZJkrTSmq5g9SNg4yR3SbIasCNw7DT9LEmSpIkwLV2BVXVdkr2BrwOrAEdU1c+m42fNELOiy3Ml5vWbubx2M5vXb+aatdduWgavS5IkzUauvC5JktSJwUqSJKkTg9UMlOSuSVYfdx2SJOmfGaxmmCRrA/sBrzNcSdINS5Jx16DZx2A1gyTZqKquAL4ArAnsZ7iaPL6YzyxJHpTELbdWMklSVZXk4Ul2T/K4YfkfzQCjr6PD/sMzhsFqhkiyFvCuJK+rqhOBLwLrYbgam6k//CT3HV681wcYXswNVxNs5NrNo22t9YYk2463KvU0/B0+BvgkcHfgvcBLktx9rIVpiaZC8XD7ecATZlIoNljNHFcB7wPunWS/qjoJOAbD1ViMfBp+PO06vAV4S5KXj74oaDIN1+6JwFHA6bRFjV+U5OnjrUy9JNkEeAGwb1W9BtgV2BjYaqyFaYlGQtVewD7A2VX11/FWtfQMVhNu6pN1Vf0N+D7wQWCLRcLV7YE3Gq5uOsMb8wOBVwDbV9Vjgc/RtnKyW2lmmAe8vqoOBfanhay9kmwz3rK0IjIAHgXcDdg6ya2q6lTaNd5jGKuqCZbk9sAutJ1bzkvy9CQvGFqZJ5rBaoIt0hy6JkBVfRd4D/DQkXD1VWA14NZjK3aWGZqlHw08Blh/OPwd4I/Ag8dVl27YYrpnbwk8D6CqLgV+APwV+I8km9+01WlFjVzfdYA5VfVR4G1AaG/OAL8D/jQc0wRJMjfJFsPtbYA7AicABwMfB3YANgMeO6YSl9q0bGmjPkZC1UuAxwGXJTm+qo4eXkP2SfLGqnpzku9U1V/GWe/KbqT7b1Xgb7TWw7WBVyW5oqp+kuQ0YOcktwT+Ypfg5Biu3YNpQfjrwH8C705ySFXtA9yK1uW+ALgr8MOxFatlNlzfbYE3A/OTXAXsTruuuybZmfae986qunyMpWrxVgVen6RoDQU7AF8BzgVOrqpfD1vlzUtys6q6foy13iiD1YRL8gLg6cCzgYNobwS3q6oPJpkD7J7ktr5QTL/hhfvJwFNp3a8H0bpiLwOOTXIErQXroKq6enyVatRIIN4S+DBwKfAU4LO0cYsHJDkJWJfWjfsU4N7jqVbLK8m9gLcCewOnAZ8BPlZVOya5BtgaOLOqvjqc71jICVJVv03yf7ThFR+oqj/QPtz8EP4+iP35wM6THKrArsCJluTmwLW0N/JnALcAngO8PMkLq+pkYE9D1U0jyYOAdwD/Rev22wW4P23W0adorYofqaqvzLTpwSujoWVxKhBvRlv/7UlV9SjgPOAJwDpV9Qza39UjaIF5N+DT46hZK+Ra4Czg1Kq6uqq2B9YdBkD/N62r9/5JdjRUTYbFdM9/lfa3+Pgk+42c93DgzsBzquqsm7DE5WKL1QRZtHmzqq4BPpZkQ2AbYPeqmp/kdNoMpqOq6soxlTsb3Qv4YVV9D/hekmcArwK+BbwbuJjWgnh6Vf10jHXOekluBxyd5ClDF/lDgS2B+9G6Ft4N7As8J8lqVXV8krsAzwSeUVW/GE/lWlojLZGr0BoJLqe1Os6jffABOJqWra9LciStC/9bhqrxW2QM8bNoYx5/VVVfTXI5cMjQnXsu7UPQW2fK+53BakIk2aCqLhpuvxi4C/Bb4DD+MeDyLkmeBFwC7DFTfslmqpEX7qnAexawbZJ5VXVKVX0+bWHJjavqpCSfA64H/jDWwkVVXZbk+cBGSf5aVR9KchvawPTLh+t1MK3b4aLhMb9J8qqqumqctWvpDH+b2wHPpQ1GP4g27vH9SQ4HrqF1C+4znP834MgxlatFjISqvWmtVB8AvpFkt6o6Ksmew7E5wPNm0vtdDO7jNTSFrkEbE/B24AzauI//on26Xoe2/sqewAOBBwHPrqozxlHvbJO2TtVDgStpM1ReQGuZmg+cTZu+/bSp65FklapaOJ5qBf98DZK8DngjcK+Rwa9bAe+rqhOnQvOkD4bVv0pyT9rr5Ntpr5MH0Lrn/0YbT7UB8PmqOn5cNerGJbk/beHW7WnhandgLdoEgw8Pk4BuPtOGuxisJkSShwGH01pFPlhV30yyHq2raQ1gr6q6Osmaw6A+TbOhX/8IWrfRc2n9/+cDc4GH0WYbfbSqjnXMxmQYaWXcArh0CFOvAl4KPLyqzk3yclq42hm40kA18yS5D+3v8uyqeslwbGvatPxHVtU5YyxPN2Bxr5NJ1qGNb9y3qrZMshvtvfAZVfXFcdS5ohy8PkZTA/eGX7bv0RL7vYFtoc2SAA4EFgIfHD5VG6puAknuAbyI1rJxGO0T1e2A+1XV+6pqR1rztKFqggyhampF9aktht5BW/vt5CT3qKp3M0z6MFTNWL+kDZG4V5KNk6xeVV+n7aM6d7ylaXEWGVP16CTbJlm7qn4PrE7rAYC2FuBngZ+MqdQVZovVmCzyS/Z42to582nrIv0Pbcr+R4b770h7z7hkXPXONsOb80toM41eOoy/WQM4CXhWVf1yrAVqsYYB6F+hhd5TktwXWLWqTh1arl4JbFCu+TZjTXX1DrM+Dwf+AnyDtozGUcB2VfWjcdaoG5bkpbQlhM4AtqB1/60B/DttketNgCdX1W/GVuQKMliN2fBLtj1tZtmjaYui3ZU2yPLDVfXesRU3i4x0Id0VuJo2w2gT2ti2C2ifhEPb/PpJVXXh2IrVP1nkQ8qtaAtEXk5ruXgALRx/oqo+leTudhPNXCN/p3OGmX6r0QasP5j2oedrwwxPW5EnUJL7AW+qqqcm2Qf4t6raKm1NxvsA96XNvD77Rp9owtkVOEZJNgW2rqpHA2sCV9DGfPyANqZnlyRrjbHEWWOkC+mrtG6jH9Fm9x1Fm779OdoL+KsMVZNj5I122yT701ovLqBNuz+etv3F12gTPwBm7Kfg2WhkuMTGQ8s9AEOomlNtY94XAafQpuufaqiaHFPXb8TFwOlJPkob8vLE4fh2wFlV9cmZHqrAYHWTWswv2V+BC5K8FrgHbUXZvyXZrqp+CDxsJk0xncmGF+23Av9RVTvTgtSxwK9os46+B3yb1rK4uGupMRhC1VNoe8KdWlXXV9UhVbV3VR1HC1TPA/7fcL4zNmeIkdC8Ne1v8b9pm2TfHf4pXP2NFq5uD7wGlxGaCEOX7VRL8m2HQeqXAxsBdwd2Ha7hc2kzd283tmI7syvwJrJId8V2tDFV3we+RFt4ctPhl+z5tOUVtq+qy8ZW8CwwMtX+wbSVuA8E9q9/rCf2fmBhVe2btn7YU2kDKj9SVdeNq+7ZLsm6wAOq6rhhnM0RwDtprVEPoW1JczBwW2B/4Iiq+vK46tXySzKPNjP6NcAdaBN8zgX+e6pLd2TM1Wq0lfR/O7aCBfy9N+YOVfWtJC+j/U3eHngTrUHhubT3wKLNsN6xqn42rnp7M1jdxIZ1dPagrX10TpLH0nZevz0taO1IW7bflbunSZJbTA1eTvII4FDaIoL7AseNTBp4FrBZVb1m+P4JwOlOIhivtI12zwN+W1VXJvkEbbunWwA/o6319uuq2iPJetX2ILN7aIZJW9D1QGCbqrrbcOyRwE60iT6fm5pEEtchmyhJ3kRbR+y7tOu1A631+OXAx2jbC92b9r538kweqL44Bqub0NCEfTiw09SnquET91q0T2JXAP+3MvQxT6ph/Zv3Av9GG4fzYdoigh8dWq4Ooy0EeiXwLOC1VfW18VSrUUnuDMwdZvutCRwCfBn4Ou1anVZVP0myCW2R3R2r6orxVaxltWgAHrmW5wAvHlqYt6RtSv+fK9sb8kw30n17M+B1tMkjfx2WpyFtfbkv0Qat/3iMpU4rx1hNo8WMw/k9bfDeaklWG34J/0ZbaPK9VfVxQ9X0GULsvrQ1UtYCHklbM+VZSdYfpmjvDPyaNgPwpVX1NcdTjVeaNWifcj+d5PHV1nP7X1pAfmJVfWwIVU8HPg8caqiaWUbelLdKsnuS5w+vhy+mtUa+Z2iZ+jbwSkPVZBkNxUPr4duAE4G1kzw2yS2r6vu0D0NrjLHUaWeL1TRZZEzVOsBVwHXAMcDxVfWh4b6dacssvKzco2xaDcHq9cDdaDul7wmsQhvTdh1wSFVdPL4KdWOSvJ02Q/M64AND6N2F9vfz7WE5hXcOt4+z+2/mGBnv+CTaZJFX0LqMPlNV+w2t/W8FLq+qF9n1N1kWeb/bmfbB9dqqOjzJvsBmtO7b3wBvALZcmYOxsyemwSK/ZC+j9TGfTpvVsjfwuaHb6Tpgc2AXQ9X0mmodTPIdWqD6dlWdNdz3JVrLx6uT/KdjqCZHklWHVl1oszLXoi2g+/wkVNUnk1wPPCnJVVX1yuFxhqoZIG1B15tV22poHdrr4w60WdLnAc9MW51797TlNFaHv7eIaEKMvN+9ENgN+BSwXZKnV9W2aRsq70UbZrHVyhyqwK7AaTHyS/Zg2oC9F9PW0tmX9on7CbSWq/+jDWI/czyVzg4jXQx3pS0a+TTgZkneOrxofxc4jhZ01xpjqRqRtsnu4UkeMxw6nrbe2xa0BXRflGSbqvo0bZzVuVOPNVTNGA8Dbpe2Jc3vaRN7VqPNHnsE8BhgtyQfqKqzy83nJ8owlmrq9hxa6/FLq237tTWwMMn7hwlBnwTeVbNg1wpbrKbJMNvsi7Tupe8nuQXwJ1oT93pTXYGafkOoegptRe5zaGOoPkKbofKSJO+rqv9Ncma5btgkuT3D/plJPgxcT5t2vxNtvNXNaa2MN6uqI8dXppZXVX06ya2BHyV5TlWdkbb5/I+HrsE70hbs/fp4K9Wi0havXg84a2hEuBj4G21ZjCmvoDUoUFUH3cQljo0tVp0sOsC5qr5DS+g7JFlnmN5/Mm0m01ZJ1nZQ9E1jmInyBmBr2oyUF9FaDd9F+4T18rSFBq8cW5H6F1V1MvAo4J7Ab2lbPR1Nu34b0AapH0ZbD0czyNRrX9rin/ehvVZ+dJi1ex6wZpJDaVtJfbmqTvD1cuJsAvxbkiNpYx4voi3E+5Ekmw/nPBS4e5Jbzqbr5+D1DhYZU/U44DbACVV1VZKDaV0X21XVpcMA6lWr6uoxljyrJNmAtrTC2rQBsDvTllm4HPg4sKDctHViDW++7wXuR5u+vQ3w3ao6cQjELtY6Aw1vvofQuo6+P4xH3Zm2dyq0631VVZ00phJ1I4b3so/RFv98bVV9YDi+J//YZuhBwLNrJVr8c2kYrDrKP3bt/hWtOfQdVXVSkoNog6MfVVV+uh6TJG8DLq2qQ9K2UXgJ8PSqOn/MpWkJhtli7wK2qKo/LDKoXTNMkg1pq+NfXlV7jBx/GfAfwDPLRZInzqKzMZM8ENiK9qH1TODoaqvgP5C2vNB1NQtXwneM1QoY+v+vqKprk2xFm+3wiCSvpg3K3G1ozHpFkmtp61UZrMbnTGDP4ZPW04B9DFUzw7C0wkLgl0nu6RpVM951wBm0mWPbVNXUXo7vSbIKTiKZSFOhKsmuwKrABVX1jiQvoPXM/CnJ2rRemw/O1kkktlgth6GveC5tjMd/0aaWrg3cmjaTZVda8+jHaJtNvrKqvjWeajUlbZHJp9KuzRHliuozztByddWwSKRmiJGZuQ+lvXZeQJtE8jza1ibHVNWJYyxRS2mYCPRu4NO0rr5vVtXBafvcPgR4HPDk2db9N8oWq+WTYbzUW4CX0RZC+yxwWZJ/B/6nqq5J8l3aJpM2aU+AqvojcGSST1fb8Nq1jmaYqTDstZtZhlD1BNqYqvcwbGsCHAssBJ6Xtpny8WMsU0uQtiDv5sBTqurnSR4EvGn4c3xvkk8Ca8z2IS8Gq+Uw0sd8S9pWC0ekLdf/MeB7wKFJ7kGbEfHM2f5LNoEWgmsdzWReu5ljWOtoLdrCvE8FbgucBZxaVZck+Rxt4U93PZgwIy2NUx9k7kSbYPBt4OfAacD+wMFJVquqd+JwF7sCl1eSZwGvAp5Im8XyXOBQ2j50D6cN6PtUVf1iXDVK0qRI8iraAq+Ppc0UOzfJ82jL0JznauqTZZHZ7hvTxlNdO/TK7EdrNPjZsDDofYDLqurCMZY8MWyxWn63A06utv3JR5JcRltT55ZV9VHAKcKSZrUkm9GWmnkTbfLOLsBjhlB1f9qH03Oq6tdjLFOLMRKqprYZujTJfFoL1RzgqCS7VNXptJYrDQxWy+8CYLNhjaT5VfX5YQr/k5McXVV/GnN9knSTG+k+eiTwTGDrJJdW1RvTtinaP8l1tI15XzUspqwJlLaDyJ60HpiNaLPdP0TrDlwP+FCSLavqr2MrcgIZrJbf/wLPpm0a+pMkt6QNVN/HUCVptpkKVEOoehRt1tjewHzgMWn7Ae4wvFmvTVut+8dORJgci7kWC4HTqup3SS6h7YDwAOAhVXVA2h6OhqpFGKxuxA39wQ+rPf8hyV60NP8IYGNgv6o67yYuU5LGKm1/v3sl+XZVLaQNcv5AVX05yYm01ql3DC+ph4w+1lA1GRYZU/Vi4I7AQbSemd2GyVkXJLmetp3N94HLxlbwBDNY3YBFfsm2AwJcX1XHDlP151TV5UneUW2z0FtV1VXjrVqSxuLBtB0nbjV08/0BOCDJMVX1myTfo61b9egkC6rqM+MsVv9q5P3uP2gb1J9aVVcm2Q/YL8kmwC+B+wMHjD5G/8xNmG/AyC/ZC4C30BL6B5K8crj/umEa8dQvlnv/SZqVqurLwO9oM6O3B46n7cd5yDCu6n60/Tp/Baw/pjK1BMOMvxfQZrkvTHJ74ERgX9qMzk2AXarqN2MrcgawxWoRi7RU3Zw2G2LXqvpJkmOAryf5c1UdOjo92OQuabYZfb0cWvBPAp4A/JW2CGiAT9K2sNkdeCCw1bCt1HW+bo7XIu9369AaCJ5SVfOTvAK4ZmhE+HNVvXCsxc4gBqsbMLRUnU1r+rxF2uaTvxmmnu443uokafyGgeqPBu5L29rko0n+TNs26vqqOijJocPpmwNvBJ5abqA9douEqr2Bu9IC8BeHU64Cbj0MhdknybZVdel4qp1ZDFaDJJtU1dnDC8XTaNOEd6INznspbXbLJcCGwC2H7RcWjq9iSRqPkSUVHkLr/jsLmJfku0O4Wgg8Z1g88gu0ldcfRlvT6udjK1x/NxKqXkTrmdkJOBVYL8mBwDXA+2nLKjzXULX0XHkdSLI1bW2OB9LGAbwbOLeqXjzcfwRtevBVtD7m3arK/f8kzVpJNgfeTNtk/owkO9LC05lDuNoJOGtYQJJhyxOn5k+QtI3p3wO8gdaYsC1tS5pbA2fSWh53rqqzxlbkDDTrW6yGT1Sb036xNqVNC/4WsF2SJ1fVV6rq34dPZqvQFgM9f2wFS9JkWAt4PG3xyDOAzwPXM4yhqqpD4Z/WtzJUTZiq+uOwbNA9aV20j0kS4FLgN8ATbKladrM+WA0D884FXk9bDO0xtCbQv9BWUV9YVcdV1Q/GWackTZKqOn4YNvH2JL+tqqOSfJ72AfT0kfPsFplg1fb/uxqYk+S+tBXWvwkcbKhaPrM+WA3OoM2G+COwZlX9PskXaZ++dklybVWdONYKJWnCVNWxw7pVbxm6+o4Ejhp3XVpmFwBfpXULrkfbYNkNlZfTrBxjtchsiNWAhVW1cFgI7bHA/lX1o2EfwCcCX62qi8dYsiRNrCRPAQ6kdQ3+bnQpGs0MwxIYd6TN5pw/7npmslkXrBYzxXRTWkvVAVV1TZLXAg8BDqyq/3P2nyQtWZK5VbVg3HVI4zbrgtWUYYrps2i7dJ8KfAN4Y1Wdm+StwN2B51XVNWMsU5IkzSCzMljdwBTTS2lLLbywqs5JcruqcoNJSZK01GZlsAJIsjptiul7R6aYLgA+QusWdGVgSZK0TGbtrMDFTDG9M22zyY8YqiRJ0vKYtS1W8PdWq31pM1mmppi6wqwkSVouszpYgVNMJUlSP7M+WEmSJPVys3EXIEmStLIwWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRO/j/0nFv+UbvkvAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top[:5].index,y=top[:5].values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "누락된 장르를 제거하세요. Spotify에서는 분류되지 않습니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAHuCAYAAADELJsvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZdklEQVR4nO3debytc9n48c/lHENmcsxzREqGjBkbRMgYGRJShqg0e2gQ9aSJRkoTqUilqJSkNOjXQElFnlQkKZ4iPWnC9fvj+q72sjucs89ea6/7nPN5v177tde613B/73vdw/WdIzORJElStyww6gRIkiTpPxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSRqaCP6v7++BCP7W9/zgUadPkrosHMxW0lSI4GbgeZl8ddRpmRMRTM/kvlGnQ9L8w5I0SVMugoUjeEcEv2t/74hg4fbajhH8NoITI/jfCG5+uFK3CNaK4JsR/CWCr0bw3gg+1vf6VhF8J4K7I/hxBDv2vXZlBKdGcFX7/FciWK69tmYEGcEREfwG+Fpb/twIbojgrggui2CNtjwiOCOCOyK4J4KfRPC44exBSfMDgzRJo3ASsBWwMbARsAXw6r7XVwSWA1YBDgXOjmC9h/iuTwDfBx4JnAwc0nshglWALwJvAJYFXg58JoIZfZ8/CDgcWB5YqL2n3w7AY4CdI9gTOBHYB5gBfAs4v73vacD2wKOBpYD9gT/OYj9I0kMySJM0CgcDp2RyRyZ3Aq+nL7hqXpPJPzL5BhVo7T/+SyJYHdgceG0m/8zk28AlfW95NnBpJpdm8kAmlwNXA7v2vecjmfxPJn8DLqQCx34nZ/LX9vrRwJsyuaFVff43sHErTfsXsASwPhDtPbdPfNdIUjFIkzQKKwO39D2/pS3ruSuTvz7M6/3f86dM7u1bdmvf4zWA/VpV590R3A1sC6zU957f9z2+F1h83DrGf987+77rT0AAq2TyNeA9wHuBOyI4O4IlZ5JmSZotBmmSRuF3VMDTs3pb1rNMBIs9zOs9twPLRrBo37LV+h7fCpyXydJ9f4tlctoE0trfu+pW4Khx3/eITL4DkMm7MnkCsAFV7fmKCaxHkh7EIE3SKJwPvDqCGa2h/mthrLF/8/oIFopgO2B34FPjvySTW6jqy5Pbe7cGntH3lo8Bz4hg5wimRbBI65iw6hym+33Af0XwWIAIlopgv/Z48wi2jGBB4K/A34EH5nA9ksT0USdA0nzpDcCSwHXt+afasp7fA3dRpWf3Akdn8vOH+K6DgXOoRvrfBz4JTAPI5NbW2P8tVGB4f3vPMXOS6Ew+G8HiwAWtHdqfgctb+pcEzgDWpgK0y4C3zsl6JAkcJ01Sx7QhMj6WOWelXRF8Evh5Jq8baMIkaYpZ3SlprtaqGR8VwQIR7ALsCXxuxMmSpEmzulPS3G5F4CJqnLTfAsdk8qPRJkmSJs/qTkmSpA6yulOSJKmDOlHdudxyy+Waa6456mRIkiTN0jXXXPO/mTlj1u+cnE4EaWuuuSZXX331qJMhSZI0SxFxy6zfNXlWd0qSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB00fdQLGu/Osjw19HTOOefbQ1yFJkjQZlqRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkddAsg7SIWCQivh8RP46In0XE69vytSLiexFxU0R8MiIWassXbs9vaq+vOeRtkCRJmufMTknaP4AnZ+ZGwMbALhGxFfBm4IzMXAe4Cziivf8I4K62/Iz2PkmSJE3ALIO0LP/Xni7Y/hJ4MvDptvxcYK/2eM/2nPb6UyIiBpVgSZKk+cFstUmLiGkRcS1wB3A58Evg7sy8r73lt8Aq7fEqwK0A7fU/A4+cyXceGRFXR8TVd95556Q2QpIkaV4zW0FaZt6fmRsDqwJbAOtPdsWZeXZmbpaZm82YMWOyXydJkjRPmVDvzsy8G/g6sDWwdERMby+tCtzWHt8GrAbQXl8K+OMgEitJkjS/mJ3enTMiYun2+BHATsANVLD2zPa2Q4GL2+NL2nPa61/LzBxgmiVJkuZ502f9FlYCzo2IaVRQd2FmfiEirgcuiIg3AD8CPtTe/yHgvIi4CfgTcMAQ0i1JkjRPm2WQlpnXAZvMZPmvqPZp45f/HdhvIKmTJEmaTznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB80ySIuI1SLi6xFxfUT8LCJe3JafHBG3RcS17W/Xvs/8V0TcFBE3RsTOw9wASZKkedH02XjPfcDLMvOHEbEEcE1EXN5eOyMz39b/5ojYADgAeCywMvDViHh0Zt4/yIRLkiTNy2ZZkpaZt2fmD9vjvwA3AKs8zEf2BC7IzH9k5q+Bm4AtBpFYSZKk+cWE2qRFxJrAJsD32qLjIuK6iPhwRCzTlq0C3Nr3sd8yk6AuIo6MiKsj4uo777xz4imXJEmah812kBYRiwOfAY7PzHuAs4BHARsDtwNvn8iKM/PszNwsMzebMWPGRD4qSZI0z5utIC0iFqQCtI9n5kUAmfmHzLw/Mx8APsBYleZtwGp9H1+1LZMkSdJsmp3enQF8CLghM0/vW75S39v2Bn7aHl8CHBARC0fEWsC6wPcHl2RJkqR53+z07twGOAT4SURc25adCBwYERsDCdwMHAWQmT+LiAuB66meocfas1OSJGliZhmkZea3gZjJS5c+zGfeCLxxEumSJEmarznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10CyDtIhYLSK+HhHXR8TPIuLFbfmyEXF5RPyi/V+mLY+IeFdE3BQR10XEpsPeCEmSpHnN7JSk3Qe8LDM3ALYCjo2IDYATgCsyc13givYc4OnAuu3vSOCsgadakiRpHjfLIC0zb8/MH7bHfwFuAFYB9gTObW87F9irPd4T+GiW7wJLR8RKg064JEnSvGxCbdIiYk1gE+B7wAqZeXt76ffACu3xKsCtfR/7bVs2/ruOjIirI+LqO++8c6LpliRJmqfNdpAWEYsDnwGOz8x7+l/LzARyIivOzLMzc7PM3GzGjBkT+agkSdI8b7aCtIhYkArQPp6ZF7XFf+hVY7b/d7TltwGr9X181bZMkiRJs2l2encG8CHghsw8ve+lS4BD2+NDgYv7lj+n9fLcCvhzX7WoJEmSZsP02XjPNsAhwE8i4tq27ETgNODCiDgCuAXYv712KbArcBNwL3D4IBMsSZI0P5hlkJaZ3wbiIV5+ykzen8Cxk0yXJEnSfM0ZByRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpg2YZpEXEhyPijoj4ad+ykyPitoi4tv3t2vfaf0XETRFxY0TsPKyES5IkzctmpyTtHGCXmSw/IzM3bn+XAkTEBsABwGPbZ86MiGmDSqwkSdL8YpZBWmZ+E/jTbH7fnsAFmfmPzPw1cBOwxSTSJ0mSNF+aTJu04yLiulYdukxbtgpwa997ftuW/YeIODIiro6Iq++8885JJEOSJGneM6dB2lnAo4CNgduBt0/0CzLz7MzcLDM3mzFjxhwmQ5Ikad40R0FaZv4hM+/PzAeADzBWpXkbsFrfW1dtyyRJkjQBcxSkRcRKfU/3Bno9Py8BDoiIhSNiLWBd4PuTS6IkSdL8Z/qs3hAR5wM7AstFxG+B1wE7RsTGQAI3A0cBZObPIuJC4HrgPuDYzLx/KCmXJEmah80ySMvMA2ey+EMP8/43Am+cTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdNMsgLSI+HBF3RMRP+5YtGxGXR8Qv2v9l2vKIiHdFxE0RcV1EbDrMxEuSJM2rZqck7Rxgl3HLTgCuyMx1gSvac4CnA+u2vyOBswaTTEmSpPnLLIO0zPwm8Kdxi/cEzm2PzwX26lv+0SzfBZaOiJUGlFZJkqT5xpy2SVshM29vj38PrNAerwLc2ve+37Zl/yEijoyIqyPi6jvvvHMOkyFJkjRvmnTHgcxMIOfgc2dn5maZudmMGTMmmwxJkqR5ypwGaX/oVWO2/3e05bcBq/W9b9W2TJIkSRMwp0HaJcCh7fGhwMV9y5/TenluBfy5r1pUkiRJs2n6rN4QEecDOwLLRcRvgdcBpwEXRsQRwC3A/u3tlwK7AjcB9wKHDyHNkiRJ87xZBmmZeeBDvPSUmbw3gWMnmyhJkqT5nTMOSJIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10Cx7d85Pfn/m64a+jhVf8Pqhr0OSJM39LEmTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA6aPpkPR8TNwF+A+4H7MnOziFgW+CSwJnAzsH9m3jW5ZEqSJM1fBlGS9qTM3DgzN2vPTwCuyMx1gSvac0mSJE3AMKo79wTObY/PBfYawjokSZLmaZMN0hL4SkRcExFHtmUrZObt7fHvgRVm9sGIODIiro6Iq++8885JJkOSJGneMqk2acC2mXlbRCwPXB4RP+9/MTMzInJmH8zMs4GzATbbbLOZvkeSJGl+NamStMy8rf2/A/gssAXwh4hYCaD9v2OyiZQkSZrfzHGQFhGLRcQSvcfA04CfApcAh7a3HQpcPNlESpIkzW8mU925AvDZiOh9zycy88sR8QPgwog4ArgF2H/yyZQkSZq/zHGQlpm/AjaayfI/Ak+ZTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQdNHnQCV687aY+jrePwxlwx9HZIkaTAsSZMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6qDpo06ARu+yD+069HXsfMSlQ1+HJEnzEoM0jdR55+w89HUccthlQ1+HJEmDZnWnJElSBxmkSZIkdZDVnZpvvf384Ve1vuxAq1olSXPGIE0agcM/u8vQ1/GRvb880+W7fu41Q1/3pXudOvR1SNK8bmjVnRGxS0TcGBE3RcQJw1qPJEnSvGgoQVpETAPeCzwd2AA4MCI2GMa6JEmS5kXDqu7cArgpM38FEBEXAHsC1w9pfZLmArtddObQ1/HFfV4w0+W7f/rjQ1/3F5558EyX7/HpLwx93Zc8c/eZLt/nM98d+rov2nermS5/0WdvHfq637X3ajNdfv5n7hz6ug/cd8ZMl1/10eGve5vnzHzdN7/j90Nf95rHrzjT5X8447qhr3uFlzx+psvvePdXh77u5V/41KGvY7zIzMF/acQzgV0y83nt+SHAlpl5XN97jgSObE/XA26cxCqXA/53Ep+fDNftul2363bdrtt1z1/rXiMzZx4pD9DIOg5k5tnA2YP4roi4OjM3G8R3uW7X7bpdt+t23a7bdXfBsDoO3Ab0l0Gv2pZJkiRpNgwrSPsBsG5ErBURCwEHAJcMaV2SJEnznKFUd2bmfRFxHHAZMA34cGb+bBjragZSbeq6Xbfrdt2u23W7btfdFUPpOCBJkqTJce5OSZKkDjJIkyRJ6iCDtJmIiLUjYuFRp0OSJM2/DNLGiYhlgJcDJ83rgVpExKjT0AUz2w+T3TcRMeXnlr9nt4ziGJhbeex2X//x3EZt0GyIiKUiYpX2eJ2IWHRCn7fjwJiIWDMzb46IpwB7AHcAb8vMfwxwHZEd2Om9dETENsD6wM3AtzLzn1O17vZ4WmbeP+x1PkxaFsjMB9rjVYH7M/P2SX7nv7cpItYD7s3Moc2P0ztu2+ODqd/z+8CPM/M3w1rvIIw7FnrH5L9/kzn5nlGLiMcBv83Mu+dkWya57t4+3A5YjLrGf2mq1j9Z7fh9NHAtcG1m/rotf9DvO4rfu2/fLgzcN8rr1ihFxHOAv2TmZ0ew7ik9nyYrIqYD2wOPBdYB1gSelZl/n93vMKfXRMTSwNsi4qTMvAK4CFgZePmclKj1coYRsWFEbNOLpNtJPvJcY0vHk4DzqIPnHcCLImKdYa533E35MOBpo8qVRcQTqBOIiHgp8Hnggog4u+89E/qtImJ94IT2+Bhq/34hIl7dbpwDFREzgFdGxEsj4lDgpcC9wPOA50fEJoNe5yC14/AZbZ+fGxGPz8wHZrXfI2LbiNi1BUQjP6/6zvfHAKcA74qIpdq2TNl1tu2H3YEzqevXmyLiJVO1/slo58sxwI+p69GT2/L+a8a67ca34BSnrReg7QZcALw3Io4d9jrb/8dGxNYRsdyISui3jIjP9y16AnBPfxqHuO6DIuKoiHghwFSfT5OVmfcBvwD2AZ4FnDORAA0M0vr9FXgX8NiIeHlmfgO4kDkI1PpO6Ke27zgVODUiXtaVHH8r4TkaOD4z/ws4FFgX2GmY6+272B4LvBi4cSpK7x7CtsApLWf4RGBX6mR6dC9Qm4Pfam1gzYh4O7BX+97DgH9SAenyg0n6v/0FuII6Tg8FnpeZbwJeQ41RuDV0tzopIh4LvB74CnAT8JmI2LJXovYQn9kS+Ci1X49rwf5IA7W27r2AjwC/A2ZQgdoyU3ljaaXBLwf2BP5GHXdHRMRrpmL9cyLKMsDjgN2BxYH/Ac5p+22h9r7jgfdR1+lDh3AuzSxtK0bE6u333ZE6Vl9DZYQOjYhFhrXuts49gXOBw4EP0zKVUykzv0dd0y5uixYDHtFL47DW24L244GFgadHxDfbOmeZiRu1/vS1WpSPAp+m4ovt+t4368xGZs7Xf7Qq3/Z4IWCbtjNf3pbtALwTeCOw8AS+d1NqMN/12vOnU7nDvUa9ve3v+cDVwHuBxdprOwI/ApYZchqWB74LrEdlFPalAsbNRrA/jgb+X/vNF+87Dq4D9puD75sO7AKc1fZlr0nBBsC3gKcOYRsWpqrnvwt8CJjWlu8MfA1YdJTH3MOkexPgc8CpfcuOpKreV3qIzywNHAVs354fBLwfOHTE27IQ8BngiX2/9+nAB4Gl2rIYchpWpCaMXgfYgiqRWrIdG/8HnDzq37wvrf+xL4BXA98GLutbdhwVmBwEXNnOry+1xycByw8xjesAVwGPbc/3oDJdu7Vrxhpt+doDXOfjgEPa41Xbti4GHAz8EFh22MdR/2/Uu5a059+mgo3XAvu3ffHYdqytPMhjov3OFwDb9C37HDUw/siP3wlsx07tWrAqsBTwJuA0qknKrlRc8LC/53xdkjauGH0pgMy8irq4bt1XovYF6iK8+Gx+70JUcPckYJW2+NtUEfHmA92I2dQX2S8HTM/MD1CBZ1DTdgH8niqZGWguJSJmRMRW7fEu1M3kcuAM4BzqhN+YVr0xTFE9d/+dA8/M9wEfoE6iJ0TEElkle18B/jWb37lhb/9mFW9/FfgUNV/tqyNikcy8nrpprjuAbdglIl7fHk/LajP5ZerieT9wYnvrQu35tMmuc0juoC7Gm0TEqm1bzga+Tt2MHqSVKnwceAmwYVv8ZeqG/ZSIOGJKUj1z04BlGPt9f0FNj7chcHJELNa71gxaK4laHvgksHpm3kRlhC7JzHuA+6jqzyuHsf6JGnfdfUlEvKZVYf4a+AdVAhkRcQAVkN8OJPBs4AXUvn4nlQl5UUSsNOj0tYf7Ar8C7oiInan5qM8FXgXslpm3RMTTWhqWGMB6l6Wa2fTaQN8BXE+VJh0LPDMz/wRsFxFLTnZ9s0hLZLk/InaPave6LbAScDKVET2Kqtp/HXWdmcz6plOBCxGxOXWP+BewQt/bTqBKMDut79h+EfAGqnbmfcAawFuo7TqVysD9cpbXhVFHnV34A14EXEwVJx/Qlj2Ruui9tj1/xOxEz1RbiaBukKdQpWmbtNf2oUpsFmWKckPj0rgrVXp2MfAJqsj62VTAdAXwDWD3Iax3ZSrQ/XzbH0tRua/DaLlQKsd8DrDAELd/b6pk6YlUoNr/2qFUcPVm6oL4S1op6Cy+8+nAz4Anz+S17akA8ItUW5ufAetOchueRpXy7dm/DcDefen5ZnvPl4HHT/Vx9jBp750jGwNbtovWI6gSqNOoIH1rKrjdcNxnN6EC582pavKfA5u315Ztx/HjRrAt69JK/ahc82XArn2//wep0ocnTEGaXgV8FliCuoleQd1QbwO27k93F/7a7/gtYP32fEkqg3Fu+61/QAVlm/S9fj5jJcVfAN4GLDfgdPVK1BcEfgPcDazVln2Kuk5Op66n1wNPH9B6l2vb84J27q5G1b5c1zt+qIz/z3r7bAp+oxdRNQLr9S27FPhc3/MlBrCezYFXtt/+e23ZwcCdwBbt+eHUNbqTNQPjtucpVGZzOlXo85123PSO5fWpDNWsv2vUGzPqP6q66xtUScr57YJ2bHtt+3bQLDub3/UMKtD7AlWS9rh2IbqVasvwTeAZI9rOx1DF5U+kgsTPARe0155JBRMv6nv/QC/mVNXE3cAbZvLaYVRvrg2GuP0rUwHq5uOW7wq8uj0+isrNv6l3UZ7Fd67SLphP6d9n7SL70fZ4h/a7n88kA7T2fScCr5jJ8h+03zGoAO7NwKqjONZmkf7d2kW/dyM+ngrULgSuoarfe0FOb3+u0I7PK/u+5/i273vVi9OncBt66doZuIGqZn4RVWq2N1Vd+17gt1Szhw8Aew4pLWsDS7bHi7b1rtue7wc8F3jaqH/3/v3WHi8EfKxdl9YCjmCss8AMqhrt1VQv5XX7PvND4K1U6fu3gVUGmT4qEPwkVZKzOFWSdgPVdrf3vgupYO3y3rE6yfXO6NvGD1JtCY9vz59CNWH4YDv3b2AIGemHSNfj2j5errf/+177OXBhezzpjDUVEH+Mqm06rm/5UVQNxIeoe8RjR30cz+rYbs/Xp4Ls51LB2lJtG35Ga6oxu39DmWB9btEaff6DurA+h7GSpQ9FxAOZeVZEfD9nozdGVE/BN1O96rYHDqF+nPOoE/4pwFmZ+fkYzbAT/6ByfT9s27NXRHyjNeB/P9XWZ+tWxfDJbEfanJpJB4kvUCfbqyPi7sx8W3vfNlSJyrOzqgSHZWHqInzTuP3/QHuNzHx/RNxJ7aObZ+M776EC/L9GxHLAn6hqmfOAx7Qi/O9SDY2vz8w75zTxffvzLmDTiHgVddFajLqRfIS62G9O3Ty+mpl/ndP1DUNELE41an9hZn47ItaiSk9/T7VFO4dqO3UFPKhR8l1UKeyxEfGyzHx7Zr6jNbr9WFQP1numajsyMyNiM+pcfwYVRB5M5ZrPB55KBU/voEpHtgT+e5BpiIhp1HH7QeD6iPgzFdTcR+3jozLzU33vH3mHpd76I2KjzPxxRNxLNbl4BBUMrEyVSn2tnU9PBXbOzLsiYnpm/jMi9qVKJjagMtO3DTCJ0zPznqjesEtSbc7WjoiVgc9FxJKZeUpm7h811tX0rOrkOdaqVg+jeoAvRF0v/gqsERFPyswrIuL3VEnyMsCRmfmtYfyeM/nOu6iMBhGxcLahqFqTkPUjYg2ohvyTXV9m/isiTgd+AqwaNRTLBe2a/APgf6lhT343xxs4JOOq7x8D3J2ZP2/P16ba3P45In5D3SNumdAKRh2BTuUfDxHxUxHvl2m5MqrK4CfA0hP47mdT3Wt7z59JlW6sTF2oX0RVtU1JlQxjuf1pVC5laermt23fe44Bjm6PF6Sq/FYY1Lrb42dRxdTbtudPbPvlGKrq7m0T2c+TTMvJVEBwAxUQXNx+63uoXNzJzEYJYt++DaptwUVUCdwXqRLK71HF9BcA75md75zANizU9t33qRKFi6kq9Cup3O236EgJ2vjtpkomvgCsM+74eEt7vGpL/4ntuH0SFbwdAyxCNRd4N/Divs+vOUXbsjZwSnu8GNXG5Jd9r29Ptft6bS9NVCna54GNBr1PGeuM8AiqBO8CKkB8PnVj3XZQ6xzwflyJaoz/XCrIfFL73VelArUvU9W1q1LVamvx4Mbry7f/A63yoqrMfw48pj0/hKrqfEZ7vklL9xsHuM7lGOtYtmK7lmzanv8XVfKyA7DgFPwu/deYRdu5uhBV2r1H32sHU22JB5YmWq90WokvVbv1bqqjxqFUU5jOVNM/zHYcR2Xa3w1c3pa9E7iEak93/Zxcm0e+YVO4A1fte/xCKjf2cirHtCBVfL1tuym8D5gxi+/rXSwXaP83pdp5bdb3nvOAHdrjldqPuNoUbvOeVHufi6i2PvtQVU3HtZPiZwyht2Hf+o+jcobPBv4OHNi3r75DBRpDq+Icl5Zem5w9aUOttAvgZlSQ81pmo43AuItZ7zuf2o6ZRalSlc2Bs9tF5lED3IaXAC9oj99KNV7uvXYEVZIy2z2Qp/A47D/3Tmm/e69H8f5t/y/anq9MZZqeRA3JcRRVDfoWapDT3ak2Xi9r7x9aG8Zx2zAd2Kq3LVTPv8uo6sXeNWBHqmqz185yKQbYXqrvmrMbFZSPD1iPoNqlPUC72Xftj7rW7kD1Wjy2b/kLqJvYv6tn2++8B2MB6cHt3H3Y9sGTSNupVHOXR7fnB1CZ9d3b802pJhOPYvIZrwWpzMi72jVoaapU9C19638FdQ/ZidYrfwp+nxdRGYsrqYKGbdr5987291MGWNDQft9fUBnkzzNWzfv8di79io5WcY7bjp2pQpAlqNLhy/teezlVkj5H7YNHvnFTsPOiXSx/TQVgW1E3iSOpUo4LqBzdi6jSlZ/M7s6kbs6voYK+9anqjVdRQcnm1E3m8X3vnzaMbXyItK1P5Ux3o3Ijv6aC0C2pgORshthWBdiIsbr4Y6m2JL9irORuUWazrd8A0rI/Yx0WNqVubou0155GlaYtPcHvPJgqEVySCswuogW8bX1fZYDDA1Bt575EK+mkep6dTpVSPrul5dFTdXzNIq1rAM9tj3cBbqQyMIdTpVBvbMteSZVe7NLeu0D7m0YFvUe15QtTN6v3tOf7MLWdBPo7aPwI+HR7vC7VBvUdjAVqy7T/A7uhjlv/U6mG5Bu1/fgHalaU/vevOOpjYCbbsB9jJYwLUiXql1FV31ABy7btWP4fqnRwK6qk+CNUgHAjQ7hh0xfoUxmdOxgLlA5qv/le7fmkG8n3ras3RuCbqeGIlqSCtrcx1kbtxGEe6zw407lPu46sw1gm6ZlUxukAqn31OgNc9yHUtbhXevkEqqT9+PZ8YWZRWDLC43l8LcFWbV8dT5U+LtSWbzPpdY16Y6dwpz6Rqub6DK0nXjv43tkuAr2c/FKz+X3btIvGkVQwdAJwIBXsXUDlCvaY2Q86Bdv6uHYBfFffsp2pruwDO8nGrXNm4x4tRw3oemV7fjiVy99nCvfF3lTw3QsEprcLwReoG/8PmWAOhwp0v9M7Aalc8KsYG3rjhkHeTKipRD5G6/XUlq1PlT58hhqWYsNBrW8A6d2Cajx/MlVls027IJ9OzYgQVA76mYxrRNt3Hr6SygAt0Z4vTlWFLsEUlZ6NS9djqEB5OnXT/nBbvg5VzXhmez7QtFEZi48wVjr3rHZ+P713DFIl4m/q+0z0/x/RMRDj/r+XKoVZoz1fuB0fd1IlJgdRwe6CVGnadVQQs2K7hhzLAEulZ5Lexfsejw/UDm3n9IxB/L48ODBajwq239rO6aWo6sT3MORM17h0LEe1mz6tb9lGVKe3gV5b+o6Jk4A/Avu259OoQO2bwCtHdezO5jb0MmW9bdmQasP3g773HEZ1MllyUusa9cYOeUeOv1A8gcq5v63vPStRxcwfmd0TkKp2+ThjvUCXaydZ/4Xykf3rnuLtXojqPXc5ldtfuC1/D62Kbhj7uT3egbqZ9UoUngW8vz3el7qhzbLn5ADTdnS7ObyMVk1Cldb0BhKcUFqoAGNXxjqF9KrtZrSL7JMZcJuw9nvuQrV3exVjQxD0jutFpvoYm400b0UN+HlJ37K9qEDtBGYyYDLweKo932rt85+jcvRLU4HJ9xjwcAsT2J79gXf2/R7XA2e3549mCEOdtO99BjXW0vm06njqRv5Z4Ent+QepxshdKUntvx6s2ff4BCpTtGZ7/jzg7dQMDbfz4EDpue29TxpSGpdjbAiX3lRP/QNan0BVffZKeWY6uPKc7huqjdvjqVLnXhXZW6mgbWkqqJ2qYTaOou4Vh1All4v2vfbeQR/bPPie9Nx2LvUGDJ5ODdEzZc2CJpj2Tfsev7idl2+mqqyf1I7lA6kS0B8ygFLQkW/0EHdm/4XiqVSuYLl2gNxEq0ppr6/IBBrMUzf3L7WbSG/8nCWpHPZIL5SM3cAXpNp0vJ+qatihHUCbD3HdL6FKFc9sB+gmbb3nUiU+P2UKA7S+dB1KFUE/hQEENFSQtyNVCvsahjhuT99FfUGqPda7qTYOU1Z1Pom0b0dVx/V3qX9m229rj3vvLlRJyk+pDjbLUaWg51MByfdpY8FN8TZs1C6+C7UbWC9jthAVGJ07pPWuQjVR2IkqSX05lStfo73+ESro3ZkKMCY9vMsQtuFYqm3TJ6lx8Bah2ll9l5qR41dUoHJh+31PGPf5I6jG+osywBLKdi79VzveDmrpeQpVJX85LUCgBmm9a1DrZ6z05cntWvxBqmp3H6oDyClUdef6U3V+t+vYlYy1+/tk+9udCt6uZzbH85rN9R1HlZR9ul0HlqZqo65jgB1shri//h9VS7VF+79vO85/0n7XHaiMx9sYUJA98o2egp36EqrHxclU6ccMqrrq5/SNfTOL7+jdKNemArqFqOLN91DVMo+iqj2uY4Q5gL50Tm//F6KqEq5tJ8TT+t834HU/Hvhse/xixnq39HJGhzAbg8MOYNsfNLVI3+OjqcD66bN7AZzZfmIsCJ5GtWd7OzWu2iCCv5n+Ln3rXIgqxfsIfWPadfmPamd0Da3DQ1u2wrj3rEvdtLajgqLXUVV5M6gb5GNoHUyGcew+TNqXpIL729tNa5t2ju/YXl+QCY55NIF1b0kF5Nu1C/56VMP2C4FHUm2EPtZuDvuO+neeSfp3bGlbrT1+TTtugwo896cC85XaflyRanj9hvb5HdrvvviQ0rch1R7sQ8Bb+5a/h7r59kotJ13FSl9nHqqE+DTGpjXbmhpeYicqMH8TU1eCtgR1/7odOKhv+SktHZ9hgB272rXgJ+233opq+nB+OyZObuf8QoNa34D3Vf995fJ2vTqwb9nuVO/+gWfYR77xQ96xGwBfbo/PoBp3L9ieb9FuHkvP5nc9ncpVfIIa72v1dtG+kCo1uowBjTw90QOHusmtyEwClHYB/CAVrC3HgG5y47+HuqGe3NZzWd/69x32iTduu1ejAqherrU/UDu+HQOzPJHGfefy9AUWfd89rZ2cb2KS1XDj1rcnVUqyx0zWuRBVetK5xuEPc2w8kWq/+R+BJXWT3gh4X287qfZKF1E57kfN7DunYBt6zRW2pHLPX6HGUvwaVQKzTN97h5HpCap6957edYUaluJUqpq9N8DojFHsn4f6zfv+P50aF7J3DVqbaiLSG3H9lVSp+7VUELozVb17DZWZ+gGt1HBI6ZxOBbuntd92+773fJAqXVqESZagUZ2KXsTYgMOfpNq7bdeXlkMY6xQzlKD0YdK3IhUsfYDWbrfvtYH2FKcC0vN6vwN1Dz0P2KotG0lThgkcM/3X6CuAH/c9X5JqjzzwuWRHvgOGsTP7nq9D9WI8kYpyez369mz/Z+sgbAfyNYw1FH91u7gsT1XpvYcqPl9kZukY8oHTP+r5cTx4DKr+ErWLqVKfSY9vw4PHLVqWCv6mUQ30v04LIKib2o8ZUHuO2UjXC6gA8b+pm1kvsOnvvbX0BL/zJe3YuYIHTwTePw7dYgPchqOp0ppXUeM0vbLvtc5Vcfbth02ogHWmVSNULnrbccseT/XifBXV/ueIvteOb8fsd5iikoW+dS9P3ahfS5UCb0vdaHdox/hfh3lMM1Zy+h4qUD2BsaBsFart0meoIKIT40f1nWu9tkZrtevS/r3jhMrg7kt1CPgWFZCvQvWOf3PfteRlDKGDU9+xuj4VmG1Cte97Y7tm9I8hOZCOP1R13npUJ7Vej82Pt9+v10b2QKr6b9qwfk8e3M5s8XGvrd5+g7Pom81gUGlp3/3Gti9+Ahze99q5wKGDXN8wjpn2eFuq9mTZ9vwbVKbtUVSV9Y3DuC6MfCcMaWfuSeXeF2gX+v9hLGB5XrtAPHIW39e76GxOlRJ9iAeP9/Ru4B3t8W7URf1YpnZ6ms2o6H0dqlTvLKrtSn+g1l9VtvIA1rkBYw2WX0rlOK+nOgjsTbUfOptqC/eTQV3sZiNd+7STZoWWhg+Oe312qzj7A7r92sV8ASqYuOyh3jug43aRdtL3ShvWasfuCya7niHt8945shPVfuoTVGbmUGaRo6QaxH+DylycSzWOv4XKUD2Tat/5OCpQuoI2J+4Qt6V3A9+eKt3bmirhuJpqPH0KY5mwKQsaqerez1NBRO/msCodaYNGBVy9HrnHUCWgz6MC3V2oHs8ntmPih1Sv3idTJWVLtc+tQmXunj0Fv+/uVOnN96nBcjejgsNTqNqWgVVf05chppqbvJuxQO3iloYT2zk/tB7vVM/op1FVjAdRvQ7Hz128OlW6+Q4GWGVHjXd2M3BRe74zVV14GtVp4FpG0E55Drbjle1a9SWqrffz2/KvMjZh+lCa84x844ewM4+jSiLWac+fTAUNn6NypNfyMD0u6BsokYqcr6MaDl/MgzsbPIsH9+Z8GgMYrX8C27lEu3n0j3q+HdVo/yT6OjAw2Ea3vXYcz20n2zJUo9tLqaBmdaqq49CpPPnaunenhvnoH6dmowl8xwbjfuPdqdKTV1EldL2q8o0HmO7ezePodpy9j5bB6DuuPjxV+3E207xk3+P1qFKB3hyae1MZlt6YcTNr17cCVdXVm1j7uHbMnky1UXk7fTctpqgahGrv9ytam7O2bMt2bP8L+ERb9qDetUNIx787/7T/K1MZj7czRWMLzmY6F6VK+86lSoMub+ffRdRNbSOqtOoj1M3/KKrqeEbf814J4cmMDdQ8yDHm+tuDrd1+301buo6hSskf347JgbQHo28stXZOH0AFrO+ngsHe0B7nUTUNvZ6NAy8ppzKvZ1LB8dVUwNTreb/AuPeuykx6XU9i3c+lMm3b06oCqWrmx1IFCm+mQ0MHjUt7f+Z5RSo4691TntL2aa938GcY0tBWmfNYkEaVKH2DvhIjKgc+g6q2OoyHiXapnPtXqRKNtagbcy9i3pzK3b+Fyv38mL4R36f6wGnP1+OhRz0faIDEWDCxANUI+CLaBO1t+VZUA9QnTPE+2Zu6uW5Jjbl0Vd9rx1DtXWa3Wvtx7WL9GCr3uRdVuvOpvvccSTXYnlRus/84bBfSK9pF7I3tgtYbtPYIqvdeJ6o62345o124plHV/DcCL+97z4vbeTTTUmUqsO8fZ67XbvJzVLA95eN8UaVnP2JsWp4N+9L3SKrqflidBHrbuyTjmiMwFrCtQgWLnRhmoy99j6GCm+8xNv7k5u2adCJjPSUPbtfMXin8gVS17ZfaMfRrBlw6yFh7sN6wGo8CvtT3+spUoHQZbaiNAaxzUaqK+plUW+Hr27XydCqD+xGqY0yvI8xFVEnpwGtg2vXkGirzvjfwSyoTtOMUHBfLUcFpb6rFzzPWLm+NUR+3E9iO3ahCh5/3XRsWpXrhvnoq0rAAc7E2OW2//6UChYUiYqE28em/qFHO35GZ52TmjQ/xXQtS7WA+SdWdb0c12n1WRKySmT+giop/RbWveElmfnEmaRiK3iSuEbFTRBwREc9r2/JCqvv26RGxQGZeSbVj+vWg1w3/nkz3jVRQsUxEPDkiFs3M71KljUsOar0PlZa+xwtQAfgTqKqU9wM3R8S2EXEEVdR+TraJgR/mOx8fEa/LzJ9SE3y/AnhpZn6ONuxBRGwdES+j9vebMvPeSWzDzsCXImLpNiHv86gJ2O/IzJOAvwDvi4iPUSVsb8ixCeFH7T7q91+EqrI8jSqpXj0i9mjvuYrahoVn9gWZeRdtUOmIeFw7Rz/F2DAji7T35RC3Y7z7qVLzbSPi/VQu/8yIOCgz/wh8PDO/OYzzvZ3Xz6BmL/hCRDw7Ih7dXrs/IqZlTSS+V2b+z6DXPxmZeQNVknY7cFJELNaulR+i2n49KyKWp6qK1qNuemTm+dRx82ngH9RE6r8YcPL+QQVgS0TEJpn5S2CRiHh9S8PvqCDmd8CREbFUu6bMsXZdOIO6hryL6gG4T1vPA1Q708dQ9xLaa/dSmZ5B+yd1nT6gre8Z1DX62RGxN9SE4BExY5ArjYjjqAB9UyrjDNWOc/GIOAT4TDsmOiciVo6IRdrj7akMxJepY/XQiNig/cY3Ufe/6UOPAUYdqU4iwh0/WvIjqIv8Z4Fj+l47iLp5P2zj7vbZ11OlJN+iqr42pEpiTmOKGr8/RNp6pWS7UTeSnakLy9va8nWo0paBj3o+bj8fRDXOP6I9P55qSP1GKtC4hSluX0BVZ19FlYQsTZWefZ66ccxyIEGqZHBL6mbx6rZsO9rwKu35Ce04+AiTzHFTxf2voUoWntj25yuo6r9n9L1vy/b6GqM67h7umKBKCr5JXfgXbPvom+38+S59PVMf4jt6PRW/xNg0UVtQkxFvNBXb0P6vRZVSTWvH9xnAru21o6lqmaHOm0hV/9xA3dQOo9qfnci42U+GmYYBbMOjqHZXH2RsgOeNGLvJvZAqXfsbcNIUpGd8e7DefL2bUG0nz2vH7vVUKem5DLYt1k7UGGuvaM+nU6WHb2IS8zjOQTreTmU8j2/Pl6NqAz5Mta26nMHOL/uCdh1YhRoj8WNUDcU5VMbs/zFF8zXPQdp3owpplqXatf8YOLK9tjFjtQZvpUp+p2aolFHvmDncmf2Bw0upRqgfpHLhq1BVKR+mot9rmUW9d98Feyfg9zy4Gm+bdmK9kylsc9bWvRZjQxAsR93Q1qfaF3yHCoo+1F5fb5gnPhX8fJ+qPrgMuLQtP4oKHN/OEKtiqNzn49vj7YHT+147kQqger2l/j0ExwSOowOoXOeL2vMnUjfoVzDWY20gVRJUMHA91bFiOaoK8bh2vO46lcfYHKT93z0KqZ56l7bjcYG2r84Bnjeb37Uk1VbnVVSGaMt2LE3JecbYsDrnU1Wda/W9tnX7fXaagnTsTBtjsD3flqou7lR7HWYSJPLgjjbrUUHuJ6kqob2oG/YyjE2dtx6VwTx5SGl8uPZgJ1HNMlZo5/YZVND2xJbOh+1MNgdp2YuasuvA9nwaNTfp0Dp9jP+NqEzsoVTJ5nOowoylqHZV72ewk6UvSd2HV6LuE1+mguHPUm3xrqWDARqVCXsE1T7xudQsEOtRhTWf63vftLY/n8FUtrce9Q6a5M7dnIrUt6Lq3L9KRcCLtxPzcMaNbD6zH6j9X5u6eT6RquJ6A2MNLLejgpChDcb6EGk7mCpd6AUJq1GNXH9E3RTXporQ3zOEdfdffKdTJXXb9C37PPDu9vgVDHlIAqrUbjmqncX2VK7sc1SQuAcVqM3RyNhUj9hLqZv11xkrUduaCjpOYIClKVTO8mpa9+22bGUqF3o+8JSpPM5mkdYVaL2a28Xp0nYh3q4t248q/XpmO05eRd0AJ7QN1A31u0zRqOP857A6J1E31FXbefZ5+ko2h5SGNdv/lagbRP+4eO8HnjXq378vPf0ZmpXoC2h48JA8G9BqHqjgYB+qdPArjPUC3YuqLnrkoM6p9r0P1x7sFCoj92r6AhOqDe/QRrun2steQxtmYgp/o31718b2fOd2bTmICQ5DNME0LEyVoH69lyaqyvN0hjCG2IDTvlO7Bvyh73j6Lq2GamTpGvWOmcQO3ZYaFPCk9vwR1PRPl9FX3Tmb37UHFeV/muoY0Out+DrGArWlR7Sdi7eLSK8UaUva8BJUQPk2Bpzbp6oNew1bN283rvN4cI+79WkDkA55+/sHo30c1aum14BzT6oX2U3A34H/noPvX4GqLl2KsarPTwEv7tvfkyrZGXfxXIixxuC94LDXS2hVqh3dyKrWZ5L2M6mqoG2pksZntjT+ggc3Av8K1eN4Nap0e0IXZOqmvsaQt2VWw+q8k7H5OXuB6UCrGBnLFG5MteM6oz1/IVWN8moqc3ATU9wJZ1Zpbo9fRmUwLuHB0331B2q9Xqk7UI3VvzXu88czvJkE9qY6MXyJFnhRmd3XUc1ZLmj/l2qv7cSQS0Wo+8v1VEZsYE1RHmZ9x7d98FYqQ3U+Vcq1K9UmbT+GOybbulQp1IZUxu6TdHQuznHp3o0KKK9gbBikJalS4KFM/zZb6Rr1jpnADpxZUfvbqXrjXjfu3rQ5F1FF7LM8CKlSuB9QN+uDqfr7N1PFml+jStSmbOyz/m2lcj9bUSVV32Os9+GnqJvn7YyVaAwyR7olFfycC3yvLTu4HcBbtOeHUyWXiw7xZF+GsWBxR6rdyzuom+kT+t63PZVTm2VR+vi0UoHRzxgbDmIxKtf9P7RAbVDHLVWleSZtHsO27MR24dy6Pe9EL86+NC9Ma9DOgwfzPbDto53a8xX7XuvaNszRsDpDTM9ubd1vBP5EBRBLUKX/57fz7mHb9I1oP/YyMI+mmoH8jOpANdPfncpgnk5lJHekqtuuYYBVbA+Rzk60BxuXphlTtJ7pVO1Sr1ftiu16dmJ7vj8DGC9zFmlYmCpRv7wdI52r4mzpHH8vWICqqTmIyjz3hhFaqm3LSGZ5GfmOmujOpEq59mKsceoZVGPE5dvzBZlAA1DqJr05NR7V96lG+F+lqjx3ZYgTks8iXVu07epNmfFSKge7avvbFdhhSOtesJ3o9/Dg3PJRVFD8IarkcagD1VLtRU6jqil+0ZYtSuUQ30GVOPRKpWYZSI87jjZgrBr5lVTV6dp92/kG+kpZBrAtL6CGh+k1qP04Y1Wdb6By+JOe/3PA+79/IOT3U21M1mAsE3EocCsdGrtrJtvQmWF1qKqfxaic+n5t2YpUadOb+963xPjjddR/VID2Q+Bdfcs2pdrtnfgwn1upnU9fpBqqT0k7O0bQHmxEv0v/NW3pdox9h74p2Kiqzw9McboWpErVVxn1PpqN/XYkVbr6YqrTwALten0xY52IRnYujnxnTXDHvoQqevwIFenu0Ja/leodNce5FSpX++L2+DlUQLTGiLZzNarq9exxy1/atnPgOVH+c2DDTanc0GlUKdq0vuWrM+TcWF863kqVbvb32F2ipesDwJYT3T6qROtnVBXdvlSnhJdRHTHe1v4PbHBCZt6gttezqjfo8kAbLQ8w7f2B2nlUSeDqfa9PyXEwh2nvjb/2fCoYeg5VEvRVxsZvegzVi/Mkxsb5GuoFmcpg7NL3fDtquIRXDnO9E0zjzGoueqPjb9h3XGxBlfIv+3D7rf0Wk56SboLbMGXtwUb9G1FBxQnt8Q7t/nhIe34w1Xh/sWEf23PbH1U1/DWq0+E3qMzyyu21lzLWCWbo1dQPmcZR76RZ7MAVGSvt2ImxHoUnUF1hz6ENMEmVRqw5iXUdQDUafzl9A22OaLtXoqbDuYb/nPT2FYybA3HA6z6UGk7jae350dR0Jnu0144b5ok+/rupzhHPo3o+HsDYxNcrUqOUT6i9GJXD/gSV63w+NSzAYVQR/Q5UVdQw5g2cWYPa/6UyB1N685rob8GD54D9SDvv1hh1+mYj/SMfVqdvHz6Kagc3rZ1TX2FswOJNWxpv7p13Xfjd2+M923nXK2V+NVXqvBFjgdpAJ+Ie8LZMaXuwEW3jUVSg3KviXJyqcfpFO65uZIqm55ub/qjCkHe3a/MrqHaMb6Mycr35p5cedTp7F5BOaYPDzaBKkz5IHWjLUAfftlSwsAd1w1iHyoF+fZLrXJJqdLoHNQ3PFyfzfRNcd2+g2q2p7f4NNWjuYdTYPhdm5hVTkI49qHZ+H6cGiP1aZp4REc+jqjueQvV4+9mQ1v/vQXMj4tlUidnNmfmliNiPumFcSO2TacBbMvOfs/jOp1EjXX86IlalSrDuzczd2+uHUMfUj4DzM/PPw9i2tq51qfZdL6CqDQ+h2s38ZljrnIi+43BdajDaP/T9HtMz876IWJg67/47a/DfTuof/JkqAbwyMw9or21D5ZwXpbbjD0NOyy5UE4ErqIFLj6XGytuKOtd3okp99gW+nTUg9chFxEuo3pnfpc65j2bmBRFxAtVe9kWZ+ZNRpnF2RMSMzLxz1u+c+0TEI6h2jGdRtT/7UQH0t6nOHSsBf8nM20eWyI5qA9gvS8UQp1Ht0LeiCgR+CDwnOzCI+PRRJ+AhRGbeERGnUkWO/8jMTwJ/jIjnUlN7/D0irgISmPTNIjPvAc6NiI+3m9G/A4ZhazeTp1EN4k+niqZ3p06y+4HD2qjjXxlWGlqwsgXVYPmGiHgC8Pq2G94REedRwc7QLnZ9AcFLqIDsU8CrImJLqsTpASpQ3JoaZPBhA7Tmt8DfImL1zPxNRLwVODUiXpyZ78zM81rgseEwtmmc31AN8E+ncvb7dTBA25mqjvsz8LGI+HJm3tTOiemZ+Y+IOHiqzo050bcta1OZnn2A4yPiDcDbM/OqNrL8XlSJ6tCCtIjYkGo0fyD1+7+I6hhwONUAf3WqTdxqVMeFC4aVlologex2mbldRJxI3eyfGhFk5mkR8U/g7pEmcjbNqwEaQGb+LSIupYKMWxkbf3E74JPZsRkquiRrppM/RMQGwHWZ+a+IWIu6/767CwEa0Pnqzj2BK6kpJQ5vy3amGtqeRTVeH/R8b1NaZ081UlyWGvdrfWpYjZ8wVhWyPBWoDrTBLWPVML3/JwF/BPZtz6dRpWnfZArbylANvT9KVQe+kqqmOouqtuoNVrvkBL9zaSrAO6Y934mqsulvXDuh75zE9nW2QS2wGRUYr0P13juLqv4f2uTBQ9yWkQ6r086fJakqpyupWoAFqGDn7dQ4bL2q+3WpUpAp73XYl97+Ks7F29/q1JArV1Dtmd5JlTAcNOrf178H/XaLUJ1glm3Pe013BjaDwtz8N6t7OmM9/D8K3EbHeqOOPAEPs+Oe1S4IK1B17ldRDSCnU22H3sAUTcswRdv7Kqp7+HcZ6/V3GNUma6BtKcZdkNdlrN3fc6mc2GPb8+nUeE5DG+Nm/AlEVXGuQlX/XEm1gzq6nUSnzum+YGwC9ue1509tF7KjR/3bd+Gv7ff3Ar/sW7Yd1VHgJDo2sfcstmVkw+rwn5mfx1GZrhf2vWdlqld6b7y/abTAcdR/VE+3kxnrPf8KxoayeAEVuHd6UNL59Y/KBBzRjrehDnMyt/yNu9dt0869pfuW9dpVLk8VSnRuPLeuVndCjUb9zaz2Iu+PiD9SdcWLZuYHqJ4Yc7WI2BjYMzNfT+VUD6EGCP1lRGxEBW43ZeavBrne7B29NRHu/sAdEXEbVcowHTg/Ig7JzB9TpRFDMa4N2s5UQ/rfZuZtbXLb72fmP1vVypepmRUemJN1Zeb3ImJX4CsR8UBmfjgi7qdKOuZL/fs/M/8SEe8C1omI91JBxbciYhoV6PxrlGmdoN9SAcVGVLf6jYH3UUNwvA24MzPvG/RK+6pZdwT2joibqKBwD+DL7bh7b2b+LiJela26Pqta5a5Bp2cC6V4gMx+IiF7HoD0z86/t5e9T58w61Nhyu2fmHaNKqx7WIlSNwf5ZE9/P18bdX46keif/BPhuRFyUmTdk5v2tKdEd1OD4ndPJjgMAEbE7dXE7BbitXfwuaS8fnJl/GV3q5lzfhXw7qpHnzsA7MvOsiLgQ+AdwH3VjeV1mXvLQ3zapdGxL5Yp3Atakqlk3pwbyex01btyOOXvtviablsOpXmM3UifRp6kT5gaqGnhHatDUnw9gXZtRN55DM/O8yX7f3Gpcw/rVqWvBByPi0VTv6XuAl7ab9zKZObIgYk5FxBuBOzLznRHxHKo92L6ZecsQ1/kU6rw6k8qdb0iVmt1KNR14Y2a+Z1jrn4jWUennmXlXa0T9XuDzmfn59vz+9vtvSpVCXJa2ceq0qWxLPbdonc6eRBV6PJ665y4AfGwQ95Rh63JJ2reoHPxxwI8iYlGqk8CL58YArXfytBvj9lQPyuOoOvAnRcTCmbl/C56WoUqNrhnUSTeT77kfuDYzfx8Rf6AmPd6EGnfs5Ih4z7ACtHE5nGdRN4DHUu11nkX97qdTweMWVLA6kNLEzLy6dYq4dxDfNzfqKznZjRqF/RXARyJi/cx8eUT8N1Ul+B6qRGpoPV6H7CfAUS3g2Ie6dgwtQGs2oAKxcyNiKSrzc3hmHhIRe1HT13XF5sAtEfG3rI5YdwKPjoiFeud+K+H+aWa+e6Qp1WwxQHuwiFiMai6zYosbrooIqNk9joqIs7qe8VhglCuPtrdmsnx61lAIx1I3iG2pm/dJmXnz1KVwMCJiZeDJreoIquTiPZl5MZV7fRewX+tx+O3M/HxmXgODOenGBUUvbCUMNwAbR8ThLXb8DVVUvl772B8nu97ZSEuvCmUfarT9X1OjPP+BGidutcz8whCqe3+UmTcO8jvnBhGxVkQ8qgVoy1GZhP2pcYJupo7BD2XmTVRp6vsA5rSKuQMupcZ025oKnK4a9Ar6zumeRal2XbRr2LXAUhGxVmZ+LzOvfKjr3lTprT8z30W1+bwmIh5JtQHdCtgmIpZtJRCvoa4LUueNP7datf1zgL9GxFlt2VVUZ5g/MsJmBrNrZNWd427We1K9+R7oVe/F2LhMvVz/Yn3tJOYqbft+QbWVuY/qaXYGVYX366jhAM6l2qV9OjM/MaR0PJ9qBP7DzNyn5ZJfTg2a+z9UddDeLVgaqlb9dAhV5ft+quH6Xllt0DakqmE/nkMew2p+EhEHU8fhj7OG0liNKrU9l2o0uyY1sfeZmXncyBI6YH3XkoFVBUXEEr0S/dZ0YR3g59T+fTk1n/DzIuKx1Bhpzxl1jr2virv3/zCq6v+5VLXs3lSGaWeqTfDi1LRw140qzdLsGhdTPJe6tv25NeNYhToPf5mZx7b3PCIz/za6FM+ekZWk9e3Mo6lee+sB74mIV7bX72vBS++iOtdWT7USs99T7VT2okYbfx/wzohYn6onX4m6wK8yjDS0g/ZoKldxf0QsT+UmjqcmkF2PmkZkKgK0/akqzRdk5t3UjAK3AZ9uVS0/oUoaDdAGKDM/TvXe/UFEPD4zb6Wq365ppWUrUtXMF48wmcNwPwyuKqg1vfhiROzbzt+zqXaTR1NjzF0EPBAR36C69b951AFaszr8e1zG/ajg7O7MfDk16fwlwCWZeQhwDLCPAZrmIgH/7hB3BDULw1kR8ZrMvI063jeNiNOhxpgbWUonYMrbpI2LdhehqlsOzcwfRTWcvywi/i8zz+yvZpkb69r7tzUz/9Qu2k+j5un7LHVQnUeVrh1BTQ+zU2tDc99ktnncfl6OCnL3yOo5+Qrg7y0Q/r/MPGYSmzmhtDSLUyVlG1MTp/8lIo5nbHaJ/Zm7ehN2Wl/Jyc5U84HzgA9ExBFUNedSEXEmVZKyf1avznmmAfKgtyMz742IM6gOFn8FjsjM70QNhHk4NZXbkVEzXPwrM/8w6v3Z2h++JSI2p4b1eQHwxayepgtQPd9OBb4VETvl8NvuSQMREU+iaof+3M7BpwPPoDrBfRt4VkQsm5kviYh9qLEq5xoj6zjQStBupKrZHtGqNX/douADRpWuQWo3xh2oqoSvZeYHIuL/qF6rD2TmW9vNEaqB/Gup6sZJBSjjArTjqIvyfVQOH+rGsnirhn1xROyaQ+pWP5M2aHfm2PAXp0TEHZn5jcz8awsaloK5MyjvqnYcbkGNf/WSdtzdT7XX2gt4CVWa+8nM/FbvM6NJ7dwhMz8bEX+heh8/mZrv91Yq975fe89v+94/ygBtIaqJxaupDjobUYPn7hYRX8vMH1Alf68B/ka1q5PmFpsCv4zqAPPrqKFknkBlOLePmrHm/0XEL7MjPasnYsqCtIhYLzNvbDeMfagL2YFU472XUI2Y/0CNxr5o1Ngl3ZiWYYL6Si62pKo4rwc2i4irWqB2P/DsiJhOXeSXpnqB7ZkDGN+mLyh6AVUqdSA1MPDKEXEa8HdqYtmVqbYyQxsfpi8tL6c6CdwTET8EPkCVJJ4RNWbU5Zl5L3NxtXZXtbZnrwR+kpnfBcjM06Pa2F5OTU916QiTOFfKzK+2dl1vbTeA81smbIPWnODOLgS7We08f0O1R02qZ9uCVKnfc6PGb7umZQ5fP8KkShOWmW+Pmm/4TxGxRmb+b1SHntvaW1ai5hueK69xU9ImrVWzfCkilo6Ix1BtkK7PzDsy8yRqMuf3RcTHqHYdb5hbAzR4UMnF64EDM3M/ajDWDSPi+Zl5ITX9zo2ZeX9m/hF46yACtJ6oCeM3pXrF7ktNIJ5UlcZvgEdR1TTXD2qdD5OWnakqoN2oDgKPpRp0nkO1zXtdRDwiYrS93uZh91Ftjp4QNdk3UIEaNeH70iNK11wvMz9LZTLfGxEXU9WIp7Zr28gDtD5XU80MfkeV4v+eyiD+GnhJRGwyysRJExERK0V1MCMinpGZv6CuZd+N6qn8I2rO5oup2UbelAMeJWCqDL13Zyst+i/gV9QFYWOqF+OeVIPaz7f3bUlNj3LbvNAeImrC9EuBV7VIfzrVc2on4EeZeWZ739DaqkRNHL4+NVjuk1oQdAfVJum0IVZxLthfZdv2xQZUkPh0qsTwHxGxQWZeHxFLZQ1XoAHoK8ndmppg/DfU+XcYFSBfmJlXjDCJ85xWO3AK8PzM/H8daIPW38xgAaqDyDSqynsl4DWZeVPLNO8CnN8CN6nzImJNqgPeD6jOdvtm5h9bW9HdqQKKB6gaql9l5i9HldbJGnp1Z1bj9F9S7SHup6q8/k61fXhGRNyfmZdm5veGnZaplJlfaRfuN0XE71pVyKepC+WP+943tAt5C4TuBaa3XMea1DQ1ZwwxQFsSODAiPk7Nj7k0VYrzTNrvnzWkyvHA1hFxqAHaYLUA7WnUhNinU51Udqd6790PHNaaE3xlhMmcp2TmRRFxZWb+qT3vSoB2JFVqflvWuGgvjYh3A6+NiDdm5g0RcdNk28FKU6F3bGfmzRFxLjWO36tagBZZnQMWoDKm62Tm5aNN8eRNVZu066i2RvcAS7U644uoSPeQiPjHvJizz8xLIuI+4NSooSXOBc6f4mT8BvgCdbNemWp/dOswVtRK0O6JiAeokpvfUyWnC1ETx98HvCAi/kGV6jw7M/8+jLTMr9oFamngKKq35rJUm8gfZvUy/BQ1eO3tI0vkPKoXoI3auDapBwEvBK6MiLWBUzLzhRFxDvCyiDjWAE1zg3GZj0dTVfgHAOdGxF2Z+VGAzHxxRPyOuvYNZVD2qTSU6s5xO3Mhag64+1vj8SdT0/z8IKqL+tOBL2TmPHvTiIg9gNOokqXf5xSP4B41pMeKVFuU22b1/jlcxwbUEBp7tXVdQA2j8eSWy1mTGs18a6rDwPsz82fDSIsgIl5F9ZR9MjXX7S9bI/dvAjdP9TGoqdOaNaxAzWRyLNV56JlU298/Ay/MzLsjYoV0LEJ1XK+tcl9M8TJqwOXDs4aUego1csEhVMHT9pl5/IiSO3ADD9LGBWjHUW2R7gFOzpof7kRgS6pN1P+LubgX50RExIzMvHPU6RimljtfhepN+meqx+5B1CC5P48aQPW6aLNIjDCp86SI2Jhq7/f6iDiF6r33pNb2aCMqcH5+Zn57lOnU1Iiat3BDqtH0kyJidWpWhNcDb5sfrrua+8WD55I9kJoZZ+dWa7N6Zv4mavy/s6lY44U5Dw3CPPDqznFF7ftRN+kfAqtFxGsz878j4g3U+Fw/ml+qu+blAK0XaGfmYRHxQSpXs29mnhE1OvtnonruPjkiDsjqzaoB6OsksB11vu0cNfbca6NGw39dq3LfmGq7YYA2n8gae/ABYIGoyd4fB3we+IQBmrqulaA9GnhHROzWMvYJfAnYKyLWAPaIiJ9TPayfRg0effeo0jwMw6ruXJJqA/Ua6saxK9WrcCXgmJazf6Q367nbuFLT/rkMz6LNBZiZd0bEUcD21CTXQx/yY34wbt9vD3ycKrlcnxrI8TuZ+Y6I2Jaaw+53mXnNqHsdarBm9nv2105EzTbySmBzqgp0n8z8+dSnVJozETGDOn5/TLWnfTGV4Xg78L/UFIMfycxrR5XGYRraEBwx8+Ef7qQm0z7Zxqpzt5lUa69H9dp9bWb+LSLeQwVq+7cG6/8ustbkRMTKwGOAK1tbz2cDq2TmmyNicarU7M3UUBvvHGFSNUQRsUivJiIingAskDV7wL8nlW+Pl6Z6dt+V88DwRpr39bdDa4U+L6bGIHxca+P8iHaf2ZMaVmbvzLx5ZAkeoqENZpuZ/6B6dPaGf9iNmtD7/QZoc7+ZVGufRk3e/qGIWDszj6Pmhfxo63Hobz44m1O9Mxdr1cl/Bp4fEWtl5v9RUxT9CtghIg4aYTo1JO2aenhELN7OwQuA0yLiUvj30EcLtsd3Z+a1BmiaW2QTNX3klzLzVGp8zx9FxEotQHsWFaAdMq8GaDD8IThmNvzDb4a8Tk2RGJvV4AAqUPsRNczG+yPiqMw8NCJWtJPAYGXmxRGxLDXl2KXUyPHvA94ZEa8EFqGaFlxDdeTQvGcVqrf4otQ5uHnrsfmNiLg0M3fNzH/NLx2zNO+JiKcz1q6dzHxla2P57Yh4IvBV4NvDGrGgK4YapGUNpno68AmGOPyDRqP1rjmWqtbee1y19vMi4nXpKOYD01/FnJl/iohvUI1l/0kNWBtUbvM+4Ajq5r1TK1G5z7Zoc7+IWDQz783ML0fEItTwGstTQfndmblDRHw9ap7gbQzQNLcY14RmYWAtasaAJwC3AGTmCa1Jx1eATeaHAoCpmHHgX8BQBk/V6OV/zmqwBlWt/T6rtQerFf/vQLX1+1pmfiBqQu89qEzQWyPizPb2LYDXUsGzv8M8oN2cto2Iu4GNgD9QYxMeDWwTEfdm5i0ts3RpRKyWQxq4WhqkcQHaUsDfMvPMqHFWnx8Rd2fm1wAy87iIWH5+CNBg6mYc0LzNau0h6htmY0uqivN6YLNWWvKBiLgfeHbU/LCfoWYceCI1ZtoNI0u4Bu0+ai7WU4BHAjtm5q3tRnYwMC0iLs/MX2XmrqNMqDS7omYPWAK4JiJeSg1Uu0hEHN16qP+dGrJrwcy8rH1snh3SajyDNE2a1drD1QK0LahBSA/MGhD4AOCJEfH8FqhNA25s1Vt/jIi32pt23pI1GPi3qZ5u3wbWjYjbW9XnfdQQLP+IiN9Qs7xYva1Oa00xXgT8K2rWml2B51Nt0b4RETtk5vsi4hHAcyPiW626f745tg3SNBBWaw/d0lRD8Z2ouXA/Tc19u1PLYZ4JD5qA2ABtHhM1vdx61NRqz6HmZl2aGjz6WmqsvKt6Q29IXRY188y/IuJU4BXA7sDVmflr4C2tk8AVEfG0rIHRl87Me0ea6BEY2hAckgYnM78C7EPlJg9sN+JPA18Drux733yTw5zX9caK6nt8D1XScEhmfgj4BTXMyieoXr5fzczfjSSx0gS0zGSvTdk04NVU54C1ImIzgMx8G3AW8Lk2zubdI0nsiA1tMFtJgxcRuwKnAu/KzHNHnR4NX0Qsnpn/16qGtqRmcvl0q+beCXgy8PHM/OlIEypNUEQcQ3V82ocaTuZ1wN+o47s3MPOymfmn0aVytAzSpLlMq/Y6jar+/P380stpftNKz54InAPslJk3t0Bte+CNwLmZedYIkyjNsXYdOxXYozfQctQUUCdS0z99MDN/2N/zc35kdac0l8nMS4AdMvN3Bmjzlv4qzta28CrgQuDTEbFGa/t5FfBr4BkRscyIkipN1srAJzPzlohYqA28fCfVQeou4LdgEw47DkhzoXYx0zxk3FhRe1Pzbd5Itde5G7goIp5PDVL8AHBoZt41mtRKk3YLsFdEfCYzbwSIiMOAWzLzpJGmrEOs7pSkDomI44EDgW8AywKPAJ5LDVq7KfAY4HmZed2o0ihNVptW8BVUYdFV1FhpLwUOysxfjDJtXWKQJkkd0QYkPgf4rzZQ7YrAscBfM/O0NutAZuZfR5lOaRAiYiVgT6rzwJ+BN5n5eDCDNEkakXFVnEtTN6qrgAsy811t+b7Azpl55MgSKg1RmzUDx3f8T3YckKQRGBegvQA4uj3/L2CXiDikvXURYEZELNbfsUCaV2TmPw3QZs6SNEkaoYg4impz9sxWxbk4NR7a+4DvAZsD+2Tmz0aYTEkjYO9OSRqRNifh04HXAvdGxNHARtTcnJsCKwF/yczbR5dKSaNiSZokjVBEHAkcQ819ez3wG+DxwHHOwynN3yxJk6TR+ijwI+CXmfmniDiAmkh9IcAgTZqPWZImSR0QEQsAhwPHAwc6F6ckS9IkqRsWoWYS2D8zbxh1YiSNniVpktQR8/tk0pIezCBNkiSpgxzMVpIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOuj/A/TuAEmJ9MDRAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[df['artist_top_genre'] != 'Missing']\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlmklEQVR4nO3de9yt9Zz/8de7tqLofEsqEokGs7El50PoMNgxv9JBysSWKeeQzISGwaQQid2InFKK0dCMkpQzu6SSoiiVXXuriE46fH5/XNc9Ldve7cP9vVvrvvfr+Xjcj73W97rWWp96rPte7/U9XakqJEmSNHGrDLsASZKk6cJgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmaNAl/Hvi5M+Hmgft7DLs+SWotbhAq6Z6QcBnwiiq+OexaVkTCjCpuH3YdkkabPVaS7nEJqyd8KOF3/c+HElbvjz0z4cqEgxJ+n3DZ3fVuJTwk4ayEPyV8M+HIhM8NHN8m4fsJf0j4WcIzB459O+HfEr7XP/7UhA36Y5slVMI+Cb8FvtW3/1PCLxKuT/hGwoP79iR8MGFBwg0J5yc8anL+D0oaVQYrScPwdmAbYCbw98DWwL8MHH8AsAGwMbAXMDdhyyU81xeAHwPrA+8E9hw/kLAx8HXg3cB6wAHASQljA4/fHXg5cH9gtf6cQc8AHglslzAbOAh4MTAGfAc4rj/vecDTgYcDawO7ANcu5f+DpGnGYCVpGPYADqliQRULgXcxEIh6/1rFrVWcSReOdln0SRIeBDwBOLiKv1TxXeDkgVNeCpxSxSlV3FnFacA8YMeBcz5VxS+ruBk4gS7sDXpnFTf2x/cF3lvFL/phwX8HZva9VrcB9wMeAaQ/Z/7y/6+RNJUZrCQNwwOBywfuX963jbu+ihvv5vjg81xXxU0DbVcM3H4wsHM/DPiHhD8ATwU2Gjjn6oHbNwH3XeQ1Fn2+Dw8813VAgI2r+BbwUeBIYEHC3IS1FlOzpGnMYCVpGH5HF1LGPahvG7duwpp3c3zcfGC9hDUG2jYduH0F8Nkq1hn4WbOK9y1HrYMrfK4AXrXI892niu8DVHFEFY8HtqIbEnzzcryOpGnAYCVpGI4D/iVhrJ8sfjDcNeG8966E1RKeBjwf+NKiT1LF5XRDe+/sz30S8IKBUz4HvCBhu4RVE+7dT47fZAXr/jjwtoS/A0hYO2Hn/vYTEp6YcC/gRuAW4M4VfB1JU9SMYRcgaaX0bmAt4Lz+/pf6tnFXA9fT9VLdBOxbxUVLeK49gE/TTRT/MXA8sCpAFVf0E87/gy7M3dGf8+oVKbqKryTcF/hiP6/qj8Bpff1rAR8ENqcLVd8ADl2R15E0dbmPlaSR0m+H8LmqFetVSjgeuKiKdzQtTJKWgUOBkqa0fgjuoQmrJGwPzAb+a8hlSVpJORQoaap7APBlun2srgReXcVPh1uSpJWVQ4GSJEmNOBQoSZLUiMFKkiSpkZGYY7XBBhvUZpttNuwyJEmSlurss8/+fVWNLe7YSASrzTbbjHnz5g27DEmSpKVKcvmSjjkUKEmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqZMawC2jt8W/+zLBL0DRz9qEvG3YJkqQpwh4rSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1MhSg1WSTZOckeTCJD9P8rq+fb0kpyX5Vf/vun17khyR5JIk5yV53GT/R0iSJI2CZemxuh14U1VtBWwD7JdkK+BA4PSq2gI4vb8PsAOwRf8zBziqedWSJEkjaKnBqqrmV9U5/e0/Ab8ANgZmA8f2px0L7NTfng18pjo/BNZJslHrwiVJkkbNcs2xSrIZ8FjgR8CGVTW/P3Q1sGF/e2PgioGHXdm3Lfpcc5LMSzJv4cKFy1u3JEnSyFnmYJXkvsBJwOur6obBY1VVQC3PC1fV3KqaVVWzxsbGluehkiRJI2mZglWSe9GFqs9X1Zf75mvGh/j6fxf07VcBmw48fJO+TZIkaVpbllWBAT4J/KKqDh84dDKwV397L+CrA+0v61cHbgP8cWDIUJIkadqasQznPAXYEzg/ybl920HA+4ATkuwDXA7s0h87BdgRuAS4CXh5y4IlSZJG1VKDVVV9F8gSDm+7mPML2G+CdUmSJE057rwuSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiNLDVZJjkmyIMkFA23HJzm3/7ksybl9+2ZJbh449vFJrF2SJGmkzFiGcz4NfBT4zHhDVb1k/HaSw4A/Dpx/aVXNbFSfJEnSlLHUYFVVZyXZbHHHkgTYBXh247okSZKmnInOsXoacE1V/Wqg7SFJfprkzCRPW9IDk8xJMi/JvIULF06wDEmSpOGbaLDaDThu4P584EFV9VjgjcAXkqy1uAdW1dyqmlVVs8bGxiZYhiRJ0vCtcLBKMgN4MXD8eFtV3VpV1/a3zwYuBR4+0SIlSZKmgon0WD0HuKiqrhxvSDKWZNX+9ubAFsCvJ1aiJEnS1LAs2y0cB/wA2DLJlUn26Q/tyl8PAwI8HTiv337hRGDfqrquYb2SJEkja1lWBe62hPa9F9N2EnDSxMuSJEmaetx5XZIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGlhqskhyTZEGSCwba3pnkqiTn9j87Dhx7W5JLklycZLvJKlySJGnULEuP1aeB7RfT/sGqmtn/nAKQZCtgV+Dv+sd8LMmqrYqVJEkaZUsNVlV1FnDdMj7fbOCLVXVrVf0GuATYegL1SZIkTRkTmWO1f5Lz+qHCdfu2jYErBs65sm/7G0nmJJmXZN7ChQsnUIYkSdJoWNFgdRTwUGAmMB84bHmfoKrmVtWsqpo1Nja2gmVIkiSNjhUKVlV1TVXdUVV3Akdz13DfVcCmA6du0rdJkiRNeysUrJJsNHD3RcD4isGTgV2TrJ7kIcAWwI8nVqIkSdLUMGNpJyQ5DngmsEGSK4F3AM9MMhMo4DLgVQBV9fMkJwAXArcD+1XVHZNSuSRJ0ohZarCqqt0W0/zJuzn/PcB7JlKUJEnSVOTO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1stRgleSYJAuSXDDQdmiSi5Kcl+QrSdbp2zdLcnOSc/ufj09i7ZIkSSNlWXqsPg1sv0jbacCjquoxwC+Btw0cu7SqZvY/+7YpU5IkafQtNVhV1VnAdYu0nVpVt/d3fwhsMgm1SZIkTSkt5lj9E/A/A/cfkuSnSc5M8rQlPSjJnCTzksxbuHBhgzIkSZKGa0LBKsnbgduBz/dN84EHVdVjgTcCX0iy1uIeW1Vzq2pWVc0aGxubSBmSJEkjYYWDVZK9gecDe1RVAVTVrVV1bX/7bOBS4OEN6pQkSRp5KxSskmwPvAV4YVXdNNA+lmTV/vbmwBbAr1sUKkmSNOpmLO2EJMcBzwQ2SHIl8A66VYCrA6clAfhhvwLw6cAhSW4D7gT2rarrFvvEkiRJ08xSg1VV7baY5k8u4dyTgJMmWpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDWyTMEqyTFJFiS5YKBtvSSnJflV/++6fXuSHJHkkiTnJXncZBUvSZI0Spa1x+rTwPaLtB0InF5VWwCn9/cBdgC26H/mAEdNvExJkqTRt0zBqqrOAq5bpHk2cGx/+1hgp4H2z1Tnh8A6STZqUKskSdJIm8gcqw2ran5/+2pgw/72xsAVA+dd2bf9lSRzksxLMm/hwoUTKEOSJGk0NJm8XlUF1HI+Zm5VzaqqWWNjYy3KkCRJGqqJBKtrxof4+n8X9O1XAZsOnLdJ3yZJkjStTSRYnQzs1d/eC/jqQPvL+tWB2wB/HBgylCRJmrZmLMtJSY4DnglskORK4B3A+4ATkuwDXA7s0p9+CrAjcAlwE/DyxjVLkiSNpGUKVlW12xIObbuYcwvYbyJFSZIkTUXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzNW9IFJtgSOH2jaHDgYWAd4JbCwbz+oqk5Z0deRJEmaKlY4WFXVxcBMgCSrAlcBXwFeDnywqj7QokBJkqSpotVQ4LbApVV1eaPnkyRJmnJaBatdgeMG7u+f5LwkxyRZd3EPSDInybwk8xYuXLi4UyRJkqaUCQerJKsBLwS+1DcdBTyUbphwPnDY4h5XVXOralZVzRobG5toGZIkSUPXosdqB+CcqroGoKquqao7qupO4Ghg6wavIUmSNPJaBKvdGBgGTLLRwLEXARc0eA1JkqSRt8KrAgGSrAk8F3jVQPN/JJkJFHDZIsckSZKmrQkFq6q6EVh/kbY9J1SRJEnSFOXO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNTJj2AVIWn6/PeTRwy5B08yDDj5/2CVI04I9VpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzMm+gRJLgP+BNwB3F5Vs5KsBxwPbAZcBuxSVddP9LUkSZJGWaseq2dV1cyqmtXfPxA4vaq2AE7v70uSJE1rkzUUOBs4tr99LLDTJL2OJEnSyGgRrAo4NcnZSeb0bRtW1fz+9tXAhos+KMmcJPOSzFu4cGGDMiRJkoZrwnOsgKdW1VVJ7g+cluSiwYNVVUlq0QdV1VxgLsCsWbP+5rgkSdJUM+Eeq6q6qv93AfAVYGvgmiQbAfT/Lpjo60iSJI26CQWrJGsmud/4beB5wAXAycBe/Wl7AV+dyOtIkiRNBRMdCtwQ+EqS8ef6QlX9b5KfACck2Qe4HNhlgq8jSZI08iYUrKrq18DfL6b9WmDbiTy3JEnSVOPO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1ssLBKsmmSc5IcmGSnyd5Xd/+ziRXJTm3/9mxXbmSJEmja8YEHns78KaqOifJ/YCzk5zWH/tgVX1g4uVJkiRNHSscrKpqPjC/v/2nJL8ANm5VmCRJ0lTTZI5Vks2AxwI/6pv2T3JekmOSrLuEx8xJMi/JvIULF7YoQ5IkaagmHKyS3Bc4CXh9Vd0AHAU8FJhJ16N12OIeV1Vzq2pWVc0aGxubaBmSJElDN6FgleRedKHq81X1ZYCquqaq7qiqO4Gjga0nXqYkSdLom8iqwACfBH5RVYcPtG80cNqLgAtWvDxJkqSpYyKrAp8C7Amcn+Tcvu0gYLckM4ECLgNeNYHXkCRJmjImsirwu0AWc+iUFS9HkiRp6nLndUmSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpkItstSJI0aZ7ykacMuwRNM997zfcm/TXssZIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGJi1YJdk+ycVJLkly4GS9jiRJ0qiYlGCVZFXgSGAHYCtgtyRbTcZrSZIkjYrJ6rHaGrikqn5dVX8BvgjMnqTXkiRJGgmpqvZPmvw/YPuqekV/f0/giVW1/8A5c4A5/d0tgYubF6K7swHw+2EXIU0y3+daGfg+v+c9uKrGFndgxj1dybiqmgvMHdbrr+ySzKuqWcOuQ5pMvs+1MvB9PlomayjwKmDTgfub9G2SJEnT1mQFq58AWyR5SJLVgF2BkyfptSRJkkbCpAwFVtXtSfYHvgGsChxTVT+fjNfSCnMYVisD3+daGfg+HyGTMnldkiRpZeTO65IkSY0YrCRJkhoxWKmJJJsnWX3YdUiSNEwGK01YknWBA4C3G64kaepJkmHXMF0YrDQhSTarquuBk4C1gQMMV5rK/IDRyiZJqqqSPCXJPkm27bdK0gowWGmFJVkH+ECSt1fV6cCXgQdiuNIUMB6gkjy6/0DZGKD/gDFcaaXRv+efBXwWeBjwIeC1SR421MKmKLdb0ApLci/gScC+wDlV9YEkzwB2AX4HfKCqbh1mjdLiDHxDfw7wEWA+cBnwc+Dw8g+jViJJtgQOAT5fVScneRzwKuDcqjpquNVNPfZYabmNf5uvqtuAHwJHAtskOaCqzgROAO4PHGzPlUZRH6oeB7wZ2Kmqng18ie5SXLOHWpx0D0kPeDrwUGC7JGtW1TnAccCcfg6tloPBSstl/Jt+f3ttgKr6HnA48KSBcPU1YDXgvkMrVlqCfv7IM4BnARv3zd8FbgCeMKy6pHvCwFD3BsCMqjoaeA8QukvQAVwN/Klv03KYlEvaaPoaCFWvBbYFrk1yalV9sf9dfV2Sg6vqkCTfraqbh1mvNG5g+O9ewG10Pa3rAm9Ncn1V/TTJucDuSdYAbnZIUNNR/3uwI93w31VJbgT2AdYE9kqyO10++I+qum6IpU5JBisttyT7Av8I7AEcChyWZP2qOjLJDGCfJOv5C6lR0n+YvAB4Ed1Q9aF0w9bXAicnOYauB+vQqrppeJVKkyvJI4F3A/sD5wJfAD5VVbsmuQXYDji/qr7Wnx+/ZCw7g5WWS5J7A7fSfTi9DLgP8FLgk0nurKqjkvy4qm4ZZp3SopI8Hng/8Aq6OSV7AmfQrYR6AF0P7FFV9d9JVq2qO4ZWrDS5bgUupFt0dAuwU5Izk+wHfAJYh25qx67A8Yaq5eMcK92tJH/1HqmqW6rqU3RdxtsD+1XVGcDPgH9Oso6hSiPqkcCPq+r7VfU+4H+B1wP3Bg6j673aJ8mjDFWaTga2Flm1Hwq/DtgImDVw2heBO6rqduBY4CzgDEPV8jNYaYmSbFJVd/a3X5Pk8CQHJFmLuyY2PiTJHOAa4NlV9YfhVSzdZeDDZPzv3IXAaklmAVTVicBFwBZV9Xu6VYFfBv44hHKlSdMPg8+m+/JwPN2XjCOBjyTZP8kr6IYFL+nPv62qjq2qa4ZW9BTmPlb6G/0H0lp0Y+/vBc4DjgD+E3gM3UqSvej2OXkc8Hhgj6o6bxj1SkvS71P1JOAPwGl0e67NB64CLqZbUv7i8feuQ4CajpI8gu7v93vp/n6/k24o/Da6+VSbACdW1anDqnE6MVhpiZI8Gfgk3Tf9I6vqW0keCLyVLnjtV1U3JVm7qvyWr5GS5CnAMXTDfC+j2wLkcmAMeDLdcPbR/YaITs7VtJTkUXS/AxdX1Wv7tu2ATwNPq6pLhljetORQoP7KwPBJqur7dBPT/w7YEaCqfge8D7gDODLJKoYqjZokDwf+GTiiquYCOwHrA4+pqiOqaldgb0OVVgK/pJu68cgkWyRZvaq+QXd917HhljY92WOl/7PI5p/PARbSDZmsC/wP3TL0T/THH0A3dO8YvEZOkh2A19KtfnpDVf2mnxt4JvCSqvrlUAuU7gHjQ9v9hPVPAjcD3wQW0A2Dz66qnwyzxunIYKW/keQNdN/wz6DbnXoXYHO6lSIfr6oPDa04aTEGNv/cHLiJbtXTlnTzAH9L9+08dJPT/6GqrhhasdI9YOB3YkZV3d5fbeBIuisLnAl8vapOtce2PYcC9VeSbAVsV1XPANYGrgf+UFU/opunsmeSdYZYovQ3+g+QHejmUR0O/IRudd9xdEvKv0T3ofJWQ5Wmo4FpHFv0IwoA9KFqRlX9hW54fB6wBnCOoWpyGKxWcgPXjBr3F+C3SQ4CHg7sXlW3JZldVT8GnuyWCho1/QfJu4FXVtXudEHqZOBXdCuhvg98m64XdnHve2nKGuid2o7uff9fwH5JHgZ/Fa5uowtX9wfehpuETwqD1UpskTlVs/tVgL8GNgT2pht/v6Xf4+SA/rI1tw6vYuku4/tTJXkC3WKKc+lW/VFV7wa+AxxUVT+lmyP4ULoNQGf4LV3TSR+qZtFdVeAFwJvoFh3ttEi4WrXvudoZOKwPWmrMYLUSGwhV+wP/BizoNwT9MN23+xOTHEi3cdyrq+raYdUqjUtyH4CqujPJU+km5T6Kbn+efxg49bt0k3Wpqq/TbY54Yr+ztDRtJLkf8HLgcVV1SVV9j+76f5sDL+lXydJPZF+lqv7Sr/DWJLAbcCXXf5vZGdh+4BftO8D5dFstXE+3iuriIZUo/Z9+T54PJXk+3SU5/hX4SFWdkeTPwNwkD6XbEPQlwEHjj3XzQ00ngyMOVfWnJEcAD0tyJPCaqvpOklWBPeg2AqU/987hVLzycFXgSmbRyYr9RPSPAwcCvwNu67uVNwMud8hEo6JfMn4U8CPgv4Hn0Q17rAvsVVVXJXkk3UrW9YEf9JvaOkFX08rAnKrnAg+i+yz/z75n6kDgBuCNfa/uulV1/VALXsk4FLgSWWRO1Qb9kMqNwOrADn33cCXZnW5i4xpDLFdanKvogtOX6FY3HUI3t+o1STaqql9U1cer6j1V9S24a8hbmg76obxK8g90O6pfCRyS5AP9/mz/DjwA+Gj/EDdwvofZY7WSWCRUvRHYDfgZ3eqRn9J9UF0E3A5sDexZVecPp1rpry3yDf2zwLf73dPHL13zfLovAv/uprWajpI8BFilqi5NsgHd78Eb6FZvHwhsDHyzqvZJsiWwenn91qGwx2olMRCqnkB34eTXAF8HXk+3z8/z6Cb3/oDuorSGKo2ERTb/HANeDKyS5N39MMf3gFPovhSsM8RSpcn0ZGD9/pI0vwfmAKsB7wKeCjwLeHmSj1bVxYaq4XHy+kqkX0H1ZeDDVfXDfijwT8CbgQdW1VFDLVBajD5UvZBu2O8Sui1BPkG3pPy1SY7oJ+qe7x5rmq6q6vNJ7gv8JMlLq+q8JA8Ezu7nUj2AbnPcbwy3UtljNY0tugliVX2Xrvt4lyQbVNXNwFl02ys8N8m6bpyoUZNkG7rVf9sBX6Hb4PB5wAfo5lu9qd+b6g9DK1KaJAM7qm9Ht63IZ4Gj+xWylwFrJ/kY3WWbvlpVp/l3fLicYzVNLTKnalvgfsBpVXVjkg8C29BtALqgX211r6q6aYglS4uVZBO6rRXWpdtdfXe6lazXAZ8GFpYXktU0lmRrui/Ab+hHG95I93uwU3/KY4Abq+rMIZWoAQaraS7dBZX/ke7SHhsC76+qM5McSjfh9+lVtXCYNUrLIsl76Dax/XCSlwGvBf6xqi4fcmnSpEmyKfBB4LqqmjPQ/kbglcDOVXXBsOrT33KO1TTTj7NfX1W39iuonltVT+13UH8y3eTGqqo3J7kVWBMwWGkqOB94Vd/D+mLgdYYqrQRuB84DZifZvqr+F6CqDu83AF1nmMXpb9ljNU30Y+pjwInAfwKfoxs6uS/dipG9gBcCnwIeBrylqs4YTrXS8kuyFvAiuvfxMf1laqRpZWAV7JPo/qb/lm7Bxt501/87oapOH2KJWgonr08fqaoFdNf8242ue/ja/hv9w4H/qapbgO/RDQvadawppapuqKpj6S6x9HUn6Go66kPV84Bj6KZvnA08BTiZrudq7/64RpRDgdPEwPWf1gDuAxyTZI2q+hTwfeBj/eUOnkQXuhz+01R1B7ijuqafJKvQDe29iq53dj3gQuCcqromyZforpQxf2hFaqkcCpxGkrwEeCuwA91qkZcBHwOOp/vG81zgc1V10bBqlCTdvSRvBdYGng3s0e+2vjfd9jiXeSHl0WaP1fSyPnBWf0mPTyS5FpgLrFFVRwMuxZWkEZRkJt0WOO+iW1S0J/CsPlT9Pd2X5kuq6tdDLFPLwGA1vfwWmNnv+3NVVZ3YL0t/QZIvVtWfhlyfJKk3MFH9acDOwHZJFlTVwUkeAbwjye3ATOCt/SbPGnEOBU4jSdam2zjxcroLK69BNyT4uqq6bHiVSZLGLbKB89OBzwP7A48AHg98v6o+1F+GbF3gd1V19uDjNLoMVlPMkn6x+kt63J5kPbqJjw8EtgAOcPM4SRoN/fX9Hgl8u6ruSPJSYOOqen9/LcCZwPvptlX48BBL1QoyWE0hi3zLmQ0EuLOqTu7bxsPVKv1FOdesqhuHWbMk6S793+5fAVfSbf65Ld3O6s+tqt/0KwOPpZtndWJVfWFoxWqFuI/VFDIQqval269qS+CjSd7SH7+9/6UcT8te+0+SRkhVfRW4mm7F9k7AqXRTOD7cz6t6DN21MX8FbDykMjUBTl6fAhbpqbo3sAuwV1X9NMkJwDeS/LmqPja4DNexeEkaDYN/x6vquiRnAs8D/gJ8hW4E4rN0vVj7AI8Dnttfwul2/55PHQarKaTvqboY+CVwn37I7zdJ9gd2HW51kqQl6Vf/PQN4NPCtqjo6yZ/pLtF0Z1UdmuRj/elbAwcDL6qq24ZUslaQQ4EjLMmW8H+/kC+mW477c+Ba4A1015EC2BRYo78gpyRpRIxfeinJE+mG/54BvCXJK6vqOOBrwEuT7ALcAtwbeDLdnlY/H1LZmgAnr4+oJNsBR9F1B28EHAZcWlWv6Y8fQ7cM90a6uVYvd/WfJI2eJFsDhwBvqarzkuxKF57O73uudgMurKqf9eevVlV/GWLJmgCHAkdQkhl0XcH/CmxFt/z2DGB2khdU1X9X1T/134BWpdsM9PKhFSxJujvrAM+hu6zYecCJwJ30c6iq6mNw1zwsQ9XUZrAaQf3qvkuBf6G74Oyz6LqIb6bbRf2Oqjqlqn40zDolSUtXVaf20znem+R3VXVckhPpvhj/bOA8h5CmAYPV6DqPbruEG4C1q+r3Sb5M9y1nzyS3VtXpQ61QkrRMqurk/vI0/9YP9R0LHDfsutSec6xGxCJbKqwG3NHvynsA3RXO31FVP+mvA7gD8LWqmj/EkiVJyynJC4H30Q0NXj24RY6mB4PVCFgkVO1PN6/qBuCdVXVLkoOAJwLvq6ofJFm1qu4YYsmSpBWUZKyqFg67Dk0Og9UISfLPwEuA3YFzgG8CB1fVpUneDTwM2LuqbhlimZIkaQkMViMiyVrA4XQrAXcGdgQW0G218OqquiTJ+lV17RDLlCRJd8NgNUKSrA48AvhQVT2r31huIfAJumFBd+CVJGmEuSpwhFTVrUluAmYkeTTwYOB04BOGKkmSRp89ViOm77V6Pd2KkQcCO1fVhUMtSpIkLROD1Qjqr2b+ALoLc1417HokSdKyMVhJkiQ1ssqwC5AkSZouDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpkf8PwQ8MlHUQ3OMAAAAASUVORK5CYII=", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAJZCAYAAABoaLenAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZx0lEQVR4nO3dd5glZZn///eHIUnWBROCIKKAIAMiomJGZA1gQFFxlTVgWuMuij8UEXXFtGv265gwoCIYQEXAVRFFEIY0BFFYxFVRMIEgkmbu3x9VDWd6eronNVXV/X5d17m6znPqVN3ndLrPXU9IVSFJkiT13WpdByBJkiQtCxNXSZIkDYKJqyRJkgbBxFWSJEmDYOIqSZKkQTBxlSRJ0iCYuEqSJGm5JdkryS+SXJbk4Ake3zzJD5Ocm2RBkieu9Dmdx1WSJEnLI8kc4JfA44HfAmcBz6mqi0f2mQecW1UfT7IdcEJVbbEy57XiKkmSpOW1K3BZVV1eVTcDXwH2GbdPARu02xsCV67sSVdf2QNIkiRp1tkU+M3I/d8CDxm3z2HAyUleBawL7LGyJzVx7aFb/nR57/tv3Omej+g6hCmdd6+dug5hUlf9fd2uQ5jSGlnUdQhT+vfVruo6hCm9aM7mXYcwqSvn9P5PDldxc9chTOletWbXIUzprgvTdQhT+t3q/f55PPyKo3rxJk53rrDmJlu9FDhwpGleVc1bzsM8Bziyqt6f5KHAF5JsX1Ur/M/FxFWSJEmLaZPUyRLV3wGbjdy/V9s26kXAXu3xTk+yNrAxcPWKxmUfV0mSpKFZtHB6b1M7C9g6yZZJ1gSeDRw/bp//Ax4HkGRbYG3gjyvzsk1cJUmStFyq6lbg34CTgJ8DX62qi5IcnmTvdrd/B16S5Hzgy8ABtZLTWdlVQJIkaWhWvJvoqguh6gTghHFth45sXww8fFWe08RVkiRpaBZ1n7h2wa4CkiRJGgQrrpIkSQOzEjNKDZoVV0mSJA2CFVdJkqShsY+rJEmS1F9WXCVJkobGPq6SJElSf1lxlSRJGpplW5Z1xrHiKkmSpEGw4ipJkjQ09nHtryTXdx3DmKliSbJRklfcUfFIkiTNFr1JXNPoTTwrYSPAxFWSJE2fRYum99ZTnSaKSbZI8osknwcuBN6S5KwkC5K8bSnPOWiifZJ8M8nZSS5KcmDbNifJkUkuTHJBkte17VslObHd/8dJtpkkxi2TnN4+/x0j7esl+X6Sc9rH9mkfOgLYKsl5Sd47WcySJEladn3o47o18AJgA2BfYFcgwPFJHllVp47tmGTPdv+J9nlhVf0lyZ2As5J8DdgC2LSqtm+fv1F7qHnAy6rq0iQPAT4GPHYp8X0Q+HhVfT7JK0fabwSeVlV/S7IxcEaS44GDge2rau4yxCxJkrTcyj6unfl1VZ0B7NnezgXOAbahSfhGTbbPq5OcD5wBbNa2Xw7cJ8mHk+wF/C3JesDDgGOSnAd8ArjHJPE9HPhyu/2FkfYA/5lkAfA/wKbA3SZ4/rK8LpIcmGR+kvmf+vyXxz8sSZI06/Wh4vr39muAd1XVJybZd8J9kjwa2AN4aFXdkOQUYO2q+muSHYEnAC8DngW8FrhmrCK6jGqCtv2BTYAHVdUtSa4A1l7WmJc4QdU8mkowt/zp8onOJ0mS1OhxP9Tp1IeK65iTgBe2FVGSbJrkrsu4z4bAX9ukdRtgt/bxjYHVquprwJuBnavqb8Cvkjyz3Sdtcrs0pwHPbrf3H2nfELi6TVofA9y7bb8OWH85X5ckSZKm0IeKKwBVdXKSbYHTkwBcDzwPuHoZ9jkReFmSnwO/oOkuAM3l+8+OzFbwpvbr/sDHk7wZWAP4CnD+UkJ7DfClJG8EjhtpPwr4VpILgPnAJW2Mf05yWpILge9W1UFTvS5JkqTlMkv7uKbKq9J9M4SuAne65yO6DmFK591rp65DmNRVf1+36xCmtEb6/4fx31e7qusQpvSiOZt3HcKkrpzT+z85XMXNXYcwpXvVml2HMKW7LkzXIUzpd6v3++fx8CuO6sWbeNMvfzKtb9Ra99u9F69zvN5UXCVJkrSMFi3sOoJOmLi2khwCPHNc8zFV9c4u4pEkSVqqWdpVwMS11SaoJqmSJEk9ZeIqSZI0NE6HJUmSJPWXFVdJkqShmaV9XK24SpIkaRCsuEqSJA2NfVwlSZKk/rLiKkmSNDBVs3MBAiuukiRJGgQrrpIkSUPjrAKSJElSf1lxlSRJGhpnFZAkSZL6y4prD93pno/oOoQp/ePKH3cdwpQO2eWQrkOY1KVrXd91CFN6OBt2HcKUPr/Wel2HMKUP3HJT1yFMaoeFa3UdwpSecEt1HcIy6Pf3GeD0NdfuOoQpbXlLug5hGOzjKkmSJPWXFVdJkqShWeQ8rpIkSVJvWXGVJEkaGvu4SpIkSf1lxVWSJGloZuk8riaukiRJQ2NXAUmSJKm/rLhKkiQNzSztKmDFVZIkSYNgxVWSJGlorLhKkiRJ/WXFVZIkaWCqXPJVkiRJ6i0rrpIkSUNjH9fZJ8n103DMuUmeOHL/sCT/sarPI0mSNNtYcV315gK7ACd0HIckSZqpXDlrdktyUJKzkixI8ra2bYskP0/yySQXJTk5yZ3axx7c7ntekvcmuTDJmsDhwH5t+37t4bdLckqSy5O8uqOXKEmSNGgmrkCSPYGtgV1pKqYPSvLI9uGtgY9W1QOAa4BntO2fBV5aVXOBhQBVdTNwKHB0Vc2tqqPbfbcBntAe/61J1pju1yRJkmawRYum99ZTJq6NPdvbucA5NInm1u1jv6qq89rts4EtkmwErF9Vp7ftX5ri+N+pqpuq6k/A1cDdVmHskiRJs4J9XBsB3lVVn1isMdkCuGmkaSFwpxU4/vhjLPG+JzkQOBAgczZktdXWXYHTSJKkWcE+rrPaScALk6wHkGTTJHdd2s5VdQ1wXZKHtE3PHnn4OmD95Q2gquZV1S5VtYtJqyRJ0pKsuAJVdXKSbYHTkwBcDzyPtu/qUrwI+GSSRcCPgGvb9h8CByc5D3jXtAUtSZJmrx73Q51Oszpxrar1RrY/CHxwgt22H9nnfSPtF1XVAwGSHAzMb/f5C/DgSc65/dIekyRJ0tLN6sR1JT0pyZto3sNfAwd0G44kSZo1ZmkfVxPXFdROdXX0lDtKkiRplTBxlSRJGhr7uEqSJGkQZmni6nRYkiRJGgQrrpIkSUMzSwdnWXGVJEnSIFhxlSRJGhr7uEqSJEn9ZeIqSZI0NLVoem/LIMleSX6R5LJ2FdGJ9nlWkouTXJTkSyv7su0qIEmSpOWSZA7wUeDxwG+Bs5IcX1UXj+yzNfAm4OFV9dckd13Z85q4SpIkDU33fVx3BS6rqssBknwF2Ae4eGSflwAfraq/AlTV1St7UrsKSJIkaTFJDkwyf+R24LhdNgV+M3L/t23bqPsB90tyWpIzkuy1snFZcZUkSRqaaZ7HtarmAfNW8jCrA1sDjwbuBZyaZIequmZFD2jFVZIkScvrd8BmI/fv1baN+i1wfFXdUlW/An5Jk8iuMBNXSZKkoVm0aHpvUzsL2DrJlknWBJ4NHD9un2/SVFtJsjFN14HLV+Zl21Wgh867105dhzClQ3Y5pOsQpvTO+e/sOoRJfXOHt3QdwpT+PIC/EK+9sboOYUpPzFpdhzCphek6gqkdvfacrkOY0gb0P8bNbu06gqltWzd0HYKWQVXdmuTfgJOAOcBnquqiJIcD86vq+PaxPZNcDCwEDqqqP6/MeQfwb0mSJEmL6X5WAarqBOCEcW2HjmwX8Pr2tkrYVUCSJEmDYMVVkiRpaKr/3aSmgxVXSZIkDYIVV0mSpKHpQR/XLlhxlSRJ0iBYcZUkSRoaK66SJElSf1lxlSRJGpqanRVXE1dJkqShsauAJEmS1F9WXCVJkobGBQgkSZKk/rLiKkmSNDT2cZUkSZL6y8R1nCRbJLlwBZ7305HnP3fVRyZJktRatGh6bz1l4rqSkqwOUFUPa5u2AExcJUmSVrHBJa5tRfOSJEcl+XmSY5Osk+RxSc5NckGSzyRZq93/iiTvadvPTHLftv3IJPuOHPf6pZzrx0nOaW8Pa9sf3bYfD1w87vlHAI9Icl6S1yU5NcnckWP+JMmO0/X+SJKkWaAWTe+tpwaXuLbuD3ysqrYF/ga8HjgS2K+qdqAZdPbykf2vbds/AnxgOc5zNfD4qtoZ2A/40MhjOwOvqar7jXvOwcCPq2puVf038GngAIAk9wPWrqrzlyMGSZIkMdzE9TdVdVq7/UXgccCvquqXbdvngEeO7P/lka8PXY7zrAF8MskFwDHAdiOPnVlVv1qGYxwDPDnJGsALaRJsSZKkFVaLalpvfTXUxHX8O3rNcuw/tn0r7etPshqw5gTPex1wFbAjsMu4ff6+TIFW3QB8D9gHeBZw1ET7JTkwyfwk84/52/8ty6ElSZJmlaEmrpsnGaucPheYD2wx1n8V+BfgRyP77zfy9fR2+wrgQe323jTV1fE2BH5fVYvaY85ZhtiuA9Yf1/Ypmm4GZ1XVXyd6UlXNq6pdqmqXZ26w+TKcRpIkzVrOKjAovwBemeTnwJ2B/wb+FTimvay/CPh/I/vfOckC4DU0VVSATwKPSnI+TfeBiSqoHwNe0O6zzVL2GW8BsDDJ+UleB1BVZ9P0xf3s8r1MSZIkjRnqylm3VtXzxrV9H9hpKfu/t6reONpQVVcBu400vbFtvwLYvt2+FHjgBPucApwy7njrtV9vAR47+liSe9J8SDh50lclSZK0LHo88n86DbXiOhhJng/8DDik7XIgSZKkFTC4iutoRXQZ999i2oJZtvN/Hvh8lzFIkqQZpscj/6eTFVdJkiQNwuAqrpIkSbNej0f+TycrrpIkSRoEK66SJElDM0srriaukiRJQ1MOzpIkSZJ6y4qrJEnS0MzSrgJWXCVJkjQIVlwlSZKGxgUIJEmSpP6y4ipJkjQ0ZR9XSZIkqbesuEqSJA2NfVwlSZKk/rLi2kNX/X3drkOY0qVrXd91CFP65g5v6TqEST31grd3HcKU3v+gQ7sOYUo7585dhzClW3reFe2S1W7sOoQpbV5rdR3ClM6qa7sOYUq/Wb3/7+Oat6zTdQiT2q3rAFrlPK6SJElSf1lxlSRJGhr7uEqSJEn9ZcVVkiRpaJzHVZIkSeovK66SJElDYx9XSZIkqb+suEqSJA2N87hKkiRJ/WXFVZIkaWhmaR9XE1dJkqShcTosSZIkqb+suEqSJA3NLO0qYMVVkiRJg2DFVZIkaWDK6bD6I8lhSf6jb+dPcs8kx7bbj07y7XZ77yQHt9tPTbLdHRuxJEnSzGfFdTlU1ZXAvhO0Hw8c3959KvBt4OI7LjJJkjSr2Me1W0kOSfLLJD8B7t+2vSTJWUnOT/K1JOu07Ucm+VCSnya5PMm+I8d5Y5IL2ucc0bZtleTEJGcn+XGSbdr2pyT5WZJzk/xPkruNhLRjktOTXJrkJe3+WyS5cILYD0jykSQPA/YG3pvkvPa854zst/XofUmSJC27XlRckzwIeDYwlyamc4Czga9X1Sfbfd4BvAj4cPu0ewC7A9vQVDuPTfLPwD7AQ6rqhiR3afedB7ysqi5N8hDgY8BjgZ8Au1VVJXkx8Abg39vnPBDYDVgXODfJd6Z6HVX10yTHA9+uqrEuBdcmmVtV5wH/Cnx2Rd4jSZKk28zSimsvElfgEcA3quoGgDb5A9i+TVg3AtYDThp5zjerahFw8UildA/gs2PHqaq/JFkPeBhwTJKx567Vfr0XcHSSewBrAr8aOf5xVfUP4B9JfgjsCpy3Aq/tU8C/Jnk9sF97nCUkORA4EOC16z+IJ99pqxU4lSRJ0szVm64CS3Ek8G9VtQPwNmDtkcduGtkOS7cacE1VzR25bds+9mHgI+3xXzru+OM/yqzoR5uvAf8MPBk4u6r+PNFOVTWvqnapql1MWiVJ0qRq0fTeeqovieupwFOT3CnJ+sBT2vb1gd8nWQPYfxmO8z2a6uZYX9i7VNXfgF8leWbbliQ7tvtvCPyu3X7BuGPtk2TtJP8EPBo4axlfy3Vt3ABU1Y00leKPYzcBSZKkFdaLxLWqzgGOBs4HvsvtSeJbgJ8BpwGXLMNxTqTp7zo/yXnA2JRW+wMvSnI+cBFNP1iAw2i6EJwN/Gnc4RYAPwTOAN7eziiwLL4CHNQO+BornR4FLAJOXsZjSJIkLd2imt5bT/WljytV9U7gnRM89PEJ9j1g3P31RraPAI4Y9/ivgL0mOM5xwHETtB+2lBivALZvt08BTmm3j6Tp1kBVnQaMn8d1d5q+twsnOq4kSZKm1pvEdaZK8g1gK5pZDCRJklZa9bgqOp1MXKdZVT2t6xgkSZJmAhNXSZKkoZmlFddeDM6SJEmSpmLiKkmSNDSLFk3vbRkk2SvJL5JcluTgSfZ7RpJKssvKvmwTV0mSJC2XJHOAj9IssrQd8Jwk42dVop2f/zU005uuNBNXSZKkoel+Htddgcuq6vKquplmHvt9Jtjv7cC7gRtXxcs2cZUkSRqa7hPXTYHfjNz/bdt2myQ7A5tV1XdW1cs2cZUkSdJikhyYZP7I7cDlfP5qwH8B/74q43I6LEmSpIGpmt7psKpqHjBvkl1+B2w2cv9ebduY9WlWGz0lCcDdgeOT7F1V81c0LiuukiRJWl5nAVsn2TLJmsCzgePHHqyqa6tq46raoqq2AM4AVippBSuukiRJw9PxAgRVdWuSfwNOAuYAn6mqi5IcDsyvquMnP8KKMXGVJEnScquqE4ATxrUdupR9H70qzmniKkmSNDQu+SpJkiT1lxVXSZKkgalZWnE1ce2hNbJsawR36eFs2HUIU/pzz3+63/+gCbsB9cq/n3141yFM6SE7PL/rEKb0+LU2m3qnDj38lrW7DmFKp62xShbdmVbPvaX/fxdPXfOWrkOY0mVr9P9/oLrT83/tkiRJWsIsrbjax1WSJEmDYMVVkiRpaGZpjworrpIkSRoEK66SJEkDM1tnFbDiKkmSpEGw4ipJkjQ0VlwlSZKk/rLiKkmSNDTOKiBJkiT1lxVXSZKkgXFWAUmSJKnHrLhKkiQNzSzt42riKkmSNDB2FZAkSZJ6bFYlrklem2SdkfsnJNmow5AkSZKW36JpvvXUrEpcgdcCtyWuVfXEqrqms2gkSZK0zDpNXJN8M8nZSS5KcmDbtleSc5Kcn+T7bdtd2n0XJDkjyQPb9sOS/MfI8S5MskWSdZN8pz3GhUn2S/Jq4J7AD5P8sN3/iiQbt9vPb49/fpIvtG1HJvlQkp8muTzJviPnOijJWe1z3ta2LXHetv2IJBe3+77vjnhvJUnSzFWLpvfWV10PznphVf0lyZ2As5IcB3wSeGRV/SrJXdr93gacW1VPTfJY4PPA3EmOuxdwZVU9CSDJhlV1bZLXA4+pqj+N7pzkAcCbgYdV1Z9GzgtwD2B3YBvgeODYJHsCWwO7AgGOT/JIYJPx503yT8DTgG2qquyaIEmStGK67irw6iTnA2cAmwEHAqdW1a8Aquov7X67A19o234A/FOSDSY57gXA45O8O8kjquraKeJ4LHDMWEI7cl6Ab1bVoqq6GLhb27ZnezsXOIcmqd16Kee9FrgR+HSSpwM3TBRAkgOTzE8y//gbLp8iXEmSNKvZx/WOleTRwB7AQ6tqR5ok8LzlPMytLP4a1gaoql8CO9Mkku9IcuhKhHrTyHZGvr6rqua2t/tW1acnOm9V3UpTmT0WeDJw4kQnqap5VbVLVe2y9zr3WYlwJUmSZqYuK64bAn+tqhuSbAPsRpN4PjLJltD0bW33/TGwf9v2aOBPVfU34AqaRJEkOwNjz7sncENVfRF479g+wHXA+hPE8gPgme1lfcZ1FZjIScALk6zX7r9pkrtOdN52nw2r6gTgdcCOy/b2SJIkTcw+rne8E4GXJfk58Aua7gJ/pOku8PUkqwFXA48HDgM+k2QBzaX2F7TH+Brw/CQXAT8Dftm27wC8N8ki4Bbg5W37PODEJFdW1WPGAqmqi5K8E/hRkoU01d8DlhZ4VZ2cZFvg9CQA1wPPA+47wXnXB45LsjZNpfb1K/BeSZIkzXqdJa5VdRPwz0t5+Lvj9v0L8NQJjvEPmr6m411BUxUdv/+HgQ+P3N9iZPtzwOfG7X/AuPvrjWx/EPjguFP870TnpekqIEmStGr0uCo6nboenCVJkiQtk66nw5IkSdJy6nM/1OlkxVWSJEmDYMVVkiRpYKy4SpIkST1mxVWSJGlgrLhKkiRJPWbFVZIkaWgqU+8zA1lxlSRJ0iBYcZUkSRqY2drH1cRVkiRpYGqRXQUkSZKk3rLiKkmSNDCztauAFVdJkiQNghVXSZKkgSmnw5IkSZL6y4prD/37ald1HcKUPr/Wel2HMKXX3lhdhzCpnXPnrkOY0kN2eH7XIUzpZxd8vusQpvT1Hd7SdQiTunKNriOY2ke/8/KuQ5jSB5/42a5DmNITb5zTdQhTWrDW7KwkLi/7uEqSJEk9ZsVVkiRpYJzHVZIkSeoxK66SJEkDU/0exjFtrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQwziogSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqdlZcTVwlSZIGphZ1HUE37CqwCiTxA4AkSdI0m5WJa5LnJTkzyXlJPpFkTpLrk7wzyflJzkhyt3bfTZJ8LclZ7e3hbfthSb6Q5DTgC+1+30tyUZJPJfl1ko2THJ7ktSPnfmeS13TzyiVJ0kywqDKtt76adYlrkm2B/YCHV9VcYCGwP7AucEZV7QicCrykfcoHgf+uqgcDzwA+NXK47YA9quo5wFuBH1TVA4Bjgc3bfT4DPL8992rAs4EvTtsLlCRJmqFm4yXuxwEPAs5KAnAn4GrgZuDb7T5nA49vt/cAtmv3BdggyXrt9vFV9Y92e3fgaQBVdWKSv7bbVyT5c5KdgLsB51bVn6frxUmSpJnPwVmzR4DPVdWbFmtM/qPqtnUoFnL7e7MasFtV3Thuf4C/L+M5PwUcANydpgK7ZFDJgcCBAPfe8L5sss49lvHQkiRJs8Os6yoAfB/YN8ldAZLcJcm9J9n/ZOBVY3eSzF3KfqcBz2r32RO488hj3wD2Ah4MnDTRk6tqXlXtUlW7mLRKkqTJ1KJM662vZl3iWlUXA28GTk6yAPgeMFmm+GpglyQLklwMvGwp+70N2DPJhcAzgT8A17XnvBn4IfDVqlq4al6JJEnS7DIbuwpQVUcDR49rXm/k8WNpBlhRVX+iGcw1/hiHjWu6FnhCVd2a5KHAg6vqJrhtUNZuNAmtJEnSSrmtc+MsMysT12myOfDVNkm9mXZWgiTb0Qz6+kZVXdphfJIkSYNm4rqKtEnpThO0Xwzc546PSJIkzVR96IeaZC+aaUPnAJ+qqiPGPf564MXArcAfgRdW1a9X5pyzro+rJEmSVk6SOcBHgX+mmdf+Oe1V5lHnArtU1QNpumC+Z2XPa8VVkiRpYHqwutWuwGVVdTlAkq8A+wAXj+1QVT8c2f8M4Hkre1IrrpIkSVpemwK/Gbn/27ZtaV4EfHdlT2rFVZIkaWCme+Ws0YWRWvOqat4KHut5wC7Ao1Y2LhNXSZIkLaZNUidLVH8HbDZy/15t22KS7AEcAjxqbJrQlWHiKkmSNDA9mMf1LGDrJFvSJKzPBp47ukOSnYBPAHtV1dWr4qT2cZUkSdJyqapbgX+jWcr+5zSrg16U5PAke7e7vZdmgadjkpyX5PiVPa8VV0mSpIHpwawCVNUJwAnj2g4d2d5jVZ/TiqskSZIGwYqrJEnSwEz3rAJ9ZeIqSZI0MD0YnNUJuwpIkiRpEKy4SpIkDUwfBmd1wYqrJEmSBsGKaw+9aM7mXYcwpQ/cstKLX0y7J2atrkOY1C2Luo5gao9fa7Opd+rY13d4S9chTOnpF7y96xAm9dUHHjr1Th37ryd+tusQpvSP9L/T4W/WmNN1CFPaYAB/G/tgtg7OsuIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwPS/R/X0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGZrYuMGbFVZIkSYNgxVWSJGlgCvu4SpIkSb1lxVWSJGlgFs3SpbOsuEqSJGkQpkxck/x0RQ6c5KlJtluR506HJBslecUy7nv9dMcjSZK0ohaRab311ZSJa1U9bAWP/VRgwsQ1SRddFDYClilxlSRJUv8sS8X1+vbro5OckuTYJJckOSpJ2seOSHJxkgVJ3pfkYcDewHuTnJdkq/a5H0gyH3hNkiOT7LuU8/woyXFJLm+PvX+SM5NckGSrdr9NknwtyVnt7eFt+2FJPtOe7/Ikr25PcQSwVRvPe5Osl+T7Sc5pj7vPBK99stf8oDbOs5OclOQebfurR96Lr7Rtj2rPe16Sc5Osv4LfL0mSJIpM662vlrfyuRPwAOBK4DTg4Ul+DjwN2KaqKslGVXVNkuOBb1fVsQBtvrdmVe3S3j9ykvPsCGwL/AW4HPhUVe2a5DXAq4DXAh8E/ruqfpJkc+Ck9jkA2wCPAdYHfpHk48DBwPZVNbc9/+rA06rqb0k2Bs5IcnxVje/uPNFr/hnwYWCfqvpjkv2AdwIvbM+zZVXdlGSj9hj/Abyyqk5Lsh5w49RvtSRJ0sRm6wIEy5u4nllVvwVIch6wBXAGTSL26STfBr49yfOPXsbznFVVv2/P87/AyW37BTQJKcAewHZtQgywQZsUAnynqm4CbkpyNXC3Cc4R4D+TPJLm+79pu98fxu030Wu+Btge+F57/jnA79v9FwBHJfkm8M227TTgv5IcBXx97HiSJEladss7q8BNI9sLgdWr6lZgV+BY4MnAiZM8/+8j27eOnT/JasCaSznPopH7i7g92V4N2K2q5ra3Tavq+gmev5CJE/T9gU2AB7VV2KuAtSfYb6JjBbho5Nw7VNWe7T5PAj4K7AyclWT1qjoCeDFwJ+C0JNuMP0mSA5PMTzL/x9dfOkEYkiRJjdnaVWClp8Nqq5wbVtUJwOtoLvMDXEdzqX5prgAe1G7vDayxnKc+mabbwFgcc6fYf3w8GwJXV9UtSR4D3Hs5zv0LYJMkD23PvUaSB7QJ+GZV9UPgje051kuyVVVdUFXvBs6i6cqwmKqaV1W7VNUuj1hv6+UIRZIkaXZYFaP71weOS7I2TSXy9W37V4BPtoOj9p3geZ9sn3c+TZX27xPsM5lXAx9NsoDmdZwKvGxpO1fVn5OcluRC4LvAu4FvJbkAmA9csqwnrqqb24FlH0qyYXv+DwC/BL7YtgX4UNvf9+1tcrwIuKg9vyRJ0gqZrX1cs+RYJHXt/232vN5/U86dc9PUO3Vsu0VrdR3CpG7pOoBl8MfVFnYdwpR2vqn/66g8/YK3dx3CpL76wEO7DmFK/7e81+Q68I/0/k83d1/Y30vAY/r+V+dVv/liL97EE+/27Gn9gdvrqq/04nWO55KvkiRJAzNbK679L1VIkiRJWHGVJEkanD6P/J9OVlwlSZI0CFZcJUmSBmbR7Cy4WnGVJEnSMFhxlSRJGphF9nGVJEmS+suKqyRJ0sD0f7mL6WHFVZIkSYNgxVWSJGlgXDlLkiRJ6jErrpIkSQOzKM4qIEmSJPWWFVdJkqSBma2zCpi4SpIkDcxsHZxl4tpDV87p/+eoHRau1XUIU1rY8+4/l6x2Y9chTOnht6zddQhTunKNriOY2lcfeGjXIUzqWQsO7zqEKR2yyyFdhzClHW+e03UIU7pijf7/f7l73/94q1MmrpIkSQOzaJbm9w7OkiRJ0iBYcZUkSRqYRczOkqsVV0mSJA2CFVdJkqSB6f8wu+lhxVWSJEmDYMVVkiRpYJxVQJIkSeoxK66SJEkDM1tXzrLiKkmSpEGw4ipJkjQwziogSZIk9ZgVV0mSpIFxVgFJkiSpx6y4SpIkDYyzCswwSa5vv94zybFdxyNJkqSVM+MrrlV1JbBv13FIkiStKlZcZ6gkWyS5sN0+I8kDRh47JckuSdZN8pkkZyY5N8k+7eMHJPl6khOTXJrkPSPP3TPJ6UnOSXJMkvXa9iOSXJxkQZL3tW3PTHJhkvOTnHrHvgOSJEkzw4yvuI5zNPAs4K1J7gHco6rmJ/lP4AdV9cIkGwFnJvmf9jlzgZ2Am4BfJPkw8A/gzcAeVfX3JG8EXp/ko8DTgG2qqtpjARwKPKGqfjfSJkmStELKWQVmha9ye7eBZwFjfV/3BA5Och5wCrA2sHn72Per6tqquhG4GLg3sBuwHXBa+5wXtO3XAjcCn07ydOCG9hinAUcmeQkwZ6LAkhyYZH6S+edcd9mqebWSJGlGWjTNt76aVYlrVf0O+HOSBwL70VRgAQI8o6rmtrfNq+rn7WM3jRxiIU2VOsD3RvbfrqpeVFW3ArvSJMRPBk5sz/symgrtZsDZSf5pgtjmVdUuVbXLzuvfd5W/dkmSpKGbVYlr62jgDcCGVbWgbTsJeFWSACTZaYpjnAE8PMl92/3XTXK/tp/rhlV1AvA6YMf28a2q6mdVdSjwR5oEVpIkaYX0oeKaZK8kv0hyWZKDJ3h8rSRHt4//LMkWK/hybzMbE9djgWfTdBsY83ZgDWBBkova+0tVVX8EDgC+nGQBcDqwDbA+8O227SfA69unvDfJBe0gsZ8C56+6lyNJknTHSjIH+CjwzzTdJ5+TZLtxu70I+GtV3Rf4b+DdK3veGTs4q6rWa79eAWw/0n4V4153Vf0DeOkExzgSOHLk/pNHtn8APHiCU+86wXGevpzhS5IkLVV1HUCT71xWVZcDJPkKsA/NeKAx+wCHtdvHAh9Jkqpa4fBnY8VVkiRJkxgdNN7eDhy3y6bAb0bu/7Ztm3CfdhzQtcAS43yWx4ytuEqSJM1Ui6Z5OqyqmgfMm96zLD8rrpIkSVpev2Pxweb3atsm3CfJ6sCGwJ9X5qQmrpIkSQPTg1kFzgK2TrJlkjVpBr4fP26f42nmuodmHv0frEz/VrCrgCRJkpZTVd2a5N9ophSdA3ymqi5Kcjgwv6qOBz4NfCHJZcBfaJLblWLiKkmSNDB9WN2qnbf+hHFth45s3wg8c1We064CkiRJGgQrrpIkSQPTg3lcO2HFVZIkSYNgxVWSJGlgpnse176y4ipJkqRBsOIqSZI0MH2YVaALVlwlSZI0CFZcJUmSBsZZBSRJkqQes+IqSZI0MItmac3VxLWHruLmrkOY0hNu6f8vzNFrz+k6hEltXmt1HcKUTlvjxq5DmNJHv/PyrkOY0n898bNdhzCpQ3Y5pOsQpvTO+e/sOoQpHfGgt3QdwpTm3tT/IT2Xrdnvv9190f/v5PSwq4AkSZIGwYqrJEnSwPT/uuf0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwCxK1xF0w4qrJEmSBsGKqyRJ0sDM1gUIrLhKkiRpEKy4SpIkDczsrLdacZUkSdJAWHGVJEkaGOdxlSRJknrMiqskSdLAOKuAJEmS1GMzJnFNcv0qOs6jk3x7VRxLkiRpOtQ03/pqxiSukiRJmtlmXOKaxnuTXJjkgiT7te2LVVKTfCTJAe32XkkuSXIO8PSRfQ5L8pkkpyS5PMmrRx57XpIzk5yX5BNJ5rS3I0fO/bp231cnuTjJgiRfuaPeC0mSNDMtmuZbX83EwVlPB+YCOwIbA2clOXVpOydZG/gk8FjgMuDocbtsAzwGWB/4RZKPA/cF9gMeXlW3JPkYsD9wEbBpVW3fHnuj9hgHA1tW1U0jbZIkSVoOM67iCuwOfLmqFlbVVcCPgAdPsv82wK+q6tKqKuCL4x7/TlXdVFV/Aq4G7gY8DngQTVJ8Xnv/PsDlwH2SfDjJXsDf2mMsAI5K8jzg1omCSHJgkvlJ5v/8ustX4GVLkqTZYhE1rbe+momJ69LcyuKvd+1lfN5NI9sLaarUAT5XVXPb2/2r6rCq+itNpfcU4GXAp9rnPQn4KLAzTbK7RKW7quZV1S5Vtcu2699neV6XJEnSrDATE9cfA/u1/U03AR4JnAn8GtguyVrt5frHtftfAmyRZKv2/nOW4RzfB/ZNcleAJHdJcu8kGwOrVdXXgDcDOydZDdisqn4IvBHYEFhvlbxSSZI0K83WWQVmYh/XbwAPBc6nee/fUFV/AEjyVeBC4FfAuQBVdWOSA4HvJLmBJvFdf7ITVNXFSd4MnNwmprcArwT+AXy2bQN4EzAH+GKSDWkqtR+qqmtW4euVJEmzTJ8HUE2nGZO4VtV67dcCDmpv4/d5A/CGCdpPpOnrOr79sHH3tx/ZPpolB3JB0x1gvN0nj16SJElTmTGJqyRJ0mxRvb6gP31mYh9XSZIkzUBWXCVJkgZmtvZxteIqSZKkQbDiKkmSNDB9XiRgOllxlSRJ0iBYcZUkSRqY2VlvteIqSZKkgbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGpuzjKkmSJPWXFVdJkqSBsY+rJEmS1GNWXHvoXrVm1yEsg5u6DmBKGzCn6xAmdVZd23UIU3ruLRt2HcKUPvjEz3YdwpT+kX73Rdvx5n7/rgAc8aC3dB3ClA4+++1dhzClo3Y8tOsQprTebC0lLif7uEqSJEk9ZsVVkiRpYGZrYdrEVZIkaWAWlV0FJEmSpN6y4ipJkjQws7PeasVVkiRJA2HFVZIkaWAWzdKaqxVXSZIkDYIVV0mSpIFxAQJJkiSpx6y4SpIkDcxsXYDAiqskSZIGwYqrJEnSwDirgCRJktRjVlwlSZIGxlkFZpkkVyTZeIL2vZMc3EVMkiRJWrpZm7guTVUdX1VHdB2HJEnS0iya5tvKSHKXJN9Lcmn79c4T7DM3yelJLkqyIMl+y3LsXiSuSdZN8p0k5ye5MMl+bUX0PUkuSHJmkvu2+26S5GtJzmpvDx85xmfafc9Nsk/bPifJ+9rjLkjyqpFTvyrJOe05tmn3PyDJR9rtI5N8KMlPk1yeZN+RmA9qz78gyduW9jra9iOSXNzu+7475E2VJEnqxsHA96tqa+D77f3xbgCeX1UPAPYCPpBko6kO3Jc+rnsBV1bVkwCSbAi8G7i2qnZI8nzgA8CTgQ8C/11VP0myOXASsC1wCPCDqnph+8LPTPI/wPOBLYC5VXVrkruMnPdPVbVzklcA/wG8eILY7gHsDmwDHA8cm2RPYGtgVyDA8UkeCWwy/nUk+SfgacA2VVXL8k2RJEmaTFWv+7juAzy63f4ccArwxtEdquqXI9tXJrmaJo+6ZrID96LiClwAPD7Ju5M8oqqubdu/PPL1oe32HsBHkpxHk0hukGQ9YE/g4Lb9FGBtYPN2/09U1a0AVfWXkfN+vf16Nk1yO5FvVtWiqroYuFvbtmd7Oxc4hyap3Xopr+Na4Ebg00meTvMJYwlJDkwyP8n8+ddftvR3SpIkqd/uVlW/b7f/wO3504SS7AqsCfzvVAfuRcW1qn6ZZGfgicA7knx/7KHR3dqvqwG7VdWNo8dIEuAZVfWLce2Tnfqm9utClv5e3DSynZGv76qqT4zfefzrqKrD22/I44B9gX8DHjv+eVU1D5gH8PZ779/rj1GSJKlb0z2Pa5IDgQNHmua1ucrY4/8D3H2Cpx4yeqe92rzUYJPcA/gC8IKqmrJ7bS8qrknuCdxQVV8E3gvs3D6038jX09vtk4FXjTx3brt5Ek2f1bTtO7Xt3wNemmT1tn20q8CKOgl4YVvpJcmmSe460eto99mwqk4AXgfsuArOL0mSNG2qal5V7TJymzfu8T2qavsJbscBV7UJ6VhievVE50iyAfAd4JCqOmNZ4upFxRXYAXhvkkXALcDLgWOBOydZQFP1fE6776uBj7btqwOnAi8D3k7TD3ZBktWAX9H0if0UcL+2/Rbgk8BHVibYqjo5ybbA6W2efD3wPOC+E7yO9YHjkqxNU6l9/cqcW5IkaWVH/k+z44EXAEe0X48bv0OSNYFvAJ+vqmOX9cC9SFyr6iSaKuZt2oTwvVU1vjPvn7i9Ejva/g/gpRO030qTLL5+XPsWI9vzaTsRV9WRwJHt9gHjnrPeyPYHaQaKjfrf8a+jtesEbZIkSSuk5wsQHAF8NcmLgF8DzwJIsgvwsqp6cdv2SOCfkhzQPu+AqjpvsgP3InGVJEnSzFBVf6YZ2zO+fT7tDE5tt8ovLu+xe5u4jlZEJUmSdLvpHpzVV70YnCVJkiRNpbcVV0mSJE2s5wsQTBsrrpIkSRoEK66SJEkD0/PpsKaNFVdJkiQNghVXSZKkgen5PK7TxoqrJEmSBsGKqyRJ0sA4j6skSZLUY1ZcJUmSBsZ5XCVJkqQes+IqSZI0MPZxlSRJknrMimsP3XVhug5hSqevuXbXIUxps1u7jmByv1l9ra5DmNKpa97SdQhTeuKNc7oOYUq/WaPfMV6xRv8rN3Nv6v86QUfteGjXIUxp//MP7zqEKX19h7d0HcIgOI+rJEmS1GNWXCVJkgZmkbMKSJIkSf1lxVWSJGlgZme91cRVkiRpcJwOS5IkSeoxK66SJEkDY8VVkiRJ6jErrpIkSQNTToclSZIk9ZcVV0mSpIGxj6skSZLUY1ZcJUmSBqasuEqSJEn9ZcVVkiRpYJxVYJZJslGSV3QdhyRJkpbNrE1cgY0AE1dJkjQ4i6hpvfXVbE5cjwC2SnJekvcmOSjJWUkWJHkbQJItklyS5Mgkv0xyVJI9kpyW5NIku7b7HZbkC0lOb9tf0ranPfaFSS5Isl+Hr1eSJGnQZnMf14OB7atqbpI9gX2BXYEAxyd5JPB/wH2BZwIvBM4CngvsDuwN/H/AU9vjPRDYDVgXODfJd4CHAnOBHYGNgbOSnFpVv78jXqAkSZqZ7OM6u+3Z3s4FzgG2AbZuH/tVVV1QVYuAi4DvV/PTcgGwxcgxjquqf1TVn4Af0iTBuwNfrqqFVXUV8CPgwXfEC5IkSZppZnPFdVSAd1XVJxZrTLYAbhppWjRyfxGLv3/jP/os10ehJAcCBwLsv9GuPGLdrad4hiRJmq363A91Os3miut1wPrt9knAC5OsB5Bk0yR3Xc7j7ZNk7ST/BDyaplvBj4H9ksxJsgnwSODMiZ5cVfOqapeq2sWkVZIkaUmztuJaVX9uB1ldCHwX+BJwehKA64HnAQuX45ALaLoIbAy8vaquTPINmn6u59NUYN9QVX9YhS9DkiTNQrN15axZm7gCVNVzxzV9cILdth/Z/4CR7StGHwMWVNXzxx2/gIPamyRJklbCrE5cJUmShmjRLJ1VwMR1Faiqw7qOQZIkaaYzcZUkSRoY+7hKkiRpEGZrV4HZPB2WJEmSBsSKqyRJ0sDM1q4CVlwlSZI0CFZcJUmSBsY+rpIkSVKPWXGVJEkaGPu4SpIkST1mxVWSJGlg7OMqSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqUdchdMLEtYd+t3r/y/9b3pKuQ5jStnVD1yFMas1b1uk6hCldtkb//zAuWKv/P4sb9PxtvPvC/r+Hl605p+sQprRez7/PAF/f4S1dhzClp1/w9q5DUI+ZuEqSJA3MIvu4SpIkSf1lxVWSJGlgynlcJUmSpP6y4ipJkjQw9nGVJEmSesyKqyRJ0sDM1j6uJq6SJEkDs2iWJq52FZAkSdIgWHGVJEkamHJwliRJktRfVlwlSZIGZrYOzrLiKkmSpEEwcZUkSRqYRdS03lZGkrsk+V6SS9uvd55k3w2S/DbJR5bl2CaukiRJWpUOBr5fVVsD32/vL83bgVOX9cAmrpIkSQNTVdN6W0n7AJ9rtz8HPHWinZI8CLgbcPKyHniVJ65JNkryinb7nkmOXdXnmOL8uyT50DQc96lJtlvVx5UkSZph7lZVv2+3/0CTnC4myWrA+4H/WJ4DT8esAhsBrwA+VlVXAvtOwzmWqqrmA/On4dBPBb4NXLysT0iyelXdOg2xSJKkWWy6V85KciBw4EjTvKqaN/L4/wB3n+Cph4zeqapKMlGwrwBOqKrfJlnmuKYjcT0C2CrJecClwLZVtX2SA2iSv3WBrYH3AWsC/wLcBDyxqv6SZCvgo8AmwA3AS6rqkolOlOSZwFuBhcC1VfXIJI8G/qOqnpxkE+BLwD2B04HHAw8C1gO+C/wEeBjwO2CfqvpHkpfQfKPWBC5r45sL7A08KsmbgWcAn27PMz/JxsD8qtqifZ1Pb88xJ8kTgQ8D2wNrAIdV1XEr/O5KkiRNszZJnTfJ43ss7bEkVyW5R1X9Psk9gKsn2O2hwCPaq/TrAWsmub6qJusPOy19XA8G/req5gIHjXtse5qk7sHAO4EbqmonmqTy+e0+84BXVdWDaMrHH5vkXIcCT6iqHWkSy/HeCvygqh4AHAtsPvLY1sBH28euoUlGAb5eVQ9uj/lz4EVV9VPgeOCgqppbVf87xXuwM7BvVT2K5pPHD6pqV+AxwHuTrDvF8yVJkpaq531cjwde0G6/AFiiYFdV+1fV5lW1BU2+9/mpkla44wdn/bCqrquqPwLXAt9q2y8AtkiyHk0F9Ji2YvsJ4B6THO804Mi2Sjpngsd3B74CUFUnAn8deexXVXVeu302sEW7vX2SHye5ANgfeMByvcLG96rqL+32nsDB7es5BVibxRNooCnJJ5mfZP451122AqeUJEnqhSOAxye5FNijvT82DulTK3PgO3rlrJtGtheN3F/UxrIacE1brZ1SVb0syUOAJwFnt6PTViSWhcCd2u0jgadW1fntZf9HL+X5t3J74r/2uMf+PrId4BlV9YvJghktyR+6xf6zczkMSZK0TFZ2rtXpVFV/Bh43Qft84MUTtB9Jk39NaToqrtcB66/IE6vqb8Cv2r6rpLHj0vZPslVV/ayqDgX+CGw2bpfTgGe1++4JLHUC3BHrA79PsgZNxXXM+Nd1BU1/WZh8ANpJwKvS9jxOstMyxCBJkqRxVnni2mbZpyW5EHjvChxif+BFSc4HLqKZC2xp3pvkgvZcPwXOH/f424A928efSTMlw3VTnP8twM9okt7RQWFfAQ5Kcm47gOx9wMuTnAtsPMnx3k4zKGtBkova+5IkSSus531cp036HNzKSrIWsLCqbk3yUODjy9oNoUtD6Cqw5S3LPnVFV7atG7oOYVI/zzpdhzCly9ZY1HUIU1qn+v+zuMGifse4Tu//4sDfBrBcznr9/3Vhg4X9/2Y//YJ+13fW2Pg+vfiF3mDd+0zrN/Nvf7+8F69zvDu6j+sdbXPgq+0ktzcDL+k4HkmSpJU23fO49tUgEtckh9Bc6h91TFW9c7LnVdWlgH1KJUmSZoBBJK5tgjppkipJkjRbVI9nFZhOg0hcJUmSdLvZ2lVgAN3dJUmSJCuukiRJgzOTZ4WajBVXSZIkDYIVV0mSpIGZrYOzrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQws7PeasVVkiRJA5HZ2kdiNklyYFXN6zqOyRjjqmGMK6/v8YExrip9j7Hv8YEx6o5nxXV2OLDrAJaBMa4axrjy+h4fGOOq0vcY+x4fGKPuYCaukiRJGgQTV0mSJA2CievsMIS+Pca4ahjjyut7fGCMq0rfY+x7fGCMuoM5OEuSJEmDYMVVkiRJg2DiKkmSpEEwcZUkSdIgmLjOcEl2T/Kv7fYmSbbsOqZRSeYkuWeSzcduXcc0KskOXceg6ZfkVUnu3HUck0mybpLV2u37Jdk7yRpdx7U0Se6c5IFdxzGZJKsl2aDrOIYmyd2SPLm93bXreJYmyZ2S3L/rOLRqmbjOYEneCrwReFPbtAbwxe4iWlySVwFXAd8DvtPevt1pUEv6WJIzk7wiyYZdBzNekrOTvLLPSVeS9yTZIMkaSb6f5I9Jntd1XOPcDTgryVeT7JUkXQc0gVOBtZNsCpwM/AtwZKcRjZPklPZ7fRfgHOCTSf6r67hGJflSG+O6wIXAxUkO6jquMX3/fUnyLOBM4JnAs4CfJdm326iWlOQpwHnAie39uUmO7zQorRImrjPb04C9gb8DVNWVwPqdRrS41wD3r6oHVNUO7a1XFZqqegSwP7AZcHb7T+/xHYc1aj/gnjRJ11eSPKGHSdeeVfU34MnAFcB9gd4kCgBV9WZga+DTwAHApUn+M8lWnQa2uFTVDcDTgY9V1TOBB3Qc03gbtt/rpwOfr6qHAHt0HNN427UxPhX4LrAlzYeAvuj778shwIOr6gVV9XxgV+AtHcc0kcNoYrsGoKrOo/lea+BMXGe2m6uZ76ygudTYcTzj/Qa4tusgplJVlwJvpqlePwr4UJJLkjy928igqi6rqkOA+wFfAj4D/DrJ29qqVx+s3n59EnBMVfXye97+rvyhvd0K3Bk4Nsl7Og3sdknyUJoPUt9p2+Z0GM9EVk9yD5pKXN+unoxZo+1i8VTg+Kq6hfZvZE/0/fdltaq6euT+n+lnLnHLBO9dn77PWkGrT72LBuyrST4BbJTkJcALgU91HBNJXt9uXg6ckuQ7wE1jj1dVby4ttn30/pXmn8j3gKdU1TlJ7gmcDny9y/hgsRifCHwNOArYHfgBMLe7yG7z7SSXAP8AXp5kE+DGjmNaTJLXAM8H/kTzO3JQVd3S9im9FHhDl/G1XkvT7ecbVXVRkvsAP+w2pCUcDpwE/KSqzmpjvLTjmMb7BE0l83zg1CT3Bv7WaUSL6/vvy4lJTgK+3N7fDzihw3iW5qIkzwXmJNkaeDXw045j0irgAgQzXHtZe08gwElV9b2OQxrre7s0VVWH32HBTCHJj2gSmWOr6h/jHvuXqvpCN5HdFsPZNJfCPg18rapuGnns61XVeVUYoK3+XltVC5OsA2xQVX/oOq4xSd4GfKaqfj3BY9tW1c87CGup2oR6vfaSslZSktWr6tau4xgzgN+Xp9N8OAb4cVV9o8t4JtK+b4fQ/P+D5gPVO6qqTx8CtAJMXGewJO+uqjdO1daVJM+sqmOmautSktdW1QfGtb2mqj7YUUiLSXKfqrp8XNuWVfWrrmIaL8kzgROr6rokbwZ2pvkHck7Hod1mKd0qrmsvI/dCki8BLwMWAmcBGwAfrKr3dhrYiLZbxTtoqoUnAg8EXldVfRoU+hrgs8B1NB9KdwIOrqqTOw2sNZDfl7sDDwEWAWf1KamGZrYa4H+q6jFdx6JVr4/9UrTqTDSI6J/v8CiW7k3L2Nal50/QdsAdHcQkjl3Gti69pf0nvDvNQJ1PAx/vOKbxzgH+CPyS5tL2H4ErkpyT5EGdRna7vg8qgv4PLAJ4YRvjnjT9mP8FOKLbkBbT69+XJC+mmVXgacC+wBlJXthtVIurqoXAoj7OBKOVZx/XGSjJy4FXAPdJsmDkofWB07qJ6nZJ/pmmP+amST408tAGNINiOpfkOcBzgS3HTaGyPvCXbqK6XZJtaEaUbzhukNgGwNrdRLVUC9uvTwLmVdV3kryjy4Am8D2a7iAnASTZE3gGTWXuYzTVpa6NDir6SNsHt2+XzJYYWNS/SS4YC+iJwBfa/sJ9CrLvvy8HATtV1Z8BkvwTTd/Rz3Qa1ZKuBy5I8j3amXUAqurV3YWkVcHEdWb6Ek1F5l3AwSPt11VV50kXcCUwn2aqrrNH2q8DXtdJREv6KfB7YGPg/SPt1wELJnzGHev+NFWtjYCnjLRfB7yki4Am8bt2kODjgXcnWYv+Xe3Zrapue9+q6uQk76uql7bx9kHfBxVB/wcWQTOt3ck0Fes3JVmf5pJ3X/T99+XPNH9nxlzXtvXN1+nB4FmtevZxnQXSrGxyWxWuqv6vw3Buk2SNPvUhHKIkD62q07uOYzLtIIm9gAuq6tJ2uqQd+tKnEKBNZL4PfKVt2o8mcdiLpg/fzl3FNpm+DSqCJQYWrQus36c+kO3AtrnA5VV1TVsx3LSq+vCBtPe/L0k+D+wAHEczvdQ+NB/mF0C/ZoXRzGTFdQZrVw75L5oJ6q8G7g38nP5MWn7OBJc6r6Wpxr5j7FJUF5L8pKp2T3Idi8/9F5qZDzpdJjLJG6rqPcBz224Ni+nT5bCquiHJ1TSjkC+l6Q7StymSngu8Ffgmzff7tLZtDs2cpJ1LcjfgP4F7VtU/J9kOeChNH8heaJOuVwCbAwfS/O25P/2a07WA7WiuWBwOrEuPutcM4Pflf9vbmOPar31a3IYkv2KCeVur6j4dhKNVyIrrDJbkfOCxNKMrd0ryGOB5VfWijkMDbhuBvJCmawPAs4F1aCaA372qnrK05852SZ5SVd9K8oKJHq+qz93RMS1NO/3ZLjSrpN2vnQP3mKp6eMehAbeNQP58Ve3fdSyTSfJdmj63h1TVjklWB86tqh06Du02SY6m6f7z/Kravk1kf1pVc7uN7HZJPk7TNeCxVbVtmuWST66qB3ccGtD/35ehaCvpY9amWaL2LlV1aEchaRWx4jqz3VJVf06yWpLVquqHST7QdVAj9hh3CfaCJOdU1c7pwdrcbUJzUVVt03Us41XVt9qvvUlQJ/E0mimHzoFm6eG2X2EvtJe0751kzaq6uet4JrFxVX01yZsAqurWJAunetIdbKuq2m/sKkBbPezTwCeAh7R/Y84FqKq/Jlmz66BG9Pr3JckuNPOj3puRHKL6t1z3+Ct2H0gz77WJ68CZuM5s1yRZDzgVOKq9/PT3KZ5zR5qTZNeqOhMgyYO5fQnLzvvttQnNL5Js3pd+wWOSfItJli+sqr3vwHCmcnNV1Vi3kPRv6WFoVnE7rZ1BYnQEcp/66/29rSKNvY+70b8lk29Ociduj3ErRlbF64lb2g+lYzFuQr8GZ/X99+UompkFLqBf79tikowWRVajqWKb88wAfhNntn1oRvS+jmZ98w1p+nT1xYuBz7TJdWhGSL+4/UP9rk4ju92daZYOPJPFE5quE8P3dXz+5THR0sOf7Dim8cb67a1Gz/rqjXg9cDywVZLTgE1o5tHsk7fSLDywWZKjgIfTr3mPAT4EfAO4a5J30ryHb+42pMX0/fflj1V1/NS7dW50NphbgV/Rk/7qWjn2cVXnxiaJrqq+VY9I8qiJ2qvqR3d0LEOWHi49PJEk61TVDV3HsTRtv9b707yPv+jjrBxtVXg3mhjPqKo/dRzSEtp5kB9HE+P3e7ikb29/X5I8DngOzSwct1XTq6pXU09lAKsKasWYuM5AE4yEX0zXI+LHtPMTPgPYgsX7SvWpKtxLSb5aVc9KcgETz3rQq/5mfZdkbHT+elW1eZIdgZdW1Ss6Dm0xSR7Gkr8vn+8soAkk2ZQl+z+e2l1ES2q7CtyNxWPsVXegvkryRWAb4CJu7ypQVdWr1bPGxkuMazu7qvqyEp5WkF0FZqCqWh8gydtpJtH/Ak1Csz9wjw5DG+84mj56Z9O/fnDAbf0IPwxsC6xJ0wf37z1I/l/Tfn1yp1EsgzQre70buCvNz2EvphQb5wPAE2guxVNV5yd5ZKcRjZPkC8BWwHncvrpSAb1JXJO8m2YO3MWSGpp+9r2Q5FU0XRquonkfQxNjLz7sDeD35cFVdf+ug1iaDGtVQa0AE9eZbe+q2nHk/sfbKbL6MqryXlW1V9dBTOEjNNN0HUPTuf/5wP06jQioqt+3X3+d5O7ArjT/fM/q02TvrfcAT+nb5djxquo34wbA923E/i7AdtXvy2RPpZnGqZcfRFuvoYmxj6s9Qf9/X36aZLuqurjrQJZiSKsKagWYuM5sf0+yP81qQEXTL6lPswr8NMkOVXVB14FMpqouSzKnqhYCn22n0XlT13EBJHkxzQeRH9BUZj6c5PCq6tO64Vf1+J/wmN+0l+EryRo0yU3fYr4QuDvNVZS+uhxYg55eQWn9hv7NxjCq778vuwHntRP830TPuidV1XHAcRnAqoJaMSauM9tzgQ+2t9HVgPpid+CAvv4BbN3QzvF4Xrtgwu/p17rhBwE7jVWP2oExPwX6lLjObyem/yb9HczxMprfk02B3wEnA6/sNKIlbQxc3M5wMfo+dj3DxagbaH5Xxg/c6c1KbjTJ9SlJvsPiMfZl6rO+/770/SrZmHOTvJKm28Dokue96our5WfiOoNV1RU0U2JNKMmbqqrLaaf+ucNzL6t/oenX+m8004ptRjOgrC/+THMJbMx1bVufbECT0Ow50lZAX/4R04587/XKWcBhXQewDI5vb332f+1tzfbWN73+fWm7J+0ObF1Vn23nwV2v67gm8AXgEpq+64fT/H73uZKtZeSsArPYRKMuO4hhiT+ATlcytSSvbzfnAjvQDHQrmg8qC6rqgG4iG6b2Z+8lLDli3+rMcmoXINi8qn7RdSxa9YayJG2Sc6tZ6nxBVT2w7QL046rarevYtHKsuM5unS7FOPoHkGYN9jWAL9JMWt6pCaaZWkwPujOMTZI/NnH+mOM6iGVSST4HvKaqrmnv3xl4f8+SwuOAHwP/Q88GZU0yvV3fRpuT5Ck0i2OsCWyZZC5weB+6M/R9tbkkb6iq9yT5MBPE2aPuFr1eknbE2BzH1yTZHvgDzUwNGjgT19mt63J7n/8A9nqaqap6W9cxLIcHjiWtcNva8Dt1GM9E1qmqN3YdxETGprcbiMNoZrg4BaCqzktyny4DGjG22tzTaQa5fbG9/xyaqbG6NnYZe36nUUyt70vSjpnXfkh+C033lfXoz4w6WgkmrrNbpxVXevwHsKp+3XUMy6K9xP0GlhyA8NjOglrSaknuXFV/BUhyF/r3t+fbSZ5YVSd0HchUktyVxb/XfZo4/5aqunbctGK9WM9+bLW7JO+vql1GHvpWks6Txar6Vvv1c13HMoW+L0kLQFV9qt38EdCXD09aBfr2z0N3rGM6Pn/v/wCOu0y7Jk13hj4sQDDmKOBomgrxy4AXAH/sNKIlvR84PckxNB+W9gXe2W1IS3gN8KYkN9NcYuzjZfi9ad7LewJX06xO9XOaDy19cVGS5wJzkmwNvJpmlos+WXd0OdAkWwK9+dCc5H7Af7Bkf+u+fBjdBDgW+BtNN69DgT06jWgCrsw4czk4awZr/wB+HLhbVW2f5IE0ixK8o+PQbtPnNbnHS1NG2gfYraoO7joeuH0Jw7EBCG3bWVX14K5jG5VkO2DsH+8P+jZ5eZLVaEYdb1lVhyfZHLhHVf2s49Bu0y4e8ljgf9pBJ48BnldVL+o4tNskWQc4hNtHxJ8EvKOqbuwuqsUl2QuYRzMtVmg+ALy0qk7qNLBW+33+fzQrCt7W37qqzu4sqBFLWUr1tr8/fZHkRG5fmXH0fXx/Z0FplTBxncGS/Ihmns9PVNVObduFVbV9t5EN29ho1a7jAEhyRlXtluQk4EPAlcCxVbVVx6GRZIOq+lvbNWAJVfWXOzqmpUnycZpL2o+tqm3bvnEn9+kDQJL5VbVLm9jsVFWLkpw/bnW8TiXZuarO6TqOqbTVuG3au5f0aaWvsQ+jXccxXpKXA6+guew+OiB0feC0qnpeJ4Ethf/rZi67Csxs61TVmeP6m93aVTBjBjZKenSt69VoZkHoTfUIeEeSDYF/Bz5MMwfk67oN6TZfounCcDaLf7/H1obvU7+zh1TVzu2qaGMDyPo2x+c1SdYDTgWOSnI1/VoJD+D9aZYgPhY4uqou7Dqg8ZI8f1zTjkmoqs93ElBr5APet5K8AvgGiy9A0PUHvS8B3wXeBYxecbquB7FNZBArM2r5WXGdwZJ8l2bi/GPaf8r7Ai+qqiFM/N8LST47cvdW4Argk1V1dTcRaTok+RnwMOCs9ndlE5qKay8q63Db4MV/0HyA2h/YEPhi35KGNnF9FrAfzQepo3vWPenDI3fXBh4HnFNV+3YUEgBpVhAsJh40W1XVpw96vZfkYuC+QJ9XZtQKMHGdwdppaObR/EP+K80v8PPaFbU0AwykH/P3q+pxU7V1Kcn+NInWzsDnaAaQvbmquh7AeJsk7x4/ZddEbX2RZAeaGS/2q6q+Va9vk2Qj4CtVNZSlTLUMktx7ovahzBijpevTmutaxarq8qrag2YU6DZVtbtJ6/JJcp8k30ryxyRXJzmuR/NSQjMLw5toJ9uuqgXAszuNqJVk7fby58ZJ7pzkLu1tC2DTjsNbTFUdRZNkvQv4PfDUPiWtrcdP0NarqydJtk1yWJoFPD5MM6PAvToOayp/B7bsOogxSV7ZJtNj9+/cdh3Q8rlugtuVnUakVcI+rjNYktfQrEh1HfDJJDsDB1fVyd1GNihfAj5Ks1gCNEnhl4GHdBbR4nrZj7n1UuC1NNM3nc3tl0D/Bnyko5iWqqouoVnbvFdGB8UkWTDy0PrAad1EtVSfoZme7QlV1cskIYuvoDUH2Bb4ancRLeElVfXRsTttf+uXAB/rMKYhOgfYjOZqY4CNgD8kuYrmPe7FLA1afiauM9sLq+qDSZ4A/BPwL8AXABPXZbdOVX1h5P4XkxzUWTRL+lOSrWj/Ebf9mH/fbUiNqvog8MEkr6qqD0/5BC3NYAbFVNVDu45hGbxvZPtW4NdV9duugpnAnCSpth9fkjk0c0hr+XyPZoaVkwCS7Ekzr+tnaT4E9KX4oOVkV4GZbazC9UTg81V1ERN3/NfSfTfJwUm2SHLvJG8AThi77N11cMArgU8A2yT5HU2F8+WdRrSkP6RdyjfJm5N8va3+axlU1bVVdUVVPQf4LU23kALWa+eb7VySr7ZfL0iyYOR2wbgqcefaFbQuoalY3xm4uduIlnAicHSSxyV5HM0VnhM7jmmIdhudm7e90vjQqjoDWKu7sLSyHJw1g7Uj4jel6b+1I81lsVP6OEdgX7UjfZemNyN92xHnq1XVdV3HMt7Y5ORJdgfeAbwXOLSqrHgshyT/BhwGXMXty6j2YpR0kntU1e+HMCAmybNofgZPofkg/wjgoKo6tsu4xqRZDOOlNLMdQFM5/FRVLVz6szRekpOB7wNfaZv2o+knvhft7CFdxaaVY+I6g7V/AOcCl1fVNUn+Cdi0HcCjGSDJfwLvqapr2vt3Bv69qt7caWAjxhZsSPIu4IKq+lJ6tIjDUCS5jGa+2T93HcuQtQs4PH5sSrt26rP/6dlCDncCNq+qX3Qdy1Al2Rh4K7B723Qa8Daa1bQ2r6rLuopNK8fEdYZrE5mtaeYrBKCqTu0uomFJsgbNpfdHtk2n0KxEdktnQY2YKAHMBEsydinJt4Hf0VQ7dqaZi/TMPiUKQ5DkhzQJV18G391mYIuKXFBVO4zcXw04f7StS0n2pqkIr1lVWyaZCxxeVXt3G5nUDw7OmsGSvBh4Dc10NOcBuwGnc/ua8Zrax4E1uH1E77+0bS/uLKLFzUmy1tiSlW2lpm/9t55Fc3nufW3l/x40SxFr+VwOnJLkOyy+otJ/dRfSbTGs33UMy+HENEskf7m9vx9wQofxjPdWYFeaD8lU1XlJejNdV98l+UBVvXbc7BG38QPA8Jm4zmyvAR4MnFFVj0myDfCfHcc0NA8eVxn8QXupsS+OAr6f21f4+leaCfT7ZGNgPsDIYKLeTTs1AP/X3tbEUeYrrKoOSvIM4OFt07yq+kaXMY1zS1VdO26KOy+NLruxWWDeN+leGiwT15ntxqq6MQltVe6SJPfvOqiBWZhkq6r6X7htNbLeDJKoqne3o7bHBnK8fXQkbU98h9uXslybZrDgL4AHdBnU0FTV2wCSrFNVN3Qdz5BV1deAr3Udx1JclOS5NFdTtgZeTbOQg5bB2Pys7ewRwG1d5jZzfMfMYOI6s/22XYHlm8D3kvwV6M3o3oE4CPhhksvb+1vQVDV7o6q+SzPPZy+N7zvYToXlSkDLKclDgU8D6wGbJ9kReGlV+V4ugwH1w30VcAhNd5AvASfRzMah5ZDkFGBvmjznbODqJKdV1es7DUwrzcFZs0SSRwEbAidWVd/mLeytJGsD/05T0bwGOAv476q6scu4xiR5OvBu4K40/4D79k94QuMHyGhqSX4G7AscPzYgL8mFVbV9t5FpOlhZXzkjs5m8mKba+taxqfm6jk0rx4rrDNfOnbl1VX22nfZlU2CyuUm1uM/TLFH69vb+c2n6UD2zs4gW9x7gKVX1864DWZokoxWO1WhmFujlcqB9V1W/Gdf3sTfdVrRqJHkY8CmsrK+s1duBoM+iqWBrhjBxncGSvBXYBbg/zTJ3awBf5PZBCZra9lW13cj9Hya5uLNolnRVn5PW1uiI81tp+rz2tX9hn/2mTWqqnabtNUDfv/dafv8NPAE4HqCqzk/yyMmfogkcTtPN4idVdVY7PuHSjmPSKmDiOrM9DdgJOAegqq4cW3pTy+ycJLu1ywSS5CG0I+R7Yn6So2n6MY9OkfT1ziIaZ2RQ0Xrt/eu7jWiwXgZ8kOaqye+Ak2mW/NUMY2V95VXVMcAxI/cvB54xdj/Jm6rqXV3EppVj4jqz3VxVlaTgtmVBtXweBPw0yf+19zcHfpHkAvqx3OYGwA3AniNtBfQmcU2yPU33iru09/8EvKCqLuw0sIGpqj8B+3cdh6adlfU7xjMBE9cBMnGd2b6a5BPARkleArwQ+GTHMQ3NXl0HMJmq6tUMB0sxD3h9Vf0QIMmj27aHdRjT4LST0L+KZmaL2/52O6H6jDNaWb+S5nK3lfVVL1Pvoj5yVoEZLsnjaapxAU6qqu91HJJWoXbWgxfRzIk6uqzvCzsLapwk549f3nWiNk2uXfji08AFwKKx9tH5KiUtm74tja1lZ8V1hmsTVZPVmesLNKtQPYFmMML+9O+y4uVJ3sLtK9o8j2b5Ui2fG6vqQ10HoenVDiL6IM0S3UWzTPfr2j6aWnWsuA6UFdcZaEATbWsljcxVuKCqHtj2iftxVe3WdWxj2lVr3gbsTvNz+WPgbVX1104DG5h2NaWtaQZljQ7EO6ezoLTKJTkD+Cjw5bbp2cCrquoh3UU18yT5/6rKJdAHyMRVGrAkZ1bVrklOpVmN6g/AmVV1n45D0yqW5F3AvwD/y+1dBaqqHttdVFrVJpok3641yy/J/YCPA3erqu2TPBDYu6pchWzgVus6AE2vJLsn+dd2e+N2gIdmjnltRfPNNPM+XkyzklZvJPleu/Tw2P07Jzmpw5CG6pnAfarqUVX1mPZm0jrzfDfJwUm2SHLvJG8ATkhylyR36Tq4Afkk8CbgFoCqWkBTvdbA2cd1BptgAYI1cQGCGWHcalRjMwt8tP3at2nPNq6qa8buVNVfk9y1w3iG6kJgI+DqjuPQ9HpW+/Wl3N7lKzRJVwFeTVk261TVmePmw721q2C06pi4zmwuQDBzjX0f7w88mHaVHeApwJmdRLR0i5JsXlX/B5BkCybug63JbQRckuQsFu/j6nRYM8sbgROr6m/toMadgbfbl3m5/SnJVrR/a5LsC/y+25C0Kpi4zmwuQDBDjaxGdSqwc1Vd194/jGZJ1T45BPhJkh/RVI4eARzYbUiD9NauA9Ad4s1V9dUkuwOPBd5H01fTwVnL55U080Vvk+R3wK9oZjTRwJm4zlBpro982wUIZry7ATeP3L+5beuNqjoxyS40yeq5NMvT/qPToAbI+VpnjbHlXZ8EfLKqvpPEAUXLqZ0+bI+2YLPa2Id7DZ+J6wzVVlqfCbwe+BvNJeVDXYBgxvk8cGaSb7T3nwoc2Vk0E0jyYpplK+8FnEczP+XpNNUkLaNx09ytCawB/N3p7Wac37UFh8cD706yFg6kXm7tgNDn0640N9bXtape3V1UWhWcDmsGS/I54CNVdVbXsWj6JNmZ5vI7wKlVdW6X8YyX5AKafrhnVNXcJNsA/1lVT+84tMFqr6jsA+xWVQd3HY9WnSTr0Cw1fUFVXZrkHsAOVXVyx6ENSpKfAmew5Epzn+ssKK0SJq4zWJJLgPsCvwb+PtY+fo5AaTolOauqHpzkPOAhVXVTkouq6gFdxzZ0YwtQdB2H1Dcu6Tpz2VVgZntC1wFIwG/by3bfBL6X5K80H6a0HJKMVqhXo5nq7saOwpH67gvt2I5vs/gsHH/pLiStClZcJd1hkjwK2JBmup+bp9pft0vy2ZG7twJX0AzecV5XaZwkrwTeCVzD7X3Dy1UFh8/EVZJ6Lskc4NVV9d9dxyINQZLLgV2r6k9dx6JVy5GKktRzVbUQeE7XcUgDchlwQ9dBaNWzj6skDcNpST4CHM3igy1dUUla0t+B85L8kMX7uDod1sDZVUCSBqD9BzxeVZXz4UrjJHnBRO1OhzV8Jq6SNABJ7tOuBjRpmyTNZCaukjQAE81LmeTsqnpQVzFJfZPkq1X1rHbhk/EJTlXVjl3EpVXHPq6S1GPtSmMPADYcN5frBsDa3UQl9dZr2q8/Bw4aaQ/wnjs+HK1qJq6S1G/3B54MbAQ8ZaT9OuAlXQQk9VVV/b7dvG9VLbbQSfshUANnVwFJGoAkD62q07uOQ+qzJC8HXgHcB/jfkYfWB06rqud1EphWGRNXSRqAJO8B3gH8AzgReCDwuqr6YqeBST2SZEPgzsC7gINHHrrO5V5nBhNXSRqAJOdV1dwkT6PpOvB64FQHm0iaTVw5S5KGYY3265OAY6rq2i6DkaQuODhLkobhW0kuoekq8PIkmwA3dhyTJN2h7CogSQOR5C7AtVW1MMk6wAZV9Yeu45KkO4oVV0kajm2ALZKM/u3+fFfBSNIdzcRVkgYgyReArYDzgIVtc2HiKmkWsauAJA1Akp8D25V/tCXNYs4qIEnDcCFw966DkKQu2VVAkoZhY+DiJGcCN401VtXe3YUkSXcsE1dJGobDug5AkrpmH1dJkiQNghVXSeqxJD+pqt2TXEczi8BtDwFVVRt0FJok3eGsuEqSJGkQnFVAkiRJg2DiKkmSpEEwcZUkSdIgmLhKkiRpEExcJUmSNAj/Px/6v9Jq3TQTAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "corrmat = df.corr()\n", + "f, ax = plt.subplots(figsize=(12, 9))\n", + "sns.heatmap(corrmat, vmax=.8, square=True);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGkCAYAAAB+TFE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dWH39m+q9Xuqvde3eTeG7bBdAwm9A6BBEJJvtASSggJCYQk1IQSCBBIqKaYjgvuvTfZktV71/Y+8/2x0tpCkrst28z7PPvM7MydmbNl7m/uveeeI0iSJCEjIyMjIzPAKAbaABkZGRkZGZAFSUZGRkbmJEEWJBkZGRmZkwJZkGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMC1UAbICNzuIiSiD8YwBf04Q368AX9+AKhZfd7b8CHL9j98qNRqjFpIzHrIkmOTMCkjUQQhIH+KDIyMvshC5LMgODyuWlyttLhttLpsdLhtuL0uXAHvLgDHjx+D+6AF4/fgyfg3U9sQgJztBg1EeREZzAsoZCihEFkWFJkgZKRGWAEOVKDzPGm1dXO7pa9lLZVUmtroNbWQIfb2qucVqVFr9KiV+nQqbXoVDr0Ki06lRaNSoNWqUGjVKNVadB0rytD6z22qfbbp9KgUajxBX3YvA7a3Vbq7Y3UWBvY3bqXOlsjAKmmJM7ImsD0zAmYdaYT/RXJyMggC5LMccDld7O1cReb6newq6WUFmcbEBKc1MhEUsyJpJqSSDTGEa23YNGbsehMaJTqE25ru6uTjfXbWVq5hpK2ctRKNWflTGVO4Wyi9OYTbo+MzI8ZWZBkjgl2r4PVNZtYX7eVHc17CIpBIjURDI7PZ1BcLoWxuWRaUlEoTl4/mlpbA/OLF7Csai1KhZI5hbO5uHA2GpVmoE2TkflRIAuSzBHjC/rZVL+dZZVr2dywg6AkkmSMZ0xKEWNThpMfk31SC1B/NDpaeG/7fFZVbyAhIpZbRl/FiKTBA22WjMxpjyxIMoeFJEkUt+xledU6VtdsxOV3E6UzMyVjLFMzxp9WzgE7mnbz+sb3qbM3MjtnGteNuBSt3FqSkTluyIIkc0jYvA6WVqxhYflyGuzNaFVaxqeOYFrGeIbGF5ySLaFDwR/08972+Xy+ZyHJkQn8cuJPyYxKHWizZGROS2RBkukXSZLY3bqXBWUrWFOziYAYoCA2h7NypjIudQQ6lXagTTxh7GjazQtr38Tpc/GzMdcyNXPcQJskI3PaIQuSTC9EUWRt3WY+Lf6Wio4aDGo90zLGc2bOFNItKQNt3oDR6bHxzKrXKG4p5by8GVw74lJUCuVAmyUjc9ogC5JMmIAYZFnlGj7b/R0N9maSjPFcWHgWUzLG/qhaQwciIAZ5Z+vHfFWymEFxufxq0q1Y5HlLMjLHBFmQZJAkic0NO3h7y8fU2RvJikrjkkHnMC5lxGk7NnS0rKhax8vr3yFSY+S+KT8jOzpjoE2SkTnlkQXpR06rs51XN/yXLY27SIqM57rhcxmdXHTaeModTyo6anh6xctYvXZuH3stUzLkcSUZmaNBFqQfKZIk8X3FKt7a/BEiElcOvZCzc6ejUsrhDQ8Hq8fG31f9i+KWvVxUeBZXD7tYblXKyBwhsiD9CPEEvLy07m1W12xkSHw+t4+9jnhj7ECbdcoSCAZ4c/OHfFe2jBGJg7l74s0YNREDbZaMzCmHLEg/MhrtzTy98hVqbQ1cNWwOFxWehUKQn+iPBQvLlvP6pveJM0Rz/5TbSTUnDbRJMjKnFLIg/YjY21bJn5a9CMAvJ95CUeKgAbbo9GN3y17+tvJVfEE/d064kbEpwwfaJBmZUwZZkH4k7GjazV9WvIxJa+ThM+4h0Rg30CadtrS62vnrilco76jmnLwzuHb43AGJZC4jc6ohC9KPgE31O/jbyldIjIznoel3Ea23DLRJpz2+oJ//bfuUr0oWk25O4c7xN5AZlTbQZsnInNTIgnSas6u5hCeWvUiqKZFHpt+DUSsPtp9INjfs4J/r3sbudXBR4Vn8ZPB5cjoLGZl+kAXpNKasvYrHv3+WaIOF38/8NSatcaBN+lHi8Dp5e+vHfF+xiviIGK4ZfgkTUkfJc71kZH6ALEinKY2OFh5a+Bd0Ki1/mHkv0QbLQJv0o2dH0x7e3Pwh1dY68mOyuXLYhQyJL5CFSUamC1mQTkOcPhcPL3waq9fOE2feT1Jk/ECbJNOFKIosqVzD+9vn0+GxkhudycWDzmZ08jCUcqBWmR85siCdZgTEIE8u+wc7W0p4ZPrdDI7PH2iTZPrAF/SzpGI183d/R7OzjWi9hZnZk5iZNZnYiOiBNk9GZkCQBek049+b3ueb0iXcPvY6ZmRPGmhzZA5CUAyysX47i8pXsKVhFwgwInEw0zLHMzZ5uOwAIfOjQhak04hllWt5ce2bnJ8/ixtG/mSgzZE5TFqcbSwqX8nSyjW0uTrQq3VMSB3F9MzxFMblyhE1ZE57ZEE6TajsqOXhRX8hNzqTR864Rx6POIURJZHilr0srVzDmppNeAJe4gzRTM0cx7SM8SSbEgfaRBmZ44IsSKcBDp+T33z3JD7Rz1OzfysnjDuN8AZ8rK/bwrLKtWxtKkaSJPKiM5maOZ7J6WOIlF35ZU4jZEE6xRElkaeWv8S2pmJ+P+P/yI/NHmiTZI4THW4rK6rWs6xyDVXWOtQKFVMzxnF+wSzSzMkDbZ6MzFEjC9Ipzkc7v+SDHV9w86grOCfvjIE2R+YEUdlRy4KyZSytXIMv6Gd44mAuLDiTYQmF8rwmmVMWWZBOYbY07OTPy/7BlIyx3Dn+Rrki+hFi9zpYULacb0qX0OmxURibw2VDL2CoPOFW5hREFqRTlGZnGw989ydi9VH88cz70cruwT9q/EE/i8tX8UnxN7S7OxkUl8tlQy5gaELBQJsmI3PIyIJ0CuIL+nl00V9pdLTw5FkPkihHYpDpwhf0s7h8JZ8Uf0OH28qQ+HyuGHoRhXE5A22ajMxBkQXpFOTl9e+wuHwl90/5OWPkBHAyfeAL+llYtpxPir/F6rExMmkIVwy9iOzo9IE2TUamX2RBOsVYXL6Kl9e/zSWDzuGqojkDbY7MSY4n4OWb0iV8tvs7nD4X41NHcsXQC+X06jInJbIgnUKUt1fxyKK/UhiXy0PT7kKhkGfuyxwaLp+bL0oW8sWeRXiDPqZmjOOyIeeTIGcOljmJkAXpFKHd1clvFj6JUlDy5OzfyLmNZI4Im9fBZ8Xf8s3epYhikJnZk7l08HlyehKZkwJZkE4BPAEvv1v8Nxrszfxx1n2kW1IG2iSZU5x2dycf7/qaReUrUQgKzs6ZxsWDzsakixxo02R+xMiCdJIjiiJ/X/0v1tdt5YEptzMqedhAmyRzGtHsaOWjnV+xtGoNWqWGM7OncF7BTGINcgoMmROPLEgnMZIk8eqG/7GofAU3jryM8/JnDrRJMqcpdbZG5u38ilU1GxGAieljuLDgTLKi0gbaNJkfEbIgnaRIksQ7Wz/m8z0LmTv4HK4cdnw86oJBkU6Hlzarh3abhw6bB5vLh9sTwOUN4PYG8PqCiKLUZReIXX8ZhSCgUSvQqJVdLwUaVWhd27Vdq1ai1SjD65qu99of7NOolSgVB48sIIoSgaCIPyASCIrh9e6XLxDE7xfx+oP4A0F8fhGfP4gvIPZ+7w92lQsd173PH+h5vD8QRBQP7ftUKEClVIReqtBSHV4Xwvu6P7tOq0Kn6VrXdK+r0He912qV6DUqIvRqjHo1Wo3yuEZgaHW281XJYhaWr8AT8DIsoYBz8mYwKmmoHEFe5rgjC9JJiCRJfLDjC+bt+oqzc6dz86grjroS8ngDVDbYqGiwUd/ioLbZQX2Lg8Z2V1hs9ketUqDXqtBrVWg1ShSCgCCA0L0ERJEeFXf3eiB4ZH8phUIgpEn7rkHX9QACAZFgH7YeLoIAalVINNUq5T5RVSm6titRh8U1tO1QxBJCYr2/WAYCUg/h3CegQTy+rpc3cMifS6UUwuJk1GuIMITWTREaok06oiK1RJl0REXqiDJpMUVoD9n2/XH6XCwsW8HXpd/T7u4kRh/FrJzJzMyeTLTectjnk5E5FGRBOskQJZE3N33IN3uXMDNrEreNveawE7OJokRVo40dZW2UVHdQVtdJXbOD7jpPo1aSEhdBcpyR5NgI4qIMxJh0oQqtqxJTq47cpTwoSqFWiD+I1xdqhXi71n1d6/vv6173B8Ww/RBqjUmEBBpCItnd2lB3tz66liqlIiwePxQUjSr0XqtWolYpUSmFky7Omz8g4vUF8PiC4VapZ7/3Trcfh9uPw+XD4fbve+/243T5sTq9uDyBXudVKASiIrXERxlIiDGQEG0gMTqChBgDybERRJt0B/wuujPaLihbxtbGYhSCgjEpRczMmszwxEFyq0nmmCIL0kmEL+jn5XVvs6J6PRcWnMm1w+ceUsUZFCUq6q3sKGtjR1kruyrasLv8AMSYdeSkWMhJNZOTYiYr2UysRY/iCJ6aZU5uPL4AnXYvHTYvHfZQ92uH3Uur1U1Tu4umdhdtnW72b4xF6NWkJ0SS1vVKT4wkPSGSGHNvoWq0N7OwfAXfl6/C7nNi1pmYkj6WaZnjybSknnQiL3PqIQvSSUKzs42/r3yV8o5qri66mDmFs/u9wYNBkbI6KzvKWtle1kZxRRvOrqfjpJgIhubEhF7ZscRHG07kx5A5yfEHRFo6XTS1uahvcVDVZKemyU51ox2b0xcuF6FTkZNqITvFTE6qhdxUM8mxRhQKgUAwwObGnSytXMPG+u0ExSBp5mSmZ45ncvpYYgxRA/gJZU5lZEE6CVhft5WX1r2NKIncOf6GXvHp/AGRvTWd7ChvZUdZG8WVbbi9QQBS4oxdAhTLsJwYYsz6gfgIB0QK+Am6bIg+N5Lfi+j3IPm6lx5EvxcpGABJBFFE+sESQFAoQaEILZXK0FJQIigUoFCiUGsR1FoUGl1o2fU+tK5DUGtCx8j0i9XhpbpLnCobbJTVdlLZYMMfCP0Geq2SrOSQQOWkmMlNtWA2w7r6zSyrXEdJWzkAeTFZjE8dyfjUEXIkCJnDQhakAaTd1cm/N7/PutotZFhS+fWkW0mMjMfl8bO7qoNdFW3sKm9nT3UHPn9IgNITIxmaHRKgodkxRJl0A2K7JEmIHicBa0voZWshYG0l6LKFxMdlI+gOrUs+z1FcqbuVeAycGdRaFFoDCl0ECm0ECp0h/F7Zva17v26/dW2onKDW/ui6pQJBkZomO2W1VspqOymrs1Jeb8XrC/0fNSoFWclmslPNxMYo6FRUU+raRpW1GoBMSyrjUkcwPHEwOVEZcrgrmQMiC9IAYPPY+aJkEd+ULiEgipybcS7p6qGUVHWys6KNijorogQKAbJTzAzOimFIduhlNmpPiI2SJCG6bPg7m7vEpuvV9d5vbUXyunocI6g0KCPMKPQmlIZIlAYTCoMJpcGEUh+JQqtHUOtCrReNLtRy0YRaMChVCIIi1ArqWiIowgIQai0FkcTuZTDUihKDSMEAUsC3r7Xl94aXkt+D6PeFlj43oseF6HEieruXToIeJ6LHBWJvp4AeKJQotPougdonVGFh2/8VFrKe5QXNgZ0ITgWCokRds53yOitldVb21nZSXmcNO1WolAIp8Qb0Ji92ZR2tVCAYbBh1OoYlFDI8YRDDEgcRZ4g+5b8LmWOLLEgnCEmS2NNcwVc717G2pByf3UBkMAWvw4DLHbqRNWolhRlRDM6KYXBWNAUZURh06uNjjxgkaG8nYGsjYG3Bb23eJzrWZgLWVqSAr8cxgtaA2hyHyhyHyhzftYwLb1MYTKdsBSNJElLAFxIs736C1f3yunq++trmdYe6HQ+EoAh1K2r0IbHqWu57b0Ch0XWJlx6FVhfa1lVW2P8Y9ckjbqIo0dju7NGSKqvtDDvXAOgjgohaG0FNJ4LegckE+alxDE7KJD8mi+zoDHSqE/PAJXNyIgvSMUSSJJxuP21WD21WD9XNneysqaOisZO2Dh8Bt5buLiiVUiAzOeT51t0nn51iRqU8ui4NSZKQfO5Q15nTSsDRTtDWRsDW2vUKrQcdnb0qT4XBhMoUh9oSFxab/YVHqYs4KttOd0LfvacPofqhgLlD42k+d3hd9LoQfZ7wtoMKGwBCl0CFBEyhCa0L3evdIvYD8eu9zYCg0YZapsf4+2jpdFNWa6Wy3kpNs4OaJju1zfaec9VUXgStG4XWQ0SERKxFR3KMiYz4WLLj48mMjSc2wiJ39/0IkAWJru4pKfSUFwyK4TkzP1x6fAEcbj82p5dOhwery4PN6cXqCLna2hwBAj/s9VEEUOjcWCwK8pJjGZOVQ0F6LGkJkaiUitAcGzGIFPQjBQKhZdDf1Q3lD73CFZerRwUmda13j9sEnVZElw0p6O/1GQWVBpUpBqUpFpUpBlVk19IUGxYchWZgxqNkehJurXldXb+9p8dvL4X/A/uWkq/7/+HpKhMSONHrOkRxIyRS+7XKBK0ehUoTcghR7XspfvBeUGtQqLTh9X371AgKJYJSCQpV17qKIAKtNj+1rW5qW11UNlmpbu6gpcONwyEhin20+pR+VJoAWp2EwaAkQq/AoFMTodNg1GswGbSY9AZMBi1GvQa9Roteo+5aatCp1aE5a11z2eRpDycnp6QgBQIBGhsbD1jG6vDywgdbcHr8BEWJYFBCEiWCkoQohl5BUULsen+4CIjoFD50gh+d4MOocBOpcGNUeDEpvZiVXqJUoaU6/OQpgtQ10VOSIBgAMcgRDdgLyq6nYy1KnRFBF4nSYAyN1eiMoTEcfSQKgxlVZBSCNuKk6d6ROXFIkgRBf2hczedG9HlDLTG/p2tczbOvZeb3dnk/uhG9XiS/e99DUdCHFPAjBvwQ8IMUPIZWCiAoQBnynHQKejoDeqyiDoeowhnU4BA1OEUNrqAGp6TBJWrwSWpEjrDVJIihCCDCfvde13r39q6gISgEAZPOiFJQ7BetZN+91L3avWV4fhxzz8g9qAmJiYmoVKojs/805ZQUpNraWmbNmjXQZsjIyMgcMYsWLSI1NXWgzTipOCUF6VBaSEdKY2Mj11xzDf/9739JTEw8Ltc4Xsi2Dwyy7QPDqWw7yC2kvjglvw2VSnXcnywSExNP2acX2faBQbZ9YDiVbZfpiey2IiMjIyNzUiALkoyMjIzMSYEsSDIyMjIyJwWyIP0Ak8nEnXfeiclkGmhTDhvZ9oFBtn1gOJVtl+mbU9LLTkZGRkbm9ENuIcnIyMjInBTIgiQjIyMjc1JwSgpSIBCgtraWQK/AcTIyMjKnDz+2uu6UFKTGxkZmzZp13KI1yMjIyJwM/NjquuMuSA6HgwsuuIDa2tpe+xYuXMicOXO46KKLuOOOO7BarcfbHBkZGRmZk5TjKkhbt27lqquuorKystc+h8PBY489xquvvsr8+fMpKCjghRdeOJ7myMjIyMicxBzXWHYffPABv/vd77j//vt77fP7/Tz22GMkJCQAUFBQwOeff96rnM1mw2az9dj2Y2m+ysjI/HiQ67rjLEhPPPFEv/uioqI488wzAfB4PLz66qtcd911vcq99dZbvPjii8fNRhkZGZmTAbmuOwmifdvtdu644w4KCwu55JJLeu2/4YYbem3vDjsvI/Njw+/3U1tbi8fjGWhTZA4BnU5HamoqarX6oGXlum6ABam5uZlbbrmFCRMm8Nvf/rbPMiaTSQ4NIiPTRW1tLZGRkWRmZsoZgE9yJEmira2N2tpasrKyDlperusG0O07GAzy85//nHPPPZeHHnpIvrlkZA4Bj8dDTEyMfL+cAgiCQExMjNyaPQxOeAvp1ltv5e6776axsZFdu3YRDAb59ttvARg6dOgBx51kZGSQxegUQv6tDo8TIkiLFy8Or//rX/8CYNiwYezevftEXF5GRkZG5hTglIzUICMjc+zYtm0bjz76KADbt2/n7rvvPuTyx6KcjEw3siDJyPzI2bt3L01NTUCo5+L5558/5PLHopyMTDcD7vYtIyNzfBBFkT/96U9s3boVp9OJJEn88Y9/5MMPP6Szs5OamhqGDx/OqlWrsNvt/OY3v+Hiiy/mD3/4A1988QUbNmzgySefRBRFAH72s59RVFTE888/Hy7/5z//uc9rNzQ09Cr3/vvv8/bbb6NQKIiNjeWRRx4hKyuLBx98EEEQKCsro729ncmTJ/Pwww8f0FU6GAzyl7/8hcWLFxMZGUlRURFlZWW8/fbb2O12nnjiCUpKSvD7/UycOJH7778flUrFsGHDuO2221i5ciXNzc1cf/313HjjjXz88cd89NFHuN1ujEYjb7/9Nh9++CHvvvsuoihisVh45JFHyMnJOS6/lUwX0ilITU2NlJ+fL9XU1Ay0KTIyJ5Rdu3YdctlNmzZJd911lxQMBiVJkqRXXnlF+tnPfiY98MAD0g033BAuN2/ePOm2226TJEmS1qxZI51//vmSJEnS9ddfL33xxReSJElScXGx9Nhjj/UqfyD2L7dq1SrpzDPPlNra2sL7zj33XEkURemBBx6QLr74YsnhcEher1e65pprpLfffvuA53733Xela665RvJ4PJLX65Vuvvlm6dprr5UkSZIefPBB6T//+Y8kSZIUCASke++9V3r11VclSZKk/Pz88Lm3b98uDR06VPJ4PNK8efOksWPHSna7XZIkSVq7dq109dVXSy6XS5IkSVq+fLl07rnnHvQz98Xh/GY/5MdW18ktJBmZ05SRI0diNpt57733qKmpYe3atURERGCxWBg9evRBjz/33HN5/PHHWbx4MZMmTeL//u//jtiW5cuXc9555xEdHQ3A3LlzeeKJJ8JBly+55BIiIiIAmDNnDosWLeLaa6/t93xLly5lzpw5aLVaAK644grefvttAJYsWcL27dv56KOPAHq5Xc+aNQuAIUOG4PP5cLlcQCh8mdFoDJ+jqqqKK6+8Mnyc1Wqls7MTi8VyxN+DzIGRBUlG5jRlyZIlPPHEE9x0003MmjWL7Oxs5s+fD4DBYDjo8VdeeSUzZsxg5cqVLF++nBdffDF8/OEiSVKf27rz/CiVyh7bFYoDD2+rVD2rrv3Li6LIc889F+5es9lsPdyvu0Wse1u3bft/J6IoMmfOHO67777w++bmZsxm80E+qczRIDs1yMicpqxcuZIZM2Zw9dVXM2zYMBYuXEgwGOxVTqlU9pkA7sorr6S4uJi5c+fyhz/8AZvNhtVq7bf8gc47ZcoUvvrqK9rb2wGYN28eFouFjIwMAL7++mt8Ph9er5dPPvmEGTNmHPDc06dPZ/78+fh8PgKBAJ988kl435QpU3jzzTeRJAmfz8ftt9/OO++8c1B792fy5Ml8+eWXNDc3A/Duu+9yww03HNY5ZA4fWZBkZE5TrrzyStavX8+FF17IFVdcQVpaGrW1tWEnhW5GjhxJeXk5v/jFL3psv/fee3n++ee5+OKLuf7667nzzjtJTU3tt/wP2b/c5MmTufHGG7nhhhs4//zz+fTTT3nllVfCLRudTsfVV1/NhRdeyJgxY7j00ksPeO65c+dSVFTExRdfzJVXXolarUav1wPw0EMP4XK5uPDCC7nwwgvJz8/npz/96WF9d1OnTuXWW2/l5ptv5sILL+SLL77gxRdflCe6HmcEqa+29ElObW0ts2bNYtGiRaSmpg60OTIyJ4zi4mIGDRo00GYcUx588EHy8vK45ZZbDvmYFStW0NbWxpw5cwD44x//iFarDXexnUwczW/2Y6vr5DEkGRmZI6K8vJxf/epXfe7Lysri2WefParzX3311Tidzj73/fOf/+T111/n9ddfJxgMUlhYyGOPPXZU15MZeGRBkpGROSKys7P57LPPjvo8Tz75ZJ/b//e//x3wuDfeeOOory1zciGPIcnIyMjInBTIgiQjIyMjc1IgC5KMjIyMzEmBLEgyMjIyMicFsiDJyMjIyJwUyIIkIyNzTHn++eeZNWuW7AUnc9jIbt8yMjLHlM8++4zXXnuNrKysgTZF5hRDFiQZmVOUxRuqWbCu+ric+6xx6cwck37AMoFAgMcee4zS0lJaW1vJysoiOTmZpqYmfvGLX/C3v/2Nm266iSFDhtDa2spHH33E66+/zvz581EqlUyePJn77ruPhoYGbr/9dtLS0qiqqiI5OZmnn34ai8XC999/z7PPPosoiqSlpfH4448TGxvLzJkzmTlzJhs2bADgT3/6E4MHDz4u34XMiUPuspORkTkiNm/ejFqt5v3332fBggV4vV4mT55MfHw8r776KoMGDaKjo4PbbruNzz77jFWrVrF48WI+/vhjPvnkE6qqqnjvvfcAKCkp4YYbbuDLL78kJyeHF198kba2Nh599FH+8Y9/8PnnnzNq1Cgef/zx8PUtFguffvopd999Nw888MBAfQ0yxxC5hSQjc4oyc8zBWzHHk7Fjx2KxWPjvf/9LeXk5lZWV4dxC+zN8+HAA1qxZw/nnn49OpwPg0ksv5dNPP2X69OlkZmYyfvx4AC6++GLuvfdeJk+eTFFRUTiG2xVXXMGrr74aPu/ll18OwMyZM3nwwQdpb28P51uSOTWRW0gyMjJHxKJFi7j33nvR6XTMnTuXsWPH9pn3qFuAfhhlHAinp9g/v5EkSSiVyl7l98+f9MNjRFHskVNJ5tREFiQZGZkjYvXq1Zx77rlceumlxMbGsn79+j7zLXUzYcIEvvzySzweD4FAgHnz5jFhwgQAKioqKC4uBkK5kqZNm8bw4cPZunVrOKvs+++/H25FAXz55ZcALFiwgJycHDl53mmA3GUnIyNzRFx22WXce++9fPPNN2g0GkaMGBEWj76YMWMGxcXFXHrppQQCAaZOncq1115LY2MjZrOZ559/nurqagoKCvjjH/+IwWDg8ccf584778Tv95OcnMwTTzwRPt+mTZv46KOP0Ov1/QZolTm1kAVJRkbmiCgoKODzzz/vtX3/lBR79uzpse+OO+7gjjvu6HWMXq/npZde6rW925uuL37961//KHIE/ZiQu+xkZGRkZE4K5BaSjIzMgJKamsrixYsP65jDLS9zaiC3kGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMCWZBkZGSOKU1NTdx6663H5FzPPfccixYtOibnkjn5kb3sZGRkjikJCQn861//Oibnuueee47JeWRODWRBkpGROSLWrl3LK6+8gk6no6ysjIKCAv7617/S3NzM9ddfz+LFi2lsbOTee+/FarWSn5/P+vXrWbZsGU6nk8cff5zS0lKCwSC33norF1xwQTgSeGdnJzNmzKC5uZlx48Yxd+5cnnnmGVavXo3VaiUqKooXXniBuLg4pkyZwtlnn83GjRtRKpU8++yzpKWl9bC1v3QVFRUVPProo3R2dmIwGHjooYcoKiriwQcfRBAESkpKcDgc3H777Vx88cUD8C3/uJAFSUbmFMW+bQn2rcdnPk7k8JlEFp1x0HKbN2/m66+/Jj4+nssvv5wVK1aQn58f3v/EE09w7rnncs0117BgwQK++OILAF566SWGDBnCU089hcPh4MorrwxHBW9qauKrr75CpVLx4IMPAlBVVUV5eTnvvfceCoWC+++/n88//5ybb76ZlpYWJk6cyCOPPMKTTz7Jf//73/Bx+9OdrmLx4sU88MADfP7559x3333cdtttzJ49my1btnDPPffw7bffhu147733aGtrY+7cuUyePJm4uLij/WqPiL6C1p6OyGNIMjIyR0xeXh6JiYkoFApycnKwWq099q9cuZI5c+YAcNZZZ2EymQBYtWoV7733HnPmzOGaa67B5XJRWloKwODBg3tE8gbIyMjggQce4MMPP+TJJ59ky5YtPVJdTJ06NWzPD23oZv90FU1NTTQ2NlJdXc3s2bMBGDFiBGazmfLycgDmzp2LWq0mMTGRUaNGsXHjxqP6ro6OH4cgyS0kGZlTlMiiMw6pFXM80Wq14XVBEHo9ySuVyj6f7kVR5Omnn2bIkCEAtLa2Yjab+fzzz8PpKvZnx44d/PrXv+bGG2/k7LPPRqFQ9Dhvtx192dDND9NVBIPBXmUlSQpHLN8/nYUoir1E8oQS8A/ctU8gcgtJRkbmuDFp0qRwANalS5dis9mAUCqKd999F4Dm5mYuuugiGhoa+j3P+vXrGTduHFdddRW5ubmsXLnygKku+uKH6SpSUlJIS0vju+++A2DLli20traSl5cHwNdff40kSdTV1bFt2zZGjx59eB/+GCIGfxyCJLeQZGRkjhu//e1veeCBB/jggw8oLCwMd9ndeeedPPbYY1xwwQUEg0Huu+8+0tPTw04HP+S8887jzjvv5MILL0StVlNQUHDAVBd90Ve6iqeffprHHnuMF154AbVazQsvvIBGowHA4/Fw6aWX4vP5ePzxx4mKijqKb+LocDl6Z+I9LZFOQWpqaqT8/HyppqZmoE2RkTmh7Nq1a6BNOCzeeustqbS0VJIkSdqxY4d0ySWXDIgdM2bMOKz64oEHHpDmzZt3TK59NL9Zd123esnSY2LLyc5xbyF1e9C8/PLLvXKXFBcX8/DDD+NwOBgzZgy///3vB7afVua0R5IkvAEvLr8HT8CDN+jHH/QTlLrHEwRUCiUqhRKNSoNepSNCrUer0iIIwkCbf8qRkZHB//3f/6FQKNBqtfzhD38YaJNOSaxW50CbcEI4rrX/1q1befjhh6msrOxz/3333ccf//hHRowYwW9/+1s++OADrr766uNpksxpjCRJWD02Gh2tNDtbaXW10+7qpNXdQYe7k06PDbvXSUAMHPa51QoVJl0k0XoLcYZo4o2xxEfEkhwZT4opEbPOdBw+0anP9OnTmT59+kCbcdjpKk62DLStVvtAm3BCOK6C9MEHH/C73/2O+++/v9e+uro6PB4PI0aMAEIuls8//3wvQbLZbOGB0G4aGxuPm80yJz+iKNLkbKXGWk+drZE6eyN11kbq7U24A54eZY2aCGIMUUTrzWRYUjFpI4nURBCh0aNTadEoNWiUahSCAoUgIAFBUSQg+vEGfbj9Xlx+Fzavg063jXZ3J+Ud1ayt3UxQEsPXMetMZEelkR2VQU50OnkxWSdUpCRJQpQkRDG0HnrtcxYWAEEIeaEpFAKKrqXMycOB6rqmDlmQjponnnii333Nzc09JpnFxcXR1NTUq9xbb73Fiy++eFzskzn56fTYqLHWU2Otp9paT1VnLTXWenz7eR1F6c2kmpKYnjmBpMh4kiLjiYuIIdYQjValOS52iaJIq7uDelsTtbYGqjprKe+oZkvjrrArcVJkPIPi8hgcl8fg+DxiDdFHdC2vP0hjm5Omdhcqb4DWTjeBoEgwKBEQQ0tRlA57pooggEohoFIqUKkUqLteGpUSjVopC9YJ5kB1XWOnp8/tpxsDNmAj9TFXoK8++htuuIFLLrmkx7bGxkauueaa42abzIlFlETa3Z002JuptzVRbw9V8tWddVi9+54MIzURZFhSOStnGmnmZNLNySSbEjCo9SfcZoVCQXxEDPERMYxIGhze7g34qOiopqStnF0te1lTs4nF5SsBSDTGMTShkCHxeQyJy8eiN4ePkySJDruX6kYb1U126pod1LU4qGt20GrdVxnde2kqnQ4vKoWAUhkSD6VGQKEUUO7X+uluDe1PqBXVNddG7HoFRQJBCY8viMPl79GiUqsV6DQq9BolOq0KjVqJzPHjQHVdu0Ps56jTiwETpISEBFpbW8PvW1paiI+P71XOZDKFXUVlTi0CwQBOvwunz4Xd58TudWD12On02OhwW2l1d9DiaKXJ2dqjxaNVaUmNTGRk8lDSzSlkWFJIMydj1kae9I4FWpWGwrhcCuNyuahwNqIkUt1Zz87mPWxv3sPK6vUsLFsOgEUdQ0QwgYDVQmu9DodVTUgKIEKnIiXeyNDcWFLijCTFRJAQYyDoaCQnxXxcvgdJkvAHRHz+IF5/EK8viNPtx+b0AaBWKYjQqYjQq9FrVSf9b3GqcaC6rsP943gYGDBBSklJQavVsnHjRkaPHs2nn37KtGnTBsocmX5w+z20uTpod3di9dixee04fC6cfhcuvxtPwIs34MXj9+IJeHEHPKGl34P/AM4DkZoIovUWEoxxDE8cTGJXV1tyZALRestpU9lZHT7amtS46tJQ1pvR1+fT6axHEdlGm6mdzsgSiAxAAUQpDKQaU8mPyyQ/PpF0SzKJxnhUin2VUXFx03H7bgRBQKMOddcZu7ZJkoQvIOL2BHB5/FidPjodPpQKgUiDmsgIDTqN7Bl7vHEGdDTZOkkwWQbalOPKCf8n3Xrrrdx9990MGzaMv/71rzz88MM4nU4GDx7M9ddff6LNkemi022lvKOGamsdtbYGGuzNNDpasHsdvcoKCOjVIXdonUqLTqVFq9Ji0kWiU2nRq3To1DoMah0GtZ4ItYFIbQSRWiMmrRGLzoRaqT7un0mSJFx+Nx0eKzaPHbvPidPnxhPw4Au7e4uAhEJQoFKo0Cg16FVaIjSGkK16MzH6qIOORYmiRGO7k/I6K+V1VirqbZTXWWm37etui4/Sk5VsZtqIcWQlm8hKNhNr0VFra6CkrYyS1grKOqr4unwBX5WFOs+UgoJEY3yXV18MI9T5OLzOLtd0FUqF8riKtyAIaNVKtGollkgtoijh8vixu/aJk06jxGzUEmlQh215/vnn+eyzz7j22mu56aabjsqGF154AYC77rrrqD/PgaitrQ1HKT9UZs6cyX/+8x/WrVvHunXrjqN3nsCCbdu4dsrp/dB+QgRp/x94/zwphYWFfPTRRyfCBJn9kCSJBnsTO5r3UNyyl5LWclpc7eH90XoLSZHxjE8ZQbwxllhDNNF6MxadCZM2EoNGj0LoHXVKCvrxNlXha64i0N5AwF6D6HYgBkJdPoJShag1YI0wozLForYkoo5NQR2dhKA4si4JURJpcbZRZ2uk3t5Mo6OZFmcbLc52WlzteAPeAx4vIIBw8GjKJq2RRGOoFZcYkYA2GIXfbqSpOUhFfUiA3N5Qi1CpEEiNN1KUF0tOioWcFDNZKWaM+r5FODMqlcyoVGbnhtyjfQEftbZGam0N1NoaqLc10eRspaS1jLz0VJqc+7q6BUClUIUFSqVQoVaqUCvUqJUhwTqWKBQCRoMGo0FDMCh2CZOXpnYXbVaBqEgdpggNn332Ga+99hpZWVnH9Po/Zlbu2SsLkszpQSAYYEfzHjbUbWNL406anW1AyEOtICaHc/NnkB2VQYYlhQiN4ZDPG3TZcBavxlmyHk/1TqQu8UGhQmW0oNBHIqhDk0pFr4tARyMBpxXJuy8UiqDSoEnMRpeSjy5tELr0wSj1xl7XcvicVHbUUNlZR3VnHTW2emqtDXiDvnAZg1pPQkQsyZEJFCUOIkYfRZTejKmrdWbQGDCodGhUGlQKZVhYQwP9wZCrd8CDw+ui02OnqrWZypYmaq0t1De3Utq0BUm1n8eTT48hMo68kWkMSchnTGYumUnmo3IA0Kg0ZEenkx2d3mvfzl27SDUlERCDLK9cy/LqdSEXb6Twcn8EBBSCIuTu3eXaLnDwFtWMrElMz5pwwDKSJPLXp/5ASUkJra1tJKem8+Cjf+b1l5+lsbGRX/ziF/ztb3/jpptuYsiQIbS2tvLRRx/x+uuvM3/+fJRKJZMnT+a+++7rEcgU4LXXXuODDz4gKioKk8lEUVERAO+88w6fffYZbrcbQRB49tlnycnJYebMmVx00UWsWLECt9vNU089xdChQykuLubRRx/F4/FgNpv561//SmJiIq+++ipff/01wWCQKVOmcN999wGhcEG/+tWvKC0txWQy8Y9//IOoqKh+r3uiMCq9NDRCVWctGZbUgx9wiiIL0mmMKInsbC5hedU61tdtxelzoVVpGRZfwEWFsylKHERCROxBu3yCotTlZizS3ZAINFfg2vgF7j1rQQygjk4icsSZ6NIHoU3IQmWJP2CrJ+hxEmhvwNdag7epEm9dKdYNX2FdOx9JUOBJzqI5KZ0mk4maoIvKzlpaukQUQvN+0s1JzMqeTJo5mRRTEsmmBCI1EYfdheUPiDS2OalttlPT5KCm2U5NU2jd5w8CWgQhlcToAoqSIkmO1hIR5SKg6aDRXc/e9kpKXSspbVjJgjYDQ+LyGZpQQFFCIUmRCce0S00hCGhVGrSAXq1Dreh9C4thgRJD65JEUNoXiFSBAoVCgVJQ9NnSPVQ2b96MWq3mgw8+QBRFrr/+esp3b+L/7nuIDevW8Ps/PUN2Tg4dHR3cdtttjB8/nqVLl7J48WI+/vhjVCoVd911F++9914Pr9nt27czb948PvnkEwRB4IorrqCoqAiHw8HChQt5++230el0PPfcc/zvf//jkUceAUL5jj766CPefvttXnnlFV544QXuvfde7r33XmbMmMH//vc/3nrrLSZOnMiOHTv46KOPEASB++67j/nz5zN69Gja29u56aabKCoq4u677+arr75izpw5B7zuiSBbZ2W3LZt5O7/h/yb/9IRd90QjC9JpSKurncXlK1lSsYZWVzt6tY4xyUVMTBtNUeIgxKBAU5uL6ioXGzsqaLN56LR76XR4sTt9ONx+XJ4AHl8Ary9IUNz31B2jsHORYSMjNNV4JDVrvbms9+fR5opF16xCu8mFXrsHg66MCJ2aCL2aSIOGSIMao0GDKWLfy2xMRR2dgjU1m+qcAio7qqlqKaPG3oRdtEPnToQOidggpOksTE8eQ172WLJjMg866VSURGweO+1uK50eG802Ky02G+1OJ1anC7vLg8Ptx+H243QHkYIKpKAKAipMWiNJ5mhmZSWSlxRHRpKJ9IRIdNr+b5dWZzu7WkrZ0byHnU17WFe3BYBYQ3RYnIYmFGI5hpNlp2dNOGgrphtREvEGQq2/bgcUCQmloCBCY8CoiUB3mOGRxo4di8Vi4b///S/l5eVUVVUR9HtJjTeiVAgEgiI1TaExyGFdLZw1a9Zw/vnnh1NMXHrppXz66ac9BGndunVMnz6diIgIAM455xxEUcRoNPK3v/2NL7/8ksrKSpYvX86gQYPCx+2fE+m7776jvb2dlpYWZsyYARCedP/UU0+xbds25s6dC4RaRcnJyYwePZr4+Phwayw3N5eOjo6DXvdEkK1ppdhbyKqSPZyXX0Zh3IlrnZ1IZEE6TZAkieKWvXxVupgNdduQJImhCYWclXY2OncKNY0uPtti5x/Ni3vMa4HQuIDFqMVi1GKK0BBj1mPQqdBrVWg1StQqJWqlRGL9chJrFiIpFDQkn0ljwmR0aBjf5Srs8QXx+AK4vQFcngBN7S7sbh8unwsPDgSNG4XOhaB1I+icoZfGQ3cdKIhKNKKZCDLJVsYRrzST57WR5CjDXLMH5e5SxJWLqIwZhDN+GPaofDokL62eFjp8LXT627EHOnGLdrw4QTjA3A1JAK0AWglVVM9uLg9QAVR4YUN9BAm2WFLqE0kzJ5MVlUZ2VDpGbUSPY2IjopkWMZ5pmeMBaHK0sLWxmG1Nxayv28qSitUApJqSGBSXS0FsDvmx2YfUQj0WKAQFerUOvVoH+tDEXlfAHXbJt3kdqJWqrkgWRpSKg7ecFi1axPPPP8/111/P3Llz6ejoQJKkcDSIlDgjWkNo3KzVFiBRFUQUe/8mgUBPb0xBEHqUU6lU+Hw+GhoauO6667j22muZNm0asbGxFBcXh8vtnxMJQK3uOWbn9Xppbm4mGAxyww03hJ0tbDYbSqWSjo6OHrE0u3MrHey6J4IsQqk5dO40Xtv4Ln8+64ET4hh0opEF6RRHlEQ21G3jk+JvKGuvQqfUk6Ecga8xlS2bAqwLdAAd6DRK0hIiGZYbS3KckeTYCBKiDcRFGbAYtQeclR+wt9P8yd/x1BQTUTiRmLNuIivCTKfXRqfbRqfHhtVjw+q1d63bET023B4rQbcVAl72T7mmVeowq6OIUMSjk8yo/WYErwm/S4fLHcTh9tPo8VPhDbDUG4kojUCpGEx6ZCWxhgZUUiVtnVU0uVT49rNb8msQfBGoRTNGIRWjMhKT1kS0wUy8yUJSlJnkKDMpcWZMhn2J5URJxB8M4Pa7cfhd2DwOOj1WWl3tNDlaaXS0sKN5D8uq1oaPSTTGkR+bzaDYXIbE55NgjOshLAnGOGbnxjE7dxqiKFLRWcP2pt0Ut5Syono9C7rmIkVqIsiMSiPdnEKaOYkUUyJJkUfW9Xg4KBQKjJoIjJoIREnE6QuFR2pzddDhtoa9IQ/kFLF69WrOPfdcLr30Upqamli/fj0TJ07c7xoCCTEh4Q4ERGqa7YwYNYY3Xv8XV1xxBSqVinnz5jFhQs9W3sSJE7nnnnu466670Gg0LFiwgOnTp7N9+3YyMjK48cYb8fl8vPzyy0RH9x/9IjIyksTERFauXMnkyZP57LPPWLduHeeddx7PP/88l19+OVqtll/84hdccskljBs3rs/zHO51jwcmyUp6QiR48qm2fsb/tn3GDSN/ckJtOBHIgnSKIkoiq6s38v62L2l0NaEKGPHXDcHdnIxdoSY3NYJzJ0WTl2YhN81CUkzEYYWCCYpBGh0tVFZtYe+aebQJIs4Rw7EpPbQvfrJPd3AIjWtYtCYsehOZljRGJg0lWm8hPiKGuK7IBsaDVLa+gI/KzlrK2qsoa6+ivKOaensTjZJIIxChtpCssTDeFyC+vZmEznbi/EHM8VkYcoZhyB2FOikbp9+D1WvH7nXi9Lvw+DtoCDZTUx+K7B1y9VaiVWkxqPVEaiOw6Ewkxcb3WRF3O1Xsba+itK2CrQ27WFYZEql9XXODKEochEm7zylDoVCQE51BTnQGFw86G1EUqbbWU9JWTnlHNZUdNXxXtgz/fpOD9SodsYaoUBw+QxTReksosGswEm/AF3bIOBaipRAURGqNRGqNeANeOj1dDxleOxatCbPO1GeL6bLLLuPee+/lm2++QaPRMGLEiH5zFKUlGGloc5E7eCzjJxZz6aWXEggEmDp1Ktdee22PsoMGDeKGG27gJz/5CSaTieTkZAAmT57Mu+++y3nnnYdGo6GoqCic9rw/uvMd/eUvfyEqKoq//OUvxMfHs3v3bi6//HKCwSBTp07lkksuoa6urs9zHMl1jwfTiuJ4Z0E5s0fP4MuSRRTEZjMhbdQJt+N4IkgH83c9CamtrWXWrFksWrSoV0qL0x1RFPlqxzo+2f0FdqkN0R1BoD6HTEMho/ITGJEfR0FGNNrD8PIKikGqOmspaatgb3slVR211NmbekTFjlDpiDfGEW0IVYxRejMWXcgV3KIzYdZFYtZGojnM2HEun5vKzhoqOmqo6FrW2RoRuwKXmnUmcqLSyezqKsuOTidGHxXu1mmwN1NZt4Pq6q3UtdfQ4nPQqVJgUykIHmFlLQgC0ToLCcZYkk2JpJuTybCkkGVJQ6fe19aTJIl6exM7mvawozn0cvpcCAhkRqWGxakgNgfNQbpXRFGk2dlKvb2JenvIdb3V1R6KWO4OzaOSkLgz5xpSstNCdnanylCqUCtUqJVqNEo1GqWmx2TaI8EX9NPh7sThc6EUlEQbLEfdahNFiaZ2Fw63H4tRQ6xFf9pMgD4QxcXFRzzm1F3XvTk3n/TbXuTnL27hytl5FCu/pKKzht+d8UvyY7OPscUDh9xCOkWwOrzMW72JRXXf4Nc3I3kMpElTmV0wifGXJhIVqTv4SbqQJIk6WyObGnawvWk3e1rL8HTN1+mOWj3EEI9x2wqS9FEMveQBzNHJR2W/w+ekwd5MXdf8mhprA9XWOtpcHeEyFp2JrKh0xqYUdUXNzghHbfAEvFR21LKudgsVHTVUd4Ym8O4fDcISYSIhLokCEYwOB4b2ZiJcdiKCIgatEVNiNsakPAzJ+Wjj0pAUCgLBAJ6u/Eh2376I3i2uNprsLayu2RgO9SMgkGZOJj8mi0FxeQyJzyfFlEiKKZGz86YjiiLlHdVsbdzFtqbdfLFnIZ/t/g61QkVe1zGFcTnkRWdh0PSMv6dQKEiMjCcxMp6+nnkDYpBOj5X68joSjLEExCBBMYhfDBAQAzh8rrCIA6GWn1KDTq1Dr9KhUaoPq/LXKNUkGOMwB7y0uTpocbZh9zqIi4g5qLj2h0IhkBhjoNXqptPuQ5IgLurHIUrHglh9kKE5MSzbVM9ffvkzHl78V55c/k8eOeMesqLSBtq8Y4IsSCc5e2s7mbdsJ+valqGIq0ap1TA+6kxunnQeUcZDDyoqSRKlbRWsqtnI+rqtYRfqFFMi0zLHUxibS2FsDjGGKHxNFdS//QgqcxzJVz2O0nBwzzBPV8XV6mqnxdlGs7ON5q44dU2OVhy+fQnGVAoVKaZEBsXmkmZOJjMqlSxLWjjYaCAYoNpax8b6bextq6KsvZJae2N48qpZG0lmVCrnJJxBmjmZ1C6X7x8GWZUkiUBHA+7KHXhqivFU7yKweyMuwK3SoEnMQpuUQ1RSDolJuaiTMnu5qkuSRIfbSkVnDWVdXXWrajaysHwFEIroPSyhkOGJgxkSn09uTCa5MZlcOuQ83H4PxS2lbG/aw66WEj4u/hppV1ckcGM8GVGpZJhDcfqSIxOIj4jpt4WpUiiJNUTTomzCqInos0xQDOIL+vAG/XgDPrwBL06/O3y8Qa0nQmNAr9IdsgjoVFqSIxOw+5y0uzqotTZ0tY5NRyQkgiAQaw6JUIfNiyDwo2kpHS2i18WM0Wm88MEWGpsDPDz9Lh77/hkeX/Isj0y/m+zojIE28aiRu+xOQiRJYntZKx8sLGFH+1Y0GXsQVH4mp0zi5rGX9PLwOhBNjha+r1jN8sq1tLjaUSlUFCUOYnTSMEYmD+mVEiHg6KDu3/eDoCDlxj+jigzt9/g9NDpaaXK20ORo3a9LKSRCTp+rx3mUgoLYrjGjBGMcica4rmR2ScRHxITHaERRpN7eFB4vKmuvpLKzNtzyMWmN5ERnkhOd3tVll0GU7siDiwZsrXjqSvDW7sFTvxdfY3l4Mq+g1qFJyESbmI02KQdtUjbqmJReIiWKIpWdtexsLmFH8x52tZTiDXhRCgryYrIoShxMUUIhOdEZPcaiXH43e9sqKW2roLyjmqrO2vAE5W4sOhMxhihi9FHhrtHwS2fGUW+lsLAQhUKxX86j0C0s0DvKdyAYwBXw4PK7cfndSJKESqEMhXHSGFEpD/2ZNCAGw7+1TqUlPiLmiD29JEkKt5RizTqiTIfewj+VkCSJ3bt3H5Muu6IbH4b0UVz/2DfMHp/Bz+YW0exo5fffP4Pd5+T/Jt3WI/L8qYgsSCcZu6va+c+XxeyoqcGQuwvR2EJOVCY/H3fNIc/QFkWRDfXb+HbvErY37UEQBIoSBjElfSxjU4f3m65BEoPU/Pd3VLdW4ppxOXWiJ5QEz95Ih9vao6xBrSfOEE1MRDSx+tDge6whmtiIKOIMMUTrLSh+MBDuCXiptYZyB1V21nZFXagNR1rQqrRkR6WTE51BbnQmudEZxEXEHNenZ0kM4m+tw9tYjrexDG9DOb6mCiR/qAtTUGtDApWShy6lAG1qASpjVI9zBIIB9rSVh7rqGoup6KhBQkKv0jEoLpfB8XkUxuaSFZXWqwL3+D3U2ZuotzXR7GylxdlOg72FVkcHNp8dr9jTRf/y1HMoTM5HZ4wAlCAqQFKAqETqWlcoQKlQoFKGch2pVUq0agUajQJf0Ivd58TldyMQSmBo0ZsPuRtOkiQcPhetrnYkJGIN0Uc8tiRJoTElu8tPcmwEEf2EVjpVkSSJtrY27Hb7EYdQ2l+Qhl71f0QWzeCp/6xn295W3vrd2aiUCtpdnfx5+T+osdbz09FXcmbO1GP8SU4ccpfdSUJLh5s3vtjJ8i21RKY2EzlyJwoFXDP8CmbnTjukGfWegJfF5Sv5qmQxzc42YgxRXD70QmZkTSTGENXnMaFupb3sailhR9laqlVWAsmRsOdrtCotaaYkihIGhWK4GeNJNMYSb4ztt9tIkiTsXgel7RXU25qoszdSa2ukztpAs7Mt/DSvV+nIsKQwM3syWVFp5ERnkBKZ2EvEDgdPwEurqz3sumzzOnD6XLj9HnxBH4GuaAUKQYFGoUan1mLURGDSGomKiyUuoyD01K9Q4m+r7xKoMrz1e7Gu/wrrmvkAqKOT0WUMQZ9VhD5zGCp9JEPi8xkSn8/VRRdj8zrY0bSbHU2h1tOmhh0AKBVKMswpZEalkRaZjE6KwufQ0dEGdS0KalsMNLSKuL2R+z6UIojBGMBkEdFFBNlQY0VHExatDoRQNIb9wwUJKFCgROgSK1Gkx8RmpSIU0VutEgjgoy5QiyRJ6FRaItSGQ/7+g6KI3eegNliNVqXBqIk4oqgP3XmgGmolok3aQ5r/dCqh0+mO2UOz2BVua8aYNFZsrWfT7mbGDUkk2mDh8Zm/5tnVr/Hqhv+xt62Sm0dfecRjfQOJLEgDTFCU+Hx5Ge98sxsJH7mTq6jzlzAoNpdfjLuBeGPsQc/hCXj5tnQp8/cswO51UBCbw7XD5zI2ZXif7sv19ibW125lU8N2SlrLCUoiKkFJitvDFH0cKYXnEqNORC+Y8AdCidzwA53Q5lBgUznwCy24JSsO0UqHt51mZyuNjmaaHK24usYtIDRelBQZT050BtOzJpBmTibDnEK8MfaIw9aEPPNqqbbWUd2VxrzB3kSnx9arbPeEUI1SjUro6iaUJHyiH08/KTLiDNGkmpPJtKSSM3g0uVMvJVkdgbepAk/1LjzVu3DsWol98wIQFOhSCzDkjyNi0ATU5nhMWiOT0scwKX0MAFWtLazcu4Pi5nIa2uqpaF2PpNwXf08SFSiJQJ8QSXKamRiDhURzDKmWGNJj4kg0R2PWmfr0nJMkCavHRrW1nsrOGva2VbGntYwOT6hFm25OYWzyCNK1hbQ0CWwva2VraT1ubxCzUcPUMbFIcWUsq1iJUqHkJ4PP4/yCWYfkpSeKIvP3LOD97e9i1pm4c/wNDE0oPLQfcT8a25zc8/clZCaZ+NMdU1DKmWr7RPSEBGlUQTymCA2LN9YwbkgiEJpu8cCUO/hg5+d8vOsbKjpquGfizSSbEgfS5MNG7rIbQOpbHPz93U3sqepg6BA1ttjVtHnauXzoBVxcePZBn1YDYpCFZcuZt+trrB4bwxMHc+ngcymMy+1VttnZxoqqdaysWk+NLTTr26KKI8KfjNgZxcVt3xMlOviz9SJcUtekUUFE0DlR6B0IekdoqXMi6FwIin0eXZIooAgY0EkmIlUW4gyxpEclUpiYzrD0NIx6bS97DhV/0E9FRw2lXS7p5e3VNDiaw/sj1HpSTUkkmRJINMYRHxFDjCGKKJ0Zky7yoAP43oAPm9dOm6uTVlcbjY5W6m2NVFnrqLc1dqWnCIlUYVxoEuzQ+ALiDFF46/fiKtuEq2QDvuZKAJRJ+XTEj2aXkEtpg4fyuk7abfsijsda9GQmR5IYr8Rg8aDUu/EKNto87bQ622lzd4ZdvPdHQMCsiyTGEEVcREzXmFwCqaYk0szJPdJjdHtRbm7Yyfq6LexuLQNgWEIB5+bNZFj8YLaWtLJwfTVrdzSgUCiYPiEKZ/RWtjbtIMOcwu3jrjvkQfLy9iqeW/NvGuzNnJ8/i6uGXXTY7v+LN1TzzLubue3iYVw49fRxYz5awl12lw8jf/oFxJx5IwCvfLyNb9dW8Z/HzukVRX5j/XZeXPsm/qCfa4fPPeQelpMBWZAGiO831vDPj7aiUiqYdZaapS1fYFDr+eWkWxgUl3fQ4zfV7+CtLR/SYG9mSHw+Vw67iILYnvGtAsEA6+q28vWepexpD03kU7qjcTfHI3YkIPn0REVqmWkqZ6p7EWszzqc5Lgar1ESrr5FWT3M4KKeAQIw+hhhdLFGaaIxKC1rJjDIQgd+lpdPuo7XTTVO7i5YOF/v1EoXzAOWkmMlJs5CfFoUlsm+Rsnkd7GktC71ayijrqA7Ph4rWW8iNziQ7Op1MSyoZltTjmszPF/RT2SWGe1rLKW4pDadUj4+IYXBsATHKNALWaNoqGzA0bGawVEKi0opHUlGsHERL8mQSM7PJSTWTlWTCaDh4Rd3t4h2KgmGlw22jw9NJu6uT1i4X7GZXG0Gx67cRBFJNSRTE5jA0Pp9hCYVE7jcxt9XZztLKNSwsW0Gbu4NUUxI/GXIeE9JG0drh4YNFJSxYV41Rr+asszSsbl+AzWvn0iHnc8mgsw8phYUn4OWdrR/z3d5lJEcmcMe46w9rfowkSfzu1dXsqe7glQfP7Pf/8WOju677z7XjyB45kbgL7gCgpLqDXz+3jDsvG8HZE3o/OLS7O3l53dtsadxFUcIgbh93Xb/d9icTsiCdYAJBkdc/28EXKysYnB3NsImdzC/9ioKYbH49+baw63N/tLk6+Pem91lft5WkyHiuH/ETRiUN7VEpO3xOPtq6kMUVy/BILkSvnmBLChGeLIamplGQEUVumgWLRWRP207WrnqXMp0KhxD6KxjUenKiM8iKSg+7JaeYEg7Zo8ofEGlqd4YiZzfZqWywUVFvpa7FEY4WHh9toCDDQkqKgMrUSXuwgZLWcursjUCoqy87Kp382GwKYrPJi84i2mA5/C/8GNE9AL+qZA+baoupdlbgVjchqAJIEqh8FuJUaQyKzWOiyUBCw3rce1ZDMEjE4ElETbkMTdyxmysSFIM0OVuptTZ0ddVVsqetHLffg4BAYVwOE9NGMyl9TDhqRFAMsrpmI5/s+oYaWwPZUencOPJyCuNyqGqw8cIHW9hT3cGZE5OQkrezqmYDhbE53D3x5l7emP2xrbGYl9a/Tburk3PyzuDKYReF4ucdAjVNdu786/ecNzGTn80tOuLv5nSiu65755ZppOcUkHDpvUDo/3j7U4uwROp48hdT+jxWkiQWlC3n7S3zUCqUXDnsIs7KmXrMc2QdS2RBOoG4PH6e+s8GNu1p5qKpWUgp21lYvoIpGeO4fey1B6zwJUliUflK3t4yj6AU5CdDzueC/Fk93HbbnFZeWfEpW9s3ICkCBK2xJElDmJ47krGDk8hIjKTJ0cKqmo2sq91CeUc1AKZAkKFJQxiWMZqCuBySIxOOSxO/3WFnZWkxW+tLqbJWYZWaQNU1lhJQEyHFk2XKZHT6IKYVDiFSN3CuwMGgSEW9jV0VbRRXtlNc2U5bV1BavVZJXloUBRkWTHEunKpGSjpKKWkrJygGEQSBTEsqeaYUUtrbiN6zmRi3B3PRGURNvxpV5PF5UhVFkbKOKjY37GBtzWZqbA2oFCompo3i/PxZ4fxKoiiyono97277jDZ3BzOzJ3Pt8EvQK/W8/XUx877fy5hBCUybAW9seQ+VQsWd429kVPLQQ7LD5Xfz7rbP+G7vMqL0Zm4Y+RMmpI46pJbsix9uYdH6Gl5/+CyiT1NX8MOhu6773+3nkBwfTdLVvwvve3/BHt75ZjevP3QW8dH95zBrtDfz6ob/saN5D2nmZG4aeTlDEwpOhPmHjSxIJwib08fv/rWa8jort186lGJxMatrNnLxoLO5aticA96sVo+Nl9a/w6b67QyNL+BnY68hwRi3b7/TyXPfz2OHbT2SIoDGmcaMtDOYM3YkcVF63H4PK6rW833FKva2VwKQF5PFmITBJH7/EZkJeSRd8dAx/bwev4fKzjoqOqop66iivL2aOltjeGwkOTKB/Jhskgyp4Iiivk6guKKd6iZ7qMWhFMhNtTAoK4aCjCgKM6KIMR/aRGBvwIfVa+/ysHPjFwOIktgVakcV8ijTGDBrI9GrQ2NMHXYPJVUd7KnuYE9VByXVHXh8oS6xuCg9gzKiGZwVzaCsGDKSTH0OvHsCXkpayylu2cvu1r3sbasMu7SrUZDg8REfEElPHUpG4WQSjPHERURj0kYel27Hqs5aFpWvZGnFGtwBDyMSB3PlsDlhYfIEvHy080u+2LMIi87EHeOupyhxEF+vquCf87YxqSiJ6y5O57k1r1PVWcvcwedw+ZALD9kTr6S1nNc2vktlZy1D4vO5YcRlZEYd+H6tb3Xw8ycXccWZBVxzzuE7SJxudNd1795zCQk6iZSbnwrva2xzcuufFnLTBUOYO6P3uPH+SJLEurot/GfzR7S42pmQNorrh19KbMSJDRJ7MGRBOgE43H4eemklNU127r9+NCs7v2Bt7WauHX4JFxXOPuCxxS2lPLvqdRw+J9cMv4Rz8s4It14CgSAvL/mWZY0LQO3B6EvnimEXMnv4EARBoN7exFcli1lWuRZPwEuaOZnpmROYlD6aWEM01nVf0LbgDZJv/DO6lPwj+mzdKcSrrfVUd9ZRZa2jqqOWRkdLWHzMOlMouGhUOnkxWeRGZ/Y7udfh8rGrop2d5aGWSWlNJ4FgyLEgxqwjJ8VCVrKJtEQjmkgXLtppcjVRb2+iydFKq7MtHJ3gUFBIKiSfnoBLj+iOQPBEkmRMYmhKJoMzYxmcFUNc1KFHxNifoBikztYYCqDaWUt1awU1bdVYhWCPcmqFiii9uWsirCW8HmOwEKMPOTFE6c1H5ZX4XdkyPt+9ALvPyRmZE7lm+MXhnFJl7VW8uPZN6myNXFR4FlcOm8MXyyt4ff5Orjt3EBefkcnrm97n+4pVDEso5J4JN2PSRR7kqiFEUWRh+Qre3z4fh8/FjKyJXD7sQqL1ln6Peexfq6lssPH6w7N/9B533XXd+/dfTYyvlbTbX+ix/5fPLEGpEPjbPdMP6Xy+gI/5exbwSfG3CMDFg87mooKzDtsJ5XghC9JxxusP8ugrqyip7uChm8ay1vYdSyvXcP2In3BBwawDHvtN6RLe2vwh8RGx/GrSrT2eLteVlvP8qv/g0zWh8Udz3fCfcPawkUDoyXjezq9ZW7sZpULJlPSxzM6dRk50RvhJXBKD1PzzTlSmGJKv/+MhfRarx0ZVZx011nqqrfXUWOupsTXgDezzIkuIiCXDkkpmVCqZllBA1Cj9kUdW8AeClNVZ2VJRw7b6Emqd1bgUrQgG2z5PP0lAGTCilUwYFJHoBCMaQY9S1CIGlXi94HIHsDq8uHxeUAYRlH4UGh9GcxCd0Y+kduAQO8NOHBqlumsMK4fC2BwK43L6nXt1OEiSRNv2JZQueYs2gviHTsYRHUeH20q7uzO83D8tO4REK9EYR4o5iQxzCjnRGeTFZB1WunmXz83Hxd/wZcki9CodN468jKkZ4xAEAV/Ax5tbPmJh2XIKYnP45cRbeH1eGau21fPMr6aTlWxmcflKXt/4HiZtJL+a9NPDclpw+Jx8vPNrvt67BJWg5IKCM7mo8Kw+x5eWba7l6Xc28uc7JjM05+DTHk5nuuu6Dx+5BXPrbjJ++e8e+z9cVMJ/vio+aLfdD2lxtvH21o9ZU7OJOEM014/8CeNSRgx4CCdZkI4jkiTxt/9uYunmWu6/bgxVwjrm7/6Oy4acz2VDL+j3OFEUeXPLh3xTuoRRycO4e/xN4WCcgaDI0199yib7YgQEzkg+k59NvQClUkmzo5X/bf+MVdUb0Kt1nJN7Bufmz+gzS6mrdCONH/yJ+Ln3Yhw0sdf+dlcne9srKWuvCkfj3n+eT6TWGHZ4SDMnk9710h3iAPbB6PTYwlG0dzWX0OhoAUJCkWVJJ06bhEGMQXKbcNu02BwBbE4fTo8ff0AkKEooBQGtRoleqyLSoCHarCPOoicpNoKUOCOp8UY0+0VFD4pBGuzNVHTUUNZeSWl7JeUd1aFxIQTSLSkMictjcHw+g+PzjkqgAvYOWj5/HnfFNoxFZxB77s9QdD2lSpKE2++h3d1Jq6udZmcbTY4W6u1N1FobaHK2AoSjio9MGsK4lJFkRaUdUoVSa2vglXXvsKetnAlpo/jZmGvCwraiaj2vbPgvepWWn4+6mb/9q5ysZBN//PlkACo6avj7yldpdbVz7fC5nJc/87AqsUZHC//b9ilrajZh0hq5dPB5nJUztcdYqMvj5+pHvubi6TnceMGQQz736Uh3XTfvj3cSUbaSrAff67G/odXJbX9eyK1zhnLRtMPPIruzuYQ3Nn1AtbWOYQkF3DjyctLMRxdI+WiQBek4Mn9ZGf/6bAfXnltIfHYbL61/m9k507hl9JX93sQBMciLa95gVc1Gzs+fxXXD54b77Fttdh747J/YNZWYxCQenv0zMmMS8AV8fFL8LfN3f4cgCJyfP4sLC888YIXZ+OGTeOtKSb/rFVAoQ0nomvaws7mE3a1ltLtDUbgVKIg3xJNmSiE7Oo3c2HQyo1IOmkL8cPEEvOxu2cu2xmK2Ne2m2hrKTWNQ6xkcl8eguDwGxeWSGZV21KkVDgdfwMfe9ip2tZSyq7mEPW3l+IN+BAQyLCkh2+LzKIjNOez05JIk0rHsAzpXfIg2JZ+EnzyAymg56HEuv5vy9iqKW/ayvWk3JW0ViJJIcmQCM7MnMTN78kHFct+k1vnEGqL5v8m3hSNGV3fW8fTKV2hzdTDGOIvvFwo8fddUCjND4w1On4t/rPsPG+q2MjZlOLePu+6wxXlvWyX/3fYJO5tLSDTGcXXRxYxPHRm+L+5/YTmSJPH03dMO67ynG9113cd/uQ/9jq/JeuA9BFVP56efP7mQpFgjv/vpoaWz/yFBMciCsuW8v+Nz3H4P5+RO57KhFxxW6/tYIQvScaKqwcYvn1nKqIJ4rro4gUcX/41Bcbn8dtqd/bpdBsQgz61+vc/xpd31tfx+0QsE1DbGRE3jvtlXoBAU7G4p46X1/6HB3syU9LFcO3zuQd2jg04r5c/fSvOIKawzWNjesgtHsCtWnV9LwBaF6LAgOixIrkiQ9tmrUgrERRlIiTOSlWyiID2KIdkxhzS/Zn+6UzVsayruSoFRTkAMoFaoKIjNoShxEEPjC8iOSj+qcELHGn/Qz972SnY2l7CzuYSStopwYr0EYxx50ZnkRGeQHZ1Ohjm1V5qJvnDuXkPzZ8+hjIwm6apHUEcd3ux6u9fButotLK1cw+7WMrRKDWflTuPiwtkHHespaS3nmVWvYfc5uGPc9eHoEg6vk2dW/4vtTXugOZvxMTP49dVjwsdJksSXJYv479ZPiNZbuGfiLYedl0eSJLY07uSdLR9TY2tgcFweN468nMyoVP716Xa+WVPFh386/7ASS55udNd1nz77CNpNn5Dxy3+jjOg5NeSf87by/YYa3v3jeaiUR36v2LwO3t8+n4VlKzBqI7h62BxmZE06ofefLEjHgaAocd/zy2jucPH0PZP406q/EpCC/GX2b3tMWNwfURJ5ce1brKhaxw0jfsL5+40vbaou4anl/0RC5OpBV3PxqAmIoshHu75k3q6viTVE87Mx11CUePCIwhUdNXy69B22OytxqBRIogLRGoPel0x6RBaZ0UnEWgyYIjTotSqUSgFRlPD4gjhcPtptHpraXdQ2O6husiOKEoIA+elRTByaxPRRqcRaelfCoiRSY63vipBdwq7mknCIoQxLKkUJhRQlDmJQbO5RD7D6gn46PTZsHjvugAdf0B/2stMo1ejVulBQUZ3pkOfI9EcgGKC8o5rdrXspaQ1Fk2h3d4b3xxqiSTMnkRSZQHJXPMD4iBhiDdE9uqk8dSU0vv8EglJD0rWPoYlJOSJ7Kjtq+WLPQpZXr0On0nLZkPM5N2/GAeeedHps/H3lq+xuLePyoRdy6eBzEQSBgBjkjU3vh9Ktdybw+vUPEKnv+duWtlXw3OrXaXV1cMXQC5kzaPZhO18ExSCLy1fx3o75OHxOzs6dTqx7BP/6eDevP3wW8VEn/kn9ZKG7rpv/0p9Rr/4vqT9/AU1Mzy61lVvrefI/6/nr3VMpyDh6r7mKjhre2PQ+u1vLyI5K56ZRl/eadH+8kAXpOPDtmipe/HALv75mNMWB71lSuZrHZ/76gD/qf7d+wme7v+PKYRcxd/C54e2b63bz5LJ/IPnV3D3uZ0wpLMDudfDs6tfZ3rSb6ZkTuHnUFQesWEVRZE3tJt7f8i0N7loUIuQ4g4i6s5hRMJrR+UmH7FK9P15/kJLqDraVtrJhdxN7azoRhFCsrQumZhAZ42ZPWzm7W/ZS3Lo3nKIiISKWoQmFDE0IheE50u6/7lTn3V5sddYGGh0t4WgKh4JBrSc+IoakyATSzElkWEK5mWIMUUc8wNvptlLeUUNVZ23Y8aPB3oRvvxTlAgIWvYlYQzRxhmhiI2KIFgWUaz4nNigw5KrH0cUceV9+ra2Bt7fMY3PDTrKj0rlrwk2kHCCumT/o55X1/2VZ1VpmZk/m1tFXoVQokSSJV5Z/xqL6b0mOSOH3Z97Va/K2y+fm1Q3/ZVXNRobGF3DnhBsP6EXXHw6vk/d2zGfB3uVEqI207cjnz9ddwuCsmMM+1+lCd133xevPolz6Gsk3PYUuuaeLd1O7i58+sYA7Li3i3ElHFlX8h0iSxMrqDbyz9WPa3Z1MyxjPNcMvIeogE/ePFlmQjjE+f5Db/ryQWIue6y6P44mlzzOncDbXDL+k32NWVK3n+TX/5sycqdw6+qpwRbintZzfLXyGgEfLXaN/zvRhuTQ5WvjT0hdpcbXz09FXMTN7Ur/nFSWRlVUbeHfb57S6WxE9BizOLO6xLSN+9AUknHX9MfnMoiTS5GhlQ9UeVpTupNJajajtRFDsS0ZXGJfLoK5YcHERR1bBePweilv3sqNpD8Ute6noqA7HmovURJBqTibJGNflJm3BpDViUOvRqjQoBAWiJOIP+nH5PTh8Tjrc1i6ngdau9A/7opGbtEZyozPJj82mMDaH3OjMo2q5iZJIh9tKk6OVJkcLLa5Q7LruNOWtro4eKeOVUmiuVmZMKHNuYWwOmZa0w+o+kSSJNbWbeG3je/gCPm4dczXTMscfsPz7O+bz8a5vGJcygnsm3oxaqcbl8XPNX99Al7edaIOJ30y7k1RzUq9jv69YzRub3kejVPOL8TcwKnnY4X9RdLW6Vr5Js7uZ4dGjuW/G9SeNW/KJpruu+/LtV1AseIHEqx7FkD28RxlJkrj6ka+ZPDyZOy8bcUyv7/F7+HT3t8zfvRCVQsllQy7g3PwZx20cV472fYxZtL6aNquHu68czr83vUSiMe6AHnV1tkZeWf8OhbE53DzqirAY1dub+OP3LxLwargo5WqmD8ul1tbA498/S0AM8ugZv6Qwrv8WV0lrOa9vei+Um8cVibptDDdMmcnEyHpaP/0ec+G4I/p8oiTS6GihoqOa8vZqyjuqqeioCXe/aZRq8tPSUXvzKNkN1uYIskfkcf3MoYed70aSJKo6a9ncsJMtjbvCkRBUChV5MZlcWHhWV96kzKNyLe/GE/BS3VnX5WUXyg67f+qInKgMBsXlMiguj4LY7MMa9FUIilDiPUMUg+N7xyoUJZFOt41mZys1NTso3TCf5mArOwJulletA0K5i0YkDmZS+mhGJA09aKUgCAIT00ZTEJvD86v/zYtr36TaWs/VRXP67FYTBIErh83BpI3kzc0f8pcVL3Hv5J9j0GlI0eZidKbQplvGw4ue5v4pt/f4HIIgMDN7EgWx2Ty7+nWeXP5PLsifxdXDLznsyisvJotfjb6Hez/8F1vZyMOLmrh/yu0n3STOE4lCE+oBEX+QCBNC331GkomapkPvGThUdGodVw6bwxlZk3hz0we8vXUeSyvX8NPRVx2w/jlSZEE6hkiSxBcrK8hNNdNEMQ32Zh6ceke/eUmCYpAX176JRqnml5N+Gr5xXT43Ty79J15fkBTHbK6ZNZJGRwuPf/8sAI/P/HWvJ9RuvAEf/9v2KV+Xfo+WCHxlRYyIH8Gvfj4Ks1FLy5ffoNAa0KYcPICrJEm0uToo6Yq0XdZeRWVHDe5AKISOWqEi3ZLCpPQx5EZnkB2VQZo5KTxe4Z4V4P0Fe/hkyV62lbXymxvGkptqOeA1nT4X25t2s6lhB1sadoZdzTMtqZyfP4uihEIKYnN6RLc+VuhUWvJjs3sMztu9DkraKkLdji17+aJkEZ/t/g4BgTRzMoWxORTE5pAXk0mCMe6IRVEhKIg2WIg2WCiMy2VyZBqNHz6JIX8sqgvuZ3drGVsbi9lUv50V1esx60zMzpnKufkzDurhFq238PAZ9/DGpveZv/s7Oj1Wbh97Xb/jSuflz0Sv0vHy+nd4cvk/eHDqL8hMMrOzIsBfrrifPy17kT8ufZ67J9zEhLRRPY5NMSXyxJn38/aWeXxRsojStgp+NfnWw+7CUylUBGoKuWTMeBY1f8ZvFjzJb6bdGY4y8WNDodEhApK370nfCdEGtpW2HLfrJxrjeGDqHayv28obmz/g0cV/ZWbWJK4efkk4VuKxQBakY0hZrZXqRjs/u3QQH+96jSHx+YxM6j/+15cliyhrr+KXE38avmElSeLlDe/Q5GzBWzqWO2+ZhNPv5ImlLxAUg/z+AGJUZ2vkbytfpdbWQLZ2BDtXxnLBxDx+evGw8Ix3d9UOdOlDeqXl7qbZ0cq2pt3saN7DnpYy2rrcv9UKFZmWVKZmjiM7KoPsqHRSzUkHfPrVa1XceMEQJgxN4qm3N/DAiyt44PoxjBu8bywjKAYpa69iW1MxWxt2UdJegSRJRKj1FCUOZmTSEIYnDj7ufdf9Eak1Mjp5GKO7up+8AR+lbRXsbt3L7pYyllWt5buyZUCoBZMTHcp4m2lJI8OSSkJE7BF5KRnyRhM963raF75JVFIuUybPZUrGOAJikK2Nu1hQtpwPd37JFyWL+Mng8zkv/8COCyqFkp+OvooovYUPdnyOKEncOf6Gfh0QZmRPQqVQ8eK6N3lq+T/JTTiLpZvdRKrM/GHmvTy14iWeWfUat465qleGUo1SzS2jr2RQXB4vrX+bB7/7M/dN+Tl5MYc+vuELhCYoF1gKmFl0P39a+iK/X/IMD0+/+7DOc7rQLUiiz9Pn/oRoA202D/6AiFp1fLziBEFgXOoIihIK+WjX13y5ZyEb67dz29hrGJsy/OAnOARkQTqGrNhah1IhEDTXYK2x8+uht/X7xNzpsfHRzq8YlTyMifs9Za6oWs+amk0omwYxKnUQOSlmnlj2PO2uDn4341f9itG2xmL+tvJV1EoVV+Vcz7/fbWbmmDRuu2RY2IaAvYNARyOm0WeHjwt1i9WxqmYD6+u2UmcLRduO0pkZFJ9HYWwOeTFZZJhTeniFHQ6FmdH8/ZfTePz1tfzpzTXceFkqisgOdjWXUNyyF3cgFKE6OyqdSwadw4jEIeTFZJ6UUYm1Kg1DEwrCwSmDYpBaW0NXvqYqytqr+LT4O8SusS21Uk1aV86iVFMSKaZEUk2JxB+CUJnHXYC3vpSOpe+iTx+ELm0QKoUyLJBVnbX8b9tnvL11HquqN3DPxJtJjIzv93yCIPCTIeehEATe2z4fo8bAzaOu6Lf81MxxSEi8uPZNnEYJyKShzUlWspmHp9/N31f9i1c3/A9f0M95+TN7HT8pfTSppkT+suIlHvv+GX458ZZDrrhc7tB4WoReTaoplj/MupfHvn+GPy19gT+eef8BHTRORwR1d5dd3y0ks1GLJIHT7T/uqTt0ah3XDr+EaRnj+Mfat3h6xctMyxzPzSOvOKRpDgdCFqRjyMbdzQzOjub7qoXkRmf2mSivm492fok/6OeGET8JC4bD6+TNLR+SpE+hvCqd83+axae7v2V70x5+Pva6fud5rKnZxHOrXyfFlMT9k2/n4Rc3kxIXwR0/Gd5DEL11ewDQpRbi8XtYUrmGRWUrqLLWoRAUDInP48zsKQxPGkxKZOIxCSNi8zrY21ZJSVs5pmFlaBPK+V95qLJJioxnSsbYUAUfX9CvS/yR4Al4aXa00ubuwOoJBVr1Bf1ISCgFZTjtdpTeTKwhihhD9BEN1CoVSjK6cjN1txR8QT811vpwmKUaaz3bGotZWrkmfJxaoSLVnESWJY3s6HRyozPJsKT2EGFBEIg77+d4G8po/vRZUm/9Owrdvu65DEsqv5n2C9bUbOKVDf/lwQVP9hrb6YtLBp2Dw+vki5JFpEQmcnZe/3HQpmWOx+V38+9N76POdFHXPI6sZDNalYb7Jv+MZ9e8zpubP0QhKDgn74xex6dbUvjTmQ/w5PJ/8reVr3Ln+BuZkjH2oN9rpyMUjsoUEeqajTFE8cgZ9/DbBU/y9IqXefKsB49ZVJBTAUGpAoUqnMb8h+g0of+NxxcATkwuqXRLCk+ceT/zdn3NJ8XfUNpawa8n30a65cimLIAsSMcMp9tPVaONM2caWGFv4s7xN/Zbtt3dyeLyVczInkzSfk+0H+36CofPSZ50Dk06D7GJAf628EsmpY1mRlbv8D4Amxt28Nzq18mJzuS30+5kU3E7Da1OfnvjOLTqnhWst6EMr1LJ5+17+Grtyzj9brKi0vjp6CuZkDb6qPuCXX43lR01lLWHInyXtVWGw9woBAUZ5hTOyJrImrVeJHs0j//yHMzGo795XD43e9sr9wt1VEuLs+2wzqFUKEmNTCSrSxwKYrNJMycfUUBTjVIdCib7g4yrTp+LOlsjtbZGam0NVHfWsb5uK4srVgGhMayihEGMSx3BmJQiDGo9Cq2B+Dn3UP/WQ7QtfJO4C37R63oT0kaRHZ3Bn5e9yBNLn+eh6XcxOL7/YLmCIHDt8LnU25t4c8uH5ERnkBuT2W/5c/LOoMXRyed8y5KaZUwZcRUAKqWKX078KX9f9S/+vel9jJqIPsXGpIvk0TPu4cnl/+SFtW+gU2kYc5CWUoc91DW1fwqK+IgYfjXpVh7//lne2foJPx1z1QHPcbqh0OqQ+umy02lDVbnbG+hz//FCpVRxxbALKUos5JlVr/HQwr9w+7jrmZQ++sjOd4zt+9FSXm9FksCqKkev0jEhdWS/ZReWLScoBrmo8KzwtnZ3Jwv2LuOMzIls+x6GZMfy9taP0Km0Pbzv9qfGWs/fV71GujmF306/E4Naz7LNdUSbdIwf0rNLQ5IkVjTt5LOMGOy7vmJMchEXDzr7sGfXd+P2e0KpJbrEp6Kjmgb7vtTisYZosqPTmZUzhfyYLLKjM9CpQuJzdpqVXz+3jH98tJXf3DD2sFpioiTSaG+mtCsh3Z7WMmqtDWF37SRjPHnRmczMmkRiZByxhmgsOhMRGgMapQYFAkFJxB3w4PA66fBYaXG202Bvoqqzlo3121lSsRoIjQkNTxzEqKRhDE8afNSCHaEx9HKakCSJFlc7e9sq2NFcwqb67ayr24JWqeHMnKnMKTwLS0o+lolz6Fz1Ccah09Bn9nanjo+I4fGZv+bRxX/jLyte5snZvyFxvxQlP0ShUHDnhBu579sneGHtGzw9+6EDulZfM+Iivtq4nW3ScopbxoSzGqsUSn458RaeWPoCL637D4nGuD7FTafW8eDUO/j9kmd5bvW/eeLM+w/4JN3a6UGjVvbyzBwSn885eWfwTekSZudOO6qn8VMNhcbQb5edXhOqyj3eYJ/7jzeD4vJ4avZv+fvKV3lu9es4fA5m5x5aBPL9kQXpGFHf4gQkKhyljE4p6vfmFkWRReUrGZE0uEeF8VXJ9wSkIBcVzOabD9eSPzjI6qbd3Djysj7Dv/gCPv6+8l/oVFoemHoHBnWo73ZXRRtjBiX0CLdi9zp4ad3bbBA6yFTo+M2sew74RPxDJEmi3t7E7pa97GkrZ29bZY/cRjGGKLKj0pmWMZ7s6HSyo9IPONk1O8XMdecW8sYXu1i5rZ4pw/uuVDwBL/W2RmqsDVRZQ7mV9ncx16t05MdmMTFtNPkxWeREZxySK7aK0FiQRWfqcz5Nk7OVPS1lbG/ezdaGXays3oBCUDA8cRBT0scxNqXomHUXCYJAfEQM8RExTEofgyiJlLZVsKBsOV+Xfs/i8pX8dPRVTJ5yGY7i1bR+/Sqpt/0doQ/PzUitkd9Mu5MHvn2CF9e8yeOzfn3AFp5RE8Ed467nD0ue49Pd33L50Av7LasQFOSI0ykLfs7za97g7+c8Gp6MrVGquXfybTz43Z95ZtW/ePqch8P/x/3RqXU8MOV27vvuTzy35t88ddZv+h2XbOl0EWfR9/mwctmQ81lSsZpPir/hnom39Gvz6YZCq0Psx8tO26PLbmCI0pt55Ix7+Pvq10Jz34J+Lig487DOIQvSMaLd6kaIsOLwOxl1AM+6nS0ldLit3DTy8vC2QDDA9+UrGZsyHK1kQhQlKoObiNKbe3kwdfPBzi+oszfy8PS7w7HrPL4AVoePlLh9T/K1tgaeWvZP2twdnN9i54LhM4k5BDFy+JxsadjJpoadbG/ajbXL/TpSE0FeTBaT0keHYrYdRHz6Y860HJZuruPV+ZuITvBi83fS7Gyl0dFKk6OZenszba6OcHm1QkW6eZ+LeW50JqmmpGMeZ0sQBBKNcSQa45ieNQFREilvr2Zd3RZWVK3nhbVvoFfrmJU9hXPyziD+CCf59odCUFDQ5Up+6eDzeHn927yw9g06hs/lzNm30Pj+E1jXf4Vlwpw+j4+PiOGGkZfxz3X/YVX1xoOO1wxLKGRS2mjm717A7NzpBwwQm5MUw65Nw2gvXMOHO77g+pE/Ce+L1Bq5Z+ItPLL4r7y3bT43j+7bWcKiN/OzMdfwlxUv8XXpEi4s7LvCau5wE99PHiqjNoIzsiayoGw5Lr+7T/E7HRE0+v5bSF1ddgMpSAAalYZ7J/+M59f8m/9smUdcRAzjD9Bb9ENkQTpGONx+dNGdABQl9J/pcn3dVtRKdQ938K1Nxdh9TmZmTcLtDSDoHDR4q7hq2Jw+5zDV25v4cs8iZmZN6hG/LhgMtVi63T6rO+v4/ZJnUSDw0PCr0H/4d7QHCEfjD/pZX7eNpZVr2Na4i6AkEqk1UpRQyJD4AgbH5ZIUmXBYXWxBMUirq51GRwtNjpZQpAJnK82OVjrSW/EEPTy29Ktw+UhNBInGOIbE5ZMUGR/ySjMnkWSMHxCvO4WgIDcmk9yYTK4cdhF7Wsv4bu8yvipZzNel33N+/ix+Mvjc4zLAnhQZz6Nn/JLn17zBO1s/Jn/mvZhzRtK5ch6Rw2ei1PcdOHVa5ng+2/0dX5YsOiQHgiuGXcTq2k18XfI9VxX1LXQAeekW/EvMTIgfzdd7l3Bu/oweUTfyY7M5K2cq35Ut47z8Gf16/I1JKaIoYRDzd3/HuXln9NlKam53kTOsb49SgPGpI/i69Ht2NpccM5fjkx2FSoMY8PW5T6ftmvs3QF12+6NSKLlz/I20Odt5cc2bpM5OOmSvSFmQjhG+gIjC2ElSZOIBIyzvbNrD4LjcHhM719duQa/WUZQwiKZ2D8qYhlCuo34cGebt/AqVQsWVP6g89FoVKqVAp91Lq6udPy59HrVCxWMzfkVkfSVNgMqS0Ot8br+Hb/cu5auSxXR6bMQYoji/YBbjU0eSE51xSAP7/qCfOlsj1dZ6am0N1NoaabA10ehsISjuu0nUSjXxhhjijbEUxOawu9TD3jIf910xjRHpGUftNno8UQiKrjQYeVwz/BI+2P4F83d/x9bGXTx6xj3H1EuwG6VCyR3jrmdXSylf7FnIXTOupe61e+lc/SkxM6/r184ZWRN5Z+sntLk6iDFEHfAaSZHxjEwaypLK1Vwx7MJ+f++C9FCkhDRGsVnaxNelS7h+xKU9ylw6+DwWl6/im71LuXHkZf1e89z8GTy1/J9sayruFWLI4w3ltjpQUNWc6EwEBKo6a380goRSjeTp28suPIY0wC2kbjRKNfdO+Tn/9/XveX3jezxyxj2H9CArC9IxQgBEnZWsqP6765w+F7W2xnCIfwiNWWxtKqYoYRAqpQqjXo0yqok4TUqfk0E73FZWVW/g7LwzenWvKBQC6QkmSmvbeWblF3gDPp44834SI+Ox2jcBoDLte6KVJIklFav537ZPsXrtDE8cxB3511OUMOiAXWGiKFJtraekrZy97ZWUt1dTZ2sIx5VTCgoSI+NJNiUwJqWIpK4o14nGOCx6U48Kz1rg5fanFvHxV82Mv7PgwF/ySUSsIZo7xoe8iZ5e8TJvb/2YO8YdXmxASZJweUKZbO0uH15/EFGUUCoUGHQqTBFaok1atCoNg+PyKO+oRpuQiXHIFGwbvsEy/qJeqQi6KYwNTTmo6Kg5qCABTE4bw6b67VR01PTyDuwmLkpPfLSB8kofI3OHsrJ6PdcNn9ujoonSmxmZNIQ1NZt6TGn4IcMSClEr1exo2tNLkFo6Q91S/XXZQWgMMFIbQbvbetDPdrogqNRI+wXo3Z/wGNJJ0ELqJkpv5qqiOby28T021m9nTErRQY+RBekYoVKLEHQfsGla0VGDhNTDoaDN3UGbq4M5XbmPRIUbhcGBWew7MOXyqrUEJZHZuX0nLivKi+WrvQtQtlfyq0k/DQ/aBx0dIChQGkIiZvM6+MfaN9ncsJOC2Bzun3r7AWfAt7ra2VS/nS2NxT1SR0RqjeREpTM6eRjplmQyzKkkRsYf8pwes1HLbZcU8bf/buSdr4u54fzBh3TcycKIpCHkx2ZT1lbZbxlJkmjpdFNWa6WiPhTNo67FQVO786BdLAqFQFJMBL6MWrRaJTVNduInX4pj5wqsG74ienrfrs/mrla6w+c8pM8xKD4kYHvbKvsVJIDhubGs2t7ALVOHsaF+Gw32JpJ/8J8fnjiY9XVbaXG2EW/sOwW5RqkmOTKBentTr32tXYIUd5C0EwpBgSiePBXw8UZQqqAfQdJ1tZBc3r73DxSzsqcwb9fXLChbLgvSiUTQecADUbr+n0ZrbQ0APVIEV3bUAJAdFYrRVdpeCYC7ve/B5bU1m8mJyiA5snfXG8CooWa+cZSRpstjYtq+uQBBtw2F3oigUNJgb+aPS5+n023l5lFXMDt3Wp/dNE6fi+VV61hetY7StgoA4iJimJA2isFxoSgOcRExRz2B9oxRqewoa+WjxaUkxhg4e0LmUZ3vRLKudgu7Wko5P29fpAKXx09JdQfFlR3sqWqntKYTmzPU9y8IkBgTSqE+LDeWWLMeS6QWU4QGrUaJQhAIBEVcngCdDi8tHS52teyhXNFER3ked6xcTFJMBLeaC2H911gmzUWh7j2XqzvVx6Hme4rRR6FSqGhxtR+w3Ij8OBasq0bpDbXMam2NvQSp+6GsydnaryBBKPWHJ+Dttb3NGhKkGPOBU6o4fC6Mx6Gb9GRFUKqRgn13ySkUAnqt6oTPQzoYSoWS6ZkT+Gz3dzh8zoPGXTyugvT555/z0ksv4ff7ufHGG7nmmmt67N+5cyePPvoofr+fpKQknn76aUymY5sa+0Sh1YWe1BTB/m+iFmcbaqWaKN2+bpb6rrk73Tdxd+rumkp6xaVy+Jzsba/i0iHn9XuNnfb1CAqRll0ZeM4JhCfMiR4nSl0EzY5WHvv+7+G4eH25f3e4rXy2+zsWla/EG/CSYU7hqmFzGJ864rCdGkRRxOl34faHEuV1p1hQCAq0Kg0GtZ4IjYGfXVJEa6ebFz/cSpvVwxVnFYTj752MBMUgnxR/y4c7vyA9Mo143whe/HALuyvbqW6yI0kh8UlLiGTc4ERy0yzkpJrJTDKFn2YPhZLWcr5ftpwUfSL/d8PNbC/tYPW2Bv5Xmc5dkcW8+/JbjDj/UoZk9/T229NaDoSiORwKgiCgVqh6pMDoi+F5cQgCVNSEhMTudfQqo1WGxkd9/TzNd+PyuYjpI4J3m7X3pNgf0uhoJiAGSD5AqKTTDUGpQgr0/50adCrcnpNLkACGxhfwafG3lLdXHzSJ6HETpKamJp555hk+/vhjNBoNV155JePHjyc3d184nSeeeIK7776b6dOn8+STT/L666/zq1/96niZdFyJMIY83Jy9788wnR4bFp2pR4Xe5upAr9KF58802luIVJto9gjsKm9jeP6+uUpl7VVISAzqJySRP+hncfkqBkcPYeN6Fe8t2MONFwwBQPJ58Ku1PLviJXxBP7+f8X+9JhUGxSCf71nIvJ1fERADTE4fy3n5M8g+QBcOhFKv11obqOysoc7WSIO9mRZnG+3uTmxeR3i+Un8IgoBFayI2M5r0SBUfbqtgZfk2fn7ONIZlnTwxyyRJorXTw5q9u5lf+SlWsRmhI4Xd6/PZLe4kQqeiICOayUXJFGREU5ARddgpN7oJBAPM37OAD3d8QWxEDL+ddidxERbS4iycNymL1s4RNPx7C+mdG3nwHwmMyIvjpguHkJ1iRpREFpavIMOccsDJsfvjC/hwBzwHfYI1G7XkplrYXtYEsfTp+ej0h1pnhgO0zgLBAA2OZob24ZHabvNg1KvRqPvv9t3RXAJwwjKZngyExpD6FxyDToXrJBSkzK6Holpbw8AJ0qpVq5gwYQIWiwWAs88+m2+++YY777wzXEYURZzOUB+32+3GbO49QGuz2bDZbD22NTY2Hi+zjxhTZOjmaW7t2y0TwOl3Y1T37Be3ee09vPI6PJ3EG6OxapQs31rXQ5CqO+sByLKk9Xn+7U27cficXDR+OtEdfj5ZspdxQxIZnBWDFPTzpT5IjbWe3067q5cYtbk6+Puqf1HaVsHYlOFcN3xuv267kiRR0VHD5oYd7GjeQ2lbRfhpWKVQkWCMJT4ilpzoDMw6E5HaCAxqPRqlGqVCiYBAUAriDfhw+d3YvA463Faana0EDE2o0620sIfH1yxBvzKGooQhXDJiKjlxJ25Wvs3po67ZQU2znaoGG5UNNsob2/FG70SZUAUBDVG2iQyLHUb+iGgKM6NIi4/sMSH5SAiIQVZVb+DDnV/S5GhhQtoobht9NUZtT6GItRhQTz2fiO/+zS9mRvGfNZ386pklXDAlm/i8Jmqs9fzyMCaNVnbWApDWT/De/RlVEM9H68rQxNKnw0StNdQ1nWTsv/VS0vWf6SunTofdS9QBWkcAK6s3kGSM77fr+lTkYHXdgbrsAAw6NU73yTWGBIQftp195HL6IcdNkJqbm4mL21eZxsfHs23bth5lHnzwQW666Sb+9Kc/odfr+eCDD3qd56233uLFF188XmYeMzTqrrk/jf03kfxBX695RW6/B4Nq383n8LqIMliYOCyJFVvq+OlFQ8Pdbk3OFiI0hl6VUzebG3aiVWkZllBA4RzYUdbGU/9Zz99/OZ0G0csKlZezc6czIqmn40CdrZE/LHkOl9/NLyfe0sMLcH9aXe0sKlvJ8qq1NDvbEBDItKQyK3sKeTFZZEWlkWiMO+r5Qjavg12NZXyzbRO720tY176UdYuXovHFkBcxgklpY8hIMBMXpcccoT0sEZAkCY8viM3pw+rw0m7z0NbppqXTTXOHm4Y2J42tThz73dhajZL4NAeqwRsJ4mBM/DhuGXspMcZj171s9dj4vmI135Yupc3dQYYlld9Ou5MRSUP6PcY4ZBptC99irK6SKb+5kv98XcyXW9ej8WygIKqgxxjiwVhXtxWFoGBw3MHzZA3Pj2Pezk5g39Pv/uxo3kN8REyvVOf7s6ZmE2qFiqKE3k/MnXYvUQeIWF3ZUUtxSynXFF1yTAIAnywcrK4TlKp+vewg1MVZ23zsk/QdLYIgdD2Eigcte9wEqa/M6Pv/eTweDw899BBvvfUWRUVFvPHGGzzwwAO8+uqrPY654YYbuOSSnum/Gxsbe41HDTTdn620phNJkvq8UURJ6uVOHRCDPSYGeoJetEoNsydksmRjLd9vquXciZkAdLptROv6v8n3tJaRH5OFWqlGrYSHbhrHfS8s4/evrSElyYUaemWvbXd18sclzxOURP4w694+xxxanG18sOMLVlStQ5QkihILuXTweYxKHnpEURoOhklrZELGcCZkDEcUJdaVVvJN8SpKA9vY6V/E9uJVBBbmEGxNQaFQYIrQEKFTo9cqUauUKBQCCkFAlCQCARFfIIjHF8TtCeBw+wkEe98YKqVAXJSBhGgDU0ekkBxnJDkuguRYAwtrv+Wr0qWkmBK5feztRxz/74cExSBbG4v5vmIVG+q2EpREhsTnc8voKxmVPPSg87+UhkgM2SNw7lpJ9MzrGDsBVgQ3I3oi2f59Gt+aqjin679zIDwBL9+Xr2RU8rBDmktVkB6FKqqFSCG2V3mX3822pt3Myprc7/Fuv4elVWsYnzqyT6eLdpuHQZn9Z4edt+sr9CodZ+ZMOaitpxKHVNf1Ua92E2fRs6Wkud/6Z6Bw+z1ISBgPMazXcSEhIYENGzaE3zc3NxMfv68JX1JSglarpago5Ap4xRVX8Nxzz/U6j8lkOiUcHZRdQmNzeahuspOR2NtmhSDg/0FlKAj0+JOJkoRSUDA4K5rcVDOfLNnL7PEZKBUCTr+r31htoihSa2vkvPwZ4W0ZSSYevH4cf3hrOc0pXiYGND0ChIqSyPNr/o3T7+Lxmb/uJUaiJPL57oV8sPMLBODs3OmcVzDrmIfLORAKhcCEgiwmFGQhSVezoW477237ghrtDmIKWhmingmeSJxuPx5fEH8gSFCUQuIvCBh0KixqLVqNEoNOTYROhdGgwRyhwWzUEmXSEmPWYzH2bml5Az7+uvJltjYWc07eGVw7fG6/2X8Ph0Z7M4srVrG0Yg0dHiuRWiPn5s1gZs5kUk0H7zLbn4jCCVjLNvLWqjf4qnY9OVEZ3DX2Nl7x7uEfH22lucPFdecOOmAF9Vnxd9h9Ti7umnpwMFrcLQjGTlT2Eb32rahahz/oZ2rmuH6P/3bvUtx+D+cXzOq1T5Ik2m2efrvsdrfsZW3tZi4bcv5hpZA/FTikuu4Av2OsRY/bG8Tp9mM0HPuMykdKd1ddhHoABWnSpEm88MILtLe3o9fr+e677/jDH/4Q3p+RkUFjYyPl5eVkZ2ezaNEihg3re+7NqYBW2dXFoAyyeU9zn4KkVmqwe3vOC1EqVAT2m0uhFBSIkoggCFw2K58/v7WepZtqmDkmHX8w0G/q7nZ3JwExQOIP+u1HFcZz4XkRfFMPGc0ebE5fOMfM9+Wr2NVSyu1jryMzque4lMfv4ZnVr7O5YQfjUkZw46jLiDX0/9R6IhAEgbGpRYxJGcbyqnW8vWUeqzwfcMOInzA7d9oxfSoUJZFnV7/Gtsbd/HzstczM7v+J/1DPt6l+B1+Xfs/2pt0IgsDIpKHcnDWR0UnDjij5oSRJlJgjeT0tmtba9ZyZM5UbR16GRqnm0ZvH89LH2/hwUSkA15/X9/yu/2fvvMOjKtM+fJ9pmZmUmfTeeyAJCaH3KoioKApi1/WzrH11i72srrruuq517b03RJDeWyChJJCekN57Mpk+5/tjkkBIIaEISO7r8pLMnHPmzWTmPO/7vM/z+xU1lvBTzhomB40Z9MpvRe56JEhpLPbAZhO7A7nNZmNl7kbCXO0WHn3RYdLzc846knxH9Nnv1NZhxmyx9VnybbFZeS/9K9zVriw8Rin/wkHE3oLfN56djcR1zfpzKiDVdlrQePRRUXk8Z3SF9MADD3DDDTdgNptZvHgxCQkJ3Hbbbdx7773Ex8fzj3/8g/vvvx9RFHF3d+f5558/U8M543QJPHp7yNlzuIbLp/WuhFPLVZSZK3s8ppQ5oLcc9ThRSOUYrfbCiPEjfQkP0PD56px+FbG7aO4UP+1L3cHkUIdSlOCr0/PXN7bx1B8m4KZ14LusVUS5h/WSKDJaTDy/9XXyGo7wh9FLmRN+em/2p4ogCEwNGcconzje2PMJ7+/7ipKWCv6QvPS0ia2uyd9CemUmtyQvOaVgZLPZ2FGaxg9Zv1LRVo27ypUlIxcyI3RityjuUBFFkey6fL49vJLDtXl4yBTcYVQzM2VZ9zFSqYQ/LrZL6ny7IR8vV3Wv9F2zoZWXd7yD1sGFm5OvZjBUt9ex5cguopwS2d8ho6HF0H0j3FmWRlV7LQ9OvK3fz8uP2atpN+lY0o+yeF2TfTbtoe2t0vBT9hpKWyp4ePId3VYmFxKiKA4Uj7rfs/pmPaF+/af2f2sqWu3Nz/7OJ66YPaN9SAsXLmThwp4fvHfffbf739OmTWPatKF7ZpyLOHcWGkSEqNm5tZ7mNmMvK2EXhSPtx62QnOTqHtUnKrmKDrM9QEkkAjcvGMFj/9vJ8q2FyCTSfvtEuoKaStZ7ZnmkuYwQuSMeylYamw089N+tLF6koaGjiZuTru5183h/31fk1Bdy/4Q/nLTR1m+Bi9KZv0y5ky8zlrM8Zy06Uwf3jL/5pJxfj8VsNfND1q/Ee0dz0Ul4unSRW1/Ie+lfUdJcTrDGn3vH38L4wOSTHp/VZmVPxQF+yd1AfsMRNEoXbk66mtHl5bSnrsBm1CNxOHojFwSBO69MpK5Jzzs/ZRIT4kaI71Gljr9v/i9txnaenvngoHX4PjnwPTKpnFlBM9nPYbtNhKsKi9XC15krCNb4MzZgVJ/n1uoaWJW3sdOmpO9WgupG+3fB261neqe4qZzvD69kYlDKhaNd1wfCQCsk7dEV0rlERVs1SplDn5Pl4zm92v0XMF2b+wF+CmwibD9Y0ecxeosB4zGKvS5KZ9pNHd1pO2cHxx7NholRnowb4cM36/OQIEdv7tsx0mqz7031dbOraa/HR+GCYOrgxbsmIJdL+WT7JhQSh146YhnV2Ww+sotFsfPO6WDUhUSQcG3iIq5LvIJdZem8uecTbIOo5hmI3PoiWoxtzIuccVIrQ6vNyucHf+SJDf+i3aTj3vG38OJFjzA5eMxJBaNmQys/ZP3K3b88zis736PV0MatyUt5Y8GzzI+agVPwSLBZMVbm9zpXKhF4cFkyjko5r39zAFEUqdU18OTGf1HVXsvDk+84YZ9ZF3srDpJWcZAr4+bj72pXYOhSoFhTsIUaXT3LEi/vtxjj84M/IgjCgIrilXX2z76fx9FKUrPVzOupH+Hk4MStyX3bWlwQdHVb94PWWYlUInRLL50rVLbW4O/sM6jv0nBAOk04KdTIJDJEuYFQPxc2ppX1OsZNpQWg4Rh5FjeVBhGRZoNdJFKrdKHJ0FMw8rbL47GJUFFlpK0fbbKuogrLcdpeFquFDrO+uwTX38nKv++bioO2BX2DC9+sy+9REfnd4ZV4qt1YPIAaxLnIpTFzWBp/KdtL9vB15opTulZFq733o799kIEwWky8sO1NluesZVbYJP497wkmB485KSv0goZi/rv7Q+5c8QhfZf6Mn4s3f558B69e/DQXRU7rNoF08LfblRsq8vq8jsbJgesvjiW3tInv9uzkb+teoFnfwqNT7z5ho2IXbcZ23k37gmCNP5dEz0bRqSBiNttoM7bz3eGVJHjH9rBVOZacugJ2laVzWczcAcVeS6vb8NAoUSuPFo98e3glpS0V3DnmujOiqH7+MHCDuVQi4K5VnZMrJD+XwfWLDWvZnSYkggR3lZb6jkZmjI7ngxWHKatpI9D7aNNrl3dMXUdjt/5X15ezXteEh9oNd5UrOlMHBouxO0/u7aZm6ZwovsjIQilvxSbaet3guo49Xhusq2FVpbKv4Cyt9Tj5u2GVtxOkDePLtblU1LZz39IkmoyN5NQXcm3CIuSnoZrst2ZR7DzqdI38mL2aUNdAxgcmn9R1zDb7ezbUijqrzcrLO/5HRk02t6dcy6yTKEsWRZF9VYf4KXsNufWFqGRK5oRPYV7EtF6acV1IlY7IXH0w1RT3e93JSd58lJ7Pt0dWE6Dx5aFJ/9fv9foa09t7P6PNpOORqXfbU8ed3ltSqcDXmSvQW4zceIxh3/Hnf37wR1yVmhMWIxSUNxPmr+3+uaixlJ9z1jE9dEKv1fwFh8iAKySwp+3qms6dgGQwG2joaBq0H9LwCuk04uXkTl17PdOTA5BIBDbsLe3xvHen0GRNe93Rcxztj3VVonQHLV1Dj3MXTY/ATaXFKlqpbm7ieJw7JV9ajcc1xnV+fgWVfWZpbqxCZ+rAJtqYkxzJjQvi2Hqggife2UV6eTbAoFR5z0UEQeDW5CVEuoXw1t5PqT3uPRwsLg72SUSXS+5g+T5rFQers7ht9LKTCkYZ1dn8dd0/eHHbmzR2NHFT0lW8fek/uCV5yQmDh8IrGFNtSZ/PHag6zF/WPY/FvRBbfRBPT3940MEIYFXeRvZWHOTahMu7qzHbOlN1HTSyrmgbcyOm9hANPpb9VYfJbShi8YgFAxYjtOpMlNe2Ex1sn6TZRBvvpn2Bi4NTL9+lC5OBq+wAPDSqcypl16XVOVhFjeGAdBrxcvSkWlePq4uSsXHebNhbhtlydD/DVaVBLpVT1XZsQHJHQKC63f6H69Ieqz4maAHIpBIun2APFB+vT+N4XDvTgY365h6PKzvL0Y0yGUhkmBoqutN6CqmcxTMjefi60eSWNPLN9n3IJLLzWo5FJpVx38Q/gAhv7fmkzwbtExHQebMubu69D9gf1W21/Ji9hinBY4fcsNmob+al7W/z9y3/RWfq4K6xN/Dqgme4OGrmoNW6Fe7+mJtrekjLlDSX84+tr/P81teRCAKXB1yL8UgcdY39y1sdz+HaPD49+ANj/BNZEHW0b6iqQQeIbK5Zg6NczdUjLun3Gj9mr8ZT7caMsIkDvlZGgf0zPzLcPinbXrKXwqYSrk+88oQaexcCNrMRQT5wObenq4qGFj0229A/92eCyjZ7+nvYMfYs4OvsSZuxHZ2pg4vGh7D7UDWph6u6S7YlggQfR48eKyS5VI6noxuVnaWRvp36cZWtNXBcpXdKWBif5kBqQQFZR1KICz3aoOogU6BxcKa2vb7HORKJBBcHJ5qN7cjd/TDXleEks6eiDJ3FFVOTAnBSKXh+wyFkZhk6gwWnkxQFPRfwcnTnusQreDf9C7YWpzItdPyQzg/U+KOQKjhQmUO4UywmsxWzxYbFasMmit0TValEQCaVIJdJ+LFgDQIC1yYsOuH1jyWt4iBvpH6M2WZhWcLlLIiaeVLpUpnWG2xWLG2N1EisfHd4FbtK01HLlVyfeCXzIqeRX9rKl2ynua235UNfVLXV8q8d7+Dr7MUfx93YY1O6oLwZtVcjeY0F3JK8pF85q6LGEnLrC7kp6aoTFnSkZ9fiqJITHeSK1Wblm0MrCHUNZFJw31JWFxqi2YjkBBMUd40Si1WkrcOExunsl8ZXtNYgCMKgRX6HA9JpxLdzZVHVVktSdDAeWhXrUkt79BD5OHt1B58u/F18Ke/cSHdUqNEqXbq9k47Fy9EduUSG3NXAG98d5NUHpyOTHl3k+rn4dG/IH4u3owfV7bU4eIegLz6Et1yNXCrvsZpKjvEipdyX9JoqXvx4L0/dNh6p9PxdQM8Kn8SmIzv5IvMnJgQmIyCjoUVPXZOe+hY9jS0GmtqMNLcZadHZHVvbOszo9Gb0BjOySBc2tu/j128HsYku2FAm7cHa7MUtT25F46TAzUWJl5saf08ngnxciArU4uvh2H1TF0WRn7LX8GXmcsJdg7l3wi3dk5GTQabxoFoh5ce0z9jTUIBCpuCy2LlcGjOne3Vh7Zw1D8bWo8XQyvNbX0cQBP4y5a7uPruusR/Ir0ERmoe7szezw6f0e50NRTtQSOVMD5nQ7zEAVquNPVnVjI7xQiqVkFq+n1pdAw+NWnxSBSG/R2wmA4Ji4IDUZdnR0GI4RwJSNd6OHoOeZA0HpNNIV6qrsq2GCPcQZo0J5Jv1edQ2deDV6X7p6+zNvqpDWG3WbhHSABcfMmtysNlsSCQSAjV+3YrJxyKVSAlw8cWmspGzqY2ftxZxxYyjDbhBGj+2FO/uVfQQqPFjb8VBFH7TaD+0FWtbI35OXpS39GzSjQvwZ1/DHg4UVfD5mpx+u/vPZdo6TBRX2tW5HZvjKbCt4Na3PqClxLeXDJiDQoqrswMaRwdcnZUEejvjpJSjUsootxk4oNvMLVeE4q52Qy6TIJVKkAgCgmCvwO3SyitoKeCXSgszw8fhEhpAc5uRhhYDJVVtpB6q7g4EWmcHkqI8mZYcQIF5D99nrWJy0BjuGHv9KUkSFTWW8m3RRtKD3HFoOsJlsXO5JGpWDxV5gJoGe4WmxwDW4GD33Xpuy2s06Zt5Yvr9vWa3RRUt1AsFKCQtXJOwpN+Vj81mY3f5flL8E1ErBn7N9NxaWnUmpo6yT962FKfiqtSQ4nd+7meeCUSzAcmJAlKnwkVjq4Ew/7PfHFvcXEaQZvAq/cMB6TTi7ejRYz9o9pggvl6Xx4a9ZVwzNxoAf2dvrDYrtbqG7hmxv4svFpuFWl09Ps5eBGn8WVe4tTtAHUuwawD7KjMZHTuZr9blMjMlsLsBN8w1iDUFW6hsq+mhiRbuFsLGIztpcbcHTENFLuFuwaSW7+/xGl2utaNHy/l+Yz4T4n2JDOy/RPdsI4oiFXXtZBTUc7iogdySJmoajzYZq1Uy5DGuSD3LWRI5HW83NZ5aFe5aJW4uPUuLj6e0WcOBNZtx8+tgaujAN8UjB1ORVkn4w+xpvTbtzRYb5bVt5JU2kVnQwN6sGraW7EYRdohIx3juGnsjMunJNcqWNJfzdeYK0iozUMuUzGrUsXDsUvwS+i7ZP1TUgJNKjo97//sx7UYdz219jfLWav48+Y4+5YR+3VWE3L+QEE0gY/1H9XutI81ltBnbSRlEddyvO4vROjswOtYbk9XMweosZoVOOm3KG78HbCZDn+7Ax3LsCuls027SUd1e10sJZiCGA9JpRCaV4a52pbpzH8fH3ZGECA82pZWxdE4UgiB0b+5VtFZ3B6SuTfTy1qrOgOSHyWqmRlffK40T5hrE5iO7uHJuAPtfq+PrdbncfoX9hhndefPIrSvsEZDivOyWArliB5FyJYaSw8THjWLjkZ3kNRzp9qSJ9ghHJVPi6tuES7Yv7y0/xAt/nHxOyQaJokhuSRNb9peTeri6u8TVzUVJbIgb8yaEEOanIdjXGTcXJSty5Xx28EcWTPdDOwRl8gAXXxykCo40lzGNgfegcuoKCHML7rOCTC6TEOqnIdRPw0XjQ8irO8KTm1YhN/iQsceXx0t38bcbx3brCw6GRn0zX2YsZ2txKiq5kiUjFzI3IIW61+/EsZ/NbKPZyu5D1YyJ8+43Zdesb+G5ra9T0VrNgxNv69P6oqnVwOaiVCQhepYkLBzws5FbXwhAnGfUgL9PWU0badk1XDM3GplUQnZdIWarmQSf3uZ9FzKiyYCgHvgz3GXb0dI+uH3CM0lho73qsy/Nwv4YDkinGW8njx6FBTNGB/Dq1wfIL2smKsi1R0DqKq8O6DRFK2upIsU/sds8r6S5vFdA6vrjdkjqmTM2iNW7S7hyZiQeWhW+zt5olC4crs3rUXbs5+yNl6M76VWHiQ+KRX8kg6RZ1yGXyNhRurc7IMmlciYGpbCtJJVFs8bw0U+FZBTUkxg5uA3JM4nRbGVdagkrthVRWa9DIZOQFO3FVbOiSIz0wNfdsc+bY1cpcnVb3ZACkkQiwcvRvVf5/fGYLCYKmkpYEDXzhNc0WUy8ufdjtEoXXrz0QfbENPHm9wd55M3tvHzf1BNam9tsNn7N38RXh1ZgtVlZGDOby2MvwknhiM2gow4QbX2rVKxPLUGnN3PRuL5vDmUtlbyw9Q1aje38ZcqdJPr0na79Yk0OeBfh6+hDcj9NsF2UtlTi7OB0Qs2+7zbmo5BLuXhiKAAlndWNg1WQuFCwmY1ITpD6lMukyKQCeuPZd449UJWFXCIbkqvv8Hr4NOPp6N7dUwR2gVSpRGBnhn2/pqtooaLtaPGBWq7CXe1KWWchQ6CLL4IgUNrSu+w4RBuATCIjr76Iq2dFYRNFlm+1z0QFQSDeO4aMmuwe8jmCIDAuIMn+eHAc5sZK5O0tjAtIYmtxKh2mo30LC6NnYbFZaVBmoHFS8Mv2otP7Bg0RURTZsLeU255bx/9+zMTZUcF9S5L49Ol5PHbLOOZPCMHPw6nfmbrebJ8pnswejVLmgMk6cIl0Vl0BVpuVEV4DrwLArjhQ2VbDnWOvx0XpzOyxQTx681hKqtv4bkNv2Z9jqW6v44mN/+LjA98R5xnBK/Of4LrEK7oLFrrK2/t6H3R6M1+tzyMu1I0RYb2tQ3aX7ePR9S9htll4auaD/Qaj/LIm1mWnIVG1c8WIi064cq7T1Z+wuqq4qpVN6WVcPDGkO/Vcq2tAIZXjOoD314WIaDIgnCBlB6BykJ31gGSz2dhTvp8RXlFDEsIdDkinGS9HD5oNrd0KCU5qBfERHuw+dLRIwc/Zu1elXaCLb3eRgUKmwM/Ju88+GLlUTphrEHn1RXi5qZmU4Me6PaUYTPYPYLLvCFqN7RQ0FPc4b2rIOKw2K+lK+02kIz+NS6Jno7cYWJW/8ejYXHy4KGIaG4q2kzhKQlp2DW0dg+9bOZ3o9Gae/SCV/3y1Hy83Nf+4axIv3zuV2WODBtz/6UIURTYf2YmTwpGgfpo2B6LVpDuhh0taxUEUUvkJ01LFTeWsyF3PjNCJPeR6Rsd4M26ED+v2lPbbM7W7bB9/WfM85a1V3DPuZv465Y94H3ejFztL+IU+7Ek+/OUwre1G/nDZyJ4mmWYD7+z9nH/vfJdAjR8vzPlbv+kVo9nKK1/uR+lfjouDM5P6cRU+lmZ964BBRRRF3v0pEyeVnKtnH33/Wg1taBycz6lU8bmAbRBFDXBuBKQD1VnUdTSesPfseIYD0mnGs9MzqKHjqJrCmDhvKup0VHdWOfk6e1PVWfjQRYDGj4q2GmydKZdgrT8lTb318ABiPMMpbCrFZDExf0IIOr2Z3Zn2gJfkOxKpRMru8v09zgnWBhDlHsa6in1IPAPR5ewmzC2Isf6jWJ6zjvpj9PWuib8UX2cvsmzrsMraST3Uu5T8TNNhMPPImzvYl1PLbZeP5KW7pzAy3GPQ59tEG58e+J4D1VlcGTd/yH5DTfoWatrr+nTQ7cJoMbGjLI0Uv4R+farAPlt8J+1znBRqrk+8otfzsSFuNLYaet1EbKKNrzNX8O+d7xLg4sPLFz3GlJCxfbsRG+yipBJlz4KF7QcrWLO7hEXTI3oUqByszuJPa/7OhqIdXBozl6dnPNhvak0URf73QwblTTXYnGqZHT55UO9n+wCGkgCb0svIKKjn+vmxOB/j39NhMaD+nZnvnSqiKCKajINaIUkkdrfks4VNtPH94ZW4qbSMGaDopS+GA9Jpxr3zS32sgOqozj2YjAJ7Ks/byYM2Y3sP5e4AF1/MVnN3ui/ENZC6jkba+xBTjfWMxGKzkN9YzIgwdzw0SrYfPJoSTPSOZVdpei/V60tj5lCjqycrOAxDWTaW1nq7JIso8vaez7qPV8qV/HnKnUgkoIpLY2t2zml6dwbPf77aT0l1K4/dMo5Lp4T3cnMdiIKGYh5f/09+ydvAvIjpzD/GRXewrM7fDMC4fqwUADYUbbc3QUcObFHxS94GChqLuSnp6j4bSHUGMxIBFPKj1XYWq4XXd3/E91mrmBE6kadn/mlAgzNLu30CJHXUdj9WVNHCq1/tJzrYlWvn2Vdlte31/GvHOzy35TVkgpSnZj7AdYmLBgwwK3ccYd2eUkaMbUciCMwZoO/oWI7VYzye+mY97/x0iNgQNy4aH9LjOZPFhIP03DGYOyewmADxhHtIYO83G0yv2Zlie8le8huLWRp/6ZDV7YcD0mmmS9G7SX9UBy3Q2xknlZzcEvtNw7PzxnLshrl/pxpuRZs9lRfcWdhQ2kfaLsYjHEEQOFybZ7f4HunL/rw6TGa7JNDUkHE06Js4VJPb47wU/wTCXINYYajEJED7oW14OXlwY9JiMmqy+ebQL93H+jl78/j0+5DJIUe+gu3FveWKzhQ5xY3syqxi2UUxpMQOTsbIYDawtTiVJzf+i0fWv0htRyN3j7uJm5OvHnJj5ZGmMn7JXc/EoJR+Nd9aDW18f3gVI7yiiPHobcbYhb00+2dS/BP7THOJokhadg2Rga7dTc4Gi5EXt7/J9tK9LI2/lDvGXHfCFYml2b7ilmk6pacadDz93m6c1Ar+duMYDNYOPjnwPff/+jT7qw5x9ciF/HPeY8R6Rg543V2Zlbz7UyYpI9ypFrMZGzBqQLXuY3+v/gKS1Sby7y/2YbXauP+apF6TDZPVhPwkHHR/z3SnZAchJWW1ikjOUrqzur2O9/d9RaRbCFNDxg35/OGAdJrp8kVqMR4NSIIgEBGgpaiiGQBPtX1juf6YtN6xKg9Ad6qopI+A5KhQE6YN4lCNfeWSFO2FyWztDnhj/BNxVjiytmBrj/MkgoQbkxbTYGhhY3AQbQc3Ioois8ImMzN0Ij9k/cqqvKP7SSGugdwQeRs2vSP/TX2ff25/u5fG3plgZ2YVMqmEhVMGttSu1TWwvnAbL2x7k1uX/5nXUz+iUd/CdYlX8OrFTzE1ZNyQ9yFKmyt4fuvrODs4cXPSVX0eYxNtvLX3UzosBm5JXtLva3SY9byy8z0cFWpuT1nW53F7s2s4UtnKnHH2HjCdqYPnNv+XjJoc7hhzPVfEzR/U72CqK0OQOyDTeFDb1MFjb+/EZLby15uS2Fy+ibtXPs7KvA1MDhrDqxc/zeIRF5+w0GNfTi0vfZpOVJArCWN16Mx6LjlGz24gjFYToij2qcX3+epsMgvruX1RAn4evZUwjFYTiuEVUg9spk7TTsWJU3YWq62HgstvRYdZz793vIMEgfsm/uGkFDYGNQ1ZtGgRy5Yt45JLLkGlOvGS8UJGLVchFSS0HmOyBxDk68zqXSXYbGJ3rv7YfSZnhSOOclV3U62rUoOTwpHS49QUuoj3iWFFzjo6zHriQu0rrqziBuIj7DIds8InszxnLdXtdT0qnWI9I5kTPoX1hdsI1zfhUXoYVfBI/pCyjHZzBx/t/5YmfQvXxF+GRCJh2ohI3vlmAuGjG8moPsD9q55iQmAyF0VMI7pzpXa6aWjR46FVonI4+vG02KyUt1SR33CE7PoCcuoKuve9PB3dmR02mXEBo4jxjDipL4JNtLH5yC4+3P8tarmSx6bf2z25OBZRFPki4yfSKzO5KemqfhWurTYr/9n5nr06bvr9fV6rpd3IW99nEOjtxMyUIJoNrTy35TXKW6t4YMIfhmSfYawqQOEVQlVDB4+/vZN2g4F5lwi8lP6SvTnVP5GlIxd2txSciLTsGp7/aA9B3s48eEM8j216jnjvmD4bZfui1WBXndc49FSL2La/gm835HPR+GBmjw3q81y92dA9QRvGTvcK6QRFDVabSHuHaUh9bacDg8XIP7a+QVlLJX+ecidejr2rOQfDoALS448/ztdff82rr77K3Llzueaaa4iMHHipf6EiCAKOCjXtx9iSA/h7OmEyW2lqM+DqrEFA6KElJwgC3k6e3cKrgiAQpPHrs/QbYJRPHD9lr+FQTS5jA0bh7+lIfunR682PnMHK3A38mLWaO8de3+Pc60ddSXZdPl/YRHz2LicxeCQyiZQHJvyBD/Z9zfKcteQ1HOGusdfj7eTJ6Bhfsg858O+HL2N1wSbWF25nR2kaHmo3UvwTSPCOIco9rJdUzckgiiJqZyuN1gp+ydlIZVsVR5rLKG2uwNxp365RuhDrEcGlMXMY4RVFQGeZ/Mlgs9k4UH2Ybw+tpLCphJFe0fxx3I19pqVsoo3PD/7Iitz1zI2YyvzIvvembDYbb+z5hAPVWfxfyrXdjcnHYjRb+cfHe2lpN/LITZNpMjTy9y3/pVHfzF8m38Uo38HLNtlMeoyVhYixc3jy9a1YXEpwHlHMryWtxHvHsDT+UiLdQwd9va37y3nly30E+7rw9G0T+Pzw1+jM+iFZQHTthR6775V9pJFXvtpHbIgbty/qX72h1diOywVtxNcbm9mIACcUV23vMGET+U117FqN7by8/W3yGoq4f8Kt/Zo0DoZBBaTk5GSSk5NpbW1lxYoV3HnnnXh5eXH99dczf/78k37x3ytquYoOc09Pki4tu7omPe4aFS5K517OsD5OnhQ2HfVQCtL6s/nIrj4N+aI8wlHLVaRXZjI2YBRh/lpyS44WUriqNMwJn8KvBZtZEDWzx8xYKXPgr1P+yCOrnuG/xhIeL8skJDAeqUTKH0ZfQ5R7GB/s+5oHf7VbIExMTmRXZhXZ+R1cn3QlV41YwO7y/aSW72dj0Y7uAgB3lSsBGh+8HT1xU2vRODjjqFCjkCq6Nzdtog2T1YzBYkRn6qDN1E6zvpUGfTP1ugZqdQ0YrSakUfDJwVQcFWpCtYFcFDmdMNcgItyC8XbyPKWVmdVmpaiplL0VB9lRspe6jkY81G7cNfYGpoaM63OF1W7S8WbqJ6RVZnBRxDRuTr66zzFYrBZe3/MxO0vTuCb+sj6tKDoMZp7/aA9ZRxp46NrRSBxbeXTDm1hsFp6Yfv+gVyHd1yvcj2iz8O/cZszhuYiKdnycw3gg4dZB9Ud1IXb2tH2w4jBxoe48dss4dpTvZHPxLq6Imz9gxeHxFDeXA/Z2BoDS6lae/WA3nloVj948Frms783uDpOeDrMej0HsU11IiF0B6QQrpC4vpC5NuzNNZWs1/+j077pv/K1MCBx9Stcb9M5ha2sry5cv57vvvsPZ2Zn58+ezfPlyNm3axEsvvXRKg/i9oZIpMZh7akl1SXo0ttofd1W60HycAZyXkwe7y/d3C68Ga/wxWIzU6hp6NRjKJFKSfEeQVpmBzWYj1M+FbQcq0OnNOHZaR1w54mK2lKTywb6veWLG/T1utF5OHjw26Q6e2fwqT+38H/dPtc/KBUFgWuh44r1j+CLjJ37OWYdcuglNrD+fbTMyIf4KlHIl00MnMD10AiarmYKGYgoaiylpLqeitZqCxhJ0x60Q+0NAwNnBETeVFm8nT+K9Y/B28mT99kZKim389dZZRAf3X102EFablWZDK3W6Bqrb6yhvraKosZSCxmIMFiMSQUKCdwzXJi5irP+oPgsHRFEkrTKD99K/pNXQxs1JVzMvcnqfwajdqONfO9/hcG0e1yYs4rLYub2OqarX8fxHeyitaeP+pcnIPWp4cuPHaByceXLG/T0knwaDzSayeevPbPJzo05diI+jF9cnXUeKX8KQgrbFauPtHzJYs7uESQl+PLAsmW2lO/lg/9ck+8UP6HfUF5k1uXg7eaJVaaiq1/H4/3Yhk0p4+v8mDDh7L2u1p6jPZ0+uM4HY2eB9oqKGslr7VkGA55lfYe4sTeN/aZ8jl8h4csYDQ55I9cWgAtKf/vQntm7dyvTp03nqqadISkoC4JprrmHixKE1Pl0IOMgUGI/r8O/qQm/pdNrUKF16OZL6OHlhE23UdzTi7eTZ7c5Z3FTWZ8f7uIAkdpSmcag2lxBf+4yyuKq1uxvf2cGJ6xOv4O29n7EqbyOXRM/ucX6IfxwPu8TyVvNhnt/6GvMiprM04VLUchVuai13j7+Jy+MuYmXuRrbYUml2LubWH/cwPjiBkV7RRLmH4u3kSZxXZK+0lMliotXYjs7cgdFiwipaERAQBAG5RI5S7oCTXI2jQt2ten4s430MPPzaNp58Zxd/vXEMo6K8MFnNtBrbaDPqaDO202psp91k/3ebUUebyf7/FmMbLYZWWoxtPZpNZRIZQRo/poWMJ9YzgnjvGJwHSA0VNpbwRcZPZNbkEKjx4y+T7+xXzqagoZhXdr5Lk6GVu8fd1KvCyK44Uca7yzORSgQeu3UMucZd/LxzHdHuYTw0+fY+95kGorShhhdWvUe9tgWlzYGbR13F3MjJfb6fA9HcZuTFT/dyqLCBxTMjWTw7lI8PfMX6ou0k+Y7ggQl/GJLIaauhjYyabOZHTKemsYNH396B2WLjH3dNGlDYFSC/4QgwLBt0PDazESknLmoor2lDIoCf55kzNDRYjHy8/zs2FG0nyj2M+ybc0u10faoMKiBFRkby6KOP4ubWc6Yqk8n48ssvT8tAfk8opAr0lp4rJKfOxr/2jq6A5NzL86gr6FS11eHt5Emgxg+pIKGoqbTPDe5k35Go5Sq2FO9mWexSAAormnvIw8wInci+ykN8fvBHQrSBjPSO7nGNiMlLuet/97IxOoY1BVvYUZbGZTFzmR02GbVCRYCLL7ePuZbrE6/g8S9/oqQjn93CfjYf2QXYV4MBLj74Onvj6eiOm0qLRumMk8IRtVyFUqawBx1BigDYELHZbJhtFpoMLVS116I3G+kw69GZOtCZO7oDTOD4ZnIranhu1wZk+y1YMff7njvKVTg5OOGicMRD7Uq4axBalQY3lRYvR3e8nDzwdvQ44c3aarOyv+oQq/I2cag2FyeFIzclXcXciGl99lRYrBZ+zF7N91m/4qbS8szMPxHhHtLjmNLqVv73YyYZBfWMCHPnhstD+CL7M/IaipgbPpUbkxYPyZTPYDbw3u7lbC3fikRmY3qTnmuveg6N++Bl/rvIKWnkhY/30tZh5v5rEhHcKnlwzdM061u5LGYuS+MvHXKAW12wGavNyki3JP725nb0Bgt/v2Miwb4nDrgHqrLwd/bpbp8Yxs7Rsu+Bi8ryy5sJ8HbuNyV6quyrPMT76V9S39HE5bEXcfXIhUPuNRqIQQWktLQ07rjjjh6PXX311XzzzTeEhw9eOO9CQS6V0WrsefNUyCTIpAI6vf1xrVJDi8E+g+9KrXQJqVa11TDKNw6FVE6Q1p/CxuI+X0chUzApKIXNxbu5cdRiXJ0dyC9r7nGMIAjcNfYGHtvwT17a/haPTbu3x9Ja7uqDe8Is5h3cyOxlf+GbI9v57OAPfHd4JRODUpgclEKMZyRqhYqnrrqSP726ldYKI/dcF4ZZ0ciRpjLKW6s4XJdHY2nzSVmG937/5LgonHBxcCI6wJO6OiuV1WaUUjVjo4MYGxWEm9oFJwdHnBWOOCkch3zTPBaL1UJOfSF7Kw6ysyydFkMrrioN1yYsYk7ElB7mdMeSVZvHe+lfUd5axeTgsdyavKSHMkFVvY6v1+eyKa0MlVLO7YviUfpW8sLulxEEgfsm3MKkoDGDHqfVZmVj4S4+2f8jRrEDrc6d2xtyCR17+ZCDkSiK/LytiI9+OYyrG1w818Z3le/QUNhEhFsIf5r4fyeVgqnTNbAiZz0JnvG8+lE+ZovI3++YSHiA9oTnthraOFyb22slPwzYTPaU3UB7SFabSG5xI1OSBr/XN1ia9S18uP9bdpWlE+Diy9MzHyTGs//+u5NlwIB07733cuTIEcrKyli4cGH34xaLZdinZADkEnl3RVgXgiCgcpDT0SkPo1W6YLFZaDfputNGWqULarmqh+trpFso20r29OmNBHBRxDTWFW5jbeE24kI9OVTY0CPIAagVKh6bdi9Pbvo3z25+lXvG38zYYxQIXKdcRXvmZjT7NvPYogcpbCxhdf5mdpSmsbFoB2q5ihFeUcR6RnDj1T6893UJr31SyAPXjObW0ZO6r2OxWe2pMkMb7SYdBosRg8WI2WrGeoxqhEwiRS6RI5fKUMocUMmVqOUqHDtTeH3J8GQdaeCjX7LYsLqR9B21zJ+gZs5YLRrl0NoQRFGkQd9EaXMlR5pKya0vJLu+EKPFiFwiI8lvJNNCxpPkO7LfmV9FazVfZi5nT/kBPNVu/GXKXYzu9Pyx2UQyC+tZueMIuw9VIZdKWDglnGnjtXyV/T2ZaTmM8IrirrE3DDrNIYoi+6oO8WH699R21GBr1zBGOYcl7auQanzRTl48pPegpd3Iy99sI7P+MK6jmtBJa1lTIjLCK4o/pFxDsu/IkyoasdisvJ76MaIIWTu8kYrwjz9OIthncKnIjUd2YhVtTAkeO+TX/r1zdA+p/3Lu0upWdAYLsSEnt+faFzbRxsaiHXx+8EdMVjNLRi7kspi5Q5biGiwDXvXPf/4zFRUVPP744zz++OPdj0ul0uGy7wGQS2WYrb3TS04qOR16e0A6KjHU3B2QBEEgwMW3RyovxjOctYVbKW4u6zOvHqT1J9kvnpV5G7gs4jZ2ZFRSWtPW6ybgptby7KyHeGnbW7y843/MjZjKsoTLUctVyJzd0Iy/jObt32JImU94YCx/HHcjt45eSkZ1NvuqDnG4Jpe9FQftFwsHqVXFy7t34ZflybioULyd3bpTdY4KFT5OnihlDsilcuQSGVKJtNdNThRFRFHEIlqx2uz/6c162oztWGwWLDZr9/+lzlZuXOJNXqmCnZkVfJ26nW/2bCfQx4m4EFfCAjQ4OUqx2uxVfCarCb3ZQIdZT5tRR5OhhcaOpu4qvi4CXHyZFjKOBO9YErxjUA6waVzeWsVPWWvYVroHhVTBkpELuSR6NgqpnMLyZnZkVLJlXzm1TXqc1XIWz4xkznh/tlVu5amta5FJZPxh9FJmh08ZdK9UVm0enx9cTn5jEaJBjUPDGO6ZMhG/fW9hMenxuuaxE5q2gb1p8XBtHpty9pNeeQjRUYfCEVxdfLk48GKmBI/F5xQs1G2ijXfTviC7Lh9KRuEsOPPsHyfiN8jNdYPFyMrcDcR7xwy6V+pCQrQYEWQKhAEyAXuz7CoviZGD13wciPKWKt5J+5yc+kJGeEVxW8qyM15sMmBACggIICAggDVr1gwr7w4BB6kCYx8ByVEtp11vvxm6q+xFCI36JkJcjy6xg7T+7CpN617ljPSy7/lk1OT0u9G7dOSl/GXt81RJ9yERHNmyr7xP+3Gt0oWnZj7IlxnLWZW3kdSy/SyKm8essMloJy6iLWMT9avfxf/WfyJIpChlDowNGNW9mmrWt1DUVEpxczllLVUcLi+j2lDMz7m5MIiPhyAICJ0Hiognn95Tg0PnVlgNUNMImxr7PrQr/adROuPt7EWCTxy+zl4EuPgSog04obW2TbRxqCaXVfmb2FeZiUIqZ0HkTCZ4T6G8ysTb3x1mf14tDS0GJAKMivLi+vmxjIv3YW/lPp7Z/iIN+iYmBaVww6jFuKoGZ6mQU1fIt4d+IbM2B8xKTOVxzAqfxHVTHWlb+R8sumZ8lj6Gg3dIn+dbbVbyG4rJqMkiozqHgsZibKIN0SpBYfHiougZzI0dc0pB6NjXejf9SzYd2Ym1MgJvInn2ngm4awa/el2evZYWYxtLRi488cEXIKLJeMKm2D1Z1UQGaof0vveFyWrmx6zV/JSzBpVMyV1jb2BayPjfJAYMGJCuueYavvzyS5KTk3sMputmuW/fvjM+wPMRpcyhV9k3gIujorvKritdU3ucAVyYaxDrC7dR3V6Hr7MXWpWGMNcg9lYc5PLYi/p8vRDXAOZGTGVtwVaiR8xlXWopS+dE9xDr7EIhlXNj0mImB4/hkwPf89H+b/nu8CqmBo8leeIlqFd/RMuelWjHX9rrXK1KQ7IqnuRjLKmPVLbw7vIMMksq0Whg/Cg34iI0CFILRqsJk9XUudKx2m+Ix/j2SAQBiSBBKkiRSqTIuv+TIZPIkEokR/8tSJFKJJ3H2/8vdJ5f26gnt7iZ3JImCsta0RsAmwS1QkmAj5ZAb2f8XZzwclbjrlWidXLAxVGBSt7/x7+ypY5NhbvZXpZKg6EBB4maUEkK1IXw6wEj3+p3A/ZVb2KkJymx3qTEeqNxUrC/6hBPbPqEkuZywlyDuG/CLYPKt4uiyKHaXH7I+tWuU2h1wFwRTbA8njuujMarYitNXy1H6qjB97qnUfr37DFqNrSyv/IQ+6oOkVmTQ4dZb3cpdvTHoTmK5kpn5o4cxa2LE05oBjhYWg1t/Hf3h2TUZGOpDCNUksJTd0/ood59IkqbK/gpZw2Tg8acltLh3yM2i2nAptj6Zj15pU0su+jUXHYP1+bxTtrnVLXVMjV4HDeMuvK0NLwPlgE/la+++ioAv/zyy0CHDXMcaoUaY+eN+Nh9CFdnB0qq7KXeWqULSplDt3ZdFzGd7orZdfndRQ7jA5P5IuMnatrrevngdHFtwuUcrM6iXraDZmMKq3Ye4fJp/d8Ew92CeXrmg+TUFbAqfxNrC7exymbBOcKHiMPLGaUWiA5IIFDjN2AFWKifhufumExGQT3fb8xnzfo6NmwyMDHBl9ljIkiI9EB6hnW1wt1gQuevarXaOFLVSkFZM0UVLZRUt7Izo6pPTyeJAA4KGXKZxC7ZL2vH4liNzaUSwcku62RtdcVal4C+0QejQkGQj5xJie5EBGiJDnYlyMcFqURAFEUya3L4JvUX8hqK8Hb04L4JtzAhcPQJ03M20UZaRQbLs9eQ31iM1KbCVBaDxhjBH6d4EWvJpv3nj2k26HAaORX3OTcjVbsgiiIVbdXsLT9IWsVB8juLX9xUWsYHJjPCM4acTIFfNlfg5uzAk9ckkRx96iuiLtIqMng37QtaDO2YikaS4JbEIzeNRekw+GBnMBt4ddf73dWMw/SNzWwYcIW0fm8pogjTk0+uoEFn6uDTgz+wsWgH3o4ePDbt3h6+Xb8VA35yDhw4MODJ/v7Dud6+cO508WwztvdI0XhoVTS1GjBbbMhlEgJcfHtJA/m7+OCq1HCgOouZYfaCgcnBY/gyczkbi3ZyTcJlfb6mUq7koUm38/iGl9EmHOCLDTImxvvh5Tawr0yMZwQxnhHoTB2kV2ayr3QfGeUH2J+9CrJXIREkeDt54OvkhZejBx6ObriptLiqNGgcnHF2sFe5JUZ6khjpSUlVK6t3F7MpvZyt+yvQOjkwMcGXiQl+jAhzP+Oij1KphIgALRHHVXW1d5iobdLT0KKnuc1IW4eZxo4WaozlNFjKaRDLMdIMgLPgRrBqIrGakQTEeuOhVeGpVaF1duhzH2xfZSbfZ/1KfsMR3FWu3DZ6GTPCJp6wHNZkNbO1eDcrctdT1VaLzOqEvDyMOL2SOYFmfExrsOyooFWQ4Bg9Fu3EK1H4hFLUVEpqwUb2lB+gslMdPtwtmCUjFzLaL55gbQCHihp446sDVNTpmDM2iFsuHYmTauiuuX1R3VbLpwd/YG/FQZwl7nRkjmNSVAwPLhuNXDb4v6/NZuP11I8pb6vm0an3/KYz8fMN0WxEoup7r9BmE1mXWsKoSM8T9nn1xd6Kg7yX9iUtxjYujZnLVSMWDOjvdSYZMCB9+umn/T4nCAJz5/buRB8GtCp7QUFzZ/lwF77ujthEuzVAoLczoa6BbC/d20MaSBAEkv3i2VG6F5PVjEIqt2vG+SWwrnAbi2Iv6nfjPUjrz8OT7+CFrW9CxE6e/ULOv25f0Gfq7ngcFWqmhoxjasg4Wg9sIHfN27SkzKbBy4/y1iqq22rJrivo1V/VxbGVcioXJfGzHejogMZmMxsqD7K2RIJCqiDQU0u4rzuR/h64OTmilDngIHOwV9vJlJ0/K06pjPt4DBYjjaZ66sRaysUqSiwVFOlKutOlCqmcWM8IRvnMZrRf/KD2VSw2K7vL0lmes46S5nI81W7cNnoZ00PH91hRilYzNkMHVoMOm7EDm0FHS3s9G6sPsbG5kDbRjIdBYF6DhfEdJSiFIpCBUKdAHhSLJnku6piJHDE1s6ZsH6lp71PX0YhEkDDCK5L5kTMY45/YLdjb0m7kv18fYP3eUrzd1Dx7+wRGRZ2eVVFNex3Ls9ey6chOZFI5kbLxZOxyYe7YUO5anDgkDx5RFHl/31fsqTjATUlXnZXZ+PmEaDYh0Wj7fO5gfh21TXpuWjBiSNdsMbTywb5v2FWWTrA2gL9M6b/x+7fipAPSMP3joT7qdxTaqbYAdFe+lVS3EujtTLRHOOsKt1HaXNGtygAwITCZDUXbSavIYGKQXRtqUew89la8yC95G1g8YkG/rz3SO5onZtzH85vfpFq2loe/aOTFa65FqRj87Ng5cSaBBem479nIlJuexyHevtEsiiJ6s4FGfTPNhhZajG20GtppM+nQmTroMNt1yPRmA+0mHXoM2JwMODrYy79FREqB0lrYVDvwGORSOapjgpRS3hmspAoUUjlyqRyZRNodyLuq9UxWMwazAZ25g1ZjO82G1l4yRt6OHoS6BjE3YirRHuGEuQYNujG1w6xnY9FOVuVtpL6jEV+llpu9kkgRVYhZ+6nfswmrrgWrvg2bob27XBegXi5lm1ZFurMKi0QgWmdkTKMZb7MaR3dfPEZOROkZiIN3CHKvIIpaKllXmsauLS/T0NGETCIjwTuGxSMWMMY/sYfZn9VqY01qCZ+uykZvtHDljAiWzo0+5b0iURTJqS/g1/zNpJbvRypImR0+BUNZKKu3VXPJpFBuuzx+SAaKNpuN9/d9xbrCbVwWM5eLo2ae0hgvBESzsV/ZoLWpJTir5YyP79u7qy8OVB3mjdSP0Zn1LI2/lEtj5p7WBteTZcBP63PPPcejjz7aqym2i7fffvuMDOp856jiQs+7brCvMzKphNySJiYn+nerJhyozuoRkEZ6ReOhdmNd4dbugBThHsL4gGR+yl7DlOCx/e4lAUR5hPHvBY/x9Jq3qTKmctu3+dw+4SomhSYOqlJGEAQ8F9xJ+XsPUfPjvwm45SUkSkcEQUCtUNkVHDRD01wTRRGzzUKHyUBeeR0ZRdVkldRRXNOIFQsSmRUvdzleHg64aWU4O0uwCRYMZgMGixGj1UiHqYNGSxMmqxmzzYLFZum2ahYEAZkgRSGVo5QrcZSr8HfxYaRXNO5qVzwd3fBx8sLf2XvA0u7+qGyqYNXB5WytzcIgWgk1WLm4sY2Yjlok5NEmkSJzckXq5IrMxR2FTyhSlTMSpSNFNgPLGwrIMdYgiAKyBk/UjaH4xMQTOyesh7V4aXMF20v3smPfR9TpGpBKpIzyieOa+MsY7RffpyX4gbxa3lt+iJLqNhIiPLh9UTxBg+z96Y9mQyvbS/awqWgnZa1VOMpVLIyezcVRM1m1uYqftuWxcEoYt102tJ4lo8XEG6kfs7t8H5fFzGVZwuWnNM4LBZvF2GdTbEu7kd2Hqrh4Uuig1BksVgufZ/zEyrwNBGr8eHz6fedUmf2AAWnChAkAXHRR39Vdw/SNo0KNm0pLyXH7Q3KZlJgQVzLy7dL8biqtvYKu/ECPCjqJRML8yBl8evB78uqLuiuPbkxazMGaLF5P/ZgnZzww4IzGTaXlP5f9hXe3rGFd6Rr+u/d/fJnpxYLYaUwMSkF7At00qcoZ78sfoPLTx6ld8Treix9GOAmfoS4EQUAhlaNQyRkb6czYSPvvZDBZyC1uIrOwnszCeg7tbsZitTfR+rq7ER3iSlyQK5GhWkL9NINKP54urGYje/b9zNriXWSJHQhAQruJGTJXIr2jUYwMRu4RgNzVB6mTtkePSE2jjuUZqWwv20q7pAbRIkesi2CkJplZk6MYE+fdvXpp0rewvWQvW4p3U9pSgUSQEO8dw1WdK6G+ghBAYXkzn6zKZl9uLV5uav56wxgmJpy8FYfO1GFXQC9NI7MmB5toI9IthDvGXMfEoBSUMgdWbi/i6/V5zB0XPORgVK9r5F873qGoqZQbRl05rMgwBPor+96UXobFKjJ37IlTbS2GVv69812y6wqYFzGd6xIXoThLe0X9MWBAmjnTvpRetGgRTU1NHDhwAJlMRmJiIi4upzYD+70T7hZMQadQ5LGMjvHm45VZ1DZ14OWq7q6gq2qr7a6qA5gTPpmfc9by2cEfeHrmnxAEAXe1K/+XsoxXd33AR/u+4dbRSwe8IQiCwP9Nn8eM8jH8Y/mP1Kjy+Wj/t3y8/zsi3EOI944hxiOCcLegPkVGlYExuM++kYZ1H9K8/Xtcp5z+KiilQkZilCeJUfYVn8lsJb+smZziRnJKGjmYV8fmdLuVgVQiEOjtTJi/hlA/DSG+zgT5uODaR7HBqdDUVMnqnZ+xpbmQRpkEJ6vIfLUfc6Jm4BuRguS43iWj2UpReSv5pU1klzaQUXuIDk02EnUbWFWEMIGLR0xlbIw/aqU9NWi1WUmrOMj6oh3srzqEKIpEuoVwS/ISJgQmDyi0WlzVyldrc9mRUYmTSs6tl47g4omhJxWsW43tpFVkkFq+n4yabKw2K56O7lwaM4epweN6rIT35dTyzk+ZjBvhw11XDk1NfF/lId7Y8zEWm4WHJ99Oin/ikMd6IWMv++5Z1CCKImtTS4gOdj2hTmBpcwX/2PYGbcZ27h1/C5ODBy9Z9VsyqATz5s2b+ctf/kJkZCQ2m43S0lJeeeUVxow5N3+pc4FYzwj2VhykoaOph9nbpAQ/Pl6ZxZZ95Vw1K4ppIeP5OvNn1hRs6VH2qpQrWRJ/Ke+kfc7mI7uYEWZXVZ8UNIYjTWX8nLMOR4WapfGXnvDGEBngzv9uv4UfNxfw3c50TE6VVNhaKGhYg8ivwFEvIx8nL7ydPPBQ26vptHHjcajMp2nrVyg8A3GMGX8G3q2jKORSRoS5dwvEiqJIfbOBgvIm8suaKaxoYX9uLRvTyrrPcVTJCfB0wtfTET93R7zd1Xi6qvHQqHDTKHEYxI3aJtrIrDzM6vTvONBRg1UQCJepuDpsElOSLkMQZDS2Gsgu76C6oY6qeh3lte2UVLdSWa/DZrMhdavGIbAQ0bcdrdSNeeFXc1nCFOTHyKy0GtpYX7SdtQVbadQ3o1W6cFnMXKaHjMfPZeA9gLzSJr7dkMfuQ9WoHGQsmRPF5dMihlw9V9tez96Kg+ypOEhOfQGiKOKpdmN+5AwmBCYT4RbS6zNV16Tn5c/TCPJx4U/Xjh50Kb/RYuKLjJ/4NX8TQRp/Hpx027C1xMlg7r1CyiluoqymnXuuHjXgqXn1Rfxj6+s4yBx4ZuZDhLn17dR7LjCogPTqq6/y2WefdcsFHT58mMcff5wffvjhjA7ufKZLYSGzJofpoRO6H/f1cGREmDtrU0u4YkYkrioNE4NS2FC0gyvi5vdwypwZNpFtJXv4aP+3xHhGdK+gliVcjs6k58fs1bSZdNySvOSEG5JymYSrZ0dx0fhglm8tZNXOYjqMejz8jASF2VA6d9BibCCvIRV9H0296nBvHPd+gPuRDbhpvNEqXdCqNLgqNbirtbir3XBXu6IYgmr1YBAEAU9XFZ6uKibEH7ULb24zUlLdSml1G2W1bVTWtXO4qIEt+8o5XgBCrZShcXTASS3HUSVH5SBDqZCikEsxCW3UkE+N5RAdgh6V1Ua8XgXWcbSYAviuxMT7KzbQ1mHqcV2JAN7ujgR6OxEea6TIlkq9sRZ/F18Wj1jK+ICkHtqDNe11rMhZz6biXZitZhK8Y7kleQnJfvED/u0sVhu7D1Xx89YisosbcVTJWTInisumhg+6+VQURY40lZFWeZC95Qe7U8mBLr5cETufsQGjCNEG9DuxEUWR177Zj9li4283julhLT8QOXUFvLX3U6raapkXOZ3rEq847Z+PCwex1wpp3Z4SVA5Spozqfw8op66Q57a+hlbpwuPT7ztpa/HfikF9sgRB6KFdN2LEiNOi6vx7Jkjrj5tKy96Kgz0CEsDCyWG88MledmZUMmWUP4vi5rG9dC8/Zq3mxqSjQpkSQcI9427iL2uf5+Xtb/PMrIdwVKiRCBJuS7kGZwdHfspeQ1lLJfeMuwkvpxNrWGmcHLjh4jiunhXFjoxKNqaVcWBbPTbRGXdNMImRHkSFOOHpBTKlkRZjG036Fhrb6qjJ201rXSmF5g5azHbx1ONxU2nxcfLEz8WHABcfgjR+BGkDTrsltdbZAa2zvffpWMwWK3XNemobO6hvNtDUZqCpzUhLu5H2DjM6vZm61jY6HEoxOZVic6wHEcL1JuJaRIraJlAiC0XpIMNJJSHAy5mRYQ5onR1w1yjxdFXj7abGy1VNaWsZnxz4jj11Bfg4eXJv0i1MDBzdIxDV6Rr49vBKthTvRipImRoyjkuiZp2wKKSmsYN1e0pYl1pKY6sBbzc1t102ktljg7rTfgNhsVrIqssnrTKje6UuCALR7mHcMOpKUvwT+/TY6ovdh6rYn1fH/10ePyhtug6zni8yfmJdwTY8HN14fPp9xHufmoLAMD3N+QxGC9sPVjA50b/fCUJ5SxUvbn8TN5WGp2Y8OGjZqrPJgAGpubkZgJEjR/L++++zdOlSJBIJP/zwA+PHn9nUzfmORJAwPiCJtYXbaDO299ijGR/vS6C3E5+vzmFCvC8BLr7MCJ3I6vxNzAid0KPqxcPRjQcm/oHntr7Oi9ve5JGpd6OUK5EIEpYlXE6Qxp9307/gT2v+zlUjLubiyJmDUuJVOsiYNSaIWWOCaG4zsjermvScWtKyatmUZt+zcVTJCffXEOoXRKjvCKaOGoNi3UtI2xrxu/7vWNRONOlbaOhooqGjibqORmra66hqq2VXWXqPcmtPtRsR7qFEuYcS7RFOiGvgGSkzlcuk+Hk44efR88ZpsBg5UHWYHaWZ7KvMxGyz4OPkSYrBkxEF2QREjMNz2V1IHAZuJAb75vB7+z5n05GdaByc+cPoa5gZNqnH76M3G/gxezW/5G5AAOZHzuDSmDkD+vy0683szKhkc3o5mYX1CAIkR3vxx8WJjI71PmGfT4dZz8HqLPZWZLCvMpMOsx65VE6idyxLRi4k2XfkkJtPRVHkq3V5+Hs6cfHEkBMeu7t8Hx/t+5ZmQyvzIqdzTfylJ1XVOExvjlX63plZhd5oZdaYvtNv7UYd/9j6OnKJjEen3nNeBCMAQRxgqRMTE4MgCH2uhgRBIDs7+4wOrj/Ky8uZNWsWGzZsICDg9Ht/nC5Kmyt4aM3fuS7xCi6NmdPjuT2Hq3n2g1RuWTiCRdMjaDW288CvT+OhduW5WX/uFVR2laXz6q4PCHcN4i9T/9hjxVGna+D9fV+zrzITT0d3roybz5TgsUMyfevCZhMpq20jp7iJgvJmCsqbKa1uw2S2AhAkredul3XopM6kBt6Am5cXvu5qvN3sezddBQaiKNJiaKW0pZLi5nIKGospaCimvsOuguogcyDWI5wRXtGM8Ioi1DXwtDbDgn2/5kB1FnsrDrK/6hAmqxmN0oUJgclMDkjGecsP6PP24Dp1CdrJV51wL04URTYf2cUnB77DYDGyIHoWV8TN7+WXtK/yEO+mfUGDvompweNYmnBpd2/a8TS3GdmTVc2uzCoO5NVisYr4eTgyMyWQGSmBeLkOHCCb9C2kV2ayt+IgmTU5WGwWnBWOjPZLYExAIgnesafUdV9S1crdL2/ijkXxLJjcv85cTXsd76d/xYHqLEK1gdyWsqyXUeEwQ6frXvfRFVHEX/dnnEZMAeCxt3dQ09jBO3+b3ad6yD+3v83+6sM8O/Oh8+rvMOBUOicn55QuvmLFCt566y3MZjM33XQT1157bY/ni4qKePLJJ2lpacHT05N///vfaDTnRyQfDEFaf2I8wllbsIUFUTN73HDHxHkzJs6bz1bnMHaED/6eTtyeci0v7/gfnx38gZuSr+5xrQmBo5EKUl7d/QGPrHuBhybd3t275Onozl+n3MWBqiy+ylzO23s/48uM5UwPncC0kPFD6hmSSASCfVwI9nHhIuylpFabSE2DjtKaNipq29lX6sGYis9JLv6EVw/MRicenQErZBI8XdX4ejji46bG290RH/eRJISOw2e0mg5bOzl1hWTV5XG4No/PM34E7M6zMZ4RxHpGEOkeSphrEKohzqxbDW0UNJaQU19AZnUORU2liIi4KjVMD53A+IBk4jwjEQSoXf4qurw9uM+9Bc2Y/huNu2jsaOatvZ9ysDqLGI9w/m/MtQS49HxfzVYznxz4njUFWwhw8eXvEx/uJRZqtdrIL29mf04t6Tm15JU1IYrg5aZm4ZRwJif6ERmoHTA41ukaSC0/QGr5fvLqixAR8XJ0Z17ENMYEJBLlHnbagvuhIruaxZi4vgsuLFYLv+Rt4NvDK5EKEm5KuoqLIqad9snFMCDI7HtITW0GMgrqWTonus/PyeYju0irzODGUYvPq2AEg9xDMplMbNmyBZ1OB4DVaqW0tJQHHnig33Nqamp45ZVX+OGHH1AoFCxdupRx48YREWFXwRRFkTvvvJNHH32UqVOn8vLLL/POO+/w8MMPn4Zf69xhYcwc/rn9bbaV7OmxlyQIAn9cnMjd/9zEy5+l8eLdUxgbMIr5kTNYlb+JQI0fs8In97jW2IBRPDXjAf614x0eXf8S1yRcxsVRM7vVCkb5xpHoE0tmTQ6r8zezInc9y3PWEujiy2j/BEb5xBHlHjZkcy2pRMDP0+mY/YNIOo6EIP/mBV6K3AVzH6LWIKemQUd1Ywc1jR3UNHSQfaQBnaGnUaGrswO+Ho74ekQzwWM02gjokFVTZSglr6GQ/VWH7O8PAl5OHvi7+OCldkercsFJoUYukSMCJqsJnamDJn0LNbp6yluqaNDbBVGlgoQItxCuGrmAJN+RhLoG9hA4bdz0GbrD23Gbce2ggtH+qkO8vvsjTFYztyQvYW7E1F6CqW3Gdv65/W1y6gtZEDWLZQmXIZfKMVusFFa0kFXUSGZhPVlHGugwWBAEiAzUsuyiGMbG+RDq5zJgEDJYjOwqTWdL8W6y6vIBCNL4c9XISxjrn0igxu+M2AM0tRoQBPB07W1pUNRYwlt7PqWkpYKxAaO4JWlJt4TRMKcfobOoIS2rBlGECfG9J5rtJh2fZfxItEf4eamAMag70wMPPEBZWRl1dXXExcVx8OBBxo4d2NVx586djB8/Hq1WC9iba1evXs3dd98N2Cv11Go1U6dOBeCOO+6gtbW113VaW1t7PV5dXd3ruHOV0X7xhLsG882hX5gYlNKjyshdo+L+pUn8/cM9vPV9BvcuGcX1o66ksq2Gd9O/xMnBkXEBST2uF+keyotz/8b/9n7OJwe+Z0dpGrcmL+2eCQmCQIJPLAk+sTTrW9hVto89FQf4OWcdP2WvQS6VE+kWQpRHGGGuQYS5BuHp6D7km5k6NBGfq/9G9bcvIFv9IqOWPYEstndKp73DRFWDjur6DqobdVTV66is17E/t5YNe8uOOdIZd814wrxkOLrrENStGKVNVLXUkV2b36+GnqNCjbejB7GeEYS4BhDhFkK4W0i/aar2nF007/wR56Q5aCYsGvB3FEWRH7NX81XmzwRr/Hmgn5LldpOOZza/SkVrNctiluFiDubDFTnklTZRWN7S3ejr7+nIlFH+jIryJCHCExfHE6fSDGYDq/I3sTJ3A20mHb5OXiyNv5SJgaNPi5fRiVArZYiifX+rq6rParPyU/Yavj28Eo2DMw9PvoMxw31Fp8yJ7nVdVXaph6vxdFUR0kfv0c8562g36rh12pLz0sNuUAEpOzubtWvX8tRTT3HzzTcjiiJPP/30gOfU1tbi6Xm0isfLy4uMjIzun0tLS/Hw8OAvf/kLWVlZREVF9XCl7eLjjz/m9ddfH+zvc84hESRcm3g5z2x+lRU567hyxMU9nh830pelc6L5al0uvh6OXD07ij9NvI2/b3mN/+x8j/sm3Mr4wOQe52iULjw8+Q52lO7l4wPf88j6F5kYOJrFIxf0SCNpVRrmR81gftQMdKYOsuryOVybR05dASty1nXbijvKVQRpA+wVcRp/grR+BGsDUMoGdiJVhSbge83jVH/9PBUfP4rvNY+h8Oy5yeqkVhCpVvSQx+lCb7RQWddOZb2Oyrp2Kjr/O3xAis7gDDgDQUgkAl5uDnh6yvB0dcDLVY2PqzMB7q74urvgrJYP6stnbq6l7pc3cfCLxGPurQOeY7PZeCf9CzYW7WBy0BjuGHMdCpkCURRp6zBT0xlcy2vb2Nj4Ha1CNZb8ZN7f3Qg04qCQEhGg5ZLJocSEuBEX4oary9BSkEWNJbyy631q2utI8h3J5bFzifGI+E1vNNHB9r2vtOwaZowOpNXQxqu73yezJpeJQSn8YfRSnBRDV5gepjcnutcJcgVGs5X9eXXMGRvU63OgM3WwpmAL4wOTe0iRnU8MKiB5eXkhk8kICQkhLy+P+fPno9frBzynv0KILiwWC3v27OGzzz4jPj6e//znP7zwwgu88MILPc658cYbWbSo50y2urq6137UucxI7xjGBybzQ9avTAhM7tUAec3caKobdXz6azZOajkXTwzlkal3849tb/DKzve4Kekq5kfN6HGOIAhMDh5Lsl88P+esZWXuRnaV7SPFP4EFUTOJ9Yzs8X47KtSM8U/snsmarGZKmysobi6jqKmM0uYKthandq9EBAT8XLwJdw0mwj2EGI9wgrT+vVJVysBYfK9/luovn6Xyk8fwXvxnVMEjB/W+qBxkhAdoCT/OKkIURVp1JirrdFTUtVPVoOsOXEVHWtAZepoaKuRS3DVK3DVKXJ2VaJwUuDg64NLZd6RWyVHJJKi2/BuJzYZl8v9R0WhAEIzYbCI2m4jZasNktmIwWekwmFlV9iMFusOEy1KwFCfybEYaDS0G6ps70But3a8t8ypFHlKJn2ECo5JGE+LrQpi/Bn8v5yGpXx9PZVsNT2/+D2q5iqdmPECcV9SJTzoDxIS4EeDlxLcb8ggPk/LPHW/RaGjhjjHXM7OzWXuY08OJ7nWC3IG80iZMZmufvlbbS/aiNxu47LgCqvOJQQUktVrNihUriImJ4ZtvviEsLKy7JLw/vL29SUtL6/65trYWL6+jb6KnpyfBwcHEx9vdRy+55BLuvffeXtdxcXH5XcgU3ZJ0NZnV2byR+jHPzHqox6avRCJw35IkOvQW3vo+A0EQmD8hhMem3curu97nw/3fUNZSyc3JV/eqnFPLVSyNv4yLo2axKm8Dawu2sbfiYHcp+ZTgMWj7KPlUSOVEuIf02PQURZH6jkZKmsspairjSFMpGTXZbC1JBcDZwYkE7xhG+9ldY7uqyxy8Q/C7+R9Uf/UcVV88i+fFt+OcePL5a0EQ0Dg5oHFyIDa0Z3WaKIq0683UNHRQ29RBXbOe+mY9DS0GGlsNFJY309Ju7LV3Nc0hmysc8/msfRJ7384c8PVlgbnIfY9gLo8kt9aLGucGXJ0dCPByYlSUJ16uqs6qQiUv7H0BP+dInpxx/WlduXxy4HukgpRnZv6p2134bCCVCNx66Uie+WwDj6xdidJBytMzHjzvNsvPB050r5PIHcgpse+TRgf3zjhsK9lDoMbvrFtInAqDCkhPPPEE33zzDQ8//DDfffcd1113HQ8++OCA50ycOJHXXnuNxsZGVCoVa9eu5dlnn+1+PikpicbGRnJycoiJiWHjxo2MGDE0P4/zCa1Kw20py/jPrvf55tAvvYz2ZFIJf70xhec/2sub3x1Eb7BwxYwIHpp0O18d+pmfstdQ1FTK/RNu7XPvwMXBiaXxl7Eodj47S9NYX7iNTw9+z2cZP5DgHcP4gGTGBozqU7OuC0EQ8HR0x9PRvVtrrCtIZdXmk1mTw8HqLHaUpiGXyhnjl8CMsInEe8cg13jhd+Pz1P7wMnW/vIGptgS3WTf0EBw9HQiCgLNagbNaQUSgtt/jLFYbbR0mOgwWdLWVSFd8hclzJLNTljDDBlZRBFG0q4RLJUilAgq5lIK2LL4rPMKUwInccukS1Mr+04E5dYU0G1q5Ofnq0xqMrDYrB6oOc3HkjLMajLqICXfCNeEgHWYr872Hy7nPFoLMgZziRnw9HNE49Uyn17TXkddQdN6rpw8qIIWEhPDnP/+Z1tZW/vOf/wzqwt7e3jzwwAPccMMNmM1mFi9eTEJCArfddhv33nsv8fHxvPHGGzz22GPo9Xp8fHx46aWXTuV3OeeZGJRCRnU2P2avJtI9lBT/hB7Py2VSHrlpLK98uY8PfzlMc7uRmxbEsSzhciLdQ3kz9WMeXvs8N41azMywSX3eBB1kCmaETWRG2EQqWqvZWpzKztI0/pf2Oe+mf8kIryjG+CcyNmDUgE2aXXQFqWmh7kwLHY9NtJHfcITtJXvZUZrGzrJ0/Jy9uThqJtNDJ+Cz9DEa1n1Ey55fMNYcwevyB5E5nfh1TjcyqQRXZyVaJ5Hq9V9jkEqIuOoeZC79q1k0G1p57dcVRLqHcuf4ZSds3O1yaw1zPb3aYHqzAZto66GBeDb5eP93mIR2ws3z+PqXCnydvJiZcu7qof1eEeQK8suaeqmTAByszgLoVQR1vjGogFRUVMQ999xDa2sr3333HTfddBOvv/464eHhA563cOFCFi5c2OOxd999t/vfiYmJfPfddycx7POXW5KXUNxczmu7P+S5OX/u1csil0n407WjcXFU8OPmAuqb9dy/NIkx/on8c95jvJH6Mf9L+5w9FQe4bfQyPBz7brgEux36NQmXsTT+Uo40lbG7fB+p5fv5YN/XfLjvGyLdQxkXkMSEoOR+GzePRyJIiPYIJ9ojnBtGXUlq+X5W5m7kvfQv+f7wKi6Lncvs2Tfg4BtO/a//o+L9h/C6/P5B7yudbnTZO9EXHcB97i0DBiOAbzJXYLAYuWvsDYNSkZB27qdZbdYTHDk0lHIlAgI688D7tL8F5S1VbCnezWUxc1kcdzHPvr+b/3y1H4lEwvTkc7cp/feIzizQ2GrsNvo8lqza/G7ZrvOZQUn2/v3vf+eRRx7B3d0db29vrrvuOp544okzPbbfJQqZgocm345CpuCFrW/QYuhd6i6VCNy+KJ6bFsSx7UAFj729k5Z2Ix5quy7YLclLyKrN50+rn2VN/hZsndVy/SEIAmFuQSxLuJxXL36af89/gqtGXoLJauLTg9/zxxWP8dTGf7OxaEef+nT9IZfKmRw8lufn/IUnpt+Pn4s3H+3/lvtWPkmqowzvG55DolBR9dlTNG7+AtFqOfFFTyNWfRsNa9/HwTccl9HzBjy2Sd/CpiM7mRU2Cf8TqG53Edwp8ZTXh83IqSCTSHFVaajTNZz44DPM9tI9SAQJC6Nn4yCX8tgt4xgZ5sErX6SzM6PybA/vwkGmoKre3gfal55gdl1BZ9P3+VfqfSyDCkjNzc1MmjSp++drr72W9vb2Mzao3zseajf+MvlOmg2tvLjtLYwWU69jBEHgypmR/PWGMRSWN/Pwf7dRUdeORJAwL3I6/5r3OBHuIby/7yue3vQKla2D780KcPFl8YiLeemiR/nvgme4auQlNBtaeXvvZ9z+81/5YN/X1LbXD/p6giAw0juaJ2c8wBPT78NNreWdtM/5276PKbnoGtTx02ne8T0VH/0NU23poK97qjSs+whrRxseC+464V7WluLdWEUbl0TNGvT1g7UBeDt6sK5w22kXG/ZUu3XLLJ1NipsrCHDx7dbAUypkPH7rOCKDXPnnZ+lkHTn7QfNCQJApqOwMSP6ePcvsWwytNBlaCD+Pixm6GLQFqNFo7I6+dXV12GwDz8qHGZgI9xDuHX8LhY0lvLrr/X7TPpMS/XjurknoDGYe/u9Wso/Yb1JeTh48Nu1e7hxzPaUtlTy89nlW5Kw/4WrpeHycPFk84mJemf8kz8x8iNF+Cawr3Ma9q57kjdSPhxSYwF7i/vdZD/PnyXcgl8r5795PeVnRTNmsqzC11lP+wcM0bf8O0Woe0nWHii5nN+2Zm9FOvAIH75ATHp9emUm4a/CQmk0FQeDSmLnkNxwhtXz/yQ+2D1yUzrQZdaf1mieDVJBgsfVc2aocZDxx63i8XFU8/9EeGlrOfmrx944gtSuhAPi49wxIpS32lWqgxq/XeecbgwpIy5Yt49Zbb6WhoYF//etfLFmyhGuuueZMj+13z9iAUdycfDVplRl8uO+bfmfZMcFuvHzvVJzUCh57ewd7s+yrIUEQmBE2kX/Pe4JEnzg+Pfg9z25+lSZ9y5DHIggCMZ7h3Dv+Zt5Y8HfmR85gZ1k69//6NJ8d/AFDHx5JA10rxT+Rl+Y+wr3jb8FsM/NGyRbeiA4mKyKW+i1fUv7un9AXD1x+fbKYm2uoW/UWCp/wQbnc2mw2ihpLiPWMGPJrzQybSLA2gA/3fUO76fQFEJlE1isQnA1iPSOobKshr76ox+Mujgoeu2UcBpOV1789OGxHc4YRZDKa242olbJezsAVndmRoWhWnqsMKiAtXryY++67j4ULF2KxWHj22WdZtmzZmR7bBcG8yOlcGjOXtYVb+TV/U7/H+Xo48s97phDk48xzH+5hx8Gj+XtXlYaHJ93OHWOuo6ChmL+u/QcFDcUnPSY3tZYbkxbz2sXPMDloDD/nrOOBX58hrSLjxCcfg0QiYXLwGF6Z9yT3jLsZBAmfWGt4OTaE9Qoz+V8+Tc33/8TcePr2ImxGPTXfvgiiiPeiBxAGodvXZGjBbLPgexJOplKJlDvHXE+rsY330r86mSH3icFiOCWV7tPFrLDJuKm0/HPH/yhqLOnxXKC3M9fPjyUtu4a07JqzNMILA0EipbXdhMaxt3pKi6ENAQGtw/nfrzmogNTe3s6+fft4+OGHue6669i8eTMdHR0nPnGYQbEs4TLG+CfyyYHvOVST2+9xGicHnrtzElFBrrz0WRq7D1V1PycIAjPDJvHc7D8jl8p4evN/yKw5NbV2N7WWu8bdwLOzHkKtUPHS9rd4ffdHQ14JSCQSpoSM5Z/zHuOvU+4iwC2QXx3hH2FevNuSy/pPHqZm5dtYWupOabw2k57qr5/DVFeG1+UPIHcb3IyxyyHXUdFbQHQwhLkFsXjEAnaWprGzNP2krnE89bpG3FVnv+xbJVfy+PT7kAlSHln/Eu+lf9kjjbtgUihebmp+2FxwFkf5+0eQymnRGXFx6j1JaTG04uzg2MMY8nxlUL/B3/72t25lBhcXuypxX7pzw5wcEkHC3eNuwsfJk9d2f0ibsf+CEbVSzlO3jSciQMNLn6Z17yl1EaT15++zHsbL0Z2Xtr9NcVP5KY8v2iOcF+f8jSvjLmZ76V4eXv1cd9/DUJAIEpL94nl8+v38e94TXBQ5nSKtCx/6uvBI837e+Pphdv/4AvqK/CFf29xUTeXHj2Eoz8Xr8vtRhw++H6Pri2w5hfLty2MvItw1mA/3fX3KqTuDxUhFWw1B2nNjT8DfxYd/znuU2WGT2VC4nXtWPcFL294irSIDQRCZPSaIQ4UNtLQPvkJzmKEhSGW09LdCMrahcRia8eK5yqD6kIqLi3nttdcAcHZ25pFHHuHSSy89owO70FDJldw/4Vb+tu4FPj3wA3eNu6HfY9VKOU/cOp6HX9vG8x/t4ZUHpuGhPTq716o0PDrtHv627gX+s+s9Xrro0R4q4yeDTCpjSfxCUvwTeD31I57b8hpzwqdwXeIVQ/YtAnu++6bkq7k2cRHplZlsK9xOak0OO0wluGz+JyNtDozxTyRx5FwcPQP7LWe16lpoSVtFy+6fEWQKfJY8MqRgBODcKQ460ERgIAxGC01tRub4XcLbh9/glQ3fEOcwGZ3BjN5gwWCyYrJYsVhtiCIIgr1xV6mQ4aSSo3FywNNVRaC3M/6eTuTUFWATbcR4RJ7UeM4ETgpH/pByDVfEzWdNwRY2HtlJWmUGrkoNI7SjQC5wpLKFUVFnXoH8QkSQymltMRLZhzpJq6ENjfL8T9fBIAOSxWKhvb0dJyd7/btOpxvexDwDhLgGsiB6Fity1nNJ9KweVubHo3Fy4PFbxvGnV7fw8ufpPHfnpB5inm4qLXeOuYHnt77GuoKtLIgefDnzQIS7BfPinL/x1aEVrMzdwP6qw9w6eimj/eJP6npyqZzxgcmMD0ymw6xnb/FeduVuJq29ip116cg3pBFphpFKDxJcg/Fy8gRRxKprxlh9BEN5DtisOMZOwH32zchchi6146RwxEHmQO1xfT8ms5XGVoNdJ6/FQEPrUc28xlYDTa0GGluN6I1Hiw/kYX5kWNPZc8AZiahA7SBDqZAil0uRSSVIBLCJdmkjg9FCu96M2XK0MlIuk6CNzUWqkqM0eSJ2yhudK7iptVyTcBlXjbyE/VWH2FC4nR1VW1Emwk9FzQQGXH3OKEz8rpBIadWZ+rQsaTG2ndf6dccyqIB0+eWXc9VVVzFv3jwEQWDdunVcccUVZ3psFySXx1zEmvwtrMrbyB1jrx/w2EBvZ25flMB/vtrPyu1FXDq1p3LGKN84oj3CWV+4/bQFJLA3994w6krGBYzinb2f8+K2N0nxS+CGUVeekkePWq5iWuRUpkVOxWQxcfBIKnsLdpLRWk6W2MA3jQ14VFuI7DARZRKJVnvjOm4hzgkzUHgMXjXAbLHS2GqkscVAY5s92ChsTuzOK6A4bVd3EGrr6N0fppBLcXNxwM1FSaifhtExSrTO9p+1zg60ieG8mfEGd93qybyoqYOyRe8wWKht6qC0uo2csjo2dqzDUu/Jw//dSYivC/MmhDBrTCBKxdCMFc8kMom0Wz1+Y0YOr2/+kVxpJvetOszS+Et7GEcOc+oYkWOxir007MBe1KC9kFJ2t99+OxEREezatQuZTMZDDz3EtGnTzvTYLkicHBwZF5hEavl+bktZdkIr6JkpgWw7UMFnq7OZPMoft+M8dyYEJvPR/m9p6Gg67TPXaI9wXpz7CCvzNvJ91ioe+PVpZodPYVHcvEHp5A2EQqZgTOQUxkROQRRFqtpq2F91mIyqLPbVF7DLakIqdBBFLaNqD5EkFQnWBmA0Walt6qC2SU9dpxp4V4Bp6lzZtHX07oFSREmRKVtQd5jwdlMTG+qGm4sSdxcl7hqV3d5Cq8JRKRswyIiiF1/nu5LTkM984cTfEUEQcFTJCVVpCPXTYHQpREw388ilV1Fb5sDaPaW8/UMGX63N5erZUcybEIJcdm7d6EtLrVjLRvD8spv5NvtHPjnwPVl1Bdw/4dZTThUPY0cn2gOR5riiBpPFhN5i6G5cPt8Z9JRrypQppKSkdKfqmpubu91ghzm9JHjHsrU4laq22hP2FgiCwP8tiuePL23k89U53HP1qB7PdzXLVbfXnZFUikwq47LYuUwLGce3h1eyvnAbG4t2MCtsMpfGzBlQa2+wCIKAn4sPfi4+LIiehdlqZl9ZLjuLD5LdkEt23XK+zFwOZgcsTZ5Ym7yxtbqBKEUiEXB1dsBdo8TXw5G4MHfcXZS4uijtAafTQ+nDzDqKm8t45cZTm2gJgkCoWxDlLUMvZbfarKzI3UC4WzDJAdEIgQLzJ4ZyuKiBz1fn8M5PmazccYT/WxTfpx/O2aCtw8Sa3SWMifUm1MOHhyffwaq8jXx84Dv+s+t9Hpr0f8MrpdNAh80eiFyOK2po7dz3vKCKGj7++GP+9a9/YTbbZ5Zdee3s7OwzOrgLlS6BxLqOhkE1u/l5ODF/YigrtxexaHo4AV5HP5xyiX2Gaj7DOnJd9hqXxszhh6zVrCvcytrCrUwMHM2C6FmnJGsiiiJV9ToO5NdxuKiB3JImaho7ACdgNBqtiMa3BZtzDS1e5Vi8ylFIFIz0imNKSAqj/UagHKDwQhRFKttqTnlV14WLgxMFJ6Fvt61kDzXtdVw/6fYeq7ARYe48d+dE0rJreHf5IZ58ZxeTE/34w2UjcdecXKn66UAURV7/9gB6o4Vr58UA9oDclR7++MB3bCrayazwyWdtjL8X2q327/HxK6QWY5v98QupqOHTTz/lyy+//F37FZ1LdKU5hhJErp4VxbrUEr5ck8vD16d0P95uss+gnBTq0zvIfvB28uTOsddz1YgFrMzbyMaiHWwv3Uu0RzjzI2cwNmDUoJS0bTaRnJJGdmRUsudwNdUN9r43NxclsSFuXDwxhHB/LSF+Lj3y6marmUO1ueytyGBP+X72VR9ALpWT6BNHil88CT6xPZTNbaKNX/M2UdJczi3JS07Le2Cz2U6Yaj0ek9XMN4d+Idw1uNvV91gEQWBMnA+jojz5YVMBX6/PIz2nhmvmxnDJ5LDfPI1ns4m8+1MmOzOquPmSOEL9eppAXhw1kx2laazIXT8ckE4DXQFJ69RzYtUlzqy5kFJ2np6ew8HoN6Sj03ZgKOXUWmcHFk4J47uN+SyeFdl9gyjvlBX5rWXpPRzduDFpMVeNXMCmop2szt/Mf3a9h6tKw9zwqcwOn9znrK6uSc/a1BI2ppVS26RHLpOQGOnJ5dMiSIryxNfDccA9HLlUTpLvSJJ8R/KH5KVk1xeQWr6fvRUHSas4CICrUoOPsycyiZTKtloaOppI9IllVtikfq87FOo7GnFT9nbpHYhf8zZR39HInWMHdp6Vy6QsmRPN1KQA3vkpkw9WHGb1rmJuWBDHhJG+SE7BNn2wtLQb+e/XB9iTVc3l08JZNL235JIgCEwOHsNH+7+lSd+Cax+uxcMMHp3FfqvWOh+3QjJ0rpAupJTdpEmT+OKLL5g1axYODkdno8N7SGeGms5O+MF6FHVxxfQIft1ZzAc/H+aZ2ycgCAL5DUfwdvTAycHxxBc4A6jlKhZEz2J+5Az2Vx9mdf4mvj60gu+zfmVSUAoXR80k1DWQrCMN/LSlkNRDVYhAYqQn186LZfxIH9TKk9sYl0gkjPCKYoRXFDcnXU1ZSyWHanM50lRGna4Bg8VEtHsYKQkJTAoac1rKq202G0eayxgfkDzoc5r1LfyQ9SvJfvHEe8cM6hxfD0eeuHUc6Tm1fLDiEC98vJcwPw1XzIhgUqIfMunpXzGZLTbW7y3ls1+z6TBYuH1RPAsmhfb7vjl19nfpLQZcGQ5Ip0KbRYqTSo5c1nPl3dy9QrqAUnbvvPMOJpOJZ555pvux4T2kM8eR5jIcpAq8HQc2lDseJ7WCay6K5t2fDrEjo5KJCb7k1BUw2i/hxCefYSQSCaP94hntF09FazW/5m9iS3EqW4p342DyorU4ALXJj0XTI5g/MRRvt9ObYhQEgSCt/4C9XaeDgsZidKYORngNvqn184yfMNnM3Dhq8ZBeSxAEUmK9SYr2Yuv+cr5el8vLn6fz/s+HmDUmiKlJ/oT4upxyoG1o0bMpvZxVO49Q16QnNsSNP16V2KdR3LEUNBYjk8iGPLEapjdtZila594l3436ZhzlqnNC9/B0MKiAlJExNFHNYU6N7LoCIt1DT0qbasHEUDallfHW9xk4uXXQZtIx0jv6DIzy5PFz9ibeYTqZZe6UmrMQfEtxiNqHt3MlIbFuuGt7f/HOF7aX7kUmkZHkOziH3Oy6fLYU7+by2IvwPckeLqlEYMboQKYlBZCWU8PqXcX8sLmA7zbl4uZrxC/QjMrZhEJpw1Elx1Xlgr+zDzGeEb1eUxRFmtuMFFa0kFPSyMG8OnJKmgAYGe7OXVcmMjrG64RBrrGjmS3Fuxnrnzhc+n0aaDcLuDr3TuE36Jtx+x01Ig8qIJlMJrZs2YJOZ9foslqtlJaW8sADD5zRwV2ItBhaKWkuZ2n8yUkzSaUSHlw2mgf/s4U3Vm8EF86ZgGSziew+VMXX6/MoqmjBx13NXbMWMSXZj7TK/SzPWcebez7h20O/cFnsXGaETkR+Ht3MOkx6thTvZlzAKBwHUURisVl5L/0rPNRuXBE3/5RfXyIRSIn1QuHaiCoqgwNVh9GLJgpFEJukiBY5AiDITSCxq0MorC64mMNQd4TS0SalvlmP3mjX9JMIEB6g5bp5MUwZ5d+nU2lftJt0vLT9LWyiyJKT/BwP05N2o0BoHyukpo7m01Ydei4wqID0wAMPUFZWRl1dHXFxcRw8eJCxY8ee6bFdkHQpdCd4x570NQK9nXlw2Whe3rEXpdUZpXB29o+6sFhtbDtQwXcb8ymtbsPXw5H7lyYxPTkAaedex+TgsUwKGsP+qsP8kPUr76V/xY9Za1gUN4+ZoRORDcJG4myzKn8TerOBhdGzB3X8L7nrKWup5M+T70ApO7VVoc1mY3vpXn7MWk1FWzVOCkemho4lyXcE4a4htLcKFFe1UVbbZm8cbq+lyVaBzqGMeuUBcDiIRhPAqPAERniOIMxfS7i/Zsj7d7n1hbye+jENHU08NOn2k171DdOTNpPQZ8quQd90xtPQvyWD+pZnZ2ezdu1annrqKW6++WZEUeTpp58+02O7IDlYnY2zwpEw16BTus6EeF+0eSaaa5346xvb+fP1KT36k34LWnUm1qWW8MuOI9Q36wnyceZP145myij/Hrp7XQiCQLLfSJJ8R5BZk8O3h37hvfQv+TlnLVePXMjkoDHnrMR+Y0czP+esZYx/4qB0xarbavn28ErGBowipY8y76GQXZfP++lfU9pSQbA2gHvG3cz4wKQeq0t3Rwj27buwoKa9jg1FO9hYtIMDxpWUNe9kkiYFpS6JcEXwCd9zq83Kodpcfs3fzL7KTDwd3Xl8+r3Eep474rDnOwYLvVRYOkx6mg2tv3kF7ZlkUAHJy8sLmUxGSEgIeXl5zJ8/H71+2Lb4dCOKIpk1OYzwjj7lG68oinRYW5kUM5K0jXru+/cWls6J4rKp4b0cJ08nVpvIocJ6NuwtZcfBSkwWG/HhHtx1ZQKjY7wHVZYsCAIJPrHEe8dwoPowX2X8zOupH/FzzjqWJVxGku/Ic0pwVBRF3k3/Aqto44ZRV57weJto439pnyOTSE+p98lgMfLZwR9YW7AVD7Ub90+4lfGByUNWRvB28mRZwuVcNWIBeysOsqU4lZW5G/g5Zx1quYpwtyACXPzwdHTDUa5GEAT0ZgMN+mbKWirIqS9EbzbgrHBkyciFXBw186QU4IcZGHdNz/e0vNXuh/Z7sC7vYlABSa1Ws2LFCmJiYvjmm28ICwvr9kca5vRR015Ho76ZkV6nvucjImIVbQR4arjxoRm89X0Gn6zKZuWOI1wyOYzZY4L6TAGcDGaLlcNFDaQermZXZhUNLQbUShmzxgRx8aRQQnxPriRVEASSfEeS6BPH7rJ9fJn5My9se5MRXlFcn3jFOaNwvKZgC+mVmdwwajHeg5itri/czuHaPG5Pufak8//lrVX8a8c7VLbWsCBqFkvjLz3lSiu5VM7EoBQmBqXQbtRxoDqLrLp8ihpL2HhkJ0ZLT78jmUSGn7M3k4LGkOgTS7LvyPNqz+984/iAVNopTxX4O7Au72JQAemJJ57g22+/5eGHH+b777/n+uuvHy5oOAPkdcrNxHiEn+DIEyMRJDg7OFHf0Yi7RsVjt4wjo6COr9fl8fHKLD79NZuECA+SoryIC3MjzE8zqJWTKIrUNesprmqloKyZ7OJGsosbMZqsKGQSkqK9uHVhAGNH+uBwmlZiEkHCxKAUxvqPYn3Rdr49vJK/rnuByUFjWJpwGV6OQ7ecOF1k1uTw8f5vSfYdycVRM054fE17HZ8d/IEE71hmnmQj7v6qQ7yy8z0cpAoen34vIwfZuzQUnBwcmRw8hsnBYwD7311n7qDDbABRxEGmwFnhdM6mUH+PHC8TVdJcjoPMAc+z+Pk/3QwYkK6/vmfX+A033IAoikRHR/Prr79yzTXXnPEBXkiUNJcjl8jwd/E5LdeL84xkX2UmJosJhUxBQoQnCRGelFS3sjm9nNTDVXz4y2HAXlHl4arGQ6NE4+SAykGGRBCwiSJGk5W2DhNNbQZqm/QYTfYqLEGAYB8X5owJIinGi4RwD5QOZ674QCaVMS9yOlNDxrE8ey0r8zawu3w/8yKmsShuHs4Og6sCO13k1BXw0va38XP25t7xt5wwVWaz2Xg99WMEQeCOsdedVNpxU9FO3k77jBBNAH+Zchduau1Jjn5oCIKAk8Kxu9l1mN8e9+P2kHLqC4lyD/ldidcOePe47rrrAFi3bh3t7e1ceeWVSKVSli9fjovL76Mz+FyiRlePl6PHkHXQ+mN+5HRSy/fzZebP3DDqyu4bYLCPCzcuiOPGBXE0tOjJK22iqKKVqnodDa16ymvbMZos2GwigkRAqZDipFIQ4OVMcrQ3fp6OBPu4EOrnctIqCqeCWq7imoTLmBsxla8PrWBl/kY2FO1gYcxsLo6aiVp+5gVH95Qf4LXdH+Km1vLY9PtQK078mt9lrSK3vpB7xt18Us2iq/M388G+r0n0ieVPE/9vQMHYYX5fKOVCj8leh0lPaXMFi0dcfBZHdfoZMCBddNFFALz//vt89dVX3cvz6dOns2TJ6RGiHOYobcZ2tKrTF+jjvKK4KGIaK/M20GHWc/2oK3rNcN01KibEq5gQf/5tjLqrXblr7A0sjJ7NV5k/882hX1iVt4kFUTOZFzl9UL1AQ8VsNfP1oRX8nLOOCLcQ/jzlTrSDkG3JqM7m+8OrmBoyjikhQ2+ZWFewjQ/2fU2KfyIPTLh1eK/mAkPr2PNWndtQiIhIjGdvHcHzmUHlV5qamjAajahU9lmgTqejpaXljA7sQsRitQxqpj0Ubk6+GkeFmh+yfmVXWTpTg8cxyncEYa5BaFUufS73bTYbbaZ2WgxtNBlaaNK30GxopVnfQrOxjTZjO+0mHQazEaPVhMVmVyWXSqQopArUciUuDk64KrV4OLrh6+RFgMYXfxefM9K1H6jx4+HJd1DYWMK3h1fy9aEV/JSzlpmhE5kbMfW0pEBFUWR/1WE+OfAdlW01zA6fwk2jFqMYRCFBra6BV3e9j7+LD38YPfQ0987SdN5L/5Jkv3genPCH86Ina5jTi1bd829+sCoLuURGpHvoWRrRmWFQn+xLLrmEq6++mjlz5iCKIqtXr+bqq68+02O74FDIFBjMxhMfOAQkgoSl8ZcyITCZ5Tnr2FK8m7WFWwF7lZSzgyMOUvtN1Wy1oLcY0JsNiIi9rqWSKdEonXFxcEar1KByVuIgVXTbSVhFGyaLCZ1ZT6uxjbKWKpr0Ld3XkgoSgjT+RHmEEecVyQivaFxO475PuFswf51yF8VNZfySu4G1hVv5NX8T0R7hTAkeQ4p/4pCr2vRmA6nl+/k1fxNHmsrwdfLikan3MMo3blDn60wdvLD1DWyijYdPogE2qzaP11M/ItojbDgYXcBonY7+3UVRJK0yg3jvmFNuqD7XGNSn+7777mPEiBHs3r0bgL/+9a/DFuZnAHeVK5m1OWfk2sHaAO4dfzMmi4nCphJKmiuo72ik3ajDaDUB9rJfpcwBJ4UaFwdnNEpntEoXXJUatEqXk9qzMFnN1LTXUdZSRXFzGYWNxWwu3s2agi0ICIS7BZPin8BY/1GDMiMcDCGugdw9/iauG3UFm4/sYmtxKu+lf8V76V8RqPEjxiOcUNcg/Jy9cVNpUMtVSCVSzDYLrYY2anX1lLZUkl2Xz+HafCw2C37O3twx5jqmBo8bdFAwWky8tP0tqtpreXTq3UNWLShvreKf29/G28mDP0+5c1CrsWF+n2jVRzMLZS2V1OoauDz2orM4ojPDoKdbs2fPZvbswUmiDHNyhLgGsrUklYaOpjNiNw72VVisZ+Rv1kWvkMoJ1PgRqPFjYtBowK7hVtRYQkZNNvsqD/FV5s98lfkzgS6+TA4ey5SQsadFIVqrdOHy2Iu4LGYuFa3VpFVmcKgml+2le1lXuO2E5we4+DIvYhpjA5KI9ggbUlWcwWLkn9vfIqeukHsn3Dzk0uxWYzsvbn0TmUTG36bePVzddoHjfExA2tvp63UuqPifbobX/+cQo3zi+ARILd/PxVEzz/ZwzhgyiZQojzCiPMJYPGIBjfpm9pQfYEdpGl9mLuerzJ9J8IlldvhkRvslDMphdiAEQSBA40uAxpfLYy/CJtqo1zVS1V5Lk74FvdmAVbQil8hxdnDCQ+1KgIvvSe/ntRnbeXHbW+Q3HuGusTcwKWjMkM43W828vP1tGvXNPDnjgbPaZzXMuYGz6uitOq0yg0i3kN+l6eFwQDqHCND4Eu4azJqCLcyLmH7BNB26qbTMi5zOvMjp1LTXsaV4N5uKdvGvHe/gqtIwJ3wKs8OnDKqabTBIBAleTh54OQ3Nb2owlDZX8M/OYPLAhD8wPnDwRn1g3x/4X9rn5NQXcv+EW4nyCDvtYxzm/EOttqdrG/XNFDaWnLQbwLnOhXHHO4+4LHYuVW21g0op/R7xdvLk6pELeeOSv/PnyXcSpPHnm0O/cNeKR3kj9WOKm8rO9hD7RBRF1hdu55H1L2KwmnhyxgNDDkYA3x1eydbiVK4eeQkTg1LOwEiHOR9xUtlTdukVmQCMOUVB3nOV4RXSOca4gCTivWP47OAPxHlF/q6EE4eCRCIhxT+BFP8EKttq+DVvE5uLd7OleDcjvKKYHzmDFL+Ec2IVWdlWwwfpX5NRk028dwz3jLsJ7UmkU9YX2mWRpodM4Mq431fD4zCnhrPKvkJKqzyIt6MHAS6/H/26Yzn73+ZheiAIAn8ceyMquZJ/bH2DWl3D2R7SWcfP2ZtbRy/l7YXPc13iFdS01/Pyjv9xz6on+Cl7DS2G1rMyrmZ9Cx/u+4Y/rX6W/IYj3Jq8lEen3XNSwWh32T7eTf+CJN8R/N+Ya88pNfNhzj5OjgoMZgOZNbmk+Cf+bj8fwyukcxA3tZa/Tb2bZza9wuMb/smfJ99J+DmibH02cVSouTRmDguiZrK34iBrCrbwRcZPfH1oBSl+CUwLGcconxFnvFfnSFMZawq2sK04FatoY0boRJbELzzpPa69FQd5ddf7RLqF8sDE2065iGOY3x9KBzkZNTlYbBZG+8Wf7eGcMYYD0jlKqGsgT8/8Ey9se5PHNvyTJSMXcknUrOHGSOyKEOMDkxkfmEx5axUbC3ewtSSV1PL9OMpVjPZLYLR/PPFeMTg5nHq5tCiKlLZUkF6Zya7SdEpaKpBL5UwLGc+lMXPwOQVX1J2laby2+0PCXIN4ZOrdv7tGx2FOD4JExr7KdFRy5e9OLuhYhu9u5zBBWn9enPs33kn7gi8yfmLTkZ0sjlvAxKDRp02A9XwnwMWXG5IWsyxxERnVWewsS2df5SG2lqQiIBCk8SPCPZRQ1wACXHzxcvJAq9T0uwoxWIzUdzRS3VZHaUsFRY2l5NYX0mJsAyDKPYxbkpcwOXjMKfcG/Zq3iY/2f0uMZzh/mXLXbyIKO8x5iiBhf9VhEr3jftcr6OGAdI7j7ODEnyb9H/sqD/H5wR94LfVDvsj8iRmhE5gQOJoAF98zmk82Wc006ptp7GimxdhKi6ENnakDvcWAyWrGZrMBdmsIlUyJs4MjWqULHmo3/Jy9T8sKZTDIJFKS/eJJ9ovHarNS2FhCRk0OOXUF7C5LZ0PR9h7HO8pVKOVKZBIZomjDbLPQYdJ3q1Z04ePkSYJPLCO8oknyHXFaej8sNisf7/+WNQVbSPFP5P7xtwyrMAwzIBW6WpoMLST7jTzbQzmjnNGAtGLFCt566y3MZjM33XQT1157bZ/Hbd68mWeeeYaNGzeeyeGc1yT7jWSUbxz7KjNZU7CF7w//yneHV+Hp6M4Irygi3UIJ1vrj6+yFk8JxUEHKJtpoN+po1LfQqG+ivqOROl0jdboG6nQN1OoaulcGxyOXyFDIFN3irGarGaPF1EsDT6t0IcwtmGj3MEZ4RRHuFnzGV3fSYxpvwZ5ya9A3UdlaQ62uniZ9C21GHQaLEYvNgiAIyCUy1HIVLkpn3FRafJw8T6k5tj/qOxp5ddcH5NYXckn0bK5LWHROVAoOc26TVV8IwCjfEWd5JGeWMxaQampqeOWVV/jhhx9QKBQsXbqUcePGERHRM/9ZX1/Piy++eKaG8btCIkhI8U8kxT+RJn0LeysOcKA6m/SKDDYf2dV9nIPMAa3SBSe5GgeZAqlEioCAxWbBZDWjNxtoN+loM+mwibYeryGVSPFQu+Hl6MZo/wQ81G54qF1xU2nRKl1wcXDCSeHY516WTbShM3XQpG+hVtdAVVstJS3lFDaUsK/S3j+hkitJ8h3JuIBRJPmO/E32TARB6Pw9Tl2O6GQRRZFtJXv4cN/XWEUb90+4dbjPaJhBk99QTJDG/7Q1h5+rnLGAtHPnTsaPH49WqwXs3kqrV6/m7rvv7nHcY489xt13382//vWvPq/T2tpKa2vPst7q6uozMubzCVeVhrkR05gbMQ1RFKnV1VPWUkl1ez0NHU00G1rQmTowHbNykUmkOCrUeKjd7AKqSic0Di64qjS4qexWEVoHl5OesXfZpjs7OBGk9e/xXKuxnazaPPZXHSa9MoOdpWk4yBwY5z+K6aHjifOK+l05Xx5LdVstH+7/hv1Vh4lyD+Pu8Tfh4+R5toc1zDnGQPe6Iy1lzAmbcTaG9ZtyxgJSbW0tnp5Hv3ReXl5kZGT0OOaTTz4hLi6OxMT+u44//vhjXn/99TM1zN8FgiDg7eSJ9zl8k3NxcOqujLPZbGTV5bO9dC+7ytLZWpKKl6M7s8ImMyN0wkn18ZyLtBnb+TF7DavzNyOTSLkp6aoLShJqmKEx0L3OaDER4/H7ra7r4owFJFHs7adz7L5GXl4ea9eu5aOPPhpwxXPjjTeyaNGiHo9VV1f3ux81zLmPRCJhpHc0I72juSXpavZUHGB94Xa+zFzON4dWMDYgibkRU4nzjDwvGwBbDK2sytvE6vzNGCxGpoWM55qEy36XYpjDnD5OdK+L8Qg/G8P6TTljAcnb25u0tLTun2tra/HyOtqvsXr1aurq6rjyyisxm83U1taybNkyvvjiix7XcXFxwcXl9503vZBRyBRMDh7L5OCxVLZWs65wO5uLd7GrLB0/Z29mhk1iasi4cz53LooihY0lrCvcxvaSPVhsVsYFJrE47uJe6cthhumLge51KrnqjFnSnEucsYA0ceJEXnvtNRobG1GpVKxdu5Znn322+/l7772Xe++9F4Dy8nJuuOGGXsFomAsLPxcfbkxazDXxl7KrbB/ri7bz2cEf+DLjJ0b5jmBK8FiS/eLPqebRmvY6dpXtY1vJHspaKnGQOTA9dAILombidxqs04cZBuzfjfMxWzBUzugK6YEHHuCGG27AbDazePFiEhISuO2227j33nuJj//9yl8Mc2ooZAqmhY5nWuh4ylur2HxkN9tKUkmvzEQhlZPoE8dovwRG+cYN2ZL8VDFZTOQ2FJFZk8O+ykOUtlQA9obZ20YvY1JQymkvFR9mGP9TUAM5nxDEvjZ7znHKy8uZNWsWGzZsICAg4GwPZ5jfAJvNRk59ATvL0kmryKBR3wyAv4sPsR4RRLiHEuYaRICLz2mTVzJbzVS21VDSXEFRUymFDcUUNpVisVmQChKiPcJJ8U9kbMCoYRO9Yc4IXfe6J95/jmsnLz7bwznjDCs1DHNeIJFIiPOKIs4riluTl1LaUsHB6mwO1+ayqyyd9Z1KDFJBgreTJz5Onnio3dCqNLg4OOKoUOMgdUAhlSMRBETo0ZelM3XQamynydBCQ0cjte0N1HY0dBfnyKVywrSBXBw1g7hOC3iVXHkW35FhLiR+60zA2WI4IA1z3iEIAsHa/2/vTmOjKhs2jl8DbdlKKYUuPKC8AbENYYuC7CU8ULpRdkNZLAqCgCyWSNjEQMSASFKIJGyi4UNRSkGwBAHZZGmDghrW+kLCIn0ZSi1SaEs7Mz3vBx4m1hateRznHvr/JU2Yc8+cueZOOdec6cw9rdQ6uJWGRMWowqqQ/X6+rv76s278+n/Ku29X/oMC/e8vV/WgvLjG+61jq6Mm9RurWYOmatvsf9Sn9Ut6pkkLPdvk0QoYrB8Ib2lav3a8Q5NCgs+rY6ujfwVF6F9BEer9bOUxp8up++XFKnaUqMxZLofLoYr/nPX41amrgLoBauBfT438G6phQIOn9sO58G215SMDFBKean51/dS0QZNa8x8aT6fashI8TwcBwHC14S3fEoUEADAEhQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMIJHCykrK0sJCQmKiYlRenp6lfGDBw9q6NChGjJkiKZPn6579+55Mg4AwGAeK6Tbt28rLS1NW7du1e7du7VtEpZtFQAADjxJREFU2zZduXLFPf7gwQMtWbJEGzdu1JdffqnIyEh99NFHnooDADCcn6d2nJ2drR49eig4OFiSFBsbq3379mnGjBmSJIfDoSVLlig8PFySFBkZqaysrCr7KSoqUlFRUaVtdrvdU7EBwCs41nmwkPLz8xUaGuq+HBYWprNnz7ovN23aVAMHDpQkPXz4UBs3btQrr7xSZT9btmzR2rVrPRUTAIzAsc6DhWRZVpVtNputyrb79+9r+vTpioqK0vDhw6uMT5gwocp2u92ucePG/X1hAcDLONZ5sJDCw8N1+vRp9+X8/HyFhYVVuk5+fr4mTZqkHj16aOHChdXuJygoSEFBQZ6KCQBG4FjnwTc19OrVSzk5OSosLFRpaakOHDig6Oho97jL5dLUqVMVHx+vRYsWVXv2BACoPTx6hpSamqqUlBQ5HA6NGjVKnTp10uTJkzVr1izZ7XZdvHhRLpdL+/fvlyR16NBB77//vqciAQAM5rFCkqSkpCQlJSVV2rZp0yZJUseOHZWbm+vJuwcA+BBWagAAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGMGjhZSVlaWEhATFxMQoPT29yvilS5c0cuRIxcbGatGiRXI6nZ6MAwAwmMcK6fbt20pLS9PWrVu1e/dubdu2TVeuXKl0nblz52rx4sXav3+/LMtSRkaGp+IAAAznsULKzs5Wjx49FBwcrIYNGyo2Nlb79u1zj+fl5enhw4fq0qWLJGnEiBGVxh8rKirSzZs3K/3Y7XZPxQYAr+BYJ/l5asf5+fkKDQ11Xw4LC9PZs2efOB4aGqrbt29X2c+WLVu0du1aT8UEACNwrPNgIVmWVWWbzWar8fhjEyZM0PDhwytts9vtGjdu3N+QEgDMwLHOg4UUHh6u06dPuy/n5+crLCys0nhBQYH78p07dyqNPxYUFKSgoCBPxQQAI3Cs8+DfkHr16qWcnBwVFhaqtLRUBw4cUHR0tHu8ZcuWqlevns6cOSNJ2rVrV6VxAEDt4rFCCg8PV2pqqlJSUjRs2DANHjxYnTp10uTJk3Xu3DlJ0qpVq7R8+XLFx8ertLRUKSkpnooDADCcx16yk6SkpCQlJSVV2rZp0yb3v6OiopSZmenJCAAAH8FKDQAAI1BIAAAjUEgAACN49G9InuJyuSSp1n2KGcDTIyIiQn5+PnkI9hifnI07d+5IUq36wBiAp8uhQ4fUqlUrb8cwis2qbskEwz18+FDnz59XaGio6tat+7fu+/Eno9PT0xUREfG37tvTyO4dZPcOX84u1ewMyel0ym6315qzKZ98hPXr11fXrl09eh8RERE+++yF7N5Bdu/w5ex/xs/P76l9bNXhTQ0AACNQSAAAI1BIAAAjUEi/ExQUpBkzZvjkqrtk9w6ye4cvZ0f1fPJddgCApw9nSAAAI1BIAAAjUEj/cebMGY0cOVJDhw7VhAkTlJeXJ0kqKirSlClTFB8fr3HjxrlXiTBNVlaWEhISFBMTo/T0dG/H+VNr165VYmKiEhMTtXLlSklSdna2kpKSNGjQIKWlpXk54Z/74IMPNH/+fEnSpUuXNHLkSMXGxmrRokVyOp1eTle9w4cPa8SIEYqLi9OyZcsk+c6879692/0788EHH0jynXlHDVmwLMuy+vfvb126dMmyLMvavn27NXXqVMuyLGvp0qXWhg0bLMuyrC+++MKaPXu2tyI+kd1ut/r372/dvXvXKi4utpKSkqzLly97O9YTnTx50ho9erRVVlZmlZeXWykpKVZWVpbVr18/68aNG5bD4bAmTpxoHT161NtRnyg7O9vq3r27NW/ePMuyLCsxMdH64YcfLMuyrAULFljp6eleTFe9GzduWH369LFu3bpllZeXW2PGjLGOHj3qE/NeUlJidevWzfrll18sh8NhjRo1yjp58qRPzDtqjjMkSeXl5Zo9e7aioqIkSZGRkbp165Yk6ejRo+4vGRw8eLCOHTsmh8PhtazVyc7OVo8ePRQcHKyGDRsqNjZW+/bt83asJwoNDdX8+fMVEBAgf39/tW3bVteuXVPr1q31zDPPyM/PT0lJScY+hl9//VVpaWmaOnWqJCkvL08PHz5Uly5dJEkjRowwMvvXX3+thIQERUREyN/fX2lpaWrQoIFPzLvL5VJFRYVKS0vldDrldDrl5+fnE/OOmqOQJAUEBGjo0KGSpIqKCq1du1YDBw6UJOXn5ys0NFTSo2U8AgMDVVhY6LWs1fltRkkKCwvT7du3vZjoj7Vr1859ELl27Zr27t0rm83mM4/h3XffVWpqqvvtxr+f/9DQUCOzX79+XS6XS5MmTdKQIUO0detWn/ndCQwM1OzZsxUfH6/o6Gi1bNlS/v7+PjHvqLlaV0hfffWVoqOjK/28+uqrkh6dKb399ttyOp164403nriPOnXMmjarmnfu22w2LyT5ay5fvqyJEydq3rx5evbZZ6uMm/gYtm/frhYtWqhnz57ubb4y/y6XSzk5Ofrwww+VkZGhc+fO6ebNm1WuZ2L23Nxc7dixQ0eOHNGJEydUp04dnTx5ssr1TMyOmvPJxVX/G/Hx8YqPj6+yvbi4WNOmTVNwcLDWrVsnf39/SY+eMRYUFCgiIkJOp1MPHjxQcHDwP5z6j4WHh+v06dPuy/n5+QoLC/Nioj935swZzZo1SwsXLlRiYqK+/fZbFRQUuMdNfQx79+7VnTt3NHToUN27d08lJSWy2WyVst+5c8fI7M2bN1fPnj0VEhIiSRowYID27dtXacV8U+f9xIkT6tmzp5o1aybp0ctzmzdv9ol5R82Z9VTfi+bOnavWrVtrzZo1CggIcG/v16+fdu3aJenRwahr167usjJFr169lJOTo8LCQpWWlurAgQOKjo72dqwnunXrlt58802tWrVKiYmJkqTOnTvr6tWr7peV9uzZY+Rj+PTTT7Vnzx7t3r1bs2bN0r///W8tX75c9erV05kzZyRJu3btMjJ7//79deLECRUVFcnlcun48eOKi4vziXmPiopSdna2SkpKZFmWDh8+rJdeeskn5h01V+vOkKpz8eJFHTp0SM8995yGDRsm6dGZ0aZNmzR79mzNnz9fiYmJaty4sVatWuXdsNUIDw9XamqqUlJS5HA4NGrUKHXq1MnbsZ5o8+bNKisr04oVK9zbkpOTtWLFCs2cOVNlZWXq16+f4uLivJjyr1m1apXeeecdFRcXq3379kpJSfF2pCo6d+6s119/XWPHjpXD4VDv3r01ZswYtWnTxvh579Onjy5evKgRI0bI399fHTt21JQpUxQTE2P8vKPmWDoIAGAEXrIDABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAp5g/vz52rx581+6zaFDh9yraB89elRr1qzxRDTgqcTnkIC/0YABAzRgwABJ0rlz53Tv3j0vJwJ8B4UEn3Pq1CmtXLlS4eHh+vnnn1W/fn2tWLFCYWFhWrp0qXJzc2Wz2dS3b1/NmTNHfn5+at++vSZMmKBTp06ppKREc+bM0aBBg7Rz507t379fGzZskKQqlx/LzMzUtm3b5HA4dO/ePU2ePFljx47Vzp07lZmZqdLSUgUGBmr48OHav3+/pk+frs8//1wul0uNGzfW2bNnFRcXp9GjR0uS1q1bp7t372rhwoX/+PwBpqKQ4JMuXryoBQsWqGvXrvrss880d+5ctWvXTsHBwcrKypLD4dC0adP0ySefaMqUKXK5XGrSpIl27typ3NxcjR8/Xl27dq3RfRUXF2v79u3auHGjmjZtqh9//FGvvfaaxo4dK0m6cuWKDh8+rMDAQO3cuVPSo1URkpOTdffuXaWmpurgwYNav369Ro8erYqKCm3fvl0ff/yxx+YH8EX8DQk+KSoqyl0oI0eO1KVLl7Rnzx6NHz9eNptNAQEBSk5O1rFjx9y3GT9+vPu2zz//vL777rsa3VejRo20fv16ffPNN1q9erXWr1+vkpIS93hkZKQCAwP/cB/9+/dXQUGBcnNzdfz4cbVq1Upt2rT5qw8beKpRSPBJv12hWnr0FRC/XwWroqKi0lda//Y2FRUVqlu3rmw2W6XbVffli3a7XcOGDVNeXp5efPFFvfXWW5XGGzZsWKO8ycnJyszM1I4dO5ScnPyntwFqGwoJPik3N1e5ubmSpG3btumFF15QfHy80tPTZVmWysvLlZGRoV69erlv83jV9gsXLujq1avq1q2bQkJCdPnyZZWVlcnpdOrIkSNV7uv8+fMKCQnR9OnT1bdvX/d1XC7XH2asW7dupUJ8+eWXdfDgQV24cEExMTH/7RQATx3+hgSf1Lx5c61evVp5eXkKCQnRypUr1ahRIy1btkxJSUlyOBzq27ev+2vGJen7779XRkaGKioqlJaWpiZNmqh3797q1q2b4uPjFRoaqu7du+unn36qdF+9e/dWZmam4uLi1KBBA3Xq1EkhISG6fv36H2bs2bOnZs6cKX9/fy1evFjNmjVThw4d1LZtW+O+wgQwAat9w+ecOnVK7733nvbs2VPj20RGRionJ8f95XTeUFhYqFGjRik9PV0tWrTwWg7AVLxkB/wDMjIylJCQoJSUFMoIeALOkAAARuAMCQBgBAoJAGAECgkAYAQKCQBgBAoJAGAECgkAYIT/B5VRJ992K6JTAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set_theme(style=\"ticks\")\n", + "\n", + "# Show the joint distribution using kernel density estimation\n", + "g = sns.jointplot(\n", + " data=df,\n", + " x=\"popularity\", y=\"danceability\", hue=\"artist_top_genre\",\n", + " kind=\"kde\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "일반적으로 세 장르는 인기도와 춤추기 쉬운 정도 측면에서 일치합니다. 동일한 축의 산점도는 유사한 수렴 패턴을 보여줍니다. 장르별 데이터 분포를 확인하려면 산점도를 시도해 보세요.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFcCAYAAACwQwV1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABcRklEQVR4nO3deVxU5f4H8M9hZlgVAQGXNHPLLMXSVNxDVEQk1xKXcCkry+v90c2iTK/XpcXqmkm5lNfMSFFEDc1dSVNzqyS8erVMxRIQQUcRmO38/qAZZzlz5szMObN+369Xr3vnzPbMDJ7veZ7n+3wfhmVZFoQQQogfCnB3AwghhBB3oSBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4La8MghqNBlevXoVGo3F3UwghhHgxrwyCJSUlSExMRElJibubQgghxIt5ZRAkhBBCxEBBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL8ld3cDCCGepeBUMb7ccRblldWIjgxBenJ7PNGlububRYgkKAgSQgwKThUja+Np1Kq1AIDrldXI2ngaACgQEp9Ew6GEEIMvd5w1BEC9WrUWX+4466YWESItCoKEEIPyymq7jhPi7SgIEkIMoiND7DpOiLejIEgIMUhPbo8ghczkWJBChvTk9m5qESHSosQY4lcOXT6OdYVbceNuBRqGRmFs3DD0adHN3c3yGPrkF8oOJf6CgiDxG4cuH8eKE9lQaVUAgPK7FVhxIhsAKBAaeaJLcwp6xG9QECQeSYoe27rCrYYAqKfSqrCucCsFQUL8FAVBidCwm+Ok6rHduFth13FiH1pkT7wRJcZIQH8SL79bARb3TuKHLh93d9O8Al+PzRkNQ6PsOk6E0y+yv15ZDRb3FtkXnCp2d9MI4UVBUAJSncT9hVQ9trFxwxAoCzQ5FigLxNi4YU69LqFF9sR70XCoBDxl2O120UFUHsiGRnkD8vCGiEwYj/od+rq0DY5oGBqFco7vytkem34olYapxUeL7Im3oiAoAalO4va4XXQQ5duXg9XUAgA0ynKUb18OAB4fCMfGDTOZEwTE67H1adHN7UHPF+fOoiNDcJ0j4NEie+LpaDhUAp4w7FZ5INsQAPVYTS0qD2Q7/dqHLh/HS/mzMCZnGl7KnyX6XGefFt3wQtfxiA6NAgMgOjQKL3Qd7/bgJQZfnTujRfbEW1FPUAKeMOymUd6w67hQUq6184eMWr65M2/uDdIie+KtKAhKxN3DbvLwhtAoyzmPO0OqtXb+spDdl+fOaJE98UY0HOqjIhPGg5EHmRxj5EGITBjv1OtKlfTjCRm1Ug/zAlSgmhBPQ0HQR9Xv0BfRKS9CHh4NgIE8PBrRKS86nRQj1Vo7d2fUumptJ82dEeJZaDjUh9Xv0Ff0TFCpMjfdnVHrqpJqNHdGiGeRNAjm5+dj2bJlUKvVmDRpEsaPNx2K++677/DBBx8AAB588EHMmzcPYWFhUjaJOEmqpB8pl0UI4cqeqBRzZ7aSivwh6YgQR0gWBEtLS7F48WLk5eUhMDAQaWlp6N69O9q0aQMAUCqVyMzMxNq1a9GmTRt89tlnWLx4Md566y2pmkREIkXSj7szat3dE3WGraQif0k6IsQRks0JHjlyBPHx8YiIiEBoaCiSkpKwc+dOw/2XLl1C06ZNDUExISEBe/futXgdpVKJq1evmvxXUlIiVbOJG/Vp0Q2fpi5Ezphl+DR1oUtP0J6wttNRtpKKPCHpiBBPJVlPsKysDDExMYbbsbGxKCwsNNx+4IEHUFJSgnPnzuGhhx7Cjh07UF5umdK/Zs0aZGVlSdVMr+Ct5c+8ibt7os6wNZTr7qQjQjyZZEGQZVmLYwzDGP5/eHg43nvvPcyePRs6nQ5PP/00FAqFxXMmTpyIESNGmBwrKSmxmF/0Vd5c/sxeUsxbmZcoi++lxc93vud8D3ev7XSUraFcbx7qJURqkgXBRo0a4eTJk4bbZWVliI2NNdzWarVo3LgxNm7cCAA4c+YMmje3TBYIDw9HeHi4VM2UjFgndL7yZ74UBKWYt9KXKNNXaKlgfsOea2fAyLSivYcnsJVU5O6kI0I8mWRBsGfPnli6dCkqKioQEhKC3bt3Y/78+Yb7GYbBlClTsHHjRsTGxuI///kPhgwZIlVzJGGtEDLXCX3ZsbVYufkX3CqOtistXqryZ7aIVeSZ72LA+D6GCYCO1Zk8V+gSBWttNS9RJm9+3hAA7X0PT2ZrKNebh3oJkZqkPcGMjAykp6dDrVZj9OjRiIuLw9SpUzFjxgx07NgR8+bNw3PPPQeVSoUePXrg2Weflao5JsTopZn3MvSFkAFgw5+WiQgaVgNVVBHY4idMHmsrsDhT/szRz8n32ewJhHy9OwAm97FmAVDP1rwVX1vNS5ExgTUOvYc3sDWU661DvYRITdJ1gqmpqUhNTTU59tlnnxn+/xNPPIEnnnhCyiZYEGvYja8QclVb7pOq8UlYaNHkyITxJnOCgLDyZ858TmeKPAvt3en/vy225q342mq+vQ+rCgYTZBkIaW6MEP/ldxVjxKoMwlcIuZmVRARWFSzoNYzp5/3szQ515nM6WuTZPPA62rvTEzJvxdfWV8Z1NuklaoofhKLlGZMhUXvmxnxlwbkv7mdIiKP8LghyBSe+49bwbSLKlYjAagOgKX7Q4rFC8JU/s3ZiduZzOrpBKlfg5aLveXG1JYAJAMvqBAcZvraalyiLYlsjvskDVrND+Xj7gnP930n53QqwqhCombZg0dThoW5CfIXfBUFGHQJWYXnSZNT2VfFPT25v0ssA7hVC7tOi7mSiD05h8nAoL7WCtqKxxWOdwXdiDuAYitQfd+az8RHSwzPueXFlLNq7ea6ttnKXKEsW/Pp6rqotKhbji6N6gWG4q66Blq37jpjAaihaFgEAtBVNeYe6qddIfJ3fBcHay22haFkERnYvQLDaAKgut7XrdWwVQjZPRJDiZMJ3YuYKgACsHjfmaJFna+vR+Hp3zg4vuqogtTctODe/OLqtqrJ4DCPTQd78PLQVTQFwDyuLlSBFiCfzuyAYxbZGxe9/pcsH1oBVBUNT/CCi2NZ2v5Y9hZClKJrMd2KOthKQogUmgTjSXmvr0az17sTKWHTFZq7etOBc6LC0caIW11C3MwlSrkI9VeIsvwuCdcNnKtSebmo4FqSQIf0pcfdzc0USBd+J2R0LpH15PZoz36ery94J7Z3qE7WsDXU7miDlKtRTJWLwuyDoiuEzVyVR8J2YxQxIvpIV6QxHv093lL2zdnFkQieDpvhBxPD8/TuaIOUq3tBTJZ7P74Ig4PjwmdBg4KokCiGVQpx9P3sCursyKF0VpPm+T2vDcu4oe8d1cSQPkCFYFowqddW972gs/3fkaIKUq3h6T5V4B78Mgo6w5wTvyiQKqSuB2BPQ7Q3+YgQvT1i6wDcsd78byt6JNQrgqqQjR3l6T5V4BwqCAtlzgrc6HKUOwZP/2OpxJxPAekCyJ6Db81ixgpcnLF3gG5ab24C/7J0zFwJ8z/WmpCNHeXpPlXgHCoIC2XOCf7Reb+y5vd2kMol+GQYLz5vA5wtI9mRF2vNYsYKXrd/FFUOlfMNykcOtl71z5kLAE3rA7ubpPVXiHSgICmTPCf6HwzKomUcslmHo12QBnjWBzxeQ7MmKtOexYg0Z8/0u9gYKRwMm37AcX9m7dfmzHL4Q8IQesCfw5J4q8Q5+EQTF6A3Yc4Ivr6wGi6YmQY+Lvgfh7p3j+QKSPfNL9jzW3nV31n5Dvt/FnkDhTM/K1rCctbJ3zlwIeNPifUI8mc8HQbH29rPnBG+tZ8D1OE/YOd5WQLJnfknoY+25qBASoLh+l6wfVnO+N1egcKZnJXaFHSEL8L1p8T4hnszngyDXyc3Rvf2EnuC5egbm9D2FygMLLFLofwwGdhV+jVtn1rlkXZ6rFtab9+aeeCAeP14rcnrJibXfJUoRihvqu5zHzTnbsxKzwo6Q793Wc2ltJyHC+HwQtHYSc2RvP6G4egZdH4rFiXNlFj2Fiztv4Kd6QdjVsB5uygMQomWhCmCgDWAAuCbhwRWVXrh6cwWXfhBUMNveAGUIAPqamQxjuE+hYzGo/I7Fc9zRs3Lme+d7rjcmzVDQJu7i80GwXmAYZwFhaBQmN8VeYMvVM5jG8bjTMQ2RV5+B+q+gVy1nLB4jRcID10nn09SFor2+OWeGG+0JUCYBQB/8WBYAEKHRIenGHXS6Y1lXs3OTDtj920HO41JyZimDted6W9KMNwZt4jt8Pgj+df6zPA7TO9y1wHZ3dD2oOYbszAkZlhN6Ne2Ok44zw432DBtyFo9mGESotci8XLdAXR4ebfG8H68Vcb63teOu8vnJddh78XvoWB0CmAAMaNUbzz0+lvc53pY0421Bm/gWnw+Cd9QcvUAAjFxj+P/uXGBbISAAAraH5ewJbO446Tgz3GjPsKG1E/1NeQDebdEQSTdrMeiJ8YKfZ3zc1UN2n59cZ9I71bE6w+3nHh9rtT3eljTjbUGb+BafD4LWNtGFKhgM4PYFtkKKHQtJlrAnsLnjpOPscKPQYUOr3yfD4KZChs2x9RFbPxh9BD5PHzjc0Xvee/F7q8fbxbS22h537CDiDG8L2sS32N5m3MvVXm4LVmc6z8bqGKiLH8Q3Hw7Df94a5NbFtmPjhiFQFmhyTMbIUD8wrC5Ih0aJnjxi7eQi5UnHVcONXN+nMRWrxbrCrYKeZxw4+C4ypMK3MbKti54Xuo5HdGiUXX9D7mLruydESj7fE6wfFogamE8Msqgfxn2idPWQl1iZmUKupvWfjetxUp90HM7wdCJr0loPm+s9+7Tohv9d/81k/u2JB+INrydm71noZwtgAjgDYQATYLM9UhdWF5Mv70NJPJ/PB0FF8/Oo1ZgeYwLqjptzV5aarROWkN2zhawbM79fL9oFJx2HMzxh/++g/z5fyp9l13sWXPrBEHR0rA4Fl35Au5jWgubZpEhKGtCqN+cQ8oBWvfHjtSKfGkL0pqBNfIvPD4dWaZSCj7tjyMsW/TY91yurTYpvF5wqNnmcrSEwzqzJvx73aepC0U5Ahy4fx0v5szAmZxpeyp+FQ5ePA7BvyEus30HM9+R7LX1gK79bARb3Apv+sxecKsaUBbvx5D+2IuvQesGf7bnHx2JQ674IYIz+mWpl2PXrQZQr74CB6TA/DSESYj+f7wlau4JnmACMyZnm8LZBgGuGTu3ZPZvvatoVyTD2ljcbHtkOLb5ZhYvKRSY1U8VqqxhZpcbDi9Ze6yWeQtja8iYm1YN08mpYrgS1/v7PPT4Wzz0+FisP7MCea3U7kzAAIFdBp2MQLAuGiq2hIUQH0AJ9AvhBEOQaJgTuJR2U363AsuNfAnDtkJ1QYu2e7YoMPHvKm+lrpmo4aqaK2VZns0qN39Paa/EFUPOLGFYVDCaoxuKxtj7bvj/2gFGYXgwxASxUKgY5E5bxPldMvhI4aIE+0fP54VDzYULzISQA0Oi0+OLHDW4ZsrPF2iJ+IYv7jYcma9S1kAfITO4Xe/jMnh5c5YFsi5qprKYWlQey7c4WtDYEaw9nMhT5sm3NL1Y0xQ/CPNdFxshsvo9Ozn3RY+24OTG+I1vDvt7EE6c+iHv4fBAE6gLhp6kLkTNmmUWlGL3bqiq7UstdtdYuPbk9ghSmwUvI4n7zE9YddRVYFnYvvbCHPUsvNMobnI/VKG/Y9TuIdWIW8p6OzHdyX6yYXogxXOOjZgI03Bc91o4bO3T5OJYd/9LkO1p2/Eu7vyNfChy0QJ/o+fxwqL34hs+MszRDHgsBOBbhizG8aD7kNCipN344HGjXNj1cJywtq0WQPAirRnzgdBu5cA09yxk5bv/WCk/+Y6tJ2+XhDaFRllu8hjy8IQDhw5hiVr/he09Ht3PSJhebzAnKm58HE2B6IabRaW22N/G+gYY5QT1WK8OA+wba/Fxf/LgBGp3pUKp+9MOe78hagCi/W2Exv+7paIE+0aMgKJA+S1N/Mqu93BaKlmdMTkpiDC9ynWwP1u7EC8+MR58WgwS/jjuudPu06Ibq4nPIvXIENwOABlog/M8YnC+pq9VpvG1Vl4TxJvsoAgAjD0JkgmVJMz6u+pyObudkvqNIQKDlfCBfe40viILlwahVy8DKVAjQhGDAfQPxfEKyzbZzFpDnOW4NX3Uj41444Pnzat5WVYdIR9IgmJ+fj2XLlkGtVmPSpEkYP970BHfmzBnMmTMHarUaTZo0wfvvv4/w8HApm4T6VnaVqB8Yxvs88wQH/a7xQS0uAIpq0a6CxerZuONK93bRQbQ9vBOZRoFNxVZgfWB9nFK1AmCU2fpWXUCvPJANjfKGSXaoPVz1OZ0JtsY7iryUf9zh5KtatgaBQYF4oetktwQZa0lmxryl8DUt0Cd6kgXB0tJSLF68GHl5eQgMDERaWhq6d++ONm3aGB6zcOFCzJgxA/369cO7776LVatWISMjQ6omAQAmdX4ay45/aTI8JA+QYVLnp3mfx5WNqa1oiuqKpvjmQ/ckl/Bxx5UuV7JLIKPF0JCfDEEQuPdd1u/Q1+6gZ85Vm8uKFWzHxg3j/PuzN/nKns9QTxHGWUi+noL/ws+ceeCwskGLpFV0xEQL9AkgYWLMkSNHEB8fj4iICISGhiIpKQk7d+40eYxOp0NVVd0/zurqagQHB0vVHIM+LbphWrd0kwSIad3Sbf5jcCZL0x5i1fV0Vf1I42SRBZEsfqoXZPGYyADTE7CY3xnf5xQzm1HM+pbm23tZ2+5LrAuiyV2ehowxTa6SMTJM7sJ/4cfFOMksWqS/VV/KOiXeR7KeYFlZGWJiYgy3Y2NjUVhYaPKYzMxMTJ48GW+//TZCQkKwYcMGi9dRKpVQKk2ru5SUlDjVNkeuANOT25vMCQLSbMEkZg9O6itd8+G6mwoZ8mLDASjx2J17PcJK3b0ehxTfmSs2lxVr+Gxd4VZoWdMkFS3LnRgjVu9TqqE/sf5WaT9B4k6SBUGW4/KWMcoFr6mpwaxZs7BmzRrExcVh9erVeP3117Fy5UqT56xZswZZWVlSNVMw8wQHqbZg8qa5Cq6TlzqAwa6G9QxBUBegwHdsd7u3rRJjeEzspBkxLirsaZOnXxCJ9bdKyxWIO0kWBBs1aoSTJ08abpeVlSE2NtZw+/z58wgKCkJcXBwAYMyYMViyZInF60ycOBEjRowwOVZSUmKRZOMKxgkOUpKqByf2vAvfBrYAY0h2+UeHvviHne0Uo5qHJ6bB29MmqS6IxPw7EONv1RN/J+I/JAuCPXv2xNKlS1FRUYGQkBDs3r0b8+fPN9zfokULlJSU4OLFi2jVqhX27duHjh07WrxOeHi45Bmjnk6Mk5YUZaKsnbyiwxqi1azlDr0mIN7wmCemwdvbJrEviDyxXJgn/k7Ef0jaE8zIyEB6ejrUajVGjx6NuLg4TJ06FTNmzEDHjh3xzjvv4P/+7//AsiwaNmyIt99+W6rmCMYXcFyVwWa8KL9B83Jom/4MDVu3H5T5SUtom6SYd5Hq5OWOAtqu4u42eeL8m7u/E+LfGJZr8s7DXb16FYmJidi3bx+aNWsm2uty7bkXKAvEC13rhl6t3SfmP9aCU8XI2vst0OQcmL8WVnOV1dLvASi0TWNypnGmtDMAcsY4XoBZigsDa/sA6rd9Io4T++9AyF6XhHgyqhhjxFZtRFdcQa86tBtM80IwMssdxY3duFth11W9VPMuUsxf0vCYdMT8OzCvomRcEYgCIfEWFASNODIMJ3YGW3VUEQJsBECg7qRlq73GvbQwRRjkATKTRdruDizmvcjOTTrgx2tFuHG3AvUCwxAYoECVuspmD1OqYerbRQedrmjjaexZrG+Ltb0uP/z6R3y54yz1ColXoCBoxNZVsisy2KzVljSmD17rCrdabdOhy8ex4tiXUP21Ju2OugoyMKgfGIY7KtuBRWpcCRq7fztouP+2qgqBskBMj+cvESZVood+v0OWY79Dbw+EQhfr28K3pyX1Com38IsgKLSnYOsq2RVDdMGyENTouE4uDBiwFu231qavT+UYAqCeFiwCWdapOUBzjvbCuIZyzQkZbrY30UNoe/n2O/TmIGjPYn1boiNDcJ0nEBrqxFIQJB7M54PgocvHsezYWpPsymXH1gLg7ilYu0qWMoPN+MRs7aK8niIU/xlpugUSX5uWHv0PZ0bNDSs7BzgSzJzphQkdRrb1OHuGsO1pL99+h1KSOtFEzIXpXFWUzPH1FgnxBD4fBFef3GQIgHoaVoPVJzdZnPhsXSVLkQTClZHKpYqjADJgPTElQqPDTbPNePXHbbVBaDBzJt2eb1se88c58jpcz7OnvVz7Hf5ULwi7YsJxS6K981yRaCJmYoxxFSVrPUKxa+sSIjafD4J31ErzjbwNx803AhXzKtlWz0p/v5BAANh/kkq+yyC3Pgt1wL0Pr9CxSL7LWLSPYQKgY02Do5Bg5sz3JWRbHiHDzfZkktrT3kiz/Q5/qheEvNhww/cpxSJzrkQTTf1iLDu7H8t+FWe7LrEzb/VVlMwDOCBNnVhCxObzQVCnCkZAEEeyCWO5EWg9K3sN1rOy16C17EFbPSuhvT89GSNDraYWY3KmIUwRBoaBzeSWAT3HQ1ewCrsignBTHoAIjQ5JN2sx4IlnLd6fZbmzUW0FM2d6FVxDucbZoUJP+LaGqY2HF0MeCwEUlj0Wrvbq5/30v++umHCTCwpA/CUy5kOHsqg/oWhZBPavbGExAq9Uw/quqq1LiNh8PgiGVHRATeyPvOvu9CczlZW5Da7jfNmD637fxTvsJiQpJIAJAMvqEKYIQ422xhCcjfeF4zsp1u/QF4MAdD2QDY2y/K8g/Szqd+iLdfmzBAVgW8HM2V6FWMPL1l7HvHdSe7ktFC3PgJEJWybyc/1grHsgGjfuBoi6d5415okm8ubnLf5uxQi8UtWmdVVtXULE5PNB8Nk+g5C1VwPWRgWWG3cr6pJgOO6r1Vn2JPmyB2/Ecm/TqD9h2jpxGld9eSl/FueGqHp8J0Vrm9YKOXELCWauLHflSMKI+fCitqIpACCoxQVAwT+8KLS3LuYSGfNEE8bKchlX7q7w+cl12Hvxe+hYHQKYAAxo1RvPPT7WZe9PiNR8PgjWnSiH4MsdLf8aEvsOrJUhsbLKu5xDpzqV5Wa/fNmDDR9oxztMyJcUEm12YhZywrP3pGjt/fW9T3uCmSt253Y0YYQrM1Fb0RTVFU3xzYf8AV5Ib13sJTLmQ4oBmhCrf6uu8PnJdSZrN3WsznCbAiHxFT4fBAHTYZpDl5tYHcJbufkXi6FTVhuAkIoOFq/JlT2oP25rmNCemp9CsijtPSkKeX/9jvGeUNDYWmUSW2vQrK1jE5KxyHdhwQCSfSdC/1ZdYe/F760epyBIfIVfBEFjfEN42j5NTIZOWVUwcO0hPDtgkMXrmGcPAgAjD0Jkwnjcb2OY0J5hxLFxw5D1wxdgrcxKOXJStPX+QhJ7XFnx39paM1tr0LjWsQnNWLS6TZQLi3i7e3cF84xhruNUQJt4O78LgoD1ITzzoVO+f9Tm2YPmtSVtDRMKHUY8e/EGdDqAMZpmZNm6eU3zoVN78L2/rULirt6PztEenTMZi55SxJvvd5K6tmkAx9IZ/XGACmgT3+CXQZCPeYZb3bDgcs4rcWuJJ2La98ceMArTXiDDAIw6xKkeCV9vjm89nTv2o3OmR+doxqK7e2G2uKK26YBWvU3mBI2PA44PUxPiSSgI8vCEXbh18mquhFXo5I6Xo7JVSs7aUKB+XSUXsTMWjXs5rcIb4rVeg7H8dJjdPTpnhm5dlfTjSE/VFbVN9fN+1rJDHR2mJsSTUBDk4Qm7cFvLEAzQOF6OylYpOSHVXMw5krFoLUBx9XJi/rsRS4a/iPodLOdn+V7f3RcxfJwZTnRVbdPnHh9rNQnGmcQjQjwFBUEeriyjZk3ifQOx59p2kwXerFaGAfcNtLsNenyl5ADToUAhZd0cmSvjC1AtROrluOsiRmjvzpkyaXzZya7izDA1IZ6CgqAZ85qaXCXFWAAv5c8SHMic6ZE8n5AMHKibG9TJ69aODbhvYN1xB1krJWe8HlI/FDgmZ5rVainOLBXgC1CvitTLsfciRoysV3t6d86USePLTnYVKpVGfAEFQSNCa2oC9gUyZ3skzyck43lwBz1HTtxcpeSsrYeUaqkAX4ASq5djT21TsYZO7UkWcaZMmq3sZFehUmnE23HX9/JT1qqEBDDcX5PxsgE+jvRIXsqfhTE50/BS/iwcunzc6uNWnMhG+V/7EOpP3NYer/dsn0Fgi+Ogqw0Gy6Luf4vj8Gwfy/m2sXHDECgLNDkmxlIBa3OIDUOjEJkwHow8yOS4I70ce9pua1mIUPYki6Qnt0eQ0XZX9pZJq9+hL+7/2wq0mpWL+/+2wqs3+yXEXagnaMTayYZldWAAzmFBIfODUvVIHO1hClkPaTyv1aB5HOo1P48qjRINQ6PQuF4MPjm2Bkt/WO1wPcnOTTpwpt93btJBtF6OPcscxJr/tSdZxNPKpBHijygIGrEVrBzdNsiehdf2BDZnTtx8w1jm81o3i6MRVNII05/qhF/Z70WpJ/njtSLe42KtwRS6zEHIhYqQoWd7k0U8qUwaIf7IL4dDrQ038g2fOTMs2KdFN7zQdTyiQ6PAoG4+jatOKGBfYOMbUnQG37wWXz1Je4iZeSsGW7+v0KHnJ7o0x/SnOiEmMgQMgJjIELzWS41WRxbg4sLRuLL0BdwusuwBA/b9nRBCxOF3PUEhw418V/tSL7wOU4Rxbp0UprDc2Nfe0l7GPRm+zXn55rWCBdSTFMKZDXmlYOu3t6eHbty7q1vz+AU0Aiu7uGKBPiHkHr8LgrZOZuYnIVfspmAcnDgX8IF7D0QhhbD199ULDMNddQ20bF0Pj29zXr55rbs26kkKJWVtTkeXOvAFIEd7rq6o7GIve6rUUIFs4uv8LgjaczJzRcURy81buVfl3VFxb6xr7cRt/rq3rTxfz/hCgG9e61f2Bm89SaHsrc3JF9hMk3jKoW36s0lJODF+M0d7rq6q7CKUPesYqUA28Qd+FwTtOZm5ouKIkM1brbVPjNc1pr8Q4FsE/QT460nawzyAF5wqxpS1uw3BTPFXRmqYIgw12hpodHUnY+PApi1vYnKiro4qQoBZSTjj38zRXqKjPVdPqOxizJ51jFQgm/gDvwuC9pzMXJG8IeS1HBkmdKSNxoGWL3uUr56ko4x7HbKoP1ETW4RaTd2wK9ccqT6w1ZzuZ3Ki5ltr50zP3tFdJTyhsosxe9Yxilkg29V7UBIilN8FQXtOZq5I3rD2HgF/lWzjm+dzpO3WuHs+zrjXwVU5hcuNuxWoNjshs6pgMBwl4RqGRjnds3ckacVTKrvo2bOOUawC2Z5eyJz4N0mDYH5+PpYtWwa1Wo1JkyZh/Ph7V79nz55FZmam4XZFRQUaNGiAbdu2SdkkAJYnM2vJL67YWNXae3Clxtuz43u9wDDIGJkhEQYA5AEyBMuCUaWuQmBAIFQ6NViwCGAC8MQD8Q6dkMSajzPuXVjrzZlrGBqFGrMTtab4QShaFpkEUf1vlvXDas7XkXpZhiv2nRTKnnWMYhXI9oTdWAixRrIgWFpaisWLFyMvLw+BgYFIS0tD9+7d0aZNGwBA+/btsXVrXUmq6upqPPXUU5g7d65UzbHK2SUTzhLyHvrgxtWzs7bj+21VFeQBMtSTh6FKbboMQv+Z2b+ScHSsDgWXfkC7mNZ2fTbzxAlb83F8jHsd1npzxvSBTdu0CbL2fgs0OQcmsAasKhhsRTPUb3LTUOFG/7mtfYcME4AxOdP8YpjOnqLXYhXI9rQ1oYQYkywIHjlyBPHx8YiIiAAAJCUlYefOnZg+fbrFY1esWIGuXbvi8ccfl6o5Vtm7ZEIKfO9hmT1qydqO7xqdFsHBQfjPyA9Mjot1ZW6eOGFv7Utjxr0OTfGDULT6BUzAvUxZBgzqBYZarGs8hOMIbFlk6H0yQTWQx/6JyY8/Y9I7zvphNWfvGLi3xtH8Akis5QGfn1wnSiKRWOwpei1GgWxPWxNKiDHJgmBZWRliYmIMt2NjY1FYWGjxOKVSiQ0bNiA/P5/zdZRKJZRKpcmxkpIS0drp6VepQrI8G4ZG2fU5xPrM5gkSfPNxthj3OqyvlrS0rnAr5wbBQnrHDMeaR/3FgHnWqaPLAz4/uU6UMnPezBXTCoQ4SrIgyLKW690YjhXf+fn5GDBgABo25E4ZX7NmDbKyskRvn56nX6XaCkzyABlq1LVW9/yrF2hZacbez2wt2cU8cYJvPk4Ifa/jpfxZKL9r+olYsIa1jsY9Nr6Abqt3PCZnmtXnirU8gK/MnL8EQVdMKxDiKMmCYKNGjXDy5EnD7bKyMsTGxlo8bu/evXjhhResvs7EiRMxYsQIk2MlJSUmSTbO8PSrVL4sz/p/VYHhWkKgx3EtYtdn5pszNU+c0FY0hVwegPptLlrMx9lDSI9U32PjC+i2erx8z70q0vIAa+Xk7C0z5+2oHBzxVJIFwZ49e2Lp0qWoqKhASEgIdu/ejfnz55s8hmVZnDlzBo899pjV1wkPD0d4eLhUzfT4q9Thke2w5s4RqAPu9aIVOhYTm/fElsr/2awEU8URIO35zHzzh/pNdU3mzQYMkWwOydyNuxWYHj/ZakC3lgij7/HyXQysPn2Td3mA0PnCAJHKzAH+s9bOXz4n8QyS9gQzMjKQnp4OtVqN0aNHIy4uDlOnTsWMGTPQsWNHVFRUQKFQICgoyPYLSsiTr1If+ukwRupuY1fDergpD0CERoekG3fwUPlh3Ii1fSK1NsQp9DPb6k1JsbM4V3Di0jA0ymZA5+vx8j1Xm1xsdXkAZzmxvd/iy0uWPeABrXqLUmbOX9ba+cvnJJ6DYbkm7zzc1atXkZiYiH379qFZs2bubo6BFFewFxeOBnc9UQYfxLXj7TFZW29oj7r5OY5lBeoQVP/UT7KiyuY7XhiXTQP4P5vQ3TJssdbbm7Jgt0kvURb1J+dcqL59YmSHWvsdokOjDD1yX+Avn5N4Dr+rGCMVqa5g+WpP8vWYokUKwlzvwWplUF1uCxbSFVXmKmhgfIHRuUkHw9IHrjWQ+vbeUVchUBaI6fGT7f4urPVyzecFuSrcGC85EaPMnKdnMYvFXz4n8RwUBJ1gfGLmS7d3JhDx1Z683w2L+aEOgepyW2grmhoe44qiysZBke+CwxXVScyzYp1ZHymUp2cxi8VfPifxHH65s7wYDl0+jmXH1hp2GreW7WdP/U4u9Tv0RXTKi5CHRwNgIA+PRnTKiy4tw9WnRTd8mroQOWOWofqnfiYBUM+RosqO4gt0ruhJpCe3R5BCZrjNqoI5HyfmiXtsHP/O977CXz4n8RzUE3TQ6pObLBZpc3EkC9CctdqT7kgiEKuosi182Zd8gc4VPQnzcmIhFR1MaqYC4p+4PT2L2Rah8+Xe/jmJ9xEUBEeMGIFx48Zh6NChCAkR92TnDmKUw7qjVgoqayLlejB3FCZOT26PJTk/QaO9l6wjlzF2F1XmY2szV75A56p1n+bzha5I6/fkLGY+9l6seevnJN5JUBCcPXs2cnJysGTJEgwaNAhjx45F27ZtpW6bJMTaLVunCkaAjSLPQF2CilTclURgnk/saH6xtcBhq1pL5yYdOJcddG7SwW09CTpxW0e7SBBPJigIdu7cGZ07d4ZSqUR+fj6mTZuG2NhYPPPMM0hOTpa6jU4zPtlCHQJN/baAk4kdIRUdUBP7o0lWIMsCxpXh5AEySecyrPWIGqi1uLL0BUn2rftyx1lodaZRT6tj7f7++HoHtjZz/fFaEef9+uPeHJDEKtrtSSjjk3gywXOCSqUSW7duRW5uLurXr4/k5GRs3boVBw4cwKJFi6Rso1MsdmFQVEPRsu5kaZzgYW9ix7N9BiFrrwasfgsfjRyMTGMyRCrFCkzjk2RY2wZApNmJhGXxUFUtNMo7KN++HABEDYTlldWQRf1Ztyzgr62LNMUPopwjWYYPX+8gOrIf77yjr55UxRql8DSU8Uk8maCsjX/84x9ITExEYWEh5s6di82bN+OZZ55BVlYWCgoKJG6ic7hOtoxMB3nz8ybH7E3seKJLc0wfMAThV5JRe2IwZFDAPAdGy2oNuxmIQX+SvF5ZDRaAOvSa5YMYBufC6irwsJpaVB7IFu39AaBB83IoWhYhIKgGDAMEBNVA0bIIDZpbrmXkwxfIzLMvAdPNXK2dPPXHC04VY8qC3XjyH1sxZcFuFJwqtqtt7sI3DOzNKOOTeDJBPcG2bdti1qxZiIoyPfnI5XKsW7dOkoaJxdrJ1nhtlyO7ZQOmyRFP5+zkfIyzSySMCd2/76b8XjTWKG+I9v4AoGh+HrUa02QfRqaDwuyiwha+3oGtzVz5kl+8uTdlaxjYW1HGJ/FkgoLgyZMn8eKLL5oce/rpp7Fhwwa0bt1akoaJxdrJNkATAgYQbd6FUYeAVVierBi1eNm0QvfvizAKUvJw7i2qHFWlUdp13BpbWZx8NUn5TqpT1u4WZQskW/jm7hyd13PV8hN38OZ5WuLbeIPgjBkz8Pvvv6O4uBipqamG4xqNBgEB3rHO3lom4cCHuuK5CeINx9RebmtRP5LVBkB1WbwsWiH79yl0LJJu3AFwr7KMmMSa33G2d2DtpOqK3hRfbxOAwz1R862pAMdHKQghwvAGwddeew1//PEHZs+ejdmzZxuOy2Qyr1kiYSuTUCxRbGtU/A6LhJEoVryesq39+6IUoRhUfged7qggD4+WJDtUzHV49vQOhK7Dc0VvytbcnaM9UVvDwIQQ8fEGwWbNmqFZs2bYtWsX567w3sDanJyYc3WAPkCpUHv6XpZkkEKG9KfEu4rnPEmKsH+fPdwxv2PPYmtX9KYc6W0K7YlKsTUVIcQ63iA4duxYrFu3Dp07dzYJgizLgmEY/Pjjj5I30FlibmrKx1VX8Z5wknT1/I49i61d8TvY6m16+rwebVpLyD28QXDJkiUAgG3btrmkMVKwVrZMinJmnhCgfJG96wKl/h1s9TY9eV6PNq0lxBRvEPz55595n3zfffeJ2RZJRFtJ5JCynBkRl6ctthbS2/TUeT0qYUaIKd4guHbtWqv3MQyDQYMGid4gsbmqoDKRjif+hny9TU8eEfDVajuEOMrhIOgthCRy0ByJZ6PF1uLxtF41Ie7GGwQXLlyIWbNmWSyU11u+fLkkjRIbXyIHzZF4B1u/IQVIYTyxV02IO/EGwR49egAAkpKSXNIYd6A5Eu9GFzH2oV41IaZ4g2D//v0B1G2qW1lZiZ9//hlyuRydOnVCeHi4SxooNZojEZere2V0EWM/KmFGyD2CFssVFBRg8ODBWLVqFZYtW4YhQ4bgxIkTUrfNJWztSECE0/fKyu9WgMW9Xtmhy8c5Hy/Gbg90EUN8SWFhIebMmQMA+OWXXzBjxgzBjxfjcf5IUBBcsmQJvvrqK3z11Vf4+uuvsWLFCrzzzjtSt80laJsX8fD1ysyZbwulr7FpbyCkixjiS3799VeUlpYCADp27IiPP/5Y8OPFeJw/ErSLBMMwJrVCH3nkEbBS7BjrBlLNkfhjsoY9vTK++pv2LC+gRA/iDXQ6Hd5++22cPn0aVVVVYFkWCxYswMaNG3Hz5k0UFxejU6dOOHLkCG7fvo033ngDw4cPx/z587Ft2zacPHkS7777LnS6uiIfL7zwAuLi4vDxxx8bHm+tY3Lt2jWLx+Xk5GDt2rUICAhAdHQ0Zs+ejZYtWyIzMxMMw+C3335DRUUFevXqhbfeegsKhcLqZ9NqtVi0aBH279+P+vXrIy4uDr/99hvWrl2L27dvY+HChTh//jzUajV69OiB1157DXK5HB07dsTzzz+Pw4cPo6ysDOnp6Zg0aRLy8vKQm5uL6upq1KtXD2vXrsXGjRuxbt066HQ6REREYPbs2aLtYMQbBG/evAkA6NChA1atWoW0tDQEBAQgLy8P8fHxojTAE4g9R+ILyRqOBHF70u/F2u2BEj2INzh9+jTKysqQk5ODgIAArFy5Ep999hkiIiJQU1OD7du3AwDy8vKwa9cuvPPOOzh27Jjh+UuXLsXkyZORkpKCc+fOIScnB0lJSZgxY4bh8dY0adLE5HFHjx7F559/jpycHERFRSEvLw8vv/yyoQ3nzp3DV199BYVCgSlTpiAnJwcTJkyw+vobN27EmTNnsG3bNjAMg2nTphnue/vtt/HII4/g3XffhVarRWZmJlavXo2pU6dCpVIhMjIS69evR1FREcaOHYuxY8cCqOu57t+/H/Xq1cPx48exZcsWZGdnIyQkBN9//z3+9re/4dtvv3XqN9HjDYLx8fFgGMbQ63v//fcN9zEMg9dff12URvgab0/WsCeIGwfLeoFhkDEyaNl7PTxrvTIxd3ugRA/i6R577DE0aNAA69evR3FxMY4dO4awsDBERESgS5cuNp+fnJyMefPmYf/+/ejZsydeeeUVh9ty6NAhDBkyxLBJ+siRI7Fw4UJcvXoVQF0iZFhYGABg2LBh2LdvH28Q/O677zBs2DAEBQUBAMaMGWNYY15QUIBffvkFubm5AICaGtP9TxMTEwHUjS6qVCrcvXsXANCuXTvUq1fP8BqXL19GWlqa4Xm3bt3CzZs3ERER4fD3oMcbBM+dO+f0G/gjb0/WEBrEzYPlbVUV5AEy1JOHoUpdxdsro73ziD8pKCjAwoULMXnyZCQmJqJVq1b45ptvAAChoaE2n5+WloaEhAQcPnwYhw4dQlZWluH59uKaymJZFhqNBkDdVnnGx23tHSuXm4YR48frdDosWbLEMHSpVCpNNmPQB079MX3bjL8TnU6HYcOGYebMmYbbZWVlaNCggY1PKoygxBiVSoU9e/Zgy5Yt2LJlCzZt2oTFixeL0gBXECML0R7enqwhNIhzBUuNTotgRRByxizDp6kLrfbQnujSHNOf6oSYyBAwAGIiQzD9qU4eW26MEGccPnwYCQkJGDduHDp27Ii9e/dCq9VaPE4mkxmCkbG0tDScPXsWI0eOxPz586FUKnHr1i2rj+d73d69e+Pbb79FRUXdv+dNmzYhIiICLVq0AADs2LEDKpUKtbW12Lx5MxISEnhfu1+/fvjmm2+gUqmg0WiwefNmw329e/fGF198AZZloVKpMG3aNHz11Vc222usV69e2L59O8rKygAA69atw8SJE+16DT6CEmMyMjJQXFyM69ev4+GHH8bp06fRrZt3DD/x7QIu1QnX25M1hM7tOdvj9eQam4SIKS0tDa+++ipSU1Mhk8nw+OOPY/fu3WjWrJnJ4x577DF89NFHePnll5Genm44/uqrr+Ltt9/GRx99hICAAEyfPh3NmjWDTqczPP6TTz6x+v7Gr/vJJ59g0qRJmDhxInQ6HaKiorBixQpDDy44OBjjxo2DUqlEUlISRo0axfvZRo4cid9//x3Dhw9HaGgomjVrhpCQummNWbNmYeHChUhNTYVarUbPnj3x3HPP2fXd9enTB1OnTsWUKVPAMAzq1auHrKws0fa4ZVgBaZ79+/fH7t27MXfuXEyePBksy+Jf//qX22qLXr16FYmJidi3b5/FH5G5KQt2c849xUSG4D9vSVcA3JuzQ82HOYG6IP5C1/Emn+Gl/FlWd+j4NHWhS9pKCBFPZmYm2rZti2effVbwc77//nvcuHEDw4bVXeQvWLAAQUFBhuFLTyeoJxgbGwu5XI4HHngA58+fR3JyMqqrbWfx5efnY9myZVCr1Zg0aRLGjx9vcv/Fixfxz3/+E7du3UJMTAz+/e9/izbOqydWFqK9vDlZQ2jGpbf3eAnxFRcvXkRGRgbnfS1btsRHH33k1OuPGzcOVVVVnPd9+umnWLVqFVatWgWtVouHHnoIc+fOder9XElQEAwNDUV+fj4eeughbNiwAa1atTIsn7CmtLQUixcvRl5eHgIDA5GWlobu3bujTZs2AOomQKdNm4ZZs2ahb9+++OCDD7By5UrRrx7EzEL0Np+fXIe9F7+HjtUhgAnAgFa98dzjYwU9V0gQp+UJhHiGVq1aYetWy6IU9nr33Xc5j3/99de8z1u9erXT7+0ugoLgnDlzsGHDBsycORO5ubmYMGGCzRTdI0eOID4+3pDCmpSUhJ07d2L69OkAgDNnziA0NBR9+/YFALz44otQKpUWr6NUKi2Ol5SUCGk2gL+yEPd+CzQ5ByawBqwqGLj2ENIHDBH8Gt7o85PrsPu3g4bbOlZnuC00EArhzT1eQggRFAQfeOABvPbaa1AqlYK71WVlZYiJiTHcjo2NRWFhoeH2lStXEB0djddffx3//e9/8eCDD2L27NkWr7NmzRpkZWUJek8usuhrCGxZBA1blxnFBNVA3rIIsujHAPhuUsbei99bPS5mECSEEG8maInExYsXkZKSgpSUFJSWliI5ORm//fYb73O48m2Ms3k0Gg2OHz+OCRMmID8/H82bN+fsik+cOBH79u0z+S87O1tIswHUDdXpA6DhvVkNZz1LX6JjdXYdJ4QQfyQoCC5YsABvvvkmGjZsiEaNGmHChAk2K5I3atQI5eXlhttlZWWIjY013I6JiUGLFi3QsWNHAMDQoUNNeop64eHhaNasmcl/jRs3FvThAO9fuO6oAIb7p7V2nBBC/JGgM+LNmzfRq1cvw+3x48fjzp07vM/p2bMnjh49ioqKClRXV2P37t2G+T+gbt1KRUWFoSrN/v378cgjjzjyGXh5+8J1Rw1o1duu44QQ4o8Edwtqa2sNw5nXr183VDO3plGjRsjIyEB6ejqGDx+OoUOHIi4uDlOnTsUvv/yC4OBgfPLJJ3jrrbeQkpKCY8eOITMz07lPw8Fft0p67vGxGNS6r6HnF8AEYFDrvg7NB94uOogrS1/AxYWjcWXpC7hddND2kwghbvfxxx8jMTHRq7M3pSZosXxubi62bNmCK1euYNiwYdi+fTuee+45jBs3zhVttGDPYnnAuxeuu9vtooMo374crKbWcIyRByE65UXU79DX4vH0XbsHfe/eoeBUMb7ccRblldWIjgxBenJ7SasmJSYm4vPPP0fLli0lew9vJygIAsCJEydQUFAAnU6H3r17mwyPupq9QZA47srSF6BRllscl4dH4/6/rTA5JrTSDBEXfe/ewbyEI1BXNF6MmrkajQZz587FhQsXUF5ejpYtW6Jp06bIy8vD/fffjw8//BCTJ0/GI488gvLycuTm5mLVqlX45ptvIJPJ0KtXL8ycORPXrl3DtGnT0Lx5c1y+fBlNmzbF+++/j4iICBw4cAAfffQRdDodmjdvjnnz5iE6Ohr9+/dH//79cfLkSQB12yc9/PDDTn0eVxI0HHrnzh38+OOPmDlzJiZMmICCggLDlhfEt2mUNwQft2dneWe5uii6J3Pl904cx7eRtLN++uknKBQK5OTkYM+ePaitrUWvXr0QGxuLlStXon379qisrMTzzz+PrVu34siRI9i/fz/y8vKwefNmXL58GevXrwcAnD9/HhMnTsT27dvRunVrZGVl4caNG5gzZw4++eQT5Ofno3Pnzpg3b57h/SMiIrBlyxbMmDHD67bYExQE33jjDUOFmPDwcDAMw7mmj/geeXhDwcddlYmrv6K+XlkNFveKovtrIPTXDGhvI2UJx65du2LcuHHIzs7GwoULcenSJc6OSqdOnQAAP/zwA1JSUhAcHAy5XI5Ro0bh6NGjAOrWhXfv3h0AMHz4cPzwww8oLCxEXFycYeRtzJgx+OGHHwyv+/TTTwOoqzNdWlpq2KHCGwgKgpcuXTJE9/r16+PNN9/EhQsXJG0Y8QyRCePByINMjjHyIEQmjLd4rKsycaW8ovZG/poB7W2slWoUo4Tjvn378OqrryI4OBgjR45E165dOddqBwcHAwBnYqN+qyXj/QFZloVMJrN4vPH+g+bP0el0JnsSejpBQVCj0ZgsiaiqquL8gonvqd+hL6JTXoQ8PBoAA3l4tNWkmLFxwyBjTP/4ZYxM9ExcdxVF91TuzICmzGHh0pPbI0hh+u9DrI2kjx49iuTkZIwaNQrR0dE4ceIE536FevHx8di+fTtqamqg0WiwadMmxMfHAwB+//13nD1bd0G5adMm9O3bF506dcLp06cNu8/n5OQYeosAsH37dgDAnj170Lp1a9E3QpCSoLJpw4cPx1NPPYXBgweDYRjs2bMHI0eOlLptxEPU79CXM+hxYRgArNltkflzUXQu7ipkbp45rFGWo3z7cgAQ/PfiT/TJL1Jkhz711FN49dVXsXPnTgQGBuLRRx81BCwuCQkJOHv2LEaNGgWNRoM+ffpgwoQJKCkpQYMGDfDxxx/jypUraNeuHRYsWIDQ0FDMmzcP06dPh1qtRtOmTbFw4b3t0n788Ufk5uYiJCTEahFuTyU4O3Tfvn04evQo5HI5evTogX79+kndNqsoO9QzuWp/QSmz7Ihw9mQOE+9w9epVpKenY//+/YKf079/f3z55Zdeey4W1BME6nb3ffzxxw3DoDdv3jTsEEGk5S1rwFyVoGHritpbvi9vZ0/mMCGeSlAQXLNmDT788EOo1WoAdZOiDMMYxo2JdMzXgJXfrcCKE3UFxD3txN4wNIqzJyhFgsYTXZpz9vq86fvydvLwhlZ6gtwZxcTzNWvWzK5eIAC7H+9pBCXGrF27FuvWrcPZs2dx9uxZnDt3jgKgi3jTGjBPKFHnTd+Xt7Mnc5gQTyWoJxgTEyNJcWtimzetAfOEnea96fvydvU79MXZ329AfnoLGuAObqEeNA8PR0tKiiFeRFAQ7NWrF77++mskJiYiKOjelR/NCUrPlUOMYnD3TvPe9n15s4JTxcg6rECt+l6meNBhGaY3LaYEJeI1BA2Hrly5EvPmzUO/fv0QHx+P+Ph49OjRQ+q2EXjGEKM3oe/LdahoAfEFgnqCXJvdEtfwhCFGb2Lv90WZpI6jogWer7S0FG+99RY+++wzp19ryZIl6NChAxITE0VomecQtE5QpVLhu+++Q1VVFQBAq9XiypUryMjIkLyBXGidIBED7b7gnCkLdnMWLYiJDMF/3hrkhhYRYj9BPcGMjAwUFxfj+vXrePjhh3H69Gl060YnCeLd+DJJKQjalp7cnrNogRhlwHzV7aKDqDyQDY3yBuThDRGZMF6U6jrHjh3DihUrEBwcjN9++w3t2rXDBx98gLKyMsPi95KSErz66qu4desWHnzwQZw4cQIHDx5EVVUV5s2bhwsXLkCr1WLq1KkYOnSoYYeJmzdvIiEhAWVlZejWrRtGjhyJxYsX4+jRo7h16xYiIyOxdOlSxMTEoHfv3khKSsKpU6cgk8nw0UcfoXlz0/lha1sv/f7775gzZw5u3ryJ0NBQzJo1C3FxccjMzATDMDh//jzu3LmDadOmYfjw4U5/Z3qC5gTPnj2LvLw8JCYm4s0338T69etx+/Zt0RpBiDtQJqlznujSHNOf6oSYyBAwqOsBUtUe6/Rl5urWVrKGMnNi1Vv96aefMGfOHOzYsQN//vknvv/+e5P7Fy5ciOTkZOTn52Pw4MEoLS0FACxbtgyPPPII8vLykJ2djeXLl6O4uG5HltLSUmzevBmvvPKK4XUuX76MixcvYv369di1axfuv/9+5OfnAwCuX7+OHj16YMuWLejatSuys7M528q19dLMmTPxzDPPID8/H2+88Qb+/ve/Q6VSGdqxfv16rFmzBosWLcL169dF+c4AgT3B2NhYyOVyPPDAAzh//jySk5NRXU3j/v7KV+bR3JVJ6ivfH2C9aAGxVHkg21BnVY/V1KLyQLYovcG2bduicePGAIDWrVvj1q1bJvcfPnwY77zzDgBg4MCBCA8PBwAcOXIENTU12LRpEwDg7t27hl2CHn74YZMdIgCgRYsWeP3117Fx40b8/vvv+Pnnn3H//fcb7u/Tp4+hPfrenjnjrZcyMzNRUlKCK1euYNCgumH0Rx99FA0aNMDFixcBACNHjoRCoUDjxo3RuXNnnDp1CoMHD3bwmzIlKAiGhoYiPz8fDz30EDZs2IBWrVoZ9hck/sWXKrKMjRvGOScoZSapL31/xD5Sl5kzXr7GMIzFTj8ymYxz9x+dTof333/fsBa8vLwcDRo0QH5+vmHrJWNFRUX4xz/+gUmTJiEpKQkBAQEmr6tvB1cb9My3XtJqtRaPZVnWsBOG8dZMOp3OIjA7Q9Bw6Jw5c3Du3Dn07t0bMpkMzzzzDJ599lnRGkG8hy9VZOnTohte6Doe0aFRYFBX6FvqpBhf+v6IfezZoFoKPXv2NAxbfvfdd1AqlQDqtlVat24dAKCsrAxPPvkkrl27ZvV1Tpw4gW7dumHs2LFo06YNDh8+zLttExfzrZfuu+8+NG/eHLt37wYA/PzzzygvL0fbtm0BADt27ADLsvjjjz9QWFiILl262PfhefCG02eeeQaM0V446enpYFkW7dq1w44dOzB27FjRGuINXDWMVXCqWJLtVsTga/Norl7c72vfHxEuMmG8ydZTgGvLzL355pt4/fXXsWHDBjz00EOG4dDp06dj7ty5GDp0KLRaLWbOnIn777/f6lDmkCFDMH36dKSmpkKhUKBdu3a82zZx4dp66f3338fcuXOxdOlSKBQKLF26FIGBdWt+a2pqMGrUKKhUKsybNw+RkZFOfBOmeJdI7Nq1C0BdtL5z5w5GjRoFmUyGrVu3Ijw8HPPnzxetIfZwxxIJV6XTe/o2Qa7aLslX0ffn36TKDhXiyy+/RM+ePdGmTRucOXMGs2fPRl5enkve25i9Wy9lZmYaslKlwNsTTEpKAgCsWrUK69evR0BA3ejpE088gTFjxkjSIE/lqnR6viocnhAE3TGP5kvo+/Nv9mxQLbYWLVrglVdeQUBAAIKCgtzWifE0gmYXKysrUVtbi5CQup27q6qqLDKPfJ2rhrE8vQoHVbBxji9/f548jE+Afv36uXUzdD17t16Seqd6QUFw6NChePrppzFw4ECwLIudO3caUlz9havS6aMjQzircERHhoj6Ps5wd5Fsb+eL35/5MP71ympkbTwNABQIiUcTlB3697//HX//+9+hVCpx+/ZtZGZm4rnnnpO6bR7FVYWZ05PbI0ghMznmL1U4Dl0+jpfyZ2FMzjS8lD8Lhy4fd3eTiEBUTJt4K8GLLQYMGIABAwZI2RaP5qphLP1Vs78NK9H6Oe8m5jC+LxUTIJ5PvBWHfsBVw1j+WIWD6nh6N7GG8eliiLiaoOFQQqTmTOIRDaO6n1jD+FRMgLgaBUHiEawlGNlKPNL3HMrvVoDFvZ4DBULXEquYNhUTEN/HH3+MxMRErF692unXWrp0KZYuXSpCq/hdvXoV/fv3t+s5/fv3x9WrV5GXl4fMzEzBz5N0ODQ/Px/Lli2DWq3GpEmTMH68aWWErKwsbNq0yVC54Omnn7Z4DPEPjq6fo2FUzyHGML67ipq7ijvmO7du3YrPP/8cLVu2lPR9vJVkQbC0tBSLFy9GXl4eAgMDkZaWhu7du6NNmzaGxxQVFeHf//43HnvsMamaQbyEo4lH1HPwLb5cTEDK+U6NRoO5c+fiwoULKC8vR8uWLZGVlYW3334bpaWlePnll/Hhhx9i8uTJeOSRR1BeXo7c3FysWrUK33zzDWQyGXr16oWZM2eaFKsGgM8//xwbNmxAZGQkwsPDERcXBwD46quvsHXrVlRXV4NhGHz00Udo3bo1+vfvjyeffBLff/89qqur8d5776FDhw44e/Ys5syZg5qaGjRo0AAffPABGjdujJUrV2LHjh3QarXo3bs3Zs6cCaCuVFpGRgYuXLiA8PBwfPLJJ4iMjLT6vo6SbDj0yJEjiI+PR0REBEJDQ5GUlISdO3eaPKaoqAifffYZUlNTMW/ePNTW1lq8jlKpxNWrV03+KykpkarZxI36tOiGT1MXImfMMnyaulDQicHRYVTimdxR1NxVpJzv/Omnn6BQKJCTk4M9e/agtrYW3333HebNm4fY2FisXLkS7du3R2VlJZ5//nls3boVR44cwf79+w2b516+fBnr1683ed1ffvkFmzZtwubNm7F69WrDuffOnTvYu3cv1q5di23btmHAgAH4+uuvDc+LiIhAbm4u0tLSsGLFCgDAq6++ipdeegn5+fkYMmQI1qxZg4MHD6KoqAi5ubnYsmULSktL8c033wAAKioqMHnyZGzbtg3R0dH49ttvbb6vIyTrCZaVlSEmJsZwOzY2FoWFhYbbVVVVaN++PV5//XXcd999yMzMxKeffoqMjAyT11mzZg2ysrKkaibxcr7cc/BXvlhMAJB21KJr166IiIhAdnY2Ll68iEuXLuHu3bucj+3UqRMA4IcffkBKSophu6RRo0Zhy5YtJlNSx48fR79+/RAWFgYAGDx4MHQ6HerVq4cPP/wQ27dvx6VLl3Do0CG0b38vCcp4T8Hdu3ejoqIC169fR0JCAgBg3LhxAID33nsPhYWFhrqgNTU1aNq0Kbp06YLY2FhDr7NNmzaorKy0+b6OkCwIctXlNt6RIiwsDJ999pnh9pQpU/Dmm29aBMGJEydixIgRJsdKSkrcMndIZaE8jy+XISO+Rcr5zn379uHjjz9Geno6Ro4cicrKSqt7+emDnk6ns7hPo9GY3GYYxuRxcrkcKpUK165dwzPPPIMJEyagb9++iI6Oxtmz9wojGO8pCAAKhcLkdWtra1FWVgatVouJEydi8uTJAOpG/mQyGSorK032DNTvTWjrfR0h2XBoo0aNUF5ebrhdVlaG2NhYw+0///wTubm5htssy3JulBgeHo5mzZqZ/KffPdmV9GWhrldWg8W9slAFp4pd3hZiypFhVEJcTcqqU0ePHkVycjJGjRqF6OhonDhxwuYef/Hx8di+fTtqamqg0WiwadMmxMfHmzymR48eKCgowO3bt1FbW4s9e/YAqBsmbdGiBSZNmoROnTrh4MGDvO9Xv359NG7cGIcPHwZQl6yzZMkSxMfHY+vWraiqqoJGo8HLL79s2L2Ii73vK4RkPcGePXti6dKlqKioQEhICHbv3m1StTw4OBjvv/8+unfvjmbNmiE7OxsDBw6UqjlO85TdHaiaBiHeScpRi6eeegqvvvoqdu7cicDAQDz66KM29/hLSEjA2bNnMWrUKGg0GvTp0wcTJkwweUz79u0xceJEjB49GuHh4WjatCkAoFevXli3bh2GDBmCwMBAxMXF4cKFC7zvp98vcNGiRYiMjMSiRYsQGxuLc+fO4emnn4ZWq0WfPn0wYsQI/PHHH5yv4cj72sK7n6Cz8vPzsWLFCqjVaowePRpTp07F1KlTMWPGDHTs2BG7du3C0qVLoVar0blzZ/zrX/8ybKLIxx37CT75j63g+qIYAN986Jr5J1ftaUgIIf5C0nWCqampSE1NNTlmPA+YlJRk2LPQ03nC7g6+vibOnRuOAtTLJsQfUe1QG/QnxjttKxCsCoH6SltoK+qGBFy9u4Mvr4m7XXQQ5duXg9XULZPRKMtRvn05ALgkEFLNSkL8E5VN42FckgsAmMBqBLY6A1nUnw6XhXKGL6+JqzyQbQiAeqymFpUHsl3y/lSzkhD/RD1BHlwnRgRo0TTuKj5Nneby9vjymjiN8oZdx42JMYzpy71sQoh1FAR5eNqJ0ZVr4lw9PyYPbwiNspzzOB+xhjF9vWYlIYQbBUEennhidEU1DXfMj0UmjDeZEwQARh6EyAT+oghiJQv5ci+bEGIdzQnykHJxqydzx/xY/Q59EZ3yIuTh0QAYyMOjEZ3yos2kGLF6675cs5IQYh31BHn4a0kudw0D1+/Q1+5MUDF7675as5IQYh0FQRv88cToicPA1tAwJiHEGTQcSix40zAwDWMSQpxBPUFiwduGgf2xt04IEYdfBEEqh2U/CiyEEH/g80GQymERQgixxufnBKkcFiGEEGt8Pgh6WtUXQgghnsPng6AvF50mhBDiHJ8Pgt6U7k8IIcS1fD4xxtvS/QkhhLiOzwdBgNL9CSGEcPOLIEiINbSGlBD/RkGQ+C1aQ0oI8fnEGEKsoTWkhBAKgsRv0RpSQggNhxK3cfd8nDdtGUUIkQb1BIlb6Ofjyu9WgMW9+bhDl4+7rA20hpQQQkGQuIUnzMfRXoSEEBoOJW7hKfNxtIaUEP9GPUHiFlTTlRDiCSgIEreg+ThCiCeg4VDiFlTTlRDiCSgIEreh+ThCiLtJOhyan5+PIUOGYODAgcjOzrb6uIKCAvTv31/KphBCCCEWJOsJlpaWYvHixcjLy0NgYCDS0tLQvXt3tGnTxuRx5eXleO+996RqBiGEEGKVZD3BI0eOID4+HhEREQgNDUVSUhJ27txp8bi33noL06dPl6oZhBBCiFWS9QTLysoQExNjuB0bG4vCwkKTx3z55Zd4+OGH0alTJ6uvo1QqoVQqTY6VlJSI21hCCCF+SbIgyLKsxTGGYQz///z589i9eze++OIL3qC2Zs0aZGVlSdJGQggh/k2yINioUSOcPHnScLusrAyxsbGG2zt37sT169cxatQoqNVqlJWVYdy4cfj6669NXmfixIkYMWKEybGSkhKMHz9eqqYTQgjxEwzL1WUTQWlpKcaOHYvc3FyEhIQgLS0N8+fPR1xcnMVjr169ivT0dOzfv1/Qa1+9ehWJiYnYt28fmjVrJnbTCSGE+AnJEmMaNWqEjIwMpKenY/jw4Rg6dCji4uIwdepU/PLLL1K9LSGEECKYZD1BKVFPkBBCiBiodighhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiAhhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C1Jg2B+fj6GDBmCgQMHIjs72+L+PXv2IDU1FSkpKcjMzIRKpZKyOYQQQogJyYJgaWkpFi9ejK+//hpbt25FTk4Ofv31V8P9d+/exbx587B69Wps374dtbW12Lx5s1TNIYQQQixIFgSPHDmC+Ph4REREIDQ0FElJSdi5c6fh/tDQUOzfvx/R0dG4e/cubty4gfDwcKmaQwghhFiQS/XCZWVliImJMdyOjY1FYWGhyWMUCgW+++47vPbaa4iNjUXv3r0tXkepVEKpVJocKykpkabRhBBC/IpkQZBlWYtjDMNYHOvXrx+OHTuGf//735g7dy4+/PBDk/vXrFmDrKwsqZpJCCHEj0kWBBs1aoSTJ08abpeVlSE2NtZw++bNmygqKjL0/lJTU5GRkWHxOhMnTsSIESNMjpWUlGD8+PEStZwQQoi/kGxOsGfPnjh69CgqKipQXV2N3bt3o2/fvob7WZbFzJkz8eeffwIAduzYgc6dO1u8Tnh4OJo1a2byX+PGjaVqNiGEED8iaU8wIyMD6enpUKvVGD16NOLi4jB16lTMmDEDHTt2xPz58/HCCy+AYRi0adMG//rXv6RqDiGEEGKBYbkm7zzc1atXkZiYiH379qFZs2bubg4hhBAvRRVjCCGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8lmS1Qwkxd7voICoPZEOjvAF5eENEJoxH/Q59bT+REEIkQkGQuMTtooMo374crKYWAKBRlqN8+3IAoEBICHEbGg4lLlF5INsQAPVYTS0qD2S7qUWEEEJBkLiIRnnDruOEEOIKFASJS8jDG9p1nBBCXIGCIHGJyITxYORBJscYeRAiE8a7qUWEEEKJMcRF9MkvlB1KCPEkFASJy9Tv0JeCHiHEo9BwKCGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/JZXrhPUarUAgJKSEje3hBDirxo3bgy53CtPocSIV/6C169fBwCMH08ltwgh7rFv3z40a9bM3c0gTmJYlmXd3Qh71dTUoKioCDExMZDJZFYfV1JSgvHjxyM7OxuNGzd2YQupPY7ytDZRe2zztDa5qj3UE/QNXvkLBgcH4/HHHxf8+MaNG3vUFRu1xzZPaxO1xzZPa5OntYd4JkqMIYQQ4rcoCBJCCPFbFAQJIYT4LZ8OguHh4Zg+fTrCw8Pd3RQA1B4hPK1N1B7bPK1NntYe4tm8MjuUEEIIEYNP9wQJIYQQPhQECSGE+C2fDYL5+fkYMmQIBg4ciOzsbLe1486dOxg6dCiuXr0KADhy5AhSU1MxaNAgLF682KVtycrKQkpKClJSUrBo0SK3twcAlixZgiFDhiAlJQWrV6/2iDYBwHvvvYfMzEwAwNmzZzFq1CgkJSVh1qxZ0Gg0Lm1Leno6UlJSMGzYMAwbNgynT59269/3/v37MXLkSAwePBgLFiwA4L7fbOPGjYbvZdiwYejSpQvmzZvnEX9DxEuwPqikpIRNSEhgKysr2aqqKjY1NZW9cOGCy9vx888/s0OHDmUfeeQRtri4mK2urmb79evHXrlyhVWr1eyUKVPYgoICl7Tl8OHD7JgxY9ja2lpWpVKx6enpbH5+vtvaw7Ise+zYMTYtLY1Vq9VsdXU1m5CQwJ49e9atbWJZlj1y5AjbvXt39vXXX2dZlmVTUlLYn376iWVZln3jjTfY7Oxsl7VFp9OxvXr1YtVqteGYO/++r1y5wvbu3Zu9du0aq1Kp2LFjx7IFBQVu/81YlmXPnz/PDhw4kP3zzz89oj3EO/hkT/DIkSOIj49HREQEQkNDkZSUhJ07d7q8HRs2bMA///lPxMbGAgAKCwvRokULNG/eHHK5HKmpqS5rV0xMDDIzMxEYGAiFQoHWrVvj0qVLbmsPAHTr1g1ffvkl5HI5bty4Aa1WC6VS6dY23bx5E4sXL8aLL74IAPjjjz9QU1ODRx99FAAwcuRIl7bn4sWLYBgGU6dOxZNPPomvvvrKrX/fe/bswZAhQ9C4cWMoFAosXrwYISEhbv3N9ObOnYuMjAwUFxd7RHuId/DJIFhWVoaYmBjD7djYWJSWlrq8HQsXLjQp7+bOdrVt29ZwIr906RK+/fZbMAzj9u9JoVDg448/RkpKCnr06OH2327OnDnIyMgwpNebtycmJsal7VEqlejRowc++eQTfPHFF1i/fj3+/PNPt31Hly9fhlarxbPPPosnn3wSX3/9tdt/M6DuwrempgbJycke0R7iPXwyCLIcqz4YhnFDS0x5QrsuXLiAKVOm4PXXX8f999/v9vYAwIwZM3D06FFcu3YNly5dclubNm7ciCZNmqBHjx6GY+7+zR577DEsWrQIoaGhiIqKwujRo/Hxxx+7rU1arRZHjx7F+++/jw0bNuCXX34xzHe7oz1669evx+TJkwG4/zcj3sUrC2jb0qhRI5w8edJwu6yszDAk6U6NGjVCeXm54bar23Xq1CnMmDEDb775JlJSUnD8+HG3tue3336DSqVC+/btERISgkGDBmHnzp0mO4O4sk3ffvstrl+/jmHDhuHWrVu4e/cuGIYx+Y6uX7/u0u/o5MmTUKvVhsDMsizuu+8+t/1u0dHR6NGjB6KiogAAiYmJbv3NAEClUuHEiRN49913Abj/3xnxLj7ZE+zZsyeOHj2KiooKVFdXY/fu3ejbt6+7m4VOnTrh999/Nwwpbdu2zWXtunbtGl5++WV88MEHSElJcXt7AODq1at46623oFKpoFKpsG/fPqSlpbmtTatXr8a2bduwdetWzJgxA/3798c777yDoKAgnDp1CgCwZcsWl35Ht2/fxqJFi1BbW4s7d+5g8+bNeP/99932952QkIDvv/8eSqUSWq0Whw4dwuDBg936d/S///0PDzzwAEJDQwG4/++aeBef7QlmZGQgPT0darUao0ePRlxcnLubhaCgILz77rv429/+htraWvTr1w+DBw92yXuvWrUKtbW1hqtlAEhLS3NbewCgX79+OH36NIYPHw6ZTIZBgwYhJSUFUVFRbmsTlw8++ABvvfUWqqqq8PDDDyM9Pd1l752QkGD4jnQ6HcaNG4cuXbq47e+7U6dOeO655zBu3Dio1Wr06tULY8eORatWrdz2mxUXF5vsG+jOf2fE+1DZNEIIIX7LJ4dDCSGEECEoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiDxW5mZmVi1apVdz9m3b59h54SCggIsWbJEiqYRQlzEJ9cJEiKVxMREJCYmAgB++eUX3Lp1y80tIoQ4g4Ig8TjHjh3DokWL0KhRIxQXFyM4OBjvvvsuYmNj8a9//Qvnzp0DwzDo06cPXnnlFcjlcjz88MOYOHEijh07hrt37+KVV17BoEGDkJeXh127dmHFihUAYHFbLzc3Fzk5OVCr1bh16xamTp2KcePGIS8vD7m5uaiurka9evUwYsQI7Nq1Cy+99BLWr18PrVaL+vXro7CwEIMHD8aYMWMAAMuWLUNlZSXefPNNl39/hBDhKAgSj/Tf//4Xb7zxBh5//HGsW7cOM2fORNu2bREREYH8/Hyo1WpMmzYN//nPf/D8889Dq9WiQYMGyMvLw7lz5zBhwgSTHTz4VFVVYePGjVi5ciUiIyPx888/Y/LkyRg3bhwA4Ndff8X+/ftRr1495OXlAairnJKWlobKykpkZGRg7969WL58OcaMGQOdToeNGzfi888/l+z7IYSIg+YEiUd66KGHDEFs1KhROHv2LLZt24YJEyaAYRgEBgYiLS0NBw8eNDxnwoQJhuc++OCDOHHihKD3CgsLw/Lly/Hdd9/ho48+wvLly3H37l3D/e3atUO9evV4XyMhIQHl5eU4d+4cDh06hGbNmqFVq1b2fmxCiItRECQeyXhXAqBu9wTzCn86nQ4ajYbzOTqdDjKZDAzDmDxPrVZbvFdJSQmGDx+OP/74A126dMH//d//mdyvL8xsq71paWnIzc3Fpk2bkJaWZvM5hBD3oyBIPNK5c+dw7tw5AEBOTg46d+6M5ORkZGdng2VZqFQqbNiwAT179jQ8Z8uWLQCAM2fO4Pfff0fXrl0RFRWFCxcuoLa2FhqNBgcOHLB4r6KiIkRFReGll15Cnz59DI/RarW8bZTJZCZB+KmnnsLevXtx5swZDBw40NmvgBDiAjQnSDxSdHQ0PvroI/zxxx+IiorCokWLEBYWhgULFiA1NRVqtRp9+vTBiy++aHjOjz/+iA0bNkCn02Hx4sVo0KABevXqha5duyI5ORkxMTHo3r07/ve//5m8V69evZCbm4vBgwcjJCQEcXFxiIqKwuXLl3nb2KNHD/ztb3+DQqHA7Nmz0bBhQ3To0AGtW7eGQqGQ5HshhIiLdpEgHufYsWOYP38+tm3bJvg57dq1w9GjRw2bvbpDRUUFRo8ejezsbDRp0sRt7SCECEfDoYSIYMOGDRgyZAjS09MpABLiRagnSAghxG9RT5AQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/Nb/AzTNtGFHfP2fAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.FacetGrid(df, hue=\"artist_top_genre\", size=5) \\\n", + " .map(plt.scatter, \"popularity\", \"danceability\") \\\n", + " .add_legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 신뢰할 수 있는 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다.\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.9" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "c61deff2839902ac8cb4ed411eb10fee", + "translation_date": "2025-09-04T01:58:59+00:00", + "source_file": "5-Clustering/1-Visualize/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ko/5-Clustering/2-K-Means/README.md b/translations/ko/5-Clustering/2-K-Means/README.md new file mode 100644 index 000000000..25aba2dc7 --- /dev/null +++ b/translations/ko/5-Clustering/2-K-Means/README.md @@ -0,0 +1,261 @@ + +# K-Means 클러스터링 + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/) + +이 강의에서는 Scikit-learn과 이전에 가져온 나이지리아 음악 데이터셋을 사용하여 클러스터를 생성하는 방법을 배웁니다. 우리는 클러스터링을 위한 K-Means의 기본을 다룰 것입니다. 이전 강의에서 배운 것처럼 클러스터를 작업하는 방법은 다양하며, 사용하는 방법은 데이터에 따라 다릅니다. K-Means는 가장 일반적인 클러스터링 기법이므로 이를 시도해 보겠습니다. 시작해봅시다! + +배울 용어: + +- 실루엣 점수 +- 엘보우 방법 +- 관성 +- 분산 + +## 소개 + +[K-Means 클러스터링](https://wikipedia.org/wiki/K-means_clustering)은 신호 처리 분야에서 유래된 방법입니다. 이 방법은 데이터 그룹을 'k'개의 클러스터로 나누고 분할하는 데 사용됩니다. 각 관측값은 주어진 데이터 포인트를 가장 가까운 '평균'(클러스터의 중심점)에 그룹화하는 역할을 합니다. + +클러스터는 [보로노이 다이어그램](https://wikipedia.org/wiki/Voronoi_diagram)으로 시각화할 수 있으며, 여기에는 점(또는 '씨앗')과 해당 영역이 포함됩니다. + +![voronoi diagram](../../../../translated_images/voronoi.1dc1613fb0439b9564615eca8df47a4bcd1ce06217e7e72325d2406ef2180795.ko.png) + +> [Jen Looper](https://twitter.com/jenlooper)의 인포그래픽 + +K-Means 클러스터링 프로세스는 [세 단계로 실행됩니다](https://scikit-learn.org/stable/modules/clustering.html#k-means): + +1. 알고리즘은 데이터셋에서 샘플링하여 k개의 중심점을 선택합니다. 이후 반복적으로: + 1. 각 샘플을 가장 가까운 중심점에 할당합니다. + 2. 이전 중심점에 할당된 모든 샘플의 평균값을 계산하여 새로운 중심점을 생성합니다. + 3. 새로운 중심점과 이전 중심점 간의 차이를 계산하고 중심점이 안정화될 때까지 반복합니다. + +K-Means의 단점 중 하나는 'k', 즉 중심점의 수를 설정해야 한다는 점입니다. 다행히도 '엘보우 방법'을 사용하면 'k'의 좋은 시작 값을 추정할 수 있습니다. 곧 시도해볼 것입니다. + +## 전제 조건 + +이 강의에서는 이전 강의에서 데이터 가져오기와 초기 정리를 수행한 [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/notebook.ipynb) 파일을 사용합니다. + +## 실습 - 준비 + +노래 데이터를 다시 살펴보세요. + +1. 각 열에 대해 `boxplot()`을 호출하여 박스플롯을 생성하세요: + + ```python + plt.figure(figsize=(20,20), dpi=200) + + plt.subplot(4,3,1) + sns.boxplot(x = 'popularity', data = df) + + plt.subplot(4,3,2) + sns.boxplot(x = 'acousticness', data = df) + + plt.subplot(4,3,3) + sns.boxplot(x = 'energy', data = df) + + plt.subplot(4,3,4) + sns.boxplot(x = 'instrumentalness', data = df) + + plt.subplot(4,3,5) + sns.boxplot(x = 'liveness', data = df) + + plt.subplot(4,3,6) + sns.boxplot(x = 'loudness', data = df) + + plt.subplot(4,3,7) + sns.boxplot(x = 'speechiness', data = df) + + plt.subplot(4,3,8) + sns.boxplot(x = 'tempo', data = df) + + plt.subplot(4,3,9) + sns.boxplot(x = 'time_signature', data = df) + + plt.subplot(4,3,10) + sns.boxplot(x = 'danceability', data = df) + + plt.subplot(4,3,11) + sns.boxplot(x = 'length', data = df) + + plt.subplot(4,3,12) + sns.boxplot(x = 'release_date', data = df) + ``` + + 이 데이터는 약간 노이즈가 있습니다. 각 열을 박스플롯으로 관찰하면 이상치(outlier)를 확인할 수 있습니다. + + ![outliers](../../../../translated_images/boxplots.8228c29dabd0f29227dd38624231a175f411f1d8d4d7c012cb770e00e4fdf8b6.ko.png) + +데이터셋을 살펴보고 이러한 이상치를 제거할 수도 있지만, 그렇게 하면 데이터가 너무 축소될 수 있습니다. + +1. 클러스터링 실습에 사용할 열을 선택하세요. 범위가 비슷한 열을 선택하고 `artist_top_genre` 열을 숫자 데이터로 인코딩하세요: + + ```python + from sklearn.preprocessing import LabelEncoder + le = LabelEncoder() + + X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')] + + y = df['artist_top_genre'] + + X['artist_top_genre'] = le.fit_transform(X['artist_top_genre']) + + y = le.transform(y) + ``` + +1. 이제 몇 개의 클러스터를 목표로 할지 선택해야 합니다. 데이터셋에서 추출한 3개의 노래 장르가 있으므로 3개를 시도해봅시다: + + ```python + from sklearn.cluster import KMeans + + nclusters = 3 + seed = 0 + + km = KMeans(n_clusters=nclusters, random_state=seed) + km.fit(X) + + # Predict the cluster for each data point + + y_cluster_kmeans = km.predict(X) + y_cluster_kmeans + ``` + +데이터프레임의 각 행에 대해 예측된 클러스터(0, 1, 또는 2)가 포함된 배열이 출력됩니다. + +1. 이 배열을 사용하여 '실루엣 점수'를 계산하세요: + + ```python + from sklearn import metrics + score = metrics.silhouette_score(X, y_cluster_kmeans) + score + ``` + +## 실루엣 점수 + +실루엣 점수가 1에 가까운지 확인하세요. 이 점수는 -1에서 1까지 변하며, 점수가 1이면 클러스터가 밀집되어 있고 다른 클러스터와 잘 분리되어 있음을 나타냅니다. 0에 가까운 값은 클러스터가 겹쳐져 있고 샘플이 이웃 클러스터의 경계에 매우 가까이 있음을 나타냅니다. [(출처)](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam) + +우리의 점수는 **0.53**으로 중간 정도입니다. 이는 데이터가 이 유형의 클러스터링에 특히 적합하지 않음을 나타내지만 계속 진행해봅시다. + +### 실습 - 모델 구축 + +1. `KMeans`를 가져와 클러스터링 프로세스를 시작하세요. + + ```python + from sklearn.cluster import KMeans + wcss = [] + + for i in range(1, 11): + kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) + kmeans.fit(X) + wcss.append(kmeans.inertia_) + + ``` + + 여기에는 설명이 필요한 몇 가지 부분이 있습니다. + + > 🎓 range: 클러스터링 프로세스의 반복 횟수 + + > 🎓 random_state: "중심점 초기화를 위한 난수 생성 결정" [출처](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans) + + > 🎓 WCSS: "클러스터 내 제곱합"은 클러스터 중심점에서 클러스터 내 모든 점의 평균 제곱 거리를 측정합니다. [출처](https://medium.com/@ODSC/unsupervised-learning-evaluating-clusters-bd47eed175ce) + + > 🎓 관성: K-Means 알고리즘은 '관성'을 최소화하도록 중심점을 선택하려고 시도합니다. 관성은 "클러스터가 내부적으로 얼마나 일관성이 있는지를 측정하는 값"입니다. [출처](https://scikit-learn.org/stable/modules/clustering.html). 이 값은 각 반복에서 wcss 변수에 추가됩니다. + + > 🎓 k-means++: [Scikit-learn](https://scikit-learn.org/stable/modules/clustering.html#k-means)에서는 'k-means++' 최적화를 사용할 수 있습니다. 이는 "중심점이 일반적으로 서로 멀리 떨어지도록 초기화하여 무작위 초기화보다 더 나은 결과를 도출할 가능성이 높습니다." + +### 엘보우 방법 + +이전에 3개의 노래 장르를 목표로 했으므로 3개의 클러스터를 선택해야 한다고 추측했습니다. 하지만 정말 그럴까요? + +1. '엘보우 방법'을 사용하여 확인하세요. + + ```python + plt.figure(figsize=(10,5)) + sns.lineplot(x=range(1, 11), y=wcss, marker='o', color='red') + plt.title('Elbow') + plt.xlabel('Number of clusters') + plt.ylabel('WCSS') + plt.show() + ``` + + 이전 단계에서 생성한 `wcss` 변수를 사용하여 엘보우의 '굽힘'을 나타내는 차트를 생성하세요. 이는 최적의 클러스터 수를 나타냅니다. 아마도 **3**일지도 모릅니다! + + ![elbow method](../../../../translated_images/elbow.72676169eed744ff03677e71334a16c6b8f751e9e716e3d7f40dd7cdef674cca.ko.png) + +## 실습 - 클러스터 표시 + +1. 이번에는 3개의 클러스터를 설정하고 클러스터를 산점도로 표시하세요: + + ```python + from sklearn.cluster import KMeans + kmeans = KMeans(n_clusters = 3) + kmeans.fit(X) + labels = kmeans.predict(X) + plt.scatter(df['popularity'],df['danceability'],c = labels) + plt.xlabel('popularity') + plt.ylabel('danceability') + plt.show() + ``` + +1. 모델의 정확도를 확인하세요: + + ```python + labels = kmeans.labels_ + + correct_labels = sum(y == labels) + + print("Result: %d out of %d samples were correctly labeled." % (correct_labels, y.size)) + + print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size))) + ``` + + 이 모델의 정확도는 그다지 좋지 않으며, 클러스터의 모양이 그 이유를 암시합니다. + + ![clusters](../../../../translated_images/clusters.b635354640d8e4fd4a49ef545495518e7be76172c97c13bd748f5b79f171f69a.ko.png) + + 이 데이터는 너무 불균형적이고, 상관관계가 적으며, 열 값 간의 분산이 너무 커서 클러스터링이 잘 이루어지지 않습니다. 사실, 형성된 클러스터는 우리가 위에서 정의한 3개의 장르 범주에 의해 크게 영향을 받거나 왜곡되었을 가능성이 높습니다. 이것은 학습 과정이었습니다! + + Scikit-learn 문서에서는 이 모델처럼 클러스터가 잘 구분되지 않은 경우 '분산' 문제가 있다고 설명합니다: + + ![problem models](../../../../translated_images/problems.f7fb539ccd80608e1f35c319cf5e3ad1809faa3c08537aead8018c6b5ba2e33a.ko.png) + > Scikit-learn의 인포그래픽 + +## 분산 + +분산은 "평균에서의 제곱 차이의 평균"으로 정의됩니다 [(출처)](https://www.mathsisfun.com/data/standard-deviation.html). 이 클러스터링 문제의 맥락에서 이는 데이터셋의 숫자가 평균에서 너무 많이 벗어나는 경향을 나타냅니다. + +✅ 이 문제를 해결할 방법을 생각해볼 좋은 시점입니다. 데이터를 조금 더 조정할까요? 다른 열을 사용할까요? 다른 알고리즘을 사용할까요? 힌트: 데이터를 [스케일링](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/)하여 정규화하고 다른 열을 테스트해보세요. + +> 이 '[분산 계산기](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)'를 사용하여 개념을 더 이해해보세요. + +--- + +## 🚀도전 과제 + +이 노트북을 사용하여 매개변수를 조정하는 데 시간을 투자하세요. 데이터를 더 정리(예: 이상치 제거)하여 모델의 정확도를 개선할 수 있나요? 특정 데이터 샘플에 더 많은 가중치를 부여할 수 있습니다. 더 나은 클러스터를 생성하기 위해 무엇을 할 수 있을까요? + +힌트: 데이터를 스케일링해보세요. 노트북에 주석 처리된 코드가 있어 표준 스케일링을 추가하여 데이터 열이 범위 면에서 서로 더 비슷하게 보이도록 만들 수 있습니다. 실루엣 점수는 낮아지지만, 엘보우 그래프의 '굽힘'이 부드러워집니다. 이는 데이터를 스케일링하지 않으면 분산이 적은 데이터가 더 많은 가중치를 가지게 되는 문제 때문입니다. 이 문제에 대해 [여기](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226)에서 더 읽어보세요. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/) + +## 복습 및 자기 학습 + +[K-Means 시뮬레이터](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/)를 살펴보세요. 이 도구를 사용하여 샘플 데이터 포인트를 시각화하고 중심점을 결정할 수 있습니다. 데이터의 무작위성, 클러스터 수 및 중심점 수를 편집할 수 있습니다. 데이터가 어떻게 그룹화될 수 있는지에 대한 아이디어를 얻는 데 도움이 되나요? + +또한 Stanford의 [K-Means 핸드아웃](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html)을 살펴보세요. + +## 과제 + +[다른 클러스터링 방법을 시도해보세요](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/5-Clustering/2-K-Means/assignment.md b/translations/ko/5-Clustering/2-K-Means/assignment.md new file mode 100644 index 000000000..b87d26a23 --- /dev/null +++ b/translations/ko/5-Clustering/2-K-Means/assignment.md @@ -0,0 +1,25 @@ + +# 다양한 클러스터링 방법 시도하기 + +## 지침 + +이 강의에서는 K-Means 클러스터링에 대해 배웠습니다. 하지만 때로는 K-Means가 데이터에 적합하지 않을 수 있습니다. 이 강의에서 제공된 데이터나 다른 출처의 데이터를 사용하여 노트북을 작성하고, K-Means를 사용하지 않는 다른 클러스터링 방법을 보여주세요. 무엇을 배웠는지 설명하세요. + +## 평가 기준 + +| 기준 | 우수 | 적절 | 개선 필요 | +| --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | -------------------------- | +| | 잘 문서화된 클러스터링 모델이 포함된 노트북이 제출됨 | 문서화가 부족하거나 불완전한 클러스터링 모델이 포함된 노트북이 제출됨 | 불완전한 작업이 제출됨 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/5-Clustering/2-K-Means/notebook.ipynb b/translations/ko/5-Clustering/2-K-Means/notebook.ipynb new file mode 100644 index 000000000..a90945ca5 --- /dev/null +++ b/translations/ko/5-Clustering/2-K-Means/notebook.ipynb @@ -0,0 +1,231 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "3e5c8ab363e8d88f566d4365efc7e0bd", + "translation_date": "2025-09-04T02:09:20+00:00", + "source_file": "5-Clustering/2-K-Means/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "지난 수업에서 끝난 부분부터 시작하여 데이터를 가져오고 필터링한 상태입니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                                    0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                                                    1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                                    2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                                                    3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                                    4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "우리는 3개의 장르에만 집중할 것입니다. 아마도 3개의 클러스터를 만들 수 있을 것입니다!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                                    1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                                    3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                                    4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                                    5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
                                                    6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/5-Clustering/2-K-Means/solution/Julia/README.md b/translations/ko/5-Clustering/2-K-Means/solution/Julia/README.md new file mode 100644 index 000000000..e6f696fa3 --- /dev/null +++ b/translations/ko/5-Clustering/2-K-Means/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb b/translations/ko/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb new file mode 100644 index 000000000..149fee7df --- /dev/null +++ b/translations/ko/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb @@ -0,0 +1,637 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "colab": { + "name": "lesson_14.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "coopTranslator": { + "original_hash": "ad65fb4aad0a156b42216e4929f490fc", + "translation_date": "2025-09-04T02:16:38+00:00", + "source_file": "5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb", + "language_code": "ko" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "GULATlQXLXyR" + }, + "source": [ + "## R과 Tidy 데이터 원칙을 활용한 K-Means 클러스터링 탐구\n", + "\n", + "### [**강의 전 퀴즈**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/)\n", + "\n", + "이 강의에서는 Tidymodels 패키지와 R 생태계의 다른 패키지들(우리는 이들을 친구 🧑‍🤝‍🧑라고 부를 거예요), 그리고 이전에 가져온 나이지리아 음악 데이터셋을 사용하여 클러스터를 생성하는 방법을 배웁니다. 우리는 클러스터링을 위한 K-Means의 기본 개념을 다룰 것입니다. 이전 강의에서 배운 것처럼, 클러스터를 다루는 방법은 여러 가지가 있으며, 사용하는 방법은 데이터에 따라 달라집니다. 우리는 가장 일반적인 클러스터링 기법인 K-Means를 시도해볼 것입니다. 시작해봅시다!\n", + "\n", + "이 강의에서 배우게 될 용어:\n", + "\n", + "- 실루엣 점수(Silhouette scoring)\n", + "\n", + "- 엘보우 방법(Elbow method)\n", + "\n", + "- 관성(Inertia)\n", + "\n", + "- 분산(Variance)\n", + "\n", + "### **소개**\n", + "\n", + "[K-Means 클러스터링](https://wikipedia.org/wiki/K-means_clustering)은 신호 처리 분야에서 유래한 방법입니다. 이 방법은 데이터의 특징 간 유사성을 기반으로 `k개의 클러스터`로 데이터를 나누고 분할하는 데 사용됩니다.\n", + "\n", + "클러스터는 [보로노이 다이어그램](https://wikipedia.org/wiki/Voronoi_diagram)으로 시각화할 수 있으며, 여기에는 점(또는 '시드')과 해당 영역이 포함됩니다.\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    Jen Looper의 인포그래픽
                                                    \n", + "\n", + "K-Means 클러스터링의 단계는 다음과 같습니다:\n", + "\n", + "1. 데이터 과학자는 생성할 클러스터의 원하는 개수를 지정합니다.\n", + "\n", + "2. 알고리즘은 데이터셋에서 K개의 관측값을 무작위로 선택하여 클러스터의 초기 중심(즉, 중심점)으로 사용합니다.\n", + "\n", + "3. 나머지 관측값 각각을 가장 가까운 중심점에 할당합니다.\n", + "\n", + "4. 각 클러스터의 새로운 평균을 계산하고 중심점을 평균 위치로 이동시킵니다.\n", + "\n", + "5. 중심점이 재계산되었으므로, 모든 관측값이 다른 클러스터에 더 가까운지 다시 확인합니다. 모든 객체는 업데이트된 클러스터 평균을 사용하여 다시 할당됩니다. 클러스터 할당 및 중심점 업데이트 단계는 클러스터 할당이 더 이상 변경되지 않을 때까지(즉, 수렴이 이루어질 때까지) 반복됩니다. 일반적으로 알고리즘은 각 새로운 반복에서 중심점의 이동이 미미해지고 클러스터가 고정될 때 종료됩니다.\n", + "\n", + "
                                                    \n", + "\n", + "> 초기 중심점으로 사용되는 k개의 관측값이 무작위로 선택되기 때문에, 절차를 적용할 때마다 약간 다른 결과를 얻을 수 있습니다. 이러한 이유로 대부분의 알고리즘은 여러 번의 *무작위 시작(random starts)*을 사용하고, 가장 낮은 WCSS(클러스터 내 제곱합)를 가진 반복을 선택합니다. 따라서 *nstart* 값을 여러 번 설정하여 K-Means를 실행하는 것이 권장되며, 이는 *원치 않는 지역 최적화(local optimum)*를 피하는 데 도움이 됩니다.\n", + "\n", + "
                                                    \n", + "\n", + "Allison Horst의 [작품](https://github.com/allisonhorst/stats-illustrations)을 활용한 이 짧은 애니메이션은 클러스터링 과정을 설명합니다:\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    @allison_horst의 작품
                                                    \n", + "\n", + "클러스터링에서 근본적으로 제기되는 질문은 다음과 같습니다: 데이터를 몇 개의 클러스터로 나누어야 할까요? K-Means의 단점 중 하나는 `k`, 즉 `중심점`의 개수를 설정해야 한다는 점입니다. 다행히도 `엘보우 방법`은 `k`의 적절한 시작 값을 추정하는 데 도움을 줍니다. 곧 이를 시도해볼 것입니다.\n", + "\n", + "### \n", + "\n", + "**선행 조건**\n", + "\n", + "[이전 강의](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb)에서 멈췄던 지점부터 바로 시작하겠습니다. 이전 강의에서는 데이터셋을 분석하고, 다양한 시각화를 수행하며, 관심 있는 관측값으로 데이터를 필터링했습니다. 꼭 확인해보세요!\n", + "\n", + "이 모듈을 진행하기 위해 몇 가지 패키지가 필요합니다. 다음 명령어로 설치할 수 있습니다: `install.packages(c('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork'))`\n", + "\n", + "또는 아래 스크립트를 사용하면 필요한 패키지가 설치되어 있는지 확인하고, 누락된 경우 자동으로 설치합니다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ah_tBi58LXyi" + }, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork')\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7e--UCUTLXym" + }, + "source": [ + "자, 바로 시작해봅시다!\n", + "\n", + "## 1. 데이터와의 춤: 가장 인기 있는 음악 장르 3가지를 좁혀보기\n", + "\n", + "이것은 이전 강의에서 했던 내용을 복습하는 시간입니다. 데이터를 잘라보고 분석해봅시다!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Ycamx7GGLXyn" + }, + "source": [ + "# Load the core tidyverse and make it available in your current R session\n", + "library(tidyverse)\n", + "\n", + "# Import the data into a tibble\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\", show_col_types = FALSE)\n", + "\n", + "# Narrow down to top 3 popular genres\n", + "nigerian_songs <- df %>% \n", + " # Concentrate on top 3 genres\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \n", + " # Remove unclassified observations\n", + " filter(popularity != 0)\n", + "\n", + "\n", + "\n", + "# Visualize popular genres using bar plots\n", + "theme_set(theme_light())\n", + "nigerian_songs %>%\n", + " count(artist_top_genre) %>%\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\n", + " fill = artist_top_genre)) +\n", + " geom_col(alpha = 0.8) +\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\n", + " ggtitle(\"Top genres\") +\n", + " theme(plot.title = element_text(hjust = 0.5))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b5h5zmkPLXyp" + }, + "source": [ + "🤩 잘 진행되고 있어요!\n", + "\n", + "## 2. 데이터 탐색 더 알아보기\n", + "\n", + "이 데이터는 얼마나 깨끗할까요? 박스 플롯을 사용해 이상치를 확인해 봅시다. 이상치가 적은 숫자형 열에 집중할 예정입니다 (물론, 이상치를 제거할 수도 있습니다). 박스 플롯은 데이터의 범위를 보여주며, 어떤 열을 사용할지 선택하는 데 도움을 줍니다. 참고로, 박스 플롯은 분산을 보여주지 않습니다. 분산은 클러스터링 가능한 좋은 데이터의 중요한 요소입니다. 더 자세한 내용은 [이 논의](https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot)를 참고하세요.\n", + "\n", + "[박스 플롯](https://en.wikipedia.org/wiki/Box_plot)은 `숫자형` 데이터의 분포를 시각적으로 나타내는 데 사용됩니다. 그러니 먼저 인기 있는 음악 장르와 함께 모든 숫자형 열을 *선택*하는 것부터 시작해 봅시다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HhNreJKLLXyq" + }, + "source": [ + "# Select top genre column and all other numeric columns\n", + "df_numeric <- nigerian_songs %>% \n", + " select(artist_top_genre, where(is.numeric)) \n", + "\n", + "# Display the data\n", + "df_numeric %>% \n", + " slice_head(n = 5)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uYXrwJRaLXyq" + }, + "source": [ + "선택 도우미 `where`가 얼마나 쉽게 만들어주는지 보이시죠 💁? 이런 다른 함수들도 [여기](https://tidyselect.r-lib.org/)에서 확인해보세요.\n", + "\n", + "이제 각 숫자형 특징에 대해 박스플롯을 만들 예정인데, 반복문 사용을 피하고 싶다면 데이터를 *더 긴* 형식으로 재구성해야 합니다. 이렇게 하면 `facets`를 활용할 수 있는데, 이는 데이터의 각 하위 집합을 별도의 서브플롯으로 표시할 수 있게 해줍니다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "gd5bR3f8LXys" + }, + "source": [ + "# Pivot data from wide to long\n", + "df_numeric_long <- df_numeric %>% \n", + " pivot_longer(!artist_top_genre, names_to = \"feature_names\", values_to = \"values\") \n", + "\n", + "# Print out data\n", + "df_numeric_long %>% \n", + " slice_head(n = 15)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-7tE1swnLXyv" + }, + "source": [ + "훨씬 더 길어졌네요! 이제 `ggplots`를 사용할 시간입니다! 그렇다면 어떤 `geom`을 사용할까요?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "r88bIsyuLXyy" + }, + "source": [ + "# Make a box plot\n", + "df_numeric_long %>% \n", + " ggplot(mapping = aes(x = feature_names, y = values, fill = feature_names)) +\n", + " geom_boxplot() +\n", + " facet_wrap(~ feature_names, ncol = 4, scales = \"free\") +\n", + " theme(legend.position = \"none\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EYVyKIUELXyz" + }, + "source": [ + "이제 이 데이터가 약간의 노이즈를 포함하고 있다는 것을 알 수 있습니다. 각 열을 박스플롯으로 관찰해 보면 이상치가 보입니다. 데이터셋을 살펴보고 이러한 이상치를 제거할 수도 있지만, 그렇게 하면 데이터가 너무 축소될 수 있습니다.\n", + "\n", + "우선, 클러스터링 연습에 사용할 열을 선택해 봅시다. 비슷한 범위를 가진 숫자형 열을 선택해 보겠습니다. `artist_top_genre`를 숫자로 인코딩할 수도 있지만, 지금은 이를 제외하겠습니다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-wkpINyZLXy0" + }, + "source": [ + "# Select variables with similar ranges\n", + "df_numeric_select <- df_numeric %>% \n", + " select(popularity, danceability, acousticness, loudness, energy) \n", + "\n", + "# Normalize data\n", + "# df_numeric_select <- scale(df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D7dLzgpqLXy1" + }, + "source": [ + "## 3. R에서 k-평균 클러스터링 계산하기\n", + "\n", + "R에서는 내장된 `kmeans` 함수를 사용하여 k-평균 클러스터링을 계산할 수 있습니다. 자세한 내용은 `help(\"kmeans()\")`를 참조하세요. `kmeans()` 함수는 모든 열이 숫자로 구성된 데이터 프레임을 주요 인수로 받습니다.\n", + "\n", + "k-평균 클러스터링을 사용할 때 첫 번째 단계는 최종 결과에서 생성될 클러스터(군집)의 수(k)를 지정하는 것입니다. 데이터셋에서 추출한 3개의 노래 장르가 있다는 것을 알고 있으니, 3을 시도해 봅시다:\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "uC4EQ5w7LXy5" + }, + "source": [ + "set.seed(2056)\n", + "# Kmeans clustering for 3 clusters\n", + "kclust <- kmeans(\n", + " df_numeric_select,\n", + " # Specify the number of clusters\n", + " centers = 3,\n", + " # How many random initial configurations\n", + " nstart = 25\n", + ")\n", + "\n", + "# Display clustering object\n", + "kclust\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hzfhscWrLXy-" + }, + "source": [ + "kmeans 객체는 `help(\"kmeans()\")`에서 잘 설명된 여러 정보를 포함하고 있습니다. 지금은 몇 가지에만 집중해 봅시다. 데이터를 65, 110, 111 크기의 3개의 클러스터로 그룹화한 것을 확인할 수 있습니다. 출력에는 또한 5개의 변수에 걸친 3개 그룹의 클러스터 중심(평균)도 포함되어 있습니다.\n", + "\n", + "클러스터링 벡터는 각 관측값에 대한 클러스터 할당을 나타냅니다. `augment` 함수를 사용하여 원본 데이터 세트에 클러스터 할당을 추가해 봅시다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "0XwwpFGQLXy_" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "augment(kclust, df_numeric_select) %>% \n", + " relocate(.cluster) %>% \n", + " slice_head(n = 10)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NXIVXXACLXzA" + }, + "source": [ + "완벽합니다! 이제 데이터 세트를 3개의 그룹으로 나누었습니다. 그렇다면, 우리의 클러스터링은 얼마나 잘 되었을까요 🤷? `Silhouette score`를 살펴봅시다.\n", + "\n", + "### **Silhouette score**\n", + "\n", + "[Silhouette 분석](https://en.wikipedia.org/wiki/Silhouette_(clustering))은 생성된 클러스터들 간의 분리 거리를 연구하는 데 사용할 수 있습니다. 이 점수는 -1에서 1 사이의 값을 가지며, 점수가 1에 가까울수록 클러스터가 밀집되어 있고 다른 클러스터와 잘 분리되어 있음을 나타냅니다. 0에 가까운 값은 샘플들이 이웃 클러스터의 경계 근처에 매우 가까이 위치하여 클러스터 간에 겹침이 있음을 나타냅니다. [출처](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam).\n", + "\n", + "평균 Silhouette 방법은 *k*의 다양한 값에 대해 관측치의 평균 Silhouette을 계산합니다. 높은 평균 Silhouette 점수는 좋은 클러스터링을 나타냅니다.\n", + "\n", + "클러스터 패키지의 `silhouette` 함수를 사용하여 평균 Silhouette 폭을 계산할 수 있습니다.\n", + "\n", + "> Silhouette은 [유클리드 거리](https://en.wikipedia.org/wiki/Euclidean_distance \"Euclidean distance\")나 [맨해튼 거리](https://en.wikipedia.org/wiki/Manhattan_distance \"Manhattan distance\")와 같은 [거리](https://en.wikipedia.org/wiki/Distance \"Distance\") 메트릭을 사용하여 계산할 수 있습니다. 이는 [이전 강의](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb)에서 논의한 바 있습니다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Jn0McL28LXzB" + }, + "source": [ + "# Load cluster package\n", + "library(cluster)\n", + "\n", + "# Compute average silhouette score\n", + "ss <- silhouette(kclust$cluster,\n", + " # Compute euclidean distance\n", + " dist = dist(df_numeric_select))\n", + "mean(ss[, 3])\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QyQRn97nLXzC" + }, + "source": [ + "우리의 점수는 **0.549**로, 딱 중간 정도입니다. 이는 우리의 데이터가 이 유형의 클러스터링에 특히 적합하지 않다는 것을 나타냅니다. 이 추측을 시각적으로 확인할 수 있는지 살펴봅시다. [factoextra 패키지](https://rpkgs.datanovia.com/factoextra/index.html)는 클러스터링을 시각화할 수 있는 함수(`fviz_cluster()`)를 제공합니다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "7a6Km1_FLXzD" + }, + "source": [ + "library(factoextra)\n", + "\n", + "# Visualize clustering results\n", + "fviz_cluster(kclust, df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IBwCWt-0LXzD" + }, + "source": [ + "클러스터 간의 겹침은 우리의 데이터가 이 유형의 클러스터링에 특히 적합하지 않음을 나타내지만, 계속 진행해 봅시다.\n", + "\n", + "## 4. 최적 클러스터 수 결정하기\n", + "\n", + "K-Means 클러스터링에서 자주 제기되는 근본적인 질문은 다음과 같습니다. 알려진 클래스 레이블이 없는 상태에서 데이터를 몇 개의 클러스터로 나누어야 할지 어떻게 알 수 있을까요?\n", + "\n", + "이를 알아내는 한 가지 방법은 데이터 샘플을 사용하여 `클러스터 수를 점진적으로 증가시키며` (예: 1-10) 일련의 클러스터링 모델을 생성하고, **Silhouette 점수**와 같은 클러스터링 지표를 평가하는 것입니다.\n", + "\n", + "*클러스터 수*의 다양한 값에 대해 클러스터링 알고리즘을 계산하고 **클러스터 내 제곱합 (WCSS)**을 평가하여 최적의 클러스터 수를 결정해 봅시다. 클러스터 내 제곱합(WCSS)은 클러스터링의 밀집도를 측정하며, 값이 작을수록 데이터 포인트들이 더 가까이 모여 있다는 것을 의미합니다.\n", + "\n", + "이제 `k` 값을 1에서 10까지 다르게 선택했을 때 이 클러스터링에 미치는 영향을 탐구해 봅시다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "hSeIiylDLXzE" + }, + "source": [ + "# Create a series of clustering models\n", + "kclusts <- tibble(k = 1:10) %>% \n", + " # Perform kmeans clustering for 1,2,3 ... ,10 clusters\n", + " mutate(model = map(k, ~ kmeans(df_numeric_select, centers = .x, nstart = 25)),\n", + " # Farm out clustering metrics eg WCSS\n", + " glanced = map(model, ~ glance(.x))) %>% \n", + " unnest(cols = glanced)\n", + " \n", + "\n", + "# View clustering rsulsts\n", + "kclusts\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m7rS2U1eLXzE" + }, + "source": [ + "이제 각 클러스터링 알고리즘에서 중심 *k*에 대한 총 클러스터 내 제곱합 (tot.withinss)을 구했으므로, [엘보우 방법](https://en.wikipedia.org/wiki/Elbow_method_(clustering))을 사용하여 최적의 클러스터 개수를 찾습니다. 이 방법은 클러스터 개수에 따른 WCSS를 그래프로 나타내고, [곡선의 엘보우](https://en.wikipedia.org/wiki/Elbow_of_the_curve \"Elbow of the curve\")를 클러스터 개수로 선택하는 방식으로 이루어집니다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "o_DjHGItLXzF" + }, + "source": [ + "set.seed(2056)\n", + "# Use elbow method to determine optimum number of clusters\n", + "kclusts %>% \n", + " ggplot(mapping = aes(x = k, y = tot.withinss)) +\n", + " geom_line(size = 1.2, alpha = 0.8, color = \"#FF7F0EFF\") +\n", + " geom_point(size = 2, color = \"#FF7F0EFF\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pLYyt5XSLXzG" + }, + "source": [ + "플롯은 클러스터 수가 하나에서 둘로 증가함에 따라 WCSS가 크게 감소(*더 조밀해짐*)하는 것을 보여줍니다. 그리고 둘에서 셋으로 클러스터가 증가할 때도 눈에 띄는 감소가 나타납니다. 그 이후로는 감소가 덜 두드러지며, 약 세 개의 클러스터에서 차트에 `elbow` 💪가 형성됩니다. 이는 데이터 포인트가 두세 개의 비교적 잘 분리된 클러스터로 나뉘어 있다는 좋은 지표입니다.\n", + "\n", + "이제 `k = 3`인 클러스터링 모델을 추출할 수 있습니다:\n", + "\n", + "> `pull()`: 단일 열을 추출하는 데 사용됩니다\n", + ">\n", + "> `pluck()`: 리스트와 같은 데이터 구조를 인덱싱하는 데 사용됩니다\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JP_JPKBILXzG" + }, + "source": [ + "# Extract k = 3 clustering\n", + "final_kmeans <- kclusts %>% \n", + " filter(k == 3) %>% \n", + " pull(model) %>% \n", + " pluck(1)\n", + "\n", + "\n", + "final_kmeans\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l_PDTu8tLXzI" + }, + "source": [ + "좋아요! 이제 얻어진 클러스터를 시각화해 봅시다. `plotly`를 사용해서 약간의 상호작용을 추가해 보는 건 어떨까요?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "dNcleFe-LXzJ" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "results <- augment(final_kmeans, df_numeric_select) %>% \n", + " bind_cols(df_numeric %>% select(artist_top_genre)) \n", + "\n", + "# Plot cluster assignments\n", + "clust_plt <- results %>% \n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = .cluster, shape = artist_top_genre)) +\n", + " geom_point(size = 2, alpha = 0.8) +\n", + " paletteer::scale_color_paletteer_d(\"ggthemes::Tableau_10\")\n", + "\n", + "ggplotly(clust_plt)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6JUM_51VLXzK" + }, + "source": [ + "아마도 각 클러스터(다른 색상으로 표시됨)가 각기 다른 장르(다른 모양으로 표시됨)를 가질 것이라고 예상했을 것입니다.\n", + "\n", + "모델의 정확도를 살펴보겠습니다.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HdIMUGq7LXzL" + }, + "source": [ + "# Assign genres to predefined integers\n", + "label_count <- results %>% \n", + " group_by(artist_top_genre) %>% \n", + " mutate(id = cur_group_id()) %>% \n", + " ungroup() %>% \n", + " summarise(correct_labels = sum(.cluster == id))\n", + "\n", + "\n", + "# Print results \n", + "cat(\"Result:\", label_count$correct_labels, \"out of\", nrow(results), \"samples were correctly labeled.\")\n", + "\n", + "cat(\"\\nAccuracy score:\", label_count$correct_labels/nrow(results))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C50wvaAOLXzM" + }, + "source": [ + "이 모델의 정확도는 나쁘지 않지만, 뛰어나지도 않습니다. 데이터가 K-Means 클러스터링에 적합하지 않을 가능성이 있습니다. 이 데이터는 너무 불균형적이고, 상관관계가 적으며, 열 값 간의 분산이 너무 커서 클러스터링이 잘 이루어지지 않습니다. 사실, 형성된 클러스터는 우리가 위에서 정의한 세 가지 장르 카테고리에 의해 크게 영향을 받거나 왜곡될 가능성이 높습니다.\n", + "\n", + "그럼에도 불구하고, 꽤나 배울 점이 많은 과정이었습니다!\n", + "\n", + "Scikit-learn의 문서를 보면, 이와 같은 클러스터가 명확히 구분되지 않는 모델은 '분산' 문제를 가지고 있다는 것을 알 수 있습니다:\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    Scikit-learn에서 제공하는 인포그래픽
                                                    \n", + "\n", + "\n", + "\n", + "## **분산**\n", + "\n", + "분산은 \"평균으로부터의 제곱 차이의 평균\"으로 정의됩니다 [출처](https://www.mathsisfun.com/data/standard-deviation.html). 이 클러스터링 문제의 맥락에서, 이는 데이터셋의 숫자가 평균에서 너무 많이 벗어나는 경향을 나타냅니다.\n", + "\n", + "✅ 이 문제를 해결할 방법을 생각해볼 좋은 시점입니다. 데이터를 조금 더 조정해볼까요? 다른 열을 사용해볼까요? 다른 알고리즘을 사용해볼까요? 힌트: 데이터를 [스케일링](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/)하여 정규화하고 다른 열을 테스트해보세요.\n", + "\n", + "> '[분산 계산기](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)'를 사용해 개념을 조금 더 이해해보세요.\n", + "\n", + "------------------------------------------------------------------------\n", + "\n", + "## **🚀도전 과제**\n", + "\n", + "이 노트북을 활용하여 매개변수를 조정하는 데 시간을 투자해보세요. 데이터를 더 깨끗하게 정리함으로써(예: 이상값 제거) 모델의 정확도를 개선할 수 있나요? 특정 데이터 샘플에 더 많은 가중치를 부여할 수도 있습니다. 더 나은 클러스터를 만들기 위해 무엇을 할 수 있을까요?\n", + "\n", + "힌트: 데이터를 스케일링해보세요. 노트북에는 데이터 열이 범위 면에서 서로 더 비슷하게 보이도록 표준 스케일링을 추가하는 주석 처리된 코드가 있습니다. 실루엣 점수가 낮아지긴 하지만, 엘보 그래프의 '꺾임'이 부드러워집니다. 이는 데이터를 스케일링하지 않으면 분산이 적은 데이터가 더 많은 영향을 미치게 되기 때문입니다. 이 문제에 대해 더 읽어보세요 [여기](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226).\n", + "\n", + "## [**강의 후 퀴즈**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/)\n", + "\n", + "## **복습 및 자기 학습**\n", + "\n", + "- K-Means 시뮬레이터 [예: 이 도구](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/)를 살펴보세요. 이 도구를 사용하여 샘플 데이터 포인트를 시각화하고 중심점을 결정할 수 있습니다. 데이터의 무작위성, 클러스터 수, 중심점 수를 편집할 수 있습니다. 데이터가 어떻게 그룹화될 수 있는지에 대한 아이디어를 얻는 데 도움이 되나요?\n", + "\n", + "- 또한 Stanford에서 제공하는 [K-Means 핸드아웃](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html)을 살펴보세요.\n", + "\n", + "새로 습득한 클러스터링 기술을 K-Means 클러스터링에 적합한 데이터셋에 적용해보고 싶으신가요? 다음을 확인해보세요:\n", + "\n", + "- [클러스터링 모델 학습 및 평가](https://rpubs.com/eR_ic/clustering) (Tidymodels 및 관련 도구 사용)\n", + "\n", + "- [K-Means 클러스터 분석](https://uc-r.github.io/kmeans_clustering), UC 비즈니스 분석 R 프로그래밍 가이드\n", + "\n", + "- [정돈된 데이터 원칙을 활용한 K-Means 클러스터링](https://www.tidymodels.org/learn/statistics/k-means/)\n", + "\n", + "## **과제**\n", + "\n", + "[다양한 클러스터링 방법 시도하기](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/assignment.md)\n", + "\n", + "## 감사의 말씀:\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) - 이 모듈의 원래 Python 버전을 만들어주셔서 ♥️\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) - R을 더 친근하고 매력적으로 만들어주는 멋진 삽화를 제작해주셔서 감사합니다. 그녀의 삽화를 [갤러리](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)에서 더 찾아보세요.\n", + "\n", + "즐거운 학습 되세요,\n", + "\n", + "[Eric](https://twitter.com/ericntay), Gold Microsoft Learn Student Ambassador.\n", + "\n", + "

                                                    \n", + " \n", + "

                                                    @allison_horst의 작품
                                                    \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/5-Clustering/2-K-Means/solution/notebook.ipynb b/translations/ko/5-Clustering/2-K-Means/solution/notebook.ipynb new file mode 100644 index 000000000..2a12adb47 --- /dev/null +++ b/translations/ko/5-Clustering/2-K-Means/solution/notebook.ipynb @@ -0,0 +1,546 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "e867e87e3129c8875423a82945f4ad5e", + "translation_date": "2025-09-04T02:10:38+00:00", + "source_file": "5-Clustering/2-K-Means/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "지난 수업에서 끝난 부분부터 시작하여, 데이터를 가져오고 필터링한 상태입니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                                    0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                                                    1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                                    2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                                                    3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                                    4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "우리는 3개의 장르에만 집중할 것입니다. 아마도 3개의 클러스터를 만들 수 있을 것입니다!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                                    1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                                    3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                                    4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                                    5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
                                                    6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "df.head()" + ] + }, + { + "source": [ + "이 데이터는 얼마나 깨끗한가요? 박스 플롯을 사용하여 이상치를 확인하세요. 우리는 이상치가 적은 열에 집중할 것입니다 (비록 이상치를 제거할 수도 있지만). 박스 플롯은 데이터의 범위를 보여주며 사용할 열을 선택하는 데 도움을 줄 것입니다. 참고로, 박스 플롯은 분산을 보여주지 않으며, 이는 클러스터링 가능한 좋은 데이터의 중요한 요소입니다 (https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot).\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADFQAAAxLCAYAAAAjUVg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdsU5bZxiA4R/XFalaEEsHS1xCOpbroL3Qluug3Zp7YGAzqdRIwe7QMBAlEBrsY/w+z2QfWfgbLMv/d/SKg/V6PQAAAAAAAAAAAAAAAEpmUw8AAAAAAAAAAAAAAACwbYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyJlv+w0PDg4Oxxg/fXh6Pca43fYMAAAA7Lxvxhg/fnj813q9fjflMPBc7EUAAAD4QnYj7B17EQAAAL7QVvciWw8qxn+H4z8meF8AAABepp/HGH9OPQQ8E3sRAAAAnspuhH1hLwIAAMBTbXwvMtvkHwcAAAAAAAAAAAAAANhFU/yHiuu7B5eXl2OxWEwwAgAAALvs6upqnJ2d3T29fui18MLYiwAAAPAouxH2lL0IAAAAj9r2XmSKoOL27sFisRinp6cTjAAAAMALcvv4S+DFsBcBAADgqexG2Bf2IgAAADzVxvcis02/AQAAAAAAAAAAAAAAwK4RVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5MynHgAKVqvVWC6XU49BwGq1Gjc3N/euHR0djdlMP8fmHB8f+4wBAMAn2AfwMed2do0zPQAAAAB8PfcDdoc9/PbYL7NPBBWwBcvlcpyfn089BsBGXFxcjJOTk6nHAACAnWMfAOw6Z3oAAAAA+HruB1Bkv8w+kQYBAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx4Aqv5+/etYzw+nHoN98/6f8cOb3+9devv6lzHmryYaiH1z8P7d+P7Nb1OPAQAAL5Z9QJxzOxNypgcAAACA7XE/YCL28Bthv8y+E1TARNbzw7H+9rupx2DPHHzq4vyVzxoAAMCOsA9oc24HAAAAAGhwP2Aa9vDA/zGbegAAAAAAAAAAAAAAAIBtE1QAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx5g16xWq7FcLu9dOz4+HrOZ9gQAAHj5nHmAh/iOAAAAdo1zCgCwLX53AAD7zG+dzxNUfGS5XI7z8/N71y4uLsbJyclEEwEAADwfZx7gIb4jAACAXeOcAgBsi98dAMA+81vn8yQlAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAwL/s3bFOXGcax+FvWMJqdtcYuYi3MJeQckpzEUlBJJB8AUikyAXkCtIQcQGRQApFvO7T2SVlcgVhG9NZFLMmxLNFtljHY3xsw5x3zv95JDdnBnhlffqY8838bAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAACiXF5e9j0CUJg9gq4qr5XKswEAQCWCCgAAAAAAAABiTKfT9vXXX7fpdNr3KEBB9gi6qrxWKs8GAADVCCoAAAAAAAAAiHF0dNR+/vnndnx83PcoQEH2CLqqvFYqzwYAANUIKgAAAAAAAACIcHZ21k5OTlprrZ2cnLSzs7OeJwIqsUfQVeW1Unk2AACoSFABAAAAAAAAwODNZrN2cHDQrq6uWmut/fbbb+3g4KDNZrOeJwMqsEfQVeW1Unk2AACoSlABAAAAAAAAwOA9ffq0nZ6evnbt9PS0PXv2rKeJgErsEXRVea1Ung0AAKoSVAAAAAAAAAAwaNPptB0eHs597PDwsE2n0wVPBFRij6Crymul8mwAAFCZoAIAAAAAAACAQTs6Omrn5+dzH3v+/Hk7Pj5e8ERAJfYIuqq8VirPBgAAlQkqAAAAAAAAABisX3/9tZ2cnFz7nB9++KGdnZ0taCKgEnsEXVVeK5VnAwCA6gQVAAAAAAAAAAzSbDZr3333Xbu6urr2eVdXV+3g4KDNZrMFTQZUYI+gq8prpfJsAACwDFb7HqCaV69evXHtxYsXPUzCkMxdQ25QgWU0Z+/yexJguczbt+fdBwGZnIvcLOcBQCnu6QFYUh97lvH06dN2enra6bmnp6ft2bNnbWtrq/P3B5abPYKuKq+VyrMtG+ejwIfyfgCD53x5EHxe5O1uPKgYjUYP3vGUf970z7xJFxcXb1x79OhRD5MweL+/bK39re8pAN7P7y/fuOT3JMDyu7i4aPfu3et7DBgE5yK8k/MAoC/u6QEYkK5nGdPptB0eHr7X9z48PGyTyaSNx+MPHQ9iLdu5iD2CriqvlcqzLSPno8CN8n4AQ+J8ebB8XuQPK7fwPc/e8adbEg0AAACwfJyLAAAAFHF0dNTOz8/f62ueP3/ejo+Pb2kiGLylOhexR9BV5bVSeTYAAFgWtxFUAAAAAAAAAEBvLi8v2+PHjz/oa3/88cd2eXl5wxMBldgj6KryWqk8GwAALJPbCCo23/Fncgs/EwAAAKAC5yIAAAAFrK2ttc8///yDvvaLL75oa2trNzwRRFiacxF7BF1VXiuVZwMAgGWyetPfcDab/fu6x0ej0U3/yBt1586dN659//337e7duz1Mw1C8ePGiPXr06PWLf/lrP8MAfIw5e5ffkwDLZd5r03n3QcCHcS7C/3MeAJTinh6AJfUxZxm7u7vtp59+aufn551/3v3799vOzs57zQj8YdnORewRdFV5rVSebRk5HwU+lPcDGDzny4Pg8yJvd+NBxbJbWXnzP+24e/du29jY6GEaBq3YYRFAJ3P2Lr8nAZbfvPsgIJNzkQVwHgD0xT09AAPS9SxjPB63vb299s0333T+3nt7e208Hn/oaMASsUfQVeW1Unm2ZeR8FLhR3g9gSJwvD5bPi/zB3wIAAAAAAAAAg7S1tdUmk0mn504mk/bw4cNbngioxB5BV5XXSuXZAABgGQgqAAAAAAAAABik0WjU9vf32+rq6rXPW11dbfv7+23kX5GFKPYIuqq8VirPBgAAy0BQAQAAAAAAAMBgbW5utu3t7Wuf8+WXX7bNzc0FTQRUYo+gq8prpfJsAABQnaACAAAAAAAAgEHb3d1tn3766dzH7t+/33Z2dhY8EVCJPYKuKq+VyrMBAEBlggoAAAAAAAAABm08Hre9vb25j+3t7bXxeLzgiYBK7BF0VXmtVJ4NAAAqE1QAAAAAAAAAMHhbW1ttMpm8dm0ymbSHDx/2NBFQiT2CriqvlcqzAQBAVYIKAAAAAAAAAAZvNBq1/f39trq62lpr7ZNPPmlfffVVG41GPU8GVGCPoKvKa6XybAAAUJWgAgAAAAAAAIAIm5ubbXt7u7XW2vb2dnvw4EHPEwGV2CPoqvJaqTwbAABUJKgAAAAAAAAAIMbu7m777LPP2s7OTt+jAAXZI+iq8lqpPBsAAFSz2vcAAAAAAAAAALAo4/G4ffvtt21tba3vUYCC7BF0VXmtVJ4NAACq8T9UAAAAAAAAABDFB0yB69gj6KryWqk8GwAAVCKoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAKrtqYAAACAASURBVAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDirfQ9Qzfr6envy5Mkb1wAAAIbAPQ9wHXsEAABQjfsUAGBRvO4AAIbMa523E1T8ycrKStvY2Oh7DAAAgFvhnge4jj0CAACoxn0KALAoXncAAEPmtc7brfQ9AAAAAAAAAAAAAAAAwKIJKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiLPa9wCQanT1su8RGKKr/8y9Nlr8JAyUvQsAAD6O19Th3LfTI/sPAAAAACyO87ieOIe/FdYzQyeogJ78/ZfHfY9AiH/88q++RwAAAOB/nAfwZ+7bAQAAAACGx/sBdTiHB95lpe8BAAAAAAAAAAAAAAAAFk1QAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcVb7HgASrK+vtydPnvQ9BgFevXrVLi4uXrt2586dtrKin+P2rK+v9z0CAACU5DyAP3PfTjXu6QEAAADg43k/oA7n8IvjfJkhEVTAAqysrLSNjY2+xyDEvXv3+h4BAACA5jyA+dy3AwAAAAAMi/cDanEOD7wvyRUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAwH/Zu+8w6YoyYeP3Qw4CgqCIqAQjgooCKyDyIqYFQWFFQFExYVhZw+oiqyzgmpVVVIwgQQwogih8JhAMyC6goIgiBkBQkIwE4SU83x9V7RyaDjPzdvf0TN+/6zpXn9OnzjnVXWd6uqrrqZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNnGXm4JpLt1auvPLKObi8JEmSJGnctdUXl+6WTpqHbBeRJEmSJPVl24gWKNtFJEmSJEl9jbpdJDJz2Ne49wUjNgPOGelFJUmSJEnz2eaZee5cZ0IaBNtFJEmSJEmzYNuIFgTbRSRJkiRJszD0dpGlhnlySZIkSZIkSZIkSZIkSZIkSZKkcTQXM1QsD2xSN68B7h7RpddmaqSDzYGrRnRdDZ5luXBYlguHZblwWJYLh2W5cFiWC4vlOX1LA2vV9Qsy8465zIw0KHPYLjITflZpEnnfa1J572sSed9rUnnvzz+2jWjBmSftIhos//9oUniva5J4v2tSeK9rkozj/T7SdpFlhnnyTuoLGvl0pBHR3LwqM68YdR40GJblwmFZLhyW5cJhWS4cluXCYVkuLJbnjF021xmQBm2u2kVmws8qTSLve00q731NIu97TSrv/XnLthEtKPOhXUSD5f8fTQrvdU0S73dNCu91TZIxvt9H1i6y1KguJEmSJEmSJEmSJEmSJEmSJEmSNC4MqJAkSZIkSZIkSZIkSZIkSZIkSRPHgApJkiRJkiRJkiRJkiRJkiRJkjRxDKiQJEmSJEmSJEmSJEmSJEmSJEkTx4AKSZIkSZIkSZIkSZIkSZIkSZI0cQyokCRJkiRJkiRJkiRJkiRJkiRJE8eACkmSJEmSJEmSJEmSJEmSJEmSNHEiM+c6D5IkSZIkSZIkSZIkSZIkSZIkSSPlDBWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJs5EBFRExMMj4pCIuCgibo2I6yPinIh4W0SsNNf5m2QR8cCIeG5EvCsivh0R10ZE1uWoWZzvnyPixIi4IiLuqI8nRsQ/DyH7aoiIzSLivyLie433/5aIuDgijoyIp87wfJblHIiIVSNij/qZ+cOI+H1E3BQRiyPi6og4IyL+IyIeMM3zbRURx0bEZRFxe0RcFRHfjYg9h/1a1FtEfKDxeZsRsWgax/h3OYfayqvXcsY0zmVZjpGIeFhEHBwR50bENfXz8vKI+HH9jrRxn+MtzzlQ/ydO9++y72et5Shp0EbVFuLnl8bNMO/9iFgpInaNiE/Vc94QEXdGxHURcVZEHBQRaw/qtUjTNarP/LZrrhQRf2x81710GNeRehnlvR8Rz4iIo6K0l94apc304og4PiJeFxH3G+T1pG5Gcd9HxHpR2o9/FhE31u8710fET6P8DvTAQVxHkjS/WN/WpLCOrUlivVqTwrq0FroYcD/saV5zzyh9ha+K0s/psij9RLccxvVGITJzrvMwVBGxE3AssGqXJBcDO2bm70eXK7VERK8b8OjM3Hua51kK+Czwyh7JDgdek5n3TD+Hmo6I+BGwzTSSHgO8OjMX9ziXZTmHIuIZwPenkfRaYK/M/G6Pcx0EHED34L1TgBdk5u0zzaeWTEQ8ETgHWKbx9HaZeUaX9P5djoE+/zObfpiZi7qcw7IcMxGxL/A+YOUeyQ7NzDd1ONbynENRgpe2ncEh9wAPy8w/t53HcpQ0cKNoC/HzS+NomPd+RDweOBPo98Pe34B9MvO4mV5Dmo25av+OiA8D/9546rLMXG+Q15B6GdW9HxGrA0cCz+uTdNPMPH9JriX1M6Lv+S8BPgOs2CPZ9cAemTmd3xIkSQuA9W1NCuvYmiTWqzUprEtrEgyqH/Y0r7UicDywQ5ck9wDvysyDB3XNUVnQM1RExKbAcZQPw1uAdwBbAdsDn6vJHgWcEhGrzEkm1fQn4HuzPPY9THXiOA/YE9iiPp5Xn38V8O4lyaC6Wqc+/gU4FHgB5f3fEngL0Oo4+FLgqD7nsizn3uWU4Jc3ArtSynFrYHfga8DdwJrANyPiCZ1OEBGvAQ6k/J/5A6VMtwCeD5xek+0IfH5or0IdNTq+LQNcPc3D/LscL58CNumxvLzHsZblGImIdwIfowRTXAy8DVgEbAo8o27/lFLZ6MTynFsvp/ff4iaU/50tp7UHU1SWo6SBGmFbiJ9fGisjuPdXZapzx5nA/sAzgScBz6b8WHJPTffFcJYWjcBctX/X674JuB24eVDnlaZrVPd+RKxGGXym1enjRODFwFOAzSltp4cCV8z2GtJ0jeK+j4itKb/hrEj5XnMkpU1/C8rvPt+qSdcAToqIDWZzHUnS/GJ9W5PCOrYmifVqTQrr0ppQS9IPezo+z1QwxelM3e+vpPQTXQo4KCL2GWIehiMzF+wC/AhI4E5gyw7731b3J3DQXOd3EhfgYOC5wIPq9nqNMjlqmud4VC3jpIy4vmLb/pXq86174RFz/boX2gKcDLwQWLrL/jWB3zbK9mmW5Xgu3cqwLc3zG2V5Qof9awA31v2XAWu2XwP4ZuMci+b6dU/SQmmMSeA3wHv7lYN/l+OzLOl3FstyvBZKBb1VpkcDy/ZIu5zlOT8X4AONct7LcnRxcRnFwgjaQvz8chnHZdj3PuVHluOAjXqkeR7lB5MEfk+dHdjFZVjLKD7zO5xzaeDces4DgEvr+qVz/X64TM4yqnufMuhMUjo27dwjXQDLzPX74rKwlxF9zz+5cY7Xd0lzSCPNJ+b6fXFxcXFxGf5ifdtlUhbr2C6TtFivdpmUxbq0y6QsDKAf9jSv8/TGeb9JW19TSj/hy+r+G4DV5/q9mcmyYGeoiIgtgG3q5hGZeVaHZIdQOpQCvDEilh1J5vQPmXlgZp6cmX9dgtO8iTLSOsC+mfn3tmvcBuxbN5cB3rwE11IHmfnczPxqZt7dZf+13Ht6whd0OZVlOce6lWFbmm9QAmRg6nO26VXAanV9v1r+7dd4PWWmCyhfTjUCEfEw4L/r5muBxdM4zL/LhcOyHBN1pphP1c1fAK/MzDu7pc/MTn+rlueYq+X84rp5C3BCh2SWo6SBGmFbiJ9fGiujuPcz86eZuXtm/rpHmpOY+p+/IWXmMWko5rD9+43AkyltQx8YwPmkGRnVvR8RTwVeUjffmZnf7JY2i7tmeg1pukb4mb9VfbwuMz/ZJc27GutbzuIakqR5xPq2JoV1bE0S69WaFNalNUkG1A97Ot5aH++iBBDdq69p7Se6X928P6Uf6byxYAMqKCOotxzZKUFm3kOJhIRSeNsNO1MarIgIpqYFuygz/7dTuvp8qwP48+pxGq3TG+sbtu+0LOed1lSTK3TY1/r8/RudO4+SmVcAp9bN7Qc5JaZ6OowyZe7RmfnDfon9u1w4LMux8yzgkXX9AzNtHLI8543tgYfU9eNr5+J/sBwlDcnQ20L8/NKYGqd2wJ7tH9IAjfy+j4iHM/Xj32u7BH9Lwzaqe/8N9fEm4BOzOF4apFHd98vVx0u6JcjMm4DWIErLdUsnSVowrG9rUljH1iSxXq1JYV1aGqDav3P7unlq7f/ZyQmUfqMAuww9YwO0kAMqnlofbwV+1iNds0Pp1sPLjoZkfWCdut6vc3Br/0MoU9potJZvrHeaBcGynCci4tHAE+vmRW37lgO2qJtn9an0t8pxeWCzgWZS9xERL6RM7XU9U9Gi/fh3uXBYluNlt/qYlOkfAYiINSLikRGxRp/jLc/54aWN9WM67LccJQ3DKNpC/PzSOBqndsB+7R/SoMzFff9JYGXgC5l5xhKeS5qtod/7tY2zFUD6/cy8vT6/dEQ8NCLWi4hOA81IwzKqz/xWQPT63RJExKrAmm3pJUkLl/VtTQrr2Jok1qs1KaxLS4O1OVMBQV1/I679RVsD8m0+oFm9RmIhB1Q8tj7+vs+ov83OwI/tmkrjaqPG+kVdU913v2U9ets21n/TYb9lOcYiYqXayfctlH+Iy9RdH21L+ihg6bpuOY6JiLg/cGjd3K9OrzUd/l2Op90i4tcRcVtE3BwRv4uIoyOiV6S8ZTlenlIfL83MmyPiRRFxAXAdcDFwXUT8NiLeGhHLdzje8hxzEXE/piLtLwPO6JDMcpQ0DKNoC/HzS+NonNoB+7V/SIMy0vs+IvYAdgBuAP59tueRBmAU9/4TmJqZ94KIWDUiPkoZSfBPlBEHb4qI70fEohmeW5qNUX3mf7o+PiAiXtslzQEd0kuSFi7r25oU1rE1SaxXa1JYl5YGaza/ES8DPHI42Rm8BRlQUSMYWxFd3aYVASAzb6BEoQE8dJj50lCs21jvWdbA5Y11y3qEImIp4O2Np77aIZllOWYiYu+IyIhIyufkxcAhwINqkvcDX2o7zHIcTx8E1gbOBI6YwXGW53jaiFKJWxG4H/AIykj4P4iIEyNitQ7HWJZjov5PfEzdvDYiDgW+CGzclvRRwIco5Xr/tn2W5/j7F8qoQgDHZmZ2SGM5ShqoEbaF+PmlsTJO7YAR8QRgx7p5QWbawUNDMer7PiJWZ2pQjbdn5jWzOY+0pEZ47zd/HFwKOBd4I9Csny8HPINSb99vhueXpm3En/mfZ2qWzcMi4nMRsVNEbBYRu0bEiUzNfvyezDx1FteQJM0T1rc1Kaxja5JYr9aksC4tDcWC/414QQZUAKs01m+ZRvrWB+L9hpAXDddMyvrWxrplPVpvBrao6ydkZqdptCzL+eN8YIvM3L9DB1HLccxExDbAq4C7gNd26dTbjeU5Xm4DvgK8GtgG2BR4FvAeyswGAM8HTuowXZplOT5WY+o7+CbAvwFXAnsBawArUUZZak1/txWlAt5keY6/lzbWj+mSxnKUNGijagvx80vjZizaAevMYoczNWvjOwZ5fqnNqO/7D1EG2DgL+NwszyENwqju/TUa6/tRRlH7DqWNewXggcDrgJuAAN4fEc+b4TWk6RrZZ35m3p2ZLwN2A35BaVf+JnAO8HVK2+PpwDMz850zPb8kad6xvq1JYR1bk8R6tSaFdWlp8Bb8b8QLNaBihcb64mmkv6M+rjiEvGi4ZlLWdzTWLesRiYhtKTMZAFxN+ULciWU5fr5B6ey7CaVSsydwIvBE4MsR8dwOx1iOYyQilgM+S6mAfiQzfzXDU1ie4+UhmblnZh6emT/JzPMz8/u1wvU44Lyablvu+1lrWY6PlRvrK1ACZbbLzC9m5g2Z+ffM/BHwdEplG2CXiPintuNaLM8xExHrAovq5v9m5sVdklqOkgZtVG0hfn5p3IxLO+AngM3q+tGZ+a0Bn19qGtl9HxFPA17B7AZqkAZtVPd+e939+8BzM/OczLwjM6/JzE8DzwXuqeneFxExw+tI0zHS7zoR8VjKQBGbdEmyJfDKiHjIbM4vSZpXrG9rUljH1iSxXq1JYV1aGrwF/xvxQg2ouL2xvtw00i9fH/8+hLxouGZS1ss31i3rEYiIx1E64C9DKavdMvPqLsktyzGTmTdm5q/qck5mfiUzd6V8AdyAMgr+3m2HWY7j5T+BxwB/Ag6exfGW5xjJzBt77Psr8ALgzvrUvm1JLMvxcXvb9uGZ+dv2RJn5d+49ytLuXc5heY6fvZiqZx3dI53lKGnQRtUW4ueXxs2ctwNGxP6UUaegjDr1r4M6t9TFSO77OhJsa6CGQzPzguXcewAAIABJREFUlzM5XhqCufi+A7BfZt7dnigzfwKcUDcfS/cfzaUlMbLvOnW247OAnYA/Ay8B1q7XfSjlO85twB7A2fU3IEnSwmV9W5PCOrYmifVqTQrr0tLgLfjfiBdqQMXNjfXpTBfSioqczvQ+Gi8zKetm9KtlPWQRsT7wPWB14G5gjzridjeW5TyRmV8Avkb5H/KJiGhO1Wc5jomIeAywf93cNzNv7ZW+C8tzHsnMP1JGdgB4RESs09htWY6Pm9u2v9cj7WmUEWoANu9yDstz/LykPt4BHNcjneUoadBG1Rbi55fGzZy2A0bEa4D31s2LgB1mWf+SZmJU9/07gEcDlwMHzvBYaRjm4vvONZl5XteU8N3G+uZdU0mzN5L7vnbw+zKwGnAV8JTMPDYz/5qZd2bmFZn5SeBplB/Q16H3QBKSpPnP+rYmhXVsTRLr1ZoU1qWlwVvwvxEvM9cZGIbMvD0irgMeAKzbK21ErM5U4V0+7Lxp4K5orPcsa0rEX4tlPUS1E++plC8BCbwiM0/qc5hlOb+cBLyQ8vn5HOBL9XnLcXy8mRIN+kdgpYjYo0OajRvrT4+Itev6t2qDpOU5//wa2KGuPwT4S123LMdEZt4REdcAa9Wnur7H9TvttZTRC9Zq7LI8x1REbAZsVDdPzswbeiS3HCUN1AjbQvz80liZy3bAiNgT+GTdvAx4ZmZeu6TnlfoZ4X2/X308FdgpIjqlaZ175Ubbw9WZ+YMZXkvqa4T3fjP9FV1T3TftWl1TSbM0wvv+OZT2RICPZ+ZVXfJzYUQcSxkt/MkR8YTM/MUMryVJmgesb2tSWMfWJLFerUlhXVoaivbfiM/tkXZe/ka8IAMqql8D21BGaF4mM+/qku4xjfXfDD9bGrBfN9Yf0zXVffdb1kMSEWtSRkjfoD61b2YeM41DLcv55ZrG+sMb6xdTZiRZGstxrrWmztqAEg3dzwGN9fWBW/Hvcj7KLs9bluPlQmBRXV+6T9rW/uZ3WctzfL20sd5vZAnLUdIwjKItxM8vjaORtwNGxM7AMZTZG68Ets/Mfj8OSoM0ivu+NW33y+vSy5pMtT/8ELCzh4ZlFPf+hY316dbb4d51d2mQRnHfP7ax/vM+aX9G6QTSuqadQCRp4bK+rUlhHVuTxHq1JoV1aWmwZvMb8V3A74aTncFbaq4zMEQ/qY8rA0/ukW7bxvqZw8uOhuQSpkbf3rZXQsrUSQB/Bi4dVoYmWUSsRpmKrTUy89sz87BpHm5Zzi8Paaz/Y1qmzFwMnF03t4yI5eiuVc530DtiUXPHv8v5Z6PG+l8a65blePlRY32DbokiYlVKgymU8mixPMdQRCwLtEYLugb4dp9DLEdJwzCKthA/vzSORtoOGBHbA1+lDFZzHWWkzD/M9nzSLNn+rUk19Hs/My8D/lQ314suQ8dWGzbW/9w1lbRkRvGZ3+xY0m9AvmW7HCdJWnisb2tSWMfWJLFerUlhXVoarHOAxXW962/Etb/oU1rHZOadw87YoCzkgIpvNNY7RvZGxFJMjSJ7I3D6sDOlwcrMBE6qm4+JiKd0Slefb0U9nVSP0wBFxErAKcCT6lPvycwPTPd4y3Le2a2xfkHbvtbn76rArp0Ojoh1gWfUzdMy8+bBZk+ZuXdmRq8FOLhxyHaNfZfWc/h3OY9ExPrAM+vmHzLzH40NluXY+XpjfZce6XYBWo1LP249aXmOrX9mahraL/UY4QKwHCUNzdDbQvz80pgaWTtgRGxF+RtYHrgJeHZmXtj7KGkoRvGZ37NdobYtXFaTX9Z4ftEMX4s0E6P6zG/V3VcFtu+Rrtn++ZOuqaQlM4r7/pLG+jZ90jZ/NL+kaypJ0kJgfVuTwjq2Jon1ak0K69LSANX+nafVzWfU/p+d7Er57Ac4cegZG6AFG1CRmWcz1fHslRGxZYdk/87UtDuHzqdIGN3LR4G76/rHI2LF5s66/fG6eVdNrwGqUWUnAlvXpw7NzHfO4lSW5RyLiL0jYoU+ad4M7FA3L6HRybc6nNLIBfD+iHhA2/FLA59katq+Dy1RpjVs/l2OgYjYKSK6RrNHxIMoDRKtWWE+2SGZZTkmMvOXTM1esGcdceleImJt4N11czFwZFsSy3P8vLSxfsw0j7EcJQ3UINpCImJRRGRdjupyKT+/NFZGde9HxBMpg0msDNwK7JiZPxvEa5BmaoSf+dJYGfH3ndvr+v/UWSTvJSL2AhbVzVMy8/LpvxJp+kZ0358G3FbXXxcRm3TKS0T8M1MDhPwZOH/6r0SSNN9Y39aksI6tSWK9WpPCurQ0M7XfaOt+P6hLsg/Xx2WAw2o/0OY51gRag7DfSOlHOm/0m2ZmvnsjZRqeFYHvRcR7KVFkKwJ7APvUdBcDh8xJDidcRDwVeETjqTUb64+IiL2b6TPzqPZzZObFEfEh4O3AZsCZEfEB4A+UacH2AzatyT+Umb8b2AtQy5eBZ9X1HwBHRMTGPdIvzsyL25+0LMfCQcAhEfF1SuT3H4BbgFWATYAXMxU4sxjYJzPvbp4gM6+PiP2ATwMPB/4vIt5DmcliHeBNwHY1+Zcz84xhviAtGf8ux8bHgWXr3+ZZwKXA3yn/NxcBr2Hqf+hPgMPaT2BZjp03AVsC9wdOjoiPAv+PUq5bAPsDrWjuA5ozjoDlOW4iYnXguXXzV5n58+kcZzlKGpKht4X4+aUxNdR7PyI2BL5L+f4G8E7gpj7tH1dn5tUzvZY0A7Z/a1KN4vvOnyLiv4APUtpFz67fd37J1My8r6vJ/wa8eXYvRZq2od73mXljRLwfeBfl94CfRsTHge8DNwAPAp4HvJqpAfvenpn3zPoVSZLmC+vbmhTWsTVJrFdrUliX1kQYRD/s6cjMH0TEVyh/PzsD36/9nf5C+ax/B/Cwmny/zLxhNteZK5GZc52HoYqInYBjmZpCpN3FlOj2348uV2qpkXsvm276OsVdp/MsBXwOeEWPw4+gdP72H9KARcRMP0guy8z1upzLspxDEXEpJQiinyuAV2Tm93uc62DgAKDj3y2l4/C/ZObtXfZryGo06YF1c7tuwS3+Xc69Gfxtfh14VWbe2OU8luUYqRWa4ymV6E4SeE9mHtDleMtzTETEa4FP1c3/yMxpz75kOUoahiVpC4mIRUxNaXx0Zu7d5Rp+fmnsDPPer43N7bOG9XNwZh40w2OkGRnFZ36f619Kqa92be+ThmFU935EvI8SLNqtjfNq4PmZedb0ci7N3rDv+4gI4H8oHU663fMAdwL/mZkf7pFGkrSAWN/WpLCOrUlivVqTwrq0JsEg+mG3fS/v+n07Ilak9HXaocvp7wH+ez5+X1+qf5L5LTO/BTwe+Ajlw+82ylQi51JHTDSYYv7LzHsy85XAjsBJlIinxfXxJGCHzHyVnTjGn2U5555Nmc7sBEpU+F+Bu4CbKaPNfh14OfDoXsEUAJl5IPBU4EvA5ZRyvJoShfuizNzRYIr5wb/LsfAySvDLdyjfZ66n/G3eSJn95TPAVpn5gm7BFGBZjpvM/AnwOOBg4BeUkTduBy6hVFKe3C2Yoh5veY6Pl9THu4EvzuRAy1HSMIyiLcTPL40j2wE1ibzvNalGde9n5v6UGXu/QJkx9A7gJuAcymAyj7LTh0Zl2Pd9Fm8GNqfMQP0rym8Dd1Pu+59ROolsbAcQSZos1js0KbzXNUmsV2tSWJeWBisz/56ZOwIvpvQDvZryG/HllH6iT52PwRQwATNUSJIkSZIkSZIkSZIkSZIkSZIktVvwM1RIkiRJkiRJkiRJkiRJkiRJkiS1M6BCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJGjMRcVREZERcOtd5AYiIvWt+MiLWm+v8SJIkSZKkyRARixptEovmOj+SJEmSJEmSJGnhMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEnSEhm3GTUkSZIkSdL4ioj1GrNO7D3X+ZEkSZIkSZIkSZNtmbnOgCRJGm+ZeRRw1BxnQ5IkSZIkTZjMPAOIuc6HJEmSJEmSJElauJyhQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSNKci4qCIyIjIun3/iDg4Ii6MiFsi4vqIOD0i9pzGudaLiI/UY2+OiNsi4ncR8ZmI2KTPsVmXg+r2MyLimxFxZUTcHhF/jIhPRMRDpvtaeqRb1Ljeon6vq8PxK0fE7hFxeEScHxE3RcSdEXFNRPwwIt4aEfeb4et9ekR8LSIur+e6tJF270b69dpfL/Cy+tTDG+n+sdS0Ozee22Mar/GQmvauiFhnpu+RJEmSJEnDFBEbR8Q7I+K7EXFFRNxR2zF+FxFHR8RTpnmerWv9/rcR8beIWFzPd3JE/GtE3L/HsTtFxPGN618XEWdFxNt7tQsMsv0iIp4cEUdExMURcWttQ7k8In4WEYfV9oBopE/gksYpjuzQlnDQTPLQSLtDRBxb23BaebkkIr5e2zZWakt/r/aOiFgqIvaJiJ9GxA31HL+MiHe0H9vl+ktHxMtq2f2lUSY/iYi3RMSKfY6f0XvZOG6FiPi3iDgjStvQnVHa034bEd+u116vX/4lSZIkSVqIImK72lbzxyh9SP4WERdExIe69UVobzupde+3RcTPo/RFuTkizo6IN0TEMtPIwwo17WkRcVVt/7k6Ik6NiFf2OkdEXFrzclTdfnJEHFXbPO7o1L4TEStFxAG1XePWRvvEK6Lo2N4SEY9vPP/2abyufRvpt+iXXpKkcdb3H7okSaMSEesD3wc2bDy9MrAIWBQRzwdenJl3dTj2pcBngeXbdj2iLq+MiAMy833TyMeBwEFtT68P/CuwV0TslJk/ntaLGo5TgG07PL8m8LS6vD4idsjMi/qdLCLeA/znYLN4H6cAVwIPBvYGvtIjP8sAe9XN72TmX4acN0mSJEmSpq3+0Hx6h13LMdUO8dKIeH9m7t/lHCsCRwCdBpB4SF12BNairY0iIlYAvgTs0nbcGsBT6rJvROyYmedP71XNXES8Gfgw9x24ad26PAl4PbAKcMsQ8/EA4Dhg+w6716vLrnX7qC6nWQn4XodzbFKXnSPi6Zl5a5c8PAz4JvCEtl1rAFvX5XW1TC7ucPys3suIeDBwKrBR23Gr1+VRwHOAdYC3dsq7JEmSJEkLUW0/ORLoNODjxnV5XUTsmZnf6nGeBwHfAZ7YtmvzujwrIp6fmfd0Of4JwEnAw9t2rUVph9geeE3th/LXPq/ptcDH6dHnMyLWBX4APLLx9EpMtU/sAnys07GZ+cuIOKe+rpcB7++VH+Dl9fHCzDy7T1pJksaaARWSpHFyHCVw4dPA8cBNwOOB/Sg/AL8Q+Avw5uZBEbEj5QfxoPyofAjlx+S7gK2A/SnBBu+NiBsz81M98rAjsBnwW+CDwC+B1YDdgFfX9ZMjYuPMvHyJX/HsLANcQPmh/lzKexKUCvgulPdpfeAbEfHEzLy9x7l2pXQMuAD4CPArYEXu2xjQyScp5fRu4Hk1H8/ulDAz764jJuwPPDMi1s3MK7qcd0fggXX989PIhyRJkiRJo7QMcCtl8IAfABcBf6PUZR8H/Buljv72iLg4M49sHhwRS1F+SH9mfep3lDr2ucBtlMEItqLU7zs5mqlgil9Q2kF+Q+m8vwdlIIN1gNMi4vGZ+ecle7n3FRGPZyoA4BLgE8D5wPWUTv+PBrajtBc0bVLz9t26/U7Ke9F09QzysRIluKU1M+nPKANu/Aq4A3goZeCJ3fuc6nOUQJSjga8CVwEPA/4D2BLYoub1PgEyNaDjJ/Vad9Rz/RC4FLgf8CzgjZRAm29HxJMy86bG8bN9L6F0omgFUxwLnEBpn7mbch9t1uU4SZIkSZIWrDrD4/GUvgcA36LU9/8I3EOp5/87pe5/fERsnZnndjndCZS698fqea6n1NUPAB4L7ETpS/KZDvl4BKWNYDVK29FhwNnA5cADgJ2B11ACGE6KiG0y884u+dicMjDl5ZR2hHMpbVTbNK63LKW9qhVMcQqlneIKyoAN+wDPpQRzdHN4vdZjImLLzDyrU6IaKLJp3bRfhyRp3ovMnrN6S5I0VBFxEHBg46kXZeaX29KsAvyYMsrfPcATMvNXdd+ylB+o16EEU2zTPvpiRDwcOIvyQ/JtwMMz89q2NM1/iD8Hts3MW9rSvAQ4pm5+LTNf2Lb/H68lM6PHa17E1EiW22XmGW37j6JE+1+Wmet1OP6Rmfm7Hud/BqVjwlLAqzLziA5pmq/3NGDHzLyjy/n2pozcALB+Zl46k/w20m1I6SQSwDsy871d0p1EaTi4BnhIjwYDSZIkSZJGLiLWBO7KzBu77F8OOJkSMHEZsGFm3t3Y/2/AoXXzRGDPTnXyGnjx4GZARB1U4uS6eRqwQ2Yubjvu1ZSgAoCvZububfsPYgnbLyLiXZSOA7fW19dxBMWIWA24uTlKY0SsRwkcAHh5Zh41mzzU/f/D1MAbhwH7ZocfPWqZrN7MZ1t7B8BLMvPYtuOWp3RQ2Bi4Dli7febUiPgi8CJKWW+XmZfQJiI2pbRtrQy8NzPf0dg3q/eyjrT5N2BZ4JDM7DoDRUSskZnXd9svSZIkSdJC0mgbuRPYOTO/0yHN6pS6+uOAMzPzqY19BzHVj+VO4Fkd2iTWAH4NPAj4ZWa2z1pJRJxJGTTjvHqOazukeQ4l8GEpYJ/M/Fzb/kuZmt3iAuBpPdqk3gh8tG5+NDPf3CHNx4E3NJ5qb/NZBbiS0obxuczcp8u1DqUMKnInpV/HNZ3SSZI0X7RPHy1J0lw6uT2YAiAzb6ZEykP53/Xaxu5dKMEUAO9uD6aox18GvK1ursTUtIPd7NMeTFHP8wXg263rRsTafc4zFL2CKer+UymzVwA8v8/p7qEEXXQMphikzPwDcEbd3LtTmjpd5g5181iDKSRJkiRJ4yYzr+32w3Xdv5ipdoiH05gFsgZJtPZdAby0W508M+/pMLvEv9bHOynBCIvb9lN/eD+1bu4aEQ/u85Jmo9UmcnG3AICal5uawRSDFBH3p4ziCGVmijd2Cqao+VjcK5/ACe3BFPW4OygzRkAZOXKj5v4aHNIKWHlDp2CKep7zKAEfcN82kdm+l2tQgikAftTtuHqswRSSJEmSpIlQZ6fYr25+rFMwBUBm3sBUG83WEfHITumAj7cHU9Tjr2dqoIZN6kAIzXxsQwmmAHhZp2CKep7vUGbTgC79KBr+tVebFFN9aa4A3t4lzX9QZrfsqPbP+Wrd3D0iVmxPUweueHHdPNlgCknSQmBAhSRpnBzZbUdmng1cWDef0djVWk96TyP4NeCmDse3uyAzf9Zjf+saywCLeqQbmYhYKyIeGREbtxbK7A5QZvXo5cz2GSeG7PD6+MiIeGqH/XtR3ltwWkhJkiRJ0jwQEctHxMMiYqNGvbw580Ozbv5EYN26/rlOAzr0uM4ywLZ183uZeXmP5K3RDIfVfnFlfdwoIrYYwvmn4+mUgTOgdJC4u1fiPr7YY1+znWiDtn07AktTZkT9Nr21gh7WiYiHNZ6f7Xt5HdAKqHlJvT8kSZIkSZp0GwEb1vXjeyXk3gMUbNklzXTaDAJYv23fzvXxt5l5wTTzsXmP+v3lmfnjbieIiIcAj6mbX+sxgMffKf1nemn161gV+JcO+3eiDDwB9uuQJC0QBlRIksbJOX32n10fH1Uj3gE2ro+X9Ip6ryM2ntd2zJLkAWCTPmmHJiK2jojjIuI64GrgYsr0jq3l1TXpmn1O9cvh5bKjE4Ab6nqnmUJaz52Tmb8aTZYkSZIkSZqZiFg5IvaPiF8AtwKXUQaCaNXLz2skb9bNN22sd/0RvIsNmAog+L8+aZv7e7WDzNaXKbNkLA+cGRHfiojX1oCS6HPsoCzJe9nuoh77mrM7rNK2b7P6uBJwV0RktwU4uXFcc9bTWb2XtWPEcXXzBcDvI+KDEbFDnb1DkiRJkqRJtFlj/aw+dfXmQBdr09mSthk8ulceaj5as2MuS5mRspN+fTua7T+9BhEFOLfXzsz8KfDrutmrX8eV9B9gQpKkecGACknSOLm6z/6/1scAVq/rrcpkv2MBrmo7Zkny0O88QxMRBwE/AV44jTzcZ/rFNjf02T9QmXk7cGzdfGFErNzaV0dhfFzddBQDSZIkSdJYioj1KEET7wUeT5mhoJdm3bwZXHFle8I+mm0A/dovrmqsD7z9IjMvAvaktCssAzwX+BTlfbk6Ir4QEdsM+rptluS9bHdbj333NNbby/qBs7xeKzBmSd/LNwDfqusPB94GnAJcFxHnRMTbImK1WeZRkiRJkqT5aInr6k2ZOWdtBm369e1YvbHedTDSae4HOKI+blfbwgCIiAcDz6mbxyzhjKGSJI0Np4CWJI2TnKNjh3GeoYiI7YED6+YfgQ9Tgiv+BNyamXfVdO8CDpjGKeeicns4sC9wP8oIikfX51ujGPydMjqjJEmSJEnj6AvA+pQ2hCOBrwC/ofwYvTgzMyKWYqrOPYwZG+a8/SIzvx4RpwK7A88GtgHWogQ67AXsFRFHA6/IzHu6n2lea3WWuBbYbgbHXdLcmO17mZl/A3aug1S8EFgEPLHma7O6vDUinp+ZZ8385UmSJEmSNO80Axt2Ai6d5nHTGcRzNvn4BaVuP11/7vL8qPt2HAO8D1gOeBlwcH3+pUy9NgfKlCQtGAZUSJLGyYOAy/vsh9JpoBV9f33bvl5aUzRe3yNNv/M097ef5x8/aEfEUj06C6zc5fnpeHV9vAF4SmZ2GzlgTmbPmI7M/GVEnANsTgmiODoiVgD2qElOyMyb5iyDkiRJkiR1ERGPAZ5aN9+bme/skrRbvfzaxvqDgYtmcPlmO0S/9ou1G+tDa7+o9ffP1oWIeCzwPMpACutQfnA/Dzi037lmof29vKRbwiG6rj6uAvxmSUZlXJL3MjPPBs6ux61CCazYG9iVMiLm1yNiw8z8+2zzJ0mSJEnSPHFdY/3GzPzVHOfjfiPKQ3MGi7X6pO23n8y8NiJOAnYDXhYR78rMpLQ3AJyZmRfPKqeSJI2hpeY6A5IkNWw+zf2/y8zFdb1V8Vw/IrpW+iJiWWDTtmOWJA+dznNzY311untUn2v08rj6eHqPYAooIxCOymxGxTy8Pj4tIjag/MB///qcoxhIkiRJksbV4xrrx/VI161e/vPG+tNmeO0/ArfV9X/qk3aLxvrI2i8y8zeZ+X7gKcCt9ekXtieb6Xm7WJL3clDOq4/LM+C2mGm+l52Ouzkzv5WZ/wJ8rD79YKYCgSRJkiRJWsjOa6xvPWe5mMrHBhGxds+Ug3FhY/3JfdJOtw2j1a9jfWBRRGwFPKY+Z78OSdKCYkCFJGmcvKzbjojYHNi4bp7a2NVaD8psB928AFitw/HtNomITXvsf0V9vBs4o21fcyTEXhXQPXrs66c1u1TXUSJr/vt1rBik2+vj8jM45suUzgBBGcGgVXaXAKcPLGeSJEmSJA1Wc9bnXjM4vLbL879ganbOV0XE/aZ74cy8C/hh3XxmRKzbI/mr6uNdzEH7RWZeDrRGKVyzbfftjfWZtCW0O52pQIN9I2LpJTjXbH2LqQCRNw3jAn3ey35Oa6zP9FhJkiRJkuajnwNX1PV9ImKFOcrHN+tjAG8c9sUy8wqm2g92i4iObS71/dhtmqc9Fbisrr+cqX4dtwBfnWVWJUkaSwZUSJLGyc4RcZ+R9mrngs/UzXsa6wDfAP5S198REZt0OP6hwIfr5m3AkX3y8dmIuE+niIh4EbBD67qZeWVbkp9SOioAvDkiosM53sa9R4mcqd/Vx6dGxCM6nH8t4AtLcP7ZaL0PD4yIVaZzQGbezFQF+zXA0+v6UXWaSEmSJEmSxtHvGut7d0oQEa8DntdpX2beA3yobq4LHBMRy3U5z1IRsU7b04fVx+WAI+qMnO3HvQJ4Vt08YRjtFxHx/Ii4f4/9D2VqxMJL2nZfB7RmHt2w2zn6ycwbmWojejLw0U6vpeZn2Yh44Gyv1SMPvwW+Vjf3iIi39EofEetHxJ5tz83qvYyIDSJi2z5ZfFZjvb0cJEmSJElacGrby3vr5gaUtpeuAzpExKoR8YYh5ON7wNl1822d+sK05WOTiNhpCS/baidZF3h/lzQfAtrbmzqq72VrJop/AXav61/LzFtmm0lJksbRMv2TSJI0MucCX6o/Bh8P/A14PLAf8Oia5rDM/GXrgMxcHBH7UEYEXBU4MyI+RBmB725gK+DtQOtH87dm5rV98rAZcG5EfAC4gDKzxQsoHf8Bbgbe2n5gZl4dEV8D9gSeDXwzIg4D/go8DHgJpZL505qv2TgG2IkyCuYPI+L9wM/qvq2AtwBrA2cBW87yGjP10/q4FPDpiPg48I/3ODN/3+W4wykjGLTK5h7gqCHlUZIkSZKkQTgP+BVlFs3XRMTqlIENrqT8WL0XpQ3hTGDrLuc4jFK3fyawC3BBRHyS0iZxG6Ve/xRK+8KXgINaB2bmKbXtYTdKZ/n/jYj/AS4CVqfMKtGaXfN6SjvBvQwiEvFtAAAgAElEQVSo/eJNwBcj4hTgB8BvgJtqHjYD9gVWrGk/3Xb9uyLinPr+vCIizgPOB+5s5Tszr+9y3XYHUN7HTYA3AFtGxGco7TmLKWWyTX2t72Q47Q6vo7zmDYBDIuJ5lPabC4E7gAcATwCeQxlQ4kTKzJ0ts30vHwacHhG/ruc8F/hz3fdQSieHVmeN84H/G8zLlSRJkiRp7H2aqXaX3YAn1faCsyl17lUpgxcsAnamzKb5iSHk40X1mmsAx0XEXsBxlAE77qb0ldiU0k70FOAQSt+X2foEpQ/GxsCb6iCdn6PM2LEusA+wY81TayCNfgNefh44EFip7TlJkhYUAyokSePkhZRAiNfXpd3X6dwR4JSIeDkl2n4V4F11abobOCAzP9UnD6fU5UA6z2TxN2DnzLy0y/FvpvzY/UjguXVp+golkODUPvnoKDOPj4gjKZXgdYCPtSW5u+ZhdUYXUPED4H8pFfwX1aWp4+iQmfnT+qP/RvWp0zLzT0PLpSRJkiRJSygzMyJeQqkLr05py2gfYfACyo/1f6GDzLwnIp4PHE0JvngU8NEZZOOllLb9XYAnAcd2SPMXYMfM/HOHfTCY9ouVKK9zty777wEOzMxvdNj3PkoHgQdQgkaaDqYRRNJLZt4WEU+ntBk9jTJTxWenc+ygZOb1EbE1ZSbObWo+ntbjkL91eG5J3suNmGpb6eQiYFdnBJUkSZIkTYrafrM7cCjwWsoMmR/sccjVQ8rHHyJiS0q7xcaUwIles1B0ajOYyfUWR8SOlHarDenc5vM94CPAt+v27X3OeUVEfBf45/rUxZn5kyXJpyRJ42ipuc6AJEktmXkJ5Yfv91JG47uNMjrAj4C9MvMFmXlXl2OPpowgcGg99lbg78AfKBH3m2bm+6aZj4MoowaeQhmdcTFwKfBJ4HGZ+cMex/4V+CfgA5RRBe6gjAjZeg17UoIeZi0zX0EZLfLHlNky7gAuo4yIuVVmHrok559Ffu6hjIr5buAXwC30H8Wgpdnpw1EMJEmSJEljLzPPB55IGe3wMsrMCtdTRvd7K7BFZl7Z5xy3ZeZulBkLvgBcQmnHWAxcTgk2eA1lZML2Y2/PzF0pIyieQAmeWAzcQJmFYH/g0TWf3a6/pO0Xe1JGNfwSZfaDq4C7KG0CFwKforTFvLvL9U8BtgdOqvm/s1O66cjMazNzW2BXyoynV9TXczvwR+BrwIu596wQA5WZV2Xm0yidFL5Yr3sb5XVdQ5nt4xBg29qu0zTb9/LHlJE03wecDvye0k50J6U963uUTiNPrG1ukiRJkiRNjMy8MzNfT5k18uOUATBuorR33ESpgx9BGezisUPMx8WUdqQXUQIr/sRUG9CVwBmUvhZPzsz2gUNnc70/UV7zgZRZVv8O3EgZJPP1lMCIFRqH3DSN036hsd5pYFJJkua9cFAiSdJcioiDKBU5MrPjTAYjykfrH+LBNaBCIxARX6Q0HNwAPDgz75jjLEmSJEmSJEmSJEmSJC1IEfFO4L8pAzqskpk9Z6mIiPcA/0kJRnlov4FEJEmaj5yhQpIkzYmIuD+wS938osEUkiRJkiRJkiRJkiRJwxERAexeN8+fRjDF0sBL6+a3DaaQJC1UBlRIkqS58m/AinX903OZEUmSJEmSJEmSJEmSpPksItaLiGV6JHkXsHFdP3oap3wxsG5dt1+HJGnB6vXPU5IkaWBqpX09YHlgO8qUkADfzMwL5ypfkiRJkiRJkiRJkiRJC8DewMsj4kvAmcBfgGWBxwIvAxbVdL8GPtfpBBHxiHrMZsBH6tO/AP7fsDItSdJcM6BCkiSNyrrA79qeuwl4yxzkRZIkSZIkSZIkSZIkaaF5GPD2HvsvAnbMzDu67G/v13En8LrMzEFkTpKkcWRAhSRJmgtXA2cB78jMP8x1ZiRJkiRJkiRJkiRJkua5IygDWz4LeASwFrAScD1llokTgc9n5uJpnOsG4OfAf2XmWcPJriRJ4yEMHJQkSZIkSZIkSZIkSZIkSZIkSZNmqbnOgCRJkiRJkiRJkiRJkiRJkiRJ0qgZUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZL+P3t3kNPWFQZQ+OK6IlUbxKQDpGQH6bCsg3Yj7KxlHbSzZg8ZZBIMlRopmA6aSIWQAk3ws32+b2SuLN4/ssV/dQQAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmq37gzs7O7hjjh/c/vh5jXK56BgAAANbeV2OM79+//uPq6urtlMPAl2IvAgAAwD3ZjbB17EUAAAC4p5XuRVYeVIx//jj+bYLnAgAAsJl+HGP8PvUQ8IXYiwAAAPBQdiNsC3sRAAAAHurR9yKzx/zlAAAAAAAAAAAAAAAA62iK/1Dx+sOL09PTcXBwMMEIAAAArLNXr16Nw8PDDz++/q/3woaxFwEAAOBOdiNsKXsRAAAA7rTqvcgUQcXlhxcHBwfj2bNnE4wAAADABrm8+y2wMexFAAAAeCi7EbaFvQgAAAAP9eh7kdljPwAAAAAAAAAAAAAAAGDdCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmUw+wbpbL5VgsFtfO9vb2xmymPQEAAADYNrftgqa2XC7H+fn5tbOnT5/aT30G+z0AAAAAAFjPe5FVK93DuB+B+xFU3LBYLMbR0dG1s5OTk7G/vz/RRAAAAAA8ltt2QWwf+z0AAAAAAHAvUuN+BO5HdgQAAAAAAAAAAAAAAOQIKm44Ozu71xkAAAAAAAAAAAAAALC5BBUAAAAAAAAAAAAAAEDOfOoBAAAAAGCd/Pni53E1351ugHd/je9e/nrt6OLFT2PMn0w00GbZefd2fPvyl6nHAAAAAACAjTD5vciqbek9jPsR+P8EFQAAAADwL1fz3XH19TeTPX/ntsP5k0lnAgAAAAAAttPU9yKr5h4GuGk29QAAAAAAAAAAAAAAAACrJqgAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMiZTz3Aulkulx+dvXnzZjx//nzMZvoTAAAAYHstl8uxWCyune3t7dmJAHwmn68AAAAA28W+B4BN47vr0wQVN1xcXHx0dnx8PE5OTsb+/v4EEwEAAACsxmKxGEdHR9fO7EQAPp/PVwAAAIDtYt8DwKbx3fVpkhIAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAPibvfuJjeuq/wZ87Lj5ya/SNEZq+6LWYovUIL1ITXYNKxYsQIioiaNEqhDQFJImFFg6RaLuFikhEW1ZISVK0qqoArGhK9JVky4imggQC6SGqmoiZJpatX6uY78bbDnj8Z07M/fM3Lnf55EQ9vjc8+/eOb33jD8xAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQEVJH330UfrHP/6RlpaW0sLCwvrrCwsLaWlpKS0tLa2/tvZ962vtbCy3VZnW8v0oe3y/7Qyr7rrJMdatrqvWtiLNM0TlfQ5EYb3Lx9wCADRT0X1eu591W77b9te+n5+f37L8Vsd02mevuu/dau1n0++xo4wzl17nzXx3VsUc1WWec/UjR70bPzMdRXU550A9WSMgJu/9wSrz+3WDOied2nFtAECzCVSU9MMf/jD94Ac/SN/97nfTgQMH0vz8fJqfn08HDhxIzz//fHrhhRfS4uJiWlxcTC+88EI6efLkfa/99Kc/TYuLi/fVuVb2hRdeSPPz823LtJbvVKZI2eP7bWdYdddNjrFurHOrr3O1DdSL9zkQhfUuH3MLANBMRfd57X7Wbflu21/7/p///Gfav39/+uijjzaVX9snbz1m4775IPrerdZ+ltnnH2Xtzgvl9XpNenbrrIo5qss85+pHjnrXPifdKixXd3U550A9WSMgJu/9wWrdD+j2ub/qvhS149oAgOYTqOjShx9+mD777LN06tSpNDs7mz777LP097//Pd28eTNduHAhnT9/Pt28eTP99a9/ve+1999/P124cOG+utbK3rx5M83OzrYt01q+U5kiZY/vt51h1V03Oca6sc6tvs7VNlAv3udAFNa7fMwtAEAzFd3ntftZt+W7bX/t+x/96EdpZWUlnThxYlP5tX3y1mM27psPou/dau1nmX3+UdbuvFBer9ekZ7fOqpijusxzrn7kqHftc9JTp05VVucg1eWcA/VkjYCYvPcHq3U/oNvn/qr7UtSOawMAmk+gokc3btxIN2/evO+1ixcvposXL2567dKlSymllC5fvpxu3bqVUkrp1q1b66+nlNbr2lhmo1u3bqXLly8XlilS9vh+26miD02QY6wb67x06dL69bPx68uXL6erV6+GmWeIKtJ6CsRmvcvH3AIANFPRfV67n3Vbvtv2N+5Vrv0rjnfu3El//OMf18tv3Ce/dOnSfT3bnlAAACAASURBVMes7Zu37oHm6Hu3Nrax1s9O+/yjrN14mzjOXHq9Jj27dVbFHNVlnnP1I0e9V69eXV8Lbty4ka5evdp3nYNUl3MO1JM1AmLy3h+s1v2Adr9fN6hz0qkd1wYAxCBQUaF79+6llZWVTa/du3cvpZTS559/ns6cOZNWVlbS6dOn11/faK3M6urq+murq6vpzJkzaXl5ecsyRcoe3287VfShCXKMtbXO5eXl9etn49eff/55mpubCzHPEFWk9RSIzXqXj7kFAGimovu8dj87ffp0On36dOnyne4Z2x2zca9yo1/+8pdpeXl50z758vJy22Na90Cr7nu3Wtto1bR77K3G27Rx5tLrNenZrbMq5qgu85yrHznqXVlZSXNzc/e9Njc3t+kz0rqqyzkH6skaATF57w/W6urqpv2A1t+vK3rur7ovRefetQEAcQhUDNi1a9fSq6++mt57773CMu+8887691euXEnXrl0rLFOk7PH9tlNFH5ogx1jb1bmVu3fvVto2UC+R1lMgNutdPuYWAKCZiu7z2v3svffe27RPXVS+0z1ju2Na9yrX3Lt3Lx0/frztPvlWx+Tse7fK7Nc26R67aLxNGmcuvV6Tnt06q2KO6jLPufqRo95XX31101p99+7d9Nprr/Vc5yDV5ZwD9WSNgJi89wfrypUrhb83l1Lxc3/VfSk6964NAIhDoKLF22+/nb2NN954o2OZc+fOpcXFxbS4uJjOnTtXWKZI2eP7baeKPjRBjrEW1VlW0+YZooq0ngKxWe/yMbcAAM1UdJ939uzZdPbs2dJ1FZXf6p6xlz3Mv/3tb12VL6OXvnerm7E24R67zHibMM5cen0G8+zWWRVzVJd5ztWPHPXOz89v+Tnn66+/nubn57uuc5Dqcs6BerJGQEze+4O1uLjY1R5FqyrPSadzPz8/79oAgEAEKlr8/ve/z95GmT95+/HHH6cLFy6k8+fPp9u3bxeWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd592+fTvduXOndF1F5be6Z6xiD7MKvfS9W92MtQn32GXG24Rx5tLrM5hnt86qmKO6zHOufuSod3Z2dsvPOVdWVtKpU6e6rnOQ6nLOgXqyRkBM3vuDdf78+a72KFpVeU46nfvZ2VnXBgAEIlCxwf79+4fdhftcvHgxXbp0qbDMpUuX0q1bt9r+7IMPPkiXL1/uePy7775bqtxW7RQp24de6q6bHGMtU2dZTZlniCrSegrEZr3Lx9wCADRTlXuIZbTeMw66/X70e7/by1hH+R67m/GO8jhz6fUZzLNbZ1XMUV3mOVc/ctT77rvvpps3bxaWuXHjRrp69WrpOgepLuccqCdrBMTkvT9YH3zwQcffgyujinNS5tx3uve9dOlS+vDDD/vqBwBQHwIV//Xpp5+mf//738Puxn3u3buX7t27V1hmeXk5nTlzJq2urt73+urqavrVr36VlpeXOx7/8ssvlyrXrp0i3fSh27rrJsdYy9ZZVhPmGaKKtJ4CsVnv8jG3AADNVPUeYhkb7xmH0X4/+rnf7XWso3qP3e14R3WcufT6DObZrbMq5qgu85yrHznqXVlZSS+//HKp9ufm5rb8KxbDUpdzDtSTNQJi8t4frNXV1XTmzJmOvwdXRr/npKq9jOXl5fSb3/ymrzoAgPqYGHYH6uKb3/zmsLvQs2vXrqV33nkn7du3b/21K1eupGvXrpU6/u7duz23U6SbPnRbd93kGGs3dZY16vMMUUVaT4HYrHf5mFugrHa/+PTJJ58MoSeD03Z8PiAdbW3OX9OvY+qv3TVYxS+b5thDLGPtnnF1dXUo7fej1/vdfuZ6FO+xexnvKI4zl16fwTy7dVbFHNVlnnP1I0e9r776aunPE+/evZtee+219Nxzz5UqPwh1OedAPVkjICbv/cG6cuVKeu+99yqrr59zUuVeyvXr1ze9Zh+SUeBzkQbz+Qgd5PqsogkqD1SMjY093qHI/626zX5V8efEhu3cuXNpz549aXJyMi0uLqZz585lb6dIL30oW3fd5BhrHc4hUA+R1lMgNutdPuYWBmsU90U2+vTTTze99swzzwyhJ0N2739TSv9n2L2gV/f+d9NLIa9jau/TTz9NX/jCF3o+PuceYhlnz54d2X+hs9v73SrmepTusfsZ7yiNM5den8G+8pWveHbroIrn27o8I+fqR4565+fn0xtvvNFVna+//no6ePBgmpqa6uq4HOpyziGKUdsXsUZATN77g7W4uJjOnj1beb29nJNB7KXYh2Rk+VykGXw+Qg/6/ayiKcYz1Hmrw/9q989VvfLKK8PuQt8+/vjjdOHChZRSSufPn0+3b9/O3k6RXvpQtu66yTHWOpxDoB4iradAbNa7fMwtDNzI7YsAMJpy7iGWcfv27XTnzp2htd+Pbu93q5jrUbrH7me8ozTOXHp9BpudnfXs1kEVz7d1eUbO1Y8c9c7Oznb9LxWurKykU6dOdXVMLnU55xDISO2LWCMgJu/9wTp//nyW/YNezsmw91IAgPrKEagYKX/+85+H3YXKvPnmm2lhYSH97ne/y97O0tLSlj9fWlrquQ+d6q6bHGPtp85+2wbqJdJ6CsRmvcvH3AIANNMg9hCbruz9bpVzPQr32FWMdxTGmUs/83fz5s2ejosy31U839blGTlXP3LUu7Cw0PO1eePGjbSwsNDTsVWpyzkH6skaATF57w/W0tJSevPNN7PV3805sZcCABTJEaiY7vC/PRna7NnXvva1YXehMvv37087duxI3/nOd7K3s3379i1/vn379p770Knuuskx1n7q7LdtoF4iradAbNa7fMwtDMVI7YsAMJoGsYfYdGXvd6uc61G4x65ivKMwzlz6mb8nnniip+OizHcVz7d1eUbO1Y8c9e7YsaPna3P37t1px44dPR1blbqccwhmZPZFrBEQk/f+YG3fvj3t378/W/3dnBN7KQBAkYmqK1xdXf1X0c/HxsaqbrJvzz33XHrllVeG3Y2+PProo+nw4cMppZSOHDmS3n777Sx/omxjO0V66UPZuusmx1jrcA6Beoi0ngKxWe/yMbcwWKO4L7LRgw8+uOm13/72t+mhhx4aQm8G45NPPknPPPPM/S9u+5/hdIZqtDl/Tb+Oqb92a027NbcbOfcQy3jkkUfS6upqunPnzlDa70e397tVzPUo3WP3M95RGmcuvT6Dzc3NpaNHj3p2K1DF821dnpFz9SNHvXNzc2n//v1pZWWldJ3j4+PppZdeKl0+p7qcc4hi1PZFrBEQk/f+YB05ciT96U9/qnz/oJdzMoi9FPuQjAKfizSYz0foIMdnFU1ReaBiFM3MzIx8oOLYsWNpcnIypZTS5ORkOnbsWPr5z3+etZ0ivfShbN11k2OsdTiHQD1EWk+B2Kx3+ZhboBvj45v/mOlDDz2Udu3aNYTeDFHNfsGDLrU5fyGvY2qv3ZrbjZx7iGUcP348ra6uDq39fnR7v1vFXI/SPXY/4x2lcebS6zPY1NSUZ7cOqni+rcszcq5+5Kh3amoqPf300+ny5cul6zxw4ECampoqXT6nupxzoJ6sERCT9/5gTU5OpuPHj1e+f9DLORnEXop9SEaWz0Wawecj9KDfzyqawiz81x/+8Idhd6Fne/bsSU899dR9r+3bty/t2VPur2Xu3Lmz53aKdNOHbuuumxxj7abOskZ9niGqSOspEJv1Lh9zCwDQTDn2EMtYu2ccVvv96PV+t5+xjuI9di/jHcVx5tLrM5hnt86qmKO6zHOufuSo9+jRo6U/T9y5c2d69tlnS5UdlLqcc6CerBEQk/f+YO3bty89+eSTldXXzzmpci/jq1/9aiX1AADDJ1DxXw8++GB6+OGHh92N+2zbti1t27atsMzExEQ6ceLEpj+NOTY2lk6cOJEmJor/CMnExESanZ0tVa5dO0W66UO3dddNjrGWrbOsJswzRBVpPQVis97lY24BAJqp6j3EMjbeMw6j/X70c7/b61hH9R672/GO6jhz6fUZzLNbZ1XMUV3mOVc/ctQ7Pj6eZmdnS7U/Oztbu3/ZsC7nHKgnawTE5L0/WGNjY+nkyZMdfw+ujH7PSVV7GRMTE+n73/9+X3UAAPVRr92sIXvjjTeG3YX7HDp0KM3MzBSWmZmZSdPT021/Nj09nQ4ePNjx+L1795Yqt1U7Rcr2oZe66ybHWMvUWVZT5hmiirSeArFZ7/IxtwAAzVTlHmIZrfeMg26/H/3e7/Yy1lG+x+5mvKM8zlx6fQbz7NZZFXNUl3nO1Y8c9e7duzc98cQThWV2796d9u7dW7rOQarLOQfqyRoBMXnvD9b09HTH34Mro4pzUubcd7r3nZmZSY899lhf/QAA6kOgosW3vvWt7G2U+VdZHn300XT48OF05MiR9MgjjxSWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd5z3yyCNd/XXmovJb3TNWsYdZhV763q1uxtqEe+wy423COHPp9RnMs1tnVcxRXeY5Vz9y1Ds3N7fl55zj4+PppZde6rrOQarLOQfqyRoBMXnvD9aRI0e62qNoVeU56XTu5+bmXBsAEIhARYuvf/3r2dt4+umnO5Y5duxYmpycTJOTk+nYsWOFZYqUPb7fdqroQxPkGGtRnWU1bZ4hqkjrKRCb9S4fcwsA0ExF93nHjx9Px48fL11XUfmt7hl72cP88pe/3FX5Mnrpe7e6GWsT7rHLjLcJ48yl12cwz26dVTFHdZnnXP3IUe/U1NSWn3MeOHAgTU1NdV3nINXlnAP1ZI2AmLz3B2tycrKrPYpWVZ6TTud+amrKtQEAgQhUDNiePXvS0aNH05NPPllY5qmnnlr/ft++fWnPnj2FZYqUPb7fdqroQxPkGGu7Oreyc+fOStsG6iXSegrEZr3Lx9wCADRT0X3eVj9r3afuVL7onrHdMa17lWu2bduWzp4923affKtjNnryyScr7Xu3yuzXNukeu2i8TRpnLr1ek57dOqtijuoyz7n6kaPeo0ePblqrd+7cmZ599tme6xykupxzoJ6sERCT9/5g7du3r/D35lIqfu6vui9F5961AQBxCFRUaNu2bZv+zO22bdvStm3bUkopPfDAA+nkyZNpfHw8nTx5cv31jdbKjI2Nrb82NjaWTpw4kSYmJrYsU6Ts8f22U0UfmiDHWFvrnJiYWL9+Nn79wAMPpFOnToWYZ4gq0noKxGa9y8fcAgA0U9F93lY/O3nyZFfli+4Z2x2zca9yo5/97GdpYmJi0z75xMRE22Na90B//OMfV9r3brW20app99hbjbdp48yl12vSs1tnVcxRXeY5Vz9y1Ds+Pp5mZ2fve+3FF1/c9BlpXdXlnAP1ZI2AmLz3B2tsbGzTfkDr79cVPfdX3Zeic+/aAIA4RmNnq4Z2796dnnjiifteO3ToUDp06NCm12ZmZlJKKR08eDA9/vjjKaWUpqen119PKa3XtbHMRtPT0+ngwYOFZYqUPb7fdqroQxPkGOvGOmdmZtavn41fHzx4MO3ZsyfMPENUkdZTIDbrXT7mFgCgmYru89r9rNvy3ba/ca9ycnIypZTSww8/nL7xjW+sl9+4Tz4zM3PfMWv75q17oDn63q2Nbaz1s9M+/yhrN94mjjOXXq9Jz26dVTFHdZnnXP3IUe/evXvX14Ldu3d3/BeG66Yu5xyoJ2sExOS9P1it+wHtfr9uUOekUzuuDQCIof0/n8SWHnvssTQ/P59eeumllFJKhw8fTtPT02liYiIdPnw4pZTS9evX08rKShofH19/7S9/+cv612uOHDmSrl+/nlJKaW5uLr344oubyrSWb1dPWWWP77edYdVdNznG2lrnVl9HmmeIyvsciMJ6l4+5BQBopqL7vHY/67Z8t+2vff+Tn/wkfe9730tnzpzZVH5tn7z1mF/84hf37Zvn7nu3WvvZ2t+m2eq8UE6v16Rnt86qmKO6zHOufuSod25uLh0+fHj9M9NRU5dzDtSTNQJi8t4frHb7Ad0891fdl6J2XBsA0Hxjq6urg21wbOzxlNKtlFK6detW7VKb77//fnr++ec3vf7rX/86TUxMpC996UtpaWkp7dixI6WU0sLCQtq+fXtKKa3//9LS0vpxG19b+3qjtbLbt2/fskxr+U5lqji+33aGVXfd5Bjrxjq3+jpX20C9eJ8DUVjv8qnz3P7rX/9K09PTa99Or66u/muY/YGq1H1f5D//+U/69re/fd9rb731Vtq1a9eQepRfuzEv/L9DafWBySH1KKWxzxfTjusX73tt2H0aJe3mr+nXMfU36PW16D6v3c+6Ld9t+2vfz8/Pp6mpqbblU0ptjynaA83R92619rPO99hViDLOXHqdN/PdWRVzVJd5ztWPHPUuLCysf2Y6iupyzrdib4Qmqvu+yEZ1XyOAPLz3B6t1P6Db5/6q+1LUTrufR9xPpxnq+LnIoDX1cxifj9DJKP23a9D7Iv5CRUlf/OIX1y+YjTdH7TYJ291cbXXDtfH1Mjd//d4glj0+541opAePHGPd6pppbSvSPENU3udAFNa7fMwtAEAzFd3ndbN/3elnZY9Z+75dmKJTnzrtoVfd92619rPp99hRxplLr/NmvjurYo7qMs+5+pGj3lEOU6RUn3MO1JM1AmLy3h+sMr/rNKhz0qkd1wYANNv4sDsAAAAAAAAAAAAAAAAwaAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOBPD7kDd7NixY9Nrp0+fTjt37hxCbwAAAAAGZ+fOnemtt97a9BoA/bG+AgAAADSL/R4ARo3/dm1NoKLF+PjmP9qxa9eutq8DAAAANMn4+HjatWvXsLsB0DjWVwAAAIBmsd8DwKjx366tSQkAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAWz1K/gAAIABJREFUAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFTw/9m783iJ7vl+/K93FhJLEEEsrRDVSqmqWBJClKpd7UuVaC21Vf3Kl1aRllpKS2upJYi9VAVBpaioWCKofYkgUYkgSBCSiHx+f5wzvZObmbvMnTtz753n8/E4jzln5nPO58ycz+fMOZ/zeZ8DAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALZ7d5rwAAAAAAbCV1/rnzXYHzzxn5Xs1+TbaluW8/AAAAAADYRhauXX2HXodZuO0IUySgAgAAAACGXPILb5v3KlzEpb5w1LxXAQAAAAAA2IG24nWRWXMdBhbbLvNeAQAAAAAAAAAAAAAAgFkTULHMZS5zmTW9BwAAAAAAAAAAAAAAbF8CKgAAAAAAAAAAAAAAgIWz27xXYKvZa6+98va3v/0i7wEAAACw84xqC5q3Cy64ID/5yU8u9N6lL33p7LKLe6NMSvseAAAAAABszesis7ZI12FcH4G1EVCxzC677JLLXvay814NAAAAAGZgq7YF7b333vNeBQAAAAAAYIfZqtdFZs11GGDYzgunAgAAAAAAAAAAAAAAWIWACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4ew2hzx3HYx85zvfmUP2AAAAbHXLzhd3HZcOtiHtIgAAAKxK2wg7lHYRAAAAVjXrdpFqrW12HhfOsOrAJCfMNFMAAAC2sxu11j4575WAadAuAgAAwAS0jbAjaBcBAABgApveLrLLZi4cAAAAAAAAAAAAAABgK5rHEyounuR6/eT3k/xypiuwNvtm6a4IN0py+hzXBaZFuWanUrbZiZRrdiLlmvXaNckV+vHPt9bOnefKwLSMaBe5QuwfWeL/kgFlgQFlgWHKAwPKAsOUh51L2wg7zgb6i9jXbS+21/ZhW20vttf2YnttH7bV9mJ7bS+21/axFbfVTNtFdtvMhY/Sf6Et/TjSqhqePL219u15rQtMi3LNTqVssxMp1+xEyjUTOmXeKwDTtrxdpKqGOw7YPy44/5cMKAsMKAsMUx4YUBYYpjzseNpG2FEm7S9iX7e92F7bh221vdhe24vttX3YVtuL7bW92F7bxxbeVjNrF9llVhkBAAAAAAAAAAAAAABsFQIqAAAAAAAAAAAAAACAhSOgAgAAAAAAAAAAAAAAWDgCKgAAAAAAAAAAAAAAgIUjoAIAAAAAAAAAAAAAAFg4AioAAAAAAAAAAAAAAICFI6ACAAAAAAAAAAAAAABYONVam/c6AAAAAAAAAAAAAAAAzJQnVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcHZ0QEVVXb2q/qGqvlJVZ1fVD6vqhKp6QlVdYor53L6qjqqqb1fVuf3rUVV1+2nlAQObWa6r6hJVdfeq+pd+mT+qql9U1Q+q6mNVdXhV7Tut7wIDs9pfL8vzElX1japq/XDyZuTD4pplua6q21TVkVV1Up/XWVV1YlW9taoeUVWXmmZ+LLZZlO2q2q+qnlNVn6qqM/vjkR9W1Uer6qlVdcVp5AMwTdogGNjk8/ZdquqAqjqsql7SL/fcofOaQ6f0NZgS7TgMbHJZuE5VPbqqXlNVn+7/G87p8/lGVb25qu5aVTWt78PGaAtjYJP3DYcNbe/VhsOm9JWY0Cz3C6UtEZiT6tp9H1NV/15VX6uqn/XHrd+uqrdX1X2rard1LO+6VfWyqvp6Vf28qr5fVR+uqj9dz3LWmNf9quo/q+r0fp1PqarXV9VB08xnK6mqS1XVLarq8VX1lqr65nqPJavq5HUcjwyG/SZc3yM3O4+tbErba791/IZHTmm9d+vr7If7Ovzzvk6/rKp+cxp5bDVT2la79Mt4ZlUd2++bzquqH1fVF6prN/ytKa2vurXB7bVsef675qi69tL1/i8dPmFeh252Hjtdv39b0284xTwP7uvJKX29Ob2qjqmq+00rj52qpnysv0I+6tYqyjXriVVrU9ufbClVdeckr0+y15gkJya5Y2vtpA3ksUuSlyf5kxWSHZHk4a21CybNBwY2s1z3J1MfSbJaQ/mPkzystfbm9eYBo8xifz0m3+cl+Yuht05pre03zTxYXLMq11V1uSSvTnLXVZLeoLX2mY3kBcnMjrH/KMnLkuy5QrIfJrlva+19k+YDME3aIBjY7LJQVQ9KcuQKSW7VWjt2kmUzfdpxGJjBvuH1Sf5wDUk/lOQerbUfTJIP06EtjIEZ7BsOS9dutBYPbq0dOUk+bJy2RGARVNXTkzw5yWpBvickuWdr7VurLO+hSV6U5GJjknwi3b7zjPWu67J89kzy1iR3GJPkgiR/21r7m43ksxVV1QeTHDrm4zUdS/adja++jmzPSrJva+2cdcwzyOvIJA9aY/JrtNZOXm8eW9mUttd+Sb65xixf01o7bI1px+W3T5L3JLnRmCTnJnl0a+2IjeSz1UxpW30rya+skuyCJM9L8qS2gc6B6tbGt9fQsvx3zVnfufpp65zt/q21N02Q16FJPrjG5H/TWjt8vXnsdFV1bJJbriVta23DN5Lpy8dTMv4m9e9Od5y67uOUnW7ax/qr5HVo1K2xXLPemKlGNm4VVXWDJG9O1wnrp0mela4S7ZnkvkkemuTaSd5dVQe21n4yYVZ/l6VC8T9J/j7J15Psn+T/JblBkock+X6Sv5owD0gyk3K9V5Yuwn8kybuSfDLJD5JcIcnd+zz2SvKGqvpxa+0/NvSlWHgz3F+PyvfPk5yT5BdJLj2N5UIyu3JdVZdJ8r4kN+zfOipdw8jXk/wyXSPaLZPcY+IvA0NmUbar6mbpOonukq4x7zVJ3pHktCS/mq7B9s5J9k7yjqq6bmvtGxv7ZgAbow2CgRmVheHG6F8k+XyS3ZNcbwOrzibQjsPAjPYN5yc5Pl1Z+HyS09P9H1wuyW8keXiS66Y7Rzy6qm6+3S5k7BTawhiYQ1n4/XTn1uN8e4PLZ0LaEoEFcuV057Rnp9sHfSDJ19Idn1wnyZ+l61R9oyTvr6rfaa39dNSCquoOSV6arh35u+naTI5P12780HTnQzdOclRVHdpa++UG1vtVWeqQ+sEk/5TuP/V66dpf9k9yeFV9p7X28g3ksxUNt0H8MN0558FZPbB/2G0zvuPwwG2SPL8ff8sUOimelu7YZyWnbjCPrWga22vYX6e7PjPOjyZcbpKkqnZNty8YBFO8Lckr0q37Tfr8r5jkZVV16g5r05jGtrpK/3pSkn9P1x5wWrpjyFsleVy6NoH/l+5YbxrtxerWBuqW/64t4yXpzoNWsmuS/07XrvrjJG+fQr5/nK4j+Tjfm0IeO9knkzx4MzOoqodnKdjm60mema6d9SpJHptu33rHdPXr/pu5LtvU1I7110ndGuKa9RS01nbckO5PraW7MHDQiM+f0H/ekhw+YR7X7pff0lXKPZd9fon+/cF6XGvev4thew+bXa7THfC/OckBK6S5a7rOjS3diVnN+3cxbO9hFvvrEcvcNd3BdksXWXxyP37yvH8Pw84YZlWuk7y2X8Y5Se6yQrpKstu8fxfD9h9mdIz9rqFlPHJMmn8YSvOief8uBoPBoA3CMOOycOMkj0ly0yR79O8dPrTcQ+f9OxhmUx6042yfYUb7hhXP+fq2kH8fymfsOaRh+5eHMdtfW9gWG2a0bzhsaBn7zfs7G+ZXFvrlaEs0GAxzHZI8J13nmkuP+XzX/hxnsM976ph0u6frrNPSPc1g/xFpXjy0nMM2sM6/O7ScdybZddnn+yQ5pf/8R0kuN+/fecrb7GFJ7pehdqbNOJZctt1vvoHlHLnIx7nT2F5J9ptG3VljXn88lNeLR3x+rb6Ot3QdMnfM8cmUttVH0wU3jGzrSdeh8XtDx5nX3MD6qlsb317+u7bRkOT2Q7/hERtYzqFDyzl03t9rOw5Jju1/v2M3OZ+9k5zZ53VKkn2Wfb5rX59sz/G/4VSO9deYl7o1/rdxzXqDw7jH02xbVXXjJIf0k69srX1sRLJ/SPLlfvyxVbX7BFn9eZae8PGY1trPhz9srf0s3QXu9OkeN0EekGQ25bq19tHW2n1aa19aIc070t0ZIOlOwG6wnjxg2Az318s9Nt1duL6a7oAOpmZW5bqqbp7kj/rJv26tvXNc2tY5f715wLAZ7rMP7l9/0Fp7yZg0fzs0ftAEeQBMjTYIBmZVFlprn2itvbC19vHmsdJblnYcBma4b1jxnK91dzV87tBbh4xLy+bRFsbAHMsCW4y2RGCRtNae2Fr7+zbmLqj9Mesjk5zXv3XPMYu6W5Jr9uPPaq19fUSaJ2Tp7vlPmHCVk+Tx/ev56W4AdKG7hbfWzkjyxH7ysunuwrpjtNZe3lp7U2vtpM3Ko3+C0l36yW+01o7brLx2ullsrykb1K8fZkQ97b/Hs/rJa6Wr+zvCNLZVa+3g1toxre+5OOLzr2fpetpuSf5g0rwW3ZTqlv+u7eWBQ+OvndtaMEsPSXKZfvyJfT35P0PHqYP6tJE6uiNN8VifCblmPR07LqAiFz4IfPWoBK17nPngD++y6R7Js2ZVVenu8JYkX2mtfXxMPh9Pd5EiSe7azweT2PRyvQ4fHBrff5PyYDHMvFxX1dWz1HDwp62181ZKDxOYVbl+dP96VpIXTTA/rNesyvbg0d/fHJegtXZWkkEjxmqPCgfYbNogGNhK5+3M31YqD9px5msrlYXhi1l7bFIerExbGANbad/AfGlLBBjSWvtBks/1k+POX4b3nUeOWc7Pkrylnzygqq693nWpqksnuXU/+f7W2rfHJH1bkh/34zumw/cM3TtL5yc6rS6Ivk5ep598S19nRzlyaFz9Wj9tQluH/65toqr2ytL1mG8m+fAcV4fZGdTRH2fpBkUX0ten9/eTt+7rG+uwxmN9Juea9RTsxICKm/evZyf51ArpPjQ0frN15nGNJFcZsZyV8rlqusfjwSRmUa7X6uJD478cmwpWN49y/ZIkl0zyutbasRtcFoyy6eW6qi6WpQPU9w3uTFxVu1bVr1TVflWlcwzTNqt99uCk6hrjEvQNWfssSw8wL9ogGNhK5+3M31YqD9px5msrlYX7Do1/ZZPyYGXawhjYSvsG5ktbIsBFDc5hxp2/DPadX22tnb7Ccjb6P3qjLN3QZ2x7TB+wOuhIdCNPlVq3wV3AW5LXzXNFmKmbD42vVL9OT3JiP+l4eP20CW0d/ru2j3sl2bMff924p8Cwc/TnzDfuJz+2ys1IBvXq4kkO3NQV27lWO9Zncq5ZT8FODKgYRDGftMojaYcvGl1nbKrRDhiznGnnAwOzKNdrdcuh8S+PTQWrm2m5rqr7JrlDusck/sWky4FVzKJcXz9Ld+v5fFXtVVUvSHfH/m+lu1PCWVX1vqo6dJ3LhnFmtc9+af96+ar60zFpnjIiPcC8aINgYCudtzN/W6k8aMeZr7mWharap6oOqqpXJnly//YZSd4wrTxYF21hDMxj3/Dqqjqtqs6rqjOq6uNV9YyquuoGl8vGaEsEGFJVV8zSfu4i5y9Vdakkv9JPbnYbySTtMbsl+bUJ8lpIVXWNLHXiOq619o0pLfryVfWhqvpBVZ1bVd+pqmOq6tFVdYkp5bEIHlNVJ1XVOVV1VlV9sapeWlW/M4VlT1K/fqWqLjmFvBfJtNuE1K0J+O/adh44ND7NJyf9XVWd0tedH1XV/1TV8yd5EsmC+o2qOr6qzuz/l75dVe+oqgdOISDo2kl27cddg9tEqx3rT0jdWuKa9RTsqICK/g4qg7vVjntsVZKktfajdNE4ydKBy1pdbWh8xXyS/O/Q+HrzgVmW67Wsy/WT3LGf/HxrzYV4JjLrcl1Vl0vygn7ySa2170+yHFjJDMv18AHqLkk+meSx6R7HNnCxJLdJ8l9V9cR1Lh8uZMb77FdlqXHqxVX1iqq6c1UdWFV3r6qjkjy+//zvWmvvH70YgM2nDYKBrXTezvxtpfKgHWe+5lUWqurYqmpV1ZJ8P8lHk/xxkkrXefZurbUzN5IH66ctjIE5/k8cmuTKSXZPcvkkN0kXaHVSVT18g8tmAtoSAUZ6QrqOnUnylhGfz7KNRHvM5ntguvOUZLqdVi+V5BZJ9k73H7dvktsmeWGSE6vq4CnmtZP9TpL9091Jeq90xxQPT/KpPrDi4ivNvIpJ6lctm48V9AEOf95PnpvkHVNYrLo1Gf9d20RV7ZfkkH7yI621r09x8Qcn+dV0deeySX47XR39clUdXlW10szkSumeInGZdP9LV01ylySvSfKZqtpIZ231ZnZWO9afhLoV16ynabfVk2wrlx4a/+ka0p+d7nHXl9rEfM4eGl9vPpDMrlyvqD8hPiJLUZlPXiE5rGbW5fq56Q6wP5bkFRMuA1Yzq3K999D4E9PdYe69SZ6a5HPpGjXvkeTZ6U4on11VX2mtTaOhjMU0s312a+2XSR5UVUcn+askD+mHYR9M8kzBFMAWoA2CgS1x3s6WsSXKg3acLWFLlIUh/5zk6a21MzZp+axMWxgDsy4L30jytnRlYXAh85rp2o7uma5d6aVV1VprL58wDyajLRFgSFXdJEudf7+d5F9GJJtlG4n2mM33R/3rzzOdTnUtyceTHJ3k00m+m+5/73pJ/iRdR8yrJvnPqjqktfY/U8hzJzozyVFJjk3ytSTnpAvMvW263/FS6QIrLp3kDyfMQ/3afM9J18E0SV7cWjttA8tStzbGf9f28UdZCvR7zZSW+Z105+THpTs/Pz9d3bxTusDC3ZM8LV1n8L+aUp47yQVJPpDkPUk+m+QH6cr576T7L7pOuoC/D1bVjVtr35ogD/VmBtZ4rL8e6taFuWY9JTstoGKPofHz1pD+3P51z03M59yh8fXmA8nsyvVqXpTkwH78Na21o6e8fBbLzMp1Vd0i3Z0Yz0/yp621tt5lwBrNqlwPP852jyTvS3KnviN60t2B9KVV9YUkH0p357lnVdU7lX8mNNNjkf4OEg9M1xA7ykFJ/qSqvtxaO3WSPACmRBsEA1vlvJ2tYauUB+048zevsvDgdOeNle6uXAcmeUSSRye5ZlU9pLX23Q3mwfppC2NglvuGo9L9BywvAyckeXNV3Sndxefdkzy/bzs6fYJ8mIy2RIBeVV0pyVvT9V9pSR7UWvvZiKSzbCPRHrOJ+jvZ799PvqO19uMpLPZxY57G97GqekWSZ6TrUHfJJEdU1YH+6y7itCRXHVH//ifJe6rqxUnen67D4v2r6s2ttXdOkI/6tYmq6g/TtQEkyZeT/PUGF6lubYz/ru3jAf3rOZlOoN8JSa7eWvvFsvc/neTtVfXyJP+ZLrD9Sf0+9bNTyHcnufuY/c+Hq+ol6W4i8qB0NxV5QZK7T5CHerPJ1nGsv1bq1kW5Zj0lu8x7BabsnKHxi60h/eARdD/fxHyGH3O33nwgmV25Hquq/jJLd4c+IcmjprVsFtZMynV/R86Xp+tE8E+ttc+tZ35Yp3kchyTJE4cugP6f1tpx6S6KJ11k/rjO6bCamR2LVNUh6e6aeeckp6a7E8i+fb6/ku4Y5GdJ7pvkE1X1m+vNA2CKtEEwMPfzdraUuZcH7ThbxlzKQmvtm621L7TWPt9a+3Br7flJfivdndzulOSEqrraykthE2gLY2Bm+4bW2lkrdWRqrb0ryd/2k5dId3dZZkdbIrAlVVWbwnDYOvK7dJJ3Jxkcoz6ptfZfY5LPso1kW7THzHp7TdEDh8anchfwMR0uB5+11tqT093lOunubH3wNPJdj62+vVpr563UwbG19rUsdThOksdMmNWWr19bfVutsN6HJnllP/nDJPdorW20nUHd2hj/XROYw/HITZNcu598R2vtrI1+h9ba2SM6fA9//oksBT/V0Pi2spnbapX9zy/StYF/tX/rblV11Qm+wo6pN2sxh7q1nmP9NVmUurVOrllPyU4LqPjJ0PhaHhMyuCvLWh5zMmk+w3d+WW8+kMyuXI9UVQ9P8sx+8itJ7tBaO3uFWWAtZlWun5zk19M9zv5p65wX1msexyHfX+WxqccMjd9onfnAwEzKdnUdf96U7k4Bpye5aWvt9a2177bWftFa+3Zr7SVJbpHuRO0qmd7jVgEmoQ2Cgbmet7PlaMdhYMvsG1pr56R7csXP0gUq//2082BV2sIY2DL7ht7L090dMEluuUl5MJq2RGDhVdUeSd6R5Ib9W89rra10rDrLNhLtMZukvxZw737yO+menjQrLxsad+wzgdbah5N8qZ+8eVVN0u9M/doEVXVgknem68D403RtQl+eUfbq1nj+u7aH4UC/184w339NMnhKk7qzTq2187MURJZM9huqN5tkgmP9aVq0uuWa9ZTsNu8VmKbW2jlV9YMkl89SVNNIVXW5LG20/11nVt8eGl/tbl6/MjS+3nxgluV61PLul+Ql/eQpSX6vtXbGRpcLMyzXT+xf35/kzlU1Ks1g2Zesqvv249/baEQsi2eG5Xo4/bfHprpo2iusMx9IMtOyfbskg7tGvLC1dvqY9fliVb0+3R0nblhV11+ARzQCW5A2CAbmed7O1qMdh4Gttm9orZ1RVR9J8ntJ7lpVu690Jy+mS1sYA1tw3/C9fn32ydI5OTOgLRHYwq4zhWV8Z7UEVbVbkrckuVX/1hGttSesMtupQ+Ob3UayvD3mk5uY10bMZHtN2Z2TXK4ff+OoJydtoi8Njc/j2Gc7bq9RvpTkgCR7pDuW+f46519ev1ZquxjUr5bVj2WmaVttq+qe6P7eJJdOcm6SP2itHT+r/KNurcR/12Rmtk2r6mJJ7tNPfjcXDjTfVK2186vqxCQHZvuek8+7/m10/7No1+C28rH+1OyQurVmrllPz44KqOh9KckhSa5VVbv1kWij/MbQ+Hojcod3xL8xNtXG84GBWZR7s5/AAAAgAElEQVTrC6mqu6SLut0l3R/hrVtrszxBZeebRbkePF7qwf2wkn3S3Rk9ST6UxEVkJjGLcv3FofFdV0k7/Pm4dYG1mEXZHj55//QqaT+VLqBikKeACmBetEEwMPPzdrY07TgMbLV9w6CTyyXStYNshY44i0RbGANbbd/QVk/CJtGWCGw5rbWvbHYe/R3tX5euY32SvDnJw1ebr7X2k6r633Sdcza7jWSS9pjzk3xtgrwmNovttQmG7wI+66dQz/W4Z5tur1E2+jsur1+fWSHtoH797yyfwLmdtlVV7Z/uSS+XT7cfuk9r7QMzXg11awz/XZOZ8Ta9U5K9+/E3zDjQL9nm5+RboP5t9Pc7Mckv050P7/hrcFv5WH8TbOu6NQHXrKdgkkevbXXH9a+XzNLjYkYZfpTLR9aZxzeTnDZiOaPcon89NcnJ68wHBmZRrv9PVd06XZTgbkl+kO6Ohl+fdHkwxkzLNczIppfr1topSb7VT+5XY2432dt/aPzUsalgdbPYZw+f0K0W+L37mPkAZk0bBAPObximHYeBrbZvGL4b17Z5zPYOstXKA/OzZcpCVV0hXXBNsnTMyexoSwQW1cuSDJ6UdXSSB7TWLljjvIN9569X1b4rpNvo/+gJSc4bsawL6e9qfdPBPJ4Ct7L+2ON2/eRnWmufn/EqHDA07thncoPf8dx07RDrddzQ+Er1a98k1+4nnRuNUFVXS/eEwisnuSDJg1pr75jDqqhbK/PftbUNB/q9dpYZ93fxH+zn1J3JbGj/01o7L8kn+smD+voxzqBenZuVnwCz6DZyrD8VC1q3XLOegp0YUPH2ofGRd2Dqo6AGf4ZnJvngejJorbUkgwPQ36iqm45K178/iLR5Rz8fTGLTy/XQcg5OV74vnuSsJL/fWvviynPBRGaxv67VhiSn9MlPGXr/0HV+FxiY1f763/vXvZLceoV0dx8aP25sKljdLMr2N4fGD1kl7fDJ2TfHpgLYfNogGJjZeTvbgnYcBrbMvqHvZHFQP3lKa+0nm5EPK9IWxsCW2TckeViSQQf7D21SHoynLRFYOFX1j1l6+vAHktxrhbunjjK87zxsTB6XSHLvfvJLrbUT17ue/fHy4A7vt+mPp0e5e7r9a5Ictd58FtD9snTDpFk/nSK58N2RHftMoKpuluQ3+8njJukg2dfJwZ2K793X2VEOGxpXv5apqiumC6bYr3/rT1trb5zT6qhbK/PftUVV1eWT3KGf/Gxr7bMzXoX7JLlMP67urFPfaf6Ph9767wkXNaije+XC58XDeV0tyW36yQ9oWx1tCsf607KIdcs16ynYcQEVrbVPJPlwP/knVXXQiGR/keQ6/fg/LY+0rKpDq6r1w5FjsnpBusf9JMkLq2rPZcvYM8kL+8nz+/QwkVmV66r67STvThepdnaSO7bWPjWN7wDLzXB/DTMz4+OQc/rxf6yqvZYnqKoHJDm0n3x3a+1/1/5N4MJmVLY/kORn/fgjqup6o9alqm6f5G795KlZ+VHQAJtKGwQDzm8Yph2HgVmUhaq6dlX97krrUVWXSfLGJIM7rM30bnt0/FcwMKN9w35VdYOV1qOq7pTkqf3kz5O8eh1fgynQlggsmqo6PMnj+smPJrlra+3cdS7mqCTf6Mf/sqr2H5HmuUkuNzQ+al0OG9p/Hj4mr+f1r7sleXFV7bpsGfskeU4/eWaSI9b2FRbaoAPX+enOUdakqg4f2l6Hjfj8plV15RXmr6p6RpY6Qn42nnhwEVX1B1Xjn2ZVVdfKhbfbS8akW3F79Qb1a+8kfz9iGfsn+ct+8qQseKfv5arqskmOSfLr/VuPa629YoLlqFuz4b9r6xoO9Ftze1l/zj3YFseO+PxyVXXoKsu4cZIX9ZMtyb+sNf9FUFW36vd14z7fPV35HZwvHz3qPHa1bdU7It3NipLk2dUF2gwvY9d0/3mD+jSyji66aRzrq1uTc816Onab9wpsksemO0DbM8l/VtUz00XT7JnucTIP69OdmOQfJsmgtXZiVT03yZOSHJjkI1X1nCRfT/dI3CcmGTRWP7e19rUJvwsMbGq57g/Yj0kyOBj56yRnVdV1V5jte6217603Lxiy6ftrmINZHId8q6qemq6B8XpJPtEfh3wuS1Hzj+iT/zhLJy2wEZtatltrZ1bVs5P8bZJLJ/loVb0wyfuS/CjJlZLcNclDsxQY/qRZPx4SYARtEAzM5PxmxMXN3x4av11V7Tc0fVJrzd2F50M7DgObvW+4SpIPVNVn092F6lNJTk93sWLfJDdL8if9eJJ8IcmzJ/omTIO2MAY2uyzsl+SDVfWxJEen69g0+A+4ZpJ79sOgw9zjW2unTpAPG6ctEVgIVfWYJE/rJ09N8v+SXGOFvttJ8tXlnXxaa7/ol3V0un3YR/rOvJ9I1xH1oUnu0Sc/LsnrJl3n1tp/VdW/ptsf3yXJ+6rqBUlOS7c/fXKSX+2TP7G19qNJ89qK+s7zN1/29qUGryPaJ97bWjt9heUdkOSGQ2mneX56uyRPqqr3prum8KV0HYUvnuS30t29+iZ92p8leeh2ulPuWkxpex2V5KSqelu6OvXtJOcmuXKS3093bjlY5ltaa2/bwCq/Jt12uVmSR1XVvkleke560I2TPCVdHb8gyZ/N6e7Wm2Kj26qqLp7uBhuDNsE3JHn/Km1CZ7fWJnniu7o1hbrlv2tLGw70e8MUl3uZdOfkn8tSe9130nVC/tUkd0ryR1m6+cnz3CjnIh6U5J1V9c4kxyb5arrz1UulO554WJID+rTfS3duPZHW2g+r6olJXprk6kmOr6q/S/L5dG2vf57kVn3yN7XWjp00r51qWsf6a6Burcw1641qre3IIcmd00WOtTHDV5Nca8y8hw6lO3KFPHZJ8soV8mjpIth2mffvYdgZw2aW63SPlVupLI8aDp/3b2LY/sMs9ter5H9yP//J8/4tDDtnmFW5TvKsdA2J4/L5bpKD5v17GHbOsNllO11HjuevUq5bkvPSdfaY+29iMBgMrWmDMMy8LKznvH3scgzbuzxEO862Gja5LBy6jjLwriRXmPfvsejDLP4rVsn/5GgL2xLDFtk3nJ3kYfP+LRZ9mNV+IdoSDQbDHId0HeHWew6z3wrLe2i6jt7j5j0+yT4rzH/YUNrDV0i3Z7qOy+Py+eVK82/nIes/7zx0leU9eyjtvda5LocPzXvYKp+vNJyS5Gbz/m236vZax7wvSXLxSbfXULp90nUoH5fPOUkeMu/fdqttq3TB0+vdnx47ybZSt6a7L4z/ri01JPmNod/k3eucd7geHrvK5ysN56frhF7z/j222pDkyDX+hp9LcsCk22pZ2r/JyufM706yx7x/m604ZErH+urWVLaFa9YbGHbqEyrSWju6qn4rXdTNHZNcLV3Hq5OS/FuSF7XWfrbBPC5I93iUf08XvXOjdAf8ZyQ5IcnLWmv/sZE8YNgsyjXMmnLNTjSrct1a+8s+Iv8RSQ5Jd4eYc9JFE78zyQtba2etsAhYl80u2607+3pcVb0+yUPS3fHl6kkukeSnfT4fSnecfeJGvgvANGmDYMD5DcOUBwY2uSx8JN2dQm+T7o5QV0v3dLdLpLtr2zeTfDzd3dM+spHvwXTYNzCwyWXhU0kekOSgdPuGK6c7dtwt3V1/v5jkA0mOaJ5eNHfaEgHWr7X2iv5JTH+W5Nbp7h58dpIvp7vD9BFtCne0b639PMkdq+r+6TqyXj/dkwK/m+TD6fbRH9toPjtdVe2S5A/7yTPT/e9M06vTBwamu2v+FZNcPl1nujOSfDrdneHf2Fo7Z8p57yR3Sfcb3iTdtZl9klwy3bnlN9KV+Ve11r4wjcxaa2dU1cHpOpnfP8l1+vxOS3es+k+ttS9OIy8mpm5Nkf+uLeePhsZfO+Vln5bkXunqzo2TXDXdPnWPdB2dv5quA/oRrbWTp5z3TvGcJJ9J9xsekOQKSfZOF5T03SSfTPLWJEe11n45jQxba0+rqmOSPCrdOfOV0h23fDbJq1trb5pGPmyIurUK16w3pvqIEQAAAAAAAAAAAAAAgIWxy7xXAAAAAAAAAAAAAAAAYNYEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFwDZVVYdVVeuH/ea9PrBcVZ3cl88j570uAAAAsJOs1C5UVUf27588l5UDAAAAmJKd1DemqvYb+i6HzXt9AIAlAioAAAAAAAAAAAAAAICFI6ACgKmrqsMHUfXzXheWVNWx/XY5dt7rAgAAAAAAAAAAADBvAioAtqnW2pGtteqHk+e9PgAAAADMX2vtsL69aL95rwsAAAAAAMBWJ6ACAAAAAAAAAAAAAABYOAIqAAAAAAAAAAAAAACAhSOgAmCbqqrDqqr1w37LPju2f//YfvqqVfWPVXVSVf28qn5QVcdU1e1XyWPXPp9jqur0qjqvqs6qqq9V1Qeq6q+q6oDl65TkaUPvtRHDfkOfL1/XX6uqF/V5/Gw4/Urfedl67zeU7rARnx/Zf3ZyP71vVT2vqk7s8zy1qt5SVb85Yrn/3Kf7eVV9t6reUFX7r/Q7Ds1/q6p6TVV9o8/nx1X1+ap6blVdZYX5Dh98n356j6p6QlV9uqp+0g+fqKpHV9Vu475vklv2b91yxDY5edk8l6yq+1TVEVX1mX67/6Kqvl9VH6qqx1fVpdbyvcd8p0OH8j60f+/efbn6fv/7frWq/r6q9l7jMv+gqv6tqr5VVedU1ZlV9cmqelpVXW6Vea9dVS+sqi/0v+d5VXVa/91f1f8WFx8x37rqCAAAAGy25e0eQ+8/dehc/NfWsJxj+rTfqapdx6SZ6Fx8RNvMZavqb6vqi1V1dr+c/66qP1zjd75MVf1lVX2kb1c4r1/vo6vqnlVVq8x/t6p6e1V9u6rO7dsGvlFVH66qp1fVjcfMd5WqenbfRjNoO/lu397zpr7NYK+1fAcAAABgMlV1hap6RlX9T9+mcE5VnVxVr6uqm68y76Ct5PBV0l2ob8uYNLtW1SOr6vjq+oOc1bcZPH5Uf4MR82svAYA5uUinSwB2lqq6WZK3J9ln6O09ktw2yW2r6gmtteeNmO9SSd6T5JBlH+2eZK8k10ryu0l+J8k9p7Sud03yhiSXnMby1pjn9ZO8N8m+Q2/vmeReSe5QVbdrrR1XVb+b5G1JLjOUbo8k909y+6o6pLX2xTF57JHk1UnuO+Lj6/bDI6rqfq21o1dZ3yv16/vbyz66UT/ctqr+oLV2wUrLWYN3ZykAY9g+SW7RD4+sqju01r6ywbx2qarXJXnAsvevneQJSe7W/76nj5q576Dx1nTlcdjFk9ywHx5ZVXdtrX18xPz3SvL6JBdb9tGV++H6SR6c5HpJvjA038zrCAAAAGzAG5P8TT9+/6Hxi+jbH27dT/5ra+2Xyz7f0Ln4smX9erq2jv2WfXRIkkOq6qDW2qNXmP/WSd6c5PLLPto3yZ364T1VdZ/W2k+XzbtrkjelawcadrEkl0pyjSQ3T3L7JAcum/eQJO9K1wYw7Ir9cN10bUFn9OkAAACAKauq2yb5t1z0/Pzq/fCAqnpxkj+bQj+KldZjXP+BG/TD/ZI8ZB3L014CADMkoAJgZ7tyumCKC5I8KclxSc5Ld2Lz1CSXTfKsqvqPEcEAh2fpRO9d6QIdvpXknHQnOTdId4LVhuZ5e5JPJnlkkkf0711vxHqdOuK9X03Xqf1nSZ6e5MNJfpkuSOCnI9JPwyWSHJXupO+vknyoz/N2/fQlk7yuqn4v3Xc7K93vdny6/9B7JPnzJJdL8sokN12eQR/R/9Ykd+zfOjrJW5J8I912uXGSv0j3/d9aVTdrrX1yhXV+W5IDkvxzv6wfJvn1JE9Jcp0kd07y0CQvG5rnyUmely6o48B02+jBy5Z73rLp3ZJ8Psk7+/SnJal0DQ53S3LvdCfJb6+q326tnbPCOq/m6UkOTvcbvzbJKUmulORR6X63ayV5froGhgvp7+Lw/nRBC79M1znkPUm+mS6w4RZJ/r90ZfY9VXWD1topQ/NfKd3vcrEk30vyoiQfT3fyvmef9y2T/MGI9T48668jAAAAMBettZOq6vgkN8kqARVJ7pNk8FSKNwx/sNFz8WUuka594/JJntEv96fpzqmfluRqSR5VVUe31o5ZPnN/I5H/6PP9bpIXJvlsunaMq/Tf4wFJ7pDkNenacoY9IkudA45LckSSryc5u1+n30rXTjR8g43Bb/Cv6ToH/CTJvyT5YLq2hYulazM5OF0bCgAAALAJquq307UrXCzJL9Jd739nuvP6G6TrJ3ONdH0Pzk7yxE1cnddnqf/AJ9L1cfhaur4Ph6Vrf3jZyDkvSnsJAMyYgAqAne3a6Tqn36y1NhzEcEJVnZDkv9P9FzwsyWOXzXvv/vWtrbXlUedJFwn/rKrae/BGa+3MJGdW1feG3vvCiHlHuUa6k7eDWmvfGnr/+DXOP4krpAsSuHFr7evDeVbVGelOtvdL8tEkp6f7Hb8/lO4jVXV+uqco3KTvIPA/y/J4SLqggF8kuUtr7b3LPv94/3SGDyf5zSQvSBfwMs6Nkty2tXbs0Hufrqpjknwp3cn4IzN0It5v+1Or6uz+rbPXsF0e3Fr72oj3j0/ylqp6ZZJj0gVz/GG6gJJJHZzkr1trfzf8ZlW9N105u22Se1bVny37/ZMuwOV3kpyZ5DattU8t+/y4qnpDko+lCzB6Zr++A3fM0hNRbj3id/loktdW1ag7O6y7jgAAAMCcvSFdQMW1q+rAFW7qcP/+9cQRaTZ6Lj7sCukuqB+07GYfn6qqY9Pd7GGPdG0dF+ogUFW7p+ussHu6c/B7tNZ+NpTk00neVVX/neTlSe5eVb/XWnvfUJrBuf3xSW7VWjt/2fq9P8k/jji3v1m6DghJcv/W2vI7Kn48yZuq6nHpOkEAAAAA0/fydO0Kv0xyp9bafw59dkJV/Vu6gIADkjy+ql474majG1ZVd0xy137yPUnuuqyN4T1V9dSsfHOLYdpLAGDGdpn3CgCw6R6zLJgiSdJaOy5LwQrLHzmYdI/5S7qO/mO11n64sdW7kCctC6aYhacsC6YYeFW6Jw0k3cnqqM78SRdRP3Ch37F/OsXgDgf/PCKYIknSWvtRuqCMJLlZVf3aCuv7wmXBFINl/DDdkxaS5HpVdZnladZjTDDF8OfvT3dnh2T00xvW41PpOlcsz6Ml+cd+crckBw1/3j8y81H95FNGdOAYLOeUdE/BSJJ7VdUlhz4elPMfrRRk0lr7eWvt58venkcdAQAAgI14c7pOBsmYIIeq2j9d0EVy0adTTONcfLmnjOrM0Fo7Kd3TLJPRN5+4b7obYZyT5IHLOgcML+cV6e4MmXR3hBw2OLf/6IjOAcPLWH5uv+/Q+H+vMN/5rbUfj/scAAAAmExV3TjdDSmT5BXLgimS/F9fjIf1k7ukC0DYDIPlnpvkoWPaGJ6RZK03JE20lwDATAmoANjZzkzy7hU+H1z0vuaIz77Tv96nqmYRGX5ekn+bQT7DWpK3jPyg6zw/CCr4UZZF9Q+l+2a6RxUmF/0dD0iyfz/+1lXWZfhk8qCxqZZ1ZFhmsD0r3RM/pqaqrlBVv1ZV1x0MSQYBJtff4OLf2AdPjDLcMWP573vLLD1Ccq2/7+5Jbjj0/qCcX66q7pr1mXUdAQAAgA1prX0vyeCOg/epqlHXCO4/NP7GZZ9N41z8Qqs0Io9hg3aBvavqsss+u0v/+qExN8EYtS7L21wG5/Z3rqp9VlnGqPmS5MHrmA8AAACYjtsMjb9yXKLW2keSfHnEPFNRVbsmObSf/M/W2mlj1uOCJK9Z42K1lwDAjAmoANjZvtaflI0ziBa/9IjPBidyByf5ZlW9qKruVlVXmOoaLvlaa+2c1ZNN1RmrPD3gzP71pBU6/A+nW/47Hjg0/rGqauOGJD8dSrtvxvvKCp8Nf5dR23RdqupmVfXmqvpBku8lOTHdoyMHw0P7pOs5gR5l0u80/Pt+Z5Xfd/hOD8O/7zuztP2Oqqr/qqrHVdUN+4aPlcy6jgAAAMA0DG7WcOUkvzvi80FAxfH9XQ+HTeNcfNgZrbUfrLCua2kX+P2V1qNfl8ePWY/Buf21kpxUVa+qqvtV1dVWWKckOS7JN/rxF1TVJ6rqL/u2lIutMi8AAACwcdftX89L8plV0h7fv/7aJpy3759kcAPGE1ZJ+4lVPh/QXgIAMyagAmBnG/noviGDYItR/wdPT/KqdJHvV0zyqCRvS/K9qvpCVf1NVV1pamvaPQVi1tb6+6w13fIO+Fdc9xp1xj7tYNzjGJetx6h1WZeqOjz/P3v3H2x5Xddx/PVZl18J62YqrNoPBc0SSlFBERVFsdA1QENNR9Py56gpTU6NYzWWTuOgVFKCWZZFKZktkZo/Mk2jxJ+TRDlqgGRIGMGCprHspz++3+teLvf3nnvP3X0/HjN37vn1PefDuXuH+/2c7/PzHXZ2z0xy5yUefsjevFYWeX/nBEETf3/HSYgnJflqhjN7PDrJG5N8Ksn1rbV3t9aeuMDzrPfvCAAAAEzCjuzZF3/G7Dtaa8cmud94db6zZE56rmO5cy7JZOYFbjOH0Xv/gySvS7Irw5k3npNhBcirW2tfaq29obV2uzO79t5vSbI9e1a4fMj4PB9PckNr7W9aaz+1jMUaAAAAgNWZOY7h+t77riUe+7Xxe0vy3Ws0jmRYqHIx1y7zOc2XAMA62zztAQCwMY07Oj/TWntDkqdnWLHwwUkOTHL/8eus1toze+8XTeAlb53Ac2w0s3cCtye5cpnbLbWTvaZaaycn+ZXx6r8nOTvDDu5XknxjZjKitfaaJK+eyiAHs9/fY5Pcsszt/mP2ld77x1prRyV5cpJTkzwyyT2TbElyepLTW2vvT3LG7KBlCr8jAAAAsNd67ze31i7KsC97RmvtRbPOGjpzdopbk7xzns0nsi8+ITNjeV+SV672SXrvr2qtvSVDXHJykodmCECOTHJWkpe21l7Wez9vznaXt9aOyTDnsz3DfMJRGQ5CePz4dVZr7dTe+1TnegAAAGA/1qc9gFk2wljMlwDAKggqAFhU7/3yDAfNv7q1dnCSEzN8uP6sJIcm+bPW2pG992vWYTizK/vFzrJ0x7UeyDLNPgXjDb33y6Y2kpV53vj9f5I8tPd+3QKPW+rMFWtt9vt7Xe991QdnjAeOXDB+pbV2ryRPSPLSJPfNsFP/2iSvmGfbjfQ7AgAAAMtxQYagYkuSJyZ5V2ttU5Knjfd/cIEPtSe2Lz4B/53k7kkO3Ns5l977VRlWTHxda+2ADCsonpnkBUkOTvK7rbVP9N4/O2e7WzOc8WNHkrTWtiX5sQxnsXzQ+HV+hgUbAAAAgMm5fvz+Pa21zUucpeKI8XvPcBzEbD3DmSsWOwYlWfg4lNnPd/gSz7HU/ZNgvgQAVmGpPwQA4Dt679/qvX+o9/7cJL8w3nxIhg/eb/PQNRrCTbMuL3Yaxvuu0euv1OydxodPbRR7LPfncv/x+98tElMkw9kYpmnN3t/e+xW993MzTAjMHBxy5jK2W+7vCAAAAEzT+5N8fbw8c1aKRyW5x3j5ggW220hzHTNjeXBr7cBJPWnv/Zbe+yW995dnz3vTkjxlGdte03t/W5KHJfnMePMTW2uHTGp8AAAAQJJkJhY4MMkDlnjsceP3L/be/2/OfTPHoSx4DEprrWU4y8J8vpzkf8fLD1liHEvdPwnmSwBgFQQVAKzW3866fJc5931r5kJr7aAJvuYVsy4vdjD/0yf4mnvjM9lzMP7zx7MXTNPMz2Wpn8nMGawWPNNHa+2BSY6fxKD2woeSfHO8/LJxEmOieu87k3xyvDr33/lSFvsdAQAAgKkZV228cLx6amtta/Z8GP7NjCsIzmPN98VX4K/G73dK8pw1eo1V7dv33m9J8tHx6uYkWyc5KAAAACAfmnX5uQs9qLX2sCQ/PM82M2aOQ1nsGJQfzwL79uMcy0fGq6eMZ2OYbxybkjx7kdeYFPMlALAKggoAbqe1dufW2vYlPhQ/ZdblK+bcd82sy0dObmS5LHtO2/iS+WKN1tqZSX5ygq+5ar333RlOf5gk907y9sUCk9baltbaS9ZwSDM/l3sv8bP94vj9xNba7VZZaK3dNckfT3pwK9V7vyHJuePVE5KcM05CzKu1dnhr7Wfn3Pb4hSY0xvvvlD2rVVwx6/a9/R0BAACAaZs5C8VBGWKKJ4/XL+q93zzfBpPYF5+gP0py9Xj57NbaIxd7cGvtxNbao+bc9szW2uaFtskC+/attUfMN2cy6/4DM5zxI0luTrLYGUABAACAFeq9X5rkU+PV57XWTp77mPHz/vPHq7uTvHmep5o5wP/41trtzsbZWjsiyZuWGM7M8x6U5PzW2h3mecwvJTlmieeZBPMlALAKi/2PD4C6tmSo1q9srb07ySeSXJVkV5JtSbYnmfkw/KtJ/nrO9pfMunxOa+21GQ7m7+NtV46V/or03ne11s7PsKN5dJIPt9Zen+QrSQ7PEFL89Pj6J6z0+dfIeUkel+T0DOM7dvxvuDTJjRne6/slOSnJkzKcReLceZ9p712SYQWCuyV5Y2vtT8YxJMktvferxstvz/AzvmOSj7bWfiPJp8f7TkhyVpIjkvxjhlMyTtMvZ9jhPp31x/UAACAASURBVD7JzyU5qbX2e0k+l+QbGU7Lef8kj82wasTnk7x11vZPT3Jxa+2DST6QPdHOYRn+jb0kyT3Gx543a7u9/R0BAACAqeq9X9JauyLJvZK8NntWBbxg4a2S7P2++KTG/+1xYY2PJDk0wzzROzKcXeOKDAtKbUvyoAzzMsckeWn2HCiRDAtGnD3u21+S5MsZ5mYOzzCf86LxcTfntu/LyUle3Vr7WJL3JPnnDAcBHJLkvklemOTY8bG/v5p5MAAAAGBJz8vwWf2BSd7bWntTkoszzE88MMkvZlj8MknO7r1fNs9zvCXJizMcR3lxa+01ST4+PufDMxwfcUCGhSnvM98geu8Xt9YuznCcwPYk/9BaO2fc5m4ZjmN5aoYAZLEzYew18yUAsDqCCgAW8wMZdg4Xck2Sn5i7amHv/UuttQuTnJmhTD9lznb3SnLlKsf060keneShGQ7u3zHn/o9kOAh+vh3hddd77621pyb5rQw7h0cmef0im/zXGg7nHRlilHsnefn4NeOqDD/v9N7f1Vp7W4b44u5JfnvO89ya5BUZDpCYalAxTgY8LskfJjkjyY9m8SBl5zy3HZDk1PFrIefl9u9DssrfEQAAANgg/jTJq7Inpvh6kvcvtsGE9sUnovf+T621k5JcmOR7kzxj/FrJWA7PcCDAi+a5LxkWo3ha7/3qObdvyhCWPOr2m3zHRRnmYgAAAIAJ671/rrW2PcmfZ1gU8efHr7l+Jwvsn/fe/6W19sokb8xwDMQ5cx5yfZLTkvxaFggqRs9I8r4MEcbxGY7PmO2zSV6QPYtZrhnzJQCwcoIKAOZzVZLjMhxgfkKS78+ws3RokhuSXJ6h6n9L732hD8WfmaGuf0qSH8yw4v+mvR1Y7/2brbXHZDig/2lJjkpyS5IvZDh14XkZdgg3jN77LUle3Fp7c4YVEk5K8n0Z3s+bM6wC8OkMO9drdiaD3vvNrbUTMuyYnpLh5/pdCzz2ua21Dyd5fpIHZFh94WtJ/j7Jub33S1trv7pWY12J3vtNSZ7cWjsxybOTPCJDCHJIhh3/L2c4I8h7MpyFYrZXJPlgksck+ZEMKzHcNUM0cnWGs3C8tff+8TnbTeJ3BAAAAKbtggxBxYwLl7M64F7ui0/UeJDAfTKs9rg9wwqUd0myO8MqiP+aYZXFv+i9f2HO5kcneUKSEzMsgnF4hrjkpiT/liEueXPv/do5252dYZXFx46vd/cMK04mw/zJpUne3nt/z8T+QwEAAIDb6b1/oLV2VIYFJU/NsMDkQUmuTfKxJOfN83n/3Oc4p7V2eYbjB47LcBzFfyZ5b5LX996/0lpbahw3jRHDC5M8K8kPJekZ5kjemeQ3kxyxyv/MFTNfAgAr03rv0x4DAAAAAAAAAAAAAADAutrrlcIBAAAAAAAAAAAAAAD2NYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5Wxe7xdsrR2U5Jjx6nVJbl3vMQAAALDh3SHJXcfLn++9f3uag4FJMS8CAADAMpkbYb9jXgQAAIBlWtd5kXUPKjLsHH9yCq8LAADAvukhST417UHAhJgXAQAAYKXMjbC/MC8CAADASq35vMimtXxyAAAAAAAAAAAAAACAjWgaZ6i4bubCpZdemm3btk1hCAAAAGxk11xzTY477riZq9ct9ljYx5gXAQAAYEnmRthPmRcBAABgSes9LzKNoOLWmQvbtm3LPe95zykMAQAAgH3IrUs/BPYZ5kUAAABYKXMj7C/MiwAAALBSaz4vsmmtXwAAAAAAAAAAAAAAAGCjEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmbpz0A9t7u3buzc+fOaQ9jw9i9e3duuumm29x22GGHZdMm/RCL27Jli38nAAAAwLLsS3Ny5sumy5wTAAAAAPOZb47RXBIArD9BxX5g586dOe2006Y9DNjn7dixI1u3bp32MAAAAIB9gDk5lsucEwAAAADzmW+O0VwSAKw/KSMAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAABgHd14443Lug0AWFuCCgAAAAAAAAAAAAAAoJzN0x4Aa+MbR5+RvvmgaQ9jOnZ9K4de9pe3uenmo09PNh88pQGxEbVd384dL3v3tIcBAAAA7Ec27Jyc+bJ1Y84JAAAAAABg3yKo2E/1zQelH3DItIcxFW2+GzcfXPb9AAAAAGB9bNQ5OfNlAAAAAAAAML9N0x4AAAAAAAAAAAAAAADAehNUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOZunPYCNZvfu3dm5c+dtbtuyZUs2bdKeAAAbh79ZAIBp8XcIADDD3wUAAACwert27VrWbQDA2hJUzLFz586cdtppt7ltx44d2bp165RGBABwe/5mAQCmxd8hAMAMfxcAAADA6l177bXz3nbkkUdOYTQAUJclggAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAA+H/27i7EqvPcA/g7H1WmWuNI1VOI0ptCYSyci4wpLfE2lEapSvxASS4KsaA4aAuFMqZQp4XeTJmJXhgopEFRE9R0YihpoRRDW/y4OFAHAr3TQIi22hjt4HScORfn7OBst9u9ZvaatfZ+fj8I4trr43nfvffqs177nwEAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAaHN3794tuoRZJicnS33+vOsrWruPr1q08WZlfoB63CMAgKJV+pFG+pKH95mcnAzVy1SPNa+xZzlv1hoivV8VRYw5y3eq2dednJxMt2/fznxcnsq2bgqUy5kzZ4ouAQAAIDcXL14suoRSEagAAGhjt2/fTtu2bcv8j5V5mZiYSD/84Q/TxMREKc+fd31Fa/fxVYs23qzMD1CPewQAULRKP3L79u0n9iUP9y4TExPpwIED6cCBAyF6meq+La8+Lst5s9YQsfcsYsxZvlPNvu6BAwfS3r1709atW9PHH3/c8HF51lm2dVOgXEZGRtJrr72WRkZGii4FAACg6cbGxtKPf/zjNDY2VnQppSFQAQDQxgYHB9O///3vdOjQoaJLSSmldPz48fS3v/0tnThxopTnz7u+orX7+KpFG29W5geoxz0CAChapR8ZHBx8Yl/ycO9y/PjxND4+nsbHx0P0MtV9W159XJbzZq0hYu9ZxJizfKeafd3x8fH097//PU1PT6f9+/c3fFyedZZt3RQol3Pnzs36EwAAoJ0MDw/P+hOBCgCAtnXp0qU0Pj6eUkrp6tWr6dKlS4XWc/369XT69OmUUkqnT59O169fL9X5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L6nTp1KJ0+e/Py1U6dOtXUvU923Xbp0KZc+Lkt/mLWXjNh7FjHmLN+pZl/31KlTs7bdvHkzvffee088Ls85Ktu6KVAuzz//fN2/AwAAtLKXXnqp7t+jEqgAAGhD09PTaWhoaNa2oaGhND09XUg9MzMzaXR0NE1NTaWUUvrPf/6TRkdH08zMTCnOn3d9RWv38VWLNt6szA9Qj3sEAFC06n6kolZfUr3v1NTUrLWPqampNDIy0pa9TK2+bWhoqOl9XJb+MGsvGbH3LGLMWb5Tzb7uyMhIevDgwSOvDQ8P19xeq95m11m2dVOgXG7dupXu378/a9v9+/fTrVu3CqoIAACgee7du5euXbs2a9u1a9fSvXv3CqqoPAQqAADa0LFjx9KdO3dmbbtz5056/fXXC6nnwoUL6fLly7O2Xb58OX3wwQelOH/e9RWt3cdXLdp4szI/QD3uEQBA0Wr1IxXVfUm9fSuuXLnSlr1MrbFXrwU1o4/L0h9m7SUj9p5FjDnLd6rZ171y5UrN1x48eJBeffXVxx6X5xyVbd0UKJctW7Zk2g4AANBKXnjhhZrbN27cuMCVlI9ABQBAm7l9+3Z6++23a7721ltvpdu3by9oPRMTE+no0aM1Xzt69GiamJgo9Px511e0dh9ftWjjzcr8APW4RwAARavXj1RU+pJG9q04cuRIW/UyWcY+nz4uS3+YtZeM2HsWMeYs36lmX/fIkSN19/nzn/+cPv7440eOy3OOyrZuCpTLyMjIvF4HAAAos7Gxscf+BtDp6ek0Nja2wBWVi0AFAECbGRwcfOyvqJ+enk6HDh1a0HqOHz+ebty4UfO1Tz75JJ04caLQ8+ddX9HafXzVoo03K/MD1OMeAQAUrV4/UlHpSxrZ4JWy9AAAIABJREFUt+LGjRtt1ctkGft8+rgs/WHWXjJi71nEmLN8p5p93Zs3bz5xv/379z9yXJ5zVLZ1U6Bczp07N6/XAQAAymx4eHher7c7gQoAgDZy8eLFND4+Xnefq1evpkuXLi1IPdeuXUunT5+uu8+pU6fS9evXCzl/3vUVrd3HVy3aeLMyP0A97hEAQNEa6UcqTp48mU6dOpXp/CdPnmyLXibLPFXMpY/L0h9m7SUj9p5FjDnLZ6WZ17527VrD38+bN2+m99577/Pj8pyjsq2bAuXy/PPPN3U/AACAMtm9e3dD+7300ks5V1JeAhUAAG1ieno6/fznP29o36Ghocf+NLZmmZmZSa+99lqampqqu9/U1FQaHR197K+Vy+v8eddXtHYfX7Vo483K/AD1uEcAAEVrtB+pePDgQXrw4EGmazx48CCNjIy0dC+TdZ4qsvZxWfrDkZGRNDo62nAvOT09Ha73LKLfzvpZada1Z2Zm0ujoaKbv5/DwcJqamsp1jsq2bgqUy61bt9L9+/cb2vf+/fvp1q1bOVcEAADQPPfu3UsfffRRQ/teu3Yt3bt3L+eKyqm76ALKptYC2aefflpAJY2rWV8bLDBDrmp8R8r+XQd4WK171htvvJHu3LnT0PF37txJr7/+evrBD37Q7NI+d+HChXT58uWG9r18+XL64IMP0oYNGxbs/HnXV7R2H1+1aOPNyvwA9WS9R/z1r399ZLvnKSKyJkdN1pwIptbney7/R+Qs/ch8XLlypaWfd+YzT1me9bJc58qVK5lqOHbsWLjn0yKeyefyWWnGtS9cuJDpM5HS/4Wd9u3blz788MOG9p9LnceOHSvVuilQLlu2bMm8/5/+9Kd8igEAAGiyF154IdP+GzduTH/84x9zqqa8mh6o6OjoePoJu/xXs6/ZTJ999tkj215++eUCKpmnB/dTSl8sugoorweP/pSRlvyuAzzk/PnzmfZ/66230vbt21Nvb2/Ta5mYmEhHjx7NdMzRo0dTf39/6unpyf38eddXtHYfX7Vo483K/MDCarV1kbncI379618/ss3zFPw/a3JYc4L02WefpRUrVjS8/1z6kfk4cuRISz7vNGOeGnnWy/v9ePvttzPt3+rPp0U8k8/nPZzPtScmJtKRI0fmdN1GwxQVWeq8fft25s9dnuum0O5abV1kZGRkzscNDAw0uRoAAIDmGhsbm9Nv+hwbG0ubNm3Kqapy6szhnNef8F/+P2IIACCgrD8Bcnp6Oh06dCiXWo4fP55u3LiR6ZhPPvkknThxYkHOn3d9RWv38VWLNt6szA8suJZaF5nLPeKf//xnTtUAABHNpR+Zjxs3brTk804z5qmRZ72834+s61et/nxaxDP5fN7D+Vz7+PHj6ebNm3M6NqssdQ4ODpZq3RQCaKl1kXPnzi3ocQAAAAtpeHh4QY9rZXkEKgAAaBFXr15Nd+/ebeo5Jycn09mzZ+d07JkzZ9Lk5GSu5797926u9RUt7/kvm2jjzcr8APXM5x4BANAMRfUjrfa808x5qjf2svaHrfZ+VRTxTN6M93Au1y7is9NInXfv3k3j4+NzOn8e66ZAuZw5c6bQ4wEAAPJ08eLFQo9vNXkEKtY84b/+HK4JAMAcrFu3Li1durSp51y0aFHasmXLnI7dunVrWrRoUa7nX7p0aa71FS3v+S+baOPNyvxAIVpmXWQ+9wgAgGYoqh9pteedZs5TvbGXtT9stferoohn8ma8h3O5dhGfnUbqXLp0aerr65vT+fNYN4UgWmZdZOvWrYUeDwAAkKdnn3220ONbTXezTzgzM/NRvdc7Ojqafcmm+tKXvvTItt/85jfpqaeeKqCaxnz66afp5Zdfnr2xa3ExxUCrqPEdKft3HeBhtf73v7OzM9Ovr+/s7EyHDx9udmkppZR2796d/vCHP6QbN240fMzq1avTrl27FuT8eddXtHYfX7Vo483K/MDCarV1kbncI7785S+nf/zjH7O2eZ4iImty1GTNiWBq3Qtr/TtLPXPpR+Zj1apVLfm804x5auRZL+/3I+v6Vas/nxbxTD6f93A+1969e3f6/e9/n27evDmn47PIUufQ0FDaunVradZNod212rrI5s2b07lz5+Z0HAAAQNkdPHgwDQ8Pz+m4aJoeqGh1nZ2P/tKOp556Ki1fvryAauahZAsRUDo1viMt+V0HeMjGjRvTb3/724b337ZtW+rt7c2llp6enrR3797005/+tOFj9u7dm3p6ehbk/HnXV7R2H1+1aOPNyvwA9czlHvH9738//fKXv5y1zfMU/D9rclhzgpr/zlLPXPqR+di3b19LPu80Y54aedbL+/148cUX0+nTpxvev9WfT4t4Jp/Pezifa/f09KR9+/bN6bpf//rX04cfftjw/lnq7O3tzfy5y3PdFCiXgYGBOQUqBgYGcqgGAACguTZt2pR+9atfpZmZmYaP6ezsTJs2bcqxqnLKtqoNAEBpvfzyy2nZsmUN7bts2bL0yiuv5FrPhg0bUn9/Y7+9u7+/Pz333HMLev686ytau4+vWrTxZmV+gHqy3iO++c1v5lwRABBNln5kPlr9eWc+85Rl7Fn7w2eeeabhfffs2RPu+bSIZ/K5fFaace0NGzY0/Hmo6OrqSkeOHMl1jvbs2VOqdVOgXM6ePZvr/gAAAEU6f/58pv3ffffdnCopN4EKAIA20dnZmQYHBxvad3BwMPNPjMyqo6Mj7d+/P3V31/+laN3d3Wn//v2Zf9X3fM+fd31Fa/fxVYs23qzMD1CPewQAULRG+5GKrq6u1NXVlekaXV1dLd/LZJ2niqx9XNb+cGBgoOF9Ozs7w/WeRfTbWT8rzbp2R0dHGhgYyPT9PHjw4OfXz2uOyrZuCpTLihUr0uLFixvad/HixWnFihU5VwQAANA8S5YsSWvXrm1o37Vr16YlS5bkXFE5WQ0CAGgj69evT319fXX3WbduXVq/fv2C1LNmzZq0ffv2uvvs2LEjrVmzppDz511f0dp9fNWijTcr8wPU4x4BABStkX6kYufOnWnHjh2Zzr9z58626GWyzFPFXPq4LP1h1l4yYu9ZxJizfFaaee01a9Y0/P1cuXJl+u53v/v5cXnOUdnWTYFyef/995u6HwAAQJm8+eabTd2vHQlUAAC0maGhocf+FLXOzs50+PDhBa1n9+7dadWqVTVfW716ddq1a1eh58+7vqK1+/iqRRtvVuYHqMc9AgAoWr1+pKLSlzSyb8WqVavaqpfJMvb59HFZ+sOsvWTE3rOIMWf5TjX7uitXrnzifqOjo48cl+cclW3dFCiXzZs3z+t1AACAMjt48OC8Xm93AhUAAG2mt7c3vfjiizVf27ZtW+rt7V3Qenp6etLevXtrvrZ3797U09NT6Pnzrq9o7T6+atHGm5X5AepxjwAAilavH6mo9CWN7Fuxb9++tuplsox9Pn1clv4way8ZsfcsYsxZvlPNvu6+ffvq7vPtb387feUrX3nkuDznqGzrpkC5DAwMzOt1AACAMtu0aVPq6Oio+VpnZ2fatGnTAldULgIVAABtaM+ePWnZsmWzti1btiy98sorhdSzYcOG1N/fP2tbf39/eu6550px/rzrK1q7j69atPFmZX6AetwjAICi1epHKqr7knr7Pu6YdlFr7NVrQc0Ye5b+MGsvGbH3LGLMWb5Tzb7uM888U/O1rq6u9LOf/eyxx+U5R2VbNwXK5ezZs5m2AwAAtJLz58/X3P7uu+8ucCXlI1ABANCGOjs70+Dg4Kxtr7766mN/pX3eOjo60v79+1N3d3dKKaUvfOELaWBg4LHJ54U+f971Fa3dx1ct2nizMj9APe4RAEDRqvuRilp9SfW+3d3ds9Y+uru727aXqdW3HTp0qOl9XJb+MGsvGbH3LGLMWb5Tzb7uwMBA6urqeuS1H/3oRzW316q32XWWbd0UKJcVK1akxYsXz9rW09OTVqxYUVBFAAAAzbNkyZK0du3aWdu++tWvpiVLlhRUUXlYGQIAaFPr169PfX19KaWU1q1b99ifCLdQ1qxZk7Zv355SSmn79u3p6aefLtX5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L47duxIO3fu/Py1HTt2tHUvU9239ff359LHZekPs/aSEXvPIsac5TvV7Ovu2LFj1raVK1em73znO088Ls85Ktu6KVAu77///qy//+53vyuoEgAAgOZ78803Z/39jTfeKKaQkhGoAABoY0NDQ+mLX/xiOnz4cNGlpJRS2r17d/rGN76Rdu3aVcrz511f0dp9fNWijTcr8wPU4x4BABSt0o8MDQ09sS95uHfZvXt36uvrS319fSF6meq+La8+Lst5s9YQsfcsYsxZvlPNvm5fX1/62te+ljo7O9Po6GjDx+VZZ9nWTYFy2bx586w/AQAA2snBgwdn/UlKHTMzMwt7wY6Op1NK11NK6fr166X7STP/+te/0ve+971Z29555520fPnygip6slo13/3vnWnmCz0FVVSsjv9MpKX/c3LWtsjzQW21Pidl/64DPCxLz3L37t20dOnShSrtiSYnJ9OiRYtKe/686ytau4+vWrTxZlXm+fnoo4/SmjVrKn9dMzMz81GR9UCzlH1d5GGPu0e04toJ5KGV1uSsly0ca05Ek3dfUOlHGnl2eXifycnJlFIq7fNOs1XPT17PelnOm7WGMj+f5qWIMWf5TjX7uimldO/evdTb25vpuDzrLNu6aTVrI7SjVloXOXPmTNq6dWvRZQDQ5v7yl7+kn/zkJ7O2/eIXv0jf+ta3CqoIgCguXryYnn322aLLeKyFXhfpzvPkAAAUr2z/KJj3P9bO9/zt/o/37T6+atHGm5X5AepxjwAAilbpRxrpSx7eJ1ofUz3evMaf5bxZa4j2nqVUzJizfKfKcN286yzbuilQLsIUAABAOytzmKIInUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHC6iy6gbJYtW5beeeedR7YBAJSJngUAKIo+BACo0BcAAADA3K1evbqhbQBAvgQqqnR2dqbly5cXXQYAQF16FgCgKPoQAKBCXwAAAABz19396P99s9Y2ACBfnUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAA/pe9Ow+X5yrrBP59fwkBEkgCBIkgEhYVUFSGRcMiQTaFAMoIMi4QhUEYZRTFCYhL1FEQhhFkGRAYAwoIKiEBRQhLkE0JOGyyLwECgSQsISwh25k/qi63c+nbd+v11ufzPPXc6ttVp6r7rVNVfareUwAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAINz8KJXgNmoS7+56FVYnEsvGvu/mv+asMQGXUcAAACAmVja9gbtZXOztNsAAAAAAAAAY0mo2KcOe9/LFr0KS+Vq7ztl0asAAAAAwD63Sm1y2ssAAAAAAAAgObDoFQAAAAAAAAAAAAAAAJg3CRUAAAAAAAAAAAAAc3TEEUds638AwGxJqAAAAAAAAAAAAAAAAAbn4EWvAHt3+OGH5+Uvf/miV2NpXH755bnwwguv8L+rX/3qOXBA/hCTHX744YteBQAAAGBFrFKbnPayxdLmBAAAAMA449oYtSUBwPxJqNgHDhw4kCOPPHLRq7FUrnnNay56FQAAAADYx1atTU57GQAAAAAsl1VrYwSA/UoXZAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAACdn8Y+AAAgAElEQVQAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBOXgByzxobeScc85ZwOIBAABYdht+Lx602XSwgrSLAAAAsCVtI+xT2kUAAADY0rzbRaq1NutlXHGBVbdOcuZcFwoAAMAqu01r7R2LXgmYBu0iAAAA7IK2EfYF7SIAAADswszbRQ7MsnAAAAAAAAAAAAAAAIBltIgnVFw5yS36l+cluWyuK8DQHZ31Hi9uk+RzC1wX2IrtlVVhW2WV2F5ZFbbV7pGN1+7H39ta++YiVwamRbvIyrAfHgZx3v/EeP8T4/1PjIdBnPc/Md4dbSPsOyvSLmKftdzEZ7mJz/ISm+UmPstLbJab+Cw38VleqxKbubaLHDzLwsfpP5DHkbIQVTX68nOttbMXtS6wFdsrq8K2yiqxvbIqbKvf8slFrwBMm3aR1WA/PAzivP+J8f4nxvufGA+DOO9/Yrwn2kbYV1ahXcQ+a7mJz3ITn+UlNstNfJaX2Cw38Vlu4rO8Viw2c2sXOTCvBQEAAAAAAAAAAAAAACwLCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHCqtbbodQAAAAAAAAAAAAAAAJgrT6gAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqWElVdYOqenJVfbCqvlZVX6yqM6vqt6vq0D2WfaCqbl5VJ1TVM/tyv1lVrR+Om9LHYCBmvL0eWlX3q6r/05f5paq6pKq+UFVvq6qTquroaX0W9rcZb6s3q6pfq6rnV9W/V9XZVXVRv5yPV9VLquq+VVXT+jzsX7PcVics89B+W107HzhrFsth/5nxvvWEkW1yq+GEKX0kgJVVVYdU1UOr6tVVdU7/W/+rVfWhqvqrqrrdNsv5yao6pT+n/Wb/95Sq+slZf4ahqqrvqKrjq+qPqupVVXX+yDHu5F2Ut+cYVtXBVfXwqnpTVZ1XVd+oqo9V1bOr6vt3uk5DN40YT7uNpC/vf/RlfbE/l/tgf253g11/2AGbdl3eUPaufrOJ83TNIsZVddeqOrmqPtrH54Kq+nBV/X1VPaKqrrbF/GI8RdOMcVUdU1V/VlXvrKov9/vsL1bVW6vq96vqO7ZZjhhPUVXduv/+XzNyrvTVvt79VVXdYYflOe8CpqKqDq+qB/b79zf25wYXVNXFVXVuVZ3RHw+uNcVl2odt07ziU1P63devz7ba1veyvstijvGZ6jWLIZznzSM21Z13bzcuE39TD63uTFLdb5nRz3zclMr9L9Wdi3+uuvspPllVf1NVx+6gjH1fd7YyzfhU1RFV9fPV/R56d19HL6nuuP6GqvqtqjpyG+WctZf6t19MOTYn7WC/tuVyquqo6to73lNVX+mH9/T/m9o55jKbVnyq6rhdHHvO2KSsQdWdvX5fu1ie486o1prBsFJDknsnuSBJ22T4UJKb7KH8B08ouyU5btHfgWF1hllur0l+MMmFW2yvrV/+zy76uzAs9zCHfevfbGNbbUnOSHKtRX8fhuUdZr2tTlju/9qwnLMW/V0Yln+Yw771hG3uW1uSExb9fRgMBsMihyQ3SPK+bewv/yJJbVLGgSTP3WL+5yQ5sOjPu9+GLb7zk3dQzlRimOSoJG+fUMZFSR666O9tlYa9xjhTbiNJcpMkH96inOMX/b2t2jCturxJ2Tv+zSbOyx3jJNdI8vJt1OsfFuPVi3GSX0zy9S3K+0KSu21RjhhPN77/so0615I8P8khW5TlvMtgMEx1SHLXbe6jzktyjz0uyz5sCeOTKf7uS3c9cjvr2xb93a5KfPrlnLDd7zVbXLPIQM7z5lR3jtlBXNaGV29S1qDqzoTv9IeTXLLhMx+3xzKvmuQfJ3ynlyX5g22UM4i6M6/4JPnJdMfrrbb5c5LceYuyztpm/Tlr0d/hKsSmL++kHezXJi4nyY/0cdxs/s8mue2iv8NViU+S43YQm7Xh2ZuUNai6s4Pv64w9LsdxZ8xwcGCFVNUtk7wkXYX+apLHJ3lD//qBSf5rku9N8o9VdevW2oW7WczI+CVJ3pvkSklusYdVZ4DmsL0enmStB7a3JHllkneku9B07ST365dxeJIXVtVXWmuv2tOHYl+a07710iT/lm5bfW+Sz6Vr+LlGkpsm+ZUkP5DkTkleUVV3aK1dvpfPxf4zp211s+X+RrrGkkuSXH0a5bK/LWB7vUe6hpzNnL3H8gFWVlVdKV2j4FrPj+9J8r/TJbZdPckdkvxWksOSPDLd/vQJY4r6kyQP6cf/X5InJvlYkhsn+R9JbpnkoenOc39nBh+FzqeSfDDJ3Xcx755jWFUHJTklyW36f70s3Y00X0x30eV3k3xHkmdX1Wf8Dt+V3cR4am0kVXX1dPuM7+n/9Zwkf5vkG0nunOSxfTkvqarbt9betYP1ZN1e6vIV7OY3mzjPxa5jXFVHJDk9ya36f52S5O/T7bMvS3L9dG1I/3lCGWI8e7uKcVXdPsnJ6W5WvTzdzfmnpjsH++50nV7dO8k1k5xaVT/QWvv4mHLEePqu2//9bJK/S/KmdHE+KMmx6c6Zr5fkQemum/3chLKcdwGz8Ol0bazv7MfPSXc8+a4kP5PuvP+oJKdV1W1ba+/e5XLsw3Zn1vGZxbXxdyT5pR2ux6qaV/1Zs+trFgM8z5t1bD6T7d3v9Nisn989f4tph1R3rqCqDiT5yyQHJzk33b58Gv5vknv2429I8tR0degW6Y41N05yUlWd01r7y03WbWh159vMID7XSnLldL9dT0/yz0neneTL6erozyf52SRHJ3nlNr/XU9OdB2zm4j2u81KaYd1Zs9V+7hObvVFV10/yinTnE5emu370yv7t45P8ZpLvTHcv061aa/vuuvsM4nNmtnfseXq6Nr5k62PP0OrO/0nyzAnvf22P5TvujLPojA6DYSdD1nvHuSTJsWPe/+2sZzedtMtl3DbdDRQ/muQq/f9OGin3uEV/D4bVGGa9vSa5XbobNW8+YZr7pjuxb0k+mk16WjUMe5jTvvXgLd4/KMk/jCznPov+XgzLN8xjWx1T5kHpGgVbkt/Levb7WYv+PgzLPcxp33rCSBnHLPozGwwGw7IO6S48ru0v35rkoDHT3CpdY2tL8qWN56/pkuDWeuY5M8lVN7x/aP//tX3/1J+YNeQhyR+mu3Bxnf71MSMxPXmbZUwlhkl+eWTZzxjz/k2y/oSqj2z1W8gwnRhnim0kSf5oZNm/vcmy1ralMxb93a3SMI26PKbMXf1mE+fljnGSF/TzXJQJbUTpOkcau58V4+WNcbqbEtbm+W+bTPPkkWmeLsZzi+8rkzwgY86X+/ePSpeUvPa9/9gm0znvMhgMUx822zdtmOanRvYbL9vlcuzDljQ+me7vvjOGdI4wx/pzwkgZx+xhfQdznjev2GxnPdIlXrQkX9m47xuZblB1Z5Pv4Df67+ADSf50JDbH7aHMHx8p57SN20W68/BPZr3t+hqblDOYujOv+KRLlnhWku+eMM0jR5bz+gnTnZU9tIGt+jCjunPSWjl7XLcXjKzP/ce8/4CR9/dl/GYRn20s88isPwHmIxOmG1TdGfnuT5rhMhx3NhkOBFZEVd02yR37l89rrb1tzGRPTrdjT5Jf73uh3JHW2ttba09rrf1ra+2iXa4uAzeP7bW19tbW2s+21t4/YZpT0/V4knSZg7fcyTLY/+a4b710i/cvS/KkkX/dcbNpGaZ5batj/Hq6Gyw/lOTPplAeA7DA7RWA8W43Mv74/tzzClpr78x6j0NHJrnZhkl+I/nWk14f2Vr7xob5v57uwkn66R6115VmXWvtD1prr2ytfX4PxUwrho/u/34xXYLkxnX9aLonUyXdDTI/vYd1Hoy9xnhabST9Odl/719+IN0527ctK8nz+pd3qqrbbJyG8aZUlzfa8W82cZ6dacS4qu6Q5Bf7l7/bWjttwvLauDYnMZ6dKdXjtXOzL7TWNutp749Gxo/d+KYYz0Zr7fjW2kvHnS/375+f7ikVa35mk6KcdwFTt9m+acM0L093Xpjs/jqTfdguzCM+ro3v3hzrz54N7TxviWJz16w/rezvN+776FTVdyf54/7lwzO93tDXjhmXpks6v8J20Z+Hn9i/PDLdU5I2rtug6s44s4hPa+0lrbWHt9Y+NWGap6Xr7CPpvtej9rrc/WaGdWfPqurodE8aSZJXt9b+buM0rbWXJnl1//IX+3n2jQXG52fTPQEmSf56Tsuk47izCQkVrJKfGhn/q3ETtNYuT5c1mHSV+c6zXinYxDJtr28YGb/xjJbB6lqmbfXCkfGrzGgZrK65b6tVdYOsX8B/eGttaX7Ys/SWad8KQHLIyPjHJ0z3sXHzVFWl6+EwST7YWvvXcTP3/1+7uHnffj6WwLRiWFXfm/Vkm5f2N9KMc/LI+ErfFLMPbdVGcuckR/Tjz+/P2cY5eWRcjBdkD7/ZxHm5/Vr/94IkT99lGWK83NbOsz6x2QSttQuSnL9h+lFivDgTj6XOu4AlsHatacfXmezD5mLX8dkB18Z3bx7x2YrzvPFmHZsHjYw/f0bL2A+ekeRq6bbNN06jwKq6epK79C9f21o7e5NJX5bu6SHJ+G1e3ZlBfHbgjP7vgSQ3nPOyV8EiY7OV+2T9Huqx1/V7J/d/D/Tz7CeLis/asadl/b4JZsxxZzIJFaySO/R/v5bknROmG92x3352qwMTLdP2euWR8S17OGBwlmlbfeDI+AdntAxW1yK21WcmOSzJX7fWzthjWQzLMu1bAVi/ySFJbjRhurWL7C3JR0b+f8Os99C2VWPy2vvXS3LMNteP2ZtWDO8wZrpv01r7XJIP9y8d45fLVm0k24pxul7n1m6KEuPF2e1vNnFeUlV1SNZvYjx97QnSVXVQVV2/qo6pqu3cQCTGy23t3GzTm0yq6vAka716fmjMJGK8OFsdS513AQtTVd+X5If7l7u5zmQfNkNTiM92uTa+C3OMz1ac520w69j0N1audRR2VpJ/mfYy9oOqekCS49M9eejRW0y+E7fJehL5pGPGxUnWEv1u0/cMPmrQdWeG8dkux55NLEFstrLdurMvr+svKj5VdeOsP8H0Ta21s+a1bBx3JpFQwSpZ68Xho+Me4z1i9AfEzTadCmZrmbbXO42Mf2BGy2B1LXRbraqjqurYqnpeksf1/z4/yQuntQz2jbluq1X1wCT3TPKlJL+123IYrEXsW/+qqj5bVRdX1flV9a9V9T+r6np7LBdgP3hx1ntRObGqDto4QVXdMsm9+pcvaq19ZeTtm4+Mb3XRUpvEcppWDHdTzvWr6rAtpmV+tmoj2VaM+3O8j/Yv1fUF2ONvNnFeXj+U9R5X31tVh1fVU9K1FX0q3RMNLqiq06vquAnliPFye1b/91pV9fBNpvm9MdOPEuPFmcqxdMz7zruAXamqQ6vqe6rqN9PdyHNw/9ZTdlGcfdiUTTk+27WTa+M3rap/q6ovV9VFVXV2VZ1aVQ8ac9PYvjPj+Oz2moXzvMy97vxMkkP78b9urbVtzDOoulNVRyZ5av/yxNba+ZOm36HdHDMOTvI9uylnP9adGcdnu9aOPZdk/fvdzI9V1buq6sKq+npVfaKqXlJVP7Xfnno9z9hU1Wuq6tz+uHNuVZ1RVY+pqmtsMeta3bmgT3Ydq7V2TtavM6k7e7ebJyMNpu707l9V7+8/64VV9ZGqen5V3XmP5TruTCChgpXQ9zq11hvRZo+ZSZK01r6UrjfgJLn+LNcLxlmm7bWqfijrNwW9t7UmoYJvWdS22v9waVXVkpyX5K1JfjlJpbtA/tOttS/vZRnsL/PeVvsf1WsNko9prZ23m3IYpgWeBxyX5DuTXCnJtZL8SLpEtY9W1a/ssWyAldY3Av9iuh5Qbp/kzP7i3o9W1V2r6g/SXZg8JMm/59tvzP2ukfGJ+/Yknx4Z1yaxPKYVw92UUxvmY0G22UayFquvbeN36VqMr11VV544JVM1hd9s4ry8Ri/EHUjXg9mvJzly5P+HJLlrktdX1YmblCPGy+3/JnlBP/6MqnpOVd27qm5dVferqlOy3ivin7TWXjumDDFegKo6kOQxI/966ZjJnHcBM1dVJ4xcZ/pauqc8PDnJdfpJnpDkRbso2j5sCmYYn+0se6fXxq+T5LZJjkjXu/j1ktwn3Y1976qqpb/pa6fmGJ/jsrtrFoM9z1tg3Rm9qfUFm051RUOrO09McnSStyR53pTLnvaxZ3B1J7ONz5aq6l5JfrB/+eoNnTWNc8N0HUpcLclV0z3p6gFJTknypn3WWd48Y3O3JNdOd9y5drokl8cn+XhV3XfCfGt1Z6v6l6zXnf1y7WchdadPfviF/uU3kvzdNmcdUt1JunbSm6X7rFdLcpN0x+zXV9UpVXXELst13Jng4K0ngaVw9ZHxr25j+q+le9z71WazOjDRUmyv/QHouUnWel993ITJGaal2FZH/EWSP15QjwEst3lvq09K1xD4tiTP2WUZDNe8t9ePJ3lZuu117YfojZL853S9Cl0lybOqqrXW/nKXywBYea2106rqVumSJR6Sb+/x5vPpekJ+Tmvt6xve28m+/Wsj49oklse0YmhbWFE7aCNZi/F2z+PWXC3JN3e3duzCXn+zifPyuubI+Inpfs/8c5LfT/KeJIen+63zhHQ37jyhqj7YWjt1QzlivMRaa5cleXBVvSLJ7yR5aD+MekOSP90kmSIR40V5VLob55LkZa21d46ZxnkXsEjvSvKw1tqZu5zfPmy29hqfiXZ4bfzyJK9L8k9J3p3kC+ni9p+S/Eq6m9dunuQNVXXb1tqnZrHOS2Za8dnrNQvned9uZnWnqr476z3rv7W1tlXP+oOrO1V1x3S/Vy5N8vBtPsFjJ6Z97BlU3ZlDfLZa/jWTPKN/eVm69ovNXJzktCSvSfK+JBek60Di2CSPSHez8u2TnF5Vx7bWLpjVes/DHGPz3iQvT/L2JJ9Nl1DxfUl+Psnd033H/1BV926tvWrM/LupOyt/zrbgunOHdOcGSXJKa+3CLaYfVN1J1zncaemOtx9Mt22uJQk9PF2i6k8lObWq7tZau2SH5TvuTCChglVxlZHxi7cx/Vqlu+oM1gW2sizb69OT3Loff35r7RVTLp/Vt6ht9ZfS3Txc6U5yb53uJPfXktyoqh7aWvv8HpfB/jK3bbWqfizdE1MW0ujCvjDPfesp6Y7xG7fTM5O8pKqOT3fh4kpJ/ryqTpv0qFKA/ayqDknXc8t9052HbnSddD3ifCJdQ+WonezbRxsBtUksj2nF0LawurbbRrIW452cxyViPDdT+s0mzsvrsJHxqyQ5Pcnx/Q34Sfek02dV1fvSPV3qQJLH97912oZ5EzFeWn2PtQ9KcotNJjk2yUOq6gOttc+MeV+M56yq7pQumSlJzk3XnjuO8y5gHl6e7klWSVfvb5yud9qfTvLiqvqN1tord1Gufdh0zCo+W9nJtfH7bdKT7puq6pnpErcfnK696ClJ7jfVNV2sWcZnGtcshnyet4i68wtZbyvdztMpBlV3+jblv0z3Hf15a+19M1jMtI89g6k7c4rPpOUflOSFSW7Q/+t/ttb+34RZbrtJ/Tmjqp6e5O/TJQDcLMkfJPnNaa7vPM0xNk9prZ005v//luQF/RORnpUu2fK5VXXj1tpFG6bdTd1Z2XqTLL7upHui/JrtHHsGU3d619vk855eVU9L8qokt0yXYPGIdJ0X74TjzgQHFr0CsE2jB7NDtjH92qNhvjGDdYGtLHx7rarHZr1XrzOT/Oq0ymZfWci22lr7RGvtfa2197bW3tRa+/N0j0D8pyTHJzmzqvbFY42Zmrlsq33vRWs/HJ/aWnvPTuaH3tz2ra21CybdQNY3rP9R//LQdD2yAwxOVR2W5LVJHpuu5+snpmtYvXK63q3vnuTN6S66v7yqNja27mTfPvqoWm0Sy2NaMbQtrKAdtpGsxXgn53GJGM/FFH+zifPy2nhR+8SRZIpvaa29Od2NWEl3TN94U74YL7G+F8S3Jbl3ks+ku5B+dLp4XT/dfvrrSR6Y5O1V9f1jihHjOepjcEq6jvouSnL/1tq5m0zuvAuYudbal/vrTO9rrZ3ZWvvb1tr90iXr3Shdb60n7KJo+7ApmGF8NrXTa+Ob3KS29t4lfVkf6v/101V1vWms5zKYZXymdM1isOd5i6g7Wb+p9ZtJXrKddZzw3n6sO7+T5KZJPpXkD2e0jGkfe4ZUd+YRn0memeQn+vFXJvnjSRNvUX8uTJdA9cX+Xw/rb3pfVXOJzaTvtH//2Ume17+8brqnJW20m7qzyvUmWWDdqaqrJLl///Kz6a7dTTSwurPV5/18uid+rT2V4pG7WITjzgQSKlgVo4/22c5jk9Z6strOI2Vg2ha6vfYZtn/av/xgknu21r42YRaGa2n2rX0W+C+lu1h6/XQ3ucGaeW2rj0v3+MdPp8tch91Ymn1r7y+TrF3AuNOkCQH2sZOS3LEff0hr7cTW2gdbaxe31r7SWjs9yZ2TvCHdTbpPqqofGpl/J/v20Z61tUksj2nF0LawYnbRRrIW452cxyViPC/T+s0mzstrdD973hY9O756ZPw2m5QjxkumT4x6cbqk1s8l+dHW2t+01j7fWruktXZ2a+2ZSX4s3YXZ6yZ5/piixHhOquqGSV6T5BpJLkvywNbav0yYxXkXsDCttb9O8nfp7oN5elVdc4dF2IfN0BTiM9Ysro231i7N+g2YyQDa1mcVnzG2umbhPG+DGdad26a7oTZJTtvqxuTt2E91p6pumq6DniR55AzvuZn2sWcQdWeO8dls+Y9P8rD+5ZuSPGBchxA70Vq7IMnf9i8Py/pTl1bKomMzxrNHxqd13FnJepMsRXzuk+TIfvyFe603yf6pO9vVWvt4uqf6JslNquq6OyzCcWeCgxe9ArAdrbWLquoLSa6VZGKv5VV1jaxXwk/Pet1go0Vur1X1X9JlQSfJJ5PcrbV2/l7LZX9atn1ra+38qnpLkrsluW9VXanvyYKBm+O2emL/97VJ7l1V46ZZK/uwqnpgP35ua+31O1wW+9QS7lvP7dfnqCSr3hMQwI5Vd0D/5f7lh1tr427IS2vt0qr6vXRPqjiQ5IQkj+rfPntk0q2epHb9kXFtEstjWjHcWM6k39tr5bQN8zEnu2wjOTvJj6Q73z9yi5sJ1mJ8XmvtmxOmY3qm9ZtNnJfX6H53q33n6LTX3vCeGC+vn8j6b9OntdY+N26i1tp/VNXfpOvh9lZV9UOttXePTCLGc9BflH9tusSWluSXW2unbjGb8y5g0U5N10vtYemOOy/awbz2YbO3l/h8mxlfG3//yPhQ2tanGp9xtnHNwnneeLOIzYNGxl8whfLW7Je686h0vW5/PMmhI20Mo35gZPzHq+rofvwVO7hJeeMx4x0Tpt3q2DOkujOv+HybqjoxyWP6l/+e5PjW2rR6XN8P9WdhsdnEVt/p2Umuk63P/ZL1urPK134WHR/Hnul4f5J79uPXS/e0j+1y3JlAQgWr5P3pepS8SVUd3Gc2j3PTkfEPzH61YKy5b69VdZ90JxsHkpyT5C6ttSE0vLE3y7ZvPa//e2i6hrRzZrgsVss8ttW1R9H9Uj9MclS6HhWT5I1JJFQwatn2rZs+YhtgAK6TZK3Xtkm9XCfJO0fGR/fR79/k/+Nok1hO04rhxnLetY1yPr0EvXANzh7aSN6f9Ue/3zTJv25S/sFJbty/VNfnZ1q/2cR5ef3HyPhBW0w7+v7G31xivLxuNjL+71tM+850CRVJF8fRhAoxnrGqOipdj4c36v/1yNbadm52cN4FLNp5I+M32OG89mGzt5f4XMEcro0PsV19avHZwqTv1nneeFONTVVdKcm3OiFI8s97LXPEfqk7V+7/3ijr7QuT/N7I+A2TbHefvptjz6VJPjKmnCHVnXnF5wqq6r8leUL/8gNJ7tFa+6RtGjwAACAASURBVMpuytrEfqg/C4nNBFt9p+9PcqskR1TV0Zt1/FBV35nk8P6lurMLVfUdSe7Rv/z31tr7dlvWGPuh7uzEXj6v484EBxa9ArADb+7/HpbuQLaZ0cczvWV2qwMTzXV7raq7JHlpukS5L6TrfeNjuy2PQVm2fetopvBSP+aLuVu2bRUmWZrttaqune5msmRnPRMA7BejN1hu1bHIlTaZ7xNZ34du9Zj6H+v/fibJWVutHHMzrRi+eWR803L6Hpu+t3/pnHTO9thGsq0Yp3ts+NqTEMR49YjzkmqtfTLJp/qXx9QmjyHp3Xhk/DMb3hPj5TWNc7NEjGeqqo5I8uokN+//9ZjW2jO2ObvzLmDR9nKdyT5s9qZyHXBO18ZvPjI+lLb1mV+n3cY1C+d54007NvdK96T1JHnRhI7BdmOIdWcvzkxycT8+6ZhxSJIfXZuntXbJhknUnRmrql9M8vT+5ceT3HWKT0Vao/5M31bf6XbrjvtQ9u7nst4WNM2nUyTDqzt7+byOOxNIqGCVvHxkfGwPZFV1IOuPBvpykjfMeqVgE3PbXqvqduke8XjlJBeky4D+j8lzwbcszb61qr4rybH9y0+21i6cxXJYWTPfVltrtdWQ7pHRSbeNrv3/uB1+Fva/pdm3JnlYkrWbkN44o2UALLMvJlnrIerYvieUzYw2+H1ibaS11tL95kqSm1bVj2aM/v9rvbWc2s/HEphWDFtrH856DzoPqKpDN1nkCSPjp+xqpdmVKbSRnNHPlyQPnnAz9wkj42I8J1P8zXZGxHmZ/UP/9/Akd5kw3f1Gxt+84b0zIsbL6hMj43fcYtqx52a9MyLGM9Gf3/xjkv/U/+tPWmt/tt35nXcBS+D+I+Pv3cmM9mFzsev4rJnHtfG+/eiXR/71L9Msf4ntOT7bsNU1izPiPG+cacfmQSPjz59CeUn2V91prZ2wjTaIPxyZ5c4j7521g+VcmOR1/cu79vdMjHO/rPeOP26bPyMDqjvzis+aqrpfkr9Kt/86O91TkaZ603af2L725JivJ3nHNMufl3nHZht+ZWR83HHntCSX9+OTnoh7Qv/38n6elbTg+Kwdey5J8qI9lvUt+6XubFdV3TDJ3fqXH2utbexoZiLHnckkVLAyWmtvT/Km/uVDqurYMZP9VtYfGf3UjZlRVXVcVbV+OHl2a8vQzWt7raofTndx47B0j9W6V2vtndP4DAzDPLbVqvreqvrxSevRn+C+KMkh/b+mnY3MinMewCqZ0771mKq65aT1qKrjk/x+//Ib6Rr6AAaltXZ5ut9MSXLdJI8bN11VXSPJ6I1ir9wwyVOSXNaPP62qrrph/qsmeVr/8tJ+epbLtGL4v/q/10zyxI1vVtWNkzy2f/nRrEAD8X4xjTaS1trFSf6if3mzJI8es5xjkzykf/nG1tqZu15pFkKcl95TklzUj//vqjp84wRV9QtJjutf/mNr7dOj74vxUntduovbSfKIqrrFuImq6ieT/HT/8jNJ3jX6vhjPRt/74ClJbt//66mttd/dRVHOu4Cpq6oTquoqW0zzqCT37F9+IutttGvvb+cagX3YLswrPtP43VdVd66qIye8f6Ukz816+/0rNp5vrpp5xGda1yyGdp43x33b6PTXTPeEiiR5b2vtXZOmH5lvcHVnGvoYr8XnpE0mWztmHJzkGVV10IYyjsp62/WX033PVzC0ujMt24lPVd09yYuTHJTk3HRPpjhrh8v5iY3nFBvev1q6Jy+tPTnmea21b+5kGfvNVrGpqltU1U22KONhSR7av/xcxpxvtdY+l+SF/ct7VNXPjCnn/knu0b/8636eQdvmvm10+u9Psnae8M+ttfO2uZxB1Z2qundN6Biuqq6TrjOatXvrnjlmGsedPdjqcbqwbH493aNfrprkNVX1p+l6871qukyzh/XTfTjJk3e7kKo6YcO/fnhk/Ceq6piR1x9trW3sAQuSGW+vfUPbq5Os/Wj93SQXVNUPTJjt3NbauTtdFvverPet103yuqp6d7pe29+Z7sfKpUmOTneB7iH9eJK8L8kTdvVJ2O/mch4AUzLr7fWYJG+oqrcleUWSd6drxEuSGyX5mX5Y6wng0TvtnQBgH/mjJPdNcmiSk6rqVul6Xvt4kquke2TtbyT57n7617XWXjNaQGvtw1X1pCSPSfd42rdU1Z8l+ViSGyc5MeuNwU9qrX1kth9pWKrqDklGL44cNTJ+k43tOK21kzeWMcUYPj9dT3u3T/KrVXV0kuck+VKS2yb5vXS99lye5L+31i7d/icdrr3GeMptJE9K8rNJvjfJE/sLc3+b7maPOyf5nXTt6t9It+9gm6ZRl6dInGdgSvvrT1XV76e78fAWSd7e76/fk27/er8kj+gn/0qSR22yOmI8A3uNcWvty1X1hHTnZ1dP8taqelqS09MdS6+T7rztv2a9U7jH9EmyG4nx9L04yd378dcned4Wx9KL+17Yr8B5FzAjJyV5clX9Q7qnU30syVfTHU9ukeTns54QdnGSh7XWLhtTzkT2Ybt2UmYcnyn+7ntwktOq6rR0Pet+KN155dWS3Cpd2/3N1+ZP19a/6k7K7OvPMZneNYshneedlDns2zZ4YNZvxNzJ0ymGWHfmorX2+qr623SxuU+S06vqKUk+m247eFzW265PbK19aZOihlR35qK6p1Kdkq7OXJKuDeJKWxx7zm6tfXnD/x6T5IVV9bJcsa4fkeR2SR6e9Rh/KN2+gcluleS5VfWGJK9K9/SeL6Tbxm+abv+59vv2snT7z69tUtbjkvxEkmsneXFV3TrrnW4dn66jxCQ5L935Bzv34JHxnRx7hlZ3npZuH/MPSd6W5Kx0++yj0nUu8ytZb4t7c5Jn7GYhjjsTtNYMhpUaktw73eNi2ibDh5LcZJN5jxuZ7uQJy9is7HHDpuUYDLPcXtM9Emkn22pLctKivxPDcg4z3laP28E2+sok117092FY3mEe5wFbLP+sfv6zFv1dGJZ/WJJ969fSNRAt/PswGAyGRQ5J7pqusXur/ebrklxjkzIOJHneFvM/N8mBRX/e/TYkOXknv30nlDOVGKZrsH77hDIuSvLQRX9vqzTsNcaZchtJupuFPzxh3guSHL/o723VhmnV5S2WcVa2+ZtNnJc7xkken+4Gw83m/3ySY8V49WKc7ia6P98ivi3dDWOPFuO5xnenx9KzJpTlvMtgMEx1GDnP22r4dJK7bVLGcSPTnTxhWfZhSxifTOl3X7Z/PvOeJDdf9He7QvE5bpvL2NY1iwzkPG8esRkz/b/2016a5OgdrOvg6s42vpOTRj73cZtMM7rvOmlCWVdN9wSezb7XyybNP1LOIOrOvOKzoYztDieMKeeMbc57RpLrLfq7W5HYnLDN7/T8JPfdxjr9SJJzJpRzTpIfWfR3tyrx2TDtgXRPH21JvpjkkB2sy6DqTrZ/XvD3SY7cS2ziuDN28IQKVk5r7RVV9YPpspnvleS70jWsfzTJ3yV5emvt6xOKgLmxvbIqZrytviXd4+/umq43n+9K19vcoel6rfhEuoabF7fW3rKXz8H+Z7/KKpnx9vrOJL+Q5Nh0+9bvTHeB7uB0vZz9R7qbgp/bPJ0KIK2111bVTdM9Ge0nk3x/uh4NL0339LQzk7woyWmtbwEcU8blSR7S9wzzsCS3SbfvPb+f/9mttVfN+rOwe9OKYWvt/Kq6Xbres38u3eOMD0vXe8/rkjy1tfYfs/kUzENr7aNVdcskv5rk/ukuChyS7gaGf0oX408ucBWZAnFebq21x/Y9nz4iyR3T/ea5KN0FutOSPK21dsEWZYjxEurPtR5VVX+T5KFJ7pDkBunaCr+a7jfzG9Mdl7/t6QcbyhLjJeW8C5iBe6RrY719uv39dZJcK11vp+cmeVe6TrteutdrBPZhuzK3+EzBn/Xrc2y63vSvneSaSb6ZLmn3HeluUjul7f1JAMtiHvGZ6jWLAZ3nzbXuVNX3pLtpOElOb619bgezD7HuzE1r7RtJ7lVVP5fuZtgfStd+/fkkb0p3TfFt2yhnKHVn1Tw6yV3S1Z/vS7d/PDLJ19OdF/xbuicGvmaz6xN8m39Kd73n2HRPD1vbf1a6m/bfneSf0yWafWWrwlpr/1ZVt0h3Xf+n0j15KenuZzo1yVNaa1+Y8mcYirsk+f/s3XmYJVV9N/DvD0FFBHFDUFRcYoxCVBQTNwSj0biCor4aE8HEXZNINJvhFZNoXhNMosHgLmiMcQUVNW4Rlxijxg2XuERARFQUcVA2gfP+caqdy+XeXmZ6pme6Pp/nuU/f6qo6dW518wz16/M954bD+ze21i5Zwblj+2/nsUnumf55b57+eXdLr5edmeTjSU5Yzr8HS/Hvzmy1Pn6PAAAAAAAAAAAAAAAAlm+Hte4AAAAAAAAAAAAAAADA1iZQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVADAGquqfaqqDa/DN6Odwyfa2WfVOggAAAAAAAAAjE5VHb0wDmGt+7I9qqqDJsZxHLTW/QEAZhOoAAAAAAAAAAAAAAAARkegAgAAAAAA1jGrWgIAAACT1ArYEqzIAcD2SqACANaJ1trxrbUaXqevdX8AAAAAAAAAgO1Xa+3ohXEIa92X7VFr7ZSJcRynrHV/AIDZBCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACgFVRVTesqv9XVZ+pqh9X1c+q6ntVdWpVvaGqDq+q3abOacPr6GH73lX1jqo6u6ouqqpvVtWxVXWjZfZh/6p6aVV9tap+UlU/Hd4fV1W32opt7FtV/zh89h8N9+K7VfWBqvqjqtprGW3cp6reOZx3cVWdNvRh70XOOXzinu4zY/8pw75Thu0bVdXfVdU3qurCqvphVb23qn5jmZ9zz6p6XlV9uqrOHfp5ZlW9qaruvcS5Vxn6+97hM14y/N58vao+WFV/VlW3mXPurYb7+8WqOn849ztV9bmqenVVPbKqrraczwAAAADrWVUdVFUtyWsmvn3aRP1g4XXQjHMPqao3V9W3hjrNeUMN4DlVde1Frnn80Obpw/aeVXVMVX2tqi6oqrOG2sFtp87bp6pePBx34VBXen1V3WKRax298BmG7d2r6rlV9aWhrnNuVX2oqh61zPu1T1X9/XD++UN/v15VL6uq/ZbTBgAAAGzLVlormH72ntHe6cP+44ft/Yfn+TOH5/tvDOMSrjd13l2n6g7/W1UvqKpdl/EZrlJVj62qk4exAhcP4x0+VlVHVtXOm3p/lrjuvaqPfzlt+GwXVNUZVfWJofZxrxnnHLRY/WXiuJtUHxNy2nA/vlNVJ1XVwcP+pX4O0+NvDhj6+u3h/pxVVa+rql9a4jPevKr+sPp4ldOHz3nh8DnfWFX3m3PePkPfPjTx7Q/N+L06fOKcK9SQFunTUmNhpn8H7zi0fdrw2efds80eHwTA+lGtzfz3AgCWrarukeTkJLstceiDWmsnT5y38I/Qc5O0JEfPOe/Hw7kfnXP9HZIck+QPktScNi5N8tTW2su3YBtXSfK3S7SRJCe01g6fOG+fJKcNm0ck+cUkfzLn3HOS3LO19pUZ1z88G4seN2utnT61/5Qk90zy4STPTnJSkisULSY8q7V2zLwPUFW/meRlSXaZd0ySVyV5Umvt0qlzr5nk3Unusci5SfLW1tphU+c+PMk/J7nqEufu11r74hLHAAAAwLo2/KH+Q0sdl+Tg1topwznXTvKWJFcaBDDh+0ke0lr7xIxrHp/ksUnOSPKQJP+WZM8Zbfw0yf1aax8bBhy8Lcm1Zhz3oyT3aK19aca1jk7ynGHz5knen2ReAONNSX5zuk4x0dZvJ3l5knmTNFyW5KjW2l/P2Q8AAADbvJXWCiafvVtrVxoHMQyGv2mSE5J8MMkrM/vv+V9LH+vw3ap6ZpK/yexxFZ8ZjvvJnP7fJMk7ktxukb5/I8kDWmtfW+SYFamqv08fC7KYH7bWpoMjB2Xj/f55/WXqmHsleXuSa85osyX58/R7utjPYXL8zfeTvCjJjjPauyDJb7TWPjKjjZsl+eaMc6b9c5IjJmssU+NeFnNEa+344ZzjM9SQWmv7zDthGWNhTs/G38FPJPnHTH32yXu2GuODAFh/Zv2jCQDLVn0lgH9ND1Ocn+S49IfB76c/0N0syV2THLpIMw9IcqckX01/aP5C+h/QH57k8cP7k6tq39bamTPO/8ckTxnefyTJ8ekPeRekP0T/QZLbJnlZVX23tfaOLdTGy5M8bnh/dpJjk3w8PRBy/SR3TnLYjPMmPT79fn04PbDwtSS7J/nt4XX9JK9Ocpcl2lnMXulhisvTgxsfS3JJkrsn+b/D9f66qt4zZ7DCI5K8Lv3B8pvD5/xyethjnyS/k+T+w9cNSY6cauLobAxTnJzk9Um+leSiJHskuUOSB6YXBiave4P0h+Srpv9+HZv+MPyDJDsnuWV6YOSQFd4PAAAAWK8+lWS/9GDDXw3fu2+S70wdd1ry8zrPB5Lsnx4g+Jf0SRFOS7JTkgPTn/P3SPLuqrpDa+2MOde+RpIT05/j/yy91nFZkvsN27skeV1V3Se9TvHj9LrEf6X/7eJh6fWYa6dP2vCrS3zWN6bXoV6aHgj5cZJfTvLHSW6V5BHD537G9IlV9YD0WlAl+UmSFw734dL0Os2fpk9K8fyqOq+1dtwSfQEAAIBt1YpqBStwuySPSg8zHJPk1CS7po+heEz6s/kxVfW29IkqFwa+fzX9mfv30scZ7J8eILjSJJRVdd308Q03TnJxklek1xtOTw8j/HqS308fO/Ceqtq/tfbjFX6OK6mqB2ZjmOIL6eNivpJee9g9fSzJvdPHhKy07ZunB0R2Sa9DHJdeJ9mQZN8kz0ryvPR6yXLcd+jHqemhilPTx1Mcmn5vrpFej/mF1tolU+deJX3syHvTJ634cpJzk1wn/ef31OGzPiZ9rMhzJs49K/336oD0MS1J/9l/auoa317m59gUBwx9OzP9d/DT6TWm6ck+V2N8EADrjBUqANgsQ1L+g8PmFVagmDpuxyTXaK1tmPje5D9CM2cZqKrfSvLaYfPNrbVHTO2/T5L3DZu/21p71YxrXz3Ju9JnVjwjyS2nkvKr0caD02cMSJL/THL/1tp5c+7FjSeDITOS+q9I8sQ29Y90Vb0iye8Om/u31j47tf/wLG+Figyf4W6ttbOmjrl7+gNjJXlxa+33p/ZfL70Acq30h+AnzprZsaqelz444vIkt2mtfXVi37fSCxxvaa09fPrcieOu01o7d2L7cekDKJJFVqCoYfnO1tqF89oGAACAMVmqZjBx3MLz/HlJ7t1a++8Zx9w0vfaxV5J/aa395tT+49NnF0z6JAi/2lr736ljnpo+UULSJ2g4L71Occ7UcX+TPnAgmV0LOTpX/OP9o1trb5g6ZtckH03/g/jlSW43WVOoqp3SB17cMD1McY/W2ucW+cwXJLlpa+0HAQAAgO3UCmoFR2d5K1QkfcLJ+7TWLpg65s3pk09elh5C+FCSR7bWLps45irpYYlfTfLDJHtOj0WoqtcneXT6eIeDW2tXCn1U1R3S6wC7JHl+a+3Zc27BslXVa5P81nDdfRdZPeMKYxyG7x2URVaoqKoTs3HSyENbaydN7b/GcP7PwxpLrFCR9MkxDp0OTFTVs7MxRPPQ1tqJU/t3SbJba+3sOZ+v0seJHJ6+8uiNpgMry1mRY+LY47O6K1QkPUBy4CLjdTZ7fBAA69MOa90BALZ7e068v9KSgAtaa5dOhilmeMKsh87W2uuSvGfYPLSq9pw6ZGFWgrfOetAZ2rgoydOGzZsmOXgLtnFBksPmPZwNbc1aZWPB2UmePh2mGBwz8X46Qb9ST58OUwx9+1g2zmww6xpPTg9TnJXkKYs8ND5nOGaH9JU1Ji38DD+6WAenCw0T5/1oXphiOO9CYQoAAABYmaq6ZvpMg0ly1KwwRZIMK1L85bD58OGP7fMcNR2mGLw6faXKpK/G+XvTYYrB5EoQS9VCTp4OUwz9PT/JE4bNHZI8aeqQQ9PDFEnyV9NhiqGNM7Ix2HGNJEcs0RcAAAAYm5Y+QP2CGfv+afh6lSRXTx8fctnkAcP2y4fN6ya5zeT+YaLKRw6bT5sVphja+WySlwybh6/oE8y3MFbhM/PCFMO1p8c4LKqqbpjkQcPmW6bDFEObF2RjXWM5LkpyxIzVJ5LkxekrUCQz6iyttZ/OC1MM+1uSP0wPxuySvirHtuapi43XyeqMDwJgHRKoAGBzTT5Mbeofk0+d90f6wcJygDsmOWjhm1W128T2Wxa7QGvtK+mzIibJXVa5jeumz5KQJG9srU0vhbkSb2mtXTzn+l9NnykxSW6+Gdc4Lz1NP8/Cz2LWNR48fD15Xj+THqBJn7kxmbhXg4XfmUcOsyks18J5166qh6zgPAAAAGBp90yfRCFZokaSjZNq7JTkjnOOaUneNHNHnwjh68Pmj5K8d85xpyU5f9hcqhbymnk7WmufTPKlYXP6j/0L2y0ba1CzvDl9Fs1ZbQAAAMDYfWEYUzHL5yfev3+R4MHkcdN1gAekBzIuyMZJOedZqFvcsKpussSxy7EwVuHAqrrFKrS34OD0z5Qkr5t3UGvt87nivVnM+1tr35/TzvnZWI9ZcsxJVe1UVXtX1S9V1b5VtW/6pBQ/HA653TL7tLWc2VqbO7HnaowPAmD9EqgAYHN9LMk3h/f/UFWfrKo/raq7VdVVl9nGp5bY/8mJ9/tNvL9DNv5b9oaqaou9klxvOHbPVW7j9kkWllRcdNWFZfifJfb/aPi662Zc4+uttcsX2b9QvLjCNYYlNm8/bD5xGffqsOHY6VVFThi+3jXJaVV1bFUdWlXXX6Lf70gPgyTJiVX171X1jKq649A3AAAAYNPdaeL92Us880+uHDn93L/gB0vMzLjwjP+NOSt1Th+3VC1kufWlW03VrPYdvp42Z5WMJMkws+Nnp84BAAAAuq8tsm9yxYDlHjddB1ioW1wjyaVL1C1OnjhvXt1iJV47fL1uki9W1b9W1RFVdcvNbHeyvrDYJKRJ8ulltrnUmJOZ40EWDCGKp1bVJ9In/DwzyZeTnDrx2mM4/Hqz2lhDX1hi/2qMDwJgnRKoAGCztNZ+lr4E4cJMAwckeX560OK8qvq3qnr0EgPeZ6bjJ3xv4v11Jt7vMX3gMk2uirAabUw+JM5d/nCZZi1/OWkhCLE5AYLlXmP6/xOuk75KyEpNr0Lxl+kzPrb0+//UJG9L8v2q+mJVPbeqbjDdSGvth+krZJyVHmA5OMnfpRcOzq2qt1XVAzehfwAAAMDq1EgmLbf+sFq1kOXWlyrJtSe+v1BrWur8JPnu1DkAAABAN/f5fmrCx8XqAJPHTdcBVrtusWyttQ8meVqSC5NcPckj08c8fL2qvl1VL62qTVmtYbI+MXeSh2XuX7DJdZaquk6S/0xybJJfSbLUJKo7L7NPW8uPlti/Zr9DAGz7NmVQJABcQWvty1W1X3qw4kFJDkxyy/SHp/sOryOr6v5zlhZcbBbCxUw+4D0xyceXed7kQ9RqtDEWk/fqlUletMzzLpncGEI4v1NVL0zyqCT3Sp9N4qpJbju8jqyqx7TW3j517keHWR4eluT+6b9reyfZLcmhSQ6tqvcmeWhrbalCAQAAALDR5HP//kl+tszzvr0F+rIpNrW+tFrnAwAAAFvOQt3iB+mTLy7Xaatx8dbaS6rqzUkeneQ+Se6W5FpJbpQ+1uQJVfX81tqfr8b11siLktxxeH9SemjkC+mTUFy0sMJoVX0ryY3TJ63Ylly2xH7jgwCYS6ACgFXRWrss/YHqpCSpqr2S3C999YE7Dq+XpQ96n3al1QgW2X/uxPsfTry/oLX2xRV2e7Xa+MHE+7024fztxeS9r028Vz/XWvtykqOSHFVVV09y9/Tiw28nuWb6Eou3aK2dPXXeRUleP7xSVTdL8oAkT09yq/QAz/OSPGNz+gcAAAAjM1kjOae1tq0EJZbrBknOXGJ/0oMTk38IP3dq/2L2nDoHAAAA2DoW6ha7JvnKMEZlqxomEP2HJP9QVTskuX36GJinJdk9ybOr6lPTE0cuYrI+cf0kZy1y7PU3ocvLVlW7pa+8kSSvb609ZpHDr73IvpVYWC1jhyWO22WVrrca44MAWKeW+scIADZJa+3s1tprktwlyWeGbz+wqmYt+XfAEs1N7p98oPlcNs4eeLdN6ujqtPHZiTYO3MQ2tnmttUuSfGnY3NR7Na/ti1prH2itPS7Js4Zv75zkgcs497TW2rHpvycLgz0esZr9AwAAgO3cclZf+OzE+1V97t9Klltf+vpQ41iwUGu6WVXNHZxQVTslucPUOQAAALC92t5WalyoW1wtyZ3WsiNJ0lq7vLX2mdbaUUl+bWLXSsYqfGni/R3nHtVt6c/8C0l2Gt6/cd5BVXXr9Aky51nJ79X5w9fdlzjuVitoczGrMT4IgHVKoAKALaq19rMkHx42d8zsB6H9quoOM76/4HHD18uSnDLR9jlJPjFsPnqxP3ov0r/VaOPcbFwK8BFVdcOVtrEdecfw9dZVdd8tdI0PTry/3nJPaq1tSPKplZ4HAAAAI3DRxPurzTnmA0kuGN7/XlXVlu3SqnvsvB1VdUCSfYfN9bePyQAAIABJREFUD0ztXtiuJEcs0v5hSa41pw0AAADY3iynVrAteWc2Dob/g7XsyLTW2meycbWJlYxVOCUbV2n4rXkHVdXtktxukzq3fDtOvF9sRYgnLdHOSn6vThu+7lpVvzjrgKq6apKHLdHOsqzG+CAA1i+BCgA2S1Xdo6puucj+qya557D5kyTnzDn05VV1pYeyqnp0kvsPmye11s6eOuSvhq+7JXlLVc1NrlfV1arqqVV19S3QxguGr9dI8uaqulbmqKq95+3bDrwo/eeYJK+pqtsudnBVPaCqfnli+zpV9aAlBmX8+sT7hQfoVNV9q2qvRa51rSR3nj4PAAAAyGQ95RazDmitnZfk2GHzrkn+vqrm/g2hqm5QVb+7el3cbA+uqivNAllV10zysmHz8on3C05K8p3h/bOrar8Zbdw4yTHD5gVJXrMqPQYAAIC1s2StYFvSWvtqkjcPm/+nqo5c7PiqullVPWo1rl1Vj6yqnRfZf6ck1x42lz1WobX27STvGjYPq6pDZrS9c5KXr6C7m+ob2RhYeeysMR1V9aAkT1uinZX8Xn144v0fzjnm75LcaIl2VmI1xgcBsA7tuPQhALCoX0tyVFV9NP1B7wvpoYmd05fde1KS/YdjX9Vau3RGG59OX57w01X1giSnps/4d1iSJw7HnJ/kmdMnttbeXVUvSvL7SQ5M8pWqemmSjyX5YXpy/pZJ7pHkoekPsSdsgTbeWVWvSvI76YMOvlxVxyb5jyQb0mchuFOSRyb5fJLDZ97NbVxr7XtV9dgkb0myV/rP7Pgk70ny7fQlIPdODzYcluTmSR6U/nuR9IfSdyQ5vareluS/kpyR5NKhvQclWRiMcVaSkycu/6gk76yq9yd5X5IvJjk3ya7ps0w+LRsfpF+6mp8bAAAAtnOfTZ8h8OpJ/rKqfpb+PL4wC+JZrbULk/zf9IkxfiW9TnJQVb0iyeeS/DS9JnLbJPdO8hvpNZxXbsXPsZhPJ/mXqrpnet1iQ5JfTvLHSRZmOXxJa+0Lkye11i6pqiekz3S5W5L/qKq/TV9B87L0Os+fJNljOOWZrbUfbOkPAwAAAFvYcmsF25Inp4+7uHmSF1bVQ5K8NsmXklyc5LrpKzncL8m9kpyY5A2rcN0XJHlpVb09yUeSfC29TnLdJHdP8vThuMuy8jrJkenjbhYm7zxu6PeG9HEQf5TkNkk+leSAzfsY87XWflhV707ygPT7976hL2ek10Qelj7O5ZtJdk8yc3WH1tq3qurb6eNGnjm8/2r6vUmS77XWzh+O/WxV/WeSuyR5/DBh6wlJfpzkF5I8If3n+PH0+sxqfM7NHh8EwPokUAHAatgh/Y/t91zkmLcn+dM5+941vJ6T2TP8bUjy4Nba6XPOf0b6wPqjkuyZ5OhF+vHTbHxQW+02npjkwiRPTXLDJM+fc/7nF2l7m9dae9tQmDg+yXXSQzPzlnW8PP1+TdsnvTAwz9lJHtJa+8nU93dKX7Hk/lc+5edemuTFi+wHAACAUWmtnV9VL07/I/z+6RMVTDo4ySmttYur6j7pz/wPTR+EcGzm27AFurupHpEegnjK8Jr21sypRbTW3lVVR6SvXrFrkr8YXpMuS3JUa+24VesxAAAArJHl1gq2dr8W01o7t6ruluRN6QPeDxxe86xm3WL3JI8dXrNcnORJrbVPr6TR1to3hpUpTkwfzP/0bAxoLHhu+ricA9JDMFvKk9ODBTdJn0zj3lP7v5XkkCTvXqKd5yf5pyQ3Sx8rNOmI9LrTgselr1SxR2bf32PSAzOrEqgYrMb4IADWmbnLdQPAMh2TnkQ/Lskn0h+gLhpep6c/yD6wtXbIYrMXtNaOTk+5vyvJ95JcMpz/T0lu21r78CLnttbaX6SviPE36TMSnpv+UHN+ki8neX36g9des/qxSm1c1lp7evqMCC/PxlkJfpbku+kFiCMzY6WN7U1r7Z3pD7/PTPLv6T+zn6UHSk5LX1niyCT7tNY+NHHqGemrVxydfj++muS89BUqfpA+m8Ozkty6tfbfU5d9RpLHJHl1+s/nrPTfkwvT7/UJSe7RWntya+3yAAAAAJP+JMnjk3w0G2seV9JaO7+19rD0gQmvTH92Pz/92f3c9BkRX5I+2cF9tny3l6e1dlqSO6b/0f4rSS5In9HwI0ke01o7bM7KqQvnn5Dk1kleNJz/0/Saw/8meUWSO7TW/nqLfggAAADYupZVK9iWtNa+21o7MMkD08dwfDO9BvCzJOekr2bwwiT3bK09bpUue3D6igZvTV+t85z0OsmG9JU+jklym9ba8ZvSeGvt/emrUbwsfUzFJeljMN6V5H7DeJrdhsN/vKkfYhn9ODM9XPO36WMwLh6u9/n0UMftW2tfXkY7x6WPI3pfku+n36t5x/7PcM2F1TAuSb+//5bkAa21Z23GR5p3zc0eHwTA+lOttbXuAwAjVVUL/wg9d3gABAAAAIBlqaqj01c8TWut1rY3AAAAAFtGVX0gya8l+Vhr7R5r3R8AWG+sUAEAAAAAAAAAAACwjamqGyY5cNj8xFr2BQDWK4EKAAAAAAAAAAAAgK2sqm65yL6dkxyfZKfhW6/dGn0CgLHZca07AAAAAAAAAAAAADBCr6yqXZK8Kcl/Jzk3ya5J7pTkKUkWAhevaq2dujZdBID1TaACAAAAAAAAAAAAWHeqao8ke2zCqZe01r622v2Z407Da54Tkzx9K/UFAEZHoAIAAAAAAAAAAABYj56S5DmbcN4ZSfZZ3a7MdGSSQ5PcK8neSa6fpJJ8P8knkpzQWnv3VugHAIxWtdbWug8AAAAAAAAAAAAAq6qqjs4mBipaa/usbm8AgG2RQAUAAAAAAAAAAAAAADA6O6x1BwAAAAAAAAAAAAAAALY2gQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGZ8etfcGqulqS/YbNc5JctrX7AAAAwDbvKkmuP7w/tbV28Vp2BlaLuggAAADLpDbCuqMuAgAAwDJt1brIVg9UpD8cf2oNrgsAAMD26YAkn17rTsAqURcBAABgpdRGWC/URQAAAFipLV4X2WFLNg4AAAAAAAAAAAAAALAtWosVKs5ZePPJT34ye+211xp0AQAAgG3Z2WefnTvf+c4Lm+csdixsZ9RFAAAAWJLaCOuUuggAAABL2tp1kbUIVFy28GavvfbK3nvvvQZdAAAAYDty2dKHwHZDXQQAAICVUhthvVAXAQAAYKW2eF1khy19AQAAAAAAAAAAAAAAgG2NQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKOz41p3AABgW3L55Zdnw4YNa92Ndevyyy/P+eeff4Xv7brrrtlhBznfzbXbbru5jwAArEvr/TnNc9Km8xwEAAAAAPOt99rqWlLX3brUgtnSBCoAACZs2LAhhxxyyFp3A1bspJNOyu67777W3QAAgFXnOY15PAcBAAAAwHxqq6wXasFsaeI6AAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjM6Oa90BAIBt3U/3fWjajldb626sD5delGt+8cQrfOsn+x6a7Hj1NerQ9qkuvTi7fPFta90NAABYM+vqOc1z0rJ4DgIAAACAzbeuaqtrSV13i1ELZi0IVAAALKHteLW0nXZe626sCzXrmzte3f0FAABWZD09p3lOAgAAAAC2lvVUW11L6rqwvuyw1h0AAAAAAAAAAAAAAADY2gQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdP4/e3fwG2XV7wH8tLdyU4OFcQE3Rv4CYGFi2cHfYCRQE0hYCSZNcOF20AV16YY3XYArE0gsROPeHaykGxPhH5DrAjYNhdiIvNO78L2R4kynffqcPuf09/kkbKYzh29Mf8/MOY9fRqECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIZ6rrAAAlGwwGaXV1dcNjMzMzaXJSHw0AqJPPNwC0zXsLAHg/BAAAumdfAgBsxmeF0RQqADaxurqaPvjggw2P/fDDD+ngwYMdJQIA2BmfbwBom/cWAPB+CAAAdM++BADYjM8Ko6mUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUbOLFixddR4DiNJ2L3PPU9vrmHwAAiC7HvqjUvVapuQAAgPFKvXcF1M01Iq/nz593HWHLaspao5pmraasAABsj0LFCGtra+mzzz5La2trXUeBYjSdi9zz1Pb65h8AAIgux76o1L1WqbkAAIDmzGtMAAAgAElEQVTxSr13BdTNNSKvlZWVdPbs2bSystJ1lLFqylqjmmatpqwAAGyfQsUIN2/eTL/88ku6detW11GgGE3nIvc8tb2++QcAAKLLsS8qda9Vai4AAGC8Uu9dAXVzjcir3++n33//PV25cqXrKGPVlLVGNc1aTVkBANg+hYohHj16lJaWllJKKS0tLaVHjx51nAi613Qucs9T2+u/vt5vv/2244wAAAA1ybGPK/WspdRcAADAeKXeuwLq5hqR1/3799PDhw9TSik9ePAg3b9/v+NEo9WUtUY1zVpNWQEAaEah4jXr6+vp2rVr6eXLlymllP7888907dq1tL6+3nEy6E7Tucg9T22vP2y9r7/+upWsAAAANcixjyv1rKXUXAAAwHil3rsC6uYakddgMEgLCwsbHltYWEiDwaCjRKPVlLVGNc1aTVkBAGhOoeI1d+/eTcvLyxseW15eTvfu3esoEXSv6Vzknqe21x+23s8//9w4HwAAQG1y7ONKPWspNRcAADBeqfeugLq5RuR1/fr1tLq6uuGx1dXVdOPGjY4SjVZT1hrVNGs1ZQUAoDmFilesra2lxcXFoT9bXFxMa2tru5wIutd0LnLPU9vrb7YeAABABDn2caWetZSaCwAAGK/Ue1dA3Vwj8lpZWUl37twZ+rPbt2+nlZWVXU40Wk1Za1TTrNWUFQCAnVGoeMXNmzfTkydPhv7s8ePH6datW7ucCLrXdC5yz1Pb62+2HgAAQAQ59nGlnrWUmgsAABiv1HtXQN1cI/Lq9/tpMBgM/dlgMEhXrlzZ5USj1ZS1RjXNWk1ZAQDYGYWK//j111/T0tLSps/59ttv06NHj3YpEXSv6Vzknqe219/KegAAAHtZjn1cqWctpeYCAADGK/XeFVA314i8fvrpp/Tw4cNNn/PgwYN0//79XUo0Wk1Za1TTrNWUFQCAnVOoSCmtr6+nf/3rX+nly5ebPu/ly5fp2rVraX19fZeSQXeazkXueWp7/a2uBwAAsFfl2MeVetZSai4AAGC8Uu9dAXVzjchrMBikL7/8ckvPXVhYGPnNELuhpqw1qmnWasoKAEA7proOUIK7d++m5eXlLT13eXk53bt3L506dSpzKuhW07nIPU9tr7+d9f7f06dPt/V8oC5DZ9whGKUZ8jvp/YmtGva74sYPxJZjH1fqWUupuWo37H3EZxPaZJ9GSsk+iOLZa0F+pd67AurmGpHX9evX0+rq6paeu7q6mm7cuJE++eSTzKmGqylrjWqatZqyvs45HfA6Z6tUyVlwNs4wR2u9UDExMfHumKf8T9t/506sra2lxcXFbb1mcXExzc7Opunp6UypoFtN5+L48eNZ56nteW2yXkopXbhwYduvASr37z9SSm92nQL+9u8//vGQ9yd24tmzZ+ntt9/uOgbsCc5Fyj1rKTXXXvDs2bN/POazCdnZp8VjH0SF7LWgPaXeuwI2ci7Cq1ZWVtKdO3e29Zrbt2+nubm51Ov1MqUarqasNapp1mrKOoxzOmBLnK1SOmfBu8oZ5l8mM6z5aMyf7f1T8JndvHkzPXnyZFuvefz4cbp161amRNC9pnPR7/ezzlPb89pkPQAAgDHCn4uUetZSai4AAGC8Uu9dAf8Q/lyEv/X7/W3/a7eDwSBduXIlU6LRaspao5pmraasAAC0J0ehohovXrxI33//faPXfvfdd+nFixctJ4Lu7WQuHj582Oh1W5mntud1J+sBAADsBTnORUo9ayk1FwAAMF6p966AujkryOv58+eNr8EPHjxIz58/bznRaDVlrVFNs1ZTVgAA2pWjUHFkzJ/ZDH9nI/v27Usffvhho9eePn067du3r+VE0L2dzMXRo0cbvW4r89T2vO5kPQAAgE2EPhcp9ayl1FwAAMB4pd67AoYKfS7C3/bv39/4Gnzs2LG0f//+lhONVlPWGtU0azVlBQCgXVNtL7i+vv6/m/18YmKi7b9yR86fP59+/PHHbX1d2+HDh9O5c+cypoJuNZ2LhYWFdOnSpWzz1Pa8NlkvpZRu3LiRDh06tK3XAPV4+vRpunDhwsYH/+u/uwkDowz5nfzmm2/SgQMHOghDbYZd5956662O0sDe41yk3LOWUnPtBcPeR3w2oU32aaSU7IMonr0W5FXqvStgI+civGphYSGdPn06DQaDLb9mcnIyXb16NWOq4WrKWqOaZq2mrMM4pwNe52yVKjkLzsYZ5mitFypqMz09nebn59MXX3yx5dfMz8+n6enpjKmgW03notfrZZ2ntue1yXoppXTo0KF08ODBbb0GqFxhB/ww7HfywIED3p9obHIyx5cXAjXIcS5S6llLqbn2gmHvIz6bkJ19Wjz2QVTIXgvaU+q9K6Buzgry6vV66cyZM2lpaWnLrzl79mzq9XoZUw1XU9Ya1TRrNWUdxjkdsCXOVimds+Bd5QzzL/4rpJROnTqVZme39s2Ss7Oz6eTJk5kTQfeazkXueWp7/e2sBwAAsBfl2MeVetZSai4AAGC8Uu9dAXVzjcjr0qVLaWZmZkvPnZmZSRcvXsycaLSastaoplmrKSsAAO1QqEh/fa3k5cuX09TU5l/YMTU1lS5fvlzc11BCDk3nIvc8tb3+VtcDAADYq3Ls40o9ayk1FwAAMF6p966AurlG5DU5OZn6/f6Wntvv9zv913FrylqjmmatpqwAALTDp/v/OHLkSJqbm9v0OR999FE6cuTILiWC7jWdi9zz1Pb6W1kPAABgL8uxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHN33OsWPH0okTJ3Yp0Wg1Za1RTbNWU1YAAHZOoeIV58+fT4cOHRr6s8OHD6dz587tciLoXtO5yD1Pba+/2XoAAAAR5NjHlXrWUmouAABgvFLvXQF1c43Ia2FhYeQ3OkxOTqarV6/ucqLRaspao5pmraasAADsjELFK6anp9P8/PzQn83Pz6fp6eldTgTdazoXueep7fU3Ww8AACCCHPu4Us9aSs0FAACMV+q9K6BurhF59Xq9dObMmaE/O3v2bOr1erucaLSastaoplmrKSsAADujUPGaU6dOpdnZ2Q2Pzc7OppMnT3aUCLrXdC5yz1Pb6w9b77333mucDwAAoDY59nGlnrWUmgsAABiv1HtXQN1cI/K6dOlSmpmZ2fDYzMxMunjxYkeJRqspa41qmrWasgIA0JxCxWsmJibS5cuX09TUVEoppTfeeCN9+umnaWJiouNk0J2mc5F7ntpef9h6H3/8cStZAQAAapBjH1fqWUupuQAAgPFKvXcF1M01Iq/JycnU7/c3PPb555+nycny/telmrLWqKZZqykrAADN+aQ/xJEjR9Lc3FxKKaW5ubn07rvvdpwIutd0LnLPU9vrv77eO++8s+OMAAAANcmxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHU0opHTt2LL3//vsdJxqtpqw1qmnWasoKAEAzChUjnD9/Ph0/fjydO3eu6yhQjKZzkXue2l7f/AMAANHl2BeVutcqNRcAADBeqfeugLq5RuS1sLCQ3nzzzXT16tWuo4xVU9Ya1TRrNWUFAGD7proOUKrp6en01VdfpX379nUdBYrRdC5yz1Pb67+63h9//NHKmgAAADXJsY8r9ayl1FwAAMB4pd67AurmGpFXr9dLt2/fTvv37+86ylg1Za1RTbNWU1YAALbPN1Rswodg+Kemc5F7ntpe3/wDAADR5dgXlbrXKjUXAAAwXqn3roC6uUbkVVNBoaasNapp1mrKCgDA9ihUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAADA/7F379HWnHV9wL+/NxcgJCFyUVpAwkVcICqsJkgQ4VVRqwsERClasa9KEVpslaqwrNrUeqOWBVphRbyQIF6gSCJFQaAYigISoBZSCBclUeSSIBJCQhJCpn/MnJz9npy9z97n7LNvz+ez1qx37/fMfp6Z+T3zPDOz5zcbAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgOScuewEAVtnpp5+eiy666Fb/BwCwrhzfADBvxhYAMB4CAADL57wEAJjEscJ4EioAJjhy5EjOOOOMZS8GAMDcOL4BYN6MLQBgPAQAAJbPeQkAMIljhfGOLHsBAAAAAAAAAAAAAAAAFk1CBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADTnxGUvAADAqqubblj2ImyOm67f9f9q8Uuy1rRJAABat1HHxM6TprJRMQcAAACAJXGdbU5c1z002ijLIKECAGAPt7/0lctehI126qUXLnsRAACANbPp52nOkwAAAACAw7Dp11aXyXVdWF9Hlr0AAAAAAAAAAAAAAAAAiyahAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDknLnsBAABWyemnn56LLrpo2YuxsW6++eZcc801x/3faaedliNH5Pke1Omnn77sRQAAgEOx6edpzpP2z3kQAAAAAIy36ddWl8l13cVyLZjDJqECAGDEkSNHcsYZZyx7MTbaHe94x2UvAgAAsEZaOE9zngQAAAAAzFsL11aXyXVd2BxSoQAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaM6JS6jzhK0XH/vYx5ZQPQAAAKtux/niCePmgzXkuggAAAB7cm2EDeW6CAAAAHta9HWR6rrusOs4vsKqs5JcstBKAQAAWGdnd133jmUvBMyD6yIAAADsg2sjbATXRQAAANiHQ78ucuQwCwcAAAAAAAAAAAAAAFhFy/iFitsk+crh7VVJvrDQBWjbXbP9tIezk3x8icvCfInt5hLbzSW2m0tsN5fYbi6xXU0nJLnL8Po9XdfdsMyFgXlxXWQsfTHjaBuMo20wjrbBONoG42gbjLPstuHaCBvHdZG1suw+kNmJ2foRs/UjZutHzNaPmK0fMVs/6xKzhV4XOfEwC9/NsEJ+jnQJqmr07ce7rvvIspaF+RLbzSW2m0tsN5fYbi6x3Vxiu9KuWHM3WBcAACAASURBVPYCwLy5LrI7fTHjaBuMo20wjrbBONoG42gbjLMibcO1ETaK6yLrY0X6QGYgZutHzNaPmK0fMVs/YrZ+xGz9rFnMFnZd5MiiKgIAAAAAAAAAAAAAAFgVEioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmlNd1y17GQAAAAAAAAAAAAAAABbKL1QAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQsWaqap7VtVzq+qyqrq2qj5VVZdU1Y9X1SkHLPv+VfWMqrqgqt5VVR+pquuHev6mql5WVY+tqprX+nC8w4zvhDpPGeLbDdPlh1FP6w553z02Er+9pmNzWiUGi9xvq+pRVXV+VX1oqOvqqvpAVb2iqp5eVafOs77WHVZsq+rMGfZZffMhWMR+O8T5OVX1zqr6dFV9fqjnLVX1M1X1xfOoh+MtKLb3qqrnVdWlVXXNUM8Hq+qFVfUV86gDYD+q6our6tFV9bNV9Zqq+uTIscT5+yjvW6vqwuHawA3DvxdW1bfOUMaJVfW0qnpzVV1VVZ+rqr+uql+fpc+sqjsP6/XuqvrMML17+L87zVDOA4e6/3pYlquGZXtaVZ04QzkH3jaLNI+2UXM+76z+WsRPDOP0p4bx9LJhHL/nDOs2l7G/qh5WVS+tqiuqvxb28ar606r67mnLGMr57qp63fD564fyXlpV58xSzqJU1VnDsenrRtrzZ6s/z3xxVT18xvL0G+PLWbd+48BtQ78xdTlr029U1elV9aRh+72p+utTV1fVjVV1ZVVdPMRoqn1slbbhpravRZlH26iqozP0GedOsUzGkzVQ/bWz0dgeneIzjjfGl7NR7QM2UW3gOVhVPaD6Y51XV9Xl1R+7XFdVH66qP6iqb5tlnSbUs5Tvwzc0ZpdPuR0vn2Xd9qhzYWPUpsWs+nsDZv1e+dgs6zhSV/P7WVXdpqoeWlU/XFW/U1Xvr6qbt9Z7H+u2yHtJFnosuIlxm/c6Tajn3Bn2taPzqHOodxNjNu12vHiWddujzoVdy9u0mFV/fWjWMe3oLOs4Upf9rOpLquopVfV7VfXeYTlurKqPVdVrq+qpVXW7GZZlY8e043RdZ1qTKcljklydpBszvT/JfQ9Q/ksnlD06XZzkTsveHps2HXZ8J9T733bUc/myt8WmTQvYd49Nue92SY4te3ts0rSo/TbJFyW5aIr4PmjZ22RTpsOMbZIzZ9hnt6Y/XfY22ZRpEfttkicnuW6PmP5Dkm9a9vbYpGlBsX1qkhsm1HFDkmcse1uYTKY2pz3GnfNnKOdIkt/co7zfSHJkj3LunOTtE8q4PslTplier0nysQnlfDTJQ6Yo51/v0Yf/ZZI7L2LbrGPbyBzPO5PcN8kHJnz+6iSPnmKZ5jL2Jzk3yRcmlPPqJLfdo4zbJfnjCWV8Icl/WnZb2LHM/3vKeF6Q5ORF7BvRbyy9XcyzbUS/sYn9xqOmjOdVSb5lXbbhJravdWwbSY5OWUaX5Nw9lsd4sgZTkgcl+fyOdTh62NtA+1h+7E2mVqds4DnYsKzTrNNrk5xxwO13bMq6uszp+/BNjNlQxuVTrtflc9iGCx2jNjFmSc6foe1vTefYz/YXsyQvnvT5GddtUfeSLPxYcBPjNs91mqKuc2fY146K2cRlmXY7XjyHbbjQa3mbGLP09xxPG7OtbXo3+9nsMUt/reGmKZblA0m+aop129gx7VbLcFgFm+YcqOTB2b4x75okP5nknCTfkORFOxrnafus4/wkb0vy3PQHyv88yT9LfzH8GUneM1LPWw6zYbY2LSK+E+q9KcnnknxmqOPyZW+PTZoWtO8eGynnm5M8cMJ0oItVpsXGdqjnDkneMVLeK5N8T/ovbM5K8vgkz0/yd5FQsRaxTXLSHvvp1vS7I3V9z7K3yyZMC+qTvzbbNz58IclvJ3lskrOTPCHJq0bquS7JvZe9XTZhWlBsnzRSzqeT/PQQ77PSn5B+cPjbzUmeuOxtYjKZ2ptG+qguyRVJ/nTk/fkzlPOLI59719D/nT38+66Rv/3ChDJOSPLmkXn/MP01hock+eEknxgZK791Qjn3SHLlMO/nkzwnydcN03OyfQPWJ5LcfUI53zYyPn98WIaHDMv0hyPL+eYkJxzmtlnXtpE5nXcmOW0Yj7fKetEwXp8zjN/XDP9/bSac32ROY3+SHxqZ90NJfmCI6WOTvHHkb7+3x/b5/ZF535jt478fGMrd+ttTl90eRpZ5a7n+Pv055ROGZX5okh9N8pEZ1l+/cYjbZl3bRvQbm9hvPCrJ36b/0u/fpb8m9dAkD0vyxCQvz/YXdTck+epV34ab2r7WsW3k+ISK78/kPuOLJyyL8WQF2sQUbeZItm8s/MTI8h89zG2gfaxH+zCZNnXKBp6DJXnDMM8/JPn1JN+d/hjo7PQPJ7psR1+27/tLsoTvwzcxZkM5lw/zXbTHdrzfHLbhQseoTYxZkrvtEacHpj8G2TqmeL/97EAxO39kvs+kv/n3liTaGdZrYfeALXo/29S4zXOdpqjr3JGy9tq/by9mE5dlq4wX7rEd7zWHbbjQa3mbGLMk95qizT9xpJ7X2c/2F7MkPzX8/Yb0xx8/lOQR6cen78zx3xNemcnXLjZ6TLvVMhxWwaY5B2o7g+nz2SWbOMmPjzSYc/dZx4l7/P2EHH8B79uXvV02ZVpEfMfEc+sm7Z/O9onz5cveHps0LWjfPTZSxpnLXudWpkXtt0leMpRx/aR+N0nt1Y+bViu2eyzDCekPsrdORm637O2yCdOC+uRXj5Txb8bM89yReX5t2dtlE6bDjm2SU7J9YfuaJA/cZZ7Tk7x7mOfjSU5d9nYxmUxtTUn+c5JHJ/mS4f2ZI33f+VOWcb9s3/xzyc5jkKE/vGSkz931aSPpLyBv1f2CXf5+32w/yeSD445jR46FuyTftcvfRy+s7rqO6ZNZ/3qY5+ok99llnheMlHPsMLfNGreNYyOfOfMAy/KzI+X8+C5/f9jIdr54QjkHHvuT3DF9kmSXPtHkzjv+fkKOT4Y9OqacbxiZ51XZcbNb+icRXjH8/R+TfNGy28SwXK8e9qFdb84blnv0JuNHjJlPv7Fh/cYc24Z+Y/P6jbE3847M87iRdXvlqm/DTWxfa9w2js5j3WI8WZnxZI84/ciwvO9L8gtT7POONxpqHybTpk7ZwHOw9E8qfmqS24yp45QcfzP59x1g+x0bKedMMTvQOHb5pDFqjttv4WPUpsZsivV++kg9P3WA7Wc/S/7FsB2+IkMSWEaeqD7Dei3qXpKlHAtuYtzmtU5T1nXurG1KzMau14H3oynrWfi1vE2N2RTr/ZyRdfreA5TT9H6WPoHjl5LcZcLyjt639NsT5tvoMe1Wy7GoBmM6QJD67OStRnfemHmOJHnvSMd80iEty0NHluWXl71tNmFaVnyTPHMo77IkJ0dCxdrGNhIqNjm2Dx+p58eWvd4tTKsy5ib5lmkOXE2rF9sknxo+/8kJ89xhZFneuexts+7TImKbPkt/q46fmzDfo0bme8ayt43JZGp7yv5umn/hyGceOmae0esCt/oicJhnq8/9hySnjJnn2SPl7HYT0l2z/WS1105Y5tcO83whyV13+fvozUzPHlPGKSNj+P87zG2zCtM+28axkc+cuc96T8r2jaLvzfifIj5vpK6zd/n7XMb+JD8xUs6TxpRz92w/UfuPx8zzJ9m+gLvrU3xy/C9d3eqG3VWd0ifibC33r46ZR7/RQL+xz7ah32iw3xiWfetJxFet8jbc1Pa1ytMebePoyPofPUAdxpMVH0+SfGm2f/3lkTn+qZG7xn5e20D7WP32YTK1PmXNzsGmXKcHjpTxqgNsm2Mj5Zy57Fitc8yyuISKlRyj1jFmU6zTW4fP35zkngfYNs3vZ2M+d/HW56acf2H3G6zqfraOcZvXOk1ZzrnzXrZWYzZSz7mHvG1W8lreOsZsj/KOZPtXHK7JmLFzyrLsZ3svy8lJPjqU8enscm00DY5pR8I6eNzI6xfvNkPXdTenfyJKkpyR5OsPaVmuGXl920OqozULj29V3TP907eS5Gld1914kPIYa5X2XeZrUbF9xvDv1Ul+bR+fZ3arst9+38jrCw6h/BYtKrYnD/9+eNwMXdddneSTO+Zn/xYR27NGXr9mwnwXp/9FoaRPwgBYG1VV6X+iOEku67rubbvNN/z/+4e3jx0+N1rO/ZLcf3j78q7rrhtT5fkjrx+/y9+/PbnlutWu/fuOco4Mn9lpdJw4f5e/Z1jGlw9vHzCswy3mtW3I16dPLE2SC4bxeTfnj7zerW3Ma+zfKuczSV45ppyPJHnD8PYbq+q00b8P779xePuGYf7dvHKoJ9l9nVbVn428vs/OP+o3mu43JraNOdJv9Nap30i2v0PY7fuDVdqGG9e+1sCktnFgxpO1GU9ekOTU9Pvdm/aa2fFGc+0DWrdu52B76rru0mx/H3KY5w7LsnExm4cVH6M2KmZV9WXpby5Mkjd1XXfFrGWsgYXEbI4W8p30Cq73TusWt2ks6nrYsmxizA5sxa/lbVrMvjHJ3YbXr5gwdq6zlYnZcL/wXwxv75DkTrvM1tyYJqFiPTx8+PfaJO+cMN/ohcevPaRledLI68sOqY7WLCO+L0xy+yS/03XdxQcsi/FWad9lvg49tlV1crYPFl7fdd31w/+fUFX3qKozq0pi2/wtfb8dTsi2DkovT//zaRzcomK7dfB+r3EzVNXp6X/Ob3R+9m8RsR09efzEuJm6rrsp/ZMDk+ScqjpxxnoAluleSf7p8HqvG5u2/n639L92MOrhu8x3K13XfTzJB4a3u/XLU5WTvfv3rXLeP9S5n3LmtW1aN21M35Fk60L5pJjue+wfzrceMrx96x4Pmtgq5zY5PskySc7OdoLspPZ+Y5KtC8BnV9VJE+pbJbcZef2FXf6u3xhfzqb3G3u1jXnRbwyfWZd+o6q+PMmDhreX7fjbqm3DTWxfK2tS25gj40lvZceTqnpi+qcxfirJj035Mccb48vZqPYBJFm/c7BpbR27Hea5w7JsaswOapXHqE2L2ehD+l4ydq71tqiYzcuivpNetfXead3iNo1FXQ9blk2M2Tys8rW8TYuZMW3xMdtreZob0yRUrIetrOUPDTdpjTN6Efr+Y+eaUVXduarOqarfSvIfh//+ZJLfnVcdjVtofKvqSUm+Lf1P7PyH/ZbDVJax7764qj5aVTdW1Ser6m1V9XNVdbe9P8oMFhHbr87209reU1WnV9Xz0/e/f5v+6fdXV9Xrq+rojGUz3lLH3MF3pv8596RPfOvmXH6rFhXb84Z/71RVTxszz0/vMj/7t4jYfnbk9R3GzTRkwJ8+vD05yX1nrAdgmR4w8nqvm9wm9an7KeceVXX7MeVcPekGo67rPpbtp/4ctyxVdWqSe8y4LLcqJ/PbNptiv+edU23HYTz/0PB2t204j7H/fklO2GtZpihnP23jxCRftse8q+KRI6/ft8vf9RvbWus39mobO+k3tm1cv1FVp1TVl1XVM9N/obWVWP78HbOu2jbcxPa1UmZoGzv9fFVdUVU3VNU/VtX/qarn7Xw6/y6MJ+PLWbqqOiPJrwxvn9V13ScnzT/C8ca2jW0fwC3W7RxsT1X14GxfM5/m3GEaq/R9+DrH7BFV9VdVdU1VXVdVH66ql1XV4+bwtN9VHqPWOWbHGeL0vcPb65K8YtrPTqHF/WxeFvWd9Kqt907rFrdpzHo9bE9V9bqqunLY166sqour6tlV9UXzKH9G6xyz76qq9w7j2TVV9cGquqCqZn5S/i5W+VreOsfsOMN58tYve1yR5OI5lm0/28WQ9HPO8PYTXdd9apfZmhvTJFSsuOHp41tPMB73k0FJkq7r/jF9NlCyfSFuv/VeXFVdVXVJrkryliQ/kKTS38z7+K7rPn2QOlh8fIeBYOvLimd3XXfVfsphb8vad5McTfJPkpyU/mnaX5M+EepDVfVDByybLDS2owcLR9I/De/fp/95rC0nJ3lUkjdW1bNmLJ8dlrjf7tRC1vVCLTi2v53tuL2gqn6jqh5TVWdV1XdU1YXZfgLfz3dd94Z91MFggbEdPZl95Ni5kgcnOXXk/ZfOWA/AMt195PXEPjXJ34283tmn7qec2vG50XL2KmO0nHksy2GWsymOZn/nnVvb8dopriltbce7VNUtT8iZ49ivbeyhqo4kefbIf718l9n0G9u0jcmORr8x73KWqqqOjXx/cG36J6o+N8mXDLP8UpLf2/GxVduGm9i+lm6fbWOnh6U/nz45/bXQByX5kSTvq6pzJ9zgZzwZX84q+K9J7prkL5L81gyfc7yxbZPbBzRvTc/BpvGTI6+nOXeYxtGswPfhGxCze6V/wN+pSW6X/gm/T0xyYZI3H/DG+ZUcozYgZjs9IttPZr6w67prZvjsXo6mvf3swBb8nfTKrPdO6xa3aezzetg0vinJXdLva3dJ/z30Lyb5m6p67Jzq2NMGxOwB6W+svl36ce2+6e+7eWNVXVhVYx+YOIWVXO8NiNlOT0iylVT40jk/eNZ+trunZnvM+h87/9jqmHbi3rOwZKeNvP7s2Lm2XZu+czl1rxn36VeT/JcZnhzDZIuO7y+n/+LirUl+Y59lMJ1Fx/ZvkrwyfWy3Bo57pz/g+M70v3RwXlV1Xde9aJ910FtUbO848vpZ6WP42iQ/k+Td6Z/m8oT0X0LeIckvVdVlXdf90Yz1sG3pY25VfWm2b9Z+S9d1H5o0P1NbWGy7rvtCkn9VVf8z/RcFTxmmUX+W5BckU8zFomL7miQ3pT9/emZVvWTn8fBwAvzzE5YPYNXN0qdeO/J6Z58673Km7d8XsSwHLWfdHfS8cz8xTfrteMOOMmYpZ7exX9vY248mecjw+pVd1+32c86rth31G4sxTdvYot9oq20kyV8leWrXdZfs8rdV24ab2L5W2aS2seVj6fuMP0/ff9yUPrHi0elvhDgpyX9Kn2jxk7t83ngyvpylqqqvS3997KYkT5vxxohV25baB3BY1vEcbKKq2jruT5J3ph/nD2LVvg9f15jdmORVSV6X5NIkV6dPYj0nydPT35j2tUleX1XndF139R717WZVx6h1jdk4ow/pu2CGz03S8n42D4u832CV1nundYvbNGa5HjaN9yS5KMnbk3w0/fnulyf5l0m+OX2//IdV9Ziu615zwLqmsa4xuy79mPa/0j+1/rPZvmH+aekTwh6X5I+q6pu6rvv8PupYxfVO1jdm4xzGg2ftZ2NU1b2zfW/LZ9MnmBxkWbaWZ+3HNAkVq++2I69vnGL+rQv5tztgvd+fvoFX+s7jrPQnT89Icu+qekrXdZ84YB0sML5V9Yj0vzKynwvWzG6R++6FSS7YJaaXJHlZVT06/UnvSUmeV1WvmvRT1OxpUbEd/TnP2yZ5fZJHDzdrJ/2vB51XVZcmeVP6X7H4xSG+9u/9WdaYO+p704+9iV+nmKeFxraq7p/+hO8rx8xyTpIfrKr3dV339/upg1ssJLZd1/1dVZ2X/lj4bkn+oqp+In1yzI3pn5Z5bpJvGd6fvJ96AJZslj71hpHXO/u6eZdzkP591dZpnc3jvHM/MU2O347zGvu1jQmq6pHpk/eT5Mr01wR3s2rbUb9xyGZoG4l+Y7dlmWc5y3ZR+l9TTfplu0/6p9k+PsnvV9WPdF336h2fWbVtuIntaxXsp20kfd9wz11ubnhXkouq6kXpb/q7Q5JnV9XLuq77vzvmNZ6ML2dpqurkJC9Kf83zeV3XXTpjEau2LbUPYO7W+BxsrOF7khcPbz+X5MkH/P5ypb4PX/OYPWTML7RdXFW/luQV6W8yvH/6ZNZn7lHfblZujFrzmN3K8NTorYSlv09/M/FBtb6fzcMiv5NepfW+xZrGbaIZr4dN4/ld1527y///ZZKXDL8Cc16SE5L8ZlXdp+u66w9Y51hrHrO7jRnTXl9V/z39QxMfnD7B4unpHyQ+q5Vb7zWP2a1U1d3T/zJSkryt67oPzKFY+9n4ZTkl/Xi+9cstP9x13UcPuCyjy7PWY9qReRfI3I3uqCePnWvb1s9Nf+4glXZd9+Gu6y7tuu49Xde9ueu65yX5qiR/kv5pQJcMnRkHs5D4Dj9DvnXB+le6rnv3LJ9nXxa273Zdd/WkC1DDF1Q/O7w9JckPzloHx1lUbHceqD1rJJniFl3X/Xm2n+hy/4y/gZu9LWXM3eHJw783JHnZHMtt3cJiOzxx761JHpP+AuaTk9x1qPceSf5t+iclPCnJ26vqK2atg+Mscr/9sfTHwklyv/Q3iVw9lPXW9MkU70jyWyOfmefPKwMctln61NuMvN7Zp867nIP076u2TmtrTued+4lpcvx2nNfYr22MMRyfXpj+QTzXJ/muruuuHDP7qm1H/cYhmrFt6Dd2X5Z5lrNUXdd9evj+4NKu6y7puu4Puq77jvQPF7h3+if/HdvxsVXbhpvYvpZun20jXdddO+lJkV3XvT39Qw7y/9u773BbqvLw498XEFGkgwo2lKIi/ARBIwH0Ioiggr0glgtGjYVEDRgbckGi0Whi7CJR7A0iFmyxXIrGCKgRjYoIFytVmvTy/v5Ya3vm7rvrOfucfc7e38/zzLP37JlZs2bWlD1rVqG853hZh9m8n3QPZ5xeCzwA+A1wzCyWX2z70uND0kgt8WewjiJiK0pe+gZAAodl5s8HWbabxfQ+fKmnWZeCp61p11Iqw/6p/vTCWjlyWIvqHrXU06yLJwIb1u8fz8zbB1yuK8+zkVjI95aLabuBJZ1uXQ2bHzaIXtfhOv0DzLxv3orSQ8y8WOpp1ueedgml4lkrr+HwWa5mUW33Uk+zLp7NTDn2kfS45HnWNS7rAJ8DHlx/el9mnjiCuDTjs6TvaVaoWPyahbAG6aKk1aL5IN2sDKXWwjqUUgjwXsBbR72OKbRQ6fs6SpdFv6W0IqD5t2jO3ep4SoYVlJq3mr2FStvmei7LzB/1mPfrje8PHXI9mjHW8zYiHkZ5uQjwxX5/8DWUBUnbWoHxU5Sa3BcDD8/Mj2fmJZl5S2b+LjPfCzyC8kCwFaPrgndaLdh5m5k3USrKvAD4MTP3VSitCPwTsBczvcwAXDnseiRpjIa5pjZ7U2u/po46nLlc3xfbNk26fs+ds0lTWH0/jure77HRQUTcl9L69ybAbcAzM/P0Hosstv3odWOezOLYGJTXjdmHsyhl5scoL+XWAt4dEZs2Ji+2fTiJx9ei1efYGNSngWvq917XDPB+siiOjYh4APCaOnp4Zl43i2AW2770+JA0MhPwDLaGeo//BrB1/enwzPx0v+VGZN7fh09imrXLzKsp/7taYe02bBgsonvUBKfZcxvfPzrgMqMwyefZKCxkeYPFtN1LPd06msf8sEF8oPHdc22WMvMC4L/q6La10uewFs12T3Cajavh2ak6zyIigBOBx9afPkvnBktmE5dmfJb0Pc0KFYtcrcRwRR3t2SNERGzCzAHz23mKz+XAd+voEyLiDvOxnmmxgOn7j/Xzm8CBEfHM9qER9vqN3x815HpULcJz99JGfO4xH+uYFguYts35fzfEvFsMuR5Vi+C8HVfG18RbwLTdn5lr7Lu6dXObmT8DPl5Hd42IB3eaT/0t9Hmbmbdn5gmZuQul4sx2lDTfMjNfX+OzXWOR/5vNeiRpTJr/Ofv1SHmvxvf2a+pswknW/M/bGh+kd8xWOO1x+f0s4tIpnFHtm4k2wHNnaz+uHxEb9wmutR8vq5UaW+sY1b1/nMd7p3DGrr5M+ial0m+rBdEv9FnM68YMj41Z8LqxtI+NHlrHx/qU5+SWxbYPJ/H4Wuy6HRsDycxbgfPqaK9rBng/WSzHxisoLQteANy5y7upHRvzP6oxrXW++H9jxqQdH9JUm5BnsNVExAbA14BWz9xHZeZ7+oQ/MvP9PnwS06yH5ruN2ezLRXGPmtQ0i4i7AfvV0XMyc8HeRU34eTZnC/zectFs91JPt07mMz9sQHO9Dvc0iWnWg/e0YlGmWUTsBuxQR7+cmQvZYOW0nWfvAQ6p378KPLtXD1fTek+zQsXS0Dp5t63drnTzgMb3OXWZ2Mdl9fPOwObzuJ5psRDp2+oK51BKy9mdhlZabt747Q1DrkerW2znbtfuGTW0hUjbnzW+r91n3ub0W4dcj1Y3lvO2VlB8Zh29lJLhrNFaiLR9YOP7D/vMe06XdWp4YzlvM/PazDw/M//QetCMiLWBnessF9TKyJK0VDQzDvvdm3pdU2cTzm87tFbbCmejiLh7twAiYktmurdfLS6ZeS0zmWkLvU2dwpkGvZ47B9qP9X6+TR3ttA9Hce8/j9IaUM+4DBDObI6NW4Ff9Zl3QUXE5pSWuu5Xfzo8Mwep5O11Y8ZEXjfmcGwMw+tG/3AW3XWjj8sa3+/T+L7Y9uEkHl+LXbdjYxhzvma0Tfd+Mr/uWD/vR/d3U09pzH9U4/dWw0H+35gxaceHNLUm6BnsLyLiTsCXgIfWn/4lM4/rE/Z8mJf34ZOYZn3MdT+O/R414Wl2CDPlAz4ywPyjNqnn2ags1HvLRbHdE5Ruf7FA+WH9zFv5rklMsz7GcU8baV7ehKdZs+HZhb6nTc15FhFvAV5cR08HnpKZtwwRn6m4p4EVKpaKM+vn+sCuPeZrdj3z3a5zzV2zRpbdws7d0d1e9wAAIABJREFUYktfjc6iSduI2IKZSjN/mI91TJl5T9vMvAj4TR3duna91c02je+/7zqXBjGu8/ZxwGb1+ydri3sarYVI22a69XqYAGj28mV6z82iud8CezNzLi9kd5SSNAoXMvOs0K9r20fUz98Dq9qmndn43jWcWvho+zra6bo8UDj0v763wrl/rwJPfcIZ1b6ZaAM8dw6aprsx05JNrzSd9b0/M28GflBHd4+IdemuFc5NwNlt084Cbu6wvtXU8B/eWmbAjOoFEREbAV9nphWoVw/RgqjXje7hLPnrxhyPjUHX4XWji8V83RhAx/cHi3AfTuLxtdjN6d1SfXHbug/M+prh/WTJ8f9G93A8PqQlaMKewVrz3QE4uRHW+zPzVX3iN3Lz9T58EtNsADs0vs9mX471HjUFadYqfHoLpSLqgpnw82xUFuq95di3e8LSDViY/LABzfU63NEkptkA5rovx5qXN8lp1tbw7GWUXhMW0lScZxHxeqD13/ws4PGZecOA8Zmae1qLFSqWhlMa3w/tNENErMXMn+argO/MR0Qi4p7A7nX0otqKiuZm3tM3M6PfAFxUZ7+o8fuyIbdFq1s05y7wQqBVIP+0eVrHNFmotD25fm4I7NNjvic3vp/ZdS4NYlzn7ThrXU+LhUjbCxvf9+ozb/Mh4MKuc2kQi+J+Wyu+raijtwAfHPU6JGk+ZWYCra5mHxARD+80X/291frHF+pyzXDOY6ZFkKdHxJ27rHJ54/vnO0z/ItDqarbj9b0tnNvrMu2a94nlHaZT4/j0Ovp/dRv+YlT7Zgr0e+5cCVxdvz+vR6Xx5Y3vnY6NUd37W+FsyOrPVM1w7gnsW0e/1Z4PVse/VUf3rfN38mRmWijutE1jUY/9U4GH1J/+KTPfMujyXjcm97ox12NjCF43lth1Y0BPa3w/t23aYtqHK5mw42sJ6HVsDOIZwEb1+xrXDO8ni+9+kpnLB3g3dUxjkb0b01bVMPy/UUzc8SFNowl8Bmv12vxJ4ID608eAl/TYjPk08vfhk5hm/dRCgK3Cjdczi0q847xHTXqaRcROwIPr6Fdy4XtKn9jzbIQW5L3luLd7AtNtIfPDBvGixnfPtVmKiPsCj66jv87MoRuoHWde3hSk2QHM9E45joZnJ/48i4i/B95YR88F9h8yP3Eq7mntkXFYAgOlq5WkFM7avcP0I+v0BFZ0mL6sMf3EDtO3Bx7VJw4bNeKRwLHj3i+TMsx3+g4Yh1V1+VXj3h+TNCzAubs1sEufODye0mJZUjI97jHu/TIJw0Kct8C9gRvqPD8BNuwwz7Mb4Xx53PtlEoaFviYDmzbO0Z+Me/sneViAa/LGwHV1+jXATl3icQBwW53vd8Ba4943S31YoGvyZsAdu0xbG3hPI4xjxr1PHBwcHOqzwlDPiZS8gVvrMmcBd2qbfqf6e+uau12XcA5rrPvdHaZvQynAmJRuj9fpEs5HG+E8tcP0pw1w/b4D8Os6z9XANh3maV7Dl8/nvlkMw7DHBiN87gSObaz7yA7Td6/7L4GVPdY3p3t/nWdTSuZuUvJENmubvjal8FsrnGVdwnlUY54vAGu3Td+c0ohFAlcCm4z7GKjxWpfSSlIr7u+YZTheNybsujGKY8PrxsReN5YD6/WZ5xWNbbugw7Ytqn04icfXUjw2gE36bQ/wsJqWSSmgvmuX+byfLJL7yRDHz4oBznn/b0zp8eHgMEkDE/gMRilU/aFGOCfR9r9swG1a1uu6yZjeh09omu3fvv626Xdp2+Z3zibNRrnd055mHZZ5WyPMJw+xTZ5nszzeKJXxE8ghlhnFM+KiPM8mNd1GuE3Le6UtsBOwbZ8wXtgI44/A+qZZx/kPpMd1E7gb8MPGNr9yNmlW51nwvLxJTLMOy5/U2L6HDLGc59lg/0MOpeShJfBL4G6zjM9E39PWiMd8BOowDwkFu1D+kCZwLfAaSjdBewMfaBxwvwQ26LB8z4OyMf3HlMzLA4GH1vUeABxXLx6tMM4F7jzu/TIpw3yn74BxWFWXXzXu/TFJwwKeu9+rYT+W0g39bpSWiz7buDkm8JJx75NJGRbqvGX1Px6/oPzh2bWu513M/Jm4er7+LEzbsNDXZEpLPa35/2Hc2z/Jw0KkLXBUY55rgTfV8HcGHgO8l5nCGAk8e9z7ZRKGBUrbpwIXA+8AnlSvxXsALwZ+1Fj+K8C6494nDg4O0zcAe1IyEVvDEY1r05lt05b3COfNjeV+SGkJeLf62cx8flOPMNau62zNe1K9Dz4MeBlwSf39NuCAHuHcC7iUmcyxf67buWf93rqnXgrcs0c4j2WmMuPFNQ4Pq3FqZtieQY8X/6PYN0vx2GCEz53ABpT7cWveD1Du1w+vYV9bf78e2LlHOHO69zfCeVFj3vMpz1u7AQcB325M+2SfffypxrzfrsvvVsM7vzHtheM+HhpxPrkRr29RXjLs2GPY3uvGdFw3RnFs4HVjUq8bq4ArgOMprY7tQWkZdU/Kc1HzHL4J2Hex78NJPb6W2rHBTGXP/6X0VnAQ5f3UQ4AnAicwU3Argbf2iIv3k0VwTAx5/KxoxH/ZfO4Dj4+ld3w4OEzSwAQ+gwFvbyx/LuXe3WubduwSzrJGOCf2mL6g78MnNM1WUv63fRB4HuXetTOlV/XXMFMYNCnvpTedTZqNcrunPc06hPeHuswVDPEuql+a4XnWCuPutOWV1nOhtWz7tI4FdhnBM2K/NBvXeTap6TaqbaJ/Qe/llDI+/wW8ktJ7wkMo14Xnsnph7FuBA02zrmm2Cvg98E7gYEqjGDtTevY8DrisEd4ZdG84sWeaNeZb0Ly8SUyztvA2AW6sy5475L7pmWZ4nkHJT2uWJ9y/T1x2pEulEib8nrZGHOYrYId5SKxSyeHqxoHRPvyy28Wo30HZNr3f8GVgi3Hvj0kb5jN9B1z/qrr8qnHvi0kbFsm5ex2L6AXspAwLdd7WPwy391jPJXSoBeqw+NO2zv99Zv6o333c2z7pw3ynLaVFpn/rc84mcDNwxLj3xyQNC5C2T+2TprcD/0GXzBgHBweH+R6AEwd8Nkgge4SzVr2e9Vr+BPr0sERpkecHPcK4EfibAbbrr1i9gYf24Y/AXw0QzgtYvSBe+/A/wOZ9whjJvllqxwYjfu4EtgXO6xHO1cDjBwhn1vf+tnCOofd/t1Pp3+r2nep83cK4jR4vY8Z0XAx8TNRh1XyfG3jdGPtxMapjA68bk3rdWDVguv4WePRS2YeTeHwttWOD1XvP6jXcChwNRJ/4eD9ZQgODV6jw/8YUHh8ODpM0DHivaw6reoS1KK6JDP4f4C9Dl3CWNeY5sc/0XsNI34dPaJqtHHBbVtKj94F+aTbq7Z7mNGsLa//Gcu8Zct/0TDM8z4bdD61heY+w5vSM2C/NxnWeTWq6jWqbGKyg9yDhXw48wTTrmWarBlz2JGDjHnHpmWaN+RY0L28S06wtvL9tzLtGr7F9lu2ZZniewZDvBeuwrEd8JvaetkYc5itgh3lKMLgP8K/1ILyO0k3QWcCr6NFjRL+DktK17H7AWym16M6rJ8EtlJrNZwPvBvYY9z6Y5GG+0nfAda/qd7F2WHxpS2lF7ZB6fn6f0mrEdZQM+IspNR5fC9x13PtgUoeFOm8ptak/ClxIyVi5ipL58npgo3Hvh0kcFiJtge0a83513Ns8LcMCpe2uwPsorTJdQ3npf1X9T/V2etQ2d1icaUvpFvQISg8UF9Twr63rej8DvCR3cHBwmM+BEVWoaIT3WOAUSgs/N9XPUxigtbRGGOtQWiU+g5IxeQPwa0rrxQ8aIpzNgTfW++q1dfhJ/W2zIcLZsa771zUul9e4/S09uoaej32zlI4N5uG5E1i/3p/Pqvfr6yitGf0rcJ8hwpnVvb9DOH8NfAL4Td2uS4BvAAcPua+fVZe7pIbzmxruoqsAP8wxwYD5RV435nffLKVjw+vGUPt7KV037k9p1e1kSk8CF1PeH1xDaYnvJMoLy4H242Lah5N6fC2VYwNYl9KIwdsp19gL6rI3U1qUPJPSuuTWQ8TJ+8kSGRiwQsUo94HHh4ODwzgGJvAZjIWrUDGW9+ETmma7Af9Y1/lzyn+tWyhlg35OyUN6DP0rsPZMs/nY7mlNs7ZwPtGI+1DvpDzPBkszRl9geNbPiIv1PJvUdBvVNtG/oPddgcMoPQWdTWl44HrKdeH3lPfQfwdsaJr1TbNHAm8Avko5x66g3NOupDyXvZ8B8ob6pVmH+RckL28S06wtvO/W+W4Fthpy33ie9UkzRlyhooZ5HybwntY+RI2AJEmSJEmSJEmSJEmSJEmSJEnS1Fhr3BGQJEmSJEmSJEmSJEmSJEmSJElaaFaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1rFAhSZIkSZIkSZIkSZIkSZIkSZKmjhUqJEmSJEmSJEmSJEmSJEmSJEnS1LFChSRJkiRJkiRJkiRJkiRJkiRJmjpWqJAkLZiIWB4RWYetxx2fSdbYzyvmEMayRjjLOkxf0ZreZfmVdfrK2cZBkiRJkiTNnXkynUXEiXWfrBp3XCRJkiRJ0poiYlV9dj9x3HGZVpb9kCRNAytUSJIkSZIkSZIkSZIkSZIkSZKkqWOFCkmSNBaj6EVDkiRJkiSpyd44JEmSJEmSlo6I2LqRl7N83PGRJE2ndcYdAUmStDhl5kog5rD8spFFRpIkSZIkSZIkSZIkSZIkacTsoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSdLIRMQmEfHPEfGLiLghIi6NiG9GxNMGWHbdiDgwIt4dEWdFxJURcUtEXBER/xMRKyJi8z5hrIqIjIgT6/j9I+KD9febIuKSiPh8RDx8wO3ZOiLeEhHn1HjcEhGXR8QZNT7367HsRhHxmoj4bkRcFhE3R8QfI+JLEfHUiIgey64fEc+IiBMi4scRcXVd92URcVpEHBERdxlkGxph7hsRX6xxuDEiLqj7+h49lllW92dGxLJh1leXX1mXXdn2+6qIyMZPRzfW0xpOrPP+Zx2/MiLW67O+dSLi4jr/V4aNryRJkiRJ0ywi1o6I50XElyPiDzUv5YqIODMiXhkRd+qx7Gp5ABFxj4j414g4v+YRXRERX4+IAwaMy3NrHsiVEfHniDg3It4QERvW6a38gxWNZZbV/IYPN4K6sEOew7Ie6904Io6NiJ9FxHURcVVEnB4RhwwSb0mSJEmSJl0tK5Gtd/61bMRREfGj+hydEbG8bZlZl58YIl7bRsS/1TyEq2t+xAURcWJE7NZn2S0j4iURcVJE/KrmCdwUEb+PiC/U8hs9y1lGxHoR8Xc1j+SyWsbjTxHxy4j4as1b2brH8rPOl5mriHh4RHyulre4MSIujIjjI+L+Ay4/6/1Xj6MLGz99uENezoouyz4kIt5f9/Gf63p/GRHvi4jth94RkqSpts64IyBJmgwR8UDgm8BWjZ/XA/YB9omIDwOn9wjieOB5HX7fFHhYHV4WEU/IzO8OEJ8nAR8H7tz4+a7AE4EDI+KQzPxMj+WPAN4E3KFt0mbAnnVYVof2ZfcBPlPnbbo78Pg6fCUinpGZf+6w+lOBR3b4fXPgEXV4SUQ8NjN/0W0bGvE5GljR9vN9gZcCz46IAzPzjH7hjMkJwJOAjSlp9+ke8z4WuFv9/qF5jpckSZIkSRMjIu4NfBF4cNukTYE96vDiiHhcZp7XJ6w9gFMo+Rgt6wH7AftFxJGZ+bYuy94B+BzwhLZJO9bh2RHx6MG2aji1kMDXgK3bJu0F7BURu2fmy+Zj3ZIkSZIkLUURsR3wDdZ8lm7OM9fyE4PEo1v5jvvW4bkRcVxmvqHDsmsDv6Nzw9RbAQfV4fkR8eROcYyILSnlZXZom7RJHbYH9q/hHdFh+ZHlywwrIl4BvI3Vt39r4AXAsyLi6X2Wn/P+m0Wc16pxfjnQXhln+zr8TUS8NDOPn+v6JEnTwQoVkqQ5i9I64NeZqUzxGeAjwKWUB5VXAodSXnx3sw5wAfB54AfAb4BbgfsA+wKHUR6wPx8RO2bmpT3C2gl4BvBH4O3A2ZSHqMcAr6a8xD8+Ir6dmZd12J6jgGPr6FXAe4HvAFdQCvY/BHgykB2W3QP4KuVB/RLgXcD/An+o++cZwLMphf8/Ajyly744l/LAfHZdNuq+eBLwdMpD/ykRsXNm3thjXzwO2A34JfBW4CfARsDTKA/AGwFfrvv0tz3CGaX9gHUp2wjwPso+brqyfn6N8vB9T8ox1KtCxaH183LKvpMkSZIkSX1ExGbAmcC9gJuADwKnAauAu1Ce4/8e2Bb4akQ8JDOv7hLclpTKFLdT8mDOBG6mNEzxBkq+ypsj4quZ+bMOy/87M5UpfkZ5Of5TYENKnsiLKflOnZxFyRN6AnBc/e0xlHyVpgtZ052BL1Hyno6jFIL4M7ALcDQlX+KlEfGlzPx6l/VLkiRJkjRtTgLuQSkX8UXKe/7tgItgZOUneoqIIyllIaCUh3gf8CtKWY/7Ay8DdgeOiojLM/Od7UHUz2/XuJ4LXAZsANyPUq5id+DRwHvo3FDou5ipTPFx4D/rNt5GySvZjTUbj2jFf5T5MkOpDZX+ax29GngLsLKOPwp4FfAJyv7oGkz9nO3+24lyLLTyW14PfKFtnvbyQe8CXlK/nw6cSClvdD2lUsrLgQcBH4iIizPT8iOSpL4ic42yoJIkDSUi/oWZWvSvzcw3t02/A/BlyoNey30zc1Vjnm2AC7LLjSkidgK+R3lgPC4zj+owzypKpQOAc4BHZeY1bfMcQnmABXhlZv5b2/RdKJUY1gLOA/bJzN91idO9mpUQ6naeR6mt/zXgKZl5fYflXkDpkQNgv8z8r7bp22Xmrzqts07fl/IwuRbwN5n5Hx3mae7HHwKPbK/pHxHPAT5aRz+XmU9vm76MUpEEYO/MXNk2fQWlUAGZuUYXnBGxktLTxmmZuaxHHI/JzBVrbOjMfMcCR1EKY9ynU3pExF0pFS/uAPx7Zr68W3iSJEmSJE2biFgOfLiOtufJfAJ4FqWww96ZuUaFg5pfcgawPvCmzHxd2/SVzPS2eRGwR2b+vm2ePSkvuQN4Z2b+fYd1nFOn/zclT+aGtnmeSunBomWNPIVe29phu05k5kX+1TXeP2ubZ1tKYYD1gC9mZscCEJIkSZIkTYNmOQHKO/wDMvMbHeYbVfmJVZRyIB/JzOVt03YAfkwpJ3AMJZ8g2+ZZi1JZ49mUxhPunZlXNqYHsE1mnt9jm4+hNBSRwP2b5TkiYj3gmhqHt2fmGj1QNObdNDP/1PbbnPNlZiMi1qU0OrEVJU9k98z8eds8OwLfpTR0AR3Kfsx1/9XpWzPTAMahmXlij7AeTekVBbqXl1kPOJVSKeQiYNvMvLVbmJIkQeeuliRJGlh9yHp+Hf0J8M/t82TmLXWeW7qFk5m/7laZok4/Fzihjj5xgKgd1l6ZovokMy0T7tVh+pGU+2MCz+xWmaLGqb1Hh2dSMgNuBJ7bKTOgLvdBSi8cAMs7TO9amaJO/yYzPTAMsi9e2KnbxMz8GKWFAIAnRcTdBwhrHD5ESY+16NzaA5TMjzs05pckSZIkSX3UF9bPqKMv6/TSHiAzf0RpRRA65GW0Oby9MkUN40zgf+popzyZFzLTquEL2itT1DBOovRuOh+O6tRrRi0QcEod3XOe1i1JkiRJ0lJ0YqfKFNVIyk/08Q+UcgJn06EyRQ3/duBwSu8PdwGe2jY9e1UGqI4FLqfkWxzUNm1TZsoqnN4rkA6VKbZm9Pkyg3oCpTIFwBvbK1PU9f4U+KdegYxg/w3r1fXz5E6VKWqcbqT0TAKlMs7ec1ynJGkKWKFCkjRXuwKb1O8f6VYpolZM6PYgvYaI2CQitomIB0XEjrXm+1V18g61NYNuzs3Mn3SJRwI/qqP3a1vnWsABdXRlfSgdRuvB77TM7NXlIcw8SO/eL9CI2CIitmvth7ovWuE/uM/i52bmOT2mtyofrAMs6xeXcagtSX6zji7vMtuh9fOcbmkvSZIkSZLW8DhgbeB6Zhpd6KaVl7FVRNy7yzxXUVoA7KaVR3G/DtP2rZ8/6lSxoeGjPabNVlIa4eimFe9NI2LjeVi/JEmSJElL0Sd6TJuX8hNtDqyfJ/dpwPMqSu+TfdcREWtFxFYRcf9G+YwHAq3GONvLaFwB3Fy/Pyci1hki/qPOlxlGKx8mKT14dPPhOs9AZrH/BhYRGzJTruWkXvPWCiKX19FhjytJ0hQa5gYuSVInOzW+n9Vn3h9QHgg7ioidgFdQKjX06i1hLUoljku7TP9Fn3i0av1v0Pb7fYHWS/Ez+oTRyW718zERMegDZcftjIg9gL+jPMRu2mP5zfuEP0iatOwEfLrP/ONyAvBoYNuI2Csz/5I+EbEbsGMdtXcKSZIkSZIG18rLuDNwa0T0mrfp7sBvOvz+q9ryYzcd82QiYj1g2zraq2EIKK1OjtrlmXlFj+nNFiQ3YKbRD0mSJEmSplmvxg5HVn6ik4i4D7BFHX1zRLx5tuuIkiFyCPB84K+AO/VYfrUyGpl5U0R8BngOpfeLh0bEZ4GVwPdqZY5uRp0vM4xWWZ8LM/PybjNl5mURsYpSnqajuey/Ie3CTAPin4qITw243MDHlSRpelmhQpI0V83C/t0qOLRc0m1CRDwfeD+D35t6PYB17CqyofVif+2235sPbn8cMB5Nd53FMmtsR0SsAI6e7fJthkmTXhU3xu0USusBm1N6o2hWeDmsft5I79YkJUmSJEnS6maTlwHlRX8ng+bJtPee3ez1oV+rlf2mz8ag8YY185MkSZIkSZpWV/aYNpLyEyMOH9ryNGojD/9JafhzEJ3i+DJK3saBwH2AI+twe0T8EPgscHxmXt223KjzZYbRKh/Sr0wJlHIlHStUjGj/DWqc+0uSNOGsUCFJGqWBu/lriogHMFOZ4lLgX4BvA6uAazPzljrfYcB/tBaba2TnQeuF+leBV80mgIjYh5nKFBcAbwPOpLQucF1m3lrnOxY4aoAgZ5Umi01m3hwRH6P0YPK0iDg8M6+rD+cH19k+36d1B0mSJEmStLpWXsblwN5DLHfhPMRFkiRJkiQtIZl5W4/Jcy4/0UezwYNjgc8NuNx1beOvY6YywGnAe4AfAhcDN7R64oyI04G96FBWJTOvAQ6KiIcBTweWATvXOO5WhyMi4omZ+d8dtmGc+TJzLVMy5/03hGaavwj43oDL9ar4I0kSYIUKSdLcNR887gac12Peu3X5fTnlnnQb8MjM/EWX+ea7B4VmN4ZbzmL5K4CtgHUz86ezjMML6ueVwMMzs1uri4Pui277vNP0Pw0Y5ricQKlQcRfgacCJwBOZacXyQ+OJliRJkiRJS9YV9XMD4Od9CkLMp2YDCVv0mbffdEmSJEmSNH6jKD/RL/yWW2azjogI4G/q6BnAo1oVADroW0YjM38A/KCGvQGlYsVy4MmU3hVOjohtMvOGtm0YR75Mq6xPvzIlXecZ9f4bQDPNr5+n40qSNKXau9WWJGlY5za+P7TPvN2mP6h+/m+PyhRQau3PpwuZeYH/iFks/6P6uVtErDvLOLT2xXd6VKaAwffFMGmyqB82M/P/gFZrDYfWz8Pq50XAtxY8UpIkSZIkLW2tvIw7Mv/5Ll1l5o3Ar+vorn1m7xfPieitU5IkSZKkJW4U5Sd6uQC4un7fY5ZhbArcvX7/XLfKABFxF+D+wwScmddm5pcy8ynAO+vPWwJ7NmYbZ75Mq6zPfSNis24zRcQWwNZdJo9q/w2al/PjxryzTXNJkjqyQoUkaa7OYabm+nNqDfQ1RMQ9gP26hNHqMWn9biuJiC2Bg2YbyUHUh7tT6+gjI2KXIYP4Yv3ciJkC/8MaZF/sAvzVgOHt1Gc7WhUSbgNWDhjmqNxYP+84xDIn1M+9ImJvYJ86fmJmWmBCkiRJkqThfImZF9EvH2dEmGkoYZeIeFCP+Z7bJ5wbG9+HyXOQJEmSJEmjM4ryE13V3hy+Ukf3i4gHziKYdRrfu5bRoPTCsE6P6f00G4fcvPF9nPky36yfQe+8luV1nk5Gtf8GysupjZJ+v44+q1b2kCRpJKxQIUmak8y8CfhwHd0ZOLJ9nohYB/gg0K3VgV/Vz+0i4q87LH9n4JPAneYc4f7eBtxOeSD8dETcs9uMHaZ9BPhtK5yI6NnLRUTsGRGPbPu5tS/2jIhtOyyzBfCxXuF2cHxErPHwGhHPAh5bR0/JzD8OGe5ctda3zRDLfAa4lpI+n6T8l0lmjkFJkiRJkjSgzPwl8Lk6+syIeGWv+SPivhFx8DxF53hmChF8MCLWyAeKiKcAT+oTTjN/Y5g8B0mSJEmSNDqjKD/Rz5spjUeuBZzUp3zH2hFxSNs8lwFX1e8HR8Qahfkj4qHAG3uEe78B4t1sfPTC1pcx58ucwkweylERsUYPEhGxA/C6HmHMef9VVwA31+/98nKOq58bUtJ8424zRsQdI+KlEbFenzAlSbJChSRpJI4Ffle/vyUiPhkR+0fEQyLimcD3gAOAs7ss36ogsBZwakS8NiIeEREPi4gXU7qQ5UZvAAAHxklEQVTtWwZ8d/42ocjMHwNH19HtgXMj4riI2Ccido6IZRHx8og4nbaKDbVyydOBm4C7AN+OiI9HxFMjYteIeGhEHBQRx0TET4AzgJ3aovDR+rk+cFpEHB4Rf12HI4D/BXYA/nvATTqb0jXk2RGxvMbjURHx3kb8rwWOGDC8Ufpe/TwoIl4UETtGxLZ1uGunBTLzOuDTdbTVdeS3M/Oi+Y6sJEmSJEkT6sXABfX72yPitIh4fkQ8PCJ2iYh9I+IfIuK/gPOBp8xHJDLzHEqDHAC7A2dFxPNqXsbeEfEuSkMLP2gu1iGoHzHTsuEbI+LREbF9I89hIRrskCRJkiRpqo2o/ES/dZzLTFmHHYCfRsRba3mVXSJi94g4OCLeSanc8XFg48bytwOfqKP/Dzizzr9bLSPyduB0Sj7DeV2icW9gZUT8rJYteWLdtodGxJMj4jPAS+u8Pwb+p235seTLZObNwOF1dBPg+xHx6rre3SPiNcyU6Ti/Sxij2H9k5q3AWXX0sBrGAxt5OZs25v0K8O919BHAzyPi6EaZnj1qftIJlAoj72ZuvYtIkqaENwtJ0pxl5tURsT+lS8C7AwfXoelE4DQ69CSQmWdFxNHAMZSH13/qsJq3Az8F9hhdzDvLzOMi4vZGfF5H51r3p3VY9vsRsQz4LHAv4JA6dHNN2/InRcSHKV1ebgW8s23+24BXUB5odx9gc06tw9F07sXhGuCgzFw1QFij9jbgqZQuG9/fNu0jlK4jOzkBeEFj/EMjj5kkSZIkSVMiM/8UEXtQ8jL2oryM7tVq5DU9ps3V4ZT8kMcDD6LkJzVdCDyLmRf5N7ZNJzOvrQUlXgU8BPhG2yx7AytHFmNJkiRJktTRXMtPDLiOd0TEdcA7gI2AI+vQyc2smZfwOko5lJ0pjVV+sm36nyiVGI6lNMrZzQ516OYXwJMzc7XGIcaZL5OZJ0fEkcBbKWVj3tw2y/WUSjFHAtt2CWZU++/NwJeAzTqEcQywojH+ihruUZQySivo7jpKORtJknqyhwpJ0khk5s8oL7rfCvyK0srA5cB3gGdl5qF9lj8WeBzlJfeVlAfZ3wH/CeyXmQvag0JmvonysPsOSkWOa4BbKV0Wnga8HnhOl2W/D2wH/C2lMsMfmHkw/y1lG18HPCAzP9ph+cNq2GdQeo+4CbiI0qPEX2fmv7cv02dbVgD717hcUuOyCngv8KDMXKNiyEKovYHsDnwK+A1lOwdZ7gfMtF5wFeUYkSRJkiRJs5SZF2fmIygVGT5BaRnxeuAWSl7I9yiNXTyy5lvMVzxuBg6iNDRxJnB1jcfPgTcBuwJXNBa5uktQr6Y0xnAG5QW7L84lSZIkSRqDuZafGHAdHwTuR2lo8ruUsiq3UgrTnwecXNd/j8w8v23ZqykVAo4Czq3x+jMlL+JtwIMz8/Qeqz8DWEapEPAdSiMQ11LyVC6p2/e3wM6ZeWGX+I8tXyYz3wbsSSl3cSkz5VM+BOyWmaf2WX6u+68VzqnAPsAXKMfILT3mzVrGaHtKGaWzmcn/uRb4P8p+fB6wZWbe0G/9kiRFW6VHSZKkRS0iNgQuBu4EvC8zXzLmKEmSJEmSpAUSEXtSCisA7JuZ3xpnfCRJkiRJkiRJ0tJmDxWSJGmpOZhSmQLgP8YZEUmSJEmStOAOrp+3AOeMMyKSJEmSJEmSJGnps0KFJElaMiJiHeCVdfTszLTghCRJkiRJEyIiNo+IjXtMfwzwojr6xcy8amFiJkmSJEmSJEmSJtU6446AJElSLxGxKbApsBnwD8D2ddKbxhYpSZIkSZI0H3YEvhARnwO+CfwauB24D3AQ8GxgbeAG4LXjiqQkSZIkSZIkSZockZnjjoMkSVJXEbECOLrt5y9n5oFjiI4kSZIkSZonEbEM+E6f2a4BnpaZ35j/GEmSJEmSJC0+EXFX4K6zWPTmzDxv1PGRJGmps4cKSZK0VNwKXAR8CnjzmOMiSZIkSZJG72xgObA/8GBgC2BjSiWK84GvAe/OzMvGFUFJkiRJkqRF4CWs2TDlIC4Cth5tVCRJWvrsoUKSJEmSJEmSJEmSJEmSJGkJiIgVzLJCRWZuPdrYSJK09FmhQpIkSZIkSZIkSZIkSZIkSZIkTZ21xh0BSZIkSZIkSZIkSZIkSZIkSZKkhWaFCkmSJEmSJEmSJEmSJEmSJEmSNHWsUCFJkiRJkiRJkiRJkiRJkiRJkqaOFSokSZIkSZIkSZIkSZIkSZIkSdLUsUKFJEmSJEmSJEmSJEmSJEmSJEmaOlaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1/j+aeOcrmpqnWAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(20,20), dpi=200)\n", + "\n", + "plt.subplot(4,3,1)\n", + "sns.boxplot(x = 'popularity', data = df)\n", + "\n", + "plt.subplot(4,3,2)\n", + "sns.boxplot(x = 'acousticness', data = df)\n", + "\n", + "plt.subplot(4,3,3)\n", + "sns.boxplot(x = 'energy', data = df)\n", + "\n", + "plt.subplot(4,3,4)\n", + "sns.boxplot(x = 'instrumentalness', data = df)\n", + "\n", + "plt.subplot(4,3,5)\n", + "sns.boxplot(x = 'liveness', data = df)\n", + "\n", + "plt.subplot(4,3,6)\n", + "sns.boxplot(x = 'loudness', data = df)\n", + "\n", + "plt.subplot(4,3,7)\n", + "sns.boxplot(x = 'speechiness', data = df)\n", + "\n", + "plt.subplot(4,3,8)\n", + "sns.boxplot(x = 'tempo', data = df)\n", + "\n", + "plt.subplot(4,3,9)\n", + "sns.boxplot(x = 'time_signature', data = df)\n", + "\n", + "plt.subplot(4,3,10)\n", + "sns.boxplot(x = 'danceability', data = df)\n", + "\n", + "plt.subplot(4,3,11)\n", + "sns.boxplot(x = 'length', data = df)\n", + "\n", + "plt.subplot(4,3,12)\n", + "sns.boxplot(x = 'release_date', data = df)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import LabelEncoder, StandardScaler\n", + "le = LabelEncoder()\n", + "\n", + "# scaler = StandardScaler()\n", + "\n", + "X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')]\n", + "\n", + "y = df['artist_top_genre']\n", + "\n", + "X['artist_top_genre'] = le.fit_transform(X['artist_top_genre'])\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "y = le.transform(y)\n", + "\n" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 1, 0, 0,\n", + " 0, 1, 0, 2, 0, 0, 2, 2, 1, 1, 0, 2, 2, 2, 2, 1, 1, 0, 2, 0, 2, 0,\n", + " 2, 0, 0, 1, 1, 2, 1, 0, 0, 2, 2, 2, 2, 1, 1, 0, 1, 2, 2, 1, 2, 2,\n", + " 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 0,\n", + " 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2,\n", + " 1, 2, 2, 2, 0, 2, 1, 1, 1, 2, 1, 0, 1, 2, 2, 1, 1, 1, 0, 1, 2, 2,\n", + " 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2,\n", + " 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 2, 0, 2, 2, 0, 2, 2, 1, 1, 0,\n", + " 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 2, 2, 2, 1, 1, 1, 1, 1, 0,\n", + " 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2,\n", + " 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 1, 2, 1, 2, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 1],\n", + " dtype=int32)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ], + "source": [ + "\n", + "from sklearn.cluster import KMeans\n", + "\n", + "nclusters = 3 \n", + "seed = 0\n", + "\n", + "km = KMeans(n_clusters=nclusters, random_state=seed)\n", + "km.fit(X)\n", + "\n", + "# Predict the cluster for each data point\n", + "\n", + "y_cluster_kmeans = km.predict(X)\n", + "y_cluster_kmeans" + ] + }, + { + "source": [ + "그 숫자들은 우리에게 큰 의미가 없으니, 정확도를 확인하기 위해 '실루엣 점수'를 확인해 봅시다. 우리의 점수는 중간입니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.5466747351275563" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ], + "source": [ + "from sklearn import metrics\n", + "score = metrics.silhouette_score(X, y_cluster_kmeans)\n", + "score" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.cluster import KMeans\n", + "wcss = []\n", + "\n", + "for i in range(1, 11):\n", + " kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)\n", + " kmeans.fit(X)\n", + " wcss.append(kmeans.inertia_)" + ] + }, + { + "source": [ + "그 모델을 사용하여 엘보우 방법을 통해 생성할 최적의 클러스터 수를 결정하십시오.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAFNCAYAAACAH1JNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5hdZX33//d3coIQgSQEUkJMQE4iVMABgyIp4SyHhD3wCLWK/VEpLSii9Kn2oG3110ptK1JbWypWeMoD8kNIEJCDnEU5hIMEpEIKBMIpkUA4J4R8f3+sNWYnmWRmktmz9t7zfl3XvvZa91p7z3c5l5kP973WfUdmIkmSpNbRUXUBkiRJ6h8DnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASdI6RMSnIuKndfsZETtWWZMkgQFOkoiIJyPizYh4re717arrkqR1McBJUuHozBxT9zq96oIkaV0McJLUPx+NiMcj4tcR8Y2I6ACIiI6I+IuIWBARiyLiwojYojx2QUR8odyeVA7FnlbuvycilnR/jyT1hf9gSFL/HAt0AnsDM4H/p2z/VPk6ENgBGAN0D8PeCvxOuT0deBw4oG7/9sxc2diyJbUTA5wkFWZHxMt1r0+v47yzM3NJZj4FnAOcWLZ/HPinzHw8M18DvgScEBHDKQLc/mUv2wHA3wMfLj83vTwuSX1mgJOkwqzM3LLu9R/rOO/puu0FwLbl9rblfv2x4cA2mfk/wOvAnsBHgKuAZyNiFwxwkjaAAU6S+mdy3fa7gWfL7WeBKWscWwG8UO7fChwHjMzMZ8r9k4CxwAONLFhS+zHASVL//ElEjI2IycAZwA/K9ouBMyNi+4gYA/wt8IPMXFEevxU4Hbit3L+l3P9pZr4zaNVLagvDqy5AkprEjyKiPkjdAMzp4bw5wL3AFsD3gfPL9u9RDKPeBmwCXAd8pu5ztwLvYlWA+ykwum5fkvosMrPqGiRJktQPDqFKkiS1GAOcJElSizHASZIktRgDnCRJUosxwEmSJLWYITeNyFZbbZVTp06tugxJkqRe3Xvvvb/OzAlrtg+5ADd16lTmzp1bdRmSJEm9iogFPbU7hCpJktRiDHCSJEktxgAnSZLUYgxwkiRJLcYAJ0mS1GIMcJIkSS3GACdJktRihtw8cA21ciUsWgTLlsGoUbD11tBhRpYkSQPLdDFQVq6EefNg2jSYOrV4nzevaJckSRpABriBsmgRzJwJC8oJkxcsKPYXLaq2LkmS1HYMcANl2bJV4a3bggVFuyRJ0gAywA2UUaNgypTV26ZMKdolSZIGkAFuoGy9NcyZsyrETZlS7G+9dbV1SZKktuNTqAOlowP22APuvBMefxzeeqvY9ylUSZI0wEwXA6mjAyZOhGuugUMPhSVLqq5IkiS1IQNcI9Rq8M47cOWVVVciSZLakAGuEfbaq5gL7vLLq65EkiS1IQNcI0QUvXA33ACvvFJ1NZIkqc0Y4BqlqwuWL4err666EkmS1GYMcI0ybVrxQIPDqJIkaYAZ4BqlowOOPbZ4IvWNN6quRpIktREDXCN1dRXh7frrq65EkiS1EQNcIx1wAIwbBz/8YdWVSJKkNmKAa6QRI2DmTPjRj4oHGiRJkgaAAa7RajVYuhRuuqnqSiRJUpswwDXawQfDu97l06iSJGnAGOAabZNN4MgjYfbsYnktSZKkjWSAGwy1GixeDD/9adWVSJKkNmCAGwxHHFH0xDmMKkmSBoABbjCMGQOHHVYEuJUrq65GkiS1OAPcYOnqgoULYe7cqiuRJEktzgA3WI46CoYPd1JfSZK00Qxwg2XsWDjooGIYNbPqaiRJUgszwA2mWg3mz4eHHqq6EkmS1MIMcINp5kyIcBhVkiRtFAPcYNpmG/jIR5xORJIkbRQD3GCr1WDePHjssaorkSRJLcoAN9hqteLdXjhJkrSBGhrgIuLMiHg4Ih6KiIsjYpOI2D4i7oqI+RHxg4gYWZ47qtyfXx6fWvc9XyrbfxURh9W1H162zY+ILzbyWgbM5Mmwzz7eBydJkjZYwwJcREwCPgt0ZubuwDDgBOBs4JuZuSPwEnBy+ZGTgZfK9m+W5xERu5Wfex9wOPCvETEsIoYB/wIcAewGnFie2/y6uuCee+Cpp6quRJIktaBGD6EOBzaNiOHAaOA5YAZwWXn8AmBWuT2z3Kc8flBERNl+SWYuy8wngPnAvuVrfmY+npnLgUvKc5vfsccW77NnV1uHJElqSQ0LcJn5DPAPwFMUwW0pcC/wcmauKE9bCEwqtycBT5efXVGeP76+fY3PrKu9+e28M+y+u8OokiRpgzRyCHUsRY/Y9sC2wGYUQ6CDLiJOiYi5ETF38eLFVZSwtq4uuP12eOGFqiuRJEktppFDqAcDT2Tm4sx8G7gc+DCwZTmkCrAd8Ey5/QwwGaA8vgXwYn37Gp9ZV/taMvO8zOzMzM4JEyYMxLVtvFqtWFJrzpyqK5EkSS2mkQHuKWBaRIwu72U7CPglcDNwXHnOSUB3grmy3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSMpHnS4soHXM7D22AN23NHpRCRJUr818h64uygeRrgPmFf+rPOAPwU+HxHzKe5xO7/8yPnA+LL988AXy+95GLiUIvxdC5yWme+U98mdDlwHPAJcWp7bGiKKXrgbb4SXXqq6GkmS1EKi6OQaOjo7O3Pu3LlVl1G4+2744AfhwgvhE5+ouhpJktRkIuLezOxcs92VGKrU2QnbbecwqiRJ6hcDXJU6Ooo54a69Fl57repqJElSizDAVa2rC956qwhxkiRJfWCAq9r++8OECU7qK0mS+swAV7Vhw2DWLLjqqqInTpIkqRcGuGZQqxX3wP3kJ1VXIkmSWoABrhnMmAFbbOHTqJIkqU8McM1g5Eg4+uhiWa0VK6quRpIkNTkDXLOo1WDJErj11qorkSRJTc4A1ywOOwxGj3YYVZIk9coA1yxGj4YjjoArroCVK6uuRpIkNTEDXDPp6oLnnoM776y6EkmS1MQMcM3kyCOLBxqc1FeSJK2HAa6ZbL45HHJIcR9cZtXVSJKkJmWAaza1Gjz5JDzwQNWVSJKkJmWAazbHHFMsr+UwqiRJWgcDXLPZaiuYPt3pRCRJ0joZ4JpRrQaPPFK8JEmS1mCAa0bHHlu82wsnSZJ6YIBrRttuC/vt531wkiSpRwa4ZtXVBfffD088UXUlkiSpyRjgmlX3MOoVV1RbhyRJajoGuGa1ww6w554Oo0qSpLUY4JpZVxf87GfF+qiSJEklA1wzq9WKd4dRJUlSHQNcM9ttN9h1V6cTkSRJqzHANbtaDW65BV58sepKJElSkzDANbuuLnjnHbjyyqorkSRJTcIA1+z22gumTHEYVZIk/YYBrtlFFMOo118Pr7xSdTWSJKkJGOBaQVcXLF8O11xTdSWSJKkJGOBawX77wcSJTuorSZIAA1xr6Ogolta65hp4882qq5EkSRUzwLWKWg3eeAOuu67qSiRJUsUMcK1i+nQYN86nUSVJkgGuZYwYAcccU8wHt3x51dVIkqQKGeBaSa0GS5fCzTdXXYkkSaqQAa6VHHIIjBnjMKokSUOcAa6VbLIJHHkkzJ5dLK8lSZKGJANcq+nqgkWL4I47qq5EkiRVxADXao44ouiJc1JfSZKGLANcqxkzBg47rLgPLrPqaiRJUgUMcK2oVoOFC+Gee6quRJIkVcAA14qOPhqGD/dpVEmShigDXCsaOxZmzCjug3MYVZKkIccA16pqNZg/Hx56qOpKJEnSIDPAtapZsyDCYVRJkoaghga4iNgyIi6LiP+OiEciYr+IGBcRN0TEY+X72PLciIhzI2J+RDwYEXvXfc9J5fmPRcRJde0fiIh55WfOjYho5PU0lW22gf33dzoRSZKGoEb3wH0LuDYzdwXeDzwCfBG4MTN3Am4s9wGOAHYqX6cA3wGIiHHAV4APAvsCX+kOfeU5n6773OENvp7m0tUF8+bBY49VXYkkSRpEDQtwEbEFcABwPkBmLs/Ml4GZwAXlaRcAs8rtmcCFWbgT2DIifgs4DLghM5dk5kvADcDh5bHNM/POzEzgwrrvGhqOPbZ4dxhVkqQhpZE9cNsDi4H/jIj7I+K7EbEZsE1mPlee8zywTbk9CXi67vMLy7b1tS/soX3oePe7YZ99DHCSJA0xjQxww4G9ge9k5l7A66waLgWg7Dlr+DwYEXFKRMyNiLmLFy9u9I8bXLUa3H03PP107+dKkqS20MgAtxBYmJl3lfuXUQS6F8rhT8r3ReXxZ4DJdZ/frmxbX/t2PbSvJTPPy8zOzOycMGHCRl1U06nVivcrrqi2DkmSNGgaFuAy83ng6YjYpWw6CPglcCXQ/STpScCccvtK4JPl06jTgKXlUOt1wKERMbZ8eOFQ4Lry2CsRMa18+vSTdd81dOy8M+y+u8OokiQNIcMb/P2fAS6KiJHA48DvU4TGSyPiZGAB8L/Kc68BPgrMB94ozyUzl0TEV4HuhT//JjOXlNt/DHwf2BT4cfkaemo1+NrXYNEi2HrrqquRJEkNFjnElmLq7OzMuXPnVl3GwHrwQXj/++G88+DTn666GkmSNEAi4t7M7Fyz3ZUY2sEee8B73uOkvpIkDREGuHYQUUzqe+ON8PLLVVcjSZIazADXLmo1WLECrrqq6kokSVKDGeDaxT77wKRJDqNKkjQEGODaRUdH0Qt37bXw+utVVyNJkhrIANdOajV46y348dCcTUWSpKHCANdOPvIRmDDBSX0lSWpzBrh2MmwYzJxZPMiwbFnV1UiSpAYxwLWbri549VX4yU+qrkSSJDWIAa7dzJgBm2/uMKokSW3MANduRo6Eo4+GOXOKeeEkSVLbMcC1o64uePFFuO22qiuRJEkNYIBrR4cdBqNHO6mvJEltygDXjkaPhiOOgCuugJUrq65GkiQNMANcu6rV4Lnn4M47q65EkiQNMANcuzrqqOKBBp9GlSSp7Rjg2tXmm8PBBxcBLrPqaiRJ0gAywLWzWg2eeAIeeKDqSiRJ0gAywLWzmTOho8NhVEmS2sx6A1xE7BMRE+v2PxkRcyLi3IgY1/jytFG22gqmT3c6EUmS2kxvPXD/DiwHiIgDgK8DFwJLgfMaW5oGRFcXPPJI8ZIkSW2htwA3LDOXlNsfA87LzB9m5l8COza2NA2IWbOKd4dRJUlqG70GuIgYXm4fBNxUd2x4D+er2UyaBPvtZ4CTJKmN9BbgLgZujYg5wJvA7QARsSPFMKpaQa0G990HTz5ZdSWSJGkArDfAZeb/C3wB+D6wf+ZvJhTrAD7T2NI0YGq14t1eOEmS2kJvT6GOBu7NzCsy8/WI2CUizgR2z8z7BqdEbbQddoA99zTASZLUJnobQr0WmAq/GTb9ObADcFpE/F1jS9OAqtXgZz8r1keVJEktrbcANzYzHyu3TwIuzszPAEcARzW0Mg2srq5iSa3Zs6uuRJIkbaTeAlz9IpozgBsAMnM5sLJRRakB3vte2GUXJ/WVJKkN9BbgHoyIfyjve9sRuB4gIrZseGUaWBFFL9wtt8CLL1ZdjSRJ2gi9BbhPA7+muA/u0Mx8o2zfDfiHBtalRqjV4J134Ec/qroSSZK0EXoLcGOAH2XmGZn5i7r2pRQPOKiV7L03TJniMKokSS2utwD3z8D4HtrHAd8a+HLUUBFFL9z118Orr1ZdjSRJ2kC9BbgdM/O2NRsz83bgtxtTkhqqVoPly+Hqq6uuRJIkbaDeAty71nNsxEAWokHyoQ/BxIlO6itJUgvrLcDNj4iPrtkYEUcAjzemJDVURwfMmgXXXANvvll1NZIkaQMM7+X454CrI+J/AfeWbZ3AfjiRb+vq6oJ/+7fiXriZM6uuRpIk9VNvPXBHAr8H3AFMKV+3Ar+dmY82uDY1yvTpMHasw6iSJLWo3nrgtgPOAd4LPEgR5BYBo4G3GluaGmbECDjmGJgzp3igYeTIqiuSJEn9sN4euMw8KzM/BGwDfAlYAvw+8FBE/HIQ6lOjdHXByy8XKzNIkqSW0tsQardNgc2BLcrXs8BdjSpKg+CQQ2DMGCf1lSSpBa03wEXEeRFxB/ADigcXfgYcn5mdmfn7g1GgGmSTTeDII2H27GJ5LUmS1DJ664F7NzAKeB54BlgIvNzoojRIajVYtAjuuKPqSiRJUj/0dg/c4cA+rFq4/gvAPRFxfUT8daOLU4N99KMwapRPo0qS1GJ6vQcuCw8B1wA/pngS9T3AGQ2uTY02ZgwcdlgR4DKrrkaSJPVRb/fAfTYiLomIpyjmfzsK+G+gRrGgvVpdrQZPPw1z51ZdiSRJ6qPe5oGbCvx/wJmZ+Vzjy9GgO/poGD686IXbZ5+qq5EkSX3Q2z1wn8/MH25MeIuIYRFxf0RcVe5vHxF3RcT8iPhBRIws20eV+/PL41PrvuNLZfuvIuKwuvbDy7b5EfHFDa1xSBs3Dg48sJhOxGFUSZJaQl/ngdsYZwCP1O2fDXwzM3cEXgJOLttPBl4q279ZnkdE7AacALwPOBz41zIUDgP+BTgC2A04sTxX/dXVBY89Bg8/XHUlkiSpDxoa4CJiO4r1VL9b7gcwA7isPOUCYFa5PbPcpzx+UHn+TOCSzFyWmU8A84F9y9f8zHw8M5cDl5Tnqr9mzoQIJ/WVJKlFNLoH7hzgfwMry/3xwMuZuaLcXwhMKrcnAU8DlMeXluf/pn2Nz6yrXf01cSLsv7/TiUiS1CIaFuAi4ihgUWbe26if0Y9aTomIuRExd/HixVWX05xqNXjwQZg/v+pKJElSLxrZA/dh4JiIeJJieHMG8C1gy4jofvp1O4oVHijfJwOUx7cAXqxvX+Mz62pfS2aeVy7/1TlhwoSNv7J2dOyxxbu9cJIkNb2GBbjM/FJmbpeZUykeQrgpMz8O3AwcV552EjCn3L6y3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSPLn3Flo66n7U2ZAp2dBjhJklrAYDyFuqY/BT4fEfMp7nE7v2w/Hxhftn8e+CJAZj4MXAr8ErgWOC0z3ynvkzsduI7iKddLy3O1oWo1uOsuWLiw6kokSdJ6RA6xub86OztzrqsO9OzRR2GXXeDcc+Ezn6m6GkmShryIuDczO9dsr6IHTs1q553hfe9zOhFJkpqcAU6r6+qC22+HRYuqrkSSJK2DAU6rq9Vg5Uq40udBJElqVgY4re63fxt22MFhVEmSmpgBTquLKIZRb7wRXn656mokSVIPDHBaW60Gb78NV11VdSWSJKkHBjitbd99YdIkJ/WVJKlJGeC0to6OYmmta6+F11+vuhpJkrQGA5x61tUFb75ZhDhJktRUDHDq2f77w1ZbOYwqSVITMsCpZ8OHw8yZxYMMy5ZVXY0kSapjgNO6dXXBK68UU4pIkqSmYYDTus2YAZtv7qS+kiQ1GQOc1m3UKDj6aJgzB1asqLoaSZJUMsBp/Wo1ePFFuO22qiuRJEklA5zW7/DDYdNNfRpVkqQmYoDT+o0eDUccAVdcAStXVl2NJEnCAKe+qNXg2WfhrruqrkSSJGGAU18cdRSMGOEwqiRJTcIAp95tsQUcfHAxnUhm1dVIkjTkGeDUN11d8MQT8ItfVF2JJElDngFOfXPMMdDR4aS+kiQ1AQOc+mbCBJg+3fvgJElqAsOrLkAt5NRTi4cZ5s+HMWNg662LXjlJkjSo/Ourvlm5EnbaCc48s3ifNg3mzXNuOEmSKmCAU98sWgTHHgsLFhT7CxbAzJlFuyRJGlQGOPXNsmWrwlu3BQuKdkmSNKgMcOqbUaNgypTV26ZMcV44SZIqYIBT32y9NcyZsyrETZkC3/senHyyT6ZKkjTIDHDqm44O2GMPuPNOePLJ4n3XXeHVV4tJfs86C95+u+oqJUkaEgxw6ruODpg4seh9mzgRtt0Wbr8dTjsN/vEfYcaMYtF7SZLUUAY4bZxRo+Db34aLLoL77oO99oKbb666KkmS2poBTgPjd38X7rkHxo0rFr7/u79zjjhJkhrEAKeBs9tucPfdcPzx8Gd/VswT99JLVVclSVLbMcBpYL3rXXDxxfDP/wzXXQcf+EAxtCpJkgaMAU4DLwJOPx1uuw1WrIAPfQjOO8854yRJGiAGODXOtGlF79v06fCHfwif+hS88UbVVUmS1PIMcGqsrbaCa66Br3wF/s//KULdo49WXZUkSS3NAKfGGzYM/uqv4Mc/LuaJ6+yEH/6w6qokSWpZBjgNnsMOK4ZUd9sNjjsOPv95V2+QJGkDGOA0uN797uLhhtNPh29+Ew48EJ55puqqJElqKQY4Db6RI4tpRi6+GB54APbeG266qeqqJElqGQY4VeeEE4rVG8aPh0MOgb/9W1dvkCSpDwxwqtZ731us3vCxj8Gf/zkccwwsWVJ1VZIkNTUDnKo3ZgxcdBF8+9tw/fXF6g1z51ZdlSRJTcsAp+YQAaedBrffDu+8Ax/+MPz7v7t6gyRJPTDAqbl88INw//0wYwaceiqcdBK8/nrVVUmS1FQaFuAiYnJE3BwRv4yIhyPijLJ9XETcEBGPle9jy/aIiHMjYn5EPBgRe9d910nl+Y9FxEl17R+IiHnlZ86NiGjU9WgQjR8PV18Nf/3X8F//Vaze8KtfVV2VJElNo5E9cCuAL2TmbsA04LSI2A34InBjZu4E3FjuAxwB7FS+TgG+A0XgA74CfBDYF/hKd+grz/l03ecOb+D1aDB1dMCXvwzXXgvPPQf77AOXXVZ1VZIkNYWGBbjMfC4z7yu3XwUeASYBM4ELytMuAGaV2zOBC7NwJ7BlRPwWcBhwQ2YuycyXgBuAw8tjm2fmnZmZwIV136V2ceihxZDq+94Hxx8PZ57p6g2SpCFvUO6Bi4ipwF7AXcA2mflceeh5YJtyexLwdN3HFpZt62tf2EN7Tz//lIiYGxFzFy9evFHXogpMngy33gqf/Syccw78zu/AwoW9fkySpHbV8AAXEWOAHwKfy8xX6o+VPWcNf8wwM8/LzM7M7JwwYUKjf5waYeRI+Na34JJL4MEHi9UbfvKTqquSJKkSDQ1wETGCIrxdlJmXl80vlMOflO+LyvZngMl1H9+ubFtf+3Y9tKudfexjxeoNEyYUw6tf+5qrN0iShpxGPoUawPnAI5n5T3WHrgS6nyQ9CZhT1/7J8mnUacDScqj1OuDQiBhbPrxwKHBdeeyViJhW/qxP1n2X2tmuu8Jdd8GJJ8Jf/iUcfbSrN0iShpRG9sB9GPgEMCMiHihfHwW+DhwSEY8BB5f7ANcAjwPzgf8A/hggM5cAXwXuKV9/U7ZRnvPd8jP/A/y4gdejZjJmTDHFyL/+azGUuvfert4gSRoyIofYTPednZ051z/07eWee+C44+D554uHHE49tVjZQZKkFhcR92Zm55rtrsSg1rfPPnDffXDQQfDHfwyf+ISrN0iS2poBTu1h/Hi46ir46lfh//7fYkkuV2+QJLUpA5zaR0cH/MVfwPXXwwsvQGcnXHpp1VVJkjTgDHBqPwcfXKzesMcexbQjZ5wBy5dXXZUkSQPGAKf2tN12cMstRXg791xXb5AktRUDnNrXyJHFU6mXXgrz5sFee8ENN1RdlSRJG80Ap/Z3/PHFHHHbbAOHHVY86ODqDZKkFmaA09Cwyy7F6g0f/zh8+ctw5JHw4otVVyVJ0gYxwGno2GwzuPBC+M534KabitUb7r676qokSeo3A5yGlohipYY77ii299+/WI5riK1IIklqbQY4DU2dncXqDYccAqedBr/3e/Daa1VXJUlSnxjgNHSNGwc/+hF87WtwySXF6g2PP16sqbpgQfHuww6SpCZkgNPQ1tEBf/7nxeoNkyfDk0/CtGkwdWrxPm+eIU6S1HSGV12A1BQOOgh22gkOOKDofYPifeZMuPHGItANG1ZpiZIkdTPASd0yV4W3bgsWFCs4vP/9sO++sN9+xWvaNNhqq2rqlCQNeQY4qduoUTBlyuohbsoUGD8ePvUp+PnP4eyz4Z13imM77bQq0O23H+y+u710kqRBETnEpk/o7OzMuXPnVl2GmtHKlcU9bzNnFiFuyhSYMwf22KO4Vw7g9deLVR1+/vNVr8WLi2ObbWYvnSRpQEXEvZnZuVa7AU6qs3IlLFoEy5YVPXJbb70qvPUkE554YvVA94tf2EsnSRoQBriSAU4NZy+dJGmArCvAeQ+cNNA22wymTy9e0HMvnffSSZI2gj1wUhXqe+nuvLN4X7SoOGYvnSSpZA+c1Ew2ppdu2rSil264//eVpKHKHjipWdlLJ0lDnj1wUqtpRC9df5+ylSQ1JXvgpFbWn166D30Inn56/fPcSZKaitOIlAxwamvrm5fu8svhzDPXXmnijjtg0qTqapYkrZNDqNJQEAE77FC8Pv7xoq27l27s2J7Xep0/v1jrdfvtV7122GHV9pQpMHLk4F+LJGmdDHBSu+u+l+7553te63XMGDjuOHj8cbj/fpg9G95+e9U5EUUP3ZrBrvu17bYOwUrSIDPASUPF1lsX97z1dA/cv/3bqvPeeQeefbYYin3iiSLYdW//5CfFsfpbL0aOhKlT1w523a9x44oQKEkaMN4DJw0lA/EU6rJlRQCsD3b1ryVLVj9/8817DnY77FAEv9GjB+zyJKndeA+cpCKsTZy4cd8xahTsvHPx6snSpT0Hu1/9Cq67Dt58c/Xzt9lm3fffTZ7shMWS1AP/ZZQ0sLbYAvbcs3itKRNeeGH1YNfdk/fzn8Oll66a1w6KNWEnT+453G2/fRH+6odnnedO0hBhgJM0eCKKHsCJE4u56db09tuwcOHa99498QRcfXUR/uptuumq++8OPBD23x9OOGHVPX6zZxf3+A0bNiiXJ0mDxQAnqXmMGLGqd23GjLWPv/EGPPlkz/ff7bzzqvAGxfusWXDOOXDqqcXDFP15bb65vXeSmpYBTlLrGD0adtuteK1pwYKe57mbOhWOOaZ4uGLJEnjqqWJy4yVL4LXX1v2zOjpgyy37H/zGjvW+PUkN578yktrDqFE9z3M3cSKcd17Pn1m+HF56aVW4W9/r17+GRx8ttl9+ef21bL75hgW/TTbp/Tq9z08SBlFgrMMAAApnSURBVDhJ7WJd89xtvfW6PzNyZPEgxDbb9O9nvfNOEeLWF/jqg+HTT6/arn9IY02jR68e6NYMeTvvXDzUcfzxq67x8suLkDpsWBHoNtmkeG/VufcMqFKfGOAktYeOjuKBhTvvbPwf/2HDYPz44tUfmfDqq33r8VuyZFWP34svFr2Fl1++KrxB8V6rwTe/WbzX6w5z9a+e2vpzvD/fsSHDyCtXwrx5PU82bYiTVuNEvpLU7DKL+fOeew523HHt4w89BLfdBm+9tfZr2bKe23s7vrGGDet/APyDP4ATT1x7GHz2bLjnnqLHdOTI4ju6t9fcX9exESOaIwTaw6h+ciJfSWpVEcXw6mab9Xyf3/jx8Ed/NHA/L7Po8duYANiX40uXrn78U5/q+UGUpUvhlFM2/rpGjOh/8Ovvues7tuWWxZPUtdqqHsYrrijmNxw2rOi17A6arToEDu0fUpvk+gxwktQqNuQ+vw0RUfxhGjVqYL+3N88/33NA3WGHYn7AZcuKYNn9qt9f37H+nLtsWdHbuXTp+j+3bNnqawL3xeWXw5lnrj4EfuyxPQ+BjxixKtDVb6/53te2RhzrqW2zzYr7P+tD6uzZxe+wo6M4b/jwIrC2YkhtomF+h1AlqZU0yX/9N0QT/XHskxUr+hcSp07teQqcBx8slpl7++3iO99+e/XtNd/7e6y38wcyB6wZUqH4PfYUUrsDXXfv48ZsD8R39GV7zz3hqKPWvr4779z4ZQrXwSFUSWoHA7GebbMazAdRBkL3H/fRo/t2/rp6GCdMgLPOakyNfbFy5cAFxV126XkYfMcd4e//vngKe8WK4jVQ28uXb9hn69/76pZber6+Zcs2+tfQXwY4SVLzaOeAOlhD4P3V0TFwQ+brC6l/8icb//2NkFmE2L4Ev2HDer6+wb7dAAOcJEmDo9V6GDdEs4bU9Ykogln3XIrrs3Jl01yfAU6SpMHSzj2M0P4htYmur+UDXEQcDnwLGAZ8NzO/XnFJkiQNXUMhpDbB9bV0JI6IYcC/AEcAuwEnRkQPj/hIkiS1j5YOcMC+wPzMfDwzlwOXADMrrkmSJKmhWj3ATQKerttfWLZJkiS1rVYPcH0SEadExNyImLt48eKqy5EkSdoorR7gngEm1+1vV7atJjPPy8zOzOycMGHCoBUnSZLUCK0e4O4BdoqI7SNiJHACcGXFNUmSJDVUS08jkpkrIuJ04DqKaUS+l5kPV1yWJElSQ7V0gAPIzGuAa6quQ5IkabBEZlZdw6CKiMXAgl5P1PpsBfy66iK0Ufwdtj5/h63N31/rG6zf4ZTMXOsG/iEX4LTxImJuZnZWXYc2nL/D1ufvsLX5+2t9Vf8OW/0hBkmSpCHHACdJktRiDHDaEOdVXYA2mr/D1ufvsLX5+2t9lf4OvQdOkiSpxdgDJ0mS1GIMcOqziJgcETdHxC8j4uGIOKPqmtR/ETEsIu6PiKuqrkX9FxFbRsRlEfHfEfFIROxXdU3qn4g4s/w39KGIuDgiNqm6Jq1fRHwvIhZFxEN1beMi4oaIeKx8HzuYNRng1B8rgC9k5m7ANOC0iNit4prUf2cAj1RdhDbYt4BrM3NX4P34u2wpETEJ+CzQmZm7U6widEK1VakPvg8cvkbbF4EbM3Mn4MZyf9AY4NRnmflcZt5Xbr9K8YdjUrVVqT8iYjvgSOC7Vdei/ouILYADgPMBMnN5Zr5cbVXaAMOBTSNiODAaeLbietSLzLwNWLJG80zggnL7AmDWYNZkgNMGiYipwF7AXdVWon46B/jfwMqqC9EG2R5YDPxnOQz+3YjYrOqi1HeZ+QzwD8BTwHPA0sy8vtqqtIG2ycznyu3ngW0G84cb4NRvETEG+CHwucx8pep61DcRcRSwKDPvrboWbbDhwN7AdzJzL+B1BnnYRhunvE9qJkUY3xbYLCJ+r9qqtLGymNJjUKf1MMCpXyJiBEV4uygzL6+6HvXLh4FjIuJJ4BJgRkT8V7UlqZ8WAgszs7vn+zKKQKfWcTDwRGYuzsy3gcuBD1VckzbMCxHxWwDl+6LB/OEGOPVZRATFvTePZOY/VV2P+iczv5SZ22XmVIqbpm/KTP/Lv4Vk5vPA0xGxS9l0EPDLCktS/z0FTIuI0eW/qQfhgyit6krgpHL7JGDOYP5wA5z648PAJyh6bh4oXx+tuihpiPkMcFFEPAjsCfxtxfWoH8re08uA+4B5FH+HXZWhyUXExcDPgV0iYmFEnAx8HTgkIh6j6Fn9+qDW5EoMkiRJrcUeOEmSpBZjgJMkSWoxBjhJkqQWY4CTJElqMQY4SZKkFmOAk9Q0IiIj4h/r9s+KiL8aoO/+fkQcNxDf1cvPOT4iHomImxtZV0RMjYjf7X+FktqBAU5SM1kG1CJiq6oLqVcuOt5XJwOfzswDG1VPaSrQrwDXz+uQ1MQMcJKayQqKSU3PXPPAmj1VEfFa+f47EXFrRMyJiMcj4usR8fGIuDsi5kXEe+q+5uCImBsRj5ZrwxIRwyLiGxFxT0Q8GBF/WPe9t0fElfSw2kFEnFh+/0MRcXbZ9mVgf+D8iPhGD5/50/Izv4iItSb9jIgnu8NrRHRGxC3l9vS6ybPvj4h3UUwa+pGy7cy+XkdEbBYRV5c1PBQRH+vLL0ZSc/G/xiQ1m38BHoyIv+/HZ94PvBdYAjwOfDcz942IMyhWLvhced5UYF/gPcDNEbEj8ElgaWbuExGjgDsi4vry/L2B3TPzifofFhHbAmcDHwBeAq6PiFmZ+TcRMQM4KzPnrvGZIygWMf9gZr4REeP6cX1nAadl5h0RMQZ4i2IR+7MyszuIntKX64iILuDZzDyy/NwW/ahDUpOwB05SU8nMV4ALgc/242P3ZOZzmbkM+B+gO7jMowht3S7NzJWZ+RhF0NsVOBT4ZEQ8ANwFjAd2Ks+/e83wVtoHuKVckHwFcBFwQC81Hgz8Z2a+UV7nkn5c3x3AP0XEZ4Ety5+5pr5exzyK5X/OjoiPZObSftQhqUkY4CQ1o3Mo7iXbrK5tBeW/WRHRAYysO7asbntl3f5KVh9pWHPtwAQC+Exm7lm+ts/M7gD4+kZdRf/95hqBTX5TZObXgT8ANqXoWdu1h8/26Toy81GKHrl5wNfKYV9JLcYAJ6nplL1Tl1KEuG5PUgxZAhwDjNiArz4+IjrK++J2AH4FXAf8UUSMAIiInSNis/V9CXA3MD0itoqIYcCJwK29fOYG4PcjYnT5c3oaQn2SVdfY1d0YEe/JzHmZeTZwD0XP4avAu+o+26frKId/38jM/wK+QRHmJLUY74GT1Kz+ETi9bv8/gDkR8QvgWjasd+wpivC1OXBqZr4VEd+lGGa9LyICWAzMWt+XZOZzEfFF4GaKnq+rM3NOL5+5NiL2BOZGxHLgGuDP1jjtrykegPgqcEtd++ci4kCKHsWHgR+X2++U/3t8H/hWH69jD+AbEbESeBv4o/XVLak5ReaaIwqSJElqZg6hSpIktRgDnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASZIktRgDnCRJUov5/wEEXUm8vjXJ1AAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(10,5))\n", + "sns.lineplot(range(1, 11), wcss,marker='o',color='red')\n", + "plt.title('Elbow')\n", + "plt.xlabel('Number of clusters')\n", + "plt.ylabel('WCSS')\n", + "plt.show()" + ] + }, + { + "source": [ + "Looks like 3 is a good number after all. Fit the model again and create a scatterplot of your clusters. They do group in bunches, but they are pretty close together." + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd3gUVduH7zOzNZWE0BKqVAHpAgpSFBTBil2wI2Lvfnasr72j2MWCBVGQpqgIAtKl914SSoD0bJ853x+zCdnsbFhCAop7X5eXZHZ2zskmOc85T/k9QkpJjBgxYsT476Ic7wnEiBEjRozjS8wQxIgRI8Z/nJghiBEjRoz/ODFDECNGjBj/cWKGIEaMGDH+48QMQYwYMWL8x6k2QyCE+FQIkS2EWB3hdSGEeFsIsVkIsVII0am65hIjRowYMSJTnSeCMcCACl4/F2ge/G84MLoa5xIjRowYMSJQbYZASjkbyKnglguBL6TBAqCGEKJedc0nRowYMWKYYzmOY2cAu8p8nRm8tqeiN6WlpcnGjRtX47RixIgR48Tj77//PiClrGX22vE0BFEjhBiO4T6iYcOGLFmy5DjPKEaMGDH+XQghdkR67XhmDWUBDcp8XT94LQwp5YdSyi5Syi61apkatBgxYsSIUUmOpyGYBFwbzB7qDuRLKSt0C8WIESNGjKqn2lxDQohvgD5AmhAiExgJWAGklO8D04CBwGbABdxQXXOJESNGjBiRqTZDIKW86jCvS+D26ho/RowYMWJER6yyOEaMGDH+48QMQYwYMWL8x4kZghgxYsT4jxMzBDFixIjxH+dfUVAWI0aM/xYysAu8vxtf2PsjLPWP74ROcGKGIEaMGP8o9OLPofBVQBoXCl9HJj6IEn/tcZ3XiUzMNRQjRox/DDKwM2gEvIAv+J8XCl8xTgkxqoWYIYgRI8Y/B+9vgG7ygg7eX4/1bP4zxFxDMWIcJQd25zD5velsWbGdFqc24/wRZ5NSO/l4T+tfijzeE/hPEjMEMU54pJRIKVGUqj8Ab125g3t7PYHf68fvDbBsxiomvDWVd+b/j/ot0qt8vBMee38ofMvkBcV4LUa1EHMNHWN25uex/sB+NN3s+BujKinOL+bl60cx0Hk1A2xXcn/fkezaYCpwW2neuvVDXAVu/N4AAD6Pn+I8F+/dM6ZKx/mvICyNIOEewI6xT7UY/064B2FpeETPklJH+jciAxHVl2MEEYbkz7+HLl26yH9jP4LMgnxumfIT2/JyUYXAplp49ewB9G180vGe2gmJlJI7uj3CtpU78PuMRVoIQXxyHGM2vk1yWtJRj6FpGufar0Lq4X9DVruFae5vjnqM/yoysB08wZiA42yEpfGRvd87D5n/AEgXSB3U+oiUdxGWJlU+138LQoi/pZRdzF6LnQiOAbqUXP3jODYcPIAnEKDY7yfX4+b2aZPZlpd7vKfHrvx83l44n2dnz2Tuzh382zYHZqxbuImd6zJLjQAYxsHn9fPLp39UyRiKomCxmntX7U57lYxRFUj57zt9CktjRMJw478jNQLaHmTuraAfMAwBHtC2IHOGIqW/Wub7bydmCI4Bi7IyyXW70cstsAFd5+tVK47TrAymbtzAOWPH8O7iBXy2fCkjpv7ELVN+qhbXVXF+MZuXb6Mwt6jKn12ezA27Ta/73D62rqwaV4EQgn5De2G1W0Ou2xxWBtx0ZpWMcTTorono2b2Q+1qhZ/dEd/1wvKd0TJCu8UCg/FXDKHjnHo8p/eOJBYuPAftdxabXA7pOVmHBMZ7NIVx+Pw/9/gueQCDk2rzMnUzfspmBzVtUyTi6rvPhg18yefR0LDYLAV+As4b24u73bka1qFUyRgl5+/NZ+vsq8g8UoJu4bOxxNpp3qjp33K1vXMfuLXtZv2gTqkVF82u069OGG569ssrGqAy66ycoeBLwBC9kQ8Ez6IASd8nxnFr1o+8FTHb+UjdOCTHCiBmCY0CnuukETHbYTouV3g0bH/sJBVmUlYlqkknj8vv5acPaKjMEP7w+hSkf/IbP48fnMf5A/xg7h6TUBIa9OLRKxgCY+M40PnzoKyw2FYEg4AugWo3FGUBRBPY4O+fc0LfKxnQmOHn1j6fYtnonmRt206hNAxq2yjC9t8TlJoSosvEjUvwmpUagFDcUvQUnuCEQttOQ7qkY/a7KooOt0/GY0j+emGvoGJCRlMRlrdvitBxyIdhVlXqJCVzY6uTjNi+LokRM27apVbdHGP/6ZLwub8g1r9vHpPemV1k8YsuK7Xz88Fj8Xj/uQg+uQje6piMAZ6IDq91Ct0GdeXfRiySmJFTJmGVp0rYhZ1zS3dQI7N2ezaPnPs8A25UMdF7NC0PfoiCnsMrnEIIWoeurvveEiAFViONssDTEyDwqwQmOAQhL0+M1q380sRPBMeLpPmfRqV4GX6xchsvnY2DzltzQoRMOi/Xwb64mumbUR1XCd6dOi5XLW7etsnEixQQ8xR50Ta8S99D0MTPxe8PdATaHjQc+u50zBnc76jEqg6vQzZ3dHqHgYCG6LtE1ndnjF7B15Q4+WP5qtdQ2AKDWB21n+HUl/dicSMohpRf0IlBSEKJ6959C2CD1W6TrS/BMBuyIuCHgvKhax/03EzMExwghBBe1OpmLjuMJoDw2VeWD8y7ipkk/AqAFC6+uansKPRs2qrJxWnRuypp5G8KuN2iVUWUxAneRxzQmIKXEU1zeRXLsmPHVbDwub8jcAr4A+7bvZ8WsNXQ885TqGTjhfsj/P0LdQw5IuK9Kh5FSgn8J0vMHiHiE84KQfH8pfciC58A9AZCgJCMTn0BxDqjSeZRHKHGIhFsg4ZZqHedEoVpNsxBigBBigxBisxDiYZPXGwkhZgghVgohZgkhYlqzx5iuGfVZcNMInjuzP4/27M3PQ67j8V59q3TXeOsb1+OIs6METx9CCOxxNu5456YqG+OMwd1xxIenbGoBjc7921XZOEfKttU78RR7w65rms6u9eaZTVWB4jwXkl8CtSGgGv9PfgEl7oIqG0NKicx/CJk7DFyfQPF7yAOD0F0TD92T/zi4J1IqIqfvh/yHkL5FVTaPGEdPtZ0IhBAq8C7QH8gEFgshJkkp15a57VXgCynl50KIM4EXgGuqa04nGlJKxq5awUdLl5DncXNqen0e7tmLZqk1j+g58TYbF7asvpNKy1Ob8c7CFxj7/A9sXrqVRm0aMOSxS6o0e6fLOe3pfHZ7/v51BZ5iL0KAzWnjuqevILVuSpWNEwktoFGYW0RiSkLIKadp+8Y44u1hxkBVFRq1rt59j+I8F5znVt8AvjmGSJx0By8EjP8KnkA6zgQkeKZhKIiWxYMsGo1I7Vp9c4txRFSna6grsFlKuRVACPEtcCFQ1hC0BkrOqjOBifzLkVJG3E3vys/npw3rKPL5OLPJSZyannFUO+8X587mq1XLcQfTP2du38rCrEymXX0tDZL/WaJnjds04LGv76m25yuKwlWPXMzmpdvwuo0UwabtG9NvaK9KPa+in+OcHxYw7tVJ5O8voMs57YlLdDJ59K/4fQFsDitDn7yMS+4ZhBCCM6/uyedPjcPn8aNrRuaY1WYho3k92vVuXblv9h+CdE8NFmyVQ1jA9xeozUBYQZY3BJjHL2IcN6rTEGQAZQXEM4HyEbsVwGDgLeBiIFEIUVNKebDsTUKI4cBwgIYNj0xv5FixKCuTZ/78g3UH9pNkt3NTx87c2qVbaXrmTxvW8cjvv6JJHb+u8+XK5XTLqE+yw8HO/Dy612/A9R06USsuPqrx8j0evli5DK+mlV6TgCfg5/2/F/H8mcdWoCtvfz5/TViE3xug23mdqNekzlE/c/nM1Ux4exp5+wvocVFXzrulP3GJzpAxJ749jaUzVpNat4ZxGiiTnbRh8Rbu7/sUn6x5I2qDu2XFdt654xPWzt+AI87OucPO4qYXhmALFo19+ez3fPfyT3iDO/wpH/wWIjHh9/r5/IlviUt0MHBYP5wJTkYtfIF37/qUxb8sQ7Wo9LmyByNevfa4BG2rFGEBBOapZxawNDBy98NQwNqheucW44ioNq0hIcSlwAAp5bDg19cA3aSUd5S5Jx0YBTQBZgOXAG2llHmRnlsVWkP5Hg/j1qxi2b49tKyZxlVt21E7vvIphWuy93H5+G9Ld+YATouFy9ucwsjeZ1Lg9dL9k/dDCrdKKPkzsikq8TYrk6+6hvTEw+vgLN+7h+smjqfQF77balUzjWlDrotq7gFd5+OlS/hq1XKKfX56NWrMQz3OICOKOZQwe/x8XrpuFIoQ6MF6iasfu4Qhjx1Zvrqr0M3fv61ECNi1Pouxz/9YmnZqc9qo3aAm7y15CWeCk4N7chnR8UGK812m2UIlOBMdPDvpYdr3bnPY8fft2M/Np9yHu+hQgNXmtNLl7A48PeEhivOLubzecHwekx1uOWo1SOPrHaOj+K7/vUjfEmTOTYA79AURh6g9HyGc6EXvQ/HoMu4jAcKJqPlDLJXzGFOR1lB1ngiygAZlvq4fvFaKlHI3xokAIUQCcElFRqBKJlVYwKCvv6DI60NH8uvmTXy4ZDHjL7+Kk2vVrtQz3160IGyRdwcCfLt6Jfd278G8XTuNnH0TSsywT9fQvDpvLPiLV/of3q+bnpiIr8xpoAQBnJSSGvXcH/j1Z6Zv2VR6spiycT1zd+7gt2uuJ9UZd9j3F+QU8tJ1o/C5QxfHb/73I90GdqJZx+hEvmaPn8/L149CtahIKXEXhmb6+Nw+sncdZOqHv3Ppfecz9rnxFOYUoQXCP4OySF2yd1t2VIZgwttTS1VED43rZ8n05ezZto+DWTlY7ZaoDEHu3iPTkFo+czVf/+9H9m7LpvXpLRn6xKXUb17viJ5xrBG2Lsj466H4U4zfPAWQiBqjEMI4uYn4W0BNRxaNNqp6bZ0g4U7wr0Z3jTdE4ByDEEp0J+EY1UN1Zg0tBpoLIZoIIWzAlcCksjcIIdLEoaTiR4BPq3E+APzfb9Mp8HrRg0uwDri1ALdPm1LpZ248eMD0cGxVVXYXFmAxydU3Q5OSOTui08GpHZ9A38YnYVdD0y8dFgsjuhwKwi3bs5sLv/2KZu+8TocPRvHmgr9Kq5x35efzy+aNYe6lAq+Hb1atjGoeC6csRVXDf438Xj8zvp4T1TMOZB3kpetG4XX5cBW4w4xACT63j/mTjdPg4p+XH9YIgOHrj9YYbVq6jYA//NRmtVvJ3LCb1HopISJ2FdHgZPPqYjP++HYuj5//AstmrGLP1n3M/GYut3V5iB3rMqN+xvFCSbwXkTYVkfgQIulJRO25CHtPpLYbGdhmSEFru0E/CLIQApmQOxxZMBJcnyALnkfuP8toUVkBUi9Gun9CFn+O9IenIsc4OqrNEEgpA8AdwHRgHTBOSrlGCPGMEKIkh60PsEEIsRGoAzxfXfMpYUGWed/T7fm5eE1cN9HQKi0Ns6Xer2lkJCbRo0GjqKs5kx2OqMd9/Zxzuahla+yqikVRqJ+UxHsDL6BtbcM/v+ngQYZO+J5V2fvQpaTA6+XDpUt4YubvAKzdn43fRPpCk5KZ27dGNQdN002/NymJaqEG+HPcfFMp5/IIASl1awCQWPPwrjy700a7Xm1o2r5xVPNo3qmJqZqo3+unfst00pvWpWWXplhsFR+k7U4bt7wSXaN1TdN47+7P8LoOnTJ0TcdT5GXM499G9YzjjbA0RMQPRcQNBj0X/cCFyP3nIA9cBPs7Q9EokHmADtqmMqqgAG6QeciCxyM+X/qWI/efgcwfiSx8BXnwMvT8h0/8CuljSLXWEUgpp0kpW0gpm0opnw9ee1JKOSn47/FSyubBe4ZJKcMTrquY8gqgZamsIbiz62k4LKGLg9Ni4aq27Ui023Farbw38AIcqorDYsGqKMZBulyw0GmxMKxj56jHdVisvNDvbFaMuJPFw27lz+uG0bvxod3v6CULQ3b7AJ5AgInr15LjdlHk90VsDGgWezCj28COpdkwZbE5bfS+7PSonuEp9kZlNGxOGxfdYbjNLr3v/LC6AdWqUDMjleS0JNLq1+TKhy/i6YkPRjUHgMF3D8LqKKck6rRx6oCOpcHvpyY8SPverbHarTgTHCSkxHPF/11Iiy5NSUiJp/XpLXh+6qN07t8+qjFz9+WHxCRKkFKy+q91Uc+99H2BzUjvQqRezRIWZmPLADJnCAQ2YNQNuIML/uF+l3TwLUKaZBdJqSHzbgVZhKEd5AM84P4ZvNOr+luocqS2Fz1/JPr+/ugHr0Z6Zh7vKZnyn6ssTrDZKDJZ5FQhiLfZKvXM1rVqM+aiS3jmz5msO7CfZLudG4NZQyXUS0ykZlw8+13FKEJgV1XqJyWTWViAVVHwaRpDTmnPpZWQdrCpKjY1vEJ37YH9pobPpqrsys+nht1hBHhN7qkZRXwAIKVODW598wZG3zsGLaChazo2h43+1/biQOZBJrw9jdant6Rll8iBwVPP7cA3L04I0yMSwpCIUK0qWkDnllevoW2PVgD0vbIH21fv5Ic3pmC1Wwn4AjTr2IRnJv0fSamJUc29PLUb1uLNOc8y6s5PWDPPyBoaOLwfNzx3Vek9SamJvDj9CXL35VGYW0xGs7pHVR0dnxwX8TSUcgT1D1I7gMwdDoHNpSmbMuEOlGNZWeubG1ywKyNhXhJjKId/FUgzV6Eb6RqHcFRvhfLRILV9yAMXBD+TAGg7kHlrkIn3osRff7ynF8J/zhDc2+10np/7Z8jiJ4Ahp7Q3VeKMxAGXi+/WrGTDgQO0q1OXy1q3ZfJV5rVwmq4z9Mfv2e8qDtmBZxYW8N7A87GrFlqmpUUVnD0STk6rxeacg2ELvVfTaJCcTIPkZCxBI1QWu6pyXouWUY9z3vD+dDyzLTO//Qu/x0+Tdo14546PmTF2DgGfhqIqdOp3CiPHP2C6aLbo3JRmnZqwZu76kOsd+rZlxOvXU5hTRItTm+KMP+Q2E0Jw4/NXc+n957N1xQ7SMlKrpEdwfHIcaRmpJNSIIy7R+LfFGj7nlDo1SKlT46jHc8Y7OPPqnsz89q+QgLs93s7Vj1xc+rXU9iILXwPvbBBOiBuCiL8BIYw/YZl3OwTWA4FDC2fxe0hLC4Sj6tRWK0TLjpAuejgsYO9V+r2EEgBTxysgK3eCP1bI4g8PGYFS3FD4BjLuitKA+j+B/5whuL5DJ3I8bj5eagQddQmXnNyax87oE/UzNh48wGXff4tPC+DVNH7ftoX3/17ExCuGUD8pvJBrfuYuiv3+MDeMX9OYtWM7T/WuniYmt3bpyq9bNoWktTosFi5o0arU6NzZtTvvLV5Yeo/DYqFRcg0Gnxy52ElKyboFG1k4bSlxiU76XtmDjGb1GPr4pUgpubH1PRQeLKSs/Vn6+yqmfvg7F9x2Ttjz9mzbx6YlW8Kur5m3gcTUBE5qZ657tG/HfsY+/wMr/1xDrQZpXPXwxXTqV3k5idx9edza5SGKc4vRdUnBwSI+e/xbdqzN5L4PR1T6uYfjrneH4ff6mfPDQiw2FalLhj55GX2u6AGA1POQBy8GPQ/QQOZC0TvIwDpEjdeRgUzwryWsGYt0I12fVbkhkHoe+DeAWi+0j7C1IxHlbEMQGMqgunF6UVIRSc+a32pth7kH24mI+4eLyHnnE94gBxAqBLaAteqEHY+W/2zPYpffT2ZBPnUTEkiyRx+gBbjs+29Yumd3yK+8KgRnNWnK++ddGHb/lI3refj3X3EFTNQxVZWArtM8tSaP9+pDjwZVJ/YGRtbQU3/+wersfSTa7VzXviN3dj0tJJ11zs7tfLliOXleDwObteCKNqfgtJqrokopeeWGd5kzfgEetxeL1YKiKjz02e30vvx0dm/Zy/D294cEP0to2qEx7y99Jez6uFd+4rMnviVQLiPH5rAy7MWhXHzXwLD37Nm2j1s7P4SnyIMWMHah9jg7t799A+feeNYRfUYljHnyW8a9MimsLsHqsPLF5lGkpRtpuWvmbWDCO9PI2ZNL9/O6MGh4P+KTKj7NSWmksVpsFmrVN5cAKcgpJGdPHvVOqh3S6lIv+gCK3iW8v4AdkTYNZAEy55rg7rMcanOUWlONOfhXGgJw/lUgEiDuGkTCbRF24ubfgyx8FVxfgLCB9IO1PSLlPYRiuOP03HvAO5NDtQV2YywZAArA0goSH0GgQWAjqI3BfkaFc5De2cjcOwEN8IGIA2tnRMoHUc/9eKDn3Gi4y8KwIWr9jlDrHtP5HK86gn8Ufk3DHQiQaLMhhCDOaqVFzbQjfk5A11m2d0/YvkeTktk7t5u+p1PddFMjAJS6ZTYcPMDNkyfy5cWX0rleaOphkc+HVVGwW478x9WxXjo/XVlx85czGjbmjCgb5Cz+ZTlzflhQWsFbsni/cuO7nHpuRwJ+LWLFbMBvHhAO+DVTP7muy4jv+eqZ8bgLPSGBaq/Lywf3f0H/a3pH7CUspWTt/I0cyMqhRZeTQiqgV81ZZy5lbbeybeUO0tJTmfrRb4y+93N8bi9SGtXLU97/ldF/v0R8snku/Nr5G3hhyFvkZucjdUmDVhk8Me4+MpqF1gkkpSaaxzd8Swg3Ahi76cA6sPfBfCduA4dx2pSBrUFjEVygZT4Uf4zU9yKS/2c67zA8E8H1FeCFkrwO/zJk/oOIlPeNKdV4DekaB+5vjHscgxDxNyIUkywve4+ohhX2XlDrV6R7MugHEfaeYDut2uWsjxYRfzPS9zehBXc2sHU95kbgcJzwhsCvabz412y+Wb2SgK6TFhfHYz37ALD2QDZNaqQwqHnLiDvg8ihCoEYIsJbP6S9ha14uFqEQOIz/1BMI8Mb8v/hq8OUALN2zm0dm/MrW3FwUAec0bc5zZ/YnyX78GqPPGDvHVE1Ttags/X0lPS7qSmJqQtg9NqeN/teY6/6cfuGpjH3+h7DMIUURnH6h6QaGFbPWmGYraZrO3m3ZpvGCg3tyefCsp9ifmYMiBAF/gL5X9eS+j0agKAoNW2Wweu76sOcGfAHqNK6Nx+Xl/fs+Dwlq+9w+DmTl8NN707n6kcFhY+buy+Phc54LyQzaunIH9/V6krE7Rkc0WCFYmoJvHuHtFzVQ6yOEDZn4BBQ8hZGtIwG7of0ffyNQ4q8OF3/DPQmZ+ABCOXwRoiz+lLAqYnzgnYvU8xFKMkKoiPirIP4qs0dUGqHWQSQMq9JnVjfCfhoy6TEofBGjZ7LfMGA1Xj/eUwvjhDcEI2fNYOL6dXg0Y+e6t6iIu36Zgk1V8WoacVYrL/01hx8vvzoqoTZFCAY2b8G0TZvw64cWLruqRsz4yfO4sVssBPyHT8ncmGPILO3Kz+eaCeNxB08SmoTpWzax/sB+GiQnE9B1Lm7VhvNbtDyiIPfRoloij6WoCkIIHvvmXh4Z8BxaQMPn8eNMcNDw5AwuutO8YrpxmwZcev/5/PDa5NKCLavNwlWPDg7ZNWdu2sOPb0xh+5pdYW6kEjS/RlKaedbQ81e9QdamvSEL/azv5nFyt+YMGt6fwfcM4rcvZ4cs9Fa7hZanNsMRb2fRz8tMTyh+r5854+ebGoJfv5gVZuCkLnEXe1n08zJOv+BU07mWRcQNQbq/MRaSQzMDtTnCasRylLjBSEsTZPFnRs9e2xmI+GsQSjCg7V+L4Vop/3A7BHaALYpqdD1S0b8SdEslG7n93llI93cgPQjH+eC8ACGOXwOmo0EGthlGWCSC/awjroBW4i5HOi8yPmMlBaEeuRfiWHBCG4ICr5cf163Fp5f7Q4TS/HqX348nEODhGdMZG9yJH46n+/RjW14em3MOIjBqEzrWTef+08yPul3SMwjo0RVXNUsx/Mefr1iKTwtd7Py6zubcHDbn5gCwZPduJm9cx8fnX1ytAmYuv5+J69eyKCsTxzn1UX9LQNsT6o+WuiwN1LY5vSVfbBnFjLFz2J+ZQ7szTqbbeZ1QI5yYAG545krOGNyNOeMXIISg9+Wn0eSUQ/GSNfM28PA5z+L3+tECuqlBsjqsdBvYydS9krsvj/ULN4ft9r0uLxNH/cyg4f1p0DKD56c8wmvDRrM/0zDI7fq0IXvHAW5oeRdSyogGyBWhGjp754HSPs1l8Xv9HMzKifh5lEVYGkDKp8j8R0ELVhvbe4e5dIStI8LW0fwhlpMNn3z51E7pBbWB6VvCsPcM9hYo97usJIBiGGxZ+CK4vqXk5CB9y4ymNKmfYyjT/zsw4iHPgWuccUFYgKcg5SOELfpaHwh2TLM2r/I5ViUntCHYX1xkWjlbHl1KFmVl4g0EovLDJ9ntTLj8albu28u2vFxa1kyrUKeobkIiN3ToxOcrlpfu8C2KgqbrIZ5dh8XCPd2NIqwV+/aiHSaQ7w74WZiVyfzMXZzeIHpV1vUH9vPrls1YFIWBzVvQuEbkfPVct5sLvv2KHLcbd8CPTVWRD7Yl/f31OHcUBbWB4Inv78cRd8hlVaNWMpfcc17UcwJo1qEJzTqYy0G8ccsHIe6mkgCxoirY42wEfBqnntOBh8bcbvp+T7EXRTU3lmXdNu37tOHzTe9QcLAQCdx08t0U5hRxuJyKSIa4bqNaptcDvsARyVAIW2dI+yVYoWtHKEeWaiwSbkZ6fiHUteMw+vgGd6lSSmMnX/QB6MXg6A2Jj6KoKcFn3GV0IpPFGIVdCmBDJD2LEAoysAtcX2O4p0pwQ2A1eGeBo3JB/OOC709wjaf0ewnGRGTuCKg97197wonECW0IFCGQUaWzAYgj2lULIWhftx7t60YnDPbg6WfQOT2Dr1Yup8jnY1DzlhT7fHy6/G9yPR6apqTyRK++dM0wmpWYCcqZ4fL7mb1je9SG4NV5c/h0+VL8moYiBKMWLeDhnr24tr35TvKthfPILmNQfZoGCgQe6MJNRRk4E5z0HNy10kVc0eBxedm1Psv0NavDyltzn6NGnRqk1I7s2qvbpDaJKQl4XaG7cIvNQs9y/YyFECSnJTFj7Bz83sBhjQBAk1PMP//c7ALT64qqkL3D6JsgpWTy6Ol8/cIE8vbl06h1fW557To6nRXaxlIIAaJyTXaEpRmkfo4seBoCa0HEg/NqROLdpffIvLtCq3U9P4FnOnqtuShqEk0NypcAACAASURBVEKth6z5FeQ9adQsqDUh4T5EyQLvW4hpqqd0Ib0zD933L0C6xhMeDwEIgG8p2I9PD+zq4oQ2BGayz2aoQtCzYUPT6tyqQgTTS89qElphe3vX7qZNUOKt0VU521SVFGd06a9r92fz6fKlpZ+LJiV+dF6Y+ydnN21G3YTwxXz6lk2mp6oDXjc9h/WhTkLl5bujxVqBto+qKCEupEgIIXjo8zt44oKX0PwBAn4Ne5yd5FqJpr59gANZOaZunfCHw3m3mPd/MAtog/E9lcQbvn1xAl//78fSE8/WlTt48oIXeXH647TtWXWd44StAyJtgunvmx7IiiDZ4IHC56DGy0htH+RcazShxwuaG/IfRirxCHtvUJJAKCYJTBaIIhj9j8KsmQ5g1EBE8TvxL+OfnX91lFgPE0S1KArxVht14hN48axDhU5+TePzFcs4/5svOe/rLxizfGnUO/TKYHYS6dO4ScQspLIoQhDQJW/M/4u/du2oUIhr2qaN+Ew0fYQQzNh2SGRu6Z7d3Dx5Av2//MxUjgOMQjx7FTWej4pK1Lvous5vX/zJnac9ys3t7mPt/A28Pe85LrzzXHpc1JVhLw7ho5Wvk1TT/DTTqlszrPbD75UsFpVNS7eZvnbGJd2xx4UbdV2XdB3YEb/PzzcvTAjLsvK6fXz2RKjonJRepG8Z0r8pKsE16d+AnncP+v4B6Ll3If2GdpHpydddQXNA75/G84pGgZ7PIdePDniQ+Y8hpQ723pjvLS0I55H1pjjeCOcFRgV3GDrYzDPZ/s2c0CeC+snJEfsnNUhKZsgp7WlcowZ9G5+ENbjoSikZNnkCS3ZnlVbbvjxvDr9t3cxXF192zLpKXdn2FMasWMpBl6t0R25TVQSUzlXTJbrUeXex0Q8hbrmVjnXr8ekFg0vvKYsiBMLkAykrgPf71s3c9ctUvIEAEvPiflUIOtdLp4ajakvkc/flsXDqUhCC7ud1okYtw9Xj84ZXZZegaTq7t+wlOS0xLI//zVs+ZOa3c0sX2a83/8isb+fx7pKXSjuOVUS7Xq1peWoz1i/chNcdOeMr4NeY++NCrvy/8ErXlqc2xRHvCCuwa9Q6g7T0VA5kHYx4atix9pAMte6eDAVPAgKkBmo6pHwQUtkr/auRxV+CtsdIOXX/gOHL10HbjvT+CamfIMwWMrUCl5N0oe8/G7S9mFbK6gWg70GoGZA6Bpl7c7BeQRhjJ72IsFRtoWS14zgXPJMNd5d0AVZAhaSXEeLIClD/DZzQhqDA60URwjToWuD1MHP7VlrXqk2X9IxSyYXFu7P4e8/uEFkGTyDAin17KwzKegMBpm3ayF+7dpCRlMTlbU45oi5f5UmyO5h85TW8t2Qhv23dTKLNELK7oEUrlu/bg1/TueeXqRxwH+oZ6/L7WbpnN+PWrGJIu/BWgOe1aMnHy5aglXOZ6VLS76SmSCl5cuaMEJdaySenCIFDtSAE1IqP580B4dW+R8PPn85g1B2foAR7G7xz+0fc+9EI+g3phTPeQUbzemRu2B32Pr/Pzy0dHkALaPQc3J37Px6B3Wkna/MeZoydHeLa8Xn87N2ezZ/j5tH/mt6HnZMQgv/9/BgT357GL5/+gdftI2dPrmkKaXIt81PF/ElLwpr2AOxav5utK3dQv2U6IkK/igYtjVoI6V8H+Y8RUlSmbUPmXg9pvyOEgu6eAvmPUrrw+xcSavF1wI0seBaR9lP4YI5LoOAZzAXjvKBtN51jcDJGzAEQ1jZQaw74VxgBVlvHals4pdQNgyPiqnyDJoQKNd4H3zzDgCo1EM4LDWN3jJHSjXRNBv8SsDRGOC9FqJVrohWJE9oQFPv9WBUVTQvfxeR7vSzMymRhViafL1/K95ddRcd66SzZnWUaW3D7/SzZnWVqCIp8Pi4Z9zVZhQW4/EZmzcdLl/DR+RcfUTZPeWrGxfFEr7480StUK+bU9Pqs3Z9tWq3sDgQYv26NqSFoUTONu7qexlsL5wHGQiel5Nm+/cj3eFiTvY8ct1mADOIsVp7qcybpiUl0zagfJqF9NOzdns2oOz4J88e/cfP7dOjblrT0VO4ZPZzHznsBv9doAq+oCrqmowd0PAFjx//XhIUAPDr2btbO2xgUuAt9pqfYy9+/rohoCApyCvnh9SnM+2kxiakJDL5nEJc/eCGXP2hIh9zc7j52rssK2cU74u1cfNcg0+ctn7XaVGYaYM1f6zmpXSMuvf98vn91ckj9gt1p47qnrwBAur4mXMpZBz3XqOy1ngIFIwmtPo5whgqsN40RKIodPfl1yL+PI1MPtRpFUsohAT4hVKMTWclM9ELwTEVq2QhbJ7CdflRVwVJKZPEnwRaYLlBqIBPuQ4m7rNLPNEMIAfYeiCgroKsDqecgD14CWg5G8NpmFAemfoGwVl5XqzwntCFolFyDRLsNj6vioLEO3PDTDywfcSdpcXE4LBZc/tAFxGGxUis+1PXg9vvJLi5m/LrV7MzPK61NKIkn3Dd9GvNuuqVKF80SKtoBVfTaiC5dGdi8Bb9v3YJFUWhXpw4P//4ruwryUYQIq7kooVZ8PINPPny7x8ow+/v56BGkmMc8/i2tujWnw5lteWfB//j+1UnsWLOLA1k55OwNLXDyefzM/XEhhblFRgMbk8/BYlOp1cC8qKc4v5hbOz9E7t680paVm5ZuZfN927j+6SsBeH7KIzw84Dn27zqIalHxe/0MefwSupxt3n8gLSMVm8MaZuRUi1raZOfakZfjKfLw06hf8PsCJKTGc8fbN9Ghb7BAUduH+eIsQM+BwKYIr5vhiPj7oTgHIu09kK7vjE5ingoa44jEoNZQK0SNVyPepvvWQM6VlMQVZLECluZQczxCVK5CXhZ/CkXvUJrVox+EgufQsSNsHYzCLaX6stiOJbLwneDPv2QN8xkS43kPIWr9UmXjnNCGQBGCV/qfy4ipPxHQNAIVBNgKfD6KfT4GNm/J83Nmhb2uCsGg5i0AQ1b6xbmzGbt6BYoQuE2URQGK/D625ebQNNVcZOxI8QYCjF6yiB/WrUGLUB/htFi44jA9DRom1+DGjp2RUtL3i0/ILCiosGGP02JhROfDV8BWloBfQ5r4yX0eP398M4dZ4/5C6pJzbzqLBz+7HSEEQ5vcZvos1aqSv7+Ajme1JT7ZiafYE6JjpFpUBt5snsY45YPfyMsuCOlb7Cn28v0rkxh81yCSaiZSu2EtPlnzJpuXbSP/QCEtT21KYkrkzKn+1/bh6+d/DLkmhJH22nWgsWte9sdqJr//G1rwM/C5fLx/7xja9WptCNTZ+wZTM8ud1qTPUPyUbiNuEA3iMJWxIgFh64BUalVgCASixpug1EVUUCglpYTc6witK9AhsAFZ8AoiOXJXsgqfWfw+4amdbih4CIkd0JCOsxHJz/+jpJ4rhfdXTOMyWiZSO4hQq2ZtOaGzhgB6NWrMlKuuYWi7jmGpm+XxBPwk2GyMHXw59ZOScFqsxFmtpCcm8uXgy0pVSt9ZtICvV6/AEwjgimAEwAjmOixVU3gipeTaieP5cOlisgoL2FtcZNQCYCzUFkXBabHSo0EjLomyuc2yvXs44HKZGgFFCBJsNhwWC8M6dalUw5xoOe2CLqgmmv8Afm8Ar8uHz+Nn+piZLJjyNwBterQqjSeEzFsR1GlcC1VVeW3m0zRu0wC704YzwUGNWkmM/OHBEKG5siz+ZbmpP99is7ChjEy2EILmnU6iy9ntKzQCAGnpqTw35RFS69XAkeDAHmcjo0U6r816GpvdipSS14a9h9flLXU3+Tx+CnOL+Hzkd8Z4cReDmgGU9bU7IX4YQk0zKo8tzYEosrjkwYgZR9K/Cbm/NzL3FiiMIAsNYDkFYT+jQiNgPG8DSPM6Cjw/HH6upniN3semGHEQ8IHnN2Tew5Uc459EpFOTNEQHq4hqPREIIQYAb2H8hn4spXyx3OsNgc+BGsF7HpZSTqvqeZyUksqTvQ0/e9O3X4u4cCcGF/q2tevw53XD2JKbg5TQLDW19DgtpeTTZX+HBJPNUISgaUoKGUmVDxiXZcmeLNbszw6JX/h1nTirlUtatSY9KYmu6fXpULde1IGzHLcrotuqe0YDHunZi0Y1UkioZOe2w5G5cTcrZq0hLskZMWBaFk+xl2kf/c5p53fh2qcuY8GUJXiKPKVuJUecnZv+dzVWm/EHkt60Lh+ueI2szXvwunw0alO/QpmLWg3TEIoIU0LVNZ2UOkYGk6ZpfPviRCa+M43ifDdtTm/BrW/cELFnAkD73m34ZtcH7FibidVmIaP5oZ9Rzt48cvflh71HC+gsmrYUwAi21vzeiBV4poOShIi7JqTPgEh5D5l7Y1CCQjWXpAZjx2/yM5dSN96vZ0f8PgziIGX0Ye4Jou+P/Fqlu9LaQUmLYp5e8M5A6rkIpXJFeFJ6ka4Jxq5cSUHEDTFiHMeSuCtMJMhVsHVGKFWztkA1GgJhCIu8C/QHMoHFQohJUsq1ZW57HKOp/WghRGtgGtC4uuYEMLB5C6Zu2hh2/ZTadUIKyoQQNDNx6fh1neIKxOPirFYEgkS7jfcGXVA1kwZW7ttHwMQd5PL7sVss3NK56xE/s0PddNP6CKfFwoBmzWlT23znfLRIKXnrtg/57YvZCGHoFEVVuAV4PcZnn9GsHu8ufokvnx7HqjnrSMuoyVWPXMxp54enRpaXe47ExXeey5zv54ekiiqqQr2T6tC0fWMA3hrxIX98M7c0HXT5zDXc0/NxPlj+KvVOivx5KYpCk7bhiQOOeHvEVpXxyYdkJIQSj0i4GRJuNr1XqHWg5hRDllo/gCz+Dny/hd9o624+Qf+yCMZDgNrU0COyd0fEXR29b9/awXi/2dZLqVw6qRACmfBAMJXWPAh/6GarET+ohCGQ0os8eAUEtmGcMgTS8xsy8X6U+OsqM/VKIeJvRPqXgXeeUayHACUNkRze1+NoqM4TQVdgs5RyK4AQ4lvgQqCsIZBAiVlLBsLzA6uY58/sz7oD+9mZn09A17EoCikOJ+8PCm8oY4ZNVWmQnMzO/PBdXKuaadzYsTO14xPo0aBhlaqCZiQmYVXUsIXbabHQMLlyLRPT4uK4pfOpfLz071INJLuqUi8xsdoCwwBzfljAjK/mmLphKsIRb+esq88o/bp+83o88tXdEe+XUjLzm7lMGj0dT7GXPlf04MI7BoS0vCxLi85Nuf+T23jr1g/RdYkW0DjplIaM/PFBhBDkZufz+1dzwnoW+Dx+xr3yE3ePHn5E3w9AfFIcXc7pwJLpy0ME7exxdi4yachTEUIICKqRyvxnzG/yrTG/LoswrxqRoNZDSf3giOYCoKiJ6PZzwVv+kC8guQLX0+GeG3cRUnEiC98EbXewSU4BpgYnWkG9ckjXhDJGgOCzPVD4KtI5+JgFo4WwIlLeR/rXg3+NUT9i61blvRiq0xBkALvKfJ0JlBfoeAr4VQhxJxAP9DN7kBBiODAcoGHDyqdjgpGfP33I9czeuZ11+/fTuEYK/U5qekTyEiN7n8nt0yaXumkEhmDcM3370SW9evKMz2xyEvE2K+6AP8Snb1EUEu12vl29klPTM0wD05qus7eoiES7PayXwb3de9Cudl0+X7mMfI+Hc5u1IMFmY8BXY8h2FdMstSaP9ux9VGmw5Zn64e+mPQ3MUC0qWkDDkeDg5O7NOWvIGYd/U5C3bvuQGV8d6p+wa0MWM7+ZyzsLX4hYUNb3yh6ccUk3tq/eRUJKPHUbH8rXztywG5vDGmYItIAWEkM4Uh4aczuPn/cCW1bswGJV8Xn99Bt6BuePOLvSz0TPNL8ud5umj2LtVE7mOohwHlWDeFHjNWRhBrg+B3yGSqnzCigciZ67A9S6kHAvitM8/Tbicx3nIByGGoAM7EQevChY+KWXzpuEeyqdmWQEaU1SqYUV/EuDVdTHDmFtBdZW1ff86mpVKYS4FBggpRwW/PoaoJuU8o4y99wXnMNrQojTgE+AtlJG7uBSVa0qD8fyvXuYtGE9Esn5LVrRqV5oo5M/tm3ludl/sK+4mPqJSTxzZn+6BQXjqov5u3YybPKE0viERQgcVitI0KShZDqoeUte6ndOqe9/2qYNPDlrBi6/YUD6NWnKS/3OIT6C33/M8qW8Mm9OWJ/jMRdeUiqId7Tce8YTrP5rfYX3WG0WajeqRd+relBwsJCu53bi1AEdUKI8Ze3Zuo9hbe8Nczk54u3cPXo4/YaaN8mpiAO7c7i26R1hhkBRFfpf04sHPjVXPo2W7Wt2sW97Nk07NCYt4+iyQfTsPqCbHLCV2ii1zdongl48FgpforQoTThBbYao+Y0hpXwUGOuMZhRo5d5BqFvHAUkjUeIqL0MhAzuQRW+DbxEotREJtyIcpvvKqNDz7gfPFMLL8OMRKZ9Glvv+B1NRq8rqzBrKAsqey+oHr5XlJmAcgJRyPkZaxHHv3PDyX7O5+sdxfLFyGV+sWMY1E77nf2VSSrfm5nD/rz+zt7gYdyBAZmEhd/08hT2FkbIZjh5vIMCt0yaFLNABKSny+Sjy+3AHAniC1c2TNhiL7N97snjwt1/IcbvxBAL4NI0Z27Zw1y9TTMfQdJ03F84LC4R7AgFemTenyr6XM4ecgT0ufKdmsVmIS3KSUCOec27oy6iFL3DdU1dw5zvD6DawU9RGAGD1X+tNexZ4ir0smb68UvNOS0/ltAu6YHOGLopWu5XLHozOtVgRjds0oNugzkdtBABIuJvQLCMAJyTcFfEtSvwQROqX4LwI7GciEkdWiREAw20lhAVZ+Arhvn0PFL0elX5SRLQd4F9pBKi1LYYmk4xOdNJ0vnFDCM/YESCSwGpeM/JvpjpdQ4uB5kKIJhgG4Erg6nL37ATOAsYIIU7G+M2tINWg+tmcc5AxK5aFZOe4AwG+WrWCwSe3oVVaLR774zcKvJ7SvYI74MenBXh+zixGDTy/WuY1ddMGCryHd6e4A36+Xr2Ci1qdzAdLFodVSXs1jXm7drK3qJC6CYn4NI13Fs3n61UrKPb5I7bT3BTsnFYVDLixL398PYcty7fjLvJgtVlQLApPfHcf3QZF3/Rj7YKNfPjAF2xaupXkWklc/uCFJNSI589x83AVutG18IXFYrVELCgDw300+r7PWTlrDc5EB+ffNoCrH7m4tKXk/31xJx899CU/f/IHPrePxqc05K53h9Ho5CM7LXlcXhZOXYq70E2n/u2oXcGcKoMSdzE6ASh6IxgwTYX4u1HiKm6+JGztEbZqXOgC282v6wcx6g2OXI5C+paHnjKkC1xfIvX9RnBc2MDex7xvcgSErRMy8X4ofDWYpilBJCFSP/3H90quDNVmCKSUASHEHcB0jNTQT6WUa4QQzwBLpJSTgPuBj4QQ92Kcwa6X1eCryi4u4vu1q8kqKKBb/Qac26xFxJjAH9u2mhZr+TWNGdu20iy1Jot3Z5k2r5+5fWvY+6qKP3dsj/reksV/Z0G+aaqsVVXZV1xM3YREbp36E39u345+mL4NjSoZkDbDarPy0m9P8sVT45g/eQk1aiVxw3NX0rZH9JLLm5dv46F+z5TKMuzfdZD37vkMRVXQSrSATGKfqlVl4DDzgrIDWQe5s/ujuArcSCnxun2Me2kimRt28+hYIyhts1u5/a0bue3NG9ACGharhaK8Yia8PZVtq3fRvGMTzhrai7jEyIVMq+eu47FBLyCRSF2iBXSufPgirh0ZXYe8aFHiLoO4y5DSB1iPmWBihah1jd17eUQikXPmK0YWjcL0lOGZiPROx3B86FBjFMIefYxJib8O6RxsxASCJ4ET0QhANdcRBGsCppW79mSZf68FqlXIY8nuLK6Z8D1+TUMHxq9dzdsL5/PTlUNN8+MjGQghBPag+qcSoXm9Ral6WeZV2fuYu3M72UXRuZ0cFgsXtTQW1K7pGWzNzQlLO/VrOk1TUtmWm8Os7dsO27rHYbFwb/fQH9OWFdtZ/PMyHAkOel92Gil1ojcUPq+fh/o9zZYVO/AUedhtU3n47Od4/Lv76H5edCeCL54ah88dekKSukQrK5ERlE+12a2oFhWLzcL/fXFnxDTPCW//jM/tC3FReN0+5k5YSPbO/dRueKjbmBACi9VC1uY93HXao3jdPrwuHzPj7Xz5zPeMWvSi6S7f5/Xz+Pkv4ioMDUSOe2USJ7VvTFp6Cg1aZRCfdGQdyCqiIteODGwH7wxAAcc5CDU94r1VgtrY3BAodStvqDRzCXAgqIIa/GfeHVDrryM7GSiJxzwwfDw4oSUmpJQMnzyhVAMIDL/6trxcHp0xnR4NGtG4RgpdM+qX/hKeVr+BaSOWgK5zWn0jJfScps34dcvmkPtsqsrgk1tXOB+338/M7Vtx+f30bNjItBHM6ux9rMneR/2kZCasX8u0zRvxa5ppYl8JJYYpzmqlWWpNrj7FEKMa0aUrkzaup8jrK93xOy0Wbul8Kgk2G9+t3hrRCAiMxa5uQgKP9uxNz4aNyCosoIbdwSf3fs6vn88i4NNQrSof/99XPPrNPVE1YgeY/tlMNi/bVpqLH/BpBNB48Zq3+X7fx6UFYRWxZfn2qFoUOOIdDHlsMF3O7kCTUxoGhejMWb9oE36TnsQ2u5UdazNDDEEJb474kMLc4tJaAE+xF5/Hz+h7xjDyhwfC7l/+x2pTX7jX5eWZS1/FmeAg4NO47MHzue6pK6p1F68XvR8sVtIBAYWvIxMfMpQt9SKjbqCq1Tb9y8yva5uRMoAQlViSLCcHC+kO9wuhGL0VjjBD6b/ACW0ItuXmkhfBrz5l00ZmbNuKIgTpiUl8c8nlpDrjWLJnN6qJdLWKYMmeTNrUrs2zffuxOSeHXQX5pal4LWumcUOHTvyxbSu14+NpU6t2yB/xoqxMbpo0obTZvSZ17ujandtPNQp8vIEAN0+eyN97jHi6LiU+TYuq0WaduHjibDb6NG7CLZ1PZfzaNazdn03rWrX5ZvAVfLR0MfMyd5LmjGN451M5v4WRhmapIPiakZjI79fehE1V+Wb1Srp89B5+TUPTdOLz9pHi9SM0I9ce4IUhbzFu78cRc/TL8sfYOWH6/GAY7o1LttLm9JaHfUaDlulk7zxw2PsURdCwVX2adTTvhVyWJqc0ZM28DYdcS0H8Xj/pzeqGzHPD4s3kZhewYtYa00rkRT8vNR2jfMZRWaQucRUYO9gfXp9CRrN6UcllVwbp3xQ0AuX+PgqfReI0BJEKNGTcdShJ4Qat8kQK4EqOTPX0ECLhDqR3DuatJcuPUdmK5hObE9oQZLuKK3y9JDtme14uj/3xG6MHXchBl8u0f4GG5IDL0P6v4XAy7eprWZSVyba8XFrUrMnPmzZyzldjsKkqmi5pkJzM5xddQu34hOAiPyGsIvm9xQs5rX5DOtVL570lC1m8OzPk9BIt+90uAsVFZBUWMGb5UmyqijsQwGmxEGe1MuGKIbyeFF6c1L9pM56ZPdPU2JzfohU2VeX3rZt5dvbMUGmLjqlofo1a47eXXlNUhWW/r+L0Cw9/KrCZdOwCYyG0OaLTTxn65GWsnru+woYxYFT0dhkQKsl9YHcOOXtyadAyHWfCIV/+4LsHMf2zmSGGwOaw0r5Pm9Lq5L3bs/m/s58ld28eiHA5ihJKgsvl6dC3jWk/g/J4ir2Me+Wn6jMEnulEXpTdhzbX7i+R9tOqTorZ3hc8vwBlPwMB1k6Vzk4S1laQ+gWy8CXwrwIRFyyQK2d0pQa26GME/yVOzMhHkBY1a1boUinBr+vM2LYVv6axsyAv4n078w69JoSgW/0GXNm2HVmFhXy9ehVeTaPQ58MV8LM55yC3T5sMwNxdO0zdGJ5AgO/XrgZg3JrVlTICQGkMwBMIoElZauDcgQC5Hg8jZ80wfV96YhIXt2qNWs79UMPhYHhQsuKdRQvCMo+kTaWwW210W+ivT7Rx/vOG98cRHx4YTEiJj2rnDtC2Ryue+P5+0pvWQVEEzgQH3c/vjM1hJS7JSVyik+S0RF6c/nhp8Zir0M1j5/2Pa5vdwYNnPc1ldYbx7UsTSp+Z3rQur8wYSbOOjVEUgdVupd/QXjw5/oHS7+/x815g79Z9uIs8uAvNd6BWuyVi4Vt8cjztelfsQiwhLzu8er3qiDInQ7oNWeoqQiT+X7B/cYkBdoBIRFRQaazrPvSDN6DvbYW+twX6vu7onlmhz7W1R6n5NUrdVYjaC4wOY6XKo4oxTuL9CDXcvRfjBD8RpDrj6Fa/AQsydx32Xl1KdCnJLop8isguNn/NEKErV20qJauz97G3qBCvSZ9gMP4U3cG+B9H2RLapKrXj4vFoAfI9HtN4Rll0KZmz0yQ4F+Tl/gPoULceY5Yvpcjno99JTbm72+kkOwwXT8TaCCnR4ywowZ7GAb/GytlrWT5rDb0u6U7bnq1M/dsBf4AeF3el34ze/DpmJkJRUFUFi03l2UkPH5FPvNvATnQb2Amfx4fFZkFRFNxFblbOXofdaeOUM04OiQm8fP0ols1Yhd8bwB8sNBv73A9kNKvHGZcYLrpWXZsz+u9X8Hn9WKxqSO3CjrWZ7Nu+37R3gqIqWO3GHBq2rs/NLw81nfOB3TmsnBVB5qHs8xRB+z7Vp/gqHOcgiz8idGceAXk4l8sRjKvWhbRfke5JEFgFluYI58UhjW3CODgoNMAscyBvOHrq9ygmqa5CCEh+BXwLjJOPcBrdxaqxMvffzgltCADeH3Qht02dxOLdmShCwa8ZvXjL/ikLoH2dutgtFlrXqsXcXeYL58m1zHcTkfL7VUWh0OujR4OG+E0avsRZrQxqbvjDzz6pGT+sXxOW4VMStC3pV/zewAvo3bgJGw8e4OLvxh7WEABYKkh5U4RgaLsODDXpaAbQvm49/ti2JWz/KAISa3EAq8OKpunoAY2J7/yM1HV++WQGfa7owX0fjShd2H//6k8+zyHhdgAAIABJREFUfngsOXtySa6VzDUjL+OD5a+ycvY6kmom0HVgp6j6CJthcxxyKTgTnHQbGK4QWZBTyKJpy0J6DYDhgvnu5YmlhqD0mSZzKc53oZgUqQHUb1GPwXcPolGbBrQ5vWVEg7Z23gYsNkuFInuqVcURZ+eG566MeM/RIqwtkAkjoGg0hjEQhLlSAHAinOeVfiWlBN8CoxWlmg6O/kes+S+UeET8VcBVh71X9601zzICoytb2kRjXtp+pOszQ5xNTUfE34Swn4awn3ZEc/uvcsIbgiS7na8GX0ZWYQH7i4tJttu56sdxFHp9uAN+HBYLNlXlxbMM3ZI7u57GJ8v+No0TTNu0kXFrV9Mtoz6P9Oxdqk7a/6SmfLZ8Wdhib1ctnJSSgqoojOx9Js/MnmkEXIMZPj0aNOSsk4weCfef3pM5O7eT5/Xg8vtxqBYsqsKzfc4is7CARJudQc1bUjPOSCtsHmWzG6uicl6LwwdfI3H/aT2Yt2tHSLWxTVW5rV0H0kY2R9d0xv7vBwLlmrnM+u4v+l/bm3a9WjPru794c8RHpTn/edn5fPjglwx/eSgX3FZ5HZsjoTCnCNWi4Dex2eU7nUWiWcfGpqcBm9PG2df1YdDw/od9Ro3ayaYuNEUR1G5UC0ecnVN6ncwVD11EnUbV68ZQEm5DOgaA5//ZO8/wKKo2DN9ntqZ3IEDoTXoTEFFRARVQUBAQ7KBi7+WzYu8FCypiwYKAgAoCIoh0lI50pNdACOnJtpnz/ZhkSbKzyZJkQ8t9XVyY2Z2Zs7iZd+YtzzMPhAmJGbLeRa8deIBQsLYFu95lI6UDefxW8GzVZaSFHTJfhbgJCHPJXh9lxrXM/2v5w2lSPYI8ds2JuoBnC9K5BBn5Mkpo+Se+zwXO+kBQQK2ISK+Z/J833c4v27awPvkwTeLiGdi8BdF2/a4mzGrll8HDuPXXaaTmG8MX3I0XFJ8X7NnNykMHmT3sFmpFRHJXh078tn0bxx26lINJCCwmE69f3tOrQDqkZWvaJ9Zk6pZNZLuc9GrQmIvq1vNqAsWHhjL3ptv4ddsW1iYfokF0LAObt/Re+IuT4XT49UQQgM1sRhGC+tExPFvM8/hkiAsJ9RafC9CkpFPrJnTpncTvX83HbDYVCQSgB4OXB72HxaYPXBX24wW9XfLbF38qdyBIO5LOjrW7ia8VS/1WRaWNVVVlxqd/MOPTP3DmOr0OYIVRTArtewTm/WoLsXHnWzfy8f1fFplajogN5+q7rwjoGC27NSMiJhxHjrNIodlis/Dy9Keo16JsapmBINVD+vCVcykosYiwEWDvjQjXVVMFIG0XI/OmgpaOsF0Gtkt0D2JA5ozTFTALOm9kDpCLTH8EEf9rcBZtMX5SBfThNEBmf5pvVlPwHSxQCn0ZGdIbUYEGLmcrQROdCxaVJToH+kRyam4u106e4JPDtygKQ1u14YVLLgP09NCkjf+yeN9eakVGckubdjSLL/mOzuFx88fOHRzKyqJ19RpcUDsp4Bz5T5s28OSffxi+Zsl/AmkUG8f5NWuVqxf9vlkzmLXD178hxm5n1R338OcPi/nwni/8GrSXhBAwy/Gj3w6bkpBS8vmj45n+6R9YbGZUj0adZrV4bfbTRCfoJjKv3vA+y2es9gYhk9mEqqrevKDJbCIkws5na94O+O77f1e9wrr5m/C4C0lGh1j5YMkrJRa6NU3zGtMIRfB8vzc5svcYJpOCUASPfDGSiwcGnsaQUtMN4XMnAW6w90OEDvTbeaPfNffNv2su+C7bwXoByHTAjAi9HuzX+J2e1VIuB9Wo3mZFJPwVtEKsdrSL7s1cnOgvUOyX+F+XCEXETUGYGwVlXWcaJYnOnTNPBCdDptPJO8sWM2P7Njyaavgo79Y0Zu/Yzv6MDNrUqMHQlm24o8P53BGgt++utOMMnjIRR75YnM1spll8At9fOzAge8ukqCi/r4VbrQxtdaKIpknJsdwcwq02Qi0nd3c0b7exvHKaw8HBrCy69O3AByNPXqseIDYxpkxBAGDe94uY+cU83E63tzd/1797efWGD3h73gvs23qQZdNXFfE8UD0qVruFWo0TkZqkdfcWDH6iX8A6P0f2pvDvws1FggDo08KT3v6VZyY8ZLjf+oWbeO2GD8jN1v2TE5LiGDX1MRCCvKw8GratF9AQXWFkxpO6VHJBIde9BemYBbHfGl7IZc6X+TLNhW9oHOD668R7MjeCYwEi5gM/Jy3ppjGIN5TxsyD1hkITxFaIeArFnt9aq8QZBwLpAVE2d7JzjapAUAxV0xg0ZSJ70tNK7eQ5lpPD/JxdLN2/l6/WruHnwUOpFx3YF++h32dyPC/P++uT63az6egRPl+9kgc7dzXcx6WqfLNuDZM3b0DVJBZFMSwWj2h/IujP3bmD5xbMI8Ohi+Rd1agJr17WM+CAYOSKVkCOy0nt+ASenfgIrwx5D0VRUD1qQG5jtlArt79WXIMwcKZ98JuPp4HqUdm0dBtpRzPYtmKHoaexy+Gmfuu6/O87/yqc/ji67xgWm8Xn80lNcvC/w4b7HDt0nGf7vl5krQe3H+LRS0cxYd9nZSqQS/c23bKyiL6OAzwbwbUIbN19d3L9g3ExuPCB88D5F9K9CWExMCYK6Qc54yg6lCXAXE+fRg4SihILCXPQNBeQi1Ksw0iEDUemP0HRgTILWDtVmLn72c5ZPUdQFhbu3cPBzIyA2jkLLpH6/ICTVxcvDOgcx3Jz2X481eceyqmqTNls3FoopWTE9J/54J9l7EpLY29GOkjpMyfRq0Ej7u6o+/+sSz7Mg3NmcjQnB6eq4lJVft+xnYfnzAxonQDVQsMMtwsgKV+IrkvfDny6+i26XdeZDr3aYPZjRF+Y869sV65hqazjxq28ikmQk5FLfO1YjDJiFpu5REvJkqjborbhZLDZaqL1xcaCeXO/XeA1pS9ASnA73F5P4pPG9Q+Gd+AyF+n0U1w11cbYgaw4Hl3T3wARdgeYG+sDWwCE6oqcUe8FcNzyoyhWnyAAeiss4SPRZxLCAZs+oBb9fqWs62zgnH0i8Ggax/NyibaHFBGa23IshTy3cRG2YPDKqKNIk5IlJfTrF0aW8Bjt77W1yYdZffhQ0QlfKQmzWBjRrgMJYeH0atiY+ELF5U9XrcBpIEO9cO8ejmRnUz28dPGt5y65lAdm/1bkMwv0yeOCp4q/Ji3lndvH6PIZmoaqaigmxecCWJgl0/7hiye/5863bip1DUbUbpLIkb2+iuWqW6Vmw+rUbFid6IQonLmuIuswmf2rj5ZGZGwE/e67iulj5njrDooisIfZGfiIsfz4sYPHDZ+QVI+qTyfnM+/7RfzwylRSDx2nYdt63PHWTTTv0sR4IUosCLOBAbwFXOvR0u4G68WI0P7e1k4RNgLpXELpMgwWvx6/QgmFuCngWoR0/asL1NmvQijGNwuViRJ+NzL0JvBsByUBYQ5e0f1s5Jx8Ivhm3Ro6jB1D9/Ff0u7zT3hn2RKvmmjdqChCDPLWYRYL93Xqwie9r8biR2XUaD8jEkLDaBAd43N/ZjOZuLap8dTpuuTDhrMIOW43uW4PQ1u1KRIEAPZmpBuGFavJRHIxNVOZP1AHsGz/PoZOnUy3r8fy2/atDG/XAatiQhECBejTuAlv9tC7ZDJTs3jntjG48lw481y4nZ78bhiJ2WIynCAuYOr7xgY5geCv5VMCGceyUBSFd/4aRbPOjbDYzNhCrFSrE89rs54pl/b/HW/eyL2jb6POebWIrhbFJYO7MmbVm37NZNp2b0lIuLH+UosL9QGnaR/O5IORYzmw/RB52Q42LtnKEz1eYtvKHcaLsPdAV3Yvjhs863U10aw3kMf6IzXdkF5Y20HU6/k58xDAguGvv1DA5r8NVggFYeuOEvGAXpw+DYJAAUIJR1jbVwWBMnDOPRFM27LJx4rx63WrsSgKD3bpSs8GjXh18QKvXAPoQ1cOj4exq1diVhRUTfURprOZTAxu0SrgdXxwZR8GT5mIS9XI87gJs1ioFx3D3eefsHXOcbmYsGE9v+/8j1y322++PsRs/L+xY2Itdh1PxVPsCcatajSIiQX0yebXlixk6pZNOD0e6kXHcDAr05saK5gstppMaJrEpphYsHcPO9OO0zyhGv/MXGPoBCYl9L6jBwMe7sstje83XJ+majjznNhCTl6HPi/LuEvJYjWTk5FLTLUoqiXFM3rJq6QdSceZ56J63QTdhP5IOmlHMqjVuIbhuXeu38OaeRuIiAmja//zWTFrLb9/NR9N0+h1y6X0uqU7Vw0P7Kmia7/zSWpWiz2b9nsL1/YwG136dqBB67p43B6+fWGyYXvtV8/+yJtznvM5phB2XVsnbWS+abvILwQXFm7LA/UQMnc8Ily30FRCeiPtV4B6EJRIcG9Fpj+Ibk1Jvg3jmKBf3KVnPzLnK91RzNIYETai1M4e6VyGzBmvdw/ZL0OE3lhpBvLnAudcIPhoxd8+/fd5Hg9frl3N/Z0vwGY2M2XQUJ6aN8crTWE1mXB4PEX2U6TEajJhNZlwqxoXJtXhIT9FXiOaxMWz+LY7mfnfNg5lZtK6Rg26163vnTvIc7u5dtIP7M/MxKmWbLnnz1Xs7o6dmLF9CznuE4b3IWYzw9t1JCLfxP6u334tIna3Oz2tyDEKQkjB605NxelSeXjOLObceCuapvlNZ5mtZmo2rFFimqjwVPDJ0Llve2Z+PtdHwM1kNvH1MxMIiQjhytsvo3H7+mz5+z8cuU4kks8eHs/K39dhsZnRVI1bXhzsTetIKXl3+BgWTF6G6tEwW0y8f9fnuqF8fnrnv9W7WDx1Oa/M+J+3LVdKydYVOziw/RD1WiTRuH2DIut5b+GL/Prx7/z5w2LMVjNXj+xFz1v0+kj60Qw8BtLXALvW7/H7+YWlOSQs1Ien3NshcxSQW+xdTnDMhvATXspCmMBcR//B1gWqLQPPJsAM5mZBN16R7u3I44Pz01oe8GxG5s2G2C8RVsPORrScryBrNN60VvZWZN4UiPv1pLwFqvDPORcIjuRkG27P87hxejyEWCzUiojku2uvx+nxsPVYCkOn/eRzqdOAdjUSual1O5rGxdEwwEnfwoRbrX6fIqZu2cTBrNKDAICRAKaUklqRkfwy5EbeXbaEvw/uJzYklDvbd2TAeXpHyM7jqaw6fLBMYnd7M9JJycmhU+/2aPd84fO61W6l+2BdsbL74K7Mn+BrmN6+Z+siMw471u5m4U/LEIpC90FdadC6rs8+BQx7ZgCLp/5Ddlo2Lodb7xCSEpfDzaIpfyOEyD+nxGKzIKXEkeNEUQSqR/MWfce/MInEBtW5sH8nlvy8goU/LS/kk6D/27sKBTFHjpN/F27m34WbadO9BTkZOTzZ6xX2bt6PEAJNkzQ9vyGvznwae74vsy3ExqDH+zHIwNc4Ms7/XW2N+iUXtYUQYGkOIgzpT8JZlHzXLIQJLIEN1FUEMuv1/EG0AlQgD5n5AiLet4lBatmQ9T5FO5WcoB5F5k7wDsOVaS3OJfowmnoIrB0Q4fchzPXKfLwzmXMuEDSLi2fdkWSf7SFmCzf+/BNxIaHc2rY9XZPqYDObcaoqJsW428KtqvRu7KegV07+3L3T7+RwYULMFno0ODHeP23LJt5ZvoTk7GwSwyN4rGu3Ij7KblVl8uaN/LxlE5lOZ5kNw6WUmBRBTLUo7vt4OB/f9yWaJtFUDYvVTN+RPTmvc2MAnhh/H2lHMlg7f4P3EaNZ58bc+tIQprw3g8i4CPZs2s/0T37XL9BCMO3937jhf9cy7NmBhuePqR7NFxve5bfP/mDNvA2YzCY2Lt3qTb9IKb0X+8L6QmqxqOnIcTLxjZ+5sH8n/vjmL5+WVCMcOU7WLdhIm+4t+OTBr9m1fk8RQ5stf//H2Ce+5eq7ehGVEElsDf8txVa7lWvuvYLpY/4okh6yhVq5+YXrS10LgDDXRZrrguc/imr6hyBCy1aMDxqu1cbbPTuR0okQxVJ17o2657BPYdwJzr+gjIFAy50KmS/hfcpwHEY6/4S4aQhzYAq4ZxNBDQRCiCuB0eiVrXFSyjeKvf4+UKB/EApUk1JWnDmuAU91u4Rbf51apPtGAE7Vw9pkvRd86f69PNzlQka070jLatUNPYztJhO9GjYO2jqrhYX7tcQsINRs4aK6dflt+1bGrVlFhM3GjG1bcBTk97OzeGb+XACubdYcTUqGT/+Z1YcPBhRkSiIpKorYEL04fdXtl9P20pYsnLwct9PNBdd0pFHbE79MJpOJt+Y+T9qRdA5sP0z1egmMe+p7Hr/8RVSPismkFPMV0P2CJ7z+M5cMvpDajRMN1xAZG8HQpwcw9OkBvDt8TJHhsZMh9bCeDlP9qMQWxxpiJSouEiklf01c6pPacTvdzBjzB/O+W4zH5aHtZS15ZsKDhEUVzb3n5ThwO9wMf30YZquZXz6cjcvpJjo+kjvfvZnzr2wX8GcQ0Z8ij9+UbwKfXysIHazLMZ9OKBGgGdV3LPl/ir8/BmPfBAFK2Yr+Unog63WKdlBpuuR29ofnZNtp0AKB0AVKPgF6AgeAlUKI6fk+xQBIKR8u9P77gcC/+WWkU63afH/t9byzbAlbU1Owm82k5uYWGczK83h4d/lSBrVoRaTNxjMXdfcWkCW6h29ieESR6d2K5sbWbZmxfWuRgKUIQUJoGJfVa4AqNRLDw/l8zSqvkJ3At7vc4fHw7vIl9G96Hkv27WVN8qESg4BAdy4TgNlkwuF2GyYdMhwONCm9WkmJ9asz5Mn+JX6mmOrRxFSPZv6ExSyfvsp7B+xvNZqqsXz6Kq5/1Lg1szBh0WGltqwaoZgU2l6qyz23urg5K39fV+o+UpPMGf8XUz/4zW9+H/D6Faybv4FXh47mtZlPA3qn1du3j2HVHP1cifWr8dhX93DLi4NxZDsIjQwtgyyIlp9ycaJ/CxRQDWQZTjWhN0H2GIoOw9kgZKBxfcLcRJ+B8Oyi6FS0HRF2S9nWoCaDNBqu08BVOfI1pxsBBQIhxGrgK2CClDKttPfn0wnYIaXclX+MiUA/YLOf998AvBDgsctF+8SaTBgwCIAhUyeRnO1bN7CaFDYcTebCpLoMbdWGZvEJjF+/hqM5OfRs0IjBLVoRZi1boTMQWlWrzsuX9uCFBX+iCIGqadSMiOTLa66lTlQ0blXl/C8+LRIo/D07HMrKotFH72H2M4ks0AviqpR0qZ3ECxdfSkJYOMdycxgydZLXma0wOW43R7KzSYwwzkE785ws/WUlacnpNO/alGadGnkvbrO/nB9QCkZRREDDaQBX3HYpv332R6mOZT5IyfWPXQPAvq0H/b7NFmpDMQk0VUNqkh1rSjBML4bb6WHd/I2kHk4jtkY0T/Z6mT0b93kL3fu3HeLJK17hy43vGfoiB/QxUgfnawYVoIFzOjK3LSLM2BvhVCDC7kCq+yHvVxA2kC6wdUdEPmX8fiEgZhwy7U7w7ANh0p3GIp7yW1wuFSUavz4MQZyQPp0J9IlgMHAb+l39KuBr4A9ZcoK5FlBYAOQA0NnojUKIukB9YH6A66kwEkJDDe+kPZokxn5CZ719Yk3aJ9as1LUNOK8FfRo3YePRo0TYbDSJjfNeTLccS0H10y1khAS/3gUSePLCi7m1bVEd/0ibjWh7iGEg0KQk3E8g3L1xH49d+gJulwe304PZYqJN9xa8+PMTJ4TfAuSiAYZfGR/qt6zD3R/cypgHv8FsNeFxqwGlikwWE4umLKd+yzqk+PFADo0M4daXBlO3RR2eu/p1wwGxgqcRIYwlecxWM+lHMzh2IJUD2w/5dDt5XB6mfzqHEa/rF+2czFzmfP0XGxZvIalpTfqO7OV3/kFzbwGZavwBsz+FcgQCKSW41+laPpbm5RZwE8KEiHoVGf6wrh1kStLNakrax5SIiJ+B9OwALR3MzfXhtrKuQQlH2q/Kt8wsfEMSgggbWer++myGPKvaVwPqFZNS7pBSPgM0ASagPx3sFUK8KISIrYB1DAGmSCkNrxBCiDuFEKuEEKtSUnynScvDLW3aYy/Wh28SgloREZxXinpoaTg9HlYcPMC65MMl5vpLwm620LFmLZrGxRdJF4RZLOXO8xfG3/ruaNfBZ07BajJxab363hbUwkgpeWngO2SmZpOX5cDj8ujF1b828tvnulpqr5u7eztqimMLtWEPtWG1W3jg0zv8DmoZ0eeOnkw6NJbHv76X/vdd6XeQqzBup4c/f1gMQMdebbCG+AY3j8vDpTd0w2ozY7EZ3zvF1ojm0iEXct4FTYq4ohUgpSSpaU2S96QUcT0rfI79Ww8BcDw5jeHNH+KrZ35kybR/mPLuDIa3eIhN859HS+mJduxaZN7PJwr9nv/8f0BZdrtLqaUhU/sh025DZr6APHYdWtpdSFm2WkxhhCkeYT2/1CBQZB9zI4S1Y7mCgPdYUS+DvSdg1SUzRJhuZWn3P0wn1UNoqcOQRzshj3ZGOzYQ6dlV7rWcDgRcIxBCtEZ/KugNTAV+ALqh38UbiYYfBAqP+NXO32bEEOBeP68hpRwLjAVdhjrQNQdCx5q1ePqi7ry2eAFmRcGjaSRFRvFlv+vKJd88d+cOHp07G9AvAmFWK+OuvpaW1cqmc1Mcm8nst+PHoiioUmISIiAHM5vJ5FeEbmDzluw4fpxv/12L1WTCpWp0SKzJWz2MfQQO7Uwm5YDv3akz18V3L/7E/AlLqNsiicYd6vPf2j04sh1Y7RYUReHRr+4hJz0HIQQXXNORmOon3zcQHh1Gt2s706JrU375aHZA+7idHqa+/xvV6iYQERtGZorm7QKyhVpp36M1rw0bjSPb6W0tLYwQcF6XJjw94SFSDqRyV9vHyM3M8xaf7aE2Rrw+FKvdSsO29fAYFKVtIVZadtMnjb9+9kfSj2Z693e7PLhdHt4duY5xi3QZE5kxClwbEFHPg6WD/w9nKvtTrMx4Gjw7KFLFcS5DZn+OiDAeEjxTEMKOiH4PqWXoBXZTbb8S3gBSuvT0m5aCtzPLswGZOgQS5p/x8wwB+RHk1wjSgS+BqVKe6OUSQkyTUl5nsI8Z2A5cjh4AVgJDpZSbir2vGfA7UL+UVBMQPD+CXLebjUePEG230yTu5LsRth5L4c0li1idfIhom53DWZk+WchIq5V/RtyNzc8k8MmwPvkww37+iVy3b5qiaVw8s4fdwiNzZjFj+1ZDbaTC2Ewmltx2p18THIC0vDy2px4jMSKCOlH+L9D7tx3kno5PllgDMJkVLDYLt782jOPJacQkRHHp0G7EVPMvrV0Wprw3g2+en4jb4UbTJEIRRcxgQL+ImyxmvThuMxMWFcYFV3dg7fyNRMaGgxDsWr/H+3mEIkBSJAjbQq28Ne8FrzZQyoFUfnx9GmvmbSC+ViyDn+hXpAPo5cHv8c9vq731DJNZITIugq+2jCY8OoyB1YeTkZLp83nMVo0JqzcTFVfwzbIiEuYhTDXQjl2bPxhW5NNB9NgTcs0ngZQO5JH2GJbylWoo1XznQs5mpGMOMuOpYjMQAKGIyKcRoYNOybpOhorwI7i+oOhb6KD1pZS7jYIAgJTSI4S4D5iD3j76lZRykxDiJWCVlHJ6/luHABMDCQLBJNRioVOt2mXad1facfpP/B5X/t13tsv40Tnb7eavPbu5slH5204bxcYZpnMsikK3Ovog1t0dOzPrv20+gnGgO5gJ9JTQWz2uLDEIAMSEhNC5dukaLrWb1CQyLqLEQKB6NFSPkz++mc+nq98u9ZhlZeAjV5PYsAY/vj4NR46TTr3bMXf8Apx5LjwuFU1V0VTp7fxxuzw4c10c3nWEr7eMZvvqnTxyyQtF+vtlfkAxm02YbRbMFhP3fzKiiEBcQu04HvjkDr/revqHB/np3RnM+GwOjhwnXfp04LZXbyA8Wm8vtYfaMEzoSLDYCv0/F1ZdpsFUAxH7HTLtHnCvzH/RAhHPlCkI6OcqIe3o09N/ZiK1THDMQHoO6FpMtsvQ718NUA/4+dy5SHVfQLqupzOBBoIpQHFH8ClACc+kIKWcBcwqtu35Yj+PCnANFcahrEy+WruadUeSaRIbx4j2Hb3aO2Vh1II/vUGgJDQp2Xg0uUICQZjVykOduzL6n2XeWoFZUYiw2bizvW6Ok+fRh7MKowjBRXXqcln9hlgUhR4NGpUaBE4GIQTPTHyYp654Gc2jldjFs3PdXn2OwCCnXhH88e0CRt/9BZpHRfVoJO8+yiWDLqBz7/akHkpj/AuTyMkoWgjXVI21f27E5XCxbv5GHxMa0INB/4evoveIHtRsWOOk128ymxjyZH+/7bZ9R/bi+5d/KpKGMps12l2cTWh44e+ZBoqeahRKOCLuW6R2HLQ0MNUpl0WjUMKR5obg2VZ89WAru/Xp6YJ0b9bnLqQHyEPmhYKpDsT+aKy1ZG6eP9hW7PsgQhGWlpWy5mBSYiDIT9u0AKKEEIXv/COB0itxpwlSSlYeOsjRnGyi7XbumTUDp8eDW9NYn3yYX7dtYXz/gXSsWatMx1916FDA7y1emC4Pd3Y4nwYxMYxds4qUnBwurluPezp2JiFM/yJ/tmoF7mIdOqqULD+wnzd7XOl9X0XTvEsTvt81hvkTlnDsYCq/jpmDw8DK0mw1G5rHBIoj18m87xaxfsFGqtdLoO9dvahRT2//y0rLZvTIL3A5TlxMnblOFv20nMuHXczFAy/g2xcn+zmyRNMkkXERWKxm1GIdPla7hep1qpHUtGzfl9K4/tGr2b56Z76gnwmpqSTWyeSxD/YVepcJlEQfeQihxOoy1QEitex8g3gT2Lp6ZasBRNTr+RdLN7owXQgoYYiIR8v1+U4HZPoj+T7HBRtywbMLmTMWEfGw7w7WLmBqlB8YC54MLKDUAFvZZM1PJ0q7KjUF+gLRQOGpnizA/7PvacSF1AToAAAgAElEQVThrCyG/TyZozk5CPRhscIpFVVK8jwenpk/lzk33lq2kwT4XGgSgjY1jKdky0qPBo3o0aBoS19ydhZ70tPZfvyY4WyBBAb+9CNhVitDWrRiaKs2mA06WcpDZFwE/e/Xp1oX/rScZINAEBJhL3NBPistm3vPf4q0I+k4cpyYrSZ+/eh3Xp7xFG0vbcmqOesxWZSic0vo8hALJi6h/eWtqNciiY1LtvocO7paFPZQGxcN6MyYh7/2eV0xKXQfErjA4MliMpt4fvKj7N92kB1r91C9XgLN2h6EzKf1C5ZUwdISET26XA0NWt5MyPif7m2gb4HoDxG2iwH0O934ObovsrpDN3sJGXDGF0alekRP9fjggrzpYBAIhBC64mvOJ5D3i/7/wN4HEfFguZ68ThdKDARSyl+BX4UQF0gpl1fSmiqU+2bPYH9GRqkF051px3F43AH5BRenY2Itluwv3ZRGk5J2NYI3i+BSVR6fO5s/du7AajL5rVW4VJX9mXoW+s2li1i8bw9fXH1t0NZl1EUEkHksq8ypoYlv/ELKgVRvft/jUvG4VN685SMm7P3MUBob9F9oU/6QWsp+47mBzOPZqB6VsKgwnpnwEC8OfMerV2S2mHjsq3uITqjYwrYRSU1rFXrqaIK0LQF1ry4XbSpf95lUD0LGU4CzyBCNTLsfqi1E5DuBCVO1M75DyJcSvm/C/2tCCUVEPA4RjwdhTaeWEm8DhRBP5P/nUCHEh8X/VML6ysWR7Gw2pxwtNQiAnl/3ZzhTGqO6X4bNVPq+ihAs2BO8vuP3li9l7q6d+daZroDsxPM8Hpbt38e/BkJ8FYXZz4VeMSllTg0tnvq3obxD1vFsDu86Qscr2qKpvv8C1hArPW7UC6iZqcZKtJpHw5HrRPWofPrIeNRCshWapjH28e9wGVhWVjSappGVlu1tIxXChDA38AYBKR1Ix19Ixx9eA5pAkXm/gZF4iAAcc8u58tMbYYrXLTd9Ln92CDEWOTzbKe23cEv+36uA1QZ/TmvyPO6AsjY2k4lrmzX3egGcLA1iYvl58DC6161PhNXq1yhGlZJ9GWUf8CmNCRvXF5GcCBRVSlYfDrzOcdL4SV+UI6uBzc9AmqZJbKE2QiNCeG7Sw9hCrNjD9AE1q93CgIf70KJrU0BXQDUirlYMoREhrJi9luPJaWieQoFAlWQdz2bpz8a+vhXF3O8WMqTWnQxKvIP+sbfy1bMTikxkS+cy5NELkBmPIjOeQh69AC13eglHLIbMwbA1VKr5JjdnNyL6A13QToQBFhAhYGmLCLv9VC/tlFBaamhG/t/jK2c5FUudqGgfd67CRFituFSNrklJPH9x+TohmsUn8FU/vZ5++6/TWLDXWItGKc/VrxSMZgoCwaIoVA9S4RjwKwSnqbpsdVlSQ/3uvZLPHh1fpLVTMSk0aluPuERd9rlznw5M2P8ZS39egSPHyflXteXvGau5PnEEWalZJDaogdVuwe3yeOcLbKFW7vtwOEII9m4+YChTkZftYM+m/T7bK4q/f1vN6LvHFvFFmPbBLKQqGf76MKSWhUy/G2Qx/+HMZ5DWtogC45kSELbuuuOXj4exAraLKuaDnMYIc13d2Mc5H9TDetHd0r5cNZczmdK6hmbgX8sMKeU1Fb6iCuRYbo6hhDRA9bAw3ul1FXUio0mKqth8b4uEaizcu9vnH86iKNSNDp7Kdutq1Q29FkpCF5wzc3n9hqW+t6y0uLAp6+Zv9NneoE3dMreO9r7jcjYt38aiycv0YwiIqRbFs5MeKfK+yNgIr63k18/+yNQPZnqDx4Hth7DaLbS9tCXJu49Qq3Eiw54dSMt8L+E6zWphDbH62GKGhNupe15wOoYAvh01yWeC2Znr5JePZ3Pzi4Mwq/NAGl2wVGTedETEfaWfxNIO7FeA84/8JwAB2CF0CMLcoLS9y4XUMpF5U/UZCHMTRMgghOnkjZ3KixBWsBtPyJ9rlNY19E6lrCJIHMjM9BvF0hwOLkzy74BVHga1aMW4tat8nL9CLBYuqxe8X7IXL+3BDVMn4fJ48EiJWQjMJhOtEqqzNTWFmJAQrmjYmN+2bSXd6UACtSIiGdP7mgqZdvbHPe/fyoPdnsPlcKG6VRSTomsJfTKizMdUFIUnv7mPG58dwLYVO4irFUuri84z1PEBvdW0cBAowOVwY7Ga+XbHJz77dO7TnuiEKFx5bm+e3mRWCIsOo9uALmVee2kk7zXW09JUjey0HKLDczDM76OCDKxWIISAqDfB1QeZNwOECWG/FmEL3ucCXa9Hpg4ALQe9pWseMmccxE5EWILn71FFyZSWGlpYWQsJBpEGomgFBFLcLStJUVF8cEUfHps7GyEEUkpCLVbGXXNtUC+4rapVZ+YNN/PFmpVsTjlKi2rVGdGuo89TyFMXXszu9DTMilKiXERFUb9VXcauf4cp781g28qdNGhdh+sfvYbaTcrfQVWrUSK1GpXeknvs4HEUP05zuzfsM9xuMpsYvexVPr7/S5b9uhKpSTr3bc/9Hw3Hagtey2DDNvUMn6CsIVYi4yNAXgxZb/ruKEIQ9sB72oUQYLsEYSvj9HEZkJmv6wNv3kDmBOlCZj6LiJtUaeuooiilpYYmSykHCSE2UDRFJAAppaw8s9MyUC86hjCLhRyD3PkVhdzFPJrGHzv/48/du4gPCWVwy1blmjQGuKJRY7rXq8/a5MPYTCba1EgMan2ggLrR0bxymX8FRdAvAOX9fCdLjXrVuO/D4ZV6zsLE1YzxW6uo28JXWiQvOw+z1UxMtSiem/SIV1uoMnLIt786lMcvH1UkPWQLtXHbKzdgMpmAOsjQWyD3O/S7aqkraFq7g6WMGv2VhWsRvk8zEtzrkdJVovBbFcGjRNE5IUSilPJwvl+AD1LK0pvnK5iTFZ2buX0bj86djSs/TaMIQbTNxqxht1AtLByXqjJs2mS2HEsh1+32plPe6nEFfZs0C9bHqOIUMPaJ75g+Zo6PN3BhwbhNy7bx/p2fcWD7IRRF4ZLBXXngkxGEhIf4O2xQ2Lx8G+Oe+oGd6/cQXyuWm18YxCWDig6xSdcKPdcu3Qj71frdvZHL12mEduR8P9LYFkT19f61fqooNyWJzgWkPpp/kBrormMSWCmlDF7jeQmURX10/ZFkxq1ZxYHMDC5MqsOtbTsQn6+v8+OG9byyeIGPtn+oxcKqO+4u04BZFSdPekoGnz78jd6WKQQXD+zCyHdvITKuZPMPj9vDkb0pRMVHekXb/KFpGhPf+Jkp784gKy2HOs1rc+8Ht9G+h/5ge+C/w9zd/vEignkWm4WW3Zrx1tzn/R22ipNAy3wDcn+gqCGMBexXoES/d6qWdU5Q7kAghBgBPI/uPSCAS4CXpJRfVeRCA6GiZaiHTZvM8gO+rYDhViuf9+nHBUmlt+JVUT7cLje3n/cQKftTvUVZs8VEjfrVGLfxfb+dRTO/mMsXT3yPmi8q1+26zjzyxUi/pjeFkVL6pHk+um8cM8fO8zGxt4VY+Wzt2xVS0zjXkdKBTLsLXOtODJKY6iFixyOU4E9rn8tUhAz140A7KXU/PCFEHLAM3ansjCbUYpyTlFIS4sespSxIKZm+fSvfrl9LjttN70ZNuL1dB792j+cSy35dRUZKZpELsMetkno4jX9mraHrNef77LNi9lo+ffibInn0pT//g5SSZyY8VOo5jXL9ezbt9wkCoIvjHd51pCoQVABC2BGx45HuzbqAm6k+WNqcs/37pwuBBoJUdKG5ArLyt53xDG3VmmX79+mSzYWIsNpoXT1wG73SGLVwPlM2b/SmoPampzFj+1Zm3HDjGZ9+klKyYvZaZo/7E6fDxeVDL+LSIReWOiOgqipH9x5j+6qd5BmI0jlzXezddMAwEEx4bZpPr73L4WbpzyvISssmIubkhdGaX9CELX9v9+oKFeB2uqnXsurJsCIRluZgaX6ql1FFPqV1DRVM5+wA/hFC/IpeI+gH/BvktVUK3evW56bWbRm/fg0mRUFBYDGZ+LLfdRXW5XMwM5PJmzYUmStwqiqHsrL4ddtWBrdoVSHnOVV8/th4Zo6d582tb1y8hXnfL+K1WU/77etfPO0fRt89FkeOE4/L4zV/L4wt1ErtpsZ34cf8CNmZLCYyUjLLFAj639+b3z6bi8etFpk0vmjgBSTUrvyBpyqqqCxKeyIoqNTtzP9TwK/BWU5wyHI6mfXfNpJzsmlXoybd6tT1XuSFEDzV7WJuatOWFQcOEGW3c1GdulgqcM5gTfIhzIriM2CW53GzcO/uMzoQHNqZzIxP/8DlOPFE5chxsmnZNlbNWU+nq9r57LNt1U7evPlDQ//fAkxmE5GxEVxwtbH3UYtuzUg5kOoTPBRFUL1eQpk+S1xiDB+veJ0vnvyetfM2EBIRQv/7ruT6x07rAfoqqig3pQ2UvVhZCwkWm1OOcsPUyaiaRq7HTajFQrO4eH64blCR4a5aEZFce15wHlUTQo27WcyKQq2IyKCcs7JY++cGhMFdvyPbwd+/rTIMBFPem4Erz3e2Q1EECD04d+nbgQfGjMBsMf6K3vzC9fw9YxWOHKc3GNhCbQx/fRgWa9lTbbUaJTJq6tknM1xFFSURUI1ACJEAPIHuVuZ1JpNSXlbKflcCo9EFwMdJKd8weM8gYBR6ymm9lHJooIsvDSkl98/+jSzXiVa1XLebzSkpfLl2Nfec37miTlUinWrVJtoe4mOKY1YUhrZqUylrCBbhMeEoJt8Umtli8tv6mbzrCEbdaiHhdl785QlaXdzcb0qpgFqNEhmz6k2+HfUTGxZvJqF2HDf87zq69C3RPbWKKqowINBi8Q/AJHS3spHALYCxIEo+QggT8AnQEzgArBRCTJdSbi70nsbA/4ALpZRpQohqJ/8R/HMwK5PD2Vk+2x2qh2lbN1VaIFCEYMJ1g7jrt1/Yk5GOSeh1iHd6XkX96JhKWYM/NE3jzWWLmbjxX1yqSrsaNXm755XUigzsSaVzn/aGF22T2cQVtxorura5tAU71+3BXcxPwO3y0KBNvVKDQAG1GiXyv+8fCOi9VVRRhX8CDQRxUsovhRAP5usPLRRCrCxln07ADinlLgAhxET0IvPmQu+5A/hESpkGIKU8enLLLxmBQNWM5yQCnKOrMJKiopg17Bb2pqeT63HTODauwu0hy8LAn34solj698H9XPrtlyy97Q4SwkovuNpDbbz++7M8d/UbuJ1uELo42uNf30tiA2MXrQEP9WX2l/PR0nNQ87X+7WE2rn2gd5mKvFVUUUX5CDQQFCR0Dwsh+gCHgNLEamoBhSe1DgDFb8GbAAghlqKnj0ZJKX8PcE2lUjMiAn8q2pUhtmZEMGWoT5atKSmGstUeTWPUwvl80juwIul5nRsz6dBYNi/fjtvppsWFTbGF+B/qiqkezWdr3ua7l35i1Zx1RMVHMPCRa7hsaLcyf5Yqqqii7AQaCF4RQkQBjwIfAZGAr8Nz2c7fGOgO1AYWCSFaSSnTC79JCHEncCdAnTqB93MfzMr0O6iyLyPdcPu5xG//+Rq3F/D3ASNzb/+YzCZaXXRewO9PqB3HI2NHntQ5qqiiiuAQUCCQUv6W/58ZQKBWXgeBpEI/187fVpgDwD9SSjewWwixHT0wFEk7SSnHAmNBl5gI8PwIhN9ZgMpQAj3dKempKDak7CJrUkp+/nAWk9+ZTlZqFk06NmTke7fStGPJ5jcZxzJZMWstCL32EBlbss5QFacHUkrQjoCwIZRTW/OqomwElKQWQjQRQvwphNiY/3NrIcSzpey2EmgshKgvdG3ZIUBxU9Vf0J8GEELEo6eKKszdvVZkpGF7pt1sZuB5LSrqNGcsA89r4bdO8XCXC8t83HFPfc9Xz/xI6sHjuBxuNi7ZymPdXyjR3vGPbxcwtM5IPrpvHB/dO46hSSP5a9LSMq/hZJBS4nK4DDuZqigZ6VqFPNYDmdITebQbWuqNSLVCS31VVAKBViu/QO/ucQNIKf9Fv7D7RUrpAe4D5gBbgMlSyk1CiJeEEAXJ5zlAqhBiM/AX8HiBnlFF8dFVfYmy2Qi1WFCEINRioXX1Gtzatn1FnuaMRFEUJg4Y7GPSc3vb9vRu3KRMx8zNyuOXj343cAJz8cMrUwz3ObovhdEjx+JyuMnLdpCX7cCZ5+Kd28aQejitTOsIlD8nLOaGpLu4OvxGrou/jUlv/1oVEAJEqoeQacNB3Y+uJuoG92rk8Zuq/g3PMAKtEYRKKVcUy7d7/L25ACnlLGBWsW3PF/pvCTyS/ycoNItPYOntdzF7x3aSs7NpXyORLrWTqkSu8mmfWJMt9z7Esv37SMnJpmeDRoSWQwgvefdRzFYTrmLSQZom+W+N8cPewsnLvZIORRCweOrf9L/vqjKvpySW/bqS9+/8zDvhnJ2Ww/cv/QRSMviJ/kE559mEzJ0IsvhlQNXTRO5VYPXViKri9CTQQHBMCNGQ/BYcIcRA4HDQVlXBhFosDKhKBZVI1wqS205IivMRbQNdcbjOeb5OYAAupxuPgeqn6lFxO3wnkCuKr5/70UfmwpHj5MfXf2bgo1fnu4FV4Rd1LycaCgsjQK1cuxIpXeD4A+n6B0y1ECHXIUwVOpZ0VhNoauhe4HOgmRDiIPAQcHfQVlXFGUtETDg9b7oYW2jRpwpriJVhzwww3Kdz7/aGgx2aR6NTn+Cl8JL3GM9EOnOdOAzUUKsohqUTYNBUID1gaVlpy5BaNjL1OmTGs5A3CbI/Rh7rhXRVnG/J2U5AgUBKuUtK2QNIAJpJKbtJKfcEdWVVBIRbVflz904mb9rA7vTg5tMD5f5PRtDv3iuxh9kQiqB2k0Re/PkJmp7fyPD9qYfTUAwkq01mhdRDwftMdZoZK5uGRYUSEnHiApednsP8CYuZ9/0iMlN9J9XPVURIf1BigMLaTnaw90CY61faOmTOV+DZC+Tmb3GBzEWmP1JVqwiQQLWGXgPeKujvF0LEAI9KKUvrHKoiiOw4nsoNUyfj9HhQpUSTGv2bNue1y3ue0hqI2WLmjjdvYvjrw/C4Vay2kkXgtq3Yger2TQ1pmmT7yh20vzw46qzDX7+R5695A2deMZP4V2/wylwsmrKcN2/5GJNJ/1n1qDz42Z30url7UNZ0JiGUMIifhsz+BBxzQdghdBgi9MbKXYhjJkWtL/PRMvT0lble5a7nDCTQ1NBVhYe88iUhegdnSVUEgpSSO2f8wvG8XLLdLvI8bpyqyoztW5m+3f+gWGWiKEqpQQD0uoI9zHcS2RZiJSEpPhhLA6D95a148ZcnaNimHla7hZqNavDI2Lvoc0dPANKOpPPmLR/jynN5u5lcDjejR47lyN4SpbbOGYQSixL5HEq1RSgJf6CE3YIuM1aZi/DX3KCV8FoVhQk0EJiEEN7fVCFECFC6MWwVQWPH8eMcycnxEdDI9bj5YcP6U7KmsnLJoK6YrWYKP8QIIbDYLXS7rlNQz92hZxs+W/s2M3MnMH77R1w29CLva4un/oPRc5WmSRZOXhbUdVVxEtj83JMqsQhTlb1oIAQaCH4A/hRCDBdCDAfmAuODt6wqSsOpevxORzs8weu0CQahESG8t/Al6raog8VmwWKz0KB1Xd5f9HKJmkXBxuVwoWmaz3bNo+J0+DfVAUhPyWDF7LXsWLu7Kk8dbNTDYBSytSx00YIqSiNQiYk3hRD/Apfnb3pZSjkneMuqojSaxSdgMSk+3Xt2s5lrmgSu+XO6UL9lHb74911SD6chBMTWOPVSBZ37tOfr5yb6bLfYLVzQt6PhPlJKvnpmAtM+mInFZkH1qNSoX5035jxLXOKp/0xnJe6lGIpLCi2/RmDcpFDFCQLWQZZSzpZSPpb/pyoInGLMisL7vXoTYjZjUfScbKjFQqPYOG5sfeaa3cQlxpwWQQAgqWktBjzUB1uo3v0khMAeauOq4ZfTqJ1xV8ziqX/zy0ezcTnc5GTk4shxsm/LAV4c8HYlr/4cQvHjJy09IE6P79LpTqBdQ9cBbwLV0J/BBPpg8Jnts3iGc0m9+sy58VYmb9rIkZxsLqpTlysaNq5Qv+WKYvvqnYx/YTK7/91LUrOa3PTCIFpe2OxUL6tUbn91KBdccz5//rAITZNcNuRCWpSw7qkfzMSRU7SDRVM1dq7bw9F9KVSrUzY/5bIgtRxk3m/g2QLmpoiQqxHK2ef3IMKGI9OfAPIKbbWAtTPC5CdIVFGEQCeL3wKullJuCeZiqjh5akdG8cgFZReIqww2Lt3KU1e8givPiZSQciCVTUu38cLUxzj/Sl9P49ON8zo35rzOjQN6b3ZatuF2k8VEdnou1SpmgLtUpHoYmToAtBz0C2QIMns0xE1BmI0nvM9UhP0KZPhuyB4DwgzSDZa2iOj3TvXSzhgCDQRHqoJAUaSUrEk+xJ70dJrExdOqmrEbV0Wfc+n+fUzdshGPJunXtBmX1W942ktqf/boeB8ROmeei08e/Jpvtp3+geBk6NrvfA7vPOJjw2kym6jbvPIuwDLzJdCOAwXF7jyQTmTmKETsuEpbR2WhhI9Eht4Inv9ASTjrgl2wCTQQrBJCTEKXjfb+RksppwVlVac5mU4Hw6b95J3klVLSqnoNvr7mOkIspffNl5VXFy/gx40byMvvCvprzy4uq9eA0Vf2Oa1F9Hat32O4/dCOw6geFZPBVPGZyvWPXcP8CUtIT8nEledCUfQ22Ic+u6tyP6dzESeCQAEauJYipTytvy9lRSjhYD27biwqi0ADQST6/HavQtskcE4Gguf/+pPtqcdwF2otXJ98mHeWL+G5iwP17Tk5dqUd54cN/+JUT9xp5rrd/Ll7F6sOH+T8mqfvHVBkfCSpB4/7bA+JCEExnXrf5ookMjaCsevfYebYeayas45qdeLp/0BvGrWtPMkFHRPGgnBnT9AtCSldyNzJ4JgBwo4IvQFsV5yVAbAiCLR99LZgL+RMQZOS2Tu2FwkCAE5VZeqWTUELBIv27sGoRS7P4+av3btO60Aw5Mn+jHvqhyLpIVuojese6ntW/mKGRYUx6PF+DHq836lbREgfyJtO0WBgAfvZfzGU0oM8fiO4t1FQQJaudRDyNyJq1Cld2+lKoF1DdmA40AKwF2yXUt4epHWdtmhSovoZEHKpvno5FUWY1YpJUaDYOSyKQrj19B7y7nfvlWQcy+Snd2agKAJN1eh7Zw9ufM5YjbSs5GTkMPHNX1j403Jsdit97+5F37t6npNy0iLif0j3Zr2PXqogTGCqjYh8vvSdz3Sc88CznaJdRHmQNxUZdhvCXLdchy8YEDybAmqgqaHvgK3AFcBLwDB017FzDrOi0L5GTVYfPljk/lxBcEndekE77xUNGzFqwXyf7SZFoV/T03uATAjBLaMGM+TJ/qQcOE5czRhCwuyl73gSuBwu7uvyNEf2pOB26nfBXzzxPRsXb+GZHx+u0HOdCQglEuJ+AdcKvYBqbqi3U4qzKxVnhHQuAZlr8IoCrpVQxkAgtePIjFF6oEEibRcjIl9EmGqUZ7mnBYF+KxpJKZ8DcqSU44E+QOfgLev05rXLexJhs2E363E0xGwmJsTOs0FKCwFE2ux83rcf4Var90+I2cw7Pa+kVuSZMc5hC7FRu3FihQcBgL8mLuXYgVRvEADdV2D59FXs23ow4OO4XW7mfb+Ilwa+w+h7xrLTT6H7TEAIgbB1RoTdiLBdcE4EASB/wMygaUMo+bLZJ4+UKjJ1SH4Q8AAqOBciUwci5ZnvXRHoE0HBb1e6EKIlkIw+XHZO0ig2jvk3385PmzayNfUYratXZ8B5LYm0BTdF061OXVaOuJvlB/ajahpdaicRVg5bybOJdX9t9BnkAhCKYMvf26nTrFapx3A53Tx6yfPs2bQfR44TxaQwd/xC7vt4OFfedlkwll1FEBAhA5E5X+NbLLeC7SKjXUrHuQi0FIo69Gogs8HxO4Sc2damgQaCsfkeBM8C04Fw4LnSdhJCXAmMRm9VGCelfKPY67cCbwMFt2wfSynPiCbn2JBQ7uoYXGVMI2xmM93rVXYHyulPjfrVsNjMPjaZQhHE14oN6Bhzxy9g98b93qK2pmo481x8fP9XXDKoa1CeZKqoeIQ5CaJHIzMeQ2+w0EBEI2I+R5RVllrdBdLA80DmIt3/IQyM2s4kSgwEQojCpvIFnUOf5P8dVsq+pvz39gQOACuFENOllJuLvXWSlPK+wJd8+uBWVTKdTqLtdr2QW8Upo/eIHkx5d0aRQKAogojYcNpeFpht4sKflvsMvoHulLZ52TY69DxzNZzONYT9UrD9De6NIGxgPq98xV1zI/04spgftwhFWJqWb7GnAaU9EUTk/90UOB/9aQDgamBFKft2AnZIKXcBCCEmAv2A4oHgjENKyUcr/uaLNStxaxp2k5kHu3TltrbB89etomQSasfx6syneeOmD8lMzUJTJQ1a1+G5yY8G3DUUHm18byOlLGJdWcWZgRCWihsws3YDpYbeheVND5lARIH9ioo5xymkxEAgpXwRQAixCGgvpczK/3kUMLOUY9cC9hf6+QDGBeYBQoiLge3Aw1LK/cXfIIS4E7gToE6dShJrKYHPV6/k89UryPPoXwiXqvLOssVEWK0MbF55pt1G7E1PZ9zaVWxKOUqLhGqMaNeRutHRp3RNlUXri5vzw55PSd59FIvdQnzNwFJCBfQd2YuVs9fiKPZUEB4VRrNOVVLG5zJCmCDuR2Tma3pNAA1slyEin6WQZ9cZS6D5jOpAYScOV/628jIDqCelbE0JZjdSyrFSyo5Syo4JCZWn3uhnLXxWKAgUkOfx8OGKv0/RqnQ2Hj1Cnx+/ZdLGf1mXfJhJG/+lz4/fsvHokVO6rspECEFig+onHQRAt64c/GQ/LHYLoREhhEaEEFM9mtdmP+P1MK7i3EUo0SjRb6HU+BelxkaUmKyH6lIAABJdSURBVA8RprOjZybQYvG3wAohxM/5P/cHvilln4NAUqGfa3OiKAyAlDK10I/j0FVOT2vcmkaW06BoBBzNMVaerCxeWPAnue4TnRIeKfG43Yxa8CdTBg09hSurHHIyc/np3RksnLQMW4iVq+/uxVUjLj+pi/iNz11Pnzt78u+iLUTEhNGme4tyawTl5TiY+t4M5v+4FLPFRJ87e9D3rl5nlcZSFWc2gUpMvCqEmA0U9F7dJqVcW8puK4HGQoj66AFgCFDkaiSESJRSHs7/8RpO0yE1l6rywd/L+GHDOnLcbsyK4iMxAXpb6alk/ZFkw+3r/Gw/m3A5XDxwwdMc3n0Ut0MPhp8+Mp5/F2/hf989cFLHioyPoF7LJMKjw8p9sfa4PTx80XPs33oQV/66vnjyB9bO38ioqY+X69hVVFFRBPpEgJRyDbDmJN7vEULcB8xBbx/9Skq5SQjxErBKSjkdeEAIcQ169eU4cOvJLL6yeHzu78zdtQNHfjpIM5CYsJvNPN3tkspeWhFCLRayXb5eumFBVEQtTF6OA03VCIsMrZTzFWbh5OUc3XfMGwRAHyhbMu0f9j97kKSmpc8RACz5+R/ev+tzXA43qkelWafGPDf5EWKqRZVpXUt/WcmhHcneIFCwrlVz1rFj3e5TIEZXRRW+BDXxKaWcJaVsIqVsKKV8NX/b8/lBACnl/6SULaSUbaSUl0optwZzPWUhOTuLP3b+5w0CBShCEGsPIdJmo0NiTb7pN4CuSae2kH1Dy9beaecC7GYzw1q1Dep5Uw+n8b8rX+Ha2FsZEH8793R8gt0b9gb1nMVZM3+D4UCZogg2L98e0DF2rNutdx0dy8KR7cDtcLN5+TaevurVMq/r30WbyMs2mDyVsCXAdVVRRbAJ+IngXGVPejpWkxlnMbE3TUrqREUxbfCwU7QyXx69oBuHs7KYu2sHVpMJl6rSs0FDHurSNWjnVFWVRy5+jiN7U1A9errsvzW7efiS5/l2x8dExkaUcoSKoXrdBCxWs48hjKIoxAVYOP7lw1lFnigAVLfK/m2H2PXvXhq0PnmNmoSkeKx2S5EnAtCNagJdVxVVBJuqVohSqBcdXcQDoACzEDRPOL06BqwmEx9e1Zf5Nw/nsz79mH/zcEZf2RdrENU31/65kbSjGd4gUIDH6eGP8QuCdt7i9B5xOSZL0c+pKIKw6FDaXR5YS2/ynhQ0zTftZ7aYSD3k66cQCL1uvsSnziCEwBZq4/yrgvukVkUVgVIVCEqhRngEVzRs5JNysZrNjGjf8RStqmQSIyK4IKkOiRHBvxs/vOsImse3cO7Mc3Fg22GDPYJDtaR4Xp7+FHE1Y7CH2bDaLTRoU493F7wY8EBZ+56tsdp9JQjcTjeNOzQo07pia8Tw2uxnSEiKxx5qwxpipV7LJN5b+CIWa+XUbqqoojTOidSQ0+Phrz27OZKTRbsaNWld/eRkY9/ueRXv/72UCRvWk+N206Z6DUZ1v5x60WVTMjybaNSuPkLxHd23h9k4r0tghu8VRdtLWzJh32cc2pGM1W6hWp2Tmzm5emQvpo+ZQ0ZKJp78FJM9zMY1915JdELZisUALS9sxg97xnBwRzIWq5nqdU/tLEwVVRRHSD8mK6crHTt2lKtWrQr4/bvSjjN4yiQcHjceTUMRgs61k/i8Tz8s56BhSUUjpeTxy19ky9/bvXlwk8VEfM1Yvtz8PraQM2vqMj0lg4lv/sLyX1cRERvGgIevpvvgrmeVCUkV5yZCiNVSSsM0xlkfCHr/MJ5tqceKmMiEmM081rUbt7XtUPELPAdxOVx8/8oU5nz9Fx6XyoXXduL2V28o1110FVVUUbGcs4HgUFYml3/7lU/HD0Dj2Djm3HhrBa+uiiqqqOL0pKRAcFYXiz2a5veR3mMwGfz/9u4/yKryvuP4+7PL7soiIhTGqFB3VaISlR9FA0karUqLP4KdmEZMmpBEy8SqI8ROitKxE1NnqjP1RyamDqYmnalKq8aUAadqiWmjbQQUURQRlE2BIGADQfm1LPvtH+esOSzrsqR7Oefe83nN3Ln3POe5dz/cs8v3nufc8xwzszKq6UIw6pghjGg+eGrhpvr6wl/n18zsSKnpQiCJ70y9lEENjR98/bO5oYFThg4r7Fc/rfqtemENN0y+halN0/mTj1zN/DueoNN7oFZgNX2MoMuvdu/ix2+sYuN7OzjnhJFcdPIpDPC0wlYB61b+DzdMuuWAK501NTdxyTUX8uf3fLWXZ5pVVm/HCEpxHsGwgc18bby/IWSV9/Dtj9O+58CJ//bu2suiec8w41ufZ9CQXq/wapaLUhQCq007fvUeC+9/muWLV/KRlhF8dtaltJ51+PMB9ae1y9uInqapaBzApnVbPNuoFZILgVWlbZu38/UJ3+T9be/TvmcfdfV1PDv/eebOn83kz+R3/KflzFFsXLOJ7kOuHe0dPqPYCssD5VaVHr79R+x4d8cHZzN37u9k7+527vqz+3M9MPvFuVfQOPDAOYSamhuZ8uXzGDz06JxSmfXOhcCq0s8XvkjHvoNPFNyzcw+/fCu/azSfOr6V2xfdQutZybUpmo8ZyBWzP8MN370mt0xmh+KhIatKRw9thraD2/d3dDJoyJG/QlrW2PM+xrwVf0dnZ6cvem9Vwb+lVpU+O+syjhp04IR2Axrq+dgnT/utLyvZ31wErFpU9DdV0lRJqyWtlTSnl35XSApJPsvL+uSiP/00l86cQsNRDQwaMpCm5iZazz6JuY/MyjuaWdWp2AllkuqBN4EpwAZgKXBVRLzerd9gYBHQCFwfEb2eLfbbnFBmtWvb5u2sXb6O4ScOy/2ro2ZFltekc+cCayPi7YhoB+YDl/fQ79vAHUAPV/g2693Q447lnKnjXQTM/h8qWQhOBNZnljekbR+QNAEYFRGLKpjDzMx6kdvRLEl1wF3ATX3oO1PSMknLtm7dWvlwZmYlUslCsBEYlVkembZ1GQycCfxUUhswCVjQ0wHjiJgXERMjYuKIET4708ysP1WyECwFRktqldQITAcWdK2MiF9HxPCIaImIFuDnwLRDHSw2M7P+VbFCEBEdwPXAU8Aq4F8i4jVJt0maVqmfa2Zmh6eiZxZHxJPAk93abv2QvudXMouZmfXMpz6amZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJVbQQSJoqabWktZLm9LD+65JelfSypOckjalkHjMzO1jFCoGkeuA+4GJgDHBVD//RPxwRZ0XEOOBO4K5K5TEzs55Vco/gXGBtRLwdEe3AfODybIeI2JFZHAREBfOYmVkPBlTwtU8E1meWNwAf795J0nXAN4BG4IIK5jEzsx7kfrA4Iu6LiFOAvwT+qqc+kmZKWiZp2datW49sQDOzGlfJQrARGJVZHpm2fZj5wB/3tCIi5kXExIiYOGLEiH6MaGZmlSwES4HRklolNQLTgQXZDpJGZxYvBdZUMI+ZmfWgYscIIqJD0vXAU0A98GBEvCbpNmBZRCwArpd0EbAP2AbMqFQeMzPrWSUPFhMRTwJPdmu7NfP4xkr+fDMzO7TcDxabmVm+XAjMzErOhcDMrOQqeozArD9FBGteeptfrn2H1rNP4qQzRuYdyawmuBBYVXh/+07m/NHf8IvX11NXV8f+jv2Mu+BM/vrxv6ChsSHveGZVzUNDVhXuvXYeb61oY8/Ovex6bzd7d7ez/Ccreejbj+UdzazquRBY4XXs6+C5J5bQ0d5xQHv77nYWPbA4p1RmtcOFwApvf8d+Ovd39rhu7+69RziNWe1xIbDCaxrYxMljTzqova5OnDN1fA6JzGqLC4FVhZseuJaBgwfS0JQcGG4c2MjgYYOZeeeXck5mVv38rSGrCqeOb+XBVfew8P6naVu5njMmjebiay7kmGGD845mVvVcCKxqDD9hGF+5bXreMcxqjoeGzMxKzoXAzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxKzoXAzKzkXAjMzEpOEZF3hsMiaSvwiz52Hw68W8E4/aVackL1ZHXO/lUtOaF6sh7pnCdFxIieVlRdITgckpZFxMS8cxxKteSE6snqnP2rWnJC9WQtUk4PDZmZlZwLgZlZydV6IZiXd4A+qpacUD1ZnbN/VUtOqJ6shclZ08cIzMzs0Gp9j8DMzA6hZguBpKmSVktaK2lO3nm6SHpQ0hZJKzNtwyQ9I2lNej80z4xpplGSnpX0uqTXJN1YxKySjpK0RNKKNOe30vZWSS+k2/+fJTXmmbOLpHpJyyUtTJeLmrNN0quSXpa0LG0r1LZPMx0r6TFJb0haJWly0XJKOi19H7tuOyTNKlLOmiwEkuqB+4CLgTHAVZLG5JvqAz8EpnZrmwMsjojRwOJ0OW8dwE0RMQaYBFyXvodFy7oXuCAixgLjgKmSJgF3AHdHxKnANuDqHDNm3QisyiwXNSfAH0TEuMxXHIu27QHuBf4tIk4HxpK8t4XKGRGr0/dxHPB7wC7gCYqUMyJq7gZMBp7KLN8M3Jx3rkyeFmBlZnk1cHz6+Hhgdd4Ze8j8r8CUImcFmoGXgI+TnKgzoKffhxzzjST5g78AWAioiDnTLG3A8G5thdr2wBBgHemxzqLm7JbtD4Hni5azJvcIgBOB9ZnlDWlbUR0XEZvSx+8Ax+UZpjtJLcB44AUKmDUdbnkZ2AI8A7wFbI+IjrRLUbb/PcA3gc50+XcoZk6AAJ6W9KKkmWlb0bZ9K7AV+EE63PZ9SYMoXs6s6cAj6ePC5KzVQlC1Ivl4UJivckk6GngcmBURO7LripI1IvZHsts9EjgXOD3nSAeRdBmwJSJezDtLH30qIiaQDK9eJ+nT2ZUF2fYDgAnA30fEeGAn3YZXCpITgPT4zzTg0e7r8s5Zq4VgIzAqszwybSuqzZKOB0jvt+ScBwBJDSRF4KGI+FHaXMisABGxHXiWZIjlWEkD0lVF2P6fBKZJagPmkwwP3UvxcgIQERvT+y0k49nnUrxtvwHYEBEvpMuPkRSGouXscjHwUkRsTpcLk7NWC8FSYHT6jYxGkt2xBTln6s0CYEb6eAbJeHyuJAn4B2BVRNyVWVWorJJGSDo2fTyQ5DjGKpKC8Lm0W+45I+LmiBgZES0kv48/iYgvUrCcAJIGSRrc9ZhkXHslBdv2EfEOsF7SaWnThcDrFCxnxlX8ZlgIipQz74MnFTwocwnwJsl48dy882RyPQJsAvaRfKK5mmSseDGwBvh3YFgBcn6KZFf1FeDl9HZJ0bICZwPL05wrgVvT9pOBJcBakl3xprzf00zm84GFRc2ZZlqR3l7r+vsp2rZPM40DlqXb/8fA0ILmHAT8LzAk01aYnD6z2Mys5Gp1aMjMzPrIhcDMrORcCMzMSs6FwMys5FwIzMxKzoXArJ9IasnOKnsYz/uvzPO/0P/JzHrnQmCWk64ziiPiE2lTC+BCYEecC4GVRvqJ+w1JD6Vz1z8mqVnShemkZa+m14toSvu3SbozbV8i6dS0/YeSPpd53fc/5Gf9TNJL6e0Tafv5afsCkrNgs8//W+D30znrZ0v6T0njMq/5nKSxFXuDrLRcCKxsTgO+FxFnADuAb5BcI+LKiDiLZCKzazP9f522f5dk9tC+2gJMiWTitiuB72TWTQBujIiPdnvOHOBnkcxdfzfJFB9fAZD0UeCoiFhxGBnM+sSFwMpmfUQ8nz7+J5L5adZFxJtp2z8C2Zk2H8ncTz6Mn9MAPCDpVZKpI7IXRloSEev68BqPApelk/99jaRgmfW7AYfuYlZTus+psp1kzpe+9O963EH6IUpSHdDT5SVnA5tJrppVB+zJrNvZp6ARuyQ9A1wOfJ7k6lZm/c57BFY2vyup65P9F0gmLGvpGv8HvgT8R6b/lZn7/04ft/Gb/5SnkXz6724IsCkiOtPXrO9DtveAwd3avk8yrLQ0Irb14TXMDpsLgZXNapILrawimanybuCrwKPpME4ncH+m/1BJr5Bca3h22vYAcJ6kFSTDRT19wv8eMCPtc/qH9OnuFWC/pBWSZgNEciGbHcAPDu+fadZ3nn3USiO95ObCiDizj/3bgIkR8W4FYx0qwwnAT4HT070Ls37nPQKzgpL0ZZLrRM91EbBK8h6BmVnJeY/AzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxK7v8A+me/ab3a2nMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "from sklearn.cluster import KMeans\n", + "kmeans = KMeans(n_clusters = 3)\n", + "kmeans.fit(X)\n", + "labels = kmeans.predict(X)\n", + "plt.scatter(df['popularity'],df['danceability'],c = labels)\n", + "plt.xlabel('popularity')\n", + "plt.ylabel('danceability')\n", + "plt.show()" + ] + }, + { + "source": [ + "이 모델의 정확도는 나쁘지 않지만 뛰어나지도 않습니다. 데이터가 K-평균 클러스터링에 적합하지 않을 수 있습니다. 다른 방법을 시도해 보세요.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 811, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Result: 109 out of 286 samples were correctly labeled.\nAccuracy score: 0.38\n" + ] + } + ], + "source": [ + "labels = kmeans.labels_\n", + "\n", + "correct_labels = sum(y == labels)\n", + "\n", + "print(\"Result: %d out of %d samples were correctly labeled.\" % (correct_labels, y.size))\n", + "\n", + "print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/5-Clustering/2-K-Means/solution/tester.ipynb b/translations/ko/5-Clustering/2-K-Means/solution/tester.ipynb new file mode 100644 index 000000000..7f3f660a4 --- /dev/null +++ b/translations/ko/5-Clustering/2-K-Means/solution/tester.ipynb @@ -0,0 +1,343 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "6f92868513e59d321245137c1c4c5311", + "translation_date": "2025-09-04T02:12:16+00:00", + "source_file": "5-Clustering/2-K-Means/solution/tester.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "지난 수업에서 끝난 부분부터 시작하여 데이터를 가져오고 필터링한 상태입니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                                    0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
                                                    1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                                    2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
                                                    3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                                    4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 105 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import numpy as np\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "우리는 3개의 장르에만 집중할 것입니다. 아마도 3개의 클러스터를 만들 수 있을 것입니다!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 106 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
                                                    1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
                                                    3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
                                                    4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
                                                    5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
                                                    6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 107 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "scaler = StandardScaler()\n", + "\n", + "# X = df.loc[:, ('danceability','energy')]\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "Unknown label type: 'continuous'", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;31m# we create an instance of SVM and fit out data. We do not scale our\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;31m# data since we want to plot the support vectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0mls30\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 30% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0mls50\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 50% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mls100\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 100% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/semi_supervised/_label_propagation.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 229\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mX_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 230\u001b[0;31m \u001b[0mcheck_classification_targets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[0;31m# actual graph construction (implementations should override this)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/utils/multiclass.py\u001b[0m in \u001b[0;36mcheck_classification_targets\u001b[0;34m(y)\u001b[0m\n\u001b[1;32m 181\u001b[0m if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',\n\u001b[1;32m 182\u001b[0m 'multilabel-indicator', 'multilabel-sequences']:\n\u001b[0;32m--> 183\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Unknown label type: %r\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0my_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 184\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unknown label type: 'continuous'" + ] + } + ], + "source": [ + "from sklearn.svm import SVC\n", + "from sklearn.semi_supervised import LabelSpreading\n", + "from sklearn.semi_supervised import SelfTrainingClassifier\n", + "from sklearn import datasets\n", + "\n", + "X = df[['danceability','acousticness']].values\n", + "y = df['energy'].values\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "# step size in the mesh\n", + "h = .02\n", + "\n", + "rng = np.random.RandomState(0)\n", + "y_rand = rng.rand(y.shape[0])\n", + "y_30 = np.copy(y)\n", + "y_30[y_rand < 0.3] = -1 # set random samples to be unlabeled\n", + "y_50 = np.copy(y)\n", + "y_50[y_rand < 0.5] = -1\n", + "# we create an instance of SVM and fit out data. We do not scale our\n", + "# data since we want to plot the support vectors\n", + "ls30 = (LabelSpreading().fit(X, y_30), y_30, 'Label Spreading 30% data')\n", + "ls50 = (LabelSpreading().fit(X, y_50), y_50, 'Label Spreading 50% data')\n", + "ls100 = (LabelSpreading().fit(X, y), y, 'Label Spreading 100% data')\n", + "\n", + "# the base classifier for self-training is identical to the SVC\n", + "base_classifier = SVC(kernel='rbf', gamma=.5, probability=True)\n", + "st30 = (SelfTrainingClassifier(base_classifier).fit(X, y_30),\n", + " y_30, 'Self-training 30% data')\n", + "st50 = (SelfTrainingClassifier(base_classifier).fit(X, y_50),\n", + " y_50, 'Self-training 50% data')\n", + "\n", + "rbf_svc = (SVC(kernel='rbf', gamma=.5).fit(X, y), y, 'SVC with rbf kernel')\n", + "\n", + "# create a mesh to plot in\n", + "x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n", + "y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n", + "xx, yy = np.meshgrid(np.arange(x_min, x_max, h),\n", + " np.arange(y_min, y_max, h))\n", + "\n", + "color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)}\n", + "\n", + "classifiers = (ls30, st30, ls50, st50, ls100, rbf_svc)\n", + "for i, (clf, y_train, title) in enumerate(classifiers):\n", + " # Plot the decision boundary. For that, we will assign a color to each\n", + " # point in the mesh [x_min, x_max]x[y_min, y_max].\n", + " plt.subplot(3, 2, i + 1)\n", + " Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n", + "\n", + " # Put the result into a color plot\n", + " Z = Z.reshape(xx.shape)\n", + " plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)\n", + " plt.axis('off')\n", + "\n", + " # Plot also the training points\n", + " colors = [color_map[y] for y in y_train]\n", + " plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black')\n", + "\n", + " plt.title(title)\n", + "\n", + "plt.suptitle(\"Unlabeled points are colored white\", y=0.1)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문 번역가에 의한 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/5-Clustering/README.md b/translations/ko/5-Clustering/README.md new file mode 100644 index 000000000..623eb3185 --- /dev/null +++ b/translations/ko/5-Clustering/README.md @@ -0,0 +1,42 @@ + +# 머신 러닝을 위한 클러스터링 모델 + +클러스터링은 서로 비슷한 객체를 찾아 클러스터라고 불리는 그룹으로 묶는 머신 러닝 작업입니다. 클러스터링이 머신 러닝의 다른 접근 방식과 다른 점은 모든 것이 자동으로 이루어진다는 점입니다. 사실, 이는 지도 학습(supervised learning)의 반대라고 할 수 있습니다. + +## 지역 주제: 나이지리아 청중의 음악 취향을 위한 클러스터링 모델 🎧 + +나이지리아의 다양한 청중은 다양한 음악 취향을 가지고 있습니다. [이 기사](https://towardsdatascience.com/country-wise-visual-analysis-of-music-taste-using-spotify-api-seaborn-in-python-77f5b749b421)에서 영감을 받아 Spotify에서 수집한 데이터를 사용하여 나이지리아에서 인기 있는 음악을 살펴보겠습니다. 이 데이터셋에는 여러 곡의 '댄스 가능성(danceability)' 점수, '어쿠스틱(acousticness)', 음량(loudness), '스피치니스(speechiness)', 인기(popularity), 에너지(energy)에 대한 데이터가 포함되어 있습니다. 이 데이터에서 패턴을 발견하는 것은 흥미로울 것입니다! + +![턴테이블](../../../translated_images/turntable.f2b86b13c53302dc106aa741de9dc96ac372864cf458dd6f879119857aab01da.ko.jpg) + +> 사진 제공: Marcela Laskoski on Unsplash + +이 강의 시리즈에서는 클러스터링 기법을 사용하여 데이터를 분석하는 새로운 방법을 배우게 됩니다. 클러스터링은 데이터셋에 레이블이 없는 경우 특히 유용합니다. 만약 레이블이 있다면, 이전 강의에서 배운 분류(classification) 기법이 더 유용할 수 있습니다. 하지만 레이블이 없는 데이터를 그룹화하려는 경우, 클러스터링은 패턴을 발견하는 훌륭한 방법입니다. + +> 클러스터링 모델 작업을 배우는 데 도움이 되는 유용한 로우코드 도구가 있습니다. [Azure ML을 사용해 이 작업을 시도해 보세요](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +## 강의 + +1. [클러스터링 소개](1-Visualize/README.md) +2. [K-Means 클러스터링](2-K-Means/README.md) + +## 크레딧 + +이 강의는 [Jen Looper](https://www.twitter.com/jenlooper)가 🎶와 함께 작성했으며, [Rishit Dagli](https://rishit_dagli)와 [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan)의 유용한 리뷰를 통해 완성되었습니다. + +[Nigerian Songs](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify) 데이터셋은 Kaggle에서 Spotify에서 수집된 데이터를 기반으로 제공되었습니다. + +이 강의를 작성하는 데 도움을 준 유용한 K-Means 예제로는 [iris exploration](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering), [입문 노트북](https://www.kaggle.com/prashant111/k-means-clustering-with-python), 그리고 [가상의 NGO 예제](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering)가 있습니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생할 수 있는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/1-Introduction-to-NLP/README.md b/translations/ko/6-NLP/1-Introduction-to-NLP/README.md new file mode 100644 index 000000000..cbc73f7fa --- /dev/null +++ b/translations/ko/6-NLP/1-Introduction-to-NLP/README.md @@ -0,0 +1,179 @@ + +# 자연어 처리 소개 + +이 강의에서는 *계산 언어학*의 하위 분야인 *자연어 처리*의 간략한 역사와 중요한 개념을 다룹니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/31/) + +## 소개 + +일반적으로 NLP라고 알려진 자연어 처리는 머신 러닝이 적용되고 실제 소프트웨어에서 사용된 가장 잘 알려진 분야 중 하나입니다. + +✅ 매일 사용하는 소프트웨어 중 일부에 NLP가 포함되어 있을 가능성이 있는 것을 생각해볼 수 있나요? 워드 프로세싱 프로그램이나 자주 사용하는 모바일 앱은 어떨까요? + +여러분은 다음을 배우게 됩니다: + +- **언어의 개념**. 언어가 어떻게 발전했는지와 주요 연구 분야에 대해 알아봅니다. +- **정의와 개념**. 컴퓨터가 텍스트를 처리하는 방법, 구문 분석, 문법, 명사와 동사를 식별하는 방법에 대한 정의와 개념을 배우게 됩니다. 이 강의에서는 몇 가지 코딩 작업이 포함되어 있으며, 이후 강의에서 코딩을 배우게 될 중요한 개념들이 소개됩니다. + +## 계산 언어학 + +계산 언어학은 수십 년 동안 컴퓨터가 언어를 작업하고, 이해하고, 번역하고, 심지어 소통할 수 있는 방법을 연구하는 분야입니다. 자연어 처리(NLP)는 컴퓨터가 '자연어', 즉 인간의 언어를 처리하는 방법에 초점을 맞춘 관련 분야입니다. + +### 예시 - 전화 음성 입력 + +전화로 타이핑 대신 음성을 입력하거나 가상 비서에게 질문을 한 적이 있다면, 여러분의 음성은 텍스트 형태로 변환된 후 여러분이 말한 언어에서 *구문 분석*됩니다. 감지된 키워드는 전화나 비서가 이해하고 실행할 수 있는 형식으로 처리됩니다. + +![이해](../../../../translated_images/comprehension.619708fc5959b0f6a24ebffba2ad7b0625391a476141df65b43b59de24e45c6f.ko.png) +> 실제 언어적 이해는 어렵습니다! 이미지 제공: [Jen Looper](https://twitter.com/jenlooper) + +### 이 기술은 어떻게 가능할까요? + +이 기술은 누군가가 이를 수행하는 컴퓨터 프로그램을 작성했기 때문에 가능합니다. 몇십 년 전, 일부 공상 과학 작가들은 사람들이 주로 컴퓨터와 대화하고 컴퓨터가 항상 그들이 의미하는 바를 정확히 이해할 것이라고 예측했습니다. 안타깝게도 이는 많은 사람들이 상상했던 것보다 더 어려운 문제로 밝혀졌으며, 오늘날에는 훨씬 더 잘 이해되는 문제이지만 문장의 의미를 이해하는 '완벽한' 자연어 처리를 달성하는 데는 여전히 상당한 어려움이 있습니다. 특히 유머를 이해하거나 문장에서 풍자와 같은 감정을 감지하는 것은 매우 어려운 문제입니다. + +이 시점에서 학교 수업에서 문장의 문법 부분을 배운 기억이 떠오를 수도 있습니다. 일부 국가에서는 학생들이 문법과 언어학을 전용 과목으로 배우지만, 많은 국가에서는 이러한 주제가 언어 학습의 일부로 포함됩니다. 이는 초등학교에서 첫 번째 언어를 배우는 과정(읽고 쓰는 법 배우기)과 중등학교 또는 고등학교에서 두 번째 언어를 배우는 과정에서 이루어질 수 있습니다. 명사와 동사 또는 부사와 형용사를 구분하는 데 전문가가 아니더라도 걱정하지 마세요! + +*단순 현재 시제*와 *현재 진행형*의 차이를 구분하는 데 어려움을 겪는다면, 여러분은 혼자가 아닙니다. 이는 많은 사람들에게, 심지어 모국어를 사용하는 사람들에게도 어려운 일입니다. 좋은 소식은 컴퓨터가 공식적인 규칙을 적용하는 데 매우 능숙하다는 것이며, 여러분은 문장을 인간처럼 *구문 분석*할 수 있는 코드를 작성하는 방법을 배우게 될 것입니다. 이후에 살펴볼 더 큰 도전은 문장의 *의미*와 *감정*을 이해하는 것입니다. + +## 사전 요구 사항 + +이 강의를 위해 주요 요구 사항은 이 강의의 언어를 읽고 이해할 수 있는 능력입니다. 수학 문제나 방정식을 풀 필요는 없습니다. 원래 저자가 이 강의를 영어로 작성했지만, 다른 언어로 번역되었을 수도 있으므로 번역본을 읽고 있을 가능성도 있습니다. 여러 언어의 문법 규칙을 비교하기 위해 다양한 언어가 사용된 예제가 있습니다. 이러한 예제는 번역되지 않지만, 설명 텍스트는 번역되므로 의미는 명확할 것입니다. + +코딩 작업을 위해 Python을 사용하며, 예제는 Python 3.8을 사용합니다. + +이 섹션에서 필요하고 사용할 내용은 다음과 같습니다: + +- **Python 3 이해**. Python 3 프로그래밍 언어 이해, 이 강의에서는 입력, 루프, 파일 읽기, 배열을 사용합니다. +- **Visual Studio Code + 확장 프로그램**. Visual Studio Code와 Python 확장 프로그램을 사용합니다. 원하는 Python IDE를 사용할 수도 있습니다. +- **TextBlob**. [TextBlob](https://github.com/sloria/TextBlob)은 Python용 간단한 텍스트 처리 라이브러리입니다. TextBlob 사이트의 지침에 따라 시스템에 설치하세요(아래에 표시된 대로 corpora도 설치하세요): + + ```bash + pip install -U textblob + python -m textblob.download_corpora + ``` + +> 💡 팁: VS Code 환경에서 직접 Python을 실행할 수 있습니다. 자세한 내용은 [문서](https://code.visualstudio.com/docs/languages/python?WT.mc_id=academic-77952-leestott)를 확인하세요. + +## 기계와 대화하기 + +컴퓨터가 인간의 언어를 이해하도록 만드는 시도의 역사는 수십 년 전으로 거슬러 올라가며, 자연어 처리를 고려한 초기 과학자 중 한 명은 *앨런 튜링*입니다. + +### '튜링 테스트' + +튜링은 1950년대에 *인공지능*을 연구하면서, 인간과 컴퓨터가 (타이핑된 대화로) 대화를 나누는 테스트를 제안했습니다. 이 테스트에서 인간은 자신이 대화하고 있는 상대가 인간인지 컴퓨터인지 확신할 수 없게 됩니다. + +만약 일정 시간 동안의 대화 후에 인간이 상대가 컴퓨터인지 아닌지를 판단할 수 없다면, 컴퓨터가 *생각*한다고 말할 수 있을까요? + +### 영감 - '모방 게임' + +이 아이디어는 *모방 게임*이라는 파티 게임에서 영감을 받았습니다. 이 게임에서 조사자는 방에 혼자 있고, 다른 방에 있는 두 사람 중 각각 남성과 여성의 성별을 결정해야 합니다. 조사자는 메모를 보낼 수 있으며, 작성된 답변이 신비한 사람의 성별을 드러내는 질문을 생각해야 합니다. 물론, 다른 방에 있는 플레이어들은 정직하게 답변하는 것처럼 보이면서도 조사자를 혼란스럽게 하거나 오도하려고 노력합니다. + +### 엘리자 개발 + +1960년대 MIT의 과학자인 *조셉 와이젠바움*은 [*엘리자*](https://wikipedia.org/wiki/ELIZA)라는 컴퓨터 '치료사'를 개발했습니다. 엘리자는 인간에게 질문을 하고 인간의 답변을 이해하는 것처럼 보였습니다. 그러나 엘리자는 문장을 구문 분석하고 특정 문법 구조와 키워드를 식별하여 합리적인 답변을 제공할 수 있었지만, 문장을 *이해*한다고 말할 수는 없었습니다. 예를 들어, 엘리자에게 "**나는** 슬프다"라는 형식의 문장이 주어지면, 문장의 시제를 변경하고 몇 가지 단어를 추가하여 "얼마나 오랫동안 **당신은** 슬펐나요"라는 답변을 생성할 수 있었습니다. + +이 답변은 엘리자가 문장을 이해하고 후속 질문을 하고 있는 것처럼 보이게 했지만, 실제로는 시제를 변경하고 몇 가지 단어를 추가한 것뿐이었습니다. 엘리자가 응답할 키워드를 식별할 수 없으면, 대신 여러 다른 문장에 적용될 수 있는 무작위 응답을 제공했습니다. 예를 들어, 사용자가 "**당신은** 자전거입니다"라고 작성하면, 엘리자는 "얼마나 오랫동안 **나는** 자전거였나요?"라고 응답할 수 있었으며, 더 합리적인 응답을 제공하지 못했습니다. + +[![엘리자와 대화하기](https://img.youtube.com/vi/RMK9AphfLco/0.jpg)](https://youtu.be/RMK9AphfLco "엘리자와 대화하기") + +> 🎥 위 이미지를 클릭하면 원래 엘리자 프로그램에 대한 비디오를 볼 수 있습니다. + +> 참고: [엘리자](https://cacm.acm.org/magazines/1966/1/13317-elizaa-computer-program-for-the-study-of-natural-language-communication-between-man-and-machine/abstract)의 원래 설명을 1966년에 발표된 ACM 계정으로 읽을 수 있습니다. 또는 [위키피디아](https://wikipedia.org/wiki/ELIZA)에서 엘리자에 대해 읽어보세요. + +## 연습 - 기본 대화형 봇 코딩하기 + +엘리자와 같은 대화형 봇은 사용자 입력을 유도하고 이해하고 지능적으로 응답하는 것처럼 보이는 프로그램입니다. 엘리자와 달리, 우리의 봇은 지능적인 대화를 하는 것처럼 보이게 하는 여러 규칙을 갖고 있지는 않을 것입니다. 대신, 우리의 봇은 단순한 대화에서 거의 모든 경우에 작동할 수 있는 무작위 응답을 통해 대화를 계속 이어가는 한 가지 능력만 가질 것입니다. + +### 계획 + +대화형 봇을 구축할 때의 단계: + +1. 사용자에게 봇과 상호작용하는 방법에 대한 지침을 출력합니다. +2. 루프를 시작합니다. + 1. 사용자 입력을 받습니다. + 2. 사용자가 종료를 요청했는지 확인하고, 요청했다면 종료합니다. + 3. 사용자 입력을 처리하고 응답을 결정합니다(이 경우 응답은 가능한 일반적인 응답 목록에서 무작위로 선택됩니다). + 4. 응답을 출력합니다. +3. 2단계로 다시 돌아갑니다. + +### 봇 만들기 + +이제 봇을 만들어봅시다. 몇 가지 문구를 정의하는 것으로 시작하겠습니다. + +1. 다음과 같은 무작위 응답을 사용하는 Python에서 직접 이 봇을 만들어보세요: + + ```python + random_responses = ["That is quite interesting, please tell me more.", + "I see. Do go on.", + "Why do you say that?", + "Funny weather we've been having, isn't it?", + "Let's change the subject.", + "Did you catch the game last night?"] + ``` + + 아래는 샘플 출력입니다(사용자 입력은 `>`로 시작하는 줄에 표시됩니다): + + ```output + Hello, I am Marvin, the simple robot. + You can end this conversation at any time by typing 'bye' + After typing each answer, press 'enter' + How are you today? + > I am good thanks + That is quite interesting, please tell me more. + > today I went for a walk + Did you catch the game last night? + > I did, but my team lost + Funny weather we've been having, isn't it? + > yes but I hope next week is better + Let's change the subject. + > ok, lets talk about music + Why do you say that? + > because I like music! + Why do you say that? + > bye + It was nice talking to you, goodbye! + ``` + + 작업에 대한 하나의 가능한 솔루션은 [여기](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/1-Introduction-to-NLP/solution/bot.py)에 있습니다. + + ✅ 멈추고 생각해보기 + + 1. 무작위 응답이 봇이 실제로 사용자를 이해한다고 생각하게 만들 수 있을까요? + 2. 봇이 더 효과적이 되기 위해 필요한 기능은 무엇일까요? + 3. 봇이 문장의 의미를 실제로 '이해'할 수 있다면, 대화에서 이전 문장의 의미를 '기억'해야 할까요? + +--- + +## 🚀도전 + +위의 "멈추고 생각해보기" 요소 중 하나를 선택하여 코드로 구현하거나 의사 코드로 종이에 솔루션을 작성해보세요. + +다음 강의에서는 자연어를 구문 분석하고 머신 러닝을 사용하는 여러 접근법에 대해 배우게 될 것입니다. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/32/) + +## 복습 및 자기 학습 + +아래 참고 자료를 살펴보며 추가 학습 기회를 가져보세요. + +### 참고 자료 + +1. Schubert, Lenhart, "Computational Linguistics", *The Stanford Encyclopedia of Philosophy* (Spring 2020 Edition), Edward N. Zalta (ed.), URL = . +2. Princeton University "About WordNet." [WordNet](https://wordnet.princeton.edu/). Princeton University. 2010. + +## 과제 + +[봇 검색하기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/1-Introduction-to-NLP/assignment.md b/translations/ko/6-NLP/1-Introduction-to-NLP/assignment.md new file mode 100644 index 000000000..c1f9ac0dd --- /dev/null +++ b/translations/ko/6-NLP/1-Introduction-to-NLP/assignment.md @@ -0,0 +1,25 @@ + +# 봇 찾기 + +## 지침 + +봇은 어디에나 있습니다. 여러분의 과제: 하나를 찾아서 채택하세요! 봇은 웹사이트, 은행 애플리케이션, 전화 등에서 찾을 수 있습니다. 예를 들어, 금융 서비스 회사에 조언이나 계좌 정보를 요청하기 위해 전화할 때 봇을 만날 수 있습니다. 봇을 분석하고 혼란스럽게 만들 수 있는지 확인하세요. 봇을 혼란스럽게 만들 수 있었다면, 왜 그런 일이 발생했다고 생각하는지 적어보세요. 여러분의 경험에 대해 짧은 글을 작성하세요. + +## 평가 기준 + +| 기준 | 우수 | 적절 | 개선 필요 | +| -------- | ------------------------------------------------------------------------------------------------------------- | ---------------------------------------- | --------------------- | +| | 봇의 추정 아키텍처를 설명하고 경험을 자세히 기술한 한 페이지 분량의 글 작성 | 글이 불완전하거나 충분히 조사되지 않음 | 글이 제출되지 않음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/2-Tasks/README.md b/translations/ko/6-NLP/2-Tasks/README.md new file mode 100644 index 000000000..b384642b9 --- /dev/null +++ b/translations/ko/6-NLP/2-Tasks/README.md @@ -0,0 +1,228 @@ + +# 자연어 처리의 일반적인 작업과 기술 + +대부분의 *자연어 처리* 작업에서는 처리할 텍스트를 분해하고, 분석하며, 결과를 저장하거나 규칙 및 데이터 세트와 교차 참조해야 합니다. 이러한 작업을 통해 프로그래머는 텍스트에서 _의미_, _의도_, 또는 단순히 _단어 빈도_를 도출할 수 있습니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/33/) + +텍스트를 처리하는 데 사용되는 일반적인 기술을 알아봅시다. 이러한 기술은 머신 러닝과 결합하여 대량의 텍스트를 효율적으로 분석할 수 있도록 도와줍니다. 그러나 ML을 이러한 작업에 적용하기 전에 NLP 전문가가 직면하는 문제를 이해해 봅시다. + +## NLP의 일반적인 작업 + +텍스트를 분석하는 방법에는 여러 가지가 있습니다. 수행할 수 있는 작업이 있으며, 이를 통해 텍스트를 이해하고 결론을 도출할 수 있습니다. 이러한 작업은 일반적으로 순차적으로 수행됩니다. + +### 토큰화 + +대부분의 NLP 알고리즘이 가장 먼저 해야 할 일은 텍스트를 토큰, 즉 단어로 분리하는 것입니다. 간단해 보이지만, 문장 부호와 다양한 언어의 단어 및 문장 구분자를 고려해야 하므로 까다로울 수 있습니다. 구분을 결정하기 위해 다양한 방법을 사용해야 할 수도 있습니다. + +![토큰화](../../../../translated_images/tokenization.1641a160c66cd2d93d4524e8114e93158a9ce0eba3ecf117bae318e8a6ad3487.ko.png) +> **Pride and Prejudice**의 문장을 토큰화하는 과정. 인포그래픽: [Jen Looper](https://twitter.com/jenlooper) + +### 임베딩 + +[단어 임베딩](https://wikipedia.org/wiki/Word_embedding)은 텍스트 데이터를 숫자로 변환하는 방법입니다. 임베딩은 비슷한 의미를 가진 단어 또는 함께 사용되는 단어들이 서로 가까이 모이도록 수행됩니다. + +![단어 임베딩](../../../../translated_images/embedding.2cf8953c4b3101d188c2f61a5de5b6f53caaa5ad4ed99236d42bc3b6bd6a1fe2.ko.png) +> "I have the highest respect for your nerves, they are my old friends." - **Pride and Prejudice**의 문장에 대한 단어 임베딩. 인포그래픽: [Jen Looper](https://twitter.com/jenlooper) + +✅ [이 흥미로운 도구](https://projector.tensorflow.org/)를 사용하여 단어 임베딩을 실험해 보세요. 단어를 클릭하면 'toy'가 'disney', 'lego', 'playstation', 'console'과 같은 유사 단어 클러스터와 연결되는 것을 볼 수 있습니다. + +### 구문 분석 및 품사 태깅 + +토큰화된 각 단어는 명사, 동사, 형용사와 같은 품사로 태깅될 수 있습니다. 예를 들어, `the quick red fox jumped over the lazy brown dog`라는 문장은 fox = 명사, jumped = 동사로 품사 태깅될 수 있습니다. + +![구문 분석](../../../../translated_images/parse.d0c5bbe1106eae8fe7d60a183cd1736c8b6cec907f38000366535f84f3036101.ko.png) + +> **Pride and Prejudice**의 문장을 구문 분석하는 과정. 인포그래픽: [Jen Looper](https://twitter.com/jenlooper) + +구문 분석은 문장에서 어떤 단어들이 서로 관련되어 있는지 인식하는 과정입니다. 예를 들어, `the quick red fox jumped`는 형용사-명사-동사 시퀀스로 `lazy brown dog` 시퀀스와는 별개입니다. + +### 단어 및 구문 빈도 + +대량의 텍스트를 분석할 때 유용한 절차는 관심 있는 모든 단어 또는 구문의 사전을 작성하고 그것이 얼마나 자주 나타나는지 기록하는 것입니다. 예를 들어, `the quick red fox jumped over the lazy brown dog`라는 문장에서 `the`의 단어 빈도는 2입니다. + +다음은 단어 빈도를 계산하는 예제 텍스트입니다. 러디어드 키플링의 시 **The Winners**는 다음 구절을 포함합니다: + +```output +What the moral? Who rides may read. +When the night is thick and the tracks are blind +A friend at a pinch is a friend, indeed, +But a fool to wait for the laggard behind. +Down to Gehenna or up to the Throne, +He travels the fastest who travels alone. +``` + +구문 빈도는 필요에 따라 대소문자를 구분하거나 구분하지 않을 수 있습니다. 예를 들어, `a friend`는 빈도가 2이고, `the`는 빈도가 6이며, `travels`는 빈도가 2입니다. + +### N-그램 + +텍스트는 단일 단어(유니그램), 두 단어(바이그램), 세 단어(트라이그램) 또는 임의의 단어 수(n-그램)로 구성된 시퀀스로 분할될 수 있습니다. + +예를 들어, `the quick red fox jumped over the lazy brown dog`를 n-그램 점수 2로 나누면 다음과 같은 n-그램이 생성됩니다: + +1. the quick +2. quick red +3. red fox +4. fox jumped +5. jumped over +6. over the +7. the lazy +8. lazy brown +9. brown dog + +이를 문장 위에 슬라이딩 박스로 시각화하면 더 쉽게 이해할 수 있습니다. 다음은 3단어 n-그램의 예입니다. 각 문장에서 n-그램은 굵게 표시됩니다: + +1. **the quick red** fox jumped over the lazy brown dog +2. the **quick red fox** jumped over the lazy brown dog +3. the quick **red fox jumped** over the lazy brown dog +4. the quick red **fox jumped over** the lazy brown dog +5. the quick red fox **jumped over the** lazy brown dog +6. the quick red fox jumped **over the lazy** brown dog +7. the quick red fox jumped over **the lazy brown** dog +8. the quick red fox jumped over the **lazy brown dog** + +![n-그램 슬라이딩 윈도우](../../../../6-NLP/2-Tasks/images/n-grams.gif) + +> N-그램 값 3: 인포그래픽: [Jen Looper](https://twitter.com/jenlooper) + +### 명사구 추출 + +대부분의 문장에는 주어 또는 목적어 역할을 하는 명사가 있습니다. 영어에서는 종종 'a', 'an', 'the'가 앞에 오는 것으로 식별할 수 있습니다. 문장의 의미를 이해하려고 할 때 '명사구를 추출'하는 것은 NLP에서 일반적인 작업입니다. + +✅ "I cannot fix on the hour, or the spot, or the look or the words, which laid the foundation. It is too long ago. I was in the middle before I knew that I had begun."라는 문장에서 명사구를 식별할 수 있나요? + +`the quick red fox jumped over the lazy brown dog`라는 문장에는 **quick red fox**와 **lazy brown dog**라는 두 개의 명사구가 있습니다. + +### 감정 분석 + +문장이나 텍스트는 *긍정적*인지 *부정적*인지 감정을 분석할 수 있습니다. 감정은 *극성*과 *객관성/주관성*으로 측정됩니다. 극성은 -1.0에서 1.0(부정적에서 긍정적)까지, 객관성은 0.0에서 1.0(가장 객관적에서 가장 주관적)까지 측정됩니다. + +✅ 나중에 머신 러닝을 사용하여 감정을 결정하는 다양한 방법을 배우겠지만, 한 가지 방법은 인간 전문가가 긍정적 또는 부정적으로 분류한 단어와 구문 목록을 사용하여 텍스트에 모델을 적용하고 극성 점수를 계산하는 것입니다. 이 방법이 어떤 상황에서는 잘 작동하고 다른 상황에서는 덜 작동하는 이유를 이해할 수 있나요? + +### 굴절 + +굴절은 단어를 단수형 또는 복수형으로 변환할 수 있도록 합니다. + +### 어간 추출 + +*어간*은 단어 집합의 기본 또는 중심 단어입니다. 예를 들어, *flew*, *flies*, *flying*의 어간은 동사 *fly*입니다. + +NLP 연구자에게 유용한 데이터베이스도 있습니다. 특히: + +### WordNet + +[WordNet](https://wordnet.princeton.edu/)은 다양한 언어의 모든 단어에 대한 동의어, 반의어 및 기타 세부 정보를 포함한 데이터베이스입니다. 번역, 맞춤법 검사기 또는 언어 도구를 구축할 때 매우 유용합니다. + +## NLP 라이브러리 + +다행히도 이러한 기술을 직접 구축할 필요는 없습니다. 자연어 처리나 머신 러닝에 전문적이지 않은 개발자도 접근할 수 있도록 훌륭한 Python 라이브러리가 제공됩니다. 다음 레슨에서는 이러한 라이브러리의 더 많은 예제를 다루겠지만, 여기서는 다음 작업에 도움이 되는 몇 가지 유용한 예제를 배웁니다. + +### 연습 - `TextBlob` 라이브러리 사용 + +TextBlob이라는 라이브러리를 사용해 봅시다. 이 라이브러리는 이러한 유형의 작업을 처리하는 데 유용한 API를 포함하고 있습니다. TextBlob은 "[NLTK](https://nltk.org)와 [pattern](https://github.com/clips/pattern)의 거대한 어깨 위에 서 있으며, 두 라이브러리와 잘 호환됩니다." API에 상당한 양의 머신 러닝이 포함되어 있습니다. + +> 참고: TextBlob에 대한 유용한 [Quick Start](https://textblob.readthedocs.io/en/dev/quickstart.html#quickstart) 가이드가 제공되며, 경험 많은 Python 개발자에게 추천됩니다. + +명사구를 식별하려고 할 때 TextBlob은 명사구를 찾기 위한 여러 추출 옵션을 제공합니다. + +1. `ConllExtractor`를 살펴보세요. + + ```python + from textblob import TextBlob + from textblob.np_extractors import ConllExtractor + # import and create a Conll extractor to use later + extractor = ConllExtractor() + + # later when you need a noun phrase extractor: + user_input = input("> ") + user_input_blob = TextBlob(user_input, np_extractor=extractor) # note non-default extractor specified + np = user_input_blob.noun_phrases + ``` + + > 여기서 무슨 일이 일어나고 있나요? [ConllExtractor](https://textblob.readthedocs.io/en/dev/api_reference.html?highlight=Conll#textblob.en.np_extractors.ConllExtractor)는 "ConLL-2000 학습 코퍼스를 사용하여 청크 구문 분석으로 학습된 명사구 추출기"입니다. ConLL-2000은 2000년 Computational Natural Language Learning 컨퍼런스를 의미합니다. 매년 컨퍼런스는 어려운 NLP 문제를 해결하기 위한 워크숍을 개최했으며, 2000년에는 명사 청킹이 주제였습니다. 모델은 Wall Street Journal의 "섹션 15-18을 학습 데이터(211727 토큰)로, 섹션 20을 테스트 데이터(47377 토큰)로 사용하여" 학습되었습니다. 사용된 절차는 [여기](https://www.clips.uantwerpen.be/conll2000/chunking/)에서, 결과는 [여기](https://ifarm.nl/erikt/research/np-chunking.html)에서 확인할 수 있습니다. + +### 챌린지 - NLP로 봇 개선하기 + +이전 레슨에서 매우 간단한 Q&A 봇을 만들었습니다. 이제 입력을 감정 분석하여 감정에 맞는 응답을 출력함으로써 Marvin을 조금 더 공감할 수 있도록 만들어 봅시다. 또한 `noun_phrase`를 식별하고 이에 대해 질문해야 합니다. + +더 나은 대화형 봇을 구축할 때의 단계: + +1. 사용자에게 봇과 상호작용하는 방법에 대한 지침 출력 +2. 루프 시작 + 1. 사용자 입력 수락 + 2. 사용자가 종료를 요청하면 종료 + 3. 사용자 입력을 처리하고 적절한 감정 응답 결정 + 4. 감정에서 명사구가 감지되면 복수형으로 변환하고 해당 주제에 대해 추가 입력 요청 + 5. 응답 출력 +3. 2단계로 다시 루프 + +다음은 TextBlob을 사용하여 감정을 결정하는 코드 스니펫입니다. 감정 응답에는 네 가지 *그라디언트*만 있습니다(원한다면 더 추가할 수도 있습니다): + +```python +if user_input_blob.polarity <= -0.5: + response = "Oh dear, that sounds bad. " +elif user_input_blob.polarity <= 0: + response = "Hmm, that's not great. " +elif user_input_blob.polarity <= 0.5: + response = "Well, that sounds positive. " +elif user_input_blob.polarity <= 1: + response = "Wow, that sounds great. " +``` + +다음은 샘플 출력입니다(사용자 입력은 >로 시작하는 줄에 표시됩니다): + +```output +Hello, I am Marvin, the friendly robot. +You can end this conversation at any time by typing 'bye' +After typing each answer, press 'enter' +How are you today? +> I am ok +Well, that sounds positive. Can you tell me more? +> I went for a walk and saw a lovely cat +Well, that sounds positive. Can you tell me more about lovely cats? +> cats are the best. But I also have a cool dog +Wow, that sounds great. Can you tell me more about cool dogs? +> I have an old hounddog but he is sick +Hmm, that's not great. Can you tell me more about old hounddogs? +> bye +It was nice talking to you, goodbye! +``` + +이 작업에 대한 가능한 솔루션은 [여기](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/2-Tasks/solution/bot.py)에 있습니다. + +✅ 지식 점검 + +1. 공감하는 응답이 봇이 실제로 사용자를 이해한다고 '속일' 수 있다고 생각하나요? +2. 명사구를 식별하는 것이 봇을 더 '믿을 수 있게' 만들까요? +3. 문장에서 '명사구'를 추출하는 것이 왜 유용할까요? + +--- + +이전 지식 점검에서 봇을 구현하고 친구에게 테스트해 보세요. 친구를 속일 수 있나요? 봇을 더 '믿을 수 있게' 만들 수 있나요? + +## 🚀챌린지 + +이전 지식 점검에서 작업을 선택하여 구현해 보세요. 봇을 친구에게 테스트해 보세요. 친구를 속일 수 있나요? 봇을 더 '믿을 수 있게' 만들 수 있나요? + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/34/) + +## 복습 및 자기 학습 + +다음 몇 가지 레슨에서는 감정 분석에 대해 더 배울 것입니다. [KDNuggets](https://www.kdnuggets.com/tag/nlp)와 같은 기사에서 이 흥미로운 기술을 연구해 보세요. + +## 과제 + +[봇이 대답하도록 만들기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/2-Tasks/assignment.md b/translations/ko/6-NLP/2-Tasks/assignment.md new file mode 100644 index 000000000..d65dc432c --- /dev/null +++ b/translations/ko/6-NLP/2-Tasks/assignment.md @@ -0,0 +1,25 @@ + +# 봇에게 대답하게 만들기 + +## 지침 + +지난 몇 강의에서, 당신은 기본적인 채팅 봇을 프로그래밍했습니다. 이 봇은 'bye'라고 말할 때까지 랜덤한 답변을 제공합니다. 이제 답변을 조금 덜 랜덤하게 만들고, 'why'나 'how' 같은 특정 단어를 말했을 때 답변을 트리거하도록 만들어 보세요. 봇을 확장하면서 이러한 작업을 덜 수동적으로 만드는 방법으로 머신 러닝이 어떻게 활용될 수 있을지 생각해 보세요. NLTK나 TextBlob 라이브러리를 사용하여 작업을 더 쉽게 할 수 있습니다. + +## 평가 기준 + +| 기준 | 우수한 경우 | 적절한 경우 | 개선이 필요한 경우 | +| --------- | --------------------------------------------- | ------------------------------------------------ | ----------------------- | +| | 새로운 bot.py 파일이 제시되고 문서화됨 | 새로운 봇 파일이 제시되었지만 버그가 있음 | 파일이 제시되지 않음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/3-Translation-Sentiment/README.md b/translations/ko/6-NLP/3-Translation-Sentiment/README.md new file mode 100644 index 000000000..6ea44554b --- /dev/null +++ b/translations/ko/6-NLP/3-Translation-Sentiment/README.md @@ -0,0 +1,200 @@ + +# 기계 학습을 활용한 번역 및 감정 분석 + +이전 강의에서는 `TextBlob` 라이브러리를 사용하여 기본적인 NLP 작업(예: 명사구 추출)을 수행하는 간단한 봇을 만드는 방법을 배웠습니다. 컴퓨터 언어학에서 또 다른 중요한 과제는 문장을 한 언어에서 다른 언어로 정확하게 _번역_하는 것입니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/35/) + +번역은 수천 개의 언어가 존재하고 각 언어마다 문법 규칙이 매우 다를 수 있다는 점에서 매우 어려운 문제입니다. 한 가지 접근 방식은 영어와 같은 한 언어의 문법 규칙을 언어에 의존하지 않는 구조로 변환한 다음, 이를 다시 다른 언어로 변환하는 것입니다. 이 접근 방식은 다음 단계를 포함합니다: + +1. **식별**. 입력 언어의 단어를 명사, 동사 등으로 태깅합니다. +2. **번역 생성**. 대상 언어 형식으로 각 단어를 직접 번역합니다. + +### 예문: 영어에서 아일랜드어로 + +'영어'에서 문장 _I feel happy_는 다음과 같은 순서로 세 단어로 구성됩니다: + +- **주어** (I) +- **동사** (feel) +- **형용사** (happy) + +하지만 '아일랜드어'에서는 같은 문장이 매우 다른 문법 구조를 가집니다. "*happy*"나 "*sad*"와 같은 감정은 *나에게 있다*는 방식으로 표현됩니다. + +영어 문장 `I feel happy`는 아일랜드어로 `Tá athas orm`입니다. 이를 *직역*하면 `Happy is upon me`가 됩니다. + +아일랜드어 화자가 영어로 번역할 때는 `Happy is upon me`가 아니라 `I feel happy`라고 말합니다. 이는 단어와 문장 구조가 다르더라도 문장의 의미를 이해하기 때문입니다. + +아일랜드어 문장의 공식적인 순서는 다음과 같습니다: + +- **동사** (Tá 또는 is) +- **형용사** (athas, 또는 happy) +- **주어** (orm, 또는 upon me) + +## 번역 + +단순한 번역 프로그램은 문장 구조를 무시하고 단어만 번역할 수 있습니다. + +✅ 성인이 되어 두 번째(또는 세 번째 이상의) 언어를 배운 적이 있다면, 처음에는 모국어로 생각한 후 개념을 단어 단위로 머릿속에서 번역하고, 그 번역을 말로 표현했을 가능성이 높습니다. 이는 단순한 번역 컴퓨터 프로그램이 하는 것과 비슷합니다. 유창함을 얻으려면 이 단계를 넘어서는 것이 중요합니다! + +단순한 번역은 종종 잘못된(때로는 웃긴) 번역을 초래합니다. 예를 들어, `I feel happy`를 아일랜드어로 직역하면 `Mise bhraitheann athas`가 됩니다. 이는 문자 그대로 `me feel happy`를 의미하며, 올바른 아일랜드어 문장이 아닙니다. 영어와 아일랜드어는 서로 가까운 섬에서 사용되는 언어임에도 불구하고, 문법 구조가 매우 다릅니다. + +> 아일랜드어 언어 전통에 대한 비디오를 [여기](https://www.youtube.com/watch?v=mRIaLSdRMMs)에서 시청할 수 있습니다. + +### 기계 학습 접근법 + +지금까지 자연어 처리를 위한 공식 규칙 접근법에 대해 배웠습니다. 또 다른 접근법은 단어의 의미를 무시하고 _대신 기계 학습을 사용하여 패턴을 감지_하는 것입니다. 원본 언어와 대상 언어로 된 많은 텍스트(코퍼스)가 있다면, 이 방법은 번역에 효과적일 수 있습니다. + +예를 들어, 1813년에 제인 오스틴이 쓴 유명한 영어 소설 *오만과 편견*을 생각해 봅시다. 영어 원본과 *프랑스어*로 된 인간 번역본을 참고하면, 한 언어에서 다른 언어로 _관용적으로_ 번역된 구문을 감지할 수 있습니다. 곧 이를 실습해 볼 것입니다. + +예를 들어, 영어 문장 `I have no money`를 프랑스어로 직역하면 `Je n'ai pas de monnaie`가 될 수 있습니다. "Monnaie"는 프랑스어에서 '거스름돈'을 의미하는 'false cognate'로, 'money'와 동의어가 아닙니다. 인간 번역자가 더 나은 번역을 한다면 `Je n'ai pas d'argent`가 될 것입니다. 이는 '거스름돈'이 아니라 '돈이 없다'는 의미를 더 잘 전달합니다. + +![monnaie](../../../../translated_images/monnaie.606c5fa8369d5c3b3031ef0713e2069485c87985dd475cd9056bdf4c76c1f4b8.ko.png) + +> 이미지 제공: [Jen Looper](https://twitter.com/jenlooper) + +충분한 인간 번역본을 기반으로 모델을 구축하면, ML 모델은 이전에 전문가가 번역한 텍스트에서 공통 패턴을 식별하여 번역 정확도를 향상시킬 수 있습니다. + +### 실습 - 번역 + +`TextBlob`을 사용하여 문장을 번역할 수 있습니다. **오만과 편견**의 유명한 첫 문장을 시도해 보세요: + +```python +from textblob import TextBlob + +blob = TextBlob( + "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife!" +) +print(blob.translate(to="fr")) + +``` + +`TextBlob`은 번역을 꽤 잘 수행합니다: "C'est une vérité universellement reconnue, qu'un homme célibataire en possession d'une bonne fortune doit avoir besoin d'une femme!". + +1932년 V. Leconte와 Ch. Pressoir가 번역한 프랑스어 번역본보다 TextBlob의 번역이 훨씬 정확하다고 주장할 수 있습니다: + +"C'est une vérité universelle qu'un célibataire pourvu d'une belle fortune doit avoir envie de se marier, et, si peu que l'on sache de son sentiment à cet egard, lorsqu'il arrive dans une nouvelle résidence, cette idée est si bien fixée dans l'esprit de ses voisins qu'ils le considèrent sur-le-champ comme la propriété légitime de l'une ou l'autre de leurs filles." + +이 경우, ML에 기반한 번역이 원작자의 의도를 명확히 하기 위해 불필요하게 단어를 추가한 인간 번역자보다 더 나은 결과를 제공합니다. + +> TextBlob이 번역을 잘하는 이유는 무엇일까요? TextBlob은 Google 번역을 사용하며, 이는 수백만 개의 구문을 분석하여 작업에 가장 적합한 문자열을 예측할 수 있는 정교한 AI입니다. 여기에는 수작업이 전혀 포함되지 않으며, `blob.translate`를 사용하려면 인터넷 연결이 필요합니다. + +✅ 몇 가지 문장을 더 시도해 보세요. ML 번역과 인간 번역 중 어느 것이 더 나은가요? 어떤 경우에 더 나은가요? + +## 감정 분석 + +기계 학습이 매우 효과적으로 작동할 수 있는 또 다른 영역은 감정 분석입니다. 비-ML 접근법으로 감정을 분석하려면 '긍정적' 또는 '부정적'인 단어와 구문을 식별합니다. 그런 다음, 새로운 텍스트를 주어진 경우, 긍정적, 부정적, 중립적 단어의 총 값을 계산하여 전체 감정을 식별합니다. + +이 접근법은 쉽게 속을 수 있습니다. 예를 들어, Marvin 과제에서 본 것처럼 `Great, that was a wonderful waste of time, I'm glad we are lost on this dark road`라는 문장은 비꼬는 부정적 감정의 문장이지만, 간단한 알고리즘은 'great', 'wonderful', 'glad'를 긍정적으로, 'waste', 'lost', 'dark'를 부정적으로 감지합니다. 상반된 단어들로 인해 전체 감정이 왜곡됩니다. + +✅ 인간 화자로서 우리가 비꼬는 표현을 어떻게 전달하는지 잠시 생각해 보세요. 억양이 큰 역할을 합니다. "Well, that film was awesome"이라는 문장을 다양한 방식으로 말해 보며, 목소리가 의미를 어떻게 전달하는지 알아보세요. + +### ML 접근법 + +ML 접근법은 부정적, 긍정적 텍스트(예: 트윗, 영화 리뷰 등)를 수동으로 수집하는 것입니다. 인간이 점수와 의견을 제공한 데이터를 기반으로 NLP 기술을 적용하여 패턴을 도출합니다(예: 긍정적 영화 리뷰에는 'Oscar worthy'라는 표현이 부정적 리뷰보다 더 자주 등장). + +> ⚖️ **예시**: 정치인의 사무실에서 새로운 법안에 대한 찬반 의견을 담은 이메일을 분류하는 작업을 맡았다고 가정해 봅시다. 이메일이 많다면, 모든 이메일을 읽는 것이 부담스러울 수 있습니다. 봇이 이메일을 읽고 찬성 또는 반대 쪽으로 분류해 준다면 얼마나 좋을까요? +> +> 이를 달성하는 한 가지 방법은 기계 학습을 사용하는 것입니다. 모델을 일부 찬성 이메일과 일부 반대 이메일로 훈련시킵니다. 모델은 특정 단어와 패턴이 찬성 또는 반대 이메일에 더 자주 나타나는 경향이 있음을 학습합니다. 그런 다음, 훈련에 사용되지 않은 이메일로 테스트하여 모델이 동일한 결론에 도달하는지 확인합니다. 모델의 정확성에 만족하면, 이후 이메일을 읽지 않고도 처리할 수 있습니다. + +✅ 이전 강의에서 사용한 프로세스와 유사한 점이 있나요? + +## 실습 - 감정 문장 + +감정은 -1에서 1까지의 *극성*으로 측정됩니다. -1은 가장 부정적인 감정, 1은 가장 긍정적인 감정을 나타냅니다. 감정은 또한 0(객관적)에서 1(주관적)까지의 점수로 측정됩니다. + +제인 오스틴의 *오만과 편견*을 다시 살펴보세요. 텍스트는 [Project Gutenberg](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm)에서 확인할 수 있습니다. 아래 샘플은 책의 첫 문장과 마지막 문장의 감정을 분석하고, 감정 극성과 주관성/객관성 점수를 표시하는 짧은 프로그램을 보여줍니다. + +다음 작업에서는 `TextBlob` 라이브러리를 사용하여 `sentiment`를 결정하세요(직접 감정 계산기를 작성할 필요는 없습니다). + +```python +from textblob import TextBlob + +quote1 = """It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.""" + +quote2 = """Darcy, as well as Elizabeth, really loved them; and they were both ever sensible of the warmest gratitude towards the persons who, by bringing her into Derbyshire, had been the means of uniting them.""" + +sentiment1 = TextBlob(quote1).sentiment +sentiment2 = TextBlob(quote2).sentiment + +print(quote1 + " has a sentiment of " + str(sentiment1)) +print(quote2 + " has a sentiment of " + str(sentiment2)) +``` + +다음과 같은 출력이 표시됩니다: + +```output +It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want # of a wife. has a sentiment of Sentiment(polarity=0.20952380952380953, subjectivity=0.27142857142857146) + +Darcy, as well as Elizabeth, really loved them; and they were + both ever sensible of the warmest gratitude towards the persons + who, by bringing her into Derbyshire, had been the means of + uniting them. has a sentiment of Sentiment(polarity=0.7, subjectivity=0.8) +``` + +## 도전 과제 - 감정 극성 확인 + +*오만과 편견*에서 절대적으로 긍정적인 문장이 절대적으로 부정적인 문장보다 더 많은지 감정 극성을 사용하여 확인하세요. 이 작업에서는 극성 점수가 1 또는 -1인 경우를 절대적으로 긍정적이거나 부정적이라고 가정합니다. + +**단계:** + +1. [오만과 편견](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm)의 사본을 .txt 파일로 다운로드합니다. 파일 시작과 끝의 메타데이터를 제거하고 원본 텍스트만 남깁니다. +2. Python에서 파일을 열고 내용을 문자열로 추출합니다. +3. 책 문자열을 사용하여 TextBlob을 생성합니다. +4. 책의 각 문장을 루프에서 분석합니다. + 1. 극성이 1 또는 -1인 경우, 문장을 긍정적 또는 부정적 메시지의 배열 또는 목록에 저장합니다. +5. 마지막으로, 긍정적 문장과 부정적 문장을 각각 출력하고 개수를 표시합니다. + +다음은 샘플 [솔루션](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb)입니다. + +✅ 지식 점검 + +1. 감정은 문장에서 사용된 단어를 기반으로 하지만, 코드가 단어를 *이해*하나요? +2. 감정 극성이 정확하다고 생각하나요? 즉, 점수에 *동의*하나요? + 1. 특히, 다음 문장의 절대 **긍정적** 극성에 동의하나요? + * “What an excellent father you have, girls!” said she, when the door was shut. + * “Your examination of Mr. Darcy is over, I presume,” said Miss Bingley; “and pray what is the result?” “I am perfectly convinced by it that Mr. Darcy has no defect. + * How wonderfully these sort of things occur! + * I have the greatest dislike in the world to that sort of thing. + * Charlotte is an excellent manager, I dare say. + * “This is delightful indeed! + * I am so happy! + * Your idea of the ponies is delightful. + 2. 다음 세 문장은 절대적으로 긍정적인 감정으로 점수가 매겨졌지만, 자세히 읽어보면 긍정적인 문장이 아닙니다. 감정 분석이 왜 긍정적이라고 판단했을까요? + * Happy shall I be, when his stay at Netherfield is over!” “I wish I could say anything to comfort you,” replied Elizabeth; “but it is wholly out of my power. + * If I could but see you as happy! + * Our distress, my dear Lizzy, is very great. + 3. 다음 문장의 절대 **부정적** 극성에 동의하나요? + - Everybody is disgusted with his pride. + - “I should like to know how he behaves among strangers.” “You shall hear then—but prepare yourself for something very dreadful. + - The pause was to Elizabeth’s feelings dreadful. + - It would be dreadful! + +✅ 제인 오스틴의 팬이라면 그녀가 종종 책을 통해 영국 섭정 시대의 더 우스꽝스러운 측면을 비판한다는 것을 이해할 것입니다. *오만과 편견*의 주인공 엘리자베스 베넷은 예리한 사회 관찰자(작가와 마찬가지)이며, 그녀의 언어는 종종 매우 미묘합니다. 심지어 이야기의 사랑스러운 상대인 Mr. Darcy조차도 엘리자베스의 장난스럽고 놀리는 언어 사용을 언급합니다: "나는 당신이 가끔 자신의 의견이 아닌 의견을 즐겁게 표현하는 것을 좋아한다는 것을 알 만큼 충분히 오래 당신을 알고 있습니다." + +--- + +## 🚀도전 과제 + +사용자 입력에서 다른 특징을 추출하여 Marvin을 더 개선할 수 있나요? + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/36/) + +## 복습 및 자기 학습 +텍스트에서 감정을 추출하는 방법은 여러 가지가 있습니다. 이 기술을 활용할 수 있는 비즈니스 응용 프로그램을 생각해 보세요. 또한, 이 기술이 어떻게 잘못될 수 있는지에 대해서도 고민해 보세요. 감정을 분석하는 정교한 기업용 시스템에 대해 더 알아보세요. 예를 들어 [Azure Text Analysis](https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/how-tos/text-analytics-how-to-sentiment-analysis?tabs=version-3-1?WT.mc_id=academic-77952-leestott)와 같은 시스템이 있습니다. 위의 '오만과 편견' 문장 중 일부를 테스트해 보고, 미묘한 뉘앙스를 감지할 수 있는지 확인해 보세요. + +## 과제 + +[Poetic license](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/3-Translation-Sentiment/assignment.md b/translations/ko/6-NLP/3-Translation-Sentiment/assignment.md new file mode 100644 index 000000000..46c8b6ede --- /dev/null +++ b/translations/ko/6-NLP/3-Translation-Sentiment/assignment.md @@ -0,0 +1,25 @@ + +# 시적 허용 + +## 지침 + +[이 노트북](https://www.kaggle.com/jenlooper/emily-dickinson-word-frequency)에서는 Azure 텍스트 분석을 사용하여 감정을 분석한 500편 이상의 에밀리 디킨슨 시를 확인할 수 있습니다. 이 데이터셋을 사용하여 수업에서 설명한 기법을 활용해 분석하세요. 시의 제안된 감정이 Azure 서비스의 더 정교한 판단과 일치하나요? 그렇지 않다면, 그 이유는 무엇이라고 생각하나요? 놀라운 점이 있나요? + +## 평가 기준 + +| 기준 | 우수한 사례 | 적절한 사례 | 개선이 필요함 | +| --------- | ------------------------------------------------------------------------ | ---------------------------------------------------- | ----------------------- | +| | 저자의 샘플 결과에 대한 탄탄한 분석이 포함된 노트북이 제시됨 | 노트북이 불완전하거나 분석을 수행하지 않음 | 노트북이 제시되지 않음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생할 수 있는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/3-Translation-Sentiment/solution/Julia/README.md b/translations/ko/6-NLP/3-Translation-Sentiment/solution/Julia/README.md new file mode 100644 index 000000000..85d8d16d3 --- /dev/null +++ b/translations/ko/6-NLP/3-Translation-Sentiment/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생할 수 있는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/3-Translation-Sentiment/solution/R/README.md b/translations/ko/6-NLP/3-Translation-Sentiment/solution/R/README.md new file mode 100644 index 000000000..7d5a3df68 --- /dev/null +++ b/translations/ko/6-NLP/3-Translation-Sentiment/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb b/translations/ko/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb new file mode 100644 index 000000000..c14da8676 --- /dev/null +++ b/translations/ko/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb @@ -0,0 +1,100 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "27de2abc0235ebd22080fc8f1107454d", + "translation_date": "2025-09-04T03:09:41+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from textblob import TextBlob\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# You should download the book text, clean it, and import it here\n", + "with open(\"pride.txt\", encoding=\"utf8\") as f:\n", + " file_contents = f.read()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "book_pride = TextBlob(file_contents)\n", + "positive_sentiment_sentences = []\n", + "negative_sentiment_sentences = []" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for sentence in book_pride.sentences:\n", + " if sentence.sentiment.polarity == 1:\n", + " positive_sentiment_sentences.append(sentence)\n", + " if sentence.sentiment.polarity == -1:\n", + " negative_sentiment_sentences.append(sentence)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n", + "for sentence in positive_sentiment_sentences:\n", + " print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n", + "for sentence in negative_sentiment_sentences:\n", + " print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/6-NLP/4-Hotel-Reviews-1/README.md b/translations/ko/6-NLP/4-Hotel-Reviews-1/README.md new file mode 100644 index 000000000..0fa7f95bc --- /dev/null +++ b/translations/ko/6-NLP/4-Hotel-Reviews-1/README.md @@ -0,0 +1,416 @@ + +# 호텔 리뷰를 활용한 감정 분석 - 데이터 처리 + +이 섹션에서는 이전 강의에서 배운 기술을 활용하여 대규모 데이터셋에 대한 탐색적 데이터 분석을 수행합니다. 다양한 열의 유용성을 충분히 이해한 후, 다음을 배우게 됩니다: + +- 불필요한 열을 제거하는 방법 +- 기존 열을 기반으로 새로운 데이터를 계산하는 방법 +- 최종 과제에서 사용할 결과 데이터셋을 저장하는 방법 + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/37/) + +### 소개 + +지금까지 텍스트 데이터가 숫자 데이터와는 매우 다르다는 점을 배웠습니다. 사람이 작성하거나 말한 텍스트는 패턴, 빈도, 감정, 의미를 분석할 수 있습니다. 이번 강의에서는 실제 데이터셋과 실제 과제를 다룹니다: **[유럽의 515K 호텔 리뷰 데이터](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)**. 이 데이터는 [CC0: 퍼블릭 도메인 라이선스](https://creativecommons.org/publicdomain/zero/1.0/)를 포함하며, Booking.com에서 공개 소스를 통해 수집되었습니다. 데이터셋의 제작자는 Jiashen Liu입니다. + +### 준비 사항 + +다음이 필요합니다: + +* Python 3로 실행 가능한 .ipynb 노트북 +* pandas +* NLTK, [로컬에 설치 필요](https://www.nltk.org/install.html) +* Kaggle에서 제공되는 데이터셋 [유럽의 515K 호텔 리뷰 데이터](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe). 압축 해제 시 약 230MB입니다. 이 NLP 강의와 관련된 루트 `/data` 폴더에 다운로드하세요. + +## 탐색적 데이터 분석 + +이번 과제에서는 감정 분석과 게스트 리뷰 점수를 활용하여 호텔 추천 봇을 구축한다고 가정합니다. 사용하게 될 데이터셋에는 6개 도시의 1493개 호텔에 대한 리뷰가 포함되어 있습니다. + +Python, 호텔 리뷰 데이터셋, NLTK의 감정 분석을 사용하여 다음을 알아낼 수 있습니다: + +* 리뷰에서 가장 자주 사용되는 단어와 구문은 무엇인가요? +* 호텔을 설명하는 공식 *태그*가 리뷰 점수와 상관관계가 있나요? (예: 특정 호텔에 대해 *어린 자녀를 동반한 가족*의 리뷰가 *혼자 여행하는 사람*보다 더 부정적인가요? 이는 해당 호텔이 *혼자 여행하는 사람*에게 더 적합하다는 것을 나타낼 수 있습니다.) +* NLTK 감정 점수가 호텔 리뷰어의 숫자 점수와 '일치'하나요? + +#### 데이터셋 + +다운로드한 데이터셋을 로컬에 저장한 후 탐색해 봅시다. VS Code나 Excel 같은 편집기에서 파일을 열어보세요. + +데이터셋의 헤더는 다음과 같습니다: + +*Hotel_Address, Additional_Number_of_Scoring, Review_Date, Average_Score, Hotel_Name, Reviewer_Nationality, Negative_Review, Review_Total_Negative_Word_Counts, Total_Number_of_Reviews, Positive_Review, Review_Total_Positive_Word_Counts, Total_Number_of_Reviews_Reviewer_Has_Given, Reviewer_Score, Tags, days_since_review, lat, lng* + +다음과 같이 그룹화하면 더 쉽게 살펴볼 수 있습니다: +##### 호텔 관련 열 + +* `Hotel_Name`, `Hotel_Address`, `lat` (위도), `lng` (경도) + * *lat*과 *lng*를 사용하여 Python으로 호텔 위치를 지도에 표시할 수 있습니다 (예: 부정적/긍정적 리뷰에 따라 색상 코딩) + * Hotel_Address는 명확히 유용하지 않으므로, 더 쉽게 정렬 및 검색할 수 있도록 국가로 대체할 가능성이 있습니다. + +**호텔 메타 리뷰 열** + +* `Average_Score` + * 데이터셋 제작자에 따르면, 이 열은 *지난 1년 동안의 최신 댓글을 기반으로 계산된 호텔의 평균 점수*를 나타냅니다. 이는 다소 특이한 점수 계산 방식으로 보이지만, 현재로서는 그대로 받아들일 수 있습니다. + + ✅ 이 데이터의 다른 열을 기반으로 평균 점수를 계산할 다른 방법이 떠오르나요? + +* `Total_Number_of_Reviews` + * 이 호텔이 받은 총 리뷰 수를 나타냅니다. (코드를 작성하지 않고는 이 값이 데이터셋의 리뷰를 의미하는지 명확하지 않습니다.) +* `Additional_Number_of_Scoring` + * 리뷰어가 긍정적 또는 부정적 리뷰를 작성하지 않고 점수만 매긴 경우를 의미합니다. + +**리뷰 관련 열** + +- `Reviewer_Score` + - 소수점 이하 한 자리까지 표현된 숫자 값으로, 최소 2.5에서 최대 10 사이입니다. + - 왜 2.5가 최저 점수인지에 대한 설명은 없습니다. +- `Negative_Review` + - 리뷰어가 아무것도 작성하지 않은 경우, 이 필드는 "**No Negative**"로 채워집니다. + - 리뷰어가 부정적 리뷰 열에 긍정적 리뷰를 작성할 수도 있습니다 (예: "이 호텔에 나쁜 점은 없습니다"). +- `Review_Total_Negative_Word_Counts` + - 부정적 단어 수가 많을수록 점수가 낮아질 가능성이 높습니다 (감정 분석을 확인하지 않은 상태에서). +- `Positive_Review` + - 리뷰어가 아무것도 작성하지 않은 경우, 이 필드는 "**No Positive**"로 채워집니다. + - 리뷰어가 긍정적 리뷰 열에 부정적 리뷰를 작성할 수도 있습니다 (예: "이 호텔에는 좋은 점이 전혀 없습니다"). +- `Review_Total_Positive_Word_Counts` + - 긍정적 단어 수가 많을수록 점수가 높아질 가능성이 높습니다 (감정 분석을 확인하지 않은 상태에서). +- `Review_Date`와 `days_since_review` + - 리뷰의 신선도 또는 오래됨을 측정할 수 있습니다 (예: 오래된 리뷰는 호텔 관리가 변경되었거나, 리노베이션이 이루어졌거나, 수영장이 추가되었기 때문에 정확하지 않을 수 있음). +- `Tags` + - 리뷰어가 자신을 설명하기 위해 선택할 수 있는 짧은 설명입니다 (예: 혼자 여행, 가족, 숙박 유형, 숙박 기간, 리뷰 제출 방식 등). + - 그러나 이러한 태그를 사용하는 데는 문제가 있습니다. 아래 섹션에서 유용성에 대해 논의합니다. + +**리뷰어 관련 열** + +- `Total_Number_of_Reviews_Reviewer_Has_Given` + - 예를 들어, 리뷰를 많이 작성한 리뷰어(수백 개의 리뷰)가 긍정적 리뷰보다 부정적 리뷰를 더 자주 작성하는 경향이 있는지 확인할 수 있습니다. 그러나 특정 리뷰의 리뷰어는 고유 코드로 식별되지 않으므로 리뷰 세트와 연결할 수 없습니다. 100개 이상의 리뷰를 작성한 리뷰어는 30명 있지만, 이를 추천 모델에 어떻게 활용할 수 있을지는 불분명합니다. +- `Reviewer_Nationality` + - 일부 사람들은 특정 국적이 긍정적 또는 부정적 리뷰를 작성할 가능성이 더 높다고 생각할 수 있습니다. 하지만 이러한 견해를 모델에 반영할 때 주의해야 합니다. 이는 국가적(때로는 인종적) 고정관념일 수 있으며, 각 리뷰어는 자신의 경험을 바탕으로 리뷰를 작성한 개인입니다. 이전 호텔 숙박 경험, 이동 거리, 개인 성격 등 여러 요인을 통해 필터링되었을 수 있습니다. 국적이 리뷰 점수의 이유라고 단정 짓기는 어렵습니다. + +##### 예시 + +| Average Score | Total Number Reviews | Reviewer Score | Negative
                                                    Review | Positive Review | Tags | +| -------------- | ---------------------- | ---------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------- | ----------------------------------------------------------------------------------------- | +| 7.8 | 1945 | 2.5 | 이곳은 현재 호텔이 아니라 공사 현장입니다. 장거리 여행 후 휴식을 취하거나 방에서 작업하는 동안 아침 일찍부터 하루 종일 용납할 수 없는 공사 소음에 시달렸습니다. 사람들이 하루 종일 잭해머를 사용하며 인접한 방에서 작업했습니다. 방 교체를 요청했지만 조용한 방은 없었습니다. 설상가상으로 과도한 요금을 청구받았습니다. 이른 아침 비행기를 타야 했기 때문에 저녁에 체크아웃했으며 적절한 청구서를 받았습니다. 그러나 하루 후 호텔은 예약 가격을 초과하여 제 동의 없이 추가 요금을 청구했습니다. 끔찍한 곳입니다. 이곳을 예약하지 마세요. | 아무것도 없음. 끔찍한 곳. 멀리하세요. | 비즈니스 여행, 커플, 스탠다드 더블룸, 2박 숙박 | + +보시다시피, 이 손님은 호텔에서 매우 불쾌한 경험을 했습니다. 이 호텔은 평균 점수 7.8과 1945개의 리뷰를 가지고 있지만, 이 리뷰어는 2.5점을 주고 115단어로 부정적인 경험을 작성했습니다. Positive_Review 열에 아무것도 작성하지 않았다면 긍정적인 점이 없다고 추측할 수 있었겠지만, 7단어로 경고를 남겼습니다. 단어 수만 계산하고 단어의 의미나 감정을 고려하지 않는다면 리뷰어의 의도를 왜곡할 수 있습니다. 이상하게도, 2.5점이라는 점수는 혼란스럽습니다. 호텔 숙박이 그렇게 나빴다면 왜 점수를 아예 주지 않았을까요? 데이터셋을 자세히 조사해보면 최저 점수가 2.5이고 0이 아님을 알 수 있습니다. 최고 점수는 10입니다. + +##### 태그 + +위에서 언급했듯이, 처음에는 `Tags`를 사용하여 데이터를 분류하는 것이 합리적으로 보입니다. 그러나 이 태그는 표준화되어 있지 않아 문제가 됩니다. 예를 들어, 특정 호텔에서는 *싱글룸*, *트윈룸*, *더블룸*이라는 옵션이 있지만, 다른 호텔에서는 *디럭스 싱글룸*, *클래식 퀸룸*, *이그제큐티브 킹룸*이라는 옵션이 있습니다. 이들은 같은 것을 의미할 수 있지만, 변형이 너무 많아 다음과 같은 선택지가 생깁니다: + +1. 모든 용어를 단일 표준으로 변경하려고 시도합니다. 그러나 각 경우에 변환 경로가 명확하지 않아 매우 어렵습니다 (예: *클래식 싱글룸*은 *싱글룸*으로 매핑되지만, *정원 또는 도시 전망이 있는 슈페리어 퀸룸*은 매핑하기 훨씬 어렵습니다). + +1. NLP 접근 방식을 사용하여 *혼자*, *비즈니스 여행객*, *어린 자녀를 동반한 가족*과 같은 특정 용어의 빈도를 측정하고 이를 추천에 반영합니다. + +태그는 일반적으로 (항상 그런 것은 아니지만) *여행 유형*, *게스트 유형*, *객실 유형*, *숙박 기간*, *리뷰 제출 방식*에 맞춰 5~6개의 쉼표로 구분된 값을 포함하는 단일 필드입니다. 그러나 일부 리뷰어가 각 필드를 채우지 않는 경우(빈칸으로 남겨두는 경우), 값이 항상 동일한 순서로 나타나지는 않습니다. + +예를 들어, *그룹 유형*을 살펴보겠습니다. 이 필드에는 `Tags` 열에서 1025개의 고유한 가능성이 있으며, 불행히도 이 중 일부만 그룹을 나타냅니다(일부는 객실 유형 등). *가족*을 언급하는 항목만 필터링하면 *패밀리룸* 유형 결과가 많이 포함됩니다. *with*라는 용어를 포함하면, 즉 *Family with* 값을 계산하면 결과가 더 나아지며, "어린 자녀를 동반한 가족" 또는 "나이 든 자녀를 동반한 가족"이라는 문구가 515,000개의 결과 중 80,000개 이상 포함됩니다. + +이는 태그 열이 완전히 쓸모없는 것은 아니지만, 유용하게 만들기 위해 약간의 작업이 필요함을 의미합니다. + +##### 평균 호텔 점수 + +이 데이터셋에는 이해하기 어려운 이상점이나 불일치가 몇 가지 있지만, 모델을 구축할 때 이를 인지할 수 있도록 여기에 설명합니다. 이를 해결하면 토론 섹션에서 알려주세요! + +데이터셋에는 평균 점수와 리뷰 수와 관련된 다음 열이 포함되어 있습니다: + +1. Hotel_Name +2. Additional_Number_of_Scoring +3. Average_Score +4. Total_Number_of_Reviews +5. Reviewer_Score + +이 데이터셋에서 가장 많은 리뷰를 보유한 호텔은 *Britannia International Hotel Canary Wharf*로, 515,000개의 리뷰 중 4789개를 차지합니다. 그러나 이 호텔의 `Total_Number_of_Reviews` 값은 9086입니다. 리뷰가 없는 점수가 훨씬 더 많다고 추측할 수 있으므로, `Additional_Number_of_Scoring` 열 값을 추가해야 할 수도 있습니다. 해당 값은 2682이며, 4789에 더하면 7471이 됩니다. 하지만 여전히 `Total_Number_of_Reviews`에서 1615가 부족합니다. + +`Average_Score` 열을 보면, 데이터셋의 리뷰 평균이라고 추측할 수 있지만, Kaggle 설명에 따르면 "*지난 1년 동안의 최신 댓글을 기반으로 계산된 호텔의 평균 점수*"라고 합니다. 이는 그다지 유용해 보이지 않지만, 데이터셋의 리뷰 점수를 기반으로 자체 평균을 계산할 수 있습니다. 같은 호텔을 예로 들면, 평균 호텔 점수는 7.1로 제공되지만, 데이터셋에서 계산된 점수(리뷰어 점수 평균)는 6.8입니다. 이는 비슷하지만 동일한 값은 아니며, `Additional_Number_of_Scoring` 리뷰에서 제공된 점수가 평균을 7.1로 증가시켰다고 추측할 수 있습니다. 그러나 이를 테스트하거나 입증할 방법이 없으므로, `Average_Score`, `Additional_Number_of_Scoring`, `Total_Number_of_Reviews`를 신뢰하거나 사용하는 것은 어렵습니다. + +더 복잡한 점은, 두 번째로 리뷰 수가 많은 호텔의 계산된 평균 점수가 8.12이고 데이터셋의 `Average_Score`는 8.1입니다. 이 점수가 정확한 것은 우연일까요, 아니면 첫 번째 호텔의 데이터가 불일치한 것일까요? +이 호텔이 이상치일 가능성과 대부분의 값이 일치하지만 일부 값이 어떤 이유로 일치하지 않을 가능성을 고려하여, 데이터셋의 값을 탐색하고 올바른 사용 여부를 결정하기 위한 간단한 프로그램을 작성할 것입니다. + +> 🚨 주의 사항 +> +> 이 데이터셋을 작업할 때, 텍스트를 직접 읽거나 분석하지 않고 텍스트에서 무언가를 계산하는 코드를 작성하게 됩니다. 이것이 NLP의 본질이며, 사람이 직접 하지 않아도 의미나 감정을 해석하는 것입니다. 하지만 부정적인 리뷰를 읽게 될 가능성도 있습니다. 저는 여러분이 이를 읽지 않기를 권장합니다. 왜냐하면 읽을 필요가 없기 때문입니다. 일부 리뷰는 어리석거나 호텔과는 무관한 부정적인 리뷰일 수 있습니다. 예를 들어, "날씨가 좋지 않았다"는 호텔이나 누구도 통제할 수 없는 문제입니다. 하지만 리뷰에는 어두운 면도 있습니다. 때로는 부정적인 리뷰가 인종차별적, 성차별적, 또는 연령차별적일 수 있습니다. 이는 불행한 일이지만, 공개 웹사이트에서 스크랩된 데이터셋에서는 예상할 수 있는 일입니다. 일부 리뷰어는 불쾌하거나 불편하거나 마음이 상할 수 있는 리뷰를 남깁니다. 코드를 통해 감정을 측정하게 하고, 직접 읽고 마음이 상하지 않도록 하는 것이 좋습니다. 그렇다고 해도 이런 리뷰를 작성하는 사람은 소수에 불과하지만, 여전히 존재합니다. + +## 연습 - 데이터 탐색 +### 데이터 로드 + +데이터를 시각적으로 충분히 살펴봤으니, 이제 코드를 작성하여 답을 찾아봅시다! 이 섹션에서는 pandas 라이브러리를 사용합니다. 첫 번째 작업은 CSV 데이터를 로드하고 읽을 수 있는지 확인하는 것입니다. pandas 라이브러리는 빠른 CSV 로더를 제공하며, 결과는 이전 강의에서처럼 데이터프레임에 저장됩니다. 우리가 로드할 CSV는 50만 개 이상의 행과 17개의 열을 포함하고 있습니다. pandas는 데이터프레임과 상호작용할 수 있는 강력한 방법을 많이 제공합니다. 여기에는 모든 행에 대해 작업을 수행할 수 있는 기능도 포함됩니다. + +이제 사용할 데이터 파일을 로드해 봅시다: + +```python +# Load the hotel reviews from CSV +import pandas as pd +import time +# importing time so the start and end time can be used to calculate file loading time +print("Loading data file now, this could take a while depending on file size") +start = time.time() +# df is 'DataFrame' - make sure you downloaded the file to the data folder +df = pd.read_csv('../../data/Hotel_Reviews.csv') +end = time.time() +print("Loading took " + str(round(end - start, 2)) + " seconds") +``` + +데이터가 로드되었으니, 이제 이를 기반으로 작업을 수행할 수 있습니다. 다음 부분을 위해 프로그램 상단에 이 코드를 유지하세요. + +## 데이터 탐색 + +이번 경우 데이터는 이미 *정리된 상태*입니다. 즉, 작업할 준비가 되어 있으며, 알고리즘이 영어 문자만 기대할 때 문제를 일으킬 수 있는 다른 언어의 문자가 포함되어 있지 않습니다. + +✅ 데이터가 NLP 기술을 적용하기 전에 초기 처리가 필요한 경우가 있을 수 있지만, 이번에는 그렇지 않습니다. 만약 처리해야 한다면, 비영어 문자를 어떻게 처리할 것인지 생각해 보세요. + +데이터가 로드된 후 코드를 사용하여 탐색할 수 있는지 확인하세요. `Negative_Review`와 `Positive_Review` 열에 집중하고 싶을 수 있습니다. 이 열들은 NLP 알고리즘이 처리할 자연어 텍스트로 채워져 있습니다. 하지만 잠시 기다리세요! NLP와 감정 분석에 뛰어들기 전에, 아래 코드를 따라 데이터셋에 제공된 값이 pandas로 계산한 값과 일치하는지 확인하세요. + +## 데이터프레임 작업 + +이번 강의의 첫 번째 작업은 데이터프레임을 변경하지 않고 데이터를 검사하는 코드를 작성하여 다음 주장이 올바른지 확인하는 것입니다. + +> 많은 프로그래밍 작업과 마찬가지로, 이를 완료하는 방법은 여러 가지가 있지만, 가장 간단하고 이해하기 쉬운 방법으로 작업하는 것이 좋습니다. 특히 나중에 이 코드를 다시 볼 때 이해하기 쉬운 방법으로 작업하는 것이 중요합니다. 데이터프레임에는 종종 원하는 작업을 효율적으로 수행할 수 있는 포괄적인 API가 있습니다. + +다음 질문을 코딩 작업으로 간주하고, 솔루션을 보기 전에 답을 시도해 보세요. + +1. 방금 로드한 데이터프레임의 *shape*을 출력하세요 (shape는 행과 열의 수를 나타냅니다). +2. 리뷰어 국적의 빈도수를 계산하세요: + 1. `Reviewer_Nationality` 열에 대해 고유한 값이 몇 개인지, 그리고 그 값들이 무엇인지 확인하세요. + 2. 데이터셋에서 가장 흔한 리뷰어 국적은 무엇인지 (국가와 리뷰 수를 출력) 확인하세요. + 3. 다음으로 가장 흔한 10개의 국적과 그 빈도수를 확인하세요. +3. 가장 흔한 10개의 리뷰어 국적에 대해 각 국적별로 가장 많이 리뷰된 호텔은 무엇인지 확인하세요. +4. 데이터셋에서 호텔별 리뷰 수를 계산하세요 (호텔의 빈도수). +5. 데이터셋의 각 호텔에 대해 모든 리뷰어 점수의 평균을 계산하여 `Calc_Average_Score`라는 새 열을 데이터프레임에 추가하세요. `Hotel_Name`, `Average_Score`, `Calc_Average_Score` 열을 출력하세요. +6. 호텔 중 `Average_Score`와 `Calc_Average_Score`가 동일한 (소수점 첫째 자리까지 반올림) 호텔이 있는지 확인하세요. + 1. Series(행)를 인수로 받아 값을 비교하고 값이 같지 않을 때 메시지를 출력하는 Python 함수를 작성해 보세요. 그런 다음 `.apply()` 메서드를 사용하여 모든 행을 함수로 처리하세요. +7. `Negative_Review` 열 값이 "No Negative"인 행이 몇 개인지 계산하고 출력하세요. +8. `Positive_Review` 열 값이 "No Positive"인 행이 몇 개인지 계산하고 출력하세요. +9. `Positive_Review` 열 값이 "No Positive"이고 `Negative_Review` 열 값이 "No Negative"인 행이 몇 개인지 계산하고 출력하세요. + +### 코드 답안 + +1. 방금 로드한 데이터프레임의 *shape*을 출력하세요 (shape는 행과 열의 수를 나타냅니다). + + ```python + print("The shape of the data (rows, cols) is " + str(df.shape)) + > The shape of the data (rows, cols) is (515738, 17) + ``` + +2. 리뷰어 국적의 빈도수를 계산하세요: + + 1. `Reviewer_Nationality` 열에 대해 고유한 값이 몇 개인지, 그리고 그 값들이 무엇인지 확인하세요. + 2. 데이터셋에서 가장 흔한 리뷰어 국적은 무엇인지 (국가와 리뷰 수를 출력) 확인하세요. + + ```python + # value_counts() creates a Series object that has index and values in this case, the country and the frequency they occur in reviewer nationality + nationality_freq = df["Reviewer_Nationality"].value_counts() + print("There are " + str(nationality_freq.size) + " different nationalities") + # print first and last rows of the Series. Change to nationality_freq.to_string() to print all of the data + print(nationality_freq) + + There are 227 different nationalities + United Kingdom 245246 + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + ... + Comoros 1 + Palau 1 + Northern Mariana Islands 1 + Cape Verde 1 + Guinea 1 + Name: Reviewer_Nationality, Length: 227, dtype: int64 + ``` + + 3. 다음으로 가장 흔한 10개의 국적과 그 빈도수를 확인하세요. + + ```python + print("The highest frequency reviewer nationality is " + str(nationality_freq.index[0]).strip() + " with " + str(nationality_freq[0]) + " reviews.") + # Notice there is a leading space on the values, strip() removes that for printing + # What is the top 10 most common nationalities and their frequencies? + print("The next 10 highest frequency reviewer nationalities are:") + print(nationality_freq[1:11].to_string()) + + The highest frequency reviewer nationality is United Kingdom with 245246 reviews. + The next 10 highest frequency reviewer nationalities are: + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + Saudi Arabia 8951 + Netherlands 8772 + Switzerland 8678 + Germany 7941 + Canada 7894 + France 7296 + ``` + +3. 가장 흔한 10개의 리뷰어 국적에 대해 각 국적별로 가장 많이 리뷰된 호텔은 무엇인지 확인하세요. + + ```python + # What was the most frequently reviewed hotel for the top 10 nationalities + # Normally with pandas you will avoid an explicit loop, but wanted to show creating a new dataframe using criteria (don't do this with large amounts of data because it could be very slow) + for nat in nationality_freq[:10].index: + # First, extract all the rows that match the criteria into a new dataframe + nat_df = df[df["Reviewer_Nationality"] == nat] + # Now get the hotel freq + freq = nat_df["Hotel_Name"].value_counts() + print("The most reviewed hotel for " + str(nat).strip() + " was " + str(freq.index[0]) + " with " + str(freq[0]) + " reviews.") + + The most reviewed hotel for United Kingdom was Britannia International Hotel Canary Wharf with 3833 reviews. + The most reviewed hotel for United States of America was Hotel Esther a with 423 reviews. + The most reviewed hotel for Australia was Park Plaza Westminster Bridge London with 167 reviews. + The most reviewed hotel for Ireland was Copthorne Tara Hotel London Kensington with 239 reviews. + The most reviewed hotel for United Arab Emirates was Millennium Hotel London Knightsbridge with 129 reviews. + The most reviewed hotel for Saudi Arabia was The Cumberland A Guoman Hotel with 142 reviews. + The most reviewed hotel for Netherlands was Jaz Amsterdam with 97 reviews. + The most reviewed hotel for Switzerland was Hotel Da Vinci with 97 reviews. + The most reviewed hotel for Germany was Hotel Da Vinci with 86 reviews. + The most reviewed hotel for Canada was St James Court A Taj Hotel London with 61 reviews. + ``` + +4. 데이터셋에서 호텔별 리뷰 수를 계산하세요 (호텔의 빈도수). + + ```python + # First create a new dataframe based on the old one, removing the uneeded columns + hotel_freq_df = df.drop(["Hotel_Address", "Additional_Number_of_Scoring", "Review_Date", "Average_Score", "Reviewer_Nationality", "Negative_Review", "Review_Total_Negative_Word_Counts", "Positive_Review", "Review_Total_Positive_Word_Counts", "Total_Number_of_Reviews_Reviewer_Has_Given", "Reviewer_Score", "Tags", "days_since_review", "lat", "lng"], axis = 1) + + # Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found + hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count') + + # Get rid of all the duplicated rows + hotel_freq_df = hotel_freq_df.drop_duplicates(subset = ["Hotel_Name"]) + display(hotel_freq_df) + ``` + | Hotel_Name | Total_Number_of_Reviews | Total_Reviews_Found | + | :----------------------------------------: | :---------------------: | :-----------------: | + | Britannia International Hotel Canary Wharf | 9086 | 4789 | + | Park Plaza Westminster Bridge London | 12158 | 4169 | + | Copthorne Tara Hotel London Kensington | 7105 | 3578 | + | ... | ... | ... | + | Mercure Paris Porte d Orleans | 110 | 10 | + | Hotel Wagner | 135 | 10 | + | Hotel Gallitzinberg | 173 | 8 | + + 데이터셋에서 계산된 결과가 `Total_Number_of_Reviews` 값과 일치하지 않는 것을 알 수 있습니다. 이 값이 호텔의 총 리뷰 수를 나타내지만, 모든 리뷰가 스크랩되지 않았거나 다른 계산이 이루어진 것일 수 있습니다. `Total_Number_of_Reviews`는 이러한 불확실성 때문에 모델에서 사용되지 않습니다. + +5. 데이터셋의 각 호텔에 대해 모든 리뷰어 점수의 평균을 계산하여 `Calc_Average_Score`라는 새 열을 데이터프레임에 추가하세요. `Hotel_Name`, `Average_Score`, `Calc_Average_Score` 열을 출력하세요. + + ```python + # define a function that takes a row and performs some calculation with it + def get_difference_review_avg(row): + return row["Average_Score"] - row["Calc_Average_Score"] + + # 'mean' is mathematical word for 'average' + df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + + # Add a new column with the difference between the two average scores + df["Average_Score_Difference"] = df.apply(get_difference_review_avg, axis = 1) + + # Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel) + review_scores_df = df.drop_duplicates(subset = ["Hotel_Name"]) + + # Sort the dataframe to find the lowest and highest average score difference + review_scores_df = review_scores_df.sort_values(by=["Average_Score_Difference"]) + + display(review_scores_df[["Average_Score_Difference", "Average_Score", "Calc_Average_Score", "Hotel_Name"]]) + ``` + + 데이터셋 평균과 계산된 평균이 왜 때때로 다른지 궁금할 수 있습니다. 일부 값이 일치하지만 다른 값에 차이가 있는 이유를 알 수 없으므로, 이 경우 우리가 가진 리뷰 점수를 사용하여 평균을 직접 계산하는 것이 가장 안전합니다. 그렇다고 해도 차이는 일반적으로 매우 작습니다. 데이터셋 평균과 계산된 평균 간의 가장 큰 차이를 가진 호텔은 다음과 같습니다: + + | Average_Score_Difference | Average_Score | Calc_Average_Score | Hotel_Name | + | :----------------------: | :-----------: | :----------------: | ------------------------------------------: | + | -0.8 | 7.7 | 8.5 | Best Western Hotel Astoria | + | -0.7 | 8.8 | 9.5 | Hotel Stendhal Place Vend me Paris MGallery | + | -0.7 | 7.5 | 8.2 | Mercure Paris Porte d Orleans | + | -0.7 | 7.9 | 8.6 | Renaissance Paris Vendome Hotel | + | -0.5 | 7.0 | 7.5 | Hotel Royal Elys es | + | ... | ... | ... | ... | + | 0.7 | 7.5 | 6.8 | Mercure Paris Op ra Faubourg Montmartre | + | 0.8 | 7.1 | 6.3 | Holiday Inn Paris Montparnasse Pasteur | + | 0.9 | 6.8 | 5.9 | Villa Eugenie | + | 0.9 | 8.6 | 7.7 | MARQUIS Faubourg St Honor Relais Ch teaux | + | 1.3 | 7.2 | 5.9 | Kube Hotel Ice Bar | + + 점수 차이가 1을 초과하는 호텔이 단 1개뿐이므로, 차이를 무시하고 계산된 평균 점수를 사용할 수 있을 것입니다. + +6. `Negative_Review` 열 값이 "No Negative"인 행이 몇 개인지 계산하고 출력하세요. + +7. `Positive_Review` 열 값이 "No Positive"인 행이 몇 개인지 계산하고 출력하세요. + +8. `Positive_Review` 열 값이 "No Positive"이고 `Negative_Review` 열 값이 "No Negative"인 행이 몇 개인지 계산하고 출력하세요. + + ```python + # with lambdas: + start = time.time() + no_negative_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" else False , axis=1) + print("Number of No Negative reviews: " + str(len(no_negative_reviews[no_negative_reviews == True].index))) + + no_positive_reviews = df.apply(lambda x: True if x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of No Positive reviews: " + str(len(no_positive_reviews[no_positive_reviews == True].index))) + + both_no_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" and x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of both No Negative and No Positive reviews: " + str(len(both_no_reviews[both_no_reviews == True].index))) + end = time.time() + print("Lambdas took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Lambdas took 9.64 seconds + ``` + +## 또 다른 방법 + +람다 없이 항목을 세고, 행을 세기 위해 sum을 사용하는 또 다른 방법: + + ```python + # without lambdas (using a mixture of notations to show you can use both) + start = time.time() + no_negative_reviews = sum(df.Negative_Review == "No Negative") + print("Number of No Negative reviews: " + str(no_negative_reviews)) + + no_positive_reviews = sum(df["Positive_Review"] == "No Positive") + print("Number of No Positive reviews: " + str(no_positive_reviews)) + + both_no_reviews = sum((df.Negative_Review == "No Negative") & (df.Positive_Review == "No Positive")) + print("Number of both No Negative and No Positive reviews: " + str(both_no_reviews)) + + end = time.time() + print("Sum took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Sum took 0.19 seconds + ``` + + `Negative_Review`와 `Positive_Review` 열 값이 각각 "No Negative"와 "No Positive"인 행이 127개 있다는 것을 알 수 있습니다. 이는 리뷰어가 호텔에 숫자 점수를 부여했지만 긍정적 또는 부정적 리뷰를 작성하지 않았다는 것을 의미합니다. 다행히도 이러한 행은 소수(515738개 중 127개, 약 0.02%)에 불과하므로, 모델이나 결과에 특정 방향으로 영향을 미치지 않을 것입니다. 하지만 리뷰가 없는 리뷰 데이터셋에 이러한 행이 있다는 것을 예상하지 못했을 수 있으므로, 데이터를 탐색하여 이러한 행을 발견하는 것이 중요합니다. + +이제 데이터셋을 탐색했으니, 다음 강의에서는 데이터를 필터링하고 감정 분석을 추가할 것입니다. + +--- +## 🚀도전 과제 + +이번 강의는 이전 강의에서 본 것처럼, 데이터를 이해하고 작업을 수행하기 전에 데이터의 특성을 파악하는 것이 얼마나 중요한지 보여줍니다. 특히 텍스트 기반 데이터는 신중히 검토해야 합니다. 다양한 텍스트 중심 데이터셋을 탐색하고 모델에 편향이나 왜곡된 감정을 도입할 수 있는 영역을 발견할 수 있는지 확인해 보세요. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/38/) + +## 복습 및 자기 학습 + +[NLP 학습 경로](https://docs.microsoft.com/learn/paths/explore-natural-language-processing/?WT.mc_id=academic-77952-leestott)를 통해 음성 및 텍스트 중심 모델을 구축할 때 사용할 도구를 알아보세요. + +## 과제 + +[NLTK](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생할 수 있는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/4-Hotel-Reviews-1/assignment.md b/translations/ko/6-NLP/4-Hotel-Reviews-1/assignment.md new file mode 100644 index 000000000..38327247f --- /dev/null +++ b/translations/ko/6-NLP/4-Hotel-Reviews-1/assignment.md @@ -0,0 +1,19 @@ + +# NLTK + +## 지침 + +NLTK는 계산 언어학과 자연어 처리(NLP)에 널리 사용되는 유명한 라이브러리입니다. '[NLTK 책](https://www.nltk.org/book/)'을 읽고 그 안의 연습 문제를 시도해 보세요. 이 점수와 관계없는 과제를 통해 이 라이브러리를 더 깊이 이해할 수 있는 기회를 가지게 될 것입니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생할 수 있는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/4-Hotel-Reviews-1/notebook.ipynb b/translations/ko/6-NLP/4-Hotel-Reviews-1/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/ko/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md b/translations/ko/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md new file mode 100644 index 000000000..e1e22163c --- /dev/null +++ b/translations/ko/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/4-Hotel-Reviews-1/solution/R/README.md b/translations/ko/6-NLP/4-Hotel-Reviews-1/solution/R/README.md new file mode 100644 index 000000000..5e8b3ab10 --- /dev/null +++ b/translations/ko/6-NLP/4-Hotel-Reviews-1/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb b/translations/ko/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb new file mode 100644 index 000000000..263973e56 --- /dev/null +++ b/translations/ko/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb @@ -0,0 +1,174 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2d05e7db439376aa824f4b387f8324ca", + "translation_date": "2025-09-04T03:09:23+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# EDA\n", + "import pandas as pd\n", + "import time" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_difference_review_avg(row):\n", + " return row[\"Average_Score\"] - row[\"Calc_Average_Score\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "print(\"Loading data file now, this could take a while depending on file size\")\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n", + "end = time.time()\n", + "print(\"Loading took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What shape is the data (rows, columns)?\n", + "print(\"The shape of the data (rows, cols) is \" + str(df.shape))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# value_counts() creates a Series object that has index and values\n", + "# in this case, the country and the frequency they occur in reviewer nationality\n", + "nationality_freq = df[\"Reviewer_Nationality\"].value_counts()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What reviewer nationality is the most common in the dataset?\n", + "print(\"The highest frequency reviewer nationality is \" + str(nationality_freq.index[0]).strip() + \" with \" + str(nationality_freq[0]) + \" reviews.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What is the top 10 most common nationalities and their frequencies?\n", + "print(\"The top 10 highest frequency reviewer nationalities are:\")\n", + "print(nationality_freq[0:10].to_string())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many unique nationalities are there?\n", + "print(\"There are \" + str(nationality_freq.index.size) + \" unique nationalities in the dataset\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What was the most frequently reviewed hotel for the top 10 nationalities - print the hotel and number of reviews\n", + "for nat in nationality_freq[:10].index:\n", + " # First, extract all the rows that match the criteria into a new dataframe\n", + " nat_df = df[df[\"Reviewer_Nationality\"] == nat] \n", + " # Now get the hotel freq\n", + " freq = nat_df[\"Hotel_Name\"].value_counts()\n", + " print(\"The most reviewed hotel for \" + str(nat).strip() + \" was \" + str(freq.index[0]) + \" with \" + str(freq[0]) + \" reviews.\") \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many reviews are there per hotel (frequency count of hotel) and do the results match the value in `Total_Number_of_Reviews`?\n", + "# First create a new dataframe based on the old one, removing the uneeded columns\n", + "hotel_freq_df = df.drop([\"Hotel_Address\", \"Additional_Number_of_Scoring\", \"Review_Date\", \"Average_Score\", \"Reviewer_Nationality\", \"Negative_Review\", \"Review_Total_Negative_Word_Counts\", \"Positive_Review\", \"Review_Total_Positive_Word_Counts\", \"Total_Number_of_Reviews_Reviewer_Has_Given\", \"Reviewer_Score\", \"Tags\", \"days_since_review\", \"lat\", \"lng\"], axis = 1)\n", + "# Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found\n", + "hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count')\n", + "# Get rid of all the duplicated rows\n", + "hotel_freq_df = hotel_freq_df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "print()\n", + "print(hotel_freq_df.to_string())\n", + "print(str(hotel_freq_df.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# While there is an `Average_Score` for each hotel according to the dataset, \n", + "# you can also calculate an average score (getting the average of all reviewer scores in the dataset for each hotel)\n", + "# Add a new column to your dataframe with the column header `Calc_Average_Score` that contains that calculated average. \n", + "df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n", + "# Add a new column with the difference between the two average scores\n", + "df[\"Average_Score_Difference\"] = df.apply(get_difference_review_avg, axis = 1)\n", + "# Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel)\n", + "review_scores_df = df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "# Sort the dataframe to find the lowest and highest average score difference\n", + "review_scores_df = review_scores_df.sort_values(by=[\"Average_Score_Difference\"])\n", + "print(review_scores_df[[\"Average_Score_Difference\", \"Average_Score\", \"Calc_Average_Score\", \"Hotel_Name\"]])\n", + "# Do any hotels have the same (rounded to 1 decimal place) `Average_Score` and `Calc_Average_Score`?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/6-NLP/5-Hotel-Reviews-2/README.md b/translations/ko/6-NLP/5-Hotel-Reviews-2/README.md new file mode 100644 index 000000000..7626769e2 --- /dev/null +++ b/translations/ko/6-NLP/5-Hotel-Reviews-2/README.md @@ -0,0 +1,388 @@ + +# 호텔 리뷰를 활용한 감정 분석 + +데이터셋을 자세히 탐색한 후, 이제 열을 필터링하고 NLP 기술을 사용하여 호텔에 대한 새로운 통찰력을 얻을 때입니다. +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/39/) + +### 필터링 및 감정 분석 작업 + +아마도 눈치채셨겠지만, 데이터셋에는 몇 가지 문제가 있습니다. 일부 열은 쓸모없는 정보로 채워져 있고, 다른 열은 부정확해 보입니다. 만약 정확하다면, 어떻게 계산되었는지 불분명하며, 여러분의 계산으로 독립적으로 검증할 수 없습니다. + +## 연습: 데이터 처리 조금 더 하기 + +데이터를 조금 더 정리하세요. 나중에 유용할 열을 추가하고, 다른 열의 값을 변경하며, 특정 열을 완전히 삭제하세요. + +1. 초기 열 처리 + + 1. `lat`와 `lng` 삭제 + + 2. `Hotel_Address` 값을 다음 값으로 대체 (주소에 도시와 국가 이름이 포함되어 있다면, 도시와 국가 이름만 남기세요). + + 데이터셋에 포함된 도시와 국가는 다음과 같습니다: + + Amsterdam, Netherlands + + Barcelona, Spain + + London, United Kingdom + + Milan, Italy + + Paris, France + + Vienna, Austria + + ```python + def replace_address(row): + if "Netherlands" in row["Hotel_Address"]: + return "Amsterdam, Netherlands" + elif "Barcelona" in row["Hotel_Address"]: + return "Barcelona, Spain" + elif "United Kingdom" in row["Hotel_Address"]: + return "London, United Kingdom" + elif "Milan" in row["Hotel_Address"]: + return "Milan, Italy" + elif "France" in row["Hotel_Address"]: + return "Paris, France" + elif "Vienna" in row["Hotel_Address"]: + return "Vienna, Austria" + + # Replace all the addresses with a shortened, more useful form + df["Hotel_Address"] = df.apply(replace_address, axis = 1) + # The sum of the value_counts() should add up to the total number of reviews + print(df["Hotel_Address"].value_counts()) + ``` + + 이제 국가 수준 데이터를 쿼리할 수 있습니다: + + ```python + display(df.groupby("Hotel_Address").agg({"Hotel_Name": "nunique"})) + ``` + + | Hotel_Address | Hotel_Name | + | :--------------------- | :--------: | + | Amsterdam, Netherlands | 105 | + | Barcelona, Spain | 211 | + | London, United Kingdom | 400 | + | Milan, Italy | 162 | + | Paris, France | 458 | + | Vienna, Austria | 158 | + +2. 호텔 메타 리뷰 열 처리 + + 1. `Additional_Number_of_Scoring` 삭제 + + 1. `Total_Number_of_Reviews`를 데이터셋에 실제로 포함된 해당 호텔의 리뷰 총 수로 대체 + + 1. `Average_Score`를 직접 계산한 점수로 대체 + + ```python + # Drop `Additional_Number_of_Scoring` + df.drop(["Additional_Number_of_Scoring"], axis = 1, inplace=True) + # Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values + df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count') + df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + ``` + +3. 리뷰 열 처리 + + 1. `Review_Total_Negative_Word_Counts`, `Review_Total_Positive_Word_Counts`, `Review_Date`, `days_since_review` 삭제 + + 2. `Reviewer_Score`, `Negative_Review`, `Positive_Review`는 그대로 유지 + + 3. `Tags`는 일단 유지 + + - 다음 섹션에서 태그에 추가 필터링 작업을 수행한 후 태그를 삭제할 예정 + +4. 리뷰어 열 처리 + + 1. `Total_Number_of_Reviews_Reviewer_Has_Given` 삭제 + + 2. `Reviewer_Nationality`는 유지 + +### 태그 열 + +`Tag` 열은 텍스트 형식의 리스트로 저장되어 있어 문제가 됩니다. 불행히도 이 열의 하위 섹션 순서와 개수가 항상 동일하지 않습니다. 사람이 올바른 관심 태그를 식별하기 어렵습니다. 왜냐하면 515,000개의 행과 1427개의 호텔이 있고, 각 리뷰어가 선택할 수 있는 옵션이 약간씩 다르기 때문입니다. 이럴 때 NLP가 빛을 발합니다. 텍스트를 스캔하여 가장 일반적인 구문을 찾고 이를 계산할 수 있습니다. + +불행히도 단어 하나보다는 다단어 구문(예: *Business trip*)에 관심이 있습니다. 이 많은 데이터(6762646 단어)에 대해 다단어 빈도 분포 알고리즘을 실행하면 엄청난 시간이 걸릴 수 있습니다. 하지만 데이터를 살펴보지 않고는 필요한 작업인지 판단하기 어렵습니다. 탐색적 데이터 분석이 유용한 이유입니다. 예를 들어 `[' Business trip ', ' Solo traveler ', ' Single Room ', ' Stayed 5 nights ', ' Submitted from a mobile device ']`와 같은 태그 샘플을 보면, 처리량을 크게 줄일 수 있는지 질문을 시작할 수 있습니다. 다행히도 가능합니다. 하지만 먼저 관심 태그를 확인하기 위해 몇 가지 단계를 따라야 합니다. + +### 태그 필터링 + +데이터셋의 목표는 감정을 추가하고 최종적으로 최고의 호텔을 선택하는 데 도움이 되는 열을 추가하는 것입니다(자신을 위해서든, 호텔 추천 봇을 만들라는 고객의 요청을 위해서든). 태그가 최종 데이터셋에서 유용한지 아닌지를 스스로 물어봐야 합니다. 다음은 한 가지 해석입니다(다른 이유로 데이터셋이 필요하다면 다른 태그가 포함/제외될 수 있습니다): + +1. 여행 유형은 관련이 있으므로 유지해야 합니다. +2. 게스트 그룹 유형은 중요하므로 유지해야 합니다. +3. 게스트가 머문 방, 스위트룸, 스튜디오 유형은 관련이 없습니다(모든 호텔은 기본적으로 동일한 방을 가지고 있음). +4. 리뷰가 제출된 기기는 관련이 없습니다. +5. 리뷰어가 머문 밤 수는 호텔을 더 좋아하는 것과 연관이 있을 수 있지만, 가능성이 낮고 아마도 관련이 없습니다. + +요약하자면, **두 가지 유형의 태그만 유지하고 나머지는 제거하세요**. + +먼저, 태그를 더 나은 형식으로 만들기 전까지는 태그를 계산하지 않으려 합니다. 즉, 대괄호와 따옴표를 제거해야 합니다. 여러 방법이 있지만, 가장 빠른 방법을 선택해야 합니다. 많은 데이터를 처리하는 데 시간이 오래 걸릴 수 있기 때문입니다. 다행히도 pandas는 각 단계를 쉽게 수행할 수 있는 방법을 제공합니다. + +```Python +# Remove opening and closing brackets +df.Tags = df.Tags.str.strip("[']") +# remove all quotes too +df.Tags = df.Tags.str.replace(" ', '", ",", regex = False) +``` + +각 태그는 다음과 같이 변환됩니다: `Business trip, Solo traveler, Single Room, Stayed 5 nights, Submitted from a mobile device`. + +다음으로 문제가 발생합니다. 일부 리뷰 또는 행에는 5개의 열이 있고, 일부는 3개, 일부는 6개입니다. 이는 데이터셋 생성 방식의 결과이며 수정하기 어렵습니다. 각 구문의 빈도 수를 얻고 싶지만, 리뷰마다 순서가 다르기 때문에 카운트가 정확하지 않을 수 있으며, 호텔이 받을 자격이 있는 태그를 받지 못할 수도 있습니다. + +대신 이 다른 순서를 활용할 것입니다. 각 태그는 다단어 구문이지만 쉼표로 구분되어 있습니다! 가장 간단한 방법은 임시로 6개의 열을 생성하여 각 태그를 해당 순서에 맞는 열에 삽입하는 것입니다. 그런 다음 6개의 열을 하나의 큰 열로 병합하고 결과 열에서 `value_counts()` 메서드를 실행합니다. 이를 출력하면 2428개의 고유 태그가 있음을 확인할 수 있습니다. 다음은 작은 샘플입니다: + +| Tag | Count | +| ------------------------------ | ------ | +| Leisure trip | 417778 | +| Submitted from a mobile device | 307640 | +| Couple | 252294 | +| Stayed 1 night | 193645 | +| Stayed 2 nights | 133937 | +| Solo traveler | 108545 | +| Stayed 3 nights | 95821 | +| Business trip | 82939 | +| Group | 65392 | +| Family with young children | 61015 | +| Stayed 4 nights | 47817 | +| Double Room | 35207 | +| Standard Double Room | 32248 | +| Superior Double Room | 31393 | +| Family with older children | 26349 | +| Deluxe Double Room | 24823 | +| Double or Twin Room | 22393 | +| Stayed 5 nights | 20845 | +| Standard Double or Twin Room | 17483 | +| Classic Double Room | 16989 | +| Superior Double or Twin Room | 13570 | +| 2 rooms | 12393 | + +`Submitted from a mobile device`와 같은 일반적인 태그는 우리에게 아무런 도움이 되지 않으므로, 구문 발생 횟수를 계산하기 전에 제거하는 것이 현명할 수 있습니다. 하지만 작업이 매우 빠르기 때문에 그대로 두고 무시할 수 있습니다. + +### 숙박 기간 태그 제거 + +이 태그를 제거하는 것이 첫 번째 단계입니다. 고려해야 할 태그의 총 수를 약간 줄입니다. 데이터셋에서 태그를 제거하지는 않고, 리뷰 데이터셋에서 값을 계산/유지 대상으로 선택하지 않을 뿐입니다. + +| Length of stay | Count | +| ---------------- | ------ | +| Stayed 1 night | 193645 | +| Stayed 2 nights | 133937 | +| Stayed 3 nights | 95821 | +| Stayed 4 nights | 47817 | +| Stayed 5 nights | 20845 | +| Stayed 6 nights | 9776 | +| Stayed 7 nights | 7399 | +| Stayed 8 nights | 2502 | +| Stayed 9 nights | 1293 | +| ... | ... | + +방, 스위트룸, 스튜디오, 아파트 등 다양한 유형이 있습니다. 이들은 모두 대체로 동일한 의미를 가지며 관련이 없으므로 고려 대상에서 제거하세요. + +| Type of room | Count | +| ----------------------------- | ----- | +| Double Room | 35207 | +| Standard Double Room | 32248 | +| Superior Double Room | 31393 | +| Deluxe Double Room | 24823 | +| Double or Twin Room | 22393 | +| Standard Double or Twin Room | 17483 | +| Classic Double Room | 16989 | +| Superior Double or Twin Room | 13570 | + +마지막으로, 기쁜 소식은 (거의 처리 없이) 다음과 같은 **유용한** 태그만 남게 된다는 것입니다: + +| Tag | Count | +| --------------------------------------------- | ------ | +| Leisure trip | 417778 | +| Couple | 252294 | +| Solo traveler | 108545 | +| Business trip | 82939 | +| Group (combined with Travellers with friends) | 67535 | +| Family with young children | 61015 | +| Family with older children | 26349 | +| With a pet | 1405 | + +`Travellers with friends`는 `Group`과 거의 동일하다고 볼 수 있으며, 두 태그를 위와 같이 결합하는 것이 공정할 것입니다. 올바른 태그를 식별하는 코드는 [Tags notebook](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb)에 있습니다. + +최종 단계는 각 태그에 대해 새로운 열을 생성하는 것입니다. 그런 다음 각 리뷰 행에서 `Tag` 열이 새 열 중 하나와 일치하면 1을 추가하고, 그렇지 않으면 0을 추가합니다. 최종 결과는 비즈니스 vs 레저, 또는 애완동물 동반 여부 등으로 호텔을 선택한 리뷰어 수를 집계한 데이터가 됩니다. + +```python +# Process the Tags into new columns +# The file Hotel_Reviews_Tags.py, identifies the most important tags +# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, +# Family with young children, Family with older children, With a pet +df["Leisure_trip"] = df.Tags.apply(lambda tag: 1 if "Leisure trip" in tag else 0) +df["Couple"] = df.Tags.apply(lambda tag: 1 if "Couple" in tag else 0) +df["Solo_traveler"] = df.Tags.apply(lambda tag: 1 if "Solo traveler" in tag else 0) +df["Business_trip"] = df.Tags.apply(lambda tag: 1 if "Business trip" in tag else 0) +df["Group"] = df.Tags.apply(lambda tag: 1 if "Group" in tag or "Travelers with friends" in tag else 0) +df["Family_with_young_children"] = df.Tags.apply(lambda tag: 1 if "Family with young children" in tag else 0) +df["Family_with_older_children"] = df.Tags.apply(lambda tag: 1 if "Family with older children" in tag else 0) +df["With_a_pet"] = df.Tags.apply(lambda tag: 1 if "With a pet" in tag else 0) + +``` + +### 파일 저장 + +마지막으로, 현재 상태의 데이터셋을 새 이름으로 저장하세요. + +```python +df.drop(["Review_Total_Negative_Word_Counts", "Review_Total_Positive_Word_Counts", "days_since_review", "Total_Number_of_Reviews_Reviewer_Has_Given"], axis = 1, inplace=True) + +# Saving new data file with calculated columns +print("Saving results to Hotel_Reviews_Filtered.csv") +df.to_csv(r'../data/Hotel_Reviews_Filtered.csv', index = False) +``` + +## 감정 분석 작업 + +이 마지막 섹션에서는 리뷰 열에 감정 분석을 적용하고 결과를 데이터셋에 저장합니다. + +## 연습: 필터링된 데이터 로드 및 저장 + +이제 이전 섹션에서 저장한 필터링된 데이터셋을 로드하며, **원본 데이터셋이 아님**을 유의하세요. + +```python +import time +import pandas as pd +import nltk as nltk +from nltk.corpus import stopwords +from nltk.sentiment.vader import SentimentIntensityAnalyzer +nltk.download('vader_lexicon') + +# Load the filtered hotel reviews from CSV +df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv') + +# You code will be added here + + +# Finally remember to save the hotel reviews with new NLP data added +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r'../data/Hotel_Reviews_NLP.csv', index = False) +``` + +### 불용어 제거 + +Negative 및 Positive 리뷰 열에서 감정 분석을 실행하면 시간이 오래 걸릴 수 있습니다. 빠른 CPU를 가진 강력한 테스트 노트북에서 테스트한 결과, 사용된 감정 라이브러리에 따라 12~14분이 걸렸습니다. 이는 (상대적으로) 긴 시간이므로 속도를 높일 수 있는지 조사할 가치가 있습니다. + +불용어 제거는 첫 번째 단계입니다. 불용어는 문장의 감정에 영향을 주지 않는 일반적인 영어 단어입니다. 이를 제거하면 감정 분석이 더 빨리 실행되지만 정확도가 떨어지지 않습니다(불용어는 감정에 영향을 주지 않지만 분석 속도를 늦춥니다). + +가장 긴 부정 리뷰는 395단어였지만, 불용어를 제거한 후에는 195단어로 줄어듭니다. + +불용어 제거는 또한 빠른 작업입니다. 515,000개의 행에서 2개의 리뷰 열에서 불용어를 제거하는 데 테스트 장치에서 3.3초가 걸렸습니다. CPU 속도, RAM, SSD 여부 등 여러 요인에 따라 시간이 약간 더 걸리거나 덜 걸릴 수 있습니다. 작업이 상대적으로 짧기 때문에 감정 분석 시간을 개선한다면 수행할 가치가 있습니다. + +```python +from nltk.corpus import stopwords + +# Load the hotel reviews from CSV +df = pd.read_csv("../../data/Hotel_Reviews_Filtered.csv") + +# Remove stop words - can be slow for a lot of text! +# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches +# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends +start = time.time() +cache = set(stopwords.words("english")) +def remove_stopwords(review): + text = " ".join([word for word in review.split() if word not in cache]) + return text + +# Remove the stop words from both columns +df.Negative_Review = df.Negative_Review.apply(remove_stopwords) +df.Positive_Review = df.Positive_Review.apply(remove_stopwords) +``` + +### 감정 분석 수행 +이제 부정적 리뷰와 긍정적 리뷰 열에 대한 감정 분석을 계산하고, 결과를 두 개의 새로운 열에 저장해야 합니다. 감정 분석의 테스트는 동일한 리뷰에 대해 리뷰어가 준 점수와 비교하는 것입니다. 예를 들어, 감정 분석 결과 부정적 리뷰의 감정 점수가 1(매우 긍정적 감정)이고 긍정적 리뷰의 감정 점수도 1로 나왔지만, 리뷰어가 호텔에 최저 점수를 준 경우, 이는 리뷰 텍스트가 점수와 일치하지 않거나 감정 분석기가 감정을 제대로 인식하지 못했음을 의미합니다. 일부 감정 점수가 완전히 잘못될 수도 있으며, 이는 종종 설명 가능합니다. 예를 들어, 리뷰가 매우 풍자적일 수 있습니다. "난방이 없는 방에서 자는 게 정말 좋았어요" 같은 문장은 감정 분석기가 긍정적 감정으로 인식할 수 있지만, 사람이라면 이 문장이 풍자임을 알 수 있습니다. + +NLTK는 학습할 수 있는 다양한 감정 분석기를 제공합니다. 이를 대체하여 감정 분석이 더 정확한지 덜 정확한지 확인할 수 있습니다. 여기서는 VADER 감정 분석을 사용합니다. + +> Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. + +```python +from nltk.sentiment.vader import SentimentIntensityAnalyzer + +# Create the vader sentiment analyser (there are others in NLTK you can try too) +vader_sentiment = SentimentIntensityAnalyzer() +# Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. + +# There are 3 possibilities of input for a review: +# It could be "No Negative", in which case, return 0 +# It could be "No Positive", in which case, return 0 +# It could be a review, in which case calculate the sentiment +def calc_sentiment(review): + if review == "No Negative" or review == "No Positive": + return 0 + return vader_sentiment.polarity_scores(review)["compound"] +``` + +프로그램에서 감정을 계산할 준비가 되었을 때, 각 리뷰에 다음과 같이 적용할 수 있습니다: + +```python +# Add a negative sentiment and positive sentiment column +print("Calculating sentiment columns for both positive and negative reviews") +start = time.time() +df["Negative_Sentiment"] = df.Negative_Review.apply(calc_sentiment) +df["Positive_Sentiment"] = df.Positive_Review.apply(calc_sentiment) +end = time.time() +print("Calculating sentiment took " + str(round(end - start, 2)) + " seconds") +``` + +제 컴퓨터에서는 약 120초가 소요되지만, 컴퓨터마다 다를 수 있습니다. 결과를 출력하여 감정이 리뷰와 일치하는지 확인하려면: + +```python +df = df.sort_values(by=["Negative_Sentiment"], ascending=True) +print(df[["Negative_Review", "Negative_Sentiment"]]) +df = df.sort_values(by=["Positive_Sentiment"], ascending=True) +print(df[["Positive_Review", "Positive_Sentiment"]]) +``` + +파일을 도전에 사용하기 전에 마지막으로 해야 할 일은 저장하는 것입니다! 또한, 새로 추가된 모든 열을 재정렬하여 작업하기 쉽게 만드는 것도 고려해야 합니다(사람이 보기 좋게 하기 위한 미적 변경입니다). + +```python +# Reorder the columns (This is cosmetic, but to make it easier to explore the data later) +df = df.reindex(["Hotel_Name", "Hotel_Address", "Total_Number_of_Reviews", "Average_Score", "Reviewer_Score", "Negative_Sentiment", "Positive_Sentiment", "Reviewer_Nationality", "Leisure_trip", "Couple", "Solo_traveler", "Business_trip", "Group", "Family_with_young_children", "Family_with_older_children", "With_a_pet", "Negative_Review", "Positive_Review"], axis=1) + +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r"../data/Hotel_Reviews_NLP.csv", index = False) +``` + +[분석 노트북](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb)의 전체 코드를 실행해야 합니다(먼저 [필터링 노트북](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb)을 실행하여 Hotel_Reviews_Filtered.csv 파일을 생성한 후). + +요약하자면, 단계는 다음과 같습니다: + +1. 원본 데이터셋 파일 **Hotel_Reviews.csv**는 이전 강의에서 [탐색 노트북](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb)을 사용해 탐색되었습니다. +2. **Hotel_Reviews.csv**는 [필터링 노트북](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb)을 통해 필터링되어 **Hotel_Reviews_Filtered.csv**가 생성되었습니다. +3. **Hotel_Reviews_Filtered.csv**는 [감정 분석 노트북](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb)을 통해 처리되어 **Hotel_Reviews_NLP.csv**가 생성되었습니다. +4. 아래 NLP 도전 과제에서 **Hotel_Reviews_NLP.csv**를 사용합니다. + +### 결론 + +처음에는 열과 데이터가 있는 데이터셋을 가지고 있었지만, 모든 데이터를 확인하거나 사용할 수는 없었습니다. 데이터를 탐색하고, 필요 없는 데이터를 필터링하고, 태그를 유용한 것으로 변환하고, 자체 평균을 계산하고, 감정 열을 추가했으며, 자연어 텍스트를 처리하는 데 있어 흥미로운 점을 배웠기를 바랍니다. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/40/) + +## 도전 과제 + +이제 데이터셋의 감정을 분석했으니, 이 커리큘럼에서 배운 전략(예: 클러스터링)을 사용하여 감정과 관련된 패턴을 찾아보세요. + +## 복습 및 자기 학습 + +[이 학습 모듈](https://docs.microsoft.com/en-us/learn/modules/classify-user-feedback-with-the-text-analytics-api/?WT.mc_id=academic-77952-leestott)을 통해 텍스트에서 감정을 탐색하고 다양한 도구를 사용하는 방법을 더 배워보세요. + +## 과제 + +[다른 데이터셋 시도하기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문 번역가에 의한 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/5-Hotel-Reviews-2/assignment.md b/translations/ko/6-NLP/5-Hotel-Reviews-2/assignment.md new file mode 100644 index 000000000..e0a637989 --- /dev/null +++ b/translations/ko/6-NLP/5-Hotel-Reviews-2/assignment.md @@ -0,0 +1,25 @@ + +# 다른 데이터셋 시도하기 + +## 지침 + +NLTK를 사용하여 텍스트에 감정을 할당하는 방법을 배운 후, 이제 다른 데이터셋을 시도해 보세요. 데이터를 처리해야 할 가능성이 높으니, 노트북을 만들어서 자신의 사고 과정을 문서화하세요. 무엇을 발견하게 되나요? + +## 평가 기준 + +| 기준 | 우수 | 적절함 | 개선 필요 | +| -------- | ----------------------------------------------------------------------------------------------------------------- | --------------------------------------- | ---------------------- | +| | 완성된 노트북과 데이터셋이 제공되며, 감정이 어떻게 할당되는지에 대한 잘 문서화된 셀이 포함됨 | 노트북에 충분한 설명이 부족함 | 노트북에 결함이 있음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/5-Hotel-Reviews-2/notebook.ipynb b/translations/ko/6-NLP/5-Hotel-Reviews-2/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb b/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb new file mode 100644 index 000000000..34f7f588f --- /dev/null +++ b/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb @@ -0,0 +1,172 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "033cb89c85500224b3c63fd04f49b4aa", + "translation_date": "2025-09-04T03:09:59+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import time\n", + "import ast" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def replace_address(row):\n", + " if \"Netherlands\" in row[\"Hotel_Address\"]:\n", + " return \"Amsterdam, Netherlands\"\n", + " elif \"Barcelona\" in row[\"Hotel_Address\"]:\n", + " return \"Barcelona, Spain\"\n", + " elif \"United Kingdom\" in row[\"Hotel_Address\"]:\n", + " return \"London, United Kingdom\"\n", + " elif \"Milan\" in row[\"Hotel_Address\"]: \n", + " return \"Milan, Italy\"\n", + " elif \"France\" in row[\"Hotel_Address\"]:\n", + " return \"Paris, France\"\n", + " elif \"Vienna\" in row[\"Hotel_Address\"]:\n", + " return \"Vienna, Austria\" \n", + " else:\n", + " return row.Hotel_Address\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# dropping columns we will not use:\n", + "df.drop([\"lat\", \"lng\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Replace all the addresses with a shortened, more useful form\n", + "df[\"Hotel_Address\"] = df.apply(replace_address, axis = 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Drop `Additional_Number_of_Scoring`\n", + "df.drop([\"Additional_Number_of_Scoring\"], axis = 1, inplace=True)\n", + "# Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values\n", + "df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')\n", + "df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Process the Tags into new columns\n", + "# The file Hotel_Reviews_Tags.py, identifies the most important tags\n", + "# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, \n", + "# Family with young children, Family with older children, With a pet\n", + "df[\"Leisure_trip\"] = df.Tags.apply(lambda tag: 1 if \"Leisure trip\" in tag else 0)\n", + "df[\"Couple\"] = df.Tags.apply(lambda tag: 1 if \"Couple\" in tag else 0)\n", + "df[\"Solo_traveler\"] = df.Tags.apply(lambda tag: 1 if \"Solo traveler\" in tag else 0)\n", + "df[\"Business_trip\"] = df.Tags.apply(lambda tag: 1 if \"Business trip\" in tag else 0)\n", + "df[\"Group\"] = df.Tags.apply(lambda tag: 1 if \"Group\" in tag or \"Travelers with friends\" in tag else 0)\n", + "df[\"Family_with_young_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with young children\" in tag else 0)\n", + "df[\"Family_with_older_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with older children\" in tag else 0)\n", + "df[\"With_a_pet\"] = df.Tags.apply(lambda tag: 1 if \"With a pet\" in tag else 0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# No longer need any of these columns\n", + "df.drop([\"Review_Date\", \"Review_Total_Negative_Word_Counts\", \"Review_Total_Positive_Word_Counts\", \"days_since_review\", \"Total_Number_of_Reviews_Reviewer_Has_Given\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_Filtered.csv\n", + "Filtering took 23.74 seconds\n" + ] + } + ], + "source": [ + "# Saving new data file with calculated columns\n", + "print(\"Saving results to Hotel_Reviews_Filtered.csv\")\n", + "df.to_csv(r'../../data/Hotel_Reviews_Filtered.csv', index = False)\n", + "end = time.time()\n", + "print(\"Filtering took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb b/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb new file mode 100644 index 000000000..d42df6f23 --- /dev/null +++ b/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb @@ -0,0 +1,137 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "341efc86325ec2a214f682f57a189dfd", + "translation_date": "2025-09-04T03:10:17+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV (you can )\n", + "import pandas as pd \n", + "\n", + "df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# We want to find the most useful tags to keep\n", + "# Remove opening and closing brackets\n", + "df.Tags = df.Tags.str.strip(\"[']\")\n", + "# remove all quotes too\n", + "df.Tags = df.Tags.str.replace(\" ', '\", \",\", regex = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# removing this to take advantage of the 'already a phrase' fact of the dataset \n", + "# Now split the strings into a list\n", + "tag_list_df = df.Tags.str.split(',', expand = True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove leading and trailing spaces\n", + "df[\"Tag_1\"] = tag_list_df[0].str.strip()\n", + "df[\"Tag_2\"] = tag_list_df[1].str.strip()\n", + "df[\"Tag_3\"] = tag_list_df[2].str.strip()\n", + "df[\"Tag_4\"] = tag_list_df[3].str.strip()\n", + "df[\"Tag_5\"] = tag_list_df[4].str.strip()\n", + "df[\"Tag_6\"] = tag_list_df[5].str.strip()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Merge the 6 columns into one with melt\n", + "df_tags = df.melt(value_vars=[\"Tag_1\", \"Tag_2\", \"Tag_3\", \"Tag_4\", \"Tag_5\", \"Tag_6\"])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The shape of the tags with no filtering: (2514684, 2)\n", + " index count\n", + "0 Leisure trip 338423\n", + "1 Couple 205305\n", + "2 Solo traveler 89779\n", + "3 Business trip 68176\n", + "4 Group 51593\n", + "5 Family with young children 49318\n", + "6 Family with older children 21509\n", + "7 Travelers with friends 1610\n", + "8 With a pet 1078\n" + ] + } + ], + "source": [ + "# Get the value counts\n", + "tag_vc = df_tags.value.value_counts()\n", + "# print(tag_vc)\n", + "print(\"The shape of the tags with no filtering:\", str(df_tags.shape))\n", + "# Drop rooms, suites, and length of stay, mobile device and anything with less count than a 1000\n", + "df_tags = df_tags[~df_tags.value.str.contains(\"Standard|room|Stayed|device|Beds|Suite|Studio|King|Superior|Double\", na=False, case=False)]\n", + "tag_vc = df_tags.value.value_counts().reset_index(name=\"count\").query(\"count > 1000\")\n", + "# Print the top 10 (there should only be 9 and we'll use these in the filtering section)\n", + "print(tag_vc[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb b/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb new file mode 100644 index 000000000..ea7c66ecd --- /dev/null +++ b/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb @@ -0,0 +1,260 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "705bf02633759f689abc37b19749a16d", + "translation_date": "2025-09-04T03:10:35+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "[nltk_data] Downloading package vader_lexicon to\n[nltk_data] /Users/jenlooper/nltk_data...\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import time\n", + "import pandas as pd\n", + "import nltk as nltk\n", + "from nltk.corpus import stopwords\n", + "from nltk.sentiment.vader import SentimentIntensityAnalyzer\n", + "nltk.download('vader_lexicon')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "vader_sentiment = SentimentIntensityAnalyzer()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# There are 3 possibilities of input for a review:\n", + "# It could be \"No Negative\", in which case, return 0\n", + "# It could be \"No Positive\", in which case, return 0\n", + "# It could be a review, in which case calculate the sentiment\n", + "def calc_sentiment(review): \n", + " if review == \"No Negative\" or review == \"No Positive\":\n", + " return 0\n", + " return vader_sentiment.polarity_scores(review)[\"compound\"] \n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "df = pd.read_csv(\"../../data/Hotel_Reviews_Filtered.csv\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove stop words - can be slow for a lot of text!\n", + "# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches\n", + "# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends\n", + "start = time.time()\n", + "cache = set(stopwords.words(\"english\"))\n", + "def remove_stopwords(review):\n", + " text = \" \".join([word for word in review.split() if word not in cache])\n", + " return text\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove the stop words from both columns\n", + "df.Negative_Review = df.Negative_Review.apply(remove_stopwords) \n", + "df.Positive_Review = df.Positive_Review.apply(remove_stopwords)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Removing stop words took 5.77 seconds\n" + ] + } + ], + "source": [ + "end = time.time()\n", + "print(\"Removing stop words took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Calculating sentiment columns for both positive and negative reviews\n", + "Calculating sentiment took 201.07 seconds\n" + ] + } + ], + "source": [ + "# Add a negative sentiment and positive sentiment column\n", + "print(\"Calculating sentiment columns for both positive and negative reviews\")\n", + "start = time.time()\n", + "df[\"Negative_Sentiment\"] = df.Negative_Review.apply(calc_sentiment)\n", + "df[\"Positive_Sentiment\"] = df.Positive_Review.apply(calc_sentiment)\n", + "end = time.time()\n", + "print(\"Calculating sentiment took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Negative_Review Negative_Sentiment\n", + "186584 So bad experience memories I hotel The first n... -0.9920\n", + "129503 First charged twice room booked booking second... -0.9896\n", + "307286 The staff Had bad experience even booking Janu... -0.9889\n", + "452092 No WLAN room Incredibly rude restaurant staff ... -0.9884\n", + "201293 We usually traveling Paris 2 3 times year busi... -0.9873\n", + "... ... ...\n", + "26899 I would say however one night expensive even d... 0.9933\n", + "138365 Wifi terribly slow I speed test network upload... 0.9938\n", + "79215 I find anything hotel first I walked past hote... 0.9938\n", + "278506 The property great location There bakery next ... 0.9945\n", + "339189 Guys I like hotel I wish return next year Howe... 0.9948\n", + "\n", + "[515738 rows x 2 columns]\n", + " Positive_Review Positive_Sentiment\n", + "137893 Bathroom Shower We going stay twice hotel 2 ni... -0.9820\n", + "5839 I completely disappointed mad since reception ... -0.9780\n", + "64158 get everything extra internet parking breakfas... -0.9751\n", + "124178 I didnt like anythig Room small Asked upgrade ... -0.9721\n", + "489137 Very rude manager abusive staff reception Dirt... -0.9703\n", + "... ... ...\n", + "331570 Everything This recently renovated hotel class... 0.9984\n", + "322920 From moment stepped doors Guesthouse Hotel sta... 0.9985\n", + "293710 This place surprise expected good actually gre... 0.9985\n", + "417442 We celebrated wedding night Langham I commend ... 0.9985\n", + "132492 We arrived super cute boutique hotel area expl... 0.9987\n", + "\n", + "[515738 rows x 2 columns]\n" + ] + } + ], + "source": [ + "df = df.sort_values(by=[\"Negative_Sentiment\"], ascending=True)\n", + "print(df[[\"Negative_Review\", \"Negative_Sentiment\"]])\n", + "df = df.sort_values(by=[\"Positive_Sentiment\"], ascending=True)\n", + "print(df[[\"Positive_Review\", \"Positive_Sentiment\"]])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Reorder the columns (This is cosmetic, but to make it easier to explore the data later)\n", + "df = df.reindex([\"Hotel_Name\", \"Hotel_Address\", \"Total_Number_of_Reviews\", \"Average_Score\", \"Reviewer_Score\", \"Negative_Sentiment\", \"Positive_Sentiment\", \"Reviewer_Nationality\", \"Leisure_trip\", \"Couple\", \"Solo_traveler\", \"Business_trip\", \"Group\", \"Family_with_young_children\", \"Family_with_older_children\", \"With_a_pet\", \"Negative_Review\", \"Positive_Review\"], axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_NLP.csv\n" + ] + } + ], + "source": [ + "print(\"Saving results to Hotel_Reviews_NLP.csv\")\n", + "df.to_csv(r\"../../data/Hotel_Reviews_NLP.csv\", index = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역을 사용함으로써 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md b/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md new file mode 100644 index 000000000..dcd13373c --- /dev/null +++ b/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생할 수 있는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/R/README.md b/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/R/README.md new file mode 100644 index 000000000..591420cad --- /dev/null +++ b/translations/ko/6-NLP/5-Hotel-Reviews-2/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/README.md b/translations/ko/6-NLP/README.md new file mode 100644 index 000000000..06aaa3505 --- /dev/null +++ b/translations/ko/6-NLP/README.md @@ -0,0 +1,38 @@ + +# 자연어 처리 시작하기 + +자연어 처리(NLP)는 컴퓨터 프로그램이 인간의 언어를 이해할 수 있도록 하는 기술로, 말하거나 쓰여진 형태의 자연어를 이해하는 능력을 말합니다. 이는 인공지능(AI)의 한 구성 요소입니다. NLP는 50년 이상 존재해왔으며, 언어학 분야에 뿌리를 두고 있습니다. 이 분야는 기계가 인간의 언어를 이해하고 처리할 수 있도록 돕는 데 초점이 맞춰져 있습니다. 이를 통해 맞춤법 검사나 기계 번역과 같은 작업을 수행할 수 있습니다. NLP는 의료 연구, 검색 엔진, 비즈니스 인텔리전스 등 다양한 분야에서 실질적인 응용 사례를 가지고 있습니다. + +## 지역 주제: 유럽 언어와 문학, 그리고 유럽의 로맨틱 호텔 ❤️ + +이 커리큘럼의 이 섹션에서는 기계 학습의 가장 널리 사용되는 사례 중 하나인 자연어 처리(NLP)를 소개합니다. 계산 언어학에서 파생된 이 인공지능 카테고리는 음성 또는 텍스트를 통한 인간과 기계 간의 다리 역할을 합니다. + +이 강의에서는 작은 대화형 봇을 만들어 NLP의 기초를 배우고, 기계 학습이 이러한 대화를 점점 더 '스마트'하게 만드는 데 어떻게 기여하는지 알아볼 것입니다. 여러분은 시간을 거슬러 올라가, 제인 오스틴의 고전 소설 **오만과 편견**(1813년 출간)의 엘리자베스 베넷과 미스터 다아시와 대화를 나누게 될 것입니다. 이후, 유럽 호텔 리뷰를 통해 감정 분석에 대해 배우며 지식을 확장할 것입니다. + +![오만과 편견 책과 차](../../../translated_images/p&p.279f1c49ecd889419e4ce6206525e9aa30d32a976955cd24daa636c361c6391f.ko.jpg) +> 사진 제공: Elaine Howlin on Unsplash + +## 강의 목록 + +1. [자연어 처리 소개](1-Introduction-to-NLP/README.md) +2. [일반적인 NLP 작업과 기법](2-Tasks/README.md) +3. [기계 학습을 활용한 번역 및 감정 분석](3-Translation-Sentiment/README.md) +4. [데이터 준비하기](4-Hotel-Reviews-1/README.md) +5. [NLTK를 활용한 감정 분석](5-Hotel-Reviews-2/README.md) + +## 크레딧 + +이 자연어 처리 강의는 [Stephen Howell](https://twitter.com/Howell_MSFT)이 ☕와 함께 작성했습니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/6-NLP/data/README.md b/translations/ko/6-NLP/data/README.md new file mode 100644 index 000000000..524127fbb --- /dev/null +++ b/translations/ko/6-NLP/data/README.md @@ -0,0 +1,15 @@ + +이 폴더에 호텔 리뷰 데이터를 다운로드하세요. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문 번역가에 의한 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/1-Introduction/README.md b/translations/ko/7-TimeSeries/1-Introduction/README.md new file mode 100644 index 000000000..517338aea --- /dev/null +++ b/translations/ko/7-TimeSeries/1-Introduction/README.md @@ -0,0 +1,199 @@ + +# 시계열 예측 소개 + +![스케치노트로 본 시계열 요약](../../../../translated_images/ml-timeseries.fb98d25f1013fc0c59090030080b5d1911ff336427bec31dbaf1ad08193812e9.ko.png) + +> 스케치노트 제공: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +이번 강의와 다음 강의에서는 시계열 예측에 대해 배워볼 것입니다. 시계열 예측은 머신러닝 과학자의 도구 중에서 흥미롭고 가치 있는 부분으로, 다른 주제들에 비해 덜 알려져 있습니다. 시계열 예측은 일종의 '수정구슬'과 같아서, 가격과 같은 변수의 과거 성과를 바탕으로 미래의 잠재적 가치를 예측할 수 있습니다. + +[![시계열 예측 소개](https://img.youtube.com/vi/cBojo1hsHiI/0.jpg)](https://youtu.be/cBojo1hsHiI "시계열 예측 소개") + +> 🎥 위 이미지를 클릭하면 시계열 예측에 대한 동영상을 볼 수 있습니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/41/) + +시계열 예측은 가격 책정, 재고 관리, 공급망 문제와 같은 비즈니스 문제에 직접적으로 적용될 수 있어 실질적인 가치를 지닌 흥미로운 분야입니다. 딥러닝 기술이 더 나은 미래 성과를 예측하기 위해 점점 더 많이 사용되고 있지만, 시계열 예측은 여전히 고전적인 머신러닝 기술에 의해 크게 영향을 받는 분야입니다. + +> 펜실베이니아 주립대의 유용한 시계열 커리큘럼은 [여기](https://online.stat.psu.edu/stat510/lesson/1)에서 확인할 수 있습니다. + +## 소개 + +스마트 주차 미터기를 관리한다고 가정해봅시다. 이 미터기는 시간이 지남에 따라 얼마나 자주 사용되었는지, 얼마나 오래 사용되었는지에 대한 데이터를 제공합니다. + +> 미터기의 과거 성과를 바탕으로 수요와 공급의 법칙에 따라 미래 가치를 예측할 수 있다면 어떨까요? + +목표를 달성하기 위해 언제 행동해야 할지를 정확히 예측하는 것은 시계열 예측으로 해결할 수 있는 도전 과제입니다. 사람들이 주차 공간을 찾는 바쁜 시간에 더 많은 요금을 부과하는 것은 기분 좋지 않을 수 있지만, 거리를 청소하기 위한 수익을 창출하는 확실한 방법이 될 것입니다! + +이제 시계열 알고리즘의 몇 가지 유형을 살펴보고 데이터를 정리하고 준비하는 노트북을 시작해봅시다. 분석할 데이터는 GEFCom2014 예측 대회에서 가져온 것으로, 2012년부터 2014년까지 3년간의 시간별 전력 사용량과 온도 값을 포함하고 있습니다. 전력 사용량과 온도의 과거 패턴을 바탕으로 전력 사용량의 미래 값을 예측할 수 있습니다. + +이 예제에서는 과거 사용량 데이터만을 사용하여 한 시간 앞을 예측하는 방법을 배울 것입니다. 시작하기 전에, 이 과정에서 어떤 일이 일어나는지 이해하는 것이 유용합니다. + +## 몇 가지 정의 + +'시계열'이라는 용어를 접할 때, 여러 다른 맥락에서의 사용을 이해해야 합니다. + +🎓 **시계열** + +수학에서 "시계열은 시간 순서로 나열되거나 그래프로 표시된 데이터 포인트의 시리즈입니다. 가장 일반적으로 시계열은 일정한 간격으로 연속적으로 측정된 데이터의 시퀀스입니다." 시계열의 예로는 [다우존스 산업평균지수](https://wikipedia.org/wiki/Time_series)의 일일 종가가 있습니다. 시계열 플롯과 통계 모델링은 신호 처리, 날씨 예측, 지진 예측 및 기타 이벤트가 발생하고 데이터 포인트가 시간에 따라 플롯될 수 있는 분야에서 자주 사용됩니다. + +🎓 **시계열 분석** + +시계열 분석은 위에서 언급한 시계열 데이터를 분석하는 것입니다. 시계열 데이터는 '중단된 시계열'과 같이 중단 이벤트 전후의 시계열 진화 패턴을 감지하는 형태를 포함하여 다양한 형태를 취할 수 있습니다. 시계열에 필요한 분석 유형은 데이터의 특성에 따라 다릅니다. 시계열 데이터 자체는 숫자 또는 문자 시리즈 형태를 취할 수 있습니다. + +분석은 주파수 도메인 및 시간 도메인, 선형 및 비선형 등 다양한 방법을 사용합니다. 이 유형의 데이터를 분석하는 다양한 방법에 대해 [더 알아보기](https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm). + +🎓 **시계열 예측** + +시계열 예측은 과거에 수집된 데이터가 보여주는 패턴을 기반으로 미래 값을 예측하기 위해 모델을 사용하는 것입니다. 시계열 데이터를 탐색하기 위해 회귀 모델을 사용하는 것이 가능하지만, 시간 인덱스를 x 변수로 플롯하는 경우, 이러한 데이터는 특별한 유형의 모델을 사용하는 것이 가장 좋습니다. + +시계열 데이터는 선형 회귀로 분석할 수 있는 데이터와는 달리 순서가 있는 관측값 목록입니다. 가장 일반적인 모델은 ARIMA로, "자기회귀 통합 이동평균"을 의미하는 약어입니다. + +[ARIMA 모델](https://online.stat.psu.edu/stat510/lesson/1/1.1)은 "현재 시계열 값을 과거 값과 과거 예측 오류와 관련짓습니다." 이러한 모델은 시간 도메인 데이터, 즉 시간이 지남에 따라 순서가 지정된 데이터를 분석하는 데 가장 적합합니다. + +> ARIMA 모델에는 여러 유형이 있으며, [여기](https://people.duke.edu/~rnau/411arim.htm)에서 배울 수 있습니다. 다음 강의에서 이에 대해 다룰 것입니다. + +다음 강의에서는 [단변량 시계열](https://itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm)을 사용하여 ARIMA 모델을 구축할 것입니다. 단변량 시계열은 시간이 지남에 따라 값이 변하는 하나의 변수에 초점을 맞춥니다. 이러한 유형의 데이터의 예로는 마우나로아 관측소에서 월별 CO2 농도를 기록한 [이 데이터셋](https://itl.nist.gov/div898/handbook/pmc/section4/pmc4411.htm)이 있습니다: + +| CO2 | YearMonth | Year | Month | +| :----: | :-------: | :---: | :---: | +| 330.62 | 1975.04 | 1975 | 1 | +| 331.40 | 1975.13 | 1975 | 2 | +| 331.87 | 1975.21 | 1975 | 3 | +| 333.18 | 1975.29 | 1975 | 4 | +| 333.92 | 1975.38 | 1975 | 5 | +| 333.43 | 1975.46 | 1975 | 6 | +| 331.85 | 1975.54 | 1975 | 7 | +| 330.01 | 1975.63 | 1975 | 8 | +| 328.51 | 1975.71 | 1975 | 9 | +| 328.41 | 1975.79 | 1975 | 10 | +| 329.25 | 1975.88 | 1975 | 11 | +| 330.97 | 1975.96 | 1975 | 12 | + +✅ 이 데이터셋에서 시간이 지남에 따라 변하는 변수를 식별하세요. + +## 시계열 데이터에서 고려해야 할 특성 + +시계열 데이터를 살펴보면, 데이터를 더 잘 이해하기 위해 고려하고 완화해야 할 [특정 특성](https://online.stat.psu.edu/stat510/lesson/1/1.1)이 있음을 알 수 있습니다. 시계열 데이터를 분석하고자 하는 '신호'로 간주한다면, 이러한 특성은 '노이즈'로 생각할 수 있습니다. 통계적 기법을 사용하여 이러한 '노이즈'를 줄여야 할 때가 많습니다. + +시계열 데이터를 다루기 위해 알아야 할 몇 가지 개념은 다음과 같습니다: + +🎓 **추세** + +추세는 시간에 따른 측정 가능한 증가와 감소로 정의됩니다. [더 알아보기](https://machinelearningmastery.com/time-series-trends-in-python). 시계열의 맥락에서 추세를 사용하는 방법과 필요하다면 추세를 제거하는 방법에 대해 알아보세요. + +🎓 **[계절성](https://machinelearningmastery.com/time-series-seasonality-with-python/)** + +계절성은 예를 들어 휴일 판매 급증과 같이 주기적인 변동으로 정의됩니다. 데이터에서 계절성을 표시하는 다양한 유형의 플롯을 [살펴보세요](https://itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm). + +🎓 **이상치** + +이상치는 표준 데이터 변동에서 멀리 떨어져 있는 값입니다. + +🎓 **장기 주기** + +계절성과는 독립적으로, 데이터는 1년 이상 지속되는 경제 침체와 같은 장기 주기를 나타낼 수 있습니다. + +🎓 **일정한 분산** + +시간이 지남에 따라 일부 데이터는 일정한 변동을 나타냅니다. 예를 들어, 낮과 밤의 에너지 사용량. + +🎓 **급격한 변화** + +데이터는 추가 분석이 필요한 급격한 변화를 나타낼 수 있습니다. 예를 들어, COVID로 인해 사업체가 갑자기 문을 닫으면서 데이터에 변화가 생겼습니다. + +✅ [샘플 시계열 플롯](https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python)은 몇 년 동안의 일일 게임 내 통화 사용량을 보여줍니다. 이 데이터에서 위에 나열된 특성 중 일부를 식별할 수 있나요? + +![게임 내 통화 사용량](../../../../translated_images/currency.e7429812bfc8c6087b2d4c410faaa4aaa11b2fcaabf6f09549b8249c9fbdb641.ko.png) + +## 연습 - 전력 사용량 데이터 시작하기 + +과거 사용량을 바탕으로 미래 전력 사용량을 예측하는 시계열 모델을 만들어 봅시다. + +> 이 예제의 데이터는 GEFCom2014 예측 대회에서 가져온 것입니다. 2012년부터 2014년까지 3년간의 시간별 전력 사용량과 온도 값을 포함하고 있습니다. +> +> Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016. + +1. 이 강의의 `working` 폴더에서 _notebook.ipynb_ 파일을 엽니다. 데이터를 로드하고 시각화하는 데 도움이 되는 라이브러리를 추가하세요. + + ```python + import os + import matplotlib.pyplot as plt + from common.utils import load_data + %matplotlib inline + ``` + + 참고로, 포함된 `common` 폴더의 파일을 사용하여 환경을 설정하고 데이터를 다운로드합니다. + +2. 다음으로, `load_data()`와 `head()`를 호출하여 데이터프레임으로 데이터를 확인하세요: + + ```python + data_dir = './data' + energy = load_data(data_dir)[['load']] + energy.head() + ``` + + 날짜와 사용량을 나타내는 두 개의 열이 있음을 알 수 있습니다: + + | | load | + | :-----------------: | :----: | + | 2012-01-01 00:00:00 | 2698.0 | + | 2012-01-01 01:00:00 | 2558.0 | + | 2012-01-01 02:00:00 | 2444.0 | + | 2012-01-01 03:00:00 | 2402.0 | + | 2012-01-01 04:00:00 | 2403.0 | + +3. 이제 `plot()`을 호출하여 데이터를 플롯하세요: + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![에너지 플롯](../../../../translated_images/energy-plot.5fdac3f397a910bc6070602e9e45bea8860d4c239354813fa8fc3c9d556f5bad.ko.png) + +4. 2014년 7월 첫째 주를 `[시작 날짜]:[종료 날짜]` 패턴으로 `energy`에 입력하여 플롯하세요: + + ```python + energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![7월](../../../../translated_images/july-2014.9e1f7c318ec6d5b30b0d7e1e20be3643501f64a53f3d426d7c7d7b62addb335e.ko.png) + + 멋진 플롯입니다! 이러한 플롯을 살펴보고 위에 나열된 특성 중 일부를 확인할 수 있는지 보세요. 데이터를 시각화함으로써 무엇을 추론할 수 있을까요? + +다음 강의에서는 ARIMA 모델을 만들어 예측을 수행할 것입니다. + +--- + +## 🚀도전 과제 + +시계열 예측이 도움이 될 수 있는 모든 산업 및 연구 분야를 목록으로 만들어 보세요. 예술, 계량경제학, 생태학, 소매업, 산업, 금융 등에서 이러한 기술의 응용 사례를 생각해볼 수 있나요? 또 어디에서 사용할 수 있을까요? + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/42/) + +## 복습 및 자기 학습 + +여기서는 다루지 않지만, 신경망은 고전적인 시계열 예측 방법을 강화하는 데 때때로 사용됩니다. 이에 대해 [이 기사](https://medium.com/microsoftazure/neural-networks-for-forecasting-financial-and-economic-time-series-6aca370ff412)를 읽어보세요. + +## 과제 + +[더 많은 시계열 시각화하기](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생할 수 있는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/1-Introduction/assignment.md b/translations/ko/7-TimeSeries/1-Introduction/assignment.md new file mode 100644 index 000000000..eee0d8fda --- /dev/null +++ b/translations/ko/7-TimeSeries/1-Introduction/assignment.md @@ -0,0 +1,25 @@ + +# 몇 가지 추가적인 시계열 데이터 시각화 + +## 지침 + +시계열 예측에 필요한 특별한 모델링이 요구되는 데이터 유형에 대해 배우기 시작했습니다. 에너지 관련 데이터를 시각화해 보았습니다. 이제 시계열 예측이 유용할 수 있는 다른 데이터를 찾아보세요. 세 가지 예제를 찾아보세요 (예: [Kaggle](https://kaggle.com) 및 [Azure Open Datasets](https://azure.microsoft.com/en-us/services/open-datasets/catalog/?WT.mc_id=academic-77952-leestott)). 이를 시각화하는 노트북을 만들어 보세요. 노트북에 데이터의 특별한 특성(계절성, 급격한 변화, 기타 추세 등)을 기록하세요. + +## 평가 기준 + +| 기준 | 우수한 경우 | 적절한 경우 | 개선이 필요한 경우 | +| --------- | ----------------------------------------------------- | -------------------------------------------------- | --------------------------------------------------------------------------------------- | +| | 세 가지 데이터셋이 노트북에서 시각화되고 설명됨 | 두 가지 데이터셋이 노트북에서 시각화되고 설명됨 | 데이터셋이 적게 시각화되거나 설명되었거나, 제시된 데이터가 불충분함 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/1-Introduction/solution/Julia/README.md b/translations/ko/7-TimeSeries/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..976ba3bb1 --- /dev/null +++ b/translations/ko/7-TimeSeries/1-Introduction/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/1-Introduction/solution/R/README.md b/translations/ko/7-TimeSeries/1-Introduction/solution/R/README.md new file mode 100644 index 000000000..c8ad7644f --- /dev/null +++ b/translations/ko/7-TimeSeries/1-Introduction/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 신뢰할 수 있는 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/1-Introduction/solution/notebook.ipynb b/translations/ko/7-TimeSeries/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..9fa082eb8 --- /dev/null +++ b/translations/ko/7-TimeSeries/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,171 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 데이터 설정\n", + "\n", + "이 노트북에서는 다음을 시연합니다:\n", + "- 이 모듈에 사용할 시계열 데이터를 설정하는 방법\n", + "- 데이터를 시각화하는 방법\n", + "\n", + "이 예제의 데이터는 GEFCom2014 예측 대회에서 가져왔습니다. \n", + "2012년부터 2014년까지 3년간의 시간별 전기 부하와 온도 값을 포함하고 있습니다. \n", + "\n", + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli 및 Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, 2016년 7월-9월.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import matplotlib.pyplot as plt\n", + "from common.utils import load_data\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "CSV에서 데이터를 Pandas 데이터프레임으로 불러오기\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ], + "text/html": "
                                                    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
                                                    load
                                                    2012-01-01 00:00:002698.0
                                                    2012-01-01 01:00:002558.0
                                                    2012-01-01 02:00:002444.0
                                                    2012-01-01 03:00:002402.0
                                                    2012-01-01 04:00:002403.0
                                                    \n
                                                    " + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "data_dir = './data'\n", + "energy = load_data(data_dir)[['load']]\n", + "energy.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "모든 사용 가능한 부하 데이터를 플롯하십시오 (2012년 1월부터 2014년 12월까지)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhb5ZU/8O+r3bYkO7bl3YljZ3dCnJBASCCQFkqBgUDpBrRMZ6YLMJ2l26/TTjtDmelMp09nOtNOaUt31tKFtRToQAkpSUhIiJPY2Z14X+VFkiVL1vL+/pBkjHESL5Ku7r3fz/P4IbF07z1Gsa1z3/OeI6SUICIiIiIiIgIAg9IBEBERERERUfZgkkhEREREREQTmCQSERERERHRBCaJRERERERENIFJIhEREREREU1gkkhEREREREQTTEoHoITi4mJZU1OjdBhERERERESKOHDggFtK6ZruMV0miTU1Ndi/f7/SYRARERERESlCCNF2rsdYbkpEREREREQTmCQSERERERHRBCaJRERERERENEGXexKJiIiIiIgAIBwOo7OzE8FgUOlQ0sJms6Gqqgpms3nGxzBJJCIiIiIi3ers7ITD4UBNTQ2EEEqHk1JSSgwODqKzsxOLFy+e8XEsNyUiIiIiIt0KBoMoKirSXIIIAEIIFBUVzXqVlEkiERERERHpmhYTxKS5fG1MEomIiIiIiBRkt9tTcp57770X3/rWt+Z9HiaJRERERERENIFJIhERERERURaQUuILX/gCVq9ejTVr1uDxxx8HAIyOjuLd73431q9fjzVr1uDpp5+eOObrX/86li1bhssvvxwnTpxISRzsbkpERERERATga88242i3N6XnXFXhxD/fWD+j5z7xxBNobGzEoUOH4Ha7sXHjRmzduhUulwtPPvkknE4n3G43Nm3ahJtuuglvvvkmfvnLX6KxsRGRSATr16/HxRdfPO+YuZJIRERERESUBV577TXcdtttMBqNKC0txZVXXok33ngDUkp8+ctfxkUXXYSrr74aXV1d6Ovrw5/+9CfccsstyM3NhdPpxE033ZSSOLiSSEREREREBMx4xS/THnnkEQwMDODAgQMwm82oqamZ9ViL2eBKIhERERERURa44oor8PjjjyMajWJgYAA7d+7EJZdcAo/Hg5KSEpjNZrzyyitoa2sDAGzduhVPPfUUxsbG4PP58Oyzz6YkDq4kEmnQSGAcDpsZRoN2Z/4QERERac0tt9yCPXv2YO3atRBC4Jvf/CbKyspwxx134MYbb8SaNWuwYcMGrFixAgCwfv16fOhDH8LatWtRUlKCjRs3piQOIaVMyYnUZMOGDXL//v1Kh0GUFj2eMbznv3ZiZbkTP7pzA/JzzUqHRERERJS1jh07hpUrVyodRlpN9zUKIQ5IKTdM93yWmxJpzL///jhC0RgaO0bwgR/uRo9nTOmQiIiIiEhFMpYkCiF2CCGCQojRxMeJSY/dLoRoE0L4hRBPCSEKJz1WKIR4MvFYmxDi9innPeexRHrzRusQnjnUjbu21uLnf7ER3SNB3Hr/bpzq8ykdGhERERGpRKZXEj8tpbQnPpYDgBCiHsAPAXwUQCmAAID7Jx3zPQDjicfuAPD9xDEzOZZIN6IxiXufaUZ5vg13XVWHzUuK8finNiEck3j/D/Zgf+uQ0iESERERkQpkQ7npHQCelVLulFKOAvgqgPcJIRxCiDwAtwL4qpRyVEr5GoBnEE8Kz3usAl8HkaJ+tb8Dzd1efOn6lci1xHtS1Vfk44m7N6Mwz4I7frwXe1oGFY6SiIiIKPtouU/LXL62TCeJ/y6EcAshdgkhrkp8rh7AoeQTpJQtiK8cLkt8RKSUJyed41DimAsd+zZCiE8KIfYLIfYPDAyk8EsiUp5nLIxvvXgCl9QU4saLyt/2WHVhLn5z12UoyrPg/h2nFYqQiIiIKDvZbDYMDg5qMlGUUmJwcBA2m21Wx2VyBMYXARxFPIn7MIBnhRANAOwAPFOe6wHgABAF4D3HY7jAsW8jpXwAwANAvLvpnL8Koiz0nZdPYSgwjl/cuApCvHPsRZHdilsvrsL3XjmNfl8QJY7Z/aAgIiIi0qqqqip0dnZCqwtJNpsNVVVVszomY0milHLvpL/+QghxG4DrAYwCcE55uhOAD0DsPI/hAscS6cLpfh9+sbsVH964EKsr88/5vO0NFfjuH0/jd4d68JeXL85ghERERETZy2w2Y/FivjeaTMk9iRKAANAMYG3yk0KIWgBWACcTHyYhxNJJx61NHIMLHEukC//yu2PIsRjx+fe8o8r6bZaUOFBf4cTTh7ozFBkRERERqVFGkkQhRIEQ4lohhE0IYRJC3AFgK4AXADwC4EYhxBWJRjX3AXhCSumTUvoBPAHgPiFEnhBiC4DtAB5KnPqcx2bi6yJSWlOXB6+eHMCnty1Bkd16wedvb6jAoY4RnHX7MxAdEREREalRplYSzQD+FcAAADeAvwFws5TypJSyGcBdiCd8/YjvJ7xn0rH3AMhJPPYYgLsTx2AGxxJp2iN722AzG/DhSxbO6Pk3rq2AEMAzjVxNJCIiIqLpZWRPopRyAMDG8zz+KIBHz/HYEICb53IskZZ5g2E8dbAbN62tQH6OeUbHlOfn4NLFhXj6UBf+9t1Lpm1yQ0RERET6lg1zEoloDp58swtj4Sg+smnRrI7b3lCJMwN+NHVNbRxMRERERMQkkUiVpJR4+PU2XFSVj4uqCmZ17PWry2E2Cjzd2JWm6IiIiIhIzZgkEqnQvrNDONU/OutVRADIzzXjquUlePZwN6IxjgwlIiIiordjkkikQg+93ganzYQbL6qY0/HbGyrQ5w1h75nBFEdGRERERGrHJJFIZQZ8IbzY3Iv3X1yNHItxTue4emUp8ixGPM0up0REREQ0BZNEIpX51f4OhKMSd2ya2diL6djMRly7ugy/b+pBMBxNYXREREREpHZMEolUJBqTeHRvOzbXFaHOZZ/XuW5uqIQvGMGOEwMpio6IiIiItIBJIpGK7DjRj66RsTk1rJlqc10RFuSa8YejvSmIjIiIiIi0gkkikYo8/HobShxWXLOqdN7nMhkN2LykGLtPD0JKdjklIiIiojgmiUQqMRIYx46TA/jghmqYjan51t1SV4xebxBn3P6UnI+IiIiI1I9JIpFK7GkZhJTAthWulJ1zy5IiAMDu0+6UnZOIiIiI1I1JIpFK7GpxI89ixEVVBSk758LCXFQW5OA1JolERERElMAkkUgldp8exCWLC1NWagoAQghsWVKEPS2DiMa4L5GIiIiImCQSqUKPZwxn3H5sWVKc8nNvWVIMbzCC5m5Pys9NREREROrDJJFIBXafHgQAbK5LfZKYPOeuxDWIiIiISN+YJBKpwK4WNwrzLFhR5kj5uV0OK5aXOrC7hfsSiYiIiIhJIlHWk1Ji9+lBXFZbBINBpOUam5cUYd/ZIQTD0bScn4iIiIjUg0kizUgwHMWxHi9+d7gbD+xswcvH+uAeDSkdli6ccfvR6w1ic2JcRTpsqStGKBLDm+3DabsGEREREamDSekAKDtJKfHKiX48tq8DJ/t86BgKYLrml1ULcrC2ugAbFy3AbZcuhNVkzHywGre7Jb5XcEsa9iMmXVpbCKNBYPfpwbTseyQiIiIi9WCSSG8TjUk8d6QH979yGsd7fShz2nDxogXY3lCJJSV2LHHZUZ5vw6n+URzqGEFjxwga20fw3OEetA4GcO9N9Up/CZqz+7QbFfk2LCrKTds1HDYz1lblY1eLG5/H8rRdh4iIiIiyH5NEAhBPDn9zoAPf39GC1sEA6lx5+M8PrMVNDRXTzuW7ZHEhLllcOPH3e59pxs93t+JdK0qwdZkrk6FrWiwmsefMIK5eWQoh0rMfMWnLkmLcv6MF3mAYTps5rdciIiIiouzFPYmEPm8QH/nxXnzxt0fgsJnxg4+sx/995krcenHVjAe3/8N1K7CkxI7P//oQhv3jaY5YP472eDESCGNLGvcjJm2uK0Y0JrH3zFDar0VERERE2YtJos69enIA1//Pn9DYMYJvvv8iPPPpLXjv6vJZd9G0mY347w81YMg/jn986giknGYDI81acixFJvYJrl9UAJvZgF2nOQqDiIiISM+YJOpUOBrDN54/jj//6T4U26149m+24IMbqudV0ri6Mh+fuWYZfn+kF0+82ZXCaPVr1+lB1LnyUOq0pf1aVpMRG2sKOS+RiIiISOeYJOqQJxDGh364Bz94tQW3X7oQT396C5aUpGZI+11X1mFjzQL88zPN6BgKpOScejUeiWHf2SFsWZK5bqNblhTjZN8o+n3BjF2TiIiIiLILk0Qd+u4fT6GxYwTfuW0d/u2WNbCZUze2wmgQ+K8PNgAAPverQ4hONzeDZqSxYwRj4WhGR1Ikx2zsSYzdICIiIiL9YZKoM10jY3jw9Tbcur4KN62tSMs1qgtz8c83rsK+1iE8d6QnLdfQg90tbggBbKotvPCTU2RVhROFeRY8f6Q3Y9ckIiIiouzCJFFn/uelkwCAv79mWVqvc+v6KlQW5OA3BzrTeh0t2316EKsr8lGQa8nYNY0GgQ9cXIX/O9aHPi9LTomIiIj0iEmijpzq8+E3Bzpx56ZFqCzISeu1DAaBW9dX4rVTA+j1MNmYrWA4ioMdw9hcl/7RF1PdfulCRGMSj+1rz/i1iYiIiEh5TBJ15Ft/OIE8iwn3bFuSkeu9b30VYhJ48iA7nc7W8V4fwlGJdQsLMn7tRUV52LrMhV/u60AkGsv49YmIiIhIWUwSdeJg+zBebO7DJ7fWojAvM+WLNcV52FizAL850MG5ibN0pMsDAKivyFfk+h+5dCF6vUG8dKxfkesTERERkXKYJOqAlBL/8cJxFNst+MvLF2f02u+/uAotA340doxk9Lpq19TpQUGuGVUL0lsWfC7vWlGC8nwbHtnbpsj1iYiIiEg5TBJ1YOcpN14/M4S/eddS5FlNGb329WvKYTMb2MBmlpq6PVhTmQ8hhCLXNxkNuP2ShfjTKTfOuv2KxEBEREREymCSqHGxmMQ3XziO6sIc3HbJwoxf32Ez47rV5Xj2UDeC4WjGr69GoUgUJ/t8ipWaJn3okmqYDAKPvM7VRCIiIiI9YZKocS8296K524vPXrMMFpMyL/et66vgDUbw0rE+Ra6vNicSTWvWVCqbJJY4bLi2vgy/PtDJBJ+IiIhIR5gkapiUEv/7ymnUFufhprWVisVxWV0RKvJtLDmdoaYuLwAoniQCwB2bFsIzFsbvDvcoHQoRERERZQiTRA3bcXIAzd1e3HVVHYwGZfa2AfEB7e9bX4WdJwc4oH0GjnR54LSZUF2oTNOayS6rLUKdKw8Ps+SUiIiISDeYJGrY/a+cRmVBDm5Zp9wqYtKtF3Nm4kw1dXmwWsGmNZMJIfCRTYvQ2DGCpsRYDiIiIiLSNiaJGrX3zCDeaB3GJ7fWwmxU/mVeXJyHDYsW4DcHOjkz8TzGIzGc6PVlRalp0vvWV8FmNuCxfe1Kh0JEREREGaB89kBp8b0dLSi2W/ChjdVKhzLh/RdX4XT/KB7Z285E8RxO9vkwHo2hPouSxPwcM66tL8NzR3owHokpHQ4RERERpRmTRA063DmCnScH8FeX18JmNiodzoSbGiqwqbYQX3mqCZ986ADcoyGlQ8o6yZLObFpJBICbGyoxEgjj1ZMDSodC0+gcDuDh19vw6/0dCEeZyBMREdH8ZHayOmXE/a+0wGkz4SObMj8X8XxyLSY8+vFN+Omus/jmiydw7bd34uu3rMF7V5cpHVrWaOr2wGE1YVFhrtKhvM3lS4tRmGfBU41duGZVqdLh6F4kGsP+tmG8crwfr5zox8m+0YnHfvBqC7503Uq8e2VJVuxrJSIiIvXhSqLGnOrz4YXmXnxscw0cNrPS4byDwSDw8Stq8bu/uRxl+Tbc9fABfO5XhxCKcA4fABzp8mJVhRMGBbvRTsdsNODPLirHS0f74AuGlQ5H18YjMXzkJ3vx4Qdex093nYXLYcVXbliJlz57JX505wZICXz8wf247Uev40gnmw0RERHR7DFJ1Jjv72hBjtmIj21ZrHQo57Ws1IEn79mCe66qw2/f7MTTjd1Kh6S4cDSGYz3erCs1Tbp5XSVCkRheaOpVOhTdklLin55uwutnhvDPN67CwX96Dx75+CZ8/IpaLCmx45pVpXjxM1tx3/Z6nOwbxY3/+xq+8fxxpcMmIiIilWGSqCEdQwE8fagbd1y6EIV5FqXDuSCLyYAvXLscRXkW7GkZVDocxZ3uH8V4JIY1VdmZJK6rLsCiolwm9Ap6cE8bfvlGB/56Wx3+Ysti2K3v3DFgNhpw52U12PGFq7C9oQI/3NmCloHRac5GREREND0miRryfFMPojGJj22pUTqUGRNCYFNtEfa0DOq+4+mRRNOa+orsTBKFENi+tgK7Wtzo8waVDkd3dp12477fHcXVK0vxuWuWX/D5TpsZX/2zVbAYDXjg1TMZiJCIiIi0gkmihuw4MYDlpQ5ULciupicXsqmuCL3eIFoHA0qHoqjmLg/yLEbUFucpHco5bV9XCSmBZw9xNTGTWt1+3PPIm6hz5eG/P9ww4z2rxXYrPrihGk8c7ESvh4k9ERERzQyTRI0YDUXwRusQrlruUjqUWbustggAdF9yeqTLg/qK/KxrWjNZncuOi6ry8VRjl9Kh6IYvGMbHH9wPIYAf37lx2hLT8/nk1lrEJPDTXWfTFCERERFpDZNEjdh92o1wVOLKZepLEutceXA5rNhzRr9JYiQaw9EeL+ornUqHckHbGyrR1OXF6X6f0qFonpQSn/3VIZx1+3H/HeuxsGj2VQLVhbm4YU05Hnm9DZ4AO9MSERHRhTFJ1IhXTw4gz2LEhppCpUOZNSEELtP5vsQzbj+C4VjWdjad7Ma15TAI4KmDLDlNt5/tasX/He3Dl69fic11xXM+z11X1sE/HsXDe9tSGB0RERFpFZNEDZBSYseJAWxeUgyLSZ0v6WV1RXCPhnTbhTE5z04NSWKJw4YtS4rx9KEu3Sb1mXC4cwT//vwxXL2yFH85z2ZUqyqcuHKZCz/bdRbBMGeSEhER0fmpM6Ogt2kZGEXXyJgq9yMmTexLPDOkcCTKONLlQY7ZiFqXXelQZuTmhkp0DI3hzfZhpUPRJG8wjE8/ehAuuxXf+sBFEGL++1TvvqoO7tFx/PpAZwoiJCIiIi1jkqgBO04MAIAq9yMmLSrKRXm+Da/rtHlNc7cHqyqcMGZx05rJrl1dBpvZgGc4MzHlpJT40hNH0DUyhu/ctg4FuamZeXrp4kI0VBfgRzvPIBKNpeScREREpE1MEjXg1ZMDWFJiV93oi8mS+xJfP6O/fYmxmERztxerK7K/aU2S3WrClrpivHJiQHevV7o9tq8Dzx3uwefesyyle4yFELj7qjq0DwXwfFNvys5LRERE2sMkUeUC4xHsPTOEq1S8ipi0qa4Ig/5xnOzT177ErpExBMajWF6mniQRAK5aUYL2oQDOuP1Kh6IZx3q8+NqzzbhiaTHu2lqX8vNfs7IUda483L+jBbEYk3siIiKaHpNEldvTMojxaAxXLS9ROpR5e2teolvhSDKrdTCeZC0uzlM4ktlJ3ph45Xi/wpFox33PHoXDZsa3P9SQlnmZBoPAX29bgmM9XrzYzNVEIiIiml7Gk0QhxFIhRFAI8XDi71cJIWJCiNFJH38+6fmFQognhRB+IUSbEOL2Kee7PfF5vxDiKSGE+mZAzMOOEwPIMRuxcfECpUOZt+rCXFQtyNHdvMRWtzqTxOrCXCwtsU/siaX5cY+GsPfsIG6/pBrFdmvarrO9oRJ1rjx8+6WTiHI1kYiIiKahxEri9wC8MeVz3VJK+6SPX0x5/jiAUgB3APi+EKIeABL//SGAjyYeDwC4P91fQLaQUmLHyX5sriuC1WRUOpyUuKy2CHvPDumqFO6M248csxGlzvQlBuly1XIX9p0dgj8UUToU1XvpaB9iMt4UKJ2MBoG/v3oZTvaN4rkjPWm9FhEREalTRpNEIcSHAYwAeHmGz88DcCuAr0opR6WUrwF4BvGkEIgnjc9KKXdKKUcBfBXA+4QQjtRHn33Ouv3oGFL36IupLqsrwkggjGO9XqVDyZhWtx81xXkpGXOQaduWl2A8GsNunXalTaUXmntRXZiDVeXp35t6w5pyLC914L9fOslOp0RERPQOGUsShRBOAPcB+Ow0D5cIIfqEEGeFEN9OJIcAsAxAREp5ctJzDwGoT/y5PvF3AICUsgXxVcdlKf8CslCyzE8L+xGTLqtL7kvUT9LROhjA4mJ1dqbdUFOIPIsRr5zgvsT58AbD2HXajffWl2XkZoHBIPCZa5bizIAfT3OMCREREU2RyZXEfwHwEynl1EnOxwE0ACgH8C4AFwP4r8RjdgBTl5Q8AByTHvec5/EJQohPCiH2CyH2DwxoYw/VjpMDqHXlobpQnQnGdMrzc1BTlIvXdbIvMRyNoX0ogJoide1HTLKYDLh8aTF2HO/nKIx5eOV4P8JRifemudR0smvry1Bf4cR3/ngKYa4mEhER0SQZSRKFEA0Argbw7amPSSl7pZRHpZQxKeVZAP8P8RJTABgFMLX2ygnAN8PHJ1/nASnlBinlBpdL/eWZwXAUe88M4koNjL6Y6rK6+L5EPTTV6BweQzQmVde0ZrJty0vQ7QnqbnRJKr3Q1AuXw4p11ZlrQCWEwGeuXoa2wQCeeHPqvTsiIiLSs0ytJF4FoAZAuxCiF8DnAdwqhHhzmufKSXGdBGASQiyd9PhaAM2JPzcn/g4AEELUArAmjtO0vWeHEIpoY/TFVJtqi+ALRtDcPXWRWHvU2tl0suS/QZaczs3YeBQ7Tgzg2vrStIy9OJ93ryzB2qp8fOfl0xiPcDWRiIiI4jKVJD4AoA7xstIGAD8A8ByAa4UQ24QQi0RcNYBvAHgaAKSUfgBPALhPCJEnhNgCYDuAhxLnfQTAjUKIKxL7GO8D8ISU8h0riVpzsH0YQgAXL1L/6IupLqoqAACc0sHK1BkNJIll+TasLHdyXuIc7Tw1gLFwFO+tL8/4tYUQ+Mw1y9A1MobH93dk/PpERESUnTKSJEopA4my0l4pZS/iZaJBKeUAgHUAdgPwJ/57BMDfTjr8HgA5APoBPAbgbillc+K8zQDuQjxZ7Ed8L+I9mfialHa404OlJXbYrSalQ0m5YrsFADDoDykcSfq1uv1w2EwozLMoHcq8bFvuwv62YXiDYaVDUZ0Xm3qRn2PGpbXKjHi9cpkLGxYtwHdePgXPGF8/IiIiUmZOIqSU90opP5L4839JKSullLlSymop5d9OXgmUUg5JKW+WUuZJKRdKKR+dcq5HE5/Pk1Jul1IOZfrryTQpJQ51jGBtYsVNa+xWE6wmA9yj40qHknatg34sVun4i8m2rShBNCax65Rb6VBUZTwSw0vH+nD1ylKYjYr8OIYQAvfeVI8h/zi+8fwxRWIgIiKi7KLMuxKal87hMQz6x3FRtTaTRCEEiu1WuH3aX0k8M+BXdalp0rrqAjhtJu5LnKXXzwzCG4xktKvpdFZX5uPjly/GY/s6dDV+hoiIiKbHJFGFDnWOAAAaNLqSCMRLTgdGtZ0kBsNRdHvGVDv+YjKT0YArlrnwyokBjsKYhReae5FrMeKKpcVKh4K/v3oZFhbm4stPHkEwHFU6HCIiIlIQk0QVOtzpgcVkwPKyd4yD1IxiuxWDGi83bR8KQEp1N62ZbNvyEgz4QmjunjralKYTjUn8obkP25aXwGY2Kh0OcixG/Pv71uCs24/vvHxK6XCIiIhIQUwSVaixYwSryp2wmLT78hXbrXBrfCXxrAY6m06WnNn5R3Y5nZE324fhHg3hWoVLTSfbsqQYH7i4Cj/ceQZHmewTERHplvZaY2pcJBrDkU4PPrSxWulQ0qrYYcGgfxyxmMz47LhMSc5IrNFIkuhyWLGpthC/3NeOu6+qU6wRi1q80NQLi9GAbctdSofyNv94w0q8cqIf//DEYTxx92aY+DoSERGd15mBUfzxeD9CkRhCkRjC0RjGIzFYTAasKHNgVbkTi4vzVPU7lUmiypweGMVYOIq11flKh5JWRXlWRGMSnrEwFqh8PMS5nHX7UZhnQX6OWelQUuYTV9Tir36xH78/0oPtDZVKh5PVdp1249LaQjhs2fX6F+RacO9N9fj0owfxs12t+MTWWqVDIiIiykrjkRh+8GoL/vePpzEejU183mI0wGIyIBSJIhyN92qwJraKbawpxKe3Lcn697dMElXmcIcHADQ7/iKp2GEFALhHQ1n/TTRXZ93a6Gw62bblJahz5eGHr57BTWsrVD/aI11GQxGc6PPh2vrsKTWd7IY15fjVsk78cGcLPn7FYr6OREREUxxoG8I//PYITvWP4sa1FfjSdStQZLfAYjRM/N4MR2NoGRjFsR4vjnZ7cbTHi1/sbsVTB7vwTzeuyur3SupZ8yQAQGPnCBw2kyY6Yp5PsT2eGGq5w2nroF9zr6PBIPDJrbU42uPFrtMcpXAuhztHICXQsDA7b/YIIXDd6jK4R8cn9s4SERFR/EbvV546glu/vweB8Sh+9rGN+O5t61BRkAOryfi2pM9sNGBFmRO3rKvCP96wCo98fBOe/ZvLUVWYi7/7ZSM+9rM30DEUUPCrOTcmiSpzqGMEa6sKNLtPL6nYnlxJ1GaHU38ogj5vCIuLc5UOJeW2N1Si2G7FA386o3QoWauxI/vH2GysWQAA2N86rHAkRERE2ePeZ5rx6N52/OWWxfjDZ7Zi24qSWR2/styJJ+7ejH++cRXeaB3Ce769Ez/fdTZN0c4dk0QVCYajON7r0/x+ROCtJHFQoyuJrYPJzqZ2hSNJPZvZiL/YUoOdJwdwrIcdMqfT2D6CmqLcrC6lrnPZsSDXjP1tQ0qHQkRElBU6hwN46mAXPrZ5Mf7pxlXIs85t557RIPAXWxbj/z57JTbVFuLeZ4/iV290pDja+WGSqCLN3V5EYxIXZfHqQ6oU5JhhNAjNjsFodcdLC2o0uJIIAHdcuhC5FiN+xNXEd5BS4mDHCNYtXKB0KMnIF7IAACAASURBVOclhMDFixZwJZGIiCjhRzvPQAjgE1sXp+R8lQU5+NGdG3DF0mJ85akmHGzPnt+5TBJV5FCyRK1a+0miwSBQmGeB26fNctOz7lEA0NyexKSCXAs+uKEazzR2o8czpnQ4WaXbE8SAL6SK7+MNNYU44/Zr9mYNERHRTLlHQ/jlGx24ZV0lyvNzUnZek9GA7962DmX5Ntz18AH0e4MpO/d8MElUkUOdIyhz2lDqtCkdSkYU260Y9GvzzelZdwClTuucyxTU4K8uXwwJ4Oe7WpUOJas0tqvnZk9yX+KBtuy5s0lERKSEn+06i/FoDJ+6si7l5y7IteCBOy+GdyyCux4+gFAkmvJrzBaTRBU53OnRxX7EpGK7BQMabVyjxc6mU1UX5uL6NeV4dG87fMGw0uFkjYPtw7CYDFhZ7lQ6lAtaXZkPi8mA/a3cl0hERPrlC4bx4J42XLe6DHWu9PSTWFHmxH9+cC3ebB/Bvc8cTcs1ZoNJokqMBOKt6PWwHzGp2G6F26fVlUQ/al3aThIB4JNX1MIXiuDxLNuMraTGjhGsrnDCYsr+H79WkxFrq/LxBvclEhGRjj38ejt8wQjuuWpJWq9z/Zpy/PW2Ojy2rx2P7G1L67UuJPvfpRCA+CoioI4StVQptlsw6A9BSql0KCnlGQtjyD+u+ZVEAFhTlY/lpQ7sOu1WOpSsEI7GcKTLg4bq7G5aM9mGmkI0dXkwNq586QsREVGmBcNR/OS1s7hiaTFWV6a/ou+z1yzHtuUu3PtMM9oGlZtVzCRRJZJNa9ZU6anc1IpgOAa/xt6ctiaGk9cUaz9JBID6CieOchQGAOBErw+hSAwNC9Vzs2djzQJEYhKHOkeUDoWIiCjjfn2gE+7REO6+KvV7EadjNAj8x60XwWQw4JsvnMjINafDJFElDnV6UOfKg9NmVjqUjEnOStRayenZRJJYq5MkcWW5E33ekGZnXs5GsrX1OhVVBKxPjOrgvkQiItKbSDSGB3a2oKG6AJfVFmXsuiVOGz51ZS2eO9KjWPM4JokqIKVEY8cI1upoPyIAFNnjg8a11n7/rNsPIeKNXfRgVUW8QcuxHp/CkSjvYMcIiu0WVC1IXevsdCvItWBZqZ37EomISHd+d7gHHUNjuOeqOgghMnrtT26tRYnDin997qgiW6+YJKpAjycI92gIa1W0+pAKEyuJGutwetbtR0V+Dmxmo9KhZESyi+cxlpyisWMEDdUFGf9FM18bagrxZvswojFt7Q8mIiI6l3A0hv9+6SRWlDlw9crSjF8/12LC59+zHAfbR/D7I70Zvz6TRBVINq25SEf7EQHA5UgmidpaSWwd1Edn06TCPAvKnDbdJ4meQBhnBvxYt1A9TWuSNtYsgC8Ywck+rgYTEZE+/Gp/B1oHA/jCtcthMChzc/fWi6uwosyB/3jheMZnJzJJVIFTiTdmy0odCkeSWYV52is3lVLirFv7MxKnWlnu0H3zmsZE4xc1dijesKgQAPclEhGRPoyNR/E/L53ChkUL8K4VJYrFYTQIfPn6lWgfCuChPZkdicEkUQVO9o+iakEO8qwmpUPJKLPRgIJcMwY1VG46HAjDF4xgUZE+9iMmrSx34nT/aMbvgmWTxvYRCKHOioCqBTkodVqxX6HN80RERJn0892t6PeF8MXrVii+RWTrMhe2LnPhu388jZFA5t4TM0lUgVN9PiwtsSsdhiKK7VZNrSR2DAUAAAt10rQmaVWFE5GYxKm+UaVDUUxjxzCWltjhUGGHYiEENtQUYj+b1xARkcZ5AmF8f8dpvGtFCTbWFCodDgDgy9evgC8Yxnf/eDpj12SSmOUi0RjODPh1V2qaVJRn0VaSOBxPEvXS2TRJ781rkh2K1VhqmrRx0QJ0jYyhe2RM6VCIiIjS5vuvtsAXiuAL1y5XOpQJK8qc+OCGavxidyt2t7gzck0miVmufSiA8WgMS/S6kuiwaqq7afuQPpPEmqI85JiNuh2D0TYYwHAgjIZq9TWtSdqQuJvKklMiItKqXk8QP9t1Fjc3VE7c4M4WX7p+JRYX5+Guhw7gdH/6K7OYJGa5U4l/BEt1upLo0ly56RgW5Jph19n+UqNBYHmZA0d7PEqHoojGDvU2rUlaUeZAnsXI5jVERKRZ3/njKcSkxGevWaZ0KO+Qn2PGTz+2ERaTAX/x830YTPP7YyaJWS7Z2VS3K4l2C3zBCIJhbTQ86RwO6G4VMWlluRPHenyKDIRVWmPHCHItRiwrVe/3sclowPpFC7DrtBsxzkskIiKNOTMwisff6MAdly7K2vdq1YW5+PGfb0S/N4RPPLg/re+PmSRmuVP9o6gsyNHdylNSkT0+K3HQr42S046hAKoXZOcPnnRbVeGEZyyMbk9Q6VAyrrFjBKsr82EyqvtH7vaGSrQM+PHs4W6lQyEiIkqpH/3pLCxGA/562xKlQzmvhuoC/PeHGnCwYwSf+/WhtN24Vfc7Fh042TeKpSpefZiv4mSSqIGS02hMomtkDFWFOUqHoohV5fGS6WPd+mpeE4nGcKzHizWV6ht9MdX71lWivsKJ/3j+uGZW94mIiCLRGF5s7sU1q0rhcliVDueCrltTji9dtwLPHe7Bt/5wIi3XYJKYxaIxiZaBUd2OvwDi5aYANLEvsc8bRDgqdbuSuLzMCSH01+G0ZcCPUCSG1ZXZtQF+LgwGga/csArdniB+8tpZpcMhIiJKiX2tQxjyj+O61WVKhzJjn7iiFu+/uArff7UFQ2mouGOSmMXahwIYj8R027QGeGsl0e1Tf7lph047mybZrSYsKszFUZ0lic3d8WY9qyvUv5IIAJfVFeE9q0px/yun0e/TX+kwERFpz/NHemEzG3DlcpfSocyYEAI3N1RCyvTcgGeSmMWSTWv0vZIYTxIHNLCS2DEcny9XvUCf5aZAfF+i3lYSm7q8sJkNqHVp5/v4S9evxHg0hv/6w0mlQyEiIpqXWEziheZebFteglyLunqArExu5WGSqC96H38BADkWI/IsRgxqYFZix1AAQgCVOk4SV5Y50ToYwGgoonQoGdPU7cGqcieMBqF0KCmzuDgPd15Wg8f3d+CozvaYEhGRthxoH8aAL4T3qqjUNKnIbkWJw5qWKi0miVnsVJ8PFfk23XY2TSrSyKzEjuEASh02WE1GpUNRTHIw7YlefSQWsZjE0W4vVmugac1Uf/uupcjPMeNfnzuqy7EmRESkDc8f6YXFZMC7VpQoHcqcrKpwpuWGLZPELHaqfxRLdLyKmFRst2giSewcGkO1TjubJq2qiCeJR3t8CkeSGW1D8VVTrexHnCw/14y/f/dS7G4ZxMvH+pUOh4iIaNaklHihqQdblxbDYTMrHc6crCx3omVgFOORWErPyyQxS0VjEqf7R7FMx/sRk4rtVm2Umw7rd0ZiUnm+Dfk5Zt2UKDZ1xZvW1Gugs+l07ti0CLWuvLS13yYiIkqnQ50edHuCeO/qcqVDmbNV5U6EoxKn+lN7A55JYpbqHA4gFInpekZiUrFD/eWmoUgUvd4gqnTa2TRJCIFV5fppXtPU7YHZKLC0RJsVAWajAe+/uArHe30YCaj/Rg4REenL8009MBkErllZqnQoc5bcynMsxVVaTBKz1Kk+Nq1JKs6zYCgwjkg0tcvomdQ9EoSU+u5smrSy3InjvV5EY9rfx3a024vlZQ5YTNr9Ubu2qgAAcLjTo3AkREREMyelxPNHerF5STHyc9VZagrEm8nZzIaUV2lp952Lyp1MLBkvYbkpih1WSAkMqXilQu8zEidbWe5AMBxD66Bf6VDSSkqJpi6PJvcjTpZsynO4c0ThSIiIiGbuaI8X7UMBXK/CrqaTGQ0Cy8tSX6XFJDFLne4bRXm+DU6VbqJNpeSsRDXvS+wYZpKYlGxeo/WS025PEMOBMOo12Nl0svwcM2pdeWjs4EoiERGpxwtNvTAI4JpV6i01TVpV7sCxXm9Ku40zScxSJ/t9XEVMKMqzAICq9yV2DI3BbBQoc9qUDkVxS0rsMBmE5pvXJJvWrK7QZtOaydZWFeBQ5whHYRARkWr8/kgPNtUWoSixGKFmq8qdGAmE0eMJpuycTBKzUCzZ2ZT7EQHEy00BlSeJwwFUFORoaqD6XFlNRiwszEVbogRXq5q7PDAaxMSGci1bW5WPAV8Ivd7U/XIiIiJKl1N9PrQM+HGdyktNk95qXpO6G/BMErNQ5/AYguEYlnIlEYA2yk07hzj+YrISpxX9Gk8omrq9WOKyw2Y2Kh1K2l1UHW9ec4glp0REpAIvNPVCCODaem0kiSsSSWIqq7SYJGah5JwTjr+Ic9pMsBgNGFD1SuIYqgvZ2TSp1GlDn1e9r+dMNHV5NDsfcapV5U6YDAKH2LyGiIhUYF/rEFaWOVGikW1AdqsJi4pycayXSaKmneqPj79YotHZarMlhECR3QK3T50rif5QBEP+cTatmaTUaUO/L6jZPWz9viD6fSHNdzZNspmNWFHuYIdTIiLKerGYRGPHCBoWFigdSkqtKndyJVHrTvb5UOq0Ij+HnU2Tiu1W1e5JnOhsynLTCSUOK4LhGLzBiNKhpEVz4od0vQ6a1iStrSrA4Q4PYjqYf0lEROp1xu2HLxhBQ7W2ksSV5U60DQXgD6XmvRWTxCzEpjXvVGy3YNCv0iRxaAwAx19Mlizv0Oq+xOZEZ9NVOksSfaEIzmp8/iUREalbY0e86mWdBpNEKYHjvb6UnI9JYpaJxSRO9Y1y/MUURXarastNO4aSK4nck5hUmuhYq9V9iU1dXiwuzoNDR3NO1yZ+2bLklIiIslljxzAcVhPqXNp6r528MX00RR1OmSRmma6RMYyFo1xJnKLYbsWgP6TKPWwdwwHkWowoTMx7pPieRCC+d0+Lmro9uio1BeLzL3MtRnY4JSKirNbYMYKLqvNh0NhYsop8G5w2U8rGYDBJzDKnJ5rWaOvuxnwV2y0IRyW8Y+rbw9YxNIbqBbkQQls/jOajxKndlcSRwDg6h8ewulIfTWuSjAaB1RX57HBKRERZKxiO4niPT3P7EYF4o8dVFalrXsMkMcu0J0oTa4ryFI4kuyRnJapxDEbncIDjL6bItZjgsJrQp8E9icmmNXrpbDrZ2up8NHd7MR6JKR0KERHROzR1eRCJSTRUL1A6lLRYWe7EiV4foiloIsckMct0DgdgNRlQbGdp4mTJJFFtHU6llOgYCqCKnU3focRp1WS5aXN3vNxSb+WmAHBRVQHGIzGc7EvNpnkiIqJUSjat0eJKIhAfgzEWjqItBU3kmCRmma6RMVQuyGFp4hTFjnjSrLYkcTgQhn88ys6m0yh12jRZbtrU5UVlQQ4W6HAPavKXbvKXMBERUTY52DGCyoIcuBIN9LRmZXnqmtcwScwyncNjXHWahiu5kuhTV1LBzqbnVuq0aXIl8WSfDyvK9Nl4qmpBDhbkmtnhlIiIslJj+wgaFmpzFREAlpbaYTKIlDSvYZKYZbqGx1BZwIRiqgW5FhgNQnV7EjuGE0kiVxLfocRhRZ9XnR1rzyUWk2gd9GNxsT73FAshsLa6gB1OiYgo6wz4QugaGdPcfMTJrCYjlpTYU9K8JuNJohBiqRAiKIR4eNLnbhdCtAkh/EKIp4QQhZMeKxRCPJl4rE0IcfuU853zWLUJjEcw6B9HFVed3sFgECi2WzCgupXEMQBMEqdT4rRhPBKDZyysdCgp0+sNIhiOYbFLn0kiEN+XeKrfB39IfZ2IiYhIu7S+HzFpZbkTx3rm3xtAiZXE7wF4I/kXIUQ9gB8C+CiAUgABAPdPef544rE7AHw/ccxMjlWV7pF4QsEkcXouh1V9SeJwAAtyzbBbTUqHknVKNTgGo9Ud3yi+WMfdiRuq8xGT8Q5yRERE2aKxYxgmg9D8iKrlZQ70eoPwBud3Ez6jSaIQ4sMARgC8POnTdwB4Vkq5U0o5CuCrAN4nhHAIIfIA3Argq1LKUSnlawCeQTwpPO+xmfqaUqljmEni+bjsVvWVmw4FuIp4DqVOGwBoal/i2UQ3sRqdlpsC8ZVEADjcySSRiIiyR2PHCFaUO2AzG5UOJa3K8+Pvr+a7sJKxJFEI4QRwH4DPTnmoHsCh5F+klC2IrxwuS3xEpJQnJz3/UOKYCx2rOl2JJLGygEnFdFS5kjgUQDUbEU2rxKG9lcSzA37YzAaUJRJgPSq2W1FZkINGNq8hIqIsEYtJHO7waL7UFHir2aNqkkQA/wLgJ1LKzimftwOYesvZA8CReGzqzsvkYxc69m2EEJ8UQuwXQuwfGBiYQ/jp1zk8BrNRTLx5prdzOaxwj44jloIBoZkQjUl0jYyhqpArw9MpccQTqT6vdlYSWwf9qCnKg8Gg7xE2a6vzcYQriURElCVaBkbhC0XQUL1A6VDSLjneQxVJohCiAcDVAL49zcOjAKZOnXYC8F3gsQsd+zZSygeklBuklBtcLtfsvoAM6RoZQ0VBju7fYJ5Lsd2KaExiODCudCgzMjgaQjgq2a32HHIsRjhtJvRrKEk8444niXq3qCgPPZ4x1dzQISIibTuok6Y1QOqSxEx107gKQA2A9sSQeDsAoxBiFYAXAKxNPlEIUQvACuAkgBgAkxBiqZTyVOIpawE0J/7cfJ5jVadzOMD9iOcx8Y9+NIQie/avtvYnvjmTK2b0TvFZidooN41EY+gYCuDa+jKlQ1FcqcOKcDR+Q0cN36tERKRtjR0jcNhMqNVBz4D8HDPMxvmPjctUuekDAOoANCQ+fgDgOQDXAngEwI1CiCsSjWruA/CElNInpfQDeALAfUKIPCHEFgDbATyUOO85j83Q15VSnJF4fqmqsc6UZEOWEiffJJ9LidOqmXLT7pEgwlGp686mScmmRL0aeW2JiEjdGttH0FBdoItqPSFEvNmjGspNpZQBKWVv8gPxMtGglHJAStkM4C7EE75+xPcT3jPp8HsA5CQeewzA3YljMINjVSMYjqLfF0IVm5ycU3Il0a2SDqf93uRKIpPEcyl12DTTuOaMexQAdD0jMak00VmtXyOvLRERqdfYeBQn+ny6KDVNSkWzR0WGt0kp753y90cBPHqO5w4BuPk85zrnsWrS44nfcedK4rmlqsY6U5JllC4miedU4rSh3xeElBKJUnTVSs5I5J7Et1YStbJKTERE6nWky4NoTOouSewemd/v4IzOSaRz6xwOAOCMxPOxW02wmQ0qShKDKMg1w2rS9jye+Sh1JveuzW/gazZoHQzAbjWh2G5ROhTFJUvDtbJKTERE6tXYMQxAH01rklyO+c8WZ5KYJToTMxKrOHj9nIQQqpqV2O8NTbxZpuklV5yS+zfV7Izbj8XFeapfEU0Fi8mAojwL+jTwuhIRkbod6vSgakGOrhqpuexWDI6GEJ1Hl3EmiVmia3gMRoNAKUsTz8tln/+dkUwZGA2xac0FJPdramHFqdXtR40OuqbNVInTpqnxJkREpE5Hu71YXZGvdBgZ5XJYEZPAkH/uY+OYJGaJzuEAyvNtMBn5kpyP2lYSOf7i/LSyd208EkPncACLi1gJkFTqtLK7KRERKcoXDOOs24/VlVPHqmtbKvp4MCPJEl0jHH8xE2pJEqWUGPCF2Nn0ApI/xNS+4tQ+FEBMsrPpZFrqXEtEROp0tNsLAKjX4UoigHlV3zFJzBKdw2McfzEDLrsNw4EwxiMxpUM5L89YGOPRGDubXoDNbERBrnmiE6xasbPpO5Xm2+AeDSESze7vVSIi0q7mZJKot5VEe7xSiyuJKjceiaHPG0QlO5teUDLpGvRnd1KRTHpKnCw3vZASh1X15aZnE0niYu5JnFDqtEJKwD069/0QRERE89HU7UGJw6q77T/FjnindSaJKtfrCSImOf5iJtQyKzE5RJzlphdW6lR/WeLZQT8W5JpRkMvxF0mlDm3sNyUiIvU62u1FfYW+VhEBINdigt1qYpKodp0jiRmJ3JN4QapJEhOt/5kkXliJQ/1dMNnZ9J200pSIiIjUKRiO4lT/KFZX6ms/YtJ8ZyUyScwCEzMSuSfxgtSTJLLcdKZKnVb0+0KIzWOWj9LOuv1YzP2Ib1OaGP/Sl+Xfq0REpE3He32IxqQuVxKBxNi4ecwrZpKYBbqGxyAEUJbPhOJCiu3zr7HOhH5vCLkWI+xWk9KhZL0ShxWRmMRwQJ1718bGo+jxBLkfcYoiuxVGg0CfhyuJRESUec3dHgD662yaNN+JAEwSs0Dn8BjKnDZYTHw5LsRqMiI/xzyv5fNM6PcFWWo6Q2+VJWb3a3ourYOJzqZMEt/GaBBw2dXflIiIiNSpqcuL/Byzbnt+MEnUgK6RAGckzoIaZiX2+0K666Q1V8mS3L55lEQoqZWdTc+p1GlluSkRESniaLcH9RVOCCGUDkURLocV3mAEwXB0TsczScwC8RmJTBJnKl5jnd1vPAd8IbicXEmcieTeNbU2rznLlcRzKnGqvykRERGpTzgaw7Fen26b1gDx98sA4J5j9R2TRIVFojH0ejgjcTZcDuuc/8FnSr+X5aYzlWxG1K/SctOzA364HFbuP51GqZPlpkRElHmn+0cxHonptmkNMP9mj0wSFdbnCyESk+xsOgvZXm7qD0XgH4+y3HSGrCYjFuSa1VtuOuhnqek5lDpsGA6EEYrMrdSFiIhoLpq7vQD027QGYJKoel0T4y+4kjhTLocV/vEo/KGI0qFMK/nNyJXEmSt12lTbuIbjL84t2ZRIravERESkTk1dHuSYjbq+iTuRJLLcVJ06hwMAwMY1szDfGut0e2tGIpPEmVLr3jVfMAz36Dj3I55D8nuAJadERJRJR7u9WFXhhNGgz6Y1AFCYZ4EQXElUreRKYgWTxBmb7/J5uvUnyiZdXEmcsVKHdSK5VpNWd/wmj57vVJ5PcvarWleJiYhIfWIxieZuD1breD8iAJiNBhTmWpgkqlXn8BhcDitsZqPSoahGsT3Lk0RvstyUexJnqsQZTxJjMal0KLNyxj0KgEniuZQ6kkkiVxKJiCgzWgf98I9Hdb0fMWk+fTyYJCqsa4TjL2ZrvjXW6dbvC8FsFFiQa1Y6FNUoddoQjUkM+seVDmVWkiuJi4rYeGo6BblmWIwG1TYlIiIi9ZloWlOp75VEIJEkck+iOnUOB7gfcZYK8ywwzKPGOt36fUG47FbdDm+dixKVrji1DvpRWZDDSoBzEELEV4lZbkpERBnS1O2B2SiwtMShdCiKm89scSaJCorFJLpHghx/MUtGg0DRPP7Rp9uALwSXk6Wms1GaaHDSr7IVp9ZBP1cRLyDeuVZdrysREanX0W4vlpc5YDExzUmWm0o5++08/L+noIHREMajMVSy3HTW5nNnJN36vSGOv5ilEpWOSujzBCeas9D0Sp1WJokAxiMx/Pvvj+GKb/4RX3riMHafdiOqsj24RJQddre48b77d+Hzvz6kdChZR0qJpi4PVnM/IoB4khiKxOCbw9g4UxrioRnq5IzEOZtPjXW69fuC2FCzQOkwVCU51kRNXTBjMYl+XwhlXDU+rxKHDTtPupUOQ1EdQwF8+rGDONQxgksWF+Lpxm48tq8DLocVN6wpx63rq7Cmim9oiOj8Tvf78I3nj+OlY/3IsxjxZvsIrl5ZiveuLlM6tKzR7QliOBBGvc47myZNngjgtM2uVwaTRAV1jcSTRO5JnD2Xw4qTfT6lw3iH8UgMw4EwO5vOksVkQFGeRVUNTtz+ECIxyZXECyjLt2E0FMFoKAK7VX+/cp4/0oP/99vDgATuv2M9rl9TjrHxKF450Y9nD3Xj0X3teHBPK35792asW8ibS0T0ToOjIXz7pZN4bF8Hcs1GfPG9K/DRyxbh/d/fjXufacaWJUVwzDIB0KrmLg8AoL6SN96At27CD/hCqHPZZ3XseX9jCyEeAnDBehgp5Z2zuioBiJeqAeCbzDlwOaxwj8ZHJhiyaFBqcnUzOUScZq7EaUO/isoS+zzx17qUK4nnNbHf1BuEfZa/oNQsFIni688dw4N72rC2ugD/e9s6VBfG96/mWIy4fk05rl9TjmH/ON77Pzvxlaea8MynL9f14GcieicpJT72szdwtMeLOy5diL9791IUJd74f+PWi3DL/bvwrRdP4GvbVyscaXZo6vbCIICVZVxJBOY3W/xCexJPA2hJfHgA3AzACKAzcex2ACOzvioBiHdyzDEb4dDh3fX5ctmtCEclPGNhpUN5m2SSwz2Js1fiiM9KVIvexGvNctPze2tWonpe21S4/5UWPLinDZ+4YjF+/anLJhLEqRbkWfDVP1uF5m4vHn69LcNRElG2e7N9BEe6PLj3pnrct331RIIIAA3VBbhz0yI8+HobDrYPKxhl9jjd78OiojzkWNh1HEhjkiil/FryA8AyADdIKe+QUn5ZSvkRADcAWD77kAkA+nwhlDo5KmEusnVWYjLJYbnp7KmtwclEkshKgPOaaEqkolLi+RqPxPDI3na8e0UJ/vGGVRfssHfDmnJcsbQY33rxhK7+PxHRhT2ytw12qwm3rKuc9vHPX7scpQ4bvvTEEYSjsQxHl33ahwJYeI6bcnqUn2OG2Sjm9H55Nt1NNwF4fcrn9gK4bNZXJQDxlcQSrkLMSTJJdGfZytNEkshy01krddow4AuppuNjnycIo0Gg2M7X+nyS5aZqugEwX8839cA9GsKdm2tm9HwhBL52Uz1CkRj+7blj6Q2OiFRjJDCO3x3uwc3rKs65p9thM+Nr2+txvNeHH//pbIYjzD7tg0wSJxNCzHkiwGySxIMA/k0IkZO4aA6ArwNonPVVCUC8NJGlanOTrSuJA94ghACK8ixKh6I6JU4bYjK+QV8Ner1BuOxW7iG7ALvVhFyLEb0edbyuqfDQnjbUFOXiiiXFMz6m1mXHXVfW4qnGbuxu0Xc3WCKK+82BToxHYrj9kkXnfd619WV4z6pS/M/LJ9E+AeO7GwAAIABJREFUGMhQdNnHEwjDG4xwfvEUyVmJszWbJPFjALYA8Agh+hDfo3g5ADatmQMpJfq8oYm77DQ786mxTqeB0RCK8qwwGTmCdLZKHeoag9HnDaKUpaYXJIRAqdOmqs6189Hc7cH+tmF8ZNOiWTfVumfbElQX5uCrTzVhPMKyMSI9k1Li0b3tWL+wAKtmMM7ha9vrYTIY8Fe/eAMH2vS5P7FtyA8A59wDrldpTxKllK1Sys0AlgC4CcASKeVmKWXrrK9K8IUiGAtH2RlxjhxWE6wmQ9Ylif3eEJvWzJHa9q71eoIo402eGSl1WlXVuXY+HtrThhyzER+4uHrWx9rMRtx302q0DPjx49fOpCE6IlKLPWcGccbtxx2Xnn8VMak8Pwffu2M9fMEIbv3+bnzxN4cx5B9Pc5TZpX0ovorKctO3m+ts8Vkvd0gp2wHsA9AphDAIIbhkMgcTXTCZJM6JEGLOd0bSqd8X4n7EOXpr71p2vabn0sty8RkrddpU87rOhycQxlONXbh5XQXyc+c2s2zbihJcW1+K77x8SjeJNRG90yN721GQa8YNF5XP+Jgrl7nw8ueuxKe21uK3b3biXf+5A7/c146YSvb6zxeTxOm57FYMjs6+58OMEzwhRIUQ4kkhxCCACIDwpA+apeQbplKuOs3ZXO+MpFO/LzgxuJRmp9huhRDqaHASGI/AF4yw3HSG4kliEFJq+43Krw90IBiO4aObauZ1ni9fvxLjkRh+9CeuJhLp0YAvhBebevH+9VWwmWc3yiHPasKXrl+J5/72CiwrceAfnjiCL/72cJoizS7tgwEU2y3I42i5t3E5rIhJzHpleTargD8EMA7g3QBGAawH8AyAu2Z1RQIQL1UDOIh7PubarSldojEJ9+g4VxLnyGw0oCjPqopy0+T3L1cSZ6bEYUUoEoN3LKJ0KGkTi0k89HobNtYsmNH+ofNZVJSH7Q2VePj1dt2VixER8Kv9HYjEJG67dOGcz7G8zIHHP7UJt1+6EE8e7NLFz5L2oQD3I05jrn08ZpMkbgbwl1LKRgBSSnkIwF8B+NysrkgAMNHEgQnF3GVbuemQfxzRmOSMxHkocVjRr4KyxIkZiUwSZyR5M0zLzWtePTWAtsEA7rysJiXnu+eqOgQjUfz0Nba0J9KTaEzisX3t2FxXhDqXfV7nEkLgo5sWIRKT+N3h7hRFmL3ahwJYxCTxHeY6EWA2SWIU8TJTABgRQrgA+AFMP92TzqvfG4LDZkKuhUvic+VyWDEUGM+a4bHJFTA2rpm7UqdVFYlEsiSW5aYzk0wSkyuwWvTg7la4HFZcW1+WkvMtLXXgutVl+MXuVnjGuKuDSC92nhpA5/DYjBvWXMjKcidWlDnwxJtdKTlfthqPxNA9Msb9iNNw2eO/g9O5krgXwPWJP78I4HEATwDYP6srEoBE+3yuQsyLy2GFnEONdbr0J775uDo8d2ppcJKc+cfv4Zl5qymRNpPEtkE/dpwcwO2XLITFlLpebn+9bQl8oQge3N2asnMSUXZ75PU2FNutuGZVacrO+b71lWjsGMGZgdGUnTPbdI+MISY5/mI6xY747O50JokfBfBq4s9/D+AVAE0Abp/VFQlAMklkMjEfyQYx2VJyOpBIblhuOnclThvcoyFEsmR1+Fz6vEHYrSbYuTl+Rkonxptkx/dqqv3ucA+kBG6fx/6h6dRX5OPdK0rwk11n4Q9pdz8nEcV1DAXw8vF+fHhjdUpvOG1vqIRBAE8d1O5qYrKz6aKiPIUjyT65lvj7lbQliVLKESnlUOLPY1LKf5FS/n/27jy8zbPKG//31m7ttmXZlvclq90szdq00JbSBei0tEBLYYBSBjoF5jcsA7zDDMsLww868w4wzFtm2AtlK2UoOwUKbWmzJ03TJI0d77skW7K1Wvv9/iHJMSGJJevZZJ3PdeW6Umt57lSW9JznnPucj3DOZ4pcK0G2uyllIUqz2o24YsmXm9ZRuemqOXPZYZ9CssOXQhd5imPQqmGr0q7ZTOLZmSBaaqpE+Ux/zyu6sRBN4nuHxwR/bkKIsnz30BhUjOHNe4W94FRvNeDqbgcef2FqzXaZHqPxF5e1mokAxYzA0DLG/jdjbIQxFmOMDef+W1f0Sisc5xzeEJWblqohtx9sOrAo80qyvKE4rAZN0e2qyXlLDU4UHky4g7Gl3z9SmHqrXvGv62r1uUPY2FBaR9NLubK1Gtd0O/DVP40glkyLcgxCiPwWE2n88OgEbulpQKOtSvDnv2N7Eyb8izg2Ni/4cyvBhD8KnUZFfSEuITsRoLjv4GJy2f8K4JUA7gewFdnRF68A8GBRRySYjyaRTHOakViieosBOo0K476o3EsBkG1G5KTAvyTn964pIzt8KZ4AXeQpVrnsNy1WLJnG8GwYmxosoh3jva/oxlw4jkePToh2DEKIvH72whQCi0m89SphGtZc6OaeBlRp1fjJ85OiPL/cxn1RtFRXQaVici9FkVYzEaCYIPENAG7jnP+Oc97POf8dgDsA3FXUEcn5zoh0klkSlYqhtcaIUV9E7qUAyJab0hWs0pRDJjGT4fCG4jT+okhOi0HRr+tqDXrDyHBgY6M4mUQA2NNRg13t1fjvZ4Yom0jIGsQ5x8MHRrGxwYLdHTWiHMOk1+CW3gb88sWZNfk5MuaP0n7EyxA7SLxUaE4he5HyM9Yo61S69lojxpSSSQzFKUgsUa1JB8YAr4KDiblIHKkMp3LTIjXY9PCG4khn1tZ+mLMzQQDARhEziYwxfODGDZgJxPC53/SJdhxCiDyOjs6jzx3CvfvawZh4p9V3bG9CKJbCH/u8oh1DDpxzTPijtB/xMuosegRjqaIuEBQTJD4G4BeMsZsZY5sYY7cA+Gnu56QI3qVMIgUUpWqtMWHcH5V9IzbnHLMhKjctlUatgsOsV3QXTA+Nv1iVBqsB6QyHr8iN80rX5w7BoFWJfgX7qq5a3LuvHQ8fGMWzA7OiHosQIq1vHxiFrUqL27eJO3r86m4HnBb9mpuZOB9NIhxP0fiLy8gnMYqp6CkmSPwwgCcBPATgOID/RHYMxoeKeA6C8/utqAtm6dpqjYgm0kV3bBJaMJZCPJWhTKIAlN7gJF8JQOWmxWnINWKYCSj3tV2NPncQG+otUEuwD+Z/vWoj1jnN+IfHTmIhquwOwISQwswEFvHEGTfu3tWCKp24je/UKobbt7nwdL9XMTOmhTCW23bURkHiJTXZs9/BUwuFN3u8bJDIGHtF/g+AawA8DeBdAP4K2QY2T+V+TorgCcZQY9JBr6EumKVqq81+IMhdcuqhEmLB1FuU3eBkKUikctOi5INqt4IvAKxGv4idTS9k0Krxhbu3wR9J4J8eP11QBUUmw/HQU4PY+///Afd89RA+95s+PHF6BjMK6QpNSKX7/uFxZDjHW/aK07DmQndsb0Yqw/HLF6clOZ4U8jMSW2spSLyUxlyQOLNQ+HfwSpOgv3GJn+e/mVju750FH5HAE6S9a0LJl3iN+aLY1S7OZu9CuAOUXRKK02rAyckFuZdxSZ5ADGoVg8NM7+Fi5INq9xrKJM6G4pgLJ7BBxP2IF+ptsuH9N67Hvz7RjxtOOHHnlc2XvO9CNIEP/Ogk/tjnxVWdtYgkUvjGc8NIprNf4V11JvzwXVdRVQshMomn0vjBkXHcsNEpWankZpcV6+vNeOK0G2+9ql2SY4ptIhcktlRTkHgpjfmxcUVkEi8bJHLOO0pbErkYmpEonCZ7FdQqhnGZO5x6qARRME6LHr5IAsl0Blp1MRXx0nAHY6gz6yUpL1xLak06aNVsTWUS+9y5pjWN0gWJAHD/y7vwdN8sPvGzM9jdUYPmi5wYvTi5gHd/73l4gjF86vYevGVvGxhjiCXTODsTxPGxeXzm12fxyMFRfOCmDZKunxCS9asXZzAXTuBt+9olPW6Py4YjI35JjymmMV8UTote9HLdcmbQqlFr0mG6iAu1K2USiQg8wRg2SVSetNbpNCq47AaMKqbclK7Il6reagDnwFw4LspA4VJ5gjHUU6lp0VQqBqfFsKYyiX0zIQCQrNw0T61i+Pe7tuJV//Es3vO953HH9iZUm3SoNelRbdLi+bF5fPqXZ1Fn0eOxv92HbS32pccatGpsb63G9tZqHBr24buHx/Hu67th0NLJFSFSymQ4vv7sCDrrTLim2yHpsV12A9zBGNIZviYueI5TZ9OCNNoNwmUSifDSmWwXTOpsKpz2WhPG/PIGie5gDHajlk60BJB/b3iCygwS3YEYOutoFtNqNNjWVpB41h1EvVWPGpNO8mO31Bjx2TuvwAcfO4mTv3jpL26/bkMdvnDXNlRfZm33Xd2BJ88exs9emMLdu1rFXC4h5AI/fn4SL80E8cW7t4k69uJimuxGpDMcnmAMLrvyvmeLNeGPYm9nrdzLUDyXraqo2eIUJEpsLhxHhlODEyG11hjxq1Mzsq7BHaDh6kLJl2IrtcOpOxjDvi76MlqNBpsBL00H5V6GYPpmpGtaczF/tdWFV1/RiIVoAvPRBPyRJPyRBNQqhhs2OqFaIUNwVVctNjZY8M3nRnHXzhbJT1QJqVTheAr/9tt+bG+14/ZtLsmP77Kf359W7kFiPJXGTDBGTWsK4LJX4eCQr+D7K2/DzxrnWZqRSAGFUNprTViIJhGIJmVbA+0zFU6+qZNXgUFiNJFCKJaictNVarBmM4lyzzUVQjKdwaA3LPl+xAupVQy1Zj26nRbs7qjBLb0NuHFz/YoBIgAwxnDfNR3o94Swf7DwEwdCSGm+/NQgZkNxfPzWzbJcnFnNOASlmpxfBOegctMCuOwGhOIpBGOFnS9TkCixfGt/KjcVTv7q0ZhfvuY17kCMXlOB1Jr1UDHAG1LeGAzqYluaRpsBi8k0gospuZdSstG5CBLpTNnvL79tqwsOsw7f3D8i91IIqQgT/ii+/twI7tjehO2t1bKswbWGgsSl8RcUJK4ov4Wn0DEYFCRKjDKJwpN7VmIqncFcmMpNhaJWMdRZ9IosN3XT+7ck9WtoVuJZd7ZpjZTjL8Rg0Krx5j1t+GOfF0OzYbmXQ8ia99nfnIWaMXz4Fvm6Cpv0GtiN2qKamCjVuI+CxEItLzMuBAWJEvMGY1CxbDt4Ioz8B8O4TM1r5sIJZDioBFFA9VbDUtZdSbxLlQD0Wq9Gfk7TWggS+2aC0KgYuurMci+lZH+9tw06tQoP7x+VeymErGmHhn349Sk3/vbaLtkbs7lsVZiaXwNBoj8Kg1ZF814LkM8gTwcUFiQyxr7LGJthjAUZY+cYY3+T+3k7Y4wzxsLL/nxs2eP0jLFv5h7nZox94ILnvYEx1scYizLGnmKMtUn1b1oNTzAOh1kPjQLnv5Uro04Dp0WP0Tl5yk2XsksWChyE4lR4JrGBLgisylImscAvKCXrc4fQ7TRDpyn/z/I6ix63bXPhx8cnsRBNyL0cQtakdIbj0798CS6bAe96eafcy0FTdRWmCyw7VLL8+AtqvLUyp8UAtYopstz0swDaOedWALcB+BfG2I5lt9s55+bcn08v+/knAawD0AbgegAfZozdAgCMMQeAnwD4GIAaAMcAPCr6v6QEHmpwIgo5x2As7VOjwEEwTqsBswrdk2jWa2DWU2Po1TgfJCrvtS1W30wQG8u81HS5+67uwGIyjR8enZB7KYSsST8+PoEz00F85FUbFTH0vcletWbKTanUtDBqFUODtfBZiZIFiZzzM5zz/JkBz/3pKuChbwPwac75POf8LICvAbg3d9udAM5wzh/jnMeQDSi3MsY2Crp4AXmCcQoSRdBaa8RYEbNfhET7TIVXbzHAF0kgkcrIvZQ/4wlSg6JS6DQqOMw6uIPlfWISiCYxHYhhY2N5N61ZbrPLiqs6a/HtA6NIppX1viOknKUzHF9+ehD//NPT2NlWjdu2Sj/y4mKa7FUIxVMILMrXGb5UnPNcJpFmFxeq0WZQXrkpADDGvswYiwLoAzAD4NfLbh5jjE0yxr6VyxCCMVYNoBHAyWX3OwmgJ/f3nuW3cc4jAIaW3b782O9ijB1jjB2bnZ0V8p9VFC+dZIqivdYITzCOxURa8mN7gjFoVIz2mQoo/x6ZDSsr4+QOxihjXKIGm2Ep+16u+tzZWY9rKZMIAO96eSdmAjE8cnBM7qUQsiaMzkVw11cO4l+f6MeNm+vxtbfuVExZ5NL+tDLOJs6FE1hMptFaU96zHqXUaC+8zFjSIJFz/m4AFgAvQ7ZMNA5gDsAuZMtJd+Ru/17uIfmOAIFlTxPI3Sd/+/LbLrx9+bG/yjnfyTnfWVdXV/o/ZhXiqTR8kQRlnETQWpu9iiRH8xp3MAanRV/QXDJSmPx7RGn7Ej0BKhcvVYPVgJmyDxKznU03raFMIgBct6EO166vwxd+fw7eUHm/RoTIiXOO7x4aw6v+41kMeEL4jzduw0NvuhLVCrqYnO90Wc7Na8Zzo8/yo9DIylz27IXaTGblecWS77jnnKc5588BaAbwAOc8zDk/xjlPcc49AN4L4CbGmAVAvh/38m9iK4BQ7u/hC2678HZFye+xokyi8NqXxmBIX3LqCcaos6nA8l3KvArqcJrJcHhDNOqkVA02g+KC/2L1uUOwG7VwrrFueowxfPK2HsRTGXzu131yL4eQssM5x9P9Xrzxq4fwzz89jR1t1fjt+1+O27c1KSaDmNdUXVynSyU6PyORyk0L5bJVIZHOwBdZuUmZnG3ZNLj4nsR8aKvinM8jW5a6ddntWwGcyf39zPLbGGOm3HOegQLlW/o76SRTcG25Dwg5ZiV6ghQ4CC2frVNSNmMuEkcqw6nctEQNVgPmo0nEktKXhgulz51tWqO0kz4hdDhMeNfLO/GTE1M4POyTezmElIV4Ko0fHZvALV98Fvd+6yhG5iL49Gt78Z37dss+6uJSHCY9dGoVpsq43HTcl117c7Uy/x8rUTFlxpIEiYwxJ2PsjYwxM2NMzRi7GcA9AP7AGNvDGNvAGFMxxmoBfAnA05zzfBnpdwD8M2OsOteQ5p0AHs7d9jiAXsbY6xhjBgAfB/Ai51yRl0C9NCpBNDajFnajFmN+GTKJVIIouFqTDmoVU1TGyROgGYlCaMidMCnptS1GJsPR7w5hY8PaKjVd7j3Xd6PJXoVP/PwMUtTEhpBL4pzj2wdGcc2DT+HDP34RjAH//oateO4jr8Bb9rYpehuKSsXgshvKutx0Yj6KeqseBq383WLLRX5e8UwBGWSpMokcwAMAJgHMA/g/AN7HOf85gE4ATyBbInoa2X2K9yx77CeQbUYzBuAZAP/GOX8CADjnswBeB+AzuefdA+CNEvx7VuV8F8y1VaKkFG01RskziZF4CqF4igIHgalULDcrUTnlpkszEum1Lkn+/1+57kucmI8imkhjU+PaalqzXJVOjY/duhl97hC+Q01sCLmodIbjYz87jU/8/AzWOc145B278Zu/fxlet6O5bOanusp8DIY7EFNsplap8pnEqQKa10gy7CsXzF17idt+AOAHl3lsHMB9uT8Xu/1JAIodebGcJxSHVs1QbVTOxuW1pLXWhJMTC5Ie8/xwdQr8hZYNEpUTSJx/rSlILEX+vaKk17YYZ2eyW97XciYRAG7uqV9qYnPr1kY4qQKGkCWxZBrv++ELeOKMG/df24mP3LxR0VnDS3HZq/DcwJzcy1g1dzCG7jrzynckS6qNWhi0KswopdyUZHmCMTgthrL8ICkH7bVGTC0sSjrji2YkisdpNSw1e1ICTyAGtYrBYaYLAqXIl5uWaybxnCcbJK6rX9snJtTEhpCLC0STeOs3juCJM2587NbN+MdXbSrb87omexU8oZjiZhIXyhOgsVTFYozBZasqqGERBYkS8gbjcFKpqWhaa4xIZ7ik9fUUJIqn3qq8TGKdWQ91mZ4MKIVZr4FZrynbWYmjvggabQYYdZIU4siqw2HCO1/egZ+cmMKgV5FNwwmR1ExgEXd95SBOTMzjS/dsxzuu6ZB7SSVpsleB8/Ks7AjTdp9VcxU4K5GCRAm5gzHazySidkeuw6mEsxLduWYm9LoKr96S7YIZTymjCyaNOhFOg81QtkHimC+KtgqayfWmPW0AgGfOlW9JGiFCWEyk8eavHcbUwiIefvtu3LbVJfeSSpbfnzZZhs1r8t8htN2neI02g6Ia1xDkTjIpmBBNW430sxI9wRgseg1M+rWfVZBaPuuulFmJnmAM9WtsLp5cGqyGpT2e5WbMF0F7beXM5GqyV6HDYcKBQQoSSWX7wpPnMDwXwVfesgNXdzvkXo4glmYllmHzGqrkWr1GexW8ofiKZcYUJEokmkghFEtRuamI6ix6VGnVknY4peySeJxLsxKVEiTGae+DQMo1kxiOpzAXTqCtgoJEALi6uxaHhn2S7vcmRElOTizg688O457drWsmQATOj0MoxyBxKZNIQWLRmuyGgsqMKUiUSD4bQjMSxcMYQ1utUdJMojsYo5EmIsm/V7wKyDjFkmkEFpN0xVIgDVYDZsPxspvBl/9saa+gclMAuLrLgUgiLXn3aEKUIJHK4MM/fhFOiwH/+OqyaKZfMINWDYdZj6lyDBKp4/iq5ceGrHRxgIJEiVBaXBrZIFG6TKI3GKfXVCT54FsJG+rzF3mcVG4qiAabAekMx1w4IfdSipL/bKm0TOJVXbVgDNg/6JN7KYRI7qGnBtHvCeEzd/TCatDKvRzBNdkNZRkkeoIxWAyaimgiJrT8XtSVuoxTkCgRT65kjrJO4mqrNWHcH0Umw0U/VibD4aFmRKKpNuqgUbGl946cPCG6yCOk/Hum3PYljuYyiZXUuAYA7EYdrmiyYT/tSyQVps8dxENPDeL2bS7csKle7uWIItvpsvyCRHeAzr9Wy2XPlRmv0LyGgkSJ5EvmnPQLLarWGiPiqczSSb2YfJEEUhlOpQ4iUakYnBa9IvauUSWAsPLvGSW8tsUYm4uizqKvyEZV+7oceH58HpF4Su6lECKJVDpbZmqr0uITf9Uj93JE02SvwtTCIjgX/+K6kDxBmpG4WkadBrYqLZWbKoUnGINBq4LVUHknF1LKdx2UouQ0Hzg4aZ+paDrqTBiek26P6aV4glQJIKTzQWJ5Xb0e9UUqbj9i3jXdDqQyHEdG/XIvhRBJfHP/CF6cDOCTt/WgxqSTezmicdmrEEtmMB9Nyr2UorhpYkBJXPYqzKwwK5GCRIl4cnvXGKNB3GLqrMsGiX0zQdGP5aFN06LrrjNjyBuW/QqnNxiDTqOCrWrt7UeRQ41RB51aBbdCxpsUKjsjsbL2I+btbK+GTqPC/gEqOSVrXybD8V9PD+G6DXW4dUuj3MsRVX4MxlQZzUpMpTOYDcWp3LQELtvKe1EpSJSIOxijzqYScNmr0FxdhYPD4jdYWOqsRR9Soul2mhGOp2Tfu+bJdbGlizzCUKkYnFZ9WWUSFxNpuIOxis0kGrRq7GyrxnO0L5FUgLPuIOajSdy21bXmP/ebck1Myql5zVw4gQwHjSArgcteRY1rlMJL8/Qkc3WXAweHfEiL3LzGE4hBxQCHee2Wocit22kBAAx6w7KuwxOM00UegTXaDLIH/8UY91dmZ9Plru52oM8dwly4vDLAhBTr4FD2QvNVXbUyr0R8+U6X5dS8hi7Sl67RbkBg8fIlxhQkSoBznjvJpP1MUtjXXYtgLIUz0wFRj+MJxuEw66FR09tILN1OMwBgwCNzkBiivQ9Cq7cayqpxzejSjMTKDhIB4MAQjcIga9vBIR86HaaleXJrWbVRiyqtuqwyifnvDgoSV89VwO82nd1KIBRPYTGZppNMieSv/Ik908tNnbVE5zDrYKvSYnBW3iDRG4zDSU1rBJXPJMq937RQY7kgsbVCy00B4IomGywGDe1LJGtaKp3B4RE/9lZAFhEAGGNw2Q1llUlc6jhuo+/l1cpnkC+HgkQJnB9/Qb/MUnBaDFhfb8aBIXFPZDzUWUt0jDGsc5plLTcNx1MIx1P0Wgus3mpALJlZsdxFKUZ9UdSYdBXdvEitYriqsxbPDc6VTXBfaYKxJE6Mz+OxYxP4/O/6MeEXv9P3WnNqKoBwPIV9FRIkAuU3K9EdjEGjYnCY6Lx6tRoLSHLQPAYJnG+fTyeZUtnX5cAPj44jnkpDr1GLcgx3MIad7dWiPDc5r9tpxu9e8sh2fO/SjET6MhJSvozLHYzBblT+vt4xXwRtFZxFzLtmnQO/e8mDcX/ldnpVmlgyjQ/9+EUcHvbBG/rz/aJP9c/ifx7YB52GcgKFypdT7+2snCCxuboKv5egK7xQPIEYnBY9VKq13VRITA02A1bqyUSfGhKgQdzS29dVi1gygxPjC6I8fyyZxkI0SfXwEuh2muGPJOCPJGQ5/tJFHmpcI6iGXJnQSt3VlGJ0LlrR+xHz8vsSqcupcjxycAy/ODmNvZ21+MgtG/G1t+7EHz94LR5605U4NRXAl/4wIPcSy8rBIR82NljgMFfOhUGXrQpz4QRiybTcSymIm5pBlkyrVsG5Qq8UChIlkD/JXOnFIMLZ01kLFQMOiHQi46XssGTyzWvkKjn1hvLl4vRaCyn/3vGUQZAYT6UxHVikTCKATocJDVYDDoi855sUJhhL4qGnB/GydQ586Z7teOC6Lty4uR6ddWa8ZksjXr+jGV9+ehDHx/xyL7UsxFNpHBvzV0RX0+XysxLLpeTUHYzRRXoBrNSYiYJECXiCMVj0Gpj0VN0rFVuVFlc027FfpC58bsoOS2apw6k3JMvxPVRuKgqnJVvqUg6ZxAn/Ijiv7M6meYwxXN3twP6hOWREHjNEVvaVZ4awEE3iI7dsvOjtn/irzXDZq/D+R08iHE9JvLry88L4AmLJDPZ1OeReiqTOj8FQ/ucxkL24SOdfpWtaoXkNBYkS8ARj1LRGBld31eLkxIIoX4z5wIG6m4rPZathi8JhAAAgAElEQVRClVYtWybRE4zDqFPDTBd5BKXTqFBr0i+9l5Qs39mUMolZV3fXYiGaRL9Hngs3JMsbjOEbz43gtq0u9DbZLnofi0GLL9y9DZPzUXzqF2ckXmH5OTDkg4oBuztq5F6KpJrKaFZiKJZEJJGm8y8BrNS8hs56JOChUQmy2NflwJefHsLRET+u3+gU9Llpn6l0VCqGbhk7nOa72LKVdniTojXaDGWRSRz1ZTtEUiYxq8eVDUj63SFsarTKvBp59LmDeNs3j8AX/vO90nqNCp9+bS/uvLJZ9DV88Q8DSKU5PnjT+sveb1d7DR64rgsPPTWEV2x04pbeRtHXVq4ODvnQ22SruC7G+SYmk2UQJC5dpKfzr5KtNAaDgkQJeIJx7Kmwq1JKsLO9GjqNCvsH5wQPEt2BGKq0algN9BaSQrfTjEPD8uyB8gbjtJ9YJPVWAybnld+if8wXgdWggd1YWSeOl9LhMEGjYjhXoZnExUQaf/f9E0hngPuv7fyz2w4O+fDhH7+IOoseL1tXJ9oahmfDePToBN68p7WgLrN/f8N6PHNuFv/4k1Mw6TXoddlQbVJ+V2EpLSbSODExj/uu6ZB7KZLTqlWot5THrER3gHpCCOWW3obL3k5nuCLjnMMbilHTCxkYtGrsaK0WZV+iOxhDvVVP2SWJdDvNePzEFMLxlORln55QDFub7ZIes1K47AYcHvGBc67o99KoL4p2h0nRa5SSTqNCu8OEARnnl8rp0796CQPeMB55x+6/CASDsSTu+u+DeOC7z+NH91+FzS5xMq3//rtz0GtU+LtXrCvo/jqNCl+8ezte+9B+vOUbRwBkM/mbGq3ocVlx77521FZQN8+LOTbmRzLNK24/Yl5TdXnMSnTTdh/BrJRJpD2JIpuPJpFMc2p6IZN9XbU4OxOELxxf+c5F8AbjdBVLQvnmNUMSn5RyznPlpvT+FUNrjRGhWArz0aTcS7ms7IxEKjVdbp3TjIEKzCT+5tQMvn94HPdf23nRTKHVoMW33r4LZr0Gb3/4iCgn3ScnFvCrUzP4m5d1oq6IKodupxnPfeR6PPKO3fjHV23Eno4aTM5H8dBTg/jgYyfBeWU3Ijow5INGxbCrQucfu+xVmCqDIJHKTaVDQaLIaO+avPblZnodGha2/beb9plK6nyHU2mDxGAshVgyQ+9fkXQ4soHXyFxE5pVcWjKdweT8ItpqqGnNcuvqLRjzR8tmrpoQphYW8ZH/eRFbm2344I0bLnm/RlsVvvX2XYjG07j3W0cQWBTuIgjnHA8+0Ycakw7vfFnxZZF2ow4vW1eH+6/twhffuB2/e/+1+OirN+Hp/ln84axXsHWWowNDPmxrscOoq8wiO5fdgJmFmOK7FrsDMVgNGlTp1HIvZc2jIFFk1D5fXlubbTDrNdg/JNy8RM45zeiRWFuNEVo1k7x5jTdIMxLFlA8SRxUcJE7NLyKd4dTZ9ALr683gXL75pVJLpTN43w9PIMOBL92zHTrN5U+fNjVa8d9v2YHh2Qj+9pHjiKeECaafHZjDgSEf3nt9NywGYfbIvm1fO7qdZnzqly9VVNC/XDCWxKnJBeyrsPmIyzXbq5BIZzAncOWV0OgivXQoSBRZfui600K/0HLQqFXY01GDA4PCBYmz4TgSKcouSUmjVqHDYZL8hNSTe//WU+MaUbTUGKFWMUVnEkdz4y/aHVRuutz6egsA+eaXSu0//ziIo6Pz+JfX9hZcenx1twP/+votODjsw+d/f67kNWQy2Sxic3UV3ry3teTny9OqVfjkX/Vg3B/F158dFux5y8mRYT8yHLiqQvcjAuf3pym95DTfcZyIj4JEkbmXMhF0kimXq7pqMeqLCvbBd3x0HgCwteXic6mIOLqdZgzNSh0kUrm4mLRqFZqrqzDiU26QOJYbf0GZxD/XXpvtcDrgWfuZxAl/FP/5xwHceWUTXru9qajH3nllM964qwVf+9MwXphYKGkdvzw1gzPTQXzgxvXQa4QttbtmnQOv6m3AQ08NlUXzEqEdHPZBr1Fhe2vlNilzLc1KVPZYIneAKrmkQkGiyDzBGKqNWsE/0EnhrlmXvTL4TP+sIM93eMSPKq0aVzRV7peJHLqdFoz5IpKWQ3lCdJFHbO21JkWXm475ojDq1Kir8M6PF9Jpstn9cxUQJD4/Po8MB975ss6V73wRH33NJtRbDfjQYydX/fmVSGXw77/rx8YGC27fVlygWqh/es0mcHB85tdnRXl+JTs45MPO9moYtJV7rtZUnc8kKncsUSpXDkvlptKgIFFkHuqCKbsN9RZ0OEz4+ckpQZ7v0LAPO9qqV9yTQoTV7TQjw8+X/0nBG4zDYtBUbCMDKXQ4skGiUjsr5jub0viLv7Su3lwR5aZnpoPQaVRLDbSKZTVo8dk7r8CAN4wv/WFgVc/xw6PjGPNF8ZFbNkKtEud3sbnaiAeu7cavXpwRdIuG0iXTGZzzhLClwkcdWQ1aWPQaRWcSZ8NxZDiNv5AKneWKzBui2mm5McZw+zYXDo/4MRMorYxmIZpAvyeEPR01Aq2OFKq7LnuCJuW+RNr7IL4OhwmRRBqzIWU2Sxj1RdBOpaYXtc5pwbg/isXE2m52cmoygE2NVmjVqz9lum6DE3ftbMZ/PzOEk0WWnUbiKXzpDwPY3VGD6zb85dgNId1/bSeaq6vwyV+cQTKdEfVYSjHujyKV4UvfMZWsqVrZYzDcARp/ISUKEkVGM9aU4bXbmsA58PMXpkt6nsMjfnAO7K3gDmhy6awzQcUg6R4oev+Kr13BYzDSGY4J/yLNSLyE9fUWcA7J9wpLiXOO09MB9LqsJT/XP71mM+osenzoxyeL6nb6jedGMBdO4H+9aqPoGW2DVo2P3boZ5zxh/OT5SVGPpRT5C49dq8wUryUuexWm5pUbJFKfAGlRkCiidIZjNkTlpkrQ7jBha4sdj58oreT08LAfeo0KW5qpaY3UDFo1WmqMGJTwhNQTjKOeOhOLqiMXgElZRlyomcAiEukMZRIvYX19fn7p2i05HfdHEYql0NtU+me+rSpbdnrOE8b//eNgQY/xheP46p+GcXNPPa5slWbI+02b69FoM2D/oE+S48ltKUiso4tBLrsB0yVWXIlpKZNI5aaSoCBRRL5c7TTNWFOGO7a50OcOod+9+hOawyM+XNlaTY2IZNJdZ8aQROWmnHN4QzF6/4rMZTdAq2YYmVNes4TznU3p5PFi2h0maNVsTTevOT0VBABcIUCQCACv2FiP113ZjC8/PYQ/nPWseP+HnhpCNJHCh27eIMjxC8EYw/ZWO05MzEt2TDkNzYbRYDUINneynDXZjViIJhGJp+ReykW5g3Fo1Qw1Rp3cS6kIFCSKiGasKcutW11Qqxh++sLqsomBxSRemgliTyftR5RLd70Zw7MRpCTYKzMfTSKZ5lRuKjKNWoXWGqMiO5yen5FImcSL0ebmlw541m4m8fR0AFo1w7p64UoRP37rZqxzmvGObx/DRx8/ddET8mAsiQef6MN3Do7iDTta0O20CHb8QmxvqcaEf1Gxe4WFNOQNo8tJF4KA7EU7AIodg+IJxuC0GKASqXkT+XMUJIqIaqeVxWHW45puB37+wjQymeI7KR7N70fspP2IcumuMyORzmBCgj0T9P6VTofDpMg9icOzERi0Kio5vox1TssazyQGsKHBImj1iM2oxU/fczXuf3knfnBkHK/6j2dxbNQPINtp85GDo7ju357Gfz09hNu2uvDRV28S7NiFys8LLHW2o9JxzjE0G6GmNTnNS2MwlBkkugMxKjWVEAWJInLTSabi3LG9CVMLizia+0IuxuERH3QaFba1VHabbDnlW9BL0eH0fJBImUSxtdeaMOqLrOrijZgGvGF0O8101foy1tWbMTG/Njuccs5xeiqAXpfwe9ANWjX+8dWb8Oi7rgIHx11fOYiPPn4KN3/xT/jYz85gfb0Zv3jvNfj83dtgM0pfBtnbZINGxXBifG2XnHqCcYTjqVWPN1lrXHZlB4meYIw6m0qIgkQReYMxMAY4zFQ7rRQ3bq5HlVaNn66iy+nhET+2tdgretiu3PJf5FI0yvDmysWdlEUSXbvDhHgqs3RhTSmGvGHKMKxgLXc4nVpYxHw0iR6B9iNezO6OGvzm71+Ou3e14PuHxwEAX3/rTvzgnXtxhYwN0gxaNTa7rDgxvrYzieeb1tD7HMh+32lUTJHlppxzuGkslaQqMkiMJaW54ukJxuEw66EpYbYSEZZJr8FNPfX49akZJFKF72sLxZI4PRWgUlOZWQxaNNoMOFdC86FC5TOJTsokiq4jNwZDSfsSI/EUphYWKcOwgnyH03NrcF+i0E1rLsWs1+Czd27BU/9wHX77vpfjlZvrRR91UYjtLXacnFxAWmEZfiHlL27Q+zxLrWJosBkwvaCsC3YAEIqnEE2k0WCj72SpVGT0MuANYz6SEP04nhClxZXotdubEFhM4ul+b8GPOTY6jwwH9nZQ0xq5XdlWnZtXKe6JiycUQ7VRS51sJZAPEocVFCSeP3mUtmFIuWmrXbsdTs9MB6BWMWxskOZ3oMNhglZBF5W3t1YjmkivyQsAeYPeMCx6DeqoweASpc5K9ARoC5fUlPNpJLHnJaiz9wTjtJ9JgV7W7UCtSVdUl9NDIz5o1QzbJZpTRS5tX1ctZgIx0RudZN+/9GUkhQarAXqNSlGZxHwZGmUYLk+rVqHTYV6THU5PTQWwzmmu2C0G+eY1a7nkdNAbRpfTrIjMrVI02asUuScxvx2Bki/SqcggkQE4NiZ+kOgN0ow1JdKoVbh1SyOePOtFMJYs6DGHh/3Y2mxHla4yTxaU5OouBwBg/5C4g57p/SsdlYotNa9RikFvGBoVQ1stjb9YSXe9Geck2CcspaWmNSKXmipZa40RNSbdmm5eMzQbpgtBF2iyV8EdjEkyaqoY7lwmkbqbSqcig0SDVo3jo+J+6CVSGfgiCWqdrlCv3d6ERCqDx59fOZsYiadwivYjKkZbrRFN9iocGJwT9TieYJxmnEqo3WFU1BiMAW9YceV/SrXeacHk/CKiCWUO4F4NbyiOuXACvS6r3EuRDWMM21vsa3YMRjCWhDcUp6Y1F3DZq5DOcHgVNiOTxlJJryK//Ux6DU5OLhTVuKRYs+Hsm4vKTZVpW4sduztq8J9/HED4IoOMlzs2No90hmNPJ+1HVALGGPZ11eLgsE+0kQnpDMdsmMpNpdThMGPcH1XM1eshL2UYCrW+3pztcOpVTpBfqlOTAQCQtcOoEmxrsWPAG0ZgsbCqm3JCJeUX15Sblai0DqfuYAx2o7Ziy7/lUJFBolGnRjyVwZnpgGjHcNMGW0VjjOGjr96EuXACX/3T8GXve3jYB42KYUcb7UdUin3dtViIJvHSTFCU5/dF4khnOF3kkVCHw4hkmiuiq148lcaoL0InjwVaV59t7LKWGpycng5AxYBNjZWbSQSwtA//xcm1l00coiDxoprs2fNWpe1LnFmgZpBSq8gg0aTTAACOi7gv0Uvt8xVvW4sdr9nSiK/9aXjp9bqYwyN+bGm2wZj7vSHy25fbl3hgSJyS06UZifSFJJn22myH0xEF7EscnYsiw+nksVDttUbo1Ko1tS/x9FQAXXXmiv/c39JiA2Nrs3nN4GwYOrUKLbnMGcly2bP/P5QWJE4HYktrI9KoyCBRo2ZoqakSNUik2uny8OGbNyCVyeALTw5c9PZxXxQvTi5gD+1HVJR6qwHdTjP2D4rTvIbev9JT0qxEKkMrjkatQmedCQNraAzG6algRTetybMatFjnNK/J5jVD3gjaHUaaZX0Bo06DaqNWceWmM4FFNFLTGklV7DtjZ1sNjo3NizZrzROKQ6NiqDHqRHl+Ioy2WhP+em8bHj06/hct3EfmIrjrKwdh1mvwhh3NMq2QXMq+rlocHfWLsrfYE6Q9xVKrs+hh0qkV0bxmwBsCY6CGFkXodpoxsEYyibOhONzBGHoquGnNcttbqnFiYkH02bRSo86ml6a0WYnRRAoL0SRlEiVWsUHilW3VmA3FMSnSm8ATjMFp0UOlotk7Svd3r1gHk06DB5/oW/rZoDeMu79yEMl0Bj9411500smi4uzrciCaSOOkCHtlPMEYGAMcZgoSpcIYQ7vDpIggcdAbRku1kRokFGF9vQUT/rXR4fR0rl/BFZRJBJCdl7gQTWLUF5V7KYKJp9IY80XoQtAlNNmrFLE/PC+/FpedMolSqtggcWeuCcmxMb8oz+8NxlFPafGyUGPS4YHru/DkWS8ODftwzhPCG796EBkO/PBde7Gxga4mK9FVnbVQMWC/CKMwvKEYak16Gn8gsXaHMmYlDlJn06Ktr8/+/8qX6pazM1PZIHEzZRIBnG9es5ZKTsd8tO/4clz2KkwtLComezwTyCZ0Gm2USZRSxZ4Bra+3wKLX4JhI8xI9wRjNSCwj913dgUabAR//2Wm88auHoFYxPHr/3qWufUR5bEYteptsODAk/L5ETzBOpaYy6Kg1YXJ+EUkZx2CkMxzDc9TZtFj5jMzwrPxBfqlOTQXQ6TDBYtDKvRRF6HaaYdZr1lTzmvzFDMokXlyTvQrheArBmDIqA2bymUQKEiVVsUGiWsWwrdUuWvMaTzBGJ5llxKBV44M3bcA5TxgGjQqPvusq+vIoA1d11eLE+LzgJW6jcxHa+yCDdocJ6QzHhF++srYJfxSJVIaCxCK11hqhYsCwAsqFS3V6KogeKjVdolYxbG2x4cTE2skk5oPEzjqTzCtRJqXNSpwOLIIxoN5G59VSqtggEcg2r+n3hBCMCTskdjGRRjCWovb5ZeaO7U34l9f24kd/exXaHfTFUQ6u7nIgmeY4KmBFgDcUw/BcZKkknUgn3+FUzn2J1Nl0dfQaNZqrjRieLe9y0/lIAlMLi+ilUtM/s72lGmdnQlhMpOVeiiCGZsNosldV/IiTS1kag6GQ5jUzCzE4zHroNbRPXEoVHSTuaKsG58LP/6H2+eVJrWL4671taK42yr0UUqBd7TXQqVU4IOC+xCMj2X3KNPZEekoIEgcoSFy1zjpT2Zeb5l//jY0UJC63vdWOdIbjVG6/Zrkb9IbRRe/xS8o3iJkOKCNInA4swkV9PiRX0UHitlY7VAyCl5yeDxIpLU6ImKp0amxvtQu6L/HQsA8mnZoyCTKoNmphNWhkbV4z6A2j3qqHlfajFa3TYcbIXASZjDKaXaxG/nevvZYuFi63rcUOAHhhDZScZjI8O/6CtpRcksOkh06jwpRSyk0XFqlpjQwkCxIZY99ljM0wxoKMsXOMsb9ZdtsNjLE+xliUMfYUY6xt2W16xtg3c49zM8Y+cMHzXvKxKzHrNdjUaMVxgTuczgQok0iIVPZ1OXB6OoCFaEKQ5zs07MfO9hoasCwDxhg6HCaMzsm3J3HQG6Is4ip11pmwmEzDHVRO6/xijfui0KgYmmhP8p+pNetRZ9FjwFPe5cRANisVS9K+48tRqRhcNoMiyk0555gJxKhPgAykPAv6LIB2zrkVwG0A/oUxtoMx5gDwEwAfA1AD4BiAR5c97pMA1gFoA3A9gA8zxm4BgAIeu6IdbdU4Mb6AlIDd9I6N+WHSqZdKpwgh4rm6uxacZzOApZoLxzHoDWMvlZrKpt1hkm1fG+ccQ7MRyjCsUr4JSDmXnI76ImiqrqKLRBfRVWfCUJnvOQWWdzalc7TLaaquUkTjmuBiCtFEmmYkykCyT0HO+RnOeTz/n7k/XQDuBHCGc/4Y5zyGbFC4lTG2MXfftwH4NOd8nnN+FsDXANybu22lx65oR1s1ook0+tyh0v6ByxwY9GFPZy3NWCNEAltb7DDp1Hh2oPR9iYeHs1UFeztrSn4usjqbG62YDsTgDUmfjXIHYwjHU+im0Ter0unIjcGYK99AYtwfRVstBQ8X01VnxtBsRDGz81aLmlMVxmWrUkS5aX4NVG4qPUmjGMbYlxljUQB9AGYA/BpAD4CT+ftwziMAhgD0MMaqATQuvz33957c3y/52ELXtLM9ezIo1L7EqYVFDM9FsK+LMhGESEGrVuH6jU788sUZxJKldd47NOyDUadGL7W/l00+i5sP2KWUL6WjTOLq1Fv1MOnU5Z1JnIugrYb2I15MV50ZgcUkfBFhSvvlMjQbQbVRi1oz9Y24HJe9Ct5QHImUfHNrAWAm1zynkTKJkpM0SOScvxuABcDLkC0TjQMwA7iwXVYgdz/zsv++8Das8Ng/wxh7F2PsGGPs2Ozs7NLPXTYDGqwGHBMoSNyf67J4zTqHIM9HCFnZm3a3IrCYxK9PzZT0PIdHfNjZXkNVADLqcVlh1msEKR8uFmUYSsMYQ0edqWxnJS5EEwjGUmijpjUXtRbKiQFgyBumOcgFaKquAufnmzHKZTrX58NFmUTJSX4mxDlPc86fA9AM4AEAYQAXthG0AgjlbsMFt+dvwwqPvfC4X+Wc7+Sc76yrq1v6OWMMO9qr8bxAQeKBwTk4zDpsoHIlQiRzVVctOhwmfP/w+KqfYy4cxzlPmEpNZaZRq7CzvRqHR6TPJA7OhmE3auEw6yQ/9lrR6TCX7azEUV+2YRKVm15cPrAq932Jw3MUJBYi37xpUubmNTMLi9CoGOoslPmVmpyXyzXI7kk8A2Br/oeMMVP+55zzeWTLUrcue9zW3GNwuccWs5BdbdWYWlgs+YOPc479Qz7s63KAMVbScxFCCscYwz27W3BsbB7nPKvbX7w0H7GDSsXltrezFoPeMGZD8ZXvLKBBT7YtPn1+r15nnQlTC4sll37LYSw3/oIyiRfXZK+CXqPCkLd8g8RwPIW5cAJtDnqNV5IPEuVuXjO9sIh6qwFqFX0uS02SIJEx5mSMvZExZmaMqRljNwO4B8AfADwOoJcx9jrGmAHAxwG8yDnvyz38OwD+mTFWnWtI804AD+duW+mxBXn1lkaoVQw/OjZR0r9zIHdSc003lZoSIrXX72iBTq1adTbx8LAPVVo1tjTTfkS57enIZnMPj0hbcjo4G6ZS0xJ11pnBOWSddbla47lMYivtSbwolYqhs85c1pnEpQsBNZQtXklDbni97EFiIEadTWUiVSaRI1taOglgHsD/AfA+zvnPOeezAF4H4DO52/YAeOOyx34C2WY0YwCeAfBvnPMnAKCAxxbEaTHgho1O/M/xSSRLGIXxXK674tW0H5EQydWYdLi5twH/8/wkFhPFZzGy8xGraT+iAvQ22WDSqSVtXuMLx+GPJChILFGno3z3rY36omiwGmDQquVeimJlx2CU32ubN75UUkwXAlZi0KrhMOtl73A6E1ikzqYykeRsiHM+yzm/lnNu55xbOedXcM6/tuz2JznnGznnVZzz6zjno8tui3PO78s9rp5z/vkLnvuSjy3G3btaMBdO4A9nvav9Z2L/4Bzaa400hJcQmbxpdytCsRR++eJ0UY/zRxLo94RoPqJCaNUq7GyvkbR5DTWtEUbHUpBYftmmcX+EgocVdNaZMTkfLctyYgAY8+eyxfQ6F6SpWt4xGJkMhzsQg4vOq2VBl8xzrl1fh3qrftUlp8l0BodH/LiaSk0Jkc3ezhp01pnw/SPFlZweyZU1UtMa5djTWYMBbxhzYWn2JQ7OUpAoBJNegwaroWwziRQkXl5XnQkZDozlMnLlZswXRbVRC6tBK/dSykJ7rVHWPahz4TiSaU7lpjKhIDFHo1bhDTta8HS/d2kmSzFenFxAOJ6i/YiEyIgxhjftbsWJ8QWcnQkW/LhDw35UadW4osku4upIMfJZ3SMSdTk9NRmA1aChNusC6CzDMRjRRAqzoTh1Nl1BuXc4HfdH0EqvccF6XTZMB2LwyzQbMz/+gspN5UFB4jJ37WxBhgM/PjZZ9GOfG/CBsWwrfkKIfF53ZTN0muIa2Bwa9mFHWzV0GvpIVIormmww6tSSlZweGfVjZ3sNVNRBr2SddSYMz4bBOZd7KQUbo71qBcnPSizXDqdjvijaqDFRwXpc2SlzZ6YvHEkujZlcqWujjTKJcqAzomVaa43Y11WLR49NIJMp7stt/9Acel022I00X4sQOVWbdHh1bwN+emIK0URqxfvPRxLoc4eo1FRhtGoVdrRVSxIkzoXjGJ6NYHcH/Q4IodNhRjCWgk+m7MNqLAWJ1PXysow6DZrsVWWZSUykMpheWEQ7XQgoWI8r2+379FThlTlCymcSaU+iPChIvMDdu1owOb+Ig0WcmETiKZwYn6f9iIQoxJv2tCEUT+EXJ1duYJMf2k5Na5Rnb2ctznnC8Im8L/Fo7ndgVzsFiULIZ5vKaV9ifjQCNTRZWTmWEwPA1MIiMhxUbloEm1GLlpoqnJYxk2jQqlBtpD2kcqAg8QI39zTAVqXFD48W3sDmyKgfyTTH1d10kkmIEuxqr8bGBgsefKJ/xSveh4Z9MGhV2NJM+xGVRqp9iUdG/TBoVbiiiWZkCqHTkd23Vk4dTsf82YYmtio6GV1JV50ZQ97yKicGls1IpAsBRelptOGlabkyiYtw2arAGG0DkAMFiRcwaNW4Y3sTfnvajfkCS2UODM5Bp1HRVWhCFIIxhv/66x1gAN7y9cOXbEZ1bNSPn74whV3tNbQfUYG2NNtQpRV/X+LRUT+2tdjpd0AgTdVV0GlUZZVtGvNFqGlNgbrqTIgk0vAEpek8LJRxf76kmILEYvQ2WTEyF0EolpT82NMLMTRSZ1PZ0DfiRdy9qwWJdAaPn5gq6P7PDfqws62aBvASoiAdDhO+fd9uhGIpvOUbR/7ios9PT0zhTV87jGqjDp+6vVemVZLLyc5LrF4qCRZDKJbES9NB7O6gShChqFUM7bXG8sok0viLgpVrh9MxXxRVWjXqLHq5l1JW8vsS5cgmzgQWqbOpjChIvIhNjVZsbbbh0aMTK5ZTzIXjODsTpP2IhChQb5MNX3vbToz7o2+OHqYAACAASURBVLj34aOIxFPgnOPzv+vH+x59Adtb7Xj83fuWBoAT5dnbWYs+d0i0FuzHx+aR4cBuqgQRVKfDXDaZxHxDE8owFabLWb5BYmuNkUoXi9TTlO9wKm2QmExn4A3FqWmNjChIvIQ372lDvyeEb+0fvez9fvJ8dlzGPhp9QYgi7e2sxUNvuhKnpwL42+8ex//3wxfwpT8O4g07mvHIO/ZQR2KF25PrOHpkRJyS06OjfqhVDNtbaU+qkDrrTBj3RZFMZ+Reyoom56PIcFC5aYGcFj3Mek1ZNSYC8jMS6UJAsZwWA5wWveTNa9yBGDgHXDT+QjYUJF7C63c046bN9fjMr8/iwNDcRe/zVL8Xn/tNH27Y6MS2FjrBIESpbtxcjwdftwXPDszhFyen8ZFbNuJfX7+F9qCVgS3Ndhi0KhwaFqfk9OjIPHpdVpj0GlGev1J11pmRynBM5PaBKdmYn2YkFoMxhq46U1llEjnnGPfTjMTV6nFZJS83ncmNv2ikTKJs6AzpElQqhs/fvQ2dDhPe873n/+KL7qXpIN77veexqdGKL92zncoXCFG41+9oxn+9+Up8577deOC6LnrPlgmdRoWdbTWiNK+Jp9J4YXKB5iOKIF/CXQ7ZprG5fNdLyiQWqjPX4bRceENxxJIZuhCwSr1NNgx4w4gl05IdM99wjjKJ8qEg8TLMeg2++tadSGU47n/kOBYT2TeHJxjDO759FBaDFt942y66Ak1ImXjVFY14+fo6uZdBinTt+jr0uUPocwt7JfvFyQASqQx1phZBV35W4pzyA4kxfxRGnRoOM5WeF6qrzoTpQAyReErupRRkdC4/B5MuBKxGj8uKdIajzx2S7JjTC5RJlBsFiSvocJjwpXu246w7iI/8z4uIxFO47+GjCC4m8c17d6GBrnAQQoioXr+jGXqNCt8+MCbo8+bnL1KQKDy7UYcak648Mom+KNpqTVRdUIR8h9ORMmlONEbjL0qS73B6RsJ9idMLi7AaNDBTIkY2FCQW4PoNTvzDTRvw85PTeNV/PIuzM0H83zddic0uq9xLI4SQNa/apMPt21z46YkpBKLCzeo6MuLHOqcZ1SbKIImh02EqkyAxQsFDkcqtw+m4Lwq1iqGpmrJSq9FcXQVblRanp6TblzgTWKTOpjKjILFA776uC6++ogHj/ij+9209uH6jU+4lEUJIxXjrVe1YTKbx2PEJQZ4vneF4fmye9iOKqLPOpPgxGOkMx4R/kfaqFamt1ggVA4bK4CIAkM0kuuwGaNV02rsajLFc8xopM4kxNFK1nqzo3VIgxhi+cPc2/Py9V+MtV7XLvRxCCKkovU027GyrxncOjiGdufz82kKcnQkiFE9RkCiizjoz5sJxBGPCZX+F5g7GkEhnqGlNkfQaNVpqjGWUSYygnV7jkvQ22XDWHZJsrM1MYJH2I8qMgsQi6DVqbGmmUReEECKHt+1rx7g/iqf7vSU/F+1HFF9nrsPpoIK7YJ7vbEqZxGJ1lVGH0zF/FK1UUlySHpcViVRGkvfzYiKN+WgSTRQkyoqCREIIIWXhlt4GOC16fPtg6Q1sjo760WSvoj0vItrUmN23L/V8tWLQjMTV66ozYWQugowAmX0xBRaTWIgm6TUu0fnmNeK/n6dz4y+o3FReFCQSQggpC1q1Cm/e04Y/nZstqcyNc46jo37soVJTUeWbXUhxUrlao74ItGqGRhtdLChWV50Z8VQGUwuLci/lssZ92QsBrTVUblqKDocJRp0ap6fE35c4kx9/Qe9LWVGQSAghpGzcs6cFWjXDIyVkE0fmIpgLJ7CLgkRR5ZtdSNk2v1jjvihaqo1Qq2j8RbHKpcPpmJ9KioWgVjFsapTm/ZzPJLrslEmUEwWJhBBCyobTYsBrrmjEj49PIrzKQd77B+cA0H5EKfS4rOiTsNlFsUZ9UQoeVik/K1HJe06B7BxMALQnUQC9Litemg6KXmKczyTSLHJ5UZBICCGkrLx1XzvC8RR+8vxk0Y89NRnA537Th94mK7rqqPxMbD0uGxKpjCKzTZxzjPsi1Nl0lWpMOjjMevS5Q3Iv5bLGfVE4zHqYaCh7yXpcNkQSaYz6xB19MrWQfc30GrWoxyGXR0EiIYSQsrK9xY4tzTZ8a/8oYsl0wY8b80Xw9oePwG7U4Rtv2wXGqMRQbL1N2eY1Ug7hLpQvkkAkkaZMYgl6m6yS7FErxZg/Qq+xQHpy72ex9xmfngpiQ4NZ1GOQlVGQSAghpKwwxvD+G9djZC6Cj//sNDhfufRpNhTHW795BOkMx3fesRv1VipjkkKHw4wqrVqR+xJHcuMvaH7e6vW6bBjwhou6WCO1cV8UbVRqKoh1Tgt0ahVOi/h+DsdT6HMHsaONtgPIjYJEQgghZef6DU689/pu/OjYJH5wZOKy9w3HU7jv4aPwBGP4xr27lvZSEfFlm11YFNnhNF8mub7BIvNKyldvkxXpDEe/QktO46k0ZoIxtFImURA6jQrrG8yiZo9PjM8jw4GdbdWiHYMUhoJEQgghZen9N67Hy9fX4RM/P40T4/MXvU8ilcED3z2Ol2aC+PKbr8SVrXTiIbUel02SZhfFOucOwaLXwEXNMVYtPztPzMxSKSb8i+CcOpsKaXd7LY6OziOaWF3jsJUcG52HigHbW+2iPD8pHAWJhBBCypJaxfClN25Dg82AB777PGZD8aXbOOd4qs+L2x/aj2cH5vDZO6/AKzbWy7jaytXjsiIcT2E8N7heKfo9IaxvsNDe1BLkZ2Eqcc8pAIznxl/QjEThvHKzE4lUBs8OzIny/MfH5rGhwQqLQSvK85PCUZBICCGkbNmNOvzXm3dgPprA3/3geaTSGRwb9ePurxzC2x8+ikg8hYfedCXu2tki91IrVm9TNtukpJJTzrMlkuvrqdS0FIwxXNFkU2zzmvz4C8okCmdXew2sBg2efMkj+HOn0hmcGJ+nUlOFoCCREEJIWettsuGzd16BQ8N+3PTFP+H1/30QI74IPv3aXjz5gWvxmi2Nci+xoq2rN0OjYooqSfSG4ggsJrGR9iOWrKfJin53CImU8mZhjvmiMOs1qDXp5F7KmqFVq3D9Rif+2OdFWuAS8j53CJFEGjvbKUhUAgoSCSGElL07r2zG31zTAV84gQ/fsgHPfOg6vGVvG3Qa+pqTm16jxrp6ZTWvyTdaoUxi6XpdNiTSGQx4lde8ZswXQWuNkUqKBfbKTfXwRRJ4YeLie8FX6/hY9vl2UCZREejbkxBCyJrwz7duxomP3Yh3X9cNo44GZytJr8uKM1OBgsaVSCEfJG6gTGLJlsqJFbgvccwfpVJTEVy7oQ4aFcPvX/IK+rzHxubRYDWgyV4l6POS1aEgkRBCyJqhUlHGQIl6XFb4Igl4gvGV7yyBfk8IdRY9aqgMsWRtNUaY9RpFlRMD2c7G474oOhzUtEZoVoMWeztr8eRZYfclHh/1Y0d7NWV+FYKCREIIIYSIqmepeY0yAol+dwgbqNRUECoVw2aXVXHNa0Z9EaQynEqKRfLKTU4MesMYmYsI8nzTC4uYDsSoaY2CUJBICCGEEFFtarSCMWV0OE1nOAa8ISo1FVCvy4aXZoKCNzIpxTkP7TsV0w2bsiOF/iBQNvFYbj/izrYaQZ6PlI6CREIIIYSIyqzXoKPWpIhs04Q/ilgyQ5lEAV3RbEUsmcHwbFjupSw55w5BxYDOOio3FUNLjREbGyz4vUCjMI6P+mHUqbGpkd6XSkFBIiGEEEJE19NkU0QmsS/f2ZQyiYLpdWXLiZW0L/GcJ4z2WhMMWrXcS1mzbtxcj6OjfsxHEiU/17GxeWxrsUOjptBEKeiVIIQQQojoelxWTC0sYiFa+gllKc6XIZplXcda0llnhkGrwqlJ+S8C5J3zhqjUVGSv3FSPDAee6i+ty2k4nsLZmSDtR1QYChIJIYQQIroelxWA/PsS+z0htNYYaUyKgNQqhs2NVsVkEmPJNEbnInQhQGRXNNngtOhL7nL6wvgCMhzY0U77EZWEgkRCCCGEiK7HpYwOp/1ualojht4mG16aDiKjgOY1w7MRZDiwjjKJolKpGG7YVI9n+mcRT6VX/TzHxvxgDNjeahdwdaRUFCQSQgghRHQ1Jh1cNoOsmcR4Ko2RuQg1rRFBr8uGcDyFMX9U7qVgwJstKaaLAeK7cbMTkUQah4b9q36O42Pz2FBvgdWgFXBlpFQUJBJCCCFEEptdNlk7nA7PRpDOcGpaI4Kepmw5sRI62Pa7Q9CoGNprqbOp2PZ1OVClVePJVXY5TWc4TowvYGc77UdUGgoSCSGEECKJ3iYrhuciiCZSshy/P9fZdCMFiYJbX2+BTq1SxL7Ec54wOutM0GnoNFdsBq0a12+sw09fmMJcOF704/vcQYTjKZqPqED07iGEEEKIJHpdNnAOnJqUJ5Do94SgVTN0OCjDJDStWoWNjRacmZK/w+k5T4j2I0roAzeux2IijQd/01f0Y4+PzQMAdlBnU8WhIJEQQgghktjdWQONiuGZc7OyHL/fHUJXnRlamsUmih6XDaenA+BcvuY1i4k0JuajWO+kIFEq3U4L3nFNBx47PrkU9BWCc45fn5pBg9WA5uoqEVdIVoM+JQkhhBAiCatBix1t1XiqX74gkWbniae3yYqFaBKT84uyrWHQGwbnwIYGGn8hpb+7YR0arAZ8/GenkS6ww+33j4zj0LAf73lFNxhjIq+QFIuCREIIIYRI5vqNTpydCcIdiEl63FAsiamFRep4KaJeBYw56fdk951Suam0zHoN/uk1m3BmOojvHx5b8f4T/ig+86uzuKbbgb/e0yrBCkmxKEgkhBBCiGSu3+AEADxzzivpcc95wgBA4y9EtKHBAq2a4fnxBdnWMOAJQadWoa3GKNsaKtWtWxqxr6sW//bbfvgu08Qmk+H4h8dOQsUYHnz9FsoiKhQFiYQQQgiRzPp6M1w2A57qk7bk9JyHZueJzaBVY29nLZ58ySPbvsR+TwhdTjM0tO9UcowxfOr2HkQTaTz4xKWb2Hz74CgOj/jxsVs3oclOexGVit5BhBBCCJEMYwzXbXTiucE5JFIZyY7b7w7BqFPTSanIbuppwPBcBIPesCzHH/CEsb6e9iPKJd/E5kfHLt7EZmQuggef6MP1G+pw184WGVZICkVBIiGEEEIkdf0GJ8LxFI6N+SU7Zr5pjUpFpW1iumlzPQDgd6scrl6K/L5Tak4kr3wTm3u/eQT3P3IMjxwcxfBsGOlcmalOrcLnXkdlpkqnkXsBhBBCCKks+7pqoVOr8HT/LPZ1OSQ55jlPCK/cVC/JsSpZvdWAbS12/PaMG++5vlvSYw/kspcUJMrLrNfgm/fuwncOjuLZgTn89kz2gkG1UYv5aBJfuHsr6q0GeRdJVkRBIiGEEEIkZdJrsLujBk/1efHRV28S/Xhz4Th8kQTtR5TIzT0NePCJPkwvLMIlYXnvQG7fKZWbym+zy4rPvW4LOOcY90fx3OAc9g/OocFahddua5J7eaQAVG5KCCGEEMldt6EOA94wJvxR0Y91bDS7N6rHZRX9WAS4qSebsf29xCWn5zxhGLQqtFRTZ1OlYIyhrdaEN+9p+3/t3XmU3VWV6PHvTmUkEwkZCIGEKQMQmiGAIE8IIDg1zVOUp9KIz25A1O7WFlkuZwXn7nZoWxREBARFUZ8KikpAUEAlqCEMSRiSAGYmY2WqpGq/P+6viktIVZLKrXtvVX0/a9VK1W84v31z1q/q7nvObx++fv50Pnb24U4z7SZMEiVJUtWdNrW0FMZv53d9ldOZjy9j6MC+HDtxRJdfS3DI6CEcOmYIv3p0aVWvO3/ZeiaN8blTqRJMEiVJUtUdPGowE0buxT3zuna9xJaW5O55y5kxZQz9XBahal51xFj+uGAVqzc0Ve2a85etZ5JTTaWKqMpvy4gYEBHXRsSiiFgfEX+NiNcU+w6MiIyIxrKvj2537rcjYl1ELI2If9+u7TMiYm5EbIyIuyNiYjVekyRJ6ryI4LQpo7nvyefZvLW5y64z+7k1rGxs4pWHjemya+ilzjp8X5pbkrvmdu2HAK3WbtzKsnVbmGLRGqkiqvWRWl/gWeBUYDjwEeAHEXFg2TF7Z+aQ4uuKsu2fACYBE4HTgMsj4tUAETEK+DHwUWAkMAu4pUtfiSRJqogZU8ewaWszf1rQdUthzHx8OQ19glMnj+6ya+il/m7/4YwbPrBqU07nL28tWmOSKFVCVZLEzNyQmZ/IzIWZ2ZKZtwELgOm7cPqFwBWZuTozHweuAd5e7HsD8Ghm/jAzN1NKKI+KiKmVfxWSJKmSTjp4Hwb07cPdXTjl9M7HlzF94gj23qt/l11DLxURnHX4WO59YgWbmrpupLjV/KKyqdNNpcqoyeT8iBgLTAYeLdu8KCKei4jrihFCImIEMA6YXXbcbOCI4vsjyvdl5gbgqbL9kiSpTg3s18BJh+zDb+d1TfGa51ZvZO7S9U41rZGzjtiXzVtbuPeJri9ONH/pegb3b2B8FZfckHqyqieJEdEPuAm4PjPnAiuB4ylNJ50ODC32A7R+HLS2rIm1xTGt+8v3bb+//LoXR8SsiJi1YkXX/7KSJEk7d9qUMSxYuYEni+mCldT6PNwZh42teNvauRMOGsnwQf2qMuV0/rJGJo0d6vIKUoVUNUmMiD7AjUAT8B6AzGzMzFmZuS0zlxXbz4qIoUBjcWr5wkbDgNa/JI3b7dt+f5vMvDozj8vM40aP9rkESZLqwWuO3JdB/Rr48p1PVLztmY8v56BRgzlktFMQa6FfQx/OmDqGmY8vZ2tzS5ddZ1tzC48tWWfRGqmCqpYkRumjnWuBscC5mbm1nUOz+LdPZq4GlgBHle0/ihemqT5avi8iBgOH8OJprJIkqU6NGTqQi085mNseXsKfn1ldsXY3bNnGA089z+lTnWpaS2cdsS9rN23lwS4sTvSnBatYu2krM6Y4CCBVSjVHEq8CDgPOzsxNrRsj4mURMSUi+kTEPsBXgd9mZus00huAj0TEiKIgzUXAd4p9PwGmRcS5ETEQ+BjwcDGNVZIkdQMXn3Iwo4cO4NO3P05m7vyEXfC7J1bS1NzCGT6PWFOnTh7NoH4N3Prn57rsGrfPWcKgfg3MmGJfS5VSrXUSJwKXAEcDS8vWQzwfOBi4g9IU0UeALcBbyk7/OKViNIuAe4AvZuYdAJm5AjgX+DSwGngZ8OZqvCZJklQZgwf05f1nTuahRau545HKPL828/FlDB3Yl+MPHFmR9tQ5g/o38JYTJvDTvy7m2VUbK95+c0vyq0eXcvrUMQzq31Dx9qXeqlpLYCzKzMjMgWVrIQ7JzJsy83uZeVBmDs7McZn5tsxcWnbulsx8R2YOy8yxmflf27V9Z2ZOzcxBmTkjMxdW4zVJkqTKedNxBzBl7FA+d8dcmrbt2fNrLS3J3fOWM2PKGPo11KSQu8pcdMpB9Am4+t6nK972Hxc8z8rGJl575LiKty31Zv7mlCRJNdfQJ/jQ6w5j0fMbufEPi/aordnPrWFlYxNn+DxiXRg3fBBvnL4/t8x6luXrNle07V/MWcLAfn04barPI0qVZJIoSZLqwqmTR/OKSaP46swnWLOxqdPtzHx8OQ19wkImdeSSUw5hW3ML1/5+QcXabG5J7nhkGadPHcNe/ftWrF1JJomSJKmOfOi1h7Fu81a+dteTnW7jzseXMX3iCPbeq38FI9OeOHDUYM4+aj+++4dFe/QBQLk/LVjFysYtTjWVuoBJoiRJqhuHjRvGm6bvz/UPLOSJZS9Z9ninnl7RyNyl63mlVU3rzrtmHMqGpma+c//CirT3y0dKU01d5kSqPJNESZJUVy47awrDBvbjkhsfYt3m9pZVfqltzS184NaHGTqgL/9w1PgujFCdMWXfoZx5+Fiuu28hjVu27VFbzS3JLx9ZymlTnGoqdQWTREmSVFfGDBvI188/lmdWbeS93/8rLS27tnbi1+5+kocWrebK109j3+EDuzhKdca7ZhzC2k1bufmPe1acaNbCVaxY71RTqauYJEqSpLrzsoP34WNnH85dc5fzpTvn7/T4hxat4qszn+D1x4znnKMdRaxXx0wYwcmH7sM1v1vA5q3NnW7nF3OWMKCvU02lrmKSKEmS6tIFJ07kvOP257/vepI7HlnS7nHrN2/lvbf8lfEjBvGpc46oYoTqjHefdigr1m/p9LOJLcVU0xlTRjN4gFNNpa5gkihJkupSRPCpc6Zx9AF78+8/mM28pTsuZPPxnz7K4jWb+fL/OZqhA/tVOUrtrpMO3oczDx/LF+6Yy52PLdvt82ctWs1yp5pKXcokUZIk1a2B/Rr4xj9OZ/CAvlx0wyyuv38h9z25kmXrNpOZ/PSvf+PHf/kb/3L6oUyfOLLW4WoXRARfefPRTBs/nH/53l+Y/eya3Tr/F3OW0L9vH844bGwXRSgpMnftYfCe5LjjjstZs2bVOgxJkrSLHlq0mktunMXKxhfW2Bs6oC9NzS1MGz+cWy4+kb4NfvbdnaxYv4U3XHUfm5qa+fGlJzNhn706PH7Dlm3c8MAivnbXE5x86CiufttxVYpU6pki4qHM3OGNZJIoSZK6hcxk+fotPLW8kSdXNPLU8kaWrdvCh193GAeM7DjBUH16akUj5151PyP36s+PLn05Iwb3f8kxG5u2ceMDi/jmvU+zakMTp04ezRXnTNtpUimpYyaJ2zFJlCRJqg+zFq7ird/6I0eOH84V50xjzcYmVm1sYvWGJhav3cwPZz3LysYmXjFpFO995WSmTxxR65ClHsEkcTsmiZIkSfXjF3OW8O6b/8yO3paWksNJPnMqVVhHSaJ1gyVJklRTrz1yHLe+8+UsW7eZkYP7M3Jwf0bs1Z8Re/XzWVOpBkwSJUmSVHNOI5Xqhx/NSJIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2kRm1jqGqouI9cC8WsehLjUcWFvrINRl7N+ezf7t2ezfns8+7tns355jSmYO3dGOvtWOpE7My8zjah2Euk5EXJ2ZF9c6DnUN+7dns397Nvu357OPezb7t+eIiFnt7XO6qXqqn9c6AHUp+7dns397Nvu357OPezb7txfordNNZzmSKEmSJKm36ign6q0jiVfXOgBJkiRJqqF2c6JeOZIoSZIkSdqx3jqSKEmSJEnaAZNEdWsRMTIifhIRGyJiUUS8tdj+uoj4fUSsiYilEfGtiNhhiV/Vrw7697SImFP07/PFMeNrHa92T3v9u90x346IjIhDaxGj9kwH9/CMiGiJiMayrwtrHa92T0f3cESMjoibI2JtRKyOiJtqGat2Xwf374e2u3c3FffzqFrHrMrprUtgqOf4H6AJGAscDdweEbMpreFzJXAvMAC4Gfgi8M4axanOaa9/HwNelZmLI2IAcAVwFfAPNYtUnbHD/s3MRwEi4n8Bh9QwPu259u5hgMWZuX/NIlMldHQP/xh4EJgAbASm1SxKdVZ7/fsZ4DOtB0XEJ4BTMnNlTaJUl/CZRHVbETEYWA1My8z5xbYbgb9l5ge3O/YNwCcz88jqR6rO2NX+LZLETwDnZObhtYhVu29n/RsRfSm9wbwQmA1MyswnaxawdltHfQzcAXzXJLH72kn/3kWpIMYhmdlcuyjVWbvxNziApyi9x7q+JsGqS9TddNOIGF7rGNRtTAa2tf7yKswGjtjBsacAj1YlKlVKh/0bERMiYg2wCbgM+EL1Q9Qe2Nn9+z7g3sx8uOqRqVJ21sdjImJZRCyIiC8Vb0rVfXTUvycC84Dri0cCHoyIU2sRpDptV99jvQIYA/yoWoGpOuomSYyIQRFxLfB0REyodTzqFoYA67bbthZ40bOHEXEmpdGIj1UpLlVGh/2bmc9k5t7AKOAjwNzqhqc91G7/RsQBwCV4z3Z3Hd3DcylNXxsHnA5MB/6rqtFpT3XUv/sDZwF3A/sC/wn81GfWupVdeo9F6f3VrZnZWJWoVDV1kSRGxBBKzxONApZTer5I2plGYNh224YB61t/iIgTKT2P+MbtPg1T/dtp/wJk5irgekpvQHzOuvvoqH+/DHwqM9dWPSpVUrt9nJlLM/OxzGzJzAXA5cC5VY9Qe6Kje3gTsDAzr83MrZn5feBZ4OQqx6jO25X3WHsBb6L0N1g9TE2TxIgYFRH9ik8ffgJ8GDgHuCAiXl7L2NQtzAf6RsSksm1HUUwrjYhjgJ8B78jMmTWIT3umw/7dTl9K0122/4Om+tVR/54BfLGoTLy02PfAjqqfqq7tzj2c1MkH19plHfXvw5T6tJxFMLqXXbl/Xw+sAn5bxbhUJTUpXBMRBwKtpZDXAR8E5mXm5mL/NcBRmXlC1YNTtxIR36f0h+efKU1d+gXwciCAmcC/ZuYttYtQe6KD/p1C6Q/VE8A+lCqwHZqZx9YoVHVCB/27ghcnDEuAk4DZmbmp2nGq8zro4zHA08AzlKYm3kBp5On/1ihUdUIH/buEUjGT9wLfpZRMXA1MtgJm99Fe/5ZVoP418IfM9NGAHqjqn9pFxCDgW8BDwBsoDWd/AnhL2WHvBo4oXzMpIvyEUTvyLmAQpWnK3wMuLX55vR8YDVxbto6PhWu6n/b6dzyl6ojrgTlAC6U3Iepedti/mbm8mI64NDNbRxJXmiB2S+3dw8cA9wMbin/nAP9aqyDVae3dw6soLUl0GaXn2D5IqQK1CWL30t79S7E28emUPuBRD1T1kcRi2Po64J8zc25EDAP+DTgNuLi1xHlEvA+4PDPHFT8Pzcz1ERHpuh2SJEmS1CVqMToXlBZUXQuQmesoLbi6GLgUSqOGQZwyKgAACatJREFUmfklYFVE/CwiNgKfLY43QZQkSZKkLlL1JLGoMDmHF5c2n0tpusmBEXFwZrZExBhKCeWxwPsz8z3VjlWSJEmSeptaPef3OeD1ETEZIDObgceASbywJsts4M+ZuX9mXlWbMCVJkiSpd6nVmmJ3Fl83ACcW2x4p/h0OrAQmuTCnJEmSJFVXTZbAgLYFOGdTWofld8AFwCzgosxs6uC8ccBFwN2Z+TsL2UiSJElS5dRqJJHM3BgRZ1Na++o1wLeKYjU7szdwMhARMcuS6JIkSZJUOTUbSXxRELs4Gth6XERcCpwBfCczb+v6CCVJkiSpd6iLBep3J0EsfrwFaATOjIh9W/d3YYiSJEmS1CvURZJYrr1krxhBnBwRZ2TmKuBnwIHAq1v3Vy9KSZIkSeqZ6i5JLJLB9uI6D7g9IvoDPwEWAqdExOHgaKIkSZIk7am6SxIj4tXAlRGxX/HzKa37MvNKYDHw0WLk8BZgBKXCN44mSpIkSdIeqrskEWgAzgJOjojXAddExKll+/8N+EBETMjM+yktm3FsRJxWg1glSZIkqUepuyQxM28H/gS8EmihNK30PWX7f17s/2yx6fvAaGB6RDRUN1pJkiRJ6lnqKkkse6bwK8BhwETgAWDviHhb2aH3AG8uitg8BVyWmf+Rmc3VjViSJEmSepa6ShKLojWRmfOAX1NaC3Fr8f3FETG8OHQt8CBwcnHewwAdFLyRJEmSJO2CqNdaLxExFPgxcBfwG+AKYBylQjWzgLdn5vraRShJkiRJPU/fWgewIxHRJzPXR8QNwNspjRqeB/w90JyZP9ju2JbaRCpJkiRJPUvdjiS2iojvA88Dn8zM5WXbG3wGUZIkSZIqq26f4SsrYvPfwHTgwPLtJoiSJEmSVHl1myQWRWz6ZOZ9lOJ8Vev2nZ0bEQdHxLDi+9jZ8ZIkSZKkkrpNEgEysyUi9gI2AfN25ZyIeDfwCHBW0UZ9z6eVJEmSpDpS10li4X8Df6FU6XRXHAWsBk6IiEldFpUkSZIk9UDdoXBN7OIU04bMbI6ID1BaKmM68B3g5szc0sVhSpIkSVKPUPcjie0liBExoPi3oTiutZDNScB1wG3AOcBBVQhTkiRJknqEuk8StxcRIyLi28A34IXkMCJaX8uzwAHAtcBA4C0RcWVE/F0t4pUkSZKk7qRbJYkRcSTwE+B4YHJEvKHY3iczW4rDjgHmZeYqYCvwYeBI4OkahCxJkiRJ3Uq3ShKB/sCNwNuBmcBFEdG/qILavzjmj8AnI2IOMAz4PbAQGFz9cCVJkiSpe6nrJDEipkbEqRExptg0B7g1Mx8CfgUk8B6AzGwqppyOA44AvpyZpwKfB0ZWP3pJkiRJ6n7qsrppUYzmG8B5wEOUEr/LM/PnZccMAf4JOBe4IDMXFdsPApZl5saqBy5JkiRJ3Vy9jiQeARwKHAKcRWkpi69ExCmtB2RmI6Upp4uB95Wd+2xmbmwtZBMRUa2gJUmSJKm7q5skMSKGl1UoPRGYmJkrgZbM/DylZw0vjIiDy06bD3wPmBYRn4mI+4AzAFoL2ezKGouSJEmSpJKaJ4kRMSkifgXcBPwoIiYCjwHPRMTRZVVLPwscBbQtZZGZTUAzpaTyQuCazPxVVV+AJEmSJPUgNU0SI+KfgLuAvwCXUyow81GgL7CM0lRTADLzYUqFay4ozm2IiDOBW4GvZ+b4zPxOVV+AJEmSJPUwNS1cExFXAosy85ri5/2BucBkSsngscA3M/OuYv/ZwOeA44vnDscDGzJzTU1egCRJkiT1MH1rfP1vAFsAImIAsBF4ChgE/JBS4Zr3RsRTRfXS44Fft1Yuzcy/1SRqSZIkSeqhapokZuZzUKpAmplbIuJwSlNgny3WPfwqcCVwe0SsAaYA59cuYkmSJEnq2Wo9kgi8qALpDGBeUZCGzHwkIs4FjgGOyMzraxSiJEmSJPUKdZEkRkRDZjYDJwB3FNsupTRy+OnMnAXMqmGIkiRJktQr1EWSmJnNEdGXUnXTMRFxL3Ag8I7MXFHT4CRJkiSpF6lpddNyEXEkMJvS0hf/mZn/UeOQJEmSJKnXqacksT/wHkprHm6udTySJEmS1BvVTZIoSZIkSaq9PrUOQJIkSZJUP0wSJUmSJEltTBIlSZIkSW1MEiVJkiRJbUwSJUmSJEltTBIlSQIiYkJENEZEQ61jkSSplkwSJUm9VkQsjIhXAmTmM5k5JDObq3j9GRHxXLWuJ0nSrjBJlCRJkiS1MUmUJPVKEXEjMAH4eTHN9PKIyIjoW+z/bURcGRH3F/t/HhH7RMRNEbEuIh6MiAPL2psaEb+JiFURMS8izivb99qIeCwi1kfE3yLisogYDPwS2K9ovzEi9ouIEyLigYhYExFLIuJrEdG/rK2MiHdFxBNFe1dExCFFnOsi4getx7eOVEbEhyJiZTFyen51/oclSd2VSaIkqVfKzAuAZ4CzM3MI8IMdHPZm4AJgPHAI8ABwHTASeBz4OECR8P0GuBkYU5z39Yg4vGjnWuCSzBwKTAPuyswNwGuAxcU01yGZuRhoBt4HjAJOAs4A3rVdXK8CpgMnApcDVwP/CBxQtP+WsmP3LdoaD1wIXB0RU3brP0uS1KuYJEqS1L7rMvOpzFxLadTvqcy8MzO3AT8EjimO+3tgYWZel5nbMvMvwI+ANxX7twKHR8SwzFydmX9u74KZ+VBm/qFoZyHwTeDU7Q77Qmauy8xHgUeAX2fm02VxHrPd8R/NzC2ZeQ9wO3AekiS1wyRRkqT2LSv7ftMOfh5SfD8ReFkxRXRNRKwBzqc0igdwLvBaYFFE3BMRJ7V3wYiYHBG3RcTSiFgHfIbSSGBn4gJYXYxatloE7Nfe9SVJMkmUJPVmWaF2ngXuycy9y76GZOalAJn5YGaeQ2kq6v/jhamtO7r+VcBcYFJmDgM+BMQexDaimA7bagKweA/akyT1cCaJkqTebBlwcAXauQ2YHBEXRES/4uv4iDgsIvpHxPkRMTwztwLrgJay6+8TEcPL2hpaHNMYEVOBSysQ3yeLOF5BaWrsDyvQpiSphzJJlCT1Zp8FPlJMD31jZxvJzPXAWZQK1iwGlgKfBwYUh1wALCymj76T0lRUMnMu8D3g6WKa6n7AZcBbgfXANcAtnY2rsBRYXcR1E/DO4rqSJO1QZFZqpo0kSaonETED+G5m7l/rWCRJ3YcjiZIkSZKkNiaJkiRJkqQ2TjeVJEmSJLVxJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTGJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTm/wOL0q2viKFO9gAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다.\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "dddca9ad9e34435494e0933c218e1579", + "translation_date": "2025-09-04T01:50:48+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/1-Introduction/working/notebook.ipynb b/translations/ko/7-TimeSeries/1-Introduction/working/notebook.ipynb new file mode 100644 index 000000000..21bc0b9ce --- /dev/null +++ b/translations/ko/7-TimeSeries/1-Introduction/working/notebook.ipynb @@ -0,0 +1,64 @@ +{ + "cells": [ + { + "source": [ + "# 데이터 설정\n", + "\n", + "이 노트북에서는 다음을 시연합니다:\n", + "\n", + "- 이 모듈을 위한 시계열 데이터를 설정하는 방법 \n", + "- 데이터를 시각화하는 방법 \n", + "\n", + "이 예제에서 사용된 데이터는 GEFCom2014 예측 대회1에서 가져왔습니다. 이 데이터는 2012년부터 2014년까지 3년간의 시간별 전력 부하와 온도 값을 포함하고 있습니다.\n", + "\n", + "1Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli 및 Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, 2016년 7월-9월.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생할 수 있는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5e2bbe594906dce3aaaa736d6dac6683", + "translation_date": "2025-09-04T01:51:51+00:00", + "source_file": "7-TimeSeries/1-Introduction/working/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/2-ARIMA/README.md b/translations/ko/7-TimeSeries/2-ARIMA/README.md new file mode 100644 index 000000000..99a5eb2c5 --- /dev/null +++ b/translations/ko/7-TimeSeries/2-ARIMA/README.md @@ -0,0 +1,406 @@ + +# ARIMA를 활용한 시계열 예측 + +이전 강의에서 시계열 예측에 대해 간단히 배우고 특정 기간 동안 전력 부하의 변동을 보여주는 데이터를 로드했습니다. + +[![ARIMA 소개](https://img.youtube.com/vi/IUSk-YDau10/0.jpg)](https://youtu.be/IUSk-YDau10 "ARIMA 소개") + +> 🎥 위 이미지를 클릭하면 ARIMA 모델에 대한 간단한 소개 영상을 볼 수 있습니다. 예제는 R로 작성되었지만 개념은 보편적입니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/43/) + +## 소개 + +이번 강의에서는 [ARIMA: *A*uto*R*egressive *I*ntegrated *M*oving *A*verage](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average)를 사용하여 모델을 구축하는 특정 방법을 알아봅니다. ARIMA 모델은 특히 [비정상성(non-stationarity)](https://wikipedia.org/wiki/Stationary_process)을 보이는 데이터를 분석하는 데 적합합니다. + +## 일반적인 개념 + +ARIMA를 사용하려면 알아야 할 몇 가지 개념이 있습니다: + +- 🎓 **정상성(Stationarity)**. 통계적 관점에서 정상성은 시간이 지나도 분포가 변하지 않는 데이터를 의미합니다. 반면, 비정상 데이터는 분석을 위해 변환해야 하는 트렌드로 인해 변동을 보입니다. 예를 들어 계절성은 데이터에 변동을 일으킬 수 있으며 '계절 차분(seasonal-differencing)' 과정을 통해 제거할 수 있습니다. + +- 🎓 **[차분(Differencing)](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average#Differencing)**. 차분은 비정상 데이터를 정상 데이터로 변환하여 일정하지 않은 트렌드를 제거하는 과정을 의미합니다. "차분은 시계열의 수준 변화(trend와 계절성)를 제거하여 평균을 안정화합니다." [Shixiong et al의 논문](https://arxiv.org/abs/1904.07632) + +## 시계열에서의 ARIMA + +ARIMA의 구성 요소를 분해하여 시계열 데이터를 모델링하고 예측하는 데 어떻게 도움이 되는지 알아봅시다. + +- **AR - 자기회귀(AutoRegressive)**. 자기회귀 모델은 이름에서 알 수 있듯이 데이터의 이전 값을 분석하고 이에 대한 가정을 세우기 위해 '과거'를 살펴봅니다. 이러한 이전 값은 '시차(lags)'라고 불립니다. 예를 들어, 연필의 월별 판매 데이터를 보여주는 경우 각 월의 판매 총계는 데이터셋에서 '진화 변수(evolving variable)'로 간주됩니다. 이 모델은 "관심 있는 진화 변수가 자신의 시차(즉, 이전 값)에 대해 회귀된다는" 방식으로 구축됩니다. [wikipedia](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average) + +- **I - 적분(Integrated)**. 'ARMA' 모델과 달리 ARIMA의 'I'는 *[적분](https://wikipedia.org/wiki/Order_of_integration)* 측면을 나타냅니다. 비정상성을 제거하기 위해 차분 단계를 적용하여 데이터를 '적분'합니다. + +- **MA - 이동 평균(Moving Average)**. [이동 평균](https://wikipedia.org/wiki/Moving-average_model) 측면은 현재 및 과거 시차 값을 관찰하여 출력 변수를 결정하는 것을 의미합니다. + +결론: ARIMA는 시계열 데이터의 특별한 형태에 최대한 근접하게 모델을 맞추는 데 사용됩니다. + +## 실습 - ARIMA 모델 구축 + +이 강의의 [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/working) 폴더를 열고 [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/2-ARIMA/working/notebook.ipynb) 파일을 찾으세요. + +1. `statsmodels` Python 라이브러리를 로드하세요. ARIMA 모델에 필요합니다. + +1. 필요한 라이브러리를 로드하세요. + +1. 이제 데이터를 시각화하는 데 유용한 몇 가지 추가 라이브러리를 로드하세요: + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from pandas.plotting import autocorrelation_plot + from statsmodels.tsa.statespace.sarimax import SARIMAX + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + from IPython.display import Image + + %matplotlib inline + pd.options.display.float_format = '{:,.2f}'.format + np.set_printoptions(precision=2) + warnings.filterwarnings("ignore") # specify to ignore warning messages + ``` + +1. `/data/energy.csv` 파일에서 데이터를 Pandas 데이터프레임으로 로드하고 확인하세요: + + ```python + energy = load_data('./data')[['load']] + energy.head(10) + ``` + +1. 2012년 1월부터 2014년 12월까지의 모든 에너지 데이터를 시각화하세요. 이전 강의에서 본 데이터이므로 놀랄 필요는 없습니다: + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + 이제 모델을 구축해봅시다! + +### 학습 및 테스트 데이터셋 생성 + +이제 데이터를 로드했으니 학습 및 테스트 세트로 분리할 수 있습니다. 학습 세트에서 모델을 학습시킨 후, 테스트 세트를 사용하여 모델의 정확도를 평가합니다. 모델이 미래 시점의 정보를 얻지 않도록 테스트 세트가 학습 세트보다 나중의 기간을 포함해야 합니다. + +1. 2014년 9월 1일부터 10월 31일까지의 두 달 기간을 학습 세트로 할당하세요. 테스트 세트는 2014년 11월 1일부터 12월 31일까지의 두 달 기간을 포함합니다: + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + + 이 데이터는 에너지의 일일 소비를 반영하므로 강한 계절적 패턴이 있지만, 소비는 최근 며칠의 소비와 가장 유사합니다. + +1. 차이를 시각화하세요: + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![학습 및 테스트 데이터](../../../../translated_images/train-test.8928d14e5b91fc942f0ca9201b2d36c890ea7e98f7619fd94f75de3a4c2bacb9.ko.png) + + 따라서 데이터를 학습시키는 데 비교적 작은 시간 창을 사용하는 것이 충분할 것입니다. + + > 참고: ARIMA 모델을 적합시키는 데 사용하는 함수는 적합 과정에서 샘플 내 검증을 사용하므로 검증 데이터를 생략합니다. + +### 학습을 위한 데이터 준비 + +이제 데이터를 필터링하고 스케일링하여 학습을 준비해야 합니다. 필요한 기간과 열만 포함하도록 원본 데이터를 필터링하고, 데이터를 0과 1 사이의 범위로 투영하여 스케일링합니다. + +1. 원본 데이터셋을 필터링하여 각 세트에 필요한 기간과 'load' 열 및 날짜만 포함하세요: + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + 데이터의 형태를 확인할 수 있습니다: + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +1. 데이터를 (0, 1) 범위로 스케일링하세요. + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + train.head(10) + ``` + +1. 원본 데이터와 스케일링된 데이터를 시각화하세요: + + ```python + energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12) + train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12) + plt.show() + ``` + + ![원본](../../../../translated_images/original.b2b15efe0ce92b8745918f071dceec2231661bf49c8db6918e3ff4b3b0b183c2.ko.png) + + > 원본 데이터 + + ![스케일링된](../../../../translated_images/scaled.e35258ca5cd3d43f86d5175e584ba96b38d51501f234abf52e11f4fe2631e45f.ko.png) + + > 스케일링된 데이터 + +1. 이제 스케일링된 데이터를 보정했으므로 테스트 데이터를 스케일링할 수 있습니다: + + ```python + test['load'] = scaler.transform(test) + test.head() + ``` + +### ARIMA 구현 + +이제 ARIMA를 구현할 시간입니다! 이전에 설치한 `statsmodels` 라이브러리를 사용합니다. + +다음 단계를 따라야 합니다: + + 1. `SARIMAX()`를 호출하고 모델 매개변수(p, d, q 및 P, D, Q)를 전달하여 모델을 정의합니다. + 2. `fit()` 함수를 호출하여 학습 데이터를 준비합니다. + 3. `forecast()` 함수를 호출하고 예측할 단계 수(`horizon`)를 지정하여 예측을 수행합니다. + +> 🎓 이러한 매개변수는 무엇을 위한 것인가요? ARIMA 모델에는 시계열의 주요 측면(계절성, 트렌드, 노이즈)을 모델링하는 데 도움이 되는 3가지 매개변수가 있습니다: + +`p`: 모델의 자기회귀 측면과 관련된 매개변수로, *과거* 값을 포함합니다. +`d`: 모델의 적분 부분과 관련된 매개변수로, 시계열에 적용할 *차분*의 양에 영향을 미칩니다. +`q`: 모델의 이동 평균 부분과 관련된 매개변수입니다. + +> 참고: 데이터에 계절적 측면이 있는 경우(이 데이터는 계절적 측면이 있음), 계절 ARIMA 모델(SARIMA)을 사용합니다. 이 경우 `p`, `d`, `q`와 동일한 연관성을 설명하지만 모델의 계절적 구성 요소에 해당하는 `P`, `D`, `Q` 매개변수를 사용해야 합니다. + +1. 선호하는 horizon 값을 설정하세요. 3시간을 시도해봅시다: + + ```python + # Specify the number of steps to forecast ahead + HORIZON = 3 + print('Forecasting horizon:', HORIZON, 'hours') + ``` + + ARIMA 모델의 매개변수 값을 선택하는 것은 주관적이고 시간이 많이 걸릴 수 있습니다. [`pyramid` 라이브러리](https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html)의 `auto_arima()` 함수를 사용하는 것을 고려할 수 있습니다. + +1. 현재는 몇 가지 수동 선택을 시도하여 적합한 모델을 찾으세요. + + ```python + order = (4, 1, 0) + seasonal_order = (1, 1, 0, 24) + + model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order) + results = model.fit() + + print(results.summary()) + ``` + + 결과 테이블이 출력됩니다. + +첫 번째 모델을 구축했습니다! 이제 이를 평가하는 방법을 찾아야 합니다. + +### 모델 평가 + +모델을 평가하려면 이른바 `walk forward` 검증을 수행할 수 있습니다. 실제로 시계열 모델은 새로운 데이터가 제공될 때마다 재학습됩니다. 이를 통해 모델은 각 시간 단계에서 최상의 예측을 수행할 수 있습니다. + +이 기술을 사용하여 시계열의 시작점에서 학습 데이터 세트로 모델을 학습시킵니다. 그런 다음 다음 시간 단계에 대한 예측을 수행합니다. 예측은 알려진 값과 비교하여 평가됩니다. 그런 다음 학습 세트가 알려진 값을 포함하도록 확장되고 이 과정이 반복됩니다. + +> 참고: 학습 세트 창을 고정하여 더 효율적으로 학습할 수 있습니다. 새로운 관측값을 학습 세트에 추가할 때마다 세트의 시작점에서 관측값을 제거하세요. + +이 과정은 모델이 실제로 어떻게 작동할지에 대한 더 강력한 추정을 제공합니다. 그러나 많은 모델을 생성해야 하는 계산 비용이 발생합니다. 데이터가 작거나 모델이 간단한 경우에는 허용되지만, 규모가 커지면 문제가 될 수 있습니다. + +Walk-forward 검증은 시계열 모델 평가의 금표준이며, 여러분의 프로젝트에서도 권장됩니다. + +1. 각 HORIZON 단계에 대해 테스트 데이터 포인트를 생성하세요. + + ```python + test_shifted = test.copy() + + for t in range(1, HORIZON+1): + test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H') + + test_shifted = test_shifted.dropna(how='any') + test_shifted.head(5) + ``` + + | | | load | load+1 | load+2 | + | ---------- | -------- | ---- | ------ | ------ | + | 2014-12-30 | 00:00:00 | 0.33 | 0.29 | 0.27 | + | 2014-12-30 | 01:00:00 | 0.29 | 0.27 | 0.27 | + | 2014-12-30 | 02:00:00 | 0.27 | 0.27 | 0.30 | + | 2014-12-30 | 03:00:00 | 0.27 | 0.30 | 0.41 | + | 2014-12-30 | 04:00:00 | 0.30 | 0.41 | 0.57 | + + 데이터는 horizon 포인트에 따라 수평으로 이동됩니다. + +1. 테스트 데이터에 대해 이 슬라이딩 윈도우 접근 방식을 사용하여 테스트 데이터 길이 크기의 루프에서 예측을 수행하세요: + + ```python + %%time + training_window = 720 # dedicate 30 days (720 hours) for training + + train_ts = train['load'] + test_ts = test_shifted + + history = [x for x in train_ts] + history = history[(-training_window):] + + predictions = list() + + order = (2, 1, 0) + seasonal_order = (1, 1, 0, 24) + + for t in range(test_ts.shape[0]): + model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order) + model_fit = model.fit() + yhat = model_fit.forecast(steps = HORIZON) + predictions.append(yhat) + obs = list(test_ts.iloc[t]) + # move the training window + history.append(obs[0]) + history.pop(0) + print(test_ts.index[t]) + print(t+1, ': predicted =', yhat, 'expected =', obs) + ``` + + 학습 과정을 확인할 수 있습니다: + + ```output + 2014-12-30 00:00:00 + 1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323] + + 2014-12-30 01:00:00 + 2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126] + + 2014-12-30 02:00:00 + 3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795] + ``` + +1. 실제 부하와 예측값을 비교하세요: + + ```python + eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)]) + eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1] + eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h') + eval_df['actual'] = np.array(np.transpose(test_ts)).ravel() + eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']]) + eval_df.head() + ``` + + 출력 + | | | timestamp | h | prediction | actual | + | --- | ---------- | --------- | --- | ---------- | -------- | + | 0 | 2014-12-30 | 00:00:00 | t+1 | 3,008.74 | 3,023.00 | + | 1 | 2014-12-30 | 01:00:00 | t+1 | 2,955.53 | 2,935.00 | + | 2 | 2014-12-30 | 02:00:00 | t+1 | 2,900.17 | 2,899.00 | + | 3 | 2014-12-30 | 03:00:00 | t+1 | 2,917.69 | 2,886.00 | + | 4 | 2014-12-30 | 04:00:00 | t+1 | 2,946.99 | 2,963.00 | + + 시간별 데이터의 예측값을 실제 부하와 비교하세요. 얼마나 정확한가요? + +### 모델 정확도 확인 + +모든 예측에 대해 평균 절대 백분율 오차(MAPE)를 테스트하여 모델의 정확도를 확인하세요. +> **🧮 수학을 보여주세요** +> +> ![MAPE](../../../../translated_images/mape.fd87bbaf4d346846df6af88b26bf6f0926bf9a5027816d5e23e1200866e3e8a4.ko.png) +> +> [MAPE](https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/)는 위의 공식으로 정의된 비율로 예측 정확도를 나타냅니다. 실제 값과 예측 값의 차이는 실제 값으로 나누어집니다. +> "이 계산에서 절대값은 모든 예측된 시점에 대해 합산되고, 적합된 점의 수 n으로 나누어집니다." [wikipedia](https://wikipedia.org/wiki/Mean_absolute_percentage_error) +1. 코드로 방정식 표현하기: + + ```python + if(HORIZON > 1): + eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual'] + print(eval_df.groupby('h')['APE'].mean()) + ``` + +1. 한 단계의 MAPE 계산하기: + + ```python + print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%') + ``` + + 한 단계 예측 MAPE: 0.5570581332313952 % + +1. 다단계 예측 MAPE 출력하기: + + ```python + print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%') + ``` + + ```output + Multi-step forecast MAPE: 1.1460048657704118 % + ``` + + 낮은 숫자가 좋습니다: MAPE가 10이라면 예측이 10% 정도 벗어났다는 것을 의미합니다. + +1. 하지만 항상 그렇듯이, 이런 정확도 측정은 시각적으로 보는 것이 더 쉽습니다. 이를 그래프로 그려봅시다: + + ```python + if(HORIZON == 1): + ## Plotting single step forecast + eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8)) + + else: + ## Plotting multi step forecast + plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']] + for t in range(1, HORIZON+1): + plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values + + fig = plt.figure(figsize=(15, 8)) + ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0) + ax = fig.add_subplot(111) + for t in range(1, HORIZON+1): + x = plot_df['timestamp'][(t-1):] + y = plot_df['t+'+str(t)][0:len(x)] + ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t)) + + ax.legend(loc='best') + + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![시간 시계열 모델](../../../../translated_images/accuracy.2c47fe1bf15f44b3656651c84d5e2ba9b37cd929cd2aa8ab6cc3073f50570f4e.ko.png) + +🏆 매우 훌륭한 그래프입니다. 정확도가 좋은 모델을 보여주고 있네요. 잘하셨습니다! + +--- + +## 🚀도전 과제 + +시간 시계열 모델의 정확도를 테스트하는 다양한 방법을 탐구해보세요. 이번 강의에서는 MAPE에 대해 다뤘지만, 다른 방법도 있을까요? 이를 조사하고 주석을 달아보세요. 도움이 될 만한 문서는 [여기](https://otexts.com/fpp2/accuracy.html)에서 찾을 수 있습니다. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/44/) + +## 복습 및 자기 학습 + +이번 강의에서는 ARIMA를 사용한 시간 시계열 예측의 기본만 다룹니다. [이 저장소](https://microsoft.github.io/forecasting/)와 다양한 모델 유형을 탐구하여 시간 시계열 모델을 구축하는 다른 방법을 배우며 지식을 심화해보세요. + +## 과제 + +[새로운 ARIMA 모델](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 신뢰할 수 있는 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/2-ARIMA/assignment.md b/translations/ko/7-TimeSeries/2-ARIMA/assignment.md new file mode 100644 index 000000000..89afe9667 --- /dev/null +++ b/translations/ko/7-TimeSeries/2-ARIMA/assignment.md @@ -0,0 +1,25 @@ + +# 새로운 ARIMA 모델 + +## 지침 + +이미 ARIMA 모델을 구축했으니, 새로운 데이터를 사용하여 새로운 모델을 만들어 보세요 (예: [Duke의 데이터셋 중 하나](http://www2.stat.duke.edu/~mw/ts_data_sets.html)). 작업 내용을 노트북에 기록하고, 데이터를 시각화하며 모델을 테스트하고 MAPE를 사용하여 정확성을 평가하세요. + +## 평가 기준 + +| 기준 | 우수 | 적절함 | 개선 필요 | +| --------- | ----------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------ | ----------------------------------- | +| | 새로운 ARIMA 모델이 구축되고 테스트되었으며, 시각화와 정확성 평가가 포함된 노트북이 제출됨 | 제출된 노트북이 주석이 부족하거나 오류를 포함함 | 불완전한 노트북이 제출됨 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/2-ARIMA/solution/Julia/README.md b/translations/ko/7-TimeSeries/2-ARIMA/solution/Julia/README.md new file mode 100644 index 000000000..9dc5a9beb --- /dev/null +++ b/translations/ko/7-TimeSeries/2-ARIMA/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/2-ARIMA/solution/R/README.md b/translations/ko/7-TimeSeries/2-ARIMA/solution/R/README.md new file mode 100644 index 000000000..5a9a00c06 --- /dev/null +++ b/translations/ko/7-TimeSeries/2-ARIMA/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/2-ARIMA/solution/notebook.ipynb b/translations/ko/7-TimeSeries/2-ARIMA/solution/notebook.ipynb new file mode 100644 index 000000000..6ed238d63 --- /dev/null +++ b/translations/ko/7-TimeSeries/2-ARIMA/solution/notebook.ipynb @@ -0,0 +1,1140 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# ARIMA를 활용한 시계열 예측\n", + "\n", + "이 노트북에서는 다음을 시연합니다:\n", + "- ARIMA 시계열 예측 모델을 훈련하기 위해 시계열 데이터를 준비하는 방법\n", + "- 간단한 ARIMA 모델을 구현하여 시계열에서 다음 HORIZON 단계(시간 *t+1*부터 *t+HORIZON*까지)를 예측하는 방법\n", + "- 모델을 평가하는 방법\n", + "\n", + "이 예제에서 사용된 데이터는 GEFCom2014 예측 대회에서 가져온 것입니다. 이는 2012년부터 2014년까지 3년간의 시간별 전력 부하와 온도 값을 포함하고 있습니다. 이 작업의 목표는 전력 부하의 미래 값을 예측하는 것입니다. 이 예제에서는 과거 부하 데이터만을 사용하여 한 시점 이후의 값을 예측하는 방법을 보여줍니다.\n", + "\n", + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli 및 Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, 2016년 7월-9월.\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## 의존성 설치\n", + "솔루션을 시작하려면 필요한 의존성을 설치하세요. 아래 라이브러리와 해당 버전은 솔루션에서 정상적으로 작동하는 것으로 확인되었습니다:\n", + "\n", + "* `statsmodels == 0.12.2`\n", + "* `matplotlib == 3.4.2`\n", + "* `scikit-learn == 0.24.2`\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "source": [ + "!pip install statsmodels" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "/bin/sh: pip: command not found\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from pandas.plotting import autocorrelation_plot\n", + "from statsmodels.tsa.statespace.sarimax import SARIMAX\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape\n", + "from IPython.display import Image\n", + "\n", + "%matplotlib inline\n", + "pd.options.display.float_format = '{:,.2f}'.format\n", + "np.set_printoptions(precision=2)\n", + "warnings.filterwarnings(\"ignore\") # specify to ignore warning messages\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 18, + "source": [ + "energy = load_data('./data')[['load']]\n", + "energy.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    load
                                                    2012-01-01 00:00:002,698.00
                                                    2012-01-01 01:00:002,558.00
                                                    2012-01-01 02:00:002,444.00
                                                    2012-01-01 03:00:002,402.00
                                                    2012-01-01 04:00:002,403.00
                                                    2012-01-01 05:00:002,453.00
                                                    2012-01-01 06:00:002,560.00
                                                    2012-01-01 07:00:002,719.00
                                                    2012-01-01 08:00:002,916.00
                                                    2012-01-01 09:00:003,105.00
                                                    \n", + "
                                                    " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2,698.00\n", + "2012-01-01 01:00:00 2,558.00\n", + "2012-01-01 02:00:00 2,444.00\n", + "2012-01-01 03:00:00 2,402.00\n", + "2012-01-01 04:00:00 2,403.00\n", + "2012-01-01 05:00:00 2,453.00\n", + "2012-01-01 06:00:00 2,560.00\n", + "2012-01-01 07:00:00 2,719.00\n", + "2012-01-01 08:00:00 2,916.00\n", + "2012-01-01 09:00:00 3,105.00" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "모든 사용 가능한 부하 데이터를 플롯하십시오 (2012년 1월부터 2014년 12월까지)\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## 학습 및 테스트 데이터 세트 생성\n", + "\n", + "### 데이터 세트 분할\n", + "데이터를 학습 세트와 테스트 세트로 나누는 것은 모델 성능을 평가하는 데 매우 중요합니다. 테스트 세트는 모델이 학습하지 않은 데이터로 구성되어야 하며, 이를 통해 모델의 일반화 능력을 확인할 수 있습니다.\n", + "\n", + "### 데이터 세트 비율\n", + "일반적으로 데이터 세트를 학습 세트와 테스트 세트로 나누는 비율은 다음과 같습니다:\n", + "- 학습 세트: 80%\n", + "- 테스트 세트: 20%\n", + "\n", + "이 비율은 데이터의 크기와 특성에 따라 조정될 수 있습니다.\n", + "\n", + "### 데이터 세트 분할 방법\n", + "데이터를 나누는 방법에는 여러 가지가 있습니다. 가장 일반적인 방법은 다음과 같습니다:\n", + "1. **랜덤 분할**: 데이터를 무작위로 섞은 후 지정된 비율로 나눕니다.\n", + "2. **시간 기반 분할**: 시간 순서에 따라 데이터를 나눕니다. 이는 시계열 데이터에 유용합니다.\n", + "\n", + "### 코드 예제\n", + "아래는 데이터 세트를 학습 세트와 테스트 세트로 나누는 코드 예제입니다:\n", + "\n", + "```python\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "# 데이터 로드\n", + "data = @@INLINE_CODE_1@@\n", + "\n", + "# 학습 세트와 테스트 세트로 분할\n", + "train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)\n", + "\n", + "print(\"학습 세트 크기:\", len(train_data))\n", + "print(\"테스트 세트 크기:\", len(test_data))\n", + "```\n", + "\n", + "[!TIP] `random_state`를 설정하면 결과를 재현할 수 있습니다.\n", + "\n", + "### 주의사항\n", + "- 테스트 세트는 모델 평가에만 사용해야 하며, 학습 과정에서 절대 사용해서는 안 됩니다.\n", + "- 데이터가 불균형한 경우, 클래스 비율을 유지하며 데이터를 나누는 것이 중요합니다.\n", + "\n", + "### 추가 리소스\n", + "데이터 세트 분할에 대한 자세한 내용은 다음 링크를 참조하세요:\n", + "- [Scikit-learn Documentation](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html)\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00' " + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e5wtV1Xv+5tVtR792u8kEoMkIGAUJEjwwEE9IHh5eHzCiYr40XPPJSjnw8XrkQN6RRHPOXJ8AKLyFHzw1vBSQQnEhMBNQtgJeZNkJ+wk+5Gd/eze/V6rqub9Y9aomlVdtXqO2btXr+4e388nn97pXnNVrVr1mGOO3/gNpbWGIAiCIAiCIAiCIABAsNE7IAiCIAiCIAiCIIwOEiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDkSJAqCIAiCIAiCIAg5EiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDnRRu/ARrBv3z598cUXb/RuCIIgCIIgCIIgbAi33HLLSa31eXV/25ZB4sUXX4z9+/dv9G4IgiAIgiAIgiBsCEqph5v+JnJTQRAEQRAEQRAEIUeCREEQBEEQBEEQBCFHgkRBEARBEARBEAQhZ1vWJAqCIAiCIAiCsL3p9/s4fPgwlpaWNnpX1pVut4uLLroIrVbLeYwEiYIgCIIgCIIgbDsOHz6MqakpXHzxxVBKbfTurAtaa5w6dQqHDx/GJZdc4jxO5KaCIAiCIAiCIGw7lpaWsHfv3i0bIAKAUgp79+5lZ0slSBQEQRAEQRAEYVuylQNEwuczSpAoCIIgCIIgCIIwZKanp/Hud7+bPe5lL3sZpqen12GPCiRIFARBEARBEARBGDJNQWIcxwPHfeELX8CuXbvWa7cAiHGNIAiCIAiCIAjC0HnTm96EBx98EJdddhlarRa63S52796Ne++9F/fffz9++qd/GocOHcLS0hJe//rX48orrwQAXHzxxdi/fz/m5ubw0pe+FD/0Qz+EG264Ad/5nd+Jz33ucxgbG1vzvkmQKAiCIAiCIAjCtub3/+lu3HP07Dl9z++9cAd+7ye+r/Hvb3vb23DXXXfhtttuw3XXXYcf//Efx1133ZW7kH7oQx/Cnj17sLi4iGc/+9l4+ctfjr1795be48CBA/j4xz+OD3zgA7jiiivwqU99Cq961avWvO8SJAqCIAiCIAiCIGwwP/iDP1hqU/Gud70Ln/nMZwAAhw4dwoEDB1YEiZdccgkuu+wyAMCznvUsPPTQQ+dkXyRIFARBEARBEARhWzMo4zcsJiYm8n9fd911+PKXv4wbb7wR4+PjeP7zn1/bxqLT6eT/DsMQi4uL52RfxLhGEARBEARBEARhyExNTWF2drb2bzMzM9i9ezfGx8dx77334qabbhrqvkkmURAEQRAEQRAEYcjs3bsXz3ve8/C0pz0NY2NjuOCCC/K/veQlL8F73/teXHrppXjqU5+K5zznOUPdN6W1HuoGR4HLL79c79+/f6N3QxAEQRAEQRCEDeJb3/oWLr300o3ejaFQ91mVUrdorS+ve73ITQVBEARBEARBEIQcCRIFQRAEQdi2/Je/+Qae/pYvbvRuCIIgjBRDDxKVUk9WSi0ppT6S/f/zlVKpUmrO+u+XrdfvUUp9Rik1r5R6WCn1ysr7vTL7/bxS6rNKqT3D/kyCIAiCIGxOrrn3OGaX4o3eDUEQhJFiIzKJfwngG5XfHdVaT1r//W3l9T0AFwD4RQDvUUp9HwBkP98H4Jeyvy8AePd6fwBBEARBELYW29GjQRAEoYmhBolKqZ8HMA3gGsfXTwB4OYA3a63ntNZfA/CPMEEhYILGf9JaX6+1ngPwZgA/q5SaOvd7LwiCIAjCVmWpn270LgiCIIwMQwsSlVI7ALwVwG/U/Pl8pdRjSqmDSql3ZMEhADwFQKy1vt967e0AqNvl92X/DwDQWj8Ik3V8Ss32r1RK7VdK7T9x4sQ5+ESCIAiCIGwVphd7G70LgiAII8MwM4l/AOCDWuvDld/fC+AyAI8D8KMAngXg7dnfJgGcrbx+BsCU9feZAX/P0Vq/X2t9udb68vPOO8/7QwiCIAiCsPU4M9/f6F0QBGGbMT09jXe/269S7p3vfCcWFhbO8R4VDCVIVEpdBuBFAN5R/ZvW+pjW+h6tdaq1Pgjgv8NITAFgDsCOypAdAGYd/y4IgiAIgrAqkkkUBGHYjHKQGK3bO5d5PoCLATyilAJMBjBUSn2v1voHKq/VKILX+wFESqkna60PZL97BoC7s3/fnf0/AEAp9UQAnWycIAiCIAjCQAIFpBqYWZBMoiAIw+VNb3oTHnzwQVx22WX4sR/7MZx//vn4+7//eywvL+NnfuZn8Pu///uYn5/HFVdcgcOHDyNJErz5zW/GY489hqNHj+IFL3gB9u3bh2uvvfac79uwgsT3A/iE9f+/CRM0/ppS6gUAvg3gEQAXAXgbgM8BgNZ6Xin1aQBvVUr9XzCy1J8C8O+z9/kogBuVUj8M4FaYmsdPa60lkygIgiAIwqpMtCPMLseYXpQgURC2Nf/yJuDYnef2Pb/j6cBL39b457e97W246667cNttt+Hqq6/GVVddhZtvvhlaa/zkT/4krr/+epw4cQIXXnghPv/5zwMAZmZmsHPnTrz97W/Htddei3379p3bfc4YitxUa72QyUqPaa2PwchEl7TWJwA8E8ANAOazn3cC+L+t4a8FMAbgOICPA/g1rfXd2fveDeBXYYLF4zC1iK8dxmcSBEEQBGHzE4UKALDUTzZ4TwRB2M5cffXVuPrqq/HMZz4TP/ADP4B7770XBw4cwNOf/nR86Utfwhvf+EZ89atfxc6dO4eyP8PKJJbQWr/F+vfbURjV1L32NICfHvD3jwH42LncP0EQBEEQtgdZGQx6sbTAEIRtzYCM3zDQWuO3fuu38JrXvGbF32699VZ84QtfwO/8zu/ghS98IX73d3933fdnqH0SBUEQBEEQRonAxIhYliBREIQhMzU1hdlZUyX34he/GB/60IcwNzcHADhy5AiOHz+Oo0ePYnx8HK961avwhje8AbfeeuuKsevBhmQSBUEQBEEQRoFUm5+SSRQEYdjs3bsXz3ve8/C0pz0NL33pS/HKV74Sz33ucwEAk5OT+MhHPoIHHngAb3jDGxAEAVqtFt7znvcAAK688kq85CUvwYUXXripjWsEQRAEQRBGjn5igsNeIkGiIAjD52MfK1fNvf71ry/9/5Oe9CS8+MUvXjHuda97HV73utet236J3FQQBEEQhG1LHiRKJlEQBCFHgkRBEARBELYtcWL0plKTKAiCUCBBoiAIgiAI2xKtNeKsKFEyiYIgCAUSJAqCIAiCsC3pZ1lEAFiOpU+iIGxHtNarv2iT4/MZJUgUBEEQBGFb0rfMaiSTKAjbj263i1OnTm3pQFFrjVOnTqHb7bLGibupIAiCIAjbktjKJIq7qSBsPy666CIcPnwYJ06c2Ohd4bF0FujPA1OPc3p5t9vFRRddxNqEBImCIAiCIGxL+qlkEgVhO9NqtXDJJZds9G7wectO8/P3pgGl1mUTIjcVBEEQBGFbInJTQRA2Ncuz6/bWEiQKgiAIgrAtEbmpIAibmvn1k8lKkCgIgiAIwrakJ5lEQRA2I91d5ufCqXXbhASJgiAIgiBsSyiTGAUKyxIkCoKwWRjLgsT5k+u2CQkSBUEQBEHYllBN4ng7lEyiIAibh7Hd5ueCBImCIAiCIAjnFAoSJzuRZBIFQdg8UJAomURBEARBEIRzS5wauel4J0IvTlhjj04vYn45Xo/dEgRBGEzYNj/7i+u2CQkSBUEQBEHYllBN4ng7ZLub/vu3/Rt+4QM3rcduCYIgDCbNFrXipXXbhASJgiAIgiBsS1JtgsRu5FeTeMfhmXO9S4IgCKujKUhcXrdNSJAoCIIgCMK2JMnkpp1WgFQDaapXGVEeJwiCsCGkmdRdMomCIAiCIAjnliTLJHaiEADQT92yieKEKgjChkL3KskkCoIgCIIgnFtSK5MIFDWKq7HU55ncCIIg1LHUT3DVLYehNVOdMIRMYrRu7ywIgiAIgjDC5HLTiBkkMp1QBUEQ6nj3dQ/iXdccwHg7xMue/jj3gVKTKAiCIAiCsD6knnLT5b7ITQVBWDvLmSrh4Ml53kCpSRQEQRAEoY5/vesYzsz3Nno3NjXU9UIyiYIgbAT7JjsAgJNzzIxg6plJnH4EWDjt9FIJEgVBEARhk3F2qY9f/cgt+JW/vnmjd2VTkxvXZDWJfcdeiUuSSRQE4Rywa7wFADg5x1zw8+2T+M6nA+/8fqeXSpAoCIIgCJsMynjdeUT69K2F3Lgmk5vGjq0tlsW4RhCEc8jJWWZGkGoSEw81SW/W6WUSJAqCIAjCJiPOMl7Srq+gn6S4/zG3yQ+x0rjGMZMoLTAEQTgHUF00X24qNYmCIAiCIFToOQYz24m3f+l+/B/vuJ5lAFENEvvSAkMQhCFCt/JF7j3FtyaRgQSJgiAIgrDJcDVY2U7cc/QsAODgyTnnMVST2G2R3NTR3VQyiYIgnAPoHpRwZSG+NYkMJEgUBEEQhE2GazCzndgz0QYAnJ7vO4+RTKIgCBsJ1UW71kPnSJ9EQRAEQRCq9OJiQsFegd6i7B43QeL0gruRQ94nkTKJjjJe27gmleMvCIIndP/mZxKlJlEQBEEQhAp2JnFZevYBAHZnVvKnGb0jVxjXOE7U7BYYUh8qCIIv6VrlpkkPWCdliQSJgiAIgrDJsPv5LUvPPgBAKwv0zjAyiTQxo5pE1z6JdmAux18QBF+8M4naWhxMHCWnzGBSgkRBEARB2GTYtXOSyTLQJIuTSczlpnkLDLeJWi+WTK4gCGuHjGvYdeapdd9xlZym7vXagASJgiAIgrDpsDNePXHaBFDUBi4xMnt0GAu5qdtYW5bK2Z4gCIJN6l2TmADRmPl34hj8ub4uQ4JEQRAEQdhk2BkvyWQZKHBzlYwCdiaR5KZuEzV7QtcXp1lBEDyh25WXcU2LgkRH9QSZ3TgiQaIgCIIgbDJsian07DNQwMfJrObGNS3/TKL0rBQEwReSm6aa6ZSsE6A1bv7t2gZDgkRBEARB2NrYgckw5KZxkmKxN9oZSwr4lhiZVRrTDnl9EkuZRKkJFQTBEzswZNWXlzKJjjJSO0jUq9/rJEgUBEEQhE1Gf8iZxNd/4jZc+rv/uu7bWQu0Is+pEUy1hlJAm2lcYweJ7CbYgiAIGbFPkEiKB67c1A4mHbKKEiQKgiAIwiZj2MY1n7/zUQDAqTlHWdMGQCvynBrNJNUIlUIUKAC+clPJJAqC4EeqPVQhFOCxaxKtINFBoipBoiAIgiBsMvpDlpueP9UBANz/2Ny6b8uX2MfdVGsEgULElpsW23AdI9Rz6PQCrr33+EbvhiBsCLYqwfleTj0S2UGi3Vtx9TESJAqCsClZ7CV455fvF2dHYVtiZ7yGITd94nkTAIADx2fXfVu+FC0w3O8JaZZJbIVZJtExK1jKJIq76Zr4lb++Gf/5b77B+t6Gzen5Hv7y2gf4DpSCsApeQWKeScyMa3zkppJJFARhq/I3NzyEd375AP72hoc2elcEYejYk4lesv6T670TJpN4cs69Uf2woZpETtAcpxphoBAFQf7/LqTibnrOoMzvPY+e3eA9aeZPrr4Pf/zF+/Clex7b6F0Rthi23NTZBCutZBJjD7lpIkGiIAhbFDKaODq9tMF7IgjDJ/ZZfV7T9sw2RjnbQ/OrXpw6W8mnWZBImUTXSVos7qbnjEsftwMAcOfhmQ3ek2a6WR/Nh0/Nb/CeCFsNO5PovMBVDRJ9+iQ6BJYSJAqCsCnZN9kGAJxgGmn8fw+cxB/88z3rsUuCMDTiIbubUrZslNtgpB6TrUSbIFEphTBQ4m66AZyX1bsenV5kjbv67mO4+eDp9dilFVy4qwsAOMLcR0FYjZJxjeuCU16TSHJTx3lQYgWJkkkUBGGrQn3NTszygsRf/Kuv44NfOzjSGRFBWI3esPskZoHQ4ghfN3EpSHTbzyQFAmWyiFGgWJlEbvZRqKdwpeUdxys/fAuueN+N67FLKyD32yNnJEgUzi1rq0nk9km0axIlkygIwhaF6o9OMoPEnWMtAMDhITzse3GKV37gJtz6yJl135awvRh6JnETyE3tFXlXh1MjNzX/boUBqyaRJIhiZrI2fGpJhw2dF6fmeTW5n7rlMH77M3euxy4JWwR7jYlfk8g0rrHlpunqgaUEiYIgbEpoYnaSKTd93E4jGzp0ZuGc71OVgyfnccODp/DGq+5Y920J24t+kqLbMo/wYUyuqc3DKAeJiU8mURt3UwBQqhxoDiJONTotEySKcc3aSPJM4uieW3T+a8fzg/hv/3A7Pvb1R9Zjl4QtglefxGoLDAenUgAVuakEiYIgbFFoYsHtUZYHiafXP0ikDEXCnFgIwmr0E412GKAdBkORmyabQG6aeGYSg0xKGAbK2fAmSXUepPelBcaaiD3lpsOEMve+SeNRXlwRNhY/uWk1k+gqN43r/92ABImCIGxK6MbKlXrtHjeGN4/OrL8rKu2a68RTEFzpJylaYYB2NJwgkSbJXOOaWx4+jW+fmFuPXVqBfZ25TsrJuAYAQqWcg4A4TdGVTOI5Ia9J9AykuNk9H/qezxuCq3gZJp++9TAuftPnMb+8etAgnHvsxa2+6/lFQWLUzd7E8fyyJaYSJAqCsFUhiQa3kTWtWg/jgUiTd8kkCueaONFohQE6UTAUmV4hN+Vdby9/z4340T/9ynrs0gpinyAxteWmyvlaTVOgk7XhEeOatUH3cN9M4jCy27RI4uw+mUELEMeZtfPD5P3XfxsA8JC099gQ0lQX95L1Nq6xXydyU0EQtio0IeQu7CZ5kLj+EwuavIsaTTjX9NM06+8XDCVIoetmlGVzdibRVYaealtu6p6VKmUSmTehmQXHCd02gU7fZeYCBDE9hONJ3zE3a7973BilcV24fZhZ7OMFf3Id7j7K6zdJZm5yXm4MiRUkOi96U01i1AFUwDCuse7fkkkUBGGr4ivhpAn1Qm/9M4m0Mi7uh8K5hprAR6F7b7+1QHV3m6Um0TVwtjOJgVLO16pdkxgzgvTbD03jGW+9Gp+/41HnMVudJM8kup9bdjA/s7j+wQ2dT9wgcVdW3jCMTOI3Dp7GwZPz+JMv3scaRyUY00M4jsJKUq3zBaee672cArwgAsK2u3FNSW4qmURBELYovoFXLjcdQlPwZZGbCutEolFkEoewCEGBKCdIHHYtbpLqvH+qqywwSZFnEgNWTaJGJ2uBwTHPuvfYWQDAtfcddx6z1aHDx5Gb2vf/YQSJdP5zpd0TbXOODKO8YaobAQBml3jb2pVlO08z23sI54Yk1ei0uHLT7HUqBMKOp9xUMomCIGxRfJMnvjWJj5xawPGzPLMbWnUehrGCsL1ItUaggFaoWJksX2gbHLnp0pBbGpgVeV6dYKqLPolB4B7YJqlGFCiEgWLVRbczWdkwzIY2C4lHTaIdmA+zTyj3e6MFCF8pLYdWdm5xg8Qdmdx0lM11tjKJRt5z1flekmcSQyBsefZJlCBREIQtSmLdTDlZRZrscoPEH/nja/GD/+sa1hiRmwrrRZpqBEohCoZTkxjnNYmpcyA1jLpfmzgpZFs+clPjbsoIEkOFKODJfVuhn9nNLQ+fxus+/s0t6ZScZ+kYCxB2ptjXFZUDBaVc45rcuXUICyb0nJld8susSpC4MaR2JtH1XkI1iUFo5KbO7qZ2kChyU0EQtij2s5qzukuT3YUhyE17EiQK60SS1SS2QsWSOx6fXcJv/sPt7FYWJedQxwkvdxtrxa7t8TGuCZRyViiY4x9kxkHuxz/KtsXNSL3mw7fgn24/uiUn8hSYczKC9vHjBm4+0OJiP9GsQL2f8D+bL7TwwM0k0riZRWmBsREkJek6N5MYAWHk1ydR3E0FQdiq2Cv+rCBxqMY1mbupxIjCOcbITRWiMGDJHd/xpQO46pbD+OxtR1jbsycvrtfbQn+4k85Sg3sf45rAPZMYpxqhgjEOYhz/nmdGigxQTm3BurE45QdSPucjMbccs0sA7EUSzncXe5jy+JJnEpkqGcrk9oYsDxcMiS6k6+5BYvZdqdAEiqnjdyfupoIgbAdsiddy4v5wW2sLDE5NFtWhSCZRONeUMomx+/k1lmXa5pjZhiTVGM9MOJyDxCFnEhONIpPouI9xdhwBIFC8msQwCDK5r/vxp2PHzSztGhteK4Vh4yPJ9A0Spxd6eNrvfRHvuuYB9x1E5XnjoVwZRk2ir8uxb72lcG5IrXu583dIwV4QmUBRuwaJUpMoCMI2IPHMJPYtl0af4O3RGXfzGlpxFndT4VyTaJP5Mu6m7uf/JDkgemQbKEh0nSTbctNhmDel6epy05mFfqkeOS0FicyaxHxix5dJsvvtTZhMIjdIvPngadz07VOsMcOGAql+op3vyXaQyAna5rLv/sM3PczYw7KhCE+5Mny5KX+c3z7e8vAZfO3ASa9tCgWJzoLEIHDPUuc1iYF/JlHkpoIgbFXsFX/OQ9uehPhITh9jOJzS6vFWNJsQNhatM7kj0zhlqmOCRG4msZ+mGG+bsa6TUTuTOJS6sdTuN7Zye8txgme89Wr8n3/zjfx3NEEDqE+i+7bCMOtTybi+SdLn25Sd22/vivfdiJ9//02sMcPGvie7ZhN7sd/9n9YATs/zjqO96MCSmybDl5v6juMGiS9/zw141Qe/7rVNoYBMyFpRwMgkZvdvFRrzGtcgUYvcVBCEbUApk8h4aNtZFx9jDc6YXiaDjVP3FXJBcCGhiUXIczfNyu8wt+zugJimGlqjkJs6B4nFJGSpt/5BYppqdKPmmsQv3fMYAODrB0+XxgTkbhoo54xnkqYIPdxle7kBCu94kCvq8VleG57NQClIdJRlluSmnPt/9lru7dg3k9j3DMB88O2XSsdE5KYbA0neI5+axCACVMCUmyrr34ORIFEQhE1Jcg4yiT7ZDU4zcXvCM4yVZGH7kKS6kJsyzmOarM4x5Ka0sDLGrEm0F1SG0TMx0UVbirpjctZyb6TG4eVMors03J7YcRaAcrkp895Dn4ebAd4M+NyTfeWmnKxveXtre95waxJnFvus+ncAJdkzR71SSGLlGbURFPXljPpmuwUGV24aROY/kZsKgrBV8Q0S40R729ADPOOaci8vWaUVzh2pNq6cfLkj3yafJpETTLmpvaAyjHYYaSm7uvKY2L1V7zl6Nvsd8kyicTd131YUGHdZH+MaV2MdYpi1bcPGDsxdzy373sqrSfc7fnHit+DX95SbPuP3r8YV77uRNWbtDqx+x2YY9cZbGbqXm3ZGHpnEIHTKCppxcTamJX0SBUHYungHiWmaZ0RcJ3f2Q9A3kziMTIqwfbBXnzk1iTR55ARtNPkcYxrX2Nfo0DKJmZlM3T3Bvt7vPjoDwDRip7YZgVLOGRiqSWwxW2Ask9yUmdGi13OzS5sBe+HO9Z7cL7mNMs5laxwnuIlTv8XFtQT3dxyeYb2+5MDKWJSk69tXbroVFy6GSele7novyVtgBEx308QElWHLKfsoQaIgCJuSUh0Ly0igcGl0XbWzJyRLjIevPXnhjBOE1SjcTRUra5BnsjzMN7gtMOxrdBiZxDgxEtx2VC/Bpf2Z6ka451GTSVzqJ3lbkJDpbhoq09vMR27KzWhR5nHJc0I+yvVmqS4Mh1ydYu1MLHeRkOD1ZeS3gLG3N4zjX/5s/MDZN9ibZzolC2XS7F4ehUHJkGnwoOyYk3TUNbjUWZAYhCI3FQRh6+LbAiNOde7S6Dq5th++nJX8cnC59TIAwsZRuJsGrBYMNHnsMbKPlGko3E0dAynPa9SXQrZVHyTS5/j+i3bi3kdnARhlAAUoSrk7RFJmybcmkS03JUmg533Ex8l5WBhXWjMd9alJ9GmBBPDuyXGSYiJzBmYtSg7RuMa3l2MuifU8tzj1zcJKzIIT0OaoEko1iUGz3HTuBHD7JwtbX5GbCoKwHfBtgREnKbvhtu/EoiS3kyBROIeQu2nEacAMv0xW3zOTaF+jw5gkk2wrCtXAmsQnnTeJQ2cWoLXGUr+Qnxt309W3Q58rDAIEilcTSseSU8dov943kzg/hEyuL2mq0Ykok+h2XEo1iUwlCcFRd5jFRX4mnc6nYZjCeGcSSW7qWa/JqW8WVkImZBHHhMzOJA6Sm978fuAzVwI3vTsbl5jXhy1xNxUEYfTRWuNPr74Pdx3h1V/41iT27Ye9aybReh1r9Tn1m5AI24s/+eJ9+B//fA9rDE0s2iGjATP8gsQkzyTyZNqx5zXqS6oLx9e6Y0L78117xrHQS3B6vmcyiVFRk+jibkrvE2V9EjlOkra7Ka8mbm3ZnlGWBMapRqfV3LqkDgqax1ohq/6u760KSTFJmUTnxUU/aauvEYxvWQSdz/3Er1XTKJ9bm4GScY2z3JRqEsndtOE76M2Zn49kJkh5JjEEEgkSBUEYcZbjFH/+bw/gP72X5+SWpBqtMDMSYE541zLZ5RjX2PVNYlwjNPEX1z6Av/raQZzJ2jK44O1uSpksD4ketwXGRmQSoyxwrvt8JvsKPH7POADg2yfnAQDd7HMZd9PVjyVNpAOl2JlE+17FykDGfNmiHWyM8kTe9LfkmYnRvXuiE3lnElmtMxKrTMFxnP39cgJZ3566vu2dYk/pLiFy07VRaoHBNa6h+sImE5o50xsWi9PFuCAUuakgCJsDWs3lSl0Sy+zA9cGmtVkpHcvH8SYkAH+FtpNlKXwzAML24dZHzji/NpdWBkEma3OU6eWZLPeJKE0+qQWGa01WqSYxGYbczm6BUZ9JjIIAF+0eAwA8cNysslOAEii3/nKU1aOaRFezG6B8r2JJfj0yiXaQMr88uvefONWW4zTPFGm8HbLLDQieKiTFRIf3vKFtTbRDLMeJ8zXq28ux1KaD85zydIolJEhcG7YCwvmeUO2TqBvGzR03PxdOF+PI3VSMawRBGHU4mTmbcrDHW9nlTkjshygrk5jq3OxA5KZCE1mbPtY5Qo547Yhkem4Ty+U1yE3JXMQ1Czl0uWm+Il+f3TZb/koAACAASURBVIuTFGGg8LidJkh8iDKJJXdTl+2Yn2Fg3E05NaF29spZWobiHsSpSbSP+ShP5BPLuMbVuMM3SLRbj3BNyMbyTKLbuNzwqRMh1e7BX6m/LqcnY+oX7NnZK86CKyH19muDnJJbnPryUk3iIOMayiSeKcbljqjSAkMQhBGHrPG5dRip9qkt9KutKtWWeK4+y4NUaIL6r3Emdmnubkr95dzOZZ+aRMqU5Zl7x7FDl5vqQrZVN9mNU40oVNg11kKggCPTiwCAsbaZCinl5lRKk+oo9G+BAfDUEz4OlH3PrJkvWmvcd2yWPS7RhdzUVd1RLFyEzHYP1jFhnJNpqjHOPP/pecOtZbQDBU4GOPG83nwkuL01SlSFgsJwi1FfXqpJHCA3na0JEvM6RskkCoIw4vhmEuOkkJu6TpxolXqsxast8TUESFNLoicPUqGBKMgkyYxzpHA3zTIwTFdIn0wiN3OfpEWWdDjGNWZ7g/okRoFCECjsHm/jaBYkUoASBnCSjtLCVrcVGrkvR25q7ZePw6xvJtH3PsvhM988ghe/83pce+9x5zFUApD3SXTMJNL3NNYKvdo9AHwTMlKguEo5i7pJ5nPK2sc5hnOor1FOkupckeAacNvnljzb1kaqTX1zOwwYmUSSm2ZZwTp30zQBlmeAqAvEi0B/MatJjERuKgjC5oAe1Ipmk46k2kyS21HgXCPlm0m0Jy6cyZbJJJLcVDKJQj2UDeScI2lKdSxZJtFxcl1kEt3rGCkIakUBAuV+3aS6kIQPYyKpS30Sa+SmqUaYBeR7Jto4Or0EwDKuUW71hTSR7rZCBMxMov1aTpBIUsUk1c59Me1jvjiEFhgHshrPex496zyGDgfX3dSWQPOCbc92RtrUlyvF6a9bqeV1XZS0a0kZ/S1LGcF1d271M8kRVmIyieY54FWTqMJ6uWmSGaFNfYf5uThdMa4Rd1NBEEacxZ65KXLlpiTR6DRIy+qo1iS6mnfQA7EVKubEoghIpSbR8PCpeQmYK4QhyU0Zq/9WQATw5aZmjNv5n/cFVM1SzjriNC2Mm4bkbhoo1TjZShKdB+S7J9o4djYLEsm4xjHgo3vWWCtExAwS7Yk8K0i0gxsPSeAwMom0IMA1hAEKKbPrOZlYEmiO0YuvuQvVu7YZ5z/15eTLTf2ydLGv3NRy/HaWm9qyackkrolE230SGTWJKjDSiSAsCqVLb5wFiZMXmJ+LpwvjmqAhsKwgQaIgCBuKt9yUHtoRb9IKFJMZd+Makg1FvCAxTdEKA7TDQFpgwEy0/sMfX4fXfPiWjd6VkSKvSWTZ5Jughsa6ypRKxinMrA1db64TySQFojBgXaNrgcx8muoE6Z4BAHsn2vnvx6xMosta1VKeSQxMb0VmJrGQ4PrJVF3vQcOuSSTzGU7Wkua2RQsMXr1rJ2JI9FANpHiZRO75TxP+8TxIdP3e/DKCcZJighnsme2leZDoLFuXIPGckWbGNa5ydzMoMRlEoDngIzlpHiSeKYxrRlVuqpR6slJqSSn1Eet3r1RKPayUmldKfVYptcf62x6l1Geyvz2slHpl5f0axwqCMPr4Bomp9ggSK/3euC6NE21eT64kNRPrTiuQ7BmKie5X7j+xwXsyWtC8gG1cE4CdSbRf5xwk6qIvYLvBpn16oZe3lMj3MZv8dMLAy1qfg873McsI1ky2kjRFlGVt91hBIgU3oYJTfSEFQV6ZxDRlL1IBJgDgZmV7Q5ab5plEjpFMnknk1dbSoetEIdMAiF9frrWGzurGOpG7uUhhXMN14fYzN4pTzQ5IgbJTuLMiQYxrzhm0ABFyFpx0VlsImGCxriZxRSbxjGVcM7py078E8A36H6XU9wF4H4BfAnABgAUA7668vpf97RcBvCcb4zJWEIQRZ4ncTZnjyDa6zXho0ypdO+TVltgGBJwHYpKmCJVCtxWK3BRicNAELUJwjk+ayU0p6HGV3PnUEtktH5oWZa78u1vword/pfQ3mvx0WuufSaSPHygz2arrd2hnEi/ZN5H/vuiT6FaTSAtbVJPIkjt6TMgBE3BMMuubh21c08k+F8lxXbBdSgFOdjvNthk412gCfn0S7Ux6JwqdM/5Jbq7j727K6ndoyUa57VW4x9/XpVcoYy9ABEH9fasWqi0EmttZ1AaJqdUCY8SCRKXUzwOYBnCN9etfBPBPWuvrtdZzAN4M4GeVUlNKqQkALwfwZq31nNb6awD+ESYoHDh2WJ9JEIS14Z1JzLJ0vBqR4mHfYthNF4Y3ETNI1AhDhW4rYMmGtiqbZcX50OkFPP0tX1yRGVsv6LzkSZk1VBYQ2e+xGmlmwAG4139RZsPYtNcHRd8+aY7VNx85U9rHIDCLMuu9QJBamcSwIZMYJxqtzLjmPz3r8ZjqRHjy+ZO4aLfpm2gmaatva8kKEqPALbC094HbSoReO9nNgg3HwGHYQSKdi5xM4ooenIyaRLqPO9dxoTCFiQLlvJ90LuWLJEyZ9rinKyrAbWWRoh3yzKUAY3pVmLm5LjZJJvFcYM9JQlV/36qlFCQ2tMDI5abnm5+53DQEwmi05KZKqR0A3grgNyp/+j4At9P/aK0fhMkcPiX7L9Za32+9/vZszGpjBUHYBPjXJKZsuWk+kcwMb1xXW/0ziZncLgqlJhH+9v/D5ot3H8PsUoyPfv3hoWwv74HH7NsWZu0cAPcgMU5Sttw61ZWJTM22Ln+CqfT4xkOn89+ZlhMBOi3edeMD7aNSymQEazZnZxJ3jrdw3Ruejy+8/ofzNiKBGlwTdHR6EX/wz/fkjenH2iHCQLEyWYmd7WHW0o0x20T41DGuBZrgLjGkrf6ZROSZdK5sNwp46g463CS37rkGlxWjNFcJqG/dZD/RiMLAGKC4thJJTSYrb0EictOhYi9AhA0LcLWQbBRolpvGy+bn2C4jL12wjWtaI9cn8Q8AfFBrfbjy+0kAM5XfzQCYyv5W9VKmv602toRS6kql1H6l1P4TJ6QeRhBGBaqV0ZrncJpkJhW8lV3zM1QKrYZeanXQ6jO7JlHrbEISiNwU5cnELKP/17CZyjI2w9pHmkyy3U2DIpPoms1KUs02CbGvm6Z6P5oIn5zrlfYxUGBl+32hXQoyA4i6QNauSQSAvZOdvKYTQKPhDfHaj96KD37tIG552GRLu1Gw6pgqdr891yCdeglyW/fQMVdqODWJeUacaQgDFCUArkFKqk2WuhUEbLlvFJrWMa7bKibyYC1KJvlzg2cmY58X3PKGKFBoBcq5tjN3/GZmt0t9Ekd4wW/UsRcgmmTyOUduBW77uPm3XZPYmEnM7sVhBxjfUzauGSW5qVLqMgAvAvCOmj/PAdhR+d0OALOr/G21sSW01u/XWl+utb78vPPO430AQRDWDXuFm51JUTwpWyHtMO0sfNxN+4l2rhtIEmNt3Y3CdTfu2AyU2y+M7sRistMCAMwurb7Sula01kVNIqtPIgVEzEyiFaRwZXNBgIH1fgBwZsEKEhPbEZJ3/p+YXWYtGjnJTa1MYh1KKQw6jLcdmgZgMoqACYyjhm01kaQpO2tGGccJZisF+t6mOtFQ5Ka0PU5ASsFMECi0gsC5LRGpNFphgCR1vyf3kxStwGTbONsCkPfl5dbAj7eZ7qZraGURhbwFUNrHDlPuW5LEygKoN/YCRNN9K+cDLwA++6vm3yQbBVZ3Nw1bwNjuirtpBCQjEiQCeD6AiwE8opQ6BuA3AbxcKXUrgLsBPINeqJR6IoAOgPuz/yKl1JOt93pGNgarjBUEAcCdh2fYPQiHiT154fXXMo2xfVZ2wyDg9XuruKI6T67zTKIY1wCbxzad4ohhZBLtua1r/zuAMonI2yk4q5S0ZvekK8lNm9pLZNfEmYUisDaZRJ4jJGBqQp/9P7+M91//becxtnFN0BDIGvlrc5AYDjCuse+hD59aAGAMb1x7KxK2bNS9Kbt53Rjze6PAfbITse8/X7rnMRyfXWKNKWpreQZMAPXgZGT3UuotZ75PV3llnJhAqsmlt3YfS8Y1/OfNGLMmsdwnkRdwR4FCFLjXadI+diKe3NSupRPjGn+SpFiAoBY8qy54mBetLjfNM4ltK0hMTX/FEZObvh/AkwBclv33XgCfB/BiAB8F8BNKqR/OjGreCuDTWutZrfU8gE8DeKtSakIp9TwAPwXgw9n7No4d0ucShJHmhgdO4if+4mv42xse2uhdaaRsyc/IHKRmksx6aNuyoTBwlskULTD4GZggl5tKJrGXJNa/R3diQSv5wwgS7foyTiaRMimUGXOVm5oghdc2I58QUgDWkKUDTCsMIs0yG9w+iYfOmCDs2vuOO48pahL9M4mDahKnreD30ZkltKMg71PJChIT7R3s+daSTnZ5/V37SYpX/91+/ML7b3IeA/gZMNGhC/Nm4u6fzRjXZEEiw4QpCgNPuSmzT2jubsqUm9oOxMyFo4AbbGu/mlA6J8dboXONprAS+9yiBaxVlQn9hUomMQJ0ihVNXmuDRKtP4qjITbXWC1rrY/QfjEx0SWt9Qmt9N4BfhQn4jsPUE77WGv5aAGPZ3z4O4NeyMXAYKwjbmqMzZiX4jsPV0t3RwW4o7WrIAJSbG7Nlc5nhQeK82lpeyeesJEeBQqcVSpAIv0buGwFNwochN7UDDNdJpM4DIp67adWkghtsDGxUn32fp+fLNYnUpoblbuohfEita3twJrF52jMoK3h8drn0/3QvCDKJqqtaI7FrEpmZLG7rjNiSqXLkpvT+D56Ydx4DFOcgp0aQxihlen72HcfG2b2Vakpdg6J+otHKA1LHTLotN2UoUGjcONu4xs/dVFuOr67fAT0D2e6y1sLFKKtCRh06jtFqJmR2zeHybGFAAxQ/q3WJJblpVpNItYyBm9w0Yn2ac4TW+i2V//8YgI81vPY0gJ8e8F6NYwVhu9NmNl/eCEqZREZvpzSTm4bKPWizZXOuPdEA+4FobpnuTZHNym43ErkpsHnkpjRJOzuUTCI/SLSlXjSxcKnJ8jWpKGUSA4W6eWSRSeyXxgVMiZ4vhdy0CNxW7GOSIuw0T3tI7lVHVXo5s2g+Z2RN7GxTnCbiNGUHiXRsua0zKCMx2Ylw5Myi0xiAdx+u2x4ns2rfk1uhcl+4yO6t5EzrnElMKJPIWFystsBYd7mpX01ikmp0IrMAyv1s3pnEdjjSqpBRp7oAZ/+uxOyx4t9LZ4uMIGDko0AmObXub6VM4i7jbjp1QeZuGo2U3FQQhDXywj+9Du+65gBrTCcPEkc3i2WvmrrWlZhxmXGNT03iANlc07aAYkWYs5JM7qaj/B0Mi81iXEOGFq4T1rVgZ7Nd5aYl23RXiRKKyUeX2YKh3MurPiClie3ccpx/zySJbUchLyPi/MqCct1kfaASpzqXJ9YxyKn0+FmTSXzXLzwTAPLG9hSku2Ru0lQj1cjdZbkZKTIX4d7vuq2Qdb35TvppeyyXauuezMqAZdLhVkByU8dMIkmgmfWP9j46t5cgU5goRKA4clNPCbouDICcXWLpHIm4EnTzuu4Q2ttsZexza6AqZO6x4t/LsyZrqCy5KbBSPmoHieN7gHgRWJ4bPbmpIAhr58ET83j7l3ieTO1w9DOJJbkpoyaRshQst7ncpbFZNte0LYCfgaEaKDGuMdjHbZTPSQoOOa6VvvhkEm3b9IAhN61mErkOiIOuG/t304u9/Hdcsw/AL0gp9UlsqEmk/WlCDahJJLnpC7/nfNzwph/FVb/2XADlTOJqFFmbTCLpev/R1e+Nd98yQaL7uey7gEPb41w39rnFzYAFypabussrI7bcFPk+NvXgrN1W9jpzDbg7XNvnBeda0NosnLYi9xYYeQuSiFknm1iZxBG+l486SWVOAqD+/Fo8U/x7ecYEiXYLDGB1uSkALJzMjGuyFhirXKsSJArCFoYewCM9IfdssJ7qwgLdNeNjZ2CaZHODxo1xM4lajGuI47NLeOT0Qv7/nEnrsKHsNkc250viMSG0DZgo5nGZl6+sP3LNGpiflIGvCwLs7MqZeTM5IXMRbk0iyfIUVpdvEqU+iQPadAyqSRzkbnpybhljrRATnQgX7hrD93yH6b7FyeRWG8e7Zntyd2V2w/kiS8QJNtYcJHLkptaCRxS414mnWcBPEl9+cMmXZJo2Be6fzx7XablfA3RejLVCVnuJhCS4Ab9OP8qMU7jn1ng7kiBxDdjuvmGuSqg5nqUgkWoSs3sZBYtVh9OqcQ0RRMbdFFg1m7ghNYmCIAwHmogPK0j85DceQT/ReNVznuA8piQ35TSqz2RDYcOktWkMQBNJtzouoJhcjzObItvmCnGq83qY7ciL33F9qT3CKE8s6LpxlSOvBbu9AXeCxu2TWM1IcV2Bg6yXV924JNW59Jt6JcapRrelsl6m7osk9FrlHiM69UlcLZPYVMsIAGfme9gz0V7x+/z4OwQ3lCGiMgDXTGIuE/YMEsfaoXNACvhfm7Q9zgJQecGDUSeusxpByiS6SkDTwtxlftmt5rh6vbk+b2zDmxYjc1n0xeTJtFOSm4bumUQ7S9piuMvaC6dSk+hPXX157fllB4krahKbMokVuSlBfRKBItvYwPacrQjCJsO3zyE9OIc1IX/jp+7E73z2LtYY2ySBNbnIVk2b5G9aa9x88HTp2Ln0e6vdlsfkmpwkA6XyzA2nD95Www4QgRGvSbRq6tabYkU+dM6Ia11MPnO5qcM9wrffXt4nbsAkOU40zpvsACjaYJC5SKfFk5v6LGoVxjVFv7HqfTNO04F9Ege5m55e6GHv5Mog0dm2HkWGqBUGCBRDIukpd7eDy1S7n8/eNYmagkTeYh9gudIyArBAIV9048grw4AXtK0wPGOWKVB7g8S1l2P2uolOxFpcoWNiFiX5WdJWqNhS5vE2L5AVypSk/MpVblqtScxCuYFyUzuTGDbXMVaQIFEQNgH2M8n1AQUUN/JRNk3pJWmxss6ZXGQP+yCon1h8+tYjuOJ9N+Ifbz9ajHGQzdVuK3v45sYRDvtJ7x1lNYkAz4RgK1EntR3lIJEmWKle//20nSvZbqOlOhaG3NHTXTMKgsZJcpym2DdlgkRaEEh01gImNFI718UuryAx2yfqkwisDIqSZPU+iUD9otzp+R52j68MEgfa1lfIj2OY1cS5TuQ9jWuqmUtncxdPKXiRSeTV0QHFuez6eDMBf8CXm6aF3NSnTygnk5hYizlhoJwzx3kmsR3x3E01SXCD3Hxr1THZORgGASuTaEugOV4CQhl7TjJwwWnhNNAaB6CApWkgXgYic791k5tWMomOclMJEgVhE2CvCp5l9G7L5aYjbJoSp2ku43TtkQUU0rGo4eF7Ys4YTdxp9YgsisTNpMR10koGNO3QPZNoF6STm+F2zSQePrOw4nejvPpsT5LXez9tSWA/0U7nZGKvPrMyWVSj5tenj66bpkb1lEkkuWmSIjeXMttzDBI9FlNKNYkNxyROB7epGOQueHq+h701clOWcY0VbLcCvrlIKwwQetSNcWWqa61JdD2P7TEmk8io96Nzi5lJTK1MIru/LilQuBn4PJPIG8fN0qVUbxlwnFvNz9xd1ssUaXTv5aNOseBnLTjVfQeLZ4DxfUB3pwkYe3NAe9L8LZebVt1NKZNYlZuGIjcVhK2EfeOuyvYGjzM375GekMca41n/QU7LAbLXb5KW7R43K2VnKn3bgCIjwnloh9ZklxMkRoFCK8oK0rfpw/S+Y3MrfjfKEwv7+11vwyHbJRBwC6RSa2LHcTeljHtuwOTRJ85cNytfEycak50Q3VaAM/MUJKYIlXF25GzPT25aBLJBg2yLFnuayHtO1hzK0/M97K4JEn3cZSNPd2WqwfNxNwXcg3Tf1i9rMWEKVLMqpA4T7BVBOqedBTcgKpmLcBQoFaM0tpstN0hMC8dXbrAXBibD7dO7M041S+EkFKSlbLP5XWNN4vhuE+wtngZ680B7wvyt0d20B0CZv7fGgKhrfq9EbioIWwr74cKZtFJmrjfCctN+UjSXdq2jAIpMYpO0jAJPqo8CKiYJDHdTckXMg8Rk5fH8i387gN/69B24+eDpyrYUwoBpVJFqPHB8ZWC1WbnuvuPY0S37pI2ycY19HnImaV89cAKv/8Q3WduqTuQ5UuYwKKSVLvPWYmKXZfYcm6bb2Z6m2ipjJBVg93i7kJtWFldcM4R0zDnGQS6TrThJB7qb5sFlZdxSP8FCL6k1rqHMpMu1TRmCoiaOL3dshfXGQYPGceWm9jno0/PQbMv1Xmd+hllNlrNxTRbsUU0iJysYBp5yU2Zwn1avG+eg1PzstkJWVj3VyB1f2e1tlFmAcD+OabaP2bnFeHYLBSXjmkELTr05oD1lZKML1SCR5KaV7yDpmSwiOYCR5LQkN5VMoiBseuybBmfSSquro9xuoJekrCwKQe0lmqVl5rOftoJE+6HNcjfNahIHZRL/5Or78fGbD+GK992IfpKWJoQcSRoA/OW1D+BFb/8K7j121un1o843HjqN5z5pb+l3o5xJtIMnzqLML33wZnzutqOsjDGdp/k14GiKBBQSPYAnd+TKFlOHSXI/MaYwO7otzC5RCwyUM/CumcTsmHMWEkp9EhuCvSTVA41rKLisjiP5bL27aZC/92rQd21qEhlyUzuTGPGCS/u+5VOTyHre2EEio00QULibOgdg2f2fKzfNyxQYQbptLsLJdpaDy4C1SBgoE9xzTISSVENlxjXceldauHA9jnYmEeD1OBYK6koHas+veAmI2sD4XiuTSHJTunHVyE1D657VGjM/o7YxswGARDKJgrDpsSednJVFegAMw8rflzjR7P5fQDHha5KW0UR/ukZuynY3zbIkrSxrsFowe9O3T1UyiSSJctve/oeNk9mjM0tOrx915pYT7J3s4KcuuzD/3ShnEvul642/nwse1yjHudJe/We5myaWBJqTSbHkdkGDuQi1pJnsRpjLWgvEaZo1EqdMIk9uypkg0z4FypabVoLELLBoomkl/9ScCRLrjGsG1TFWia37T8QJGnR5Is9pXRIFQR5IubdgKN5/scdz16x7j9X2EciC+6DB2bFuXJ5JpHuy6/aKWkZ32a75mctNnWWjxbiIE1za/UUZ95+idzC/3jVgZiATK5AFRnvRb5SxnaOjQfOEuGfkouN7gPlTWWaxkkmsk5uGloJn/qT5ufe7RW4qCFsJezLBWdmlh+AIx4joW5lE1web1tr0hBrgCEYrqTOLVpBYmVy7PrTjrNYjbMhQAMDFe8fxI085DwBwx+GZFfbngHsmMWdI35tp17F+G1vqJxhrhXjnz12Gg3/4MgBwdt9bK4fPLLAmukDZQInjDEyqnoVl9zFxNUhk1Lty3U2LYCNgGXcUxjUmA9+cSQww2YkwtxRn4zIZGzeTmB1z7gQZKDelru5nqgf3XiwykOXfUyaxrgUGp0+lHaRHoXKW18drkKkGAdiBlP06TqBuP6e45xZ9b5wsHfUEBNxNz9JUI1TwkpsGWZlCqt1kuFXDJ86iQJDV8nKNa9hZ0pKUOXA+jlSCwZX7CmXq5Ka110CyXLiUnj0MQAOdLJMYNBjX2L0UAWA5M/E7/3utIFHkpoKw6Vmr3NS10J745zuO4rl/eI230QqrcXOS5vWDPi0AmhzBSO5kZ15dZHP120tzswl7+6XtJRr7Jts4f6qDgyfnV9imA7yay2HyxN/+Al79d7esy3trrbGYBYlKKSiqfRlSJvGH/ve1+JW/vpk1pl8yrnHfT1pEWOi5NekGyu6mgNtEPq2RKLn1SSyClDazcTZtp6mXIGX2J7sRZrNMopH2oTCucfzOKTjkmXaYn0o1N6XW2eS7CUoyVgPu0/MDMoke7qZhEBhXZm62R5HclKGAyBYEAEZNonXcfSS/Zlt8SSanLVGRNeO1T1qL3DQsLRQ6bMvKAHP6JOb9RaOA5SeQpOb8bwX8fod5nSaj3tUYKbmpa7YD/STFc/7XNfjCnY86j6m2SQEa7iXU8mLc6ndImURyN622wKgGia3s9XueaMlNJUgUzhHfevQs2+lvqZ/g7/cfWtcsxXbAfpj5GNckzEzR737ubjw6s8RyUrVhrT4nujCu8XBbJEf7Ort7oNx2ouo2594nsZy1qbuJx2mKVhDg4r0TePjUPMqZRPe6pY3iy996bF3et59oJGnxHQO8Vfy1QOf81zMzIVdKclPGJI2CkwVG5nJFJtHFuKbG3dStT2Ka72crDBjGNUUA3GQu0k81wlBhysokmuCyMHxyPZYUHLIaieeTrWJfq3NyrYtAsI6mmiAKEge2wHAK0ouaRE5GkD4HjeP1BISH3NRzUdJDblrIhHmN6qmdScQMgPM2EZnc1KnlTGlxsfw7m8NnFvCK99yAB0/MlV6T90lkyFvDQKHTCljHX5PjaxiwgmaAn6WOE53J1vk9jrcqZxf7OHZ2Cb/9mTudx9jGTU2LWwBMkBi2gZ3fVfyuXckkVo1rdFoEkADw6muAV3zIBIjSJ3HzsBwnePuX7mdLoobJ3HKMl/7ZV/Hrn7iNNe7PrjmA/37VHfji3eszAd0u+GYS7ZVLzkofTVg5Aan9sOXIxPpJionc3ZS/+tkUuNFEyg6Qy8Y1ylmGm2S1VQODxMRMWp6wdxwPnVqoZDvB+nz5e45wUOkK3dfI4AAAy3xjLfgev36q88DGL5PIWf2vGtes3GetNQ48Npufx7ZtfRHYrL6tUk1ixHNApHO4KQOfpBotkptWMokUpLjeu3K5KWuCbH4OcjdNtYZCc5SoGuo7z8z3EChg51hrxZh8YueQJbLb4nCUDBRcGgdKnkwyCoO1yU2ZLRi44+zWJWFDvWvTtuxyA86zw86AObnSljL3zQt+f/gv92L/w2fwtzc8lO8jUDiOskx5FNAJTZDo3HOyEgC7jin20V1umqQpwlCxs9TbAc68yXaqF4ndvAAAIABJREFUHliWkiybmsS93138Ls8kknFN5TtIkyKABIDzLwWe9nLz7yaJagUJEkeAq245jHddcwB//m8HNnpXGqFVomvvO84aR/2yaCVW8KNck8jIUlgPCk52j2ytZ5fcZXM+9Shaa8Spxpiv3NSSllVX/+Oa1fCytKn+Znzw5Dw+d9uR8ntVTHLqVvr6SYpWGOBxu8ZwYnY5f2iuJZM4DEnmemf5F7MH5ljLziQOR27qO3HpxymmOuac5FxvFLDNM+SmeYP7vHfhyu296VN34sfecT2uu+8EgKpxjXmNk9yxaoDC7C0HoNbdUWudT76nui0s9BIkqc7HdVru/UWB4l7iU5NY7pNY2U+4ZRKrl8Sp+R52j7drTW+Kid3q+1gyrmFMyNdiXBMo/kTetybRq0+ifS9vuCfXjssk0JxMOo0LAl4GMneqXqWX3R2HpwEY4zLA+r4V0900+2wdhroAoMxxJhtlupuyHb+1zg2wAKDnqErYytCx5CwsVheu7fcpEfeM3HTvE4vfVYPEWrlpiFpEbrp5oMnT0enFDd6TZmhVitvkmGu9LdRTCnhYWTr+yi5Q1EdRRsBtW5ZEz3Efaf/GmDba9PwzRhr1N1Z7f/LMRvYSCi7rbsav+quv4/WfuK20GkgP7UEmIfkkOQsuzmZtAErupswgkROg+OKbbZtfjnHF+27Etx4d3KYjDxLbxeOmHQ0pSPScuPSTFJNZX0fO9UYxBEcVssLdtGafb88mn7dkrrd0bnZbYeMiyaBtsWsS08IVtM7dkc6hVuZuCphrLk3LbQpcnx/0/pwaXrsFRl3GX2sNrYtsYR1NAffMYr82iwjAurY5mcQArUAxJIHIximWAUpSkQS6Zpd6npnEtbTACAKemViSOtRx1W0vLdcyuhyTUplCw/NmOU5w5IyZwx3LXKntzxaxauCLmkTA/TvQuliU1NrtmNgLEFzH79A6t0a13n6Y+DxL6/wVagP13LjGrklcTW6alOWmNtIncfOwO6tzODXC2TbfGwDdQEbZ7n4z4Nvc2x7HChKzCSv1O3PBnpC7Bjc0Se22AijFr0kcZCZjP/wLt0VL2tQwIaHj+/Cphfx3caLzZs9A/cOgnxYtAIDCVTUKbHdTt89H81jOiqQv3IUf4u6jZ3HzwdN406fuGPg6CpjsTGLEmOiuBV/HvX6qMbmWTCJjcYWOw/gA4xp637uOGnc6krOOt0OvFgx5TaJzc+/CuKZuIlm4bwb5IsnccpxnG7iTXXp/15oxs4/mZylwsMbSP93cTcvbTFKdP8uqcIKUkrogZAR7ltw0DNzr9ijbljuAOh5/+16+3sY1tikMJ0hMMylzfv473k5IFdJmSHBL2Z6Gifyh0wtINXDJvgmcXYoRJ2lu5gR4uJta1w1ncSVQQCsa/NkOnV7I72vV+mZnx++kGmzLHM+nV2StcU31O0gTkxWMOub/f+6jwFNfZuSjgCU3rWYSk7JxjU1T24zqy5w+hbCu0DPr5NwIB4mezlV5kCg3kDVhT0BYxjWemUSqH+NkEu3veLWH2kIvxs0HT+cPllYYoBUEzm0RYsuAo2mSFtdmEldfNf2uPabhLJkPAMUkOQgUVIMkJ07SvCYLKIJE++bPvY6GkUnk9N20oaDmW8dmB75usb+yJpFjGrQW7IkLx1ihH6f598iqScy+50WPPondAS0w6Ly568gMtNZ5kDjWDlnupoldk8iobYutya6ZSFb/TtexlUlcik3rmMBqgcEMEgH3YEPnk616uSn9a7C7ab3hDX2OQWOcatusTG4UcMxFzM/8vsVoE2Fne5zdTS3Jc538uQkf4xp6Gd0n2XLTvBzLPbhky01pUTJsnsgfPGkWFZ/5+F0AgOnFfqkvJ8/d1ARtbWaQSMFlK2j+bEv9BD/8R9fijVeZxT27vQc7kxgWfSpFbuqXTKk6rgM1C07xsvlJQeKl/xH4hY8DnSnz/6ohk1itSbSh/okiNx19aOXm5NzyBu9JM76rRNzJwUZxz9GzI+3O5es2l5QykO4Pe8r6nGXUJPYZQeJrPnwLrnjfjTiSSaxbkTFXcP0OckewAatv9v5QbWVV2lG3avr4PeMAgG9bQaI9SQ5rbNrT1PRttDOJ05kzbGQ9SLk1ib5ZPt9tuE60gOK+tdq1vVRTkxgFakXLkvXAPgc4Tr2JZyaRAob5NfRJrLvX0uTj5FwPj51dxmLfnM/j7YjnbupZ20YmIWZs3YJM8b6TeSaxn0v7OIEsUH5/14nXaplE2/20iab9tDNCTWNcMp55C5KQmUmsyB2dM4nVINFxnO/iYppqlksvjQGKHoSua0d0TjY50jaRZK0zBjYur46xMolN19vcsrm/XLzP1IlNL/Ty8x/gZRITMq7JWse4LuSRc2shW1z5Glr8/OxtR/MxtH+cxTvqk9iWTGKOj3u5XafcqApJstgg7NS/SVNNok6Kv1URuenmga6tUyMcJPpKw0jSMcqZxIdOzuNl7/oq3vYv9270rjRSdjf1M67hBByUJZrzDBIHTSzSVOOrB04CAG7NaqxaAbNJtOUI1vTQtidEttsiUPS7qrup00Pv2NmlYnt2TVbNw76fZ1IKuZ2dSeTY5AOFNI5TD+eLfV6wDFcc7wmLVtaL4PRDWwv2+XSWIZ1OtXE3DZSf5JfTJ5HO2+6AyXWcaly022S47zoyU5ab5pPk1bdl18RxHGYp2ADqs8BF8BPkiySzS3Ge7eEaN9nv796mw7xOWZlEe3t2zWIT9KcVJljW56/S1G5j0D5GQYAo4PQ7LGSqfplEntzUvn9zyxu6TJOicgDsfo90MROr3V46WIFSR7Vur2579KzdO2nKh84s9PNWFgBYNYmU7cxl2kyDqaa2UADwwPG50v/bvVPDNSxASE2i3zzZNiFrziRmKsNoZQseM7gpkxg3y03JuEbkpqMPnRBDKNHxxneViO5Rrg+njYAmXBS4jCK+NYl2oMQJ1EmKw6lJLE8smm88C9aqKBlxtMIgc2RzfEBZNVCNmURrf+hzVFtn1Pc7NL+zHXmrtSXVB6n9vhNZkEjOvu0wGGibXvv5stcNRW5qbYMjL3adTNS5m3LqqtaCLYGioN0Fkol1opD1HdA1xmqBkZ23FEQ3yU2fduFOACYTYAfeTWYrdRSr1mDb5OeZxJqJZN7/L1ClRRKtzXa4xk2px31LW5MtOib2LcGlJrGp3iwdkElsCizrKGoSefLDct2YW0BqxvnVjfnWsqfp4Ix47RirJrFp4a4OWrjjupumWS9BTgbSPv5N2R56n32TJttzer6Xt7IAzLPKuU9itriSy00dF6pSvXoAbAeJcZKuqLd0D9LTkimSyE09axJtdVNDTbRzJnG1Fhg29HuRm44+rjKJKtfddxyv/rv953hv6ilnpDg1ceakXRrCZNcXuhFzMg2AWdG/4n03smoEfbGPP2d7sWN2rwrduDgtMFxrEhesQOTmrMl5txWixWkAXJNJrHNc3D1uVstOZfW+qdZQymQTlFppdQ8U56wdJNqZBDORqY4pVmNJbndk2mQid4y1WNImwK9PnC/2BMS35ckgqV1dTWK0ATWJZxlBIsnEuq2AlUmka9PnWutGNLleeVz6SYpd4y20QoXpxX5Rk9gK83PZ5TlS1L8ErJrENK0Y1zRkUaKgkFsfzc7/yU5UZNIZNZAEtyl7U20P7bJTTWJ1IT/rkzp4zOrHn2TIE50ok9fzguYwZJqLeMpN7UPOWVyM0zRv5cI5twBzT2bJTXVFyswMnBXjeysZnjXVwKflIHF6oVfKwLMyido8Z3K5qcP9pAj2it6ddZ/txGyhWDs13ysFKWqVBYhvPXoW33zELOyuyFKPsFpsWPhkU0t1ymHDuZzXJHbr32SQ3LTRuMZNbtowWhgmvlLO//w334DWZmJiT8DWA/sG0E80Oo5nDhmRLDBqdIYN3Ug5k0gAeMs/3o39D5/BnUdm8OyL9ziPO3R6AbNLMb73wh3OY8p9EjkPbWtF3mPcepjkULYqChSOZlbh5+/oIAoVQ35VrH7SBLR6f+4lKXZPtLEcp3g0247d762uthAoJrzVTGIrk1EFNRkACm5bYYCpfJJs6i13jrXYNu30HQ8nk1h8FlYT4NJEXqMd1U+i6T3H2xXjmiFkEu37FjeTGDIziVrr/FhyJkx0/6EWIb2a7cWpcc7dOdbKP0fLamS9WgbmzHzPuAdbExJWn0RdTI4DZSbyWut8om3X2tEiCZ3/U90IIaNxOVA9t3gZKXuSXFeTOCCR2LjglKQ6X0yswpH70ne3c6xlMrmOk8pyvz1eU3bTOD4LEhk1qJ3INHJnLXhoq5UL814+qHdt0zgaY7bNk3IWGUGHbdXJTWuyzQCwN3Orn8mMa2yZNieTrhTy/qIu9yA7IzuoKbt9jz8xu1x211xlAeKlf/ZVAMBDb/vxXO4r7qYFSWW+1XTPsKm2gAFqgs08SGyQm+ZBYk0msakFhvRJ3Dz4yq7oYTzNMGTwxZ68s1wCs9dyap2GDV3Y8wyJGFBkRjg90QDgh//oWrzsXV9ljbFXmzh1ar6ZRBrHkra6ZhKz4/WcJ+7Nf3fBVBetwL1Gim6sUWBL2VYGbu0wwHfs7OKxrL7Qdpvjyk1JMlqXBbMnyRN5JtFMknd0rUyia5CYfcfDqEm0Jw0+GTBg8CSmriaRIytbC3YQxDFhSlMzaeJkEntJmmdBfBqQU9ag7hyJkxRREGDHWAszC30s9pKSfHeQ4cRiL8Ez/+BL+Pn331S0Ugh4fRKNSYj5d90k2V60mWib858WZqa6LVabjurruPcEZUkC+e6m5fci4lQ3juPIfWcW+2iFCmOtkGXelE/kA54zMEkyI2a2J9F6oPy5eXtp/lx0DUjt3rUcuSM5eapcgsuQcioF6mjC6S9K/XXrxtF1S5n0hV5SMnziyYtpkcq9vjOpCTbqzknbefnUfG+Fu6bLeZykusgkZvvo64C/lXBVQDw6s4g3XnUHTs0tl6XMTRng1eSmJB2tbYHRZFwjLTA2Db6TpTxIXFz/1hmlGgWfIHGEM4m+x58ehkORm2bHf7zNq5GKU42JtrtkxR5nxjAyibFbQEo95J77pCJIPH9HJ5ObOsqo8prEZmlNPzHZl8ft7OLRGROw2W5zTe6mdKzPLPTzB6jJQCIft1JummUSgwCtMEC3FWBmsQ+lTCYlz2w4ThJ85ab7HzqNf9h/iDVmuVRL6hskNo/L5aZRuSZxOJnEYhssuanlLuh6DdjHwDUjDhTHkVbkmxYuoqDIJC70Yoy3CznHIMOJq+85BgC499jsykwioyWFLTcFqpmbIkgMMsk1XXM7uhG7JjHROpexudY62XLSukC2CCKb36NpkjbI3XSQtI948MQc/vBfvoX3fuVB7BxrQSkTuLnKP9P8ewvY5iKRR5BYcill3RP4NYnaDoCVapSuL8dJ6W8lVQgzcA6DQm7KMa4ZlIGk92lHATpRgMVesuK6YfVJtGpJ3eSm5udAAxQAi/00L8M4aWUSBzl+m/cvfn90ehFxYtxNWyNuTviV+0/gtR+9ZSjbsucvg87/6+47gU/uP4TXfvTW0gJQY3Z7NeOaphYYA+WmFCRKJnHk8a3NGWYmMS5lEt33ly4UTt+wYeMr9yUXt2F8NjrmY+2QffzHs/OE1e8q+944E4RyTeIA45oss/SsJ+xGGCjsHm+h2wozuSlXWtb80O4nKVphgAt2dPHY2eX8NeXawma5aZLqvE41tjKJZlx5Y7ZkCgCecoHpXzTVMQEiO5PoKTd9xXtvxBuuGtzcfuW21p5JHLRQsthP0ImCUp+5oQWJ1ufhBIk0uWNlEu0g0aMBOU22miTQURhgVx4kJiX5bhis7F0IAP9272N4/SduW7Ffud29ax2XZVxT10uQtk1/M0FiVpPYjQbK32q3l+p8Ec69BYYlN61xvKT50yB308aaxKS4/pvGDHqMv/pv9+N9X/m2eS8r4HNV5ayQm3ICIlX0zeN83+0ogFLcrHjhbspxzgWK9hJ158hDJ+fxg//zGvzyX38jb01Uctxl1GnSuDzbzMwkUgayTpJMrxlvh5jvxaXrJgrcg/siSHR/bhQOrM2tXABgqZfgot2mzdOp+eWycc0AhccpS1lz8OR8lqXGwJ6Mo8Avf+hmfOHOY0NdzAcGXzekUpq2FqJNltr8fcV5EmdO69yaxDQWuelWwD4hOFLOiaHKTYv94gQptAo8yn0S15pJ9JUEcmTGtI9jrZBVHB0nRSbRpyaRJzd1yyxRTeLeiTaefP4kLthhbnxRGDCMFezVz/Lviv0xze3Pn+ri+OwStNYlt7kgm1hXV67tc52uLdvdMKzNJGYTv+yh/qwn7AaAPNuzWk3ib3zyNnz06w/n/0/Hz6f9Ahf7/OVmqYtxzfu51EtKUlOAt/K/FnxrEknKxskk2tczZ8JELyXZVt19oZ+maGU1iYfPLOCf73g0zzIAJjtWd2792TUPlP7/WLZYEgVmsus6sS4b12T7XVfvl11bk90onwhNdfk1uXaQyDWuKfXOs4bqPNvZ/B5Bw34OzCQ6yE3tY0WLFT7GNZRtY7mbZgsC5hxhZI6VkSRzF45INu3TAqNp8eiT+w9hZrGP6+8/gZf+2Vdxer63MkjkyE0DW9rnMCY//s0OlPbnGG9Hudw0v244fTHTausYhtxUDXZ8XYoT7J1soxMFODnXK7fAGLB4R8oAwGQSE51lEkdcbkrJFK7nhA/VOv0mjmflL3GaluYy9H2vOE+SLEBfTW5avZ8PdDelTOLgMgwJEkcA+wHCWbUjg4wZptz0riMzuPfYWdaYkgGKh9x0VFeZAP8gkWQ1vpnEBY4pTPaQ6LZCZ0MAwHxvY1mg4pMl8qljXG0c9ZCb6ET47Zddije8+KkATE9N9zoWa2LR8NCOM7np7vEW+onGfFX+05A1sM+HIpOYWpPklavWFLjTxP3fXWKMjKjXYuPNP+PT3zyC//czd+X/P8zr5pzITQcEs4v9cv0cMMQWGNnxCxS3T6IZ02FkEn3v43QutcP6bE+aamhtjtnOsRbOZAsX9z02m7+m7pwEgGdctLP0/4dOLwAoZHPOQZu2g8RsP637UCH1ND8nLWezqW5k6gQ5hisluaN79gUwgWp9IGt+DjauMT+rC0eJ1rn5zsoxq2ekOlGAx+8ZK+1HKwycgwY7+xgGjGDb+t4irtwxMC0YuPcEqnd1fU7Zmawmx2m6vzzniXuwHKe4/dB05Zx0y4prba4l2hbt86r76GBcU7RlUhhrh0Zuqv36JCa63MrCRb5ebWVh3mfluMVMhbBvsoOTc8srAuCmXTx+tnBFnVnsW865oy03naz0LV5PSjWJA66b45nD7NxyXDauqblvmV9QkNiqf8O8BUZdTeJq7qYSJI48pZ5QjBsyGQRwT/7/+Odfw0veyTNOKWUSGZksGjfKmUT78wyy8q9CshpfGcM8oyddbpPfClnZ5lTrXJbGqklM+JlE+8Y2KPuS28C3I/zIU87DCy+9AEAmv2KsdAPZ6ltY/9Amuenu8ay58XyvMrFA/bi0yL6eXYzz15QnJCsDUvMZzGue9937Sn93zaQcs1xY6TP4wBlnf1fr8X0v9GqCROU+YV0LNLnaMdZiZfwpk2Iyibxz0myXH2xHDRO7vrUAsXO8qEn59Rc9Of93U8BH991PXPkcAMBDp+bz1wcDAnWtNZb6CU7OkUzb7pOIFftZbVS/Y6yYzNBiJqcmK041W7ZY7pNYY1xjTcaaaDLYsevfqrjUJJ6a6+HyJ5QdsM3xYEppA14WPl7lvtVEcf67O+Ca/TTncTvimJAh378mx+lUa+wca+GPX/EMAMaVczlO0c2yWIFiykaDASYhteOyfbSMa5rMy0huWhjX0OcziwIucwytTQ183qjeJUi0FmryGuCacYv9BN0oNPXNC/1KANz8jJpdLuaZ04t9JNQnccTlphMd8+wZSpDoWJOYB4lLcVnK3JQBpuCvKSvY5G6qk+JvVYLA/E3kpqNP1TbXFbLXHe2aRH6wMWzs5zRn4kqyGt9MIqdxeV6T2ApZN+M4KYJEbr8rwL9GzcW4ZrxTvuG1IkZzb1vH3zCx6yfG/GJXVqQ/vdBHkhSTpqY+WXGSYs9kYWMOIJPWNE+2cuOa7KE+1W3hZ5/5nXjjS74HQBEA1F07dtBvT8oBdxv5Kpxm7v6ZRLdxdS16ht0CY7ITsXq1kk1+txVg2fH6tu8jPsY1ZOe/olG9tQDxuJ1FTcqvv+gp+b+bDCfmlmM8cd8ELnv8LgQKuPvoWShl7iNNE/K7jszgkt/6Ar7nzf+Ky//Hl/N9oIzBoB6EFEa94Knn5X+j+yTH3THVhWxxLXLTsnFNto8DahKLe0L599Q4vI4mRQKRpBpnFnq4aLfJJP7c5Y8HALQC0/LHJWiw73dqgLlLFVvuGAXumcskLRxwOc8A6kPL6cFZ1CQ2Z8Tp+O/N7suPnF6A1oWT6GoB8D/sP2T6FtYpUBiZxCBAY30tffYgMEFi1bgmb9Xk8BXQokyxAOogN01rPltdTWI/Qbcd5iZY1QC4aQGCFkyVMs/SOCmkzIEaYblp1zz/h5NJdKtJpF6V870kv74GZanzbF9TVrCxJnFAJhEw2UTJJI4+9rXlI/fiBBs2HPmVffJzgpQ8kziiq0yA/2ejuQZnQm7DySTGudzU3QEUKNf2cDMpAK9GzX4gDTqP53sJ2lFQqqkCaNLkOCG0JDLNzY2zTGLWt+pMNkmwHfGq+w2Yh92eLGND10iSWK0zarI2VeMaAHj7z12GX3v+k/L9bKoJsq8NamafZxI9F1c4bVl826TYX9VqxjUrahIZRhNrwQ4SOec/NepmZRKtz8Ptk6gUCklmzfkImJrdJ+wdr32Ppkzi/HKMiU6EbivExfsmABRmSk0T8ruPzpT+f6mfYCkuAv26zJntLAoAL3/WRbjs8bvww08uMurcTCLXJdMONmqNayjbOeA9Gt1NrcWlKvTrpvN5eqGHVJsa7IN/+DL871d8PwDzfdr7PYi4EgC4LrD4ZhJNf0WzEM0KEtPClZNjQkbnv2qotyQZ63g7wng7xMEsIz6VBQCDsqsPHJ/DG666A//t728vOYCqmnOkibpsz8rnTbGQON6OsNAvG9c0tWoCjJHJV+4/seLz0vu5LDrZmfJBypWlfoqxVhEklrLUA2o7Z7Nn4eN3j2Nm0dSERtbC0TBqzH2YzBajh5FMca1JnLXm3o/NLqEVmqx9Y3Y7d91qqi9saoERN2cfARNASpA4+pTkph4BmK/c8aGT84xtuZ38K8eNvtzUviB9zF18g3ROWxDa1lg7dG7ADGQudaGxqeadW1kmyzNoWC2TONFeeePiGDnYxfZ1E0J6TRCo3O77zEIvzxABzdKyOE2xd9IUiJ+tySTWrbZWjWvqaKoJsoMXenjQ+/tKeDjZ7bLhkPs410xitacfwDNxWAt0Hk51I7aUljKJrvdXX0WILWWsM+Ao6l0VLt47UfseTe6m88tJLrd6aua4uzO7Hpom5NWs77GZJSz2iiCx7rqxJ5qA6Q362f/6PHz4v/y7/DWsmqxU543EnWvbaibJ57JPYtO1nWcfGz4buULuneyUspgc4xSSLfrUdtL3FTHlraFS/CBRm/PDtFdx/66Lhbv6oM02Dto72c7nLlRvNsi45vAZU4d777FZK5NoHX+Hj1c2Sqv/vu2eiGPtEAvLSSWT2xy4vfajt+CXP3Rznu3S2XGkhQSX761kXNMQbGit8xrxnWOtTDZqBcADgr3ZpRidKMD5Ux2cmaeaxCA/LsOoMfdhw2oSBzy7l/opdmRZ8Eenl7Cj28qv7er7ALDkpg0h26AWGE2BJQCEkchNNwOJZ5BCF7evA+JjViHyatjZBk5N3GYwrrEDE+6qKcDLCNqwahKzfey2QvQdH75AxUjA49zykR+GgVrV3ZRkQjatMHAOgJNVJoRA8aDdlWUFpxf6pZrEoGGSEKcaU5ltf55JTMu1jHWBJX2GJpomd/axml2Kc6MSwP+6IXMgF3yDG1d308V+uiLw4PR6WwsUAE92Il5WPDWTLU4m0ZYAsmoStbVwUVfvak1Qv2NHvQW6qpGpAtm1lk2SSO441aHsS/2EvLpQc3RmEctxmgf6dQ6geU3igDxdyJI7WplE5+NvfpZqEq3N2S0ymhjkbtqUSVwt2Ds1lwWJE+UeZ6ohIK2jdN8aYC5SJU7T3HCHW5NYGNcwFo60aYvQbqhlPDK9iFe85wbcdaTIVqcapYW7erlpEYDtm+zg7qPGeM+WmzYdx4dPmSBxoVfUfwVWKwuX478UJ1lLkGZTmFImsWVqEqvmOvS6KofPGOdQkiHSceS0TqrPdpZf0090pi4KsGuc5KZWAKwUtK73Zji71MdUt4Vd4ya4NPeWYuFoGIt+Pvh6d/hQqklsuG9RoL5vyixEH51Zyuu2m0pn/OWmqchNtwK+kzRqF+CbSfSdELq2KQCKVeBRziQmjpPdKnRMvOWmjIk8bavLbIFBK7DcFWEK1nhBovk53hrcNmB2qZ9PVG1YEqXK6iew8qFNMqZdY0UmsbRqXWPAASBvErxjrJXXYZRlW8GqxjV1NNUE2d/L3HJckS36PXhZctNUZ/LfwcF9FTsoGVS3t1QnNx2SPCmXm3Zb7ExiGBh3U9dJMn2eDqO2Fihne+rqBPN618D0mvyjl38/Pvdfn1d6TdPxnO/Feauk86e6+WvzbdWcj3R/+dirTRbw6PRSKRtcV+9EbzMgSWcyiYya47X0SRzobjooSMz+uMJcUOvcoXjlmPL2q5yaNxN/UicQTUqGOlZbpGqCMntAlklkZGXzFhiMBQ+ti/5+dZPk+46dxf6Hz+An/+JrpW3RMVQNQUpqZXL3ThTHcYc1uW7aTTJrml2K8wXuMODJTRetvqRNE3n7O5roRHlQavdJBFB7DVA/Wj7xAAAgAElEQVTd/PHZwrgsUGpgLXsVbZ3fTXJTUph0WyF2jLXQi1Ms9OKS3L1uHACcXYqxoxth51gbMws98xzP5L7DqjH3gfaKSjnWk8ShJpGeQ/uy+8HR6cXc6IuO/4ognYK/1eSm1XFp3Jx9BDK5qWQSRx5fuSmdkEueARinuXrfYYWkdlz22jjVIytH8K0lWqsDJUemmmRyI5+MYOgRJPq0wKDjONYOB46bXarPJHImMXUuddWHlNbIiv8DTHUj07i2krWpG2dcURV2dKPCuMaepKmVE8KqcU0dzZnE4jqcXeqXF428M4m8msQoyLJmDFWCcyaxl2CsVT4uISNgWAv9JEWgsoULj5rEFqOOznYg5sq07ex2o3FNNkm+4tmPxzMev6v0mtVqEgHgvGzlms63Jtkc3esfnzXcfuzsUqmutP66KTI0TXBqElNttcBwDmyQ78Mgd9NBxjWN7qaJbvxsTdlHgjKJeyqZRJ67piVJHrDAshwn+Mw3D+P+rD2KLdMMQ2Ym0VNuOqgmkXY71cU9syw3ba73o9e85Se/N//9ZIeClObjSJnEONWYph6VAc+4Zn45yTNSjXWr1jNirB1isZ9ktZ10/JvbIO3MggRqM0HjBmUfq7g8EymhMJYZ1wDA6fl+yZQNqA+cZ5diTI21sG+yjRNzy1jqp5jqrJ7J3WiKns9+i/k+2wKaF3jpOUT345nFfk0msTIol5uukkms1iSuKjdtAYlkEkceX7kpnYTcTCKt2nFkiyW5qUcLDGB0zWt8J+VrDRJZRjLZSjan1xWQyY3oYc90RQXM8XAN7ul14+3BEr3ZbEWySothm17n5NbkNgcAu8fbKzKJTXUbVJC/d7JTyH/SsrtpNZitM66p0lSTVZWblnqS+hrXMO4JJJMy5winJtExSKzrk9jgrHmu6SUpojBgZQSpl5pZWQ+gtaMDYnYIui338xgoZ1JqjWuyN44GLEAMcjedXBEkZtmUplrebN+N4U2AmcU+FvtJXiNYd93YAVoTUejublpqgeF4DZT7JK68J1TNdepokoAOqklsyj4Sp+Z7UAp5bXSxLV5NXEmS2XA+/uNtR/H/fPJ2/PKHbobWujSO426apshko9wFj2wxs+F5Y2//geNzKz9bg3TXDrYu2l2YN+Vy0wFmPpRJBICT2f28VKbQcEg+dcth/M5n78RiL8FiPy4WSRom8kZ9QO7WEfqJxtxSXMrk0uetkgeJWSaRFqlUlk10KfGptrKgfbLJg8SWHSQu5+dwMOCcPPv/s/feQbdlV33g74R775df6he6X7ekDpJaCSGU0BiQhMCWisIYCxFcDBhmbMAe12AzpgjWmMwUEpjgGRMNA7YZwxQYDLKEJIJQtpAsulupWy11fvm9L990zp4/9ll773POWjvc773PUs1bVV3f63vvvmffE/Zea/1+67f2Z9hYKnH3yTXje1Jwk1JvfNhGa85hsNnawjX88WhvPr1uSwc2CJGVWAmLtsCo5wG66U0k8fPCWrStJOGIxYJEos1MUmoLIzIk7LjPgyBx0ZpEWoBTFx9yRFID0jxPC6T0OJ1BHhZptSWxUs7dOQIaSfEGiRNLU3GNJOGjjtXaEP1IIqAdtKt7Wu67K1zDoYJlnuPs0WU8cW0fSilM57Vx0jlHnp6PgUe4JhcCfPe6bI3dupn0BAS1xQnRTX/yv3wcb3vgHAAKinOMynwhBVwgrG661KGbanpS9KEWtnmlMMi1clxqv0O3B2dUJl85SGLis+3Wm3WHuiJNknFO8ryqMZ7VBgGhIJGulYSAmeMVGdaXdC+1qVOTyDnJtIf5qJyxSCLV5I4S1U25PolsL0fPd8SgRF2jl6Wkx+WdCY6tDHtBvkR356ybpJLGvO/hywCApzbHuO+JTUyaWjqaZzSS2ARlet9ITHjkMpLoHv89D10C0PQEbH6bGKQL6rIGgRHOSVUrPHZlz4g2kYiQDsD6cyJ7+8fO43t+96P4d+9/FL/+3s80SCLV5PLjtAKu/vfZo7r+95Ere+bzPnVT8snObVJS0iYRSo/I19XdKV7z03+OX3jng61epRySDlhfZVDkZj14anPcojIDEpKoEa+7T62Z1wzdNKC4+6o3/Rl+5V0Pi+/fSDOsqEPYcNoCj/zxaP2986QVIaP7OGvuy766KdFNJeEaX03iTXXTz3tbFEmk7FIykpgvfiwgtQXGwVGRG20L000N2paWQaMFfBEFxJTeWnpcbaT8F+15GOsk0MIWQhJ3xhbdcG1Q5NGiSK4AgYQI1koZh/DoyhDX9qa6Po4QkYCU+W1Hl/HU5j7GsxrzWpk5c0puNG+pbkm/xyMpbSTR0k1Te2ICmo4M+OmmO5M5fukvHsZ3/NZf6bnXtaUkJ/XSDD83Va0D7JVB+3qXh0RPIpRiaVBgPKvietJFJCCkYwHAUpl23driFn3HLqbeVSOJ7dfoviJEjmpgjjVCTlJARPfAINc07YtN704TJDJOMv0rWJOYGGwDB+uT2KabNu/7SnQYwRvA3ycxF5JNZFd2pz2qqZ5HAt20I1wjiYv81SNXce8ZHRA9dGGnhSRrJDF+fdXCTWlrAil8Dgu+LpfWjJPrI/zqX37G/DbTJiKi3s81QwEV0NUnr+1jVim86Gmank19aNtIYn/c+x++jOVBgXvPrOPdD15qahLteeTGuXWrdxzXaOe1vZl5zYckUqKQyhu0KirM8aQyjIcv7eDTF3fx02//lEnatOr0pQRQnuFpzRw/c2m3pa4szVG3zihxTytIDPepnFU1Pnt5Dz/+lo+z799oW6R0ZvFjOcl14XjUr/fE6tCwCzacpDmLiofoplILDBXok1gMcFPd9PPA3DU4JWtn6aZpNz8tWklN2Z2bNqVP3zziobme9rsfegzv/fSlpDGLCtcsgiQqpczmkkzjaTK09P8xRoIrwwQkxR2XMk8T3AwLUchEKaVrG7iaRMGx8B3LrS3p3s59JHGKHadGS1Q3rTSydvbYMmaVwsOXNC3KrRvoZnZdBUrJJCTFvS47k3nrPKYkBACLZPrUTf/68WvtubtoW0rdXkSQaGtg+jWJKSrJixrR1EZljlrFIYIuLdGqC4bnqkxwky5c4zrJonCNj26aMcFl5548vjrET3ztC/Cr3/oSMwZgAqLKouIbSwNDgVvuCHe06aaq9R5nseqmdP+PygVbYLh00+Q5tucA0JotP9tBuunOtKds6o6LozL3++11hyml8OS1fbzoacfMcV0kOb1PYhMkprbAyBvhGhZJ1K+95t5TOLc1xu5krtkdvd/GBWD2/P/I1zwP955ZbymHcr+NVEO/4PYmSGzopkVLAbc/7uruFCfWhjh7dBmb+zPsTudGuIbuke69TGwfwNbzAu1AihsH2D2AFM9deq1GEvlr4Pb+u9KgpNL9T3ME9N53ZmPJIMU9uq8wx9Egx5HlAU41KGQLSRQegD2n1VfKXna9jM73YfifMTWJxPJZHhRGzMplVnEJP6tuugDdVEIfgZtI4ueLLdqnb1G6aarzD7SdwKQ+fbUyi+thPKT//P/9a/y9X/lA0phF1WUXqUmsatveIClD22waRFmKdULrejF103llr1uquuPyoBR/G6FyLN20yOJbYDgOcC5QZDT1Sf/76MoQ13Zn2JvOHaeJHzevtXDN7Q1liEQgXGeL6z9F70km1iQ2gdmxlQG2HbrpqCQkJX5jpeP7xjzwhJaPp0xyVSsURYM2L5A48ql57js1MK6lyPgfxAiBp3MZkyhx6b6LIImjQYGqVkkiIV7hGof+KRlHQaTvcZ3rv/fyp5maLhFJdxQg15dKI6axVMrCNUZZ0fM7Y1U56dkqc0Kk0pBEiW4XczkyJnComPPomqGbCge4tDsxKK5rPpGQrrntFaTjXd2bYVYp3H1yFVmm200AMH0yfbTFrtFzkyx41tSBDwSBNUpAUDuWpzbHLdRMqtN06xYB4Fte8Qy89bu/zPy/tJ5s7uvA6a6G2nexERGidg/03V27sqfRX2o4vz+tsDJqi4t0n1NNCSbUfmjWvCMd5UrfHkCK5/o8hmtJ3SDxsaYfpIuScnX6QBMk5xluP66vg2UJyPfkZF6ZxM0zT2s00Q2ApWTHjpOwvNSc/8M0OgcpSfKDHgvwJU7166NBjqtNYP+Ku0+Y93Mv3VQKEov258jqyk83LW62wPi8sEWFU8ihPpQWGI4TmIYkuip18cd76MIO3v6x89GfP4i1H+y036bH3Hj6raGbNo5ibDBFiGAqbWhe2wx07DxbwjUCIkXN4qU+iUqlOZJ5npmNuer8Pv01hCQOsT2ZY3N/ZpFExkmoa4sa3NYEiZ88t9OaMxfsuVQ3yWQkUT+/t6yNNN2Ugu1hGt1OGwWJ8pjzWxoZoqnOGucmtScaCa4MPXWylDXt9kksE5QWD2JUI0WiK75WHWQu3TSpT9mCNMkW3Y4J9mi99SUguJqgELotoQazWmFQaNEMjSQ2QaKpyeo7kpbKeXAk0Z231EqBM1uTeAAFViZIpPlIvy2kUirSTQUklzO3rleiqRLie+bIEo4sD0yQ6NLkk9RNF6Cgq0ZwZSCMo+MTHfPc5tiItAC2TpMVE/PSrfnzT/TNs0eXUeYZSzflLtvV3SmOrQxxZEXX5O5O51jpBlIckthMMcsynN7QiYEjDaXQ1/KEKIgGSaxVS/BGYl1cc3r/PXZlzxzHR9t1fwMhnsea+9OHbk/mtalvveekDhKJJukT1NtzVNx3JnP81SNX8HPveJD97I2ww6SbRtUkzu2e+K++4QvxPV/5LLzszuPmfZ5u2nxXiG7KBZch4ZqbdNPPfXNviJQAzCCJiTc/LQCpQYNRm0us21teAEn8ip/5C/yD3/xQ9OcPYouqSdYLLD5ucJfWg1A1TlO64h8JEKQGpRZJjA9IAX9N4nazYXDqpoSUxNxf9JEW3bT36NhN+8Sa3gTPb01MZp1z7uj6DIoctx3V6mOEJK45waWUofX4MSjznG37QNflxNpQI4kVBRvpzxs5wj4qJ9GSKAtdNfVW2iFPS5KUee5Fe1zJdddCQgfXyyyS2ASJEfcyPdd5o25K3xMep/8ulWnXrXaQRFaAxrknJePQbat2yI8Tm4I3wk0AsLFsn9Nen8QWShdz/8epm7rnf1DGK3K6dcrcmmCRRvk7OHXHEJJo0cf+e7OqxrW9mVl/+GOFf9/eZN6qv3PnRUaI76n1JRxdHhiq5epITm5J1uqTuEALjJGwJtC1JCTxyc39FmrGJSBoXCi4534bBYlHVwY4e2wZn720az7vQ4AvN4H90WWdXNwez7Ey6vRJZBgobk06JRUJSfS1SjFIYkPNdGtQy0JuDbW5Z5E5ChLz3K/cDdhnn2ijRIeW1gQSbyNGxkvvPI71UYlb1ofmt0lJErfV1950jtf/m/fhX73jUwurwqeaaYFxCMermvp+QPavxw7d9MuedRL/5DXPbL2vUfFukBhJN3VrEpXS9FNfC4z8JpL4eWEu/zypTtBpVJ/Sg3ARjvasUqZwOwVtq9RiSOJhWrtPZboCaBKS6JzzRfodpqgt0ueIbhob7Cml9PUepQWJdB6HZS46g9TQlqtJHCTUytL3a+Ga9vHNfJTd0J9/9oh5nZwmztlyRULWlwbYWCrxyXPtIJHLyJv/9TigoZrEW9ZG2BnPzX21yHNjKNCe+4MU/rYakRxSDhwUeTKVPM918CIFlxLdtMjjaHYHNepBmEI3tagwDogkRgY3qtMnUUASk9VNjUPIj5GClFll2z24tPAeJY0JEn0PQAySNa/qFr22zOORLHPdcn5NcGtNJeOo6/Y8BoJ05rcRneyEh24aI1yz6zRzlxx5QnxPrY9wZGWIJxr6obtuxfephBWzWqAFhrQm0PU/e1QjWE9dG7eSJNI9WddyCxJADlI292co8gxroxJ33bKKB5u2G0UuB3uAgyQ2SZI95vz36aZttJlExI4uNwGYpwaSGBw7Bkm08xsUHrpp02MvyyyVs5UkCSCJpHAaQjtp3aRk21e94FZ86I1fYXxCXwsSV0Rtb1qZdYzaS91oWySZDwDX9qYmyRBr81rZJKGwJ7pIImdcyYGmkWZyhivL9PtuTWJI7AYAips1iZ8XVrk31oKiMAsJriQFpFYCPUVwYl4frCbxMAqdF0US6TQk0XYXpBYTJY3QhJhjkpR8nqcJENAUVxLpppT95PoIkhm66YivSQTingGXkiY5TW7/uefdtmE+t9qlzblBonFQ9Xk+e2zF0rZcJbcercOiGJIVApLSChKntk9iarAB2IDChzQTkqiU7n01rxUGRdODM5HJUOY5BiUvUgG0i/RdK/K8qc+9sc831aVaJDGCbsrdWxHnpTbXLQ1JrOra9klknK0Y4Zos6zONavM7EpHEujbHWndUiJe6qsAu3bT5G0YS+fOolMI3/vL78Dd/9l0tJHF4ULopK1wjf4cVobHjQkgifSfn/FNCxidcE4Pu7TtBihRIXW6olCfWhji6PMBWk5CjcWXzzMVY7dBN57WKSkKb859n4ppAa9vysMCxlQEu7oxbSRJJlEeXTXiCdCFIubY3w5HlAbIsw90nrSpnkecO3bQ9bjyrsDutcHx1gKMr9rqtDNsCNH1RmLYCLu0hR1fCNYlUp0aCY93eqT7hmuOrQ6wNS2w1e6ur7tsLEjv7FCGJNGtJzI18FVpHM6fOm8ZJy10bSawMtfVcU/Zwo82CImllWV/4I2/HC3/4T5LGVLXCsNT3VqgmkdbTrmlWSOfFOkAbBTSa6NYkGvQxIFxzk256uPYb7/kMPv7UVtKYWinTEyopAHMcl5S6xMVoksrU9aQKtSxCNyU7jGLjlnBQkpNcN2Pi5zhtIYlp14xqdIA0ZCNVuIau72qqcE2Npm5SRqR2PEgibaoxzwAttMuDQnS26trSmAZFbihOXSTR3ettKwuq2Vg27/laYFj0KRAkMpdt4khiU+AGOEHiAkkI3/1xeWdinIire1NTt1omiIQAbQq09AzsNetSt0+izapHH24hM3TTZu2KUYJu1bua5y1+HF23FFVgF0nsNel2kDXJOIpSCEmUUIN5Zeu/nnvbhnmdxFcKxpFUkUkS6b585PIe3v/wFTx8cddQ0ss8S+oL66qX+hRYQ2gngNY1oGvvqwnNBHXHyzueIDEJSZwb4RQpAJgZR74wgQngrHcJSGKlFIrM9l2N2eNcuq+EANOeWeYZTqyNcGl72gqIDAWUoUl6bv/mueGRRKJ7un3pWkhiZ5pUF7i+NDAIG6DFaOj3AQySqNr3CCGJlCDzXW+rblrZ30t0U0/y7lrz+9aWSoN6ucmtHgW9hvkMYGsRbd0z/ZYOkmjEVnj0y9fSyFXa3pvMcbwJvM9vHk6QaGoSD6lPYpHnorov4NTplwKSmDHodj33C9AA+n0XSQyJ3QAN3fRmkHio9kP/+WN43c/9ZdKYeaXMguKjifXGNVkLwELYMUY3YBq1tcaAbv7IOSqlFf6WE4UcXAs1Bb8e5i7AaUpu+u8iYjeLHMutSYwJpFy56xQBAhqXiiQSauPb1Hx005RngGiMozJ3nNb2OIU2O4PEI2wLDP06Ry0jh/yL77KqY2tOcNl1tmJQCglJtDWJ2gm/2tQKHoRuKo1RSuHy7hR33qIdJq2mamsSY51IOlaRZxjknppEEUlsz/dGWUXCNUQ3jUimuQqAC6mbJtYktlsA9B07E+wFArDuFC0iym/z5LR2/ZFZpcw68+pnn8LL7zyO/+lL7sQzmnuGcySNroJnjj4k0UUbnmhq6WxT9kj0y0nUcI68pZvK30HT59RNve1tsowVQLm8a9E9bow7b5/tTysjnOKr2wP0eb71SD+5FVsTCjjCNUVCLW8zHQpSOPTRZYDcsjbEpZ1Jq72HTzk0hCRKdNONJkg8sWopv26ZgtQmoiwynG3Ey77iOafxd150Vr8uUNDdejTAqsq664n+XH/+lCicVrUuH1L2OvtUaccNwrw2Kk1y0UUSe3NU7XvZ+BNOgO+eg+78aG3rWu5JQOw4LTB2pxWOrerrcf6QkMTDFK6pGmV0X+I0SDfNOLppoLYQ0EiiW5MYSzet/HTTAH5501IspS7QNaLp+VSsOJtXNdZGJa7Mp9H9zZRyWjAkqptSjUjsHOl0HARJ3J9VOJY8Ks1iGqD6xpHcvc+JIHMdxzTnv27ukfjMrus0DIsiiTYK2OsWi+YSalM2NRTKESQgI0rMOkM3NcI1EcebzCosDXK9kTYf725SSrWdVsrm0+LMbYjGIWzee81zTuFH/uhjACxti6sZoP/t/l7XJEoU1QRSxvtaI0ZAdJRFhJGkZ3Q8qzGZ13ja8RU8dGEHW+OZqUFLebYBq5yrqWX82ie2wEhAUQ5ipBKYVFvYQkTiKdD0WyhxF1//5ReucZFNyTKG7ti9l7tmUJsukljX5lnM8wz/zz/84tZ9bZ8be6/QsX2iMIWnKbhbt0SCK2UApe6aOwcOEYypSeTqxmKCxDzj93+LJPZrEqXzz9mu09/VCge1P1PVuv1Enmf4wjuYGuwEOjk9N6ZXZVSQ2D7/HLJKtO0yz3DL2gj3P7GJ46tDhm7KBYnysYs8A5dP3tqf4UiDXNH6CujgyDJJ5KTMs06v4wM/8BqcWh/1xHW4pIx7j/zw334+TqyN8CXPvKUZZz/Xtcms1n1q5zX2pvMWulp6knCzusbaoMTaUolPX9T1lnnmC7bbqPgLmlr913/R2dbr3fPfrUnsWiHc/4BFZgFgfzo3pSYXdw6nJvEwW2CQwJJPzI1qFYdSwM0K18TQTTtIYkjsBkBMn8SbQeJ1tBTRB9cslTCN7jWrFY4STTWxvxyQTjctC4LR4zYaK8DRIFILIImLtveYV7WhL4aMejsplU6lJZtVNYoQHQBdumkitS/LMCwbZzfiGrhIQgrd1G1lkTJPyj6XxkHriw0QYsC1wDB004h7eX9WtWg8nJNcK9Uilh1rnAWqi+Q2xK5D/vQTq3jT130BPvLYNadvVd8BUlFOMl9bQsEWnROiDaUi8FSDCsj3B53/W49o5VbqyzgcFCgTnm2gSVxk/nVrX1A3TQnaDmJW8Cke3TOoWJ6mbkpfTahlrEPuyvtzAhxRgiuZD0nkx8nqpu12A93Eh2k54wZg5rPiFL1I4q5DSXu8EVzRqswybatr7nniaIsxgawvceRvwSDQTXcnrQRQd0z3WJK1hVOaeTHBDc3xRU+zqVVSqE1pO0M18Cl00y7dl1vG20jiCJd2prj7ZB9J5GrpSg+SmGVC8DWvjd6Dew2OrQzlY3Wem9MbS6336Tbw9UkEdCuSn/jaF5j/l4Rr6lphWtW47cgSntwcY2cyN/s9oGv1petGz+raqOwhufxva8/ljuMr+Oz/8VW9OfaQxFkgSPQ8224LjN1pZZ7nw0D2AOtPLHq8WVV768Fdc3156XjTqmpdo64VTMmBppsG5tCjmzb/vkk3/dyxFAfLNaISpjtpyhFJiF/8yVKFawaJgaylLaYhUq7tLxgk7iWMI+GOIs+SAzey2HPZFq5JudZo9QSMUwCljCgM3TQG7aZxy4k1iYSI+BRYt8dzrA4LdoEcJgjX7E+rFjrF0Y1ItIfsNc85DcD2eOI2RPoKd3ZveMkdrc2eq3+JQimEjZTonkTBpdYUS6ZPYmxSJnw/En2bHJ/t8cwignkenWzS80YwuSX1SUwR7TiI1UbwKYE2aihZbjAb8bw140ZlfLLDzDECSfTxFDgkKxQkyuqmfqeIQ0SiahILWYBjn0ESc2IlJKBfepwObLvnhP7lVzfto0ShfpP0nRwofqVRyeRQYK4mumsXtsbY3Ju1BOAy4bq5SNbpjSX84jd/Ef7kn36ZSVoUCcI1tN8Mk5BE+7sk9WKaY5ZlOLk+ws5kjsu7U9teyIMk+ntw8nRT95wc7dQXSkH6oskVLinKjuscj9bq4w0leW9aGeEgGic9A7MmGe6Wb2SZ3BbKlqDwc5TOiaWb8gGHhBwDOjBcHhTIMh0w0l6xqL+cavRTFg0SUxRO68aX97FrNJ3ftwYxgo2qiqCbZgLd1DOuGATppjeDxOtoKVQt1zQnn6SO42mjrihMStaabCG6qadnj3SsReimVAsRIzTBWUotY9Vk43zFxuy4Bc4lff/SILX/lKbblJ5A6r9+9gq+8Ef+xEhLm82uyE0AliJ4s7yIAEeWeVtZbI9nLIoIICoAJkl5t7k0gKbvXvuzdYMQk732+WfwwR98DV7e1BlaJbd+kJjakyu6JpE5/RSkkRNIaF8qkuiuHdIzSojNmQ2LJM4rXUdRJDa4rxpa4tBTNzYWW2Dwju71NnISbYuh8PFcRCSlJpF+yyhRqdpFDbhEQmwCoudYO8JV0hj3c2TzSGe3jcDrvwsjiQ7aQHV8tCYnt8Bwz2Uykth8lkUSPYGzgGRd2pkawZPeGAERJDu/NcbLfuKd+Mf/4cMA0Go3ADC1q1UbyXrt82/Fs06vm//3NTzvGu03wyJ+D6Dfn2Uear0TtFEf2o89uWWCHKlO00XbOZOO5waJLSTRobh2T3+3bq9rnCgSHSsmAdG93rS+U6uMncnc9KkE4BWCm1U1hkVugmyad1Hw62ut/PeydG9NQ3RTz7M9q2qMBjlWBgX2ppX5rpSE5EGMjhOr0tu1a04vypARK81Hk5/Oa+PfcpZzIlj/HemmN4PE62iLqicZSlRCzYCRyS/TxC0WQb8ATaUdFPlCSOLSAsI1lGlZlG66lxIkKpfum4bkkkU78s33rw7LJHVTQzf10OYeeGIT1/ZmuP+Jzdb8ykTaHK3dqQhw1yHnjrUzmbd6r7kWcsh/5u2fwot+9O148Pw2xrOqpQ7GZd+6NYmAbjTdOx5LN+V/I43rB4nNPIJIYv9ckgNEgRSJ+ywlCtfMI+5Hei5OboyQZcBWQzfVSGIik0GRmq1HyW1WwVXlJTs0ukjtVbgAACAASURBVKmyAij6eDF0UxskpvQltTWJaUrVLkrCBXsxwU3G0k318SUERkJzZ1XtDYh8CPyi6qZ0Xw7LHFd3Z2beKftN9zx1BSAsJTwtALbKj+lI1pXdKStaQ/MD5PXudz/0GADg3Q9dAoB+n0QmAAjN0efIP+eNb8XvNMe05Q3xSKJygisuAae/17aJeO6tuh5uWtUmcWhowh6UlDNJ3dRtSr/iJBUHRe5VUqXfwR5LQnJVOJBlxzX/T7TgvUllBLdoHiLdtEnouHtq4SCJ3ectqHgsIolNkCi0bciFIB2wzITlYdmim6a0WzqIue2LFvHRSUguxqiWd1jkorbCrKrFekRASHjUVVjdtNsCQ0UI1+TlTbrpYdridFPbAy/aIazaKF20mIzzsWQkkTbtSMeOFqRF+iQOSLV1gdYeQDszHTLjJKe2AHCpu5G/jZzUlVGRtGCRA+ALpKj/3YMXtlvHcoU7YhqYd5HE1CDR1+9wezxvZT1d84mZKKXw8+98EADw0IUdXZPYQxL7TpOfotc/ly6KJBkfJMagFHwvKeoBRud7Z9KpSYw9/875lp5RkiNfG5VYG5bYHs8MZUlT+1KQ9NrU+0n3//60bqhG7RNzWMI1um7SBqVpdNPMqb+LGNdBEpNQmwgkMYSAcc29gTCS2I2b50E6FIckhpF0H5JIQeKZjSWTudeCW2lBYpbZILB7Lm0gK38H1wMyRriGC9IB3W7mOCNa436f1Cv0yU6LgJUAJXPe6dPXNY0k8ufywfN6Tf2pt35Sf3eTuDDMlRi6tZNcKZjzqOdog7a7T66aZ6VLN+XElLzqvpzYB9oofW8NCtQkBp+bzuHmVZgS6zveRhPo7UzmqGs7Py1cIwSJDXrcRRIpx8PVPwLy/ibdW1a4RqabSmv5rFHvXx0V2JvOzXfd6AQhmXsPLlLytJVAN43xJadzP52f9DFaFkM37dYkEkLoG3eTbnq4ltLPzDW3B148kki0RRKuiRvnPjBJIjnkSObxCqzdmsSkILF5iFJqEtuLQRpKtwjd1L1W8ZTA5pwMyuQgPRQkXmqCxIcuaJUztyeSGZfQFHyUGiQ2yQ6fAI0vi+aTCH/0yp7597mtsVCT2B6jEBL7aD7njIt5jLj6C4NSeMLSMudl4YnuTPRZ6pVl6aZxz/asRTf1I4nLgwLrS6URrikbhzCpBU9zT/oc+fG8YilKkkDC9TYSk7BU5vhgzyclz1lX3TSFcUHH0VSj9vsK4cQF3yex9o6TBVDSkcS4HoS5B0mcI8uAk+sjk7k3SOI8Pth2f2uRdemm+m/oPALtNSFE26Vjcc/2tf0ZjjKiNe6xpGfgwtYY955Zx0ufcQzroxLPOt2tpW5/PoS2+RApYp+c3tABLSUuBikMFDq/DpLIBUR0Hssix11NfbhFEgUKaA1DoUz5bbXnnEhBuvv8cyahnXUASfTRVAGYVh27RDdtHkEtXCOjUoMiM2MB4Jb1obi+hlFS+i3t18mf8u3dfiQxM/uNRRIPh266aInVImPcGni5JjGAJHL3ckyfxF4LjGbeQbqpPwi+qW56HW2RPoCApUSUCTWJBklMpHIuXJNY6+xymUDJdDPrWZYG9S9Sk9j+bfHOJ9US+DJ20jh6oGOPR9dtZVTgwnYaaun2/+IbN+taHgoS3SbQKU3B3UzqsMzjhWsc2jTA00mqWolZNJ9E+Hs/fdn8+9zWGPuzGsdX7eKXZby6qQ814APuSIe8cxpjUIqQuqmhmzYo+GiQHmyQyXRT/d2roxLrS4O+cM0C6LZvQ5wLG2JKrd9BrK71fWXu/4jfR9fSvZdj+stZddN4xxqwlFg6ptReJVTvJDmfUn2h5LROK4WlQToior9THBaoSaywOixxZHlgEoNFlmFQpiCJaKFN3VY1sQJAQPu3hWi7NI5Fsiq5vtO3lgPAhe0JTm8s4de+9SWolXXQpR6jXVXarvlqEj/21BYAm9Aln6TwrOVds+JFcisFYk2QHW965hGKJiUuqgCSmOe8cJCLXALA97/uXiNgk3uCbUB+brKMV9Oe134kUaKu0/9vNIHy3nRu9nvAL1xDdNMzjgLridWRTNsNMGVuhLopAQzHVoa4ujc1fmBKQvIgNq+1wON4Vi9EN01jfFkxN2mc24eWM7kFRihI7KqbNn5b5qudGQDVzSDx0OwgNYnUkysVNSB102gFuBaSmIIa6OxyiiS5zVrlGHooaZzRhpiCJLq/LUm5tcluDhMcEkAvuMuDAjuTeUJNaEM3Hcb3LQR0ADb0NI4HbE+uBy/sGGEjwC+Jzc7RoduNElpnuCq9AI++6AXbv0H1VUoVfuqtn8Dzz27g6u4M5zbHmHTophzdRSl4OXqckxbjkHPKfXHjeEoaCcAMmhYzO+M23TSaylyFn21CEleGBTaWS2ztzzW9MM9RFnp+dcDZMcerLQVdCr6kDfGwgsRK2d8GxDkmFklAkpNs1E0TEWBdx4LmmH1HPpbK3EdfQogIv5bMq4Cwgpdu6r//pftkfzbH8rBoqTSmC9e0haq6iL+l7YYDYE6UxxekSHRTX52aJJxCdr5BErutnHyIlB9ty0UmCZVnkOiZTq7YtTxl32jRTbtBSieQJTEeQzf1/bZAkM4F265yMAB8xyvvbo1x503WbSzPGUdvDYnrhOitJKyzPZm36ulDwjVlnuPWo/1aey6QDSaOBP8ihm4q3SPTud4DjiwP8PjVfStcc4hI4sqwxHg2xWQBjYvYHuR0rDzT/uuOUPI0CdBN2SBRRQjX5DnfAsOLJN5sgXGotmhNImXkh2V8Jp8eyOUD9ElMUZcyDbdT0E4XkUqotwSscE3KQ91CUhIDsKLIvDUb0vFSRXnoHlkZlknno5vZ5TZEqkncHs9xcXvSokmlCIW4dQvU4DfGSKWXqGrcvezbSKXAYVYpXN2b4W899wzOHl3GU5vjpk+iXb66NYluVlsyLuCOUillFvG4ZuJ+JBHQ9HHaXG6IcM3EBom3rI1wcWeij19YcZfYfq8kuDIoc7Gdy7ShGnXNdx9fT3NZAgBQxbSOMeJFaU5yV900ZU2m81HknCKh/huqSZQEOFKft7kH/QJ4uiP91FAgK51GjSQWBlECGrqpp5F41+q6TTftHi+ml6lBidw1oY5bSzgk0YcuSWgPAPzOf30M57cmvR59dCxunE7ayC5dWchIIq3xF0gZu6GbGlXgGMEnJ5i2wUb7M11kj5BLSvjJTeADVFqB7ujWJHaN2qR06aYhBVCa5yJ0X/f73XGA9gnyzAqX0efLPBODe6IuUt9b1zjk3iSORQo6vy5PA3RTqU8ooNfBYZEZJJF8oEMTrqmVTbguEJhOEtk1IcEtrUjrv09Y4ZpgC4wu3TQSSQzYzSBRsKpW+Nd/+iAuNRS+GHOdYqkYXToWiYtE90RrPreUmLV2KaApWfx5XeuMfMIcTSa7CYAXqklMUCltifIkIonUFDyVpmr6VCaIuwB6c5xV8ZLM5AD5EJire1PcdXIVgEYT6R5JbgreQhLjEc8Y4RqqY+NMkggnZ3tQ5rj92DIev7LXBIlFa6z702KRve7xYpzdrEFt3Gc8RjlRajDtBs7LgwI7jZOwPEylkrs1iSEkscTpjSWc3xyDFAd9NGH+eCooLjITsqY+RPx6Wkzvzt4Yx5FKSa7Qs0WOVAq7Q2rbAMBATYsgG/SdnEl0x1ld99Cr1jiGEhiHJMrrz950juVhaRQegQZJLOPr9CfzuqW+mHeCPWVe96Pk3eDSBunpdFNSO2THeBIlb7n/KQDAq559KnrcQWoSaY3fm1bYbZq5U5AOIKmWPctgkHGONuomILoK2qK4S6jej6FpA/2gtDeOCS7tvikOQ54LaGfgGdWfa79ukrlFhtVGTAxwgkRPrThRjF3VbjNH5rdZ9e7AmsAkINw5cb9NWstJ3fTYygCb+zMjRniYdNNFdDHIUntnG8VvwZcM1SR2fRkADd00EK6JdNNATWLAbgaJgv3Fpy7gzX/yKfzUWz8RPcYNTFJUlGzdTHzW1LTAWLAmcVSm1d9RdjmFktmtbUt52GitXVRtNLXfYZGn1b/QOHP+Ixc8+n6zaCVc7zKXaTyAvkbPuXUDgK5LtBnRxZzdPKOaxEThmlxGUnyOjCQRTottmWd4+olVPLk5xrW9WadPYjoiyG2IJBISQ0lrj/Mfi+bPXrfa1umsDAvsTrvCNenIvZT535vOMWpoy6c3lrA9mWNzf6bFXYq04MbUMnoo6FJjdkmi/Xqb2bQDwjUfefQqvud3PorN/VkrwZDUOkbZtVUfazHhmkVqEjMmAREKEr3qpgHURo/rB2BeJNGDNkwrTad3pfyPrw6TFL+n87pVM9UNimLWBKAveBPDSpBaANC6LR3H/X7Xnry2j7/53NN48dOPRY87iLqpW3d+rVFzdJHEFOEmX3lDN2gjpJR+k6Wbtr87CkmUgvRAcCkj8H7xJg7t9CHwRnFUQvfyDCujwiCJ9CxxawKgr7+uSbRlKM8/u2HneAAkUWLKSOfSV+86m+vzcnRlCKVsovKw6Kb1AkGi+2yliiCGkMSQuimbcIqhm/ZaYETQTSOQxJs1iYI9fHEXgOXMx5jrgIxnlQkgQkZ1MwXihVrmnWAjOvuvKNtdYH8a3yaCnL20Xo42Ozgs0+im9FGJxsaPcR/sBYLEBeimhlqWrPiq76tpVUfdJ7T4+JDEea1w25ElrC+VeOjCDl5wu+5D1R4XQRtqPmJrEtOEawpvTaKsnCg5CBTwDMscJ9etnPwtjrR8F0mx9M80+o8VoIkZZ1/rKitylgsbqYskuvdCKkvAZRf4+iTSmnHmCCkZ6my1TSTE0/sGg9yb3CLBq65J6ofX2/rPDT/Pb/jl92M6r/G655/BqpHjT+vn2A0SUxSnWz3RJCqz5zs42lxIlVMWCWmLi/THMUmSWLRTRERqDPIMx1dsT8Fb1kdJLTAm87pVM9VtSm0RQf/3dGu5TJAeCDZ6WhMOk4YdIyBLSik8fnUfX3LPyaRxMUhirfiaY3e/pBYkhSP4FMVAcZKLUiuFbrnBd77ybozKAl/34tubsWDHBRHBnG8v5PZJZMdljJKqCYjEYb17C7DUdskkKiet22WeYXVU4lqj7kuJLZZdALu+UELnw2/8yp7it9gDUghmJbTTJqr43yYhuYD2cdYHJY6ttgOSw2iBQYH0cmKQ6E4tBdxQSu8bvvKqWVWbPYYztp1LPV+gBQbRonx0U76Ha+trg5/4/6k91kjuc1xvyVzKYVLrhtoiMLHBRg9JTHDsAO3IpDyklBFNQTtdJDG5B2Hze1LGtEV5EummeZ4kt67nqJIdeUIcUzNbJEnu6y9Hzt09p9bw4IXt1vlPQhKdTTIFSTRCJrmMSPkcGUndlK7loMjx9BOr5vWvf8kd5t9ZL/tPr8vzZWurIlCDjHFkahWmsRUMRQloO0CuGA9RmVPovjROSuS4ySu33olaYNB8Yqz13FSKRUSkrGnpuY+vpxkpfw8FGrBJniu7U5s1z9KSK1bdNNyW6ONPbeHTF6lVjdMnkUGkYhIXktMKhIOUPnKp/A4yc+1iAjBWkKExYqrcfmzZvLY+Ks29FWOTTruVrlJsDCWcGxfHSuADG0AO0qX17ureDHvTCmedcxEzzodauvPgAo5pK0i0LUgskhhfk5h7GC9dddOlQYHvetXdjnJrf1xdKyglo1h6nET3DScu+mgbJbcDlEDmuQkdS3+/hNLpfoeXd3WJE63/Ek3YBJfNw3p8ddjuHczMMYQkSvdWSARLQnIBqknMcXSlHZAcBpJIP8P0fI72r+3nkuimjr6IiCQ2rAnJWFZClLpppyaRAsabdNMbY49f3QcQzjq65t4UKUW5VkpeFoDoWrcFRiqSmBwkVprWkJLZbdUkJqqb0ti05t7296T2trF94tIWhGSRCoMAl0nzpODK10uQ6Eb3nFzDQxd2WzSWJJVGZ0MYlXm0uhcVbfvaDcSo/fWcLSfT+pxb1/FNL7sDf/CP/waOrAxaY91hMY61FOy577HzZDb7rrIiZ2XO1wFXDk1sxdnkyzxP6t1pkSwZSXSD9FMOKusG9ynHKzKYInxuPZHqL/JcHnM9jX5v1gR80nNK6+il3UmLWnUgJNFzHn/g9+/DD/3hA3qODtohOZ+APyHM1bEsKlxTK+Xt98nd/1GBbDNHLpkwq3Uy4fZjK+a1rKkTr2rFPjddm8zaNYkagbHvx8yR3u+yBGg+vjGp9V9W3bQ97tzmGICcoJZUoMNIokydnsxrHF/VTjwFia2a3MQWGDF9EjnjEhAmaZlYkwuEKbh86xj7neLxmOetDgSyUoLX1vvp9Z9UyimZJ4nykK/CMTWAprxBYBcEKehdNkPtHychuYCmmw6KvLXfAIeDJPaYW4kJVyCdlZZnmTe5NQuqR/dLAKDqCLqpVJPoc2ZuCtcsbIQEpgQbLrycXBPXZLvjkUT9uUV7qQ0b4ZpYgR29iWdehTTpWLbfXkrgpv8uSjdNRRIpkE26bpVFElPquIBFkEQ0TYqbYzOLOG1Szzy9hks7E7PZtBGReGdXO8nxAkfufQzwdZqVR7hGyrTSczUsc4zKAj/5d78AL7zjaOszedYP2gA/RY8TT4kVoHGPoceFE0pi3ZJzTlp0oUQE3g1SpA3KDUiOu3Rdp01E9L1cWSQR4O/lmdC7Tao/vd5Gzw3gr5uh6315Z2quUZb43Nh67/CacHlnahKRLtrBZeQNKu45Nkc3DUn5S+0GiDIlGSv4ZJ4bzziBTg5YAY4zncBoUBICHH4GJvO285VnfJ1yKO/bXUtikdzu7woiiZJwUPNblwb8RfCq0nppwu15uTaZV7hlrQkS96dmfoRSpQieuS0wkmmjzLgQRRJomCQ9BF61nn/peH20rS2iw49j9uCALxVucN8gid0gUUASibkmI9VM4iICEWTnGAjUSybYNvOsagzKHLceWe68fnhB4nJHIClk7jOSCjiYfVsYp9k1oQRENwMx92cJAb34LtICI2A3g0TB6CKlBCnuTZ+SJaEMoG4vkRZs2BYYceMoQzFKGFc1dI8yzxtKrDxmazzDL7zzQcyquqWIlSpcQw/34nTTlPNfW0psCt3UQRJTxUXShWvqlnBNb2Nz6o/uObUGAPjk+W39WpEmQOBSUnRSID4B0VZS7Y+j5r+ciZlWgySGFMEcx45eT6wRMZSpACICtLN9KqImsSxkmXY6J0tskBj5bDcf81FdXAU+6stFczPCNQnXu8z995YoXJMQfB3E9O/V/5bqqZVS2Gvqs1t009wRYUpA4Ak59bEStsYzPHlt3/QzpVPEZeRJTCk1SKE1ItTMvS9SEZkk4ZIrPgRSoLIBlobYRZ1T0O1ppyax61xHI4l51gq4o+imOVMTGhmkc5RMPX+53QAg1ZKGrxt3/qfzGres6aSRSzdNa51kjyOqlAaQPY4pE6JIAn2KMGDXw9C4/nm070nGismouH3DJybjtsZadoJEqUwB0KrfnPFUWv3XF1gCMpLoQ8UlgGPa1BsfW+nUJB4C3ZT2stSew66a70LqpqXc3zWobspRd2PopnmBG9EC46ZwjWDkmCUhUgsiieRIDfJ4ahl9zsjkJyhQApYSVdUKId0UOpZWN/XP8f/804fwS+96GGePLeNMU/NU5jlGnuai7DwXCBIPKlyTSjed1ypdpGJB+gOhDfLma7Ot95xcBwB88tyWfq0J7oG4GjB3Q/DJpvfGKdUkEij7zwdEqUiirUkMOclpyIbP2fU5hDSN1JpEnwLiSnN93GbiFCRGq8sSkjUoxKDGbS7tXoelQWEEEKJb3Kh2704OFZw2WeSuHWaQaJDEgq/5nla1cSgv7UxadLMiQbiD7p1BAJFVSmGrUVG9tjdrobtcbVVU4iLzBBsSapD3HXKaXwwC746zSRl5nK+eeu700/zNb38ZTjSoVqiW1LXJvMKxVVv31BeuCa8JQB/NpdMaouBy7A7AhyTqv93TEaQJC4nCeV1jNPAIYnie00krSCQGinutY2oS7drpS/j5gi+uBCBEkaT3RJXS4L7Rfm0ehSTyvXK9+4ZwTtyyEFfQxEUSpQQcYBMp3PH64kb6BTHY8yCJ4fPBv0f+rZt4kn7T9Ta6bVdGiUGic41S1E0pweZtCyUkTsnYcxmlbtqlm96sSbyhRjdTShZh1goSU5AsjSQMCj9K1x0DILkFAy0SKQiYyVgVOrPuG0PzeuLqfotrny5ckx4kLipcQ9mfZLpprRxqWVpw3+0PFTXHPFzXUOYZzh5bRpFneOSyFl9qSZnHICKdmqyUvpgU2EjH8jV8lgIHV7hGMq2caP/fMC1ikMQWJU3/9TmEXCY/piaxyPvZfzo+OYRuM/EizzBcqCYxx6yuWSr5XKB/Pu34SnILDFMnKyAb9F1c/YVvzPU0Eq4B9PrFOSbjqT2/l3cskpiqbtoNmqUxO5O5uc+e3NxvNYHnsv9RCQ8GbQjJ1kvqpgrhgLQ7LkRjA2QHFCCGgZ7Qlz3rJJ53m1ZmtvdkHN3UJ1xjnu3Ac5p1nDQVcf67YwC0mDScyW0iGkc+GNz3g41QIAXwz9xkXmNjucSgyLC5b/v0+RJ+XWu1wBBq513WhG+O7nWrDJMkhOz1j0XvyeN44SZ3LtI8OQVQH7XVd04AHcyujaxDvzzMzfyVYujklR3HGYtuB4I9Trmb/t+PyMqJtHmlDG2c7DX3nkpSkl/U+khiXMDX0rdI8UEbP21Q5KgVf04mMS0wehcgQt201wLj+iCJN4NEwcgxSwkaXGpqCpQ+qxwkK5Z+6CycpQfq75pV4IuvNaDvLpu6JZ8TSV/32NW9Ftc+WbiG6L5JaqP23ynHIgpk6Le5RjSxJVMTGu9Y55k9/ymZrfbmK2Ujdc+kU+sjPNHUPNG9xY2T5gjAKO5G1yQ2m6RVyWSEazyOjBQA07n1LaxZtniNVFvcwmbDJeMRyDCSWOR8HbBbp7PhUkDztN6dtfNsK2GDkhT4nnFixVy3WDSdKNCSSiZAWdP+8XzUt+tp7v1WCHRTV4l6azxrBTyp6qZFpkVyfGvy1tgyKs5tjjXa2tzbnHCNqUkM3JNd359+q/i8CdctlPDIsoyp9wvP0RekzBpKWtd8ipxd67bA6KNL4aBBj+N/WyjhJAcboZY/aQiYNC6kbupF/Jtzt7E0wFVG3TR135CoxV11U3GOzrBQsK3fY+i35vzLc+aYMvOYoJQJwOoAAm/6JPaum00KuC3X6F4uhWtA40rhB/KKx/5gzyC53Xu59q8JRZ57eqDa9e3X//5L8eY3vBBHlgdJ4o6LGs1pkb7UZLHCfXQ8N1HO7d0huinL3qrrOLop1wLjZk3ijTFy3lNpo/bf8Q/AvK4xMFLyaTexCdwS6Y60AMXM0zrpDdrmcZgubGtltocv7rbQrcOoSVxUuIYy+WkiIfqvre2MRRI1kkaLROyiRXOUHK0uRenWI7pROoAOuhFPGypyTbdL6ZtXZA76wiKJck2KlGk1SYpABtrdtOlf/hoRO2/zG4yzm5ZtjUISBeEOt05no0M3TUG3Y/r0SUH6HcdXkpQMgWbfCiCJErXmMFtgWOEafu2iesSjKwNsj+ctJJ2uWay6Kd1TvjV5q0FqAOCRy3vYHs+NsiQvXBOJiCQjibzzGZPwKPN2/Tz9K7WWkUy6L/OEe3Iyq1rOV5feHRPs0fttUarm/Hv75snsDilI8fUS1ONkhEiPa78eRBI99zK1D1lfKrHpqJsaVkjU/a//Zpk/APYjgs3nmISfN7hk6+9inhtOpZSut38ch8B79w0hMUbHK/MMawzdVFKCNn6ZZz/lflscktg/l8EgXbhH3D3g1feewte9+PamldqNDxJpuT9QTeJCvmQmjp0J7BoytlWQim2BkUg3LW7STRc2urgptW1uXWAKlE49onzqe/0x1nEeBCigrtHNN0xBEp2MlUY75TEXtnWPnyt709Zmt2iQmHIe3QcrGUlssj/JPekMbTc2SK+b2s7FkETJ0erWUbhKYm6j9LiMsP5LEuixaA9liX0CKF4kkbKYnQWSnsUQj59TN/UhglxwE4ckghkXh1AAUnZdj1136aYZ3ZOR95YJEuWsKaG9ZF/xnNMAtENiRFoSkUQfjVDqk5hCfz6IuUI9A0E4iJDEU+sjbI9nLecyzzO23i94LM+a7AaJ9z+xCQCmHozLIhvn23Nsrt41hMBI6poxCY+8UzuZ8txwp3JWKRYRCSUT/vNHn8SzfvC/YGcyx7Rq003zrF3vF1uTqM+lO86+LlnG1ag57A7OgvTDQDKNRxL94l7u97vznDW929aXBlbdNE9D0pWy95tMpY1UN3XG2edRPjb9tpbgUOA86nH+0g3J+H6mcTWJEnJZ5JmpnQOs3oQUuHX7JHYtyxg/IVATKq0JlUPb50xq0wHoZ7vLJhkkJJ8PYpXj72ZZvL/lzi1Nld/2SQT6WiFVrRodkMQgMZpu6gaJES0wbiKJi5tFEv3OwcXtCX7t3Z+BUqqDJKYFKYMiT2pU36oTTKBJWiQxoSaxRW31t8642ASJ1/ZmrSAxpQckYBe31Ob2ZCnZH1tLtwAim9gCg6jFyUFi1an/CjgWbo+tk+ujYJ0U9115nlZgbvj4zbG4Z8dHiQqpm3qFa3K+t5lvgeSy3TFIIufIhEQLAOsschlvgyQu28xenkg3Var9bHP3JKG9ZL/0P74Yn/yx1wIIC650rWqQRE7tlYxzEAAZabjeFkM3HTdB4umNJdQK2G7ooHQ9u6iZ71hWJEdekx94csv8+z4TJGokkastpP8NKSd2T2UIkaLXu2u5Uv6aXKDvFNqkTBil4GsSeVpyaN363373o5hWNR69vKf7JEapm4pT1O93qIRRCSemJi6MJLa/vztOOpeZeXbar8ciiVISblQW2FguDd20yNKQ9G5yBeAYLwF1U2YPiEX2uIBD1gAAIABJREFU3Dm4cw6dEy5odr+TPR7zvNUqXLeaBRD/FpLYrONSgtcmT+XnO1VcJxfurdpZ29hxZg/on0suKAqp5F8vc6/lsMgxSWwVBySKICrLSgP6PpDRVyj9z0DvcYtRN+3VJEbQTW+qmy5u9ACGVEP/yW9/GO9/+Ape+ayTrSAoiW5a1aZIPB61IeQojabqZlaAuAy5Kxziqs0NmRv9yq7OQl7bm5px9NtSHEJa4JOCvQWRRFdwJfk8FjpDFZNppWMNitzQDaZVZCF1k8njUCygX390+zGLJK6PSpNhjrne3WbivsX8rx65gloBL33GcYN2Sr216lq3Ugln1oWFNVTs3UH26HV5TH9js+0G5HG8I+MPLPU4/Ze7dnROXOEaAEnCNabeeCCLfXQdSZ14aGpfkltgNEii8Lvou1i6qamRjTrUwlYre52l53tvqp/Bk02zZ1e4g/76ar5//p0P4hV3n2i1QdHtjPgxP/uOTwEAVocFHrywAwC4pTn2wsI1jPNpgkRhoHWs26+HEBEAvR5sLtXQN0Z/lrlPhB5/oZo4cuAu7050TaLTW1BSNw11Suyrm9L59yNS3T3frRNnxyxck9jMi2GTxARg3XNJNVejMsf6aGDpprlF0mMcehdxlRVYA8EGsweYfJ/n2C4rhJzaqOCS8UtikESOXRDTBol7vt1gdtWpSSQkUWyVEtgXOXZBKJEg3VtBwRsHgcydK0X0/u4cBwn72kGsy2aLrS9cuE9ijU6Q2B5rwB0P4s8hwFHqpou0wLiJJC5uFByGgpSHL+4C0Nlo15FIyZLMak037aIhXdufVnjksj7ezEH3knqpdZDEGIdw7mxavoJcpRS2xzOsDAvUCrjaSGlTL7UUMR/apA+jJpEWTuLJSyhpa0xlN6BBnkery87rukNHiEVt9Bw50Qh6H7COxZ0n18x7blPw1D6JRQBFef2/eR/e8IvvA9Cvm5QWyFCNTi9IdFBzyYpeHVHznVHIhn0tBUlsOzJ+0QJ9vBgkcdAcQ7+XVidLz7aPbio7MilKhoCljklOjGZX8NQaGnOjKUdVbXsQSnWC+1Oim2r0nYJEozia95UMyR66sIOfefun8L/+9kdajpSUXNmdzLE1nuO7XnU3XnrncfP6yYZuSntAq742JkhhKEqxtW19umlEm4h8gefNQ0ueNzT8rsXS5EkAyKduShYMgLOuuql93TdGqhMXW5AI5yNINxWCbWKbiHMUxpHE/7CpSaR1w63lja3JBfT5ldcEv3AKN8fY8w+02Qyh80/jpOcmtSYxJlGY5577pEM3XSrbdFMpuJRbrPT9yVh10/49GXi2BWG8mcACSmEoHcTc+vJRWUSDDvQ7dJlUfAsM2m+kmkTXb5SsL7gFHfAF6aYFjyR6axJvBokLm0ESAzfV1lg7FFv7s9Zn02oStXCNlMUBgMev7uFVb/4zvPJNf254zQA1wY7nd9ODmSZc09QkuvVmnAM0rVArLacP6J5jgEWkUpQMDd104SAx/li0cA6NKmdEIOUUm2tqWeT5b1oQUJAYS3/o9rfroVGdrPWdJ1Zb71tnK164Js+zpo6LH+P2vdwa235vA+E8hjLrkvNDCZvrXZPIobJxjbN5RyacRW6Ox2z2tMmSChvVlKbQtGtnYwP4Z7SqZQn6FAVcOp7bXkVSpeWU3KQx19uq1nPDO7v7hm6qAzViQ9D9poNE/hl42wPnAAC3H1tpOVJSQPrUphb2evbpdbz5DS80r5uaRIbupRAObKgFgxtcVrVGBCXHVUJ7FNIRkdg2HTSvrkmtWaTESve1J65pJWefumkMJZbm2aWS63GeMZxDHpkUk8eFEMj263PPsw3INZCExo7KvKWuvDIghoF8/7vmMlAkcZ1gL0Hmt7ktacRxTMIjlCSh46UG6fSdbCJHnqL5zkpAnLvCNd1+tt093/avFu4Tpt5y0URCsN5SYgEJe3dZ+MuWrpe5dNNRgi4Grd0rwyKZbupTNzVBa+Bc9msSK/8DAGiksXZ6kd9sgXHjjDLgQBhqHjfw9eb+rOXMxTdJV6iVXohdyL5rr37zn+P8ViMKszttt6UIUAK7xwPSWmAQHWt1VFi6KbNpkCDD0080QeJ205SXkMSEIJE+mxLsuRt7knBN1aZJxvWOtNnWlF6CtJGPClltq6oVfvSPPoaHGioavUb3h+4J5d/Yzjp0UyBNKKSNJMrX7b7HN1v/pjnKmU+6Z0OZ9fbrIalvgDZE+//GafVs2xwqG4fa0DHaxws58nKW1tLEbjuyjG99xdPxG9/2UgBIElOir/XVG1e1HAD4kB7OKLgN0YS5622TFlGHWthq57kZCGwGqkkkuun5LR3IUVafzew2RomwQZmZmlx9LB4BfmpTBzO3HlnCLWsjvOufvxo/9XVf4IhU6M91A7CYoA1oC7VUyi9kIt2PsYgIJ1wTajivv7/vgLp9Ettz1H99zcQBmHY/XXXTVrBHifUgksjXKYfUZXs96YLBHs1LSPiJNYn8uGBNoiCcRU4wIYlk7v2fpm6aiddaiyKF11Y2AeHrXcusQTFBIsfectEn3/H4eteI5IqnBvVuhwFkxkj7aaBWnws2QgI0Pgp0FALZDWQlumkCs+kg5l7LFPFEOtcrgyLJl1TN/S0h6eae9Lbz6tc3Q9VhJDEv2lC6uSkP1gLjZk0iYy5EHAtPbzZIIhXLR6uUOs595txYg851dYOQi9uT1riD1CTGjKPgb2Np4G2UToIPT29QrIsOksgVUUvmbn5JSKKD7iXJFiurbqqPGbEhNl9P41KQ3FYLDGYBuv+JTfzauz+Dt3/sPN71va+GUjqR4FLZpADMraP6qdd/AZ5z60br9ZgAwN1cfQjw5d2J+ffjV/dMcbso9d381LC0ezfY8G+GgN7c3ADA1LFEBG5dlVL9fZ4xzO+LcazJWeRqYOic5HmGH/6a55v3hmVCTaKhm8r3sU8C3Vczxhk1qhdpwp6aGTvmxkaJ7rmVxGRoLaU2FOcatI+QFB/ddKdZ867tzXDrEeuAScciJJGQ4qedWMHTmqQawF8DfW/5f6dNXNiaIC2k4xnjQQ2Cz43oJHvGBGhznJS/D0l099jHru4BQI9u2nq2QXMMBMALoKScKm2oT5/kWNMzUUjOv3DdQuqm0rmcO468q65MqFYsC8iiNvK1VoF7mWVpNH9D59+dAxAb7DHBdqC/KM3Tfbxj0GYax4m7AHrNWB31XXJpP7VJV0ndlBfl8VIdBZTaV6YA8PX9gLx3u4y0rq97Pc20CsyQ1KvbBImj0iQCY8eRKrx7/O73epViGQRYB4kBTK8rXBNTkxjRAuNmkMiY61z5HLSJw1W+1gSJK4MC25N5PP3QQUnovgj5aBe2x478cSZSmzhzudbu//uMgr+N5YFTt8QgiQ319nm36cDkU+e39RwJ7Yydo4o7/71xzfcvJWZ/yJG0ojzxSGKRparL1i26KTfPDz1yFQDw6JU9jGeVOeduIBHqkwgAX//SO8y/TQ+8qIywdYp8NYnuebq4PcF4XmNpkIeRRE/mkxtngo0AKsIHe2GHMLVxNk839Tvkeo76L0fDldDVlASQVTeVe3e6iHRvfgsgiW4LDDG45+imAmp8Pa2rUljmOfbm897n6PdSkPjktX2MSkut1wERP9HdqQ0SXQdM13H1x5xvgsTTR0bs93HXQEUkIFw1SdrUJTEY37HoeDGoeGqbiJB6sa8FBk9RtRN49LIOEl0krN/KIhzs0Tj3cDF9KrOMo5tS4i5VuEb/9dWaAVxwGYkkSjV4Wdbq00qN3Ys8TvPApZvSp/s9PyPRZobdEVNf3kquRCCJHEvAUgJ98+wq4Oq/qUlJoI8cv+OffRmeuDZujQG4gKP9Pnesri8Zqkmk+XPBpW9cKZSYuIw311xG2jJuXJToUsyHZR4NHtDavTIsosVuAPsMWg0IgW7qS94xwX1UkNgVromhm95EEhcz13H3CYvsTuwFISRxeaiDxFj6oStAQzd0dxHpBhJtJDEPiou45gZS7vG7n/kPH3wUUAp/+okLeOWzTgLQG7BPuMbSTVdx9ugyHm8oQPqh0UFwKJPlzlGan2R0/pYG8cgeHc99sOOypvqvRtvihYOoBQb9x6mbPvCEpXF+4DNX8MV3HTfHor8+hTTOUmrAqtZvk+st3Wfj0s4U+9MKy4NClPoO0X+CtBom2CDrOmmxDmEX4Y5Tkuxv2rVSwbYBco9Lq27atRSpcDpvpPAo0k0Tzz9nrlKtNI6OP2SSAhKKcj3NZRYAcp0gnd+TayNkma6tpoCR5ir5FtsGSZy2aKHSsSbz2ogocMadlxi1UbpfVecZWIQiFnUvd7LdsQqs+rPt1300dJ/AkevwPdkE3yQ+BDQZeSbYCCP+3TUBzTh5TJ5xdNPm+4SB0npQdVgh4jjmPPoVOfnn1GXFuDWJqw3dVCOJ4f3UDTbpke+hZoF72QbA7pj2e5xlTOAcou3SuH5wr5H0oHANizbHoNT94wH2et9zah33nFo374cDDuk+4emOMWtC715W/mDbtmXh/ZJuYtgkrQ+hTy6QXvJE45YH8WI3AIyatpQQsyi1r3SGYd2pKgJJFIRrDtgC42ZNImOuc+W7QXYd4Y7N/Rmmc2WEJ+Jl660jIy3iVCPzL77qOQA0jdNkaAq9IHNiN5zRQ7I0kJHEjzx6FW/8T/fjjX/wAP7skxdNsLe+VJqHnQuKDOK4VOIFZ4+Y13W9XzyS1QoSk1pZ6L/DQnasdyZz/NAfPoBv+/UP4uGLO+Z4ZZ4nISkuvTNFOEhTiXMzTw5J3JtWeNrxFQzLHO956JJDmWiCRG+xvRxsAJE1iU4mVTtM/P1Fz8b6qMT5rTH2ZxWWKfvMzDGkxkbBZXeDmlayE0nWfQaiRSo6m3ZUbRWTkVcIoy/SM+BDEjUCv2hNYv+aEUWUsxS6qZsRlcb56KYmQLmBUGJXpVBK5riJs+MrOjikdZzmKp0T2gN2pxXGs9qi/Vw2GIs1E48J2jg0l5SUJeMCSyDuXu7RTc13hlEiKQnEqpsWPIrijnONxIeAxajk9D7bpy+AZIn1R8GkTPv1UHCTm+u2WADQd+TtXnZsxSZHCEmMZSq5wZyPbupHm+lzaQkIi0Da17rPPz+Or+307TX0ndzzHaxJzPnjAfLeLQYcEckEtrYwgjbavSe1crk4jD3/dDxujpZuemPLDej5J+2IVD95dVTq8rEEf77I5SA4BkksmMQFVO0P9oC+cE1UC4ybdNOFzHXcfbTFnU6QOK9rs7BG1yQ6ClUK+t/dxf9C06D+7lNrWBuVuLg9MbUD1F4iliJmHCJSN2V2X1KKI3vkyh5GZY5RWXjpP0Q3XV8a4M6TVl1zWORiAMzOccHaQoukFOL5f/eDl/Ab7/0sAOBLn3kRd51cA4l5+NT3pGNZtC3u/FPdKkABQH/crKqxvlRiWK7gsSt7vYWF7e0UqKOQJKo5q53NlWgh3f5HNE8AuM1BjZcbhNov9R1QKRV+m0/dtOvIW6dVHNIcr0sbbV4P0EGAft1YTEAKdKmEyuvcaWXBuHur2wJDQhLFeySBAupeS2nczHNPWpGu8LEWNZf+BkB0ElwU/uT6CJd3p61+Zb4MtLsHnNsamwBdCixDzcQ5hdkY+ieHLlV1gGon3I+x9NZUtFNucSMLU0koCmDXhfWl0iQoT21YJHERKjnNk6u39A3LBIfc/Q294xhkVRgn9kkUgu1AcCPWijvPiYugU6IkuibROOQAaj6w0cI18nf4+iR6gxQmcWd+VyC4587/ouq+UckVie4r7DmSyFcMUt1DH4NJquZzzHWLoTKLVPJukNj8f2zrsEXNUI4zQhIjg71m3iQoNq1qr3CeOV7DJvFRwoGQD8T4aUpF0k3djDcpdX2eIIlZlv27LMueyrJsK8uyT2VZ9j83rz8jyzKVZdmO898bnXGjLMv+bTPuXJZl/6zzva/JsuwTWZbtZVn2Z1mWPf2gcyW1r7VR6UUEXSRxZzw3dFMgHkl0e8BJiz8FqktlgSPLutlt1WSJSUkplrZlkUQ9z64cMwDj8P/iN38RAODtHztvaj2kOgrAIonrSyVuPbLUfF7XP5qFLmKetTPHlJpE6yTnYubn4rbl+lPwTT26pNoqzlyqR5JwUK1M4MUVsQN6QRoUOW49soQnr+23aDxAAEmU2hsYZyt+s6c+ie73u2aDxCU8ekXXBJFjUWT93xbTpLhg6Dizqm6JIXDWLdKPqWMB+ghAjCMpoj0hJJERruFqSdtj4ikyvR6oAmoWEg6KeUZbDAhBNdGXITciRTfQSeiKBBQC4l85dEdSOHX7leUM2kC2M56b831ha2xVSjNGoQ7xSGLb2Q3fx1wtUTD7zwRtMQER0H++Q6qVNIY+65pJAvmSCdz605xgah+yNMhbLQS6SKJVyfRbF4GJqonjaIsBOmCIli/WJBpkyb7m0r8lM+MEJLfIM5xwgkS3BUxan0QXSWx/RiGANjN+QgyVk1uTQ8E2fSe3boWRxP4zqr/PO4zd821S3F+72l27bDKXPxaxgFpjlD8AJsVvDqWOovuKaHq/BQbA+5/X07p005R6e8CKl8UrjOtyDokBESNcw9JN6xi6aUe45jrVJB4m3fQnATxDKbUB4G8D+LEsy17svH9UKbXW/Pejzus/BOCZAJ4O4NUAvjfLstcCQJZltwD4PQBvBHAcwIcA/MeDTpSc39WRn49MWeSVYYGdyRyzucKw0DU6sciSW9ibMwsk4KqPZTi6MtCopdNXShcoxx2P6F3GkRSQxGMrA5w9alX3Lu3YdhYAv2mPZxWyTH83qfe5dXT6+OF5upTYWsWhX+6chqVco3lhe4I8A85sLOFCQ+Otaz9Fhp2js7GmCAdRuw0ayznk80rfR2ePLuPJzbFzjzjjehQlP/XE/raE2pI88waXhBSdObJsGpAvexQhQ/QYfUyGtljXXhQR0Ituux5L/w06u4Ijme5cR2SfSbjGeQbmAUemSKhJpOlQTSK3dvmEC6S+eZzNnXtEcv7tBt0fb+jPNzBINDRtem48FFBAX1eqaXORREmEBtB7ACXELmxPzP2fZXywHXJAOZGKWqlgZMPVEvmoxXqO/SCF/pWaXIlBO6X11Ye4+dZk2qdvWdOBzXJHJrEX7DV/Y4LZ9vm33ydZl5Gg5xxe73y0/BAC6V5rqfardSzBv6ic4O7Ict9p1HXR4X3DPU+SSE4IcaZz7A5TEeefu09iHHKuTcS8DusmLJJIoHmmIomicE0guMwYRKqq/b00AZ4qHwouxQSQUG/sa6V2Pc29txepSSS12RRV1MJBEjkkF/DTTbkWZ4sJ1yj7umSfS0iiUuoBpRRpyarmv7sjhn4rgB9VSl1VSn0cwK8A+PvNe38XwANKqd9VSo2hA8oXZll270HmSjfE6qj01sSRcM2ZjSXsjOcaAWpQs1hkyV3cuV5XQLtp6pHlAa7tz1rUEqn+xXe80aBo/b9rT1zdx9ljyzi+Nuy9JwWyAFrCJRZJzMzv08eL2Gw6aGfsuWwjiUKQuDXBibURbj261EYS80ThGocSWwo90TibOwEPV8QO6N9bFhluPbKMi9sT09ybKMZsk9zAhliYRSv+t7XEfJjzSYg7oS+ApWdwTlM8ktgJEucqGCR2M7sxjgW9z9Uy+rxyjtpX13Gqie1jRCCJKfWuHbop9wxQQoSzlPvfnbc0zt5HHiQxMrm1iHUbF0uoLKGrWZaZmrZWvz0m4QFox3BnMsdtR3VCbF6rVpJEorb60B6pV24sldk9ZBWJ7rECHN5RfSe5VvEKrAvVrnLnsrm/CUm84/hK6/28E+xZR947zV6AH5M44uu/9F+vmAyD9oTWcl9PwNRAyv3/ssjY4MhHed+dzPGrf/kwZlXdaoEhifLo+0ScoqU7Jt6TXAAcovvSexzaFkQSBSpz6vPmzlPWE5DAg3Bw2QUP5gFEUH8ff0/G1bv2x7nvk6VoJBzE2gKDKTWJeiD5M5OIIJFalbnJdY5urecTr9SuvzwiSOwK10TVJBYIrfaHKlyTZdn/lWXZHoBPAHgKwFuctx/JsuzxLMt+vUEIkWXZMQC3Avio87mPAnhe8+/nue8ppXYBfNp53z32P8yy7ENZln3o4sWL3nnSpqXppvJNRXTT0xtLGkmsagyLDMMiXu3ScrZzdoHU89H/30YSLUe627PHezwHpXOP79r2eIajy0Mj4gAA3/HKuwD40Yb9WWWcpDNNkHiqcbqSHFC1WJBoahLLQnSsL2yPcWp9hNPrSzi/NW71IExRXHSRlEGgBca8qs294tLNuCJ2QP/eQZHj1qP6HD54QQvskPLcQtnnPOO57o198tw2fvYdn2pq5GCOU3oyfnqeGY6v2GxUy0kWaGV+JJHbRP0CHADntMY5hBIFxe8Qto8BAArhzZerN7PXTXYQYhNAtgWGzBKgwnrOkoRrnPtfZkDIWdPUdhsp9kd//SSe8X1/jKt7bfaDP3DTn3n2Ga0qSP0MgbbytGvjWY1a2Z6HALA0dJB0Dkms/A4oRwkMKUICwj2p/LW1dDw2uRI4YB9JDM9Rql31oWB+JgPV8Ov/f+kzjnfm2KffAnHqpnx7g0CwJzAnUhHIeKVq+5pCeL2TnrlQgOmjvH//792HH/vjj+O9n77MJxc740KMCx8FOqZO3L1uLookGYe2hSjhNM9uTS4QkVzh9sXaf+2knrJuvR07jilDikH8WVRc+dcEju4OyIlhK4B4OEhikTesnMj9xijllylBov5L9Y9A37/27Ylk3RY8+ssj6KZd4RpTkxjqzeVHEw81SFRK/SMA6wC+FJomOgFwCcBLoemkL27e//fNkLXm76bzNZvNZ+h9973u++6xf1kp9RKl1EtOnjzpnadBEoclplUtUjmJbnrmyBK2xzPj3Kdk/y1KKAunuMIdR5YHuLbXRhJT1E2NcI0HSSRKwrKj8Pf9r9PKqr5gb39Wme89sTrE97722fi/v+1lzRzjkSz6vUtGyj/tt4XopqfWRzi1McL5rXEr05UirlM7i5+PjgYAb/yDB/C8f/k2fODhy5jOa5NF44rYAWBaaeSMlOYeaXqAERXI2yfRQyUpPYvkV//rd+Nn3/EgLu9OWwIEXrrXXN/vxxixAw7djpkjF1xSEO+zRRBBM082uExzZKKQFOYZuJ41iW6SBOApMj66qa/eWDpWq09igvOZkjRKtTe97ZMAgPubVjJG3VSghbsUUOrx+tlLu+b9XLgG1CPRVdQ0wk0cZQhhB9TQ9Dr3cujeyphrEKKIAXxtYYxxzcRj2mYAXBLUllz05udJXNA1+dovOovveOVd+Kdf+aze2K4CMRDjJEv1zb4xHLtD//Wudxy1z0G2OaOXuTYdiyCJLitGGic9p39831MAdGLZfd4l4Y5ahYK2vsJ1Sk2iG3MsvN9EBIl9lJpe9w4TkMTae72l5EoIKe3OEQgL0NDxeghwreBjqUrPqb0GfJ/EG1luADh1mw0FOr50Sf8lfyaGblo560TofISEa1i6aVDdtCtcE4EkAsG6xENXN1VKVQDenWXZNwP4LqXUz0PXEgLA+SzL/hcAT2VZtg5gp3l9A8DY+fd28++d5v9dc99fyCamJlGfnlmlMCz7T0gXSZzOKUhMQBJrCgDl2h6X131keYgtqkksbIY8mm5akSMpSxDPa1vL8tUvvA0vv9NmaKXFHwAmMyvck2UZ/tGr7jHvLULlXPKoNPrG+eimu5M51k+u4ejyoNXP0s1+xsT3rkx5WWTYn8m/66OPXQMAvPWBc9ibVlgbWQVQ1pGsagxLjRoDMKIwG8u2vYQso+3fELnzX9fKLIKPXdlr0Z0GntoxSoocdRBnQlJ8GdMQ3Y5zYkIZ2i5tKHbTzvNObzmqYws4MjQve7wwksIJ14RrSXV/0RDdR3+v/jss5WumxUzSnBHOXFGOMN20fzwSSLgRQSI1P/7Ueb0N0O8S21I4dcJ33qLzkq96tk0kSkk4WpdOrPWDRBFJbESyJOPW15jsP4cu1cpfj0Xj+Ocm5Ei2z0kcQtFHewB7DwyY8yJl5AHbHmljaWCSmN3jsZTAYDDL91wNBWDSvu1v+cCvkzHiRlxw76dyCv5Fh+Hx3u/78tZz4uvVOmioqJe2J0bZPc/tGeb6JIasn7jTf31XjUuuRFFwGZqw6//Ic+wG6c2xQsFlztXqhymx+nNSwCEFiTzdMaqXI/OMhmpr6ftdk1BxSze9sUiiuwf5kuS9cc3nLN2038+6ay67xqxb0jVLXEvi6KYd4Rqim4aCywCS+N+zBUYJvibRJPyUUlezLHsKwAsBvL15/YUAHmj+/QB0zSIAIMuy1eY76f2FbDzVJ5ec8llVt2pUyHamcwzLHMdWBqiVVvccFDkGeXxNoi1uz9mNXh+fNtEcR1cGmFY1ticz86Bx9RBkv/yuT+OeU2v48ntPA9AbV5ZZR5KTIHYXhF/4phe13vMFUhpJFGhzCS0YumhnfNGw/jss5RrBWRNcbywPoJRt26Gd3eZ7Ijay2ln8BoUfSbzQKKre9/gmdidzk3yQCqlnlUYbCTl87EobSeSCvZgMldSqg2h5APDY1f3W5uOrSZxWCsMyx1FH7MBVN5VrL9KcJoUwStelDcU7u1JTZM8YJkuokUTvoQyS4l6DmJpEgHre+Rf7rrop2wLDhyQm1AmapsAOapDaAkAKpA5iu5M5rjT384cf0ckZWkdKX+BGrIw8wwd/4DWtpuJlnntr4taXSvNMLreQ9P78wkgiFwDEoNT02fa9HLone89NBG2R5tlF0mNEO4D++uptleJjMjSvcQlcM0eOEhhKrPcCAHrdnzjq9ZbzJEnssbiEn79NinXI7WuGWRaFJPrnSTW27jhpf1sblRjPpri0M8Xtx2w9uphMjrlPeucyHOzxbYnC55+9brXyKqLSd3bvfyBMNy3G0Ln8AAAgAElEQVRYPYE6GDToz3XGBX6fxMoJJ04ZJDEQXMrqprxwjWmBcUjqpiRcE824a87bcoIPGkO3DokUAdROR69XmYbVmzdShWsiWmAAnxt00yzLTmVZ9o1Zlq1lWVZkWfa3AHwTgHdmWfbyLMuenWVZnmXZCQA/D+DPlVJEI/1NAP8iy7JjjSDNPwDwG817vw/g+VmWvT7LsiUA/zuAv1ZKfeIg8x03WYONRihEukGm8xpLZY61pj3Elb0phmWGgacFQ9dMAJhnIq/bpaQea9Clt9x3LogkKqXwE2/5BL79Nz6ET57TWfV5rTDIcxNgcs2sfVkjXyBFwjX8uHg1QxskpikgWuEO3qmj7y7zzFxbEoUp8zS6qZsh8/VJ3J9WRhn2/ic3cXVvamTaJbrprKGbUlD4aCdI5JICMaIwOovZv97UugTQASk5l5lTk8g5CboGN281YPapm8Zk1rnWAbH1ThxFKbkmq/nrDRJNJr87x7Dz484NCNdp+vqSds0g6R6adlWF1U3j7n+7JknOZ1BMKWHTjrW3PXAO03mN244s4X0PXwZgs8FFnrPJjq6YzKmNJRNYAvoeYoNEBwGjZ3ppYB1lrkzBpbZyxgnXqAgkXUa3Y5BExtmNQAV7NO1IJLFfTiEL15h9iqObemiqZo4LJo64YMOP0vWvt9QjrnUsJnERQrKMn9Bat8LBvbR3h2ogyyITnXl6/eL2pFUDKAvXxPTT7NJNYb5XMs4pjxEO4nQBopDEznND538x4ZrwHIH+dQshpRxzIn5NaL8WUkqWwANpfzMtMG4Ak8S1bluW1NINt09i7Jgiy8S91FK7w+JlZmiMAA3QF665TnTTw6pJVAC+C8DjAK4CeDOA71ZK/SGAuwC8FZoiej90neI3OWP/JbQYzSMA/gLAm5RSbwUApdRFAK8H8OPN974cwDcedLL7U6KxWCSRM0IYyUFQSl/8Ms+8TUI/+JkrpubFbCSFiyTym2iZ5/jK554xr/salwM2AAKAX3/PZwDYAFCCw93PcCYt/kC7JrFrKQ7oosI1FkkpMK8V66Tpnoi56fvoilv46l+kOdI46Xc9cU0HeK97/hkjdOEiiVKfxGGZtYLEMs86ARifsfNlTaX6NjdIfKLpy2h6y3mCFE2vznBs1RGuMXRTX32CLyPM1LFEKofyPdEiHMKWIxnOWnNOWgzaw6HpoXNC5z8m49pXNxWQRE/Q1p2fZO3Nt318c6wQkpjFb9qx9sCTW1geFPg5hwFB7SyK3FODnejIA+11mdBb3zMKhNVNubp0TeUMIYl9J82nZEvWdVpjpfw5xctYJDElwWXQd5ZxEX52WEqmd5Z9dCkmuOQSfjEURE6kIoRkcb3sYgIpae8OBRss/a0x2psv7Uxac5Ap6JFruXvdzPw8YxiUOkY4iEfbYltg2P+PTUBwTJmqrr3Ho/WCqxME/P00u5ctBvHn9uAg3VRgoUj7m08Q73qaEeEL+Gldo99h6Kaz+BYwWSbvpTHCNb1zGStA0xOuoZsyhCT6CaWHEiQqpS4qpV6plDqqlNpQSr1AKfUrzXu/rZS6Uym1qpS6VSn1LUqpc87YiVLq25txp5VSP9P57ncope5VSi0rpV6llPrsInO8vDPBM77vj/GnnziP8Yzopg2SKAWJc4UytwEHoLOhg0JGEt9y31P4+l96H17903+OT53fNg+Jr5k7bYbDIsfx1SG+5gtvA6Az3gBfowYA57cm5t8ff2oLAEx/RZ9DWCnZafKNG898SKKMSPWOb5DEVLppc55KOUtFgj90ba/tOXTTlEDWyZBJQTqg6ZsA8IaX3G5ec4NEnsama/2WBoX5LUeWByYI4dRso9pLCJs9UW4BTdernE3SRwuhmkRqzQHA1KX46KZe+hUTOMcoh3briOifIYdEog3FZK3TFSj791eoTnOQkHGlS+ulm3o2e6m5N9lkXuE/feQJjGdV634Tnc+Ak8wp2R7UZlWNpUFumAIAsDJykEQxcPM7aSzd0VGdHpog0VWcXiAg5YK9GCSdcdJi6KZdpzX2cvQc+Ui0H+gjzn51U5nxQvf3UPC4ZOGaUDDbCcAigpSMpY3Sb/AnxTgkK6oFQyLaac6lsC77xLOk57QVJDrnySLi7c/HrOXdgNsc2oeSMmuQGyBIljHBfQQojiJD7/4HImjazL4Yut6S6F9MP00ucRETpPfqhpU/2WHoppEJIKN1cKPppiaZT0nyNF/S0E1j+oQ610NMkgT2e4Ch7kYHiQUdpPn7+YUkfs7bx5og6hf/4mHsz+LoprOqxqDMsDayJ3lQZl56xrsfugRAL0Rvvf+cCTbKPBN53S61CwBONkIJp9ZtewnOITnfNIu/++QqzjX/ruoahROQSs3cRcfOM248q1qKqK6ZvjExohgmSJSdXc5c4RpAQA0qHdjTtXWRRE5+XpyjiyQKQTqge04CwHNvPWJeW2+CRKmWdNbMEYBBqd1ehJyQRkwAVuQ8LXbbCRL3plWjZEZIohykUJAIAB/8gdfgF77pRWa+PgXWEG0lVREP6DtbsYjIIs4WVzscg/bwlCi/g7ZIcsXUG3N9EgNZcqnhPAD84O/fj+/+j/8Nv/W+R/i61e49GaDbSa0lDmKzpjXQmpO4ozpZuSbR32C66xC64wD9jJB4zbJTk7uYumn/eseg1HxNVjqSSJFUOk01QhBDUDd16/K54wD9YANw90WZbtoNtoEFkKzmn6F6v+6tFYtkcUGb7x6xc7T/H6UAKp7/ULAhl7PQGnNpZ2r8pGGZ2/pmBkkMRWBZ1hYTUxE1idya7AYI4jjmOY1PSnL3iHcYmxgLKY5K180tC+GME+WJXUu44MarbhpAqbvPtiljudHCNQ5KzpXASNYNEqOEaxyfMNTbMoq6a5DEBLqp+3lVA8giMuU3g8QoI0SpqhUmswpZ1lY35WzaOMnkGAM6q+lrrn7f45v4G/ecwAvOHsF7HrrkKJc6dNPO0C6thhwSOm6W8cEXBYkvvOOorhmoFWa1DkDomeV8tDoCSQz1SeyN89S2dc0EiUbdNM6R7DvJTPa5URck9JeuewtdZU7KY1f28IO/fx++//fuw7yqe06yhCQ+fnUfgyLDqfWRcVZDSOK0ST4AljL83V9h5d05IQ2336ZknGoZAGw1dNNT6yPsTyu4amu+mkQSrgE0qv3VL7zNvOdTYPU6ydwGFRFILFpb1b0GKmIcTb9Lbw1mn5n7K6RuavrERTwDrpR9mfPiWS6VmDMfKv7hR68C0HV/7rWUas1CfcpSakRibVYpDDtrsqWb6mvNNZheCEl0kne3NqwOSppIa0JIlITrVakQI0DDJS5UsCa36zgtiojoJEn4WO4xyHyIm01AcEhiOAnhrlsxzzYg15v5fp9E0fPNT4/r003jauI6NZAmuJfHSPtbSOBFah3j7ssXtyfYawT/lgeFvJdGJtNSa0lNCYAb3EegNmz9XQRNuys4ZESRIpIynLqsv0ykr4oNhNfyrJMkaSYa9Zx2z0mYbtpffwAPkmjoptd3/e9az0+LRBLpXKe0wHADUqmdXYxwTY/RRkhisAUGZWYoSIzorQgEkUQvGTXLst+CZWmIppT6lvBMPrftyWsa8alqhfG8xlJZeIMNen1Y9Ommw0KWjP70xR1840ufhiu7E3zksWstypLE66bjE0TffeC4hQfQCzcAvODsEfzeh5/ApZ2Jaebso1b66mZ8gdT+VK5JXESAI7UmsVuTJWX/XbopBWGt3k7MuH/7ns/g33/gUQDAd77yrh7dTlp7Hr+6h9uOLiPPM6wMS+xNK6yO3FrS/ph5c18BwPe97l4oBbz2+bYWNc899V++PolMHRFgaxLPHFnC3nTeoo75rttsXvupXlwWGYEAjEOXVIQAjVjHEs4Iu9cgBoHk6JU3GkmMem5q66hwjp1SSqNLgSCdSwBVtcLjV/Qa+dePb5pnsoUkdp3PCITiegvXzCudBFp1GA0rToN7oI8cBtUkJeEaIzqW48wRHSRe3rHrCbcmhBxCjpIZV5Oo/3bRvfD93x8DRKANeR9ti3GQARlJ5OZq15/+97n9g9nj5W2VwDR2gf3/GCTRJybmrUlkardj1DX7DAj7umTS+Q/RFos8F2vnAc1yubg9wfntsU6SF7bVAJfwiwtSuHvSM4ZB0mNQmyyTETrvHDsJ15hAFtB78HjeT6bF1Ptx7RRC43h1U/8cNejAXbe0IF3/P58EPawWGG6iMk24Rv9NKXlikUQh4e1N5nfBoli6KYckhgJL4MA1iQ9Bi8Z8GrpJ/d8BUEAL0OQAvgbAtfAsPveNgsSre9Mm2MlNkDgR6aaqhyTqPoky93kyr7EyLLAyKrE7qVqUGZHXXemFlW4e+ku0SgmRmsx1k9bbj60AAM5tjk3W3FuTWCuRouGvSayDwjUxDylt/sl005qCRJ5uR/SYMs96wjVlIT/YQHuRuLY3i27S+vjVfZxtJMUpOLTqpjw9o1bW8fnOV96N73pVu1MMJ3gTVZMo0Ia29jWaenJthL1p1dp8fAJHMwfx7FqW9bORMVLmEpIY49gxifUIatniSnqp9V/c/RVy0Og+iHluamW/Z1D02Qz0FeFemv3Xz2+NMa1qPP/sBqZVjccbGjUJdXV/F2DXsUVqnRY1er5dCqKL3LvzItOBmx9tYGn5jgP05feeAgDcc3qteY1HwEPUVo5aFuu00mftuDhqWRs1o9fDx+srqfrHcAqsgL92zI8kkiqqfH/psao5rn49qgdk4m/TtdTt1+rA/a+PxQeXPicS8NBNA3N0P2vGhoLETFj/mz2RWmY8dmXPURLuJ9Lo2CExsUwMgOUxnF9i9ugQ3bRzPhTikiTtREL4/AN8YiwU7PkEh0LjFg3SObQ5JgERK0pl/IobXJPo3tsp+00XqJBigPYY/df11RcSrqGAm85ldG1hE4eQeE19CEiiUuqH6d9Zlr0NwFcppf7See1LALwxPIvPfXtqU1Mzn7o2NrRJA4l7kMRBkRknBNAbVlnk2J32Ocx1rVDVOrBcHRbYncxbMtkSr3vWKHKSfcNL78AnntrCd75SBw8s+gJLo6LaRU051Zl2n0hF5dmk5GywwrSqg8I1UaIwPSQxLfsjCdfQ/xZ5bnpOUnLAp8gG6ACY7Ore1Fn8ci/d9OL2BC+78zgAK+oy9AT3brsTyfhmt2F1U0m4Zns8x+qwwNpSif1Z1cpsSmIHNFe39qt9LD6LSfOXjGs2HJP97NK9XPVNn4l9Er3H6t8nSvnPvTSucu4jdn4eJ7lrleMAcEFiiNqq58ivCY9c1iq9X/rMk7j/iS18+qJWZ85z2fm01BoBSbwhQWLdQ5YoaSQGs3VI3ZRHUuYOC+QVd5/EB3/wNTi1rhFFqY5rXiusRMmft++tcPa/k31GpEMo3P+hqLQv+BR2/iW6qe++9CUX7Vop1CQ6Ca6ySHPk+6I84fVHcpBTHfm4msQuJdl+n2RBJFGkhUvCTfr8nz26hI8+plW43T65QD8ho7AIlbm5boF9o3u82FrGXpAYkxToJHgNkhhD706ku4uCQypcOrBITWLBJHjj6ab8HtAdm5L8PIi1Vejl1mi9cc3nfCKIXXOBAxFJrCPuya5YnVmTY4VrHCQx1CMRuK41iV8M4P2d1z4A4BUJ3/E5a0S5m1Y1zm2OtbJkc7G8wjWFRRwBfVMN8oyF0d0altWRdshJSXVU5mKQMm/qbMjWRiXe9IYX4tiq7k8nIUREoyJHfnc6x8xFicRx8qYozZEKe91z4Ron/y8ZOTqL0k0lmnA3AHv68RV8pmlFUuY5K/5ANm7qVAFgc3/WylK6VKauXdmd4nhznf6Hu08AgFED5YI9ovBINE6ADy5jC6K5zN3OZIa1pRIrQ41u1871p+vNXYPJvO+Qm2MJWUwgJArDBZdx9X5dxxqIcAjzrkPSvB7hkPSofREOAtBBEiP7JMYkSlxnlqX7UmlD4B7hnlGqb37FXfoefvjiTjO/3Js4AnzOp5xcWdS4IDHr3MucSqCfAso7M13hFAoQATlxFw5IGUQkAkmkr0wNLnvzdLLh4XHOMBXn/AN96qivJi7PM5b+BrT7VHJWdp7TyPi31zogLknFOOQxQSJzn8wDzdW5cZZq7h8D+Oqk5PMo1c4DwK1HNJL46JW9Vlsud16ADr5UTJDC3FtAXADcVpwOj+u2O6FxQeS+s3bFJiW7CDDN2V+nrP+yYjKBdlLdyxaH+HMIsJ82LYouCloJPq2D62mxjK+u0ed8IojSGLdOX1KkjemT2KtJjKab1vZvFJJ4/VpgfATAT2RZtgwAzd8fB/DfEr7jc9ZI0RQAHrmyi9EgpiZR9RySMqcWGFzmrQliityIKVxsalhWR6UTpLTHUZ2NZJJjR84PqWluj+eoKmVqGyWRinktH09CDUIbtk8lkzs+sFifxDyzc+A4/IB1Hu44vmLahLQpuP3vHs+q/4+9d421LcvKw7611t7nnHvuvdX16mr65Wrc3XQDbTcCxLOJTUMEthTkOIEIS8QojuNECkqIHVsxWIqFJVs4TqQosWKTOH+sOAgpOCFxlETmkcSY4E4cFAgY6AYaupuuoqpuVd17z2PvvVZ+zDVfY445xzf3PdWpNndKV/uevffcc+6155pzjPF94xtBnOKVBwJJrDjbD6/3uNgd8Mwd5yT+e3/og/jvv+cj+MJnb4cxC9qokWcD1Bww99iut1RXUz3ZjDg/mXBxvc8kuZs5iYd6TqJm/MTDvjpF9bstsA9tmaS/ENfDj6fmvzR2xmiQx+d6kJS8lte6jmqGbkcJjMy51xCKYIy356jtCS+tubsfeudbMA6OWuY/yzI+6zS2m0cS9/PS2IPWeR7KeVpiMq2cRFVwpYEkWk4DgCLfiUG/AC0nsd2vRBLzz6v3k44sQ9Fb31usE/fYFqDRrn8UfVPnKIICy9JWgwzzLL4bVzZgXnLqOhW4G0qaaioc1h6vL7hVQ3ssWuxYuf7ennn7mo+7LMjUzeVewjrp0klhEOBacAWwaKr69egVrmG3sWks1/++EZR3fco9wfez1tYxqRuanXCYDXVTC0kUnb0NyrLEjm1xP3M2aK1+tmz+PUwJqlcf7vAPP/5SUTsbUJztBFyotaLuMF0CQwjXzAcb2gZuFEn8bgBfD+DVYRg+C5ej+BEAn/eiNYBzAp5djfnffPkCt7ZjWCAW3TRtT98+cSUwlAjJPkGyfO2uF193Efpb20mNBgNORdJSrdTWcKC2rk7ig6t9ZqTURCrmxiFVjQYbBuFGHNitFvngbSRXNk+TjPQMQbcLKrHu9eefOQ+vuRs7fo5sl/sD3rYehvcudsWGoG0iXsTimRVJ3EwjPvTOWApDM8hjnk07sbkYjzBkaonbPgfm/GTCw90BF7sDznzZgIrD7ea6VJHjNpLYjkjq9B/rYCsNZIBAN45AEjXkjHFkVSSRVTel7pv4OVpuYUAMWihpZU94+cEVpnHAk7e2ePr2aRJcGU3jsy6I8cbQTWv0w7os+WzQvep0fkB38GvfzRTJURERzrBz743POefGRqR6c9tiv/S+4fYfoLz+Qbim5qRUHO7rhO7bHG9930w4275fNyK7vi4RSMBCYPTr0QoK+/Hkb+0/r9Zqe4lFi62tf38uP/fEWdhnz1MnUaBm/hModdNOB1gLsIf/N4bTEGAG7SxtLntvBfQzf56NEjyV382xV/rOUhYV1wJ+luAZgCLgUctJ/FyVwEgDlRtlj6z2W21JP+3W+fvtf+On8Z0/9DP47TVlbRxi6lgBVISATNueB5Iz4FFKYFB005Pmy7STuCzLry/L8nUA3gfg2wC8b1mWrzu2eP2brT28PuD5Z26Hv8+2UzDUa0mr1wrd7v1vu6PmAwGRnpGK3bzw2hXOTyaMYz0nbq84o2mrqu+tDuH5yYRhAO5f7bMDqCZS0aK7jBVHyhJOiflYTAkM93hMCYyUDy77xXIj7nUv6OOfqyWIA0659fbJBnfPNrj3cBeKO3tqgbaHeOXUp2+fli9CN8j9wduu23bc5m8ZrrdOJiwLcO/hdaANWTmJrehzgQiS0e6StkXWNlOcRMsslOqmPQIQUvCGyX8EajmJbUOXOUwPczTUa6qJ6WfWxqsFPJ46P8E4Dnj2zkmouzoNQzVwZKsmvjHCNX6vTINAbrxKbg9hpNWCK4B+4Nf2BLZOogxcMIqEgAyUMEGS/tw2oNyDFrIPoF1/99grcLRf95+aQS+DAkz9O0ARTpkZsY/1vZlzQyp5Kk4blZM49/1utfPNFK4ZK+kz63NnmzGccalwXU05l0G3ex3gsXL93Xjta3KcuEt5r1lj+dfV37uTSgt4dM84S5XvxqLiaVsWq9zGOqdKAEiurVbw+SZbWHMN+1prh9ld92Hwgjf6+fvgao9f/qxLvfj7v/iCG2sYIk2+Yie3AL4iNYsugeGFa3pLYNwc3dSNuyyfBPCzAH5rGIZxGJhZvPnbxe6QGRW3kpzEmpPi1B3zr//80+eOHmPQTb2IyQuvX4X/t6icbUW8Sk2uVelvGAbcOdngvkASR2URe5l8C0lki6b61rMp+M/yBw7LW/e0MY8kyN9AUvve9kR03qxNxCm3jnjq/AT3Hl4Hx8IjkFof7yR6uqlsLSSxNyfxGGqZb16W/3y93i/dvy7KBlQRyEZOYg1Zak1Tp5vy6qbeMGCorW68440tiaQwBqHsx0Tx0/e12rK0841T9LvWtDxZwNFNPSL+1rvxvrlztlENNMBO0tei+I/a9klO4v/yvX8Av/QD3xpeq0nJM3QvXbgmDzrlffQ9waS2VmijjGEHlDlg3cJN/v/EWi7FXYw5Vilp9RIYfqz6/tP63fKgwLzYwSZAc1IYJz13SF0/G8mtU/v6+nH53kYwp3H9WzmJJ5sx7AklkqjN0Q549OYWquwOMigptyCW3q1/t3Y/FUlc+gNH7m9rL9dyEpk8ZeUeNfaSGr2ytrYi3fRzhCQOfU5iqjFQ238AhNqgAPCx33h5fb/7W6PJz8a9BiT2RTfd1AvX7GM/qgTGDdFNh2F4xzAMPzoMw0sA9gB2yb/P+3Z5fcCTt05CuYKzEy4n0RvzT527C72ZRmw3o+pYpnRTX8frxdevYt08xUDw428NeFrjWacO4Z2zDe5fOjVV/1na5s8iGzXhlJuo9+bfc+ukk266UiKiYS2Ea8QcU6GJFEms0U3PthOevn2Clx5cZxGympMekMRz3UnUkthjbmebbiovozOACNSsZrhOQwhWvPzgOjjoMSex/A2c4pk+lra2KNrQWFJWqO8m6EaMsp02T8rYCusknSNnEAI1JLEWXOFzEtODXFuTLJKo002vQ7Dj2TvRSXzmzoktXFNzgCt1Ox+lpdT8k82YIRveadACXBYFVM+Jy4NOaasqThPlNtyc4nPHrH///27hGvF5bD9mjtY6aZ0dteBWUwBCBAWYexQ4PicRyOmmziBv9xuGslYuhyRKcRd7v/MfWdsXmsI1yhrxJTBOpjGk6vgzxH+e5rRRjpQIdlj9amJiQPs3kL81QAYl5foPomDNbmrwzl7HtfumTZNXz4Ajg8mHuU2b1ujufs7jUPb1SNsbXQJDq13IgA5poGYzDkUeu2/XyUb9mYRu6h/rpco6fm+2BIYUrrmhEhg9KODfAHAN4JsA3Afw5QD+OwD/esdnvCnbsix4uDvg1kksivzFX3A30Jba6qbuPT/xZ/4gfvbPfxMAYDsOqmOZ5pv5PMEX70cksUrbUgRy0lYXSYh0wNunm5VumtfAq9FGW7L1gBJpIlUaa0bhJ168Hw4DP6fTTrqpj8jVUEs/R3+DPpcgIq1kY8AFEc62E567e4oXXrvKKFK13E5PU67WjlSS2P1aa9KLtYNtsRVAa7klTvF2DHmyv3P/KtBN/TWpBT1qm52kcQJ8tLuQTSe+m6R7MUqebi79AhD+Ky+iH4skpuMxlMz0fa2WOgXammSENLToM5Cr9HqD8GQz4u7ppm7ELPl3KMfiixuzbX+YcVKp3VnNyTIct7GGJDYCOjWU1HRIVTo/g9K5x2MQyGMpgb05iVVhNuPMmcZRdVIsg1cGBTyzxmrSAViM3C83lnvsFfPRauXOhJNYQ9taww3DUNBUAZ+T3nYA9HSDdf1vRrz1Tkk31XI7AZgCX4UoT/J8dY5KACJek05Hambp1vFvH5Sk6isqQZK2kIkevD4sRsBPAQ8oUR7FTnC2VaNPJQDRqvm5XYVk3ogW2AN+b+lEEtMczBaSeJUIXr74usvT97a9RpNna3dm8wxIokU3lSUwFjIn8ebopl8H4F9ZluX/BrAsy/JzAP4EgD/d8RlvyrY7uPqFt7ZT2L6+4vmnA5W0LVzj3vPk+QmeW9UvN9NY4fB7o2II6OFhXgKqWKNttdRGXb9SWc31S5DEU083jZ+lRTospbN6raV2Ll3L2P0nv/06PvrXfgr/2U99ws1hfU93CYw1+uM3JRml2ok5PpMgIre2U3UzBoDLvaObPvfEKV54/TKjSGmOjZtPW5TkJoVrFnComXb9Q6mUdXObl0gbapUumRuH1DSU65GJJGs5IsvS3lTdZ+bzpOk/0kieiah1xSBhkcT0NziIPFnZgmND3ANp7lSLJdAyeGuo+MPrfVgfb1v3OZ+zUau5yqz/G6ebNoySqMKaX0vLcashKVZ9v2qeuFEDFSgdAFY4pcxJtI1d3bBudlPQHo7GBihOkXHm1CL5acCz1g+I95tVV843GWCZl+PUZemcxE76odaPCW75fqWzYYiSVM6N64MzRrfTiPc+dweAU/72rUbJNAMeRwQu9FxeIihZcaSsH1wikPT1H/TrzwiZaA6HmTpQ9AHx3fop0LV819Y9upn0XNdHbf/x3/8VvPfP/z3sDnMI5qcgACue6N+/mer1FT2S+OR5ROP8/zVVYEq4Rq7lYDhZRpCPXvfmJHTY2G4AACAASURBVN4ckniAo5kCwL1hGN4K4AGAd3Z8xpuy+fIXt042+Ev//Ifw7V/xLnzle56KdRI7SmAAWNVNtchbiSQCMfJQu9GuD/XcLyDJExRDHhIaw92zCpJYQxsMZKNMUI4Rm2Y/5bq8dN9FYH7s5z6dzeF0M2IYOkpgrIddrQaPpPal3/FD73yLkZN4wK3thOfunuGVhztc7qJxL/PhfGPEfGoGk6UkpuV/UQaJZriuEXZfvxGIUubB4TaQatlUZ+/I4sY96o6Bxr8+323sJvO3xjp0GoTaYW/WSezI5U0PNu2gD2qjRkReWyPpvvFFb7sLIC8bVKMotcZ7I4RrNDEx3yKbIX9+P89tx61iJIegnyZcUwncmeqmyh7Ul5MYn6PW5Fj2ST+vNV56SWYK7dfPDubMUYNbhjMlgwLzbCOCvp9EiXgnPT7H7FuDZsgTAaeauinlgCnOhrUml0VjvazrfxrwbR9+B4B8nzoGEfTj5d/NPfbSTSlWiHpOEdfRjyeDku1uhZowsOZEE8EOLTDfdNzEdQT4POUi5cOYo8aSAaJtobVaaZtHbX/nZz8JAPjHn7wX9ppxqOdNai11it3+o9ugV6sd+K6nboXnnlrTizTmVgzU1seW9V2juqm1KIVwzQ2VwGjjjHn7PwD8YQA/CuB/AvDDAC4AfKzjM96U7WJNPr21nfDBL3gCf/XbPwwAGAf3IzF007SdVJHEWHz5C544w+9962184sUHAVWsHqKHGdvmDeoeZdQmRRJvn2zw2dcusRnHYPhrIhUWbbTmyD5KTuJrly728JlXL7LPHscB22msOumyRSTRoy/5WP76p9/t3/zG9+EdT95ykaZKxG5ZFlcWYjuFBP3APx9zGkOKpIacrAa6WuYMrK8ZTopmWDCbv44kLjjdjrh7FreDIidR+Q0OjYNDQztn4tCu1YBkapsB8d6hjd3CILGNLS3/iDEIN8ohJcWUyj4dOYkJTaqFJFo5iTUEzM//S97xRPF6Lf+lNZ5bjzcbSd7PdSXoGEnuQxLrjnOdPZEG7tKXzTqJfg8Sxq6NUmMdL3cuGYM8DcKxNpsU5qGQxAYikr6uzVFDnNO6oFpTkUTGSRTnYs/+04sAa/cAQ68fhlIkZ32l2U+jwLHqmodlwZh8vl83p5sR7376HH/ru78SH3pHWuIpD0Cw7I4SpfP97Dl27+VJMGcI+/qC0TCu43jumgSH1LDJ1bqMhJMO6MI1TVZIsiaDIjfa1wOolGUxUPjavX1oBOBqVQAetX3pO96Cz7x6iZ/++O+E4LlXKQX4gKu/ZjUhSiACSO9+6hw//6nXAEQkUQtupUI6tTbKeT6KcM3nGEn8LgA/tf7/3wbwEwB+HsAf6/iMN2WLSGJ+OTxEzdBN07YZR8xLecOkdNNhGPAdX/luAMC9h077p3aj7Q+2uimg0718v+eeOMWn711mZQs0ZCnC4Zazlz9vilQ0jN17Dx1F5ZX1OoRk42FYHW7OcvFqXzX0SxNI+DPf8gH8sa/+PQAUmH9t14cZy4KQkwg4hza9jum8W+OlTXWIZvZgKw3yXtTMN5+TmDqJQd20gWS1jOuWuqn13Uon0TaaJN2LcUjdPI/IY/EOqejHXH8gv5Yscs8cps64Wec41nNC24ZFJZcuydvzwjVf9u4n4zwVR8pCSd8IJHHX2CvrEXmbtqgKdzS+n5aj5v9mDMKyTmK1C4C4XqWYBoNI5XPkgyulkmd7jrVIvhVgrCEOFt1UGtdpEKXVxkHmGx+n3MpekwLtgW3IS5pkRM3seWqKiy0kfaqkHMjUiI9+8G0h5cbPUat3SOXtdSOCKObIBiXTMXw/Zv0D8cxnlVtV4Roj2FGj81t5gpO2J5CBI42Cy6D2qjJ/7b6e6s7XozQ/3AuvX2WBoVoJJK1lwjUNgTWPJL7n2Vg+L9VzqFcBIAIe0km0lEqLOomHz21O4rIs95ZleXn9/8WyLD+wLMufW5blM+xnvFnbw2vned/alhdrUugBgDs4WnRToDTsZHmDb/7i5wAAv/Dp18JY7rPzz9vNdQoV0MoTjDfIh975Fty/2uNXX7wfNv1JMSStvCWJ2Mh+x+QkeucQcNc1NZy3U91Jl83LFtcKtbaKX6dzlBudp5aebka8Y1W//eTLDzNqH4CComE5AFoSO+OkqGUiFk5dU9vsPAUuo5sW6qalYTEvfQ5A+LPlJA7l+vfPt5pEuOmotZhnV1Hwol+7o3bYSwq0bNuKgaa1VN1UE8Sw6J+AgSQm983Hvv+b8V/9ya8W/cr5APXfTtt/HrXVAneAEqFdm+W4jaNOt9uHoJ9ONwV0o4lSN5VIYrXHOl4V3W73kygdH1wp8/aYPkB5dljqmu4eVZgMhsEr9y6Xw9WcopunuAcYIRONbsqgq8Og7K2EIS+de8aRAnRU1kISa2eAlT8vz7fF2A/CHAe5JrngYvpe+f9qP8WeOYbeHc5tazzVcWhT0AE9UHIw9hLpyPp59geO7IBTQC0Ve7IFHOxumEkCAK+vzLQHV3vMczyXayWQtJaWF9k0BHZ8Xu6XvD2ya8J4CnPrkCCbtVbYF91I4hz7MSUwbgpJHIZhOwzDXxyG4deGYbgchuET69+6vv/nUbsMSGJ5QZ1BXhehOdmUl3BbQV9SuikAvPetd/BHv/yd+I/+JU9vde9TkUQmYqo4bj5f5ve909FAliVu+qNiSFpR3ZZCmpuLlQ9UXst7FzHZ/XI3Z1L9PZQEH/2pXf8gWV+ZY01d1q+Ps+2Ed67c89965SIgKnGDrDjOjfE0Jc/0M9V+FQeMiSKrAhzr+jpPlOluecXdmmGdoL21sYp9laCA6hRcPifRXxc2sl4UBacMO2+Q9/UDysP+ptVN0zyKOt20/hkaAunGz+XWn71zmsvda5Fu40CcKsb/o7SWErRG9wUIx63i3BzmGcOg/3a1ckbHIIlcTlz8/NCPdNw0cREmULLPxiIM68b1N4WDlPVvCneIe4cVrnGKx8k4DJJYQW04JLHPIAcaNHmL7qg5AEs738x/N7kHRSXuyvlWoM3ukQl4qOyORs9aoDydvzqWGvA7ht5tn21+npqd1kJy/eeqojDNgGsZOGJR8QI8IFFLDaiol3e6eSYJALx+5UCH+5d7h4CGM7GNJP7FH/sFfOff/Bk8vN4HwMH1q8/T3wNfmCCJvk2TztRridb48fx7AYAvgSGEa9gSGDeYk/iDAL4KwJ8C8BsAngfwFwA8AeB7Oz7nTdcurt0PfUspVVCjusQoWnnH+U1TIlkp3RRwG9F/+B1fFl6v1ekzI0YSnl6bL5IOOIc0fqd6ncTooLWj3d3Uyoaxe+9BRBJfu9xlvO3tNIYEeat5lbYp0E0lkthWYK2py/qN4GQz4omzLZ442+C1yz3e8eRZ9t2q5UQqm7KWxE4hiSpFicuJ05FEhxKlhkJEEnWlWDPfUo2Qu0dLSKAUVuAQQeAI+k+BpNiHqO8no89MP/n9bHVT/fprzUVN4zi1HME2/arcR4DjZPIZ1b6bTkmp5YkDjYCH9d0SNDc9InaNfnpx78WmSCr9epCsYk0SqsAS/XKf1+6XOrPjOFDqyr7fMeqa6r61tGlbMijACtekdC/vjL1hOaEKvZtDsvIgVRROYZzLviB0Lbgi7RnZtDIpfg7tOeasnJ46ifl9wwVc3Rj5eGxQIJ43+fOt8bTgnRW8qPZrOvfxfb5xiL8muGXkJFaYE20kkWeJ9bT7K5LohBpTRLAeSACA//If/DoA4Kd/9aWcbjo2hGtW27AGMKlIopm36u+39Qm6BIYQrlkWjm46tt3AHifx2wF8eFmWl9a//8kwDP8XgJ/D57mT6CFjDRXUogFAm2rhkUIpuGLRM+KGpSEp9fnXoP79PON0pdCebEY8sxaCj0hivU5iuyaOVoPNlrsHdAP0lYcRSXztYpc5IF100/XG9je3NKwjksgbdunfvt+7njrH//uZ1/D2tzhUsS7/7GgkdSSl3FSjAmjtW9aRxGPyIdw8yyCEz8+dxmGlRNWUYmsOtx6xBtqRZM2IXGBTOTdiY/UfYZmEg3BUmOsIeOMu78ciiel1odWEK4fUqw93eO1yh3c/fZ7ljUzjUAhuMZS0WuBoMQzyWuDIUnFjlObY5qnqNlNA7gvtotStfla5jfRns+6ZtN8hW1sLJVsPlI4D49zI/EfX7L3EzdMJd/BBkvKcYoQ7aqV7mJzEfuGadV6LFyXhnG03pxyRsoaT+4+cQ32OuiqziVwqZ4BF25180Lt2LrbophqSSDhEaYA97FsMAt9JnQ6OlKRkNmeopDfMtiML6E66C6YR16T3d1OvCecA9zr3LUHD2ne7dTKFVJ6bbIFu6hHBdfiacJls96/2WYCnhSR6J/FkGvE/f+8/k/0etTPRCghE5F4aM73CNQd7QQLA1CaD9gjX1EYjZvHmbruG81BDEq8FdTRtXom05qRUOfwVuqOjP9TnX1e/yg/FUN8syUmsJ9YaSKLhSBV9KpQVIN7UwIokJlTGbrrpOITvV6V/Gk66doimr7/n2XMAUcCj1s8SxKgpeQIW/1+nqTLRfzXgoeRE3DmNFATtHrDoxVqEnHJSKtfE/G5iY2XKbQClo84oCwJaMWuunxSOOBiBi23Ib9YPqW/8az+Jb/jBn3CfNYuDrYYkGgGgWuCoWbuzSoeyjP+bMxIsZKNW85OlgKqFohtIuuwT7pmWSIgSTFvAI3uHDIEhkQ1BmwYxnkRu5gWUQaIHGO11Ug1uGXtJOkfGQAN0VgKL5KZLhEUgtTJIvarMrJqzljs8N9Yx0KYSpq9r/TRng3HANOXWZnBRsZ0Y6rQmFthD7/bdWCddzS082Ai3Rks+GL9bELNKr8lsB45KKvP6PHOvidu0Fcg5P9kEPZCbbN6evH8pSr41KMnpc8FJTBDIWrqHdxJPtyO+6G138b7nImNvGsv6rhb66/sBiV2ysHRTKVxD5iQadNMeJ/FHAPzYMAzfMgzDFw/D8K0A/u76/Od1awoQVNCXWCNLcSwD3TTvd92gqALReNOQFIZXbylLPXPHRQzONlF9qZc26vvVnYbad3O5jLUb1NMbX7vYh/eMo5dJ1m9Q2fzhWsstDDmhlTnWi4L7a+J+oG/7sCsNemdVA9USxAGsdSrbv1u1TmIzKKAYFgQlrRqRT2jJ7183uY+879msXzW/rTKkjnauh7aREye/m3PcyI3VCwl4QbBOdHUh+gAlIsjksfh5zprj0LhvAF2E4TAveHktXr0/zBmaqdJ2CUra0YpslTXSjD6PJW36UZp3OOtMDT0nxQzm+PtbCfr1lPyh9laFNkrVNlPODhY1mMU69s+3x8vXJRtcqSHVTce5yoBooxsyKGDl3vmmiZKw118GnKjAXRHMYejF/ahZbTxauKYSdGrtXVnQIszddrilKJLVT0sViY6bfW9nCDyREyrvb4bK719flnw8i8oPVBDg2UASgyOb39/U2lLYBa0p+utf1Io+1PfW2ycTHl4f1NeObZe7Q7Cz718dcnXThgjcvYTN9sDXEyeQRM/WOZ0Uuuk4VlLH2te/qOcb1E07hWvYnMS3f1nz5R666Z8F8P0A/lMA7wDwKQD/NYAf6PiMN2Vr5apV87g8AqAhiT76L6LkJt1UoQwB9qHRokmmC/JT91wdwq/6wqcA6A6wvxYWjaFwpAy5e/9arSj707dP8Kl7F3j1QuQkbvqRxJqzHZHEPoNESvl/y5e+Df/5v/yV+Jr3PhP6AHnEzn0vI9emgggCBNp2RB6L9rv5efo1+8N/6msxIOfYa+pekRKsr2WZ6wR0IIkKAsny+P367VE3zQ7Emc9JlMIdTD+5n/g1WzNKWnkUv/LC6+H/L7x+VSbbF8Em1yxWQomYtYMrQD0Hsu0Q1fNDfGuplZbvre/JQFk3zzcrIl9HEucm1Q5AJSDQUiSMc/LNIVLVLq6fQvfinJsKamPtJeLMsSTy034aImsjzuU6MUsAiKAAiyRKh69H7TL/3WznfqjcNwy9OC93Qv5uyrW0frtWkARo6RCUVEc3d3uOGUpKpGBo678rt1CyQohzw4/hHvPPq7XUudwkjCcGXdKCroxwU2/gSMvTB2x2E2DboGk7P9ngky8/bE+msz24ciji2XYM6qZ+bq2z9JXCSUSCJNbLsF3tnZN7ulVS1UbleixtfRFAuZasuumxJTCe/9rmy00ncRiGj4qnfnL9NyDaHB8B8OP2TN68LaKCek6injTvD/zy87xRI50bnm7a5wDU6vvJ/JyPfuA5fOLFX8NH3v/Wde66shpgR7ur1JNOtMHP2zuJmXDNOOCkIyfxsLhrUdSZWduOiORrCqASARiGAd/8JW9LvpcfXzE+O68Hg4Clkvx5kVz7oLHqjT19u+SnyxwR3wfgDQSAow3pYj68uuksDm3G2JX5KLQAR6dBDpSBGba4uva73U9o2p++d5FdJ00UhglA1GijgH1v66qhrT5j00n81L0LfP1f+XH84L/4+0NN2VaLJYYqyEbYX9N8p4UuS6EJg2lMEiAJHCmGfJMlUDV2+5ANPza1/gWS7uZooA0Cue+hcmoId1OAZhpCPbK0sXTTkJNoII9hjgLNZdCXWKcyPkc56cr9Brpf1mWdR7NbgRIBbbQHKANwvvn7qHZNS+Vcfo56PyJQXjhE3DqWlGvauUwCCW6O7X5pwMkb39Y+6fv10uR1xV37HpCBCyq4WwmktfKAz98AJNGjiM/cPsWn7l3gOsk3lznKaXs5EU+8f3XIAlCttIjrJCdRNu18c6yt9nco6aa9JTASdVNDlIZp1if8F5Xnw560/v/3PvJM/n9s+0MdSdQUioC4iWk3TohYi+jDrjEOUHf2rENKM0j856Q36J/7Qx/Ev/EH34s7p5vQr4YkWhGqmgPQUjPcVIzC/bzgmTW/77WLXYh2DUNfTqITrtENJve3/26tOZY88nBNDOOzV1q/Ke5CGJJeNML3Y6LdOnW6LsABOGS8pBfP2Vy0ORbrOJlHrenOJU//8fPkcxKVEgC2HYlJoKvM9dfGs2pk1ZQFgZgPAQCffvVS5CRquU7u0RSuWeS+ZQdXXL/8uTSKq/dpI4mfePE+AODv/uNPUU7i3kISA90omeM6PEMB1Sj21p5QrC3YzjYgjd1++htAUsskkh6iK81uRc7lPNtov59ngSQaTspYOYMt+qhGCWRA6ZBfGOimNpW2VricctrkfUOgPcNQQ+n6nQ3LmdIEUACYgivSTogqpcaaHGr9Gn2UfZJB4CN7Kz7H5CRKJD06Uu3xJJXZfwblJCr2nRXwk2OxgaNuuqlyHV3f+pq8fbrpchL3hxk//LHfxHd85burQIs/A95ya4tP3bvA65f7eCZWQBgAIW0DKOmmm2nAZUVh/3rv1LS1fUhXeOdTB8Kex5bAkMI184HLSTRa00lcluULH3mEz4MWECbNSaygX60Dv4YkhtqKhnCK5oA1o89VJDE3QLfTGJwxAIXUdPoZvYIrj4ok3tqOmMbB1UlMok+bacQDciOJdFP9Olr0GECnQ9momX79TdU+jVq5PrLIsZfkZwzCVgmMY/LN/Gu1OVZz4ozDphS8IYw0EZhhHKIwTzEem5MoxUXYnMQeJLEV/fRUFwD4zZcfZhFwzahgKGkaAhl/65ZwTemUUutKoT8f26ycYw0RYYNiQHl/t4Irmropg4iEvGiBJLLrv5tadgRqkI2XOGAaE0c2dX1ZSGJr32rMU+Yk0mindIAZRGp9uTv/S3XauNy2fYaIu0fr22m0cItuXaNp9wqz9cxRXkf/fKvJ/WQhgivht+5khUS6qe/DOcAa64hZl7UzuL2/5nPz82Xy+yUiDlgMlDintLXSNxySyAvX/J+/8Qq+70d/Hs8/fRsfef+z6nv8GfDkuRNjefVil9iS9bPU01S304D716VwTS2YebWfm/b8Mfe2P2fDGcCWwJB003kPbE7r7ydbj3DNP7XNI4naIVdDv9K8uaJPRZGQzUnUI4u2EaM5RVauzbHCNaUhaect1erNeGPr1nbCxe6QbX4n04DdnkMSvSS0pcbWuiaac0OXKZDXnzCSl0UWZbcjwlowgc01qCG5bSOhnpNYV3fUcwsBxkkpHWfG2AXyPCJrLN8vPxDf2JxEec9ZlKFhGAqRCt9SCt7HX7if3TcabZQJQGgIJJOTeJwR0y6B0es/BrqpUsoI0CPJzH5Xy2Vp0SQ1Y5BVdywcN/Drvzcnbhzz8ybuP+3x5JljyfGHeSrry14n9TOYKwIf85SpOoniuzlno91HDwqQqI0SFGaCAvnvls+j2U853xj7oqiVayHAo+4kHsXuAHcP5Oq+XOH4dIzwf6ufcIp6HOC0n/9/S7gJ0APzVn1RtSwLOJRau/7tc6N/j7x9usHusBSlmmrt4c45P69e7Krv8WfyU+cubea1xEmsMb6A1Lk8UYRr6jmJ1/u5ft7UUHuLbip/N5puKuokzvsbQRIfO4lIaUrlYm7lcQH6phwKYCvCNcNQdzYGsfH4Ns9o7j41NU+T7qhtPI3vFfoplEAp7qL3ayNZZ9sxOonrd9pOIy2TP6+f03LagDYltuU416J9tc3nMM+cIIaIYqafqfZTDcL+wvFxnkcUSicc55I2zTnAx0jCTyJKyDikbi79hrWfZ5rbxkQIY784nnWP+j46kujGf+eTt/CrL95fjdIh9KmWwDAoSlV131ZwRUMoDISoRuX37WI1ClhnMdJi+RI3LAMCUPaThrqpLq2fv1ZrMi+3J7dK5h9R1D5l/zHRBvH9LGpxNp6yvtrCNTpFbF5IVc5OJHEQ+zmL7Pk5+UYhiSpzwv7daoY8FShU9gULyU3H8I25v1VKrGXrrsHT2M892qUbtMAp+bulJgbxu8k9oSe9wY3HBwp9v1I/wmYqAWVZFoZKmwWuCZ0Ez4CQoouHuV5y43wVx2PRRB8UvX9VdxK9s/eWFUm89zA6iTVHNu331Pk2OIkcknjA6UZ3xKr3GrGOgeS86c5JTOok3kBO4mMnEVGFVEP4pDHoW6CbNpBE2W13aFNyagIJgJ3Hlc7JN8b41zZ+oF+4hjEkN+OgRmS8BPTZdsLl7pBFyHpKYPhDq+a0McIRGh3KQiBj5Lns159/RMxRiVovTNRacTYY4Y7NWIoHWTWy9LzV9TXDSSxpklz9Kfdeb9hxh7bMZZkJ1MCPJwueU0iiuHesMilAHXG7XJ2oD73zCfzqC/ezA0jNCSWi3ZpwE+tI9dZJ1FD7tHnjYQF3/0emhj6mVifRqlMJ1PfllhFaQ/sBDhHJBW/61UYBvgSDhnayCExwwAyHIfSr0B3bTkopJc/0k0ahhTzKfiGQT0T//cd25ySO5XnD/m6LsraYoEDBsKGFa/rtCxWRMgIQ41BB4Jn7RgZO211UxJ/Zy2MOng+S5M/XxyvPfEvd1/cr6m6b+yuKsdjv1muTaP0Ad+bU5nj7xDkwbDqRT69I62rL5q/Rk7eck/jC65e4fRJLvgFlsA8Arn2/85MoXOPP0qkuXNNi60ndAoClm4rzhi2B4esdHlYn+oaEax47iWjnqmmCDEAbSZE0F9+sw6ZNN63302gFgKPRvhG5hY9iSNYO+82UOInJ4bOdRpqO4KPZ0TgQry/MHOvOZc2RktST7Hu1rqMSxYxR02o3tVA3E7X29FYZxQSOoxL61/Q5NkR5GnN0yEb+3AICJQ33XDQI0+etfqmSIZ9bmCCJjYhp2U8YCJaTWEHcPJL4nmdu4+H1wSXpr0u0WYPTiv7XAkCdCDyDULRyEh9c9Snf+WtUr5NYGruxwH3juw1lP6DtpNTQfqCfbsesfy1vkkXAtDnawjW5E8zUaQUawYTO/Yfpp9VJfMNyEpVAIbcn95e8cnPU6abWt9NQkXmxnT1AT9+w7YRkjusj4+wdQ1OVTgqL5AIKAt+eYsIU8H04R1YGsC3bIu2nIYkM3TrSphcuT3MsUzD8860m6b6Ap8Tq7/dlti46kcSmkzh7RNDRTefF0VoBDkl88lZEEkMuYwNJbNW4nAY9sMgG/MJ5QyOJq5M4eyfxMd30xprPSdQ2vI2BJOp003Lj8X+3IXv3qBlbx6qbmuUe5IHN1DtsGJIW/aeWEzetOYmXuznPSdz0lMDwSGL8O20MbaVWx8vPX2vaQZN+r+pYrbwlA20DNJpktYvrJxwiP8f0M7W2mfpzEv1Bs4jDF7Bz4rTakUxkHcgRQT+PVpPGdU9uYRrZdYY81y9dJxYl2ffR7hsfWX3mjjsQX3pwHagvrZzQ1vfTnD2KSn4EQjEqyHbaLq576aZczndvTmJNuMaX3Gn1yRFBzpIfh+MQwWI8sl8uwLSeaywikjhg7H1TqOBatMVRj+QzdEcgDxyxaCcg2QWcs9G7J2voC6uKKnPN0nlU+yl7Cc14UYKn7eufG8lMuoGfY06R9P2a3VSl3l6nDSDVTUU9U9oBFmhWPH/b/TZKKTZTXVZ8N97ZRoHIAhzdV6Ob1tVN3VnFBgMZJNGzzjzd1I0T1fz9nIp+a8D1Lbe2LuUp2dtr6R5Aew/Scql7yhmFvZxVNw1Iolc33XN1Eo322EmEUzfdjHpBaw3mB2IESXOKQsT6IDd/m9ctb1Dfr9dpANoS7X7uNbppb2SXzfer5Xc6uumIi+tD5hRvRr4ExmGNZteuIyulreUW+vnXvpf/Htr3qo6lUsTy12pzBPrzLyaNbhfQlz7n3ioMruVDYD20TSddi74RimzpvBhqcdovFbw5JreQiVr7fhLJMpHEmpO4izWhAODF169CdLZWbxKwiyLXFI97qetMcKtFN33g6aadTmLN6fZ7U47k2uqm1aBf4/7WWAKskSavJbX+BbLh/m+j2yXd1D1aK7kQrqEdsHJfZpwUje11MNBLeW+3nPp8jtqe0O4T97u+Pbkm1NVbJoKmO2pnvuns1e0Lk12gOhvNKSp54ms/LBHg8QAAIABJREFU4gyQAVdGyAcQlMyZDwqkKF36fHU8cS0ju8lGErVALVMCxnc7Nm+VpqBra7nhRJ1tfU4i6yTaOYmSbgog0E1rAo9A1Au5c7ZxNui8BMZWC0lsiTdpudQM46KwJ1l1U08tPazlPB7TTW+uebqj1lpUF0CnCWtRXf83E2kqE9nbh1Rt8T+KIElr869RHwC0ndKxrEEIuBt0Gle66f6QCUL05CS6yGYyVhVJMebYiyQqB43vx0Roe2sStahsrab1s5w9P88aklgX81nfJ5DE3hxBYHXAyAK0h2AQ2sEOQDu0qTKJBVWSUST085FOup2TWCK5gDs0p3HAU7fjgXhr6/Mvyv2AcQC0g83nbFsBJ20veRS6qTceLvecEeH3iVrAoxUkYZBErVZotU6oxhKAfW+7vkoAwhT7cI9HCadojix937i/LaXF0K9y5ljrREMS0/1e77cKyPmyOInhZ80RiHsqdx3do9yTGSdd3gKUKuego22MfdEbzKyVDnBOSnuOcj365805KvcNgwrKGqhmsEMN5vA5iTGQAG6OYz4eiyRqdqGZ8y3W5Eze2zUxK8YB1sTLav1ON3qpuLT9xksP8IufeQ1AdBKbSOIcVUp980hiTaUacDmJ22kMZTlSBHQa6zZoiy2m5VKzecrZPFm66bR+5/lxTuKNt91hrgrK1PLoWsI1tURv5rAZVPqJ4dgoUWRGkERyz91nEE5KE0lsOUW6sRuRxAkX10K4ZjPgmkQS93PMwdRKALAO2DH5d0AZIT/MRk6oFsUkHdl0XgCfkyjH81RrqwSApFxb10TPkeKLUhcOGPvd1s08rmPWKXV/L4Rh58eTzgaDpMj1xamblmsL8MpqI+6cRifRK8ZNwxB+W98YSpq233GOFEoEcjEoqmOZI5s2L1xz/4rLWdmTdFM1J5FAUspc5brzptMP89dqrUCJiPUvHSLfzzY+S0aCm4PdD0gMUMNg9a0qXGMwJ9RArUE3HcUc2XvUT6WHShsUUZNpcs6GgjZQwTT93GAMUGnvtiiBQAwgaikmfUgit7acA3yMc1kGXFnnvlQFbs9RnsE9cwSSYGag8tsK173BFQ0RBzhnOx2qh+4rTeUWclarJ+7bZ169wB/4qz+J7/yhnwEAXK1Cba3zwO9/5ydTKE1xZ3USR2X/9213cPUOz082mBcXmMzVTfU5tvZYvQYqwfiSZwftJCp008c5iTfTWgpFrTw6oF42A9A2f4620pvsKg/D9P9tlVJ9ju4zjUO7OGg42pYG9Xta7K3thKv9nOU6nExjYezWWnq4apsqY6RpqpxR2IiX1vf9qE1cOUhbv7eGVDMKfBpyaTl7/jUZSbNyEtU5osNp60REpAM8E98LKI0E5joCa+1IYZBTVLYjkEStTiXgIqvOSYzRQo8kagEghpKmBVes9Q/ozmWrkDKgBwTS9nDNVXlI5qywJTDynFD7u9WKibfzUcqxjkV7loVBROKc0vF6xT7ifO1+6fvd3mtMEp462mfs1s5gq+xGoBd3UmL9e4JyZUeQSuZgc05b33kPaGweLiimiWlYdXKPEW4Cyu/Ws7Yy55IIXPt5yvqidHAxvd+InEQpVNTjAKfjMWryQC0Nwz6307l1OdvavsWo0nbYvJaT+I9+/RUArowFAFyuSOJrTXXTmHJwtjqJUrhGC0ruDzO2qw0KAA+u9mHdb6Z6TmIbSez/zdJ59pfA8HUSHwvX3HjbzzM2DUU8LScxblyKk1jh8FNRhFGTxOaQxPTGZgvHlxzy9bXmePpBk85F7TfWcxK34xhyElOa5nYaMS86RUD7HN9Poz4wRppWpiM4UjWRloqxy9B9Zb9HE67hNh8NSWnmJCpJ857+VRuzVtybMX6AHJWiEEhxTQLdtNe5JK4jsEbyJZJI9JOBEjYnUQuuXO1mnG4m3D1LnMQVSaypGAJ2AKKKJFp1EpXxmkaMQv9Mm89JfECq33lj42RTD/gBOdrG1ncFdCSlZ/0z9zZQ5h8xwRUtD9s5KfZYyxLntoTnm93K+20mgySFc0PkxNXODWt9KXsClzcp9wTG+I9z8o0SqRComevH0oTz3zqde3U8bV8w2Ax1zYM63RooA97RtmhOUUEg3SOnyimvf3us4+uL+vcu2SPrlPr3h3OUOAPU60/sWyFPv8ORlUEqgAxuKTZXbY7eSbyuUDl/7cUHAIAnVxGagCRe1nMSrwMzagy/xTlZAmOz0k3dGPvw/lZOopWXfhRQJM+bUALDcPiGwTmKvgTG4zqJN9dc/cJ6RLiVk6jdAHUkkUva7s1l1MbjkERdbAKw8pZ06sM4tDc7DbZfliUYCbfWnMR5iQa3FW1algX/z2+9GuYQ6KZKxDoYaY1vpxkxFpU23tT586z6nrYhtzaSqmw3e0CpSGILSWmom9Y2SOWaLMT613O57INN5huEII6JJObXZF7YnMSYb7AsizMkSZRin13/maqTqCOJB5xucyTxPBWuKe5t99hkJSgHGyPuUsuZsUSK/Pu0drEK87AlcPw8a6hgpEDHz2P2ybC2OoJAtdxagDOSS9pcu4/vVzopdh8gpc2RjqwSXKHopqPCQiH2ydoZbAUlgTwnkQoAiUDVstjCQVoJDNZJ1wxJzk7I+wCcIa+qcDf6afVF3d/2nqCKIpkBj1ysis3lLRxnQiREO0upmsPi3Ajfrd2tzIFf1xhzBhSqwJZwU3G2+etor+VFWVvMtexRNw05iZX9/dd+5z6AeE2ZnMR9kpfuh5V0Uw1J9HRTH2R9cB3pprU0KaAdKKkhiWw5r2DyBiSROATGrUASHzuJN9L2hzqSWC3k27hxak7iwhwayiZuRRa1aBgrSHIMkqjllVhKZ36eNZQuy0nMkET3WMtL/KH/7RP45/6T/x0f+/WXM0OlLVxTn6PuABuomeLY+O/GCGJodRK5nMS0H5/vpyGJN52TqNVyZIw0PZervx9D6wDK6OIC+zD0/fbCQGBzstJDyqIk+7H0nERHN72t0E115VD7sK/RAQE74KTtJYwRX6Ob+sgxq26826/zNJR68/Vvi/LUhGtaCFg0PuNzXWiPMNKYPFkNXeqladOOrKTNEYi466cjshbiXKWbtvZXsQfxSOL6+SmSaDG91MAdh2TNS05TpZDEUeat5nOvNS3gdDCQxJjLJc+AdvkeKYpE57sK+4JFEvX7xh4LyM9Sd/3b/UJt6nBu8A6YG8+9P+w/FAIsrv9iCTeVZyLTxkEi4n7uVj/dKardoxFJrDiJLz0EEJ3DqG5q10ncTCPe88xtADm7xr1HdxJTuikQbZg2kli3M7QSTz3odvgN2BIYADBtk5zEx0jijbXd3K9u2sp5qi1GKrJ7BEStHlCzvSFrDilLSes96AGjlMI04HTNSUwN54AkVqJNP/Kx3wIAvC4KoEqlM/fdEF6rNS3STddJlN/t0F8nkbn+miPFHGxa8KJVIzTtV3XujZzEPNeDN1plRNjygGV5gwOLvhTOpW1YuPHioX0gjZ/QL/m9D429J52jpu7onMSYoA8At05i/kUNSTxW3dfMP9L2LUP9ENAju0A0HuYFVF6yV7Y7aVhO8vuxDrA2z1bwonVv24hIiUAya1ITCmHQFyAGqlhHVjNAjxF88p9hB6n0QG3LuB6GIb9PDeQxnSOQ5nJ1CKAUezKHGkjkxpqlDAj0UJn1s7vep1YCZm8E/aRSsv8fcwb00kbd54rrT4ylqQL3pG6E+4YsQVIyXvLPq85T2DORgdUWJkzHAnlvSxuURRK1VCkXuNff7wGAWhDQ00qjk7jmqF8fqudBULgeB3z9+54J7weU65H1m1d10+hUpXUSD/NSoKRAm/KraXCw6SxZYJ4tgQE4pzBFEhnH0prLI3/CPwVtb6ib1gr5+te1PoBOG+UihPlzVj8tGjY35pf2qyGJlpNYyMGTiEirvERIGr6OfPBIN9UNyV95wVESQn3FcGPrRp353SqRbqCONtSQYxNJVJ09e0PW1hdXAFhxEhkkUc1JXK9JZcxaLUeGDgWU6BJ72Kd0Uy63MD/sGYPQ9/OOsx+TFa7JcuLmBeeUsl35vFc3TVsQrhlirllUXuQCEPU6iQ3na+g/EGvS+r75OpCAcxhrbA/fgsBO432bMS/DQ6mbNu5vE0lUjC0r4iEdKcbZAHIEZlkWirkinVkt91Vrkk7LKKkCOgulRUkDfJBEcRLnNgIM5AEuC3lM5+jnBfC0Uf9e3zgn3T0elgUjosPIlCBR0R4KbSv3ciYnsaz7TJTYUoIklgc8KAjkMQGIvhz4tB9BGxXOJa0cKs63iHzZzqWWg9rD1OhRKQXi2cEiueOIwpFq3dvb9eyqpRPskvN1d5iz8+DB1QFvOS/XbBSuGfE9H30/zjYT/siXvRNA3S53c3AlMDzqCCBjpfl5yN+ppeDt9p78uzEUaMAHXdc/WOEaYEUSH5fAuPHWUjd1qFn5fDAMG3TTclNleN2ac2MUwFbUTWdiP1bppiwlrdgM2knUgB4RTiWgb5+6G/T1y30YvxVtSj/r9ctdFinWhGtYURjNGPTz15qG5AJrlMmoGyn7cWhPPi+A23w0Bywigi0joeTkW0GIWr4lEyEHSuPaOtiOVzJE1s8VUja7ZVFCJiCj9fPzpPJRNCRxNwcU0Y9dJOmL6w9YdOvSQd+RaHNx31j7loEkXiX1ET2VtNX8PFsiTJICRDnANSexQV889vq714+rwZnmYbNOg3SIepwNQNxvpCHfTTetlmBoC6cAOb3YQh59k/mFPXXzSifFDgrr/aw5lg4pwOXEaYg/JbDWGRgu0c74fHOOYg9iWDL+c8t+/WfiQvxuJd3UP9+eo2QltOxIOc8UrIjpHu0+6XuDk0iglmm/GLhudlMDQK2Ax4kBAKQ239V+DogiALxWEa9JBRvPthO+55veHxw/DUxJx9puonANEK9fKy2iZfdOCuBzIJlKWdB16aCbjluHIAKPcxJvsjm6aV3GVi3keySSyGwimnNjIXtyPMYhGgcNtYyvNeeoGExUUXCxIfhru52GkGD8yoPrYOidNAqufubVi/D/1y8F3VQxRhYct9FZaEPNSbQcgJoCKNA+7DU11S6UrhdJVO4BqyxCTRCAUXEDlO9mCkes8+o1COWBCHssP8+9OOhZA1TmhHIIfPn8bl4C0v7WO6cAgLNtXcmNUeBr1Qm18mtLVoJRAqNx+AJ5rsrVwS6DEahGBpKo527zEXnfGCTxWLSnl7bo+3WjBoHumBuELAKTIfdUUKaCJBpMBqC/BIPrOyZ5kyTav74lzUk0g1vrkpMlMKzh/PzTS8I6N3oAwnZKy7SIdoC3JdxkBo4Um8S8JkOZb8kiiTK4SCOJvddfOHsMA8jPEcjTIgBbuEYyzKL92WZ3pGOxiGC0J5E99tJU/di1r2aJEmZO4u6Ay108A2p5iZFuWl6XFpLohGvynMSUbuq/i2wt8SaNhcgylbL7m1U3BYBpVTedZwAL18doj51EeLpp5bBXjB8gRiM0wzAgiYXRRG7iWjSmZWxpqI3/PAOR0qKKgEFJq6BttrGrU7bca9FJ/O3XLsP/W3TT33w5dxJTpFajxLK5BnXhDqtOYv685QBoUWTmsK+hFOzB1puTKCl66WdUi4n7DVmI8hwzRxeNbHYLv02gv5FGqzSSWUMyRcXDIdrZz43HqZtqSGLa9613nZPogysy1wwgRanC76YEEpq11Eoj0lK8bB2+gENK/aVhFE4jksij4v66HoOktNAzNbd2ad8zad+i3iHDNDpiTcrvxpwbab8UTT9GuAlw66Z2/qZzUUUxCCTRrwuWEisdAIuOmfXJnA0iuLW+3Isc1/LGjglCz8uRdOsGkg6sAddsju7RuibDIMqykEh6mcvIMbeAfuZKzZGigyvrPH2w1bpP5bkRg1v2HHsRQf8dJFPGDDiNuSqq79tyoqZxqO7t1/s5OG0eSfSgQU3hNK2TqI3n3lOeN/uDE148V+imMo80bS02g8ZCtO61tG90Ev3iYpHEXUQTHzuJN9NadFOphudblNgv+9Q2VVZIoEcgwc2hjJAwN7Ymk78Qm52Wf2TllQC6UmyKZN1Z673NC3DnbBueB3Qj8TdfeRj+H5HEdY7Kd6OcFKWfn2PtWh6rbqrVtwyHfWvzr1Kb6n3cPBUnkUESlWKysV/NcXaPvcZPzIeIzzGRZKncyioZankbVG7VmOc6ARwlaiPQdBpJVPaglO71de91SfqnG48kuveoSGJrLAUB4yiZY3kgzjZqmX6+bFf7OQSLapSktO0PM4bBMniR5yQSdRKrdW8bgQhpRLr/e0PeMlw145pYy0PqJHJOg1bKws3BHguIgbEDwRLwnyt/bkvgq41ktcfbTHnuMOPISirhTIwj+wDreUOqosoAby8iGAJABCJVBjPbgaqacc3k3GviOqwDlgYuGPRlGI5QN1XORHfeWGMhnyMRgEvHi0JR9vnrPzcPLi7h+VafdIweRDDvx+5bus3b6redhiqSeH2Yg014tZ9xvZ/x9PkJAOD+lU433TXsGS0gk461FUrhPthYC1L556paFUOJJLLCeCqS2JOT6Cmqj+mmN9N281yNPtcMtKZwzSNEPjVqmWUk606De7Roo7VagqYCovLdjjF2I5KY13vz/w81mpQb+9WHbqO4e7rB/atdZqho321eFtPW0tXf3CFa+w2q6qZGBLqdt0QEBToNC208LidRpxenn1nMsWL8sEWK82tCRNan/Joc2ARxMU/WkExpi9a1SJs8FKmcRIXGE/qu3/vf/ZYP4O/8ya/B73vXWwBUrn/P2uqmZPYHxSwk8Xo/4+4aLKKQxHmpCpD5Jmt+xvVvG8kqklLdE+J7fItISruVOd8ddRKDAJOfB2kQCnVT27l0j5Fu2kGJ1RBZBhGRTgrhmG7GMaje9lBigXgNmYBT7JPvW+yenNNUSRX0zgAQUC9n1LouNZqelZM4FXmT7rGb7jizStUoHGc2J/dYEbhe4RoZvGP2Vt8v1yCw+0madi8FvdcB1lJ15kVn2/m2ncZqCYzdYcHd4CQesJ9nPHXbOYktJNHVSCzHHIZB1fxwYzm6aYokPnErKoUDDSexdgaMZXkbxgcAxLUMJTCIm2DcOBQxIImPncQbaQ5q1n+Amvx26+ZuIYm2kyI3OvvGVqNhhEVSQ9uMblUFVmsNa7lt3mDejINwEqNKI6DfoH5zeebOiaObJjes6twvXBRTV387wog0jJ9jEeBq3h4bNe10AKRhDQCHQ5umV8uTpaPIhdHEGbuxdiFvWAN5ZJczJOM1iUgi4VwKVNZCUXyf6gG19t1MI752RRPd/MpAAqtu6vol4xi/tR9Po5v2qvT6tiwLrvaHYCRc72e88uA6y0OWbbefm6I1fkzNAT6ObopqFFkPHHHrRO5dh5mLPjsxkz6DUBqtbCkF+dtZNdvCHBUWCq2uKaPyREBnmyKJDac+Hy/Oy4/D0hZLRIpzUlJK4OKiacYcRU6i+Dy2nx+bQhIVe8ZKp9ByElmULkXAjglAUMwVlc3DM1dmcd/QTmkSlPRzb44nWFhMLmOp0svd2zJVhN9LBlXdtPXdTqaxKkp4mBfcXW3Cq92Mw7zgqXMXNKw6iXO7Xnet7rkvgTEMQ1h/PkDZyp3fN+4djabK2yXJ2dFTAsMjid5JZPoY7bGTCLdAakiKVhATSCI5jYiF7qT0GTEMIqg5G+E1g46wLGX00+o3Kd+NidpNYz23bRoj3RQA7pzmN6j23bza1VO3T3D/ap9FfDVjhM1JLGg1hIobUG4i+8Nslg0A8lxG6veuIMfHIYmcAyClnAMFt+YkanMk0AbNuF7AU5SC0WocTrGfe+xXaUzQxw4kcTOO3UiipBr51jqgtIPN/7f19TSaalrLtDVHTZWZCa5o++t+XhztfDUSrg8zvv+//Xl87V/+cfzDj7+kft5+rguQ+SbTB1ImgzXPku7YzkdJPx/oo3vJXF5qTSp00977LawRYiwgN0BZdVMteEo56fL6EwjfZhqDc8nuCX7P9nseM44ugNJfODuiNna/3uCin6eco3V21IIklkEu2Ty0I6s5N0yQZJBOac+ZGJ+zhAKBhF4c5rg+b8xRXkveSdQZQD0IMM8uQNaP3be0c2o2AlzbaVSVq/0ZmdJNd4cFT523kURny7dsZR1w2B2Wgk34xJmNJM6NPeXYgDcAfOMHnsOXvOMJ90evuunhOqKPN4AkPq6TCDsaoMHT1s2toS9sTqKakN7s49+bj5W+prV08fsbi3VKj8m3nBSHO43k310dQyBuDq28pav9ASebEXfPtnj5wRWWJfLIa5RYykA7EknsNZL10iXl96yO14vSKddyR+RkaXm5Vi7FsdLu6sY625LkMm/mQG7GGt2UE6AZgxHpvyJjJKfIBrCuLaJGli6/Xf+OmrPNOA5aACLsdYYhqSGJDGqpsgT2uZFwvZ/xy7/9OgDgb/6vH89Q09DnUE8bCGOOOd2uB0nsKd2gKhAHxLk5RUzjkFGwaBGm5DcIRmtn4IgpgST7sTUZ5Rx9o9U1RUSecQI2SdCPZwnkwQsmcKSzQniHyHfrcaS0AARTF1NNNzCYJOl7076Wk6JRYhkbKH1/+lyrTWMugsKdN/ncAK7kRumA9d03vcrY8vdm+sX7BtlcewMXPfnNZapU+97ZbvScRP+ctwmv9gcc5gW3TydsxqGak7hXnL201VI3rvfx7PBL4YlbAkmsBDNNJ1EEypl98q/8C78//hEcPhJJnPd9fYz2GEmEd5JqOYnO2ZMwulVzJqX+pH2YaIwaIWxtxhVkyX9etV8l0gHYwinld+tHSdM5b6YRZ9s4qKebykLgabvezzjdjLh7usFnX7sCEOvE1TYsJtJ3Y5Hu2cjJanw3K5fUfX4+x16DMP1/K/qm0R0tmqr23RbwyIbMpTMPqPX1XGyCNwh7VRrdWkYYCyDrKybIBuDQKEb+XFVka/RVkUT/eQwFVNlLLDS9l12wCWOVr3mWQBSumcP1/Qe/+pIauPP5KK2mqcsCBuI55Iadb609r3UdzZSDsQwUskhiKclv9JHr36utG+Ol8vUsGiLn6JuFpvuzL70H2DFTejfLEvDfLRWmsmvLIbzXNy4ojDA33yd9vtpvzPOd6NIlwnHjWAL5e30zfzfBVIqOrD1HQKQAEHtr6ZTa61izL3rSG2QuLyPel47HnL+As0PnuW/9x0BtHszszdOkHeABhZ1s5Q2fTCOuVCfRfY4PEl7uZnfeTSPunG0adNP2eVqrVrA7zDjZ5P2e8HTTRjCzqd6q2uXcWs5ajwiNpJs+zkm8mdZaWMGQEevDiuRIFUP/GYwhn47FUMRauW1MJF+TyW/NsuZIWZu/hkilkfz02hR004oheboZcfdsgxdfv1r7eQSyjPxTzsZY5ltaOTM14Rorct3KJWURYN96op9pP0ul1PUrAyWeNmw6KUciidmaBHfYTwlKdFh4o9WNFw0ZjpI2ZDS2dO5Wv90hXktG3VTW9vOtlRPXqsFJra3OvWQadeOfGUurQ+sRgVS4xhsG14cZv/PgqujTUqlOx9TXP2NsKUZy7fqrTjpvbKW/N6scmn431iCURjKLGqSiGD1062rOdytIpZxv7Jie3h1olcw9OuXrksll1EpgMOe9XFts3pgcj6cSDrqz0egn99a0b0+uPp3v6h3uZE1SKLVCpTXPm0qA3RrPvyzRNisAVEMS7QB77qQzZ44MJtOI4JEOsEo3NRx1RzetI4nennPCNa5Uzt2zDe5X6aZtJLF2lu6U1CBGuIZBEmcRzGf2yawF4RoCFXxcAuONaa1cqZohYx1SGmpG5SgMpfHvnmc2g7JfUxVVyT9iDBm9liODZI1KTqIeyQ9000p5CcAZjidTrop6fhpv7BLZIIq5D4ox2BA2Sufei6RIWgfQhwB3J9sr4zE5iVqgxEISR6UP46TXSjewkeRcbMLuI6XreZGQuL56cxKBeF2onEQluOL61oNbtTqVAJqGjJoTSkSSa3TT1v3WyqW+2ruDMQjXHGa8drHD88+cAwA+fe+y6MPQTSXlnTG2NCfF961dE/+0FvDrFRdhlUNTFgotNiEMybBEzIBfzNtjv1eYo7AJLYRPy11lAzOe3h3QcGKO/veOpTNs51JDpLjzfljfi+yR3ic7EUh5n7J7l1uT+XP7Rk5u+pky39L6BUq6o/29APeeR1X8Do6sMVaNgm7NM1JA3cVkgrRAiQAzv1v1+hMOKZCyC7i1paYhGefwyUYXrolBwihc40Xe7pxu8VpD3dRSqlZz4BXdiSfObF2MVqBE8x0YdLto8wHAEPOTWm3aAofH6qY33hjaVlkDrG04TaNWI4WIxoz9Cel6UXai37E0VS1iNDMHVElZ2QtE6sPvfhKAVhRcdxJPt1NAGwDg9klURT2mTqK20Zk5icHRyJ+3nBuJYvk+ACkuIn5vGklMJsrkJOqbnRuvXhYkvi+fox2NBDQE0t5Y0yg5L1wjo6asuEXukKZzb/Zb17U/GJlC3bW86HYU0z1m9wDp7Ml+zJ6gGf8s3VRTQJd008vdAQ+uD/jA2+4CAD5zr1Q53R/sEhjSAduF/YdR1xRO4lJX9Gzd24zjcAxFKaVW0oiU2EtYtGcb1vGSoCH2HMdBcbaX/iAcm8vltAFSSqw9R596konymPUOEd7rm0tvIK+/MOSZcyodz18aezxHAQ37JLH/A/7MV5BEQ8wKiHsri6RrYkrU/i+DK4yTPupOOk/JjGMx/YrceTLYIc8A5syJ5737AVgKelWUx7wmeX1j17d9nm6nUa2BWyKJjm66nVYksVYn0QjoawJrgLv/ZKqCzEnUA7X1AFeNldPrI2Le84jguHFIoldEfewk3kxrRQpDVLHYIN1jK4ogjR9K3GWoOYn2ZtCtinq0k6KgdFRtodHMbfuh7/oKfNfXPI8v/z1PZc9XhWtioWzSAAAgAElEQVRWjrpv5ycRSVTpn53X343djk75/E0tb5X53dLNhzHSdNluvraTWiidoHtJwRVOuTVfk+wcpZAAs7FmjhtxPdx47rFf3TQaWwGlIKzk7ZT/5gyS6Iry6gdUFUl8hABQ2c82LqaxRPut+83Po003dffzyw+uAQAf/ALnJH5KcRJ3hxnbTftaVnMSiTqJqnCNZSAo15+hXEtqJbO2Uuey39iV/dpjeUdqP8/9dFNh7C4LmoESTbgm5E5axvXk6N1Mbr8cz9dXtFSqAf33XhY7+C+vfz8CLJx7Y7wY0FyyR2sP2ij2jLV3yb2VzXeNZ4D7my0bUOo5dNTl7bz+o/xu5L0d6j4n+z/AOekZkk78bjJ4zez/ab8yJ7HZrUCpGeXc7TSodRL9cx4AuNofAtp397Sek7gz2CSa7Qrkwdpv+/A7ACSpSw0btBUoqacFdXqJy4F39oqcxMd00xtpTdqWYjQB8Sat3Tha5I3btPpVy2pCJoCdWwgIuimx2Unuv5+n9d00lcZAt1hvtOeeOMMP/JEP4Wwr6iQqUP/1fl7VTeMNdHsVvNHpb4BFJNE2ERpJLJxSi+6rOencZizHmwlH6vicxNKZdcp29bFG9bvZUTSd7shtrNMUAwOskyjHsxT7fNsk904PkpLT9BYK8dQCHkAbhdQDR/Y8WzRVaw/S8pQ5kZzyNU839Qf179x3TuK7nj7HZhzw0uo0pm1nBC78mHt1/dv3d9ovRPJr54Ya7LADQL5vavzT6388gm4q9gTWkAyO1GHpQtIlU0bu/2ofZX8NjqlllK/XkkUefR8gEa4hrn9dzZl00iUCTJxTwPEIZOmkGPfNVNoz+7l9f8vfjc+Jc4+p42ZdD6A8u4/JSaQDOYEm3Hf9i5xEMsAiz1O/NpuaB5O+ttg9IaKk+Ryqc6zYrlZO4rWWk7iWxciFa1xQwiGJjTqJRsCvphTu7/v/4Ns/jH/0fd8crkNLuKY/UHiEcM184Osdjl7d9HGdxBttLUNNRn5881zr2iGgIYnMpjWOudHEcOT9/i7RF8BApBRDnss/0vLvOLrjYRYCKCEnrm3sSpQOcNEmr27q2+31/zqtgKOfaLlHveqmTPStJm5xnAKobZBoEXmmUPpW0K+AVSSks7bcshD5KEpQgFGlBfJoay/dNKOWkcau78dSjQCdpmciiWM/kthSPG4ZXDWaqr1vlXvJwZD7buUbX+1yJPGl+06o5omzDU43umHBqJtKQ5Kh26nfzYjkt/LEKXERaaCRdOteZ68qd2+Mlaqb9iDpVSn/Rt+NQN/Zfq6vy3k6Jm8430vafVQ1Z8K5LJy99Xk64HfIfzfeAVidjXAdjX4Km4E9FwNtdH2+N1C4EIFTAEXeHnP9I93Uz5EM5BzpAMtyIoy6suun36fNnFAR3GIp6P7l3nxXp2ZbBiVba6u2l18Huqlzci52Lmi4mVzJs2adRMMu0WzX1F442Yx4693TrA9QcRKX3jOYC15nbe5BEjcrknhzdRIfO4loG5S1BWJRgNxizBc/e2hoyF7T2TiWIhYOtvhcNCTrTat1xURbNSdlbxhpcTMuX7vazaFOom+3E7ppMUdCAEJDRNiIqSZ33zLIa5TAYymZxziXjAR6LSexaVhrRjJFSfbXMj63gDSSEwf/sHDUMumUss5lpKEvtMEK5DQ95tr7z9WEolpzbeUptyhpR69JxblflrZxPQWDqWUkuHvbI4dPnG1xUjEsLKqRH1Nd/50siIAeW+dGJ5Lr+0oDjcmlSwOMbFkWmTsZDXl7TY6D2797kHRppO1nO0g1jWWQiqWPbtc8zWPyhn0dVEZdVmNbcCUw8v1u6aRkFnRHC4GUzg2LJFaCp8y5EdFO7jeQ59u8kDmJIjDcc/27adqj7OeDK33rxNs1jHhZOh5z5kjwoBftjKVLOOdS2lyH2e63UVKQgJiTeLaZsJ0GPFiRw2kccPu0rm7q6iS2HefCljeupWZvAZEqX01VUwAmtk5iPtDe5q2HyZ4Ah+vHTuJNt5bDt1E2f8A2Jp1RkT/HbloqRYwwyDUk0UIEAZ1uauUtHZPvNyrX0sqJa6qbHkq66flpIlxzTE6ogtosREDAfZe8j5tHeyw/r3SOPG00Psd+N9evNJIZdVNp3FFR5CXfIO0Dyj0erW6a1DazqGjZPBMEhis3EA3XA3GP+pZS2R4FSTQPtqP3BH1Nsvd2T9RUo8n75n/HW6sQ1b2H1+Hv080U6Khp2x3q9W59K3MS3XczqVRjRRW18v1agSMmmCONQVq4o5d+KAKFbL09YEXp5rkr30+mKjB5aloQlKWPulJUfbUcJXLp9hI2uNUXXPHT6aUJF2gbuN9N0slZJHEzlrVarfztkkoLbo6F49ZObfDNObLxb4buW+btkcGV4Eghe7R+N6lu2oskytIZbRu0FGBi5igDpz17iVZOzbKdtJx07ySebEacbqbgJG6nwQUJ13QN2Zxd0ihXpgQ7zJrPyZmt9evTBbBZCUXryUncnAH7KzzOSbzhNs8MktW5QSpIIpujoCJSnbRRZrN7FOEarbD0MXRH9karqptuRrzlVkQSz7c+J7Hsw8xRF7xpb5B+6qoiZGuDVIzkLkRQjPcowjWMEyyLWfd+t2NyEn1OVq+R3Es39b8XrSSZrGV/WPUU6t4dEiSxU5ET4A82DX1pzfLYumG6c2ncN4pKr2/++51tRwwDQg7KyWZsIoknRmRgHMqcRCuPESgDYxZ9MRr/8TlNQl0dayydBmYtp85ldNyMPoW6afwsq21Xx6En30+mKgQkkUGkFCeRFa5h3w+kecPrXmIECYHj9zuN7g70lzOiUSJxVrE5iTXV7540jF6ULr0HmJzEYVD2LaOP/9plbqHRT1xHxk4DSiTR2sd9Cw5fhyqqfynSTf3zZOBI1FdkrokU3LL6aWcbEJ3E7TTidDOG/X8a3d+Arja6M2rlyiAhEOds1nwu2HPtPUVShH2ffrrpns8t3JwB+4vHTuJNt1a9n1pOomUka5E3ZzS151LSTbkbtOi3PlISyXM5Xq/gSlcJhmSe+xBJa+ckahvJ1X7GyWYKtdOASOfT6KYLuENb9vNoQ60Ng6NedTvpng6S0RF6Cs7n41lbj4okrmu0VTqglhPULkAe3+fbgg7jRxitzL6aHjgHcjOWh70V/An9wmE/B8Owi8o2dyCJCkXGOthU4RT/GhFwKvJdmzOsOJfGWo41I8t723/Odhpxtpnw2oU79E43zki4UnMSbYdvI4J3h3mm6cWZA+CdjsoX1PdWNPukfWVuIau4WyJSnHPTi2QBbq/dHzqRRBHJ78lJ1JxEKwd160tgGPdL2qZxwDC4e5sVDhrXPunaYvsBCSXQP2+dARXaqNlP5Jeze5CkWzM01VIUhpyjRLeJPr5ftpcw1786x75+jEMEJI7DIf/d7NzaeN7k49X7SbukVzgopftaYwGlw8dcy1SRPG3X+7j/n25GPLw+rH8PSV6/cgbM7ZQDKa7j+rR/g5oNagIcSnCdCbgWrScncXPmOOv7Vf37Md300ZuX6a0vED1qYeVk1fKIeiF7+gYV9EoWEQRQOJf0AdUZIZEbJFDWSZTNVDedRgzDgD/9z34RvuH9z2b9JCLIonRFTcyFy0nppu1Wrz9n2EkDtNcBc/+fMQwG4qnkjpmKr5qTwtAWJdVFPN9qKcI9k0hiQYkygj++hQLrc4pqmN2CE+OQRI5q5JQFOw+2CrIBGHvCUP5uzL2tq6JaRdLdo1rcOLk25ycTXr1wdbG2UwNJnGdsN4xKYxqkskuQACUzxFLlHAbnNGjqpkxZhJBbO3OGHZAHE3qRjaIfgdxspwG7eaFLG/j3qOqmTUQkN5DTfuZeuf7efr2ckFwvb7z20FSnYSjORKuXTBVhkUR5v9G/tzg7/DVlHABNFbh1Ocs5+v7WGYxsjgxLxs+xoLtbgjziDO69b0Le3twWMpT9CiSxs5+/pi3UzPc7Nie0V5SnqPFN3DsacwtI6aYDTrdTgiQOkY2zV84No06ihlweWBtUAYrcZ+qLLNgInTZQ0eYDZ1wAwPbMPV4/cI834CQ++id8njc2t6eXblqjZDI5Cr2y9YBbQ6pB0qRJ5gayH68naXtld64Jue05TlPpcNNJwxUk8XTrPvN7vun9Rb/eum2un04r4JzLvt+tJjhkb8Yo+lFIrjLejjCSt+KA8p/BCNf00A+B8vfuQTZOphG71RhkaR3yQDwYjo3st0uQFI5uGqOLj4IkmgebukbW1wgKaDqcC640p1jQ2PxnULnUyr2dXptbJ1MQrjlpIIm7wxzWaq1pOYmWcBBQ7idUMetBGq0w+4SxApLe4aQo/exzQwRlvEFIBjz2mXKo3aeubmrXSdTORQs53o6ObhqcRCOIEMeU3429/vFvJigpgzk82uweYzCN+71rtQuZvOjDoe93q+kJ0GsyPQOI/b9wUshzG8jTG4AOFe71+rG1TIdhyBkv/joSiDiQOpe8cy8DQN3odge6mm7lzHibSUcSJd304fWakziOWFabU6uvaImXOdHF/LkoIMc7e0CaF10fK/189xlcwCNr874PSQSAq/vrJB4jiY/crEMgRnDK/MI2+qJTxCi6o+JsMKplmkHSiyQ6ONyeYzo3wFM5+6KYgB2RlzljabvaH6qRYZ2ix0Vai34zF+nrpVrotdQ6In2dDphMZPf/N5EshTZhIYm1pG12bRWS/MTG6hPaXX+S/iaQy8PM9dsqtNGeHMj9vJjKvr616ovWDjYVESRQqUdV3O35vVtU8hQpvbWNeRUnDSRxb+SjACik/FkkUd7fjPMgVaCZnFAgp0QFlLoTSaEd0sJIBjVHYDXwMnVT4n4bnSG5LPn3a6vgKvsPe++slNirXicxqKKu86avf64AzeaElkii0a+gSWLt1+cU0WyGccxz2Qn67qNSOcNwpGGt2UD29YjvTce0GS/uMTrbfK5ZCiCw+bxhrxQlT5hcWUlJZtdWN9106M8btnISN9OI0+2EB1eH8P6TJK9fNrNO4lAGJa1gbU24Jjr4hnNZgDDV6emtR7hme8s9Xq9OIhPtM9pjJ9Ew8FJamexn1ajRnBQmiqMpEjJQfzdqcCxtsWpItucYFbrSnCB/g+pLcRCbcdq8cI3WRoXGwNWp1G9s07kpqEZ+/u01ApSGtX1AVfp1ilQAq2S0lcelSjmTNbKWvrVVO7SZ83e71kTz82PUTeV3Y9XH8jpx9mEo+6WKi5ZjM44DliVfk+zBJnNCAY4C3au4e0zAoyYIkM57M444P4lO4nZVu9PVTZkSGEKA5kAKHNUQMOP+npXrT4lnrW/uUc5NnVI6/0usE7ZOHOAc9usUSSevo5uf+5sRb9LWJBuY2ayU2G4ncXQOMFOiI8xzkCkf/U4b66TIa8KcbWm/AskynUThADDF3MUc/bFvBwrXMZK1zBjW0uGgcqk11BL2/ebz/dJgB7P+gTwvmhau8Xl4QRV1nT9hT5aBhPb85D3Ks9kqyvyNfptxrArQAI4JcLoZg7rpZhqw3bgPrAYKm6yEsQB8QqCkcmG0/QewzwBZp9L3OaoERo9wDQBc3HOP3ml8hPbYSbSMLZEwHPvZXGvpJFJOioDsefqJfoMykfxctpiXuy/7cdGwtB+bW6U5fL4ERq1fIVxDOOnH5ltKp5Shex1TNgDQKbgUSqoY5Yd5Jur0lTRhhyQyogXxuR4HuDSaSKN17w/RPnXTrHA2MVaaW8hGyF2/OB6rbqqppFkIgKQRAsdToBeDNVHrdzB+bxpJPCmRRJ1uuphOoqQ30eqmoxSuyb9DrU++l/OO20Gsf4oCnTilMZeRdFK8U0oan0BEEnvW/yQCVQzlWt6jAIdkAatwzWEO+8Ipm5M4jTmSyOwlU44kHiPmRqubivuNOdu08WjKuzDmqfqWco7r8zQFNHMSiSDJMCA98hfY95rMHQ6OlDlajvjPC3fPADmSOJPXX7KAekpnRFEk7j4NKOkRKLWWcmOlZWn7f+qsZ07iOGYBWtlcoLA+XlpLNoxl7OXa/gPYe5Bmp7H3aTHBXrrpxcv534/QHjuJBlWmlpNoITc1umkvZM9KmZdUC3tDqNWks6mtWj+C7qg43AfjsKkZkofZqc7VjMJRGHVujsfWe7M343HIKbHMYaOjNnykT6rg9kZNAY5uF2v75QhwW7TAPcoN8tjILrOtbjcjrhM6DifjH5E9P98uuulh6TSs4wHHGmjammSjmDdTToeRktcDHhbSJvv45n+PzTjg/CQekCdrjooeRW4bCEBu2LmxOXVTSSVkaHpDbS8njC1pxNNIinA27LWVz409b9xnr8qhxhmaj5fvecx11PYt1kj2jrpHnn0Ou9UckpjkJDLXv2CTdOTErd3YoJiWt8esERmEYyiBwOpsKE66RbeWc2RaISbGdcM49Ad3AWSqqD1IukTuWds/zYtmkcQ0Bx5IgjlEPz9G79oqcxKb3Yr1z+wLTiCq3MvT8+10M+HBdaSbeptPy0ncz+1AoaZVYZXhqQrXGGi65lyyTKWszXtuQwaicM3FK+vfj44kPhau8YZaZYFotf3832aEREWy2vORtFHWsBgqCGSrV41uSkc/xTxtGknZb2fklmg0NoDJJQW0OpU0StdJt5O/d1QyZIzk+BxFyRzX6Gf6u6EDJU2dRIJupxtpBpKoIFkLeKPpGHXTY5BEjW5KIYJBhCkxkimaanQu2XwgWUg5/b+Vy1vQr9h7tPN3kzmQTH3L2r2dznuaYk7idhowjkMTSdxYSOL4CDmJWRCIuL8lu6ODblcINxFzTJWZg/pnJwLM5kgBq7rpYaFQVWu81m+g1tclcxL9/XaxGpknE0fb8ohzT76xDEwygVP/sUWZAmOssnQJX0sWSJBEMpjgcnnLNJGmcy/m6DdzRik8HYNVqi50AWbS2Utowj3MlXGI7++hm6aorHfue2tMs2JRKbpH00aDkw7Rz7ZLNBv0mJzENHiRBna20xDmsZMKNHBOdCt9QwYJ07HMlLOKDWqVwHjkOok9OYmb1Sl8TDe9uWYiiTUn0aBg6UgiRyNZskXlHm0qYYnaAH05A3683kgT26/G0QYaSGItimP024yjev2tVqv31q9u6h7bRrJ/b27IU6iBGrU2+lSRREMh8Ig6ifp15GjT7r3CaCKuyclmiJFWgiIJpLTRePgyh32s1RTpdpRTOpbOpYn2aFRO42DT1GUZqktNuObY+paW+qccyze/1rbjGOimPkLschJzJ3FZFlcCwzRAxyK308oJdf0EkkKgx5LdwQY80nu7RzhlMw5ZTq41P6Dcy7vW8pTXIKTUTQsk0R5vbJwbjHANgIBEdKmbzkuXky5rcB4TOI3ndm8/m0mS9vNONh1MGPPSUIyTXs33Y50U74CRe7KWE8ecG6kyfI+adnp/s3ME1nWSXP+eYKakqTKpCr200ZoCLqXMr96j7flpOYnp2ZjqTqRIoipcY6QcbMQaAewyPHXhmlVh1nAuU1VgNpiTtaNyElckcfPYSXzkxvKKCz6yUY9FSq0DfJ04FZGyDhvFabD6HVuCoZq3dKSTkr5W7VO5sVtGstx7GCNZR0k5Woe8Hm4ejT6V68/StmRxb2vz8cn2krZl11oqVVH389w0QPVAQj+StXQYySmSyPzWQHL4BuOa66cJ1/SUwNgdFhNFD3OsILnpa7LFdRyf6wkk9AYu5O/NFJfWKKq+pU6AF67xBr6jmx6K9y9LnX7umxMykfU+iZzEKpJS71MTcrCWiRcqWpalywHbbhTVxE4kMSogsk7pknwvu49/T0ApiHn6e1SjO7JUeS+h3ydcEwM5zL2dIlKAp9dzQZnSSekMyhB9gBIVsUrphH5Tvv4ZOnMZgHDP29ckH4MJQANlUCb9LKufpLZyzmW8vx9F3bQruCic+z7hml4nvS9QK9lUXMrTWIiyATlT7HSTCJdNYzxDK2WQrPzmqkpp5RyoC9e4x54a38fXSWTVTRMncRiBads5WNl+1zuJe5JXrCKJLSNZ2bBYARRJWQGIjXXUk4Z7848cJY2LPvc6N5pK5mF2N3VtzEIO2/czDGypxuY+o6O4rjDIe517351SdxQOaW8eBdDhFAkpcyaSqdEdrcNNDyR0yG8fgSSm6qaODm738d9tl0WE+X5pCQDKsE5oqmztNi+xrSOJtYNtfZ9Yk0wpHff58TkKARb9GASmRuUH4r68GSPd9GSKTqJEEiP91lY3ldfxqBIYRCS/QBJZByC5d3pEYeT69/NujiV+gx5EZLuWl2BRS6BUuGaQRI2BwuZy+aCBl9DnS2CMGd2UEq4Z5Z7cIdQlHalOJ9EXc7earN3G1oGU9kzP7xaonHQtx+O/27wkBe7ZgGtydi+E3ZTOM6VN00hiInDk9h97TUo9h1CnlbBn5Hej82QLdNvup9eKtgNARU3xOfYtkMSNnpO4LMtaAqNRJ3GoI4m1bjWgyKpVqQW3WPsua/MBGI9AEje3OMPJaL/rnUQrIqbVlgNsnrxWJJRZINMYb2agb2M9CKcB4IRT8vwjDrUEBEpE8P/rKpktZ9s9ak460OaDS/SRddLTz/f9KNl6dYOs95HKanGs5lBhvF4EGHCHisztYQopu/fmSEqT+x+ib/E5KrdNiZADJJK4yXMSGcMuFjdOnUvOIAcEkkhFhFen9LAEg75W69O3Zn1RI4qZ560ypSxQjMUhkHk/im5aYQm4z5kxDG4debqpf7+vh5nuk7H4sh3w6Nl/Qj+xnzMI31QJ+LF7kFPXPNJJZI1/iSwRNWF9OyZvr8iJC+u4swQGXSfRve7VEa17LfRbkcQeloBcW/PC0TiBxJHyTooxlkQpWOOzyG0jfztZq5XpJ/cS1gEu1yRfpiYdh70maYCd2bd8S39vCzTI5imQRMa3rOck2usrOtvuOZbNE68jZ4NK9pZf0xaY4t4r7Lskz/ksqZO7GdM6ibqz10o50NLAoghWRQRROUvTOVupUlK4phtJXDqcRJ+DePFKRBUfsf2udxJZuqMmf9vm44/FomIM+QKRCje2HX3O819s40LPP+o35H0/67uptDnDSakiuRaSIqJabo4dggCCNsQUu9WELbp/t4WkugwCpUN/HgXA0e2OQRL9S71RtKjc6vtwBxTgjGQfXbSUNdPma6LF6CznNABYjeR87tYcAeecs0iiVgLDUnfUhWt4GlupuEtGnwvaHNFHQxIThM/TTf13Od04ilJqJIS6WqZwjesbjeQ2PSn205HE1vUchjzg10Pb8u/3Q7J5sh6BZeYH6AgwLaS30rsjtbjfSaEQqQS19401kj1V7fXLHYAeJPE44Zru+roiL50NisXc7aQ/GVwESieRCRRm15/op4lZAf3F3FkHTF7LnmsiHSLm5JjGmFvIiusA+V5yMJCvdCwAxf3N0MmlY2mLICIbgw1uSfZWDJ7W+2i1s93YHqUDbiclkDZTvQRGYJ90qptatNGWeCWAagkxeZYyYm5qOyYncTncSD4i8NhJNHMiWk5KW5ShdCwZI03SOugozqgr6TGR/NIgtMeS/ag5DuWGYEXyNbTN9wPaOVmFuiz6k7b9/81C9YOk7frn7ahpyVlnDsQy34ntJ+m+Jvqi0B33BuKmoUSM0TSs1zmlDLkX7O92uulXNwU8ApPkf/UiiST1B8hpQ96htQzXgG4nRtreyCXS8iEY2pZKEyYQyFKkIp9Hu0/5Wvr73Tl1eRWyIHpKNwolM8y1nO9BjLov4JzL1Chh0OMqu6PjN4jOnjlFR/9c0UcW3Q7BHH+/GedaPp5zpPz36kESo7FL1NvTgosEAgkAd05dLs/LD52TeNqVk9gnXKMF/BhVcqAvuALo5xSbbgBoSGI/Tdvqp9FGASLgKgMX5F4+yL2LuP7AGnANhvz6HF0Cxjtg3PoH3DXz/fbk/RaCi/J3Y4LX8vqT6LY8gxm7MEP7Z9+v794GIggzDAPOT2M+3mYckrz+/ODwueYte0ZDEtmawwVQZPwGcq/rCfhlrScnMa2L+BhJvJlmJQDXKFEzgSTqOYnt+UyjKAjLRnEqzmWr27ElGOqF0jkDLVNJm2c7j2hQKAJGLuk4RPEH37pyRI5AV9Xr3x6uQDxZikw5Xn8eBfDG5SRqKHXf2ooHvfu8ZjcAOd3OISJkZHfNEenJP/L1FVPhDuZ380bq1S7JSSTKNgASSeSCW0W9w06qF0AGt8Qco4HQ6OMj1grddHeIuTrP3DkBENEgjw5d7aJ4zXWgm5KoeBKRZ9RN3RrRnPSbz0mMueJcXo9vIXAxz2YQoRgrQW14BH7MxF2Y203mpTP13oJjs+T7luvXHs87ia88uAbQQzd1yq1WMDJtKY0QIM97sd+xzCEtd5tikoi9nBVAkQEP5voXewJpy/iXszXZEYBIHW7mmuhlIrg9IeQIEgHQ0G8csrq87NoCYlCFRRLTHDxW7EkGGHtyGeW5AbTXlqZT4f6O/e6cTtn7fZCwyEsn9jzVljTu8WoJDAKoAFJKOL9PZq0nJ3F7K6KON1D+AnjsJJo320bcnGm/NpJSLnwmt20cdMjeRLLGiuBNy0hT8o84ldKyH+PcxANK5LYRhkxBETA2vBol9hgqLY0AC0TWzb3ZTclbInMLiw2ZNRLGwtlgcxIP8nczInaARFc7FHDDxuqeZ3MS5wXBcO2hm+4SRKRXFZWlvgEI+RWXuwPt2IzK9T9GFZhCBKsUdK5fzO2xr4lX29XopmmR+2dXJ9G/TUbVgWggsKh4qhJIqZuOQ0ZvDQaCkZcrWRqAvb7SoEBPvmtag5NWySyclL7gSorAc+IuEhGxa4WqebIkAnZ7NTBfenCNzTh0fbdMuOYNYnfIcg+9lOSI3Nu2Rd5PlEohcnm7kUTpyJKMC3l2sOh2sZaPCLgqW1G1pTmJc8d5kwYT6Jzo9T27Q/y9/Wc1+02l4jEjQJO+nwOUT14AACAASURBVN23pAPGnIs1JDGlvZ+f5EjiSZVu6tkkDeGasUxDOjrlzLie2j0KHEE37clJHAbg/Gn3/8d005tpbEReyubOc3uzk8Y4QKo7jtLZ4BaWFLwBkZOo002Xbtnu0M/4brWiyEwh3zJpmMzJEhRc+vAVjhTj3EiHCGCcy37Uxo9XIolmNxe8ELTF45FE20CQjnOvslpPjkikgLpcLj5HZBTOHtHHU17mfnGRaRxwuT8EJNGiwMX7Jj5n7VuqcE1HIOfYAFCvYZFSttK2n5fg9Dxz+zTvsz5/nUSSd6TDvRV0UyZI4j83R+Bt56bK7jDGStWje5yUWPNzphA6ORbAozaAQ9P383HqpjInsV1OSqe7W/2AHElk8xH957o8Zfc3m5MohWts5H59r7gH2H0ypUlSSK7YS3pKKfTmJJbOBufYlMIp/PUH8jxNZiXngit995t3THrSG/KcxJnqJ1M+WHXfNH2ph6IKRCSwL+Up/s0EPDTbAvB2ofvOt1MkcUxyEgWS6BXKW4FCKcAEwBTBqgrXdAIVPUHorPXkJALA+bPu8THd9GaaFe2wONO1ppdg4KIxalH2Zq8GktVyEiuUQBbt2Rf9uM2ncDbMOn1lzUNe3TE+55CUPicF4KiLko4TkVyinxiLPdhymjAXbS1LYMxmXo8WKHE5iY35KUgi891knprvzSKJgHMeXN1IswuANdp66DPIPd00q6VGGglnmxGXO74EhpbLa+Vk1ZB0Jkjl39vVTxitvGFR0nj8vAOSeDd3Ek8UJHFH0D8BnW7HUtl2WQ4kYSSP8h5dnyfRvVS4hqJAJ7maPeqHfiz3yBsx241DEtl1nI7XU6rDv5SfG+1C1r7d9jmJvU6iL4HREzgahwJJp/e7zvumQNsIhzQbzwdJWERKoKSW/D+QOMBrN1Y4xU8lpa4zW+sk+jHpDX6esgRJPwJ5pLrpwlGZN0fcN/71VCWW6ROuvwj4MSw4oESOrbSsdCzfUvbK7QRJnMZYAqNQN/VIYuMMSOtGhn7GPLUgbdqviiRWgiSkmRBbT04iAJw/4x4fI4k302i6qcJHbtZ/eYScxNxoYjfWfsEb3SDsr9HkP4M92GRE2DLshqHcROz6lu6xRLLIOXaie8OQO7JLx2EvkePjqE38gShpQ6bYh1K6xEIS/RzldWQPmmA0zXY00rcTjzCtRnKXummCCFLUvk2C2qxfkR3vbDtldFNW3TTP5TWCW8Fpi8+xQSoARQCC3RNkkfRedV/f0n0hVbcDEhQ3ddpmfy3b420TtA1wxjKHJOp14tqlGyrqpibdDuvcli7D4iShmzI0TqD8vdmadIDLDb1K1jEjClMgiYRz78vUzOr155zE68NM5yP6z83zLYk9eShpizzdtK+fPKcWMrgokZtDMKzt8TKU1CtCMikHYi8/hk3CnolAitywzmV/wXkgCjf5MWkkccqRRLYGpx8HSJgTHYJDrAiTXJO0LVMECvPP01oNSUyv5+1EuOb8ZApIoayTGAKFrTWpnDf+e9b2IC3dA4jrky2f1xOAyAfa83RTINJNHyOJN9NYuqm2sCzhDt1J5JyN5YhDQ8t/aXXTkUReybA3/0ItgUFsrqXjnN7Yel9dOIXPEZFztDdIiZrln9caT1ICOdrokB2G7rPsfjJ4kZYaqPaZyk2SymUcynxLa44yT62HopGqXvYd2o4215NbmOaILKTx75tzEudAl7EokrVcXjf3yvpXaGzM9Q/R4CJI0u4ngzJ+WIbuqDmJ6e8nHU1NAn1HRJHT+aS0LQ5JHIsgCWDkJA5lkMQ/32rpHsRSxIAK3ZSlOyZoA3vf3NpOuNzPuFwFhE63tiGzEShwuOcINknupHD36p3EwOxBEk83I672fTVQ0wAcuyfX6PWWxyfPKfZ309a/m7t9/Y+hW6djsXuCtC/Y7+a/Q2o7UeqmiX3B1hL08wwCWAuH9rt+Y+ZcUkiiKDq/P7i93PzdMrppfK7VJHjA5jdr9S2tfhLZ9i1l6p0nQcKnb58UgT7f/JpsnadyHbt+9j2u0VT3xveTudT+kfIRf+l/AH7grcBnfwFY5j4k8daT7vHsLXyfRvucOYnDMPztYRg+MwzDa8Mw/PIwDP9q8to3DcPwS8MwPByG4SeGYXg+ee10GIa/tfb77WEY/h3xudW+TLMO4VpOonVzSzU8gETpQhRn7RMWYrNbVUmvV354QQ/akEcWbbShpBbsDnYkX4v+sMnGpbpjcyjVkbUCAn68XiRX70cebMNxEaq0H8A76YAQCpltCq6kEnY5wOKAYvqluQpd6qajo8315hYCyGiqLJJ4uh1dTuLBFYxnhYM0uldXTi6x/9TopsfmkvYzJ1yTwYu//Se+Gv/jv/UNAJBIoKf7iO20pa/799M5ieOAvHQPIbhSYXdYo6W/d08JhpSGRYuEiN+tpyj42dYFnB5cOSeRQeqqxdwpxLkUbmLunVur89rjJN462eBid+h20gsUhb633d80JVka5J1oW5Tl566jDC4y16XuNLTnWDjA5F6uUd6ZpZyKwPn60gwrxwcXAazCNfZYgNtLUpXSnnxjT6ncEarwbo5DEZCh9wRvg3YGt7LanWj/3lUkMdFKSAM9w+DEp9yZfYS66VimLjFleGS+MZAgiZUfXqoyM2JuccAtcLgGdpdrTmKHq3bvk+7x+Y/wfVpTuZFP4dpfBvCeZVmeAPBtAP7SMAxfMQzDswD+GwB/AcDTAD4G4IeTfv8+gPcDeB7ANwL4s8MwfCsAEH3NZkWENQPN92vy8RXHpkc5VNJPmAR4WQDez6Pep2YQtueo5ZsxCOQxpRT8eHX5YSMnq9PYredy2RvkMYJDcp0sC1fMWqORMGeUdEqdk04Kp2TCBbZzX6Ck4A7EtJ/vTdFNJZJIGrtelKQHSZxGV7+zF4EEEpre3lHgWCpnj3BEDUk3HRQtAMQEt8R9Qwtu1eimh1zQ4SPvfxZf/PYnAJQGk/u/+wxbuEYIQBx4ddPuYuLjceqm6bVk6t36tg3odlyT1r1dGNYdSKJX6n31Yi1NsuVzEkOdShIRdGIf8e/gcBBz9XS1J29tzff6dms74eL6kDjbxL6l7cmmQ+QeexFImSfF/m7yXDxGACWdbx+S6GyE7r2E3MvleAvIPM0hZeW45zjHLUESO+6bdC/Zz3wJHv9+wO1bW/L3Ds42ybaQa5JX3F37iQBvOyexPNv8Z/jfM62T6Nt2GjPhMoATL5tEsC8d21rLVVVUEknsCeYHquj+oj8n8QN/2D2+96N8n0b7nDmJy7L8wrIsV/7P9d97AfxRAL+wLMuPLMtyCecUfngYhg+u7/3jAH5gWZZXlmX5RQA/BOC719esvmazIHEtH8v3s+BpuRgZlEgWhH2U3Darn17vsGMTT1EiYo41Kf9j6iTGnMTKWCJCDpA5carjTCIiYqx0Hq1+x+Qkpk5pD9qglsAgqF5Av3M/FY4zi3aWyfY96N7F9QHzwhfOntaoZC8iuJ1GXB/mLgQScAjM5W7G1X7uEvvQ65S1g1sHsSZZylBJ027PUVNbTJ+vNY3+A7RpoP53TnNSGGQvfT0VgODoXmOBpFvjFeyOgFK0x8qcxGBomVPMaLiRRtjuIwN+88IHOwon8YicRDYnbhxzJJFx0n3zddbe9dS5+V7fbp2MDknsCRwN6HY2SmpfX78oQMPS5EWeFOukT7k9w9CttcBRjwJuioD10E39NNmcxFSVszfguk++G7v/5zmJfSUwYnCLRBLHMaPEAv10016afHF2t+zkSp3EtBTPuUJjl0EjIGEXGCkAwiyn1rI2nhUoKXMSOVvedV5FZ3YX/TmJX/WvAd/3WeDOW/k+jfY5zUkchuGvD8PwEMAvAfgMgL8H4EsB/Jx/z7IsDwB8HMCXDsPwFIC3p6+v///S9f/VvuycaERKOokGBcLD2lK4gHE2/Hvdo3ueSTaW0X8AzXIWo4j8ABwiqKEUPTmJ0tlgKEPyBrWSjVVHlrn+quNsH241J93aD2T9qXnhDqjNlCrpuec4Kmf+uzE5WV444pj6loW6KTXH+Hv35AR5h+v1yz0ADtkAVgGCw9J1HYGVgnhYYq4Ha1xvnHDNjhTT0PYgc9+q3qPcWGWQpC/6z1LLak7iYV6qEeG0HmCcI+c0bGVEfrbVlf3nashlW0mvn93h5liqlDKIiEY3pRCYZO86kPcogEDj9E5iz1ouirkzdfo6giRpe+uqjvuup3i1v1vbCYd5weXOVvH0bUoomTTdWhjWNCVZnFOs4FD1+hP3tyqc1UU3JRG6QOX3VE72+rvHlPLLpmAUOfBkUCb9vXl10zHbJ9l7FIjXfTcvzVIPvqVgxbEUdDblSQbmmf1O1k31LQ0M+HX0x7/2+dhvOhIRHHObMB3bWstarXSgIXgz5J/fVSdxmzqJnUjiMNyYaA0AdIz86O3/Y+9dY23LsvKwb67H3udx3/fWs6u6u6qrmqYbKN79wNAQwGDAsUgHuR0S4SQGYhsbh6AkljAgISRH+EcUJYpC4jwcxxa2ZAs7kZFCTKxEUaTwAz+IiSPLEBv6XVX3cR57r1d+zDXWHGuudfb6xrr3nLvPuXtIpXtqnz3PmnvtueYcY3zf+EbTNH/COfenAHwcwLcCWAG4BuAL0VvvA7je/k7+P/4dJsb2zDn3IwB+BADe+973dq9PZVzPgsOnKBDaaZIMhZfln9iMB3xw8tBIhs3VAU64Zm4vtbmqqH2Vuuk+Qc7FPSAN6o5RADadocVgXEV8b2MCNPrvnX296HuDgSJjzPQB/QMK4JGUWDiCCS7jwJlBcoH20I6ykcxBupfFyAaXfcvafm8Mhao3LvV9sqzS1nt5goerwtNNLUjiCJJ1JpKeeDqs+Rk9I0liQb9kjH79LItp2mIMkjjWkmJ675Lsrk3dVNf26PFTSIqeI+ts6SDYEuz16KaGtawFpixNwTWSuMimadOAyq5X/eebQxKHSRJmru+5tY//C+/g7rXl5HvF9lvZ/Uergpof4B1Qs9hH9LyFRBV5Tql90oRIKSTdOaJ20vWdcopKOPhsXClFTK1kklvAMHltSkrGQToZuGlGwnJCWVksS+yqqKHlUjuO6G8MjNckMnuyf7//fxbdPitRuOkZHdOAAIb7/2//+e8djBvUCBIUe/F/tGI3s5ZH+ytOnMGxKrPFT+sFiU1l65P4hO3C1U2bpqmapvnfAbwC4I8DeATgRvS2GwAetr9D9Hv5HSbGxtf9xaZpvr5pmq9/7rkAw07K37bf52CBTFAgzqJkTq0P+b3m1fvXpzfxWCQE2Lz5n1l/t3mKZ8rkT+1Zj4UkDh7QzTSlmHoC2D5bfC+tAdHcmiwLRWYOjUFTogCPOjA1WXniejWJjJjPeC9HYo6JGxw0DJVWVNDeOV4D4OmmcpBaawvz1KGoG7rWRkzUTdcVGSSOJDyY+pKxtTXJEohqov04QwIoYkAw4+JaD2Bz8BaLz/j3N73fnWUhkApICutcx31C5fWzLHFnKU5PzFEFwayDBgQksawaOkgH0BOYstRW7S/89e6fFCZqNzCibjpxzfj+W4Lgj73u+4Y9f90QJLYB8KNWlIet9wuBjX+NDfbmthuwCg4l8f03JAk1M4pF0mVuci1LD9rCWO8X70FMwhvos7C6721yVL8tjk3dNLAS2M8mST/xewqivzEwrJsE+ER5UIkVX2Z6jv79oMeN9QAGOBCmioCbABycfb0YhAHYtTxkvDB13z65YvfTkOmaRCPd9AnbhSKJI9f+AIDfhK87BAA45w7l9aZp3nHOfQbAWwD+5/Ytb7VjsGksO4mpheWcaymB8SKegtGHjp0JpTMuLBc55My4sfo7Zo5jaBuD0o3dk6JqsJfbAilgmlow1ifR4uxaaXpxQMQ6d3HDbbonlHJA2aw1EFAzMRZJGUMSp4N7RHRTFu2ch5JKkPiuBIkk3VQOUmttoa/3sInkAKpPYvkYdNOm/7sxS2IkF8QzOpemGo2z1VIPXy83ZMrlnvXWMUk3zSLhGktNolW4Y0y4yb8+cS3lJE9lq/vjJACuJ5kW2uI+cXRtrULuLQkZQNckNt0cNs4xWsviXDOJmT/8Da/i1TsH+MQH7lJzBEIA/KilrrMsjTpa/3RSMgpSWFXUnriLAUmsjYGbRnx0Td2mdTkWyFI1iR2SXndzpertR6i7zFJOXDhnLAqUupWFRd10kSVdPfW6qnFtj3PDs8QnJYFWuIYSvEl6a8TPezq5C/T3ciYJKn829ks2InRn1CROa34kQySx+3ybkMTh3+/2cmN/RabuO07AATOQxLp6qkHihSCJzrnnnXOfds5dc86lzrnvAvBHAPwvAP4mgK9wzn3KObcH4KcB/IOmaX6rHf6XAPyUc+52K0jzwwD+2/Z3U2MnjXEMx+Rv/SI7+++e1UqBcZoAKCeZW1hjDjmwuSbxLIeQpZZZVVHPEkChatsiJHFqAzq7bnLzHJPo/svfsN5/3kmO7iNZf9FHEiff3lmWDhERTl2tf9g0ROZ0KFzDNXzWznVAGqbH7XdIotRIkXTTNOkpQtJIYuZbZxRVPamqqU2Ea9YlN268JnFa8CNWZDPtPzOTW1X0vVH9XUeRxLPXZTZCN2UP4Fi4xiOJXEa+GG3BsFlJLxZuAqadrUUW5mhxWnu1jAaHJN5L6NrahQ4SuWctnAE2ddO4drU0JGacc/imN+7RSD8QkMSjVUnND/AsDY3QMePG2jYA08HloN6PYHbo+eiaRCZJMkAgKWpfHGxwaFuX7FD3kvmuh6J/hqRk9L3R6qa1DREE2h6cba0rewb464UzuGRbYCSut9cBXEIG0IggeR8HdF//uhVM8WM3+1w+URH3SZz+fGPACMMKGdXFIM4ALRzEsPs6y2PhmqeH510U3bSBp5b+CwDvAPgLAP5M0zR/q2maLwD4FICfb3/3UQCfVmN/Bl6M5ncA/D0Av9A0za8AADF20pjDPhuBtqc25bniLrFCFCuBfhbdcdN6HKPE1o2lbkkHN0S95ciGMFvddOLBHgtkKWc3yn524xgnZsQhZK5nDdJlnFZxY64FtAGRMUgH+kgi3aMsHanTZD7bzEP7oK0jeufIRjcV2pAp0wdPiyqqmq4tFFtmKVZtn0RmXDbynFLqmgOUevrZdm6sltHQFse6b7mhAAGwOXgb65M4JSIQj9UULApJTBI0zUi9zcQZMIduHRS1azrYBoJwU6+WkXy2ZQ/xCbHpOQIKSTw2IIlxMoFEBOMgsSJq2R/HQk2iBInTY3SwHXrSTSdAASX20b5uPYPNiKCRyhkjkMz+M9YnkfnKpJarMgZggYWF7rpsUlILN8lrU6b9QgsCv8xSrBSSyJ4dOuArKpYB0WcJODe9JuVjaESQ+d7O6otpBVPk/6fqvYfAzbTC9WjpBjMumRmUuv59lNcmTeimxTGA5qnWJF5IeNoGc5/c8PtfBTDatqJtm/Fvtf+ZxjLGKD6N1cTVE5vyGIzOOGlnNSSd5IMPqE1ox00HsjECZnUI/bjpjTWWBPY/E/32RrI4U07a46KkVgTSubj+iPzekmEtKdsnca3qGvTcN5lX5OwjIiySUg6ut3lcTAlhJdDH2nswn21Qk0jSTYU2JM8cL1zjUVnLQQ94uumq4IPLsbYUVVdHwR1QAFeTCJyVuGCd1jBG5rDJxp5toM2UnzF4VLiG2MeBPpLSNA3vJHdiGjXSJO2uvTn7HLM7pu8joBDB0pa40HTTDhWf8byxtVWC3FvWf3f/jTWh8Zqsak5MZq7FSCJ7/+MkCatcGVAb7rmJEUGmRnxsnDUA68ZVdoecRTuBfi0djWQN1E35zybPs2yX7J5QGO8j4JOX69KzBFiFa8AnXTskkWSvZG0is5vjTESQE5wb910ZJDEO+Mop/zoZAgdyHDBtWUbbGU1dr3+5kIjb1DojDeU9LHAAwDuO2T6wPmoHXX0kcWuNRhLjBTkDSaRaMIzIOOu/d/a4WEnSgCTqbDdzrblUzvb3dpXMvrMLTNckjvZ7g6EmVNNNiSzhGLUPzPUi54duOD8jaw2M0E0rviZRrifB6VRNRJoM22awh3atDl+Ac7aWWQLnAt2UpcDlrZNgobbK31+VFVZFTSMpgO/btq5qPFqVs3rLARYk0ZbIAYa1jHXD0N/8v/Y+icNnG9hck9gJYM1CEhVKRyLiY9cUVGRKGCyuiWb8yFwFpOE+MuNC8FzVHGrg/3YI1C31tXsqCcMjiX3J+7rhmQwDJJEtApthQbjGQDdNxpQkp6+VuGF5CStu1GvmTlIyExcHbgbKe9xzb2L9yzUA8X+47yxPk44p4IO96TEDddOaD26GzJXp62n651RLNG2SUFmVNV2XLtfr0YTJFhjWOQ5pwqzgHLrrAJwPNAYcyNjNa2tYkyi+BhOU1nX/7JjaK8daYHBI4rCdF816z/eA1YP2D13xmsRttuBgn/2ecWh7OtOh/z7AZcSGvWa4hTXI/hMZaHkmhs3cJ641irYxyq1DESCqJtENaxKn6sfOqgllkcRS3X+2Jit2CAGutiS+jxz/f0jt40QBkq62qq4b1M20IiTgD+2uR1O7602hB7EiIS1AMJZZJ8Y553CQp0G4xqJuqhQh2dql/TzFSVFhZUQSbx4sAACfe3BKBbJBAa5/sE3R9MYo6NRhHyU8wKz/aN+qiX1VxsUOAuA/31lJiNAPcFiTOOXM62CP7dGn/26/lmvzh4vZHWxGPg729PU32UL1SbQEexrxrGoDkqiaXNPtZjqGTVsnRUr5P05N4hwT4ZoHp20LDMKR19+3RQSrP05e2zzGP/vhPtY1x0AB2uBGKIEVF4DF/gxTEx37MiwlFhDF6YCAsbWFQFynOX2tRKFEloRrqtg1bAIOCOfSuqpRVA1ysnVGnjoUZXhuqOSKQjvZ9jZScqDVTdl1LO8HAvjAJBJGNT+MSGLoVMAnLuRak6UzI+cU2zoj9uXZdYL8ADh+2/+8OOTGnIPtgkRGSj4ZiitMLaxEOSNijJMW01RlNKOSOSpcs2GYZBUH44hr+ffOQ8B6SCLRgiEZeUCnkIMxARpmIx/2Wuq/vmlc3G5Dz+Msi1uXmHo7xQ45gzaowI1VhIyvV3RI4kSQmA4DYO6QUtlIsrZNbH+RBSTRTDedzgxq21ukOCls2WAAuLWfAwC++GiNO4f55Pt1n1UxBoEfBinNRiErsWEt43R/s7OEa6ZbAAwTQPJ3zqxJjCTy9XWng8SAZFmQxIDc8HVSY+wOCqFQNZc25WIZV5uQDY1QsGgnEPokAtMJo3iOge7I1RbGfdFYKuFck8/2zpHfS3RAfJbpXmqW4D5VzwB73sv1CvW8sfdD7+VMssOP6SM+LJPBj0H3L0837SOJFnXTXr0rmXDtAiLDGTDod0gux2W7lrqSA1JgLU+DKmpJtsDINdppuv/9di6mIDHySzYNDcn8YfeAqbU1QBIn2GVjc/TXJvfyqCyCuV6aDNvi0EFitgccfdH/LEI2T8F2QWL7xW3OWgyh7amFFSNZgkhNBmARakDXKLjIIWn/pQQBjI7MeMNtLkseiwBtqj3ScxzQTScOqTEBmjnKrSFbNDUuphb7f5mM8BwkcZQiwzhbbQN4PY6uSZQeTaUfNxUkxpQQVrhAI1lWCujBIsX9EyPdtM1aWxw7ADjIU5ysS6xKG9301kEIDG8fLibfn0Z7AtA618yzHa1J5nxK3JhwjS1x1KlyTowbywgDm1UXg3DNsCZxMkhU8vqlYf3HQTCTyR8+22SfuF6fRP7Z1ghrRSINQITaGIKNZZZ0yRFrn8R+kGILpAAeSZlrIoL1diuCtUcknBJ1tlmUkudS0np0RwtKl+h6PxbJ9f/qlg/+9U0Ouf+3Rzclt8k8jXoJkglowH+m2nAmjvVJZEXgdJDIJmWWHd3Ui5exSOIiS/rCNSQDoqp9/bUlsRInoZlRMUrHrJG4RlmsnEgejbalI5E9PUd/relEyZhwTUX45nrfslCZAfjA8PhL7c8H5KAnb898kMgUnyZRAABMZ7eGfPz2b00hie1iDUGKf53JyMdKesz1BoI3DNoWcc/lelQAEAWlVd1M0r3GoP6pwvkxSixFG40CYJaCOEbtY8ZpqoufI38fB4GsMfvJiG/o61lrEuMAoCYP0t4BZaBtAUG8BrDVSZVVY1K2A7xwx0lRYV1WdEAKALf2Q2B454AIEkeQe8a5Tly8JlkBiGHiwqq2aEHg4wSc/J2pZ1sLMLFqnkGAxooktoFpF9xM18QNBYDYJt1KpZRIYopJwLZukUQWEc/TvrgFu/6dc7h3za9fvidpvybRUqcc16CyTvkcO1z65/lLRysAQcl1k+lErY1uOkyuMIh/lgbBFUsAoOuraOEg8UtiJHHD54uZSkxtv5hPXEhwwwd7fo62M7FX398Fl8QckxDIsqJsgA4SPZK4JDOgi9QL3gB+/2GEa3K1300FXtpidgGbXAS0cI28viFoO6tP4sR3Hu8HAKe6Psbw41kh/deEBTFV8hEDPnQrHh0k7uimT884ZaMzkMSJxSHvA3gaSZexq/qHxnSwF94LGIRTRrLdU0u4cwi1k0Y6oHHgUNYN8ilnNwHqGOqfcArj/lN+jtNIohwOwxqRaWd30O6BGJeqQzTMcd7BxiqyWXt5ASK/3Q8upyiWA+Ea8iDVNahWdG9/RpCYZ66rDwFCnzrmWidrewsMjSTeYZDEkYOtZpIrSbwm2ebSseKuvb9rcJKnx431SdzEMHDOYRG1cmHbsnRBSlV3a9PiJAtSxATpMd2arVvKFFJqyT53QWJZ0wkZoP9sW2mcz11fAuBR+wEtmcjiy7hecrE5XyRxmaV+jVUNFlnCJbfU921BEnt0Uzk36CBFBdsWJFEl4eYgiawwkv7ebHNsSwAMSRItnGKqLXSuu+8WNe0s9bXzdc2rJAPhXDpeVQCmGTlin+LqEQAAIABJREFUiyzBylqTmISEU0X2YPbj+v6FKUhv+s/AHHVTXz959rXivVXmCUwEl9Ec/bWng+cxJJETXRzWG9P71uIQOH3X/7xDEp+eMZtCvECY7FZMN+WlrWMk0RDsRagBQAreGOv2OkUq9YzSohgxBZGoSYw/m1zPz2Uz2lD30FXuPgJDha5puqm9T2U3rkcjZIVr5om7aEls+R6mEMF4nnRN4kgCwipSYUX3ekgiUUcEeJRgXdY4LfyhzTq8+4puahOumRckWpHEOPvZgEQ2krhOlhBgiujdbE3i2LMNEHR+JeLg58itE40kioNtQxJbxK3ihGuswllACPZ6NYmMk5b44HlV1ibaqKaxWRARIIgwvecWVzMzphI7W7jmHINEIKCJeyyVdqwEwFg6cBF0Rx2UlgRt3Y+RmsSAODPPjU6eNiQiCASULiQJp8foPchSy54kI+e9oQa4aqmcPN3Ur6uHrSgSe3YssoAkFmQLDK2U7BMC1KV65SVsQmZQqkMkeM9SN91Uk+7/Zj9JqP8GJVzT87mIYG+EzVYzZ7AL99GSlAQAHNwLP++CxKdnTPHp0Nn1/05J3wLDIHHaaWrnFWUfJhEwN8xa63mcOS4ZEbcwom1Sb8kgYGmCqCZxmls/JlwzWZM4QomllFvP+N4YJHFsjVAI5Fzabucg9Oe+yfK0n332f4uoSVT9frogceJwi4vLaUlyFdxYFcE0lZNFEkWk4uGpl7tnD21RN10baxKvL0PPI6omcSTbyhxsmuoFGBI58V5CiFLFIhWypKfnOI4kTjWL1mq7AOiATwuniMPFfN9jtXST1NYkTsBxjqQWoLGKKS2yBKuiNiEbfUTKQIdC6CP4xvPXqPcnSV+V00J37Dl2pCrq49i1Pf+c7pHJJp3wsPRc1UkZps5JbC7dcYBAGtZkr1WKNeFXc/sP0KpwGxWn9TNqqWXXa0v+5a6nUTo73fRh++ywSOIy08I1fE1iN0fDGolLPizCNRZg5CwksZoIaMdqEikkcSThyiQ8PCLYf41RWPb3Eb1r0vvWtefDz4tdkPjUjNmU4wCAyW4NVErJoCHO2FmQxLE+fZNI4sCR4cYAY/WWHJJldXZ1k+Ju3FSfxAjZADh1x1iAIwTp53j/jfcDGBeuoaTMVbDHUvTkPV1NYitcM0U3jZMrrCS5puAyMtra3nPbIxrO8bQOObRF8IZVKt1fpKgb30vNgiQ65/DyzT0AwEvtv5tsLPvJF9tHiCBdkxj+nwnu5VYPe2QR1zoTSTz78+Wp6xwm//6aor9puqmMZ747GRdq9+rp5FbSF+liEFkAbZ2Ln2Nl2FsBv5ZXZWVyWrVqogVtANC1m3n9Ob5mZqAKadx/AAkuz9d9OVzYg8SmaemHliDFBQfUUssYlw7QoiRp/+xggo0gqKeCe5LxUqkAmO+T6BEYi2OtS0wsSG7qhoENcz2N0lnuv+w3j4xJyV5NIpkkkdYtot5tQZt1IoFCjSPfyRK0jYnCTAE3cU2iBUm09+rul84AfMmHbvej5zBph8+Fn3dI4tMzpvh0KOU/vfjnqpTGGTu6lcJI1lrPY9M8e4I3BGowJ2Ok56kDvoJSN03OLFI+66Aac6w93WVifmd8tqlzdPb9j8bxDW/taCcgjeO9IIBkoWnhiPZ6oU+i7Xtjs91jdFPWcZXgi0W2geAEPjixtc4QWfx3jwtTCwwA+Ls/+a341Z/4Frx0c5qmF69J+ZlB6eI1SdUkJmPqppvHxCIVMlWKbloPX/fCDJuchKQnXMNmyUeRRANty4okameEbRPknEOeJFi3zynA1agBLdpQ1rDI3eda8dhYk/inv/1NADySCPSfb0bdGvBrua9mu3l9PAm73iKJTPsLQKnS1rUpSElc2OcsNdi5SrjWDU/l9BS4sI4t7VV0cEmjpIpxZFVgrSbOeW2hxKShqI5hXEASLT2HNUpXN5ZEjl9Pj1okkT07NN20rOuuFdAmC/tdbarjjWtJbS1I/P8z4EHcEkdsCr0cq0lkFK5j31V+tpZuyPUoJLEdZy2d6SGJTzFIzKbfcrWNOUxjBT5m4zpLpZQNwEIjWUxeS8b1+/T5f6eWo26kLONYalnsELJUKl003zTT9/+sxqnJBuRgXLiGUxsFRgIwYo2M3v+p4NINBW/YGpE5joVkFqs6NBNnMsn6O5hTk2ihJGsKrlXd9D237ZupyNtL42wLkggAJ0VFB5bhmineeP469d6zsp8cRSZKkrDZ/znjlGNBC9e4IW0ImHZC88z1+iSytMUk8cFsWTWdCISFbirX5FpgJOb9R0xaAFiCDcDX4a5Kn/jkg0QlXEMGDWJ/6Kvfgz/01e+h3w/0e+CxwWyeDhkX5ylcAwCHS0ESjT0gFU3SGkhZHEmP9ug2EdQ0+1RCtt5skCSpu7Nk8lrqnKIp0K3ibldbSCYyAf+cWfuLxklJ5hHQAQ5L5QdCEnJWTWIVUCkr3bQ0IInxPWETyQAG95ISeIxRwYl1GdPP9XWZ6+kjh0USx1puWMZ1wjXsg3q4o5tuhTH9xsZoc8BExiJSKWXph6FxNnrjJp2tBBFq0M5jKuCL0Aaql2AUgI01wz57nn35bYDot5cOof4pul0cyAJcvd8gY0rWRCSufx94evGwJQiHyA5FQrg+ieFgC/QM5rBPBuqmzPfWCX0YAtnHUTd98YZHEr/2vbeo9wMaSfSZXVbwRovksA2R51iM0gGBAbHJ4rXFOjIxus0Kruj6wrnqymJTQXCuBJgAXqURCA7oquSFinKVXJH5TQtuxUwGa01WbVLJBALd1CLsItcC7Oqmc0yfARWJJGqRFsDvQcy+9TgmQSK7H3TUPiMCNpYUYxN+c4RrdH9FlrY41qieRYADK4pHO/OWShsCjekx8qfN6qZpP3EN2BOulgB4bk2ippvahWuaVjGURxLntKmR9wOczxv7kmJltXk9xywNfd0pmmp8PV6ErP8a8+zErAn5W5TtkMTtsKqerl0a1PYQ2d0YSWwMrRSAsKBoummU/WeD0li4hkF7Ou559JDy2U9bADCGJPpDcfN1gKFwzVRN4ln1lhytYHj/p/bWGIG0UDsGTWspummorbJw5HWh+LrigvuxDC172KxKW7Ah9uGXb+CPf+sH8EMffz/1fiAgBdaaRF2rZKlJnGNxLS9zQI2qaxJVcTG6zTaBj0Uq5LWNc0yCSm93vY5hsKkmMYnoh7yTtt+ibXOEawJyM013lGy3p/m6traTmqL/fO19APj1L5S0LEnogHSh+yQaKIFzTTt47Pem1RYBv/7P+5m7vrTVJMZKkgCPgMWUNBZdnSNcEwcAXE1uPwCYEpYK10IvccSuSa+CXpmTi0Bf3ZSum1RKnuz1ArugNqmbzq5J7NFNbS0wKmPdZJYkHbrH1jfHvhMTcAuzY4wpNoUIjvqEbrP/Gphi/bNjupZ9KLDGIKxa3XRKkX9gz32Zmvj5JaGnbBck1jVV77cu+4sK2AwbD1RKWSSxo0xEzpYhcEsS19UfWSXoTeqaTezIc+O0/DbABelx1qicyP6Mcc8bYo4DKX+SNpc4L1rQOYQkAhmjDexhP7dPos72sfcf6IskFGQtlzSpB2ziRlrd1NICAPCf7z/47g9R7xWTRtkPTgs4x7UEAfq1SuftsMa1vMyBH4/xdEfuWvFzQ41zwz1h+hAdOgjM/pqlfeECC/3Qty6puj2dUaaVhIhWF2QcBMDf99TxNYn+er7Fh3xG1q9Ytr3UlpkFSdRIiiHTPdN0PZFFuEZ/30Xd4MBYB2w1QRL3SbqppoVbgg3NQrHQ6+egPYDcf1sNaowSlRVJN1V7gklMKfEBsGX/13O0qZvqhuf+Naq+P2Ll8Oqm/ZpE9rzpBYlVQ91/6UEtSrGWPonzkUQJitrXJ5l6Z/Qhn0QSh2I3k2JuUd2knydXujG4HnFfsjQkvM3CNTnXVui8bRckkgukhxIRG3msUiqj2Xq/GG1jauKANlsHxyvpDdAGy7gwRs9hk8XKdsA8JHGKFhXqE/rfGxM0+7mF6wCccJAf52sF5tJN6V6Cbl4dS9fvrQo1iVMKXcAZNYkTwjU9JJEMtgGMq5ueo+O6VMI1izSh68Zu7Id+h5YWGHNMI/CAYd/Sz00DOLLfWEydpvsrKoRI5jA15szakg1jBWnTY2gkcdG2LjGom8r3K04aE5Rqheu0RUz5INE7TuuqQpo4yiH08/SfzTv/3Jg8TbrEj58rNWy2aaeQRhLTpF+DWtWdA3xe9tz1JQDgtBhRVhoxzdKwCde4QVKSQhJVEs6CZGmNBWsAoL83ShU16VPQaUpsmwSyMEm0DoFJJVbP0XBOSYnBuqxNVFpJLnbMFQOSuGr3rIIUbuoFzjMTCRafxF8L3TUBu8I7c80zkcSJWym/12PZmsSY8UKLx0VAkSkJ9+m/Avzeb/DvPwfbBYkk1GytSTxTpZR4YPT76Yy8gvoz8FnruHE2P244RytKIYc+pW46QBs217KMZYwYZ1f+pLW9R3z/bXRT7ewa2hR02ef+HDZZkMQOjgyjkqaVSi01iZ0zYqTxxDTV8yw/6oRrTgoTIqjbV1xEkKgpMlQWM2JAVE1DftdDmqqVXcA6yWMJoIJAuAVpE7M4QHuqvyXA0Yvl+12VPJI4pgLN+gdZ2+JjVdR0M3eZ57sna1Owl6euC7it6qZzLKYlLwg6Z5721z8r3PE49lXvuQkA+Cefe0i9v6v3NgrX9Pe79jUmuEmdasli65OomUqWRunyfDPCTTJOn1PsPp6lSU8l1qxuarn/qT1xDYQ94Xhd0nME/HmzSBN8/sEKAF/esExFuZgT/AOU4m7bTmdOIoHvZRojidP0T2C8ncXUNcdqEqfYZX5cvwxM5jsbSTSAABahwM4+9L3+v6doO+EaYpMcZPGJjSs4CH0+MotkhU0Lk9fS16sVujdHyZBteK7HsfWWQJ+CGDZkW789GbuxBUn7Jwd9EiemGIuEWOim/npyrf7rZ9k4krj5WoBkaP3PFmqNVuCz1yT699tqEkP/NcCQWZ9RbznXOuGa05ISMRG7d23Z/Xz+NYn9Q5E6ENNhT1Ir3RfgaxL7IhVsAmjYJ3GqByogSFsUJJJrZD9PcKqCREaZdhEhiSUhnKLl5wEekQUEJao9dZSsiZN5iiNp6ZMowYbQ5c/TJAAGbEiWPoNZdc3Hsa98xQeJuvZ1k/UTcP41XrjG/xxqGaevN5duGusCcPt/y4wSdd+aEw7SfoIlAZG3c5yjbmrvkziC9hDXk3PjZF21158cAsD7GLcOcnz+YRskGpBEADgt/PUY4Zo+ksiJRAFDFhBLf/bv9/9P17JHCSDmmqmqmRTj1Eb9v3Pq+2MRbrq/YswKPOf99UnbM48kMn2CBrU9xMYVqEb+/2U4A737cfGmNTXO/6trgpi16Ole4f9t42IYnRmn6hosNYnRQT2VyYwznwBXkyhjzbVVI/cfIISDRsRFrE2KLQFYL7NoyGxphdmuT+IUkpiM1XpMXqqXWbdkhOeaHPaPViVuKgrplOk5ve8u30x8jo3V4Flp2jxtKEqu1KA46Fqkgk1AxEg6oDOuZ6+vLE1w1DpnQHs/2FrSha9JXJmQRL9GViUf3ARkw/+/BUmUFh+rsjKh1FKTaKL2RYm780zIAH2VRhbJyltkSaysm3Onm17fy/Effeor8darnFKyzEcrRzPBnmbl2IRrNN2Udz6z1HUUWr51DLr3A54FxNAd9b5lqYnL2t6dlgRoKLmxBXvZyHnPzFMYKLIPsc8bANw+WOD/aRFqWt0067dqYvaFWM3cIm6kz+A5aHNV8/d/rE/iRiQxHUESCcXvWHPCz7OZTBSOljwRlOtUJ7ytwjVbYs98kMh80XFhLbNxDfsdcojIoJk7GQDE1Kam4eifiRu2bmAd+XjxcxtCgpOq6s11+v6PIIlTnPUR4RoLImJtCj68/9z3liYx3ZTL5EuQ3qisKUc3DYeGOF20cIQ4CKXQTfnvzaRSN0JbPE90Q9P55tJGv8bQcmOOZUnsJNdY5pu37zQ6fC0qdfHzRmfkjXvCKJJYTx+mImwhNtUSR9t+nuLd48KkbhqQRL93MU5yYIUEIQdLTWJR1TgtamOQmGJV1HTwBfiA1IrsPY4tI5XGOcI1Pvt//kSoP/wN76Xfq/UETHRHN9wnWeSmRzclb8ciTbp2P94ZZ9RN+zQ9X3vPjSsVm8Qk3FTbEEG51XXdmJDcNEnQNPZxkjiy0k0B4OZBSEZeW3JuuCSzpJaRUd2V701QWZ7u67CSRMJEOwqxmG5qEkEc8e+mQIAhu8xQlqWRxLrB/pR/N0ZvZeimKpg1C9dsiT3zdFPmi47FFZiN6yyVUosACqACUpKmKgFHw0L90WdjaxL7FA3/GltLp7nueu5njhnJGk05QUl0/2WedL2fESWN73+4J9Pj9Gdj+73lap1YhGvk0CiquqNrMHVqWhK7qGo4x2zIiUIS+URC6vpiB/5vnT+SCNhpo7//wy/g5n6OG3s8AjnH8plIog6kmPproEW3Iwo0xxLQAhxhDpPXGskIA9N0U00DrMg5AqomcY5wTVV3/06NizPr3kkm55gJ2lnRLRgAT51dVzXFkBETaitgC2Tn2jJLux6VTL9PICSpJPnm+8Rtl7M1xtJglarn9EnM0z6Vk+9BGJ4d7/9Mj4nLYIqK+97y1HXaAxa6qZzB1tpOIIi0+Nemr6UTpyxzCwhI4rEgiYbn5rYKEm8fLqgxi6zfz3efCRJVWxbb/e+f3VSNbEQ3ZZOSZ6mbTvVJLAYU1eme52MMM0qELGITAiS99YJ9mfOwHZJIfNFjtC1g85ets4qArd8eMIIkssFll8m313+ZxqmHRg5uZunrOrWAGNih/qneNmNIorQFmbJRKX/j5mMRvOkVUZMbeZ6JQ9KYHQugrUk0IpDy/nXVICdUQPX3xt5HQNBt//OFqJs+BpL4X/wbX4fo7DgXy6IaPKZP1iAB1LCZ9b7gjalPYpcU4xoHx0i6HzuNJA7ot0SNpth+nuLUSDeVgFCy654GutlJGyT8DCjdwSLFZ+4XuFbakMRFmmDV1lte3+OO9zxNUDfonPLzVjddZEmHvljUTQFBsBytrnmRNh5sGJFEwz6pnWtLo3TdSqEikcQYJSrrpguSNs4x1UiigRKbJLOCbcDvV7NUUWubKqo8/0dtKwuL83/7wAeGeepwuOCSQLIHCZK4T4zTGgRsbaGM0/vWXs7ff90Cg+4TOnIGTPVJFPRXrsHWCMrf711rqnVGMl7yRMUOkXDNZQsSd0gi8UXHi5jZuFK1YQG8SmOXjVHjKIpexLVm61/iz1Y3DVd/pIVrojlsnKeiDbHwu2S1miZ2CqeRxP5nY+smh5LkLN00zhpNIomDmkRbbeG6V7fBZ1t13Qw7Tt5fVDXlWMsYTYmlhVMGCOTksNmWpUkXPFuRROecqRZlrmWJ67UAYA58aaPQjWmmJcKB8cSRVcyKCfTk92M0HmDzulykSYfqyRhagn4R1E0XGdfyJEscnFNIIhG8jbFCWCftYJnhpKiwKmqTmNIy9zWJpwWPQEpwI075eSOJiyx8dzWR7NBzDNQtTjjlIq3H0jAEN/0+lXxwqXvFWVCiRVu3CvgaW2bPi1Eilt6t9y2WkSBzlCb1AL//+DnagkTtc1mCdK2KDXACWGK32iDx1sGCLqXoahIlSLTQTbsEEI/kalEk0320CtdEZ0DTNJMBpvg/MQuLqRH0c7QhiVpcqhtHCeWomlyDD7RNtl277FMwFjKOlfSAzYs4pmewTnIc3FQ1n/0H+kgWsxTTyCEEGaT4AMD/bBGu0RkqVrgmUHfDa1N9wOIgHWiRROKuaMc1IIKbxwzvP/991014P0tJW0SOHXMtQG2uVR0EaEgnoVDCNZRogXoGTCp1ri/RLq+dp4lS6XmrlM61PE2GNXhETVwVHaJz1E3Z2hLNLpDxk/1dR2g8DMMgRhJZcQXAO1cnhadyLknYzDnXicIAaBvWTwSJI/XlNJKYpzhel36OBudzmaUo6wbHaz5IXCiapEXwZq4tsyTUO5FIVp70ncKy5oRTLtJkPn26I4kIVvZgr+slWDcm5dylCtLXpDBSjBL5IJ07b7rPZlj/Urdqae+kz2BrAhTwiWdLkL5Uqth+znwy54Ub/ryJEbRNJrXz7xyv/f8b6aZs2xIgYnwZgQrNFOMT0Jq5EuawaYxcQ4wtHfPX0OPqSdGzLD0D7ZzyXUfaq1w24Zrt9Igu0CiIOh0qgAIckmhVadT0AKB10Kjsv8wNahzjEAb1PZkn5xCGzyTXtFLS2GbusQAEMJ390QEKwGWnxHo1IuT3Ft9/9p7IGurolSzdNHLsmDkC/fsijgLblFfoHUXFyc+n2mnq5jg5bLQm9LwpGs/f8D0PLQf9RVqs5sYITmikAeDX1kDdtCF7oPaQRE4UKUbSgaCeO1WTGNNv2eBmL09xWtQ0iiKmVTlXxfTYGP2yBAD7ixTH68osXCPoxjvHa7q/ou7vdyHqpipIYQV2QvlGENM47xYYVhsTrqEQQV1bSCaF/bgERdWYmCRAvyZxXXHrKz5P2T6VuibRom66zDwFWmpXTeqmtf3+A96/qBv+Pi4j+idDvxX74AvXAQBvH63pMaK8/dn7p/T1ulpqUTwm778WamEEYYBxn5cFDuL2NvrvnTVGv1eux5w3eo7y85zaeYamqhNAcj8vgnn0JG27dtmnYEw2wDsyfYcE2BzcDLLIVgEahaRYePVaOMUatMk4ZgnH9RAA50iOKV5OCadkyfDBnnIKx+4HQKKyM9TmzqKbTiOQ6K7TNHxGuAsSS5siW6aCS7aVBdB3Elak45pHVBfAXu8a1tb5bqwvtpndA7I+5KItT/pCLWxN4kDsZo6YFelc6HY6tHBNhKTLPIHNyYtcBWwAT1sEQi3Pg5PCFCQu8yC4YqlJ1NR1mm66CMI1lj6Jh61S4sPTkkYS+wmn83didLDNBvd5x5zw97Ko63NvgWG1vnCNf40V/OgFUqwCZYvAWFAzINz/pmnoREm8lguyT2WmAlLL2urq/QyiMMF3stWy65pEiwDWMkvgXAgSLQnGN1+4Rr9XTCiqn33gg0SmJlG37rEguX0/bVoQBtBIrv9/C910tMWcAYQB+NIxIOqTSJyLWeQny7Wn8iQ9KnmzQxIvpTGO05gCJTCBJKb9RczWtg1oqqSy1NwsTpwhYdVNE4U2sCItfp7JjJrE4YM91Rg23A///7UZyZJx/l+rKq2Mm6xlVEkBCyIrwjXrqjY1YNbCNeuulYWhBUBV45RUXByl8ViDdAP68jgmh+mHX75x7teaY3P6JMY1iTXpkM8Vs0p77ALu+46RdICrScwjZJXpkSUmtTz3Twq7KExZo2yDKZZu2lMJZOmmC08bfbQqTXPUcvossiF7glBpzxtJlLpJgEcS+43qfTLtIlpgWKzXk85QS50lSV/cyCDuYm23AQThmrK9j1R9ebSW2e8tj5xkliEsa/dkzYvCyFs03Ze7/xLcNKY2HUJB72oSDc/pc215A9uDExgiiUxNYhDcqkwKuDpRaKGN+vfbhIriunSGdRQj2wCJJEbJDj/f6XG65Vh/HMHmEX/XmMzZFnvm1U1ZKfl4UQEcHB7qUTA5Rv9e17GYetT0KKDzsjiz20RQAdgwcGb6JALoWjDI2E33sjswoto2rgdh+EyhtnDzmLNrEifGqSxm4vhAtleTaHASJBhaKyQxJw43OZBO1hWNJMby2+wc+0Xz5++0AsAXHq4AAB968fq5X2uOxc3jy4kkCTBEBC0Jp1jMyko3ZRNAmUqmxXvf5prEqAVGzaubClr89tHaiCT64EYCnKlawVF1U3It7y/80fzOcWFCKA4WOki0IYnyuc7bh1mkaaSuyZ9vZdV03/vWqZsq4RomkSyWpqHeuyLPe0B6CdpEcgAfOJR1g9PC7ydMzWuc9C5JNeFevaUhAAs9CFu6KTHOOS8uVTfBmbck2CXgtjjxyyxVSCK/lzjn8H/8h/8SbuzzrZNutW0zPmMIEmVOq7I2KeD2lcltpSwdm4Qtb4jPqc6/3qQ5kfTeC/DsGpmbvh4reFM36BIdfu/aOCxS9+UT5dtk25WKewpG0U3PyHRs+rKTOPNGIlkxTXWuuilANjKNkUTSIdS91CxUQt1/h+GeA0A6omQ1lcl0zvkAOApkuZqsJ0c3ZZHjqrHVUcztySWHxmlRdRQnJpMsTutJ2zrAhCTWDUUhEVtkAW220K8ex/7s93wIH3/9Lj72+t3zv9gMi5vHs8mtfh0vX5OrD1GWAt0XruGSJEm03wFcgJm3FL1GJYHYoOFO25fst794ZOpvKTQ9tnXGMOHHq/RKIMuoqGo7XIbnklc3FdSm6v3/eVncgoFFpIC+KvNVEa7Jo4SrRYGyt7fSwaX/fh+1rRss5QYyT1q8TNckGgLgZdyDkL0n7dldGc7SrPe92Zz4vTwJQaKBFg4AL9/a7yH/09dKscgSfK6lm+5RdNNQkzi3TyLL0oiFa9izO1PsMj9e/JlNY4ZIIpNgGfrJvACNnhvgz7ipRIk+p2SuO7rpJTNWxnaMM80gicMaNRuSyG5aAySRHKfbDQC+nQUVXPYCMP8aKyUv90I2BlbddKBkRXxvRbdhta/R6o79z0Z/b0pd1o+buNZIsT0zxzHhGuZAFMdxVdaKbjo9rkMSiwqnBaeI11M3JYMGGdfVsRiyn49jX/XKLfzVH/lYD4nZJovppgWhVBfXJLIqpboBMMBT12PhmjRxRJLE/xtndoHNSFEsgW5BKSRIPFpX3c+MieKi1CVOOYXxnmBx0nRtLBvsAX26KRtcCitBggZrr1CribpmXTeUsiCgpPyrWp0b2+W+zBeuSXqUtNnCNeQ2Kd+v9PdbEEh1nPRm+1TmiUJSGh7tlDk+PJU5ct+1nN0WxW/92SxtOgD14AvOAAAgAElEQVT/bM5BEufarf28+w72iO8tSxOkicOqrFGUvCJwD0k00EYBVeJD7slnI4lnj9WlLHoc60vGNYlTe8lYMpMJSnV/V4ty7jbZdu2yT8H4jPwQSWQW8aD/0cRD45xD4vp0U4uyl7UmMW6BMadxNkutlHGx2hOrSBWrmzLfm2wigW5KzNENEUgrImIOLmvbwdb1SSxV1tqAJK6KqssGM8G9OK1elp9DNzQlxJJZz9LQF9PSW+4qW5YmXcIDaCXoJzYGfR8BI/0n2hM4mnak0mjKPutDm1C361q5hM/GZmh1YGgLEr1wjbRvMPdJNASymkpmQxLtdFOh9j089c7uebeB0fXNc5BEeQ62D0lsE3dGCqhG/C1tUkS4h1ED1raIAjBLwk/ORbZPpU5usX1a/ZykvUS7Jkl0W85um+K3/9t1G1za6KahvvZCgsSWcpomjl7/fo4VrSUgf1/ThJlnNG6TwiYFvLhLX6VU/72zxgB9n7Ak9tdRRJD0JYF+MpMp+YjrlC8bigjsgkTqAUiSIP/vx0z395Ngb9Dvjdy0NJXTwquXZ6Zu7LWFYdzksJ7gTYckkj0IYyrnlHDKmJIVmzWKg3QrR56tmxzefy4oTdTmY6ENLbKwSYYifSJIbGk8py2SyIjWAEFJTZBEqkdT0t8g2TnmapyFonSVbZH2KTkFkcmP+4uyQUriXK8tTkPuCTrhZN+3hnTTTc+3OEjSSoFRthObGyQKTVKuyaqbauo0jyQqRNAgrX84oyZRnNsHhqDhcUzXSbHIWZqEpEC3PrasBYZuX2Wpwe4FUoYgRT6/JC3YfVICLgtKJ3MqVIKX7ZOoWSF0TWIuc7S1lxDROYu6aYwA2+im8xD/uXZr3+9X+3lKK35LIMtqCQBxP2uj4I1KSlLnxhlIorVPYk2dicLAsgV7nZ+me/MSiVDtA1nu4zbZdu2yT8EYxynOIlhUOeOaRI4C2q9J5II99K7TgKwtTFxPWbAxBJe1uhZgQBIV111e22RxvzGA5ZEHqovl0Nbqjiy6N7j/VnXHGiba0Nw+iZ0kdlG3SCIZJGrhGhpJDJlFi5CACOmIKM9lUwM7D8uSfk1iWdWTrWMCm8GGUmhxKYCvSdRy32zQNiYkwKmbBvohYHOuNSXTSjcVZwuYdq41QtHNkRauCQ7ngakFhnZauWe7awp+cjFIouwdx+sSTcPVcskZUNRBcGvbsvK6vZBFpEK3k7IwJ7r7WLQKoOS4QU0i8X2LkufK2Keyl6g17OVyTt0/kbpJ7hmQxLxFTE+Xs9QGBVAAvZrmi0ASX7jp+/laAtJlluK0mIEk9r437lq9ceSePGDqEc/OWbTRSbXRNPgk+nqT6vXtr2Mkcbp1RjinLG2atsl2QSKxkGMlJdYp13V7srZoJNH4oHW1baomjms3EGVjZtUfCWo2E6Uj7iMQoQ0Ej7yv0PW4c7Rx1nm6qf9XC9dQYgc9uqlca3JYR1NZlRXWVUM7hIFuakcSi0rPkTs09Lgd3VTopmFN1s00Aq+RDeDx6KbM2tJy36xDOPZsMwyDsZpE1gHVe4AVSVzpmsRJuikGc2Qd0OevL7uf33P7gJ5jT92UVEUNSKK939scm0N3zDWSSLI7Ltp0sNEhWayTXNkSOUBA245WNnEXuf+PjMjxIku6BAmDvgD9ekubumm7JjtRGL4msW6MLZdUMs2SyAGA22r/sArXzLGXb+31/mVsmSc4WlVoGj64jH0gtv43LtU5v5rEfrmBjJvaEuJWLjJu0gdN+zGA/xmT9dS6v6ul3nibbBckUkGi/1cXbQNEcONcz0EAOEc+UYFb1dhqe/qNm4lrDeim3EJOkkCtZIM9eU+HyJIU0LlKVj2n1Ug/ib/rqT2yc3YHiq+bx/WEawzB9qhwDX0ApzhtkUS21mNPCddYkcSysvWt0igRW5N71S1PgyPJtgAY1kXzQg5D4RrOISyMyN7Yoc3VJPrfifjSuuKagou91GbkLUHifp52SDrABIktkqgz8uQz+vKt/e7n997hg0R9z1iHcK9DEi+GbrqIAgAL3dE78oIkbtfGMNonkUncpZpxxNcW7mWhThzgkcQuSDcgiYDU5NZtzR8XpOepw7ryTJKaTFwDAQV/eGoThYnVTU2JqnaOFubKnYOLRRJfafcFiyrzMkvM4jraT7ME91kSekyzCV6NpAMc6ytT+0E3jkASk8SXgQW/kPvO464D/mcCSYyEay4j3XQ7pfwu0Dh1034Wga0B62VjjGpnGklkEaLeHEnaRCxcU9UsvdX1HEI9h83jkq6+k0XpxnricNmfId2XCTg0lZae4xlIIt0Cw3iwhQyV6snFOhe5L2RnZcyBgCR6J7misqZCGy1rRYk1BcD2GpGralomXNb01HeXR9nPiqQNDZFENnHhejVLrLqynqP+edPzvYiQREvCAwD+1o/9Pvzl//N38I2v3aHH7C88bWvd9UmcqEmMAmAL2qnf98rt/Q3vPNtouukASTxvumkrlGNQU+2Ea6qmqyfaOuGaqE+ic+Rzo5xk9rwHQnDf9RI8ZyRR1H2DcBDzvSkn2UBbDMI1dnVTEaABbMyVsmq67401jSReBJXw1oG/HvtsA/5eds82jST2/TT2e/Ogg18fjYW5opOShD9ztgDN9BxF0A0IfiGtsN/E1+PGSenMjm56CY2pnYlbMLDIWRzsAZyTnEQIpEklsAnXm9U423C9mMpp6UlU1k2HjMxFEqfGxYevzHvKelRaMnATZyDQfY3BfZvFlOtPWa9PoiEAAwKSaBGuERqbp5vW2CMO7UUU7AG2NSKfbRckhsbZQKjDm06u9LOtNEtArX+pJWW+gTztP2/MgZhGz42fL+8kFB262tBrGQCeu77Ev/udHzS1PDlYpDhukyTAjD6JzTz580NDLzUAuNs6ruy19i64JnGOcEqnZltvbwsMjVJUBtRYzuDGqK6pazvl+ozJ/X+0stGLRSWTbV0FROiqhW6aR2izQd1UAlKAZGFFiVoTkqiCRFZI5nHszReuAQC++yteoscssiTQdlkkMULFpxC6blzSF65hfaBYpRTY7M/ELBm5HqW4qwLZAHBMI5AABi03LHoalnKDbbJnHklkHKckcrZYmqQO9roAgKRkzuF1A4FWyfQRBPoNsAFb3VJA29rXSAfUj+Gbi2oBFDGmJkLLOFsomX0qLRfIjqmbUm0DRummk8NCTWJl77+z7CGJNrTB0ji4l0UzBOla7t5So3OVTSsgirpmPnHg6wx50zQ2UaouSPSv0bShGfWPwFlI4nRNYhckGhIec21/keGkqHBSSJ9EW5DI1Mxo+zs//s34zP0T8zz/qx/6evz0L/8m3nj+GvX+ziG/oJpECUrvH6/p6+m1LMmSbatJBFSrGkNCII8ccp6S6e+b1CRa6aYW4Rp537pVpAVIxotGVw2iMLoFRpY4Wsl2jrppv58vfx8B4PYBT1d/EvahF2/g13/qO3Dv2nL6za0ts6RDZC01iYDU11qRRFtSLE3cIPiSv3WWZWewy9jrFRErZ9qXbK/RxEHpFMARSmfYViLbZs98kMg0hc2iAIClV+pgrzIEALGyFBcktnPTSCKZyY9bYJjRNsOhobnk3Tjy/sdFykwj07gmlHVcA5W2P4ezx7Tz6gkHTV6qhyRa5tihdKVdAVRqSyzCNUnisJ+neLdz7AiqkeqH1hgyu72N1VgjclVN6jaaJrQAyCfXZP+g169NjdMteABuLWu6Kc2AkL3VrG4qCYgQOOfZ+a6T/S644bLyMZJrzSR/+Us38OUv3TDP82veext/+0/9Pvr9UtsmNYnnjSSKAuvbRzy60WegCN10u5BEAL3evDySGEQ4LEkxoRx2NYnk7RgguYZE4aqsu8Qrc/8zRROuyTNRrgUAp0XdlTowliR9dVPW3wJaNo+RbmqpaX5SZgkQgfk1iYBdzKcnFkgixxp9BECVpowhiayYUq4YfvKsTpeOSVBqU0XVCSC2BGPb7JkPEpmFHDdzZx2uONhjxsh7NBw+S7iG5D+P0U2ZjbzfONv22fx1AiJipW3JzwyPfKA2aqTSskji2P23IInmmsRMo3S27OcyS3BaeNqQpY7rYJHi7aM2SCQykl3dWNV0dEULlXbd1vbsYsTosCH7xGkFUMvaci48L5bnRrfAYPetQOUPrwU67aYgMUISjTWJc0ycVXkGpqiqoU9lOAO2Ud0uTx2cAx6uLqYmUeiz77QJJ4puqhAptkzhaZj0BUwSR88vPNu2hN8yiwWHuGBqoC5L166mnm4q6AuB5GZqL69qnhKu16BlPYrGgqVOv0OlKhvdFwA+8rJP4rz1yk16zEXbMks7f8aKJEr9NUs3HZRKPY666Yb1Fc6NcHAwfQvleoEVyLXTOavkiUcSLy8r6pkPEplgaow2BHA1QbEACkt/ENCsMkD28RzZgEite54mpnsJGkRhMnUgFiWXER7rk8jQaTUiaEFE9PfGUmsG9UeGDdK/n++tCAzVTS3lOV64xgdglkbd1/YyfPHRCoAt+19Udfc5OSqtzj5fzo31SVumAu4gHMGuybpjQbAsAU13p+eYKHVTsh4liRJwAFQQfPYfEId4XdZgW4I8rknvwi91QeKEcE3EgLA6oBdl0gOvQ0gNe8Ick/v2joFuqvcE6dV3EWqSVhO0bZkldHIrVoG2KoDeN9aSSp/QLx35vZxGEvMER6uSpugBge0g4jrsHJ1zXQ2wBdmWBK+pL3L75610X8ALyfzWz313t+9to+nnmRcpikWRuGvpUgVfcjM95qw+iRSSWGmfcFpttLteTDc1stlEFXWyx7rq71peUrrp9u2yF2xVxdAW+wEAU1gLjCOJVOCmkMSarGOJhWv4LE74XFK3ZO1tM6cnUVU3WFcVUiLjOlfdNE9H0E7SSdabgZ73WTa8/2xWC924Ob0E15L9NCGJQje11XHdPljgs/dPAXAZyV4ga8nsKpEKi9N0la2r71TNxOk+iT2nafpamm5qaW+Tq7rJquJEBOJaXgCUeqI4O1JbO/X+J2ES3Hzp0RrO8XRTjSRuq3DBXp4GJclzvo8SpHSsBErdNOwlp63jamkoflG2l3sF3NpAk88U4m9JinW1nUYqoVAkf+9dv5ezipeLtE83pURC2s92tLKvrVv7vs2DpUZ2Tp9EXd/GKnJq28tTXDe0pLho0+uCfWZkjNRfs/uWBjj4XrnJaE2iXd10unRJxsq47uyY6rkdXY9XRVVI4hbv/5tsFyQSSOKgUTpZSxdnVfTf2mSaJkn3G2vf0zS2cUmv/qj/t6bGyftZZBXQ1F0vZc4cGmNQf0kgpWnSb+4t854yzVm3iuv0BYcmL9Wnm9a8I++cw6KlNllrnZZZglUr5W8LEnP8XhskXlvydNOimtfeY13uWmCI5QpJZNUFY4QC4PskNo3fSyzfm68BVkiiMUkixnw+yY6fFnUQ8jlnIZMuSDxaYT9P6fY2VvrV07Aeve+cgy+h6UqQyCBFISlQ47RVl93fwiBRkEQLbTTv1omt/muu4NDBIsVenuDtozXy1OGQrPlbtgwUoSBOCWcB4ZkURMqC/kq7ByvddE4NNhB0Aa7aeaNp8XRbnK7e1X9vLALWAzjIRIkuUwDCWbDpexinf7JIYoJC/DuCtQKouuEYdJhCIDsGxOUVrnnmg0Qm2Ih7pNCBgwvcZ6sCqM5YsI6dvg4dXLqhuA6zjrMer1sCsOlxPSSx5Pr0jambMhL7XuxDEFn/GkXlzPpNwQGuJyYQIbmGA0oX27OHVJ46FGVtpmTu5R5JLIwNyLWS2/PX9ybfr+mmXW2bgUrbOU2XcGN90qbvJYuc6ZpEi3CQfkYtGfk88apxTSP1F5NDBgk4AFTNmTjEq7JCQTa3f1yTLPyXHq0pMY1RddMtXcsaYThvJHGRJVikCd4lBYCAML9V6Vvw6Ne2yTok0RBs6GROXXPnKKBrEm00Yecc7h568ZPbBwu6dcMyS7Eu6+7+M0G6JI6PWnEdS1LyVtuo3nJGiQp0l/A2sHKquqbLey6T3VXiOny7k5Zu2iLA7FqOAQ5WTbuvi9H+rQ2+4Ri7jFX01y0wuppElpUT9waf+Hw95eJLmoB45oNEJtgY1pb4hTIpeJO4LmirDYGUD1ICBXSOuqlFgn6gZMjWMqp2D/K3pkzD9uuqxsIif65osX5DmKYIDPsdTl4Oeeo6dIKl28XOrqW2U8aZg8Qs6QQBLAjFwSLFo1VJI7lit1SQ+Nz1aYW1Mbopm4AApN/Y1Tu055iWkpfnYMrh0skVC5I4V3FXDlppb8OIHcSUTAAo6qYVU9kUJLbIUlGr5urnTTeVWq51V5+4yXJFNQJ45einYXI/nbuYJvUHy7SriWOQS612eVoI3XT73JcOSTQkBGKBKau6qZVuCgTKqUWd09NNqw7JZe6/nPfHK1tNIhCSkpbPtWzPxE7d1JC4llZBW9hZ5bHsnjqraSSx68EpNYkkkhj12GXupQYcgBC4WZFEujevYph1ZwcLAgz8yWmgws+zRRIv4eLavl32Aq0LNkjaUMiQ+NeZ4DJA77yztZgjJR+pa7JKSj1qmaVuL+lnyPlx4UBclzUWBiRRO1sAp0hVxHRTChEJSGJJOteD+iMya9S1ADBSZAAvXe/rX2x009uHC7x7vKaRXLE7h6Hu4i7hXOSabmr4bDq4LMg1ctVNS8kLcmYptq8MCaBe6wzDOC0wVZMOwqgAQVVPUtcDssQjq49rgh7ePylwkE9rvmkFYkD28vOb3+OY3M9FmlxIU/DDRdYhUlTJQZogSxxWZehTuc1IokUAJU7msOP8dwXcN6qbAiE4tPT5E7rpqeH+y/kiSKIlSLx5YK9JXGYpVkVt9EnUfndJ0Z5Npltm8EhiGyQWtiAxTsyzScm6waA0a9M1w7mhg0sSSVT0Vl4pvB+Udm1upnxQ1arpsrbA2NIj62KsCzbYjHxHJazhHEdBLKPMA0u3CyqB89RNmeA3HmcJZHNVf2RCEtX1WLpjLHcv12WyOHPEdfIsBJcskhgQQXTjLPejVPefDfj2FylOCjuSeOdggaJq8KWjlenQ1kgi09x4ob436/r34wRtfqa3KQDBuSqququnYNVNy7rpUH8b/co2rod2ssI1ktzSSGI1nXHVwjVdTeI5rxNNr6OQxGjfYus0n4bJ/bwoxdBDVdPMt2BIWiRx+9VNLXL3uuenpXRAVGlDTSJ/P+5em4ckarrpHhFwSFBi7ckIBOEay3PtA9nKVksd1yRu6TM61+5dC9+xiEZNmaD7Qje1IImdWGNNJhcH/rV/fdOZM4okks+O9BwGgkgaW5P4uMI121pusMm2b5e9QLMEGwB6srmss6WRJYB3ktdKXXOuuqkpuGyCQ8hkkvP2wADCfbHUOxVVTQun6KABCJz1SVXU1HWbgBXJErSGHSf+sG4LYm9l0c6blkBvs9akkqqYOAZF1ZhU2V64MV2HqK3LopV1aO9hQqTqFm1+prcpAMG5sqgLamTPqm4K9BFIU3ubdpy1RlmsrKf3hT7dVBCp8z2AtYPF1CRqBWKAb4vzNEwQpYtC57SYBvt8+1rqCquiwjK7GMTTarInSxsMxrQDak347eVpdw5bkmkffsn39ztuET7Ghkji9PX2FfpunaOsSTmLqTmqIB2w0eu7+v4tXFePYxpJZO//gG5qQMV7as4UmyQKwIjSrPFzY0ZNYkc3JWsSB3PkkMSy9onTXZB4yYxVCQyZPiMFVHGfHydIMQmgKMie4WcHmqriWRPrOE/noaSySa0rXjhFNxvW/zJ00zjzQ80xTXrBZeKmA+e5dF8dJFqEgwB/SAe6KTcG6GePr+/xrVK/9cueww983Sv48W9/k3p/aNvQUNlBsYBItZTkLUQMLtqWPXolV4MXpN1tTlNPkr/btzhKIOCzszTdPcoiA2hRyKnDN0GauL7a4jknE27u591nYkQ7nHNeXEohidvqJLz+3DUAwHvvHFzI9XpIosFxlZpEBsl9GqbnyAbcWpTKimQd5Pb7CADf9qHnAaBD4RmTpuwSWDKf77BNBtxve2JaEn7f+NodvPXqLfzrH3ufaY6+JtT/P/O8yd66bhO1lrP0MpjoB7z16i16zNwWGGnk81rZVDLOv372F6HPKMD7W03DAxVyhnYJV0PP4f4cJ2IHBTBts7r1JuM9xCtooZHm5l1BBzYA16MPkJq4IAcMcE7yIus3gbeKTQCcaqsfh26cVaSim6NhnDhXp2ufbWUcO/l+1kZ0L0uSbsMSH5TZ6zzdNwSXln5vQTiIrD/NAtoQxI1IummbtV5XNrTtdi9I5JHEPE3wCz/wFv3+XpuODkkkrqNquVhxo6tuC/UMhBo87mCz1oSGQzuI5FCCTwqBLOsGBxa6qcoIF1VD7QveIb+4PolJ4nD7IMcXH3HCNTKnsqpNPWifhr1+7xAAcEjS0R7XhLq+MCCCosqcOI7q+DRs2c7RgiT26N1GJOvGvm9LlCaOKgEQe/3eIX7++78C3/Lmc/QY8YPuG9RUBXF/59iOJL716i388p/8Jvr9QGjvFDQIpsfsKVGkq1iTuJen+Gs/+nF86KXr9BgJnKW/JY0kakX/hlM37RKFyucCNp85WRy0kfRPwO/JEvyypRuZOkv9dbmka48VVdW4ZkjKb4tdvhk/QaOzAVGQwgdgDidFvxiXUdvSNYksj3kUyTK1zmhMlEAJpHQvNeYB7YLEtgm2DUlsev9OB4m6BYkNyRXqz+MIB7EBKeCpLpY6CkAaYBdYFbVNtEDVFt44500ra9t0dC0YDM2Ny2pHNxUTh2xVVrRst65jnFOjY+2v2GV3K7twTUw3ZVTghFq2Ljlk9UnYncMFvki2wADCPmm5j0/Dnrvh0YbX2mDxvO3Flrq+ZwgaFm1SwGE7lU0BP69VUeG0qHqU2k2WKeaEtU3KrU7cxXY/nHP4wY/yCB0Qzu63j3zAxyCJ8py8O4NuOseEEls3DRzBAAKCKJKwcrYV7X8c+8bX7pjeL+vp0comOJSlDqsyBFJTqqFAPykJcKVZYz1oAV6/QxBEvnRjnBI7KR6n6o29n7ad+9Yme6aDRLYmUb5YjWSxUrtxD0KKbqeRLDKzNSbRy84RaNU1TZTM8JBaHlA5WE7WPgBgDlIdSMlc9dzPsrEWGFQArJAslkc+tyfaWE0i60h6JLHGqqxMh++da/PopnNMEh4WJ1kLOXgk8eod2lbrI4m25FZRhSCdc5rCs20TsxJ6Md8CYDRIJOimgFDLApJ4EetEqNpsAODry2tTbefTsE+++Rx+/vu/At//Ne+5kOu90AalN/Z5JoMgiQ7bqWwKBLrjaVHjziHvWAOCJNpa/tzat7eJmGs39v2a//yDUwAc5fogppued5DY0U3ttZ2nbTsdhjl01W0Zocbs86ZbYJRVQ6HbY76Tfn3MOiTRKDAo7+mEayoy2IuCUlb1PlP1luvKlszfFnu2g8QZzhYgtSUclSqu22MDh7WiqVrl5wH/8FiFayyBrEYNLOPkYDkpKt+njzg0dG0boGjCFJIodFN+jote4Gbsd9j6urOEa4w1ics8wcnaJpIA9AU4LHTTOZanSVuTaBGukXqDHZIoFtQ8627fmnp2OiSxtNWEaiTXtCfE9RfG/UesqDgauqAGF0U3BYKQwwee4xC3vEXSRWxrW5UTk8SOLD2OiQgWi8gCoQYb4HorPg3by/3ZfVJUtEMYzrcaZV2b+vTdmtEmYq7dbAP6zz9cIU0c9bzt5b5NR4cknvMz6tkFPEspHrcuq0uJ9jxpk/X0wNiDsx+AcS22huqm075yjCSyQRvQBw8EKLL0HAYCM5AVjyuquhPcumx2+Wb8BC1AxmRNoiCJZKY7VcIpFuGIQZ9E4tAIgU0ISi1007puTI5MR8HVKBGDJC5CQTTbp08EIMoqpo5OPdiJKqL2r1lbMJR1TQpw+H+twjUdQmSsGwN8wL0q2yBxptN0/kiid5Itmb4ekrgTrgEQDm1dk8gKbulnlFIpVQewLbgPB6KVph2r1DF00722J9pFBon/9POPAAAfe/0u9X5B0mtDkupZMFFc3CcRWUB64FU4XVcmmupFmnau2dYeuUq4sm0DxHRt53mbBImfe3BK33/nHA7yFO8ceSTxvJ/RZZaiqBocr20OuSCJu5ZL3vLUIXF2JHGR9XtMW/QcykFN4tnPgXNu1L/mkEQ1RxIoGiCJFXee6uSu99Mu39q6fDN+gsYiUsM+fXyWvFvEVuEURW21BG0huPQtIJg5Ai2SaKBEdXWCygFiHtCuCXYh2T422zpscD81T6/A2g8sGSbJHGd3KFxD0k0VtdVC9wX8vTxZV4+VoboQJLGqTTLtogi2KneHtthCHTZdkDiV3IoQcWBebSHA0uRVcMmyLYTuHiGJjHMhPdGkxcRFBIn/8ae/Bt/85j288fw16v156jySbqw3vur28q19AMB3feQFesyetGAoeeXQizaplbx/Upgca8AngNhSFjFBEnWS5bzsxl5AEi33/2CZ4UHbJ/G8kRRxwh+cliZ0dZknOC2rS1s39qTN9+BMu++NrQHut0bjEuyabq3/nTpzdB/yziekhBCDX84mGAeBLAlULNIEiYNqi7Od+9Yme6bpphVZk6gdNIAXk0kTZ4LQxTJVk8iqnaWJz/yEILHmxqlMvsWR7KNt/Gfr6KYtTZKln3gpebmX8r1NP9hB3dRG9wVsh3aMiLC1pLresjEGift5itO2BcD8IPECkMSWj+8cl0hIEofrexnePV6jqhss0su3sT5pC3XRVfe8TaHwY+1VrOqmYmyTYiDQVCnhmu65Ca+VVUMxDKTdgCTULoKW/J0ffgHf+WE+sJGEn4VJ8izYa/cO8b/9+9+GV27v02OWWdqJi2yrcI04gWXdmFp7AOiawJuEa1p0T2i452mCJN4/KfCeW/z3pinF51+T2AaJBk8rL7QAACAASURBVCQXCKyEXVIy2DJPgpItGdx4JDEEbsw+Ln5c186C1I/Q/Q4tZRFjweV0TWJ/jqxYo3MO+5LMN2pHbItdvhk/QQv9xiaCxIjKWRqEayq18Fm1rUXqsG7FJixqZ7qW0dLLEfB9Ek291KSOorI5QHmrJHbSIYn8Z5MAWNQMp5pnZ2mCsu4rsLJ9EoFWuMYoHKT7VFoccu/I9//WlO3lXoX10cqWNQWAv/LHPoo/+NbLuH7OkvfiJEttISt3f3M/xxcergBcDJVq262HJJacIptO5FiEm+YK12glNy/4NP29xTRtf10SSYyEa/ItFDgS+pWVSv4s2Kt3Duj9AAhI4oOTskO1ts32F2HdsmibppLX5Hkj9lIbrH2ppXOep2mRIUsApkWeLkK4BgAenBamxGnHStjVwHe2zJKuJtGCJK7KQOVkhGt0CxgZp18/y3SwZ1HYzxR4wKub9msS5V/mPN1fpDhalygqPnG0TfaMI4kkZDxQN60NUrtK7ZLc/LsahVbtjD1IF2mCQskPc2in/7dPNyUCKS2vbw5uFP+f3JCzVD3YNflgd1Q2vq8NEN1/sj4qCNfYvm/pJbiubHRfIDgh941ZUwD4xBv38Ik37pnGzDEJ7lfG2sJbByFIZLKRV930HiSo7DSS6LoxtSHTqgVo5JG2IPBl7RV3mTUZZ2gBH2Tu5Qx1PcHbR3XnlGyjc+d75dqC9J2NmyCJp0XdoVrbZncPl93PbC/HRVy3ZEj4ffMb9/Cvft0rePnmnm2iM2wvT7HIPJ3Q0qeyhyRegHAN4JFEVoEY8N/VaauTsEtKevNJuFX3MzcmJPOLuqZaYAQRmr4oDIckBqFGZgwQwAOAB4qGLTfCHKZsf5Hi3WMbIrtN9kwHiWxN4pDKySGJWeK6BV83PNUoVwGYR6SoYcjVA8rSVjRN0tQTTfd2MjSuBdpauqJCUXIqhkAfSWRli0Mz8RpS8mSR8l+XNV1/GhBZKaTm6h/lerpNgaUmEYBZ3fQizdeFivwzP8eb+zn++dsnAC5G3n3bLWv3IC+vX2E/TyeTRyEBEdqrWBBBLdpkYReUVYPToqYk8hOVpBIra25fOFhkOFqXOFr7upmLagRvMWF3CHN3J1wz3w4WKd49KdA02Nog8UUVrLGJO003ZZMrYkni8Bd+4C3bJB/DhOFhuf8SJDp3/ki6rkm8rfoBT9lenuDzDwuUNae4/iyY3k95JNF1ZTpNMw3AAEMkka9JVK3ijEiiIIFsz+G45YaMY87F/VwHiZdvbV2+GT9BY2sSAZ/ts1I5NRxeN40haFABmAmBDKqodW2jVpb1vEDKI4nemWQRz/2FlzK38P+llYJcU899ao79AJi4Vg8l5e9/4oJAkaW2JM/svQSBfp+qbc1QZW0hu5XGc2t/saObKnPOdXuQRbgjVpdllpZWcqsNLAFdA3laVJRjIc9Wj25Kqkdf28twtCpxtCqRJm4rD+BFlvgazS3vk3gZ7N61ZXdGiWDLtpm09gBAK4DKuj1e+7ZQFpTuou3F9vO9RraAAYKSraXcYK7NUZeVcQ87cZ3tvf8XaVqvwFKTuK5qFXxZkERe3RSIaxJ5X14z/Niewx3goEAAgPt8+3natYDZqZteMmMRKSBSbTIEibXKjrDBxkIFYDWpbgqIAmjIdHDtBkQ4xRhI9UQxbBny/TzFccvR5pHE0AKj46xPKlIF2ty8mkRbTWgsVMQGe4sWJQ2yynzdntg2OshAKy4iQaIFSTzIcdKKMeyCRG/SAuBkzaF0QEhAWFRKs5Hnhmqd0e5bpy0Czzi7cSNloFU3Jfbka8sMD09LHK0qHC6mkdWnYXkrQrYTrnl8u3c9IEM3thRJvLGn0RdSubtVQHxwYlOSfBomgjWv3+ODRBEn2jf0xJxruuWAJdjbyxM8OG17Oe7OGwD9tcz6F3nqdRLEV+b6JPq/HVNHp/ygUXVT0ueNW1lM+aGh5UYfgWT28708xf1jXzN8GRMQz/TTEHq3MSIJM5BEpwprDcGeDsBYkRwgiCQ0ja9lpFpnSK2TbsFgqj9qTCgp4B8aORDZzIpugVGQWaoO7azrWeqmgu4xDqv8bS1URNOL0wTrssGq9EER61zcPgxO07ZmqA4XGU7WpT1IVE7gTt3UWx9J5A9taw9OXaRv6+8a6oEAbh13NO0e3ZTrr3VtmWFV1rh/UuDaFlJNgcDu2AnXPL49dy2gdNtKN9WJCiuSdd/YuPxpmNBpLfdfAsvzVtIG+nuOtU+i7Fu7INGbtMdapAntu8q9O1l7X+ax+iROnDm5amVh2V99cBmCPZYGnUXMQHltyg4WKd45vrxraztP1gsya/ZB9y7k1E2TzslqjEED4NE9GyXTtaiB/39b4/KAPFJog4zr2kTYNuTPPzwFAFpdM9fSypWom04IDvVaWfjXOOGatiaxDdItgkOSQWPVTYEQ3IsAB+tc3FFB4jaKdgC+ruFoZaMWA0HaHbicG+t52DJr+8StebqpoNQmddOulrdBlhja2yyCkBLAISJxPQogqnjT15Oamc89OMXBlgaJWVuTuOuT+Pj23PUgCrOtQSLg23v8sy8emVDjRRaQrG3tAQkAf+Y73oRzwPd91cv0GOmJeX15/t/ZjX07+gX4ey5b0HJLz9KLNgnqLckO8UOOJEi09OruqJzcWdVTNzUIs+WtmFjTNJ7NRvquWeJCTaKB9bW/SDtW1DYngM6yyzfjJ2gCHTOQuK5J5Nsi9HnWlho1ADgpKlR1Q0PUIu5SWmotew23Zd4GtK2t97P4Pjf2cvzuu16U5BqZXfQPtgjXsEiiQgQ7J5m4lupdaAn2tLJXRdaE+uu5fpBIbiR3DjSSuJ2OxeHSyz+baxIPdkFibIs2SDxphWsY6xJHFnXTNNB/LDRtmdPbrRw/sybl7/bVTWvq4L6ugsRtFK0BQpC+o5s+vt27Fva7WwZRkou2H/u2NwDA1Kaj325gO/dywN/3n/mDHzFRR1+9cwAA+K6PvHhe0+pM33MLtU+fudvKyrlo64JEw32Us/q4FRMzIYlSX0i3D0u6oK0LEpn+uu3z5Vs1caUNMs8YSWTmORfd3hbbzpP1gqwwZAO0umZdN9RGosdYggapSXy08g+aRdxlXQWxCVMz9yr0JmOmuVCBlKVuDwDuHi5wWvhJstlF3QKjCxINrUssTrIWDvL93ngkUa8RWpVW2kQUFZzjUcHrM2oGLtoOFhmOV3ZpcY0U7FpgeFu0SPVpUdFBkawtE91UqQIv64QeJ4fhO239BePsxv1FAdAUb7kHn3+w6qlKbpN54SBbe6GdjZtWq3zxxnZ+3wDwqa97BV/93lumur1+4/Lt3Mvn2mv3DvF3/71P4v13+fsx155IL8cdkggg0E0bVQowZeI7nRiQxEGfRJK9pWmjFiRRnq/TsjKVc2VtvaXMUeYwZboFzGWsSXymg0RLTeIi7QvXHDBjMl8gW7X99ixBAwAcSZBIDly0lFiLHLBca102WGYWtCFkfywoKdCvpaORxDTBw8Lfj1BsvPmauv9UbUBE+sqttiCx66VpQY7b4F5aWbACHJqOsa2OxeEixbqqcbQucffacnpAazf3FUq6pZ/tom2Z+15eJ0WNO4cGtbmyMa3/UJPY0G2CgPA9idw3o+4Y9xcFWiSR2PNk73i4KnFo6Il2keZFEuzKxTsbWpI4/OpPfBJ3DhcXIoLyOPaB566Z3r9Ik05dc5uRxLn2uvF+zLXDRdppA1jOjduHO+ZKbJKEFp+GMfFVj9sgkUnwxnTTiiw3yFKnhBrt59SqqOmzRuY5CEoZuqlGEi8hSn35ZvwEzVSTmHlHHhCl0um/L1mDdRukWGsSBUlkF1aetSIJhsaiuQ72jDWaAFrk0hYk3lEbMlvMLs4WEJDEqYe7QxJ1ewnTZ/MBMFtvuVB1k7VV3XRGI2Vt25qhklqxd4+L2XTTba4/uki7sZfh0ar0fRJJJ1mQRAHqmKWs5b7ZxsaAF+3Yz1MTkpi0/R8l8QOAzu5eW4a/v610U0kcWVqJ7Oxse+P5a71a7KtiyywIp1xGR3JbzDnX+RSWYFuj1Lsg0ZsgiVJmxVge0U2pPolpP0hk9/9MCwUafFfxlVZlRde/A77kSc4pCZwZn2b/ktNNL9+Mn6BZahKXaYJ1qz7pW2BwiqhAK5zyGEEi61xLL8GgDsVfS8vkm4JLo7gL0N+QWbpprummkjWaQhKj2kKA3ETygECWRlXaTgHXVIMqNYmVeRP5o594P4AgM75tJo78O8dr02fTgeGLN7fzs1203djLcf+k8EEi6UgKA4KlaAPo6gErTVOle6CmuH9sq63K0qRTLAZEuIZRNw1r5HC5nUmSvM127/ok7myTLfMED1e7Pn1PwoRVYDlvLoMI3EXbay09+Ac/+j56zABJNJQ3hHYWNbX/Z6q8xwL4aP+uqGsaBEiVmqqAAUxC4bqqk7XUKW+LbWf69YLMUpO4yJJOoagmMx2B7liZ0DZZxFZJZlFgDUW8hEMojeONlLRecGkIpADgrhIgYJHETAVg0i9xStxCI4mdKI9BgON0XdHfNeBrSddKAdeiivrotMSqqM1Z5J/9lz+Cn/yuL9vaFgBS63G8rmzqpgpJ3NbPdtF2Yz/Hg5MSZV3TAVieOayKGqu2BphqcJ+GQ9vauqGPJJL7lsrQAr5lDZO4047dNiOJvgcqH6Tv7NkzHZhsc5/Ey2ASHFqCbX3ebKsI3EXbV75yE//wZ39/L8iZsmXWDxKZYC+N+iSWFedz5anrtC0sNd+yLk4LjySymgdZEvorsmw2AHjpVqiffmGLa6nPsmd6N7LUJOYqACjqmlNRUjVxVcM7WpIJe6drwMkGiVFPLmO7B2EVmFpgtFlyU03igd25045k94BO3Jd+Cww/lonbxAE/LaoWNSaDxKwvXGNDIJvZdNNtDqI0wmPJ0LLqnc+S3dzP8eCkwMnaom6adCg1wKF7knwpjXRTwCe43pmBJEoQVdUNmobbk3VLhDcuqObJalKXLk7TZaQb7ez8TQcmV7Em8SJNHHlLwnWHJI6bJUAEHk+4plQoHRN8ZYk6NwyAj0YSTwu+nZTugx2CxOnrSQsY4HJSmS/fjJ+gWSBqHQCsy5rqpRMLp7CMTFFDEmfL2gLDQm3SLTBC3Z59nIVu+ppSfTOhpF0LDK5IeVTdlKxJTBOH07JCVdez+iRWDX9PFi2V+bSw00233XqqcYbPxor3PEt2Yz/Dum2VQiOJbQJCMq7M+grNjW2JI6Af3O/R+5brKORse5vYPvb6XdP7L8rCXs63BdnZs2f6udwFiY9n3/LBewCAb3ztDj1mV5P4ZEzu3VHXAsMiXBMa3DP7fz4iXMMhiUG4RsQCGctUG7a1AUl8z63LXS6zvRDEBVhlyAboAICV89cFsrUhkDrsxD68Y2ELpBoVEDEIaQj2GgNkn8VBogFJvHWw6BoOs5alQRQmqJtu/nxagMZCNwW8MuPJut1EWNpcmnSKtFXNoy8HixTH68rk/F8WO5wZJALAp7/hVbz5wvUnPaVLa7pOk10niwhJZBJOOrNr6S8KREGi4bkpyn5tCUsB+k//ta/Br/yjz3a92LbN9hdBuAnYIYk7Gze9N+7WyOPZn/u+D+OnvvfDprNUv1czFHZmM9m3O7opI1wT1ySSdFNP/2yZWw3PCpTvelVWXgdiDpJYcj4oANwzqLpvoz3TQaIVSVyrLAIVJOYBybLQFoWiJ02pbX0Sa/W5uDEAeuIKTE1iT5THGCQCwN/58W/uJL8ZW2ZaOKiGc9PfWywcBHB0U8ALcJy26B6LiCyUAm7d8C1Pru/leHhazhKu2XbTtR7WIPHPf+qrnvR0LrXpone2dYwwIFZljcRxwZdWHLX0FwXQU11lD98sdcpBsNXufd9XvYzv+6qXqfc+DTuIekdeted7Z0/G9Blz1RKFF21zhX9++U9+E24fLHZq2o9hcsaLuumcFhhlzbWl0L2zLT6vLgM7LWqTLoZmvKSJo/zeNHH46Gt38G0fep66zrbZLkiEvU/iuqwp3rpQUldl7SmqpIOwSBNkiTNnnxepayli9p6Aum6PFa7JEoeTojK19xDby1PTYbjMEqzKEKQzm0hPuKZukDiexrjMfE+606KmERGhjQI24ZrrbWuD43WF569frUfyxZt7cA5oml2tx+Oadl5eILPdyyzByVqozCm9/rPU19JZ9kig7+CytbJ5MqSSs0jitpsk/Lq9fBcA7GzEXroZBC2Y/qI7e/L21qu3nvYULr3F6qYUK01q4BVTjC0LElVsC3tOC9esyhrPsaUbieuSmL6/In9G/dKPfpx+77bZM70bdcI1xJfdQxJZumneDxJZJMU5h4NFOgtJLKrGBL075zrBG0ubCMBTy07W85BEqy3zFKvSU2LLqqGklbVwTW0U19nLE6wKW2Gz5shbhGskk/X20frKyZ/naQLpk37v2tXrb3aRputmWJW0a0ufgLDQpgFPASqrUMvL0k3lWZGm1tS1ehlhqUm8GkfT/kwRsp09WyYtjNLEXZm1v7NnzzokcdW2wGDUTaM+iUXNtUDKkhEk0cCCW5U1VgYdiMUMoOIq2LPxKc8wWWCcCqivm6nb7LqlJnFd1jRFVexwmXWOBd0nsQ1ku89FXi5vUYPaKFKxt0hxYlQAnWt7undhxfXR6dp7tGI+FjGUvTzF8bo01QlqcSOLcI3QCL/4aHWlGyl/7ftuP+0pXGp7/71Qd8cGidf3chyvKxyteNo00B7AuucqnTjy65elwwJ9UaqSFKW6LDYUIbu6z/fO5tsrt/2zvVsfO7vMJuUGD079fjdH3bSsaq6/otKpENEbquuA8iUt/p0veQpI4rPCjHo2PuUZVta+TodBfARJFDSRCfh0n0SWoip2sEi7B4ClKIm4joU22htnrNvzaFtlRunmmKYIrEmJ5B6SaFRg3c9T3D+xSfn31E0NgbMgiUXVXEkn4YMv+PYEH3rxxlOeyeU2LUfOorKytr50ZEtAeLqpfS+RBveWtixxrQfAZaAvg4mQz7sdkni1mAI7ezL2cttLbaesubPLbNfb/V/o9QybTc6WTt20amh1U2GerA1lCp1wTWFTlF/oILHkfNCrYFerAMpoZd3QtTZC5ZSm1FRNopLatdBNgb6TxQaXgrZJ0TArIy+ZfEubCKClmxaVuQXGHIuRRE6RNtRb1oY+lf56KX7v3ZPetaevFyjJdWOhm6pGvlfQifyrP/wxfPHR+twTCc+SsZS0G20d4xcerkwJiKxVcrPuCXfb4NVygOpaj9JQAnAZTLfAcKRw0M6ePXv1zgG+4f238ae//c2nPZWd7Wy27eW+fZgk2DmV0qhPYl3jWj4dmvg+iX3BM5NfXtam3tSLLO38u6KqkWfPxl7+TAeJVc1lLICwsKT/iwVJFARyYQgA5vSXEyU9UQ1lingBL3jT769oCxJLEtl7HNtTSGJJfm/OOc8jr3xgaa1JfNeIJC413dQoXCN2aEBgLovdvbbE3UsuA70t9jf+xCe65AVjsra++GhFU1QBH+StFLuAXct326bUknFlTNckdn0S2SLILTfZx989KrDMkl3/z52NWp4m+Ov/ziee9jR2trPHMuccDhdpVyrF+GlJ4uBcEJ9hWViipQHo/ro8w2xV+BYYNmHCXU3iM2VFZWmU7t/3qO2Dx2UsAqxtpZuKKp7/O9w44YN3wQ0reJP1+yuy1LJlnnrlxLLqMubnZUKVOy1qn8WhA2D/YHvuOX//l3naUcRMSGIrrlM3fJ9EHSS+cGMXTO3sbPva9942tXyQtWVFEkW4KQjXcGv5ThskrgxBolapK6+YuqnsyQ9X5ZVkCexsZzvbmTapgwd4RkmWOFVywDH8dOukwlDL7pzDMktwvK7aEh9ec2K1q0k8H3POLZ1zf9E59zvOuYfOud9wzv2B9nfvd841zrlH6r8/F439r51zD5xzn3XO/UT0t7/dOfdbzrlj59yvOefeNzWff/yZB3hwWvi2FIYsAqCCREq4pg9rW+imdw9DsMAuxtC4ua1/sdTSqYbzLOC2n/s2ESfrCnvnHCQKkrgqq1Z+mOeRS584y/3fz9Pufuwb7mPdhA2LTUDcUqqVLxrQnp3tbMpEFKlubFTmZZZiVVZegMmAwAvd1BwkdnTTq6VuqpNnV7HeeGc729nOtOlSKXbPE2FIAHQ5UZYkqOoGTdOYa9n3F2knJsaCAL4Nmw9+iwtgz22LXRS3LQPwzwF8EsD/B+B7APw159xXqvfcappmrLv6zwJ4E8D7ALwI4Necc/930zS/4py7B+BvAPhjAP42gJ8D8EsAPrZpMmXd4HRdmfjIopR5ZAgSO7ppWWNdVlgYsuNvtmIfAJ/F35/ZuDlLHAoleGOhm362qHGyruhAaq4J5fO0qOnCZiAgiWvDd+2vF+4dG2zL931aSo8g7lq3VcP5F27ugsSdPTnTKLUVSTwtarNy8Z02uSX9QhnTUuZdn8QrUr+ap0nXGucqKxfvbGc72xnQV7ame+X2EoVcCwwJJIvKt0VLHO+73tzP8fmHpwD4czFWN70qbJcpu5BTq2mao6ZpfrZpmt9umqZumuZ/BPDPAHwdMfyHAPxc0zTvNE3zjwH8lwD+aPu7fwXAbzZN89ebpjmFDyjfcs59aOqPHndBog1JPDLQTbPEIXFtn0RjC4wPvnAdAHDDICUfgkRbLZ2gbdInkQ1K9/IEJ0WFk+L8g8RAN62wJltgAEGRalXyKlZAHz1kWwfIpnFaeAeZvY+6TslSN7aznU2ZFkVi9wN572lRmVWBhW7Krn3gjBYYVyhLK47Sjm66s53t7Kqb7Hf7eWrz07QoDNkCA/Dsk6K21Qje3M/x+QcrADY/eV35cqJ1uatJPFdzzr0A4IMAflO9/DvOuX/hnPtvWoQQzrnbAF4C8PfV+/4+gI+0P39E/65pmiMA/1T9Xl/zR5xzv+6c+3UAOCkqrIqKDtzkfSIKw4xzzmE/T3G8rszqpl/2og8Sf+DrX6XHdDWJRiRx0dJNOySRdAr32z6JJ0XVXfu8LNBNa6yKuuvHNjmuRUSsdNOb+9q5tq2R03Xbs8fgXH/guUMAwPPXdzWJO3tydnM/77KrliTJMktwWlaoapsq8I29DD/6ydfxl//tj9JjerUlHd306mRpdz3wdraznT0rJkHidQPA4RlfolTKMcWk/rCoGnNLih6SaCg5axqPdBZG0Ocy24VLKTrncgD/A4D/rmma33LOXQPwDQB+A8BdAP9Z+/vvAiCcy/vqT9wHcL39+RqAL0SX0L/vrGmaXwTwiwCwfOnN5qSobI3SYySRXCDX93K8e7JG3QCLlA+kXrixh1/7yW/Fe+8cTL+5tQ5JPLI1bl6KSEVXk8giiSmOVyVOC/4+zrU9hSQeFyWev84hbofLDEfr0oQaA/0gkQ2AZY2cFEI35R3dX/rRj+OffPbhM5Od2tnFWJo4vHB9id+7f2qqG97L03ZPaOgaZcAnxv7sH/hy0xz79ShCN706z8H77x3iH/7u/V2QuLOd7ezK26wgUSGJvsSBoZu2SGJVo6xt9M+b+3lg3BmEawBfPrarSTwnc84lAP57AGsAPwYATdM8AvDr7Vs+55z7MQCfcc5dB/Coff0GgFP188P250ft/2vTvz/TTta2RpqyIES4hh13Yz/DFx95ZM+aeXjt3qHp/bonF8DX0u1lvnF8oJty19vPUxy1Klbnrm6qWmAcG2ogDxcZjlYlqga4pQK/KbuhkURyE5FAWdqksME2ANy7tsS9N3Yo4s6evEmS432GhNNenrZIoq0mcY7laVC2K6urhyS+/66/77s+oTvb2c6uut3YlyCR97cWOlFIBnxyRgiyZylR0CAAjST2gsRdTeITN+cLr/4igBcAfKppmuKMt7Z4FpKmad4B8BkAb6nfv4VAU/1N/Tvn3CGAD6BPYx21E6lJNIqSPFr5oIhFBa/v5fjSo1Xvb5yXiTN439gCY9lSMq10U40enr9wTVCKPV3z9NaDhaf7WqjFQEw3tQWJxys7kriznZ2XiRz5G89fm3hnsGXW7glGddM55psit/Uo9dVqgQEAb7b15ayIw852trOdXVZ76eY+gKBUzVieuYAkki0whG1SVC2yZzintH+n1eU3mfiPojGyQxKfvP3nAL4cwHc0TdN1g3bOfRTAuwD+XwC3AfwnAP7XpmmEYvqXAPxUW0v4AoAfBvBvtr/7mwB+wTn3KQD/E4CfBvAPmqb5ranJCN3UjiT6AIwNOG7sZfjdd05MY+bavkIS08TRmZW9Vu5+XdamcT1K5rkL1ygkseD7MgrdNE8TE91Lbxz3rnGbiNx/QZst4h0729l5maxHS5Do6aYVquoCgsQ0qJt2SOIVopt+z1e8iOd/5GOdGNnOdraznV1Ve+W2DxLfPT4LBxqablTPonQdklh5JDGfCQI8d41jcEk5kSCJuz6JT9Da3oU/CuCrAXxW9UP8QQCvA/gVeIroPwKwAvBH1PCfgRej+R0Afw/ALzRN8ysA0DTNFwB8CsDPA3gHwEcBfJqZk0cSebqpBHhHgiQaahK/dOSRxOU5L6p91Sbi/2/vzoMkuasDj39fX3P03DPSwOhcSUggtCABkkBrc6wEmCtYEAiEECAsc8hgBwEGggUB5jCLN/AuYQ6DZS0IcZrDBmyFIYwIbwBhZHMYeWVAIHGIEbpmpkfTPdPH2z8yK7vU9MxU9XRVdlV9PxEV012VWfW6pjt/9fK9/P3amqRidLic3GW2rV/8bU1/XJ1eJ7F5zcl2ltxYOzbMvv2z7J9ubwmM5oNI68n2fVuSW1nYVeq0v3j+wzn/gUdXE6i0YtXoEFMzc0zNzHb8euPR4aFqwpr52U37529nZHiIR560tZr5VZL6VWOc2TPZepLYWKsbGktgtDe7aVF9bH3M2NS07NhRLU4W2ChUs0uoiQAAGwxJREFUHJidbXuinF7WlUpiZt4KHOp/8BOH2Hc/8OLyttjjXwUOu+TFQsXspq0nDo3kqTG7aavtUOtXj1Rrf3W6kjg6PFSsOTaX7c9k2KistrGWV3OFreOVxJHiZ9szNc3+mbmW200blcSIWHK7aasWtvs6UYVWgvNO2cZ5p2xra5/VI8McKE/ItHpN7lI11hGE+dlNB2UAlqR+ckxZSZzYv9iy54sbGxliYmqGzGR2rtV20/nZTdtt/zx+y/x8H+1OXlm1m470z4nMQxnYiySKdtPZtpc3mJhqbw3C5glQujFl7tqxYfZMzbS9Jtr+6caC820kiU1nYDo9cU1EsKFpbZuW203HRpianmM4Ztr62dpZn7KhkSjvLicO6nQFRuqUxsmi3ZPTLR8jl2pkaIjZuSQz5yuJVuElqedsXDPKxeccx9MesqPlfVaNDHH37Fy1FFIrx/+qkjibzLSZJJ6+Y+F8l63FCEW76dR050+erhQDmyQWk5m0XklsVA7vLCeh2dDizE3N0wB3o4d5y/gYe6baS4hWjxal/n0HZttqybxPu2kXEqINq0e4fU8xyW3Ls5uuasw4OttWlXRkeIg/euJp/FYbFZjGe7DLSqJ6XGMA3D05fZ8TXZ3QOLZOl9eWQOst3pKkleVPnvmQtrYfLa9JnL/c4PDH/0ZL6vRckVy2uwRGu5onrunG2uArxUAmiUMRbbdXNhKAnbunWDs23MbENd2tJG5bt4pb7trXVrLX2HZiarqtGJurbd2YuW/DmlF2NpLEsdZeb23Tdu1eE/r7jzulre0bvyON9Xfa+T+QVpLG7/LuyemWr9lYqvtcW9KHs5tKkg6usU7i/OUGhz/+N2Y3nZlNDsy0twQGwNWXnc3aNoob1QoHUzNkDk6n2EAmiRHF5CIHZltvr2xMOnDvgVnuv7G1hdwBdmya37adxUWXqlHda6dq1mgna7cCGRE86qStbFgzwqnbW585cak2rB7lJ3fcC7TRbrpqfrtWlztZqsaZpV3VOpVWQ9SbGseBXfumuzJxDcD0TPbl7KaSpIMbLddJbOdyg/nZTYuTi+1eFvG4045ua/tqTJxs75KzXjeQSeJQBLvbrPasHh1m3aoR9u6faatUfXzTAtYnbet8IrVtfZHMttMv3Vw1aPdavE+85JFtbX8kNqwZqWYObX1206ZKYocruY3ZTfdU61QOxkFE/adxTJic7vzspvMzF89WE9h4TaIkDYZGJXGmjcsNmme8n56d63gRZrzslru7XK2g09fqrxSD8VMuMBzBHeW1he0kDlvL2TzbuUanedr5jWs7e20PzFcS2zkR33gPdk+2127abc2tu632g29tmoG100niyPAQY8ND89ckDshBRP2nuQK/usN/N42ugH0HZpmZm2MoXGNUkgZFY53E6TYuN2h8BpycLk4udrr7pHFJ1V17i06xTs/ov1IM5KfY4aGoJkBp54P81rLldFMbSWK3S9KNM/CntbFwcyPGPZPTK/o6uubkvNVrIJsrud1IgFePDlWLyDpxjXrV+qYTMp0+hjUG230HZov1rpy0RpIGRqOSeGBmrvr+cBrjxuSB2WJx+w4vSdE4mdkoMA1KkjiQ7abDQ8GvdhdJYjstgVvGiypduzMjveMZZ7B1vLOTPzT8t7OO4Ve7p3jt77S+dGSjbL6/zSUwuq25Ffbko1pr3d3atID10etbv5Z0qVaPDvPrif3V11Iv2rhm/m+t020182eEZ5iezWr9K0lS/2tUEqskcfjwn50aSdrUzCwzs3MdrySOj923kjgon+8GMkkcGY7ql3HzeOsJXyPhaDdJvOTcE9ra/kgcu3kt73jGf25rn+bqYacndzkSxzVVBVttN42Y/8B59n/asuwxLdQc10pOuKVD6WYlsXHdcKPddNS/G0kaGKPDQ8xl0ToKrVUSV481VxKzrXUSl2JoKFg7Nlwtg2eS2MeGm85Ut1Phu+D07fzs7n089aGtLxLaC5orBd1Yy3GpnnD6/QA4adt4W/td9Ihj+emd93ZlmY7mFoSV3LorHUrzJACdTxLnB/tBWqRYkjSfFN5bTkzYTrvp1HTRbtqNZZPGV400VRJX7mfl5TTwSeK2NtYAe/zp23n86ds7EVKt7jMD6Ar+xV8zNsw/vOrRbVdy3/2sh3Yoot/UHJuVRPWq+57s6Fa7aXtr10qSel8jKZyYKpLEltZJHB5iZCiYnJ5lZi6rJTE6ad2qEX5+9z6g9W62XjeQSeJIBLPl183XrA2qLePdmwH0SJ3axoQ8ddi8tngvx4aHnKFRPau5TbtblcR9B2bZPz1nJVGSBshYmeA1Komtfg5dPTrM5IE5pmfmOt5uCsWs3zPlDKyDMk6t7IygQ4aHu/cBqBdsalqaYyUvgdELNpcJ90pPtqVWdXN206mZWSuJkjRAGpfmTEwVM8O3MnENlEli2YHSjc+u401dd4NSSRzI0bi5vVLFH+h4+QvvdXRHZks5EZLJtvrFeIcHw6rd9MCMlURJGjCNMWD3ZOvXJBb7DTExNc2B2TnWdeFzffO8FoMyTg3kJ9mRoeCZDzuGi885ru5QVozx8pffCtiRabSbHpidqzkS6chc8KDi+utHn3pUR19nbHiI4aEo2k2tJErSQGl0k+yaLCaFaTlJHB3m7nuLfdZ2YWLCdat7Y/6O5TSwJbX3XHRm3SGsKFn+240ZQPtZI0mcPDB7mC2lle39lzyMucyOt5tGBGtHh4t20+k5towPxuArSZq/Ln33vrLdtI0ksTHbaKc7XgCO2bQGKD4nD0pBxYxAANxRLgD/8BM21xxJb2tUZI9vWtNR6kXdbJleMzbMZFVJHIw2HklSc7tp45rE1ieu+eWuSaA7lcRTjl4HFB13zZO79bPBSIV1WI1f/tPvv6HmSHrb2Sdu5oIHHc1HXnxO3aFIPWN81Qj3HphhanpuYM7QSpLmk8RdbSaJa8aGubOLlcTG5+RBmrneSqIA+NRLHsnE1MxA/fJ3wtZ1q/jLF55ddxhST9mweoQ9UzPsn5lzxmlJGiBrR4tUpKokttFuWj1HFyauaSSJr378qR1/rZXCJFFAkdxsXbeq7jAkDaANa0bZPTldtJtaSZSkgVFVEtu8JrF5+bbxVZ0/ubh2bIRb3vWUjr/OSuJoLEmq1cY1o+yZnGb/9JzL8EjSAGkkiXsmpxkeCoZb7GhrTBQILm3XKSaJkqRabVwzyj37DnBgdo7VAzK1uCRpvm30wOxcy9cjAmwZn08Su1FJHESOxpKkWm1cM1q1GllJlKTBMTwUVYtpO7NqW0nsPJNESVKtNq6Zv7bEaxIlabA01kpsJ0ncsq45SfTkYic4GkuSatWcJDq7qSQNlrXlcb+tdtOmSuJoG/updb6rkqRaWUmUpMG1egmVxEa76fYNzszfKTbxSpJqdXTTIH//jatrjESS1G1bx8f4yR33tnWS8NjNa3jlfz2Fix5xXAcjG2wmiZKkWp20bV319QnbxmuMRJLUbffbuAa4h/u1cZJwaCh49RNO61xQst1UklSvzU1Tmd9/g5VESRokO8rk8NjNa2qORM1MEiVJK8ZQiwspS5L6Q2MJi3WrRg+zpbrJdlNJUu0+d8V5TE3P1h2GJKkm7Uxco84zSZQk1e5hx2+uOwRJUg0ufdQJ/PD2CS4778S6Q1ETk0RJkiRJtdgyPsb7LnlY3WFoAeu6kiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKkSmVl3DF0XERPAfyxh143A7hW+nzHWu18vxLjU/Yyx3v16Ical7tcLMS51v23AnV16raXu1wvv41L364UYl7qfMda7Xy/EuNT9eiHGpe5njPd1WmauX/SRzBy4G3DDEvf70Erfzxj92Qb5Z+uFGP3ZejPGI/jZVvx40wvvoz+bMa60/XohRn82Y2xhn4OOUbabtueLPbCfMda7Xy/EuNT9jLHe/XohxqXu1wsxHsl+3Xwt3//6Xqvb+xljvfv1QoxL3a8XYlzqfsbYokFtN70hMx9RdxySpP7meCNJWqkONUYNaiXxQ3UHIEkaCI43kqSV6qBj1EBWEiVJkiRJixvUSmJHRMSWiPh8RNwbEbdGxPPK+x8XEf8WEbsi4q5ym2PqjrffRMQrIuKGiNgfEf9nwWPnR8RNEbEvIr4WESfUFGbfOtj7HxGXRMTeptu+iMiIeHiN4faViFgVEVeVx52JiPhuRDxpke2uLN/7C+qIU+qUg42/5WOvjIifRsSe8hj1W3XG2o8Ocfw/sTzmNI8Bb6ox1L50qDEgIh4ZEV+JiLsj4o6I+ExE3L/umPvJ4cbgiLg8In5c/v5fFxE76oy3VSaJy+t9wAFgO3AJ8IGIeDDw78ATM3MTsAP4EfCB2qLsX7cBbwf+qvnOiNgGfA54E7AFuAH4VNej63+Lvv+ZeW1mrmvcgCuAnwD/WkOM/WoE+DnwGIopsN8IfDoiTmxsEBEnA88GflVDfFKnLTr+RsS5wLuAZ1H8bVwFfD4ihmuLtD8tevxvsqlpHHhbF+MaFIcaAzZTtBSeCJwATABX1xFkHzvo+x8RjwXeCTyd4jPoT4FP1BRnW2w3XSYRMQ7cA5yRmT8s77sG+GVmvr5pu1XAW4CnZ+bpdcTa7yLi7cCxmfmi8vuXAC/KzPPK78cp1i07KzNvqi3QPrXw/V/k8a8B12fmW7sa2ICJiO8Db83Mz5bfXwe8F3g/cHlmfrXO+KTlcqjxF/gO8OrMPKdp273Ajsz0hMkyW2T8PZHiQ/FoZs7UF9ngWTgGNN3/MODrebC18bQsGu8/8ChgTWb+fnn/Dopj0ymZeXONIR6WlcTlcyow0xigSt8DHgwQEcdHxC5gEngN8O7uhziwHkzxfwFAZt4L3Fzery4q23wfDXy07lj6WURspzgm3Vh+/2xgf2b+Xa2BSZ1xqPH374HhiDi3rB6+GPgusLP7YQ60WyPiFxFxddndow5aOAYs8OiD3K9lssj7H80Pl/+e0dWglmCk7gD6yDpgz4L7dgPrATLzZ8CmiNgC/B5gBat71gF3LLiv+r9RV70A+KfM/GndgfSriBgFrgU+kpk3RcR6ilaXx9cbmdQxhxp/J4DPAv+X4sPZLuBJaRtVt9wJnE2RmG+laAu+FnhinUH1s4VjwILHHgJcSdH6qA5YZAy+DvhkRHyQ4nKzK4EE1tYYZkusJC6fvcCGBfdtoBigKpl5N/AR4G8iwiS9O1r6v1FXvIDi918dEBFDwDUU12a9orz7LcA1mXlLTWFJnXaoY/zvApdRVBXHgOcDX+qViSN6XWbuzcwbMnMmM2+nOC49oTx5pWV2kDGg8dgpFJX1P8zMf6ohvL632PtfXtrxZoqTVbeUtwngF7UE2QaTxOXzQ2AkIh7QdN9DWbykPwIczW8OauqMGyn+L4DqmpSTsd2iqyLiv1BM3PTXdcfSjyIiKCbl2A5cmJnT5UPnA38QETsjYidwHMUF9a+rKVRpuR1q/D0T+FJm/jAz5zLzOorJm86rIU4VFRTw8+eyO8QY0LjU46vA2zLzmppC7GuHev8z832Z+YDM3E6RLI4AP6gn0tb5R7pMyuvcPgf8cUSMlx+Inw5cExHPjIjTImIoIo4C3gN8p6wqaplExEhErAaGKa5BWV1Waz8PnBERF5aPXwl830lrltch3v+GFwKfzUwruJ3xAeBBwNMyc7Lp/vMprn04s7zdBryUou1L6nmHGn+BbwNPiYiTovB4imuFVvwHtF5ysON/eS1o4/PPVorJs67PzN31RtyXFh0Dolhy7R+BP8/MD9YV3AA42Pu/OiLOKI8/x1PMNPu/M/OeugJtlUni8roCWAP8mmJ625dn5o3AMcB1FOXlfwPmgGfUFWQfeyPFxECvp2gpmgTemJl3ABcC76CYAe9c4Ll1BdnHFn3/oThIAhdhq2lHlGeJX0qRBO6M+fXILsnMuzJzZ+MGzAL3ZObeWoOWltfBxt+PAp8Erqe4bvG9wEs9SbjsDnb8P4n5zz8/APYDF9cUY9861BgAXE7x//CWpvs9/i+jw7z/q4GPU7TF/zPwTYol2VY8l8CQJEmSJFWsJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpEpfJYkRcUtE/Doixpvuuzwirq8xLElSnynHm8mImIiIXRHxjYh4WUT01bgqSRpM/TiYDQN/WHcQkqS+97TMXA+cALwLeB1wVb0hSZJ05PoxSfxT4DURsWnhAxFxXkR8OyJ2l/+eV97/nIi4YcG2r4qIv+1SzJKkHpWZuzPzb4HnAC+MiDMiYlVE/M+I+FlE3B4RH4yINY19IuLpEfHdiNgTETdHxO/U9xNIknRf/Zgk3gBcD7ym+c6I2AJ8GXgvsBV4D/DliNgKfBE4LSIe0LTL84CPdyNgSVLvy8x/Bn4B/DZFZfFU4EzgFOAY4EqAiDgH+CjwR8Am4NHALd2PWJKkxfVjkgjFQPzKiDiq6b6nAD/KzGsycyYzPwHcRNEutA/4G+BigDJZfCBgJVGS1I7bgC3AS4BXZebdmTkBvBN4brnN7wJ/lZlfycy5zPxlZt5UU7ySJP2GvkwSM/MHwJeA1zfdvQO4dcGmt1Kc3YWianhx+fXzgC+UyaMkSa06BhgB1gL/Uk5qswu4DmicuDwOuLmm+CRJOqy+TBJLbwZ+j/kk8DaKyQWaHQ/8svz6K8BREXEmRbJoq6kkqWURcTbFmPMFYBJ4cGZuKm8bM3NduenPgZPrilOSpMPp2yQxM38MfAr4g/KuvwNOjYjnRcRIRDwHOJ2i4khmTgOfoZj4ZgtF0ihJ0iFFxIaIeCrwSeBjmfk94MPAn0XE0eU2x0TEE8tdrgIui4jzI2KofOyB9UQvSdJv6tsksfTHwDhAZt4FPBV4NXAX8FrgqZl5Z9P2HwcuAD6TmTNdjlWS1Fu+GBETFJXB/04xIdpl5WOvA34MfCsi9gBfBU6DaoKby4A/A3YDX+c3O10kSapNZGbdMUiSJEmSVoh+ryRKkiRJktpgkihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSp0tNJYkSsioirIuLWiJiIiO9GxJOaHj8/Im6KiH0R8bWIOKHpsYsi4hvlY9cf4jVeEBEZEZd3+MeRJEmSpNr1dJIIjFCsT/UYYCPwRuDTEXFiRGwDPge8CdgC3AB8qmnfu4H/BbzrYE8eEZuBNwA3diR6SZIkSVph+m6dxIj4PvBWYCvwosw8r7x/HLgTOCszb2ra/nLg+Zn52EWe64PA94GLgI9l5l92/ieQJEmSpPr0eiXxPiJiO3AqReXvwcD3Go9l5r3AzeX9rTzXOcAjgA8uf6SSJEmStDL1TZIYEaPAtcBHykrhOmD3gs12A+tbeK5h4P3AKzJzbrljlSRJkqSVqi+SxIgYAq4BDgCvKO/eC2xYsOkGYKKFp7wC+H5mfmvZgpQkSZKkHjBSdwBHKiICuArYDjw5M6fLh24EXti03ThwMq1NQnM+8JiIeHL5/RbgrIg4MzNfcYj9JEmSJKmn9XySCHwAeBBwQWZONt3/eeBPI+JC4MvAlRTVwZugaikdpXgPhiJiNTBbJpkvAlY3PdfngL+mSEYlSZIkqW/1dLtpue7hS4EzgZ0Rsbe8XZKZdwAXAu8A7gHOBZ7btPulwCRFkvnb5dcfBsjMXZm5s3GjaGPdk5kLr3GUJEmSpL7Sd0tgSJIkSZKWrqcriZIkSZKk5WWSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIERMTx5Vq7w3XHIklSnUwSJUkDKyJuiYgLADLzZ5m5LjNnu/j6j42IX3Tr9SRJaoVJoiRJkiSpYpIoSRpIEXENcDzwxbLN9LURkRExUj5+fUS8PSK+UT7+xYjYGhHXRsSeiPh2RJzY9HwPjIivRMTdEfEfEXFR02NPjoh/j4iJiPhlRLwmIsaBvwd2lM+/NyJ2RMQ5EfHNiNgVEb+KiD+PiLGm58qIuCIiflQ+39si4uQyzj0R8enG9o1KZUS8ISLuLCunl3TnHZYk9SqTREnSQMrMS4GfAU/LzHXApxfZ7LnApcAxwMnAN4GrgS3A/wPeDFAmfF8BPg4cXe73/og4vXyeq4CXZuZ64AzgHzPzXuBJwG1lm+u6zLwNmAVeBWwDHgWcD1yxIK4nAg8HHgm8FvgQ8HzguPL5L27a9n7lcx0DvBD4UESc1tabJUkaKCaJkiQd3NWZeXNm7qao+t2cmV/NzBngM8BZ5XZPBW7JzKszcyYzvwN8Fnh2+fg0cHpEbMjMezLzXw/2gpn5L5n5rfJ5bgH+AnjMgs3enZl7MvNG4AfAP2TmT5riPGvB9m/KzP2Z+XXgy8BFSJJ0ECaJkiQd3O1NX08u8v268usTgHPLFtFdEbELuISiigdwIfBk4NaI+HpEPOpgLxgRp0bElyJiZ0TsAd5JUQlcSlwA95RVy4ZbgR0He31JkkwSJUmDLJfpeX4OfD0zNzXd1mXmywEy89uZ+XSKVtQvMN/autjrfwC4CXhAZm4A3gDEEcS2uWyHbTgeuO0Ink+S1OdMEiVJg+x24KRleJ4vAadGxKURMVrezo6IB0XEWERcEhEbM3Ma2APMNb3+1ojY2PRc68tt9kbEA4GXL0N8by3j+G2K1tjPLMNzSpL6lEmiJGmQ/QnwxrI99FlLfZLMnACeQDFhzW3ATuB/AKvKTS4FbinbR19G0YpKZt4EfAL4SdmmugN4DfA8YAL4MPCppcZV2gncU8Z1LfCy8nUlSVpUZC5Xp40kSVpJIuKxwMcy89i6Y5Ek9Q4riZIkSZKkikmiJEmSJKliu6kkSZIkqWIlUZIkSZJUMUmUJEmSJFVMEiVJkiRJFZNESZIkSVLFJFGSJEmSVDFJlCRJkiRV/j9YJ750IxgAtQAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    load
                                                    2014-11-01 00:00:000.10
                                                    2014-11-01 01:00:000.07
                                                    2014-11-01 02:00:000.05
                                                    2014-11-01 03:00:000.04
                                                    2014-11-01 04:00:000.06
                                                    2014-11-01 05:00:000.10
                                                    2014-11-01 06:00:000.19
                                                    2014-11-01 07:00:000.31
                                                    2014-11-01 08:00:000.40
                                                    2014-11-01 09:00:000.48
                                                    \n", + "
                                                    " + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.10\n", + "2014-11-01 01:00:00 0.07\n", + "2014-11-01 02:00:00 0.05\n", + "2014-11-01 03:00:00 0.04\n", + "2014-11-01 04:00:00 0.06\n", + "2014-11-01 05:00:00 0.10\n", + "2014-11-01 06:00:00 0.19\n", + "2014-11-01 07:00:00 0.31\n", + "2014-11-01 08:00:00 0.40\n", + "2014-11-01 09:00:00 0.48" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "원본 데이터 vs 스케일된 데이터:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 24, + "source": [ + "energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)\n", + "train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAZ+klEQVR4nO3df5BV5Z3n8fdHoOjwKyq0ZFYGOroRGBEDNNHEgJg4cUdXolIzi8YVzRiyZq1UyspkslZQRl3N7jBOyk00YWOUKJgfikw07tRIIok6M2rjChFtpSxFWX8UkAnQ/Ea/+8c5rZdL3+5z6T739u3zeVWdou95zjn3e56+fb8853nOcxQRmJlZMR1V7wDMzKx+nATMzArMScDMrMCcBMzMCsxJwMyswAbXO4BqjBkzJlpaWuodhplZQ1m7du3WiGjuqqyhkkBLSwttbW31DsPMrKFI2lSpzJeDzMwKzEnAzKzAnATMzAqsofoEzKz/OnDgAJs3b2bv3r31DqWwmpqaGDduHEOGDMm8j5OAmfWJzZs3M3LkSFpaWpBU73AKJyLYtm0bmzdv5qMf/Wjm/Xw5yMz6xN69exk9erQTQJ1IYvTo0VW3xJwEzKzPOAHU15HUv5OAmVmBuU/AzHLR8s1f9unxXvv2eX12rHPPPZcVK1Zw9NFHV9zmuuuuY/bs2Zx99tlVH3/NmjUsWbKEhx9+ONP6IzFnzhyWLFlCa2trr47jJGBWAKVfyH35ZdpoIoKI4JFHHulx2xtuuKEGEdWfLweZ2YBx6623MmXKFKZMmcJ3vvMdAF577TUmTpzIZZddxpQpU3jjjTdoaWlh69atANx4441MnDiRT3/601x88cUsWbIEgMsvv5z7778fSKasuf7665k+fTqnnHIK7e3tADz99NN88pOfZNq0aXzqU5/ipZdeyhzr73//ey644AKmTp3K6aefzvr167s95p49e5g/fz6TJ0/mwgsvZM+ePX1SZzVpCUj6GPA74P6IuDRddwlwCzAGeBT4YkT8vhbxmNnAs3btWu666y6eeuopIoLTTjuNM888k2OOOYaNGzeybNkyTj/99EP2eeaZZ3jggQdYt24dBw4cYPr06cyYMaPL448ZM4Znn32W22+/nSVLlvDDH/6QSZMm8fjjjzN48GBWr17NtddeywMPPJAp3uuvv55p06axatUqfv3rX3PZZZfx3HPPVTzmHXfcwbBhw3jxxRdZv34906dP73WdQe0uB30PeKbzhaSTgR8A5wHPAkuB24H5NYrHzAaYJ554ggsvvJDhw4cDcNFFF/H4448zd+5cJkyYcFgCAHjyySf5/Oc/T1NTE01NTZx//vkVj3/RRRcBMGPGDFauXAnA9u3bWbBgARs3bkQSBw4cqCrezoTxmc98hm3btrFjx46Kx/ztb3/LV7/6VQCmTp3K1KlTM79Xd3K/HCRpPvAH4Fclq78APBQRv42IDmARcJGkkXnHY2bF05kYemPo0KEADBo0iIMHDwKwaNEizjrrLJ5//nkeeuihPrlbOo9jdifXJCBpFHADcE1Z0cnAus4XEfEKsB84qYtjLJTUJqlty5YteYZrVjgt3/zl+0ujmzVrFqtWrWL37t3s2rWLBx98kFmzZnW7zxlnnPH+F21HR0fVo3a2b9/O8ccfD8Ddd99ddbzLly8HklFDY8aMYdSoURWPOXv2bFasWAHA888//34fQm/lfTnoRuDOiNhcdhPDCGB72bbbgcNaAhGxlORyEa2trZFTnGbWx2o9Cmn69OlcfvnlfOITnwDgyiuvZNq0abz22msV95k5cyZz585l6tSpjB07llNOOYUPf/jDmd/zG9/4BgsWLOCmm27ivPOqO9/FixfzxS9+kalTpzJs2DCWLVvW7TGvuuoqrrjiCiZPnszkyZMr9l1USxH5fK9K+jiwHJgWEfslLQb+fURcKukfgCcj4n+WbL8TmBMRaysds7W1NfxQGbPqVRoi2pdDR1988UUmT57cq2PUQ0dHByNGjGD37t3Mnj2bpUuX9lmnaz109XuQtDYiuryhIM+WwBygBXg9bQWMAAZJ+hPgH4FTSwI8ARgKvJxjPGZmh1m4cCEvvPACe/fuZcGCBQ2dAI5EnklgKfCTktdfJ0kKVwHHAf8iaRbJ6KAbgJURsTPHeMzMDtN5nb2ocksCEbEb2N35WlIHsDcitgBbJP0XkstFo4HVwBV5xWJmtRERnkSujo7k8n7Npo2IiMVlr1cAxU7BZgNIU1MT27Zt83TSddL5PIGmpqaq9vPcQWbWJ8aNG8fmzZvxUO766XyyWDWcBMysTwwZMqSqJ1pZ/+AJ5MzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMcweZ9QN9+YQvs2q4JWBmVmC5JgFJ90p6S9IOSS9LujJd3yIpJHWULIvyjMXMzA6X9+WgW4C/jIh9kiYBayT9X2BbWn50RBzMOQYzM6sg15ZARGyIiH2dL9PlxDzf08zMssu9T0DS7ZJ2A+3AW8AjJcWbJG2WdJekMRX2XyipTVKbn1hkZta3ck8CEfEVYCQwC1gJ7AO2AjOBCcCMtHx5hf2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrIqIjItoi4mBEvANcDXxO0shaxGNmZolaDxEdTNd9ApH+6yGrZmY1lNuXrqTjJM2XNELSIEnnABcDv5J0mqSJko6SNBq4DVgTEdvzisfMzA6X5xDRAK4Cvk+SbDYBX4uIX0i6GLgZOA7YATxKkiDMrB8ovYMZfBfzQJZbEoiILcCZFcruA+7L673NzCwbX4M3MyswJwEzswJzEjAzKzBPJW1mPfJU1wOXWwJmZgXmJGBmVmBOAmZmBeYkYGZWYO4YNsuZO1WtP3NLwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCizXJCDpXklvSdoh6WVJV5aUfVZSu6Tdkh6TNCHPWMzM7HB5twRuAVoiYhQwF7hJ0gxJY4CVwCLgWKAN+GnOsZiZWZlcbxaLiA2lL9PlRGAGsCEifg4gaTGwVdKkiGjPMyYzM/tA7n0Ckm6XtBtoB94CHgFOBtZ1bhMRu4BX0vXl+y+U1CapbcuWLXmHa2ZWKLkngYj4CjASmEVyCWgfMALYXrbp9nS78v2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrgA5gVNlmo4CdtYjHzMwStR4iOpikT2ADcGrnSknDS9abmVmN5JYEJB0nab6kEZIGSToHuBj4FfAgMEXSPElNwHXAencKm5nVVp6jg4Lk0s/3SZLNJuBrEfELAEnzgO8C9wJPAfNzjMWsX8h7WmlPW23Vyi0JRMQW4MxuylcDk/J6fzMz65mnjTAzKzAnATOzAnMSMDMrMD9j2Kyfceeu1ZJbAmZmBeYkYGZWYE4CZmYF5iRgZlZg7hg2s6q443pgcUvAzKzAnATMzArMScDMrMAyJQFJp+QdiJmZ1V7WjuHbJQ0F7gaWR0T5oyHNLAfuhLW8ZWoJRMQs4AvAHwNrJa2Q9Ke5RmZmZrnL3CcQERuBbwF/TfKcgNsktUu6qKvtJQ2VdKekTZJ2SnpO0p+lZS2SQlJHybKoL07IzMyyy3Q5SNJU4ArgPOBR4PyIeFbSvwP+BVhZ4dhvkCSM14FzgZ+V9S8cHREHexG/mZn1QtY+gf8F/BC4NiL2dK6MiDclfaurHSJiF7C4ZNXDkl4FZgBrjyxcMzPrS1mTwHnAnoh4F0DSUUBTROyOiHuyHEDSWOAkYEPJ6k2SgqR18VcRsTV76GZm1ltZk8Bq4GygI309DPgn4FNZdpY0BFgOLIuIdkkjgJnAc8Bo4Htp+Tld7LsQWAgwfvz4jOEWi0eQFFvp778321d7HBsYsnYMN0VEZwIg/XlYlh3TVsM9wH7g6s79I6ItIg5GxDvp+s9JGlm+f0QsjYjWiGhtbm7OGK6ZmWWRNQnskjS984WkGcCebrbv3E7AncBYYF5EHKiwaVQZj5mZ9YGsl4O+Bvxc0puAgI8A/ynDfncAk4GzSzuUJZ0G/AHYCBwD3Aas8U1oZma1lSkJRMQzkiYBE9NVL3Xzv3oAJE0AvgzsA95OGgWQrnsPuBk4DthB0jF8cdXRm5lZr1TzPIGZQEu6z3RJRMSPK20cEZtIWg2V3FfFe5sNOHl3xLqj17LIerPYPcCJJKN53k1XB1AxCZiZWf+XtSXQCvxJRESPW5qZWcPIOhrneZLOYDMzG0CytgTGAC9IepqkoxeAiJibS1RmZlYTWZPA4jyDKCrf6ds4/LuygSrrENHfpEM+PxYRqyUNAwblG5qZmeUt6+MlvwTcD/wgXXU8sCqvoMzMrDaydgz/V+AMkhu7Oh8wc1xeQZmZWW1kTQL7ImJ/5wtJg/lgvh8zM2tQWTuGfyPpWuBD6bOFvwI8lF9Y1hfcmVk/vlvXGkXWlsA3gS3A70jm/nmE5HnDZmbWwLKODnoP+N/pYmZmA0TWuYNepYs+gIg4oc8jMjOzmqlm7qBOTcCfA8f2fThmZlZLWS8HbStb9R1Ja4Hr+j4ks77Xl53k7nDvmuulMWW9HDS95OVRJC2Dap5FYGZm/VDWL/K/K/n5IPAa8Bfd7SBpKHA7cDbJpaNXgP8WEf8nLf8s8D1gPPAUcHn6IBozM6uRrJeDzjrCY78BnAm8DpwL/EzSKUAHsBK4kuR+gxuBnwKnH8H7mJnZEcp6Oeia7soj4tYu1u3i0NlHH05HGc0ARgMbIuLn6fEXA1slTYqI9myhm5lZb1UzOmgm8Iv09fnA08DGrG8kaSxwErABuApY11kWEbskvQKcDLSX7bcQWAgwfvz4rG9nNVL0zsCin781vqxJYBwwPSJ2wvv/c/9lRFyaZWdJQ4DlwLKIaJc0guQO5FLbgZHl+0bEUmApQGtrq+crMjPrQ1mnjRgL7C95vT9d1yNJRwH3pPtcna7uAEaVbToK2JkxHjMz6wNZWwI/Bp6W9GD6+gJgWU87SRJwJ0nCODciDqRFG4AFJdsNB05M15uZWY1kaglExH8HrgD+LV2uiIibM+x6BzAZOD8i9pSsfxCYImmepCaSm87Wu1PYzKy2qrnhaxiwIyLuktQs6aMR8WqljdPHUX6Z5MH0byeNAgC+HBHLJc0DvgvcS3KfwPwjOgMzqxtPmd34sg4RvZ5khNBE4C5gCMmX9xmV9klv/FI35auBSdUEa2ZmfStrx/CFwFxgF0BEvEkXI3nMzKyxZE0C+yMiSKeTTjtyzcyswWVNAj+T9APgaElfAlbjB8yYmTW8rHMHLUmfLbyDpF/guoh4NNfIrKH5Ttq+5zq1PPSYBCQNAlank8j5i9/MbADp8XJQRLwLvCfpwzWIx8zMaijrfQIdwO8kPUo6QgggIr6aS1RmZlYTWZPAynQxM7MBpNskIGl8RLweET3OE2S9404/q4bv1LW+0lOfwKrOHyQ9kHMsZmZWYz0lgdJpH07IMxAzM6u9npJAVPjZzMwGgJ46hk+VtIOkRfCh9GfS1xER5Q+GMTOzBtJtEoiIQbUKxGqrUsdiaad0lm36s952nla7vztrrRFlnTvIzMwGoFyTgKSrJbVJ2ifp7pL1LZJCUkfJsijPWMzM7HDVPFnsSLwJ3AScA3yoi/KjI+JgzjGYmVkFuSaBiFgJIKkVGJfne5mZWfXybgn0ZJOkIJmd9K8iYmv5BpIWAgsBxo8fX+Pw6iNLB2OjdM5aMVV7B7zvmK+fenUMbwVmAhOAGSSPqlze1YYRsTQiWiOitbm5uYYhmpkNfHVpCUREB9CWvnxH0tXAW5JGRsTOesRkZlZE/WWIaOfdyP0lHjOzQsi1JSBpcPoeg4BBkpqAgySXgP4AbASOAW4D1kTE9jzjMTOzQ+V9OehbwPUlry8F/gZ4CbgZOI7kucWPAhfnHEvduNPrA64L61RpAIQ7lWsr7yGii4HFFYrvy/O9zcysZ74Gb2ZWYE4CZmYF5iRgZlZg9b5j2I5Qlk61RuWOQbPacUvAzKzAnATMzArMScDMrMCcBMzMCswdw0egUkfkQOuUbcRjZnmv7jqSB8Lv0KwabgmYmRWYk4CZWYE5CZiZFZiTgJlZgbljuJfckfiB3tSF67EY+uoz4jvD+45bAmZmBZZrEpB0taQ2Sfsk3V1W9llJ7ZJ2S3pM0oQ8YzEzs8Pl3RJ4E7gJ+FHpSkljgJXAIuBYkofO/zTnWMzMrEzeTxZbCSCpFRhXUnQRsCEifp6WLwa2SpoUEe15xmRmZh+oV8fwycC6zhcRsUvSK+n6Q5KApIXAQoDx48fXMkbrZxrlbmbrO/795K9eHcMjgO1l67YDI8s3jIilEdEaEa3Nzc01Cc7MrCjqlQQ6gFFl60YBO+sQi5lZYdUrCWwATu18IWk4cGK63szMaiTvIaKDJTUBg4BBkpokDQYeBKZImpeWXwesd6ewmVlt5d0x/C3g+pLXlwJ/ExGLJc0DvgvcCzwFzM85ll5p9A6qRo/fzPKR9xDRxcDiCmWrgUl5vr+ZmXXP00aYmRWYk4CZWYE5CZiZFZinku6G71DNl+uiGPrD77lSDJ6S2i0BM7NCcxIwMyswJwEzswJzEjAzKzB3DJfpD51Y9gH/Pqwr/lz0HbcEzMwKzEnAzKzAnATMzArMScDMrMAK2zFc2rHkuwar404566/8d109twTMzAqsrklA0hpJeyV1pMtL9YzHzKxo+kNL4OqIGJEuE+sdjJlZkfSHJGBmZnXSH5LALZK2SnpS0px6B2NmViT1TgJ/DZwAHA8sBR6SdGLpBpIWSmqT1LZly5Z6xGhmNmDVNQlExFMRsTMi9kXEMuBJ4NyybZZGRGtEtDY3N9cnUDOzAareLYFyAajeQZiZFUXdkoCkoyWdI6lJ0mBJXwBmA/9Yr5jMzIqmnncMDwFuAiYB7wLtwAUR8XIdYzIzK5S6JYGI2ALMrNf7m9nAlmV6E08z0f/6BMzMrIacBMzMCsxJwMyswJwEzMwKrLDPEzAzq6RIHcZuCZiZFZiTgJlZgTkJmJkVmJOAmVmBFapj2A9IN7PeyPod0kidyW4JmJkVmJOAmVmBOQmYmRWYk4CZWYEVqmPYzKySSp2+RzKgpNo7jittX4s7l90SMDMrsLomAUnHSnpQ0i5JmyRdUs94zMyKpt6Xg74H7AfGAh8HfilpXURsqG9YZmbFUM8HzQ8H5gGLIqIjIp4AfgH853rFZGZWNIqI+ryxNA14MiKGlaz7OnBmRJxfsm4hsDB9ORF4qaaB9t4YYGu9g+hHXB+Hcn0cyvVxqL6qjwkR0dxVQT0vB40AdpSt2w6MLF0REUuBpbUKqq9JaouI1nrH0V+4Pg7l+jiU6+NQtaiPenYMdwCjytaNAnbWIRYzs0KqZxJ4GRgs6WMl604F3ClsZlYjdUsCEbELWAncIGm4pDOAzwP31CumnDTspaycuD4O5fo4lOvjULnXR906hiG5TwD4EfCnwDbgmxGxom4BmZkVTF2TgJmZ1ZenjTAzKzAnATOzAnMSyEDSUEl3pvMb7ZT0nKQ/S8taJIWkjpJlUdm+P5K0Q9Lbkq4pO/ZnJbVL2i3pMUkTan1+R0LSvZLeSs/rZUlXlpRVPKeBWh9QuU6K+hkBkPQxSXsl3Vuy7pL0b2mXpFVp32BnWbfziXW3b6MorxNJcyS9V/b5WFCyfb51EhFeeliA4cBioIUkcf5HkvsZWtIlgMEV9r0FeBw4BpgMvA38h7RsDMkNcn8ONAF/C/xrvc83Y52cDAxNf56UnteMns5poNZHD3VSyM9IGv8/ped2b0kd7QRmk9wwugL4Scn29wE/Tcs+nZ77yVn2bZSlizqZA2zuZvtc66TuFdKoC7CeZO6jnv7A3wQ+V/L6xs5fEsl0GP9cUjYc2ANMqvf5VVkXE4G3gL/o6ZyKUB9d1EkhPyPAfOBnJP+B6vzCuxlYUbLNiSSTSI5Mz20/cFJJ+T3At3vat97n2ss6qZgEalEnvhx0BCSNBU7i0BvbNknaLOkuSWPS7Y4B/ghYV7LdOpLsTfrv+2WR3DvxSkl5vybpdkm7gXaSL7xH6OacBnp9QMU66VSYz4ikUcANwDVlReXn8wrpl1y6HIyIl0u2764uSvft97qpE4DjJL0j6VVJf69kgk2oQZ04CVRJ0hBgObAsItpJJneaCUwgafqPTMshaZ5B0nyj5OeRJeWlZeXl/VpEfIUk1lkkN/7to/tzGtD1ARXrpIifkRuBOyNic9n6nj4f3c0n1qh10alSnbSTTKX/R8BnSD4jt6ZludeJk0AVJB1F0hTbD1wNEMk02G0RcTAi3knXf07SSJL5keDQOZJK50dq+PmTIuLdSKYBHwdcRffnNODrAw6vk6J9RiR9HDgb+Psuinv6fHR3rg1XF526q5OIeDsiXoiI9yLiVeAbJJeaoQZ14iSQkSQBd5I8AGdeRByosGnn3XdHRcS/kVwSOLWkvHR+pA2lZWkT8EQac/6kwXwQe5fnVLD6gA/qpNxA/4zMIekHeV3S28DXgXmSnuXw8zkBGEoyl1hP84l1t29/N4fKdVIu+OC7Of86qXdHSaMswPeBfwVGlK0/jaQT8ChgNEkv/mMl5d8GfkMy8mMSyR9858iPZpKm2zySkR//gwYY+QEcR9LBNQIYBJwD7ALm9nROA7E+MtRJoT4jwDDgIyXLEuD+9FxOJrm8MYuk0/NeDh0d9BOS0TDDgTM4fCRMxX3789JDnZxFcqlQwB8DjwF31apO6l45jbCkv6AA9pI0vzqXLwAXA6+mf/BvAT8GPlKy71CS+ZF2AO8A15Qd+2ySa4J7gDVAS73PN0N9NKdfWn9Iz+t3wJeynNNArI+e6qSIn5Gy+BeTjoRJX18CvJ7Wxz8Ax5aUHQusSsteBy4pO1bFfRtp4dDRQdcA/w/YDbwB3EbJ6J6868RzB5mZFZj7BMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswP4/zu7dqmtpqTMAAAAASUVORK5CYII=", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAaCklEQVR4nO3de5RV5Znn8e+PSyjlIhEK1GBZagJeQBQL7ehSM9EWO2omhjjRqOOltaIOsTNZzdLJ0oTYtunOmpl0JEokbTAg2iRpcKKxXYKXVmNPQsE0ERQ0LsHQogIJSCF3n/ljn9JjUUXtU5x9Tp3av89aZ8m+nf285+B5ePfz7ncrIjAzs3zqU+0AzMysepwEzMxyzEnAzCzHnATMzHLMScDMLMf6VTuAUgwfPjwaGxurHYaZWU1ZsmTJhoio72hbTSWBxsZGWlpaqh2GmVlNkbSms22+HGRmlmNOAmZmOeYkYGaWYzVVEzCz2rJr1y7Wrl3L9u3bqx1KLtTV1TFq1Cj69++f+hgnATPLzNq1axk8eDCNjY1IqnY4vVpEsHHjRtauXcuRRx6Z+jhfDjKzzGzfvp1hw4Y5AVSAJIYNG1Zyr8tJwMwy5QRQOd35rJ0EzMxyzDUBM6uYxlt+Vdb3W/1355f1/To8x+rVXHDBBSxfvjz1MVdddRUXXHABX/rSl1Ktr0RMnXESMMuB4h/fSvxwWu3w5SAz67W2bt3K+eefz/jx4xk7dizz5s0DYPHixZx22mmMHz+eU045hS1btrB69WrOOOMMJkyYwIQJE3jhhRf2er89e/YwdepUJk6cyAknnMC9994LJCNzpkyZwpgxYzjnnHN45513uoztySef5KSTTmLcuHFcc8017NixA4Dbb7+diRMnMnbsWJqbm2l7+uOSJUsYP34848eP5+677y7XR1SZJCDpU5K2S3qgaN1XJK2RtFXSw5IOrkQsZpYfjz/+OIcddhjLli1j+fLlnHfeeezcuZMvf/nL/OAHP2DZsmUsWrSIAw44gBEjRrBw4UKWLl3KvHnzuOmmm/Z6v/vuu4+DDjqIxYsXs3jxYn784x/z+uuvs2DBAlatWsVLL73E7NmzO0wgxbZv385VV13FvHnzePHFF9m9ezczZswAYMqUKSxevJjly5ezbds2Hn30UQCuvvpqpk+fzrJly8r6GVWqJ3A3sLhtQdLxwL3AFcBI4D3gngrFYmY5MW7cOBYuXMjNN9/Mc889x0EHHcSqVas49NBDmThxIgBDhgyhX79+7Nq1i+uuu45x48Zx8cUX89JLL+31fk888QSzZ8/mxBNP5NRTT2Xjxo28+uqrPPvss1x66aX07duXww47jM9+9rP7jGvVqlUceeSRjB49GoArr7ySZ599FoCnn36aU089lXHjxvHUU0+xYsUKNm3axKZNmzjzzDMBuOKKK8r2GWVeE5B0CbAJeAH4ZGH1ZcAjEfFsYZ/bgJclDY6ILVnHZGb5MHr0aJYuXcpjjz3Grbfeytlnn81FF13U4b7f//73GTlyJMuWLeP999+nrq5ur30igunTpzNp0qSPrH/sscfKEu/27du58cYbaWlp4fDDD2fatGmZ322daU9A0hDgduAb7TYdD3zQp4mI14CdwOgO3qNZUouklvXr12cZrlnuNN7yqw9evdGbb77JgQceyOWXX87UqVNZunQpY8aMYd26dSxenFyc2LJlC7t372bz5s0ceuih9OnThzlz5rBnz5693m/SpEnMmDGDXbt2AfDKK6+wdetWzjzzTObNm8eePXtYt24dTz/99D7jGjNmDKtXr+b3v/89AHPmzOGss8764Ad/+PDhtLa28otf/AKAoUOHMnToUJ5//nkA5s6dW54PiOx7An8D3BcRa9vdxDAI2Nxu383A4PZvEBEzgZkATU1NkVGcZlYBlR6Z9OKLLzJ16lT69OlD//79mTFjBh/72MeYN28eX/va19i2bRsHHHAAixYt4sYbb2Ty5MnMnj2b8847j4EDB+71ftdeey2rV69mwoQJRAT19fU8/PDDXHTRRTz11FMcd9xxNDQ08OlPf3qfcdXV1TFr1iwuvvhidu/ezcSJE7n++usZMGAA1113HWPHjuWQQw754JIVwKxZs7jmmmuQxLnnnlu2z0htledyk3QiMBc4KSJ2SpoGfDIiLpf0f4BfR8T3ivbfAnwmIpZ09p5NTU3hh8qYla6zIaJZDx19+eWXOfbYY8v+vta5jj5zSUsioqmj/bPsCXwGaATeKPQCBgF9JR0HPA6MLwrwKGAA8EqG8ZiZWTtZJoGZwD8VLf81SVK4ARgB/JukM4ClJHWD+S4Km5lVVmZJICLeIxn6CYCkVmB7RKwH1ku6nuRy0TBgEXB1VrGYWfVEhCeRq5DuXN6v2LQRETGt3fKDwIOVOr+ZVV5dXR0bN270dNIV0PY8gY6Gtu6L5w4ys8yMGjWKtWvX4uHdldH2ZLFSOAmYWWb69+9f0lOurPI8gZyZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOee4gsx4g6yd8mXXGPQEzsxzLNAlIekDSOknvSnpF0rWF9Y2SQlJr0eu2LGMxM7O9ZX056LvAX0bEDknHAM9I+n/AxsL2oRGxO+MYzMysE5n2BCJiRUTsaFssvI7O8pxmZpZe5jUBSfdIeg9YCawDHivavEbSWkmzJA3v5PhmSS2SWvx0IjOz8so8CUTEjcBg4AxgPrAD2ABMBI4ATi5sn9vJ8TMjoikimurr67MO18wsVyoyOigi9kTE88Ao4IaIaI2IlojYHRFvA1OAcyUNrkQ8ZmaWqPQQ0X50XBOIwn89ZNXMrIIy+9GVNELSJZIGSeoraRJwKfCkpFMljZHUR9Iw4C7gmYjYnFU8Zma2tyyHiAZwA/AjkmSzBvh6RPxS0qXAncAI4F1gIUmCMLMeoPgOZvBdzL1ZZkkgItYDZ3Wy7SHgoazObWZm6fgavJlZjjkJmJnlmJOAmVmOeSppM+uSp7ruvdwTMDPLMScBM7MccxIwM8sxJwEzsxxzYdgsYy6qWk/mnoCZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeVYpklA0gOS1kl6V9Irkq4t2na2pJWS3pP0tKQjsozFzMz2lnVP4LtAY0QMAT4P3CHpZEnDgfnAbcDBQAswL+NYzMysnUxvFouIFcWLhdfRwMnAioj4OYCkacAGScdExMosYzIzsw9lXhOQdI+k94CVwDrgMeB4YFnbPhGxFXitsL798c2SWiS1rF+/PutwzcxyJfMkEBE3AoOBM0guAe0ABgGb2+26ubBf++NnRkRTRDTV19dnHa6ZWa5UZHRQROyJiOeBUcANQCswpN1uQ4AtlYjHzMwSlR4i2o+kJrACGN+2UtLAovVmZlYhmSUBSSMkXSJpkKS+kiYBlwJPAguAsZImS6oDvgX8zkVhM7PKynJ0UJBc+vkRSbJZA3w9In4JIGky8EPgAeA3wCUZxmLWI2Q9rbSnrbZSZZYEImI9cNY+ti8Cjsnq/GZm1jVPG2FmlmNOAmZmOeYkYGaWY37GsFkP4+KuVZJ7AmZmOeYkYGaWY04CZmY55iRgZpZjLgybWUlcuO5d3BMwM8sxJwEzsxxzEjAzy7FUSUDSuKwDMTOzyktbGL5H0gDgfmBuRLR/NKSZZcBFWMtaqp5ARJwBXAYcDiyR9KCkP880MjMzy1zqmkBEvArcCtxM8pyAuyStlPTFjvaXNEDSfZLWSNoi6d8l/UVhW6OkkNRa9LqtHA0yM7P0Ul0OknQCcDVwPrAQuDAilko6DPg3YH4n7/0HkoTxBvA54Gft6gtDI2L3fsRvZmb7IW1NYDrwj8A3I2Jb28qIeFPSrR0dEBFbgWlFqx6V9DpwMrCke+GamVk5pU0C5wPbImIPgKQ+QF1EvBcRc9K8gaSRwGhgRdHqNZKCpHcxNSI2pA/dzMz2V9oksAg4B2gtLB8IPAGcluZgSf2BucBPI2KlpEHARODfgWHA3YXtkzo4thloBmhoaEgZbr54BEm+FX//+7N/qe9jvUPawnBdRLQlAAp/PjDNgYVewxxgJzCl7fiIaImI3RHxdmH9uZIGtz8+ImZGRFNENNXX16cM18zM0kibBLZKmtC2IOlkYNs+9m/bT8B9wEhgckTs6mTXKDEeMzMrg7SXg74O/FzSm4CAQ4AvpzhuBnAscE5xQVnSqcAm4FXg48BdwDO+Cc3MrLJSJYGIWCzpGGBMYdWqffyrHgBJRwBfBXYAbyWdAiisex+4ExgBvEtSGL605OjNzGy/lPI8gYlAY+GYCZKIiNmd7RwRa0h6DZ15qIRzm/U6WRdiXei1NNLeLDYHOJpkNM+ewuoAOk0CZmbW86XtCTQBx0VEdLmnmZnVjLSjcZaTFIPNzKwXSdsTGA68JOm3JIVeACLi85lEZWZmFZE2CUzLMoi88p2+tcPflfVWaYeI/mthyOenImKRpAOBvtmGZmZmWUv7eMnrgF8A9xZWfQJ4OKugzMysMtIWhv8bcDrJjV1tD5gZkVVQZmZWGWmTwI6I2Nm2IKkfH873Y2ZmNSptYfhfJX0TOKDwbOEbgUeyC8vKwcXM6vHdulYr0vYEbgHWAy+SzP3zGMnzhs3MrIalHR30PvDjwsvMzHqJtHMHvU4HNYCIOKrsEZmZWcWUMndQmzrgYuDg8odjZmaVlPZy0MZ2q/5B0hLgW+UPyaz8ylkkd8G9Y/5calPay0ETihb7kPQMSnkWgZmZ9UBpf8j/V9GfdwOrgf+yrwMkDQDuAc4huXT0GvA/IuJfCtvPBu4GGoDfAFcVHkRjZmYVkvZy0H/q5nv/ATgLeAP4HPAzSeOAVmA+cC3J/QZ/A8wD/qwb5zEzs25KeznoG/vaHhH/u4N1W/no7KOPFkYZnQwMA1ZExM8L7z8N2CDpmIhYmS50MzPbX6WMDpoI/LKwfCHwW+DVtCeSNBIYDawAbgCWtW2LiK2SXgOOB1a2O64ZaAZoaGhIezqrkLwXA/Pefqt9aZPAKGBCRGyBD/7l/quIuDzNwZL6A3OBn0bESkmDSO5ALrYZGNz+2IiYCcwEaGpq8nxFZmZllHbaiJHAzqLlnYV1XZLUB5hTOGZKYXUrMKTdrkOALSnjMTOzMkjbE5gN/FbSgsLyF4CfdnWQJAH3kSSMz0XErsKmFcCVRfsNBI4urDczswpJ1ROIiL8Frgb+VHhdHRF3pjh0BnAscGFEbCtavwAYK2mypDqSm85+56KwmVlllXLD14HAuxExS1K9pCMj4vXOdi48jvKrJA+mfyvpFADw1YiYK2ky8EPgAZL7BC7pVgvMrGo8ZXbtSztE9NskI4TGALOA/iQ/3qd3dkzhxi/tY/si4JhSgjUzs/JKWxi+CPg8sBUgIt6kg5E8ZmZWW9ImgZ0RERSmky4Ucs3MrMalTQI/k3QvMFTSdcAi/IAZM7Oal3buoP9ZeLbwuyR1gW9FxMJMI7Oa5jtpy8+fqWWhyyQgqS+wqDCJnH/4zcx6kS4vB0XEHuB9SQdVIB4zM6ugtPcJtAIvSlpIYYQQQETclElUZmZWEWmTwPzCy8zMepF9JgFJDRHxRkR0OU+Q7R8X/awUvlPXyqWrmsDDbX+Q9M8Zx2JmZhXWVRIonvbhqCwDMTOzyusqCUQnfzYzs16gq8LweEnvkvQIDij8mcJyRET7B8OYmVkN2WcSiIi+lQrEKquzwmJxUTrNPj3Z/hZPSz3exVqrRWnnDjIzs14o0yQgaYqkFkk7JN1ftL5RUkhqLXrdlmUsZma2t1KeLNYdbwJ3AJOAAzrYPjQidmccg5mZdSLTJBAR8wEkNQGjsjyXmZmVLuueQFfWSAqS2UmnRsSG9jtIagaaARoaGiocXnWkKTDWSnHW8qnUO+B9x3z1VKswvAGYCBwBnEzyqMq5He0YETMjoikimurr6ysYoplZ71eVnkBEtAIthcW3JU0B1kkaHBFbqhGTmVke9ZQhom13I/eUeMzMciHTnoCkfoVz9AX6SqoDdpNcAtoEvAp8HLgLeCYiNmcZj5mZfVTWl4NuBb5dtHw58B1gFXAnMILkucULgUszjqVqXPT6kD8La9PZAAgXlSsr6yGi04BpnWx+KMtzm5lZ13wN3swsx5wEzMxyzEnAzCzHqn3HsHVTmqJarXJh0Kxy3BMwM8sxJwEzsxxzEjAzyzEnATOzHHNhuBs6K0T2tqJsLb5nmnPtq5DcG75Ds1K4J2BmlmNOAmZmOeYkYGaWY04CZmY55sLwfnIh8UP781n4c8yHcv0d8Z3h5eOegJlZjmWaBCRNkdQiaYek+9ttO1vSSknvSXpa0hFZxmJmZnvLuifwJnAH8JPilZKGA/OB24CDSR46Py/jWMzMrJ2snyw2H0BSEzCqaNMXgRUR8fPC9mnABknHRMTKLGMyM7MPVaswfDywrG0hIrZKeq2w/iNJQFIz0AzQ0NBQyRith6mVu5mtfPz9ZK9aheFBwOZ26zYDg9vvGBEzI6IpIprq6+srEpyZWV5UKwm0AkParRsCbKlCLGZmuVWtJLACGN+2IGkgcHRhvZmZVUjWQ0T7SaoD+gJ9JdVJ6gcsAMZKmlzY/i3gdy4Km5lVVtaF4VuBbxctXw58JyKmSZoM/BB4APgNcEnGseyXWi9Q1Xr8ZpaNrIeITgOmdbJtEXBMluc3M7N987QRZmY55iRgZpZjTgJmZjnmqaT3wXeoZsufRT70hO+5sxg8JbV7AmZmueYkYGaWY04CZmY55iRgZpZjLgy30xOKWPYhfx/WEf+9KB/3BMzMcsxJwMwsx5wEzMxyzEnAzCzHclsYLi4s+a7B0rgoZz2V/78unXsCZmY5VtUkIOkZSdsltRZeq6oZj5lZ3vSEnsCUiBhUeI2pdjBmZnnSE5KAmZlVSU9IAt+VtEHSryV9ptrBmJnlSbWTwM3AUcAngJnAI5KOLt5BUrOkFkkt69evr0aMZma9VlWTQET8JiK2RMSOiPgp8Gvgc+32mRkRTRHRVF9fX51Azcx6qWr3BNoLQNUOwswsL6qWBCQNlTRJUp2kfpIuA84EHq9WTGZmeVPNO4b7A3cAxwB7gJXAFyLilSrGZGaWK1VLAhGxHphYrfObWe+WZnoTTzPR82oCZmZWQU4CZmY55iRgZpZjTgJmZjmW2+cJmJl1Jk8FY/cEzMxyzEnAzCzHnATMzHLMScDMLMdyVRj2A9LNbH+k/Q2ppWKyewJmZjnmJGBmlmNOAmZmOeYkYGaWY7kqDJuZdaazom93BpSUesdxZ/tX4s5l9wTMzHKsqklA0sGSFkjaKmmNpK9UMx4zs7yp9uWgu4GdwEjgROBXkpZFxIrqhmVmlg/VfND8QGAycFtEtEbE88AvgSuqFZOZWd4oIqpzYukk4NcRcWDRur8GzoqIC4vWNQPNhcUxwKr9OO1wYMN+HF9r8tZecJvzwm0uzRERUd/RhmpeDhoEvNtu3WZgcPGKiJgJzCzHCSW1RERTOd6rFuStveA254XbXD7VLAy3AkParRsCbKlCLGZmuVTNJPAK0E/Sp4rWjQdcFDYzq5CqJYGI2ArMB26XNFDS6cB/BuZkeNqyXFaqIXlrL7jNeeE2l0nVCsOQ3CcA/AT4c2AjcEtEPFi1gMzMcqaqScDMzKrL00aYmeWYk4CZWY71qiSQdi4iJf5e0sbC6+8lqdLxlkMJbZ4qabmkLZJelzS10rGWS6lzTkn6mKSXJa2tVIzlVEp7JU2Q9KykVklvS/qrSsZaLiX8vR4g6UeFtv5R0iOSPlHpeMtB0hRJLZJ2SLq/i33/u6S3JL0r6SeSBnT3vL0qCfDRuYguA2ZIOr6D/ZqBL5AMST0BuBD4aqWCLLO0bRbwX4GPA+cBUyRdUrEoyyttm9tMBdZXIrCMpGqvpOHA48C9wDDgk8ATFYyznNJ+x38FfJrk/+PDgD8B0ysVZJm9CdxBMlimU5ImAbcAZwNHAEcB3+n2WSOiV7yAgSR/aUYXrZsD/F0H+74ANBct/yXwf6vdhizb3MGxdwHTq92GrNsMHAm8DPwFsLba8WfZXuBOYE61Y65wm2cA3ytaPh9YVe027Gf77wDu38f2B4E7i5bPBt7q7vl6U09gNLA7Il4pWrcM6OhfD8cXtnW1X09XSps/ULj0dQa1eWNeqW2eDnwT2JZ1YBkppb1/BvxR0guS3ilcGmmoSJTlVUqb7wNOl3SYpANJeg3/UoEYq6mj36+RkoZ15816UxJINRdR0b6b2+03qAbrAqW0udg0ku9+VgYxZS11myVdBPSNiAWVCCwjpXzHo4ArSS6RNACvAw9lGl02Smnzq8AfgP8oHHMscHum0VVfR79f0PX/9x3qTUmglLmI2u87BGiNQt+qhpQ8/5KkKSS1gfMjYkeGsWUlVZsLU5V/D7ipQnFlpZTveBuwICIWR8R2kuvEp0k6KOMYy62UNt8NDCCpgQwkmYWgt/cEOvr9gm7Ou9abkkApcxGtKGzrar+erqT5lyRdQ6GgFBE1OVKG9G3+FNAIPCfpLZIfh0MLIyoaKxBnuZTyHf8OKP6HTK39o6ZNKW0+keT6+R8L/6iZDpxSKJL3Vh39fr0dERu79W7VLoKUuaDyTyTd34HA6STdpOM72O96kmLhJ0hGFKwArq92/Bm3+TLgLeDYasdciTaTTJN+SNHriySjLw4huURU9XZk8B1/lmR0zIlAf+D7wHPVjj/jNs8C/hk4qNDmbwL/Ue34u9nmfkAd8F2SQngd0K+D/c4r/L98HDAUeIoUg0E6PW+1G17mD/Fg4GFgK/AG8JXC+jNILve07SeSSwV/LLy+R2EKjVp7ldDm14FdJF3JttePqh1/lm1ud8xnqMHRQaW2F7iB5Pr4n4BHgMOrHX+WbSa5DDQXeAfYBDwPnFLt+LvZ5mkkvbfi1zSS+k4r0FC07zeAt0nqILOAAd09r+cOMjPLsd5UEzAzsxI5CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5dj/BywbGaIaCXKXAAAAAElFTkSuQmCC", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "테스트 데이터도 스케일링합시다\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 25, + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    load
                                                    2014-12-30 00:00:000.33
                                                    2014-12-30 01:00:000.29
                                                    2014-12-30 02:00:000.27
                                                    2014-12-30 03:00:000.27
                                                    2014-12-30 04:00:000.30
                                                    \n", + "
                                                    " + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.33\n", + "2014-12-30 01:00:00 0.29\n", + "2014-12-30 02:00:00 0.27\n", + "2014-12-30 03:00:00 0.27\n", + "2014-12-30 04:00:00 0.30" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "source": [ + "# Specify the number of steps to forecast ahead\n", + "HORIZON = 3\n", + "print('Forecasting horizon:', HORIZON, 'hours')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Forecasting horizon: 3 hours\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 27, + "source": [ + "order = (4, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)\n", + "results = model.fit()\n", + "\n", + "print(results.summary())\n" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " SARIMAX Results \n", + "==========================================================================================\n", + "Dep. Variable: load No. Observations: 1416\n", + "Model: SARIMAX(4, 1, 0)x(1, 1, 0, 24) Log Likelihood 3477.239\n", + "Date: Thu, 30 Sep 2021 AIC -6942.477\n", + "Time: 14:36:28 BIC -6911.050\n", + "Sample: 11-01-2014 HQIC -6930.725\n", + " - 12-29-2014 \n", + "Covariance Type: opg \n", + "==============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "ar.L1 0.8403 0.016 52.226 0.000 0.809 0.872\n", + "ar.L2 -0.5220 0.034 -15.388 0.000 -0.588 -0.456\n", + "ar.L3 0.1536 0.044 3.470 0.001 0.067 0.240\n", + "ar.L4 -0.0778 0.036 -2.158 0.031 -0.148 -0.007\n", + "ar.S.L24 -0.2327 0.024 -9.718 0.000 -0.280 -0.186\n", + "sigma2 0.0004 8.32e-06 47.358 0.000 0.000 0.000\n", + "===================================================================================\n", + "Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 1464.60\n", + "Prob(Q): 0.83 Prob(JB): 0.00\n", + "Heteroskedasticity (H): 0.84 Skew: 0.14\n", + "Prob(H) (two-sided): 0.07 Kurtosis: 8.02\n", + "===================================================================================\n", + "\n", + "Warnings:\n", + "[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## 모델 평가\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "각 HORIZON 단계에 대한 테스트 데이터 포인트를 생성하세요.\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 28, + "source": [ + "test_shifted = test.copy()\n", + "\n", + "for t in range(1, HORIZON):\n", + " test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')\n", + " \n", + "test_shifted = test_shifted.dropna(how='any')\n", + "test_shifted.head(5)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    loadload+1load+2
                                                    2014-12-30 00:00:000.330.290.27
                                                    2014-12-30 01:00:000.290.270.27
                                                    2014-12-30 02:00:000.270.270.30
                                                    2014-12-30 03:00:000.270.300.41
                                                    2014-12-30 04:00:000.300.410.57
                                                    \n", + "
                                                    " + ], + "text/plain": [ + " load load+1 load+2\n", + "2014-12-30 00:00:00 0.33 0.29 0.27\n", + "2014-12-30 01:00:00 0.29 0.27 0.27\n", + "2014-12-30 02:00:00 0.27 0.27 0.30\n", + "2014-12-30 03:00:00 0.27 0.30 0.41\n", + "2014-12-30 04:00:00 0.30 0.41 0.57" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "테스트 데이터에 대한 예측을 수행하세요\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 29, + "source": [ + "%%time\n", + "training_window = 720 # dedicate 30 days (720 hours) for training\n", + "\n", + "train_ts = train['load']\n", + "test_ts = test_shifted\n", + "\n", + "history = [x for x in train_ts]\n", + "history = history[(-training_window):]\n", + "\n", + "predictions = list()\n", + "\n", + "# let's user simpler model for demonstration\n", + "order = (2, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "for t in range(test_ts.shape[0]):\n", + " model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order)\n", + " model_fit = model.fit()\n", + " yhat = model_fit.forecast(steps = HORIZON)\n", + " predictions.append(yhat)\n", + " obs = list(test_ts.iloc[t])\n", + " # move the training window\n", + " history.append(obs[0])\n", + " history.pop(0)\n", + " print(test_ts.index[t])\n", + " print(t+1, ': predicted =', yhat, 'expected =', obs)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2014-12-30 00:00:00\n", + "1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323]\n", + "2014-12-30 01:00:00\n", + "2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126]\n", + "2014-12-30 02:00:00\n", + "3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795]\n", + "2014-12-30 03:00:00\n", + "4 : predicted = [0.28 0.32 0.42] expected = [0.26812891674127126, 0.3025962399283795, 0.40823634735899716]\n", + "2014-12-30 04:00:00\n", + "5 : predicted = [0.3 0.39 0.54] expected = [0.3025962399283795, 0.40823634735899716, 0.5689346463742166]\n", + "2014-12-30 05:00:00\n", + "6 : predicted = [0.4 0.55 0.66] expected = [0.40823634735899716, 0.5689346463742166, 0.6799462846911368]\n", + "2014-12-30 06:00:00\n", + "7 : predicted = [0.57 0.68 0.75] expected = [0.5689346463742166, 0.6799462846911368, 0.7309758281110115]\n", + "2014-12-30 07:00:00\n", + "8 : predicted = [0.68 0.75 0.8 ] expected = [0.6799462846911368, 0.7309758281110115, 0.7511190689346463]\n", + "2014-12-30 08:00:00\n", + "9 : predicted = [0.75 0.8 0.82] expected = [0.7309758281110115, 0.7511190689346463, 0.7636526410026856]\n", + "2014-12-30 09:00:00\n", + "10 : predicted = [0.77 0.78 0.78] expected = [0.7511190689346463, 0.7636526410026856, 0.7381378692927483]\n", + "2014-12-30 10:00:00\n", + "11 : predicted = [0.76 0.75 0.74] expected = [0.7636526410026856, 0.7381378692927483, 0.7188898836168307]\n", + "2014-12-30 11:00:00\n", + "12 : predicted = [0.77 0.76 0.75] expected = [0.7381378692927483, 0.7188898836168307, 0.7090420769919425]\n", + "2014-12-30 12:00:00\n", + "13 : predicted = [0.7 0.68 0.69] expected = [0.7188898836168307, 0.7090420769919425, 0.7081468218442255]\n", + "2014-12-30 13:00:00\n", + "14 : predicted = [0.72 0.73 0.76] expected = [0.7090420769919425, 0.7081468218442255, 0.7385854968666068]\n", + "2014-12-30 14:00:00\n", + "15 : predicted = [0.71 0.73 0.86] expected = [0.7081468218442255, 0.7385854968666068, 0.8478066248880931]\n", + "2014-12-30 15:00:00\n", + "16 : predicted = [0.73 0.85 0.97] expected = [0.7385854968666068, 0.8478066248880931, 0.9516562220232765]\n", + "2014-12-30 16:00:00\n", + "17 : predicted = [0.87 0.99 0.97] expected = [0.8478066248880931, 0.9516562220232765, 0.934198746642793]\n", + "2014-12-30 17:00:00\n", + "18 : predicted = [0.94 0.92 0.86] expected = [0.9516562220232765, 0.934198746642793, 0.8876454789615038]\n", + "2014-12-30 18:00:00\n", + "19 : predicted = [0.94 0.89 0.82] expected = [0.934198746642793, 0.8876454789615038, 0.8294538943598924]\n", + "2014-12-30 19:00:00\n", + "20 : predicted = [0.88 0.82 0.71] expected = [0.8876454789615038, 0.8294538943598924, 0.7197851387645477]\n", + "2014-12-30 20:00:00\n", + "21 : predicted = [0.83 0.72 0.58] expected = [0.8294538943598924, 0.7197851387645477, 0.5747538048343777]\n", + "2014-12-30 21:00:00\n", + "22 : predicted = [0.72 0.58 0.47] expected = [0.7197851387645477, 0.5747538048343777, 0.4592658907788718]\n", + "2014-12-30 22:00:00\n", + "23 : predicted = [0.58 0.47 0.39] expected = [0.5747538048343777, 0.4592658907788718, 0.3858549686660697]\n", + "2014-12-30 23:00:00\n", + "24 : predicted = [0.46 0.38 0.34] expected = [0.4592658907788718, 0.3858549686660697, 0.34377797672336596]\n", + "2014-12-31 00:00:00\n", + "25 : predicted = [0.38 0.34 0.33] expected = [0.3858549686660697, 0.34377797672336596, 0.32542524619516544]\n", + "2014-12-31 01:00:00\n", + "26 : predicted = [0.36 0.34 0.34] expected = [0.34377797672336596, 0.32542524619516544, 0.33034914950760963]\n", + "2014-12-31 02:00:00\n", + "27 : predicted = [0.32 0.32 0.35] expected = [0.32542524619516544, 0.33034914950760963, 0.3706356311548791]\n", + "2014-12-31 03:00:00\n", + "28 : predicted = [0.32 0.36 0.47] expected = [0.33034914950760963, 0.3706356311548791, 0.470008952551477]\n", + "2014-12-31 04:00:00\n", + "29 : predicted = [0.37 0.48 0.65] expected = [0.3706356311548791, 0.470008952551477, 0.6145926589077886]\n", + "2014-12-31 05:00:00\n", + "30 : predicted = [0.48 0.64 0.75] expected = [0.470008952551477, 0.6145926589077886, 0.7247090420769919]\n", + "2014-12-31 06:00:00\n", + "31 : predicted = [0.63 0.73 0.79] expected = [0.6145926589077886, 0.7247090420769919, 0.786034019695613]\n", + "2014-12-31 07:00:00\n", + "32 : predicted = [0.71 0.76 0.79] expected = [0.7247090420769919, 0.786034019695613, 0.8012533572068039]\n", + "2014-12-31 08:00:00\n", + "33 : predicted = [0.79 0.82 0.83] expected = [0.786034019695613, 0.8012533572068039, 0.7994628469113696]\n", + "2014-12-31 09:00:00\n", + "34 : predicted = [0.82 0.83 0.81] expected = [0.8012533572068039, 0.7994628469113696, 0.780214861235452]\n", + "2014-12-31 10:00:00\n", + "35 : predicted = [0.8 0.78 0.76] expected = [0.7994628469113696, 0.780214861235452, 0.7587287376902416]\n", + "2014-12-31 11:00:00\n", + "36 : predicted = [0.77 0.75 0.74] expected = [0.780214861235452, 0.7587287376902416, 0.7367949865711727]\n", + "2014-12-31 12:00:00\n", + "37 : predicted = [0.77 0.76 0.76] expected = [0.7587287376902416, 0.7367949865711727, 0.7188898836168307]\n", + "2014-12-31 13:00:00\n", + "38 : predicted = [0.75 0.75 0.78] expected = [0.7367949865711727, 0.7188898836168307, 0.7273948075201431]\n", + "2014-12-31 14:00:00\n", + "39 : predicted = [0.73 0.75 0.87] expected = [0.7188898836168307, 0.7273948075201431, 0.8299015219337511]\n", + "2014-12-31 15:00:00\n", + "40 : predicted = [0.74 0.85 0.96] expected = [0.7273948075201431, 0.8299015219337511, 0.909579230080573]\n", + "2014-12-31 16:00:00\n", + "41 : predicted = [0.83 0.94 0.93] expected = [0.8299015219337511, 0.909579230080573, 0.855863921217547]\n", + "2014-12-31 17:00:00\n", + "42 : predicted = [0.94 0.93 0.88] expected = [0.909579230080573, 0.855863921217547, 0.7721575649059982]\n", + "2014-12-31 18:00:00\n", + "43 : predicted = [0.87 0.82 0.77] expected = [0.855863921217547, 0.7721575649059982, 0.7023276633840643]\n", + "2014-12-31 19:00:00\n", + "44 : predicted = [0.79 0.73 0.63] expected = [0.7721575649059982, 0.7023276633840643, 0.6195165622202325]\n", + "2014-12-31 20:00:00\n", + "45 : predicted = [0.7 0.59 0.46] expected = [0.7023276633840643, 0.6195165622202325, 0.5425246195165621]\n", + "2014-12-31 21:00:00\n", + "46 : predicted = [0.6 0.47 0.36] expected = [0.6195165622202325, 0.5425246195165621, 0.4735899731423454]\n", + "CPU times: user 12min 15s, sys: 2min 39s, total: 14min 54s\n", + "Wall time: 2min 36s\n" + ] + } + ], + "metadata": { + "scrolled": true + } + }, + { + "cell_type": "markdown", + "source": [ + "예측값을 실제 부하와 비교\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 30, + "source": [ + "eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])\n", + "eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]\n", + "eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')\n", + "eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()\n", + "eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])\n", + "eval_df.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    timestamphpredictionactual
                                                    02014-12-30 00:00:00t+13,008.743,023.00
                                                    12014-12-30 01:00:00t+12,955.532,935.00
                                                    22014-12-30 02:00:00t+12,900.172,899.00
                                                    32014-12-30 03:00:00t+12,917.692,886.00
                                                    42014-12-30 04:00:00t+12,946.992,963.00
                                                    \n", + "
                                                    " + ], + "text/plain": [ + " timestamp h prediction actual\n", + "0 2014-12-30 00:00:00 t+1 3,008.74 3,023.00\n", + "1 2014-12-30 01:00:00 t+1 2,955.53 2,935.00\n", + "2 2014-12-30 02:00:00 t+1 2,900.17 2,899.00\n", + "3 2014-12-30 03:00:00 t+1 2,917.69 2,886.00\n", + "4 2014-12-30 04:00:00 t+1 2,946.99 2,963.00" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "모든 예측에 대한 **평균 절대 백분율 오차(MAPE)**를 계산합니다\n", + "\n", + "$$MAPE = \\frac{1}{n} \\sum_{t=1}^{n}|\\frac{actual_t - predicted_t}{actual_t}|$$\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 31, + "source": [ + "if(HORIZON > 1):\n", + " eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']\n", + " print(eval_df.groupby('h')['APE'].mean())" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "h\n", + "t+1 0.01\n", + "t+2 0.01\n", + "t+3 0.02\n", + "Name: APE, dtype: float64\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 32, + "source": [ + "print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "One step forecast MAPE: 0.5570581332313952 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 33, + "source": [ + "print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Multi-step forecast MAPE: 1.1460048657704118 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "테스트 세트 첫 주에 대한 예측값과 실제값을 플롯하세요\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 34, + "source": [ + "if(HORIZON == 1):\n", + " ## Plotting single step forecast\n", + " eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8))\n", + "\n", + "else:\n", + " ## Plotting multi step forecast\n", + " plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']]\n", + " for t in range(1, HORIZON+1):\n", + " plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values\n", + "\n", + " fig = plt.figure(figsize=(15, 8))\n", + " ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)\n", + " ax = fig.add_subplot(111)\n", + " for t in range(1, HORIZON+1):\n", + " x = plot_df['timestamp'][(t-1):]\n", + " y = plot_df['t+'+str(t)][0:len(x)]\n", + " ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t))\n", + " \n", + " ax.legend(loc='best')\n", + " \n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "No handles with labels found to put in legend.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHjCAYAAAB7INHwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xV9f348de592bvhDBkhhEggCICIqCCgoJ7K462Wm1rtV+7tFpb/XVpq6211tFaR93WPVBQQXAwFBXUMMLeSHZyM26Se+/5/fG+J+ecDJYhN+P9fDx45JxzRz6xac59fz7vz/ttmKaJUkoppZRSSqnuxxPtASillFJKKaWUig4NCJVSSimllFKqm9KAUCmllFJKKaW6KQ0IlVJKKaWUUqqb0oBQKaWUUkoppbopDQiVUkoppZRSqpvyRXsAh1uPHj3MQYMGRXsYSimllFJKKRUVn3/+ebFpmtktPdblA8JBgwbx2WefRXsYSimllFJKKRUVhmFsa+0xTRlVSimllFJKqW5KA0KllFJKKaWU6qY0IFRKKaWUUkqpbqrL7yFUSimllFJKqa6ioaGBnTt3EggEmj0WHx9Pv379iImJOeD304BQKaWUUkoppTqJnTt3kpKSwqBBgzAMo/G6aZqUlJSwc+dOcnJyDvj9NGVUKaWUUkoppTqJQCBAVlaWKxgEMAyDrKysFlcO90UDQqWUUkoppZTqRJoGg/u7vi8aECqllFJKKaVUN6UBoVJKKaWUUkp1UxoQKqWUUkoppVQnYprmQV3fFw0IlVJKKaWUUqqTiI+Pp6SkpFnwZ1UZjY+PP6j307YTSimllFJKKdVJ9OvXj507d1JUVNTsMasP4cHQgFAppZRSSimlOomYmJiD6jO4P5oyqpRSSimllFLdlAaESimllFJKKdVNaUColFJKKaWUUt2U7iFUSqluYv16+O9/ITsbfvxjiIuL9oiUUkopFW26QqiUUt3Es8/Cjh3wxRfw5pvRHo1SSimlOgINCJVSqhsIBGDzZvt84UKor4/eeJRSSinVMWhAqJRS3cCmTeDsX1tVBUuWRG88SimllOoYNCBUSqluoKCg+bX5891BolJKKaW6Hw0IlVKqG1i/vvm13bvhq6/afyxKKaWU6jg0IFRKqS4uFIKNG+1zj+Mv//z57T8epZRSSnUcGhAqpVQXt3071NXZ52efbR/n58POne0/JqWUUkp1DBoQKqVUF+dMF83IgDPPhLQ0+5quEiqllFLdlwaESinVxTkDwtxciImBk0+2ry1ZAhUV7T8upZRSSkWfL9oDUEopdfiYZvOAEGDGDHjjDQgGoaEB3n4bZs2C2lr7XyDg/mr9a2iAkSNh6tTo/ExKKaWUajsaECqlVBdWVATl5XIcDMp+wscfl8CuulqCxXAY1q2Dr78Gr/fA3nf7dhg8GI444vCNXSmllFKHn6aMKqVUF+ZcHSwpgS1bYPNm2LNHgrlQSFYR6+oOvrjMunVtO1allFJKtT9dIVRKqS7MCghNE3w+d8uJlBTo1UsCRa8X9u6Fk06ChAT7X3y8+7iiAl59VV5fUCDPV0op1T3V1Ei16pwcyM6O9mjUodKAUCmlujArIKythaQkOc7MhCuvlCCvoADuvtt+/vjxMHp06+8XCsG8ebKvcPdu8PslsFRKKdX9vPqqZIv4fHJfGTAg2iNSh0JTRpVSqouqqoJdu+TY74esLDkePhzS0yEuDsaMgb597dfMm7fv9/R6Ydgw+9yZkqqUUqr7qK6WSUWQPepPPy371lXnowGhUkp1URs22MdVVdKDEOxKowCGIdVFLV99JSt/++J8vQaESinVPa1dK9sRLLW18OSTMgGpOhcNCJVSqouyZm5DIUnn8fmkB+GgQe7nTZ7sTvvcX6P63FwJJAE2bpSZYaWUUt1Lfr59bO1PLy+Hp56SQmWq89CAUCmluihr9c7vl32DADk9/PjMBtfzYmOlL6Hl44/3PcObmAj9+slxfT1s29aGg1ZKKdXh1dRI1WqQycbvfU/uJSBVrJ97TiYjVeegAaFSSnVBDQ32zbqyMhIQLlxI7vWnyAbCX//aFfWdfLLc1K3Xvv/+vt9/+HD72FqJVEop1T2sWyc9bAGGDpUqoxdfbK8UbtoEr73mTilVHVe7BoSGYXgNw1hpGMbcJtfvMwyjynEeZxjG/wzD2GgYxieGYQxyPHZL5HqBYRintt/olVKq89iyRVI5TTNSUIZiWLaUYWaBTO3eeadUh3n0UQiFSEuT1FHLe+/tOxW0aUCoN32llOo+1qyxj0eNkq+5uXD22fb1VatgwYL2HZc6NO29QngDsNZ5wTCM8UBGk+d9HygzTXMo8HfgL5Hn5gGXAKOAWcCDhmF4D/eglVKqs7FW7QIBSeOJ37aeLErIpMx+0t69cPXV0mti8WJXcZmKCli2rPX379ULUlPluLRUehkqpZTq+gIB2T8OUnnaOUE4bpy7P+2HH8Knn7bv+NTBa7eA0DCMfsDpwCOOa17gbuCmJk8/G3gicvwScLJhGEbk+vOmadaZprkF2AhMPNxjV0qpzsbaP1hZGWk3sWEDubRSEnTVKpg+nf43nMeo3nZkN39+6yt/hqFpo0op1R0VFNj7A4cMkZ62TtOmyTyjZe5cqUiqOq72XCG8Fwn8wo5r1wNvmKa5p8lz+wI7AEzTDAIVQJbzesTOyDWllFIRpmm3nPD7ITOpDnbsYBiOPhRxcc1f+OqrzL73VPjic6ivZ/v2fd/Ene0nNCBUSqnuYfVq+zgvr/njhgFnnmlPGpomvPACbN/ePuNTB69dAkLDMM4ACk3T/Nxx7QjgQuCfh+H7/cAwjM8Mw/isSDtkKqW6md27pWFwKCRfs/xb8NHAQLayl55sy51JaO16mDOn2WuPDH5OnzUL4fXXYP165r/Vepm4IUPsQjTbtkkakVJKqa6rvt6ecPR4YOTIlp/n8cBFF9kVqa3G9cXF7TNOdXDaa4VwCnCWYRhbgeeBk4DVwFBgY+R6omEYkYxkdgH9AQzD8AFpQInzekS/yDUX0zQfNk1zvGma47Ozsw/LD6SUUh2VtVrn90vfweQdaxnMZh7lak7nLc6vfIwpcwZwcehZbr58Jw/n3MF7zGATg2kghlnMlyZSn37Cyj+9zZ7nFrf4fWJiYPBgOQ6H7T0lSimluqb16+2CY4MGSRui1sTGwuWX222PamvhiSegqqr116joaJeA0DTNW0zT7Gea5iCkKMz7pmlmmKbZ2zTNQZHrNZEiMgBvAN+NHF8Qeb4ZuX5JpAppDjAM0K2qSinl4No/mBHG2LSJNCp4jKvkgbR0gkEpC75gbV8ezryZW3Ke5+KYV5nKx/yT6/maMRSQy+6KRJ64dB51s8+ROuNN6D5CpZTqPpzpoqNHS7XR226DJ5+Eb75p/vykJPjud+UrSOP6J5/UxvUdjS/aA2jFo8BTkRXDUiSIxDTN1YZhvACsAYLAdaZpattLpZRysNpA+P3QJ6MYArWsZCwmBnh9kJzU5BUGZGZBejrhvXvZ8Y0PfziF8khCxpccyQvztzPgnQIGH7WHnIsnMvXUJI4+2r2PcMMG+b6G0X4/q1JKqfbR0GBPOBqG9B88+WTZMpCQIMVjJkyAmTPhqKPse0FmJlxxhXQ5amiQxvXPPy+rh17tFdAhtHtjetM0F5umeUYL15MdxwHTNC80TXOoaZoTTdPc7HjsT6ZpDjFNc7hpmvPaa9xKKdUZlJXJHo1AQG68WWUbSaSGBcyUJ6Slkp5uMHOmew8gAB4v9DkCRo8mJcOHgZQYNfFQSSo7zb58uCqFJ36znmvOLuSDxSbp6dKCAmS/4q5mSfxKKaW6gg0bZA8hwMCBsHChBIMg6aAbNsBXX8Hf/ga//CXMmyf3BYC+fd2N6zduhNdf1x62HUVHXSFUSil1CJzpoh4PpO/Ip5BsaonUBU9L59JL4apI9mgoBDt3SiP7zZutr7FsSRpI0pY6qooDEAxSSSppVGBYL9qxnb/9qJzjvsolN1daGoKsTlpFBJRSSnUdTauL3nef+/EdO2TVMD4eCgvh2WfhpZdgyhRZNRw+HM46C157TZ6/cqX0s50xo/1+BtUyDQiVUqoLsQJCvx8yEmoxi4v4nKmNj8dlp3LeefbzvV6Z6R04UHpHWcJhWLEijtt+G0vVthKqtpSS3VBENcmNweXugkqevXMb0783kI8+ktcVFEgKkVJKqa4jGHTvEx8yBD7/3D7PzJRJyNJSOOII+3p9PSxaJP9GjJDA8IQTpGE9wAcfQFqapJqq6Gn3lFGllFKHj9UwuLoasgK72M4Aqolk5CencMY5PtLT9/8+Hg8ceyycOM1g8MQeHHlBLhOmp/JswtXE0ND4vMfuLibRV9/YmHjPHlmdVEop1XVs2mQXgunfH774AkpK7MeTkyElBWpq4PrrYdKk5vsD162Df/4T3nhDAkzr/d58s8WaZaodaUColFJdRCAgjX/9ftmXkVm8gU0MadwLSFoal112cO85e3bkwOtla98pVP/1IebwXOPjNdUm//7OEoYNs19jrVIqpZTqGpzpoqNGSSqoJSHBDv4aGmDpUrjuOrj3XjjvPFkBdCovl3vV8uWyylhaKo3rd+w4/D+HapkGhEop1UVs3GhXFyUcomF3EWVkND5+wowYBgw4uPccOxZ697bP59WdxFUXVpFBWeO11xelELdna+O5tp9QSqmuIxRyr+ANGACfOpq+JSXZbSUAXn5ZCpylp8O550pgeN11uCYOPR7Zb15SImmjCxbAPffICqNqfxoQKqVUF7F+vQSElZWQGi5nnZlLPAF5MDaOy67PPOj3NAw49VT7fOVKqP7dX/lRqr1KaJrwxu9XysZDJLXIalyslFKqc9uyRaqIguwPXLcOiork3DBgzBjpNWgJBOCZZ+xzn09SSG+7Df7wB9lD6PPJquLgwdLAvqwM3n8fXnyx/X4uZdOAUCmluoiCArvdRELFXnbRFx/SqnVETh3jjjm0BoHHH2/P/pomvLMik3P+czpD2NT4nFUl/Ql8JFPGDQ2wdeu3+lGUUkp1EE3TRd94w24/kZAgAd5FF8keQssLL7S8n3zQILjmGqlQevHF0rZo4EAJLMNhWSlcu/aw/jiqBRoQKqVUFxAKScqo3w9gUlYUJM5aHQQuu8JzyA3j4+Jg+nT7/MMPoe6M8/n5SV+6nrf8oyChvcWAFghQSqmuIBx2B2h9+sCKFfZ5cjJMnSpfL7nEvl5TA8/ZiSTNpKTAGWdImuikSZCdLde/+UYCTk0dbV8aECqlVBewfbvM2FZWQqg6wJ5gVmO6aE9vCTN/Oupbvf/MmXbRgLo6KSF+7HM/5fj4zxqfU0kya19aDeFwY/qqUkqpzmvbNru5fO/esjWhsFDOPR7o0QOOPFLO58yBxET7tc89B1VV+35/jwcmTpT3jo+XVNSKCnjrrbb/WVTrNCBUSqkuwNluorZMAsE4JKfnkrEF+JLivtX7Z2ZKGwrLu+9CKKsnP73rCLyRtFQfQb4q60dgyeeUldl7TJRSSnVO+fn2cV6e7POrqJDzxEQ47jjZDwjSZP6ii+znV1VJ6uj+jB0rgWH//rIiWVQEX30Fa9a03c+h9k0DQqWU6gLWr5d00XAY/H6DOOoxMEmglnOuzNj/GxyAWbPs49JS+M9/oP+Pz+TCUZJPZAAGYb74sApKSrT9hFJKdWKm6Q7KsrKksJglORmmTHG/5rLLZJuB5Zln9p/+mZ4OOTmyV71nT0kbBelPqKmj7UMDQqWU6uRM0w4IqypCmKFQ4/7Bs3md1PNntsn3ycmRggKWJUvgkUcNrnllNqk+uWvHE2CtmUvZa4spWBtuk++rlFKq/W3fbqd8ZmfDhg125ofXKymekye7X5ORAeefb59XVLh7Frbm6KPla69esvXBNOV7a+po+9CAUCmlOrmiImn0W1kJ5SUhvASJpw4DkzlHrnE3EvyWrr1WigpYPvoIXvqoF9dcIxVrrDTVT/f0Z/vLKxpLlSullOpcnKuDeXkyCWgFhElJMHx4pBhMkw3j3/mOtJKwPP20VMDel3Hj5KvHIyuRVoVSTR1tHxoQKqVUJ2e1m6ishPq6MLHU4yXIdBbR97xj9/8GByEtDW65xR1jLl4M1eOmMqCXBKFx1LGDfmxbsJ6Ni3a06fdXSil1+Jmmu91EcrJkojQ0yHlSEkyZbMKNN8qy4IwZ0mUeKTRzzjn2a0tL4dVX9/39BgyQverWe2c4djpo1dHDTwNCpZTq5Kx00fIyE1+4nngCGMDlPC11vdtYRoYEhT172tc++MAg76IxmB5vY3XTT0LHsOaXjzU2rFdKKdU57NplF4/JzJS2RtbqoM8n+wQnBz+Av/5VnrhwIfzoR42v/+537WIzAE8+afcubIlhSHEZSzBo32OqqzV19HDTgFAppTo5qwx4dVU4ki4aYDT5jOlVZG/MaGOZmfDrX8tMsGVbWSqZw3sSRx0A5aTz2tphhB/692EZg1JKqcPDuTo4ciQsX+5OF01JgSPfu8f9opdekka1yF7AM8+0HyoqkpW+fbHSRkH2L06fTmP/XE0dPbw0IFRKqU7M74cdO2DPHiAUIoYG4qjncp7GOON02ZBxmGRlwa23yldLUu4R+BN6EYPkFS3nONbe+Jg0s1JKKdXhNU0XjY2VSUdrxTA5GSaN9uOd38Ky3U9/Kj2QgO99z30L+u9/7ZTTluTlufceFhXB8cfb55o6evhoQKiUUp3Yhg2yP6Oy0oRQiARqOILdTGfRYUkXbapHD1kptPZ7pKQYpOb0oAG5qweI45+1V8E112ineqWU6gS++QbKyuQ4LQ02bbJXB2Nj5d+UyvktbwdYuRKeeAKAvn3htNPc7/v2261/35gYGD3a/VbTp2vqaHvQgFAppTqx9eth82YwwyY+giQQYA7P4Y31ySb/dtCzpwSF6elynjs6loakdALEAzCfWWx/bx08+mi7jEcppdShc64OjhgBn33mThcFk8kf39X6G/z6141lQq+6yr1K+PjjjQuILXLucsjPl5jzvPM0dfRw04BQKaU6sfz8SBPfkLSbyKSUs3kdpk2TvJ520ru3FJpJS5PZ49wj46nzJFJHPHXEcRc3wi9+ATt3ttuYlFJKHZym6aKGIStzxcVynpQEIzIKydrymf2k2FhpSmjZuxfuvBOQ6qEzHa1wd+6Ed95p/fs7C8s0NMhY+vbV1NHDTQNCpZTqpOrrYdGiyJ6MUIg46riQF0mipl3SRZs64ggJClNSICfHICE1htpIQLiQk1lRmQs/+IGmjiqlVAdVWGgHfykpkoFSXi73mbg4Seuc4p/vftE558Avf+m+ds898mLg+993P/TYPopPp6fD4MH2+cqV8rVp6ujcuYfww6lWaUColFKd1KZNUgocTDDDJFPFHJ6XB08/PSpj6ttXgsLUVMgd4QVfLLUkUEYm9/BzwvPmS/1xpZRSHY4zHXPoUAnICgvlPDkZCAWZsuoB94uuugp+9SuZFbTU18NNNwES4J10kv3Q1q3SpaI1zrTRlStlDtHnk9RRK/306681dbQtaUColFKd1BtvyEyppIuGmcECerNXaoQ7p1jbWf/+cPPNUjEuIcULhodKUlnBMbzBWVKFbvfuqI1PKaVUy5zpouGwrAw69w+m1u5ldJ0jXbR/f9mvnpzcmCba6OWX4YMPALj6avdDjz7a+iqhMyAsL5cAEmTCcepU+zFNHW07GhAqpVQn9corkc35Iek/eC0PyQNRSBdtauBA+M1vYMgQA2JjMYFisvkDv6G6vB6uvVZTR5VSqgMpLpbtfyDB3+bNEAhIfZiEBPB6YVLle3hw/O2+8kp5AODyy2HCBPebRtpQ5ObCCSfYlzdubGxZ2MyAAe52RlbaKGjq6OGiAaFSSnVCBQVSYRRMCIcYxFbG8pU82AECQoCcHNlWkp7hAV8MIbxsJYdbuEOmdp97LtpDVEopFeFcHczJkXNnMRlqa5m65wX3i6680j72eODee92Pr1olDQhpvkr4yCMtzwsahru4jDMg1NTRw0MDQqWU6oQefBCCQSI5NyYXEblJp6fD5MnRHJrL9OkwezZ443yEjBhM4Dnm8DLnwk9+Yk9HK6WUiipnQFhfL7eXwkIJ0JKSgOJiJrHcftLJJ8OgQe43mTwZLrnEfS3ShiIvD447zr68bh0sXdryWJxpo1u32n0RQVNHDwcNCJVSqpMpLJSy3Va6aBx1fJ9H5MFZs2QKtYPIzpZGwxMmGBAbh4lBGC+383s+Ks2DW2+N9hCVUqrbKyuDPXvkOCFB0kXDYVkhTEgAjxEmr3wpmTgis6blQy1/+Yu7DUVhIdxxB3Dgq4R5edLNwuJcJQRNHW1rGhAqpVQn8+KLUFUVuYmGQwxlI72I7PrvIOmiFsOA3FyYNAmye3kIxyUCsIc+3M2N7H5svuS/KqWUihrn6mC/frLHr7xcMlGSk4HycqbUv28/KT0dzj235TcbMABuvNF97e9/h82bOeooGD/evvz117BiRfO3iImRyURL04BQU0fblgaESinVidTWSuG26mrADOM1g8zkXQyQO+OsWVEeYXMjRsjNe+pUSMqIw4jcwfMZxVxzNvz2t1EeoVJKdW/OgDAQkK+FhXJbSUgAiouZwhL7SZdd5l4FbKqlNhSRILGlVcKWjBvnHl99vftxTR1tOxoQKqVUJ/Lmm1BaajWjD5NKBdOQst5MnuwuzdZBDBoks705OdCzl0FKD0lprSCdF7iI8hffhS++iO4glVKqm6qogJ075Tguzm7zUFQEiYngCdaTVrmDPBxLcK2li1qSkuDPf3Zfe+UVWLyYY46Bo46yL3/xRcu3AGdhmYYGyM9v/pymqaPz5u17WKplGhAqpVQnEQ7Ds8/KDGgoBEY4SBalHM9H8oQoNaPfH59PGhwbBhx7LMRlJGN45fazljzmcroUHVBKKdXunKmW2dmwY4esEvr9kXTRkmIms9RuN3H00e6qL6257DKYONF97ac/xQiHDmiVMC0Nhgyxz1etav6cllJHm64kqv3TgFAppTqJDz+UWdzqagCT5HAluRSQSCS/p4PtH3TKzZWvPXvC6NEGyT3iAAgQz7/5IYF3FsPixVEbn1JKdVfOdNHaWvlaVCTtBePjTSguYTKOcqD7Wx20tNSG4ssv4fHHmTRJCsdYPv1UgrmmnHHnypUtF6Dp29cudhoK2Suc6sBpQKiUUp3EM8/I15oaIBwmgzKO4ku5OHAgjBoVtbHtjxUQWsc9+iU0VkNdxwhe5Ry45RZtVq+UUu3I74ft2+U4JsadLpqUBEaVH6M+wHEskwfi4uDSSw/8Gxx3HMyZ4752660Y/soDWiV0po2Wl7ce7A0dah9v3Hjgw1NCA0KllOoE1qyR2dFQCOrqINGoJZY6O130jDMkJ7ODSk2FPn3k2OuF8883SMyUggRhvPydnxNa/qlsklRKKdUu1q615+HS06GkxG43YfUeHMVq0qmQJ513HmRkHNw3+ctfIpVpIgoL4U9/4vjj3ZOFS5bA+vXulw4Y4N4a37TaqEUDwm9HA0KllOoEnKuDpmmSHiwmjnomEKnX3UH3DzoNH24fjxkDg0fEyZQ0sIkhPMsc6UsYCkVphEop1b04C7VYFTqtJvBxviCUlbmrix5ouqhT//7N21Dcey/G5k3N3q5pP0HDcK8StlZ/rHfvSACLrG5WVBz8MLszDQiVUqqDC4fh44/luKoKYr1hEkOV5LCFZGqkDNz06dEd5AFwBoRbt0qGaFy6PWt8NzcRyl8Nzz3X/oNTSqluprraTsH0+WDbNjluTBctKwXTtAPCQYMO/V5z002y2c8SaUMxfbp7BXD+/OZzgs59hNu2SaXtpgxDVwm/DQ0IlVKqg9u2zSokIzO4SR6Zxj2ayFTpjBn77gfVQfTta8/g7t0rFUePOTYGYmMB2EVfHuYHcNttWiZOKaUOM2e6aGKiTDiCZHQmJwPFxWRQxgjWyQNXXmmX8zxYLbWhePVVPB8scrXPLS2VAjNOeXmyddHSUrVR0IDw29CAUCmlOjgrpcfaPxhfX4mBY9a2A1cXdTIM936RDRvgjjsgJtVeJfwHP6VmyzetdypWSinVJpzVRa1Jx9pauc/EBmugpsZuN2EY8L3vfbtveOmlMhPo9LOfcdqp7iXBpr0EY2Jg9Gj7vLW0UWeLik2bJLtGHRgNCJVSqoOzAsLqatk/GF9XQTLVjLKaBJ92WvQGd5CcAWFBgewlnDnL1zj9W0Q293ID/P739icUpZRSbaqmBjZvlmPDsBvTFxXZvQcBe+Jx5kyp8PJttNKGIvfjxxg82L60aJHd/sLiTBtdvVqC1qZSUmQvIcjr9+z5dsPtTjQgVEqpDs4KCKuqIIYGvATpy06yKJG7pHNfRgc3dKidcbR5s5QRv/NOiHWsEj7K99mz14D77ovSKJVSqmtbt85eQYuNtQOswkJISgxDSQkewkxiuTxwKMVkWjJpkjSsdzB+cyuzT6xpPK+thQ8+cL/MWVgmGHSvbjpp2uih0YBQKaU6sEBAUitNU2Z048IybXoMn2NAp0kXtcTH2zfsYBBeeEHaUZx7gbdxH2QF6dzFjXDXXXa5O6WUUm3GGVBZewfDYbnPxFSVQyjEaPJJxS9VX84+u+2++Z13uttQFBUxa/XfXE95+233S9LS3Cmh2n6ibbVrQGgYhtcwjJWGYcyNnD9jGEaBYRj5hmE8ZhhGTOS6YRjGfYZhbDQM4yvDMMY53uO7hmFsiPz7bnuOXyml2ps1i9vQAA31JvH1fmJpYJxVUKYTtJto6rTTGuvIsGMHLFwIv/sdJGYmgGFgYvA6Z7OqfKAEhUoppdpMba3ssQOZbNy9W45LSyPZ+8WSLjqVSHnryy93V3X5tvr3l6qjDn0e+QPjhtq9IpYvb15N1Jk2unKlXRDHacAAqZgKsH17y6mlqrn2XiG8AVjrOH8GGAGMARKAqyPXZwPDIv9+ADwEYBhGJnA7cCwwEbjdMIyD7I6plFKdhzWLW1MD4VCYeGpIoZLhrIfsbJgwIboDPARZWXDWWfb5Rx9Jz6iLLvE0rhL6SeUubiR87326EUQppdrQujTM7GEAACAASURBVHV2awePxw6sioshKaYO/JUATGapPHDVVW0/iJtugn797POGBmZveajxNByGd991v8QZEFZUwJYtzd82Jka6Y1jv0dJzVHPtFhAahtEPOB1oLB1nmubbZgTwKWD9ZpwNPBl5aDmQbhhGH+BU4D3TNEtN0ywD3gNmoZRSXZRz/6ARChFHPT0opj87ZHXwUEuAR9lRR7lv7i+9BNdeCxl94sEwCONhBRN4K3AS/PGP0RuoUkp1Mc50Ub/fPg4EwFtWAkAWJeSyHsaPhyOPbPtBJCY2a0Nx8qd3EFNb2XjeNG20f393z0JNG2077flJ4l7gJqBZEdhIqugVwPzIpb7ADsdTdkautXa96fv9wDCMzwzD+KyoqKhtRq+UUlGQny+znIEAxIYDeAkxji+kDHgn2z/Y1BlnyCInSEHRjz6CCy70QEIiAJWk8U+up+bfT9n5TUoppQ5ZIGAHScGgFJEByUKprzcbq4s2tptoq2IyLbn0UikyE5GKn+NDixvP16yRPrwWw2ieNtoSDQgPXrsEhIZhnAEUmqb5eStPeRD40DTNj9ri+5mm+bBpmuNN0xyfbX3aUEqpTqa0VLIl6+ogWB8m3qwhGT95rJW8mJkzoz3EbyU2Fi66yN7vsXmztKHoOzgWPB6C+NjOAP4buhxuvz26g1VKqS7AmS5qmnaSSWkpJIX8UF8PRNpNxMfDJZccvsEYRrNVwtmbH4BQsPG8aU9CZ0C4bVvzfYYAPXtKCwqAkhKtTXYg2muFcApwlmEYW4HngZMMw3gawDCM24Fs4OeO5+8C+jvO+0WutXZdKaW6HGf/wVBDiHgCpFJJHmvghBMgNTW6A2wDvXu72ygWFMCUqR68SVKBroI0nuJydj+zCL7+OkqjVEqprsGZLlppZ2dKcFgqWXUewhzLJ3DBBZCefngHdMIJOJsQTmlYREpNYeP522+7i8eMHOmub7NqVfO3NAz3KqEmmOxfuwSEpmneYppmP9M0BwGXAO+bpnm5YRhXI/sC55im6UwlfQP4TqTa6CSgwjTNPcA7wCmGYWREismcErmmlFJdTn6+3Airq4FQmDgC9KCYwWzu9OmiTuPHw6hRcmyacrMfNDwOvF7qiaOSVO7jJ3DrrdEdqFJKdWJ1ddLGCGQhsLxcjsNhKC0KNl44ii9JoerwpotaDAO+853G01gamFk3t/F89273XGBMjGSSWL74ouW31bTRgxPtagT/AnoBywzDWGUYxm2R628Dm4GNwH+AHwOYplkK/AFYEfn3+8g1pZTqcvLz5abdUG/iMRtIo4JRrMFHqEsFhIYB55xjT0QnJ0NWD4O4VJkGriCNBcxg5Zs7YOnSKI5UKaU6L2e6qGGA1yvHFRXgqyxpXIqbzFJp+nfiie0zsCuucJ3O3vYQ1AUaz5sWl3E2qV+9uuXWEs6ehZs2SdCrWtfuAaFpmotN0zwjcuwzTXOIaZpjI/9+H7lumqZ5XeSxMaZpfuZ4/WOmaQ6N/Hu8vcevlFLtIRyWG10gAA11drroSNZCbq57+rMLiI+Hiy+W/SyGAT16QN/B8eD1UUsi9cTwN35B+OZft9x8Siml1D4500UDdryF12PiiRSTgcj+wSuvlD/G7WHwYJg6tfH0KL6kT71dTebdd6UXr2XsWHtowaD757IkJUGfPnIcCMAu3WC2T9FeIVRKKdWCbdskVbSmBsLBMHHU2QHh7NnRHt5h0a+fXSenf38wMUjpIR3sK0hjHSOY+1EqvKM7BZRS6mA400VDISm2YinbWSXd6oFsihhmbILvfa99B+hIG/VgMrvkGUAm/yorYdky+6lpaa5th5o22gY0IFRKqQ4oP19mPuvqTAiFSKKadMpl/+Csrtt+dcoUGDZMUplyciApKwHTF0M1yQTx8gDXUXPz7zX/RymlDkJBgdxTwE4VBYkD/dvtMpyTWYoxexb0bdbV7fC68EJXtZhZJU9DVXXjedO0UWe10VWrWk4c0YDwwGlAqJRSHVB+vqS5BOvCgElPCsllA774mPbb1xEFhgHnny8lw3NypIBASo84whhUkkoJWTz+5dHSyV4ppdQBcaZVOvfcxXiCeMvt5cIpLIGrrmrHkUWkp8PZZzeeDmYLw0P2oD/8EKqq7KePG2cfV1RI26KmBgyQewjAzp3uNFnlpgGhUkp1QM79gz6CZFEi6aInnggJCdEe3mGVlCTVzuPj5YaemB6HGROLn1TCGDzDZey+5Z/2dLdSSqlW1dfD+vVybJp2M3qAmk17GivNeAkxsccWOPPMKIwSV9oowGm7HoFIE4L6enj/ffuxfv0gK8s+b6n9hM8nE4sgSSUtBY1KaEColFIdTF2dpPcEAhAOmSRQSzJVEhB24XRRp8GDJfYdOlRmeJOz4gjixU8K9cTyj81nwH//G+1hKqVUh+dMF42JsSuNhkKwe72dljmWVSR/5zyIjY3CKIFTTpGu8tZp7Wt4Ksobz51po4bhThtdubLlt9S00QOjAaFSSnUw69ZJMZlggwnhEGmUk0Cgy+8fbGr6dMjLk0pxaVmxmDHxVJCGCSzkZL649eXGQghKqY7LNOHLL2H+fPD7oz2a7seZLupMrIitq8R05GFGLV3UEhMDc+Y0nmZTzISgXU3m889h71776c6AcNs2d6EciwaEB0YDQqWU6mAa9w8G5M7dkyKGsQHfwH4wfHiUR9d+PB646CIYPVpmgzN6xVJLAtUkAfC3wssJ3/9glEeplNqXDRvg97+HO++Ef/0L7r5bO8e0J2e6KLgDKrNJhDTlqGoYNaqdRtaKpmmjO/4NQek5YZruItMjR7rq0LSYNtqjB6SmynFZGZRq9/IWaUColFIdzNdfR/YP1ocxgD7sIY81sjrYXn2hOojUVLjmGtkrkpzuIybORzFZmEABw5n7h5VSk1wp1aF88w3cd58Eg/n5kvmwaRPMmwdvvhnt0XUfGzbYPfwSEhxJFeEw3xTYfzt7UsjgH3eADJSjj3YFpdPDC4irLGo8d6aNxsTAmDH2eUtpo4ahq4QHQgNCpZTqYD77TNJ6wkGTBGpIINCt9g82NWKEVB4F6NE3lhqSqSYRgPv936Hmwf9Gb3BKKRe/H556Cm6+GVaskH1qW7fa+9YCAVktnD9f60K1h/x8+9j63wAgruwbiuuSG8+nxnyCccnF7TiyVhiGa5UwkVqm1cxrPN+40e6nCO600dWr3RVULRoQ7p8GhEop1YGUlsL27RCqDwFhMignlnpyvDvgpJOiPbyo+dGPoHdviEv0kZIYZi+9MYFSMln47N79vl4pdXjV18PcufCLX8C770rwYZqwY0fzVZqqKgkaH3pI2gGow6OhwZ0u6qwuam7bjjPf5MTpXju3Mtouu8yVDXPa3sdc+8Xn2fEhY8faTw0G3QGwZcgQ+zmbN7sDYyU0IFRKqQ7E2j/YENk/mE0huazHN3VSx7lZR0FMDFx/vTRUzuwTS4B4SskEYOnqNHeDKqVUuzFNWLIEbroJ/vc/d52nigopCjVjhqT2zZwJGRnyWEEB7NoFDz8M772nq4WHw4YNEqiD3D7KrYKdpsnOLfWNz0vBz8SrRrf/AFvTt6/80kQcyydkVNszB/PnSxsJkJ9ryBD7pS2ljSYmwhFHyHFdnU5CtEQDQqWU6kA+/VRmdYMNJgYmvdjbrdNFnU47TWrq+BJiiTMaKCWTAHEsD08gtGBRtIenVLezejX89rdSLMZZ4dHjgaOOkq1gw4fLRM6MGXDDDTBokPwLhSR9zzSl6biuFrY952qZFUABUFlJcW1i4+k0z0fEzJ5Bh+JIG/UR4pSy5wGpRlRYKBVHLc600VWrWi5apGmj+6YBoVJKdSBLl0I4bBIOhYmlodv1H9wXqyJ5VhYkJpg0EEspmVSSwurnvor28JTqNnbtgr/+Ff78Zyn373TMMfCb30jAFxMj10aMgOOPh4EDYfJkSE+Xa6WlkhEB8iH/4Ycl3VRXC7+9hgZZhQVJlywuth8zdu10pYvOOKa042WgnHsuJCU1np5W+TxU2j1LnGmjzoCwosK9x9CiAeG+aUColFIdRDgsM+7BWvk0lEY5cdQzuFeNTLcrZsyAnBxIz/RiArUk0EAMSxYGtJa9UodJfb3sbS4pgUcfhVtukb6CTkOGSCD4k5/A4sV2FndmphSFsvZwXXAB+Hzyr29fCQ6TI7VNTBM++ggefFBXC7+tjRvtdNGMDKn6atm92c7rTcHPxEuHtfPoDkBSkvyyROSxhgEBe0PkwoV2AZl+/aBXL/ulK1Y0f7v+/SE2Vo537dIWtk1pQKiUcgmHpcrlCy/Ali3RHk33smGDVOgL1ln7B4sYTgHeWTO7XbuJ1iQnw7Rp0HtwIh7C1BFHgHiWluTqtK9Sh8HGjXD22TB9uqzEPPmkuyhHdjZcdx3cfrukh777rgSPYK/qx8fbz+/RQ/YSWtavl8/9Rx5pXysqktXCd97R1cJD5WxG71Tvr6Os3D6fxmJizj6tfQZ1sBxpowYwe+/jEJZfvupqmTwAuT1OnGi/7NNPm88Per0weLAcm6YUl1E2DQiVUo2sDf6vvy698J54Qv9otqcFC+RGFWww8RImkzJNF23B7NmQmuElMSaIiYGfZNYyktJXFkd7aEp1Kdu3ww9/KIU6ysvlQ3h+vqwA7t4tgdxdd8GkSfKhPD9f0t4tZ50l1YGbOussKfQBMgk5dy5ceCFceql7tfDjj2W1cMeOw/6jdinBoPR9tDibsRvf7HGli87M2SRpFx3RtGmytBcxu/516S4f4exJ6AwIS0ul52VTzrTRltJKuzMNCJVSBALSKPjf/5ag0BIKwbPPwp490Rtbd7JsGYSDIcImeAmRTjkjWeeeTlf07CkZtEnJ8rGmlkRMDJa/vGs/r1RKHai9e+HHP5ZJQauxOUjgFxcnH7r/+U9pH1FdLXsAX33Vft7EidISoCXJyXDmmfb5Z5/JB/SRI+H//s+dIV9UBP/5j6wWOsehWrdxo51OmZ3t3ue5d7NdkTkFPxMuGNjOozsIHg9cfnnjaT92cWTdZ43nS5bYlVMHDpSf1dJS2mjTfYS6y8CmAaFS3Zhpyj6Qe+91p1gkJMi+D5CbypNPuibl1GEQDsvserBWPvEkUkUqleRMzJYqKspl4kTo0UcqVtQTSx0xLFmZaFeoUEodstJSuPZaWSH0R+p4xMTIql7fvnJ/8Hrlw/gDD0gF4Ouvh8pKeW6/frKSvy+nnGLfZwCef17uQQkJsvJ42WW6WnionOmiPp99b6+pClNRYufgTmcRMeec3s6jO0hXXOE6nb3nscbNkaGQZNbAgaWNZmbKnlWQ4jPOyrjdnQaESnVThYXw2GPw0ksyu2sZN05Kg191lV10rKpK0kedz1Nta9MmmQkP1oXwYJJJObmsxzv7lGgPrUMaNw4yjkggzmjAxKCKFJYFxxP+8ONoD02pTq2yUvYEbtsmgaFpSjGO6dNlf+DFF9vVQ8FuPv/RR9KHcNUqCfZ8vn1/n9hYKTZjWb/e3UNuxAhZLXSuMhYXy2phS83HlQgGYe1a+9w5mWsWF+MJ2wHhjLTP4Nhj23F0h2DkSJgwofF0Ju/iLbNLpraWNlpc3LwOgmFotdHWaECoVDdTXy9NgB94ALZuta/36gVXX21Xek5Lg+9+V2ZrQWbSnnrKrlqm2tbChdJuIhh0povq/sHW9OkDQ4YYJMZLc60qkqkklTXProryyJTqvGpqJAjbsEGqMNbWSmA3caLU9xg5En79a9lnPmeOpI5WV9sVG4NBua9cdpnsLXRWtmzJ1Kmy4mj53//cBWsSEiRovOwySEmRa6Ypew6tlEjltmmT/d+mVy930FO82W7bkEolE87sLUu9HZ2juEw6FUypeRerJ+FXX9lbXXJy3Ak1n37a/K00IGyZBoRKdSNr18J990kTYKtJbWysxBzXXis5+E49e0r6vjXTu2sXPPec+4at2sayZRCuayCMgccKCFN3u2ZGldsJJ0BKunyYCZBACIOl7+kytlKHor4efv5zWX0zTZkE9HrlT9CIEe6tzD17wi9+IROLOTn2imFKigSJ9fVSqfqcc+APf2g9zdPjkRVHy+7dcn9qasQIaWdhtRZwVphUbs500fh4u0qr3w/+YjulvkNXF23qkktcS86zS5+R2YsIqydh07TRFSuap40OHmwX7d6yRT/PWDQgVKobKCuDZ56RAjEVFfb1UaMkPXTKlNYnCQcMkBu29Qd040Z47TXdjN2Wysrkv2swEMTAxEuIbArJOTW3c8zeRsn48ZDVPwEPYUJ4qCaJJbsHaQMzpQ5SMAi/+pUUdwG5T4TD0mQ+I8M9MWjx+6XQy/jx8nn99NPhiCOav+/rr8sq329/23LV6rFjJeCzvPJKy6t/CQnufYnOgiJKhELudFHn/T5UUYW33m6+N8O7WHJ7O4MePeQXLOIEPiSxwq529/bb9mcSZ0BYWOguqAPye9SvnxzX1+ueVIsGhEp1YcEgfPCBVIJzlqDOzJQMjEsusfcJ7suIEdKHyrJqlewlUW2joMDeP+glTCp+8liL97RToz20Dm3oUOjdN4ZEnxTi8ZPKGvIof21xdAemVCcSDsNtt9krbsGgBBJHHy2fw8eNgzG+tbJn4IUX4J13CC1Zzv/u3UPVHj/U19Ont8n998Nbb0nKqbNYjPU95s2Diy6SLBXnhKJhyL3IUl4O8+e3PNYhQ6TXoTXO995ru/8OXcGmTXZdrT59ZF+mpWSLHR2mUsnEExMO7ANAR+FIG42jnhnlL4EpqU7bt9uB8JAh7t+//aWNavsJoQGhUl3U5s2SzrNggV2q2+uVwgDXXw/Dhh3c+x1zDJx8sn3+8cfuflPq0H3+OfgrwgTDjnRR1sKpGhDui8cDxx8PiUmyfF1ttZ94Ydt+XqmUAgnM7rjDPcFXVgZjxkh6pq+8iMvmXQ55efKB/OKLYdYs3p36O7bd9gj8415i7vojc27sR3zfLBJHD+Y7fz+aNwMzuYm76LnnS/m0vmuXbCgsLeHJx4Pcf797HEOGuFd25s61q5s2deqp8v99kP1jmhBgc6aLJifbWZWVlVBdZK8OTmMxvrM7eHXRpk4/XZarI2bVvAIVlY3nVnEZw3DvtGip2qjuI2xOA0KlupjqanjxRXj8camyZRk6VPZgnHSSu0LcwTjxRPcf2nnz5IasDl1dnaRphevqCOPBS4g0yskbYcoUr9qnE06AtCz5hW4gljpiWfppjL1xRinVItOEv/9dtgBYAgEYNAj6xhXD++9z+txr6fneM67X5TOKpUxuPD+LN+gd3i0lSbdsgVWriPtoARd9/ite3z2e3xT9H/2+WQG7dsrjX+fzxD3FPP6Y+1P6hRfaGfKBgHtcTtnZze9DuoWhebpold1ukEBVAzE1dn7tDBa4G0F2BnFxrg2n4/mM7Cq7jOg779h/9p2TC3v3Nk8L7ddP3g6kz7JWUNeAUKkuJRSCO++ERx6RVJFgUDb5X3yxTO5+23Z2hgFnnCGTxZZXXpE0FXVoNm6UG1awNoiXMAbQi0IGnTkm2kPrFMaMgeyBCcQiy+CVpLKs7mjCy1vIE1JKNfrPf2RfucU0YXB6KQM2LIT588jYnc+ZvOl6TRE9eJVzG88nsIKxfNnq94ghyDm8zsuczxU8JRdDUor0gRvW88K9uxuf27u3ZLBYFi6UPWAtmT5dCqaALEA6V8a6qy1b7Gqvffq4t4mUb2uSLppXLdWAOhtH2qgHk1nFTzdGgWVldnrosGF2v0Fonjbq8ciqNMjvfUt7W7sbDQiV6kJeeQXefFMqta1dC19/Lfv/hg+3i8J8Wx6PzOQOGiTnoZB8qNi9e58vU60oKIDCQpNgfRgvIXwEOYbPdf/gAYqNhaPHeUiKl1JxVSRTRgbrnv0iyiNTquN65hl4+GHHhSo/UwtfIW3JW7BH/pjP4TnisPsM1Y07jueOvJP6QcOhzxH061nPadmf2Ust++AlzP9xHxfwkut73vXzPbx92TONVWTOOccO9EIhyXZpSVKSZKxYnKtD3ZWzN2NGht1/sLISaorsipzTWIzvzNl0SpMmufI9Z4fehLLSxnNNGz10GhAq1UXs3Qv332+3kxgwQG4KL74o5cEXLWq78so+n/SFskqA19fDk09KxpA6cOFwpKDMrgaCePEQIo0K8uK3wOTJ+38DBcje1sQUKYHY2H5iXsV+XqVU9/Tqq5IqCkCVH9YXcE7Bn6nbubfxObmsZxLL5WTyZMz57/DajUsoOutquPxyEn/yfS5Z/wd8hbslvzMQkJvQ+vWSA79wocxQPv443Hsv/O53GNdey03x/2Q28+zBmCb/79lhLBr2A/jgA9LS4DRHJ4Tly5s3F7dMmmRvKSsvl9Y93VXTdNFae7sg/sowsVUljeczea/zpYtaDMO1SjiMDQyptvetLFpk75t0po3u2dN80rppQNjd0441IFSqC7AKA1gBWWqqO12irAweewxuukkKwVhB47cRHy9/l9PS5Ly6Gp54wr1vQe3brl1ykwr46wEDD6YUlJmaJUtf6oBMngzpfeLxECaMQRXJLN16hHsTrVKKd9+FO+4wwV8ps1EFBZzpf5a+7KKaZAAMTL7Dk9RPOYndz3/Ilw98zOu1p5C/WtJMDEOqhVp/+wFZJezZU3L1jjlGNqufey5873vS2+i22+DBB/Gs/prbZy7jRD5ofGkYD7/e8SM+mXYTXHUVsyeWuN77+edb/rDu87nrbn3wQffdC7Z1qx0INU0X9e+pwgjLbHAqlUzI2iLRdGd1+eWNhwZwWslTUCelVevqYPFieSw31/07+skn7rfJyLCrkVZWSqXv7kwDQqW6gHfflZshSErntGkSII4b535eYSE89BDceqtUtvy2M2KpqfDd70pfH5CA9KmnWu4hpZpzt5uQG3Y2hQw69+goj6xzSUuD4aNjSfDa7SfyGUXl64uiPDKlOo4PPzD57Q0VmOsKZCWvys9JLORcXuF1zqaIHuykH77eWfzvB+/zx2kLeCj/eF562eDzz+33Oflke//VQRs8GN87b3HnU/2ZmGDnODYQwy/4G18+/jnxY0dwbvJ7gNyg1qxxp0M65eXBwIFyXFcH779/iOPq5Jz/fXr1khUxkECnttiOkqezCN/pp3bu/rY5OVJNLGIW86HEXgG10kY9HumRadlf+4nunjaqAaFSnZzfD3/9q50O2r+/VBMdMAB+9jO4/XZpQO+0c2djFg/5+d8uMMzOhiuusCuX7t4Nzz3XdumpXdm6dVC4J0gwaOKJBIQTWIF3didpFtyBTJ0KSYlyXEMSITwsf35rVMekVIdgmiy55xN+fvo6/Ot2UlllUEoGyVSRQC03cB+bGMKupOFUDhtPjytOx99zSIsbz0ePdn0WPzSGQezlF/HXDWczJtfeoxggnhv4BwXFmUz7yyx6f/iiRDS0vkpoGO5m9StWtF6IpqsKhyVotlh9CEGyg+L8drA0gwVSGa6zc6SN9qKQY/wfYE0gfPqpnRziTBu1MnKcNCC0aUCoVCd3113S3gkgMRF++EOp1mYZOhRuvhluucX9xw+kOuhf/iKVSb9Nc9b+/aWSqdUbatMm2T7S3XPy96W8XLbcFG2tJoQXD2HiCTCh7zeds/pblJ16KiRmSJptEB8B4li6zGib/GilOimzNsC/xj7EnF/0YVd1GmVk4CeFdCo4jmXsYADFSQNh8BDIGcyICSmNNWKSk6V42PjxMGsWXHmlpIq2VYGyxL4Z/GPFZIadPLCxkkwVyVzP/eygPxdtv1saEn79Ndu3hlrte9u3Lxx1VOTnNVtvat9VOdNFe/d2N6OvKg5g1EuEmEolE3yrukZ/2wsusKsPAadV/a9xv0o4LFtYQQrqpaTYL2u6Sjh4sP25ZevW7l2YSANCpTqx5cvlfglyk5482b0h3ykvT7Zx/PznEsA5rV0Lv/893HOPlPA+FMOHw9ln2+dffSWV31TLCgrk5lNUZGIgeyHSKWfEjH7RHlqnlJMD/YdJ+wkTqCSNpdVHEl6ljTJV9/XOd57hz1/NpgFf47VsipnJuxg5g1iTdyHxIweT1ieJ0aPl/vDDH8q2gl/9Cr7/ffm7PmWKfHhuq2DQkpoKD7yQzYBT8+CIvmAYlJHBj3mQvuxkaLgAvlwFc9/ixXt30dDQ8vvMnCl7CkEmN7/NBGdn40wX7d/fbqFQWQmBEntT/3QW4Zs2Vf6jd3ZpaVKSNmI6i/CV2kvD1mcPr3ffaaNxcfbnoYaGQ//80xVoQKhUJxUIwB//aM9o9e4tKaL72hpgGHD00fCnP8F117lXEgFWrpQPAg88YO9BOBjjxsGMGfb5kiXdu/LbvqxbByUlJg2BcGO6aDZFDLpwwn5eqVpiGDDhWA+JcXb7iVIy2fDsiiiPTKno2L6yhPte6UsdsuQXSz2D2czd4//H9/83i+G3z2Ho0SmMGCETKr/9rdSD6dfPtfhy2GVmwoP/8tBrbB/Z35CSSiE9uY4HOZXIJ/vKCkpeep/3zvxHi+Ws09Ikbdwyf373SA5omi7qDJiLiyGhugumi1ocaaOp+Dmu3P4f/auvJAMH3GmjO3bYGVUWTRsVGhAq1Undfz9s2ybHcXFw1VWyb/BAGIYUGfvzn+Hqq5s3rF++XGaHn3vu4G+qJ5wAxx5rn7/zzqEFl11ZXZ2UUi/aXEXQ9DQWlBnr/RrvSSfu59WqNSefDEkpMiNSTyz1xLBkblmUR6VU+6uuhmdu+IR14VwA4gkwyLeb199J5NQVfyJj+lgWL7ZX/CZOlCySaOndWwqeZfaJh9xhkJPDDl8Of+dnjMSOeN54J47qEce02KDw+OMlzRVkH6GzEE5XtW2bXVm1Vy/3yqi/PIhR7Qci6aKs6LztJloyc6bd+wo4pWGu7MWIeO89+TpypP17Ac1XCTUgFBoQKtUJrV0rm+wtxxwD559/FZMnqQAAIABJREFU8O/j9Upz37vvlkrOzkwS05RqXffdJ30GD5RhSNrq8OFybjUXbi3VpzvatEn+uxRu8mNiRFJGTU4YXWaXbFUH7fjjIb1PHB5MwnioJoll67Ok8pJS3UQ4DC88UsmXS6upJR4fITIo45zTG+hxipSefvZZO7skNhbmzInigCMGDJDslJQUAzKzYNRoNvU4lpWMIxT5uFpNEm8WHSubGa+4AirsfqOxsRIjWBYu7PoVr53pooMH270IKyuhvqxJddG84fKkrsJqiBxxIh8QW2b30nz3Xfnq9cpnJEvTgPCII+wV8T17um/rLA0IlepkQiGpHGrd6LKypPG8VeXzUMTEyD7zv/0NLrxQitNYPv9cis4czGdqj0daUCUlyXlRkT1bp2T/IMA39r2LZPyMPUP3D34bMTFw5Ph4Ejzyfw4/KXxpjsH/1odRHplS7WfRItj0/KesCQ3HADIoxevzctFfJXdu9WrpHW854wzo0SM6Y21q2DCZhExIQD7wDxzEluGz2JUwjHDkI+s7nEoJmfD003DkkXbPJWDsWHsrRHU1fNiF/6/fNF00HLYzevbuhcSAnVrbqZvR74sjbTSRWqZWvNU4+7xmjVRUB3fa6LZt7kq0Ho+7jcqmTYdzwB2XBoRKdTKPPWbPAsbEyCRpbm7bvHd8PJx1lqSSOtNPN26UFhV797b+2qaSkiQotCxb1r3TMSymKQFhrb+B8trYxnTRHhQz8JLjojy6zm/KFHtCo5Z4Gojh02f1F091DwUFsPitaopWbKOIHqRRTiwNTJ1i0ndoAqGQ9Iq19OgBp58evfG2ZMwYmZxsnORMTqFi2HhWZc8kbHgJ4uNhfkAt8VIFZPp0uOkmqKvD43G3oVi61JVF2KWsX2+vZvXs6Q5kqvxhPJXyg6dSyXg+61r7By1HHSWTAhGnmPNde0ytiehRo+wJapD2JE6aNqoBoVKdyrZt8Mgj9vmoUa6MiTaTkQG/+Y30nLLs3StB4cHMng0f7q7w9cordnns7mrXLpm5LlpdiIkHT6R30pjELXhHjYjy6Dq/GTMgOUM+SYbxUUMCSz8KaQ8U1eWVl8PLLwPLlrE6lEsiNSRSA74YLv7dSAAWLJC/QZZLL5VUy45m4kSZmLRaAvhiPNQm9+TLwedhpmWwhjz+xK2UkS7/3777btm8np/P4MEwIvKnNBi0Uwe7gvJyWfV84AF45hn7em6uFFKBSLpoZaCxGfBJvI8vKx2O66ITjo5Vwql8TEKZ/QtuBYRerxS9s3zyifstmgaE3fF2oQGhUp2EacL/+392QJWaCjfeePiqwSUkwC9/KfuyLH4/3HEHfPHFgb/P7NlSRc56/RtvdM8/tpZ16+Rr4YYKwtg13KeMD7R9TfduaMAAyMmT9hNhDKpIZln5CMz13agOvep2gkEpAlZbXE3tinx20o90KjCAgXlJTDw+Hr9fJuUseXnuCbuO5sQTZRLS+rOYng6lNfHkDzwNc0Qe2xjI77id3fSRJ3z5pWwWu+ceTp0Zbgwmv/5aqkt2Vn6/ZNg8/LCsnL73nrtSptcrQb2113/PHkiss1fJZrBANvbvqwR5Z3bppY0zB/HUcXz1fKiVD0rr10t/QXCnjW7ZYjevB/ndstKmq6oOLhuqq2jXgNAwDK9hGCsNw5gbOc8xDOMTwzA2GobxP8MwYiPX4yLnGyOPD3K8xy2R6wWGYXSB7ppKHZiXXrL3fXg8sqfekSlxWHi9cM017tTP+nq4916ZaW5NeTk8/risMn79texLtG7Oq1fLfbu7svYP7t5jB38+gky/uFcrr1AHwzBgwiQfibFSMaOaRL6hFxuf0v4nqut6+23YvRtYtowNoUGRYNCEmBguvnEAHo8U97ImFD0e2W7Q0eegZs+Gm2+WY49H9geWlHqYV3gM72VcxKveC5jBAn7Iv7iLG3m0/nJe+cXH5M/6JT1jSqmslC1lb73VuSYia2tl//7jj8vi59tvNw9qk5IkyPnRj9zVRSsrwRdJF02jQtJFu+L+QUufPnDKKY2np/CuFC6IsFaIR49210fQaqNuvv0/pU3dAKwFrFqGfwH+bprm84Zh/Av4PvBQ5GuZaZpDDcO4JPK8iw3DyAMuAUYBRwALDMPINU0z1M4/h1LtqqQE/vEP+3zYMGkY3B4MA847T4rXPPaYbFo3TXjiCZlhu/hi+0PFrl2SxvL663bRmw8+kFnpadPg/ffl2ty5MHCgpKZ2JxUVMrNrlpVTWJ+GB6kAkEkpgy6ZFOXRdR3Tp8PT93soL4EQMQRIYNmbxQz7Y7RHplTbW7UqsiequprQii8oZjI+ZEIkcUAPzjgv9v+zd97xUZVZH//eKZlk0nsBkpDQQXoXpSPoKlZ0UbGtrmVddXd1d33fXVdd17K6vupr3dXXCtjQdW10QUGa9JIQCC0kJCG9TcrMff84M3NnIDQNmZTn+/nkw9yZO5MTIPe55zm/8zvs2wfffGO8Z8oUmTfYHrjiCqnavPCCJIUJCbImVlXZaIxIobomko8briCeIkJxZ7ybwLXlIIWRwbhsdiwWqaCmpclalp4um6rJyQH90fxoaBB/gG3bJCFxNnNnGxwsld1zzhHDUJNJztu0SV6vrISmugaodwBud1GL5pcwdUhuukmGTwJjWU1oyUFqUrqAxcKiRbKxbbHIHOZVq+Qt69ZJ4dRDjx4ycgvk7993rmVnoNUqhJqmdQUuAv7lPtaAScBH7lPeAi51P57pPsb9+mT3+TOB+bqu1+u6vg/YA/gUgRWKjslf/mK4a9vtIhX1navjS02N6ON9XbRagvHjxc3UV6L6xRfw0kvSu/DHP0ol8YMP/K2+6+pkZ3r8eOMGpL5eel06w+BgXzzVwcodh2jC6hWM9oktxhwTGbC4OhqDB0NyWhAaOk5M1GBn1Y4ocDgCHZpC0aIUFooMH4DvVxPqrKAe90XaauXimxMICYG33zYqZOHhssnXnrjhBpm1C7IBGRvr3lDUTBAWjh4aTpGWRCXG7CSTq4nwsgNQXkZTo4u9e0Wh8u23Yqxz9dWBX4eamsQN8/33pWfyo49knfBNBq1WSQBnz5b5wJddJsmLR3WTnW2YyxQUQGij4aIzlcWy+EZ28PXlssu8NxhBNDLBtQyOSpVw/36j4ucrG927VzYWPKSnG5vbhw51vvuT1pSM/g/wAOD5K44FynVdd0/CIQ/o4n7cBTgE4H69wn2+9/lm3qNQdEgWLzZctTVNlB++g989NDTIInfxxXDXXbLzNWeOSE48GvrToqhINCpz5kgm56OzGThQZKCetaW4WOSjM2bI5tyJLqAffyyynSuvNJzjDhyA7747g7g6AN7+wd3lOH36B0cOUyKHliQyEnoPsWPX6tHRqCGUTc4B1CxaFejQFIoWo75eql6NjUBNNWk/fEIOPrq3pCSuvs7K6tX+ErirrvJ3XGwv3HEHPPusFIMuu0wcsUeNkk1Ss90GkZGUWBIpJQbPqhVKDRZHNRQX46yr95sxV1srI5Xuussttz0DamqMgfA/hupq+PRTSQLnzZN5gr6zes1mMca56iqRzM6aJQPWLc3o+n74wXhcVgbWqjKgk8hFPVitcPfd3sNpLJJ7GV1uSjzmMuec47+p7es2arMZI0saGvxUp52CVpGMapr2M6BI1/UfNE2b0Arf7zbgNoBUX+98haKdUV0tC5YnJ0tNhV/9yv8cl0v6C15++fhG6J075evFF2X3a+JE+erb95jeEV0X67JXXjGyN5AM8xe/kA9wW9GlpIhZ2aOP+l8wCwrkYmqxyO5taqohY6mogK++gksvlUT13/+W55ctk53OlJQW+etq0zQ0QG4u4HRy+IgJfBLCqXPakG6pgzBunMai+To1NdBAELXYWf/uD0y4ZHKgQ1MofjK6LlJ8T4UjdP0KBjeu5RXcZTSrlTEXxRIUJEPoPaSlScGoPaJpYnLma3QGkkw99xzU1Jipr4+gIesoPbJWM871DRVEsYu+rHaNwVEaQr2Wgi0mkfpGox6yfr1UC+++WzYtTScplRw4IMoYj0vlpElSbQ0PP/2fIzsbPvnk+IRS06B7d9l47dfPPYvxFOi6kRBWVoKryQnVMjR4Essw4+qY4yaa49ZbxYWotpaRrCOisYTKsjKIiWXRItlQsFrFbXT1annLunUwfbrxEV27yr0MSJUwsRO19rdWD+G5wCWapl0IBCM9hM8BUZqmWdxVwK6Axyv2MNANyNM0zQJEAiU+z3vwfY8XXddfA14DGD58eDtqI1Yo/Hn8cSPpCg4WyWZUlBzrulzUXnjh9Bqg9++XauH//Z/0YEyYABOHVzF065uYX3vZGG54LP/6F+TkUPPWRyxYGce8ebLxFhIiMXlUeI2N4ob2hz+IvKe0VHZwPVXDuXNh5kwxgcvOlmqZ0ykSGc+FuiOzd69bBpR3iFJXpDcdDDU5GDKrhQZJKryMGAFxCSaK94ELE7XYWb2ikQmBDkyhaAFWrzaGkms11Vy9/ne8zSzjhKQkJl9g4bHHJFHwMGfOyROe9siAAaJcefppKC/XsA/N5GjGHLI3wL1H/kAIdbzBzewnHUrgHHsFey/7HR+vSvJ+Rl0dPPWUmKX9+c/+/ZW6Ln/Xn38uyacvS5ZIT9rMmXDBBc1X8Dw0NsLChcePPEhNlcrVgAEnbgU5Efv3G5sCBQVgb6ryvjaFJbL76zt1vSMTHQ033ggvvYSVJiaxjE8LkyAmhrw8jV27JNEeMcJICHNypKrq8TPo1s2oGh461LZdeFuaVrks6Lr+R13Xu+q6no6YwizTdf1aYDlwpfu0GwB33YDP3Me4X1+m67rufv4atwtpd6AncIxPkELRMVi3ThYgD5MmSRIHsjjdfjvcc8/xyaDFIjuWkyadeCRF0b4aPnhqP3dMyWHaff14eNdVrOQ86jl+IFUxcTy/YiAX9tnLc0/UeXsTzWapCIaGyliJYcOkcrh2rSR7SUkSg4fcXPmZNE0qhR7JUnFxx5oTdSI8ctGmnH2UEuN9PjO+ArO1g92htQEyMsRu30ojLszSR1jUA/1gO/afVyiQKpXvNXPK4beIqj/CQtzG61Yrsb3iWLTIfyj7RRfJvLqOSFoaPPSQj9okKopdE+/i0VGfU0osM/hKXFeB7YciuPnlEbw87j1Skv1rBhs3wjXXSE9fY6OYjPzpTyLtPDYZ9FBXB/PnwwMPyBrXnJtpYaEIcHyTwYQEuPNOKWyNHn3mySD4y0VLSiCoRsZNdCq5qC/33ON9OI1FoguullKsRzY6cKDIQz34yka7+ZSc8vLOZqBtj9Z2GT2W3wPzNU37K7AJeN39/OvAO5qm7QFKkSQSXdd3aJr2AbATaALuUg6jio5IQ4Msbp7qWlKSGMnk5Yl680QjH6ZPlwXGsyjW18uCtnw5rFzupPJAqWRgPtPhK4jkP1zMf7iYEOoYw/dMTNlNGgf4MH8sXzGDJizgALJ2yZ12ZBSaJgnfdddJgvrFF8b3fOYZMQCYPds/1rlzpecjNFR6QN59VxbPFStkrmJUlNzAeL4qKiTBvfhi6NKOu4V1XeYhAZTsLqHR59I7dGgb931vp4SEwKDhQXy/qJKKRiv1BJNHF/a9t5qMP14d6PAUih9FdbUkK561oU9SOec9fT9vcjUN7g29+rgUnJipMopFXHSRyCI7MnFxkrz9z/+4DbzMZvJ6TuLhLpu5f82VDM7fzCaGoKPxVeNkbnjuOuZPfp//nf4uH3xtmNHU1srn/PWv4uh9bL9lVJRUA0tKpO3B829RXCyKnZ49Ze3r0UOu/WvWSALf1GR8xsiRsl7/VGWMZxRVRQW4nDpapbjPeeWinS0h7NVLJLKff84wfiCGUkoLCyEsjMWL4de/lu6XIUMMR9H16w0T1thYWTvq6kQJ5XCcvVnPbY1WTwh1Xf8G+Mb9OJdmXEJ1XXcAV53g/Y8Bj529CBWKwPPss8bulNUqydUbb0h7X3NW1CNHyoWuTx//5202GB+3g/Elr+Dc9C4bq3qwnIl8wwSKSDjuc+qiUliWcDvLwsNl9arM9fYjAOByEbRnJz+b7uS6V8aRmibJzMCBshh7nOxcLlGaXnKJyGE88tDPPxcpjsUiC9iWLbLb7XJJ4ti7d/OSm7174ckn26/U6fBhtwtcVRVlpS50jAHBE2Z3ggbKADF6NMyLgIoSj2w0lNWfFJLxx0BHplCcOS6XuDh7Er3oaLg8+3Fcjno+cout6i2hFLvi6B9nvG/mTBnd0NZnDrYEYWHixPnKK8acuTJ7Vx6dupJfHPkr2xc20oiVvWTyCZdx7tJVPLA5g8kPfsyflownO9vdi+dO8goLJcdIT5dNyQsvhHPPNdapqVOlOujplweRIT78sCQdwcFGTxqIAc5llx2/Vv8YjhyRtcXz2K7Vem8QprJYpDujO+E4o3vvhc8/x4yLySzlw/IYaKjnyBEb27bJ/cqIEUZCmJ0tG9BRUfI70rWrMdfx8OHOo7gNdIVQoVAcw86dssCALEoRETLaoa7u+HN795ZE8DjXUc9ch1deEY9twAyMYAMj2MD9/J1d9GU5E1kechH7owdLRmf1kYxarNCrJxw8CEePEkEls/iAWXxAzNdl8Jcb5fPd2ospU2T9efFFqXCC2KFXVPib3cybB/37y+OwMEl46+tFnpOXJ9KfY29cjhyR5HHIkB/1VxpwNm50P8jN5SjGnZrZojHx0g5uBx5AevWC7j0tHCrRcWKWPsItdq5rajp5s49C0QZZuhT27ZPHFgv8fHIRIWNeYBnjKSSRemwcsaXTNVnzVp4uv1wSkM6E1Srma++9Jz17AHXOIF5KeoRhN22kaO5SqHewiSFsYggJJUXU/vYL4noGURg+kvJyY8PO6ZS/87g4Ud+kpfl/r5QU+M1vZJzF3LmyXIIkle+8I2t4ZqZci/r0kcT8TAxomsPhkITFd65kURHE1olcNIpyhvEDXDi7c17nJk2Spsxt25jKYj7kKvkL6tqNRYskIRw0SCqFDQ2yib1hg9zDgMhGPQnhwYOdJyFsp/vtCkXHxOWS5vjGRkmk8vNFlnJsMpiSInKWd945JhlsaJAXunaFa6/1JoPHomka/Wakc9dn0/mochofrUrhrnuD6Nfv2BNNpIxJ4/4bivlCu5jbeZUYxNKaN9+EyZP9Bh4OHQoPPui/4CUl+Usu8vIME1OzWSqIngSwslIW4O7dJfmLjTXe59H/tzeqqnwSwr17KcSwLesSW/+j+kYUp0dqKqSdE0EI9bgwUYeNDQ3nULti/anfrFC0IbKyxAjaw89+BslvPwl1dcznGhzYOKKl4LIFk54u58ya1fmSQQ+aJu0Ms2cbzzmdsKZ+KM5f3AapqZQTxQaG809u5V2uY1eOmcQ93zGyTwV2u1TzkpPlKy8Pfv5zSTKbG6/Uv784b994o5iU5OaKyMblkj7/7GxJNOz2M/9ZqqtlDZk3T1pJfvlLMcDxVEArKiSp0So6uVzUg6ZJlRAYzGbiKYbio+BysmSJ/JvYbDKv1oPqI1QVQoWiTfHPf8LmzZIENjZKMuXb/BwZCbfcItbYQcf6v6xfL9rSE3W+A8THywfcdptkXW7S02W20003STVvxQpZxIYPh8mTNczmGTD7E7nDcC86gNirjRwppcCBAwHZTXvoIfjHPyShNZmk7XD3btmsNJvl5/jZz0SiERUlVdEffpCfKThY5kJFR0s++9pr8q22bRPpTfJpTmjQdZF77NghefKUKadn493SfP+9W8XjctF130qOcq73tYFDzCd+o+InY7HA8BEmvnrPRW0tuDBTQSQb3vqO8yePCXR4CsVpUVYmgg8PQ4fCsC5H4OWXyaEHqxnLERLRQ0KJjdUIC5Pk5cILAxdzW2HGDFlLXn1VEjSTCQ5VRBJzyfVs/+IQpfvKvTMLHQRzuCaIzO+X8fg1QRwaMIMFn5i8JjENDdLOsXSprHHHVguLi8Ws+5xzZK3JyZFqZWqqJIJvvikbmz//uSyXJ5LwlpcbTtzZ2eJ2eTIKCiDcVg/1Yvk9hSVy8bvggh/999bumT0b/vhHTEVFTGUxc12z4ehRjpoS2bxZfodGjDCS6l27ZEM6IsLfr+DQIXey3Qnk1iohVCjaCA6HFPeOHpVju92wQrbZpOA3Z04zTmR1dbI6PfPMiSfDjx8vtqSXX95MJulPYqLkfccxbZqI7i++2N/a9MABGDtWtk5nzvR+xt/+JqMnQkNlIb3oIpGGglxkZ8ww1Cz9+8simJcn53z0keSto0aJDMczTHjJErj++pOGT1ERbN0qX2VlxvMVFbJj3Jo4HMaCQ34+5roqnJ7LrqZx7iWxJ3yvomXo0we6dXFRnIMhG13u4PxAB6ZQnAZNTVIZ8oz3SUpyj5X7/VNQV8cL/EqSQc0MwTbS0uQa6THJUEgbXWSkmM14/NRKy010PTeNpJ6hlHy7i4q6ILqQRwa5hOgOsueBOaOUn193MUvWR/kKYdi6VZK622+XNUXTxD104UL597JY5Lpz6aWSZHz/veE8eviwjMcYMEBylq5dZQM4K8tIAI8cOb2fq1s3aRs5fBj0I2In65WLnj9BfujOSnCwzLN6+GFJCJkNhUWQkMDChRpDh0qF0GqVzXePbHTSJEnm4+Mlwa+rk3+fuLhTf8v2jpKMKhRthKeeMpJBk0kqYWazSH4+/VT6F45LBr/7TsTwf//78clgZKQ0GO7YIc0G11xzymTwlPTpIyvf5GOGe9fUSKBPPOFd+cxmuaja7VIFvOgi4/SiInE+9WAywVVXGeEdPCg/WlAQTJxonLdypXFj5EtZmbz2v/8rLm8rVvgngyALbWvLP9atM5Lg9JIf2EF/72smq5kJk1WF8GyTmQkZA8Ox0oQLM3WE8F1eGnpRcaBDUyhOyddfG6YkNpskItYSqQ6uZjTvcw06JgixExKi8cADKhlsjr59Zb5gTIz/8/G947j3neEsve5NHuIRMsn1vubM3U/Z3//FoJDd9Owp13LfauHzz8tG7TPPiMu2x0XUbpdk79prJSd55BH5/r5s3w7/9V8yJeG++6SCuWLFiZNBk0muZRdeKD2LL78sm64jR7rnTFZIQtjp5aK+3HEHBAUxgO0kUwAN9VBezrJlotoJDpbbJw/ezVs6p2xUJYQKRRtA10VO4sFuF7XH++/LohEff8wbqqsl2Tv/fKP72ZcbbpAmhuee4/jGwJ9ITAx89ZVkqMf+EH/8o5Qxm8narrnG/3jevOM/dsYM43jpUpGcTppkyDUcDkkUQXrzvv9eFtJ//EOkOL7mNSA5cWqqcXyicR1ng8ZGic/DeQfeZSNDvcfhkRo9erRePJ2V5GRI7xuC3dKACw0XJnLJ4OC8VYEOTaE4KQ0N/nPmrrjCndA89RSbHH34A0/KSCBNg2Ab118vrpeK5unSBf7yF0mi+vWTzol//AMuvCKEsHdeZtCHf+L2qPe5hdfpyy6ZW1hXh2XB+/TY/QVjRjTS1CT7n7ou69G334qMdNMmSTIyM8XQxjcBTE+XpfG++6TC60HXj9+49OCpMs6cKa6pr74qsf/859Jf79kcXrIEcDZBlchopuBe5FRCKFKl2bPRcLuuAhQWUVZmjOsYMcI4fdcuw8HXNyE8lWS3o6AkowpFG+CTT/x3BkeOFFlJs7r1JUtkku3+/ce/1rWrNN35ZlZnA6tV7ET795fE1HcWxrvviqT0k0/8Vr+MDBlc70mStm6VXdIBA4y3Dhtm9E64XCIdveMOeX7DBtmBfecdqSDu39/8AODQUPnMgQPlol5bK4t+Q4OMr9i/H6/pwtlk82ZD6poUXk3G1gXs5Vnv6737B7XbMRrtCU2T/w+J0Y1UFHtko6Gs+qiAtHtO/X6FIlDs3WtUnbp3dycZBQVseHEtL3APubj7wENCSE7W+MMfAhZquyE6Gu6++wQvXnkl2qhRpM+ZQ/o38yghhu8Zw0aG0rhxI4kHDnLhJZex8XASO3b4L3sbN4q88Nprm3cR1TTpWxs4UGYXfvKJsT6AVH979pQksHdvSSxPNaNQ191ma5WVgG7IRfv06TzWmKfi3nvhzTeZxiLeZo6M0aqtZdEiO6NGSXJtsRgGQD/8ABMmyK2Uh86SEKrbEYWiDfDkk0ZyExQkkpDjksGKCkkEp05tPhn85S9FHnq2k0Ff7rxTJu56mh09rFkjW2++w5nwd3wD6Q/0RdOk78IzCLi4WIqRaWli/b1jhyy869b5J4PBwbLY3ngjPPCA9Nh43EtDQ/1HMS1Z0nwi2ZK4XP4Gr+fp37KJIdThdrUxmxk1vpNMu20DZGZCjz4WNHRc7j7CVRtsJ+65VSjaAFlZxmNPxWntffN5oeE2CkimDjtoGvHdbMya1blbxlqMbt1kkXj8cWItlfyML7ifvzONRUSU5GJ56w1GOr/nogt177JntYqKp6JCjNmef95oFTgWi0UkvU8/LX3y114rlb9XX5VK4MyZks+dzsD6rCxR0VCu5KInZNAgmDiR3mTTDXdmV1jIsmWi4gkJ8frhAYZsNCHBaGEpLDRGaXVkVEKoUASY9evFZdND9+7+fXOATHTv31+mvR9LRoZsOb7yilhktTaTJklfYe/e/s/n5cG4caJ7dTN6tJ+5KUuW+E2tACSB87VKX79eqoMul5HI5ebKgulpzP/97+U9mZnND68fN85waz1wQHbezyY7dhhSoOhoGLDzA5ZgaLlMQRbGjTu7MSgMMjOh26AYQnDgxEQTZlY7BuNYtzXQoSkUzeJyiVrCQ58+sPqzo7z4YQIuTBwgHQ2dhAQICzMdJ8lX/ATMZvjDH2D1aujZkxAcnMd3/IZ/cJVrPilL3yZhyXtcOrmKSy8VZaIngXO54O23Rdq5efOJv0VoqFSipk+X65P5DNvJGxulyoiue52/lVz0BNx3HxowjUVyXFZKVWkDa9fK4ciRxqlgtL07AAAgAElEQVQ7d0rl1mQy3EZdLnfi3cFRCaFCEWCeeMKQBZlMonDwJjUlJWIZd/HFYiXmi2fWztatzWSQrUzPnlIVPNbmurZWmgcvuwzy8tA0WSg9uFzwwQfHf1zv3v7afk2TRVPTJOcNCpLd1auvlp3zU83eDQmBc41pDyxdevaqhLruPy9snGUNpg/msxZjYGRwmMVvV1JxdomOhm7pZqLtDeho6GhUEMkPb6qEUNE2OXxYetVAqhXbt8Mrf9iH7nJRTRglxJJgKSW0SxSDB8vgc0ULM2KESFJuuQUAMy4Gso3beYU79j3A3e+N5uWx7/DeOy769PF/68GDIuh56inD2fSnouuySfD00yIEWrAAqKkGp9OQi8bESG+GwuCii6BHDyMh1HUoLmaR+3DIECMhdzqNucGdrY9QJYQKRQA5eNDfbTMmRpIcQBro+vWTnrxj6d1b3FWefdbQVwaaqCipZN7TTGPWp59K5vb881x4gdOvkLlggfReHMv06SIV1TSpKt5+u6zPGRnGjMIzYexYYw5hXp7/7ntLsmeP0Q8aeng3Q+6fgu5wkIX7jkHTSOoWRELC2fn+iubp0QO6p8rOi1c2uqiF7tQUihbGVy7qcMA/n69FzxYDsUN0I4FC7ClRoJmMNUPR8oSFiTLno4+8rREakEIByWU7Yc4cet10Lm/9aj133+1v5K3rsuF59dV4q1E/htJSmer085+LxHT+fK9KFMqlOjiVxSIX9Z3npBBMJrjnHjLJJcPjIltczDfLnDQ0iInfOecYp3tko53NaVQlhApFAHnqKUObrmkifwypLJTJ81dddbye0iNl2bxZMpy2hsUiw55ee+34JojqarjnHoInjOaKkcZ2W2UlfPnl8R/lqQI+/DDcfLNU+CZNMl5fseLMdP02G5x3nnF8tqqE3urgnj2MffdOrA01HKQbR3HPHLTbGTpcXXpbm8xM6DEsEgtNODHRSBDL96W5DRkUiraFJyE8cMA9x277DnA5AR0XGnarE+LiSEgIvECkU3DFFbBli+g8j2XNGsxjR3HDyluY93yx3ygDkLEhd90l4ydO93LT0CBr1L33yubos8/6j//1UlHOUDbyC9ztJEou2jw33giRkUaVsKmJ2rxSVrnNpn1lo9u3S1XX11jm4MGz7z0QaNRdiUIRIKqqpHDmcSoLDobf9P5CqoIff3z8GwYOlG3Gxx+Xk9syt94qjX+jRh3/2oYNXPX3kZgPH3Tf4MgIiub8PTTN31zHd/xhdbX/WIfTYdQoo6B65Ij0+p0OxcUiI1m9Wiq6X30l/Rvz58Nbb4khwHPPwYMPSv/Iso9LWfZ+EXMbr+AX/JO7eFFmhdntmEKClaInAGRkQExaBOHmOlyY0YE99ODQB2f4n0ihOMuUlcleYEOD9DTZtVrYnUMQDQxiCyZ0SE4CzcQVV6iCUKvhMZx54onjZ/rqOrzxBmmTe/DPPs9w/31NXkWKh88+g1mzZDOzOXRd1qQnn5Qk8Pe/FyFQc2tjXBzMmVHMB45LeI1fEkup/Ec4tm1DIYSFwa23GgkhQGERixdJltecbDQszPDLq67u+HuHKiFUKALE88/7X2DGn1NC4m0zRR/ii9UqZbL162X+Qnth4EBYtQpeeuk4s5sE1xGmHHlHVr+KcvbvlxbEU5GU5D9IdvHiM9u1CwqC8eON42XLTm00uW0b3H+/7NC+/DK88Ya4oy5YIMOIlyyRRXvDBqkOlh6opHLXYYL1WmoIox4b5USBPRSCQwgORvUPBgC7XUwCusXVoQM6Jmqxs3r+wUCHplD44akOFhbKBpa2cwdmVwO/4++s5lywBkFcHFarvwGXohUwmyVT27lTLEGPpbIS0wO/4+pHB/D+L5f5VZ4Ajh6F3/5WNg89xmNFRbKxeNVVMkL4ww+bTz6CgsSh9PnnZe35dcy7ZLDPOOG886R1Q9E8d99NqjmfXuyWY0cdK/9TTl2dJH/9+xunNicb7eh9hCohVCgCgGeenqc6GGTV+fXh3/sPNgIYPlwG4/z5z8fvSLYHzGYZJLhrl6x2PsxmrmyB79kDuXuZ96/qE3yIP76Dlw8cgJycMwtpxAgjPy0uloTvRNTUiPr12H+W5nA4oCKvAg4cQMNFPMUAVBDJwejBEByMpsmO47EGBIrWITMTeve3oAFOTDiwsXxtSMfXAinaFZ6EMD8fIoPqYHcO/dlBGTEcJNVbHZw61T2oXtH6ZGaKxGfhQv8p9B6ys0m5fjIvHvgZf7ol3ztI3sOiRdIZcuedMibphReanyYFsoH44IPyrf72Nxg7Rse8c5s0Fvqi5KInJzUVrriCC1jofcpx6KjXj8A3ed+2Te7TOtM8QpUQKhQB4N13ZffXU53qGVnE+L1v+J/0+OOiifTtdm6vpKRId/1//iMXZaA/OxmI2+WxrIzv38oh95F3T5l9DRwoNt8eFi8+s1AsFv82kGXLTvwt33vPp3kfSeaSkmSwfZ8+Uq0cORLOPx+S6/bS6+Ay+rGTy/mEG3mLCCrYmzyOiJRwUlLkR+/fX6pVitYnMxO6DEkkBJGNgsaq6kHUbz/DXQWF4izhcEhi0NQkG1ZhB6V3cDgbeJ+rvdVBQI2aaAtMmya9hc8+2+wgSO3LL5h5TzofnvMI54/2b3qvqJBKVHMqlcRE6Z1fsEBUKZeff5Twz+dJL1yXLrIQ/vCD/5tUQnhq7r2XqfjcNFRWsHh+CeCv3Glqkt9DVSFUKBRnDV0X6aFn1ITF7OKGo89IX4iH2bPFPKajNYf87Gcitfnd78BsliqhB5eT+Q/tFPeYrSceB6BpMGWKcbx+vSG9OV2GDjWUNaWlzc+L2rzZ38l0wgSR6vz97/Doo/Bf/yU/xt13w6zgz4j+ci799O30Iptz2Mr/cC9r064mJCWG4GAxtbFYZHCxIjCkpYEtzEpiaBVO929cOZFsfH1ToENTKABRPLhcsmFot9Rj3rMbDZ1EjrCasd7q4IAB0m6uaANYreL+kpMj/fO+je8AjY3E/+9DPPNRGn+buJioqOYVCcHBcOGF0mXxnwWN3DlgJamv/bfIWhIS5L7grbfEpeZY+vYVK2XFyRkzhpRRqfTHMBBY9WU5NTWy4Rsba5yakwPJycZtWH6+cd/WEVEJoULRyixbJhcaT1UqyVTM5Q6f0RLh4ZJ1dFRCQ+Xn27CBicOrSaTQ+9Ln/IyKtbskY/v9741BXMdw/vmGgtbp9B/dcTqYzf6OpcuX+1/oa2pkV9ZDbKysxc3y0UesuvGfuHSoIpz1jOBxHuRo2nCIi/ee1q+frOXTpp1ZrIqWw2qVKm2PNM/4CRN1hPDtV1UBjkyhEDxy0YICiKjMA5eT3mTzNTPQrTZvdVCNmmiDxMdLj8GGDf6Db91ohUeY9vQ0PiyfxgXnGJPOhw6VrpBFr+7jkeSXGfm3SzHFx0rD+2OPyeedTNYeFCRaUsXpcd99frLRhqIKVvxHmjZ79jRO27NH7hVSUuTY6TRGSnVEVEKoULQyTz8tO8C6DiacTKn6mBR8dvwefti4AnVkBg/GvGYVV18XJHOCgAaCWMDlcuV96ikYMAC+/vq4t9rtMG6ccbxsWfM7d9XVstv65z9LE361T5vioEHeeysqKvzVN++95191vOUWjnOMA+CDD6i9+ibWuoaxmcF8xBXkkwJp6d4Pt9vhgQfgzTebbzVRtC6ZmdBrRJR7/IQZHRMLczKbH4apULQiTifs3i3rw5EjEFF2AIABbOPfzBQdoWYiJsZfJaFoYwwdKvKS994TeecxRP+whMfe7MJ/Mu5h4d2f81rQr7jktz2xD8iQpsJ//1tsyE+G3S4D159/XnaYL730LP0wHZDLL2dK8k7jWHex6AUZTOybEObkyH1aZ5GNqoRQoWhFdu6UzT6pDupENR3lKj7EKzAZMAB+9avABdjamM1c+uJUQob192o4P2AWjbg1Gvv3y6DdsWPhmWcgN9f7Vl9zGU8vhi/r18su+htvyJzDhx6S6txvfysN/Q6Hf5Xwm2+gsVHaQXylouPHn6CNc/58mD2bt12z+YBZbGAYVpoISu/iTQanTJEJIrNmeXNeRYDJzISQrrHEmCpxuZfAvXo6+Z/8hMnRCkULcPCgXJeKiyHI7CToqGwUlhJDDaEQJT1qV1xx/JhXRRvDM1g4K0v6C2y2405J/vB5Ym+8GF588QRDBo9h8GBRzixbJr0On38uPQvuvnzFaWK1knDvbAZj9IqsWW+msqTRLyEsK5O/5s5iLKNuURSKVuSJJyQZdDpBczYxrGkNQ3wuSrz4Yqdb6SMi4OIrbZDZAzJ7UGztwlIm+5/0/ffSsJeZKQODHn2UrhU76NfXkNF4zGUcDlGk3nGH9OH40tAgM6AefFASynfflWSyqUmqhytXwuuvG+fHxJxAKjp3LuWz7+TPzj/xKH+SsRJAWNcoiI0jJUU2bp94QlREirZDSgoEh2ikJ9TgcvcR1hLKpn+r8ROKwOLrLhrRVAq6i3T28RUXSkJhC8ZshssvD2ycijMgLAz++lfZDT7TGSEJCXDddTLctqAANm2SRWXixGYTTMUZcOutTAsyBkI2NbpY/thqUlP9Dd1zclSFUKFQtDBFRTKzzukE3eUitLGc6SwkGreN5fXXS3NcJ8TrlhcVBQP6M7fvo+jaCS5PmzeLBnTAAKa+eqUskiVH2bNH56uvJIF7//1Tf8/6eli6VL7ee08qhA8/LP9OHm655XhHUP2dd/nsug+4XP+ID5jlrTIFxUZgT4nm5pvFUHXs2DP+a1C0AiaTDKnv1Ufq8k7MODGzal0HM3BStCt0XRJCl8vdP1iVB0AU5eSSARFSHZw8WW0ytUsyMsQydPHiE7sBWa3iXvb44zIZvaBA5lNdf73YWytajuhoplyXhAnD4nXRu0WYTTrduxun5eTIpnV4uByXl/u3nnQkVEKoULQSTz8tSYjTCVpjIwPZwgjWy4sREdIz10lJTfXpCTSZ2WkfwbZ520+ZIA85+CmxO1bg+moh2e9v5o6rSzi4owp8HFtHjBAzl9/8RhS5xxIcLOqeXbtEZrpwoZicduly/Lqd+/QCbpvj4BH9v6kggmrcw6WiohkxIYx586QFJDj4x/9dKM4+mZmQ2DeWIBq8Cf36Q0nN+78rFK1AcbHI00pKJDkMKZL+wd30khMiZXiqGjXRzpkyRTY1n3sOeveWReZXv4LPPpP/AMuXi8P4kCGqz+AsE/P7WxmGYR6wvjiNsq/XHmcso2mdo0qotkQVilagvh4+/FAWemejE5urlqFsNKyPH3200+8Azp4N331nHL+3sS8DV6yQxppPP5Xd1W+/9btpN+OiL7v4NzOpbIxAa9SJrsrBbDFhiwnj1zdVcdVD/TCF2OjfX75Hfr5UahcuhOxsudiHhsLRo/KZ9fVyzqJFkiBOnixr+PoX1vD2u11wIv0adYTgxExwXARTLg3h1VfV+t1eyMgALSaGaO0gRXoc0MgeZ3cc2/cQPLBXoMNTdEJ83UUjg2rRqquIopy1jJKLVHg4ffp0jLG0nR6rFX79a/lSBI5evZg69EPWb5RDFyaWPbKCni+O9p5y4IC0mnTrJqpfgLy8jmkQpxJChaIVeOklqKwEp1OHhkZ6k80QNmOnTqah3nlnoEMMOCNGSOVm7145Xr5cbo6SU1ONxbOoSHZSFyzAtXgpbzf9nH9xC1WInkNHo4pwxjWt4pGiP5P65CF4OUIyuuhoCA4mxWZjTnAwc3rbOJgaz+L9PXl59UBoigZdQwfsWgOmmiYqak0seFdjwSs1cMi4XOpANeH06mtl5EVhzJ6tksH2RGwsREZpJIbXUlip4UKjjmB2/XsHQ1RCqAgA2dmyYVhQAMkO8bbXkZtUwsLAZGbWrONH3CkUih/PpD+P48lLnTgxA7BwTRRPW/YD6YAouvbtUxVChULRArhcxky7JkcjVhoYwQYGsUWefPHFjjeA/kfgMWV79FE5drmkF++ee3xOSkiAX/yCg9N+wV8ebGDr6iooKyO0vIZqwtBwkc5+XuNWgnDPoaislOpiM6QCIziHb7ifGBLYQX+cmGkqduEqLvTrL/AljhKGTI4leUw8ERGS0yvaD5ommw+pKU1srZSb7kaC2LCsgiF/CnR0is5GTY3cZJaXi0IhrEQMjg6QJidERBIc7O+srFAofjpRl5zPqNi5rC7pDcAmBlP/8hskJDzi9RPIyYELLpBNX5cLDh+WPzvaJnAH+3EUirbHggUiQXQ1OXE1NNGNgyRxhN5kww03+A/U6+RMn+6dPgHAJ59Aba1xrOsivZ09G7ZmBUFMLGT2IKJfV8Ljgzm360GSraVsYfBpfb9aQnidWwBIpIi+ZHEDbzGTTxnD96SQ73d+EA3cob3KzFsTSR4jnefnnivDaxXti8xMSO8Tgobu3R1evS0iwFEpOiOe6mB+PkSEuTAVFWChSWaaAkRGMGHCCWahKhSKH4+mMXV2gvdQR2PpW3n07ObwPpeTIypfT1dPQ4O/+VxHQSWECsVZ5vnn5U9nbT1mnIxiLf3ZgSUyDJ58MrDBtTFsNrjySuO4ulpGLYGMkPjVr+SvzGFcqzGZ4Jd3mJlzeygRE4bBVVey+Mb34LbbpKJ4EuYym1JivMe/4+8E0UgspSRSyHvM5m3mcBP/x3W8yweWa5n0yiwKEiXhDAmB4cNb7MdXtCIZGRCcnkQYxviJzSVd0R31gQ5N0cnwlYtGOEuhqQkdZD6txQohIUyfHuAgFYoOyoQ/nYfVR6S1qG4cPXO+9B7v2SO/nx19HqHSqSkUZ5G1a2HHDtAbGnA26SRQTAr5MhD1r3+FxMRAh9jmuPJKePNNmQ0IMv89NFRmCx5r99ytm4yKGDgQVq+Gl18GTGZ2NfXi0COv0u2ll+QfISdHtFj19ZJN1tez7WAkK1aNdQ+GdHFe7E6mp0VRnBPG7opEGp1NfBt8Gxfav6GfY7kMJXz4X7yVZ8xIHD3af2aRov0QFgbx3cOIs+RT1RSGjkYx8RQt30HijKGBDk/RSWhqkstTVZVIR9ObZNyEVy4aGUFkpMbo0Sf5EIVC8aMJjw9mzPBGVq6RGdBbGcgdnz4KEy8FzURlpbgAd+sG69bJew4dEt+DjoRKCBWKs8gTTwDo6DV1gIWRrCOSStIHRcHttwc4urZJXBxMmwZfujfoDh6Ehx46/rxZs+Duuw0Z1ciRMHeuDJoHcRK96SazDAQ8ZihgbS3864+A+74/Ohque2I02G9mcj7sflmeX2eew7n3QaSMACM/H/Z8I4+tVtRNWjsnLQ1Soh3sK5Y+wnpsbP38IFNVQqhoJXJzobFRri12O1h259GIlUoipEIYEcnUqarNXKE4m0z7dR9Wrs2VUiCwMz+S4OI8HAniKp6TA336GOd3xAqhkowqFGeJ/fth1SrA4aBJ1winkh7sZSBb0V5+Sa3wJ2H27BO/lpAgPjwPPODfU2OxwKRJxvF338mOe3PMny8jnzzcfLMxgD4lxbCUdjplYL2Hb781Hg8ffvzQekX7Ij0d0t1DiF2YcWHiu2/VLEJF6+EZN5GfD5HB9VBWhhMzXjPRiAglF1UozjLnz4zGFm/0kC9hKhmHjQU/J0dEQp41/+hRqKtr7SjPLiohVCjOEo8/LjMH9dpaXJgZzgZMuBh0TT8YMybQ4bVp+vSBoc0UaS68EN5/H0aNav59EycaBi8NDbBy5fHnbNsmIy08nHceDD7Gg2byZMPefeNGY2D0DvfYSJNJzGQU7Zu0NEjqHYmVRpzu5XDd3rgAR6XoLOi69A/W1IgZckRtPi40DuFuVrKHktTVolyMFYqzjN0O46YYO8y76EtM1ippM6H5AfV5ea0d5dlFJYQKxVmgshK++AKorcWFiWDq6M8OEkOqSHr+wUCH1y647TbD1jk6WnoIH3kEwsNP/J7oaH9d/5IlXgUIIDt6r79uHEdFwbXXHv85iYkwYIA8drkkgfzuO+OzBg0yZKSK9ktUFET1TiKacnRkHuHu2hQai8oCHZqiE1BQIGtFfr4YatmK8qghjEakl4nICK/dvUKhOLtMvbGL/CK6KXVGwIH9gLSuOBwd21hGXWYUirPAM89AXWUDNDTgxMIAthNEI4PuGAvx8YEOr10wfLiYyzz8MHz8sVT/TgffWV1FRbBli3E8b55U+jzcfLMY1jTHpElGlXDLFti0yXhNTQrpOKT1spEQXAVIH2ENoeR8tivAUSk6Ax65aEEBREboaEcKaMDqIxeNZMaMQEWnUHQuxp6rYY2P9h7vphfszQVkMzg3t2MPqFcJoULRwjidMPc9HWpq0QETToaxES0piYH/dXGgw2tX9OsHF10EEWcwHq5nT5ECeli8WP7cvt1fKjpuHAwZcuLPiYszpKS6Lv+uIP2Fp5hmoWhHpKdDt0SRBXkG1K//sjiwQSk6BVlZolooLYUIVznO+iYKSJYXzWYyB9rp0SOwMSoUnQW7HUZMNm42djCA2JJsqBSnupwc6NLF2CjOy/NXILV3VEKoULQwr78Opfl14HLixEwP9hBKDem3TCYyRk0wP9tomn+VcOtW2LcP/vUv47moKLjuulN/1sSJx8u1zjuvZeJUtA3S0iCjlwUNMZYB+O6H4MAGpejwVFZKZfDIETHECi3Lo4xoNNx3mOERTJ+hbtEUitZkwiURECZ9KS5MODF7q4Q5ORAcbIi8HA4xl+koqKuNQtHCvPpCvdd+SkNnFGth8BAGXZYR4Mg6D2PGyJw5D088cfpSUV+io2HYMOM4Pd1fMqJo/8THQ2yfBOzU4HLfjm/OT+hYW7+KNoevu2h4OGgF+TiwYfIkhO7+QYVC0Xqcfz4QF+s9LiIe9uWC7mLvXlkWOqqxjEoIFYoW5MsvYf/uBgB0IJkjxAbXYZk2kf79AxtbZyIoCMaPN45ra43H5557cqnosUyaBMnJIlu96KKWi1HRNtA0SBuRQBwyh8SFmYKmeEq3HQ5wZIqOTFaWGBgePQoRIY00FJdTRKL39UGjQ0hJCWCACkUnJC4OBoyN9EqDcsnAWeuAI4VUV0tFv6P2EaqEUKFoQZ797xKZdwCAJtXBSRPpPSSUYKVCa1WmTDG0/h4iI09PKupLWBjceSfcfz8kJbVcfIq2Q1qGmZTIagCcngH1C/YEOCpFR6WhQQwqCgvlOKK2gGLiseGQJ4KDmX5F2Ik/QKFQnDXGT7FClJjLuDBRTRjk7gVENtpRnUZVQqhQtBBb1tWzaYvxKxVDCV2TnSIXHRTAwDopcXHHzzK8+WZ/KalCAdJHmN61CZAbABcmVi3pYFOHFW2GPXvEpCo/X65H5iP51BLilYuaIiOYMiXAQSoUnZQJE/DKRjXAQTAcPASNjezZI20GnukUhYU+NYB2TqskhJqmBWuatk7TtC2apu3QNO1h9/OTNU3bqGnaZk3TvtM0rYf7eZumae9rmrZH07S1mqal+3zWH93PZ2uaphT2ijbD47/Yg+5yuY90BrMFbcYMQkJN9OwZ0NA6LTNninwUxCCmuWH3CkVyMqT2DcVCEy73bfnaXWdgbatQnAFZWdDUJGNxIiJ0HIdLKMOwux89Sic6+iQfoFAozhrp6ZDaLxyscvNQRCK6swkOHmD3blGTduki5+o6HO4g3QWtVSGsBybpuj4IGAxM1zRtNPAycK2u64OBucB/u8+/BSjTdb0H8CzwJICmaf2Aa4D+wHTgJU3TlG2jIuDUHSxmxTajETmKCnoNtkNKCgMGiIucovXp3h0eewwefBBuuinQ0SjaKmYzpI9KIgqxF3dhYldZAq6GpgBHpuhouFyQnS29SC4XRFBJfl0kdtyNzprG9BuVNl2hCBSaBuMnaBAr93SNWCknCvbmkp8vngQdsY+wVRJCXah2H1rdX7r7y7MNGwnkux/PBN5yP/4ImKxpmuZ+fr6u6/W6ru8D9gAjW+FHUChOypKnN9OAFZD/1P2sOZgnTwBQctEAk5QkswOP7SdUKHxJGxpLgtljLGOiSg8nd/HeAEel6Gjk5ckNZUEBhISA7Wg+1YRhRtQltshgJlxgC3CUCkXnZvx4vAmhjXoxfCoqRK+qZu9elRD+JDRNM2uathkoAhbrur4W+AXwpaZpecD1wBPu07sAhwB0XW8CKoBY3+fd5LmfUygCyldfuvyOuw2KhhA7UVGQmhqgoBQKxWmT3l2jW5xUaVyYacTKuk87iBZI0WbIypL+wcJCcS6uPlRGHXbv6+OH12C3n+QDFArFWWfgQIhODobQUEy4qCBSXsjNJSfn+ISwI0wparWEUNd1p1sa2hUYqWnaAOA+4EJd17sC/wf8oyW+l6Zpt2matkHTtA3FxcUt8ZEKxYlxOlmzz5D42Kklpr/sUwwapCpTCkV7oGtX6JEpq7qnj/DbVeqXV9GyZGVBcbH0EEaENXG42IqdGu/r0+ckBDA6hUIB0id43nl4q4T1BFFNKOTmsidHx26HmBg5t6YGyssDF2tL0eouo7qulwPLgRnAIHelEOB9YKz78WGgG4CmaRZETlri+7ybru7njv0er+m6PlzX9eHx8fFn5edQKDwULtrCYZckhDoQaypH6yIDpAYODGBgCoXitLFaoddw6eXSkaRwy4GYQIel6ECUlkoymJ8v/9/slUVU6BFYcAIQYatnzNVpAY5SoVCA2200JgY0DRv1FJII1VXsWVV43ID6jiAbbS2X0XhN06Lcj0OAqcAuIFLTtF7u0zzPAXwG3OB+fCWwTNd13f38NW4X0u5AT2Bda/wMCsWJWPSvAzQhrjEuTKQmOMBkIjkZEtRmr0LRbkg7L5U4SgD5XT5YG0t1Yc0p3qVQnB5ZWWIkc+SIyEXL95fh8rkNm3JOEdYgVZVWKNoCo0ZBcKgFoqII9iSEQN2ufRw+7J8Q5uUFKMgWpLUqhMnAck3TtgLrkR7Cz4FbgY81TduC9BDe7z7/dSBW0zgyv20AACAASURBVLQ9wG+APwDour4D+ADYCXwN3KXrurOVfgaFolkWrjQaPlyY6XWOGAIoMxmFon2Rfk44ScFlgCSE9djY9klOgKNSdBSysqCkROaWRURAfr7mLxedpUadKBRtBZsNRo8GYmOx0EgVEdRjgwMHyNleryqEPwZd17fquj5E1/WBuq4P0HX9Effzn+i6fo6u64N0XZ+g63qu+3mHrutX6breQ9f1kZ7n3a89put6pq7rvXVd/6o14lcoToSrrIIfjoprjA6EUo29TxqapuSiCkV7IzUVuifXA7K548TEt/+pCHBUio5AXR0cOCByUZMJwrQayupDsCKjTRIoZvAtwwIcpUKh8GX8eCAiEs1idbuNJkBjIzkfbSEx0RgpVlAgfcHtmVbvIVQoOhI731rvHSjsxEyyrRwiI8nIgPDwAAenUCjOiJAQGDIYzLjcc5E01mwJDnRYig5ATo64ixYUQFgYlO4txYQhcJrePRtTTFQAI1QoFMdy3nlgMmsQG4MNh1c2umfpAcxmY0C953e7PaMSQoXiJ7D0wxIa3fMHnZjJ6NYAKLmoQtFeyRiTSCRiGefCzM7CuA5hKa4ILFlZUFYGDgdERkL+IRehvnLRS4ICGJ1CoWiOqCgYPBiIjcVGPUeJpQkzBfvrqc4p6FCyUZUQKhQ/Fl1n6SZxIfTcL2YODkfTZBC6QqFof6RP7E4CMq7IiYnyplDyNh8NcFSK9ozTCbt3i1wUINTuorTKipVGADLIpefsEQGMUKFQnIjx44EQO7ZgMy5MHCUe0Nnz4kK6djXOUwmhQtFJqd68h+11GQDomIiigqDMVJKSIFipzBSKdklaLxvdIisBMZZpwMraD/YHNihFu+bAAakMFhSA3Q5l+ysJ0uvw+IlOD/0ObdjQgMaoUCiaZ/x4+dMUF0MQDYZs9OMtdOtqyEdUQqhQdFLWvbGdOsRh1ImJLhFVYLXSvXuAA1MoFD+aiAgY3KMakB5CHY1vlzUGOCpFeyYrCyorZYB1RAQc3t+AnVrv6xdMcYLZHMAIFQrFiejaFTIygNgYgt3GMjoaOXnBROT8QITbHLiiAqqqAhrqT0IlhArFj2Tlwloa3P2DLkz0yJCdovT0AAalUCh+MoPH2AmhDpDf7U27wwIckaK9ouuwa5chF7XboazCjA1xsx3IVrpcNjKAESoUilMxYQJgsWILtdCIlVJi2Esmzv97u8P0EaqEUKH4EeiOepbvTQU0dMCMk25D49A0lRAqFO2dtPHpxHoH1JvZVxGDo045yyjOnKIiKC+XhDAoCMqLGwlpqjTkonwN06YFNEaFQnFyJkyQP21xYh9fSAL12Mibu5JuSYaCRCWECkUn49CnP3DIlQKIrCzaVIk1OZ7ERLGuVygU7Ze089NIMomxjAsTdXoQO75uxyu9ImBkZUF1tUjJIiIgP9fhHUZvwsWU/kcgOTnAUSoUipPRpw/Ex4MlJgKz5vL2EeaUx9Ft91LveSohVCg6GWvm7cOBZH5OzHSNrQNNU9VBhaIDEBtvok9iGQAuNFyYWPlxcYCjUrRHsrMNuWhwMFSU6wTjAGAUa4m5aEwAo1MoFKeDyQTnnw+ayYTNbqYOO5WEs4ceJH/+T28LcH6+uAq3R1RCqFD8CL5drdGAzI3SMdGjj/QSqoRQoWj/aBqcN6wWEy5ANn2+X6ud4l0KhT/V1ZCXJ+6iZjNUVOiENFV45aIz+AqmTw9ojAqF4vTwyEaDo8VMsJBEcuiJ9avPSAoVN5nGRigsDFCAPxGVECoUZ0hjXiGrjvZ2OxBCEA0kDkoCVEKoUHQUep6bSCTG+IkdhyMDHJGivZGdDbW1MpA+PBwKDjQQ6pT/U0E0MMG+Hs49N8BRKhSK02HYMDGFskXawGSmkESKSKCyKYRue5Z7z8vLC2CQPwGVECoUZ8jWNzZQQRTg7h8MqiUoyk5CAoSGBjg4hULRIqRf0Jt4igBJCI/WhVGU1xDgqBTtiexsqQ4CWCxQXe4kxC0XHc8K7JPHiNOMQqFo8wQFyf5NUJCGFhxEJZE4CGYPPei28j3vee21j1AlhArFGbLmP8U4kMnzLsx0S5abRFUdVCg6DomDkugefASQhLARC2vePxDgqBTtibw8o3+wqgpCnFVuXYnbXfSCCwIYnUKhOFMmTJB+wqAwGyCy0d30olvWIrEURiWECkXnwOVi1dZw6pGLgYZOWl8pC6qB9ApFx8FkgnE9Crz9Xi5MrPiyOqAxKdoPtbVw9CiUlIDVCoUFLkLrSwGIoJKxrFb9gwpFO2PsWOkHttnNYLFSSCJ76EEU5YTu2gDI73xtbYAD/RFYTvaipmnvAKccvqTr+pwWi0ihaMOUrtzO1oZe3v5Bm1ZPXN94QFUIFYqOxvAxNoK211OPDRdmNu4IDnRIinZCUREcOSKD6V0uqKtqJB65S5zMUqyZaZCZGeAoFQrFmRAeLr2Ey5YBNhslTbFk0xsnZrpt/YKs86aDyUReHvTqFehoz4xTVQj3AHvdXxXApYAZyHO/dyZQfjYDVCjaEuve2uUdN6GjEWVvJCTUTFwchIUFODiFQtGidJ9oDKh3YmJvSSSNjSd/j0IBkhB65KLV1RDiqsWk5KIKRbtnwgQZIUOQFR2NfJI5SCpdK7ZDbi7QPmWjJ00IdV1/2PMF9AIu0nX9Wl3XH9R1/TrgIqB3awSqULQFvl/u8OsfTO0mC7yqDioUHY8u088hBbmrd2GipslK1vqqAEelaA/k50Oxe3RlRQXYG0QumkARQ9ik5KIKRTtl/HgxiTJbTBBko5AkMZbhEGzdCnTAhPAYRgNrjnluLaCmqio6BXpVNd8fSMbh7h+0Uk9KX3EbVf2DCkXHwxIdzvCYfd5jJxZWzD0cwIgU7YWsLLdUtA6a6p2ENMq4iQtYiMlqgYkTAxyhQqH4MSQmQp8+7iqhzUYx8eyiD104jJadBQ4HeXkiF29PnElCuAn4m6ZpIQDuPx8DNp+NwBSKtsaeuesoIAndLfwJNjuJ6x4OqAqhQtFRmTS4zDug3oWJ1d85AxyRoq2j67BnjzyuqgKLqx4z8v9mOl/DuHGqx0ChaMeMHw82G2C10GQKYjXnYqOBBGc+7NxJfb2hEGgvnElCeCNwLlChaVoh0lM4DlCGMopOwfcf5vn1D0ZEQEgIxMRARESAg1MoFGeFPuMTCUdkoi7M7NhnD3BEirZOdTUUFkpiWFsLNmctGpDOfnqxW/UPKhTtHG9CiAY2G7vpSRlR7Vo2etoJoa7r+3VdHwv0AC4Beui6PlbX9f1nKziFoi2xZoPZ2z+oA93SzWiaqg4qFB2Z1Av6kuAzoL6gKoyysgAHpWjTFBZCeTnU1ICu69jqRS46na9ljInqH1Qo2jU9e8q9n6YBQTaKSCSbXpIQ5h2C0tKOmxB60HX9ILAOyNM0zaRpmpplqOjwOLL2s6miu7d/0I6DhF7RgOofVCg6Mrah/elnygZkI6hRN7PmP+1MC6RoVQ4fhspKkYuaXE6CdAfglosmJcHAgQGOUKFQ/BQ0TdqAg4IAsxmHJYyVnC8JIcDWreTlBTTEM+a0kzlN01I0TftE07QSoAlo9PlSKDo0G1/fRA2huDCjA0E2jdgkK6ASQoWiQ2O1Mik91zug3omZbz4pDWhIirZNVhY0NYlcVHM2YKOeAWynK4dh2jR3WUGhULRnxo93G8sA2GysYDxxHCWGUnrv+pSBA1ztyljmpIPpj+FVoBaYDKwAzgf+AnzZ8mEpFG2LNV+X+8hFNcIiLYSFQVQUREYGODiFQnFWGTNWw5rbQANBuDCxcbO6oVecmOxsqK+XHkJrkxjKTGORvKjkogpFh2DIEPGQqKgAgoLYWTOAJizcx/8g42svBW1CYIM8A85E7jkWuFnX9c2Aruv6FuAW4LdnJTKFoq3Q2Mj3WVHehNBCEykZQWiaqg4qFJ2B7pMyiEGqgi5M7M6PwOUKcFCKNomuw7594HDIgc1VgwYMZrNUBqdODXSICoWiBTCbYdIk94FmojIoljWMNk54662AxPVjOZOE0IlIRQHKNU2LB2qALi0elULRhij88gdym7p5HUZDTQ7i0sVWVBnKKBQdn7Dxw8hA5hHqaFQ1WMnJUuMnFMdTXg4lJVIhNOlNBFOPhSZ6sAeGD4e4uECHqFAoWojp02VIPQA2G59xsfHiRx+Js1Q74UwSwrXAhe7HC4H3gQXAhpYOSqFoS6x5by9NWHBiBsBqDyIuXiRjqkKoUHQCundndLAxcteJmeXzjwQwIEVbJT9fJGQOB2jOJoKopxe7CaJRjZtQKDoYo0dDaKj7wGpllXWi8WJ1NSxYEJC4fgxnkhBej/QOAtwLLAe2A7NbOiiFoi3x/+zdd3Rc13nu/++eMw0DYNDZAHawiKJEioJIVavLkmwV21KsuMf2spO4XFtOu7lxHKfd6zT/YieOb/yLEjtOcZMsWbZkFauQkigWQSQBNoAESJAEARKVKDOYmbPvH2c4pLooETiYmeez1izOOVPwgLYIvHP2++7n1qdzy0VdDLGqMPG4t/dgZaXP4URk8hnD9ef3nLZBvcNzj4/5HEqmo5YWSKUgnbYEMikiTLCCnd6DKghFCkosBqtWnTwy7AstZ4DTBksUYkForR201vZn749ba//MWvv71truyYsn4i+39zibjs7NFYQljDFjQWmuf1DD4kSKw6qrqinFW/6TIcCOPRGfE8l0tHu3t1wU1+KQwiHtFYQVFd7lBBEpKKd/zpMOlfCLwK1w++1w333wgx/4F+wMncm2EyFjzFeNMR3GmIQxZn/2ODyZAUX8tPO7mxkmfqp/MJyhZo73i6CWi4oUj8orVzGHI4DXR9g1WMbIiM+hZNppa8sOlHEzlJDAgFcQXnvtac1GIlIo3vteCJysppwgP3/Pd7xi8PbbsxsV5oczWTL6V8B1wKeBVcBvAtcAX5uEXCLTwsafHiWNQzq7Q0uoLEpNjfeYBsqIFA+z9iIuoDl3PJEJsPGphI+JZLrJZODQIe8KobEuERJESbCQDrj8cr/jicgkmDED5s49dbx5W8T7UCjPnElBeCdwq7X2EWvtHmvtI8B7gF+bnGgiPrOW516M5paLBsgQqoxRWQnl5d7+MyJSJGprua5uW26DepcAT/7omK+RZHrp7YWBgexAGdebMLqMPTi4sG6d3/FEZJJccsmp+6OjsGmTf1neqjMpCF+rW0pdVFKQRjbvYsfY4lxBWMYoNXNLCQS8q4PqHxQpLldekiJICvAGy2x9XltPyCk7dsDEBGQyloB1iTDBubR6G5ZdcIHf8URkktx006n7ExPw2GP+ZXmrzqQg/BHwM2PMO40x5xhjbgR+mj0vUnA2/2sLLoFcQRgrDVBT5/0no/5BkeJTf9VSaugDvInDuw6WYK3PoWTaaGk5OVDGxck2G6xgJ5x/PpSU+B1PRCbJlVee2n7CWq8gdF1/M52pMykIfw94DPhHYCvwTbytJ353EnKJ+O65x0bIECCF1xTsVMRyewqrf1Ck+Jh1a1nGntzx0HiEAwd8DCTTyt69JwfKuERPHyij5aIiBa28HBobTx339norBvLJ6xaExphrTt6Ay4EngU8Bt+ANl3kie16koNjRMTbun5G7OhhhHFNWTlWV9ynQycJQRIrIBRdwBc/kDtM2wK/uP+FjIJlOOjpOXSGMMk4ZIzRwCNau9TuaiEyySy89dT+ZhCef9C3KW/JGM5D/5TXOn1wkY7L3F521RCLTQNdPNnHEnZUrCOPBBFWzIjiO+gdFilZJCTcvbecv97q4BHAJ8MzPB/j4/yj3O5n4LJGAnh5IJCzGzRAlyQp2EsDqCqFIEbjqKrjnHq8YPFkQfv7z+fP74usWhNZadUpJUdr4gwPAubmCMBoPU1Pr/Vet/kGR4nX+lVXE9o4xQhkuAba1nEnnhRSqHTu8otDNWAK4REhyDru8tWTLlvkdT0Qm2dKl3hYUXV3eFjT790NnZ/78zqifZCKvYuNGi0uACcIYLE5FufYfFBGcS9Yyn1ONg53Hy7xlglLUtm071T/o7Vyb9iaMNjV5U0ZFpKA1NHi3kzIZaG/3L8+ZUkEo8jKp/V1s6V9EgghgiDNEqiROdTXEYt4nQCJSpNaupYktucOJlOH5jRo1Wux27z69f3BCA2VEikwgABdf7BWFa9bA5z4H11/vd6o3b0oKQmNM1BizyRizzRjTaoz5ava8Mcb8hTFmrzFmlzHm86ed/4Yxpt0Ys90Ys+a09/qoMaYte/voVOSX4rLj37YyRiy3XLS8xKWi2iEUUv+gSNFbvpwbw0++ZIP6J+4b8DORTAP79p0qCCOMU8UAM+nRQBmRIrJ8ubfLzKxZcPCg32nOzBsNlTlbksA11toRY0wI2GCMeQg4B5gLLLfWusaYk9debgKWZG/rgH8C1hljqoGvAE14w2y2GmMesNbqp7GcNc892Ac0nJowWhXTclER8TgO11x0guAzaVIEcQmw6alxv1OJjzIZOHQIkgkL1iXGOCvY6X1ooCuEIkVjyZJT97u6vGXk0ah/ec7ElFwhtJ6R7GEoe7PAbwF/aq11s8/rzT7nNuB72ddtBCqNMbOBdwKPWmv7s0Xgo8CNU/E9SJHIZHiutRwXwwQRQqSw8QrtPygiOfHLz6eOHsD7QbZzf578xJdJsX8/DA97A2UMligJr3+wvh7mzPE7nohMkcZGqKz0Wofvuiu/NqefqiuEGGMcvA3tG4F/tNY+b4xZDLzfGPMe4BjweWttG1APdJ328kPZc691XuSsGHj8BXZPLCJJBIuh2gySCM6kutr7lGfmTL8Tiojv1q7lXHZyJPvjp380zJEj+t2/WG3bdmq5qEOGIGlvwqiWi4oUldJS+MY38rO1aMqGylhrM9ba1UADsNYYsxKIAAlrbRPwHeCes/G1jDGfMsZsMcZsOXbs2Nl4SykSz39vD0BuuWhppUN5uSES8a4OBjSGSUTWruUqnswdZjLw+C/T/uURX7W0nJowGskOlDmXVi0XFSlC+VgMgg9TRq21g8ATeEs9DwH3Zh+6Dzg/e/8wXm/hSQ3Zc691/uVf45+ttU3W2qa6urqz+w1IQXvuqQngVEEYqSnXclERean6et5dt4kA3nogF4f1Pxv0OZT4Ze/elw6UmUkP1QzoCqGI5I2pmjJaZ4ypzN4vAa4HdgM/Ba7OPu1KYG/2/gPAR7LTRi8Ghqy13cAvgRuMMVXGmCrghuw5kbfNDgyy8VADFkgSpYwRJkqrcgNl8mVzURGZZMaw5NIZlDIKZCecbc2jZhE5azIZb5pgMmEBlxIS3nYTxniNRCIieWCqeghnA9/N9hEGgB9aax80xmwA/sMY80VgBPhk9vm/AG4G2oEx4DcArLX9xpg/AzZnn/en1tr+KfoepMC1/8fz9FGT6x+siYyScCPU1EAk4o0RFhEBMOvWsuj+/WxjFQCdPSWkUhAK+RxMptSRI9DXBzY7PaKEMa8gXLECyst9Tici8uZMSUFord0OXPAq5weBd73KeQt85jXe6x7OUq+hyOk2/uQwUJNbLhqriZKOQUkJzJ+v/kEROc3atazj+VxBODERYMMGuPrqN3idFJSdO2F0FHBdAriESXn9g1ouKiJ5RL/iigBYy3NbvI/2E5QQIEOwRttNiMhraGridu7DYAHIWPj5fUmfQ8lU27HjVP9gODtQZjm7NVBGRPKKCkIRILF9Ly+OLM72D0aoNoOMRyrVPygir66igsuWDVCCtym9xfD0IwmfQ8lU270bkkkLrkuUBHPpIs4JXSEUkbyiglAEeOHftjFBmAnCuASoLk8znnSoqYFwGGbP9juhiEw34YvXsJj23HH7gZB3tUiKQiYD+/bBRNJCdkP6Fez0+gxWrvQ7nojIm6aCUATY+PAQcGq7idiMUqJRiMVg3jxwHD/Tici0dPXVXMvjucOJJPxSc6+LRnd3dqBM5mUDZdas0XQhEckrKghFkkk2tlUDXv9ghCTU1FBT400OV/+giLyqa6/lPfwUhwygPsJis38/DA0Bros5/QqhlouKSJ5RQShFb/TZbezPzMcCCSLUBocYpTQ3UEb9gyLyqhoaWL0smduPEOCZX6kgLBY7d8L4OOC6hEgRxGUZezRQRkTyjgpCKXrtj3UCkCKEi0N5HMbGDDU13qqf+np/84nI9BW+/kpW0Jo77joaZGDAx0AyZXbuzG5Ib10iJFlAJzHGdYVQRPKOCkIpem3P9wOn+geD8RjhMJSVwdy56h8Ukddx3XXcxEO5w1TK8POf+5hHpoTrwp49MDHhbTsSJeHtP1hbqz4DEck7Kgil6O3d7fX/nCwITXlprn9Qy0VF5HVddRXv5DHCpACw1vLzH4/5HEomW3c39PbiVYZACeNe/+C6dd4PDxGRPKKCUIpbKkV7d1m2fzBKlASJUDy3/6A+6BWR11VRwbnryihnOHdq87NprPUxk0y6jg4NlBGRwqGCUIqau3M3be4i0gTJEKQ8MMZYKkxNDQSD0NDgd0IRme6C11/NBTTnjnsGQhw65GMgmXT79sHICOC6BEkTJcES2jRQRkTykgpCKWpHntjDOCW55aLhUgfHgYoKrxgMBn0OKCLT33XX8W5+hsG7LJhJW+7/qS4RFrJduyAx7g2UCZNiKW3esuGLLvI7mojIGVNBKEVt74Ye4LSBMrGo+gdF5MxcfDGXRV8kQgIAC/ziRyf8zSSTxnWhpQVSE17/YIQE57ALGhuhutrndCIiZ04FoRS19u3jACSzBaEtKVH/oIicmUiEc66aSRWDuVM7dhgyGR8zyaTp7oaeHl4yUOZcWrVcVETylgpCKV7WsvdABBdDiiCGDJlIjMpKb6uJuXP9Digi+cK5/houZmPueOBEkN27fQwkk6azEwYHyQ2UiWigjIjkORWEUrw6OmibmEeKMGAoYQIbChOPe/2DoZDfAUUkb1x3HTfwCA7eZcFMxnLvj3SJsBB1dMDwMOC6OGQoY5RF7NcVQhHJWyoIpWiNPredw9QzQRiAcNQQjRqiUS0XFZEztHIla6v3U8J47tSj9434GEgmS1sbjI24gCVImhXsxAk5sGqV39FERN4SFYRStPY92QWQKwidaIh43HtMA2VE5IwEAiy/YR61HM+d2rsvwJj2qC8orgs7dkA67U2RjZBkJa1eMRiN+pxOROStUUEoRWvvVm8K4ARhLGAjESoqIBBQ/6CInLnA9dfyDp7KHQ+PB9m61cdActYdPQpHjpAbKBNl3JswquWiIpLHVBBK0Wpr98bDTxDGJUCoNEI8DvX1EA77nU5E8s511/EONhBmAgDrWn78n0mfQ8nZ1NEBAwOcNlAm6U0Y1UAZEcljKgilOPX00HZiFhmCuAQIksYp8a4Qqn9QRN6SefNomn+cGKO5U+sfTfgYSM62zk4YHrK5gTIVDDOXLl0hFJG8poJQipK7tZl2GnP9g6EgBBxDWZkKQhF565bc1MhMenLHXUcCHDvmYyA5q/bvh5ETJwfKZDiPHQQq4rBkid/RRETeMhWEUpS617czRoxktn/QCQcpL4dgEObP9zudiOSrwPXXchVPEsAbOjKaCPLMMz6HkrPC2uxAmZT3v22QFKvYDhdd5DWfi4jkKf0LJkVp78Z+4LT+wRKHigqYPRsiEZ/DiUj+uvpq1pmtRPCWilpr+cn3NWq0EHR3w+HDnDZQJts/qOWiIpLnVBBKUWrbmQJOFYThWJCKCm03ISJvU1UVTeclKePUHoSbn02drCEkj3V2Qn8/pw2USXgTRjVQRkTynApCKT4nTtDWG8fFkCaExRAujxKPq39QRN6+xe9azmyO5I57+xz27/cxkJwVHR0wNOiC9QbKVNPPbLpVEIpI3lNBKMVn2zbaWJLbfzAYsBAIUFmp/kERefu8/QjXEyQDQGLC4bHHrM+p5O3q6ICRYe9Sr0OGc2nFzJsHs2b5nExE5O1RQShFZ+z5HRyiIVsQBgiHLCUlXjEYjfqdTkTy3iWXcFFoOyV4vYMWy4M/GH2DF8l09sqBMhnW8IKuDopIQVBBKEWnfX034PUPZggQjgaIx9U/KCJnSTRK0zrnJX2EO3dkSGhLwrx19Kg3VMZmvCuEISa8CaMaKCMiBUAFoRSdtm3ep/YnB8pEsgNl1D8oImfLwltWMo8DueP+IYft230MJG9LRwf09QGuzQ2UWcFOXSEUkYKgglCKy8QEbQcjWCBJGBeHcHmYigr1D4rI2WOuv45LeJ4ISQCS6QC//EXG51TyVnV2wkB/BvAGytRxnNrAAKxZ43c0EZG3TQWhFJfWVva6i0kTxMXBwcUJB2lshJISv8OJSMFYtYoLy/YS49QehI/dP/I6L5DprL0dRoZODZQ5h12wciWUlfmcTETk7VNBKEXF3dpMO43Z/kGHSMjFceD88/1OJiIFJRCg6cpSyjmRO7V/f3bZoeSVkwNlMmmvIAySYRXbtFxURAqGCkIpKt3P7GeM2KkN6SMQj8OiRX4nE5FCM/+21czlIAG8QuLEaIDnnvM5lJyxnh7vZjPehFGHNOt4XgNlRKRgqCCUotK2ZQiAJBFcHCIljgbKiMikMNdfxzo2U4I3XjSZcXjk5xM+p5Iz1dEBA/0Wmx0oE2aC89mhK4QiUjBUEErxcF3a2ry7CaJYIFweZv58iMV8TSYihWjBAi6ceZjYadtPbHh0HNf1MZOcsc5O6D+eBiwOGWbSQzyWgRUr/I4mInJWqCCU4tHeTltyLi4BJghjgHBJkJUr/Q4mIoWq6doK4gznjo8e9XoJJX+0tcHI8MnlohmW0gZNTRAM+pxMROTsUEEoxaO5mTaWnOofdDJgDE1NfgcTkUI19/YLmcshgqQBGBsP8OST/maSN89a2L4d3NMGypzHdi0XFZGCooJQisbYphYO0ZDdfzBAJOwtFT3nHL+TiUihMtdczUVszW0/kXQd1IPfdQAAIABJREFUnnho3OdU8madHCjjZgfKBMhwEZs1UEZECooKQika+zYew2Ky/YOGcEmA+nooLfU7mYgUrJoaLlw8SNlp20+8sHGCZNLHTPKmdXbCwMCpgTLBkxNGdYVQRAqICkIpDtbS1uL9BjaOtwN9pDTIsmV+hhKRYtD0zhrKOYHJHg8MWF54wddI8iZ1dMBAbwqL1z84ix7KZ5bB3Ll+RxMROWumpCA0xkSNMZuMMduMMa3GmK++7PFvGGNGTjuOGGN+YIxpN8Y8b4xZcNpj/zN7fo8x5p1TkV8KQHc3bcMzsHhbTgCEy8KsWuVvLBEpfHNuX0sDRwhnt58YTwR44lfW51TyZuzZA6MnTg2UWUy7t1zUmDd4pYhI/piqK4RJ4Bpr7SpgNXCjMeZiAGNME1D1sud/Ahiw1jYCXwe+ln3uCuAu4FzgRuBbxhhnar4FyWvNzexlKROEyOAQDFgcx2jVj4hMOnP5ZTQ5L1LKKAATNsiGR8Z8TiVvJDdQJnNqoMy5tGq5qIgUnCkpCK3n5BXAUPZms8XcXwO/97KX3AZ8N3v/x8C1xhiTPf/f1tqktbYDaAf0L7O8IfuCN2F0nBIshkjIUlYGCxf6nUxECl5JCReuTFJ+Wh/h3p1p+vt9zCRvKDdQJjthNECGNbyggTIiUnCmrIfQGOMYY14EeoFHrbXPA58FHrDWdr/s6fVAF4C1Ng0MATWnn886lD338q/1KWPMFmPMlmPHjp39b0byTvdznYwRYxxvB/pw1LBggVb9iMjUaHrXTEoZJ0AGgJETrrafmOY6O2GwP4O1vHSgjPYqEpECM2UFobU2Y61dDTQAa40x7wDuBL45CV/rn621Tdbaprq6urP99pKH2pq9C9TjRAGIxBxtNyEiU2b2ey+hnsOUnOwjTDqsf8r1OZW8no4OGDyewsXgkKGW48xYWg2VlX5HExE5q6Z8yqi1dhB4ArgaaATajTGdQMwY05592mFgLoAxJghUAH2nn89qyJ4TeW2Dg+w9Wo4FJk4bKLNmjb+xRKSIrF5NU0krZXgfTk0QZNOTo1jNlpm2du2CsZFTA2UW0oG5WMtFRaTwTNWU0TpjTGX2fglwPbDVWjvLWrvAWrsAGMsOkQF4APho9v4dwK+stTZ7/q7sFNKFwBJg01R8D5LHXnyRNpbkBsoYYygrD7B8ud/BRKRoOA5NayzlDOe2nzhyMMPevb6mkteQGyiTPjVQ5hx2aaCMiBSkqbpCOBt4whizHdiM10P44Os8/1+AmuwVw7uBPwCw1rYCPwR2Ag8Dn7HWZiY1ueS/5mbaaWQUbwf6cNClvBwaGnzOJSJFpem2esKkCJICYGzU5fHHfQ4lr6q31xsoY08bKLOKbRooIyIFaaqmjG631l5grT3fWrvSWvunr/KcstPuJ6y1d1prG621a621+0977C+stYuttcustQ9NRX7Jb+ObW+hibm6gTCQC8+ZBNOpzMBEpKjPeeznz6CKGt+XEeMph44a0z6nk1ZzqH/QGyoSZYE1wB5x/vt/RRETOuinvIRSZavs29+NiSGQHyoRLHM491+dQIlJ8Fi2iqXJfro8wRYjtz4+RTPqcS16howOG+tJYAtmBMn3MWT0TwmG/o4mInHUqCKWwjY+zd79DBocUIQBKK4MsW+ZzLhEpPsZw4bogZYxg8IaVDB5Ps3Gjz7nkFVpaIDHm5iaMzqabskvO8zuWiMikUEEoha2lhXZ3EUkiuDiAoaYuyLx5fgcTkWLU9L75BMkQwbssOD5mtR/hNJPJwLZtYNPeiAKHDEvZg1mngTIiUphUEEpha25mL0sZI4YFgo63hZQKQhHxQ+17rmA+ByhlFIDxdJDNz2jN6HRy8CD09lrcjHcVN0ia89ihCaMiUrBUEEpBsy80s5clpwbKhC11dVBT43MwESlOtbU0zT5COScAr49w/84Ex475nEtydu2CoWMTuBgCuERIsrLsIDQ2vvGLRUTykApCKWjdm7oYJp7rHyyJGRobwZg3eKGIyCS58LIoJYzj4C1JHBtK8atf+RxKcnbuhKH+DJYAQdLUcpzZa2brB4eIFCwVhFK4MhnaW5NMECGDA0BFraPloiLiq6b3LyaApYRxAMbGYP16n0MJAK4LmzZBKukNlAmSpo5jzLhsid/RREQmjQpCKVx797J3Yj5JwtmC0FA7M6SCUER8VX3zxSwKdOa2nxh3w2x7fhxrfQ4mHDjg9RDaVBqbLQiX0EbJZWv8jiYiMmlUEErham6mjSUkKMHFYAKGuhlGBaGI+CsWo2lBH6XZ7SfSBDnWlaC11e9gsmsX9Pa4uK7N9Q9eQLMGyohIQVNBKIWruZlWVjCBt5FwNOQSjUJDg8+5RKToXXhVOREmCJEGYPxEmscf9zmUsGXLS/sHGzhE/UwX6ur8jiYiMmlUEErBGt/SSgcLyWT/b15ebpkzB8Jhn4OJSNG78APLMEDs5PYT47DxOdffUEXOdWHDBmBiItc/OJ+DzFijTxFFpLCpIJTCZC37XhgiQTQ3UKaqNqDloiIyLVRetZrG0AHKsttPjNsIu5oTHD/uc7Ai1tUFXV02WxAGCJGmgS5m3qLloiJS2FQQSmHq6qJteMZLJozWzI6qIBSR6cFxaFo2QhmjOGRIEyTRP8ZPfuJ3sOK1bRsc78lgXe9K7Sy6qQiMMuuuq/wNJiIyyVQQSmFqbmYHK0nj4OJgjKG6RgNlRGT6uPDaShxcSk8uGz2R4dFHfQ5VxB55BNzEBBmc3HLRhefGcKrifkcTEZlUKgilMDU38yKryeBggUh2oIwKQhGZLi786EoMlgoGMVjGkgHa9rh0dPidrPhY6+0/yEQKNztQZh4Habyx0e9oIiKTTgWhFCT7QjN7WZpbLhovcykrg8pKn4OJiGTFVy9iSewIpYzhkCZBFHf4BPfe63ey4tPZCYcOZrCZNBkcKhmkgkEWf/hSv6OJiEw6FYRSkI5uPcwQFa8YKGOMz8FERE4yhqZVEzi4lDFKGofEsRF+9SvIZPwOV1weeQSSIyksBgMsYj9VDeXUrJztdzQRkUmnglAKT18f247UkCZIBgeDpWpWiZaLisi0c83nVgJQzjABLMPjQQ7tS7B9u8/Bisxjj5GdLuoQJMU8DrL4ijn6EFFEioIKQik8zc08zzoAMjgEDMQrteWEiEw/q+46h3lVI5QyRpAUI5SRPjbA/ff7nax4WAsvvpCBVIoMAaIkmEUPjXes9juaiMiUUEEohae5me2cj0sAi8EJQlmZBsqIyPRjDNxyRzg7bXQEF8PoQIpn16cZG/M7XXFobob+3jQWcHGYx0GcyjiL3rnE72giIlNCBaEUnuZm2llyaqBMaYZQCOrrfc4lIvIq3vXlCwkEA5QzgkOGYVtGz55Bb+qlTLr77iM3XdRgaaSdOWtmESvVelERKQ4qCKXgHN+8n2PU5X64V1Y5zJ4NwaDfyUREXmnG3AgXr0oQY4wgacaJkjw2zM8esH5HKwpPPelCaiK73USKuRyi8ealfscSEZkyKgilsIyOsqF9FpZs/yAu8RkRLRcVkWnttrsX55aNGmB4IsK2pwfp7fU7WWEbG4O9rSmwlgwOMzhGJBqg8bZz/Y4mIjJlVBBKYdmxg81cBHgFoWMs8aqgCkIRmdauuGMm8doIZYzikOYE5fS2D/Pss34nK2wPPgipsZP9gwEWsY/w8oXMXaglJSJSPFQQSmFpbqaFc7EY7wphMEB5uQbKiMj0Fg7Dze+NZKeNpkkTZHQozUM/GcV1/U5XuB78mYXURHZFiWUZe1j4jnk4jt/JRESmjgpCKShjm1vpYl62fxCiEYhEVBCKyPR3691LCETClDLq7UlIOe3P9NDe7neywuS6sGl9ElwXlwBlnKDCGWPxrVouKiLFRQWhFJSO53vppzr7aW+GeAVUZG8iItPZ0mWGZSuDuWWjo5Ry9GCK59an/Y5WkFpaoP9YBvBaDOZyCBYtpPH8mM/JRESmlgpCKRypFM17S0kSzg2UKa/VQBkRyR+3fmYeMTNOiDQWw4lMCU/8+yHGx/1OVngefBAyyRQuBothCXuJr1pIba3fyUREppYKQikcu3ezNX0ekB0og0u8OqSCUETyxo3vjRGpqyDGmLcnIeV0beujpcXvZIXnkZ8lIJPBxSFImkV00HjzMoy2HxSRIqOCUArG+PPb2UcjAC4OJuhooIyI5JWKCrjy3WWUMopDhiQRDg2W8uxPuv2OVlC6u2H/nhQAGQLM4BiB+jk0NlX6nExEZOqpIJSC0bn+IH3UZAfKuARCDmVlKghFJL/c+okZxEoNQdLenoRUsOW+gxw75neywvH005AYyWS3m3CYzwHMsqUsXux3MhGRqaeCUApG5wsD9OUGyriUlXmj3GfP9juZiMibd/HFMGtJnBjjuT0JD7UnefGZUb+jFYxf3J8kk8rgZn8NWsZuZl++mJjmyYhIEVJBKIXBWva2G4aJZ/sHM8Srg9TXo/2kRCSvBALwrt+YQamTIEiGDAEOuPVs/M4O7Ul4FoyOwqanEoC3GX0pI9RUQ+Pls3xOJiLiDxWEUhASuzvZnZiP9RaLYoDy6rCWi4pIXrrldodYXSkBMtk9CSvYu6GX/fus39Hy3saNMDpwsn/QYTbdmGXLaGz0OZiIiE9UEEpB6Hy0jT5qcscm6BCvMCoIRSQvzZsHa66uyC0bHSNGx3AVzd/XuNG366lfZUiM22z/YIBF7Ce0Yglz5/qdTETEHyoIpSB0PtdNPzVYDBbACWrCqIjktVvvKqW03BDEG37SyQKa/3sviYTfyfKX68ITDwyRIYCLQ5gJ5pUcZ+EVDQSDfqcTEfGHCkIpCJ07TtCfHSjjYAlHDZGICkIRyV/XXQc188qzpUuGYeIc3DtOy+M9fkfLWzt2QE/Xqe0m4gwTXzqLxUv065CIFC/9Cyh5L5GAw50p+qnObTkRr3SoqoKyMr/TiYi8NbEYvPPOOCXBFA4ZUoTYw1Kav/Wc39Hy1tNPWRIn0oC33UQDh9Q/KCJFTwWh5L2DLxxndNSSJIzBegNlakK6Oigiee+WWw2lNREcMhjgIPPY+8Qhjh9O+h0tLz11/yAJN4SLweCyIHCI8vMXUlfndzIREf+oIJS8t+/xTvqoBsj2DzrEKwIqCEUk761eDUvXxAkADmlGKKNrvIYX/3GD39HyzqFD0NaSIIODS4AYY9QtKKXxnBDG+J1ORMQ/U1IQGmOixphNxphtxphWY8xXs+f/wxizxxjTYoy5xxgTyp43xphvGGPajTHbjTFrTnuvjxpj2rK3j05Ffpm+rIXW54bpz04YtQQgqIEyIlIYjIHb7whSUhbAwdtIfScraP7P3dqT8Aw9/TSMD3pXVjM4VDBEfEWDlouKSNGbqiuESeAaa+0qYDVwozHmYuA/gOXAeUAJ8Mns828ClmRvnwL+CcAYUw18BVgHrAW+YoypmqLvQaahw4dhqHOAfqpOzhfFBB3KylQQikhhePe7oXxmCQFcAlgO0UDvgVE6fr7T72h5Zf3Ph0lMeD8pLAHm0YVZuoTFi/1OJiLirykpCK1nJHsYyt6stfYX2ccssAloyD7nNuB72Yc2ApXGmNnAO4FHrbX91toB4FHgxqn4HmR6am0Feo7STw1B0higrNwQjcKsWX6nExF5+2bMgKtuiBIIBnFIM04J7Syh+e+f8jta3hgZga3rx0gQxSVAlHFm1FlmL45RWup3OhERf01ZD6ExxjHGvAj04hV1z5/2WAj4MPBw9lQ90HXayw9lz73WeSlC1kLLpjHS/UMMEcfgrZ8qrw7R0AABdciKSIF4z3sgVhEiSAaAVlaw86njJI8O+JwsPzz7LCT7R8gQxCVAKaPULq3RclEREaawILTWZqy1q/GuAq41xqw87eFvAU9ba9efja9ljPmUMWaLMWbLsWPHzsZbyjR05AgMNncwQBUOLhmCEHCIVzpaLioiBeXKK6FufhRjDA4u3cxmOB2l5a9+4Xe0vLD+kXESo14xfbJ/sGLVfBWEIiL4MGXUWjsIPEF2qacx5itAHXD3aU87DMw97bghe+61zr/8a/yztbbJWttUp1nSBau1FWhvZ4BqShgnRRjCIQ2UEZGCEw7D+94XwJREcEiTJsgOzqP5+61ouszry2TgmV8MkSCKBUKkmVU6QnhmtX5WiIgwdVNG64wxldn7JcD1wG5jzCfx+gJ/3Vp7+k+0B4CPZKeNXgwMWWu7gV8CNxhjqrLDZG7InpMiYy207HBhXzt9VBMmSZoghMLE4zB37hu/h4hIPnnf+yBWeWpPwt2cw4FjJfT/5Am/o01r27bB0JFRxrP9gzFGqZ1fxvz5EAz6nU5ExH9TdYVwNvCEMWY7sBmvh/BB4NvATOA5Y8yLxpg/zj7/F8B+oB34DvDbANbafuDPsu+xGfjT7DkpMt3dMNDaDWNjjFLmzRc1hnAsSCSiK4QiUniWLYNzVjqYcBiHNMeoZYg4zX/3K7+jTWtPP54iPTxKhiAZHMoYpfbcmVouKiKSNSWfjVlrtwMXvMr5V/362amjn3mNx+4B7jmrASXvnFwumsHhBOXectFQiHiFobYWYjG/E4qInH0f+hBsfT6KMzFCmiAvsIZ5Gx/gmv0dmEUL/Y43LT19Xx8JGwEggKU0mKRiyQwVhCIiWZrDKHnHWmhpAdrb6WY2ATJMZAvC6mpdHRSRwnXLLVBWGSQQMASwtLGEIeJ0fO2Hfkeblg4ehINtyex2E4Yo49TODFIeN8yY4Xc6EZHpQQWh5J2eHujvGoHuIxyjjhCpbEEYZsYMFYQiUrgqK+Ed7zCYkigOaYaJc4TZNP/nLkgk/I437Tz9pIsdGMztP1jKKDWLK2lsBGP8TiciMj2oIJS8410d3IcFjlMDwIRTQjQWIB5XQSgihe3jHwcTCeNk915t5gJaR+aR/P6PfE42/Tx97zHSGUuaIBZDzCSpXVGn5aIiIqdRQSh5xdpT/YNDVDBGjBQhbDjCyR1GVBCKSCG74gqYMTNAIOoVhR0sJEGE1q8/4ne0aWV4GF7cNJHbbiLCBKGKEiqqgyxe7Hc6EZHpQwWh5JXeXjjek4F9+zj+KstFo1HUFyIiBc1x4N3vBiLestEEUdpppHlnGDZt8jvetPHMM+AODJGgBEuAEsaoqY8yZw6UlfmdTkRk+lBBKHmlpQU4dAgmkgxSgQEmAiUEwg41NdDQoL4QESl8n/oUmKCDEwxggG2sopMFDPzdv/odbdpYf38/NpEgQZQMAUoZo3ZpjZaLioi8jApCySvectE2JgjTzWwsMB6ppKbGEAxquaiIFIfGRliyhOxwmQxHmMMYMTb/5CDs3Ol3PN+l0/Dso6OkCZImSJgJgqURaueEVRCKiLyMCkLJG729cOwY0NZOP1U4ZEgQZcIpyfUPrlrla0QRkSlzxx1AKIRjMqQJ0soKnk1fRO/7fgvGx/2O56vmZhjpHc31D0ZJEqwsp6ZGHxyKiLycCkLJG62twNAgHD/GKGUYYJBKCIWYMQPmzIELLvA7pYjI1PjEJyAUMjixEhwytLKSNA73716KvftLfsfz1fqHTsDISG67iRij1MwvY+FCCIX8TiciMr2oIJS8cXIzeovhIHNJEiERLKesPEAs5g1ZUP+giBSLykq48EIgEiYcgkEq6GUGB5nH5m9vgXvv9TuiL6yFp+/rByBBCQEyRKIBahpKtFxURORVqCCUvHDsmLdklLZ2RokxTgmDVOSuDtbUwCWX+J1SRGRqfeADAAZTVkrAeMNlLIZHuIHhj38BDh70O+KU6+yEQx2pXP9gCQmIx6mtRQWhiMirUEEoeaG1FUiloLOTJBFShBgjBuEwdXVw000QDPqdUkRkat15J5SXAyaAUxajg4X8khsYpJIHhy7HfuCD3oSVIvL0o0kYHmacKC6GSLZ/sKEBZs70O52IyPSjglDyQksLcPAApFMcYQ7DVIBxCEYc5s6Fq67yO6GIyNQLh+Haa737JhTEjZXRxTzu5T08yvXsfKYf/uzP/A05xZ764VGwLgmiAMSCaaobSryprGorEBF5BRWEMu0dPw49PUBbO2DpYAEjlEE4RF2d4cYbIRLxO6WIiD+++EVYtMi7b6MxJoIxxojxMO/kD/jfnPjTr8NTT/kbcoo8+yxsf9ECkCBKjDFMRTm1tUbLRUVEXoMKQpn2WlvxpgS0t+PiMEwFFgPhMHPmwPXX+51QRMQ/K1fC7/wOXHQRRCIGyspImBgAW2jiFu7n4Pt/F/r6fE46uVIp+JuvZWBokDRBUoSIMQbxcmprYfFivxOKiExPKghl2mttxftFZnCAw8zmBOXeA6Eg73sflJX5Gk9ExHe/9mvwrnfB5ZdD3YwAxEoYpwSAPSzjfT3/wM9v/kesa31OOnn+67/g4LNdkE6TIEoVA0QDKZzyMpYty/ZaiojIK6gglGmtvx+6u4H2diIk2cjFWAIQClFVFfA2ZhYRKXLGwKc/DStWeFcKz10Vxg2XkMRbT3+UWfzxppv58k1bGB31Oewk6O2F7/xFj9djACQJM4fDUFVJTa1h6VKfA4qITGMqCGVaa2nJ3mlvI0CaPmq941CISy/1tpsQERFvwMwXvwh1dV5P4RXXhHGdMCnCpAlygnIefjTAB9415K28KCDf+KNextsO544XcIB0NA4zZ1FTo+WiIiKvRwWhTGutrUAyCQe72M4qXBzvgXCYT37S12giItNORYXXTxiLQXVtgEuvCBAkQ4YgI5STsg6HN3bx8Y9l+O53wXX9Tvz2NW8Y5eHv9YL1vplyhqkzfYzOXQ4Bh5kzYcECfzOKiExnKghl2hoYgCNHgI4Oou4Im7jIeyDgMGOWwxVX+BpPRGRaqq+Hz38eHAdqGkppXBaggkECZBikEptMkOno4pvfhM9+NrfKMi+5Gctff7AZkoncuXfxC5Kr1mIjJTgOrFoFoZCPIUVEpjkVhDJtnb5cdJgKhqjyjkMhbrpJ+0mJiLyWc8+F3/gN737D6jpKq6PM4ijlnGCMUug7Dv19bNoEd90FGzb4m/et+smnHmbvwWjueBXbKL/0PE5UzQOguhqWLfMrnYhIflBBKNPWye0mbFs7m2nKnY+WOdx6q3+5RETywZVXwi23eFfHZl84h2Q4Th3HWMh+Mjhw4AAkEwwOwhe+AH/7tzAx4XfqN2/w8a3807+eKgYNlvcv2MSzCz/IiRPeudpatP+giMgbUEEo09LgIBw+DPT0MDgaoouG3GO1c8KsXetfNhGRfHHnnbBuHdTMCFK6vIHjzCCAy238lCr3OOzvyPXe/dd/wcc+BocO+Zv5Tenv51t3PM6wPbWXxLtDj/DQVf+HRCpIIgHBICxfDrNm+ZhTRCQPqCCUaenkclHb1s5RZjKAN040HDFcdnmAWMzHcCIiecIY+NSnYMkSmLu0FDNnFgeYzy7O4U/4KpeOPQqHj+Sev3ev9/zubh9DvxHXZfd7/5D7Bq/OnSpnmLK73k3vRBV9fd65VavgvPPUXiAi8kZUEMq0dHIket/uXo4wB4v3E72yymiYjIjIGQiH4e67Yd48mLmiBsrj7GQF/8mv87/5A+7u+T2Co4O55/f2wm//NrnCarqx/+dr/NVTa3M/FwAuv2iCh46sYudO6OmBuXO9m5aLioi8MRWEMu0MDWWXLI2N0dETY4RSAEKkiNWVqiAUETlD5eXwpS/BggWG6OJ6CIbYwOV8j4/wAf6Lf+t9F9Wlydzzu7q8onB42MfQr+bJJ3noj55hO+djgQnCBEpL+HnqBnp6IJ2G0lLv6mBVFZxzjt+BRUSmPxWEMu2cXC461NLFGCUcZwYAFeFxFiwJ09DwOi8WEZFXNWeOt3H9gsYQZt5cXBz+hU+ymQtZ3v8s/5D+TcrLbe75+/bB5z4HY2M+hj7d0aOMvv/jfN1+PvuzoY5jzCC9oJFU2vt1JhCAm27yeic/9zmIRt/gPUVERAWhTD8nl4u27UgQJE2SCA5pyqpCXH65v9lERPLZihXeHoU188pgxgyShPkDvsYgcZY++2/8/ep/o6Tk1PNbW70iMpl87fecEuk0w3d+gt/r/RK7WMEAVUwQoqKhjJSJYAxUVnrf2x//MaxZo70HRUTeLBWEMq0MDXlLlUZHXLp7A4xml4tWMIyprFRBKCLyNl1xhTc4JlRfB7FSeqnjbv6ONA7n/8On+NuP7XhJMbV1K/z+70Mq9frvay2Mjp7drSushYMH4Yd3/og/2nADP+V2Mid/dSktI1RZxsyZ3tLQm2/29l7UEBkRkTMT9DuAyOl27vT+bNs8SDzTzyEaCOBSHhglVlfK6tX+5hMRKQR33QW7dgW4b2wutLWzxW3i63yB30n/LWs/cxFfu+tb/E7Lx3CzxdeGDd6Vty99Cfr7vYEzx497t5P3+/ogkfCWaX7sY3DZZW89XzoNO3bAxo1w5Kk27E/beZYbcbODZIIRh/pzy1nc6C0TLSuD3/xN776IiJwZFYQyrbS0eL9QHGxLMpsxhqikkkEClXEuudRoCZCIyFlgDHz5y7B7d5hd4/XYgwf4MXcwnwOcm9yJ/e53eWd8hH+PfIJUKEY6bfjOd+Chh7ytHF5PIgHf/rY37fM97zmzK3ajo14RuGlTtndxaBDuv58DzOcI9ZQwTqmThIVLWNxocgXgJz/pDZEREZEzp4JQpo3hYW9p0P79YIaHGKcEgyXOMFTM03JREZGzKBSCv/97uPPOCobG6hg7fox7+Dh1HPeeMAzz2UxLaA3ESsFx6OryNnx/M9M777vPKwo/+ck37uc7ccK7Crl582lLU9Np+Mm9hBODtHMpMzmKg8vw7BUsmh/KFYPXXAMXXviW/xpERIqeCkKZNnbu9H4R6NgzQTzRw3HqKOcEDhmIx9/W8iMREXml2bO9K4V/+D9nMRGJ0H00QDCTpoIhAljm0UU6FWL30HKIlkDknzh1AAAeyklEQVRJlI6OAGVl8I53QE0N1Nae+hPgnnu8Ag/g2We95aRf+IK39cXLDQ7C+vVen2Im87Jsz93LJUe+yUbWkSKMg8vErLmEK2LU1XnPqa+HD35w8v5+RESKgQpCmTZaWqCzE1KDJ4gzzB6WM4tuKC1lxfkhqqv9TigiUnhuuAE2bzbce281qXgFB3urKOs7wEL2s5IWbuEBnuVSHkncQDBjCM6dzchIJcuXGz7wgVe+37x58Dd/A93d3vHevfAnf+L1H86Z453r64Onn4YXXwTXfenrlyyBK4d/xryn3k83s/l3PgKAjVfQ78xg3TLvecEgfOYzEA5Pzt+LiEixUEEo08KJE9DR4e17FTgxTIogURKESEPFDG1GLyIySYzxNqF3HOjrc4hE6gkcC8LDbYx1ldLDLO7gx9RynJ+m3gP790E8zt/95TxKS6PcdttL32/GDPjKV+Ab3zg1KKy3F776VfjQh+DoUW9gjLUvfd0558CVV0L9yB5o8irN/48vMEEYwmH6KxZRP9sQi3nP//Vfh7lzJ/kvR0SkCGgel19++ctXro8pYjt3ev2DiXGXipHD9FFHBYPegxUV6h8UEZlE1dVw993e9NH584GZM+EjH4Hbbqe3dBG/5EYmiDCfTsaJYoeHYWcrf/6bXTxy//gr3q+0FH73d70CD7wBMa2t8NnPwoMPnioGjfGG1Hz2s/CBD0B9/ATccQeMjLCJi/gV14AxjNUvIeU6LF7svW71arj++qn5uxERKXS6QjjVJia8XX6/9S34wz+Ev/gLvxNNCzt2QFsbMDZKhdvPAAuIMAGhEDVzYyxb5ndCEZHCFolAU5N3O3YMmpsNzeXnMbJ0KTz9NHbTJpbb3XQzh4PMo8SOETvax5fvPE7sjwa4/MtXv2SkaDDoLUfdtQseeeTU13nhBRgdTPHrl3RwZelWare+CN/f5T1x/35wXdI4/DW/C0C6fh7HR0pYtcq7illR4e2jqP0GRUTODhWEU+nwYe+Tz40bveO//EtYtw5uvdXfXD4bGfEGD4yOestFHTLY7F5TxCu47DKjvaVERKZQXZ1XzF13HbS1RWhecz27n14Fv3iYqw48yWNcRxcNjFBGOJXit77i8O0H/geX/ftvYZefQ2cnPPmEZf+OUWLHj3NR+Tgv7C3HTSSpTvUQaOniyAMbiPN/gVfueP8D3k8HC7GV1Ry3tVRWwqxZ3mOf/vSrD6gREZG3RgXhVAoEvKkpp/vwh2HLFq+Lvkjt3OkNHQCIjx4hRJooSe+ElouKiPgmEIBly7zb2K0z2PahD9P8/2/l2h89x8MjQY4yiwlCHKeWD2y9m8+f+49UrF7Igd4Sb7xoMgHAfNJcxiGeZy3jeE2Am1hLHzV8ka9TwXDua/ZRzf/l0xCJMlw9n8SQ4aKLvMduvvmN90EUEZEzo+suU2n2bPjhD2kPLOUBbvHODQ/D+97nXR4rUg8/DENDwESSyvGjwMlJA4ZgdTkXX+xjOBERASAWg0suNfz2PU18/oXf4H/d2sIsenOPTxDmm/a3aW524fAhSCYIM8EVrOdL/C2f4B7+kv9FPYdzr9nHYv6EP+EQ9blz34z/EWNV9SQXLGFgyGHBAigrgwUL4M47p/AbFhEpEsa+fMzXZHwRY6LA00AE76rkj621XzHGLAT+G6gBtgIfttZOGGMiwPeAC4E+4P3W2s7se/1P4BNABvi8tfaXr/e1m5qa7JYtWybnG3sLRkbgw5e207VjkFt5gN/na16v3Ic+BN/7XtE1RYyOwrvf7X2QHOg/xjVHvsezXEaGIJSXs/ZDy/jWt/xOKSIir+b4M3v44K3D7O2vIUkUC0RIUkM/MznKLI4SJEMAF4PFYMkQoIXz6QvPgnAYEwkTLAlxwfkutQvLeXpjGNeFI0e8K5RXXukVo3/+597nqiIicuaMMVuttU2v9thULRlNAtdYa0eMMSFggzHmIeBu4OvW2v82xnwbr9D7p+yfA9baRmPMXcDXgPcbY1YAdwHnAnOAx4wxS621eTGu01pvL6au8GKo2s8DA7eyh2X8Fb9H/fe/Dxdf7G2qVCSOHIFvf9srBgHiYz0sopP1ZMfSabmoiMi0VnvZMr6/y/LJdx3h4Iv9jKcdwFvn0ctMes1sKIlCNJrb2J5oFBuOkOgPeBvYW2AMjmyEmjaIx6G/H1IpOP98bzjNRz6iYlBEZLJMyZJR6xnJHoayNwtcA/w4e/67wO3Z+7dlj8k+fq0xxmTP/7e1Nmmt7QDagbVT8C2cFem0t+wFjLf2JRplD8v4EN9nA5d500efe87nlJMvnYbHHoN/+Ad49NHsSddlyfAW+jht93kVhCIi017dDMM/3V/PrKuXUza/lrKGagKNjV6z35oL4JwVsHCRV9FVVkG0BBMIUFPjbXdxur4+b5/CEyegshLq62HtWnjHO/z53kRE/l97dx4fVXX3cfzzS0ISthAggIRNQZbiBhoUrVallipVoGqBFtEWWpG61/Vxq6I+VlyxWoUqKGKtqBSx6qtUBOqDUAERlUU2o+w7BBQISc7zx7nDTDBRIMnMJPf7fr3mlZkz95577v0lDL85554TBnGbVMbMUvHDQo8GngJWANudc0XBJqth/00ELYBVAM65IjPbgR9W2gKYHVNt7D5Jr1Ytv1jv8cfDQw+lsq9dO1i8mJ0l9bmOx/ntvme5/KJfkDJ/nl8DqgZauxYmTvQf+B9+6IfQpqVBy1obGVTyPH/if/yG6Rm07pBJ69aJba+IiHy/3FwY9Wwajz7ahLVr/YiYkhL/M/IoKfHbxpY3bQrbt/t1aCPlRUXQsCGccALk5MDgwaG7m0JEJK7ilhAGwzq7mFk28A+gU1Udy8wuBy4HaJ1kGYUZXHghdOoEt9xSm3W7j4KVKwB4lt/y2bpjue+iIWRPn+QzpRqiuBimT4f//Md/6C9aBBs2+A/9Fi3gzDXv0YwNbKGx36FBA04/Xf8DEBGpLlq3hscfP7x98/Ph0Udh27ZomRkMG+YXuRcRkaoT91lGnXPbgWnAqUC2mUWynpawf+qxNUArgOD9BvjJZfaXl7FP7DFGO+fynHN5TZo0qZLzqKjOnWH8eDi1V0NodsT+8tl0Z+DMYSwc+kQCW1e51q6Fp5/2CWFJCaxeDV984UfNtmkD7Y92DP7iTmYSMz5Uw0VFRELjyCP9Pfax3+H27euXuxARkaoVl4TQzJoEPYOYWW3gJ8BifGJ4cbDZZcAbwfPJwWuC999zfjrUycAAM8sIZihtD3wYj3OoCg0awMiRcPkfm2P16+0v30AzfjvmVF6/aRZxmAS2yhQXw9SpMGqU7w0Ev7xEfr7vIc3O9pMHXPvTJaSvXsn/RRJCS6FOs3p07ZqwpouISJw1agR33eWX573iCvj5zxPdIhGRcIjXmMTmwAvBfYQpwATn3D/NbBHwdzO7D5gPPBds/xzwopktB7biZxbFObfQzCYAi4Ai4MrqMsNoeVJS4PJhqRzbqil3XLSFgsIMAPZRiwceTWHBN5u57ZEcMjMT3NBDtG5d9F7BiNRUf69Iy5bR19deC40nvclWGrKQY/wbWfXpfloqtWrFv90iIpI4GRnQs2eiWyEiEi5xSQidc58A3+rvcc6tpIxZQp1ze4Ayl591zt0P3F/ZbUy0085vxPhXM7il7+csdsEYmZIS3h6znqUbGjDi0VrVYoKV4mKYMcM/IhMIgB8i+/nnlOrxvPRS6NABeOstZvLD6BsaLioiIiIiEhdxv4dQypfbO4/nHivgQiZGC/fsYfl7XzFokGPGjMS17WCsW+fXFZw2LZoM1qkD/fv7WeNWrIhue/bZ0KMHvstw5szocFGABg344Q8REREREZEqpoQwyaRfcwW3XbKKP3IP6RT6wm3b+HrlRm64Af78Z98Ll0yKi+G993wyGDtE9Jhj4Jpr/ALDU6ZEyzt08L2DAEyZQlGxn0wHgMxMOnfJoHHjuDVfRERERCS0lBAmGzMYNYoLjvuS5/k1LSKTqK5eDbt28sILcOWVPslKBuX1Cvbr53sG16+HsWOj2zds6JPE/StqvP02H9OFrwnmFddwURERERGRuFFCmIzq1IGJE+nQYCMvMogzeB9wsGIl7Ctk7lwYOBA++SRxTXQO5szxM4iW1St43HF+RtGRI/1wUfBJ4HXX+dlVAZg9GyZM4H3OiFbQIFsJoYiIiIhInCghTFZHHw3jxpHFTh7hBn7PX0gp2gsrV4IrYdMm+N3vYMIE4r40RVERvPEGTJ4cHb4a2ytYt67fZuTI0osMDxkCbdsGL5YuhfPPh927o/cPpqbRqHVdOnWK6+mIiIiIiISWEsJk1rs33HYbKTgGM5YnuYrsXathtR9GWlwMI0bAvfdCYWF8mrRjBzz7LMybFy1r1w6uvtr3Cpr5BPX552H58ug2555LtOdv/XpfsGULq2nBl7Tx5S1bcvoZKaTot1JEREREJC70X+9kN3w4nHMOACczh5cYyLEbp8K26E2EkyfD5ZfDxo1V25T8fHj6aVizJlr2ox/5CWLq1YuWTZ1KqRlRO3eGAQOCFzt3ws9+Bl98QQnGG/Tx5c2bQ06OhouKiIiIiMSREsJkl5oKL79MZBHCZmzkr/yOi1aNhD2792/22WcwaFDV3FfoHHzwgZ8c5uuvfVl6uk/yfvITSvXoLVkC48dHX+fkwFVX+dNg3z64+GIKPlrGOAbRhzcYy2+gcWPIzSUtDU45pfLbLyIiIiIiZYvLwvRSQTk58NprfsxlYSG1KOJ/9g2n47atjMh9jCLnw7hli+8pvPVW6Nu3/OoKC2HzZv8oKfFDPuvXL3vbfftg0qTSiWbjxvCrX0HTpqW33bIFnngiel9hejr84Q9B3c6xrN/tvDKlG+9wF3vJ8BtlZUGbNoBxyin+/kMREREREYkPJYTVRbdufhHCoUP3F1249knatdjDTRmPs3WPz6SKivwo0w8/hAsv9Pf8RZK/TZv8zx07vl19mzZ+aGfnztCxI9Su7SeE+dvfSs8i2rEjXHwxZGaW3r+wEB57zI8IjRg6FHJz/RqFf79hDh993K/0TnXq+GzUUsjLg1tuqehFEhERERGRQ2Eu3lNUxlleXp6bO3duoptROZyDIUMoHDuezeSwiSZsJofl1p4xjW9mVUprilza/h66Ro2ga1fIyDi0w6Sk+KUhNm/2HXiNGvkhnz16wFln+YljDmzW00/DrFnRsh49/HavvgobPt0Iq74qvVNGBhnHd+S83un07w/t2x/y1RARERERkYNgZvOcc3llvacewurEDJ56iikz6vPKyph4Ojh68yz22C5Wp7eDOrXBUti6FWbOhJNOiln7L0Zqqv8ZSSDBJ3fr1sH8+dHlLGrV8olgQYGfObRt2+i+AO+8E00GCwpgzx4YPdoPN2X7tm8lg83Tt/CLe7vQd2g6WVkVvioiIiIiInKYlBBWN7Vrk/PY7TB4HmzZvL84hRKOdwvI2rudxXuPwdWujWVmUlycwoIF/p7CHj2gSRN/S2KTJpCd7Yd6Ll0KCxf6+wTffx+2b48eLjMTjjrKDzd97bVoWceOfnhp3brRYaX5+bBrlx8mmpIC7Nrp100M5DGXARmT+NH04aR0bxaf6yUiIiIiIuVSQlgNNTmmKZx7Lmlr8slZ8B4525aSw2Zy2EwTNrGOIxi5+1q+3puFNW8OjZswc2YqRx7p14KP7d3LyPDrBzZv7petOO00PznMpk2+h7BevdLbg+8BnD8fpk/3w0pXrfJlKSm+npQU/Ayoy5eT6XbTi7fpzyu0S/0SXn8Dup8cx6slIiIiIiLl0T2E1VBRkZ+8JTsbrLgIxo2Du+/2mVlgLc25kYdZSgdIqwW5fp2/k09J4YEHSg8hXbLE9/7t3etfm/nlJE4/3Q8BXbwYPv3UDz9dtswnjFu3lh5qCtCsmZ8nhn2F5C6bQb/dL9CbyWQRzDTz3HMweHCVXhsRERERESntu+4hVEJYU+zdC6NGwX33+e49YA8ZDOcuptDTb5OeAbm55B7biEceNY4+GqZN84+I2rWhf38/THT5cpg71z/mzfNrEBYVwe7dvkdw925KTWDToAGc3GUvA6ZdwekrXyCFmN+t4cPhzjvjdDFERERERCRCCWEYEsKIXbtg5Eh46CHYsQMHvMgg/szVOILpQTMzSW/dnDP6NiI93Zc559cNbNXK9wjOm1f28hSxnPMJYu3a/h7Ffn320vbK80pnmOAXR3zmmW9PTyoiIiIiIlVOCWGYEsKIrVthxAi/Uvzu3XzAqdzO/ezEr0C/jWy+ScumU+cUCus1ZNcuIy3t4HK29HQ4/njIy/OPY46BWqklcMkl8PLLpTe+4AKYOBHSdLuqiIiIiEgiKCEMY0IYsW6dH0Y6ejSrio7gBh5hJW0pJoVNNKGEVLKsgLq1werW8UtW1Knju/0sBfCTyhx7rE/+unXzyWB6+gHHuekmePjh0mXdu8PUqcGNhSIiIiIikghKCMOcEEasXAn33MM3417jLu5hOmdRSC0cRgaFpTZNoYQf2BLyjlhD3gn7OOHMbOqcchyccIK/WfBAjz8O119fuqxDBz8LTU5OFZ6UiIiIiIh8HyWESgijFi6k5I67GDOpIaMYisMwHO1ZRjfmkMdcujKfenxd9v6tW0PXrtCli/+5aZO/RzD296hZM79S/VFHxeecRERERESkXEoIlRB+25w55N/xLOtn59O5YFZ0aYiKqlcPZsyAE0+snPpERERERKRCvish1EwfYdWtG0f+qxtHOgerV/uV5j/+OPozP//Q60xLg9dfVzIoIiIiIlJNKCEMOzO/1kSrVtC7d7R82zZYsKB0krhokV9nojxjxkDPnlXfZhERERERqRRKCKVsDRvCWWf5R8SePT4pjE0SFyyAWrXgwQdh0KBEtVZERERERA6DEkI5eJmZfjiohoSKiIiIiNQIKYlugIiIiIiIiCSGEkIREREREZGQUkIoIiIiIiISUkoIRUREREREQkoJoYiIiIiISEgpIRQREREREQkpJYQiIiIiIiIhpYRQREREREQkpJQQioiIiIiIhJQSQhERERERkZBSQigiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERERERCSklBCKiIiIiIiElDnnEt2GKmVmm4AvE92OMuQAmxPdCPkWxSX5KCbJSXFJPopJclJcko9ikpwUl6rVxjnXpKw3anxCmKzMbK5zLi/R7ZDSFJfko5gkJ8Ul+SgmyUlxST6KSXJSXBJHQ0ZFRERERERCSgmhiIiIiIhISCkhTJzRiW6AlElxST6KSXJSXJKPYpKcFJfko5gkJ8UlQXQPoYiIiIiISEiph1BERERERCSklBAeBDMbY2YbzeyzA8ofMrMlZvaJmf3DzLLL2f/eYJuPzWyKmeUG5WZmT5jZ8uD9E8vZ/1wz+zzY7taY8qPM7L9B+Stmll6Z553skjguZmb3m9lSM1tsZtdU5nknsySISYWOXxMlcUy6mNnsoN65ZnZyZZ1zdVCFcelkZrPMbK+Z3fgdxz/JzD4N4veEmVlQ3sjM/m1my4KfDSvzvJNZssYkeO/qoA0LzWxEZZ1zdZAEcbnfzFaZ2a4Dyv9gZouCuqeaWZvKON/qIIlj0trMppnZ/KD+XpVxvqHgnNPjex7Aj4ATgc8OKO8JpAXPHwQeLGf/rJjn1wDPBM97Ae8ABnQH/lvGvqnACqAtkA4sADoH700ABgTPnwGGJfpaKS4O4DfAOCAleN000dcqDDGpjOPXxEcSx2QKcF5MXdMTfa1qSFyaAt2A+4Ebv+P4HwZxsyCOkViMAG4Nnt+qv5WkiMnZwLtARqS+RF+rkMWlO9Ac2HVA+dlAneD5MOCVRF8rxYTRBP8XBjoD+Ym+VtXloR7Cg+Cc+w+wtYzyKc65ouDlbKBlOfsXxLysC0Ru3OwDjHPebCDbzJofsPvJwHLn3ErnXCHwd6BP8M1hD+C1YLsXgL6HfnbVVzLGJXhvGDDcOVcSHGfjoZ9d9ZTgmFT4+DVRssYkqCcreN4AWHsQp1NjVFVcnHMbnXNzgH3lHTuIU5ZzbrZzzuG/wIp8fvTBf55AyD5Xkjgmw4A/Oef2Ruo7pBOr5hIZl2C72c65dWWUT3POffN9x6+JkjUmhPxzpSLSEt2AGmQw8Ep5b5rZ/cClwA78t0oALYBVMZutDspif8nL2uYUoDGwPeYPL7KvlBbvuAC0A/qb2c+BTcA1zrllFTiHmqaqYlIpxw+pRMTkOuBfZvYw/vaF0w6xzWFwOHE5GC3w8YqI/fxoFvMfrfVAs0OoNwwSEZMOwBlB3XvwPSdzDqXRIVBVcTlYQ/C9uhKViJjcDUwxs6vxieY5lVRvjacewkpgZrcDRcBL5W3jnLvdOdcq2OaqeLUtzBIYlwxgj3MuD/grMKaS6q32Ev23cjDHD5sExmQYcH1Q7/XAc5VUb42Q6L+VoH5HtEc49BIYkzSgEX6Y3E3AhNj7C8Mu0X8rZnYJkAc8VJn1VmcJjMkvgeedcy3xtyK8aGbKdQ6CLlIFmdmvgfOBgcGHJ2Y2NrhR9u0ydnkJuCh4vgZoFfNey6AsVnnbbMEP0Ur7jn1DK4FxAf/N7sTg+T+A4w/zNGqUOMTkkI8fdgmOyWVE/05exQ/DFiocl4OxhtJDuWJjtyEy9Df4GarhieVJcExWAxOD4dkfAiVAziGeQo0Uh7h83/HPAW4HekeG9IZdgmMyBD+/Bs65WUAm+ls5KEoIK8DMzgVuxv9DEBlHjnPuN865Ls65XsF27WN26wMsCZ5PBi41rzuwo4wx0XOA9uZnFE0HBgCTgz+yacDFwXaXAW9U8ilWS4mMS/DeJKLDH84Ellbi6VVLcYrJIR8/zBIdE/y9HWcGz3sAGlZNpcTlewVxKjCz7kFP06VEPz8m4z9PQJ8rQFLEZP9nipl1wE9ktrkCp1QjxCMu33P8rsCo4Pj64oTExwT4CvhxcIwf4BPCTZVUd83mkmBmm2R/AC/j74vZh/+mbkhQvhx/D83HweOZcvZ/HfgM+AR4E2gR+dIEeAo/W+WnQF45+/fCJxUrgNtjytviZyVbjv+GPSPR10pxcQDZwFvBvrOAExJ9rUIUkwodvyY+kjgmpwPz8DP0/hc4KdHXqobE5YigvgJge/A8q4z984L9VwBPAhaUNwam4hP0d4FGib5WignpwPjgvY+AHom+ViGLy4jgvZLg591B+bvAhpjjT070tVJM6AzMxH+ufAz0TPS1qi6PyD82IiIiIiIiEjIaMioiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERELHzFqb2S4zS010W0RERBJJCaGIiISCmeWb2TkAzrmvnHP1nHPFcTz+WWa2Ol7HExERORhKCEVEREREREJKCaGIiNR4ZvYi0Bp4MxgqerOZOTNLC96fbmb3mdkHwftvmlljM3vJzArMbI6ZHRlTXycz+7eZbTWzz82sX8x7vcxskZntNLM1ZnajmdUF3gFyg/p3mVmumZ1sZrPMbLuZrTOzJ80sPaYuZ2a/N7NlQX33mlm7oJ0FZjYhsn2kB9LMbjOzzUGP6MD4XGEREamulBCKiEiN55wbBHwFXOCcqwdMKGOzAcAgoAXQDpgFjAUaAYuBPwIEyd2/gb8BTYP9/mJmnYN6ngOGOufqA8cC7znnvgbOA9YGQ1XrOefWAsXA9UAOcCrwY+D3B7Trp8BJQHfgZmA0cAnQKqj/lzHbHhHU1QK4DBhtZh0P6WKJiEioKCEUERHxxjrnVjjnduB781Y45951zhUBrwJdg+3OB/Kdc2Odc0XOufnA68Avgvf3AZ3NLMs5t80591F5B3TOzXPOzQ7qyQdGAWcesNkI51yBc24h8BkwxTm3MqadXQ/Y/k7n3F7n3AzgLaAfIiIi5VBCKCIi4m2Ieb67jNf1gudtgFOCYZ7bzWw7MBDfOwdwEdAL+NLMZpjZqeUd0Mw6mNk/zWy9mRUA/4vv4TucdgFsC3ojI74Ecss7voiIiBJCEREJC1dJ9awCZjjnsmMe9ZxzwwCcc3Occ33ww0knER2eWtbxnwaWAO2dc1nAbYBVoG0NgyGtEa2BtRWoT0REajglhCIiEhYbgLaVUM8/gQ5mNsjMagWPbmb2AzNLN7OBZtbAObcPKABKYo7f2MwaxNRVP9hml5l1AoZVQvvuCdpxBn5466uVUKeIiNRQSghFRCQsHgDuCIZ4Xny4lTjndgI98ZPJrAXWAw8CGcEmg4D8YAjoFfjhpDjnlgAvAyuDoaa5wI3Ar4CdwF+BVw63XYH1wLagXS8BVwTHFRERKZM5V1kjaERERCRRzOwsYLxzrmWi2yIiItWHeghFRERERERCSgmhiIiIiIhISGnIqIiIiIiISEiph1BERERERCSklBCKiIiIiIiElBJCERERERGRkFJCKCIiIiIiElJKCEVEREREREJKCaGIiIiIiEhI/T/TYeQPsPM8oAAAAABJRU5ErkJggg==", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "c193140200b9684da27e3890211391b6", + "translation_date": "2025-09-04T01:47:41+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/2-ARIMA/working/notebook.ipynb b/translations/ko/7-TimeSeries/2-ARIMA/working/notebook.ipynb new file mode 100644 index 000000000..97b3f77ef --- /dev/null +++ b/translations/ko/7-TimeSeries/2-ARIMA/working/notebook.ipynb @@ -0,0 +1,59 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "523ec472196307b3c4235337353c9ceb", + "translation_date": "2025-09-04T01:49:55+00:00", + "source_file": "7-TimeSeries/2-ARIMA/working/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# ARIMA를 활용한 시계열 예측\n", + "\n", + "이 노트북에서는 다음을 시연합니다:\n", + "- ARIMA 시계열 예측 모델을 학습하기 위해 시계열 데이터를 준비하는 방법\n", + "- 간단한 ARIMA 모델을 구현하여 시계열에서 다음 HORIZON 단계(시간 *t+1*부터 *t+HORIZON*까지)를 예측하는 방법\n", + "- 모델을 평가하는 방법\n", + "\n", + "이 예제의 데이터는 GEFCom2014 예측 대회에서 가져왔습니다. 2012년부터 2014년까지 3년간의 시간별 전력 부하와 온도 값으로 구성되어 있습니다. 이 작업의 목표는 전력 부하의 미래 값을 예측하는 것입니다. 이 예제에서는 과거 부하 데이터만을 사용하여 한 시점 앞을 예측하는 방법을 보여줍니다.\n", + "\n", + "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli 및 Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, 2016년 7월-9월.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pip install statsmodels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/3-SVR/README.md b/translations/ko/7-TimeSeries/3-SVR/README.md new file mode 100644 index 000000000..0f532a4f8 --- /dev/null +++ b/translations/ko/7-TimeSeries/3-SVR/README.md @@ -0,0 +1,393 @@ + +# 지원 벡터 회귀를 활용한 시계열 예측 + +이전 강의에서는 ARIMA 모델을 사용하여 시계열 예측을 수행하는 방법을 배웠습니다. 이번에는 연속 데이터를 예측하는 데 사용되는 회귀 모델인 지원 벡터 회귀(Support Vector Regressor) 모델을 살펴보겠습니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/51/) + +## 소개 + +이번 강의에서는 회귀를 위한 [**SVM**: **S**upport **V**ector **M**achine](https://en.wikipedia.org/wiki/Support-vector_machine) 모델, 즉 **SVR: Support Vector Regressor**를 구축하는 방법을 배웁니다. + +### 시계열에서의 SVR [^1] + +시계열 예측에서 SVR의 중요성을 이해하기 전에 알아야 할 몇 가지 중요한 개념이 있습니다: + +- **회귀:** 주어진 입력 세트에서 연속 값을 예측하는 지도 학습 기법입니다. 이 기법은 특징 공간에서 최대한 많은 데이터 포인트를 포함하는 곡선(또는 선)을 맞추는 것을 목표로 합니다. [여기](https://en.wikipedia.org/wiki/Regression_analysis)를 클릭하여 더 많은 정보를 확인하세요. +- **지원 벡터 머신(SVM):** 분류, 회귀 및 이상치 탐지에 사용되는 지도 학습 모델의 한 유형입니다. 이 모델은 특징 공간에서 초평면으로 작동하며, 분류의 경우 경계로, 회귀의 경우 최적의 선으로 작동합니다. SVM에서는 일반적으로 커널 함수를 사용하여 데이터셋을 더 높은 차원의 공간으로 변환하여 쉽게 분리할 수 있도록 합니다. SVM에 대한 더 많은 정보는 [여기](https://en.wikipedia.org/wiki/Support-vector_machine)를 클릭하세요. +- **지원 벡터 회귀(SVR):** SVM의 한 유형으로, 최대한 많은 데이터 포인트를 포함하는 최적의 선(회귀의 경우 초평면)을 찾습니다. + +### 왜 SVR인가? [^1] + +지난 강의에서는 시계열 데이터를 예측하는 데 매우 성공적인 통계적 선형 방법인 ARIMA에 대해 배웠습니다. 하지만 많은 경우 시계열 데이터는 *비선형성*을 포함하고 있으며, 이는 선형 모델로는 매핑할 수 없습니다. 이러한 경우, 회귀 작업에서 데이터의 비선형성을 고려할 수 있는 SVM의 능력은 시계열 예측에서 SVR을 성공적으로 만듭니다. + +## 실습 - SVR 모델 구축하기 + +데이터 준비를 위한 초기 단계는 [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA) 강의와 동일합니다. + +이 강의의 [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/3-SVR/working) 폴더를 열고 [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/3-SVR/working/notebook.ipynb) 파일을 찾으세요. [^2] + +1. 노트북을 실행하고 필요한 라이브러리를 가져옵니다: [^2] + + ```python + import sys + sys.path.append('../../') + ``` + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from sklearn.svm import SVR + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + ``` + +2. `/data/energy.csv` 파일에서 데이터를 Pandas 데이터프레임으로 로드하고 확인합니다: [^2] + + ```python + energy = load_data('../../data')[['load']] + ``` + +3. 2012년 1월부터 2014년 12월까지의 모든 에너지 데이터를 시각화합니다: [^2] + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![전체 데이터](../../../../translated_images/full-data.a82ec9957e580e976f651a4fc38f280b9229c6efdbe3cfe7c60abaa9486d2cbe.ko.png) + + 이제 SVR 모델을 구축해봅시다. + +### 학습 및 테스트 데이터셋 생성 + +데이터가 로드되었으니 이를 학습 및 테스트 세트로 분리합니다. 그런 다음 SVR에 필요한 시계열 기반 데이터셋을 생성하기 위해 데이터를 재구성합니다. 학습 세트에서 모델을 학습시킨 후, 학습 세트, 테스트 세트, 전체 데이터셋에서 모델의 정확도를 평가하여 전체 성능을 확인합니다. 테스트 세트가 학습 세트보다 이후의 기간을 포함하도록 설정하여 모델이 미래 시점의 정보를 얻지 않도록 해야 합니다 [^2] (이를 *과적합*이라고 합니다). + +1. 2014년 9월 1일부터 10월 31일까지의 두 달 기간을 학습 세트로 할당합니다. 테스트 세트는 2014년 11월 1일부터 12월 31일까지의 두 달 기간을 포함합니다: [^2] + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + +2. 차이를 시각화합니다: [^2] + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![학습 및 테스트 데이터](../../../../translated_images/train-test.ead0cecbfc341921d4875eccf25fed5eefbb860cdbb69cabcc2276c49e4b33e5.ko.png) + +### 학습을 위한 데이터 준비 + +이제 데이터를 필터링하고 스케일링하여 학습을 위한 준비를 합니다. 데이터셋을 필요한 기간과 열만 포함하도록 필터링하고, 데이터를 0과 1 사이의 범위로 투영하여 스케일링합니다. + +1. 원본 데이터셋을 필터링하여 앞서 언급한 기간별 세트와 필요한 'load' 열 및 날짜만 포함합니다: [^2] + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +2. 학습 데이터를 (0, 1) 범위로 스케일링합니다: [^2] + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + ``` + +4. 이제 테스트 데이터를 스케일링합니다: [^2] + + ```python + test['load'] = scaler.transform(test) + ``` + +### 시계열 데이터 생성 [^1] + +SVR을 위해 입력 데이터를 `[batch, timesteps]` 형태로 변환합니다. 따라서 기존 `train_data`와 `test_data`를 재구성하여 새로운 차원을 추가합니다. 이 차원은 시계열을 나타냅니다. + +```python +# Converting to numpy arrays +train_data = train.values +test_data = test.values +``` + +이 예제에서는 `timesteps = 5`로 설정합니다. 따라서 모델의 입력은 첫 4개의 시계열 데이터이고, 출력은 5번째 시계열 데이터가 됩니다. + +```python +timesteps=5 +``` + +중첩 리스트 컴프리헨션을 사용하여 학습 데이터를 2D 텐서로 변환: + +```python +train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0] +train_data_timesteps.shape +``` + +```output +(1412, 5) +``` + +테스트 데이터를 2D 텐서로 변환: + +```python +test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0] +test_data_timesteps.shape +``` + +```output +(44, 5) +``` + +학습 및 테스트 데이터에서 입력과 출력을 선택: + +```python +x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]] +x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]] + +print(x_train.shape, y_train.shape) +print(x_test.shape, y_test.shape) +``` + +```output +(1412, 4) (1412, 1) +(44, 4) (44, 1) +``` + +### SVR 구현 [^1] + +이제 SVR을 구현할 시간입니다. 이 구현에 대해 더 읽고 싶다면 [이 문서](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html)를 참조하세요. 구현 단계는 다음과 같습니다: + +1. `SVR()`를 호출하고 커널, 감마, C, epsilon과 같은 하이퍼파라미터를 전달하여 모델 정의 +2. `fit()` 함수를 호출하여 학습 데이터를 준비 +3. `predict()` 함수를 호출하여 예측 수행 + +이제 SVR 모델을 생성합니다. 여기서는 [RBF 커널](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel)을 사용하며, 하이퍼파라미터 감마, C, epsilon을 각각 0.5, 10, 0.05로 설정합니다. + +```python +model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05) +``` + +#### 학습 데이터에 모델 적합 [^1] + +```python +model.fit(x_train, y_train[:,0]) +``` + +```output +SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5, + kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) +``` + +#### 모델 예측 수행 [^1] + +```python +y_train_pred = model.predict(x_train).reshape(-1,1) +y_test_pred = model.predict(x_test).reshape(-1,1) + +print(y_train_pred.shape, y_test_pred.shape) +``` + +```output +(1412, 1) (44, 1) +``` + +SVR을 구축했습니다! 이제 이를 평가해야 합니다. + +### 모델 평가 [^1] + +평가를 위해 먼저 데이터를 원래 스케일로 되돌립니다. 그런 다음 성능을 확인하기 위해 원본 및 예측 시계열 플롯을 그리고 MAPE 결과를 출력합니다. + +예측 및 원본 출력 스케일 조정: + +```python +# Scaling the predictions +y_train_pred = scaler.inverse_transform(y_train_pred) +y_test_pred = scaler.inverse_transform(y_test_pred) + +print(len(y_train_pred), len(y_test_pred)) +``` + +```python +# Scaling the original values +y_train = scaler.inverse_transform(y_train) +y_test = scaler.inverse_transform(y_test) + +print(len(y_train), len(y_test)) +``` + +#### 학습 및 테스트 데이터에서 모델 성능 확인 [^1] + +데이터셋에서 타임스탬프를 추출하여 플롯의 x축에 표시합니다. 첫 ```timesteps-1``` 값을 첫 번째 출력의 입력으로 사용하므로 출력의 타임스탬프는 그 이후부터 시작됩니다. + +```python +train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:] +test_timestamps = energy[test_start_dt:].index[timesteps-1:] + +print(len(train_timestamps), len(test_timestamps)) +``` + +```output +1412 44 +``` + +학습 데이터 예측 플롯: + +```python +plt.figure(figsize=(25,6)) +plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.title("Training data prediction") +plt.show() +``` + +![학습 데이터 예측](../../../../translated_images/train-data-predict.3c4ef4e78553104ffdd53d47a4c06414007947ea328e9261ddf48d3eafdefbbf.ko.png) + +학습 데이터의 MAPE 출력: + +```python +print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%') +``` + +```output +MAPE for training data: 1.7195710200875551 % +``` + +테스트 데이터 예측 플롯: + +```python +plt.figure(figsize=(10,3)) +plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![테스트 데이터 예측](../../../../translated_images/test-data-predict.8afc47ee7e52874f514ebdda4a798647e9ecf44a97cc927c535246fcf7a28aa9.ko.png) + +테스트 데이터의 MAPE 출력: + +```python +print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%') +``` + +```output +MAPE for testing data: 1.2623790187854018 % +``` + +🏆 테스트 데이터셋에서 매우 좋은 결과를 얻었습니다! + +### 전체 데이터셋에서 모델 성능 확인 [^1] + +```python +# Extracting load values as numpy array +data = energy.copy().values + +# Scaling +data = scaler.transform(data) + +# Transforming to 2D tensor as per model input requirement +data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0] +print("Tensor shape: ", data_timesteps.shape) + +# Selecting inputs and outputs from data +X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]] +print("X shape: ", X.shape,"\nY shape: ", Y.shape) +``` + +```output +Tensor shape: (26300, 5) +X shape: (26300, 4) +Y shape: (26300, 1) +``` + +```python +# Make model predictions +Y_pred = model.predict(X).reshape(-1,1) + +# Inverse scale and reshape +Y_pred = scaler.inverse_transform(Y_pred) +Y = scaler.inverse_transform(Y) +``` + +```python +plt.figure(figsize=(30,8)) +plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(Y_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![전체 데이터 예측](../../../../translated_images/full-data-predict.4f0fed16a131c8f3bcc57a3060039dc7f2f714a05b07b68c513e0fe7fb3d8964.ko.png) + +```python +print('MAPE: ', mape(Y_pred, Y)*100, '%') +``` + +```output +MAPE: 2.0572089029888656 % +``` + +🏆 매우 훌륭한 플롯으로, 높은 정확도를 가진 모델을 보여줍니다. 잘하셨습니다! + +--- + +## 🚀도전 과제 + +- 모델을 생성할 때 하이퍼파라미터(감마, C, epsilon)를 조정하고 데이터를 평가하여 테스트 데이터에서 가장 좋은 결과를 제공하는 하이퍼파라미터 세트를 찾아보세요. 이러한 하이퍼파라미터에 대해 더 알고 싶다면 [여기](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel)를 참조하세요. +- 모델에 대해 다른 커널 함수를 사용하고 데이터셋에서 성능을 분석해보세요. 도움이 되는 문서는 [여기](https://scikit-learn.org/stable/modules/svm.html#kernel-functions)에서 찾을 수 있습니다. +- 모델이 예측을 위해 되돌아볼 수 있도록 `timesteps`의 다른 값을 사용해보세요. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/52/) + +## 복습 및 자기 학습 + +이번 강의는 시계열 예측을 위한 SVR의 적용을 소개하기 위한 것이었습니다. SVR에 대해 더 읽고 싶다면 [이 블로그](https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/)를 참조하세요. 이 [scikit-learn 문서](https://scikit-learn.org/stable/modules/svm.html)는 일반적인 SVM, [SVR](https://scikit-learn.org/stable/modules/svm.html#regression) 및 다른 구현 세부사항(예: 사용할 수 있는 다양한 [커널 함수](https://scikit-learn.org/stable/modules/svm.html#kernel-functions)와 그 매개변수)에 대한 더 포괄적인 설명을 제공합니다. + +## 과제 + +[새로운 SVR 모델](assignment.md) + +## 출처 + +[^1]: 이 섹션의 텍스트, 코드 및 출력은 [@AnirbanMukherjeeXD](https://github.com/AnirbanMukherjeeXD)가 기여했습니다. +[^2]: 이 섹션의 텍스트, 코드 및 출력은 [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA)에서 가져왔습니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/3-SVR/assignment.md b/translations/ko/7-TimeSeries/3-SVR/assignment.md new file mode 100644 index 000000000..37f213852 --- /dev/null +++ b/translations/ko/7-TimeSeries/3-SVR/assignment.md @@ -0,0 +1,27 @@ + +# 새로운 SVR 모델 + +## 지침 [^1] + +SVR 모델을 이미 구축했다면, 새로운 데이터로 새로운 모델을 만들어 보세요 (예: [Duke의 데이터셋 중 하나](http://www2.stat.duke.edu/~mw/ts_data_sets.html)). 작업 내용을 노트북에 주석으로 기록하고, 데이터를 시각화하며 모델을 시각화하세요. 적절한 플롯과 MAPE를 사용하여 모델의 정확도를 테스트하세요. 또한 다양한 하이퍼파라미터를 조정하거나 타임스텝 값을 변경해보는 것도 시도해보세요. + +## 평가 기준 [^1] + +| 기준 | 우수한 수준 | 적절한 수준 | 개선이 필요한 수준 | +| --------- | ---------------------------------------------------------- | ------------------------------------------------------- | -------------------------------- | +| | SVR 모델이 구축되고 테스트되었으며, 시각화와 정확도가 명확히 설명된 노트북이 제출됨. | 주석이 부족하거나 오류가 포함된 노트북이 제출됨. | 불완전한 노트북이 제출됨. | + +[^1]: 이 섹션의 텍스트는 [ARIMA 과제](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/assignment.md)를 기반으로 작성되었습니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/3-SVR/solution/notebook.ipynb b/translations/ko/7-TimeSeries/3-SVR/solution/notebook.ipynb new file mode 100644 index 000000000..a441eb04e --- /dev/null +++ b/translations/ko/7-TimeSeries/3-SVR/solution/notebook.ipynb @@ -0,0 +1,1023 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "이 노트북에서는 다음을 시연합니다:\n", + "\n", + "- SVM 회귀 모델 훈련을 위해 2D 시계열 데이터를 준비하는 방법 \n", + "- RBF 커널을 사용하여 SVR을 구현하는 방법 \n", + "- 플롯과 MAPE를 사용하여 모델을 평가하는 방법 \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 모듈 가져오기\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [ + "## 데이터 준비\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "데이터 로드\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    load
                                                    2012-01-01 00:00:002698.0
                                                    2012-01-01 01:00:002558.0
                                                    2012-01-01 02:00:002444.0
                                                    2012-01-01 03:00:002402.0
                                                    2012-01-01 04:00:002403.0
                                                    \n", + "
                                                    " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAH1CAYAAABbUbvGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC4S0lEQVR4nOzdd7wU1d0G8OfcQu9dQUA6goI0RQXFimL3jb3FrjHRmNg19hJrYo29d8WKFQQFC0WlSu8gvVzqBe695/1jd/bOzk7vs/t88/GTy+7M7NnZmTOn/o6QUoKIiIiIiIgIAIqiTgARERERERHFByuJRERERERElMFKIhEREREREWWwkkhEREREREQZrCQSERERERFRBiuJRERERERElFESdQKi0KxZM9m+ffuok0FERERERBSJX375Za2UsrneewVZSWzfvj0mTZoUdTKIiIiIiIgiIYRYbPQeh5sSERERERFRBiuJRERERERElMFKIhEREREREWUU5JxEIiIiIiIiANi1axeWLVuG8vLyqJMSiFq1aqFNmzYoLS21vQ8riUREREREVLCWLVuG+vXro3379hBCRJ0cX0kpsW7dOixbtgx77rmn7f043JSIiIiIiApWeXk5mjZtmncVRAAQQqBp06aOe0lZSSQiIiIiooKWjxVEhZvvxkoiERERERFRhOrVq+fLcW6//XY89NBDno/DSiIRERERERFlsJJIREREREQUA1JKXHvttejZsyf23ntvvPPOOwCALVu24LDDDkOfPn2w99574+OPP87sc88996BLly446KCDMHv2bF/SweimREREREREAO74dAZ+/2OTr8fca/cGuO24Hra2HT58OCZPnowpU6Zg7dq16N+/PwYPHozmzZvjww8/RIMGDbB27Vrsv//+OP744/Hrr7/i7bffxuTJk1FRUYE+ffqgb9++ntPMnkQiIiIiIqIYGDduHM444wwUFxejZcuWOPjggzFx4kRIKXHTTTdhn332weGHH47ly5dj1apVGDt2LE466STUqVMHDRo0wPHHH+9LOtiTSEREREREBNju8QvbG2+8gTVr1uCXX35BaWkp2rdv73hZCyfYk0hERERERBQDgwYNwjvvvIPKykqsWbMG33//PQYMGICysjK0aNECpaWlGD16NBYvXgwAGDx4MD766CNs374dmzdvxqeffupLOtiTSEREREREFAMnnXQSfvrpJ/Tq1QtCCDzwwANo1aoVzjrrLBx33HHYe++90a9fP3Tr1g0A0KdPH5x22mno1asXWrRogf79+/uSDiGl9OVASdKvXz85adKkqJNBREREREQRmzlzJrp37x51MgKl9x2FEL9IKfvpbc/hpkRERERERJTBSiIREVECvPbTIrS/YQQ2le+KOilERJTnWEkkIiJKgOfHLQQArNuyM+KUEBFRvmMlkYiIKAF2VVQBAEqLRcQpISLKP/kcp8XNd2MlkYiIKAF2VaUe8qXFfHQTEfmpVq1aWLduXV5WFKWUWLduHWrVquVoPy6BQURElAAVlameRMGORCIiX7Vp0wbLli3DmjVrok5KIGrVqoU2bdo42oeVRCIioiTJv4ZuIqJIlZaWYs8994w6GbHCSiIREVHMtb9hROZv1hGJiChonNhARESUIHk4ZYaIiGKGPYlEREQxtbOiCss3bs96TbIvkYiIAsZKIhERUUzdOHwaPvh1WdZr7EkkIqKgcbgpERFRTH0/NzfSHuuIREQUNFYSiYiIYqqqKrdKmI/reBERUbywkkhERBRTlToVQtYRiYgoaKwkEhERxVRlJWuEREQUPlYSiYiIYoo9iUREFAVWEomIiGKqUm9OIkPXEBFRwFhJJCIiiqkqdhsSEVEEWEkkIiKKKZ2ORA43JSKiwLGSSERElCCsIxIRUdBYSSQiIkoQrpNIRERBYyWRiIgopoTOa6wiEhFR0FhJJCIiShB2JBIRUdBYSSQiIoopodeVyL5EIjKws6IKOyuqok4G5QFWEomIiGJK6Aw4ZU8iERnpe9c36Hn7V1Eng/JAaJVEIcQYIUS5EGJL+r/ZqvfOFEIsFkJsFUJ8JIRoonqviRDiw/R7i4UQZ2qOa7gvERFRvmEdkYiMbN5RwZ5E8kXYPYlXSinrpf/rCgBCiB4AngFwDoCWALYBeEq1z5MAdqbfOwvA0+l97OxLRESUV9iTSEREQSuJOgFIVfw+lVJ+DwBCiFsBzBRC1AdQBeAUAD2llFsAjBNCfIJUpfAGs32llJsj+C5ERET+0ZmTKNmXSEREAQu7J/E+IcRaIcQPQohD0q/1ADBF2UBKOR+pnsMu6f8qpJRzVMeYkt7Hal8iIqJE041bQ0REFLAwexKvB/A7UpW40wF8KoToDaAegDLNtmUA6gOoBLDJ4D1Y7JtFCHEJgEsAoG3btm6/AxERUaQ43JSIiIIWWk+ilHK8lHKzlHKHlPIVAD8AOAbAFgANNJs3ALDZ4j3YeF/9+c9KKftJKfs1b97c25chIiIKgd4SGKwkEhFR0KJcAkMiNZJmBoBeyotCiA4AagKYk/6vRAjRWbVfr/Q+sNiXiIgo0XSXwOCcRCIiClgolUQhRCMhxFFCiFpCiBIhxFkABgP4EsAbAI4TQgwSQtQFcCeA4elex60AhgO4UwhRVwhxIIATALyWPrThvmF8LyIiorCxJ5GIiIIW1pzEUgB3A+iG1DzDWQBOVALSCCEuQ6rC1xTASAB/Vu17BYAXAawGsA7A5VLKGQAgpZxhsS8RERERERE5EEolUUq5BkB/k/ffBPCmwXvrAZzoZl8iIqIk45xEIiKKQpRzEomIiMiE3hIYnJNIREGZt3ozpi/XLhxAhSjMJTCIiIjIAaHTlcieRCIKyuGPfA8AWHT/sIhTQlFjTyIREVGCsI5IRERBYyWRiIiIiIiIMlhJJPLJ4nVb8cmUPxzvd9JTP2DIQ2P8TxARJZ7enEQiIqKgsZJI5JNj/jsWf3vrN8f7/bZkIxau3RpAiogo7qSUeHHcQqzfujPqpBAREWWwkkjkk607K6NOAhElzIw/NuHOz37H1e9M1t+AXYlERBQBVhKJiIgi8vuKTQCA7+essb2PZHhTIiIKGCuJRD5jAY6I7KpToxgA0KJ+Tf0NmJ1Q2kWvTMTDX8+OOhlEVCBYSSTy2UWvTIo6CUSUEPVqppYr7tqqfsQpobgbOXM1Hv92XtTJIKICwUoikc9GzVoddRKIKF9wTiIREUWAlUQiIqKAfDx5OS54eaLh+0JY1AI53JSIiCJQEnUCiIiI8tVVb08GAJRt24WGdUp9OSbrjUREFDT2JBIREQWs911fR50EIiIi21hJpIK2bssOLF2/LepkEFGeMwp6bDnlkHMSiYgoAqwkUkEb+t+xGPTA6KiTQUQFznDlHI4tJSKiCLCSSAVtzeYdUSeBiMgRLsVKRHomLlofdRIoj7CSSEREFBGr4KYcbkpEdt328Yyc16SUeHzUXKwsK48gRZRkrCQSERFFTBqNK2WvYd56b9JSrN3C0SwUrFkrN+Phb+bgyjd/jToplDCsJBIBWLaBwWuIiCgcK8vKce37U3Hxq5OiTgrlkcqq3FYl5bVtOyvDTg4lHCuJRAAO+jeD1xBR+ATHkxakXZVVAIDVm9iTSP6p5IRl8hEriVSwynexVY2I4sGwbKdbh2RBkIhyVen0JCqYa5BTrCRSwXp05Jyok0BEZI4lOyKyyawnkWMWyKmSqBNAFJW1m3f6cpzv56xBw9qlvhyLiAqLZXRTykv83SkIVRxuSj5iJZEKlmE0QYfOfXGCL8chosLFsl1hkvzhiSimONyUChafzUQUe+xxyksi3ZXIxxD5SS8QVlH6WlP3Mj4/dgG63vJFaOmiZGIlkQpWWC24H/22HJvLd+m+t2jt1lDSQETxpBTpnKyTGOcGrvJdlfjHu1OwehMX7jbDuj8FQW8Yc1G6pK+uJN49YiZ2VFSFlCpKKlYSqWCFUc6avrwMV78zGTcMn6b7/v/976cQUkFEFI6vZqzEB78uw90jZkadlERwU+HfsNWf+fRUGKp7EnPf43BnMsNKIhWsMPLG7ellNlaV6beqbzLoYSQiSjIG0DDnJXDNlW/96l9CKK/oXVaZ0Qo69yRvUzLDSiIVLL/zRr2HfvVQMoN9fE4DESVMOhPIt8La4nXbok5CIrgJoLZq0w7sqqxC+xtG4D9cyok8YGMOmWElkQqW35mjWYWPQzqIqBDMX70FADBteVnEKYk3vQAjdkkpM6NUnh+70K8kUZ4yK33oDUElUrCSSIXL58xRqLoSf/9jU/o1849i3ZGInAo623hy9Dy0v2GEq333bdcYANBj9wZ+JilvuX0GmA0hpMIlbI5jVjZjTyKZYSWRCpZf6yTqOeaxsem/zDNsvQy6bPsuXPTKRKzdsiOAlBFRnCg9SnEqqj341WzX+yo5XpO6NfxJDOWQqA5GYve6WbJuG76cvjKwNFE82O2fVq6fu0f8HlxiKPFYSaSC5XcDWpHenMT0a78t2aifBp3X3hy/BCNnrsZz3y/wLW1ERE556aWy26NB7giHc1mP+s/3uOz1X4JLEMWW3jWilFde/3lJuImhRGElkcgnenNM1K+Up+eQqOkVwooshqgSUWGbuWJTKJ9T6WLCEvMte6ymIpiS6j/tHWG7zvOHiMgMK4lUsMJu6NYbWqpXBsvMFeCM8oJVUVnlqoBOySOsQiDr+NfHMwJJi5arSzC9D/sRzXk9P5lhyswmSI03HvmIlUQqWF6iyxkcMPclVU3U7sM8jnOUKDyPfjMHnW7+AvvfNyrqpFAI4limY1CL8Lg5xRIeeyIpb+nlJ3q9zb6XfygvsZJIhSv4OmLWa3Yf5k7nmlB++e+ouQCANZsZuIiiUZzOhNibHU/qaQp25o2+/8uyIJNDMTV69uqok0AJx0oiUYDUQ1rtBoFQeh/Zik9UOIKMtuyUl14q5Xswbo25f3+ZiiDr9jw5eTx8O2uVuw+hxFGPXvrzSxMjTAnlA1YSqWD5XYYp0nnaq4d02G2UZ9mKqHDEp2qYy1N0Ux/TkY8++DXVu+d2uGnmbxv7c2ghEbnBSiIVLL9DtPt1uEx0U/YkElEEvMyLZrbljJvnhvoc2zrdrCMWNCf35KpN5cElhBKHlUQin6ifw8qD300BoHq4qfc0EVEyxKlytbOyyvW+yvfgOonhqKyS2OXh96L8YvuuM9jwtpAiJyv63zMS170/JdTPJPtYSaSCFWQRRikouSn4Vc8HilGpkYgCFZe7/ZfFGzJ/e6m4soqY6/1fluHH+Wt9OZb6+fD82IWm2/K3KBxmbTPz12zFjgrz9TLDjoWwZvMOvDuJgZXiipVEKlh+N3RbtpzbnZMouP4VUaGI233+q6qS6KbmGrOvEyv/fG8KznxuvOfjaBsQN27b6fmYlL/UeczwX5ebbssRTKTGSiIVLL9bV/06nnIcZtZEFLYKjxmPMpeao02D47RhgUN/SWE9NNnZ8iqU31hJJAqLzed09fOcGTRRofhl8QZUxGBuWWVVdRo45J0oWawi2RYXmb/PxmlSYyWRClboras2M98iDjclKhjqitiIaSsiTEku5kHxJKWzCKfqJ907E5cEkSSKCb1ijTqPKU5vYFT6Ufce8v4nVhKpYMV1AE71cFPm0Em0s6IKm8t3RZ0MSqBdldHf814bz6q/QVxz2MKj/kmv/2BadAmhyBVZ9CRKg7+pMLGSSBQz6gf6hq070fGmz32LiEfBO+3Zn7D37V9HnQxKiM3lFZm/LcpvoVDnP14KiZwGRxQ/xRY3ZtTDTacvL8MZz/6M8l3mUVgpHKwkEsXMD/PWZf7+fcUmVFZJPPHtvAhTRE78tmQjAGDUzFXRJoQS4dLXfsn8fc278VovzE3gCg6ACJ/V78T6emFYvnE7Zq3cnPO6+vKwmpOYPdw0/Jv55o+m46cF6zBzxabQP5tysZJIhcuHJ+fcVbkZshG7QSA+mfJHansJ1CpN3aI/zl/HSGMJc+Erk6JOAiXcHxu3Y/OOCusNfVTkuQswHd3Ue1LIhJOnAaObFoY5OhVELcvhpg7mugaJpZ14CL2SKIToLIQoF0K8nv73IUKIKiHEFtV/56m2byKE+FAIsVUIsVgIcabmeGemX98qhPhICNEk7O9EyWQVBcyOYY+N8yElxkqKqm/Ruau3BPpZRBS9h7+enfl74qL1oX++OlfkcNPgrdm8A1tMGgKqqiQe/no21m7ZEWKqKF9lAtcY3J9Rx0JgtmHfmNmrA4+IHUVP4pMAJmpe+0NKWU/13yua7XcCaAngLABPCyF6AED6/58BcE76/W0Angr6CxApdgZ4g0pkt+pbr29EREn3eIyGlrspL3LAg75/fzkr8/eOiuz5Vp9M/sNwv58WrMPj385Dv7tHGm7z3NiFqDKZTMaCd2GwM1rJat5z1PevMhdx47ad0SYk5sbOXYPzX5oY+PMi1EqiEOJ0ABsBjLK5fV0ApwC4VUq5RUo5DsAnSFUKgVSl8VMp5fdSyi0AbgVwshCivp3jj1+wDi+OW+jwW1C+CH0FDIvMd+zcNVn/fv+XZY72JyLyymu+qGRTfozUyCdPj5mf+fus58ZnvWdWuK+0GUlEHQApB3+KglDlcztyFGUOZU7lKz8uxtotO2KxdmwcrdmcGlmweN3WQD8ntEqiEKIBgDsBXKPzdgshxCohxEIhxKPpyiEAdAFQIaWco9p2CoAe6b97pP8NAJBSzkeq17GLnTSd9uzPuPOz3x1+E8oXcXtuXmQxhy3qYSBElP/UlTt15eWn+euwZN22KJKUdyYt3pD1b7Os3ajSrp2jbnfOu9rMFZtQto3L9eQLP0oIRTGJVLJ+6070u3skbvloetRJiaWwOjnCvBzuAvCClHKZ5vVZAHoD2A3AoQD6Angk/V49ANoQR2UA6qveLzN5P0MIcYkQYpIQYtKaNWu0bxMFzk0Grn7wRx2amojynzCYlHjGcz9j8IOjQ09PoQuyR/bo/47FKf/7MbDjU7j8aEiOywgAZXrNiKkrIk5JYQulkiiE6A3gcACPat+TUq6UUv4upaySUi4EcB1SQ0wBYAuABppdGgDYbPN99ec8K6XsJ6Xs17x5c6zjJPCCF0ZLjJPW3R0VVbhV02qmzvPZk0hUWOJyy1/99m+2t1XSzMA19ml/5q07KnDxq5Owsqzc9nk07Y00KfjPY0C0vGEUAV3v5bhUBo0oS3VUxiUTjKmgz05JwMdXHAKgPYAl6VDM9QAUCyH2klL20WwrUV15nQOgRAjRWUo5N/1aLwAz0n/PSP8bACCE6ACgZno/Uzd9OM3VF6H84XcmaXWz6mXgQmRn4K/9vNjwmFwCg4iCpl4uQclxPjIJrGJ8HJ8SVAg0eftnU//AN7+vQuM6pTixd+uIEkVJY2e0kdUm6vvWzRBmvzEb0RdWJT+s4abPAuiI1LDS3gD+B2AEgKOEEEOEEO1Eyh4A7gfwMQBIKbcCGA7gTiFEXSHEgQBOAPBa+rhvADhOCDEoPY/xTgDDpZSWi8WU7+JkWAqenzcyh5sSUdCyRpu6iW4ag4Jl0hidMSlhWEr28yyzATI/+DLcNMTWHSX4ihmu8Wku6Fs3lEqilHJbeljpSinlSqSGiZZLKdcA2BfAjwC2pv9/GoC/qXa/AkBtAKsBvAXgcinljPRxZwC4DKnK4mqk5iJeYSdNvO7Ib3qXlLrA5GpOIh/eBWX15vKok0AxEkWFy3N0U2W4KfsAbNMuX6GcOwn759HLlaKNpE3JZNSQrJePxKEMPPA+44UOWPQxF9bvF9Zw0yxSyttVfz+C6kA1etuuB3CiyftvAnjTaRpicH9QwlRUVuHmD6fj0oM7oEPzer4cU8D84Z493NSXj6QYu+uzmVEngWIkiopWdtwa55lOZg8+ZN1TnTu9de2276rMfdGDiYvW40/99vD1mBQ+vxuVrQ737qSlqKySOGNAW1fHr7AxPIrZiLmgi4UxCXYbPjtd2Lsqq3DfFzNRtp0hovOR05aYacvL8M6kpfj7O5MDSY8edSZt5wGwdssOrN7E3qikYs8xqUXR2p81J9HD5cjCnX1mw031yirrt+YuNO4l72C2kx/srqnpl+ven4obhwcT34OXZDwUbiXRxjafTP4Dz3y3AL3u+JqFtzzk9CdV8t8ivabdAD4vvVfmr5ttrBfU7+6RGHCv8RAOireiOIwBotiI4nrwPtyUz0q11ZvL0f6GEabbaE+Z8hOY9eRKhlUgDaNbL4m3pKwet04RKtxKoo0Lr6KqOhdesp6LCBc6JdMKM89SZ+4MVZ7/WEekqBksk+j8OLyYAQA/zV9nuY32PKvPndFp/HJG9vpxCawHUATiXmFsUb8mAKD3Ho2iTUhCBN0oV7CVRDtFffV8kLjfWBQ8Zfx8SZH+bWO1no/+5HHz65CXHVH+mr/GvOEnkrVRs4abMgeK0ufTVujOSQSAbTuz5yU6qZKPmb3afaIocdZtzY0iGtcmnCFdWwAA9mhSB0B80xk1PxrhKqskllp0gBVsJdHW+c1aL4YKnTLev9jgqa19aPuBZbTCwuGmheWwh7+LOgk5eAX6y05hTlsZV/Yo31WFFWX+zzH/x7tTsGQdR0cVigtenhR1EmxTbhdtxF/S5+Us/XfUXAx6YLTpNgVbSSRySmbmJLo9gJvPZEZZSNwU0KWU2LgtN5AFJdf4Bevw9oQlkXx21mLarvKs9HH8SU5BUv8GO3xY01lbT5UABj84OuvfZuav2YLut35p2etA5BfWEc35kb/+NH+t5TYFW0nkA4zcCrPe5uSjrIauUfwN/225433eGL8Eve/8BvNWbw4gRRSF0579GTcMnxbJSIKbP7QOkGVGGVbPTvGUiQvXe9rfaMixk2tDu63Txsd3Jy3F9l2V+GzqCuuNKW9E2UZdnY8wIwmKnSWWCreSaOO6y5rAzx6dvJOEvMfJZXfuCxOCS0iBWrZhG35eYB14wg9uK3ljZq8BACxYs9XP5FAMWK1T+Pd3JuO0Z34KKTXOJCB7DcVrPy92vI/62WRUSI6iROJm3UwiNzIjEpiRmPMUXcx6k8KtJPIRVvDCrvfrfZzVVejkobyrkjHR/Tb4gdE4/dmfDd/fsHUnDn5wNOau8t6Lt7PC2wXJ4lv+scqjPvxtOcZ77Kny8vl+7UPZ7JRPnDRc6w039cPOiqrQ1+Yjb5LSQ8erypwfP5+dQxRsJdEO9U1UJYFHvpmDdVtyo0RRYYh5nhr79CWRVfln1KzVWLxuG57+br7nzzL6/Rau3YoFmqHEUkpsLt9luh+RV256jqp7APL7whw3dy3m+NA4BJj3NtqtDDr5pTZu25X17/d/WYZtOyscHCGlyy1f4JJXkxMUheJj8TqLkS9sbbJl4dpgRxAVbCXR6fPrg1+X4bFRc3HD8GnBJIhiZdHarfjvyLm+DjPWHmre6s2ZZTX8wMiYEQrweTbkoTE4VBMF85UfF2Hv279mIIk8l+RyUr7nRme/MB5HPvq9L8darIk0mhU8yJdPsLZms3EDuNKzqXc9jprF5TTyVZDDi697f6rFZ6fkez7ilnJP/r5iE1ZvdhcB2U6RkZVEm54ek+opKN/l/zIHFD8XvzoJj46cg+Ubtwf2GfeMmGm9kSaPvvDliZi4SH94GSuJ4YvqjH/9+yoAwBJWEhNl9SZnD/NI1klUSXIlNV8Y5THa38ZrXmT2W/PRkj/iEn3Y6HJT0lcoIxL8sGn7LuuNXCrYSqIdepdm1A9tCsf2dGNAlc40P7eXgLZVrkPzejb2yTZq1mpc/vqvutsyL02mnRVV+G3JBle/n/paZNbkr/Vbd7oagmfG6UiUqH9SN58fdZrzgbpg7PV8bi7fhfd/WebxKJQE+VQGYJCkeGAl0UQ+3XDkTlaUOb+P7XI/o4YK9iQG58o39Svmfrh7xO846akfMX917twCOwsK81cPRp+7vvFtOKGioIJL8cIM1akGUW4XrXU+2mDgfaNw84fmDRoVhXQtJ4TfDYWBNjwaHFspxlRlehRZWQzC6s3l+HmBddAzVhIB/DjPekFJBa/XwhDE7xx0pEDWEYNjtT6Y2c/065IN+HXJBsP3Z/yxCQCwYdvOnPfu/3KW6efurKzMDD0l/y3bENxwc1sift54KqDxWelaVlZucB61PS3zDZbAcfNcWFFWjjfGL9FPT9oRPjegEAE6w6hZsAnE9OVltrYr2EqiOsT0mc+Pt70fK4nkhNn1UlRkI8y5TgnBqODGnsTw2TnlJz/1I05+6kfjY5js+87EpabHvuBlRhbMZ1FPb+DjLhp2zntYl0ZllcRTY3KjNwcdVZGcS1IRwO5wUvYkplz19m+49r0pvh3P7jKABVtJtHOB6t1wHCdNflwD4+auxQQb65vp5Y9Gn56g5wOpmD3Y+YDML05/zsok//7MkALl95VhdLytPs/LpeA4yi5s3J+u5iTbXbLFYLNZ6WVlkpz1BeHjyX/gPT/nFtvMnwu2kmiH3Zo25a9Vm8pxxCPfYUWZu2FnRqHMz35hPCYv3Wi5v14+aZR5JqkVMR8NfmA07v7sd8f77apM/aC6v7XBPvq/NZ+qcee0ZzDqdco9FdR4OTqiLlyrb+84NUw/+NVsXOxiXcQZf5RhU3lwERjJviCvpslLN2LPGz/HKU8bj5wxS0f5rkpM0ZSL4nP1x8sTo+eF8jkFW0l0WwFk60ZhUB7Yb09cirmrt+DtCebD/oyP4086zLw9YQmG/7qMw019UlFZhR0V9pa6GTN7DYDU77Rk/TY8P26ho89qf8MI08aCzeXeW/F/XrAOX0wzn1NJ4dq6owIPfz3bcjunPcnTl5f5vHam8wyMuZA7Tp8Vdrf3+7HwjYs50MMeG4dzXpjgb0IoR9RFgO/npJ6Hvyw2noOv0MvbWL62b+aKTaF8Tkkon5JHeA0XBt2FXDUZcKXDZn43Qwf1exKrXy3fVZkJq9+lpfWSGmTtlKd/xJRlZVh0/zDLbT+Z8kcIKfLm9Gd/BgBb34eCpdy6j307F898t8ByezvRbdWOfXwcAPe/tR/DmwvhGTnCIpCVG07P2xfT7aXBy4ioMbNXo0+7xq73V9P2EFH+aVK3hm/HUnrQN27bhV2VVSgtLtg+rUDYzRV41k3otsoUwhOQbHlz/OLgP0RvTqLqtb+/MznzN3sS3Zm+vCyrcDxlmb2oX75jM2reUwo+uyrs/daJHm6ax9nRXwJYEsdoKLLRbzDVZj7l5bFwz4iZ7nemxHPaaNSpRaqheq/dGlgfW/c1/c/7/Y9wes0Kid2osawkqjz89Ww8GdI4X0oGs/toqcPw+K6WwLBolRg3t3r5FoaKdm7k76tw7OPj8N6k6Beb9lofYB0z/pTfyEZg49T2wSVF//M0H+jl84f/utxTWgpN1Pev7vA/l8cq274LW3cw4E2cBVFaUBqq69YsttxWNyif6jV1D3iiA3jFFHsSXXj823l48CvzeSJxmkROwVHyJCWjkjrv2RkKFkTBX/2SehkNVhGdW7QuFcZ9djqi2uJ17sK6M1cgO5TrxM7yNwCj2xYSo7KF17Y/z/u72KfXHV9j/3tHeftgsuXzaStQtj38oEB6gYiUa83tCIiscpbqX06H3ZM1u/lC4VYSTU7Q6k3l+GLaCuyoqMp5j8/swpDzwPaxldUJvbxRXXAsVhU2iwr3brZUtm0XHvl6ds48UqX3VRnqFcQwMqIMpfHJbk+iy0xm2rIyvDvJXbAtPz6f/OP1N3AyJ1FKiW0el7xYsi4VOGkzexIDt2TdNlzxxq+4+u3fbO/jpOHJbMur3rL/mXaPnZU21Z+sI0aHgWt0nP7cz1iwRr9HgddqYbCTj0ZVgFJ/bFYlkcNNDd3x2QwM/3U59tq9IYb2bJV5XTl9ym/p92/65vgltrdlgTz/KY1PdgvubkeuHPdEKoDNqf32cLSf9tMKceTMzwvWoXZpMXrt0SjqpADwXuaw3SAB4JUfF+H2T6uX8XHTkz34wdGO9yF3lCjcTqe+AN6np/wwf52n/S0b3lXJcxokkKzZfQax70HHsvXGNxyH/+QPO3nkqs3lAIAvpq/E4nXZoeXtFKC8Xi9W+wuDvylb+a7Uw7SiKnt0gHLOlJ5E9TUxdu4a28c3+pmeH2sdwdINvQyeOVP8ZYaxB9yTGKWk50OnP/szTnjyh6iTEYnPp68M9Phz0sP6yR/akTBh2qkz0k659+2Ue/R7EvU3iOL7xVX7G0bgl8XrPR+Hw029MDl5DA6SP+zkO6s37QAAzF29BTeml5pwsr+X7QEbGakKr01jmbmlmnOnnDPtHFQAvqzrFfWjbf6aLZm/35m4BO1vGIE1m3dEmKLClpmTaPNW9bsBvbJKmhbgtO/5lWcl0bsTvQ/XdcLoXHsfbhot9TV15KPfM6CNj5SRRFHM2atR4q36oHtd6482ZSVR45vfVxu+V7bNXtAoBq4JyC+LN6CiMrcFhfKLkiUN6twMAHDGAGfDtrTHcZ0O3cA1+ke1W/AsSOlz8+Toefh5QfUwmcxwU2UYoMtz+NvSDV5Sl0pDAA/CP780MfP3u+kIrm6D8xSqXT7m98pvbHeoj5+Fo9Wby9Hxps/R/56Rtvcp5LLZXSN+t94oIOp8yE2eJKXER78tx/adlf4lyid6sR7IHeX5FVQd0ez+b1yn1NuxdcoxRmWbfB1uumzDNrz0w0Jfj9nrzq9x8INjMGfVZl8aulhJdGHiIv0C4QUvT8TR/x0bcmooCJnMMZ0Jq+f7KW85LcC5m9+jk5HmZ34ZKOXXm7Vyc2ZxeUA9XCd7O6eWmgxRV3w+zf8FuNX0rot8fbiG6ZYPp/t2LKc9iX5auj41XH7tlp2G2/BqUYnwZHjN439esB5XvzMZd0dY0QWqg9hQMErSC8wr0yncNnLO+CO15mbZtl34fk7uNIu3JizB+AXZcxC9xkCwWgJDLV97Es95YQLu+PR3rN9qnCe7sXbLDhz56Pe47oOpno/FSqIOq0vfqLD/7azVmLmCi37mBzvzDUNIhcUSGBxhaq3LzV/gs6n6FTTl/GV68Xw+oerewWvenezbcfWSWSUlFqzZkikwGKbJt1QUhtGzjYf2OKVcDjsr7f0Kfg4jc3MoNw1b+ZIlqb95ZZWMZJkBAK6GZ25OL0+walO5p/mvdn99ox6Ls18Yz0bNACk/rZLnuz3XF7ycGnGy0GCUyY3Dp+E0VeOq+rMBYK6Luaa6kdvVf6u+TFWedj4recrHk52tKetLQDHOSQyQx99n5opNmLeaE7gTweS3ttO6lRXRuYDn90Rpp8lwQe1cxSALuOW7vD3pnvvePAjO7JWbcejD3+HKN72FJqdsxT52+yn3s93AA352BNta11Wa/9sOo4Jekt37+Uz0uuPr0ObTqSt2d4+Y6WL/cEOajZy5Svd1zj8Mll93V7FRAByTD1BfYyc99WP6tdS/Z610V741yi8q8yQf0VLO4B2f/o5py8oCmVu6elO5wWczuqlrVmPmJyzyFlno6P+OxeGPfO/pGBQuiznWgbniDZ11+/Izv4xEdU9i9r/1+BH0ZYyqV2re6i1Z71n9rPd8bl5YfGL0PADAD/PWukob6fO1iJ2+0OxWPP1cgiKKbCPJZTt1gfWTKX8AALZYVHoWrNmC92K0PqXT47i91jmiJRrKNZqZHePydyguVhpL7V8w6s/Srq25bWclVm/Wr5xk9td5zaiOlK/TJtTn8LgnxuGpMfPs7ejgdAy4d5SzRGkUbCXRS572n5FzfUsHRccsQ/VvnUT/Mzd1wdHJQsmUS3v2rM6mk6AfQO6vP2VpWebvwx/5ztGxAOCf701xtR+QP8MAw/ZHWblvc0aqpzrbDVzjy8emj2UnLL33D1R/syQX7bKG9SuvWXyhYY+Nw7XvT0VVlcS7k5ZGFuQuk16Px1mwZis2bvM2zFabBm1FZM3mHbju/SmWw+TJH3rXcLEmyrcd6vKT3m6bLIZn6ze8V786alZ1g2q+zknUmvGHvelqTs/GpvJdmLpsY9ZrXAIjYIMe+FZ3gi8lh62KoOn+TgPX+MNLfjlh4XrL1vBCNn9NdJE/7eTZ7/+yLKcHkoL3x0bni1XrUe7dIrtPXpOb/YNfljn8cPVh7WUihTzcVJ30zIgDi1x8e7qi8+6kpbju/al4YZy7yIVee+a8RkdVG+NhTu66rTstowPfPeJ3vDtpGb6YHmxgr7zm022mbZQyu96zgvnpBk1zkQDVcRaonsV52pEIt023z1pMPdG68OWJOP6JH7IarbgERsCWrt+Ouz6LNnIYBUf7YNVb5DWq8o/bj924bSdOfeYn/EVvCGvMbSrfhdd/XhxYoVNCYsrSjZEFpwjDpMWpqMwJLrdHxu9zdnj3lvY+1+S9f7w3xdFnqgtaRsO3zCKfupHkBim9AvI2m0tKbEj3vjnpgfbzGssJyGUvBQ5ete/tCUtsbcdRMc75nS9pe+xeNGnk0P+1ql+1GiKqt3+hPZr8GqZt1QOprMjgprLNSqIHhXZBFyKzFhs7Q7OyA9dEe8UoAVyUcNdJctPwabjlo+n4JV3RscvJEKalG/wP154bB4C5RhL5NdxJ+f1Li8N/9Kq/g1Fh4cD7v836t9n1+v4vy9D+hhFYu8V4nu4kg+WikkDvJz/s4dyh3qN0grb8OD81L9jtVeOl52T7zkps2VHp+Th+2WURyZeNVt45OYXf/J66XvXKI9qXHvvWeI6csKjhWOWZusNNDXaJuuwUFO0ZdPs1r3p7sq3t3JQ/WEkkcimqB7A6w3TSElXkYt5BXCgt8k4jhB7/xDhb24n0/4KWxHNP/jUIhh3KfUVZ9TBZ9XewW+k12+ytdA/RorXZQ7TVd1GSoxJmz0k0zhv+Oyo3RsHYualK4uZy+z2p6t/k6THzbe+nddC/v8Xf3vrN9f5aej+h+roCzM+PtmDa925n87rJmpNK1Aid9XqXbdju+DhBBCtiI6p7QURGBVhJjJRRaFqKI3c3oM4oVc/cHifB5TXXD6Q5q8zn772dXt8raQ8npRCqh5EGvdMWlqIKnLBhm7fhnwPvq+4ZVH+HIL9Osu4kEzpzEnU3s1GRtmPQA6Mzf7tdb3nrjgqsUw1xdTTY1EEvzvkvTrS9rRXmV965uefUPYEV6QqGk3qG5XribuYz503mYY+f1/75L+vfk2puzm/BVhL9mCvhtQv89Od+tt6IYiFOmZfbtCgVIT6Uq01eutHxPk7u+ygqn1bJy9ehO0Hy65wpR7F7D77+s/1KhuVnZw039f597JyTfMlqwvgefkTQvert7B5EKaXttBtdk3q/8sbt+mnVC9RjnR9ZJIwsuauQZe80fXmZz0vuOD9WoV0K2h54L+c/qECaBVlJ3FVZhTGzo49MunS9/3OgyD7zglryijeW2Utmg+R9N0WQlS67Bffpyzeh/Q0j8OsS6/lWS9dnD8sqtIdgvvBrJI9SMBs1033ESPefXf237eGmAOasyl4Y+5UfF5lWELOWcU9wi1TSRhcAwLTl0c439zIHNcGXSuT8uFa/nL7SUT5ntakfFVdyxur82Q28pVaQlcSdFbkTQ+K+WGdFZRV6/OtLvO807DkZcpIfZQWgUXrknO7n0yXm9mHqtBcjTuIU+W50OiT8yN9zA1ZYMitch/TDqD+nz13f4IQnfwjlc5NE+zP5Pd/j21nhVxLVX8HJ3MgjH/0+69+3fTLDdLizWnzuWueyl8CwP+fOi1+XbPBUUI5TPqmw+21YP3DO9agigx29jzDwNlrB65qcSWMaRd+F58aaL43R565vVJ9tL68oyEqinns/n+l4n/lrtqL7rV/mvB7EorBbd1Ri685K3PnpDN+PTdbcFASs1odyS8pUJn/HpzOwoqx6XqvdOQLxK0Yki3Ie3eTnFSaVjShaUddv3YkpLobcFhr/ehL9OY67z/ZvuGlFVVWmkKE9Ur6U9Z2cox0VlWh/wwjPn3nyUz/i48l/uN4/kGAiOqdh1SbjiLZ29idnKqsk+tz1DdrfMALbdXqDnJ5jve2FgK83r9NDjZu7FrVKi/1LQAL4fbsGMUKFlcS0r39f6Wq/7ToVwnNeGO81OYaY34bDjxaeN8cv0RT8/fv11mzegZd+WJT1mtXRlUJPEnsSFUEWOJyeFjdpeWrMfMNeqQmL1js/oI4k/75x5VdvUZRDGLN6Ej3eSEJU91mZHaperRJPnxMXVoFrynzsAVmwxjzYlhkvIfWNtn35x0Vuk+MI8y1jM/4oy8xZXaUT8NDp3ay3vYD3fMHLkl9Tlm309NlJlITh+KwkBmDiog3YXG790GALW7JZ3d/aHmU/h5gVFznPXDKVxAT2JQadl0pp/zMmLfZWmTN6EH8+zV1DFQXPr7w62jxf3ZNob48dJqNiitJ5kNlUjfoxriSe/uxPePZ746UmnBTgrvRxyYnFPsYqcNooofeVl3hMj1UaWAxyRr2sTObcOu5J1O9KtJM/zVq5yVY8DaejL1I9pIV9NcTx27OSGJC9b/8a60wWGaZk8ePmvffzWT4cJUUvAw4iJDXlUuZjue0V4s8Qf9rfyK8lMOLy29tt5T/tWeMI3Eo7lfZY6n/HOc/5ecF60zzZSU/IhIX+jAIA4HG4afZT4Id563Dow9/Z2vfcFye4/lyKmMNGVC89iUP/MzZruRbDz3B470e1zBCZK8xKos4NtarM/wrd2i3eQ1pnJK/zJ6+4DRgURLYnhH4Bxm60sQSMcDAU1GPE1TlxHTTA3X52uYlgRub8jm4ajeqL3PP3kUBR+qaJecw3X7hdJzFJ1PPbnfKyvNKnU1KV4nw5j0FQj/7RPcU+zUn0ei+rd3caDFKC14CRHRX+P9Pt3quFWUnUsTOgICNmvNwPqzeVBxIgp5C4jhIag4zMukKYuwVb6oylTo2zCyLO53PMbHdDmx/5Zo6rtSPzndvfWrseb6RVRNXl7ce1W1GZOsbaAhgxk5Qh+ss3brfeKABm58fupZbkxsugqc9NaXF1sd3/R5B/BzzD4TrgcX6eBmHasrKc+9XoFFzx+q+2junkDNo93QVZSYwiL9pRUelPtMv0Dzvg3lG45LVfvB+vgJndJGbXyKTFG2z9lqkeP+fpCsLGbTs9DWOiXK7Dj4dQVZjucr20x0bNxYlcEiO3kcXlT/aSdnHxCPMDdZ5WWSXx6ZQ/bE2JaFG/pu7rSqCl+75wHhk8acKuwOzesFa4H5gAqzeX44lv5xb8WnpFevEIHF6f67fuxKZyTQNW1Kc16s8P2fiF62xvOyqCJZMUBVlJDItSGPx1yQZ0veVLHP3fsabbX/TKJAy8b5Tue3oPqe/nrPGcRnJn644Ky9blIDNdp8f+61u/4dGRc4JJTIjOC3DeTFgFwcgfxuSYf9FNo6Oer7Z6czn++tZvuOx164bGFg1yK4nq8+FTfToxtOujBvF9T9y3dQBHtRZEj6lflbqr356Mh76eg2kuG8DyhW50bIeneLTOSBMlrJ1tesnw8FNXSeNctnCemeF9UbvlnfiGHssjJz/1IwBg3mrz0NYjZ7pYnJsiISXwzqSlUSfDkDZa5x+qYQ2Fk+Ea+993xlEN7YrzaTTtJeewrtDkLqUTj6tmy47UVAWrZxKgfy0p+wPxvg/8ov4ZL3p1UvCfl0f3qF+X/Nb0XGunc93ygdH1oD0Tdiv5ur+JlJFedzHJGhPNzwBaClYSffDl9JUY2rNV1MkgH1lllmXbrZc4ESLaddHUZNbf8UiTE36vJ/Ts9wsy60655Xq4acSnP+rPLyRxWgdLnZLvZqdGoWxwub7f31RLPuzfoamXZCVC2L9j0u5RP05PnO6VODO7Nuw+2/W2M9pzktH6vT7/XIUWuCbq693up4c+3FQI0VkIUS6EeF312plCiMVCiK1CiI+EEE1U7zURQnyYfm+xEOJMzfEM9zXi93VoZ8iObjoK6Y7IMxURt2ZaPQx+nL8Oxz0+DjsrcudOJiUIQ5C0996KsnLHZ8VtZTuMCfpe5zBUVklURBDMKy6C+oXiErjGz/0O794i+4UEP9aWbdBf/y3sZ3VS60t2071w7VYAyFlvr7JK+hO7Ic+oLz8/nh96hzA67DXvTjE4iN4xjNO2futOHPrwGMxfoz96odAC1+hRTsE3v69C+xtGYOM2H1dIcCmKOYlPApio/EMI0QPAMwDOAdASwDYAT2m235l+7ywAT6f3sbNvpPy85hesSWWqvI3iwfaQF81m/e7+xtZCtF5d/8FUTFtehhVl23PSkbSexN53fh34/Ntx89Zie0jRgiWAH+evDfQzJi/daHiN2inIHfHId+h08xc+p6rwaM91XApCPVs3AAC0b1rHctuYJDkUhz9ib01BNTb2VtOtfOhsp0Rf1i67cc4L49GZ+Y6prFFBmhNue7ip7mv617FfedZXM1ZiwZqtePa7Bfpp4m2U+QWe/T41HWb2ys3RJSYt1EqiEOJ0ABsBqKOznAXgUynl91LKLQBuBXCyEKK+EKIugFMA3Cql3CKlHAfgE6Qqhab7hvSVAvHl9BU5rzHiYLyMmOouUujaLTttLURrxSpDVR4eykNjQbrlNok2uhwS55TTJWXcDzeVuPuz6CJCSplKQ5nJeU3y9RIEt791nHrt1RVW5fvUqRHsjJOkFfzKd1X3YqmTzuGm5r6YvtLwPbNeK+1p/XF+KuLjNe9O9ill+UF9Ds0aJWw3AOsc48nR3ufpm1Eqm0p0Vu33kFImrgHbC70cRWT+P32OADw+am5YSdIVWiVRCNEAwJ0ArtG81QNApj9bSjkfqZ7DLun/KqSU6rCMU9L7WO2bWJfZXBOFgmNVuHvs23m2jhFVlqfMmYxi/U8ypxSEtMIsh743aRl63fl1eB+YMH4V0nMD1/hzXDfUeZqT3oGkDn1MsiQWlX//Y5Pu63oF/6pMI2Y19d/Df13uY8qSQ0qJqcs2mm6jN0BkZ2WVo/VKja4vr0N9za5bJd16K3hY7VuoVm0qx8PfRBuVPsyexLsAvCClXKZ5vR4AbUzjMgD10+9pcx7lPat9swghLhFCTBJCTCrbGE4I5SAKBNrWl0KeNxSUHRWVWLmp3HpDC0G2ilkV8pRIcB/9VpgPWyt6Z+/6D6aF8tmXGqxvWhRiafy7uVw+JwzaXzRuPUR2kuM0zfnSGyCl90Kzl89Omh0V9kdizF21BUvWbcPERRsyr5llf1VVMpknxaGXf1yE45/4AePmZk9HyL6npM5fwKK1Wz2PXAgycqxSdlWec9re+QL4eR2LwzkJpZIohOgN4HAAj+q8vQVAA81rDQBstnjPat8sUspnpZT9pJT9GjZq6Cj9dmjXTgKsW2Dd/P7aG8uPUP6UbcTU3OG+bjlp3bNLADjo3/aGrEYdYCdoOyoqM+tGrSjbjvY3jLA13y+sIaxO+P2A5lwp/1z4irtlD/SWwIgqhL9e5W3mik0FuaSAXW/8vDjqJCSKXplHLxt6Z9JSDH5wNP795Sxbx+1w0+eYsiz/10ecm16SZuE64+H+Rtm6H/fxrkpvxzB75CjpU3oStc+nKiljUSkK2sqycoyyudxdHEZxhNWTeAiA9gCWCCFWAvgngFOEEL8CmAGgl7KhEKIDgJoA5qT/KxFCdFYdq1d6H1jsG6q/vzPZ8T5+3BCrN/tfCSkURjdghceMMnN8CFz19mRfjqXmJHX5XFHYVVmFrrd8iXs+T83vU9YIemtCfNevVMQh89dyeq38sngDbvt4el5fY17ptezHIXqj+hfTi4Cs5uVaTUKv4rotO/DjvLW6QSK2hRTMSisJ500reSmOn+L0zValqfBlzUk02NdJHVF7fKvX/ZAZbmow3lTCOG9M4v1g5OSnfrBudAyhfGA3Xw9rncRnAbyt+vc/kao0Xg6gBYCfhBCDAPyK1LzF4VLKzQAghBgO4E4hxEUAegM4AcAB6eO8YbZvmNxewj/MW4sDOzUzfH/Zhm245aPpLo9OZozKtkH3vg3Ys0kgi57qimFlxC870oXbF8YtxEn7ts68zkpLypxV1gule3HK0z8CAG4/vofFlskTVKEkqCtTSuksuIoqIRVVVQCKTY7tPl1JcNOH0/DVDP2WfTvffVYQEQgjOuc/LdCfL+2F3YbszeUVvn920giDXjY19VQTt0tjuG0HX1nmfhqO9XBTieOfyP8AjX+kz2FSstVQehKllNuklCuV/5AaJloupVwjpZwB4DKkKnyrkZpPeIVq9ysA1E6/9xaAy9P7wMa+kfrWxlplE40WKk178KvZGDOb84fCVFkVbEu/0cRtu+zs3muPRgCA/u0slw1NLPV5GO1xXcB8dMxjYx1tn++VgTgI6hzbOW52b0T1P/wf5uzr4QK3fZd1fh92W1vCTqGptyYssbXdjcPDmRMeZ0oFSvv7Zy97ob+vk0rivZ+7i6598IPm01zMGte0wYpyo5u6SlKifD3DOApwXEWxTiKklLdLKc9W/ftNKWVbKWVdKeUJUsr1qvfWSylPTL/XVkr5puZYhvtG7cGvZltuM8MgIhhFJ+iexKAO/9uSjZm/pyzdaLhdvsgK6R9dMhLH7fDBdVt24KYPp+UEqCiEh7tbOXMSY9hDaVVJjOPQaKfem7QU7W8YoTu01nRJgYgubo6GqA66NlnzLAt7OZIoaG9JadB7qF7X00ljj9G2VhXNHRX6S8TYYTnctAAuebsjyLbvjGaYu55IKomRC/FifHeS+fyob35f5WmOSiHcWGHLp0AOepl+vlwz6vleUlYXHsL6etrCS1K4/f3v+2IW3hy/BJ9O8S+wU1y5PUc7KipN8w8ZUJBGp5UK9eZW+Z2X9MYhr6mqkrj2/akAqpcGsiuq9I/iyAhcnY7z8M5Eez2R+SDTk6jtZVP9bTRCxI9rVe8Qduvkn08zfy5k1kk0OKBZBTUO+Ygf1F/9rs9+N9xu2vJUkCanazcHoTAriSH6dEr2ouvrdKJdOhkmQMELvJIY4s9dKFdWFBPbk1pJ1LN43VbLM6jkU+zlMNb1li/xt7d/M3w/qHlXdn4Ro+AXXkdOXPv+1KyAF3G7OoarlgFymk9E9V0WrDGObhlXeoF//KCtVCj/mrpso+2hrElRPScx+3U7eW7Y5UhtVe+KN37Fui07DbdXklfI6yQ67QXfYRFUzBt7aSnMSmKEoxUuf/1XR9vn/8CK+Al+uGl42WE+l+ezhpuqvueIqSssIzYWMr3n1BnP/my9H6zny5D5Ejrbd1Vixh/+h/J3vJahg4AXVuWanRVVWLZhu7MEhGjjNuOCK5DfeWSYgppTqK0krihLXWvHP/FD3s1jzCwPoclV7VyjfjRuO7kX9DY1q9Qo6Xvlx0WOP7sARhjrCvZr2/uxC7OSGOFwnxWbch+mnobzsIjmmlHG41cY6ELN2KIgkZ2hrglgfcp8oZffbNtVaZmHFdL1HOQ6mr+v8H8euvMesurtreJ02Xk+1SjRL0q8+MNCJ8mKhNm5YwXSGa+Luesp1nQ9XeawoT1JlAqxtghip0jiR+Oz12Ns32k8UkI59laD+Xbmc4M9JSs2rO4O7bracfjahVlJDIDRhW9nzb0+d33jd3LIBm3Gs3pTORau9W+Yj1HGFocbPx9MVS+unBMpLd5nOdEVrnifWl8c8eh3Oa/5dU1FdWmqP1Zd6Hx+3ALPxy4t1r+gP578h+7rcWL2e7ARNnqJziud8jTctHoeZ1Q2mQynt6roxu1OW7R2q/9LlVlcy1OWlWHVpuplRoJ9VnC4aSzYWXdom04Fc/ivy2wdP+Zl4UQZcO8oDHlojGH0Lb9wDqo/Tn3mp8zfOUMgeYoNCQEsW78t53WrU2Z0V8S9Qu6G3txBv+YqR3W+3hi/WDcNr/60WG9zR9TfKNaXQ5zTRrqMAp3ko+oh/dkXqp2sx5fhph73b1DL/dLrcSsXHfLQmKwyhh/s9LSvUa0runuj2r5+vhusJMbUNe9OwdRlG6NOBnkQ12dbvLJif8Ts+RJrK8rKMWWZ+3lx2gLMywZzTEhfEI1Qdq5/9Xq76iH1bRpHXxAJklWwCNOeROW9mOblhUA73DSfGQausfHUNqpkOWmUirLBj8/wlGMfH5f5++JXJwX2OWc8Zx2HAGAlMda27sjtYdyyI5joeBSeOGWG23dW4sVxC32bhxmVpA0LC2Lujl1/e0s/+qbVdakuwPy2ZEPm9btHuFuYuVDFodCr/qkvGdzB+/EScvutKCvPeW3WSuM5ojLnDwpbXBtbg5AJXONioXlflsDweAwvu+fLLbZk3TaUbd+Fj35bjvY3jMC/v5yVeS9O17Ld4H6sJMbYVzNWWm6TLzdWnAR9I8dp6YSHvp6NOz/7HZ9PT/bad6l1ErP/HWdJq9SqCQGMnLkq6mSEzq9fLIr2GG2hU52Glg1qeT++6uyMivG1ccKTP+S8tsEsSFHcM5ICUBynknXAjALX6NHe034MN/U65NOssVn9K+r1WMZtuKlbgx8cjWGPjc3MD316zPxoE+QRK4kxxmFcpMfpWjtmlMWl9ebFJknusgz58cAJk9U5Uz/DR89aY7yhjrcnLMEXFostF4wACkPLNmzH4Y/kBttRaMtu6kLapa/94j0BquPn00LwVTIVcXCBjwHN8loA9bkCqiNmTp+dCtNFr9gbiugku/FazzTbXf07rtyU26NvtnPS6o9xXhLIKVYSY06vQrCjorpA/+b4/FpMNkxGD5+4T5TPx0AhXmlPyRGPfh9NQmJm+cZgHlZOl3G4Yfg0XP5G/oaudyKInsRXflyEeau3GL7vV9CdpNi+sxIPfz0bOyuqPNVbhAA+mxL/CK35LMqh+WFTynu50U1zt9U2xsThDh+/wF400IH3fZvzWpwadjeVB7MEUhKvZFYSQ+ZH+f41TTS6VXqtMmTJ6LdI4o3s1S+LNlhvFGPPj80O4293vD1VY9uDOTfnR6+R77ZPZviQGme0PRN+D+2K26Xz5Oh5ePzbeXhz/GLrjU1MSni+mHTvTFxSWD2JypxEF/v60XjsNcjNlzamSBkfz/Wuvrv2vSm+Hm/qso147efFibyWWUmMue/m5A7r2qEpAMfp5qJkemfS0qiT4ElFlcSCNckZEpbk1vEkpz1fWRU+7v9iVta//X5mxO0ZVL4rNdpmZ6W3xqKfFqzD7Z/+7keSCoPP18H1H0wrqNxGGC2U6EGUt+bslZszf1s9N+w0XC1etxVnPvez4wCOs1ZuwtcOKrArN+3IeW1XZRV63/k1Pp683NFnA8DxT/yAWz+a7ni/OGAlMSaMWnDWb91pvW/s2nGTza/WnrFz1/pzIMqxUidK4SPfzIkgJe4k5Z79Q2e4anlFsuevFiLt/PZ8H32axBZ7MlBAP6YS3fSxb+dlvW7neTF6tve5wE7qpnZiIxz1H/vTPuzkSQ9+NRs/zl+Hbx3Oex76n7G4xOPc643bdmHjtl246zP3jUZPjk5eEBtWEkNmdBM+/V3yLp585VdPiV4vsB/8DFyjNW/1Frw1wd95rs98Nx8/zPO3wuzk4RNH05c7m9MXtI3bdmGXTq/LIQ+NAQBMXLQec9Nz3v71cfjDJePAacW+orIqtKVlnHY8JCmS4KbyXbju/Sm+Lv9UaHM0QxNE4Br/DxlbXh7tn09zP9RT4SSP8zs2gpNlPqJYRUgpF63dsjPxS4Y5wUpiTLw9IdnD/fJJvjVc/roke16NWWZ87ONjcePwab5+/n1fzMJZz4/39ZhKVFbyj17jgDK380//+ylWS7ckQaebv8A9n4ezhuRrPzube6ct4D3w5SxPlbAge8af/W4B3p20DC//sNDW9l9OX4Hnxppv+6f//ehH0igE+fY8NhNEA3A+BbpTGreiCC6oHqn0kYshp3ExZvZqHPrwGNvblwSXFApKPt30FDyzqIfbNUtflO9KVQqqqiSKYrDoN4VH+e1JXz5nu0+NmR/bsO1OK6CXvV4dRVe7fqri1yUbPaaKwlJIc6CN6j5h5T1Bfo5Vvc7sfSVZSiUx6itio9naqjF3y0fTHeX17ElMIDvhkcmaUaYU5HDOsAmR26iwdssOvJ3uNRoR4tp1c1dttt6IIsN8pHDo/da6a5fFAK/LwjZ12caokxCaFRujvQeDvNUWWqw16mS4adhlNO1oLMXKsnK8m/Cgf1ZYSQxZUOuWkXOFUPiQUn9C+A0WQ0q9nJrPp63A8F+X5bx+p4cJ3xSd+76wHjI5f41xbzXFj9797WWenp95aWWVxJnP/Zwzj1lbMPx5wTosXb/Nvw+mWNKuB5jP9mxW1/djOrk19e7jpev9KbN++Fv2EM1ZK+03Gi9Zvw0/zluLr39fBSD8OYknP6U/PP3sF8bjuvenoixBPYtO69esJCZQAdRtIpU//YgpYQepuOKNX3HNu/6uM+QGh2U7YzSs75nvFui+rnbYw9/5nRwKkN6tYVRJDHtgxfqtO/Hj/HW46u3fABg/705/9mcMemB0eAmj2EhSodwJw+GmIX1+lFG3zfKZx0bNxZmquAZBz0m0e/S1W1JLZSQpEJjT4dusJMbEEraIUiBk3vWY6kXh1KMN+0/m8u06oRS7BeqKKv37Kuzr4kWbAWr0LF6XO6Qt3xr9CLj142SuOaf1/Zw1pjED/OCktz2oe/3dif4OySyKuOYiBDBn1eZEz020i5XEPHDJa5OiTkLiVFVJwwXk8y1ei5setTj3wh3z37G2tvtkyh8BpyS/vOShcK5Yun4bNpXn/4MzSf7+7uSc1/R6DHZVeBhu6nrPXE+PUZaDcp4RD0kv2ULRGDE1nDnuW31cDiVK5744AYc/Yj0Kw8vz+NAYjPK47oOpvh7P7ZzEt31c3mu0ahj0Z1OTU9bgcNMCoO3ajtuaa0nwzcxVhu/lU+AawHyR2holycsC5tpsec2vXzF4m8q9F7wGPTAaxz0+Luu1z1XBkX5esM7zZ0Qlxu0mpvR6EvS+y06bPfRB2lFRmfOa1Xmfvrws87edaZXKsi6UXAm9FcnEuvTQTTvcPtutYjG4dWuC1g52eu6SV0KkggoJbaR8VyWeHD3P9tBDLe3SD/lKSvNWyL5tG9s6ztRlG3HCE+NQvis55y3fKvtJsXhddqXkijeqlyS47PVfcrYv31WJKVyDMTB2G1XiMK/mnBcmGL5ndDsf+/g4LHAQOIkjb5Lv2wIIZhPFaB4nn+l36pwsS+NkTuK2nc4aP//61m95vSbw+q07HW3PSmICRTm5OC6eGj0PD341G2/bHOv+5fQVGK/qxVhr0mpV4SHKXxyt3ZKbKdQoTt36RgVD7au3fzIDU5aVZbXaOxX2M49VxPip0rm3bhw+DSc8+QNWxXQJBkU+5bt638TL/elXgXbCwvWZv7XlQLOPMCr46O0yZvYaFykjCpc6q8yfnMcfTiqJ/3LYy/dpnk9TcTpiiJXEAvXOxCWJbi3Zke5B3Gxz/tNlr/+K0579OfPvLi3rG257V54t1fDE6Hk5r11w0J4A7BcMlc20efOWHRW6BX8rr/+8GCc/9YPj/SjZ9C4VpRdxsw/DXcmmGPQaSinx1oQlvswvi/7bEPkrmp5E+9tG2QhbUmz/01eWZTc+qkefVVZJxz2NQOq7a8tCFTEYrh8EVhIT6MVx3gNMXP/BNJz4ZHIL6UpP2LxVWzBzhfmcTL1CSHG+RacxYJTnl6YzWaPeEeOHRfV5K9u+Cz1v+wqPfDMn85rdOWe3fDTddHjJknWpACj3fW69Rp9hSgvjJ06+zO/Eon5YdHsSQz7/P85fhxuHT7PdKOf2fuawc0oi9d24YmN2RSeoCqSjNRUDSYE9JQ7Kb9rb/45Pq3sWbxw+FXv96ytf0nTxq/k5jL0gK4nbEj4fzY8AE0mnPPiH/7YcR1tEuzz3xdx5LjFoSI8F9dpovyzeYLid3vnauC01xEsdRfRckzlFeoxa8QY/OBrHPz4Oz3xvvUafEc7djR+9X0R5Le73ZNzT54Tf38XN8bakG+/enrjUNGiFncrrpu2MqEv5RX1P3fRhMAFXzD7TinbuuZFpy9xPUTFSUuy+6jJ27loAqXS9O2kZAH8q3aPzdBh7QVYSV8Z87gvZ4OCm1qv8JLlx2UnSrU6TevjfaJNgAEbDTYHUGp8bbEyGlpB47adFWZ/T966RhtsvsvkQMpTg3zjpjnvcfpAj9vSEL6r5lT1v+wrPfDc/53W9dYK1V4VZo8+Fr+RnKz4VLrNAUkE1WAWRL7wxfrHvx3TSk6ilnLtx89ZmXut/zyhnx0DhNEIXZCWRkm/+mtxFk/UYzZdzMvE5n8msv6Xu32pGZ+2rGSstP+uHeetw68cz8OeXJ2Ze276rEr8sXm+yFyXRtOVlmPGHvRZk5ZrKs3hRsdGwdmnOaxWV0ZzsLTsqcN8Xs1ztKyHx0FezMXGR/fxixcbtrj6L8s+slZsw6IFvbTVoFqr/jJzr+zHjFghQKfqpyzhmgQx1j2Hw+pVv/mrwTnKxkpgnFq6trjTNWrkJve/8Gqs352+PaZHNlqRXf1oUbEISYO/WDXVfr6yS9pce0DRdbtlRgeUbqgtges8Bu9ffKU//hImL1mNnRZWjUPaUQDq3rd5DO47inTpjemuh6g3jDns47aWvVS+H8t9RJoXTdLoEBJ4YPQ9/+t9Ptj/jlZ8WJ3rUCPnniW/nYen67fh+bjKGBebL8PbKkCuJU5ZuxH9HzjWcyrLFh+laRqNfPpu6Qvf1JGMlMU8MeWhM5u8Xxy3Exm27TIcPJp3d5/6KPBxa7KRlTkKiY/O6uu8tWpfdG2vnoaRkjn/630848/nxmdczQ2NUP8xRj35vO52TFm3ALR9Nw6EPf+d4HR/DtPpyFHJr2QZ7vThKr77Z9Tdn1WbMs7neXxy4Xb81CHbvgygLpXrLUqzevANL128zHepuxzPfuZ/XTPknKcPbTYebhpgOr4LoSTTLq0548gc8OnIOznp+vG4ZeN3WnabxFygbK4kF7u0JS7J6IePq31/OwnMugpjU9DDBOV+4yaLVmXD7G0ZgimbyuTairJQSW3dUYGdFdeF4wzb7wSQkJH6cn4qM6kdLH4VPG6Dgqrcn52yjt8yFUmgzKxQd+ej3OPyR77wl0CMnwQ1e+XFRcAkpIOph7G4bj5ZzyCklUJIqgmbM8vUg/bZkY9bUFrVpyzbmVDRXlDGf0MMSdJ7ZWVGlithkvf0Nw6dl9ULG1dNj5uOez2diqU6AAzNGpyDuQ9v8YnQN6LWl2jkjZm2wz4/1tjSL38MOE9JgnDfemrjE1X5JiW7qRKFFoA7yt1Mq5896iHRM+euXxettlQuSlr2YNUpFsYaiW3FMq15vspORT3H8TkEpMXtTCPEabNxbUspzfUsReZLvraZnPPczxl1/qO3tC+heNuTncDPDYXRCoNLjyV66frvtdNhRKNHH4sLt76Y8r6NqcfZLVsEhRt9l9WZnQRmC4qZglZShgRSdM54bj50VVXjjov3Qv30TPP7tXFxxSCfUrlGcvWHujIhYU+6WpFdIgki+hMSuyip88MsyfPjbckgJvHvZQE/HdNKwN2VZGXrs3sDT5yWFVU/iPADz0/+VATgRQDGAZel9TwCwMbjkkRfTlvu/Pk3Ytu+sxOs/V4dQtjvPSWFUxpi0qHDGpBv2prrIvP/PJGiEl4dvEA8Sli/D5u5HnPFHaujyu5OW+pkY3zn5dh+r1g5NiqAaGNdt2YELX56IjQ6GnxPZpUxxmLliE94cvxiPfzsP174/xXD7uDSkf2KRR8h0e+x2naWEHvxqdhBJCkRQjX/Pj12IG4ZPw/iF6zHBQcRjp/TmNX742/LAPi9uTCuJUso7lP8AdAEwTEp5lpTyJinl2QCGAegaRkLJHnWr0xvj3Q3/ipP7vpiJWz6anvO63WxHW0846tHvUVkl8cg3czynLQmcZM+FMgSXglHlMVbLhIX5sxSK3YWm84VZ3vH8uIUYNWt1VmOfo2MzWyIbqqTEjnSF8bOpK/Ca5npTrtH7XS7B4re/vfWb6ftKevWW69KLThxXQQU33bDNfYA7Iez30L4zMd6Nl0FzMidxfwA/a14bD8BbHy+RCSfBT3RpMtjZqzbji+n5F6bYjXdM5pB95FNLmZsoj361PLInMVxef7ekr12ar5UZJyHs9cLOK+flYZcNc7NXbXa1HxUW7WV6q07jcpLkS34SxHBZJ4fMl/MYFSeVxN8A3CuEqA0A6f+/B8DkANJFLuXb/VCsKTc2rVsDgP2MR6/YuWpTPOboRO05baAZ1Sm9Yfg0R8cS0K+UPfHtPMfp8usa5pzEcHmdkxr3SuKM5Zsw9D/fY3P5LuysSM2HSfp8ITtmrbRfSbvJYb5hRQAYO3etr8ek/GTVQ6iOvB1X6uzkg1/zI38JqidRe27mh7zGclzmegfNSSXxfAAHAigTQqxCao7iQQAYtCYmKiqrsGNX/DNCJ7QFRyVbOKRrC1v765U7K2K0hlnQpJT4eLK9+VF28/IbHRQEV5Y5X6cyD56LZKJcZ44NAJRoW4Ri5t9fzsKslZsxafEGPDF6Hv7x3hSMmFY9KqGQL9u/pofOfWQzryEK08qycoycaX/d6LLtu7B6c7RrLN89Yia63PJFfgX0CtAx/x3raHuvySqUaMu2K4lSykVSygMAdAJwPIBOUsoDpJSLgkocOXPOCxNwzGPObpS4KyrKLjgqGWaphwJlEIu7FpK3JgQ71/Wn+ew5SCSbt5XReqd1tNEIY0YZdllSJDKt1pu2F9ZSF0amLkt+kDTKP+PSvdCL1jlbC/qA+0ZhwD2jgkiSrtWbUhVSbaP2rkqJ0bPWhJaOIARR3NI75A4HPcXxbo6MF8frJEoplwCYAGCZEKJICMG1FmPipwXrok6C70q0lUSHOY7ekMOKSlYS9Whb/EbNXOVof71z7SYYzq0fz3C8j56Yj17MO3Z/6Z0GPfkn79vGv8Q4MHHRenS86XOs22I+fEhpXCouEhgxNdWDOHc158tZYUAsiorSG+i03LB1p/5oh6Bc/8FUAPpBUnZWhpsWv4V594/TGZr+o8dG5/Vb3QfIyQe2K3hCiN2FEB8KIdYBqACwS/UfJcAP89a6Gv4XpeIi/eGmdukON/UahjEPvP/LspzXtMMvLnxlkufPsTukIx/mXhQ6L/OEgdxRAwqnBTw7pizdiD/970eU76rEs98vQGWVxKTF5sviKMPUi4XAkK7NAQA1SqofobyG7XNyrgZ1bhZgSiifaK8qpfc/7oOHdqUbrvXm/yZ9dkwQ+beRs18Yn/v5Bh9vN1VBLq+RBE56AZ8BsBPAYQC2AOgD4BMAlwWQLgrAWc+Px7GPJ2s4qrYn0Wk5TK/YuYs9ifjD58YC9tqR7Yn8qovlDxtrlm3RiZjp1a0fT8fERRswc8UmKFmM7UquEPht6UYAwDPfLcDTY+b7nr5898qPi2xtJwRb8sm9rTtSeUfc5/UZNZAB4VayghDEuffcIGdQYEn6uQ6Ck0riAQAukFJOBiCllFMAXAjgH0EkjPz13ZzUuPa1W5L1wC0uyr5Et+yoMAx8ccHLE3HUo99nvcbANQ629fA5N3+oH26cWW7h+HG+8+HuB9z/bQApsaY0PlVUScxckWq9tyofKEG0Kqtk1n317y9TURV5rRvQOTHz19ibI1ZRKTHjj00+J4gKxe2f/g4A2FQe7wFvJnVEz1Gjo5ak5L9ks/GqkJQ42LYSqWGmALBRCNEcwCYArX1PFfnuvBcnRJ0EV4p1mjG+naUfpczodS0GrgmGXoXc7mTyJD1IKPmUYeyjZ63GkvWphe+tWryFqsdROwyegrGLUwPIgUkGQwP/+d6UkFPizJjZawwbr52sUxpHce3F1UvWwrXhLqORBE56EscDOCb991cA3gEwHID3iUsUC19OX4F/vOt/Zrp2yw4sTRfEnNqu02voJNMUOjUXzkkMz6dTGBKf9H2uWj5Ca9Ki9Xhx3ELD971SegWf0hkq+vDXs3X3qVDNb9LWEd+ZGGzE33wzZ5W9gD9c65ScMFrmojwBS4MZ9a7HtZJlVxDJlx6Py1zFPieVxHMAfJf++2oAowFMB3Cmz2miiFz2+q/44NfcgCZe9bt7JAY9MNr2OPK5qzZjQ3oeygKdjLNKSt3Kn9ro2avx6k+LdN8rpOimTiILRvksSvqQGrJPiSJ6xRu/Gm7zf//7CXd+lhoqFsSlodcTqHzO49/O091n3upUK3OVlDnrt9704XT2hjvgdTTHR78tz3ltcnqeKJETb01YgiXr3DVi+0nJX7SSPk8uSdGNmYfncrJO4kYp5fr039ullHdJKa+XUho3B1Pird5cjkEPfIuFa52tM6RHWVvMyhGPfo9hJus92rmR//zSRPzr4xm6QyCZEejzmpl7aZ37z8i5nj6b4kmvYeiN8c563fzIe4DU3EGlIqFXSbTbYl+lM9w06UPCgqR3ZryO1tWbO3Tikz94OygVnIrKKtw4fBpO+d+Puu/b7fH2w1/e1G80S3qbdhyzxls+mp6oymuUnCyBUSqEuEMIsVAIUS6EWJD+d40gE0jR+nzqCixdvx0v/2A99Kt8VyV2VBiv6WMnXsy89LpjSvTNnq0b5mzjZPhFoQ9XWmM34iTyr/I8VmfNJAqX3lIrRoxGGjgt/G/dUZHT+i6lxNNj5meOpe0JdEJK/f3zcZ1aP0xYmDtPzO75//r3lbqvL/Kp4YAK100fTsusyWsUQfd/MYhcnPSldYKJbur7IcmAk+GmDwA4HMClAHohtfTFoQD+HUC6yEd2wsxbsXNPdrv1Swy8zzhaoZ3W49krs3sbm9bNbYNw0jKl25NYQC1I934+K+okUAH7LeQhgOW7KtHjtq9w14jfs17XFipm66xHZrfgUVklUaTz5Jy+vMxuMguK3jBQu3X035bk7gsAZdvjHa2S4u/N8Uvw1gTzUQ12Kzgv/7AQz3wXTIUy6aMUdgQ0HzTZZyU5nFQS/wTgeCnl11LK2VLKrwGcBOBUOzsLIV4XQqwQQmwSQswRQlyUfr29EEIKIbao/rtVtV9NIcSL6f1WCiGu0Rz3MCHELCHENiHEaCFEOwffKe9t3VHhKsz86k2pnjyruX9aZmta2TnU+IXZrfF6GYFVxm3V8sZWKH165+0TB4FnuFYiaVU6GCslhICU0vYaenq2pNdFe+mH7GNoU6E34sFu41GVlDisW8vc1xNemAuTXh58wcsTw08IkQm7d/Ttn/6O+74IpkE26fP1f18RzBI2Xk/LN7+vynltlk7jYaFzUkk0KgLaLRreB6C9lLIBgOMB3C2E6Kt6v5GUsl76v7tUr98OoDOAdgCGALhOCDEUAIQQzZCKsHorgCZIRVp9x2Z6CsLzY51HCDzs4TEYcO8ojJ27JvOa9obcsHVnZqFa+6wvlVd/Wmy5jZNKIOst9umd1Z8crH2X8GcZBcCogKM0QqlJmVoT77ZPZvjy2epKmzbP0BvuaPf6vWH4NOzeqFbO60kvzIVJ71TZXcKIyG9GvXVxuKXjkIa4sRvfwoze+qthzkFNCieVxPcAfCqEOEoI0T1dUfso/bolKeUMKaUyQUqm/+toY9fzANwlpdwgpZwJ4DkA56ffOxnADCnle1LKcqQqlL2EEN1sfqe856bgooRinrqszLB3aN+7vsHgB0Y7Oq5VT5Ne5U9vF6u5jRe8Ut0irT/clPQ46TUkssOod+2Qh8bovr5Tc3M7HWqlzkLULdjaoxSZRDe1YjRagh2J9u2wM0GdKCCjDRokpJR4d+LSzL/jsPxE0oebBuG696cGMm2I69/mclJJvA7ASABPAvgFwONILYNxrd0DCCGeEkJsAzALwAoAn6veXiyEWCaEeCndQwghRGMAuwFQL943BUCP9N891O9JKbcCmK96nzywypzWmQwt1aO+/aSUeGfiEmwu36V6zd5x9DLu1ZureybGzK7uAS30wDVO1KtZEnUSKM8YNVJt26kf4Ep7tz7wVfYQrh/n2Q9GdOzj4zJ/a5OhVxbwWuTgcFP7pnC5CorQiwaB+L7+fRWu+2Bq5t9md/TqTeWOGlbXbdmB35ZssL29Ig4V1ULB0mIu00qiEOJQ5T8ABwEYA+ASAMchFcBmdPp1W6SUVwCoD2AQUsNEdwBYC6A/UsNJ+6bffyO9S730/6sjApSlt1He10YLUL+v/i6XCCEmCSEm2U1vvlrgoqvej1YbIURm/cPflm7E9R9Mw00fTneeFp1M8+j/6C+ZwSUw7Ou5e24kWc4zJC+c3mvaOdDfz8muFFoNBzLKp9Sv76qsQrHucFOJmR7mz7AwR5QMemslby7fhW07s6fQmE1tOffFCfjbW79hU7l1EKUVZdvR9+6ROOkp/aU2zLDtSV8Q2e2GbQyIpWXVdfCCwevKzyPSf3ew+4FSykoA44QQZwO4XEr5GFJzCQFglRDiSgArhBD1ASi1mQYAylV/KyWFLel/q6nfV3/uswCeBYCau3Uu6Ntu0qLc1qxxBssFvPFzKvqXHz1y170/BRMXbcCEmw/LRLxapZqbpPej6AeuyW3xcdKrWUjRTZ2oqOIQMPKXo+Vq0oFr1HL+7fDzpZTp41a/tnzDdv3hpjDOB+1gYY4ouf47ci722j27OGmWfS1PR41fuMZ6OZabhk9znS6OUKAomfYkSin3NPivQ/q/PaWUtiuIGiXQn5Oo3BFFUsoNSA1L7aV6vxcAJbLBDPV7Qoi66WP6E/kgT+n1Dj3zfW74ZgFgdrrl3o9W8onpyunqTTsyY7+NMsD6JkMfqySreUHY5XHV3oe/meNTSihfOLmipJQ5DVjabMcqG9pcnt0T8PDXudfkP96bor9On9Sfq2hX0tczIyoUeiWIiiqZk7+YlXuUsoveEi9aK8qqG8OdzjHkCAWKkpM5ia4JIVoIIU4XQtQTQhQLIY4CcAaAUUKI/YQQXYUQRUKIpgAeAzBGSqkMI30VwC1CiMbpgDQXA3g5/d6HAHoKIU4RQtQC8C8AU6WUXBzOhJvIfm+MX+JbIUhKoDh95annLO1SBTOoU7PYcH9n6yQyco1d7Ekkv81xGFL8ns9nZv1bW0CyKjBpF79+buwCzPijDP/6uHpY+9otO3QDFEhIW2u5GmGACaL4cdITp51D/atqnc7yXZVZx9qanletXbYLSDUYPfHtXKzZnIrVqM5vXvtpke306KWJUtgoF45QKolIFcsvB7AMwAYADwG4Wkr5CVJDVb9EaojodKTmKZ6h2vc2pILRLAbwHYAHpZRfAoCUcg2AUwDckz7ufgBOD+H7JJreQtB6LWva+tXqdIZnZwy+mSopMxXV35ZsxB2fpjp++9090tb+Ukrbg1/1tmPWom/e6ty5qms379DZksieuTrXlBPaSuEPFoFrtOXByiqJs58fj3cnLcu8Vr9WCXq1yZ1/K3WGsTvBOiJR/CzbsD3nNaP6xV2f/Z71b6WSt21nBbrd+iUe+Gp2zj6fT1uZ89pvSzfioa/noP89IyGlRK3S6kbvlZucPVNZF6IohRLOMF2ZO9jgvbcAvGWy7w4AF6T/03t/JAAueeGA7lArHdpeOKXAVm4QmdAubcHvpR8W4bbjemQWwna6vxkGXrFvlc7Da9pybVwoovBo7/TRqsjFerT3u97Q9KoqoGm9mrqf5SUEOoeFEcXP4Adzl+pauyX3WSelzBmuDgA7K6pwXDpS8ge/LsMNR1sXN9W9XD8tWIcaxdUt8//7bj5qltjvn+GcRH08K+EIqyeRYkRvCKad8s3dn83E7JWbPQ9/8HpzO1liSy+pHKZgXwUfUBQS7RqJgPNW9Pd/WZb1b73L16gyVyUl5yQSFYD5OsFmjO7eyUs3Zra3mz2oG+K37ajMaXx6asw8ewcCh5sa4WkJByuJBUh3jTAbN9yIaStw1H++1w0f7YSU3iqKTlrs2brvTQUXvaaQfKqz5pgfFa+NmrDmRsNKpYTu0hh2FXphbun6bVEngcg1o9tX1QloO8p7qWqnKilzRjg4iRbPnkSKEiuJBUg3cI1Otc3r3ENj0nLIqt7Qx8zeEfdkFhKvDQJEdukVnIIoHxk1HEnYH4qvf1zXu+aFQQ/kDusjSgrjmOnVecLKTeXYWWHdcKquJOov7eWkodv2pgXlqxm5c0HJf6wkFpjm9Wvq9iT+vGB9zmvPfLfA9edMWrQevyzOPSaQyvSe/i53yQ2tsu36lVQnmaZegbDAG/wdYU8shcVuQK2znv8569/v/7IMPy/IjTBoxLDHj8NNiQqW0e2rbTd675elhseYvXIz/vLmr1mRwvV6Ap2UYQp9hIKR1QyqFwpWEgtMav1B/6K5/LExN3IYAPzf/37CKU//pPuelMBYG4tWGwWyeeSbOboTzPWwFc6brR6DFBF5obcqyw/zsiuE/3xvCk5/9ufcDR1K9SS6359LYBAl19xV+pGYtVnCbJNlfa5+ZzJGTF2RdSy9bMFJgxIbnyhKrCQWGgHsqPCv4D9q1mrT99cZRBHr1qq+5bFfNVlP6I3xiy33T32Wzmu29iSiMOk1/FgVkBavyw1AYWWBTtCK1GdxuClRoZqwSH/kkzbQ36s/GZc9StKtTOoROJVS4oCOzbK2c9STyIyFIsRKYr7TFrIkcNXbk3075LxV5otlT166MXd/ADVV6wYZ+W72GsMhIDP+2GS5f+qz9IabMtMlipupy3KXW7G6Uw9+cIxvny89Djfl0Gyi/OMkR1B6GV/8YWHmtaoqiab1arj+fMaOoyixkpjnfl2yMdDj92iduyi1ml65yW5hSi8kvlMstxEl14qy8tA+S8JbdFNGISQqDBu27tR9XSmzTF9e3YjttSeQjdoUJVYS89y4edlz/xa6GJ6lpe6de/SbOTnv3//FLKsD2Jr7I2XupHGn9DJYZrlEyTdrZfZogvlr9OcU2VUlgcZ1Sm1tu01nri7riET5R68Mcvkbv9je3+sIA45QoCixklhg/M5v9Fr6/6eKXKof/tneEI6Fa7dik0GEU7t0C27Mc4kSbfryMgz9z9is17Z7DLLkpMX+PyPn5rzGwhxR/tFbmsfJCAev+QJXoaIosZJIjjnJ83R78mTuZHCjAtpTY6yXyjD/fE+7E1EMLTeIquzFJ1P+8NR+xEoiUf7R60l0cq9XeBxi8OmUPzztT+QFK4kUKKOFZDs2rxvS5+sNN2VhjijJ9MpoO2wscm1GL3COE3rLdRBRsulWEh3c65yrTEnGSiIFauqyjTmvSQk0qpMd7euFcQtztvOD3rAwIso/Teq6jyCo8NIZWMFaIlFBcBKMprJKmi7nRRRnrCSSY07KUU+Ozh0uKgE8+/2CrNce0QmAExSOCiNKutyb2EtkUj+MnGm+ZiwRJY/enEQnw02rZHa0U6IkYSWRPBt43yhH2+tlsGHO52ElkSjZ1m/NDWjlRx2RQ9GJSG3jttzlLpyMIOVcZUoyVhLJsW07K7L+7XgtM921Ez0kiIgKyk0fTst5rcxjJGQiIq3Vm3fkvOYkErLXwDVEUWIlkRwr2+atMLZYZ63GMCd3s7eAKP/MWbXZ8zHWbsktEBJR4dIrL6zbmtu7COivs/r4KMZFoORiJZFMHbFXy5zXvNbntuouRM3hpkQUra+mr4o6CUQUI07KCwd3aZ7zml55hygpWEkkUxWVuRH7KnVyzclLN9o+5gadVrgwR2R8/TsLgkT5psKHVaeLi6INfkNE8eJoXejgkkEUCVYSyZTe2mN6vX5/eeNX28d8PqDlLoiocK3a5HButI4iVhIp5m48ulvUSSgoExett70tRylRvmElkUzpRQzUm7TtZCHrw7u38JIkIqIcDztYRmeRzrxoAChmHZGIVN6euNTT/t1a1fcpJUThYyWRTOmuEaRTH9ygEybaSMsGtbwkiYjIk20G84TYk0hxF/FyoOTQQZ2aRZ0EItdYSSTH9EZUVDqYVMgRGUQURyWsJBKRS0s3bIs6CUS+YiWRTE1YmDse32skUo7bJ6I4YuAaiju90T0UD78t2Rh1Eoh8xUoimdqpE900zDUNiYjCwwI4ERERwEoiucA6IhEl2Y/z10WdBCJXvMxJfOvi/f1LCBHlPVYSybHN5bs8HoG1TCKKn7cmLIk6CUSBGdixadRJIKIEYSWRHLvxw2lRJ4GIiIgo1kbPXh11EohcYyWRHPMaeIaBa4jM1Shh1kxElHTz1+ivyUqUBCyJUOi8Lk5LlO9qFDNrNjOwA4fNUWESXCiRiELCkggRESXKTwsYeIYKE6uIRBQWVhKJiGKGBUEi0sOORCIKCyuJRERxw4IgEelg1kBEYWElkYiIiCgBOCeRiMLCSiIRUcywGEhEerR1xMO7t4wmIUSU91hJJCIiIkoAbQPSg/+3D/Zu3TCStBBRfmMlkYgoZjikjIh0MW8gopCwkkhEFDMsBxKRHm3WwLyCiILCSiIRERFRArBSSERhYSWRiChmWA4kIj1Ckzto/01E5BdWEomIYubqw7tEnQQiCthZ+7V1vA97EokoLKwkEhHFzHkHtI86CUQUsA7N6zneh3VEIgoLK4lEREQxN//eY/Dcuf3Qv33jqJNCEcrpSWStkYgCwkoiERFRzBUXCRyxV0vs25aVxHzhpn7HOYhEFBZWEomIiBKCVYTC1rxBzax/252j+MJ5/QJIDRHlM1YSiYiIiELw6Gm9Mn+7CUJzUKdmrj53UOfmrvYjosLFSiIRERFRCKSs/ttpHbF5/Zo5r9k9hlGF9JZh3R2mgogKBSuJRERERCHIqiQ67EosErmVQqfH0Gpcp4an/Ykof7GSSERERBQCVR3R0XDTxnVK8a9je+S87nWOKtddJCIjrCQSERERhUCquhKd1M9++9eRGLbPbq4/V/msDy4fmP26zUQc12t3159NRMnESiIRERFRAmiHlzrtCey9h7slVNo1qeNqPyJKrtAqiUKI14UQK4QQm4QQc4QQF6neO0wIMUsIsU0IMVoI0U71Xk0hxIvp/VYKIa7RHNdwXyKiKLRuVDvqJFC+4vBAUrG7bqLR3EW7+5/Wfw/baSKi/BBmT+J9ANpLKRsAOB7A3UKIvkKIZgCGA7gVQBMAkwC8o9rvdgCdAbQDMATAdUKIoQBgY18iIiKiWCguUlXKXEwIzA1c421/u1o2qIWmdZ0FuWFjGVGyhVZJlFLOkFLuUP6Z/q8jgJMBzJBSvielLEeqUthLCNEtve15AO6SUm6QUs4E8ByA89PvWe1LREREFAttGlcP28z3TuFLBneIOglE5EGocxKFEE8JIbYBmAVgBYDPAfQAMEXZRkq5FcB8AD2EEI0B7KZ+P/23EuLLcF+/0vyvY/fy61BEVCAYMZCc6Ni8btRJoJAM2LMJTujtPgiMNm+xm9com2m3LyqyO1zV3ucQUf4ItZIopbwCQH0Ag5AaJroDQD0AZZpNy9Lb1VP9W/seLPbNIoS4RAgxSQgxyct3ICKyol4LjcjK0J6tbG9rdw4Zxc++bRsBAOrUKIk2IWktG9RE/VrxSAsRxU/o0U2llJVSynEA2gC4HMAWAA00mzUAsDn9HjTvK+/BYl/t5z4rpewnpeznKL1ONiYiIiKywU3vXE50U4eNBur9j9nb/ZIaVo71sFwHEcVDlEtglCA1J3EGgF7Ki0KIusrrUsoNSA1L7aXar1d6H5jtG2jKiYiIQnK0g55GSgJvzc//OKJL5m/bw011tnNSwXRanz2oUzOHexBR3IRSSRRCtBBCnC6EqCeEKBZCHAXgDACjAHwIoKcQ4hQhRC0A/wIwVUo5K737qwBuEUI0TgekuRjAy+n3rPYlIkqkvu3srWd27kCu+pPvnj67b9RJIB8pw9H9GDrs5QhBzzOUHHdPlGhh9SRKpIaWLgOwAcBDAK6WUn4ipVwD4BQA96Tf2w/A6ap9b0MqGM1iAN8BeFBK+SUA2NjXM87+ICKn/Ch8fXD5AZh2+5GW23VpmTMFm4gS4qZjvAVjN1r/0Na+Drd3UuVj9ZAo+UKZsZyuzB1s8v5IALo5ZXrZjAvS/znal4goCn610NevVYp2Tetg8bptgX8WEQWrxGYkUSfsHlGvMukk73BaGWW2RJR8Uc5JTAS2hhERUVywUSC5erVpBEA13NSH39LLMYQQqFlivxjo5KOKA6gQE1G4WEm0wGyOiOKMSyIQJcP1R2cPeor6zi0tFhjYoanh+/u0aZj1byeN5nbnVBNRfLGSSAWvZ2vtKipERET+Ki32v8glhIB0OebpikM6QQhhGIn0kC7Nqz/HwXHbNa2DDs3rWW9IRLHGSqIFDjclIqe89O79eusRPqaEkoC9wYXFbaWuen/Nv10erm7NUMJSEFFCsZJogY9uInLKyzyhJnVrONrea4GTkoXPpOQ7Yq/Uupe92zby1EBw6eAOvqSHeQgR6WElkYgowbgUGVGyHLFXS8y/9xh0a+VuqoNSrVSGr3rNA4z2V78sBNc9JCo0rCRaYJZIRE457RuoX8v9sC/mUUTJk4Ton9o6od28hnXJ5KvhIOot5S9eBRbin40TUdw4XVPs9P57uP6sejWLXe9LRPHVrVV9W9t5rZPpVeqeOadv1jBUIQQrf0R5poZFMC1WEi1wTSpyom2TOlEngRLIbeHrvpP3xrH77O5vYogoFjq31K8k5gauCaf2ZvdzvJSbju/F/IwoLBNvPtz0fVYSiXz0xVWDok4CFZAzBrRFaXERFt0/LOqkEJGPtGsUBkkvcI2U0Qw3bVSn1P3ORORIQ4v7reAriQPaNzF9nx2J5ARDihMRkVcP/amX7W2D6kjMOazmhRfP76e7n15P4lWHdcbHfznQl3QREXD90G6Bf0bBVxJf+nN/0/edzi0iIvIz12AORFR4Si3mCgH+TYfRq2SmoplqttNsc2i3lrrHq6fTWPrXQzuh1x6NLNPC/I7Inoa1g+91L/hKotOen78d2imglBBR3vCxpMNYEUT5y6ii17ZJHctsRKnEBbHOoV7F0e6cxGfPze1hZIM7kbFHTrU/ckARxvqmBV9JdOKF8/rhmiO7Rp0MIiIqUCxr5xe9etewvXdDcZEIbckJo921hVC7H9O6UW3XaWFlkig+WEl0gHkXBaFJ3RpRJ4F8VuLjGmjMdohIT5BlEiGQUyv0UhllPhae9y4bGHUSKAQihLuKlUSiiI265uCok0A+e05nuJVbR/VsFfpnElE4/Kjouam77dawlvkxpc5SGx6Gt9n9nlU6NdHdLdJK2fpbBGSk+Cn2sWHZT6wkEkWsMXsS8067pnV9O9Z1R9mLYHbEXvpBJCj+OEolfx3evYXjfZxWxlrUr+lo+3cvHYiPr1RFGjX4uO67pdZpfD7dAFW3hvvo3XaHkeoVlgd1bu76c4mSoFk9Z/cwwDmJscCHN4Xh4C58CBYys6w+ri2M5B8nw/jCGGJE1to1rRN1EjLXzRNn9nG034A9m6BFffPeuSIBnNi7Nb66ejAOTzdAvXNp8MMY/3po58A/oxCds3+7qJNABkb942Ds7mEeb5BYSSSKgRfP74+R1wyOOhmUIG2bRF9IJX+wHSB51D9Zg1pmPWzB/7he57Xr9Uh0360BhBDo2qp+5rVOLeq5Ov55A+1XUOrWLHb1GWSOazjHV8fm7u6rMLCSSBQDxUUCNYr5cCT7vrx6UNRJIL9wyArpMLoqlHl7fjUunNKnTda/595zNPZgIxRRaOL6BGAlkYgoJv4ypKPlNq9dOAAfXD4QdTzMD6J4iWsBgYyp59gFNTPIcGkK5Q2fGhdOH9A269+lxdEVDfWGU7MNxbsw5q9R/mEpwwLzJiIKS6Pa1sPGGMQh/xSxFJy3gvhpM3VE/w8dCFZPose5zPEW10cAexItMHPLf0nJPBvWLo06CUQUgJP7tMbvdx6FOjU45LzQ9G3X2PlOmeGm4T+72qcD9hzWzTpqq15ldux1Q/xPFLlyxoA9ok4CxRwriRp/Oyw7spY65HNSKhPkTFyGYajT0WP3Blnv3XlCD8/BCYgofprWrYE9mtRBnRoltiLZxrXFudA4nbM3qHMz3df3bdsYjeo4awB0OtrUTXh9IyOvORgz7jgKz9pYl1UZFqsemmt13vS+k5Pov2TffSfvE3USKGCXDO7gaX9WEjW0+VPP1g0jSQcVttP7Z7fwndafLX5BOWu/ttYbBWhoj1aZv4OuAAzmUitkU7N6bJQy8/jp+9redv69x+CVPw8wfL9WiX4PsjSoHWUqXzY//2+HdbK5pbWS4iLUrWmvQcNu3a5XG5azqLC56YSy03hySFdvz3xWEjW0Qz+6tqrPNewofJraAnuxg9OrTaNIP/+Cg/YM7bOasjeabBrMua+mGtrs/RNIRa8uchGK1KgQqEQ3tduoFPXTwyqd+6jyYL1NhQDevXQgWjUwX9uRzD12hv2GjbA0dtiLTtWs7quaJUU4oKP+CAa7WEnUULe0H7vPbhGmhMISy6EssUxUftIbbtzPzTwhl4QI7+c26pmgYLEHN1muOszhgu4h31bVw03t1hKjqSYq+Y0fjZwD9myClg1ZSSRSWN1XfmRLrCQ6EXVzHAWiyoc7qW+7xrj/5L29HyitRkn2rcl5SP54+c/9bW33wP+FN1eDP23+e/E86/lbAGw91e0M86P48JJ3G82Xt9PWc/eJPd1/sAMfXnGA5TZOzoHtii+ZOrlP66iTYAt/b/fCOHWsJDrhY2vh//VtY70RhcKP3pU3Ltovs9aU24nC6mQICNx0TDfVv8kPh3TNjcin1xrXoXm9zN9+lMn3bdvI8D0+I/Nficm6c05/f/W1GST2OUfP6NGkRME1i4ZbU9XQGFUWw4EL0Xno/3pl/Ts1YoU/SD4Jo72QlUQTQbZw7NHYWWQ0Cs7h3Vt6Pkat0uqH9U3HdPd8PABZi6WbFTIp/gZ1Mp4X0HuP8Ia2sogQH3pL2uzXoYnlfsdFNA2ifq3CWVY5Lg03RmX6SwZ3wLVHdcXZ+7cz3FcdDTuq76P0hDr5+Jic+sRzMweWkiWMWBUseZrIucd8/D06twynNZis/f2ILlEnQdfp/ffAzcd0x+y7hwJgK2BQolwCpW+7xhw+WKAuHpQbsOjxM/pY7hfW8Cztp9QsYXHBjSAKcrVKi/GXIZ1QatJ42KhOKY7cq2VgabCjegkMf45DROFirm8iyGz1mL0ZFCcu4lJI1z4HS4qLcPHgDqhpEB6d4u2Zc/qiZ+sG1huGiIWt+ND7LWqbDB8MW27y4pFPhsFppSqo28pbA5bI9CZG3TNq1bBRpbkZDu2WOy2A8pPelXHtUV1DT0ciWd3X6dvq1H7up7exkmjCKGO79yRvAUqizrCJKHhH9Wjly1BmIiPa9VSD1KB24Qw3dSqoR7qXRh0hVEtl+JQep+wmX72dEMBTZ2X3qLPMFJxR/zg40s/Xu0a4VJO+SwZ3QIv6NTP/tntbaJf2c4KVRBPKD6C9iM+MePFtKgB8KIbGr961R07tlfNa5tgxKeWwIzG/7NEkvLntr15gvBg8Ad130x814C26qXvqj40q+6mdnqtft4Z5A4M2D1bP8TfdkDzrGFIgLCPaS/OoHi1Rs5RVEz03HdPdcyeVU/wlTDA0L/nBqPAAABeGuJB6ITu1Xxu8f9lA3fesbnM7xZKhPVrh5D65QzqUeaRRjmhuwlZZ8kEbBlsz9eZF+/l+TG89iaJ6TmBErY5n7tcW1w3tiksPNo/4vbtq/UOzctfVMY0fQNkO7NTU9rba33u3hrX9Tk5eaaAKeBZGHaWgK4lfXT1Y93VljTTWEckPB5lkmGcMYK90GC4e1AH92ltHjnTq8O4tsOj+YfjfOX1131fW4Cy2yEyCDJ7z5VWDqj+HLfGxYfRLxGGo1fPn2lzXkVJEMNFfzZbOsVK/Vgl67J5qoGzXNJoKfmlxEa44pFNOz+Bz5/bDF6p86fJDOto63hCdJYzIvrCy/wM6Gkfz1mI529w/NA0jA/asLsdYT0n0/oMXdCXRMOPMtL6l/xnxuH4jtwzzZ6kFigd1AV7vWmPx3p3apcXo3LK+4ftuHpw3Z5Y5Mc8VLjhoTxzWrQXOGagfqt5unjL2uiH2E6fRokEt640odNXXXfZV8MMNh+LjvxwYenrUCmm5C78E0ap/+cH2Kk9aNUuK0LF5PZx3QHt8efUg7NfBfs9OGI7Yq2XWCBsu8VS44laujhu9YGZdQlwdgXemjsxkb83VG7fhp/Vq8kGeBH5dN9oIcGRPozq569E54eW0N6lbAy+c3x+N6njrHfJr7pnfV1BMAgPnlVqlxei1R6NQCwJaRUWCvc4eqAMKeXlOFxUJjPrHwXj9QmdDWQd1TvXkCCHQrVWwEZa9NEK1N+nhfPhPvTI9oZS/Ylasjh298qNe1nzD0d2Mj+GhKl7QlUSji1MZGlG/lrfCpVrH5nU9H+OdS/bP+jdvruTjbxi8IE5xlGsrmvn+2iEYd/0QvHXx/tYb++CCA/fEDzccGspnFZo6FsE+gOCGD1vdM1H3dMadOl+/9bi9PB2rY/N6OKiz/eF7qc8P78HSulFt9GrT0NW+I/42CJNuOVz3vVP6tsFZ++mPwCDnBOL53GpSt6b1RgXAyW+jbFmkqsGpo576qaAriUaO67U7bji6G/55ZGqtFqkZfuqGH5m2dshIVJPRyT8dmtlvPGDDfnwUpe/nGiX278GR1xwc+Nygtk3roE3jOhjYMfjhZQvvOwY3D+uO1o3yN9DA3w7rHNixlUKB0aNBud3NAl+5cf1Q4xZnhRDC9JnVa49GlscYEMAc4LC4KUwbna0GNhqb/S68N/Y4esKp3V3mAXVrlqBZPePCLRtRk8nJ7/bS+f2DS0iCGJXvdKce6WxcFNDNUtCVRKNKVnGRwGUHd8wZCxxlhqU7R4QZaOj+fYp/4YdP7tPasCBmd4gBWQuiVX1Itxa4eNCeuPOEnrb36dSiHhrWNi+8Bd4D4OM1ZFWRIH/ce5L9a8wvJT4MN90rwUMFw26ArfLxvrz9uL3wr+N6+HdAG/hsIrdaNeScecDZo1nZtljVldiwTilqBDC3t6AriXZlWnx9enD4laGyeBa+/+vrfPFqu7+T+rI4umernPcHd3E25IjsMbod37lkf3xypf6wumIhcPOwvUxbwXU/S/NhSh3Lj9EKFIy/DHEXPCRIx/XaHUBwhfN9XA4fzBfe2z68HaBPW/eLX59/4J6e5kH+X9/cpXysRD2M0U7PNtnPL7wOJ2ejgXNGjXJ6eZEyuqR/e1U+IYGJtxyOy1TBrvz4HQq6kqic/KfP6mO6XVVV9vZ2jfnnIbhKNVzpuqFdnR3AAlvxw1W3RjGK3UTqcLjLns3qoq7OQ/7OE3p6inJJ+ox+nv06NMU+bRrp7+Py1jMqTEmDYFl+i7owlzQCwB4BrQ9o+QDPXBO5F8V/TuuNWXcNDSBVwKHdWvDZ4oKXU6a+Fu4+sWek6+c+9KdekX22ltU9MvyKA/Cf03qbLjNFznmtdFd56BqXUrKSaeGh/+uF9y8biN0a1sbBXZpnXm9YuzQrgI1BAG1HCrqSqBjSzd7aO07Pc/tmdXHM3rtl9j13YPvU33z+Epz3TJcWF/kW5ZKqRfk80lZAgs4aBjpYv8qJ/57e23Kbs/bjmqB+KS4SOWvP+cXuNaj0ZpL3+/a6o6obkM/ev11BVtIfP2NfHKopi1WkW+hLDYbR9WnbGCfu29rX4brkHX8Oc91a5S7J5eSc1a5R7GjdZy8NnQVdSbQ/DND+zzfqHwfrf5bwGPjG5msUnKAf3MrE45olBX1bOvbA/+1j+r7Xn0290PMeTVIBGtwOPde2kN6dnm+mvBzUNXbXiT3x5wPb42wfKmpNXC723r6p9wjPUYhzgSeItNk95uNn7BvAp8eDADBY1UKvMFuKwsu9e2p/59MY8s1xvXbHi5ogJrsqU1ejupL4+d8G5ezLnid7wjpPXpfryvc2kncvGxjq53kJZMfSqA2Z693GhduxefbaVn7PZ1TL9xspXxQJgTMGWBcC2jetg78d2gnPndsvhFQlzyl99OfKBH0bqKNB+v2QVZY5yMxJDOjLnLN/O9x2XA9fKqFfXjUIH1we7kOuEDl47JDPhABO2je3p1S7FEUDvYByKLxnc1CVjwPTw0iP2bt6jr5eQKQoh+cmRZDPFq2uLXN7ypxQrqcTe+fnaAW9iMdG91CJT4sR7+UySnZBVxKdFpjcVPT0Cn8F9vzIG0a/2wUHWj+g7jt5Hyy6f5j58YXANUd29TSk9Nh9dnO9b9zZ6dG/9djcNcmsbnO/Czhmy1wYfVZUcwWP6tHS8T4tGtRC33bOlzfo0Tp50S6DLOwH/Yt3alHPeiPy5LtrU3PEtWWJPRPaa+6Weg6928Konm6tGmDR/cMsh9Y1r1/Tt8I02Xf90G6468Ts6MutG9XG0Xv7Uw4phGHXd55gHon4yB65QQzV9E7Rl1enetuP6O78+a5V0JVEhWUh0mS7ujXM54WoC4Verne9m6UA7p94MTjf/7JYLDnMoTBt83TO4msXDjAsVavvjVqlzrM0V2uiGVwLc+85GqOu0R9ybpqGCKKbfv33wXjmnH74/lr7wZBaNXAXrrxj87ro1ip5lcQwBPWbN3cYeZec0+YDs+8eitcv3M9Vz9Yxe7dCjwiXDRnU2f185dtVS24YRYSmcFxlsLbrgZ38n4+unoqhUCKzu31WFBolVoleAadGcRFaWpxHvfJlt1YNMPa6IXjMYkrA8TbmlbOSaEMm8qDOe1YtHVU6EeqctI6oIxXlfDb7JEkjn6dmGH039V2gl2EeuZd5S5yjNFic4NLiIpS4WKuoOgpZePd0l/SQoLYGPZ96w56N5lxb0a45W4isWoz9ZqfxY2CH3LkqfKqkntFuGvdqlhTjoM7NUOSiV+ups/pihM58u7C88ucBmH/vMa72bVinevicm/yP/NOigX7j0AFOg5blc2Eihtx2Jhh1Yu3RpA5qqOJb6BUtWEm0oD1nRuUzZc2i5vVzbz67jwIBd5W64nSilLT944gu1cfk0zxUPN3RsrOOkN49cdMx3S2O6yVVzlh9VJyusSP2yh2qorc0ix0MLKFuMU7z4aToHWLSLYfbXirnsO65kb2dpOqukCu+cZNP13VRkXC3xBMlhvpyfeWCAZm/7zmpp8628bi4/3pop6iTEAq3Z1tZbiSoe7egK4kKpfJWZFDruvaorvjq6sHo0Nz9HA+9OYk3mvQSKpRC2eXpBTIbpSMLdmxe1zAsNPlLyUDdtA5rvXAeg9K4ZRTyX31vdW6RO2HeKvOMw6Mw6MA1QSuEuSN+s7lMouNrolm9mtijSR3dCozRUDS3GtZxF+m2EJyzfzvm9yHyGlEzCf7mscLUXjVqpGHt6t7fIV1zG4uiXFZkUOfmqF1ajAsO3BN92jW23iGBXvpz/6ylo9xGtT9jQCpieVedZTX8EEotQwhRUwjxghBisRBisxBishDi6PR77YUQUgixRfXfrZp9XxRCbBJCrBRCXKM59mFCiFlCiG1CiNFCiNxQS4bp0vzbYLuS4qKcH2CYMjHX4gFePdzUXQGwtFhg0f3DcOnB2WO/99MZJkTOWQV6admgJo5KTxwu9qEgfJgPE4kLkZTAjQY9gsqY/b8f3kX3fVsHt72pt0XvjXpDq4e0+1fZGnvdEHz998G2ttVGkbtyiLPCiNH3UiS1DpnkIf16v4idOcvKN/ZSRoxybl1c3HViT+b3Icr/KiJQXycqppZZntWvfRPdOBp6584qTzf8fIssU5mzCAD1daIDS6RG7c28ayj2btPQVRqSYEjXFjihd+vMv9u5DHY1bJ/dsOj+YWhR33zuottncFhdUSUAlgI4GEBDALcAeFcI0V61TSMpZb30f3epXr8dQGcA7QAMAXCdEGIoAAghmgEYDuBWAE0ATALwjtPEZZapcHASnzhzX1w8aE+8c4m9UPB6N24hZGpxd9/Je5u+37F5PTSqXYp92jTEQ3/qFVKqgjPhpsOiToJr6pZPtQM6NsNbF++PK122srq5D/3uOftTv9TyHgf5GFxgjyZ1MvMOreybHlJ/7sB2WHT/MPxTtbi3Hwqgkd8xpYfby6WkHRLWulHtzN+DdK4lvyvrRgXJfxzpssEmRnjNOvOPI7pkXX9hMxoJlk/0vuLhOkPGzdiNenzzMPOAfH6wOyy+UDj9Lb2yk8WFUkmUUm6VUt4upVwkpaySUn4GYCGAvjZ2Pw/AXVLKDVLKmQCeA3B++r2TAcyQUr4npSxHqkLZSwhhPY4T1QW96mE99jMZIQRuHraX7po9amZDhrw+hPI/Swye2W9+zv7t8PRZfVFSXIRPrjwIQ7qlbuBbhpnPcYuzFnkWcUxpiRzYsSmKi4Tr1k+7gjp633ZNsOj+YYZBZCg6QV1SyggFo/D+btbY/eyvB2X+/ouN3mCzqNmF/HwpgPqG7/56WGf8cMOhkX3+x3850PEIiHxQsySYoGAXHrSn5bJdeqzK0er8tJ7OHPecvdlY4wu3z7FIJrUJIVoC6AJghurlxUKIZUKIl9I9hBBCNAawG4Apqu2mAFBmy/dQvyel3Apgvup9W2qWFGFoj1Z46fz+jr8LoB8F8E99Uz0DmeGmqveUe0i9QCwAnLRva/xlSG5IYYrGXSf2zIralgSF1vp9Wr89HO+jHVrp5py5LUN6/X2Caqn3WrkutOvOq26t6qP7bg3w5dWD8LDBCAVlkeo9mtj/zRvXrZ4jaGcOtf4W6cZTG5+XpLmoHZoHt3ZhHE7Dp1cehBfPL4w5kBcP2jNnFFDP1g3x9yOS34NtJqp8ttcejXw7lnr0g5J/PHpaL9X7hSvI3zcxlUQhRCmANwC8IqWcBWAtgP5IDSftC6B++n0AUPrFy1SHKEtvo7yvfk/7vvpzLxFCTBJCTNJ5D/87p6/rdWS0UQAX3T8MD6Yf/O3T44zPO6B99eelH8LtmtZFE9VD/dHTeuPao7I7QY0ewjF4JuWFfDiPb128f+ZvdQZ8u2b9xu4+LnIcV3bywYdP7Z29T4hPXjfrpynGXT8En18VTIh8JUiB2yFb6qAR56vyuqTzu/DftG52oJdurRoYBmQ6rX9bLLp/GBrFODhMmPeOZw6SmsS5qHu3aYhDuxXGHMibh+2VCdhBwfru2kPw5kX7Zf7d0aKxpXpOs9H8+9xth+1tshRD8m5FU+qoskkQaiVRCFEE4DUAOwFcCQBSyi1SyklSygop5ar060cKIeoD2JLeVV26bQBgc/rvLZr3tO9nSCmflVL2k1IG0tR2+SEd8YbqRlI0rlsDi+4fhpP7tNHdz8tDNkGP54KmzSz1llLxYmBHVRAj1UdpC5/vX2Zv/iwZ81omPrW/855PRZvGdQznZTpRotPDVOUxIM+ezaoLDt13y50HmaS6hNrhPgceefVCfwsIrnrBLX5js/fvO3lvy3ncQDwrWXeekBvm34zRqb3x6G544szUItWV6R+gEObDJUFB/go+fGmzcmi7pnWzlj76+MqDDLd1mh692ybnXkros8NIP5NorWZftVk9b+VGt6cxtEqiSHWJvQCgJYBTpJS7DDZVvkuRlHIDgBUA1ONxeqF6mOoM9XtCiLoAOiJ7GGsorh/azVVPZJRhhim4YUIjrzGOKnmtz0FB7HK7xl2+0f7kdm7Bz/56ED658sDqYyS4NDL6n4fgNU1lRRnR0EozZ9Vug8a+bRujWzoCdFBzZMJWJGA55zyJslryHV7HZwxom9genIM6+xMU6tKDO+LYfVI9H41ql2Lfto3w6Gm9fTk2eVOIxamz9gv3ftSbR6imNBAZ1TvVLysj5azWOi4UetFeAeCl8/vj078eqPueF3Y6qcLsSXwaQHcAx0kptysvCiH2E0J0FUIUCSGaAngMwBgppTKM9FUAtwghGqcD0lwM4OX0ex8C6CmEOEUIUQvAvwBMTQ9jTYTO6UhTI/6m3zpjGDIf2YVd7dBCCo76JzGKeNqkrr+9hXZlZ8CRJCFSblr07fTG9GzdEPu0aRSbBYa92KNJHQzq3DzrtZP2bY3/nt47Zzjso5qhuWY+vOJAfPbXg3QfdIV4LcaR3WWfgvisuOlr0qIvBHBgJ+tlpkqKi/DhFQfi4C7NLbel4BUJoG6NYtx1gqOwFIl2QEdnjR9un2ATbjoM319rHY1Uue/dfk7OKISY5yNOmeWLRqMdhnRrgd0aeotH4HbUYljrJLYDcCmA3gBWqtZDPAtABwBfIjVEdDqAHQDOUO1+G1LBaBYD+A7Ag1LKLwFASrkGwCkA7gGwAcB+AE4P4zt5orpInj+vH16/cD/02F1/PZjcrndleAtQW7XejR8LvRcir8OiDunqvnAQRCGqqsC7ps2Gchhx8jsc3yvVg2BnvaokEULghN6tUVLs/pFQu0YxerZuaBjJOVHz1xBMUJbK9P1ZUuzPsYM4o6cYTI3QU7dGfo5O6NS8HnZrWDvTiEvJIITAjDuH4pyB7Q23MRvlE3du42aoKVMLnK773KJBLc/Rt4dfcYBuo6w6JTlF2WQ9NiyZlTn9mE5ixO0ItlByeCnlYpi3B7xlsu8OABek/9N7fyQAW0texFGjOjVMh8Fo72OlDiAgslovE1b+yntRVdnV0Q3jOC8oaEVFAod0bY4xs9cYbuOl7H/D0d3x18M6Ww65KWRVVfqvVyasAUOp1PrZe6wM51UaG+JoaM9WOa/pRfAGgMNCXtcrLIeng9El64oltc/+ehCOfXxc1msjrxmMTi3srR0bR3vt3gCtG9XG8o3brTc2oOTPes/BejVLMP2Oo1wfG1AFrjG4eU7vvwdGzlxluH++d3g4Kn/4eCoOczm/PpIlMAqVcnG0d9Aak1tJrO5JFEKwpdMjNxWGRh6Xxdg9PWygY3Nvv13/9o0x/qbDsl67ZHAHT8eMKyeFNacNJk62Ly4SaJBnvYh+KzZ4yHsJ2LR7w/xY37NFg1r4/c6jcPEgf+7TP/VtgxY+B8LSM7iLfkOmECIzFzVf1GcDUF7o2Tp3dFYSKoin9tPvyf/Xsf5MKVIed+qyj1JxdFu2ee+ygTlLuhk9tQ/fy7yykvP0yO86o7mAW6nsHJ6VxBDVLCnG8+f2wxsX7W+9cZq2N6h/euFlbauAm8rOuQPbOd+JsoZjGZ12s9/joM7N8M4l++NSjxW6ejVL0FITaKRUPVywkDNXB9o24QL2RipdDFE4uEtz/PPI3PXKhBC4yMMSIGHza7jp13/PHt5Wp0aJb8feo0kdTLj5cF+OVYieT/eQZjXcqn4a9RDpmiUsLlHwtM90hdFSOU7t0TjVSK1u7FQa8P55pL0hiY+e1gsn92md+Xf/9k2wV3qJLSVrO6pH7ogE4/KS0P0bQKK78/U6hJIWCZlNZiGzakXRUs87BFKtYwvuPcaXLnn2QrpTVCTQuE4pNmwzCtBrbb8O1kERrKgzU6/pKSTah1DHFvXQoVldLFi7FX8+sD1O7N3aYM/Cc2DHpjhvYDv8ZUgn2z2BRUUCVx7aGQ99PSfg1CWDUc+qn64f2g1bd1RYbicgsobP2i1/5evQ9T3Ta75lFVINth39z0OCTxCRAbO6xah/HIzDHv4OgM6cPo2HTu2F8QvWYw9V42jtGsVYdP8w22k5ad82OGnf7B5PbXviHcf3wBvjl2S9Zqdx7NBu+TOEvYZOw1LC6oisJMZRn7aN0LddY+zeqDaO0BlHnO9jtsmem4d1z/z95dWDsXT9tuwNEtwC54Wbr92iQU0sWLsVR3RviV57NPI7SYlVUlyEOxyuL2fmgE5N8fy4hb4dj1IuP6Sjre3q1CjOKszlWwAmJ4TB32rqvGT3Rt6iC1J8Jb2RtWPzeph6+5F49Js5OHFf80bOBrVKcYTDzgonlAYlJ0HQ1PffgD2bGL+ZEOcObIdXf1qs22uYtK/D8RMxNPyKA3HzsL3w5wP3ZIUwYG5bdarH9esfIIxAQuo5jS0b1EK/9k1MtiYjwvAf5LdDu7XEftpCgA1BRBq1q4aHiK9AvC4pbeHwZJMCpZf1FLX7x1UmjVnrtMXpF6MwXHlo56iT4FmDWqW47bgevg1LdcrO7e7qztIc+MyQ14V06oFT9sHp/Y3T6Ch/CTgrspNHs5JI5EK7pqlhSkah7KtiUELKhzX9FEG3lcTg58o7XVpWN2KoT+8rFwzI2daqIhZlud2qZd5KXOagdGpRD0KIzDy7Kw7piKIigZYNrIcRx+Mb+E85F+rv9w/1fFrmCwUhyuV56tawV6lTrtGYZCc5TunbBrs1rIXT+u9huE1c0+6nU/vvkVX2Gn7FAfjf2X0y/05avw8riVTQ3M61een8/nju3H6GkS5ZtvCX0zWdnKruUEhYDh5jH/3lQN3X9Vq67zt5b9NjNa0XfARPI6XFRdijifuhhnEtGCnpOmd/6wBm+d67pv5+56rW2Lvq8OT3MFG8/XzTYXjyzD7WG6bFtUGzdaPa+OnGw7LmOtqVb9mL8hsJIdCnbWMM7blb5r2k5aWsJCacl/wiYcuWxUqTujVMx/XHYVH7uD5M3FAePEbrtak5bRUuLSnClUM6AUAmQht5V8fBQutWz83nzunrMTXO+fUoj7LhQT2012j9sisP7aw7hEs9GsLNN4iyd8YundGmWU5gEKu85KRSFrT6tUrR2OOyWklhNapCL4Kwen3dL68e5HuaghT/6qB1Hs1KYsLdMqw7Wjao6ar1Jt/Wt3JDybP2bFY36/X/nt7b03Eb1alhvVHA4l9Es2f3hrUy17ffE+4fOGUftG5UG4O7NMei+4ehYYE8rOPGqj7RwiAsfBLUqhHdY/a1C/fDhJsPQ8Papbjh6G4A9HvN7z0ptydXvTRMwhq/M1pZXDdKRTip34/c6dk6Xo2B+fKsNnNI1+bosXvqvH9w+QG44/gemfeEELh+aDd8cuVBOfvtld7nrP3aolurBq4rXrcM646R1wy23tCl64Z2xTuX2F/ezsjTZ/XBn/rqr5UZBVYSE+6Qri0w/qbDUVMzp6dj87oGe1TbrWFtLLp/WM6C7IXoq6sHY9ZdQ3HGgFSLeo/dcxfidaJGSRGuH9rNj6Tl+OyvB+GnGw91vf9/TuvtX2JC4LTCfc+J5kMXFbVLi3GqyfyJoOzTJnVt2RnmR9FRVxzcdoo1rlOKFvWjq+DWKClCi/q1MOW2IzNr61YPhTLf9+9HVM/NczNEKkkFXw4zLyyVmpE+UXd66/Xad9eManHTkNG3XWMPqfJuSNfmmb9f/vOATD7St11jnHdA+6xtLz+kI7rqdFzs3ihVTr0n3ZDl9qe6aFAH1K2pP7pljIPlbYbqrP944UF74opDOmWWNtPLY/WWw9Bz9N674Y4Telhv6AM78+VZScwT2oL0gZ2a2d7XaPHWQqDcIjVKilCrtBi3HbcX3r10IDr5sIak0hLfvql1hd2Jnq0bYreGxnOkzkoPHTN68LWwEagiydrqLGCrddeJPfHpX3NbLcMw/PIDMOfuo3HXif4tLZFv3vahRTYO4jhcUQmqYFU8KPUY1TXqgrcVIeKfRgqGWYH9FtXSUmHRuw4Nl2VxcNG+d+lAdwnyyUt/zg1SFqXdGtZGqSbY4LC9d0P7ZvbLaPu2bZT175l3DsWtx+6V9Vq7ZqkyyKUHVy9N9PnfDordM79hbeuRU6wk5om9dm+AeqpWknoGLSZkrlZpce46PS4ds3crvHvpQJwecm/V3Sf2xLx7jg71M5PmnP3b+dIQ4EZJcZHtVsWke/yMfV3tt3+6RRaIblh83vcuBTnGUsQruvL9BoGRlFNQWpLnvzVladO4Dv53dt9MhSHqa1Xdk9gw3eBvtF6vm5R2sDGyrFBccNCeWf9+1GBk1XfXHqL7uvb819aJTtugVikW3T8Mx/faPfNapxb1bY8eCuPZ89gZ+2Z6Ps2wJpFH9m3bCGPnrgUA/O2wznhqzPyIUxQfJ+3bGh/+tjzn9SAjTQkhfKtwOv3ckmKR9eA7yWMYfyI3tHN9rTSsXYqH/tQr67Uvrw5uHompPK03mHVEnNzHp3wiPvVDAMDgLqlhb69dOADnvDAh83rXlvVx6eAOOHv/dhDC+5qYFC992zXGL4s36L43tGcrjLv+UCxcuxVTl20MN2Ea6tuldaPa+OyvB6FLy/p4a8KSzOtKxcFJ73dRkcCrFwzIzOuLygEdrSsjYdlNM3LOqMG2nWYE2PArDsCkRevzJuCjugJrhjlinvK6oOqlB3fwKSXB+vvhXaw3Ilw3tGvUSXCNQSWSS2khtyp7K7/xPm0a+h6cKEqNYhgIySii56L7h+GRU3s7P55BoSmOQzkHdW6e9W8hBG48pjv2aFIHbRrXSXSAJMp18SDzckzLBrWwf4emWdeqMk/rSE0+dGeQ88Q090rP1g0NKy9O12Ae3KU5mkW4hNC024/Eyz4OO/VaHFAvcaM2/IoDTONz9GnbGJcM7hjLfC1IrCRSjssP6YhaJd4qmXFzyWD9h0U+1z8KITMzqkAWJ23F2jxVP72OaI/dsgNB9dHM64jjtWq0BqoTVxzSyYeU+CykiJ5R/6R+Be14/cL9YrVkAvlvSLcWmb+VR0dNTUO7NtiNn2xV/NLpivq+cqp+rdJYTa8oKhK6C9r3advYVnwO9TIduzcMplEpTg3j8fnlKFJ7t04V4jq3qIfrh3ZLXEZkRRsprBDE7Tfs1cZbxFgnfrrBffRX8s+ezerivcsG5kRrG37FgXjzov0cHevvh3fBX4Z0tFzWwA+n9dsD719WHfThvpP3dpWHxKlwpFDKul4D01iJsuJ/3dCu+ODyA3w51kGdm2HYPrtZb0ix1tlkDnqXlvXx4vn9sE+bhpnAZ600Ad6cBDdxyuheeeWC6h64gZrImUBuY1uhUpctTlZNrRnStTk6taiXs6SEcgof+L99HH/W2ap5hR/95UDH+ydN/J5gFAnlZklaD4yTCeeP6QTRiFOLTb5r61OUVztrEXHYWHz0b99Ed/j7AaoIzCXF1jfiVYd3xrVHuVtWpqRI4A0HldJ//98+WYXCQZ2b44urkrWQs5FLDu6AMwa0xZ8PbB/ch4jgWtnt4NxCUjtir5b45pqDTbc5tFtLfHLlQRjStQX+e3pv/POo7Ckafdo2zkQO95u6FKMugim94TVKilRrYVdv/ebF+REF2it1T7DafSfvg5HXHIwHNfPclYq2m1gNNUqKAh++q6QvqOL4Ww6uG+akBKB6KEXSKolO2J2omy+chMoOwlNnWQ/ROrx7S/z1UGdD8rpHPAmf/PPoab3QqE5pJhpzUIGkhHC2LJBddWoUY6RF4TNuGtQqxX0n7406NYKNW3f5IR2tNwqY2eVkZ40wSraKqioAzhoNhBA4oXdr1FRNuenVpqGt5QLcUvcINqtfXQFRrlB1saxLy+poz15jTySRXqnGaHRJK4uGKr0coEGt6nwxqoA7lemyW1B51EAH34uVRAIAdG1VH0f3bIWHT021uNSM4TApv117VNdAo5tGzWlkST+df0D7rDldtx67Fy4etGfOdoM6N0OL+s5a5epzeZe8cdK+bTD5X0dmHoZB3Y1BhRT/8YZDc5ZS+eDyaNcmi4uSAHrz2ttYAxWoHubbMz2NorZOYZqVxPynVOzUFSsnBmqWCPDa7HpUD/2gXE3r1cTsu4fipfP7o0/b3Lm06vzr6bP7ekxFsmnbvls1qIXTdJYZa26jXKGXB4y97lD8kJ6u4mfAHSeK0+lSpoFFKf9rAjr8CEiQb0qLi/D02X3RrVWql+bCg3IL9FGK49yeuNNG8jOinRumXWzWjd6aNZ4uPGhP7NOmke62VrT5uBACNxzdLfM3JZ8ybDywgQwmx92/g/1laq7VDEFrlF7TTK1vu/CXvUmq58/thwkmEQW1zjGITKh1ev/UsMBHTu2F9y4biMZ1c3+nIj5S8t6gzs3x6gUDcKXD0SqK64/OHt7udXBOh+bZDUrqXquaJcU5wyarZG6+GGSPZjJk/wg/3HAohBB4WDWk9JMrD7Q1PUCv+NCwTilaN6oNwKzcmU5DQM+r2jWK8f5lA/Hcef18Pa7TBnmgQCuJ7ZrWwZy782+x8RN6OxtfbTafr1ZpMerqLBIalYPSQ8Ue1owtP7onAwqYUYZhmD3cDtAMw/NjPs+JqrH+lkM2LCp6eb+oOaF5vdR1ql7Py8/8x68rSJ2+OK39FRS3EUL72dxvr90b5Mwf1vbMKt68eD/8+YD2lsds3ah2pnBXv1Yp+rfXr7SzJ7EwDO7S3LdpNEfspT/3za2PrzzI9H1lOOnNw/by9XOTTFuW0ftt92nTyHTeoLI0kdtGZmUNRb0RCn7p176J7x1a3/7zEEy65XBH+xRkJRHIz56p/+vbBtPvOAq/3XpE1Enx3X0n743zBrbDoC7ZFZqureqjfi3z4YePnFpdsSyEYbReHbuPs7mbn/3V/EGn9o8jste1FAKGNdibj+nuKB2UXHu3aYjhVxyQte7pN9ccjDcvdhYBVXGQpuFDKQv08DifdZDquBfpDJ9Wq5cHw6LfuGg//OrweXJQp2aZpU/cMGqkOqBjMxTpFAjd5hMchUBOHdrN3zVcraaElBYXYdH9w3BmQAFzkshquRA7nb0f/+VAPHCK88imiufO7YeXzu/vKZ+LQr2aJY6D7rDEnGfq1SzRHVqjx8mckTaNa7tNki9aNqiFO07oiRIbY4Q+ufLArNZodYvxb//Kvwq03+45qaejhoaeDsbN//Wwzln/FkIYZurKkgNmZTkW8/JHn7aNs/Kk3RvVxgEd3QWb6dA8u/Cl9EZfdrC3YColxUU4pGvuMO6R1wzO+vd/T++NEX+z33gSV7VKi9HE4nly9N6tbB/PbpCq/57eGz1bW1foG9QqwcUGa+BayeMYbUR5y6gR20mwl3ZN6+JUnXmMdjWpW8Mwomq+YSUxj1mNyW7uoEXh1QsG5MzHiQ1NLWOfNo1w94k9LXezOyQq31hFRCspLrLd0KBHKUQrw5nN8uxiIXQ7Ev/Utw3qmfQQx3HxdYov5Rr047LRu5x3b5TdiHZC79aZIUn57m+HdrbeyKETerfGoV2tC2Fe1kK84/ge1hsR2XDvSXtHnYSCMbiLfqyFqkyE/jBTk/94OvOYdvHnq1S9OEf3bOVoyG2H5vXwlyHuJn8rtAuamnlcZ01DILuAdmN6UrlVwU9dSVHPb9uvQ/7PKaoOCFL9vXu7DCCj5/lzcydW/y8dfU0Zr9+mkXFEwgM6NtVdquPaodUNEqbtguwNIB3aS0pkXmfrgt+KigSuPaqr71GHq2z8VEbzF+0olEo8Bc9oGssNmsA3dqPzknOH79USuzWshYsHuRtZYOTdSwfi87/lxxq5brCSWEDCmIJx23F74VODydjaBU2NXDmkE0ptNAcpPWLqgl/bJsyE1ZSClnpoVVGRwK3HOp8IP0RnmN2h6SEX6uHIyu/St11j/Oe03rjdoMW+daPaaN+sru7coBb1a5kW6JWIlAcbtCpS4WpUp9RyfSzy11+GdMKTFuuitmxQE5cM7oCvrh5sOje8ab3UKAazwGpAqkdBL++oWWr+7GjftA7OHdjOdBsiQDX/zaLwNGwf/QB6dTUNJ6f22wNvX2J/IXOyr1m9mvjpxsPQ2eVyJ0YG7NkkK2BZoWElsYA0chk6+dlz7K/L8+cD98TebarnqC26fxgePa1XzpwdM5cd0hFG/YNZvYI6Q8jeT69RZrSMQ6HFKlCGYGgLUxcc2N7Rcb75+2C8eH7/rNf2aFI7E0hiuM6wLyEETty3NWobRKlUkqS3xhFQ3fup1+O9b9vGWHDvMa7nrFFyWQUueOz0fXGpZp6acv3r7ao0SHnJGxiB1/r8jb/pcNSvVYqureqjQfpZpBeZ8L+np0aRFKsO2LpR7px4ozmFL5zXX/+NtDHXDsGdJ1hPRyDKDGG0uLaLiwR6aZZ9ApCT4QghsL8PI5jG33QYxl43xPNxkur241KN3COvOTjilOQ/VhILxC3DuuPs/Z21niq9UAd1dlcQP65XaoLxSfu2QacW9lp3SosF6tUsycpbXzpf/6FfPYSs+rUW9VM9CHoL0hai24/vgSZ1a2RCPiuEEHjyzD44y2bUNCFS+3x1dXVlX10w1oaxd6JWabFuIXDv1g1x+SEdM4VGLb1Ih2ov/7k/PrnyQNfponjSDkM8vHtuxEFtUC6jK+XSwR3w0J964YcbDsWkm52FBqdsTkby3nbcXmhat0YmKM47qt4V5bVLVUGG9AqD6iH06nlKVhEjiexqn76WrMpORiOf1K/bfdba0bJBLexRwKOmzj9wTyy6f5in4eZkT/JjdJMtF7kYp6202LtpJZ9+x1Go5WG5CXV5wyyASWrb3NKJEALH9dodn075w3Ua8sFxvXbPVNa1hu2zm+EwGSNdW/k3lMNqiYCiIoHrh3Yz3cbMITYCX1DytG5UC2u37Mj8u2ndGqhfswSbd1QY75QZdZCdV9zo0zIrhTZCwakLD8peLuTYfXbPilKoNz+8bs0S1Cgpws6Kqqzze+ngDnjm+wU4qkd148AL5/VD55u/8D/hVNCa1auJRfcPM93mSpNYDW2b1MEhXZtjzOw1jhvpieKAPYlkSClOuSkA1atZ4miJDYVSITVqlc7qRUgnrD0DEPjmUFVY5w4WLfJeC8YvqHqIrYYQEile0IwsOKx7C4z6p/mwo4dtzoe+ZHAH1DUYHq1Q8iAOMc1mlh/cMsy/NU9vPKY7fr/zKJzWv7pnxs4cdqIgGE2nULz85wH4/c6jsgIJPnJqL9x/MiOiUvwxZy1Qdgr4FxyYav0N8gGsjcBq1OKvqFuzWLspXr/I3YLblOuF86qjlV5zZBeTLd178fx+ePuS/bOGmNpZ24gIQM5iwEf2aIUW9Wthvz2bZL0+/IoDsrYBgGP2Nu85v+mY7phx51DTbZQGDfVw51qlxbjqsM749h+FO0dGeU5oh7YD7heulwZrn9WpwUFQFI3rhmYvBabtJVdrnQ7opr1eT+7TBqcP8G/4KVFQWEkkQzcc3Q0L7ztGN7gAkBpm8fFfvM35+uKqQVnrFerNM1SrWVKMM9KZq1Ju0BYaFXq9UyXp73K8wRDMQmdcmMt9XfvKjzccip9uPNTyMw7t1jJn8v4rFwzAX4Z4W+icCpuSTykVCr15yTVLirF364Y5rztRmQlmkX0H/P2ILujQvHDnyOy3ZxPcfEx33OtjD4mylq/RM4gobFccUj28tKRIVK87rClv9GnbiMusUOKxkkimzFqAD+veQj+il4lDdJZReOWCAarPS/2/+eBDe0MTa6RbttWLx5cUF2HR/cPwmME6jIWqY3Orh1nuOb9JM59r90a1sVvD3AA0dnRqUQ/XHuV+/iHRnSf0xOHdW6Bfe/OgVUrj0WHd3M1ZzVQSWXHJIoTAxYM7oEEtd1G09bx72UD857TePNeUOC09BHMjiguO2ShQUU0Bu+6obhgze03Wa+q1hJR5Pt1NAqRIm3OC/nXsXtitYS3d6IeU7b3LDsCidVuzXquoNL9IlCF8RHHQqUU9PG+x/AFQPafw70e4G069355NMH7heuzGtRgD16ZxHbRpXLhRHCm5jtiL5Q5KPvYk5rmz92+rO4zP7RQwo+Uo7LJaIFlJV+eW9dHDYAHTiwZ1QJvGtXFkD/NMuHHdGrhuaDe2QtvQpG6NnOF5Q3uyEkj5x2iem11XHd4F3117SCY8PhEVpscNRiTNvHMoTu7TJuTUEPmPPYl57u4T9eeHuA0koLewuRNWPZhPntUn87d6mKhapxb1MO767LlvU28/ErLKU9JIo1ZpMTo2r4v5a7Zab0wUgZzAVxoHd2mek2cpeVCRy6ysuEhwrlEAztyvrWVEZTN/PrC94fx0oiAcrQqEpRRtPvrLgZYRT4mSgpXEAhVVNEmrSuIQ1dp2ytwfO2n1cx4MVevUoh7mr9mK2owmSDH0zqX7m76vnu+sqPLYk0j2PXduP3w8ebmtbe89yVvAm9uO6+FpfyIv+rRtjKnLytC0bo2ok0LkGw43LVAn92nt27GchH2vWZq65Pq0bWS5SG1FVaprsLSYhbmoPHxqb7x6wYCs5SoAoFYpsw6KnpvGIWURd/Y6Be+IvVriiTP7WG9IlHA3D+uOr64ejD2acA4t5Q92DxSY58/th84t6/k6XMpJ2PcuLevjoT/1whE2gskM7NAU05dvQov6DBARlXo1SzC4S3ZE2gk3HYaaJRxOQ8n010M74cJBe6JeTT7+iMgfpcVF6GoScI8oifiULDCH+xhxq62qxWzfto0ya1pZ+b++9iZ0Xz+0G84d2B6tGEUwVlowtDdF7L+n90b5rkpX+xYVCVYQiYiILPBJSa4M2LMJmqoqhR9ecaDvn1FSXMShG0SU44Te/g2XJyIiolycWESulHBZCSIiIipAnJdPhYA9ieSKVZRSIiIionwz886hrteaJkoSVhLJEa9rjBk5e/+2KGauS0RERDHGdRCpULCSSI4EtcbY3Sd6WyOLiIiIiIj8wUHV5IhSSRTs9SMiIiIiykusJJIj3Vo1AACc2s/eMhZERERERJQsHG5KjrRqWAuL7h8WdTKIiIiIiCgg7EkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIsoIpZIohKgphHhBCLFYCLFZCDFZCHG06v3DhBCzhBDbhBCjhRDtNPu+KITYJIRYKYS4RnNsw32JiIiIiIjImbB6EksALAVwMICGAG4B8K4Qor0QohmA4QBuBdAEwCQA76j2vR1AZwDtAAwBcJ0QYigA2NiXiIiIiIiIHAgluqmUcitSlT3FZ0KIhQD6AmgKYIaU8j0AEELcDmCtEKKblHIWgPMAnC+l3ABggxDiOQDnA/gSwMkW+xIREREREZEDkcxJFEK0BNAFwAwAPQBMUd5LVyjnA+ghhGgMYDf1++m/e6T/NtxX5zMvEUJMEkJMWrNmjb9fiIiIiIiIKE+EXkkUQpQCeAPAK+nevnoAyjSblQGon34PmveV92CxbxYp5bNSyn5Syn7Nmzf39iWIiIiIiIjyVKiVRCFEEYDXAOwEcGX65S0AGmg2bQBgc/o9aN5X3rPal4iIiIiIiBwKrZIohBAAXgDQEsApUspd6bdmAOil2q4ugI5IzTXcAGCF+v303zOs9g3oaxBRgC4d3AEvnd8/6mQQERERFbQwexKfBtAdwHFSyu2q1z8E0FMIcYoQohaAfwGYqgo88yqAW4QQjYUQ3QBcDOBlm/sSUYLceEx3DOnWIupkEBERERW0sNZJbAfgUgC9AawUQmxJ/3eWlHINgFMA3ANgA4D9AJyu2v02pILRLAbwHYAHpZRfAoCNfYmIiIiIiMgBIaWMOg2h69evn5w0aVLUySAiIiIiIoqEEOIXKWU/vfciWQKDiIiIiIiI4omVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDCGljDoNoRNCbAYwO8CPaAigLEHHDeP4PHb+HZ/H1tcMwNoAjx9E+pN6HSY13UEfO+jjJ/XYQR8/yXlLEu/RpB476OMz7eEfO+jjB3nsrlLK+rrvSCkL7j8AkwI+/rNJOm4Yx+ex8+/4PLbh8ROXvyT1Okxqupl2nheXxw8sb0niPZrUYzPt+XfsJKfdLF/hcNNgfJqw44ZxfB47/47PY0cjiPQn9TpMarqDPnbQx0/qsYM+fpLzliTeo0k9dtDHZ9rDP3bQx48kbynU4aaTpJT9ok4HEeUf5i9EFATmLUTkN7N8pVB7Ep+NOgFElLeYvxBREJi3EJHfDPOVguxJJHJLCPEygGVSyluiTgsR5Q/mLUQUBOYt5Fah9iQSZRFCjBFCXBR1OogovzBvIaIgMG+hoLGSSERERERERBl5WUlk6wq5JYQ4XwgxTvOaFEJ0iipNFC/MX8gN5i1khXkLucG8hYKSl5VEIiIiIiIicievK4lCiMZCiM+EEGuEEBvSf7dRvT9GCHGXEOIHIcRmIcTXQohmUaaZiJKB+QsRBYF5CxHFQV5XEpH6fi8BaAegLYDtAJ7QbHMmgD8DaAGgBoB/hplAIkos5i9EFATmLUQUuZKoExAkKeU6AB8o/xZC3ANgtGazl6SUc9Lvvwvg+PBSSDG0FUAd5R9CiFYRpoVijPkLOcS8hWxh3kIOMW+hQOR1T6IQoo4Q4hkhxGIhxCYA3wNoJIQoVm22UvX3NgD1Qk0kxc0UAD2EEL2FELUA3B5xeiimmL+QQ8xbyBbmLeQQ8xYKRF5XEgH8A0BXAPtJKRsAGJx+XUSXJIoxmW6ZvRPASABzAYwz34UKGPMXsot5CznBvIXsYt5Cgcnr4aYA6iM1ln+jEKIJgNsiTg/FVwMA6wBASnkPgHtU772u/CGlPD/cZFGMMX8hO5i3kFPMW8gO5i0UqHzuSZQA/gOgNoC1AH4G8GWUCaJ4EkL0ANAdwG9Rp4USg/kLWWLeQi4wbyFLzFsoDEJKGXUafCeE+BXAnVLKj6JOC8WbEOLfAM4G8G8p5WNRp4fij/kL2cG8hZxi3kJ2MG+hsORdJTHdujIJQDcp5eKo00NE+YP5CxEFgXkLEcVNXg03TbeufA3gemayROQn5i9EFATmLUQUR3nXk0hERERERETu5VVPIhEREREREXnDSiIRERERERFlJLqSKISoKYR4QQixWAixWQgxWQhxtOr9w4QQs4QQ24QQo4UQ7VTvnSqE+DH93hjNcbsIIT4WQqwRQqwXQnwlhOga4lcjoogFmL80E0L8IIRYJ4TYKIT4SQhxYIhfjYgiElS+ovmMc4UQUghxUcBfh4jyWKIriQBKACwFcDCAhgBuAfCuEKK9EKIZgOEAbgXQBKmoYe+o9l2P1FpE9+sctxGATwB0BdASwAQAHwfyDYgoroLKX7YAuABAcwCNAfwbwKdCiJJgvgYRxUhQ+QoAQAjRGMBNAGYEkXgiKhx5F7hGCDEVwB0AmgI4X0p5QPr1ukgtTLuvlHKWavuLAJwtpTzE5JhNAKwD0ExKuS7A5BNRjPmdvwghigAMQ6pRqqWUcnWw34CI4sbPfEUI8T8AUwGcCuB1KeXzwX8DIspHSe9JzCKEaAmgC1ItaD0ATFHek1JuBTA//bpTgwGsZAWRqHD5nb+kC4blSFUQn2cFkajw+JmvCCEGAOgH4H/+p5SICk3eDG8SQpQCeAPAK1LKWUKIegDWaDYrA1Df4XHbAHgSwDW+JJSIEieI/EVKuY8QohaAkwDU8C2xRJQIfuYrQohiAE8BuFJKWSWE8D29RFRY8qKSmB6y9RqAnQCuTL+8BUADzaYNAGx2cNzmSC1w+5SU8i0fkkpECRNU/gIAUspyAG8JIWYKISZLKadY7kREiRdAvnIFgKlSyp99SyQRFbTEDzcVqeayF5AKMHOKlHJX+q0ZAHqptqsLoCNsTuZOT/7+GsAnUsp7fE00ESVCUPmLjlIAHTwklYgSIqB85TAAJwkhVgohVgI4AMDDQognfE08ERWMxFcSATwNoDuA46SU21WvfwigpxDilPSQrn8h1co2C0gNzUi/XgKgSAhRKz30A0KIBgC+AvCDlPKGML8MEcVKEPnL/kKIg4QQNYQQtYUQ1yNVWBwf5hcjosj4nq8AOD99zN7p/yYhFQzn5uC/DhHlo0RXEtPrB12KVIa4UgixJf3fWVLKNQBOAXAPgA0A9gNwumr3cwBsRyqzHpT++7n0eycB6A/gz6pjbhFCtA3jexFR9ALMX2oiNc95HYDlAI4BMExK+UfgX4qIIhVUviKl3CilXKn8h9Qw1k1SyrKQvhoR5Zm8WwKDiIiIiIiI3Et0TyIRERERERH5i5VEIiIiIiIiymAlkYiIiIiIiDJYSSQiIiIiIqIMVhKJiIiIiIgog5VEIiIiIiIiymAlkYiICIAQom16zbriqNNCREQUJVYSiYioYAkhFgkhDgcAKeUSKWU9KWVliJ9/iBBiWVifR0REZAcriURERERERJTBSiIRERUkIcRrANoC+DQ9zPQ6IYQUQpSk3x8jhLhbCPFj+v1PhRBNhRBvCCE2CSEmCiHaq47XTQjxjRBivRBithDiVNV7xwghfhdCbBZCLBdC/FMIURfAFwB2Tx9/ixBidyHEACHET0KIjUKIFUKIJ4QQNVTHkkKIK4QQc9PHu0sI0TGdzk1CiHeV7ZWeSiHETUKIteme07NCOsVERJRQrCQSEVFBklKeA2AJgOOklPUAvKuz2ekAzgHQGkBHAD8BeAlAEwAzAdwGAOkK3zcA3gTQIr3fU0KIvdLHeQHApVLK+gB6AvhWSrkVwNEA/kgPc60npfwDQCWAvwNoBmAggMMAXKFJ11EA+gLYH8B1AJ4FcDaAPdLHP0O1bav0sVoDOA/As0KIro5OFhERFRRWEomIiIy9JKWcL6UsQ6rXb76UcqSUsgLAewD2TW93LIBFUsqXpJQVUsrfAHwA4E/p93cB2EsI0UBKuUFK+avRB0opf5FS/pw+ziIAzwA4WLPZA1LKTVLKGQCmA/haSrlAlc59NdvfKqXc8f/t3LFqVGEQhuH3K9QmGsUuiIJg0AsQsRCsLGwsFAtD+qS3EhsbxSuwsFVEbCziBWztDaQSgxA2VUIiWAiOxflz3GK32Syo2feBA2fhMDPtMB9bVQPgE/AQSZImcEmUJGmynZH3H2N+L7T3S8CNFhHdS7IHrNBd8QDuA3eBrSSDJDcnNUyynGQjyTDJPvCc7hI4zVwAu+1qeWgLWJrUX5Ikl0RJ0jyrGdX5Bgyq6uzIs1BV6wBV9bmq7tFFUT/yJ9o6rv8rYBO4UlVngCdAjjDbuRaHPXQR2D5CPUnSMeeSKEmaZzvA5RnU2QCWk6wmOdGe60muJTmZZCXJYlX9BPaBXyP9zydZHKl1un3zPclVYH0G8z1rc9yii8Z+mEFNSdIx5ZIoSZpnL4CnLR76YNoiVXUA3KH7w5ptYAi8BE61T1aBry0+ukYXRaWqNoF3wJcWU10CHgOPgAPgNfB+2rmaIbDb5noLrLW+kiSNlapZJW0kSdK/JMlt4E1VXfjLo0iS/iNeEiVJkiRJPZdESZIkSVLPuKkkSZIkqeclUZIkSZLUc0mUJEmSJPVcEiVJkiRJPZdESZIkSVLPJVGSJEmS1HNJlCRJkiT1fgOD879bTFUuuQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7gkyVUmjL+RmVV1bdvpHitpRiOLJCQhCdCHkxAsEny4FQiz2mXNhzD74yfWsAgjFrMLfBghBAtIeCuMkLBCFllkRjNyYzTe9vS073v7+qrKjO+PyBMZmRURGSdv3+rb3fE+Tz/3dt2Kyqw0kXHO+573CCklIiIiIiIiIiIiIiIiIiIAILnQOxARERERERERERERERGxexCDxIiIiIiIiIiIiIiIiAiNGCRGREREREREREREREREaMQgMSIiIiIiIiIiIiIiIkIjBokRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNDILvQOXAhcccUV8vrrr7/QuxEREREREREREREREXFBcMstt5ySUh6y/e2yDBKvv/563HzzzRd6NyIiIiIiIiIiIiIiIi4IhBAPuf4W5aYRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNCIQWJERERERERERERERESExmVZkxgRERERERERERERcXljNBrhyJEj2NzcvNC7sqOYmZnBddddh16vFzwmBokREREREREREREREZcdjhw5gsXFRVx//fUQQlzo3dkRSClx+vRpHDlyBDfccEPwuCg3jYiIiIiIiIiIiIi47LC5uYmDBw9esgEiAAghcPDgQTZbGoPEiIiIiIiIiIiIiIjLEpdygEjo8h1jkBgRERERERERERERETFlLC0t4Td+4zfY4772a78WS0tL53+HDMQgMSIiIiIiIiIiIiIiYspwBYnj8dg77u1vfzv27du3Q3ulEI1rIiIiIiIiIiIiIiIipozXvOY1uO+++/Cc5zwHvV4PMzMz2L9/P+68807cfffd+KZv+iY88sgj2NzcxKtf/Wq86lWvAgBcf/31uPnmm7G6uoqXvexl+NIv/VJ85CMfwbXXXou//du/xezs7Lb3LQaJERERERERERERERGXNX7q72/HHUfPndfP/Lxr9uB/fv0znH//+Z//edx222349Kc/jfe///34uq/7Otx2223ahfT3fu/3cODAAWxsbOAFL3gBXv7yl+PgwYO1z7jnnnvw5je/Gb/927+NV7ziFfjrv/5rvPKVr9z2vscgMSIiIiIiIiIiIiIi4gLjC7/wC2ttKt7whjfgbW97GwDgkUcewT333DMRJN5www14znOeAwB43vOehwcffPC87EsMEiMiIiIiIiIiIiIiLmv4GL9pYX5+Xv/+/ve/H+95z3vw0Y9+FHNzc3jRi15kbWMxGAz072maYmNj47zsSzSuiYiIiIiIiIiIiIiImDIWFxexsrJi/dvy8jL279+Pubk53HnnnfjYxz421X2LTGJERERERERERERERMSUcfDgQXzJl3wJnvnMZ2J2dhZXXnml/ttLX/pS/NZv/Rae/vSn46lPfSq++Iu/eKr7JqSUU93gbsDzn/98efPNN1/o3YiIiIiIiIiIiIiIuED43Oc+h6c//ekXejemAtt3FULcIqV8vu39UW4aERERERERERERERERoRGDxIiIiIiIiIjLFv/pDz6BZ/3kOy/0bkRERETsKkw9SBRCPFkIsSmE+JPy/y8SQhRCiFXj33cZ7z8ghHibEGJNCPGQEOI7G5/3neXra0KIvxFCHJj2d4qIiIiIiIi4OPHeO09gZXN8oXcjIiIiYlfhQjCJ/wfAJxqvHZVSLhj//rDx/iGAKwH8GwC/KYR4BgCUP98I4N+Wf18H8Bs7/QUiIiIiIiIiLi1cjh4NERERES5MNUgUQnw7gCUA7w18/zyAlwN4rZRyVUr5YQB/BxUUAipo/Hsp5QellKsAXgvgXwshFs/7zkdERERERERcstgcFRd6FyIiIiJ2DaYWJAoh9gD4aQD/1fLnw0KI40KIB4QQv1IGhwDwFABjKeXdxns/A4C6XT6j/D8AQEp5HxTr+BTL9l8lhLhZCHHzyZMnz8M3ioiIiIiIiLhUsLQxvNC7EBEREbFrME0m8WcA/K6U8kjj9TsBPAfA1QC+EsDzALyu/NsCgHON9y8DWDT+vuz5u4aU8k1SyudLKZ9/6NChrt8hIiIiIiIi4hLE2bXRhd6FiIiIywxLS0v4jd/oVin3+te/Huvr6+d5jypMJUgUQjwHwFcB+JXm36SUx6SUd0gpCynlAwD+B5TEFABWAexpDNkDYCXw7xERERERERERrYhMYkRExLSxm4PEbMc+uY4XAbgewMNCCEAxgKkQ4vOklF/QeK9EFbzeDSATQjxZSnlP+dqzAdxe/n57+X8AgBDiiQAG5biIiIiIiIiICC8SARQSWF6PTGJERMR08ZrXvAb33XcfnvOc5+Crv/qrcfjwYfzlX/4ltra28M3f/M34qZ/6KaytreEVr3gFjhw5gjzP8drXvhbHjx/H0aNH8eIXvxhXXHEF3ve+9533fZtWkPgmAH9u/P+/QwWN3yeEeDGA+wE8DOA6AD8P4G8BQEq5JoR4K4CfFkL8P1Cy1G8E8H+Vn/OnAD4qhPgyAJ+Eqnl8q5QyMokRERERERERrZjvZ1jZGmNpIwaJERGXNf7pNcCxW8/vZ171LOBlP+/888///M/jtttuw6c//Wm8613vwlve8hbcdNNNkFLiG77hG/DBD34QJ0+exDXXXIN//Md/BAAsLy9j7969eN3rXof3ve99uOKKK87vPpeYitxUSrleykqPSSmPQclEN6WUJwE8F8BHAKyVP28F8P83hn8/gFkAJwC8GcD3SSlvLz/3dgDfCxUsnoCqRfz+aXyniIiIiIiIiIsfWSoAAJuj/ALvSURExOWMd73rXXjXu96F5z73ufiCL/gC3HnnnbjnnnvwrGc9C+9+97vxwz/8w/jQhz6EvXv3TmV/psUk1iCl/Enj99ehMqqxvfcMgG/y/P3PAPzZedy9iIiIiIiIiMsEZRkMhuPYAiMi4rKGh/GbBqSU+JEf+RF8z/d8z8TfPvnJT+Ltb387fvzHfxwveclL8BM/8RM7vj9T7ZMYEREREREREbGbkKgYEVsxSIyIiJgyFhcXsbKiquS+5mu+Br/3e7+H1dVVAMCjjz6KEydO4OjRo5ibm8MrX/lK/NAP/RA++clPTozdCVwQJjEiIiIiIiIiYjegkOpnZBIjIiKmjYMHD+JLvuRL8MxnPhMve9nL8J3f+Z144QtfCABYWFjAn/zJn+Dee+/FD/3QDyFJEvR6Pfzmb/4mAOBVr3oVXvrSl+Kaa665qI1rIiIiIiIiIiJ2HUa5Cg6HeQwSIyIipo8/+7N61dyrX/3q2v9vvPFGfM3XfM3EuB/4gR/AD/zAD+zYfkW5aURERERERMRlCx0kRiYxIiIiQiMGiRERERERERGXLca50pvGmsSIiIiICjFIjIiIiIiIiLgsIaXEuCxKjExiRERERIUYJEZERERERERclhiVLCIAbI1jn8SIiMsRUsr2N13k6PIdY5AYERERERERcVliZJjVRCYxIuLyw8zMDE6fPn1JB4pSSpw+fRozMzOscdHdNCIiIiIiIuKyxNhgEqO7aUTE5YfrrrsOR44cwcmTJy/0rvCweQ4YrQGLVwe9fWZmBtdddx1rEzFIjIiIiIiIiLgsMSoikxgRcTmj1+vhhhtuuNC7wcdP7lU//+cSIMSObCLKTSMiIiIiIiIuS0S5aURExEWNrZUd++gYJEZERERERERclohy04iIiIsaazsnk41BYkRERERERMRliWFkEiMiIi5GzOxTP9dP79gmYpAYERERERERcVmCmMQsEdiKQWJERMTFgtl96ufaqR3bRAwSIyIiIiIiIi5LUE3iXD+NTGJERMTFg9n96ud6DBIjIiIiIiIiIs4rKEhcGGSRSYyIiLh4QEFiZBIjIiIiIiIiIs4vxoWSm84NMgzHOWvs0aUNrG2Nd2K3IiIiIvxI++rnaGPHNhGDxIiIiIiIiIjLElSTONdP2e6m/9fP/zO+47c/thO7FREREeFHUSa1xps7tokYJEZERERERERcliikChJnsm41iZ89sny+dykiIiKiHZKCxK0d20QMEiMiIiIiIiIuS+Sl3HTQS1BIoChky4j6uIiIiIgLgqKUukcmMSIiIiIiIiLi/CIvmcRBlgIARkUYmxidUCMiIi4oaK6KTGJERERERERExPlFYTCJQFWj2IbNEc/kJiIiIsKGzVGOt9xyBFIy1QlTYBKzHfvkiIiIiIiIiIhdDC03zZhBItMJNSIiIsKG33j/fXjDe+/BXD/F1z7r6vCBsSYxIiIiIiIiImJnUHSUm26Notw0IiJi+9gqVQkPnFrjDYw1iRERERERERE2vOO2Yzi7NrzQu3FRg7peRCYxIiLiQuCKhQEA4NQqkxEsOjKJSw8D62eC3hqDxIiIiIiIiIsM5zZH+N4/uQX//vdvutC7clFDG9eUNYmjwF6Jm5FJjIiIOA/YN9cDAJxaZSb8uvZJfP2zgNd/ftBbY5AYERERERFxkYEYr1sfjX36tgNtXFPKTceBrS22onFNRETEecSpFSYjSDWJeQc1yXAl6G0xSIyIiIiIiLjIMC4Zr9iur8IoL3D38bDFD2HSuCaQSYwtMCIiIs4DqC6aLzeNNYkRERERERERDQwDg5nLCa979934V7/yQZYBRDNIHMUWGBEREVMETeUb3Dmla00iAzFIjIiIiIiIuMgQarByOeGOo+cAAA+cWg0eQzWJMz2Smwa6m0YmMSIi4jyA5qCcKwvpWpPIQAwSIyIiIiIiLjKEBjOXEw7M9wEAZ9ZGwWMikxgREXEhQXXRofXQGrFPYkREREREREQTw3G1oGBnoC9R7J9TQeLSeriRg+6TSExioIzXNK4p4vGPiIjoCJq/+UxirEmMiIiIiIiIaMBkErdizz4AwP7SSv4Mo3fkhHFN4ELNbIER60MjIiK6otiu3DQfAjukLIlBYkRERERExEUGs5/fVuzZBwDolYHeWQaTSAszqkkM7ZNoBubx+EdERHRFZyZRGsnBPFByygwmY5AYERERERFxkcGsnYtMlgItsjhMopab6hYYYQu14TgyuREREdsHGdew68wLY94JlZwW4fXaQAwSIyIiIiIiLjqYjNcwOm0CqGoDNxnMHh3GSm4aNtaUpXK2FxEREWGi6FyTmAPZrPo9Dwz+Qt9XIgaJERERERERFxlMxisyWQoUuIVKRgGTSSS5adhCzVzQjaLTbEREREfQdNXJuKZHQWKgeoLMbgIRg8SIiIiIiIiLDKbENPbsU6CAj8OsauOaXncmMfasjIiI6AqSmxaS6ZQsc6A3p34PbYMRg8SIiIiIiIhLG2ZgMg256TgvsDHc3YwlBXybDGaVxvRTXp/EGpMYa0IjIiI6wgwMWfXlNSYxUEZqBomyfa6LQWJERERERMRFhtGUmcRX//mn8fSfeMeOb2c7oIw8p0awkBJCAH2mcY0ZJLKbYEdERESUGHcJEknxwJWbmsFkAKsYg8SIiIiIiIiLDNM2rvnHWx8DAJxeDZQ1XQBQRp5To5kXEqkQyBIBoKvcNDKJERER3VDIDqoQCvDYNYlGkBggUY1BYkRERERExEWG0ZTlpocXBwCAu4+v7vi2umLcxd1USiSJQMaWm1bbCB0TYccjZ9bxvjtPXOjdiIi4IDBVCcFzOfVIZAeJZm/F9jExSIyIiLgosTHM8fr33B2dHSMuS5iM1zTkpk88NA8AuOfEyo5vqyuqFhjhc0JRMom9tGQSA1nBGpMY3U23hX//+zfhP/zBJ1jnbdo4szbE/3nfvXwHyoiIFnQKEjWTWBrXdJGbRiYxIiLiUsUffORBvP499+APP/Lghd6ViIipw1xMDPOdX1wfnFdM4qnV8Eb10wbVJHKC5nEhkSYCWZLo/4egiO6m5w3E/N7x2LkLvCdu/NK77sIvvvMuvPuO4xd6VyIuMZhy02ATrKLBJI47yE3zGCRGRERcoiCjiaNLmxd4TyIipo9xl+zztrantrGb2R5aXw3HRbCVfFEGicQkhi7SxtHd9Lzh6VfvAQDcemT5Au+JGzNlH82HTq9d4D2JuNRgMonBCa5mkNilT2JAYBmDxIiIiIsSVyz0AQAnmUYa/3LvKfzMP9yxE7sUETE1jKfsbkps2W5ug1F0WGzlUgWJQgikiYjuphcAh8p616NLG6xx77r9GG564MxO7NIErtk3AwB4lLmPERFtqBnXhCacdE0iyU0D10G5ESRGJjEiIuJSBfU1O7nCCxL/ze98HL/74Qd2NSMSEdGG4bT7JJaB0MYuvm/GtSAxbD/zAkiEYhGzRLCYRC77GGFH5UrLO46v+uNb8Io3fnQndmkC5H776NkYJEacX2yvJpHbJ9GsSYxMYkRExCUKqj86xQwS9872AABHpvCwH44LfOdvfwyffPjsjm8r4vLC1JnEi0BuambkQx1OldxU/d5LE1ZNIkkQo5nJ9tCllnTaoOvi9BqvJvevbzmCH33brTuxSxGXCMwcE78mkWlcY8pNi/bAMgaJERERFyVoYXaKKTe9eq+SDT1ydv2871MTD5xaw0fuO40ffstnd3xbEZcXRnmBmZ56hE9jcU1tHnZzkJh3YRKlcjcFACHqgaYP40Ji0FNBYjSu2R5yzSTu3muLrn8ZeH0Q/ttffQZ/9vGHd2KXIi4RdOqT2GyBEeBUCqAhN41BYkRExCUKWlhwe5TpIPHMzgeJxFDkzIVFREQbRrlEP03QT5OpyE3zi0BumndkEpNSSpgmItjwJi+kDtJHsQXGtjDuKDedJoi570oa7+bkSsSFRTe5aZNJDJWbju2/OxCDxIiIiIsSNLFypV7755ThzWPLO++KSrsWuvCMiAjFKC/QSxP0s+kEibRI5hrX3PLQGdx/cnUndmkC5n0Wuign4xoASIUIDgLGRYGZyCSeF+iaxI6BFJfd64JRx+cNgat4mSbe+skjuP41/4i1rfagIeL8w0xujUKvLwoSs5nyQwKvL1NiGoPEiIiISxUk0eA2sqas9TQeiLR4j0xixPnGOJfopQkGWTIVmV4lN+Xdby//zY/iK3/5AzuxSxMYdwkSC1NuKoLv1aIABmUbnmhcsz3QHN6VSZwGu01JkmD3yRKUgDjBrJ2fJt70wfsBAA/G9h4XBEUhq7lkp41rzPdFuWlERMSlCloQchO7uQ4Sd35hQYv3qEaLON8YFUXZ3y+ZSpBC981uls2ZTGKoDL2Qptw0nJWqMYnMSWh5PXBBd5mALt8tZgKCsDSF40nnmMva759TRmlcF+4uWN4Y4cW/9H7cfpTXb5LM3OJ1eWGQG0FicNKbahKzASAShnGNMX9HJjEiIuJSRVcJJy2o14c7zyRSZjy6H0acb1AT+CwN7+23HVDd3cVSkxgaOJtMYiJE8L1q1iSOGUH6Zx5ZwrN/+l34x88+FjzmUkeumcTwa8sM5pc3dj64oeuJGyTuK8sbpsEkfuKBM3jg1Bp+6Z13scZRCcbSFI5jxCQKKXXCaRg6l1OAl2RA2g83rqnJTSOTGBERcYmia+Cl5aZTaAq+FeWmETuEXKJiEqeQhKBAlBMkTrsWNy+k7p8aKgvMC2gmMWHVJEoMyhYYHPOsO4+dAwC8764TwWMuddDh48hNzfl/GkEiXf9cafd8X10j0yhvWJzJAAArm7xt7SvZzjPM9h4R5wd5ITHoceWm5ftECqSDjnLTyCRGRERcouhKnnStSXz49DpOnOOZ3VDWeRrGChGXFwopkQiglwoWk9UVtA2O3HRzyi0NVEaeVydYyKpPYpKEB7Z5IZElAmkiWHXR/VJWNg2zoYsFeYeaRDMwn2afUO55owREVyktB73y2uIGiXtKueluNte5lJFL6J6rwXOJZhJTIO117JMYg8SIiIhLFLkxmXJYRVrscoPEL//F9+ELf/a9rDFRbhqxUygKiUQIZMl0ahLHuiaxCA6kplH3a2KcV7KtLnJT5W7KCBJTgSzhyX17aTezm1seOoMfePOnLkmnZM3SMRIQJlPc1RWVAwpKucY12rl1CgkTes6sbHZjVmOQeGFQmExi6FxCNYlJquSmwe6mZpAY5aYRERGXKMxnNSe7S4vd9SnITYcxSIzYIeRlTWIvFSy544mVTfz3v/oMu5VFzTk0cMHL3cZ2Ydb2dDGuSYQIViio45+UxkHhxz8rt8VlpL7nj2/B33/m6CW5kKfAnMMImsePG7h1ASUXR7lkBeqjnP/duoISD1wmkcYtb8QWGBcCeU26zmUSMyDNuvVJjO6mERERlyrMjD8rSJyqcU3pbhpjxIjzDCU3FcjShCV3/JV334O33HIEf/PpR1nbMxcvoffb+mi6i85ag/suxjVJOJM4LiRSAWUcxDj+w46MFBmgnL4E68bGBT+Q6nI9Ela3xuwSADNJwjl34w6mPF2hmUSmSoaY3OGU5eERCrmspOvhQWJ5rkSqAsUi8NxFd9OIiIjLAabEaysPf7httwUGpyaL6lAikxhxvlFjEsfh19dsybStMtmGvJCYK004goPEKTOJuUTFJAbu47g8jgCQCF5NYpokpdw3/PjTseMyS/tmp9dKYdroIsnsGiQurQ/xzP/5TrzhvfeG7yAaz5sOypVp1CR2dTnuWm8ZcX5QGHN58DmkYC/JVKAoQ4PEWJMYERFxGSDvyCSODJfGLsHbY8vh5jWUcY7uphHnG7lUzJdyNw2//hfIAbED20BBYugi2ZSbTsO8qSja5abL66NaPXJRCxKZNYl6YceXSbL77c0rJpEbJN70wBl87P7TrDHTBgVSo1wGz8lmkMgJ2lbLc//HH3uIsYd1QxGecmX6clP+uG77eMtDZ/Hhe0512mZEhVyWQWKShLPUuiYx6c4kRrlpRETEpQoz4895aJuLkC6S0+MMh1PKHl+KZhMRFxZSlnJHpnHK4kAFiVwmcVQUmOursaGLUZNJnErdWGH2G5vc3tY4x7N/+l34j3/wCf0aLdAA6pMYvq00LftUMu5vkvR1bcrO7bf3ijd+FN/+po+xxkwb5pwcyiYOx93mf8oBnFnjHUcz6cCSm+bTl5t2HccNEl/+mx/BK3/34522GVGBTMh6WcJgEsv5W6TKvCY0SJRRbhoREXEZoMYkMh7aJuvSxViDM2ZYymDHRXiGPCIiBDktLFKeu2lZfofVrXAHxKKQkBKV3DQ4SKwWIZvDnQ8Si0JiJnPXJL77juMAgI8/cKY2JiF300QEM555USDt4C471AYovONBrqgnVnhteC4G1ILEQFlmTW7Kmf/L93Kn465M4qhjANYFXful0jGJctMLA5K8Z11qEpMMEAlTbiqM3/2IQWJERMRFifw8MIld2A1OM3FzwTONTHLE5YO8kJXclHEd02J1lSE3pcTKLLMm0UyoTKNnYi6rthS2Y3LOcG+kxuF1JjFcGm4u7DgJIC03Zc499H24DPDFgC5zcle5KYf1rW9ve88bbk3i8saIVf8OoCZ75qhXKklsfEZdCFT15Yz6ZrMFBldummTqX5SbRkREXKroGiSOc9nZhh7gGdfUe3nFLG3E+UMhlSsnX+7It8mnReQ8U25qJlSm0Q6jqLGrk8fE7K16x9Fz5WvQTKJyNw3fVpYod9kuxjWhxjqEada2TRtmYB56bZlzK68mvdvxG+fdEn6jjnLTZ//Uu/CKN36UNWb7Dqzdjs006o0vZdBcrtoZdWASkzSIFVTjxuWYXuyTGBERcemic5BYFJoRCV3cmQ/BrkziNJiUiMsHZvaZU5NIi0dO0EaLz1mmcY15j06NSSzNZGxzgnm/3350GYBqxE5tMxIhghkYqknsMVtgbJHclMlo0fu57NLFADNxFzonj2puo4xr2RjHCW7GRbfk4naC+88eWWa9v+bAykhK0v3dVW56KSYuponaXB46l+gWGAnT3TRXQWXaC2IfY5AYERFxUaJWx8IyEqhcGkOzduaCZJPx8DUXL5xxERFtqNxNBYs10ExWB/MNbgsM8x6dBpM4zpUEt5/ZJbi0P4szGe54TDGJm6NctwVJme6mqVC9zbrITbmMFjGPmx0X5Lu53qyQleFQqFOsycRyk4QEXl9GfgsYc3vTOP7178YPnLsGe2tMp+SIOopyLs/SpGbI5B9UHnOSjoYGl7IMEpM0yk0jIiIuXXRtgTEupHZpDF1cmw9fTia/HlxeegxAxIVD5W6asFow0OJxyGAfiWmo3E0DA6mO92hXVLIte5BI3+Pzr9uLOx9bAaCUARSgCBHuEEnMUteaRLbclCSBHeeRLk7O04JypVXL0S41iV1aIAG8OXmcF5gvnYFZSckpGtd07eWoJbEdry1OfXPEJFTCCehzVAm1msTELTddPQl85i8qW98oN42IiLgc0LUFxjgv2A23uy4sanK7GCRGnEeQu2nGacCMbkzWqCOTaN6j01gkk2wrS4W3JvHGQwt45Ow6pJTYHFXyc+Vu2r4d+l5pkiARvJpQOpacOkbz/V2ZxLUpMLldURQSg4yYxLDjUqtJZCpJCBx1h0ou8pl0up6mYQrTmUkkuWnHek1OfXPEJMiELOOYkJlMok9uetObgLe9CvjYb5TjcvX+tBfdTSMiInY/pJT45Xfdhdse5dVfdK1JHJkP+1Am0XgfK/tcdFuQRFxe+KV33oX/9Q93sMbQwqKfMhowo1uQmGsmkSfTHne8R7uikJXjq+2Y0P48/sAc1oc5zqwNFZOYVTWJIe6m9DlZ2SeR4yRpupvyauK2x/bsZknguJAY9NytS2ygoHm2l7Lq70adVSEFFohJDE4udpO2djWC6VoWQdfzKO/Wqmk3X1sXA2rGNcFyU6pJJHdTxzkYrqqfD5cmSJpJTIE8BokRERG7HFvjAr/2z/fiW3+L5+SWFxK9tDQSYC54t7PY5RjXmPVN0bgmwoVff9+9+J0PP4CzZVuGEHR2NyUmq4NEj9sC40IwiVkZONu+n2JfgccdmAMA3H9qDQAwU34v5W7afixpIZ0IwWYSzbmKxUCO+bJFM9jYzQt51d+SZyZGc/f8IOvMJLJaZ+RGmULgOPP8cgLZrj11u7Z3GneU7hKi3HR7qLXA4BrXUH2hy4RmVfWGxcZSNS5Jo9w0IiLi4gBlc7lSl9wwOwh9sEmpMqWzehxvQQLwM7SDkqXoygBEXD745MNng9+rpZVJUsraAmV6mskKX4jS4pNaYITWZNVqEvNpyO3MFhh2JjFLEly3fxYAcO8JlWWnACURYf3liNWjmsRQsxugPlexJL8dmEQzSFnb2r3zz7iQhuM0zxRprp+yyw0IPFVIgfkB73lD25rvp9ga58H3aNdejrU2HZznVEenWEIMErcHUwERPCc0+yRKx7jVE+rn+plqHLmbRuOaiIiI3Q4OM2eiHuzxMrvcBYn5EGUxiYXUZgdRbhrhQtmmj3WNkCNePyOZXtjCcmsbclMyFwllIacuN9UZeTu7N84LpInA1XtVkPggMYk1d9OQ7aifaaLcTTk1oSZ7FSwtQzUHcWoSzWO+mxfyuWFcE2rc0TVINFuPcE3IZjWTGDZOGz4NMhQyPPir9dfl9GQsugV7JnvFSbgSYr399kBOyT1OfXmtJtFnXENM4tlqnHZEjS0wIiIidjnIGp9bh1HILrWF3WqrarUlHbPP8UEa4QL1X+Ms7Artbkr95cKu5S41icSUaeY+cOzU5aaykm3ZFrvjQiJLBfbN9pAI4NGlDQDAbF8thYQIcyqlRXWWdm+BAfDUE10cKEcdWbOukFLirmMr7HG5rOSmoeqOKnGRMts9GMeEcU0WhcQc8/qn5w23ltEMFDgMcN7xfusiwR1uU6IaUaEy3GLUl9dqEj1y0xVLkKjrGCOTGBERscvRlUkc55XcNHThRFnq2R6vtqSrIUBRGBK9+CCNcCBLSkky4xqp3E1LBobpCtmFSeQy93lRsaTTMa5R2/P1ScwSgSQR2D/Xx9EySKQAJU0QJB2lxNZML1VyX47c1NivLg6zXZnErvMsB2/71KP4mtd/EO+780TwGCoB0H0SA5lEOk+zvbRTuweAb0JGCpRQKWdVN8l8Thn7uMpwDu1qlJMXUisSQgNu89qKz7btoZCqvrmfJgwmkeSmJStoczctcmBrGchmgPEGMNooaxKzKDeNiIi4OEAPakGryUAUUi2S+1kSXCPVlUk0Fy6cxZZiEkluGpnECDuIDeRcI0VBdSwlkxi4uK6YxPA6RgqCelmCRITfN4WsJOHTWEjKWp9Ei9y0kEjLgPzAfB9HlzYBGMY1Iqy+kBbSM70UCZNJNN/LCRJJqpgXMrgvpnnMN6bQAuOessbzjsfOBY+hw8F1NzUl0Lxgu2M7I6nqy4Xg9Ndt1PKGJiXNWlJGf8saI7jjzq3dTHIiJqGYRPUc6FSTKFK73DQvjdAWr1I/N5YaxjXR3TQiImKXY2OoJkWu3JQkGgOHtMyGZk1iqHkHPRB7qWAuLKqANNYkKjx0ei0GzA2kKclNGdl/IyAC+HJTNSbs+td9AYVbymnDuCgq46YpuZsmQjgXW3kudUC+f76PY+fKIJGMawIDPpqzZnspMmaQaC7kWUGiGdx0kAROg0mkhADXEAaopMyh12RuSKA5Ri9dzV2o3rXPuP6pLydfbtqNpRt3lZsajt/BclNTNh2ZxG0hl2afREZNokiUdCJJq0Lp2geXQeLClernxpnKuCZxBJYNxCAxIiLigqKz3JQe2hlv0QpUi5lw4xqSDWW8ILEo0EsT9NMktsCAWmh9xS++H9/zx7dc6F3ZVdA1iSybfBXU0NhQmVLNOIXJ2tD9FrqQzAsgSxPWPbodkJmPq06Q5gwAODjf16/PGkxiSK5qUzOJieqtyGQSKwluN5lq6Bw07ZpEMp/hsJa0tq1aYPDqXQcZQ6KHZiDFYxK51z8t+Od0kBh63roxguO8wDwz2FPbK3SQGCxbj0HieUNRGteEyt3VoFwxiIA74CM5qQ4Sz1bGNbtVbiqEeLIQYlMI8SfGa98phHhICLEmhPgbIcQB428HhBBvK//2kBDiOxuf5xwbERGx+9E1SCxkhyCx0e+N69I43+f15MoLtbAe9JLInqFa6H7g7pMXeE92F2hdwDauScBmEs33BQeJsuoL2HfYtC+tD3VLCb2P5eJnkCadrPU5kHofS0bQstjKiwJZydoeMIJECm5SgaD6QgqCOjGJRcFOUgEqAOCyssMpy001k8gxktFMIq+2lg7dIEuZBkD8+nIpJWRZNzbIws1FKuMargt3N3OjcSHZASlQdwoPViRE45rzBkpApJyEkyxrCwEVLNpqEieYxLOGcc3ulZv+HwCfoP8IIZ4B4I0A/i2AKwGsA/iNxvuH5d/+DYDfLMeEjI2IiNjl2CR3U+Y4so3uMx7alKXrp7zaEtOAgPNAzIsCqRCY6aVRbopocOACJSE4x6co5aYU9IRK7rrUEpktH1xJmVf90S34qtd9oPY3WvwMejvPJNLXT4RabNn6HZpM4g1XzOvXqz6JYTWJlNiimkSW3LHDghxQAccCs7552sY1g/J7kRw3BKZLKcBht4tym0lwjSbQrU+iyaQPsjSY8c+1uU53d1NWv0NDNsptr8I9/l1deiPqMBMQSWKft6yg2kLA3c7CGiQWRguMXRYkCiG+HcASgPcaL/8bAH8vpfyglHIVwGsB/GshxKIQYh7AywG8Vkq5KqX8MIC/gwoKvWOn9JUiIiK2ic5MYsnS8WpEqod9j2E3XRneZMwgUSJNBWZ6CUs2dKniYsk4P3JmHc/6yXdOMGM7BboueVJmCVEGROZntKEoDTiA8PovYjaUTbs9KLr/lDpWn3r4bG0fk0QlZXY6QVAYTGLqYBLHuUSvNK751uc9DouDDE8+vIDr9qu+iWqR1r6tTSNIzJKwwNLcB24rEXrvwkwZbAQGDtMOEula5DCJEz04GTWJNI8H13GhMoXJEhG8n3Qt6SQJU6Y919EVFeC2sijQT3nmUoAyvarM3EKTTZFJPB8w1ySpsM9bVtSCREcLDC03Pax+arlpCqTZ7pKbCiH2APhpAP+18adnAPgM/UdKeR8Uc/iU8t9YSnm38f7PlGPaxkZERFwE6F6TWLDlpnohWRrehGZbuzOJpdwuS2NNIrrb/08b77z9GFY2x/jTjz80le3pHnjMvm1p2c4BCA8Sx3nBllsXsrGQsWzr+U9QlR6fePCMfk21nEgw6PHumy6gfRRCKEbQsjmTSdw718P7f+hFePurv0y3EUmEvybo6NIGfuYf7tCN6Wf7KdJEsJis3GR7mLV0s8w2EV3qGLcDWuBuMqSt3ZlEaCadK9vNEp66gw43ya2HocFlwygtVALatW5ylEtkaaIMUEJbiRSKydItSKLcdKowExCpIwFnBclGAbfcdLylfs7uU/LSddO4prfr+iT+DIDflVIeaby+AGC58doygMXyb00vZfpb29gahBCvEkLcLIS4+eTJWA8TEbFbQLUyUvIcTvPSpIKX2VU/UyHQc/RSs4Gyz+yaRCnLBUkS5aaoLyZWGP2/po3FkrGZ1j7SYpLtbppUTGIom5UXkm0SYt43rno/WgifWh3W9jERYLH9XUG7lJQGELZA1qxJBICDCwNd0wnAaXhD+P4//SR+98MP4JaHFFs6kyWtY5ow++2FBunUS5DbuoeOuRDTqUnUjDjTEAaoSgBCg5RCKpa6lyRsuW+WqtYxoduqFvJgJSVz/dzgmcmY1wW3vCFLBHqJCK7t1I7fTHa71idxFyf8djvMBIRLJq/x6CeBT79Z/W7WJDqZxHIuTgfA3IG6cc1ukpsKIZ4D4KsA/Irlz6sA9jRe2wNgpeVvbWNrkFK+SUr5fCnl8w8dOsTa/4iIiJ2DmeFmMymCJ2WrpB2qnUUXd9NRLoPrBvJcWVvPZOmOG3dcDKi3X9i9C4uFQQ8AsLLZnmndLqSUVU0iq08iBURMJtEIUriyuSSBt94PAM6uG0FibjpC8q7/kytbrKRRkNzUYBJtEELAdxg//cgSAMUoAiowzhzbciEvCjZrRozjPLOVAp23xUE2FbkpbY8TkFIwkyQCvSQJbktEKo1emiAvwufkUV6glyi2jbMtALovL7cGfq7PdDfdRiuLLOUlQGkfB0y5b00SGxOgnWEmIFzzlsZvvxj4m+9Vv5NsFGh3N017wOz+hrtpBuS7JEgE8CIA1wN4WAhxDMB/B/ByIcQnAdwO4Nn0RiHEEwEMANxd/suEEE82PuvZ5Ri0jI2IiABw65Fldg/CacJcvPD6a6nG2F0yu2mS8Pq9NVxRgxfXmkmMxjXAxWObTnHENJhEc20b2v8OICYRup1CsEpJSnZPuprc1NVeorwnzq5XgbViEnmOkICqCX3B/34P3vTB+4PHmMY1iSOQVfJXd5CYeoxrzDn0odPrAJThTWhvRYIpGw1vyq7eN8s8bxS4Lwwy9vzz7juO48TKJmtMVVvLM2ACqAcng90rqLecOp+h8spxrgIpl0uvdR9rxjX8580ssyax3ieRF3BniUCWhNdp0j4OMp7c1Kyli8Y13ZFTkqSct6REe8JDvaldbqqZxL4RJBaqv+Iuk5u+CcCNAJ5T/vstAP8I4GsA/CmArxdCfFlpVPPTAN4qpVyRUq4BeCuAnxZCzAshvgTANwL44/JznWOn9L0iInY1PnLvKXz9r38Yf/iRBy/0rjhRt+RnMAeFWiSzHtqmbChNgmUyVQsMPgOTaLlpZBKHeW78vnsXFpTJn0aQaNaXcZhEYlKIGQuVm6oghdc2Qy8IKQBzsHSAaoVBKEpmg9sn8ZGzKgh7310ngsdUNYndmURfTeKSEfw+tryJfpboPpWsIDGXnYO9rrWkCzO8/q6jvMB3/9HN+I43fSx4DNDNgIkOXaqbiYd/N2VcUwaJDBOmLE06yk2ZfUK1uylTbmo6EDMTRwk32JbdakLpmpzrpcE1mhGTMK8tSmC1KhNG6w0mMQNkgYkmr9Yg0eiTuFvkplLKdSnlMfoHJRPdlFKelFLeDuB7oQK+E1D1hN9vDP9+ALPl394M4PvKMQgYGxFxWePossoEf/ZIs3R398BsKB1qyADUmxuzZXOl4UEenG2tZ/I5meQsERj00hgkolsj9wsBWoRPQ25qBhihi0ipAyKeu2nTpIIbbHgb1Zfn88xavSaR2tSw3E07CB8K4972M4nuZY+PFTyxslX7P80FSSlRDVVr5GZNIpPJ4rbOGBsyVY7clD7/vpNrwWOA6hrk1AjSGCFUz89R4NhxObdSTWloUDTKJXo6IA1k0k25KUOBQuPm2MY1JpMYft9Iw/E19BzQM5DtLmskLnazKmS3g45j1mZCZtYcbq1UBjRA9bNZl1iTm5Y1iVTLmITJTTPWtzlPkFL+ZOP/fwbgzxzvPQPgmzyf5RwbEXG5o89svnwhUGMSGb2dilJumorwoM2UzYX2RAPMB6KaMsObIqvM7kwW5abAxSM3pUXauakwifwg0ZR60cIipCarq0lFjUlMBGzryIpJHNXGJUyJXldUctMqcJvYx7xAOnAve0juZUNTerm8ob5nZizsTFMcF8ZFwQ4S6dhyW2cQI7EwyPDo2Y2gMQBvHrZtj8OsmnNyLxXhiYtybiVn2mAmMScmkZFcbLbA2HG5abeaxLyQGGQqAcr9bp2ZxH66q1Uhux3NBJz5Wg0rx6rfN89VjCCg5KNAKTk15rcak7hPuZsuXlm6m2a7Sm4aERGxTbzkl9+PN7z3HtaYgQ4Sdy+LZWZNQ+tK1LjSuKZLTaJHNufaFlBlhDmZZHI33c3nYFq4WIxryNAidMG6HZhsdqjctGabHipRQrX4mGG2YKj38rIHpLSwXd0a6/NMkth+lvIYkeB3VqjXTdoDlXEhtTzRBp9T6Ylzikl8w3c8FwB0Y3sK0kOYm6KQKCS0uyyXkSJzEe58N9NLWfdb10U/bY/lUm3MySwGrJQO9xKSmwYyiSSBZtY/mvsY3F6CTGGyFIngyE07StBlZQAU7BJL10jGlaCr981Mob3NpQzz2vKqQlaPV79vrSjWUBhyU2BSPmoGiXMHgPEGsLW6++SmERER28d9J9fwunfzPJn66e5nEmtyU0ZNIrEULLc57dLols25tgXwGRiqgYrGNQrmcdvN1yQFhxzXyq7owiSatukJQ27aZBK5Doi++8Z8bWljqF/jmn0A3YKUWp9ER00i7Y8LwlOTSHLTlzztMD7ymq/EW77vhQDqTGIbKtamlEiGzj+yed5485YKEsOv5a4JHNoe574xry0uA5YIU24aLq/M2HJT6H109eC0bqt8n7oHwh2uzeuCcy9IqRKnvSy8BYZuQZIx62Rzg0ncxXP5bkfeWJMAsF9fG2er37eWVZBotsAA2uWmALB+qjSuKVtgtNyrMUiMiLiEQQ/gXb0g79hgvZCVBXoo42MyMC7ZnG/cLJdJlNG4hnBiZRMPn1nX/+csWqcNYrc5srmuyDssCE0DJop5Qtblk/VHoayB+kkMvC0IMNmVs2tqcULmItyaRJLlCbTLNwm1PomeNh2+mkSfu+mp1S3M9lLMDzJcs28WT7tqjxrDYHKbjeND2R7trsxuOF+xRJxgY9tBIkduaiQ8siS8TrwoA36S+PKDS74kU7UpCP9+5rhBL/weoOtitpey2kvkJMFN+HX6WWmcwr225vpZDBK3AdPdN9WqBMvxrAWJVJNYzmUULDYdTpvGNYQkU+6mQCubeEFqEiMiIqYDWohPK0j8i088jFEu8covfkLwmJrclNOovpQNpY5Fq2sMQAvJsDouoFpczzGbIpvmCuNC6nqYyxFf8ysfrLVH2M0LC7pvQuXI24HZ3oC7QOP2SWwyUlxX4KTs5WUblxdSS7+pV+K4kJjpibKXaXiShN4rwmPEoD6JbUyiq5YRAM6uDXFgvj/xuj7+AcENMURUBhDKJGqZcMcgcbafBgekQPd7k7bHSQDVEx6MOnFZ1ggSkxgqAS0qc5e1rbCa4+b9Fvq8MQ1vegzmsuqLyZNpFyQ3TcOZRJMl7THcZc3EaaxJ7A5bfbn1+jKDxImaRBeT2JCbEqhPIlCxjQ5cnquViIiLDF37HNKDc1oL8h/+61vx439zG2uMaZLAWlyUWVOX/E1KiZseOFM7diH93qzb6rC4JifJRAjN3HD64F1qMANEYJfXJBo1dTuNKiOfBjPiUlaLTy03DZgjuvbb033iPIvkcS5xaGEAoGqDQeYigx5PbtolqVUZ11T9xprz5rgovH0Sfe6mZ9aHOLgwGSQG29ajYoh6aYJEMCSSHeXuZnBZyPDruXNNoqQgkZfsAwxXWkYAlgjopBtHXpkmvKBtwvCMWaZA7Q3y0F6O5fvmBxkruULHRCUl+SxpLxVsKfNcnxfIRtRRk/KLULlpsyaxDOW8clOTSUzddYwNxCAxIuIigPlMCn1AAdVEvptNU4Z5UWXWOYuL8mGfJPaFxVs/+She8caP4u8+c7QaEyCbs26rfPhq44iA/aTPzsqaRIBnQnApwSa13c1BIi2wCrnz+2k6V7LdRmt1LAy5Y0d3zSxJnIvkcVHgikUVJFJCIJdlC5hUSe1Ck12dgsRyn6hPIjAZFOV5e59EwJ6UO7M2xP65ySDRa1vfgD6OaVkTF7qQ72hc02Qug81dOkrBKyaRV0cHVNdy6ONNBfwJX25aVHLTLn1COUxibiRz0kQEM8eaSexnPHdTSRLcRJtvtY4pr8E0SVhMoimB5ngJRNRhrkm8Caf1M0BvDoAANpeA8RaQqfk2TG7aYBID5aYxSIyIuAhgZgXPMXq3abnpLjZNGReFlnGG9sgCKulY5nj4nlxVRhO3Gj0iqyJxtSgJXbSSAU0/DWcSzYJ0cjO8XJnEI2fXJ17bzdlnc5G80/tpSgJHuQy6JnMz+8xissogMWMa1zTuG1ejemISSW6aF9DmUmp7gUFih2RKrSbRcUzGhb9Nhc9d8MzaEActclOWcY0RbPcSvrlIL02Qdqgb48pUt1uTGHodm2MUk8io96Nri8kkFgaTyO6vSwoULgOvmUTeOC5LV1C9ZcJxblU/tbtsJ1Ok3TuX73ZUCT8j4WQ7BxtngbkrgJm9KmAcrgL9BfU3LTdtupsSk9iUm6ZRbhoRcSnBnLibsj3/ODV57+oF+Vhiruw/yGk5QPb6LmnZ/jmVKTvb6NsGVIwI56GdGotdTpCYJQK9rCxIv0wfpncdW514bTcvLMzzu9OGQ6ZLIBAWSBXGwo7jbkqMuzZg6tAnTt03k+8Z5xILgxQzvQRn1yhILJAK5ezI2V43uWkVyCYO2RYle1zQPScth/LM2hD7LUFiF3fZrKO7MtXgdXE3BcKD9K6tX7ZjwpQItyrEBhXsVUE6p50FNyCqmYtwFCgNozS2my03SCwqx1dusJcmiuHu0rtzXEiWwimiQlFjm9VrzprEuf0q2Ns4AwzXgP68+pvT3XQIQKi/92aBbEa9LqLcNCLikoL5cOEsWomZG+5iuekor5pLh9ZRABWT6JKWUeBJ9VFAwySB4W5Krog6SMwnj+ev//M9+JG3fhY3PXCmsS2BNGEaVRQS956YDKwuVrz/rhPYM1P3SdvNxjXmdchZpH3onpN49Z9/irWt5kKeI2VOk0paGbJurRZ2JbMX2DTdZHtctVXKSCrB/rl+JTdtJFdCGUI65hzjoJDF1jgvvO6mOrhsjNsc5Vgf5lbjGmImQ+5tYgiqmji+3LGX2o2DfOO4clPzGuzS81BtK3SuUz/TsiYr2LimDPaoJpHDCqZJR7kpM7gvmvdNcFCqfs70UharXkhox1d2exuhEhDhx7Eo97G8thjP7ogKNeMaX8JpuAr0F5VsdL0ZJJLctHEO8qFiEckBjCSnNblpZBIjIi56mJMGZ9FK2dXd3G5gmBcsFoVA7SXc0jL13c8YQaL50Ga5m5Y1iT4m8ZfedTfefNMjeMUbP4pRXtQWhBxJGgD8n/fdi6963Qdw57FzQe/f7fjEg2fwwhsP1l7bzUyiGTxxkjL/9ndvwt9++iiLMabrVN8DgaZIQCXRA3hyR65ssQhYJI9yZQqzZ6aHlU1qgYE6Ax/KJJbHnJNIqPVJdAR7eSG9xjUUXDbHkXzW7m6a6M9uA51rVZPIkJuaTGLGCy7NeatLTSLreWMGiYw2QUDlbhocgJXzP1duqssUGEG6aS7CYTvrwWXCShImQgX3HBOhvJAQpXENt96VEhehx9FkEgFej+OICrbSAev1Nd4Esj4wd9BgEkluShOXRW6aGnNWb1b9zPrKzAYA8sgkRkRc9DAXnZzMIj0ApmHl3xXjXLL7fwHVgs8lLaOF/pJFbsp2Ny1Zkl7JGrQFsx+7/3SDSSRJVNj2bn7oLADgseXNoPfvdqxu5Ti4MMA3Puca/dpuZhJHtfuNv5/rHe5RjnOlmf1nuZvmhgSaw6QYcrvEYS5CLWkWZjKslq0FxkVRNhInJpEnN+UskGmfEmHKTRtBYhlYuODK5J9eVUGizbjGV8fYxNiYfzJO0CDrC3lO65IsSXQgFd6Cofr8jSHPXdP2GW37CJTBfeJwdrSN00wizcmh26tqGcNlu+qnlpsGy0arcRknuDT7izLmn6p3ML/eNWEykLkRyAK7O+m3m2E6R2e+dcJ4qOSicweAtdMls9hgEm1y09RQ8KydUj8PPinKTSMiLiWYiwlOZpcegrs4RsTIYBJDH2xSStUTyuMIRpnU5Q0jSGwsrkMf2uOy1iN1MBQAcP3BOXz5Uw4BAD57ZHnC/hwIZxI1pnTeVLuOndvY5ijHbC/F67/tOXjg574WAILd97aLI2fXWQtdoG6gxHEGJlXP+lb4mHEzSGTUu3LdTatgI2EZd1TGNYqBdzOJCRYGGVY3x+W4UsbGZRLLY85dIAP1ptTN/Sykv/dixUDWXycm0dYCg9On0gzSs1QEy+vH25CpJgnYgZT5Pk6gbj6nuNcWnTcOS0c9AYFw07OikEgFOslNk7JMoZBhMtym4RMnKZCUtbxc4xo2S1qTMifBx5FKMLhy34g6bHJT6z2Qb1UupeeOAJDAoGQSE4dxjdlLEQC2ShO/w59nBIlRbhoRcdFju3LT0EJ7wj989ihe+HPv7Wy0wmrcnBe6frBLCwCXIxjJnUzmNUQ2Z99eoc0mzO3XtpdLXLHQx+HFAR44tTZhmw7wai6niSf+6Nvx3X90y458tpQSG2WQKISAoNqXKTGJX/r/vg///vdvYo0Z1YxrwveTkgjrw7Am3UDd3RQIW8gXFolSWJ/EKkjpMxtn03ZcvQSJ2V+YybBSMolK2ofKuCbwnFNwyDPtUD+FcDelluXi2wUiGZsB95k1D5PYwd00TRLlysxlewTJTRkKiDIhADBqEo3j3kXyq7bFl2Ry2hJVrBmvfdJ25KZpLVEYsC2DAeb0SdT9RbOE5SeQF+r67yX8foe6TpNR76qMlMLUNZcDRnmBL/7Z9+Lttz4WPKbZJgVwzCXU8mLO6HdITCK5mzZbYDSDxF75/gNPNOSmMUiMOE/43GPn2E5/m6Mcf3nzIzvKUlwOMB9mXYxrciZT9BN/ezseW95kOamaYGWfc1kZ13RwWyRHe5vdPVBvO9F0mwvvk1hnbWyT+Lgo0EsSXH9wHg+dXkOdSQyvW7pQeM/nju/I545yibyozjHAy+JvB3TNf7w0EwpFTW7KWKRRcLLOYC4nmMQQ4xqLu2lYn8RC72cvTRjGNVUA7DIXGRUSaSqwaDCJKrisDJ9CjyUFh6xG4nqxVe1rc00uZRUI2uCqCaIg0dsCIyhIr2oSOYwgfQ8ax+sJiA5y045JyQ5y00omzGtUT+1MMmYArNtElHLToJYzteRi/TUTR86u41t+8yO47+Rq7T26TyJD3pomAoNewjr+khxf04QVNAN8lnqcy1K2zu9xfKni3MYIx85t4kffdmvwGNO4yZXcAqCCxLQP7H189Vq/wSQ2jWtkUQWQAPDd7wW+5fdUgBj7JF482BrneN2772ZLoqaJ1a0xXvarH8IP/vmnWeN+9b334H+85bN45+07swC9XNCVSTQzl5xMHy1YOQGp+bDlyMRGeYF57W7Kz366AjdaSJkBct24RgTLcPOytsobJOZq0fKEg3N48PR6g+0E6/vpz9zFQWUoaF4jgwMALPON7aDr8RsVUgc23ZhETva/aVwzuc9SStxzfEVfx6ZtfRXYtG+rVpOY8RwQ6Rp2MfB5IdEjuWmDSaQgJXTu0nJT1gJZ/fS5mxZSQsAdJQpHfefZtSESAeyd7U2M0Qu7AJbIbIvDUTJQcKkcKHkyySxNtic3ZbZg4I4zW5ekjnpX17bMcgPOs8NkwIJcaWvMvTvh93P/dCdufugs/vAjD+p9BCrHUZYpjwAGqQoSg3tONgLg0DHVPobLTfOiQJoKNkt9OYCzbjKdqr1lKfmWqkk8+KTqNc0kknFN4xwUeRVAAsDhpwPPfLn63SVRbSAGibsAb7nlCN7w3nvwa/98z4XeFScoS/S+u06wxlG/LMrERnRDvSaRwVIYDwoOu0e21iub4bK5LvUoUkqMC4nZrnJTQ1rWzP6PLdnwurTJPhk/cGoNf/vpR+uf1TDJsWX6RnmBXprg6n2zOLmypR+a22ESpyHJ3GmWf6N8YM72TCZxOnLTrguX0bjA4kBdk5z7jQK2NYbcVDe4170LJ7f3mr++FV/9Kx/E++86CaBpXKPeEyR3bBqgMHvLAbC6O0op9eJ7caaH9WGOvJB63KAX3l8UqOaSLjWJ9T6Jjf1EGJPYvCVOrw2xf65vNb2pFnbt+1gzrmEsyLdjXJMI/kK+a01ipz6J5lzumJOt40oJNIdJp3FJwmMgtVN1Sy+7zx5ZAqCMywDjfAumu2n53QYMdQFAzHEpG2W6m7Idv6XUBlgAMAxUJVzKoGPJSSw2E9fm59QwHiq56cEnVq81g0Sr3DSFFVFuevGAFk9HlzYu8J64QVkpbpNjrvV2hB21gIfF0vEzu0BVH0WMQNi2DIle4D7S/s0ybbTp+aeMNOwTq7k/mtko30LBpW0yfuXvfByv/vNP17KB9ND2mYToRXIZXJwr2wDU3E2ZQSInQOmKrmzb2tYYr3jjR/G5x/xtOnSQ2K8eN/1sSkFix4XLKC+wUPZ15NxvFENwVCET7qaWff5Mufi8pXS9pWtzppc6kyS+bbFrEovKFdTm7kjXUK90NwXUPVcU9TYFoc8P+nxODa/ZAsPG+EspIWXFFtrgCriXN0ZWFhGAcW9zmMQEvUQwJIEoxwmWAUrekASGskvDjkzidlpgJAnPTCwvAuq4bNsr6rWMIcekVqbgeN5sjXM8elat4Y6VrtTmd8tYNfBVTSIQfg6krJKSUoYdEzMBwXX8To1ra7fW208TXZ6lNn8Fa6CujWvMmsQ2uWlel5uaiH0SLx7sL+scTu9itq3rBEATyG62u78Y0LW5tzmOFSSWC1bqdxYCc0EeGtzQInWml0AIfk2iz0zGfPhXbouGtMmxIKHj+9Dpdf3aOJe62TNgfxiMiqoFAFC5qmaJ6W4a9v1oHcvJSHYFN/FDuP3oOdz0wBm85q8/630fBUwmk5gxFrrbQVfHvVEhsbAdJpGRXKHjMOcxrqHPve2ocqcjOetcP+3UgkHXJAY3966Ma2wLycp9M9FJktWtsWYbuItd+vzQmjG1j+pnLXAwxtKvYe6m9W3mhdTPsiY4QUpNXZAygj1Dbpom4XV7xLZpB9DA42/O5TttXGOawnCCxKKUMuvrP3A6IVVInyHBrbE9joX8I2fWUUjghivmcW5zjHFeaDMnoIO7qXHfcJIriQB6mf+7PXJmXc9rzfrmYMfvvBlsxzVel16RVuOa5jkocsUKZgP1/2/7U+CpX6vko4AhN20yiXnduMaEq21G821B3yJiR0HPrFOruzhI7OhcpYPEOIFsC+YChGVc05FJpPoxDpNonuO2h9r6cIybHjijHyy9NEEvSYLbIowNAw7XIm1sZRLbs6aPP6AazpL5AFAtkpNEQDgkOeO80DVZQBUkmpM/9z6aBpPI6btpgoKazx1b8b5vYzRZk8gxDdoOzIULx1hhNC70eWTVJJbneaNDn8QZTwsMum5ue3QZUkodJM72U5a7aW7WJDJq28bGYlctJJt/p/vYYBI3x6p1TGK0wGAGiUB4sCH1YssuN6Xf/O6mdsMb+h6+MUG1bQaTmyUccxH1U89bjDYRJtsT7G5qSJ5t8mcXuhjX0NtonmTLTXU5VnhwyZabUlIydS/kHzilkorPfdw+AMDSxqjWl5PnbqqCtj4zSKTgspe4v9vmKMeX/cL78MNvUck9s70Hm0lMqz6VUW7ajUxpOq4DloTTeEv9pCDx6f838B1vBgaL6v/CwSQ2axJNUP/EKDfd/aDMzanVrQu8J250zRJxFwcXCnccPber3bm6us3lNQYy/GFPrM85Rk3iiBEkfs8f34JXvPGjeLSUWPcyZa4Qeg60I5gn+2buD9VWNqUdtqzp4w7MAQDuN4JEc5GcWmzai0L1bTSZxKXSGTYzHqTcmsSuLF/XbYQutIBq3mq7tzctNYlZIiZaluwEzGuA49Sbd2QSKWBY20afRNtcS4uPU6tDHD+3hY2Rup7n+hnP3bRjbRuZhKixtoRM9bkLmkkcaWkfJ5AF6p8fuvBqYxJN91MXXPtpMkKuMSGMp25BkjKZxIbcMZhJbAaJgeO6JheLQrJcemkMUPUgDM0d0TXpcqR1IS9bZ3gblzfHGEyi635b3VLzy/VXqDqxpfWhvv4BHpOYk3FN2TomNJFHzq2VbHHyPZT8/JtPH9VjaP84yTvqk9iPTKJGF/dys07ZqQrJy9ggHdg/xFWTKPPqb01EuenFA7q3Tu/iILGrNIwkHbuZSXzw1Bq+9g0fws//050XelecqLubdjOu4QQcxBKtdgwSfQuLopD40D2nAACfLGusegmzSbThCOZ6aJsLItNtEaj6XdkmdXroHTu3WW3PrMmyPOxHmkmp5HYmk8ixyQcqaRynHq4rzOuCZbgSOCdsGKwXgdMPbTswr6dzDOl0IZW7aSK6SX45fRLpup3xLK7HhcR1+xXDfdujy3W5qV4kt2/LrInjOMxSsAHYWeAq+El0kmRlc6zZHq5xk/n54W061PuEwSSa2zNrFl2gP02YYBnfvwlXuw3fPmZJgizh9DusZKrdmESe3NScv7nlDTNMk6J6ABw+R4aYiVm3V/gVKDY06/Zs26Nn7cEFVT50dn2kW1kAYNUkEtupZdpMgylXWygAuPfEau3/Zu/UdBsJiFiT2G2dbJqQuZnEUmWYTbbgUYNdTOLYLTcl45ooN939oAtiCiU6ndE1S0RzVOjD6UKAFlwUuOxGdK1JNAMlTqBOUhxOTWJ9YeGeeNaNrCgZcfTSpHRkC3xAGTVQTibR2B/6Hs3WGfZ+h+o105G3WVvSfJCanztfBonk7NtPE69tuvX7le+bitzU2AZHXhy6mLC5m3LqqrYDUwJFQXsISCY2yFLWOaB7jNUCo7xuKYh2yU2fec1eAIoJMANvl9mKDVXWGmybfM0kWhaSuv9fImpJEinVdrjGTUWHeUsaiy06JuaUEFKT6Ko3KzxMoiuwtKGqSeTJD+t1Y2EBqRrXrW6say17UfgZcesYoybRlbizgRJ3XHfTouwlyGEgzePvYnvoc65YUGzPmbWhbmUBqGdVcJ/EMrmi5aaBiapCtgfAZpA4zouJesvwIL2omSJFuWnHmkRT3eSoiQ5mEttaYJig16PcdPcjVCbRxPvvOoHv/qObz/Pe2FFnpDg1ceqi3ZzCYrcraCLmMA2Ayui/4o0fZdUIdoV5/DnbGweye03QxMVpgRFak7huBCI3lU3OZ3opepwGwBYm0ea4uH9OZctOl/W+hZQQQrEJQkxa3QPVNWsGiSaToBYyzTFVNpbkdo8uKSZyz2yPJW0CuvWJ6wpzAdK15YlPamerScwuQE3iOUaQSDKxmV7CYhLp3uxyr81ktLiePC6jvMC+uR56qcDSxqiqSeyl+loOeY5U9S8JqyaxKBrGNQ4WJUsqufXR8vpfGGQVk86ogSRwm7K7antol4NqEpuJ/LJPqn9M+/EnGfL8ICvl9bygOU2Z5iId5abmIeckF8dFoVu5cK4tQM3JLLmpbEiZmYGzYJy3muGZqwa+qAeJS+vDGgPPYhKles5ouWnAfFIFe1XvTtt3O7lSKdZOrw1rQYpoSUB87rFz+NTDKrE7wVLvYrXYtNCFTa3VKaeOa1nXJM7YP8QnN3Ua14TJTR2jI6aJrlLO//AHn4CUamFiLsB2AuYEMMolBoFXDhmRrDNqdKYNmkg5i0gA+Mm/ux03P3QWtz66jBdcfyB43CNn1rGyOcbnXbMneEy9TyLnoW1k5DuM2wmTHGKrskTgaGkVfnjPAFkqGPKrKvtJC9Dm/DzMC+yf72NrXOCxcjtmvzdbbSFQLXibTGKvlFElFgaAgttemmBRL5JVveXe2R7bpp3O8XSYxOq7sJoA1xbyEv3Mvoimz5zrN4xrpsAkmvMWl0lMmUyilFIfS86CieYfahEytGxvXCjn3L2zPf09ekYj6zYG5uzaULkHGwsSVp9EWS2OE6EW8lJKvdA2a+0oSULX/+JMhpTRuBxoXls8RspcJNtqEj1EojPhlBdSJxOb4Mh96dztne0pJjdwUVnvt8dryq4ax5dBIqMGdZCpRu6shIc0Wrkw53Jf71rXOBqjth0ecNdbJwVsyyY3tbDNAHCwdKtfLo1rTJk2h0kXArq/aMgcZDKyvqbs5hx/cmWr7q7ZkoB42a9+CADw4M9/nZb7RnfTCnljveWaM0w0W8AAlmBTB4kOuakOEi1MoqsFRuyTePGgq+yKHsZLDEOGrjAX7yyXwPK9nFqnaYNu7DWGRAyomBFOTzQA+LJfeB++9g0fYo0xs02cOrWuTCKNY0lbQ5nE8nh98RMP6teuXJxBLwmvkaKJNUtMKdtk4NZPE1y1dwbHy/pC022OKzclyaiNBTMXyfOaSVSL5D0zBpMYGiSW53gaNYnmoqELAwb4FzG2mkSOrGw7MIMgjglTUahFE4dJHOaFZkG6NCAn1sB2jYzzAlmSYM9sD8vrI2wM85p812c4sTHM8dyfeTe+/U0fq1opJLw+icokRP1uWySbSZv5vrr+KTGzONNjtelovo87JwhDEsh3N61/FmFcSOc4jtx3eWOEXiow20tZ5k16IZ/wnIFJkpkx2Z5cSq/82b29Qj8XQwNSs3ctR+5ITp5CS3AZUk4hQB1NOP1Fqb+ubRzdt8Skrw/zmuETT15MSarw+s7cEmzYrknTefn02nDCXTPkOs4LWTGJ5T52dcC/lBCqgHhseQM//JbP4vTqVl3K7GKA2+SmJB21tsBwGdfEFhgXDboulnSQuLHzrTNqNQpdgsRdzCR2Pf70MJyK3LQ8/nN9Xo3UuJCY74dLVsxxagyDSRyHBaTUQ+6FN1ZB4uE9g1JuGiij0jWJbmnNKFfsy9V7Z/DYsgrYTLc5l7spHeuz6yP9AFUMJPS4SblpySQmCXppgpleguWNEYRQTIpmNgIXCV3lpjc/eAZ/dfMjrDFbtVrSrkGie5yWm2b1msTpMInVNlhyU8NdMPQeMI9BKCMOVMeRMvKuxEWWVEzi+nCMuX4l5/AZTrzrjmMAgDuPrUwyiYyWFKbcFGgyN1WQmJSSa7rn9sxk7JrEXEotYwutdTLlpLZAtgoi3Z/hWqT53E190j7CfSdX8XP/9Dn81gfuw97ZHoRQgVuo/LPQ5y1hm4tkHYLEmkspa07g1yRKMwAWwild3xrntb/VVCHMwDlNKrkpx7jGx0DS5/SzBIMswcYwn7hvWH0SjVrSMLmp+uk1QAGwMSp0GcYpg0n0OX6rz69eP7q0gXGu3E17u9yc8AN3n8T3/+ktU9mWuX7xXf/vv+sk/uLmR/D9f/rJWgLIyW63Gde4WmB45aYUJEYmcdeja23ONJnEcY1JDN9fulE4fcOmja5yX3Jxm8Z3o2M+20/Zx3+uvE5Y/a7K88ZZINRrEj3GNSWz9Lwn7EeaCOyf62Gml5ZyU660zP3QHuUFemmCK/fM4Pi5Lf2eem2hW26aF1LXqY4NJlGNq2/MlEwBwFOuVP2LFgcqQGQziR3lpt/yWx/FD73F39x+clvbZxJ9iZKNUY5BltT6zE0tSDS+DydIpMUdi0k0g8QODchpseWSQGdpgn06SMxr8t00mexdCAD/fOdxvPrPPz2xX9ruPrSOyzCusfUSpG3T31SQWNYkzmRe+Zt1e4XUSbjwFhiG3NTieEnrJ5+7qbMmMa/uf9cY32P8u//wZrzxA/erzzICvlBVzoTclBMQiapvHud897MEQnBZ8crdlOOcC1TtJWzXyIOn1vCF//u9+K7f/4RuTVRz3GXUadI4zTYzmURiIG2SZHrPXD/F2nBcu2+yJDy4r4LE8OdG5cDqbuUCAJvDHNftV22eTq9t1Y1rPAqP04ay5oFTayVLDW9Pxt2A7/q9m/D2W49NNZkP+O8bUiktGYloxVKrv09cJ+PSaZ1bk1iMo9z0UoB5QXCknPNTlZtW+8UJUigLvJv7JG6XSewqCeTIjGkfZ3spqzh6nFdMYpeaRJ7cNIxZoprEg/N9PPnwAq7coya+LE0Yxgpm9rP+WrU/qrn94cUZnFjZhJSy5jaXlAvrZubavNbp3jLdDVMrk1gu/MqH+vOesB8ANNvTVpP4X//i0/jTjz+k/0/Hr0v7BS7M65fLUlfj3Pu5OcxrUlOAl/nfDrrWJJKUjcMkmvczZ8FEbyXZlm1eGBUFemVN4pGz6/iHzz6mWQZAsWO2a+tX33tv7f/HymRJlqjFbujCum5cU+63rd6vvLcWZjK9EFqc4dfkmkEi17im1jvPGCo12+n+jMSxn14mMUBuah4rSlZ0Ma4hto3lblomBNQ1wmCOhZIkcxNHJJvu0gLDlTz6i5sfwfLGCB+8+yRe9qsfwpm14WSQyJGbJqa0L2CMPv5uB0rze8z1My031fcNpy9m0Wwdw5CbCr/j6+Y4x8GFPgZZglOrw3oLDE/yjpQBgGISc1kyibtcbkpkCtdzoguadfounCjLX8ZFUVvL0PmeuE7yMkBvk5s253Ovuykxif4yjBgk7gKYDxBO1o4MMpaZctPbHl3GncfOscbUDFA6yE13a5YJ6B4kkqymK5O4zjGFKR8SM7002BAAUOdttgxUurBEXeoY28ZRD7n5QYYf/dqn44e+5qkAVE/N8DoWY2HheGiPS7np/rkeRrnEWlP+42ANzOuhYhILY5E8mbWmwJ0W7l90gzIyol6Lzsm/xFs/9Sh+7G236f9P8745L3JTTzC7MarXzwFTbIFRHr9EcPskqjEDBpPYdR6na6mf2tmeopCQUh2zvbM9nC0TF3cdX9HvsV2TAPDs6/bW/v/ImXUAlWwuOGiTZpBY7qcxD1VST/VzwXA2W5zJVJ0gx3ClJncMZ18AFajaA1n1029co342E0e5lNp8Z3JMOyM1yBI87sBsbT96aRIcNJjsY5owgm3jvGVcuWOiWjBw5wSqdw19TplMlstxmuaXL37iAWyNC3zmkaXGNRnGikup7iXaFu1z6z4GGNdUbZkEZvupkpvKbn0Sc1lvZREiX2+2slCfMzluo1QhXLEwwKnVrYkA2LWLJ85VrqjLGyPDOXd3y00XGn2LdxK1mkTPfXOidJhd3RrXjWss85Z6gYLEnv0DdQsMW01im7tpDBJ3PWo9oRgTMhkEcC/+//vXPoyXvp5nnFJjEhlMFo3bzUyi+X18Vv5NkKymq4xhjdGTTtvk91IW21xIqWVprJrEnM8kmhObj33RNvD9DF/+lEN4ydOvBFDKrxiZbqDMvqX2hzbJTffPlc2N14aNhQXs44qKfT23MdbvqS9IJgNS9R3Ue77kSVfU/h7KpBwzXFjpO3QBZ5x5rnbifK8PLUGiCF+wbge0uNoz22Mx/sSkKCaRd02q7fKD7cyxsBsZCYi9c1VNyg9+1ZP1766Aj+bdP3/VFwMAHjy9pt+feAJ1KSU2RzlOrZJM2+yTiIn9bDaq3zNbLWYomcmpyRoXki1brPdJtBjXGIsxF1wGO2b9WxMhNYmnV4d4/hPqDtjqeDCltAmPhR+3zFsuVNd/uAOu2k91HfczjgkZ9P65HKcLKbF3todf/JZnA1CunFvjAjMli5UIpmw08ZiEWMeV+2gY17jMy0huWhnX0PdTSYGQNYaUqgZeN6oPCRKNRI2uAbaM2xjlmMlSVd+8PmoEwO5n1MpWtc5c2hghpz6Ju1xuOj9Qz56pBImBNYk6SNwc16XMLgaYgj8XK+hyN5V59bcmkkT9LcpNdz+atrmhIHvd3V2TyA82pg3zOc1ZuJKspiuTyGlcrmsSeylrMh7nVZDI7XcFdK9RCzGumRvUJ7xexmjuber4HQu7Ua7ML/aVRfpL6yPkebVocvXJGucFDixUNuYASmmNe7GljWvKh/riTA//+rnX4odf+jQAVQBgu3fMoN9clAPhNvJNcJq5d2cSw8bZWvRMuwXGwiBj9Wolm/yZXoKtwPvbnEe6GNeQnf9Eo3ojAXH13qom5Qe/6in6d5fhxOrWGE+8Yh7Pedw+JAK4/eg5CKHmEdeC/LZHl3HDj7wdT3vtO/D8//UevQ/EGPh6EFIY9eKnHtJ/o3mS4+5YyEq2uB25ad24ptxHT01iNSfUX6fG4Ta4FAmEvJA4uz7EdfsVk/htz38cAKCXqJY/IUGDOd8Jj7lLE6bcMUvCmcu8qBxwOc8A6kPL6cFZ1SS6GXE6/gfLefnhM+uQsnISbQuA/+rmR1TfQpsChcEkJgmc9bX03ZNEBYlN4xrdqingFFBSpkqABshNC8t3s9UkjnLM9FNtgtUMgF0JCEqYCqGepeO8kjInYhfLTWfU8386TGJYTSL1qlwb5vr+8rHUmu1zsYLOmkQPkwgoNjEyibsf5r3VRe7FCTZMcORX5sXPCVI0k7hLs0xA9+9Gaw3OgtwEh0kca7lpuAMoUK/t4TIpAK9GzXwg+a7jtWGOfpbUaqoAWjQFLggNiYy7uXHJJJZ9q86WiwTTEa+534B62B0oGRu6R/LcaJ1hYW2axjUA8Lpvew6+70U36v101QSZ9wY1s9dMYsfkCqctS9c2KeapajOumahJZBhNbAdmkMi5/qlRN4tJNL4Pt0+iEKgkmZbrEVA1u084OGf9DBeTuLY1xvwgw0wvxfVXzAOozJRcC/Lbjy7X/r85yrE5rgJ9G3NmOosCwMufdx2e87h9+LInV4w6l0nkumSawYbVuIbYTs9nON1NjeRSE/Sy63peWh+ikKoG+4Gf+1r8v9/y+QDU+TT324dxIwAITbB0ZRJVf0WViGYFiUXlyskxIaPrXzjqLUnGOtfPMNdP8UDJiC+WAYCPXb33xCp+6C2fxX/7y8/UHECF5Rpxwcb2TD5vqkTiXD/D+qhuXONq1QQoI5MP3H1y4vvS54UknUym3Kdc2RwVmO1VQWKNpfbUdq6Uz8LH7Z/D8oaqCc2MxNE0asy7YKFMRk+DTAmtSVwx1t7HVzbRSxVr72S3teuWq77Q1QJj7GYfARVAxiBx96MmN+0QgHWVOz54ao2xrbCLf3Lc7pebmjdkF3OXrkE6py0IbWu2nwY3YAZKl7pU2VTzrq2SyeoYNLQxifP9yYmLY+RgFtvbFoT0niQR2u777PpQM0SAW1o2LgocXFAF4ucsTKIt29o0rrHBVRNkBi/08KDP7yrh4bDbdcOh8HGhTGKzpx/AM3HYDug6XJzJ2FJaYhJD59euihBTymgz4KjqXQWuPzhv/QyXu+naVq7lVk8tHXf3lveDa0HeZH2PLW9iY1gFibb7xlxoAqo36N/85y/BH/+nL9LvYdVkFVI3Eg+ubbMsks9nn0TXva3ZR8d3I1fIgwuDGovJMU4h2WKX2k46XxlT3poKwQ8Spbo+VHuV8HNdJe7sQZtpHHRwoa/XLlRv5jOuOXJW1eHeeWzFYBKN4x/w9epGafbzbfZEnO2nWN/KG0yuO3D7/j+9Bd/1ezdptkuWx5ESCSHnrWZc4wg2pJS6RnzvbK+UjRoBsCfYW9kcY5AlOLw4wNk1qklM9HGZRo15F1ywmkTPs3tzVGBPyYI/trSJPTM9fW83PweAITd1hGy+FhiuwBIA0izKTS8G5B2DFLq5uzogHjcKkdtgsg2cmriLwbjGDEy4WVOAxwiaYNUklvs400sxCnz4Ag0jgQ7XVhf5YZqIVndTkgmZ6KVJcACctywIgepBu69kBZfWR7WaxMSxSBgXEoulbb9mEot6LaMtsKTv4IJrcWceq5XNsTYqAbrfN2QOFIKuwU2ou+nGqJgIPDi93rYDCoAXBhmPFS/UYovDJJoSQFZNojQSF7Z6V2OBetUeuwW6sMhUgfJeKxdJJHdcHBD7Yl+QNxM1R5c3sDUudKBvcwDVNYkeni5lyR0NJjH4+KuftZpEY3NmiwwXfO6mLiaxLdg7vVoGifP1HmfCEZDaUJu3POYiTYyLQhvucGsSK+MaRuJIqrYIfUct46NLG/iW3/wIbnu0YqsLiVrizi43rQKwKxYGuP2oMt4z5aau4/jQaRUkrg+r+q/EaGURcvw3x3nZEsRtClNjEnuqJrFprkPva+LIWeUcSjJEOo6c1kl2trP+nlEuS3VRgn1zJDc1AmAhIKXdm+Hc5giLMz3sm1PBpZpbqsTRNJJ+XdDVu6MLajWJjnmLAvUrFlUi+ujypq7bdpXOdJebFlFueimg6yKN2gV0ZRK7LghD2xQAVRZ4NzOJeeBitwk6Jp3lpoyFPG1rhtkCgzKw3IwwBWu8IFH9nOv52wasbI70QtUES6LUyH4Ckw9tkjHtm62YxFrW2mLAAUA3Cd4z29N1GHXZVtJqXGODqybIPC+rW+OGbLHbg5clNy1kKf/1B/dNmEGJr25v0yY3nZI8SctNZ3psJjFNlLtp6CKZvs+AUVsL1NkeW52grndNVK/JX3j55+Nv//OX1N7jOp5rw7FulXR4cUa/V2/Lcj3S/PJn361YwKNLmzU22FbvRB/jIekUk8ioOd5On0Svu6kvSCz/OGEuKKV2KJ4cU99+E6fX1MKf1AkEl5LBhrYklQvE7AElk8hgZXULDEbCQ8qqv59tkXzXsXO4+aGz+IZf/3BtW3QMhSNIKQwm9+B8dRz3GItr126SWdPK5lgnuNOEJzfdMPqSuhby5jmaH2Q6KDX7JAKw3gNUN39ipTIuS4Tw1rI3IY3r2yU3JYXJTC/FntkehuMC68NxTe5uGwcA5zbH2DOTYe9sH8vrQ/UcL+W+06ox7wLaKyrl2EnkATWJ9By6opwPji5taKMvOv4TQToFf21y0+a4YuxmH4FSbhqZxF2PrnJTuiA3OwZgnObqo4AMiXVc+d5xIXetHKFrLdF2HSg5MtW8lBt1YQTTDkFilxYYdBxn+6l33MqmnUnkLGJsLnXNh5SUKIv/EyzOZKpxbYO1sY1TrqgCe2ayyrjGXKSJyQVh07jGBjeTWN2HK5ujetKoM5PIq0nMkpI1Y6gSgpnEYY7ZXv24pIyAYTsY5QUSUSYuOtQk9hh1dKYDMVembbLbTuOacpH8ihc8Ds9+3L7ae9pqEgHgUJm5puvNJZujuf5xZcPt4+c2a3Wl9vumYmhc4NQkFtJogREc2EDvg8/d1Gdc43Q3zaXzu7nYRwIxiQcaTCLPXdOQJHsSLFvjHG/71BHcXbZHMWWaacpkEjvKTX01ibTbhazmzLrc1F3vR+/5yW/4PP36woCCFPdxJCZxXEgsUY/KhGdcs7aVa0bKWbdqPCNm+yk2RnlZ20nH390GaW8ZJFCbCRrnYx+bCHkmEqEwWxrXAMCZtVHNlA2wB84rm2MszvZwxUIfJ1e3sDkqsDhoZ3IvNKqez92S+V22BbgTvPQcovl4eWNkYRIbg7TctIVJbNYktspNe0AemcRdj65yU7oIuUwiZe04ssWa3LRDCwxg95rXdF2UbzdIZBnJlJlsTq8roJQb0cOe6YoKqOMRGtzT++b6foneSpmRbKLHsE23Obm53OYAYP9cf4JJdNVtUEH+wYVBJf8p6u6mzWDWZlzThKsmqyk3rfUk7Wpcw5gTSCalrhFOTWJgkGjrk+hw1jzfGOYFsjRhMYLUS01l1hNIGeiAWB6CmV74dQzUmRSrcU35wZknAeFzN12YCBJLNsVVy1vuuzK8SbC8McLGKNc1grb7xgzQXMjScHfTWguMwHug3idxck5omuvY4JKA+moSXewj4fTaEEJA10ZX2+LVxNUkmY7r8e8+fRT/5S8+g+/6vZsgpayN47ibFgVK2Sg34VEmMx3PG3P7955YnfxuDumuGWxdt78yb9JyU4+ZDzGJAHCqnM9rZQqOQ/LXtxzBj//NrdgY5tgYjaskiWMhr9QH5G6dYZRLrG6Oa0wufd8mdJBYMomUpBIlmxhS4tNsZUH7ZEIHiT0zSNzS13DiuSbPbYywZybDjYcW9NqTghtOvfG0QXPONNRsdeMa+/bo2XzlYlU6sIcYWZcqoWsLjGLcIjeNTOJFgZpsi2Uc0S1IJNnMFqe2MCBDYh13EQSJXWsSaQLmTj60EOEGpEnCC6TUOJVB7qe82pJQK+fmPgKKSfEGiVuVTMUEWcIHbav2QPQziYBaoJ1dV3bfTeMaGyuYJQmu3TeLR5c2IKXEcFzoRbptIU/3R89jXJM4AnzzvJzbNOtm+AkIaovTJjf9uX/6HN55+zEAFBQnGGRJJwdcoN3ddKYhN1XypOBNdcY4l+glyjmO2+/Q7MEZlMmXBpPIvLfNerPmUNOkyQXbInmcF9gcFZoBoSCRzpWLAdPbSwUWZ1QvtaFRk2hbJNMzzCflDGUSqSZ3wHQ3tfVJtPZy9HxGCEvUBL3sSnqcXt3C/rn+RJDvkrvb0ExSucZ89P7TAIDHljdx66PL2Cpr6Wg/g5nEMihTzw1mwiNxM4nm9v/l3lMAyp6A5XdzBukOd1nNwDiOSV5IPHJmXZs2kYmQCsAm94nw7juO47/91WfwJx97GL//kQdKJpFqcu3jlAOu+v3afar+96Ez6/r9PndTWpMdW6akZJVEyDwmX2fXhnjJL78fv/bee2q9Sm1MOlCtVXppoueDx5Y3a1JmwMUkKsbrxsML+jUtN21x3H3RL74Pv/3B+51/30loVdQUHjh1g0f79mj+veFQZUJG17Eor8tJd1OSm7qMa3w1idHd9KJHVyaRsktsJjHpvi2A2wJj+6zITqOz3FSzbbwMGk3gXRwQOb211LhCW/l37XkYukigia2NSVzdrNgNE700CTZFMg0IXIxgIaVeEO6b62Npfajq44gRabEyv2bfLB5b3sDmqMC4kHqfbU5utN+uuiX1NzuTUmcSK7kptycmoOTIgF9uuro1xhs/cD++549vUfteFJUkmdVLs/2+yQsVYM/16uc7m5I8iViKmV6KzVEe1pMuIAHh2hYAzGS881Y3t5hc2IXUuyomsf4aXVfEyFENzP7SyMkVENE10EuUTPtk2btTB4mWRTL91lqTyAy2ge31SazLTcu/+0p0LIY3gL9PYuJINhHOrA0npKZqPxhy04Zxjctc5JaHzuJpV6mA6N4TqzUmWTGJ4fOrMm7izQnk8NlP7XW5NGccWhzgdz70gP5uuk1EQL2fCS0BdbCrR5c2MMolnvv4fQCqPrR1JnFy3MfuP43ZXoqnXbWID99zqqxJrI6jbZxZt/q4A4rtXFof6dd8TCIlCqm8QbmiQm/PVYZx/6lV3HdyDb/87rt10qZWp+9KACUCjy/38YFTazV3Zdc+qtYZGZ5UCxLb+1SO8gIPnl7H/37756x/32l0KZ3pvi0jue7YHvXrPTjf1+qCPUbS3MqKt8lNXS0wZEufxLSH6G56EcCcgzlZu0puyrv4adJiNWU3LlpOn75xwE1zPvFXNz+Cj9x3ijWmq3FNFyZRSqkfLmwZT5mhpf+HgAxX+gwmxRzH2U8d3PRTp5GJlFLVNthqEh0LC9+2zNqS5uU8ySQOsWrUaDndTXPFrF27fxajXOL+U0oWZdYNNDO7pgOlCy4mxTwvq1vj2nHkJASAisn0uZt+9shSfd9Nto1TtxcQJFY1MJM1iRyX5K4gmdogS1DIMEbQlCVW7oLt+yp1cMM3rjEXyU7jGp/cVFiCy8Y1eWC+j5/95mfhd77r+XoMYAmI8ooV3zPT0xK42YZxR11uKmt/syHU3ZSu/0HWsQWGKTdl72N9HwCas933dqvcdHU44WxqjguTMk/222sOk1Li6NIGnvv4/Xq7JpPM75NYBoncFhhJaVxjZRLVay952mEcO7eJta2xUndMfDdbAFYd/5/+xmfgaVct1pxDbd+NXEM//7p9ACq5aVpzwJ0cd3ZtiIMLfVy7bxbLGyOsDcfauIaukea1TGofoKrnBeqBlG0cUD0DyPHclNcqJtF+Dszef2dKltR1/dM+AurZd9WeGc0UT8h9Hfs46CXYO9vD4ZKFrDGJjhtg3Wj1xXmWnS/Q8Z7G+jOkJpFUPrO9VJtZmcoqW8KvcjftIDd1sY9AZBIvFnTt09dVbspd/AP1RSCrT18h9eQ6jZv0h97yWXznb3+cNaaru2yXmsS8qNobsDK05UODJEuhi9Ci6OZuOs6r88Z1d5ztZc7vRqycVW6aivAWGMYCOHFIZJT0Sf2+b66PpbUR1odjY9FkHzculHHNdaVkiEwgzMWWrf8U/c0FZ01iGZjtn+thxZCbDjJiUsIfrLR935jbH1X28ZRJzguJNC3Z5g6JI5+b54ZRA2OCY+O/HRADT8cyJFFiyn27MImDXoq8kCyTEK9xjSH/dMEmQaTPMRfX3/lFj9c1XU4m3XCAXJzJtJnGTOY2rtHOip7vGerKSfdWlhAjxWMSXXK7kNMhLIFDbjmOJrTc1LGBU2tbmsU14TMJacJsr+Da3tn1EUa5xI2H5iGEajcBQPfJ9MkWm6D7hm14VtaB9xwGa5SAoHYsjy1v1lgzV52mWbcIAP/uhdfjHT/45fr/rvlkeUMFTk8spX0nSxMhavdAn93EmXXF/lLD+Y1hjrlB3VykeZ8qSTCx9n095+1tOFf6ngHkeK6OY3stqRkkPlL2gzRZUludPlAGyYnAdQfUeahUAu5rcmuc68TNk69UbKIZALuSHatGwvJUefynCToGnCT5drcF+BKn6vVBL8HZMrB/4Y0H9d8Tr9zUFSSm9fcRitwvN01jC4yLAl2NU2hBPZUWGMYikMckmi514du798Qq3n3H8eD3bwf1G5v33dSYnZffarlpuVAMDaaIEeTKhsZFlYEO3c+acY2DkaJm8a4+iVLyFpJJIvSDOW98P/UxxCT2sbI1xvLGqGISLYuEoqhYg2vKIPGuY6u1fbYFe6bUzQU3k6ju3ysWBkpuSsF2nye3U6Ag0T3m+DnFDNGujsrFDbcnGhmu9D11spQ1bfZJzBhOi9sB1UiR6YqvVQfBlJuy+pR1lEnW5HaWYI/mW18CwlYT1MZuu1iDUSHRS5VphmISyyBR12RNLiQrKef2mURzv12tFGyoahK34cBqCRJpf1zfrc2l1Ck3dTC5Nph1vS6ZKjG+V+2dwd7Zng4STZk8y920gwRdloYrPcc42j7JMY8tb2qTFqCq07SaiXnl1vbjT/LNa/fNIkuEVW5qO21n14bYP9fH3jlVk7s2HGOuGUjZmMRyF4UQuHKPSgzsLSWFvpYnJEHUTGIha4Y3LtXFktH775Ez63o7Ptmu+R2I8dxfXp8+dntrXOj61icdUkEiySR9hnrrhov76tYYtzx0Br/6nnus790JTFNuGlSTOK6eib/ybc/Bf/vqp+ALbzig/26Xm5af1SY3tQWXbcY1UW66+2FeEJwATDOJzIufJgBu0KDd5ph1e7MdmMSvet0H8N1/dHPw+7eDrm6SRYfJxwzueD0IZblo4jv+kQEBNyitmMTwgBTw1ySulA8Mm7spMSUh1xe9pSY3nbh1qof2wQX1EDx+bktn1m2LOzo/vTTBNfuU+xgxiQtGcOnK0HrWMciSxNr2gc7LwYW+YhJzCjb49xsthH1STpIlURY6L+ut1IKclyTJksTL9piW6ybajA7OFyomsQwSA65luq+T0t2UPqd9nPo5k/HOW2EwiVYDGuOadMHGblduh/ZxzqbgpXETAOyZre7TiT6JNZYu5PoPczc1j38vC3fkNOuUbXNCxTS6P8Pm7tjGJFbs4+TfRnmBpfWRnn/s22r/futb41r9nblfBGJ8Dy/OYN9sT0st5wfu5JYLtT6JHVpgDBxzAp1LYhKPLm/UWDNbAoLGtQX3tu9GQeK+uR6u3T+LB0+t6ff7GODTZWC/b1YlF1c2x5gbNPokWhQoZk06JRWJSfS1StFMYinNNGtQs9TdGmp5vWLmKEhMEr9zN1Dd+yQbJTm0a04g8zZSZLzghgNYHGS4YrGvv5srSWK2+lofjvHy3/wofuU9d3d2hedCt8CYwvbysr4fcK+vNw256Zc/5RB+4CVPrv1dseLNIDFQbmrWJEqp5Ke+FhhJZBIvCpj6c1adoNGontODsItGe5RLXbjNYdty2Y1JnCbqfSr5DqAsJtE45l36HXLcFul9JDcNDfaklOp8D3hBIh3HfpY4F4PU0NZWk9hj1MrS5yvjmvr29f7I6oH+zGv36tdp0WRbbJkmIYszPeyZyXDXsXqQaMvI6/96FqBtNYlXLAywujnW11WX+0ZLoD3XBzn8nStNcsg5sJcmbCl5kqjgxRVcuuSmaRIms9suqAchR25ascLYJpMYGNzIRp9EB5PIdjfVC0L7GFeQMsqrdg+mLHxCkmYJEn03QAiTNc6Lmrw2S8KZLH3eEvucYNaaumCTrlfHsSVIt3w3kpMd9MhNQ4xr1oxm7q6FPDG+hxcH2DvXx6Ol/NCct8L7VKIys+rQAsM1J9D5v3afYrAeW9qsJUlc12RRuFuQAO4gZXljhDQRWBhkeOIV87inbLuRJu5gDzCYxDJJsm45/pNy0zrbTCZi+2bLAMxTA0kKjlXNJFb710s9ctOyx54QlZSzliRpYRLJ4bSN7aR5k5JtX/esq3Hza79Krwl9LUhME7X1Ya7nMWovtdPokswHgKX1oU4yhGJcyCpJ6HgmmkyiDbaSAyUjFe4MlxDq72ZNYpvZDQCksSbxokBuXlgdTWE6Ga6wAtLKAp1jODEutleTOI1C565MIh0Glmy3o7SYJGnEJoRsk6zkk4RnQEC7OMeUm1L209ZHkKDlpgN7TSIQdg+YkjTXosnsP/eMa/bo9803ZXNmkKgXqOo4X7t/rpJtmU5uE7KOisVwIXUwKbUgcVj1SeQGG0AVUPiYZmISpVS9r8aFRC8te3AylQxZkqCX2U0qgHqRvok0Scr63J29v6kutWISA+Smtmsr4LgU+rzxmMS8KKo+iZbFVohxjRCTSqNCfw8mk1gUeluLhgvxTNMV2JSblj/bmUT7cZRS4tvf9FH8q9d/sMYk9rcrN7Ua17g/ozKhqca1MYn0mbbFPyVkfMY1IezehhGkuAKp06WU8uBCH/tmezhXJuRoXFbecyEoDLnpuJBBSWh9/BPhnBNobpvtp9g/18PJ1c1aksRlyqPKJjxBuiNIWVofYe9sD0II3HiocuVMk8SQm9bHbY5yrA1zHJjvYd9cdd7mjJp0wGYKU3fApWfIvrn2mkSqUyPDsWbvVJ9xzYH5Phb6Gc6Vz1bT3XciSGw8p4hJpL12mbnRWoXmUWHUedM413RXZxJzLW09VpY97DQqUoRXlvWcn343nv1T72KNyQuJfqaurbaaRJpPm1CqkMaLRYtsFFBsolmTqNnHFuOaKDedLv7gXx7A5x47xxpTSKl7QrECMGPhwqlL7CaTlLquh2vU0kVuSphGsXHNOIi1SC7KMeH7OKwxibxzRjU6AI/Z4BrX0Pmd5xrXFCjrJt2M1KqHSaSHasg9QBPtbC91LraKopIx9dJES5yaTKL5rK9aWVDNxqz+m68FRsU+tQSJltO2ZVhiU+AGGEFihySE7/o4vbqlFxFn14e6bjVjmIQAdQm06x5YL+elZp/EKqsevLlO0HLTcu4KcYKu1bvq+y18HJ03jiuwySRONOk2mDUXbBKlNibRxRqM86r+6/Ou2aNfJ/OV1LKQlIFJEtd1+dDpdXzs/jO4/+SalqRniWD1hTXdS30OrG1sJ4DaOaBz76sJFQ53x9OrniCRxSSOtXGKKwAY6YV8qgMTwJjvGExiLiVSUfVdDXnGmXJfFwNMz8wsETi4MMCplWEtINISUItM0nP5l/eNnUkkuafZl67GJDZ2k+oCF2d6mmEDlBkNfT/AwiTK+jVCTCIlyHznu3I3zavvS3JTT/Juqfx+CzOZZr3M5NaEBL2Afg9Q1SJWdc/0XRpMojZbsbNfvpZGptP2+tYYB8rA+/jydIJEXZM4pT6JaZI43X0Bo04/czCJwsJuF2O/AQ2g/m4yiW1mN0ApN41B4lTxk39/B172qx9ijRnnUk8oPpnYxLgyawFUFHYI6ALkSVsL9OjiD9xHKZXD3yzTyMFEW1Pw8wFzAuY5uamfXcxuumzLrEkMCaRMu2uOAQGN4zKJxNr4Hmo+uSnnHiAZ4yBLjEVrfZxEXZ1B5hFVCwz1uk1aRgvyL35i5Tq2YASXzcVWCEvhYhKrmkS1CD9b1gpuR27qGiOlxOm1IW64Qi2YlJtqVZMYuoikbaWJQC/x1CQ6mcT6/u4UcjKuIblpQDLNdADs5G7KrEmstwCYXNjpYK8lAGvuYsWI2h/ztGhtrkdGudTzzIufehhfdMMB/KcvvQHXl9eMbSGpfRU8++hjEk224dGylq5qyh7IfhmJGttCvpKbuj+Ddt/mbuptbyOE1QDl9FrF7tnGmPvtw8Yw18Ypvro9QB3nq/dOJrdCa0IBw7gmZdTylrtDQYqNfTQVIFcs9HFqdavW3sPnHNrGJLrkpnvKIPHgfCX5NcsUXG0islTg2tK87KuefiW+6bnXqtcdEnSzHg2oXGXN+US9b3L/KVE4zAtVPiSr8+xzpd0sGeaFQaaTiyaTOLGPsn4t6/WEEeCbx6C5fzS3NZF4EhCrRguMtWGO/fPqfByfEpM4TeOavHRG9yVOW+WmwiY3baktBBSTaNYkhspNc7/ctIW/jOCAUxdogmR6PhcrG8Z5gYVBhjPjYXB/MymNFgxMd1OqEQndRzoc22ESN0Y59rNH8RDSANU3juzufYsIgrlw5C3+i/IaCc/smouGfpqyZKNAdd5C2VxibbKyhkIahgQEksQsWuSm2rgmYHtboxwzvUQ9SMu3Nx9SUtYXrZTNp8nZ9kDUC8Lyby95+mH89D/cAaCSbdlqBui/ze9rwiWJoppAyngvlWYEJEfpYozkukc3RwW2xgUef2AO955YxbnNka5B49zbQOWcq6Rl9rnP2QKDwaJsB+QSyKotrDEi4RJo+i6UuAuv//Ib15jMpgvCIndsXstNaNamySQWhb4Xk0Tgz1/1xbXrurpvqmuFtu0zhUk9TcHNuiUyXMlaWOomzH2wMYIhNYm2urGQIDER9ud/xSRO1iS6jr8Na0Z/18o4qP6evFDtJ5JE4DmP26tfrzGJjNZJpuFTUHlD4/jbmFWSbWeJwBULA9z26DIOzPctclNbkOjedpoI2PLJ5zZG2FsyVzS/Aio4qpQk7qTMU65cxMd/9CU4vDiYMNexJWXMa+SnvuGZOLgwwJc++YpyXPW+JrZGhepTOy6wPhzX2NXMk4QbFQUWehkWZjLcd1LVWybCF2zXWfFnlbX6L/+Ca2uvN49/syaxidRx/QMVMwsAG8OxLjU5uTqdmsRptsAggyWfmRvVKvZdAbfVuCZEbtpgEtvMbgCE9EmMQeJ5BMf0wUQlJeTJvUaFxD6SqTL7ywF8uWmWEo0e9qCpDDhKRqoDk9i1vcc4L7R8sQ3U20lKvpSWMMoLpG1yADTlpkxpnxDoZ+ViN+AcmEwCR25qtrLg7CdlnzO9QJs0GyDGwNYCQ8tNA67ljVFek/HYFsmFlDVh2f5ysUB1kbYHYnNB/oSD8/jFb/l8fOqRJaNv1eQCSAYtku21JRRs0TEh2RCXgacaVMB9fdDxv3qvcm6lvoz9XoqMcW8DZeJC+OetDYe7KSdo2w4qw6dwdk+zYgnP3ZQ+mljL0AW5ae9vM+AIMlwRPibRPs7tblpvN9BMfOiWM2YApt/r3EUvk7hmSNKOlIYrypXZLdtqwjxONtliSCDrSxz5WzA45KZrW7UEUHNMc1su1I1Tyv2yBDe0j899fJVaJYdaTtsZqoHnyE2bcl/bNF5nEgc4tTrEjYcmmURbLV3mYRKFcARf40L7PZjnYP9c372txn1z5Z6Z2t/pMvD1SQRUK5Kf/eZn6f+7jGuKQmKYF7hm7wyOLm9idWusn/eAqtV3nTe6VxcG2QSTa/9u9X153IE5PPjzXzexjxNM4qglSPTc22YLjLVhru/naTB7QLWe6Lq9UV5468FNmGt51/aGeV47R02klpIDJTdt2YcJuWn5e5Sb7h5wFlgmSErIX6RJwyQhfPIncI1resxAtpIt8hgpExsdg8R1xjgy7kgTwQ7cCKHHsm5cwznXqPUEDHMApYwotNw0hO2mcbPMmkRiRHwOrCubY8z3U+sE2WcY12wM8xo7ZZMbkWkP4SVPvxJA1ePJ9kCkjzD37luf/7jaw95W/xLEUjgepCT3JAkutaaY0X0SQ5My7dcjybdp4bOyOaoYwSQJTjap/UZrcsvVJ5Fj2rEdFNrwiSEb1ZIsM5gNuN/KcYMsPNmh9zGASfTpFGxMVluQ6HY39S+KbIxIUE1i6jbg2LAwiQmpEhjslxqnAtvmMaHf/O6mkyxRW79J+kwbKX6mdMm0scC2mugmTpzbxPL6qGYAJxznzWSyrtwzg9965RfgXf/ly3XSImUY19Dzps9iEqvv5XIvpn0UQuDQ4gCrW2OcXhtW7YU8TKK/B6ddbmoek32N+kJXkN41uWJLilrHNbZHc/WBUpK8Psy1cRCNc90DozIZbpZvCOFuC1WVoNj30XVMKrmpPeBwMceACgxneymEUAEjPSu6rpe5oK/SNUjkOJwW5Vrep65Rcn7fHGQxbJR5gNxUOOSmnnFpr1VuGoPE8wiOVMuE0uST1XG4bNQ0heFkrQmd5Kaenj2ubXWRm1ItRIjRhA2cWsa8zMb5io2t4zocS/r8mR63/5SS22SeQOoTD57Bc376XdpaWj/s0kQHYBzDm9kuBhxCeFtZrGyOrCwigKAAmCzlzebSAMq+e/X3FiVDTHjpM6/CTT/2EnxRWWdYOblNBoncnlzBNYmWw09BGi0Cie3jMonm3OG6R4mxuWpPxSSOc1VHkTIb3OelLLHvqRvbdLbAsC90zzdokVi1GGrfnsmIcGoS6bsMmE7VJmtgSySEJiAmFtaGcZVrjPk+wjhwsVtn4NXPzkyiwTZQHR/NyewWGOaxZDOJ5XutTKIncHYwWadWh9rwZGKMgxEkHD+3iS/82ffiP//ZJwGg1m4AsNSu5nUm66XPvBpPuXJR/9/X8LwJet700/BnAH1/ITzSeiNooz60dxw9p4McV52mybbb4NqeGSTWmERD4to8/M26vSZspki0rZAERPN80/xOrTJWt8a6TyUArxHcKC/QTxMdZNN+p6l9fi2k/1p2XVvDNrmp594e5QUGvQRzvRTrw1x/FichuR3QdkJdeptYMnpRtoFUaT6Z/HBc6PWtDYnNBOsCyk1jkHge0dU9SUuiGDUD2iY/45lbdGG/ACWl7aVJJyZxpoNxDWVauspN1zlBojTlvjwmlxC8kC8/f76fsdxNtdzUI5u7/dFlLK2PcNujy7X9y5iyOZq7uQxwc0Fu29bq1rjWe81E24L8de++G8/9mXfjnuMr2BzlNXcwW/atWZMIqEbTE9uzyk3t35HGTQaJ5X60MomTx5IWQBRIkbnPDNO4ZhxwPdJ9cWjPAEIA50q5qWISmUoGSW62Hie3UQ7TlZcwNbmprAxQ1PZC5KZVkMjpS1rVJPKcqk2WxBbshQQ3wio3Vdt3MTAuNneUF96AyMfAd3U3peuynyU4uzbS+8153jSPU9MAopKE8wLgyvmRz2SdWRtaTWto/wD3fPdXNz8CAPjwvacAYLJPoiUAaNtH30L+6a99B/6y3GZV3hDOJEojuLIl4NTnVm0iPu/qveqz80InDrVM2MOS2uByNzWb0s8ZScVemnidVOl7WLflYnJleyBrHVf+n2TB61u5Ntyi/XDKTcuEjvlMTQ0msXm/tToeO5nEMkh0tG1IHEE6UCkTZvtZTW7Kabe0HZjti7qs0clILgRUy9tPE6e3wigvnPWIgCPhUeTt7qbNFhgywLgmyaLcdJroLjeteuAFLwjzOksXbCZjvI3NJNJDO3BhRxNSlz6JPXJt7dDaA6hnptugF8ncFgCmdDfwu9EidW6QsiYsWgD4Ainqf3fPiZXatkzjjpAG5k0mkRsk+vodrmyOa1lPEz4zEykl3vDeewAA955YVTWJE0zi5KLJL9GbPJYmi+SCPUgMYSnsvaSoBxgd79WtRk1i6PE3jrfrHiU78oVBhoV+hpXNkZYsKWkfh0kvdL2f6/rfGBal1Kh+YKZlXKPqJquglCc3FUb9XcC4BpPIYm0CmMQ2BszW3BtoZxKbcfO4VQ5lYxLpvnHvo49JpCDxqj0zOnOvDLd4QaIQVRDYPJZVIOv+DFsPyBDjGluQDqh2MwcspjXm57l6hR5ttAiYa5Fkjht9+ppQTKL9WN5zXM2pv/COu9Rnl4kLrVwJkVsbyZXUchzVPlZB242H5vW90pSb2syUvO6+NrMP1Fn6iTmopSax9b5pbG6ct0tifdvbUwZ6q1tjFEW1f8q4xhEkluxxk0mkHI+t/hFwP99c11ZlXOOWm7rm8lHp3j8/SLE+HOvP2ukEIcG8BruUPJ1jyE1D1pLDsV/OT/4YNYTITZs1icQQ+sZFuel0welnZsLsgRfOJJJskYxrwsaZNwzLJIcWkkm4A2uzJpEVJJY3EacmsT4Z8Fi6LnJT81yFSwLLY9LL2EF6W5B4qgwS7z2hXM7Mnkh6HKMp+IAbJJbJDp8BjS+L5rMIf/jMuv792LlNR01ifYxEm9lH+T5jXMhtZKu/0CyFJyzNErstPMmdST5LvbIquWnYvT2qyU39TOJsL8XiTKaNa7JyQchqwVNek76F/OY4t0qUXAYJ5xtkJlFJmcODPZ+VvA1Nd1OO4oK2o6RG9b9LtCcu7H0SC+84twEKn0kM60GYeJjEMYQADi0OdOZeM4nj8GDb/K6paMpN1c+24wjU54Q22S5ty3ZvL22MsM9iWmNuy3UPnDi3iaddtYgXXL8fi4MMT7myWUtdf38b2+ZjpEh9cuUeFdBS4qLHUaDQ8TWYRFtARMcxSxM8sawPr5hEhwS0gJZQcr5b4TkmriDdvP9tcLGdRQuT6JOpAtCtOtZIblregsq4xs1K9VKhxwLAFYt95/zazpLSd6m/Tusp37PbzyQK/bypmMTpyE27llh1GWPWwLtrEluYRNu1HNIncaIFRrnfrXJTfxAc3U3PI7r0AQQqSUTGqEnUTCJTytm5JrFQ2eWMIck0M+tC8Kj+LjWJ9e8WvvikWgJfxs41jm7o0O3ReZsbpDixwmMtzf5f9sbNqpaHgkSzCTSnKbiZSe1nSbhxjSGbBuxykryQziyazyL8I/ed1r8fO7eJjVGBA/PV5CeE3d3UxxrYA+7ABXnjMIawFG3uplpuWrLggx4/2CC45abqs+cHGRZnepPGNR3Ybd8Dcex4IHJq/baDolDXlb7+A74fnUvzWg7pL1e5m4YvrIFKEkvbdLVXaat3ci0+XfWFrkXrMJeY6fEZEfWZzmEtNYk55vsZ9s72dGIwFQK9jMMkosY2NVvVhBoAAfXv1ibbpXFWJit313f65nIAOLGyhSv3zOB3v+v5KGS1QHf1GG260jbhq0m847FzAKqELq1JUs9c3kRlXuRupUCqCcKBsmcesWiuxEXewiQmid04yGQuAeBHXvY0bWCTeIJtwH3fCGF30x4XfibRJV2n/+8pA+X14Vg/7wG/cQ3JTa8yHFgPzg/cst0WpcxOuJsSwbB/ro+z60O9DuQkJLeDcaEMHjdHRSe5KU/xVZm5ucaZfWhtcLfAaAsSm+6m5bpN+GpnekAeg8SpYTs1idSTi8sakLtpsANcjUnksAYqu8yxJK+yVgn6HkmaDfRA5DCJ5ndjObeW2c0+Y0ECqAl3tpdidWvMqAkt5ab98L6FgArA+p7G8UDVk+ueE6va2AjwW2Jb99GQ2w0YrTNMl17Azr6oCdv/gJp0KZX4hXfciWdeuwdn10Y4tryJrYbc1CZ3kRJejZ5tkRayILc594WNs0vSyACmV7aYWd2sy02Dpcx5+71NTOJcP8We2QznNsZKXpgkyFK1f0XLYkdvr6gk6K7gy/VAnFaQmMvquwFhC5OKSQBrkazdTZkMsKpjQbnNyYV8qJR5kn1pY0Tsc8k4bzFW8MpN/de/6zrZGI0x209rLo1845q6UVWT8a9ku+0BsM2UxxekuOSmvjo1l3EK4XjJJDZbOfkYKT/bljiVJFSeQaZnKrlSzeWc50ZNbtoMUhqBLJnxaLmp77u1BOm2YNt0DgaA7/mKG2tjzP0mNBvL22CTt7aZ67TJW8lYZ2VrXKunbzOuyZIEV++brLW3BbKtiSPH+iJEbuq6RoZj9QzYO9vDkbMblXHNFJnEuX6GzdEQWx08LkJ7kNO2EqHWr6uOkqetFrmpNUiUAcY1SWJvgeFlEmMLjKmia00iZeT7WXgmn27I2W30SeS4S+mG2xy202SkGPWWQGVcw7mpa0wKMwBLU+Gt2XBtj2vKQ9fIXD9jHY9mZtf2QKSaxJXNMU6ubNVkUhyjELNugRr8hoBcekmqZruWfQ9SV+AwyiXOro/wNZ93Fa7dN4vHljfLPonV9NWsSTSz2i7YAu4gl1LLJB7WTNzPJAJKPk4Plx0xrtmqgsQrFgY4ubqltp9W5i6h/V7JcKWXJc52LsNSatSE7zo+nzBVAgCQh7SO0eZFvEVy092UMyfT8UgTmyOh+tlWk+gy4ODeb2MP+wXY5Y70VdsCWddhVExiqhkloJSbehqJN1EUdblpc3shvUw1S2TOCUXYXGJjEn3skovtAYC//MQjOH5ua6JHH23LNk4lbdxLuix1M4k0x58gZ+xSbqpdgUMMn4xgugo26u9pMnvEXFLCz90EvkVK65A7mjWJTVCblKbctM0BlPazi9zX/HxzHKDWBImojMvo/VkinME9SRep760JG3OvE8dOCbp9Xh62yE1dfUIBNQ/2U6GZRFoDTc24ppBVwrVDYLrFVNe0GW4pR1r/dWI1rmltgdGUmwYyiS2IQaIDeSHx6/98D06VEr4QmItiVzG6a1tkLhLcE6183wwza21KQDlZ/HFRqIw8Yx91JrsMgDvVJDJcSmumPEwmkZqCc2Wquk8lw9wFUA/HUR5uyUwLIB8Dc3Z9iCcemgeg2ES6RthNwWtMYjjjGWJcQ3VsNrgswmmx3csSXLd/FkfOrJdBYloba361UGavub2Qxa4oWRvzHg9xTnQ1mDYD59leitVykTDb50rJzZrENiYxw5V7ZnB8eRPkOOiTCdu3J1vNRUaOrKmPET+fCOndOTHGWEhxkit0b9FCiqPucLVtAKCppi7MBn2mDS6546goJtir2jiLJDCMSXTPP+vDMWb7mXZ4BEomMQuv098aFzX3xaQR7En9up8lbwaXVZDOl5uS26F1jCdR8vbbHgMAvOiph4PHbacmkeb49WGOtbKZOwXpAFi17EJAM+M22aiZgGg6aDvNXdrq/SwybWAyKJ0YZwkuq+emcxiSxMF2ttyj6n3113UyNxWYL83EACNI9NSKk8TYdO3W+2j5bpV7d8ucYElAmPtk+26uuZzcTffP9bC8MdJmhNOUm3bxxSBwe2drx2/HWrKtJrG5lgFQyk1bwjWn3LSlJrEFMUh04AN3n8Avvetu/MI77gweYwYmHBelqm4mPGuqW2B0rEkcZLz6O8oucySZzdo2zs1Gc21Xt1Fuv8M04dW/0Dh9/AMnPPp8PWkxzneWuGU8gDpHT796DwBVl1hlRLstdhNBNYlM45rEzaT4FjIui3CabLNE4AkH53F0eRNL66NGn0Q+I2h7IJJJSIgkrT7Ovy3af+t5K6o6nbl+irVh07iGz9y7Mv/rwzEGpWz5yj0zWNkaY3ljpMxdUl5wo2sZPRJ0V2N2l0X7+YZ+aLcY13zq4bP4b3/5GSxvjGoJBlbrGFnNrWpb3YxrutQkCksCoi1I9LqbtrA2atxkAOZlEj1swzBXcnrTyv/AfJ/l+D0cF7WaqWZQFDInAJOGNyGqBFcLAJq3XdsxP9/E0aUN/KvPuxLPe8L+4HHbcTc1686XSjdHk0nkGDf5yhuaQRsxpfSdKrlp/bODmERXkN4SXLoZeL95k43t9DHw2nHUxe4lAnODVDOJdC/Z5gRAnX9Vk1iVoTzz2j3VPm6DSXQpZVzH0lfvOhqr47Jvrg8pq0TltOSmRYcg0by3uCaIbUxim7upNeEUIjedaIERIDcNYBJjTaID959cA1Bp5kNgLkA2R7kOINpAdTMpwo1axo1gIzj7LynbnWJjGN4mghZ7vF6OVXawn/HkpvRWl4zNPsa8sTsEiR3kplpaxnZ8VdfVMC+CrhOafHxM4riQuGbvDBZnMtx7YhXPum4vADTGBciGyrdUNYk845rUW5Podk50LRAo4OlnCQ4tVnbyVxjW8k0mpZJ/8uQ/lQFNyLjqtaazog2J40FqMonmtcBVCZjqAl+fRJozrtpLToYqW10lEsLlfb1e4k1ukeFVEy73w/ONyfvGvp/f9qaPYTgu8LJnXoV5bcfP6+fYDBI5jtO1nmguKbPnM2yyuTZXTrdJSN1cZHKcJUkSynY6GZECvUTgwFzVU/CKxQGrBcbWuKjVTDWbUleMoP9zmrVcOkhvCTYmvCYMJY11jINZklLiyNkNfOmTDrHGhTCJhbTXHJvPS2pBkhqGT0EKFCO56Gql0Cw3+N6vuBGDLMW3PO+6ciys41oZwcTeXsjsk2gdJyxOqjogcg6buLaAStrugkvKSfN2lgjMDzIsle6+lNiyqgtQzS+U0Pnka796wvHb2QPSEcy62M4qUWX/bi4mF1BrnMVehv3z9YBkGi0wKJCeZQaJ5q5xyA0p1XPDV141ygv9jLHB2s6lGHdogUGyKJ/c1N7Dtfaxre+4TPFIablv03q7YEoOWa0bioqBCQ02JphExsIOUAsZzk1KGVEO22kyiewehOX34Yypm/Iw5aZJwrJbV/so2Qt5Yhy5mS2yJPf1l6PF3ZMOL+CeEyu1489iEo2HJIdJ1EYmiZuR8i1kXO6mdC57aYInHJzXr7/i+Y/Tv4uJ7D+97t5fa21VAGsgLAuZQrbL2FKLRAmoL4BMMx6SMnPkvjTOlcgxk1dmvRO1wKD9CUHtvsmllRFxZU0zz3V8PqGt/D0SaKBK8pxZG1ZZc8FLrlTupu1tiT732Dncd5Ja1Rh9Ei2MVEjiwrVoBdqDlEnmUvoXyJZzFxKAWQ0ZSpBS5br9s/q1xUGmr60QbDXarTSdYkMk4bZxYaoEe2ADuIN013x3dn2E9WGOa41jETLOx1qa+2ELOIa1ILFqQVIxieE1iYlH8dJ0N53ppfi+F91oOLdOjisKCSndLJYa55L7ticuJtk2Sm63SAIt903bttTnu1g61e/w9JoqcaL53yUT1sFlebMemO/Xewdb9rGNSXRdW20mWC4mF6CaxAT75uoByTSYRPoauudz8Pq6eh9Lbmr4iziZxFI14YJVlRDkbtqoSaSAMcpNdwZHzm4AaM86mjAvCk5RbmUl7zaAaKLZAoPLJLKDxFzJGjiZ3VpNItPdlMbymntX34fb26bqE8ebENgmFZoBzlj7ScGVr5cgyY2edGgB955Yq8lYWC6NxgNhkCXB7l5UtO1rNxDi9jex2DIyrU+/ehHf8YWPw9/+5y/B3rlebaw5LGRh7Qr2zL9Z99PysG86K9qQJfY64NyQic0ZD/ksSVi9Oysmy80kmkH6YYOVNYN7zvZSAV2Eb5tPXPUXSeIecz5B31eUAZ/rPqV59NTaVk1atS0m0XMcf/Rtt+In/+52tY8G2+FafAL+hLCtjqWrcU0hpbffp+36Dwpky320JRNGhUomXLd/Tr8myjrxvJDW+6aJrVG9JlExMNXfQ/aR/t5UCdD++MZw678qd9P6uGPLmwDcCWqXC3Q7k+iWTm+NCxyYV4t4ChJrNbnMFhghfRJtsCUgdNKSWZMLtEtw7a1jqs90bs9yvxUtgawrwVvV+6n5n1zKKZnnMuWhtYpNqQGU5Q0OdUGrBL2pZij841xMLqDkpr00qT1vgOkwiRPKLWbCFeCr0hIhvMmtUat79GQJAGQRIDd11ST6FjPRuKYziAnkBBsmvcyuiSuz3eFMonpf115q/dK4JtRgRz3EhdchzbWtqt8eJ3BTP7vKTblMIgWyrPOWV0wip44L6MIkomxSXG7bMonTQ+rJVy7g1OqWftjUGZHwxa5aJIcbHJnXMWCv08w9xjWuTCvdV/0swSBL8XP/+vPx7Mftq70nEZNBG+CX6NnMU0INaMxtqHHtCSVn3ZJxTGpyISYDbwYprgeUGZAcMOW6RpuI4Gs5r5hEwH4tjxy921z1p+cbdN8A/roZOt+nV4f6HAnmfVPVe7fPCadXhzoRabIdtoy8ZsU927bJTdus/F3tBkgy5YLV8EnfN55xDjk5UBlwXNUIjHoZMcDt98DWuL74SoS9Trkt79ucS0KZ3Ob3amUSXcZB5Xed6dlPgteV1isTru+Xia1xjisWyiBxY6j3j1gqjuGZ2QKDLRu1jGuTSAKlkmSCgZe1+9+1vUm2rW6iYx9neQa3rKXaG9yXTGIzSHQwiaRcczPVlsRFACNo3ceWQD2zBNt6P/MCvSzB1XtnG69PL0icbRgktcG8R7iEg35uO8YpdU1bAqKZgRj7s4SAmny7tMBoQQwSHaCTxAlSzIuekyWhDKBqL8ELNqoWGGHjKEMxYIzLS7lHliSlJNY95tzmCL/23nswyouaIxbXuIZu7u5yU87xLypJLEduajCJXHMRvnFNUTOumXiwGfVHTzq8AAC46/iKei3lGRCYkhSVFAhPQNSdVCfHUfNfG5yZVs0ktjmCGQs7ep1ZI6IlUy2MCFDP9smAmsQsddu00zGZsQaJgfd2+Taf1MV04KO+XLRv2riGcb6zxH9tOY1rGMHXdqC+r/rdVU8tpcR6WZ9dk5smhgkTg4En5tSnSji3OcLRpQ3dz5QOkS0jT2ZK3CCF5oi2Zu6TJhWBSRJbcsXHQDqkbEAlQ2yyzhx2e9ioSWwuroOZxETUAu4guWliqQkNDNJtkky1/+52A4CrlrT9vNmO/3Bc4IoFlTQy5aa81knVdpwupS3Mnk0p0yaRBCYlwkA1H7aNmzyO1d9csJrJyLDnhs9MxmyNNWsEia4yBUC5fttgl9Kqn77AEnAziT5W3EVwDMt64/1zjZrEKchN6VnG7Tlsuvl2cjfN3P1dW91NbdLdELlpkmInWmBE4xoHaGHGYqQ6Mom0kOol4dIyep+2yWc4UAKVJCovJNp8U2hbyt3Uv4//55/vxRs/eD+u3T+Lq8qapyxJMPA0F7XuZ4cgcbvGNVy56biQfJOKjvIHYhvcD98q2/qkQ4sAgLuOnVOvlcE9EFYDZj4QfLbpE+OkLBMJlP23B0RcJrGqSWxbJPOYDd9i17cgpN3g1iT6HBDnyvNjNhOnIDHYXZaYrF7qDGrM5tLmeZjppdoAIbjFjaz37rSxgsMyi9zENINEzSSm9prvYV7oBeWp1a2a3CxlGHfQtdNrYWSllDhXuqgurY9q7K6ttioocSE8wYaLNUgmF+S0fyEMvDmuSsq4x/nqqcdGP80/+o9fiIMlq9VWS2pia5xj/3xV9zRpXNM+JwCTbC4d1jYJrk3dAfiYRPWzeThaZcKOROG4KDDoeQwxPPfpVi1IJAWKea5DahKrudOX8PMFX7YSgDaJJP3N6VLa+tyovzYOYhLtvXK9zw3HMTHLQkxDE5NJdCXggCqRYtvepLmResEZ7HmYxPbjYf8brW/NxJPrO51v0GU7N2AGicY54ribUoLN2xbKkTglWI9lkLtpU24aaxJ3FHQxcbIIo1qQyGGyFJPQS/0sXXMMAHYLBpokOAyYzlilKrPuG0P79ejZjZrWnm9cww8SuxrXUPaHLTctpCEt4wX3zf5QQfuYtNc1ZInAtftnkSYCD51W5ks1K/MQRqRRk8Xpi0mBjWtbvobPrsDBNK5xQTknVv/XSosQJrEmSVM/fQtCWyY/pCYxTSaz/7R9WhCazcTTRKDfqSYxwagorFLysUP++fgDc+wWGLpO1sFs0GfZ6i98Y84nyLgGUPOXbWGyOayO7+nViknkups2g2bXmNWtsb7Oji5v1JrA27L/QQkPC9vQZlvvcjeVaA9Im+PaZGyAewEKkMJA7dCXP+UQnnHNXgAwrskwuanPuEbf2y33qWgs0mTA8W+OAVBT0tjgbhNRLuRbg/vJYKMtkALs99zWuMCe2Qy9VGB5o+rT50v4NVFrgeGonTdVE759NM9brpUkbcze5Lbob+5xduMmc19c+2lzAPVJW33HBFDB7MKgWtDP9hO9/1Ja5OR5Nc4GK7vdEuzZnLvp/35G1p1IG+dSy8YJL3naYZaTfFdMMolhAV/N34KzBi3Xab00QSHtx2QrpAXGxAkIcDedaIFxfpjEGCQ6QAszTtBgSlM5VPooN5isUPmhMXFmHqq/icqBL7zWgD47K+uWfItI+rhHzq7XtPZs4xqS+7LcRqvfOdsiCWTbdzNBMrEZXRMavrBORHX8OZmt+sPXlY1UPZMOLw7waFnzRNeWbZxrHwFox93gmsTyIVm5ZFqMazwLGVcATMfWN7EK0b1Gqm5uUWXDXbAzkO1MYprY64DNOp09pgQ04fXuLIx7WzoeUC4HvusPzunzFsqmkwTa5ZIJUNZ0cns+6dv5hHm9pQ65qelEfW5zVAt4uO6mqVAmOb45+dxmpag4tryp2Nby2rYZ1+iaxJZrsrn2p+/qvN8c560t4SGEsNT7te+jL0gZlZK0JnyOnE00W2BMskvtQYMaZ/9ubQknd7DR1vKHx4C5xrW5m3oZ//LY7Znp4azF3ZT73HBJi5vups59NIa1Bdvqbxb5rT7+7n22KWXGIUGpJQArWhh43Sdx4rxVSQGz5Rpdy5njHNC4zPEF7Y7H/mBPM7nNa7nwzwlpknh6oFbz2+//+xfgl7712dg722OZO3YF7VOXvtSEUOM+2p6ZKLc9u9vkplb1VlGEyU1tLTBiTeLOgBbvXNlo9Xv4DTAuCvS0lTzvItaBG1PuSBNQyH5Wi/SSbfMsmE6sKGe2+0+u1ditadQkdjWuoUw+zyRE/axqO0OZRMWk0SQROmnRProWWk2J0tV7VaN0AA12I1w2lCZKbsfpm5cKg32xMonumhRXplUnKVoy0OZDm37z14hU+62/g17s8rKtQUyiw7jDrNPZ05CbctjtkD59riD9cQfmWE6GQPncamESXdKaabbAqIxr7HMX1SPum+thZXNcY9LpnIW6m9I15ZuTz5VMDQA8dHodK5tj7SxpN64JZETYTKJ98RmS8MiSev08/catZSS4rsuEcU1ujfLa4qsp7w4J9ujvdVOq8vh7++a51R2uIMXXS1CNczNEalz99VYm0XMtU/uQxZkMy4a7qVaFBF3/6qcQ/gDYzwiW77Mk/LzBpbX+LuS+sbmU0vn2j7Mx8N7nhiMxRtvLEoEFi9zU5QSt12We56ntu4UxiZPHsjVId1wj5jPgxU87jG953nVlK7WdDxJput9WTWKntaRwjh051DUEa6sgGdoCgyk3TaPctDPo5HJq28y6QA6VTj2ifO57k2OqhXOvRQJqgi6+PodJNDJWiu10jzmxonr8nFkf1h52XYNEznE0byw2k1hmf9g96bRsNzRIL8razm5Momuh1ayjMJ3EzEbpYRlh9ZMs0EPZHsoS+wxQvEwiZTEbEyTdi206fpu7qY8RtAU3YUwiLOPCGArAlV1XYxdNuamgazLw2tJBojtrSmwv4auefiUAtSDRJi1MJtEnI3T1SeTIn7cD06in5zAOIibx8OIAK5uj2uIySYS13q91W5452QwSb3t0GQB0PZgti6wX355t2+pd2xgYl7tmSMIjadROcu4b26Ec5dLKiLQlE/7+M0fxlB/7J6xujTHM63LTRNTr/UJrEtWxNMdVr7sgbDVqhrrDhlb5YUsyzc4k+s29zM8393NU9m5bnOlV7qYJj0mXsrre3FLaQHdTY1x1P7q3Td+tZjjUchzVOH/phgv2fqZhNYku5jJNhK6dAyq/CVfg1uyT2IQQlnVCS02oa07IDdm+Da42HYC6t5tqkh4j+bwd5MZ6V4jw9Za5bzxX/qpPIjDpFZIXsvQBYQaJwXJTM0gMaIERmcTuqJhE/+Lg5MoWfvfDD0BK2WASeUFKL01YjeprdYIMmWTFJDJqEmvSVn/rjJNlkLi0PqoFiZwekEA1uXGb2xM42Z+qlq4DI8tsgUHSYnaQmDfqv1oWFmaPrUOLg9Y6KdtnJQmvwFzr8ctt2e4dnySqzd3Ua1yT2Hub+SZIW7Y7hEm0LWTaTAuAarFoy3hrJnG2yuwlTLmplPV723ZNEttLeOO/fR7u+l8vBdBuuNJEXjKJNrdXgm2BALiZhvONELnpZhkkXrlnBoUEVko5KJ3PJmvm21ZlkuOek28/ek7/fqsOEhWTaKstpP+2OSc2D2UbI0WvN+dyKf01ucDkorBKyrSzFPaaRLssuW3e+u9/9RkM8wIPn15XfRKD3E2du6j+3pASBiWcLDVx7Uxi/fOb41zHUuh7p/56KJPoSsINshR7ZjMtN00Fj0lvJlcAm+Klxd3U8gwIZfbMfTD3ue2Y2IJm8zOt27Pcb4Vsr1sVLYx/jUks53FXgrdKnrrvb665TuK4tgpjbrOO08+AyWNpC4raXPLPF8xz2U8TbDFbxQFME0RZqdKAyTWQ9lfI/PfAxO0W4m46UZMYIDeN7qbdQTdgm2voD7z5k/jY/WfwFU85VAuCWHLTvNBF4uGsDTFHPJmqmVkBwjLkpnGI6TbXt1zoZ9ZUFnJpfajH0XfjLAhpgmcFex2ZRNNwhX0cU5WhCsm00rZ6aaLlBsM8sJC6zOTZWCxgsv7ouv0Vk7g4yHSGOeR8N5uJ+ybzWx46g0ICL7j+gGY7Xb21ikK1UmnPrDsm1rZi7wazR6+7x0w+2Kp2A+5x9oWMP7BU49RP27mjY2Ia1wBgGdfoeuOe2+yjuZBUiYey9oXdAqNkEh3fiz7LKjfVNbJBm+qMQlbn2XV/rw/VPXiobPZsGnfQT1/N9xveew9eeOPBWhsU1c7IPub177kbADDfT3HPiVUAwBXltjsb11gWnzpIdAysFtb119sYEQATPdhMqaFvjHqv5Tpx9Phrq4mjBdzptS1Vk2j0FnS5m7Z1Spx0N6Xj72ekms98s07cOqZzTWK5XxY1SUgA1jyWVHM1yBIsDnqV3DSpmPSQBb3JuLodWFuCDcszQOf7PNs2VSG0qA0KLi3rkhAm0aYuCGmDZLu/zWB23qhJJCbR2Sql5bloUxe0JRJc11ar4Y3BQCbGmSJ5f3Mfe4zn2nbQVLOF1hd27pNYoBEk1sdqcsfD+NsY4CB30y4tMCKT2B0UHLYFKfefXAOgstHmQoKTJRkVSm7aZEOa2BjmeOi02t7IYPdYvdQaTGLIgnBsPLR8BblSSqxsjjDXT1FI4GxppU291DhmPvSQnkZNIk2cpJN3saS1MXn1AOolSbC77LgoGnKEUNZG7aPNNIL+DlQLixsOLei/mU3BuX0S0xYW5eW/+VF86299FMBk3aRrgmyr0ZkIEg3W3IV0oo6o/MwgZqN6jcMk1hcyftMCtb0QJrFXbkP9jVcnS/e2T27qXshwnAyBSjrmWsQodYVdWkNjdlpylBdVD0JXneDGkOSmin2nIFE7jiaTToaEe0+s4nXvvhuvfvOnagspV3JlbWuMc5tjfN+LbsQLbjigXz9Uyk3pGVCrrw0JUiwSpdDatkm5aUCbiKTD/eaRJY9LGX4ToTJ5MgDyuZsSWgNg0XQ3rV73jXHViTtbkDiOR6vc1BFsk9rEuY+OcWTx3y9rEmneMGt5Q2tyAXV83XOC3zjFto+hxx+oqxnajj+Nc9033JrEkERhkniuk4bcdCary01dwaW7xcrkejLU3XTymmy5tx3GeCOHCoijUNoOzPryQZYGkw70PVSZVHgLDHreuGoSzXWjC5OGW1ABX6vcNLUzid6axBgkdoZmElsuqnObakFxbmNUey+vJlEZ17iyOABw5Ow6XvRL78NX/OL7ta4ZoCbY4fpuujF5xjVlTaJZb2ZbAA1zFFLZ6QOq5xhQMVIcJ0MtN+0cJIZviybOvnblDAikjGJzJS0LPP5lCwIKEkPlD83+dhNsVCNrfcPB+drfq8VWuHFNkoiyjss+xux7eW6z6vfWcxzHtsy6a/FDCZvzXZNoY2XDGmfbFzLtWeRye5aHPT1kyYWNako5Mu3CeLAB9ns0L9wW9BwHXNqe2V7F5Uprc3JzjTnfyGv3jX2xu6HlpipQIzUEXW8qSLTfA++8/RgA4Lr9c7WFlCsgfWxZGXs99cpF/NK3Plu/rmsSLXIvifbAhlowmMFlXihG0LVwdbE9EnxGJLRNB+1XE67WLK7ESvO1R5eUk7PP3TREEkv72ZSSq3GeMbYFeWBSzD2ujYGsvz723NuAuwaS2NhBltTcled6pDBwX/8mTAWKy1yntZeg5buZLWmc4ywJj7YkCW2PG6TTZ1oTOe5d1J+ZOxjnpnFNs59t85lf9a92XCeWesuuiYTWekuXCsjx7M5Sf9nS+YIpNx0wfDFo7p7rp2y5qc/dVAetLcdysiYx998AgGIaC6MXeWyBsXOgDDjQTjVvlvT18saotpgLb5IuUUg1EZuUfRMv/qX34/i50hRmbVhvS9EiCWxuD+C1wCA51vwgreSmlocGGTI84WAZJK6UTXmJSWQEifReTrBnPthZxjV5XSYZ1juyyrZyegnSg3yQut228kLiZ/7hDtxbStHoNbo+VE8o/4PtWkNuCvCMQupMovu83XpkufY77aM780nXbFtmvf56m9U3QA/E6v960ep5bNtY2TDWhrZR317bQt6dpa1kYtfsncV3vfAJ+IP/8AIAYJkp0cf66o3zwh0A+JgeGyi4bZMJ2853lbQI2lRnFMZ903OoGagmkeSmx8+pQI6y+tbMbglKhPUyoWty1bbsDPBjyyqYuXrvDK5YGOCDP/Ri/MK3fL5hUqHe1wzAQoI2oG7Ukku/kYnregxlRGzGNW0N59XnTy5AzT6J9X1UP33NxAHodj9Nd9NasEeJ9VYm0V6n3OYuO9GTrjXYo/1yJPycNYn2ca01iQ7jLFoEE5NIMK9/nrupcJ5rZYrUPrdaExC+3rWWOSgkSLSpt0z2ybc9e71rQHLFU4N6o6EA0mNcz9OWWn1bsNFmQOOTQAcxkM1A1iU3ZSibtgPzXHLME+lYz/VS1lpSlte3i0nX16S3nddkfTNk0c4kJmmdStcX5fZaYMSaRAtMijiUnl4umUQqlg92KTUW98K4sHqN82oGISdXtmrjtlOTGDKOgr89Mz1vo3QyfHhCyWKdNJhEWxG1C+bDj8UkGuwey7ZYVu6mapsBD8Ty42kch8mttcCwTEC3PbqM3/3wA3j3Hcfxwf/xYkipEgmmlM0VgJl1VL/w8s/H06/eU3s9JAAwH64+Bvj02pb+/cjZdV3c7rT6Lr9qu7V7M9jwPwwB9XAzAwBdxxIQuDVdStXnecZYvl/IwpoWi7YaGDomSSLwU9/4TP23fsaoSdRyU/d17LNA99WM2UCN6p0yYU/NTDVmZ6NE89i6zGRoLqU2FMdKto+YFJ/cdLWc85bWR7h6b7UAc22LmERiih9/cA6PL5NqgP0cqGvL/z2rxEVVE6SMdDxjPKxB633jXCR7xrTI5mxW/j4m0XzGPnJ2HQAm5Ka1exu0jy0BcAeW1OZK29anz7WwpnsidS3+Heetzd3UdSzHxkLedFcmVitUBVSxNu5zLVuuZatKo/zZdvzNfQBCgz1LsN3SX5T207y9Q9hmGmczdwHUnDE/mFySu56nVdLV5W5qN+XxSh0dLLWvTAGw1/cD7me3qUhrrnXPJ3SrQAFWr24dJA4ynQgMHUeu8Ob2m5/rdYq1MMAqSGzh9JrGNSE1iQEtMGKQaIG5uPIt0LYMrfJSGSTO9VKsbI3D5YcGS0LXRdsa7cTKpmF/LJzSJhtMrbX5fx8o+Nsz2zPqlixMYim9fcY1KjC5+/iK2kdiO0P3UYYd/4lx5efPMLM/tJCsTHnCmcRUcN1li5rc1LafNz90FgDw8Jl1bI5yfczNQKKtTyIAvOIFj9O/6x54QRnhalHkq0k0j9PJlS1sjgvM9JJ2JtGT+bSN08FGCytiD/baF4Tcxtl2ual/Qa72Uf20yXBd7ConAVS5m7p7d5qM9MT+dWASzRYYzuDeJjd1sMbnE02XwixJsD4eT7yPvi8FiUeXNjDIKmm9CojsO7o2rIJEcwGm6rgmxxwvg8Qr9w6sn2c7BzIgAWG6SdJD3WUG49sWbS+EFee2iWhzL/a1wLBLVKsdePi0ChJNJmyylUV7sEfjzM2F9KkUwiY3pcQd17hG/fTVmgG24DKQSXTV4AlR69NKjd3TJMzzwJSb0rsne34Gss0WdUdIfXktuRLAJNpUApUk0LefTQdc9ZOblAQmmeP3/Ncvx6NLm7UxgC3gqP/dtq3mWrKtJpH23xZc+sZljhITU/FmwlSkzWLnokRTYt7PkmDygObuuX4abHYDVPdg5QHhkJv6kneW4D4oSGwa14TITSOT2A3mwt1nLLK2VZ0QYhJn+ypIDJUfmgY0dEE3J5FmIFFnEpNWcxETZiBlbr/5nj+76WFASvzznSfwFU85BEA9gH3GNZXcdB7X7pvFkVICpG4aFQS3ZbLMfXTtnwt0/GZ64cwebc+8scOypuqnYtvCjYOoBQb9s7mb3l7a4gPAxx84gy9+4gG9Lfrpc0izgVMDlte+m7ve0rw3Tq0OsTHMMdtLnVbfbfKfVlmNJdggNBdpoQvCJsMd5iQ5+dAupGxtG+DucVm5mzbBsQqn40YOj065KfP422A61brG0fb7lqSAi0U5nzCVBYC7TpCO76GFAYRQtdUUMNK+utYWK5pJHNZkoa5tbY0LbaJgg+24hLiN0vUqG/dAF4lY0LXcyHaHOrCq99Zf98nQfQZH5oLvaBl8k/kQUGbkLcFGO+PfnBNQjnOPSYRNblp+nmOgaz7IG6oQ5zjLcfQ7ctrvU1MVY9YkzpdyU8Uktj9PzWCTbvkJ1qzlWq4CYHNM/W82CEvg3CbbpXGTwb1i0luNa6xscwhLPbk9oDrfTzq8iCcdXtR/bw84XNeJXe4YMidMXMvSH2xXbVns65JmYlgnrafQJxfglzzRuNleuNkNAO2m7UqIVSy1r3TGorqTeQCT6DCu2WYLjFiTaIG5uPJdIGuGccfyxgjDsdTGE+G29dVCxjWJU43Mj3/d0wEoGafO0KRqQraZ3dhAN8lMz80kfurhs3jt39yG1/7t7XjfXSd1sLc4k+mb3RYUacZxJsOzrt2rX1f1fuFMVi1IZLWyUD/7qXthvbo1xk/+3e34D79/E+4/uaq3lyUJi0kx5Z0c4yAlJU70ftqYxPVhjscfmEM/S/Av954yJBNlkOgttncHG0BgTaKRSVULJvv1RffG4iDD8XOb2BjlmKXss2Uf29zYKLhsPqCGuXsRSWjeA8EmFY2HdlBtlSUjL9HOvrjuAR+TqBj4rjWJk+eMJKI2cOSmZkbUNc4nN9UByg5SiU2XQlcyx0ycHZhTwSHN47SvrmNCz4C1YY7NUVGx/bZsMLo1Ew8J2mxsLjkpu2ALLIGwa3lCbqo/s50lciWBrO6mqZ1FMceZIPMhoJuUnP5u7dPXwmQ5649akzL119uCm0Sft24BwORCvnqW7Z+rkiPEJIYqlcxgzic39bPN9D5eAqJiIKvXmve/fZy9ttP3rKHPtN3frTWJiX17gPvZ7Qw4ApIJ1trCANlo85pUzuXOYdbjT9uz7WMlN93ZcgO6/8k7grtOnh9kqnyMsZ5PE3cQHMIkppbEBWThD/aASeOaoBYYUW7aCebC3SdbXG0EieOi0BNrcE2i4VAloX5vTv4nygb1Nx5ewMIgw8mVLV07QO0lQiViekFE7qaWpy85xREeOrOOQZZgkKVe+Q/JTRdnerjhUOWu2U8TZwBs3ceOtYUVk5I6j/+H7zmFP/jIgwCAL3vySTzx0ALIzMPnvufaVsW2hR1/qlsFKACYHDfKCyzOZOhnc3jkzPrExGLt7dRSR+GyqLahMB6uJAtp9j+i/QSAawzWeLZkqP1W3y0upY7v5nM3bS7kq0Wrc0i5vaZstHy9RQ4CTNaNhQSkQFNKKL2LO+UsGHZtNVtguJhE5zXCkICa59I1buS5JiuTrvZtdYUpfwPgXCSYLPyhxQFOrw1r/cp8GWjzGXDs3KYO0F2BZVszcZvDbIj808Yu5UWL1M5xPYbKW7lsp7vFTfUMnNhHB4sCVPPC4kymE5SH91RMYhcpOe2nrd7SN0w4FuTmd5jYjmZWHeOcfRIdwXZLcOOsFTfuE5NBp0RJcE2iXpADKOyBjTKucX+Gr0+iN0ixJO7092oJ7m3Hv6u7b1ByxSX3dTxzXCZfIUz1BPvYmqQq32c5byFSZqeUvBkklv8PbR3WFVpyLIhJDAz2yv0mQ7FhXniN8/T2SjWJTxIOtK2BLOs0KQPlpmbGu/z9YmmBIYT4EyHEY0KIc0KIu4UQ/0/5+vVCCCmEWDX+vdYYNxBC/F457pgQ4r82PvclQog7hRDrQoj3CSGesN19JbevhUHmZQRNJnF1c6zlpkA4k2j2gHNN/hSozmQp9s6qZrd5mSUmJ6VQ2VbFJKr9bNoxA9AL/t965RcAAN59x3Fd6+GqowAqJnFxJsPVe2fK96v6Rz3RBexnYewjpyaxWiQnzszPyZVK60/BN/XoctVW2WBKPVjGQYXUgZetiB1QE1IvTXD13hkcXdqoyXiAFibR1d5AL7bCH/bUJ9H8fBNVkDiDh8+omiBaWKRi8ruFNClOLXKcUV7UzBBsaBbph9SxAJMMQMhC0sn2tDGJFuMaWy1pfUy4RGaiB6qDNWszDgq5R2sKCIdroi9Drk2KdnCR0DQJSB2Mf27IHcnh1OxXlljYBsLq5lgf7xPnNiuXUmFxqEM4k1hf7LZfx7ZaotbsvyVoCwmIgMn7u821ksbQe03oJJAvmWCbf8oDTO1DZnpJrYVAk0msXDL9aDIwQTVxNtliixywTZbvrEnUzFL1min/dkGPczC5aSJw0AgSzRYwvD6JJpNYf49EC9tsWSeESDltc3JbsE2faZu32pnEyXtUfZ53mPWZXyXF/bWrzbmrSubat0UqoNoY6Q+AyfHbxlIHyX2dbPpkCwzAvv48n2jKTTn19kBlXhbuMK7KOVwKiBDjGqvctAiRmzaMa85TTeI05aY/B+B6KeUeAN8A4H8JIZ5n/H2flHKh/Pczxus/CeDJAJ4A4MUA/ocQ4qUAIIS4AsBbAbwWwAEANwP4i+3uKC1+5wd+PTJlkef6KVa3xhiNJfqpqtEJZZbMwt7EMkECpvuYwL65nmItjb5SqkA5bHsk79ILSQeTuH+uh2v3Va57p1ardhaA/aG9OcohhPpscu8z6+jU9tv305TEFjKM/TL3qZ+5azRPrGwhEcBVe2ZwopTxFoVfImPdR+PByjEOonYbNNa2IB/n6jq6dt8sji5vGteIMW5CouSXnlTfjVFbkghvcElM0VV7Z3UD8lmPI2SbPEZt0yJbLAoviwioSbdej6V+ti52HQtJ/uI6IPtMxjXGPTBuWcikjJpE2h2qSbTNXT7jAlffPBvGxjXiWvxXD+jJ8Vr+vINBopZp033jkYAC6rxSTZvJJLpMaAD1DKCE2ImVLX39C2EPttsWoDaTikLK1sjGVkvkkxarfZwMUug3bnIlhO10za8+xs03J9Nz+ooFFdjMNmwSJ4K98mdIMFs//tXnudBUJKh9bp/vfLL8NgbSPNeu2q/athzri9wI7vbOTi4aVV10+3PDPE4uk5w2xpmOsTlMBhx/23USsiC3tYkYF+2+CV0SCbSfXCbRaVzTElwKCyOVF/5emoBdKt8WXDoTQI56Y18rtfMJ89ruUpNIbrMcV9TUYBJtTC7gl5vaWpx1M66R1esu7CYmUUp5u5SSvGRl+e/GgKHfBeBnpJRnpZSfA/DbAP59+bd/DeB2KeVfSSk3oQLKZwshnradfaULYn6QeWviyLjmqj0zWN0cKwaoZM1CmSVzcrf1ugLqTVP3zvawtDGqSUtc9S++7Q16ae3/Jh49u4Fr98/iwEJ/4m+uQBZAzbikYhKF/n5qewEPmwbbGXos60yiI0g8t4WDCwNcvW+mziQmTOMaQxKbOXqi2TA2Ah5bETugvm+WCly9dxYnV7Z0c2+SGFub5LY8EFM9aYV/t5qZj+V4EuNO7AtQyTNsi6ZwJrERJI5la5DYzOyGLCzo77ZaRt+q3CbtK4ow18T6NgKYRE69a0NuarsHKCFiA+f6N/fbNa66jjxMYmByqwuajYtdrCyxq0IIXdNW67dnSXgAamG4ujXGNftUQmxcyFqSxCVt9bE9rl65oVJmc5N5ILtnNeDwjppcJBcy3IG1U+2q7ViW1zcxiY87MFf7e9II9qqFvHc3JwL8kMSRvf5L/fSayVjYnra53NcTkBtImf/PUmENjnyS97WtMX7nQ/djlBe1FhguUx51nTh3sZI7Mq9JWwDcJvelv9nYtlYm0SFl5t5v5n66/QRc5EF7cNkkD8YtjKD6PPs1GVbvOjnO/DuB45GwHdQNBjk1iWogrWe2AoJEalVmJtdtcmu1P+FO7erDA4LEpnFNUE1iirbZfqrGNUKI3xBCrAO4E8BjAN5u/PkhIcQRIcTvlwwhhBD7AVwN4DPG+z4D4Bnl788w/yalXANwn/F3c9uvEkLcLIS4+eTJk979pIeWkpu6LyqSm165Z0YxiXmBfirQT8PdLivNdmKdINX+qP/XmcRKI93s2ePdnsHSmds3sbI5wr7ZvjZxAIDv+YonAvCzDRujXC+SriqDxMPloou1AJXdgkRdk5ilzoX1iZVNHF4c4MrFGRw/t1nrQchxXDSZlF5LC4xxXuhrxZSb2YrYAfV9e2mCq/epY3jPCWWwQ85znbLPibBr3UvcdWwFr3/P3WWNHPR2Mk/GT+2nwIG5KhtVWyQ7ZGV+JtH2EPUbcAC2RWvYgtAlQfEvCOvbAACJ9oevrd6sOm/uBUJoAqhqgeFWCVBhvQ0s4xrj+ncrINxZU267DQ7+4bNHcf1r/hFn1+vqB3/gpt7z1KuUqyD1MwTqztMmNkcFCln1PASAmb7BpNuYxNy/ALVJAtscIQHHNSn9tbW0PWtypWWDk0xi+z66ald9LJhfyUA1/Or/L7j+QGMfJ+W3QJi7qb29QUuw51BOcBnIcKfq6jWJ9vnOdc+1BZg+yfuPvPVW/K9//Bw+ct9pe3KxMa5NceGTQIfUiZvnzWSRXLCxbW2ScNrPZk0uEJBcsT0XC/+5c/WUNevtrOMsZUghjL+VFZf+OcEmdwfcieHKAHE6TGKalKqcwOeNdsrPOEGi+kn1j8Dk+tr3TCQ0W/CoDw+QmzaNa3RNYltvLj+bONUgUUr5/QAWAXwZlEx0C8ApAC+AkpM+r/z7n5ZDFsqfy8bHLJfvob+bf2v+3dz2m6SUz5dSPv/QoUPe/dRMYj/DMC+cUk6Sm161dwYrmyO9uOdk/yuW0G2cYhp37J3tYWm9ziRy3E21cY2HSSRJwqzh8PcjL1POqr5gb2OU6889ON/H/3jpU/GH/+ELy30MZ7Lo+85oK3/ed2uTmx5eHODwngGOn9usZbo45jqFMfn55GgA8Nq/vR3P+J/vxMfvP43huNBZNFsROwAMc8WckdPcQ2UPMJICefskeqQkmWeS/Ppf/zBe/557cHptWDMg8Mq9xup6328xO7Cx2yH7aAsuKYj3oQsjqPfTGlzyFjJBTIrlHjifNYlmkgSwS2R8clNfvbFrW7U+iYzFJydpxMUvvvMuAMBtZSsZ7W7qkIWbElDq8frgqTX998RxDqhHoumoqY2bbJIhtC9AtUyvcS23XVvCcg7aJGKAvbYwBLZm4iFtMwBbErQquZjYP0/igs7JN3/Btfier3gi/stXP2VibNOBGAhZJLvqm31jbOoO9dM739mkfQazbQO9bGvT0YVJNFUxrnGu+/Qfb30MgEosm/e7y7ijkG1B26TDNacm0Yw5Oj9vAoLESZaaXvcOczCJhfd8u5IrbUxpcx+BdgMa2t4EA1xI+FSqrvu0Ogf2Pok7WW4AGHWbpQQ6vHRJ/aT1TIjcNDfmibbj0WZcY5WbtrqbNo1rAphEoLUuceruplLKHMCHhRCvBPB9Uso3QNUSAsBxIcT/D8BjQohFAKvl63sAbBq/r5S/r5b/N2H+vRO2dE2iOjyjXKKfTd4hTSZxOKYgkcEkFhQAumt7TF333tk+zlFNYlplyIPlpjktJN0WxOOiqmX5+mdfgy+6ocrQuiZ/ANgaVcY9Qgh8/4uepP/WRco543Fp9I3zyU3XtsZYPLSAfbO9Wj9LM/sZEt+bNuVZKrAxcn+vzzyyBAB4x+3HsD7MsTCoHECtC8m8QD9TrDEAbQqzZ7ZqL+G20fY/EG3HvyikngQfObNekzv1PLVjlBTZZzDOxKT4MqZtcjvbIqYtQ9uUDYU+tJOk0VuO6thaFjK0X9X22pkUm3FNey2p6i/aJvdRn6t+9jP3OVNmJrzFiA2mKUe73HRye2SQsBNBIjU/vvu4egzQ93K2pTDqhG+4QuUlX/TUKpHoSsLRvHRwYTJIdDKJpUmWC7b5NST7b2OXCumvx6Jx9vumbSFZPyZhDMUk2wNU10DPclxcGXmgao+0Z6ank5jN7Vklga3BrL3nalsA5npu+1s+2OfJEHMjW3Dvl3I61hcNhcdHXvOVtfvE16u1V0pRT61saWf3JKmOsK1PYhsmE3fqp++s2ZIrQRJci0zYXP+497EZpJfbagsuE1utfrskVr3PFXC4gkS73DGol6PlHm2rraXPN+FixSu56c4yieYzyJcknxhXvq+Sm072s27CVNfoect1zphzSZjctGFcQ3LTtuCyhUm8kC0wMthrEnXCT0p5VgjxGIBnA3h3+fqzAdxe/n47VM0iAEAIMV9+Jv29EzaH6uDSonyUF7UaFcLqcIx+lmD/XA+FVO6evTRBLwmvSayK2xPrg15tnx6iCfbN9TDMC6xsjfSNZquHILzpg/fhSYcX8JVPuxKAenAJUS0kbRbE5oTwa9/x3NrffIGUYhIdsjlGC4Ym2xleNKx+9jN3jeCoDK73zPYgZdW2Qy12y88JeJAVxuTXS/1M4onSUfXWI8tY2xrr5IOrkHqUK7aRmMNHztSZRFuwF5KhcrXqIFkeADxydqP28PHVJA5ziX6WYJ9hdmC6m7prL3iLJol2lq4pGwpf7LqaInvGWLKEikn0bkozKeY5CKlJBKjnnX+yb7qbWltg+JhERp2gbgpssAbcFgCuQGo7WNsa40x5PX/yoSUA1TyS+QI3UmUkAjf96EtqTcWzJPHWxC3OZPqenK0x6ZP7184k2gKAEJaa3lu/ltuuyYn7JkC2SPvZZNJDTDuAyfnV2yrFp2QoX7MlcPU+2iSBbYn1iQCAXvcnjiZ6y3mSJNW2bAk/f5uUakFevaaVZUFMon8/qcbWHOd6vi0MMmyOhji1OsR1+6t6dGcyOeQ6mTiW7cGevS1R+/G3nrdCeh1R6TOb1z/QLjdNrX4CRWvQoN7XGNfy/VyqnPbEqYVJbAku3e6mduMa3QJjSu6mZFwTrLgrj9ssYw0aIrduMykCqJ2Omq+EotXLP3CNa2hS2F6QOBW5qRDisBDi24UQC0KIVAjxNQC+A8B7hRBfJIR4qhAiEUIcBPAGAO+XUi6Xw/8IwI8LIfaXhjTfDeAPyr+9DcAzhRAvF0LMAPgJAJ+VUt65nf3dLLMGe0qjENcFMhwXmMkSLJTtIc6sD9HPBHqeFgxN6AAwEU5dtylJ3V+yS2+/9VgrkyilxM++/U78xz+4GXcdU1n1cSHRSxIdYNqaWfuyRr5Aioxr7OPC3QyrIJHngFgZd9gXdfTZWSL0uSVTmCzhyU3NDJmvT+LGMNfOsLcdXcbZ9aG2aXfJTUel3JSCwocbQaItKRBiCqOymJPnm1qXACogpcWlMGoSbYsEVYOb1Bow+9xNQzLrttYBofVONokSuyar/OkNEnUmv7mP7Ysfc9+A9jpNX1/SJjST7pFp53m7u2nY9V/NSa7FZ6uZEuOhHYp33n4Mw3GBa/bO4KP3nwZQZYPTJLEmO5pmMof3zOjAElDXkDVINBgwuqdnetVC2VamYEpbbbAZ18gAJt3NbocwiZbFbgArOCHTDmQSJ8sp3MY1+jllk5t6ZKp6HzsmjmzBhp+lmzzfrh5xtW1ZEhdtTJZeJ9Tmrfbg3vXsbquBzFLhXMzT6ydXtmo1gG7jmpB+mk25KfTnumBblIcYB9l8AYKYxMZ9Q8e/m3FN+z4Ck+etjSm1KSfC54T6a21OyS7ywPV80y0wdkBJYqLZloVbumH2SQwdkwrhfJZW0u528zI9NMSABpg0rjlPctNp1SRKAN8H4AiAswB+CcAPSin/DsATAbwDSiJ6G1Sd4ncYY/8nlBnNQwA+AOAXpZTvAAAp5UkALwfwv8vP/SIA377dnd0YkoylYhJtIIaRFghSqpOfJcLbJPSmB87omhf9IElNJtH+EM2SBF/9eVfp132Ny4EqAAKA3/+XBwBUAaCLDjffY4Nr8gfqNYlNcBagXY1rKiYlxbiQ1kWa6omY6L6PprmFr/7FtY80zvW9Hl1SAd7LnnmVNrowmURXn8R+JmpBYpaIRgBmz9j5sqau+jYzSHy07Muoe8t5ghQlrxbYP28Y12i5qa8+wZcRttSxBDqH2nuiBSwIawvJ9qy1bZEWwvbY2PS2Y0LHPyTjOulu6mASPUFbc/9cqD9869vX22pjEkX4QzsUtx89h9leil81FBDUziJNPDXYzIU8UJ+Xib313aNAu7uprS5dSTnbmMTJRZrPyZbQXLSGWvnbHC9DmUROgkuz71bFRfu9Y5Vkevdykl0KCS5tCb8QCaLNpKKNybL1sgsJpFzP7rZgwyp/K0HP5lOrW7V9cEvQA+dy87zp/fOMsbDUIcZBdrYttAVG9f/QBIRNKZMXhXd7NF/Y6gQBfz/N5mkLYfxtz+BWualDheJ6vvkM8c4ntAlfyzqtCfoeWm46CmES1U8h3M/SEOOaiWMZakAzYVxDF2Ubk+gXlE4lSJRSnpRSfoWUcp+Uco+U8llSyt8u//ZmKeUNUsp5KeXVUsp/J6U8ZozdklL+x3LclVLK1zU++z1SyqdJKWellC+SUj7YZR9Pr27h+tf8I/75zuPYHJHctGQSXUHiWCJLqoADUNnQXupmEt9+62N4xRs/ihf/8vtx9/EVfZP4mrnTw7CfJjgw38c3PucaACrjDdhr1ADg+Lkt/fvnHjsHALq/om9BmEv3osk3bnPkYxLdjNTE9jWTyJWblscpc2epyPCHzu3SuiE35QSyRobMFaQDSr4JAN/6/Ov0a2aQaJexqVq/mV6qv8ve2Z4OQmxutkHtJRwPe5LcAkqulxsPSZ8shGoSqTUHAF2X4pObeuVXlsA5xDm0WUdEv7YtSFyyoZCsNd+BcvL6aqvT7DEyrnRqvXJTz8Pe1dybsDXO8TefehSbo7x2vTkXny2LZJuT7XYxygvM9BKtFACAuYHBJDoDN/8izSp3NFyn+zpINB2nOwSktmAvhEm3LNJC5KbNRWvo6ZhYyAey/cAk4+x3N3UrXuj67jtWXG7jmrZgthGABQQpwiobpe/gT4rZmKygFgxMtlMfS8e87DPPct2ntSDROE4VI15/f8hc3gy49aZ9LKllDjIDBBeEJbgPIMWRCkxc/0CATNvyXGw73y7Tv5B+mrbERUiQPlE3LP3JDi03DUwAaa+DnZab6mQ+Jcl5a0ktNw3pE2qcD2eSpOV5D1iku8FBYkobKX9eXEzirscdZRD1Wx+4HxujMLnpKC/QywQWBtVB7mXCK8/48L2nAKiJ6B23HdPBRpYIp67blHYBwKHSKOHwYtVewrYgOV42i7/x0DyOlb/nRYHUCEhdzdydCzvPuM1RXnNENaH7xoSYYugg0b3YtcE0rgEcrEGuAns6tyaTaLOfd+6jySQ6gnRA9ZwEgM+7eq9+bbEMEl21pKNyHwFoltrsRWgz0ggJwNLELotdMYLE9WFeOpkRk+gOUihIBICbfvQl+LXveK7eX58Da5tsheuIB0wutkIZkS6LLVvtcAjbY5dE+RdoXZIrut7Y1iexJUvuajgPAD/2ttvwg3/xafzxRx+y1602r8kWuZ2rtcR2MCpbAy0YiTuqk3XXJPobTDcXhOY4QN0jZF4za9TkdnM3nTzfISy1vSaLzyRSJMWXqQYYYjjcTc26fNt2gMlgAzCfi265aTPYBjowWeWvbfV+zUsrlMmyBW2+a6Tax+r/QQ6gzuPfFmy4y1lojjm1OtTrpH6WVPXNFiaxLQITom4mJgNqEm1zshkgOMdZ7tPwpKTtGvEOsybG2hxHXefNLAuxwWbKEzqX2IIbr7tpC0vdvLd1GctOG9cYLLmtBMaFZpAYZFxjrAnbelsGSXc1k8iQm5rvlwUAEZApj0FiEIhRyguJrVEOIerupjYMy0UyLYwBldX0NVe/9cgyvuRJB/Gsa/fiX+49ZTiXGnLTxtCmrIYWJLRdIezBFwWJz37cPlUzUEiMChWA0D1rW6MVAUxiW5/EiXGe2rYmdJCo3U3DFpKTi2RL9rl0FyT2l857jV21HJRHzqzjx952K37krbdinBcTi2QXk3jk7AZ6qcDhxYFerLYxicMy+QBUkuEf/KrK3t1mpGH223TB5loGAOdKuenhxQE2hjlMtzVfTSIZ1wCK1f76Z1+j/+ZzYPUukm0PqIBAomttVfMcyIBxtPtNeWtr9tlyfbW5m+o+cQH3gGllnyV28yxTSmyDjxX/5MNnAai6P/NcumrN2vqUcWpEQjHKJfqNObmSm6pzbWsw3YlJNJJ3V5eqDkqauOaENlMSW69KiRADGlviQrbW5DYXTl0ZEZUkad+WuQ2Cj3GrEhA2JrE9CWHOWyH3NuCuN/N9P5dEz7d/atyk3DSsJq5RA6mDe/cY1/OtzeDF1TrGfC6fXNnCemn4N9tL3c/SwGQat5ZUlwCYwX0Aa2OtvwuQaTcNh7QpUkBSxuYu6y8TmXTFBtrnctFIkpQ7GnSfNo9Ju9x0cv4BPEyilpue3/m/iYl1WiCTSMea0wLDDEhd7exCjGsmFG3EJLa2wKDMDAWJAb0VgVYm0StGFUL8MSqVhhNSyn/Xvie7G0eXFOOTFxKb4wIzWeoNNuj1fjopN+2nbsvo+06u4ttf8HicWdvCpx5ZqkmWXLpu2j5R9M0bzjbxAGriBoBnXbsXb/3kozi1uqWbOfuklb66GV8gtTF01yR2MeDg1iQ2a7Jc2X9TbkpBWK23k2Xc7/3LA/jTjz8MAPjer3jihNzONfccObuOa/bNIkkE5voZ1oc55gdmLenkmHF5XQHAa172NEgJvPSZVS1qknjqv3x9Ei11REBVk3jV3hmsD8c16ZjvvI3GhV/qZcsioyUAs7FLMsCAxlnH0p4RNs9BCANpk1fuNJMYdN8U1ULFtrCTUip2qSVItyWA8kLiyBk1R372yLK+J2tMYnPxGcBQnG/jmnGukkDzhqJhzmhwD0wyh61uki7jGm06luCqvSpIPL1azSe2OaFtQWiTZIbVJKqfTXav/fqfHAMEsA3JJNsWskAG3EyibV+r+Wfy88z+wdbtJXWXQJ66oPp/CJPoMxPz1iRaardD3DUnFRDV6y64jn+bbDFNEmftPKBULidXtnB8ZVMlydOq1YAt4RcWpNiuSc8YC5MewtoI4WbovPvYSLiGBLKAegZvjieTaSH1frZ2Cm3j7O6m/n1UpIPtvPGCdPV/exJ0Wi0wzEQlz7hG/eSUPFmZREfC25vMb5JFoXJTG5PYFlgC265JvBfKNOY+qCb13wQghTKgSQB8I4Cl9r3Y/aAg8ez6sAx2Eh0kbjnlpnKCSVR9Et3a561xgbl+irlBhrWtvCaZceq6czWx0sVDP0lW6WKktsaqSet1++cAAMeWN3XW3FuTWEinRMNfk1i0GteE3KT08GfLTQsKEu1yO5LHZImYMK7JUveNDdQniaX1UXCT1iNnN3BtaSlOwWHlbmqXZxSyWvh871fciO97Ub1TjM3wJqgm0SEbOreh2NRDCwOsD/Paw8dncDQyGM8mhJjMRoZYmbuYxJCFnSWxHiAt6+6kx63/sl1fbQs0ug5C7ptCVp/TSyfVDPQR7b00J18/fm4Tw7zAM6/dg2Fe4Egpoyajrub3Aqp5rEutU1fQ/W1KEE3m3twvggrc/GyDVZZvLIC+8mmHAQBPunKhfM3OgLdJW23SstBFK723GhcmLauzZvR6+/YmnVT9Y2wOrIC/dszPJJIrqvv6UmNluV31elAPSOZ3U7XU9deKlutfbcseXPoWkYBHbtqyj+Z79di2IFE45v/ymUgtMx45s244CU8m0mjbbWZiwhkAu8fY1iX6Gd0mN20cD4mwJEk9kdB+/AF7Yqwt2PMZDrWN6xqk29jmkAREqCmVXlfscE2ieW1znjdNosIVA9THqJ/mWr2TcQ0F3HQsg2sLyziEzGuKKTCJUsqfot+FEO8E8HVSyg8Zr30pgNe278Xux2PLSpr52NKmlk1qStzDJPZSoRchgHpgZWmCteGkhrkoJPJCBZbz/RRrW+OaTbZL1z0qHTkJ3/aCx+HOx87he79CBQ9W9gWVjIpqF5XkVGXafSYVuech5c4GSwzzotW4JsgUZoJJ5GV/XMY19N80SXTPSUoO+BzZABUAE86uD43JL/HKTU+ubOELbzgAoDJ16XuCe7PdiQv2Zrft7qYu45qVzTHm+ykWZjJsjPJaZtNldkD7atZ+1bdlz2LS/rtgazYckv1syr1M900fnH0SvduavE6k9B9717jcuI6s++dZJDeRGwsAW5DYJm1V+2ifEx46rVx6v+zJh3Dbo+dw30nlzpwk7sVnJa1xMIk7EiQWE8wSJY2cwWzR5m5qZ1LGhgrkhTcewk0/9hIcXlSMoquOa1xIzAXZn9evrfbsfyP7jMAFoeP6b4tKJw2f2hf/Lrmp77r0JRerudJRk2gkuLKUt5CfNOVpn39cC2TuQj6sJrEpSa4+z4VWJtEpC3cZN6njf+2+GXzmEeXCbfbJBSYTMhJdpMzleWt5bjS3F1rLOBEkhiQFGglezSSGyLuZcnen4ZBsLx3oUpOYWhK84XJT+zOgOZaT/NwO6i707tZoE+PK9/lMEJswiQMnk1gEXJNNszo9J4ca1xhMYluPROC81iR+MYCPNV77OIAXMj5j14Ikd8O8wLHlTeUsWZ4sr3FNWjGOgLqoeomw0uhmDcv8QC3IyUl1kCXOIGVc1tkQFgYZfvFbn43986o/nYshIhkVLeTXhmOMTJbIOc79UHTtIxX2msfChM3+3wVa6HSVm7pkws0A7AkH5vBA2YokSxKr+QNhs6xTBYDljVEtS2lKmZo4szbEgfI8/V83HgQA7QZqC/ZIwuOScQL24DK0INqWuVvdGmFhJsNcX7HbhXH+6XzbzsHWeHJBrrflyGICbaYwtuAyrN6vubAGAhaESXNBUr4esCCZkPYFLBCABpMY2CcxJFFiLmatcl8qbWi5Rmz3KNU3v/CJ6hq+/+RquX+JN3EE+Baf7uRKV9iCRNG4lm0ugX4JqH0x0zROoQARcCfu2gNSCyMSwCTSR3KDy4n9NLLh7eOMYTJs8Q9MSkd9NXFJIqzyN6Dep9KGrHGfBsa/E60DwpJUlgV5SJBouU7GLc3VbeMqqbl/DOCrk3IfR1ftPABcvVcxiQ+fWa+15TL3C1DBlwwJUizXFhAWANcdp9vHNdud0LhW5r4xd4UmJZsMMO2zv05Z/bSaybS0k2qetjDG38YA+2XTTtNFh1eCz+vgfCJU8dUEvc9ngugaY9bpuxxpQ/okTtQkBstNi+pnEJN4/lpgfArAzwohZgGg/Pm/AXya8Rm7FuRoCgAPnVnDoBdSkygnFiRZQi0wbJm3MohJE22mcLKsYZkfZEaQUh9HdTYuuBZ2tPghN82Vzf+PvT+NtmTbzsLALyL23qfLzJuZt3vvvr650tN7T3pCEtJTh1os0ckGWbRFQRmQjI1MW1AYYfCQGaYQrqrhYVcVyOAqFwUlMwYYsA1VBgRlG1OgKiMjGdGo19Nr7715sztnNxFRP1bMWE2s5ptxmnsyc88xcpyT++y1Y+1o1ppzft/85g5t24+1jSmRil2XPl4KNSht2DmVzNjxgXl9EuvKziHG4Qes8/Cuu8djmxCfgjv97LNtO4pTvPEoQBITwfbjzQ6n2xbP3zBB4h/8JR/Cf/ndX4P3vXAyHnNCGy3U2QCpAMz8zPdbSquprhY1jlcNTjc7T5I7W5PYpmsSY86P3eyTU4x+tx7lTTss0u+J8yHHi9a/ZFZG65Db1zRIit/La7iPUo6uogWGF9zHEIrRGc/PMbYmvDbU7n70Hc+hrgy1TD6r5HymaWwXjyTuuj6zBg3zbKfzLInJ5GoSo4IrGSSxFDQAmNQ7MegXEKtJzI+bIon+56XHhYEsQ9Eb3ju5T8zPvABN7Pxb0bfoHIOkQN/n1SDHeU6+G9c2oOt96jqVuKumNFVXOCx/PF1yK4X2lGixdeL8iz/z9qEet+/hqZuHawkbpIdBCoMAp5IrQImmGj8fWuEadhlr6un9v8sk5c2Y6Zog40r31pzSjZif0HYFddMSkhgMFh+UZYnNNbueGR801T87NHkP04Lqzcdb/A8//tqkdzYQCbYdcCFlk77DdAuMQLima8vQNnChSOJvBvDVAN6squrTMDWKXwPgiRetAUwQ8MLgzP/s66c4WtbjDVKim7p292RlWmBEMiQ7B8mS3l2ffWAy9EfLJpoNBoyKZEm1MnYPj9TWIUh8tN55TkpKpKLLbFLJbHDBIVwEG3bOLB88j+SGJjRJS88I6HajSqz5+3uePx7/Zh5s+zmhne1avDxshvdOt5MFIbaIiIjF8wOSuGhqfPQdz3nHDI9l62zyhc2T4xGOTKpwW2pgjlcNHm9bnG5bHErbgETAbebaJ5HjPJKYz0jG6T+ljW3qIAMEujEDSYwhZ0wgG0USWXVT6rmxnxOrLRwRgxxKmlgTXn+0RlNXuH20xN2TAye5Uhedz7QgxuXQTVP0w7QseVege6Xp/EA8wE99t6JIThQR4Rw78177mgluyoiUtrbNjnOfG279AabnfxSuSQUpiYB749B9s8cb3tcRwbaMUyOyw99DBBIoITDx85FLCsvxwmstn5ey1FpSosWm7n/Zl1+6dTius8dukBigZvIJlLqpMgCOJdjH3zOHiyHADNo59bnKaysQ3/O7rtCCJ3HdDHtFt5eyqHgs4VcSPAMwSXikahKvqgWGm6hcRNbI5LjBl5Rp5/bf7/hTfw+/7vv/Pj41lKzVlS0dmwAVY0Im788Dzh5wnhYYFN10lf0zHST2ff9Tfd9/FYAPAvg2AB/s+/6r5javv272eNPiPc+fjP8/XDajo54qWt1E6HavvnwjWg8EWHqGK3bzmftrHK8a1HW6Jm4XCUZdS6rvDQHh8apBVQEP1ztvA0qJVOToLnUikCoJp9h6LKYFhvk5pwWGywcPx9l2I+bvIugjr6UKxAGj3HqyWuDm4QL3Hm/H5s5CLYitIaKcevfkYPpHxB1y2XjzfdvmLf4lx/Vo1aDvgXuPNyNtqFSTmMs+TxBBMts9pW2Rvc0iQWLJLQzVTTUCEKHgDVP/CKRqEvOOLrOZtp111FOqie5npo6XSnjcOV6hriu8cGM19l1tqiqZOCqrJl6OcI2slW4SyBwvUdtDOGmp5AoQ3/BTawLbJzFMXDCKhECYKGGSJPraNmC6BvXkGCB2/s1PrcDRblh/Ug59mBRg+t8BEeGUjhH7GN7rBTekkmckaKNqEjvddUvtb0XhmjpRPjO8drioxz3OFa5LKecy6LY2AK4T598cL39O5om7TJ+10rHk79HrraTSAoLuFfbSyHdjUXHX+r7UbmOYUyIBFN5bueTzRdp4z2X865i1nTnvVSWCN/H999F6h3/2aVN68bf+yWfMsarK0uQTfnIO4JuUZtEtMES4RtsC4+Lopua4ff8zAP4BgJ+rqqquKmYW199Ot63nVBw5NYmpIMWoO/pf/z13jw09pkA3FRGTzzxYj7/nqJx5RbxET65B6a+qKtxYLfAwQBLryE0sMvklJJFtmiqmWRTks2TDYXnrQhsTJCG8BiG17+VbNngrLSJGubXGneMV7j3ejIGFIJCxMRIkCt00tBySqK1JnEMtExNZ/uPhfL/2cDNpG5BEIDM1iSlkKTfNON2UVzcVx4ChtprjzXe2QiSFcQjDcUwW331fzvo+X2/sot8pi9XJAoZuKoj4izftc3PjcBF10IBykX4si39e2zk1if/N7/46/Nj3fuv4t5SUPEP3igvX+Eknf0x8TShSWxO0UcaxA6Y1YGrhJvmduJen4i6FOSYpaekWGHKs9PqTu25+UqDry8kmIBakMEG6H5CacWUkN03t043j6r0LyZzM+c/VJK4W9bgmTJHE2BzLCQ9tbWGU3UEmJcMliKV3x79bflwUSez1iSPz/9JaHqtJZOqUI89oYS1J0StT95alm14RkljpgkRXYyC1/gAYe4MCwA/99OvD+83/YzT5rvCsAY5/oaabinDNzo6jWmBcEN20qqpXqqr6y1VVvQZgB2Dr/Hvi7WzT4vbRamxXcLjiahLFmb9zbE70oqmxXNTRwNKlm0ofr88+WNu+eREHQY6/LMDTMZ61GxDeOFzg4ZlRU5XPii3+LLKREk65iH5v8p6jlZJuOlAirGMdCNcEc3SFJlwkMUU3PVw2uHuywmuPNl6GLBWkj0jicTxIjBWx29rOPN00PI3GASJQs5Tj2lRjsuL1R5sxQLc1idNrYBTP4seK3VsUbaieUlao7xbQjRhlu9g8KWdrvE/cOXIOIZBCElPJFb4m0d3IY/ckiyTG6aabMdnxwg0bJD5/Y1UWrkkFwIm+necxl5q/WtQesiFBQyzBVaKAxmvi/KSTa0nFaaLdhpmTfW3O/S+/q4Vrgs9jxzFzLN0nub0jldzKCkAESQHmGQXm1yQCPt3UOOT5cVU17ZXLIYmhuEt5vZOPTK0LWeGayD0iLTBWTT2W6sgeIp8XC9qoQCpIdpTGpcTEgPw1CK81QCYlw/t/FAXLDosm78r3ceq5ydPko3vAzGRy2+Vp0zG6u8y5rqZjBWm77BYYsd6FDOjgJmoWdTWpYxfbOAv1Jx26qfxMtypTXG+2BUYoXHNBLTA0KOCfArAB8E0AHgL4EgB/FcC/rviMa2l93+PxtsXRyjZF/oK33RxpS3l1U/OeH/x9X49/8G9/EwBgWVfRwNKtN5M6wc8+tEhikrYVEchxLS2SYOmAJweLgW7q98BL0UZzsvVAJNNEqjSmnMKf+OzDcTOQOR0o6aaSkUuhljJHeUBfchCRXLExYJIIh8sGL908wGfurz2KVKq2U2jKyd6RkSJ2udey9OLYxtaXFUBTtSVG8bYe62Q/93A90k3lnKSSHqnFLqRxAny2eyKbTny3kO7FKHmauegFIOQr98E4Fkl0j8dQMt335cwNCmL3JCOkEcs+A75KrziEq0WNmweLtBPT+99heiy+uTFru7bDKtG7M1mTVQjc6hSSmEnopFDSYkAapfMzKJ35OQeBnEsJ1NYkJoXZCntOU9fRIKXk8IZJAWHWlCwMAPpC7Zc5lvmpFfOJ9crtiCAxhbblDldV1YSmCkhNej4AiJcbDPf/osaLN6Z001htJ4CiwNdElMd5PTnHSALCnhNlINWxdGv7f0lKUv0VI0mSvJBJPHnd9oWEXwQ8oER5In6C8a0yYxIJiFzPz+UgJHMZNrIHZG1RIoluDWYOSVw7gpeffWDq9MW3j9Hk2d6d3jxHJLFENw1bYPRkTeLF0U2/CsC/1vf9PwLQ933/wwB+C4Dfq/iMa2nb1vQvPFo24/L1pe+5O1JJ88I15j23j1d4aVC/XDR1gsMvTkU1oodt14+oYoq2lVMbNeOmympmnIMkHgjd1H5WLNNRUjpL91rK19LlnN1/+qkH+Mb/4O/i//x3f8LMYXiPugXGkP2RRSnMUm2DOT7vICJHyya5GAPA2c7QTV+6dYDPPDjzKFKxwMbMJy9KcpHCNT041Cx2/sdWKcPi1vWWNpRrXdJlNqmmmt6PTCY5ViPS9/lF1XymP0+a/hM6yR2RtU44JCyS6F6DNqiTDW0MbIhnwK2dyrEEcg5vChV/vNmN98fLwzonNRupnqvM/X/hdNOMU2JVWP1zWQrcUkhKqb9fsk680AMVmAYArHDKtCax7OzGHevssAjaw9HYgEhQVNhzUpl8N+GZGgfY563UV04sTLB0/Tx1WbomUUk/jI1jklsybhpsFERJEvvGpjXO6LKp8YGXbgAwyt9iKUpmMeExI3ERr+UlkpKJQKp0wUMEkj7/Vfz8M0ImsYCjWDowGQPiu+kp0Kl619wzumjita7ntf/wb/1zfODf/q+xbbsxme+CAKx4orx/0aT7KwqSePvYonHye0wVmBKuCe/l0XEqOUGSvdbWJF4cktjC0EwB4F5VVS8CeATgHYrPuJYm7S+OVgv8e7/yo/iOL30nvuy9d2yfREULDACDumks8zZFEgGbeUg9aJs2XfsFOHWCwSFbh8Zw8zCBJKbQhgKyMS1Qthmb7LjIeXntocnA/LUf/nlvDgeLGlWlaIExbHapHjwhtc/9jh99x3OFmsQWR8sGL908xBuPtzjbWuc+rIcTY8R8Ug5TSUksVv9FOSQxx3XIsEv/RsBKmY8BdwGpDi0a7M1sbqxRdxxp/MPramfXmX/pWK3SIYxt9sU+iYpaXndji230o9poISMfu0fcdePzXr4JwG8blKIo5Y53GcI1MTExMctm8F/fdV0+cEs4yWPSLyZck0jcFdVNI2uQribRvkbdk/V0jPt5ueO5p6Sj0P743sHsOdHkViGYCpMCXVdGBGVciBLxQbp9jVm3qpgjTyScUuqmVAAWCTZK92Tfx1gvw/3fVPi2j70CwF+n5iCCcjz/u5mfWropxQqJ7lPEeZTjhUnJ/LCJmjAw1EQTyY5YYj4buAXnEeDrlCclH4U5xlgygPUtYpZqbXNe+wv/4GcAAP/jz9wb15q6StdNxswNis36E/dB14Mf+M47R+Nrd4byohhzyyZq08cO+7taddPSTRkI11xQC4w8zujb/wfALwXwlwH8PwH8AIBTAD+k+IxraadD8enRssGH3nYL3/cdHwMA1JW5SAzd1LVVEkm0zZffdusQ73/xBD/x2UcjqpjcRNsOy+wDan6GWRsXSTxZLfDp+2dY1PXo+MdEKkq00VQge56axPtnJvfwyTdPvc+u6wrLpk4G6aFZJFHQF/9Ycv7d7/Y7vuGDeOX2kck0JTJ2fd+bthDLZizQH/nntU9jcJHUsSYrg65OawaGvxWClJhjwSz+cSSxx8Gyxs1DuxxMahIj16DNbBwxtFP+W6INzXOahjkN55N2dicOSdnZitUfMQ7hIrJJhWJK0zGKmkSHJpVDEks1iSkETOb/4VduTf6eqn/JHc/cjxebSd51aSVom0nWIYnpwDnNnnATd+6fi30SZQ0KnN0ySo3heH5wyTjkbhKO9dlCYR4KScwgIu7fY3OMIc5uX9CYRZFEJkgM9kXN+qNFgGPPAEOvryoEcxzTYtlxMQocq67Z9j1q5/PlvjlY1HjX3WP82d/8ZfjoK8/ZcUECgmV3TFE6GVeeo3otd5I51biu96gLzrU9njknY0Ba8MmjfRmJIB2IC9dkWSHOPTkqciN/PoBEW5YCCp96tttMAi7VBeC89pFXnsMn3zzD3/vxz43Jc1EpBfiEq5yzlBAlYAGkd905xo984j4AiyTGkluukE7K6nCe5xGuuWIk8TcC+LvD778LwA8C+BEAv17xGdfSLJLonw6BqBm6qWuLukbXTx8Yl25aVRV+9Ze9CwBw77HR/kk9aLu2rG4KxOleMu6lWwf4+XtnXtuCGLJk4fBSsOe/XhSpyDi79x4bisobw3kYi42ragi4Oc9F1L5S6FdMIOH3fcvn49d/xbsBRGD+wTZth77HWJMImIDWPY/uvHPHcy0aEHXsxjZ1yLWomZjUJLpB4qhumkGycs51Tt209N2mQWLZaQrpXkxAauY5o45FAtJgHHP+Af9cssg9s5ka52aYY52uCc07FolaOqduT4Rrvvhdt+08I4FUCSW9DCRxm1kr0xn5Mm0xKtyR+X6xGjX5P+MQTvskJocAsPdrKKbBIFL+HPnkylTJMz/HVCa/lGBMIQ4lumnoXLtJlJzVVVhvPE+5lT0nE7QHZUc+pEla1Kw8z5jiYg5JbxIlB2FpxDd+6OWx5EbmGOt3SNXtqRFBTObIJiXdY8g45v4H7J7PKrdGhWsKyY4Unb9UJ9jE1gQycRSj4DKofVSZP/VcN+ng6zwmh/vMg7WXGEq1QIqZJ1yTEVgTJPG9L9j2ea6eQ7oLAJHwCIPEklLppE9ie7U1iX3f3+v7/vXh99O+77+37/s/0Pf9J9nPuK72eGMi76Pl9GQ1EXoAYDaOHN0UmDp2YXuDb/6ClwAAP/rz98djmc/2P2/bpSlUQK5O0D4gH33Hc3i43uFffPbhuOg3EUeyVLcUIjbhuDk1iRIcAua8uo7zskkH6aGJbHGqUWuu+bU7x3ChE2rpwaLGK4P67c+8/tij9gGYUDRKAUCsiJ0JUqJtInpOXTO22AkFzqObTtRNp45F1+sCgPG/uSCxmt7/8nrOQoSbzloH81Q1BZ+Myw+MbfYhBTq0ZcJBi5mrbhoTxCjRP4ECkug8Nz/0Pd+MP//bviIYN50PkL52sfXnvJZK3AGRDO1gpcCtruN0u92Y9IvTTYG400Spm4ZIYnLEcLwkup0fF6J0fHJlWrfHjAGme0dJXdM8oxEmQ8HhDdcuU8OVnaKZZ/AMMEImMbopg65WVWRtJRz5MLhnAikgjsqWkMTUHlCqnw/3t76wHoxzrMJ7kksuuu8Nf0+Oi/gzc+jd475dOl40cMhT0IF4oqQtrCVhICvz1CeOygmnEbWM+JM54GB7wUwSAHgwMNMerXfoOrsvp1ogxcxtL7LICOxIXe6H327ZNePxIsyt1kE2UzbxL9RIYmfHMS0wLgpJrKpqWVXVv1tV1U9WVXVWVdVPDP+P6/s/QXY2IonTE2oc8rQIzWoxPYXLBPri0k0B4AMv3sCv+pJ34H//az4GIJ4NA/K8biCPZEm9zBe+4zkAZjORz6ojjmQpq5tTSDNzKdUDTc/lvVNb7H627Typfg0lQbI/qfM/StYn5phSl5X743DZ4B0D9/zn3jgdERW7QCYC58zxYkqe7mdGxyUCMCaLHBXgGO6vY0eZ7kgUd1OOtYP2po41WVcJCmicgsvXJMp5YTPrk6bglGMnDrluHDDd7C9a3dSto0jTTdOfEUMgzfF9ufUXbhz4cvexTHdhQ2wSzv95LKcEHaP7AkTglghu2q5DVcWvXaqd0RwkkauJs58/jiMDt5i4CJMo2XnHIhzrzPkvCgdF7v+icEfw7LDCNUbx2DkOgyQmUBsOSdQ55ECGJl+iO8YCgD5fbybfLVyDrBJ3Yn+boM3mJ5PwiLI7MiNTiXJ3/tFjRRN+c+jd5b1N5hnz03JIrnxuVBQmm3CdJo5YVHwCHpCoZQyoSLd3ungmCQA8WBvQ4eHZziCg456YRxL/3b/2o/h1f/rv4/FmNwIOZlx6nvIMvM9BEsWaJs7Uy4nWyPHkvQDAt8AIhGvYFhgXWJP4JwB8OYDvAvDTAN4D4A8DuAXgdys+59rZ6cZc6KNIq4IU1cVm0aZPnCyaIZLl0k0BsxD97371F49/T/XpK2aMQnh6MGmSDpiA1H6ndJ9EG6Dls91qamXG2b33yCKJ98+2Hm972dRjgXzJRKWtGemmIZKYV2BNqcvKQrBa1Lh1uMStwwXun+3wyu1D77sl24kkFuVYETuFJEYpSlxNXBxJNCiR6yhYJDGuFFust4xmyM3PkpDAVFiBQwSBGfSfCZJS3kRlXJh9ZsaF36+sbho//zEzWVN7nFSNYJ5+NV1HgHky+Yxq30WXpKTqxIFMwqP03Rw0190itplx8ebefZkiGRmnQbIm9yShChyiX+bz8uPcYLauK0pdWcbNUdeMrlt9nrYVJgVY4RqX7iXB2KXVhEbo3RyS5SeprHAKE1zqktCp5Eroz4QWa5Mic8jP0WflaPok+s8Nl3A1x/CPxyYF7H7jv547Xix5V0peJMdlg3v7PjEO8Y8JbhVqEhPMiTySyLPENPZwQBKNUKOLCKYTCQDwn/73PwUA+Hv/4jWfblpnhGsG3zAFMEWRxGLdqjxvwwt0C4xAuKbvObppnQ8DNUHidwD4WN/3rw3//6dVVf3/APwwnvAgUSDjGCoYywYAeaqFIIWh4EqJnmEXrBiSkp5/CurfdR0OBgrtalHj+aERvEUS030S8z1xYj3YynL3QNwBfeOxRRLvn269AERFNx0ebHm4Q8faIom8Y+f+X8a9884x/udP3sfbnzOoYlr+2dBI0kjKdFG1CqCpb5lGEufUQ5h5TpMQUp/b1NVAiUopxaYC7njGGshnkmNOZI8ylXMRLKzyESWXsAoCFeY8AuLc+eNYJNE9L7SacGKTevPxFvfPtnjX3WOvbqSpq4ngFkNJSyWO+oJDnkoclVTcGKU51oSqXmYKhOtCvil1blyp3YZ72UrPjDuu9e6tnpKtB6aBAxPchPWPxspriZmnEe7gkyTTfYoR7ki17mFqEvXCNcO8ehEl4YJtMycfkSodLlx/wjmk5xhXZS4il5E9oETbbSTpndoXc3TTGJJIBERugn1ctxgEXkmdHgOpkJKZnWGkvKErB7JAPEg3yTTinGivW/SccAGwNrjPCRqmvtvRqhlLeS7SRrqpIILD4VPCZaE9XO+8BE8OSZQgcdXU+H/97l/kXY/UnlhKCFjkPnRmtMI1bfmGBIAmTwbVCNekjkbM4nrbNhM8pJDETUAddU2USFNBSpLDn6A7GvpDev5p9St/Uxz7mzk1ienC2gKSWAikJmMSlBXAPtTAgCQ6VEY13bSuxu+XpH8WgvTYJur+/b0vHAOwAh6pcSVBjJSSJ1Di/8dpqkz2P5rwiNRE3DiwFITYM1CiF8cy5FSQkjgnxe8WLKxMuw1gGqgzyoJArJk1Ny4UjmgLiYvlWN8c36S+4T/4O/jaP/GD5rO6YGNLIYmFBFAqcZTt3ZmkQ5Wc/4tzEkrIRqrnJ0sBjTaKziDp4ZjxmcmJhESSaT14ZK/1EBgS2Qho0yCOFyI3XQ/KIYknGMv3STK5VVhL3DkyDhoQZyWwSK57i7AIZKwNklaVmVVzjtUOd5n7GMhTCd2/x8bFgg0mAIspt2aTixHfiaFOx8QCNfRuGcYG6dHawraMcMdoyW3huo1iVu456cqJoymVeXidedaCxzSXyDleLUY9kIs08ScfngUt3zKUZPe1MUh0EMhUuYcEiQfLGp/38k188CXL2GvqaX/XEvor4wDHL+lZumkoXEPWJBboppog8S8C+GtVVX1LVVVfUFXVtwL4L4bXn2jLChAk0BfbIysSWI50U3/cJkNRBazzFkNSGF59SVnq+RsmY3C4sOpLWtqojEsHDanvZmoZUw+o0Bvvn+7G99S1yCTHH9DQZHNN1RaONaGJOaabgss5MRfo2z5mWoPeGNRAYwXiAIY+lfnrluyTmE0KRBwLgpKWzMg7tORXh0Xuaz74gjcuWd+WOGQc7Rw27UJNXPjdTOBGLqwiJCCCYEp0tSfGAFNEkKljkXl2scAh89wAcRGGtuvx+tC8etd2HpoZpe0SlLTZimyJeySbfa6ntOnzmAScaaZGvCalmMyR5zuS9NO0/KHW1ghtlOptFtk7WNSgC+5jeT1/PP++ZJMrKaQ6GzgnGRB5dCNMCpRq78RioiTs+Q8TTlTibpLMYejFetQsdTxauCaRdMqtXV7SYpx7OeAORZFK42KlIjZwKz/bHgJP1ISGzzdD5Ze/971/vBKVH0ggwF0BSRwDWf/5pu6tCLsgN0U5/5Ne0W16bT1ZNXi8aaN/m2tn23b0sx+uW1/dNCMCd89hsz2SfuIEkihsnYMmQjet60TpWP78T/r5juqmSuEatibx7V+cn0/5E0b7/QC+B8B/DOAVAJ8A8P8A8L2Kz7iWlqtVS9ZxCQIQQxIl+x9kyYt00whlCChvGjmapHtDfuKe6UP45e+7AyAeAMu5KNEYJoFUQe5e/pZqyn73ZIVP3DvFm6dBTeJCjySmgm2LJOocklDK/1s+8jL+k//ll+HjH3h+HAP4GTvzvQq1NglEECDQthl1LLHrJvOUe/YHvusrUcHn2MfUvSwlOH4vh7VOgAJJjCCQLI9f7l+Nuqm3IXZ8TWIo3MGMC9cTuWdTTkmujuKff+bB+PtnHqynxfaTZJOxEithipjlkytAugYyHxCl60PEcmql0/em12Rg2jdPrJSRTyOJXZZqByCREMgpEto5iRlEKjnEjIvQvbjgJoHalNaSYM8pSeS742KIbBlxnt4nxRYAQVKARRLDgE+jdulft3JwXyWeG4Ze7Lc7Ia9b5FyWrl0uSQLkdAimVEcz9/IcPZSUKMGI3f+q2sKQFULsG3IM89P/vJS5weXCYTwx6FIs6coIN2kTR7E6faDMbgLKPqhrx6sFfub1x/nJKO3R2qCIh8t6VDeVueX20jcmQSIcJDHdhm29M0HuwTJSqlZHzkef1xcBIueSVTed2wLjPV+Z/XM2SKyq6huDl/7O8K+C9Tm+BsDfLs/k+ppFBeM1ifGiednwp58nTk0Y3PB0U10AkOrvF9bnfOPnv4Sf+OxP4mtefXGYe1xZDShnu5PUEyXaIPOWINETrqkrrBQ1iW1vzsWkz8xgWyKTH1MADRGAqqrwzR9+2flecvyI86k8HwwC5kry+01yyxtNqd/Y3ZMpPz2sEZExAO8gABxtKC7mw6ubdsGmzTi7YT0KLcChdMiBaWKGba4eu24PHZr2z9879c5TTBSGSUCkaKNA+dmOq4bmxtTZIPET907x1X/8b+NP/KtfNPaUzZltMZRANsb11a136um2FDFhsBiTBHASRxFHPssSSDq7OmRDjk3d/wGSbuZYQBsC5F5D5Ywh3FkBmqYa+5G5xtJNx5rEAvI4zjFAcxn0xfaptK9RQXrkeQM9zhsyzCM7bIISAXm0B5gm4MTkOUqd06lyLj/H+DgiUT4JiLj7OKRc08Glk0gwc8yPcxNO4nyX1kkZp6XJxxV3y89AmLigkruJRFquDvj4EpBEQRGfPznAJ+6dYuPUm4c1yq697ognPly3XgIqVxaxcWoSQ4vtb4a1lf8OU7qptgWGo25aEKVhrPQJfybx+rgmDb+//9wzeQtt16aRxJhCEWAXsdiDM2asg+zDNnMcIB3slTapmEMin+M+oH/gl3wIv/3rP4AbB4txXApJLGWoUgFATs1wkXAKd12P54f6vvun2zHbVVW6mkQjXBN3mMz/5bvl5jjlkY/npOB8aqX1s+IuhCMpohEyjsl2x6nTaQEOwCDjU3px580lNsfJfezMI2Xx4JKn/8g8+ZrESAuAsh+JJkBXmfMfO16pR1ZKWRCw9RAA8PNvngU1ibFaJ/OzKFzTh+tWOblixvmvuVnc+Jg8kvgTn30IAPgv/sdPUEHiroQkjnQjZ47D4RkKaIxiX1oTJvcWysE2EDq7evobQFLLQiR9zK5kh01qLruujPbLPCdIYiFIqRN7cIk+GqMEMqD0WF840k3LVNpU43IqaAufGwLtqaoUSqcPNkrBVEwABUBRcCX0E6xKaeGerFLjMmMi6ySDwFv2ln2NqUkMkXQbSOWPF1KZ5TOoIDHi35USfuGx2MSRmm4aOY9mbPqePDlYqILEXdvhB37oZ/Grv+xdSaBF9oDnjpb4xL1TPDjb2T0xAcIAGMs2gCnddNFUOEso7G92Rk07tg7FFd750oFxzWNbYITCNV3L1SQWLBsk9n3/vnMf4QmwEWGKBYkJ9Cu34aeQxLG3YkE4JRaAZbPPSSTRd0CXTT0GYwAmUtPuZ2gFV86LJB4tazR1ZfokOtmnRVPjEbmQWLpp/DyW6DFAnA5VRs3i57+o2hejVg4/WeRYJPkZhzDXAmNOvZn8LTXHZE1cYbOZCt4QTlqQmGEConGewfHYmsRQXIStSdQgibnsp1BdAOBnX3/sZcBjTgVDSYshkPZa54RrpkEpdV9F6M9zrVRzHENE2KQYMH2+c8mVmLopg4iMddEBksje/2pq2QzUwDueE4DFmDihRe+vEpKYW7cy8wxrEmm0MwyAGURq+LO6/isatHG1bTsPETc/S98uRgsv0a1TNG2tMJtmjuF5lNdzFq4nPZFcGa+1khVi6aYyhguAY6wj5r5M7cH59dWfm8yXqe8PEXGgxECxc3ItV75hkEReuOb/+9Nv4A/95R/Be+6e4GtefSH6HtkDbh8bMZY3T7eOL5neS4WmumwqPNxMhWtSycz1rsv683Oebdlnxz2AbYER0k27HbA4SL+fNI1wzVNrgiTGNrkU+uXWzU3GJBQJ2ZrEeGax7MTEgqJSrc1c4ZqpI1muW0r1mxFn62jZ4HTbeovfqqmw3XFIokhCl9TYcuckFtzQbQrC8084yX0fNmUvZ4RjyQS21iCF5OadhHRNYlrdMV5bCDBByjRwZpxdwK8jKh1Lxvkb4uXWJIbPXIkyVFXVRKRCzKXg/fhnHnrPTYw2yiQgYggkU5M4z4nJt8DQxo8j3TTSygiIZ5KZ9S5Vy5KjScacQVbdcRK4gb//tTVxde3vN3b9yR8v3HNKcvzjPCP3V/k+Se/BXBN4W6dM9UkMvpsJNvJj4kkBErWJJIWZpIB/3fx5ZMdF9jfGv5j0yi0hwHU8SJzF7gD3DPjqvlzjePcY4++lcUFQpAmA3XHye064CYgn5kv9RaNtWcCh1LHzn9839GvkycEC27aftGpK2eOtCX7ePN0m3yN78p1jUzZz3wkSU4wvwA0uVxHhmnRN4mbXpfebFGpfopuG142mmwZ9ErvdhSCJ+yARLk1pejPn6riA+KI8NsCOCNdUVTrYqIKFR6zrkF19UmqeRbpjbOHJfK9xXIQSGIq7xMflkazDZW2DxOE7LZualsnvhs/JBW1AnhKbC5xT2b7U4tN2HSeIEWQx3c+Mjos6hPrG8XaeMxqlE4HzlDbNBcBzJOGbIEvIBKRmLnrHWubp1rYxGUI7zh6v9IzKmDiSaI7/jttH+BeffTg4pdU4JtkCo0BRSqr75pIrMYSigBClqPxip4NTwAaLlhbLt7hhGRBAZD3JqJvGpfX9v6UsrMvV1FaF9UcUtS+y/hTRhuD7lajF3vEi91deuCZOEet6UpVTiSRWwXrOInsyJzEKSYwyJ8rXLeXIU4nCyLpQQnLdY4gxz3eUElvydYfkqR1nfpZbN8QSp+R1c10M4rqFa4KmvMEcj08UyripfkSZqQRM27IwVFovcU3oJAgDIhRdbLt0y43jQRyPRRMlKfpwnQ4SJdh7bkAS7z22QWIqkHXH3TlejkEihyS2OFjEA7Hks0bcx4Cz36hrEp0+iRdQk7gPEmFVSGMIX+gMio100wySGA7btnlKTkogASjXcblzEmOc/9jCD+iFaxhHclFX0YyMSEAfLhucbVsvQ6ZpgSGbVipoY4QjYnSoEgJpM8/Tcfr6I2KOkax1z2StI8EGI9yxqKfiQaUeWfG61eFvhSBxSpPk+k+Z94pjx23aYS1LR6AGcryw4TmFJAbPTqlNCpBG3M6GIOqj77iFf/GZh94GFK0JJbLdMeEmNpDS9kmMofauifPQg3v+LVMjfsxYn8RSn0ogvS7nnNAU2g9wiIgveKNXGwX4FgwxtJNFYMYArBAwjOMSdMd8kDKVkmfGhU5hCXkMx42JfCL7Lx+rrkmsp/sNe936yL3FJAUmDBtauEbvX0QRqUICoq4SCDzz3ISJ0/yQKOLPrOW2Bk+SJP7r6eNN9/ySuq+Mm/TdLq6vmByL/W5anyQ2DjB7TmqOJysTwLDlRFJe4fbVDk3O0e0jEyR+5sEZTla25RswTfYBwEbGHa+scI3spU1auCbH1gt1CwCWbhrsN2wLDOl32A5B9AUJ1+yDRORr1WKCDEAeSQlpLmKlzSZPN02Pi9EKAEOjvYzawvM4kqnNftE4QaKz+SybmqYjSDbbOgfB33tmjungMhVIhdQT73vlzmMki2mzpslh0UbdTNZa6K1hFhOYRyWUv8XnmBHlyczRIBv+az0IlHR85qxD6L5eGucqGfK1hQ6SmMmYTscFDkIpSEwgboIkvvf5EzzetKZIf7hFsz04S9n/VAJIicAzCEWuJvHRWqd8J+co3Sdx6uzaBveZ71ZNxwH5ICWF9gN6uh1z/8fqJlkELDbHsnCNHwQzfVqBTDJBuf4w42J9Ei+tJjGSKOTWZH3LKzPHON209O1iqEjXl4M9IF6+UfYTnDkOP5lgbw5NNQxSWCQXiCDw+Sk6TAEZwwWyYQK75Fu442JIIkO3trTpnqvTrKclGPJ6zkK6LyCU2Pj7pc3WqRJJzAaJnSCChm7a9YbWCnBI4u0jiySOtYwZJDHX47Kp4olFNuE37jc0kjgEiZ0EiXu66YWZ1CTGFrxFAUmM002nC4/8Pw/Zm58xZ2uuummx3UO4YTP9DjOOZIn+k6qJa4aaxLNt59ckLjQtMARJtP93jaGtpPp4yfxjFtto3O+VPFaubqmAtgExmmRyiBkXBEQyR/czY7Zo9DWJstH0weYLlGviYr0jmcw64COCMo+chc61prbQzewaR54b594nJUqyjIk9N5JZff6G2RBfe7QZqS+5mtDc94sFexSVfAZCUUeQbddON1q6KVfzra1JTAnXSMud3BgfEeQ8+bqahwhOjkeO8wWYhn2NRUScAIx9biYquCXaYh3P5DN0R8BPHLFoJxCyC7hgUa45QgAA3VBJREFUQ7smx9AXVhU1rDVz55EcF1lLaMZLJHmaP/++k8yUG8gcfYqkjMsOiyr1aoM2gFQ3DfqZ0gFwgGbZ/Tc/bhFpxVZUlw2+Gx9sY4LIAhzdN0Y3Taubmr2KTQYySKKwzoRuao5j1fxlTpNxQ8L1uaOlKXly1vZUuQeQX4NitdSadkbjWs6qm45Ioqib7rg+iQXbB4kw6qaLOt7QOgbzAzaDFAuKxox1Gy7+ZV53+IDKOG3QAOQl2mXuKbqpNrPL1vul6jsN3bTG6ab1guJFzbfAaIdsduo8slLasdpCmX/qe8n3iH2v5LGiFDH/b6k5Avr6iyZGtxvRF11wX2oMHquHwLBpF4P0WPaNUGRz58VQi91xruDNnNpCJmst40Ikq4gkpoLEre0JBQCffbAes7OpfpNAuSlySvFYS11nkls5uukjoZsqg8RU0C1rk4/kltVNk0m/zPMdYwmwTlp4Lqn7P0A2zO9ldHtKNzU/S3fyRLiGDsCm6zITpMTYXm0BvQyf7VxQ788xtibkx9j1Trcmp4S6tG0iaLpjbM8vBntp/6LILogGG9kpRurEh3HEHhAmXBkhHyCgZHZ8UsBF6dzXk8cLzqVlN5WRxFiilmkBI8Pm1q3SFPTYvZwJog6XUpPIBonlmsSQbgpgpJumBB4Bqxdy43BhfNCuHxlbOSQxJ94Uq6VmGBcTf5JVNxVqaTu089jTTS/OhO4YsxzVBYjThGNZXfk/k2maFrLnN6nUzX8eQZLc4p+iPgDIB6X1tAchYB7Qph7oprvWE4TQ1CSazKZzrCSSUpijFkmMbDQyjsnQansS5ahsOYuNKwV7Ms8UkpgW8xneFyCJ2hpBYAjAyAa07egQlpMdQGzTptokTqiSjCKhzCcM0ss1iVMkFzCbZlNXuHNiN8SjpdRfTNcDJgCIbWxSs11KOMXWkvPQTcV5ONtxToSsE6mERy5JwiCJsV6hyT6hMZYAys+2GRtJQBTFPszPWcIpsUCWfm7M/0tKi+O4xJ5Tuk9iSKK73sfHDQJy0hbHcfxKcwTsmsqdR/MzXJOZID18BChVziqOtjH+hTaZmWodYIKU/BzD+1FeL84x8twwqGDYA7WY7Igmc/iaRJtIADfH2j8eiyTG/MJizXdwT3bks50Ss2IC4Jh4WWrcwSLeKs61n37tEf7JJ+8DsEFiFknsrEqpmCCJKZVqwNQkLpt6bMvhIqBNnfZBc2yxWC01W6fszZOlmzbDd+72NYkXbtu2SwrKpOrocsI1qUJvZrOpovSTQmATySIzgiQh99x8BhGkZJHEXFAUd3YtktjgdBMI1ywqbEgkcdfZGsxYCwA2AJtTfwdMM+RtV6gJjWUxyUDWnRfA1ySGxxOqdakFQEi5Lp2TeI0U35R6EoCx321YzO19zAal5v894djJ8cJgg0FSwvuLUzed3luAKKvVuHFgg0RRjGuqary2YgwlLbbecYEUpghkX6Co1tMaWddEuObhmqtZ2ZF002hNIoGkTGuV08FbnH7o/y1lE5SIuP/DgEjGlZ3PKSPBzKE8DnAc0ILDKpYUrikwJ6KJ2gLdtA7myD6jMhUNlXZURHWmyQUbEbSBSqbF9w3GAQ393RwlELAJxFiJiQ5J5O4tEwDPCS6nCVc2uJ+qAufnGO7BmjkCTjJzpPKXFa61yZUYIg5wwbZ7KA3dN3SVc8hZqp+42CffPMXXfd/fwa/7/r8PAFgPQm25/UDWv+NVM7amuDEEiXVk/Rfbtqbf4fFqga43iUlf3TQ+x9waG++BSjC+wr2DDhIjdNN9TeLFWE6hKFdHB6TbZgCxxZ+jrWiLXcPN0P09r1Ian6P5zMKmPdloONpWDOoXWuzRssF613m1Dqumnji7KXM319iiyjhpMVVOK2zES+vLOGoRj2ykuesdQ6oZBb4YclkK9uRvYSatVJMYnSMUQZsSEQkD4I74XsDUSWDOIzD0jgwccorKNgNJjPWpBExm1QSJNlsoSGIsAcRQ0mLJldL9D8SDy1wjZSCeEHDt8VCr8pisWWFbYPg1oeXvlmomnq9HmR5rLtrT9wwiYufkHk8r9mHnWx7nvt+svYVJQqijOmc3tQeX2m6M9GIlJVbeMypXKpJUYQ02F7Tp9nsgxubhkmIxMY1Sn9w5wk3A9Ltp7i0vuCQS1zLPsL8onVx0nzeiJjEUKtIEwO7xGDV5IFWGUd633bmpgu3YusWo0ip83lKQ+A9/6g0Apo0FAJwNSOL9rLqpLTk4HILEULgmlpTctR2Wgw8KAI/Wu/G+XzTpmsQ8kqi/Zu489S0wpE/iXrjmwm3XdVhkFPFiNYl24YoEiQkOP5VFqGOS2ByS6D7YbOP4KYd8+Fv2ePGNxp1LdFydrklc1vVYk+jSNJdNja6PUwRinyPjYtQHxkmLtekYA6mUSEvC2WXovuG48wnXcItPDEnJ1iRGiuaF/pU6Zqq5N+P8AD4qRSGQwTkZ6aba4JI4j8CQyQ+RRGJcmChhaxJjyZX1tsPBosHNQydIHJDElIohUE5AJJHEUp/EyPGyTkyE/uma1CQ+ItXvxNlYLdIJP8BH29j+rkAcSdHc/8yzDUzrj5jkSqwO2wQp5WP1vZ1bP76eHTZ93joySTIJboiauNS+Ubq/ImsCVzcZrgmM82/nJEaJVASomRnH0oT9a+3OPXm82LpQYDOkNQ/SdGtgmvC2vkV2ihEE0vzkVDnD858/1vz+ovLe3vvJBqXy/nEfJfaA6Pkn1q2xTl8RyIZJKoBMbkV8rtQcJUjcJKicP/nZRwCA24MIzYgknqVrEjcjM6oer8Ux2QJjMdBNzTF24/tzNYmluvRZQFG434wtMAoBX1WZQFFaYOz7JF6cmf6F6YxwriYx9gCkkUSuaFtbyxg7HockxsUmgFLdUpz6UFf5xS4G2/d9PzoJR0NNYtdbh7uUber7Hv/4594c5zDSTSMZ69FJy3y7mBNTotLah9p/nVXfiy3IuYUkKdvNblBRJDGHpGTUTVMLZOSc9MT9H6/lKm9sYb3BmMQpIon+Oel6tibR1hv0fW8cSRKl2Hnnv6P6JMaRxBYHSx9JPHaFaybPtvmZZSVENjZG3CVVM1MSKZL3xex0EOZhW+DIPFOooKVA289j1snx3lIkgVK1tQDnJE9pc/kxMm4apJTHAC5tjgxkI8kVim5aR1goxDqZ2oNLSUnAr0mkEkBBoqrvy8JBsRYYbJAecyQ5P8EfA3COfFSFOzMu1l/U/L+8JkRFkYoJD1+siq3lnQTOhEhIbC+leg4H+8b43fLDpjXwwz3G7AETVeCScNNkb5PzWL6X+8i9xZxLjbrpWJOYWN9/8nMPAdhzytQk7py6dDlsSDeNIYlCN5Uk66ONpZumyqSAfKIkhSSy7bxGl3dEEolNoF4GSOI+SLwQ27VpJDHZyDfz4KSCxJ7ZNCKLeCmzGMuGsYIkc5DEWF1JSelM5plC6byaRA9JND9TdYnf/9/+BH7Ff/Tf4Yd+6nXPUckL16TnGA+AC6hZJLCR78YIYsT6JHI1ie44vt4vhiRedE1irJcj46TFa7n04xhaBzDNLvYob4Yybhc4CGxNlrtJlSjJcqx4TaKhm55E6KZx5dDyZp+iAwLlhFNsLWGc+BTdVDLHrLrxdjfMs6DU69//ZVGelHBNDgGzzqd9TYX2BE4aUycbQ5e0NG06kA1pcwQibsbFEdkS4pykm+bW12AN4pHE4fNdJLHE9Iom7jgkq+t9miqFJNZh3ao/95TFEk5tAUm0tVzhHpBv3xOKItH1roF/wSKJ8eemfCzA30vN+c+PG3tTj/sGH4CZ45n3j+sPhQAH578vCTdN90TG6ipExGXupXHxoCj1jFokMREkvvYYgA0OrbppuU/ioqnx3udPAPjsGvOeeJDo0k0B68PkkcS0nxFr8aRBt8drwLbAAIBm6dQk7pHEC7Ntp1c3zdU8pW5GKrM7A6KOblBdeUGOBaQsJU270QOFVgpNhYOhJtF1nEckMZFt+os/9HMAgAdBA9RQ6cx8N4x/S1ks0033SQy/W6vvk8ic/1ggxWxsseRFrkeoOy4Z3BdqEv1aD95pDTPCpQg4bG/QsujLJLgsOxbmeHbTbknnZxznXO82s/a4c4ypO5og0RboA8DRytZfpJDEueq+xfqj2LpVUD8E4pldwDoPXQ+qLlmU7VYZzyn8fmwAHJtnLnmRe7bLiMgUgWTuyZhQCIO+ADZRxQayMQd0juCTfEY5SRVP1Oac66qq/Oe0gDy6cwTcWi6FAMpkTeZQgxC5Kc0yTAhoqMzxvTs9JtUCZldI+oVKyfIbswdoaaPmc4PzTxwrpgqsKd0YnxuyBcmU8eJ/XnKegT9jGVh5YUL3WCCf7dAHZZHEWKmUSdzH3y8AQCoJKLRSGyQONeqbNrkfjArXdYWv/uDz4/uByPnwxnWDuqkNqtw+iW3XT1BSIE/5jWlwsOUsXmKebYEBmKDQRRKZwLI0l3N/wlNgu4K6aaqRr/w9NgaI00a5DKH/WmlcLBvWZebnjkshiaUgcSIHTyIiufYSY9HwxvLBLd007kj+888YSsLYX3F8sONOXfG7JTLdQBptSCHHRSQxGuyVF+TY/cU1AI4EiQySGK1JHM5J4pipXo4MHQqYokvsZu/STbnaQn+zZxxCGSeBsxyTFa7xauK6HseUst30dVE3dW0UrqlsrZlVXuQSEOk+iZngq9JviClpfTHpAwmYgDHF9hAbBXYy71vUfhseSt0083wXkcSIs1XKeISBFBNsAD4C0/c9xVwJg9lY7WvMQjoto6QKxFkoOUoaIEmSSJDY5RFgwE9wlZBHd44yL4Cnjcp7xbgg3fxs+x41bMDItCCJoj0U2jZdy5maxGnfZ6LFViRJUoqAqwgCOScBoauBd8cRtNEguKSVQ4P9zSJf5eAyVoOqYWpoVEoBu3ewSG5dYxJI5Z7t5bB3pcoJts7+um07bz94tG7x3PH0nrXCNTW++xtfxeGiwb/yxe8AkPbLzRxMCwxBHQF4rDSZR3idcgreZu3xvxtDgQYk6Tr8hxWuAQYkcd8C48Itp25qULPp66NjmKGbThdVhtcdC24KDbAj6qYdsR5H6aYsJW2yGOSLqIF4RtiVgD45MA/og7PdePxctsn9rAdnWy9THBOuYUVhYs6gzD9mMSQXGLJMhb6R4TgO7fHnBXCLTywAs4hgzkmYcvJLSYhUvSWTIQemznVpY5uvZAhvnGmkXBzmZQmZhExsnMyTqkeJIYnbbkQR5diTIv3g/AMluvU0QN+SaPPkuSmtWwUkce30RxQqac5knjkRppACRAXAqSAxQ1+ce/7N3+f14HTrsNmgIQyINMEGEDxvpCOvppsmWzDkhVMAn15cQh7FwvpCTd+8aZBSTgrHx5XmOA1IAa4mLob4UwJrysTwFO20r2fnGKxBDEtGPnc6Tr8n9sR1m9JN5fX8HENWQs6PDOfpghW23CM/xn3vGCQSqKU7ziaus8OiCaBcwmNVAABcn2+960ZEEQDuJ8RrXMHGw2WD7/6mV8fALwamuMdaLqxwDWDPX64sIuf3NhHApyWZSl7StVfQTeulQRCBfU3iRZqhm6ZlbKONfGciicwiEgtuSsheeDwmIKqrGGpp/5adY8RhopqCBwuCnNtlU40Fxm882oyO3irTcPWTb56Ovz84C+imEWekx7yFroQ2pILEUgCQUgAF8pt9TE1VhdJpkcTIM1Bqi5ASBGBU3IDIdysKRwzz0jqE4YaI8rFknrtgo2cd0LAmlEPgp69vu35E2l+8cQAAOFymldwYBb5cn9BSfe2UlVBogZHZfAG/VmXdlttgjFSjApIYr93mM/JiDJI4F+3R0hZlnBo1GOmOvkPIIjAeck8lZRJIYoHJAOhbMJixtVM3SaL9w1vcmsRicmu45cIWGKXDyfzdU8IGN/EERDkonZZF5BO8OeGmYuIo4pMUz0k1rbdkkcQwuUgjidrzHwR7DANI5gj4ZRFAWbgmZJhZ/zPP7nCPxSKC1p+E91NLU5Vjp75aSZTQCxK3Lc62dg9I1SVauun0vOSQRCNc49ckunRT+S6h5cSbYixElqnkPd+suikANIO6adcB6LkxBdsHiRC6aWKzjzg/gM1GxBzDEUmcOE3kIh7LxuScrRhqI59XQKRiWUWgQElLoG1lZzdO2TJ/s0Hip+6fjb/n6KY/+7ofJLpIbYwSy9YapIU7Sn0S/ddLAUAsi8xs9imUgt3YtDWJIUXP/YxkM3FZkANRnjlzNNnI7LDx2oz0N9JpDZ1k1pF0UfFxE1WOM8fj1E1jSKI79sWbJkiU5EpYawaQolTjdYskErK91KZOZEnxMrf5AgYplVPDKJxaJJFHxeW8zkFScuhZtLa2zz8z7thJv0OGaTTjngy/G7NvuONcNH2OcBNg7pvU/uvOJSqKQSCJcl+wlNgwACjRMb0xXrBBJLeGP2uR41Td2JwkdNfPpFtnkHRgSLh6czQ/S+ekqoK2LCSSPq1l5JhbgJ65kgqk6OTKME9Jtpae03DfsMmt8hy1iKB8h5ApU0w41b4qqozNBVFNXSXX9s2uG4M2QRIFNEgpnLp9EmPHM++Z7je71ggvHkfopmEdqWs5NkOMhVh61tyxNkiUm4tFErcWTdwHiRdjObppqIYnZiX2p2NSiyorJKARSDBzmGZImAc7JpPfE4tdrP6oVFcCxJViXSTrxtDvreuBG4fL8XUg7iT+7BuPx98tkjjMMfLdqCAlMk7mmDqXc9VNY/0tx80+t/gnqU3pMWaekSCRQRIjzWTtuFTgbH5qnR9bD2FfYzLJoXIrq2QYq9ugaqtqv9YJ4ChRiwBNp5HEyBrk0r2+6gOmSP9gIUiieU8UScwdK4KAcZTMerohdmXU0v380Na7bkwWpShJru3aDlVVcnjh1yQSfRKTfW8ziYjQiTS/iyNfclxjzjVxL1dukMgFDbFWFmYO5WMBNjHWEiwB+dzwcpcEvvJIVv54i8avHWYC2ZBK2BHHCccAw35DqqKGCV4tIjgmgAhEaprMzCeqUs41U3MfE9dhAzA3ccGgL1U1Q900siea/aZ0LPhzJBJw7vGsUFR5/5XP9ZOL/fh6box7DA0i6I9j1624z5sbt2yqJJK4abvRJ1zvOmx2He4erwAAD9dxuuk248/EEjLusZaBUrgkG1NJKnktqVVRTZFEVhgviiRqahKForqnm16MbbsumX1OOWhZ4ZpzZD5j1LKSkxwPGszPEm001UuwqIAY+W5znF2LJPr93uT3sUdT5MF+87FZKG4eLPBwvfUcldh36/q+6GvF1d/MJpq6Bkl100IGOl+3RCQFlI5F7HhcTWKcXux+5mSOCeeHbVLsnxMis97456RlC8SDebKOpEtbLJ0L18JNkapJjNB4xrHD9/5ff8vn4y/8to/jC9/5HIDE+dfcW2pKpj4pVkISN7sON4dkEYUkdn1SgEws7Plp7/+ykxxFUpJrgn2PmEVS8jat+Vb0SRwFmGQepEMYqJuWg0vz09JNFZTYGCLLICJhkEIEpou6HlVvNZRYwJ5DJuFkx/jrFrsm+zRVUgVdmQAC0u2McuclRdMr1SQ2k7pJ81NNd+xYpWpMAme2JneuCJxWuCZM3jFrq4zzNQjK40KatpaCrg2AY6U6XR9n24ktmzrZAmPb9rg5Boktdl2HOycmSMwhiaZH4vSYVVVFNT/MsQzd1EUSbx1ZpXAgEySm9oB62t6GiQGA4FyOLTCIh6BeGBRxRBL3QeKFmIGa4xcgJb+de7hzSGI5SAkXuvKDHc2GER5JCm0rDEsqsJbu4VhtmzjMi7oKgkSr0gjEH1BZXJ6/sTJ0U+eBjQb3PZfFjKu/zXAiC87PXAQ4WbfHZk2VAUDoWANA2+Zpeqk6WTqLPHGaOGfX9i7kHWvAz+xyjqQ9JxZJJILLAJUtoSgyJrlBDWMXTY2vHNBEM79pIoFVNzXjnOMUrrUcL0Y31ar0ivV9j/WuHZ2Eza7DG482Xh1yaNtdlxWtkWPGAuB5dFMks8jxxBF3n4RrV9tx2WcjZqJzCEOnlW2lEF67Us+2cY4RFgqtrhlm5YmEztJFEjNBvX88Oy85DktbnCJSXJDiUgJ7k00rzDGoSQw+jx0nx6aQxIg/UyqniNUksiidi4DNSUBQzJUom4dnrnTBc0MHpU5SUuaePV7AwmJqGacqvdyzHZaK8GtJFVU3zX23VVMnRQnbrsfNwSdcbzu0XY87xyZpmAwSu3y/7lTfc2mBUVXVeP9JgjJXO7/LPDsxmirvlzh7h6YFhiCJEiQyYwq2DxJhbpAUkhJriAk4mZxMxiIepOicGAYRjAUb498KdIS+n2Y/S+OayHdjsnZNna5ta2pLNwWAGwf+Axr7bqJ2dedkhYfrnZfxjTkjbE3ihFZDqLgB00Vk13bFtgGAX8tIXe8EcjwPSeQCgFDKeaTgpoLE2BwJtCHmXPfgKUqj01rYnOw481Ov0uigjwokcVHXaiQxpBqJ5Tao2MYmv+a+Xoym6vYyzc0xpsrMJFdi6+uu6w3tfHASNm2H7/krP4Kv/Pf/Nv6HH38t+nm7Li1AJhaWD7hMhtI8p3THfD2K+/mAju4V1vJS92SEbqp93sZ7hDgW4DugrLppLHlKBenh+ScQvkVTj8EluybImi1rHnOcuACKvnG2RW3K47TJRZlnOMfS3pFKkpQc8pDNQweyseCGSZJUYVCq2RPtayWhQMChF49zHF4vzDE8l3yQGGcAaRBgnl0Abxy7bsX2qa6Q4Fo2dVS5WvZIl266bXvcOc4jicaXz/nKccBh2/YTNuGtwzKS2GXWlLkJbwD4hs9/CR9+5Zb5j1bdtN1Y9PECkMR9n0SUswExeLr0cMfQF7YmMVqQnh0j7/WP5f4tZu7NLw8WG5TOqbdsIgG3m8m/OQSGgF0ccnVL612L1aLGzcMlXn+0Rt9bHnmKEks5aDORRK2THG9dMv2eyeNpUbrIudwSNVmxutxSLcVcaffowtqVJcnDupmWXIxjdFNOgKYenUj5ioyT7CIbwHBvET2y4vLb6e8YC7aZwCGWgBjXuoIjGUMSGdQyyhLY+U7CZtfhn33qAQDgT/+/f9xDTccxbbpsYDxm7dPtNEiipnVDVIF4RJyzU0RTVx4FixZhcq7B6LQqE0dMC6RwHNuTMZyjGK2uGWTkmSBg4ST9eJaAn7xgEkdxVggfEMkwTSAVS0AwfTGj5QYFJon7XndsKUiJUWIZH8h9v/tazpraF0Hh9ht/bgDXcmMagOmeG60ydni9mXH2uYE3V23iQlPfPC2Vyj87y0W8JlFeE59wvWvRdj1ODhos6ipZk7iLBHuupUo3Nju7d8itcOsoQBITycxikBgkypl18o9/+xfZ/4wBH4kkdjvdmILtkURIkJSqSTTBXgijl3rOuNQfdwyTjYlmCHOLcQJZks9LjktkOoCycMr0u+lRUnfOi6bG4dIeVOimYSNw1za7DgeLGjcPFvj0/TUA2ycutWAxmb4Ly3R3hZqszHcr1ZKaz/fnqHUI3d9z2bcY3bFEU419tx48shHW0hU3qOHvvtgE7xBqVRrNvYzxWADZX9FBNgCDRjHy51FFtszYKJIon8dQQCNrSQlN17ILFuOxpn8TloAVrunG8/vf/4vXook7qUfJWUxdFiggnpXv2Inl1rzceSyWHNTTRCGLJE4l+Qtjwvtf1NYLx3Pl61k0JJyjWAlNl73PfQbYY7r0bpYlIN/NFaYq95bD+F4xLimMcW4yxn09Oa72653o1iVB4MaxBPz3ihWvW8BUsoFseY5AUAJArK3ToLR8H8f8C015Q1jLy4j3ucdj9l/A+KFdp7v/baLWT2Zq6zTpALjCxE8u1Q2vmhrraJBoPkeShGfbzux3TY0bh4sM3TS/n6a6FWzbDquFP+6W0E0zycysemvUL+fuZc80IjQh3XRfk3gxlruxRkcmuD9KmZxQxVA+g3Hk3WMxFLFcbRuTyY/J5OdmmQqkSot/DJFyM/nuuZnQTROO5MGixs3DBT77YD2MEwRymvmngo16Wm9ZqplJCdeUMte5WlIWARbTZD/dcSWVUjNumigR2nAxSJmJJHr3JLjNvnFQorbnnVZzPOvIcJS0yqOxuXMvjdu29lwy6qZhbz+xXE1crgcndW8p15Kmjjv/zLFifWgFEXCFa8Qx2LQdPvdoPRmTU6l2jxm//xlnK+Ikp85/NEjnnS33erPKoe53Yx3C0ElmUQNXFENDt07WfOeSVJH9jT2m0LtHWiXzjDb+fcnUMsZaYDD7fXhvsXVj4fF4KmEVDzYy48K11R2rqdWn610l4HbuSQqljlBpi/tNIsFeOp78OUTbSgmgFJJYTrD7QTqz54TJZBoRnBkAR+mmhUDd0E3TSKL4c0a4xrTKuXm4wMMk3TSPJKb20m2kNIgRrmGQxC5I5jPrpGejcA2BCu5bYFyO5WqlUo5MaZOKoWZUjUI1df7N68xiMB2XVUWN1B8xjky8lyODZNWRmsR4Jn+kmybaSwDGcVw1virq8YF9sKfIBtHMvYo4gxlhI3fuWiQlpHUAOgRYXWwfOR5TkxhLlJSQxDoyhgnSU60b2EyyLzZRHhNK1/MiIfb+0tYkAva8UDWJkeSKGZtObqX6VALIOjLRmlAik5yim+aet1wt9XpnNsZRuKbtcP90i/c8fwwA+Pl7Z5MxDN00pLwzzlYsSJGxqXMiL8cSflpxEVY51GWh0GITgSM53iLFhJ+t22O/1zjHwCcsIXyx2lU2MSP07hENJ+Yo19u2zigHlzFEitvvq+G98H7S66QSgQyfU3btMvek/9ouU5PrfmZYb1m6AlO6Y/l7AeY951X8HgPZwrFSFPTSPC0F1JxMJkkLTBFg5rolzz8RkAIuu4C7t6JlSIV9eLWIC9fYJKEVrhGRtxsHS9zPqJuWlKqjNfAR3Ylbh2VdjFyiJBY7MOj2xLoWQGXrk3LWLIF2r2564cbQtqY9wPKOU1PHeqQQ2ZhaX5Aeb8pOjJtLU41ljDpmg5pSVnYBIvWxd90GEGsKHg8SD5bNiDYAwMnKqqLO6ZMYW+iKNYljoOG/XgpuQhRLxgCkuEhwvWkk0ZkoU5MYX+zM8dJtQez7/DmWs5FADIEsL6xulpwXrgmzpqy4hR+QunPPjhvua9kYmUbdqbrofBbT/PSeATLYC8cxa0LM+WfppjEF9JBuerZt8WjT4vNfvgkA+OS9qcrpri23wAgDsO24/jDqmkGQ2KcVPXPPNhM4zKEoudRKGpEK1hIW7VmO93HvoCHlOdZVJNju9Uk4tpbLaAO4lNjyHKX0xBPlKfY7xPheMVPeQJ7/wJFn9in3eHJqysczFNBxnSTWf0D2/AiSWBCzAuzayiLpMTElav0PkytMkF7Hg3SekmmPxYyb1M6TyY5wD2D2HLvfmwvAUtCTojzFc+L3NzZj8/vpsqmjPXCnSKKhmy6bAUlM9UksJPRjAmuAef7CUoWwJjGeqE0nuFKsHG2MiG7HI4L1wiCJooi6DxIvxnKZwjGrOFkgzc9cFiF0fihxlyoVJJYXA7Uq6uwgJYLSUb2F6mJt2/f/xi/Fb/z4e/Al777jvZ4Urhk46mLHK4skRumfyvNvjp3PTkn9Zqxulblu7uLDOGlx2W6+t1O0UTpB9woFVzjlVv+eZOcYCgkwC6sXuBHnwxzP/NSrm1pna0QpCC952fjXnEESTVPe+AaVRBLPkQCajis7F009RftLz5vMI083Nc/z6482AIAPvc0EiZ+IBInbtsNykT+XyZpEok9iVLim5CBEzj9DuQ6plcy95QaXemc3HJc/lgRSu67T000DZ7fvkU2UxIRrxtrJknPdGHo3U9sfHk/6K5ZUqoH49e77cvI/PP96BDgI7gvHswnN3vtZWoMWEX+mtHaFaytb72r3APN/tm3AVM9B0ZdXef7r8LuRz/bY99lZ/wEuSPeQdOK6hclrZv13x01rErPDJig1o5y7bKpon0R5TQCA9a4d0b6bB+maxG2BTRLzXQE/WfttH3sFgFO6lPFBc4mSdFmQMkrsWz7Ym9Qk7ummF2JZ2lbEaQLsQ5p6cGKZN27R0quWpYRMgHJtIRDQTYnFLuT+yzxL3y2m0jjSLYYH7aVbh/jef+WjOFwGfRIjUP9m1w3qpvYBOhkEb+L0N6BEJIktIjSSOAlKS3TfWJDOLcbh8ToikJpfkzgNZo2yXfpYdfS7lbNocbojt7A2jU0MsEFieLySYp/Ywnl2NEiKT9PrKcQzlvAA8ihkPHFUnmeOplpag2J1ypxIzvRvQjeVjfpzD02Q+M67x1jUFV4bgkbXtoXEhRxzF73/y8+3O27M5Kf2jWiyo5wAkrGu80/f//UMummwJrCO5BhItb0KSQ+ZMuH6Hx0TWV/HwLTklA/nkkUeZQzgCNcQ5z+t5kwG6SECTOxTwHwEchqkFJ6bZurP7Lr88x1eN74mzvx0A7fS+QCme/ecmkQ6kTPShHXnf1KTSCZYwv1U7s2s5kETv7fYNcGipP4cknNM+K6lmsRNrCZxaIvhC9eYpIRBEjN9EgsJv5RSuDz3f/I7PoZ/+Ie+eTwPOeEafaJwhnBN1/L9DmtRN933SbxQyzlqYeZHTLjWqU0ghiQyi1Zd+04Tw5GX9T1EX4ACIhVx5Ln6o1j9HUd3bLtAAGWsics7uyFKB5hsk6ibip0Mv8dpBRz9JFZ7pFU3ZbJvKXGLeQqgZYcklpFnGqUvA/oVMIiEKHvL9T1RjxJJCjCqtICfbdXSTT1qGensyjiWagTEaXpFJLHWI4k5xeOcw5WiqZbXrela0hbkvnP1xuutjyS+9tAI1dw6XOBgEXcsGHXT0JFk6HbR71bI5OfqxClxkdBBI+nW2mAvKXdfOJarbqpB0pNS/pmxiwB9Z8eZsabmaU7dsL+W5MdE1ZyJ4HIS7A2v0wm/1r9ufAAwBBvjeSyMi7AZ2H1xpI0Or2sThT2ROAUwqdtjzr+lm8ocyUTOzAA4bCfCqCubcfHnNFsTGiS3WAq6/Flb72rUbKdJydy9lVrLNyPd1AQ5p1uTNFw0puVZtk9iwS+J+a6uv7Ba1Hjx5oE3BkgEib12D+aS1551GiRxMSCJF9cncR8kIu9Qpm6QEgXI3Iz+zc9uGjFkLxtszKWIjRubfc06kmmL9bpisq2xIGVXcNLsYjz923rbjX0SxU4cuulkjoQARAwRYTOmMbn7nEOeogTOpWTOCS4ZCfRUTWLWsY45yRQlWc6lfa0H6SQ7AX7bc9SyMChlg0tLQ+9phxXwaXrMuZfPjQlF5eaaq1POUdJm35OR4L7v8851MzpMOSfBPNuCHN46XGKVcCxKVCM5ZvT+V7IgRvS4tG8okVwZGzpoTC2dm2Bk27KEtZPWkS/fk3Vl1m8Nkh46abuunKRq6mmSiqWPLoc6zTl1w9IHlVGXjbEtuBYY/nrXKymZE7pjCYEMgxsWSUwkT5l9w6Kd3DUI97euJ2sSg8Sw5vyradp1OE6SK7r7RPwaRrzMPR6z54TggRbttK1LuOAy9LnarjxuESlBAmxN4uGiwbKp8GhADpu6wslBWt3U9EnMB84TX75wLmP+FmCp8slStQjAxPZJ9A+0K/PWx8mugHazDxIv2nIB3yKy+ANlZ9I4Ff5r7KIVpYgRDnkMSSwhgkCcblqqW5pT71dHzmWpJi6rbtpO6abHB45wzZya0Ahq0xMJAfNd/DFmHvljybzcOfK0Ufsa+93MuKmTzKibhs4dlUXu/QWyvEGZn7PVTZ3eZiUqmjdPB4Hh2g1Yx7UlnlExl8p2HiSxuLHNXhPi9yT7bGuypjGavJhcx6NBiOre4834/4NFM9JRXdu26X63YtOaRPPdilSqOqGKmvh+ucQRk8wJnUFauENLPwwShWy/PWBA6bpOVe8XliowdWqxJChLHzWtqHS9HEPk0qwlbHJLl1yR6WhpwhO0Ddx1C+nkLJK4qKe9Wkv121MqLbg5TgK3fGmDmAlk7f8Zuu+0bo9MroyBFLyfpesWqptqkcSwdUbeB50KMDFzDBOnmrUk1k6t5DvFatIlSFwtahwsmjFIXDaVSRIO5RqhGb8k064skuwo9nx29uzYOJ0uQJmVMDFNTeLiENitsa9JvGDrOgbJUi6QESSRrVGIIlJK2iiz2J1HuCbWWHoO3ZF90JLqposazx1ZJPF4KTWJ0zHMHOOCN/kFUqYeVYTMLZARJ1mFCAbHO49wDRMEh82std9tTk2i1GRpnWQt3VSuF60k6dzLsllpGnVvWwdJVCpyAvzGFkNfcrOc2zcsHlwWnpuISq+YfL/DZY2qwliDslrUWSRxVcgM1NW0JrFUxwhME2Ml+qJ1/u1rMQn16LHqadDA3MtucGkDt8KYibqp/aySLYfAQVPvF5YqjEgig0hFgkRWuIZ9P+DWDQ9rSSFJCMxf72J0d0DfzohGiYK9iq1JTKl+a8owtCid+wwwNYlVFVm3CmPka09rCwvjgvPI+GnAFEksreNiY8CnUEWVP1m6qbxOJo6C/orMOQkFt0rjYnsbYIPEZVPjYFGP639Tm/8DcbXRbaFXbpgkBOyciz2fJ+y5/JoSUoRljJ5uuuNrCxeHwO50HyRetOX6/aRqEktOcizzZpym/FymdFPuAZ2MG35SEsnd9HhawRVVCwZnnrsxk5avSYwtJOtdh9WiGXunAZbOF6Ob9uA27XCcoA0pqypDvVIH6UIH8egImobz/vFKS08USRzu0VzrgFRNUL4BuX2fWA+F8xM4rcy66m44LbkYh5t9Kfkzjhs3+250DFVUtk6BJEYoMqWNLSqcIn8jEk6TetfsDBPBZeFetj0jp8+2fM6yqXG4aHD/1Gx6BwvjJKyjNYnlgG8RJO/arqPpxV4AIEFH4gvG11Zkx7hjw9pCVnF3ikhxwY0WyQLMWrtrlUhikMnX1CTGgsRSDepSWmAUnhfXmrpCVZlnmxUOqocx7r3FjgMcSqC8XtoDErTR4rigvpxdg0K6NUNTnYrCkHMM0W1ijIzz1hLm/CfnqBvHBESAEzi0/nUr19ba/cY/Xnpc6JdohYNcum/pWMA04GPOpatI7tpmZ9f/g0WNx5t2+H/l1PVH9oAuX3IQiuuYMflrkPJBiwBHJLnOJFwnpqlJXBwazvpuUP/e003PbyLTm75B4lmLUk1Wqo5IC9nTD2hAr2QRQQCT4JLeoJQZknCBBKZ9EkMrqps2Naqqwu/9xZ+Hr331BW9ciAiyKN2kJ2bP1aSoabvJ8885dqEDqg3AzO8dqqqAeEZqx4qKr7EghaEthlSX4PWcuQh3RyKJE0pUIfkjNjZY71xUozhsDGIMkshRjYyyoHJjSyAbQGFNqKbXjXm246qopSbp5me0ubFzbo5XDd48NX2xlk0GSew6LBeMSqObpCq3IAGmzJCSKmdVmaAhpm7KtEUYa2s7zrED/GSCFtmYjCOQm2VTYdv1dGsDeU9U3TSLiPgOsjuuuFYO11vulxXJ9RLnVUNTbapqsieWRoWlIiySGD5v9PUO9g45p0wAEFMFzp3O6RxlfGkPhjdHhiUjc5zQ3UuCPMEerH1uxrq9Li9kGI6bIInKcXJOc6iZjJtbE6oV5Zn0+CaenRhzC3DpphUOlo2DJFaWjbOL7BuFPokx5LJlfdAIUGQ+M36TjT6C0geaWNdyzgUALA/Nz80j8/MCgsTzf8ITbmxtj5ZumqJkMjUKWtl6wNxDUYckS5P0HWQ5nqZoe2B3DgW5+Tk2zTTgpouGE0jiwdJ85nd/06uTcdq+bWZcnFbABZe665YSHCovxpiMo5DcyPG2hJO8DDYo+QxGuEZDPwSm11uDbKyaGtvBGWRpHeGG2BYCm3Dc1kFSOLqpzS6eB0ksbmzRe2T4G0EBdQ9nkivZKU5obPIZVC115Nl2z83RqhmFa1YZJHHbduO9mrJYTWJJOAiYridUM+sqdFpRHDMea0TSFUFKZFx53wiSMuIQkgmPnaccWh6TVjct90mM7Ysl5HhZG7rpGCQWkgj2mOF3Y8+//T+TlAyTOTzabH7aZBp3vVO9C5m66LbVXbeUngB9T7p7ALH+T4IUct8G/PIGQKHCPZw/tpdpVVU+40XOI4GIA25wyQf3YQJIjW4r0FV3KWeOt2jiSGJIN328GWoS6xr94HPG+iuWxMuM6KL/mhWQ44M9wK2LTh/L/XzzGVzCw7Nup0MSAWD9cJjEHkk8t5U2AZvBmdYX5tGXOEWMojtGgg1GtSzmkGiRRAOHl+fozg0QKqcuiwmUM/JhzZhr612bzAzHKXpcpnUyruMyfVqqRbyXmiLTpwzAwkJ2+b2IZEVoEyUkMVW0zd5bE0l+YmGVgnYznqS/Bchl23HjlhHaqKYGctf1RWVfsVx/0dTGFkUECVTqvIq7muudo5K7SOnR0tZVrDJI4q5QjwJgIuXPIonh880ED6EKNFMTCviUqBGlViIpdEA6cZJBzREYHDxP3ZR43mrjSPa9//3yKriR9Yd9dgZK7FobJI6qqMO86fPvK0CzNaFTJLEwbkKTxDBOFxTRbIa69mvZCfrueamc4+FIxzrmA5XPh32ve8wy48X8tME2X2vmAghsPe+4VgYtT5ha2ZCSzN5barpppa8bLtUkLpoaB8sGj9bt+P6VU9cfWrFPYjVNSpaStSnhGhvgF4LLCQiTnF7cNMI1yyPzczMEiUy2r2D7ILHg4Lm0snBcqUdNLEhhsjgxRUIG6lejBnNpi0lHMj9Hq9Dl1gTJAxq/FatgMXZNhGtiVkdoDFyfyviDXQxuJlQjmX/+HgGmjnV5g0qMU4pUAINkdKmOKyrlTPbI6nX3VmrTZvbf5dATTebHqJuG341VH/P7xJU3w3Ccq7hYCmzqukLf+/cku7GFNaEAR4HWKu7OSXikBAHceS/qGscrGyQuB7W7uLop0wIjEKBpSYGjFAJWeL67yPmnxLOGN2uUc92glK7/Cu4Ttk8cYAL2jYukk+fRzM/8nxFvit2TbGJmMVBi1UFibQJgpkXHOM8qLPnQB21skBKeE2Zvc8dNkKxikBgEAEwz92COsu2XE4XDMZx7mXGsw4CDqqWOoZYoP29S7+cmO5j7H/DromnhGqnDG1VRh/kT/uQ0kZCfX/iM8my2hDJ/ZtyirpMCNIBhAhws6lHddNFUWC7MByYThVlWQj0BfMZESeLExNYfoLwHhH0qZcysFhga4RoAOL1nfkrQeA7bB4klZysoGLbjylzrMEikgpQAsufpJ/EHlMnk+7LFvNz9dByXDXPHsbVVsYBPWmCkxk2Ea4ggfW69ZRiUMnSvOW0DgDgFl0JJI05523VEn74pTdggiYxogX1NEwBPnSbSad3JJqpTN/UaZxPHcmsL2Qy5GWePx6qbxlTSSghASCME5lOg+wJrIjWuLVxvGklcTZHEON20LwaJIb2JVjetQ+Ea/zukxvhrOR+4tcH9T1GgnaDU1jKSQYoEpaTzCVgkUXP/N0GiiqFch88owCFZwCBc03bjunDA1iQ2tY8kMmtJ4yOJc8TcaHXT4Hlj9rbY8WjKe+DMU/0twzkOr9MUUC9IJJIkVQV3y+9RftbC2uExkCoezUf8u557ZgAfSezI8x+ygDStM6woEvecjijpDJQ6VnJTKsuKrf9usO4FiXXtJWhDM4nC9PHcXrLjsQpreWz9AcprUMxPY5/TyQS1dNPT1/3/n8P2QWKBKpOqSSwhNym6qRayZ6XMp1SL8oKQ6klXprbGxhF0x0jA3RY2m5Qj2XZGdS7lFNaBU2fmOLffW3kxriufEstsNnHUhs/0hSq42qwpwNHtbG8/HwHOixaYn+ECOTezyyyry0WNjUPH4WT8LbIn81XRTdte6VjbDY510GL3JJvFvJh2OoyUfDzhUULawjFicj0WdYXjld0gV0ONSjyLnHcQAN+xM8fm1E1DKiFD06tSaznhbIVOPI2kBMFG+d7y58buN+azB+XQwh7qH89f85jzGFu3WCdZAnVBnqWGvWQGSXRqEpnzP2GTKGrihmFsUixWt8fcI2ESjqEEAkOwEQnSS3TrcI6MTcTEuGGoK31yF4CniqpB0kPknvX93bpoFkl0a+ABJ5lDjJNjaO+taU1idtjk/mfWBSMQNV3L3f3tYNHg0cbSTcXni9Uk7rp8ojCmVVFqw5MUrimg6bHgkmUqedbtuAUZsMI1p28M/z8/krgXrhFHLXGDxHr7yf+LGZIokpWfT0gbZR2LKoFA5kal6KZ09jOYZ5lGMh23LdSWxGhsAFNLCsT6VNIonZJuF15vq2TIOMn2NYqSWQ/ZT/e6QYGSukEiQbeLO2kFJDGCZPXgnaY56qZzkMQY3ZRCBEcRJsdJpmiqNrhk64HCRsru76Va3gn9in1GldctrIFk+lumnm133k1jaxKXTYW6rrJI4qKEJNbnqEn0kkDE8x2yOxR0u4lwEzFHV5l5VP9UIsBsjRQwqJu2PYWqlo6XuwbR/rpkTaI8b6eDk7lqONqWIM6aeuMwMckkTuVjJ20KCseati7he8kCDpJIJhNMLe+0TCQb3AdzlMWcUQp3j8EqVU90AToy2HNowhrmSl3Z92vopi4qK8G9tsc0Kxblons0bXQM0hGMK/slMR90Tk2im7xwEzvLphrnsQ0VaGCC6Fz5RpgkdI9VLDlL+KClFhjn7pOoqUlcDEHhnm56cVZEElNBYoGCFUcSORpJ791U5meZSjhFbQBdzYAcT5tpYselONpABklMZXEK4xZ1HT3/JUv1e9Orm5qfeSdZ3us78hRqEM1aF8YkkcSCQuCMPonx88jRps17A6eJOCerRWUzrQRFEnBpo3bzZTZ726vJ0u2ooLSeBpdFtCdG5SxsbDF1WYbqkhKumdvfsqT+GR5LTO61ZV2PdFPJEJuaRD9I7PvetMAoOqD1pLazVBNqxgVICoEeh+wONuHhPtsa4ZRFXXk1uaX5AdO1XHUvN34PQkrddIIklo9XZ/YNRrgGwIhEqNRNu14VpIc9OOckTu2+rR1XZpK44yTIppMJtd8aignSk/V+bJAiARi5Jsdq4ph9w1WG16hpu883O0dguE+c869JZoY0VaZUQUsbTSngUsr80Wc0P79YTaK7N7q6Ey6SGBWuKZQcLIJ7BCi34UkL1wwKs4Xg0lUFZpM5ns2qSXxj+P8+SDy3sbziCR+50I8llFoH+D5xUUSqtNlEgobSuLktGJJ1SzODFPdvyTGJBzvnJIdrD+Mkx1FSjtYRng8zj8yYxPlnaVthc+/S4iPF9iFtq9xraaqKuuu6rAMaTyTokaxe4SS7SCJzrQFn8x2da25cTLhG0wJj2/ZFFH2cYwLJdf8Wmr2P7WuaRII2cRFeb6a5dIyiKuYGASJcIw6+oZu2k/f3fZp+LmaETMJ+n0RNYhJJSY9JCTmUbhMRKur7XhWALRcR1UQlkmgVENmgtHe+V3mMvGdEKYh5yjMaozuyVHmR0NcJ19hEDvNsu4gUIPR6LikzDVKUSRliDDBFRUqtdMZxjX//M3TmaQLCvF4+J/4xmAQ0ME3KuJ9VGhdSW7ng0j7f51E3VSUXg+BeJ1yjDdJ1idqQTcWVPNUTUTbAZ4odLBzhsqa2e2iiDVKpvjmpUprYB9LCNeanpsf3/D6JrLqpEyRWNdAslQeb2jMfJO5IXnEUScw5yZEFixVACSkrALGw1vGiYW39kaGkcdlnbXATU8lsO/NQp445kcOWcQUHO1RjM5+haK4bOOTa4F6GU+qOQUCqraMAFEFRIGXOZDJjdMfS5hZPJCjkt2cgia66qaGDl8fId9t6GWF+nNsCgHKsHZoq27tNJLbjSGJqYxveF9yTTCsd8/n2NQoBDsYxCEyKyg/YdXlRW7rpqrFBYogkWvptWd00PI+zWmAQmfwJksgGAM6zoxGFCe9/mXf2WME10CAiy6G9BItaAlOFawZJjDFQ2FouSRqIhD7fAqP26KaUcE0drskKoa4wkFIGidLMvWRh7za2D2Toz2iu20jlpHs5zv9uXe80uGcTrs7e3RN+kztPlzZNI4mOwJFZf8r3ZKjnMPZpJfyZ8LvRdbITdLs8Lt4rupwAmvQU7+zYCZK4iNck9n0/tMDI9Ems0khialgKKCr1qowlt1j/zrOuBeoZSOLiiHOcCvbMB4mljFistxxQ5snHmoQyN0hT24cZ0C2sbRA0AJxwil9/xKGWQIASEfz/tEpmLtg2P2NBOpDng4foIxuku58v4yjZ+ugCmR4TKqvZY2UPNR5PiwADZlMJa3uYRsrmvT6SkuX+j9k3+xpV2xbJkAMkkrjwaxIZx842N3aDS84hBwIkkcoID0Fp248OfarXp1i2v2ghi+nXrTKtLDA5FodA+uMoummCJWA+p0NVmftI6KbyfumH6a6TtvlyOeGhWX/GccF6ziB8TSLhx65BRl1zZpDIOv8hskT0hBWbU7c3qYkb72NlCwy6T6L5u6gjlp61cdyAJGpYAuG91fUcjRNwAikJUgrHClEK1vmc1LaR1y7s1cqMC9cSNgCe3pN8mxr3OOw5cRPszLol5l7vEmjgzTNAEpnYMl2TWL6/bLBtXmPZPPY8cj5oyN6Se7oEppj3Bv6dU+d86PTJXdRun8R4sJcrOYiVgVkRrIQIYmQvdedcKpUKhWvUSGKvCBKlBvH0DYsqntOe+SCRpTvG5G/zfPx6clMxjvwEkRof7HL22a9/KTsX8fojvSMv40rfLUqbKwQpSSS3hKQEWS0zR4UgQEAbYprdxoQt1NetJ6kuVYDSQV9HAXB0uzlIovxJm0Wzyq0yhtugAOMkS3axpKzpmvREs9lZLmgAMDjJ/txLcwRMcM4iibEWGCV1x7hwDU9jmyruktnnCW2OGBNDEh2ET+im8l0OFoai5DoJY1+tonCNGWud5Dw9yY6LI4m581lVfsJPQ9uS98sh2TpZQWCZ+QFxBJgW0hvo3ZZarA9SKETKQe3FWCdZqGoPzrYANEjiPOEadX/doC6dTYrZ2m1nPJlcBKZBIpMo9M4/MS4mZgXom7mzAVh4LjXnJAyImJ2jqW1tISuuA/hrSVtAvtxjAZg83wydPAwsyyKI8I7BJrdC9pZNnqbHxHpnm2MLSgecOC2QFk26BcbIPlGqm5ZooznxSgDJFmLhXsqIuUVtTk1i315IPSKwDxKLNRG5ICUvyjANLBknLaR10FmcOq6kx2Typw5h+VjhOGqO1XRBKGXyY2ibjAPyNVkTdVnoi7bl92Kj+iqk7crr5azplLPObIjTeid2XEj3LaIvEbrjroC4xVAixmmqhvPsUobMH8rf7WChVzcFBIFx6r+0SCJJ/QF82pAEtCXHdUS3HSdtV6glitVDMLStKE2YQCCnIhX+PPJjpn9zr9+NA1NXETZEd+lGY8uM4r3sr0GMui9ggkvXKWHQ4yS7Q3ENbLBXnKKhfw7oI4tuj8kced4K+5p/PBNIyffSIInW2SX67cWSiwQCCQA3Dkwtz+uPTZB4oKpJ1AnXxBJ+jCo5oEuuAPF9ii03AGJIop6mXRoXo40CRMI1TFyQa3kVrl3E+QeGhOvoyA+v0S1gJADj7n/AnDMZtyOftzG5GF43Jnkdnn8S3Q73YMYv9ND+Tsbpnm3AgjBVVeH4wNbjLerKqev3Nw6pNc/5MzEkke05PAGKCtcgXOs0CT/PNDWJbl/EPZJ4MVYqAE5RojoCSYzXJObn09RBQ1g2i5MILnPD5rZgSDdK5xw0TyWt68p1RFWEIlCoJa0rK/4gpqoRmYGuRs9//nATxJOlyEyPp6+jAC6vJjGGUuvuLbvRm8/LDgPg0+0MIkJmdocaEU39kfRXdIU7mOsmTup669QkEm0bgBBJ5JJbk36HSqoXQCa3gjlaByEzRjLWEbrptrW1Os/fWAGwaJCgQ+utFa/ZjHRTEhV3MvKMuqm5R2JB+sXXJNpaca6uR2xMXHRdMYkwOZaD2vAIfO2JuzCPW1iXzvR7GwOb3l+3zLj88SRIfOPRBoCGbmqUW0vJSNdcGiFA7vfBescyh2K12xSTJFjLWQGUMOHBnP/JmkD6MvJn755UJCDcgJs5J/E2EdyaMNYIEgnQcVxdeX152XsLsEkVFkl0a/BYsacwwaipZQz3DSB/b8V0Ksz/7bgbB433fkkSTurSiTUv6ksWnvFkCwwCqABcSji/TnqmqUlcHlnU8QLaXwD7ILH4sC2Ch9Mdl0dSpjc+U9tWV3HIvohk1QnBm5yTFqk/4lRKp+OY4MZuUEFtG+HITCgChQUvRYmdQ6WlEeAAkTVzzw6L1C2RtYWTBZl1EupJsMHWJLbhdStk7IAQXVUo4I4Lq3mdrUnseoyOq4ZuunUQEa0qKkt9AzDWV5xtWzqwqSPnf44qMIUIJino3Dhb21M+J6K2G6Obuk3uXxiCRHlbmFUHrIPAouKuSiClblpXHr11dBAKdbkhSwMo319uUkBT7+r24KRVMidBii654iLwnLhLiIiUe4VG62RJBOxkcDBfe7TBoq5U380TrrkkdkfY7kFLSbbIfdm38McFrVKIWl41khgGsiTjItw7WHR7ci/PSLhGlqKkuTWJnWK/cZMJdE308J5ta6+3fFZ2XDNVPGYEaNz3s+tWGIAx+2IKSXRp78crH0lcJemmwibJCNfU0zKk2SVnhfMZe0aBGXRTTU1iVQHHd83ve7rpxRibkQ9lc7suv9iFzjhAqjvWYbDB3Vih4A2ImsQ43bRXy3aP4wrfLdUUmWnkOy0aJmuyAgouvfkGgRQT3IQBEcAEl3rURo43RRKLw0zyIqAtzkcSyw5CGDhrldU0NSKWAmpqufgakToI9ogxQnnp9OIiTV3hbNeOSGKJAmefG/taad2KCtcoEjlzE0Bax8KlbLm26/ox6Hn+5MAfM7y+cTLJWzLgXgZ0UyZJIp/rI/Dl4CbJ7igcy1WP1gQptudnRyF04bEAHrUBDJq+6+apm4Y1ifl2UnG6e2kc4COJbD2ifK6pUzb/Z2sSQ+GaMnI/vDd4Bth10qVJUkhusJZoWiloaxKnwQYX2EyFU/jzD/h1msyd7Auu6J43CUw05Q1+TWJHjQtLPlh1X7d8SUNRBSwSqCt5sv9nEh4x3wIQv9B85xMXSaydmsQASRSF8lyiMBRgAlAUwUoK1yiBCk0S2jNNTSIAHL9gfu7pphdjpWxHiTOdsngLBi4bE23Knh2VQbJyQWKCEsiiPbvJOG7xmQQbxT59056HvLqjfc0gKbogBeCoiyEdxyK5xLjgWOzG5tOEuWzrtAVGV6zriSVKTE1iZn4RJJH5bmGdmoxmkUTABA+mb2RxCIAh29rqHHKhm3q91Egn4XBR42zLt8CI1fKWarJSSDqTpJL3qsYFTivvWExpPDLvEUm86QeJqwiSuCXon0CcbsdS2bZeDSThJNfhMzq8TqJ7rnANRYF2ajU16odyLPOTd2KWC4MksvexezxNqw75k79v5BtZi51ITaI2SJQWGJrEUV1NkHR6vVM+NxO0jQhIveNJkoRFpAKUtCT/DzgB8DCMFU6RqbjUdWZpbYJxTHmDzDNsQaJHIGeqm/YclXkx47mRv7sqscyY8fwHCT+GBQdMkeNSWZZ7LDGXvXLiIIlNbVtgTNRNBUnM7AFu38hxXGGesSStOy6JJCaSJKSbYE1TkwgAx8+bn3sk8WKMpptG+MjZ/i/nqEn0nSZ2YdUL3sQdQn2PJvkMdmMLM8Ilx66qpotIub+l+TlFssg5KtG9qvID2V6x2YfI8TxqE78hhrShothHpHVJCUmUOYbnkd1oRqepK2cjxVaCMA1Oskrd1EEEKWrfwkFthq/IHu9w2Xh0U1bd1K/lLSS3xqDNvsYmqQBMEhDsmhA2Sdeq+4q564Krbgc4KK4btHVyLvPHWzpoG2CcZQ5JjPeJy7duSKibFul2GObWqxyLlUM3ZWicwPR6sz3pAFMbunbuY0YUZoIkEsG9tKnpouefCxI3bUfXI8rn+vWWxJpcTWmLPN1UNy7cp3oyuRgiN+3oWJeP56GkogjJlBwEa/kcNgm7JwIucsMGl/qG84AVbpJj0khi4yOJbA9OOQ7gMCcUgkOsCFN4T9K+zCRR6H9ezFJIons+TxzhmuNVMyKFYZ/EMVGYuycj+418z9QaFCv3AOz9ybbP0yQg/APteLopYOmmeyTxYoylm8ZurJJwRzxI5IKNfsamEat/yQ2LI4m8kqG2/iLaAoNYXKeBs/tgx8fGhVP4GpFwjuUFMkTN/M/LHS+kBHK00crbDM1nlceFyQu31UByTDNdJKlaxmpab1maY1inpqFouKqXuk3b0OY0tYVujUhPOv9iJkjsRrpMiSKZquU1c0/c/xEaG3P+x2zwJEmSHxcmZeSwDN0xFiS61y8MNGMS6Fsii+zOx6VtcUhiPUmSAIWaxGqaJJHXc+auQSxFDEjQTVm6o4M2sM/N0bLB2a7D2SAgdLAsOzKLAAUenzmCTeIHKdyzesNxMDVI4sGixnqn64HqJuDYNTlFry9FfOE+xV632P1v5l4+/3Po1u6x2DUh9C/Y7ybfwfWdKHVTx79gewnKPEcBrJ5D+8242gsuKSQxaDq/a81aXrxuHt3UvpazEDxg65tj/S1L40JkW8xl6h07ScK7J6tJok9M7sncfhrex2Zc+RmP0VR3he8X1lLLTypG/LH/CvjeF4FP/yjQdzok8ei2+Xn4HD8mY1cWJFZV9eeqqvpkVVX3q6r6Z1VV/Vbnb99UVdWPVVX1uKqqH6yq6j3O3w6qqvqzw7hPVVX1e4LPTY5lrLQJp2oSSw93qIYHkCjdmMUZxow3YnZYUklPKz/cQ4M2+JnFMtowpRZs23ImP5b9YYuNp+qO2UNFA9lSQkCOp0Vy4+PIja2al6FyxwF8kA4EQiFdmYIbUglVAXCwQTHj3FoFlbppbWhz2tpCAB5NlUUSD5a1qUlsTcN4VjgoRvdS1eQS60+Kbjq3llTPnDAWJi/+3G/5Cvz13/m1AOBIoLvrSDloc/8u76drEusKfuseQnAlwe4oHc293poWDC4NixYJCa6bpin44dIknB6tTZDIIHXJZu4U4jwVbmKenaMheNUEiUerBU63rTpIn6Ao9LNt/k9TkkOHXIm2WVl+7jyGyUXmvKSDhvwcJwEwuZbHKO/MreyKwEl/aYaVI8lFAINwTflYgFlLXJVSTb2xUCq3hCq8mWM1ScjQa4L4oMrklte7E/nrnUQSHa0EN9FTVUZ8yuzZM9RN62npEtOGJ6w3BhwkMXHhQ1VmRszNHnAJtBtgezbUJCpCtXs/Y36+52v4MbmpXMincPbvA3hv3/e3AHwbgH+vqqovrarqBQB/CcAfBnAXwA8B+AFn3B8F8CqA9wD4BgC/v6qqbwUAYmzRShnhmIMm47J8/Ehgo1EODeknTAF82ABe5pEek3II83OM1ZsxCOScVgpyvLT8cKEmS+nspmu5ygvkHMGh8D7pe66ZdYxGwuxRYVBqgnRSOMUTLigH9xOUFNyG6I6T0RTdNEQSSWdXREk0SGJTm/6dWgQScGh6O0OBY6mcGuGIFJJeDFBiCSAmuRU8N7TgVopu2vqCDl/z6gv4grffAjB1mMzv5jPKwjWBAETLq5uqm4nX89RN3XPJ9LsVW47otr0nS8/2xLFWIImi1Pvm6dCaZMnXJI59KklE0Ih92P+PAQcxV6Gr3T5aFt8rdrRscLppnWCbWLdia3IxIDI/tQhkWCfFXrdwX5wjgOLOV4ckGh9BvZaQa3l4vB5knWblsnLMa1zg5iCJiufGXUt2Hd+CR94PmHVrSV7vMdgm2RbhPckr7g7jggRvviZxurfJZ8j1dPskii2b2hMuAzjxsiZI9rnHLt3LSVVUEknUJPNHqujuVF+T+Pm/1Pz8wDfyYzJ2ZUFi3/c/2vf9Wv47/PsAgF8F4Ef7vv+Lfd+fwQSFH6uq6kPDe38TgO/t+/6Nvu//CYDvB/Cbh7+VxhatBInH6rFkXAmeDm9GBiUKG8Kep7atNC7e71CxiLsoETHHlJT/nD6JtiYxcawgQw6QNXHRwJlERIJjufPIjZtTk+gGpRq0IdoCg6B6AfrgvpkEzizaOS2216B7p5sWXc83zm6GrKQWEVw2NTZtp0IgAYPAnG07rHedSuwj3qcsn9xqg3uSpQxNadr5OcbUFt3XUxaj/wB5GqhcZ7cmhUH23L+7AhAc3aueIOml403YHSNKkT+WFySOjlZxih4N19II82PChF/X88mOSZA4oyaRrYmrax9JZIJ0Memz9s47x8X3ih2taoMkahJHFdTBxpTapxtnBWhYmnxQJ8UG6Y3vzzB061jiSKOA6yJgGrqpTJOtSXRVObUJ153z3dj1369J1LXAsMktEkmsa48SC+jpplqa/GTvzvnJiT6Jbiue4wiNPUwaAQ67oFACELjl1L0cO14pUTKtSeR8eTN4EJ3ZnuprEr/8O4E/9Gngxov8mIxdaU1iVVX/x6qqHgP4MQCfBPBfA/gIgB+W9/R9/wjAjwP4SFVVdwC83f378PtHht+TY9k50YhUGCQWKBACa4fCBUywIe81P83rTLFxmP0HkG1nUQeZH4BDBGMohaYmMQw2GMpQ+ICWio2jgSxz/qOBc3lzSwXppfUg7D/V9dwGtWhcJT3zGkfl9K8bU5MlwhFz+ltO1E2pOdrrrakJkoDrwdkOAIdsAIMAQdurziMwUBDb3tZ6sM71wgjXbEkxjdgaVFy3ks8od6xpkkSX/WepZakgse36ZEbY7Qdo58gFDcswI9+V1ZXlc2PIZV5JT8/uMHOcqpQyiEiMbkohMM7a1ZLPKICRxilBouZenjRzZ/r0KZIkrr04qOO+8w6v9ne0bNB2Pc62ZRVPscahZNJ068CxpinJwT7FCg4lzz/xfEeFs1R0UxKhG6n8QuVkz7/56VJ+2RKMSQ08mZRxrzevblp76yT7jAL2vG+7PtvqQcwFK+ZS0NmSpzAxz6x3Yd9UMTcxIPfRb/rK99hxzUxEsPZ9QvfYpXs51isdyAjeVP7nq/okLt0gUYkkVtWFidYAgOLI57e+7/+Nqqq+G8BXAvh6AGsANwB8NnjrmwBuDn+T/4d/Q2GsZ1VVfSeA7wSAd7/73ePrpYxrCg4vUSBcp0kyFEaWv7AYT/jg5KZRT5urA5xwzdxeanNVUX2VunKfoKoKe0Aq1B2DAKycocVkXEtct5gAjft56eMF1w0Kiowy0wf4GxTAIymhcAQTXIaBM4PkAsOmHWQjmY30cBEiG1z2bTH0e2MoVN64xvTJ0kpbHy5rPFhvDd1UgyRGkKwkkl4bOqz6GU0kSTTol4xxX09ZSNMWY5DEWEuK8tol2V2duqlb2+OOLyEp7hxZZ8sNgjXBnkc3VdzLrsCUpim4iySuFmXaNOBk11v/+eaQxGmShJnrO24f4R/iDTx/46D4XrGjQXb/4XpLzQ8wDqha7CN43myiitynnHVShUg5SHpVEbWTle+UU1TCyXfjSilCaiWT3AKmyWtVUjIM0snAzWUkHBSUlcUWtV4V1bZcGsYR/Y2BeE0isyab95v/s+h2KlGYe0ZjGhDAdP3/qT/+yybjJjWCBMVe/B9XsZu5l6P9FQt7cKjKrPHTvCCxb3V9Ei/YrlzdtO/7tu/7/w7AOwH8dgAPAdwK3nYLwIPhbwj+Ln9DYWx43D/d9/2X9X3/ZS++aGHYovztcD0nN0iBApGiZJbuD/m7y6s3r5cX8VAkBMgv/sn6u/wUkzL5pTXrXEji5AHN05RC6gmg+27hudQGRHNrsjQUmTk0BpcSBRjUganJWtaVV5PIiPnEezkSc6yryUbDUGlFBe2NxxsAPN1UNlJtbeGyqbDterrWRkzUTTctGSRGEh5MfUns3iqyBIKaaDNOkQAKGBDMuLDWA8gHb6H4jHl/7/0tZTaQskgK61yHfULl9ZTVVUpxujBHJwhmHTTAIom7tqeDdACewJSmtupoZY735ulWRe0GIuqmhWOG518TBH/8/aZv2Es3FUHiEAA/HER52Ho/G9iY19hgb267Aa3gUB2ef0WS0GVGsUi6zE2OpelBu1XW+4VrEJPwBnwWlmVglc1ti6NTN7WsBPa7SdJP/J4t0d8YmNZNAnyi3KrEii9TnqN5P+hxsR7AAAfCtAFwY4GD9PFCEAZg7+Up44Wp+zbJFb2fhoVbk6ikm16wXSmSGDn2BwD8KEzdIQCgqqoTeb3v+zeqqvokgI8B+G+Gt3xsGIPcWHYSpRurqqqBEhjexCUYferYqVA65Y1VBQ45My5Wf8fMMYa2zaGkAWYjOFzqAimgTC2I9UnUOLtaml4YELHOXdhwm+4J5TigbNYasKiZGIukxJDEcnCPgG7Kop3zUFIJEu9JkEjSTWUj1dYWmnoPnUgO4PRJ3J2Dbtr7f4tZHSK5IJ7RuTTVYJyulnr6+i6TKZdz5t3HJN10EQjXaGoStcIdMeEm83rhWI6TXMpW++MkAO6KTAvXwj5xdG2tg9xrEjKAW5PYj3PIzjG4l8W5ZhIzv+YXvgvvunuMr/rA89QcARsAPxyo6yxLowvufzopGQQprCqqJ+6iQBI7ZeDmIj5uTV3uvowFslRN4oikd+NcqXr7CHWXuZXryu4zGgVKt5WFRt10tajHeupN2+HGIeeGL2qTlAQG4RpK8Kb27hEz73JyF/DXciYJKh8b+iVZhC5Rk1jW/KinSOL4/XJI4vTzx7Vc2V+RqfsOE3DADCSxa9/SIPFKkMSqql6qqurXVlV1o6qqpqqqbwHw6wD8LQB/GcBHq6r69qqqDgH8OwD+p77vf2wY/p8B+J6qqu4MgjS/DcD/ZfhbaWzRGMcwJn9rbrL056ZaKTBOEwDHSeZurJhDDuRrElMOIUst06qipgRQqNq2AEksLUDpusn8HOvg/MtnaM8/7yQH55Gsv/CRxOLbR1s0U0SEU1fzN5ueyJxOhWu4hs+uc22RhvK4oxFJlBopkm7a1J4iJI0kLkzrjG3bFVU1XRPhms2OGxevSSwLfoSKbKr1Z2Zyqw2uG9XfNYokpu/LRYRuym7AoXCNQRK5jPw22oIhr6QXCjcBZWdrtbBz1DitXi2jwiEJ1xK6tnblBoncs2b3AJ26aVi7ulMkZqqqwld/8AUa6QcskvhovaPmBxiWhovQMeNibRuAcnA5qfcjmB3ufNyaRCZJMkEgKWpfGGxwaNuY7HDOJXOtp6J/iqRkcN1oddNOhwgCQw/OodaV3QPM8ewevGNbYNSVt9YBXEIGcBFB8jxO6L7mdS2YYsbmfS6TqAj7JJa/XwwYYVghUV0MYg9whYMYdt9oy1C45q3D866KbtrDUEt/DsAbAP4kgN/V9/1f7fv+swC+HcAfG/72FQB+rTP2j8CI0fw0gL8L4Pv6vv8bAECMLRqz2S8i0HZpUZ4r7hIqRLES6Cm6Y+5+jFFiu15Tt+QGN0S9ZWRBmK1uWniwY4Es5ewG2c9xHOPERBxC5njaIF3GuSpuzLGAISBSBumAjyTSPcqaSJ0m891mbtrHQx3RG490dFOhDakyfTC0qG3b0bWFYgeLBuuhTyIzbhF5Til1zQlKXX62qypWy6hoi6Ndt6qpAAGQD95ifRJLIgLhWJeCRSGJdY2+j9TbFPaAOXRrq6jd0cE2YIWbvFpG8tmWNcQkxMpzBBwk8bECSQyTCSQiGAaJLVHLfh6zNYkSJJbHuMG27UlXToACjtjH8Lp2D1YjgkoqZ4hAMutPrE8ic8mklqtVBmCWhYXxuGxS0hVuktdK5vqFGgT+YNFg7SCJ7N7hBnzblmVA+CyBqirfk/I1XESQuW6pvphaMEX+X6r3ngI3ZYXraOkGM66eGZRW/nmU14omdNPtYwD9W1qTeCXh6RDMfV3m738TQLRtxdA2418b/qnGMsYoPsVq4rrCohyD0RknLdWQtMgHn1CbMIwrB7IhAqZ1CM248sIaSgKb34l+e5EsTslJOy9KqkUgqyqsPyKvWz2tJWX7JG6cugZ37jkzipw+IsIiKbvJ8fLjQkoIK4Eea+/BfLdJTSJJNxXakDxzvHCNQWU1Gz1g6KbrLR9cxtpStGMdBbdBAVxNIpBKXLBOqx0jc8hZ7NkGhkx5YnBUuIZYxwEfSen7nneSRzGNDk3djMfOZ59Ddkf5PAIOIrjTJS5cuumIis943tjaKkHuNff/eP6VNaHhPdl2nJjMXAuRRPb8h0kSVrnSojbccxMigkyNeGycNgAbx7V6h5xFOwG/lo5Gsibqpvx3k+dZlkt2TdgqzyNgkpebnWEJsArXgEm6jkgiyV5ZDInMcY4zEUFOcC7uuzJIYhjw7Ur+dT0FDmQ7YNqyRNsZlY7nH84m4nKtMxpb3sMCBwCM47g4AjaPhkFPP5J4bY1GEsMbcgaSSLVgiMg4u5+XHhcqSSqQRDfbzRxrLpVz+LteJdN3doFyTWK03xsUNaEu3ZTIEsaofWCOFzg/dMP5GVlrIEI3bfmaRDmeBKelmoimnrbNYDftztl8Ac7ZOljUqCpLN2UpcMvBSdBQW+Xz17sW621HIymA6du2aTs8XO9m9ZYDNEiiLpEDTGsZu56hv5mf+j6J02cbyNckjgJYs5BEB6UjEfHYMQUVKQmDhTXRjB+5dAJSex6ZcTZ4bjsONTCfbQN1TX3toZOE4ZFEX/K+63kmwwRJZIvAZpgVrlHQTeuYkmT5WHU1LS9hxY28Zu4kJbOuwsBNQXkPe+4V7n85BiD+D3fNlk09MgVMsFceM1E37fjgZspcKR/PpX+WWqK5JgmV9a6j69LleB5NmGyBoZ3jlCbMCs5hPA7A+UAx4EDG5u+taU2i+BpMUNp1/t5RWitjLTA4JHHazotmvS8PgfX94YOe8prE62zWwU6/Jw5tlzMd7ucDXEZs2muGu7Em2X8iAy3PxLSZe+FYUbSNUW6digBRNYnVtCaxVD+WqgllkcSdc/7ZmqzQIQS42pLwPHL8/ym1jxMFqMfaqq7r0fVlRUjAbNpjj6Zh1SuhB6EiIS1AEMusE+OqqsLxsrHCNRp1U0cRkq1dOlo2ON22WCuRxOeOVwCAT98/owJZqwDnb2wlml6Mgk5t9kHCA8z9H6xbHbGuyrjQQQDM90slIWw/wGlNYsmZd4M9tkef+7l+LVf+y4XsDjYjHwZ77vFztnL6JGqCPRfxbDsFkug0uabbzYwMm6FOipTyP09N4hwT4Zr7Z0MLDMKRd6+3RgTLHyev5ceYZ9+ex67jGCjAENwIJbDlArDQn2FqokNfhqXEAqI4bREwtrYQCOs0y8eqHZRIk3BtHHYNm4AD7L60aTts2x5LsnXGsqmw3dnnhkquOGgn295GSg5cdVP2Ppb3AxZ8YBIJUc0PJZJoOxXwiQs5VrF0JrJPsa0zQl+evU+wPAYev25+X51wYy7B9kEiIyVfT8UVSjdW7TgjYoyTFtJUZTSjkhkVrskMk6ziZBxxLPPeeQiYhyQSLRjqyANaQg5iAjTMQj7tteS/nhsXtttw55GysHWJqrdT6JAzaIMTuLGKkOHxtiOSWAgSm2kAzG1STjaSrG0TO1otLJKoppuWM4OuHa4anG512WAAuH20BAB87uEGd0+Wxfe7fVbFGAR+GqT0WSErsWktY7m/WUq4ptwCYJoAks9J1iQGEvnucctBokWyNEiiRW74OqkYu4NCKJyaS51ysYzrVMiGi1CwaCdg+yQC5YRROEdLd+RqC8O+aCyVcK7Jd3vjkVlL3IA4ZW4vNU1w3zjPALvfy/G2zvPGng93LWeSHWaMj/iwTAYzBuNPnm7qI4kadVOv3pVMuI4BkWIPmPQ7JG/Hg+FeGksOSIG1ZWNVUXdkC4yli3aqzr/fzkUVJAZ+SW6oTeZPuweU7q0Jklhgl8XmaI5NruVBWQRzvKaetsWhg8TFIfDoc+Z3EbJ5C2wfJA4XLp+1mELbpRsrRLIEkSoGYAFqQNcoVIFDMvykBAGUjky84TaXJQ9FgHK1R+4cJ3TTwiYVE6CZo9xqs0WlcSG12PxkMsJzkMQoRYZxtoYG8O44uiZRejTtzLhSkBhSQljhAhfJ0lJAj1cN3jxV0k2HrLXGsQOA42WD080O652Obnr72AaGd05Wxfc3wZoADM4182wH9ySzP9VVTLhGlzgaVTkL42IZYSCvumiFa6Y1icUg0ZHX3ynu/zAIZjL502eb7BPn9Unkn20XYW1JpAEIUBtFsHGwqMfkiLZPoh+k6AIpgEdS5pqIYL0+iGAdEgmn2tnbNErJcylpHt1Rg9LVbr0fi+San27LB/N6ziE3Pz26KblMLpuglyCZgAbMd+oUe2KsTyIrAucGiWxS5mCkmxrxMhZJXC1qX7iGZEC0nam/1iRWwiQ0MypE6Zh7JKxRFtsVkkfRtnQksufO0RyrnCiJCde0hG/urlsaKjMAExg+fm34/ZgcdPH2zAeJTPFpHQQAQDm7NeXjD59VQhKHm9UGKeZ1JiMfKukxx5sI3jBoW8A9l+NRAUAQlLZdX6R7xaD+UuF8jBJL0UaDAJilIMaofcw4l+pi5sifx0kgq8x+MuIb7vG0NYlhANCRG6m3QSloW4AVrwF0dVK7tlcp2wFGuON022Kza+mAFABuH9nA8O4xESRGkHvGua6r8J5kBSCmiQut2qIGgQ8TcPI5pWfbFWBi1TytAI0WSRwC0zG4KdfETQWA2CbdjkopkcQUk4BtMyCJLCK+bHxxC/b+r6oKL9ww9y/fk9SvSdTUKYc1qKxTPsdODszz/NqjNQCr5JozN1Gro5tOkysM4r9orOCKJgBw66to4SDxS0IkMfP9QqYSU9svZhIXEtzwwZ6Zo25P9Or7x+CSmGNtA1lWlA1wg0SDJB6QGdBVYwRvALP+MMI1S2e9KwVeroXsAja5CLjCNfJ6JmhL9UksXPNwPQA41fUYw49nhfivCQuiVPIRAj50Kx43SNzTTd8645SNEkhi4eaQ9wE8jWTM2LX+plEO9ux7AYVwSiTbXbqFR4fQddJIBzQMHHZdj2XJ2a2BLoT6C05h2H/KzLGMJMrmMK0RKTu7k3YPxLjG2UTtHOdtbKwim7aXFyDy235wWaJYToRryI3UrUHVontHM4LE5aIa60MA26eOOdbpRt8Cw0US7zJIYmRj65jkSh3ek2xz6VBxV9/f1TrJ5XGxPok5hkFVVVgFrVzYtixjkNJ2472pcZIFKWKC9JBuzdYtLRykVJN9HoPEXUcnZAD/2dbSOF+8eQCAR+0ntGQiiy/jvORif7lI4sGiMfdY22O1qLnklnO9NUiiRzeVfYMOUpxgW4MkOkm4OUgiK4zkXjfdHIcSAEWSxBVOUdUWVtV43jVq2ovG1M53Ha+SDNh96fG6BVBm5IitFjXW2prE2iacWrIHsxnn+xeqIL33n4E56qamfjJ9rHBtlXkCheAymKM5djl4jiGJnOjitN6YXrdWJ8DZPfP7Hkl864xZFMIbhMluhXRTXto6RBIVwV6AGgCk4I2ybm9UpHKeUVoUI6QgEjWJ4XeT45m55NGGzkNXufMITBW6ynRTfZ/KcZxHI2SFa+aJu7iS2HIdSohgOE+6JjGSgNCKVGjRPQ9JJOqIAIMSbHYdzrZm02Yd3iOHbqoTrpkXJGqRxDD72YNENuqwTpYQYAro3WxNYuzZBgg6vyPiYObI3ScukigOtg5JHBC3lhOu0QpnATbY82oSGSetNsHzetepaKMujU2DiABWhOkdt7mamZhK7GzhmksMEgGLJh6yVNpYCYCydOAq6I5uULojaOtmjNQkWsSZeW7c5GlPIoKARelskrA8xl2DNLXsdR3Z7xU1wO1A5eTppua+ejCIIrF7x2phkcQt2QLDVUo2CQHqUF55CZuQmZTqEAnelLppribdfKafJHQ/gxKu8XwuItiLsNk6Zg+u7HnUJCUBAMcv2N/3QeJbZ0zx6dTZNT9L0rfANEgsO03DvILsQxEBq6ZZa3ceyXF1RNxCibZJvSWDgDU1gprEMrc+JlxTrEmMUGIp5dbEdWOQxNg9QiGQc2m7o4Pgzz1ny8bPPpvPImoSnX4/Y5BY2NzC4nJaktwJbrSKYC6Vk0USRaTiwZmRu2c3bVE33ShrEm8e2J5HVE1iJNvKbGwu1QtQJHLCtYQQpQpFKuSWLs8xjiSWmkW7arsA6IDPFU4Rh4u53rFauiK1tQ4TcJwj6QrQaMWUVosa622nQjZ8REpBh4LtI/jBl25Q769rX5VTQ3f0HDtSFfU8duPQPKeHZLLJTXhoeq66SRmmzklsLt1xgkAq7kmvVYo24ddx6w8wqHArFafdZ1RTy+7eW/KTO56L0unppg+GZ4dFEg8WrnANX5M4zlFxj4QlHxrhGg0wkkIS20JAG6tJpJDESMKVSXgYRNB/jVFYNucR3jHpdevGS/b31T5IfMuMWZTDAIDJbk1USsmgIczYaZDEWJ++IpI4cWS4MUCs3pJDsrTOrtukeBxX6pMYIBsAp+4YCnDYIP0Sz7/yfABx4RpKytwJ9liKnrxnrEkchGtKdNMwucJKkrsUXEZG27V33DGIRlXxtA7ZtEXwhlUqPVo16HrTS02DJFZVhVeeOwQAvH34mbNY9pMvtg8QQbom0f6fCe7lVE97ZBHHSiKJ6e+3bKrRYTLv7yj6m0s3lfHMtZNxtnavKye3al+ki0FkAQx1LmaOrWJtBcy9vN61KqfVVU3UoA0AxnYz73+Rr5mZqEIq1x9AgsvLdV9OVvogse8H+qEmSKmsA6qpZQxLB2hRksbfO5hgwwrqOcE9yXhpnQCY75NoEBiNY+2WmGiQ3KaaBjbM8VyUTnP+Zb15qExKejWJZJJEWreIercGbXYTCRRqHPhOmqAtJgpTAm7CmkQNkqjv1e2XzgB8yYfb7sedQ9FOXrS/75HEt86Y4tOplH/55p+rUhpm7OhWCpGstTuP3Dw9wRsCNZiTMXLn6QZ8W0rdtE4WKac2qphjbeguhfklvltpH519/oNxfMNbPdoJSON4IwggWWhaOGI4nu2TqLtubLY7RjdlHVcJvlhkG7BO4P1TXesMkcW/93iraoEBAH/79309/ubv+UV4+3Nlml54T8rvDEoX3pNUTWIdUzfNjwlFKmSqFN20m75uhBlyTkLtCdewWfIokqigbWmRRNcZYdsEVVWFZV1jMzynAFejBgxow66DRu5+6SoeK2sS/61vehUAjyQC/vPNqFsD5l721Wzz98dF2M0BSWTaXwCOKm3XqYKUurLrnKYGe+kkXLuep3IaCpy9jzXtVdzgkkZJHcaRVoG1LezzrtkSk56iOtpxFknU9Bx2Ubqu1yRyzP30cEAS2b3DpZvuum5sBZQzu951qjresJZU14LE/J8BD8KWOGIl9DJWk8goXIe+q/yuLd2Q41FI4jBOWzrjIYlvYZC4KL/l6TZmMw0V+JiFK6VSygZgtpEsiseScX6fPvOzdDu6jZRlHEstCx1ClkrlFs33ffn8pxqn1hnkIC5cw6mNApEAjLhHoue/FFxWU8EbtkZkjmMhmcW2s83EmUyyew3m1CRqKMkuBVerbvqOO/rFVOTtpXG2BkkEgNNtSweW9pgNPvjSTeq9qewnR5EJkiRs9n/OOMexoIVrqiltCCg7octF5fVJZGmLdW2C2V3bjyIQGrqpHJNrgVGr1x8xaQGgCTYAU4e73pnEJx8kOsI1ZNAg9i9/8TvwL3/xO+j3A34PPDaYXTZTxsVlCtcAwMmBIInKHpAOTVIbSGkcSYP2uG0iqGn6VEK23mySJOnGvaR4LGefoinQg+LuWFtIJjIB85xp+4uGSUnmEXADHJbKD9gk5KyaxNaiUlq66U6BJIbnhE0kA5icS0rgMUQFC/dlSD93j8scz91yWCQx1nJDM24UrmEf1JM93fRaGNNvLEabAwoZi0CllKUf2sbZ8MYVna0aAWowzKMU8AVoA9VLMAjAYs2w0/P05bcBot9eM4X6S3S7MJAFuHq/ScaUrImoK/888PTiaUsQDpGdioRwfRLtxmbpGcxmX0/UTZnrNgp9KALZ86ibvu2WQRK/5N23qfcDLpJoMrus4I0rksM2RJ5jIUoHWAZEzsJ7i3VkQnSbFVxx6wvnqiuLlYLgpSPABPAqjYB1QNc7Xqho6SRXZH5lwa2QyaCtyepUKpmApZtqhF3kWIBe3XSOuXtASyKJrkgLYNYgZt06j0mQyK4HI7VPiYDFkmJswm+OcI3bX5GlLcYa1bMIsGVF8WjncqDS2kCjPEY+Wq1u2viJa0CfcNUEwHNrEl26qV64ph8UQ3kkcU6bGnk/wPm8oS8ptmvz93PI0nCPW6KphsfjRcj815hnJ2RNyGdRtkcSr4e1Xbl2aVLbQ2R3QySxV7RSAOwNRdNNg+w/G5SGwjUM2jNyz4OHlM9+6gKAGJJoNsX8cYCpcE2pJjFVb8nRCqbnv7S2hgikhtoxaVpL0U1tbZWGI+8Wim9aLriPZWjZzWa90wUbYh9+5RZ++9d/AL/pK99LvR+wSIG2JtGtVdLUJM6xsJaX2aCi6ppEVVyIbrNN4EORCnktO8faqvSOxxsZBrmaxDqgH/JO2tGAts0RrrHITZnuKNluQ/OthtpOaorm+w3nAeDvf6GkLeqaDkhXbp9EBSVwrrkOHnvdXLVFwNz/l/3M3TzQ1SSGSpIAj4CFlDQWXZ0jXBMGAFxNrh8AlISl7LHgJY7Ye9KooLfq5CLgq5vSdZOOkid7PMsu6FTqprNrEj26qa4FRqusm1zU9YjusfXNoe/EBNzC7IgxxUqIYNQnrPL+q2WK+XtHuZZ9KrDGIKyuumlJkX9iL36+M/HLS0KXbB8kdh1V77fZ+TcVkIeNJyqlLJI4UiYCZ0sRuNV1NdYfaSXoVeqafejIc+Nc+W2AC9LDrNGukP2Jcc97Yo4TKX+SNldXRrRgdAhJBDJEG9jNfm6fRDfbx55/wBdJ2JK1XNKkHtCJG7nqppoWAID5fn/gWz9EvVdMGmXfP9uiqriWIIBfq3TZDmtYy8ts+OEYQ3fkjhU+N9S4aromlDfRqYPArK+Lxhcu0NAPTeuSdlzTGWVaSYi46oKMgwCY895UfE2iOZ5p8SHfkfUrDoZeagcLDZLoIimKTPdMc+uJNMI17vXedj2OlXXAWhMk8Yikm7q0cE2w4bJQNPT6OWgPIOdfV4MaokS7lqSbOmuCSkypNgGwZv1356hTN3UbnpvXqPr+gJXDq5v6NYnsfuMFiW1PnX/pQS1KsZo+ifORRAmKhteLTL1EH/IikjgVuymKuQV1k2aeXOnG5HjEeVk0NuGtFq5Zcm2FLtv2QSJ5g3goEbGQhyqlMpqt9wvRNqYmDhiydah4Jb0J2qAZZ8e4c8hZqGwHzEMSS7QoW5/gXzcmaDZzs8cBOOEgM87UCsylm9K9BKt5dSxjv7fW1iSWFLqARE1iQbjGQxLJYBtAXN30Eh3XA0e4ZtXUdN3YrSPb71DTAmOOuQg8oFi33OemByqy31hInab7KzoIkcyhNCZZW5IZK0ibO4ZGEldD6xKFuqlcX3HSmKDUVbhuBsSUDxKN47RpWzR1RTmEZp7muxnnnxuzbOox8WPmSg2bba5TSCOJTe3XoLbd6ABflr148wAAcLaNKCtFzGVp6IRrqklSkkISnSScBslyNRa0AYB73ShV1NqnoNOU2CEJpGGSuDoEKpVYd46KfUpKDDa7TkWlleTiyFxRIInrYc3aksJNXuA8M5Gg8UnMsTAeE9ArvDPHTCKJhVMpf3fHsjWJIeOFFo8LgCJVEu7X/nng5/8R//5LsH2QSELN2prEpEop8cC476cz8g7UvwCftQ4bZ/PjpnPUohSy6VPqphO0IV/LEssYMc6ufKS2vUd4/nV0U9fZVbQpGLPP/hxyZiWxrSPDqKS5SqWamsTRGVHSeEKa6mWWH43CNadbFSLotq+4iiDRpchQWcyAAdH2PXmtpzRVLbuAdZJjCaAtgXAL0iamcYAOnf6WAEcvluu73vFIYkwFmvUPFkOLj/W2o5u5yzzvnW5Uwd6yqcaAW6tuOsdCWvKKoHMuG//+Z4U7zmNf9I7nAAD/7NMPqPeP9d5K4Rp/vRteY4KbpnJasuj6JLpMJU2jdHm+GeEmGefuU+w6vmhqTyVWrW6qOf+NPnEN2DXh8WZHzxEw+82qqfGZ+2sAfHnDQSPKxZzgH+Ao7g7tdOYkEvhepiGSWKZ/AvF2FqVjxmoSS+wyM84vA5P5zkYSFSCARihwtA/9MvPvLbS9cA2xSE6y+MTCZR0En4/MIll20ULxWO7xOgfdm6NkyDY8d8ex9ZaAT0G0C7Ku356MzbYgGT5y0iexMMVQJERDNzXHk2P5r6csjiTmjwVIhtb8rqHWuAp8+ppE835dTaLtvwYoMusz6i3n2ihcc7ajREzEXrhxMP5++TWJ/qZIbYjNtCeplu4L8DWJvkgFmwCa9kks9UAFBGkLgkTyHjla1jhzgkRGmXYVIIk7QjjFlZ8HeEQWEJSoM9RRsiZO5imOpKZPogQbQpe/TJMAGNAhWe4ezKprnse+8J0mSHRrX3PmJ+DMa7xwjfnd1jKWjzeXbhrqAnDr/8CMEnXfjhMOcv0ETQJiOcxxjrqpvk9iBO0hjif7xummHY5fHALA+Bi3j5f4zIMhSFQgiQBwtjXHY4RrfCSRE4kCpiwglv5s3m/+T9eyBwkg5piNUzMpxqmNmp9z6vtDEW66v2LICrzk9fWi7ZlHEpk+QZPaHmLhslQj838ZzkDvZly4aJXGmZ9uTRBzLxq6l/2/blwIozPjnLoGTU1isFGXMplh5hPgahJlrLq2KnL+AUI4KCIuom1SrAnAvMyiIrPlKsyOfRJLSGIdq/UoHsrLrGsywnNNNvuH6x2ecyikJXPn9J7n+WbicyxWg6elafO0oSC50oHioLsiFWwCIkTSATfjmr6/Fk2NR4NzBgzng60lXZmaxLUKSTT3yHrHBzcW2TD/1yCJ0uJjvWtVKLXUJKqofUHi7jITMoCv0sgiWcsBWRLbdf2l001vHi7xv/32L8TH3nWber/Mx1WOZoI9l5WjE65x6aa887loqpFCy7eOwfh+wLCAGLqju25pauIWQ+9OTQLUltzogr1FZL9n5ikMFFmH2OcNAO4cr/BPB4SaVjdd+K2amHUhVDPXiBu5e/ActLnt+PMf65OYRRKbCJJIKH6HmhNmnn0xURgteSIo142b8NYK11wTe+aDROZCh4W1zMI17XfIISKTZu5kABBSm/qeo3/W1bR1A+vIhzc/tyDUOG1bb67l8x9BEkuc9YhwjQYR0TYFn55/7ro1dUg35TL5EqT3TtaUo5vaTUOcLlo4QhyEndBN+eumUqmL0BYvE91w6XxzaaO/QNFyY44t6tBJ7nCwzC/fTbD5alTqwueNzsgr14QoktiVN1MRthArtcRx7WjZ4N7jrUrd1CKJZu1inGTLCrFCDpqaxG3b4WzbKYPEButtRwdfgAlItcjeeewgUGmcI1xjsv+XT4T6Nb/w3fR7XT0BFd2xmq6TLHLj0U3J07Fq6rHdj3HGGXVTn6Znau+5cTuHTaISbup0iKCc6q7rVUhuU9foe/04SRxp6aYA8NyxTUbeOODccElmSS0jo7or101QWZ7uW2EtiYRCOwqxkG6qEkGM+HclEGDKLlOUZblIYtfjqOTfxeitDN3UCWbVwjXXxJ55uilzoUNxBWbhSqmUagRQACcgJWmqEnD0LNQffDe2JtGnaJjX2Fo6l+vuzj05JpI1KjlBdXD+ZZ50vZ8SJQ3Pvz0n5XHud2P7vS2d+0QjXCObxrbtRroGU6fmSmJv2w5VxSzItYMk8omEpvLFDsxnXT6SCOhpo//Sh1/Gc0dL3DrkEcg5tpyJJLqBFFN/DQzodkCB5lgCrgCHnUPxWJGMMFCmm7o0wJacI+DUJM4Rrmm78WdpXJhZN04yOceFoJ0t3YIBMNTZTdtRDBkxobYCukB2rh0smrFHJdPvE7BJKkm+mT5x18vZirE0WKXqOX0Sl41P5eR7ENpnx/g/5TFhGcy25a7bsqlG7QEN3VT2YG1tJ2BFWsxr5WO5iVOWuQVYJPGxIImK5+aOEyTeOVlRY1YLv5/vERMkOm1ZdOff37upGtmAbsomJVPqpqU+idsJRbXc8zzGMKNEyAI2IUDSW6/Yl7kM2yOJxIWO0baA/MV2s4qArt8eEEES2eByzOTr679U45yHRjZu5tZ369QsYqCH+ku9bWJIorQFKVlUyl+5+GgEb7wianIhXy7EIenVjgUw1CQqEUh5/6btsSRUQN3rxp5HQNBt8/uVqJueA0n8U7/xSxHsHZdii6AGj+mTNUkA9Wxm3Re8UfVJHJNiXOPgEEk3Y8tI4oR+S9Roih0tG5wp6aYSEEp23dBA807aJOGnQOmOVw0++eYWN3Y6JHHV1FgP9ZY3D7ntfdnU6HqMTvllq5uuFvWIvmjUTQFBsCpaXfMqLR5sKJFExTrpOteaRuluK4WWRBJDlGjX9WOQlJ1j4yKJCkpsXc8KtgGzXs1SRe10qqjy/D8aWllonP87xyYwXDYVTlZcEkjWIEESj4hxrgYBW1so49x163DJn3+3BQbdJzSyB5T6JAr6K8dgawTl871jlVpn1PGSJyp2CIRrnrQgcY8kEhc6vImZhatxFiyAV2kcszHOOIqiF3Ct2fqX8Lt1fc/VH7nCNcEcsvN0aEMs/C5Zrb4PncIykuh/N7ZucipJztJNw6xREUmc1CTqags3Xt0Gn21162bYcfL+bdtRjrWMcSmxtHDKBIEsDptti6Yeg2ctklhVlaoWZa4t6sprAcBs+NJGYRzTlyXCgXjiSCtmxQR68vcYjQfI35erph5RPRlDS9CvrLrpasG1PFnUFarKQRKJ4C3GCmGdtOODBU63LdbbTiWmdLA0NYlnWx6BlOBGnPLLRhJXC3vtOiLZ4c7RUrc44ZSrNI+loQhu/D6VfHDp9orToESroW4VMDW2zJoXokQsvdtdt1hGgsxRmtQD/Ppj5qgLEl2fSxOku6rYACeAJXZ7CBJvH6/oUoqxJlGCRA3ddEwA8UiuK4qkOo9a4ZpgD+j7vhhgiv8TsrCYGkEzRx2S6IpLjeMooRynJlfhA10nu16r7FtgLGQcKukB+Zs4pGewTnIY3LQdn/0HfCSLuRWbwCEEGaSYAMD8rhGucTNUrHCNpe7a10p9wMIgHRiQROKsuI6rRQTzY6bnn7/eXW/fz1LSVoFjxxwLcBbXtrMCNKSTsHWEayjRAucZUKnUVb5Eu7x2mSZKpZetUjrXlk09rcEjauLaYBOdo27K1pa47AIZX+zvGqHxMAyDEElkxRUA41ydbg2V84CEzaqqGkVhAAwN6wtBYqS+nEYSlw0eb3Zmjgrn82DRYNf1eLzhg8SVQ5PUCN7MtYNFbeudSCRrWftO4a7jhFOu0mQ+Pt2RRARbfbA39hLsepVy7oETpG9IYaQQJTJBOrffjN9Ncf9L3aqmvZO7B2sToIBJPGuC9ANHFdvMmU/mvHzL7DchgpYzqZ1/4/HG/F9JN2XblgAB40sJVLhMMT4B7TJX7BxyY+QYYmzpmDmGO64rip4tmgTaWfJdI+1VnjThmuvpEV2hURB1M1UABTgkUavS6NIDgMFBo7L/Mjc44xiH0KrvyTw5h9B+JzmmlpLGNnMPBSCAcvbHDVAALjsl5tWIkNctPP/sOZF7aKRXsnTTwLFj5gj450UcBbYpr9A7ti0nP9+4TtM4x+KwaE3oZVM0Xrpleh5qNvqrtFDNjRGccJEGgL+3JuqmPdkD1UMSOVGkEEkHrHpuqSYxpN+ywc3hssHZtqNRFDFXlXO9LY8N0S9NAHC0avB406qFawTdeOPxhu6v6Pb3uxJ1UydIYQV2bPmGFdO47BYYWosJ11CIoFtbSCaFzbga27ZXMUkAvyZx03L3V7ifsn0q3ZpEjbrpwcJQoKV2VaVu2unPP2D8i67nz+NBQP9k6Ldin/fyTQDA64829BhR3v7Um2f08cZaalE8Js+/K9TCCMIAcZ+XBQ7C9jbu56XGuO+V4zH7jTtH+X1O7TxDU3UTQHI+r4J5dJF2vVbZt8CYbIBxZHyHBMgHN5MsslaAxkFSNLx6VzhFG7TJOOYWDushAM6RjCleloRTFvX0wS45hbHzAZCo7Ay1uRTdtIxAYjxO3/MZ4TFI3OkU2RZOcMm2sgB8J2FNOq7LgOoC6Otd7b11uQvr24bM7jFZH3LVtqx9oRa2JnEidjNHzIp0Ltx2OrRwTYCkyzyBfPJi6QRsAE9bBGwtz/3TrSpIPFhawRVNTaJLXafppisrXKPpk3gyKCU+ONvRSKKfcLp8J8YNttngfjkyJ8y53HbdpbfA0JovXGNeYwU/vECKVaAcEBgNagbY89/3PZ0oCe/lLdmncuEEpJp7a6z3U4jCWN9JV8vu1iRqBLAOFjWqygaJmgTjqy/foN8rJhTVT903QSJTk+i27tEgub6fVhaEAVwk1/xfQzeNtphTgDAAXzoGBH0SiX1xEfjJcuxSnsSjkvd7JPGJNMZxiilQAgUksfFvYra2bUJTJZWl5mZxwgwJq25aO2gDK9Ji5lnPqEmcPtilxrD2fJj/d2okS8aZn1pVWhlXrGV0kgIaRFaEazZtp2rA7ArXbMZWFooWAG2HM1JxMUrj0QbpCvTlPCab6YdfuXXpx5pjc/okhjWJHemQzxWzajx2AXe9QyQd4GoSlwGyyvTIEpNanjdPt3pRmF2H3RBMsXRTTyWQpZuuDG304XqnmqMrp88iG7ImCJX2spFEqZsEeCTRb1RvkmlX0QJDY15POkUt9aKufXEjhbiLtt0GYIVrdsN5pOrLg3uZvW7LwElmGcJy755ueFEYeYtL9+XOvwQ3vapNh1DQx5pExXP64lDewPbgBKZIIlOTaAW3WpUCrpso1NBGzft1QkVhXTrDOgqRbYBEEoNkh5lveZzbcswfR7B5xN9VJnOuiz3z6qaslHx4UwEcHG7rUVAc4/7drWNR9ajxKKDzsjiz20RQAdg0cGb6JAIYWzDI2Ny5HDeMoLaN60Fov5OtLcyPSdckFsY5Wcy64gNZryZR4SRIMLRxkMQlsbnJhnS6aWkkMZTfZufoF81fvtMKAJ99sAYAfOhtNy/9WHMsbB6/KyRJgCkiqEk4hWJWWropmwBaOMm0cO3L1yQGLTA6Xt1U0OLXH22USKIJbiTAKdUKRtVNyXv5aGW25jceb1UIxfHKDRJ1SKJ8r8v2YVZNE6hr8vvbru3H637t1E0d4RomkSzWNLbeuyX3e0B6CepEcgATOOy6Hmdbs54wNa9h0ntHqgl79ZaKAMz2IBzopsS4qjLiUl1vnXlNgl0Cbo0Tf7BoHCSRX0uqqsLf+998I24d8a2Tbg9tMz6pCBJlTutdp1LA9ZXJdaUsI5uELW8I96nRv85pTtTeewGeXSNzc4/HCt50PcZEh1m7ssMCdV8+UX6d7Hql4t4Co+imiUxH7mLXYeaNRLJCmupcdVOAbGQaIomkQ+j2UtNQCd3+Owz3HACaiJJVKZNZVZUJgINAlqvJuji6KYsct72ujmJuTy7ZNM627UhxYjLJ4rSeDq0DVEhi11MUErHVwqLNGvrVeewP/tIP4Svf/zw+/v7nL/9gMyxsHs8mt/w6Xr4m191EWQq0L1zDJUnqYL0DuABzOVD0eicJxAYNd4e+ZD/1uUeq/pZC02NbZ0wTfrxKrwSyjIqqaycH9rnk1U0FtWm9/1+WhS0YWEQK8FWZnxbhmmWQcNUoUHprKx1cmuv7cGjdoCk3kHnS4mVuTaIiAD4IexCy52TYu1vFXrrwrpvOiT9c1jZIVNDCAeCV20ce8l8+VoPVosanB7rpIUU3tTWJc/sksiyNULiG3bsXDrvMjBd/JjdmiiQyCZapn8wL0LhzA8weV0qUuPuUzHVPN33CjJWxjXGmGSRxWqOmQxLZRWuCJJLj3HYDgGlnQQWXXgBmXmOl5OVcyMLAqptOlKyI67YdF6zhNVrd0f9u9HVz1GXNuMKxIsX2zBxjwjXMhiiO43rXOXTT8rgRSdy2ONtyinieuikZNMi4sY5Fkf08j33RO2/jL3znxz0k5jpZSDfdEkp1YU0iq1LqNgAGeOp6KFzT1BWRJDE/w8wukEeKQgl0DUohQeKjTTv+zpgoLkpdYskpDNcEjZPm1saywR7g003Z4FJYCRI0aHuFak3UNbuup5QFAUfKv+2cfeN6uS/zhWtqj5I2W7iGXCbl+kp/vxWBVIdJb7ZP5bJ2kJSeRztljg/OZI7ctZa9W6P47X43TZsOwDybc5DEuXb7aDleg0Piui2aGk1dYb3rsN3xisAekqigjQJOiQ+5JqeRxPRYt5TFHcf6kmFNYmktiSUzmaDU7e+qUc69Tna9Vtm3wPiM/BRJZG7iSf+jwkNTVRXqyqebapS9tDWJYQuMOY2zWWqljAvVnlhFqlDdlLlusohYuikxx2qKQGoREXVw2ek2trFP4s7JWiuQxPW2HbPBTHAvTquR5efQDZcSosmsLxrbF1PTW+5ptkVTjwkPYJCgLywM7nkElPSfYE3gaNqBSqMq++xu2oS63djKxX43NkPrBoa6INEI10j7BnWfREUg61LJdEiinm4q1L4HZ8bZvew2MG598xwkUZ6D64ckDok7JQXURfw1bVJEuIdRA3ZtFQRgmoSf7Itsn0o3ucX2aTVzkvYSwz1Jotuyd+sUv81nd0NwqaOb2vraKwkSB8ppU1f0/W/m2NJaAvL5Lk2YeUbDNilsUsCIu/gqpe7npcYAvk+4I9bXKCJI+pKAn8xkSj7COuUnDUUE9kEi9QDUtZX/N2PK/f0k2Jv0eyMXLZfKqeHVyzPT9fraQjuuOMwTvBmRRLIHYUjlLAmnxJSs2KxRGKRrOfJs3eT0/HNBae0sPhra0GphF0lbpE8EiQON52xAEhnRGsAqqQmSSPVoqv0Fkp3j0hmnoSg9zbZqfErOlsjkh/1F2SClriqvLU5Prgluwkm/bk3pprnnWxwkaaXAKNuJzQ0ShSYpx2TVTV3qNI8kOoigQlr/ZEZNoji39xVBw3nMrZNikbOmtkmB8f64Zi0w3PZVmhpsL5BSBCny/SVpwa6TEnBpUDqZ09ZJ8LJ9El1WCF2TuJQ56tpLiOicRt00RIB1dNN5iP9cu31k1qujZUMrfksgy2oJAGE/a6XgjZOUpPaNBJKo7ZPYUXuiMLB0wd7op7m9eYlEqOsDac7jdbLrtcq+BcY4TmEWQaPKGdYkchRQvyaRC/bgHacHWVtYV56yYK8ILjvnWIACSXS47vJazsJ+YwDLI7dUF82m7ao7suje5Pxr1R07qGhDc/skjpLY225AEskg0RWuoZFEm1nUCAmIkI6I8jxpamCXYYvar0nctV2xdYxlM+hQCldcCuBrEl25bzZoiwkJcOqmln4I6Jxrl5KppZuKswWUnWsXoRjnSAvXWIfzWNUCw3VauWd7bAp+ejVIoqwdjzc79D1XyyV7wLazglvXLSvvthfSiFS47aQ0zInxPG4HBVBy3KQmkbjeouS5Vvap9BK1irVc9qk3T6VuknsGJDGvEdNzy1k6hQIoAK+m+SqQxJefM/18NQHpwaLB2XYGkuhdN+5Y3jhyTZ4w9YhnJ0UbLaqNNtYncY9XVK8f/hwiieXWGXaf0rRpuk62DxKJGzlUUmKdcrduT+4tGklUPmhjbZtTE8e1GwiyMbPqjwQ1m4nSEecRCNAGgkfuK3Sdd446zjpPNzU/XeEaSuzAo5vKsYrDRprKetdi0/a0Q2jppnokcdu6c+Q2DXfcnm4qdFN7T3Z9GYF3kQ3gfHRT5t5y5b5ZhzD2bDMMg1hNIuuAumuAFklcuzWJRbopJnNkHdCXbh6Mv7/jzjE9R0/dlFRFtUiivt/bHJtDd1y6SCLJ7rhqc4ONEclineRWl8gBLNr2aK0Td5Hz/1CJHK8W9ZggYdAXwK+31KmbDvfkKArD1yR2vbLlkpNM0yRyAOCOs35ohWvm2Cu3D72fjB0sazxat+h7PrgMfSC2/jcs1bm8mkS/3EDGlZaEsJWLjCv6oI0fA5jfUayndvu7auqNr5Ptg0QqSDQ/3aJtgAhuqspzEADOka+dwK3tdbU9fuNm4lgTuil3I9e1pVaywZ68Z0RkSQroXCUrz2lV0k/Ca11aI0dnd6L4mh/nCdcogu2ocA29ATc4G5BEttbj0BGu0SKJu1bXt8pFidia3Kfdlo11JNkWANO6aF7IYSpcwzmEWyWyF9u0uZpE8zcRX9q0XFNwsbcPGXlNkHi0bEYkHWCCxAFJdDPy5DP6yu2j8fd33+WDRPecsQ7h4YgkXg3ddBUEABq6o3HkBUm8XgtDtE8ik7hrXMYRX1t4uLB14gCPJI5BugJJBKQmtxtq/rggfdlU2LSGSdKRiWvAouAPznSiMKG6qSpRNcxRw1y5e3y1SOI7h3VBo8p8sKjV4jqun6YJ7he17THNJnhdJB3gWF8LZz0YxxFIYl2bMjDrF3LXPOw6YH4nkMRAuOZJpJteTym/KzRO3dTPIrA1YF42Rql25iKJLELkzZGkTYTCNW3H0lsrzyF055AfV4/1nSxKF+uJw2V/pnRfJuBwqbT0HBNIIt0CQ7mx2QyV05OLdS6WppCdlTEHLJJonOSWypoKbXTXOZRYVQCsrxF5Ws2VCZd7unTtlkH2syVpQ1MkkU1cVF7NEquu7M7R/T33fK8CJFGT8ACAv/o7vgZ/7u//NL78fXfpMUcrQ9vajH0SCzWJQQCsQTvd973zzlHmnWmj6aYTJPGy6aaDUI5CTXUUrmn7sZ7o2gnXBH0Sq4p8bhwnmd3vARvcj70ELxlJFHVfKxzEXDfHSVbQFq1wjV7dVARoAB1zZdf243VjzUUSr4JKePvYHI99tgFzLsdnm0YSfT+NvW4GdDD3R69hrrhJScKfSQvQlOcogm6A9Qtphf0+PB43Tkpn9nTTJ9CY2pmwBQOLnIXBHsA5yXWAQKpUAnt7vFmNsxXHC6mcmp5Eu64fkZG5SGJpXLj5yrxL5lFpycBNnAFL91UG90MWU45fMq9PoiIAAyySqBGuERqboZt2OCQ27VUQ7AG6e0S+2z5ItI2zAVuHV06u+NlWmiXg3P9SS8pcgWXjP2/MhtgEz42ZL+8kbEd0tafvZQB48eYBfvcv/jxVy5PjVYPHQ5IEmNEnsZ8nf36i6KUGAM8Pjit7rMMrrkmcI5wyqtl217cFhotStArUWPbgXqmu6dZ2yvEZk/P/cK2jF4tKJtu6CgjQVQ3ddBmgzQp1UwlIAZKFFSRqVUiiEySyQjLnsVdfvgEA+NaPvp0es1rUlrbLIokBKl5C6MZxtS9cw/pAoUopkPdnQpaMHI9S3HUCWQtwlBFIAJOWGxo9DU25wXWyZx5JZBynOnC2WJqkG+yNAQBJyZzD6wYsrZLpIwj4DbABXd2SRduG10gH1Izhm4u6AihiTE2EK+OsoWT6VFoukI2pm1JtA6J00+IwW5PY6vvvHHhIog5t0DQO9rJoiiDdlbvX1Og8zeYqIIq65rKw4bsZ8r7vdaJUY5BoXqNpQzPqH4EUkliuSRyDREXCY64drRY43bY43UqfRF2QyNTMuPbXf+fX4pNvnqrn+Z/8pi/Dv/NXfhQffOkG9f7RIb+imkQJSt98vKGP597Lkiy5bjWJgNOqRpEQWAYOOU/JNOdNahK1dFONcI28bzMo0gIk48VFVxWiMG4LjEVd0Uq2c9RN/X6+/HkEgDvHPF39IuxDb7uFH/qeb8YLNw7Kbx7sYFGPiKymJhGQ+lotkqhLijV1NQm+5LNStkiwy9jjbQNWTtmXHI7Rh0FpCeCwpTNsK5HrZs98kMg0hV0EAQBLr3SDvVYRAITKUlyQOMzNRRLJTH7YAkONtik2DZdLPo4jz39YpMw0Mg1rQlnH1VJp/Tmkxwzz8oSDiofykETNHEeUbqdXAJXaEo1wTV1XOFo2uDc6dgTVyOmH1isyu97CqqwReVpN6jb63rYAWBbvSX+jd18rjXNb8ADcvezSTWkGhKytanVTSUDYwHm5uNz75GgMbrisfIjkajPJX/D2W/iCt99Sz/MXvPsO/tp3fw39fqltk5rEy0YSRYH19Uc8uuEzUIRuer2QRABeb14eSbQiHJqkmFAOx5pE8nRMkFxFonC968bEK3P+Fw5NuCP3RDkWAJxtu7HUgbG69tVNWX8LGNg8Srqppqb5okwTIALzaxIBvZiPJxZIIscu+giAKk2JIYmsmNLSYfjJs1ouHZOgVKeK6iaA2BKM62bPfJDI3MhhM3fW4QqDPWaMvMeFw2cJ15D85xjdlFnI/cbZuu9mjmMRES1tS35neOQTtVEllZZFEmPnX4MkqmsSFy5Kp8t+HixqnG0NbUhTx3W8avD6oyFIJDKSY91Y2490RQ2VdjPU9uxjxGCzIfvEuQqgmnurquzzonlu3BYY7Lplqfz2NUunzQWJAZKorEmcY+KsyjNQoqraPpV2D7iO6nbLpkJVAQ/WV1OTKPTZN4aEE0U3dRAptkzhrTDpC1jXFT0/+2zrEn4Hi1BwiAumJuqydO1qY+imgr4QSO7CWcvbjqeEu/eg5n4UjQVNnf6ISrU6ui8AfOQVk8T52Dufo8dctR0smtGf0SKJUn/N0k0npVLnUTfN3F9237AbB9O3UI5nWYFcO51UyROPJD65rKhnPkhkgqkYbQjgaoJCARSW/iCgWauA7MM5sgGRc9/zNDG3l6BCFGbhbIjbHZcRjvVJZOi0LiKoQUTc68ZSayb1R4oF0ryf760ITNVNNeU5RrjGBGCaRt03Dhf43MM1AF32f9t24/fkqLRu9vnJXFgv2hZOwG2FI9h7shtZECxLwKW703OsHXVTsh6lDhJwAJwgOP0B4hBvdh3YliDnNeld+NoYJBaEawIGhNYBvSqTHngjQqpYE+aYnLc3FHRTd02QXn1XoSapNUHbDhY1ndwKVaC1CqBvKmtJpU/oa4/MWk4jicsaj9Y7mqIHWLaDiOuwc6yqaqwB1iDbkuBV9UUePl5L9wWMkMyPfe+3juvedTT3eeZFikJRJO5YbqmCKbkpj0n1SaSQxNb1Cctqo+PxQrqpks0mqqjFHutOf9fdE0o3vX6r7BVb2zK0RT8AYAprgTiSSAVuDpLYkXUsoXANn8Wx30vqlrS9beb0JGq7Hpu2RUNkXOeqmy6bCNpJOsnuYuDOO2XT889mtTCOm9NLcCPZTxWSKHRTXR3XneMVPvXmGQAuI+kFsprMriNSoXGanmYb6zudZuJ0n0TPaSofy6WbatrbLJ26ybblRATCWl4AlHqiODtSW1t6/0WYBDevPdygqni6qYskXlfhgsNlY5UkL/k8SpAyshIodVO7lpwNjqumofhV2eHSKOB2Cpr8wkH8NUmxsbZTSSUUiuTP3zNrOat4uWp8uiklEjJ8t0dr/b11+8i0edDUyM7pk+jWt7GKnK4dLhvcVLSkuGpz7wv2mZExUn/NrlsuwMH3yq2jNYl6ddNy6ZKMlXHj3lHquR0cj1dFdZDEa7z+52wfJBJI4qRROllLF2ZV3M/KmUuTpPuNDe/pe9242qs/8j+rNE7ezyKrgEvdNVLmzKYRg/p3BFLa1H5zb5l3yVzOulZcxxccKh7Kp5t2vCNfVRVWA7VJW+t0sKixHqT8dUHiEj8/BIk3Dni66bad195js9u3wBBbOkgiqy4YIhQA3yex781aorlupgbYQRKVSRIx5vtJdvxs21khn0sWMhmDxEdrHC0bur2Nln71VphH77vk4EtouhIkMkiRTQp0OBvUZY+uYZAoSKKGNroc7xNd/ddcwaHjVYPDZY3XH22wbCqckDV/BwMDRSiIJeEswD6Tgkhp0F9p96Clm86pwQasLsDTtt+4tHi6Lc5Y72quG4uAeQAHmShxyxQAuxfkrkOc/skiiTW24t8RrBXAqRsOQYcSAjkyIJ5c4ZpnPkhkgo2wRwodOFSW+6xVAHUzFqxj5x6HDi6rqbgOcx8vPF63BGDlcR6SuOP69MXUTRmJfSP2IYiseY2ici78puAA1xMTCJBcxQblFtuzm9SyqbDddWpK5uHSIIlbZQNyV8ntpZuHxfe7dNOxtk1BpR2dpidwYb1oc88li5y5NYka4SD3GdVk5Je1UY3re6m/KA6ZJOAAUDVn4hCvdy22ZHP785pk4V97uKHENKLqptf0XnYRhstGEleLGqumxj1SAAiw81vvTAse97XrZCOSqAg23GRO13H7KODWJOpowlVV4fkTI35y53hFt244WDTY7Lrx/DNBuiSOHw3iOpqk5O2hUb1mjxIV6DHhrWDltF1Hl/c8Sfa8I67DtzsZ6KYDAszeyyHAwapp+7oYw2dlfMMYu4xV9HdbYIw1iSwrJ+wNXvh+nnLxE5qAeOaDRCbYmNaWmBulKHhTV2PQ1ikCKROkWAroHHVTjQT9RMmQrWV02j3IZ5XMhe03bYeVRv7cocWaBaFMEZj2OyweDsumGtEJlm4XOrua2k4Zpw4SF/UoCKBBKI5XDR6udzSSK3bbCRJfvFlWWIvRTdkEBCD9xp6+TXuOuVLy8hyUHC43uaJBEucq7spGK+1tGLGDkJIJANuuH8RUckHigCxtO6e5+mXTTaWWazPWJ+Zs6VCNAF45+q0wOZ9VdTVN6o8PmrEmjkEuXbXLs63QTa+f+zIiiYqEQCgwpVU31dJNAUs51ahzGrppOyK5zPmX/f7xWleTCNikpOZ7HQx74qhuqkhcS6uga9hZ5Vz2grNX00ji2INTahJJJDHoscucSxdwAGzgpkUS6d68DsNs3DtYEGDiT5aBCjPPAUl8Am+u67fKXqGNwQZJG7IZEvM6E1xa6J13tlZzpOQDdU1WScmjlmnq9mo/Q86PsxviZtdhpUASXWcL4BSptiHdlEJELJK4I53rSf0RmTUaWwAoKTKAka439S86uumdkxXuPd7QSK7Y3RNbd/E84VwsXbqp4ru5weWWvEeednOl5AU50xTbt4oEkNc6QzHOFZjqSAchKkDQdkXqukWWeGT1vCbo4ZunWxwvy5pvrgIxIGv55c3vPCbnc9XUV9IU/GS1GBEpquSgqbGoK6x3tk/ldUYSNQIoYTKHHWeuFfCmUt0UsMGhps+f0E3PFOdf9hdBEjVB4nPH+prEg0WD9bZT+iTOeveEoj05c1tm8EjiECRudUFimJhnk5Jdj0lpVu6Ydt9wg0sSSXTorbxSuB+Ujm1uSj6o06rpSW2BcU23rKuxMdhgM/IjlbBDVXEUxF2QeWDpdlYlcJ66KRP8huM0gezSqT9SIYnO8Vi6Yyh3L8dlsjhzxHWWCxtcskiiRQQxjtOcj51z/tmA72jV4HSrRxLvHq+wbXu89mit2rRdJJFpbrxyrpv2/jfjBG1+ppcpANa52rbdWE/Bqpvuun5E/XX0K904D+1khWskueUiiW054+oK14w1iZd8n7j0OgpJDNYttk7zrTA5n1elGHri1DTzLRjqAUm8/uqmGrl7t+enpnRAVGltTSJ/Pp6/MQ9JdOmmh0TAIUGJticjYIVrNM+1CWRbXS11WJN4TZ/RufbCDXuNRTSqZILuC91UgySOYo0dmVyc+Nfm9dyeE0USyWdHeg4DViSNrUk8r3DNdS03yNn1W2Wv0DTBBgBPNpd1tlxkCeCd5I2jrjlX3VQVXPbWIWQyycthwwDsedHUO23bjhZOcYMGwHLWi6qoTTUuAlokS9Aadpz4w25bEH0ri2HetAT6kLUmlVTFxDHYtr1Kle3lW+U6RNfGLNqus+09VIhUN6DNz/QyBcA6Vxp1QRfZ06qbAj4CqWpvM4zT1iiL7bryuuDTTQWRutwN2HWwmJpEV4EY4NvivBUmiNJVoXOumAb7fJta6hbrbYuDxdUgnlqTNVnaYDDmOqDahN/hshn3YU0y7cNvN/39Hg8IH2NTJLF8vCMHfdfOUe5J2YupOTpBOqCj14/1/dfwvjqPuUgie/4ndFMFKu6pOVNskiAAI0qz4vvGjJrEkW5K1iRO5sghibvOJE73QeITZqxKoM30KSmgDvf5PEGKSgDFgewZfralqTo8a+I+XjbzUFJZpDYtL5ziNht2fzJ00zDzQ82xqb3gsq7KgfNcuq8bJGqEgwCzSVu6KTcG8LPHNw/5Vqlf//kv4ju+9J34nd/0KvV+27ahp7KDYhaRGijJ1xAxuGo78OiVXA2elXbXOU2eJP+4bnGUQMBkZ2m6e5BFBjCgkKXNt0ZTV77a4iUnE547Wo7fiRHtqKrKiEs5SOJ1dRLe/+INAMC77x5fyfE8JFHhuEpNIoPkvhXmzpENuF1RKi2SdbzUn0cA+IYPvQQAIwrPmDRll8CS+X4nQzLgzaEnpibh9+Xvu4uPves2/hcff49qjqYm1Pyfed5kbd0MiVrNXvokmOgHfOxdt+kxc1tgNIHPq2VTyTjzevpCuHsUYPytvueBCtlDx4SrouewP8dC7OAATNdZ3TpnvIf4FJptpJlfFdzABuB69AFSE2flgAHOSV4t/CbwWrEJgFNtNeMwjtOKVIxzVIwT5+psY7KtjGMn12ejRPcWdT0uWOKDMmudofva4FLT780KB5H1pwuLNlhxI5JuOmStN60ObbvjBYk8krhsanzfd3yMfr/XpmNEEonjOLVcrLjR024r5xmwNXjcxqatCbWbthXJoQSfHARy1/U41tBNnYzwtu2pdcE45FfXJ7GuK9w5XuJzDznhGpnTru1UPWjfCnv/CycAgBOSjnZeE+r6SoEIiipzXXFUx7fCDoY5apBEj96tRLJuHZm2RE1dUSUAYu9/4QR/7Fd+FL/o1RfpMeIHvalQUxXE/Y3HeiTxY++6jb/yb341/X7AtneyGgTlMYeOKNLTWJN4uGzwn3/XV+JDb79Jj5HAWfpb0kiiq+jfc+qmY6LQ8bmA/J6zCIM2kv4JmDVZgl+2dGPh7KXmuFzS1WNFtR1uKJLy18WevBlfoNHZgCBI4QOwCqdbvxiXUdtyaxJZHnMUyVK1zuhVlEAJpNxeaswDOgaJQxNsHZLYez/LQaLbgkSH5Ar15zzCQWxAChiqi6aOApAG2Fust51OtMCpLbx1yYvWYmjTMbZgUDQ33rV7uqmYOGTrXUvLdrt1jHNqdLT9FcfsbqsXrgnppowKnFDLNjsOWb0Iu3uywufIFhiAXSc15/GtsBdvGbThfUOweNn2toG6fqgIGlZDUqDC9VQ2Bcy81tsWZ9vWo9TmbOEwJ7RtUm6P4i6681FVFX7DV/AIHWD37tcfmYCPQRLlObk3g246x4QS2/U9KoIBBFhRJGHlXFe0/zz25e+7q3q/3E8P1zrBoUVTYb2zgVRJNRTwk5IAV5oV60EL8PodgiDypRtxSmxRPM6pNzZ+2vVct3L2TAeJbE2iXFgXyWKldsMehBTdzkWyyMxWTKKXnSMwqGuqKJn2IdU8oLKxnG5MAMBspG4gJXN1556yWAsMKgB2kCyWRz63J1qsJpF1JA2S2GG9a1Wb790b8+imc0wSHhon2RVyMEji07dpa81HEnXJrW1rg3TOabLPtk7MSujFfAuAaJBI0E0BoZZZJPEq7hOharMBgKkv71S1nW+Ffd2rL+KP/cqP4lf+gndcyfFeHoLSW0c8k0GQxArXU9kUsHTHs22Huye8Yw0Ikqhr+XP7SN8mYq7dOjL3/GfunwHgKNfHId30soPEkW6qr+08G9rpMMyhp90OAtSYfd7cFhi7tqfQ7Zjv5L4esxFJVAoMyntG4ZqWDPaCoJRVvV849ZabVpfMvy72bAeJM5wtQGpLOCpVWLfHBg4bh6aqlZ8HzMOjFa7RBLIuaqAZJxvL6bY1ffqITcOtbQMcmjCFJArdlJ/jygvclP0OB193lnCNsibxYFnjdKMTSQB8AQ4N3XSOLZt6qEnUCNdIvcEeSRSzap7duG6Vnp0RSdzpakJdJFe1JoT1F8r1R2zbcjR0QQ2uim4KWCGHD7zIIW7LAUkXsa3rqpxY13pk6TwmIlgsIgvYGmyA6634Vtjh0uzdp9uWdgjt/tZh13WqPn23Z7SJmGvPDQH9Zx6s0dQV9bwdLk2bjhFJvORn1LALeJZSOG6za59ItOeiTe6n+8oenH4AxrXYmqqbln3lEElkgzbABw8EKNL0HAYsM5AVj9u23Si49aTZkzfjCzQLGZM1iYIkkpnuxhFO0QhHTPokEpuGDWxsUKqhm3Zdr3JkRgquixIxSOLKFkSzffpEAGLXhtTR0oNdO0XU5jVtC4Zd15ECHOanVrhmRIiUdWOACbjXuyFInOk0XT6SaJxkTabPQxL3wjUA7Kbt1iSyglvuM0qplDobsC64txuilqYdqtQxdNPDoSfaVQaJP/6ZhwCAj7//eer9gqR3iiTVs2CiuHhEIrKA9MBrcbZpVTTVqzTXuWZbeyydhCvbNkDMre28bJMg8dP3z+jzX1UVjpcN3nhkkMTLfkYPFg22bY/HG51DLkjivuWSsWVToa70SOJq4feY1ug57CY1iennoKqqqH/NIYnOHEmgaIIkttx+6iZ3jZ/25N1bT96ML9BYRGrap4/Pko83sVY4xaG2aoI2G1yaFhDMHIEBSVRQosY6QccBYh7QsQn2VrJ9bLZ12uC+NE+jwOoHlgyTZI6zOxWuIemmDrVVQ/cFzLk83bTnylBdCZLYdiqZdlEEW+/2m7bYytlsxiCxlNwKEHFgXm0hwNLkneCSZVsI3T1AEhnnQnqiSYuJqwgS/w+/9hfga199AR986Qb1/mVTGSRdWW/8tNsrt48AAN/ykZfpMYfSgmHHK4detUmt5JunW5VjDZgEEFvKIiZIoptkuSy7dWiRRM35Pz5Y4P7QJ/GykRRxwu+f7VTo6sGyxtmufWLrxi7aTA/OZrxubA2w3xqNS7C7dGv3Z2nPcfuQjz4hJYRo/XI2wTgJZEmgYtXUqCs4bXGu57qVs2eabtqSNYmugwbwYjJNXakgdLGFU5PIqp01tcn82CCx48Y5mXyNI+mjbfx3G+mmA02SpZ8YKXk5l3Ldyg+2VTfV0X0B3aYdIiJsLalbb9krg8SjZYOzoQXA/CDxCpDEgY9fVVwioa4r3Dxc4N7jDdqux6p58hbWizZbF92Oz1sJhY+1V9Gqm4qxTYoBS1OlhGvG58a+tmt7imEg7QYkoXYVtORf/OGX8Ys/zAc2kvDTMEmeBXvfCyf4b3//N+Cdd47oMQeLZhQXua7CNeIE7rpe1doDwNgEXiVcM6B7QsO9TBMk8c3TLd5xm79uLqX48msShyBRgeQClpWwT0paO1jWVsmWDG4MkmgDN2YdFz9ubGdB6ke4/Q41ZRGx4LJck+jPkRVrrKoKR5LMV2pHXBd78mZ8gWb7jRWCxIDKuVMI17TOjc+qba2aCptBbEKjdubWMmp6OQKmT6Kql5rUUbQ6B2g5KImdjkgi/90kABY1w1Lz7EVTY9f5Cqxsn0RgEK5RCge5fSo1Drlx5P3PKtnh0qiwPlzrsqYA8Od/61fgV3zsFdy8ZMl7cZKltpCVu3/uaInPPlgDuBoq1XU3D0nccYpsbiJHI9w0V7jGVXIzgk/l6xbStM1xSSQxEK5ZXkOBI6Ffaankz4K96+4xvR4AFkm8f7obUa3rZkcre9+yaJtLJe/I/Ubs7UOw9tpA57xMc0WGNAGYK/J0FcI1AHD/bKtKnI6shH0N/GgHi3qsSdQgieudpXIywjVuCxgZ576eMjfY0yjsLxzwgFc39WsS5Seznx6tGjza7LBt+cTRdbJnHEkkIeOJummnkNp11C7JxX+sURjUztiNdNXU2DrywxzaaX76dFMikHLl9dXBjcP/JxfkReM82B35YI9UNr6vDRCcf7I+ygrX6K639BLctDq6L2CdkDeVWVMA+KoPvoCv+uALqjFzTIL7tbK28PaxDRKZbOTTbu4aJKhsGUmsxjGdItPqCtDII61B4HedUdxl7skwQwuYIPNwyVDXa7z+qBudkuvo3JleubogfW9xEyTxbNuNqNZ1s+dPDsbf2V6Oq7BuSZHw+9oPvoB/9UvfiVeeO9RNdIYdLhusFoZOqOlT6SGJVyBcAxgkkVUgBsy1Oht0EvZJSWMmCbcef+fG2GT+tuuoFhhWhMYXheGQRCvUyIwBLHgA8EDRtOWGnUPJjlYN7j3WIbLXyZ7pIJGtSZxSOTkkcVFX4w3f9TzVaOkEYAaRooZh6TygLG3FpUmqeqK5vZ0UjWuBoZZu22K741QMAR9JZGWLbTPxDlLypJHy3+w6uv7UIrJSSM3VP8rx3DYFmppEAGp106s0Uxcq8s/8HJ87WuJnXz8FcDXy7tfdFsMaZOT1Wxwtm2LyyCYgbHsVDSLoijZp2AW7tsfZtqMk8msnSSW267h14Xi1wKPNDo82pm7mqhrBa0zYHcLc3QvXzLfjVYN7p1v0Pa5tkPg2J1hjE3cu3ZRNrojVdYU/+R0f003yHCYMD835lyCxqi4fSXdrEu84/YBLdris8ZkHW+w6TnH9WTB3PeWRxGos0+n7MgADTJFEvibRaRWnRBIFCWR7DoctN2Qcsy8eLd0g8cm7t568GV+gsTWJgMn2aamcLhze9b0iaHACMBUCaVVRu05Hrdx18wIpgyQaZ5JFPI9WRspcw/+XVgpyTHfupTn6ATBxLA8l5c9/XVmBIk1tyXKh7yUI+H2qrmuGajEUsmtpPLePVnu6qWNVVY1rkEa4I1SXZW4tV8mtU7AE3BrIs21LORbybHl0U1I9+sbhAo/WOzxa79DU1bXcgFeL2tRoXvM+iU+CvXDjYNyjRLDlupm09gBAK4DKfft4Y9pCaVC6q7a3Dd/vfWQLGMAq2WrKDebaHHVZGfdgFNe5vuf/Ks3VK9DUJG7azgm+NEgir24KhDWJvC/vMvzYnsMj4OCAAAD3/Y6WzdgCZq9u+oQZi0gBgWqTIkjsnOwIG2ysnACsI9VNAVEAtZkOrt2ACKcoAylPFEOXIT9aNng8cLR5JNG2wBg560VFKkubm1eTqKsJDYWK2GBvNaCkVlaZr9sTu44OMjCIi0iQqEESj5c4HcQY9kGiMWkBcLrhUDrAJiA0KqWLyHNDtc4Y1q2zAYFnnN2wkTIwqJsSa/KNgwUenO3waN3iZFVGVt8KWw4iZHvhmvPbCzctMnTrmiKJtw5d9IVU7h4UEO+f6pQk3woTwZr3v8AHiSJOdKToiTnX3JYDmmDvcFnj/tnQy3G/3wDw72XWv1g2RidBfGWuT6L57JA6WvKDouqmpM8btrIo+aG25YaPQDLr+eGywZuPTc3wk5iAeKafBtu7jRFJmIEkVk5hrSLYcwMwViQHsCIJfW9qGanWGVLr5LZgUNUf9SqUFDAPjWyIbGbFbYGxJbNUI9rZdbPUTQXdYxxW+WxXqIimFzc1Nrse650Jiljn4s6JdZqua4bqZLXA6WanDxIdJ3CvbmrMRxL5TVvbg9Mt0tf1d7X1QAB3H480bY9uyvXXunGwwHrX4c3TLW5cQ6opYNkde+Ga89uLNyxKd13ppm6iQotkvalsXP5WmNBpNedfAsvLVtIG/DVH2ydR1q19kGhM2mOtmpr2XeXcnW6ML3OuPomFPWfptLLQrK8muLTBHkuDXgTMQHmtZMerBm88fnLvreu5s16RabMPbu9CTt20Hp2sXhk0AAbd01EyqwE1MP/XNS63yCOFNsi4sU2EbkH+zIMzAKDVNZeutHIr6qYFwSGvlYV5jROuGWoShyBdIzgkGTRW3RSwwb0IcLDOxV0nSLyOoh2AqWt4tNZRiwEr7Q48mQvrZdjBYugTt+HppoJSq9RNx1reHota0d5mZYWUAA4RCetRAFHFKx9PamY+ff8Mx9c0SFwMNYn7PonntxdvWlGY6xokAqa9x09+7pEKNV4tLJJ1XXtAAsDv+uZXUVXAL/+iV+gx0hPz5sHlX7NbR3r0CzDnXJagg2u6l161SVCvSXaIH/JIgkRNr+6RysntVZ66qUKYbTmIifV9b9hspO+6qCtbk6hgfR2tmpEVdZ0TQCl78mZ8gSbQMQOJuzWJfFsEn2etqVEDgNNti7braYhaxF12mlpLr+G2zFuBtg31fhrf59bhEp+4Z0RJbpDZRfNgi3ANiyQ6iODoJBPHcnoXaoI9V9mrJWtCzfEqP0gkF5K7xy6SeD0di5MDI/+srkk83geJoa2GIPF0EK5hbEwcadRNG0v/0dC0ZU6vD3L8zD0pn+urm3bUxn3TCRKvo2gNYIP0Pd30/PbCDbve3VaIkly1/Y5v+CAAqNp0+O0GrudaDpjz/kd+xUdU1NF33T0GAHzLR952WdMazT3nGmqfu+deV1bOVdsYJCrOo+zVjwcxMRWSKPWFdPuwegzaxiCR6a87PF+mVRNX2iDzDJFEZp5z0e3rYtdzZ70i2yqyAa66Ztf11ELijtEEDVKT+HBtHjSNuMumtWITqmbure1Nxkxz5QRSmro9AHj+ZIWzrZkkm110W2CMQaKidYnGSXaFg0y/Nx5JdO8RWpVW2kRsW1QVjwrenFEzcNV2vFrg8VovLe4iBfsWGMZWA1J9tm3poEjuLRXd1FEFPuhqepxshm8M9ReMsxv2FwVAU7zlHHzm/tpTlbxOZoSDdO2F9hY3V63ybbeu5/UGgG//0nfii999W1W35zcuv55r+Vx73wsn+Nu/9+vw3uf58zHXLqSX4x5JBGDppr1TClAy8Z1OFUjipE8iyd5yaaMaJFGer7NdqyrnWgz1ljJHmUPJ3BYwT2JN4jMdJGpqEleNL1xzzIxZmALZdui3pwkaAOCRBInkwNVAidXIAcuxNrseBwsN2mCzPxqUFPBr6WgksanxYGvOhy02zh/T7T/VKRARX7lVFySOvTQ1yPEQ3EsrC1aAw6VjXFfH4mTVYNN2eLTZ4fkbB+UBgz135KCk1/S7XbUdLE0vr9Nth7snCrW5Xa+6/21NYk+3CQLsdRK5b0bdMewvCgxIIrHmydrxYL3DiaIn2lWaEUnQKxfvbWp1XeFv/p6vw92T1ZWIoJzHPvDiDdX7V009qmteZyRxrr1feT7m2smqGbUBNPvGnZM9cyU0SUKLT8OY+KqPhyCRSfCGdNOWLDdYNJUj1Kjfp9bbjt5rZJ6ToJShm7pI4hOIUj95M75AU9UkLowjD4hSafnzJWuwGYIUbU2iIInsjbVcDCIJisaiSzfYU9ZoAhiQS12QeNdZkNlidnG2AIsklh7uEUl020uovpsJgNl6y5VTN9lp1U1nNFJ27bpmqKRW7N7j7Wy66XWuP7pKu3W4wMP1zvRJJJ1kQRIFqGNuZVfum21sDBjRjqNlo0IS66H/oyR+ANDZ3RsH9vOvK91UEkeaViJ7S9sHX7rh1WI/LXawsMIpT6IjeV2sqqrRp9AE2y5KvQ8SjQmSKGVWjC0DuinVJ7Hxg0R2/V+4QoEK31V8pfWupevfAVPyJPuUBM6MT3P0hNNNn7wZX6BpahIPmhqbQX3StMDgFFGBQTjlHEEi61xLL0GrDsUfy5XJVwWXSnEXwF+QWbrp0qWbStaohCQGtYUAuYgsLQK5U6rSjgq4qhpUqUls1YvIb/6q9wKwMuPXzcSRf+PxRvXd3MDwbc9dz+921XbrcIk3T7cmSCQdSWFAsBRtAGM9YOvSVOkeqA3efKyrrVo09ahYDIhwDaNuau+Rk4PrmSRZDtnufZ/EveXsYFnjwXrfp+8iTFgFmv3mSRCBu2p730AP/g1f8R56zARJVJQ32HYWHbX+L5zyHg3g4/p3266jQYDGUVMVMIBJKNx06mQ1dcrXxa5n+vWKTFOTuFrUo0JRR2Y6LN2xVaFtchNrJZlFgdUW8RIOoTSOV1LSvOBSEUgBwPOOAAGLJC6cAEz6JZbELVwkcRTlUQhwnG1a+loDppZ04yjgalRRH57tsN526izyH/22j+D3fcvnX9sWAFLr8XjT6tRNHSTxun63q7ZbR0vcP91h13V0ALZcVFhvO6yHGmCqwX1jN21t6wYfSSTXLSdDC5iWNUziznXsrjOSaHqg8kH63p49cwOT69wn8UkwCQ41wba731xXEbirti9853P4x3/0X/KCnJIdLPwgkQn2mqBP4q7lfK5lU43aFpqab7kvzrYGSWQ1Dxa17a/IstkA4O23bf30y9e4ljplz/RqpKlJXDoBwLbrOBUlpyau7XlHSzJhb4wNONkgMejJpWz3IKwCVQuMIUuuqkk81jt3riM5PqCF8+K3wDBjmbhNHPCzbTugxmSQuPCFa3QIZD+bbnqdgygX4dFkaFn1zmfJnjta4v7pFqcbjbppPaLUAIfuSfJlp6SbAibB9cYMJFGCqLbr0ffcmuy2RPjgFdU8aU3q0sVpehLpRnu7fHMDk6exJvEqTRx5TcJ1jyTGTRMgAucTrtk5KB0TfC1qZ99QAD4ukni25dtJuX2wbZBYPp60gAGeTCrzkzfjCzQNRO0GAJtdR/XSCYVTWEamqCGJs6VtgaGhNrktMGzdnn6chm76Pkf1TYWSji0wuCLlqLopWZPY1BXOdi3arpvVJ7Ht+XOyGqjMZ1s93fS6m6cap/hurHjPs2S3jhbYDK1SaCRxSEBIxpW5v2xzY13iCPCD+0N63apGCjnb3ia0j7//edX7r8rsWs63Bdnbs2fuc7kPEs9nv+jzXgAAfPn77tJj9jWJF2Ny7h6NLTA0wjW2wT2z/i8jwjUckmiFa0QskLGF04Zto0AS33H7yS6Xub4QxBVYq8gGuAEAK+fvFsh2ikDqZBT7MI6FLpDqnYCIQUhtsNcrIPtFGCQqkMTbx6ux4TBri8aKwlh10/z3cwVoNHRTwCgznm6GRYSlzTX1qEjbdjz6crxq8HjTqpz/J8VOZgaJAPBrf+G78OrLNy96Sk+suXWa7H2yCpBEJuHkZnY1/UWBIEhUPDfbnV9bwlKA/qNf/wvwN37kU2MvtutmRysr3ATskcS9xc1dG/f3yPnsD//yD+N7ftmHVXup+16XobA3ncm6PdJNGeGasCaRpJsa+ufA3Op5VqBc6/WuNToQc5DEHeeDAsALClX362jPdJCoRRI3ThaBChKXFsnS0BaFoidNqXV9Ejvne3FjAHjiCkxNoifKowwSAeCv/86vHSW/GTtYuMJBHaqqfN1C4SCAo5sCRoDjbED3WERk5Sjgdj3f8uTm4RIPznazhGuuu7m1Htog8Y9/+xdd9HSeaHOL3tnWMcKAWO861BUXfLmKo5r+ogA81VV28100leMg6Gr3fvkXvYJf/kWvUO99K+w46B35tD3fe7sYc/eYpy1ReNU2V/jnr/ybX407x6u9mvY5TPZ4UTed0wJj13FtKdze2Rqf1y0DO9t2Kl0Ml/HS1BXl9zZ1ha943118w4deoo5z3WwfJELfJ3Gz6yjeulBS17vOUFRJB2HV1FjUlTr7vGqqgSKm7wno1u2xwjWLusLptlW19xA7XDaqzfBgUWO9s0E6s4h4wjVdj7riaYwHC9OT7mzb0YiI0EYBnXDNzaG1weNNi5duPl2P5NueO0RVAX2/r/U4r7nOy8tktvtgUeN0I1Tmhr7/F42ppdOskYDv4LK1sst6SiVnkcTrbpLwG9fyfQCwt4i9/TkraMH0F93bxdvH3nX7rZ7CE2+huinFSpMaeIcpxpYFiSq2hj3nCtesdx1eZEs36mpMYpr+ivwe9QPf9ZX0e6+bPdOr0ShcQ1xsD0lk6aZLP0hkkZSqqnC8amYhidu2V0HvVVWNgjeaNhGAoZadbuYhiVo7WDZY7wwldtf2lLSyK1zTKcV1Dpc11ltdYbPLkdcI10gm6/VHm6dO/nzZ1JA+6S/cePr6m12luXUzrErajQOTgNDQpgFDAdq1tpaXpZvKsyJNraljeRlhqUl8Oramo5kiZHt7tkxaGDV19dTc+3t79mxEEtdDCwxG3TTok7jtuBZIizqCJCpYcOtdh7VCB2I1A6h4GuzZ+JYJkxuMUwE1dTPdkF3X1CRudh1NURU7OViMjgXdJ3EIZMfvRR5uOaAGnVKk4nDV4FSpADrXDt3ehS3XR2ds7zGI+WjEUA6XDR5vdqo6QVfcSCNcIzTCzz1cP9WNlL/kPXfe6ik80fbeF2zdHRsk3jxc4vGmxaM1T5sGhg3Y7blKJ47M/cvSYQFflGpHilI9KTYVIXt6n++9zbd33jHP9v7+2NuTbFJucP/MrHdz1E13bcf1V3R0KkT0huo64PiSGv/OlDxZJPFZYUY9G98yYbvO1OkwiI8giYImMgGf2yeRpaiKHa+a8QFgKUoirqOhjXrjlHV7Bm1r1SjdHHMpAhtSItlDEpUKrEfLBm+e6qT8PXVTReAsSOK27Z9KJ+HzXjbtCT70tltv8UyebHPlyFlUVu6t1x7pEhCGbqpfS6TBvaYtS1jrAXAZ6CfBRMjn3ogkPl1Mgb1djL0y9FLbK2vu7Um2m8P6L/R6hs0me8uobtr2tLqpME82ijKFUbhmq1OUX7lB4o7zQZ8Ge7oKoJS263q61kaonNKUmqpJdKR2NXRTwHey2OBS0DYpGmZl5CWTr2kTAQx0022rboExx0IkkVOktfWWnaJPpTleg5+/d+odu3w8S0nueg3d1Gnk+xQ6kX/ht30cn3u4ufREwrNkLCXt1lDH+NkHa1UCYjEouWnXhOeH4FWzgbq1HjtFCcCTYG4LjIoUDtrbs2fvunuMX/jeO/i3vunVt3oqe9vbbDtcmvZhkmDnVEqDPoldhxvLcmhi+iT6gmcqv3zXqXpTrxbN6N9t2w7LxbOxlj/TQWLbcRkLwN5Y0v9FgyQKArlSBABz+suJkp6ohjJFvIARvPH7K+qCxB2J7J3HDh0kcUdet6qqDI+8NYGltibxnhJJPHDppkrhGrETBQLzpNjzNw7w/BMuA31d7C/9G181Ji8Yk3vrcw/XNEUVMEHe2mEXsPfy80NTasm4MubWJI59EtkiyGtuso7fe7TFwaLe9//cW9SWTY2/+K9/1Vs9jb3t7VxWVRVOVs1YKsX4aXVdoaqs+AzLwhItDcDtr8szzNZb0wJDJ0y4r0l8pmzbahqlm/c9HPrgcRkLC2tr6aaiimc+hxsnfPAxuGEFbxZ+f0WWWnawbIxy4q4dM+aXZUKVO9t2JotDB8DmwTbcc/78HyybkSKmQhIHcZ2u5/skukHiy7f2wdTe0vYl776javkg95YWSRThJitcw93Ld4cgca0IEl2Vut1Tpm4qa/KD9e6pZAnsbW9725trUgcP8IySRV05JQccw89tnbRV1LJXVYWDRY3Hm3Yo8eE1J9b7msTLsaqqDqqq+jNVVf10VVUPqqr6R1VV/ZLhb++tqqqvquqh8+8PB2P/bFVV96uq+lRVVb8n+Oxvqqrqx6qqelxV1Q9WVfWe0nz+ySfv4/7Z1rSlUGQRACdIpIRrfFhbQzd9/sQGC+zNaBs3D/Uvmlo6p+E8C7gdLU2biNNNi8NLDhIFSVzv2kF+mOeRS584zfk/Wjbj+ThSnMeutwsWm4C47ahWvk2B9uxtbyUTUaSu11GZDxYN1rvWCDApEHihm6qDxJFu+nSpm7rJs6ex3nhve9vb3lxzS6XYNU+EIQHQ5USLukbb9ej7Xl3LfrRqRjExFgQwbdhM8Lu9AvbcdbGr4rYtAPwsgK8D8DMAfimA/7yqqi903nO77/tYd/U/CuBVAO8B8DYAP1hV1f/c9/3fqKrqBQB/CcBvBfDXAHwvgB8A8PHcZHZdj7NNq+Iji1LmI0WQONJNdx02uxYrRXb81UHsA+Cz+EczGzcv6gpbR/BGQzf91LbD6aalA6m5JpTPs21HFzYDFkncKK61OZ49d2ywLdf7bCc9grhj3XEazr/83D5I3NvFmYtSa5HEs22nVi6+OyS3pF8oY66U+dgn8SmpX1029dga52lWLt7b3va2N8BXtqZ75XqJQq4FhgSS29a0Rasr3nd97miJzzw4A8Dvi6G66dPCdinZlexafd8/6vv+j/Z9/1N933d93/+XAH4SwJcSw38TgO/t+/6Nvu//CYDvB/Cbh7/9KgA/2vf9X+z7/gwmoPxYVVUfKn3o4zFI1CGJjxR000Vdoa6GPonKFhif9/JNAMAthZS8DRJ1tXSCtkmfRDYoPVzWON22ON1efpBo6aYtNmQLDMAqUq13vIoV4KOHbOsAWTTOtsZBZs+jW6ekqRvb295K5ooiseuBvPds26pVgYVuyt77QKIFxlOUpRVHaU833dve9va0m6x3R8tG56e5ojBkCwzAsE+2na5G8LmjJT5zfw1A5ydvWlNOtNntaxIv1aqqehnA5wH4Uefln66q6ueqqvpPB4QQVVXdAfB2AD/svO+HAXxk+P0j7t/6vn8E4Medv7vH/M6qqn6oqqofAoDTbYv1tqUDN3mfiMIw46qqwtGyweNNq1Y3/fy3mSDxO77sXfSYsSZRiSSuBrrpiCSSTuHR0CfxdNuOx74ss3TTDuttN/ZjK44bEBEt3fS5I9e51t0jZ5uhZ4/Cuf7AiycAgJdu7msS93Zx9tzRcsyuapIkB4saZ7sWbadTBb51uMB3fd378ed+y1fQY7zakpFu+vRkafc98Pa2t709KyZB4k0FwGEYX6JUyjHFpP5w2/bqlhQekqgoOet7g3RulaDPk2xXLqVYVdUSwP8dwP+17/sfq6rqBoBfCOAfAXgewH88/P1bAAjn8k3nI94EcHP4/QaAzwaHcP8+Wt/3fxrAnwaAg7e/2p9uW12j9BBJJG+Qm4dL3DvdoOuBVcMHUi/fOsQP/r6vx7vvHpffPNiIJD7SNW4+EJGKsSaRRRIbPF7vcLblz+NcO3SQxMfbHV66ySFuJwcLPNrsVKgx4AeJbAAs98jpVuimvKP7A9/1lfhnn3rwzGSn9nY11tQVXr55gJ9/80xVN3y4bIY1oadrlAGTGPuDv+QLVHP061GEbvr0PAfvfeEE//gTb+6DxL3tbW9Pvc0KEh0k0ZQ4MHTTAUlsO+w6Hf3zuaOlZdwphGsAUz62r0m8JKuqqgbwfwOwAfA7AKDv+4cAfmh4y6erqvodAD5ZVdVNAA+H128BOHN+fzD8/nD4v2vu35N2utE10pQbQoRr2HG3jhb43EOD7GkzD+974UT1frcnF8DX0h0uTON4Szfljne0bPBoULG6dHVTpwXGY0UN5MlqgUfrHdoeuO0EfiW75SKJ5CIigbK0SWGDbQB44cYBXvjgHkXc28WbJDneo0g4HS6bAUnU1STOsWVjle127dOHJL73eXPe931C97a3vT3tdutIgkTe31q5iUIy4JM9QpA9TYmCCwLQSKIXJO5rEi/cKlN49WcAvAzg2/u+3ybeOuBZqPu+fwPAJwF8zPn7x2Bpqj/q/q2qqhMAH4BPY43aqdQkKkVJHq5NUMSigjcPl3jt4dr7jMsycQbfVLbAOBgomVq6qYseXr5wjVWKPdvw9NbjlaH7aqjFQEg31QWJj9d6JHFve7ssEznyD750o/BOaweLYU1QqpvOMdMUeahH6Z6uFhgA8OpQX86KOOxtb3vb25Nqb3/uCIBVqmZsuagskki2wBC2ybYdkD3FPuX6d666fM7EfxSNkT2SePH2fwLwBQC+ue/7sRt0VVVfAeAegH8O4A6A/xDA3+n7Xiim/xmA7xlqCV8G8NsA/K+Gv/1lAN9XVdW3A/ivAPw7AP6nvu9/rDQZoZvqkUQTgLEBx63DBT7xxqlqzFw7cpDEpq7ozMrhIHe/2XWqcR4l89KFaxwkccv3ZRS66bKpVXQvd+F44Qa3iMj5F7RZI96xt71dlsn9qAkSDd20RdteQZDYWHXTEUl8iuimv/Sjb8NL3/nxUYxsb3vb296eVnvnHRMk3nucwoGm5jaqZ1G6EUlsDZK4nAkCvHiDY3BJOZEgifs+iRdoQ+/C7wLwxQA+5fRD/A0A3g/gb8BQRH8EwBrAr3OG/xEYMZqfBvB3AXxf3/d/A///9u48SLKrOtD4d2rprVq9S4LWOpKQQGhAAiSBxmYZCTBbMCAQCCFAWGaRwQ4CDAQDAsxiBk/gGcIsBssaEGI1iw3YCkMYEZ4AwshmMfLIgEBiES20dXepu7q7ljN/vKVSRS+Z1ZX5KjO/X0RFV2W+l3kqO+vdPO+cdy+QmXcAFwLvAO4BzgWe205MRSWx/XbTKsHbVVUSO7gm8a5dRSVxZZffVKtblonoaJKK8dFycpfZjt74W1r+uLq9TmLrmpOdLLmxZsUou/fOsne6syUwWg8i7Sfb921JbmdhV6nb/uL5D+f8Bx5VT6DSjpXjI+yZmWPPzGzXrzceHx2pJ6yZn910cP52xkZHeORJm+uZXyVpUFXjzM6p9pPEaq1uqJbA6Gx206L62P6YsaFl2bEj25wssCpU7Jud7XiinH7Wk0piZt4KHOx/8BMH2Xcv8OLya3/3fxU45JIXCxWzm7afOFTJUzW7abvtUEesGqvX/up2JXF8dKRYc2wuO5/JsKqsdrCWV2uFreuVxLHid9u5Z5q9M3Ntt5tWlcSIWHS7absWtvs6UYWWg/NO2cJ5p2zpaJ9VY6PsK0/ItHtN7mJV6wjC/OymwzIAS9IgOaasJE7u3d+y5/u3YmyEyT0zZCazc+22m87Pbtpp++fxm+bn++h08sq63XRscE5kHszQXiRRtJvOdry8weSeztYgbJ0ApRdT5q5ZMcrOPTMdr4m2d7pacL6DJLHlDEy3J66JCNa1rG3TdrvpijH2TM8xGjMd/W6drE9ZqRLlHeXEQd2uwEjdUp0s2jE13fYxcrHGRkaYnUsyc76SaBVekvrO+tXjXHzOcTztIVvb3mfl2Ah3z87VSyG1c/yvK4mzyUyHSeLpWxfOd9lejFC0m+6Z7v7J0+ViaJPEYjKT9iuJVeXwznISmnVtztzUOg1wL3qYN02sYOeezhKiVeNFqX/3vtmOWjLv027ag4Ro3aoxbt9ZTHLb9uymK6sZR2c7qpKOjY7wR088jd/qoAJTvQbbrSSqz1UD4I6p6fuc6OqG6tg6XV5bAu23eEuSlpc/eeZDOtp+vLwmcf5yg0Mf/6uW1Om5IrnsdAmMTrVOXNOLtcGXi6FMEkciOm6vrBKAbTv2sGbFaAcT1/S2krhl7UpuuWt3R8lete3knumOYmyttvVi5r51q8fZViWJK9p7vjUt23V6TejvP+6Ujrav3iPV+jud/B9Iy0n1Xt4xNd32NRuLdZ9rSwZwdlNJ0oFV6yTOX25w6ON/NbvpzGyyb6azJTAArr7sbNZ0UNyoVzjYM0Pm8HSKDWWSGFFMLrJvtv32ymrSgV37Zrn/+vYWcgfYumF+204WF12sqrrXSdWsaifrtAIZETzqpM2sWz3GqUe3P3PiYq1bNc5P7tgFdNBuunJ+u3aXO1ms6szS9nqdSqsh6k/VcWD77umeTFwDMD2TAzm7qSTpwMbLdRI7udxgfnbT4uRip5dFPO60ozravh4Tpzq75KzfDWWSOBLBjg6rPavGR1m7cox79850VKo+vmUB65O2dD+R2nJEkcx20i/dWjXo9Fq8T7zkkR1tfzjWrR6rZw5tf3bTlkpilyu51eymO+t1KofjIKLBUx0Tpqa7P7vp/MzFs/UENl6TKEnDoaokznRwuUHrjPfTs3NdL8JMlN1yd5erFXT7Wv3lYjh+ywVGI7ijvLawk8RhczmbZyfX6LROO79+TXev7YH5SmInJ+Kr12DHVGftpr3W2rrbbj/45pYZWLudJI6NjrBidGT+msQhOYho8LRW4Fd1+e+m6grYvW+Wmbk5RsI1RiVpWFTrJE53cLlB9Rlwaro4udjt7pPqkqq77i06xbo9o/9yMZSfYkdHop4ApZMP8pvLltMNHSSJvS5JV2fgT+tg4eYqxp1T08v6OrrW5LzdayBbK7m9SIBXjY/Ui8g6cY361REtJ2S6fQyrBtvd+2aL9a6ctEaShkZVSdw3M1f/fCjVuDG1b7ZY3L7LS1JUJzOrAtOwJIlD2W46OhL8akeRJHbSErhpoqjSdToz0juecQabJ7o7+UPlv511DL/asYfX/k77S0dWZfO9HS6B0WutrbAnH9le6+7mlgWsjzqi/WtJF2vV+Ci/ntxbfy/1o/Wr5//Wut1WM39GeIbp2azXv5IkDb6qklgniaOH/uxUJWl7ZmaZmZ3reiVxYsV9K4nD8vluKJPEsdGo34wbJ9pP+KqEo9Mk8ZJzT+ho+8Nx7MY1vOMZ/7mjfVqrh92e3OVwHNdSFWy33TRi/gPn2f9p05LHtFBrXMs54ZYOppeVxOq64arddNy/G0kaGuOjI8xl0ToK7VUSV61orSRmR+skLsbISLBmxWi9DJ5J4gAbbTlT3UmF74LTj+Znd+/mqQ9tf5HQftBaKejFWo6L9YTT7wfASVsmOtrvokccy0/v3NWTZTpaWxCWc+uudDCtkwB0P0mcH+yHaZFiSdJ8UrirnJiwk3bTPdNFu2kvlk2aWDnWUklcvp+Vl9LQJ4lbOlgD7PGnH83jTz+6GyE16j4zgC7jN/7qFaP8w6se3XEl993PemiXIvpNrbFZSVS/uu/Jjl61m3a2dq0kqf9VSeHkniJJbGudxNERxkaCqelZZuayXhKjm9auHOPnd+8G2u9m63dDmSSORTBbft96zdqw2jTRuxlAD9epHUzI04SNa4rXcsXoiDM0qm+1tmn3qpK4e98se6fnrCRK0hBZUSZ4VSWx3c+hq8ZHmdo3x/TMXNfbTaGY9XumnIF1WMap5Z0RdMnoaO8+APWDDS1LcyznJTD6wcYy4V7uybbUrl7ObrpnZtZKoiQNkerSnMk9xczw7UxcA2WSWHag9OKz60RL192wVBKHcjRuba9U8Qc6Ub7hvY7u8GwqJ0Iy2dagmOjyYFi3m+6bsZIoSUOmGgN2TLV/TWKx3wiTe6bZNzvH2h58rm+d12JYxqmh/CQ7NhI882HHcPE5xzUdyrIxUb75rYAdnqrddN/sXMORSIfnggcV118/+tQju/o8K0ZHGB2Jot3USqIkDZWqm2T7VDEpTNtJ4vgod+8q9lnTg4kJ167qj/k7ltLQltTec9GZTYewrGT5by9mAB1kVZI4tW/2EFtKy9v7L3kYc5ldbzeNCNaMjxbtptNzbJoYjsFXkjR/XfqO3WW7aQdJYjXbaLc7XgCO2bAaKD4nD0tBxYxAANxRLgD/8BM2NhxJf6sqsse3rOko9aNetkyvXjHKVF1JHI42HklSa7tpdU1i+xPX/HL7FNCbSuIpR60Fio671sndBtlwpMI6pOrNf/r91zUcSX87+8SNXPCgo/jIi89pOhSpb0ysHGPXvhn2TM8NzRlaSdJ8kri9wyRx9YpR7uxhJbH6nDxMM9dbSRQAn3rJI5ncMzNUb/5u2Lx2JX/5wrObDkPqK+tWjbFzzwx7Z+accVqShsia8SIVqSuJHbSb1o/Rg4lrqiTx1Y8/tevPtVyYJAookpvNa1c2HYakIbRu9Tg7pqaLdlMriZI0NOpKYofXJLYu3zaxsvsnF9esGOOWdz2l68+znDgaS5IatX71ODunptk7PecyPJI0RKokcefUNKMjwWibHW3VRIHg0nbdYpIoSWrU+tXj3LN7H/tm51g1JFOLS5Lm20b3zc61fT0iwKaJ+SSxF5XEYeRoLElq1PrV43WrkZVESRoeoyNRt5h2Mqu2lcTuM0mUJDVq/er5a0u8JlGShku1VmInSeKmta1JoicXu8HRWJLUqNYk0dlNJWm4rCmP+x21m7ZUEsc72E/t81WVJDXKSqIkDa9Vi6gkVu2mR69zZv5usYlXktSoo1oG+fuvX9VgJJKkXts8sYKf3LGro5OEx25czSv/6ylc9IjjuhjZcDNJlCQ16qQta+vvT9gy0WAkkqReu9/61cA93K+Dk4QjI8Grn3Ba94KS7aaSpGZtbJnK/P7rrCRK0jDZWiaHx25c3XAkamWSKElaNkbaXEhZkjQYqiUs1q4cP8SW6iXbTSVJjfvcFeexZ3q26TAkSQ3pZOIadZ9JoiSpcQ87fmPTIUiSGnDpo07gh7dPctl5JzYdilqYJEqSJElqxKaJFbzvkoc1HYYWsK4rSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmomiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqJomSJEmSpJpJoiRJkiSpZpIoSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmqRmU3H0HMRMQn8xyJ2XQ/sWOb7GWOz+/VDjIvdzxib3a8fYlzsfv0Q42L32wLc2aPnWux+/fA6Lna/fohxsfsZY7P79UOMi92vH2Jc7H7GeF+nZeYR+70nM4fuC7hhkft9aLnvZ4z+bsP8u/VDjP5u/RnjYfxuy3686YfX0d/NGJfbfv0Qo7+bMbaxzwHHKNtNO/PFPtjPGJvdrx9iXOx+xtjsfv0Q42L364cYD2e/Xj6Xr39zz9Xr/Yyx2f36IcbF7tcPMS52P2Ns07C2m96QmY9oOg5J0mBzvJEkLVcHG6OGtZL4oaYDkCQNBccbSdJydcAxaigriZIkSZKk/RvWSmJXRMSmiPh8ROyKiFsj4nnl7Y+LiH+LiO0RcVe5zTFNxztoIuIVEXFDROyNiP+z4L7zI+KmiNgdEV+LiBMaCnNgHej1j4hLIuLelq/dEZER8fAGwx0oEbEyIq4qjzuTEfHdiHjSfra7snztL2giTqlbDjT+lve9MiJ+GhE7y2PUbzUZ6yA6yPH/xPKY0zoGvKnBUAfSwcaAiHhkRHwlIu6OiDsi4jMRcf+mYx4khxqDI+LyiPhx+f6/LiK2Nhlvu0wSl9b7gH3A0cAlwAci4sHAvwNPzMwNwFbgR8AHmgpygN0GvB34q9YbI2IL8DngTcAm4AbgUz2PbvDt9/XPzGszc231BVwB/AT41wZiHFRjwM+Bx1BMgf1G4NMRcWK1QUScDDwb+FUTAUpdtt/xNyLOBd4FPIvib+Mq4PMRMdpYpINpv8f/FhtaxoG39TCuYXGwMWAjRUvhicAJwCRwdSNRDq4Dvv4R8VjgncDTKT6D/hT4RDNhdsZ20yUSERPAPcAZmfnD8rZrgF9m5utbtlsJvAV4emae3kSsgy4i3g4cm5kvKn9+CfCizDyv/HmCYt2yszLzpsYCHVALX//93P814PrMfGtPAxsyEfF94K2Z+dny5+uA9wLvBy7PzK82GZ+0VA42/gLfAV6dmee0bHsvsDUzPWGyxPYz/p5I8aF4PDNnGgxt6CwcA1pufxjw9TzQ2nhaEtXrDzwKWJ2Zv1/evpXi2HRKZt7cYIiHZCVx6ZwKzFQDVOl7wIMBIuL4iNgOTAGvAd7d8wiH14Mp/i8AyMxdwM3l7eqhss330cBHm45lkEXE0RTHpBvLn58N7M3Mv2s0MKk7Djb+/j0wGhHnltXDFwPfBbb1PMrhdmtE/CIiri67e9RFC8eABR59gNu1RPbz+kfr3eW/Z/Q0qEUYazqAAbIW2Lngth3AEQCZ+TNgQ0RsAn4PsILVO2uBOxbcVv/fqKdeAPxTZv606UAGVUSMA9cCH8nMmyLiCIpWl8c3G5nUNQcbfyeBzwL/l+LD2XbgSWkbVa/cCZxNkZhvpmgLvhZ4YoMxDbSFY8CC+x4CXEnR+qgu2M8YfB3wyYj4IMXlZlcCCaxpMMy2WElcOvcC6xbcto5igKpl5t3AR4C/iQiT9N5o6/9GPfECive/uiAiRoBrKK7NekV581uAazLzlobCkrrtYMf43wUuo6gqrgCeD3ypXyaO6HeZeW9m3pCZM5l5O8Vx6QnlySstsQOMAdV9p1BU1v8wM/+pgfAG3v5e//LSjjdTnKy6pfyaBH7RSJAdMElcOj8ExiLiAS23PZT9l/THgKP4zUFN3XEjxf8FUF+TcjK2W/RURPwXiomb/rrpWAZRRATFpBxHAxdm5nR51/nAH0TEtojYBhxHcUH96xoKVVpqBxt/zwS+lJk/zMy5zLyOYvKm83ofpigqKODnzyV3kDGgutTjq8DbMvOahkIcaAd7/TPzfZn5gMw8miJZHAN+0Eyk7fOPdImU17l9DvjjiJgoPxA/HbgmIp4ZEadFxEhEHAm8B/hOWVXUEomIsYhYBYxSXIOyqqzWfh44IyIuLO+/Evi+k9YsrYO8/pUXAp/NTCu43fEB4EHA0zJzquX28ymufTiz/LoNeClF25fU9w42/gLfBp4SESdF4fEU1wot+w9o/eRAx//yWtDq889mismzrs/MHc1GPJD2OwZEseTaPwJ/npkfbCq4IXCg139VRJxRHn+Op5hp9n9n5j1NBdouk8SldQWwGvg1xfS2L8/MG4FjgOsoysv/BswBz2gqyAH2RoqJgV5P0VI0BbwxM+8ALgTeQTED3rnAc5sKcoDt9/WH4iAJXIStpl1RniV+KUUSuC3m1yO7JDPvysxt1RcwC9yTmfc2GbO0xA40/n4U+CRwPcV1i+8FXupJwiV3oOP/Scx//vkBsBe4uKEYB9bBxgDgcor/h7e03O7xfwkd4vVfBXycoi3+n4FvUizJtuy5BIYkSZIkqWYlUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1UwSJUmSJEk1k0RJkiRJUs0kUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1QYqSYyIWyLi1xEx0XLb5RFxfYNhSZIGTDneTEXEZERsj4hvRMTLImKgxlVJ0nAaxMFsFPjDpoOQJA28p2XmEcAJwLuA1wFXNRuSJEmHbxCTxD8FXhMRGxbeERHnRcS3I2JH+e955e3PiYgbFmz7qoj4296ELEnqV5m5IzP/FngO8MKIOCMiVkbE/4yIn0XE7RHxwYhYXe0TEU+PiO9GxM6IuDkifqe530CSpPsaxCTxBuB64DWtN0bEJuDLwHuBzcB7gC9HxGbgi8BpEfGAll2eB3y8FwFLkvpfZv4z8Avgtykqi6cCZwKnAMcAVwJExDnAR4E/AjYAjwZu6XW8kiQdyCAmiVAMxK+MiCNbbnsK8KPMvCYzZzLzE8BNFO1Cu4G/AS4GKJPFBwJWEiVJnbgN2AS8BHhVZt6dmZPAO4Hnltv8LvBXmfmVzJzLzF9m5k0NxStJ0m8YyCQxM38AfAl4fcvNW4FbF2x6K8XZXSiqhheX3z8P+EKZPEqS1K5jgDFgDfAv5aQ224HrgOrE5XHAzc2EJ0nSoQ1kklh6M/B7zCeBt1FMLtDqeOCX5fdfAY6MiDMpkkVbTSVJbYuIsynGnC8AU8CDM3ND+bU+M9eWm/4cOLmhMCVJOqSBTRIz88fAp4A/KG/6O+DUiHheRIxFxHOA0ykqjmTmNPAZiolvNlEkjZIkHVRErIuIpwKfBD6Wmd8DPgz8WUQcVW5zTEQ8sdzlKuCyiDg/IkbK+x7YTPSSJP2mgU0SS38MTABk5l3AU4FXA3cBrwWempl3tmz/ceAC4DOZOdPjWCVJ/eWLETFJURn87xQTol1W3vc64MfAtyJiJ/BV4DSoJ7i5DPgzYAfwdX6z00WSpMZEZjYdgyRJkiRpmRj0SqIkSZIkqQMmiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqfZ0kRsTKiLgqIm6NiMmI+G5EPKnl/vMj4qaI2B0RX4uIE1ruuygivlHed/1BnuMFEZERcXmXfx1JkiRJalxfJ4nAGMX6VI8B1gNvBD4dESdGxBbgc8CbgE3ADcCnWva9G/hfwLsO9OARsRF4A3BjN4KXJEmSpOVm4NZJjIjvA28FNgMvyszzytsngDuBszLzppbtLween5mP3c9jfRD4PnAR8LHM/Mvu/waSJEmS1Jx+ryTeR0QcDZxKUfl7MPC96r7M3AXcXN7ezmOdAzwC+ODSRypJkiRJy9PAJIkRMQ5cC3ykrBSuBXYs2GwHcEQbjzUKvB94RWbOLXWskiRJkrRcDUSSGBEjwDXAPuAV5c33AusWbLoOmGzjIa8Avp+Z31qyICVJkiSpD4w1HcDhiogArgKOBp6cmdPlXTcCL2zZbgI4mfYmoTkfeExEPLn8eRNwVkScmZmvOMh+kiRJktTX+j5JBD4APAi4IDOnWm7/PPCnEXEh8GXgSorq4E1Qt5SOU7wGIxGxCpgtk8wXAataHutzwF9TJKOSJEmSNLD6ut20XPfwpcCZwLaIuLf8uiQz7wAuBN4B3AOcCzy3ZfdLgSmKJPO3y+8/DJCZ2zNzW/VF0ca6MzMXXuMoSZIkSQNl4JbAkCRJkiQtXl9XEiVJkiRJS8skUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCQJiIjjy7V2R5uORZKkJpkkSpKGVkTcEhEXAGTmzzJzbWbO9vD5HxsRv+jV80mS1A6TREmSJElSzSRRkjSUIuIa4Hjgi2Wb6WsjIiNirLz/+oh4e0R8o7z/ixGxOSKujYidEfHtiDix5fEeGBFfiYi7I+I/IuKilvueHBH/HhGTEfHLiHhNREwAfw9sLR//3ojYGhHnRMQ3I2J7RPwqIv48Ila0PFZGxBUR8aPy8d4WESeXce6MiE9X21eVyoh4Q0TcWVZOL+nRSyxJ6lMmiZKkoZSZlwI/A56WmWuBT+9ns+cClwLHACcD3wSuBjYB/w94M0CZ8H0F+DhwVLnf+yPi9PJxrgJemplHAGcA/5iZu4AnAbeVba5rM/M2YBZ4FbAFeBRwPnDFgrieCDwceCTwWuBDwPOB48rHv7hl2/uVj3UM8ELgQxFxWkcvliRpqJgkSpJ0YFdn5s2ZuYOi6ndzZn41M2eAzwBnlds9FbglM6/OzJnM/A7wWeDZ5f3TwOkRsS4z78nMfz3QE2bmv2Tmt8rHuQX4C+AxCzZ7d2buzMwbgR8A/5CZP2mJ86wF278pM/dm5teBLwMXIUnSAZgkSpJ0YLe3fD+1n5/Xlt+fAJxbtohuj4jtwCUUVTyAC4EnA7dGxNcj4lEHesKIODUivhQR2yJiJ/BOikrgYuICuKesWlZuBbYe6PklSTJJlCQNs1yix/k58PXM3NDytTYzXw6Qmd/OzKdTtKJ+gfnW1v09/weAm4AHZOY64A1AHEZsG8t22MrxwG2H8XiSpAFnkihJGma3AyctweN8CTg1Ii6NiPHy6+yIeFBErIiISyJifWZOAzuBuZbn3xwR61se64hym3sj4oHAy5cgvreWcfw2RWvsZ5bgMSVJA8okUZI0zP4EeGPZHvqsxT5IZk4CT6CYsOY2YBvwP4CV5SaXAreU7aMvo2hFJTNvAj4B/KRsU90KvAZ4HjAJfBj41GLjKm0D7injuhZ4Wfm8kiTtV2QuVaeNJElaTiLiscDHMvPYhkORJPURK4mSJEmSpJpJoiRJkiSpZrupJEmSJKlmJVGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1f4/WCe+dKm1/scAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "이제 데이터를 필터링하고 스케일링하여 훈련을 위한 데이터를 준비해야 합니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "데이터를 (0, 1) 범위로 스케일링하세요.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    load
                                                    2014-11-01 00:00:000.101611
                                                    2014-11-01 01:00:000.065801
                                                    2014-11-01 02:00:000.046106
                                                    2014-11-01 03:00:000.042525
                                                    2014-11-01 04:00:000.059087
                                                    \n", + "
                                                    " + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.101611\n", + "2014-11-01 01:00:00 0.065801\n", + "2014-11-01 02:00:00 0.046106\n", + "2014-11-01 03:00:00 0.042525\n", + "2014-11-01 04:00:00 0.059087" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    load
                                                    2014-12-30 00:00:000.329454
                                                    2014-12-30 01:00:000.290063
                                                    2014-12-30 02:00:000.273948
                                                    2014-12-30 03:00:000.268129
                                                    2014-12-30 04:00:000.302596
                                                    \n", + "
                                                    " + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.329454\n", + "2014-12-30 01:00:00 0.290063\n", + "2014-12-30 02:00:00 0.273948\n", + "2014-12-30 03:00:00 0.268129\n", + "2014-12-30 04:00:00 0.302596" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [ + "시간 단계로 데이터 생성\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "우리의 SVR을 위해 입력 데이터를 `[batch, timesteps]` 형식으로 변환합니다. 따라서 기존의 `train_data`와 `test_data`를 재구성하여 timesteps를 나타내는 새로운 차원을 추가합니다. 예를 들어, 우리는 `timesteps = 5`로 설정합니다. 따라서 모델의 입력은 처음 4개의 timestep에 대한 데이터이고, 출력은 5번째 timestep에 대한 데이터가 됩니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=5" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1412, 5)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0]\n", + "train_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(44, 5)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0]\n", + "test_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 4) (1412, 1)\n", + "(44, 4) (44, 1)\n" + ] + } + ], + "source": [ + "x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]]\n", + "x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]]\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5,\n", + " kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Fit model on training data\n", + "\n", + "model.fit(x_train, y_train[:,0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "### 모델 예측 만들기\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 1) (44, 1)\n" + ] + } + ], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = model.predict(x_train).reshape(-1,1)\n", + "y_test_pred = model.predict(x_test).reshape(-1,1)\n", + "\n", + "print(y_train_pred.shape, y_test_pred.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)\n", + "\n", + "print(len(y_train_pred), len(y_test_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)\n", + "\n", + "print(len(y_train), len(y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:]\n", + "test_timestamps = energy[test_start_dt:].index[timesteps-1:]\n", + "\n", + "print(len(train_timestamps), len(test_timestamps))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABasAAAGDCAYAAAAlN0y0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9eZxtV13m/aw9n7GmOyY3E4QhITIHERkUacjbIrZt+wrd7dCKgratre3Urd2grSD42ohoMwiKAxAwKCAaDGMSEkJIIGRO7s2dx5rrjHtYe6/3j7X2ObvqVtU5dc+vbt3K/X0/n3xy65xTq/Y5Z++113rWs56fUEqBYRiGYRiGYRiGYRiGYRiGYbYSa6sPgGEYhmEYhmEYhmEYhmEYhmFYrGYYhmEYhmEYhmEYhmEYhmG2HBarGYZhGIZhGIZhGIZhGIZhmC2HxWqGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhthwWqxmGYRiGYZgLGiHEzUKIn6B+7agIIZQQ4urz8bc2m+J7EUK8TwjxP8+xnZYQ4im0R8cwDMMwDMNcLAil1FYfA8MwDMMwDPMkQwjRKvxYBhABSM3Pb1JKfeT8HxUtQggF4GlKqQMDXnclgEMAXKWUPB/HtlGGfS8rfucrAP5WKfXBTTswhmEYhmEY5qLC2eoDYBiGYRiGYZ58KKWq+b+FEIcBvFEp9YWVrxNCOBeqgLtd4c+UYRiGYRiG2a5wDAjDMAzDMAxz3hBCfI8Q4rgQ4jeEEKcB/KUQYkII8VkhxIwQYsH8e1/hd74ihHij+fdPCiG+KoT4/8xrDwkh/p9zfO1VQojbhBBNIcQXhBB/JoT423WO/deEEKeEECeFED+14rnvF0J8SwjREEIcE0K8tfD0beb/iyYm47uEEE8VQnxJCDEnhJgVQnxECDG+zt9WQohfFEIcNK//QyGEVXifdwgh3iWEmAPwViGEb973USHEGRPtURryvXxYCPF7hZ9/UAhxn3lvTwghbhBC/D6AlwH4U/Oe/rRwnHmcyJgQ4q/N93pECPHbK455ze+GYRiGYRiGuThhsZphGIZhGIY53+wBMAngCgA/Cz0m/Uvz8+UAugD+dJ3f/04AjwHYAeCdAD4khBDn8NqPArgbwBSAtwL4sbX+oBDiBgC/CuBfAXgagFeteEkbwI8DGAfw/QB+Tgjxb8xzLzf/H1dKVZVSXwMgALwdwCUArgFwmTmG9fghAC8E8HwAPwigKDJ/J4CDAHYD+H0AfwDg6QCeC+BqAJcC+F9Dvpfi+34RgL8G8Gvmvb0cwGGl1G8BuB3AL5j39Aur/Pp7AIwBeAqAV0B/Pv9pxTEP+z0yDMMwDMMwFwEsVjMMwzAMwzDnmwzAW5RSkVKqq5SaU0p9UinVUUo1ocXWV6zz+0eUUn+ulEoB/BWAvdAi7dCvFUJcDuB6AP9LKRUrpb4K4DPr/M3/F8BfKqUeVEq1sUJYVkp9RSn1gFIqU0rdD+Bj670HpdQBpdTnzWcwA+D/DHjPAPAOpdS8UuoogD8G8IbCcyeVUu8x8R8h9CLAL5vXNwG8DcDrh3kvK/hpAH9hjjVTSp1QSj064DghhLDN3/vvSqmmUuowgD/C8gWBjXyPDMMwDMMwzEUAZ1YzDMMwDMMw55sZpVSY/yCEKAN4F4AbAEyYh2tCCNsImSs5nf9DKdUxZtzqKq9b77U7AMwrpTqF1x6DdjivxiUA7i38fKT4pBDiO6HdzNcB8AD4AP5ujbYghNgN4N3QURo1aBPJwlqvLxxf8e9fssZzO6GLWt5bMCoLAPYw72UFlwH45wHHtRo7ALgr2j4C7fDO2cj3yDAMwzAMw1wEsLOaYRiGYRiGOd+oFT//NwDPAPCdSqk6+rEZmxkJcQrApBHKc9YSqvPXF5+/fMXzH4V2Zl+mlBoD8D70j3/l+wW001kB+A7znv8jBr/flX//ZOHn4t+YhY5SeZZSatz8N1YoejnovRQ5BuCpazy32vsqHkMCHe1S/Dsn1vkdhmEYhmEY5iKHxWqGYRiGYRhmq6lBi6uLQohJAG/Z7D+olDoC4B7oYoSeEOK7APzAOr/yCQA/KYS41gjcK4+xBu3UDk3O878vPDcDHX3ylBWvbwFYEkJcCp0JPYhfM8UoLwPwSwA+vsZ7ywD8OYB3CSF2AYAQ4lIhxGuGfC9FPgTgPwkhvk8IYZl2nmmeO7PiPRWPITV/5/eFEDUhxBUAfgXAmgUsGYZhGIZhGIbFaoZhGIZhGGar+WMAJWg37l0APnee/u5/APBdAOYA/B60+But9kKl1M3Qx/klAAfM/4v8PIDfFUI0oQsZfqLwux3oHO47hBCLQogXA/gd6EKJSwD+CcDfD3G8n4aO77jP/M6H1nntb5jjvEsI0QDwBWj3+jDvpYdS6m7ooojvMsd6K/pu6XcD+HdCiAUhxJ+s8uv/Bbrw5EEAX4V2n//F4LfJMAzDMAzDXKwIpdbbvccwDMMwDMMwFwdCiI8DeFQptenO7o0ihFAAnqaUOrDVx8IwDMMwDMMwmwU7qxmGYRiGYZiLEiHE9UKIp5p4ixsA/CCAT23xYTEMwzAMwzDMRYuz1QfAMAzDMAzDMFvEHuj4jSkAxwH8nFLqW1t7SAzDMAzDMAxz8cIxIAzDMAzDMAzDMAzDMAzDMMyWwzEgDMMwDMMwDMMwDMMwDMMwzJbDYjXDMAzDMAzDMAzDMAzDMAyz5VzQmdU7duxQV1555VYfBsMwDMMwDMMwDMMwDMMwDLMO995776xSaucobVzQYvWVV16Je+65Z6sPg2EYhmEYhmEYhmEYhmEYhlkHIcSRUdvgGBCGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhtpwLOrN6NZIkwfHjxxGG4VYfyrYmCALs27cPrutu9aEwDMMwDMMwDMMwDMMwDMNsP7H6+PHjqNVquPLKKyGE2OrD2ZYopTA3N4fjx4/jqquu2urDYRiGYRiGYRiGYRiGYRiG2X4xIGEYYmpqioXqERBCYGpqit3pDMMwDMMwDMMwDMMwDMNcMGw7sRoAC9UE8GfIMAzDMAzDMAzDMAzDMMyFxLYUqy8UPvWpT0EIgUcffXTd1/3xH/8xOp3OOf+dD3/4w/iFX/iFc/59hmEYhmEYhmEYhmEYhmGYCx0Wq0fgYx/7GF760pfiYx/72LqvG1WsZhiGYRiGYRiGYRiGYRiGebLDYvU50mq18NWvfhUf+tCHcOONNwIA0jTFr/7qr+K6667Ds5/9bLznPe/Bn/zJn+DkyZP43u/9Xnzv934vAKBarfbauemmm/CTP/mTAIB//Md/xHd+53fiec97Hl71qlfhzJkz5/19MQzDMAzDMAzDMAzDMAzDbAXOVh/ASLzpTZvT7vvfP/Aln/70p3HDDTfg6U9/OqampnDvvffi7rvvxuHDh3HffffBcRzMz89jcnIS/+f//B98+ctfxo4dO9Zt86UvfSnuuusuCCHwwQ9+EO985zvxR3/0R1TvimEYhmEYhmEYhmEYhmEY5oJle4vVW8jHPvYx/NIv/RIA4PWvfz0+9rGP4dChQ3jzm98Mx9Ef6+Tk5IbaPH78OH70R38Up06dQhzHuOqqq8iPm2EYhmEYhmEY5pyQErj9duA7vgMYYMRhGIZhGIY5F4YWq4UQNoB7AJxQSr1WCPFhAK8AsGRe8pNKqfuEEALAuwH8awAd8/g3TRs/AeC3zet/Tyn1VyMd/RAO6M1gfn4eX/rSl/DAAw9ACIE0TSGEwPXXXz/U7+uPSBOGYe/f/+W//Bf8yq/8Cl73utfhK1/5Ct761rdSHzrDMAzDMAzDMMy5cfvtwI03Ap/8JPCnf7rVR8MwDMMwzJOQjWRW/xKAR1Y89mtKqeea/+4zj/0/AJ5m/vtZAO8FACHEJIC3APhOAC8C8BYhxMQIx75l3HTTTfixH/sxHDlyBIcPH8axY8dw1VVX4TnPeQ7e//73Q0oJQIvaAFCr1dBsNnu/v3v3bjzyyCPIsgz/8A//0Ht8aWkJl156KQDgr/5qNB2fYRiGYRiGYRiGlNOn9f+TZGuPg2EYhmGYJy1DidVCiH0Avh/AB4d4+Q8C+GuluQvAuBBiL4DXAPi8UmpeKbUA4PMAbjjH495SPvaxj+GHfuiHlj32wz/8wzh16hQuv/xyPPvZz8ZznvMcfPSjHwUA/OzP/ixuuOGGXoHFP/iDP8BrX/tavOQlL8HevXt7bbz1rW/Fj/zIj+AFL3jBwHxrhmEYhmEYhmGY88rYWP/fWbZ1x8EwDMMwzJMWoZQa/CIhbgLwdgA1AL9aiAH5LgARgC8C+E2lVCSE+CyAP1BKfdX87hcB/AaA7wEQKKV+zzz+PwF0lVL/34q/9bPQjmxcfvnlLzhy5MiyY3nkkUdwzTXXnPMbZvrwZ8kwDMMwDMMwzNDcfDMe//CdeNrYNMTbfp9zqxmGYRiGWYYQ4l6l1AtHaWOgs1oI8VoA00qpe1c89d8BPBPA9QAmoQXpkVFKfUAp9UKl1At37txJ0STDMAzDMAzDMAwzKlGEN93+H/FEYydw5sxWHw3DMAzDME9ChokB+W4ArxNCHAZwI4BXCiH+Vil1ykR9RAD+EjqHGgBOALis8Pv7zGNrPc4wDMMwDMMwDMNc6EQR4szGA/OXsljNMAzDMMymMFCsVkr9d6XUPqXUlQBeD+BLSqn/aHKoIYQQAP4NgAfNr3wGwI8LzYsBLCmlTgH4FwCvFkJMmMKKrzaPMQzDMAzDMAzDMBc6UYQkF6tnZ7f6aBiGYRiGeRLijPC7HxFC7AQgANwH4M3m8X8G8K8BHADQAfCfAEApNS+E+N8AvmFe97tKqfkR/j7DMAzDMAzDMAxzvohjJJmN++cvBToPbPXRMAzDMAzzJGRDYrVS6isAvmL+/co1XqMA/Oc1nvsLAH+xoSNkGIZhGIZhGIZhtp4oAgAcbOwEut0tPhiGYRiGYZ6MDJNZzTAMwzAMwzAMw1zsRBEEACEUi9UMwzAMw2wKLFafA7Zt47nPfS6uu+46/MiP/Ag6nc45t/WTP/mTuOmmmwAAb3zjG/Hwww+v+dqvfOUruPPOOzf8N6688krMcqYcwzAMwzAMwzCjEEUQQsERGWQ72uqjYRiGYRjmSQiL1edAqVTCfffdhwcffBCe5+F973vfsuellOfU7gc/+EFce+21az5/rmI1wzAMwzAMwzDMyJgYkLITo91It/hgGIZhGIZ5MsJi9Yi87GUvw4EDB/CVr3wFL3vZy/C6170O1157LdI0xa/92q/h+uuvx7Of/Wy8//3vBwAopfALv/ALeMYznoFXvepVmJ6e7rX1Pd/zPbjnnnsAAJ/73Ofw/Oc/H895znPwfd/3fTh8+DDe97734V3vehee+9zn4vbbb8fMzAx++Id/GNdffz2uv/563HHHHQCAubk5vPrVr8aznvUsvPGNb4SOEWcYhmEYhmEYhhmBOAYAVNwInSaL1QzDMAzD0LOhAovMcqSUuPnmm3HDDTcAAL75zW/iwQcfxFVXXYUPfOADGBsbwze+8Q1EUYTv/u7vxqtf/Wp861vfwmOPPYaHH34YZ86cwbXXXouf+qmfWtbuzMwMfuZnfga33XYbrrrqKszPz2NychJvfvObUa1W8au/+qsAgH//7/89fvmXfxkvfelLcfToUbzmNa/BI488gt/5nd/BS1/6Uvyv//W/8E//9E/40Ic+dN4/G4ZhGIZhGIZhnmSEIQDjrG6xIYZhGIZhGHq2vVh9ww0AZRzzjh3A5z63/mu63S6e+9znAtDO6p/+6Z/GnXfeiRe96EW46qqrAAC33HIL7r///l4e9dLSEvbv34/bbrsNb3jDG2DbNi655BK88pWvPKv9u+66Cy9/+ct7bU1OTq56HF/4wheWZVw3Gg20Wi3cdttt+Pu//3sAwPd///djYmJiQ58BwzAMwzAMwzDMWeTOaidGJ7SAJAFcd4sPimEYhmGYJxPbXqweJCxvBnlm9UoqlUrv30opvOc978FrXvOaZa/553/+Z7LjyLIMd911F4IgIGuTYRiGYRiGYRjmLLJMi9MAyiWFtvSBbpfFaoZhGIZhSOHM6k3iNa95Dd773vciMQO6xx9/HO12Gy9/+cvx8Y9/HGma4tSpU/jyl7981u+++MUvxm233YZDhw4BAObn5wEAtVoNzWaz97pXv/rVeM973tP7ORfQX/7yl+OjH/0oAODmm2/GwsLCprxHhmEYhmEYhmEuEoyrGsJCpZyhIz0tVjMMwzAMwxDCYvUm8cY3vhHXXnstnv/85+O6667Dm970Jkgp8UM/9EN42tOehmuvvRY//uM/ju/6ru8663d37tyJD3zgA/i3//bf4jnPeQ5+9Ed/FADwAz/wA/iHf/iHXoHFP/mTP8E999yDZz/72bj22mvxvve9DwDwlre8Bbfddhue9axn4e///u9x+eWXn9f3zjAMwzAMwzDMk4woglKAEgLlEtBOWKxmGIZhmFtv3eojePIhlLpwC2O88IUvVPfcc8+yxx555BFcc801W3RETy74s2QYhmEYhmEYZiimpyF/6y14yT/9Fn7kBQdxWecxvP5PXwrwfIJhGIa5iLn6auDAga0+igsHIcS9SqkXjtIGO6sZhmEYhmEYhmGY9YkiJJkN11EoV9DPrCbgiSeAN72JpCmGYRiGOW8oBZw4of/P0MFiNcMwDMMwDMMwAzl5Evi939vqo2C2jDjWYrWrUKlapJnVi/c+gf13nNFFHBmGYRhmm9DpAGHYqz/MEMFiNcMwDMMwDMMwA5mZAW6/fauPgtkykqTvrK5aaBOK1fFHb8LpEylw990k7TEMwzDM+WBuTv8/DLf2OJ5sbEux+kLO2d4u8GfIMAzDMAzDbAQpgTNntvoomC1DSi1W2wqVmnFWxzFJ03Fq41RnDFhaImmPYRiGYc4HuVjN9YZp2XZidRAEmJubY7F1BJRSmJubQxAEW30oDMMwDMMwzDaBxeqLnDQtZFYLtBMfiCKSpqPMwWJcQZjYJO0xDMMwzPlg7owEwM5qapytPoCNsm/fPhw/fhwzMzNbfSjbmiAIsG/fvq0+DIZhGIZhGGabIKWOAskywNp2lpeLDyl1hmapRNRgHgPiFpzVFGJ1liFO9bT09LyHK0dvkWEYhmE2n6NHMfdHtwB4I4vVxGw7sdp1XVx11VVbfRgMwzAMwzAMc1GRJECa6i2vO3du9dEwg7j5ZuBrXwPe9jaiBnvOavQzqyliQLpdxJkRq88IFqsZhmGY7cHtt2OuW4ZAhjDkVXxK+NNkGIZhGIZhGGYg8r4HAQBnjtJEPzCbSxQBjz9O2KCUkJkFx1GojNl0mdXtNuLURtUNcer06M0xDMMwzHlh927MRRXsLjURtuRWH82TCharGYZhGIZhGIYZiLzlSwCAM5/75hYfCTMMaQrs30/YYF5g0QHKdRdt6ZOJ1VHm4IrqHE5Pc2Y1wzAMs01wHMyHFVxaWUR4dHqrj+ZJBYvVDMMwDMMwDMMMRGYWSnaM6YPtrT4UZgjSMzM4sD8DWV36XKx2gUrdpiuw2G4jTh1cUZ3H6dltl1LJMAzDXKxIibmogn2VBYRHuAI1JSxWMwzDMAzDMAwzEKksXFpZwJmT6VYfCjME6T/8IzpdC6cfmqNpsCBWl+oubQxI5mAqaKHVFqO3xzAMwzDnAykxF1a1s3q2tdVH86SCxWqGYRiGYRiGYQaSZDYurSzizPTFKyjeeSfw0ENbfRTDkSoLjkix/6tEbq+8wKIL2CUPmRI0YnWngyh1UHdDhF0qGzjDMAzDbDJSopkE2Bk00W1nW300TypYrGYYhmEYhmEYZiASLnYGLSx2faDb3erD2RJuvx34xje2+iiGI1UWrqrP4uDDIU2DBWc1fF8/RhED0mohzmzUvRAh1+5kGIZhtgtSQioLNS9E2GGxmhIWqxmGYRhmizh6FLj55q0+CoZhmCHIMkgJTAUtLMUlYHFxq49oS5AS6HS2+iiGQCnIzMLOoInFU0QLC7lY7QHwPAih6GJAUgc1NyTRvhmGYRjmvJCmkJmFqhOxWE0Mi9UMwzAMs0Xcc8/FLVa320BIZPhjGGaTiWNIZWPKb6ORBBetszpJtslbzzKkysKk30FjmtpZLQDP049RqMudDuLM0c7qxNYrAgxDxPw8cOONW30UzLC0WsD09FYfBcMMSZIgVRbKTswxVsSwWM0wDMMwW8TMzDYRPTaJP/9znkAyzLYhjpFkNnbkzuoLvPNSCvj85+nb3TbOaimRKgsTfhuNxQzICBxfRWd1HgMSx/rDHoUwNJnVXUSpu00+YGa7cPTo9hlrSAn84R9u9VFsLbfcAvzZn231UTDMkKS64HTgJCxWE8NiNcMwDMNsERe7WB2GwNzcVh8FwzBDEYaQmc5l7EjvghcUowh49auB97+ftt0kueDfusaI1eNeF42YyAkvJaSy4bgCsG0IAWSp6k3WR2m3l1mdOhf3jfEiJ4qA7/5u2jaTZPs4dcMQeOc7R1//2c5ICSwtbfVRMMyQSAkBoGSzWE0Ni9UMwzAMs0Vc7GJ1kgALC1t9FAzDDEUcQyoLrmWEyQu880oS4OlPV/jMZ2jb3V7OaoEJv4Nm4uvcpVFJU+OsFgCAwEkRpc7oudVJgjh1UPeMs5oiB5vZlnz0o8Cdd46+/lFESj3e2g4kCTA7C5w5Q9vu4uI26bfAYjWzzTCxVYGdIIzEFh/MkwsWqxmGYRhmi5iZoc9s3k5Rn1LqLEmGYbYBUQSZ2XCEiZO40MXqL38VU41DaJyhPc5tk1ktJdLMwoTfQSMu0YjVvRgQPYUM3BRdSSAuS2liQIyzmsXqi5YbbwSe9jSdW0yFlNvHWZ2P4e6/n7bdD3wA+Nu/pW1zs0hTFquZbUQuVjsJwtiiidxiALBYzTAMwzBbxmY4q3/914GPfIS2zc2CndUMs42IIsjMgmNlEACy9oWt2MqbPoUxt4POEVqVans5q01mdRIQi9X6x8DLEKbu6EUWkwRx5qBcsyEzm8Xqi5hOW+HyyxWpWJ0kQKNBUwt0s8nF6gceoG03joGHH6Ztc7NgsZrZVvSc1VIv3nLleDJYrGYYhmGYrWB2FnPHOuRidbMJ/M7vbA+HdZKws5phtg1RhCSz4YgUVTdEayHZ6iNal2TPZXCFyRIgnDxut8zqmhuhTRUDkovVvg0AKPmpFqspYkAyG17VqOAsVl+cnDoFeeAQxjunyJ3VwPaIAkkW27hib4QHHqDNvpWSxer/8B+4TgqzCeQFFu1E3w+3xdar7QGL1QzDMAyzFbzzncDsLOJFAgGhQD4pO3yYtNlNgZ3VDLONiGNIZcO1Uox5XSzNE4bKbgJJUOvnaz/xBFm7281ZbeexLRQH3XNWm8zq3FlNlFnt1Xz9M4vVFycPPIA0ExifP4jWHJ0NOjHrattBrJY3/QMuV0dx5gH6HSHbRazerMzqI0eAb32Lvl3mIqeYWc1iNSksVjMMwzDMFqAWlyCEonG7FUgaXeyYSNFskja7KXBmNcNsI/IYkGqgxeqFCzuXMQlTOJY+RtWg6xC3k7NaZlqsJrvX5AUWfSNW+0pvex41X0FKRJkWq4VQ2yOvgaGnVEKmLNS9EM27HyFrVsa6H9gOudXywccwFbSwdILQWg493jp1anvEa2yWs1pK4JvfpG+XuchZJlY7HANCCIvVDMMwDLMFNJIAdTekdZAtLEDe9yAmpx/ZFmI1O6sZZhsRRZDKglMvY8wLsbRIu02dGhmlcK0UJTtBtECnLku5TYxTxlndE+ybBOJXkiwrsFjyFamz2h8L9M/srL44kRIKQM0N0Tq+SNZs8k+3YMpvYWY/XZsAoDahC0x2XYqqEyFKnb4lnAApgac+FXjsMbImN43NFKvZWc2QY/qtUt3V90MWq8lgsZphGIZhtoDZZBw7ghaUzOhmPDMzSDIbk24TzTMXuPVPKSQP70dzKePC2QyzHcgzq+tl7awmFBP+/M/po4uSKINrpah7XTSm6SaP2zEGJLATRA0Ct3LurA70FDIIQFhg0e7HgBA6q9/yFuDb3yZrblORshd/enFixNmqG6G1RPdByEPHcEllEdP3HCVrEwB+8RfpxU/plvrxRVSdolKQ334Qe5yZbbGbLU31ehW15pdl20OsZ7YZubN6zOcYEGJYrGYYhmGYLaBbmkTZMe6xxUWaRpWCVBYm/A4aj52iaXOz6HQgz8xiwmuhsXRhOzQZhoGJAbHh1ksY87poNAVZ03fdBdx/P1lzAIAkSuFYKWpuhMYsnVN3O8WApErAtpT+DOYIXJomWsTxdIHFwM90DMgoCqtSOgYkdeCNlfRDEd33deQI8NWvkjUHQL/dP/gD2jYB4E//FPjEJ+jb3TYY0afqhmg16cYFUtnYW17CzCxdnwUArRZw4ABpk8vii8i2yLVaSE7OYqJzAs35C7swLtCvvULtrhZC/8cwpEgJAcAfCxBKFqspYbGaYRiGYbYAmSg4VqrzOakmJHGMJLMx4XXQfOICD2fsdpFkNnaXGpg/vh2UH4a5yIljLVSOV7WzumVTNo0TJ8iaAwDIWPWd1RRCbd5uO0QSbQP7q5RIMwt2taQ/g3lJ0qbOrDbO6jwGZBSxOk3NQqsNu+zDs1LEHYJjNcQxcM89ZM0B0FrE7/1eX1Sjot0GTp6kbXNbkSQQAKpORBpllmQ2pvw2+cK4lMDx46RNQsYZHCuFIzIkTSJrcZJAZsbIcITWWv3KV5I2B0B3CZZFLFa328DcLBwZkl+3zEWOuf85YxWkyuIYEEJYrGYYhmGYLSBJANdKYYsMskm0Ch/HkJmNyaCN5gzdYEkp4Kd+CvjlXyZrsidW7yo1sXCSxWqGueAJQ51ZPVbRzseuBaoMnyShF6t7MSBuSCPUAjoK5dGDcFvbIGw/jwGpllB3QzSXCL6rFWJ1L7N6FPXH/K4QAsL34NsJojadmpQkwL33kjXXa7PdBh54gL7dM2do29xW5JnVXohWm84Cmwu11LU8pASOHSNu02Ttj/sdLE0TxeEkid5153XQPEZrV370UfromjRJMTmpaMXqL3wBaLdRmT1MXdecuchRiblfVSpQABcIJoTFaoZhGIbZAmSi4FoZSk6C7iLdhCTJbEz6HRphwhDHehs16cS800GS2dgZNLF4ml0IDHPBY3ZuOCUHpQDoSo9sUkYuViuFJMrgiAx1L0Rjkag/XFrSgr1IoeQF7q7OxepaWX8GDZo2dWZ1HgOiEKbOaGpVXkROCMDzENgSYYfo+1IK8fEzWJhJSKNbcm3+zjvp2gT0RzF9gW+K2lTyzGonohOrs8yMi9potmmlj80Qq/N+a8zrYnGOqI8pGhlOERRaLRBFdEl2Oemtd2AymSaNb8r7qKoToUX4ERw7Bvzu79K1x2w/0kTvhkClAgFwgWBCWKxmGIZhmC0gSQBHpAjsBGGDaGATx5DKwqTfRqMJssKNcQzs2AHSAT46HcjMxpjXRWeOxWqGueBJU8jMhuPZKJWgs4qJxGryGBCTrayd1V0aoRYAmk0kmY2yEyNZoBV9yMkzq8u+/gzaBLEtvQKLfbG6K73RxOpc+RUAfF8Xg6RyVj/6KOITM7hCHcHMDE2TgL5/79sHfP3rdG3m7V7UYnUvszpCs2PTjGGiqDcuanZtUtfjpjqrvS6W5oiuAzM2nPA6pLvuAP0ZzM2RNgk538Ck38bSfsKLoV4HYIp3nqbru6engc9+lqw5ZhsiY73AhEpFP8AxIGSwWM0wDMMw5xulejEgJTtBd4lQrM4dRJFHVgUsmV1COV5AEhPmPZoYkLoborPILgSGueCRElJZcH0LQQAd/0DkICJ3VhsXuOsJ1P0QjRZRZEmjYRbZQnRmLvC95Lmzuuyj5kVodJzRPwOzeycXq0sljB4DssJZ7VM6q1stxKmDcb9D6qxOEuDyyxSpAA7oj/GijgHJndVuhFZCtHMjinQtD7+DZhyQ2oCThDhjXCmTWZ1h3OtgcYFozGXGhhN+B03CeBVAn7Ozs4QNKoXULC4snSYsVFc8t56gu8jiGHjoIbJELGYbktcg6sWAsLOaDBarGYZhGOZ8k6Y911/JidFtEBX/ygss5pMyosC/5G9uhDt9AlgkzGk1MSB1j8VqhtkW9JzVFkplgW5K56xOWhG6VAIl0BNVHVegXlVoxD5IgkobDSSZjZobojt3gWftSwmZ2bA9G/WyRCMJRp9Er+Kspo8BSRCFRCKdbSM2O3jI4rYAJLfeicmTD6A5QyimgZ3VkBICQM0N0UoCmms2DCEzGyVH9wno0n1nUupCgAlV/VYTs+OIVBexXaQUq01ud4euMC6g3zupszpNkSqBqaCFpTOEDlXT91XdCK3DdOp6kmhfyOHDZE0y2wmlIBMFWyigXIZrpUg6dAWdL3ZYrGYYhmGY800+IbEyBLakE6vNjKnudbUwQSVWP3YQniVBWp3IOKvHvC46DS7NzjAXPCZaw/FtLVZLj8ZBND2N5ImjGO+cpCt8ZcQZ1xOojwk04hJNjlGjAQUteHTmaYVKcpIEqRJwPAv1Sqo/g1G2J2cZkGWIMweer92ZQZ5dTuCsVrDondVhqJ3VXhedM3T3r+Sz/4K620X3xDxZm0BfrCZK8Np+mAKL2lnt0+wOC0O9wGKZBRVKsTrJcOmlim6BIYoglW0KLHaxuETkgs5jQPyO3nU3yvW6AnJndRwjzSxM+p1NEqtDtGbp2s1vgQ89RNYks53IMshMwLEyoFRCxYnRblzg9Sy2ESxWMwzDMMz5Ji9SZZzVYYsul1ABqLkRmpRi9diO/kSPim4XUlna8dZksXo78MEPAkeObPVRbC0/8RNbfQTDc//9oxlezyJfZMud1VSZ1SdOIM5sXBrMY/oMnZMwyWy4ro4qbcQBjUhlwq9LTozOPJ1Td1NIUx0D4tmoV1J9Txji+/rCF9bQsszJ1E4DVKp9sTpMXXJnNVnkp1kUrbm0sS1S6Z1RlKIfoD+Kchl0GevbjUJUQzMJyMRqmemiqEIoOrG61YJ87CB2tI9SDbX6RWzzGJAGkVTTiwFp032u0OtXShE7q5MEUuk4u6VZQodqLlY7EVpLdDfGJAGuvhp48EGyJpnthJRIMwuOnQG+j4oTod26WFcb6WGxmmEYhmHON3n2a55ZTSXWmsF4pazQkR5ZNmNSn4JrpXBEhuQMkZOsFwPSRafJLoTtwF130ReT2m7cfvtWH8Hw/Nf/CnziE4QNpqnutwIbQcXWIiWFWG3bSDIbO4IWlo4sjt4esDyzug6904RQrC47MTrzF3gRJTOJtl0L9ZrSgv0QKvDbfzfGmQ/+I3D69FntAUAn9VAu64dKZTF6DIiUSDMB21aA78O3JaIukbPafOdlJyaNbUnqhQVcKhu0UkgefAz7qosXb261Oce8soModWhE1YJbGQBUh0isfuIJSAlMdk+gsUh0vpodIY4rdAxIiyiywzirx72udqwTCfb5Wg25s1oJLVYvKbrrKx8fuzFaTToxMf7Gt7EvO4LZ02y6uChJU0hlwzH3r7ITo9NmsZoKFqsZhmEY5nzTiwFJUXISdFtEYq0ZjItdO6GUoBOrQ12dvupGaO8nqiZkJqF6YMeVabYDUcRFzjsdspjmTUdK4I/+iLZBmdn9GBCqAovdLpQSGPc6WDpIZNGLYz2B9CzUxu3RIzByGg0I6H6rvUCbtf+qV5E2Z2JAtLO6VlVasB908jabkAeOoPnlbwB/93fLnzPKVFv6qFT0Q0EAhHJ0Z3WS2fActSnOasDcZ2YJxWq/CkdkEABdwb5GA8ncEi7BCUyfvvDvifPzwMGDtG2qWDtpxVhdu6AJY0AcK6O9bj0P0hQCbBwhqucRRXpBsOphzOtiseXQtGuc1YGt+wSqvCUpdZFVUmd1HgMStLEUDbcbZNh2AR0D0iYUE5Pb78J4No/OwdODX8w8+cjj0YxYXXHZWU0Ji9UMwzAMM4D3vIdsbK8xk3PXSvXEnMpFlm+nnpzU/yfa6tkXqwmz/ooiQoe2Oj2zOcQxi9WSOLp9M5FSz/MzKt3LOKsd30ap5uisYgohwfQFY14XjaOLo7cHFJzV0JnVyXCu4oEYZ3XNjdBapHXSHThA2lw/BsS1+rndgz6Dxx6DzMxrH3xQK5I5RqyOUheepx8KypZetBglDkNKRJkDz83oCyx2uxBC6UVhygKL5p7oWCniI6doGjXn7KTfRmuWNg99M5zaX/kK8Cd/QttmlugdXBgb0w9QDLyiqFfQuuaGaM4TRUtEEaT5vhoHiEKr8xiQkouKl6AT2zRRM4V4EQBkY0PZTbB7IsbsNG1x3FSZzOq4RBdZEsawhNIxIC26MWdewLVDZTphthdmp6xj68XWihOjzXMaMlisZhiGYZgBfPKTwDe/Sdhg7lC0FEpOjC6VyyOOtdOrVtM/EymLcaR6zmoysbrorA7FRVxRavsQRdvHVbxZbDexenyc8HjTVAsevo2g6pA6qwGg7oVYOkFQBBEoiNUWahOOzmml6A/Nh1lzQzQJc08BrctRfJw9pESqhM6szgX7QRewcWA2kwDHW+PAHXf0nzOLocLS8dKAdlVSZFaH0kXgqX6BxZjonlBcFF2iy79Noqwvfs7QLeAmma2LQRLmawPADTeQNgdA9y/79xO3GaWwrQyoVvXuMIoLouCsrrshmgu0NULG/S6ds9pcf65voVy1dJwbRWSHiQFxRKrHiFQxIJ/+J+yRxzH3KFWFSRSKQbb1ohmVsB5KOCLT41hCMbF3zdJt3GC2E/l8zgYQBHr3BovVZLBYzTAMwzADiCLgW98ibNCIPm7J0ZnVHSKhNndW1+vwbImoRTM51y6yTDtS5onUlKKIkHhkExJm8+AYkO0lVqcpMDVFWKytEANilzxkSpA7q5fm6SKRZGbB8SzYZV8fK4VAUywAt0S7wCYl/Q6eXgzImIXmMJnVxiXWKO/Biz/9m1C3f7Vvzc/7aKs/fQxKgkSs7kgP5SAFhEDgZYhSt38/GwXznZfsmO4+i76zuuZGaM4R3RONqDrmddGmWhQ2zMzQrwen6SaI1XGmndXVKhwrRdIm+GzzaI2xMmoe4SKT6fvqbheNWaJzoNdv2SjXHS1WU4yN8naNs1q1iGJAvn6vPl8pi82aGJDA1n0RqVidmy46dBJYnDraWd1lgfKiJI8BMTFWFTfS5wIbcEhgsZphGIZhBhCGxGJ1HgNSdvX25C5tARnU69gRtDA7RzN4zl1kVTdCc4HInZaL1RWzjZxUpWE2gzhmZ7WUQIvI/Hs+GBsDlpaIGssLw5YcwPO0Q486BqRNNDXJndW+pe2/wOgrLUr1hNuaG6JJfB6Qn1tSarHad+BWdL7ucM5qC3MTV+NEewKHj9nAww/r5/KDs/pF34KyhS5BZrUWq/Vn63uZLtpIEX9gvvOyE5OKSTJK+85qKrE6d1b7HXQWaDvaMKRfaJQSOHSI5mvqtZlkcKwUKJdRcyO0GwTCcu6sHqvoxQWqRSYz3qp7IRpNonMrj+vwLFRqxllN8cXFse4L6hWdqUskLsugCtcybm0q8mMVxJElRWd1OGJ0Ua9RiThzMO51WKy+WCkWWLQsVPwU7cSjWWxlWKxmGIZhmHVRCipO8OADhJl8+Up82TOTaItmFd5sS0W9jp1BCzMLBMV5lEISF2JAFmmLQZZ3lPWEjMXqCx52VmtNjtpZff/9wKc+RdsmlILqdFEvJXRidZoiUwKW5wC+rx+jdlZTFRTLFwQDS1cBBEY/eQviRs0N0aIS1g1JQixWp2nPXY4g0LEKgz6DJIFUNo7M6yip++Yu09nVQO/gVNFZXba0s3oU4acnVut7YOApXbSR0lntJOiGRGKSUkgSwLEy2gzkMITMndXExTuThHCHhSFN9dd++DBhm1Hac1ZX3RCtBsG4y2RLO+MV1NwQjUWisVxPrO7SidVRBKlMDEjurCaKAQEAMTGuz1miKBQZaAc8qYd0s8TqKDXO6hAt6dN8rlHU2w3BtVcuUpIEMrNgmzXccpChLX12dhDBYjXDMAzDrMdDD8GePgl5mrDcuZQ911+1nKFN6J4BANRq2Bk0MbPkjd6mlEhSqy9WU2yhVaonbrBYvX242J3V+WlLLVYfOADcfTdtm3j0UWBmBmN3fx6NaaIVhlyQtG3A97VAQZRZLYRC3etiqU0kVvccijZQKsEWGWRrxM8hF0+F0IJP1yHd6kvurC7EgAy9uGAm3odnqxirpVqsfuwx/VyrhSSz4Hp9Ucb1LSSZPZqzWkp0Uw/lUu6sVogyGme16nShlOjXRqAgd+1bqY6VoCq0aZzVY14XnUVasVpKerFaSr1zgzIKRCZKZ1ZXKnonV4Pg+gpDXWBxooa616Xrv3sxICEaHXvAi4ck77fyugDEYjXGtVjdmKNZYJFeWS8uAHR9YRzrrH2hd/TFS0T52qHU49iyQishEqu7XcSpjYobQyaKox8uRvLC02boUillek5zMQ+WCWGxmmEYhmHW42tfAwC4cWuk+fgypNTuGReoVoFWEpDmqaJex85SC7NL7uhtGueIZ0ntSGkSDMZ7H6RAMB6wWL1NuNid1Xl0L7VYnSRk9a76LOiCX3W3i6U7Hxq9PaX6161tA55ZCCNyVisltLO6Q9BnAb0iXa6vXcV1L0RzaURHpRFPlRCoVhSaiU92QeQf72bFgCAIYAmFrDOEszqzcWS2jFd8j8C35q8ATp7USmerhY70UCn37wHCsXt/65zJndUmrSXwjbOaQKxOuzEcK9WFjCMiQdHcE3uZ1VSxEgWxmiT+osBmLLKlKXDVVcDx43RtFjOrq05Ecz3kAnAeA9KiW7QATAxI16OJlcizpX0bokwUX2TaBWDE6ogst1sKF46VDte3DIspMulYmb4nzBG5wI1rv7KjpMfcFI5tEzHjWRJQ2SbcyJkLHimRZhbyW2GlrHQMCIvVJLBYzWwJr33tVh8BwzBPRrJs82LCAlvSjUONs9pxhRGraVweWZTo7MBqFTuCFmaawehOj3xi7ig9eaQQq/NJnRCw6lW9PZ1QpZmZIWuKKRDHF7dYnZ+21KKPlJswx01TCKF0DvQMwaRJ5a4xoQvs+T4EABUSZ1ZHXn9VYBQKu1cQBNr9OOr2fxODIoRArS50wUKiLy5fB6COAUmzvrO6NkysQpJAKguHp8t43vMtHEt268cPHgRaLbQTH+VKQezL7WQjOqu1WG1iQHzjrB71Zp5liLsSnpVqZ3Vs05xbRWe1S7AIkhOGkMrSzuoWvVi9GTEg1Sph36UUpFT9zGovpLke8qz98Qqqbog2VVxDLla7XSwlJZoF9xWLbAA2QawO0SSKQkkivbhQshN0Ty2StNmLAXH1tbA0SzCoV0ofq5X1d/NROaszB65lrtftUn2ZocOYj/JbYbkMjgEhhMVqZkt4/HGa8SLDMEyRW24Bfv/3iRsVemJTcmK6SVmep+oJVOuWFqsJJiRpmOhBs+9jZ7WLmW519G36+cS86ukYkDZBlevednoAlYr+N6Gz+tWvJmuKKRBFF/f4e1uJ1eYaG/O6NJnVvQUm87PnwbcTRJ3RRbWsG8EywvpSXKIRZ4pidamkc2VHFetMRIbrZKjVhc49JcpTzbvETYsBCQL9GQwSqYyz88Ssj6kpwA0cxKmt3dW5s7pamD7mQZ2jiNVhqMVqI4L7Pmic1cap7LkK5bKg25odRfo8yMVqqv7AnPcVJybdaJRl+j/yfutr30B15hDCLtGETkrtqLUVEAR0zurcHDBWQdmJ0e4SjGGA5c7qOKAZw5ixoePb/cKwmxADQrXAIkMJx8r0rrsTRMURkkTHgIzX9D1hgeBY0xQy1TnzVr2qI6wondW27P3MXGTkNYjyGJCq0NGOF/NgmRAWq5ktIYq4SCrDbBc+/GHg535ueywwdTrA9DRxo2ZSU7IThB3KSZnO/qzUbRpntVJI4ky7kjwPO8djzITV0QfPUYQ4s+H6NqoVk/U36iBfSmPSFJsiVs/OcnTgZsDOav3/7SJWKyW0kEJR/KuwGwIA4Pu6aF179D4xaUVwrRSlAHSCYppq4csVQBCg5kZojPq9GYemYynUxiw0qeKb0P94SdOQ0lSLPj1ndYSlxoBzwQjcWSYwOQk85coMB5s7emJ1W/oo1wrTx3yGPoqwbETw8phuKwhA46yOY8SpA8/NUKpYOv+XSKxOMhtOVbvVyWIlzLlEWnQZ/XUEcmf1gUOoxvPonqYUKS0tVnt6cbxJkQVtRHC37KLspejENBEziCIoJRDYiS4ySqGsm37L9cTmOas9unM2L1pYcWK0zxDdGHNnNaVYnUeLONDWV4BMrI7NLgulBFSHY0AuOvLMapNgVqkozqwmhMVqZktgsZph6FFqE4p0QYu/n/gEcNtt9G1TkyTA/Dxtm7LRgS0y7ayeo3HRIU1N8S8L1TGbpjJ5PiGzM0AI7ByXmOnWRp/o5M5qXx9rM/FHn5TlrkdbF1ISQpGqNFHE0YHkfP7ziNrJRT3+TvXudFr3K3S/Rb4IUHRWNwmG+0bxUiiI1XaCbmdEQU0pxB1d+EpMTujHiPL7lzmr3S4ag4RaAP/4j+vc6/I+1slQrjtoUxXpQl87Iz23smxZgcWKE6E7KF4iSVB2tLA1MQE841kOHl/cvcxZXa4VimDato5xGsVZ3ROrdQ46mbM6jhFnDjxHoVwxzmqKCy2PxqqVtPDXJhKWe87qCO3EJTu38vkW+SKbslF1I4RNogKTZhHftgH4vt7J1SHou3JndeDoPFmqLfpGABaeUakoxjC5S9Prx4BkbWpnNV1utwylzoF2I7TniYqC5sLyeBX1YaKLhm7TuF8pHev57g0rhWdLJM2LeDX/YiXfEdKLARF6bEBRfJoZXqwWQthCiG8JIT5rfr5KCPF1IcQBIcTHhRCeedw3Px8wz19ZaOO/m8cfE0K8hvzdMNsGFqsZhh4pgZe/XLtKqdvds4deoNkMkqRXV4yMaClEYEstzFCJ1YUYkMqYQ+OszosIGSPSzgmJmZBQrPYExsaF3qY/qiPF5KK6juo5q1WLTqzejGJSFzVLS8BNNyFuS7rdBdsQKbWAty2c1b0t6l0stZ0BLx6CnnDYF6sDO0E4agxIFCFJLXhOBpTLunUKQdEsCLq+zteueyEabXugqPjo/TEevm+NSWYuetmAVS3rreQXslhtBGTh2IDrInAShPGAqV+SoObqz39yEnj68yp4fGk3cOYMsLSEduKhMrZcrLaEQpqM0C/kYvWED0BrdGHqjj5RSBLEqa2d1VUb3dQlc6kmmQ237KBWStGMicTPorNaemQnQ35ukTurlUDNDdGlEqvNuMAxYnXNDWnEauN8dH0L5TLQkS6Zwx6AvikAZGJ1bmRAqYSSEyNsEkyY41gvKo2N6d0ARAssMtY50FUnQmuR6DyIY70jZKKm3fUU99sk6ecK+7qfIam3EIaIU51ZXXZidBYu4tX8i5VeDIgeG1Uq0DEgFLs3mA05q38JwCOFn98B4F1KqasBLAD4afP4TwNYMI+/y7wOQohrAbwewLMA3ADg/wohiMoyM9sNFqsZhh4p9bX1F39B3261uj12NElJ76yOFrvw7QSBk6A7T6Qo5QV/fAtuLYDM7NFFjzxP1daiQS8Le9QvLneR+RbGxkCTKdsTfRRQrcK3JaIlOkeKlNtjcWXbYBYnMgiEs9vjg73vPuDAAdo2pQQmxlI0KYqMrmiXXKyWsl9gsUsgVufCZz5z8Dy926Q94mdhMj9dR/Ucb6pLk1ktM0tnvzoO6qUYjchff/CZZZD/8kU0bvyn1fu4PL6pcKyUmdUenT6pyTItUFkWYNsIbIkwGuCojGM4VobAz7RY/SwXj0VX6JO00zEOaLf/ettGyYkRxSM4NY1YXRo3YnVJIEqd0Sf7SdJzVlvlAJkSpDEgrmfpQpuJTyNUmk6g4kvt/iVaFduU+KIsQ5pZqLgRwhals9qG46i+szocvMA0kDwHOnBQqRJml+fOyclJAEQL7vnYMNA582UnRqdJUGwzP1bfR62S6XOW4KYjoxSOSFFxY7QblGK1BXu8buqk0LQpMwuui96uIJJFgG4XcWbDs6T+rhbZTXvRYQos2svEap/FaiKGEquFEPsAfD+AD5qfBYBXArjJvOSvAPwb8+8fND/DPP995vU/COBGpVSklDoE4ACAFxG8B2aboZSeA/DuCIahRUrg6quBW2+lbTdJtFi9HbJqyWNAlELYiPvO6gWiD2GFewYASQxIkk/0AIgSUd5hQawen7S0WE10rLmzmnqQz2I1Md0ulAJ8SyKa2x4f7C23AF/5Cm2b8p77MDF/EM3Dc7Ttbqaz2g2xFBJMnFY6q11X94nRiM7HYl8QBLpoY4NASCoWWARQL0ndd60nUnW7SDoJGqEP3Hzzmm06jurnnhI6qycmNsdZDVsL9oGdIBwkKpvvuV7VYvU11wCPZM/oPd2p7UZlRWZ1YCcbv80sLOh7k1J9Z/WUvhf6PqGzOrN7AhUAshgQqWy4gY36mKDLLjfH5u2e0GI9obO6ViN2VhunatWJ0KUSq82Cu2MDsCxUA4lmHIzed+X59b6NchlkW/SzKNERZhMTqDgxOvN0hWEdVwClkh4bjSoCK9XvCxwH9ZrSn+uoC21KQUYpXCvV0TUNAlEd6IvV9You3EiRWx7H2rXvAAgCVNyIJl4kX2wNbP1dLbET70Lna18DPvpRwgbzhXFX31tLZUETY8UAGN5Z/ccAfh1AflVPAVhUSuXfwnEAl5p/XwrgGACY55fM63uPr/I7zEWElPq+yc5qhqFFSmB8nF702G7OatIYkDBEFAG+nehiYsRidZ6nCmCoL+7b315nwpmmepujbVxIVMV5CpnV5TGXJqc1SUy+thGrbdpBfpJwDAgp3S6kslB1Q4SL2yMMXEpgcZG4zX++BRN+G80TtPvpk2TzCizW3FCLaQRFUQH0tGo4ju4T4xGFhNz96mZAEOg2F+nF6mopHex2MoJGM/GBu+5atU2p+i5wAaI8WfTv39RitRBquVg9aHEhX+SoKYyP63t/x64jfdPPA69/Pdrf9wM9nR5Az7G9oUWLY8eA3/5t4L3v1Sd+lqGjSijX9LkUlC1dYJEiszp14HmKvFhdYsRP7awOaNo1bYhdO/XPhM5q8vgiKZEqgaoboduiKzydKqvnUKyWM5rdYblbueSgXLXQSWmc1Wk3hmulwMQE6l4XjXkCcaogrPfE6lGd1UoBSunauJZFVxw2TbVIZ2XaAd0g2nGU50uPV3W8SEiwMyjPwTYLV1WHTqyOUwfeZJVmYYHZdI4eBe65h7DBvMCiOU39QOjFVharSRg4shBCvBbAtFLq3vNwPBBC/KwQ4h4hxD0zMzPn408y55l8fMBiNcPQIiVQr5PtSu6x3ZzVi4tARhWr22wiTF3jrI4RNojcv/l2V1NERwg11MThAx8AvvnNNZ7sxYBsjljtlWyIMrULHHpC5sZ6F/UoRboMSm0vZ/V737sNri0zIRvzutti0QrQfcHSEm2bsj6Jkp0gTgkmz8V25SacA2aiZFtKxx+MGlOQX5vCqNW2bZy6I2af5vn9xvEWUG3PNgKV42sBtOyn6Ep3/T7GHEsjLukbycovpZBZjVJJu/6IclqTToJxr00joOTkN8Jlzur1p35ZLCEA/M2fNnqT76uvBp6oPgf43u9FR/p5mYFe2yUnHhwvUuDRP/4cfvOOH8Cxe84Ac3qXQgflngjuB8aZRuKsduC56N8PKWNAAlsLfzGtWI0dO/T/idTlJNFJFeTO6swUWOwSnbN5ZrXZHVarKjKxOlMClufoLfoUbSKPwMiAeh11N0RjkeBzyOt5+FY/BmTUqKUk0V20uUR7YvWo94Qo0t9X7qxuEYnVSaIXLaol1LwIzWhAvz0MvTGnADwPVTdCu0nwfZkCi+5EVbvrKSJbmE1FSuLaTkmCtOCstjxHj7lYrCZhmGXw7wbwOiHEYQA3Qsd/vBvAuBAiH63vA3DC/PsEgMsAwDw/BmCu+Pgqv9NDKfUBpdQLlVIv3Llz54bfEHPhw2L15nDHHeuIWMxFgZTapEt9bcn9h1BdOrEtRKok0boJmUjVaiFKnb6zukH04eYCTaDdM66VIm4NFsLXdWCagmL5RA++D0soZB2iGJCAPrLEdRQgBMYrCU3hRvT1me0iVn/848CJs0ZDFxjdLqLUQd0LEY7qpD1P5AtXlKS1cTiWOcEIFlZyNiMGJAtj2FZhMk7grM6UgJXPHIRAyZVaAB5ldXBFDEjJTtClEKuLBRYBlPxMZ9Wud4M07rtGbITN06eXP58vCLraWV1zIzQXaCak8ubPY3zhMFr7T5G0B6B/jprMat+WA8XqNJJwrBQvfnH/sec+V2fAA1rfWuasHlIE77G4iI98+RKc7tbxP+95HfDQQwCALoK+WF22aZzV5j7reYo2BiTfbVRy4FR8pMoavd18lRXoF+yjigE5ehITzSNoThN2MsYFXXUjdKkMErmr2KgL1SrQkjRiNQDAceBVPR2xQiFWh/paQa2mndUUiwH5OM7XmdUVJ0ZnVOd6miJTArZlFgHGLJrM6tytLDKdWU1VIzuPAQlcVCt0Cxa6CB6AINBOcIrLK18QGy/T5Yszm0qaEovV+a5WI1bDcbQBiYUuEgaOLJRS/10ptU8pdSV0gcQvKaX+A4AvA/h35mU/AeDT5t+fMT/DPP8lpZQyj79eCOELIa4C8DQAd5O9E2bbwGL15nDXXcCXvrTVR/HkJE3pq6hvBlKiN8gnI4qQHDiC6tGHEXZpi4ptBlJq4x9ZbnUU9Z3VToxuh8hBVBRSSiXt8lgaPDE3Na7WfFIqSzsUgZ5LMWqN7k7Tx6onT5ZQo299z9t09Tk1WZOYjyokk/P83rJdxOokAaant/ooBtDtIs4c1NwQsRyhkNp5RMpNcFanQosTANQZui9tM8TqnusvV5dHFavzLd92/z5QciW66YhV702usGcE4JITo9skEICLC4IAyiWlxeoBMSBJZqORBDjeGkd2coVYXdwRUi6jRuislvfch3Gvg9YM4YlQFKuHFJV7543bL6L4nOf0xepOB6vHgAy7iHX0KGbCKn7+2lvx+NJunLlDV0HtZKVeu7ZnI80sGmd1asPzAAQBHJEhaRPsjsrPLU/QObazDCoz9td6XT9GFQPysb/DZDaLxv7Tg188LGbhpuqG2lU/ahFEYLmgCC1WN5OAVKwWvqeFpFEzq7MMMlF68bJS0bUBGgT3RrPrLh8blp1Yd92jfL4mvsjJxepJlyYaKo/rcIXeZdImGhsUnPBarA5G/77yz8BBv3gnkVidZDa8CVN7hSoSh9k0pARIwxtWZFb3OjBCQ8PFzChVUX4DwK8IIQ5AZ1J/yDz+IQBT5vFfAfCbAKCUegjAJwA8DOBzAP6zUoq/xYuQfMzBBRZpSZJt4M47D2yGqHzrrcDv/i59u9QksYKTxQAIRWUzGK26EV0EhuEd7yBtDoC+DqamCHOrw9A4q6WekFPpCPngxhRYHDY/b11n9YoCi3BdBE6CcFSBXUrEqdObPNXcEI2F0bdkyqwvrE+NScyFldG3paI/L90umdVxvA3E6sJ1kGUgzNnZPDbDWS1DCUfofM72E3TCz2ZkVssohS0yYGxMZyu3RndW6y3fBbHaGyJaYxDFhSvfR2BLhBRide7SDHQnUw4ydNPBMSAy01vkf/HO1+Obd54dA9LLpjSLjE2inFaZWah5oT5GKooxILat7wfJ+qKyjDO9ION5vceuvRZ45BFtgv7MZ/TPPSxLi+DSHk5QO3oUM90adu5QeN7UMRx8QPf5nczvi+C5UE7grI4zB54nAN9H2Ylpdkfl96/ApnNs59EHlgJqNbhWimSJxrIsWyEqToxYjlgMdVmjxlntRLoPoHAg9epu6B/LVUu3PYpYXXSsOw7g+1BKjC6A50KtDSAIUPdCNJpUYrWJL3IclD2JTmyPdi3kbZqFxtK4rxfuSGJAbDhlDxUnRrtDJFYXCsNuirPa97W4TuastuGOs1i9XSB3VufjAq8vViuOASFjQ3ctpdRXlFKvNf8+qJR6kVLqaqXUjyilIvN4aH6+2jx/sPD7v6+UeqpS6hlKqVXKbDMXA9vNWf2e99C7szYDKVmsBoBXvIK+zdWiKy9E5L98Ee7D99GGVhunWdWNEDVoP4Q/+zP6c1ZKYNcuWmd1lDkIAoWSHdMJSkmCRPVjQKpDViYf6KzOt9MDfSfdqF9bz1mtxeoxr4ulhREH5KbN3IAwOaG0s5pQrKZ2VifJ5ri1t5Oz2rfMh7sNOsRNEaujFI6VYtJvY/4I3WqIlHrRgnINID9WjI2h4kbozI/4na1cDAMQeNnohYRWZFbrHSw0Ls1lzupguBiQxMSAnOqM4dj+1TOrXSNW19yQTKxOMlsXa6NCqWWiT+6AjpL1M8b1ebPcWX355boo1V/+JfC2twFPeUrhF0wcTDjsosXRo5gJa9j5wy/Hnj3Aqc4YAKAj/V7KFNk26jjWrn3jrC47Mbotgs84vxZMzQkAUF2a68u1M6Bc1uLfELuthmraCeBYKUj3xBix2rV0xATJPSFNkSrRK7DoVxxE6YhitTknFYTedpcvwlCI1Xm+tu/rGJA2QUSWlEiU3c/aD1Ldb41yvLmYZsRqstojuWBfclHxJdox3aKFAADH6bvrSZzVxv2aF1jsECzerHRWE9cMYujZHGe1yUMH+s7q7SJ0XeAQLrEyzHBsN7H65pvphYQkAb7+dfo2WawGDh+m33nTbG6P81V+5atwRAY1T2UrRm9AXnVDcme1lMDdxGFQSaLFajJndRwjlC78sqMzq7t02xxlpqvT6/y8EK3mYNFjOGd1vwCab8nR41uKok8QYNzvYGmRqE2jh0xOgkys3qwYkFtuAf7wD2nbBC5wZ3WS4Ja/b+F3b3waotSBZ28fsXpTYkCMs3rSb2NumjazWhDpPTlpbETHsTEtqs6PeBNLU0SpC9/tK+okzuq8L/AA+L7OrCYUFHOxulSCFn0GOauVhUZaweluHceOrFg9yCelruiL1URrFjKz6MXqHKGFusBN9eLCWp9Bluk4sWJ8DLTWDQD33gu88IVn/9rAdoscPYq29FB57tOw9/WvwOnrfwB4+cshy7W+Pk7prE4deIEWKUtUzsf83DJF8EpOjM7SiNdXbyEk67nAqVya0tERKKRBbrlTNc/Fp1jJ74k++kfhe1oIH0WoXFkYliq2xRSYdGxosdoNacRqE7fUW2Tz0sHxRYPIP9c8wimvkDqqsmrqmTiehWpNaAc0xXlQdFbn7ZI4q82YM48BoRCr852HkzWUHcLcbmbTSFM91SDfKWsWmOC6EEJBJeyspoDFaua8k0/GtoP4B+h7OfWx3n038Na30rYpJXD8OG2b24041k466oiZbSNWw4FjZXBVQne8ubPaiRBRFL0qkCTAN75B2iTk/kPY2T6MxQWiaVkYamd1xUbJienEpFxY9u1eZfJWd/BEZ11ndZ4pW3RWO5vkrB5CrP7iF4GvfW3tNqUqiNU7LMxHZRKFWUod+UkdAxJF9E5dYPOc1V/+MvC+943WRvvPPoxv/+EteOShDHGmC7QB2BZi9WbFgNhWhqmgjfkZWrG6WqWNAullD9dq2kW2NHp0T1e6KPv9dkp+pjOrR4wBiVMHnhERAjuhqY+QZ/iXTAzIhjKrSzjVGcPR0ysE2HyR0YXOrPZCNFs0C5gys7SgqIgWRI1NXxX8tD0n/FrflxHrHVP4tsiVVwKHDunF4JUEbqrjSwYJaq2WXkkWFsTuXdh7icAp61I88Oz/ADiF+BMqZ1oxBsTztADcJnTtG7G65oZoLo5+ffWc1b6v2yQ6txLL74vKVOSxJcK0S3FPWJFZ3fvHiEItUDidPU9HrHRGX1zoRWsEAca8LhodGmf1svgiPx28yDaIXr0B811RFcrO3eWeQKVmoS09mp2daaoXVhwHbsmBVBZdDIi5z1SGHHMPJL8OJuqoOBFdFAqzaeTdCVkUiIkvsgtGIc9KkUQcCUMBi9XMeWe7Oas7HXrx88476fMpkwQ4eXJbRIluGvmNh6DI9zK2jVg9sROOldJuRTPVvqtuhLBNu0pcLtOL1cnBo6g1jiOcJ/oAokg7q6uudvxFRLfN4mTXdVFxYrTCAdUxswzJ4ePo7l9jVaq4nR4w274TXfxoFIqFyoxYvdgY/Dncdx/wrW+t8WQu1puCJJM7bcyHFZKJjpTAxAS9s1rKzcnE3yyx+m1vAx588Nx//+8/FuFVb/8+PLawC0eWxrWr1pJa+tomYjW1szqN+s5qsqgh6GOt14nF6jx7uFbTi2GjitWpFk3K/irOaooYEJMrrHewjHaoAHqij+3rDrFUArpDxIDIzIbMLOwst3GsObF8v3Cv3wLguqh5pt8myKZc5lKlYKWjFEPEtpj376yi4TzjGcB1163+a4GXDhcDcuwYZGbB8h1ACOzZo8etL3kJMDdXeB2ps9rcZz1P38MpImaKC7hBgBpFdnnv/q1jJXaWmphe9Ab/3hBI4cKxUl0cOSYaxxWc1UIoMketVHZ/3SKPgyEQq3vXgREqO02CuhvKuJV9X2dWdwjy5osRM9DxRa0kIOlje9e16+pio+GIn0HeX3g2qnVLO6ApJh/5e7ULmfAUYrWy4bh6zF11Td896qQ5jqEAiGoFVS9GK7Qv7on4NiBN9QYLMrG6WIMI6EUwUus8FyssVjPnHRarN0esllKP70lzmLYZueBz0TqrgyockWmxeppIqevFgESI2rT5Kjt2EGZLG5IY+lhbRF9YnlldNTEghGK1zGzt+hNCi0mxt/4g99AhJLMNdO59ePXM0VUmeoEtEYWEMSClEsa9Lpaagz+HJOmLu+997wp9c0UMyNRuB3NRhcxZvRlidZpuTtFGy6Lvt48f18XQRpk3/s5bUizGJTwwfynmwwriVGe/KmBbiNVS6nOQPgfaiNULdA4qKYFajV6sto2zuuaGQ2Xir9+gREd6KBXE6sBXo2dW92JAcrGaLrMaAIRZvbM8R0cKDIgBSTIbk9UY1181h+PtceB0oZCmETxcV8dqVCtK56kSfHHkmdXmfRbPUv19OWt/BisKsRW57jrg+utX/7XSsDEgR49iLqxgalL/uHevHg9XKn0TLQAtUgJQMUVmtQPPLzirKdax83O25PRd0EujX1+9gn2+jz2lBs4sBQQHq/sCNzcynKHKrZHLndVUYnVmLYsyyx8/Z3p9k2nTnAftJtH35SjAtlH3IzSiEeM68naVBbesB0fVQKKdjNhuPjYsFN+ueQQRRnlmtWehOu7ovpDIWS2A5WL1qBO7NO0vNAqBajlDS/okWdgA9A7JcoY2RWQJs6lIqe89ZONu0xf2xOq8uD3FDjGGxWrm/BNFelBKLShuFu027bEqBTzxBH2R2CTR2zQv5iiQXKy+aJ3ViYJjGbH60BmaRgsFFsMOrVtgnRpP54bJ26w6EcIW0QWWO6vrent6Nya6bZqtg5ZnxOog0a6U9SZlSkEqS28JXc0y2tui3i/yMUyBRaWAD3xg/WNd6axeag3ePhlHGRpL+kt+17v0FvKz2jTVsyd2ezqzmkL0SYDx8c1xVm+GWD0+Tpixblhc1EXQznXeGIZAJW3gZXsO4Fh7AmNeF80kgF9xtDuvc+GL1UkCTE3RuuFlnMERKSaDNuYWCbYQ5+1KhWpFka4B6GPNgHodVTca/dzNndVBwVkdqNEzq3tRDehnVocECwFFdx4wXKSAWZydqiV4yuVSO7FXiNXFHSG1KpFYnWWQqYAjjPs1Ihhw5Ks0hY8y8JV2QK/nrFb2cuHY8IY3AL/1W6v/WuBnw8WAmOKKuy7R38muXcBjjwFvfjPwe79XeJ3rwiNcaPUC46x2EnQJI2byAosk2eU9Z3UGeB52lxo43SiTrLblWfsVJ0LrNNGN0YxhHLPAMnKBSaAvgBcKlalBC0xDtAmgfx2YQpsj54HnfYENQAjUqxkacYlE/OxFxAGollItqo6cWW31i2+7Lk3MjBHBXRcoj3t6bEqcWQ3f1+cASca41eu7qxWlheVRb7r55NB1USkrmnxtZlNJU2DPHlqxeqWzukRR3J4BwGI1swVEkXYQUYt/d9wB/P7v07YJ0DurpezHhVEiJXDJJYTbWrYh+Y3nonVWRykcYdwzc0QWvV4MSIioe4FvbQtDJJmNihsj6hA51HJn9ZguzkTmrM5db8b1V/WlHuQO2KKeZLYWUA4fPvv5XoFF8/OQMSBpCrz73eu8IJ/wl3S+9pgfYqk7IENRKSRf+ioan70V8vffgUMHMxw7trzN4sTBr7qIU4fkQpOzi5hoHkVznrYjSNPNiQHZDPJYiXMt9tO4dz/q8Ry+c+9RPO2pGS6rzuOJxk54VQ++JRE1L/zVZin17g2yKJA07S0ITvltzDcIxeqHHkdt+gl0m0SLbEr1CyxWq3rnxhAFXNc/SIlu6i4Xq4cVKddjRQzIMAtsA1GqL/IVxOqBkQKmj52sJ9hzmY5OkCcKC7+56GMW2Wp1QeMm7HR6kQqBnSBaJBR8ijEgg5zwuaDjnH2uCIFVRWwACNxs6BiQmbCKnZfpQbDjADt3As99LvD61xdely+0jrpAHseIC2K1dlbTLIT0FnB9nya7vFdgEYAQ2F3v4ky3TjKgzXeEVN0I7WmiCnDmWrCFgm9LxE0Cga7nrDY/UzqrRd9ZXXFitFsj9odpavLd9Y/1aoZGEowuVK4cG5YzPTYcVaxW1rIYkJobotkecTzbE+kERKWsHxu1L8wyQCm9g8vS161nS8St0RcBpLJ0DAi0WN1KRnRWK7VMrK5WoRcWWKy+oJGS2NDS29W6MaMQMxwsVjPnnc0Sq2+9FThxgrZNgF6sjqL+riZKkoR+G/F2Y3paj20uWmd1nPWd1QtEH0KhwOLI2ccFlKnfJOiaBMLQRJaEdGJ1GJrMag8llyCfNSdvw8x0qoHUg9z1JmVRBJnZ2r1y5MiqbUrVF1J6BRYHfG9JMmDQliSI84m52freGuRIiSIkSx00Ih9HHmxAphaO3nt29mvxWHsHMyLy7/4B9eZxdI7QZmtslrM6h3KnQV5k8lznjY2vPYQxr4t/9R934/U/7uOK6jz2L+2CXzPbGxsXvlidJFqsJiuyGEWQZtv7pN/GfJMmTxYAksUW6lYL3aNE52yaQmZCF9Qql3UMSHtwZ3vmDPDOd67d5urO6tELLJ6VWT2qs7rophQr+phBzurMxmQ9xd4rfewtL+HkocK9dKWzui7QTPzRB16djhZSrFRfXxQ1F1Zx5A4lVhcEuGEp+QOysAH93MwMZsI6dl5R7j28Zw/wnOeseK3ratF+1GFMXryz56yOyVz7PbE6z6weVfgoZlYD2D0eabGaYECbhNrIUHFitGeI6nkUCiwGdoLuEsE9Ic8VzscFtq0XjKLRxGqlsCyzmqTQZpLovOZcrK4p7aweRaFShcU0I9T3oiU2MO787GdXdMl50caCs7pOIVb3BHvRd2GNKlavXGQzMTsjx1ilqf4Mcmc1hbCcLyyY+0y1Chq3NrOppClxQet8kXdlZjXFvYZhsZo5/0SR7iSoxb977qG/PyhFL1bHMfR2V2LyzMuL+R45Pa1zqLaLs/oDH6AVv5Io6xdYXCI64GJmdUJ3401TwBEpFKVCZ5zVNTdCeI5i9dwc8Pa3Fx6I435mdVnoCTnFCZafUAWxeuCEJIqMs9oFjh49+/kVQgpsG74lEcbrf29SDhare/mc0AV/2kMUKksyG80kwP6l3bh24iSO3lrIAVkpVrsuBNH29+TUrM5+Jc5a2pTMaqWAOILnZuQ7eMbGzn3euHSmi7rXxeUv3IWf+29lXHlNCY+lV8OreNox0rzwV++SxTZ2lNp0zmqzWOSUXEwGHcy1fZpAbCMk1NwQ3RbRIlteXNAGEAQ6BmQIsXp6WmcIr9VmR3oolfp9NmVmdZ4rXHJiHbc0ymdrjkcVpzkmUkAl6xyr6eue94wOrnlegMsqCzh2VC17vpeBDPSLihGI1XlmdWAnCJdoXKqZEssWhAdmVueCzgY3DfTOg/UWLWZngSzDjLUbO/f0/8CHPqQj7JbhOPBtOXrmZ5IgSp3erqCyE6MTEkx9i9FYeQxIa3SXarGOw56JCKc7BGJ1lvWMDBUnQmuBqO/OnapWqqN7KHaFrJJZPXLdjXwRP89h9zxUnGj0aOXesep2yzVbj4sIxE+g7+ToZStvoI/99V9f4Wfo5Wv3x1s1L0SzM+LuoLy/8CxdMR0YvS8sCsAA4Ps0BYKNoJiPOStVsytmlElzPgY2B1upWeys3gbIKEWtJOnE6nzRxu/v4tJGIaL2L3JYrGbOO2G4fcTqONbzpW3hrI4y1GvqondW79tHP05oNDZHrH7nO5fHYY6KTFS/iE6DSKgzomPFjRBJuirXyR13wzl+CE5riU5TzGNAnAjROU5yH3wQ+NSnCg/kmdUVB6WKpYViihNMSr3N0cxMq6V0cAyIcXZ2Uk+r6isxEwe3WGBxSGf1unERxWJSACpBOlhYN+dNQ9Vx4JU/g++79FEcO5Iuq7DbkV5vfgPX1YUbh8jCHoTMLNpCZXm7m+CsVvd9G+LMaVTnj51zZMdq5HFT59pvNWZi1N1QV6oUAs/46Zfi/oXL4JcsncV3oYvVSQJ58Ah2PPF1LC4QLYhFkc5o9W2MjyksxSUaa45x1da8EN15yvgms+3biNWtznBFUddcuOo5q/ufZylQJDEgcWrD9S1ACAQ+dKTEKAOvlTm1QE8AjbvrF1iUysJ/ff1pPP8VNVxencex025/24OUaMQB6jX9c23cpsmsbre16GNcquEiwWA2TZEqAdvqf1++j/UXF7JszQKL6xF42cDs8uzkaZxoj2uxemf/8Re+cJUdVoTO6rb0UakJwHVRdmJ0KXaIFe+JQYC61x1d+OuJ1fqz3zWRYDqsjT7eMIYDx0pRcQkKC+YkCdLMgh2YBUyK3TZGWLbdvkPRt0csVNbLljZtmMzq9qhidV5s1TirRUCQrbxKdE9vJ9swfaxSyB5+FAcPquU1QlYWWHQcvRuA4JzVcW4AymXYIoNsjtgXrlIQs+pEaDYoYlvsnvu1XCUYz68Qq6s1cdFmVn/4w8A73rHVRzEc6W1fRfWbt9LFruU7F87KrGZnNQUsVjPnlyxDtP8oqkFCKgBPTwPBiAukq5GvvJM6q7/xbfj7H4RIYrpt31mG5FsPonbf7Re1WD0zo8Vqamd1u00vVs/O6kKblGMamSg4wsSANInEOiN6eJZ2aVFdZPJTn4VjZSg1z9Cds8b5WHWjc87XfuIJLM9WDkNEmQO/4sAvWXqiTyRWA+hv9cyL6AyIAUkzM8BerSKfcXstz02TCAfkbCeJfktrzoVWOKsrpUxHkQzhrG4kAfYfK+GVz53H0caErqYFaNEnCVCvm9e7ro5WaGxw//kqyMzSheWIyTOrKTcDJPd8G66VohIvkIvVrnvux9qYlxjzujrYD8B11+n7rFeyaRfDNotuF0lmY0fQwtJJomDCKOrlc1YnXC1SUnxpnY7ut5yIxlEL9IufOeg5P1tDCBNJArSb6ervS+qCg+V+ggNKJZAUWEwyI1bnbabeaDfyVUQfOI4WKzvrXBSm33LLLuB5uGyqg2ONsf4qlZRYiku9fqs24dCI1csyqyXNeZBlWkwsdP9DidXK3rhYHQx2Vj92bwu/cMfrMZNNLROrVyV3Vo863IhjtBIftTHtrC7ZCTqhPXonnosTgRarK06MdmiN1m4xsxqAV3GRZPbo440w1IvYVoqqG+rrmwJTDNGpBjq6h2JXSJoiXZFZHYx6HuTfVcFZrQttjh41tCxf2/d1Jv4o39cqi2zlkkJ7GGe1UsDf/i1Ove0vEUUCh/YXXt/Lojc/e57eDdAlEKuV3YsBqbkRmvMjTpZMH6IKMSAlJ0HYHvH8WlEEL6g6o4/nV4jVXtXTtVcuQrH6+HFdJPfBB7f6SAYj2xFqboTuLG1+/zJntZ0M3NXKDAeL1cz55ZvfRHTHPagee5RU/JudBa64YnuI1dFHboKXdhEsnqY73m5Xb2tJ5um2EW9DOh1tBKQeJ9g2vVh99936/2THqtTyzGpSsdqGnYt/RMqyLNfhWqmZNJA02XNWV93onK+tJ57Qua29a944q4O6BxH4vcdGRko9H8ljQIYpohNFcK1UD7DD8OzvIt+W6ha30CYD41vkKZ2T255b40Nb6awuK73ddRhndRzg8GHg+d87jvmo3BerkwRLcQljY+b1uVjddNdqcWiksnVhOWKk1PMoyvtM4pS0WO1G5GK1I86xD0gSLDUt1H2T2QUdrzQxAfgVLfh1Wtuj2OqOoIXFo0R2eLOzwfEsWJWSdtFRfGntNpLMRt0L0V0kuiHkW/QdaGeaG6EZugN3xiRf+wbaB04B/+N/nL0gZmJAyoUYEC1WD+gLhjjWYiRQqSy0AD7gQssy4Jd/ee02AawqVq+7/T93pJd0P3TZpRmOtSaA+fleu8V+qzLh6V0mo2YKmPO1FwNC4VJNU50pXHBWO76NNLMGxIBs3FldGiIOJjo1r53V8dhgsZrQWd1MAlTHbMC2UfYSdJN1YlCGpXhPtCxdaHTU3QD5ok1+C/S1U1eNupc8DHsLuBUnRnvUQqs5uQu6XtHnbJumlkfR/dobw4wYA1LMAofj0BTL7hXs64uqAIjE6n6/Zbm2NooM6GNn7z2CxpfuwRONnbi6fgYHv1iwVhezpYF+gcXuiOOtvL8wMSB1r4vm4ujX1jLyorsbKLaaJMA//MPZD+b3bwAQnqvv4aNM7pLkrDz0kRcsCtx9N2ERwE1GSuDSS/X86UInzSwdu0bprF6xIyRwEnQpIqcYFquZ88z0NKLUQc3uIInp7Gl5ccHtIFbHmXaMlNChE+mMMFRzQ5rto9sUKXVsGrWz2qZLv+hx993AJZcQnrP5oFGktGKS+TB7Y2eikzYpj/W3PFN9BkZMqrohoujc+pcnngCe8Qzg5Ml+mx3poVR3+5ORUU8wU0RnWQxIINFKgoECsBD6fd03uw9q/mwxSarlRQsDOxnsrP7YTQCA1nv/Zo0XmEJKgT7WSikb7PSJY8SZjUbk49QpYO+1E7CFQnxmoXesjYJDEa6LyYBGrE5S69yF2nXI9Q3KKJDYCuBZKapOhNYinVtZfvFWOF/5AoQ8h3N1YUFHHYxbvQtfCO2u9sraWd1uXOCLosZNuCNoYfEkUUGxPLPas4FKRT9GJFZLZWHC76C5QBff1Cv+lRdFlYMLPyWPPIFW4qPVVJj77NeWP9np6L6w1t/94HgWpFpH/ByGPAc6MI638nA7WJIE+NKX1nhSSiSZBdcu3AeNSLVuYbU4XtbXXXa5wNHWZF+4NztCxib0sVqVkhaSRr0v5iKd0GI1lUtVKksX2cyxbX0PWavvVsqIWucYA7LOQEnON7RY3SkP76weNbIjSdBKfC1WAygF0LuCRr2Hm/u35Zk6DiU1ersrMqvh+6i40ej1R0yti15mNZX4lY8L6hVtOqAwSKxccM/HMCOK1R3poeynvTZLdoJuQhGBYS9zVo8cA7LaIlt+QgwQq//yT5r45KHn46C6Eq+69FEcOlD4PlYeq+MYsXrEnWx5H+OKXiHf5tLohRABQBQE4I2K1fffD/zWb61yrCuiGop/75zIF5jyxb38HCCa1Pzf/ws8/DBJU5tOXrTwgq+bZeJgyMXqfKcNUNjVys5qClisZs4vExOIUgdVN0TSouvR4njzxGohiJ3VIoBnS5REROoolcqsFFI5s7YhUmoNgfL7ynd1Um79B4BTp4CnPY3QWZ1v88ud1aNWOs9Z+WFSOauDar8wz3rbsjdC7qx2onP+XA8dzPDyF7T7USBRhNmoih17XRrnDKBPpvyEsvRtuFrFYGd1oYN7w5feiIXDKyrH5dmMK1xJ4YBJWTKthZjWI8dWf4E5JuEWnNVDZla3Y09HUuyawPN2HMW9D5rPMHdWj/edPpN+B/Pt0QP9pdIORQHa61ZK/XU1GnRtJu3YOKtjtM/QWWiSbz0IJ4tXzzYfxOIiGkkJ9Ynl58111wF+HgMy6hbqzcYsXO0IWliaJupkTQyIXRSrR67ShV4ExI6gRZevbe4HtrMiS3OQWB3phaibDj4fN/zadyDuFK7xRkOLPhOFa9Rx9A6RESf8UerAL5sYkNxZPeBGLuU6b8cIVBWvcPy2PnfXvYXlLjtTBfuSKz2c7Iyd5ayuj5nzv1TS4u+o50G+jdjKdJ2BFsEkuhcDUjinBgk0vQKLGzsPXRcDFy2SKMPp7hjmG25/kXKdBkeOfwC0WC191Cb6ovLIETOmXQC9z7McZHqHwSjXQb5g4a4Q6UZ12YdhbyGkSrmDJz9n6+UNi4lrkoufhTGMjoMZ4X6Ti9VBX6zWW/SJ8poLYrUlFNLO6GK1KuaAmKi4QedWcvwMFqMSnpj6Trzy0kdx+Ezp7GPNF0LyAouRRxJdkzura25EJlb3PgLP21ix1UcewV2//VkcO5otf2urjI/XXbgbhnyh1TXvmWqOgH4z1OarzULKbSJWJwlSJVB1I3Spaq+YXUzLM6vjgXMvZjhYrGbOL1IiyhxU3QjJzNLg1w9JkuhOkjr+odMBxsaIxeryBHxLouQkdIKicU7U3BDdpe1xZzt+fEU28KhkGeRiExWrS3oehKHOQ6cmivS5RSpWmyI620KsNkXwSk6M7gyRSFeMATmXLZ5RhPj4NK7efzOO3X1Ku8SSBHNhFVN73J6AMfKXZia6ouCeCQIMLlRmvgsFgcPNKZw5uGLWaSYkRWe1b0uE8fqfhbzkcgDQ0R4r9/BlGZCm2i1iJk2eLxClzlBitetk+mObmMDL9+zH7Y/s6B1rz70LAK6LKb+FuRaBWG1EH99Ozjm7fDXSVEc4Uzqrk5aOdqk4EdrTdDkguTjhJF0knQ0OyBcX0YgDjO30lj38i78IvOw7Y92/XOjbG82MadzvYHGWaEISRf0t6pUKbCuDbBCI1aa43pTfwhLVsKiXJap/rNWFzlYeMJOMwwztxMNCXEEjdHHjHxZu0s0mutJFeaogguRCygYn/MtuI6YIXrVqYkCqtu4LBxyrlOt0xVKinfgoF8VqU2BvUAxI/lpAL7LJzD47BmS8Lygu+71zpRDbEtgSYYco/1ctz6zunRADCyxu7E85rtD5ygPE6kxZWGxaZxdUXEke/zBq5meSoBkHqIzr77NUAjqjxnUA2lmtRO88KfmmjsOIwtcyZ3UQILAlotaI/VceAxI4tHFTJrPaHqvqAq4UwzjjUMwX2fq7w0YTq9vSQyUXq4VAyZUDdwIMdazKhuMtX1yImqNl7WuBdXl8EQCoeJ3zIAwhGx0syCoOxZfimp1zOi837+xyoTb/XC0LNT9BMx5QJ2WI4+25lUsl7awedXyU6vo4oiBWb2gH5nveg7sO7EBJdZbfT1dkVg/rWC/y7W8DP/dzhbnryogZ34dtZaMtWBQIw+0Tf71txGqz66zmhuieww7kMAR+/udXPLhaZrXDmdVUXOCzDeZJR5oiSl3U3AjJPN2MP471nIHa/dpua3GCNAbECuDZRqSbI9qebAajdS+kceScBz7xCeAznyFs8O67Ic/Mo3zrzaTfV7OpXfvURBFQrxMORPJt375D63zMoydKRqCgigGJMhMDIhHOEPUF5jqoutE5TXI7n/48KlkLl1UXcOz2Q70LX8K4nahcE6ts9RSOrSe/AzKrlRLoqDLC1MPpIyuOY6VzJJ/oJQNiQKQ+jlYS6ByUtY41j4RwBwgeQE+snqzE2LsXwNgYXn7pE7jt8GX696TEUlLqbafvxYB0hl8ZOnkS+LM/W/Fglulzy0q1UL9AV3FWSnqxOm7F8CyJihuhdYZQrK5N9HdZHJ3d2C8vLmr36M7lCwfPfCawa4+1bZzVADDmdekE4DRFqkRvy3PdDdGcJejAOx1IZWEqaGOxSTQsl1Ifq7lUh3ZWxwptGWDh0uvwA1fcj298frH33KGjto4BmSpUWBwkfq5CGALPec7yY20lPip1E9VQsbRLdUA/O5Sz2i8cl9n+v+65mw8e8oXJyUk4Vgo5u9hrtxGXMDZpJqWuCwEgi0ccd+WiR9nVjqw2wSJblmkx0V7FWb1uDMjGndWOJ7Sov55YbaL/JieGaDt31I7qTDP3Ia+8Iq5jlJzaLNOTDYHezqiyn+p2R3RWF7Pb4ft6wXXULGiz89Kt+qg4MVoduj5GZjaceln3sy0CF2FetLFYd8MZMbs81d9NJTDXVFGsHtUJny3PgS458fAO4NUwu0wCt3BcZhwXh+v0CWahY1HWMD1rYc8VPlwrRXLsdP9Yi659ALVyikYSjHYtFDOri2L1iG7tZbn55hwYZLoAoLe9pSkeXLgE/+qSh3D8YGEyuEoeulJiQ+fA3/0dcPvtwH33mQeSBF3pouSZ7yYItPGAKCaNndWbQNFZfQ67QWZngfe+F3jggcKDUiJMXXil/rggsCW6o+7eYACwWM2cb6TsxYDEbboeODl6Cu7RAwBo1epOR4sTlMX1olDBtxO9HfXEPFGjkSnQ1KXLYNpkTp8mLlpoQoZ9FZKuRDcfOopq8xSoz61crCa7secxIGUXZTdBJxoxRzQnHymNjelJeZvIWR1KHQPixOhO0xVASzIbJSdGLDcupi3un8G438FVtVk89qgCjh8/q3iKJRTSLoUrC8vMM0O5PMyJXSoDAhlOH1txAUmptyT6yyd6gyb8MtR/s514hbDufpsAIIqjhWGO1YgEO+oR9u0DYFm4Yl+KE+1xYHERaLe1szoXRC1Lx4CE5aHdTrffDnz2syse7Hb1xDwvVEYoVqepLjK4GTEgVSdCe5ZQWE8UHCtFxYnRmd9gJ9NqoZEEqE+tkh/uujpHdbs4q70uFjseTVxH7iJzBVCpoOaGaMwR3MSM1XHc62Cp7dCsuq/IKPWrrs6BHrDYmET62jtduhLfc8l+3PdETZ/4SuGVH/1ptKSP8s5K/xfOIffzyBFg/369u0r/0UQ7H2sms7rq6GMdMQakLf1+Ti3QiwFZV6xeEQOCiQnsDFqYPW7+UKeDtvRQHjfPuy6qbohWe3QHsMxsOGVP99lEkQpnOasHOeFz8WmDUbauM0QMSKwgkGHnjiEatG14luwtpG6EhQXgb/4G+j4ipV5szx3QZaEXQkYshAgsjxUuBWrwzqgh2j1brJaji9W5kaHiayGtS9R3G9HHrpUx7nWw2Box/xjon39+McpsxDiYJNG7LIL+NRV4me5jRo5tWZmvPeKxpila0kc1KNxXHGewc90cy0JcwcICMHHVOHaVmph+dL7XrsysvmsfWqxujipWm7/renqXQS1I0IxHvL5W9lvmc42GafKBB6AUYAmFK6tzOHZnYWdQvvMw6LtfLaGQRsNfXwsn2njetRFOmzUAxDFaiY9ayXyGvq+/qwbNjr7t5qyuVLaBWF10Vp/DkHtxUdeb+vM/LzwoJeajCiZ3mT7QshA4EuGouzcYACxWM+cbKRGmjnZWR3QXcPyxm+AdfIy8bG4uVpM6q8MUXp7Vu0DUq5tiUjU3QpfCkXMeIBerJycBAL4tEXfpin9F7/0LBNNHgRad6xEAolNzGFOLpM7qxBT/qtWAZhzQCDQFsdq3E8RNmgOWsXZWl+yEeIeBDUdkfffTBliaiTHmdfGCZ4W4Z+YKyBtv0gPRcj+PrmQnoy8I5Q6qFYWv8ufWJIoghEK57uK6yZM4fWjF55ZnM1YKYrUtEQ3KrDZ9cUv6Z4vV5iJVq2xLHUasnqonuPRS89jkpG5lehpYXEQ39RDsndDPCYHJaoz5qDx0x3DvvehPGnJMpELPtU9YcFZKLVaTO6ttqTOrF+huNDJRcIRxVi9s8JrtdLR7dEUMCADA0Ts32uEF7hgxM6Yxr4uluATMzIzeZjH3s1xG3euiOU9wEzP9dO9YKQYc5ljz7fSiZHYsDCpaaNyvJ2Z8XL43QSvxkE7PQXW6ONEex7HOFMpjBcXD9FsqGb5PPPRQB4Gf4WtfTXvH2k58VOt6SuKWXR0pMcgFnqwfA7IspxboxYB018u/XemsnpjQos9JvRtE2/QFxKTptxw9nm22RhSr83Or7JkYECqxWpzlrLaEQhqvMUbKsl4cyUZwPGtwDEgC7C0vDS6uCGix2pZ60XmD9/H3vAd4xzuAY/cv4O4zV+hzNHdAVwRJIUQAy9TqckAQAyIl4tTuLzb7PnxLImyPOJ7NBeCKFtLaVAuNUiJTFqxaBeN+F4tdf3RhppdZbe4ved2NATvlokiPB9Zqsy19VMr986jkZ0TOanu5C9xORnNW532hv0KsHlQY0yx2LcZlZBlgX7Ibe0oNnNnf6B9rUVgHUCvJ0cXqFUULa1Wl5x6j7MDMxeq833LdoQqFAwDm5xGmLkp2gn3VBRx7uOAsyD+DgrN6Q074dhsLtz+Ea458DmdOZ702m0mAasmcR76vjQdEzurtJlZvH2e13oHbPYcdgouLwA/+IPDVr5oHzFxzKS7sFAVQ8lKEqUMsdFycsFjNrEu7Taz/Soko1U6UJKJzqiaZLqhF3atvhlgdhVpQLTlEFd+BXjGpqhvSTHJWQB2vAmyCWG0mDp4lEc3RnbR5trJICM+tgwcRHZtG/d4vEWdW23A9LagtxOVNEKvl6MV+DDJK++5XquiaMIQQSidWmJ83wtKcxJjXhf3D/wav2LsfX/pagOmwhl27zQs8TzvBCcRqqax+BXFAFyoTav3t5LmzetzDd+09gtPT9nLl1Gx37YnVeQyIHCxWC2Q6BmQNZ/UyG5kpTLNuhmIcI84cTI1J7awGgIkJfQ499ET/PRdsf1qsrmxIrD5LOO529aKNlen3vkR33aaxxHg1oc2szgssOhFaLbqOViYKrsmv37AI3m6vGgMCoJ/7G13gYrW5Vhwr0/EEVGK1MrmflQpqboTGIsH91jir616oxWqK2Z6peF8s/gVg/baV6l16x08KjF1SwdPHprH/niUsnWghyRzsX9qFciEFBI6jt5sPaz44dQqH3vNZvO7Sb+LOvz+lHzNF8Cpj+mBF4Ot9TEM6q1cdn+Rb/1c4q0tOsv6ugLy/yz+4ceNQnBG9c0gVxE94HupeF43WiNOp/P5d2WA+63r0CiwWHsuzoNfK8s+ycyuwOGQMyNVjM9h7yRACgWXBs1PE6cZ2GnS7wE1/p2AhxU1/ehofOfAi9KvKmYiZIVz767JKEbxSCSTiZzMJUKv2828DJ0E0an55Hg9W1rtiWiHR7o3cYe46GK8kWIzLNNntRQE4r7sxQKjcvx9429v0v9/7XuD971/eZkd6KJcKYrWXju6E7y1erhhvjXLt5pFI/vIYkGGc1UlmYzE2cX0TE9hdauD0if6C4LLPFUCtkmlhedTPQPWzems1aAF8lLlHvshmFWJAhigUDgBotbBoRMPLKgs4fqgwlsw/g0Ku8IYKvB84gIW4jGvGTuL0Y0YETxK0Eh/VgqGlQpXfjm0WA7LUQtVqk4vr7343bXv5LmTPknptbYMLbAt3PIyd930eOzCDU6fQvx8I0RsWAGb3xqj3BAYAi9XMAP7mb4C//mvCBvMYECdCEhM6q1MHni3JOwVysVopxJGCZ0mU7BjdUR0TOWZ0VLITdEdZ1V+F+Xng1a8mbRIAcOoUsVidJFAwzuo5OjVJC18p7VaeVgtR6qDuhvQxIJ6NiQlo0Y8iX7ogVo9cPKaAzhXOyBdtlNKDcQVs7P1nGZbmU4x5XeDZz8Z/fPlRfPixl2CmW8POfUboyZ3Vo4rrSYIodeE6hXPKdXVkw3oFP8wosFyx8F3XNXG6UwcOHuw/LyU60kW5WtxCmyBM1p+cyki/72/P7cM7vvyi5Z9bkiDNlg/C4Lp6e/J6k2jjrH7V8xfwgheYx6amMBW0sHDr/frnFfa9yZouZjlMx6CUzo4bG1txaXY6+joQeiEkatCNnOWtd6D28N10RWyVQtJJdAwIZeErAFKqfmb1Rp3V7baeME+tkh/eE6sv8OHjyo6VQqw2DkXb1QUW614XzUWCvstM7B1Li4sks708s7ogpABYf4xkrlkAOHlSYPzyOp42No1DD3Uwc0Qf41y30itfAKDnThs44ZcSuPFGHHvLB3Fofgz/7in34lv3mXPIbNPPxephawPkGsuq3UWSoJ14y7b+w3F0tES8zrHmnYnV70N3TSSY7laBgwd1VHGx+qDrou6GaLRHXLzJBcWKbwQvgnHcSoci0BPU1vy+egUWN5hZnRdYXGecJBOFG/Y91BMVB+E5CnHmbGhc/+m3P4zXuTfjGZ378MnP+jjSnIJX6vdVQdkaPQZklQVc27ORKmvkGJBmEqBeM5+958G3BtxnhyFfuPIdVAJdQJVk8C2lHme5LsZrKZbiYPS+q9jHAkMX2kyWOph/5DTwvvfh7i828b9/N8NsXqrB9AWV0ioxIBv4vtIUuOWWFceq7LPytUcadpv4omppedZ+1Y3Wjxoy4/+Tzbrun8fGsKfc6NfLlhJxVigGCcAtOTq6Z8hzodEAbr11xYPFaCwYZ3UyorNaSqTFIq+9QuFDLHI1m9rhusvXtWeOF8YpqxTBKznx8Ie6fz8WojKeOX4apw8YNdostNbKBWe1S2c82DbO6iiCvPd+VO+4hdxZ/fa3E5sm41jn4luZ7r82eMCL9z6BCSzgFfYduPUTZwp9yPLzM/AVuumIu20YACxWMwOYnSXuKNMUUaZvvAnhamHPWd2rpEwDuVhtimfkzupOk0gAzR2XToIusYhw443AoUOkTQLYBGe1acyzJaJ5OtWnf24RitW2jTB1UffC0fMIc+K4t82vFwNCceLGsRaAN8FZ3cusphKrVw46NuLuaDaxFAUYq2aAbeNFP/YMHGzuwEMLl2DXU0yFTd/X2wZHjdpZrfiXbaPqhmivM8jNwhiWUPhvvxjjVa8CTnfryy/O3EGUi9VCIHDNVrR1RIQkVpjwO/jSmWvxvkdeDnWqkK1h3F71oPC9O47OvlxvQG6Er3//6llcc4157MUvxqTfxtwZqau9rxCrg5JANOS2ufkv3YedncOYrESYL0b/t9vaoWilOvuV6HwFgDSSqHkhumeIKvZFEeLUgmec1e1Rc29zsgxSCjhCO6s7SxvsaM11I6qVs58zMSCdmCCfdDPJBy6XXAIAUDMbLDK5Gkb8czwLKJd1/EODYMCR99O5+EUx21uRWb2R6B7fTjA/D9Qun8DOoInpg03M/M3n4Nv6PAqKaxi2Pdwi+YMPAl/+Mr7/k/8Jnzz0fDxv6hiWlpRedUoSxJkNr+IOf6yFp/OP633vAz79afNkvsskWL4g6FjZ+t3LSrEawK5dwHS3Dhw4YOIECq93HNS9EM3O6GJ1HtWgxWqCvmC1zGrHgbeeEz7LjAC3sT/lemL9zOosQyIFPDvtF6EagOdkiNP13dor+euP+/iJp38Nzxw/ja9PX4X9jV2o1vqfpRWYeJcRxeo4teEVF5vzGK8RndWNOEC9bn7OF4VHnYPlWb2eQLUm0JaDC60ORX4hOQ7G6xkWozJJ8em04NTtLbhH618P8jP/jIXpBPjWt3DgjtP4lSv/Hh/4H4f1k/kui8LtrBQovWixge/r3e8G3vzmwgMmY3x5QesRM6tzZ3Ww3FldcQaI1Wax6/DiGHbsAFCrYU95Cadn+vFy7cTHslt63s8OeS3ccYd2ra/8u0UBuFbJaKJFlH12DMgwxepaLSxGZYzvLeGKySYOz9V6O5dWusB739ewBq/9+5FkNi6rLuD0KXPtJwmacYBqHjETBDoGhGgKum2c1VHUK24fEhmacqQEHn6YsMEkgVQWbGG+w41csGmKhVMhxr0OXrz7EO7+WtozYXrO8r4k8BXHgBDBYjWzLvPzxB2lEWurbkSbA53pAbinIrp+IcvQueNbGF88THesUaQHuZYczo00LKazHfqGvgE+/vGzDJAjkyR6IYT03JISAoBvScQtwuxXZZkMZELXfhwjUwJlJ0a0RLQMnRdo8m2IYIgt38OSf0n1uj6/mjQXmEwyEwNCkMmYkx+r6+o17o24OxYXtSNj3GS8Xv9C/MyLH8TbH/wB7LrCWAl9X1d4HlWs7m1RX8U9s46DIOlKOCLDK77PxSXfMYXZsLo8tHmlWK0PeaCDKIkyjHtdPDy3G7NhFU/cV9iZYNxetRUFfypOvP6A3JzjdqmQe3zJJZjcV8HjS7vxO/e+FrX6it9xXe10GKITb33qC6jLBew59S2cOVX4PsygWceASLLzFQBkZqPqROiu537fCO12bzGs4sZod4jE6tylaWWoOBE6jQ0uiOVf7LK8B0PPWX2Bi9V537dvn15gOrUwepvFbd+VCupuF40mwXeWX5tGTVEhjbN62RZ1W+e4y/V2tJnonomgi1oNsHbvxM5SEzP3n8bMmQzfMXkCZU8uSwTqb30f8DksLgLQO34OtXbgsr0SdiYhT04vixPIjzV/DwPeIgD9VaepdmD1JrXGoVh0U8LW19q6zebild0fR+3aa2O6WwMOHND3iLHC611XF9qkEKuVBbcWaHcmUQyILpZYGGfaeqfYmudBz1m9sT9luTYyJdYW//I6DY5aHim1Dp67QWd1luH0goenjU3jmonT+I7JE5ju1lAbL/RVeRb5KBOFfOu/t/yeCGDkSIVGUkLNrI3D87RBYNTdkoWs3nLNRjshEqvNmBuui7G60jEgQ4jV/+7f9bqDdY8VQCGzen25QjY6WIj0/aqZBHjTM27Fxz/l6VMnL7ZajAHxMy0kbUCs/su/1LfEniFqlRiQkh0PFNbXxeRrV1f0W1U3QquzzmdgBLhMWVqsrtexu9TEmfl+Mey29FGtFs6lYQplF3j44VW+t17GuD62sVqGxWjEugtmV1CvC87d9XIIySp3Vu9wMP6USR2rdeJEr90odeEFyzOrh5omZBlw9CgAoOpGej0/y3rO6mqlH91TcWO02jTy2rZxVpvzr+JECKlqcRmk1GvdZMSxdu5b5yBWnzyJxa6Pcb+DHUELC3PaJDkXVjBVWn4i9RbE2Fk9MixWM+syN0e8KJSmiFIHNTckbTeBq4UvK6YTJ44eRefwNMYf+zrikM4BHWXaWV12YrpiiIV8zjRbZ8JwDrTbWOZIoGB6Wm/f3xxndYqI6vtC31ltZSndx2q+r8BO6ArAxbGJARH9bdQEqwG9wln1us5oXaJZYEkiZQosEi7ayP6xKmBjzuqlJSzGZYxN9l0XP/bx1yKtj2PnLjP5yDOrR71u8y3qxVxC112/iI5SkKHULn/Pg3XJHiSZjcaRggi3ilitV/fXyU1TCjLOMO53kGYWfvxpd+GWLxSGBkmi3V6lFWK1O9hZDaAvDhimXvQU3HrqafiD+16D+viKIUi+yDCMWI0qqm6I3eUGTn+zkLOdu53yPHSqhRClkCqhndVU/XangyTTBbWqbohWl2ih0UwcnDyzeoPFfpJGV0cfrdbx587qAdEyW04+AdmxQxcunCc4D4rbvstl1LxQF9Yb9XMoiNUlJ6bJWTf52nmBxd73tt5Ci3FWj5cijI8D2L0bu4Imprs1zIRVPG/qGMrlFe/VcfSOrkF9+OIi0kxgT6mB//v2Bvxrn4pLKws4+aVH++8/F09MP5Al639nycFjAIDoyGn882/ehslsBjPTqvf+V+bUwnHgiBQyWeNYlep/lwVBddcVJUx3a1BnpnGsNbGsiFIvs7qzQSvySvIFpmqgF9lGEbxyejEghcccRy9arPUZnGOBxd4fWWsHj+mX3Q18TJ6TIR6Qg72MkychVAbs2IEXvesN+H+feg8m/A6qE4U/mi+IjiimtaR/1gJu/tywHDiwouvIndXjfaeub0tEo0bCFIrgWSV/4xFp67QLALBt1OsYOm9/ZgZYWGvtcEXBvn4ExPpyRRIrzEcVtH7pt1B9xj5UqgLPqh/Ho/e2gUZDmwMm+mORIMCGhKQ0TuFnXezcoXSN1fxYVwrrDlFm9YrCsFqsXt9ZLTMbFS/uO6tLSzi9VNLXZJrqdiuFNjYw3gKARx5ZQ6wu5EBPjme6Xs4o11eaLs/adxz9uSb24Httq6XF6ikX2L0bjpUiOWkiwKREM/FRm3B67epdQUMc0+IiVKp3XWJsTOcMLiyY72t5znzZiUnKBQF6qrgtxGpz/lXdCCGVAavfNB56iLDBUZzVR45gMS5jwuvoceWiAqTEfFTBVGX5ieS6Wj9gsXp0WKxm1oXcWd0rsBghkYLmIlYKsdRh+YEtaRxUho70UPdCxHONwS8ehijq5WsPfZMcst2cc8lgWo/N0CNOnQIuu4xYrDbnkmdJxITFO6URq13EdMdrvi/flmQZ0HmBJsezAd/Xg7T2iG0rhTTJtHBVq2HC72Bxicb9KeNCZjWhWC2EAup1WEIha5+Ds3qqP0v3Agsf+YjAy19uHsgzq6liQIoTEttGxY21+LUaSYIkteDYmd6ivns3fut5N+PnP/l9/UmjlOiudFZ7SkdrrNXXGpFkPAhhWQo/cMX9eOKQWPZ8IymhviJDsTyEsxrAWWL15GVV3GtdDyUsjF1aW/47rqu/v2HE6khnfO8uNXHmUGFmkDsUqcXqfDDuROeUWZ6mqxSKCUPEqQO34mmn+nqF3zZCvstCZIMFylUOdL7hYDLorMh7MAiBip9qd96FXDgmvydOTuKS8hL2nyRYcTV5qo5n6azikkQjGjH/1rQLAKhWMeZ1sThLMC5axfVXGZSLXhCrx8YA7N2LnVMZZsIaZro1PPcN16BUW6E25u60Qc7qhQU9oXtKHW/+jTHghS/ElbU5HP7M/XqQUSxaaNoc5CiV934bABD+6QfxV5+s4Nef/mlMHzJvsNvVfWy1cFyOo2NA5BrHqpTOpAaWi9X/+oWYzqbwwPyleNlnfg31qcJn4OjaE43uiGJ1fs1WAxN7YI0++Mqys2NAbL3jQkZrx3Usi48Zlvy7W6tPyMVqb/jxg+cqXWBxyH4mfPQwAjsBrroKVz+7jN/85Rh7d0hUdxVC1vP70SgKkBGoqsHyeyKADfWJP/zDK0SYJEEjCVAfM5+RiT8YlNc8zPEmea5wEOhYNwoFrCBW2yVPO+uHaFfKdTJo88xqb0UMyCBndawLRD96tIyrnyaAffuwr7KAUw/M4vN31dCWHsq7qr3Xl/xMF1gc8vuav+lLmGocxCXp0X4NanPN9s7pPFZilIUmI1b3CvYBgK134647LDLX185aqMVqx8HuHSnOdEwMhpRoS29ZJE5v5WiYic3Jk3jkznl02iv6pBXRGhPjakNFslclj9ty+guHgTtEsTqlTIHFMsZ3ecCuXbi8Oo+jD7d6x9pMguVi9bDRmXNzZqeOAnbv1uPfQ9NAHKOZ+Kjmp5bZebbROM5mE/ipnzr78TDcJjEgRgDWYjXtAY+PEzurk8RkVqd6UXwj88RTp7AQlTH+1CktVi8JoNXCXFjBZHX5Oe96gsVqIlisZtZlfp5eUFTQgmKibJrVfSmRpH1xIlogWtI0A7yqGyKepROro9SBb+nMajKxeqU4Tdbw5jAzA1x66eY4q32bVqxOhAfH0pEVSUhXCBAAfDtB1CL6EPICi74F+D4m/A4WZkevIi8zC66dAaUSJvw2FhoE7k+lIBPVFxSp1lak1BOxWk0XJtrICv/SEpbikh7kFnjJS4Ddu80Pvk9z3ebbUldUfPftZO0s0Xyyn+f4eR5+9EWH8PD8HvQqCUmJMHXhV/pKQ29r/VqD/DiGVFqguvLSBJdV5jE9XZjQJAmaiY96uTDgyotBrtfVriVWTwL3PVHHD/+IjfGpFeeSmTz13Pzr0G5mqLoRdpcaOHN8lYrvgUsrVpuiLFU3QngOGevz88Cv/Mry1JZcHHTLDipegna8sYJPa5L3BabAYnsjYnWng7moiqlKuOZ2/XKQoSOJinRtEirPUZicxBuf+VW8567rR280n5jnxaTqQtcGGDWgsuCsHid0gadquVhdduKzxYYi5nycKMfaWS0Edl27wzira7jmJRN46lNX/M6QOa3TxyKc7Ixj925zPNddhysmmjgyW9H59W5BHc1jhgbE4shQf26nF3wcaU3hVZc+gpnj5kBaLS1QjS0XlteNAcldxfby62XnVVVM15+Gx596A37yX53AT/1yIQfE1bUnmqE7mricLy6UHJQCE1FAsAhylrPaddePAckXZM7VWT0gBmQjWdgbjQFpHJhG3QuBK67QD7z+9djzgktRqxemuhuMPlgV49BcJlabmJ1BY8S/+zvgC1/Qp8qBA8Btt61styBWmxiQaNTxbH5ueRZ61VGJnNUK0N/9kEVRoRRks4PmyTWKoEupd5+W+s7qwEkQJQOc1eZWdM+DAa6+GsC+fbiksoSTjzXxho++Fs04QGV3X6x2fUsLSUOeWzOfugM7gxb2Nh7DqRPm2smvlQ3maxeZnQUef7zwwGrxRfki23qFYc29qSdWA6jv8LTbvdHoO7arZ4vVKh6ioPUf/R+0p9twuyvqdaxwwgcVW5sjRnRWyxX9lu+pwQUxu11dKD2r6R2Su3bhqtocDj2e6AsuTdGVHkrVYmb1kPOP2VksRGVMjGfA7t3YW17CqUeXgDjWC1f5qZXfZ6ONzZNuuQW4+eazH9+WzmrC6D1A14zoFUulwCwy2ULp738jdW1aLSzGJUw8fSfqbhdLLRuYm9Nj5h3Lr/teH8Ni9ciwWM2sy2Y4qwFo4S8jEqtNzqJnG+FrgUioNYPrihMjphIUo6h3rCV7A1WIh2h3GdTleImJY6Ba3TxnNeXNXWZ6IcS1UiSEDnsAepJ/Di7NVckLLBpn9YTXwcL86JMcHamgtFjtdbDQJBCr80G+SGkXbQoxIL69QbF6fh5LcYCxvavk9Ob4Pk1sSb5FPVgxIRHrTEjyLad24fk9e2AJhfTE6V67AJYLP4NEBCNQ7am18eLrM+wqNTG9UPh9KdGIS/1q5+ZYK4OKyKwVAzKltb3f/E3gf//vFb/j6jinpDv4mmi10Beri5nVeQxI2dNbRztEkR0mZqfqRuieQ5tzc9p8d+ONhQeTRN8PPIFq3UIrCWjuifkuC5Gi7oVoraELrEq7rfP3amvf+Hti9QU8CJfdREfmjI/jxXsO4+DiJNqjFjQ2EzLbCMD1OtBICMTq/NqsVOgiS1ZzVg8SgHNndSXp5TLveNFTMBtWMd2tYddeG1/+8orfMTnQg+7lv/OPz8NH9r8Iuy4x/ZHr4sprSrh39gocbk6hVCocl23rCX93gFht3MH3ZM/Hd+06iEm/jfkZ89k1m7qPnfD7v+A4Wqhd67TNhRdr+XnieUAoHTwx+SK88icvxwtfVJg6WRZqXoRGHKxbxHYg+Y4Q30ZQtrWLcNSBTJqa6I0VmdXrZZcrpfsOarG6FwMyvJDX20Y9pKC4dHgBY263V1QVAPbuRV9IMsc5TMTMuuTO6hW7jYapQ3PoEPDEE3rRcudO4PbbC0+ayK3aWDECI0E0aiRMfm55AiiV9O4l4hiQXKwemLf/6KNITs6i+e6/0LkSq7TZkR4qtWJmtUQ4QKzOz+e77/N6YvXe8hIevuU45roVHGtPorKnv5NL5KHsw9zDlpZ0/1dqapHy3pO9310WtWTE6o24aj/6Ue2w7x1Gu62d1ePLF+8cK4Ucwlm9oxb3xGoxVtfftRGr24l/lrPatdLeot96zM1m2Bk0z47Wy+cIfr9fB0ATA1KYavTi7Nb7vlotPLywFwtqTC+27tyJq2qzugZ5fq4KQFj976vkxOgOc33NzWlH7bjoO7Yf6wKLi2glPmq7zC60cyxA/Y//qIcRxa7ORGJvG2d1qnScXdimGxeq4UscDE8cI1X9AuTdjTjBWy19Hjx9F2xLIZMpMDuL+aiMyV3Lv3N2VtPBYjWzLpvhrAa0WB2nDlkBuDxXOHASmrxHoDfAqzgRhlh4Ho7cWe0YkY6i4jvQ/xzNQPxCd1ZLqQuVUBfvVDDOaqp2lUKSAI4wYnWD6HMtOqupbuzFyuS+j8mgPbpYbUQv18mAINBu7bY32qQc6F2zjie0+Eux5Rnoj/RqNVMMcgMnwtycjgHZV1v7NZ439HXbaAAf+cgaT5otmZUVearugMJX2lldGM3u3q0LoD02r3/O37+zfKKT/81VMd/F3rEOPvJxHf8w1/T7rzcFFuuVFWK1G6O9npi0jrMaAK66Sm/vW4b5DJLOgA43y9DqCFScCHvKDZyZKQxlcpGu4sO3JMIukVhttg7W3BDd9dypazA3B7z61Vgu9hW2xns1n24B1zir3aqPca+DxdYGFpg6HcxFFUzV1+6XgpLQW6gvYGd10kl0YdwgAEol7Co10JoZ8bNNUz3JMVvUx8cUFqPhioqtS8FZPeZ1sbhA0BeulVk9YDdEktmYqCa9a9P9nu9GMjaFmb3Pxs6dq/zOoH7LEHUyfOnkM7FrX188vub5Jdx06Pn4n/e8brmIMsxiGPpi9fQlz8XYDS/Wk8cw7m0Hbyc+KpMrxGqRrX3aKmXGkme/l127gDvuwNnOcgD1ss4aHrVoXy76BCWhhZlRz6ssOztuqid8rbMouhnOarNNfEOZ1a5CnG5ArD7W0M7q9cRq46Ycya1sXKq10vIYr2Hq0EgJtJoZ9t94L37gukN46H7ZH07lu4JK5kPyPH0PGxCBMZCi+7Vc1tcAxVh2hVhd80K0FgeMZxsNSGWhlfhofvyf8aY3rRj6GbG6XOu7lX3b5BWvQ37pfeNbjharn/lM7C0v4WvTTwEAPNHahXJ9+SK+UkNGUT74IGbCKnYGRqx+zJhWpERXuihVCi5wO0G4gdiWb39bRyL+1V+ZB5aWdFzHZGHcNGhHiDkWmdn42VcewItfbB6r6wrWaqnRy1nvLQIAPbE67gz+DObDCnYELQSqu3zanpsoAvPZmvHeMG7tnCgCvud7gHvu6b8XvSOk/zkGXrZ+nB0AtFr4z199A74xfYVebN21S4vVJwq7wMTy+0zJTtAdJn7NiNUTO2xg925cXp3HkccjYG5O77LYa6qFWxbKboJO4m5onnTffcB3f7eu55STd//bwllt3MpVJyL1ymUZNn4vGkTurLYyvVjR2MB9u9XSUTJX7dALM5kCjh/HXFjF1CX+spf2xOoLOS5vm8BiNbMmSm2Cs9pctJ5N7ay2TWY1YcE6s2JcdmLECZGobJzVfk0XautQidX53Wx8HAqA6tCK1ZY1uj5ZREq9G3FTnNW2HD3jL8cU1HKtFK5IETeJRg25WG0RFM/JMYNV17cAz9Mu6MURP4d8Am0DsCxM1CQWosroi0x5MUjXQlC29JZnihFOfkLVatpZvZHtXblYffnY2q/xfd3HDMhSBYCTJ4FPfnLt41zVWb3eVs88S9Ra7qzeW1rCqf39TL68rWK7y55bSeG7gOPA3r1DZ0+e7LuHGvEqYrUTob1edfp1xOrJyd48ajmuC2+YuJ1uV7uEjLP69FxBAckXWCrGWU3VFZqdC1U3Oqfb1tx0imfsXsRCUYjMF1o9XbBvw0VB1yIvsFgrYdzvYrG1gYiCdhvzYQVT42t/B8LbQNblFpF0TTHSIADKZS3Uzo0uVhe3PE/W5ej5nCjE3lQqOld6VAc40F+08ftCir5mh3BWV2XPWQ3LQlap49RiqefYW0ZetHA9vSPUBbW/OXsZdu/rX6vXvGwH7njdO/HQwiWojC3vs4ZxVuf9xMySh/rush5UZBlUqw20WrqPnSzkrueiz1qndi7U2md//i94AfAv/7KGWF1JtcN+lPMgFyp9G0HFphGrc+EvWMVZvVkFFikzq70NxIA0m2gsKYyV42WroK95DfCKVyw/zpITIxxld9RqucJG+Fo3Zgf6FGk9cgwHPvUgnr7wdbwsuAf/8umw/6RpC4DOrHaS0cWqYq5wqYSqG6E9T5tZDV8vjA7cFWLGG80kwG1f9/DhDyt88YvLj7Wd+H2xOo8ZStY/IWWiYIsUDz8q9DW6axcu+e2fwjemr4QtUhxpTCyvF7yRjPEHHsB0t45dlwe4pLyEk8f6NULaRQE4LwQ4jLO63Qb++q/x4D8fwXuvfQ8+9D4zXlpaQisJUNlRyFkftMgG9O75L7lmod9Pj4+j5oZoHpkHUl1noroiEsez5VDxhotqDONeF+NuBwszhc5+ZRSK56HuhmguDX8Pe8cvn8Z1e2bxX39J9dpcllkN9BfwBojVSWbjzqP79P2rXMZTdrdxcGFCuwUAmIoEGpNZPVRsy+wsFuIyJnZ7wNVX44r6Ao4elMCZM7rA4r7+vKHsy43FpEUR7LCFS/ZkOHWq/3AYArXaNhGrTR9TdSO6+bdudnmMFQV5ZrUj9GLFBsVqABC1as95ox56GDNhFVP7SsteymI1HSxWM2vSbAKV0edhy8md1SWHVKzuOattSZeXlMeAuLRidZQ68OrBORVhWK9dAMD4uBZ7WnR3NyHMdkzC82AzxOosSmCLDL4l9fdF4dTtxWCYzOpRCxYa0m4MSygzsCU6t4q5hHlm9ahidZ5Z7eiB50Q9xUJUHv26LbisSlVbV2UnEOmUTHsFFjeUB64UsLCAZhKgetnE2q/LM6uH+M6kXEd/NxOHSnkVZ/U6IoJ2VhcmAXv24JLKEk4djvR7WDnZBYaOAemJCE/RTiR14An9c6eDRhKgNrZ8kO8N2sGwhli9Y8fqgk/+WtdKEXcHi9Uts6V1R9DCbNPvX+8FZ3Vgy6EWFoYiSZBmxll9DouMczd9GZc/8jm0ZwvXThwjTm14gaDNEi1EoYyXYyyGGxDS2m2dvzexzmRz0ALIBYCMdZ8N1wUqFS0kLYzugNZRS/q+PT6msBCXR7uRKQWZ6t1mKJdpCriaY80nZACGE4DN+fh9z57Bb/xG/+FqVQt+1mrDlbxg31r9FgAsLiLJbChY2LW78PevuAKXVhZxYGnn8m3vpthsO1x/lpq7uWcWHb34NTWFmhuidXS+L1ZPrRB9rAxyrQKLeR+7irP6BS/Q6x75zpAi9bLU2eWjitXKgltyUKpYWuwYdQG3J1avdFavEwNyrgUWhxWr/Y0UWATiYSf7p05hKS6hPukuc08+97nA85+//DgpiuA1kwDV0vLPtTxEDIiMM7QePIwDjV24uj6Nn3vKv+C9f7Con8zHQOVyr03fkgPzmgeSL7K5elG04kSDHdBDtisA/d0HwXC7QsyYupkE+OKJa/B7L/4n/Pmfxcuel8qCGyx3Vq/7GSiFRAI7ghYmJoAJM4Tb+6xJdFMPz548gUxZvY81b1cINfjckhJ4+GEdA/LSp2tn9RnRe65VjNawbZSGKAYJALjxRiS3fw1SAlc0H8Qlrcdx/7d1ZEc78VDduVq/tX5m9bI4DgC4+mpM+h3M33cUSJK1ndWDxlsAFsMA434H434Hi48X7L/5faYgVk/6bczPD/4IAADHj+PWTy/id/y3wV88o38vL7JZdFb7Spta1htzhCGkstCJ3d561RXXVnCkNQU8+qhu01q+cKdjW4boC+bnMR9WMLnXByoVXPHsMRxpTOjM6jRAdXd/JaQcqA3FpKlbPg/MzWHv8W8sE6ujSJs6tksMiMxsVNxI74KgmH9Df4TkzmpjPLHrFT2fa26gL8y3e1UqwNVX64XPRoxvzFyJ571khVi9wRgrZm1YrH4S8fa307Y3Pw/s2bM5mdVWraJdZFTO6lSLJ4FNGwPSd1YTXSphiDiz4Y8FelJKJFarMNJb2sbG9LYW4mq85GL1Q4+hdORRJOtNcDfaZpzBsTJ4dopIEhQnAvpibZ5ZTSRWR20J39L/ka1CF90zuVjdGPH8KjqrYba9xyUSsTqvTl+qOehKd/Q2s6wv+lSrG1u4WlrSxYIsG1bgrf26PLM6HBxbkiTraA15ZvWKGBBHpOtnVmcW3ILbBHv26MnTMQk0m8gyQNhiuRVhGGe1srQjHwCuvhrjfgdLDxzVP8/PoxkHqO8826G4bsGfNcTqeh34/OfX+J283UGZ1e02WlLnOjr1MtJM6O8Q6J9bFd9s916/qaEpVDsfanJTZH4ec08sYspvA8VdLz23YaHwFZWz2jiAx+sZFuMNRFXklc13rNN3uK6+31zIzupYwbFSff4bZ3V3cXSnatFZ7fg20swavZhUvmMiCLTTiyK6Jne8ef3s14o7XGZ1rQbs29d/eN8+4Ed/dI3fGRQrAQBRhCSzETgJdu0qPF6pwPFt7AhaqEwt71+GyqyOU3hWgul5B7UagKkp7AxamHmi0SuwWNlZUKjyPnYdsVoqe1Vn9QtfCFx99er5mbVKtmFn9WOP6ZzS/pvpO6srNQtt6ZHFgCxzVg/6vrLs3GJA8pWMtbbgmfG06w0/JvE86LjAYSb7J0+ikQQY2x2s/7q8CN4o6wBJcrazesic9WR2Ca0mcCi+FFf91PfiusmTOH5K55qmSy1YltJ2SqBfYHHU+UdRyCyX9e6NRYK+e4WzuuzEg3eFmILOzUufia8uXIufueoLOPJo4Z63MsrMZOLLbJ3PNcsgUwu7Sk1cfXX/dZUKUPMjvHj3QVgi69WAzNsfKgbk4EEgijBj78bO5+3DvsoCjs3qHRx5nFvPrdyLARni+3riCTy+uBvPeEEVCAK8oLYfj307RLLQ0qLyroINvGdkWKe9PPorKIz9nvEMTAVtzO+fA+bndQTleEFQc114lhwsVicJFjo+xr0uJrwOFk+u8315HiaDNuYXhzxnjx/HfFTGVNDGU50jOLBfrVoYdqjManOeA+jtDAqe8wwdH/Ltb+v4hqBwr85z5ocphtjpYDasYsclejx7+fc+FUdaU/jogevRzKrLYqzKvl4kHFakDO9/HIGdYG/3IE4f7ndMYajHy9vCWW3Gx4Gt58xUB70pYnWSIFMC1lhNf//DFkxP0/6u9XIZeOYzMeZ1cbpTR1e6mHra8pVszqymg8XqJwlSAn/2Z7Rt5mI15Xy0t901H4xRiNVmIqSd1QldwTozeQjsBJkCTYcTxz1ntXZo0uxvSeNUT8zrdS2CE4nVSgHIMj1pINS/5R1fR+nY40gadOFWMkrhiAy+nWg3DkWsRM9ZnertcpRitS3NRITSWd3PrB73OlhojHh+5S4XI5BOTIDGWR3HPadPqeagkxI4q/PvylZAubwxZ3VuA7EHjIosCyU/0+L6gP5gXWd1kujto6s5q9dq1rj+lgkp9Tr2jnVwcrEEHD+OMHVQ8leIEEM6q3ui1tVXY1fQxPSD07oDWFxEIwlQ37Nc9BlYVG21SBJDL2JgJXmBxSFiQFpJoF1CU1MAgGx2vvd3pbLg1gJ9P6Aa6McxUmWh5MRIUmtj94OvfQ3zUQVTQRtQhe/PfPaeL8w5KxEtEtwTexEQNsbqZoFpI2J1VMHU7nWuhfw7vVDF6ixDklraIWtZ/RiQxRH77+LuFaC/EDPK2CBv0876i2HnkIl+FnmRTa8vpJSdGJ318jnzXRbB8vvGX/818NKXrvE7JlZi0Bb1JLPxhuc8giuvXPHc296GK59dR2WisKhl2zqypDugqFqUoeLGmJmztbN6xw6d4X9gCQhDdKS/3FltWUb4WmOxcbXdK4YrrwRuuWX146iWMzQ3KFa/+93AO95ReCBfZAsceFVPT3KpYkBKy92Eg2NA7H5hzmHZlBiQjTurxy6prP+6XFDc4I6bU6cKebK5o7ay/P5dchJ0BjmrFxpoJT4W7Km+uJFIqMUltKSP/5+9946XZDurQ1fl6nj65Mkzd8LNSVlXCIEEKBAkFDEPMGCEn8A8kgFjwGCDwAEeGQuEJWEZkBA85CeCJYEkJF3JQlfh5jgzd/LMOXNip8pV74+9d1V1n67au6pr0J37zvf7zW9mOuzeXb1rh/Wtb612zU+Af0WBofiEqTiteWdIE9K1GjFa7VbA9hsDq2uKxwd+KKjaDRoIGjPoGFZiYB9FyfdMXQNFiuAHOeOGjq2l+oDoVadi32ENL371LOoNaTTRpJB9PdO9zwwqh7YaLWHpIAGRh54GrK3F42DEDFL1uGaQke3gvseauGTP4eCdc8DyMubNAdbP9vG69387vrR2aISpy02yAZOZ1bUa5pZVrFl1nN9sIoIMqZPafInutwYDbDk1zBpDIit2JbWxZWufkmZWD4XB6v6ZNTRUsi4fMy/i1Je7iWa1mnxf1VBI4ooDVgPA/tlBIvly++1oaA76j5wl2tLmmCmqCGksIoakV+0WFveTdWruZbfjkc19+I6PvxUXBp0RTkZsQC24HgzkFhqqS4gn96/EjztXNtFuBNcRs1qGKtGxVAXpAglYrfGPXOJBL6jUbonNWSwGA9iBhpoekqz1TTdhRrfw4Qu34Z7jaxjNhgGyrhJS5i6zeurYBaufJdHtApub1ba5sQEsL1cMUnoRYT62WiSrXaHBom7IZKNQsQyIKtOJpqK+ujS7XVNcWG4FYHUUwXPC+LoSY7lqrkHwufugXjwDbXutWmZ1KKOmevAEXKiF23RDAirLAcmkVwhWx8xqHuNTMJxhAEPxCDjlVmQumC5RpyyXqS8BO0BTsLozJxOWZhUyICFxp2/PKqSEeto2498qBGo1cm2HgpsEBlar/PuxZkYErOYACblgNWNWp8tSRTSrIwWaknpekrD3kIbLwxngscd2tknbjTs0KRhAxZjVe/ZgacbG1dWInM43N9F1a2jtTblU8SRLAAR+BEUKM7QDMoIdnhzOwXw4JKWybRmYm8O82cfG09vx9/RDBWqTgtVV+QIwtrJE+1YESDp3Dut2A/NGH2rgJnOp58EN1RhEaGk2ehsVTLSULa/qMrS6Br9I8q7fJ2Yxe3Kc0DQNshQhdJ+hjJEYAKbjk4HV21NeW2ompWh0TGsaVBFDUE6b3hizuhJ/ZFZKrSVgNRcAzgCr9ZxiE5G5gM3Nv/LNn2W5pSTabRw+ru8wwaurLgYOR6fWDdFUHVxdl2IZkOVaDytPdXGuP4s1t416I3X/SxJUlew/Jh4gGatYnvxddvSdhmxo4mZtILfivfcSXC6WUmXrt6kmh95pF/CYWb3TGyEvKXqtDBZHkqICQQwWxZnV224N7f05Bsm0n2Xk197zHpK0AQB0u+j7Blqzo9I1RAYkvx1vgzBnt4IWZo4RceEZuYfuWbLOtpup7ypJMI2IbyzHi7QJXr2Opuagvz0lgBKGQBQRMEaWE4k0noQRnQvOrTcwv5esMbo/JN4t7HeWpKSEQVGgSgGpnsraJ1Mz2RfuPY/v/M7Rp37iJ2W84K13odEY+70VRWyuvXoVALBqt4jB7N69JCnx5AUKVptozozra+fvI52zV/DWT30Xtmp70ZmVgKUlLJh9rD/dxdPdOZzqLo0awzKppbwhwPYnxuhnzx1o4MPnb8cPf/bbAE0dLQ1RFOiyABg6HGLLraOjD4lh8yp9QxSNJiwAQNOIDMi22Nn2yYdd3DhDANrj7VWc+sJmSr4oGUuSJiA9Rp/7x7f/ffI19+3DDXNdPLm9hE2ngdZMql9Ms5rHhLcsIIqw5s1gYYm8VmrUMT/j42v3PkGA6VTUaxEh4Ajes4N1G03NwZ7aNi5fCuPPtH/td9G+8sT1waymCQZZovdoxWC1WcERMY6Ut1FddTHoC56/+31qrEt/15kZzByawV+v34OXve3Wna/nrYm7IRy7YPWzJLa3ydxQJbA8GBAmZZUgpW1FMBQfcdqzilmYGixqs7T0f1Ads5oBlQAqA6udMMWs5piGCAUr95Wj5FDereYa+H/+QahSCH31QrVJi4jKq0zjyD7eJmVWEzaOWpn2qx/JUKVqNasJWE2Z1YFazU3GQDpTBXRqLjctUMfaZBWZDZOY71XArCYHVwlq04QfyZWA1T5jVtdqdC4Q2yS8+09N9FwjAWxzolYDLAHzK89LXvLgg8CpU6N9HXj6DsMfEc3q8RL1fbd2cGnQAT76UWJMNE4sEzJYTIEIkoSlQzX86ckX4sInTxEZEM8cBQE0jcumdD2JzJ1lwGoRZrVvkEMiA6hOUy05Boo0zYTlVIU7rOsiiCQoUkh0OousXZcuEbayOUBH7mJ7Kxrpq2bIgGmirdnoblXQ15QMSAx8FWVW781BKEXlWr5SwdZuqrVfGVgd63MmYPWcMcTmxnRmbSQJFVKw2q3mUMb6WoZZXSuwLxEEUvKAyiNHsGMubGhOfl+jCJ4boanZ6HalmFm9v7GJi6dsfOfHvw9fd/zsDnMmVcsxPcphVueGphH9W8F1/OGHgRfc5eA1XzNIJJEY+7WmFr9nsyKTWR3A93I0qyMZak6uamIoCiQQ34iJkZ7rBEM3JHGDxUuX0HVrmDmS4zlB+2kqfuHt/LlzwOOP0/90CTu6uTAqXSNimu5vE8DDlQzoLQPodLBodnH1gUvouiZazdHXGwam3yOmq+5qNZK0mtbENQgQRSnskxIkuHMX3W88eamJPQc1oNPBwdoaLnz5KuD7FI8eTTApCkjClZMIOTa/hVe/evSpt76VyBg1JuyLhPwBKJ2+75kkoXbLLTjaWsPTHzudkA7aatymqXhcEpJ/4Qo2nAY2jT1EX3t5GfNGH2tnB/BCBYoUjJIO6L4od45NJ7tSMXe4if+9chTn+3OQxjNQbB3nkQMGA2y5tUSzeo12JN5XpZILTLO6K7aGPPGkhJs7V4AXvhDH2ldx8okA8H2S3O+kvjDTGBdhVi+l7hVJwg2HAnzLh/8V3vHoy9CaS01sTLOaRxqjg3rNbZOEBY0PvKuHn/vae9Fsjc5pMbNaEKzur9loqA5hVq/SvmxtwQlUzGgWnKowjWsZdH6K54OKkGV/4EAdbMHUw0ogGADJXNpuo63b6PUE3zcYUPmnZB6aecFN+IezR/GiV0yo6NkFqyuLXbD6WRJMrpP9XUXYPQ9tw6kUpHRcCYbsJwYiFYHVXqhAn20QJl0V5kTATrC6Qn1to21AVSKiwzYtkJI+mJsmWro9PWuChqfVoTJWcYVJCy9UUFNceBWC1UyjVGk3iI5o5czqcDoGXSqcYQBD9iFLlJlSUV/9UCblu6YpbCL00ENEP3NisAMm23dWZQIXl6gryVwwbSaeMhQ1NSRgvSLOnnr/38/jVHdxRHcuK8yaBNvXuJnBNLP6T/+UMLPi8DxyyEmzfaiWaK6eaiiPMqsBHHjzPTjVW8Sfn34ufuJzb0K9ObasixospkCE5311HQ9v7sP/+B8Aej0iA3KgPdJX3pzg+RSsLmLlTTUUuWD1cEjKbzsaMDeH5VoXK+foWsLuA1OFaYr9VkLBAGC5ILPacYCrV4lp4VyEjjbA1lm6UNNEq15TAF1HW7fQ3a6+ygJAIWZ13zPQ2pNTTi+aVPhKRQwA02vZIEY6wyJGOpOC6UsbdEKkLLL1jenM2mIWOCulr6IaYFyyhALAuaaFZcFqKUAWRsn6MomxzeKrvxq4447UAyLMaqYhr5N7mzGrDzS2cOGqgb5n4Lfe8pkdb9M0kOToJCCBAbUlwOookoTnmY2/+yIWH/4Env/Ie/HgfU7MUIyZkaZZTeUhA6vHgC9iiJnxHmawqBU8HspyvhY2nT8LgdW6oEFVrwf0+9gOmmjva+a/lsmAFGRWj4DV29vEYHFpVBqrrroY5mnCex68vou+bwIaTQZSVu3aw1fQ9Wpoz4y+vxKwmjGrY83qAmzCnDaDKGVYZxgk0Tbk3DuehwjAU5fq2LtXAo4excHmJs59aQ0IArihCl0Z/b1VXUYQZVRDAEmiR5v8nZpN4G1vG3uQaZdz5GB+/38dxunuAqCpBIh77nNxtH0VT39hHbBton2rq6NtckhI3sVVrNtNbCoLBKymY+DKWRtzxgDvestHR7dNVLIkVwaEgYXa6GfPH5vFl9YO4lx/FpK+E6zWFZ9PGhoOseXU0dEtdHQLWxv0N/Z9BOGYvApbE7sC2a4owslzOk7MrAK33YZj7as4dckEggAbTgNzM6mxpGnxZ2aG75M0xxgof/NthEX/xbXDaC3uTDBZHCY8O5tcdVpYWEgevu0bD+Oe//Z9OHbz6Het1SAOVvs+Bts+GpqDeXOATcZId13YgYa2bsGtUC7zmsX4d62IWR387UegnHsatavnqmNWs3W61SLVjH3BtaBPqmLS8k8zM+TP/v0TXn8dGJFfL7ELVj9LgoHUW1vVtWn9yV+i9dkPV3ogdRwQZnW9TlgIvQradhy4gQptrkk2CrzNkmgw7dNrwayuq0lt7bSAPQP+KKO0pTnodity4tVqUOWwWrA6imIZkFx364LhuyEp0a9SD50eIGMZkIruBccKyX3ADqVV9DWtWcfAWgHzxr//e+DjH89ukwDg9P+1GiQA4aA6GRAGgEeDKTc3rE0lSjbMA0NIYsV3AlwadhKjnJyoNWRhZjWbMs6eBT6Txk0GAwIizKZKPXnMaiYXMAZWK3sWcefRAX7uvtfhMyvHUG+OUwkFZUBSQNJrvm8fPvD1f4i/+9Ic/t+n78S54cIoCM7T146iBKye5EiWFbRd1+bLgPQ9E82OmoDVF+kERUEszVRgNhRiylPR3B1EMhQpJAkm0Xn7yhUgitCNWmgfmcOsMcDm6c24r/G113XCrO5O39UYGKqpNHFVwMeg3wcASOMUv3Q805nV4/cKM1icdr+RNrEFAE0jBlabU4DLDEhSUzIgJcDqzU3gN35jvK8TNKvzfDKmYlbz9VSz9Iq//uuBV75ytM0Gr6+OAz9U0DTIfd9qAdizB/v3A0/3Foh828GDO95GZEAyAFCW8FQK7ktEgJRUrH/pLOb0AY7XL+Hkg4P4fU6okWtkGJCkCKFVkcFibdQI8JoYLDItbJdjsFgQrBbSrL58GQDQVTqY6XDuHQYoipjgpWJlBcnczJjVY7rCuhzAzdsnOw78UEbPr0GSaT+Xl7Fo9rHyyBr+ywOvxNe+YDDyFsOUyBo2zQY8XdlQr6Op2WyaLx8UrI4lc3SdJNo4BpPwPDRUF92Bij17ABw8iEPNDZx7tB8zlRv66HdVVZpg4knMZCRYJAn4yZ8ce5ABlXka42GIL5yexQPrBxLG8sICjh708R/+8VX4rS+/LOlg3KYH2+cwqzd7sAIdl4cz6HQALC1h3hzg8a09WDT7+O7XrI6+QVXJvcVJCAJI5iIaczfMwA01BJE8arRK29V5RtlAwqxeNjBnDLC2Qa9zEMAONNS11O+l6yQZwvEbAECIEJaGmXYEHDiAlu6gPyS/87rTwPxs6guLAH80ETI+eX3bd6j461f/Lh7e2IfWcirBpChkzLqcyY6ez9xIG5clRr2+8/yk6AqpQBVZD7pdYgSsumhqDnpDOf5MJ1DR1mw4vetAtNrzyFmWRVXM6ocfhyqFMHur14RZ3dJs9AaCa0G/j55rotlMvufMDPDCF2Ycc3aZ1ZXFLlj9LAkGVlepW233fbQ1G26/OsEkAlZ7QKNBSrfXKtBsZszqdg0Nw0fProhJx8A/plFakayEE6gwmlp1pZ4M8FAiWkpuodutRqfVV00iraH41THs6eFck4NKJ/FYD71NGaBVrGxsE8wA+6qY1QysZk5zFYHVac1Lwh7iT/G+j2yAjCZC0szqtm6huzElSMXkVTQp1lAcTGt+lgaoZBl7mn2sDNtCG0bPDnF5OINmh88GqdUAy9cLaVafO0cOu/F5s9cjBovzoywPVQrh5QHAoRKbXabjNa8Kocohtt0a6jNj30GAWT3CwASATgfLr34O+p6BX3vwG3DvD/zpqJoH09fOAqhYX+WwFFjNPTxZFga+juasBszPk/LJy/RzWMmzoRAWfFVgNRuzlFkdWYJtXrxI/tY0SIsLhJl0kQISbO2qyZRZXaAkMS/SppmGQUp31wXn2l6PHDqaOWC1qLb4VyriihA6jmo1AtROa1zIJLfYvcL0OQXNpCZG2hiWGSyW8LI4exaJpARt1w9lKHqip9pQXQzyAGDfJ8xGs8D3iVl/Oa8pKgERM6vzgXU/lNHQyQe32+R9B37q/8Dnt05g/2EVeO1rdzbNZECymNUTEoLcoDIgUS5SmcTGBjBvDnC4uY4zTyfyISFkMl0zhn13eo31oa+hnvKYjIGvPM1qtjYXCTYOsubudGJOMHRDEtKs/sTfDLFuN7AdzcTbv8wQZFZHEfD5zyf/DkNgaYn46mF7myRL96TmSF4SAIjXkKtWMy5Sw223YdHs4W/O3YGG6uLNrx3dVximJMystm3g7W+fkJ9npAtTSQwWhzka0CLBNPEZWE2BWq5ZneehpZO1c+9exGD1+dNeUgkwBlYrmpytMw8kxKIi0jUUqMzdGmxtwQ8kPDg4hoXF5Hsdu1HBo5t78cT2ctwW+1uEWc0SOqev1Amz+sABzB+fxRPbe7F88yzwpjeNviEmB+QnBKNI2gHUzs1LUOUAL1k+PaqDnWpXiFnt1tE50sGeehcrm/RCT/q9dB26LHhetCxYvoZai5AOAEAKfESejw27gbnOaJKN6wvAxsfYQJBvOIwbWutwAnW0YkzTiBSjzxmzA7pfE5W0U1VxD4OtLQw8YrYuSxEiP6ncswMNLd2GW9G585pG6rtKAMJ+RZrVrVmockATYZU0mcylzSYBq4eCa9JwSJjVqWn/4EHg5S/PeP0uWF1Z7ILVz5LY3iYC9FUyq+1AQ0uz4VUtA0KZ1cu1LlbWK9Bsdl1iUlVTsW/WImZjVciL0AkmxloqNFjU6wRQlOhjUwVjlKoRBRNtdKsAPMCY1RXLgDAwSQ6ShbmKZp2AAEmMWV2htEalBotRlFQYzMwQHbaqwGoGCBgGdZHnT/GelyMfxICUFLN6RrfQ25zyOrB2qYZiRx9ia2161mMaoFpuW7hizQjdX74b4NJwBs25PCcxErWmIsSsToPVlgW8+MXAAw/QJ/t9sslfHHN8zyvPZgzMCUDK679/Ae/+mv+OG2dWUJ/ZWeopAdlmeEyndRxI+tZvxS980xfwJ694F/Y/d3lHm7lzQlntV1GwmjKwak2iWX1Dew2nL9fI4ZslmAwFRkMlv1VVzOqQMKsL6dezDLJKgPWOMcTmJStu0w1UaLQaoqXZ6PYr2JaxiggqKTBSupsXYZgczHaIfKbiOmBWx2siAOg6Aat5rL9UTEz8p6UaAMqs7mN9a4qkOwOSlIiwE1UPVkHWJ0AA0BG2JJsvGLBODeBy2crsvs1gQE8MWabgZz6QMklPNTOoGeQwj/HmuvAjBU3Th64nuf/O8QVctmZx6CUHsYMGByoDkmOwOKJ1LhpMU1bEMDoMsd5VMWcMoCsBvIGHiCH9bLNpmkSypQJd4R0yIIwJn8usVqCoxcHq3GqbEprViibnM2ppvO+vmvjc6g3YDhpx/j+vnyIGi54H/Mt/Sf69vU38e26+GXj4oShhVu9N+TjQJEDAAau9UMHqsEUYtQBw111YXJbw9xdvxlftOYkRnQGQc50TioHVa2vAv/t3wC//MnDmTOqJ9P0ny2jUQgw8fsI9Nxizmq3xqiqWaPM8GLIPVY1iZvWJmRU89rQJeB7x8tBHB5GqSUQGJGtwMYmuIgkWVYWpevnM6l4Pfqjggc1DWFpKHn7pV0X4+Df/Oq5aLQJIyckcayoebF/NTQSwJO+piwYBqzUN2i/8DLS6hqXnThDYpvesF/BlQHYwq+eAG24AbvjqA6OVALRdXfbFmNUOAauXa12sbJvk+/k+rEBDTUv9LrpOAGBP4LdwXfL+GggLxDDQUGwMN2ysOw3MdVL9ot8rysuKZsiAoNOB8R1vwoFlD61OanyyOSvvugKAZcENFPFkSBH5h60tQlxZpJN0GJBrS5nVpuJfH2AnG3+1GkzFq0y6xG/NEma1ypfsEW+U/i7NJlq6je5QcF9i24l2PY3Xvhb4kR/JeP0uWF1Z7ILVz5LY3gYOHaoQrA5D2IGKpubAy9t8FYy0ZvVyLZWhnSYYO62uYt+cjYuDTjVg9XhZS5VM3bpeObOayYC0dQvdXjW3NmNWCwFIosHYaVJIFuaKwveIZjWaTcJyGlYoraHL1cmAuC5h12shUK9XKgMSl6hrGkyVupJzNNF9L0L3S0/hj3/u8ZgEGgdLhLBDQK2GtmZje3P6Q7TPQJF6XRxMywumU0sBqj0dGytWiw9WWxb8QMJle47ISnCi1pAJs5rTLjNYdF1A0yLceCLE6dP0SQpW1xZShwe6cc7TrM5iVjcOL+BFR1Zx08wK6gs7DySKFCJwM8ZuEIxctzjqdXzTu9+EQ7/7b4DXv370OZ7hD+3ruPYkN0TBatdFFEmQdA2o13Fsfhunt2bJHM1YVjUVjZZMtAMrWg+YDEgh1mO3Sw46hgTMz2NWH2Jr1Y3bjGUXKLO6ErCascANhTCr9aHY/WVZ8AKJSFLkaY0/05nVbN5OgdUi5mcs1teJNMWkdv0oxVamBouiZlJZfSWyC1FSmu7mgx2TYnMzyTOwdoMxFnjcdlaUAavjA3/OazL0VPPaJMzqnP2h48ALFTRr/gibVpKIfuThw5PfpupyvmZ1ODkhmBv0fnCHYmXfG3YD820PkGUsqetYPe/AC1PAn2GgWYUJHpMBSYPVqko0xrMk2JgUSgmDRVXOMd0tAVaLHvb9vo0zvQVYoQHTzH1pYrDISQj5PuIql3MPbOLQ4DF8R+tD+I1f8/EPF47Dk7RRuRyWbOaZ4IUELI/BalnGwre8BE/3FnHXW24Gjh4deYtRk4WZ1ZYFvOpVBLT+9V9PPcGqzmiSrdGU0PeN6XRlx5nViiLErA4dD7IUoVUPCLN6Zga3HujhkbUl4MknqZfH6HsUVco3WOTIDE0MNm/lnW9puw+sLI8Y60nLS7i5cwUXhx0Y9dT3lSRiBMepBoiZ1QysprGwgBFQPA5ZJvdsKGevC75PiC9jQO3yMvDz/17BgTvnduaf2bzFy7sPh2Q/tziD2ZkQG3adDDaWDBsDqwmzWuC3cBxYvo5aQyYT99wc0W8/N8SG08D83KgxrKH4+XsOJgMyae/y8pfj6M1GzGVibapyAC/Iua70+6/ZTSzMCO75ioDVvR5JfM3pJDMVRUQS0bZhBxpMxZuuAuKfKth3bbcJsNythuXoyzpUmey57dUqNPKQ3Jv0PNuzNbFrbNvktxLwNgKQjINdsHrq2AWrnyWxtUUc1SuTAXEc2L6GmuoBQUUH0igaZVbXu1jZ5DMZuUFNqrS6hr1zDi4NxdiU3GCTL939VgJ+0n5Jhh5rVkfOlH2NS+CYDIiN7qACeRUQBpIqB0SLr18RxZ5pbMshpKom8SgiYLUUAo0GmppTjckkA0AbenVgteMQsNqIEsPCyljgCtSaRjbNTAKBB6pudNE9vYa/+FMH73vv2GYs1gKk/2eAWm9KmRkKgqsagFoNs8YQm1tTtjkGUC13HFwRmQvW1+GFCi55i2g0+X2ImdUCBotBADz9Px/AwY0HceDB/4UL5+mGqN9HBECeSe2cmVFZXnl2Xon629+Om954O+qdsTmVlSdnaYmGIQFKJrGSJIlQyia4yKtSPrDulmFWaxphG/LA6jSLSJKwZzkiFTW93ogMSKOtoO8ZlTGrI5BLUlNd2D3Bg8v2NrbdGjozAObm0DEsbF714+/hpQ0WNas6sDpUYkmgjmFha1NgM97roeeaaNU4h6zrwGBxxBg2ZlaLXdtuF7j/fuyUZEmNLdburDHAZneK9ZZpSysAJAk1E0Lzy3jsYFaPs5lFWGQlwWoRzWoAO1h/maGqaGguhnnl9FQGpFkLdkg/HDiQA1arOaZ9cUVIcbBalwO4lsD90O1i3W5gfq8OzM3hePsqTn5xG5tOA3M1Ok8xZnV3yvtrErM6BlU5Ek5FxgBAxpeUb7BYVAZEFKz2+jYe39qDWktgfAlqVqfB6rN/8GEc9E7jno2/wd7+SfzOwy/HX33Hn+1oNzcJAMTEmo7pjICUi887BAC443uet0M2q4hmtWUBe71z+DHpN3HhTGoO9/0RI8BmExh404PVxGCR/j9OhnH0mh1SpdhsRASsliQot9+COWOAJ//481i1W6i3RtsgBotSrmb1DikzXigKFCniy7aEMk5vzI6CyIuLaGs2Lg1m0GyP9lU3JDiBJgRW2448UgkwP0/A5R0hSbQiJAewz2BWaxrwnd9J5Ap2KHsphFDAXWpY24YBudMmBJvt7Xh+qempPsXMaoHfgjGr63TMz81h3hhg/ZKDdbvJlEFIMPmeQc5cwFlnjh7FKFgtE4+b3CQAEIPVi7OC8zHdL+eywFk4DtGsbkrAzAxamo3+pW7MrDYU//oAqz2PJEvabfI7bVcjH0sqpgPiu3J5q5I243Gi62jVA/Q8Q2y/RcHq1ozgPMPWr12DxaljF6x+lsT2NgGrK2NWU72kmuJWx34NQ9i+ClMlxnLLtR5Wtng0CIFIMavNukw07iqSAZGkCGg2yeJbhckBmxA1LdEVnjYDyQBFFQSs1gtoMHHCd4KEWd2ryN0gZlZXqFkdH/gjWvY+xOZGBQs8A0AbRnXgjOfBCVUYOgDTrJQFni77NmsSbF9ArmKzj65bw7pVxwffN/Ybx4kQupnUNAKoTZsMYUwfTabM6uH0c5fvEwYrxTc67RBbbo2/CdnchB/KuGx1cmV6WRgmva48thfdnzz+7s/icG0VB/qP48IpJ6FcS9JomTpjVmeBSTnMagBAo4FvfnMN99wz9jgFJwIvD6wux0rK7GtsVHbtZEAAxIcSqd2CLEUItvvJfFjTINcMcrCqqCoGQKIn2xPcgHa72HLrmJmVgYUFzBoDbLHKBFplwQx320VKEjl9TTOr25qVLfWTjn4fPc9Eq86Z59jv9AxmVsemhUAMVnP1VGn0eqQg5XOfG3siCODSvQYAQFVhyP502w02F9Ima3VJqHJjPDY3J4DVoQKFmY7FJl0CYHVB9qsqcUBwdu+IuvYxZrWbAz66LvxIRrMWjgIQAI4dA06cmPw2zZCzQZ8wTPYRRUJVoSu+2P5ge5uUuC+pwMICbmit4cxjRHN5rkHnKcMgusKD/Ka4MYlZzZKXPGZ1CbA6l1nM5mVRKRjaJutTZvR68JwIH798M47dJLAvYaAXB6z2POrlsbWFx0/ruLlzBQDw+zf/Jv6fV/4B9h8ce78Is5rOy7N1O2FWA1hcJGN2fBwDgGYqJLkiAFYPrw5Qu3Iae3tP4uKp1J6SdUpJMas9oyIZkBSzWvG4YLXnhFDlAN/6ymHyfb/6q/Hipafxoj96G/7g0ZehMea7Iav0ns2RAfFKyICoeckVIF5HAIwwq7G0BEkiSa9GZ2dfI/rerGD7m2YjHMFVM5nV4CTZ0p+XMce+4AXAK16xs1EhiUfGWNY0oN0mbOS1bSID4uuop2VbqA60m5e8ZOE4BOxu0HtpdpYwq+0GAXBbqXtM06ArPuxhzp6Dcw1+8ieBl7xk9DFVk/LHFgAMhzjdW8CeRXGw2lB8seSl4xDNagpWd3QLWxf6MQZz3TCr2SCamYGpeBh2qwFofTdMZEDWpnWFpcHuIUVBqxGi55licyFjVrcLgtW7zOqpYxesfpbE9jZhklQNVptVMqt9n4B0WgAYBpEB6db47+MF0/1kOtBShNCuAFhmk2+rhRndwvZ6BZMvO4DqelKavD2lGDTTKlZJu23DQdfWK5kgfZcYt+myX5kGVQwkyGGsMTt1xIA9MamaNSoAP4GEodekYLVTlQyIBkOPYuOvwWY1lQB+mDDpDINqHXKyut5mH13PxNDX0Q428Mgj6SfHDgGahhm9AvYnSy4wzWrDwtb29MzqgW+gYZLvKxmUYcwDfWg5+aVeUwisllSxbDk7kJzensf+xhYONDZx4ckh0OvhdHcBgaSOsqh4DEVaoq5p2RvXF7wAO8FqhZjE5jGr/RRYJhSMWZtlTFNWs1qwLDWuRqHVKWi1cKCxiYunUjIgphJXxVQlAwIAaDZJubMoWM2Y1Qsq0OlgqdbH5Q2TzM+eh223hpk5yqzWrcQNfsq+xgxgwyBA7UDgtxgOKVjNee11IgMSAwGaRvWaxa5tvw/s2wfce+/YE8zHgs0Buj69n0MQwA5UmJSdZtak0szqcRmQga+jwZh/DEzLA5WDgFR8KMWZ1bl6qkWZ1YpCNKs9Pfug7jjwQwWNerSDWf2Hfwjceefkt6kacg0WcxOCWaFp0CRxZvWG08DcXgOYnyeGZeccUvbeGGNWTwtWBwHsQINRS4372GCRkxQtWvQoy/n3wrViVm9uwo9kPLqxF8ePC4zbAsxqxwG8k2fx6OZe3PocA/j2b0/W7Jtu2tEuMVjMb9QLFXTq7ghYvbwMvOMdk98i6fSeEWFWf/4h1BSPVCel/QTY9aOLfKcVYMutT7f3ZjIgDKxmBos8c0FKgPntt/eS7c+JE3jjXSfxxhu+jEc29+2oDovn21yDxXIVIUEeE54mbhQ5HAWR6UZx3hygOT92owiU/vtOgJriYnZmdP08cSK/IiRXv53JVmbMscePA294w85GRcwQA8eHLEWk7ZkZLNV6uHrOSrxDjFSfVBW6EsARkCCE6yYyIACwuIh5c4B1m1xfaf++5LUCsi2Rl6FZTeOWW7BjrVB1OXs9YO0OLfz6g9+A73uDYOk6NQge9gX2R7ZNzi0tGZibw4xuYevcGLM6vI7A6lYL88YAGxvVNBu4QSK9J7rn5jaazIetFsTBaschBoszgmuYohASTZYE424Ixy5Y/SyJawNWU3H/qpjVQUBAOi1KwOpeBWA1Y5GZGqDrWDT7uHqlgj4HAVn8m03C/BQpo+ZFGqxmIELBCTgMgZ//+dQZLs2sliS0myG6nlkJm9B3w8RcsCpmdcpgEUClRoiqAgJW6xXISqTbbZoERLOrGQNOoMZg9ZwxwKaAuWAUAT/90/l9DSIZskE2q4quIMwrnWRv6w6x7ZL78Odu/HP8u58ZLR/1QwWqnoDVbd3G9mBK9iczQNMlKgMywGZvyjYpONOs0e+r61ClkG+ER4G9K926EFgNRSEVF7zr+o9fBACs2i10jhHA+sK5EGG3j1f+7Y/gtbecHH0Dc3znsJVVueAY5MmAlGHSxcAXJoNJ15hZ7dkBdMVPDiWtFo6113DqySApCa5pCXO9IhkQ9lk11YXVF1hjogj/8eMvwvn+LDqLGqCqOHHIwVPbi4QK67rYcuvozDMGtI3usAIfh3hNVAHTJCCCiDmN4xCwuiEIVj9TZUCYJv64DIgjNsf0+8A3fzPwoQ+NYca+T/YEbNxR2Rp3GrCastNqBrnmZkMhlRslmNWDQep29H0Cii6kmdUcBnQUke+Xp1c+Hmx+CaRsYLkos1qSUDcCDPycpDuVAZlpBXxTvVSoeaZ9TLO6KFit69BFmXTb23ADFcZ8E1hYwHKtiyuXIvJbNehvXhWzOgggIQX2AXwGNAOri7BU43ZzwCRq+FmUtS/R92YGBYBlKcTx42JtmqoYWA0Avfsex+Nbe3DzC9vA134t8Ku/Cvyn/wR84zeOvkFViaxE3nbedeGHCmYbo2C1LAPf8A0Z79EKgNXn11BXyRjSAyuZQsYYp4uzPtbs5nRyiROZ1S4sT0wGZARUlSQ876tM/NRdH8HJ7iLqs2PGqGzPxWNWF5EBUdX8fRFt1w8V7O8MRsFqSQK+53uwsN9Ec7E++h6B0n/PA5brXczOjN4rv/VbwI03Tn4PVwaEwyqeGILMantIwEIGVi/XSIINQQDL11BPy4BIEgxTghuqQkQRK9BQa9E+HztGmdVNQFYwcpOwvubsOTyHnFeLXANN4yQBADx5Rse82ceJmwTHVxGw2nHQ9wySVN6zBx1jiO3z26Oa1eCfN77ikdKsXqr1sLJeQYUgEsKcqXiw+xWB1WwfpyjFqkwsixgsCngbAUgqUJ+ppI7rKHbB6mdJbG9HOLwwwGYVgCowWoJSJbM6oMxqXScLXn/c8aFEMPMegwDA+xubuHSpGgkIAIkBXLcC8JPpOlGwuqZ4sApOwO9+N/BLv5TS04xN8Mh/2zMSum6tEtM+slBQsLpfJVhNDBYjoLISfVL2jVijdXO7gumNMfTqGjQlhOdjev0pz6Oa1aBg9VAoC+37BDzJfQFSJlaCJh9e1yJgtarhq5aewuqZIdbWkr4OfB11llPSNGLgOa1UQfpwUauR+6uvTFfu5vuknM6k8xWdY1avcOYvOnb8QBYDqwVNM7wV8qNeXbgF7RfchJpKNluP3u/iBYtn8Ivf+qXRNzCzlxwtUT8qaXyVx6wuo1EqSeR+CDN+M9amWhKs5hyehpZEDuXsYjBm9fkwke6hQK0qB/AHFTCr2cGr2aTztliJ58fPH8cDW4cJexpA49A8Br6B6Nz5+P5qzJJKm5Zmo2tXAFazecskIHhNdWGJyJPaNnqewQerReVavlKRTuACpIpJ8TDklKiz6PeJxufrXw/80R/RB0NaCSQhYVcy0N6bYm9AD/w1nVxz4YqQsdjYIJqn8ZkrCNB1a2jPJeuBCLMaAEHPREOSoMmkOiPP/AuAOLMaRPvVDXIqgxwHfqTgyB4H73mPeHc1PafsO06ylZABEb0fmB7PzAywsIA99W1cWZWJDEgzDVY7GEwhKQxgpNw5jrRsy6Tfi/oN6EYJzeq8uZtd26oNFimgeKjTEwOrVULCsXmgKh0e3U8/QAC1m4iuNFotjAhOp9rN9ZxgfY1kdOrexCYmRgGwetgLiM8QgH3qVVy6EMbzlgTE9/VMi0qkTcus3qFZzWdWMxmQHXPBkSM41NxAEClozI/JQ/L2XPRMUXRscZMLdB2948Am9u8fe+6ee7Bw88JOnxOBfbfvhlgye+h0xOcZVZO4MiASYz8LN0rki1zO+mUNI9TYfqvdxp5aF1cu+IlmtTG6X9BNagrKW8NcF2EkQTFpn48cwbzRx7n+HBr1aLTykJl651S3svNqEbBa1WWiWZ3ze1k9H3PGIPEY4gWt5BI6glPN6uaMTMBq3cLWhQFgWWRfQJNPlfhwXctIMauXaxX5kSH5TWsqR6+8UKNJYkeqFai+pPvj5qy498Yzep98HcUuWP0sie0zmzjy3l/E5vmKNH1cF7ZPweqqmNUxWE3A2qbmYOjyXVjDEDh5MucFYzrQ++rbuHixQmC5XicGcN3pM4W+7UORQtJXXafl5MWu73vfC7zylcDly6xRf8QEr9VCpcxqVQoJe6wKzW4gxRClG5wKzQU1jcmADLDVraicnupA6wbdLE67aXBdUpprImZWbwjoa3seJ/+QyhYDEAOrPQ++7ePSsIPWHsIQefmex/HpTyfPr9lNLM7T30rTKPuzAmY109dWVXQaHrac+nRyDUwGpJaA1Uu1HlZXOe+jwBYwwYBmUtDryzNP8alG9Eq0jPbxJUDTIHsOPvkxHy/dc2rnh/EM0Ma0bYVDkPFWSO8RZArLLJ+cllnNOUNbw4gwfZgMCK1+2V4j+n5WoMOsSYmG/1Y1WvMAKLPaE5PV6HbhhQoe6x9AZ5Ze36NHsWT2cPX+i6OJVqZZbVewyU9LApkmAdcFD04910SryZmPnukyIGz8pYxh66qLoSvIrN7y0Vo/g2/cdz/u+3wUtxmx8/MOsHqKvvo+rEBHzUz0tQEIrTOf/3xSab2xQQD2mI07ZqoWzwN5ZlJhSPY8RcBq0BL1ML9EPa88O6vR3AoW6lWimQoWFgo0mwf6RFGS9C4SikJAH4e/jgdbPVJS32oRGRBaYbjhNDDfoX0yTTQ0F4NpJYEsixAC0iCLJEHVcn6vMh4GQJIU5TG2qwar6f73x1/+Zdx+u1ibpuJxwWoGMDyyuReH2ls7ZT8mtKvKYX4Om/b1+N4+DhwQ6CtQjFk9CInPEICD9TWcf5joCgehBDlVkSUbGtkrTglWB2kZEEmiYHX+mY6dKSaB1abqY299C/WFDLZyzvxSilktBfkyIFRS7AM/9GliBjkWi4sT9owiMiBehEPNDRw9UgCsFpABGfl8kWAJJg6YZlkYZVbXu1i5HMZrV90Y7ZNhAK6Izjrb77MKOE3DgtnHl9cPYnlmbMNC55e8Jsswq+P1gKMxrslBsjbzgnouDAcCv69tE5LNjAYsLxMZkCs2YNs4P5jFgcYWkZKwriOwut7FyraR/3rBiDWrFcE9Ny+iCBEjYMoykY4FxGVAPAPNOXE5s12wuprYBaufJeGu99AxLFgr3WoaHGFWVw1Wh4AsQ9I1spHmLGinTxNjhMxg76c60HPGAJuC0lK5wb53rUZkQHpT3i5BgIGroqm5ZPPFGG8iDL1U9PvArbcCV67QBzxvhHHZaCukrKUCZrXnRlBlarBoVVeC40fEYFECEFkVMavHZUCmlZUAEoaiIScu39Pq38bMagKmzRkDbGzyx5bncczbx9lrIk7EdJNv+TrmDjYBWcbX6P8bn/qYF7933W5ifjYBq2d0C11rSvYnSy7Qg+vsTIhNpz7dmPV9DDx9BKyuqQIMWM+DBGp4IwhWG4oPx8rfOPlOiLrqYHVDxcyCBtx0E/bUt/Hu99fw0j0nd4rnyaTawMsCk5hmddESdQHN6hFgTzByy1Jpm3rRvlINRS5YbYEwq9mhpN0muufrVFNYkgieaBiErbxVwSY3LQOiuLCGYixKP1Tw2OaepKL16FHc1FnBE1/oAq6b6EzSBG7fqQCs9jwiCaSrdJ3xMLQEwCfbJjIgE4y+RoKBtM/UTTjba7DzkqqirlEghaejCaD36fvR/NKncOCTf0J05gFqrkj0OOOItdunSI4z3c9URQgAIbD6Z34m2QdsbxOd7X4fZP4YM1WDJEFVpXzAI0wd4goEAVIEStSLTDK89YvKgKhGMbNfWVeJPFZekq3EvKXJgRBY3e0CM7pFAGSq0bpmNwmz+iCtNNR1wqy2cxILE+Kznx0z2WQbhvoo+KcqFPjK0+0uZbCYz6wOIykx/BRsEwAinw9W//N7nkJDpFCTGSzymNWXSJb7/sEJHH/d7XxWJZOV4DGrQxk//8ZH8cIXCvQVKAxW11UXWFjAgcYWLjw1TJJhaqpjdI6JvR/KRBBQM1L6f0lCzQiJ3j6HVbxDBgQADhHm+pHW+g7Nai5YzXwqihrDyiHfYJF5P0yIhQXsHHMiMiAuAavf8wfi11/LSzABCL2AJMEKJgR1OYCb5T1Cw7Kwk1m9KqfWrtFrGJ+VeFWo7CyVAoHn3/J1+PjFm/Ca7xzLQIrIgDBQucA1UDQZQdZcyNr1AE0OxeWxVJX4UYmA1ZRZ3ZhRgaUldAzqj9Xv4+neAo601oiueP+ZDVaHLtULb7WwXOthtWvy3iIUvhclMiAiUna8YOuQHI2a3BeRAZkTBOJFDUx3gxu7YPWzISjF1lA8OFIFGtDAqMFiWJFeEjNY1IsxiFx31DjoHe8AHnhg7AUAWaB0XQhIEu1vFElEBsSwsDUt+Om6ZKIzklLPWsls4d69KWZ1XPJMDhcS02yoQgbEi6BKAQGQqtInjTWrKQjer6BEnxn2aVIiA9Kvppzepwe3hZYzvc4fkGhWm0Svec4cYGObvwnKZVaH4U5WHDsM8EpoIxkNzcH8sgrccgvuWTyJez9mx8+v2U0szEdxm23dxrY1JaBGNasZE2ZuNsK63ZgerPYNUj4IEB1RWUBH1PPQ1sn3FZUBISXa+Yd5z43Q1BysrisEl77jDvz8c/8GP3z7x3HH/o2dtuSSJAQAl2H9KXmHMmqwWBSciN3pM0AfN1BLGyyKyIDUVHcHs3prg34e+yqmibZmo7ddzXrAPqupORj0BTbO/T78SMYTa/OJru4NN+DmzhW89xOHcK7XIZtmWabszABukAP6FeyrpFGwWnFhOQK/L9OsbnNeyzbhz1Rmte/DDVUYRsL600xFjO0FoH/VQlNzSGUG87+gB/O6lnq/ppE5pgIZkHqKWS1JkdDhyfcpOPnUUwhXr2Km7pL/hyTppSnBSCk1t+R5CrA6t0S9DOuPVxnEkt5F2JS03UzGNjObvYYyIIN+hIbqkLmr1YK8MIcokgiz+jjVhpAkNGoh+qLGTyCX6Z/9MwJYswj6FgGwxoBWVZNy15kgkouBygBlkeUzq6NIKja2KAAeeBxd4ahA0oIyq7lGgE89DQB4wj+OffsF7u/YuDLnNa5LkohagQRLERkQi7CbsX8/9jc2cfFpL5EZ0lIdo3JuU62LQYAgkhJmNUDA6jydeTAZkHAnS9UwgF/5FRx56cGd0hpszFTJrOZVnAFJ1WpGu8vL2KmXL8isVuUJ7PKc4MmAeG5EGOuFwWoxcsAOzep1FRgMyNrVHL0+uiGRtZYHVrvJWZjFwqufD1mR8brvnRt9raZxNcY9Jyx8DWLZxLwx65JzsHC7RZL5jkPOLR3iadKZV7Dl1ICLF9F1TcyYLgzFhzt4ZiOegRsQCZZ6nWhW95uV4EYMg6ipnhhBhNsg8XZSWKWJYUCRQr5UYBQBto2+Z6C1IAhWKwo06Rm8T76OYhesfjbEo49CAggrbwry6x//cYp0lDJYlKQI0VQOQjSYwaKeTBLss/LC80bB6s99jrCtR14AxDrQVYHVoeunZEAG04OfnkdKSAz6IzHGm4gJA43hkJw7xsHq2KwOSA4mVcmAUFBZyDxIqFHKgoi1sCsAqxmzmmpWzxoDbA2q035VDQXLsy5WrVYlYLUV6ITsxDSrpwWr2aYwrfFWgFk9Xxtibg7A856HhubiBuMyPv95JGA1IzmoKtqaNb1UwdjhYn4uwrrT4FDHR+PDH8ZoBUVADLnSYLWh+HCGfLC6pniQ5agAWO1y9UR9L0JTdbC6JhGw+gUvwAtfouK7v82B/NM/hUl1wLmgD2O8lWD9qVKO6z0DwYvKgOj55fTTMBR565hlS8nhCQBaLXSMIba6ErwwZfpkmoRZvV0NIwMAUK+jqTnoDQS2TzTZ5fpKwqxuNPC655yD5Wt41+MvRcek87QkQTINwvGfdo5Jmy3RdcayBforClZfJ8xqPe3hVUALut+L0NRsyFKE0PHjNgeejoY+ClZXway2Aq2UDIjnUe+KX/s1YGihcfEpslfyfWw6Dcyao3sAWVMQXitmdQ7rL5ZMKqinCiC3r37J5F2UxawuO8cqCklaCNy2wyGtCtF1sl7ffDMUOcSl4Qzmbk5c3Br1CANPFwarP/hB8pXOnEkes3o++axxZrUaZSct6BgYMWUUCaqFnXkvsLFV0LyTy1hPVb+JtmmqHmyfA1ZTZvWT20sTJSB2hIgmPEsi6gXuA02DBCC0OYMrCMi6qHrA3r1YrvWwcilI5hd9FKxeMPtYW59u3gpYNSMNXUc+SBkQmTNNCSbPMfPzeO2bdJw4Mfa4CLOaeTSIBjPEzAOrPQ8RkEgpjcX3fR/wPd+T0dc8drlXEPwEJ8FEP06Vg2L3F6sI4WlWs3FFweo99S6ubOrAYEASuDOj3yMGgEXB6lTiYnYW+J3fIf4LI8HTxAe5rhNZ+3khojHug7RbgFldBKzuexSsBjBzaAb3rhzHvVeOkc+cmYEuB3D6z2ywOpb30XUsz3lYsdrVYBBeBKViZrUfyVAZkcYwyH5+kzNWfR/veezFODeYQ71d0GDxmbpPvo5iF6x+NgSt+5MkCJW4TooPfxj4ru9KmfY5Dixfh6l45GYbVFCC4nkEANeTSSKKJO6hbFz+4MqVxKMmfgEQl1Ibig/Hnh6sjsvVmAHctOCn6xKw2kzA9boqWE5OY+W8iz3+eezF5Qma1XTDYdLymyoWCj9KDBYrZ1ZXCFYzlpWGRAZkWJ32q2YqWOq4WKkCrPY8wnSpS4lmdY8/tjyPbJom7qnogxFSm05VJRljm6NZHSqYr9tkc/ic5wCKgh878kH81q+RD1yzm1hYTDRa27qNrjOlHhndMLADZq0hww40YQ3Fv/1b4M1vBj7xidHvMvAMNOtJOb1Q4opq07frvrAMSENz0O/nbPAjcghqajaGQ4mwbxoNomf0trch6/SrMRAhi/VXQltaRLO6sJYoOC7qTF+7BENRkwO4bv53HNryqAxIq0VNOjUC0tXo3Mc0q/N+K9Fg37PRIHIdA4E2KesPGDW2P3BzE//ips/gwY396NRS83QBoDI3xsDquurCckTBagOtGc5racn7M3YTzmRAzFGDJpH9BgD0B0BTJeuSGVkkSRgEhAE1CazOA6h4EQSw/FHNakUK4Q/5/WTMai+UocoBmvYa+n3gIx+O8Ndn78BcbSyjxg7bWfNsSbA6ngsy9p+BQ706CuqpAshlgZMkfaGu5gNftM3CAHgBGRBiVpbS2z90CAtmH6e6izj2goRN2GgAA98QBqvvv5+siTFY7XlkntS8HeANkYPJABXZbygVHNMyISBkYj5lzDsVhcgU5F3XoqxaWYapBgSszjkvMTbcE+frYmA1M67kyIAAENe+BQBVJVWzvLFlWQQ4bEjA/Dxhv64gmV+01HjXdSyafVxdnwICoDIgafwuBuGzLgJjwedgfv/sn6E4WF2WWS0FXI3xWKZrQhjGCCl4tK9Z1yCK4PlSMfATqTk2o90YqC1y36pE1oorA2LTSjZVBZpNLDf6WOnVgc1NkghpjV0fjTMOaISWQ04sqYsoy8AP/MDkvmpymMtSjWVACibEAOQzqz0Ukxdh/jM5LPA4bJsk1lvkGtzwvDnIiPDWT/5zHGxsAu02uf+vA7BaodUCnZmIGLhWgEEEbgBVCinhopp9fBCOMqvbusX3tbFtvOeJl2Bvsyc+vAQSLLshFrtg9bMgvL5DDgIApKgcSPvbvw3ccQfR0wNAndblaqUaXJcwq9kBkm3YCjKrV1ZS/aTtxu3pOpnYq5BBZgtfvU5KzKcFP2Owmk6KrDy7CFj94S9juX8Kez70Tly5Qt/neURLk633tRoB6barYFZH1GBRzDxIKJgEhFTh2EpLoTAZkKFZSO9xYvg+vIhsghfnAly1q2FWx4cKplnd548ttuBNZFczxo40ClabPLCWMasbFgGr63Xg1lvx4qXTeOTLTlwN0GjJcZtt3ULXNaa7tuNagGwTKLiqf/azwFveAjzySOrBICB9ZYAzkwHhJa7oZ7bqgZjmpaKgqToYWDnLJzX/ahkuJGmCrmFGqLqczVYuq6fKNKvzZEBKgOC5faVtlmdW5ycCLEdOmD5Aolnt1rDp1DFbT4x7WpqNbq9CsLpeR1Oz0RcxP6Mmd8AoWI29e3GouYEH1w9gtpGaT3SdHN6qAqs1LdZP5JW9A0gMFjuc3fgznVkdBFSzOtU/0URAFKE/kNGi0kAH9BVcPB8CQYChr6ORZijqemlmddoI0fJHmdVCWvugYHUvwmObe3HTzAqaUQ/9XoQ/+3MZf3zyRZirje0BBNjKhaUaAKhKlMv6i/dSVTLeYlmkgteeIwNSmlmt8BmKwBizGgBe+ELsmXXxfd+8AklO3t9sRBj4uvCB37aBW25JgdXDIc705rGv3d8BYBGWZnZSlH2nQsE0gHNkQAq3K2JcSQFF2RAfW6YekuR4nlSDG6KlEfk/UWa1wmNWpyULRUNVadKdMyaHQwIcNmRgbi6RamDzyyRm9caUYHUoQ03fKzygNt6nF/wsIWa1XIxZLaJZzT6vjHxRrr42vQYFgGVFV/Ln2ICcqcowq3nrV1zJRqtBZpZNYoh+/jw5y8yOIfaC+3l7SBizQskbTSPJII4MSFHNapG+el5BLWxNI5XugsxqCYBUIySzoy87gL95ze+ioTm4YXYTaDaJDMiwIs+oaxQxs1pVIdVMso+oQorUR6JZLSJlJ9Ag0dpPwOqWZqPX5ZwTbRteqODj3/ke8c/aBasri12w+lkQg20fDY0ezksCSFeuAHfeOQpWs9DloBq9pLRWLyBs8jEOVucyqw0DhuzDsfnX4eLFfJw8zayeNYbYHE7HJv2Pv1nDpWEHzRrdbLBDaYH5/MqpAfbUuthb38blp2nnfR/bbg0zraT0va3Z/EyhQDBttUqZ1YxdIYcETKxibDHwU5MARcFs3SG6X7wyNKF2ySZYrWkIQrkiGRDKrDZNzJlDbAxNblUED6wm8gepNigjxx7wNavnGg6RAQGAO++EJAFzShfr22RzFjNmJAmaoXDds7nBmLcMrKYgXeiIjQXLAp7//DGwOtasRtymCLOaSRztmfe5HkoAiAyI5uZrVjsO/FBGU/fQboufSXLZylOUvauygMFiQc3qWAYkQ7PaLykDois+YapmrWVM41f3ElBNVdFeMrFNwepOjd6jVAZESLKDF2mwWnXQtwQOhQGpHpltOKPalnv34kBjE0/35tHZmyrRr4pZndYIVlXijSACVjODRR5YTQ+5uQf9r2QwfwwjNaaZFjTv2g6H6LkGmi0Z6HSwv7aJi4916fyio26k7k06Xl1fEd57Pfgg8P3fDywu0q4wAzQ29+g6+b0EweremoMvXD2M5y+eRUOxMVjp44v3y/jcytEkaZPqb/zGCREF5YDKXPATJUEEEWZ1yUqTzHaZaVwJZrUu+0LghGWPgdX1On7h/30u3vYHzx15XasZoeeawglc2wZuugk4e5Y+MBzik5dvxMuOXpzU3VyDRQCFExbxwTwL+AqCUU8NwTa58irpKhLBMI1ICKyeNUhlwr59Yn1VpRB5XpA8pu7EoIaQ3DONZcHyddRbBKyeNwdY76rJ/JJmVjOwerNgQiIdrNLEHJ0Po0jKZUCX2heIMKujbCPEiSFoiClJUWEAGEA+uzyUCxtaS6pCJMIyZNf8UC7OrJakxCcj5/wxTg6QFqhGx9mzhLXfyQCrOWcEqx8QxvYOevqEEJQBUYsmRYWY1RLRGL9GMiAAkmtA5QG/8/g/4raXLwGGQWRABtcBWM3W+FqN3Fv9KQlzUUTAaomME9vNrt4S76hPtPZTzOqG6mLY5TOrvVCBVi82dz+jSR3XUeyC1c+CGHSDuGQ1CorfFOyM1emkQOAUiqvJAbxhBYCi5xGwukaHnWGQAy9H2N73CRvFdYlMydWrKVA9COgBi4CUMAzoSsAvmQPwn//zqBnNju4yw4p6neih2tOB1R/+BwOPbu5NwGrDIIy3AjpMK+ccLNe6hI17iaKWnocNp465WTqJmyZhv25MubixklgpqNZMiwJZcbuCEjO///s5ksZjut21hkxcyStgKMagahUO6rSvlq8TBowkYa7tY8NpcBlUbJM28Rr4PracOjq11L2kKDAVP1/nizJd3vriR/DSl9LHjh8HANzVOo0HLsyTzXp688f+Pc21ZQkLVrapaZjRLWxvio0xyyLJtZMnUw9SMClmMVNmNe+QFzg+VCnEJ/7gSbFztKIQg0UOs9qPZDRNf6cBT04IaVYXVSPiyYCEISmLK2ioRXRq8zWrC8uASBK0PONGIK5MqOmjY0VdmkMQyYRZzdjKhkFka6oGqzUHfUcAHKE37UtvXh9l1+/dC1P1sVTroXM0ZSSk69VrVssyahoxB+Ru9B0HG04DnQXOdxM0wvynih398P3RKi5AfP7udtH3DTRnNWBxEfsbW7j41JCAM56BhpEal5IETctJ2kyIX/gF4DWvAV72Mqq5zwzQ0mC16gqB1Z4H9K/08cW1w3je4lk0NQcrj22gphKQZa4z1gYHRChVSg6+wWIMVj9DNKsz251Ca19XBDWrLXnUHBbAkSM7PBAx0wqx7dUKgdWzShdDZthtWfjU5RP4mptXdnaX6d9mAPYASsmA5IJ/ZUBwKgOSe9hPV5EIBmFWq7n3rOeEmDMGqJkh8ZwQ6KsqhwjymNWlZUAECDjDIVkXmyowNwdZihD5QcKsNkbB6sVaD1c3pzCNDwKi4W+m1pTriVnNNKs5yQUA1YKf7ExR4hpIWe2yKpOihtbU1DvXHDeKYLkKakpKdm1+nsx3fVolOmeOvkcUrB6ECWObFwJgdWG5DtougPzE1bXSrPZ92I4EQ/WTPlMdlB/9xTl8z6/eHleLP9OZ1YGXMrc0TbQ0B/2N6fexfkgS0mZDheVr07O1Gf6Q8rWpqy7fMJ2ezxkDXih2Nasri12w+lkQg26QYlYXBxRXV4HlhQDtVpSAwKldty5XVILCmNUMrNZ1YnTSy9+MM2b1Bz8I/PAPE+OFGFSnoJfGFmkmAyJQLsJA8LzPHdGstsVkJVZXJz++3ZVwureQaOoaBmFQieow+T6uXAywp96FJBFGaBSRjm46DczO0L7VamhrNrpbU4LLzLRQDgm7vgLZcgCJvrQuF0qE/OVfElZ9dpvJBlAyqR76tJpZdHOtmQSs7hhDbK1PeS8wGZAW2fi0ZyR0PVMYrM5iVm86dcymwWrKyOGB1X6o4PlHN7C4SB/buxeo13Fn4xQ+9dAsOro1ulkvINnhuiTJsCMY87amxm3Om32sr3ObBEDuW3aAjLvh+wRMaiXziyEgX+PZxMW60RbfiDY0J59ZTbPwTdMXO+jS0DRkgwhMo7UMWC2F8HMMFtnrioSs5TB9aIlwYdAHSA5PWQcdZhhljM1v1JFn002B1YxZPZyCQcaCfc9ajYDVtsZfD+h7PvSz/ziK/dC68kPNDXROLCSPC0pjcWOMbVgzQpK84xweI8vGmd48Dh4RY1Y/Uzbhr3kNsLGRemCSZrWuE6NRi7OQ9XpErmtOB+bncaCxiQun3UQGxBi9hppJK00EF8izZ4Fv/VZgYYH22SeJhB3M6gF//fZ9oL86xP3rB3D3/AU0VAf3fgZ47uEN3Dp7GbP7Ro31eCCCF8jFNT9Bwc8c48ZYBqRMeXbVzOq8dpm0QQm2tohRGaIIQ0sizGrORN5uhth2a8Ljyl7rw/z934TZXYVlAdFgiHP9WRzZv3Odjpnwk64Bm9NKyIDE+u2T5sVpZEDyLgFjvxYYW4omI8gzGgVJ3MwZQ+xdDMRwe6ZZHeZUBZXoK1QVhuzzt7KWRUDpFgGLUK9DiiKEG1vUYDE1n+g69XiYDqwe+jrqabCajukoyyE5bYReJNiYyUq2jsvKCbapSgGCvCWxBGtfiFkdlbsGmfstRiySi5/5dC0ipphZ+/lYRiaVxJyfx5LZw6rVImvX3FimTRSsHtfvzwuezBCmXGfymNVMY1y0XdHKM8fBlltPPFZY3H03pG/4eiILxZjVPKP4r2SERP5IlUMCttdqhNCzOT2xi90rjbZCPBymBat9H0EkQ2HoJ/V0Gfb5RA4AiSeYSMTVRqV6uhup2AWrnwUx6EdoqGRSKKNZfebzqzhy6bNon30oAattO7ZqKwIo/uzPjkl0pMN1SWluilltKh63vMXzyJ8rV4APfQi48UaMgOpuoEJTEwDYkH2hs34QcMDqlM6iqsvZIFIqogh45SuT9v/n/ySeaqdPA9s9Gae7iyMGcEQGRPBgdPEiVoZNLNfIl59Tu+Sw63kEqJylr6MAzYiud5lgoDIzQhQxixBtN1SgtmqFxhYzkwLIdY7NQIFkE6wnYwtAJaCPHypQTZW4HNe6WFmZUjfL8xJtQQBSvSak78X2kl/8Iin3vffe0X5uuvXRsm9WPiqgWT1iridJwLFjuGv+PP7qzO2Yrw2RINmI3elFmITr68Dv/u6EJ1IJCwCArmPeGGB9Q+zaWhZQWz2LN36jhTe/mZ4NJzCrRRhJvhMUY/0pChqqi4GdczByXfihgmYtKARWq4ylmceeKXHIUaQQftZtVpZJl7fJL9tXcORFAGIcNi7HAMRjdNNpYHaRfjBlVvcsberywdAPybhXVTRrRB+dCyRlHXYNA/jX/xqHnreIzkJq3FE5nKmrN8Y+1zAAh8MkBICTV5o4MbPKZ48wZvUzZBP+1FNjSWLfhxsqo9XFug5d8fnltP0++p6JxrwJzM8TZvX5MJYZGh93qi4ToFYgeWfbxERV/uy9RP5pA4RZzWShaD9rqisGVts++p/+MixfR/O2w2hqDv72S3vxDdaHcNvsJcwdbo2+QYBZrcpBcYNFlaNZPY2WKIdZXVS+SGTeKpwQVFXCAOaBE0EAy1dR13wuaGvWZdg+P8EEAIgi2E+egwkbN2un8chDIbZXHSyYg52UbXCSC2WMEAFAkqDKdBxMmmuDoLgeOjNY5MiARJFUmE3J28P4XohZY4C9y4IgkSQl1UZZa01aslA0CjCrrUBDfYa2vbhICABPrpNKPmMUVObKq4zF6urY12IyILVRZrWep6/refCjctVh7DMnRhkpMwHwsxRYrSiQpQihm51sL1shByDHI0RJSFsFIt5v5Uis7CAHzM9jT72LK9YMLgw62HdsbI4RNFgkYHV1MiCEYFbSyDeHWR4T1wowq1VZQLPacUZl6yaFqFH8VzKYfFaKrdzUHPS3pid2EXlPYLYTYcOpV8Sslkc0q+uqi+FAjFktNFZZxMzqcl3djSR2wepnQQz6UcKsDqPCstVnPvhlHGlcxcz5hxKg2U2Yabmbj7G47z5gbS3jSdel8gd0QyHC/ESyv7t0iTCRbtrfH2FW9z0DTSMprzMEyzF5zOq4JFbThLVEgwAxO/SDHwTe8x4C3n/uc8B2X8HTvXk0G8kkWVNcDG3B2/DqVWzYDczdeQCQZRw1L+P0kz7g+0QGhFWTqyotfZ+STUhZt6pOdAO9qgwWGVDJwGpLbGx5HgGogwD49m8nf0b6mmZZGYaYPqnAh/qRDLWmUbC6h5XVKcHqMWZ1nKkVZFafOgU897kkCRLf675PQLrGGFitCjCrI5mA8em49VbcPX8Bd81dwJ7lMSYQY8+4fHCm2yXa8DuCGqDpNSVuc94cYGNT7NoOrw5Qf8/v4d9K/wmWFRHXe9+HHWgw6wkArgskrnwnIIwA0dODqvJlQByHGCzWg0IyIFzN6qgkszrPSGgKQ60okvK1X4vKgIBcAzcPWGXriDnW9sICGqqLi4MOZm+ljliShFY9IJULU84FgRcSI2NFQbMRoe9PAVYDwI034ugdTSykiNUMUJ1Kxz8Md/ymkibGdLr36X146Z6T/A15zKwu382qIgjIHLO+TuZEAAmzupa6R9mhjwdWd7uIACgzTQpWb+LiZZlWbuijGq1I6fkLgIpPPgncpJwE/sf/wNylh8lewffJeE6D1YonZLzsDV2sWi1y4P+Wb0HT8NDQHHzToYfwb+/+MF72jc3RN/DAalbuXNRgUZRZXaacnmuwWKir+e0ytnaJNnXZ5zOrmYSRyQce4nElIgPS7cIeBDAVDy9ZPoXPfLiHq5d9LJo9Ypo8FrkyIGU1qwGoKpFRmQjWlmVWXwPNahE2pe8BR1rr+PbXixMeYi3wHOAPQDnNal43mAxIm7a9sEDIFU91qQzIKLNaV8SrJft94EUvGpNNDAJCDkiD1cwfIWvuiiUwymlWR1maHey+1QuMWSZbkyfbUnJsqVKORwg7V1UphcI8YOTi+y1di/L3W0y2MD1+5uawp76NC4MO/FCBPjvmIK6qQh40lgUiA1IArM6TGYrZ5QUTYgC4iRBVicQJHWx/xJu6bZswqxt8sNq1nsHMaibXkQKrG5qDwdaUOnGMBa3KUJsmqYapAKwOIjlZhgyDXykLlJu7dw0WK4tdsPpZEP0+Yma1JnmFS3PPnFdwpLVOpCO2yXtDyyFgX6tVGFBMmyGOhOuSzU2TDjsRTV0kc8TFTzyJQ8113Hjmo+h2o7jNnmeiNQZWO+6UMiBRBM+nZS2SJAxW+z6wtUX+/cADwFvfCtxzDzlIdwcKVqyZBKzWddRVF5YreBuur6PnmWgfbAOLizjavopP/k0fv/ShuwhQOUe/s6YRzer+lLd3SgdOU0K4fgXmBrRdL1SgtuuFEiGeR8b6+94HLC2BAJQjfVVGmNVVyYBEkUTAHsPAUq2H1bVi17XbBX7gB1IPMDmcJl30ajVIUoRoKMasvnRqiLvuItLSMbuayYA0UquiqpL7K+8SpGVO0nHXXZClCO/6mvfiv7zt9OhzmkY2+ZYYWL21lTDi05/rjoPVRh/rm2LX1rpEdFlx5QqOtDaIqRTdxcbAnKgMiEO11oowqzUOs5oZLDai6pjV7EBSouxdlQMEOTIghY2vAD7oE8rQtBKHJ53KgHDKUuvjgE+ng44+xNO9eczecSB+uN0M0ROQ2cmNKELgU9YpA6unYVbTePvbga//+tQDuk4qg6Yx02GfKUnJ4UpAlxEA7r+8B89bOMsvdYyZ1RW4s08Zly+Tr3XhAvDOd9IHg2CnZrWmiV3bXo+sHa0WMD+PffVtXLyq0/3LGJMQKCSL9Mhnt3Fb+BAAYH77dCwDYgUa6o0UWK2KgdW+G+Lp3gKWblsCbrwRx9/yXPz8c/8GuhLgps4KOreOOcNxxsFIKW+BiMHPayADkikpMK3BYh6zuoRmtSYHcHn7TpaoHk+0ZbQJQAystm2SqFU8fNWeU/jsp3ysrQRYMPuTwWpWDZBxDQCUAqs1Jco02oyBxoJAksZjVqfNZAu0CyC/9N+NMKsP8a++Xzwjl+vjAEzHrBYAqy1fR22GnlUWFwm54sltAmI3UtedMqtFQZTf/32CJ545k3qQafjXR5nVpuplSxYwQLEoj4ZWhwVexvmD7Y2KgNWKQjWrBTTGC44tVQ6yweqUDm+h4Gjt+6E8HbM6F6zWRskBCwt47sI5/Nmp5+OG9trO8cw0/O38/lgWCsqA5AB/7CyjFrwGvKQoJVcVWhNEwWrKrJ5t5ryQkW6eycxqRkBjYHWtRkzIeaaFvGAV05qUVAhVIANCpIjGmNU5xEX2PgCF5+5nyj75eo9dsPpZEIMB0KAGi7ocwO0VkD6wLJy8YOKG1hpmdAvdVXKgdwY+TMUD2m3SpmBWjwtWpzVlRZnVFHy/eCHCj97+MbzywKOJzrXnEbC6RicSwyAbOx7DBRywmpVqqRSs1jQC6HBWHyZVEQTAww8Dt99OpFTPn0e8kWgu0CyyaZJDqcO/DVdWgLWne+h6JtoHZoC9e3FDax2/954a/uqhw9h2a5iZTa5rW7PRHU6hRwckZiiaRHU55enBXyApw2nXocmhsAwIA6t/+7eBn//5sT0b6+uYDEhkTykDwjQGKbu+oTr8cqGxeOc7gXe9K7XGMgBcT8DquupiuJnf1xis/uRJdDZO43WvAz71KfokA6ubqYOVopD7a5gvAxKEMmR9bKxQ/V9JAswTB0ef0zQyJwgkGZhUyw52Nfvx2MJPmdXrWwKnGMvCcMslup8ADrtPxWA1k2lgbYokrgrLgFBmdd/Oub8chxgsNqJiBotMbihTl7CkwaKUU+4ahsXLs2m7khRxDH8K9hWAZshCMiA7qtuPHUNnUcXTynHMLieHn1YL6Lq1qcFqP5ShSIRdY9QV2IHGlxnigNW6PnbZKTDBWxOFPhOpcS+iIRkEsDwVTd3lH86fQQaL586RW/eRR0hybDhEzKzWzQnMap72I9vANBrA3BxqqkeGTrdLNKs7YzegYMkzAJx8yMKJGaJXMmcOsXE1SAwWGbOaGS/zwGrXhe9FON1bwNINBJC84bteiv/r3m8DvvZrgW/+5p1JB87B3PdBqgdKgNWZjFqUZFarKhQpROhxgK+i2xwGgk9iaZadY1WVMFUFmNUTq0ImhaYROQEOOxEA4DiwA7KfvrlzBY8/pWBtDdlgdY4pKDEsRzlmtRLBjyavX4VNygA+m5I1DJQz78yVASk+ZhVVygTrAUwFVgtpVgcazHYCVt/QWsPJMyqsQEe9kwIENY2AiYLz98oK8PKXE739OGLN6tRYpqziwM1nQBdOBjHzyiywms47klIMrFalID9/yyRmCv5eqhTCd7LHAJEsEW8SgBizugRYresgmtV5YHUwNmfNz+NrDp/FB888B7d0JhgJUZ31XIA1imDZEjFuFAGrY+Av4/n4zM5vaiR4iSt6bQutCQU0qzedOjqtnEHISDf2M5hZPcG0sKk56Hcr8M2KErDaVDxYm1NiEOOa1apKzt88HMb3iWZ8wcTVM2WffL3HLlh9vUcUYWBJaGoO0GoRc8FuAYDu0iU8vLEPt81eQlu3sb1CJgI7DVYrfmXM6hH5AwamceYeb41oflwazuC1Rx7AcxbOJ5qeE8FqD44AWzkIcvrKFj4lYUEDfC1Rtt53u4SFcHi/j/kZH6dPA8cWiYh0c5mW5qoqAas9lctY/rM/A/78Y3MEpNk3C+zbh6OtqzhzycDl7TrCSIJsJMAf0WmdUgaEmRZqEvSaQkrFptWApu2GkQyl3SATueAi7PsE/PR9Yk4lSanLNs5WMAzC8OhPuUqkDxe6LpRcGY/3vQ9485uBhx6iDzCaENugMcM2jnOyd3kNuuzh8nAGnS9+DCfmN/DUU/TJGKxO3acsGcRhVgOpkuN0/NzPAW98I6n/TAc96IjMCUw3/S//Evid30k9wW4UtlHUNKKvuC0wZvt9AkTJpI3DwWlyiHJdsplg11Ulr3G8/Lkg1mktwKxuag6XWe2FCu440sNrXyvWLMAxLWQAcAlGTq4MSFmNUo72aynJEggYLLruzsMTfePNb7gNmJ3DkSPJw+0ZCT3PmA6sDgIEkRQfBiXTiPuSG0XLiFnJN0+flPOZUQREUkGwmo5ZzVT45a6yTBKNQUXVNlPEuXPAbbeR5DCAWBJokgyIiFl0zOTVdWBuDpAkKKGH4OoGBr6O+uxYybKgmRQADDZdtDQyDuf0PtbPDyfKF5mKzycQnTmDMJJwureIpb2p8SVJRCPrW75l53s48gdBAFJlUrUMiFeCWc3mrSzQhwLLhdiUrN0sQC2eY4s1yeQquAwqtgeuCdzfuk7MYbsCr3UcUkmg+JClCHNaDyfPKLlgdZYMSGwmVoZZzWRAJoyDWPe1ILM6d+2iDRc2LRRgVvteWEweDOS65hk3xtJpZZjVPNY+3cvJJt3/LCzgxcun8b9Xj5JkWCc1b9FkIze5QsOygJtv3glWD3wDjfoYWJ3HKk5LKhQJ5ruR0y6AcmMr7/jBfseCCRY1D6iMz1UlK9ly9lulZEAMSUAGZIxZLUmY/fHvxa2dy7j1zgn3nQizmiVpdV/sd2OJq6wjXcyY5Tc13ldZirKTojEIXoxZrUoCnh7MYLGV88KYWf3MMLOeGONs5VqNSGtUAVazNb5ex4LZx/rKlDrYQTAq9cXA6rzzHO0Le71wiDLsd4Mbu2D19R6um+go1mpkU9MTL1sL1rdgByoamou2ZqG7Rt5rD0KYih/LgIgyq103H6y2AupWDcQlY1xm9aWrUKQAFwcddHQr+SAAv/qOJnqegVY9YVcYsg/H5w/tXGZ17Fodxe3qcgC3LwZWX/mP74HZvwr5p38Kc+//rzh9OsKJDhHzbu6nVEtJQq0GWL4uJi+yTn4DaXEBeNGLcLS9hhvaazjU2iSZcbYBVlXyWw5LIEXpSJXgaDWVHEKmLcEBkotUrxcCqz0PWH16gJriAE8+idnZCJubqb5GKaNAKrEy7E2ZjU6zdhgAXgBIYprSX/3VwJe+RB9kvzX7vWo1cijdzF+E3YeewIxu4fKwjY5h4dh978fJk1Hcz013rJysAFg98fB08CBxCx0HrthBR5BZfegQ8F//K/CZz6SeYBvuFAu6pgiajdIvJO3fB9RqOKxewNmnHETbFBlvUVMxRSGMBA6A4NllDBYdDBwOszpUcGS/h2/6JrFmWdsAqjX/ogyiTCwtishhv4RmNYB8pk8Zg0WDU5bq+xj62iQMBj/zM8QfIDabBdBoSuhPq1lNmSMxG0NQFmpHUoYXdMwWKfl88kkigRGH5yFIl2QCfEkFAHAcuKGSSPPkhSQlSYWv8E78/HngOc9JkoFXroCA1WGGZjWHWe3ZAQzFJ/OBqgKLi1iqdbHyhfOkMmx+jK1cAKy2ex4hAQCYMwfYuGzH908sX6RpqCkuLF5uZXsbTc2B7WtYWuJ+9Ghfc2VASmpWZzFKwxCeL0NTCrbLYyiyhFgJg8VMQC2WLyrWZAzOCDGrJ89dk9ps6xa2twT2GzRRKy2TgXCktoL7Hq5jsdYn6/h407qc+XuVApWTLme3y0DwMsAfh1ldmP0qBFaD3AsFFjHCLM8GqwPHLyY5BlCwWkCzetxocnERd85dxAPrB8i5azY1b+k6NQQV9AgZErD63Ln0lwnI2XMcrOaAyn4ZzWpZJgmmHCkz9jrhYAB4zv4wcsslQlSZp1ldznsEQH7VXVEJDFByQEY1BIDEYHG8ku3mm/ETvzyLl/3cyyY2ymVW+z4hX2mCZzSaZMxMCJYBlVPtZv5eZfayMUjJTzBxmdWsWnwaAsO1jnGPGl0nMiA8HWhejMmALJh9rK1MeaYPAgRhSrNaVdFQXQwczrpUpoKHMat3ZUCmjl2w+noPy6K6YREBq2W/ELP65CNOXJY6o1vobvjEWZyatTAZEC/rwDAWucxqxuI0EuajIfPL27zLRKJk4JuYee3XAABkz0UYAr/yznlsOg206kkG3FB8OD5/ZeGB1SMlRcz4igPQsfns8/cBN8lPAYMB5gfn8PTpCHv1NdRVB80Dnfj1tboES6Cc3PdSwOz8PLBnD+afcwhffP0v44h5hSQWUsBfW7fRtSoAq6MxsLoKGZBxsFpQY90bODj//3wes6tPAP/3/41lbTPRrWaZXcayUhQCfg6mz+wCiJnVIuM1Hf0+0GwSQ8QYrGZtMsDLMMjCznFO9gYu2rqNFXsGnVaA5qkHMNgm7xn0QsKsbqfuU2awWBaszgrmJC+QwOp2gVtvJTIg588njztWSACh1JgVzkCzL1SrAQcP4nBzA+eecuBsWaRNBlYzRhKPWe1SzeoC7NeG5vLB6kjeqQXOizzTwrIardSZPPPAPy2zOlOzusTBAYCmc2RAWCl9Xew6yIZG2OpTgtUEAKbzCbt3OfN2DA4XkJgxBKo3oogYDgPAH/8x8Ed/lHqSeQ2kS4LZpjkvMWjbk/XrM4KrdflPFOfOkfn11CmCy125Ajh2RJjV9dR3YWA1JxEwHEREYoiN70OHcKCxhYuPEu3XxsLYqb0IWN2nYLVpYt4YYGPVj2Wh4nZoxZXNK0v1vJilLQxWC8iAlGFWa3qOZjXbSxUxqKJ9FWJplij7VuUQnjMZrCbM6uKsR00OiK9HXjCDxXHgZ1JoGtmTdwVey+ahvXsBRcER4zK+cH4JC/UhcODAjpfHTPjrgVkt5TOr4zm2SoPFKEr6W5BZnadZ7bthsSou2ldTYB+zA0yZm4NqqujoFs7351CbSw06tocrwKw+fBhYXR39vIFvjCZe2D2bWw1RVgYkfy4AUGxsyTJlVmdfg3hvWBCgUvP0tZlnT4mKEAD5VXfTMKuzNt/MYHHCnPV//J8tHDg+wd+CJe/yzgiMsW2Ig9W5wB8Dq0sZkOecQ6kfUqF2RUFKz8OWWxs9t41HLAPyDNesTmvRszPScEqIkZLQVF2mYPUAa1enBO1ZZUOKiEhkQDjrRxmz1V2wurLgjiRJkkxJkj4vSdIDkiQ9IknSf6CP/5EkSU9LknQ//XM3fVySJOm3JUk6KUnSg5IkPTfV1ndLkvQU/fPd1+xbPcvjne8E/uRP6H8cB33PQKMBwDDIAsFh/6bj/gdl3DV3Adi/n8iAbEekLNVTYGp+DCi6gkwvzyMAcBgCf/EXY0+Oyx+IgGkAvK6Fjm6hWQ+hfsPLAQAtqYfLlyJs9VSc7c2hVU82K4biwwmUhNaaEUFA+hpFwJveBGxvj/aVLHxJplDEnMnbIkj9Ixv7cOhWAprNGQNsbcuYibawaPZHwWojxNDXIF1fVwABAABJREFUuQddr2dj0zbJZow5J995J2aNIQ43NzBnDkjJMpAYLE4LVjPTQk2CXlfhhtXJgAAA6nVafiNzfysA8C0P5/qzmNVJhmGPtJKA1QxYZxtAtgAV1JfeEWzMqiopzxYYr+lYXSVAwp13AvfdR75mLCXD7gNNQ0u30R9wGMCWj7ZmIwhldG4jxlkteYhuF3jjvzmGj1y4bXTToygEXM/7yUpqKOqCjPhuF7jlFgImpRNDfUdDU7MngNViJc8AiB7rwYPYV9/CpQsRBlse0e5PMatFZEA8xqAS0c0DqOO9C8vjy4Co9YLChAJs5bKb8cxy17KGWlymT4mSTBDgy81j7FKmj1ApPZCM7WkYwFRnX2GHQcOALEUIrPy1NvQCogEseiFYspXDonnqKeBHfoT8+/LlsaoFthkfY1bXFA9WP//wWAisfoYwq69eJay/KALuvhv4yEeA7/3jr4M7zqxmGvacazsYgIDVbD44fBjH26v48c+9GZ++chz1xcboGwoY4dn9AKbqATffjDljgPW1KHGfbdB2FYVoVguA1bocQFVCLC5yPzpuW87RgY4NFgtWWciqTOQPJknCxCBCScZb1ppAE2KKXjAhmKcnSkuEyxgs6iKHUiYD0hA4vGoaZnQb212B17J9imnGWsVPbS9j4Uhz4tyjGXKmDIjry9CLMqBpqCoymcXlmdU5iVYAgRsUZkBzTdXY+iUXMx6OkwBZ2u12UFhahKwJXv4+DiCeHWkWsCQB+/bhpXtO4qMXbkFtITVvseo4gQpUgIDV9Trdv7Jbg2pWN9LToQCzupSXBTNDzJkLAJRIhAQI8si/blhKvkjJm7eYGV3FxrClkgBIJZ3zmNW+BrNWoL+MKJK31jL5K12wzzz9+imY1VpegqUMCC4wbwGImdU8sFqXn+HMajam2W2ikfNdvwqwOpShaHLCrF6fEvilkn5pZnVddTF08yelyBvzRBKJXbC6shAZSQ6AV0RRdBeAuwG8WpKkF9PnfjKKorvpn/vpY68BcIL++ZcA3gEAkiTNAfgFAC8C8EIAvyBJUqpYdzdE4uRJIiUbszQti+iGNSXANMkCUUCn96mnVdzUWQFuuIEAnH1iojfwDdT0MNF5FMzqMWb1vfcS2cRPfCL15DhYrSgwFQ6YBmLOM6Nb6MyEBIgyTbSVAR79EkENz/bn0WrQ/kkSDD2CE2i5JX5Awqy+7z5y2P/P/3n0i4wsUIyVxQGr/ZNnAACP+cex71V3AC9/OVQ5RFuz0NZs/J+3fhq1ZjIpEhkQgb4OXawM29DTJa/HjwMAjrTWSdk7ozhoGlqag65T1MFjLFgJji5Dq2vVM6tVFQda2zg/mBNipXlOiPP9OczeRGhky+FlUvId91UZZVaLmFTR+PjHgfe+F3jiCYwymdJsFZawKIDXr6wAy8vkDHn0KPDoo4Brh0mZOQCoKpqqg96AA6o6IdpUBqdzG2FLHW+t4ORJ4NJVDRcHs5idSd2nDADOw9PKgNW6Tg46AnNCrwe87GVEr1pJnY17loqW5oxoVhdmVhsGcPAgFDlCYDm43G1guTkcua5EBiR/ExIfSArIgKhyiCDPRZ7KgKi1gsgy1/G9HCOHHPQynp/CYBFAtfraAHSTw6xm5aMNwf6KSnbkBTVlSZc5NlQHw22O4a4TFAP/NI2w6ByONJaXzFOXLxO95rR+vxOo0NMlwapK5sO8ShPfhxuo0A2x3+yZwqy2rETp4O67iT7+xkAn3yUtaUI17Hnz1nBIwWo2Hxw6hB+/8+/x3q99D37p+R/CDbeNaTgUMFi0hyEM2QdOnMCMbmGrqyRgdTPlZaF4sDiHp9AhJepN0y8kA5KpAx1F8ANqsFiEAQ1ibJaptc+SbCV0anlsyggEKC/cbhagFkXl5i02tgTAaivQxKpCNI3IufUFvh/blBgGsLyMI611AMDCTfOTuyvCrC44BmiXrwGzOv+wX9ggmbabOV5pZ0c8UAQjVw4HJfYaQCKpwPHhibwxGRAA2L8frzzwKC4NZ0fBal0nhqAFwOoaLCwuRAm7OggwmARW50lghCGR6yvJrM5kK5fWlg7hB9lkmZgJX5C1n8suZ2dLo/i8JSHDGJZJVcglDBZNWcBgcYIMSF7Q5J2bt4+h+5SaIdhnVhGTw6wmSYAC/WTtisiAFJkLYjNIERmQBjozOdeJMaun2L5e82AyeePSGvb0YHUQjcmAbEzZpu/DCTTENk2U2DZw8gdO4BYkngCjYLUAIW83soP7q0ck6G4aGv2Td9VfB+C99H2fA9CRJGkvgFcB+LsoijaiKNoE8HcAXj1d9///F7//+8CP/Rg5oAKgwLKOZktKZEAKaFYPuj4pJT1yBBozMrFtbDk1zDbdBKQtCFa/733AH/wB8B/+Q+rJca3e2GAxf0L33RAdY0gmdEkClpawaPZx36cIcHe2P4dWMxmSsUkZ5/DIwOq/+Auiqfu3fzv6RUipiBT32VA8rt6lf5qIuj26sQf79oGUZQKYN/uY0S3825d8cuQMoOoywoxDw0i7QxfnB7NoN1Kvo+WdN7TWML+QupWZZrU9ZgRVNNIGiw2tOs3qlF7x4bkezvbmhLRfPQ8415/D7K17AUnCsnseK5eCpK+hDNVQ4rbrqpst8zIWDz4IfOxjwC/9Ekm0xDFusKh6sB3+puX3fg947DHKrJ4PgCjC618PvOMdwFpXH2XuUcM+Xhbac0K0adl3567DAIBj8tM4dQpQIx/fdvQ+tPakTg4i2f2yMiCKL8ysXtY2cI/yeezbF5F5KwzRd3ViCssOrozpwzMRAhAxMVfTBPbsAQAsK2v4zJVjOLGUKo9g7I68A1kQUDZhAQZVzFTOB6u9UIFWrxCsZqBPUY1Wjut9GESQpWIMMgCJDnLG4cmPSrDAQVh/uYxdJgMiClZrGjmMWBUyq3VdyO28cBkxZdE5vGojjySCADLH3HNPysDV97HhNDDXSGXV2HzYzweri4yvGKz+CjOrLQuYlzZQ1z085+Aarl4FejaZW2MdaECYWR2D1exQcvgwVBW4ob2Otxz7IvTFmdE3iDKrowi2FRJm9YkTJMnmBckPmZIvqql8sDpwfGhygFatAFjNAWqDkJTGFwYqReatqrVEw4SgUCgomDSx7JseugvPsZIETQlJYjTvUMqY1U2BuYvKgGz3xMBqCSB7ikYDR1rEH2Xha2+f+HLVUDLlKqaRASGa1dntFtZDF9jDeG5ExmyVzGoKKBatDMr7/nFfSwAeInJmDptb0m3Pz+PFy6fR1OxRzWoqAyIKogzXh6j/8s/iTvkhPPAAfTAIiATlDrA6P8FUquKKx1Yuw6yWCLsylwlfcmzlVoSkKlYLRV7yLoroebVYkwA5g+YmnZkMiKDsGmmU6qwLMavFweprKgMySRaqbLsFZEB6noF2O+c1VIK0iqJmFmEI/N3fVdfeDnNLTSP7Y6vEgJzUrpFiVm9N3+a2W8NMIyHNNVQHQy+/3djbqMhNJhM5Pi8nIbYbYiE0s0uSpEiSdD+AVRDA+R/pU79MpT5+Q5IkhoztB5BSJ8UF+ljW4+Of9S8lSfqCJElfuHr1arFv8ywPzwM++lHgrW9Fwii1bbJhaEpUBiSAOxA/PA57IRqaAxw5AoACD7aNLbeOTsMHdJ0cnARBPwZWf/azwHd/N/n/xgZ5zrc8kplKy4AIGId4boSObmGGnRGXlvCchfP40Ic1zLY8nO3Nj4DVse4rh63MZEA+9Sng1a8mc1D8Fpb9ZocWlt3kaVYPyJd5eqU+BlYPSP+/67tG3yBg9AIAnuWNMsgBsjE7ehSv2Pc43v7LqUWRykqIMqv7fSKDsvNDE3ZJY0ZFzzOqlQFRVRye7+NMf54PVl+6BD+Use40Mbe/Buzdi2VzGysnu3FfvVDZAVaLYuuXLhHW8wMPpORgwpCytyjrVNcJ61EAUH3kEVIFsfqlC1j6xPuBH/9xvOHu0/C9CD/9qW9EbQysbmm2ILPahmFEMI/tB3QdB5RLOHfShRx4eP/X/zfIy6l68Lxy57jR8jIgIgaL3c0ArT/6HeBd78LB5hbRrfZ99DwTLSP1mzMAXICk6fTcWPcVy8sAgBtbV/C352/H8X2piYrJgOQxq8scSlWVMJXzwGrmOG0UYPrQtgHkalaX24xnH/g9Nypens3azTJAC0N4ZWVADP7haejrqImYlAGArqOl2+h1p9gsxprViQxIU3XQ3+YkL72IADSi11bQx8H3E2a175P5+8/+jD7peVi3d4LVNcXLrzTxPGKweB0yq2sf+O9Y1Ldx55f/O9ptwPaSdSAOUbDakkaZ1bUacOxY8oJxuSBVJZIwDuc6DIewPRVmXQHZHABa6GA4CIkWuknBJEUhMkMcsNqzA6hSiMUZF/OTCbQ7I09TlrIeVaU4O0/IGLZouzyjsjAkAG2JeStzXSyrgy1J0LWISKXl7eVook1cBsTCtgizmu2fDAO49Vbsr29hrm7BuO34xJerusxnVpeUAcliVvtBORmQ3NJ/kH1RYRBBVcnYyfqtKFGjaNJC0eRcg0XfR/FrwM5JnH3nYCgRGbT0BmF2Fpoc4p+f+BzmF1Lvl4lkhJsn/8DC82CfW0UtGuJ5/ufxxS/Q+zEIYAVj8hACCabSOvN5OtAlpcxUhVSrZYHVMWu/jMFiLlgtl6qQy7y2NJleeI4FIKn8xI0VaOLkACBea3OPdQysNgT3Zew8k7XvjpOi4t0caTfr92LX9hqB1X3PJGTDrChR0cuLwQD4qZ+qrr1JOtBNzeabFvKCkQY1GajXsWD2cXWrOAPmscdSt3gQYNutodNKzM/rqouhp2XOA0BqnSl4AMvzcdgN8RCafaIoCqIouhvAAQAvlCTpdgD/FsDNAF4AYA7Av6miQ1EUvTOKoudHUfT8RWEhvv9/xBNPAHfcASwsAFtb9MHhkJRitRUqA8Jn/8YRRRgwM6HlZaBWg4wIweo6ttwacajVdXJwEgT9XJeAn6pK9mOvehUB2GlX0RgD6UyFz1T1PGL+2OnQ1y0t4QWLZ/CPj7Rw1w1dwqxupd4gCAD7PjDY9uE6IWo1cgliDeRYs5r+n7pnc5nVboiGaiOKJHIePXAAkCTM1WzMvO3biXhvOgTNmXyLlAu1W2NP/Kt/BeWnfxJz99yUPKYohCUfimXz1teB+++f9KGJtlqtrcEOtMplQPbPWbg46PDB6rU1Mk4BInmyfz/21rdx+ZyX6usoWF1TPGFm9eXLBFx+7LHUvcWAXEkif3SdaAcKgNW+T67rygNXsGx2geEQ9U/8DX7ih2w8sr4HNT21AVZVMWa1G6GtWyMVBgcaW3jgCy4WdIpcLSwkb2Asl6rBasaC5kgVAEDv9GosXXJQOh+D1X3PQNNIJdViGRD+tR1ue2QsmCaRvmm3cePMCv7+4i04fnAUoItlQLLuA+bMXoT1F2sdcsDqEmXE10Rag8MEL82kY0DCpMMTM1ichlmdc3iKACimoMyRppFk0PYUBjU0+aCwS2QYQszqwkCKoGa17xNCbkCr9V/3OuCv/5peMsqsnm+m5lRFIUnnPBkQdtgTLE/mMuD/icIeBKidewJ/8op345B3Er/wb2wgikh1VRoUYtVRnPl7aE0Afb7ma7LfwEp+eZUmtg07UGG2ddJ2u42jrTU8srGPSK4xhjBjVnOYPr7tQ5UDfOK/fEEc+2KashlAbazTWzRoiXrVzGoemzICSs1budcgkoszq0G2tdzkDTNYbAr8YMwou89/rT90CRHEMIDnPx/Kj/5feOe7sydfwqzO0JZmch1lZEB0kHbHr0EUwQtkaEVZ+2ztyrmkhQ2SabvXQgYkBv6ymNVl2OUU+LPzPDLAwGp39Do8//nAiRP4vV+zRraGAJV/yDPWY7G1hTCSIEsRnrdwFl/6LN1j0e8opQWoeTIgZTXheQBwWbBaBYIcYpPnodTYymWXTyEDkmlIH2uBl5i7eTJWBb0sAMSEltx9jOfBDtTYgokbPEmgKRMhecmFwsxqdvbKI7QAgOcRybZ6TqcZUa7CbZbnAWtr1bVHZPKkEWZ1Q3XRt6f0zWLnKGqw2NGH2B4UZ8C84Q0EP2Ntbrs1zDSTyqy6yfcOK8WsBqBp0TOC1HG9R6HZMoqiLQCfAPDqKIouU6kPB8B7QHSoAeAigIOptx2gj2U9vhuCsb1NPPRG9nqDAfqeicacQcBqARPAOIZDDF0N9QZhjaLTIWZlj25hy6mj0yabX1P1hMFqzyMs1VmqRv6KVxDmMu3qDvkDEVmFGKyeo8N1eRl3zl2AKgW4a+Ys7EAfBat5Tt80/KGL4anLwMWLwP/+3zh0CARMox9KmNX0/xSo5IPVAebNAWQ5IqW59Trw9rdj/oXH0J6Z8D0FwWrPIs+3xyqQ0WyOsr4AMkAK6GhubRGwdgeeR0tiVUNJWF8VgdURQA75Ji1H5YHVnkfkakDH1sICDjQ2ceGiFD8/SQbE4kjMsLh0CbjrLvJzpcHqKEJywxkG0VjnaAfSt2JjPcLqORtLNVrm/cgjODB4Ak91l4i8eAqcaGk2+haHSeeEVLudPrC4iAONTXzpfhlL6nr8WBwMmLgWMiCyoAzIuhdLl+y3T+PSJQBBQJjV5iizmjAR+B9v9XzUGLMaAJaXcWNnBUPfwPEbUn2SJBhaCCdQszPmzJizKLNaDuHngdVU+7TMgQRAvolOKRmQ7HHg+yh+gGbtZpVPUtCnjGa1oiv50khFx6ymoa3Zo1r0RSMIiERCSrO6ztOABmVWFznsMukaDqDKZEDW1sgtbxjAi15E/Bfg+1i3G5hvpe4vplmdt46zQ5koWP1MYFZHEcK1dchShK/acwqaHOLHg18FAtqndI061X7lJdmGtjzKrAYI6PPd3w389E/vfAMDq7PKiFm4LmGS1en1XVjAjZ0V3L9+EDUz9V7mt8ABpxjrr90pcN/mlenTe1YpCVZngn+MWV3CtJAkW/8JZUCm0drXonztVyAhQYjIQzGj7CEfJLIH1LhT18n1uO02vPHbsuccVc82WPRCeQpmtQQ/msAii3XLS7DrOXuYuDKoYHUYgFxfhMpN8JBiVheUQollQHLIJwNLJlWy6eug68BP/ATwmtfseL1qKIQFzgOrbUK+AYDjM1fx1BMJs5r1L2lUhSrlECSY78Y1SFwBKAVW58m2xJVRVcuARCWZ1Zy5u4zBIpfcRceHpBe7v7jM6iCA7RdgVstkXsqUVGASTqXWmXDyegDE+6JCvxdLLAR8k2RJikblysaDyYAIkKREw3WnA6vf8Y4xKIBhBWpypm1qDgZOBTIgKc3qtm6jOyzW5uoq8PjjxJSctUnA6mS8G6ZEyHh5YHWZCh4AWk610W6IB/fukyRpUZKkDv13DcA3AHic6lBDkiQJwLcCeJi+5UMA/rlE4sUAtqMougzgIwBeKUnSLDVWfCV9bDcEo9sF2nUf2N6GaVL54H4fXc9Ea8FIDBZFwWrLIvp5LbpYdTo43NrAuSeGRAZkJqLMak8Y9AvDCGcf7WPBuwScPInFxQT8GwxANlMjMiAc8C8M4fnAUq2HpWXah8OHYao+7l44j7vlBwEArZlUG4pCXLE5h+igb2HbNdFUbOC//3cc1Fdw7hx9MmZWJJq6hsI3Z/KdEAtmH8vzfjKnLSzg+39Qwx13THiDquYzPFi7FBgc+Z55IaqjCZIEGQ4T6czkQ1M6VHRs2d0KXB5SzGroOhqag/4WZ8y6LkzFhyyFMVg9ZwywsSknfY3kBGih7DRRZvXmJvDSl5I/sQwIM3dgh3dNI+WYHO1A9hU3zvaw0jWxvEcCvuqrgCiC+b73oK66qDVSG3yqWd3jgdVuhLZmo8NsaZeWsL+xhceeNrGsbxHwlpl00WtADEnyGi2rWS1osNiX4yRDZ3AR26tOilmd6lgMVvOv7bAXEDCJUTL27MGNM6vo6APM7R2laeg64IQqnzVS1OlbosY8WUFlIwqbf+Ul2sKQtKmVkOuQw+qZ1XkgHTOlKbNXFWD6jLyOF7pOmNXTyIDQyo34XE7lsYYiYHWRDa6gNBZjVl++HMu244UvBL74RfLkutPEXCs197PEVRbbC4jnO0UXG1/PCGb1+fNUB6QGvO1tBKi7cCE5zKaz2KoKXQngcJawiWC1JAEveQlwww0738CSdwJgtRuoyRo1P4+bZlbwJydfiNsOjGrtE4NFvoaiKhfQQwfyS8nDcDQhUySuqWY1B6AqCqrmlX2zipASzGpNA2GqcsBqSYp2Sslk9NOQfSEfB7vvE2ksQZqioiuTZUCiCF6gTG+wON7utFIwOQzFUiACBT9DL98ErwygCCDTINkLZZK8LHJtZRmGGpCkOw+sHmdW50QMPgqA1XFXpAgHW5t4/HFkg9UcZrWXBrVEgxks+tlSDaSDxX4vRZXyZVvcchIzuRWNVLO6DJEhk10+DbNaIHEz8jrBNnWedIXvwwnVmHPCDUmCpmFyMgwonxTNk4UCynnF8IB1FiJ7WSoD4gpUnYqG55HbWvR8PB7veheReo1jgmZ1Q3XQnxasZiC4TsDqlmajV5Ct/elPA8ePA08+mbS55VDlABpxsiAPrGZJ0cJg9a4MSBUhMlvuBfAJSZIeBHAfiGb1XwP4E0mSHgLwEIAFAG+nr/9bAKcBnATwhwB+EACiKNoA8Eu0jfsA/CJ9bDcEY3sbmHnks8C/+3fYu+ASs7J+H5avoTZfB0wTuuLDFWA8AgAcB0NfJ3rXANDp4FBzA2dP+eRm7kSJZrUjtrDWNQ9nTodYWHsC+NVfRevx+2JGGymvLSgDQpkoX33wDH711+jr9u4F3vY2fPybfh03d4h4d+toilEqKgNiueh7BpZaFhBFODh4PGFWMwaMnmQKDVmgPNuLsGD2sW9pdNJ7+csTtvlI0PLZ0OXIgNg+WpqF9qzgwUzTSFmuAJDAkgmXLo1/aIppZxhYMntYvVrBgpne5Oo6Djc3cPZM/nWNHHLIa5o+uY7z82S/H/hkL+B5sH0NRiOR1qirLiwBM0QW//pfEx2vNLOabH7CuE1SjslfrHwf2DizjRWrjaW79wHf8i1kQ2LbONjYHC0DZjIgeWYUASl/m6sNk6TN0hKamoO27hD29sLC6CEo3oRlNxu5JLNflJVEzBA5rwuJxqAiR8CePWhrFrZX7Vizummmxryui2m8AbD6AWpqill9++042NjAD9z6KUhjOjm6IREAIbfctyCoKhMTsiDKMSeieqqSUvxAIklRJugDAJJc8B6k/fXDyUZCpbREaV/zylLLyoDECbysucvzCNOrALO6pdvo9qaYu4IAQSQll8gwiDxWngY0CPu1ELOasuh41Ua+T/6c+ccV7L30ReD978fznxfhC18AlQGpY34mdX/xQATWKCB8XblyLf8UwTYXR48Cz3kO0R0DYS960EfBCyYDwrm2A1sZNVjkBZsPLc6+i06YkkH3PwsLuKmzgk9evglveFFq8ZVlsufytdyDbjy2ioLVWeOAmqKq8jXSrFbLAZWZABXTrK5SBmSKJJtuSPxD6bjJeF6wpLAAP8AeBIXA6szDeVlQmYaqSZPlRaYBqyWODAhLCBa8DxQpypVqKLV+cSujqCZ8wUSAqdMKsZz9/MBWiHxRgXkriiT+/O04IwmWf3HL5/Cud2EyWM2TwGDVYaWY1VEmoBgEBEgvuodRVSDIkMMhiRuJzLEFddZVKX/eKitXoUn5+61S5AAeWO15ZJ4tCFYbCqeKiZ7ZhJnVANQ84I/NMWUNFnOY1YW9YiQJmorcRAiA5H7OS16qKnQ1gONla6sXDbamlGVXd7vA3/996gG2d2DXSNMICU3QNyszKAiuaArRwTZ99FyjEEHi3nuB7/3eFFjNmNXt1O8tQO5znSnB6l0ZkKmCu8uLoujBKIqeE0XRnVEU3R5F0S/Sx18RRdEd9LHvjKKoTx+Poij6V1EUHaPPfyHV1rujKDpO/7zn2n2tZ2d0rzpob58HHAd7lau4fBnYWPEwawwJo5LJgAwFJzTHwSDtTN7p4HBzHWfPyYRZ3ZFizWre4RkAwiBCS+rjqt3G4iyVrfjYB9HdCok+9lAalQGhLLJcZjUDjQ15dL9w991otSXMGQMAQPOWlMIMz+mbRuS4qKsulu4k1LSD9lMTZECkuE0RVpbvhjjY2MSbXj3IfyELWp5tDzgGi06ARbOP1pw4QAMQMJIX29vk5Zcvjz2RLler1bBc62J1rbhD/I5Ib36oiVB3i8NQtH1ocoBmLYiZ1QAwq/awuUm+5xWrTVjMtO2a4mJo5fe31wN+71eHqIUDzD76Gez3zyZgte/D8jWYWrIpNxWPGPZxtMA9D1i/YKPrmmjdfYxkKu6+GwBwqLmBeju14DGDRTtnEXQceKGCA50BPvCBBKwGgAP1DSzVujtZf6wkM++gVwbwoKyJzM0di+1tABHQbgPz8+R33ghiZnWrNsr81OQArgizuh+OMqvvvhvKD/xL/MoPXtihCS+rMgE+c1gjhQ8OkkSMlLIOOcBUeqoSMJnxxcZcifJsRUGuRmlhtheQz9adopw+TrRVyKxuazZ6/enAattPOddTGZAhZ5r3PBDwr6gMiACzGgCe/OPPY+/gKeATn8Dt3c/i4YdBDRabmJ9J3V8M9BEBqwXHl8bAua8ks5rpmtRq5G/qNNjSbMjj7D2WcOZc24nM6rxgVSECzGoAyf7nxAncOLOCA40N3HNXiuIkSagZIaxAyz3oxuZfBefuTNZfFFF2VAl2HpvnJh2myxpfMeCLV/pfdN6iIPjEYRtFoxVaBUJIBqRIQogmcEUYdQSs9oXB6kyAKgaVy7HAtCzAfhoZEB6zugzjLU8OB0gqK6tkVjOgtkQyyDDALVMnMiDFkmwAxJnVN94ISBK+ufEJ/N1HI/h9m+wb2NxL28yVwGAmriV9N7IAYN+LSlWHqVoOs5oxoNWCeyOWGM4z7CspMZPHrCZJgBJgpiizuoRUYK50BTNYrIlfByKpkPF7MX3jsprVnGqAotU2qsaXSfNtn3gN5HVakmAYEklWiWQuBYLd8uvr5d4vScA//EPqgXFmtapS36wpyW2+T6qbdRmQJMh1k5yrRHVpQXCNr/96IgPiOEjA6lbq99Y0buKulNwUUnJ5u8zqqaIC5Gk3/qli++kNzFCzsn24hAsXgCfPGrhpZoVoMzIZEB7Dh4Vtw/J1mE06w8zN4VBzA+c2W8RgcU5OmNUiOr2Pn0JH6QMAFv7Z1wGHD6Nhr2OwYaO3FWDVaqGhe8mGgjGr89qmIN0OcweqyzxnDtBQbcgzo+W+shQhcHOuw/Y2pMBHXfOxeMsCYBg4FDyNc6fpLD5ugqGqhJXFkWz2vQgdY4if/qF+/gtZKAop+eWVk1N5kfa8YKZSVaFIIQJHTLP6xInJzGqflUKaJpZqPayuT+nuCyDyg7iPzDyCpwXuWQSsbjGwenYWkCQcMK7ix380xJ88eAc2nAbmluhYZg6/dv64vXgR+KGfqmNf93Hgve/FzAf+EFtbdDPoebg07GD/DEWkJAmGHpFDAyfD7XsRrl6NoEgRpFtuJg8eOQIAONjcQG0m9TsyZrUAWK0ZclI2t2cPuQbNTSzfsUxcJNLBNs15eo9lSmgZsMwDZ9hOaH4emJlBW7exvRnGmtVNM/WbUwNTj2dIAsAahKgxg0UWz30u8P3fv7N8gadfHzt9FwNoFFVCkKerXFJDMde0MAjIhqpom6DajBmHslgGpHJmdTmjMt7hybP8Ykw6ZrAoCFb/zd8ADzww9mAQwAp01Jl0DVsXLX6lTaH7i60zAprVAPDk1VnsrRMJCe1/fQi6HmHYD4lm9Uzqt9a0/AM0APh+IQaVZihfebCaASlsLpibAwC0NGcnbkelvLgGi45SDKwuoFkNIAGrb7oJbd3GY2/595C9UQS9ZoSEWc3RUCzDKM08mI+biBaJPIPFaTSr80AElhCsUgaEMatLJNk0XYIb5lTxAMWqQmhSWAistiLCrBaRFwGypZZisLqcZJLKZBUy2i0sUxCbA2e/pLAvAGtXCuE7ORVXJUFVAPkGySVY67H3Rs7YGjhqMWa1pgnJJfp9m7CW221g3z5okg8dDrauekTWsd1OXswDasuyimWZaFbn+W5IYbWa1SxhUfTIw0uyUd3uUt4jOZrVZGwV7CvAB6snMegF2uRqVlOwWthgEWTayvy9pmBWa3kmrozQUnAuiCWR8u7ZAdAc15mfEIYpkURoRWD1tMzqRoNs++KtH/0tdTam2feJIi6xi0UUYaevDEvssKQhS4wVAKu7XeDQIeDpp4GbbiJtxjK3LAQSd54TQlf8EgaLAsbLu8GNXbD6OoruuS20KVj9Mv1z+OhHIjx5oY4bZ1YSZrXCl6qIg1KMJJOuFvPzONxax9n+HDFYnFdIubPqCsmAuGtdNDUHshRiYVEGDh2CJBFw8t3/LcRvPPR1aKQBKmawKMis3hGdDjq6hbY+hiArCmFQWTmbwl4PUSShUQuwtEcGDh/G3vo2rpylszgzXtPlkTa5PoBOQWdyEeMrEBbVUq2H1qKgwBdje1n8CXJ7G7j1Vg6z2jCwVOthZXNKd18Q1micTRY0rmRg9du/5yRZr1QV6HRwsLGJP3mfhEdWiQxMXN6qaVS+hg/6HGhu4fY5gtTPhJvYXvfjJy8MZnFgNkk8mEYEm6dLCcDvWXhkfQ/2ztpAp0MepGD1oeYG6rOpQyVlVguB1emkTbsN/MAP4GVvWsKJH/lG4g6ZDmYklSOt4bsU8BA95NJ2dYWvpRmtrRMAY34eaLUwo1uEbM2Y1fVRME1I4w0ErK6Pg9VZwauyYEyfgpt8Sc05lNJ2AVRuWliqTeSXu/qBVNpgMROsZpvMa1CWag2jwszXtm6j2xf7fp/9LPCRcTeNIMDQ11FjzGq2LlocuY5SmtV8QJVdmqe6S9jzspvIHLO1hRv3D/HkWR3rTgNzM6NrbS6TkDYaAdeVDEjQt8gcw+YCmqxqaTYMYyezWlc44F8YYuhphKEoej+oKkm0CYDVI5JLqgq02+SwyoTHaRCwWucyq8vJgOSYdJXVPc0zWJxGs1oO4eeU0wMoPcdmMRSjSCruNQCyhPI0qwM3gCJaaaFp0BVfyHTYHoaFZEAyD+dlGdA0MllkLClclPkpSYk/xCSCQBjCCyTCBC9oWqjKAYIs804GUBnFE7gAspnVUblraxjgy4A46k6DxbwQlAGxul6y36J72P2tLp68UCOPp30BWAVPHrM6LCipELebLa3h+eX2MIomZzOrWeKqRIJFkaLsy1o2IcaSopn7rZKya5w9clydW1SzmreP8X3YgVqIWR2zlfPWmYLEk9jbh2OwWLTaRgSs7veBpupwz1+6KcMJtMrB6jLMap/itTfcAJw5Qx8MAnKma6S04/OqrSbEffcB3/EdOz8sJswBQK1G9nsFwOpejxyVf+M3yDbZsSPCrJ5JvUjTyJ7AvobM6l2weqrYBauvo9hesWJm9UtmHsF9n/PxyMUObuwkYLUu+3ALgNWSFCUb3IUFLNd6uDycgRVoMNs6AVO1AJbHB+i8oQdd8VE3AiwuAvFsEAS4uhLgi2uHUTdSEzcty7XzDOsYSFebsFB+7/dC3b+M7/vnY/1ipdR5ACidret6QNQUDh0i4Gbfj58fWaCYIze3PDsqZnrEzJTymNVRBM+L8FN3fQSveI34YUSTA3hDMc3qW27JYVZrEmCaRAZkq0AaPCNigJSC1brMN+vzLB+qFOJNX7eZPHjwIA40NrFv3sFja4swFD+57jGzmm9a+OoDD+MXnvfXwNGjhA0wTIPVHRyYS0q0VY0yajklPV7fxqrVxuGDqe91kEjVvP7I/fimV43eB03NQc/O2bBkVRjcdRf+7a8v4dixCe/hMQZATLrKlJLreRpvNNyVTZKJjpnVFtEN9n30PAPNWuoayETmJ8jQVU7HcBChpnhiYDWPNVJWT1WgXQDVMqvDkMzXpZnVEzZMUQQvkMsZauUZ00wjAyIAVtdUr7jB4lDsug2HwIMPjj0YBMQbwkjA6rrqYshLMhZl/SkKDF61EZJL88TWMva+8CCYe+9NjQt44oyJLbeO2ZnUGIrLswVkQESZ1WZ5ZvVv/uaYQU/JsPv+aJVFGqw2x8aeppEkdh5Y7XnEdNosUPodV5pw9l3jzGoA+PmfB97yFuAVrxjtqsABJ15Hi8qASBkHc2rg+swyWMzxXCgrA8KuwaR2p0gIxprVOb9ZnGgTBavlAK6AobM9DGGqJZjV4xchiqbTrNblyczHsoxtSUrWrgz2a9xukXEgpFldojJIiFldrEmAgtV5rP0ooszqAjIgPCNjGlbXS/ZbrDpQX8W9Zw/hUGtrpwzItWBWx4mryU/HvhslmNWZ+3kGAJfR2hcA7EvLVeQaLJa4b5lkZEb5wsh5TTTYGSFvaPk+nKIyIHkAcLyXF+8mAL4uPjX5KwNWZ7LAafQGMklWc66tUZMrZVZ79HYuw6xm4O/x48DJk/RB6kPUqo9Ka4j6ZgHEF/vTnx67XEzahYHVmgZFCoVwDRbDIZmiXv960ucLVw24oQKjlvo9mcdV7xoYLO4yqyuJXbD6OopuV0Jbs4E9eyBLEb71RVfwt6duxHPmz4/KgIiC1bZNMuvsoDc/D1mK0NIc9DyTMK4lCbW6RFg+nInSG7jQ5AANwyeSwpRRKgUB1ld89D0TjdaoARxhVufs3hhoPA7SAcD+/cC///f4pXcsjD5OD/y5zGqPGMvVDQpW0/LheKYclwFRFH6mGIDvRlClYkw6Uk6e8xrXhR/KODzbRaMtbrCoyQE8AbPN7W3gzjuBU6fGnmA6VKaSyIBsVwBWexTQpwaLIjIgE/U5b7sNL9/3BH73jf+Af1w5jL217eS6s8WHUxHg9hxosk/ugf37yYNeCqzuz+LAfOrH4YGUrL9DF/NGH0eOpj7fMIA77sDRQz5uetly8jiVw7G8nN/WceCGCvRagZOOplFWUg6zOv1biIagweLw6oAczGdmgHabaJh5YWpjM/qbS7qWb6xHw7IhzqzmyYCwg0OJUk9euwBKm39lgUml2gQrd+UYX5UBfbIYKVMaLALIHAeWBXJ4LsCsbmoO+kOxH9myJoPVBMRMJIxqigfLyW+zDLOaC6iCzId11cGKNYO9LzgA3H47AOCm6HE8cb6GIJShmKnrw0CEvARTURkQBlaX2IR/8YvAlSuF37YjrG2XjAUGmNC/W7oNQx/7rrEMSM794/sJWC0agjIgkTMBrG61gK/7up3XXGCd8d2wpGZ1Bls5ngvLa1ZPBDzixFXBNvM0Wmm7En1doWC/VwZYXcprAKTSwOWAE8NhgbmL7uFEfBxsG9VoVseJhSkNFrPkRUrooatqlO0PwQgVRQGqPO121m4kV8usZuzyEoCiaUSEWZ0j1dD3DCKzWCDJJiIDQgyt6X5r714AwMHgDD568Vbcsmdz9PN41zUMy1VcKQqRAclo1/NLGCEitS/KYu2HClS5bEVIxvNhCC+aQgYkR7NaHfdpEGxXk4NMSRzHjggRqIxUoACzegQ05ISmRpNlhoCp9NAzSRe0n9dKs7o/kAhYzWNW15RKNatdl9zKZZjV3S7Ztpw4QXSgAcTSjq1mMWmNdFy+TPbeDz2UenC8wl3X0dYt9LYK6D9HIaRP/gOwtoaDB4HzV02Ce6XnCro3tHP83jwP5cDqXWZ1JbELVl9HsT1QCbP6zjsBAL/4VR/BQ2/6RexbcMmNx8BqDvs3DvZCtsGl0govXHoaEqKYpVRryMTsh9OwZ/nQpAANMyRgNWVW65KLyxdDaLKPxsyosZzG06l1HAJ6TGJWZwVjQeeB9lQ7sFXzSQUuBavVyMOlS8CXn2pi260lcmwMROCWZxdkVjMG8CAfRPDSpTAiwQ5kAmD11hbwnOeQkp6RdSU2AiGa1YtmD6u9WkYr4uG7YVK+zGRA8hILyGAA3347buqs4FvU/wUJEdFuZQsQlVcZcsAkr2uRdptNYJkCyIzK5ftEBmQhNe55ICVrd+hhud7F4VvGpDl+8AeB//gfRw+VqgpJArnnssK2s5M2WRGbE+X005egSQX1imMtzfyXWUPKgNb1RNcwCIDhEFetFqm+SEcW22u8XQviJc9CMiAlDk/XQuePtpvHVi7VJnI0q9khp+iBjPYjT7O68JzFgjF9Mmg5wyGKyYCwhBhn7mZhWWQuHDkXBAGsQEONOdfTeTs3GRaG8AJ6bUXBL7Z2cZjV3noXc8YALd1GY84Ajh4FANwUPIoHT9Oy7PSgVtV8thdQmFmtGgoZUyWY1efOFarkzAyrN8aspsBJS3NgaGNjnYHVeeCf52HgG6jXCtwPggaL7tAnh34R9isvyYaU5FgpGZAMwGMKZrUqhZNlFaZhvOVUBoVBBLmETm1uOf0UCcFYGirnUDq0pILMaj9XxotFrFktClZnrbXstyphAgjky4CUZWyrSrbfQmlwPW+8ApRZXb0MSGnNap7Boudh4OujMou8EASTrJ5P9nGGEcsVHVQv49OXj+OWg2PePKyCJweoLZXEpnvZrOkw9oYomHAnyZVspm6p5J0IYB+WM1jMS7L5kVwqGcRLtjp2BEMuCFbHc1fOa5h5XoF7jC8DUlJiRg7h5RhiltnLCsmADGUxzepatTIgnkfA6jLM6m6XHOdGwGoq7dhspK6hYOUGi8uXgde8Bvj4x1MPUla7oitxm23NRndLcA4NQ2B1FXjf+4Df+i0c3Bfg/BrFMMb2xzy8pDSzehesriR2werrJYIAXUtD23CA224jjz38MPm72SR/UxkQx4GQqH0wsIl+XnqDa1l40dLT6OgWqZkABat9LTEzyghv6EGTA3Sao8zqljLE0+cUvGDxDOpjxnKqFCLIA6vzmNVZwYDlPGkJuuL/t+/6JBHdp8D8vN7HBz4A/OHHj2Fl2Mae5Shpk6d3CcqsLsikq6kurGE+sF64DKkgs7rTAV7ykrHS7PSG3TSJ5rCtCxsmZIXvg1wjRUlKXTkl1J4d7NRWXlggf2wbR1rr2NvqJ5tVynwc5rH2AXg9G7ockMoEClbroUPuIaZZvZgCq0V0/qIIvu1jyezh8F2d0efSWl4s2AEn77rmyeFkBQOo8jSrfRQvn1RV6ErGpjkVw0FKWzgGq0Og2yWaYUtjB2u2ucnbkEURbFsiJc9VyICUPUSLMqtLSGuoObqEAMoxq9mhLNNQqwQ4kcdIoYmusgaLeYcnywYBKAswq0WSK3H7FlHVYMsrgBSzOoz7WFM9DN2c+9H3i5cRM0CVU/rvr21h1hhiT4euye020G7jmHEB/+/n9+ANN3x59Pqww36W/i+QgBaCa5ek0bmwBFh9/jx3OyEUVj/YKQl0/Dhamg19YWb0xYpCx0GOLn5aBkQ0qD4nTxbJHgTiJni8JBtYeXZxsDovGeaHCpQpEldZxo1lja8yy95Bhp0ql6gIYVrQFcuAxHuDHHDCsgrMXXSddQV8HGxHKmawmAVUTsGABug6k2OwWI5ZnW+qRtjKxQFFJc+8k1VWViwD4kflEsOGKeUzq30fA89AwygAiKgqJAChm/+eYS9IKtmaTaDRwIHmJtxQwy037PQLEpIBKTEX5DKrAzk5UxRpNk+zuiwAzOYtHmBfhlnNkwEp6RGSJ8VYllmtKxwJo4LJcUBQBqQUWJ0jNzWtZnUes9pS0NRsvgxIXancYLEsWJ2WAUmD1T3PGJGvj0knghvvy5eBH/5h4L3vJfgya3ekwoX6z/S6gqaNT59JSJarqzjUfRinVxo7DeVZJYCVA1YXNUun8Uzwdnk2xC5Yfb1Ev4+uZ6I9qxDdMEVJqEmNBvlbUWDoEdncCtwYVj/YWU5fr+OepdO4YbEfb9gJWK3zmdUUrP7of7mf7JkpWN2W+7iwquPr9z+OhT1jbC85X6agFEjH2Gl5bF1qdhQzpylYvaht4gtfAC5tmrhitbG8lDDpRNh5sSt1Uc1qO19Hc6QURiQKGiy228ArXwl87GOpJxiz2iAA60zDR9c1p1swoyhhVqtqwnrkSNfEMiDjhzGqoXekScFqFgxA4JTQej07YVZT1khH7uJ97wMC28NVu4mFTuoaisiAdLvwfeBfv+BTuP3FzdzPH2kz7xKUBKt5lQvEmKYgO02kxA8pfc4Us1qJPPjbAwCA1Bq7NiKZ+DCEE6gwVUGAXVHyD2TMVKxqZnXZEnUOmASgWhkQpstYBqymDKJMpk+oQClTlqqqMBQv8/A0tOTCBosibGUWlgW8+c3AX/5l6sEggOXrqJlJ8rKmuLDykmFMRqnIEKCSQLk+DgD89W3MGkPsXUyNv4MHYao+Xnf4fvzQbZ/ASOkCj+2FlIRDgUQrAG6VyXgEAdEnrAysVr1R3dQf/VG0vu0bYcw1Rl8sSTD0iGi/5jAUh75ejFktKItUCKxmJfp5BotlZUCygBSmWV0GqOQk2cqDCDk6tWyvVXSOlWUKAis7y/+nAasVhSurUIhZLUnQNL5pI6IItivDVAsASllr7ZRgdXwwz2JWlwarqzfBU5ks2aSgmtWVGyyWvAbEYDGHWe37hFldK5Fk45wRrEFI5ljTJImhPXtwsLGJlmZh34Gx+4RXwVNWrkImYHQms7oM6QLI96CZcmwFAYepW4JZnTkfTjG2citNQI79huKVkwHh+EOw1wo3m8eEpyzcayED4kdycbDayEmE0OhbipDBolrTyLxaIbN6bg4YDIq/lzGrl5dToDKVARlnVov6ZgEErL71VuD7vx/4wAeSdoMxsLpVgFntbA7JnovGwf5jeOTSLNq6NTruBMh9notdg8WvYOyC1ddL9HpEh3KGGCkyKRAAMWAHkAycE/BZ0AAw6FKwOs2s/r7vw4Hn78H7/yFxp9fqGpl0OWC1O/ShKz7ml+kk0GwCsoy21IeCAP/h+X+Fl3916oZl2XIBZrVqlgGr80ueo0hKJp5WC5BlLCqb+MJ9ES5t1rFmN7G4PGawmAfQRRFlDRcz1OJqVjOWRxF2uWBpMkD0lbUPfgDHDjg4dy79BHPiJZ/baMnoe+Z0KEO8AaSMKCYDwjNYdDIO5ocPAwBeuuckblu+mjzO5BQ4OArRrKZg9eIiMZLU1vGzPxPiH77QRBRJkI1RhiIPRECvhyCS8c3Pu4x6Q2DjFI8VAWZ1vYQ+aZ5mdRljGioDwmVWD1MssnodUBS01SE2zvUJCybOFCXtSkD+os507sb1aHP6mgd8TmN2AyCXWV1K+/QaaVYrqjR540wNtcqW/pOy1Ml9jQDIajmGoi4HmQksy5aKaVazhBinKiZu3yKed3/1VylCI2NW1xKwuq66AszqguAfreBx8vTrkciA7N2Xur7UwPUvvuGd6BgWcODASLt5LFUgNccWWLsAFAarV1bIYSm9jEQR8Hd/V6gZAGN6qiw0Da397YmKCDFDMWvyomB1ozH56YnBOeyzIGC1oAwIvbZZUjikq1Fxg0UGeGQYuJbS70+3mwGklAIqOcCXH0jk+5cxQ1QjuJOSFmXlmwChRLZlS4USbbpJdbDzFlu6Jpp6ARmELGZ1QEB8XSvJrDaUfIPFkmA1l01ZojJKlQMEWfNhGYIIbRfgaLeXWGtlXUWYV9HneYRZXUQGhFUccfbe1iBETUnNsXv2YF9jC9994+cgzezcw/H0mv2opFRDVpKNmkSrUvEqi1hjPS+5UGZs5RnDRlHpscU1tC7NrPYzq1tLM6uZhFFWVQj7MQsMBjFmdZl1JsyWW2IgeMHEVa5kCQ3CrObLgEiGTvCKCpnVnQ45oxWN7maA1pWnIG2kBK+pDMg4s1pX/Fy2cjquXiVH8L17CYGOtTtusNjWbXS7Yn3trTloaQ5w7BgA4ODgcfyvRw/huQvndxjD8vASz5emkwEpUYG4G0nsgtXXS/R65G82G9xzT/Lcq18d/5NoG6lCgpDDXoC6MnbQO3EC+LEfG2Vlsed5zGqmK8xOibIMtNto6zbmDcp6nUmV5rINYyjArC4C0rFy3zxpCTbps4OjLAOzs1gw+3jiSQlrfYMsUDVtpM3c8mw6sWpqAWdyxtDjgNUjE7Zgu6IyIFi7CnzsY1j61F9gZSX1+FgJjlwzCAA3JVjtRynTEl0XlgHJY1b/4G2fxItuTq1gDJzJS4QA8PopsFqSgEOH8O6veS/+8GfP4od+6zi+4cBjoxsJulDlgQjxolRAt5w0WrEMiERY05kGMmyTX1TrjzJyeJI4I9rCkgTMzmJGs3DygQGWaj2M7mwgpqHoebB9DaYueIBgwGeWgecUQAqAa2KwmFVOHwVTMKuzGERTaIkm+toTnptCXzseXxlzgmVLhOlVWAZEnFk9N7ezzNHytYRZzZKMeaAyS/YVZFbrss81VfMtD4ebG7j9ttQ1SiWtUaslpsFAAiLkgdVsji3KrC7IGDl3jhSxpNc8xwF+4icKNQOAACmTzFZbrcnyvSIMxbLMai5YzXSFBZnVOqcs1Wea1aLSD0AKSMmW7plGszqr3bKSCjxmdRmdWgCUsTxZFglAqTZFZECGtkwSbYL3mG4IsLJ8n6yJWjG5IfbekWDEiLLM6iwWWQymFW9X0wA/ypEBicpVRuXJSpT2XFAUyFKE0KvWYDGutMhlVhto1EtUhHDApBFmNQDccgs0OcTvfNX7d0qxsQqerOE6BatYyQGr4+qwgvetrOQwq8tqVvMMFqdgAOdXspXQwabtankyIA6Ka1bLMnQ1JIm2SWcPIBnLBfaImZUbQAqsLsmszvq9fB8RUp4Eos3qSn6CCUDfVtESkAGJ13hhQ7L88DwCxZRiVj90Bu0n7gN+5mcAROTYygwW00c6ti8SqO4GyDBRFLJ3i8FotodmiQJdR1uzhMHq7rpHWNT79wOtFvbgCv7LC/8Cv/KCD8aV1CN9zcJLogiuJ+2UDxEIzZDhRbvM6mljF6y+XqJPwV42G9xxB/CqVwH/4l/EEhYAcY11Q0VoUhv2QzQ0h2/Kwp7naVZb/k5Acf9+tDQb8wpNlaXBalWFIkXw88BqplldkFEqYrAoSdHoItHpYLHWg2mEmDVt8jzb1ItoVlON0kIbZ0WBqXr5l7aM2QtzkhfJatJJdOHxe7G2Fo087qU/l21MpwGrY0CfbmBiGZD8t3lZB/NDh5IN6pvfnDwemwtywOqBC132EymdI0cgSxFesedRXFgz8dab792h/arzkgClweqc15TRTZMkvoFMJBMzpYJgtSYHcDnGTzEDlv1mc3No6zaeOiVhudZNtPZZaBq5BJyDuROqMA3BAwTPbLXsYZejKRsGEZQy5l+x2cvOp8qWugI55ZNlD2Ssr1KGMc0U+trQNBg5ycahXVAGJGZWi/XFtsmSd+utwBNP0AepwWIMYmoa8RrwcvrA5s8iY0tEGgvEUOrFS6fxcz+akj66/fbk3+HYPR3r12e36TkhdMUvNG9xq0wmxLlzJCeeXkZcF9jcLNQMgJSJ6xho8oIXAN/7vTtfb5hSPlPVdeGWqGLSRcDqYUjAakG94prqwhpkHPRpFVdhpk8e8zGKiHRPaWZ1MFlWoWxCkGOw6AdSORkQALoWZYKq7LMLh4DOeDx3Cf5mqqHwWVm+DzsokMAFsvVEyyYWaKh6Ruk7k5sqwfwUkQEpx37N0ayexgiQYzRalv0KgG+wWEQGhPnFcJjVMemAnQOf//yksveGG0ZfzNNrpnNMaYPFSZ4L6WrNghEDkHmGmCUSIWpeVWcYIoyk4lVnedc2vr/KyYBkaviDyYAUBKvBEoL5Ouvs84W7qmVUCALl5y5eNQD7rKIDgVd5FkXoO6oQsxq6TvZaFTKrm81y2HfvyhBtnWzeGmGPkA58H26gQq+l1s0CUqS+n1yudjvhZiZSpGOa1b2JzeyI7maAtmaTyt7DhyFLEX7g1k9BadVHz5+8SnR2/lZROCGWm2DZDeHYBauvk3DWeuQgycBqWQbe8AbgRS8aed3MDLDl1IUAxWF/MitpR5gmYYzwmNWWT4CvdHvf/u1oN0PMmxnMaukaMKvp4sMzk4oiaRT8XF7GgtnH4YUhlhs9zBmDZBFhoFce4MEY0EUyuzE7kWOwGMlQjGJuzCIyIIHjQ5HIZ6tyiGCY+o19H056AaK/a2RPkd1lbG22pmkakQHhrMGZ+pymCfzIjwA/+qMgTpk0GDgjAFbHzGoglhUxL57CI7/1MZyYWd3BrDYUD/aQb95ZRLccAKI8ZjU78BfciGlqxGUilHE71+UAHo9ZbY2VPM/PY0a38OTWMpZrvYkyIACEWGRFZEB0OacUrWzpoKLkGm3G5l9lmdUT5gPPLw/OZB74KzBYnDgOpjQq03MSDJYjk7LkoprVPt+ojIUkkekkDVYP05rVikJkQDw1t8zVL+pOH8sXCXgjyGPJO01LAOs77hh9A8/4CoDrRMWYI6qA2eyEOHOGXNv0FsXzgK2tQs0AoGD1uGY1SP7+Oc/Z+XpdR75RGd0XSHqx/YaQZrUVEWNYQRkQM2+dSSdCCiYaMwFgpg9ZBkyLK0IqZlbnmar5U8iAaFQGZILBIIDS8xaAfINFp1iiTdIE18QSYLUxqXqFHcqLgok0rokMSB5ANVUiJJ9ZXVaqIdMbgCbGCxnusuDtjZjBYkFmta743DNCbArKznWSBPzgDwJvfztwyy072hSRASlzXTMlI2OTzXJ7GADZGshl/DwUhZCwssgc01bdTRpbUQSvLLOarV9ZMiCuVAqs1vV8g8HQ9YnsXxEZkDz9Xza2yjDWpSBbBqQEA3zk9VnrQRCg7xpoGh5/LLA9Q4Wa1bperoCIAMCkLK4jdQnJYFLiQVWhSWJg9fo6sLBA/t1u72RWK/qYZnVPrOPdDZ8A6/U6cPRo8sTy8ugL2Zk2ay6kFUd6keolGjFYvSsDMlXsgtXXSXRXbczo1s7S+bFYnnWxYrWFboxBP0Jd9cSZ1UVlQABgcRHtl9yOeYPWm4yB1QqPRea6RPvULFbqmuv0DUwGFO+5B4tmH4e1i9hX38KeWjdZJBSFgKo8sLroYS82PMoHq4HUwUWwXRGwenBuHQ11FKBO67S6gQqjQT9X12EqHpz+FJNuXBo/LgOS/7ZMzWqAbJizNs1B/hTnDogpaMysptpWOHkSh4yVuI/pdk3Fhz24RszqLOCrpNM1j4lQSpOvCLM6LdcwP4+2buGp7hKRARlnVouA1Z5XmFmtyhlMJ6C84Q8HmCht/pVjWui50XTM6knjoKzjPZACqyc8Nw1DkTG+Ju3LwxBDV0Vd88TbVhRSkhqohdgN42C15esJJirLqKk+MR7OA6uLsvYZmJiXwAUZCxP1ir//+0kS+9u+bXK7HGa1JhWTASnDrD51imDpaRkQ1yVsmkK4dxRRZrVAwp0G0azWsvdHvj9aUSUSbK3lLIuEWS2oWU33BYGbcW1ZYrxERUgmADxNlYUsZ+t+lly7eNVR8RxbVgYkj1ld0mAx7lhGDB0iH1RYaidvcAUBAatF10TarjnJ2HtKsFpSlcnVUWVNNsESrXmmaiVMQekZIZPQwqQayt5fGZrwXlFZKBYCYLUVaOM5O26bIsxqy8LO6hVJIlKR4/deXMHDMRcsc12zCEjsusrl9jCsXzuC+XmUYVbnVTFNAVarcsYcy/byZe5bBtRlVAbZTjmwOp5jM+YuooVdzLhR0WQEvCqLEusMkQHhaGsXHQi85CXVeW7UBPZPFYPVrltMPSwd3c0ALcqs7qh9QjKYBOgX8M3qdoF2tAW8971oXXgsAauDgOA/uhq32dJs9AZi905vOyQyK7XaKHshLXML8PGSNLO6YGimsmuwWEHsgtXXSXTXXFLOwAGrzbqcbyCUih3lXVlBn48sjgwIAxTHZsHWHUcwf+sSOUSnJ3yagQ7CHMYb+x5FdRnlIBugAil/3HEoPXECt9wc4a3H/wH7lBUs17sjMiA6D6BjbKeCzGrC8Mh5TQkjCtGFov/0VVKGRGPWsJJybHbt2QKk62jrNrbXp5h0Y0ZYAlZzjSvBwJkC+pwM9OOA1bF0DQOrZ2dJ1tVxgM98hjxG2dYAYsabY1XIrJYkQJbJeMzSd2MbsYKO1DwDmfLMar4G8HDcTGpuDnfOXcTfXbiF3FsTwGoJQOhwSp59DYYpeI9pGgHpshJXZXVaOUCd55XUU81hzxA2bUmwWpfJgT8DRCgFUMUsqskHSAClGYoTWX8A4HmwAh21ImZiEDDWSwVrdhKzul5PXsd1+WbmMEWAFCatEuSzwGOgblKlyateNbFqIbc8G/QAU1AGRJFC+E4xsPrkSUIAH5cBASCsRcjeNPR11AzxCgYRg0UA1wastiGuWZ1nhEj76UdTAMAZRoiFk+0j7WZrYZcGq3NAHz+UyZ6gjAyIPrlEPfRDwvYrOW/l6goDsFylkAxIprZ0OjyPGiwWSDqrKmoKlZ9LzzPsUF4SyMgE7KdlVnP2MFqJ9ZvHrC6rWZ3LrE5L4BXsLwCupEIM6gi2madVDIAkBB1KOuCdE2mbZH7JWJuZDEiJKotcZnVUnlkdRdLkfTdLhFStWT0NWJ01H05rsKj4mTgokQEpBioDRG8/TwbEsSOSvC3Sbl5yoWT1afJ7ZRssAigvA5I1EFyXJhkF2tLLGSx+8YvEKHw8PMohEiw0HInudkSwKACzSpeA1ZOuUQEZkG4XaK2eBj7zGbT/9PfR2/LjjkaRlFzLrIqgvL7qFgGr9+1Lnhj/LVlfs/ZbUyRxY2b1Llg9VeyC1ddJbG8EhFmdPi1PCl0nBM1xLboJMbQkwqrlsZIMgwCKHEata4dE/3esvRe9WMJrf/wEOUSnQ5IgKxJhYuSAdACKHUg45aMAENjezsO+JGHueTfgzUe/hAONLeyrb0+QAcnpB9OWLgJWxxsQPrO61AGax6y+sIkm03QCsFzrJiaL7NqzzzUMtDUb3c0ptJeCgGjr6QkATxjrfLB6osFiVjBwJsxxo6bt6spYuzffPNLOiHEZBdJsq/rfC0D2glZyIxZrFWeVzZUpn1RV6EoAjyNVEJc8pzSr33jDl3D3/AUcWrB2btapezRPD9wONFEiZTIXZAFqU2xwAWT+Xn5AS9SLAimaRsDKCSyX2I26YmZ1aUOtPBmQaTSraTJkYgJr3OhQMIyaDGdS2f+kiCLgz/8c7VNfxtYW8IlPINasTjPXuCX6ZcA/SUqYhFlrIgDfj7IrTSYFrzwbqWSzaIcVBQ3VxcAq9htvbpJzw7gMCHtOOByHjIUCbEKuBjB7vKAOtC5na36yKGSwyECvrHmLlqWqRQ9Peaw/qtNbSrOarbc5jNLKDRa98pUmWSXq0/gCxHJeWWK1UUSY1UoBsJpJ7fCY1X5BZrUsw1TJXDqyJsSH8nKa1ZlswmnAahW5MiClEix5RqOpdksngzLug9LJIAGWZhRJ5eatvDNCEGDo6ajrvtg9weatrC0cIweUNBec+PXLki5ou6xfk9otVXUWX4NsGRBJiorPMUwirOpEo5pvEOy4UnGDRfDNYePkbUGwOpMkQtevsgmmTBmQsntZjlQgq8QWWhfpJuf/Y+/Pg23Z7rtO8Jtz5h7OcMc3T9KTLdmSLEtGtrEtY4XBZUDF4HZB0w4bUy6qu6MKKNu0HQW0C6q6mKEg6KKhKLo6gDDNFBDuCgzYBhuwMMaWZcuy9aSn4Q333fkMe++cM/uPtVbu3JlrZe71W3n87kPnF/Hi3XvuuXny5s5cudZ3fX+fb73SS0T8kR8BfviH+18nO6vrGucrNMzqI5zg4UPhki921zsazurzkxLL4gEAYOGlOBcaQ1eD4GvEfTX7szMwYV1MEr/ne5gZ7Vu+Zfcb93VWE8TqfYI2L2u8LsXqt0idnVtsgBgbYTiAfnUy/mBsNthvxzwIWNjPaviYzWK3c7y3vQ34+q9X/KU9RDoAei8KdyTpG0CRlnBsiTONB4Z85zt+Gv/nd/2r7fXmrOK0GDgP4aSb2llNET+bncLhidbqzgZzNwPe8Q4AwE3vQSNWV3kJ26p3nNWHfozTE8KkUFRRYJWHWITbtiHfLoeDK6tqu4jcdyVtWbAcu/n7qspziejT5r0+/ngvYHGQJcoOyv5PEatVi5GqQlnbcDRxFZ43vNCjOqsZBmTMWe3ssoWvXoVlAf/8N/9FfO1XbJTHHdyJ5xz1vcVqgT8YWpQS21IBtTBBFj3EeCBZ7BYlXax2PO6sljBaSSgYYD8MiImzWjYh5W7aWah3vrbv7u9MOT0F/sW/AP7qX8Uf+oM1/vP/HFJnNVx3OBCU6PrzfL6xMDC5bZjVGi7o0YDFrIavI1a7LuZeivVm/zEpTdkrNQzlzmotbnWSaLe+NxsMUzqrRZjxyIarlrN6SPzl50nCF405qylIhfZxp3RWi7FbJvrUNXdWE7pXwJ3VVd/113SvEAMWBzdGxRgSaJzzvjkOOhu4vCKf/b2dY5cl0srdPxOiWyrxzwQDMhQSLY6re8+6I7k24lkgiKrKtUfTxaR3SADjOBhZYPxYCeFnyKWY52xDMNjzfdt08KiFWjIGRDiru+YTgWwhzmGGxE/Sudo2XLtmWUyytUdVsbkIcW6omm+RMSAja7A0t/tC5B7l+ZZ0jBXVbN5qbrAoBWBTDIhqc4FimGt//8AG097dG4eHWHgp1vfi8e9t1cc+xv77gR8AfuZntl8XzmpvgIgmrbMznKUBDg7ZxtiRdYqTewXO1zYzvcmc1UPmI17nr55i6bIJoW3V23WVwLK1NIh98kGa467AMCBi4v6BDwB//I8DN27sfmMjrKtRMGQ81j7dUZc1Wpdi9VukTs9t5qweE5Y9DzejM7xxd/yjjVOLiUlji6cwROTkiM8HBp26VmJABmsPkQ6A3ot9jzCpIimYs7p7rhzCHzgFouuLXWa1XSAtRpzVNQUDMiwiXKSzerVmO5miReaGdRd37vA/29hsoBefke/jwI9xdqq/kPnX/5rPMTmnaxltOWD7ONabF4VmmBSAwZdElll9sfrLvxz48IfZrzsBpoL1OCkGBNgrjAPAVoDfs1xvwN1ADZCxbfgO45kPbQRsMnfXWX31KnDzJtzHr8P6P/2e/l8Qos9QWyp3Vu+NARFYBdVz0Ag0+x2uqRGmbBOGSHTPSJnVOZGDDeYolQqgzYKMIE7wz0slfAGgiT5Dbal5zgRKTWf1XqIPgHyTw12dNL//vR+5j6MjtnGXlS68sPXv2ePdRdkIadreVeda18gLG64OX9rzRp3VWQaas1pDrP7c54Dnn0gQru/3mNWAplidprsc8X3K8wZRDc28QPNdGzjFuFidsnnF3mL1EL6ocWXtf5oAtq4/xTNbtsOPdWoIt2QasCg7V8GTtYnMat9CVvY378j4JmDUoci4wlys3vtE+f06pChQAhYBhF7FxOr2sYtC/5lql2qcNcAU7BWwSBConKGsGB42arsUVMMQE57YxSRc+/kwBkR/jVCNi9Wlv//7dqyDR3TzaeLsYFlwbLZB1ROr+caVNgoGGHdWU7sBnBpFrd5g2fnZ+9aQa108XwYBiyoEQhOwqPmQ7eWs1uH3A/thQHTvrWYjBPIuXKqzegQViCzb/3wPD3Hkb3ByeyTcqVOf/SyLCfubfxPbjmlsndWz2W52yGg9eICzLMLy8QVwdITjYIOHr8dcK0h3P0sxjx9h4gPA+asnTGsQVbJ7phGtxXGH8mxkx13ZjK899kIbe3e3NQjd2nPtcVnDRWkauaw3oc7WDktg3cNZ/Vh0hjduH+DFoe+rKqSFg0M/GR+EubN6MFSuZFgAz9Xc3d9TpNPGgNglykI9SJZZKQ+ounJla/v6nb9zu2hxHCbQDYnVwlmt04Y0tCATRWxN3sdZvV6BoWCuXwdcFzftu7j9Wg7Aw+nGY7wn8XODAIcaYvXpKfv/YgF85CPAK68A86LAeR5isdi+hAInH3bp8pe69kSs/ZJQbPLkOeAFnfvAsoBv/3YmWF+50jtm4BQ7rkDpQQGaWD3WYaA5wW0ctVM6q9Fpo5aNSWWJOHcRea32UccBfuiH2PWViQHinh3aiS8KJOUMYbS/M82zSxQqJnpVIa88eJ4m2kaEw6al9CXaYEB0J7iexxywMmd1QRdS/FDBTeP3wILYPupaJTYyHcUEA8InpFIMSJ4zd2J0MWL15tYpIru1IHjpJRwcXMNqw/4dVlvJcxzGt1UJSZx5GWg+X7Zro1SJM/znNe+Zfe+FsfZstFBLGs7qmZthnew/Jr386QovfPbHEf3ZH0WS/EWAXcHmEmqJ1VmGB+kch4vT/f+OGJMVn1m8rtgCWtNZ7TvFKMoqSSzG/twXA2JVKFS5G032g/47UTnfaFrJCZivkS4LIwyIilNb2bRQNQw4q/Naf7Oidb6D7y8+du3tUgU0nNXu/u9EXqFfMgxIR6xOdDqXujXgrC4qAlYD487qgjKHaQwtij/nopWlu3MzlJdjsjEsNsfzSr5op6wRPA++vR4WqwV2a9971mabqI2o3H0/8Q0x7U0AMAG4zPh7sT2vMMndEMcZYlZTNlhcbDnr3ZveAAPCxm7JPWnwfAkcjCqDpnFW62JA/JGAxRT6eJEhJzwP49M19DAnfIW8dJT3rPjZWrWHtrE3tuTwEEfBKzi5V+CpPX/8yQmLLnn3u4GPfpRdb1F5DnjIMJv52Gz6ESfKWq+xKQ4QHYdAbuPI3+DV2ynOa4eJzc7x9ns9D55d7eesfn3VEavZ38nSDl7E8/ZCromKY2B2mI2L1WOd6E2WwwXkDVzWXnXprH6L1OnKYc7qfcTq2Rlu3xsZWDnnLvAlg3O3goA5q1cDg06aXgj7lY4BqQfRGkVawpEtSiwL+K//a+C7v5u1jLTOk2FAxpzVRAzIELNaXBtNxzpbPI5gQNYWc1b7PnDlCo6DDU5usZfG2cZlvKeWWH3gJTjdMwTrL/0lRhf5n/4nxiJdrdA4qxfRVqz27XIYr5JlNH7gHi+JPAfjrMsmTFev9p8Nx2Fc5SHHOtEJb4E5OKVFbB20PYehCpTOEVrgD2vxGwiNEKJiF9dgDwhsrgvPGher09Ld31ntjgcp0ZmXame1CQZE6awu6YFiXmDLw26oIULAdoI35Kw2wYDkkpbfPKc5//ZsxYsfxIjclm3jU5/C0RFwcs6vefva78GoLWp9N+EoC1uHdSiq2RRV/50s5wGLOhgQN8Um2f8zvvtqipuzM4ROgWS9HRsyjvHVYlZnGf7dnefw/ucf7P93PG+QI5lsKtaarDN22zaCPTpN0szSw4DYFQrVe0YsdCnj1qAATA/pGnKUkuaGgq+tDFUjtv5D7fprNmyIHSFj3MtN4elttO3DrBbOah1mNYDIL/sYEFNntUqgoTqgcUHOan5vqXQkE07tsLPahkd5vvhGSBarkQIAtOecvlMMG1p0N4ctazQQEyAIigAcV527UdQOLbhyD6cuWaweuGdJGJChjJC6Rq7b1ds6WSVaoa65WJ3rY0BCZzBg8SKc1QBIc07Pw+g9q/1OGEKWAHrYksUCR0HCDGB7ip6f/CTwZV8GfMd3AL/n9+yK1dmnPgv/r/0VzOo11joYbH4QKwwaZ/XJ3Qznsct0hI6zem9m9Z2YYW45jtStCxQFsElsRG1UjOcx0+CeYnWSWizEcyzrbczcZ4CxuhSrp6lLsfotUmcbhz3M+2JAxsTqokBauQj3cRSGIWZuhs16YMKSJOQFCYDpndUjoYVFWqqZn297G8M/tEU112UYkHLMWa15DfZgiVI5mmwiOvxt69jeitXLJWNS32cnc5YwRvUuBiTB2fl+/77zc+CP/lHGywoC9ntwZ3WDAdkzuJKUUL+PWC1ERd3gxoFNgCbcVNNZ7VgVynTCTRtg+PlqnNV6hwTUAVVNZZk2T3avQI48Z63qwZ4nLRylqnZ6EyFlgIXdYEAIE1yVuG4S/qVMpDYJWBSu9aIvKldFxTyzFLHasjhmRuKmEwxNXTFlzwljfJIydM1iwb7w8Y/j8KDGyVmrO6B1zNDJ1R1HwvFFQMwMnqsI19Pp4BH31UAoak7BgHh6AYsPXk9w7G9YgGZLeMky1tyj46y++0aJmZthfqDxjI2wXxuxWtdF5tVIy4EAz7pGllv7bwbsMW4x4YvA6lXNN/jGFTlgcYxZrTvGWtb2nu1uWlHDgXn5gXyz1YhZvUcrcazrrPY82FaNKtuDWa3trK4RdzEgkiBZrVLNN0zF6gEhifQciM6ogU1sADSxWnVcA/Fz6/yT3ztlWrB8Gc3uS98u98CA6GG3GqFWEeoNgBYS7dQoZfeBwTx2PGCRiAEZ6gYwvbeU3G4CYx3gmxaKrpiyZOYQVx+3NIoBEULiVNk+FZ9zUjB5LpTYliovaXPZkVwbFMX+JizLwuGywkkWbVuWR+rsDDg+Br76q5mcseOsvn8O384xL06wkcQHKStNmbM9CIDjYxz5Gzy8V+HBysdxsJEHLI50dwPA+VnNnNXPPgsAWLobnJ8Dceaw+XhLrGb5IHt8FnmOJLcRenvcYwMmIQBAWSKr3Eux+k2sS7H6LVKnG39vZ/XN6Ay37488VUXBnNUj2jcAwGcD0cPzgYlQmiIrXfghbUAfZVZrsopZeIr6W8pUwaweOE9HhGbIuFbAbnv2vtWwRAf+fSYYkJEdyNXGZhgQzwMWCyZGPyyBusZZzMI6ewGL5/tNBjYb4P3vB/7H/5GF765WAMqSOatn/HP1PIYBKS8YA6I6dG73mdVDNZT2zqvKCrlrf+RcXbtUi9VlSWsdHOpc4MnslMm472PQNUHCNQinz5BYresgGttcoDoUXR7iKrsP6ppjQAg8VTHBkzmrCyJaBC2xWhawSFyQCReVbEFiJPoA8P0aqSycJ8+xKf1Ro0SvNMTqyMmBF19kqeGrFY7qhzhZ8b/fEatZ8PAQs5omKAIYZB2y9lHCpugIBkQ7YNFNsU73f3ge3M5xJVyzx6L178tzlnmjI1b/y48G+KYnflWv42iEAZxsKvb5a65KggDDnSa6i/6xcYuKFLAsuE6FQhb+VddsI9AACSQ1CJiI1SqHouiIIWJAVJ0m2iicdgnn40ArMfmdOIbGKggBi0GFpIsB4ZkQJhgQi5/TTpkELPoDKDPqhuCQAxowFBQVm9giI4QYYMruA/ncKEsqdYegqoYctaKE015HrBZCrUKsJrmKMSAommxcXaSzWpU7QcWANOOh6hrQAxaVAcHC1EbAHzi+IieFFxOrJ3RWG6DnXFdtvmlMIkTGuBQJBGzHrj3XtUdHNU7SGU5eXe31/avV1nMRBB1nNc8Xm9UbLbG6TlL2/AqxOohxclLjM3cP8LaDu7vzJh1n9YZjRG7eBAAs7TXOTqpt7pGYM/k+R9bscc3imL0X5+74nGusE/3SWf2m16VY/RYpJhzuIVb7PkuNjUceTh1nteviWrjCvbOBny3CAi4KA0JgVg8GLAoMyL4vSotNsKz2OfUOWrDWVF1m9UUGLI7saq7azurFgonRJ4wJdpaHOAjS7UAfBFh6Cc5W+/371mvWffO938s2TIWzekes5knUaeGqNwGoSbxjok9db53VGgKNa5VqliiAPCn1BHB+XMeqB510AKblphkwq73A3gsDouXQcoeDXgAARcGwJhruT+Z0GnAo6qJ7WseVYkB4+BeJL+2qA1dNnNV24LHrpgq+okzCwNPEJSJ4kdfkcwWAwKuZmNQVFQ2c1dJ/f6fi0wyRm7OBi2Ogjjav4+HK200lBwDH4TiLAbGaiJjB0LnyTVFv3+4CfsyxTdEsl4TNjhxz7qVazOoHd0tcCfjqqDUmZRlbp+iI1V94zcWLh3e0xWpAHVSWxLU+sxrsFNIuUqFdfL4V+JpBZUPO6prArLYsuA7k4h/fvKS685QM4KpCDZA5tdJzNXh3AS3XX3fcKkAOsd3LWV1qYkA4o1OJfwAY0k8ndJhX6Fd9DEjJONbRjHAPAOqx61HDgDQuVcWfU8Vq2x5kwpOd1UJYVrigs7jUD8HjrOIxDEhc6t0PgwHBBs5qp82B7hyTfF1HAxZpm3eOo3bq1qUBrsKtBzvkSGO34ADL5gZFgbT09n9vtWoMZ5Zk9rRitUGot+fWyu6NPAfNJLIHFkonEPLo2Mar62P8J99xba/vX62A+Zz9uitW5ykzJsyqcy2xOjnPGSaPi9XXwhVu33fx0u0lXjy8zdIcRe2pQQBcrPYT4LHHAAAHOMf5Sck2d/18u44Sm7dD5j5RWcY2Xmd7XN9GrB7KNnK0pprtYwO4FKsN61KsfitUXeM02dNZ3UxARo6p46wWYvVqwG7RTBqnDb4iteA4DhP+hjons4q9gHRGnz1FBO32bGu4PZuKAdnHWb2OmeAA12XOai/GGReVz7IIB2HrRvJ9FrQ5FC7Yqs1m+7JcLDoYkPl2whZ4FWuhVonVdc1Tuff7uU2Jz2sgAK1Z6OwrKg4tynkVSaFGzAycK9uFH8HhUJ3VA+FEFKeP5w+3+ImWZy0HrFiQxXs4q3U3F1QTJpPF7hCbsiZyoB0HnlhEt5+HukZeEtEigHqcFc8AUfRpxOquQ1FgUIhidYNVkDmrCx/RXH8TwEIL0aMoJlZnbODiLYlH1QO88cDvO249b9g5Q2UA74EBKWrCe8YumaNWVnXNQnd0HESOg7lmwOKD+zWOAw5JLHbF6uvX9ZjVaczdhJQsh3iAo0lxVvs1w9YMfGZai37hhB/sCKF1xbgDog8prI4fVDnfoKDcxGFVwldzrtNiQKZxVg8xq2kbuJnCUSuOW9UWbF/vnKNQggERTlqqWK0yCFDd9cC2e2cA1UDtjFJ2XxqYA5wRZrURBkQhfDFnteZ9K/ivI87qjeY8bmxzgeQqBuA6kAcPiw7BqZ3V4rgm6BqFU5c6N3JVbGU+56Q8X7AseE7Fulu7RiyREUMQq8eQW02GA0WsVnSKAqBfV4ULvJkXERnjyg1n8Q7f8zM7uubgFx88idVqv89i2FnN3nOz4lyLWX12UrFu6zAEjo+x8FLE6wqffPAYXrx5LndW7yFWn8Uull4KHB0x3Ki7wdntmL0v24ZK32fvw33Eap0uobGuqLJETpxvjT0Hl7VfXYrVb4UqCpxlIQ6iYnzAFA/z2HOhE8oixOr1wCxbTEYJ7Djx92WVF5Z+Cw5f6JUDzOoyK/VT38eQJZxBpe+sVjgxeFVpznh0FGf1GAYkdrBwO87qMzYZOs0iHEStA/hMsEnS/V6uwlkNAMtlJ2Bxtn2B267NXI9jorLuvSWu10A7vfZu6RhLFJyHruPa58d1rAqFqt1XCJdTMqu5A5iSTu/4DqqBFj9kmfYiZy/GWZ6zzSsdsXosYJGImHGsCkWqcuQ48Jw9ula6xVs9ewJw+xnQdWvz8wXQ/7zqmp4iD9GibcsdigbOat+rkSkwIGVtwws1V/zckTEo+gCIz3ImSs9mwJUrAIDD6iFu3fOYiL1cbr9ZbFjI7gGALk7ssSmaV87+3HZ+zMFN0apCVjF25d6fGQED8vAEUmd1ngMvvAB89rN7HwppUjE3oaazOnDUTtUkrvU5muDOatn9Kkp30b/HuGUW/iV35xWVDcejhaIqu9lMOLUjrf9UDIgfWn0MSBvfRAyGZYLiCLNaA6nAXI8jrdRFwQRAzZshDOo+BoS7/bTGlnY5Diyr7gdFXxQGxMhZPYBFMglYHGBWU8XPMTGl2bgjrBEGxeo81wu0xsVhQBxXwS5v5rHahwQchzHhZSYRwzFWKqyDuKYVx3UUoio/V0e30wZgGSFuJd8QEu8tzfBWAKOh1klqsfe35jrJtmp5R6PJe2ZgQ6zpEiRhQCrkqvmhLgbkqotffPAEkmS/7x8SqxnyrcA8fzicRdap89MKB17CJjxHRwCAdx98Ab9w/ynceKLzOeo4q2OPYUDCEDg4YB3ct9bcWd26f/j7MCv2ZFaX7n5ZDuJcVSK4wWbraIf3Ze1Vl2L1W6GyDKdZhMPFHjf7PrvlQOsltMfP52L1/c0ezmqqi0zxIJNa38VCb8RZ7ei6X8cGHYqI4A4k3ovDJgRhfU+xep3yFF/OrA6cgjmn8xxnWYjDqPWG832ETo443e+zaDurl8uOs7ql+YxeV2rL75joUxTISnfvNiwAWyf8wEZIznlguo4/x6oH+WYASBMmKUOSH5PqztvH/ZlVDrxQ71nw7Gp0YV4DmozxAYeiEQZE4aoV9yuVp+rxNv2OiEB2PQKjzmrSQg8th70KA0JkVgd+LcfM5Dlb7Oqu+F0ekDvk2gcQnxcMAxJFLJ0GwFFxDy+9sWQi68HBzjFdu1SL1eLa6n5mLk+RH3jPFLoBi7bN295teQcLBbXkMp6gFrP61Nk6qzsYkKtX2amdn+93rCytWWDhXpOY7Tn7A/cB2VkdQI6tEVWWyHQ2RvcJWKxt0kbjkLOazKxub4ZIwhDF90x5roz/S3NWe77d3wxrukwIWQP8ZAfnXPzdZQeaqIaBzRVxXPG9OsWc1f7uNeDCt0VKq4OatU5FIgHbc1F2hxEE4OY8FX9uyKyWDt2GGJChMMQsrfUxIAIxM8R/5feG5e9/3DFnNQDyxpXSWU0NiR7rkLuAUNAir9lGPmGMUXY08k0ACmoJYLeN9P3VbLISDjqyRqBiQLyBTdGaf49uea4CjYXW5gLRWa3cvCxLlLUNx9/vfI+u2vjkyeNIMw2x+tZLwA/8AIL//R9txeqybJBvMyvB5sGerdJgzuqll7AJz8EBYNv46psv49nlfVjHR7vfzOdao8ZJAOeptz3ucomr4Qr3XokZNqsnVu+JAeGbw1pi9UDAokkQvQUMhyRf1mhditVvhdJxKYqHeWyA4Jy7fZ3VV8M17q0HTqARq6cVFEkOPeFSHcOATO2sFmFtOsKXENaH1iJpqd+aOrZTyGuVugwDwsVqywKsuuTM6ggHs9aJBQFCN0ey58uy7axeLDoBi/PWfTImfF4QYkZsLmiJ1U3A4jAP3dVlVgtxYsClCYA0YaqBEWa13iEBjF9bvlums8jZx1ndYBy0MCDjDkXKYtex6uF2X6KwLA0tbCZLNHFG2YpGHbd5qRZPeW7AfgVr05cygClIJGAr+myGJ4yb8xKRwzEg8zngeTiyTvDTrz6Fdx3f2lpV+DFdVcgmwJyaNcGNsScGRGsjaCisjv+svHLgexr3l+Ng7mXYZPu/l/IM8Gz2M6yqaHTNLGMf6dd+LfDTP73fsdIECHQxINxZnSby+50qVrP7dThwVttZPTSHaYQUAlZB3AcyZzVVrLbZeFeUkuBGw+ArZcCiwRjrh3Z/3BKdccSxcJ+Axbq2tFENjFW8BxpLc6wNQyDpClRlSdsMFKW6BuI9Q3Gm7ZO7QdhsdqxKbXYzEasHmNXkELwRl2IaV2zjTnONEDjFsPhF2BxunNWyRSg1KByKeRFgxq8Xa0XZO1yMMZQxdkCwJwf2QWzeya8B9boCrJNN6azWyVroniw/Rq/qGklus3wIzXvWtSr5c2CEAVFvLpDnsq4LzxpGSwDYe2Pw8NhBXrlI9wkXBLA6LbD4lz8CPHyI4PXPbuc8mw2b6zklZm6Gzd39OSBn59YWA2LbwOEhPvT4S/jamy83TuummjFr5KBVhTj3MPP4vOvgAE/MTnHrFY4gCnbFaoYB2eOacXrAvobMQb3E5P01xi6/rL3qUqx+K1TKElitcI+nTjzMYwMaXzztxfMRGJB4rv6esmRtxLqC4hgGhPKiEOFnKvdrzRys2oLimIjAXR5ak5umHVH9dxq+9kVgQBKPYUC4WA0AKKsWeqZ1gCBgGJBsv2GjaBk9Gmc1D2zZ2e3cQ6xmDuC9fuz+xxVitaabcJAlipYTXnMS5liKwD4AdUGciI0w3sjp9O5IYJ248TTd5WOBP3la6TmIRCveIAZEE93THFdxH4jrSuSpel7dR2sUBe0Z2B60Oc5OmQhUaC3KVM5q4oF9H4wBLAlYBKAvpnjefs7qVbkNWLQs4MoVHPoxPnt+HV92o5927toDGBDxPiCMW5ZVD+KLCkKr/mB7dlkiKzXHAoEByTQ+i9a/KUDauH3ynH3mH/oQ8D3fA/wv/8v4obKsZtgSHWf1yH0QxyAFLAahJcfWiBJBVfu2049hQKiufbTuAxWzmooEUuFFjJnVFxCwGPKA4I5Qa8LvH51z5Tl7rrVD8Epkis0VAGRndRiCYUA6gj0A8iajMjDcpI16hCtM2my1bbgOe/dLA9MNmNVsviH5M822/50aEauzpGIbd5r31j5itfjevQ8r0GAK9BwAuqCo2mSrbH0zCz8P11YgIw26zhpRWeHUpaKGlKKqQfcKMIBdE85qzfBWdrK8Q0yBg0kKD6Gr3zXt2SVyGS6xqlgXKfE9o8KAkLEt/FyV73DNsfboKvu+JN/v+1evnGBhM+Ra4BRIhVFjs0FWsXObuRnW9+K9jgcAZ2fAgRdv51zHx3jX8S385V//wwNi9chzyUOwrDBgc+7lEo/PTnHrVs3F6tZn4jhwHKCsJZvi3crz/TuZxCbrmLOa8v7aB295WaN1KVa/FUowPfYRfjyPpaWOidUiQXyfdZ7j4NCPcZKG6hA8A4eiOB9ZkTEglmTCLIqLCI4Nbcf20LkyJ52mWO2OByzmKXeBazrI2E7h8LetMw9zL2uY1QBgVSWqrMCDdI6j+S6zOnRyxJnGS/vOHeCHfgiLT3+MidViN7mtuu2xCUCaNLou45ulw2K1H06MmBFCnebCwbUqJQakKms4lFCWvZjVeofcOe6YWE1hKKra5gAk65ItyrSc1aW63Ve0kBLbiFXsPBMhxXUlDiLBEjXFgKic1ZQ2TwBeYEsxICxBXXPDplVBACWzmv1gAgZkwFErKl5XmLnZtiXk+BhHPpvMv+uZ1e4374uYmToYloKbwkh7diP66J3n3ONitWpe0KqqAux6+3mGVoaYr5My/gr61m8F/vJfBj760fEfnyZA4OTTOqszizGrNT+0IABzVg9gQLSc1WMBi4auP5VDsahsOA4tXM9za+VxAVwABsTAWT1z+8zqsmQCiqeY343VRTirxQbuPs5qXQzIzGIYkM6mKIV/3ZRKoLhAZzUJ4wVs+b+K8RCAPqpBPLdKZzWRWS1a6gcwIDRndY40H5hTivtB11mtyjOZYuNK6azWPuQwY5yv58icdcU1KEp6+LQq0Jp8v4rj+pY8ILgs9YKB26WacwKNYzv0NQ0dQgCWOOHJhh5w9J7KCS/Wc0R+/Zizet9n4fAqu57H0X7YjtXrZwzxCS5Wr/nPW6/ZutcumNngfjKq+4o6X4E5q8Wc6+rV7R92xWqhQYx1+QvHgnBOHhzgidkJXr/tsIDF9j1itbo8xg6ss9EmznUg04WaubDFwVw6q03qUqx+K1SWsQnDPouyfdNSxctiH2e1xVhYgxxNaoAKZ+qqeD4N30vTWe3YAwJwnnPH27QucDMMyICz2gADkg1NRKsKq9xnYrXjNGL10t1gdVrilfUxnrqy2X6/7yNy8713dgEAf+7PAbduYflvf7QJWBTn1z5XAGrh0wADMpjGLLjK2hiQYWc1FQPiDLg0GQ6H0IommNVDvEcDDtekzuo9dqDTpNZzPop7YKCd3qSNWMouN2xR93yLORQ7rr+iJjwDogaY1QUla6B1rnJmdaU/brfK9yHFKpQJIWwWAByHBeuNBSxuaoaBEGL1lSs48jdwrRIvPtvpZxzDgAin6sQ5DgID4mqGTA65vZrOKB3MjGVh7hdYF/64ywXA2WmNQ3f7PonsBEnM7meBAXFd4Ou+br+gxSwDfEI2wFDQZpJYZAyIlLEuir9r/EDTWT2EAalpY7fvKwQPA+EPGBCWDdqzHVexwdKE2NLGQ8d3+mJSUSAufUQ+Uazeg1kNQJ8r7KhFSoDNNxzdTi60MCCta1DnBEG9XSoGsEHA4j4YEMpmq+Oox8OqrGkuTcHUVYjVJuaAQQxIUrOxUNdZbReDYrU2dg0YDcQEYMZrVvHrifeWEhNn4qxWdYSAaMBqH1cmgtc1e24NnNXSd4LAV2k0LzXleUy3kD0MRYGkIIjgLssJkQl/JqHeQ11nxszqicRqbxHgWniOq1G8jzcAq5O8JVbnSDf85202bN3LndV/5u8/j7/wF/Y6BZytHBz48VZY/oZv2P5hO88FGHcri0pT1qUrbrKDAzw+O8Xr94K+sxpg9xWA0WA2nfetONcLCli8dFab16VY/RaoOuE7T/ssykTb4JBICWxfFhptqQCbzEqrqpBThC/BjlPgD/KC70LrTG6E61GFARFBQrrv9X1wFbqLPdvmAYuK4CsYYkCGNi14UJcfWOz6RhFg2zhw1ji9z7EDbSHX91kAY+7u5aRDngEnJwCApZ82AYvi/Joa2wQwCO90rQpFMiGzeowlCpa0THZWK+7ZogDNjcFxHbUMik4ValvHVV2IKsnYhIKwwTI0uUkEp3bf4wrnzIjo43j619W1K5QKZrUJX1rqfBTOakraOz9fcRzZuVK1CS+wpZP8IqdzGQGBVegfN9lUiNyMhAHx7XFndRLXWwwIAFy9igM/wVfd+By848XuNwtBUfHuIl9b3hGiDGThm61azGoMu72oYtI8LLHOA/U7sVUPXk9YuGIYNl06yRlbcAhnNcByLR8+HP/ZaWYxJJCus3rgPkhSi3R/BaGCsS5KFwOyj2uf+NwqhXUe+GRgqpUigcxZomoXOHVDsOns6orVhYfIH7+X5Sc7sigVGBDtd2I1uMmWJjWpGyCaWYgLf2fRX2SVEb5JGYB2Uc7qZtyidBjwwD6Z+9XQTanMsiA6dcfmRlnG3JNan5voMhlYK+ZxoT2XbeYvkpMtS7DNZkoInmJj3CgkWpgOBgIWycxqFQO5sOiiqmojwGCMBbizWoUBqVwEEeG43NAiXdvnOcvMIjqrlWI1MSdlDANCMl7sgZZgP3zPGzcM8Ve/7m8jsPNRnRYAVrGLhZcAV68idAqk8VaszisH/tzD+669gv/q634er7++3ymcrR0svXQrLL/jHcCv//VsvvzCC7vfvCeKtIpTtlYUx1wusfRTrDY24sLHLOx81p43jKAUlefsuPuMXWN6CTdzXGJA3ry6FKvfApVvcjZh2NNZ7duFup1BlAiT2ZfV6rpY+glWJ0NcYcKLne+UqsRqkqNUTBhV10CwRHWZsnuIqtpIgbHgKzAMCEX8bAZflbDMmU7NfWVZwMEBDv0Yn//kBsfBZvdFatuwPQdVbY224NQ10PR4A1i4CVbnbFOiN1l1R9JyuXOCem8NOavzytETfYYWI7yo4Z3KoBewxRMJA8KPK722ZcndeQRRdSQYNVmXTPTRdD2yyc0ABiSu9RLExT0wIPoAgOVMyKw2bFH3PO5Q7LSoZ6VmAF67VJuNJu1tYIsnJQaE4PYTxZjV/cXTZl0zTMdFYEDqGnFisYDFKGJfe8c74NoV/s1H/jQD73eO6VoD44voXNCd4Aq318i4pY0BUTlf+blS2K/zoMC6CNTvxFY9fCNl75TZDAhDhE6B+IRtxOf57mvIVmjq7cpywKcGLKbyP04ymwl/mveXFzpyZ5oowf7c16HmjgTDGvBvVc8W6poszgADbkITDIhnMUFR4aakaqrSzbuyRFx6u23HOjXiziI5oN3xHIdkU+m9E3mFc6cXsBjHYO9tKrNaOB+708OqYrk7FFbDGAaEKig66vGQ7NIU/37ZPWBwrqwjRJ1FlKU1Gwt1xi3bRuAyPJGqM6Z53+o4qwNneqQCxMb4QNgqpUOQz+Ok+D2DzQXHVYufDQaEItirMCAXFbAo8FUUZzXvYpLypXn43V6d3Z1jqjjQjUloYgwI2Vk91tmri8QJQ/zOF34egZ0p5y/tWqUe5m4GXLnCnNUip4OL1e6zT+JquMb/8YWP4v79/U7hbOPsMqsB4Du+g3VQHx7ufnODIh0e79KzlL2/Ws5qAEBZYl34mEWd6zeEl2mXDjKw0UsUn/EUzuoxh/llDdalWP0WqHSVs13zfd4YTVrquLMa6LCDR4575G9wcn9iDIjrwrFqtUhHaZkSwt9A0ndRO9DVp+A4wzt6xDbawfZsEMVP24bnKCYgomQ7j8fHOPASfOxnMjy/vLd1GIoKAjYpGtnaTVMgKLYpw0svwfmDAus1WKBjBwPiOwWyeOjeIrj2xYJfFYBGZVYP8dAhnPD6YrVrqzsMyqKmLZ5GnD5kt65oxVJciHhdIdJtp2+caepvoWBABp3wYpFG2gRQjFuGLepSAVi0qAdEIcXz4MscKUJQJYrVUpGuro0S7wEWgJZWfQZwvKnZfaUjUAKNWJ0NceOqCnHuIvJaDjXuFrEs9O/1xlk9wqymbrKpxq0sQ1nb+wXHtA87FLDYdANoitVRxTAgezirNw/TLQ88ihC5GTYnW2d1+x586ing1VeHj5dm9v7zIlEjmxZMrNbHgFge7zRRrUiEQ003YFF1WQ14qsxFJ3coToIB6aJ7iprsphwKFDNl+NfdTfeyZG3HoSkGRIFqiCuS+3UMA5IkIInV0dzuOauZWK1/rKZsmwk0ZcckYeL83MtZrX/YxiQyJVd4QEwzcgCPYUBEl4nmwQO/HmTtN+9bXWa14j1D7hCEouMMaCGRtA/JO1sVgZgGnYdeYKsFezE3IqBQmu4o1YagkbN6AANCDFhU8vaLAklJY1a7ViU9JjkIEcPoGvZ50RCM0o279oH59+1VXNkPrHxcrK5rlBU3+h0f73aTrdm63Hr2GQDAtex13Lu733v0PHYZs7o95xLugm7tKdIm5znbIBU7F9wUcujHeGNziFl3zTOy9myKJFYPM6t1lx07x750VhvVpVj9Fqh0XbDW9z0DFvcSq3VbUER7n2oBTd2FFjvbKmd1SWjBEW7tAVh+WVskZ7Vt1ajyIWc1QaxWTUB45VlN4hU3bXM6IXjHxzj0Y3zsF208v7zPerLb5ftskTfyttycFZgXp+w3N29i4aU4Py1x78TFlWDdE6sDe0CsprY8C/erame7KFhrj46zekxEAB0DMuisLi0ys1q5u0/pBGidr21VyvDKzYoH1Wm6Hlk4rPpbtDEge7BfAdAcVJYiRd4UreFLuIRNizrdWe3ZZb+dXCyg9+2wkZ1r1Wn9b4QkTXxTq4KZw9yfnU2xzUbf6QWgWTilQ9k0ec6clWHrM23/nK6zemx8MWBWqxZkALYbzb6mWD30niFuWnged+nu4axOVzlzLUcREIZYuCnWJ+y+yTpDxfPPj3Ors9wiOauHgsoasZpwfwEYdVbvvTHaBLWpndVUl6Yf2sMBi0TUkMr1Z+J4U4aCGmJAmhu9N8b65s5qxfsrWZf6GyFi3B7YwE0SsA1cXWf1wkVSejtjLFX4bsqy4MpMEibBjXsELFIcb45roVShGnLQWv/F2C0bBsQG0wW485qARV18USDPhhAVr/WxW0POahMEhnI9Y8gCV5o5RJ4H4fNSOqBhgJVAy9ikCrGlOqsDxbUtS1S1DccnmA5Uc06gwWKFgeb4PYBUaPKtTDZCpnRWT8ysFmJuaKVIxjIWswwWeLbLfL67QS/+8sEBcHCAq94Z7t/Zb4P2LPYYs3ofg4AwoY04q5NzPi8Ux+QO7cdnp3jp9AaiWefvj821eBVJwe6HfQYG24bnMJSttMvk0ln9ptelWP0WqHRT7s9m9Dw4dj2OFM5zvSCVMZcqdfE0FHCBVju5prN6zE1ZUNKjx9p6iG1+g+3ZaO3ETy1WZxlzg7Unoleu4KnFQ/zoJ59hzuorVzoHlSzyJLW+vcLMSVlC8LPPMldjXOLzdyI8t7wvdVY3bUrdom6EeN6w6JNlqGoLTqAxy22C9RR/XtdkxrhrK8RP8IkY0emjRAo0zhG9QwIAHEfu1OW1Wdf67Nd9Fuappbcwb0QfxZ9T0+mHRHCBGbKJzGpfIiaVJWub1J3ct85XOnEuCuS1Jre9fdjAQd4NgxQtnh7RoQjAjxzm9OncDPEGNGb1PhiQPGdiVdfJ8Sf+BPDhDwPf+q29Yw6iGgyc1YPvmYzz4DVtHo6rDn2iuv6azqw9xOrkLNuGV4YhFl7aYMXyrIafnDVuzGefBb7wheHjpbmtz6wW94Fsr7Wuyc7qfcTqurZg+7qbbMNOH4pA4weWHAMisjyozGqPB8N2xWoDfv24m5I+HlpWvXvfliXbEDToXmGLUvlnlia1vvvV5Rk0+zirNa9vtOAYkLazOrGYk5bMVwFcp+477CnhkqL2CFgkYUBcsPt1yhC8xlkt+TMDdI/YbFViQHKLBSwSnNXJAGs/jqF9P9iuzTYBFM5qEwyIepONGD495IQX72/Co6AMg6zZs0F1Vg9dA5OARc9XvBNkGUN7H1TRzcePm1Ac20MYEKqoDIVBpHVc16JtXO3FrN73uFzMDaxsNHulmeCEITCb8bkv/zMx3vs+R4QU2/DFoSoKnKUhlv6emKjm3z8iVot5oRCruZnh6x77NP7dnecxuz7vHXewi00cV+Cx9nznDG0woSzZ/M0lrJN4t1FeKoTwy9qrLsXqt0AxDEi+326W47CXYF0PPxi6zmrPg2tXcv4U0OKG7Xe4plwXjj3sKKVjQIaZ1Y49MVaCOHEeSo4GiO5yjAy+wHawby/2j4/xX3zpT+E73/FR/Lobn+s7q8e43bzW9xPGy5rNtoJ3UeKzt2d9sZoLn8oXppGzehgDAkB78Tjo1OXIEtfW5McNYSXQYihSW9FkE0bhpqS400R7siL4Kd4Q2MKiK2RgctOESelgQOxhJBAAMgtcusipa3o6PQAv4ONBFwNSdFy/WgflrvWuWC2EdaqzWmBAOu30SekipPK1AfgzlwXWdVTFZvGs24/HWcVDoo+4xj2O4o0bwLd/O3p/0Liy1JtsJEFROLYHxq3eJuMeZfsDoahEZvUYu75dyTnHmQlntZdifcr+XvaZL8D7638F+MEfBF57DYsFsNkMHy8rbOYmpDCrMzlTNi74JovueDC2iSucpfuO33sFLNIwICxgUS5WFwQWuigVBqQRqwkiQuP4kzqrJ2BWd8bYjSzQad8aYVancaXXFQQ0nQBj3UYUznq4cPsYkIQHjBqI1Q1+rnNtAdDEtH0wIATH21AIHhlXweeceReDAhh3sg0iZlIesKh7D4TDzurNBtrzOGl4KbZfomJAGrSG0llNC+90Ve5XEwyIyigkNix01568GK5Ccs+K3xM72ZTOah2UQreEs1Y25zJgVqvWM0aboqrrWtfGzmrl1IhvYO891loWEASMP30+krAo3NNBsBWrxVS6LVYfHbFf72E2QJriLA8ZUnqf+0yMWSP5acmqYKKyuBksC7h2Db/3S/4troRrzB476B0XwOick4nV+4+JY2I1APpmkCt5J16WVl2K1W+B0nJWW9Z+D7PujumeGBDSwtxSs3pNAhaV469wEOmKdGMiAmc+Op7eY6VsdeXFdnb1J3hjzuoqzRlLsoMBcewa//1X/WO8eHinL1ZzR1IvqK1Tm5OMTXKjCLh6FQBglQVeurVgYnX7Z3KRciyobHKHorguOmLHmFO3KNiChMDXdqxKHvQCoCgNFk8Daedkp48QlhXols0GJGZ1MOAeAoA41WzTF8/sQJeFBZAXpVInvFiQkJnVEg50WZoxq10XniVxrRcFW+wTndVSsbookBQeIn9cwFRVMHfZIrqHAQENA+I4DAMyRC+SYUCGSvDrB9o8SW3EQ90Q/DzF92nVRbBfhUN1H7FaLEo4s3rhpVidsXPJ7q+YM/DhQ+Cv/BWETt7O55VWLriyU4nVeU7vXtjDWS1+/r7HG+0O0wnIbpUX2HI+aaEZut2pZh6jwoBQAsUCe0BYJ4aqAYDn9ZnVprkAI9zLxlmt+U70nT0wIARntTvz2efVxoCkFlvgUwMWAbgirKx90iYOzdGARdo967g8vFOJaiDMt2wW3F7IXHQm862ReyvLeNisrrM6AMuGGHJW62SE8HMFMIzAoKAaZB1ngFnuxpizurJJc6PGAS1zVtcGc0PFGFuV9FwAYJhZzb6BJlZ7qq4Qo4BFOWPcZFNU2cEjjCcUpJ1AAin0ySov9TawASAIEDoFkrNhsTo7T9l8KgyBKIJt1ajFeNQ2qXGx2qmL8SlcmuI8C7Gc7/l+HONA80pWBeuWbZsxr15F5Ob4Nx/503j2yxa947oDCMrmuHGttVZUdkMARiHRAOB9yfPIf9NvMXqvfrHXpVj9FqjGkbHvC0NwhQd2cRqxcd+Hh+9oDguKBPbpkEMRQF7arAVH5wUkzrVSt9AWVLF6SETgrVi2o/dSczxbHXyFCTAgivugYaF3xOqdkjirA6dAthnBgJxkmHspE6u5s/rdN27jRz7+DJ5b3ttNDt53I4QaVDYm+mjjOgZEhKKgLaKHghABFNRJ/tC1NUg7b1r8FJ0WjbNas0U/dHOkA2L1amNj4aX7L8oa0Uc9FtQAmVk9tMihi9W2tI06LjxEEemQagyIEFQNMCC9cxXIEgNndbRwEHd4qoBw/tEDFqUipSi+gNr7Go88s4JRSkJj2QP4IjFxnlispo6xymN2ijGr2xiQBKsz9m/JNzkTWwDg/n1ED18bFqvrGqhrtn7UFqtzufiX56wjQHcBDciduu3SdVE1HSHq7jAyBiSUBLjyY5aVDdsjOqt9+TwmLyx4unM4Xo3o0z3XhotPOtXtPdO+EQQGhNq90jir0XfVQn/xDKDVbaT+FiYwE9AdkmsQp7a5s9rjXN2pxGr+d2pZe1RZoqxtkgYwhN8zwlW4tRSHI+YapFZyx2Eu1dyW3lsNEonKrFYFLMbQvx8G3gmkTlleF8KsviAzh+M7qGQGpKabkTY3UmFATHjNAHsnZJJAa2Nntcq1zg0NNLFaPu9uQlEJg4HjO2zjShHkS/q8RjIMipywiRuGbB67Gnborh5kWHhJ46wGsJ03Zhmbi3heI1ZfiWI8fDjys9OUrRdn+2+4s/ehfMwSxbIcit3OxWvXAABvP7wL6/q13b8wYpRqjjsxBgQAXax+5gnk73yP0Xv1i70uxeq3QDUp4vu+MMT3DdgxirTUC+QQ/N8BDAhpwiBYvTJndV1vg+V0djUFUmEgYLGoHP1xZ49ALfF9OmW5AyIC9RpggG/Gq9nR7DCrd0q0CYlyXeZ62wwv6DanBRMrWxiQD177DH7pzg08u3iwK1YPtHYBMA4qm9ShKO6BgXuLTW70xepBZzW1fVII9hflrFZgQCjto8JZnWSOcnKzTh3M3VQbAzKU8gyAhgFRbVoY8lSlAk1R6Ll+uzXErDYJWFRgQOLS0096bx935vUFDwCbxNa/r4Cto3bMWV34+19jzxtGNVA7QkSnycBxSd0AQ+5fMW4RApKVx+xUs3iIIuasdlOszpjonMUFW7j9ht8AAAjvvTYcIiTuC8/Tey/yBbR006LZrKBhkQYT6nUxCGMtxMR8DIDz4If4pNQFmSpgUbRRU5zVoaTLBOBjrAEGxPfh2BXKuCNW62xWdcuyeEiTI0XwkZ3VdoFsYJONGrCoFKtNmdWuxCShu1nTriEkDr/OFmHXomGsK0RVegieGgFB5grbDNeWl3Lhpwmb1XVWh9ZwwKJgmOvcswPvBGqXKDA2FhBNF2JjWMEYLyqHFjir2hhuNtkMnNUysdpgcwVovRM6F6JKc3owqhi7ZM7qPEdaEZjVngfXkgvAJs5qy3XYsynZXCB/XmNidVax89W5tmG4FwZk9TBnGE7urAawI1YD2BGrr4Ur3L8/8rOFyL2vOcC2mQteFVrIK17zeWH7uLwbm51cR6wWeJkxsTqu+/rGQA12ohsGmHreJQHEtC7F6rdApSm0hWXLqgefjiTmE2fdxdOQs5oyYXBdJiyr2K9iF1pnQWozN3ZZSbhxQCtIiMisHhOrCcIXAKVYzcRP/UAOpSuJV7op+87qw0Pg5s3+uYniYnWyHmFWnxbsZdlyVn/1/OO4EqxwEKQsibh1zNHgShNntUr0obgGBLZmADHDFtGEe8suURZDzGqCa4Cf79BknNo+6dsDzGpK+6htI/Aq1paquMCr2NVzVgtsy8DmgvjZWiVa0WQYEBOnD7hDsdvqWZYMrWHIrJZhQIraJnNqncDtL56Ea8anByxKnY8A4oTg9AKa+3XcWe3qOavHAhapocMj4yGpG+AiMCCOYpEnqWRdssVDO2BxBeD8HFluw1/4wLvfDQCI7n5h2Fnd5i7qlNi0kHVvCAyI7gIaaHAoVTbCrNbCgJSDrH2qQNO4yCTOau225FapGMAmIoLj2ahk95do0adiQIKAsaDb5gtTZjWG3VkNV1iXWT3SEcJCQfWFyqbtuocBMROrPZ87ljuudbLoNbT2MBARWEejOgiQLKp6Cse2qeCh4p5WFef364vrzFmtVlIaxIzmBosKDdXMY4kYEGm2zwR4FdVGiGXVsByaEx6AfNyqGSqGUm7gSJGRJpsAABBEttRh33SDUF40wtCicFZrBQ6LEgKw5JgmAYvKz0vMi4jO6qEu3Dyr9Z3gYcgwIKthc0DTxSYRq/OkZNephQG56p3i3r2Rny3LuBqpMRQp0LrH2sdt/7prv+ddvXuJ1TrO6iFzn6mz+lKsNq5LsfotUFmiiQFxXbaAHBgg0rjSm5SKttQhVAMRA+LapdxRKlqTdV8UljUcWigcbyRn9a+xWF2WTPwkBHKMvSjSTdl/SVgW8H3fB7zjHcBHPiI918jJkcQjzuqzYsus5onE7z56Ff+Xd/0rYLncvUaC7TXmrKaIPkOBmFSxep/2bN2d+GbTRv7HRQE4ZGf1xTCrfadQfmaNA1ZTTAr8enDxtE4cJlbr7O47TNiQ7u6bBizKbi0RpHQRzuoZLUCncTl0WZp8zGlCkTTL8vmz02VWlx6d/QqoxerUoQUscvbr4IQxz1HWNuxAM7xTtmEB0J8vMR4OsLAB0N8zisk4la+tPGankg2fx+yI1TVw/z7yyoF/7QB429sA20Z471UkQwn14r7YJ3S6XY7DnEm5pHsjz9kmC5FZPbR5R8kIYffWcAcPVaDZOSdRuqHb3cP6NnOqdh4yk+ArJV6FmpEiKgj6rcRlqddZIalGrJbM5Vg4sL7wFzoF0lz9rJtgQCwAddpyVmcO22Q2YVYLZ3Fr7C6Sgs1fqM5q1aaggVvZdSFv/YchW9mFUlS2LM3g7Vb5PuT89qJgLlW/1ja02IGnDt0F22DRdu0PvBNMMCCNUCsbCwxMFyqnrhGnVnUNxLkSndVKDEgBIwxIENnMJNK5EPG60nfWixJzLpkJuCjYfUcwHajWM829Rfy8LKuedlNUdDMq5pykLAfhrB7BgGTrnBkc+dobAFCxf8N6VTNEZ0usvmY/HHVWV0nGuOhTi9WyDbF3vIP9v+2wFiWuq0ovEMeNa61N3MFzLUt2v16K1W9aXQJU3gKlnfTsSQSETiVxrZdMLtpvhgRFIp/TUbmVDbiEjtsKouj+G/m5OlMHLFInoyMBMtQ2pO3ERt4ylKxLBE7Vv68ODoDv/V75QTlXOF4PvyjiVckckDPuoL5yBe7mVfyJr/onwNEzvWMyd4PiXqTyVD0Prp2pHwMqs3rEqcu6ASg8dMWmDVptqSRmda58vkyY1Z4dqzEgicU+f12GomhLzXPILK6r1MP8SAMDgpbjr5CE1Aqkgu4kpJk0S/6s4cnSZiduKHErcyGFJKTx2nFmCZHPsPVf2sUjmNW+wexMfE4dbscmtfEYBQPCxcTBCSNFULRK5QaTyTvRVT2z/LjUexbA8HuGEJC8d8BiXG2d1WnKxOr7NnD/PrIqgnf9iC2uDg8R3UkRn+UAFP9GqrPashD42La+t+8jHrAZzggLfsFET2rIMJxlVrCFnpY5YAADQs0I4ccGoBarp3ZWG2BAms9HIfqYYECazIWai3ymG4JojbGSDy5JLZKzmm2uDIjVmU0KWITvY+49wGZdY86/1DCrSZMCfsq+haLcFWvZcXPA1XxeAf4sqOcwAMihakPOajJbWQRMTu2sVm2EFAWy0oXvTR8Mm2S2nlGqfcyhTQDCWNBsqKtQDURmtRK3ZPJ5jWJAaBv5ju9ITVimGBAn9FgHS1espjDLRfF1nZRGSmXYc7e2DOuX53TXftMhpuKha+6Ji2M2zGZJNZxxzYDFwC6QrofnW9k6Z/dDEABzPrpX7J5ZbWws3BTwDhqx+ggPcfKwBjCQF3RSYOklWnMu34ccOdaqBmPVHmNu3gT+2B/rY0iBcWOAOK7YxNVlVitMgwAuxeo3sS6d1W+B0har+S5hE6KoOKbWjvmYq5jK5xxqpxduL8KLfdBZXVUoKc5qgQEZaPsGML2zurLhuYRrIMMJtCrdlPoMxT2d1cmG78gLwbHNwu6+gPYIFGOhhfuf5va4EwcsjjmrG8cXwVk90DJWlsS21BHeI5lXzNmvUh4dgJjIFh4M/KlrrFJPDwPCTlX5HFQFfYPJtUs5/YDji6hCitRZLXiqBkKK71V9IUU408gnKxGTeBikibAuxPS26w9oiR4UsVqGQWmX7njgecMBi1Se6lBrMj/uhWFAqM7qfQIWk3obpCMCFjdCrHbgX+c5BlGEyM0QrwbeeWITQ9dZDcD3amWYVFa68EKaM8sfYPinuuYAMdcYeM+Qw9ou1FndH2dNMCBDDkUT1BJsG75bIitb52sasIgRZzUFA2LbCJwSaSHnYAP6i/KmfB8HXoKz1fZzWWcee2+bOKu9vrO6cc8RRS/l2sPArex4tlxUhllYW/Pvl9yz7AcbMuFl41blUoZC9WYQryS19J3VAx08jaiq6QAHoB4LeJCx9ruLH1P5Dqd2MAGDWAmSmYWX7TlSJ3ye07E1AJQGt3hT053Vnsd5+5I/E+eve1zbhueU/Q5BAHlp0zdFLwgDMpQ7QXVWh26OZDN8PiywutxiQCwLdVUDVYX1Gtvu1DAEfB9hnYwK4GcnFROrNT6z/Z3VEh3iySe3Qnu7xFx+TKzWRBg1eLRLZvUjWZdi9VugmmAWjYWOY1Uo0+EBQnfxNMYVLmtbf/EkgspUzs/KJrmKWYufgqVJDecZEv74ccX36R4XwMC52iQMSNOir5qIUnhk7n4BizthWsBuO087XJEfc5RZTWynHxJ9mnR5nc9rLGCxwYDonWrDwh50VtOZ1arJOLl9cg8MCGWSG4ZAUnrycNiiwLrwMQ/1FjtDG1cmwZWOVcsfLY7u8ShOJ7TaXbscaJPwLwCeUyOT8KUB0MUJWZt+46w2w4BEbrbbwVHX2KQuE1MI7aOeXSKTsYpF6YrVYiwYcL8C0F+Y75uNQHVWqzAgxMwJ8ffHKkm5AzQImFjtpljFNnB+zjAgVxbsG2czxmUcWpBRndUY2BDjXGkSEkc4YBP5M58lFWvL3fe+tdh4P4QvqmuLtnhSCVSGY4HrD7WoE4UUFdKOuoHdKt+tmetL3Et8jA0i+rJonFmt/04M/Fraoi8qyWwmKOp+bp6HpZfgbM2ROHWNW6slHp+dGjGrGVt4l1ndBPURW/SVcxjxHBBFZSkGxCDUXBxXFoJHfh/w8r0aWSl3VqelSxkKR53VaaYQkojHLCqbvAkwtMlGRiI17lfJnwlMFNWpy8+te0yTgEXVNTDBqwDYfr5d7NqmppkD+DGVBoGiYB5ewjjjOpB2ROQm7nLRIaZwwlMxIK4ld4EDzFmtHbDoshB61TxDVLYpthgQywJmM9bBfrrGamMzDIgIp44ilkN1Pqymnp1UOPD1nNV7idW6GCtuDNjJm5BUnFhaAYvNvE8xPyZ1M/K6FKvN61KsfguU9iSXA+jzeARqrzPB9Ty4imADAM2kUTuMQoh0Q0FlFLFahHEo+Zy2/rgjJs0qDAh1MroPBoSydlDxHnmlccU2QXRmuRwDkoy8LJuWb6GuPfvs9g+7ipt4qQ/cW2Vt6zuAR5zwZV7pT5yF+DuIASFMbvgGkzJotORMOorwpUo7N2RWe0PO6ozIrB5Kp89zrPIQi0gvuO9C2n0FtqVEn31rgC8CWqn3HQ50RQmkaR/Xk7Soi+A3U2e1TKyW8RD2Ld/H3M2wXrWurXA++oTPS0xwVc8toN+aKsYX1WvWQFRWPrMAqpxPnC/AWU3JnAAw2MUlKsms7ftmNmMYkI0DxDFzNC+4NXA2Q+RkiAfE6jLOGAN3SrGa0mkjaqTTRNtwYFmsI0QW1AaYOX1U8wLTVtdAPucywoAMsV+pCCtennDYCzWFL0i1OyF2jjkgVmcWKQixCcEbQDVoC4oA4Dg4CFKcpQH77MsSr68P8eTijCyoAhwDUkvEaipeRCBxZPNuA/erMrBPCIpEsdrzFfMNMU+gPl8q4SfPWWdKYOBWVm2EiA3GKZjVdY28tMnXdZQDTWVW26U8G8DEWa3axBUZRNRgWMVx87ymmVlEKTYwGwwIUawO7KJLctv9OYR5p3SMbTaY6GK1NChabOJTPq9mI0R+rzdueJ3PzPcb3NhQZZuCOatFu8V8zv7eww3WMceAiLlTGDKxeiS08ey0xoEfX4hYrXWPibXnXhgQPUMmAOm5lnkF26Bz4VKsNq9LsfotUGlmkVzQQ2mpzTG10ukvxu2lFOnEi50gVjfM6iG3MolZPdD2TZ2MjjneqG1InjcYtNmI1ReCAeFtz0KY/uqvBp56iv26LVwD423vfMJA2lwY+LyyjBD8NOZ4a8I7afdWWSrE6oqHbBI2QobSzk2Y1f7A5lXjgNV1kYmgF5kdI8uwLnwsZnrPQoMBmTJIybLgOrX8PhDccqKQ0jCrOwIw1YkiynP7k/xG+KQeV7bYLQokpWscsDhzM6w3rfs9z7EpfNpxBecuUz8/dZaza6HzThwJWARA5Myrx8OypG+wNAeQHJSKARmcF7SqYet6HrBcInJzxKkNJAkb3+d8dyOK2IbowDsmXfE2V5JYzZ2qEtGnri2yoDa0iEwTTQwI+CbbwBzGsurJHYoAjJzVcsfbBMFXUzOr0XKqCjWFGvrVqmZxLvnMksxmphNdsdqv1WgsAElu0zAgAA6iDGd5xN63aYrXN0d44kqifZx2NQ77qZzVnqcOnDV4DpSb2GJeROQKKzEgJuInBjZCOLM6CCcUgHklua2/RhDdEKqwOkfPbDB6riamC5s5vfPSkpoOAJhhJRQdIVQMiOq4Rc7NLNSxy/fZZ9aZd29i/txSjut523d859qWKd0koRKr88qBZ7oRomSMEz4vm2FJ8rL/7weIGBDPY8LymFgdl+zYwjGyWDRiNXNWt9ZmQqweCrQGcH5W40CTWa0KBG1XIyprzLv3woDo4rGGWPsmIdG4FKunqMuAxbdApZmFA82ARd8pBsXqBmq/78MnFtADzGo6+1XtrKYm8TYtfgr+UElxVvO2b6UDWPBfJw5YLCqblEujXOjx2mJAFlrHDJ0ccTw8IUgSIFy0nNWWBfzgDwIvvwy8/e29Y7p2PMisrmoLtkdwKFpq0Yc0WbCsXRGh+1lT28aaTRvJnzUCOI2b5lrqABnSdQW24p/CSbjJHNY+qOusjmz1wrwosMoDzCNNsVrVlgsDDAjYbVPk/D5o30MNt1z7kAAAbxGw+6ttSRFCigFLlIkzu9eWcYSJIgKw/XzbixzeTm/urE6xXre+xgPwZhFh4SDcGIqwG4AFzupObscCFgGQXOBDuKlcLExtfW43gOFNUV2xWswLkgJjZ5MKUc33gSiCbdWoywpYr5mjdcbfFVGEyMkRx+pjZZtCvyuIlx/YvecAwPb3RK7u0HhI4RUPjVvkuQY/VwC/dszqwqBFfcRZbSJWz8MS6yLYjrOGYj0w7qxe6obVQaCx1CFVSeaQedAHUY7zPGDjd1HgQTqTZlrpVOOwbz1fDaqE+Gx5qnm3gQCsZFaL8FKiWN04yycOWPQDi3UCSDbZjDEgSsQM4d7iSIU6L3bj2gR+kYA03DlXyXWtaovG77cseG69ddi3/52GAYuW4lzzyoE/NQYkJ6xlZMeVBiwSMSCWhdAvt2NX6xhpXJHHLNcFisTePddm3UU0SKiCosUmvkdQGsW9VUvuLYiARU1ndbMpPvxteVLAt6uts3o2Yy73+yusc577I35uEDBzwHpYrD47g3bA4t4YkLk+OSBLh+eqaQrMdXQzcT0kYyFJK2iV5zFN5LLodemsfgtUmukHLI4xfdIUzJm078uCh0nlU/Oahxbm3FFLwoAokunFueaUtrERrMRFBSySd3bHeHSiNVnXWT3iegNaoQlt5IfrAu94R//6jDmrjUQf9edFfQGx9mx1eCedhz6waUOd5A91A5g4fYT4J2MAlyXi3MPMy7WP3WBAZM7qPMe6CDCb6Z1qs7kwJQYEgOsBpcKZZRL+ZUcBS2Zvq3WGQhIgF1Li1EBEAORidVkiLnyzgEXfx9xLsY5bn0ue4zwPtZ31ALgbQ92SCTA+Iyl0eAAJBIA2bg28Z4q8pnE/BbKjUL8TSQHJdqneaBRV10hyZ7sZ4DjAfM42YO7fZ/8XuxuzGRen1IdLVzljMhJSxVQYkDLO4Ng0tEiziJS1PAPI0hq+rrNaYECmDvwZYFZT+b+AWly/KAyIUcAigEVUYSWEWmCaMXbAWZ0KDA7JWa3AgFQVksJF4NLeYctZibOMO6v5+6bZNCLWoLOauhGkYt8aPAfKLAsRkGyg+0mDEKcI6VJiQIjOas9jJgkZYqWutxuMms5qX/ZOMHGpAmoxyaTLBK3PSxWIacBArjLVJtu0zuo843MCg3mc2GBoF3tuCRkhvKKgRlz4vfl8Y5SaylnddCAbXtcpmdUY6LIA0a3LMSBjwmcWV/CdFgZEOKvvr7DKw93cnzDkGSHD/8azc4sxqzXGgia0cMBWvNNxt08NbV62ir1v9VjYAC6d1Y9oXTqr3wKVZhaCSM9ZPcb0yTJNp49wkQ24igGQhFrHqpWs3rxyEBFeFI6n4NHxcyW9gBwHnp2jUIV0XYRYzYXKiLJj7CrCiXg1rkpdZrUTj74s0xS7AYtDJRzrYw5F4kaI6rh5DiZ4OHoW0MH2bLG5oDuyCme1wgFNDRodvAaGgofvKCYMAtcQ6p8vc1YrFuZZhqq24AR6F1fJpkTLpUppI3awdU20y4ShCGyfmY6zGoCZ68+3kK93RYQkAW/P1hf9APDJcNY716QMEEZ07mnDrE54C6VlAXmOu/ES1w8UiuBQCTTWgLM6Xld6oaAN71Lx5waBu0PMahZYR+WsVyizsj/xM8CADHZcicpzFl4XWttF0sEB+/+dO+z/4RYDYlmQY5Z4pZuSYTUoGJDQkmJAms+fIlYPhUnBwFk9hgEhupVtfh+078yqqGCbiD6hK12YNwu9ifnapNDlVi1n5Y5Y3ThBL8hZnWQ2whkBAyI2cGUDQp4jKV22MUhofz+YlThbhUCW4fxugqWH/eZsA+UFNtJuwKLotJrYWV0VFfkzU7aoNwYRorM6kM836tJQrFa5FEXAIpFZHfAw215/ZVWxe8vTfHbFuzatsTOSNggMovt1gAMNgMxZ99waRSp32AMgi9Xint2ZWYm5oamzunOujemC3M7nMTFzU6K9GopTm+6sBhCFNe6e+r2xizmr9Tfu+Kn2n4OpNkIUXRbUsHTPrZWbl6SARY4BUW2Ki2oQl+Jzm89ZAPS9c6xzH4tl63yCAKFzNhxoDSZWH2o6qy3PlQeNtirONLn4rgvf3iBLh5/LLLcQeHomTwDDGws27fn67b99cDp7WXvUpbP6LVCpYN1pOauLQWd1lkHP6dNwNEeY1dSgMpmj1GC31PFsedI3sOVb6b5/R5jVzWKPKlYrnDNkl8dYi1+iv4BuMCDJwMSw7aLbx/nWOKvViBkApHBBb0BMIjGrsYezurL1JzeOA2cgaJTaYQDHYS6XixCr7QKZ7LhZxnANmg5oALBDn7mKZaqP+CA1H9whd4NJirrjqpmXRq4/Idq1nNVVRk9PF+UHkDreqA4XAEAQ9FmHPGCRslnRlGVhHhRYt52PfBNkPiccz7bZ/Vo6ylljvK5Y0IvWBu5AwCJ1sduMW4qOECpWQYjrMmG5LFGDEC7Hu1fGktmFWL2zgbFcAuB7EcBWJOMDRz0wu8/WORkDohL/NuclibMPgIk+qjApXAAGhAdaU93Kss67JOFhWgYBcD1xXTjTHKJY7XmwrRpld24ggq8C+hJmMa9wnofNRlueVmat9Bhue04p/F/wTgAZ/gFgG4OFR+5iOZiXDbP61qsFnpidGIvVbtBxVtf11j1HvF89xRyGtdLT7i0/ULjguUGEKiiq5humqAY/tJENBSyGtOcrdHKksWSsFRuMuvvY3Anf21wwmcfy40rNNyZsafD5fD3grJ7ynjWdGyoENWa6MAtYDOyidx/EiUV/JwKIggpJ6fWd1QnoGBAP/ffiBBgQW+GEZ58XfSNEJVaTjDIjHVyistxi+o449myGx6IzvPr5EqsiYM5qUYJZPdItHcfA3Eu1zW0WMIwByR3W0ajFrC6RjTmrc5u5y6cUq4nP13IJHB6S/upl8boUq98CleaaAYvC5TPkrM41F08CA6JqzaUunlwXjj3iKCW82G3PYTt6Ct4jWay21KKqieMNULRnU13gAOB50tYuUWwBrekkcxy1o1YUD1jb2+3DRZ+he0v8bK3iTsIh9itJrB5xVhe1rY/sEMgS2UfFN21I70nhcpF1A0wwGZcG1glnNWXN63LOusJFBkBfrPYVbErwgEUis9p1Id8QE+MW1fUnxOpW+0LTqWDUom4z5mWbJSqSuA3aR22rRpV2AxY9M2c1GFN2024hFedNcb5a1lacUEyc4xgEZ3WlRosYbuCqWNgNZ53o2Ja+v6i8XnfPgMUsQ1q6u/fEwQEiJ8df+cQ3snu7hQEBMOqs9qnOakX3RryujMRqtoBSnO/UzmoTN6GYH3b42pvEZv9+KrM6cPrBsEXB5y/EcxUOxS5SQOQ4+PQlzHJe7zirNxsY/fuBlltXgpZIC4eGARE5DrJxS2wCEfMBDhYVzjLmrH7tlRpPzE9hFjYABJGzG5Jc14gLDxEBCwag2XDPin6YsQlixvMtufhr0skGqNntOchzDWAkYJGKAXEHgmHznLYR4jhyfr+p+1UlJhl2namua2M+Mhm3ZII9MYcJgNxZXdd8TmCw0eZ5jFvc6Zhlzmq6WB2GQCwTq2MCgrI5Vck8TqyTDZzV0hBXk/U3+AauAkdKGrsEBmQgKBwA8rxmXcPi+i4W+PrHP42f/PgR1nmARdR1Vo+L1QxlpiH+AqOGOUBw8XUxtwWyoZDJumbOap01k+MoO9FNmdWXZV6XYvWjXnWNNHe0mdWiDUtVWWbpOaublufpMSCuVaEs5AtotqtJc5TunFe7TJjVtiIEDwb8W47B6LmH+LmSg4TE7n6iEKsz6L0k+DGVgX2ixAJq30nuCFuaLPrwDRbVuZLFasESHbi3tIVK4ayWGRRNFk9i0qwIbgRggAEp5MfNc8RUsVqIT7IDiwmv5oPreWr2K9tgIorVKi6+cP1RFyQSsZoF3dBdjwDgCbG2jQERSdwGwTzNokw8p2VJb0tuVROAxs83W2VGra6NOKHqNNlQnNXl9MxqsTGsGLfI96wQlmV86bJkDhiqC3wPsTqvHLhB6z5bLvHCwV18bnUV//Rb/9IOBgTAoFidxSXZWR1FPLCus4DerGv2+ZOZ1TlSxSKy2RjWEasFvkj2AqtrOqeVO6t7YnXqMLGW6lCc82DYTtiqyWJ/O4fpjLFFwTAgBmL1YoEdZ3Uzxk6cCwCgGRMDr9IWv1SMdQDGYbYHy7q5Br/8KRcvHt42dlbPFvYup5YH40Y+0fXIg8oG3cqE97cXOkpntYmo2mBAuudqkI+xc74SZ3VSeDRntegIkTmriwJp5erfW42RofP1plOWjgGRul9Ng2EV8/nGyEAZD1VidVnSMm1axwWwew/UNdLSQegV5HurcVZ3BMA4tfU28DsVRWBjQWfsMnFWN/P5TsAi1dgGoNXdK99gITOrVTx0ENEtohNiRKxm+k7r2PM5vv6xl/CTn7rJQupnrX9PGEo3KvrHrPUNAqp8DFHtLmwN46RyTStKrEEcjXmyOFfJIjzLDXI3LmuSuhSrH/WqKqSloxegwtNSBzEgucVaJHQxICpHLTXkgot0UgFYBMtRxod9xGoCs1oZBgmGFCA73lTuNCoDGdguShU7kElikZzVzpCwDOgvoMSC9KIcigNitU91Vg9iQAj3Ft8MUuFwSmr75EALrWmADGMAW31RKc+ZWBsRbloxYZCccBaX+jv7GBZ9jDAgglktCfwhbViIaocW8mtrFFDFy+u2Z6PlnKEe17Lguezf2/Qm8qA2yzOLxJjPKqzzrehx73aJ69E5WUxpnNWKWW5zjTXSw4c2w4zGLXvEWW2wKToYtkrNBRgLWOSfoRW03jUHB/j//Ib/N/7sV/8DFpopfnYjVqvHuzSu6AGLkc1ak7sYkJWBs9rzWEiRIqG+2RTSEatdKINhUZbMBUTkQMvMDOvEMXNWRx4TETr8+rjwEPkjmBhVCdxU13jBRXAjZ/WCO6v5+W5iy0isB1pjbHeMaXebaRbD1ihyHASzmihWLxd146z+F//+AB9+4lfMxeqlzTpixDXggbvkewBQitUmbmUlKtAg2B3ANmBSimqgi9V+aCOTbVoUBZtvhbSNq0FnNWUjRGCGumtFEVxpunHVPa64zgZitXQjxGRzwXXhWXJn9SQYkE73SlJ4CF368yVE0K671og1DyFWS961YqylYEB8SfdK46ymY0Ckc6MG60g7bLN5qcKA6OoF4nkdE6uFuNoSq69HK5xtXDxI51jMd8XqwB4PbUxTMM1IUy8AoBarOTIw9DXGcI4ZGjJjNt0mOtNDrm2UqRwD4huM3ZdlXpdX/lGvPEeqyw3bx1mdazqrPe/C+JyuPcDqpb4oBvhDRs7qAawEmZ83xBKlip/8uIGKRwce3KlzD4hzHbgGALbtg/tOcpu294ld+0NoDRgwq0eCr0gICBE0KnNp1jV98TS0C20iVlsWfA9s8dS9wEQH9M7fkfTTr08LLDQDPgDenj6EASFOQlzPQllb6oBF3bA6UVZLhOIzyDgG47oZCCl+YDFm85TOaoAFTbZFqrKkuz5bNY/qHWf1nVslboTn5DZ19u9XtNMDiDc1u8YaG7iuXaKoLAZe7lQTqEUQgD27hIwKBRgE1g1tihqE2O7rrK5ra/fZ5cxqALsCGceAuCjUY3dSkQMWG8G8M8bEm5otoCnOat9H5GRKsfo09nDoxwRntXzcqkuzgEXf7odBbjJDZ/XMZwvz9qq36bKiuynVDkUzDMhiaTFXsdgMO/VwNVhPI1ZL3K/a83heduCxHAeFWJ2aOKsPLZzlIYpVgs+8FuHFwzsTOKudXXyTMC9QndUAfK9mCKuuAGyAAWk2U6UYEIPW/0COAWnETwNmdVpJxGoiHg3AVvxSOKuTwtPHiziOPGy2Ca7UP01xrqqxQPxcSnkepPPDPKPz0JUdjaYYEP4Z19muWB2XvtHz1QQsdljIcWYjcgwwIJElZVafbxwsvYTmrJblAhjiOhoUZffzMjGLQb3JBhDHA99H4ORIsvFwwR19h8+13nP8Kv7dned7YnXo5khGQxsJ5rYhHQagbbYKE94+zmqd7KgGL9J/jkyZ1ZdlXpdi9aNeec7aB3UmDGLnaYRZ7euIFILPqRogqMKX6zJntWxhbuJwGHJWmzCrB8RPcnu2OK5SrKZjQJSuCQBJZjFxRvPl49oKXIUoEcwS7d8JMNjWI4QgqutPcVzqC4gF6ymc1dRJE0cKSK8rb5+kitUsCFEyfhhO8n0fcheZyeLJ85ioJfnQVmcV5gQ3xlBQWcP/JTqzpMc1QfeIEq3iLbHa3FntyJ3Vjmnre717XEOnk6j5rMa68BsR/O6dGtejFVlM8QJ7EAOi7ay2LLgDY0GZV3As/bb/LWtf/sdFZdM6eIY2RQ2Z1aPOahlvvJ04016t8M83stN2xuhOpZuSuXwo6p8vF6s3G01mebs48zPObOnGxcnGx5G/oWFAFPcWmX/L54fdz2yTmInVzjxkTlWZs5oYADjkpiy6WBnNWiytHWb13VMfN6Jzo3HLjxyl+zUtXQQ+zXSgzHHgjm0SrxjAwc0IZ1mEj/9Cjfc9c48NVcbO6r5YbeSuR0v06VwDk4BF5RrBlFmtCFhsnJQUBjKAaGYhKSQO+8IgfNnzmKFFJlTlOVIKC1uFARHBlVRBUWwOd99fvJOL7KxWzA+NnNUDYrWRs9r3GTaz7f4UXRsGz1fjrG67a+saceaaOatnFmNWdy7Eam1h4aVksbrX0VgU7N6iGkSazvF+NkJuYDyRhg7zYkYZzXkc7+BKR8TqPMdu5zyfa33F1Vfwq6eP7YaUhyHvChsTwLm7eEoMCKV7Q+gFqowrftyscvTet1wvkYrV1FDzy5qsLq/8o15ikquzJhMYkIEQvCy39VrqxWCucL+SXWRcqFU5q8nt9EPtJ1Rn9QhWosGAUB1vivZs8uSGc8hUDvs0s5k7TedCjLmgASDPUQOwfR2H4gW49m0WdFhUElQF6K6cJrxT5aymCJUCrzJx0ChsG55TIS/74URGzmqw20bmdjJyVvOJUC3ZNl+twCa4EwYsmridGmb11BgQoOesNg5CBOCFfQxIk8RtclwhJLSc1aSw3U7NlzbWeQCs1wCAO3eAG9EZ3VkdKlr0ecUJ2MJM4/5qeJdDiBmSqKwObiQLNCPvGfE9+uc68j4AgCxjglt7ofPEE9tftwUy/uvQSpWtqVla67t8RCm4+E3AHmXcsixEfiXlcwLA6YY7qzXOt+ngUdxbLtXpw+eHfWe1yzYDic+tFfJJalesLn1EF+CsrgFYZJsmsDxydpjVd058XA/PjcatYGbvhguKEqYTwt7KoDstzxkijCjaLx5f4jwPceuVAk8fnLEvGgYszg5ctskonoOiYMzqkChSorUhOqGzekisNmJWh470ncCeWSIDGYAbutObA4ShRSZWFwWq2oITaM4NVBgQge6hTjUakap/XJNOLhVnnox1BIad1QaIGfg+M+C0EZ9lyTpZTZzVvo/Q7WxaiOc2MNtg2eHX8zqPXbKzWroZZOiAHsKAGDGrxblKxWrC2kNsLuUjwnJh953Vto33XXsFANuobSoI4Nt7oEVEzhklYHFKsVo4oGUGLFFcN9PKzVFkeQCG75nLmqQuxepHvcTu9tQYEDGY7fvwed6gUEt2+ghmtWxhLgI5iAgMcYxemQYsDjqrDViiKmd1TThXoHFQqZzVaWbpJzILYXloE1/XWTnEVQbooioP5lG50xiHioBA2IOHri1Ucoei0lldE4NGLWs7GZeIqgDoDEUfDCuhWjxRhCQR3Cjh7a/PK8zdVPu4tuco26jz0qYHLPo2c3ioMCBEzh2A7flwa2nj+jXBgIRyZ7UpBsQTbN2pndVHHhM9NhsAwN17Fq6HK7KYwpzVAxiQRN9l3jhnZIJiXtPuLdvmGBD5JptRNoItSbwHfk0wIAB23zVXr/b/nB8TjoPIyRCfK8KBk1rf5SNK4ayOY9AxIADCoJaysAHgNA70MSCBM/juoo5bUudjVWGTe5h5Gd09FCjE6sK7ELGa7CbltTiwd53V5yFzVhuMhY4K2SFQGBFB9BnIcTASKgHYV45QA7h/u8C14Jx90dRZfeD2MSCGYhpDjg0ELFLEtCFnNXXODXVHhEkYJNDClqjmW1Rnta0Qq/Oc5lhWiUllaRaCpxCAy7wyGgtUQdlGjHHVmsZ0bsgF+533LR9bTDoX4LKgzSRtIc1EUDp17EbLWd15164S18hZnXc3g/KctqYXxTfyZRiQoraNnNVSDEhVoSht/fFAZGMUw++oHrPasoDDQ7z3KhOru85qywJQD3/OTc6ZZie20+0EaBfvitjb2MaP6TvlsFhdlsh0O5kuMSCPdF2K1Y96UTAgvPVf6ayua6S5rRewOOL2ativRGeWVKQzcZTuE7Co+wIaCVhs0qMpbOWBgEVyKIngkKkwILnNUng1d0qHwr8A6C+gxDGnDirDsPORnPA7tFssNlh0J022zXE4Ev5t05aqeUxeKudIVfBJPhUDogisK+IctlWT2+kDp0C67l/bxllNWDyxE5s2YDHwa6QyBjIfXxzP4PXawYCcbHwc+DQniigvdJhYKxYOPIk7csxCxVxxf/EVb11MxKw+8rDKQ/bBA7hz32HOR6KYYvuuEjEDAElKcFZfBGLGsti4JdsIgUFLIp+MS+cFJrkAlkIAb1Wd8nuuvdBpC0z37u3+hSBgbcln8l7PJAHbaCWK1RaAKu04qxNL+/NvVxTWLEyq66qta5wIsVrjfB13YCPEMPyrx5QtS2wKHzNP9RLeoxRidVJ6dP1zLFTNYIxZHrtYFUEzxt458VmAq4mzWLERQjKdiBpxVgMg37M4PgYA3Ltb46rPndWGYvX8yOtjQC7QWU12v6quq5hzUzEgArfVec+Y5GMAUG5a5EnJxoKpndXUe0uEb8vE6tqA16zYGE2Tmq1jiHMjpbN6CgzI1AGLvs/MQkkXA+IhpCCGRFkWQr9kXSHiOhQFNoVv9NyGc4eha7oYkI3NnNWE9zfrXOh8Xty1b4wBUTirycxqVcAi1QneYB0H7sm6ZmbEbqDz4SEO/QRf99hL8KLW18VLSYIva1eac4Ojplg9iKSljDGKzI3ucdNK01nNjVKDGJBLsfpNq0ux+lEvEcyizawecFZXFbLKge9qtPeIiYIM1wED14AIllPgD8jt9BcRsCjaqIcwICbOapkI3rQkap4r0OyWSwf1ukaaOyRntfLzEqXr9GgCxRSfc0UXVVkrtVxMIr+ARjZCipoQsMgFKmk6vWHroIotbcR7hBoDEq8rukNROH0kGyzrNQ0DohwLarYAdm1am2MQWkys7ll9WIu67dAxIJZtM4ceF1I+c/cALxzcNXNAd53VNRPXQs+MxeZ1xOo0rowWj6KuPebiXrJoMCBfuBPgmcUDupg05FAEd1ZrYiD2QjWYbLIp0DUkV62KJQoYYUDYIm/ElbPO5U5osVDqfia+j8jNlc5qxnCnjzEzN8Nm1WE2x7aZszqENEwKRYHTLMLRLNMaZ5rNlYlZ+02bfo7tAlWI1b6BWN0WasVxubM6NGVWdx/ZCbo35lcC5qwWnRtnPgtw5QGfpFJlLgh3McVZLf6NCma1+LmkOjrC3M3whTshrjqn7GuGYnV06DOxWiigRcEcmgail69wKBqxRAed1USDCKAMdDYSPwHA86Ts8s2aB8NSnoVGrJb8WwVegzDf8p0SeXc9IzAgVDyacL92DB1pahY+reqQI2Md+bkOBiwaOKubjIjW2M1CbA3EagCBV+8Ky3mOszzE4YL+TghntrTb6DzmzmrCu9ZVBCzGhcGGmKprmmpsE4f1FJkmvFvWczVd654HywLqIWGZC+G+W+/ON46OAAA/9ZE/K88LkXTxtSvLLX2DgJhzDojVNaA3xggckMI4CQAoCuas1tHNfJ9hQC6Z1Y9kjV55y7JCy7J+xrKsX7As6xOWZf13/OvPW5b17yzL+rRlWX/Xsiyffz3gv/80//PnWsf6Qf71X7Us6zdd2L/qP6YiBiwqF6VA8yDrJqUOuV+LgtjyzBnIZQm5o5S6Ez8WsEgJY9gnYNGIWa3CgBDbkPikUcWjS0uXtWbqnC8PAtwLA6LjrLYq5IrrWuUlbOKkcchZfSFitQE7Temk462DJrv70hZaw8WTylkdnxf0xZPvK9PpVyuQMCDKz0s4qGxam2MjVktEcBPHOtC6b4VYff8Ibzu4a+asjtxeEGJSeohM3JRoidX8uHFiGaNFAODa4x7utsTql2/P8cLBPbqY4nlsYqwSqwUSRQfVoFqMoBWoRRy3lCnyBpuiPUctr7pgGyxUvnYx4qxON6W8i+e3/3b2/2/6pt2vBwEiN0N8Kp/ExInFxhhiwOLcS/tidWLTmdVgt2UscZEhz3GaRTicaz5nAyizpkWd8ozZrKsuK1v3bVliXQSYBQat5LYNvpKezlWrEqvFeRuMh+7Rgm0Oi86Ns8gowBWAekNMtKkHhHctF8Br2QTJBAEBAIsFrkVrfOr+FVyt7rKvGYrV3iJg4l+WsfMrywmc1XxjvLvhbpA5ocy1MTGIoIXrUAUsmkzkJMc1Yu03YrVkfUG9txxn6/5sr+moXYeiLAueW/WcqklqGW2Oq9YIDWppSmY1d5eTmdWOA8/hxh5xDZqARQNmNYDQr5izusWaP8tCHMzo7wQ79JnpoocBcchitedLskfynG22hsRrwA1jMtyUCV7EC+wRZ7Xmul6cyNDtUxTMjNi9tFysBgC87W3bX+/jrBZubQKzWsWBBkB3VjsjzOqSdQlo3V7iuPFAN+Ols/pNq31mTimAb6rr+r0AvgLAt1iW9dUA/hSAv1DX9dsBPATw+/j3/z4AD/nX/wL/PliW9S4AvwvAlwH4FgD/T8uyLj/5sSoK9nLTCVAZw4DwwUyX58MERUXoE7Udz7LgOjWbLHR39vjk5sIwIBRmtaXe0SMHqAgRXNGeTW5Dct3BpO+k9PTX+lycKPdxVuuGdyrvLTqfc8j5SN4tHXNWEyc3jmuhlLkpuahKfU823LRu+6iBmAawwLpMctzNumZ8Zaqz2smlzmpygviAs5pthhHF6gBsci/5vAAY7cKHQc1Yf0KsfmAuVvszh4nrHbE6NGASAsCNoxy3NweNky6JzdpyRdkHC+ZS5GJ1nDoM02DqrFYxq1POrNbGgEwcsMhPVTpu1TXyyqZxWpvg5f7n3WROEDFeyrwBXsm6ZO637pjwjd8I/Lf/LfBt37b79SBgbMaV6rMyQHb4PmZOhs16d4xpBHDiyjSMLLmzOstwQhGrB0KiTTcaPbfe7YrhLd9GzmoAsPj5dF21VP3T8+DJOOsTYECwWLD/c7H6/ibE1WBl7KyWuV+NHNB8EZ3Hks/G1FltWbh2mONXTx7D1foeu5/EdaGWZaG2+eeyWm1d5QZ0FRWqgaE16B0GAKbPnFDMN4q82uXI6pZiI8TcWa1eI9S1pX9vcVE564p0RWHGrAbgOXVvLpskYPMNasCiwrVvgohrxOrummaC8G3X4XMDcQ1EwKKps9rvO6ur2tYP2GyXIsz4PPHMMCDtfz/QbIqSh+5mDdr5uhgLqMxqxbjVYEt0jXj8WbTqSi0uczNi77FtD8DPP9/7ujXkrC5LJoB7mni/AQ40ANqGmBDAh8TqPKc7qyU6zKVY/ebX6Chcs1rx33r8vxrANwH4+/zr/xuA38Z//Z/y34P/+Ycty7L413+4ruu0ruvPAvg0gF83xT/iP+riD7Pl6+08MWaY4s+Fs1pz12lQUDRACjiOYmHetONpH3LQlURu7dkjYJEkIoxgQMgTZ44BUU1E09JFEBGRJSpkBxiz2LEqTWb10EaIgUNRlhwNMNGn5Nz2ycVqGy5hctMgSySLp5L6HKC1uz+lKwlskp9JMBgNBoTIrA6dAkkswYBsLMwpbgyV6CM2gmzaJH8IA7Lzcwn12NUMb2wOm4DF2+dzPBadGfFUD48dnOXhVkwTrZOGjpznHk/xudXV5rirDXeomk7sZjPmdDjZ4PQUOPDZtTARqy1A7azOuBiu46z27ZGARSIGRMXCFl0Wdq3/nhHzAsn7IM9qMr9fynrsVLwqEch4h5YFPPNM/+cGwWDAItu4ICI7fJ9hQDpi9SZ16GgRcGe1AgNSVA68kJiNoELBmGw0dsNxBQbExFkNADa/J8U14JviZLHaZuzNrNw1M+RZTXeWi2qL1XmOqgLLGTBJxlU5qwVSgRqCp8geKRODfAhe166U+NzqKq6Ga+C552jdCt0SYvXZ2STM6gZl1hWrDQVFAOqOK6r7VSFW5znRzNI6rmtVKNLd8zVyVnPsWpL1r1+VFezeItyzvithjJclssqlc4XB2OVFJyQ6STmewCRgUYJteSQDFgG4bkew58+XqVgdhth1Vpvy8Pnftax6951Y11ilHh0DErr99Qx/f5HHmKa7We6sJq+9xEaIYozRFqttG7BtZqxWictFgUzmKm6fQ3sOLb6xrlFXivPJMqYZhYSclCFmtRgfCGiRfECDaJBDBJNnJunqzQr7Uqx+k2uvO8+yLMeyrI8BuAPgnwP4DICTuq7Fm+hVAE/yXz8J4BUA4H9+CuBq++uSv9P+Wf+FZVk/a1nWz969e1f7H/QfXZm0SQxhQAgtEq5dKfEPzeKJyBWWOkpNdqEHXEkmAYvS3VdeRUlszW1Y2HJnNdmN4Hms3Vd2H/BFpLbuIybMAwYs1vKt0S40wqxmzmrai0Ip+oiJs0PgFQ/dWwIxQ7hnHQcoZYxSk00bqJ0jRpNxqDEgm1VFF5KEs1qGAdnYWLgGzGqFg4q6KA0iG2npSe+tnZ9LqCdvFHhtfQRsNijyGnZdstvUwPV35ZqN+8mi76yeQqw+v9a4KV+/H+DJ+YmxsxqLBW5GZ3jjtoXPfAZ42wEP4aMqX0PsVwBxRmBW+7Y6YNGAealkVjdhq4R7Vjg0p3SO7BmwGG9qvY2mIEDo5kjWkglHXSPOHda9QUQNzdxMoIqb2mSOGbM6spgzTeKstqx6uk02mIe1NeJfywE9iVjdCYZthBQKq5mXJxG+GLPcsHvD95kLOC9QPzxhLtLZjJRfsD1ZPnZIAhYB0N2vihyHKfIBrj2/BAAWAPolX0I+zk45/L7kzuq48BHNDO4B32JO3R7KjBjsDgCuC9uqUWade76uUdQGIXhKsRpwLTNndejmiDe798F6Y5kzq7P+Z6NEN+1zqm7NjAzt99cEbGXXtXZRZjDHgDRmjl9LZ7WJu9zFrmAv5nEGnQuA3FnNfuAEm3ft8bAocJ6FWEYF6dr2cHb8XDeFb+Ssdu1Kim0xwYAozQwmIvhI9ooQanvTjW/+ZuDpp4Hv/u7dr3MB3LPL3kZY+5hpqRlYCGzzMRTzwyLO2RyZErBY2Gp3OR93LB2Wk9BLusiSukZeWiyw0mRucFlGtddIUdd1Wdf1VwB4CswN/aUXdUJ1Xf+1uq4/UNf1B65fv35RP+atU5Q2P97um0kmIOKYUqbRUI0gMEyEL8bqVe0+El8UfPJay9R16guocRVL/qxmO/6uRRM/mbNa8meGIZPKFr8sY24X3QWEQJYMrGmTjeYCymbc4LzjnhJV5DVZ9Bna2Sa1YQH7OasJn1ezaSOZ2Jgwq/1ghPdIbSUPHekCMt7UdKePYFZL7tnVxp4WAyLCbhwiBiSymbO6ex9M0KL+5FNgYvX5OV55KcHTIljQAC1ydM3FaRb1ndUGjjcAeO6pAp87v9oIX688mLHzNXUhzOd4YnaKW3ddJlYv77CvGzCrAQyI1a42vqZZjMi4wgYt6sqOEB7MQxKreTCNbPOS7AJvOq6Gv61pVd/32vo+IidHvJK/v+PCR+QTupiAbcBiR6yOU8eMWT23mbNawismtdMPhERPkTeQVe5WrC5LbAoP89BMrK67GBAxxpgIlRKxOkkto1A1UZFfISk9vP5LD3BzdmbMaxbdG1XWb/sGYOaslmzgNnMtA0Hp6q97O64Ea+ainUistoRYfX7ewk0ZMKsvKGDRG+DUGovVnXdCmlnanTs75XmInLzXdbaJDfBFnofQyZHm/evXoJsozmqv7odvlyVjK0+Bg2m9xNLcNsrIUOVOGHWvcPEvLzuCGjWAvVW+V+129E2EAekGBKfrggl0hhuCvcDZLMMqD7CY087XC52eu15siM3m9PBOJQaktuH6xDWSilktnL+US+v7gx2CyHOm73SF5cND4I/8EeCDH5QeM3RyJOfqY5KugzBOKpjVpDHGsnhnmCQvqHW+4ufvXcJZ3Z0fC3OjQ+hmvKzJSuvOq+v6BMBPAPgaAEeWZYk74SkAr/FfvwbgaQDgf34I4H7765K/c1mqIjJ9AqeQTkAAMFep7i7ZHu5X6qTRdWu1o5Qo/MFx4FhV3zXBj1vVFmv51DwmcxVLzqdpHSQIX6oWJH6uRU1MjxaOHBnbiS+gbV9f+HOsahADQllAKRmtYF9yiKKP7/UZdwAuTqw2CVj0FMKXeA7Izmo5BsSYWR05bMLQebtvNtz1ZtCWKhOr14lthgFRdW5QndVBp21SlIkwwevJpx28tjkCzs7wiz+X491XXjMWUnphNxM5q599qmRiNT/uK/fneHr+cBJn9eOzU7x6L8Tf+Ts1PnD8GfZ16mp3yFld10hyW5uD3Cx0JcdsOkIo45ai7b2ZOFPGLeFykfzzTTAgrq14d7WqEav3vbZhyBZPMmd1UTABlMpalzmr6xqb3GVho8T7VsWsTlc5W/RP1RECs042oOVU3RGrDQKqRHXF6jxnCCviYh9gTsILcVYDePJ4jc+eX8OP/4sK3/j4p8x41QDfbO13BlVpzgQGimtfmA4kzmo21zITlK49GeDqYx7wW38r8KXT+JCYuGwje8Cc1TWgP9dslaqLyzRgUY1qIAa78+MC6J1rktlGuAohLHed1Y1YbeSs7v9REtcM3USYxzXz7vb7S4S6m2xaSMTqi3JW56VNx7ZY1naTreMuN2EgA8A8YGN1Lyjb0HQQiEwTjp47vV+wbgvD3QXbqlGlu2K1SbeNG3l9ZzV/f5FPlZvxZGI1oOnQbZXj2WzOrTBLaeWGtc4VAGoV51Uwq3XCfHnXhiojRFwYLRwtsOVLD4nVhLWi76O/GdYu/s7RNnnKhPVGKzCcG12WUY3ezZZlXbcs64j/OgLwzQA+CSZai1Sc7wTwj/mv/wn/Pfif/3hd1zX/+u+yLCuwLOt5AC8C+JmJ/h3/8RalFUe1Q9Q6JslZbatFyqblmfBidxz5zrZAKlBdxa5docwlA4xw7xJcZEpXsWgdJLZnKxf8wlVLvAYMA6IQqwH9xRMP1CoHxOo0rrQn5UonIcza6ZmDTO2s9ikvoH0CFonM6lLJbjfgpimY1UauJDCxOq8dqVhtxFBUOatj1wwD0l2V8utKXZQ6occmoioMiImz+oUAr66O8Tf/1Qv4uf9Q431XXwHmc/LxAPTDbiZgiQLA4sjdWTy9ci/C04uHZoscAPA8PL5c4Qc/+hG868UCv+mJX2TX1DSgSoHviQsPoaf3PAw5q002cH1fHd5ZVHwRrVsDzuo8J4o+ouNqJGCR5KyWtLyLkzW6b4WzOm6N0VmGB+kcx7OU7J6JFg7iwu+NM6cPKxz5sf64NYoBMQzHLbvOanOx2hLM6hZeBICR81fprJ5ArP7Ql9zGv7r1In7s30b48JO/Momz2rfLHqOTuigHsBUUlWK1mbP62jXg6hMh8Ft+y2TOsdkM2BQ+fvcffyd++dN8k9Tgs2ryMdrPQlUhF2OhibNaJlYbYNekm0xVhbRwmIuQ2h3leYjcrCHsiNoktnknm4RZ3SBmKBgQjzPxe85qM1xFE2gsE6uNnNX9eXdRmofY9sRq4ag1cFbPwgrrItjpkEsMUUsAEM4dttnKd3FP7uY49GKzMVE4djet8ZCftxXQcFvezOuvZ/h6lrwh1u7ubTvhTcPSVd1RZcmwGh6tQy5wcqQrxaRLrG11Li/fCFOK1VSMldCiVGI18f2lDK4URVmDNUSCztdNDCKXNVnt8wQ+DuAnLMv6OIB/D+Cf13X9IwD+bwD+G8uyPg3GpP4b/Pv/BoCr/Ov/DYAfAIC6rj8B4P8L4JcB/FMA/9e6rg0BeV8EdVHO6krfWe3aJXIFJ4i1EdNbnssBRykVA+JaFYpsQKwmsaUV7vJGRKA5dYcCFsmTG/FSk90HVB6ZuK5Dzuq41ndW+4oNC5g7FKXtQjzd+EIwIMQ2P8dVXANTZ7WKyVeAPbNUR0rkSp3VcQw6+1UsniQL83XiYO4RHESKRHIjHjygnoiKXX0TZ/XbI/yz196F3/ePfyt+5J8H+MprX5jI9VdsFw6moTSigoCJoGt2fV95MMfT8wfmwg+AJ66m8O0CP/T7b7EvhCFdUPE81m2TyKzFOUNLaJ4yY1YrOkIMNnCV41YjpFCd1QVyyfy+yGvawnxfDIhw/2kwqyM3Q7yWvL8FA9fUWZ20/q15jvvJAlcPRlT3gfIil22MdsbD0wclc6gRNoYBTL4RArScqi2xel0E5s5q22LTw65YbSJUShamccr58oYYkA+9+wF+5PPvwc9+aon3XZ1gjFUgO+JVqc3D3zmmglmdGAiKoh5/HHjiCfJfl9ZsbmGdB/jYywf4+KdCY/e3FAPSON6IBxXs066QYjLnBuScXiEoegbPl+sidArEye55GTmrHYfdr4XTQ/AlcW2OAekyqwvPKL/T8yXO6twxC1gMnP6Gc10zHro1gVjduWeL2tZzvXZqHlXMHNAyHSSGjnUACJberrNavLdMPjDfZ+/x9qaz+OyI2RBe5LLPq4MBsQD6OGhZ8JyqnxNC1QpEDYS4ZpVLc1aLNdJaLSxLMSBDNSZWUzedHUedmwWhFeh3bzQmtF8LDIh4z1ADdy9rkhr9JOu6/jiA90m+/jIYv7r79QTA/0FxrP8BwP+gf5pfvFVlhEGYT5izQvFCpMDyLQuug+1LvTMIFCU96MRxeJiUzPlo4Cp2VGI1dbe04TVbTLBviyYmSIEGLyL5MzG5McCAnKdR/3zznPZyH3HYA3y3lNBOr3RWC2Y1RfRRvdRMgjNEG1ZRoncVBAaE0PbMNm3kTt1JAhbzeOfreVoZJRyHc4cxWrvO6tjSxik0JUSqpP+MrRIXCy/Rd+yqWMXc5bKYWKxu7gsDIeXxt8/x0ukSH7zxMl569Rk887UPgOjp8b84VL6Pq+EKD849PAEARYE78RLXD2RQe42KIjwxP8Hrtyw8B+DW2QyPTcF/BfAbv+IO3h/9RXh3fgf7gmFLqsddj70zE25dzVO2fRfVAL6IuoEbBJCPW8070YRZ3R+7GyQQEQOSqzbGeW1iSw/bEAQInaLHZxUnS/msmmrE6tb4lOcMDRbQBTXLZ7zinlh9UuNgYmd1M98ycFaftZnVImDRUKx2XTDsx5RitVsjT2XOajqnVtS73lHg5+49g7/wn/wzOHY9kVjdR3bE60qbh9+U67IW7aT/R3EMJtQZiNXPPAP88A+T/7q0Zgsbd5MlPntvgZ/4uUM8t3zd6B7wQxt5ZQNF612V50YByUpntWFGCPuMy57zk4nVBv4s7qyOd6dx2KQO5pSOMwCwLIYzEwzkljB5IRiQypRZbSHPO2J1Zk+PAanr7XqOuDnejFs9DIgNN6CPW7Owwvq8K1ZP4KxeeEhKAJs1AOD0pGJitck8zvMQOonEWe2SxWoVBqQGjN4HrltvUZTdjWKqs3pQrHbgU/YBhBlR5awuCmSVDz/UxIA4hRy7BvB7zSflBQ11+VOd1Y2ZYyBkEgABA1L2u3pNkKGXNVnRt/cu69ek8rTSDzngA4TSWc2ZRrrJrqPuVyKqQemsFiIdkVnt2qUcAyKc4brnallwHRak2AsCFI43qlgtSyLmxyW7PGwbvluxdrzO+dZpps90EueqcpfzouyWDjKrDRbmfiBpHwWMmdWuNYyYaQKGdA476Kw2CFiM5EGIjWOdeOBg7rJFjspZTVk82TYOwgxnWdCbiKwSjgHRdXqI0KtU4qyuDdiUCrGaNGZ3KpzZuBat8P/6+r+N7/qmL7D1kikGxHFwNdzg/iZk95jgJxq4fAAAyyVuRme4fZv9tiy5SDuBWO09cZ0J35/4BPvC0ZHBwTiTLpZMyLmYoH3KQ6iG0iY7s3wfSEtvWma1bTOXi+R90CCBCGK1lrN63zEhCBA5GWKZWC2c1dSOAN/H3Nt1Vtepmdtr5+92xq3z0woHXjJpwGJe0F37AAuHTSQYENMuizCometvSrHa7/OKG2e1IQbEWi7wyW//v+N33fhx9oUJMCAyjFW8qekbuCJ7ROKsPl/ZOPAT4+tgmoXbrdnSwX+4+wxevPoAP/GxIzy/vG90bb3A7s9hGsOBoVjdDVg06egEtqFyPWe1a5YPwZ3VSgwIdR7XFqvbx92AfM82THwZBsRE+/QtFHWrI6SqkJYOQrcgi8rSgMWiMOOWYwQDYsDwn8/qXWY1z6AyEcABIFj6OxgQtslKMIfsHDToOauLTQbHqsjvWif0WBB9ZzMIgNE46Lry7g0A5hgQScAiw4AQjilc0BvFWCKY1TooSnFMlVhNdVaLObdCrI7XFek9Ln0ftIuCAfF9Jqx3M75M3zOXNUlditWPeKVxxXa3dR463tqVKZAdKApSsuuQ+9WEoej4jtJZTU7MFS5oBQcaADEMEvK2byEokgMW1RgQk0COwK/ZRLQrqMUFfLsktSY7doWimhYD4vpyVAVgthHih7Y8iEFwvSgvIIFtGULMUO4t35Yzq7kbw3GJDg8Vs1qEqhEneFbIReOuszq1ETlEDAiAg1mJsyxCd8W/Tl22KCM4q0NZQJVwwVPbfRViUpyYMRRF/dPv+Dt479VX8ed+y79kXzB1/VkWrswSPEjmrFVwUxg565s6OMDN6By379o4uVdg6Sbs/jcR/kTduMH+/7GPsf+b9KuLgMFEMiHPMlSUwFkxxnUXI3XNN9lMxi05a58F+Wofkh1XETjbYEB07wXbZmNhZfU3cFulzVUNAuYmjSV/ludMWKWKHo7DnNW515zz6qTAwiO6E0XJ2v8BnK+ApZeQ3rU1MLCBS2dWLxbAeRbuCB6loeMPAK4f5biXLCAUtSYEysRVKzace5xac2c1Dg9xFMTbe3cKZ7VEWI7XlXmOg6Qj4nTlMPejyX17ATU/dPEzd5/DR972Cbz0+gLPL++xm45Y0jkMF/5MMCAXwqyWdXIVBZLCMMzY89gGXrr7zG9Sh35vAQhCSxoUvd5YzLFNwYAI52NHqE0KD2FIdwA364Q2r1lkTVAd0KGjFpUN9oBUAYtlbcPx6NLLLKoZs7rlrAYAi/wgsFoeu1jlQUushnnAYhQhcnLEq+01WJ/ydy11fij+Xut90HQzGuKmemHZU2FAZBjK0qURVnyfvWM2amFZm999UcxqEbB4ARgQ2TxWVJnksK1a73yFua/oo2CM3jOXNUlditWPeKVJrd/mZ1ncmaVISyW+3JowKckAwficNOHD9fhuubLl2QADohCAARicq5qvTWdWD2NAqIJa4FXS+yBelbQJrutyZrV66EgSaLflNa79iRfmQxiQrHTpPHR7Yh46WHJ0j5kG8PBO+j2gYlZnuWUkVjeTxo6ovIkNAn8AHC5KnHbF6rpGVYG1ahOc1aErcSIUhVm774BYrYU8UNT7v5S1YzaWZVMhBcDVeYL76QJIU9y6BTw+OzU+TywWzFn9wMO/+YkMX3PzZeaimyKs6+ZN9n/xzjERqwUGQxb2kufMDTcVqqGumTPLpi2ig2CIWU1vffd8OV4kF8gS3XHLsraOJBnDn1ecao4Jvs8WuRL0gXAlBVTRw7Iwi3bdafdul7genpuJfpJFNACcn4EmhLsubKvud4TAnFm9PLCwKoJGVJ4iFBYAblwtcSdeNsfNUsL8tVNel68NIM4ctiFqOnY93UErTcWs7jirN+uazqwWbd8SWtPZysaB9+iJ1bOjAD9560V8y42fR+AWeG5536gziGFA+q7H1MStLJzVRWccMTHJAIDvw7Gr3eeWIzBIjFpRYh6TdpjVQqymOqtDS9oht16DZYRMhQERaxmDDbFmLBDnKhAYBpsAzbpWxpY2cVaLkMmOWF3XlpGwPJ8D67azWpy34dh99TEP99P5lll9Zk0iVs+9FOvV9jqenfBOIwOx2rLqHR2iQRoaOaslOFID8xGAQQxIWrm0SyDeBypmNaWbib+3htza4vu0ynGGMSAEYxsg1vUKfQtAllQkhFHD2pduil46q9/MuhSrH/FK4woBQfhgzEsF04fYmskERYmYBrPFE2vzlLuVawC2R3gJj6Aa6toycFYrUA01HSshdXjw41a1RbsGAIJAMvgC2Kwq2uKJo1DKWu2ka8RqirN6KGCRyqwewoCYhHdO7doXGyGSIMDShFkdudJd6DTjoip1kqsQZ1iLNj306WBe4iwLd8XqogDAd8oJAYuhI2F+ilZP6jpfIVYnqTVJizoOD9n/33iD/X8Ksfogx/2ELUhee7XGU/OHZosRAPA8PHYY4431Aj/14zm+4fFPTYIAAbB1Vot6/HH6sUSASiIZt8SzQQ3BUwUhEkVlP+BuN8l7hpyNAMAXYXXdLovCJrvsPbdWbjSK0nb/hSEiN0ccSwRpfu4WqYeWVVesvnunxvXo/GIwIOfcWU1poZUFwMEMMQMAy0N7x1ldZQUTAAwFj+vXatxNlo3gEW9qI54sAHiB0xOrk9whh7/t1JNP7l5DE8wQwFqJHf6Ztboa4xhmzGqnL1ICwNnGZYKS6XWYuGZLB6f5HB+6+St47vDE3FkdOv15nKlQKTptpBgQejcjfB+uVe128EzmrM77zurMNXNWBxw51V0jJDaZhc0wIG5PAAZgNMZ4XWc1vwcCg+BKN3D67y9TIwPU3G4ARtdgPu9gQAo+dhuOAQfXA2YSEc7qc9ucWR0EOA5iPDx3m/Xi3Ts1roUr+rvW83qYnc2qMtqwARSd46Z4kTFnNTFgcQwDAkDvnMV7S4bIg0GHFOdA99AavJKEJlZ7gS1f1/PK0pqhGDWfM9YR0u/gSQrPbKPxsozrUqx+xKtxVmsOEvs4q3WP6fr2gPuV6MyC2NnvT5aMeFEXhWoQgqLUBU5nVksdHoAxM8v3Lel90LzcKWK12IFWOOmSBNoLScaikzOry9IAA6LgNRuL1XaJIpX8+w2c1V4omTQD24kzkXPXtDl2ni/TYBrG+Cp7O/ymbamHy6rvrBZKM6VvjjM/e5M7nshtIlbbVo0y270PGAZkghb142P2f/Fvn0CsvnJU4UE6B9ZrvPZqjSfnJ5Mc9+a1Erc3B/g3P23j19/8zCTHZAe+uft7U7HaKZCncrHasurpuMImWCi0Ntkk70STDRbPlzu285y+2TyEBxOl7f4TCzIJ+qC5JgZuUiZWb+ccd98ocT1cGQd42laFMumI1SsLS5/GrA6cAmncuYe4a9+1K3L3wvLQxnm+3RC8/8DC1WBtLlZft5izmgse8aY22xAF4AlXbdtZndrGx2UH93Y/l3e+0+x4to3AKZEWu1z4OKbzf1mwXl+kBIDTtcu4so+Ys3q5BH7fB34Brl3hh977j5izegoMSEf4iwsPYWDmrJYxSo0wIILjn1Xbe0Dwmk32hR2Hj4m7eMdGrJ7aWR3bmHt0DIiS/2u0ccW7D9sYEENnteVJcEsCEUcN7wR7JGXXwHRTcDa3sc5bGJAJrisA2IsZE4H52P35uzMc+Ruzd6Jl4eo8YXNOPo+9c9fCDZONYYlJJk4sY7G64aF3hMq6tujHVTGrRcCiTghic6KefF4giqLvCFyHzMgBIItLhg0lzGGkHGheScy1As3j2r4akQYIk6e+biY1eRYF4tLDfHYpVr+ZdSlWP+KVpmDtDLoPnYJDBoAsVjueAgPS8DnpLc9SYd1kJ9514Vj1xbhflc5qGy7FWS3YeTKx2rANKQhqaXiKCUOxcSIoeFENT3JKZjWVh+7ZyvBOMrNaoFAmvrcaTq2CWe0SnT5u6PavbVUhKXgwDbXFzfex9BKcn+9+Oc64MEVlVh9aOMs7zmrxa8rE2fel7bNioUMOFVMEX00V/oW3vW339xMIwNevVribLIDVCq++bjNn9QQu6Js3anxudRXppmQM2Kmc1WEIPP88+/WVK1u3OaUEBkQ2IRcLnwnF6rxyaFgoDDCrTR3bsgU0zLpXGOtRvtEoapNpbmCJYCaJQDeFk2wW1WzB33VWm9y3vs8C0DqbYquNhSWF0SkWpV3WvgiAc+hi9eLI3RGrb9+1cTM6M8eAPGaz8YULHkkCOv6CV89ZXdfMWT2FWA1sx5TlchLOfuBVvbm3Ueiw6yJyMoWz2sHBI+is/i//S+CP/rZfBAD8rrf/LJu/mWBAIge5REhiQiXx/W1Z8JySdXW2uwSFOYCKq+DdhzsGgQlwFbAsREGFuPS3Y21VYZN7mHn0ZyGYOex+7Yzf69jGnHjPss3WPgcagNEz64qxoOUqTksXYWAgJMk6BCc4bhMMK3NWGzyv8zmYs7rDrDYeC8W7b7PB//q/ss//a26+bNx5d+WgYGI177a5e89iyC1DsbpOs2bThoWBGjqrJRiQMivh2JW5WC0xIKWlZ4YBGWBW7/zsfcr3Wc7ZgFhN6fCH6zLHttJZDaYVEI4LYNhZTcGACGxo5z2zKXzMQoOx+7KM61KsfsTLxFmtbJMgisBN262MqSsW5hSxWuzsq5zVRLHat4t+ix+AqqjIu9uuCzmuoiy314BwUGkqOWAc8BD4kLKdNuua3Jbq+I6SXQ6wNaVua0+DmFExq6ktz67LdsYl91Zm6qwe4qETxWpph0ETiEq7ByzPZeEj7eNOEEwD38eBH/fE6k3mGAkUjbO6tXjIzhLm/KQ4q1UBi0WBhBpyAmwnjZ3jJimmcVa/+OLu7w8OzI4HRtW4Ey+Zs/q2O5mz+rHHLfzYa1+KDz79OvvCVGI1AHzf9wHf+73sPxMOtmj7ljirq6xgzwiVWa3IMKBy7hqmpcqxTUUCifbsHgbEImNAlJkTrdqkmu6/IGDCr0ysnsBZvZxXbEOsLVaHK2OxOnIzxOvd++t8ZdMwIIrNMFMUDAAsjxyc58FWrL7n4ObszFj0vP6Eh7ttZ7XAX5g43gTGqiVWx4WHyMvpG63t+r2/l22I/YE/YH4siFBrrydWRw7xncg3W6XO6o3HWvXJL7GLqfkc8K51NhZNnNUzrxeyabzZbFnwHHkInlHwMjgaqbY7uArXmLgVBRWS9lopz3GWh1hGBfndGIQWksKTO6uJAYsXhgEJJAGLppsA4t8ncVOGvjqHYfRcfUkI3AQu6NnC3mFWV7l5uCA78Ixxi89z/IN/APyZb/z/wXfK6cXqBw6uRwYYENvG0k+xyvzmem42MMeA+P0Q16YzyBADUhdyZzU1YDF0ciSxYtyjoEuGEHlgDGi6s3oAA5JaJAyI9JltVZqC6WYkDEhnfswDvWfRpbP6zaxLsfoRr+ahI7QzKDEgVA7TAH/JZPEURLYclm/yYucCsIz32PC1CZM75qxWhOBVxNZB31czq00xIIECA7KhO32aTYtBZ7XeC8j2HOaAHgpYJG5aAFA6q0lcQsGsnjhgsUGWSFv/DRZPsnT6KSb5vo+ll+J8tXte68xjjhwTZ3UWoQ2ZXp/k7JiUibPnMeGry6wWAU1U94zrInDyXvBVnNjThH9F0fYaXrkCPPOM2fEA3Hzcxu34AFiv8enXIrxwcG8SYXlxPYJt1fiGm7/KvjClWO26wDveAVy7ZnYcjgGRhb0kq4KNWVMxq8uSByHSW9TFcXaqSSYnOqtl7dloYUBMNnBVYnVd63NVgwCRkyHO+udT5+butMODegc1dPc+d3sZO6v7i8jzjUNmVkuD9Qzd9QAQHvhISm9XrI7OzZ3VT3q4Ey/x+TfYKrzBX5iI1WHHWT2FS7VdL7wA/MAP9MMWiRX4VQ+rsEksdh0o70QRNioRq89izyys7CJLYKwAdu8bnGNvwwLY3gcm7len6ovV3BzghQYOYLeWOIDNuaehXyEuWs7qosDDdIbjhXwuvk81zurOvHOdOCxgkfC5+YHEVTyBWB3MbDZudTcBpnBWy8wcBp+Xylld15YZs/rA2WFWNyF1Ezirr4Yr3Lnv4LXXajwb3m6+blJXjiqWkyIwIPcd3IjOjMaDK1HMBHD+mTUBzgbvGd/vIyDY+8ugM8h14VgVyrQ/P0xLF35AWNONYUB4iKfWOfO5cW9jnFcWl4wBTXFWCwxI3T82WawW3z8QsOgTAjeb4MZOl8Wm8CcjG14WrS7F6ke8yGJ1ZMuFL4AuAqt2sxpeM53PKXVWm7Q3CT6pxK1ssjBXspUbcYIwufE8uAMBiyaTG9WmhQkGRCp+tipJLXbPahxb6SQ0RMwMiUlmzOpq8s2FZhNAxqw2SVF3Od+rs1uclNxZTa0gYBiQdevfWpZY5z7mPt315i0C9oy1FqZ3bxVMTDJwVqswIGTjiHBWd8XqzGHCxBQt6t/1XcDb3w78oT9k5irmdfUxD/eTBbBe4/N3IzyzeDCNsLxc4rHoDF+/+Hn2+0dxZicwIJINzHhV0tpIVeOL2Lyk3gJDIjh1UxQimKazgK5rhgGxaBuCQ10xAFireuEj8jSQQ0GAyM2R5P3vz+OCvb8NnNWLYw+rPATWawDAZ14N8bzpxo0QFTddsdrAWS3rCOGblx51IwSAFQbMjSfE6vsuHotOzZ3VTwX493efw2/4W98NQPD7J3ZWc1ZxZPLuusAKJHkxcWLTRQ/H4c9Cv6PvLPaZs/pRF6sNXNUA4M89tp7piAimQqXnSZzVPHiZmhECAK7DQ2d3HMAuwsjsHR6FNRNrW85qUxa2Gzgo2xxoXuvEYc5qiljto4e0m2KT8fiKjZN2190U4Wee1+885BshEZWHjpYLvHXcupiAWb2wsS62zOokrqcJm3UcXIkS/ItXvxTv/4qycUIbO6uP611n9YnHuphMxOoZ52Dz+2ATW8YdPGGI3a4FTNAZxIXl3pyzKFDWxDFG0dHZPjYAvXvM8xBchLPasuC7FROAJRlXCaELG8AoBoQRCfSP2+CLOhtMl87qN78uxepHvJqHTpcv7audquRJg2o3iwu1HtVZrWCmGfG9RPuJxEXXtDxTmNUu1Mxqk4BFp0ZRWVIHMAA6s1qwy7vO6tgyCvwBoBarKcF9Kge0aZjUiFhNmi/tgwExcYGrnNXUxZPsuRVCraEjZeklON+0/q15jlUeYDEzc2wD2Fk83Xq9xmOzM9rE2WFs7iR3emzKpDC4BqJNvyNWGwdXtuv97we+//sZv2OCspdzVLWF9CSGbxWwrXoaYfngAP/8N/9FPGZN48a5kPI8hgGRDFvxumLolkmd1Qbu16HgxpqOAZG5h5qNO4eWCzAasEhpo/R9uHaFouyP+fG6Ml6Y2gdcPOMMo8/dDvHc4r7ZfRsEjI2/3n2HnccuFkRmtW+XUme1KQYEvs82MLsYEEPR8+qTIT51egNvrA9QlxVi4Sg2cbzN3F230xTvrgus5hlrB4AJ5x9lvmVZCEMwVnFn8DpNAhaw+CiK1VeubH9twKsGAHfm74q/AN+08I20NN+t+7hELiTZvsEGi+Df7jiAze/ZMGAInB6v2CRg0/eZgNp1VqcuC1gk3Fte6LDr2prP51nNBC8Dofb4ioWH6WzasUDReRgbHtcP+yiULAPJ8dmu+aHLnNV87Gbc32nmm1eXGf7J59+Lr//KDTtv2zY+7pUrwIN0thWrTz268UQcc57uOKs3sXnAYhhxHI7MWW3ArPbtsu+CNukaFx1c3U5RXnWW62d6eB58R66XACyw0Cdkp/HT7QvAvJLUJgUsjmFAmudMFwMSqp3V0czcLHRZ9LoUqx/xogYsDgmKeVIysZaKAZlSqMUws5qcxCtaviUuujyrjfic0oW5WEDSN2D7fDN+XMuqjTAgPQYTgI0I/KEscvYVq3VeQGPizNQOxYrt9lIxIJ5KrBbPBkVYV11XIXxRxWpXwqwWriQDJh98H0u/I1ZnGdsEiAxcxWIS25qN3bpV4/HZKW2Ca1kI/bLnmhALSGNm9UU6q6eu+Ry2VeNXP+PixSv32NemEJaffpohRUQ9omI1c1b3N1KSTUVzPorv787yDdFYQ/gik3ettD27KIzQIspuI1F5jrj0tMVqAKgr7G4wgYvVhqF9WC6ZWLtaIc8Bu67g2LXZfTubIXJybM77YjXdWa3AgBjcAwC2m35dDIjhxpXj2bgWrfHM4gHO7iS4fRqylm+TgMXQYSF44n3AhSQT1+NFlizUOk648494HaKQi5Ttcaausc495n41eRYuqtoBwa+9ZnQoK+CbKz1mtRkH2nMlGBC+7mi6/QjVoJG6YrUps7rjrK4zItKxXYp55zp1yTg3GW5qClzFlevOjqO2CUI0ua6yd7ipkQFAENq9cSBNzK9BdBwysboVYjtV2OyV4xo/9vqX4oNPvMJ/WGTc0Xd81WafGR+/754GZsxqCLF6u2nBQs3NBPsowm7XAlrjtpGzOu/rECZInCZ4Wf7+K9KSdcnpvBN8f5RZrdstvT10Lce8gn1uFxGwSM56CyREgjxHVdtwiJlRlzVNXYrVj3iluU166IYe5iytzI4pw4AYuMiaNk+Js5rcMjUA9m+c1RRmtQhhkAn2JtdAFsbBjwuAjgGJbKWz+sIwIJmt35Y2wEM3QcyMYkAMmNW5RKyuiooJw1M6q3lbKvllqXJWGzL5GmZ17Gx5ZHmuz0vrVhjCsSoUm5az+g2bidXEVUno1z3XROPKobbmKpiycTYRs/oiaj7HlWCNf/PJY7zr+A32tSmE5eee273nH1EMiG8XyLriHzgGxICd14gGogSqgfoYqMZDwaymjFvgGBCJWF1UNh3L6FnM9agSq7mgoMVntKztxlRnI8A49AgAlksAQH2+wqc/Dbz96gP2dZNnIYpwHGzw8MzZ4TOuE5exX6nM6qxz3fgGLnVzAQBzrlsV8ph9ZrcfuLgZnU3y3P7Y7/4b+MprX8Ctz6V45eECT88fmgWKHXo7jNZGSJqKWT1xNSJV68XQbGBSxWohpLSfBf4us3xvEkTU5OV5wFd9Ffv1299udixJt1WDaqAGLIIFIfbWHmKOYCD+NQJNywGdFAZzDV5hiB1nNfm9tXuy7P/tuVFdc7GathHih33RJ0ktY1zF8TXnQpzVPUyeaXgn5CasBpFocG85B6w7TiCsXn8Qso3GCeabVx7zYaHGl9S/wr5gursCIDgImGEqjvH93w+sEoddAxOxepnjQdLCgCTmzOowstgY295gSQ07g4SzWoLyAmAgVudIFc5qEhbGdRmzWjI3BjgGhKIZAfC9PhKoOVeKsY2fLwA1szoDSVz3Q7tv7jPp8L+syepSrH7Ei8qsHgLQZ0lNa+kYwoAYuIobB0NHpGsSdE0CFmUYEENmtVKsrhy4xDmj53ecGKIMMSDN5LbLrDYUq+vaUovVucN2SzUDHgAonNU2XHvidnpDZrVnl8gl91ZRgPG1KZ/XyPPleIYYEAmz2oj15zhYBhnO0nB7n4qfYbh4OvATnJ1uz+3WHcdQrK56rokmYJG6gHScvphU1+z+f1Sd1YsFbkTn+NFPPI0vP2y5Z0zL83bH6S//cvNjTl2+v91c6IS9rFZgLc+6963vM+dM3HkfCO4pdX472Gliw6UGLAaSTdGiwLoIMAsUYvPYqYoN3AFnNdBi8u99shKBClysNhD+AACLBeNL39/gk58E3nnlDvu6ybPgOLg2j1mYVGvVV9c1w+0QmdUyV5axszoIsPQTrM7ZMd54GODGBM5qAHj3c+d4bHaGN17JmVi9eGg0Fh4c2SxwV1zTR91ZHXGxWjBfAWxSh21gEgWaMLL6zmrx60cRASLqO78T+B2/A/iO7zA7ju8zE4BErDYRgD3hgO44qy3K89qq5azEeR7uOoArF0FoJlbP5tbOxs3DeyWOg800zurOtV0XAeYhbS7rzbxeO33TJWwwFhxdc/Gw46w2dqzLxPqiYBgQg+M2RiGZs9rk8xJIHS5W/8rrB3jn0a1pMCBPhvjA9c/DfvnT7AtTzA35MdYPM/z5Pw/EKf/8DdBAV5b5LgZkIrE67mJAEmIAoCgVs9oEA6IKjOdF4mz7PmNWKzAgWVrTmNUQGBC5szrJiFkOwiSSy+ecaWYxjUsbAyJxVk+BWros47oUqx/xSjP9sDoAg0yfZuCZCgPShD4RF08KkS5PKzrjjLvoZHqqCbO6Cc1QOICp3G7PuxhntRe5fdYfgE3K3Z8X4azOHf0X/ICTsDBpp3ccWFaNKlMwqylpzI1Y3T+nIqcjZoac1ZZV09tShXOk10Jr3pa6jAqc58H22DnnpZksoIMAh16Ms5OtGHHrnkfHgAAI/LovVpsuIEUAWlusrirEhY/ILR5Nt9tshpvRGX785WfxTdd/sfnaJPWN38j+/1VfBRwcTHPMKctxsAhyrDK/9w47PweWRK5w6BRI4n6AjglbWowfvcm4GA9dA2e1hNH6MJ3heC4fz0ePORawSJ3sS3BAAOt+NuJIAsByiUM/xt/9qSfw/d8PfPjpT7GvGy7Orx7muJcsdoRKq65ox+ahR2m3O0wgZkzWTmHIumJWQLIu4Vv5dPz62QyPz05x65Ucr5wu8fT8gdFC7/Cai9Ms2t4HE/F/L6qCuctEqtY9EOcO3RwAIJpZiDvO6jrh4r0B+/XCy/OA3/SbgJs3zY7jSzAgE7iVpc7qojAKNQeAo0XJ7tmWA7iqLdie2Qb2/MBh4Xr83nr4oMZxsDYTUmTz+SzDuvDJeqI/64SigjurDYVaJ/KZq3hHrHbNHgFZwKLoPDSYH4eRxFmdmTuru2L1J28d4p3Hb0wiVr/4ngj/6bO/ALz8MvuC6XMLAFEEy6rxqc96+LZvA/7I1/4Y+7pB6OqVg2IHB3OeeFh4yTTO6i4GxNhZLXEsU0IQRQlntUJYZpv5mvOjEWY104wMmNUqZzXF2AY0ZsQiUYjVRJOnHzl9Z3Wes3fPpbP6Ta1LsfoRLyZWE1x6wv0qdVbzlg7dYw6IabnBAlp1XKPgCMdhg29u9Vx0jbOaGCYl5XPWtZE44QaOVKxu3OVEZ3Uzi+u8LTexbcSslgWyAACqCmnBAu20zlnFaOV8TvLcToSqdTm1ZYmsJDKrxYtSggEpCjBe2MTOagD0CW6HTyp+BmNWm7nTlrMS59nWQVQlGZv4G2JADvwEp6fbL92675k5qwOJWM0XkBYViC7EpLZYXRSIi0fX9Sec1d/85C9jYa3ZPTWVY+A3/2bgu78b+K7vmuZ4F1CLqMQqD3rj4fnawoEXk5zVoZMj3ijcrx4dMePLNsSEUEkNWAzt/nsmZy6l47lipTJS+zqrKWK1ZdWoO6uyeFMbCX8AgMUCh36Mn/jkY/hTfwr49denEauvHRa4n853hMq6JIrVglmd2btzmKJAUdvwqPcWANg2Fnzs/pWf2+BLr9xlXzcMwgMARBETq1+vcetsYTRuA8Dyit9zqT5I5zgibq5cdPkzF2npbe+BskSce4h8erhcNLN6GJD4NKPP4d5q1Xa/imeBb7ibuJX9oM9WJgfQt+pwUeIkjfpBiIaCBxOr/a1Yfb+azlndEatNske8uc9En9b9miQw7zgT90GryyI1vAeUzOrSM8vbjeweViJN+Xre5PPyfQBcsM9z/MobR/jSo2nE6vd/0yH+wLt/fPuFxx4zPibCEId+jH//K0u8973Ad73wU+zrHMVFqSuH5Q6z+tbZnL1nTJjVc4lYnRoi/fg7vCcCG2JAQqdAmsrveZJuIhB5qoDFFPCdC3BW50QMiMifUTC21wltc7gJWGzdA8374NJZ/abWpVj9iFeaW7SAxSFmtUhKpYZJyVzFJgxFxXGNGGeWBd+tpGB/E2e15fNdeBVbmWp+VTCry6Kmi5+AupU6M2ibGnJWc7xEGELPWaraCOH3lmsTxT/HYUGbkslCDdCcLp4H15Yzq/PcDANiAajS/jUAQJ8wBQFsq0YVtwS6qZzVi3pHSIjPcvMFtO8z9uvp9ho+OPNwJViTXWRhiH7Aoul1bWNAOgvoR5WnCt/Hb3zbZ/CH3/uj7PcTBOg0FQTABz/4SDsQlrMSqyLojYfnKxtLnxCC53mI3KzvrG7cr3TEjO8UfdYh37wjd6UqmNUP0xmuLGhi9T4BiwD074sgYB0sq92NhdOVjQNDFxWWSxz4MX7p1lU88wyasCpjZ/VxxZzV/HhlycIbAei7li0LgVcxd14nb8AEOSZqOWdj9yd+LsWXHb1GO0dZzWZ4LDrFG7dqVFXN1uMGx7WjgDmbWgLVeRbiYPFojrHBwkNWOtt7Ks9xmkU4mNEwOwAQzmzEbW43gNMHJXsOvhjEasuCJd5TLQGYPIfj5Xl9cSKJCc7ETh0tS5xks50NFgDmYvWhyzZbeZfBw3sljv2N2XPr+7CtGmWyK1aLP6OUHXYc0GDGK+MgwDBk57pJ2ZxL3AO+wXUV3Zdlve1k5agho4DFmSNlVoemzmrLguVY7PpuNnj9ZIYnZifTjN3Xru2e2xRidRThy49fx9/+t8/hHW8r2b1r20bvWiZWb53Vt84XxmJ1OHN6awTj4EbBgu7mTkzArE4UYjUJA+J58vPklaU1eZPFDyx5wGJdI8ldmiGRs8B7JjRem9RhvH1dDEjksvlxa9zKk5JGIrisSetSrH7EK81sGgaEu197wU9gAw8JVaBCNQg+J3VhrhDWTVOOfa/u84fQEquJLwp2EEXIJFWsDmwprsOIgQyondUpD/whOqsByMVqKkNO5aw23AQQbVi9HViTyQJ3VuddDhmAojS4t/jEpuemNG1LDUN2vvFuiFBausat1AeLakesXj3MGfvXpC8zCHAjOsPtB60xr66Ypkp1VodgbrcOBoQchgkAto3AZdzrZpHDWYeRXw7/3TerLAvv+3UePnjjc+z3j2IQ4gXWotMJIOp8bTEMCOE9GzpF31nduF+JJ+q6jCHYHWMM3zOMyafAgCzpzOqhgMUyyWndFkGA0MmRnO++Z85WNg59ggu+XcslDv0Ev3z/Bp5+omT3QzvUkVjXrta438KArB7mWLgxe78RzlcqVue5WScbr+USTKz+pRpftvwC++IUzuo5c7l95mXuSosi+vwFAIKAvf/4HCaLS/aOfUQXj8HC28WAZBnuJQtcWyrSq/aoaG4zIaU1bj28V7IN3C8GsRpALcTqCQXgBuvXuq6bxMbcVKw+rHYxIBOJ1d4yRFnbW7FaOKtNNtlEh9imNWcx5aH7Puu+bDurJwgXhOviKIxxmvDuqLI0RrbAsuA7Fdtgagdilh6imYFrX/KuTXOLlkHVqVlQIS48rO5sENkpmxtPMZdzHOCd79z+/vHHzY955Qr+s7f9LH7y00/iHU8ydAkWCyOTxJUrYGI1fye8vlriCWOxuu+EZ8G4hs5qyTyuzCs4VkUXq7sdna0ioUv4MSVyEYAJmNUyxKno7g1q/XuBr5V782Ne68Rhoda6GJCZ29tg2mxgzEO/LPO6FKsf8Upzm/ZyE6iCtC+axDGR+ei6bFc7lTmrDQRFhfjZMM6oYrWi/cTEWT0oVhu0Z3si+Kp7rlnNXMXUyZhYfPeY1a5RwCI7OZWzmiCCDgQhGt1bfAd26jYszy7l//zMwAnPW7HSeFdYz7PabHEuHIpx0XcAG6bTHy1Lls7OJ43r04LtaBvB/li6+Z0TtlA6PwdbPALkCXnjrO60egIwWuj0xCTOOjRJkb/wev757a+Pjt6003gzajGrmbO6hwFxsPRozurQyfthNwIzRNVTRUeIZJOtMHBse6EEN1UUeJjNcLwgMqtlbu1WxauS9q7xfURujvhs97xOzx0mVhu2vh9GGaraws3ghH1tgi6Dq1ex46w+eSPBkR+Tjx34dS+kS4zdpqih5YGFVR7goz/n4SsPP8PeWVPwj4+O8MziAX7hM3M8u3hgxCYF0Ntw//wXLDy7vP9oBtiCi9XtgEW+ueCFBu+ZmdPbbH1wr8KV8ItHrMavkVi93vDwcYP76/AAOOkwq402xkWJedUOs3oCsdqZWKzubDABLVexoehzZZ4xoXKzQZEUjLVv6lj3c8YCb4nVaenSMm142UE/iD7NbHN3OYDHj2K8tj7CP/vRGt/0+K+wL05lPPiqr9r++sYN8+PduIGvufkyvuzK63j7jTP2NcN3wuKKz0wHnNt9lgZs/mYiVs+dXvdKnDnMpWwQsOg7ZU9YThNibhg/Zujm/SwLXiQ2fMOsVjirM5CZ1Z5vMR2ma0Rrd2HrljChdYPNea2Fs5ogVneDYTer6lKsfgTqUqx+xCvNbVKqqRDpdiYgvOLEoj18IrSw23ohmNWGzupumJTp5MbzIEVrmDCrh8VqE2e105s0A2w+Tj5XAPB9OHa12+IHYJ26bDAnitXdSVhT/AWkzZBTBYqVJUpDZ/VgGrOBs1rFrDZx7QcSgWoTW8ytTJ3gWhY8p94NvJkopOrKcc0WDlytW58WWHiGYjUPAbz9kC2UPv1p4O1H95o/o1QYAkkn6VugYEwmIYFf74rVIkX+UcWAALti9dd93Zt3Hm9CLRe13Fm94WK17uKcC6q9lsyiwKbwMY+I94F4f3cXD1Vl9K5VBSyeZRGWc9q5zmbApvDVYvWaONkPQ6mz+nTtmjurARwe1Hhq/hD2nTfYFwwRIABweMVhjkouJt1+JcNjs1PyuMXGF6/3eSWla4xwevG5HP/gs18JpBkem51NhwQ6OsLST/HJ7/xT+J+//m+bu7X54jyJWZv+Z19x8fzy/iO7eAyWPvvMWhgQAEaishX0AwYf3K9wJdh80YjVlt0Rq00xXlA4q2Pi+qhVR0fYdVZPFdIVRWzuLcTqh2BitSEGJHDynf3bOuXZIwbOagC7YvVEQu3xImcGifUar9128dT8ofEx50HOWODiWeWObXKoOSBdK07iLgfw4uMrvHR2A//kn/r4yNM/z4431Tjwvvcxkfqd75xm8zIMYR8s8Au/449jdo938BjwqgHAmvP7PY6ZAUeYcw2eLyZUtvSCuubOajMMSODkPbMUw2oQ7wPugk4yuSZAdVb7dsEyviSVZgbM6sCSmxmKAnHh03jzfA2udFanHlsza56vE/koK3v3fXDprH4k6lKsfpSrqpCWDm1Q41wjGYB+E1v6TCNgu4CO+26vxCRUTIh/2e7fn8RZLWNWl/bFiNWGGBCVsG7ErA4CRE6O+Hz3GpylPg4ojFZg1FmdVw7cgHK/SnZKi4Ixqw02QqTBEYbOateSO6sZtoX4eQkXeOcFPIXTx/d4m6OwgIq0c0NndXAQsIkIX5ivTkvmgjZRUpZL3IjOcfskAOoaL70EvHjABSWi8CFL+p5isRsEYGJ1axMgLvxHN2ARAN72Nvb5HB0BH/jAm302v6a1WEDurI5dI2d1K0+PFRerZxFxM0gschQYEKpO64QeE006WAkT7ud8DuZKU4jVm3MDZ7WTI17tvhPONi793dWqwxs+nlk8AD7xCf6FQ6PjAYC9mLHry2+IN17J8Vh0RhbCm/Gl66wuzPMGvu03nuHjD57Et73rl9kXpkCAAE23hnf+AId+Yn5cy8JBkOEsZ+LfZz9v4/nlvUd28bi84uEsC5t7IDnPWfaKyf0qyR55cB9fVBgQy7ZQVtbOuxaA0byo6Whst31PIFYfHlk4aQXAlXk5iQO4eej5PO7l1wM8Fp1O7qxOznO29poQA5Jm0wi1xwesEwibDT73mofnJti4WgQFVp0QV8uqzc5Vsk5indKGAYsA3vF0jF85eQw/9wkfH7j+ebZZMWX2yH/33wF/8A9OczwAuHEDjl0DL7/Mfm/abSM2ZzYbnJ+ULG/Eto2ugeV3srPKkoWlewX9uI7DNJPC2aICwbEaJmK1UyDNB8Rq3VBIwaxWHDMRx6SgzEKrj2AEgDxHVjk0sVoVQM6LmfFoc04AO+uDOIZ5oPdlGdelWP0ol0g69olMH5mwDBYaQJqMiUCxbuiTaVibGHw759rsxBNf7L5XM4GuhwExc7+yg0yLAXHHnNXUSZPvY+Zm2Kxa17aqcJ6FWPpEty53a/eCAIHmumg7EsRu8UbW9m6IAbkgZ7XsRZkXllHAYuDkvedrkxiEYW4PveusFg54U+OEECK4WL0+K80xIL6Pm4cJ7myYY/ull4AXZ6+zP6M6qyVidZmVdG4cryAAa9NvhX9N4Vi/0JrPgT/2x4A/8kce2Vb6iyrB6e2Os2cblxywGMrCbsqSidUzuljNnNWdr4v3jGk+RAcDAoA8GXcCl4U9qcTqdU2b7AcBFl6K89Pdd8LpxjPHgAA4eGKBp+cPgZ/9WfaFJ54wOh6AZnyq12w8fOO1krmWjZzVfWb1FGOMc3yA//1b/jK++/mf2Dl34+qihSYQwQ+jlDlVkwQvf46L1Y8ob//JZ128tjlqxOq7b5S4Hp5PL1Y/tL6oxOpFUOyM3U0XnombMnTYGqHLrPb0W8jbdXRsMQwIH2fTuDZayzQVRaxTcp3g1VeBT78+Z2LlBMzqNspqfVaya2CAAQGYQ1uU6XpO1NXDEnfjJROrX3WZWG24czcPCqzzvrPa6FwlaEN2DSZwVj+X4e+//H6894m7bBNk6rHQJGNAVjdvsv9/5jPs/4bOasxmiNwM8UmK1z+X4fHo1NwF3l3bFwXi0tB4wkOSuzpEmoLWMc/PM3RyJJn87yapxTZHde5d32fM6kKBFsls/WPyimYW4m53GEDXCoDtul5ixkRdY525tDWz5D176ax+NOpSrH6Ui4egBT5hUSLwBypnNcXpoRDTjJEC3P3aMbsZDZBAK4W2F7B4Mc7q3IRZLViinQHdOGDR99lLfd26D7IMWeXAjxzajrHrwrUqKQ+dLHyIVl+ZWH0RzGqT0ELBrJa82E0xIDJndRP4Y+IgcrlY3XJW12BcPaOazWABqM4ZO259XjEMiOHE8cYN4E58AJyd4VO/WuHF6FV2rxIXZUys3h0L0qQ2XjiEEceLtBw5celNQRS42Lp61XzB8BasxZJxensYkMRlAYu6963D2kSTwt1xzjTOaiq7XDCru5lsYjykitVexz0ElnbuWpVRq2v3mO1qmH8Esfo42ODhg91r2IjVhk6Xd38gxO984eeA01P2hSnE6ihim8Mn7P564w3gZmQgVquc1RPkDWC5xFOLE4QnvGvlosRqUxcdgINZydzKmw1eu+3g6cXDSbAtF1HB8WyHWX33To3r4erixOopWvXfAvXU8RqvrY+aa5CnFZ37ykvKrE4ccwzIFZttrvBFTRMWP4GzeuZm2JwV+Ft/C/j9X/NxNoU3eRZ8v2cWun+vxrFvgJjxfczdTCCFAQBJPg0G5EufjfHJk8eB9Zo7q+8ZjwWLqGQdVy2hEoCxs7oGLsRZ/eILFT565wV8+OmX2Bem6oq5qLp+nf3/dW46MX0nRBGuBBs8uFfh1udSPDE/Nb8G3Y38PGfOasMuSd/juROt+ZExBsQpkBYKZ3Vq63O2XZcxqxXHTDKOZKVgQGYuQ891F+F5ztbgxO5uT7auBxqjyDws9fUNmVgtOm0undVval2K1Y9y8ZAH0lxUhLVJxGqys1oIf91jtlNdKcWF9a4I3jCrjTAgMmf1BQQsGooIjVjdGX0bDIhBwOLMzbBZt66tOHeysu7BtUsUiUScEMcmtN+Eio0QUyeh7/RZXI0rh/ICEtiaAtvAwu3p0rEt4jnoCFRTLJ48Hz1mNQBzZ+18jkM/xuk99rmvzmvmyDF0ugRX5khLF//V9wf4yZ8E3n5416jVMYjsnrOa8QPNFg6zmYW49Hec1VNMcC/rYipaOIyv3BOrPYYB0X3ZWhbCoEbc3rAAWs5q4omKFHmJs9pkU7T5i60DnzyscRRsLk6sFs5q3eMHAa4Eazw82X3mzxIPB565s/r5D1zFb3vuF7ZfmEisfmF5Dz/1i0cAgNt3YOasFp0bMma1affGwcHu7ycQlQGwd2r73zuFs6WmeKMAAGnCSURBVHpRMvFvvcbd+w5zKj+iYjWiiC2kV+wZu3u7wvXI8HzFPKUtVp/aX1QBi09djfHq+ri5BlMIwLJ5d9PJZrKJfRSysDa+YZHG1SSOWkQR5m6K1XmNz30OeOfxBLz9KGJOzfXWfPLq6zbbEDJwVi+8BOer7didZjYT6AzH7fd+SYxfuP8UsNngs7dCPLe4b7zRNg9LrPNdsdoyxbZ0xc+6RlK47D4wDfJ9eobjYI3fMPt37AuPaJdJU089tft703fNfI4rwRoPHgCvfi7Hk/OHk2Qj7GQxCeOJ4Vw+8OteTkiaWUYBiwwDIh9LSJxt32e4TKVY7ZDHWsv3enkLAOhaAdBoUVIMSJ5jnQdMrNYt34drl8jj7Wc1BRbqsszrUqx+lEuI1QbO6jTp/9EmsWn8IbED3w1tLEvEhW+GAbH7qIYkpw+QAEuhlbmVL4xZXTn00ODARlHbveMWeW2GAeFidbyRiNUGrglnwFltAbR7yy5YiFK7OAaEPMfnzLDuvZVuSkTUF5BlwRVOZclGiGvkrO4LVMxZbRCwiBa/veWsBmD+Ap7N2KTxLjveeg1zZjUALJfIKgcf/Q8e/rPfGjO3tsFkNJw7fbE6NndWRzOLiZ+tTYCUEjB6Wb8mZYVcjO4yqxOfFrAIIArKPg9dOKsNxGrfKXsbV2I8JJs8JM6RhycWc9FdtFhNdFY/6IjVpxufOatNRbrHH9/9/UQYkD/5wX+IP/z3PoA8B9644xgxZZmzus/an8RZffPm7mfytreZHa9dbXf1FGL1QY2znDmrH5y5zFH8qAo0UYSn5id47R7LXLh7u2TOakP3q23VO0HZD06dL6qAxSevJTvO6iSuWeelybwocnrdl5vUMXfSiXuTW4vjxHxjHAAQhlh4KdZnJV59FXgquLv784jneujHODvbfum1Nxw8OT8xWiMsvRSrjd0YOh7EIQuDNBTsn37GxhdWx8Bmg8/cnuP5A3Mk0DyqWO4Cvw+qfIL5sefBQssYU5ZsPe9VxmK19cTj+Eff/D/jWc8Mj/drVi++uPtvfuEFs+NFEVt3PLTwmU/XeGF5bxKxGsCuWF34iKjdcbx8r+51R2UZ2HhAxFCGDu/mq/vnlqScL61zbMGsLhz5McVG04QZV6aGMWkWFf856yKghZv7Pq6FK9w72T73U2A4L8u8LsXqR7mKAmll4KxWYEDIzmqRGq1gVpMHdYWj1DQ92g8stqMpCS00ZVbXWUesLgrGVvZpj5QXudKAxSKvmfhJHSh5SJUIpgfYuZMEZVGuC9dWiNVU1zbHgPQY6/wZILvIhADc2TFerS1aAMP2sPLPqwA8g4BFqbM6NXdWL2YV4z22mNXGTD5g63C4V6GqgPWqZsKyqVh9cIDjYIPv+PAt/Mk/dJt9zWBCHs4dhutoXdw0hXFbajSzmKu2JVbXACz3i4sF/ZYpiVgLAHlpsbRzwss29CXOau7KIQuKjiNPZ69rlLUN26NvXta1tStWPwRzaBqI1bZVo8zkThYy88/3mbP6dPffukq9acaYMATe9z7262vX+k5jSi2XeHx2hndffwOf+hTwxn0PN02d1SpmteE/H74PvPOd29+/612GB2zV8fH21xOI1QcHaJzVZVGzsK5H1VntOHj64BSvnB8BWYa7d4Br4cpMUOKdZ233ayPaf5GI1U9dz3ac1XFs7qyeL22sO502m9Qxxq5hPmfOXC5Wv3YvwBOz00mY1XM3w3pV4403gMfsO83XTY55FMQ4Od8KVa++4eKpuYGz2raxDFKcZ34zdt1aLfH47NRYrLbmMxwHG7z6hQppZrEQV1MMyKzcwYNNMTdscIEJf2aF+cyboOvu8cfxoSde2v7+URero2hXBH3mGbPjzWa4Eq7x4NTBZz5r420HdycRq22r3oqoRTFJl2Tg12xDrI0BycGc1ZT7y7KURjyAOau1A31tG64DFJWzNTK1qkH4UMYv32d6Q2fOnawKZhgz6G5Wi9U+Way+Hq5w92R7Tpdi9aNRl2L1o1zi5UZx6fE24p4zC8Amc2nMat8fxoBQF+airaV9rnXNBl0TsVqGAalrxg0zCDdwrApl2nlJmGJAFGJ1ntVmPFHhrI63X9qc5mbOEc+Da1VScaIR8Sd0Vhu59h2Hsbg6L7XVCkzwoLr2vQFntUV37fsO3y1uTew2qWvclvrE1Yy5ki7AWX01XOP+feBP/2ngT//4+80DFgFgucTveO7n8W3v/2wT3mjkrF64zP3auhGS1HyxO5tbu1iJqa7rZV1MycTqooCFmj2zhGcsDOq+s5oHNJHCY4Bt5kRXrOb3l+XQMwwA7GJATi0zBrTr9lFTrYpj0BYlgll93rmGdcVMWlOwen//7wf+6B8Fvu/7jN1uABrB+z2HX8DHP84clTM3p4vVoSVlVqelyzInTOvFF7e/FlzRKeo979n+egK8yOGRhbMsYsGVNZ9/PsICzdPHK7zC3Z9371kMW2IoVkcdsfrhuYcjE67wW6yeupH1MCCRqVi9sHbxDwDWKTGcq12LBVyrQn7GJt4vvbHEi4d3JnFWz90U6zVQVTWclM+NTMRa28bRLMNpujUzvHrXNxOrASzDAucZD8Ssa9xaHbAuE1MUymyGD1z/PP7Y3/0yfMPTn2u+ZlLzqGabFnw+n8S1PkqhWyLjSaxrRUeMP4FYHUW73SuP8FjY1Fd/Nfv/V36l+bt2NmPM6jMXL7/i4YWDaZzVO2a8ifJnfL+fO5GmFnwDJI4V+HK0BjgGhDAuWgF/1rtd43WN1KTL3Zcfd31Wsk1ByjEFYzuVzDmLAnnlwAsJ44zv43p0jrun23HvEgPyaNSlWP0ol2gpp6zJxGJX8jDHmU0TK4WorHBWk/Up12Uviaz1AhPH9AiQfF6Ns7rDe4xLH5FPPG53t7x1vkXlwA1oEzE3kDOrGwyIibPa3XVWnz0scWAiTnCuk8xZnW0K1t5EDVjsYmvKkm2EGLj2G4diSwBexzYWXmLkrC4qCbalNOCh2zZ8hydHt8LaNqmDuWcmVj95I8frm8MLYVaLdryf+AnAQcWY1aZC0nKJP/SeH8MT/r3GnWQyIfcXPtu4at1gSWrOUIwWDku6bjGrAVxObB7VCgLmAo5b46wYc4OA9E6IIkgxIADozxd3Vu+8E4HtuGCAhQLQSzsnLxoAwHWZgLKRX7vGWU0Qq68Eazw4a51XVbFx3LKmEeksi/E0205gk+LC7HuWn8XP/1y9/byoGBAhVnfmMMBE3Rsf+hDwwQ8C3/M904j13eMul31eKaGuXbfw915+P37hlxwsXD6GP8ICzdM3Evzgz/x2/D/+pIV//UuHeM/V14wxIN2g7KriDvMvFrH6sQKvtjEgqWXurD5wpM5qY3EiinAlXOP+CZvLvXT7gInVpvMtx8E8KHB3M2fdhmLeYWgOODoocZJFjTHg1bsBw4AYoFCWYc66+bhY/UZ8gMfnZ/SweFHzOf7we/8Z/vHHnsE3P/nL7Gumzup5jZU4V7Rc+yafl8v41I0BZ0pnNbCLsXrUAxYB4Hf/buDbvx34zu80P5bj4MoixYNkhrUwHpm+DzwPoVNskZl5zjAghmJ1EKDvrM5AN8wBfR56q+LcpW20SAJBAexmZBA1E9m5rs/5WpGIFgmdHEl3ftz+OZTjCmf12Xb9eh6z+e1lwOKbW5di9aNcfGdvFhJeboJB1HVW1zV3VlMxIGqxOqA6qzksf+dcJ9iF9kO7x6Mzbu3h7Sd52neXX4izOgdcewJndbplx509LMl8VgAMA6JgVifrknGACfdWKLtfBTeMigGxLPhuyYTKVnuTKQbE9W2ps7oo+OdFnIQEXtXbhZ8CA/LkzQKvrY8bsbbIKjO8jCjOrL536uL2beDHftdfx9c99ulJnNUAgLOzrVhtMCGXsYqbgCaDBclsYbMgJb7IqXPObDddlF7WxZTvY+GmWJ9vx+864fcEcYNFFbAIwCjE1ndKpbOavOAXY37rOTB2jrgua01XidXU4wtn9Wo7Ru98VlOKq1OV6wKzGd5z/Ar+2l8HPvT859nXie7iILJZwKJsI2SKDbEgAL77u4EPfMD8WO2yLHbcP/NntmO5QX3rN6zwbS/8B/z5f/gcrkcr9sVHFQMC4EPvfog//zV/D3/nH4a4Md8w4c8YA1LsZI/UVd382RdD3bhe43Z8sBuwaMisXhy5OyIlAGxyz1ystm08c3iGL5wfA3HMxerbk3xWi1mFXz25iaeup2xOH4bGAvDhssZJOmvE6jcehnhsdmrmrJ6VW/RcniMpJkAXAcBshhvROX769/9v+PDNX2q+ZlLzWY117jfj7BThnRfqrAaAp5/e/voR3rhrKgyBD3/YfG3A68pBiS+srmDu8LbhCZzVodMyTBWFGd6UV+DXvQ3nNLcZdo46dgm0RhcDUtdICgehW+iPCao8Ln4dyPetyLiKd4+7OqvoJgnPYwaJWHL9xDUhitU3onPcOd/OLR6sA1w1weRd1iR1KVY/ylUUyEoX///23jxOsusu737OrbvW1vsy+6qRZrTLkmxJ3mQJy6uIwME2tvEbDMbBBpPYway2QgIkL2sSIASIX3jBsYHYscEYG294xbKFF0kjaSTNPtMzvXdX176d/HHuraW7ZyTdc1pd3f18P5/+VNXtrtu3q8+995znPOf5uX7M/NvVAugbDZTqDpJOjItZVDF2uVu7XkdTCiTi5mgmEkoEr3c4SnUvkFDO6hWCom6FX9e9tFjdTMTOrE4ELpqdlYhDtPOSEgkETg3Fqt0SOpbm68g65fidBsdRzurqys+wXJKxndVe4lLOar1OrmuH1Zg7xeqiZSYGpPP/JaVegUWoYhwrCv5U9WNAdmxrqhiQsOfcKi5oILN6yC/gSyf34MgR4MrUObXsXbdDGi1xnJszEgPSEiI7xeqqpT3YDTJ2V4HFQl4qtwA7Nr2J6yLtVJDPta9dpcWqWjYZc2Du+2vjrPYStZVidXR/1BCrbavRVagtdqZ0hG0j5VzGWR2J1c/2842KKOXb7yvNl9W+TESArBWZDLYnF7B9tI6fu+ULrW1xuJyzekNcYwxNKFiZFF69+2F84ZERjHhhJbgeFqvHd7t43f5v47+880m8/54H1EYDzurIpVkqAZ4VnsO9fC4YxEoFKm8/zLRTzmq9PoybcpSRIRooNZso1hy1kk1TAN49VMCZ/CBQKOD0XBp70nNGRMVUCji2OIadWXPnQX8/sFBNtj7beiOsvWJIrJbFksrwNnHOhtfSQ4njsKtFdY3R7G+mM0C+o8BiK2JGM7O6y9wVOavjGm+W833fB9x5p6q7cMMNZva5gRjsb+KrFw9gfzosMqorVnteuy6AlO04CU/vOuB6YkUcabUm4hdYBNou6OUCT8vcFaOIZ1gQdIVYrTvR5DhqVVC+29xWWGqq1c1x7l+OmlAsllf538StmwWEzuolTOfbGetzRbXCj87q9YVidS8TLfeMk3sZOrNWc6oW41a4XS1buuM4Y194hYDnhPEH0b6i+AcNsdrxLHWTWOGsduPv93IxIDJ+gcVVZzWlRKESLkHRydX1ZZeglpurI6NTlMR1kRDy8s7qGJnVqzqrw8kVzXHeCgG4UBJKrI4bA7JagQspUW8KOImYBRax+ix8oepot4Ht29GVWV0pNfWdIwDgujg8OInFioc3v6HejtnQFavHx9XjxYvA0pJ6rjPQ83010O0ssFjVH+wujwHJ5aAmguis7k08Dxmn3GpSAJCbralYpJiiT5AUK8TqZrWuBucak4yu1UClZnUXJtIVKsO6E521AYw5q0urX/OKJcQTq5NJ9b8qt49rcaamN9H6XJDNQgjgkU+cwFjzQmtbHLzAQmWVPHQAG0OsNkUqhX2ZWcwXPYw4C2pbL7sJ+/oAAHcdPI3rBs6qbTrHG66QK+TVeXvsGHDlYCjSGMgE3xCkUrCtBmqLavJ6ctFXKwQ1zgPhLut3Nxoo1FwkvdWLxT4b9oyWcDo/CJkvtFfcmRCrR5J4aG4n9ljnwg36ERD9AwKLVR8oFjE3B6SdUATTEGjSyWaraOHCZAX9bsmMWD04qPpXuVCs933tSbFUqju7vFQWysigc41dXjcqMt6YmlvKZoE3vAF4xzt6+1q4RmwfraPatPHeI59SG3TPg0QCgddAuW6rcUxULD1u3ZEQz5Mr7uHVmohfYBG4dAxIrabMeG6M69fTOavjTrKEUaSdq4KAMAYkTr8wPNaUU0WhYnf3j6HqZonwZ541QmAkXcJ0Od3qa88VfSVWb6X+Vg9CsbqXCS+WcQPo/UQN5cqym3iYw5QMYlx4ohiQVQTF6HfGxXOa3ctd63U1m6cbA7LclVSr6S3tuVQMSKOBmkZmdevC2jlTGrk83JqWyyPwJUqNdlTB0kJDDfjjOnJs+7LOaj+Oszp015dr3XnNrRuljrPahZoI6Wi4+ZKtZnXjOqtdgbq0VkyE1JsJ6ESJrnBWh20g6dS0OuR9QzYWq0HbWW0gAgMAIAQO7Sjgc6/+XbzqjkX1v0sk9G/s6bTqfJbLwGOPqW2jo/H353kQQqJZ6nBWVzTdDQC8tKMmFzrFarfEjk2vEjqrO8Xq2akGBr34hcr8QKgYkI5rgXbxL8tS8UWNlddDAFqxUFm3hKVC+37SEqs1CiyqJZmXEqut2GK1EB1xBwAmztTV8vReFqtD55+VW1ARRkLEjwG5nLN6K02IJZOwhMTVI9MYsRfUtl5uA9HKoMXFlltVS1BKpTDkFTA7r86xRx8FjvSdV9/bQmL1iJ/HzFQTUgJ/8I0b8ZYrvqF3r11ecDY08xgRq7dVcXppCB/7RAK3jx5XG02I1eMZPDi9F3eLz6sN0cS+Bv0DQsWAlEr43OeAu/afDH9ZfAEwk5atzOoLZw1ety2ruxisic80Y7WEdaDDta/prPbtcAwuZaswrucaclZvcXbs93D0X/57XJcJ26qBduB74Sq5YlHpL1JoO2pdV3Qb8QBUagKupWGUiVzQy2NAIt0kzml2qczqUDPx48a8hvEqK8TqvEZ9I8tCyq2pegON7mt1OV+Pp0GEjGQrmC5lWteC2WISg4wBWXcoVvcyOgPTaOlFZdm/OOqMxczB9hK1VaNFYh9niOdBzT52dBrNZFav5qzWiAGJnNXVlVEojaaFhKspVi871kLdQ9Ktr/6eZ0gyCJ3V4WebW5TIajqrbdFEo7byMywVY4rVQsB3myuX04duBC1ndZRd3iFWF0qW+czqcNmYbcfvjK5wVjcaKNZdpLy6llgdZTbLknI+X5xzMeznzdyAoyXuk5Pq0cSARIj2ICza75498ffneeh3S1hYbH+GJgYkrSzs6Nyis7q3CXOQF3Lt++LsdBNDfj5+ZnXkrF5WtFA3usezmysK82iL1YkE+twyFotOSwQvlQ04q53LOKvLMcVqz1PCRFO2/u6jjwpcPXCht6MPIhf1xIR6TKfjr7RJ2WoSv+PeJWsbKAbEFKFodk3/WQz7S0ZyeteU0FmNxcV2jJVOJyaZxEiwhJkF5SR77DHgcCp0bG+E4momCLOKp6eVWD/oF3Gwb1pbUASwUqyOY+ZZxu7tdZxcGsav/eEgfvmGv1Xt1URm9Y4+HMhO4YgXCuCdhfZi0j+UUDEghQI+8xngnt2hQUBbrPZaYvW25KK56J6xsfZzA/tM99so1L3WxFKpLBAk9HPLvYQSqNFsqhiQJsVqY3RmdgNGroO+D2U8KBZRL9WQ0KkXFeL5Qt3DO8XqqmZmteMo801lmbDcaChndcyV8wBWjRZpFViMg+siSNS6VvMBQH4J8Z3VAJJ+s0vXiGgVboz5fxvpq2K63BarcxVPjem2Un+rB+nh3h6RVY3sHdtGkKitFKujZSJx7u/hEuJKVay+NFlnYO5B3dSjGIHWkqn4N3Y3SFw6szqus/pSmdWNhlr2rVEwAUD3hbdeRyESKjUIkqHzLxzwLuWkWj6pm1m9SgxIPg8VMRKjzfpeKNQu+wzKDVvPWR1lhnUEYudLCb0YkNUyq6OMM02jT9cES6OBQk1/wgLpNPq9Iuan1X4eP5/B4YGLZm7A0cDh1Cn1aMrx1ukY6utrCwBx8DyVRTbf/nvLtYR+FMqyLOzcQlPv3CJri6smaWZy7Q7y7HQTQ14hfgxIIFQUTGfOvG60BtThlBuOWVetEMgGVbXKIrzOatdFiJzV5dWPKbZYLQSQTMJN1FFdUILf0ccTuHpgorfPr2jy7vz57tcxsAJPubs67om1SlMtId5Kg6dQiHjHFV/Ai8ef7Om8agDte9XCQlus1nH+OQ6GU2VMF1NAtYpHH2niSOaMagO9PHFjklQKI/4SpmYTOHYMuHE0nAzScT6G1yRZaYvVSzUfaV+zvwVgxw7g8+evwh1XTGE8mVP/fwMZ7vtu6MOPX/XV9q62b9feZ3LAQ6HuopEv4ZvfBG7JHlPf0BGrM8BSVWVWP/6EhYPZaXPX7U6x2oSzelD9/VEx76WSrcYHmqaDroLpjYZyvZrKrN7qrIVYHYiWs3pmVmDEX9K+z7qeUCu8l9UhStka7ctxVMRMYdl1Klw5H1esFujQnTr2WW448WqnhfsN7GprgVFEoQD1GcQUq1NBsyu6p7XfKF4k5n0hnYa6FoR9LimlutZupf5WD0KxuoepFOrw4uT/AuEFYnWxulh34/X1w2zpFctSI2e1xo3d9a2u5fRGRMrIUbtKZnXssU4UA7LcWa3rLl+lAFzk8kj5eksSW87q5VEFcT/c0FldrzZW5EXlC0DajicCe55c1VndlBYsV6OITpBAuUOsB4B8xdGLAfFWcVZHEyxO/P+X50F1bCJxInRWx1oJ0Uk6jRuHzuLBJ9Ug+vGJLK7qNyRWR86exx9v/S4jdIrVOq5qQInVQR7Tix3F2qoGxOqooxVNBC029VYtkLUlCJRYvdD+n8/OQlX7jhsDkrRWOKtLJQPO6miVxbL7l+7S1L6g1hUJZESsdi4tVpeqMcVqQDlK/TwmT6uJxqNPOjiyUZzVZ892v47DaoVhowinrTR4CgLAsnDr6CnsTC/0/vU1igGZnzdWx2FkoK4cX4UCTp1sYm96Vgk0hopY9jyhs3pq3sGJE8D+9JTarnn/TnYKKY0G5iopDGWWLx999th9KYwnF/GuFzyoNhjKFb7+pQN43+1faW8w4KwWKXVsX/xWGi+8QyJRyqtvaPTlMgO2igHJ5/HZrydx947H1sbIYOBakBpwVQxIOLF0YSFQTnBdV+0ysTpf95AKNPvyRLFzZ/v56KjWpHBEELRjQCanLYwF+mK1qjuxrA5RRfWZtMTqRB2V4rKxpk5spuvCTdRRK62MFpFSxB+Dh87qFTEgBagJIR2xuu6uFKvzUqs/Kzy3bRBoNiEQHjdXy64rFKt7GDVDFPNkdl0EidVjQJpSIOHFO5E9D93VswHUq03YQm+5jOcLJSwvd1brFFgM7JWZ1VEMSFxn9WViQADEv6B53XEC0T4LNU87P69VBC7skeeWgIxTid9xtCzYNlBvWCtuFEt5S8NZjRWij4mImXSqW6wHgEI5oTX76ngW6qYjZqCE9eWTNrmaj4xfu/wbn450Gi/a9iS+clwNbB6/2IfD/RfM3IAjZ8+x0I0zNKS/TwC4/vq20HP4sN6+wirPM0tea4Ll4lJKOZ50PoOO8/bECWBuXuhNBJG1JRKrO53Vc8CQFz8GJEhZajLMsLPa91deD5u1BiydFTwA+pK1bmd1JYHARIHFSzmrK2qVV6xrbTKJA9lpnHhC3V/PTTrYmZrv7fMrcv0tLKhHTbFaAl2rgkolqOJfW2nwZFnAlVe2X+/evX7H8kyI/uedReA0Y0uGhyRmyilU5wuwZBMJS26dCBAASKWUWL3g4sRxiX3eRGt7bFwXKbuKfDH839RqaEoByzFwbqXT+NZ9v45DeEK9NlUETwjgla9sv9ap5RERCr7//xd34a1vrKjYCs/Tun9lRnzkax5qc0s4NeHiQHba3CTTvn3t58sdtjGw+1JoSKstVudSRsTq1j28VALqdcxXkuhP67v2CbonUl72MiOTdi3jQbGIyZkExoKcGWf1MtNcvuIoU5dGgUUvUVvprA7rnMW6ftk23Eu4tQHEN0hEBRaXO6uLIn5mNVbGm7b2m5dKN9M4XgBAtYryUq1tGN0qk8I9yhayZmw8tJYz2DYCp45SLRRru6rHOrEvwK4n2tnSYSexXJLagycvsLCwwlmtl1UsHFsN9JYVWCzpFOyLnNU1KNEruoBFjjddZ3XHoDTKrNZ2Vve76qKeV26J4xdSeMuBWa2OY8IOCwxWuidT8kVLw1mNVZ2E6hfGb1uptEC+7nU7q6uOVgzIpTKrSw0H2zRiW9wggWpTdk3azFVSGExrOn1SKdwxdhz/9ZGXAc0mTkxnsPfmWTOiz3JnjymxemwM+PVfBy5cUGtqdbBtjKSKahl1XXU+zub6cN+OOQNidROyXMH73gfYp0fw8uQTve/826oEAYa8PGbyfuv6PTtv4Sa/ALj9sXbpp8LJwM7Mal23MtSpuTwWqVSUesIyQrG60OGsriSMFFg8W7mEWF1NxHdWp1I4kJ3GU09ehZsLQMqtqVtuLzurly/L1xGro+tzp7M6KmK8lZzVAHDDDe1iu7fdtq6H8rTYNjA8DMzMqNcGhMqRoSamSxk89VgNV+wKR/5bpbgiAFgWRrNlPH5mHCefrGP/tkl1TdGJAXEcFWFUVNGGtXIDtqmInZERtWLnrIqWMCZWA8Ddd6taHkNDZiatwgKmj53L4PlHQle15kRIZjyFpZqP7zxs4+YD8+q6bapftH078IEPKFFdt28IhP+bapdYvX14QT8GJGmhUreBQgGyVoeAGpcSQ7zznSp+8CUvMbK7dFYgN+sDhQImZzJKrNYssOglE93O6mYThZqLlKOx8s5x4CfqK3KglQ5hx7t+hTGv1dJKt7YQUqsYpKqf1i32FopCK7M6lZSrxoAUC1J9tgbE6vkLZQx6BY7negA6q3uYQl6qmac4J50QK7KKAWjPkq0mKLYGTxo39lZWVCTSRVVtdfK9LlG0UEsEFwKOLVfkFcu6ZhRKZ2Z1FK1Rr6NYd7SXjY1uS+Bisa8lVh+7mMWV/ZNaQqXtCDSaVnfbArBUCJ3VMdpXqw0sc1ZLQKttpbNhpe+obUlpLgZktYgZDWd1a8lYx3nQaFqwXc1LtWVhZKiJXDXA4sUS0GzCtppmBlBjY92zzqbEakD9f3btMlJMayRTVsuowzZ7dqkPu9Lz2suIvUQdlVIT09PAt08PIeuU2LnpVSwLw9kqZkqpVjuYnU9oFVi0U566FnRMNLac1dr3xGVidcXSE5YB9KUbK5zVRgosVlZ/f7Fqa8WAHMxO4fgJpVMe3tHhVO1VMplugdpEDEhH29qSMSAAcNNN6vPYtq3bZd2rdLo/Bwe1dzc8amG6nMFjjwFHdunHNGxERocamC6nMXmhoYQkXWe5ZSHtVVGouUCjgcmLUi39NyEAL3c8mxSrLQt4y1uAV73KzP76+tDnlvCvrv82RMGMWJ0eS2GxGuDYCQdXb5tXG01et7dvV1EQJhyP0f8mFKsncmkzMSBJW/XnCwVMTwMjBmIlSAfXXQfce6+xYrujI1BjhGIRk1MCY8mcdl9exZF2GJtqNeRrHtJBI37bdRzlrF4lBgRAvDYWRousEKt1ndWOo2JASt1/a75k6WVWp6CKoq4SA6LrrLaERKNUxdyFihKrTV67SSwoVvcwxXxTa+YpSIaFnzrdutGJHfOG2RKrOwbQ5YrQHjylM0IJipH4GcWA6PRtXBcCWKVgn55j23FWitXVilTLRTQG/BCiVTU6OtZCzdPOKx7c5mGukgSWVCX1Ib+olpJritV1mVixBCdfSsR2VvuBWOmsNhEDkrXUDGxH2yrUPFW4MmZn4VKZ1doxIElbLRnrOFYAZjq46TRetv1x/OzPCbx0x1Nqm4mbsON058eZFKsNMtJXxXQprT5bKTFXTqqOiKazOmlXUSo0MTMDPDndrzKre1lM2+IMDzQwU0m3YpFmF22tAosi8NV9plOsNuCs9nyxIsO/WIKK1NCJAVkuVlcNiNV2BYXK6tf8aj0Bx2poxYA8dcrB0aNoix697KwGgJGR9vPOa+OzxfeREE3Ui8v7Wxp9jY1KNgvcfz/w3vdujCW5+/e3n197rfbu/H4flYaNR49ZOLxtQW3cSjEgUO7yi8U+iHq4wsLA359y62rsUa3iwgUYESkBqH5Qp4jWy4LHyAjec+1n8SO7vtgqMqg7EWIN9CFhNfHY2TQODIbX7V6dxE8m4VgNVJdU33CqkMSov2TGVdtUYvXZ003sTs/17mdAMDomMFXKdMSALGlfY5QBqaMfV62iUHeRSuoZ8bxEHZXysrGmjgvaceBaq4jVOgI4ALgu/MTK+mmFUkI5oGP25VIpqBXjy8XqKF5EQ6xOO2UUFmqYm6xh0Cv29rV7i0CxuodpVUuNedIFKQulZVm9rQtPzH22ihZ2itXlcACt0cHL9gG5sHI0AKDRQLWZgONpNNFLFC1sSgHLi98JWc1ZXS5DLc/WEb6EUKbq6LONYkA0ndUik1YdsYUivvUt4NbxM+obumJ10+qeCAGwVErEdlZ7HlY4CWVNPwYknbW6Y0DqdeTrHtIa8SqOn1B//3JndSNmJeaQ1pKx8HOtFBtqEsSE0yedxn37vos/+vMkXr/3AbXNVMe5M1O6V8Xq/lrLWR21K+HYesJHWDykWJCYmwOkFMg4FKt7mf4BgflKsuWims3ZWgUW4ftq9UfHfaYlVus4q5PWyhgQA1nYfVm5TKy2tcXqpF1FsbrK+xsNABIiYcX7LJJJ7M3M4vSFUKwen1Xbe/386utrPz9yJP5+PA8ZpxItigIAlCvQXsm2YRkc3Dhu4k5n9fXX6+8vFE0eO+7hyGgYL7JRPgtDjIwKfO78VXjhwUm1wYCIkPIbyqFXqeDipMC4KbE6keietOplwSOdxiuveArp+gIwNdXapkU2i32ZGXz2iT042B+21169bjsORpIFTOWTQLWKZkOqTHjN/5mfCou7Fwo4c1ZgV2qeYnUPMzputcXqWdvI6g0n5XavvKtWka/5SKf0xGo/UUO5uFoMSMwC3I4Dd7WijSac1XYN5arVXjUOVTcq7ZRj97udwF5RPw2IdDON/mwQIONUsDRbxexkHQMUq3sCitU9TKEANfOk46yudzur66WaVjHE1ZzVpbLQzqzO9lvI1fyu+IOmFBC2geJny3KgAWh1Rh0bK1y1pbK+u9xOSJUDHR1vrYai7gwsAGQy2JOew+kzAn/918BdO8NCeDpitWupY13urC6Gzuo4BRZXiQGpVZpwrYZeZnU20R0DEi3DSsafBLBdCzW5MrO63LC1xGo35XQVWJydkRj288bE6uePnsTb75vGLQNPqX3GFeiW07ksu6fF6jRQLmN+oqQ6IboDB99H4NRRLEgMDTZhiaZyVnNA0rNYqUB16EOxulBKqEnhuG7dVe4z2tEa6Lgedjqry5Z+ZnW22TUxXKtbcCyNAsm2rZaPNroHIwDa13LXjTcplEzCTTRQqQg88ABwZCgUqXpV9Ii4917lpv2lX9KbDPM8ZJwylpbam8oG+hrkOWDXLuWqP3wYGB/X318qBcdq4KHjKhon2raV8Ps8fOKeP8DvvvbzaoMBsT6dVBmyKJVw4aIw56wGuqNAelnwEKItrJ86pR5121Ymg6v6J/HtqR3YH1xQ23q4XzSWKWGylEV9eh62aKh7lm4MSNppO6snEnRW9zijOxxMlTP4L5+6Al88ts2IWC0Cv7tIcuSs1tlt2OeqlLrHsLIWOqvjjBfDuI7lOdj1cl1LM4JlIXAbKNXtrvHyUtlWWkHcFY3uKjGvUM5qrai8dBppp4z8bAXfeySBqwcmeM72ABSrexhdZ7WftlUMSIfjq1WgKW5mdZSp2+kqjmJAdMTqPgtLtfYAulIKRUqdzsIqjjfUakqo0DhWxxVKrF4m2Osuz245tjscwIW6q9/HTadxIDuNj39rB86cAe4afVht1ymw6Fiodx5ryFLJVs7qGCLoam2rVIK2OJPqd5DvaFuo1VS2tE4UTGBfMrNaR0fJDiTUeRB2bGZmoPJ0DcWAWELif/z4g0o/SSbNLac+eFA9Dg/3rJA0OAjMVVRW8dkTNeVy0T1Wy0IyLXCxmMVofxW7M/PMrO51wv+NLIZFymRTr2if76uVK4X2tSBXCgu46sSABNaKybtSWSBp6wmVfVl0OatbAnPczn1Yx6HaSKgYq050XTnhiO59r3wI3/sesCO5QWJAtm0D3vUuJVjqEInV+fZ1ulwJzQEUq3sb2wZ++ZeBn/kZY7m6ezOz+JV/8R04uXCFQX+//n43EqkUXr7zMYiLF1qvDexSOauLRVyYssyK1Z3F/3pZrAZWitW6EwGWhSvHF7EjuQB/4aLa1qN9QwAY6ytjspTF5LEFFf9g4P/lpZ22s/qCQ7G6xxna5mK2nMKHHzyI//HaTyqjkG47iP7fXc5qT+/SFRZYXC5Wl/P1+BPZrqtWyOWX7bPYVP0NjUicwGuqVf4d4+XZQqC3onG1mmSICjdq9L2z2Zaz+sv/nMKLxp/ccpPCvQjF6h5GN3snSCfUBaLD8bW02ERGY5+tYgFdmdXQzlDMDtrIVYPWsZ46m8C+zIx2niwAozEowCViQCr67vKWYzv6bBsNbVEVQEusfv9nX4j/9OsSohp+HhoDftu1VAzGMrE6rzFb6qcSK5yEJiZCEkkPTSm6XPsSelW51yqzemDIUvnia+SsBtBe5mly8OT7wG/8BvALv2Bun4ZJBG6rKOiJJxvYk541MnAIMg7O5AcxnCzizQe/oTpgPTwo2/IEAdJOBYW5CnI5wBHhORz3fPA8DPt5zMy1u1PTSz5GfL1CXa0lxB332mJFPwu7rw9YrHWI1ZHArNEhd12g2uh2zgAAqlWV5x13QBJes9549UN46CFAFMM81V4Xfkzheci4oVgdTiqUq9bWzKze6qRS+PBdf4IfOPI4MD2tti0v4rfZ2b5dPV4IxWoTMSApqJV3xSIuRs5qU4Liy18OXHON6g/v3Wtmn2vF8LB6vBgKywYEmqt2F3Cwb0q5LoCeFmrHBquYLGXx2c8C1wyeN9K2skMOlmo+GktF/OMjQ7h+6FxPfwZbHbs/jXozgUpV4FU7HzaTix+NBTrE6oa04AQa9++wwOJyF7Qyd8UUlm0bgV2LFhy2KBca8Cy9/kbgN9Uq/07dqJ5Qx2pYrC6WLZVIoOWsrmBuqo75nIWx5BLP2R6Avd0eRs0QacSApEPxr0NQnJsXGPAK8WNAlhcLAFCuWNqCYrrfxlJHEbzjZxwcyF7QG5B5HgSK5mNAXIFa+RLOap39RoUbO+IqJADL0RQq02ncMHQWb77yQdxy3Y1qm+dpuX0Gs3XMzKRXOqvLjnJWxxGrowKLXRmt+nno8H21NKrDWQ1Ab8LicpnVGve1/mEbC9Vk21k9J1TxN5Ni9WS4lN70DTibNbs/03ieqvJcrOALX3Fw37YnjXwGyX4HZ6cGMDy4gP9w89+otm+oOjlZA5JJjAU5XJxo4pPfA9545CG1Pa6TzPcx4p/HzHwCoZSC6UISo2NLejEgSUstIe6KAUkgSOiJ1Zk+S8WAVKvqfiibqr1qTLC4bkc0Vse1v1Gqqmtv3AFJ5BxdWMDu3eqxa/tmx7aRdmtYqrgq/9u2jUzgkg3I4KAqjD052Rb/OjORtwKdRSsBI4JqOmth9pwHlEqYnLYwumsJSB3Q3i8AdXw/9VNqQrDX+wTLJz50CsOGXH9VFf9l5i/bG3p4En9ssI6Hz47gbz8yji/f+d+BpP7fPzhmY66Swke/vg0vOXBeGRkofPUu/f2oNWew3V1Aq1CEKbE6LOitxreuXgSj48Cz6suH3ygVmvHHy66LpJ1Hsdh9jpZLUvU3dJzVPlBqdDirpWyv6Iv7OYTvk5XQEBFSKFlIuRoFFjMZpJ1JfPXRIdy4e05t2yrmiB6mx++eW5tCydKKAXHTrnJBd4i18wtCZbXqxoB0OasNuF9TPpodec1PnfVwsG9aW6QEAFluX9Gb1brq8OuIypGrtuNOUa5aapbQRBZ2R4FF9Q29itRIJnHL2Bn88R1/2r4Ba3aYDu0q4cnc6MrM6ooT21ntpewVy95NONbheSr6Jfx/yaq+WG17iZXO6jAGROejbbnAI2f1rFDOat02ALQFnnPn1ONWW9rk+xgJljBzoYavPujhjvHjZpzV/b5yVsvp1u8hPUwyicMDF3D08QT+/M+BH73ya2q7hlg97OcxvdA+R6cKSYwEes5qN2mvnLwz4Kx2kk47wqkQOpVTKa3JS9eFKry8zFldytXU8cYdkAwMqEdVvXTridUAMkG9KyJNOasZA7Ll2LFDCZ4TE+qakEptvUH0jh3dfSETmdVZSxllikVMzyUwGiyZ7xv1ulANADfc0P06inbTwD60H9cOTrQ39HCfc2ykiY+evBEvv+IU+tyykXNrcNzDbDmFrx0bxr1XhrWCKFb3Lp6HoVQZh7KT6n6rOYkPoP3+SC+I+nM6YzrHgW/XUCl3O6vLxWb8voHjIGlXW5p61z41tY3Al8pZHYrVzWodAqEOE/fa6DiqVkqpuyBkoWypRALNGJDvnhnEoeFQrO7h69ZWYQPcQbcuhZKlVWBR+CtjMOYXBAY1xGo3ubICqwmhdnlkx/FzLg5kNcXqsLptrdJsLXVuzRKaEKs7JgFKBtzltoPuHGgDLnAASoRY7qrV7Igd2lvFEwtj3c5qKVGuJ+Al6rHabCsGpHMSoKKfBd6atCip/1dxqaFXLRhhpMTyApP1OkoNB0FSI59y2ZKxmammcmOYGJRGS2ijz3erdZr7+rAtWMRXv+li13BZtVMDwnIwGCixunI+3LDFPteNRhDgmoEJ/MO3BjA8LJGthfmvcTukoVg9k2tf86YLSYxoZs0L11GTbF0xIPqFGzudPvXFAhKiqS36uJ5Q/YJlYnUxV9cTqzMZde0vFID5eeUuTibNTN5tEDLJRlcdA4rVWxTH6S7UuNUiQADV5nfvbr820C/aNtbERKEfKJXC6MXq1hQnstm2c/2668wI7IcPt58fOtTTfaOxbRYeX9iGFw8dVRsMtK2hHT7mKilM51yMuWG9hR7+DAgw2l/Fob6OcbJuvYEggEBHjZTOotNxsW14Vr1r0TjQUZNMQ6wulrr/3kpZ31ntB0LVTwv/9sXpKvrckra7PGlXUcgtE6tLCTW+1yyweHRyCHsyoVjNc3bdoVjdwxTKCS1n9YqsJABziwkVAxLXWZ1MrBIDYqA6/bJjfeqsp8RqnQ6DEPDsZpcAWio0tQv2OX5ihbO6VLHUfnUyqx2BqVLGvFgNtCMajh9Xj4ODWrvbsa2Jc4WBbrE6vBEJ14l1g/eynso97ZwEKBtoW56nZmCL6vNcmGui340/YQN0TAR19hYaDdSaCTiuRucmjKpoltTnOjMDDHkGinwAwNhY9/9lq7my+vownszhb782iNuuNNcJGdiZxPdmd2LECkVPOqt7myDAtYPn8aGv7MJttzTUddbVWJbpuhgJ8pjOB+1J0bqtP4EbHU+ns7oa5vzpTN6l0xBCorGYR2mmoMRkTXHGccWqmdXFXB3JhIZYLUTbRR0V/tpCrmqgQ6wO77Un5gewMz1PsXor0inUbkWxGgDuvLP93ICovHePxKn8EFAsGsnv39C84x3A3XcDb36zmf11ttebbzazzzVibH8KAk280H9QbTDQBjJjSeRqPqZyAUYTYf+QwldPs2O0hiMD5gq4wvO6Chc2SlW1uls3BiSxSgxIUcaPAXEcBKuI1crgp5dZnU6HdQHC8fLsxZqKt9QplO26SNmV1uLAiEJk6NAQqzNOBScXB7EnWIP6TiQWFKt7mEJZ86RbRayezyUw4BbjZ1YnE2ppcqegWE3oZyh6HhKiiXpJieATMx62Jxe0b+x9QRWLHYUbWxdzzbziFTEgtYT2Bd1xgRf/7XsxcV4t7WlU9CNLWmzbph6Phq4BTbHa8l1YQqJe7HAWR59HzBuQCHxIoKttlStCX5zxPKSdcisBZXG+iX4v/jkAYNVzKxJqdAo3wveRdcrI5dTL7zyRxNWDE2Zulq4LDA21X2+1G3B/P7YlF/HZR8Zx7Q5zYvXbfiqFF28/rmKLDO2TrCFBgIN9UyhVE7jturCnq+MsFgLDmQpmyun29SDK49O5brmuynvuyPkr1pSbRGu/mQxG/DxmJhsozpaMiNUqBmQVZ3W+qdeHAdpRICdOqMetJlanml0DvS+d3Y8Xjz9JsXorsmdP+/mOHet3HOvJLbcA//JfKvfvvn3auxvbYWOymEUtV4IdFdvdqmJ1X5/6bPv6zOzPsoA3vEEJ1bffbmafa8TAvn785JEvqZhMwEj/WKSSAATmSx76q6Hwxf5hT/Off+xJvGz74+qFieuA7yPjtIskF3INFZWp6az2E7UVYnW5JONHdlzCWV024KweGLJULaaweuPsVANDfl5bsE91TAJEFMq2nsnTspDOCEhY2NM8qbZttbFyD8Lebg9TqNgqeyfuSeetEgOylMAhP76z2u0L1KC0I9houhDgKn9SO6oh685jaQnwS4CfqCkTqOaNfSBVwXwliV2Rs7oE7fyllli9LAYkSGg6q12BYt3D3KzEdgDFglQXXZNideRO0xSr4fvYl5nB6QkHrVI0kQMw7mzp8kIUAEomikn5PtJOBYW8xBBU7GmfW9YTUIIAQNN48U74Pga8AuYWExCLQK0KDJuKAQFUFEhUnGmr3YD7+jCeXMTEYhrXbZsCJmFk4OD5Ah/64b8DLoRuDA5GeptUCo7VxEv3n8Xzr7KAz0M7BmMkW8HMCVVwtmIFcK3wWqApVgNoi9X1Oop1F4Hb0Fuamk5je/IcJi4I9M+VkbQT2n9/wrNVLNLyyuxLDb0YEKAtVp8MBw5bTazOoOWsnp0FXKuGjFthgcWtyB13qA7M0FDPi39ryt13qy8DKEERmJ4Ghj1DRdVImzvv7HbD9yhiZBi/98Lfa28w0Y+zLMC2IWt1WJWSuf2SNcMdH0SrYp+JMZJlIe3VsFT1MF6pIJ9rKl3HgLO6XO32m5ZKiG/Gc10lVpe791kshoYxJ34fsW/IxkIlCRRUFM7sVF05q03EgKxwVtsqykljfJ/ps+BaNYzXz6m2sNXGyj0IndU9zHzRUy7ouCf0sqxeAJjLOVrOajvtq0FpOEMGAJNLKYwnc9pRDRmnglwOeOIJtIPtNS8SA6ka5ivJdgxIdDE3HANiIrf74M4KXjB6olVDqlCAdrZyi0isjtAVq10XezKzOH2xLUzX8hXYohm/vQaBymjtclYbyEP3faTsqnJWS4mFBaliQExkrJsWqz0PA14R80sJfP7zwF1XGi6G2FnhfavdgPv7MR7k0OeVsCtpOIusc0l2lA1OepNwdcGnf+CP0G+FSxgyGa1dDvfXMV3OAOUyZiYbKq/asvRyP51lmdVhJn7Sa1z+fU9HOo1tyUVcmEpg+kIdGaeifX0R3srIEoBitQnSaagCcJUKvvJliZeMP6G+QbF66+F5wA/8APCSl2yp3PY1JQgwlszh6MkkRrzwfkCxeusxPNz92lAb8Dtr2CQSXBHT63SuPjW0wiAT1FqrowpLTX1ntePAT9RQrnSbFlTMaS3evsO4klK5e5+5vIWsU9Jqt16fr0yOoW40NyNVLSadGBDHQSo0oXVSqoaJBBpxjOl+G7vS82plO8D7QQ/Aq2YPM1NMYtjPa8WAOFYDtUIV0aVrPu9gYEgjrzcSuDrcrxfzaYwFOQPO6jJySwKPHW3i8JCZJVP96Trmq8l2DEgJYWZ1fKHOCSJndVuwL9VsZG09AfT9/+osGo8WMT+v8qWnZhPq/2+ic7NcQNMVqz0PQ14BcwvtG0J+voa0U4l/AwoCSKjJleh2aSRixrKQ9uvIV12gWMTCglAxIDqDPd8HUFqRWQ1A71htGwN+GfNFHw/8UxMv23UaaMCcsHz33eo45+aAm24ys8+NQjqN7alFXNN/HqIQOqjWQqw+eNDMPsnaMDQECAExPwcsLqptms7i4cGmigGpVDB1roIRf0n/nF2eWR06q7XF6kxGidWzLj7xd+N4/YFPAukrzR5rSKlgIAYkEhGi6+sWE6szGWCpqpzVRx9u4rqhc6pPoFv4iRACJJPYmz6Fbx4fwmhUBG+rTeQTdY/q70fLLWSoDQwOClQqHf1NXrd7myNH1AoWxwFe8Qoju+wskpxfksac1ZVV86VjitWRs7rSPX5dKlrI6K5Ejs6lKAZkRmJQ11ntuioGZNlnIJtSicwaQnhm3xD2pEND0+goV0P0AHRW9zDlegK+XdeKAQkSNZTy7cHtfN7Ru0gsu+gAwMVCRt9ZbVnIpurIVX089r0qDvebWVI/kG1gvpIy66wOnG5ntZQo1cKCWjodEc9Dv1vEwqLax/HzvioyaUKsHhnpdvl1zh7HwfMw6BUwl2vf2E6fktidntOKARnyC5ifb28qVw0UWASQjnI/CwUsLAr0u3ozxatlVsuamYKYg6kK5qtJnDzexP5UR1VqE6RSypn1Yz+29WaLLQv7d9Xwkbv+GJgynB/YKaAZyNEka4htK7eulMCZM2qbpljd3ycxX0li4kwd//4/JjAamBGrHavRquOAeh2luovAl5d/3zPY7/ZsHo/PjeLBJzK4Z+dR/WtBdM1f7qwuSH1n9fJJtauuir+vDUhmwFYD3UIBjx9t4Kr+ixTTCDFFEGBvZhYPnBrFiL2g+skUJ7YmneMiQ/3jwdGwPwCwXW0EbBv4kR8B3vjG9qouTTLJplodVS6jkJfK1GXAWV2pLnNWR2a8OGNw10WQqK2IAckVbGSdst64doVY3VTOap1+TBQDUuz4DKQEZJhhreGsPvDC7fjlm/5OvaD5qCegWN2rNBqAhBI/4zo1fR+BXe0Sq+fyjiogEfemGUU1dDir8zVXXXw1l6VmswK5qo8Hv9XEdX2nW79PByVWt2NAphddjAQabnUATmB3i9WNBsoNB77b1BarB7wiFnLqtDx+ITAnVtu2mi2O0HWneR6G/AJmc+3P8YknBQ71TWo5q7cnFzAx076JzxQC1V4121Y6FVYjzuexmBPoc0vanQUAKvojdPzVKg24VkP7/zWQqWO+klLiv3tRbaQ4YQTR34ed6QXgYvi5anRouhgfbz83tU+ydoyMqMcoWkJTrBaB+p9/858TSLp1vO2qr+kPdqNcwlIoTjcaZpzVALaN1PHh47fglXseU7cs3WONrqXLKv4UCzL+stSITKYtWN94IzA2Fn9fG5DMsKfE6lwOTz4FXJGd4v2AEFMkk3jtnofwmRNXqLFBMkn361blllvUvfDmm7uLmWowtM1ri9VbzSBCAKgiyUtV5axeWBRmCizatZWZ1UWpzHg6zurqMmd1KYGMo+msTqVUbMmCMnedO29hPFjUOx9cFym7gkKns7rRULXNNeN2vCMH8NLtYdyaoesA0YNidY9SK9bgWA110YnbcfJ95awutKul1moCbqIRXwROJiGERCMfitXNZltU18nnBJDtEzhf7MfkJLDPm1AbdcXqfuV4ixywp2dSyv2r46xOOt0FFut1lOqOKnylQxCg3ytifjESq1PmxGpAVeV+0YuA175W+38VOatnc+2b4hMnbCVWa2Ssb08uYmKuLfadnB/AvsyMtlidygg8Mr8DzVweC/NNlVmtI1B1tvcoYqYYRcxoitXDCcxVkqiWGvCqYSeX4oQZovgbGQqAppwuV18NvPWtwAc+YGZ/ZG2JxOrT4aRoNqu3P9/HgFfEd486uOfWeVzRZ0BQdF3VwS+G9+9aTd1ndJ3VALaPNXC+MIC7+x9UGzTF+suJ1cm4Tp9O3vQmtSLkrW/V288GJDOWRK7mQy7mUClJtdqO9wNCzBAEODJ4Eb9w46dxZGCCguJW5s47gd/+beDHf9zYuGtwdxojuwNg927g1a82sk+ysUinpJpwLpXwDw+P4yXbn9CPAbHqKNe6x/HlCrRjQEpVuz0+ApArOsi6+s7qfreEhVklJj/4eAo3Dp/V68fYqpBisdNZHWkyuv3NVKodP3fkiN6+iBEoVvcosxdrGNLJqwYA34dvd8eAaC+RCALsSs3j3JS6GJbmSvDtmtqfphvhRdcv4v0P3otX3jzdvugYEKsXqm1n9em5NPakZzVjQFY6q0sNA2J1Oq0u6Dn1OT510bBYbdvAm98MvOY1+vtKpTDkFzC31OGsPuXiUL+Gs9pxsD2dw0Qu3SpWeGqxX4nVmp/BG140ga9cPIj/83dumFld0h+URO29Mw9dN18bwP79wIPTe1SuWRS3wwGUGQ4d6n5tSqwWArj9dhZX3ChEYnWErnsilcKu9By+9GAS+4YNuaiiIjqdzuqGi6TfvPz7ngHj2wSSdgW3jR5XG3SXu14qBqRoSKxOp4F77tmSy6iDkTTKdQdPHrewYzjsc1CsJsQMiQSwcyc+8LxP4vmjp7ZcJj5ZW66+1sK177gD+MVfBK67br0Ph6wDmaxa2VsvVPCPx7bhZduP6ceA2DWUa91jzVJZxF/JJgSSgUSx4Xb145ZKthFndb9XxMK8xEMPAVdvX4BtNfX6yL4fOqvbMmajUFZ51SZWt77vfcp81FmPiKwbFKt7lJnJBkZ0xeogaDurpUS1CiRkKKjGPZldF/v7ZnB8bgCo1zF5poLxIGdkEHnb82r4/Ts+jB+99RE1s+d52g7ggQF0O6vnMtiT0RSrlzurGw2U62EMiA7pNAa8IuZz6thmljy9AptrSTKpnNUFrzUL++QZDwez0/FvwkJge38R5wv9rYmAqWJaLaHTFIB37QJ+/oZP4wsPpLCQs/Sd1cBKZ3XJjLP6ppuAf5rcj339C0q0t+3ebAMbkcOH289HRjgw3ars2tV+7jj6kwyDg9idnsM3Hs1ib5+hIl2uC9+uoVIOxeqowGKg76z2+gP842t+C14izNk3EAslpVjprC5CP7N6q5PN4vt2PoZ3fvgOvOQ6FoAjxDhXdhSYpaBIDHLffWb8QWTjkslaWKr5+NLXHbxw7zkl1GpnVtdRWeasLpUtNQaNue9kSqBY7xarc2XXmLN6fk7iYx8DXntNGL+nI1YHwYrM6sJ8FSm7YkaszmZpPuohKFb3KNMXG0qo1Mw1Gk/n8aePvwCNcg1PHJO4IhNmtcYVl4XAgeEcTiwNA6USJs/XMZ5cNON46uvDffu+i32N43rH2EH/oNUlVk8sprE9uah14bWTbrezul5XzmpPX6zud4tYKDgoFSXcREOZd005q01i2xjM1jFXVq51KTtmdTVcdDsGS5go9gOlEppNAFKqz0BTrEY6jVtHTuIbR9M4M5NUOdiaYrVlCTSaYqWzWvP/ZY0M4e4dj2OvFxYZpTBhjs5s6bvuYjblVmV5kT7d68vwMHan51BvCGwPQkHRQA60Z3VkVkdxUybMxX19uGW0IwJF9x4T9VNWOKuFGWf1ViabxQ/s+zaemu7Du15zSm3jPYEQc3TeD268cf2OgxCy6ciM+Fiq+fjwZwbwxmseURt1tJ1EAl6ihnLdVlGsIaWKgJ+ox953kFwpVi+VQ2e1Th8uqcbcU/MOPv5x4L6rHmttj00QIOVUVhGr2d/cjFCs7lFmppsYCZa0HZX3v+SLeCo3gmMPVXD0oQauHphQA1ONwen+0TyO50aAYhHf+67EvsysmZmsyN11UVNQ72Bg3MN8NQkUCgCApoSa1dT4XAdHbUwU+7rE6nLDge9pOt5cF/2pGhbKPr78hRpu3xvmdusKKWtEss9BoeYBhQJmZ4GRrH5e1Pbhqvpsy2VcvCCxLVhU3zAgVvt2HRm3ihtHz6tKxJpikuPILod9qSxUJI6u8DM0hHdd/UW8dujr6jUjQMwhBPDud6vc9pe8ZL2PhqwXiURboLj+ev39hc7qXX052BV1rzHlrI4W8KBeR0NaSLgG7gedjpEox10Hz4NtNdAoLROrSxSrtclk8PzRU3j4h/4jgjprGBBinEOHgG3blFA9NLTeR0MI2URkxpKYqyTxzWN9uGPbCbVRR6wWAr4HlBtOKzITAMoVC0EivrPa8l00l62Qy5VcZN2Stljd7xbxZw/fhFe+QiKo5dR2nbGt5yHl1FCsJFqC/fSFutLNWOR+0/G0YrUQYpcQ4otCiEeFEEeFEO8Ot98vhDgvhPhu+PWqjvf8vBDiKSHEMSHEPR3bXxFue0oI8XNr8ydtDqanoO+sBmCnPBzITGN+stoWqzVF4APbSziRG0FjqYj/8eEM/tWVXzPmrAYAzM6qRwMDMn84jUrDBnI55HJAxg4LQ2pcePcf9jBXSWFyLhS8Gw0s1Xykk5rOaiGQGXSQq/n4zN818Ir9T6rtPZrTKdLhjSafxxNPAIfGQmFZ47MdH65jotAPlEo4eayq8qo9T98BG7qoP/jDn8PvvPCjapumCJxN1rvy0EtlYSSzGkNDuGX0NG7tO6ZeMzPLLEeOqHWZukVGycbmJ34CuPdeVXhWl6Eh7E7PYV9qujUxasJZ7dt1FQNSr7cHJSZW2nSK1bp51QDgunCtBqqFWtfmUoVitTaeB3ge0qJgtG9ECAnxPOD++4F3vGO9j4QQsslIj6XwxYkr8YIdZ2HVwwl9TW3HD4TSNjrE6lI1ET+zOjwmAbSd1VJiqeIibVf0+nCWhf5UDZ84fT3e+vqymVpMQiCZBAp1Vy1rBnDuHLAztUCxehPyTEbrdQDvkVIeAfACAO8UQkTlMX9HSnlD+PUpAAi/9wYAVwN4BYA/EEIkhBAJAL8P4JUAjgB4Y8d+yDJmpqXKrNYd5Pk+Bv0C5qdqeOQRiWsGz2uLn3u2VXFscQx/9+kEbr86h2G/YEZQXe5oMLHPTEY9Li3h0aMdMSg6F0nHwVuueAAffvxGNaPXaGCmnMZwuvz0730arEwKDWnhi19O4MWjj6uNutnKa0X4GcpCUYnVI+Hyd42bsJdxUW0mIEtlHP1uDVf2T5oZmIfHuj+4AK8ciuqan+vukRLO5gdazup80ULaqeiLSQMD3ULq/v16+yOErCSZBF796vY9Qod0GlcOz+GDL/r/gJmZ9v51EAK+L5R7pliErK2RWJ3N6u/P8+Am6qiWuosMF8sWM6tNELXRaNUZxWpCCCGk58ns7MPJpRHcMXysLdRqCqpeYKm+YeSClhKlagJ+Qk+sBtAWq+t1NKVQq/k0zT39fRLXDJzH4R25tqFDsx+TylhqdXcoVp+fAHak5mmO2IQ8beuTUl6QUn47fL4E4DEAOy7zlu8H8BEpZUVKeRLAUwBuDb+eklKekFJWAXwk/FmyCrdcsaCEZd1BSRBgwC1ifqaBU6eFiuzQFIG9rIebhs7gp39tDD/5mjOt36NNNgscONB+3ZkvG5dMBiN+Hk+dcfE3/6eBV+98SEWA6MSrCIFbdkzg0fltSqis19FoWrBdA07NdBq5qo87b84hKIfirwkxYS1IpZBxy8hPl5RYPTSntuvcKHwf25OLmDjbwAPfFHj+6EkzbSsSpmdm1ASD52mLPnvGKjiTH2zdKCfmA2xPLug7qxOJ7kKA+/bp7Y8QsrYIATEyjD2ZOWXvAIzE93iRWF0oYGFeot8tmYmF6rz/LcuZjoXnwbEaqBbrXZuL5YQq+MPBgx7RqjOK1YQQQsiGIbNDjeFvzzyihFrb1jZJWIGnIjuinLhGA+W6jcBtxO8jui4k0O4TRo8G+m83HSnj/ud9EpieNuOshhKri53O6gsJOqs3Kc9KXRNC7AVwI4AHwk3vEkI8JIT4oBAiWku6A8DZjredC7ddajtZhVdeP4ED2RkzYrVXxNxME7IhYQmpfyInk3jv9Z/FrYcWcXgsFChNXRxuuaX9/O679feXyeAnDn8Zv/XV5+Mz/wDcs+uokYHezqESzhX6gUoFzVoDQkgzjrdMBu++5gv4lTc/qS7oltW7A9NUCtuTC3jqSanE6r5JtV2nLQQBjgxcwKOPCXzvkQSuHzpnJrM5GuzPhxMABtzqu7fVlFgdzmyfm09hZ3peO2ceAHDbbe3ne/bo748QsrYMD6vHyOliIsYqaDurp6YFRoOcmesLAIyNqccrr9TfVxgDUistE6urCcaAmCD6X0WDvF7tExBCCCGkRbovgdHkEg5mp9SGwUH9aEvfV5EdoVCLahWlhmYB7tBZLSuhSB0J4QZWxu2/ysV9+74LnD+vokt0TYMAkpkECvW2s/rcRZvO6k3KMxarhRBpAB8F8DNSyhyA/w7gAIAbAFwA8FsmDkgI8XYhxINCiAenp6dN7HJjYmjmKRKrz01YSPn11jYtBgZwZOAC/urdX2tfKE3lKt92myp49aY3mcnS9Dy89orH0WgAP/zKBSTtmhHxc3S4iclSFigWMTcrMeQVzDje0mm8+9ovIJ0LiyumUvo3tbUilcJPHP4KfuWDO/Doo8AeJzxmHSd4Xx+ODFzAA99x4SYa8BJ1M20rlerej4E2sHt7HafzQ+0lSAsp7DDhrAaAG25QItKLXsRZYkI2Anv3dr82MCHmpxIoN2wgn8fUbAKjwZK5grvvfS/w9rcDz3++/r5cF65VR7XcXbehWLUpVpvg2mu7X1OsJoQQQnqeRAL46js+1B7Kmyhq7fvKBR0JytUqSnUHQVJDL/A8ZTooKLG6UaoiYTXN9N+i2ksnT6pHA32YVJ/dlVl9ftqls3qT8ozEaiGEAyVUf0hK+TEAkFJOSikbUsomgD+GivkAgPMAdnW8fWe47VLbu5BS/pGU8mYp5c0jIyPP9u/ZPJhy0AQBBr0Cjp10MdYXOr50T+QoW3pmpn2hNCVW+z7wkz8JvPjFZvYHwO5L4Y9e/Bd4z2vCgnUGLpJWJgUpBVAoYHJKYCzImXFWRwLHhQvq0USe6lqRSuGl25/Ajmwe738/YBfCLGidY+7rw5GBCfz2J/bj3tsNZb8CSvDvLFRowlm9RyhndZi/dW4hrZzVJtqB4wD/9t8Cb36z/r4IIWvPwYPt52NjRq7dgwMSs+U0UCgoZ7W/ZOb6AqhJxec9z0yh0dUyq6Vsi9XMrNbj8OHu/xPFakIIIWRDcMXhjn7b8vpccYg0lw6xutxw4Cc1+nOui5RTQSGn+nFLczVknLIZsTrS8556Sj0aMIy5GQ+1ZqIlVk8vOBg2UeuN9BxP26qFEALA/wTwmJTytzu2b+v4sfsAPBI+/xsAbxBCeEKIfQCuAPBNAN8CcIUQYp8QwoUqwvg3Zv6MTYhBsXrAK+Kx0wHG+wy5oKML7eyseWf1WhCJBpNhTIWJgV4yiaRdRWGmhIsTTYwlDS3PjuIqTp9Wjz0uVgPA773hq3jD6yWwtKS2a4rV1w+ew2/e+xW87wfDm5qpttU5+WXAtb9zn6OiYPJ5AMBkPqnEJFPOR0LIxqEzW/6aa4ysiNm1vaGKuBaLmJpLqPuMKbHaJK6rMqs7xepaDdWGDcfTL86z5QkCNbEAqLiZqJ9ACCGEkN7miivaz02I1ZHpsEOsrjZsOL7G+NN1kXXKWFpYA7E6ijKLdILOIt9xibSBUIeSTUNRt6TneCajnjsAvAXAw0KI74bbfgHAG4UQNwCQAE4B+AkAkFIeFUL8FYBHAdQBvFNK2QAAIcS7AHwGQALAB6WUR439JZuNqFqqoRiQExeTGMucb23TIsrmnJ1tC5O9fHGIYikisdpEBnIqhZ2peZw/JTB5UWI8yJkRwXeEMe65nHrcAGI1CoVWoUl4np6Lrr8fvl3Hjx75BlC+QW0z5SLrdFZ3FjCMiTOYQaVhIz9TRhqqbmPCkuYyZQkhGwfPU9eVxx5T8T0G2LVT4mxhAChcwNS0hRv9JSDoN7Jvo4TLR7tiQKLsbrqqzfC2twE/9EPqvssJUUIIIWRjcNVV7eeGYkAAdGVWAzaEp9Hfcl1k3RJyixIAMD/TUEW9TfThIt0owkQtpg6xem4O6PNC4b6X9SgSi6cVq6WUXwWwmkXoU5d5z68C+NVVtn/qcu8jHRh1VhfQlBbGU8oBqn0i9/WpwVIu1xZVe9lZHUU+XLyoHk2In2kV+XDu7AAmJ6FiQJL60RLYsUM58qS6WfS0WN1ZtNCEq7pznwsL5otJdbrRjhzR3186jX93/afwjr++C3/87wBfhEUpuESbkK3J29+uJu8MRZjt3JPAucIAkH8SUzMCo8klM5OtpgljQGqVtlhdnK8gYF61OYTQqwdBCCGEkOeeTrOUiT5cEEAAaJYqsBAVRbT1hGXPQ9YpI7eoVsJdvAhsSy6a6cO5LrB/P3DihHq9e7f+PjvE6ocfBq4bCwtYUqzedHBtZq9isMBikKjBs+sYc2bVNt0Bj2W1ZwbPnWv9np4lOlaTYnUyiZ2pBZw9JzA5LdTybBP7dd32chnASLbymtGZXR6J1bptK5tVg/J8vhWvYaxtRQXQkkkznYVMBm++4gE8NdOHRx9pYmdyVh17L58LhJC1I5k0JlQDQHrYR77m4fx54PhEoAos9uI9wbaVs7oKtcQEwMXzDbXiiGI1IYQQQrYqQgD/+l8DL3uZionTxffhJ2qo5NQKtuJiDSmnotffcl1k3TIWc8qfevEiMJ402Ie7/fb2cxNidShKy2IJDz0EXDsYpgf0Yh+ZaEGxuleJYkB0BdBkEkIAA0EZ440Jta1zhi8ukVBZr6vHXp7J2rmz+7WhGJAjAxN45HiAY6cDHMhOmxMpd3XUIe1lJ1U6rW5ipVJ7IkDXWW1Zah9Smp1cAJRY/Z73AB/4gJn9BQEgBF40+gTe+54mXr7z0dY2QgjRJpWCJSTe8IcvhSeqyuXSi85qIeC6EtWmHS5HVWK1MVcOIYQQQshG5YYbgNe/3kwND9+Hl6ijkq8BAGampSouqO2sLrUWzF+csjAeGOzD3XorMD6uxHoT4/ogUJ/BUlU5q7On1HaK1ZsOitW9iqkIhPFxAMCAk8d4JSzaZ0Ks7iwmlUj0dsGfTvEXMHORTKVw68gpfOOJQRy/mMT+zIw5UfWGG9Tj/v3A9deb2edaIEQ7h+rkSfVoQlyP2lIkVpt0Kh86BPT3m9mXZQGpFO7a8Ti+/o0EfnDfdxgBQggxRyqFsSAHS9bxiTf+JQK71rMdcccRqDYSrYI/FyakcuUws5oQQgghxAyhs7q8ZFCsDp3VuaXQWT2dMNuH8zzg/vuBn/opM/tLpZCyK/jmYxl85zvA1UEYMdKjfWQSnx4sK0/QaKjiREKYyZdOpXDn+OMYE1NqfyZO5KuvBv7+79Xzq67qbffU0JD6u6OquYac1f1eCXN5B4fGFpSZ1pRQefPNwHXXbYxB/vAwcP58O4fKRMb24CBw9my7QFcvC8CZDF687Qn8zk+fxMBSEUiZiwAghGxx0mnsSp3Gke0n27FIveisBuAGCeWszueB/n5cvCDprCaEEEIIMUkQKLG60ACg0jhHdMXqdBpZt4QLOVUz6+KsjW3bFs2unDe58ri/H++57mP406++CC+/p4HUfAGwNXO7SU9CZ3Uv0umq1j2xhQB27MDvv/DD8O26ytM0cbHYv7/93ESxurWk0wEMqCKGuoSCwa3bz+GOXWfUNpMO4I1ysY0+1/NhVpQJZ/UVV3S/7mWxOp1G0q7hJ+/4nnrdy8dKCNlYDAzgZ2/8LH50z+eBxUW1rVfF6mQCtWaiVb/gwqSFcYrVhBBCCCHm8H34dg3lvIpinZmBclbrCMvptCqwGGVWz7mqD9erekR/P16x6yg++OI/xa++L8wuSacZxbkJoVjdi5gqrhjRmdlsIgIEUNEf992nhMU77jCzz7Xk5S9XIvW/+TfAwID+/sL/zc/e9Hn8yJEH1batKFR2TgIAwLXX6u/z6qvbz5NJc7Eda0G0SmFyUj32qJBECNmAWBYO7G0g45RVfYgeLuDqplxUmwlEgYcXpyzlrO7VgQ4hhBBCyEbD9+FZdVQKhsXqjhiQxYKNrFPuXcNBKqWc1OWy+gAARoBsUhgD0oukUsAP/ZC5Qd6ePe3ny4sN6vCKV6ivjcDzn6++TBGKkof9k4AVXhy3olh97bXAX/6ler5790rxOg7btrWf33OPuhn1KsvF6q3YBggha8fQEDA7q56nUj3rGnFTDqpTdkusPnHOxc7rFoDklet7YIQQQgghm4XIWV1sAgBm5hO4ws/rmRnSafS5JeQKCUBKyKZU3c1eFauFUGa2mRng3Dm1jWL1pqSHVaAtTDoN3HWXuf3dfDNQKinx+5ZbzO13K+O66qtaBebn1batKFSOjKhiCR/9KPCDP2hmn0IAP/MzwPHjwPd9n5l9rhWDg+pxYkI9bsU2QAhZO4aG2s97eOWGk3JRbdp44MEEGimgWpEYDZZ4TSSEEEIIMUUQwE/U22L1QgLD/ZpiteMgm2pgseJh/kJZFfQGelesBtRKeYrVmx6K1VsB2wbuvHO9j2JzIQQwNqYKAUave/mCvpZcc436Msnhw+qr1+l0gQM9LSYRQjYgnWJ1D3fE3YyHUjOBX/urg/jH/wTc/9pT6hu8JhJCCCGEmMH34SVqqBQbgJSYXnAwMr6kXQwxO2gjVw3w8z8PvPO276iNvRzlFsWEUqze1DCzmpC4dAqVQdCzy7PJGrJcrKaLkBBikg3irHYzHgo1F6enA/yv/wX8yPOOqm/wmkgIIYQQYgbHge9KlKsWUK3i/FwS48mcdk2TzKCDM/lBfOd7Am88+K1wY8bAAa8RFKu3BBSrCYlLp1DJAfnWZGQEsDouo2wHhBCTjI+3n3cWn+0x3KyPL104hNu2n8GrXw0MiTn1jR4W2AkhhBBCNhp+0kKp4aK5kEOlJlRsh6az2u1P4nR+EHffsgiRW1Qb+/oMHO0aMTCgHuuq0CT7m5sTxoAQEpdOESHKLiZbi0RCzeSGRcU4q0sIMcq+fcBb36omR/ftW++juSRONsDnJ67Cl1/6hwCeBxSL6hucwCOEEEIIMYaXsvGjn/kRnPytPPZlwyLcms5qZDLIumW87Mgk8HhBmbF6eVy7f3/361271uc4yJpCZzUhcel0Vr/iFet3HGR9ufJK9Tg+Dhw8uL7HQgjZXAgB3H57TwvVAPC8Fwb4+Mv/O25NPQpICRQK6ht0uhBCCCGEGOP7bpjGb77gf+O3/qQP1/SfVxs1ndVIp3EwO4XbBx9Xr7PZ3o443bu3+zXH4JsSOqsJicv4OHDzzWqJTA8vzyZrzA/+oCoGeeut3ZEghBCyRdi938buq88CuSawsNB2VlOsJoQQQggxxtWHajgy9TX82rHX4ZrsGbXRgLP6q/f+BsTkAfW6lyNAACWk33038LnPqcdeFtZJbChWExIXIYAf//H1Pgqy3gwMAHfcsd5HQQgh68vIiIpEmpwESiW1TXfwRAghhBBC2mSzEAL45dc9ihcuPQHYtvrSYWRE6b3Hj6vXvS5WA8B99wEHDgDXXbfeR0LWCNoACSGEEEKIHiMj6vHMGRUFEgRcbUIIIYQQYpJMBgDw9hsfxLZkzowxoDPeFAD6+/X3udbYNnDTTfpCPelZOIoghBBCCCF6RGL16dPqkcUVCSGEEELMEorVmJxUj7p51QAwOgokEu3XG8FZTTY9FKsJIYQQQogekVh96pR6ZF41IYQQQohZIrF6ako9mnBWJxLA2Fj7NcVq0gNQrCaEEEIIIXqMjqrHmRn1SGc1IYQQQohZsln1WKmoRxPOaqDbZHDokJl9EqIBxWpCCCGEEKLH2Fh3NfZIvCaEEEIIIWYYHOx+baqY9e23q37cm97U7bImZJ1gGjkhhBBCCNEjmQQOHgSefFK9vvba9T0eQgghhJDNRhAA27cDExPq9d69ZvZ7++3AzTcDrmtmf4RoQmc1IYQQQgjR5+qr28+vumr9joMQQgghZLNy8GD7+eHD5vZLoZr0EBSrCSGEEEKIPnfcAQwNAXfeyQEPIYQQQshasH17+/mePet3HISsIYwBIYQQQggh+mSzwK/92nofBSGEEELI5uXWW4GvfQ248UbAov+UbE4oVhNCCCGEEEIIIYQQ0uukUsAv/dJ6HwUhawqnYQghhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsO0JKud7HcEmEENMATq/3cTyHDAOYWe+DIJsSti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7TJ5fe6SUIzo76GmxeqshhHhQSnnzeh8H2XywbZG1gm2LrBVsW4TwPCBrB9sWWSvYtshawbZFyNrRa+cXY0AIIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSre4s/Wu8DIJsWti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7eur8YmY1IYQQQgghhBBCCCGEkHWHzmpCCCGEEEIIIYQQQggh6w7F6ssghNglhPiiEOJRIcRRIcS7w+2DQojPCiGeDB8Hwu1XCSH+SQhREUK8d5X9JYQQ3xFCfPIyv/PTQoiF5T8jhHiXEOIpIYQUQgxf5v37hBAPhD/7l0IIN9z+YiHEt4UQdSHE6+J+JsQMm6xt7Q7/lu8IIR4SQrwq7udC9NmgbWvVnxNCvFQIsSiE+G749f44nwkxwwZtWx8SQhwTQjwihPigEMIJt78pvF49LIT4uhDi+rifC9la9Nh5sGr7XuX9l7p/s2/YQ2yytsW+YQ+xQdsW+4YbgA3attg3JBsCk+eXEOJU2La/K4R48DK/8xXh+fGUEOLnOrY/53okxerLUwfwHinlEQAvAPBOIcQRAD8H4PNSyisAfD58DQBzAH4awG9eYn/vBvDY0/zO3wDwllW2fw3A3QBOP837/zOA35FSHgQwD+Bt4fYzAP4fAP/rad5Pnhs2U9v6JQB/JaW8EcAbAPzB0+yHrC0bsW1d7ue+IqW8Ifz6lafZD1lbNmLb+hCAqwBcCyAA8GPh9pMAXiKlvBbAf0CPZbSRnqaXzoNLte/lsG+4MdhMbYt9w95iI7Yt9g03BhuxbbFvSDYKps+vO8Pr5s2rfVMIkQDw+wBeCeAIgDeGvw9YBz2SYvVlkFJekFJ+O3y+BHXh3AHg+wH8WfhjfwbgX4Q/MyWl/BaA2vJ9CSF2Ang1gD95mt/5eQBLq2z/jpTy1OXeK4QQAF4G4H+vcmynpJQPAWhebh/kuWEztS0AEkA2fN4HYOJy+yJry0ZrW8/m58j6skHb1qdkCIBvAtgZbv+6lHI+/LFvRNsJeTp67DxYtX0v+x3sG24QNlPbAvuGPcVGa1vhz7FvuAHYoG2LfUOyITB5fj1DbgXwlJTyhJSyCuAj4e9aFz2SYvUzRAixF8CNAB4AMCalvBB+6yKAsWewi98F8LNY2wHBEIAFKWU9fH0OqjGTHmYTtK37AbxZCHEOwKcA/NQaHgd5FmyQtvV03CaE+J4Q4u+FEFev43GQDjZa2wqXeL4FwKdX+fbbAPz9c3EcZHPRK+fB07Rv9g03IJugbd0P9g17kg3Stp4O9g17kI3Wttg3JBsJA+eXBPAPQoh/FkK8/RI/swPA2Y7Xz7bPaLTPSbH6GSCESAP4KICfkVLmOr8XzsjJp3n/awBMSSn/ee2OkmxENknbeiOAP5VS7gTwKgB/LoTgtWWd2SRt69sA9kgprwfw3wB8fB2PhYRs0Lb1BwC+LKX8yrJjuRNqQPK+5/BYyCagx86DVds32ZhskrbFvmEPsknaFvuGPcgGbVvsG5INge75FfJCKeVNUBEf7xRCvNj8kZqFnYanIZxx+yiAD0kpPxZunhRCbAu/vw3A1NPs5g4A9wohTkFZ6V8mhPgLIcTzRbs4xL0xj+8z4fv/BMAsgH4hhB1+eyeA83H2S9aeTdS23gbgrwBASvlPAHwAlwzdJ2vPBmtbl0RKmZNS5sPnnwLgXK6gA1l7NmLbEkJ8AMAIgH+77Gevg1pq+v1Sytk4v49sTXrpPFitfbNvuHHZRG2LfcMeY4O1rUvCvmHvsRHbFvuGZKNg6PyClPJ8+DgF4P8AuFWoAo7R+fUOqHv4ro63PW2fcS37nPbT/8jWRQghAPxPAI9JKX+741t/A+CtAP5T+PiJy+1HSvnzAH4+3OdLAbxXSvnm8Ns36ByjlPKeZcf8RQCvg7rIP+2xkfVhk7WtMwDuAvCnQojDUAOSaZ3fTeKzEdvWpRBCjAOYlFJKIcStUBOs7DiuExuxbQkhfgzAPQDuklI2O7bvBvAxAG+RUj6h8zvJ1qKXzoNLtW/2DTcmm6xtsW/YQ2zEtnWZ97Nv2ENsxLbFviHZKJg6v4QQKQCWlHIpfP5yAL8ipTyLjvMrFJmvEELsgxKZ3wDghy+37zXtc0op+XWJLwAvhLLUPwTgu+HXq6CyWD4P4EkAnwMwGP78OFQuSw7AQvg8u2yfLwXwycv8zq9AdeZK4fvvCbf/dPi6DlWk5E8u8f79UIUCngLw1wC8cPst4fsLUDf0o+v9+W7lr03Wto5AVYf9Xvh3vHy9P9+t/LVB29aqPwfgXQCOhm3rGwBuX+/Pdyt/bdC2VQdwvON43x9u/xOoCtXR9gfX+/Pl18b46rHzYNX2vcr72TfcAF+brG2xb9hDXxu0bbFvuAG+NmjbYt+QXxviy9T5BXWv/l74dRTAL17md74KwBPhOfKLHdufcz1ShG8khBBCCCGEEEIIIYQQQtYNZlYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYQQQgghhBBCCFl3KFYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYSQLY8QYkgI8d3w66IQ4nz4PC+E+IM1/L0vFULcvlb7J4QQQgghZCNhr/cBEEIIIYQQst5IKWcB3AAAQoj7AeSllL/5HPzqlwLIA/j6c/C7CCGEEEII6WnorCaEEEIIIeQShM7nT4bP7xdC/JkQ4itCiNNCiB8QQvy/QoiHhRCfFkI44c89TwjxJSHEPwshPiOE2BZu/2khxKNCiIeEEB8RQuwF8A4A/yZ0cb9ICPFaIcQDQojvCCE+J4QYe5a/+1TH9m8KIQ6uywdHCCGEEEJIDChWE0IIIYQQ8sw5AOBlAO4F8BcAviilvBZACcCrQ9H4vwF4nZTyeQA+COBXw/f+HIAbpZTXAXiHlPIUgD8E8DtSyhuklF8B8FUAL5BS3gjgIwB+9pn+7o6fWwy3/x6A3zX89xNCCCGEELJmMAaEEEIIIYSQZ87fSylrQoiHASQAfDrc/jCAvQCuBHANgM8KIRD+zIXwZx4C8CEhxMcBfPwS+98J4C9DN7YL4OSz+N0RH+54/J1n/RcSQgghhBCyTtBZTQghhBBCyDOnAgBSyiaAmpRShtubUEYQAeBo6JS+QUp5rZTy5eHPvBrA7wO4CcC3hBCrGUf+G4DfC53RPwHAfxa/O0Je4jkhhBBCCCE9DcVqQgghhBBCzHEMwIgQ4jYAEEI4QoirhRAWgF1Syi8CeB+APgBpAEsAMh3v7wNwPnz+1pjH8PqOx3+KuQ9CCCGEEEKecxgDQgghhBBCiCGklFUhxOsA/FchRB9Uf/t3ATwB4C/CbQLAf5VSLggh/hbA/xZCfD+AnwJwP4C/FkLMA/gCgH0xDmNACPEQlBP7jbp/EyGEEEIIIc8Vor16kBBCCCGEELKREUKcAnCzlHJmvY+FEEIIIYSQZwtjQAghhBBCCCGEEEIIIYSsO3RWE0IIIYQQQgghhBBCCFl36KwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLuUKwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLu/F9cCxj9aYoWTAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(25,6))\n", + "plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for training data: 1.7195710200875551 %\n" + ] + } + ], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAADSCAYAAAAL37fDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABSYklEQVR4nO3dd3hU1dbA4d9Kofei0qSJ9B6KKIiIgKCoIIoFbAjYr+Varvez92vFhogNRJCqgCC9inRCB+kSpPciqfv7Y53AgAmkn0my3ueZh5kzM2f2HJKTdfZee21xzmGMMcYYY/wV4ncDjDHGGGOMBWXGGGOMMUHBgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwRSHJSJSKiILBOR8d7jb0Vki4hEercG3nYRkX4islFEVohIo4B93CUiG7zbXRn+bYwxxhhjsqmwVLz2MWAtUCRg27+dcyPPet21QDXv1gz4HGgmIiWAF4EIwAFLRGSsc+5gWhtvjDHGGJNTpCgoE5HyQCfgdeCJ87z8BmCQ06q080WkmIiUAVoDU5xzB7x9TgE6AEOT21GpUqVcpUqVUtJEY4wxxhhfLVmyZJ9zrnRa35/SnrIPgaeBwmdtf11EXgCmAc8656KBcsD2gNdEeduS256sSpUqsXjx4hQ20RhjjDHGPyKyLT3vP29OmYhcB+xxzi0566nngBpAE6AE8Ex6GhLweb1FZLGILN67d29G7NIYY4wxJuilJNH/cqCziGwFhgFtROR759xOp6KBb4Cm3ut3ABUC3l/e25bc9jM45wY45yKccxGlS6e5B9AYY4wxJls5b1DmnHvOOVfeOVcJ6A5Md87d6eWJISIC3Ais8t4yFujpzcJsDhx2zu0EJgHtRKS4iBQH2nnbjDHGGGNyvdTMvjzbEBEpDQgQCfT1tk8AOgIbgRPAPQDOuQMi8iqwyHvdK4lJ/6kRGxtLVFQUJ0+eTEfTTb58+Shfvjzh4eF+N8UYY4wxgOgkyeAUERHhzk7037JlC4ULF6ZkyZJoJ51JLecc+/fv5+jRo1SuXNnv5piz7NsH4eFQtKjfLTHGGJMaIrLEOReR1vdnu4r+J0+etIAsnUSEkiVLWm9jEFq7Flq2hCfOV3jGGGNMjpPtgjLAArIMYMcw+MybB7ffDqNGwcaNsH693y0yxhiTlbJlUBYsfvrpJ0SEdevWnfN1H374ISdOnEjz53z77bc8/PDDaX6/8dnBg7B6NcTEJPuSsWPhX/+CceOgVi145RV44YWsa6Ixxhj/WVCWDkOHDuWKK65g6NBkFyUA0h+UmWwsPh7eew/69YMnn4QBA2DJEoiOPvWSL7+EDz+ESZOgfHndduWVcPgwREb60mpjjDE+sKAsjY4dO8bcuXP56quvGDZsGADx8fE89dRT1KlTh3r16vHxxx/Tr18//vrrL6666iquuuoqAAoVKnRqPyNHjuTuu+8GYNy4cTRr1oyGDRvStm1bdu/eneXfy2SwefNg717N3I+J0YBswAB48klc/y94pc8Ofp0Qz4QJULz4mW999VX473/9abYxxpisl56SGP7r0ydz9vvFF+d9yc8//0yHDh249NJLKVmyJEuWLGHhwoVs3bqVyMhIwsLCOHDgACVKlOD9999nxowZlCpV6pz7vOKKK5g/fz4iwsCBA3nnnXd47733MupbmawWFwcTJuj9u++GypVh2TJYsoT4jVt4qF8NQmUDw698i9BvakHjxlCvHuTLB0CTJpAnj8Z1LVr49zWMMcZkjewdlPlo6NChPPbYYwB0796doUOHsmXLFvr27UtYmB7WEiVKpGqfUVFR3HrrrezcuZOYmBgrV5HdzZ0LBw5A2bIacIlA27b8fXlbbu8WQ0Tz7fyn+ihkc4yOU0ZGQlgY1K4NrVpBnTq8+io8+ihMnapvN8YYk3Nl76AsBT1ameHAgQNMnz6dlStXIiLEx8cjIjRp0iRF7w+c+RhYluKRRx7hiSeeoHPnzsycOZOXXnopo5tuskpsLEycqPc7dz4VUR04AF26QM+eebj33qrA03Do0KkeNDZuhOXL9XbTTdRu356yZYWpU+Gaa3z7NsYYY7KA5ZSlwciRI+nRowfbtm1j69atbN++ncqVK1O/fn2++OIL4uLiAA3eAAoXLszRo0dPvf/CCy9k7dq1JCQkMGbMmFPbDx8+TLly5QD47rvvsvAbmQw3Z44GWxUqQIMGAGzfDh06wL//DffeG/DaYsXgqqvgqafg7bfhuus0iBszBoYO5aUXEnjpJQjiOs/GGGMygAVlaTB06FBuuummM7Z17dqVnTt3cvHFF1OvXj3q16/PDz/8AEDv3r3p0KHDqUT/t956i+uuu44WLVpQpkyZU/t46aWX6NatG40bNz5v/pkJYjExp3vJrr8eRFi1Su/26wedOp3jvUWL6gt799ahzFmzqDr5c+rVjufnn7Ok9cYYY3yS7ZZZWrt2LTVr1vSpRTmLHctMMmUKjBwJFSvCc8+xcZPQrRsMGwbVq6diPxs3wmefwfHj7ChehxsnP8j8RaGEhmZay40xxqRDrltmyZigFh2tBcfgVC7ZoEHw3HOpDMgALrkEnnkGSpak3MFVXJlnHsO+OJzhTTbG5C779uk8pIEDYcUKv1tjAmXvRH9jgs2MGXD0KFSpArVr4xyMH6+xVZpceCE8+yx88gnPnhzDNS9V5pY2+wivUTVDm22MyQEmToTffoOePYmveilbt8K6dXpbu1b/PXYMSpWCmjXh4ou1pvWUKX433CSyoMyYjHLyJEyerPe9XrIVy6FaNShYMB37LVIEnnySUgMG0HlVJF/3PUqfD45Aw4YZ0mxjTA6wcSNHR/xKn9l3sH5Aflzpk1SukY+aNaFGDV0lpHp1KFz4zLdNnKiTkCpU8KfZ5kwWlBmTUaZNg+PHNQqrUQOAH3+EW27JgH3nzQsPPcQTeUfQ6rkr6PnpO+S/o4vO2jTG5G4xMfDdd0z8szblS59k0FVvEJY/HB57DKqeu1f9zjthyBDtkDf+s5wyYzLCiROnxwC8XjLn9Cq0Y8cM+oyQEIrefwt33niMz1e30pkDI0darQxjcruff4Y9exi7pzndP7qMsMuaaH5rv36wZcs533rzzXYaCSYpDspEJFRElonIeO/xEBFZLyKrRORrEQn3trcWkcMiEundXgjYRwfvPRtFxOJyk3NMmwZ//609ZJdeCmg92Jo1IX/+DPwcER76uCbf7evI0bj8GggOHKjFao0xuc+mTTBtGnGEsTK2Bg2bhOuybk2aaErFhx/C1q3Jvr1IEZ1TtGxZVjXYnEtqesoeA9YGPB4C1ADqAvmBXgHPzXHONfBur4AGdcCnwLVALeA2EamVnsb7JTQ0lAYNGlCnTh26devGiRMn0ryvu+++m5EjRwLQq1cv1qxZk+xrZ86cybx581L9GZUqVWLfvn1pbqM5j+PHdR0k0F4yz48/wq23ZvzHFSgAfR4vyIcFn9d1Mhcvhk8/1bU2jTG5R2wsfPcdOMdvFbrTonUeXTwkJEQrVDdurIHZRx/Bn38mu5uePWHQoKxrtkleioIyESkPdAIGJm5zzk1wHmAhUP48u2kKbHTObXbOxQDDgBvS1mx/5c+fn8jISFatWkWePHno37//Gc/HpfGP48CBA6lVK/k4Na1BmclkU6boia927VP5G85pZYz27TPnI3v1gtFzSrO/1zN6qbt2LXzzjY1BGJObjB0Lu3dDmTKMO3A5118f8FxICNx3n04IOnECPvhAM/qT0K4dTJ9uHe7BIKU9ZR8CTwMJZz/hDVv2AH4N2HyZiCwXkYkiUtvbVg4I/ImI8rZlay1btmTjxo3MnDmTli1b0rlzZ2rVqkV8fDz//ve/adKkCfXq1eMLb51O5xwPP/ww1atXp23btuzZs+fUvlq3bk1isdxff/2VRo0aUb9+fa6++mq2bt1K//79+eCDD2jQoAFz5sxh7969dO3alSZNmtCkSRN+++03APbv30+7du2oXbs2vXr1IpgLBGd7R4/q2QwIPCMuWgR162pHVmbIkwcefxze+b6srlie2GP2448WmBmTG2zerBeEInD33UyfGUKbNme9JjRUr+Dq1z8dmO3Y8Y9dhYXB1Vefnjxu/HPeoExErgP2OOeWJPOSz4DZzrk53uOlQEXnXH3gY+Cn1DRIRHqLyGIRWbx3797UvDXLxcXFMXHiROrWrQvA0qVL+eijj/jjjz/46quvKFq0KIsWLWLRokV8+eWXbNmyhTFjxrB+/XrWrFnDoEGDkuz52rt3L/fffz+jRo1i+fLljBgxgkqVKtG3b18ef/xxIiMjadmyJY899hiPP/44ixYtYtSoUfTqpSPIL7/8MldccQWrV6/mpptu4s9zdFubdJo8WRNq69aFypVPbR4+PHOGLgPdcYemsu0MqwAPPqhn1hkzTi/xZIzJmQKGLWnXjvXRlahYMZmLwLAwXbatbl1NtfjgA/jrr3+8rEcPGDw485tuzi0lJTEuBzqLSEcgH1BERL53zt0pIi8CpYE+iS92zh0JuD9BRD4TkVLADiCwEkp5b9sZnHMDgAGgyyydr3EdOmh14oxSqhT8+uu5X/P333/TwFtkumXLltx3333MmzePpk2bUtn7wzx58mRWrFhxKl/s8OHDbNiwgdmzZ3PbbbcRGhpK2bJlafOPSxuYP38+rVq1OrWvEiVKJNmOqVOnnpGDduTIEY4dO8bs2bMZPXo0AJ06daJ48eKpOgYmhY4c0SAIzsglS0jQC9jXX8/cjw8N1ZUCXn8dPvmkug5VDBigM7GKFIErrsjcBhhj/DFuHOzaBRddBNdfz9gPzzgF/VNYGPTpA59/DqtXw/vva9XYgLWXGzbUOQOHD+sSvMYf5w3KnHPPAc+BzqwEnvICsl5Ae+Bq59ypYU0RuQjY7ZxzItIU7Y3bDxwCqolIZTQY6w7cnt4vcL4AKjMk5pSdrWBAhVDnHB9//DHtz0oqmjBhQoa1IyEhgfnz55Mvs8bIzLn9+qtesTZooKWxPQsWQKNGWloss3XpAu+9p+fZ2o0awe23a9Gh77+HQoW0bcaYnGPrVu2hF4G77oLwcMaPhxEjzvO+8HB44AGdFLR2rQZmTz2lq4agu0ssj3HffZn+LUwy0lOnrD9wIfD7WaUvbgZWichyoB/Q3ZsPEAc8DExCZ3EOd86tTsfnB7X27dvz+eefE+tlTv7xxx8cP36cVq1a8eOPPxIfH8/OnTuZkdjTEqB58+bMnj2bLV59mQMHDgBQuHBhjh49eup17dq14+OPPz71ODFQbNWqFT/88AMAEydO5ODBg5nyHXO1Q4dg1iy9f0Z2rQ5dZkjB2BQQ0YoYPXrA3r1Aq1baHufgyy9hw4asaYgxJvPFxsK33+rv9zXXQJUq7NunvfMXXJCC94eHa6pDjRra0//eexCQ13zHHXpNZ/yTqqDMOTfTOXeddz/MOVf17NIXzrlPnHO1nXP1nXPNnXPzAt4/wTl3qfe+TB7c8VevXr2oVasWjRo1ok6dOvTp04e4uDhuuukmqlWrRq1atejZsyeXXXbZP95bunRpBgwYQJcuXahfvz63eslJ119/PWPGjDmV6N+vXz8WL15MvXr1qFWr1qlZoC+++CKzZ8+mdu3ajB49mosDenFMBpk4UUtQNG4M5U9PPE5I0Dyvq6/OuqbUqgVvvqmBYHQ00KmTBmdxcXpVHBWVdY0xxmSeX36BnTu1d8sbr5wwIZUFqvPk0cDs0kt1rPL993USAHoqCws7Z1kzk8kkmGfmRUREuMTZiInWrl1LzZo1fWpRzmLHMo0OHID/+z+Ij4cXXoCyZU89NXeuXsgOHJj82zPLp5/qrM9vvgFxCdpTtnSpJog8/bQmTBpjsqetW+Gtt/T+009DlSoAdOsGL72kFXlSJTpaA7KtW6FlS11vCZ0/sH07/Pe/GdXw3EVEljjnItL6fltmyZjUSuwla9LkjIAMMnCtyzR46CFNI3v7bU7XKKpeXa+GP/pIy3cYY7KfuLjTsy3btj0VkEVHa4bCOcpbJi9vXq38HxoKc+acSnXo0gVGj7bKOn6xoMyY1Dh4EObN02SuTp3OeCo+XtPMkphQm2U+/FDbMHo0Og7x4INQoYLmjXz8sRa5NcZkL7/8omUsLrwQbjhdc33WLGjdWk9HaVKmDFx7rd4fPBji4ihcWIO8hQvT3WqTBhaUGZMaU6acziW76KIznpozBy67TGMhv4SF6Trlb74JS5aghYsefRRKl4Zt26B/f1uOyZjsZNs2nekdMNsy0dix5ymFkRLXXqvB3u7dp2oc9uxpNcv8ki2DsmDOg8su7BimwZEjMHu23k+8ugyQlbMuz6VoUR1Gve8+r3h3kSLw2GOnl2NKnL1ljAluicOWCQnaBe8t4wb6KzxnjqaDpUtYmE7fBg3Kdu7k6qv1VBcTk859m1TLdkFZvnz52L9/vwUV6eCcY//+/VbfLLWmTtUp6fXrnzHjEvTcOXcuXHmlT207S5Uq8MknmgR8/DjaU5a4HNOiRbowpzEmuE2dqldWpUvDjTee8dSKFTrMGNBxlnbVqmmx6fh4GDKE0BBH+/a2OIgffBxoSZvy5csTFRVFsC/BFOzy5ctH+bMCC3MOx4/DzJl6P4n557Nm6TnNz6HLs11xBfTtqyMew4dDSIUKcP/9mls2aZImo1hgbkxwOnHi9MXTHXdoKYsAY8f+o0Ri+nTtqpHehg0wdy49erTklVfOSGEzWSCI/oSkTHh4+Knlh4zJMtOn61SnWrWgUqV/PD18uBbTDzY9e8K6dVrB4/XX0XnzVavqeiqzZ0O7dn430RiTlKlTNTC79FIt9nqWiRM1/z/DFCigC/Z++SWMGkW9l+uxfXtRDh4EW6kv62S74UtjstzJkxqUQZK9ZLGx8PvvwbvU5GuvaWA2aBBnzhqdMkUbb4wJLseOaVAGOmx51vTKv/7STu4MD5YaN4Y6deDvv2H4cG65RS84TdaxoMyY85k5U69Yq1XT21lmzNCRwNDQLG9ZioSEaEDWv7/mvVGrFlSsqBMX5s71u3nGmLNNmqQ983XqnJHcn+iXXzJ46DKRiHb558kDixdze8O1tuxSFrOgzJhziY7WHiX4R12yRH4WjE2pggV1weKHH4bNW+T07NFJk6xEhjHB5PBhvdKDZOtdZHg+WaCSJU8lkpWZMogC+RLYtCmTPsv8Q7bLKTMmS82dq0MJlSolmdcRE6OTGb/8MuubllrlysHXX0P37jBrZgPyly2r4yALFsDll/vdPJPdOafrMq5cyfqZO4ncVJgLi0VzQdFoLigRR4mi8YTkDdfpguHh2hsTeL9KFf09S3Ml1Bxi4kRNK2jYUHu0z3LihP7aXnJJJrahTRs9L/z5Jz1qLGLw4Ga89FImfp45xYIyY5ITGwuTJ+v9Tp2S/GORuPh4SDbpc27USEsSvfqa8MaN18JXX+kfgcsuyz5fwgSP6GhNWFy5ElatgoMHWbG/HD1n3sOtVRaz8GRpdv9dhD1/F+ZAdEESCxmVyHucC/Mf5YL8R7kg/xEuyr+bJqXnUKt6PHJZc2jWLHeu1XrggBYfE0m2K2zqVF1pKVOFhOiJ4o03uPH4EK6Y1pAXX8yT6+PlrGBBmTHJ+f13OHRIa5LVrZvkS378Efr0ydpmpdeDD2o9tZW3RlC39FjYuxcWL4amTf1umgl2zsGuXbB6tQZiGzZobSvPmphL6LnwPkZ8+RfVIiL0wiYmRv+N3Q+xsSScjOHgAceefSHs3leQPfsK89fui3llcQPWTi9Fg+HbuabcWK6+/CRl29fV5PMCBXz80llowoTT6+qWK5fkS8aN0yUrM93FF8PVV1Nw6lTq513LvLl1ubylXbhlNgvKjElKfLwubQI64zKJS8ToaFi2DJo3z+K2pVNoKHz2GTz4UAgzX7+W0CGD9I9BkyY2dGSSFhWlPTgrV8L+/ae3i+iwY926/FGgAbf/qwxDJwnVapZIdlchQEnvVjNg+78SEkhYvZbIEbuZMrUEd317KQe/KMgVZefT9oporryjPIWb1gyuYoAZac8e+O23c/aSJSToqGL//lnUps6dYdkyepadxuC3SnB5ywpZ9MG5Vw796TYmnRYs0D8+F12kuR1JmDwZrrkme8Yx9eppGln/yOY8VHyc5gJFRib7XU0uFhUF77yjVyEAhQppvbu6dXUmb8GCbN4Mt3TRWb41a557d8kKCSGkbm0a1a1No/+c5JmlS/l7zlR+m5PA1N9q8NrIguQN30ab5ifo2KMkTTqXyZ6/fMn55ReNulq00LUok7BokaYgZNlM77x54fbbab3vE/41OoSTUfvIVz4XDitnoRT3RYpIqIgsE5Hx3uPKIrJARDaKyI8iksfbntd7vNF7vlLAPp7ztq8XkfYZ/m2MyQgJCafXF7n22mRzrYJlrcu0euEFGPhNKDsaeVflEybYmpjmTAcP6goQ0dG6vNhzz8H//gf33qs9qwUL8uefWgz+66812M8Q+fJBixbkf+ZR2g6+i7feFuY/OJhRV39KrcPzeOmR/Txx+QJip87SOoLZ3c6deiEYGgrXXZfsy8aNy4AFyFOrTh1CmkbQqcIKfnlhgZ0jMllqBogfA9YGPH4b+MA5dwlwELjP234fcNDb/oH3OkSkFtAdqA10AD4TkSCt7GRytSVLdCihVKlk86xOntSRnCZNsrhtGahAAXj7bXjkh8ugcGH4809Ys8bvZplgcfKkLqB66JDW5+vdW2dHBlyk7NihtU3799cenExRvDi0bw8vvECp1x6nW+8SjO/2HWUSdtCu50X89eBr8P33+vObXY0bp8FOy5ZakiIZkyf7tAjHLbfQo+5yBk0vp/mnJtOkKCgTkfJAJ2Cg91iANsBI7yXfATd692/wHuM9f7X3+huAYc65aOfcFmAjYJnFJrg4pz1GAB06JNtL9uuv+nciu4+etGsHBQuH8FPBO3TDL7/YlbDR3uIvv9ShywsugAce+Ecu1+7dWs6qXz+dLJnpRKBCBejWDXn7Lf79SUVevCGSjmP7MOvHXbqO2Jtval5W4lBrdrB9u14Ihoefrh+YhK1bNV4rVCjrmnZKkSLU6n0Fe/4uwr6vx2oPqskUKe0p+xB4GkjwHpcEDjnnEqtORgGJU0XKAdsBvOcPe68/tT2J95hgEh+vZ4B583RmXjLi4vTidN48nYU4dmzWNTHTLF+uRYCKF9cyEckYPlyXicsJ3n8fXhxTnyOhxXVNzA0b/G6S8ZNzMGyYlrgoVAgeeUSrDwfYt09z0d95x6flxcLCICKC1p/fyoSpeXlpc0/+t6YTbstWTWx75hn9Dn/95UPjUinxxHnllVCsWLIvGzcuEwvGpsTll3N36618uqgpDBhwxqxbk3HOm+gvItcBe5xzS0SkdWY3SER6A70BLr744sz+OAN6Vbl5M2zcqLfNmyEmht0nCrPp6AVElWnC9gsaE3WkCNu365BFdLSeF8uW1YoRFSro8pCxsZpfki0F9pK1b5/sLK+oKC3NlFNy4kuXhsefCOH5UX34uOxbegwuvdTvZhm/TJsGs2bpz/+DD2pPWYADBzTt6dVXtcao38o2uIDJkfDMvzvRNfJyvrlqEEX/WqdV8WfM0KHXVq10fDXYZm5u3gwrVmhCfYcO53zpuHFaVtA3ItzzeVOa1zzMA6tnccGYMXDzzT42KGdKyU/o5UBnEekI5AOKAB8BxUQkzOsNKw/s8F6/A6gARIlIGFAU2B+wPVHge05xzg0ABgBERETYOEpmOHr0dAC2YYN2nydoJ+j+kwUZsbk5w7a3QMLDqZV3ExV27qdCoZFENChFhX9FUDaiLPny/XO3ffroSbp27SSL3we/NWtg2zbNr0rm8v/wYQ06P/00+w9dBrrrLvj+u4tZcKg6zdau1Z7SSpX8bpbJasuWwUgvK+Wee/6x7uLhw5po/vzzet0SLMLD4f0PQxkxoiRt3nqcb97cRb290zR5fsMGvQ0frr/X58nbylKJvWRt2uh5JxlHjuixr+BzRYo8JQrx7PPHePXLTnycf5gGvPXr+9uoHEZcKvJHvJ6yp5xz14nICGCUc26YiPQHVjjnPhORh4C6zrm+ItId6OKcu0VEagM/oHlkZYFpQDXnXLJ9oBEREW6xJRWmn3N6RTZ/Pqxfr8kgAU7E52XcsasYsrEZe2OK0u22UG7tmU9rF+7fr+sj/vbb6TUS69TR2l1JLJS7YgXcd59eoPqS+5BWzumssk2bNOpKIps2JkZ7CPr2hS5dfGhjJvvjD+hx3QHmXvk84Q3rai+JyT22boV339Xu7htv/Ed+09Gj+vP/6KPB3Ru+bp0Wo3/0UejR7SQsXKg9f1FR+gIRLefRurWW9PDr6uqPP+C99yB/fnjjjXMWyB0xQkeTX345C9uXjIQEuKLuIQbX+x9VLzqhEXpuXH0hGSKyxDkXkeb3pyMoqwIMA0oAy4A7nXPRIpIPGAw0BA4A3Z1zm733Pw/cC8QB/3LOTTzX51lQlk6HDumV4m+/nRmIhYcTV7Eq005cxpClNVixtQjXdw7h9tvPUWPo0CFdmHv2bI1OAKpX1+CsevUzTmzff69d7cOGZaPepMQTZMGCeoI8qyvQOa2i3agRPPaYP03MCq/9XzTh0ybyTN2J8H//p2PTJufbtw/eeksjr8sv16gm4Jf3+HHtIevVC267zcd2ptCxY3D//Zqi9eGHkDePd2E6c6Ym1SfmQ5UurUObl1/+j7y5TOWcBsAbN+qB7dTpnC/v0UPPOxFp/lOfsaZPc3z5zEaGNn5X1+d8+ungGxr2SZYGZVnNgrI0iIvT7qp58/TSKvH/t0gRXLPmLAptzpAZZZgxM4Qrr4Tbb9eK9CkOno4e1eSx6dNP1weqUkWvquvWPbWjRx7RzY8/nvFfMVN88IFeYidzgvy//9M/TO+/70PbslBMDFxe8wDDmr5H1TaV9C+bydlOnNCM/Z079arskUfOqE66fr0GBf/6l54vsgvntKLHsGHwww8Ba3sfPQpz5+oF5oEDui0sTOvbtG6dNcP2q1frtNVkLgIDxcXpxWBkZHAtT3ttu3heK/c5jfOshKuugu7d/W5SULCgzKioKA3EFizQy0TQ3+D69aFFCw6UrUO3W0MoUwbuuEMXtA0PT8fnnTihV51Tp2q0Atqr0rIlREQQk6cQ7drBK6/ohWjQSkjQk/PQoXpifPPNfwwjDByoJTCGDw+uk2JmmffrEV7uHcWv1/ZDXnk52eriJgeIi9PgYP16nbXz9NM6nOb58UetZff119CggX/NTI958zSgrFQJevbUXLjwcPR3f9UqPY+tXn36DRUrnp4YkBlrbjqn55lt25JNlQg0ezYMGQJffJHxTUmPyEh4+pG/mVTnSSQhXi/ggqUrz0cWlOVmJ05ovsRvv51ZOLFcOV2qo1kzKFyY7ds1B+qll87bS5560dG6Jt7kyZqJChq51K3LX1Vb0vHpOkyYKJQtm8GfmxE2bNC/Otu9Si033KDDsQEmTtQ/ShMnnvG3Ksd74Oo/uNzN5c67QnUWgMl5nNPyEfPmQZEiWq2/hK5ZGR0NTz2lnWdffQVFi/rc1nRyToOIQYN0cunVV+uP9alAc88ePY/99tvpi8zQUO05bNJEL24z6gSwfLkuPlukiNZWy5PnnC9/6intiMrwc3cG6NEDetSNpN2mz/Wi9j//yfUXcRaU5VY7dmiyxJEj+rhAAa0+36IFXHzxqWHE1au1Z6x//0xeODs2VmduzZ+vsxi9n6tZB+ry4qpuTB51lDw1qwZHktn+/TB69OnK1MWL6xVrRMQZ7Vu6VC/+Jk8OnslaWeXQxn1c2ewk067/kFLvPZf7DkBuMGEC/PyzBgVPPXVqfG/bNj1n3Hyz5jEFw69sRoqN1Z7vQYP0u956q37fiy7ynly8+PSkqMS/j2FhOq08IkLXkjrHcGOy4uI0t/err/T83b27RlvnsG2bXicuXhycF4Vbt0L37o55d39JyLIlOlry7LPpHIbJ3iwoy422bYOPPtIrukqVdCyyQYN//CLMmwcPPaT5FGleJDgtjhzRHrz582H7dt5f0ZZtx0rwUefpGhk2a/aP2kdZIjpaz8ZTpujJNzxcxzLat//H1eq2bdpxNmpUkpNMc4WRD07nl2n5+ObFrdkrmcic35IlWgBURKv1e2UNJkzQzo7PPtPru5zuwAHtLP/hB+246tlTf+/z5UNzz5Yu1Yhow4bTAVp4uObPRkToTPS8ec/c6cmTsGuXdjMm3nbt0kLcifsoXhxee+2cyfEjRmhH2qef6jyEYPX449Ckfgy3b3pVexyvuEK70HIpC8pym82bNQfk77/1iq137ySvSsaO1d/50aN9nkD311+43+fT/fmq3FBuEbdfski3V6miJ7WKFbWBabnyTCnnNEgcPVpnkYIOSXTtqifHsxw8qGken36a7NKXuYL7ayc3ttjNY/Vn0ea7u85ZbdxkI3Fx8N//6g96t27Qti1xcfDiixqDDB6cOyscrF+v333cOL12vPde/f0XQVMzli6FRYu0bE6iPHn0PFykyOkALPEcczYRne1ZpozWFkmmOPrx45oDd+SI5pEF+6/dvn3aL7BgVBR5339Tf77uuSeTh2aClwVluckff+h0ouhoTUK9774kr7S++krLUowenWTM4YujhxNoc0U0X98yibp7p/9zbbrSpU8vDZD4b/Hi6R872bpVL4U3b9bHFSvqeEUy3V/R0Tpc8NhjOhEzt9v+xmBu+ehyfv96bXAmtZjU++03HbsrUwZefJFdu4U779Tc9uefP2PiZa6UkKB1Fr/+WgO17t214+dUqtTBg9rTuHgxbNnyzx2EhelY6EUX6TFOvF1wwXnLRixfrqf1Bx7QoDC7DB2//rrWpXys8VyNbPPk0S7XMmX8blqWs6Ast1izRscUYmN1+O/uu/8xFdA5nV29aJFOJgy2HIR16zR3Y9qEaIptjdQNUVG6Pl1iYdpABQqcGaiVKKF/MUJD9buffT9w28mTMH68DqGCXsnedJOuZ5nMmS4hAe68U3vfrW6qZ/VqulwXwyvt5lKn/8PZ56+ESVpCgnaJ7dkD997LrJPNePRRLdHXtq3fjQs+hw5pSY3Bg/W68d57tfrPqcGJ/ft1BkF8/OkgrGTJVE/Tdg4+/liHUb/9NvutiHL8uA53z57lKDrmWz3vlimjk0fOHt7N4Swoyw1WrNB+7Lg4TS64885//NLHx2uXd3S0xm7BWsdv1Ci9SB8zJuArxMdrAuz27Rqkbd+ut8TSHukRFgbXXKPryp1niPTZZ/Xk+Pbb6f/YHCMhgVE3fc/iP0vz5ugaULmy3y0y6bFoEQwciCtZineKvMrEX0MYMkQnbJtzW7kSvvlGqwC1b68BWkbk6u7dq/u65BKt35tdY5gBA/S0/ep/o7Xkx86dOoR599256mLOgrKcbulS+PJLvcJt3Vr70s/6AY+O1u71GjV0GY5g//l/+mnNk/jPf87xIuc0jyMxSIuK0iSLhAQN4hL/Tep+4q16dc0bO0eCjHM6EWrIEL3gHTIkd9QiS42TQ0bR7NGmLOs3l5A7skE5d5M053QV8R07mF7zIT6eVY/hw3P1RLk0iYmBX37R4c2DB7W0RocO2pmf2nPv1Kk68fWNN/5RjSfbiYvTQZzx46EMO/VLxcTo7IlgnqmQwdIblAVpf4oBtBDsN9/oybRdOy02dtZv/ZEjGnd06aJ5CNnBG2/oEEChQnqFHhZ2+hYamnhfCA0tRlhYMcIuqkNoOS1+XaKE1kxKbeCUkKCl3NasOX1bt07nS5QrBw0b6rCBBWT/lK9VU5qU3sbcn/fT6ta44O2GNee2YoVegRQrxvtT6vDGmxaQpUWePJoJcdNN2hk0eLCmO0RF6ZriderorW5dvSWVqB8bq6uELFumNRBzQupVWJjmJL7yCnz+uVel/JtvtOp27drBP2MhSFhPWbD67Tf9bXdOE6yvv/4fAdmmTTqS+eSTWlMoO9m7V39fY2O1gysuTm+B9wMfx8ZqrdwDBzTPwzk9HGFhOh+gRIkzb8WK6Sz0NWs0WTc2VnP8a9U6fatePXMKduc4zjHznu8YuqAKXwwreqp8gslGnNOxsa1bWdvsbv7142VMmuR3o3KeI0d0kYCVK/W2apX2ppUrdzpIK19eJ7/ecIOeu3PShaBzOmFk4ECofqmDzz/X2Qv162uvQbAP42QA6ynLiWbO1Ex9gBtv1G4lz549Wr/mxx81kf+dd3Rlo+ymdGkdxkyv2Fg96R04oLfE+wcPavpTp05QrVrmVtzI8URo1b0sj42rTPTsieS1oCz7WbdOZyIXKsQHvzXliSf8blDOVKSIJrwH1nhzTucyJQZqs2bpUrtNmvjXzswiojMxn38eRo4UrW+4fr0GZsuWadUAc04WlAWbKVNg5Ei9f8stcPXVHDkCP/2kcdrRo7p5+HCvAnUuFx6uM839qEWbm4Q0b0qHCguYOMFx430nrIsxu5kwAYA9ER2J/CCULwb63J5cRER7ysqV09yznK5VK/jf/3QCZvPmxTS35ocf9A9YjRp27jiPHNRxmgNMnXoqIDt5852MOXI13bpBmzaa6/7JJzB3Ljz6qAVkJosVK8Yd7fby/fqI08tTmexh0yatcZg/P5+tapVbRpGMj958UydyOYdGaVWr6tju6NF+Ny3oWVAWLI4exf30M1OjanDvjldo9lRLFizQZNBFi7Q7OLcu92OCQ70ul7DtWEkOzVjmd1NMani9ZH+3uJox48NtxSyT6erU0RzeiRPRK4AePTQBeM4cvUAwybKgLFhMn86YP2rz7uYu3PvshSxbpnm59erZVa0JEg0bcvMlyxk1vbjO1DDBb/t2zTbPk4fBu67hlluybx0sk728/DK89JJXF7xMmdO50YMHazKwSdJ5gzIRySciC0VkuYisFpGXve1zRCTSu/0lIj9521uLyOGA514I2FcHEVkvIhtF5NlM+1bZzcmTMGMGn69pxSefaEX5nDQjx+QQefNyW5doftjYVMu1mOA3cSIACVe04ovv8tG3r8/tMbnGxRdr/nOfPt4wZocOULaszlb75Re/mxe0UvKnPxpo45yrDzQAOohIc+dcS+dcA+dcA+B3IHCweE7ic865VwBEJBT4FLgWqAXcJiK1MvC7ZF+zZrF+ZxHCCuXnkqsr+t0aY5J1cae6OCBq8hrvTGuC1q5dWnw6LIwJ7lqaN9cVgIzJKk8+qXUln30WHb7s0UOHfiZN0sJu5h/OG5Q5lbjeTbh3O3U2FpEiQBvgp/Psqimw0Tm32TkXAwwDbkhLo3OU2FiYMoX+a1rR96FcvhKwCX7Vq3Nb3dUMXVj19CLvJjj9+qsGzi1a8OHAQjz+uN8NMrmNCLz7rl4fvPsuUKWKrkyTkKDDmAkJfjcx6KRokExEQkUkEtgDTHHOBY5d3AhMc84dCdh2mTfcOVFEanvbygHbA14T5W3L3X77jRMHTzJ9X1069a3gd2uMObeQEG6+LZwRmxudXuzdBJ/9+3WIOSSEpRd1pHBhXVvRmKwWEqLFZOfM0VVTuPFGrfi9dSvMmOFv44JQioIy51y8N0xZHmgqInUCnr4NGBrweClQ0Rvu/Jjz96CdQUR6i8hiEVm8N6cnE8fHw6RJ/LipCTffGE9YuGX0m+BXvG1jyhc8xMpfd3hZvCboTJqkvRBNm/Le18V58km/G2Rys/BwGDYMvvsOfp6Uj1NTgH/+WS8gzCmpSid3zh0CZgAdAESkFDos+UvAa44kDnc65yYA4d7rdgCBXUHlvW1nf8YA51yEcy6idOnSqfs22c3ChXDgAAM3XUWv/8sBi5+Z3KFcOe5svpEhK+tpiXITXA4f1mXagO11O7JtW65aD9oEqfz5YcwYrWE262A9iIiA6GgYMsTyUwOkZPZlaREp5t3PD1wDrPOevhkY75w7GfD6i0S0iIOINPU+Yz+wCKgmIpVFJA/QHRibgd8le0lIgIkTWbL3YspWK0iZstZLZrKPjj1KMnF7bRLm2RBm0JkyRXswGzak348X8uijVlbHBIdixTQwe/xxWFbjNq3uv3q1FuM0QMp6ysoAM0RkBRpYTXHOjfee686ZQ5eggdoqEVkO9AO6e5MF4oCHgUnAWmC4c251RnyJbCkyEnbv5vPN7XjguWJ+t8aYVMl3eWOaXrCNOVNOwvHjfjfHJDp+HGbPBuDIFR2ZMkVXuTEmWJQpo+s33/NIITY2v1M3/vgjHDt27jfmEimZfbnCOdfQOVfPOVcnscSF91xr59yvZ73+E+dcbedcfedcc+fcvIDnJjjnLnXOVXXOvZ6xXyUbcQ4mTuRQdH6WnajBVW1t1qXJZooW5Y62uxmyPsKucoPJtGk6JFS7Nl9NuZi77tJKBMYEk6pVNb/slrcbsbNsYw3IRozwu1lBwUqU+mHNGvjzTwZtb02PPgVsaMFkS63uqMD8PZWJ/s3WwgwKXhFqgLh2Hfn2W7jvPn+bZExy6teHjz4Sbvz5Hg7GF9HZ3GvW+N0s31lQ5oeJE3EOBm2/irvutV4ykz2FNGrAtZXWMWFWQdi92+/mmJkz4cQJqFaNUcsvoV07KFLE70YZk7yWLeG/L4dz08LnOBEXrkn/0dF+N8tXFpRltY0bYcMGZh2oS73LClK8uN8NMiaN8uThjptOMMSWXfJfTAxMnQqAu7Yj/frBo4/63CZjUuD66+HeJ4px69xHid1zAH76ye8m+cqCsqzmrUX3+a6beOBhS/Yw2Vu9my9l27GSHJoZadPa/fT773D0KFSsyNz9NalUCSpYLWqTTfS8O4SrbilNr9l34aZNh3Xrzv+mHMqCsqy0fTusWsWu2JJsj72IJk38bpAx6VS9OjfXWsuoJZW0F9j4Y543n6ptW957X6xYrMl2nni1OAnlyjN2W32dBfD33343yRcWlGWlX3Wi6ld/38Z9vS2XzOQAItx+h/CDDWH6Z9cuXbImXz42FGzA0aPQqJHfjTIm9d4dUpYXV3blxJ6jMHy4383xhQVlWWX3bliyhHgJY/jKWnTv7neDjMkYFa6rjwO2z9gIsbF+Nyf3SVyDtHFjPvg0jy08brKtC8uE0Ovh/Ly+/Hrt/Y2M9LtJWc6CsqwyaRI4x4QCN9P66lAKFvS7QcZkkDJluL3pJoauqgsrVvjdmtzFuVM9lPurt2DBAujY0ec2GZMODzxThOknmvPHoQvg++81VzIXsaAsKxw4oIm4IvRf2YK+ff1ukDEZ6+a7CzFyS6PTvTYma2zYoOeXEiX4fHJV+vSBEDurm2wsNBQ++KoIjy6/D3fkKAwenKsmEdmvb1aYMgUSEthSsTXRLi81a/rdIGMyVrE2jahQ6BArZx3IdVe2vvr9dwBiIy5j+AihRw+f22NMBmh+mVCh6UWMjGoOy5fnqos9C8oy29GjMGcOAF9EdaRPH5/bY0xmKFyYO9rsZMgfTWCxVfjPEjExsHQpAOMOt6J9e8if3+c2GZNB3nw/H69tuIWjMXlh2DDYv9/vJmUJC8oy27RpEBtLdM0GTJxbhBtv9LtBxmSOjvdcyMTttUmYl3uuan21fLkurVSpEgOGF+P++/1ukDEZp1QpeOipArwSda/+nH/3Xa4YxrSgLDP9/feptehG0YXOnSE83Oc2GZNJ8jWtR9My25kzPxyiovxuTs7nDV1uqdia2Fi49FKf22NMBut1v/D7sTqsjr4E1q+H6dP9blKms6AsM82erRF+9eoM+OlCevf2u0HGZKLwcO7oclJrlk2Z4ndrcrYjR3Tx5pAQBi5rbL1kJkcKCYGPPgnjkTV9tZNszBity5eDWVCWmRYuBGBlxesoWtSWPTE5X8uH6vH7nirEz18EBw/63Zyca+FCcI7YWvUZNykPN93kd4OMyRyNG0PNJoX5Qe7QOohffw3x8X43K9NYUJZZdu/WIZz8+ek/9RIeeMDvBhmT+UIvLMVltY8y968qmk9pMoc3dDkuuh3t20PevD63x5hM9Npr8M7vV3C4QBnYtu3UGtI50XmDMhHJJyILRWS5iKwWkZe97d+KyBYRifRuDbztIiL9RGSjiKwQkUYB+7pLRDZ4t7sy7VsFA29W1NFLGzNvfgjt2vncHmOySNf7SzByS2OddZxL16/LVFFReitQgAFTKtnQpcnxiheHJ54M4YX9j+mGX37R4CwHSklPWTTQxjlXH2gAdBCR5t5z/3bONfBukd62a4Fq3q038DmAiJQAXgSaAU2BF0WkeEZ9kaCzZAkAQ/66ittus4KOJve4qvuFzDpQh4S/ozWv0mQsr4L/louvJDYuxBL8Ta7Qowcs/7M4kVW7QkICfPNNjlzW7byhglPHvIfh3u1c81JvAAZ575sPFBORMkB7YIpz7oBz7iAwBeiQvuYHqb17Yft2XN58fDO5LPfc43eDjMk64eHQuFkYC/ZU1iHMuDi/m5RzJCScCsoGbrjSeslMrhESAv36waPj2pJwYRnYuRN++snvZmW4FPXfiEioiEQCe9DAaoH31OveEOUHIpKY1VAO2B7w9ihvW3Lbcx5v6HJFyauoWCmE0qV9bo8xWazrvcUYtbcVHD58asKLyQDr1sHhw8SWuJBxc4tZgr/JVerVg8YRIXxb+GGN0qZOhbVr/W5WhkpRUOaci3fONQDKA01FpA7wHFADaAKUAJ7JiAaJSG8RWSwii/fu3ZsRu8x63tDl0K2XcdttPrfFGB9c006YureeTmOfPDlXFH3MEt5yM+NDOtOunViCv8l1Xn4ZPvq+FAdad9ENAwfmqJneqcp0cs4dAmYAHZxzO70hymjgGzRPDGAHEFj8oby3LbntZ3/GAOdchHMuonR27GLavx+2bcPlycuvSy/g2mv9bpAxWS9vXqjVOD/LYmrrMMOqVX43Kfs7eRKWLQNgwPx6VvfQ5EpFisCzz8LzM9pC7dpw7BgMGJBj0iRSMvuytIgU8+7nB64B1nl5YoiIADcCiWfdsUBPbxZmc+Cwc24nMAloJyLFvQT/dt62nMUbuvy94NU0bCTky+dze4zxSdebQxgVc50+mJTzftWz3LJlEBPDlhKNiSGPJfibXKt7d9i4SVhUv5dOzdy8GUaP9rtZGSIlPWVlgBkisgJYhOaUjQeGiMhKYCVQCnjNe/0EYDOwEfgSeBDAOXcAeNXbxyLgFW9bzmJDl8YA0KEDTFxbCZc3H2zYAFu3+t2k7M0buhy4o4Ml+JtcTUST/vs+UYCdNz4AoaE6qcj7+5udpWT25QrnXEPnXD3nXB3n3Cve9jbOubretjsTZ2h6Q5oPOeeqes8vDtjX1865S7zbN5n3tXxy4ABs2UJcWD5mrS5FmzZ+N8gY/xQsCFWqhrC6yvW6wXrL0u7gQVi/nljJw7il5S3B3+R6NWvCBx/AdQ9VZEfrO3Tjd99p4fZszKpnZSQv32Nm+DW0bBVCWJjP7THGZ127wqjdl+uV7LJlsGeP303KnhYsAOcYL9fTrkOIJfgbA7RqpT1m17/Vgu1VroToaOjfX//Npiwoy0iJQ5dbmtnQpTFAp07wy7T80KyZzsCcOtXvJmU/zp0auhywsrkl+BsT4PLL4bPPhM5Du7M1b3X46y/44YdsO+PbgrKMcugQbNpEdEh+Fm8pSYsWfjfIGP8VKQIXXggbLvGmIc+bB0eP+tuo7ObPP2HnTrYkVCQmT2FL8DfmLM2bw4AvQ7hp+iNs/ruMXsTMnet3s9LEgrKM4g1d/koH2ncIsWWVjPF07Qqj5lwAdevqsigzZ/rdpOzF6yX7av8N9LpffG6MMcGpSRP4alA4Xeb/m42HS8OwYdlyfUwLHTJK4tDlxiY2dGlMgM6dYexYoH173TBjBsTE+NqmbCM+HhYtIjYhhLFrq9Gli98NMiZ4NWoE340oyM2/P8H6fSXhiy/gxAm/m5UqFpRlhCNHYONGjrsC/LGvOA0a+N0gY4JHiRJQuDBsDbsEKlWC48d1GNOc3+rVcPQo449cSbuO4Zbgb8x51K8Pg38qwq2zH2LtxnBduDwb5ZdZUJYRli4F5xgbdy2dbwhBbITBmDN07Qqjx8jp3rIpU3RxbXNuiQn+m6+mdx87sRiTEnUbhvHDqLzcNqM3q2buy1bleCwoywheFf+hGyJs6NKYJNx4I/z0E9CgAZQuDfv2ncrDNMk4cQKWL2frsVLEFChmCf7GpEKtFsUY9tVx7pxxLyu+WgR//OF3k1LEgrL0OnoU/viDA7GF2RNdlOrV/W6QMcHnggsgLAz+2hUCbdvqRluo/NyWLIG4OAbu6UyvvuF+t8aYbKdG50sZ8co6es64m2Wv/QKHD/vdpPOyoCy9IiPBOUb/fS1du4X63RpjgtZNN8GYMUCLFlCokC67tGGD380KXvPna4L/ljqW4G9MGlXrezWjek/m3gldWfzC2KBPm7CgLL28WZc/bmzMrbf63BZjgliXLt6awXnywFVX6cZslOuRpfbsgY0bGb+jEe2uy2sJ/sakVUgIVZ/txpiuQ4jbvhO2bPG7RedkQVl6HDsG69ez62QxYvIW5uKL/W6QMcGrXDld/WTvXqB1awgPh1WrtAK3OdP48QAMiLqW+x+w9dqMSZciRaj09C00f/dmqFrV79ackwVl6bF8OSQkMPxYR265zYYujTmfUwn/hQrp+iiguWXmtKgoWLiQrcdLE1PsQstTNSYjVK0KVar43YrzsqAsPbyhyxEbG9Ctm89tMSYb6NrVG8IETfgX0bIPllt22s8/g3MMOHY7vR6wBH9jchMLytLq+HFYu5Ytx0pT8IKCXHCB3w0yJvhVrqzLxB48iJbG6NBBZ2B+9VW2q7ydKTZuhBUrWHakKtN3VKdrV78bZIzJShaUpZU3dDns8LV0v8NyPoxJqeuvh3HjAh5UrqxR2uDBubtEhnMwejTHYvNy/+LefPd9KHny+N0oY0xWOm9QJiL5RGShiCwXkdUi8rK3fYiIrBeRVSLytYiEe9tbi8hhEYn0bi8E7KuD956NIvJs5n2tLOAVjB2zqS433uhvU4zJTrp2hVGjvAehodCrF+TLp79TuXn5pZUrYdMmHll4J488U8ByyYzJhVLSUxYNtHHO1QcaAB1EpDkwBKgB1AXyA70C3jPHOdfAu70CICKhwKfAtUAt4DYRqZVh3yQr/f03rFnDmkNlKXdJfooV87tBxmQf1avrhMujR70NpUrB7bfr/WHDYNcu39rmm4QEGDOGHzY2IfaiCvS8z7rIjMmNzhuUOXXMexju3ZxzboL3nAMWAuXPs6umwEbn3GbnXAwwDLghHW33z/LlEB/P0APtua2HJeIak1odO8IvvwRsaNZMbzExMHAgxMX51jZfLFrEpnUxvLv6Wj4fUdrWzzUml0pRTpmIhIpIJLAHmOKcWxDwXDjQA/g14C2XecOdE0WktretHLA94DVR3rbsZ+lSnIPxW2tz3XV+N8aY7OfmmwOGMBPdfrv2mm3f7pX+zyXi4ogZPZ6eM+5hwBv7KVzcclSNya1SFJQ55+Kdcw3Q3rCmIlIn4OnPgNnOuTne46VARW+482Pgp9Q0SER6i8hiEVm8d+/e1Lw1a5w8CatXs3hfJWo3ykuBAn43yJjsp04d2LTprAmX+fJpfllICEydCqtX+9a+LDVnDs//2pIu9TYRcXed87/eGJNjpWr2pXPuEDAD6AAgIi8CpYEnAl5zJHG40zk3AQgXkVLADqBCwO7Ke9vO/owBzrkI51xE6dKlU/dtssLKlRAXx7D919C9h+V9GJMWItC+fRKrLFWuDJ076/1vvw1IPMuhTp7k1082suZgGR5/+yINSI0xuVZKZl+WFpFi3v38wDXAOhHpBbQHbnPOJQS8/iIRzYgQkabeZ+wHFgHVRKSyiOQBugNjM/j7ZL4lS0hwwtSoGrRr53djjMm+zpiFGah9e7j0UjhyRAOzHFwmY9fIuTw7qwPf3DWTkAb1/G6OMcZnKbksKwPMEJEVaGA1xTk3HugPXAj8flbpi5uBVSKyHOgHdPfmA8QBDwOTgLXAcOdc9hqfiI6GVauYs/MSmrUMtxpCxqRD48ba8RwdfdYTISFw771QoICujTl9ui/ty2wJh49y9/PleLfZSC7o2QHL7jfGnDej1Dm3AmiYxPYk3+uc+wT4JJnnJgATUtnG4LFsGcTGMnRvW257Iq/frTEmWxPRlZZGjIA77zzryeLFoWdP6N9f12WqXh3Kn2+Cd/byvwe30LDEDtp2CINq1fxujjEmCFgCQ0olJMDEicQmhDBvXzVatfK7QcZkf88/D59+ChOSulRr2BBatdLyGF9+qeUycogFkw/zy4wCvBIxFqs+bYxJZEFZSi1ZArt2MeVwM9p0yk9oqN8NMib7K1FC65W99tpZdcsSdesGZcpoQdkRI7K8fZnh8GHoe38c3135NeHNI6BChfO/yRiTK1hQlhIJCTB+PABDj3TkttvtsBmTUUqU0F+v118/9Wt2Wp48WiYjLAxmz9YUgmzMOejT82+eu3Q0lYsdPD3T1BhjsKAsZbxessUx9fjzRGmaNvW7QcbkLImB2RtvJBGYlS8PXbro/UGDdPHybOrrr6Hw/i3cUmWxDs0GY9kfY4xvLCg7H6+XLCY+lAcX9GTAl2KTpIzJBIlDmW++CePGnfVkmzZacfbECejXD/bs8aWN6bF8OfT/6CQfVf9MewA7dfK7ScaYIGNB2fksXgy7dvH6uq50u6sg1av73SBjcq7ixbWn7K23YGxgFUMRuPtuuOgiXc38zTe1XEY2cPgwPP009O3rGNRhKAXCYnXaaZEifjfNGBNkLCg7F6+XbPn+8kw70oQnnrLDZUxmSwzM3n4bfv454InCheG556BBA+0x++QTnbYZpMVl4+NhwAAdpaxRA+Z+sYaah+dDwYJY5WljTFIsyjiXxYuJ3bmXvvPv4ovvC9qMS2OySPHiOpT5zjtnBWb58kHfvnDDDfr455+1ltnJk760MzkzZkCLFrBlC8ydC/feepzQn7zlCzp0gPz5/W2gMSYonbd4bK7l9ZK9E9me6zo6ateziMyYrFSsmAZm112njxPjMESgY0ctJfHVVxAZqcOZDz4IF17oU2vVpk3w739DaCgMG6ZLebJ1K3zxBRw4ACVLwlVX+dpGY0zwsqAsOYsXs3ptCON3NmL2nHJ+t8aYXKlYMR3KvO46HaU8o85q3brwn//A559rntkbb+jyTPXrZ3k7jxzRWmuzZ+uw65VXog2eMVPrq8XHa4R2//0QHp7l7TPGZA82fJmUhATixk6gz5w76f/afsLzWS+ZMX5J7DF77z0YM+asJy+4AJ59Fho10iHMzz7TqZtZlGcWH6+LDbRsqStB/fabF5CdPKlPDBumL2rTBp56SnvKjDEmGeKCNEkWICIiwi1evDjrP3jBAv73WBTHwovz8swrsWQyY/x3+DB07aqrLtWpox1l9erp/cKFHEyerFGbc/rEPffoouaZ0I7ISFi6FH78UUcjn3suYDJlVJQOV+7ZozlwPXvq6uvGmBxPRJY45yLS+n4bvjxbQgLrv5vPiM2dmTt8pwVkxgSJokVh6lStHbtqFaxcqbVkV66EY8eEiy9uT90yjakbNYF6Bzdz6V9vE/ZQHyhbNs2fuWePLiKwdKn+u2GDTgJt2FBvw4fDxRcHvGHePPjhB4iN1aK3vXv7nudmjMk+rKfsLPHzFnD1zcV4t8M0Ir7sY0GZMdmAc/DnnxqgrZx/nJVjt/DHzsI4CaFQ6XwUvLAQBUvmo1AhoWBBKFSIM/5NvB8fDytWaBC2bZuOjjZqpAFYo0ZwySUQklTSR0wMDB2qQRnA5ZfDbbdZ/pgxuUx6e8osKAuUkMBH1/7Krj3Cm58U0ROrMSb7iYmB778n/veFnIjLw/G4vBwvXp5j1RpyvEodjoWX4PhxOH4cjh3j1H3Qkc+GDbUHLEWrd+zercOVO3ZoEHbHHXDZZZn69YwxwcmGLzPQpjErGLy0NnPv/Rqav+B3c4wxaZUnD9xzD6EtW1J44UIKL1kCx9fAqjWwCqhYEZo0gdYRWhQtrRYv1jHU6GgdpuzTB8rZbG1jTNqct6dMRPIBs4G8aBA30jn3oohUBoYBJYElQA/nXIyI5AUGAY2B/cCtzrmt3r6eA+4D4oFHnXOTzvXZWdlTlhCXQLtLt/BqvZFc9nRLrfxojMkZ4uNh7VpYtEiTw6KjdbuIjkk2barjk4UKnX5PQgIcPar1Lg4f1n8Tb4cPa3Lbpk362ogI6NFDE/uNMblWVvSURQNtnHPHRCQcmCsiE4EngA+cc8NEpD8abH3u/XvQOXeJiHQH3gZuFZFaQHegNlAWmCoilzrn4tPa+Iz0xX+2Ub/QZi6rfQSaNfO7OcaYjBQaqtM069SBO+/U5LOFC/XfDRv0NnQoVKqkQ5+HD+u45vnSO0JD4ZZbtA5GisY6jTEmeecNypx2pR3zHoZ7Nwe0AW73tn8HvIQGZTd49wFGAp+IiHjbhznnooEtIrIRaAr8nhFfJD22bUngy8F5mdvxZ+h0uyX3G5OThYdrr1hibbPISA3Q1q6FzZtPv05Ep1oWKaK3okXP/LdIEShTRh8bY0wGSFFOmYiEokOUlwCfApuAQ865OO8lUUBiIkU5YDuAcy5ORA6jQ5zlgPkBuw18j2+cgz63H+HDJj9Q4KKi1ktmTG6SLx80b663o0e1xlihQhpwFS6czFRLY4zJHCkKyrwhxgYiUgwYA9TIrAaJSG+gN8DFZxQAyhxfD0ygWvw6WpXZAJ3usl4yY3KrwoWhZk2/W2GMycVSdRnonDsEzAAuA4qJSGJQVx7Y4d3fAVQA8J4viib8n9qexHsCP2OAcy7CORdRunTp1DQvTeqGrObNOj9AqVLWS2aMMcYY35w3KBOR0l4PGSKSH7gGWIsGZzd7L7sL+Nm7P9Z7jPf8dC8vbSzQXUTyejM3qwELM+h7pE1CAk23DqdQeDR06mS9ZMYYY4zxTUqGL8sA33l5ZSHAcOfceBFZAwwTkdeAZcBX3uu/AgZ7ifwH0BmXOOdWi8hwYA0QBzzk+8zLyEhdR6V0ac0pMcYYY4zxSe6u6J+QAEuWaKHJ+vUz73OMMcYYk+NZRf/0CAnRqt7GGGOMMT6z+d7GGGOMMUHAgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwSCuiSGiOwFtvndjnQqBezzuxFByo5N8uzYJM+OTfLs2CTNjkvy7NgkLy3HpqJzLs3LEQV1UJYTiMji9NQsycns2CTPjk3y7Ngkz45N0uy4JM+OTfL8ODY2fGmMMcYYEwQsKDPGGGOMCQIWlGW+AX43IIjZsUmeHZvk2bFJnh2bpNlxSZ4dm+Rl+bGxnDJjjDHGmCBgPWXGGGOMMUHAgrIAIvK1iOwRkVVnbf+fiKwTkRUiMkZEiiXz/le910SKyGQRKettFxHpJyIbvecbJfP+DiKy3nvdswHbRUReF5E/RGStiDyagV87RYLg2KTr8zNTEB+bBiIy39vvYhFpmkFfOUUy8bjUEJHfRSRaRJ46x+c3FpGV3vHrJyLibS8hIlNEZIP3b/EM/NopEqzHxnvuEa8Nq0XknQz6yikWBMfmdRHZLiLHztr+hIis8fY9TUQqZsDXTZUgPjYXi8gMEVnm7b9jBnzdVJHk/34+7G1zIlLqHO+vLCILvNf+KCJ5vO2tRGSpiMSJyM1p+Pwk95ss55zdvBvQCmgErDprezsgzLv/NvB2Mu8vEnD/UaC/d78jMBEQoDmwIIn3hgKbgCpAHmA5UMt77h5gEBDiPb4gNx2bjPj8XHpsJgPXBuxrZg45LhcATYDXgafO8fkLveMm3nFMPBbvAM9695/NYT8z6T02VwFTgbyJ+8uFx6Y5UAY4dtb2q4AC3v0HgB/t2JzaPgB4wLtfC9iaxcflXH8/GwKVgK1AqXPsYzjQ3bvfP+D7VALqoX+Db07D5ye53+Ru1lMWwDk3GziQxPbJzrk47+F8oHwy7z8S8LAgkJiwdwMwyKn5QDERKXPW25sCG51zm51zMcAw732gJ4BXnHMJ3ufsSf23Sx+fj026Pz8zBeux8fZTxLtfFPgrBV8nw2TWcXHO7XHOLQJik/ts7zgVcc7Nd3o2HATc6D19A/Cdd/+7gO1ZJoiPzQPAW8656MT9peZ7ZQQ/j433uvnOuZ1JbJ/hnDtxvs/PTMF6bPD5XMM5/n4655Y557ae681eT3EbYKS36dR5wTm31Tm3AkhI7eefa7/JCTvXkyZJ9wI/JvekiLwO9AQOo1dWAOWA7QEvi/K2Bf5wJ/WaZt79qsCtInITsBd41Dm3IR3fIbNk1rHJkM/3mR/H5l/AJBF5F01VaJG6JmeJtByXlCiHHq9EiccO4MKAPyy7gAtTsd+s5MexuRRo6e37JNprsig1jc4imXVsUuo+tIcxGPlxbF4CJovII2iw1zaD9ptS5/r7mRIlgUMBgW3g70R6Pj/V+7WeslQQkeeBOGBIcq9xzj3vnKvgvebhDProvMBJp5WFvwS+zqD9Zhgfj02KP98vPh6bB4DHvf0+DnyVQfvNEH7/zHj7d5zumQwaPh6bMKAEOkz1b2B4YL5ZMPD750ZE7gQigP9l5H4zgo/H5jbgW+dceTRVYrCIWHyRBnbQUkhE7gauA+7wTuSIyDdewuSEJN4yBOjq3d8BVAh4rry3LdC5XhMFjPbuj0HHt4NGFhybVH9+sPD52NzF6Z+bEWgXe1BI53FJiR2cOYQTeOx2Jw4De/9m+RDdufh8bKKA0d6Q+UJ0yCbZ5OislgXH5nyf3xZ4HuicOMQbLHw+NvehuVM4534H8pG1PzepPleKyCTv2AwE9qPpIYmjh6k91yb3+anerwVlKSAiHYCn0V/ExJwCnHP3OOcaOOc6eq+rFvC2G4B13v2xQE9RzYHDSYzLLwKqeTM18gDdvfcB/MTpbuYrgT8y7tulTxYdm1R/fjDw+9igeR1XevfbAEEx5J0Bx+W8vON0RESaez09PYGfvafHogEr3r8/J7ELXwTBsfkJ71wjIpeiSctBsVh1Vhyb83x+Q+AL7/ODLZD39dgAfwJXe59REw3K9mbQvlPiXH8/k+Sca+8dm15eEDsDSJxdmdrzQpKfn6b9uiyePRLMN2Aomq8Ti14x3udt34iOF0d6t/7JvH8UsApYAYwDyiVesACforMzVgIRyby/IxpwbQKeD9heDPjFe+/vQP1ceGzS9fm59NhcASxBZwItABrnkONykbe/I8Ah736RJN4f4b1/E/AJp4tllwSmoUHqVKBEDvqZSe+xyQN87z23FGiTC4/NO95zCd6/L3nbpwK7Az5/rB2bU8emFvAbeq6JBNr5cGyS+/v5qNfWOPRCdWAy76+CzkreiI4sJM5AbuK9/zja87U6lZ+f5H6Tu1lFf2OMMcaYIGDDl8YYY4wxQcCCMmOMMcaYIGBBmTHGGGNMELCgzBhjjDEmCFhQZowxxhgTBCwoM8YEBREp6RVzjBSRXSKyw7t/TEQ+y8TPbS0iwbgElTEml7G1L40xQcE5tx9oACAiLwHHnHPvZsFHtwaOAfOy4LOMMSZZ1lNmjAlqXk/WeO/+SyLynYjMEZFtItJFRN4RkZUi8quIhHuvaywis0RkibecSuKySo+KyBoRWSEiw0SkEtAXeNzrlWspIteLyAIRWSYiU0XkwlR+9taA7QtF5BJfDpwxJtuxoMwYk91URZeN6oxWn5/hnKsL/A108oKjj4GbnXONga+B1733Pgs0dM7VA/o657YC/YEPnC65MgeYCzR3zjUEhqHL16ToswNed9jb/gnwYQZ/f2NMDmXDl8aY7Gaicy5WRFYCocCv3vaVQCWgOlAHmKJLOxKKLk0DurzMEBH5CV3nMSnlgR+93rU8wJZUfHaioQH/fpDqb2iMyZWsp8wYk91EAzjnEoBYd3qtuAT0QlPQ9ekaeLe6zrl23ms6oeuJNgIWiUhSF6YfA594PV190MWVU/rZiVwy940xJlkWlBljcpr1QGkRuQxARMJFpLaIhAAVnHMzgGeAokAh4ChQOOD9RYEd3v270tiGWwP+/T2N+zDG5DI2fGmMyVGcczEicjPQT0SKoue5D4E/gO+9bQL0c84dEpFxwEgRuQF4BHgJGCEiB4HpQOU0NKO4iKxAe9ZuS+93MsbkDnK6990YY0x6ichWIMI5t8/vthhjshcbvjTGGGOMCQLWU2aMMcYYEwSsp8wYY4wxJghYUGaMMcYYEwQsKDPGGGOMCQIWlBljjDHGBAELyowxxhhjgoAFZcYYY4wxQeD/AfLJXGzTpAfQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,3))\n", + "plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for testing data: 1.2623790187854018 %\n" + ] + } + ], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "## 전체 데이터셋 예측\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor shape: (26300, 5)\n", + "X shape: (26300, 4) \n", + "Y shape: (26300, 1)\n" + ] + } + ], + "source": [ + "# Extracting load values as numpy array\n", + "data = energy.copy().values\n", + "\n", + "# Scaling\n", + "data = scaler.transform(data)\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0]\n", + "print(\"Tensor shape: \", data_timesteps.shape)\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]]\n", + "print(\"X shape: \", X.shape,\"\\nY shape: \", Y.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "Y_pred = model.predict(X).reshape(-1,1)\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = scaler.inverse_transform(Y_pred)\n", + "Y = scaler.inverse_transform(Y)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrgAAAHgCAYAAAD+LG2qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5jcxN3Hv7pzBVNsmumYEjoYQkvoEFog1FDCGwiEmkACISSU0EIvCYRuG0wHUwwGA8bYuIMx7r33frbvznfnO1/Z1bx/bNNqVUbS7Eq7+/08zz23K41mZlVmRr+qCSFACCGEEEIIIYQQQgghhBBCSLFQEXYHCCGEEEIIIYQQQgghhBBCCPECFVyEEEIIIYQQQgghhBBCCCGkqKCCixBCCCGEEEIIIYQQQgghhBQVVHARQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiop2YXfAie23317stddeYXeDEEIIIYQQQgghhBBCCCGEFJhJkyZtEELsYLUv0gquvfbaCxMnTgy7G4QQQgghhBBCCCGEEEIIIaTAaJq2zG4fQxQSQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiopI5+AihBBCCCGEEEIIIYQQQgiJKm1tbVi5ciWam5vD7kpR06lTJ+y2225o37699DFUcBFCCCGEEEIIIYQQQgghhPhg5cqV2GqrrbDXXntB07Swu1OUCCFQXV2NlStXokePHtLHMUQhIYQQQgghhBBCCCGEEEKID5qbm7HddttRuRUATdOw3XbbefaCo4KLEEIIIYQQQgghhBBCCCHEJ1RuBcfPOaSCixBCCCGEEEIIIYQQQgghpMj5/PPPoWka5s6d61juf//7H5qamny389Zbb+HWW2/1fbwqqOAihBBCCCGEEEIIIYQQQggpcvr164cTTjgB/fr1cywXVMEVFajgIoQQQgghhBBCCCGEEEIIKWI2bdqE77//Hn379sWHH34IAIjH47jzzjtxyCGH4LDDDsOLL76IF154AatXr8app56KU089FQDQpUuXdD39+/fHNddcAwD48ssvceyxx+KII47Ar371K1RVVRX8dznRLuwOEEIIIYQQQgghhBBCCCGEFD033ZSfenv3di3yxRdf4Oyzz8bPfvYzbLfddpg0aRLGjx+PpUuXYurUqWjXrh1qamrQrVs3PPvssxgxYgS23357xzpPOOEEjBs3Dpqm4fXXX8fTTz+N//73v6p+VWCo4CKEEEIIIYQQQgghhBBCCCli+vXrh9tuuw0AcMUVV6Bfv35YsmQJbr75ZrRrl1AFdevWzVOdK1euxOWXX441a9agtbUVPXr0UN7vIFDBRQghhBBCCCGEEEIIIYQQEhQJT6t8UFNTg+HDh2PGjBnQNA3xeByapuHoo4+WOl7TtPTn5ubm9Oe//OUvuOOOO3D++edj5MiReOihh1R3PRDMwUUIIYQQQgghhBBCCCGEEFKk9O/fH1dddRWWLVuGpUuXYsWKFejRowcOP/xw9O7dG7FYDEBCEQYAW221FRoaGtLH77TTTpgzZw50XceAAQPS2+vq6rDrrrsCAN5+++0C/iI5qOAihBBCCCGEEEIIIYQQQggpUvr164eLLrooa9sll1yCNWvWYI899sBhhx2Gww8/HB988AEA4MYbb8TZZ5+NU089FQDw5JNP4rzzzsMvf/lL7Lzzzuk6HnroIVx66aX4+c9/7pqvKww0IUTYfbDlqKOOEhMnTgy7G4QQQgghhBBCCCGEEEIIITnMmTMHBx54YNjdKAmszqWmaZOEEEdZlacHFyGEEEIIIYSUK1VVQH192L0ghBBCCCGEEM+0C7sDhBBCCCGEEEJCoKEBeOCBxOeQkmETQgghhBBCiF/owUUIIYQQQggh5ci6dWH3gBBCCCGEEEJ8QwUXIYQQQgghhJQjsVjYPSCEEEIIIYQQ31DBRQghhBBCCCHliK6H3QNCCCGEEEII8Q0VXIQQQgghhBBSjlDBRQghhBBCCCliqOAihBBCCCGEkHKithZYuRKIx8PuCSGEEEIIIUQBlZWV6NmzJw455BBceumlaGpq8l3XNddcg/79+wMArr/+esyePdu27MiRIzF27FjPbey1117YsGGD7z6moIKLEEIIIYQQQsqJu+8GHnkE2Lgx7J4QQgghhBBCFNC5c2dMnToVM2fORIcOHdCrV6+s/TGf+Xdff/11HHTQQbb7/Sq4VEEFFyGEEEIIIYSUI599FnYPCCGEEEIIIYo58cQTsXDhQowcORInnngizj//fBx00EGIx+P4xz/+gaOPPhqHHXYYevfuDQAQQuDWW2/F/vvvj1/96ldYt25duq5TTjkFEydOBAAMHjwYRx55JA4//HCcfvrpWLp0KXr16oXnnnsOPXv2xJgxY7B+/XpccsklOProo3H00Ufjhx9+AABUV1fjzDPPxMEHH4zrr78eQgglv7WdkloIIYQQQgghhESX2lpg8mTghBMy2zZvDq8/hBBCCCGEEOXEYjF88803OPvsswEAkydPxsyZM9GjRw/06dMH22yzDSZMmICWlhYcf/zxOPPMMzFlyhTMmzcPs2fPRlVVFQ466CD88Y9/zKp3/fr1uOGGGzB69Gj06NEDNTU16NatG26++WZ06dIFd955JwDgyiuvxN/+9jeccMIJWL58Oc466yzMmTMH//73v3HCCSfggQcewNdff42+ffsq+b1UcBFCCCGEEEJIqfPMM0B1NfDxx2H3hBBCCCGEkJJG09TX6ebwtHnzZvTs2RNAwoPruuuuw9ixY3HMMcegR48eAIAhQ4Zg+vTp6fxadXV1WLBgAUaPHo3f/e53qKysxC677ILTTjstp/5x48bhpJNOStfVrVs3y3589913WTm76uvrsWnTJowePRqfJSNInHvuuejataun328HFVyEEEIIIYQQUupUV4fdA0IIIYQQQsoCRdH3PJHKwWVmyy23TH8WQuDFF1/EWWedlVVm0KBByvqh6zrGjRuHTp06KavTCebgIoQQQgghhBBCCCGEEEIIKWHOOussvPrqq2hrawMAzJ8/H42NjTjppJPw0UcfIR6PY82aNRgxYkTOsccddxxGjx6NJUuWAABqamoAAFtttRUaGhrS5c4880y8+OKL6e8ppdtJJ52EDz74AADwzTffoLa2VslvooKLEEIIIYQQQgghhBBCCCGkhLn++utx0EEH4cgjj8QhhxyCm266CbFYDBdddBH2228/HHTQQbj66qvxi1/8IufYHXbYAX369MHFF1+Mww8/HJdffjkA4De/+Q0GDBiAnj17YsyYMXjhhRcwceJEHHbYYTjooIPQq1cvAMCDDz6I0aNH4+CDD8Znn32GPfbYQ8lv0kQY/nKSHHXUUWLixIlhd4MQQgghhBBCipubbnLe37t3YfpBCCGEEEJIiTFnzhwceOCBYXejJLA6l5qmTRJCHGVVnh5chBBCCCGEEFLuRNjwkRBCCCGEEEKsoIKLEEIIIYQQQgghhBBCCCGEFBVUcBFCCCGEEEJIuaPrYfeAEEIIIYQQQjxBBRchhBBCCCGElDsMUUgIIYQQQohvBNfTgfFzDqngIoQQQgghhBBCCCGEEEII8UGnTp1QXV1NJVcAhBCorq5Gp06dPB3XLk/9IYQQQgghhBBSLPBlnBBCCCGEEF/stttuWLlyJdavXx92V4qaTp06YbfddvN0DBVchBBCCCGEEEIIIYQQQgghPmjfvj169OgRdjfKEoYoJIQQQgghhJByhx5chBBCCCGEkCKDCi5CCCGEEEIIKXeo4CKEEELCYeVKYNmysHtBCCFFCUMUEkIIIYQQQgghhBBCSBg88kji/8svA+0oqiWEEC9IeXBpmrZU07QZmqZN1TRtYnJbN03ThmqatiD5v2tyu6Zp2guapi3UNG26pmlHGur5Q7L8Ak3T/pCfn0QIIYQQQgghxBP04CKEEELCJRYLuweEEFJ0eAlReKoQoqcQ4qjk97sBDBNC7AdgWPI7AJwDYL/k340AXgUSCjEADwI4FsAxAB5MKcUIIYQQQgghhBBCCCGkbKGxCSGEeCZIDq4LALyd/Pw2gAsN298RCcYB2FbTtJ0BnAVgqBCiRghRC2AogLMDtE8IIYQQQgghRAW6HnYPCCGEkPKGCi5CCPGMrIJLABiiadokTdNuTG7bSQixJvl5LYCdkp93BbDCcOzK5Da77YQQQgghhBBCCCGEEFJeGJVaVHARQohnZDMXniCEWKVp2o4AhmqaNte4UwghNE1TMgonFWg3AsAee+yhokpCCCGEEEIIIU5QqEYIIYSEC72pCSHEM1IeXEKIVcn/6wAMQCKHVlUy9CCS/9cli68CsLvh8N2S2+y2m9vqI4Q4Sghx1A477ODt1xBCCCGEEEIIIYQQQkgxQAMTQggJhKuCS9O0LTVN2yr1GcCZAGYCGAjgD8lifwDwRfLzQABXawmOA1CXDGX4LYAzNU3rqmla12Q93yr9NYQQQgghhBBCvEMBGyGEEFJ4jF5bnIsJIcQzMiEKdwIwQNO0VPkPhBCDNU2bAOBjTdOuA7AMwGXJ8oMA/BrAQgBNAK4FACFEjaZpjwCYkCz3sBCiRtkvIYQQQgghhBDiDwrVCCGEEEIIIUWGq4JLCLEYwOEW26sBnG6xXQC4xaauNwC84b2bhBBCCCGEEEIIIYQQUkIYDUxobEIIIZ6RysFFCCGEEEIIIaSEoVCNEEIIKTxUcBFCSCCo4CKEEEIIIYQQQgghhJBCE5ZSa8oU4OOPs3OAEUJIESKTg4sQQgghhBBCSClDq3FCCCGk8ITlwdWrV+L/nnsCxx5buHYJIUQx9OAihBBCCCGEkHKHCi5CCCGk8IQ9/1ZXh9s+IYQEhAouQgghhWXNGqCpKexeEEIIIcRI2AI2QgghpBxhDi5CCAkEFVyEEEISbN4MvPwyMHVq/tqoqgIeegi45578tUEIIYQQQgghhBQDVHARQkggqOAihBCSYMgQYPp04NVX89fG/PmJ/83N+WuDEEIIKWUWLwaefTbhEa0SCtUIIYSQwsP5lxBCAkEFFyGEkASbN+e/DV3PfxuEEEJIKfPUU8C8eZnk8KqggI0QQggpPGF7cHH+J4QUOVRwEUIISaBpYfeAEEIIIbKsXRt2Dwgh+aa5mQZihJQ6VDARQkggqOAihBCSwKjgamzMTxtcvBNCCCHRhHM0IdGiuRm47TbgwQfD7gkhpFDQg4sQQjxDBRchhJAERgXXHXcA69eH1xdCCCGEOLP//mH3gBCST1asSPxfty7cfhBC8kvYIQoJIaTIoYKLEEKINVOnqq+TC3ZCCCEkMR/GYsHrUAnnaEKiBcOHE1IecP4lhJBAUMFFCCEkQYVpSggqeCOEEEKINU8/DdxyC9DSEnZPMlDARki0oIKLEFIIOP8TQoocKrgIIYQkML9E86WaEEIIyQ+LFyf+v/VWIs+OH+jBRUhpw7U4IeUH52JCCPEMFVyEEEISFELBxQU7IYQQkmHyZOD998PuBSGEEEIIIYQUJVRwEUJI2EyeDMyZE3YvCmMlSgUXIYQQko3fNQA9uAgpbejBRUj5EcZczPmfEFLktAu7A4QQUtY0NwO9eyc+v/IKUFkZXl8YopAQQggpHqjgIqS04VqckPKgtTXzmXMxIYR4hh5chBASJm1t1p/DgC/RhBBCSOGhMIsQYgXX5oSUPvX1wP33h9sHrkMIIUUOFVyEEBImup75HI+H1w+AHlyEEEJIGERFsBSVfhBCCCHlwtSp2d/t5uIFC4DHHgNWrMh7lwghpNiggosQQsLEqOAyfg6DQii4KDwjhBBCsvE7N3JOJSQabNoEvPwyMHt22D0hhBQbsu/c//kPsHw58Oqr6vvA9QQhpMihgosQQsLEqNR6912gpSW8vhBCCCEk/0RVkBTVfhESdb74Apg+HXj++bB7Qggpdtzm4uZm9W2GbWhLCCEBoYKLEELCxBiWcNo04JtvwuuLGYYoJIQQQtRjFiT5FSwpUkhpfXpjSf12VHAR4pfNm8PuASGkVAhjLub8TwgpcqjgIoSQsGhpAfr2zd5WWxtOX4DCLGy5eCaEEFLuqLKU9jinPj7lHNww+veW+zY0d+EcTYhfKivD7gEhpFjxOvdyriaEkByo4CKEkLAYNQpYujR7W6l7TXFBTgghpNwxem8DBZv7X551Ml6feyK0Pr1z9lVonJ8J8U2pr98JIYXD7X2Z4QQJISQHKrgIISQsmppytxXyBbmqCnjhhVwlW4oKThGEEEKIclQpuBQajVDBRQghhBQBNBglhJAcKL0khJAoUUgFV//+wKxZwBNPFK5NLsgJIYSUO2br6wh4f1RqtAgnhBBCQieIB9fGjUAsprQ7hBBSDFDBRQghUaKQQq716533R0DgRgghhJQcZg+uCKDRg0sOGuoQQghRiXlecZtn7PZXVwN33QU8/LCafhFCSBFBBRchhISF1eK0kIITvwmxN2wAXnsNWLnS23Hz5gGffeavTUIIIaRUMM/1IYQo/NOYK/HdygOU1VcW6Drw2GPAO++E3RMSNWgURggpFHYeXAsWJP5XVRWuL4QQEhGo4CKEkChRDMKlvn2BiROBp5/2dtyzz+anP4QQQkgxE4KCq9eck/Ha3BN9H1+WLFsGrFgB/PBD2D0h5UifPkBLS9i9IISoxqsHl52Ci4p2QkgZQwUXIYREiSgpuCpspoiamsR/vmQTQggh3gljrndpUwgtWmuQKELhIQmTSZOA777L3rZyJdDQEE5/CCHRgnM4IaSMaRd2BwghpGyxWoQ6JY3NN7KLYjvFFyGEEEK8E4IHFwB8vPgojHp3v0RVoPLGE0JQ4UUKj1GZtW4d8Mgjic+9e4fTH0KIevzO7UHkCFSOEUKKHEopCSGEeIMCHUIIIcQ/qnJwKaBq8zahta2EhobCebAYr1PKm50QoHDPcDye+bxmTWHaJIQUFjdlE9/FCSEkByq4CCEkSoRpPWVu+/33gfnzw+kHrcgIIYSUCyF5cBU9QgB33pn4K/S5oICRhE1lZdg9IISoQNX8ZayHqQQIIWUGFVyEEELs+e9/c7flU4gkBPDMM8Czz+avDUIIIaQUUD0fF7PCjAouQoLT3JwIdzh9etg9IaR88TufGY/761+BtjbXQ2J6BVrjVJYTQoofKrgIISQsrBavxSBcMvZx2jS1dcfjwKJFCc+xYjgXhBBCSDHgMqcW5ZRr7HQsVti2qeAipcjQodBuvgmj/jUk7J4QQuywm3/ME/nata5V/d/w67D3h48p6BQhhIQLFVyEEFKuqJBmvfJK8DrsKLSwihBCCCkCnpx6Fir6vOr5OCedjIAGDBgQoFchoOuZz1wzkDJkSf122NjSWV2FjY0AgOk1u6mrkxDiDRUeXED2HGnDpA17YFVjV3/tEUJIhKCCixBCokQxmFDnO0RhColFOSGksCya04q+z9UDs2Yxvj8hfgk4j07esAcEKtTPx3PnAuvWqa0znxh/f6HXTxV8jSbhs/eHj+P/hl8XdjcIIUFIzl+//uZWPDHlbP/zmfndWaKeCq0IZA+EECIBV+aEEBIWYSuzzKbcYfcHyF6YR6E/hJAsnrxiKq6/Y2sse+y9/HpwElJORGm+KybFdaEVXFG6TiRaaBoW129f2FskuY6vbd1CTX31SeMVQkhhSQ4c36w4FP0WHe0+18iGKJRAA+c1QkhpQAUXIYSERdiCkrDbtyJMa2xCiDutCeH3Xv2ewIKfakLuDCElgsf5Li3a8nycRPmZMz3VGSqF9vo2tkcPLmJE17HPh4/h25UHh90T/9x/f9qDkytwQgqIYf6K6RXAf/+b8Ki2Q6GCS8mxhBASAbgyJ4SQKFEMi8tChSgshnNBSBnTHG8XdhcIKVqmVe+GNU1b+zo2rajyMk+6lE3vnTLFV59CgR5cJAp8/jkwdiwAoKGtY37byuM9WL2xEv8af0He6ieE2GB4ruMiKaLt0ydQPZbfLWCIQkJIqUAFFyGEhMyMml1Q39op8aUYhCdUcBFCCCGB6Pnp/bjsuxt9Hav5FEjZ2HwDAITQUh981R0KRq+tQntwFdN5Ivnlm2/SH+N68YpXhqw8CI9P/XXY3SCk/DDMX2kFlx8vYR8KLoYoJISUCsW7AiOEkGInueg8rP+DuOuni0PuTESg8IgQQkipk5zfWnx6QaYtrj16cEkpxo4/3lefQoEeXCRi6I5qZAUYQ5PZhSlTQGNbR1RV5a16QogRq7nFyWhDVYjCXr3yOYwUjro6oKEh7F4QQkKGCi5CCIkAzfH2YXfBmi0sElfTg4sQQggJjJ6y1Pabg8ujZMrJUlukat1yS091hoYQwIwZ2d8L0SYhDqQ9IRVy8ZCbce/4C50Lvf460NKirM17J1yE7t2VVUcIcUKVB7IXDy4hgClTit+DKx4H/vlP4M47w+4JISRkqOAihJAIUKElF7ZhCk+EwNyNO+W9mf9MOwOt8UrbPlh+JoQQQkqF5PxW6FlOSh9WLHPv1KnAm29mvhciRCEpb1pagCeeAIYNsy2i50HBNWDpEXh/4TG5O5IP9I9V+0C74Xpg+HDlbRNCCouUkrytDfj4Y6uD5RuKxQA4hy4uCpqbM5+LZf1CCMkLVHARQkhYGBZhHyw8Bl3feja09lMc+PHD2NjS2bFM0MXjP376LeZulDAL5SKVEEJICePX2yOvFtfFMvfOm5f9nR5cJN/88AOwdKm1YDlJvkIULt+0Hfb78GHne7CpKVAbvLsJCQk/c4uDol2K1lYA/nN6Roakog5AwpuLEFK2+Av8TgghRCnN8Q5ojncIV3iStARt1V2mBgV9lFpMU5BESOQoektPQiJE3vP1mJBSjBXL3GsWZBXag6tYzhNRh43wVAhgScP2eW9+Yb1LlAXek4QUPYGeYrObttOYUCrKoLa2zGd6chNS1tCDixBCwiIP3lGB2k9+jxstyvPUnwq75TtDFBJSNOQj1wgh5cS06t2x1ZvP+5/vqqqAgQPlygrhqE4ruinXLJwruh9ASoVvVhyCfT58DEB5zIvV1cDq1WH3gpASx2OOTctjnObFpDKo6HNwJT3RAHAdQEiZQwUXIYSQLOK6y9SgYPFYUezhEAiJADU1wLp1YfeCEBKETW2dPB+T5QX99ddK+pFWfxWLgMgYlggojOV2sZwbUjC++w6YvGGPsLsBAHh31B5BoxTmYuHlcdppwK67Km6HEJKNCgWXE8n5zE8zkYIeXISQJFRwEUJIuWLrwZX/qUHThLugyLxI3biRwiVCDJx4bCt22qkEXk4JKTds5t98U1Lhgc0KLubgIvnGYrI94wzg/okXhNAZ5PTn6peOwTffKG5jxYqcTTSsIUQxYcwtpTKfyUR/EYLKL0LKACq4CCEkLKIWojC1GRpWbOqK3w//o6fjvDUtIZE3tjN7NnDXXcBHHwVum5CSIB7H6uVt7uUUsvPOwNvzjytom4QQEytX5m6rrZU6tOhDERmhsIqEwMK6HRDXNQgBHH987n7nQKBy1NQYHKc8rrkL+Rqxfn3h2iKkZInFgAUL8lO304CQ8uBKrQuKVeFl7LfduuDFF4G//S07nCEhpOSggosQQkgWQgDfrToQ7y881lEJd+e4S7CxpbO/NqwEAG1twDvvWB8weHDi/4gRvtojpOQwv8StXZv3JteuBVr19nlvh5Cyw4tg6ZFHcrfdfTewaJHzcU1Nct6epSDkKkQbxXqeSCD2++hRvDHveOg6MHZsftrYbruEPDYSONznO+5YwH4QUqq8/z4wb56aurzMS2kFV5Ejo+CaNQtobgaWLi1Ilwgh4UAFFyGElCNjxyaS01sgoElZef93+pkYs3Y/X80LgdxF+OTJwIwZme/GRWplZebzZ5/5apOQksZOOUwIKTksBVKff+4s3PrnPx3ndqprCJGjavPWtvv6Lz4SL78U/GlatSpwFWqwGFMYFpkQhSQ15Vqf3gCcvUD7LTw6XS4wpWik4fabSvE3E0LSSCu4NE2r1DRtiqZpXyW/v6Vp2hJN06Ym/3omt2uapr2gadpCTdOma5p2pKGOP2iatiD59wflv4YQQoqdQi283n7bvgseqtFlQg1atmFxnDmov/FctGuX+fztt77aJKSksUgETwgpTSxzac2fD0yd6rvORyafiz9//7viFQAVImRhsZ4bEhwhgMZGAIm1r52SZ9CKQ3HrXzT/90qyjbSGy6keapoIKV0snu+5G7s7HyMEZtbskvXdqWyimRKa19zWAZzDiZnx44Hvvgu7F0QRXjy4bgMwx7TtH0KInsm/qclt5wDYL/l3I4BXAUDTtG4AHgRwLIBjADyoaVrXAH0nhJDiJuwcXDZtC6E5L3YNfYwLf47AAsgVyPNFnRBCSDkQcK63nS1HjfJ3HICvlx+GV2efUjwCoDDWDAxRWL689RYwaFD6q+vl37jRXztDhybqnzULeO457/fZlCn+2rXhvc+7KK2PEOKM0yPfvsL07mxR+ND+D2Jpw3bulZVKiEIjbgquOWZxNil7+vYFPvnE/5xNIoWUZFLTtN0AnAvgdYniFwB4RyQYB2BbTdN2BnAWgKFCiBohRC2AoQDO9tlv4sLLLwOnHtMI3HcfY80SQixZv7mLZZiD8wbfiocnnZf44vJi7duDS2jA3/+eSKxrx3PPZSxZmUyekJLhqquAjz4KuxeERAiPQmzbUINOcyokLbWLVXFTrP0mxcG4cemPTiHE0rg8i7YY17tz5wLLl9uXtVLyjh/vr10brvq7c6Kt004DPv5YaZOEEBsqNbn34ZZ4O/dCpfJu7cXwJJXTu6EB+PHHRP5vQgCgpSXsHhAFyJre/w/APwGYR8HHkmEIn9M0rWNy264AVhjKrExus9tO8kD//sDICVsC69cntF2EkOKggAKaplgHy+3z6rpjccMO9gcq8eDSEguJNWty9n29/BBMWLcnUFsLfPllTpuW3wkhRcN77wFvvBF2LwgJEc5hwZH14Fq6NDHg1NcHb5PXjaQYMcJ5v9+wwcacs4Dne64gd2hba/rjiBHAgAGFaJSQMsNijstRcNm8Hw9deSAGrziYIQrtePHFhFfuF1/ktTukiOD6riRwlUxqmnYegHVCiEmmXfcAOADA0QC6AbhLRYc0TbtR07SJmqZNXL9+vYoqiV8LMkJIftE0NLZZK5kKQYdKibEhT2EUszy/TPWdN/gvuHL4dYkvTU3JA0rEyowQVQiR/e4bwsJ87eat4XepxvcIQgx49eCyE0i5KH1sPb+KEfNvtTqHDQ3AE08AP/1EKTwJxIpNXdNRD4asPBD//VeNmordnv0CTpZCIirDd98BsU3NBegNIeVJ2kPUYj6vkFRG/WXs73DON391aSgVorCE1gWy4+WyZYn/M2bkry+kKHhx5qnFnX+WZCFjen88gPM1TVsK4EMAp2ma9p4QYk0yDGELgDeRyKsFAKsA7G44frfkNrvtWQgh+gghjhJCHLXDDg4eBMSZdesyn/mwEhJJ2mIaurz5YvbGAj6vlVoq55b3YxfW7eD7WMBgYdrcDNx9N9CvX1ZlMZG0YE1ZwJobosKLkNA5a9DtOPZYNXWtWcM0fITIknpU3l9wjKPBSM5xMs9Ysb43WPX7zjsznzdtUtLGmDX7oq61U/GeJ+KL5Zu6pT+PrdoXd42/xPkAmfvjgw+Ae+5xDo0UgftMCGDgwMT4ccYZwPrmrcPuEiFlSY6CK8j4YM7BFYGxxhfGfnuVD/j1tCUlwwszTy2u/LPEEVcFlxDiHiHEbkKIvQBcAWC4EOL3ybxa0DRNA3AhgJnJQwYCuFpLcByAOiHEGgDfAjhT07SumqZ1BXBmchvJA9pGg1WZz4f1sMPotUtIPpGK4Z/P9pNDQ5temb3BheUNXbHfR48GbDv526dOTST1HDkya39MT05PdgtVLkJIuRORZ8CvB5dZ0F6jyBiekHIg5cH1+xHXYXXjNpkdbgquUrLUTg4iM2p2weL67d3HRBUadCFw0pf/wKOTzw1eFyGjRiXCcU+fntmWvE9jemUij86SJZ6qlPHCssPOM1QIYN48f3XW1tJJghCvNMXaW273rOAqhxCFXnJwEWIiZfBN4+nSwF/ylATva5o2A8AMANsDSEk7BwFYDGAhgNcA/BkAhBA1AB4BMCH593ByG8kju7//hG/DhBkzgCFD1PaHEJLBcg0WwsIsreCSpDWeKe9XSZc+zphrwOjB5aZ04yKEkEjg24uT76CEeMdscQ3TPOyq4JJvo1g4rP+DOO5zi0j55nWCwt9VXGeIBEFF6jZX2toyn5MKrudnno5ubz8LTJhgf1wRuD3/+c8Jo1k7hABOP71w/SEk6izftB22fOMly30V5hxcZrzkrC4FD66mJuCrrzLfKR8gHkk/U8V4/5McPCm4hBAjhRDnJT+fJoQ4VAhxiBDi90KITcntQghxixBin+T+iYbj3xBC7Jv8e1PtTyFWrGzshljc/+J3wgTgoYfU9YcQUiCEcJ2oU0KxtHAsT/m2LNtOVVthPQ3F3SxQuQghpLA0Niqtbvly4MknlVZJSPHgRQhlJCm8MXpiCQAT1++ZyA9kV08pzpkG4X5zvH3ubzQqDQA1gq9SPI/EkW22AX79a+Bhr157Cu6VpljHwHWoIMhPaXZJ1xWLAcOH+6+fkJLFKgeX2bwiYIjCVY3bYnPc2lvMb50F5aOPgLlz/bfPOb3sqSx2D0aSRRAPLlIGTJgA/PvfYfeCkNIkb2sqXU9Ijvv0cW4/VdxjOBNNZIREfn+CpeeX4YTEBUMUEhIWq1cDL5mNR01hRM0MGpSINirLvHmJ1COEEA+kFFyGF3IhNCyo2zFrvx1FH4rISEUFbh97GYDkmsK8LjCHsOC6gfjkm2+AISsPDrsbAIC1Gzvl5VZuaAA2xzqor9gBXWcKHEK8kBOi0IyXwUEI7Pb+U5hWvXuwTqUYOhT45z+BDRvU1CeDOYQrPbiIR9IeXCF4RC9dyqWpaqjgItY0NeVsmjYN+OyzooiGQEhRkLcQhWvXJmbMyZNd2k95cHlr2m8Oj+emn479Pnw4q027N9uYW9jEWMxXH7LYsCERh9Vs5U2IQhQ7PtmjcIX82mvAX/7i7ZhzzwUefhhYvFhZNwgpH2Sf3+ScaQ5RmDZUUeHBVSxv25qG52cmYptJradUe3AVy3kikeXDhUdhyzdeyN7o8qK9819+iw8+UN+X3XcHrh99teW+fN3qt9wC7LSTe7lVq4ApU4BHHslPPwgpFpTm4FIdxrd//0RM1y++CFaPD/b78GH8bwZjnRLvpKfcENZ0PXoAX35Z8GZLGiq4iDXDhmV/13X07AlcckkovSGkJAlbNpLyotKFw1TgFubQg/fXyDU/w8L6nbKPMyqqDG3pTmETAeDvfwcWLJBu25IXXwQ+/RQYMCBYPYTYMHUq0KVLniov9AAiYd3y3HPAPvsUoC+ElCsWShohXEING47za6ASScwhjt3CPiocM2nrVyb88IP/YyXutx/X7e0ehrBj7v71M9YkPljMy35z49bV2e/L13Jj4sRMjjOnNnbbDTjySOCBB/LTD0KKBc8KLify9WAX8v0k2dbC+p0wbNUBvo8nJCwaGsLuQWlBBRexxuxVsWhROP0gpIQReuFyXlm2L6z/u/XHr4Ds6+WHpj+7hUVMN+t0Pj780Fc/0qxdm/i/cGGwegixYf36AjaWx7FD14HPf5QwsyaE+MNrDi4t2yAkPae6hPUtqSgMbj8mHwouCsPKixA8EcwsWr9V7sbRYwrfkYBoGrBpk/1+PlqEuJMOp2aHF8/lUlBwGWSWUvKJvfbKX18IIaFDBRexxmwVyXi2hBSGQiq4Uh5c0DwFAc5Obm+R98KGuMiEHUxbmNoIqBpjnaD16Z2p26qcijCFhOSRoMLk++7LWDd7RdfVTd3z5gEXPfpzy32NjcF/Z2MjLdhImeFnrt+8GXj9dQCmEIVGgxGXEIVSAqBikTQb3lUENPdwSwp/l1BcH4koQSY3D/fHwhcGJeLwWbS574eP+e+DIsTUaf6PNZwGp5DNfJwIMWEefxYtQoV5DlfpwVWMD6Fh3tc04f4bevTI/l6Mv5mUBqkUGQXLZVAeUMFFrHEL+0EICYzfMCKuGIU8Ds9uxklKA554AqLOpyRdcnz400Ej058vHPInXD3imuzFuxBoirWXr1tVZuqSMmknpcRjjwHff+/v2OOPB847T21/8sUppwC/+EXYvSAk4nz1FTBnDoBcQ5P0d1cFlwTFsuY3KrisvMLNCi+FObjiOl+hS52aGmDqul0K0tZ+Hz2KaXe+6/3AQj2rH32kpBqn7hbLsENIPpC6/59+OjdEYZCKS+GhM6wDnNY3G1s6Y1H99rk7SuEckOJk0KDEfybhUgpX5yVKtmWnjwqo4CIk7+TtsXJLgp7clhIIpRVttbVS1WsiIyQSAtJCo207bE5/3tC8FT5Z/HOgogIPTTwPVU1bAUJgyzdecqyjTa/IhGLiuEQijnkq9YPtbe5y/48bB4wa5b29p57yd5xfNC2RhyMNPcZJOeBn/jIkyTHZhmSEXql6N2wAHnkEmDIla7vmVTgWVVpbgeXL018L7VEVd8pdSkqCv/4VOOKt23wf/9ubunkq39zsELEgZERLq+djUjZoTj8naxwbWcCFByERQ9botTIZovCiITdjbdPWwXJP5suDq5Dv55Lj5Z+/vzLhDUvZATERWm7aVIoMenAphatzQggJCdmcV55x82wytZFSGEnn4PKZ4Na8gEi1++/Jv8EXy3o69lUI4I25v8TWbz6PO8f91lO7lrz1lv9jCZFEhZyq0Pqeu+8GRowwbSxkHs7vvitcW4REBZn5zFAmx4MrNS+nBozhw4GVK4FevdLbn59xGiZv2NN732pro6d4fuklYPHi9FdL4WA+BFkpDy4quEqe+AY5oy87Ph20haKehI/XiBPz5gHt2nls5OOPPR5ASOkg+w6eMmb5fOkR+LFqb/d5rtQ9uCRpaOtkvaOMzgGJFq2610mSyMDVeRmgJAxa1F5sCSkB8ramMj6vVs9ucltqbAjcDcnxwRxWQUADhgxJfBawPiHJbfXNHXDd6D+gOd4B49ftlbXPFz/+6P9YQmRZswZAQtHVr5+/Kvx6cCnlnXcK19bs2YVri5AixWhoImCI3JAaF8we2ULg+ZmnyVVuHFtmzUpovV97zW9X88O8eVlfLdcQybXJ8k1dccIX/1AzZibriDFEYcnTfvHcgrZnGWbTVz1KqgnEunWJ/6efDowZI3fMZ4t7YsaM/PWJkCijS8rrjO/SMStDCy9eWfmS74XkweXkyW3boygMmCQaFPBe+PproOM//XuIE3u4OieEkCihUADjxIcLj8LLs04BAOjJBbKsMlzLWkxq8h5cJgWXLkz1WHmeJetujVemN9WnrLC4KCURYuFCoKkpe5vW74P051mzfFQIQIyVVMZaPA9F+YgUZacJKQBZHlzGzYYcXCmBVceOOcf6MngbPTrxf/Jk78cWGhvB3vh1PfBD1b5Km4qJCo5VJU5lWOE8vbh+F+gedB07bCJHDB8OVFcb6nHo7hXDbsCf/+yjc4QUObrQsMQqP5QFRgVXXA84D5kVXMU4pxllEg5GArb7ivE3k7yw6zGFybkJAEuXFqypsoMKrjJAybhtrmTTJl/VHHooUFWloD+ElAB5W1MZXzRtGrntx8vxn+ln5rcfRtracl6PjS/MutCAWCz3uJS3maGPbXpS2eW34/mKOU7Kmv32A+65x36/59ssmXxWnzzVd5+8EIsB++9fkKac8XiiYjFgwoQ89YWQAnHL6Muwfr18+dwQhakvNnl8hPA31VnNyxHE0tgmlXdMZX4Frhciz4Rek/DEFdOica1WrXLcHb1sWw44uVdNm+arSothyh1DaFJCSoFPFv8c+3/8SO4OyxCFGaVUTFTm7M/ByUur2CM0DRyYcReFN6NbUj5cey0wZ457udVV7XItVUnRQQVXiRI4ibSL9djQJyf50nHNnAnMLWzEB0Iii6+cEUOGAE88ATQ325cxLlht6mtfkVGCpcIi+MkJJj3S3HprbohC88GSgrS0FVaqAq8LdCq4SJ6oq8v+niWE9nCbtbQA01bvACDb0/G997JlOyoFt5s3A/PnK6rMaLJtxvAyaonH57FfP+CYYzwdQkj4mO7zV2aenJv7zkxybV7dvGWWYEs3enDZPT9+5zm3nJ4RwdI6m3N7WfL008C9Hx2eyEEXNqkceAVESWoCc50C0ObPsy8Q96cI95WndNkyX20RElU2tnSWLlthWPfHgnpw5Wt+L9Tc+/XX0kUZorB8eestYMAAycLvv5/PrpACQAVXGTBq9X7BhVYmYfqZj52MF1/0VxXnEUIS+HoWPv004df8/ff2ZdwUXEJkKbi8xv3PqdLth2zeDCBXGC8MU5CABrRvb9uY8YVdGPf16wfcdhtQXy/T9QSlEJKBFJxhw9zLqMrl/MILQM+nfgcgOy7/VVcBDz8sX09otLTY73NxU5m/bltpA7rTTwfuustDvwiJMGKe3GJ9+3eexUuzTs0cB0PYIjsPLi+GIMbBqkgUXAAsjVfu/ukivDrnZOVtqMqXRPKI0zwkgRIDksbG4HVY4LSeGLn6Z/jsM8XteVSa+VJcgctxQtzIycHlZrTp5aEq0gewtmULAM5Gt+kxTMsY9U5Yt2fR/mbiDenLPM/BkCNPBHZMIVlQwVUG/PqrP+Pyy7O3tbQAXbt6qMTCs4LzASHBELq18kmKtjb7fRIeXB0qMs90ykNE+gVWMt51mqSAzOzBZUQXGtDZwoLNQliX7qcQwMiRQGsrMG6cez/s4GBGXGhqAn71K/dyZhmyUcgj4vIC5qROOHGc6RlLt1GI+1ZRG62thi8ukq/9n74O996b+Lxxo3O9w4cDa9YE6hopR4QAxo+P3s0zapTzfptn54WZp+HS725KfLF7ZuNx+Tm+COdEy+Tyuo6npp2NYasOVNiQsP5MokcUwm/5uUcktUNCAOfdlJszpM/ck3DJJR7bzJMizozb6Vi1Cnj88YJ0hZDoYzHfaOYcXF7q8LKvSKhr7YRubz8HwFsOrs+X9sQxn99bEueAuBOF5UAWxWQ8VmRQwVWm1Ne7C47yhV+rLkKIAacHyWOIwrTQSzKufY6QzG1xKJEHQwDWk33aWtqiOYnfacfqxm0wdOWB0Pr09nQcIV7IClE49kfp4yocVme2i/R8vKQ55dxw4PTLumXZxXTsCHz7bfKLxCKgoSHxv2tXJuIleWDRIqBvX+Chh8LuSRauj7DNs7NiU7fMl9QAoWnY0Lxl1nZfXkcVFfhu5QGRlwFJhXxW+CPyEQaOBEfTgGGrD0h8iYAAydKQzQ3JF2VdB74e2cV7/VasXeu4u1DP/7JlwL/+ld82Zs/2aORLSJ6xfeSND56u44Jv/4SLhvw5vSkmKqXfwaVQ9aAXcMHQGm/nq+3qli3dC5GSwe62+P57IC5CUIkMHlz4NssEKrjKhfo61yK/+x1QW5tQfp12d/4SWkT9JZmQQhHoWVCo4Ep7cEn2J0vZ5EHIY9XlIz/9V7JOTdq8JrBgSQicMPAfOHPQ7envhDjhpHAy4mgo2SCfuDLL8ws2Hlwy6AEFfDU1vg4b/kOnHIPw5cv9daFAhuWknKiqCrsHlvid23bqbAjRa/B63uGdZ/HdyqSw36/5qqbhjEF/w8L6Hf0dXyCEQF4VWuY6uWpQz+bNwIYNweupjZDgsmgUoZWV7mXygcwzqjiX2pQp4Rn5EmJFpWY9P2c9HkJg6MqDsvbHrDy4QswzHdMrMHXDbgVrD8j2aHMOUZhN2vuNMoCywM7Y5MQTgRk1hb1nAWSl1nhq6lm4+mreh6qggqtEyfGUMGe+t+DDD4GpUxOGrSOmb2eqsEgW6IQUEZZrKtmFlouC64kpZ2NR/fYOIQotPLgk8fvCbuXBNaV6j0ydkh5ci+p3THheBViU1rcawiFycUtckJ0CzbdS9otXMGWwXRuWpEKYxgIquCIX04EQBUTAs8PqQXZ9tG0GhpjR+tRU74bmpIdHPC6vlLHoW5sekgBcEgGJXCQq2xMa1w6KueYaYIcdwu5FBiV5McK8R7y07WLF4/Vn2K1hBgwwpRBeIWH5smqVt8YJKTLaVVivSXSj17XFejxulYMrRN6ZfxyO+Oz+0Prk5T1LLxbjAxKM5PyhjxsvVdyX17UPjDKx6TW74913uaZUBRVcZUJgC7KIKbgWLOAYQIofqZA6rpWI3Bx5uo57J1yEXrNtEqsLkR2iUCT+amStXrNycDmUmzABeO45YPp0ABI5uKwqc2qgqcmtp7ZkCS44mJQ9jzwCbLONezmVkUCccFRwpV5ynRpTpZjKh4JLYj0R9Dw2Nwc7npQ4xaq4tXl2Plh4bOaLIUQhYBDi6Lq/d4Gk4LsopskCenC9vzB/kS7KFb9evlEmX8+NgOZet5fGXeZlVb/j1luBq64yNCtjbGDuW8RkEoQEpdLm/dis4DKXiukShh1O6x3Fc2ZjrKNzAV0HhgwBqqsDtWOHbRjmn37K2detY1PqoLz0hUSECRMAAGL9eqnioXpdR8H4rgSggqtMcVobWu6L2GLyZz8Dvvgi7F4QEgwlIQr79AFuuSXbSzO5mG3TK20XtlkhCqHhrfm/xK7vP51TrrGtQ26/sz47WJy8/jowdy7wzjuJLjvYj+tCA0aOzN2R8uDSXKYrtxhypiReWX3h4rbsGTcuK1qALUEUXF7uMsvbORm7SZ8+y3vjMuT5OUhVv2Rl+7y209QEdO7sXo6UMVEY8608uPzkyJKoF0DCgyvAzy5Ka+c8Xue4iLZHG0EknnNfwjLJd27XnxdRRb7UZVmxIvNZtQwiJeiM6Pkh5UeFTYjCrFvUwkglFrF5yDWX0WuvAZ9+Ctx7r7I2jesmy6GlrQ14442cfbtvWZOqQFlfSATRUmk4LOYRC0WrrmIdTkKFCi6ShYoxvrY2eB0ybJJPZ0JI6TJ5cvZ/IP0g24YUMnlwPT7lHPxx1B8si65q3Db3cMPU4Ulo7+bBZYXLoKQLDc2xds4vwC0twP33A/37+2qDlCarVgE77ZT4LCs/sZKH6LrB4KK1xf5YD0lsK9auzt04f36inpbWxHeJ+3ZzvIP0b9M++lC2e75pagL2PmOf/FTe0AAgE52REFsiaiVpKQzfuBF46ilg0iS5gco0LqRf6r38ZmMdTsKBlhbg8cfTXtqhU0APLpI/ImZTGQiv4Y7mzgV2uOwURY2ru1cLbtU+c2b+6h44MPE/K1YiIeHRzk7BZZx3LZ5nSw8uM46Wd2rns3iqv3b1GmUVisiRH7h4sDU2J2QjqXnm+u+ukMnkQoqVpMWo8T5Ztiwpr07NBUa4xit6qOAiclg87FOmAO+9l1u0Wzdg8OAC9ImQIsfyxVfhxNqmV1rXN2hQloLr0yVH2taxyS3cgCTLN3VFtUMIRDfrcLvTcu/4C9H5jZftJSJNTcD//pew2Bw6NF1ZKQlQiD/mzwfWrfN2jNV9uGgRcOGFic+tk2dhzZrMPr+3mfbj2Nw206HC8nTz/vhj7jaF45Fmk2ZPGV99lW6HkGLE8nEbOBBYvDjhra1pifyTMpWkQhSmxgu/3gopBZfVaNa7d0JS8PLL/uoOQHOsHeZv3NG5UAFzcpEIYLawDHi9VUwlXhVDU6YAG+pyIydY1j1nrnMBm2e+uhr4xS88dStSHHD1MaipcS4zYYLEWkAyZBUh+abSRsEV100hCk1DmqUha5B5L+CY6cWQTwUxvQLN8UxUCEtj2eRvSuUjzTqnAPrO/gWmvD87f50k4ZJ6dzbMxXvtBVx6qXVxLhOLHyq4iG/698+Oo23Eac0Yi+WmDCKkHPFjEbm2aWs8P+M0i8psksKbt69bBwwebMrB5a0fxn7LJlrf84Mn8eTUc2z32y6KXYRyM2p2TXywC1HYr19COGiCIQpJpeG90FUQkoxfKBpyXYfbGyLufbb0SOyyi3UV3tJhZAr/bvgNOOUUmU76p60N2BzLb+jAvJN03aKCixQrlmsC44JZ5ua2y9Gn61jd1FWyI1YeXBblOqoxgPHDE1PPwf4fP5K90UvuEb8Irh0Kga9TmzJiKmJk56/X5p6A/7uw0bmQzUmcPTsRltkLbtfDtzGPQ2QHO+at2MJqWZ9m6lSmMSDFhV2EEzcPro2tWxQuObAE8QKHd/v98D9ir35PpL/bpU2ob+2E2bU7A7AWF+iDaJkfJVpb7YPueMZmUq2pgXt6i0LDNaUSInZViSpcp5fRoxP/582Tq9DlgauvT0QqkeGMM4rbcowQVVg+Vi7P2r8mXIDbf7zc+ThjiEJzfc3NALJzcDm1aDWW5GP+dYt5bCX4i+sGNZXdImW2tVVW1eZtDJVzQVGOtGsnX1a88SYAQO/7Zs6+9pJ6odQ9PHJkItF6r172Zc13+6hRsFykG7e0xf0v6f7wB2Cnd5/xfXwkSD7HVHCRUuOJKWcnQvH6ID13+nWfdPLg2n57f3UqoL61U+5GC8v1Si2PbqN9+uSv7jLH17IsgoO/198h+xPmbtwZ/Zf83HN/amsTUU+9kq/fIVWBRWVO/TniCOCxx5JfnJTcXPuTiNCuwl8OrriMkWkBPbjieoWSemSZtGGPrO+WBru6jpO+vBOteuJlLSU5yBKbFGOO0RLm229zPaySaai9k17DWmAhO3K7F+bOBfr2td7X2AisXeuxf0Q5VHCVK198nvj/8cdKqttmG+Dqq+XLT5wYvE2uS0mxYzmJutzYb8w7Qbp+SwVXcrVstBZzUi5Z6uA0Yw4uOQ8uN/zk4Gr3ei9MTi1u7d6mrRLyMGwRQbYHlysLFgAA9Lm5RiHarBm527RcT+bUXXbqqYmIXv/7n4f2U5U60OGR+20X3W7MmJGdW6+YiaCMk0QNTcOqxm3DTSZtMe/YzUT3TrgIU6t393Vzp+sMGKKwKBJvWyq4dPv9AdtoWUZJRqSI4ODv7vlU2PVnz57A+edbdcT53P17/Nn4ZsUhSvvSowcwcf2eruU2Nwe4rqNG+T+WEJXMnQu8+aalRbhdiELduC63GEzSCqUoMGqUu6Jo662VvnKbhy3LqoXAwrodco4x9rUo1jdlTF0dsMMO7uVkyBJ9e/TgisWAhx8Grr8+8f3ZZ4F33snsv+46YOedA3SO8iglRGhUJKGQeuFNBbOuqoLWvNlXVQsXZj4X4vmsrQVWr85/O4TkjSAPisSLvGVs7rSCK7OYjgeImb2pTU2IIjcFl92pSnti2ZwPEdfx+dLDcdXwa/H+gmOsy3hMAk6Kn/p6oHH6IgDAb89vcc97nA7TlX2fjRgBfPnINMtDzFZcL8w8HdtIOg5aCr3MnhQWFcyYWt7xf//7X+CKKxKf+Z5AnNjt/afw1rxohROwtD5OzYHQpOb9HJsWP/O7VYhCK8GVuT8tLcB//pNwU80zUroMIVDpIwSaW50pThp4JweaPKHEgytoDi4F907BPZ9cGl++3F9Vz089BcNXHyB/QDJahBNLlwJtuo1navJErFsHbHFirqea9HldtEiyICF55rnnErFBLRLV2ym6zTm4zMREhbvRZqG8GD/4IGM8a1fvIYeg4rXemFUTRAuQwXzenHJwpY+xcvKigivSWNkq++XyZBAku1vU6ZFo3z6R+SLF3/8O3Hln5rsxB7cvuJ5UAhVcZYLt85IKWfJmMuzS++8Db73loYLwuO02YNddw+4FIf5R8VjN27gT/jjyasvKWvXK3IVtspzRgysu7F1Z3EIU/n2cTZZOAK/OPgk9P70PG1s625ZJodtZfcmeJBupQLPoiIuG/BnvLTwOfecdb90EQxOUFTfeCOy2G3D6jfsAAD79sqO0sYT5Xrn4YuDm739vXdbi1k2m8rLdn8LqdtaOPsq9fz+Ndy3jCYVzfyGipLzxBvDVV8HqIOVDbesWobZfYbLadvLq1oU/BVf6u98HwikHF4AmY+6+sWMT3q5GCUCesBQIWvx48zlWyfj1PfKT56tc2VgrVeyHH4CqKosdHrVD8+YBDQ2Z7/feC9x3n6cqXInCPNTcnG2EWhA++sh2l5dz0miTZsy2jlq5eyhVySOP2OcTJyQveIgRag5RaM7VZWnAEmTQ8Xts8jg7T7Q0yTG6avPW/toxV2fuhlVUGSFMucNTZU3HkciiwvBDCC3rgVI1N7e0AIMGJT576acKAxpiDRVc5U7q6TZOtj6DnEZhEU9IMeEnB9cNB4zJ+v7pkiPx5vzjE2/8QOLlLjXTWpHy4AoQFkV2ITho+aGYVr07ur79P/c63XJwuXVXYgBKt2Eqq8c5eJUTr72WLdRy49NPgUcm/RpA7m3mtJjNd97nufMtlnCb/Xlg54sNG4BHHw1Wh+x5iuta1vUQcQqeiQ3JGyXIPKikGx7al7UwzjHeDiq4cfLgqqjAlm+8hNFr9kt8j4XsQWphua48ap0X63jiCa22Jv3Zadw/4YREHsvcCrxd7AMOAG6/PfF5jz2AJ54AHn/cUxWu3Dvu/PTy3C1XtXIha/IkPv44sN9+aqs2M379Xrjppsx3rUpN+E7Pz6/HMeid11vw3ntqPQQIsWLFpq7Y84PHLe9Ru2c/K0ShrluvWfL9siFDdTUAw5rGrs3kA61EuC8E5tV1z9ok48GV2Zyr9CLRYtSoxNisbB33xRfZ363yO3qch+vrgXPPTXz2GPEwF96ISqCCq0xJPbpvTTsCAwYAj4w5JczuEFKW+JnHOlRkL4zTdaRcUJ57Ltu01UYYU2mT0Danj1YbFYeBAfzl4JIhy2rLa9uEAHjoIeDxKecAyF34ui26nQTYxlt7/PiEIk3quOT/A4/uguqWLu6Vh8gXXwD335+nyk2/sd0fr8asWYbdAz7PU8OkVDBbQxeaHOtjh+7IhijUTYYcqkIUOs2Ta5qcQwVbsnAhfndpDD/95L17iabkrl3elZhUcDnSqxfwyis+Dhw92nG35bPiQwqW8qpesSK73uXLbcJ8e+T56afixRcTnzt1CsGTCon8JflmUf2O6NNHXX3PfbanJ0MkO4569AIMH26zU4i0gW+HDsHbIsSJmTW7YPmm7Tytz83zrqVHchQUXMmkxq5rqjwbF1kay0rM0YENgUheOOUUU86soJgnAwUKLqvqvv/edxVEAVRwlTnXfnkxLr4YeGDU6flvzGKCveWWhGCPkHJExZqzvi0Z/u/4ZPg9c9wWm3hFsotLK+FYPtbKcVGButZOuTuM+Ud8oGsZAYVd7iLKp0gai5vBuP71ogxdtw72Cihk34bXXQf89rfGNv09ZHaekJqWrUCz2p9v1q3zJ9wbNw7WOdLMSc5MiNFjHPcTUqGJhPdzGJOAEDnPuZ2XFAC0xNt5U3DZfJftWxqnNv0OHLNmAc88gw/7t8MnTy32V4cVFuudLGMeFYsXt3wnJIs//SnxrucVMeibwG1XHHaw72P33BN4e/4vA/cByL5FamrsywGFmYvTRMzj28gdfQ7Ad9/5ONB0Aict2wHffmtd9K73D0Nty5Y+GiHEO2nlj8V6wy2TSKKQ8GeU45RsyLyO9jufJX+T5paDK+3B5a8ZM2fuNivru2WrQlh6axnXW74MgUj+WDA//TEWU+AZheT1bpfJ+ej5Vp8/371MkhNPdPfYtoTrSSXwaSY5SMW194OFJuuVV4C337Y/pK4OWLIkeNOEFA0uz5pZAPb0tLMSHzpZKIes6hMC8zbuhNVN2/rujtDUTx1vz/8Ftn3refsO+FwNG8M72An/qeAqD2bOBB5/zGUumzPHcbcXD64zzwTO/9ZesuckQ3a624XQfIUCmzrV8yGBMf7G++8HjjxS7jjj+bjhBuDkk10qt9pNi0xiR8qKWBPAO+8AP/4YSjfM+Sos7+jkm31TrIPUPW2r4FLoDW2LpqGxrQPiuktZwzirL8yjgssupJPiNoh6VISYFULLuVxLlyLb07fA8iS39pQquNwa++ILNDYmzkkhWb4cOOggubJ250NsbrbcfvUtuUZFDQvXWhrXPD3wAEcjJEJU4qT8sX0/NYlqLRVcpvqEbirz8cfWwvlJkzJJa53o1w+46SbnuU42/UFyPeMlPLMtQqCdaQ2liwpLuYdbRghGcokYQ4amPwoRcF405pGV0JTZrnXNBuQWCSKN/cxSTstCBZcSqOAickg8cK6Dzxhv1tSaBmy/PbD33p4OI6RosJpEXSMNmL63r3ARdFtUeMDHD+PblXKWrX766Ie1m7ex6YCQa9OmQJaCy+ZQV2EcKQleegn4130u19piRZqV18lDDi4veK7nGxfrdovnoU+fRO6SYkAIAM3N2d89QrkzcSMtZFm1qvCNC+GekB0w5MCSew5EPJ41jgVW9CYFAk65LdIhCgF0efNFPDDxfOc6x40zV6EGC8GWZUgnlVAgkR9cBvAfxui44ALv1ZxyCnDIIf675QdPt0hTU976kUN1Nf76V6BHj8I1mcLFlsgV8fEnltvf/TjX2O/Vz7rnPQcZIW6kZ1AvIQqN45eFB5d0Ta++mrvNKo6aVd9Gjkz8f+89+/pTCq5U/2bPBqZMyS1nNC5SgNT5kMnRraQ3JB+IhYvUVZZjTWqxrrV7ITd4fwGwvK+8KLgoecofVHCVKEqSNxpYvKpj8EpMA8a++7ofYmmk7svnk5DoYbXm8mpFdMtBIxMfbM0cg40FUglb8y3gEcJ3EgFLDy5ziEJaboXOgAH5D82jIsTBru8/hYcfznwP0ufUbbj77sD06R4P9uGOtW4d0snuC4JdXCAZGhqAT6wFWISoIr1WNr+4FohKs3DGai4yhBEzW3NboYsK4N//Nnz34cFlZWHuUK45njx/tbUAgIX1OzrXb0iu41cBJ3uU8nmFHlwFwdaDa948AMDadRUYONC0zyqfhulytbU57w8b7dP+hWtM111DJkaWVN7hAjJmDNCtW8GbJSVC2qDGMkShjQeXOQeXhCpGekzzOndNm2a/Lx7HFd9djxdmnpbZ1qtXbrlUiEII5/okMXuCCaG5yiisQhTaedCR8NHH/ACtbmPii4XXlCvJe25R/Q4YujRj6WD3nDwy7lfWObRM64s9922fvb+tjR5cEYEKrjLFzjW477zj8ers3FhA+1z2c0/1jxoFfPihc5lFSYW852f56689HkBINPGj4DIvwnLe581S/DyEJSpo6C9dB955B2JtlXtZq8PNHlzJ87Fth8wiifKp8Jk9O/9tSCm4XCyymuMdspyRgwhP9Vhi9btyZe4+p/Adq5u2wRdz97fcZ5dnzpVNNtncA4wfQXKoNE+dgyUTq50LuZx8p65feGEw/RspcpL3TjrvwoIFPt9Gg2H2LrKcWysNeSQlwrZtaO6SCKWS/I3xoLklzOfKiPEhGzMGGJoIKxPT5dv0a2AiFU5diCyB4IjFe/pqyxEuIArLihWeihsvz7Bhmcd83pzEjuWz6vHWW9nHXHFFgP5ZYLwtXadUlR5cycbspsqaxo55G/ZUhCBzCk2VDzmgW50//pjW4RPimfS9bBmi0PoYc4SRnDWDhELHFq9zV/v29vt0HR8tPhqLG3ZwriN5EpZt2g4tL/YJ9iBb5DHVrdZQQtjIMgzHUcEVWQQA9O6d+PyWQ14bFz5beiTO/PSm7I0WE8yT40/H7bcnHBY1zT6E7/Iqk/PHoEFZX0N4pSBJqOAqU+wE1B8sPBa95lglu3AgudoThknqjTeA3/3Od/ek2iOkFPG6yEq/RKbCCOmA1qd3pkBAbyvLHFzmbXm2OBE/jMXXyw/1dWy2gkszJMI1lKF8qizwq4wyH6fqdhe19l6JTn2dsL4HLvzgMjWdSOHTQ9INv+fqw0XHYO8Xbs9b2198AXz0UaDqSQmQnm8XL07cFAVGamxJh+nVpOaq9ZuTOWVGjw7WuRTG/AU2feu53cqs8EWfLZVMtof8G8xUVmRO2qp6Bfl26MFVEJTNs4Z6fvWrTBqNAw5KrA0nztsa116bfUw+54aC5uByqXu7e27El18WoOE8kI9xwzVEfMoSy+BVS4gsTh5cduR4cMnk4DIVOX/wn20saj3OXb/4hf0+2bqS48yVw6/H0QPuCaYFELmjgF3UmayfP2YMMHdudhEGjIssQmhpj119gcJwhQ737KRJwFVXJT7L5qjsfOm5GDEi813UbvTdNRIMKrhKkIJrjFMKJ58eFp4pskU4IV5w9eAyfTdbL7XFXYZ1j1IDS2uoQiIElm3aDn8Z66Ixt/ldQjOFKNT1HKtuz/KpZcuATz8FWls9HkjsKIRXvpQHl8XN4DTlaHGXHHg+UZKAOWQaYx3DfUQY6oG4kHWHjB0bVjekEJBTcG3XKTuEi6/HQIhEKIb33zfkALMfCM1tHLfjYuf6t946bYij1HLaxYMrL1baVHA54veVzfZ+81hhFC6P0zOYkxJE5dxfAnOg0lf+tEebz/MyJykUN+QQJESW9H1nGQJYIkShdA6u7K1fLj/cukNWAsNNm3I2/fn73+Hnn93r6sElg9HodEbNbsoHaJm0CkIAeO65rIg49OCKFsZ58JXZJ+PMQbcBUKuIFKvXSE0w6dvHpWxzW7vs1Dp9+/roVPHP2VGACq4SpF07YMjKg7O2mQcEpY/PwoWJ/xT2EuKJQCEKNS37mUuHETIdb148evbgKkyIwp232Gi7L8jCM6evKQWXIcyD5/X1448DQ4YwxplKUmGH8mihIaPg0o48IifNo+OatslHPPAk+VjGph/vCCySd3v/Kdx6q5q6GhuBnXbydozbOBWBU0RCRggNrfFKnP7V38JoPDd/hNU9u/vuqeLQ4+43rXm+9B229IMPEl5gybHZ8ujk5Gnu9xHbL3eu25DzzNdjOG2a9bhs8Ruz5nq7tYQQCTNdc4Imu7JGpkxxP4ZIIaXc8ZhMM+oKLuO+q0Zci8em/Dr/HSoBfI0bVvGgjXW6eXD5aZOQJOnZxzIHlzX+PLgkcmfb9ANz5sCc3HDYqgMweYNLeF9TXV8uOwzNsdzcpuaQi0EHaPP50K1CNpra+O13N2FzrH3WuoUKrmhhvDZTq/fAT+v2TmzXCz8K+31XPK3P5Xj00QI1RrKggosEpq4xnOTcslxwATBypPfjhgzJ1dnNnAkce6ySbhHiKQ63JX/9a444bGNrZ+djPC4mpXJwRWFCtumDcdEqbMr5zlGyfr2/40gO2uRJiQ8TJ+atjYrNcsooYw7bt9+2j9738stAc9zBotEFJwWMXwtjHVrJRs9Zt05tfVEYtkhIGAxCNjR3wfDVB0TihrDsQSr8sKQH17Tq3bCmaWvnOl07kps0yCkJu2fhkC6hdLJDCOCVV+z3mTAKwGx/w6hRwBNPAH36eOsLkCMMJGqwfRzNmk03pcV3w9R0KAANDYmQR4DzMLOofkdMchMk54n11WpFQr69pAw8+ijwpz9Z73Maj2xxG0CjoA0lJUuFgweXHTk5uKxm9Ndf97d+sbvfTbnuLZVqLnWd/+0t+GjxUTnFchRcgUMUmhVc1rlCje9bQ1YejJWNXbOLhB2thkgRxnXyOy3MqNkN/fur7QuRgwquMqFNr8zyqPe1MLRh24tPkytoYwYfj3vMqesxXsHAgcANN3jPCXbWWcDHH2dvGzUKGD/eWz2E2OHLg8tojW1c3CWfi08Xm3JfBMzBZdUf2Sq8tORkWR3kNVlUVGa3kVyprG/OCABlrOIt4cuwepqb81a19uMPno+55hpgkSnkd+r+v/VWoK51C9/9cQxb5LPOV2efgi22ACq3lu9XlUt04WeeAe6dcKHPHoWHqzV2+PoMEhbJi69DS8+pYViGmnGyvJbNwfXb727GlcOuT3/XRUWwmz3pbWUpWEidx2S/F9TtmO4rvvnGvl3DdkuBlBPJY42eWU4YhXO25+/HHxP/p0+Xbt+9UhIIu3vH/A64Zo1jNfrn4Ssghw4FjkrKemtrgY0bkzuWLPFvYCWDh+d+x8N3zl8/fDJlSo6sXQl2MhAx6Bu54wLGTdR1YMaMQFWQIsQpB5fdPWlelpjnPSE0YNUqYMECwzaLiqzereLx7JzdNvhRcAFAdXNuzsscfZbi+TMu671m2tzQ1klpP0ieUPjiJgClIQqt4PIwHKjgKhPmbtzZMTdkmPTpA2y5ZX7bWLgQ+PBD78eZPbgoECP5JqibvKt3ldcQhYF6I09Mr3Qv5ITdAtZwPgQ0y9WG7ncq5ICgHp5TJehmK0kHundPxsK34dFHgc+XHqGiWwWFCi7ixquzT8YpX94BIBovok7WqfeMv0haCTe2au/sDUOGeOtIWxuOGXA3rh5xTTrvhuXzklK+QYMQwM8+eiT5HcDnn9srjLbbLlOFt56lJWSVMkI3U86SvIQh8hgyj8ghnYMr5pwHM2rD/HnnAT//efLL6tV4cZakkahPFiwANq2ozWsbkcHNQMpl0hdjf3Ter8h74PPPgcMOU1IVKSL85eAyzC8WObjSjB6dVc7M8zNOw5CBpudDctFTKWNMYlFXbUuuoV1O1wKGpTd7itp6cLmkW/jz9x6t4Eko+DJEs1FMyY7nQd4VPd/efDFVAlflpUaID8a8up1w1lnB61m2DDjgAA8H1OZv4S4Tjp8Qv/jx4EqTnLA3xTpmVRbTTcN6UAVXgXJwtdkpuKTdxdxDFCY26DllvQo259R2R49+j3Ehkg/yeE5l79r5812NwpVg9Rxdn3S8UJpovlzh80nsSN4bi+p3xML6RHK3giu4hNxMeuHDCeXy4oYdpKtu1dunLbOFAPDZZ5l8uTLU1GDC+h4YtuqAtBe07uLBZbl2SbuqmNh1V0MVHtcTLS14ceapmFGzi21/jBhDOilRcJnboIJLinwZWdY3FF9oqcWLkx8KMEf97GdA38+6uhcsBT74INjxBVozeIpaQ0oPD4uNrJB+FgquxlhHzN+4I1BdnSlmMVff/uPl+Me17mH1jeGNU1Rtzt2Wg8WzYxWm1DIvdgDMv1SHRQ4uieeaObiihd07sN2qOT2nJhk9Wt1wTg+u4oOr8lJj7FjXIiNGAO8tUJ9IqinW0dlIVHJgmDoVmDdPvt0HH+sgX9gjUQhZQ8oL9xCFGZpi7bGsYbus/XttVW06oAAhCq3qlBTepbBVcEFSAGbnwRWLG4rYeHB5WNgKAQxffQCWNmxPAXpA2tospoUInNNf/AL4dQHyvFvdd3375r/dYmbiREjnGHMbgUSbteX/0qWuTgGk2LEYZ6LwIprTrQ0b8MWPO2X2+1iT6kgqn1atkj/IoLRJ9cnOMjqxT0NMZObwxfU74IWZp0qGKPQoNKiqwl/HXoGBy3o6l1u0CHjllayQTkIA+OknoFevHAs2rU9vLK7f3r19Krh8YQyTL4PsUmCbs47Dhg1O9URYcBkw1F2UCeWXzZ4d6HBpr2/TdXvuuYTsghAn0sYWHvJvm+dHs4JrwNIjsP/HjwBHeI+y0BbLfUp3ee8ZTFi3Z9a2dT4VXMfvtMiioIkgCy8hLDy4rA1xrE6vMWf5o0eHH8qWZPAiQZo7F9hnn+xtJ58MLFmSMFjVzjrT/mCZEIWN/i0S4i32L5M0ZM0fXJWXGvPnO+8XAjfeCNwx7rLC9CfJTz8Bv3n9AtdyCxdKvIObBqOH/5uH+IZJDZv2/WiXgoSoRXqtJwSuHnEtBq04NPE1KfjaeYu6nHL+Gkge7vc11aOiIuaQhyCIx5he15D5LCwsu+DtlHzwAXDrD8lQBiUsnCgERiVCVm65CNDYaL9PmVWYlaVhksjcWhG5HimOPhp49lnJwnYncfXqxP/Jky139+gBvPSS976RIsJqHojAK1HOXPfGG9n7fTyO94y/GId88oA3RUyyoZZ4+/QmJ0WUDi3Le3zoqoNw29grpBRcnuf3Dg5Gbcb2nnsOAHJDFL7xRiK5z6RJmbLJsWK9Rc4QVyIzWJcWXu6LtNGDxbUIIym9NPm+dyI2f6vE8rq6nc/k+bDyLDHu99QmgDvuAJ56yrlpIHA0NhJlqqtd75/U7SniFjm4bEMUmhRcdkJx470vEbIfAOpbOlqWa4xZb1eB0hCFdoa0c+Zkf9+wAXGRbUT7yORf47Lvbkp/36KdKScJiSRWt7ad0aOu53p2GVnW0A039znSvkCqzU8/A+DT8LGm2r1MVmOlO2cXkvDf5oha3BZ3M2cWph8mPv8c+Gr23q7l9tsPuOWW/PfHle+/T/xfvsJyt6Yl3o8JCYKfEIVpa9RPPkl4EZnqyjk+4GQpgITbZ9Y2iTY8ths40baxvaoq4N57gR9+gNg1k1tIAJYhCuMe8hWlZOMAKNjKB1zcAYiWZVfUbvOWFrlyZm+XxkagoQEJsz6L/UaqPb6TkCIjCh5clnk4TDQ0ZO/3OSzM2bgLsPvu8gckhU7VLV3S873l2iR50oTQrOdwu5MaxINL8kKJ1jbcP+H8rNVKVlvmJLvw6S0etQEyYng5PVJFLSqMgvelLyoD5p51g+spT1gpHrL2O+yTuc/btQPq6tzLkSJi3DjgppsS75wuyd47VCQk5LVN8gqkXA8um3vUwuvaDTulmq/3cb9jTeAQhdnttsbboe6r0dlWihZGMV8tz06Cx6EyOkybBqxq3NZyn5frJATQ0eFRa4x1Qu+h7rJpUVOLpUuB9r88Wr7xJJ7f5XkjKoEKrlLDbYW1cmVh+qGYX/0qei8wASMhEGKJlxCFWZ9TCi435ZOfHFymRbtUFTYhAeywDH8En2FCv/02IaF+5x3reN8+c3Bt3myy4KFgSwktLZn7vs9Xu+Qt96GXhWYh1pjrNm8NrcL6HrK1MFbBpk3yZYWAs1gnupif/VNOAQ4+GHLx+CO23iD5J5LX3OR1Vf/jLP91eRnULE6GkyfM2/N/gR/W7pO7w846O8uDy2PfPFh8PzrlXDTGMsItXWgYtXo/vDjz1OyCQebynXf2f2xZ4G/+CHi7+qqnkJx2Gko6vGW+jXRWNm7rKeqqDNL3SoDxornZ96Ekgog33sTYtXsnPJhHjnQsm1rXt7TlPvd2t55bDi5D5Vnl7Duc2ZeTs1vicCONjS5NWawZzOVjrQEVXKbzsaKxG7Z96/ns9xwLQ4LaluzoT5H29C0zevYE/vT9/1nu83KdhFAjprn0uxt95xDlfRUOpbuyKlck3fOLjWHDDO+0Fr/xwAMZUogUH5aOTx4mQ6MyzDFPRtZB3haTljm4zH3s1cs5plsAdKHJDVvG39U5E1c76xzBJgeX5FS49dYJI700JSycKCRbbgk8OOl8AMBNzx+EGTPy0w71kUnK0D1J0xL5u1YYnLKdhhWGEipxouDBhVzhTI4HkWnQ+vmAf/lvzMsPNCqg7LzDDTsHrTgUvx78V8d6sjbrxvqt52WZvuUwdWrGq8xKuAbgXxMuxF/HXpG9w4snjbn9gw6SP7bciMcL8t4pJWRdsCDv/fDCiBHgoiQA/zf8ehx+uGljnmUgKvK58ZKXFgvqdsTxA+9C+9dfxfTqXaWO8bK+NM+7trePlisPcGvczoB0ty617h1raUGXLsB7z613L2vA3Lf2e8mdM7vKbM+H8SQXqeyTBEOVgqsp1hFr1wavhxQOSudIXqmpkS87Zozzfqf5ae5cYOhQ+bacGDkS0K6/Tk1lhHhENkSh1qc3plbvkdm+bDnQ2Jh1/JQNFiGJPC70hq46CHWtnWz3/2aPacDy5cCXXwZqxw6/1i9an94YV9UjqxtCwFrBFZfra078Zb6pKsH8smcROargLFyYUGhaUfTvSh4Cie9/w4moqyvO+9ztMjkJq4zDxJo1wLp1avpEIoLFQ+wlVG2+cJvvzFbH3ir36SWVHC88hxIEbBVXxs26jeGJVN9MvNJ/x0TIKFgr5nRdQ/uK5PHG85FUcEmtN4p+AiggmzZJe/IsXJgdGsvWe99jiMJ0LcOHS/WjoOQ5RKHWddu81m/FnrvHsWFDYdqqlZDDe8Ht0U6PDxb3YCyWiI5OyosWvV36c9Vmm5eGJKk1p1UIQLv1qPmetA1RaLgnf/u/45064dhHq75c87OxuYWGDQMALO/3g209a5ucz4cKbKNdZCV5lvjNivpD8kvJL79K/gcWBiq4Sg03jwIhoG1uKkxfAGy3XeK/jBz4pJOCtaVqTJjlEAGG4w5RiZ8cXLZ1zV8A3HVX1vGrm7qits40Jni8iZ+b8StcP+rq7CoMQqDtOyXDAJhyhQAOyXA9IIQPoVPy86zaXbKFW6IiWaEpRKFfq0x6cOUFpxCFa9YUTohgcUsXjPBF7Qnmr+oSdhdySD++eVQwGwWm++wDHHts3poiYWDlwSVp6KCKWQs6YEPzVlnbEhFB89QPL0okQ9nLe5+W2ORnnrT5LcauCKF5NGm3/x23/HBlTlbxZZsyuUp14aLg8nHqy/W9YPFiYK+9XAq1a2e7q1ev7Mu+337AuHWZfBieohk43NpXjfgj3nwT0TRIKsE15PKVlXjjDWD02v0K33jAa/zilBMwerTNTpcUD598AnTv7t6GppXvmFGKvDr7ZOmyqTHNyphGdryrlAhR+PUUa6+oGTW7ZQ2Wdvehea5vV2ExP2/cmN2sRWXXjromZ5vqe1/Kg0sCFd6ZJP94WRf84x/Af5/MU84DEmlKb2VFnBEC2BSi1K4IcFwf19fLlSPEJ+45uKz3d+z7CuItsZzju/28h6kC76vL/kt+bluFgJbwFLOQMKjII6Tr/hVQFZqAqDeNd1YeXH4XthwECs7++wNHHRVuHwohnMhn/gptX4tcOUVE+vy7XAi7F9ZYm8NxqVCrS5ekN23ejIJZpJPwKGiIwrY2HHLuntb78jXAeM3OneSzpUcmNvlRu0t4cAmHcpa4Ca6SCeWt+pul4DLiZS73mcOz1JgyBVi2LHHqvv3WppDDef3Tn4DVq+3rn13THeutol9Z1Dl3rr3+YfCKQ/Daa859CY0SVHABwF13AXeOuzTv7XgeKl0OuGvMefiXXRTYKVPw0KTfeGwwl+OOA26+OXA1JCKs2NRNumzq9rPy4HI7JvXFNgeX7MNgDFFoM6ebt6fX0sY2kmOX07vKEdstl+vTwoVy5cwIYd++h0gVJEJ4yRHtwpdfAl8Obq+sPlI8lObKqpyJ4gJeNXn6jam0JI7vG4MG5aVtUp748eByWsI2xTokwv2Y2bzZuVEXurQ3ZUU21PFj1d448rP7ch8cp4W4B+qaO8oJ1rJNwtP/RENmsWQnSIvLKLhoclk4HASYDQ3A+vXZuZRS3Hqrcy7GfCc9J4VF22Vnx/1240b70060PygVxsqUr6UcllZlhZUHVyEteOfOtdwskEfzfg+amMbNuQthlR5cxiFeFxWZDTNnAq+/DrS02Nfp9jtSObj2zfUgEQIZBZcxLnpSse1LiVemawPjz545U339x3/2d1x+uVzZCy4ATj/dfr8QiKYyKYp9KjIMdqfuRGAiX7wYaEoF0mkqXEQdkh+Mo7+sgapl/m07vZVpTrI1HE1VMH26Yx+s8muambRhD/z0U+a75e9KKbgc3vOv3T83tKFlmwHyI9q27zEHl990CCTB7NmKKnKJO1vyy62S/4GFgSsrUjJYjgmrVkkfv/32idBYEVj/kjImiJCtRW+XEBaZSSbDi8eBb8d5j4l98V5Tsr4bF4Lz6pIxOSxe1FU8SiNW7Ov9nCQHg9rWLbCycdvMZkOuj0O6ZsYGy3NmZsYMb30g/nExJGhpAfbYI3f7yy8Dzz+fpz4VmHzPQ+XqdUAIgPAVXDaC7RwjDJUvux7qWlW7BXbsnC05tjw/bgOVVw+uF18EJkxwzpckOXiJrbfJPVRoGcMbg8vP4pptAQCXfnejRMXZ55GCsfzhRf5vtOOyJIovd1RwBUIIYJvcx9z5ABWoupe++05NPSQ0jJEC2nS5nHpWc4atN5XJg8vVUO+zz5z3Syh+rhl5LY47zrma1DOQ7nWQNZXHcIJphMPs6zlEob8ukAQHHww0N7uXc2PA4M6O+9+fd5Q6ZVoU4Y2oBK6syo1ye3DmzfNUXNez3zei+D5EShvHBaHL89tr9smOllY/fl6Fs+88NEj3Et2wWlJWVOC11wyPnBD2yXA90L4iLrdItjg3d467FGcNuj27iK4DQmC3LhkrIV1mKnSVnhCv2N7ONt4N5US+vc3KIXqHiuXOxImJ/1wLlBgWN4eXsEGBsVNwCZMHl8o1uwettoZcQZqld7jPNo2bdaHllnPSbLj9jtQ5swlHXN/WKfHlrLMSMfbmzcM+zyRihq1p2ta5bmP9JFLoOjBr+VaW+4QAB/FyII/XeMZS63srEOWwECtxjLNBS9w+56Cx7KTVztEH7FsAtu1g8y4qMb/v1LkOF1yRUSDIGmekyxmfr7SCy34+tFTk6R7c16T6ZreD83Sh8XvKR47MRIe/+MbtHcv+edTluOcef+2Q8oEKrnJDxvojorgNnC0twV1khXBeHxfnmSNRxWqh53ifC+GYCPWbFQc736PvvC3dNycs+1hRgRtvBJ58MrNJxatmlw6t3gWPNicxvdg259AwntM2+YSktY0dvPWL5B2n50dFTjgAGDUq/7IyVX21w6/BZBSQfYlS4Vlx9NHyZdescT6vzz4LXHll4C6RPFFQDy4bjF7GiQ3heHBpeu6NbOXp7FqlTYHsn5j5zY1tHbBu81b2CZUA98ErFaLQouljd1uFDhVJoXJlJfD44xD/fda5PhcoRyswNpPvqlXAIX851fNxocKbpzgQAof99ZTM9yjeSyQUjOvM7ls4x8tMvb//X/+LsHixuR7nY9w74j6WVG3eBgO/yeQkcj3E7JJjPCCl4NIs9iWRXlPJGN/YvJvbRmDJ1zqKKOfUU4FnnpEvn3M5izQkCaeR/CEtNdQ0rVLTtCmapn2V/N5D07SfNE1bqGnaR5qmdUhu75j8vjC5fy9DHfckt8/TNO0s5b+GRBYVD7Hb/DR0aMJF1q3hRYvsIxcKwYgRJFzcFoROgu+YXmm92EtO/hX5VNFqubHFVeTg6tKuWUrBta7WkEjUTsFlOLfGz+lzPmlSIpHT6NE5x7a25tY3fNZOrv0iDhTporQU4PueR4T7vbrLLsCrr9rv79sX6NdPYZ+IfywegJdmnYoRI0Loi4G0l3EKlWOkFw8ui/vdcszwubjP+okGpd7/Db8OO737H6C9Q2Jwt8HLkIPTTIfKODqkcnAlF/uBFeEcTO2RPTeFyEVEaVLpo+AaazELQbpNkrmWFuAPVyiIy0WKFuO7ZKdKZwNJ41xj1tfYKbKy5ifFc43r3Dd/vv0+KQ8ui21WHlwua5NB/xyJe475Dli92lSZsG/d49qpFEMNT58OPPVU2L2wZ8aMzJDtJbxhzmPw2aeJ/9OmKelXqHA9qQQvovzbAMwxfH8KwHNCiH0B1AK4Lrn9OgC1ye3PJctB07SDAFwB4GAAZwN4RdM0uWC1hPjFNFBoGrDvvsAJJ1jPfUIAWL++MH0jZY/VgsotRKHTEsw2/vfGjQD8K5yMSrWffkok/7ZDjJ+Q/KAmROEN316CqdW7uffRuMy19eCyJn3O330XA5b0hP7eBzllRk72nruMOCM+/Eh5nRs3Ap9/rrzaglLQ9e3y5QVsrLCc/83NeFuN0yq0Frm3L7vlw6RJnpxDSb6xeMj+M/1M/POf4bUPJNcE+QpR6MWDS+iobu6Stc0qRKFfoZDRCcsYovCLZT0TGw85xFe9iU7ZK7gAoENl0oNL0zB34074ernHsM0UQKhn4EDLzap0UpG9ZJHtWJEicT5/+1ug79wT7AtszihbdT05b9tYxa5eDbzzUSevvSQRZ8IEoHdv78fJ5uACPEQikB0i/BjDBBl/kgYiTka3Vko7yzWDS9+feW9nPDn1HFhZINl6uHlcR5XiSPzcc8Ddd4fdC3uM+spAU+HcZG6MMWOweXMi8nRUKNaoacWOlIJL07TdAJwL4PXkdw3AaQD6J4u8DeDC5OcLkt+R3H96svwFAD4UQrQIIZYAWAjgGAW/gZQJKt8Dli5NRCexbGPQIKk6aAxI8kGQHFw6NOsiHyQUNpVBFE5JF6ZRo2z2//BD4r8hprwKD67Ztbvg3QVu2W6BdhXuvy0tPDSdpLSHmBC4eOifMLs2Nz56xYZ1ch0ucu65p4ApsMaOVV5ldTVw0UXKqy04+Z5e0o+A7QMdXZ56Cth7b/dy46r2xvvvB2jIh8DAbl1w1FHAggUB+kLUYuvlW+B+mNvP2RBeiMKYyF4kW4YodBupJEIUDlzWM+dZO+rGI6X66dimxfMrdJHxZNc0XDfqapz/7S3+24KNRTrxRr11aC+VXoOEAMCnnwLDVx9gX8Bwz/35z8BOOyH3nrOIWEFKh3vvBW6+Wa6s8RZ4bMqvncsaCuuN2bm0CupBlLTEcr1/rQRlKczPhGyIQqtGXdbaaVmChWe3qhxc0qEgiTI6dvR3nO2l1XXccw+w115+e6Qeu+f6hReASev3KHBvygdZD67/AfgngNQItB2AjUKIlCRzJYBdk593BbACAJL765Ll09stjiGq4MI/G8kJLlWsuhrYHGdeHVIYrAQj7h5c9vf0MTssxe+GX5+7o6YGcx/+GIsbdvDTzWTHdOM/W95Z8Iv0Z1WjUatL4l4gswDWdaBqo/WqKcugy7A9dc5bGhNTWsfK3MTPFVMmOVdo4txzgQsucOl0BHnySSjzenHDbuFntz3o9FYss6MQ+bf6EmvW5rX+fBKPA0uWyJUNJIAyeBXQCo8UAiGyPbiUKk+8KGwtykoLq2SqN9dlqmfSvGzvMU9tpjy4bEb8tLBMCPv8HRL1lzvG09CvH3DTTdbljFfhgguAMWOsCuV3dhYi/22QCKA4H8LEiUBtbW69Hw/bLki1aZau28JzPST/aI2bpMsaFSOLG7Z3LmscDU2x4+ymFWnFl5d56Ztv5A5JKrgs17/pEIUOXbLy+rZq02VtMq8umQ6gnUkW4JSXnCEKSxbb+zYeR3V1Qbvim9tuA/rMPSl3B9eXSnBd2Wuadh6AdUIIC+meejRNu1HTtImapk1cz1BxxEAhnvk99wRu/eF3Dn3ITID932nEf/6T/z6R8sJWwaXrCe2DA9+tOgBNMQvljq7jwAcvwxXDbgjQMfvE7QCg9emdXVZRiEIAaJFQcKU61vflZnS/9bfWRZIL2BWrKlDf2jm9PXXOU7+to0UcdStvNKchadAg4Kuv3LtNCkcxKSnyLovzE3+ljHhj3vHY4lJna1wrKEMtEmylSQXKCygZonDuum6F6Y8Elvk0fA6pObKn2lp/FTlUbqccTM3lIhZH3GK9VV8np0BLf6VgDJMmAX36uJcbOBD47DOLHXYDZ31doH6liKzMKLIdK1+0OsNY1NCQ3Jh9fz76diJsupfLJ9pyDed+ee/JnvtH8k/FimSMs2R4fyfO2T2Tn83V9sLwuTUuF84wq0qnBrwodIwxgp2w8eCaORPQLjgfgPN7lVtO8UxB576vauya+NC5c84+q9DJ5jpf/7SrXD9KjGKaXvz09frrgTrTEqHo38GK6aJFGBnTteMBnK9p2lIAHyIRmvB5ANtqmpaSOu4GIBWgeBWA3QEguX8bANXG7RbHpBFC9BFCHCWEOGqHHQJ4GxBrwnhwZs1SVpUQQGOLhLDbR71e+WzwlvjHP5R3hZQ5tgvCRYuweWkVYg4Wx3E/1sgS1LZkrAxFnXUomSyWLIFbvjBP7be6WzmmhFnrvxpnW2ZR/Y6AENijZzeMW5eJcWZeIMf13PNoqeBiSINAKJ2OWlqyvmpaIoFtMVKIaVo0yFuoFjNO51IAaGoybUy+HdW2bInNMe/e3EX/clUu2N0Yy1dYby8Q/5pwYdb3WSu3UVe5h4HFyovZ0ttJ0psqp664abtVaPDp0z3VKYNR6XXwX07FhPU9cspssy0fYmUEncxUmmNzcC57vh2dKyDPwZAsU9TUJD6YFgp+bmvxQb+cbWtqO+Onn7zXRfJLOq9USsHpwK5bbkx/9vLW+9KsU7O+20a0kH3PdPFcziKZSsD1Pq6wliksXZr57DSsqvLgsu2PkweXoaEbHt7duoxbv0gg3ngDeOUV+/1Z944Hp5bUterbF5gyxV/fSGnjKg0VQtwjhNhNCLEXgCsADBdC/B+AEQBSZvJ/APBF8vPA5Hck9w8XQojk9is0TeuoaVoPAPsBGK/sl5DoMmCAkmr22gvo0QPocuOVSuojJGysFn+2Cq54HNu+9RzeNYQAlD42IAOX9cwsnocNdz8guQhVkYMLAJa6hH3Ianpjjef6U4K7zm+8DABYvinXar6dlmvxlq/zTeQYOdKg1zKbcSFaiWajRrm8zLW2AvPmWe/7cNEx2HLL/Pfhlcc3Kq1PCHkDXGKD0wMQy1XuFBRD35R6nXrJwWXRrtV859uDyyVEIQBguMRaw4rUWsWiyufHH5f22pqzcmtf1WsXZsceZg4ub/zvf8A2WycFmlVVif8SyqdFixJ/fhRVDFFIAODsP+7iqXxaeJ4z4drfS6efnmNvlajrB+ucs+NNkrBYDFi40EMniXLS85+E4sX4Hr9th8225aZOTeSUTtHQ1slUjwQSE67UnOzi5exWuWUbQXJwNTZ664cMqWsnm6qEnti+sTvFf/4zcItFitOffrI4ZvJkf4YDpmM4zRNAPgeXFXcBuEPTtIVI5Njqm9zeF8B2ye13ALgbAIQQswB8DGA2gMEAbhFC8BU9BAr+7CuSpK1fnz+BpZhmbSlaTCGtSGlgu8iKxdCq5yZYNZJXhUvyObYNB2CkQ8LzQVWIQhlSw0ylm1LNZhE+eXLm+yNTzs0p061T7gKcgq1g2Obakhx3Tz0VeOcd+/0eQ7BHhkLk4CoXDdeYMcABDvnkZZF9abIqN27A6uAdMHDvvSiIYq4cEUD4Ci4DQsuPV7ZruxbDg6WCy209YDPOxHVrwdfle0/IfG9tda7bDgfh3YC5B2Ftk0KvOOLIF19VWq4Z6xuS9/Wbbyb+SwywBx2U+PNFg0TkAVL0qBZS262SZi7ewnaaGD48IcA1ernE48DRA+6xLG++9V97DdhvP89dJQr5aV2uZ68dxnnx1oNH2JY74gjgpjG/T3+XXYHL3tMff7s19LjI9Y62QssOy2/fuE0o5dVrMlUZfonZEHRja67HpGWVk5yz4HSqtF8L2P6E1AsgXSTzTuqamq+t2eFu0ybg+++B445L/Nc2ZzxjX5h1Gk44wVt7OW1qWvEruMrk3TzfeHpzEkKMFEKcl/y8WAhxjBBiXyHEpUKIluT25uT3fZP7FxuOf0wIsY8QYn8hxDdqfwoBEEnVdSweTp9qaoD9/mDv7ZJFr1757QwhFlgJYGyVVBJCN7uE6deNuspTvyxJW25JPM9CKA1RKEWyf5U+lGpxUYF6g/wjZhGiEFuUtkR52bLoTB9e7hynx4KWXfZwDe2NIArH9g3evUqdmDTJ2kKcyNPn2z0tt0+v3k2Je5wQwJo1LgUsOLH7gvw9nB7qlVVw+cWyrngcndsZ8l/a5kmTM2KxKyZlpOOBY/5+otL6osCgQe6PgcztdOHvOtuuSwFkctxITM6trYm/pmbvSl9RU+teKAw4EatFwfm0nOst6v36K2Hb3MknA4cdlvn+r38BU6v3kGpfIu0TyTM1LV2kyxrnsutHX4ULL5Q7zhwK3+7dWvaWvvyFE7Dy5S/kDPtS463PEMOWiRQtyv53+pkSnXHPR/b3w76z3uEYgzy5zy6Eg7m4VCnixrBhmdvLrOB65hngxORyKRYD8P776X0t8fYYa+3kmkNVFdAvGfFVCGBzLGP8zfd8AgTz4CLFSAiL6fb/vg+PP17wZrFkCbBwlXvuHoCuySQ6pBbLmzcDzz5r2CEh0bQT3LwxT9IsRgIpIVdynFEVolAK2TYtQiHoqMjK9xHTcxfbYptt7ZosCZYsyXwu1AJR9vSNGwfceKNNHRLvN8VGQXJwiUSqiXlr/IXpIiZqkwJUg9n21KkJxbHqcbBY7+socVOvIyy3x0SlkhM8YgSwi7doWACA7lvUYcKkzKvZVh2aA/cljZffZVHWMp+GmxezXQ4u8zpip50AXc+eE/y64NqZEyfp3tnem+dXu8723NyMZaU3hp57bmLeTbHffsAXX9iXLyRbnnqM52OE0CIp+XrmTffw207eCyQb9R5c9vWJWNxxSG02DN3zpstbpHB+D5+9t0rmA5K4GMa5rDnewXqctHjvbF8hZ0hjvgedetQwZip+XL6rVL2AvAdXOidZyvPLw3N22WXAr3/t3OaCuh0d60hFg/l+5rbS7abXD8UayqOIMC655s9PfP7Zz3Jv+xyDVIvUAjJMmQJcmcxWs24d8KfvM6lrIjjNkxCggouULCoGuYa2TtiwIXg9hFjhZCU9dizw978bdkhYlZstwpTiJYFtckFZyBCfmRCFLovZmTNzNulCQ8vgTGiJmIXFsaW3nUtTXGip4e23E2FbvGJ8vnbcEXhj3i/VdSqf+Fz0e0IIvPQScMBdF7iXJdjYuoWtkhUA8PXXAABt+rT0piOOAM45B6hQPA5SAJZnFJzgmlWbfdX1yeKjcMzpW6W/b9UuHAWXdIhCn6cqp66ePRMKLuP2gAouO+Xbjp0bbA+1Mm4hiZxAOSnRli8PpS9+iOqQ+c/ndnYt06myzbUMSVLARbemO7+TZXVl0ya5cuD8HgX26JL0upfJeSXzTpwygDJwyd6Ts75L1ePSn3snXIhT3r/BvZ6UosqrgUpaDmDYZOi3VW2ffAJ88w3gJExrc5l3Uy2ceOexjuWy8KjgkopOU0RoWuLdOfW5qcm5vGoWLChMO1deCUyv2T3xJaVdK2Y4ASiBCi5Scsyb5318sJvk/z7uUnTvbihHTy+SZ1KCn5z3NBlLsnzenxYLW8eyQoTiweWHuNDw78nnGb5bTI2SFu2lQCwGNNjIAJub1elfVLxQOF1243vN+vXAmqZtA7dXCETfNzIWk/lqA/bXuOxocxcg6qLCWclq8xI9Zw7QZ+5JPjtmDd9/8oyKE/zJJ4n/U6cG60pYc4xdwnhFN5/l46LYg8vu3Dn9hJFr9k98cIwvWfykTu38+cCECdZl6upcwqUNHqy6WznoQsOKFYnPQXQXWtAKQqRU15l+2dJK6e83X58FxrPtNFZowtmDK4sK+WsoFi5KfFD4m4g30u+uEnOQZVQTifjoZsMn24i8rj3IMLV6dw+l5T24zHyz/JD05/Tvd6lM9O6T+G8hb4vt6OzubmssKxPCQ/IhLfVxNp92kx5Pdf6Ix4t1ms8Q+kksDajgIiXHAQcA48erq09BOgZCpLFVcPldaKvCSw6ulAdXARVcqTWBpXJKgo0tmWS4Vp5wVovyUl2HPPMMsLVN1KWrrwa23bag3XFE1xMKuV0P385yX1FSAMt4oRetvE89EycGryN5MmW8VmVzNNhRquNOFNi2Q6OSEyw2Jz24JPM/5LByZbIihRc7qAeXVYhCN6GQbIhCAIjHs/I1TZpiM5e7/Y7UwG9TTmqN8Pnn7mWKkBdfTEQGqEwazJ9xBnCMTcS/c89NONYVBJvJaML6HthDLnWRIxwyS5xBgwConxtT45H220ty9rktn7JvafvSOR5cqSgTP/3k3kGSF1Ih8byGKMxsNL18WIxvxrlz40Zgft1OlvV7MQRcvin3PciSVHIknzm4vq/aN1NErkW0rd9oW6Xbujnr9KXWRg79A+C6Dih3mprCt+PJR5SfSL7X8h4sOFRwkZJk82Zvg1ypW26QaGI155329h+wcqU/Dy6/yh0pku27KdE6VrZlPLgKKVaQ7J8dxvOdDk9hxEJb4nZJ4nGgutpXd5Tz6KPAzTfb75ddfy1apKY/gLpxt6UFWL3WIm9aka4pCzIfCRHNF4EwMFqx+L1pNBvDBAuC5rIp1vs6Mji4pWzRrjU0pVIWScmDykvda/RB0mWtum0laHMNcWTB2rXAqIUWeUJ0PWv+PmrAvzzXneiUc4hCqXWShFdnFionRh+0tQE1FssWM3/9aya3669+5W5LsWxZ5nOOIL7A702B5ytOeCWB5WUMQVLrdjtl7XcomxuiMLmB1rWh4cmDy+rimo773+tb5hQxzk433aDjqWlnW9afNc4qXvx59eDSfnMeBg8GZtdmPK50SbmD3pBIyLSpuV3OPlcFl3H/wIGmLto8XEL+GqaLm36vn4hQfpg/Pyt9b14wjzM33eQvT6wVqXP0wAOZ4AWEhAkVXOVGGUlGZN5lzjkHmDbNvRwhhWTCBECrSWpGUpmKJRZpec3BlcRNqCEE0n0taIjCJH7yFZgXyGfsNie3jE8Prr339tydvPDii0Dv3onPCxda5jzOIWzrLhmEsB/ry2i688zYdftg1aqwexENBv3YlfdKGbHpmVdt97WviCsZOH5a18O5gE/L6SD8qV+wUJm+QhRalL/tNuDW/qdYNKDniLlSjnBudVo2bbNWkTKCmTVLqo00IUt17rsP2E7SeD/FsGFy5YIq5FVB/RSxJfnOoVLp+tBDwOqmbWz3a8L5nUzWg8vMg5POT3yooIguLNK5nKUip1hcJ5Ny8m8P5t5HxvfO+okFzh2UysHlwwP7nHNci1iypGF7NDUBB9x9Yc4+N1mBcf8RD18oF6XJaw4u5K5vDjgAOOoo4KqrpKrwzf77A8d6SC/mRkuLxcZ167K+5uP9/rnngBEj7PcXYg4v+nUCX0aVwNmzhBACaGzJtYwwFypk2LCoM3hwIjd8Y6xj2F0hZYjdPBabMQfa228lvqSslfxakqki2b6bcMi4SAwjRGH3LeqdC0qsfuJWluo+f0q9S3fCYL/9gDvvdC+3yy72VuEqFpEq1nGlqOASev5t43/zzS3o1SvPjRQJ5/7zYM/y7Bw8hCgMSuq+1jSm6fBD68p1zgUUxDbdodOmYBV4CQmcB6wMOixDFPq43SvX2UhWdD1HWNinj/f63fJB9J13gvdK3fDq8aUYo6cVkPAcv+MONXUHDakaGYpU8hXWGBBVLOdYhdc29d7y738DNS1dHEoK+fHPgwcXCZ+0QkXiAlsWkVhDGFf5Wtx+/siq36U/O3WWTLQke9PJ/P7U7xDCUWE2o2ZX+2nSpR3jMz+1apcs4wzbNhWFKJw8GXjvvUBVSNHWpkbptHw50KmTxY6UhWse8HOKBw4E+i85Um1Hfv5zoMUiR2PYFKswooihgquEGDgQ6HLtpY5lJizsmt8wZkXIww8D3d56VqosxyhSCMToMRnrwNWrE//DzsGVxE303qa3w73/7ZZY7BbyxVw2RKHVyk/TsrzfLD3hfIQojAo//3mO8VaO4s3ut5hfSArxm1vi7dKOi24UbZ4tF6Zs8JYsmgSjWJ5lILuvlh4uxJE2PTecaRYKboaOlbHEB7/a95BvyHk1O+RsMyqfGhqAFSuAqjorSYoB0+9YtgzQl6+0LWeev/1E6VKyDtoyN6SUIyFrms23y8iRCWvqUoKKAOJGIYdNDYD4ZrD9ftn71a7TvOFDIx1eX1GIQitk71Uv5m5e5z4Vz4tsmy1xewN8x35YhFNPl1eYg0sky771FjBlitQhSqmtVRMy0DYCt09r2+Zm93WYn/vof/8DXph5uq8+2bLrrtAmTFBbp0Luugs47TQAmwIawBFXqOkoIVZavDOaOeauU7HAJpFlKeFk1W/G0pWXkALgtCbIcdn3m+xWFWmLcveiT/TZPn/9sCH1EuB6DiqtczXdeOCY9HcrIwCr310sypXJkzOfHdLPeKZPH2DUKGDqVH/H2724/fqbv+Dgg+XrKTU5gICGZ6afFXY3yorAL/rpHFz5lbAtWpStdC61e78QFELBFdiTLw8ht7xwVv8bcrYZQxRecw2wxx7APv+42FO9e+0FfLT4aNv95rNmOce6XJ/UGiDQZfR6cMj5cgoh2M/XWNPUBLz1/b55bV9AK9rBsr6tc9hdiBQNETkf2uYm4MexsqXtdxkHOeODXKT3aymgefDgMnsdb9uh0bMHl3M5eaQN2GVDFEr8ju/XJsduiXNld0t3ahezP8ii3qxHxu44jyEKdVEBCIFrrwXuvlvqkFBYvBgYM0bt8PC3vwFvv229r3PnRL4uR71RnYvnYAEtDwoRRcMvgwYlQzguXGhfqJisLSMMFVwlBNdCGaZNyxbqFjuy3gykNNA0kZvkNmwPrpSCS1bgtnJlKMI5t3PwxGc/s9y+ZbuMpjtm9ZJgseiwXYbU1jr24ccfgfXrHYt4ZvZsIObwjpCia1d1bd50E3DKKcARR6irEwBiohKLF8uVdVoLFus6UTDuXMFRpazO94i3776J8SPdHtd9nmnV7S2JNQ1qFFxuik63NpIKkyiNYcauVFXJdWz+mq0kK095cGXPvZN/8j4Wpg23gzyN225rvb2hwXp7AS6UrtvLkcK4TyzblEnuaeLrr4Fr+7qHjQwy1hUiPy0Jl1WrgJHLC5f0Vvt8gPN+4/0qG6LQmFyIk3s4CIv3bwfM75wCWvZxNsYPxuHTMo+XD5QruFLpBhyKDFpxqFSTTm1NXbOT/Rym6znnWGa9Xr+pQr4wkj81SgsuC2bPTuRAOylYOtUsvvwy4U3Vq5e9o0TfvsAxx9jXIV5+xbkRGeGECiI4Zi5r6Iabbk58TttXO/Uz4vdgscAVXwkRwec6NP72N+CPfwy7F+ro3Llw8wOJBhXmJLdSFmF5HNLTCi5JCq1hllTA3fvuQTnb/jf9VLwy++T0dythiFW9tiEYXay5f/lL4PbbHYt45uCD7S2wgpDPtZaKqh37VywudiaYc6N4OPJI4IorgJ73nONemESC1gJ4cFXYjG4//ggsWSLRRiyGTz8FTvlKIlligUhZOAOAWL5C6phVNR68LYTIEWT1699B/vgkSjy4Tj7ZevsXX1hvL4BQ4uWX7fVu5uZDk5FE1BpvY2tnviSXOH/+M3Dmh8Ff/GXvEq3VOfxL9u0m6cG1dq1k6ySfpK+WhGdujvJFmBRcqTzaJozrfCfDzKz3AUnv5SjipD+68rPfYqydM6QQaF+RfR3i1RvT++zel1as65guI9c/Q060iJ7Ggw8G5s9XW+f55yf+jxsH7O4SGV/TgKoqix1uIcTKWGnTqrdHn9dMMqWo3mAlBBVcJQSflzwSgcH5/fcTExApHYSN/F0ILSMgSy2wQwyBs/82a9O5XqQtzTStoI9Nqi0/C/xxVXtjek1mZScbojDI78uHwrqpyf+xERjilCOGfhd2F3wRVliyckaYhltZpkwBPvoImLY8uGvkhg3e13Fc93mnICEKba7LL38JXHaZRBu6jvFjo2XVtLAuk5dLtNplizfh8VyqmIaUCPna2Xj52SW9K8AEKhOG/r77EgIoO0ezIFTPXZflYGJJHs9DuYYoJHIovbwSxlGa5pxn2OjF69Q3baFBYs0QhZEgbWAqMZ6Z1+s5Ci4bzY3xOMcUVB7eBzx7cLn9PF3H8uXAovrcnJw5uFS2Y6cGiGXLbfc/8YR9HzpUZK+FxPffu7fpMURhXFQUrVGkEencbj6n6urqXPlFlN5Z8x0mPggc0gsHFVzElU6VDJeEmhr7fQVyrbrmGuCWWwrSFAkZAS0TIiECCq55dd2xxV47AvCwKCq0xsQmSb0fckJOCOC1abn++bY/USZuex7W0eW4eBJLl9qf7hX2L1NRphSVjVFH14Hp04F2F/1G+hirmPR3j/eWkyhFfT0wd27m+9y5wEsv+aqKuNDqkOwcgBoPLs1lgHdp45y7D4c+anTgfqjkvYXHpT//WLWP1DFeT6WUAY2bFXvy1TaQ0MWuDZvtIp5/wViFw6lJdeuxx4Du3fMTweLdwTvi2GPV1yt1j+g6gqg/OaeWOJqmdv2bEqA7Nemyv6FBw5VXuhfWjNEuSkDAXvQIw8zhI0RhXFRkv6/X11set7JxW0Md9oN7jneuw80kreCSqCvFsccCI9fs76leK7p2bIJ4403b/XPm2OywSg+QPOfHnbU1vljW0/owXT7MJADEI+z9pgJVU+DZZ8P7OkAInHQS8Mar0fTwLjgyizkSCCq4iCtR0syHhsOAc+ElFZg2LWHVUOCmSZFjd211oaWtUNKCk4jcCLrseKDrBR070h5ceWgzFgNemfKL3DbdOmP3HWr0lZdfDjz0UPB6gLByeAS/VmLCJNsXyGKFc27hEcIm9IYDTjHpvXLSScCJJyY+//OfwG9/C/zlL+7HlaNSOyiOObgg1HhwOeyTyfUweOL2iLdGT9i5ZLHwdM9lCf+c3IpsDFTO3n0mHnnESw8VhSj0eLCTDO3bbxO584JSDDKR4aNcvCP9MnFiIGNCzqkljmoF16xZ7k1KiIz79cuUloIeXJEg9f6tHX0U9JjzPGyes2J6pZRS5Z7xF2PRIus6/OK1Htd5QwhPaRUdcyJDg15rk0QSQLzRRvlhIUtIff9pUnv7BnVvspOYXhnKRDpqZEQmb0lWrMjNQOH6C4TAmDHAmppO+epWmqIYNTm25x0quEoIPi/5x+ol6YuBFejZE7j55jy1WVxzH1GAcZGaVoRE4UbQdXmlhK4rsxjyghKliek5t1NG3fzBybjqqtztw8eYFt1tmXBOqXFaVsF1112JsENWfPxxfvJuGcnXvFJVBczZuLNc4XXrbHcJAeC119R0ipQ1Uvd6i3PeDekyJhYvznx+5hkp+RrxSXNBPLiEbV2bN8u1sX5zl8D9UM2atQEEaAMGuBY2n5XBKw7BAw+Y0phEMA+JU5vDhiEtyPTL6acD771nvz8Ky0MAOP23wUO1WrJxY6DD1zRti2Xrt1DTFxI9hDfFuyuSlUkrTmX7RgVXJDDm0Gz57GvHsjkRP4BsBddOO9keu+++AGIxR8NM4z02e0F7VDdvaVvWa4hCV4SAkJlcZEI5ChdFSOMm6+0WsgSp+S6VL1TSuzpmyL1dWwt89pnUYYE55dTsa3HZZcC0aXLHLlsmH46YuZ3Dh0N64aCCq4Tgg5NHJGbT1jxFcozKiytRj5MHV4oQIxPmMm6c/AtdSKE28iHcim+0X0FaCZ1yhDwWAm+xbr1U208/DTz1lFRRPPYYcMopcmX79QO6dTNsmD5d6ji/49EbbwBDhmS+X3QRcPKXd0odq82d7dynJUustxfpgn7d5q3C7kL5sXSpo4dEmm+/dS2yse+nrmXmzMmOfMx5vnA8MeUc5wJ5DlE4e7ZcG8aQgFFBxmvBSNbP9KH4TXHBBbapTHJIG27nw5bX5ro5rdOCLIV0PWG/MXw4sDwZcddK1yNWrPDfiE9cz6/ED5e+mxQ8k2c+elLgOkhECWEC9SZzsS9845ir0jZwH/2wq98GiCqEyMrjo//wo3Nxtxxc22zj3N6IEY7vKsY7++DzemBq9R62ZaVzZKeUP25juBDK0hIIaC6/Mzc1QCwGfPJpBT5f2tOxrCXJa5AOVehWHJnrNn48cMklUocp55NPgM8/lyu7117ATTdlbws8FPrwlHZ91y6gPCjKObhST/OgMdbv+Cd0X8CXQUVQwVVC5Gst1BJ3cAEuF4TA1KnAKkPMZDNO51/XgTp7z2y3pkmZYVwIxmP2luAFp7FRvhvxeEEVDPkMURh/uVfACnKlX2L1GunDHcM+GPatXQuMGiVfZ22t4fuw4dL98cN11wF/+lPme1OTmnrfXXAc7vjxUjWVRYT9Pno07C6UHx98ILeGkvAkqJ8wz7XMQQclnokUURjey4XL9pnoXCBfIQqN9RZprhVt5Ajfx26usLc8B+B63ueOtvfkNaIkRKFHnC5nkH6sWwfceGP2tq5dgRkzTG1syFOM9CB8951rESE0T9b4QYjpVBiULELIGahIICsg1eBB+O9CczI62xX/y4RCX1vTAQDQ2AjsuaeadogEQmQ8sAHE23V0LJ7rwVXhaX7/7b8PxcT19hc4n+/RbvdvY5OP0Jp2ReDNAPXpp4H27YHLrtkC36/dL6cuWfS4XOkg53m9nL2qNF7kucb3eCekDX5kLYmS3HcfsN07zzqW0bYsnPd0pGf51asBAOf+yVpJvU2HzXwZVAQVXCUEjX3yyxFHAM/OOMPXsb17A9tu61xG04ANG6TS95ASYXmttRWH8ZKndCORuA8qKjzl4AoDaQs2B8ynOr5idbAKLc5FGGGU/KDyvsuHN+LM2l3Re87J6ismZYcqAZns2KdCyRuJeaHI6NLOxZNIwdxVYSUkXbYs89kQtraY0KZM8lTeeH9ucf2VruW7tLe/Nt1G9M+t1IK0giuIqMOuDTsPLgflSZBntNImpZVZqBVJb+UpU9TVpWKgi1Q4BKIUXS+4DMSTp4APB4edf30Err4auOOOjPcmKQzGy6VXOIc0tnyXM1xQNw+iT3/ojs3xDl66FxzJ8bTLyT9HY6MaJZcQmuOcbJ7DZs50rku2P8MWymmHheEYL4wfD+y4o+fDlOF33LP9qV6SriGhD6MjhBxa3Nk7LpLruCKFCi5CCoBRruHE3nsn4u8aoQCrNHnnHeC3b/zacp8uKtILwUi9k1dWyk/A8XhBc3ClnpN8PC/xoIsOi7fXDc1d8OCDcoe7LWCLxRmgWPpJyhNlCi7JQcj4XHOeLxxOQhYNUOTBZVGHcQAsUgWXZ2TPZbJc50r787LLFnJhEELJwWW4tOvWAUuXZr7nQ8FVKkgrIYXwHB4zp4qWPMWRJ6Gz38NXYfBgNXXF9QosXO8SVg4ePQWqnL1P7caId98F+vRxr37evEARYMuOmhrnSGzGEMPpKCo2WBp9GhVcAZcTazdvnbd3p7yE8bVBF5rj3PyLnRbb7rOqSxZP59/HxTKGGldFPpT1OT+taq1kweIi6DqBlAZUcJUQ9OAqfhoagNGjs7cV+VxTFPzrX8DXznlkPTN0aDKZvA3jx9vvEyJz3edt2A6xWETug4oK6YWl20tBvlARotCsxIvpclKmzZuT+VXMWGgpx6/vgYcf9tO7bJYtKx4hWKEVXIV8eSPFj6c11LBh9vUIuRtdhYLLy3GqBIClTIWmK8rBZVFHe4OVa6QsV+TxOqKmTuVXX0mWd9hnTALvhJIQhR4PNnpwnXkm0KOHXFXTpwPPP2+/307pnhPpQebKRGIRmc3Gls5oHP6Te0FaxxAHFm7YFg32qXI9MXLN/tjvgd+5lvMkSHXJURB0OjjgAOCZZ4LVUU5st51DbmORPZr6MpgwXNCg7yF3jrsUffsGqsKStjZg7Oq91FSWzullP0fHRCVa4vbecMfumJ1L2WGJLXVOv5i8GwBgi0o5za8w506TJB9TUzyeCVvqFelpXiLcutL2iOtd69eLkORCBRchinASjgUZrzjW5Z/HHweefFJtnWeeCbzxhv1+x7xKhmnwuHf+jP/9z+WAQlFRIb1Yn7xsu8K6WyfPj4oQhWbiknU++ihw8MEWOwKugAtx6QtxdxWpTJeUAZ6fsYEDbXd9uqgnUO2eE6fQHlznnFM+jkNOOJ1qTYPSi5FVlXEALNLB0Kt1bOr3u6ZjMlr12BATcpYca+q2yGpbKTaVGvN8pMIHbtqU3Ocw/T/5JHD77Qq6JVNonntuQOVtunDEZ/fjuj7HSjQWvDUavBCVaJq6eyq+aGngOurrnffrOtC9e+BmSoYNG+z3ZeXgcjHWtHzPNQz6KhQg+fAS6tcP+MtoRfmLhYB2nPM4/quv/4a9P3zcdv/fx12aNcy3OjjcyswG933SE3PnAttvIRcLXEBzDqtbQBnMv/8NdO4sV7atDZg/372c9FgVEW+JLu19aviKGK5R1EEFVwkRkTGJKCYKeo1ywClcQT7qdLquuilWdXU1sL7eOdFtQdDkxVtusYZVk8+FgWyIQlsL0gJbHzt5DnrloYeAt99WU5fxNBR0XFuxooCNkWLkbz9ehn//W6KgxI37tx8vA9bahP9QzMEHA7fc4l4u1e18zHPFhpPhhQZ3RYsXsqy/jQNgkXqkeH3PSM3Lk3+S06w6XZuvlh2aKuRYxwNfHZPVtiqqqoALXj3bcp/V5dwqmWLV0Zgpue+TT4A5c3LDmcumApMyJpJdGDhJfpPMnAksqd9erj4FfPL9ztKe9HbwXYqoRINQZhim93ldUU32xOOJMazsSVr5bFFvv0Yzvum6TdVu84yKkLmVG6qUG944KZDC4mRDOmUtZt9BITSp87F2LSBaPVh1paxSJNC0hGxG5rK4KZ+D8N13wP77q69X14Gn78tjx13YZYuNvo6jLJwAVHCVFHyo84jEDFZfDwwfnr1t2jTpw4M0TRSwerWaeoRIePIAzsJEfZV9g+YF8TPPAN2vP09F9wIj65WlLV9WWGuUVIgEBc+Lud+L6ncIVqHDG1I+PCq22ML7MXbXtXdvKAmlCBR+jkrfC6tWFbZhUnT8ULWvu5eJEbeBxmNCL+FT4bFiBTBypHu5VPX04CpMDq5UDVmXtcgVXFfu+5PvU1O5bo1UOadr03vOSZJ1KMDih44bBwyc0cOicHaIwlzlk3szl10GHHQQcMIJ/rpn18TPfpbotxszZhi+SMTDOvRQ4L6JF1rumz9fSkfmicuePkrag88OWkeTqKI3e9c26Lq/aaTsZQqjRgEA2k+dYL3fdIJ8OVsb6hC6gpDH348GFsvnqHJDF5ra+0BRZWPGZD5rLfYePLrQHCxKsxFxuYfENTycxb7f/z4j72lszC0Sjyfm1m22SXjMqZIz+aGutbMX/R3q6oC7Hts6fx1yoVW3D2dZqsgqbok7VHCVEFRw5RGJAWf4cOD00zPfa2qAnj3z0/Rf/0pLLNUsX574v88+Uu/3trS2Avffn/jstDDuPXAX2326KRBQZKIZCRFKAncZUs9JPoQYp331d7nG7XB4C+3QITfa2fz5wLXXZr5rVvlcCoiquSW0dRsnRxJB0rdlWxtETGKQD+AVRg+uDE7jUIXmU2pow4TF22W+JOs9uOuqolRwCaF5znGZEu5pzcHdik/dZV6qI85tqsjBZVmv/T477+Tnnwcm2MhRreo0K6BFo4fwShYsWGAQGjrMg4cdZviSirHok/33TyjsCCllVK7L/bxXnXIKcNZZHtrQs/+XLY2Nnoq7vX9bzguGjcremRW6XAldRF6OXunwfMm+58c3NkiX9ZNSYfDgjAFJly650U4++igzt155JbDrrp6b8IzddT20/4M49VRjOeffG/b9sbTBn4e41zDakSPsE18iUMFFiATazt4DVxsFSao9uF58MTenQXMzMGuW/3bKFtMJXrwY+PZb/9WpCMNW1bQ1jvv8Hv+dyBe6Lr1Y1DR14TsKjfG6KQn3l7wp7O6HJdm5dfH558BbbwGHHpo4IBbTsOWWCvpRbARc6KXvVY/eNIQUlFhMblwdMsRys4z+Vt+YCDWi1zonuy8HHD24lCnzExUd/9AZGQfSpKRM95nMPGz6LToGfedKuhglSZ3rCs0tzlMiNKTTiP+bPadLtZkSKAYxdnn5812xcKF8eaMHl5HbbwfGj7c/zjzFme8/8eZb8p1QhYKHwKMMuSAUNCcsKXlU3k1xUZEbn9SFMWPSzkgA3JfLqf2RMZiMKkKgU7uMpYGvEIVGDy5Vd4ri0MlR9OAyUllhf+Jdva2S6K/JWysLAA2N1u+KGuQMn8yPsNU8mDW9qnZ1BoDRo213eVnTyFKq+pgt26nPAeZmFFGipzIUKPUpIWikHh3Gjwe+/lqu7OTJwOP2eTdtJw/z9X76aeCQQ+TaJAYM2oXUOf3mG//VGV8e9GX2uX+6drSXAMyv28l/B/KJrktbo4U1HKleIPzhDwoqcVFwmUmVmzkzcxab5Ay584JxrLELtzF3bqLf9fUK5yIhsO++wLsLjgtUjZ3wkZC8IfEQpIpMm67l3TNWvJ540dffVJRQr4hxGoZVWX8ahVrpNUGRhygEgNfmnujrOBXnNabLvbKquIK3vvAzPPecfHnj8ys7z59yioQxlaRESkp5IzEm6TqwsUUyu32wpggpajQIqefulFOA0Wv2cyyjC82Xh7aX5yw1LhXp1FNQjNfVSSF44YUCD0+2SB+g2INL9XutritWTORBy3HgtvZhjXVRIdVmXFRId21zrAO2vuLXlvuEpLjc/Dy6PmuvvSZVryfG2Cu4/IwXTvz0k9qc3ypQ5Vnr5EHol6L3LisiqOAiJA/87nfAH/+Y+e40Ufz3v8C//mW/XyywfsE1OyV4ia1bbmyzjUMeAouL49fCbcSIhHdduuqJk2zLtjkkzI5qGEBPi9jOnQtqMZsvK6KlS533X7HPeOkQhVG2dJK2MlxjHUT8wAOBoUOBdetkG5Q4GbqORYuATW2dJCvNZe1aoN1xR/k+nhAjQ2d2x7RpwLtzj3Yu6OFNsudxnRCXyS8TwBPxd71PAeBsdOHEl18mBHWlTj5mrPRQl5oHoCHeVh5SRpH88bttuVGmsOOa4ebvf58u51xN4UMUxn0ouEaNyk0+n+PBJdkXpya9nIeXXgK6PveA/AGElCmyU/yoUUB1SxfHMjr85V7xIrBOCds/+8xzMyVJi12OH5MnsZOS4osv3C+AihxcqimGfIS/2nWu7T4hIPW86EKT/q1OMplMo854VnDlw4NLgpNPBsav3ytwPccd5+yhHgaq7uzGWAdFNcnDHFzqoIKrhKDFXHTwkmTatS6DxiQWA6Yno7TwestTX++QB6FD7iQWj/kTPp12GnDvvZnvdoqqeBy4ej/7zN9e81wUDF2Xtj/R9HDiYKhQqnlZ/HfrKOFalQpN1WZ9TnKEWgrWN17rcCqf1T+HFbvRkuvMMy0KxA1xW1evsijgoVOS1DEiG1HImf85Cz17AlcPvcq5oAcPrqDY1fPgg8CwYYnPA5YeAcC/8cQ332SHQypmXOcIBeOOsQqzgksXGtpdfkngNooBkZwuju+eh9g4NqgIUei9zczrdJDbJ3ctoC5/yCV/38u1zAp/+m9Cyg4NQtkYE5f0Ts3pgw+PjP/7v0RKg3Lnyann2O7L8uDyEwHC8J6kxINLsbFoMYQodPJ2EZAL89ylfYt011RcJ8/v8l6M1iR/iMy9Mno00BTraL2ziIWLKm9DKaNDL5itmSygaksdVHCVEmvt3XlJ4dC03Jw6dqxenZtU2oxxspo+HTj88Ew72eU8dLIMGTMGeP11ix0WCq6OaFHSpt2CqV07YHXTNp6PCx0hsgQ5TuhxeWWYCna/7WI88EA+hFpyv+L554Fp0+yqSNQhPukv12IJPMtDhxq+pBZ2hjiLUr8xcA6uol6rkxJnzhzghhvyV//DDydCFxuJS47fZkopB6DrHKF4ALZScJUbsr9YxZlPne9CzqMy11Qm2qDsfOXFgyvFZ8Ps15yEkPDwa9QYjwMDBiQ+jx4N3H+/fVnjmHHddb6aK3piMaDv0D1cyxnXCHo82ESiJkShYgWX4hCFWmf/UTZykOiYAKRC7XSsdBGwZdWpXsGlNByorYAhm6C/4+d/+QXmzQtURXgIEd0wgGPHRtV0vSShgquU+GZw2D0gFnz6KTJJxk3suivwySfOx9stjvxGKxo7VnqeLCk++cRGmGixmLrhgO+VtOm0sF3VuK3tPr9CyLzjIXbjy9NPLHhS70ceUVNPVgJbmbcAIXD77Q65XZPnTYyyj41tqs6SF15wD5noVocftE3ulkdWfP01cPPNSJuLtsYrMWKEh3Y7Bg8RQAUXCYWqKtciixbZGF3Y4eNmNh/ywszTPNcBAO3b+zoskjh7q6rPwZUmOQ/EVFuGRpgLXvwV3nvPXch32T17K2szdQWrm4LlkvJiRNZnzomu5fbbzz2cT26IQuvzdsstwE03uZcjGVQ924Sopq7Vfaxavz53W1sbcPHFic/jxwOPPmp/vFHYvmCBxw6WCHPnAte/fIRzISGy5qtY3GZsdZgQup5wUKaYgrFZebhdaJEMnQggE/HE4bzpQpOSRzwx5Rwl5//q/X70dRGUXrepUwNXIfMKMXnhNhg7tjgNbSPdZwltp/AZqpbkElEpKvFDZLXWZc5vfwt89JH/4+0mZ7uX786dgZUr7es7/nib8GHlisVk0rmdvNWPE49MOde+WbfFWxSJx6XHmeUNXfPcGWuUvwjIvARI5uCyu66ygrTbbgNefdW9O16ZMQOYvXFn2/1a0vOqRcKx0dj3Pn2A3r2R/oEbW7fEaf7k64QUFdpJJ7oXUtWWw3Rh3vfq7JPy25kiwGnuzYdRRmpM3P+SQwAAMZ/hqIqVXr2AdhXOL/efDNsOI39ojw8XHeNa3/g5Lvlsktfw2OevlO9kQJ6dcUb6s9NywC0hu+xaYN68xPyaKafmvi1l2UqhDa5I6aPqeTnu83tcy+y4Y7A2xA9j05/dIseUKrLXy1jszbm/sC7koGDZ2JDJ76UrELWqFnzrOiDG/qisPqUkf6dT2E4hqeBq0dv5uuZmtmovF9NT1oNr9epkQJOITrjFahgaWaUtIO/OF9F7otgor7esEifsAamL5ARQzjz/lPdzZDfU2V3v5uaEZXi509bmPwyaKgWTLiowYwZw8MFW+5wUXBEdmj14cFU3d0F1S+HjWt0x7jK1FbrcQ1JLkeTCRnbZIp0Py2cdZg47DLhz3KUObSYq69QJmFa9u3S9lZrK+AyEEBmamzPjhGaSA/i1Zi2ldy7Xn6IiB5fhcyoc0PzliTA+rsnMS4wffgC2bOduHXHjnVtJ1XfsLUc77heq84t4RGr+Xr3aen9jg682J67f03efPLNhg2uRsN9HCck3iWBYxXOji48z4WLK9fk0joMX7zXZskz1BoGphvec03eZY11ZLGa93dymFr33eSEAsWx52N2wJrlg7b6FfeQQHXIKrpheIf2Mzq/bybmAxCSao+CqWmdZbtddk9FNXNh7b+nbDACwaRNQ3xo8XKTU+BDRl4LIjm0yHlw0wlFG9EZd4ht6cEWf2+/uJOUFYcRuwHMbxNeujfBAXwA6dADuu0+ioMUk/YRD8lmvHHYYMHt27tzmpOCK6pM8Ye5WWNko55k1pXoPDFzWM78dyhNCKHYTTym4ZBcvra22u9KhSRsbA3Yqwc72jlueMY83FevWWu8oEEJoZT0GkvLAfI8bE8h/800i52MK38Yb1dWJ/x6MHEqVn37yVl6sWJk1ncTKTMEFyClWFyyzSXruEV2Rgsvv3CHV9tix1ttNc7+scK6+LVg4Rk9s3Fi4thTCEIVENUrvqDwJjP/xD+C114AhKzNh88p1XWw8xZ8tPRK3355b5qa/dsDkDRmDAWNEl3ffNdQhqXlQk4NLLbqIsMQwucbsUGF/fmU9uLwYC8/faK/g8qPIvv9+YOh79qHK161zf+SXLDF4fUuMDyeeCJz+9R0eemmNVqSR8qJucMA1SOGggosoozVefi/tfvAsHLELUVi30fE4pzCF5cLjjwNY7mKlpGoWFwK/2Mnedc6ss5habZ/oNqpWHMf88xSMXLN/2N0oKG63h9S1cglRmFPnkKG2+9Ivpi6xjoQAli0D7v2Ls0X42rXu/fH7KlSxeZPtvkLd4+X6Ik9KhBUr0h+HTO9uWcT8fDqNWb49uMZPSHywE8x75J57gEmTlFTlGaexx/gC+vzzwK23Zu9fvRo47jj3vhvbEL16Z6Vkay1HBVcB3+sFFCd3LyA5z7LEMS3N7qWUnn/ZRKARY/mm7cLuAikhhIjuu5qR//wHuPFG4IphmSTUKtbF69cDDf4cTkNj4cLs788/n1umpSX75Jw56HZcey1w6KHA1VcbDIgk4zxG0YMr4VUe0Xs3HfHEvn9rN28tpeDae+v10nOfU84vWYzP1aOPAt+sONSxrMx63MuzOm+efNnAbUZRAyZEpJ093E5rVv53EojojbqkaGnVSygLeR6p8PjU2Y11Wv9PbMtVVdlGQCk/vvoq62uszXRCVU0mLostB6ecHFQstIh/PAuB3e6h5L0hnU8vZn8veQlR+OGHwBMvyYV9UoXxVFTSWomQYNTVpT8OnWnjbrm5Sbq6wNbE9fZhY7zw5JOJ3ExBeeopYMwYb8fI5uC6/Xbg5Zez96cUJ2ecAUeMbejQMHduZl9DIb1tIsLvht/gXkgRQuTH0VA6l0eAac+P4LlTZ+eDlBt5SGgPaVhCiDfGzZAP6T5zZrC2VDyfO+4InHde8HoKSd++7mWExQD+1lsW51zypV6JB5diZVSkZejp92V7vl5+mNQkf8wOS30ZdbU3eY/Jni6vz5Wn61Dgi+baXAStiCJ9X3NRVFCo4Coh6PpYHFR6NN61FYq3mUKZGC7/5ZcDF1zgtWelycgFu2Z9z/F8k5gRGxqAqVNdCrlYjngJTakqBxgJQPq+cL4/pEbdZF3SObgcFuTpNVIBV3Ke1mUGV4V0F8MKUQiGKCRFjsxLpGkscPTgcsr9qEt4mCt8oFRUdffdSU9tD7gOnQ4FUn328m7/zfJD8NBD8uVJMHShKZG9+A9R6H7/2N1jud6Yap43lcuFleslQ0ly8iUlTHO8PRpjasKqAkBTs7tILqVTef+9aMh7ytGQNq1XWbNGqryKuUh16LVEiMKIjs+yJ0xCwdWmV/rKfW057xoLrLPOreVlytM0uZ8axjSqbawtfKOKiKwsXGIRFlmvyiKECi5CCkyFx8HXrjTfHR0wTCSn/i9b06fpcduydjzwAHDEES6FXFYqaQWXMUGKXVWc5CKD24JDCA3fDXO5XimLNJu6zBbnUknqXe7bRPgU527lhZdeMvYihA4QUkIY5hU7AwovITmcvINHjkyE37MiH8KQoGsYu/GtXTvgiSccjnP7LRIKCre+G6u4Y9xlGD3auTyR45rfu4eFqtBEqKnixGb3NZ4d5ttKxXO3fDkwblzgatLs/vuT5QpG2pyakGCcO/hWnPzlncrq69DOXdqdzist8R7phNYS7Ph0PUX2qipSuUSdysgF5AAGDHAumAzlqmIMX7Gpq9LxdG1dZ9S1RtSTXDZntaSCSxZhEImb18k5fXn1Vcs6vCq4VK6rBw92PyVCAJgxw7UubcBn7g1GcH4XemTVtgkjeBf5L0MUqoMKrhIisg81yaJyU517IQN2k3xMr0BTk7FckF6VGA45AnLOk8WJ+799s83Y7d4lNmwwyB9158CCrVVJi5gvv3QolSDuITEqUY8QMNwXzg/W8sZuOOOcdlL12iku//pXoLshvY6UB1cBkRWg2/YtLA8uUXwv4IRkoTgMiNM6wcnLOB/ri6DP5scfW2+Px4Hx4+2PC/JTjH1WFK2ReODt991Dod9y8qy8RM9xegaeObZ/plw8WqF7XnoJOOEEubJ8jyBEjuZ4B6X1dWznLrAfMiSh5Hry+YDKibVy3kdueE25EDoSXlczZzv/qLQSYc89nSuaPRuAGoPVXnMkjQokOeKhC/DQpN8orVMZLiH900iEiIyJCl9eMa7zoI2i1MuadsIE4Iz+N7mWk63znHPcT0k8DmDiRIk2uRBQjqzVFRdhSii2qYmQoqdi6WLH/Tn5eGwm+Uu/uxG77+6vD5oGrF3r79iiwCn5q3mSsZhMzAJ9uwXGDjsYcnTouuOioOXtDxMfNmyw71u6S5TKFwsxXW4abWkB1m7exna/xG0BwFsOrjDIGq9sQhT+6lfA3I3dUQio4CJFjeEGtlU0e0grKRyW/U7HLajfMac/YWOOElNfn+me07tkkPk1Vf/GjcA22wAPPmjTBk3OQmOLDjHoLe6eXp4xe/8b6Nwu2Z7LxOv2+JjXkMUq69Dq6yI1VhASdTqM/961zLRpwGOPBW9L1ZNZbI+4zNy/fIWkguvQQ90aM/4jsshapzS5555NhCj0oeAyrZOb4+3xt39kDFmFHvyirl8PjF61j3tfhPmDf+JxSD20mkxzmzYF7o9qhPAW0aKgyIQo5HuDMqjgIqTAVA7+2nG/eQy0GxPjohI1Ne7lrKiqAna2yVefL267DTj//MK2acVxv+6avcHixJknGaf1QDoGuYsHV8uqpAZDwuTNuSYSJaQWJELgjjuAgz95SLJOezRR+NhLqu/GYcOAmPCYjJCQMsduHsrN26O+7c+XusXo9U5Q4Vgqn+ngwQmj1IaGzL5AIeqcFmG12bkJHn44kZ9z8+YA7RHlxEe5C4vdyBGUfOW8dk8h9fzJ5uAq1rXghvVh94CQoqKQeW9UeWgUnQeXBVdd5a289NoiOcYrSzlQLpqydEh/l3KxmGtVbXqlktO2oG5H/O8lg4LLpk5t5YrgjeURiVOWwbigtmLYsEB9KTvyEVaA2FICUxNJEVmtNcmiQvM2yOXzBXf48IQRRiHyFbzwglR0Pk80NgJ/+pPFjkp74fnEaaawEhYrlfcXHpv13UkQlz7cZfJq1du59i0Fc3CFi4CWvrCTpzmHH5S6VkJg1SoP7TvUWfHj2HSdLk0qex/y/TJcLi9khBQCm+dpyqKts5yW/T52UscpNNkOWlU7w9A8fLh7+ZUrgcMPBx6adJ5r2X7vG+Zzw9wu+n2YU/aII3KFZBz5wkMIQB/4VfCKZs3K/u4Q3spoZR0kxLB5P9eChJBCMGWK92O0NvcwcVEibjGevvce8PbbCY8aqTpWJK1a3QTWKQ8uVTKccnmfkghR2LVjo3OkniRecnA5IZHZAgCg/aQw2aW5LQXXPxaDpAeXAHr1ciyjt4WY6NSGSD8iuu4qpxdCi/iPKB6o4Cohis1VvFypcBngckMU5o/TTwe22grYbrs8NpJHZs2ymYMllEhpPEwmVh7ZsgquRfU7JD4kTd7aV9ib0jAHV/EgK4BSpmyqrXEvpJgZNbtJzS85ZVIPTEgLNgGN8yIpC6qqPBS2eR7tHtPLLjN8CcFk+/rrgR9+yN1uVHDlOF1ZhJDp0QOYPh1Y37y1a5v/figxn1doeraCa/ESy/LLl5vap2IiVJSsodZlP1RSs5gQyq79xx8D/5l+ppK6Ck0Yd3+HijyEpSSkQKjOe7NiBfAbmzRL5udz2TLgyCMTnxsbgZkznetePimhDdICempedpnHtUtAYjYKj2uuAV57Ta6O+FvvJj5IvtcoiGbnqb2iR2GuIr8hCnOaMtVh997/6ZIjcO21gZvLbV8Aq2q3UFKPDJoGiKp1jmXeGb1X4P4oR4jovvO7RHkiaqEUlZACU+GyiM2NjpP/IbGuLnfb3LnR9qitqlLUPyGw3zbOK+zUhDljhuXhCVw68++U1XhSQOikGKFwLFy8vEbILp69vJs4WoBL9k6lB5cXrJpsnu2cdzCfRHaxS4gEk2Z3Tj/HWmuL1DGqPbg++cTwReED9e67UnnC0bcv8M47uduNdiw5fV+4MKe8THiWVr0SG2oq0gOZEMgSuNjN2xMm2OfjIoVF6CI0z6fp04Sll4Asxvn9rruAl2adqqJbBaeutTO+X7JrQdvssVV1QdsjJMqMGgV8JenIatQpPPSQe3qphjUJ4zWniDS1tYl8YR99lMiPacUnnwDjDE4v990HvPhi8HcXXbeuY8v29muojz+Wqzu+KRmP2K2TqRCFuqK5KMoCGZWkPbjs0SD3gquLCiXvwWaZjN07+tiqffHWW1D68h2PA59+Cuz2zysD16XrQEubu+hfg3CVNGxsbB+4P6qJtA5Y4vmNcveLDSq4SgiGKCwOKt1CFJpc/vMhQJfhwAOBzz93LlNVJZXn0xMPPADsv79zmdWrge7dHeYLT9oE97JOMr2RI+XqueeIbxIfkgquOHMQlQSyIQq93JJOdabuxVMu6mpbJmp0PvGosLtASFFy1O8PwPz5yS8O1tLG8cVprLn5wFGZ8KuTgfvv99ghhR5cmzYBX3zhGPkNf/xj4n9rKzBiRPa+yok/pT+3tZki1rQ0++rT/Lru2OHkg7BiTWJ+FqjIkv45rccefhhS5Uj+UaHgmrR+T+myqet9+M/boTHWyb5gyprM4SF1856wo3tnC0u1kJhZuytO7PV/BW2Tb8CkmDmsv1oLCad1gNlbzOiB7JZ6B8gsA6bX7G7rgfX11wmF1RVXJIxZ7PuS+fzYY8Bf/wqMHu3eBye6dQPuvDN3+95bbbA9Zto0ubrTywEXgXXKi5whCr0hYqkcXC7nTVLhJ3v+nTyAZUMUpkkv2oOz7bY2qTh80ukG96RzMt6kUbwdBbTil4VH8cQWIVRwlRCq3dtJfnA1gG7OFsyEOdZZheQz0r17RgClimHD3NcGqYTugwYl/j/yiCldguKTpunZpt9z5mSu44QJyY0ui632FclVsUT4xCAWwEQR0uEnCnutUou3UT92cCxnFaKr0FDIS0hwZCK27LFH4n9bW84SIotuHRvTY9vLLwOPPprxoip0Di4gEaLokENytz/6KLDzzsCbbya+v/cecNpp2WXazZ6e/vzAA4kQhKpoasr8zqNPzCgswh9ViQwqQhQubtg+67sKz3rtw36O++fXdU97T0g9aoaHtrIiuIU/ZSuElAZeHH5OTTqKrl0LtEg4ihvtXB54wL19J7sYq3FOIr2SI3V1wMSJudvP2G1OsIphWI+5DJZzlm8JQOE7YmOjmnoizpwFidjTrvmzJG7w6TW74sQP5LRD3bewcTOEhQeX2zwZ9AY2scFeL5s33Nc7EVwsCBFdWfhOO7kWYQ4udVDBRUgIrFolLycKy4NLts6VK73VqcLLPnXuHnss8f+BB0y5uNw6vi47trCbxYeWjKGgVSdWGRbRjwBdd6xFTwlcJCzgmYMrXLwsMvITotAe2cWb+HqQfIMligBDFJLiJ3UPy9zKV18N7LWX/X4duWNbx47AvfdmQuwNHizRmQAsWpT9vcYireDo0QlhWwqr8IJOAn2VyvWJUzKCFlklB99Rw2Pxhq0xv85dmOCGa7QFA9KXO+nBtWD1lq5FpR61n35yL1Mm0KCGECSSb8HFg8tmxNp5ZyRCrCGRk8ouQssB52SsSazGqblz092wLeOEivnTqk3XeiUajqdCDrqUFUlhhzJjQxnNYwkgYnHMmAHc8oN9SD4NkBImrWrcVrpdJ7mL+Qq6Ki2LfAGowX0+FRGMmCkE8MHCY8LuhjVdu7rKb4r7rokW7dyLEEJUIoRzSJ6c8h7qVY2MMsqrwirVz7q6hADLLRyhFa6LZbdODRyYyFwvSUVrwiS+esZq4Lztrdt3aTO9IJJQcIWVP4IkeHbGGai8N4an/+teNh8hCp2EqNJ3xpAhED3OlW9UAbqencQ5Cos1KrhIsePlHnYLs2McW4z1PvFE5vM55zisJwI+UIsWAfvu615OZrxs50EBQcqHu774JYBfBq7HnC9XlQJl1izgkDvOcy0n9aitWAHguET5SMy44cF1MyFA85padNp9dxcFlzs33gjssgtwruE1YtYsYNIkU10WlR14oHsZmX1e+e4751dxobm8f7e1AXCOjpGu3zUHV7K8qnGpTHJwaULHqFESBSUWiV68rh3zohuemLo6YMb63aXrLUY+WHgMBq84OOxueEcILN+0Xdi9sKbIlZ7FBt0ESggu7UsD8xgoPUFnxehTg8x66scfvdX54ouJMIS33AIccIC/frkuiN0mEmPMJ2EjtjDUkRIcnHfvYZg3z0ZHpVDBRQ+u8Hnm2XZy1nwFvlayQizXF7k8cPHFQM9P70t/r27uUvA+EFJqZDy4gsfF14OGwJDMwTVvnvX2VHhhFXjxsFGFtMcuV+RFj/l5cxSASa7TNU0+b61XwW+533EqQkgSUuz8u3d3AGr0IZ1M6QTvvRf4wx+yt8mMU3fcYR9C2JenlQ1nnAGcdZb9fqFAyJx+53M7wUJxDq5yUXDpcTz5pES5iy50LaN7OPdO88fE9XulP999N3Di5393q0y63SgyYOkR6DvvBMcyKp4l1USwS54QFhE2iD8oRS0hyt16r1hwW+ysb94aY8bIl0+Xq1rnXsgjytZThor+9rfEAsEuv5fMYjmwB1cq6YgDd91lbC/zbNXWZrd/yj7J7LxC5Fj8ZnUptXiSysHFoblYkBKqePXgcnjmpYVeIbguxeNAXGTu7+GrfWqwFUGBFykF/vCHROJ1GVwVXB6FLRs3mjZoGl55Bfilg4PMpk32xit2/TMPVzLjpYqcQ4TYsWzT9jjGEO1GlSW+UvmF4cEJnHuiuto98W6E4RswIUBtfWIN7jTO/FC1r1SaILM9i1Wdr77qXk9TE7B0qf3+trZE3k2VWCvOXMZwXUf7Cot4yAbSObJdF1uJ9Qk9uLyh6RJJZyXxcu5lc5875bhNUw5KijL4iaqhRKJwUIpKSAi4zX0nnSRf1hMSip28YFqYBZW9Wx2ftU0IdKx0WL0bY1nbJKV8+hmD4MCwva0te9HfqTWTmLR7Z/skpWnBoowHl86hORJIPHyyC2jZd5PmZufkutIeXFx8AmCIQlL8/PQT8Oab7uWWLpXx4PI2t4wYnl2hdtKJuP9+Z89tq3xZXpFScIWQTFp2XOXwWxpMmJD4v3Spcz4PWUO0Sk2Xvodk5q7Rs7eXq0yCd/86AXMGL1VWHyGk8KTeSdzGmY8+cq/LPAZ9+aXPTjkQjydCF99/v9p6R45M9N+os3cdp4VA147OLrZCUsGV2q0qBVe5KLgqoLvOfdK5qD2FKKTcxQt3fnhU2F3IIdJyD8UhNYkzzMFFSIHxOv5+ufwwZW2vmFgFQD52sDLhsGlgF8LZmitFPG7t8CQTorBjRQwt8faWux8afBweutO9/XR7hqt28slAO8PIqUsudtOLJwkF17y67vKdI/lD1+FmB+LVI8KNLl2AePxXtvudvASN7Pv+Q6gOSZ8dKVasgJcxj5AosmkT8PjUXzuWsQsBZMQYolBmfm+3aSOArlnbamrcj7NDWkEkUc5bXkP5so71SAjIoGl8US0xEs/WJYHr6TX7JDT8J3A1aU5+8JT056BRPK7+4OyAvQkXhgUlBIjrcgqudLhgh/ecfBqIpTIFXHyxVWoG62Pq6hI5zL2kN9h118RxTvWm0d0NEGTf+VMKKRVrgRO7L8hOrVDCVAj339nY1lGqLi8zouy7fKSVKKT44Q2mBKqrSwhaqpcejzwC3DnuUtdyP/0EVG3e2rXcstXWCh9fbNggX9ZkeTRxIjBtmvMhsVi2IsmI6/jvUqDP+MOzvrsJBozPlhDICu1g9OBxqsVLDi4SEYTAVu2dk8ZIrUU8hCh0e4fZ2NoZM2e617Nu89bl8j7kiPbSi2F3gZDIIABPL1DtNO+DiFP1Kt/dnATaZqFSwYyfZeI+kaKgQ4X8tZS9r9+cfzz691dYIUmjLBQYIUVMymPIbQi58cbkB4fILvmUK/Xqlfgfj+fOz2LWbMtj/vxn4MADvel66g2BVVyV4LruWmZd81ZS7WY8uIKfRAGUjQeXttk9SeXmeAepurwYPcheJ07N4WMXRjTS18YmWlRWkWQ5EhxXSaumaZ00TRuvado0TdNmaZr27+T2tzRNW6Jp2tTkX8/kdk3TtBc0TVuoadp0TdOONNT1B03TFiT//mDTJCEljRdrnqFD5coddxzQf8nPrXcaFkWVFXID54ABif+Oi9uqKrnOAb4G7NQC1nxodTWwetp61/acWlzTILdATVHhkMw+vYASwvHaesnBRSKCEK4LZJmwBgdecwyGDJFozxg604ZHJp+HQw+VqIvQopsQE17DsMiuGYyk5uw//hE5wnzZpcD337uX8ZRfQZGyX3Tt5lwgqeDi2FP8pK7h+PEhND7bWsDrhKzQr1Sh1yQpVs7bY7qyuvSkB5e0PsRhUvaj4Pr2W7lyjiKE777L2fTAA8CkSYnP553nvV+AhEePy3s8AFw7Uk58qdLAUAitbBRcFUMGK1OselkjKjWQoJKCkFCRedNtAXCaEOJwAD0BnK1p2nHJff8QQvRM/k1NbjsHwH7JvxsBvAoAmqZ1A/AggGMBHAPgQU3TsuOekEAEDU9BCkdB575hw9If7TyizIz7MdnBRkUJp30szNLWT6ZDzzgD+MX5OzgeO2t+ezS0dZZuyDXes8M+6RxMqXJ0tSweJDyvZB7lucu3lGtPQsFF5Bmx+mdo1RmJmZAUxkTaUiEKAzw+b74JvP66fPnRozOfZRyhvCiRAgubUtK47i7hg8PKc0ryxrHHhtDorFkQHpPZrZOI4lDK8A2YFCsqhesrqxKRWqTlDA7v5xXw/u4uk34AcA51bNX3Rx4B5s1LfB482N+rtKsSXNddx5H0O4V0iEK5vjkhgLIJUdi+Iq5MTOItB5dCDy4quPKK3XUVyhLe5QEhXOX0NNJRh6uCSyRISbnbJ/+crtAFAN5JHjcOwLaapu0M4CwAQ4UQNUKIWgBDARR3wG9CfFBwy965c9MfZZ2Htli3BACgDRxoX8hLqD0fk/30pEGbeU23aJH7sYdcsr90O7MWdMC6zc4eXU6TknSIQoOnFykSVq509XhQavVF5adSPlx0DD5ZbOPZSki5kpyDZKaidpX+PbiA3DWHU5v/z95Zh8lRpH/8WzOz7prsJht3d3dPiId4QgTiOZwASZCgh7veoXf84LAD7rA73B0O9wQICZIQ192Z/v3RPT3dPS3VMrrv53nyZLu7uqpmprvkVbtW2XZCFbs2fn75ZbFKqw20pOCiaT71sbNWj8m6fudO7+tMY7YesPCuJIgkxctcvi+8nYc//vBGwcUE+xMn7zbmppuMr8VKTsKTQ9OqDK8xeW6mPQMFMwTUHw8uxrxbP9l5r7iisbQHPvvMTY+IWJLU626OzlGIQu/gklAzxvyMsY8A/AZRSfW2dOliKQzhNYyxcMa/RgB+Uty+VTpndJ4g6hfdu8d3/FJoiHitsXP3SyEAzcyoDVaxR44AS5bwdk6n2t27AESsZrUKLq8NpDtNaYkdRjG1pR/KbMHOG/LJbmgoIgnYtctyK0O/a3LjJIcQQaQrSgtBs3XI3o++BwD4X3nRVv333AOcfnrk2I6Cy64Dq2kOLkAlEArWuhQOSYsAq7Xb79u9E2oRiaUuxB9OOiQwLuMrbhijMJcEUU/w2nI/GPRIweXALzKZ00xbfiehkGUZv0UeHbmtoPi9vr+1AVd5S+qJBxcA/PSTdRkegiH+hzHI8Q5++SXwwQcclZGSIjEkcRSczvO74Js9lYnuRr2B680XBCEoCEI3AI0B9GGMdQJwNoB2AHoDKAVwphcdYowtZ4y9xxh77/ffLfLsECqsktcRyYGdeS+8QHIDO+Vk3Hef+DevB1d2QBTSHP/KIhw0yvdpsIrduhW4+271uWAd/4d+7TN15NKtW9XX4+rk8r0o5DPPwQXxR+XNwUWkDn6/pZDJ01GXPLg8x0fzIkFEcfQo8OOPxtevvl60hqnbbE/ScNll6vl/61bg8sv5+2QHszlVm7Mi+MST9ip3yI5fRSEUKSfqF3/7pi9atfKwQloLEES9wev9oS0vGDMF1zdfO2rbS+6+G8jjifLOoQAym5fbF2/j8uBqXfQbR2fEr/Wbb4A1/xzFVd6M+pSDS+jjXUxgOx5cR0MZnrVLxBajoU34zH7u0njx6fe52HbQPDMT7Ru8w5adhSAIuwG8CGCcIAjbpTCERwDcBTGvFgD8DKBGcVtj6ZzReW0btwuC0EsQhF4VFeZ5dgg19FqkITZj8Bvxdtjn8kk+IY9yHbXIKJ+qchWrCIM4dGh00U2XmCwcdu827UubNupjIyWd3UX1rl0chQ4csCwSEhjXwpoUXClIZqbl7+bl73r2+fU7SXwsoAUjQUQIbwyzsoD//tesoFhy2L9PNylkeJvMhx8CZ55pfN02Ci2YpQeXYl4OvfCSq2Y/3FJi2SYAoK4O334rKjyI+sOuI5x5NnlhjPIxEEQ9wcsQhYBof3riibyNmyi4/m2SpsDoHs6P0rZ8h+E15TLh7rthbGirZPt2yyJmy4/irENAKGS5p5vd8j2pMot8OiHBKxFOlEd6OvPOTxZ5Tm2QKLlLOA8eEWe8euESCXn/eYKlgosxVsEYK5b+zgEwGsCXUl4tMMYYgKkAPpVueQLAcUykH4A9giBsB/AsgDGMsRLGWAmAMdI5wiOcuJIT8WfiNSN0lUB6CB4taMILztDWKJ2yLsFQZFHw8MMGzlqKkzffJODDD8W/f9Zp4utvTYaaPXvkP0dxGDp5Ff6glCdcf4a4SDELQxcSfLIgzUz4JS+0aPJKHXw+SyGTlyEK/3wVKbgIgogdt30xFG+8ab3p50nWvHat+ri6WmXrol+vy+mPZWXi1Vet69LmrAi6HKf/2M85NtfWYtMm4KOdTVy1R6QWsVjV0UqRIOoH7/7WzNP6bBl8mhho/uuHrvLfFraoMlx7awBtC3/hKielv7SGQzhgtp8TBIYnnrE2agyHslt0eUfTcp7ro+qJgmvGlQM8q8vtus8pNRM6J6Td+oKRrE2oS+0wnoLgYQK6eg7Pm18F4EXG2McA3oWYg+vfAO5jjH0C4BMA5QAukso/BeB7AN8C+AuA1QAgCMIfAC6U6ngXwAXSOYKoV2zZUZCwMLG8wvgqQa2l0h1vFSvoNTe2x6ZNZu2aNKao/PnnrftmFi7QczJFoZZZbGZuDy7yJEk9QiHrHFz0uyY1tFYkCDVXXMMRq5jjxXnsMfUxhwG1J+/j11LUJFMPLm2IQpfLhrDQyzIBfZ1J3lIibfHaUnz3wUzyPiaIesLe2hxP67NlCGqiOLn4wwny3716mSXt3GujQZEPfq02vObIe5VDq2c2pn67twJTFhXjQF22aR3hvE73Pmfcf0A0EvIqXKPAKWcg1Px2qDDRXSAIIgEErAoIgvAxgO4650cYlBcArDG4dieAO232keCEQranI9Y/Ks+aJ7zY5RUuCbv3WBfSrKDNFtSmhkc2rZLY4UMAPA4HY4T0hZklKg2ByRl9zb5eLz19iDgRDMY1RCHhPSQkJAg1PFMujweXkzXnypX27zHCbOx9YVs7ILRXUdbd/Btuq90F88wLBoMkh6qHeL2+Kzlukqf1EQRB6MK5B//uO5MJ/4kngAULAJivC66/PhI60ZP8uHv3AoWSEoPLg8v42o7DBVxN8noFfbG9GF24SloT0nikEwQRTarv98ke1ztI4koQKU7AUk2tCFHIOfhzbdY1q1htbixlfo+QmcDHroIrnlOAtBquzNlnWCSksBQ3szoz8wIjkpRQCILFNEkKLoIgUgkeQxeBo9DWrfbb/uAD+/c4RqFpcjv/BoOceTsFAc8956opIgUhwQRBEClHKGS5Bz/lFOtq2MIFuPde6e/33zMs94Qipdf8Vu8YluMWVPOEfQGAw4ft1WsC757vwqd6uG5L3TApuAgCMJFRepXDJEFQiELvSO0ngSDSHK/HOVPFlaIxvQXcunXAAw/olweAQ4eAb7+NHI8Zo2zXpFMefcjrrwf27/ekKplwerCcgHHYITkUksXnkL97mrxSB44NRapbDPFQnHkg0V1wDL1tBKGGS07C+eLsM7b9iDmWY68qRKG77Q537mpB4FIOEukFGboQBJEscE9Bb75pGQbm2mv5qvrsM+mPt982LKNMz5AXMM7VMPlZ3UBQ0fz2W+Rvs4WNtJn3YmZ+5ZfWcphkM7xcBggCw1fbKdweQZgh+DjCrycxtHPwDlJwpRFx9WwhUoqws5XpgkuxUNTbrF9xhfjPiCefBFq31r9mKlCzswoUBFOh1ldf8VfFw8dfZISbNeTDnU0AQUCncY3x+A/dDMuRACQF4ZAE14ff1UzBm+w4iuVPEGnMk89Yu33zhCgEYmOvEdrrjaXKVTdm4eBBqU6XhghHa/mMQ1koSDYs9ZD6YOhCEESKwDsJ/fabZ5N4WM5wJGS8vlDq0rxIqyEok2uafY5QCIcOAYtfWuK6zf9s7YjZszn65uE64EBdpnV4ZIKo51TcckGiu+AKWkd6Bym40gjmRTxjIql44/0sT+rhClFYGxFiGwntnS5I3ebguvlm6Q+LFWOvXvx94oI3JIAg4LNvMs2rEni0jERSwZFMpT4ouAiCqF/c91I1mje3Lse7Jjh6lL/tw3c/YF0I1lPp6efn4403xL/denBt25nNN3XT/F4voXUAQRDJgvDFl1zlXvuiTOVV5QUrXl1geE3pCe3FmBkKKuZbs/26IODnn103ZwtBYJ4o8QD+vF8EQaQuggDaQ3gEjZgEUQ9g+8Vk63uP5pgUiqzEjBRhysVaOHyfFaEQ8OSzGeYFLHjwQfH/3X+EsOtIHl/DXiBIubWsrCo4JiQSgKQeZ97Q2LJMfbC4SWUvqPrw+xCE12z5NRdbtliX4xXgZGUBH33EV7Z280+etKmk7YMX2r9JwUl/64Vnn+UoSHky6iU0zxAEkSwc2X2Iq9zgDUNw54P5luVOPtm6rvC8bLZHDyu4gkFg874y60rDLtgGLPnbiMhBMIge5T/oFxSEuMuNvWyPIjQRRPojgHJweQUpuAiiHsAOi4vdSWZxrZUKLgNrIaVgqdmQGq62X3nFogCHQOjll8X/L/0zV5P81JqHXmO8wiqeUHYkAEk5Lr+vkWWZ+qC4TOXlVn34fQgiUYTXBMr8m0Yo02WYwatQ51Eq3HYbX5s87NzJUSgBgjQi8dA8QxBEstBielfusjzbXMt9vIK8wGHDa+GgGHfcAdz51SDryt57z/Tyc19FjBBvvDsfH+xoql/Q40l51y5PqyMIgkhpY+JkgxRcaQS9FoQR4WfjSNDEk0oBT4jC3Xv5kjkOH25RwMbCM2QdMc4eVqtU2YPLAi4PLhpu05H6INhKZet0snwkiNizeLF1GV7PKy9lURbyMVsowysZwQTy4KqPkGCCIIhk4dARvv05wDcv8+SfDHNOj6cMr9XVivPjH39wVmbRue17I95nV99RaFzQY8OTHwwcxVRNetdcSu/BCILgg6QV3kES1zSCBHmEEX/s8eOtt8zL3PdoJHyh1zm4TJFWnVx1ey082rbN9DITBGzfDvzjO4vkXnZCFJJ5d1pRLxRc9MgSBGECjwDsjjv46nr86/bmBfbtA8C3GfRyzcKRkhEIhWi8rIeQhz5BEKmIz8exf+XYejMG/O9/wFnvTDcsU2ceNCUaG5o10z5yTd7e4uU6oD7sM4nY0yiPXA+TmZBAIQq9ghRcBFEP+Otj5ejf37zMaRdErJ+MFlNvv23D8oqTYC2/0spz42iL7Lo7d/tx6aXAG7+2Mq+HY0I6GvJTeo40pD5Y1qXyZ0zlvhNEqsAjh/rHP/jqWvLMbPMCQQ5XKom4K7hoc1ovIQEkQRCpCM/I9b//8dVlFcb3629tih1tTOBWCq5UzsFFHsKEF9DyNLkheYV3kIIrjYiJdw2RUFoX/Rq3tn793S+npDKzRv37371t98AB/knX88nZbx7GYcoZbXDDDRz1cHTs+k9H4owzOPtFpAz1QbC143BBortAEEQSEp76fCyO1htCuG3rsbeuDti925tmX3ie4zOSFUtakZ9hnE9GCQkgCYJIRXzMOw8uHt55B9j6E+dm3oZgy3QbnhAPLu+8Mb7fV+FJPUT9Zl9tdqK7QJhA60jvIAUXQSQx8ba2CC9izfJF8eShsENdXQKtSrKyvKmHU6j14YfeNEckD14puPpVfu9JPQRBEPHGt3NH/BqzsWD48UegpMSbZp9+hmPL5HGuDyKxNMjZy1WOQhQSBJGKeGkczVNX377ATTdzFKyrs9U5Mx3WZ1/6sWcPd1WeIAAQ/vPf+DZKECbsq82xLkQkDAEgNzuPIAUXQSQp558P/Li/NK5thsdVM6G9HQXX1q3WZR5+rthTD67fvt7NVxngnVUX5wcQBP6yRGpgpgy2A+OwoiQIgkg2vvwSeP6TSk/qsmMpnpThPMiDK63gtaitD57cBEGkHzbSXJnCmMeRhL78kqvC/fvF/0Mh47LfbA7guuu86hgnAhB67Y04N0oQRKoigHJweUUg0R0gvINxpdwmUoVNmwAgI65tRjy4jBeKv/3GX19NjXWZzT9ncsuEeMb9Bm2L+SoD4q7gItKPQ8FMT+oJhsjehCCI1EIQgNde866+a6/lKBQK4fBh4L9b23vXsEe0XTUi0V0gPIR3ZUehZQiCSEW8lB15uRXetiMTS86yFiIUFIjtmjVde1SIexqP7/4owc7DefFtlCCIlIVEid5BErU0gjwACLfweHBddZW3bWYEQjY8uDx+xj1ScB0+wFePIACf/5jvSZtEekEhjmIDzYoEEUM8Dsl3zz08bYbw4IPAvd/0965hgtDh5wPFXOXqBPN8rgRBEMmIVx5cgLeprlpPaIX/vF3EXT504JDhtWBdYnYCH+7ksPIlCIIA0KbIhgcBYQopuAiCkAl7UsUz9E+XFgc8DVFoC48SiuV0aM5VThCAjn8iC28iGvLgIggi1RBq6zyNyvfxx9Zl9uxh2MuXGokgXHE0FN8oCnZokr8z0V0gCCLF8dKDy8sc3QcP2dsTmYaJDYXi7sEFeBfCnqjflGfvS3QXiDjw5Iw7gYqKRHcjLaAQhQRByCQifURl8dHEpa3w0tyMg1deiWtzRApBHlyxgb5VgogdQ3vtxw97SuLa5imX0AaQIDJ9HkqTPSbLX4sjweRVDhIEIbLozIae1MMO7kdtbWIilIjKK+O2hWBihAyUm5HwAgqBXE847jigRYtE9yItIAVXGkHDH+GWYBD4z3+As96ZHr9GOUMcffYZsGu3x095nBVcBGHEnqM5ie5CWkIhCgkidny0Jb7KLbtkBoI4Wkfh44j0I56RFuxCuSQIon7BDuxHgwbJGYI/FIx/Di4AOBIkMSvhHppOCcIeNPKmEWOeOjnRXSDSgK++inODO3dyeXB16gQAmZ42feOjVZ7WRxBO2bKvPNFdIAiCSCv8QhAAKbiI9IO8AwiCSCZy4myn17HkZ3y2q5FlOSEYQtu2ceiQhvXvTot/o0TaQXM9QdiDgsMSBJFQhPfeT5i1559uSMCKlyAIgiCImMMY2b4SRLxJ5txlBEF4D0P8PTe5vVhDIbTL3hLTvhBErEhmb22CSEZIwUUQhEyiFE2JaDfTVxv/RgmCIAiCiAsH67IS3QWCiAkk9CIIIlk4eNiHH36Ib5uf76rmKicEQxCeeTbGvSGI2EA5uAjCHqTgIghCBU+c6mee8a49AYwrRCFBEIRdgiFa5hAEQRDpBYU1JggiWbjy3kpMnpzoXugjhATKY0SkLPTsEoQ9SPJDEISMEOKbRseP97hdmr0JgogBG9+bmuguEARBEARBOCbAgtj8/h+J7gZBpBw1+bsS3QWCcAx5axOEPUjBRRBEhARomp7YPwLr1sW9WVowEGlPjv9oortAEARBEARBuIAxAc2akjUgQdil9JOXKcwbQRBEPSGQ6A4QBJE8CMEQ4q33vual7sBLcW0SAMU0JtIfEoUQBEEQBEGkD9W5u7DtYEnM2ynLOYCdh/Ji3g5BxJKgwFAb8ie6GwThiP212YnuAkGkFOTBRRBEhFCIKwdXOhAkBReR5pCXIkEQBEEQRHpQVwdMa/ZR1Pnzp/3P03buvkvA1yuu9rROgkgEPR/diAUvHp/obhAEQRBxgBRcBEHIiB5c9QOBhj8izaHcdgRBEARBEOmBX8cRxcdCOG/6JwCATF+tJ+0EMhgy/PVnT0gQBEEQROpDEl6CICKEaDNDEARBmNO/9e+J7gJBEB7hZ0HdvwmCSCKkEBtm3vk3DnwAX8w613VTRUVA5tIFrushCIIgCMKC+hJCKw6QgosgiAi//ELjK0GkCSGBpngiNrxx3n8S3QWCIDyiUd5u+W8/I0Mngkg2GARDAZggQHbZ9zH3wak3n34TjjkGyOrQEj9+ssdlbQRBEARBEPGBpF8EQcgIt9ya6C4QBOERdQIlVSZiR+O8P1CevS/R3SAIwgXC1degOpeE2ASR0kjKLx9zH5u6WckeWZdWU+O6OoIgCIIgiLhACi6CICKEQintwVWYcSjRXSAIgqgXfP3hQTw6mowiCCJdWNvxxUR3gSAIC7QqLOW+jUEAKy+La38IgiAIgiCSAVJwEQQh4z6wRWLZW5uT6C4QBEHUC3JaN0amvy7R3SCSnExfbaK7QHByw+AHE90FgiCM4LBA9MKDy26bBEEQBEEQyUAg0R0gCCJ56PDQ+ah9LNG9IAiCIAgiHTgaykh0Fwhexo0Dbk90JwiCsIOg0GmJObg8VnIRBEEQBBE7yJjEM0jBRRCEzK4jecCRRPeCIAiCSAVoOU4QBEEQsUUp+xIEnZnXJwbl8bFQ7BomCIIgCIJIYihEYbpQSyFgCIIgCIIgCIJwAAmzCSJ5MXg/GYtcy/bX0WtMEARBEES9hBRc6UJtLY5t/n6ie0EQBEEQRD2BQiERBEEQRPzQzrqCACAkem5l+2tpXiYIgiAIol5CCi6CIAiCIIgUZduCMxLdBYIgUhhZHE6uHwSRvJi9n8OGAQDyB3aNX5sEQRAEQRBJBCm40gVBIHstgiAIgqhnVOXujX+jUlZ7kn0RROoTFGg7SBBeUJBxKDENFxfj9dcEDN4whOZlgiAIgiDqJbSjIQiCIAiCIAiCqG8IAmpDfvFvH20LCcIph49fg/4Nvo9J3UeCGfLfgqDWYIUVWgMGMu+VW6QtIwiCIAgiRaCdTLogCFELXrc0yNmD1R1e8rROgiAIgiDSA8r1QRApDmOoC9F2kCDcEvP50EDZJAjqa677IdC8ThAEQRBE6kE7mnRBECDAWwVXr4ofcNOg+z2tkyAIgiAID+nePf5tklU3QaQN+2uzEt0Fgkg5dv71n+oTVVWeG5uGyfLXyn97vd8nCIIgCIJIB0jBRRhCy2eCIAiCSHJat45bU2Mbf4bgspVAhhguiTGy9CaIVOOa/g9iY/cn5ePSrIPICxwGQMJzguCltKA26lwsZsRs/1HcOug+7vKe2p/EyZjlzSl/xpSmH8WlLYIgCIJIKshw1DNIwZUuCILni2ofC3lcI0EQBEEQnhLHRbGPheBjQmK8xgiC8IRRjb7Ayg6voFnBDgDA8xOvwZZ56xPcK4JIbfw+AUJNE8/rvXHgA1jc9s2kFIDdN+KvnqQzaF30m7i2IAiCIIj6BoUG9gxScKURXodFSL5lNEEQ8WL7gjNwepf/JLobBEFYEUehFwOA886TvcZonUAQqQeDgEadS7F57gage3eUZB1EefYBIBCgvHoEwYtm7vUxAUJuvvfNaN5J3TfUoxxc387ZoP5cFuuLea3eRbviXxy3F8bPQjTyEARBEAThikCiO0B4RAw8uBhZaRNEvaUg4zCy/HWJ7gZBEEkEYwJQWZnobhAE4ZaTTgJ++AFo0waoqwO+/RZo25ZCFBIELz61nXCsbE1kzyazBpQKLhf9aFm4A0Ce6lzzgt+xeV+F80o5CPhCMctfRhAEQRBJTRJ6aKcq5MGVLui4NY5q9LmrKn0Q6GUjiHoK5dYhCEILAzyzFCcIwh39Kr/HrBbv2b6PMQDZ2UDbtuLBqFHAypW05icIOwSi7YRjEWVIXo/7/VIbFu+p205IOTalxvH+9Etwi0kOMC9CC/pZCKE4Krh+WXA6RlR/Gbf2CIIgCIKIPaTgSiO0C97/HnOdq/pIwE0Q9RsKB0wQRBQkBCeIpGB2y/dwbo9/276PFNME4QGdO6uPBSEm6+aavF3iHzoKNT1cv98LF6oOS7IOoix7v2FxL3J2+1kIoTh6jzbI3UdyDoIgCIJIM0jBlS4IgudhRUiERRD1F3r/CSK1yPTVxrwNreCMdF0EkTg8F6bTC00Q/DRrpj5mzPN38tDSNRjR6CtgwQJDBZcXHlQy55wDNGwYdVpvZHhv2sVAx45ixBeX+FkIQSF2YqkMn3HIdWH5ipi1SxB26d/gu0R3gSAIImUhBVca4fU+19MFM0EQulTl7k7KzRUrLEh0FwiC4EESSucE4qDg0qwLPt9VFfM2CYIwxolOijwXCMIDdF4+rVOXU4ozD+CcCe8jOyApZgYPlq8dCaoVXVGhg30eKqpNBpieExoAJ5zgibzAxwRkmSih2hT9gq9nn+O4/qMnrIGfBfUvcnrGEUQ8eGPK5YnuAkEQRMpCCi7CEAphQhCxJ2nfsxh4hRIEETuaF+yIeRvaEWH7wSIAQHXurpi3TRCEGs/naPLgIgjnMIZrrwV+3XiD66r6Vm7BBZPe1b3292/7qY6jQgS6cSPTjgFS3i9dhgwBcnM9UXAxBlw74EGc3e1p3euFmYfRuug3V21ox0s5tcO0aa7qJQiCIAgiOSAFV7ogCNFJZydMcFWlnoXnwaVrXdVJEERqwCAkq+qNIAgNvx93Kk7p/HzM22FMUAnAxtV8BgDYMm895rZ8J+btEwShxomRTG3IRGhNEIQp1bm7cOyxiFYGMQa/H8gKGHsi2WLIEPH/3r1Ni0V1w83q3Y6CS8KTiC9VVWhWsBOX9HlMvw0IQLt27tshCIIgiCTh+Lav4ZvZGxPdjbSCFFzpguC9MFpvwRqPEEgEUe/o2zfRPYiCCe6TRhMEEQd8PpRnH4Dfg0TvVmj9O8qyxMTzfiagzkb+jPbF25IyNCtBpBIMApCVZfu+w3UZMegNQdQPJjT5FA89ZHydeZWIq1Ur4MorgeOPV52e3uwDdXuxNEdjDJg40bSNKA8yJ6xaZXrZ7wsBRUW2qy3MOIR+ld9HX+jUSXX43DHX4MROsTcSIghLGjdOdA8IgogThZmH0arodyBEcjevIAUXYQgFKiGI2EMRgQiCcEVxcdya0gq5wiF/fEwgrxCCiDMBn7MNcXXeHo97QhD1B18c4hvI3tIFBVEbhRaF6nDEPo1ntef7ikmTVIcntHsVj46+JdK+y++juKAOaNDAtIzTNs7u/jTenHoZMHSo+oLmSxrZ6Es0yt3tqA2C8JQePRLdA4Ig4oS8r/bKMIawVnAxxrIZY+8wxv7HGPuMMbZJOt+cMfY2Y+xbxtg/GGOZ0vks6fhb6XozRV1nS+e/YoyNjdmnqo/EIF+OJxZZBEGkJOTBRRApQk4OsHGjblhhr9GGKKwLRZaRpOAiiPjiZyHb3hvC8hVolLdb/yJj0eHOCYJQYRiST5obY51bV1s/g0bB5WWIQh16lP+Iac0/ko/thCgslby+lex6+RPxj/HjDe9zGgYxP3BE/EPnc8k1kmCRSCYSYPn68Khb494mQRAKaB7yDB4PriMARgiC0BVANwDjGGP9AFwG4BpBEFoB2AUg7D9/PIBd0vlrpHJgjHUAMAdARwDjANzMGCNpiIdEbUpdTpC0xSWI+gtjOmMKQRDJB2NATU18mtIcl2fvR/8G3wGwp+DSLk+mNP3IXccIop5Rk/cHBkjvHkEQ8WFOy3cwr1Uk3+RnM8/HX4fcG9c+6KT+SgxSSCVe5dO/xt6If429ybjA1KnAuHG6l5yEYP7k2E1Y0eEVICMD6NYtSn4YCu9xcnMBwHNDYYJIFWa0+DDRXSCIeolsnJpBocO9wlLBJYiEzW0ypH8CgBEAHpbO3wNgqvT3FOkY0vWRjDEmnX9AEIQjgiBsBvAtgD5efAgC+jm43Cq48vOiT44Z46pOgiBSgwAL0maPIAgVWi+x7EAd3phyOQCbCi7FiuXi3o/h4dG3edNBgqgn/Dj/bHQr3+p5vfHwBCWIVOX+kXdgcNW38nGHku1oVrBTPAjvu+Nsia0N3+dq+89xc5avTvxD+py8yqfcwFFk+oPmhQIB3dNOPLg6lW5Dhi8EXHcdkBct0wiF84aWlwOLFtmunyDShjiGOicIQkOrVkCHDonuRdrAlYOLMeZnjH0E4DcA/wXwHYDdgiBIKxxsBdBI+rsRgJ8AQLq+B0CZ8rzOPYRbYrCY9nXpZF2IIAj3JGMirjht0DN9tehVsSUubREEETvchCgM+EL4bs4GD3tDEPWAtWvl5cOqDi9hfqu3XVdJntsEYcGaNZG/zzsvslyWXkYvls/asINKMsMKJol4pBRQdiU7UCv+kZMjtc//gZ1+N64+o19cm6i+TkFAUFAoJAcMiENmNYJIUvqQzwFBJIwzzpDnKcI9XAouQRCCgiB0A9AYotdVu1h1iDG2nDH2HmPsvd9//z1WzaQlXm5Kx9V8imUruB4PgiBcEOtY/U54Y8plcVO69WuwGS9OvDoubREE4Y7N+8oNr5kpuMY2/gwbuj8lHzMAGDYMgOgtCgAtCnd40UWCqB906AB07iwfrmj/KtoU/equzmQ0tiGIZMLnA7p0iRxXV0dFOzgajK2g6sxuz+L1yZfJx4wB8czBBUCcv5s2BeA8P5YMh9bLdRuM6YQoVMs5nMpRijIPojp3l9OeEYSaRMzDNPcTBJEm2NJgCIKwG8CLAPoDKGaMhf3IGwP4Wfr7ZwA1ACBdLwKwU3le5x5lG7cLgtBLEIReFRUVdrpXv9ELUeiC6/r/A/37e1ghQRDGJNnCsn+D73U3g7GAQUhKJR9BpAxxDIf03u/NDK91Ld2K3HBCdw3dy3/Enzq+IB8zFrFOD/hib31OEGlH+L2nxNQEITOh5hPsXnxS7BrQWa/LuZykayXZh3Bpn0e5q5zW7EMw8M+D+ceOw4CG30e6lIg19Ny58ufNM5j3tXCFPzUYz5zk4AIArFpleCmoUWjxhGXvXbEZWf5a1bmN3Z/C+9MvcdY/gkgGfGTUThCJwE9hwT3HcjRjjFUwxoqlv3MAjAbwBURF17FSsUUAHpf+fkI6hnT9BUEQBOn8HMZYFmOsOYDWACJZWgnvcSE0N7w1yQTxBJEW1GMBFY0oBJEGZGTglsH/h98Wnm5YxGj5kOGzyMlBEIQhYeG2LSF39+4GldGMTKQ2Gb4gijIPx7VNrWLE7xNwVrdnue9/dMytqMlXewAxwPh9nDABaNFCPmxVqI54E+scXNoSYxp/jo+P3cRVfbviXzCrxXu2u+XIg6thQ6BbN8PLWg8uHt6Z9meUZe1XnfOzEBnqEakNKbgIIiFkawwmCPfwjGZVAF5kjH0M4F0A/xUE4d8AzgRwKmPsW4g5tu6Qyt8BoEw6fyqAswBAEITPADwI4HMAzwBYIwgCSTW8QhC4LI94oYUaQcSXWS3eQ1HmwUR3I0KcBF2U0J4gXCJtTGOROyc/w0JQOGqU+P/IkfAxAZn+OvPyEso1RsAXBM47D2jf3mk3CYLgpXt34PjjDS/TnEykMrF8fv8z4VouD65w+F07OJ2/n51wLZ6feI13IQodwBjQuXSbdTkABZlH8I9Rf7HdhmMPLrlxBkEj9ory4HKcH4zGTCLFIeMWgkgIpODyHksFlyAIHwuC0F0QhC6CIHQSBOEC6fz3giD0EQShlSAIMwVBOCKdPywdt5Kuf6+o62JBEFoKgtBWEISnY/ex6iGC4Klwiza4BBFf/jHqLxha9XWiuxE3BjT4Vv7baLwp1VhJEgQRe5rk78S3tz2PPYtPwqCGkfc0238UT467QV14xgxgwwZgyhRg7FhTMxul0E25l87wBYHqamDePI8+AUHUP7jX7c2bAxkZhpdjoSgniHgRy6d3dOMvdM/Lb154YhswAPjTn1y1pQzja0ZR5iHkZ2hCBMY4KkSBleGLAVyKN4O+O1IiWXwPsmLSzvd1zDFRp/wsRPoBwjs8epiE5Svi3iZBxIqXJl6J+0b81ZO6CjMOyX9PbvoRdp+buFzwWZyGoQQ/5I+aRni5nLWa5rqW/WRt2U0QROqyerWpV2iGz92E/PqUKwAYjzWDG36DAQ2+N7hKEISMxxvTbH8tWlYdRKEmzNOWuesxocmn6sI+H9Ckifj/9OnwtWllu73ybHeKbFubeIJIM0guRRARfCykCt/nOYFA1KkopTBj4rxoA603kW2UHlwxDFG4ee56HNPkExcN6GChYFrf7Slc0vsx7uoCLIjgspWWYde0IQq5IuEwphOSkvKIEikOhSgkkhBlONhGebtRlHnIpDQfT467Ac8dc4187GNCQpVMAQrT7zk0mqULHltrGVpZSQvf7mU/Yd+Sk1ReGPGmOneXdSGCSHKU26SksZzeuBFo1cpUaX5ipxewfcEZtqu+uPdjYpgXCcb0t5SvTL4STfN32q6fIAh3GFlK81hQM5/+GMag9jAJrzG+nn0OJjX52H4nCYJQ4cnqgbRlRIpjmrvKC1q3jjqlu4q12QfdfFAcdXi+bzBoMzxnNyvY6e7r9ftt37Kg9dtoX/ILfxO+kLheUbal7bQgRJSKkgzFqSTFzwQgP9/h3QShIRHzMGPo3+C7+LfrMb8sMM4DTKQW70y9BDNbvC8f+wzkRXbJ9NWpcj8netXrp6hpnkMKrjRC14LMIVa3+qRY2GEvjHhzSufn8L9jL0xI2wThOR06JLoHcaNn+Q+qMC9mIUu8zCtIEAQfRu8kl4KL85UNF2td9Bv8PlrcEwRBEO4xC9VZknUAgxt+47zyXr2AJUuiTru2MW3dOsqDy/bqV+GBEfc82gbhGFe2fxkjGynW+wzA2WcD5eW2qrebNsEX/vwDByoriSoX5cHFoyxkLKqcj4XAMqI9+wgiZfD58OqkK/DYmJsT3RNXNMjdl+guEB7RtOAP1UzmZyFP5jbG1NOBgMTadrnOL0lEQQqudEEQPA5RaO7BlQwJVUn0TaQNbdqIXlPJAsdM7+n717697unEjzIEkQJ4vDJnTL9Ot/M+q662LHN2t6dx/4i/4LOZ57tqiyDqC+H1etyF2gSRhPhM3oM/dXwRr0y+0nnlxxwD5OVFnR5c9S1O6vQ8EHQYaqikBEE9D65kZf589XGnTsDYsVHFNvZ4Cu2KNJ5XNTXAwoW2mpN/U05Not8XAtasAYYPNy3nOixkuD3OfGkEEVemTuUvyxj8PoGE7URSoTQm8Er27NN5xkMJjKCUDDL1dCOFVlOEKYIQ7e3gyoPL/GUz20DEC9rME2lFTU2iexBBGjusrBmdvIPascVAlg4gsQsOgkgZvFZwQdCNx+9jIeCUU5xXrBBOMabThiDgkj6PYU6r99ChZLvzdgiiHvHLwULvKiMhLZHiMBNlg5M16/UDHrDMOV2SdRDXDnhQrYCx+S7pKrgcvo+xzMGFqipgyBC+qpzs03WUWIwBWCHm2nxv2sXoVbHFtAo/CwHNm1t+FtmDSw5RyPfFaXvoZyHbbnwfH7sJNXl/2LqHqF/4mcvcPHaeSWk9btdbMhXJDRyR/17c5g1c1ueRBPaGMIJBQEgxJvtZyJMlKkP03JTB6tAkf6f7d84meYHD6G0xnxH2IQVXOuNGwWVxPdHaZlJuEelIMoTkK8vaH1Mhl1ZpZraYTpqcZASRAng1fvgUAkLlXOvzMaBdO8f1Rs3b2lwcTuM8DR3q7D6CSAPalfwKgHRTBAF4H93jT51eRJbPIgF9OApBr17OGmEsyqCLd58rgAHnn++s3RgTbdBm8Jks5n4fCwE9egCMoWfFj5bfjU9PyakzQDry4NKpx0norM6l20iSQejDGOpOWIn13Z82LLKs3at4dfLlnrZZX2hWEMnvPaz6K8xv/U4Ce0MYwZgQ5cHlSYhCnToCfgE/zFvvum677Fx0GrqX/xT3dtMdUnClC4IQLQzWscDmxWoASYZFWT2ai4l0J0ke5rO6PY2vZp/L3R9WWmK7jbqwxeSiRWIdRgUrK5NC4UcQSY/J+/rpsefbrw4CkJ0ddd5N6BI/CyHTr0nqG9DkrHCq4EqS8ZMgEkHAJ76Xnhh+0bvEzd+G35noLhA6mHpwxerxXrVK9G4ePdpxY65CFFZVqQ5djQWG351get1o/lYWL8064KxLNsvzrlVO7/JfnNzpOfmYawmi8/nDYzBBeILPB7/PfAdclHkI7Yt/MSkBIGTjufT5LEN6pgP/m3EBVrZ/RT7W8+YhkgMG9bzoVfhMMQeXEH2SSBtIwZVGRA3PjGHz3PV4b9rFmNL0I1t1Gb7n0gV5wOnd21a9XkGCbyIdSfQSqzDjMMqy+TagTheEdSE/MGUKUFkJAPh+XzmtKwiCE4YQfllwOnf5jqUOQ/317Al07ao6xeW5bfAy+1kI2f5aRTGBy4OrOJNvPFrT4UW0LvqVqyxBJBMvTbwSp3X5j+P7Ex1Rob6yoPXbie4CoYNZCH0GAWjc2Hadco1Gi9WsLNG72YVhqZchuRMisNULLajoy4Gla9FxQXf5WlXubu6q5c/D+f0GWIhLYLm200u4ZsBD8rET2cLK9i9jbOPPuPYxNwy4HwtbvykeDB1KsgzCMVzCfrtGY3PmpP0TWZR5KGrNVB/CMqYqQa0Hlwe/FYMAZjCXxHtMJuVqbCAFV7qgN4n5fGhWsBM9K37EY2NvsVWd2Qs3oeYTTGv2kdxGomA50RbmBJHKJDrnlKy4lt7rWEz0tSE/MGGCPGZ9s6eBYVma9glCDWNAg9x90Sc9xMcEICMDWL06+rxD/L4QAn5FDi4IQH6+6T2hZStQlbuHq/4bBz2ALqVbHfePIBLF0OpvcHHvx/HFrHMd3R9ehnslpKF5l0hlzDy4AAAFBbbrjIfQy58VsC4UDzxcTzAI8rohd9xQ0bhNYtuCM9GnYjNXPT4r7zEFl/V5BK9P0QndZnavnIOLD+XzsKH7UyjOOsR139pOL0XCozHm2GmdSE/O6PIsHh9zE5diims9bseDq55AyqzUgZWWyHKpO4bcg9KsA2mngKXnMTaQgitd0AtR6CYHl8kL9+T4GzGhyafiQVmZ4zYIglATchOixANkBVduLgDrNbaTIaY2pPbaMNvgJlrhRxApgccKLqaoU1mzKwVXVC4OAAMHAn37ysnjtesJ7o9FLqBEipPlr0PT/D8c3Rt2hKS3AGiQw6cQJ9IX5fwVdc3hHBYPRcRH//Ph8Yl/kY/dCL5i2l8bIQoZUxjM6hi06HZTpx7ZW0Vq22yv1Ln0Z7Qo3GF4XRdpEK3T7E900Xx+xgCccw53U8FQpO/kwUUoGdTwW0xu9jHXCxwUfGBFheaFBAF5gcO2+pDyHiVDhti+hd7C5IT5ffJ4ubTdG55t9ZgmlxcDoiOKxAkGABs3JqTtdIYUXGlE1JSUkeE4ITzXGDJxIjBggKP63cIgkEyLSAuUm9hELyuDAgPWrOGycHX6/rULxwwPb1TBDBfUUUp7gqjnaN8Vn0cxyVVtGAjW3Ci4AiwYfdLvB5YuFZPHA2KYp8suA664AmjRQuqL4yYJIqVwKlgKvyMNc/fwCUzNhGeMpaywR1i+AoMbfpvobhAJxtKDK34d4S87ZgxatQLalvwWuZ3zVr3X2ZXixGMPLrO+8LbkD+e4ysgAYG78Jndf+zm0x8ovThJuXvnxaFii8bxieblA48bc43edEBGk0h6H0KWBcWSTMFzPmyBg1+JTcFKn5z3oVIpgEVmKIXrMTHmlXprCWHRuylj8VgIAtG/veb08sHZtgZqahLSdzpCCK10QDBaRp5ziyMvKMLavcoE4aVJCQxQSRNogvVf/2drR02qXtn3NlgA8GPIBXbpwl7e70BCWr0D38p9U58w2qmTdSBDmXNL7MXn80JVbz5hhu07DFJwuNhZhAdVNA/9PrMtICFlcDBQWyjn6uEgGYSZBuMTpY5yZIWBxmzdQlGnPUtsIEvUQqYzZa+ToFcvOjqxFPQ8HHEKjRpG8YE7mWD3Dk4R4cOkVLcjHgbpMk6qkjmo6LCxfgXE1n8rHsgf4mDFAWZnptyR/hwb9DLAgDh+/RjwYMUI0pmnVCgBQG7IfJtLWI+HzoS5EchPCgiZNgJUrDS+/NPFKrO/+tPWzl5eHDF+IFDgW0BYieanTKrg8+K2UuSFlxowBjjkm7mFj6d2MDTTL1gdOPx2oqrJ1S4ZPx9oa0DF7SNysQIMCQZhzx9C/oSiTLzY8EG0pE1MFE2PoXvYjRjf6wjjiSexaJ4iUZ1m7V3Fmt2fleTmk9746mKOVyielNxdvVf834q/RdUr/r+74surYE4IG6xWCSAXKy13d7vMBdw27h/+GJJHmVGTvxRV9H050N4g0g8EbD66K7L14ZdIVQJs2MfO0mVDzKbZujdTtpNu6Cq4YrN0rsvebFzAIUTi/1TtY0f5l3VvMeqkM5Scb3ZaVARdeyBe+PKBRVinWNFn+OvHc7NnAmWfaNtZ1/P36/ZF9FiMpBqFG9f537274fAxs+B0KeQxamjYFJk605dmdJMsD53B8AGUReguTFwZBNQ9g1CjP6lUfQ/Ti7d/fcZ0ndnoeJ7R71X5fUv19S1JIwZUu6OXgClNaCowfb6s6QwVXmzbi/1L4IIIgPCBJZrhXfmkd1/Y+mHEx/tz3n4bXKXwHQajRfSPCCi69vBROFFxuNnyMYW6rd6NOv/1bc+d1WtG1KwAaL4gUpVDMo+H4vbMbSSHeJqoGNM7bjdO7/jfR3SDSDLMQhXbesaLMQxhcJYa8jNUbE5VDx8G76bkHl8F3N7Dhd/hj0Smma4rL+jyC9sXbVFUNq/4atw7+PwMFmF58RfGc0uBOFVWGMdMcXIwJYm5PKZyhSUHz65z3hQ+5cqb5/eTBRbgmPI4ZyurkggyYNIlUOAoYhGhb/ZLihPSFMIcxRBS5kyYBxx7LPYczmEcvUg7jgt5Jm/y5zz/RpfRn2/clifgv7aBZNl0QBNsT2KhGn6NTif7LGPAZDAwFBcC11wJnnCEeJ9KDiwYFgrDEzob+3d+aqY7Ncu7EIw8eLcoJggNpt+aV3NoXgxwm81q9Ey2I57G05BkFysvFdQlBpColJc7v9fJdZQxBITHJtr2A1gyE2fxl51WRyzoNxW/R2PDqL7HqsmbqW5SJ7zlzXuqFIY+FggsASrIOGt8nCFjX7T/IDdRad0Q67wt/XuV3LLUfVBisaNMm6Hqrh28HxNyehteNQxhe1Osxw/ss6+PB71eF3KIw7IQunGNObkateQF5b8DxnCVIqJbps/gMcYC8uJITBgG3DLoPm+euB/LzxRyxLnJBy/Uynd/c5fMf8AVxNJS6a+d0gxRc9ZiHR9+ma2kNmFiFMAbk5CRF7i2akIh0INHPcfOC33Fx78cAAOf1/LfqWkz7ptj4GrVDHhkEocbM4tlM6GOrDbEhZzdrwwIBeHnSlZjU9GPVusFyk1Jrc9Obk2OvPEEkC4wBF1wAluvwGfZyPU6WY/xkZSW6B4QODPDknZCVL0Y5ri07Yn7PTQPvtxtcRRefzvrZJyQgbG9YmK44pfoKQqGovxe1eRPTm32g/r2kv3MUijK/xujWLESh4b5FDlGo1zmR3MBRw3oN27PzaFRVqTzTksSZlkgSGAQxTFpRkXk56ZkzM0J11Yc44vf6M1i8kLqX6UVMWgoyj6BZwU71/MGB9nfO8NUZlvUpwhoLDlUjfibgSNDCa5iIG4nXUhDeYBai0IAMX9BwkegzSPzqllM7/xePjr7F0zoJgnBOadZBrO/+NAD7C1tHsrDzzhP/5xhbzIQKtw3+Oz6feZ6DDkT4/bhTMbuFvpKfIJIRBgGYODFyomVLMSE1vFMIq/Ju2b25Q4eoU70qtohrCqWCy2qsmTDBbssyKw3yfRBE0pKZKeaXcYLHHlzxIhYipbgaxUybFr+2CG4YBKCwECvav6zyDtjY/UnRk5gT2TNq6NC4yT+9ysFVnnsQ70272IMeKQh3rrKS/xajt1wSVi5r/xoeGXObuI7R8Lfhd+KNKZcB0AjBGePLwWXZOechCvXGGbOwiTInnIA6svInDGBMABYvti4HThmdrHROXg8uPQ/UeMIY2fUkK6rfRdo/8v5U2rlnUpOPcWbXZ+Rrut7SLh4EHxNwQrvXcOdQG/lwiZhBCq40wu76O8MXRFHmIXs3aV9+m4NB59Kf0aP8R3ttcnaFIAj7KIXZ5Zok0mZeFo7cxEeNAqqrxb85rHG0m9jwQvjXhafjhHavqSw8nVCefSDKMpSovwjLV6BPxWbTMp1Lt8apNyYoJ7916+SFf3gTe2jpGjTI2RNdlrd6hTWbapPAU9ewYWLidlV9Enas6hs3Bq65xtHG/JbB/4dNPZ/AvFZv87dHEAmG18CkffE2/G/GBZETXnpwxTE6g+fW5y1bUsivNEGevxzAmACMG4dbxz2OTH/Ek+mCXk+IluCc+JgAnH8+0LFjTJ4rvTW0cgzQ88zSQ/c9Ki9HzwqHe22jef6cc4AhQ4C5c/Wv6+bYUhwo1/xKD5Urr5TzEAIA/KICqDz7ANoXbxdPaUMUmnlwGV3Srml0CnItlzSfM1xfMCPb+t6SElXfabwi3PLz/HW65xvl7ZLn8/d3NIlnl2zh+TrA4iXWjiVA4iPpEPqofhfJsMLpb1WSdVDO+a6de716Bitz9mFJ2zc8qYtwBym40gUHIRT8TMCqDi+LsU1N6k1G8jKOJLoLBOEd0oJserMP4t502BJx24IzsKz9a6prvBtsbpQLT4W1utF6VBvPuEPxdgjLV6AyZ19MQjMQhNlT9ftxp+L2wX+PW1/0MNu7hQUn2YE6V4ITwxwmPNIfnw/o1cuyGFfv/H7HS5Bzez6JxW3edHYzQSQxjAFdyn5Wn5BQvi/ti7fhpE7P26s8jgouBojhmFIVsrKLGZ/PPB8PjbrN0b0+JojCsE2bVMoExqBWpPDUU1wMIDaegVY18q5xdcstWWLbI7Qsaz9mtnjPuECjRsD8+WIubhOU35WhgUyTJsCiRcCZZ0bXN2IE0KyZ6pRWKG22vuEWgLrwwFSFYQwruOYuML3nlyffj7qXwrATSri9UxiASy8FAFTn6RsDzGz+vvz3m79Ge0ga4ZXStTJnL1c5z98Ai3lZLwULTeXJCWMANmwQ55327SPneO5V/L2h+1M4s9uz0XVLKEMUOkYnPD+ROEjBlS44kAL5mICAL2Ru0ebxqC/AmwSBuYGjZHFBpB2eW/ONGsVdY1Xu3qiNstXr7+odLC8HTj8duDg6jMqQqq8BAD3KfwKDsYcVjQFEPCnIOIJADDz+svy1OKvb0/w3GLyYX+5uKP/tNITPk+NuwP0j/qrIV6F4xxxqm7TvqZ8F0an0Z4PSasjCmagv2F5uh5VRCqWUMg/flf0ewdK2rzurMw4wJgB5ea7rqcrdjS9mnSuGDjMos6bDi67bIeJDaNkKlGYfRLbfvof+9GYfYFm7iKFWlALhoou469JVHNmZA516T5u1r4NuiK+yMmDVKltt3zXsHjw46i+e7vsZA5AteTa1bau+OGAA0KJF9E25ucDZZwOIzP/aLpl7cHF8b5dcAlRVRd/Ls6fQdIb5xONgZXR9ShqUiTlgSKlFGKF9/jJ1lDEAgDZtgNJSw3f13B7/xjUDHpKvdyrhW297xTPjr8M/OdOReCETBIDjWr+JncedYjl+BYy+UyI5adJE9By2MS+VZB1Ah5Jt8vEJ7V5D66Lf5GMGqOZyMphOP0jBlUaYLpo0i/KyrP0GBTUToXazG0czh0Z5u3BVv4d0r2X7jZMFEkQqoXylPJ9iXb6vnsS5V6IVDrRuLSq6FP1kCOHlSVcBjOHsbk+j9oTV8ga+jifGve0u0WaT4CPA+DZGOf6jaCiFWPpx3ll4cNRtWN3hJcPyQxp+g0v7PMZVd6avzvC9fmRzd/lv+d21KbDuW7kZjfN361/s3l3/PC+SRfm+JSfhxn825rqF6/2UkwOry3o+fhFELJDmRdsGG+FxQDEeBEM+TRGbdfp8OKPLsyjJOmDvvgTCIKBd8a+GuXEA4MZBD6gEHt40TONLLHDztV7e7xF0L/9JPlYqfJGfD2RlcdflZyHF3CLhYVQTq/fdcjyQ+mIYacHii2xd9CuKMg/Kx/J86fQH6Nw5ugsQgAsvFI3Z2rSxXWVQ731mDOf0eApzWvLnUwvfJ/YJhuui49q8hbuG3m1ej0HEnLIyoF1ra9mE8l4SqxJmnNL5Obw6+XLjApZWqFJ0mOYfetgrc35beBrG1nyObM4UAl4pF3IDR1GafdByz6PrwUVvYlKi97vw/FZ/LDrV1HmDQVC9Ol7k4HK8NqB1ZEwgBVe6IAi2hucdi04zvPbJTHVs/7enXmrsauzIQo2PSU0+xqldntO9lu2vpTGBIDxALx51GKsxxat3UHfB4vOBMcDvExBcJlqiHg2SCziROHxM4FpcHzz+T+hQIuaOqMnfhZktPkBHj4Srmb6g4YtXqwjp6VS5I1s36rWxcCFfJXr3hnNzDRyInPPPRKAtR8gUxtQCSr0iCBl+H/H2/upW9iPO7/mvuLZJuOeZ8ddhcZvExM3/cta5XPkodQkLcpQGIm4fecZweb9HcW6PJ11WxNGUF2FhCMIEN/oopeBVnkucvqs6WEUBthT8hhVcDgXEX88+F1ObfSQfuzYI6dQJOE0tW2AQxLCQrVs7qjJkYNS2pO0buLDXE7rXrD6FmdK/JOsgFrfVD208t+U72L/kTzrtifXl5ABfvKkfLk6J/D0LAv44km9Znqg/aMeEvIyj6FbmIu+vXi5di7JudfgVOcYG9HroKZxcYeXBpZeDizx4khL9OZLvtzIzjtTWy4wa4+QfI28Hgg6f4yRNBZTqkIIrjYiJJ4Lfjz6VWxxbiNnhwl6P474Rf7Usd1GvxzC75Xs0KBBph9b62jUc72fAFzSMqX9ej3/jvWnRIQQBMYdfLJC7rNP3IyG1giscGsQNNIrUb8Y0/gxtin6xLCcsXwHGbCyuo47tP6vNCnaIiaIV+JixQufsbs/IfxsJhqww3WxmcyRR14E1qQHmzBHHmeOOA2pqOG9kltO8ygpP863He4lwUqcXsKL9K/FtlHBNx5JtKE2Qx1Lb4l9lobnt5XQ45n/Ys7JFi+hcNXb3BXEMUQjAWwWXSYhCALhr6D04rwcpoNOB4dVf4qd5Z0adVz1NjKnnXZvPmnLfK88ldiYVB++S8gnmWWuc0+PfaGqWZsAC5fjg2oMLAFq18nRNbeY1b/T9WAnz8x3m8M701yEv4ygAYNeRSGhVu2Gr5e/ZQ2Upkb648i6S3uVEhGDjGUXennopOnlk/Me7N9O+r+S9lby4+W2Uz7yVJ5gc5tfh3Der5fvWhYi4QgqudMGpJGfgQPPr0gJdrt3lZtTHQoYDVuui39AsP7JQN/pEazu9iJKsgzQpEemD9F71rtwSg6rN35OALwSMHat7rSDziOyJEnUfZ7g2FQbjlO67nJurOpzR/H3MaqFYRJxxhv32CULDP8fcgr6Vmz2pa0LNJ/hj0SkA7AmWGROABg2izm+euwG9K7aozvmYsddDA4WntZXnkx4lWQeQE857ogznA+DK1d/brk+Fw7WDlWJQJYTUlI23BxdZgaYm/hjk1bMFp6BzfM0n6hOjRkkXxov5dv70J5WnKIN+KC1Twmt+xaN859B78PwxV9urhwPP306TEIUA0KdyS1xDNRGxI8MXROP83fjg3MfQVmGgolpLap8Hm/tkpphrT+r0gv08boEARjf6HCOqv9SvX2/dq8wLwhGi8IJe/0KG0fjFMecqW5DXDAHvIiW41V+XZh/Ez/PXAYMHu2+TMcxo/j5O7/Jf40Lr1hnWq+f5AZhHwdBDHpPJSJfQYFuuZbWnlvYVybo27eOhzEN+oy3eKz1lH/mRJwcndnoehRmHTMtw/VZt25oqdbXvmWe/vxNPZYpiEBNIwZUu2AxRKLNwobmSq6TEaY908WninirRxkQ1Ilwky1+H2wf/zbO+EUTCkB78c3o8hQ+m8yfB9oIAC5lamhotuHnDtang3dCVlwOLFqlOPTz6dlzd/yGgqAi44AKgVSt7bevRtKn7OoiUxs8EQ8GFHkZT1MOjbsX9I/+Kkiwxp4X2Sbd8Vxo14m/fIOwIcy7LAyDGLTeag0+bYyNJtTYJuwtjFCtFITNS+FVWJsQEhuXmJKBVwg2WguRYY5GDa3LTj/DutEvw1PgbIyf//GegStXMAAAApaxJREFUpRTmMxAAunUDcnMxq+X7CC5bqa2aH521AIOA8mx7YYd48EroZub1Has2idhjppwNzwvdm/6h+k21j4ATQ48wSgHZ5f0exY2DHpDzSHLBGP7zTjHOUnhWqy/rCFoV3Y2l4v2xMTcD0Hpw+YD27YGMDFd1K383V4aol14KnHIKqtctAGbOjLps+5dlDA+Pvh1ndP2PcZmWLYGRI3UvyYqszEz1eZ9aqWrWPuCdwTCRfuiPCQ7foUsuAfJET0OuNU4insfGjT1bfcljjYPNDxnMJwfXDXgQOYGj8rFuiEKe3yovL7rc1Knyn4eCGdh+sEjRjke//8knA4358kvLkKFDTCAFVxrhyFqZMTFwtJaw98TYseLGWVneBVqNeoeSbeYJNHUID1qMAcvav+aqP06ItwKCSG+iLUk8nOx4QxTGa2HLMZEzCMCZZwKVlfoFLrtMYZXmRZdok1mf8bMQrhnwID6beT4wfLh54fXrDS/V5O9CYeZhR30wewJ1n08DhfTUZh/hibE3AVCEKHTykvTrZ/+eGGE1YmT5dZK6l5QAp5ziOEyjU3yanEKdS7di+wLyNE12EhG+R4WFB1fT/D/Qq+IH9UmNh7OS8OfRfTeskKM2iM/x8navYFSjL+zXw4HbvAdh/Cwkhj+dM8fWPqhZwQ5MavI/5w2TgDo28AqICgqAyZOj18wLFsh/usrBpaz3oouAjRtN3ztdqqttrehtrf/txO/VMKWZ+Nwr35eQwEQBnZvnWhNW2NUrUloKtGsHdOkCZGVFN2XwXdnJN6SL4gNU50ZCRAd8IaBDB2DgQNw++G9yuFO7IQrXdnwJZ3R5Vvx8BKFA76k0fYUmTDC+plDG21njeBX5gPc99GoPzhiAqiqgb19n9xJJhxt5WJ1i/8cyAmKkg06dAABHghmq6CjyXM/xIHQq+RnC8hXRFwYMEI3NGjZ03GfCO0jBlS44WcV37Kh/b1YWcNJJkb81nhQqGEOP8h/Qo/wH4zIKtF4fZVkHMKjhd1JVOh4hOl4aiZ6Iupf/lNgOEOmHl0nibWLlwWWEn4U866utenQKfz9nPW4d9HdvOkOkPWd3exovTbwSgPgcF2UeFkNxanN2KJk6FWja1Fqowhiwdq39TaLBS1Ab8gMAXpx4FQB1Di6t1VmWvw6Tmn4MQG25PrTqK/Rv8B1/X5YsUXTLwdpC68HldJxgzDLxfX4gkk9D7unkyUBpadwN48QcbZHjDF8QDXP3Gt9AJAUJV3DF6EHNDRzVH4fM2tO8rLcNuQ+N83d72zG5Kfefe1qzD3Fej3+L1uo6YV7N6FSyDU+Muxl+J+GWAbK8jRUGHjRKGBPE37ykJNpjSBHOTjAQc8xq8Z5lG6pwwBUV/LkjNRgZWujObIpnKh5bgU6lEc9sq7mWF+XnTYRnBNd4zqHg+s+Ea/HomFvl0wFfUJSNZGZiWfvXMK35RwA0IQo5FjtDrpiEy9ftiISYJQgJ7vclPE4MHQqceGJ0PUx7nLxzlaceXOefr5sreG3HF/HtnA0etUTEC10PLs5p6tweT2JF+5d1r4UEhuxAnZzH0877oVt26lRg/nzuOjQVOruPMIUUXGmErb1Wu3ZizH49Tj4ZaNaMu6r3p1+CGwc+wFXWz0Kuwx/IyQBd1kMQyYinG0Kfz7S+pvk7MLXZR6bvkt7cu7zdKziuzVvc3eha9hP2Lj6Ra5AKCn7uCT/82QoyDzuzVifqJW2KfkWnUjFXjepRKy+3vNcwxG74/M03A50727dK1FT89PjrAQBHQmI+jGHVX0cVM/f8ivz90qSr0b5YP5desmOmKOxVsQWX931EbzdveW+iOHqCwbqLSBh+Fkrss6KMksALxxzZKG+3faG1Qb2xEJB5sda5ot/DWNruDflYW+Owqq9U1rbKT3egTgw1Vrdstet+EB7i8wHXXce3p9UYQaieU5N35B+j/mLdDYUxiRuMPode7iZbzblVsA4fjjO7PotaaU4Kh1d2BVO/1bGU3RnVbZgTi9eQT/pecwJHVeGr/ZoxMPz12/6MbduKwlCSYRAaHIVk4/AEjPvqxiKPX17gMB4fI0ab8MxjjBm/kH4WQqbP2JCFQhQmlm5lP+I7TgUk72/Vs+JHrOn4ku618JohbLxl5wnUNaBo3Vr1zD886laUZ+/jq5AMpWICKbjSBcFmMumePSOLKzsvlwchCpWDkyp2Om8Xwn+0aeOqL47p0SMx7RLpCzPYoHtQr9m48NbUy8Qwn336iBO0Tpx7PdZ3fxo1+busC4a7AQEFmUesC2rhsOR1SzIKwYnYkumvUwt+160DxowRrSGNsJgnGQSga9doIcqECfZjcgMYV/MZAOBIUL1RZBCsBTXdukVZjcc7XJ8KFwt4M0Xhhu5PYWGbt+VjuaQ0nnplkc6LONqar2kyYphXhXCGjwlxf1ZkxowBJk3iK6sMvWOxFheWrzCeoznW8amy5VaFltEJd2S2ngomckwkzNGxwo9Ceo6DKo8h7/DKs9MoD5heaDvlOGTZuo0QhUvavK6+Nm0aMGMGGBP78cuC0zG+5lOrFrnwLAeXGVdcYfjxDX835bqJM0Sh8rMENJ6etscPstQnAFze9xH8U8qBZwlXYnrrMj3Kf+Sux/Ubm5cHbNpk2q3irEOY3EyMNhGPNAEMAmryd+GrWedEX3OST5zwlCx/HVoU7og679Xvoq1HO3bbmet58tnNaPEhd31EbKDVfbogCOaThNlCWBBQk/eH8XXGjDcNOoK2woxDmNfqbZ3CBoOIZH2S7a/lEjLIA9X8+XI81VgwruZT/GPk7TGrnyBklAqueDYLAZg3T1R2n356dMiMRo3075PeY88WhUYr4VmzRGtHq9thLsgCxLjJBAEAVbl71HNNy5bAjBmWVoeASd4HJgCrI54AcqmmTcXcHU5o1AgV2fs17cMwRKES+UrHjkDHjqrPW5hxiLsL8rrChXDG8TjBOO802JjHW3nNmKD6mnwsFAkFTSQtDAlUcHXrZjnuyO+5wXxshtN3IB4KcQa4tl7lHpaqqqQ2FcJrt785CaxjCu+zq/Lg8lBQ6ZWCy+g50/M0Ohr081esk5dKj0Z5u3DnsHvVJ7t3V3kQNcjd59njHBeD9MJC1An635VXHlyaP+HXKCR1FVw2w703yd+Jhjl7bN1DpDbl2fvRrvgX3WtR49dll4FlZbpuc3TjL/TzBsWC4cMto2EoQ7p7tfbimc/bFP/m6D4ithiN2fohCm2EE9Q516rwV1VoXrGcuTsuQ6R/lusCadLgNoCgdWRMIAUXAQD4cf7ZaGyi5DJ8ncMJqRUFVnd8CX8d8jf94iyksXAWxHCJEDX4UQOCzkpZHgtyc0WhZAx4fMxNeGT0rZjV8v2Y1E8QRnhqScSYaX2MwdxrZf16sMqK6PvsdsNmeRV5eZG/+/TR1Mv3Xc1u8S4+mnGh7jWy26pf7Fp0MoZXf21oVW31TNn2sNQmZjKq06DMvcPvwvYFZwAAzuz6DM7u/nREwWXSprxp9PuBE0+U59ZjmnyMnMBR486sXas6dLT59HDBHhZyvjxJzJk2r9XbCC5bydV+3HNwaRrVhjRSbpKI5GBJm9eRE+AzrkooTZpwGXtocfQOrFiBoNYTykE18UArmNB+XLnfHToAZ5+tutaldGtM+0bEB8N3123EERjPy3YwUtTpCfW0HtumLFokRjI5/XTTYqZrGg6jHruovJ5i6LFs9LsbCiD9CoWYhQfXxb0fQ8/yH9Gj/Ec5lFpA83uF9Ix/fD5k+03WVxq+mnUuHhsb7c1D+YLqJ1H7i6IisDatrW6KXYdcYCp7kP/wTuJRF5YfOvg+yIMrsSjnCSsPYCdPu/KR+GbOuWiiiW5gFt7ytsF/x+/HReZYQwOKMCHxOveegkIUxgRScKULgiAPAw1y9uDeYXfKLxkA8wFfulYnJbM3ymehey2s4FINSMbounZKdWb7a1EbsrZei8dENLnZx8gN1OpfpMGI8BClRwYuuMDjyl0ufAMBoKQkulrpHeSt3vYbo6x49mzRC+KUU4Djj9fUK5azWnBoPStUdSS7YJPwlOIs0XvJ6Hd36vGgvUtbv+ViVxDwztRLok7nZxxBw9y9AIA/9/0nVnV4RaHgMnizMjIgQL3ZC7f/73E3Gfdh2TKgc2d1v12ItvMzDiu7YB+Fom5I1Tfy6SgBlkEDcffg0oQoDGhi/iepHKJec+ewexHwhVw9567gfSg2bJCF0YJgcp/GW1T3HbBaw/boER8PLg88ZGSFgM8Hq5DMytzCP847C9cOeNBd47QXSCyS8YgqRKHZ62Txe63q8BJWd3hJPvbOg0v/vN66VRnKuyrXwrOnQQPgtNPE8OJ6cOz7cdFFaiMyD1CufWI55xlZyLsOUcgY1nd/GjmBWvh9ghxKLUcjE9Bt3+/HrkWn4Iq+D5v2PUx2oC5KcQYALXXCdRHpASlT1AoFr9YawRBnPV26qA59JvIBIj4o50Ivl1VR75rBD200Z7wz9RIsafs68gKRedly3SpFJaMQ2ImFvv00Iryx61z6s5iXQjlKmI0YYQFYeGOoMwCYWYqLbWvL67ennUiU9Wb56yIWGCYwJkRZYlpxXo9/2SpPEAmhQQOwfHebzRcnXoVTO/+XqyzPQltvPeDVxp+L4mLgxBNlT08l4QWEn5mLJ2ntSmjxSpEVOW/+TpgtdsP39q78Qe3lY7TrkkMUas4ffzxQUwNMnRp1i9M3VtdK2YpAAB8fuwkPehDiV6so1FVMGoQFeuu35q7btwNjUH1PfhZSHTMIlqFbiMTQsWR7orvgDTU1qrlS+d5PafoRnj/maq5qHviul6tubJO8Ts0IvxmmIdItEEz2LSqCQVWxvMCRmHqXEO4xm7OUv7ZhiEKL+VNL74ofcEGvJ+Rjn5WlNidGq1O9dXST/D8QWrYC383ZgPN7/ttdwzxzdkkJ0Lu3u3Y0xGt3oPUyDeM6RKFOuanNPsSUph9p2tepLxBAdqAOfSq3cHtsJ733MOE5xvsIvXP23yhtvrhEYKYIkMc+n8+z5z/I48HVo0eUoayPcnAlHHnMrqxUKTx1QxS6+a0MZOFGT0zvyh+i8ib7mGAeen7SJGD4cP7nmrSrMYEUXOmCXlJUzYvcseRn/dwb4US9JtYPgqasTEYGkKmOD8xgbA2hKxiXCucGjqr6YGRhz0pLI5aYHANDt7IfcX4v/o3C+9Mv4i5LEJ6gFYK6YECD73BFv0ewf8mfYjZxhheuyve5JOsAhlR9HVX2lM7P4eLej8ekH1V5omeLNjY+QVhRXXIIz4y/zrP6tK+ads588Pue5hVIHteCclmmDKkzfbp1J/r0ET04SkpwQa/HcVGvx+RLKit365oi3XJiheb3o3PpNlTm7LN/r4YXJl4te7at7vASlrV/NbqQViAlhyiMvweXclOjXe/4mACMGRPXPhF8rO7wEn6Yd1ZiO+GV6apiMFK+A/kZRzCi0VdcVWw7UBw5OPtsy3WJNu9uleR1at5Nsc4f55+tu3bgQTvOat95WcimCcXmydKIPLhiCk9EDwAagZjJbxKeJwxyV2k9cH0moYPtYDQPGRmKMQa0KNyBLH+d67YBg/le+bk8fo5VxkMxfEeMZBZcHlxmoRl1FFz/HHMrOpaqjSB0BZiZmcDKlRhS9Q1Cy1fh6Amr0KX0J+O2YKAoo3VC2mLXc9mJTCBDEz0Aa9ZwNOTRutkqhDoUn8nDEIVmRoTymDB+PJCd7VGLhFfIv0+TJoaGC04IT3PyUzZunPj/qFGqucnKaDtUFcl/64Ngng83JweYM4ffg4vWkTGBFFzpgiBEvyOaRdqnMy9Ax9Jt0fdKCiozDy7TGOdXX809IWo3EIwJgCDg9cmXoWPJtuiksYKAq/uJYUTC1nR29xt2rEMYQuhRbr4YJQjP8VDB5WMCfExAXsZRbdU6zXK0pZcHT/pfaSlZnbsbL0+6Kqrs6V3+gwlNPg03aNlcTd4f3C952ALbb2GBxUyu09Ii8ZRn70PnOOdDYQX5GFvzubgYtXMf5xOj9RD7aX+pSZ0Rnhp3PZ4ad714UKHIf1dSInpmTZ1qHaKQMZzT4yls6PG0vA5QzoN2nnlH74fUZnh8cTymMYb2Jb+gd+UPAICbBt2P4dU6gnA5F6h6DTOx6cem1bco+J27KzxlGRNUgoWAxoOrb+VmstZLUhgDSjIPJrobuvgUwiAZnvBjUAt9ZI+UkLVByLdzNuKvQ+4Fhg1ThfbTcna3p/HFrHNx34g7LeuM6qYHsy/X3qN1a1mwIYdXVrZtZo1r3riz+wguDtZlWhdizL5ATCcagFiV+vdsnLeL3+vHBCNvcV2hWgyeKeXnKs/eh6rc3eoCHOOBHeL1WhgJEA09uJRjpt9Eear8zRcsMCxWnr1f/0L37vKfGb6QpaCTJ3INkdy8OPEqvDAxev9rhNHc55W6J0qW1qUL0LWrJ3XzwpWDKzfXsxCFdSZG+owJwAkniLlMNfx3a3vy4Eow8v5UEGIbHrt1a+C664CZM1WntblcteRm1uHZCdcC4I9gxB0yk4gJ9O2nEeFFtPyiFhYqLpq8kH36ADBXYpkOOBkZ2uKmoR30JpIBDb8HY/ohB07p8jxennQl/j78TsP7zfA8DwdjGNjgW7QrTpOQNkRSYVf++c3sjcjyR2LDqzZ3jNlLWq3XHyH6XWYQgNWrVRO9UbflMpWVovWUCc8dcw0+mbmJu2/hui1zcHHXSCSCFgU78PGxF8a30VWrxATtp52mOm1lEGEY9chE2QSoc0iZMb7JZxjf5DOgRQtgzpzIhaZNxfdH8Q5xKag5rCnNcBQ+xCsljkU98lUDa+yWheZKqe/mbjS8VpJ1QPW3WVllf4qzD0NYvgKA5FkqfYY3p/wZL0y8GgiF8PbUSzGt2YeW9RH1AI53RZ5DHSi4lF4w8lkOgXZx1iEc3+51y+Y6l/6MdsW/WtZniEtpuHZ9r1vb6acDBQWqU6qx0+V41SBnj6v7CX0sBV1yfkmb3slDhgCTJ5tViW/nbMC1/R/0ZC4zmkO9CoFoiMYQ5s99HsX3czZg89wN6s8V9DacWbxyX7Yo3IGuZdEGqYYCSMZEy/3hw809uJQ5yQYPBlav1i3WqXQbtnOEYjVVcDVooC8IJUOYlKI48yAKpZyzbtANyWb1KNgxSrfbuAvMEgcwJoh7mnnzPAlRuL7bU1jd8WXD6z4IhqFYj4b8unIOIn7Ic7ggeJoPV3dfHvbgq6yMlFPMGVW5u3VDfI5p/AUA/nmb+3PQWB8TSMGVRoQtGQUwcQGvsCLSllFRVQVccQVemXQl3pp6qe6GM6ixjLbCX1Gme54xtTBaW1udQUiKIVXfoGn+TukemwouG5Mnb0z+16ZcgYdGuc8vQhAAXHlwtSpSC3G1r+ieo7mG9/ocWi2x4iKga1f4fRpvTL02wucvvBAoKjKtNy9wBEWZh/knfEGAsHwF5dJIccLPyOI2b6BZAV9y7XuG3YWFrd901mBmppir5rTTxP8VON1saZ9/7bxTrbWa1tKjh/p48WJRKHvllcA554gJ5SOVW3UmquxNg+7H21MvBYqLbW0f3AirwnfGdP0+d25UmOQwTfJ3ycomO5ze5T/4Y9Gp8jHvOKkdu/0sJAvSyrP3i7HcQyH0qdyCnMBR2/1S8tGMOCuE6wEJ2WfaUXDxEvZIqqxEqUJRK49RHgu0naL85E7DIlVk7wPOMg4tqX0nddcpGRnoV/m9rrDclFAIvy08DRu6P23vPoILXt2nUpDElYPL5wP69Ys6nacYkxvm7EV2wJsQgUYKDt15xak3oRWFhTiz27MoyDwihj5UGqaahVtyAHdoJpeUZB3ERzOiUwqYCiBnzlQbDukxcqTo8bJ8uXist7447jgAQMPcvZZjuJlnCdav1xeEktAzpWCMf61sVoo3LKsVbvJk630Os3X0l7PO1T1v9lkYBODUU4HSUk8UGhf3eRz9G3wvVR5dn/b7EFRzBpFInhp3Pe4adrd4kJdn6fnEvSc9/3z5T93h9MQTxRzvALJ8kbn+uzkb8aCJfJcBXIsTbk80igQQE0jBlS5oX5BZs3TfaMPXqLAQXcp+Rt/KLQYKLv4BRxuGUItPm3hV0c+jSmtTk/jk+gf68EyejaUk11aeIHKb55xDLs1ETHCyr7HyHjHCae6q8GKRZxFtx0o1ZFORrhyrTA3adfICDq3iy0VCxJ7wWH/XsHtEgSUHx7V5CzV5u5w1eKGxcsDSg8swtIjRDQrDE8MiAtCrF7BhQ+Rk+NkuKAAaN7bXJgB06iQq7yRP7sqcfehTuQXo2TPqE0xv9oFheBXH1pWLFzu7zwYCIIZQk2B6ni4GzGrxHnc7TsbJIVVfY1aL94GMDPyx6JSIIYL0e7gVZHQti29ITyJx2BZWDR8OrFwJrFuHLoMKcWipmH9DFqh7GJLMzTpYucZ3UouwfAUqcvYDzZvbbzv8R5MmwOTJeHPqZbisz6O266nI2R+d74TwBMu9m07+aO71s6bg5zPPw/TZGfLz7EZArMUohKJuG4sXi8oVr2nZMvL3jBlqY7Nhw0SZwQUXeNLUln3lntTjFNehobKyxJxFPaW8qXrj5cCB3NVFhYtTkp0NIaCjQNN5kE/p/Bz+MZIMa5MRu/Og0Th1WCfiipM5VveeGAnS2xp4cBsZrAPqsS8e8v1oBVeEloW/kzwvgQyp+gZN8neJThnHHONa4dmqUHoeq6rMC1ZUAPPm4dwe/8bycG5nnw85gVpTo2kv1wZE7CAFVxoRfuV0B2o7ySO1sw1jlkKuqFtMJotc/xFF1YLqZr9q0mNA//7mfeXYzSg180b8NP9sAJqBq7paP/cAY6LA0WbuFoIwxGUOLqfLAR7PBL3+KF+7a/o/aHE/P7Ii3YGCy7QPOguSlyZdLVVB9luJJlMxRtux/tWW7VL6E16ZdIX5TS1ayFZbejiN/619T7RPHNeTqowPz5H7w3SsWLtWVJhp3yUd743WRb/p57aCCwVX//6RfDdevGJLlkT+lnKoaAXL5/Z4EjcOvJ+rOjthlJVeMOZ1RtYzL0+6Cse1eQvIyEBJlpTb6dJLZU88x8pZot6h+6yavVQ+nygsKCgAVq5E9ogB0i0OPLis8v25pU4c+72ah+3kAwYgjpHSfMCV80lJOPefvbsITnjnYkMPLi0mIT7b9yuC74Slcng6L593o8+hKyjLyxND4g0eDCxa5K5ho887Zoy6XCAgei0pvcRd8MWsc3FBr8c9qcsUg5xC8nzrFRaRJ3T3IUuXisYs552HXuU/mObw1LU30Bnfu5f9iGnN3Yc2jnlozHqIjwncihozAbne/OVk/ezI6MJjr0HevVw8Qppqv/OwEvz96RfhnB5PUojCBCL/NitXArm5lgYKZs9VRfZefDMn4lHIE8Z/U69/RQwQ9ULXbtggj/Ezmr+PRW0cRo4xgrx1YwIpuNIFQZAFUbqThfRycs2/OslXrQTPvBNUSdYBZPqDandnxarg2Obv45NjN0lNCcCgQeJC0SGvT74MT46/gbu87MHVty+wfj3AGGpPWKVblsYkwguUeVoA/udqUMNv8PiYm8wLxciDS7n5P7nz8wCA/bVZumV5rV0YQmhWsFM6iEHs4m7ddE/HK18AYUymYjNmGs5F4qlx1wOIXugWZBzB4KpvzW+2eGYME9YLYWUN3/MsaLwR9TauU5p+ZNwvt8ntGdP/rOXlUU+8/A7o7NA9SfjrxkRz+XIx0XvfvsD06cApp8iX8jRh/rqX/4Q1HV/SrWZD96dw5PjVuKrfQ+ha9hMm1HwKANi24Ax0LPnZtAtDq/SVf1q0BjsAItb45eVAaanoVTdrFv7c91HsWXwSV71EjJk3L3Ft84QotEiAbUp2tiwIfuNXyYvDQ5Np7fzerexHbiUzA4ChQ8UuedQfbT3ab0wVNnX4cPFA2vMcCmbAFpq8XoS3mBlXKOdhw3J25tCwIleqyscEy5yxvNjy4Ap3YsECYMAAdw0rP5Pb9YQN2hX/ivE1n8W+oSVLgH798Mz46zCpyf8AKLw6vaRxY2DZMmCjdR5Omb59gSuuAKqr8cDIv+DL2fph3AB+h1q/z30wt0+O3YRFTkN7E4YwCNx7SbNIQV7kzirL2o+BDb+LLsc577teHkj9yTUJw62N+uQpuiEK1d95+E3qUf4TGNOJLEV4xosG0UHCaOdBq1HuaNB+9AvDZ0z7sEtrQfl0u3ai4al04uHRt4uGi0TSQwqudEHQTK7aAZ5nxpo8WYxLrrQil+qyM+kyJuhOML8tPE0MgagsC40Hl09Ap9JtAKRBz+eTBUROBNEdSrajKnevqCjTYWjVV/j9uEiuDT8LiUK0RYvkGOVRrqqk2SI8RLvY5V3s5QWOYnKzj80L6XkgKvDCgyvMEZ3QCoC0sJSEWIYIAkLLV6Emf5dxA7qdi5QzG+LojU1uMv11QEkJAD6rv/FNPosqe/vgv5nGzebFSqFj9CxpH9kuZVuR449s8PTm0MfG3mLckI6hiYysbDMuEsXGjcDUqcDAgcZvvY5nh5sE0J4oj3v2FK3ZGQPGjhU3HNLnDxhZqep8MX4WQqY/iFO7PIePZlyEhW3eBgBxfWBy+yfHbsJNnAJ7ANHSqi5dgNNPV4efHDkSGb4QCjOdJSWvUuRzK83yWJhX3zjnHHl+SniYGkHA34ffEXU6ajnv8L36cneVaKE6YoStPpmhXR+Pq/lMVDJzCOcFQAwjc/XVUdfmtXobj442GR9dwrKzIrl4JOF/JWd4XJnSUmDhQo97lp4cXLrW9j2jG3+Oac1MPFbCIQoVc7bKAMVsDjVCacgydar9+3UwskiP63iTa5yLNxZwhft3S04OMHgwxtZ8jsbhvUOs6NUrKl8rL36fIObfNEAI6TwHOgpJM4UBIHovWNGi8HduIy2CHztrcR8zTuOhJ9y3K3Lasei0SD4qDooyD6Ig45BpHwCgUd4uZPv5c8d2LduKn+ev070WEiIGeJ6FfJs71/CS9hNp93mMAaFl9vP1EtYMM4gOEkY1VzBmuQe3o+a3LGmg4IrCJOoLkZyQgiuNCAuizBbNZpbaOOYY0SJKZza19uDSnhCiklLKVlXatg0sy2ThuwvLM3ngNNikZ/nrUJ6tTMINcWPuZGNEEA7wM2ceXJablI0bgepqDGxg7NHCtbDUeXfkMUa6dmzz9zG75ftiWE9tGxCsLeS1QuFYeHDF4n7CEzJ9QaB3bwDmcdu1KL29upZtRXXeHtd9cWojq513bxn0f/hj0SlyyCOlUPqMLs/i1cmXK+5VMHiwqBThWFB3K/uJv4M1NaJFutncpqPgcrP1dKMc4yFgJESz+V6bGRnkBI7C7xOPh1nk7fvlYJFuiGe0bu2ZgPHqfg9i6/yzAADbF5yBP3V80ZN66y0ZNr12Ysz81u9EndN6tWrXDLa4/nrRm5AXaUwwWm8EmHrMkMP8VVbytxEIRCntWhTswLTmH/HXIWGl/NPdH0lj4qjGX+Lw8WvsNWhgPEeoyQnU2r6nZeEOPDrmVstyNw/8P5zV7WkAmtBcjOHuYXdhdYeXom/Svj+aNSiP8Rcv4TXFG1MuQyNFaNq4Lj/HjgU6dxZzS8WBbmUc4aI9JNZrDVNc7leMPLiaK8IafjD9Ikxu+rGhfOe6AQ/g05nWOdR8ebmu838S0YgeXHyYff+OIia4DOk/q8X72LvkZNHbGwYK+VGjsHX+Wbiy3yO2uma0JxMEJsv2eN/ci3s/hpGNvtC/WFkZycer68Gl8RLSjhdCdJ5uIj7EI6cVtzGJUc7shQvtrWkhelISiYMUXOmCIkShLpmZUjFnI3jQLEmqBjstMABo2lRxInK3WVJIvfJ62B04lVYlhsQ6JwFRr3DqwWW6AV+6VBRoM4bXplyB+0b8NapIcNlKZPqdJUeX3yvpXXho9O24uv9DkaTMemXNUC68mzXTj4OsR6dO4v/t25sKtvwspL+490V/i+XZ+3DDAGuPjePbvhafPANpTpfSnzCn5bvyZscwRKAOSsttq6cs238UW+aebR2i0CJEotH7qRUABxbNR/bw/vL8lheI5J7sWrYVg/RCiABiaKI1ayz7KSxf4SxUAmPRIQrDXdeRtITs5sVTYCefmi0EAWd0eRZdyrZy32I2rmq9UJS/pTxCjBqFFydFe5oo+W5vRbQHvMcwFhlTG+bupU25V5x3XmLa5fgBtWsEV94RvMZbYQV769amxeTuz5mDhjl70Kv8B+6uhBRhXJX7l8v6PIKVHV7hq+TEE1WH2j2OkWJO9bUrDrL81jl7ieRiabs3sLrDywDU4Y7BGBa1eQuTm/5PPjZEmvs8zRspEV5T9G/wvTondOPG3jWih/Qh/CwE5OeLeTnDIXNjDGMQw0WPGhXbhqTFiyehlJ3i0iBWd+/StCm+mHW+nOO4+9x2ouePwXPpZwJXbi0GAeNrPjM1fCTsw5jALV978sdOuvNSw5w96FJqvaY9qdPz3mvHw4Z1iOG6XUEIEVnbP0b9BQ+M/IvlPas7vGTfy1pCu2biCYVPxAfV3owj+pjZe6a9PVx3VCSuMHr5FYcMid4tlpUBF1wghvvmnNO+nH0uXlMYshLxhd7wNCK8SBIUE4dM9+5Au3aRl9bm5PiXIffinmF3GbetGHBMk1sOGhQ9YA0eDMyfD1x4IbAu4s4sC8YzM4G2bQ0HtaVtX8PYxvrxvrWCeC3y2fHjsbL9y+ImiVPBRRBe0LroN0ceXE/91Fn8o0cP9WRcXi7GfwciSdB13h3+3FgmHlxadBYjtq1zzjqL/0tYvFgMM7RsmamCP9NIaKXT34rsfVjb6SXLpntXbMH8VtHW9oQ9/jPhOsxq+b5uuCErlMow+RmfMkW3rI8JaFrwh+Wz5T7LgcSgQaKySmpvQ4+n8Omx58t9SRjMRNXjcYhCwxCCHnB5v0eRa+QVoPMbm/3sdwy5Fxf3fkw+fvj7HvLfcp7CwkLLPh3b4n1gxQqgY0fLsvIY7RSpPwm1XE8Hwg9GdTVYzx7mZWONgYW11vvF9vjhZM16zjmi8qhPH/Oqw6NJTg62L1wnh/7k6pZB/1Z3fBmN8nZbVzB/vuW7ZvTJjRRcRGqgncXCx6b7T7PfOfzuhUMUemjAqHxfHxt7Mx6efK94cNJJnrVhhqGnc6yZM0f0HIsDdgyjkg3tHD5t1F6gc2dk9esOf9tW4sljjzWtg/d5ZQyY2+pdvDYlft519QGfjRxci9vo50DbvnAdWhX9rntNybUDHrTVNysEQNyrSIalumtKD/N2Dq36Cuf3/Jc8Hrcu+s0yOgIgKhEv6v24o9DF2vdjb22OuoCHn4+wh960nOGrE6OA6RhdVuUaR2oxGgcNjcKaNwcmTQJOPjlybv58fXkzY8Dq1cDMmQBEI1OzEPHl2QdQknXQ8DoRW0jBlS5oPbi0I0YgAJxySlTiey4YwwntXhetxQ1DFGrV5jrlmjcXJ9EGDdTnfT5gyBDR/bNFC1FABI1ySpFYXtvOHUP/JgqWdJAFAxyT1y2D/w+X9HmM+7thvtRdUBPJwSOjb8Xdw+5RnbO9sdY+28pjDxNLM0USVvkV4XhXuD6PchFjZ2zKzRUTxUth4IwIW/UKy1eoQyoJ0VZ3ZgKSHuU/4E8dXwAA/HrIWuBNWKMyZACngmv9egDqcIYNcqT8Ay6taa3yHBg9nlZPbW6gFh1LtwNQfGYL7whDXG7GtPny5Pk7Jyeq7MhGX6J98TZH7eRZfJeO4R0jFGsN3XFICmnSrXwrJjaJ5DNsV/yrmOsL9kJVlWfvBwoKgBkzrAsvWSIaHjll1Spg1ixScKU6ymdZ573+YPpFOK3Lf1Xn/HYVXE7Gi/x8UXkkRyzQhzEBuOIKR0oiv8Kq1ml0CS1WnzTcTS8VGF71neBHa8gZNkzRE2QZCZ5Xtn8Z/SqlXDXSGjRc1kud56KlftmSu3PpNgz9q5S3jcNowgv8PhchTd3QqFHc2k2IB9f8+er/rTBYm4ZyIvuX1R1ewqP/LRS/txNOQKib2ujCLIIAzzdNkWdiA2NA26JfMIDDM85qj8GFk729IOCCXo+jUJFvSzytfnLM9mC6nk8VFQCA3hWb8fKkKy3f+U09/4VFJvJEIxiAFoUGoYttRnMa1PBb9b6GFFxJhZlzQvuSX6JS4BgRvt3Qg4sxYOJEoH17J910FhI7qhJ69mIBKbjSBSFiPWKegyu2PD3+eqzt+KL+5JuVJQ4ma9bIyVr9JolXtYkHdQeScFgrM3fjcBgzM2wq/AjCC5oX7EB+xhHVOd7H65we/xb/MArgDniaS04pVJPHGEkpEbnA8MO8szCq0efyKS5rc96QhCaYLTSUHlyq3tj0OGtZ+DuuH/gPAECn0m20WfQAOVTHiBFAx454YuzN1uEq8vKAm27CrJbvYX6rtyEsX4HmhTvFawbPvPxbWbxgx7V+C/kZh+18BHX9RjRrJv/pYyHg5puBadMAOAg5ZvbOc3A4qM47JACioljKg6bkkj6P4fNZmxy107xgB1bp5T9xi9HmvmtXcSyRlFM4/XRuJaJyUz+8OmJNyustc2DpWrQs3CEeSLkMTGFMXBPZRB6y6uqAkSO5rYYJA5J8Pde9/KcoDy5TLxUTYhGWqjDjsGNBvXLcU75lXs6r2lBQ4fcnKhThtdd61ibhEZrwk4YMHiwbu3C/zj4fbhn8f3h50pV4a+qlEQVXDJZ0mYvmYuBxLeXjuI3Z0pfhZT4xJ+3Hg4R4cA0ZAtx4I5/HNmCs4Dpmkvy3duzjXeoxQNdAKapcck93KQuDgNLsg3idwzPOx6mMlLEalBjDjObvY1zNp5ZVndPjKWT51euJqPB9ZgouvWuDBwMAKrL3Y0jVN5Z9sGMgq7rPZh4lJdp1/KSmH0f2NfPmkZIh0axdK/7PGHpXbMaQht/Ix3YwKm2o4DKA9w01fWxW8CnhaFCODaTgSiPClrxcL6adF4rDUiT8ko+r+QzFWYfkhVyGMt54uM0GDYDjjgMAZPsNQgxZXJPhEeCvXWv9eZX1cFrGxFu43aLA2nWdSC1shf9TsH3BGTinx5PigXaGVT7r4RCFLjbU4f4o47vLTRx/fCTxppS4vkn+LtVigktAPHcuUF0NrFzpuJ9mC40MX1AuoPouGjaMKmvWX+VGoHvZj/Y7SUQhC1+ys4ETT0TXsq0YWvW1YflMnzQvBAIY0/gL/H3EnZoKLcZvi7ngzG7P4sWJxrmWjJ4zyyn11FPFZxzSIlwx59hWcOmEEuSGsSgPLgBiOCEPPT4BINMfxM2DrPPZ2cboy161Crj++oigp7BQDgUoC7qHD9etR2mZqszZZxXmOIwqXGJZmai8XLaM48M4pFZsL5VDMyUFybS5tOqLIKBFwe8YzyHI0qs32yikJ08VOuuSH+edJebZkfqmoqAAT467AWd3e1q3vn+NvRF3D7tbPvZK6K+1RtcK95sX7sBV/R6K/qo5hMOECwxCB+sSfpY6dgSmTtUtonoeFyxAXXa+ZXXqCsQHINMfRN/KLVEeXJ7CGFBaKh96YM9ls3khMeNcPNqUc7cmSJyVkWFdJpzP0CDnWqi0XP5b+5V17qw4GDnSJIKAwLV3ZEKCwlWmOUa5HnXLeiE70nh+Pzz6dhzf9nWuW7VjXLQRiM5DJkVJUUbN0PZFDkke3kf066fbvixLsJmawUhJISxfYduDS2bgQGDoUOvGidgRCKgGujenXIanx18vHjidQzSTrKu8tXpoI5Hp0aOH5bjw9exzPOoQoYUUXOmCVYjCcLHwxBZrjyUp9M/2BeuwvttTOh0RX3pHCi6dEGxmnmBgzNo6w0iwp3dfAjYKP847C8vavxr3don4w7P4bZi7Fxk6z/zBpWvVz7KVAnj0aO5+KReI8t+NGom5866/HjjvPPm6UljMpeCqrBTvdxGyS5k7qUn+TsxtGcmPpUw8Lr/SbdoAs2dH5QkqzTpg2EbYi21eq7dRnbcnqWSjqYqPCbY8AHIDR43H4PXrrcdnp2E19RSkVvcoycoSw/Qi+p2wnVNH4Q3mhPtH3iHGwLdDMj3shlIeFj3myTlVJAYNEsetzp1lpTygFpApfw95HWLXG3bcOKBXL3v32EHqe0JCM6UpCXnEmfW6Xcl3czfi3J5P2m7m0dG34PoB/7B9nxk1+bv0L4wfD3TpgglNPsWI6i91i/Rr8D2qcqWwsoyphGp2hIVarO7M8IVwapfnHNcfpip3t6LNJBobE8CZXZ/BY2NuTmgfdENnAWL4zDDK90vrZSsZnwgsRuOpou2SEmDr1tg0o9cmQ4IUXPHwipCiSHQs2R4553J95DkbNwIXXKBScipRiTQ0gthRoxTXZ80CmjbFkjbRigzen5cx8EW1IWxh5+0yXe/ref/r/bjKh0ZWzlugHA9M+hNWBrw77RJ8PvM8PDL6VnHQWrFCf5yVZA5yrr9wJIjjjhPDv2m7AajPn3aaVc8BAJk+g1zaAIeCy0LBQR5cSYPfJ8Dvk34PKcoJL6qIMIg863Y9uCwdLPr2BUaPjqz9HEYxaF30m6NIHoQ1tDNOI3g2WfIY7rGCK6rtoUOBk09GWfaBSLxhnXqa5v9hWKfW2lR3/pGETgtavY0nx92gutRc4/EkLF+BAk3sYZk2bSJ/K/tZpzOhykH847hhyM5GrZ7lDJF2WOV2m99Kk8SdMTncTk6gVq3gMntG58zhyxUjobSAiRLmZ2WJG02p7WOafIpGebv0y8YIZZjSmwf9Hzb2iCjWlQtjITztzZoF5OWpEnA/O+Fa/MMkPF74O7hvxJ3RIY4IRzAmAJdeqj5n8sx0LjXJB9W0qUk70h8uw/t58TRrN1u2rctatRLzUl52mf3GGcPslu9hdst37d+bLNjxNJMVXAIwcqSo3DrnHDFU8rBhojAekdAr81q9jQlNPgEEAbsXnyR6pE+dKluw/rHoFLw08UpvPofTTfXpp8sWhLQvd4lyPEj0l8nhweWUac0/QgelENhrlH2bOlV+R3lzFqbSY/yXIfdiy9z1ie5G0tC66DeMbKSvyIwXhvsjI8FTRgawYYPo9Tt2LDB7NoAYDgHhHB9SvppGjWLUjg4Js01RGJDEjMaNge7dcXa3p3H0hFWicuvkk2Pfrh0KCkwt/qVHAj4WQp+KLeZ1MYY7h90bddrHQly/s88HMapNjx6WZes7V/Z7CENMokko0e5Z5EgTOoghCg0GmnPPjT6nNyh17Rp1ytLYKayI0gj7tV7O1Xl7AAC9Kn5A+5JfML35h2IfevRQjbO3Dvo7XpkUyb8Z8IWAK68UIxgAonyuSZPojwMAkyJhOdGmDVBUZN53AP7iAuOLFoZChmFaw3uJRK/90hkrhbpO1CEAolGAzXGKQRANCiRjUrlam0ZToxp9gYdG3Wb8XGRmAscei9xiKU1HOJJRVH8syMiQ1x6Et5CCK10IhWQPrpgKlA2Eg/0qv8eZXZ+JnGBMtogLGXiNbV9wBi7o9UR0ZdKAkqONE+yLdmsOK7iyA3WY0EQdtuX7uRvV/TFi3TqgZUv9ax06qA7HNP5M/lvPkqVhzh7jdlzAhJC+aziR0ug9llbvb1RINkHAB9Mvxlezzomu1Oy5r67m2/lK76MqB5fFbSd3fh5vTrmMq6xXKD24GICdhyOJm5sX7pDDujGoxxGl92fzgp0ozT5o2IbW24tycLnHB4E7Zs9V/R6KhC4wwmqj0ratZTtOPAi47gmHvdM8N6YeyEa0axcJfeMS3ZAk0YWcN+BSqRiFnUElvJ4I1IpKbcYi/wIBOQRWaZb43t834k45l1ZRppSLTfJIQYMGKMk6iN6VW/TbuvhiJ5/GPoq8YqE4eI+MafwZdh53SszbqffMnGl+PYFCGMtXTjsWWdygnTtVHlyAvZB2yno074PhN6bXPxMDCSV+JiDT7yJMbBrRNH8H+lV+H7sGOJ/5diW/4txwXlptFUZjZJMmQLduwPTpsgFDKFZikQYNgEsuUUU6iCvx1HJdeilw9tmi10esYQxYuRKMid6Z6NQp5cKNDhkC7P3kBwSXrcL81u+YFzZ4H5jJtejCLOW+o0SwtuNLkVxAFmgF6GYGkDVGht0DB0aUQ2bMmiVHSQIgv9shq3V8vhjGVZvDUzs0jGz0Jf5YpL/eqxMicqg2xb+KIYrDkZRYiCv/bFBHdsY1PNlY/7Qv3qbKOWpZvySvJNzRsvC36JOqOKsWKBVcTscoxX1OowFk+oM4tsUHlg/OW+8G8K1JalvLd/Kssww9ewl3kIIrjRBkBResQxQ6zbUhhQPQUpB5BH/u+0/1SXnS9amOwzTM3Wu4SZzb8p0ohZXsCaYkKyti/uSUli2NB7HJk+WNdrOCHXh2wvXyYKSn4Nq+cJ0675iHkAdX/SD8KK7t+CKWt3vF+oZQCC0Kd6BN8W/qCrwirODymXhwhVGE8Yq3KE5pvcYg4Pt9ovXo3sUnYm7Ld+X497KiThtWAdYKq94VP3jZZQIGSl6DR7g48yDyMkxCFJq1A0FUVIwbZ/teJUbKIDchSjyPD24GU6wTJLhCbLnJz+W1YN7m7//M+OuwssPLpmU6lGwXQ7yG0fY5N1e0KDSiVy9XFusV2XuxrJ39MMTxCFGY7a81VfynNIrfOeEhCtu3B665xrhsMlsZt2snCt7WrROPLcYL1RjI1DOvLzMATJjgyMuAS1lvxEknqZTHhDVb5m1Ax9Ltjo19nOYW1v7KWYEgNvWyCLvL8YKXNM6LjpLgFWVlfDmbvMIgJFnMKS1NvjCBSU5BPudvZGAsZBq+TUkyhZpOMNqoP1rsrMsZE1Q51owUXMLyFajK3av/M/DO7+3b60ZqUQnTL7ww+r7p04G2baMUXHrh+0qyNOs9qQ11rlpBdS3gC3I9XzExytIY9n4+axM2dI9EcTEMURiO0nTCCRQqziWfzzwPtwz6v+gLTsccG3tOYfkK3fOxdgxo0sTYPwIguW0iIQVXuiAI8qRhprEe2/hz9Ch3IKQ96SQxlEO+cSJfI8bXfIqhVV+pT5pN5Izh/0begWYFO1WnZat3Qb0x1gqd/CyICTWf6FatFeTpLmCU3gQZGXKS+gALin+PHQsAqA3qvz6uNtgGMB8zjjFPpCx6G8/wuSVtX496B6IIBMQYxccco6gg+vkLevBMKr1ODNcrgwYBNTUAYvMemKFc3Ad8EY/HgswjYn+POQaYOjXKE9Sn8kwzHpd+XXg6VrRXKxzd5AohRPQ2HkYCGfm505s/li61bqxvX9cZ3h3n4FLgOgeXByj7y7WvdqPg8tqDiyfBbxhBwNiaz5EbsIipDsnLK0ytcXndJ8Ch8uHZCdcCEMPC3D7k75blozxU4vDopKtIzCyMUNzQTqYZGeJa00vi8pAwMQRoeLcvjRdGTTMmqEKJKZ9rLz+/ofJebxGTlwf07YsDS9diXM2n0dfDt5Lntid8fOwm3Dfijpi3Y+fXCsyYgr9PfABYuTJm/Ykn7Yu3ieEjSbGR1lTm7KPf2CZaI2otPiZw51dkAHDqqbLBNbfC0QskjxV5D9yhg37ItIIC4KSTVEadgEn4PiXSRK4U2MvyM+m50yrOlBzX+k38uc+jAAw8uHj6EAoBK/QVGXrPvvK3i/qM/fqJ/w8eLP5fWQksXGjdB8IQHxOsPZZ4GDRIzMeel2ddVg/Fs9Cq8Df8fbiDNUbY66x/f2d9kLBUcNGYHTMsJRaMsRrG2IuMsc8ZY58xxk6Szp/PGPuZMfaR9G+C4p6zGWPfMsa+YoyNVZwfJ537ljF2Vmw+Uj1F4BtYruj3CN6ffon9l6pDBzGUgxGTJ0efk9roU7kFL026mr9Ngx2xoRBQIXg7od2r2DJ3PZ4cf6NpEzcMuB+ARsF1+eViaAVtMnllfOE5c2QvtqOhiKB0Qs0n+Gb2RsQMQSBLgHRFM4mHF3pci84bbxStxpTvn8575sWzo/TgMnwX8/LE+MfgcM32mKDCkyHgC+rnCRszJmpRXpgZyctn1uOoGPdDhrjsMQHoPOdSTiRTtM/4vHmyIYIXmD0HXsiKk8GDS9U+T4jEZPLgmjgRGD1aHmtct63dNOfmRt7vcMLsGDGm8RcAIu/BVf0eQvtikzxzGoJx8OBKhAI2HmT6g94rXzm5tv8/8O60S3Sv/Xbc6Vjf7Snda47w4DOGXyPuZzNsVW5oEIBIXiLGVK+p1fM2utHneO4YfU837ifVZD+SG6i1Frg1aCAb8xDOjH18EKzv4507vJpj2rUDrr5aFLClOpInw5X9HnE3f6cSCRrPXePiOf95/jqMafw5356LBKpc9KrYYmvd42OCuP/t1QtAdJ6rTF9txGPMruBe+5trf8O8PGDlSj5lHGM6Hlz8n7NOsd6U75PCKvqZYPh8tSv+BWd2exaAizWrlAdMVk4p0aQT0RL1GRcvFsd5M/cbwhZZ/jr9MUjzTNw48H45nYuwfEX03LRwoWhgYjRWrTfOf6q9xe8TrMO+6rFypZir2aVcgRRciYNnlKkDcJogCB0A9AOwhjEWHkmuEQShm/TvKQCQrs0B0BHAOAA3M8b8jDE/gJsAjAfQAcBcRT2EWwTBnseE1y/VMceI+SfKyoxj57tsk2cD9Zchf0fj/N2W5dZ2egmARrBXVGQYC/WZ8dfhgZF/VZ3rVLoNf+r4AgAgL+MIWhWJoTZi4X7NIKhiHxNpxOWXqw7Dr4mZNVRUYUDOJYNp06KKuQpjJQiY0/IdlVU1j7VVvOdtlQcXC2FczWfRhRiLUnBd2uefeHHiVQAUi2CdsKdy7aWlwKZNwLx5aevZEE+inpOpU8EK9ZMJy89deEF89tliKKuBA63b0W3MPoYeXHamX837kxAPLkV/TZXpBdJv4WYj6LWCKysLOPZYPgEzT9vaUGiXXgoMGACcf76uZ6Du+Ofy2Qo/A6d2eU4Mw8lJPJSjhuFdUpgr+j6MD6dflLCwfx1LtqGXQcjbkqyD+iGOtMZXvHgg9D0iGXR9PmsT3w1SX/WstQGdHFzKHJoWr1Kzgp3cXimG+yKj3106byks3LRJDjeXzJEj44WfYw7rXvajKoS79udrV7wdV/V7yFkHTH4E+RngHaPTRejEm483HQgLIrt0SWw/nMI7RivSRIxu9DkeHHUbqvP2gDGbhow0aJny7rRLbZXP8UtrtrBBtGbNVJO/S/QYKywENm2y5wXM81t1785tVBqWLYTDunUp26ouoCfUlz7XuT2elI1L/Cwk5hAqKgIQnaNaiXKPo9tPi8/48bGbVO9IOPIBAFHhpTTyDXuPG7QPQPw8Tj2ECF2y/bX6ykvN3LOm40sozT5geN2Spk2BKVPw3DHXYExjHTmPFwQCovG4y3mzLg4GiIQ+lt+8IAjbBUH4QPp7H4AvADQyuWUKgAcEQTgiCMJmAN8C6CP9+1YQhO8FQTgK4AGpLOEFyhCFPOVjsdgtLxeT6E6QnPnMNuNBE+G9Qd9kIZyLvmvnUC4vGcYwtuZzdC3bqmq7MOsIrh/4D7GIoniscmLUUojCtIMxISpkWnjha6rgatsWWLBAfW78eOCGG8Qky0quu0713F/Y63F8OetcW+/R/SPVLt48t8oL/jihDVFoJPjVKrhyA7VoUSgqp+VNh5l31qWXAg0bAoxRqCIP0BWem212BgyQN1Ro1kw0qOANO8j5zJv9rsrnbEjV17JVppsQhdkmCak9Rycvh6kH1yWXAJdd5i5hfCKFKXbb9vvFRNmMAVVVsbV8V/RNfg9atLDl/ZqfccTrXkURfl7P6fFvZPmTIKyfB7Qr/kU2SgoTz/Hcaig6vt3ruH7AA+JBONyQU4GMBwquRrm7MajhNwCAJW1ej1ww8qL0+4GTTzb24NKctmOgZ/Y7aesJz+06BU3PW/ZH8QF4w1ilLYsXI8tfh63zzzQt9sGMi7Gu63/kYx9TPx1Tmv4Pp3Z5Tv3b+Hy4f8Rf0Ltis3kfSGAfjVOFeCqycKG4TmnePNE9cQbvfuy44+RcnwUZhzGzxQfypQzGsY5Md0VngsgOh7eW1ouGa+r27SNGYxCNp2e3eNeTPvCuG0c1+gKtCn8FICq5FrV5S11g8WLgoouA226LnJOem7LsA6JxCYAGOXtV71uAhYzld0oFl858afVYdi7dphrjw5EPAABDh6pzG0r7QeUcnq5RCJKJTB+fBxegma4dzt0jG30ZpUhmMPAiTND6QM/ooGPJz5EDGo9jhq2dO2OsGYDuAMIZWNcyxj5mjN3JGAtLPxoB+Elx21bpnNF5wgsEge/97dtXFA527BjzLiEnxzjMg1kydoMPYpp/xSgZ9bBh4v8DBgBAlBdUZc4+436YdkLdDx7ByHdzNthrS4NyoLx+wAN4ZPStruojkhNLD65LLhFjfYdjRytRWPfJZGerFpTVubvRtvhX2xOrXSFOg9x9eGuqPSs4N6hCFLIgKnP24Z5hd0WVm9DkUwyr+kpXcE05teKP3lNl9GgyJgCLFsV2UVhcbHpZ+Zz1rdiMMY0/j/SNE+W8M6L6S8xo/oFJ6dhjauiRmWn5nRhSVSX+n2ZhQDx7/BSKB9kDomFDW8L++a3fxvFtX+Mq62dBjGr0ua0uApHn44Je/4q74UKskN/XBG18fRpDCxmpP43yduNPnV4UQ+Gdd554rahIFD796U/2GmvSRPxfKQSySWn2Qbw6+UoAENcPgJhzy8yLsn17w3WMyrCBaVbQFi+Y2VirvPLa5Mtx3YB/GBS08uDip16vGpo3F/NUZGWhUd5u43I6yhYG9d5JVwjp82FOq/eQG7AYd0jBFU1enrgHnjDBsmjKk5HhfJ2SDNTUiP238kCrqhKj5SB6HCzLOYhdi06OTf8IU7LCnqnS3FWZzSdbGlvzOe4cdg8+PfZ8/sYM5seAz2BNoeHyfo/imznnGhfw+aKjmGhyegnLV6BpwR/67eugHOeNvLo9IxAwlgkSMSM3cFQla+pdsRl/GXKvZX40N+O21mPMMFKLmVNFDNFbt3w68wIw8L2rhHO4RxnGWD6ARwCcLAjCXgC3AGgJoBuA7QCu8qJDjLHljLH3GGPv/f67geUdEY0goCTrIAALQduSJcCf/yzmmIg1jKkT9SoHmKIiMfzPlVdG3xe2CNFYq7Yo+B2rOryk39by5dFxeSdNAmbNEv9u2RK48kocCUY2+F/MOhdX9nuY73NYFrHeXLUo3GHdlkkXVnd4GRu7PwkA6Fz6M1oU0PuRjig9uLyyDG5esDNSP9P+YdUhsZyTnFp9K7fYvscpWg8uxoDjwpZpkyaJ/zOG+0bciRcm6ucEZACwQV8RrafE5vkKx9d8giFVX1sXrKd4blnn9+OliVdirF7oAp4fTBIeGFGn2Jwp+/77If2wilp+WXC66A0MAIKA5ydeg2HV8X8+lHNWzKwbTz4ZmDEDmDs3NvXzYNd7xYbHVuO8P6wLmaHom4+FRM/RmTMRlMayt3UMBLSeqe2Kf8Vfh/6Nq7kGOXvx32Ous91N5fORdt4qCsF4PPNGGiqVtUqooiK1h2r//tFe2laUlwPnnit6OHjASZ2exztT9fOHack0UHBpv2k7zxVvyaLMQ8gwErpZKETsKJlthYdPN3gVSzpzb8AXVIfK1ZuHJMXYy9vbOukdAMWzVR+FSXPnGqcNIJKHjAwxOsTq1c7rYAzFWYcMLweXKfLaeKQQLudU5KQknAYhL028En5fJHx63Qkr0bzAQN4jrfmUY11uoBYdS7cbN2CVg0tiSNU3GNjgW/PO2h0DzzxTjBZjZqQW9u7K2h9dv87ndZyDS2ctz6DjNcZYVF5dsn+ILcLyFcgO1GFE9Vf465B7AYgeVie0e93Ag0s6V1wMrFplv0GpTjkEYLt2+uXChjUJegD6Vm7R9WwXwuqX+rgmiRNcowxjLAOicus+QRAeBQBBEH4VBCEoCEIIwF8ghiAEgJ8BKE36GkvnjM6rEAThdkEQegmC0KtCJw8KYYAg4Kf5Z1uXYyz+yWaPO050yT72WPX5qiqVq7ZMaSlwwQWii7SC7EAdbh50v34bjImxjZU0a6a2GpTayvSJruTtin+1letCbkeHeLg/96z4ERf2fgKAKOSKRa4vIvEoPbiCnO7eVoyr+Qy1J4iLCFlRwzvhS4ngbQk2Bw2y0z1PUAonVZbEJSXAxImqsozBQMElRKzd9Tj99OjyFjw1/kbU5O2yLFdf0fsOXUXUCgQwtPob56HUAgHTV8ynUQyF+1+evd+67rIyNMjdF3n2EpUQ/corVVaUMcvjVFwMjBkjenMnihjE2Q//5l/NPhfn9/yXeNLJBkoZ3sUXAubNA3JzZW/tPjoGAma/1QntXsX0ZsbegDkBZ++ESsGVbsJ8Rd7VnMz4WXkajjGMiaGGvaZRI8/ehexAHXpX/sC1Fsn06YfNisrBZeP1MffgsghLtGaN+D0YCZI5PLi07aed0tcJc+aYX8/OVh2+PfVStCzcoQ6VGx7bNCEKuVi9Wvxd16yJulSdu9teXQSRCHw+5wLPmhrLQVQ1HoZCcg4mp/Rv8B1+P+5064JJiDKntCGcv8XQ6m9U9/h9gvGcIP1GjfN24fXJ3hichGlWsBOvTbnC0zrRooV+tBhAlNNJfDtnA85QhJ+VkT5veJxvU/QLupX9FF2OByFadmG0lxevmYdFJLynMPMwjm8nhrCWv3HG8N8J1+CEdq/K5eTfY82aSKQPB8j7WGVoWuXzUF0tdUwjH44jpp7tRMywXO0xxhiAOwB8IQjC1YrzyidyGoBPpb+fADCHMZbFGGsOoDWAdwC8C6A1Y6w5YywTwBypLOEFNsPlxZWBA4ErrogMNDw0aGDsZWa0SdEu7nSUZ+NrPlHFrObCaJGj+s5ji/Y39bNQzHJ9EYlF6cHlpSt/OHyAvOjj3exPnAjMmGHPun3hQpu9c0/YKkxYvoIv9Kjiva6TBMpm+xm/LwS0bq06xysw1n53fp7NVT1BN1y2mxFVJ/66U3Yedwqaazxle5T/KHsvMAiylWfD3L3WFY4YAfTpEwkxligFV0GBKlxvWsen79dPXINYWQmGDaoaNDAv17u3/KcPAs7q9gy2zD3b2W85YgQwdy5OaPcqVrV/WX4ZlJ7mWsx+q+XtXsX67k8bXs9xqPT1sZCceDytnpR4RTPQQV7T6T03ylDDiRojeOAQAHYr/wnX9o8OE5jpV8yBNoW6ZqWV477uXqhLF+Cqq8Q8prqVW/dFO7fE0/MvaRkwIBJKUw9pfA1vm/SU9/LYpnLr4lyntmsn/q46Id56ru6LoyesAmbP5quLIFKJ6mrgrLP4ytrw4Bpe/SWKMw+46FhysqnnE9i9+GSusrbtlqTxyvC2/v0BiD/DgIbfu2zMAV55jEyapFortyzcoZ7TNYTH9q9mn4fmhTujrh8NcuQL1FFwATD8TEeDEc/3xvVYyeBWka3HnUPvsSyjnM9HNf4SNw/6P3w9+xyxT24fdWmNrPUGDGgjBqxcKe7ZTjnFZYPe4zPJWUe4hycz+0AACwF8whj7SDq3HsBcxlg3iOP4FgArAEAQhM8YYw8C+BxAHYA1giAEAYAxthbAswD8AO4UBEEnhhDhiGT3v/XyJTaqq3HjyN+zZwNNm0YVeWr8je7aM7IUgQDceCPw1VfA7fabsIvfF6JNdRpg9guKHlyRyTvbfxRl2Qe8eZd69hQts3gIBIAhQxASOBIYJyPKsdHgXd5xOF88ZSK+9esIlvMCRxx1qVfFD3hr6mVgt99mXbge4mpskxROWos9xgySz+oQfg6KMg9h8z61JzljEL0XIHlwVYj5JLksQnNzgeOPjxwncN4O1pcEzH6/6EVuxYknAk89BRxzjHm5448H+0hcuvqYgEx/UMxFEGxsfp8egQAwbBj+cs87gK+7fPpw0HhpbvZbGSY2l8h26MGlfGvSylulpCRhTWeHlY1WCqwUV3DlBmpxUucXcPKbauWC9jlWPVcWQlizeVqZ28vwXTF10Q0LKPmfc1qLS2RlGV8z+M5DqnlI51k3yBet68Vn9LuOGoWMoUNd5aAjiKSjRPI+PvZYcS1hZ29o4VUvLF+BYIjhH9/3wvwXTtAtk3TG1Jxk+IJ80XsYsx9OT/oNdA3sLrwwKpeVCqO5nlOhExfOOw/44ANg7Fj96xwhCvVomLsX/xp7IyY9u9a4UDjUKuea6LBkKHZw6VrH0QsIfZa0fQNLX15kWsan8cjO8IXQuug36ZrLsWPQIOCzzxB8XP28ReWBKy8HTtAfvxKNae5rwjWWI7cgCK8JgsAEQegiCEI36d9TgiAsFAShs3R+siAI2xX3XCwIQktBENoKgvC04vxTgiC0ka6ZJ7og7BFHb6KEY2TR16sXMHw4sG6daBlthlU4DZ62FYkRGZMs+Vu1clavTfxMoKExTVGGKFRu/u8dfhc2z13vun5BYGLOOpuL5HDYLG7ivAgvyDisf8FIiaDoXzg0jqnwWEf4kukPyiFPzaB31R5GAkOuJ6pLF6BFC/0Npl1PAYvi2nCFtjHb7MaYoEEusXpLZSWweHF0cm0tjMmCUtWY4CaJcZ8+4vpFom3xr6jJ+0PMX6bB6Ld6cNRt6Fq61bQZpx5cjAmR0G3p/KjE8cPJAhcrYY3f5rwbazSh5pzw+3GnRp2zoySS3wGdvCAZCgteRwJYSfBr1h8KUajA5pyq/a7ChiglWQcwoIHk0VBeHilQUQFccQXaFZvkqOGBlFtEmtFuXDMxr2JYCcyT1iMst5g82TKXo98npF9IYiWLF5tfD4VU+977RvwV67o+a36P5BmsO/MoxzU9ahOkhLETXam6WozqohxPzdZN0rXSLHNPQMaAiU0/MS5w4oliuHNAtWZiMDZcnNbsQzw6+hbXyq22Rb+4uj9d2dTzCYxq9LnhdVmBo/N85AZspofRkpUFnHhiRAEtPQMBFkwur6hp0wwvkQdXbKEYZ2mIWXz6tCYQEBVXZskww9iJxa4cgJTChlWr5M1+rAWE2jGQQhQmN7NavIef5kUnluRBGaJQKQwIsJCYMN3lhOh0fJjZ4n0MaviNdcFIQ47acUqU90KzZuL/HKGIwu+vmUAsyvVd4sgJJhZnhCNcWcQHAsCZZ3oSc131PBjkbPMxAW9MuczZ415WBpx6KnD++Y776BRliMKY5eBKc7Q5LbziqXE34MvZ5wI+Hy7u/RjGNI4EOzD6rWa2+CCS6FyHGwbcj/tG3OGoP4LAVAo4ALim/4OO6koWdF9XQZBzVcaanPAG32gtGo5A0LVrXPrDjVJYYUMh2K8yEo6pPJsz7JWUJ+atqZdGh8Q57zxdwZzSgpcxACNHcvcRgOjd3qePdTkFaa301RAOMSTDEeECgPwlqTwi8vJkAfofi07FyEZfAvPnA23aqO8tLCQvOYJQcPAgsOkCpjK0xfLl5vlsiooi3gz5+ZFQ2SaYKe9T3jDKauBu316l4BrV6EsMbPCtftlwRJSmTYFzz3VmYGdiJPX7caciwyCfpe12wkydKoZp3riRr7yT9rKz8eO8szC31bvu2igtjbSjCBNu1n52oA7Tmn/kqtkPpl+Evwz5m6s6Ug3eFArn9nxS9sgyRec982o2jw5RmGRKo3HjgKVLdS/5bESVIexDEvJ0IZnDmHhFeCAoK3Nflx0Fl1KppRyMGjSQExozvetaPExyKCq4aGBMVooyD6Fx/m7LcnoKlfCGQkxUqyjr0WbC6VNzx9C/4aWJV+HsbsY5XlSEFc1Nmjhs0R4ZWgXU2rWiwnvePP0bwu/qkiXyuyQrRXQWZHohCnlJayvIGBD1W0rYscjXjo927q2TFs2q4VznmQgLU/s3+D7qGjdt27pKsuuUehOiMAaEx2jV8+HGg0tDdqAOuYFaICcH67s/jTkt35OvRf1WGgtBI8OXAQ2/Q03+Lued6tIFOO88+bOf3Pl553UlAbrPvCBEhziJEbIFq1JAqeTkk8X1pV0FTayYO1f9P2BLs/Pm1MvQNH+H4fXwczWk6uuo+vtWbsGStm/IuSRCAjO0Oj+72zM4vu1rACQL2VmzuPso3uQDjj/e1pxdnzy4TAVaZvsfKdfdLZ8PEY+zs4GNG6O/uyFDdG+vT98xQViRk6Pj3FteDqxebXzTmjV8Xl6AHF3AbIgPpLNhVMeOwOLFKgVXgAX1x6GuXdXKwkaNoopwrbHrDBRYgoDy7AP6OQrd0LOnGKbZrZe4WX86dULN2A7wLV1s7jFox0qke3d1vkevvg+pD4MbfiMbcBVkHK5Xc88vC06PeFJLTGzyMT6cfqF83LroV/lvs3WS/L011oRv79fPEwNUAKjT5KlPyjGpoEB9XFMDgPbdsYYUXETqsGGDmOjcyq2cBzsKLmXCby2CteeHjFXYRBMYBJWVjY8JpOBKYtx4RCgn7GObf4A5Ld8BoJi4nZgLn3GG/GeLwt/t388iSrdL+jzGd8+yZcD48eYbLg9Z0uYNvDDxqsiJggIxZKlRrPnworhfPwQLigGow7ZpcbMY0S6Q6c01p0HuPnw/x104TjchCr/a3VD+e0bz98MViv9LYWjntXobM1u8L1rCAqLnWAqhDlGYhJuCJCaQ6UObcNiS1q3F/3v08K6BGTNEhZIkEFAm4I6aW8aNA/r1kw9jti5golIhXZT1WQ7DNdphUMNvMLnpR7rXijMPAevXR29+w+Tmis+AnbVqLBk2DLj+eqB//8g5m2PewTqTtbTEy5OusixTmGkQjhjAyEZfYlOvfwFwN8/aEcDQWpyDpk2BGTOwr1Zajw0fDpSWcn93T467Ec9OuDZ2/SOIdMArYb8krzAT7vt9IXFeSDH8ir30RzMuxLCqr6ILjRgB5OWpFFx+X0hf0tO1q6zAD6P93vzacGR6kYaMFFwSDXL2oiJ7r/VvzKvE9CoHaWWl6GHVvn30NcbEHLj9+pmvZTp3NrwU5VHEjA1cvKBv5Wac3Pl57F18IloVOZCXuOSyPo84jgBkRFHmQeRy5AxvkLsvak4uzDyEbuVi+PP3p1+Er2efK1/rUGIcOlgAxJQx2t9KEDC35buY2ORj7v4bERWi0JdkIQr16NIFZ3R5Fuf2eDL5+5rCJMnOiXBNfcjBVVMjunoaWbzaQbMYMSUQEENIXXihYREu7xq3A1lNjRxruzp3t/3kp0TcKM46yFVO75EozDyMEdVfAgB6VvyI+0eKYaUqcvaJBZwouFq1AkaMgLB8BQY1/M7+/U4oKhJDIHi1iLYgO1CH4dVfWxcMo0iI3qL4DwDR7u5eof3FSKFggSCgeeHOqNN2hlDbOeMUDKmSQnEWF2NI1TdomLMn4iW9ejXQrRvuG3En2hb/CixZIoZUWptaoSr7VG7B/434KwB33on1Ed+qFfhqzQ1iXoA//Qk47TRvBT1jxojW1pJlrfJZtlK08wqMV7R/Wd5Ef3LsJqzq8JJ8rTjTOIScV5aXiSZTz0tUMbeWZe3HK5OucNXGpX3+iSv6PhLdzPIVYl6IcBjCVCE8Z4aNtQy8bYxY0PodzG/1tu61gF5YHIPIFNkWysmwwVm8LGTrk4V3FDqTcstCAy+vMWMiHnrSfbzjVeui39C3cnPkhNYqnCCIKITlK0wF22VZ++W/N89dj87hPJ6SR7rZCJqqoa3leaFhQ3Qt24rZLd8zzPGnXHvl2cgbFL3n05xZuRKYMEGdl8tig/PO1Evx6cwLjAusWwcMHCjuu8249lrgyiu9y0uYkQFcfLG4HnbK7Nm6OWdXd3gJfxt+l+4t7Yu3oXPpz3xGQJwyv+PbviavUQoyxfcm3iGIG+XtRkXOfuuCNvj5yf/h/3RClC9s/WbUuahnVzpzcqfn0L5YnY9sbccXcdQgrHdI8ImKXO1zHQrhzG7P4l/jbuL/AAbcM+xu/GvsjXIbRtFfkgrGcHm/R3Fmt2dJwRVDSEKeLqgUXCSsMiTsit2li+gNNns2331VVbLLvgrZg4sDFwOZcnEkLF+B0uyDUa65APD8MVc7boPwjmw/Z6xsHTL8ITw/8RrVuZ/nr0Pfyi3iQSISPmif3WRPOjFpkvG1uXPFsEWKxX15jijQlRVcMf58pFCIPad2eQ4buj8lH9sZfhvl7ZZDMpzY6UVsX7gu8kzk5ak8ZlBWJio49KwXk5iALyTHxc/xu0z4W99o1kzc0HfsKAr927SJzUZFqlOt4NIRKilCvxgJjOWzUk6nAAuhKPMQAKBN0a8ozxY31LUnrELPih/l+woyDqGfImRJuqwvs/TmaMW4n5dxBIOrDPJt1HdmzwZuvtl2uPCr+z+Ev4+4UzyQ8teGyfTrCCZ0vNtenXw5TuvyX6723DyrdjwVyYMrwr4lJ+Kqfg8bXm+lUX45Vg6WlDq7jyDSGZ11iDw+6exrvp+7AfcOE8fkZgU7I7KGggKgSxfTcdDPQsm/F9TBz0LAOefI89fKDq/gi1nn65YNr71enXw5Ar4Q97ygLRelDCwsBKZMEdeRK1eKMiaLcPoNcvehMmzoqkfLlqK3lGZujSInx9hz3Ck+n7WiyWyNnJUle4ev7/YUXpSisRzX5k1xn6Jz73vTL8HrUy7n69/FF1uXYQx/Hfo32VspTPVwgzzeHvH65Mtw86D7AIhKZqf5yh4dfQseHHVb9IVJk5A3qr9uHvF7h98NAGiYs0f2ZNSGOQ+PCdcMeEg0zALkZ5UxiLnhAdEob9kysd5hd2JtxxcdfQ47dC//CRObfiIfJ10OLitSqa8pRmrF1CGMScFFRkK49lrxu/L7DRP/2cLnw1+H3IuhVV8DGGQ+WHmh4FLUoedtMqKRjqs9EXd6lv/g/Gad56Q6b0/kwOm77ibUkfZeD/PNeE7btsDEicbXDTwtupf9iAY5e8UDve/Ywfs7vdkHUnXqe5PFgysvcBgH6iw2Q4nA4Lu2I7Cc1PRjTGr6MS7+cIJlvXp0K98KCEWRE2ma5/KD6RehU+nPABYkuiuEFmkcUim49N6Bnj1FT/Nbb7X2sFKEmPNLG1Nl3qmAL5Lfc3j1l3hBNraYL7afJsp53RCFinDUmbwJ3U34cX8pGpgJpFIZN3k7srNVYZMBjeVtOG/WjBnAoUPARx/Jl+x4oLvJW2p2p/YdTI83wgMYQ37GEV1BWhh5LSTNxUEbykFlSUlPTxCEEp29i6xE1ln/FmYejgitoQhdzRiwZg2Eh+4xbCpVDfV8TBA9QHdZ5yTNzxC9eMLzDq9CXvvNmO5duncX/xmh3X+nqlCcQwF25PjVCPhC8jrT7JPmhp9bq++jcWM+Dy6DelqfMhFC9xfBRgy3rsMBpdkHZO/AZgVi5BKevW7fyu/x/d5y/H64UKwn6wD2HDVIyQDj/LwA0KdyMx4fe4tUTiuv0OmL9rc8+eSIkefvv2PhY49Frmm/1+bNgXclJZ7HsuukzMGl/fyp+v6mGOTBlS6QgouPzExVaDLXMIbj270e8zi9svWPYmDsXv4TxjT+LKbt1jeiYj07QFi+QmVRYobuIiZWk5+b0J6ppOByIngTBHww42LkZRyVj5UsbvOG7SrbF2/DI2NuAwoKrMNVJIj9S0/SDw0VJ3YtOln/QgzyzjAI9t8t5XNg9HeK0738p4gFHpFcSF6mx7d7Xbay9uv9Vj6fKCBZt87QwphBEDf5incg/JePCSphVbiOFzSexEB0UudURTdE4YwZsqd+WLDlhunNPiTvHj1WrYoKMScrFNesAQYNEv8uKBDL2iSs2NJVBnNi6rmgeQfTJS+dFR1KtrmuQ6uAP1ynCJNVau6VFV4vH1q6xixiPEHUX3TWpiHBWMEFqJUxdZqcNmZL3ZT24AK4ZEFX938I383ZIB/zftxoDy4X31Oy5OF0y5gx4v8jRxoWyfQHVftjrr2y1b6Od99n9D0z5r3HmwI/ExytVN6aehlOV3izZ/qDUfPr17PP4QoH3LboV/lvbR26BrnK72rdOnUEE+337feLRscDB4qeX8NjoChMpRxcSlKprylGmoyaBDp1ki1A3FgtEjbh0Mz3rtiMZ8Zf50opoKfgqszZh2cnXK8uqAi5OKP5+3hv2sWeJHKsDwjLV6Bb2VbrgrHGSkHj1JNk2DBgwAAxZ4xdtM+1RTLchOJkwWCxa7lr2D2265UX5hUV1uEqEkgiZ4virEP6F6R34PXJl+H4tq/Jp91Z5Lt8LtLUg4tIYrKygLVrUZZ9AAvbiHkBTIX2LVuaP+dXXin/6WOCymtG+bfZW3Y0lOGJIUii0Q1RWFICnCnmJVNatTtBWL4C2YE6HHWRCzCtUApEdOZbWeGYY2yBbBc3sgM7Hly7jtjI6ZuinNL5OXw2c1O0cFLnSzb72rVroeHVX+GuoXeLB5s2Gd+oUIhm+evSRuZLEF7z2czzcVa3p+VjKwVXO0VeHa0BS3g9ISxfga9nn4P3p1+Ef465GUBy7WPsIO/NcnPF/fC6dWI+LB3yM46gReEO+Zh3H3E4qM5v5Uouly6DXYsWwPXXRzy0tWiez009n0Cnkp+t67Wa6HmNXvXqCStuHChyBzb4Fr8tPM2yXIAFMa3ZR7hFClMI8D9np3X5L/YsPgmA+D4q59dWhb+iddFvCm9p9XMUzs23a9HJ+HPff0batmuw07Kl+ljve5w0SQyfOXSo5VrQDUnpwaWFlFpxIU1GTQKNGonCayK+cCw8upf9hLE1n7tSCnB7fEgDZ/OC3/Hw6NvRs+LHhOXM6Fr2U0LadUNx1kHvKnOaQN5KEWoVX9uIjAxg0SJVvhZutBNyMntweaHg4l10mbRl9s7S8kaBXu6qBWK4vAENv0eFyxBfV/Z7KHLgxoNLKXht0UL8X5kgmiBiQefOqkOn3p+/HipUbfQzfEExp8TyFQCAEzu9gOeOET22osIfa5J/J7Ngq03RL/hi1rmW5eRwtFqkMcKrz6j0UJnY5GMcWrrGk3pThlatxP+VihEdYwHD3wMALrpIzJvLydGgGH3fVQ4uk1la68H1168GOW6Hl9zAETTN32FdMEb4WEhcO06eDADIzzjMJbzTov1FsgN1WNz2TdF7SxEiNIqzzpIty0k+RBDGdCjZjlLFXtZUWL5gATqXbpPXAXWCtEYIe3ApirYu+g09yn/C1Gb/AyCNg6nswQWIY5pWQG8C76c9pFFwuYrakS4hCgFzrznNuuDcnk8iOyDJzczkZ1YKLLN5xaR9DBzoyIM8TIYviIqc/ZblAr4QCjMPY2WHV+RzvK+V3yegMPOwVE8QHUu2oTp3FzJ8dWha8IeqrNKD69TO/8Xvx4m5o4uzDkWezzZtop5x3dCGZt+5HYWsV4ajUpsp4cGl7F+y9zWFIQVXOiFYx6wlPKa6WlQcVFWJxzqDlV7+LLvIC7JevcT/O3aUQ+mI14P65RHtbhwPOpb8jI9mXBT3dt3yyOhbsX3BGdYFeeCwGtK16grH4u7RIyqMD5YuFZPTJgJlDOtkVnA1aGD/Hh4Fl97727GjYZXyex8KRW0wQ2DOFZUek9D5omlTYPny6POdOiEcg0hpTeakr6d1eU6618EG0+cTE0B37QqMGhU5X1wMXHWVucU5QcQAXc8jBeGh6/s56zGj+fvy+fYl21XlAhohfX7GEYxs9CUA4ECtRggRDi0D4ImxN+GJsTcDCxbg2zkbcErn5+x+hJiS5a9Du+JfTcsIy1cYe2hJG2W7Y83T46/XPX80FEl17GehiMCmvrBmDXDCCcCUKZE1q47xz1+G/A3fz1mvX0dFBbB6NTB3LleT4Zx1Wit6O5hZMWs9uD6ecQHO6/Evx23xMLz6K2yZt8G6YIzwQRC9HSRhIYMgCu9s7mvO7PosrhvwQPQay6qejAyE/JyCSoKor0jvlTK3XUgTdlDF4MGqQ60HV1AvJHFAnNPMjEBO6/If7FtyIk+P445umGdJ0K6bmzPMeeep5oWTOj1vaLByz7C7xcg9Em7C5aaVgssMIyVWu3aiEb+WQYPEvVlZmf59K1eKMroFnPmFa2oif48aJd4XVsjFUJEb8AWBU08V971z5wIXX4zsBkV4aeKV0WVZECOqv0TdCSujrlXl7kGb4t/w84Kz8OvCM/C45Gmp58GV6a8Tc5hpDUwLC6NCGermo+3UCWjTBhg7NvqanefT7fc6YIC4H5cMATNM8n8mDaTgigsB6yJEqkEhCuNIdjZw+eURCxEdpQZjgphUccgQx834fdJv2qePOGE3bAjs2QPcfjuE5Ssw87/L8fDmnpHyimcgyho7DiTLkN2j/Ad8sEMtTCnP3ocdh/XjKRdlHkaRZA2j5cyuz2BUoy8w+qlTPO+nihkzxIVDx47i5HfXXcAHH4jX+vaNbdtmXHaZs/CG8WLjRuCtt0RXeLvwhDDQW4gsXaoK+6UqHt7Q6Czg6kK+iLI6wSR0tujd2zj5r/SbOM5hM3Ys8OyzDjsmkZdnnAA6P99d3Ymma1fgf6IlruEGkUgqXp98Gfo12GxaJqxMb164E03zIxac2hwQhqFfxo/HnvuNw8RNahoOedwDLQt3xGVD2bP8B/Rv8D1u/Mw6dr/rECWSMEk374AJ42r086EqQxSq1uanxHgdkSzk5orjPACcfz5w5IjumF+QeQQFmSZ5zxgDioqs21u9GsFLHgEAFGYahMDlwDREoeZdal64E+f3+jc2fcC39nhx4lUY/m973k+J9pqUFeKyZ4c0LyvXThzCqo6l29GxdDsgjLfdh0TsZQgiFZEVU61bY0T1l9JYWGF+U00NHh19K3YdzQUgeqXqGgmcfDJwszTXGrzzfiYgL+A+j2Us0FU2SZ/jjiH3SnP5UvX1CROA6mp53Lu492NY2PotQ4OVmvxdqs/vyoOrb1/gww8jx+kqFM/LUx83bQqcfbbx51240Lw+o72bEZWVotFiYWH0GsWGImbr/DPR+L7LRMWVwhBdyQW9HsfC1m+j+f2XiGvztm3Ff2EyMzG0+puo++4dfhdmt3wPvnWniwbQmzcD114re2CGKdGJRhTSMxbt0AF49FHx7+7dgdmzUXheJGTpixOvQvfyH0UP+o+ltf+cOeL+9zSDNYwdA+iASzXEcceJ/+8Qvdv7Vm4BWAd3dcYa5ZrJSc54ggtaLaYhlNQ6zuTmRgZpPQ8uCMBZZwG5ubhp4P9hebtXospYofICq6kRvcbKy+WcW0GNhZbSQknXAivGJIuS9f3pl6iOt8w9G1Oa/s9RXW2KfkUHjRW8KRYLounNPlAJIGUyMkTvrawsUXG6dCkwfjywIXHWuwDEvrRpI/7dpEli+6JHTQ0wc6Yzz6hweNfwYph3MZuXp/bsUaDc0Ghrq7OZl6Uo08PQmUpikezVDhwbNUe5swBg+vSIZ62N9gCIC/fmzfW9y9KF448H1q4FzjtP/EckPQMafm8pKFFevbD34/hpnphTSikg37v4RCxo/bY6xObGjcC4ccAxx6Bd8S9oUfC7eWc4ktB7xeyW7+GGgQ9wlW1d9JvhtcENv8H+JRZGGrKCi++DFWUeRH6GvlEMIIaoXtbuVfXJqVNFq+T6ht9vbNAQxuyB4nnYunZFXYkoyC3PPmCjc9qmnIUf5mFY9de279EqqONBfsZhWXCmVbDJ+wqlUDLGwpqCzCNomLMnpm0QREoje3BJ72d+Pp475ho8OvpW6/VvRQV6V/6AMY2/kE8tbfs6Hgt7ggDAJZfIxl1m46CPhcAYogTvyYCuB5f0vWX7a1GmN29oQqmt7/40avJ3cbU3sMG3WNr2ddv9lOneHThXEXY5w7lnclKTmQn8+c+R44KC+CvzGja0XqMYcG3/f2D34pPQKG83AOC5nztER+GRKM06iGYFO/HkuBtQka0Thv+EE3SVYxm+oPjelZWJso727cVQimZI76vSQEQAxHxoBQpj75UrgcJCPDr6Vnw3R5Q3dS79WTT6XrVKNHC+5hpruUE4sk11tXGZ8ePF59qtLIkx+V/tCatwepf/uKsvhrQr3o4XJl6lPkkKrphBCq4042/D78TFvR9PdDcIBfL87PdjdceXMUqxeOTFakN9df+H8OyEawEAzx1zDf4x8i/ihVatcMvg+3D/iL/YbtMNRuHATuvyH/Qo/yGufVHStOAPVx4r3ML29u0BQYCwfAUaGGzIHxlzG18i+4wMUSCWDEqlZctES7bVqxPdE2+ZOFG0SlwqWe3pCdJyjL0a9JDf2T59ooRltSE/t2TYz4LYvdietf9nM8/HjQPv1732yqQr8M3sjfhm9sao0Bd3DLkHS9u+hprC3Zja7EPd++OG9P24EusxjcUa72apTRvRKMFsgZ7qZGWJYR2qq83j4hOJ55xzHN2WG6hF4/zdANRriILMI+KroFRw1dQA06YBGRl4bOzN+HzW+eJ5I69hrSeHQ3gEYO2L+QxLXp18Oe4edrfh9YAviLyMo+aVSBvOHLNQRRI3D7oPP8w7G78uPN2wTHHWIdw+5O8AksezPWXhtAxuUrgbfSu/d9WU2bzz1m/NHder9Axc1eElvDDxKvSpMPfK1N4XL5TGktqQprJ1+qxZkZPSu8MVDjgspA2HlA7najMhKxDE9oXrrOsmiPqKtKZXhsYNy4ANWb8e6NdPHQJW2u8UZB7BlGYKo1CFt3+d4EvKHFw3DrwfXUqNc4DrenBpcwFpP5e0VnLycR8ZfSuWtX/N/o1KlHsR3pxSqUhJSeTvZPJU4/jhM/11hhGAlJzY83VMafoRAGBCk0/1P2bjxsDZZ+Pg0rW4sFdEputjghj2Wfk9ma2LRo4U320AhRkaj/asLN17y7IPoEXhDnQp/QkFYeMtn08MS8ij/GvcWFSErzcIOQ2IMq2VK737jX0+BHyiUj2pnhuJwoxDmNbsIwwPGzfNmiXmM02SVBXpCCm40owFrd9Gp9Jtie4GoUDemDIGjBvnLhazFmlR1qxgp2x1NbLRl5FnoEsXtCzcgfFNPvWuTQ6M5pc/9/knupUZLzzjgW7CzDAdOojxfHVgjHNxW1kJnHSSfPjV7HNx97C77HUyWSksFHNpKBdX6YDfLyolwxsHvR96/nzu6kY3+hwnd3peXIiOGKF64+8f8RfcNEhf+aSHE2vx5gU7kG0goB1c9S1aFf2OVkW/R72oS9u9gTuG/g0/nnQ1/jnmVu72hOUr0DhPxxtRh6fHX4/pzT7gqFRScKnCKtj8LhS/o67VJkGkAo0bc3tbluqEJgGgPx7MmSN6Ep15pup0hi8k5voaPDgSAsSAWIu3Di5di4lNP+Eq2zBnr8poZGP3J/Ha5MvlY65tL2P45NhNuGf4XcDcuXhn6iWGwrJVHV5BUeZhMZcBT9XhbyuZc1gmGjPhRNga2iKsTUHmEbw19TJX3TBT3B6uc25BH1Dky21d+BuGV3+Nt6f9GRf3fgz/HHMzHh6lP+86Cb0pLF+BwQ2jwxzxUpolejL4WAh9KyUlHGPoU7FZzNd32mnq9XJuLtCli3ne35kzRWFteDw78URR0DNvnnWHyNqZIMwpLwdatsS4mk8xvkYzbxqNrU2bAkuWiPu7FSvEqBQdzMN8PTP+OlzW59FIVA8N8rp95kx8euz5OLfHv+1+Eses6fgSbht8H24edJ/udTMPrqjjjRtFwx/JS6ZF4Q7ufoS/bk/CODMmjp2zZqWvB1eYsBK1U6fE9sMmBRn6ITn/N+MC5AUiiq/rRv1LNjwzJTMTOYHaiJIJ0hqySxd1OW0kBqXhquJ5mdT0Y/ww7yypHonSUlH2ocnFBwD/O/YiZPodPrtlZfF9TrV56pKM3YtPxsW9H4ucGDkSOOaYhPWnPkA5uAgixqiWlNOmYcpTq/DetIvR658ehJzTCkqUVkjLlomh7h59NO6Ww0aCaD8LmYZ+iQcNcvYaXGgghuwysTrhygHg96u0YUWZh9GphJTOKc2qVUC3btzFbxl8H1oW7gDazI9aeM1p9Z74h6CTNFcH20od2NtQ6QryOBaLC1u/iU/+aISPdoqehbyhccfVfIZHN0uhIM2EmR55iIQRBYskICNSFE7T4a5lW7Fn8Umqc/uX/Enfc6mqyjwXVKtWlsoEu+FW7aJUWGX46lAbMu6PNoxaWfYBtCn6VT7m8oJhLGIgFAqhd+UPrkPSRaqW6iGrTWPM5p6qKtGb0crAxgOvgqNB4+fajbGE0hNKOf2t7/604T2PjbkZvSu2WNbdqeRnfLqrERrm7JE9nZyGrH909C2yUiu4bJXq2ltTw2GkNEpExoA1a1Dx3KXGFY8apQ7rXF7OL+jJzQUOOc+rRhBpj88HrFuHQStW4KnxNwJQ5CDi8Wzo0UP8Z8HYms/FP/r0wbZnPsYvtz+Bj3bWYOnLiwBI487GjUDjxuj40EP4U+4L2HUkFzd8NsKy7i6lP+HjP2qs+2pCvwab0aviB6x+Ldow0cyDq2GuJB8Iy1ZqasR/En0qt9gOu+hZnlKDcPhpx1lnAd98Yy9/VqzRevhp+G7OBjQr2Kl7rUvZz+oQw7wGToEAMGcOVgUfwqhGX6DTw+frr0XHjQMOHAB69hSf1ZNPBq6+OqoYY0ATbVhNxsTyqY5y3ZiEHlxJ2KW0J7lVnoQ9ktBVnIj2wAj4QuhZ8aM3lWt/86wsoGVL0fqqV6+EWTVoP3NYsMSYdwJrXtZ3ewrruz0lH1/Q6wlsX3BGdMH8fFMLUQbBnqBr6lT5z54VPyK4bCX/vURiEQSc0eVZVOdKi0Gz90hn3A0ovTZhnM/j1cmXo9JI4eoC7oT0Rp/LwnoTAK7t/yBGVH8lHx81ETxrORzkKCv1bUT1l2gtCaltLxIV8c/9TKBVJpG6VFgkiA8zdCgKMw/L+TkBWIflM8LsfZGEPrUxVnApOXrCGtPrWsVDpq9OlQ/Udh4jaWznVRK8OPEqtaV6ixbRhXr1AoYMsdeP+oTVGN24cXQy+hhwOBixPn5/+kW4YUDE63pc489s1cUQeS6VczNv2MFjmnyC6rxIqOs5Ld/RDUH8ycwL8M3sjXhnWkTBZOpNJfHtnGhjuxaFO1RtKtfGViHPeldskUOme8ry5eK4c4bO+p0gCHOceFT07m1+3edD1dgu6F7+E4Yr9gPNCnaK76o0UJRnH8D1A/9h2dxfh9yLlyZFC+e9xMhA4dDSNRjY8DvxwEgJoTfwGQyGYeNEbXhXwoLCQlFZk+ReOUpaFO7Qlw/16QNAM9fX1Ymfj4fhw5HpD6Jj6XZk+WvRUc9YOiNDjMbQujV3f20ZzqbCvpm8uwkNqTN6ENaQgispyfTVcZcd3ehznNjpef7Km+vkAjjjDDHshwInXiBuUE6Hfx9+B16ddEXC+nJxn8dxZrdn5eNMfzBipaWHwXvEmICa/F3YMvdsADDMrSXToQNwVSShpFdW4ER8uLzfo8gNcAiGdZ4X2WJPWqAbKXUHNfwO/5txId6eamzx7MT6z/V6dPJklYLWso1hw3CgNpLH6d/jbsCSNuqkysWZB2TLRy6vD2kzPrHpJ/h69rkWhQ2YPRsYMECszisrSoJIBMOGifkPzeLaA+JG97zzuEMamqI3F7ZuLYYfqa4Grr8eR03e5U4lP2NVh5fc9aF9e+6iWsvsTL967cWYICbAbtwYOP5444pKSsRwtVIeEl6jnGHVX6MmXwrVWlEhhnBT9o8Jomd9OufQcIsXYW082Asdqov8RhXZ++W1gLB8BUY1/pK7nhM7PY+6ZWLO0juH3oPHxtwiX+MNO6hUih3X+k3cNPB+TG76P92yrYp+R43CSttIOXvb4L/LireWOmG35DZnzAAuuEDXItwIxiCHTPeUZs1ErxCOfF0EQWgoKrJ/z9KlEQ+Prl3F/w3G6PCwe2DpWqzq8LL9tmBPXmJFWNYwpOprOczwXUPvxjFN9EMeZwcUbRt57GzYEJ2PuW1b/falPT/tPdIAQcBNA/8PFdlq2dGEmk8iHn0nnigq5yR6V2wW35nzz0dFzn5VXVi2DDjhBPGY01Pt8PFr0WqZB+t6ACUGocwBANOnq4+vucaTNmOKUiCR7Ao5Wv/HBVJwEUQMWdbuVSxs/RZX2U4lP2Nlh1dw3YAH+RvIzgZuvDFyHDatNBngCzIOYVGbN/jbcIDSaros+4AqzNAV/R7B65Pd5Ufgpl07AEBh5mF8P2c9/r+9O4+Tojr3P/59elYYBhj2QYYdQRBkU0GFACK4gAsKroDgLipuUVzBuPyMGpNoEhOTeNUbE5NobhKNiZrExOQmmrhdjRrXaJS4xIgLLiDM+f1xqnuqu6uXmemZnh4+79eL13RXVVdVD9PVp85zzvOotjavl5014b60ZfHf6JDad9V43An611Hn6uOVp+hX+3xVPSs/atow3DDu1s3X5EJpCe7UXvygf4tenhixl0izFyEIfg3o+oEGdE0Pln5wtA9St/TmKCqQfENqTvqGhuiAc3W171DPsf/tat7zTwYO1OBu76ouqNkxvd/Lqg2K7T666DJJLXgftbXSwoVJi57eUN/8fQSN9fLY1o7f8AUyKS/39Q+HDMm+XSzmg09m0rp16etb2/l/1lm+w7u8XKqq0uYsszGXjHhEX57+48h1M+uf1wWT7olcl+T00/Ouf5g+g2uruoRqj8XkfCfERRclRtZGuuIKf1MfXC9um/Nd/Wqfr6ZvN3p0WorHxIy2AQPS0jsWtP5qZzNjhg9cbJdf6t6sChHgCs3g6l75SV4zoaKUW6Ni5vTtmbfq6O3/pDnbNc1yyHemdfhr65bZN6tX9cdZA8thqQGuLmU+UHf8Dn/QESP/qoWDowNlCePH+/TdpNUESo+Z/y67+uqWDR6Ixfwgk699zadql3xa0fnzpcMPT9o0PhCka/lnsl6hNLLNCI5Xlm1NqlNYCHfu9U1dMvUuSdLRo/8cXTMzdbZQpu+QhgYfnIi78sqmmlEpupX7mkxl1phW5xSl5+Rxv08aPCKF+rp22MEPngp8ZfoP9aVpd/gn9fX6w8Kr9c8j1uiZxWt9bW4zPzvyssv8zOR8jBzpaze10iuHn6fV47MMpJ8/P7muV2pAtyMKz+DqaDP/wg24+npp2rTincs2pIP9FQCl74tflL4w9WeSpBtnfk/jer2R1+seXXS5Fg17vPkHzKPRGr6+Tui1XjfPuqX5x2mGcKd5mTUm3WT3rv5Iuw14WXfM/aZ6VGYZRVIIobROw7r/J6+aP5J0zbQ701YnRmYHm8bMqUv5Z5rf8ExidO/6I8/x08/DLrkk8zHnzcvxBlAULWggnb7jr/XnA3xtisQNWra/t9AxoraqrYzfHPnP0q79XlZDzbsRW3rnT7xHjxx0eWI0WVSH3IljH/QPhg71o8emTk3clD4WBKKaTsrUUPOuzppwnzYsPz1p1X6Dn1Rtxadava5O//7hb6UZM/TQgVfq6cXr/FsLBbgn93lNvao2amxd03UwsTZXwGnBguzrm4FRlNjm1Nf7ovGSNCeofdHazn+zpMBNthSFMbmMM7bPGP9rXbbzz7Ie6td3BoH/mTPTC2tHSKQgDNK/VMS2qqZis54/9CJ/PvnOoo7Fkt7j+F7/StQceeqQS/TPI9boi7vc6YONY8b47/igrZH2+wil02MWdxZHHeWzDxSic6IAAa5+XT5Uj8qPtXHFqepR+am2NmY5rywp8+JBrGPH/G/a111ranllCyxLSgQKU+vGTuv/cqKN8L05N+nne38j8uX8pQKdQEWFr10XmlnS4v2EL2CLFqUNgku6Zlx6adPjPFPKrptyl+YPelq1lZuaXecqm6rYFjXmqp+9667Jz7P9vsLfL1nqQZbFnNzxJ/hfW1S6YpSODG2KxKCleEAo2G71+N9qRv2Lic9M/64fqqHbBu1ww2nJqQT79s2/zZNvuybT3+7220vyg7QrOlvazPDvsCOnK1y3jsFC7YQAV2fC6PQO4ZxzpHN2ui+5FkMeWtX5MWuWn60wcWLk6kydTEO6vaNlo/6sO+Z+M23drbNuih61nEE4x7BJ0uzZmlX/nHbq/XraTbYkHTw8ezCvR+XH6l6Ru6B0mW2NrGVw1MiImXMZGghHjHy4aV3ENh+uOE2zBz6f8Rzi729gzfvpubsjGi8LB/+ftGJF+lRwdAz1fqbQQwf+P31n5q3Zt3VOnx6zStdO/7Gm9fdF2VNzrkfW4MqzURv/237owC9qfK/1Gbfboe7NpNp+GTuey8ul887zo8fMNLH3a9qxbr0m9fEpPHTUUf5nZaX+ueqLumbanepZlfw5vHvvr6ss5lQ2f676LJkjxWLqWfWJ+lT7NAxVKanBXj78At2zz/Xp55LPd9b++0uShtX+W6eM+13u7TMco4IZXNgWTZ7sR28vWeKfFziVddYAV5Y2TaJjYMkSPbvkYp067rdp2+w5M2KkdRaJdsCIEZKa0h2N6vF28vp8RXQUlMe2qqHbBp1zWfemGaYDBiTSOKWlXz3zzMTDvGsjouj+sPBqvXjYhYn6dVlncI0cmTElaLYgVrk1+s9nXH2OGcqhWYeje76ln+x1Q+ZtzzpLGj487/pxqRJtlmzfmXmk2rlo8t16tg2yFQLIQyFmxOZj6tTk+5wWzBZbO+XutHuNbMb3el1njr8/fcXAgdK55yYuXZVlW3NfB4cMka65Rjr5ZGmffRLZX1rs5JNb93p0LEG7OfVe3sz57/6DDvILcvXptCa4kW/bvb5eWr5cOvvs5OUnneRnZHdGpZSiEO2CAFdnMmhQsc8AgaqyLYkp8fnK1BlUm0eQR4cf7juxunZNX7d4cdLT+A335Tv/VC8cdpFumX1zZLCpZ9Un+dUgkvSNPW7ThuVnqDpIf+IkqbZWDyy8Vv26fKgt4dGvQeeTlKHjP/DYosv1pQzpjcK2HHeyXjj0Iv1+4TWJZYNq3tV/z/kv/yScTqCx0Td+U9w256amJxGjP7pVbMp+DuFOrUzFaQOXTv2ZHzVbW8sXcUe1887SEUdo136v6Jgx/5tz86qyLUn/leWxrdL06Ym/pVc39kp+wdln5x3gMpOvvaP00dhhvas2Jj0fGEp7OKDL+zpuzB/8k5Qg+B/3v9oXpW9o8NNPZ8zwK2Ixn4qsGeI1RVJnS/Wo/NSnBenvUz5m+9yn2W8/afp0vXz4herX5cNmnY+k5AAXsC3q3r3puyZTbYkoeVyjsgW48grolJVpTM+3VJPyHVvWgjRFZeakq65KdAR0SUlF1OxBRGPHps0iTcwS22uv5A7+4He1JXWmz6BB0okntuz4aJnUWfQt0Kv6Y/Wpbko9nbNuZIbOp8g6W0Ha6pg5n35z7lz/Xbtunf++yyT0eYyZ00HDnsi8bXW1dO65aR27O0YVqY8671ijrw3SPyJN87Jl/ryj7jdS7Nb/5Vb3FQNopnPP9RlCCpDSLC/HHitX3b6pzGYPfE5fmn5H9MrhwxMDBipjW/IL9NfW+ppJBx6Y/d48nzbUTjvlHrCAkjas9t/a+/jBvu5tfJbibrslp6OM/x2tWOH76fKczRipOW333XZLnikm+e/rqVPze32BB8K1ufJy3yZZvrzYZ5IuyyxPtB0CXJ1Jnz7+wnr55cU+E7Qgx2qmWVYfrDg9vy+bTA2yuXNlQwYnnlbGtkhLl+r8Sb9smqacIYd0rkZhPCVZddkWda/8VJ8cc6qkHJ0BZ56ZCMZmGxVbHtuqZaMe0h/3vyrrOUjS8O7vaFSPtxLPkzrWwl/osZh0/vm+Mz9V/PcXBBOiTyo6LczW8O9p+vSs55r4f84RCEMRmUmf+1yLX15ujdLRRyeeP70hZRTlqFFJnVXZPmfh68KWDAGu1488V3s3PN20YMgQ7T/k//TRylMkSTfMuE03zvyef0/LloV2bupS/pnvCD7xRKlnz+QdV1UlHj635CLVd30v43kGu9PfDlmXNoMt4Ygjsr4+o1amrRpXt97/fggoY1vXnELzedSsPHDoE76YdoSYuaR6nGGJj2IwonXT1uQR32mf1Ayf3XN2uld/PegKScH3fvD+/rD/VZo/6OmkbZtdA8ssrQ5gmTX6zqsM57fFRbd9DhvxFx016uHmHR8ts+OO/mcBIytJgcsc7fuu5Zu0cYVvC0d+FwaDTJzk67QuXtwUSDLTj+d+S0Nr35GkpvbvpZfm/v5assR/vy9blhhcEx4U8+GK03RtfNBYuF28fLmOGPmw9h/yRGJRdVnQJog65u67+7ShOWxYfnpyuwRA+xg+XDr44Iz3rAVnlr2bIkN2mUi9euXeRrm/z2Pm9N7Rq2UmfRpuX6xcmf+5RBkc9Kek3i+h84rP4AotevnwC3XS+RF/q926pS+bNi1nXeucWhMca654n2Aeg1g6jJkzfWCvo+nf39dZO++8Yp/JNoUAV2czfHhycUAUx5FH+pQ1xx4bXeg9cPyYB/X4Ip+rOuu9a3NGbkSI19k5eezvdNqOD/gvgRUrmjaIT68OKbPGnIW143V1UoNzvauTZ5NM6L1ehw7/q39SXp4YwZqtQVxujaos26rdB7wUuT5mjTp8xF/8KOu0dSk7Xr3afy5OPtmnTgiOH2nGjPSp3XEZGsaJTq0DD/T/UoXT0CRe1PpRxmgnedZuk6Sder+W1qk1uc+r6a8L5WQvL8v8QbDQMVJnB4zv9bo2LD9d29W85ze5+mo/42DVKpkpUUw5cSP4uc8lBa2SZPowBh1Z2/d8O2MQPixrzcHBgxOzGZqllQGuvy3+gr7QzBm1QKc0apR0yCE+hVkmxx7rZ5XkESA4evSf9cCC6CLyMXMZWxD9u3zgjzFypKTMA3wSFi+O7FBqqHlXU4Lra2IPjY3aY8BLKosl77PFM6hCQa4ya4xOPxSkZGqMSu3WpYt+sOd3tdcgcrW1i8MO80GeEwpXxyXRxtt556TBK1HKrFE1FZt18tjf6dARf/V1NiLa2JlmMh8y/DF1CbIhJNq//frl11m9++7+XyA8eKZbxaamtomZbytMmyYNHKjb5tykGQNelCQ9s3ithnd/J/excmhOujEApS3rd/gxx/hZzxEm9v5ncs2tTPcoKarLc6cw7lH5qSSpZ7ze98CB6fW2mqtnT+nKK5PrjKFzC+5Bp/T5Z44N1er71TSrV/v6WUuXFna/2Rx9tB+sfc457XfMzmzKFF/7HO2GABfQFiorpR128DfDWaapD+/+jkZ0/3fu/bXyCzM+Wejre/xAC4c86fcXHoUakUu/zBpzF2aVdMfcb2rJiEcSz9cfeY7u2OtbSdt0q9ik2+d+p2lB0JmeabSzlGHka8jeg57W9/f8buJ5uKsgLTXS2LF+ZmNEoVdTyrZmUt++emzRZbp615T0B1OmSF//uu9AGDYssThRgHzMmOgClytXptdoIMDVOaR8Np84+LK0jtRf7nN9er2MyZN9+swrrtB23d7XC4demLw+GIVu5hJpPVNThppccidS96AuTMosjcT5ZOsgyxTgOuIIn+pEBZgAVV0tTZqUCLjnvcPWXP+YtQU0MfMdTUHB6Ug77+wDSi347PTv8r7eXX6GJH/dKa+M6Z1lZ+q7M2/RPg1PSZI2rjhVu/R7JSl98ropdyUG+/jXpnwv9+0rXXaZduv/onqF0rGa+X9f2/0Hqo2nOcxwLcs0myynBQsS6V4ypl3s1k06+ujoLr7Ro32nWrwOGtpWdbVvoxVw9HFiln5FRc7PRUO3DZJ8e3tMz7ekyy6T5s9v2qCxUSfu8HvNG/RM805i4ULfQRuehS1p8fBHdO++X4l8ScY2/OzZfn+hgW7x7+Ud6t5s3nkB2OaVZ0srHPSJjOz+VtqM76T7pfjs2xweOehyXTjpnrzPbeGQJ/XJylV5b59TXV1eNQjRSQQDsW6c+T39fcnF7XvssWP9gLT2THXXu7cPcpFmEyWKABfQ3k47LfEwZk5JY5yrq32B01SHHtqqQ9ZWbdaP534rfcWee0oTJkTWpYqZS/QT7bXdM/r1fl/W84delLbdwcMfT8wUUc+eGljzvh81lUdaxePG/DEpLUpYamM5PqJVks6feI8unnK3fxJ0NoSPlnOkdujcKsuC40yalLTJpD6vaVDNhogTK/cdDGvWJNLYbWrMMbK2okIaOVKXTf2plm7/kF9Gw6F0ZPtbjkpHkKJflw81uNu7yQvNfJqgIBXAyB4pge66Ot251zf1/Tnf9aO3167V92bflPQZTOpni/gMN20XnH+2FAeZZomatSgVR9ro9CuuSASqPr/Tfbpi5//Jf2eFGhEXFXwG0CrhwFHMnOqqPg4eN0qDBql39UdaOeZPmt7/ZUlSTUUoUB9cW2srN2lin9eT9hPlj/tfrR/PvbHp2ME3/6pxv4t+TSjY3+wUhRHKsg28mT5dO/d9NXrQzMqV7VcPBa2Xkuo93xpcn59wr/64/9Xp68Nf1lu26IYZ39fAmvfTt4sSf22PHtLatUkztCRpdI+3NC/D7MBbZ/+X7pj7TY3v1fTZ0jXXJNXCbdN6GxEz1wB0PlVluQdtvnDYxWmzYBJXxoYG6ZRT8krfP6XvP5PbEfK1tz89JjqIZSZVlzOoFC00YIC0dq1i5lTf9X3VlH+aeduOXL+qS/vWyQOKhQAX0N7GjUsULo9ZY3KXyzXXpNe9WL487Ya2ucx82pM0S5ZIq1ZFjkiNmUukKLxvv69qz+3+rlE93s5+oHB6vqgv+fhxgjy51+9+u67Y+aeRuwrP4Nq44lQtGPJk4vnp43+jXfu94p9MmCBde626VzQ1OPJJRfTFXe6UFNQkO/jgyM6n/l0/yL6T4P00upjKso1eC1ww+Zca3G2DdMYZ0XXA0DFlC7CMHetna+aQV5HjFIuGPa5ZA5/3f2cDB6pX9cdJn8FEh21DQ8b8zj+a+y3NGficTw2YLRgX1MKJFPVZjgrEZ7J8eVKdv6l9X9V5k36V/41AoQJchU4dASBJ+Ls3Jpf0Gd/aGPH5i7gGrJtyV3TaQzOZJV9LI5Mghvd54YWJ0bdZg1O5BPvMFSTbu+FpNR5/UsuPg44hntJakhYuTEsPnCb4++hd/VEiwJtRHgMtMif3TBefMRZll36v6ODhj+vJQ4LZkfPnp99jxAeJFbpfbtw4ae+9C7xTAB3RwG4f6MlDLsm5XWot4cQAmW7d/LUozxSFOvdcqbxc39jjNt025zu6edYtPsgWv75mm6XeHlpZWgIdTDCItHvlp9q4cnXm7erq/N9xhtr2RTV+fHqJEqATaqfqkwCixFJvYysq0u8y27OwZEjMGrUly8wkU6N08cXS/ff7BmnPnsk1OyZOlO6+WxoyRPrPf6SNG5tmgkyYIF1yibR2bcY0heHRYDUVm5NmhCSCX6tX+2PGYqqpjckdf4Lsxm/lDnCZ6ZyJ92lTY7nqKj+WdpqTHOQLHs8e+LzeWpqhHleK6rLc+cATClj8HO0gW2CkosLX28tR7yOffPEDu27Qvz6OSEOQITBl5nxw69RT09NlVFdLn36qxfHAdsoMxYTDDpM++CD7LK3Ua9KyZfkXc12wIPO2+d4Ajh0r/eY3LSvqHP6/I8AFtKlwACh1QExSTc+gtl+8dlXYvEHPaFr/f6Qtj9sa6iDb6swHI94J1QwKX6+6d/epEM9RM0IGmbW4jhdKz047SdddJ1VVac8br9bPX90pZ3rC/l1SBkXNmdP0+KSTpPfekzYnzzzIKcv33jvLzswdUAtbtCh9WfCetuaRkjwvkydLjz3m69kC2DY0Nmp8r3/l3ixlsF9a7a5jjpG+/OWkRY8uukyL7jtRr24M1ZgfPlwaO1YnbXkw+fXxdv7ChU3pai8O0srlU8ewUEaMkN56y7dP0Pl07x69vLxcuv76jpkxJBbzA06BTo4AF1BEZn40yOOLLm3qoG7r6c2hgulh29VsULfyTXru/QGSpLLU9ImSD1oFqsu2+M6pcMHtDaGRpA0NvhBrba30+uvSnXdKhx/etH6AP07UyNjG407w99zr1kl//7t0++1JTeDK2BZpjz18x3dc6PeWqJMRUXNLUuKG/qLJ8Rzec6K3k08vJ0k6OyLQFYw0m97/JZ/O0GjIdkr5BEYuvVS6KD2FZ9z4Xv/SS4ddEL0y+Ntdf9QaHf/gUfr232f4ZVdcIW3alHF2lUnS5z8fPeJx1SrpS1/Kfd6pteGynF/iRnTgwPSOvj339EGotJMsQLfyuHH+fbYkrWc48EeAC2hT8dpZW4870QeD3ODEukQ9oHHjpCOP9I/r6nyb5K67JEn/PGJNdGpgKTRjuumaEpNLvz727Zv13FokOHaXPAYqoBMJvltn1L+oxw6+XFL2bAp9qoP6cFdckT6CO95+vidL7ZigU2zmgBea/s5Dac1T9a7+qOnJ6NFZzy2j4Htxc3hA2zHHtGxfkq8tumFDxxzBDqBt5FlXOjWQnvg2j7fV6+ulc87Rlb//iR7412jd+/o4Te7zmvp3+VCvbuwjd3xoMGFUf0m/fv5nbW16QL89A1yHHCL16tXqDDzoQEaPlp57Tho0SDr22MzbRQzcAtB+6O0BiihmjdK6dZr4uR6+A1dKb7AVooM4PFMiSI+Y6vUj12jpqIeSzi0trZpzunXWTerf5X2N6/Wv9HNLLepdV+cblEOH+iKZEXWCUtMVSKHd1tdHNmArYlulpUuTF4beY8ycH6UyfXraa5MPkOF5quHDE0Xmk8yfL02YoD8dcJV+NPfbHTv3MpqvVy//c/Dg7NtJ/qYqniYwQ8284d3fiVwe/rtJPIqnOAh/ZlauTHqZmcv8t7v99oUbQZ3PNWjJkvzzey9e7APg+d74mfk0Yy2ZzRqL+c/pvHmFuZYCSBL+VMVnOMXM+TpG4RSF8fZEaidTqE3S0G1D5o9psCK+fvseb2pG/Yu+o6G+viml3JQp/hpzQfKAgr7x4ENLOKfNx56kbhWb8tue9ESdU6Y2nnN6d/kZ2m/wU/55tg6u+GzqqNTGs2ZJgwbpWzNv03OHrvUzw6Pqa555ZvLzCy/0nW4tEcwQO3jYYzpm9B99bdBddmnZviT/nUtwC9i2zJ3rf2aqNRlcO9NmcJnz167Fi5OWnzvxXk3p82ri+c/mf0MvH3Z+8j7rUjJeTJ2aPJA2VXvOqqmp8YN34veRKH2nny5ddZUfzEoddaDDYgYXUERl5vyXZJYRmgXplM0z8BJOIVRmTqN7vtm08vzzpV/8Qku3f1j7D/0/f+52cfIOqqqkNWuaNVOiIpajdlVw7uEUhZGvCb1Hk/OdXJl+d7l+p/mef02NnymTIz1ds/aJjuPSS306odTAbSZDh0o33ND8/2uz/D6ju+4q/eUviVScY3q8Kdl2zTtWSwSfl9p4nbvWXpPmzm26GW4PUWmZABTcPz4MZk8NHepT8yxY4K+Jkk8H3BrBdTU+Q/u5Q9f65fX1frZ3nFny9eWzz/TqEWvUr/pDSXu1+PAVzanhledodpSYLIHLRKpAs+z1Luvr/ezqqHZF166+8yxXm3L0aH/fcN11/nmmmq4HH+yzJ8RfE6W2Vjr7bO14zTX6zuf+W9LU7McGgFQHHeTvuzMNCAyunakzuGLmfIA+4r4i3CcxIKom9oEHSh9+KD3+uH++fHl6uvawjpg2DqUjFpN69Cj2WQDIgQAXUESRKXOc028XfEmfbKnU25/USlaAm81co4kTI6uaGp5l1qgR3d/x6QB69vS1tILtelRm6egeNqxZpzax9+u6a/7XtPDeU7JuZ6HaF5H960mzYHJ0wOf6fbR0enm2/RLgKj3l5c1PaZHr/3mffdKXnX56Ws75XEGkD44+zdepy3Z92JojeJyv4IbxNwu+rE9GTpCGHBW9HbMWgG3LqlXSV29MPB3f63X/YOed/c+JE6Vrr5XOPFNnTPi1Fg55UlL/3PutqkofnR2Y2vdVLR315/zPccAADe62oXXpiZo7O5sAV+eUz3fc9dfnbgdkC4AV0rx5fkbF00/7Wd2ZhDMUMNMZQHPFYn5gSybB/Uh4BlfPyo80vd/LklLKCcTrAkaUMEhSUyOdeKL0xhs+nXum4NaKFT7QnzJLDADQ+dDjChRRLLW4qiQ5p9kDn9e+g/+mo0f/uTA3m/F0IxMmRK+PSB0QM9d0kx4fadoGKfhi5rRgyFPpK+I33MGIq3jwbfn2f4reUejcGp1l/72lpm5LHdVVXZ1cqyzf/4NsAYV3MqSnw7Zj3jzpgAPSl48Z42dISprc55+qjOWu81JbuUmVZTkCWP3z6EjOx/Tp0tixqj9uoYavXdrymZEAOpcJE2QjR0iS3jzqbD15yKXS8cdLc0J1LWtqpLVrVRFr1A51b0bvJ16TK+7aa6NHW0+dqrqqj3Xr7JvzP8faWl8PNJ+ahJnk2/aJ1yRtTQ0jdFyZ0vCG/z4KWX+jEN+pZWW+7Z+hlicAtLmIwa9vLztbXzrvnYzXudTZXgmheuCS/KzYbMG1adN8armWpnEFAJQMAlxAEeWaiSSpMDN/5s/3NbCOOy56fUTqgDJrlM4913e+x1/XFueWom/1B75GwamnBgt8yqMu5ZslSTfPuiX6hcG57NL3H9q34W/ZDzJmjHTJJU3PozrSMtQqy+qzLIGJsWObvz90LvX1OTusThr7oDYdm302Y9723NMH1Naubd1+Kiqk1aulmTOzb3fKKf7zetZZrTsegJITr7+lsWPT2wbhOkJR7YaZM307JS7TbKtMbZhc6urap4N/+nTpW9+i7kZnc+KJvmZW1ACVYqGQPYBS0bOndNVVSZliYnLRNbOC+6SFQ57Unts9K02e3LRu/nw/I6u5GIAHANsEUhQCxRB08ESmKExViEZZLJY9PUmmGVxDh0pnnNH642cydqz0zDOJpxdPvlvnTfylNGqRT1EU3+aww3T9p7fr4sm/yLyv4Pf08EFXBs8zFLqN69ev6XGuQF2+/wfZUiANHOjzjNPxte3Klrs79W8w37+5bDnlKyqkfffNbz+FMGqUdNllwZPX2++4AIoukUY407Xr4IOlu+4qbJCgvWr5kX512zZpkv+XSRtkN8hp1Chfl7OZacFzKsZ7AdD59eihJcMf0YefVemXr41vGhSTKmhDzBr4vGYNfF5SKMC1++7MRgUAZESACyiiHpWf5N6oPUYdde8uKTnAVZahPlhBnXaaHxkbGNXjbVWXp9SuMJNmz1av229Xr+osReqnT5cefDD/Y4cDCrlqc+QKgC1YIL30UnIdgyiZCoGjczv1VP/3kW0WX2oHaj6f++uu6/ijEjv6+QEoiMQnPdNnft48aa+9Mq9vbhCpV6/2q6kxcqT0yivJA2OAuLb6nss2gMVMWrmyfY8JAK1w8PDHdfDwx7NvlO0alG2gIABgm0eACyiGXXfVi4ddoGGzI0ZepgaR2qODuKZGWrNGjQc+n1gUObKq0AGu0Hv7aOUp6lL2WdryvC1Z4msO/fjH+b+mrk765JPMdRXq6qQNG3xqmmzC9bqAVDvu6P9l09Dg/732Wv77jc9yBIAiiX9dJ9oM2QaEZPtu37Il87oobZAiOaP99/fpV1NrfwBtqRjBJgJcANrDfvtFL09Nvzptmv8O3ryZ2VsAgKyowQUUQ58+GnHzxYodF1GIvFjpQYYNU2PTGGz1rtqYvk0bBt+6ln/WtLtcI7mXLk1fVlEhjR/fvHO7/HJfeD7TtmvWSMuW+ZHnQFuKxaQLLsi9HemDAHRApuDalGtGdCY77+x/jhlTmBMqpKoqadYsX0cESFXo7+UxY3y7dMSIwu43m3i6z/ZK+wlg27Xnnj5oFSUc4Lr0UmmnnXwN4yFD2ufcAAAlixlcQLFkmn2ReqPcjrUf4sVf3fEnRG/QrVv7nMjIkZnXLVok7bFH9LrwiO58RqHm2qZnT5/vG2gP4UBrXV30Nlu3ts+5FAopCoFtgpmTTjih5Z/5ESOkK6/MPwUR1xZ0FPPmSf/7v9I++xRmf6ef7r/rWxosbonFi6WDDmrfYwLYNmXLQBG+N+/bt+3PBQDQadCKBTqarl2Tnw8Y0G6H3upydBgtWSJt2iQ9+aR/XogUQd26SRuD2WLnn+/3ma1WVbab73AwkM4vlKLPf1569FE/ujHKkCHS3/8u1da273k1kxOfP2BbYI0+6B6TkyZPzrF1DpkC+2E77CA9+2zrjwUUyoAB0g03FC5tpllxAk0EtwAUm5l00kl+wC/38gCAZqAlC3Q0M2ZIL73kO3FGjWrXlDjbdX0v+wbdu0urVvlR2lJhbobPOEO6+24/MyufAu7ZGruZamkBpWLkyOwzGBcs8NeEDl4LhkyKwDYimFXabv1QJ57oA1zhlMRAsbVnTTgA6Mw6+D0OAKBjIsAFdDQVFdJxxxXl0GdNuF8njf29fzJ0aO4XFKLY66BBvsMqX9k6Ebp39/vq3r315wV0RJWV0pw5xT6LnLY6OvuAbcIRR0gXS3b08vY5XnW1NGlS+xwLAAAUFjOzAABtgAAXgISymFNt5SZfA+OMMzJveO21Ph1gRxyxSscXUHQEuIBtQ8XwBs2YIVXtNqXYpwIAADq6jth/AAAoeQS4AKTbYYfss7NqatrvXFIx6gvo8HLW8wPQKZhJDz5Y7LMAAAAlYcSIYp8BAKATIsAFoLSUlRX7DADksKWRzykAAAAASVdcIa1f7wfSAgBQYMwPBpCuI6YOiDeGd9yxuOcBIKfN8QAXMy4BAACAbVvv3tKECcU+CwBAJ8UMLgClYfVqafNmqaqq2GcCIIfNW2leAAAAAAAAoG11wGkaAIquI866MCO4BZSIzY0EuAAAAAAAANC2CHABaDJokP85cWJRTwNAafuMGlwAAAAAAABoYwyxBtDknHOkt96SGhqKfSYASthmAlwAAAAAAABoYwS4ADSpqpIGDy72WQAocdTgAgAAAAAAQFujBwoAABTUkhGPqEflJ8U+DQAAAAAAAHRi1OACAAAFddqOD+gX+3yt2KcBAAAAAACATixngMvMGszsATN7xsyeNrPVwfJeZna/mb0Q/KwLlpuZXWdmL5rZk2Y2ObSv5cH2L5jZ8rZ7WwAAAAAAAAAAAOis8pnBtUXSWc65sZKmSVplZmMlrZH0G+fcKEm/CZ5L0j6SRgX/jpd0g+QDYpLWStpV0i6S1saDYgAAoBNqbCz2GQAAAAAAAKCTyhngcs694Zx7LHj8oaRnJW0n6QBJtwSb3SLpwODxAZJudd5DknqaWb2k+ZLud86965zbIOl+SXsX8s0AAIAOZOvWYp8BAAAAAAAAOqlm1eAys6GSJkl6WFJ/59wbwao3JfUPHm8n6bXQy14PlmVannqM483sETN75N///ndzTg8AAHQkzOACAAAAAABAG8k7wGVm3STdKel059wH4XXOOSfJFeKEnHM3OuemOuem9u3btxC7BAAAxcAMLgAAAAAAALSRvAJcZlYhH9y6zTn3k2DxW0HqQQU/3w6Wr5fUEHr5oGBZpuUAAKAzIsAFAAAAAACANpIzwGVmJum7kp51zl0bWvVzScuDx8sl/Sy0fJl50yS9H6QyvFfSPDOrM7M6SfOCZQAAoDPZf3+ppkbaa69inwkAAAAAAAA6qfI8ttld0lJJT5nZE8Gy8yVdKelHZnaMpFclLQnW3SNpX0kvSvpY0gpJcs69a2aXSvprsN0XnHPvFuJNAACADmS//aR995XMin0mAAAAAAAA6KTMl8/qmKZOneoeeeSRYp8GAAAAAAAAAAAA2pmZPeqcmxq1Lq8aXAAAAAAAAAAAAEBHQYALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSQoALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSYs65Yp9DRmb2b0mvFvs8SkwfSe8U+yQAbLO4BgEoJq5BAIqN6xCAYuIaBKCYuAahrQxxzvWNWtGhA1xoPjN7xDk3tdjnAWDbxDUIQDFxDQJQbFyHABQT1yAAxcQ1CMVAikIAAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuDqfG4t9AgC2aVyDABQT1yAAxcZ1CEAxcQ0CUExcg9DuqMEFAAAAAAAAAACAksIMLgAAAAAAAAAAAJQUAlydhJntbWbPmdmLZram2OcDoPMws1fM7Ckze8LMHgmW9TKz+83sheBnXbDczOy64Fr0pJlNDu1nebD9C2a2vFjvB0DHZ2Y3mdnbZva30LKCXXfMbEpwXXsxeK217zsE0JFluAatM7P1QXvoCTPbN7TuvOB68pyZzQ8tj7xHM7NhZvZwsPyHZlbZfu8OQEdnZg1m9oCZPWNmT5vZ6mA5bSEAbS7LNYi2EDokAlydgJmVSfq6pH0kjZV0uJmNLe5ZAehkZjvnJjrnpgbP10j6jXNulKTfBM8lfx0aFfw7XtINkr8Zk7RW0q6SdpG0Nn5DBgARbpa0d8qyQl53bpB0XOh1qccCsG27WdHXhS8H7aGJzrl7JCm47zpM0rjgNd8ws7Ic92hfDPY1UtIGSce06bsBUGq2SDrLOTdW0jRJq4LrB20hAO0h0zVIoi2EDogAV+ewi6QXnXMvO+c2S7pd0gFFPicAndsBkm4JHt8i6cDQ8lud95CknmZWL2m+pPudc+865zZIul/cRAHIwDn3oKR3UxYX5LoTrOvunHvI+WK0t4b2BQCZrkGZHCDpdufcJufcPyS9KH9/FnmPFsySmCPpjuD14esZAMg594Zz7rHg8YeSnpW0nWgLAWgHWa5BmdAWQlER4OoctpP0Wuj568p+4QGA5nCS7jOzR83s+GBZf+fcG8HjNyX1Dx5nuh5xnQLQWoW67mwXPE5dDgC5nBKk/7opNAuiudeg3pLec85tSVkOAGnMbKikSZIeFm0hAO0s5Rok0RZCB0SACwCQyx7Oucny08pXmdnM8Mpg1J8rypkB2CZx3QFQBDdIGiFpoqQ3JH2pqGcDoNMzs26S7pR0unPug/A62kIA2lrENYi2EDokAlydw3pJDaHng4JlANBqzrn1wc+3Jf2P/DTzt4LUFgp+vh1snul6xHUKQGsV6rqzPnicuhwAMnLOveWc2+qca5T0bfn2kNT8a9B/5NOHlacsB4AEM6uQ71i+zTn3k2AxbSEA7SLqGkRbCB0VAa7O4a+SRpnZMDOrlC/s9/MinxOATsDMasysNv5Y0jxJf5O/xiwPNlsu6WfB459LWmbeNEnvB2k07pU0z8zqgmns84JlAJCvglx3gnUfmNm0IP/7stC+ACBSvFM5cJB8e0jy16DDzKzKzIZJGiXpL8pwjxbMunhA0iHB68PXMwBQ0D75rqRnnXPXhlbRFgLQ5jJdg2gLoaMqz70JOjrn3BYzO0W+8VIm6Sbn3NNFPi0AnUN/Sf/j2zcql/R959yvzOyvkn5kZsdIelXSkmD7eyTtK19U9GNJKyTJOfeumV0q38CRpC845/It3g5gG2NmP5A0S1IfM3td0lpJV6pw152TJd0sqYukXwb/AEBSxmvQLDObKJ8S7BVJJ0iSc+5pM/uRpGckbZG0yjm3NdhPpnu0cyXdbmaXSXpcvhMJAOJ2l7RU0lNm9kSw7HzRFgLQPjJdgw6nLYSOyHzQFAAAAAAAAAAAACgNpCgEAAAAAAAAAABASSHABQAAAAAAAAAAgJJCgAsAAAAAAAAAAAAlhQAXAAAAAAAAAAAASgoBLgAAAAAAAAAAAJQUAlwAAAAA0Axm1tvMngj+vWlm64PHG83sG2143Flmtltb7R8AAAAASkl5sU8AAAAAAEqJc+4/kiZKkpmtk7TROXdNOxx6lqSNkv7UDscCAAAAgA6NGVwAAAAAUADBDKu7g8frzOwWM/uDmb1qZovM7Coze8rMfmVmFcF2U8zs92b2qJnda2b1wfLTzOwZM3vSzG43s6GSTpR0RjBbbIaZLTSzh83scTP7tZn1b+axXwkt/4uZjSzKLw4AAAAAWoAAFwAAAAC0jRGS5kjaX9L3JD3gnBsv6RNJ+wWBpuslHeKcmyLpJkmXB69dI2mSc26CpBOdc69I+qakLzvnJjrn/iDpj5KmOecmSbpd0jn5Hju03fvB8q9J+kqB3z8AAAAAtBlSFAIAAABA2/ilc+4zM3tKUpmkXwXLn5I0VNJoSTtKut/MFGzzRrDNk5JuM7OfSvpphv0PkvTDYNZXpaR/NOPYcT8I/fxys98hAAAAABQJM7gAAAAAoG1skiTnXKOkz5xzLljeKD/Y0CQ9HczImuicG++cmxdss5+kr0uaLOmvZhY1OPF6SV8LZmCdIKm6GceOcxkeAwAAAECHRoALAAAAAIrjOUl9zWy6JJlZhZmNM7OYpAbn3AOSzpXUQ1I3SR9Kqg29voek9cHj5S08h0NDP//cwn0AAAAAQLsjRSEAAAAAFIFzbrOZHSLpOjPrIX9/9hVJz0v6XrDMJF3nnHvPzO6SdIeZHSDpVEnrJP3YzDZI+q2kYS04jToze1J+xtfhrX1PAAAAANBerClTBQAAAABgW2Fmr0ia6px7p9jnAgAAAADNRYpCAAAAAAAAAAAAlBRmcAEAAAAAAAAAAKCkMIMLAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpPx/Taa0BNrWmiUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                                    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(30,8))\n", + "plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(Y_pred, color = 'blue', linewidth=1)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE: 2.0572089029888656 %\n" + ] + } + ], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서(원어로 작성된 문서)를 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문 번역가에 의한 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "f8f3967282314d3995245835bdaa8418", + "translation_date": "2025-09-04T01:53:23+00:00", + "source_file": "7-TimeSeries/3-SVR/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/3-SVR/working/notebook.ipynb b/translations/ko/7-TimeSeries/3-SVR/working/notebook.ipynb new file mode 100644 index 000000000..0c5e22237 --- /dev/null +++ b/translations/ko/7-TimeSeries/3-SVR/working/notebook.ipynb @@ -0,0 +1,699 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "이 노트북에서는 다음을 시연합니다:\n", + "\n", + "- SVM 회귀 모델 훈련을 위해 2D 시계열 데이터를 준비하는 방법 \n", + "- RBF 커널을 사용하여 SVR을 구현하는 방법 \n", + "- 플롯과 MAPE를 사용하여 모델을 평가하는 방법 \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 모듈 가져오기\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [ + "## 데이터 준비\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### 데이터 로드\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                                                    load
                                                    2012-01-01 00:00:002698.0
                                                    2012-01-01 01:00:002558.0
                                                    2012-01-01 02:00:002444.0
                                                    2012-01-01 03:00:002402.0
                                                    2012-01-01 04:00:002403.0
                                                    \n", + "
                                                    " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "이제 데이터를 필터링하고 스케일링하여 훈련을 위한 데이터를 준비해야 합니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "데이터를 (0, 1) 범위로 조정하세요.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [ + "### 시간 단계로 데이터 생성\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "우리의 SVR에서는 입력 데이터를 `[batch, timesteps]` 형식으로 변환합니다. 따라서 기존의 `train_data`와 `test_data`를 재구성하여 timesteps를 나타내는 새로운 차원을 추가합니다. 예를 들어, 우리는 `timesteps = 5`로 설정합니다. 따라서 모델에 대한 입력은 첫 4개의 timesteps에 대한 데이터이고, 출력은 5번째 timestep에 대한 데이터가 됩니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [], + "source": [ + "x_train, y_train = None\n", + "x_test, y_test = None\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [], + "source": [ + "# Fit model on training data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "### 모델 예측 만들기\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = None\n", + "y_test_pred = None" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = None\n", + "test_timestamps = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(25,6))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(10,3))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "## 전체 데이터셋 예측\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [], + "source": [ + "# Extracting load values as numpy array\n", + "data = None\n", + "\n", + "# Scaling\n", + "data = None\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=None\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = None, None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = None\n", + "Y = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(30,8))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "e86ce102239a14c44585623b9b924a74", + "translation_date": "2025-09-04T01:56:04+00:00", + "source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/ko/7-TimeSeries/README.md b/translations/ko/7-TimeSeries/README.md new file mode 100644 index 000000000..83edcafa3 --- /dev/null +++ b/translations/ko/7-TimeSeries/README.md @@ -0,0 +1,37 @@ + +# 시계열 예측 소개 + +시계열 예측이란 무엇일까요? 과거의 추세를 분석하여 미래의 사건을 예측하는 것입니다. + +## 지역 주제: 전 세계 전력 사용량 ✨ + +이 두 강의에서는 시계열 예측에 대해 소개합니다. 이는 머신 러닝의 비교적 덜 알려진 분야이지만, 산업 및 비즈니스 응용 분야를 포함한 다양한 분야에서 매우 가치가 있습니다. 신경망을 사용하여 이러한 모델의 유용성을 향상시킬 수 있지만, 우리는 과거 데이터를 기반으로 미래 성능을 예측하는 데 도움을 주는 고전적인 머신 러닝의 맥락에서 이를 연구할 것입니다. + +우리의 지역적 초점은 세계 전력 사용량입니다. 이는 과거 부하 패턴을 기반으로 미래 전력 사용량을 예측하는 방법을 배우기에 흥미로운 데이터셋입니다. 이러한 예측은 비즈니스 환경에서 매우 유용할 수 있음을 알 수 있습니다. + +![전력망](../../../translated_images/electric-grid.0c21d5214db09ffae93c06a87ca2abbb9ba7475ef815129c5b423d7f9a7cf136.ko.jpg) + +라자스탄 도로 위 전력탑 사진 제공: [Peddi Sai hrithik](https://unsplash.com/@shutter_log?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) ([Unsplash](https://unsplash.com/s/photos/electric-india?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText)) + +## 강의 목록 + +1. [시계열 예측 소개](1-Introduction/README.md) +2. [ARIMA 시계열 모델 구축](2-ARIMA/README.md) +3. [시계열 예측을 위한 서포트 벡터 회귀 모델 구축](3-SVR/README.md) + +## 크레딧 + +"시계열 예측 소개"는 [Francesca Lazzeri](https://twitter.com/frlazzeri)와 [Jen Looper](https://twitter.com/jenlooper)가 ⚡️와 함께 작성했습니다. 노트북은 처음 [Azure "Deep Learning For Time Series" 리포지토리](https://github.com/Azure/DeepLearningForTimeSeriesForecasting)에 온라인으로 게시되었으며, Francesca Lazzeri가 처음 작성했습니다. SVR 강의는 [Anirban Mukherjee](https://github.com/AnirbanMukherjeeXD)가 작성했습니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 신뢰할 수 있는 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/1-QLearning/README.md b/translations/ko/8-Reinforcement/1-QLearning/README.md new file mode 100644 index 000000000..331d4d5c0 --- /dev/null +++ b/translations/ko/8-Reinforcement/1-QLearning/README.md @@ -0,0 +1,256 @@ + +# 강화 학습과 Q-러닝 소개 + +![기계 학습에서 강화 학습 요약을 스케치노트로 표현](../../../../translated_images/ml-reinforcement.94024374d63348dbb3571c343ca7ddabef72adac0b8086d47164b769ba3a8a1d.ko.png) +> 스케치노트 제공: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +강화 학습은 세 가지 중요한 개념을 포함합니다: 에이전트, 상태, 그리고 각 상태에서의 행동 집합. 특정 상태에서 행동을 실행하면 에이전트는 보상을 받습니다. 컴퓨터 게임 슈퍼 마리오를 다시 상상해 보세요. 당신은 마리오이고, 게임 레벨에서 절벽 가장자리 옆에 서 있습니다. 당신 위에는 동전이 있습니다. 당신이 마리오로서 특정 위치에 있는 게임 레벨에 있다는 것이 바로 당신의 상태입니다. 오른쪽으로 한 걸음 이동하는 행동은 절벽 아래로 떨어지게 만들고 낮은 점수를 받게 됩니다. 하지만 점프 버튼을 누르면 점수를 얻고 살아남을 수 있습니다. 이는 긍정적인 결과이며, 높은 점수를 받아야 합니다. + +강화 학습과 시뮬레이터(게임)를 사용하면 살아남고 최대한 많은 점수를 얻는 보상을 극대화하는 방법을 배울 수 있습니다. + +[![강화 학습 소개](https://img.youtube.com/vi/lDq_en8RNOo/0.jpg)](https://www.youtube.com/watch?v=lDq_en8RNOo) + +> 🎥 위 이미지를 클릭하여 Dmitry가 강화 학습에 대해 설명하는 영상을 확인하세요. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/45/) + +## 사전 준비 및 설정 + +이 강의에서는 Python으로 코드를 실험해 볼 것입니다. 이 강의의 Jupyter Notebook 코드를 컴퓨터나 클라우드에서 실행할 수 있어야 합니다. + +[강의 노트북](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/notebook.ipynb)을 열어 강의를 따라가며 실습을 진행하세요. + +> **참고:** 클라우드에서 코드를 열 경우, 노트북 코드에서 사용되는 [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py) 파일도 가져와야 합니다. 해당 파일을 노트북과 동일한 디렉토리에 추가하세요. + +## 소개 + +이 강의에서는 러시아 작곡가 [Sergei Prokofiev](https://en.wikipedia.org/wiki/Sergei_Prokofiev)의 음악 동화 **[피터와 늑대](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)**에서 영감을 받아 피터가 환경을 탐험하고 맛있는 사과를 모으며 늑대를 피하도록 하는 **강화 학습**을 탐구할 것입니다. + +**강화 학습**(RL)은 여러 실험을 실행하여 **에이전트**가 특정 **환경**에서 최적의 행동을 학습할 수 있도록 하는 학습 기법입니다. 이 환경에서 에이전트는 **보상 함수**로 정의된 **목표**를 가져야 합니다. + +## 환경 + +간단히 하기 위해, 피터의 세계를 `width` x `height` 크기의 정사각형 보드로 간주해 봅시다: + +![피터의 환경](../../../../translated_images/environment.40ba3cb66256c93fa7e92f6f7214e1d1f588aafa97d266c11d108c5c5d101b6c.ko.png) + +이 보드의 각 셀은 다음 중 하나일 수 있습니다: + +* **땅**: 피터와 다른 생물이 걸을 수 있는 곳. +* **물**: 걸을 수 없는 곳. +* **나무** 또는 **풀**: 쉴 수 있는 장소. +* **사과**: 피터가 먹고 싶어하는 것. +* **늑대**: 위험하며 피해야 하는 존재. + +이 환경을 다루는 코드는 별도의 Python 모듈 [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py)에 포함되어 있습니다. 이 코드는 개념을 이해하는 데 중요하지 않으므로 모듈을 가져와 샘플 보드를 생성하는 데 사용합니다(코드 블록 1): + +```python +from rlboard import * + +width, height = 8,8 +m = Board(width,height) +m.randomize(seed=13) +m.plot() +``` + +이 코드는 위 그림과 유사한 환경을 출력해야 합니다. + +## 행동과 정책 + +이 예제에서 피터의 목표는 늑대와 장애물을 피하면서 사과를 찾는 것입니다. 이를 위해 그는 사과를 찾을 때까지 걸어다닐 수 있습니다. + +따라서 어떤 위치에서든 그는 다음 행동 중 하나를 선택할 수 있습니다: 위, 아래, 왼쪽, 오른쪽. + +이 행동을 사전으로 정의하고, 해당 좌표 변화에 매핑합니다. 예를 들어, 오른쪽으로 이동(`R`)은 `(1,0)`에 해당합니다(코드 블록 2): + +```python +actions = { "U" : (0,-1), "D" : (0,1), "L" : (-1,0), "R" : (1,0) } +action_idx = { a : i for i,a in enumerate(actions.keys()) } +``` + +이 시나리오의 전략과 목표를 요약하면 다음과 같습니다: + +- **전략**: 에이전트(피터)의 전략은 **정책**이라고 불리는 함수로 정의됩니다. 정책은 주어진 상태에서 행동을 반환합니다. 이 경우, 문제의 상태는 플레이어의 현재 위치를 포함한 보드로 표현됩니다. + +- **목표**: 강화 학습의 목표는 문제를 효율적으로 해결할 수 있는 좋은 정책을 학습하는 것입니다. 하지만 기본적으로 가장 간단한 정책인 **랜덤 워크**를 고려해 봅시다. + +## 랜덤 워크 + +먼저 랜덤 워크 전략을 구현하여 문제를 해결해 봅시다. 랜덤 워크에서는 허용된 행동 중에서 다음 행동을 무작위로 선택하여 사과에 도달할 때까지 이동합니다(코드 블록 3). + +1. 아래 코드를 사용하여 랜덤 워크를 구현하세요: + + ```python + def random_policy(m): + return random.choice(list(actions)) + + def walk(m,policy,start_position=None): + n = 0 # number of steps + # set initial position + if start_position: + m.human = start_position + else: + m.random_start() + while True: + if m.at() == Board.Cell.apple: + return n # success! + if m.at() in [Board.Cell.wolf, Board.Cell.water]: + return -1 # eaten by wolf or drowned + while True: + a = actions[policy(m)] + new_pos = m.move_pos(m.human,a) + if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water: + m.move(a) # do the actual move + break + n+=1 + + walk(m,random_policy) + ``` + + `walk` 호출은 해당 경로의 길이를 반환해야 하며, 실행마다 결과가 달라질 수 있습니다. + +1. 워크 실험을 여러 번(예: 100회) 실행하고 결과 통계를 출력하세요(코드 블록 4): + + ```python + def print_statistics(policy): + s,w,n = 0,0,0 + for _ in range(100): + z = walk(m,policy) + if z<0: + w+=1 + else: + s += z + n += 1 + print(f"Average path length = {s/n}, eaten by wolf: {w} times") + + print_statistics(random_policy) + ``` + + 평균 경로 길이가 약 30-40 단계로 나타나며, 이는 평균적으로 가장 가까운 사과까지의 거리가 약 5-6 단계인 점을 고려할 때 꽤 많은 단계입니다. + + 랜덤 워크 동안 피터의 움직임을 확인할 수도 있습니다: + + ![피터의 랜덤 워크](../../../../8-Reinforcement/1-QLearning/images/random_walk.gif) + +## 보상 함수 + +정책을 더 지능적으로 만들기 위해 어떤 움직임이 다른 움직임보다 "더 나은지"를 이해해야 합니다. 이를 위해 목표를 정의해야 합니다. + +목표는 **보상 함수**로 정의될 수 있으며, 각 상태에 대해 점수를 반환합니다. 숫자가 높을수록 보상이 더 좋습니다(코드 블록 5). + +```python +move_reward = -0.1 +goal_reward = 10 +end_reward = -10 + +def reward(m,pos=None): + pos = pos or m.human + if not m.is_valid(pos): + return end_reward + x = m.at(pos) + if x==Board.Cell.water or x == Board.Cell.wolf: + return end_reward + if x==Board.Cell.apple: + return goal_reward + return move_reward +``` + +보상 함수의 흥미로운 점은 대부분의 경우 *게임이 끝날 때* 실질적인 보상을 받는다는 것입니다. 이는 알고리즘이 긍정적인 보상으로 이어지는 "좋은" 단계를 기억하고 그 중요성을 높여야 하며, 나쁜 결과로 이어지는 모든 움직임은 억제해야 한다는 것을 의미합니다. + +## Q-러닝 + +여기서 논의할 알고리즘은 **Q-러닝**이라고 합니다. 이 알고리즘에서 정책은 **Q-테이블**이라는 함수(또는 데이터 구조)로 정의됩니다. 이는 주어진 상태에서 각 행동의 "좋음"을 기록합니다. + +Q-테이블은 종종 테이블 또는 다차원 배열로 표현하기 편리하기 때문에 이렇게 불립니다. 보드의 크기가 `width` x `height`인 경우, Q-테이블은 `width` x `height` x `len(actions)` 형태의 numpy 배열로 표현할 수 있습니다(코드 블록 6): + +```python +Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions) +``` + +Q-테이블의 모든 값을 동일한 값으로 초기화합니다. 여기서는 0.25로 초기화합니다. 이는 모든 상태에서 모든 움직임이 동일하게 좋은 "랜덤 워크" 정책에 해당합니다. Q-테이블을 `plot` 함수에 전달하여 보드에서 테이블을 시각화할 수 있습니다: `m.plot(Q)`. + +![피터의 환경](../../../../translated_images/env_init.04e8f26d2d60089e128f21d22e5fef57d580e559f0d5937b06c689e5e7cdd438.ko.png) + +각 셀의 중앙에는 이동 방향을 나타내는 "화살표"가 있습니다. 모든 방향이 동일하기 때문에 점이 표시됩니다. + +이제 시뮬레이션을 실행하고 환경을 탐색하며 Q-테이블 값을 더 나은 분포로 학습해야 합니다. 이를 통해 사과를 찾는 경로를 훨씬 더 빠르게 찾을 수 있습니다. + +## Q-러닝의 핵심: 벨만 방정식 + +움직이기 시작하면 각 행동은 해당 보상을 가지게 됩니다. 즉, 이론적으로 가장 높은 즉각적인 보상을 기반으로 다음 행동을 선택할 수 있습니다. 하지만 대부분의 상태에서는 움직임이 사과에 도달하는 목표를 달성하지 못하므로 어떤 방향이 더 나은지 즉시 결정할 수 없습니다. + +> 즉각적인 결과가 중요한 것이 아니라, 시뮬레이션 끝에서 얻을 최종 결과가 중요하다는 점을 기억하세요. + +이 지연된 보상을 고려하기 위해 **[동적 프로그래밍](https://en.wikipedia.org/wiki/Dynamic_programming)**의 원칙을 사용해야 합니다. 이는 문제를 재귀적으로 생각할 수 있도록 합니다. + +현재 상태 *s*에 있다고 가정하고 다음 상태 *s'*로 이동하려고 합니다. 이렇게 하면 보상 함수로 정의된 즉각적인 보상 *r(s,a)*를 받게 되며, 추가적인 미래 보상도 받게 됩니다. Q-테이블이 각 행동의 "매력"을 올바르게 반영한다고 가정하면, 상태 *s'*에서 *Q(s',a')* 값이 최대인 행동 *a'*를 선택할 것입니다. 따라서 상태 *s*에서 얻을 수 있는 최상의 미래 보상은 `max` + +## 정책 확인하기 + +Q-Table은 각 상태에서 각 행동의 "매력도"를 나열하고 있으므로, 이를 사용하여 우리 세계에서 효율적인 탐색을 정의하는 것은 매우 간단합니다. 가장 간단한 경우, Q-Table 값이 가장 높은 행동을 선택하면 됩니다: (코드 블록 9) + +```python +def qpolicy_strict(m): + x,y = m.human + v = probs(Q[x,y]) + a = list(actions)[np.argmax(v)] + return a + +walk(m,qpolicy_strict) +``` + +> 위 코드를 여러 번 실행해보면, 가끔 코드가 "멈추는" 현상을 경험할 수 있습니다. 이 경우 노트북에서 STOP 버튼을 눌러 중단해야 합니다. 이는 두 상태가 최적의 Q-Value 관점에서 서로를 "가리키는" 상황이 발생할 수 있기 때문입니다. 이 경우 에이전트는 두 상태 사이를 무한히 이동하게 됩니다. + +## 🚀도전 과제 + +> **과제 1:** `walk` 함수를 수정하여 경로의 최대 길이를 특정 단계 수(예: 100)로 제한하고, 위 코드가 이 값을 반환하는 것을 확인하세요. + +> **과제 2:** `walk` 함수가 이전에 방문했던 장소로 다시 돌아가지 않도록 수정하세요. 이렇게 하면 `walk`가 루프에 빠지는 것을 방지할 수 있지만, 에이전트가 탈출할 수 없는 위치에 "갇히는" 상황은 여전히 발생할 수 있습니다. + +## 탐색 + +더 나은 탐색 정책은 학습 중에 사용했던 정책으로, 탐색과 활용을 결합한 것입니다. 이 정책에서는 Q-Table 값에 비례하여 각 행동을 특정 확률로 선택합니다. 이 전략은 여전히 에이전트가 이미 탐색한 위치로 돌아가는 결과를 초래할 수 있지만, 아래 코드에서 볼 수 있듯이 목표 위치까지의 평균 경로가 매우 짧아지는 결과를 가져옵니다(참고로 `print_statistics`는 시뮬레이션을 100번 실행합니다): (코드 블록 10) + +```python +def qpolicy(m): + x,y = m.human + v = probs(Q[x,y]) + a = random.choices(list(actions),weights=v)[0] + return a + +print_statistics(qpolicy) +``` + +이 코드를 실행한 후, 이전보다 훨씬 짧은 평균 경로 길이를 얻을 수 있습니다. 이는 보통 3~6 범위에 속합니다. + +## 학습 과정 조사 + +앞서 언급했듯이, 학습 과정은 문제 공간 구조에 대한 지식을 탐색하고 활용하는 균형입니다. 학습 결과(에이전트가 목표로 가는 짧은 경로를 찾는 능력)가 개선된 것을 확인했지만, 학습 과정 중 평균 경로 길이가 어떻게 변화하는지 관찰하는 것도 흥미롭습니다: + +학습 내용을 요약하면 다음과 같습니다: + +- **평균 경로 길이 증가**. 처음에는 평균 경로 길이가 증가합니다. 이는 환경에 대해 아무것도 모를 때, 나쁜 상태(물이나 늑대)에 갇히기 쉽기 때문입니다. 더 많은 것을 배우고 이 지식을 활용하기 시작하면, 환경을 더 오래 탐색할 수 있지만, 여전히 사과가 어디에 있는지 잘 모르는 상태입니다. + +- **학습이 진행됨에 따라 경로 길이 감소**. 충분히 학습한 후에는 에이전트가 목표를 달성하기 쉬워지고, 경로 길이가 줄어들기 시작합니다. 하지만 여전히 탐색을 열어두고 있기 때문에, 종종 최적 경로에서 벗어나 새로운 옵션을 탐색하며 경로가 최적보다 길어지기도 합니다. + +- **경로 길이의 급격한 증가**. 그래프에서 관찰할 수 있는 또 다른 점은, 어느 순간 경로 길이가 급격히 증가한다는 것입니다. 이는 과정의 확률적 특성을 나타내며, Q-Table 계수를 새로운 값으로 덮어쓰면서 "망칠" 수 있음을 의미합니다. 이는 학습 후반부에 학습률을 줄여 Q-Table 값을 소폭으로만 조정하도록 함으로써 최소화할 수 있습니다. + +전반적으로, 학습 과정의 성공과 품질은 학습률, 학습률 감소, 할인 계수와 같은 매개변수에 크게 의존합니다. 이러한 매개변수는 **하이퍼파라미터**라고 불리며, 학습 중에 최적화되는 **파라미터**(예: Q-Table 계수)와 구분됩니다. 최적의 하이퍼파라미터 값을 찾는 과정을 **하이퍼파라미터 최적화**라고 하며, 이는 별도의 주제로 다룰 가치가 있습니다. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/46/) + +## 과제 +[더 현실적인 세계](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/1-QLearning/assignment.md b/translations/ko/8-Reinforcement/1-QLearning/assignment.md new file mode 100644 index 000000000..ed41bcffc --- /dev/null +++ b/translations/ko/8-Reinforcement/1-QLearning/assignment.md @@ -0,0 +1,41 @@ + +# 더 현실적인 세계 + +우리의 상황에서 피터는 거의 지치거나 배고프지 않은 상태로 이동할 수 있었습니다. 더 현실적인 세계에서는 피터가 가끔씩 앉아서 쉬어야 하고, 스스로 먹을 것도 챙겨야 합니다. 다음 규칙들을 구현하여 우리의 세계를 더 현실적으로 만들어 봅시다: + +1. 한 장소에서 다른 장소로 이동할 때, 피터는 **에너지**를 잃고 약간의 **피로**를 얻게 됩니다. +2. 피터는 사과를 먹음으로써 에너지를 얻을 수 있습니다. +3. 피터는 나무 아래나 풀밭에서 쉬면서 피로를 해소할 수 있습니다 (즉, 나무나 풀이 있는 보드 위치로 이동하면 됨 - 초록색 필드). +4. 피터는 늑대를 찾아내고 처치해야 합니다. +5. 늑대를 처치하려면, 피터는 특정 수준의 에너지와 피로를 유지해야 하며, 그렇지 않으면 전투에서 패배합니다. + +## 지침 + +해결책의 시작점으로 원본 [notebook.ipynb](notebook.ipynb) 노트북을 사용하세요. + +게임 규칙에 따라 위의 보상 함수를 수정하고, 강화 학습 알고리즘을 실행하여 게임에서 승리하기 위한 최적의 전략을 학습하세요. 그리고 무작위 이동(random walk)과 알고리즘의 결과를 비교하여 승리 및 패배 횟수를 평가하세요. + +> **Note**: 새로운 세계에서는 상태가 더 복잡해지며, 인간의 위치 외에도 피로와 에너지 수준을 포함합니다. 상태를 (Board, energy, fatigue) 형태의 튜플로 표현하거나, 상태를 정의하는 클래스를 만들 수도 있습니다(예: `Board`에서 파생). 또는 [rlboard.py](../../../../8-Reinforcement/1-QLearning/rlboard.py) 파일의 기존 `Board` 클래스를 수정할 수도 있습니다. + +해결책에서는 무작위 이동 전략에 대한 코드를 유지하고, 알고리즘과 무작위 이동의 결과를 마지막에 비교하세요. + +> **Note**: 작동을 위해 하이퍼파라미터를 조정해야 할 수도 있습니다. 특히 에포크 수를 조정해야 합니다. 게임의 성공(늑대와의 전투 승리)은 드문 이벤트이므로, 훨씬 더 긴 학습 시간이 필요할 수 있습니다. + +## 평가 기준 + +| 기준 | 우수 | 적절 | 개선 필요 | +| --------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------- | +| | 새로운 세계 규칙 정의, Q-러닝 알고리즘, 텍스트 설명이 포함된 노트북이 제시되며, Q-러닝이 무작위 이동과 비교하여 결과를 크게 개선함. | 노트북이 제시되고, Q-러닝이 구현되어 무작위 이동과 비교하여 결과를 개선하지만, 개선 정도가 크지 않거나, 노트북이 제대로 문서화되지 않고 코드 구조가 잘 정리되지 않음. | 세계 규칙을 재정의하려는 시도가 있지만, Q-러닝 알고리즘이 작동하지 않거나, 보상 함수가 완전히 정의되지 않음. | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 신뢰할 수 있는 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/1-QLearning/notebook.ipynb b/translations/ko/8-Reinforcement/1-QLearning/notebook.ipynb new file mode 100644 index 000000000..a842eca09 --- /dev/null +++ b/translations/ko/8-Reinforcement/1-QLearning/notebook.ipynb @@ -0,0 +1,411 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "17e5a668646eabf5aabd0e9bfcf17876", + "translation_date": "2025-09-04T02:53:18+00:00", + "source_file": "8-Reinforcement/1-QLearning/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# 피터와 늑대: 강화 학습 입문\n", + "\n", + "이 튜토리얼에서는 경로 탐색 문제에 강화 학습을 적용하는 방법을 배워봅니다. 설정은 러시아 작곡가 [세르게이 프로코피예프](https://en.wikipedia.org/wiki/Sergei_Prokofiev)의 음악 동화 [피터와 늑대](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)에서 영감을 받았습니다. 이 이야기는 어린 개척자 피터가 집을 나와 숲의 공터로 나가 늑대를 쫓는 용감한 모험을 다룹니다. 우리는 피터가 주변 지역을 탐험하고 최적의 내비게이션 지도를 구축할 수 있도록 돕는 머신 러닝 알고리즘을 훈련시킬 것입니다.\n", + "\n", + "먼저, 유용한 라이브러리를 몇 가지 가져와 봅시다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## 강화 학습 개요\n", + "\n", + "**강화 학습**(Reinforcement Learning, RL)은 **환경**에서 **에이전트**의 최적 행동을 학습하기 위해 여러 실험을 실행하는 학습 기법입니다. 이 환경 속 에이전트는 **보상 함수**로 정의된 특정 **목표**를 가져야 합니다.\n", + "\n", + "## 환경\n", + "\n", + "간단히 말해, 피터의 세계를 `width` x `height` 크기의 정사각형 보드로 생각해 봅시다. 이 보드의 각 셀은 다음 중 하나일 수 있습니다:\n", + "* **땅** - 피터와 다른 생명체가 걸을 수 있는 곳\n", + "* **물** - 당연히 걸을 수 없는 곳\n", + "* **나무** 또는 **풀** - 쉴 수 있는 장소\n", + "* **사과** - 피터가 자신을 먹이기 위해 찾고 싶어하는 것\n", + "* **늑대** - 위험하므로 피해야 하는 존재\n", + "\n", + "환경을 다루기 위해 우리는 `Board`라는 클래스를 정의할 것입니다. 이 노트북이 너무 복잡해지지 않도록, 보드와 관련된 모든 코드는 별도의 `rlboard` 모듈로 옮겨 두었습니다. 이제 이 모듈을 가져올 것입니다. 구현의 내부 세부 사항을 더 알고 싶다면 이 모듈을 살펴볼 수 있습니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "이제 무작위 보드를 만들어보고 어떻게 보이는지 확인해봅시다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 1" + ] + }, + { + "source": [ + "## 행동과 정책\n", + "\n", + "우리의 예시에서, 피터의 목표는 사과를 찾는 것이며, 늑대와 다른 장애물을 피하는 것입니다. 이러한 행동을 사전(dictionary)으로 정의하고, 해당 좌표 변화 쌍에 매핑하세요.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 2" + ] + }, + { + "source": [ + "우리 에이전트(Peter)의 전략은 이른바 **정책(policy)**으로 정의됩니다. 가장 간단한 정책인 **랜덤 워크(random walk)**를 살펴보겠습니다.\n", + "\n", + "## 랜덤 워크\n", + "\n", + "먼저 랜덤 워크 전략을 구현하여 문제를 해결해 봅시다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "# Let's run a random walk experiment several times and see the average number of steps taken: code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 4" + ] + }, + { + "source": [ + "## 보상 함수\n", + "\n", + "정책을 더 똑똑하게 만들기 위해서는 어떤 움직임이 다른 움직임보다 \"더 나은지\"를 이해해야 합니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 5" + ] + }, + { + "source": [ + "## Q-러닝\n", + "\n", + "Q-테이블 또는 다차원 배열을 만듭니다. 우리의 보드가 `width` x `height` 크기를 가지므로, Q-테이블은 `width` x `height` x `len(actions)` 형태의 numpy 배열로 표현할 수 있습니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 6" + ] + }, + { + "source": [ + "Q-테이블을 `plot` 함수에 전달하여 보드에 테이블을 시각화하십시오:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "name 'm' is not defined", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mQ\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'm' is not defined" + ] + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Q-러닝의 본질: 벨만 방정식과 학습 알고리즘\n", + "\n", + "우리의 학습 알고리즘을 위한 의사 코드 작성:\n", + "\n", + "* 모든 상태와 행동에 대해 동일한 숫자로 Q-테이블 Q 초기화\n", + "* 학습률 $\\alpha\\leftarrow 1$ 설정\n", + "* 시뮬레이션을 여러 번 반복\n", + " 1. 랜덤 위치에서 시작\n", + " 1. 반복\n", + " 1. 상태 $s$에서 행동 $a$ 선택\n", + " 2. 행동을 실행하여 새로운 상태 $s'$로 이동\n", + " 3. 게임 종료 조건에 도달하거나 총 보상이 너무 작으면 시뮬레이션 종료 \n", + " 4. 새로운 상태에서 보상 $r$ 계산\n", + " 5. 벨만 방정식에 따라 Q-함수 업데이트: $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$\n", + " 7. 총 보상을 업데이트하고 $\\alpha$ 감소.\n", + "\n", + "## 탐색 vs. 활용\n", + "\n", + "최적의 접근법은 탐색과 활용 사이의 균형을 유지하는 것입니다. 환경에 대해 더 많이 학습할수록 최적의 경로를 따를 가능성이 높아지지만, 가끔씩은 탐색되지 않은 경로를 선택하는 것이 중요합니다.\n", + "\n", + "## Python 구현\n", + "\n", + "이제 학습 알고리즘을 구현할 준비가 되었습니다. 그 전에, Q-테이블의 임의의 숫자를 해당 행동에 대한 확률 벡터로 변환하는 함수가 필요합니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 7" + ] + }, + { + "source": [ + "우리는 벡터의 모든 구성 요소가 동일한 초기 상황에서 0으로 나누는 것을 방지하기 위해 원래 벡터에 소량의 `eps`를 추가합니다.\n", + "\n", + "실제로 실행할 학습 알고리즘은 **에포크**라고도 불리는 5000번의 실험으로 구성됩니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "# code block 8" + ] + }, + { + "source": [ + "이 알고리즘을 실행한 후, Q-테이블은 각 단계에서 다양한 행동의 매력을 정의하는 값들로 업데이트되어야 합니다. 여기에서 테이블을 시각화하십시오:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUxd7H8c9sS7KbShJCL1IEBAURFEUBxXoVVFBARS7YQETgiooFsaGAXgUsIGIDHzuCXiuKICDKpYoiHUJJAmkk2Wzfc+b5YzcRrgSQZHM2ZN6+8kr27ObMlyX8nMyZmSOklCiKoig1h8noAIqiKMrfowq3oihKDaMKt6IoSg2jCreiKEoNowq3oihKDaMKt6IoSg0TscIthLhCCLFVCLFDCDE+Uu0oiqLUNiIS87iFEGZgG3ApsB9YDQySUv5R5Y0piqLUMpHqcXcFdkgpd0kp/cAHQN8ItaUoilKrRKpwNwT2HfZ4f/iYoiiKUkmWCJ1XHOXYEWMyQog7gTsBrFZr5zPPPDNCUSrP5/PhdDpJS0szOkqFioqKsFqtOBwOo6NUKCcnh7p162I2m42OUqG9e/fSpEkTo2NUKBgMkpeXR/369Y2OUqHS0lKCwSDJyclGR6lQXl4eiYmJxMTEGB2lQps2bcLj8RytloKUsso/gG7At4c9fgh4qKLX161bV0az7du3y9mzZxsd45gWLFggV65caXSMY3rqqadkYWGh0TEqpOu6vOeee4yOcUwFBQVy0qRJRsc4phUrVsiFCxcaHeOYZs2aJbdv3250jGMK18Wj1sxIDZWsBloJIZoLIWzAQODzCLWlKIpSq0SkcEspg8A9wLfAZuAjKeWmSLSlKMqpZf369Xi9XqNjRLVIjXEjpfwK+CpS51cU5dSSlZXFq6++SkxMDPPnz6dVq1YMGTLE6FhRSa2cVBTFcFJKcnJy2LZtG8OHD6d79+589NFHZdfIlP+hCreiKIYLBAJMnjyZF198kX/961+cccYZDBgwgLfeesvoaFEpYkMliqIoJ8pmszF+/Hhuu+02OnTowMcff8z333/PV1+p0dajqXE97l27dvHRRx8ZHUNRlCrWtGlT+vfvj9lsZsqUKdx7771GR4paNarH3adPH2JjYzn33HPp0KEDS5YsiepFMYqinLj09HTuuOMO9u3bx6JFi+jVq5fRkaJWjelx79q1i9jYWGbNmkW/fv24/PLL+f33342OpShKFWvcuDHffPMN/fv3NzpKldu0aRO6rlf6PDWmcK9du5auXbtSUlLCW2+9Rb169Vi+fLm66qwop6D4+HjOPPNMVq1aZXSUKrNkyRLee+89NE2r9LlqzFDJDTfcQIcOHThw4AD169dn3Lhx5OTkIMTRl/IrilJzORwOLrjgAn744QfOPfdco+NU2s8//8zPP//MuHHjsFqtlT5fjelxQ+j/WFdffTUul4sDBw4wfPhwioqKjI6lKEoExMTEIKXE7/cbHeWkSSnZsmUL8+bNY/To0aSkpFTJeWtU4U5LS6Nnz55MmDCBjIwM3n77bSZMmMCOHTuMjqYoShW75JJLcDqd/PLLL0ZHOWmrVq1i2rRpvPLKK1W6c2eNKtxlyoZHkpOTGT16NPPmzSMzM9PYUIqiKIdZsmQJ33//PS+88EKVD+nWyMJ9uJYtWzJ06FAee+wx3G53xNurigsLkSSlrJKr1pFUEzLquq4ufEeB4cOH8/rrr1fLv+2qIqVkw4YN/PDDD4wcORK73V7lbdT4wg3QrFkzZs2axa233kpOTk7E2snKyqJfv35s3ryZgoKCiLVTGevXr+eOO+5gy5YtUfnDHgwGee+993jhhRfYsmVLVBZwp9PJxIkT+fLLL9m1a5fRcaJWdnZ2xMefmzZtihCC3bt3R7SdqrRlyxamT5/OhAkTqmxM+3+dEoUbwG6389JLL/HSSy+xffv2iLTx+eef89JLLzFmzBhmz54dkTYq6/PPP2f06NEMGDCAdevWGR3nL9xuN4WFhTRt2pSLL744Krfv3LFjB927d2fDhg1cd911RseJOkVFRcyZM4eXXnqJ2bNn88UXX0S0vbfffptbbrklom1UlWXLljFnzhzeeOMNbDZbxNqpMdMBT0T9+vUZOnQob7zxBmPHjiUjI6NKzz9ixAjGjBmDpml88sknbNmy5aTPFRcXx8yZM6t87Ou+++5j1KhR6LrOpEmTqFu37kmfq127djz44INVmA4SExPp3r0706ZNQ9M07rzzzkrdyuy6667j2muvrcKE0KlTJ95//322bdtGVlZWpbcWHT9+PG3btq2idMY7cOAA8+bN44033uC///0vzz33HFdffbXRsQy3fPlyVq5cyWOPPYbJFNk+8SlVuAFatWrF2LFjGTFiBPPmzavSK7kej4dRo0bx9ddfk5mZyV133XXS5/J6vXTu3LlKxlHbt29Pv379gND42vjx45kyZQqXX345nTt3Punz/v7773Tq1KnS+QAGDx5cnq9x48Y88MADbNy4kQcffJDY2NiTPu/HH3/ME088USUZp02bBoSGc3r06EGbNm1Yt24djz76aKXO+8QTT7BpU9XcR+STTz6p8LnS0lIuuuiiiI/Ne71ecnNzueGGG1iwYAFms5mXX36Ze+65JyLtCSGYPn06DzzwAFOnTo1IG5UhpWTz5s0sWLCAxx9/nMTExIi3ecoVboCMjAzmzZvHPffcw2OPPUbz5s2r5LzPPvss7du35+OPP+aOO+6gVatWJ30uKSVr1qypklwQGiIBGDlyJD169GDXrl20a9euUhlbtmxJ3759qySfEIJJkyZRVFTE1KlTSU1NJTk5mVatWlWqcD/00EOMHz++yjJ+8skn/PLLLyxfvpxNmzbRuXPnSr2HAHPnzq2SfMAx1y04HI4q/ZmqyJYtW7j//vuZM2cO27ZtY+bMmSxZsiRi7QkhqFevHgcPHoxYG5WxYcMGXnrpJebMmRPxnnaZU7JwQ+iH+LHHHuOdd95h8ODBtGjRotLnfPLJJ3nppZdYunRppYc4hBARWfU5a9Ys5s+fz48//ljpc0UiY0pKCqNHjyY/P59JkyZV+nxVmbGsp9q9e3ecTie33HILjRs3rvR5q+sfc6R+pv5Xeno6HTt2ZPbs2QQCAW6++eaIt1unTh2aNWvGhg0b6NixY0Tb+jt++OEHli5dyqxZs6rt7xlO4cIN0Lx5cwYPHsxzzz3HlClTSEpKqvQ5R40aVQXJIsfhcHDrrbcaHeOYasJ475VXXml0hKiVnp7OpEmT2LhxIy1atKjS4ciKpKWlcdppp7FmzRrOOussw7e6kFKyevVqVq5cydixYyN6IfJoTplZJRVp0aIFU6dOZciQIVE7hU9RaqIzzzyzWop2mQEDBrBmzZqoWCm9detW5syZw3333RexKX/HcsoXbgjNZHjzzTd5+umnIzZVUFGUyIqNjSUYDBq+CO7nn39mxowZvPbaa8TFxRmSoVYUbgiNkY0cOZJ58+axd+9eo+MoinISBg4cyNy5c6t94dbzzz+PpmksWbKEJUuW8Nxzzxk6XFNrCjeEZknccccdjB8/PipXFSqKcmy9e/fmm2++qbbtCL7++mvOPfdcTjvtNLp168a3337LiBEjqnWI6GhqVeGG0N013njjDYYOHcr+/fuNjqMoyt/UsmXLahnn9vl8ZGZmMnbsWFq2bEkwGERKWa2zRypifAIDxMXF8cILL7BixQqjoyiK8je9/fbb3H777RFvx+l0sm/fPjp06MDXX3/Nl19+icPhiIp9U2pl4QZo2LAhAwcONDqGoih/k81mY9CgQbz33nsRbSctLY0zzjiDf/7zn9xwww0MGzaMoqKiqJhHfkrP41YU5dRjsVjo2LEjn332GTfddFNE2+rbty8XXHAB9913Hy+//LIhU/+ORhVuRVFqnKSkJKxWK3l5eaSnp0esnfj4eOLj48v3iDF64U+ZWjtUoihKzXXGGWeQkJBQbbc1q67tBE6U6nErilIjDRgwwPBpeUapVOEWQmQCTkADglLKc4QQdYAPgWZAJnCjlPJQ5WIqiqIcqVmzZkZHMExVDJX0klJ2lFKeE348HlgspWwFLA4/VhRFUapIJMa4+wLvhL9+B6ja25MoiqLUcpUt3BJYJIRYK4S4M3wsQ0qZAxD+fPL3zlIURVH+orIXJy+QUmYLIeoC3wkhTvgmjOFCfyeEptxE8659+/fvp6ioKKoz5ufno+t6VGd0uVzs3r2b/Px8o6NUyO/3R/V7WFJSgsvliuqMBw4ciPp/L0VFRezbt6/a9jw5GcfaSKtShVtKmR3+nCuEWAB0BQ4KIepLKXOEEPWB3Aq+dzYwGyA1NVUuXbq0MlEiqqioiP379xPNGXfu3Indbo/qPcfz8/NZuXIlMTExRkepUGlpaVT/PXu9Xn7O+5nPln5mdJQK2XPsXOK5pNp38Ps7srKyWLt2bVTs7V2RY75/UsqT+gAcQMJhX68ErgCeA8aHj48Hph7vXHXr1pXRbPv27XL27NlGxzimBQsWyJUrVxod45ieeuopWVhYaHSMCum6Lu+55x6jYxxTQUGB7DypsySK/6u3op5cuHCh0W/VMc2aNUtu377d6BjHFK6LR62ZlRnjzgBWCCF+Bf4LfCml/AaYDFwqhNgOXBp+rPyPyy67LKp7JIqiRK+THiqRUu4CzjrK8QLgksqEqg3y8vKMjqAoSg2llrwriqLUMKpwK4qi1DCqcCuKotQwqnAriqLUMKpwK4qi1DC1snB7vV42btzIU089hdvtVtPyjqK0tJShQ4caHUNRaoTdu3fz8MMPV1t7tbJw9+jRg+eff5527drRvHlz9u7da3SkqKNpmnpfFOUE+f1+Dhw4UG3t1brCvXjxYi677DImT55MQkICL774Ip9++mlU71mgnNreeust9fNXw1X331+tK9wZGRlkZWXx8MMPU79+fbKysmjcuLHRsZRaaOHChVxzzTWYTCb69OlTfl9DRTmeWnfrsiZNmpCZmUkwGOSXX37hlVdeYfny5VF1Pznl1Fe2C+FNN91Er169cDgcbN++Hb/fj81mMzqeEuVqVY87OzubyZMnM3v2bObOnYumaWRmZqoet1LtMjMzKSoqwm63M3HiRLp3747b7Y7q3eqU6FFretzFxcW8+uqr9OvXj5YtWwIwfPhwg1MptVVsbCw//fQTzzzzDNu2bePuu++ma9eutGvXzuhoSg1QKwq3pmkMHz6cJ554gtatWxsdR6nlPB4PDz/8MJMnhzbOfPjhh3nggQdo0qSJwcmUmuKUL9x5eXk8+OCDTJs2jYyMDKPjKLVcdnY2Y8aM4e2338ZutwPw7rvvRvXNJaKBz+cjPz+fhg0bGh3lqKr7GtkpPcadk5PDq6++yr/+9S9VtBUgNG1r/vz51d5uSUkJs2fP5pVXXuHFF18sL9qAKtonYM+ePdW6wOXvUtMBq4jX62Xy5Mn06dOH9u3bGx1HiQIfffQRQ4YM4cCBAwwePLjablEmpWTChAnExcUxZMiQqO01KjXHKTlU4vF4GDx4MNOmTaNRo0ZGx6mRhBDExMTg8/mqrUdYWloa0Z7LqlWr6NmzJ9deey1+v5+tW7dy4YUXYjabI9amz+fj7rvvZty4cbRt2zZi7ZzKpJR4vV7i4uKMjlIhk8mE2WwmEAhgtVoj3t4pV7hzcnKYOnUq06ZNi+qeTceOHfn111/p1KmT0VGOKiEhgfvuu49nnnmGJ554olraHDFiBFlZWRE7/86dO1myZAlLlixh6tSpPPfcc2RlZUXsomBhYSHTp09n5MiRtGnTJiJtnOp27dpFZmYmw4cP57XXXiMnJ4f69esbHesvWrVqRbdu3fi///s//vnPf0a8vVOqcOfn5zN79mxuvfXWqO9pz5gxgz59+rBkyRKjoxyVEAIhRLWO3c2bNy+i53/ooYfIz8/nqaeeYuTIkVx55ZURK9ozZsygqKiInj17cvbZZ0ekjdrg9ddfZ//+/ZSUlPDiiy/Sp08fbr/9dqNj/UXZxcnq+vdyyoxxa5rGuHHj6N+/f9T2YhVjDR06lH79+nH//fdz5513csUVV1R5G1JKJk2aRIMGDbjqqqvo1atXlbdRW/z3v//Fbrczbdo0GjRowMyZM9m8eTP79u0zOprhToked1FREXfffTcvvviimj2iVKh169blv9ImJSVV+fn9fj9vvPEGbdq04dprr43o2Hlt0LFjRxYuXMjy5ctZtGgRH374Ia1ataJBgwZGRzNcjS/cWVlZzJo1i8cff1wVbeW4hBARKdqLFi0iMzOTmJgY+vXrV+Xnr41sNhvt27fn/fff5+DBgyxbtoy77rpL/Q+RGj5U4nQ6eemll7juuuvUikjFMB9//DEbN24kMTGRYcOGGR3nlHLTTTfxwQcfkJSUxIcffsjFF19sdKSoUGN73MFgkNtvv51nnnmGFi1aGB1HqaUWL17Mvn37uPvuu49YVKNUHSEEAwcONDpGVKmRhTs3N5dHH32U6dOnU69ePaPjKLVYz5496dmzp/r1XalWNa5wHzhwgNmzZ3PPPfeooq0YThVsxQg1rnBbrVb69OnDmWeeaXSUU9qoUaP47bffyMvLY+vWrbzxxhvEx8cbHUtRoo6u6/zzn/9ky5YtACxZsoS3334bkylylxBrXOFOTU0lNTXV6BinNJfLxdq1axk1ahSrVq1i27ZtFBYWqsKtKEfhdDrZsWMHN954I0II5s+fj9PpjMjspTI1rnArkffyyy8zbtw4mjdvTiAQ4JZbbuHJJ59kzpw5RkdTlKjz5JNPMmnSJPx+P0IIzj77bJ588kn+/e9/R6xNVbiVv3jwwQdp27Yt999/P82bN2fAgAGsWbPG6FiKEpWmTp1K8+bNmT59OlJKxowZw+7duyPa5nEHYYQQbwohcoUQvx92rI4Q4jshxPbw55TwcSGEmCGE2CGE2CiEUJs01FBvvvkmAD/++CNz5sxRwySKUgGTycS8efPIzMxk7969zJs3L6Lj23BiPe63gZeBuYcdGw8sllJOFkKMDz9+ELgSaBX+OBeYGf6s1DDdunWjS5cuBINBYmNjjY6j1DDVfUcYIwkh6NGjB926dQNCKz4j7bj/W5BSLgMK/+dwX+Cd8NfvANcednyuDPkFSBZCRN8ejMoJsVgsqmgrJ6W67wgTDWw2W7UUbTj5Je8ZUsocgPDnuuHjDYHDt+7aHz6mKIqiVJGqHog52u9HR/1frxDiTiHEGiHEGo/HU8UxottDDz3ERRddxNq1a+nUqRMrVqwwOpKiKDXIyRbug2VDIOHPueHj+4HGh72uEZB9tBNIKWdLKc+RUp4Tzbckqmq5ubk4nU7mzZvH2WefzciRI9mxYwfBYNDoaIqi1BAnOx3wc2AIMDn8+bPDjt8jhPiA0EXJ4rIhlWPRNI2FCxeeZJTIy8/PZ+fOnVWS8ZdffiElJYVNmzZhs9lIS0tj9uzZ2Gy2Sm1S9Pvvv7Nnzx4OHjxY6YyRcuDAAb755puovndgSUlJVP8sut1uHDkOTlt4mtFRKpSQmcDvrt+jepx7165dWCwWfv/99+O/2CCaplX43HELtxDifaAnkCaE2A9MJFSwPxJC3AbsBW4Iv/wr4CpgB+AGhp5IQL9fMGJE9O6lbbfrDBlir5L9vvv27Vv+ddm9HCdMmFDp8+7Zs4dZs5IoKore97FlyxiuvTYdh8NhdJQKWSyWqN7XvbS0lC4xXZicMdnoKBXacmgLTpMzqt9Hu93OM3WewZ3hNjpKhfzCX+Fzxy3cUspBFTx1yVFeK4GRJ5ys/PtMHDjQ7e9+W7VJStpB/foF5dN9otHBgwcpKsqI6vexUaPFdO7cGZvNhtPpJKVOMgcPZZPgSKIkkMuiQ3PZ5d6EKWAhRsQjdDM5zmzOS7mCy5oPxO/20Si9CSUlJTgcDg4dOoTdbicQCKBpGg6HAyklcXFx5Uv0y5Yelz32+XwkJSXh8/mQUhIbG4vJZCq/v+Z7771XJX/Puq6zaNEi9uzZw4ABA3A6nbzwwgs888wzlfqNo7CwkNWrV0f1z6Ku6+Tn50d1xo0bN1LQoYDilsVGR6lQvKnitRM1+kYKSs0jpU5BIJstrl9YVfgVM7Lv5MPsKXx28DU0P7S2nYtdT6e01EdD2+mcl3oFiTEp3L/kZiavu5/Nub/h1/0EAgFMJhO6rgOhRRCapqFpGj6fDyEEmqYhhCh/bdljv9+Ppmnouh6xawtut5vPPvuMXr160a9fPywWC02aNGHp0qURae/vWrZsWVQPZSjHppa8K9VKIlmfu4rp6yeR4cigSVJTioMBft39B5nZ+2jXsjHWgI1tu3aQ37qI5kltEewnRiYSJxJ5f8ObnF6nA5e3vIZYWxxCCMxmM7qulxeiQCCA1WpF0zQsFguaphETE4MQAovFUl6spZQEAoGIzL2Nj4/nuuuu47bbbmPv3r08/PDD+P1+xo4dW+Vt/R0//fQT//nPf0hISOCrr77isssuU3eVqYFUj1upViZh5py0i6kf6MymrYVs3JTH+o05lGTbiHHXw7XPTtY2P5vW57Fq/Xo27VrNsnVL8biCrNz5M7nOAmatfIVCXz5OpxMI/Wru8XiwWCyYTAK7PQ6v14PVasXn8xEbG4vL5SrvbTscjvIiHsm71nTt2pXJkyeTlpbGoEGDmDhxYsTaOhFSStauXUtCQgL33nsvGRkZrFy5UvW8ayBVuJVqpes6DpOdGdfMoHlqcxbv+I5PNsznxx0/sjFrI1+tXkrdpMbcdulweqXdQANPV9xuF96SAvILD7E9ZyfBgJm+M69Bs4V6zjabjZSUFHxeD+u/fpJ5Dzfhs8kdWPvFYyQmJuJ0OklNTUXXdeLi4sjPz0fTNPx+P4WF/7souOokJydzwQUXkJyczLnnnmv4fVG3bNlSfpu1Sy+9lGHDhuH3+1m3bp2huZS/TxVupVqZTCZiYmLwlnp4rd8srmrzDyxmM6eln8Z5Lc/jzGbt2ZO3h01Zv1PgLCSnIAdHQVNcW5PokNgWT3E+6F60YsHtM25HCIHX66WwsADnwU3s3LSCQyVeGrbvQ3KDjjhLSoiPjycvLw8hBC6Xi7S0NCwWCxaLheTkZKPfkmrTtm1bGjduzCOPPEJWVhaPP/44NpuNzp07Gx1N+ZvUGLdSraSU+P1+UlJSCAQCzOz3Ko/GTeDTtZ9SVFqEw+zALuLwCT+5BVsoPlRMgjWRvt36UuosJY46FOTlYkrJxn8wgKYFsVqtLFkwjdzMnziUs49OF4/lwj5jCQZDz3k8HlJSUtA0DbvdTnFxMWazGSklpaWlEd3wPtr07t2bhIQEPvjgA77//nveffddoyMpJ0H1uJVqZzKZMJlMSClJiavDk5c/yYBzBlEacLErbze/Z/3B6t2r2XtoH6c1akGTBk3YlbMLp9dJgkila5OLyF/jI6btAd5aOIeA38vqpfPx+iz0vetNulx6Z/n5y6b5ld0bsuxxmdq0ix1Au3btGDp0KIsXL6Zhw4acddZZRkdSToLqcSvVzmQyUVpaisPhwOVykRiTyOR/PMOTV07kuleu51DJIXbs20XdhDQKSwuItybgdXshIMnLKyDe6uDSzn3Yv38by+UCfhnxFima5Ipet9C0bTesVitut5uYmJjyi5OlpaXYbDb8fj92u718OqDVajX67TBE06ZNjY6gVIIq3Eq1klLi8/lITU2lsLCQ5ORkXC4XNqsNf6mfL0Z+QWZhJv9Z+x9cXhemoAmHzU5JUQlIgcftJcZsY0DvAZxz1jks27iI11c+Ro9/DOCs865G0zRKS0upU6cOJSUlJCUlUVRURFpaGk6nk7i4OAoKCrDb7UgpcblcUb3CL1JiY2M555xzWLlyJeeff77RcZS/SRVupVoJIYiJiaGwsJC4uDiKi4uxWq0Eg0Hi4+ORUtKybktGXToKKSU2i5kDK77nwH8/xR4TS2qvK0nudgnWmBgOHTpE4EAQT5Hggt79sNlsSClJTk4mPzOT1W+8TOH+vaS0aEvnIXeQXDe9fLxb1/XyWSa1kd1up3v37vzwww+qcNdAqnAr1aqsx52UlERxcTGJiYm43W4sFkv5XGz8Xkw+L1seG4X0e2l03c2c89Cz6MKE1Wxi9+wpFPy6lqCmsyO/iJi8XHy/r2bNT8vI3biOgKbRdsAwOl0/EL/Pi+b18f6dgyktKaXPY0+Q2LwFGY2bYDKZcLlcxMTEGP22KMrfogq3Uu3MZjOBQKB8FWPZhUSz2YzmLCZ79nO49u6g7b+exJqQSKDoEN5d20GAT0LD62+h6a0jCbqcNPxxMeds20zBT8toduHFdLjpdoJBP65Dh/A7i9Ek6Ej6PPI4QU1n+f/NZeOKFdw1521OO7tz+UXL2igjIwNN08jLyyM9Pd3oOMrfoAq3Uq2EEEfsI1K2daWUEoJB9sx8Fu1gNqfdPBx/3gGCeQcQSMomfwgJ/r278UqJDiSe3pbkjp3R/EE8RQWU7NmJJiWaBE1KdCnRdNClJKhLzr66DwFd5//G/YuBz06l1bm195aonTp1Yv78+fzxxx/06NHD6DjK36AKt1KtpJQEg0FSUlKOuDhpsVjYt+BdPDs20/yW4RDwInQQIvxxxDlCBRwkmtuFX8pQsQ4XaE2X6JLy4h3UJJrUCYZf0/6iXvi8fmaNuIuxH35M27PPNujdUJSTowq3Uq1MJhOxsbHk5OSQmppKfn4+DocDn9tF4fefc/rNI9HcxUgTIASmcA/dFK7cUspQ71wSquBlRVqX6LokKHU0XaJpEAwX7oCuE5QQ1HU0XaDpOm3Pv4Dc/fvx5OdH/M+s9gJRqpoq3Eq1Kutxx8XFEQgEyi8MFqz4HpsjHm9+FmaTwGQOrQ0TZjAfVrh1GepVS12ApqNLHSlB6uGetl5WoCUBPTQ8EtQlQUmogOuhYZRAUCe1UVNeHX0vr2/6AxHBse5oXuTTtWtX1qxZQ7du3SJ6h/Lvv/+eHTt20LBhQ6655pqItVNbqMIdhSZOnMiECRNCMyxOQWWFrOyzlBLnupXYm7VE87gQJoE0mULrek0CYRKYw5Vb6hIhJVIHqcnwtD7Cn0PFW9NDRQuL1LoAACAASURBVPrPwq0T0P8s3AEt1Atv0KoFW1avMuptiAp9+vShV69e3HnnnREt3LGxsSQkJLBr1y5uvvnmI54bOnQovXv3jljbp6JTszLUUF9++SXjxo1j2rRpdOnShWuuuYYnn3zS6FhVqmz/bKfTid1ux+VyYbfbMZtNSM2P5nFhMgl0kwlpIlTAzaHiDYS73ICuo5cVbglBLVSUg1qoxx0M97gDuiQQ1AhKiV+XBDRBQNPCRZzyGzEokdW9e3e6d++Ox+OhT58+Rzz32muvMW7cuCOOzZ8/n7S0tPLHJpOJhISEaslaE6jCHWF5eXn89ttvJ/TaVatW0bt3b2w2Gx9++CFz5szh4MGDp9TKPl3X8fl8JCcn43a7SUxMxO/34/f5kQUHiQnvYyLMApNJIMwCYTIR6n5LgoCm66HirMlwgQ59HZDh3rQWKtj+YKg4l5QUY7Y78GtlxTv8fHgRTm3XqVMn1q5dS8+ePSPeVlxcHM2bNz/i2LPPPsuzzz57xLGBAweSf9j1hzp16jBixIgjXtOkSRNatmx5Qu1mZmaSkJBAamrqSSaPLqpwR1hBQcEJ367qjz/+wOVysWzZMm6//Xbsdjt5eXmnVOE2mUzYbDYKCgpIT0/n0KFDJCQkEJuYRM6P32AzmSA5GcLFG1NoSknQ70PExKFTNvwBPpcTd34efk3HF9Tx6xKfpuMLSjSTBUtaBgEExdn7sddriF/XCWjg0zSCOuTlHMDv9Rr9lhju+eefp3Pnzqxfv96Q9o92DeDDDz884nFBQQHTp08/4ljZZmWHGzZsGI0aNSp/7PP5mDJlCrquI4QgKSmJMWPGVGF6Y6jCHWFt2rQ54eGOjz76iIkTJ/LCCy8waNAgzjzzTNq3bx/hhNVL13X8fj/p6aHl58nJyfj9fupffyt5Py2maOtvaA2b4Eiri24S6CZBUEBw306sjVsgAc/BbAIlxXh9PrylpXiDGn5N4glKfEENr6bjR6Dv24sfM3GNm1Cck4NwOAho4NV0igsL2bXpDzpefS1E8cVDJSQ1NfUv/452797N9u3bjzj2yCOPkJOTU/44GAxSUFDAJ598QklJCYMHD2b06NHVkjmSVOGOItdeey2XXnopd999N5988gnx8RXf5bkm03W9/D6RZdusxjRogm6xEXC5Yfd20DRs8fEEpIYZ8JcUIzb+NzRXW9MIaDp+Tcev/Tk8EpR6eO42BDQNb1EhvqBOQX4+noCGH0Fi42YcOnSI3KwDeP1Brh4xIqpnfVSXtLQ0CgoKatRQQvPmzf8y7HLeeeeVL+oCuOqqq9i5cyf9+/fn1VdfZdasWTzwwAMnPMQSrVThjiI2mw2bzcb7779vdJSIEUJgs9lwOp3ExMTg8XjKi7gWE4dfl8iAhrmkmKAWQMveF54OKBCAhixfZOPXdYKawK8fPnatl495B8MzTIJaAE2DQFDDU1pKYc5BdAkIE3HxDqPfEsOZTCZmzpzJ2LFjmTt3rtFxKiUxMfGIx4sWLeK8885j3rx5FBYWMmLECDZv3sxrr71mUMKqoW6koFSrsjvgJCcn4/F4SEhIQNd1LBYLzW6+HV94nNpVWIi71IlP0/FqOh5Nx63peIM6nmDosV8DX7jXfUTPW9dDKyZ1WT67JBiefVJSeCh0R3iTiS79rkfE1s7dAWuLmJgY7r77bhYsWMCqVasYP3680ZGqhOpxK9WqbFvX/Px84uPjKSoqwmazEQgEaHDBpazXQZc6ugygO90Q1EPXJ0WojyGlHl6EA8HwYht/+GKlXy+bLSLxa6HnA2UFXEpEbCxejy/0Gi1Ix549aXLaaQa/I0ok2Ww2Ro4cycGDB4mLi/tLj7ymUj1upVpJKQkEAqSlpeF2u0lKSiq/E43T5Sahy0WhXnZQo9RZijsQ6mG7A3r4axnqcQd1PEENT3hGiTeo4Qtq+DQNf1Di1zT8mn7YXG4dV6kbv89PQno6lw+/C3NsXETv8l6TxMTEkJiYeMQUvFNJRkbGKVO0QRVupZqVLcBxu91YrVa8Xm/5LoFxCQm0vuk2vEEZLtAa3vBsEW9QwxvUDivaoSEUb1CWD6/4NIkvPFzi1wR+HfyaPGK+d0BKMlq1oqTwEN2u6VNrb6Twvxo3bkzXrl1ZsGCB0VGUE6AKt1LtpJTl27qWLYCRUmKxWEhpeTqNLusTLtThXnUwNLb95/i2xBMIPe8Lv84XnmUSCBfv0HCJFiriusSvh1ZXtruoJ5qwcH6//lgsllp7z0mlZlOFW6lWZUXbbrcTCASIi4srv4mCx+PB5IgntX1H/JhCvW4tNDTiDmq4y4t4MHSxsvxxqDfu1UJzuH26xBsMLbbx6xq+cG9bFyZSGjbE6Syhw0UXoWkaLpfL6LckathsNoLBIMFg0OgoynGowq1Uq7JtXXNzc3E4HBQUFJTfESc5OZm4uDhaD7iVjPMuDA2N+DXcAQ13UA99BHTcfokvKPEGZXi4JNQL9wbBo0l8wdCUQG94+CSgaUiLlfYXX8rqxUt5dsFCYmJjsVqtNWrecqQNGDCAdevWsW3bNqOjKMehCrdSrcouTsbHx+Pz+XA4HOULcrxeL36/H5MQtO3TH80ai0cLj20HNDyBP3vX7sPHvLU/i7gvPGxy+DTBICYan9mJAIIL+/dDs/7ZsywtLTX6LYkaaiFSzXHcwi2EeFMIkSuE+P2wY48LIbKEEBvCH1cd9txDQogdQoitQojLIxVcqbnMZjOapmG1WgkEAuWrJy0WS/k9IJtcfDn2NmfgDUrcQVne4y6/MBk+Xjb+7QuExrt95Rct/xz3rtuyNfaUOmRu+oMOvXrhiI8v3+fiVN0692SV/V2omz9EtxPpcb8NXHGU4y9KKTuGP74CEEK0AwYCZ4S/51UhRO29G6vyF2X3nPT7/Ufce1JKecSmQbqu84+nnseUknpYwS4bMpG4whclvYE/i7lHA0+4aHs1Dd1iJbFRUyzxCRQXFnL96Hs5vWtXzGZzeQ51cfJIM2bM4K677jpi2bgSfY5buKWUy4ATnezaF/hASumTUu4GdgBdK5FPOcX871CJ3W5H13VMJhMej4dAIACELpQ1aNmKga++SUKTZngCevgjNETiK5vfXT7GrZfPRPEFQ2Pgfinw+gOUFB6iU+9L6T10KLFxcTidTjRNUxcnjyI2NhaPx2N0DOU4KjPGfY8QYmN4KCUlfKwhsO+w1+wPH/sLIcSdQog1Qog1gYD6QaktylZOFhUVERsbS0lJCRDaxc3hcBATE4OUEq/Xi9PppGXX87j6yWfpdP2N+KQon2XiN1tofmHP8imC3qBGbFpd4us1wKtpoeXwvgA2u53rRo3i0mHDEELg9XpJTk7GbDZjsVjU5vxH8eijj/5lu1QlupzsAN9M4ClCt2x9Cvg3MIwjb8Zd5qiDZVLK2cBsgISEDOnznWQSpcax2WzUrVsXs9lMenp6+UWxsmJhsViw2+3lxzpfegXtu3XnmvtD+0xICcIksCcnU3rYykeLLQaEOGKPbVtsLHWbNEEPTzmMi4tDCFG+8EZdkPur6667zugIynGcVOGWUh4s+1oI8TrwRfjhfqDxYS9tBGSfdDrllHT4WPbRenbm/7lxr8lkwpqSQnxKyl9em5JR74TaLDtjWXvVWbDVhT6lqp3U70NCiPqHPbwOKJtx8jkwUAgRI4RoDrQC/lu5iIpSs914443ld7NXlKogjtcbEEK8D/QE0oCDwMTw446EhkEygbuklDnh1z9CaNgkCIyRUn59vBBJSXVk69b/Otk/Q8RZrS7OOCOfpk2bGh2lQgcOHODXX2Pwev/aK40WKSnb6NateVTP5Pjtt9/o0KGD0TEqFAgEyMzMpFWrVkZHqVBhYSF+v5969U7styEjZGZm8kf6HwQcAaOjVGjbC9soLiw+6q+Gxy3c1SEhoa70+7caHaNCiYmZNGjwE1u23Gx0lAo1bfoNr76aTufOnY2OUqFp06YxdOhQkpKSjI5SoUceeYRJkyYZHaNCRUVFzJ07l3vvvdfoKBVas2YNBQUFXH559C7jmDdvHhdddFFUd8ZOP/10cnNzj1q4o2T1gcDvj96eYiBQgKbFRHVGTYvD4XCQcpRx4GhhtVpJSkqK2oxle6ZEaz4IZbRarVGd0W6343a7ozpjTEwM8fHxUZ3xWNdh1JwfRVGUGkYVbkVRlBpGFW5FUaKalJLdu3cbHSOqRMkYt6Ioyl+tXr2aX3/9tXy2z4UXXsjpp59udCzDqR63oihR69NPP2XXrl089thjrFq1iuXLlxsdKSqowq0oSlRasWIFDoeD8ePHM3ToUCZPnsxvv/2mhk1QhVtRlCh1wQUX4HK5ePvtt9m8eTP//ve/6dChA82aNTM62l+43W62bq2+tShqjFtRlKgkhKBXr14sXboUp9OJEIKOHTtG3cZgc+fOZc+ePQSDQWw2G8OHD4/4LfFUj1tRKqEm3C2mJmSsyGWXXcbTTz9N/fr1mTRpEuecc47RkY4gpWTOnDmcd9553HHHHSxdupS8vLyIt6sKt6KcBCkl2dnZfPjhh8yaNYusrKyoK47BYJD9+/fz6KOPsnz5cnJzc42OdMqZPn069957L02bNmXKlCm8+eabjB8/Hl3XI9quKtyKcpK6dOlCVlYWVquVTp064ff7jY50hOzsbLp160b37t1ZuHAhV1111fG/SflbxowZw4wZM/jss8/YtGkTt956K5MnT474jShU4VaUkzBr1iwef/xxLr74Ylq3bs20adOYMWOG0bHKSSmZPXs2s2fPxuVyMWbMGAYNGsT8+fONjnbKGTVqFEVFRbjdbq699loyMjIi3qYq3LXEU089Rc+ePfH5fDXmRrCBQIDvvvuO9957j0AgEFVDEb1792bRokU0atSIzz//nOnTp9O7d2+jYx3h4osv5scff+Scc87h3nvvZcWKFVG9e2RNdcMNNzB48GDatWvH6NGjq2XjKlW4a4nx48fz2Wef0aNHD5544gl+/fVXgsGg0bEqJKWkZcuWfPfdd2RlZdGgQYOoGopo2bIlubm5TJw4EQCfz8fTTz/N/v37DU4WIoSgbdu2LFq0iIULF6LrOpmZmcyaNYuioiKj4ymVpAp3LVG2peovv/xC9+7dee2113j11Vf55ptvjI52VF9++SW33nord911Fw6HgyFDhvDpp58aHaucEIIff/yR22+/nauvvpoNGzYwbdo0XnvtNXbs2GF0PADq16/PunXrqF+/Pq+88grr16/niiuuYObMmZSWlhodT6kEVbhrocsuu4xXXnmFRo0a8ccffzBo0CB27txpdKwjxMfH43Q6sdlspKSk4HQ6mTp1qtGx/uLss8+mZ8+eADRu3JjBgwczc+ZM8vPzjQ12mAEDBtC4cehWsD179uTCCy/koYceiqqhJ+XvUQtwaikhBNdffz0ul4vrr7+ecePGsWPHDq655hruu+8+EhIS/nLT3urUo0cP7rzzTnRdp27duvznP//hnXfeoWPHjkyYMIHevXuTmJgYdYsxWrduzfjx4xk4cCDNmjXj5ZdfJjY21uhYR+jevTupqal06tSJ2267jREjRmCxqFJQGdX9c6h63LWcw+GgWbNmfPzxx6xfv55zzz2X/v37s3DhQtatW2dYLiEEW7dupX///rRt25asrCx69+7N+vXr2bJlCzfffDOLFy9m165dhmWsSHp6Ot999x3Dhw9n6tSpFBYWGh3pL9q0acP69euJj49n3rx5UX29oyao7t9eVOFWgFChFEJw9dVX8/3337N//34+//xzJk6caNgwihCCiy66iH79+pXnE0LwyCOP8Mknn/DTTz8xd+5cHn/8cbxeryEZKyKE4JxzzuHCCy9kxowZUZlPCMHQoUMRQvDKK68YHalCQghuuOEGFixYYHSUCqWlpdGkSRPWr19fLe2pwq0c1ejRo7n33nu58MILmTx5MjfddFP50uloGBuNjY1l4sSJ3HrrrXTv3p3+/fvzzDPPRE2+Mr169eKaa65h5MiRUZetzJAhQ2jSpAlTpkyJyoxCiPLfAqNVWeHesGFDtbSnCrdSoTp16tC7d2+mTZvG448/TqdOnejUqRNLliwhKyvL6HgAnHbaaVxyySW89957nH766XTq1ImlS5eSnZ1tdLRyZ599Nvfffz+dOnVi9uzZUTWtEUKFsU+fPjRv3pxOnTqxYsWKqCveypFU4VaOy+Fw0Lp1azZs2MCGDRv47rvvePrpp3nvvffYu3fvEa9dvHgxgUCgWvMJIUhMTKRfv35s2LCBb7/9lqeeeuqo+YwghKBNmzZs2LABi8XC3LlzI76Xxd9lNpu58cYb2bBhA19++SXffvut0ZGUY1CFW/nbnn32WZ588kmKi4t59dVXGTduHJs2bWLEiBGsW7eOsWPH8s477xiWb/LkyTzxxBMUFxdX+/9Ejue2227D4XDw/PPPGx2lQk8//TR//PGHWh4fxVThVk5Keno6I0aMYMSIEVx//fX07dsXs9nMsGHDuPrqq1myZImhS+vr1q3LiBEjaNGihWEZKjJgwABOP/10unTpwnfffRd1wxIWi4Xhw4eza9cuunTpQk5OjtGRlP+hCrdSKU2bNuWMM87g/PPPp06dOlxzzTV07dqVzp0788UXXxgdLyqZTCb69OnDypUr+f7771m2bFnUFW+73c59993HypUrGTt2LNu3bzc6knIYVbiVSktKSuKmm25izZo1fPjhh7z88susXr2avn37Gh0tagkhsFqtTJkyhVWrVhkd56hMJhNWq5XXX3+dH3/80eg4ymHUcimlSnTs2JFhw4bx7LPPctFFF3HllVcaHanGeOCBB4yOcEwJCQncfvvtRsdQDqMKt1Il6tWrR//+/enZsyd16tSJ+EbyihJtYmNjq23puyrcSpVKS0szOoKiGGLQoEHV1tZxu0VCiMZCiCVCiM1CiE1CiNHh43WEEN8JIbaHP6eEjwshxAwhxA4hxEYhxNmR/kMoiqIYrWwbgepwIr/PBoH7pJRtgfOAkUKIdsB4YLGUshWwOPwY4EqgVfjjTmBmladWFEWpxY5buKWUOVLKdeGvncBmoCHQFyhbZfEOcG34677AXBnyC5AshKhf5ckVRak1bDYb9erVMzpG1PhbV5CEEM2ATsAqIENKmQOh4g7UDb+sIbDvsG/bHz72v+e6UwixRgixJhDw/P3kiqLUGs2aNWPKlClGx4gaJ1y4hRDxwHxgjJSy5FgvPcqxv6wukFLOllKeI6U8x2qNO9EYiqIotd4JFW4hhJVQ0f4/KWXZjf8Olg2BhD/nho/vBxof9u2NgOjZqk1RFKWGO5FZJQJ4A9gspXzhsKc+B4aEvx4CfHbY8VvDs0vOA4rLhlQURVGUyjuRedwXAIOB34QQZbuEPwxMBj4SQtwG7AVuCD/3FXAVsANwA0OrNLGiKEotd9zCLaVcwdHHrQEuOcrrJTDy70eJrk12ji76M0bbZkVHE+0Zoz0fqIxVpSZkPBoRDcGTklJkx463GB2jQmazn6SkUmy2OkZHqVAwWEJysgW73W50lArl5uaSmppq6N3jj2f//mwslgZGxzgGjYApG2tdq9FBKqS7deKD8SQmJhodpUKFhYXEx8djs9mMjlKhd999l0OHDh210xwVhTshIUOWlh40OkaFkpJ28NxzS7jjjjuMjlKhhQsXkpGRwbnnnovP58Nqtf55lxWTzgHfHg4FDyJ1iQUbIPAE3NjNibRIPAOhm7HZrGiahhCCYDCIEAKTyUQwGMRms5V/Ljt/MBjEbDYf8dqy1WPBYBCrNVRcylaTPf3004wcOZKUlBSD3qVjk1Jy44338sknLxkdpUIxMYW0f+wy1j681ugoFar3Uz1m5c+K6t0hX3vtNS655BJatmxpdJQKZWRkcPDgwaMWbrVXySlG0zQKCgqITbDx30NfUDe2KUGTl52lv5Lj34PTW4rTW0yDuBZ4/B7qWhuxPXYzuwt2cM+5j+D3BRBCUFpaihCCmJgYSktLSUtLo7S0lDp16lBcXEydOnUoKSnB4XBQVFSE1WrFZrNhs9mwWCyUlpZGbYFWlKqWm5vLkiVLGDBgQLW0pwr3KWZH0a/MP/QiolhwwLcHq4wlGJQ4SCEtpiHJpFDkduHRA9SJaQS6la93fkqcJYGnfniAge1vo4G9MQkJCUgpCQaDpKam4nK5iImJIT8/n/j4eEpKSoiLi8Pn85GcnIyUEk3TcLvdQGilW0FBAcnJyVgs6sdMObUVFhby7bffqsKtnJx0e1M+WLyeOrF1ODP9TE6r24Zd2Zm8s+J9WrZOIt0Rz/aNOZgbBrmg3UWYg7HEWZIpdOYTY0/gzf/O5B9tr+WMlLOwWKxYrVby8vKoW7cuLpeLOqmpFBYUkJSURHFxMQ6Hg5KSEqzW0GsdDgcmkwmXy0VKSora3lWpFaprc6ky6l9VNdF1nU8//fT4L6ykOOzM/seb6Jrgyz++ZvoPL7Poj0VkpNTDn5eM70A9WtU9j9iihmhFOitW/Mzu/E2s3bmeLdk7WL13HfM3zMer+7BYLAghiI+Px+/343PmsO2Xuexe+wF7f/8PVmtoTDw2Nra8V+33+/F6vZhMJrxeb5VdtV+4cKGh97BUlGOp7muFqnBXE13XeeaZZyLejslkonWdljx68SOYLIKdBTs55DlEfKwDt9+NO+Cicd3GtE3rSKKnJc0S2+HcJhF+HTM+9uZm8+1vi5n0xdNA6AdS13WQGll/fMvSD8aw9qtHWbvo3wj5559N1/XyH16TyYSUskp+mFevXs3gwYPZt28fw4YNM/Tu8Yrx5syZQ3a2WoitCnc1io2Nxev1RrQNq9VKwB+gW6NuzL9pPmnxqZjMZoq8xVhtFnyanz/2byLPmcfWvVtYvuZnmtrb0ydjML8u3kqXNo2xO818/PXHBIIBAJwlReTuWc2yL1+iyB1Dl/5vcOmw/yOghWaV+P3+8hksZRcpdV0nLi6uUr9C6rrOzp07adWqFTfffDODBg1izZo1BAKBKnmvlJojMzOTNm3aoGkad9xxBzfccMPxv+kUpgp3NTGbzcyaNYvRo0dHtJ3i4mLq1q2LkIK29drx070rSHYkk+M8wIGSg2QX57Dv0H5+3vYzy7csJy0lHU1qHMzNp8/ZA3BsbkVSjIW6SXHs3LcNKSU/LnieOZOHEZvciktueYX2Xa8miAO73Y7X66VOnTrY7fby2ShFRUXYbDby8/MrNbxRWFjIsmXLGDp0KP/4xz/o0qULTZo0Yfny5VX4jinRTkrJhg0bGDJkCD169GDu3LnY7XZ27txpdDTDqMJdTcrmN0d6LKzsYqEQAq/XS4a9Hm8OepO7e9yNXw+QWZDJlpwt+HU/rRq2Jq1OGrlFuRwqLSQrLxu3101CYTPiEgVPfDaGT/8zh22bN5Jcrx3X3Dad9l2vwuv1Yrfb8fv9WK1W3G43fr8fgLi4OOx2O5qmkZCQUKmLk2lpaVx88cXcddddXHrppUycOJHdu3dz8cUXV9XbpdQQv/32G2eccQbPP/882dnZtGzZkh07dhgdyzBqVokBpJQRuwrt9XqJi4sjEAiUL8I5Pb01rXuNpWvDLhx0HeSZT54hKz+bXQd3Uic2FRs2CvLz8bkDeEs9jLh2BKPOv4di+37efnEKKbka9z31OinpjXG73cTFxeH1eomJiSlflFM2zl1WwMsKekxMTKX+PBdeeCEJCQm8++67/Pzzz3z++edV8TYpNYgQggEDBtCrVy+EEGzatAmTycSECROMjmYYVbirUZs2bejYsSMfffRRxOZ76rqOxWLB7/cfcZFQSuh2Wjdi42K5ot0VWG1WSp2l2MyCrF3bSE9KxSfBXiedWFssKckplJQcYmvzDfQa9g+ateqIEAJN0zCZTJTm5xGwmAloOqkNGmIymcqLN1D+2sr+hpGRkcHll1/Oeeedx6ZNm3jrrbd47rnnquKtUmqQFi1a8Msvv/D4449z991306pVK6MjGUoV7mpkNpvLi2qkxMbGls+r9vl85e0CxMTE4Pf7SYhNIH/NSmIDHpy5B0nI3kNJ0SGSO3QiseN5lGbuYLfHw74Dufy2/CfOO7s7gay9ZG/fQmxcHCXxKexZvpi9v/9KfHp97Ke1Jj41jYZnnEFGq9PLl8EnJSVV2TzupKQkGjZsiMViYe/evTRp0qRKzqvUDGazmR9++IFu3brRuXNno+MYThXuU4zL5SI1NZXS0lJiY2PRdR2fz4cQAo/HQ6zHye7/m4UjJRV/nJ2k9Hoknt8DKQQC8OzfgywuJEYP4ti9jfN9buTiL8jOykSYLBwK+Imr25DWl1xBi0suR2o6W39axoHff2Xv+rU4PV6ufXgCKWlpFBcXk5qaWmXFu2nTpjRu3JiffvpJFW6lVlOFu5pdf/31TJw4kZ49e9K4cePjf8PflJiYGNqrJDYWt9uNyWTCarUipcRhNbNh1B0kndaKlIsuw2S2gNTwZ+0NbdwrJWazhaSWbdClxNG4BS2vH4im6fjcJVji4tGkTiAQxFNciC5B0yWN2p9FfSkpLijg8+kv8Mbdd3HP2++SnJxc5TsB3nDDDUyYMIEePXrQoEE07+KnKJGjZpVUs7S0NEpKSsqHMapaSUkJaWlpSCmx2+2hed2BAN5DBay6/VrsDRpS/8p+6M5i9OJCpLMY4S1FeErB60K6StAK8wgW5qG7nASLC9CchxB+P/6iQgKHDhF0lhB0uQi6XQTcLvylTnyloeGZvmPuo/RADi//81b27dxZ5asd09PTSU5OZuvWrTV2L2VFqSzV4z7FxMbG4nK5EEIQCASQUmI2m8n5z0fUadyCBpf3IZCfgzk8PdEkwnfJEAIhJbqUIAUCCbqOlKBJSVAHTdfRpUSXhB9LNF0SkBJN6gR1ga5Lzh94E9+99SablvxA89NPr/I/4+TJk+nYsSPr51Q7CwAAIABJREFU16+v8nMr0amoqIj9+/fTq1cvo6NEBdXjPsXY7XaKiooA8Hg8oVkePg/ObRtJbtOeYP4B8LrB60b4XJh8bsx+N2afG5Pfg/C5ET43eFxIrxvpdSHdbqTHheZxE3S7CLpcBFxOAq5S/O5Sgi4X/lIXfpcTn9uJCWjW4SxWffYZxXl5xr4hyikhNzeXbdu2cf755xsdJSqowm2AadOmMWLEiD9vdFCFiouLycjIQEpJfHw8FouFnKXfgs+PrgXQPC6kJ1SYhdeNyevC7HNj8bkweV0I3/+zd+ZxTlbX/3/f7DOZZFb2fVMRFEUQgUIFVERxq7VudbdqrbYI6qB+RbG1isoiboigIra/Qq1KXepSRS2KqIAiiGwCOjIDwyyZ7HmW+/sjyeOMggyQITNw369XXkme58l9TrZPTs4995yUWMeiyEgEMxzBjIYxokHMSFK8tegPYRItHCIeCREPB0mEQ8RCYaKhOtr27EmwuppQTU3GnyPAwoULufjii5tkbIWiuaNCJVmguLiYnTt3NsnY+fn5bN++HZ/PRzgcxm63k+t2EnTZMRMxTB2kzQY2kDYBNoHNbkMIkCYIU4IpkabENAxMKyRiYpigG8nQSMKU6IZEN000EzTTREvdT5ipsImuQRPFodu3b4/X62XTpk306NGjSc6hUDRXlHAfZESjUXw+H4C1ajEWi2HGY0nP2QZ2mx3TBqZdYNpsmDaBDYEpU4JtmhimxDSkJdq6KZMCbSRv60ZSsBOGmRJriWaAZsqUiJsYTVgMKi8vj/PPP5/nn3+eu+66q8nOo1A0R1SoJEvMmDGDCRMmZHxcu91OJBKxutdIKXHYnQQ3rCVevRMjHEaPhNDT8epICC0cIWFliYTQIxGMSAgtEkILh9DCye1aKEQilAyJJMIh4qEQ279eQ7S2hlgoSCwUJBoKJsMlwVCTV/Hr378/UkpWrFjRpOdRZBfTNLnnnnuYOHFitk3ZLekSFgcq00l53Fmif//+3H333RkfN503nS5oZZom7pJW4HRRt/ZLRI9eSLcbabMh7QIpJIlwEOHOBacTQ9fREjrxWITar9eQ0HViuiRuSmK6QcwwiRvg69UXw+XCmZtLLBxBFwLNkMSNZMhk27dbCVRWIpqwo3tRUREFBQVs3ryZfv36Nevu8Ycama7Fs2bNGnr37p3RMTNJz549GTx4MH//+98PyNyLEu6DjHRZ12AwiNfrRdd1OPp4igePZPt/XsCIhino2gMjNxfDJrALibH9e4TDDS4XiWCA+M4dJIxkHDtumOiGJKFLNMNA1yWaYfL9qk+J6+AoaUNc08GbBy4PCSmo3VnN1g0bOPHK31HUrl2TPt9x48Zx0kknMWrUKAoKCpr0XIrGc6jl2Nvtdqs2/YFAhUqyhNvtZuzYsSxatCij4+bm5hIIBKyyrrqebHYQjSfQTUk8Eia4fRuxUB11326mbss3hGtqCX3/LXWbNxLekRTttOesGZJEatJRNyW6KTFkesLSILDtewIVFVSsX09NeTk7tm6h/JtNmCZ0P+pocvLyMvr8dsW4ceOYOnVqk59HoWguKOHOEi6XiwEDBvDpp59mdNxEIoHX60VKicvlwm63J7vRdOiAbneS0E2iwSDhQC3hqkrCVZVEIlGiuklMN4kZBlHdIG6YxI3kpGMilTGimaBJMzkxmV6EIyUGyUnMeCxGNBjGFAJ3np9YPN4kKY8/5vTTT+eVV15p8vMoskMikcDlcmXbjGaFEu6DkPTf1Pp/V7v/9npsJW2JGAaRSIxwIEBUM4hqJlHNJKKbRDSDiG4S1SVxHeK6SVw3SeikskaS2SKaKTH0H7zwhGFiIgjXhYlGo+i6Sb/TT2X4xRcdsOfcq1evQ7qw/sHM6aefzltvvZVtM5oVSrgPMlwuF9FoFCEEuq5jmmayLrewYStohW4kJxkjoUhStA2TqG4Q1c2U1y2JGaZ1SXrdqeuUBx43zWTKn0wKumGCDhgkQyhHDB2OHRu5npyMVQb8OYQQPPjgg0yaNKnJz6U48BiGoSaef4QS7izSp08fnE5nRmtuxGIx/H4/kKxb4nA4knnZhkHXS39P3BDEdJNoLJEU7pRgRzUjGSrRDWJa6tqQxI2kkCf0lHjrJrouSZikFtyk4uCaTiwWw+5xY3M7OfWaa6mrq8t4kand0bp1awYMGMAbb7xxQM6nUGQTJdxZpKSkBLvdzvbt2zM2ps/ns1ZlhkIh4vE4drsdp9NJt0FDMXPziKXCIsl4tiSa8q6juklEk8lwiSGJ6kkxjxsmMTMp4gkD4iYkTIO4kVx0o5smCUMiHU4Gn3cBNTur6NK3L61atcLhODCJS7m5uXTp0oUNGzYkM2kUioOYPQq3EKKTEGKxEGKtEGKNEOJPqe13CyG+F0J8nrqcVu8xtwkhNgoh1gkhRjflE1A0JBQKkZ+fj5QSj8eD0+nEMAxM0ySiaYx8+BkrHztiJGPbUc0kkopzR1OTkz944CYxzSChGz+ESgyThJ5e3m4QN0E3TI4Y8guWL17MDU/OxuVyEQqFDsjkZJpf/epXfPXVV3z11VcH7JyKpuXrr7/msMMOU6GSH9EYj1sHJkgpewMnAH8QQhyZ2jddSnlM6vI6QGrfBUAf4FTgcSGEetV3w8iRI1myZAmRSCQj47lcLmKxmNXzMR3jFkLgcrlwt25D26EjU4Kc8rJ1g6iuW5kl6fBITP9h0U3ykgqbGKaVMhg3JJpp4PbnE40lGHTaabTt0gXDMHA6nU3WFHlXCCE4++yzeeGFFw5YiEbRtMybN4/f/va35OTkZNuUZsUehVtKWS6lXJG6HQTWAh1+5iFnAf+QUsallJuBjcDxmTD2YGTIkCF89tlnxGKxjIzn8XgIBoMIIUgkEpimaS0OyM3NxVFQRPvjhxDXZSqrJOlZR3WZvE5lmUR1k7hhpMSa1OUHsY6bkriRrF1iCgd9Rp5ENJFgyJln4/P7MQwDr9d7QIUbYPTo0bz55psqXKI4qNmrGLcQoitwLLAstekGIcQqIcTTQojC1LYOwHf1HlbGzwu9AtiyZUtGxqmrq6NVq1aYppkUaocDTdPQNI2amhq8ubn0ueAyOo44haiZ9LDDmkE4YRBJpQdGUqGScErAY5pBTNeJawbx9MSlnvS8DbuTw3/xS6p3VtH/pJPp0LcvtbW1OJ1Odu7cmRXP96233mL0aBWhOxgoKSlR3vYuaLRwCyHygH8B46SUdcATQA/gGKAcSC9d25WL9ZP1r0KIa4QQnwkhPtO06F4bfrDw+eefU1ZWxkknncTcuXP3Oz7r9/uprq7GZrMRiUTQNA2n04nT6aSgoIBIJILd6aTzyaehO3OsvO2okZyUjBip+7r8IePEShOURNMxblOCx0PrHj2RDjuRugAdjjgCf34+BQUFaJpGUVFRVmKTubm5nHzyyQf8vIrMM2HCBAYOHJhtM5odjRJuIYSTpGj/TUr5IoCUcruU0pBSmsBT/BAOKQPqd8HtCGz78ZhSytlSygFSygFO56H7i/rqq68yevRovF4vy5cv55133tmv8SKRCH6/35qcdDgc6LqOrutW53cpJcefcx7DbypNetn6DxcrJdAwf5icNGRKuA3iejLerUuBy18ILjflm7fw27vu5oSxpxONRgmHwzgcDoLB4AGdnEzjdDq54447Dvh5FYoDRWOySgQwF1grpZxWb3v96kHnAKtTt/8NXCCEcAshugG9gE8yZ/LBw/Lly0kkEkyaNIkOHTpw7733snXrVtauXbvPY+bk5FBXV4eU0qpVYrPZsNlseL1eYrEYUkrq6ur45ZXXcsr/3Y1udya96VQ+d1Q3SQh7KiUwleNtmCSkjZhuENclcQSRaIyKLd9yyV2T6TVoULISoduNx+NB1/WsxLgVikOBxiTZDgUuAb4UQnye2nY7cKEQ4hiSYZAtwLUAUso1QoiFwFckM1L+IKVUU/y7oH///vznP/9h7ty5vP3228yYMYMuXbpwxBFH7POYdrsdh8OBw+Gwlrynb9ff53A4cLndDL74cnoedwJvP/EodTuT/SElMPiii/nf355HSjBNiSMnl05HHcXapUsxJUgERe3acvHtt1PUqRMOp9MaN31Oh8OhhFuhaAL2KNxSyiXsOm79+s885l7g3v2w65BACMGQIUN46623mDlzJuFwmFGjRu2X2NlsNkpKSna7Pz8/HwCv1wskVxy2bt2aPsOH/+TYU664ep/tcDqd+/xYhaIlYZom06dP5+OPPwagurqam266qUnLPah63Flm5MiRjBgxgiVLljBs2LBsm6NQKPYSKSWzZ89mzJgxCCGYPXs248aNa9JzNhPhlrjd1dk2Yre4XHXEYjGqq5vOxj59+uzX+JFIhFAo1KQ27i+aplFbW9vMi+wbzfqz6HbXYtfsuKvd2TZlt7hCLiKRSLP+LMZiMerq6jJi4xVXXMGLL77I+++/jxCCq6++ml/96lc888wz+zXuz31PRHP4EhUVFcmbb74522bslnA4TGVlJV27ds22KbulvLwct9tNUVFRtk3ZLevWraN79+7NOozyxRdf0K9fv2ybsVs0TWPJkm+oqTk826bsFo+nmmOPjdOuibsf7Q+bN2+mdevWVsiwOfLQQw9RXV2967iplDLrl9atW8vmzIYNG+Ts2bOzbcbP8tJLL8mPPvoo22b8LH/+859ldXV1ts3YLaZpyhtuuCFj43399dfyzTfflFJKuXPnTjl//vz9HrOqqkoed9y9EmSzvbRtu0S+/PLL+/1c0zzyyCMyFotJKaX8xz/+ISsqKvZ7zFmzZskNGzbs9zhNSUoXd6mZqjqgQtEE1NXVcd9999G7d2+uv/56AGpra3n55ZezbFnL4oknnqCwsJDy8nImT57MgAED+NOf/tQsa9G88sorB6wTUzOJcSsUBxc+n4/zzz+fqVOnsnz5ct577z2WLVvGddddl23TWhRXX301Y8aMwe12s2LFCtauXcvtt99+QBp07C2VlZUHLP21+T17heIgQAhBly5diMVilJWV8dprrzFixIgDVp/8YMHpdDJmzBj+9a9/8fXXX1NQUEDr1q0P+fUB6lOkUDQRRx55JLNmzWLDhg1Mnz7dyqFX7B0TJkxg/fr13HvvvcyaNSvb5jQLlMetUCgULQwl3AqFQtHCaFHCrWnafie1KxQKRUunxQj39OnTOeussxBCcMopp/DRRx9l2ySFQqHICi1icjIcDrNx40buuece2rVrRyAQYPPmzQwaNEg1EVUoFIccLcLjXr58OZ07d6ZLly7cd999tGnThs8++4xgMJht0xRNSDQa5cMPP8y2GQpFs6NFCPfw4cPZuHEjN998MxdddBEXXnghJ554IgUFBdk2rUl46KGHDvlmt48//ji33XYbH3zwATfccAPffvtttk1SKJoNLUK4ASZNmsQNN9zAo48+ysqVK3nttdcoLy/PtlkZxTAMpkyZwuGHH94sV4YdKHRd5/XXX+e8887jd7/7HcFgkPLy8mZeVVChOHC0GHXo1KkTAwYM4LnnnuOYY47h8ccfZ9y4cWzatCnbpmWMl156idzcXE4//fRDWriff/55zj33XLp3786dd97JH/7wB2bMmIGmadk2TaFoFrQodRBCNGiNNWfOHObMmcPy5cuzbNn+EwwGWb9+Pf369TukRRvg8ssvZ+HChSxcuJBRo0YxaNAgOnXqdMi/LgpFmhb9TfD5fNx444289NJLrFu3Ltvm7DNSSkpLSxkxYgTDd9FC7FDk9ttvp7CwkA8//JCFCxcyYMAAbr/99mybpVA0C1pEOuDP0b59e26++Wauv/56pk+fTps2bbJt0l4RjUa58cYbufXWWznssMOybc4+YZomNTU1QPJHaOzYsUSjUSZNmsS55567T2MOGzaMIUOGcPrpp1NcXIyUkvbt2zNp0iTuuOMO3O7m2wFGoWhqWrxwAxQUFDB//nyuvvpqJkyYQN++fbNtUqOZOnUqv/71r+nVq1e2TdkrAoEAS5cuBZJtoNLFf4QQvPvuu+Tk5Oz3Oex2O8XFxda4Q4cOpaamhlmzZtG3b19Gjhx5yFeJUxyaHBTCDckv+YMPPshjjz1GIpGgf//+2TZpj2zevBld1+nVq1ezF6Da2loefPBB677NZsPj8QDg8Xj4z3/+0+TPQQjBGWecwUsvvcTSpUvZunUrV155ZZOeU6Fojhw0wg1QUlLCNddcw5QpU2jVqhUdO3ZstoIYDoe55557mDRpEt26dcu2ORbp1kgAK1euJN0LND8/n5tuusk6Li8vj+OOOy4rNp5zzjmcccYZzJ8/n2effZbLLrus2b7PKoVx/0l/Jpvreww/vM8HysaDSrgB2rVrx3333ccll1zCjBkz6NixY7ZN+gnbt2/n97//PfPnz2/SZqVSSsrKyujUqdNujwmFQlRUVFj33377bWbPng1A//79+fe//w0kP5B5eXlNZuve4nA4uOSSS3jsscd4+eWXOfPMM5tl+YN7772XW265Bb/fn21TWixSSq644greeeedbJuyWzZs2MDSpUt5/PHHD8j5DjrhBsjJyeH5559n4sSJXHbZZRx77LHZNsli/fr1zJ07lyeeeKJJRXv58uWsXr2aTz75hEGDBjFkyBB69uwJwOrVq1mxYgUAO3bsYNWqVdbjRowYwcqVK5vMrkzicDj405/+xJQpU5g3bx69evVi2LBh2TarAfF4HLfb3ay9xZZANBrNyLxJU2GaJoZh4HQ6D8j5DkrhhmTctbS0lNmzZ+N0OpvNhOV7771H3759mzz75Z///CcAkydP5uabb2bu3LlW1kq7du0sL7xfv35WOKSlcuutt/Lcc8/x4YcfYhgGJ554YrZNUiialINWuCEpUNdffz2lpaX89a9/pW3btlmzRUrJ2rVrWb9+Pf/3f//XpOdasmSJleN+2mmnUVZWxrZt2ygtLaVr164UFxe3uLTJn0MIwWWXXUYgEODee++lpKSEPn36KC9XcdDSohfgNIZWrVrx1FNPcdNNN7F+/fqs2fHll1/ywAMPMGXKlCYvjjV06FCCwSALFizgtdde46KLLuKJJ55gzJgxHHnkkQeVaNcnPz+f+++/n2nTprF06VK2bNmSbZMUiibhoBduSKYKzpo1i+eee+6ALo8Ph8O89NJLvPfeeyxYsICnnnrqgEygCSEYNmwY69ev5/HHHyeRSHD00UcfEh6ozWZj9uzZLFq0iGeeeSarP9YKRVNxUIdK6pOfn8/111/Po48+Sn5+vjVR11T85S9/YfXq1QwdOpRbbrmF559//oBNXACcfvrpnHbaabz//vuHXMzX4XAwZcoUNm3axMyZM5k0aZK1kEehOBjYo8cthPAIIT4RQnwhhFgjhJic2t5NCLFMCLFBCLFACOFKbXen7m9M7e/atE+h8bRv357bbruNO+64o0EKXKYJh8OsWrWKSZMm0apVK4LBIKFQ6IDn9AohDjnRrk+PHj2YPHnyQVu3XXHo0phQSRwYKaXsBxwDnCqEOAGYAkyXUvYCaoCrUsdfBdRIKXsC01PHNRt8Ph9/+9vfuPPOOxukwWWSN954g+HDh1NUVMSmTZt49913WbhwoSpLmgUKCgqaZX63QrE/7FG4ZZJQ6q4zdZHASOCF1PZ5wNmp22el7pPaP0o0s+Cqw+Hg3nvv5eWXX+bzzz/P+Pjnnnsub775JjNmzODss8/m8ssv58orr8TlcmX8XAqF4tCjUTFuIYQdWA70BB4DNgG1Usp0f60yoEPqdgfgOwAppS6ECADFwM4M2r3ftG7dmmuuucaq751pHnjgAb799ltmzpzJww8/TJ8+fZrkPAqF4tCjUaolpTSAY4QQBcBLQO9dHZa63pV3/ZPgrhDiGuAaSIYvskFT5nX37t2bI444ghNPPFGVIFUoFBllr9IBpZS1wHvACUCBECIt/B2BbanbZUAngNT+fKB6F2PNllIOkFIOaM5LWfcHIYQSbYVCkXEak1XSKuVpI4TIAU4C1gKLgV+nDrsMWJS6/e/UfVL735WqRJpCoVBkjMaEStoB81JxbhuwUEr5qhDiK+AfQoi/ACuBuanj5wLzhRAbSXraFzSB3QqFQnHIskfhllKuAn5SXk9K+Q1w/C62x4DzMmKdQqFQKH7CIbHkXaFQKJqK5557jieffJIvvviCe++9l6qqqiY/pxJuhUKh2EeklMyZM4cePXpQXFzMe++9R2VlZZOfVwm3QqFo9rRu3TrbJuyShx9+mD/+8Y+MHj2avn378vTTTzNx4kRM02zS8zaLIlOmafLhhx9m24zdUlFRQXl5ebO2ccuWLdTU1DT5B2Z/qK6u5tNPP23Szj/7SyQSyej7HAgE2LBhQ8ZWzYZCITyeatq2bb6fxcLCdWzZEszo6zhp0qSMjldeXs6qVavYvn37fo0zcOBAJk2axB133MG5555LaWkpF198MUuXLt1vG3/uu9wshFtKeUDiQvtKIBAgGo02axvD4TDPPGMjGGy+NnbunGDQoBpisVi2TdktNTU6l1ySydfwJF59FSAzYzocEdqd+ik5t76YkfGaAtdmP+Hwb5r19yUWi/F/tf9HzJGBz+Kf4OrQ1RACLoCP+Tgjb3dcxne7r1kIt91u58wzz9zvcaSUvPzyy7hcLkaPHs2XX37J0qVLue6667DZ9j0qtHHjRgzDyIiNTYVpmuzY0YaKisHZNmW3FBev4pRTTqGwsDDbpuwSKSXz57/N5s3N9312u6vxt32IzWduzrYpu6Xth23ps7PPfn9fTNPk8ccfZ+jQoRx11FG8+eabJBIJzj777P2uLV9eXs624dsI9Azs1zhNSZ599825D6oY99atW3n//fet5rjdu3enqqqKjz/+ONumKRSKvWTp0qXU1tbSvXt3hg4dyqBBg3j//ffZunVrtk3LOgeVcHft2pW+ffsyfvx4ysvLufvuu4nFYgwZMiTbpikUir1k6NChhMNh7r77brZt28b48ePp27cvXbt2zbZpWeegEm6AESNGMGbMGOx2OwMHDuT888/PtkkKhWIfueCCCxg4cCB2u50xY8YwYsSIbJvULDjohLtHjx5ceOGFFBYWcsEFF3D00Udn2ySFQrGP9OvXjwsuuIDCwkIuvPBCevTokW2TmgUHnXArFArFwY4SboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWHHC++uorPvjgg2yboVC0WJRw7ydSSkzT5IEHHmDLli2N7vmYftzuLuvXr+fEE09scHnuueea+Nk0PTU1NcycOZM333yTESNGNOs2ZgpFc6VZtC7LNBUVFbRr1+6AnGvTpk0MHz6cadOm8cc//pFwOMw777wDwDfffIOu67t8XCwW4/LLL0dKucv9vXr14tVks0KLTDWczSYFBQX85S9/oaKigtdff53169fj8XiybZaFYRjZNkGxC9q1a0dFRQVt27bNtinNgoNSuEtLS3n44Yf3q89kY5BSsnjxYiZPnkznzp0ZO3YsDz30EPPmzQNgyZIlJBKJXT42JyeH5cuX73fvvJaGEILvvvuOGTNmsG3bNh544AHsdnu2zbIIh7NtgeLH2Gw2ZsyYQWlpqfXdOtQ5KIX7QGKaJg6HA9M0LW8t7WXPnDmTnJycbJrX7Kirq2PJkiWMHTuWt956i9mzZ5Obm5tts4DkD/FvfvPHbJuhUOwRJdz7gRCCUaNGMWzYMB5++GHeeOMNOnbsyFVXXZVt05otubm5FBUVsXXrVhYvXtyswiQKRUtBCfd+0qNHD8rKynjwwQeZMWMGXbp0ybZJzRqHw8FFF12ElLLJQ1kKxcGKEu79RAiB3W5n4sSJ2TalxSCEOORi+wpFJtmjyyOE8AghPhFCfCGEWCOEmJza/qwQYrMQ4vPU5ZjUdiGEmCmE2CiEWCWE6N/UT0KhUCgOJRrjcceBkVLKkBDCCSwRQvwnte8WKeULPzp+DNArdRkEPJG6VigUCkUG2KPHLZOEUnedqcuuk4+TnAU8l3rcx0CBEOLAJFUrFArFIUCjZoeEEHYhxOfADuBtKeWy1K57U+GQ6UIId2pbB+C7eg8vS21TKBQKRQZolHBLKQ0p5TFAR+B4IURf4DbgCGAgUASUpg7f1azTTzx0IcQ1QojPhBCfRaPRfTJeoVAoDkX2Kh9LSlkLvAecKqUsT4VD4sAzwPGpw8qATvUe1hHYtouxZkspB0gpB6hFKgqFQtF4GpNV0koIUZC6nQOcBHydjluLZF7X2cDq1EP+DVyayi45AQhIKcubxHqFQqE4BGlMVkk7YJ4Qwk5S6BdKKV8VQrwrhGhFMjTyOXBd6vjXgdOAjUAEuCLzZisUCsWhyx6FW0q5Cjh2F9tH7uZ4Cfxh/01TKBQKxa5Qa44VCoWihaGEW6FQKFoYSrgVCoWihaGEW6FQKFoYSrgVCkWzx+fzMWiQKnmUplmUddV1nSeffDJj40UiEV588UUKCgoyMl4gEKCsrCyjNmaab775hs6dcykpWZVtU3aL37+F+fPn43a793xwltD1avr2bb7vs90eI39zPn2f7JttU3ZLbnkuS2NLqaioyOi4drs9Y9/B1atX0yPQg0T+rlsLNge+1b/d7b5mIdx2u51Ro0ZlbLxMjgVQVlaGzWbL+LiZxOFwcMIJRRx11FEZGU/XdRyO5MfDMIyM9IWcO3cLf/7zMDTNt99jNRUnn7yCl15qvu9zXV0d//rXDq4YtevlERKJxERKiUhVn5CpihM2Ybe2NSWrVq2itraW4cOHZ2S8+p+/TH0WA4EAU4+fSseOHfd7rKZisG3wbvc1C+EWQtCzZ89sm/GzbNiwoVnbuHr1atq0aZMRG7du3crtt9/OnDlzCIdjCDOLAAAgAElEQVTD/PWvf+XSSy9l4MCB+zWu1+slGOxKPF643zY2DRKbzZXR97m8vJy8vDx8vsz8WFVXV+P1eunWrRtVVVXJjTkadeFa8vML+GLHYj6MvEowVoOpC7y2IsLxMJF4mKu6T8bjzKFdXkcKvcUEAgGcTiehUIiSkhJ27tyJ3+8nEolQUlJCOBzGbrejaZolmOFw2NqXn59PZWUlJSUlAFZHo+3bt2O32zPyOm7bto3S0lJmzpxJXV0dCxYsYMCAAZxyyin71YwjPz+fjh070qlTJ0KhEDk5OYTDYZxOJw6Hg2g0is/ns/bF43GEEDidTiKRCH6/n2AwSE5ODpqm4Xa7SS5hAZfLRSgUIi8vj3A4TG5uLrquY5ombrebYDCIz+cjEong8XgwTdNylDwej/W8fq5DVLMQbkXzYvHixfzyl7/k008/5f333+ekk07i1Vdf3W/hPhR5/PHHGTlyJCNGjMjouFE9xJfR9wjpAcrq1lAVq8BT7UOYDlrbutEh5yi+2vkpDruPvr5jsOXZ+aJ6Ka9uXMDoLucxqstY2ng6IKXE4/EQj8ctEUmLk2malhilRSR9rBCCSCSCy+Wyrl0uV0afI8Cnn37K0UcfTXl5OVOmTOGyyy7jrbfe4uSTT85IF6VQKER+fj6hUIjCwkJ0XUfTNIqKiqipqaGwsNASYSkl8XickpISampqKCoqIhKJkJubSzQaRQiBaZrWmFVVVeTn5xMIBHA4HNhsNqqrqykoKKCqqgq/309dXR1CCNxuN9FoFLfb3ajnpYRb8RMuv/xyDj/8cNq1a0dlZSWzZ89m7dq12TZLUQ+bsDHzk8fQjDgd/R3pXtgdt93Ls+/Ox+9zcViXdlRtDVMVX0O/vrUUuVqjGSbtcnqwpmIV6A5audsw+rAzASzRSd+22WyYponNZkPX9QbnTreeS4u5zWZrslZ0Z511Fr/85S95++232bBhA//73/94/fXXM9avNCcnh1AohMPhoK6uDrvdjs1mIxAIcOONNzJgwACuvfZaIpGI9Zxra2vxeDzU1dXhcDiIxWJWWNFms1k/bvn5+SQSCbxeL6ZpMm/ePN555x2efPJJ8vPz0TTN2ielbLRogxJuxW5YvHgxH3zwAR9//DHjx48nPz8/2yYp6uG25/KXgY9z9oKz2OEy2OioJlfkUiS6kBtzE9mSx87vo3xdsQN37pd4qoqoKdqJ11GEw+YiUBcjlkhwQsfhOKQTr9dLOBxGCJH86++UJGJhnA47CA+mlNjtduLxOF6vF13XcTqdhMNhfD5fk/YQXbhwIV9//TWPPPII06ZNo127zPVlCYfDFBYWUldXR15eHoZhoGkafr+f119/nUWLFmEYBpdeeikFBQXE43H8fr/lcYdCIVwuF7FYDMDyuAsKCqitrSU/P5/vv/+ed955h9LSUuLxOM888wy1tbX4/X5CoWSPmrTY5+TkKI9bse+0b9+e1q1b4/f76dy5c7bNUfyIWCxG91ZdWfibhVz4z/NZvmU5Tt1BsasImQAzYXLfhffz8ZdL6ezvzJtr3qRDp0K2fFuJ25dHeWUVsYTOfW//lbvGTiYcDuP3+4nH4zhljOfvPA5Tj4GQ/OqWleQUtMU0TQoKCgiHwzgcDgKBALm5udTU1JCbm0tubm6TPNc2bdoQCATwer0Z/yw6nU50Xcdut2MYRnJSt14z62g0SmlpKXfeeSdvvfUWxx57rBWP1nUdm82GlNL615EOe0gpcblcrFq1ilNPPZVAIAAkkwjsdrsVVnI6ncAP/3KUx61QHMTk5uZSWVlJB297nvjVLG5ceCM7anbQs7gXdmnHTBj888MFeO1eorEILoeT7Z84OKLLALbt2ERd8Q5KtE78vzcXcErXUzlt0GlUVlbiccHyNx8mENJo3XkAvY45CeHMJR6PY7fbqa6utiYni4qKqKyspLi4uEk97qbE4XCgaRo2mw1N06zn8fTTT1teNEAikeCiiy7ikksu4ZxzzqFr165MmTIFKSWGYVgC7HQ6+d3vfsf27dv5+9//zj/+8Q9LtCGZFTN79mx+97vfYZomDofDmkfYm2wZJdwKRQskEomQl5cHwADPAP7fJX/nrKfO5usd6/A5fOSIHOIiTmV8JxWV5VTvrOb0gWMpcbXHxM7ReQN464v/UOR24LY5CQaDBHZs5JV/z2DH1s9o3aE/w34zlYLWXbEJgd1uxzRNiouLLY+7qqoKn8/X5B53UxKNRikqKqKurg6/34+u6yQSCf7+97+TSDTM8d62bRtTpkzhtddew+v18tlnn2EYRoNjbDYbr732GlJKVq5c+ZPzSSmZPXs2F1xwAQUFBYRCIYQQeDweEomE5fHviUN25WQ8Hmfnzp3ZNkOh2CfS3pmUEpuw0bOoF+9c9w492x5GXayOdRXr+WzrClZ9twpfnp+BfQYS1aJ8u30rwmGj7vsEJ/YYQ16ugzufv4HN2zby7cbVfP3lcoadeRvn3jCf4rbdEST/xqcFJZ0WKITA4XBgmiZ2u/0n3mJL8cDTPzxut5vq6moikQgAmqZZx0ybNq3BGo7Vq1ezbNmyn4g2JGPcK1asaCDabdq0Yd68edZ9h8NBq1at0DSN/Px8vF4vkPwXpUIlP8Prr7/O1q1b+e677zjyyCM5++yzLe9FoWgJ2Gw2YrEYIuUNa5pG2/y2vHHtq7z25Wu8+uXrLF3zERVV24kkwlSZduL2BGbCBB3WrvuKUwaOZnjJr2k9WHDjtAs5vNLOMQNGcdhxY8jNy7dEOp31IIQgkUjgdDoxDAOXy2VNUv5YcNJ//5s76TTAuro6ioqKLI87HfqApIi/9NJLFBYW7lKs98SoUaMa/BDous7OnTspKCggEAhYHrdKB9wDkydPZty4cQwfPpzLL7+cX/ziF0q4FS2KWCxmhSai0Sher5fa2lp8Ph8je47i3IG/5o0Vb1ARrCARS+Dz5BGNRIlHEyAF+gidzm06MfL4kRQVFuGvKOK7j77g5F/9gZLW7amqqsLr9aJpGg6HwxLpdH6yx+OhtrbWWrjj8/maJI+7qUmnAzqdyXBReoKwvkDn5OSwrw3Nr7zySh544AHeeusta5vdbsfv9zdIB4Tkwh3lce+GqVOnUlpaSq9evXj11VdZsGABEyZM4IUXXmgxf+8UitzcXOrq6oDkFz69Gi8dsw2Hw4w+djSB2lpyXS6itVV8O+9RYhvX4mnXgSNu+jMJpxM7sLOinIqV23B7W9Opc0/qqqsp9PlIaBobX3mR5f+cj3B6OOLM39DjxJEUFhdjGAYlJSWEQiGKi4utPOaWRjweJy8vj0gkQk5OjrWK0ePxWMckEgncbreVebI3nHXWWQANJjqllITDYbxer7Xd5XI18Mr3RMt8tfeDcePGMXjwYDRN4/XXX+fKK6/k0UcfzbZZCsVeEQ6HrdV80WiUvLw8K284fb195TJE2Wa2vLYQZ46XoydPB5sTYbdh7Kxg7Z0TMYQNM2Zirv2S1kf3Z8sLz/LdB4uJBOvI69SNw8++kDPumYqpa3z17ts8f8WFuPILGfnH8eS1bU+XXr0IBALk5OS0yH+t9eP3UkorxPPyyy/Ttm1bgsEgW7duZcWKFT9ZiNQYNm7cyHHHHcfGjRut851zzjnWnED91MO9cRwPOeH+3//+x8iRI5FS8tRTT9G7d28KCwuVt61oUbjd7gYx7kQigcfjQdM0PB4POz94k61T76TTBVfT59a/IgSE160l/TGXQtD3zmlIAbGKcgo/XkIikcAubAy44VZwOIlHIySiESJVOzClpMtxA+l83PEEqqv516Q78HfqzGUPzSDH72+xHrfT6SQej2Oz2ayl/EKIBh7yI488wiOPPLJP40+YMIFt27YxdepUIDk3MW7cONxuN6Zp4nK5rB+LvXkNW+arvY8sXbqUjz76iNLSUmw2G5s3b+aYY47JtlkKxV6TzuaAHyrmpReSVL73Bt89eT89LroWb9cexL/fgkBgQyIEqVqBguimrzGlxARaHz8YE0hEIkQrKzBN0KXElBIDMEyJYYIpk+f95SWX8v78+cy5/vdc+/QzDSbzWhLpglrplYzpycmpU6fuc1z7x6RFG5Lv25133smdd95pTYqml8knEolGZ5YcEsItpWT9+vXMnz+fBx54wPpLp0Rb0VJJZ3UIIayVfJFIBFG1ne0vP0/nsy/GXVSCGajChg0hUisCAQGYSDCTtzEliUgIQ0p0MynSppSYMnlbT1+bEgMTzQCXO4dfXPRbFj08nUevvIKb//7/svuC7CPp5esej4eamhqklDz22GM89NBDDUIjhYWF2O32BmmRNTU1uxwzPz8fp9OJaZpWDZj0sVJK5syZg91u56677rIyVQzD2Kt0wEMij/uTTz5h2rRpPPbYYy0yDqdQ/Jh0TDtdeS4QCFCQn0/Flyvxl7TFW1CMGaqFWAQRD2GLR7DHw9jikeQlFkbEwhANQywE0TBmJIyMhDAiIfRICD0cJBEOoYWCJEJBEuEg8WDyOhaqw9Q1Tr7qamrKygju2JHtl2SfCAaDFBQUkEgk8Pl8PPnkk9xzzz0NFt8ceeSRrFixgrKyMjZt2sSOHTv47LPPdlkts3fv3rz77ruUlZXx5ZdfUlZWxieffEK/fv2sYwzD4PHHH+eBBx5g27ZthMNhIOn9NzaN8qAX7nfffZe3336b6dOnqzi24qAhXZDI7XZjGEYyrS1QS+37b2DL8aAFayAWQUYjEEsKtS0ewREPY49HELEIxCPWMUYkjIxGMKNhzGgEMxJBj0TQIyG0SJhE+jocJhEOkQiHiIdDaLEETm8e7/2jZXrcOTk5RCIRHA4H27dvZ9KkSQ329+nTh1mzZlFUVGTFwuvq6mjVqhVTp06lV69e1rFut5ubb76ZXr16EY/H8fl8aJpGmzZtmDt3Lscff3yDsadOnUo4HLY6Qql0QJJ/ST7//HPef/99xo0b1yKW40oprZzONJMnT2bx4sUAXH311Vx22WXZME3RzEiHRiD5hU8kErhtgtg3X1E8aixmNIxhs2G3iaR7ZgO7zY7NBqYEYUowJdKUSNNEGhLTBMM0k/FtU6KZEk2aaEYyhKKbZnKbKdGN1G0Jbbt2QctQPPhAo2kaubm5xGIxrrvuOiu7JE15eTm33norhmFwxBFH8Oijj+LxeIhEIhx77LGccsopbNiwAYBTTjmFESNGkEgkrB+Eu+++m5UrV2KaJlu3bm1wbiEEf/jDH3jxxRdxuVx7lWp40Ar32rVreeSRR5g1a9YBWRhQUVFBYWFho/spmqbJhg0bGnxIli1bxsMPP9zguMmTJ1NaWgrQYieAFJmnfvqaldJmE0jTwIxF0G1gs9kxbQJpE2ATSLuAtDCZIM2ko2AayWvdBN0w0SVouokuk3HthGEmhdww0U2ThCnQDIlmmmiGSSwcyvbLsc+kGxg4HA7mzp3L+++/z0UXXWTtr66u5uOPP6ZHjx7cf//92O12IpEIbrebeDzeIBPE5/PRqlUrK8vH6/UyadIkxowZw4oVK35y7pkzZ3LhhRc2aGDRWA5K4f7ggw9YtGgRc+bMyVjB9d0RCAR44YUX2LRpE+3bt6dLly6cccYZPznulVdeYUe9OKBhGCxbtqzBMQMGDNjlG5wNEokEn3/+Of3798+2KYpdkEgkLIfEMAw8Hg+xQC1GOEJs+zZy/PkYNjs2u0DYQNgFCBsmNkwkupQYZlKQdSPtVUt0aZIwQEt71EZyMjIajRLXNHDnkDBlSrhBMw3ikQhNucBdSsnixYsz1sPyx2OnwxN2u50PPvjgJ8f07t2bBQsWkJeXh8Ph4O2332bHjh0UFBTQr18/LrvsMnRdZ9CgQSxbtowtW7aQk5PD2WefjcfjYdGiRYwdO5Yvvviiwbiffvop5513nuW87U2ZgINOuD/44AM++ugj7rrrriYXbUj213vmmWd4+umnWbFiBVOmTMFut/PPf/6zwXHHHntsg76DbrebOXPmNNu4ezQa5bXXXuOdd97JtiktmnPOOYf58+dzwgknkJOTk7FxPR4PO3bsQAiB1+tN9kH05WFKqPt6DfZeRyByPGCzpTztVCaJpiPcHgxpJoVX1wlv+45YOEzMMEkYkrguiZsGcR2cxW3A5ycWiRJPJBC6QSJ1nGZKErrB1tWr6Tnw+D0bvY9IKZk1a9Yuq+1lgnSnn1AoxKxZszjzzDNZt24d69ats84/depUHnzwQYQQVFVVMX78eIYMGcILL7zAOeecY5Vnvfbaa3nhhReYNm0akKxLcueddzYQ5Q4dOjBq1Cief/55SktLyc3NbXRVwDQHjXBLKVm7di2LFi1i0qRJ+P3+Jj+naZpMnDiRv/3tb8ybN48XX3yRjRs3smzZMiZOnNjg2M6dO2f0i6toGfTv359bbrnFintminSz3vRiEZ/PRzAU5MjSe1kzeRzGl2FKDu+LdLswbAJDgIhHMGtrsLdpj6kbBDeuwdAlsXicuKYRN0ziOkR1g7huEjNMtIptaNiR3nzs+QXISAzd7kAzIGGYbPxyFTZXLkf+YljGntuBJN3Y1+Px4PF4+OSTTygpKeG3v/2tdczXX3/NunXr+OCDDzj//PO56qqrKCoqstL9DMOwmicYhkFeXh5nnHEGTz/9NNOnT2fLli0N5q4KCgqYPn06N954I926dbO6Dh2SC3C++OILHn74YebOnXtAPG1Ixhnvu+8+rr/+eubMmcOIESO47bbbDpi3rzi0MQzD+pwlvUY7wleIppvYwmGqv/qc/J5HYDN07KaB0OJold9DeVkyV9sEzTRJmEkPOqEnvWiDVO62hEQ8QUwziAWCxL/7jphhojvdeNu2Z9uWrQSDEboefxh9myCMcSBIN/aNx+MUFRVRWFjId999RywWs/puQtIx3Lx5M/fffz9r1qzh3//+N8888wxSSnJycqz0wb59+3LzzTczceJEFixY8JPwh81mIxqNUl5eTu/eva1FPk6nk1gs1ug5skYLtxDCDnwGfC+lHCuE6Ab8AygCVgCXSCkTQgg38BxwHFAFnC+l3NLY8+wLixcv5t133+XJJ588oIIphKC4uJijjjqKp556ilgsxkUXXaREW9HkpJdqp8U7XV41BJgeD4l4DDSdcG0NhOsQoSA2m8CGQCIxpIkpk8Ktm6Ri1j/ErvV0/NtMxsNNU2LI5OpJQ9MI1dQSi0Sxuz1I2XLqb/+YvLw8qxt7bW0tLpeLTZs2MWTIEEaPHk1dXZ01gTlr1iyklLzyyisMHjyY0tJSq9u91+tFSsmECROYP39+A9G+4YYbLI88XRxs48aNtG/fHr/fj2EYe/2PbG887j8Ba4F0DGIKMF1K+Q8hxCzgKuCJ1HWNlLKnEOKC1HHn78V5Go2UkmXLlvHhhx8yfvz4rJSVLCkp4f7772fVqlV0795dLfBRHBDi8bhVwS4SiZCbm5sss9r7KAp/cQrb33wZEx1ZVYVDmNh0E2ETiJRwm7KeEEuZjG0bsoGA6/UmL3WZnLA0pETXJPGaAKYEu8fDGbfeYtVIaWmkQ06JRIL8/HyklAwbNoyRI0cSi8Wspeg2m41evXoxfvx4AGbMmMFNN91kpRMmEglrleS0adMs0b7rrrv4/e9/j8fjsVa5ejweYrGYVdURsLrFN1bDGuUaCiE6AqcDc1L3BTASeCF1yDzg7NTts1L3Se0fJZro53j9+vU8++yzjB8/nsLCwqY4RaM5+uijlWgrDhher5dQKNSglnR+fj5xYcffpSe6CXHNJBqJEo0miBgmUd0koievo7pJTE+KdVSTyYlJ0ySRSv/TpCRuSnRDoktBIuVxa6aJzZuXDCW4ctB0ncEnj24R6yR2RW5uboPXMB3yqKurIycnh7q6Oqu7fe/eva3H6bpu9ZKMxWI4nc4GTYDT9OrVi8LCQpxOJzabDb/fTzQaJT8/36rHnfa098bxbKzHPQO4FUinRRQDtVLK9GL+MqBD6nYH4DsAKaUuhAikjs9on7ClS5cyf/58nnjiiRb7N02h2FcikYiVpZS+HQgE8Pl82Lr2wtaqPbGKMjSZwI7AbiNVGTDpq0nZ0OtOL66xskUMA81IinfCTOdzS3QDYjW1mAKOHjUCT1ExlZWVFBQUNMiaaimk67yk86jTYU6Hw2E1AZZSYrfbG0weCiGsvOt0DZP6lzTpbvDpbZqmWXne6RBXOo7+48V3P8cePW4hxFhgh5Ryef3NuzhUNmJf/XGvEUJ8JoT4bG+rcC1evJjFixdb6TkKxaFGOu4ajUatCa/03/ouQ0/E06EzUcMklsoOSXrYJjFdJ6brRHWDqG78sN8S6dREpSGT+dxpMU/leWtmMoRS0rUb36xew9jrb8Dv97fI7jfwQypgWpzr53SnKzBKKbHZbHTr1q1BY4T//ve/AFaIJB3/rqqqApIty/r27WvtS2ed2Gw2DMNo8DjIfB73UOBMIcRpgIdkjHsGUCCEcKS87o7AttTxZUAnoEwI4QDygeofDyqlnA3MBmjTpk2jLV6zZg3//e9/ufnmm60mmwrFoUb6i5/+8qczINKCM+CWe3jlt2cQjYawC5GcmJRYZV1NwExXAUSi68lMkqQ4m+gGJMykmGummco+SQq42+endc/DadWzJ0Xt2lntvloi6SbBfr+fQCCAy+XC6XRanYSqq6vx+XxEIhEKCgoYNmwYixYtIhwOc8MNN9CpUydL2AHKysqsSoDHHXcc7dq1s+qkp2vK1NTUWJ3l063LEolEZtMBpZS3AbcBCCFOBG6WUl4shPgn8GuSmSWXAYtSD/l36v7S1P53ZQY7h/bu3Zu7775bLf9WtBiaonGuYRjWFz39lz4SieByuYhGoxR070Fu527sWPM5NmHDbpV0NZHYkCLlAaYmJ5P1tpMrJ5P1SITlaWumScxIhkwSpoHPX4DN5aJbv374CgqsmtIt0etOVweMxWIUFBRgmiaGYVBUVGS1ZYtGo/h8PqSUVn0YgMrKSiorK3c7dvpfUCAQwG63Y7PZqKmpwev1Ul1dbcXQ02GXdLPgxrA/eWulwHghxEaSMey5qe1zgeLU9vHAxN08fp+w2WxKtBUtiqbwRr1eL8FgkFAohMPhsPKRI5EIxcXFRCIRxjz2DHHNJK4bRDUjFR6RyeuESVRLhk/i6TCKIYkaENMFMd0kYZjEjeR2zTBJ6AaFHTrTa+gwPLleTrngAoLBICUlJS12ctLn81FTU4PL5aKmpsbKq043QN65cyd2u526ujoikQgDBw6kU6dOexy3bdu2jBgxwvpBcLvd2Gw2qx9oSUmJlcmSjhzszWu4V8ItpXxPSjk2dfsbKeXxUsqeUsrzpJTx1PZY6n7P1P5v9uYcCoViz0SjUXJzc8nJybGK8KdXAAYCATweD9Lhot8lVyeF2kgKd0T7IbadzC4xkvFvQ9YT8eSy9rhuErfi3RJ/2w50H3A827Zs4aQrriAQDJGTk0NtbW2DVl8tiUgkYnVc9/v9VkpjQUGBFR4xDAOv14vH42Ho0KHMmzePgoKC3Y7pcrmYM2cOJ554Im63m2AwiKZpSCmtbJWamppk3n0oZP1Y7M1rqFaKKBQtELfbjaZpVpZCNBq1VvDl5eUlGwMUFlEyeDi2Vu2I6pKIbhIxkimBP6QFyh9uGyYxzUh62XoyRTBuGCRMicufT+uevajasZ1IMET3Y47B5/MRj8fxer0t9l+wx+MhHA7jcDgIh8NWOmD6RzAYDGK324nFYlZPyt69e7Ny5UqeffZZ/H4/Pp8Pv9+P3+9n+vTprFu3jsGDB+Pz+ax2ZA6Hw6orky5RoOs6ubm5DepxN5aDZsm7QnEoUX8pdjojon7tjPSkZbfjBzPg0qt5d/qDaJGw9XiZWogjZXKS0iAd7072mtStBTgmnqIS8tq0IxKN4nZ7mPL2W5YN9SdFWyL124ulqd+erP6+dPlcm81G69atGTNmDN9++y26rlsrIwFrviFdX9s0TSt7pP57BMn5ifpZJ41FCbdC0QJJNwhOi0G6WbDNZkPTNOva5XIx7KrrMKTk1b9MRjYQqGSGiSFJ5nSnl7XLH+py61JgMySBmhq6tmvH1Q8+iC1VCS8ej1s5yUKIFtnpvb7oplc3QtITT5fLhYbecHpf/YUz9VP6NE3D6XRamSKaplmPTSQS1r70e1b/h6KxqFCJQtECSedsx2Ixq7h/elteXp61BD0YDGKz2Tj+okv59UMz6XjswGQ8O3XpMOB4PG3aEjPM1EXSa/iJxE2SS+BNiEWi9D/5JK647z5yU81CTNMkLy+PeDxOXl5ei8woASxhTS+GSYtnfdFNL1VPe+DpSn7psEo6N1sIYSVPpJs5m6aJw+Gw9judTnRdb7Av/YO3N/9aWt5PpELRQohGo1RWVhKLxSgrK0PTNEpKSjI2flFREZD8C5+Tk4MQwtpWWFiIEIL27dtb+0deejnDzjsfo54HaHc6MU0D0/jBE3e4XGj1muUCuDweXB6P5R36/X6ryFpLzeGG5A+g2+1u8BrCD+GS9L76pLux72pfmp+LW+9LTPvHKOFWKJqI//3vf0yYMIEdO3YwYcIEiouL+dvf/pax8etXoUwLyJ6u7Y2sp+PZzeK23Y3bUkkvYkrfrr/9x9sas+9AoUIlCkUTEIlEeOedd3j66afp27cvTz31FH369GHJkiXZNk1xECCaYlXX3lJYWCgvueSSbJuxW+LxuLWKqrkSCARwOBwZKwNgGAZbtmyhR48eGRkPkm3etm8vQcrmm4FQUPA9Xbp02POBe8AwDLZu3Ur37t3ZtGkTXbt2pa6uDtM09+tzZBgGVVVVtG7der9tbCrC4TCGYWS0C9X69es57LDDMjZeVVUVeXl5jV6pmA3mz59PTU3NLt36ZiHcQohKIEyGKwhmkBKUbfuCsm3fULbtGwebbV2klK12taNZCDeAEOIzKeWAbNuxK2bvclkAAAUsSURBVJRt+4aybd9Qtu0bh5JtKsatUCgULQwl3AqFQtHCaE7CPTvbBvwMyrZ9Q9m2byjb9o1DxrZmE+NWKBQKReNoTh63QqFQKBpB1oVbCHGqEGKdEGKjECKjTRf20Z4tQogvhRCfCyE+S20rEkK8LYTYkLo+IC3lhRBPCyF2CCFW19u2S1tEkpmp13GVEKJ/luy7Wwjxfer1+zzV8i6977aUfeuEEKOb0K5OQojFQoi1Qog1Qog/pbZn/bX7Gduy/rqlzuURQnwihPgiZd/k1PZuQohlqddugRDCldruTt3fmNrfNQu2PSuE2FzvtTsmtT0b3wm7EGKlEOLV1P2med1+3J34QF4AO7AJ6A64gC+AI7Ns0xag5EfbHgAmpm5PBKYcIFuGA/2B1XuyBTgN+A/JZs0nAMuyZN/dJNvb/fjYI1Pvrxvolnrf7U1kVzugf+q2D1ifOn/WX7ufsS3rr1vqfALIS912AstSr8lC4ILU9v/f3tmEalGFcfz3LLQiI1FCxLsoQ1AIsUgJFBGTyAqvwl0IQS4EwWohLQQR3Lms3IiC9qF9KWmhuDK6iisx/Eiv+NGFgsSLd6XpxtL+Lc4z3uH1fV8VmznzwvOD4T1zZmD+/N85z8x5zsyc7cBaL78PbPfySmBvBm1fAgNt9s/RJj4CvgUO+XolvuW+454HDCvNpvM3af7K/sya2tEP7PLyLmB5HQeVdIz7J1rupKUf2K3EcdJkzlMz6OtEP7BH0m1JvwPDpP+/Cl0jkk55+SZwAZhGA7zroq0TtfnmmiTplq+O80XAYmCf17d6V3i6D3jdrJqPeHTR1ola24SZ9QFvAzt93ajIt9yBexrwZ2n9Ct1P4joQcNjMTprZGq+bImkEUsMDcr5v3ElLk7z80Lumn5fSSln0eRf0ZdLdWaO8a9EGDfHNu/tngFHgJ9Jd/nVJd9pouKfPt98gzUFbizZJhXeb3btPzax4j71u77YA64HiU4uTqci33IG73RUm92Mu8yW9AiwFPjCzhZn1PCxN8XIb8CIwBxgBPvb62vWZ2QRgP7BO0l/ddm1TV7e2xvgm6a6kOUAf6e5+VhcNtepr1WZmLwEbgJnAXGASaSLzWrWZ2TvAqKST5eoux38sbbkD9xWgPGVyH3A1kxYAJF3131HgR9KJe63oYvnvaD6FHbU0wktJ17xx/QvsYKxbX6s+MxtHCozfSPrBqxvhXTttTfGtjKTrwFFSfniimRWfgS5ruKfPtz/Lw6fP/g9tb3r6SUoTln9BHu/mA8vM7A9Syncx6Q68Et9yB+5fgBk+8jqelKQ/mEuMmT1tZs8UZeANYMg1rfLdVgEH8iiELloOAu/5SPprwI0iLVAnLTnEFST/Cn0rfTT9BWAGcKIiDQZ8BlyQ9ElpU3bvOmlrgm+u4zkzm+jlp4AlpDz8EWDAd2v1rvB0ABiUj7jVpO1i6WJspBxy2bta/ldJGyT1SXqeFMcGJb1LVb5VPcr6oIU08nuZlEfbmFnLdNII/q/A+UIPKff0M/Cb/06qSc93pG7zP6Qr9OpOWkhdr63u4zng1Uz6vvLjn/WTc2pp/42u7xKwtEJdC0jdzrPAGV/eaoJ3XbRl982PNRs47TqGgE2ltnGCNDj6PfCE1z/p68O+fXoGbYPu3RDwNWNPntTeJvy4ixh7qqQS3+LNySAIgh4jd6okCIIgeEQicAdBEPQYEbiDIAh6jAjcQRAEPUYE7iAIgh4jAncQBEGPEYE7CIKgx4jAHQRB0GP8B3ecKdiRIWmrAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## 정책 확인하기\n", + "\n", + "Q-Table은 각 상태에서 각 행동의 \"매력도\"를 나열하기 때문에, 이를 사용하여 우리 세계에서 효율적인 이동 경로를 정의하는 것은 비교적 간단합니다. 가장 간단한 경우, Q-Table 값이 가장 높은 행동을 선택하면 됩니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "# code block 9" + ] + }, + { + "source": [ + "위의 코드를 여러 번 실행해 보면, 가끔 코드가 그냥 \"멈춰버리고\", 노트북에서 STOP 버튼을 눌러 중단해야 하는 경우가 있다는 것을 알 수 있습니다.\n", + "\n", + "> **작업 1:** `walk` 함수에서 경로의 최대 길이를 특정 단계 수(예: 100)로 제한하도록 수정하고, 위 코드가 가끔 이 값을 반환하는지 확인하세요.\n", + "\n", + "> **작업 2:** `walk` 함수가 이전에 이미 방문했던 장소로 다시 돌아가지 않도록 수정하세요. 이렇게 하면 `walk`가 반복 루프에 빠지는 것을 방지할 수 있지만, 에이전트가 탈출할 수 없는 위치에 \"갇히는\" 상황은 여전히 발생할 수 있습니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 5.31, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "# code block 10" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 57 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5wU5Z3v8c8vEk1islETkuPtlcFdT3LMvjbRsF5iTnajibdkQ5KjOeRKjKsnWT3rms1mwVw8q/EWL6gJXlAwxBsqQSWCIgJeuDPc5TrDfQBhhoFhYBiYgef80U8PPT19qe7p7qrp+r5fL5jup6qrnuqq/tVTTz31POacQ0RE4uE9YWdAREQqR0FfRCRGFPRFRGJEQV9EJEYU9EVEYqRf2BnI5aMf/airqakJOxsiIn3KggULmpxz/TNNi3TQr6mpoba2NuxsiIj0KWa2Mds0Ve+IiMSIgr6ISIwo6IuIxIiCvohIjCjoi4jEiIK+iEiMKOiLiMSIgr5IlXr1nW007T0QdjYkYhT0RapQy/4OfvLkQn78x/lhZ0UiRkFfpAp1HjoMQMOu/SHnRKJGQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYCBX0zu8HMlpvZO2b2jJm9z8wGmNlcM6szs2fN7Gg/7zH+fb2fXpOynGE+fbWZXVyeTRIRkWzyBn0zOxn4V2Cgc+5vgaOAwcCdwHDn3OnALuAq/5GrgF3Oub8Bhvv5MLMz/Oc+DVwCPGhmR5V2c0REJJeg1Tv9gPebWT/gA8A24AJgnJ8+BviGfz3Iv8dPv9DMzKePdc4dcM6tB+qBs3u/CSIiElTeoO+c2wLcDWwiEexbgAXAbudcp5+tATjZvz4Z2Ow/2+nn/0hqeobPdDGza8ys1sxqGxsbi9kmERHJIkj1zvEkSukDgJOAY4FLM8zqkh/JMi1bevcE50Y65wY65wb2798/X/ZEpACz1+7k0bfWhZ0NCVG/APN8GVjvnGsEMLPxwOeB48ysny/NnwJs9fM3AKcCDb466MNAc0p6UupnRKQCvvPoHACu/uJpIedEwhKkTn8TcK6ZfcDXzV8IrACmA5f7eYYAL/nXE/x7/PRpzjnn0wf71j0DgNOBeaXZDBERCSJvSd85N9fMxgELgU5gETASmAiMNbPf+rRR/iOjgCfMrJ5ECX+wX85yM3uOxAmjE7jWOXeoxNsjIiI5BKnewTl3E3BTWvI6MrS+cc61A1dkWc6twK0F5lFEREpET+SKiMSIgr6ISIwo6IuIxEigOn0R6du27t7PrLU7w86GRICCvkgMDB45h03NbWFnQyKgqqt3duxp56xbprBme2vYWREJVWPrgbCzIAENHjmb+1+vK9vyqzroT1m5neZ9B3l85oawsyIiEsicdc0Mf31N2ZZf1UFfRES6U9AXEYkRBX0RkRhR0BcRiREFfZEq1GOgChFPQV+kimUauUjiTUFfpIqpxC/pFPRFqpBK+JJNTIL+kfLOV+59k/ELG0LMi4hIeKo66FuG8k7djr387LklIeRGRCR8VR30RUSkOwV9EZEYUdAXEYkRBX2RGHBqvCmegr6ISIwo6IuIxIiCvohIjMQq6Dunek2Jp0zPrEg8xSLoK9aLiCRUddA3FW5ERLqp6qAvIiLdVXXQV7WOiEh3VR30k1TNIyJRc+iw47/+spyGXW0VXW8sgr6ISNQs3ryLx2du4IZnF1d0vQr6IiIhSFY/H65wNbSCvkiVeLuukUfeXBt2NiTiAgV9MzvOzMaZ2SozW2lm55nZCWY2xczq/N/j/bxmZg+YWb2ZLTWzs1KWM8TPX2dmQ8q1USJx9INR87j9lVVhZ0MiLmhJ/37gVefcp4DPACuBocBU59zpwFT/HuBS4HT/7xrgIQAzOwG4CTgHOBu4KXmiqBS15hGRuMsb9M3sr4AvAqMAnHMHnXO7gUHAGD/bGOAb/vUg4E8uYQ5wnJmdCFwMTHHONTvndgFTgEtKujVZKNhL3OiQl2yClPRPAxqBx81skZk9ZmbHAh93zm0D8H8/5uc/Gdic8vkGn5YtvRszu8bMas2strGxseAN6r6sXn1cpM9L/gTUn74kBQn6/YCzgIecc2cC+zhSlZNJplDrcqR3T3BupHNuoHNuYP/+/QNkT0REggoS9BuABufcXP9+HImTwHZfbYP/uyNl/lNTPn8KsDVHuoiUicr3ki5v0HfOvQtsNrNP+qQLgRXABCDZAmcI8JJ/PQH4oW/Fcy7Q4qt/JgMXmdnx/gbuRT5NREpMNZuSTb+A8/1f4CkzOxpYB1xJ4oTxnJldBWwCrvDzTgIuA+qBNj8vzrlmM7sFmO/nu9k511ySrRARkUACBX3n3GJgYIZJF2aY1wHXZlnOaGB0IRkUEZHS0RO5IiIxEqugr5taIhJVlRrONRZBXw9nSdxpjNxo++sbJ/Gth2ZVZF1VHfR1mItIVKWWRQ8ddizatLsi663qoC8iIt0p6IuIhCCsmggFfRGRGFHQFxGJkaoO+mq0IyLSXVUH/SR1sSxx5Zzj91Pr2N9xKOysSETEIugnVerhB5Go2NXWwT1T1oSdDYmQWAV9kUrae6CTZQ0trNy2hzteWaVCh0RC0F42+zT91iQMV4+pZfa6nRzT7z0c6DzMtV/6az70vveGnS2Juaou6asqX8K0cNMuADoPJ0odpptLEgFVHfRFRKQ7BX2REL2xegf7D5a2ZY3uHUguCvoiIVn9bis/enw+v3rxnZIu97ZJK0u6PKkuCvoiIWlt7wBgw859JV3uk3M26cFEyUpBX0SkAhpbD1AzdCK1GxJDg4d1Yo5V0FfpRyopebwl2+yorj3e5q1PBPvRM9d3S690m65YBX2RMKilpkSJgr6ISIgqff0Xi6DvVLEjMaOLi+jTICploMtqEZHuqjroi4hIdwr6ImWmRjsSJQr6IiIxEqugf+iwilxSebq3JFESq6B/9+TVYWdBpAc9tCWVFKug/+ryd8POgkgXXQFIGKo66KsAJVFWruNTJ5PqsHPvgbIst6qDfpLpURWpgB2t7cxZt7Pgz5V6RC0VdqIt1/7pPHS463W5bkHGIujriVyphG+OmMXgkXPCzob0YXe+uqrs6wgc9M3sKDNbZGYv+/cDzGyumdWZ2bNmdrRPP8a/r/fTa1KWMcynrzazi0u9MT3zXO41iByxZff+nNNV9BA4EpcyHQ9zfU+cienlOWIKKelfD6QOyXMnMNw5dzqwC7jKp18F7HLO/Q0w3M+HmZ0BDAY+DVwCPGhmR/Uu+yIR5n+zql6UXCLZtbKZnQJ8FXjMvzfgAmCcn2UM8A3/epB/j59+oZ9/EDDWOXfAObceqAfOLsVGBKWSv4RCx50UI+Q6/fuAXwDJuwwfAXY75zr9+wbgZP/6ZGAzgJ/e4ufvSs/wmS5mdo2Z1ZpZbWNjYwGbIiIi+eQN+mb2NWCHc25BanKGWdMHCkqfluszRxKcG+mcG+icG9i/f/982SuIWjVI2DoOHWZWfVPY2ZAIyRqWynSFGKSkfz7wdTPbAIwlUa1zH3CcmfXz85wCbPWvG4BTAfz0DwPNqekZPiNSvVJ+1fdOWcN3H5vbNU5qqbR3HCrp8qT88sb0sKp3nHPDnHOnOOdqSNyIneac+x4wHbjczzYEeMm/nuDf46dPc4nnzCcAg33rngHA6cC8km1JACrpS5gMWLtjLwBNew+WdNnN+0q7PCmf1vbOrNMqcfunN+30/xP4mZnVk6izH+XTRwEf8ek/A4YCOOeWA88BK4BXgWudcyqexMg9r61mWUNL2NkI7K7Jq3hhUUPJlucobeHtF+OWUDN0YgmXKJXwdl336r0FG3dVdP398s9yhHPuDeAN/3odGVrfOOfagSuyfP5W4NZCM9lbyRK+Wu+E6/fT6vn9tHo23PHVsLMSyIjpawH45pmn9G5BeY67Yjtce642+wkp6BI7Dh3m1y++w79eeDonHff+ovIh5VGuiomqfiJX7aMlalKPyPRCyN4DnSzc1PtSXyGFm7frGhk7fzM3vrCs1+uVvqGqg75I1OQqvV371EK+9eAs9rR3VCw/SSoeRUPq8VGufaKgLxICs54NC5ZtSdzv6Og8nOET0tcVWr2s6h2RKpIa8EvRy6buV1WHqLfeEYmFGXVN7G7rO00inVN1TRRFpcm4gr5IHt8fNZerxtT2ejmpP/rmfQfZvKut18sslYjEo9hbktKkuVwnCQV9kQDWbG8t+rOZSt03vrCMG55dknH+Yn7rqQFif4Cncy9/aJbPm64JwhLWiVZBXySICvxCexN+t+bpyz9dbYUfCJLCles+jYK+VESxDyBFRVGl7wqW5fIN4CJ9j6p3eiH53fXxuBOqhZt20XGo+psSjphezx2v9ByyrvNwdW67hhINx4qte3hyzsZQ1l1QNwx9jqorS2Lltj1868FZXP0/B/DLr54RdnbK6q7JqwEYeumnuqW3dwQP+sPGL2XHngNd74OGVYXf+LjsgbdDW3d1B/20X5HaMhenaW8igK3cVvzNzGp36PCRg+2ZeZszzpPt+OvrVV9SHlEYI7fPUqyXchs2fmmg+XLF9zCO02ufWhTCWiVMsQj65eacU2kt5nL1eJkUtUPkzTWNgZp3SjjK1Zw2VkG/HD+6toOdDBg2iT9Mqy/9wiNGN/2KU4qf7oqte/iHu6bT0pa5M7b0Y3vKiu15l7moBD16SnCF972j6p1I2u1/hE/P2xRyTnqvdkMzO/ce6JGuB3h6pxQ/3Qem1rFxZxuz1gYbX/eXL76Td577Xq/reh21qxApHwX9Eho+ZQ33vLY67GwU7fKHZ3PFI7NLvtz7X69jwLBJJV9utSpFAFZ1o2QTq6Bf7tY790+t4/d9vJpnXeO+ki9zzOwNJV9mNUn2sqnWZZJKD2dJn1Xtpc69B7IPdF1q2b5J3W+Jvqj8DGIR9CPyXcdWNX//k5Zt429vmlySZeVszlnmATh0lRE96nunGClf2uHDrixn2moOaNLTo2+t4+a/rOh6/9aaxuAfDniwhBGAo1IKlSMmLXu3LMut7qCf4rQbJ2XslOqRN9fy0uItgZbxz2Pm89mbX8s4bVtLe6/yJ6WxoWkfNUMnsrRhd1mWf+uklYyeuR6APe0dge6BFBrDcwXgbNPS0xXE+75bXl6Rf6YixCboZ3P7K6u4fuziQPO+vnJHVxPNOEoGknELGlj17p6M83QeOsySzd0DbiUD0LRVOwAYvzDYiTyb1G4Vsvn2w7OZt6G5wCVnX25qCb9ue2ugtvYihYp90O+tOFSFplc3/Pz5JVxyX+YOo+5+bQ2DRsxk+daWjNP7iuZ9+YdHXPVusL6IijnnfWX4W1z9p56jdanuXXpLQT/mWto6WNu4t6jPDhk9r0fVWDLYN+3tO2PKVox1/ddNtbdukmhR0I+5r4+YwYX3vFlU4HlzTWPgqrFstu9pp2V/6arMol8S7l2AL9f5Qaed+FDQ76W+/mPZuDP44NzFBpxcJ5RzbpvKF+6cVtyCC9TecYimvQdoj3gnY+lt7mfUNfUYo7fQ4RFFkqq7P/0y29kHAkhQ5axhyLfo1vbgDzftbjvIuAUNXPWFAV1PsmZcZ4YN+tSvXwXg7075MBOu+0LgdZaMSzQGyC7z9nx/1NweaZ+/o/uJUjVE0fDtR2bzoWP6MepHf99jWlSuQhX0e+Fzv32dE449OuxsVEwUDtrP3jwl8ffU4xhYc0KP6UGyuLShuJvM/3DX9KI+F4GvLa++kMe+YN76QltzVV4sqnfKWQoK0sqjL0j9ivpC1cHBEMbrLaQqLFXwwy//nOpuQXqrqoO+Si+5ZRvoPL3qIKnok2c54lQBy2xsPcDztZmHMIyChZt2d6uzT+3KumboxIrkQaeS+FD1Toz95qUjfa7nutlazMkzSs0Q/88TtSzcVJ4ndEvlouFv8dEPJqoKc5Xms41tEJ1vW6Kuqkv6kluuJz63tezPWHUVpWCeS2oud7T2HBgmmvKfXh2OXwcYIEUSxs7bxKvvlKcPm0JF5aeTN+ib2almNt3MVprZcjO73qefYGZTzKzO/z3ep5uZPWBm9Wa21MzOSlnWED9/nZkNKd9mJUTkO+4T0r+r826fxlm3TOkx33MBq0neWH2kI7JK1u7katFTDa57ehFPzNkYdjb6jKHjl/GTJxeEnY1ICVLS7wT+3Tn3P4BzgWvN7AxgKDDVOXc6MNW/B7gUON3/uwZ4CBInCeAm4BzgbOCm5Imi3MKIA+ffMa3qSmQOR932zE/vvrx0K7tSrgz+OGtDhXIVfQc7E/dOdBNWoiBv0HfObXPOLfSvW4GVwMnAIGCMn20M8A3/ehDwJ5cwBzjOzE4ELgamOOeanXO7gCnAJSXdmgppyjCObLotu/cXVCL77csrutWxl0vDrjbWbG/11TRHzoa9ufTc1rKf655exE+fCl6iembeJs7M0mNpKaRuT5UX/gGYsGRrrz7fm2q78++Yxr1T1hT12T3tHRVvLfbKsm1sbk60xNqyez81QyeyMEaDxBdUp29mNcCZwFzg4865bZA4MQAf87OdDKTWATT4tGzp6eu4xsxqzay2sbGAvsorKFlyK6XHZqznT7PLf9n+hTunc9Hwt3hm3mYKrXgxLGMATX4fW3cH71562Phl7Cqwx9Ig33scAnwmBfXrX2Jbdu/ngal1+WfM4OLhb2VtLVYuP31qIZfdn+gwcEZd4nsbO29TSdfR0tbB6BnrI3kPLHDQN7MPAn8G/s05l7lfXT9rhjSXI717gnMjnXMDnXMD+/fvHzR7FRW93RjM9FVHngZNDxLlrHoo1YG/cluuwy65rpKsiu17QhwfIYQDLKx7IWGNQ9Fa5iEuh72wlJtfXkHtxuhdQQQK+mb2XhIB/ynn3HifvN1X2+D/JiNKA3BqysdPAbbmSC+7CJ5sQzFtVXoXAIX90B2uqOBQlhu5Zd6nC8rwY83W3DLdna+uLvm6o6alrYPdbdXxYGMmyaveYh/oK6cgrXcMGAWsdM7dmzJpApBsgTMEeCkl/Ye+Fc+5QIuv/pkMXGRmx/sbuBf5tLJJ/sTmbdjZq+V0HjrMw2+u7XofxUu2pBcWNXDFw7MK/lzOTUqJVZm2PUpfRzVU7/x5YUPF17k6y6A45fKZm1/r6lIjTOU6dhf7gYTumryqKy0qx2aQh7POB34ALDOzZD+6NwJ3AM+Z2VXAJuAKP20ScBlQD7QBVwI455rN7BZgvp/vZudcRTqq2Nxc/I2izkOHOfu2qX2mu4Ubnl2SdVpqFc6ry4O1XT4cYASpsI2esZ7jj30v3zzzlK601G3NVsLuOHSY68cu4voL/zuf/G8fKns+o2z7nr7yLEPpjJm1gZsmLC/rOqJUIErKG/SdczPIXg9wYYb5HXBtlmWNBkYXksGwvbmmMWPAzzZcYLVJ7+MmU/VOvhJM+oH/qxeX9TZb3dzsxxL95pmn8Nry4EMMrti6h0nL3qVh1/6K9Lp54FDuHlmDtAqrViOm1/P9cz7Bhz/w3oqt8+m5pb15m0lUSvep9ERuHpnGSnWOijzl19rewYqtxZ1cnHPM39DM7LW9q9pKDdj5Si2bmttYmFYXvqe9g/1p3U8/Oafnj62zRB2ozahv6vb+3ZZ2NjX3rFd1zvGbHKW8Fxf3bozdTK4e03P4w1LoC1djSTv3HmBHa8+bt3dNXs2vKtBkWRT08ypFq4ZtLfsZMb2+4HsBVz4+n8seyDwWbT7OwRUPz+Y7j84JPH82qdUj+b6NfQe7B/gfPz4/y5zdFTp6Vr7WRsnt+drvZ2Sc/lzt5h4DuKdaVIa+epYU2aVzPoWMR1Col5duZUPTvkDzBjn5fO63r3P2rVMzTmsrc4uaMESxekdBv0hBW2IA/PTJhdw1eTV1Owobi7Y3zb0OpRxt+w/2bqCXoAE2k8U5AmsQW3bv59aJK4ouzWarMvnPP5e2iilMo2asK9uyr3t6ERfd91bZlp8qzPhYyO+5EBGM+fEN+hOXbqvYupJB93CRp/1iWgulVkt9+5HZrGvcmzM4z12fvxrIrPCD+D0Br5Q6DmVe8vXPLOLRt9ezpKH7yeOFhVtwzmUthT5V5vraJ2ZvKOvyC/HAtPqyLr8cDyNWQiGNL54tU9fbhVSPVkpsg/61Ty+s+DorudNTb8Au29LCBfe8yZYcj7v/KEA1jHMw8q2epcpccf09AY+wc2/vfsm/o7Wd7Xva6chSwh+/aAuTl7/LzLVNGaeX269fKm+rj76ot4f37raD1AydyMtLjzy+s2Z7K/uKrPZpzNC76gV3v1Fs9qpGbIN+ujezPMZeiou+Qm4LzN/QsxVr0JPFz58/0lwzU510as+XhejNpW/Qkn6q1vYOzr51KufclrnuN6llf0dkSk/VYH3Auvtsevv8yjq//lEz1nct76Lhb3HVmGD3hQpZRy6z1jbxwqLKPytRKQr63pDR8zI+hZkpZjlXmqZYre0dfOvBmaxrPFLXf8XDs3uUyA8eOsyNLyzLe7k6bsGRA/W495em6Vtqff7qlNGdgiom6N82aVX+maTkdgZsMvrioi3UDJ3Yo6O0XCF/4859jJheWDVU8hwyZ11xj/PkuxeV7Xj+7qNzuz3v8vLSrTya4Qq3r6rqoF9oy5v/9dCswKWVl3I06UvvtyVZJ/r4zPXd0qet2sHCTbsZ/nr3zqrOT+uAasLirTw9dxO3T1oZKG8Ag0bMDDxvLtv3HGCXf1x+d5YO0nK2/Cni5Higo+eN50zNLqF7oPl/RT5ok8zijLpwqoqiImg5PfnEcCENE74/ai53Tc7dvUSxFwqz1jZ161eq1K57ehG3FvDb6y56l6JVG/Snr97BnHWFt1F/fkH+yzqHY21j9svE9GqJPe2JYPlcbXGXjMkbwNkasMysb6LtYHmau33p7jf4l6eKv/9RTEk/U23S9WMX93hQbOe+g7yR8mNP78O/vsDWUoti1L1uPqve3ZO1yjOb13OMxBakBVl6s90g4XJ90z6+++hcrvxjzyqgYk4iuQpzNUMnsnFn4ne/YGMzNUMnUuevFkZMr+ebD5amoFVuVTtG7pUB24enW76lBQaemn/GgvSMYm0HO3lweqI/n3yllGxx0znHym2tfO+xuXz9Myf1OpfFSg/G5XLFw7O7vf9dno7Jvnzvm+XMTlW75L78z4ekH5Y/fWohG+74Kks272bnvgNc8KmP9yoPQa66v5RyY3b+hmb+vuYEnHNFD5F5/djFOacvbWjhEx85lr8sSbT+e6uuidM//qG8VzEQnadzq7akXyrFPhGbz/Apa7rqFPfmaZ2Q7dj/3eTVXQ9vFfoMQCllC77rGvcW9NDVlBXbmVvE1VmpRO9CvLJyxdgOf2Lfvqedt/NUgw0aMZMf/zHx9PH6pn28sXpHUaXu9I+s3LYnY0OHpCsens3m5jYeeWsd59w2tceN6VJ0lJhcwtKGYM+fpK4yW/VopVVtSb9YyX00d91OTj3hA9yTYUSgH4ya16t17G47yMz63gW3WfVNPPTGkZ4/g/Q1Xy6vr8x8WX/BPYWVtK/+UyJQfOusI2Pr5HpqtpSmrNjeZ9ujV8L3HpvLoM+elHW4zKT2tPsxXyphE8lL/cAntwz6ND84rybjPHvaO7ruzWxOuQ/0wqIGBn2mx5hNef3kicyjwS30reMKOZFsbO5d66hSUdDP4n+PzN59Qbabipn8/PklPZ4KHTxyDqveLbwljMOxo7WdptaDLNtSnkf6o6C3TQcLtaShpeuEE2cz6xNNFedv6HlvY976Zuat717KzlRd8alfv1qSvHz/sbl8+qS/yjjtpgnL+d45n+A97+mZgQUbd3XlMzUc3/DsEv7p7wqvAg3SG+2yMnWvUS4K+mlKXe02Lu3G8KX3vx0o4Kc2H92YcpL5x7veoO3gIf7j4k+WLpMRU45+byS/sfM3RaaL5Rn1Td06z0ttrnzYwR2vrmJthirN3+R4aK5c1Xf/9IfM/TtBorEBJJrD5rtKqhQF/TRjZm8sawdWQathxqS0REmtxmnzrSCC3DgSKUSh3RuVq7+aTM66pfuAK5meDM9nXY4Wd5DorqRQnQG/tC/f+2bBY0KXS6xv5KaXwpPGLyp9t7oiUVfojc58fUlNydGEsxLS85evSW569VUmvxy/jJqhE7veBy18RSXgQ8yDfmq3BVGT2v9Il7g3L5Gyatpb2Ohw/zEu9++n2PskpareS29VVujPZ1tLz76q0gdUzzTeRtTFOuhHWR88liRmolL/H1ShLTbPu31a/pn6IAX9PkTVTiLFu/GFcMZQuPkvK0JZbzYK+iJStFINc1nNRqf1uRU2BX0RKdq/R/i+mGSmoC8iRXtpcYYGBxJpCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxoqAvIhIjCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxUvGgb2aXmNlqM6s3s6GVXr+ISJxVNOib2VHACOBS4AzgO2Z2RqnX07I/OkOTiYhESaVL+mcD9c65dc65g8BYYFCpV7KuMRqjzouIRE2lg/7JwOaU9w0+rYuZXWNmtWZW29jYWNRKPnvqccXnUEQkAp695tyyLLdfWZaanWVI6zZypXNuJDASYODAgUWNFGtmbLjjq8V8VESkqlW6pN8AnJry/hRAozCIiFRIpYP+fOB0MxtgZkcDg4EJFc6DiEhsVbR6xznXaWbXAZOBo4DRzrnllcyDiEicVbpOH+fcJGBSpdcrIiJ6IldEJFYU9EVEYkRBX0QkRhT0RURixJwr6vmnijCzRmBjLxbxUaCpRNnpC+K2vaBtjgttc2E+4Zzrn2lCpIN+b5lZrXNuYNj5qJS4bS9om+NC21w6qt4REYkRBX0RkRip9qA/MuwMVFjcthe0zXGhbS6Rqq7TFxGR7qq9pC8iIikU9EVEYqQqg341Db5uZqea2XQzW2lmy83sep9+gplNMbM6/y+8XRcAAAQhSURBVPd4n25m9oDf9qVmdlbKsob4+evMbEhY2xSEmR1lZovM7GX/foCZzfV5f9Z3zY2ZHePf1/vpNSnLGObTV5vZxeFsSTBmdpyZjTOzVX5fnxeDfXyDP6bfMbNnzOx91bafzWy0me0ws3dS0kq2X83sc2a2zH/mATPLNFBVd865qvpHosvmtcBpwNHAEuCMsPPVi+05ETjLv/4QsIbEoPK/A4b69KHAnf71ZcArJEYpOxeY69NPANb5v8f718eHvX05tvtnwNPAy/79c8Bg//ph4Kf+9b8AD/vXg4Fn/esz/L4/Bhjgj4mjwt6uHNs7Bvhn//po4Lhq3sckhkldD7w/Zf/+qNr2M/BF4CzgnZS0ku1XYB5wnv/MK8ClefMU9pdShi/5PGByyvthwLCw81XC7XsJ+AqwGjjRp50IrPavHwG+kzL/aj/9O8AjKend5ovSPxIjqk0FLgBe9gd0E9AvfR+TGJvhPP+6n5/P0vd76nxR+wf8lQ+AlpZezfs4OV72CX6/vQxcXI37GahJC/ol2a9+2qqU9G7zZftXjdU7eQdf76v8Je2ZwFzg4865bQD+78f8bNm2vy99L/cBvwAO+/cfAXY75zr9+9S8d22Xn97i5+9L23sa0Ag87qu0HjOzY6nifeyc2wLcDWwCtpHYbwuo7v2cVKr9erJ/nZ6eUzUG/byDr/dFZvZB4M/Avznn9uSaNUOay5EeKWb2NWCHc25BanKGWV2eaX1ie71+JKoAHnLOnQnsI3HZn02f32Zfjz2IRJXMScCxwKUZZq2m/ZxPodtY1LZXY9CvusHXzey9JAL+U8658T55u5md6KefCOzw6dm2v698L+cDXzezDcBYElU89wHHmVlypLfUvHdtl5/+YaCZvrO9kMhrg3Nurn8/jsRJoFr3McCXgfXOuUbnXAcwHvg81b2fk0q1Xxv86/T0nKox6FfV4Ov+bvwoYKVz7t6USROA5F38ISTq+pPpP/QtAc4FWvwl5GTgIjM73peyLvJpkeKcG+acO8U5V0Ni301zzn0PmA5c7mdL397k93C5n9/59MG+1ccA4HQSN70ixzn3LrDZzD7pky4EVlCl+9jbBJxrZh/wx3hym6t2P6coyX7101rN7Fz/Hf4wZVnZhX2To0w3Ti4j0cplLfDLsPPTy235AolLtqXAYv/vMhL1mVOBOv/3BD+/ASP8ti8DBqYs68dAvf93ZdjbFmDb/5EjrXdOI/FjrgeeB47x6e/z7+v99NNSPv9L/z2sJkCrhpC39bNArd/PL5JopVHV+xj4L2AV8A7wBIkWOFW1n4FnSNyz6CBRMr+qlPsVGOi/v7XAH0hrDJDpn7phEBGJkWqs3hERkSwU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEb+P5qkdQkuhnG4AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "## 연습\n", + "## 더 현실적인 피터와 늑대의 세계\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문 번역가에 의한 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/1-QLearning/solution/Julia/README.md b/translations/ko/8-Reinforcement/1-QLearning/solution/Julia/README.md new file mode 100644 index 000000000..8d98f1134 --- /dev/null +++ b/translations/ko/8-Reinforcement/1-QLearning/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/1-QLearning/solution/R/README.md b/translations/ko/8-Reinforcement/1-QLearning/solution/R/README.md new file mode 100644 index 000000000..732549666 --- /dev/null +++ b/translations/ko/8-Reinforcement/1-QLearning/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb b/translations/ko/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb new file mode 100644 index 000000000..6d73e020f --- /dev/null +++ b/translations/ko/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb @@ -0,0 +1,448 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "eadbd20d2a075efb602615ad90b1e97a", + "translation_date": "2025-09-04T03:02:51+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math\n", + "from rlboard import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "## 상태 정의\n", + "\n", + "새로운 게임 규칙에서는 각 보드 상태에서 에너지와 피로도를 추적해야 합니다. 따라서 현재 문제 상태에 대한 모든 필요한 정보를 포함하는 `state` 객체를 생성할 것입니다. 여기에는 보드 상태, 현재 에너지와 피로도 수준, 그리고 터미널 상태에서 늑대를 이길 수 있는지 여부가 포함됩니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class state:\n", + " def __init__(self,board,energy=10,fatigue=0,init=True):\n", + " self.board = board\n", + " self.energy = energy\n", + " self.fatigue = fatigue\n", + " self.dead = False\n", + " if init:\n", + " self.board.random_start()\n", + " self.update()\n", + "\n", + " def at(self):\n", + " return self.board.at()\n", + "\n", + " def update(self):\n", + " if self.at() == Board.Cell.water:\n", + " self.dead = True\n", + " return\n", + " if self.at() == Board.Cell.tree:\n", + " self.fatigue = 0\n", + " if self.at() == Board.Cell.apple:\n", + " self.energy = 10\n", + "\n", + " def move(self,a):\n", + " self.board.move(a)\n", + " self.energy -= 1\n", + " self.fatigue += 1\n", + " self.update()\n", + "\n", + " def is_winning(self):\n", + " return self.energy > self.fatigue" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(state):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(board,policy):\n", + " n = 0 # number of steps\n", + " s = state(board)\n", + " while True:\n", + " if s.at() == Board.Cell.wolf:\n", + " if s.is_winning():\n", + " return n # success!\n", + " else:\n", + " return -n # failure!\n", + " if s.at() == Board.Cell.water:\n", + " return 0 # died\n", + " a = actions[policy(m)]\n", + " s.move(a)\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 5, won: 1 times, drown: 94 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " elif z==0:\n", + " n+=1\n", + " else:\n", + " s+=1\n", + " print(f\"Killed by wolf = {w}, won: {s} times, drown: {n} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## 보상 함수\n", + "\n", + "### 개요\n", + "보상 함수는 에이전트가 환경에서 행동을 선택할 때 사용하는 핵심 요소입니다. 이 함수는 에이전트의 행동이 얼마나 성공적인지 평가하며, 학습 과정에서 중요한 역할을 합니다.\n", + "\n", + "### 설계 고려사항\n", + "- **명확성**: 보상은 에이전트가 목표를 이해하고 달성할 수 있도록 명확해야 합니다.\n", + "- **균형**: 너무 높은 보상은 과적합을 유발할 수 있고, 너무 낮은 보상은 학습을 방해할 수 있습니다.\n", + "- **연속성**: 보상은 에이전트가 지속적으로 개선할 수 있도록 설계되어야 합니다.\n", + "\n", + "### 예제\n", + "다음은 간단한 보상 함수의 예제입니다:\n", + "\n", + "```python\n", + "def reward_function(state, action):\n", + " if state == \"goal\":\n", + " return 100 # 목표에 도달했을 때 높은 보상\n", + " elif state == \"danger\":\n", + " return -50 # 위험한 상태에 대한 페널티\n", + " else:\n", + " return 0 # 중립적인 상태\n", + "```\n", + "\n", + "### 일반적인 실수\n", + "- **과도한 복잡성**: 너무 복잡한 보상 함수는 에이전트가 학습하기 어렵게 만듭니다.\n", + "- **불균형한 보상**: 특정 행동에 과도한 보상을 주면 에이전트가 편향된 학습을 할 수 있습니다.\n", + "- **환경과의 불일치**: 보상 함수가 환경의 목표와 일치하지 않으면 학습이 비효율적일 수 있습니다.\n", + "\n", + "### 최적화 팁\n", + "- 작은 실험을 통해 보상 함수의 효과를 테스트하세요.\n", + "- 보상 구조를 간단하게 유지하면서도 목표를 명확히 반영하도록 설계하세요.\n", + "- 에이전트의 행동을 관찰하고 필요에 따라 보상 함수를 조정하세요.\n", + "\n", + "### 결론\n", + "보상 함수는 강화 학습에서 성공적인 모델을 구축하는 데 중요한 역할을 합니다. 신중하게 설계된 보상 함수는 에이전트가 목표를 효과적으로 달성할 수 있도록 돕습니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def reward(s):\n", + " r = s.energy-s.fatigue\n", + " if s.at()==Board.Cell.wolf:\n", + " return 100 if s.is_winning() else -100\n", + " if s.at()==Board.Cell.water:\n", + " return -100\n", + " return r" + ] + }, + { + "source": [ + "## Q-러닝 알고리즘\n", + "\n", + "실제 학습 알고리즘은 거의 변하지 않습니다. 단지 보드 위치 대신 `state`를 사용합니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " s = state(m)\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = s.board.human\n", + " v = probs(Q[x,y])\n", + " while True:\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " if s.board.is_valid(s.board.move_pos(s.board.human,dpos)):\n", + " break \n", + " s.move(dpos)\n", + " r = reward(s)\n", + " if abs(r)==100: # end of game\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUVd7H8c+Zmt5J6CC9qVQpKoqIoggIuouCoojCIkXQXUV3F0XEh10bYAFBUQFBwRXXroggIjYiKkWE0EsI6Zle7j3PH5mMsBBqkjsJ580rr2Tu3Mz9zoT8cubcc88RUkoURVGU6sNkdABFURTlzKjCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs2owq0oilLNVFrhFkL0FUL8LoTIEkJMrqzjKIqinG9EZYzjFkKYge1AH+AA8CNwq5Rya4UfTFEU5TxTWS3uS4AsKeUuKaUfeAsYWEnHUhRFOa9UVuGuB+w/6vaB0DZFURTlHFmMOrAQYhQwCsBqtXa66KKLjIpySj6fD4fDQVpamtFRylVUVITVaiU2NtboKOXKzs4mPT0ds9lsdJRy7du3j4YNGxodo1zBYJDc3Fzq1KljdJRyOZ1OgsEgSUlJRkcpV25uLgkJCdjtdqOjlGvLli14PB5xwjullBX+AXQHPjvq9sPAw+Xtn56eLiPZjh075Lx584yOcVIrVqyQ69evNzrGSU2bNk0WFBQYHaNcuq7LcePGGR3jpPLz8+X06dONjnFS69atk++9957RMU5q7ty5cseOHUbHOKlQXTxhzaysrpIfgeZCiAuEEDbgFuD9SjqWoijKeaVSukqklEEhxDjgM8AMLJBSbqmMYymKopxvKq2PW0r5MfBxZT2+oijK+UpdOakoilLNqMKtKIpSzajCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs3U2MK9cOHCsqs2FaXKeb1eli9fbnSM0/L222/j9/uNjlGut956K6LzGaHGFe6VK1cycOBAgsEggwYNYvHixYbkkFJy3333GXJsxVhPPfUUw4cPJzc3l4EDB7Jp0yajI53QTz/9xMCBAyksLGTo0KHMnDnT6EjHyMzMZODAgRQVFTF06FBmzZpldKSIUaMKdzAYJCsrixtuuIF+/foxatQotm3bhs/nq9IcL7zwAq1ateKWW26hZcuWzJkzp0qPX9mklBQUFBgdIyK53W42bdrEI488wk033cTFF1/Mnj170HXd6GjH0HWdPXv20LlzZwYNGsTkyZPZvHkzbrfb6GhAab7du3fTtWtXBg0axIMPPsjmzZvxeDxGR4sINapwHz58mF27dtG3b1/69u1Lly5dsNlsbN68ucoyFBQUUFRUxKJFi/D5fCxcuJCCggIKCwurLENlW716NdOnTzc6RkRavXo1HTt2JD09ndtvv52hQ4fy0Ucf4fV6jY52DJfLxRdffMGQIUO45ZZbqF+/Pq1bt2bdunVGRwNKZxhcvXo1f/rTnxgyZAiNGjWiVatWfP3110ZHiwiGTetaGerXr0/Lli0ZPXo0hw4dYvz48TRt2pROnTpVWQaPx4OmacTFxfH999+zb98+4uLi8Hg8JCcnV1mOyrJixQq2b9/Ov//9b6OjRKR+/foxZMgQfv/9d6644gruuusupk+fTkxMjNHRjhEfH8+AAQMYOXIke/fu5aGHHkJKyQMPPGB0NAASEhLo168fI0eOZM+ePTz44IMAEZPPaDWqcAP079+fNm3acOeddzJ+/HgaNGhQpcevV68eMTEx/OlPf2LZsmVcdNFFNG7cmMGDB5ORkRHRc1GXR0qJrut8+eWX7Ny5k3HjxlXJ8whPYWmqXm8Mp02bxv79+5k4cSLdunWjY8eORkc6oa5du/Kvf/2LcePGcfvtt9OoUSOjIx2je/fuzJgxg3HjxvHll1/y5ZdfGh0pYlSv34jTkJGRQY8ePYiNjaV79+6GTIo/ceJEfvjhB6ZOnYrD4WDTpk38+9//ZtCgQWRnZ1d5nnO1f/9+rrzySj7//HPuu+++KlmsYf/+/Xz33Xfce++9bNu2rVr1bbZo0YKrrrqKWbNm0aBBAyyWyGwfJScn06NHDxITE+natSvNmzc3OtIxyvKtW7eOtLS0iMhXUFCAw+EwOkbNa3FHAqvVitVqZdmyZeFtixYt4uDBgzz//PM0adKEP//5zyQkJBiY8vT89NNPvPnmm3z66adVurrOqFGjaNq0Kffccw8333wzr7/+Op07d66y458rIQRXXXUVq1ev5ocffqBXr15GR6q2oqKijI5AMBhk4cKFHDx4ELvdTt26dRk2bBhCnHiBmsqmCncVqlevHnfeeSfffvstjz76KM8++6xhP/jTsXXrVt5//30eeOCBKi3aH3zwAX369GHo0KE89NBD6LrOY489Rmpq6nH7Dho0iBtvvLHKsinnp2AwyIwZM3jzzTdxOp2MGjWKYcOGHbPP119/zSuvvHLC7+/cuTPjx4+vsDw1snA/+OCDzJ49OyKLYosWLWjRogVdu3Zl5MiRzJo1i+jo6Ih7O33kyBFmzJjBc889d8KCWZkuvfRSlixZwk033cTkyZN54oknuPnmm2nXrt1x+y5fvpypU6ee9PE+++wz0tPTKyvuSU2cOJHRo0fTuXNn4uPjDclwKgsXLuTWW2/lww8/NDrKCQkhmDVrFg8++KBhJ8VHjBjBf//7XzZs2MCzzz7LgQMHjjt30atXL/7xj3+c8Pvj4uIqNE9kVYsKkpOTQ+3atSOycJdp2bIl48ePp3///gwfPpzbb78dq9VqdCwAtm3bxrRp01i0aJEhJwZTUlKoX78+48aN4/rrr+fAgQO0adPmhH2cDz/8MJMnTz7p4xn5/yA1NZXCwsKIG8d9tHr16nHw4EGjY5RLCEHt2rXJyckxLMOrr75K9+7deffdd+nQoQM333wzmZmZx+1XVb8vNbJwVwdCCDp06MCaNWt4/fXX+de//kWbNm0YPHiwYZmOHDnC/Pnz8fv9PP/884aO5njqqacoKSnhww8/5Kuvvip3PyFERP+BBhg6dCiLFi1i3LhxRkdRzpLVamXAgAHhqTSGDx9u6P89VbgjwB133MGqVavCfcr9+/evkv8QUkrWr1/PkSNH6N+/P5MnT+ZPf/oTF198MSkpKZV+/FNJSEhg6NChRsc4ZyNGjKBjx46qcJ8jIQRSSkOKpdVqZdq0aezevZuYmBgyMjKqPMPRatxwwOpICMHVV1/N6NGjyczMpFOnTpX+1lVKSZs2bVi6dCnr1q2jXr16/N///R/XXXcddevWrdRjn2+EEKSmpqppAs5B06ZNueyyy3jzzTcNzXHBBRcYXrRBFe6IYrfbmTp1Kj/88APPP/98pR5r/fr19O7dm4cffpioqCh69uzJxo0bK/WY5yshBPPnz6/QUQXnG7PZjNVqjbipA4xSI7tKhg0bRq1atYyOcdYsFgszZsyo1GPk5eWRlpaGx+Ph5ptvZvXq1eTm5lbqMc9nqamp3H777UbHOCEhBH/729+MjnFKXbp0UVM1h9TIwn3NNdcYHSHiDRgwgAkTJuDxeMjIyODJJ5/kwIEDRseqsRITE+nbt6/RMU5ICFEtziW0adPG6AgRo0YWbuXUhBDs2LGDNWvWkJOTw8GDB7HZbEbHUhTlNKjCfR6z2Wzq3YmiVEPq5KSiKEo1owq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXNOo0qEEHsAB6ABQSllZyFECvA20BjYA/xZSllzVspVFEUxWEW0uHtJKdtLKcuWJ5kMrJJSNgdWhW4riqIoFaQyukoGAm+Evn4DUMuTKIqiVKBzLdwS+FwIkSmEGBXaliGlLFsR9zBg/FRaiqIoNci5Xjl5mZTyoBAiHVgphNh29J1SSimEOOGsMKFCPwpKl/XZsWPHOUapPAcOHKCoqCiiM+bl5aHrekRndLlc7N69m7y8PKOjlMvv90f0a1hSUoLL5YrojIcPH47435eioiL2798f0ZNWnWzVpHMq3FLKg6HPR4QQK4BLgBwhRB0pZbYQog5wpJzvnQfMA0hNTZVr1qw5lyiVqqioiAMHDhDJGXfu3ElMTAz5+flGRylXXl4e69evx263Gx2lXE6nM6J/zl6vl29zv+W/a/5rdJRyxWTH0NvTO6KXazt48CCZmZlkZWUZHaVcJ339pJRn9QHEAvFHfb0e6As8BUwObZ8M/PtUj5Weni4j2Y4dO+S8efOMjnFSK1askOvXrzc6xklNmzZNFhQUGB2jXLquy3Hjxhkd46Ty8/Nlp+mdJBH8r/a62vK9994z+qU6qblz58odO3YYHeOkQnXxhDXzXFrcGcCK0DJCFmCJlPJTIcSPwDIhxEhgL/DncziGoiiK8j/OunBLKXcBF59gez7Q+1xCKYqiKOVTV04qiqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDM1rnBLKZk5cyaHDh2K6AlkFEVRzlaNKtw7duzgggsuIC0tjbvuuosbb1RTgSuKUvPUmMItpeSHH37gr3/9K23atGHx4sXUqVOH3377zehoNcaBAwfYtWuX0TEU5bx3rvNxRwwpJYcPH6ZBgwbMmjWLBx98kJSUlIie5rS6kFIyZcoUpJSYTCZ8Ph9PPvkkZrPZ6Gh89tlnNGnShObNmxsdRVGqTI0p3CaTiX79+tGrVy80TeOXX34hOTmZJ5980uhoQGnx03U9IordmdJ1nXfffZcVK1ZgsVgYNGgQU6dONfS5OBwOrrnmGq677jqWLl1KcXExK1asMCyPolSlGtNVAtCiRQt27drFNddcw+LFi/n000+NjgSUrgiyadMmhgwZwpYtWygqKjI60hmZMGECc+fO5euvv2bDhg0sWrSI0aNHG5pp586dtG7dmrvvvptnnnmGYDDIgQMHDM2kKFWlRhVuk8lEdHQ0ZrMZu90eMSutPPXUUzz22GM888wzjBkzhg8++MDoSGfk+uuvp2/fvqxcuZJ69eoxaNAg5s+fb2imd955h5tuuomXX36ZjRs30r9/f0P/UGuaxiuvvMI333xjWIaaYNOmTRF/HuXzzz/H5XIZmqHGdJVEqszMTJKSkpgzZw6PPPIIl156KZs3byYnJ4eMjMhfR3nFihXs3buXuXPncvjwYb766isef/xxLBZj/+uUnYSuVasW69evZ+/evWzfvt2wPEIIoqOj+eqrr5g7dy6xsbHMmTOH0EIjyikEAgHuuece6tevj9frxe128+KLL0bU67dz504ee+wx2rdvz7Jly2jdujUPPPCAIVlqZOGOjo7G6/UipTT8B9+qVSuWLVtGVlYWkydP5r333uOpp55i9erVrFy5MvwuwehC+L+klHz11Vds3bqVSZMmERMTg8PhQNd1EhMTjY5HfHw8q1ev5sUXX6Rbt25ceumlhuYxmUwMGzaM4uJicnNzcblcdOzYEYCZM2fSsWNHLBYL0dHRuFwuNm/ezJdffsm4ceOIjY3FZKpRb37PmNPpZMeOHTz55JO4XC4GDBiAw+EI//7u37+fYcOGnfB7V61aRUpKSqXmk1Jy8OBB4uPjueOOO9i6dSvTp09n1KhR4X0+/vhjZsyYcdz3pqWlsXLlygrNE1nVooLMmTOHTp06sWHDBsMLd2xsLI0aNWLKlCmMHDmSjz/+mEWLFnHZZZcxYMAApJQMHTqUtm3b0r17d0OzHm3t2rV88MEHPP300+HXMD4+3uBUfzCbzRw4cIDU1FRuvfVWw3/OZRITE0lMTERKSWZmJlD67mDq1Km0a9eOwYMHc/fdd9OnTx969epF06ZN+fnnn6lbt67ByY01efJknn32Wb799ltefPFF9u/ff8x1GPXq1Qu/nv+rKn72gUCAV199lX/84x/Mnj2bL7/8km3btjFw4MDwPtdee225GStajSzcQoiIumry3nvv5S9/+Qsvv/wyq1evDm9ftWoVAG+88Qbr1q2LiML9008/8fHHHwMcU7QjUdnPOBIzCiHCuZ599lkAfvnlF0aMGEHv3r2pV68eycnJzJw5k6VLl3L//fdH5POoKrNnz6Zly5bMmzePe++9lz179rBq1aqIeU1sNhv33nsvd955J6+++ipRUVEkJiby0UcfGZKnRhbuSGQymRgzZswJ77vjjjuqOM3xpJTs2bOHpUuXcvXVV3P55ZdHzC9NeSI93/+6+OKLWbx4MTNmzKBTp040aNCA9evX06lTJ6OjGc5qtTJ//nw2bNhAfHw8r776qtGRjtOqVSumTJnC888/T+/evenbt69hWVThVoDSUREPPfQQr732GrGxsUbHOS09e/akR48eRsc4I23atCE7O5sFCxbQs2dPFi5cyF/+8pdq90eooplMJvr06cPll1+OyWTCZrMZHek4iYmJXHvttfTo0cPw8xKqcCsAWCwWli1bZnSMM2K1WrFarUbHOGMrV64kKyuL9evXs3PnTqPjRJSoqCijI5xSJJzrUYVbUQzQrFkzmjVrZnQMpZqqsWOQlixZct6//VQUpWaqsS3u1q1bGx1BURSlUtTYFreiKEpNpQq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXPKwi2EWCCEOCKE2HzUthQhxEohxI7Q5+TQdiGEmC2EyBJC/CqE6FiZ4RVFUc5Hp9Pifh3434vyJwOrpJTNgVWh2wDXAc1DH6OAORUTU1GU6kRdQ1G5Tlm4pZRrgYL/2TwQeCP09RvAjUdtXyhLfQckCSHqVFRYRVGqh0ianbMmOts+7gwpZXbo68NA2VIu9YD9R+13ILRNURRFqSDnfHJSlv5pPeM/r0KIUUKIDUKIDR6P51xjKIqinDfOtnDnlHWBhD4fCW0/CDQ4ar/6oW3HkVLOk1J2llJ2jo6OPssYiqIo55+znavkfeAOYEbo83+P2j5OCPEW0BUoPqpLpVyapvHee++dZZTKl5eXx86dOyM64+bNm9m7dy85OTlGRynX4cOH+fTTT4nkP9QlJSUR/XN2u93EZsfS5L0mRkcpV/yeeDa7Nkd0P/euXbuwWCxs3rz51DsbRNO0cu87ZeEWQiwFrgTShBAHgEcpLdjLhBAjgb3An0O7fwxcD2QBbmDE6QT0+wVjxkTuiucxMTp33BET0auy7927l8TExIjOaLfbqVWrVkQv1GCxWCL6NXQ6nXSxd2FGxvGL0kaKbYXbcJgcEf06xsTE8GTKk7gz3EZHKZdf+Mu975SFW0p5azl39T7BvhIYe9rJwt9n4vBh49dbLE9iYhZ16uRHxJqQ5cnJySEjI+OsM0op+f777xk8ePAx20ePHs3DDz9cISuSrFq1ik6dOmGz2XA4HCSnJJFTeIj42ERKAkf4vHAhu9xbMAUs2EUcQjeT7ThEt+S+XHPBLfjdPurXakhJSQmxsbEUFhYSExNDIBBA0zRiY2ORUhIdHU1BQQFxcXE4HA4SExPDt30+H4mJifh8PqSUREVFYTKZwuuULlmyJKJ/zgUFBfz4448RnVHXdfLy8iI646+//kr+hfkUNys2Okq54kxx5d5XY6d1VU5fMBhk/fr1XHPNNfh8vmPue+yxx7BarUycOJGYmJhzPpaUOvmBQ+xybcGEzvvZL9EstiN+3Y+NaFrYunLIt49iTxGtkjrQKPUiEqzJ/G31MOKtqYzt8A9q2epgC9gwmUzoug6ULn2laRpSSnw+H0IINE1DCEEgEAjfL4TA7/eH34YGg8GIXCZLUU5GFe7znKZprFixgokTJx5XtMs8+uijFBcX88QTT5zzUmESycYj3zNr43QyYjNomNiI4mCAX3ZvZc+h/bRp1gBrwMb2XVnktSjigsTWCA5glwlEiwSW/ryAlikXcm2z/kTZohFCYDab0XU93KcaCASwWq1omobFYkHTNOx2O0IILBYLwWCwNIuUBAIBVbiVakfNVXKeE0Lw3XffkZ1d/jnkYDDIO++8UyGLo5qEmc5pV1En0Iktvxfw65ZcNv6aTckhG3Z3bVz7Yzi43c+Wjbl8v3EjW3b9yNqf1uBxBVm/81uOOPKZu/5FCnx5OBwOoPStucfjwWKxYDIJYmKi8Xo9WK1WfD4fUVFRuFyucGs7NjY2XMQr4l2EolQ11eI+z2VnZ/P777+fcgRASUkJGzZsoGvXrud0PF3XiTXHMLv/bO5aMYJPNn+M7oNoGYVN2vgpS+NPl9zEyD5dKHYVYfPYOOD+BG9JPnkFhezQdhIMmBk4pz8rx68GwGazERUVhdfjZvOqGWT9uJhgUKN19zvodMPjOBwOUlNT8Xq9REdHk5eXh91uJxgM4na7SU1NPafnpChVTbW4z3Nms/m0ugpOd79TMZlM2O12vE4PL980l+tb9cNiNtOkVhO6NevGRY3bsTd3L1sObibfUUB2fjax+Y1w/Z7IhQmt8RTnge5FKxbcPftuhBB4vV4KCvJx5Gxh55Z1FJZ4qdduAEl12+MoKSEuLo7c3FyEELhcLtLS0rBYLFgsFpKSks75OSlKVVMt7vNcrVq1aNCgwSn3s9vttG3b9pyPJ6XE7/eTnJxMIBBgzk0v8Y/of/Ju5rsUOYuINccSI6LxCT9H8rdRXFhMvDWBgd0H4nQ4iSaF/NwjmJIP4c8JoGlBrFYrq1fM5MiebyjM3k+HqyZx+YBJBIOl93k8HpKTk9E0jZiYGIqLizGbzUgpcTqdJCYmnvPzUpSqpFrc5zmTycSIESNo1qzZSfd76qmnsFgq5u+8yWTCZDIhpSQ5OoXHr32cIZ1vxRlwsSt3N5sPbuXH3T+yr3A/Teo3pWHdhuzK3oXD6yBepHJJw57kbfBhb32Y1957hYDfy49r/oPXZ2Hg6AV06TMq/Phlw/zMZjNA+HYZNYudUh2pFvd5TghBu3btuOyyyzCZTGzfvv2Y+zMyMmjUqBG9e/eukJOTUFq4nU4nsbGxuFwuEuwJzOj3JI9f9yiDXhxMYUkhWft3kR6fRoEznzhrPF63FwKS3Nx84qyx9Ok0gAMHtvO1XMF3Y14jWZP07XUbjVp3x2q14na7sdvt4ZOTTqcTm82G3+8nJiYGTdPQdf2cR8mcqaysLOrUqRPRFyEpkU8VbgWz2cycOXO4++67ycrKCo+NBmjYsCHz588nJSWlQo5VNs46NTWVgoICkpKScLlc2Kw2/E4/H479kD0Fe/gg8wNcXhemoIlYWwwlRSUgBR63F7vZxpCrh9D54s6s/fVz5q+fwhX9hnBxtxvQNA2n00lKSgolJSUkJiZSVFREWloaDoeD6Oho8vPziYmJQUqJy+Wqkiv8ioqKmDt3bvgPSoMGDRg+fHilH1epmVThPs9JKZFSMnnyZJYuXXpM0Qb48ccfGTVqFCtXriQuLu6cuxaEENjtdgoKCoiOjqa4uBir1UowGCQuLg4pJc3SmzG+z3iklNgsZg6v+4LDP7xLjD2K1F7XkdS9N1a7ncLCQgKHg3iKBJdefRM2mw0pJUlJSeTt2cOPr75AwYF9JDdtTac77iEpvVa4v1vXdXRdr7J5UwoKCvjss894/fXX2bFjB//85z+5/fbbVVeNclZU4T5PlRXs/fv388gjj7B8+fLjinaZ77//ni5duvD666/TuXNnzGbzWRecshZ3YmIixcXFJCQk4Ha7sVgs4bHY+L2YfF62TRmP9HupP2gYnR/+P3Rhwmo2sXvev8j/JZOgppOVV4Q99wi+zT+y4Zu1HPn1JwKaRushd9Fh8C34fV40r4+lo27HWeJkwJSpJFzQlIwGDTGZTLhcLux2+7m8lKf1nCdNmsQbb7zBrFmzGDlyJA899BDPPPMMf/3rXyv12KcjPz+f5OTkCusKUyqfKtznISkluq7z7rvvsnz5ct59992TzkQG8Pvvv/OXv/yFUaNGMWTIEFJSUs66eJvNZgKBQPgqxrITiWazGc1RzKF5T+Hal0Xr+x/HGp9AoKgQ764dIMAnod7g22g0fCxBl4N6X62i8/bfyP9mLY0vv4oLh95NMOjHVViI31GMJkFHMuDvjxHUdL5+cyG/rlvH6Fdep0nHTuGTlpVJCMFzzz3HbbfdRvfu3Vm7di1vvPEG3377baUf+2RycnL45ptvWLlyJVdeeSVNmzalc+fOhmZSTo8q3OeZspb2vHnzuP/++8OTLZ2OX375hbFjx7J+/XoWLFiA1Wo94+IthDhmHpGyPxhSSggG2Tvn/9ByDtFk2F/w5x4mmHsYgaTsMEKCf99uvFKiAwktW5PUvhOaP4inKJ+SvTvRpESToEmJLiWaDrqUBHVJxxsGENB13vzr/dzyf/+m+TleUHS6UlNTadiwIZmZmaSmpjJhwoQqOe7JbNy4kVdeeYWXX36ZBQsW8NFHH7Fw4UKjYymnQRXu84ymabz66qs8/PDDeL3es3qMJUuWoGkar732GlFRUWf0vVJKgsEgycnJx5yctFgs7F+xGE/Wb1xw218g4EXoIETo45jHKC3gINHcLvxSlhbrUIHWdIkuCRfvoCbRpE4wtE+7nr3wef3MHTOaSW8vp3XHjmf1OpyJsvHiEyZMoF27doZfal9SUsLbb7/NvHnzmD59Ok888QRLlizh/fffZ8CAAYZmU05NFe7ziK7rvPXWW4wdO/aUXSMnI6XkP//5DykpKTz55JNndAGLyWQiKiqK7OxsUlNTycvLIzY2Fp/bRcEX79Ny2Fg0dzHSBAiBKdRCN4k/ji2lLF0sT0ooK9K6RNclQamj6RJNg2CocAd0naCEoK6j6QJN12nd41KOHDiAJy/vrF+H0yWlZMeOHcTFxXHJJZdU+vFOR3x8PDfffDPPPPMMmZmZrFmzhszMTMaMGWN0NOU0qMJ9HlmyZAnDhw8/pmuk7GKYshnzymMymcJ901A6A99LL72Epmk8/fTTxMWVP3fw0cpa3NHR0QQCgfCJwfx1X2CLjcObdxCzSWAyl54oE2YwH1W4dVnaqpa6AE1HlzpSgtRDLW29rEBLAnpp90hQlwQlpQVcL+1GCQR1Uus34qX7JjB/y1ZEJfZ1SymZOHEiP//8c6Ud40wJIWjcuDEej4eDBw/y8ccfc+WVV1bYRVZK5VKnkSPQo48+espCehHdQoQAACAASURBVKYWLFjAhAkTjuvP7tKlC/369TtlX3VGRgZjxx6/Rsb8+fO57777zmiZqrJjlX2WUuL4aT0xjZuheVzoHhfS7QKvCzxuhNeN2efB7PMgvKW3pdeF9LrRPW50txvd7UJ3u9DcTjS3m4DbddSHE7/rjw+vw4HX5aBu86ZovrPrLqoJ2rZty9y5c2nRogUzZ87kzjvvNDqScppU4Y4gH330Ea1bt6ZHjx506dKFKVOmnPNjlnWP3H///RQWFoa3R0VF0aRJE959911atGhxyseJi4tj2rRprF+/njZt2hzz+G+88QYjRow4rT82ZfNne71eLBYLfr8/tM2E1Pzhwq17XEiPC+lxQ6hYC2/p13g8cNR+utdF0BP6cLsJup0EQ0Xb73bhczrxuxz4XE68TjdepxOv04mnuLjcIZAV6bbbbuPtt9+u9ONUZw6Hgx9++IEnnniC4hP8XDRNo7i4+JiPOXPm0L59e3r3Pm4xrhpPvS+qZLm5uWzatOm09v3++++5+uqrsdlsvP3227zyyivhJcnOhpSSnJwcXnrpJYqL/1iiqW7duvzrX//ixhtvPKNLr+Pi4ujWrRvLly/n1ltvZdOmTUgp0TSNL774gk8//fSUrXdd1/H5fCQlJeF2u0lISMDv9+P3+ZH5OdhDXTfCLDCZBMIsECYTpW0MSRDQdJ2grhPUSrtBAqGvA1IS0EIfusQf1AnqUFJSjDkmFr8m8etH3R+6CKcy7dq1i+joaOrXr1+pxzkXHTp0IDMzkyuvvNKwDD179qRr16706dOHFi1a8Pzzz5OWlha+v6CggDlz5hzzPUOGDGHjxo1VHTUiqMJdyfLz81mzZs1p7bt161ZcLhdr167l7rvvJiYmhtzc3HO6JFvXdQKBQHhypfT0dKZMmcKgQYPOar4MIQStW7fmhRde4K9//Ss//PBD+D6/v/zFTcuYTCZsNhv5+fnUqlWLwsJC4uPjiUpIJPurT7GZTJCUBKHijal0SEnQ70PYo9Ep67cGn8uBOy8Xv6bjC+r4dYlP0/EFJZrJgiUtgwCC4kMHiKldD7+uE9DAp2kEdcjNPoz/LEfWnK7XXnuN2267LaLnJnn66afp1KmTYUXwo48+YtCgQdx1110sWLCAtLQ07rzzzmMuTkpNTWXVqlWG5ItEqnBXslatWvH444+f1r7Lli3j0Ucf5dlnn+XWW2/loosuol27dmd9bCEE6enpTJs2jb/97W9kZWXxn//8hw4dOpxTIRFC0L17d1577TXGjRvH999/z6OPPkrv3r1P2Veu6zp+v59atUovP09KSsLv91Nn8HByv1lF0e+b0Oo1JDYtHd0k0E2CoIDg/p1YGzRFAp6cQwRKivH6fKXdHkENvybxBCW+oIZX0/Ej0Pfvw4+Z6AYNKc7ORsTGEtDAq+kUFxSwa8tW2t9wI1TSZeeZmZlYLBYuvvjiSnn8mqJJkyYsX76cmJgYunXrxsqVK3n88ccZPHiwmhKgHKpwR5Abb7yRPn36cO+99/LOO++c9kiNk7FarfTq1YvVq1cTDAZJTU095peh7CrKUymb26PssmiLxUKbNm147733wl0fpzvTnq7r4XUiy94J2Os2RLfYCLjcsHsHaBq2uDgCUsMM+EuKEb/+UDpWW9MIaDp+Tcev/dE9EpR6aOw2BDQNb1EBvqBOfl4enoCGH0FCg8YUFhZy5OBhvP4gN4wZU2nFIT8/H5PJVGETdNVUrVu3Jjs7m3vuuYdevXqRnZ3NpZdeqor2SajCHUFsNhs2m42lS5dW6OOazeZyV3rRNI1GjRoRHx9PSUlJuY/RsWPHY4bvlUlISDijLEIIbDYbDocDu92Ox+MJF3HNHo1fl8iAhrmkmKAWQDu0PzQcUCAADRm+yMav6wQ1gV8/uu9aD/d5B/XSC26CWgBNg0BQw+N0UpCdgy4BYSI6rnK6MPx+P7///nuFLD5xPvjss8/YtWsXX3/9NVlZWUbHiXhqVMl5zmKxMHjwYBo2bFjuPkIIHnjggQqZjKlsBZykpCQ8Hg/x8fHouo7FYqHxsLvxhfqpXQUFuJ0OfJqOV9PxaDpuTccb1PEES2/7NfCFWt3HtLx1vfSKSb3s5GXpNl1CSUFh6YrwJhNdbhqMiKqc2QFdLhcffPABgwcPrpTHr4maNGnCHXfcYXSMakG1uJXTmu2voiZjKpvWNS8vj7i4OIqKirDZbAQCAepe2oeNOuhSR5cBdIcbgnrp+UlR2saQUg9dhAPB0MU2/tDJSr9eNlpE4tdK7w+UFXApEVFReD2+0n20IO2vvJKGTZpUyPP6XyNHjjxuFESkEkLw1ltvGR1DOQOqxa1UKSklgUCAtLQ03G43iYmJ4ZVoHC438V16lraygxpOhxN3oLSF7Q7ooa9laYs7qOMJanhCI0q8QQ1fUMOnafiDEr+m4dd0AqFiHgjquJxu/D4/8bVqce1fRmOOiqagoKDCn+OuXbuA0hZkdSCEoGXLlkbHUM6AKtxKlSq7AMftdmO1WvF6veFZAqPj42kxdCTeoAwVaA1vaLSIN6jhDWpHFe3SLhRvUIa7V3yaxBfqLvFrAr8Ofk0eM947ICUZzZtTUlBI9/4DKmUhhYcffpiZM2eqk2tKpVGFW6lyZRftCCHCI1qklFgsFpKbtaT+NQNChTrUqg6W9m3/0b8t8QRK7/eF9vOFRpkEQsW7tLtEKy3iusSvQ1DTadPzSjRhocdNN2OxWCplzclJkyYdc/GIolQ0VbiVKlVWtGNiYggEAkRHR4cXUfB4PJhi40ht1x4/ptJWt1baNeIOarjDRTxYerIyfLu0Ne7VSsdw+3SJN1h6sY1f1/CFWtu6MJFcrx4ORwkX9uyJpmm4XK4Kf47dunUzfNpWpWZTJyeVKlU2reuRI0dITU0lPz+fuLg4AoEASUlJaJpGiyHD2bluDXvXrkIgwnNyA0gpwhNaBeUfQwMDUhLUQicjQ5e0+8r6uDUdabHRrmcvfly1hhe//QZbVBRSyjMezqgokUC1uJUqVXZyMi4uDp/PR2xsbPiCHK/Xi9/vxyQErQfcjGaNwqOF+rYDGp7AH61r99F93prEG5Slre1Qt8nRwwSDmGhwUQcCCC6/+SY0q41gMEgwGMTpdBr9kijKGTtl4RZCLBBCHBFCbD5q22NCiINCiJ9DH9cfdd/DQogsIcTvQohrKyu4Un2ZzWY0TcNqtR4zj4rFYgkPO2x41bXEtGqLNyhxByXuoI776BOToe1l/d++QGl/ty980vKPfu/0Zi2ISU5hz5atXNirF7FxceF5yNX800p1dDot7teBvifY/pyUsn3o42MAIUQb4Bagbeh7XhJCVP5qrMo5OZO5tM9V2ZqTZdO5lp2klFKGiymUXhbfb9rTmJJTjyrYWqiAS1yhk5LewB/F3KOBJ1S0vZqGbrGSUL8Rlrh4igsKGHzfBFpeckl43LoQolJOTipKZTtl4ZZSrgVOd7DrQOAtKaVPSrkbyAIiY60mpVx2uz1cMKG0RXx0QZNSVtiwuf/tKomJiQnPgeLxeMIr7NhsNuo2a84tLy0gvmFjPAE99FHaReIrG99ddjWlpodHoviCEl9Q4pcCrz9ASUEhHa7uw9UjRhAVHY3D4UDTtEo7Oakole1c+rjHCSF+DXWlJIe21QP2H7XPgdC24wghRgkhNgghNgQCnnOIoZyrpKQkkpNLf4Rms5nRo0fz/PPPhy9xj42NpXbt2hVyrLIrJ4uKioiKigrPjxIMBomNjcVutyOlxOv14nA4aHZJN254/P/oMPjP+KQIjzLxmy1ccPmV4SGC3qBGVFo6cbXr4tW00svhfQFsMTEMGj+ePnfdhRACr9dLUlISZrMZi8VCfHx8hTwvRalKZ9vBNweYRumSrdOAZ4C7zuQBpJTzgHkA8fEZ0uc7yyTKORNC8Prrr+NyuRBCULduXeLi4rjiiivCJw7PZEHgU7HZbKSnp2M2m6lVq1b4QpWjZx4sG05nMpno1Kcv7bpfRv+/TQZCq7ybBDFJSTiPuvLRYrODEMfMsW2LiiK9YUP00JDD6OhohBDhdxDqIhmlOjqrwi2lzCn7WggxH/gwdPMg0OCoXeuHtikRTAhBo0aNjtveqlWrSjne0X3ZR3fRlPnfeVFMJhPW5GTikpOP2zc54/TeCZQ9YtnxVMFWqrOz6ioRQtQ56uYgoGzEyfvALUIIuxDiAqA58MP/fr+iKIpy9sSpRhQIIZYCVwJpQA7waOh2e0q7SvYAo6WU2aH9/05pt0kQmCil/ORUIRITU2SLFvef7XOodFari7Zt807YKo0Uhw8fxm63h/uqI9H27du54IILInokx6ZNm7jwwguNjlGuQCDAnj17aN68udFRylVQUIDf76+w8yKVYc+ePWyttZVAbMDoKOXa/ux2iguKT/jW8JSFuyrEx6dLv/93o2OUKyFhD3XrfsO2bcOMjlKuRo0+5aWXatGpUyejo5Rr5syZjBgxokL7yyva3//+d6ZPn250jHIVFRWxcOFCJkyYYHSUcm3YsIH8/HyuvTZyL+NYtGgRPXv2jOjGWMuWLTly5MgJC3eEXH0g8Psjt6UYCOSjafaIzqhp0cTGxkZ0i9tqtZKYmBixGcvmTInUfFCa0Wq1RnTGmJgY3G53RGe02+3ExcVFdMaTnYdRl7wriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnCfpzZv3hyeiU9RlOolQsZxK1Vl//79LFy4EJ/Ph81mo1WrVtx8881Gx1IU5QyoFvd5RErJ3r17+eWXXxg3bhwtW7Zk6dKlVbqQgqIo504V7vOI1+tl9uzZzJo1i8cff5zWrVtz/fXXs3jxYqOjnRWv1xuez1tRzieqq+Q8Eh0dzYQJE7j33nt56aWXuOiii7j88st59913jY52xj755BN27dpFbm4uF154If3798dmsxkdS1GqhGpxn2eaNGnClVdeyezZs3n44Yfp3Lkza9asMTrWGbv//vupU6cOffv25ZFHHsHtdhsdqVwvvPACHk9krvL00UcfkZWVZXQM5Qypwn2eqVu3Lvfddx933XUX48ePZ8yYMXz++ef8+uuv1aav+5///CczZ86kfv36/Prrr6xYsYJ7773X6FjlWrFiBX6/3+gYJ/Ttt99y8GDkr3Wyb98+HnvsMaNjlGvPnj1MnTq1yo6nCvd5qnnz5uFZ5h5//HGee+45tmzZYnSs0zJlyhQmT57Mxo0b2bhxI6NHj2bWrFlGx6qWateuzeHDh9E0zegoJ+X1etm9e7fRMcrl9XrZu3dvlR1PFW4Fi8XCK6+8wsKFC6tFt4nVauWGG27g448/JjMzk4suuojY2FijY1VL48aNY+7cuRHd1aQcTxVuBShd5/GRRx7hu+++Y926dUbHOaVp06Yxfvx4+vXrx4svvhheXFhRzgeqcCthSUlJjB07lmXLlrFt27Zq0+etKEar6sWnVeFWjhEfH8+sWbN46qmn+Omnn4yOoyjVQlU3clThVo4jhODFF1/kww8/ZPXq1UbHKVeTJk2QUrJr1y6jo5Tryy+/pGfPntjtdqOjlOuOO+5gwYIFRscol5SS5cuXM2jQIKOjlCstLY2GDRuycePGKjmeKtzKCUVFRTF+/HjWrl3Lhg0bIrLbpDoU7tWrV9OzZ0+ioqKMjlKu4cOH8/rrrxsdo1xSSt555x1uvPFGo6OUq6xw//zzz1VyPFW4lXKlpKTw0EMPMXfuXLZt22Z0HEVRQlThVk4qKiqK+fPnM2fOHL755huj4yiKgircymkQQjB9+nTWrl1bLcZ5K2cuNzeXN954w+gYx3nvvfcYO3YsBw4cYMyYMRHZeNB1nYkTJ7Jo0SIWLVrExIkT0XW9Uo+pCrdyWuLj4xkzZgyffPIJmzdvjsg+70hSUlJChw4dePXVVxkzZgzXX3+90ZHKdffdd5OXl8cDDzxAhw4d2Llzp9GRgNKC+P3333PJJZeQmppKgwYN2Lp1a6UXxTPl9/tZs2YNvXr1olevXqxZs6bSpzhQhVs5bUlJSTz55JM888wzbN682eg4ANSrV4+EhASjYxxny5Yt9OjRgxEjRjB79myio6Mj8iTqwYMH8fl8rF+/nuuuu47Bgwfz22+/RcQf5u+++47Y2FgGDRpEp06duPvuu9myZQv79u0zOtoxJk2axLx582jfvj3t27dn3rx5TJo0qVKPqQq3ckbMZjPz589nyZIlEdFtMmrUKC655BKjYxzniy++oHfv3lx66aU0btyYK664IiLf5v/yyy9cdNFF1K5dm759+9K9e3fWr18fEYW7R48euFwupkyZwnPPPcekSZNo164djRs3NjraMV544QWGDBlCdHQ0drudIUOG8MILL1TqMdV83MoZs1gsPPjgg8yZMwe73U737t2NjhRxxo0bR+vWrXn++ed58803Wbp0Kdu3bzc61nGuv/56/v3vf7Nr1y5uvfVWRowYwUcffYTJFBltumHDhrFt2zb+/ve/h1vekcZkMvHcc8+FhwI+99xzlf76qcKtnJXk5GQmTJjAQw89xAUXXEDt2rWNjhRREhMTyczMZNGiRXTr1i2ip51955132LNnD0uWLGHdunWkp6cbHSmsXbt2tG3blp49e0ZUrqMJIbjxxhvDE3VVxbw5qnArZy0uLq7S3xJWVyaTiXr16vHQQw8BVT+XxZlIS0sjNTWVTp06RWROIUTEFu2jVeVEZ6dszwshGgghVgshtgohtggh7gttTxFCrBRC7Ah9Tg5tF0KI2UKILCHEr0KIjpX9JBTjCCEi8pc9UlSX16e65FRKnU5HTBB4QErZBugGjBVCtAEmA6uklM2BVaHbANcBzUMfo4A5FZ5aURTlPHbKwi2lzJZS/hT62gH8BtQDBgJlI/bfAMomEhgILJSlvgOShBB1Kjy5oijKeeqMTn0KIRoDHYDvgQwpZXborsNARujresD+o77tQGjb/z7WKCHEBiHEhkAgMhdSVRRFiUSnXbiFEHHAf4CJUsqSo++TpYM+z2jgp5RynpSys5Sys9UafSbfqiiKcl47rcIthLBSWrTflFK+G9qcU9YFEvp8JLT9INDgqG+vH9qmKIqiVIDTGVUigFeB36SUzx511/vAHaGv7wD+e9T24aHRJd2A4qO6VBRFUZRzdDrjuC8Fbgc2CSHKZgl/BJgBLBNCjAT2An8O3fcxcD2QBbiBERWaWFEU5Tx3ysItpVwHlDfAs/cJ9pfA2DOPYvzcCKcW+RkjYY6JU4n0jJGeD1TGilIdMp6IiITgiYnJsn3724yOUS6z2U9iohObLcXoKOUKBktISrJU6dVbZ+rIkSOkpqZiNpuNjlKuAwcOYbHUNTrGSWgETIewpluNDlIu3a0TF4yLyFkbyxQUFBAXF4fNZjM6SrkWL15MYWHhCRvNEVG44+MzpNOZY3SMciUmZvHUU6u55557jI5Srvfee4+MjAy6du2Kz+fDarX+MW+xSeewby+FwRykLrFgAwSegJsYcwJNE9oidDM2mxVN0xBCEAwGEUJgMpkIBoPYbLbw57LHDwaDmM3mY/YtuwIvGAxitZYWl7Ir8p544gnGjh1LcnKyQa/SyUkp+fOfJ/DOO88bHaVcdnsB7aZcQ+YjmUZHKVftb2ozN28uAwcONDpKuV5++WV69+5Ns2bNjI5SroyMDHJyck5YuNVcJTWMpmnk5+cTFW/jh8IPSY9qRNDkZafzF7L9e3F4nTi8xdSNborH7yHdWp8dUb+xOz+LcV3/jt8XQAiB0+lECIHdbsfpdJKWlobT6SQlJYXi4mJSUlIoKSkhNjaWoqIirFYrNpsNm82GxWLB6XRGbIFWlOpOFe4aJqvoF/5T+ByiWHDYtxerjCIYlMSSTJq9HkkkU+R24dEDpNjrg27lk53vEm2JZ9qXD3JLu5HUjWlAfHw8UkqCwSCpqam4XC7sdjt5eXnExcVRUlJCdHQ0Pp+PpKQkpJRomhaeIc1ms5Gfn09SUhIWi/pvpigVSf1G1TC1Yhrx1qqNpESlcFGti2iS3opdh/bwxrqlNGuRSK3YOHb8mo25XpBL2/TEHIwi2pJEgSMPe0w8C36YQ7/WN9I2+WIsFitWq5Xc3FzS09NxuVykpKZSkJ9PYmIixcXFxMbGUlJSgtVaum9sbCwmkwmXy0VycnLEzOusKDWJKtw1TDQxzOu3gAc//xsfbf2EzzZ/gV23kZFcG3+uHZ8jjebpjThUtButSOfbn7+lfrsUsg4folmqnyJ3MV6fRtMrWpFkiUYIQVxcHH6/H58jm+3b3sdR4iAlvS5pTXqjaRpRUVHhfuyytfZMJhNer5fo6Gg165yiVDDVHKphTCYTLVKa8Y+r/o7JItiZv5NCTyFxUbG4/W7cARcN0hvQOq09CZ5mNE5og2O7RPh1zPjYd+QQn21axfQPnwBKT9jpug5S4+DWz1jz1kQyP/4HmZ8/gwid19Z1HV3Xw0OrTCYTUspqO9RKUSKdKtw1jNVqJeAP0L1+d/4z9D+kxaViMpsp8hZjtVnwaX62HthCriOX3/dt4+sN39Ioph0DMm7nl1W/06VVA2IcZpZ/spxAMACAo6SII3t/ZO1Hz1PkttPl5lfpc9ebBLTSUSV+vz88gqXsJKWu66q1rSiVRHWV1DDFxcXh/ujWtdvwzYR1DH7lZrLzs7FLGzZpJwo7ufm5SL9ORnJtNKmRcySPAR2HUPRbEYn2InyJ0ezcv51WF7TlqxVPsy3zQxpc0JrLrh5Fu0tuoKSkhLiYGLxeLykpKWiaRiAQwOl0IqUkJiaGvLw8UlNT1clJRalg6jeqhik7WWixWPB6vWTE1GbBrQv4YNMHzPlyDocKssEvibfE06ZeG2zCxpGiI8RYonGUOBAaxBc3xpFQxNT/TuRPTYeQ9duvJNVuQ/+RM0nNaITX6yUmJga/34/VasXtdofHb0dHl870qGka8fHx6uSkolQCVbhrmLITgoFAIHwRTstaLWjRaxKX1OtCjiuHJ995koN5h9iVs5OUqFRs2MjPy8PnDuB1ehhz4xjG9xhHccwBXn/uXyQf0Xhg2nySazXA7XYTHR2N1+vFbreHL8op6+cuOzlZVtDtdrvBr4ii1DyqcNcwuq5jsVjw+/3HnCSUEro36U5UdBR92/TFarPidDixmQUHd22nVmIqPgkxKbWIskWRnJRMSUkhv1/wM73u6kfj5u0RQqBpGiaTCWdeLgGLmYCmk1q3HiaTKVy8gfC+6gSlcq6OHDlCWlqaevd2FFW4a5ioqKjwuGqfzwcQnhvEbrfj9/uJj4onb8N6ogIeHEdyiD+0l5KiQpIu7EBC+24492Sx2+Nh/+EjbPr6G7p1vIzAwX0c2rGNqOhoSuKS2fv1KvZt/oW4WnWIadKCuNQ06rVtS0bzluHL4BMTE9Uvm3LWsrOzWbt2LWvXrqVHjx40a9aMrl27Gh0rIqjCXcO4XC5SU1NxOp1ERUWh6zo+nw8hBB6PhyiPg91vziU2ORV/dAyJtWqT0OMKpBAIwHNgL7K4ALseJHb3dnr43MhVH3Lo4B6EyUJhwE90ej1a9O5L097XIjWd379Zy+HNv7BvYyYOj5cbH/knyWlpFBcXk5qaqoq3clY2btzIm2++yZw5c1iwYAGff/65KtwhqnDXMAkJCaVzlURF4Xa7MZlMWK1WpJTEWs38PP4eEps0J7nnNZjMFpAa/oP7SifulRKz2UJis1boUhLboCnNBt+Cpun43CVYouPQpE4gEMRTXIAuQdMl9dtdTB0pKc7P5/1Zz/LqvaMZ9/pikpKSKm0mwEAggMViUcMNa6iioiKWL1/OnDlzmDp1KjNmzGDx4sW8//77DBgwwOh4hlNNoRqmpKSEtLS08JA8q9VKIBDAW5jP93ffSEzdetS57iZ0RzF6cQHSUYzwOhEeJ3hdSFcJWkEuwYJcdJeDYHE+mqMQ4ffjLyogUFhI0FFC0OUi6HYRcLvwOx34nKXdMwMnPoDzcDYv3Dmc/Tt3omlahT6/vLw8Nm7cyC233MLPP//M4cOHK/TxlciQmJjI4MGDefrpp/npp59YuXIlGzdupF+/fkZHiwiqcNcwUVFRuFwuhBAEAgE0TcNsNpP7wTJSGjSl3rWDCORlg9eN8Loxed0Irwfh82LyehAeF8JTeh8eJ9LtRHM7CHrcBN1Ogh4nuidUtJ1Ogk4nPpcTv8uJz+Ui4PHS45ah5OzeyZbVX1Z4i3jZsmU89NBDzJo1i6lTp/Lyyy9X6OMrkUEIQZMmTQgEAhw6dIjRo0dz1VVXRfRc7lVJFe4aJiYmhqKiIgA8Hk/pKA+fB8f2X0lq1Y5g3mHwuksLt8+FyefG7Hdj9rkx+T0Inxvhc4PHhfS6kV4X0u1GelxoHjdBt4ugy0XA5SDgcuJ3Owm6XPidLvwuBz63AxPQ+MKL+f6//6U4N7fCntvevXvZv38/r7zyCrNnz2bu3LlIKdm0aVOFHUOJHG3btuWFF15g0aJFNGjQgNtvv93oSBFDFe4IIKWkqKiIFStWsHTp0nN6rOLiYjIyMpBSEhcXh8ViIXvNZ+Dzo2sBNI8L6SktzKUtbhdmnxuLz4XJ60L4QsXa60G63eguN7rHheZxoLtLi3fA80c3ScDlxOd24nM58LuceJ0uPM4SajdrhqOgAGdhYQW9SlCnTh1q167NunXrGDFiRPhEVfPmzSvsGErk6dWrV7W8+tbr9VJYWMjgwYMpLCzE6/VW2GNXv1ejhtm5cydZWVm89NJLXHLJJTzyyCPn9HiJiYnk5OQQHx+Py+XCbDYTY7fisJnR/V70IEiTCUwgTQJMApPZhBAgdRC6BF0idYmuaeh66QlITdfRdAhqkoCU+HVJUJMEdZ2ADgFdJxC67dd1grpADwagAsdx22w2mjRpwgsvvICu66SnpyOEICoqqsKOUNx5nAAAIABJREFUoSgVZebMmSxfvpzly5dz1VVXMXz4cCZNmlQhj60Kt0F8Ph/Tp0/HZDJh/n/2zjxMiur63++t3qene1b2fTMoRECWQNxQIqIRlyRuuH0JKjHiL0YFJLgnGjdcokYkiiARxYhbNCFxjcEFRVAEkQAyyLDNMHvvtdzfH91dzigDA0zTPXjf5+mnq6uqqz59u/vUrXPPPcfh4Nlnn7Wnix8I0WiUQCAAYM9ajMViWPFYsuesgUNzYGlgOQSWpmFpAg2BJVMG27IwLYllSttoG5ZMGmgzuWyYSYOdMK2UsZboJuiWTBlxC1PXD/jzfJvx48czfvx45syZwx//+Efee++9Vj+HQrE/rFixghdffNF+/f7773PYYYfx/PPPs3DhQhYtWkR5eTldu3Y94HMpw51B0rMWH3vsMY4//nj69+8PwF133cW7777L1KlT6dmzJ7179261czocDrs6TXpg0ulw0bB+Lb5AAcLnw3BoCEey1y00AcKBACySRtewwLRMdFMmH5ZElxa6AQnTxJBJg50woWLzJvLad0TXHOgmyZ64BQkjmXQqU1x++eVUV1ezdOlSVqxYwVFHHZWxcymyixCCm266iTvvvJPrr78+23K46aabdtthGDRoEOPHj7df79y5k549e3L00UdTWVmJx+NptQLKynBnkIqKCgYPHsytt97Kr3/9a1avXk3Xrl2ZOXMmV155JYFAoNWjLtKj7kIIO5e2p7QduNzUr/0c0acf0uNBahrSIZBCkgg3IDx54HJhGgZ6wiAei1D75RoShkHMkMQtScwwiZkWcRMC/QZiut248vKIhSMYQqCbkriZdJls+3ozdZWViAxGARQXF1NYWMimTZsYNGiQijjIIVrzdy2EYMCAAbz00kutdswD4frrr99tp8Ttdje5a163bh0PP/wwo0aNYsqUKVx77bXKcLcF3njjDaZNm8bQoUNZtWoV/fv35//+7/8YOXJkxs6ZTuva0NCA3+/HMAw4cgQlo05k5z+fx4yGKezZBzMvD1MTOITE3LkV4fSA202ioY74rgoSZtKPHTctDFOSMCS6aWIYEt202LrqY+IGOEs7ENcN8OeD20tCCmp3VbN5/XpG//Iyijt1ythnBbj66qv5yU9+wpgxYygsLMzouRQt51DOUZOXl9ei/X71q18xefJkZs6cyZo1a1pVg4oqyRBSSjuDXiKRYObMmQQCATt7XqbIy8ujrq4OIQSxWAzDSBY7iMYTGJYkHgnTsHMbsVA99V9vor7sK8I1tYS2fk39pg2EK5JGO91z1k1JIjXoaFgSw5KYMj1gaVK3bSt1O3aw43//o2b7dio2l7H9q41YFvT+4ZH48vMz+nkhabxnzZqV8fMoFPuKEII77rij1Y+retwZQgjBaaedxg9/+EPuvvtuHn30UdasWcM999yT0fMmEgny8/OJRqO43W5M08Q0TXxdumA4XGDoiIYGpNuNrKrEIS2E0JIz3gFTJgcm9bSv2pIkUhEjugW6tFKRJSR94VJikhzEjMdiRENRLCHw5AeJxeNYlpXxXCU//elP7fEDxaGJpmlomoZhGG0yNLC1UT3uDNK+fXu2bdtGXV0d1113HcuWLTso503fpja+Xe194a/RSjsSMU0ikRjhujqiuklUt4jqFhHDIqKbRAyLqCGJGxA3LOKGRcIgFTWSjBbRLYlpfNMLT5gWFoJwfZhoNIphWAz66TiOu2DCQfm8Qgj69u17UM6lyA59+vTh+OOP56mnnsq2lJxAXboyiBACp9PJb37zm4N2TrfbTTQatXsn8E3xXq2wHcbXm5DSxAxF0EwLh5AIJKQHMwFLymTMtmXZPe94ymgnrORApW5Z6DJp0E0LDMAk6ULpf/RxONDI8/pUZkBFq5CusJTO9/59RxnuQ4x0Dch0WlfDMNB1Hcuy6HnxFXz824/RLAvDSqAhcGiSZELXJBYyOelGSgxJKn5bohvJiTUJ08IwIWGRmnCT8oNbJnHDwuH1oHlcjLt8MvX19Xi9XmW8Fa3C6NGjD+lBz31BGe5DjEAgwK5du/B6vYRCIYQQuFwuHA4HvX50NMvy8kk01KEJcGoCzRIIIdNZXTFlssdtkexxmxYYqZmSycHKpNFOWCZxE3QzuV/ClEinix+ffR7rVn5Kj4ED8fv9yh+paDV69OiRbQk5w167QkKIbkKIt4UQXwgh1gghfpNaf4sQYqsQ4tPU49RG75khhNgghFgnhDg5kx9A0ZRQKERBQQFSSrxeLy6XC9M0sSyLiK5z4oNP2vHYETPp247qFpGUnztqmkQNk6huEjOs5EM3SRhmctJNKkQwYaSnt5vELTBMi/4/PoZP3n6bKY/Nwe12EwqF1K2tQpEBWtIdMoBrpZQrhBAB4BMhxOupbfdLKe9tvLMQ4gjgPGAA0Bl4QwhxmJSydRMzK3aL2+0mFos1qfmYdlW43W487TvQ8egT+fq/b6Kl/IaCpJ9boiGRqZ530ndtWhaGlN9Mebe+CRFMWBZxM+nv9gQLiMYS/OjUU+nYowemaeJyuVShA4UiA+y1xy2l3C6lXJFabgDWAl328JYzgGellHEp5SZgAzCiNcQq9o7X66WhoQEhBIlEAsuycDgcyWRTeXk4C4vpPOLHxA2ZiipJ9qyjhkw+p6JMooZF3DSJmZKYSeqR7G3HzeQAZdJVYmEJJwNO/AnRRIIfn34mgWAQ0zTx+/3KcCsUGWCfRo2EED2BIUA6rm2KEGKVEGKuEKIota4LsKXR28rZs6FXtCL19fW0a9cOy7KShtrpRNd1dF2npqYGf14eA867hK4njCVqJV0hYd0knDCJpMIDIylXSThlwGO6ScwwiOsmcd1KulqM5ECl6XDxg2OOp3pXFUf95CS6DBxIbW0tLpeLXbt2tXoFHIVCsQ+GWwiRDywGrpZS1gOPAn2AwcB2YJ+mrgkhLhdCLBdCLNf16L68VbEHgsEg1dXVaJpGJBJB13VcLhcul4vCwkIikQgOl4vuJ52K4fLZcdtRUyZjuc3Ua0MSNSz7ETMkMVMSTfu4LQleL+379EU6HUTq6+jSvz/BggIKCwvRdZ3i4mKVP0ShyAAtGvIXQrhIGu2npZQvAEgpdzba/hfg1dTLrUC3Rm/vmlrXBCnlHGAOQCDQQcbj+yNf8W0ikQjBlKsiXeU9Hc+dSCTwer2YpsmIs84mWl3Fq7fcQFNvxjfx3KYlkwWBU1PcDZnMHKhbFlI4yA8WgdvD9k1lXH7PPQw49lii0agdv97Q0EAwGFTGW6FoZVoSVSKAJ4C1Usr7Gq1vnD3oLGB1avkV4DwhhEcI0QvoB3zUepIVe8Ln81FfX2/nSjEMw54u7Pf7icViSCmpr6/n+F9OZuwNt2A4XMnetGEl/d6GRUI4iDZaFzMtElIjZpjEDUkcQSQaY0fZ11x08630+9GPkpkIPR47flz5uBWKzNCSHvfRwEXA50KIT1PrfgecL4QYTDLFRRkwGUBKuUYI8RzwBcmIlCtVRMnBw+Fw4HQ6cTqd9mSF9HLjbU6nE7fHw6gL/o++Q0fy+qMPU78rWR9SAqMmXMB/n/4rUoJlSZy+PLr98Ies/eADLAkSQXGnjlzwu99R3K0bTpfLPm76nE6nUxluhSID7NVwSymXArv79/1jD++5Hbj9AHQp9hNN0ygtLW12e0FBAQB+vx9I5lNp3749A4477jv7jp146X7rcLlc+/1ehUKxZ9RcZIVCoWhj5Mh8ZInHU51tEc3idtcTi8Wors5djZFIhFAolNMadV2ntrY2x/NNmDn9W/R4anHoDjzVnmxLaRZ3yE0kEsnp32IsFqO+vj6nNe7pfyJy4U9UXFwsr7vuumzLaJZwOExlZSU9e/bMtpRm2b59Ox6Ph+Li4mxLaZZ169bRu3fvnHajfPbZZwwaNCjbMppF13WWLv2KmpofZFtKs3i91QwZEqdThqsfHQibNm2iffv2tsswF7n33nuprq7e/SBRuqBtNh/t27eXucz69evlnDlzsi1jj7z44ovy/fffz7aMPfL73/9eVldXZ1tGs1iWJadMmZJtGXukqqpKDh16u0ymBMvNR8eOS+VLL72U7abaI7Nnz5br16/Ptow9krKLu7WZysetUCgUbQxluBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrWhCKBQiHA5nW4ZCodgDOZKrRJFtLMti8eLFbNy4EafTSa9evfjZz36m0rIqFDmI6nErADBNk+nTpzNy5EgGDRrE1KlTsy1JoVA0gzLcCgAmT57M4sWL2bVrF7qu88wzzzBlypRsy1IoFLtBuUoUADzyyCOMGjWKSy65BI/Hw/Tp01mxYkW2Ze2Vbdu2kZ+fTzAYzLaU3bJt2zYCgQCBQCDbUhSHEKrHrQDA7XYzZswYqqurmTt3LkcffbRdhiyXeeyxx/joo9wtafroo4+yfPnybMtQHGIow60AkrUqZ82axcSJE/H5fEybNk0NTCraBLW1tdx1113ZlnFQUYb7IGIYBqFQKNsy9kjv3r156aWXuOyyy3K8Uo1CARMnTuT000+nT58+9OvX76C597JdyUkZ7oPEhx9+yKJFi7j11ltZsmQJkUgk25KapaSkhD59+vDxxx9nW4pC0SxfffUVPp+Pq6++mt69ezN16lQ+//xzTNPM2DnLyspYsmQJU6ZM4V//+hdfffVVxs61J9q04Q6FQixYsGCv+0kpuf3225k5cybvv//+QVD2Xa655hpqa2uZMGECM2bMYNu2bVnR0VLuueceZsyYkW0ZCsV3SCQS3HDDDVx66aXs2rWLL774go0bN9KtWze2bNmCZVkZO/cLL7zAggULmDVrFgsXLuS5557L2Ln2RO6PPjXDzJkz+eyzzzj99NMZPXo0Dz30EAMGDLC3X3zxxWzdutV+PW3aNPLy8ujevftB1/roo49y5ZVXMnLkSC699FK2b9/OZZddxhtvvGH7kYUQOedTFkIgpcw5XWnSt6q5qk9xYKTLdAGUl5dzySWXAOByuZgxYwYnnXQSv/vd74hGo4wePZoJEybwt7/9LWM1TdeuXUtlZSUPPPAAV1xxBf/73/947733+Ne//gXAuHHjdjv/IRP/7TZpuGtra/n666958MEH0XWd9957j5EjR9K3b180LXkTsXDhQrp27Wq/x+/329sONhMnTuTUU09l2LBh/PWvf2Xy5MnMnDmT4cOH2z/Md955h4KCgqzo2x3BYJBrr72WO+64g5kzZ2Zbzm75z3/+g6ZpHH/88dmW0izFxcVUV1djWVbWfn9tidraWnbt2gXAypUrueOOOwDo2rUrr7zyir1ffn4+Qghef/11Kisruffee1mzZg15eXkZ03bYYYdRUlLCSy+9xJw5c3j66aeprq7mmmuuAeAf//gHQ4cO/c773nrrLYqKilpVS5s03B988AGDBw8mPz+fqVOnsmLFCkaPHs0LL7yAx+PJtrzv4PV6Of7443nwwQfp1q0bxcXF9O7dO6fjpIUQeDwe4vF4tqU0i2EYADkdtvjb3/6WMWPG8JOf/CSnLsy5hmmaLFy4kM2bN/O///0PgEGDBrFy5co9vi8vL48ePXrw0EMPZVyjw+Fg4MCBLFy4EF3X+fjjjznnnHPsGP1zzz2Xc889N+M6oI0a7lNOOYXZs2ezYcMGrrnmGi655BJmzpyZk0Y7zc0330xNTQ2rV69uM77j/v378+677/LFF19wxBFHZFuO4hAnkUgwZswYbrjhhmxLaZZx48Yxbtw4Fi9ezPz587PmpmuThhvg4Ycfpry8nEceeYRnnnmGnj17ZlvSXikqKuLYY4/NtowW07lzZ9xuN2VlZRx++OE55UuOxWIkEgl0XScajeL1enNKn2LfcDgcTJo0KdsyWszPf/7zrJ6/zRrubt260bVrV0aMGIHD4ci2nEOW66+/nlNPPZVRo0a1up/uQDjyyCNxu93U19fz6KOPsnHjRgoLC7Mtqwm1tbV8+eWX1NXVsXz5cnr06EHfvn2zLUtxCNBmDTck/bDKaGcWTdMyGl61P7z66qtMmDCBY445hvfee4+OHTuyaNEiJk+enG1pTfjoo4+47bbbqKio4KmnnsIwDJ5++ulsy1IcAqhhbsVeueWWW3IqsqRjx45s27aNI488knPPPZetW7c2iSDKBUKhEC+99BJPPPEE/fr1484772To0KF26JhCcSDs1XALIbxCiI+EEJ8JIdYIIW5Nre8lhFgmhNgghFgkhHCn1ntSrzektvfM7EdQZJpRo0bx5ZdfZluGzbBhw1i5ciVTp07l73//O/PmzeOYY47Jtqwm5OXlMXbsWBYtWsTChQvZtm0bq1evblNjHIrcpSWukjhwopQyJIRwAUuFEP8ErgHul1I+K4SYDUwCHk0910gp+wohzgPuAg5OjIwiIwghePPNN7MtowkfffQRq1at4osvvmDz5s05NzCpaRo9evRg7ty5tG/fnjfeeINRo0ZlNM5Y8f1hr4ZbJmeIpDMjuVIPCZwITEitnw/cQtJwn5FaBngeeFgIIaTKWNSmyTXDKIRg0KBBDBo0KNtSmmXIkCG88sorLFq0iKeffjqnw1UVbYsW+biFEA4hxKdABfA6sBGolVIaqV3KgS6p5S7AFoDU9jqgpDVFKxRtiXPPPVcZbUWr0iLDLaU0pZSDga7ACKD/gZ5YCHG5EGK5EGJ5NBo90MMpFArF94Z9iiqRUtYCbwOjgEIhRNrV0hVIZ3TaCnQDSG0vAKp2c6w5UsphUsphPp9vP+UrFArF94+WRJW0E0IUppZ9wEnAWpIG/Bep3S4BXk4tv5J6TWr7W8q/rVAoFK1HS6JKOgHzhRAOkob+OSnlq0KIL4BnhRB/AFYCT6T2fwJYIITYAFQD52VAt0KhUHxvaUlUySpgyG7Wf0XS3/3t9THg7FZRp1AoFIrvoGZOKhQKRRtDGW6FQqFoYyjDrVAoFG2MnMgOaFkW7733XrZlNMuOHTvYvn17TmssKyujpqYm5zL5Naa6upqPP/4Yv9+fbSnNEolEcvp7DoVCeL3VdOyYuxqLitZRVtaQ0+24fft2Vq1axc6dO7MtpVn29F/OCcMtpaSq6juh3jlDXV0d0Wg0pzWGw2GefFKjoSF3NXbvnuBHP6ohFotlW0qz1NQYXHRR7rah0xmh07iP8U17IdtSmsW9KUg4fE5O/19isRg31N5AzJm7v8W4bL5sYE4YbofDwemnn55tGc2yYcMGTNPMaY2WZVFR0YEdO0ZlW0qzlJSsYuzYsTlVkKExUkoWLHidTZty93v2eKoJdryXTadvyraUZun4XkcG7BqQ0/+X7du3s+24bdT1rcu2lGbJd+Q3u035uBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrVAoFG0MZbgVCoWijXHIGO5Zs2aRSCSyLUOhUCgyTps33O+88w5HHXUUPXv2ZPTo0dxyyy3ZlqRQKBQZpU0bbl3X2bhxI//v//0/jjjiCObNm0dNTQ27du3KtjSFQqHIGG3acMdiMTZu3MjAgQP597//zWuvvUa7du346quvsi1tryQSCZ5//vlsy1AoFG2QNm24A4EAI0eOZOLEiZx00knMnDmTsrIyRoz4TinMnCMej/PII49kW4ZCkXPce++9VFdXZ1tGTtOmDTfA2LFjWbJkCX/4wx946aWXsi1HoVDsJ6tWraJPnz50796dn/3sZ1x00UXZlpSztHnD7fV66dKlC08//TSHH344hYWFlJeXZ1uWQqHYByzL4tNPP2XatGn07duX5557jvz8fDZu3JhtaTlJmzfcaYQQdOvWjf79+/Pmm29mW44iy5SXl/Pqq69mW4aihViWxdatW+nSpQtlZWU88MADlJaWUlFRkW1pOckhY7jT/PSnP2XFihWq1/09ZuLEiUybNo01a9Zw/PHHqyijNoDT6WTs2LFcccUVFBcX89RTT/Hoo48yY8YMPv3005yupZoNcqJ0WWvSqVMnvF4vmzZtokuXLgghsi1pt2zZsoUuXbpkW0ab4euvv25xrcrly5czb948OnXqRFlZGZs2baKkpCRnfwuKJIMHD2bt2rXceOONLF26lNLSUgCmTJlCRUUFDzzwAB06dKCgoCDLSrPPIWe4Ae666y6GDBnCJ598krN/1gsuuIBPPvkk2zLaDHPnzmXTppbVWdy+fTsPPvggJ598Mueccw7PPvssw4YNy7BCxYHicDjIz8/n/vvvb7J+3rx57Nixg+nTp9O/f3+6devGhAkT0LRDzmHQYg5Jww0wffp07rnnHqZPn55tKYpWYF9mxA4ZMoTevXvTvn17fvnLX7J06dKcvYArWkbHjh2ZP38+S5cuZe3atVx22WWMGzeOs88+O9vSssIhe8k67bTTeOONN1T+ku8hL7zwAiNGjOCdd97hn//8J+3bt8+2JEUrccwxxzBp0iSmTp1KWVkZ7777brYlZYVDtsft9/u54YYbuO222/jDH/6QbTk2O3bsYOPGjYTDYd5//326detGjx49si3rkKJXr1707NmTcePGfa9vpw9VNE2jf//+HHbYYd/bO6lD9ledDg90Op05NQX+lVde4Y9//CN1dXU88sgj/OUvf8m2pEMSIYQy2oc4mqYpw90cQgivEOIjIcRnQog1QohbU+vnCSE2CSE+TT0Gp9YLIcSfhBAbhBCrhBBHZfpDNEfv3r1xuVysW7cuWxKasHnzZjZs2MDs2bPp3Lkzf/rTn3C73axYsSLb0hQKRRuiJV2SOHCilHIQMBgYJ4QYmdo2VUo5OPX4NLXuFKBf6nE58Ghri94Xrr76ahYvXkxNTU02ZQDQpUsXevTowZIlS1iyZAnLli1D13UGDBiQbWkKhaINsVcft5RSAqHUS1fqIffwljOAp1Lv+1AIUSiE6CSl3H7AavcDv9/P448/no1Tfwen00nfvn3585//jKZpvPLKK5x99tl4PJ5sS1MoFG2IFjkBhRAOIcSnQAXwupRyWWrT7Sl3yP1CiLT16QJsafT28tQ6BXDyySfz8ssv43Q6efHFF7nggguyLUmhULQxWmS4pZSmlHIw0BUYIYQYCMwA+gPDgWJgnwKmhRCXCyGWCyGWR6PRfZTd9rn44ou/twMrCoXiwNinYXcpZS3wNjBOSrldJokDTwLpJNhbgW6N3tY1te7bx5ojpRwmpRzm8/n2T71CoVB8D2lJVEk7IURhatkHnAR8KYTolFongDOB1am3vAJcnIouGQnUZcu/rVAoFIciLZmA0wmYL4RwkDT0z0kpXxVCvCWEaAcI4FPgV6n9/wGcCmwAIsDE1petUCgU319aElWyChiym/UnNrO/BK48cGkKhUKh2B1qaplCoVC0MZThVigUijaGMtwKhULRxlCGW6FQKNoYynArFApFGyMn8nEbhsFjjz2WbRnNUldXR3l5eU5r/Oqrr+jePY/S0lXZltIswWAZCxYsyOncLIZRzcCBufs9OxwxCjYVMPCxgdmW0ix52/P4IPYBO3bsyLaUZlm9ejV96vqQKMjdQitfG183uy0nDLfD4WDMmDHZltEs5eXlaJqW0xqdTicjRxbzwx/+MNtSmuWJJ8r4/e+PRdcD2ZbSLCedtIIXX8zd77m+vp7FiyuYOGb30yMkEomFlBKBsNcBaMJhr8skq1atora2luOOOy7j59pf6urqmDViFl27ds22lGYZpY1qdltOGG4hBH379s22jD2yfv36nNa4evVqOnTokNMa/X4/DQ09iceLsi2lGSSa5m7VNty+fTv5+fkEAq1zsaqursbv99OrVy+qqqqSK3069eFaCgoK+azibd6LvEpDrAbLEPi1YsLxMJF4mEm9b8Xr8tEpvytF/hLq6upwuVyEQiFKS0vZtWsXwWCQSCRCaWkp4XAYh8OBruuYponD4SAcDtvbCgoKqKystKuxpwtX7Ny5E4fDkdO/xYKCArp27Uq3bt0IhUL4fD7C4TAulwun00k0GiUQCNjb4vE4QghcLheRSIRgMEhDQwM+nw9d1/F4PCSnsIDb7SYUCpGfn084HCYvLw/DMLAsC4/HQ0NDA4FAgEgkgtfrxbIsDMPA6XTi9XrtHEZ7KgSSE4ZboThU+fOf/8yJJ57ICSec0KrHjRohPo++Q8ioo7x+DVWxHXirAwjLSXutF118P+SLXR/jdAQYGBiMlu/gs+oPeHXDIk7ucTZjepxGB28XpJR4vV7i8bhtRNLGybIs2xiljUh6XyEEkUgEt9ttP7vd7lb9jAeDUChEQUEBoVCIoqIiDMNA13WKi4upqamhqKjINsJSSuLxOKWlpdTU1FBcXEwkEiEvL49oNIoQAsuy7GNWVVVRUFBAXV0dTqcTTdOorq6msLCQqqoqgsEg9fX1CCHweDxEo1E8Hk+Lks8pw61QtEE0ofGnjx5BN+N0DXald1FvPA4/895aQDDg5rAenajaHKYqvoZBA2spdrdHNy06+fqwZscqMJy083Tg5MNOB7CNTnpZ0zQsy0LTNAzDaHJuIUST0nBtuYSYz+cjFArhdDqpr6/H4XCgaRp1dXVcddVVDBs2jMmTJxOJROzPXFtbi9frpb6+HqfTSSwWw+lMmlJN0+yLW0FBAYlEAr/fj2VZzJ8/nzfffJPHHnuMgoICdF23t0kpW2y0QRluhaJN4nHk8Yfhf+bMRWdQ4TbZ4KwmT+RRLHqQF/MQKctn19YoX+6owJP3Od6qYmqKd+F3FuPU3NTVx4glEozsehxO6cLv9xMOhxFCJG/9XZJELIzL6QDhxZISh8NBPB7H7/djGAYul4twOEwgEGizhjscDlNUVER9fT35+fmYpomu6wSDQf7xj3/w8ssvY5omF198MYWFhcTjcYLBoN3jDoVCuN2O+SXYAAAgAElEQVRuYrEYgN3jLiwspLa2loKCArZu3cqbb77J9OnTicfjPPnkk9TW1hIMBgmFkjVq0sbe5/O1qC1VOKBC0QaJxWL0bteT5855jnq9lrc3vMO/1/6bL3as4eOvVvD6Z+9wyUmXcsbgczg2eD7VO6Czv4ianZXUh+r4onwdX5Sv54+v34Hm1QiHwwSDQUzTxCVj/PXGH7D4D0fw7K2HoYercLvdCCEoLCwkHA7bvdK8vDxqampsw5Vp1qxZYxu71sDlcmEYBg6HA9M0k4O6qTsKgGg0yvTp0+nRowfLli1DCGH7ow3DQNM0pJRomobD4cDhcNj+brfbzapVqxg+fDhXXHEF4XAYSAZjpN1KLpcLl8tl9+ZVj1uhOITJy8ujsrKSLv7OPPqz2Vz13FVU1FTQt6QfDunASpj87b1F+B1+orEIbqeLnR856d9jGNsqNlJfUkGp3o1n/rWIsT3HceqPTqWyshKvGz7514PUhXTadx9Gv8E/QbjyiMfjOBwOqqur7cHJ4uJiKisrKSkpyXiPu6qqigceeACn04lpmnTr1o3LLrvsgI/rdDrRdR1N09B13f4cc+fObXIxSiQSTJgwgYsuuoizzjqLnj17ctdddyGlTF7sXC4gaYgvu+wydu7cycKFC3n22Wepq6uzj2OaJnPmzOGyyy7DsiycTqc9juBwOFqu+4A/uUKhOOhEIhHy8/MBGOYdxjMXLeSMv5zJlxXrCDgD+ISPuIhTGd/FjsrtVO+q5qfDT6PU3RkLB0fmD+Pfn/2TYo8Tj+aioaGBuooN/P2VB6jYvJz2XY7i2HNmUdi+J5oQOBwOLMuipKSEcDiM0+mkqqqKQCBATU0NeXl55OXlZeSzSimpqqri448/Zu7cuaxfv54bbriBSy+99IAvGNFolOLiYurr6wkGgxiGQSKRYOHChSQSTWO8t23bxl133cVrr72G3+9n+fLlmKbZZB9N03jttdeQUrJy5crdfpY5c+Zw3nnnUVhYSCgUQgiB1+slkUjYPf69oVwlCkUbJN07k1KiCY2+xf1481dv0rfjYdTH6lm3438s37yCVVtWEcgPMnzAcKJ6lK93bkY4Neq3Jhjd5xTy85zc+NcpbNq2ga83rObLzz/h2NNn8PMpCyjp2BtBcjAybVDSYYFCCJxOJ5Zl2S6CxrRmD1xKyfTp05kzZw533HEHHTp04De/+Q0PPvjgAR87feHxeDxUV1cTiUQA0HXd3ue+++5rModj9erVLFu27DtGG5I+7hUrVjQx2h06dGD+/Pn2a6fTSbt27dB1nYKCAvx+P5C8i1KuEoXiEEbTNGKxGCLVG9Z1nY4FHVky+VVe+/w1Xv38H3yw5n12VO0kkghTZTmIOxJYCQsMWLvuC8YOP5njSn9B+1GCq+47nx9UOhg8bAyHDT2FvPwC20inox6EECQSCVwuF6Zp4na77UHKbxuc9O1/a33Wu+66iwsuuACHw8Hzzz/PkiVLWLp06QEfOx0GWF9fT3Fxsd3jTrs+IGnEX3zxRYqKinZrrPfGmDFjmlwIDMNg165dFBYWUldXZ/e4VTigQnGIE4vFbNdENBrF7/dTW1tLIBDgxL5j+PnwX7BkxRJ2NOwgEUsQ8OYTjUSJRxMgBcYJBt07dOPEESdSXFRMcEcxW97/jJN+diWl7TtTVVWF3+9H13WcTqdtpNPxyV6vl9raWnviTiAQyGgcd4cOHbjwwgtZsGABpmly3XXXtcpx0+GALlfSXZQeIGxsoH0+H/tb0PyXv/wld999N//+97/tdQ6Hg2Aw2CQcELAHgFvCIWe4DcOweyEKxaFKXl4e9fX1QPIPn56Nl/bZhsNhTh5yMnW1teS53URrq/h6/sPENqzF26kL/X/7exIuFw5g147t7Fi5DY+/Pd2696W+upqiQICErrPh7y/wyd8WIFxe+p9+Dn1Gn0hRSQmmaVJaWkooFKKkpMSOY84UBQUFdOzYkXPOOYfJkye3Wr6beDxOfn4+kUgEn89nz2L0er32PolEAo/HY0ee7AtnnHEGQJOBTikl4XAYv99vr3e73U165XvjkDHcUkqWL1/OBx98gKZpjBw5kqFDh7bZ+FKFYk+Ew2F7Nl80GiU/P9+OG04/71y5DFG+ibLXnsPl83PkrfeD5kI4NMxdO1h74/WYQsOKWVhrP6f9kUdR9vw8trz7NpGGevK79eIHZ57P+NtmYRk6X7z1On+deD7ugiJO/H/XkN+xMz369aOurg6fz2cPlmaK2tpa8vLyWjVJWWP/vZTSdvG89NJLdOzYkYaGBjZv3syKFSu+MxGpJWzYsIGhQ4eyYcMG+3xnnXWW3bFsHHq4L7bqkDHclmVx1llnMWvWLHt58+bNynArDkk8Hk8TH3cikcDr9aLrOl6vl13v/ovNs26k23mXMmDaHQgB4XVrSf8dpBAMvPE+pIDYju0UfbiURCKBQ2gMmzINnC7i0QiJaIRIVQWWlPQYOpzuQ0dQV13N4ptmEuzWnUvufQBfMJjxHnemcLlcxONxNE2zp/ILIZr0kB966CEeeuih/Tr+tddey7Zt25g1axaQ9NdfffXVeDweLMvC7XbbF4t9acNDJqrkxhtv5PHHH6ekpISOHTvy2GOPcdNNN2VbVpslEolw8803Z1uGohnS0RyNJ4BYloUQgsp3lrD+gVvoOWEywd6HEd9aRrx8MyIWRsTCEAtDNEx045dE1q/FaKil/YhRdD7meAq69yJauYPw1i3EqnZhhMMY0Qh6JEK8IUSsvg6Hw8HxF11M/ZYtPP7rK+wwtrZIOqwy7W9OG9JZs2btt1/726SNNiS/txtvvJG6umQ7hkIhotGonQelpe3YNi+Tu+Hqq6/m/PPPZ/z48TidThYvXsxzzz2XbVltFl3XW2XUXpEZ0lEdjWfyRSIRRNVOdr70V7qfeQGe4lKsuio0NIRIzQgEBGAhwUouY0kSkRCmlBgWmJbEkhJLJpeN9LMlMbHQTXB7fBwz4UJefvB+Hv7lRK5b+EzGP28ikcDn87XqcdPT171eLzU1NUgpeeSRR7j33nubuEaKiopwOBxNwiJramp2e8yCggJcLpd9IbUsy95XSsnjjz+Ow+Hg5ptvtiNVTNPcp3DAQ6bHXVpaSmFhIU8++SRXXXUVPp+PkpKSbMtSKDJC2qedzjxXV1dHYUEBOz5fSbC0I/7CEqxQLcQiiHgILR7BEQ+jxSPJR7r3HQ1DLATRMFYkjIyEMCMhjEgII9xAIhxCDzWQCDWQCDcQb0g+x0L1WIbOSZMupaa8nIaKiox+3o0bN7J06VIuuOCCVj1uQ0MDhYWFJBIJAoEAjz32GLfddluTyTdHHHEEK1asoLy8nI0bN1JRUcHy5csZPnz4d453+OGH89Zbb1FeXs7nn39OeXk5H330EYMGDbL3MU2TP//5z9x9991s27bNngofiURa3OM+ZAy3pmksXryYp556iqOOOooHH3xwj/lsc5WXX36ZrVu3ZluGIsdJJyTyeDyYppkMa6urpfY/S9B8XvSGGohFkNEIxJKGWotHcMbDOOIRRCwC8Yi9jxkJI6MRrGgYKxrBikQwIhGMSAg9EiaRfg6HSYRDJMIh4uEQeiyBy5/PO89mtsedprXHrHw+H5FIBKfTyc6dO7/jXh0wYACzZ8+muLjY9oXX19fTrl07Zs2aRb9+/ex9PR4P1113Hf369SMejxMIBNB1nQ4dOvDEE08wYsSIJseeNWsW4XDYHmz9XocDDho0iIEDc7esU3Ps3LmTn//855x55pk888wzeL1e5s2bl21Zihwl7RqB5B8+kUjg0QSxr76gZMxpWNEwpqbh0ESye6aBQ3OgaWBJEJYESyItibQspCmxLDAtC8sCw5LolkSXFrqZdKEYlpVcZ0kMM7UsoWPPHuit5A8+2Oi6Tl5eHrFYjF/96ld2dEma7du3M23aNEzTpH///jz88MN4vV4ikQhDhgxh7NixrF+/HoCxY8dywgkn2C6dSCTCLbfcwsqVK7Esi82bNzc5txCCK6+8khdeeAG3271PoYaHnOFuK1iWxfr16+0fyY4dO/D5fIwbN45LLrmESZMmsXPnTjp06JBlpYpcpHH4mh3SpgmkZWLFIhgaaJoDSxNITYAmkA4BacNkgbQklmVhmclnwwLDtDAk6IaFIZN+7YRpJQ25aWFYFglLoJsS3bLQTYtYuPWy9R1s0gUMnE4nTzzxBP/5z3+YMGGCvb26upoPP/yQPn36cOedd+JwOIhEIng8HuLxeJNIkEAgQLt27ewoH7/fz0033cQpp5zCihUrvnPuP/3pT5x//vlNCli0lEPScB933HG8/fbb9O3bN+vhgJs3b+aNN974znrTNFm2bJn9OhwOs2HDBu6//35uuOEGTj75ZN54441W9+kpDg0SiYQ9U9E0TbxeL7G6WsxwhNjObfiCBZiaA80hEBoIhwChYaFhITGkxLSSBtkw071qiSEtEibo6R61mRyMjEajxHUdPD4SlkwZbtAtk3gkQiZjSqSUvP322xmpYdk4qZPD4eDdd9/9zj6HH344ixYtIj8/H6fTyeuvv05FRQWFhYUMGjSISy65BMMw+NGPfsSyZcsoKyvD5/Nx5pln4vV6efnllznttNP47LPPmhz3448/5uyzz7Y7b/sSmXNIGu5JkyYxZMiQVskedqA0rhTSGI/Hw+OPP27r27JlC8cddxznn38+Tz75JK+99hqffPLJwZZr4/P5GD9+PC+++CJnnXVW1nS0dc466ywWLFjAyJEjWzUiwuv1UlFRgRACv9+frIMYyMeSUP/lGhz9+iN8XtC0VE87FUmiGwiPF1NaScNrGIS3bSEWDhMzLRKmJG5I4pZJ3ABXSQcIBIlFosQTCYRhkkjtp1uShGGyefVq+g4fsXfR+4mUktmzZ+82215rkK70EwqFmD17Nqeffjrr1q1j3bp19vlnzZrFPffcgxCCqqoqrrnmGn784x/z/PPPc9ZZZ9npWSdPnszzzz/PfffdByRnct94441NjHKXLl0YM2YMf/3rX5k+fTp5eXktzgqY5pA03LlE9+7dmThx9xW5G9OxY0eWLFnCvHnzGD16NJMmTToI6prH7XZz5JFH8s477yjDfQAcddRRTJ06tdVD2dLFetOTRQKBAA2hBo6Yfjtrbr0a8/MwpT8YiPS4MTWBKUDEI1i1NTg6dMYyTBo2rME0JLF4nLiuEzct4gZEDZO4YREzLfQd29BxIP0FOAoKkZEYhsOJbkLCtNjw+So0dx5HHHNsq322g0m6sK/X68Xr9fLRRx9RWlrKhRdeaO/z5Zdfsm7dOt59913OPfdcJk2aRHFxsR3uZ5qmXTzBNE3y8/MZP348c+fO5f7776esrMzORwJQWFjI/fffz1VXXUWvXr3sqkP7MgFHGe4cweVy8YMf/IDbb7+9yTRYhaI5TNO07+aSvUYHIlCEblho4TDVX3xKQd/+aKaBwzIRehy9citsL0/GalugWxYJK9mDThjJXrRJKnZbQiKeIKabxOoaiG/ZQsy0MFwe/B07s61sMw0NEXqOOIyBGXBjHAzShX3j8TjFxcUUFRWxZcsWYrGYPakJkr3uTZs2ceedd7JmzRpeeeUVnnzySaSU+Hw+O3xw4MCBXHfddVx//fUsWrToO+4PTdOIRqNs376dww8/3J7k43K5iMViLZ7O32LDLYRwAMuBrVLK04QQvYBngRLgE+AiKWVCCOEBngKGAlXAuVLKspaep7W44IILeOaZZ9qcj7gthjAqDj7pqdpp451OrxoCLK+XRDwGukG4tgbC9YhQA5om0BBIJKa0sGTScBsWKZ/1N75rI+3/tpL+cMuSmFJiWmDqOqGaWmKRKA6PFylbP0zvYJGfn29XY6+trcXtdrNx40Z+/OMfc/LJJ1NfX28PYM6ePRspJX//+98ZNWoU06dPt6vd+/1+pJRce+21LFiwoInRnjJlit0jTycH27BhA507d7bLxe3rHdm+9Lh/A6wFgqnXdwH3SymfFULMBiYBj6aea6SUfYUQ56X2O3cfztMqTJ48mfHjx7c5w50rTJo0iTVr1lBVVcUnn3xiD84ocoN4PG5nsItEIuTl5SXTrB7+Q4qOGcvOf72EhYGsqsIpLDTDQmgCkTLclmxkiKVM+rZN2cSAG40GLw2ZHLA0pcTQJfGaOiwJDq+X8dOm2jlSMsGMGTO4++67M3LstMspkUhQUFCAlJJjjz2WE088kVgsZlem0TSNfv36cc011wDwwAMP8Nvf/tYOJ0wkEvYsyfvuu8822jfffDNXXHEFXq/XnuXq9XqJxWJ2VkfArhbf0tS4LereCSG6Aj8FHk+9FsCJwPOpXeYDZ6aWz0i9JrV9jMjC5VgIoWZO7ic1NTVs3LiRadOmccYZZ+D1etmxY0e2ZSka4ff7CYVCTXJJFxQUEBcOgj36YlgQ1y2ikSjRaIKIaRE1LCJG8jlqWMSMpLGO6jI5MGlZJFLhf7qUxC2JYUoMKUikety6ZaH585OuBLcP3TAYddLJGStbBrBs2TJGjRqVkWPn5eU1acO0y6O+vh6fz0d9fb1d3f7www+332cYhl1LMhaL4XK5mhQBTtOvXz+KiopwuVxomkYwGCQajVJQUGDnR0n3tPcln3lLe9wPANOAQOp1CVArpUxP5i8HuqSWuwBbAKSUhhCiLrX/rharagXy8/NZvHjxwTzlIcP8+fO5/PLL6du3L4lEgjPPPJMHH3xwvzOkKVqfSCRCIBBoslxXV0cgEEDr2Q+tXWdiO8rRZQIHAodGKjNgsq8mZdNed3pyjR0tYproZtJ4J6x0PLfEMCFWU4sl4MgxJ+AtLqGyspLCwkJbT1sineclHUeddlWmixK7XC6klDgcjiaDh0IIO+46ncOk8SNNuhp8ep2u63acd9rFlfajNx7A3Bt77XELIU4DKqSUrRqbJoS4XAixXAixvLWycClah6uvvprbbruN//73vxQVFXHhhRdy2223ZVuWohFpv2s0GrUHvNK39T2OHo23S3eipkUsFR2S7GFbxAyDmGEQNUyihvnNdttIpwYqTZmM504b81Sct24lXSilPXvx1eo1nPbrKQSDwYxWv8kk6VDAtHFuHNOdzsCYzr7Yq1evJoUR0vMz0i6StP+7qqoKSJYsGzhwoL0tHXWiaRqmaTZ5H7R+HPfRwOlCiFMBL0kf94NAoRDCmep1dwXSCTa2At2AciGEEyggOUjZBCnlHGAOQIcOHdpmTshDmEWLFrF69Wo+/PBDnnvuuTbZmzqUSf/x03/+dARE2uAMm3obf79wPNFoCIcQyYFJmex1S8ACrHQWQCSGkYwkSRpnC8OEhJU05rplpaJPkgbcEwjSvu8PaNe3L8WdOtnlvjL1OTM5YJ8uEhwMBqmrq8PtduNyuexKQtXV1QQCASKRCIWFhRx77LG8/PLLhMNhpkyZQrdu3WzDDlBeXm5nAhw6dCidOnWy86Snc8rU1NTYleXTpcsSiUTrhgNKKWcAMwCEEKOB66SUFwgh/gb8gmRkySXAy6m3vJJ6/UFq+1uyrSbr/R6Tzvmyr1NxFd8lEz9/0zTtP3r6lj4SieB2u4lGoxT27kNe915UrPkUTWg47JSuFhINKVI9wNTgpGnJVArXdD4SYfe0dcsiZiZdJgnLJBAsRHO76TVoEIHCQurr69E0LSO97ltuuYUbbrjBroTe2qSzA8ZiMQoLC7EsC9M0KS4utsuyRaNRAoEAUko7PwxAZWUllZWVzR47fReUzr2taRo1NTX4/X6qq6ttH3ra7ZIuFtwSDuRSNh24RgixgaQP+4nU+ieAktT6a4DrD+AciizicDiU0W4FMtEb9fv9NDQ0EAqFcDqddjxyJBKhpKSESCTCKY88SVy3iBsmUd1MuUdk8jlhEdWT7pN42o1iSqImxAxBzLBImBZxM7leNy0ShklRl+70O/pYvHl+xp53Hg0NDZSWlmZscDLtg85Ujz4QCFBTU4Pb7aampsaOq04XQN61axcOh4P6+noikQjDhw+nW7duez1ux44dOeGEE+wLgsfjQdM0ux5oaWmpHcmSvijtSxvuk+GWUr4jpTwttfyVlHKElLKvlPJsKWU8tT6Wet03tf2rfTmHQqHYO9FolLy8PHw+n52EPz0DsK6uDq/Xi3S6GXTRpUlDbSYNd0T/xredjC4xk/5vUzYy4slp7XHDIm77uyXBjl3oPWwE28rK+MnEidQ1hPD5fNTW1jYp9dWWiEQidsX1YDBohzQWFhba7hHTNPH7/Xi9Xo4++mjmz59PYWFhs8d0u908/vjjjB49Go/HQ0NDA7quI6W0o1VqamqScfepCjjAPrWhmu2hULRBPB4Puq7bUQrRaNSewZefn58sDFBUTOmo49DadSJqSCKGRcRMhgR+ExYov1k2LWK6mexlG8kQwbhpkrAk7mAB7fv2o6piJ5GGEL0HDyYQCBCPx/H7/Rm7M5s6dep38li3Jl6vl3A4jNPpJBwO2+GA6YtgQ0MDDoeDWCxm16Q8/PDDWblyJfPmzSMYDBIIBAgGgwSDQe6//37WrVvHqFGjCAQCJBIJ8vLy7LuGdGX3QCCAYRhNih9nIhxQoVDkEI2nYqcjIhrnzkgPWvYaMYphF1/KW/ffgx4J2++XqYk4UiYHKU3S/m6S6VztCTgW3uJS8jt0IhKN4vF4uev1f9saGg+KZoLi4uKMHDdN4/JiaRqXJ2u8LZ0+V9M02rdvzymnnMLXX3+NYRj2zEjAHm9I59e2LMuOHmn8HUFyfKJx1ElLUYZboWiDmKZph6qlDadhGGiahq7r9rPb7ebYSb/ClJJX/3ArsomBSkaYmJJkTHd6Wrv8Ji+3IQWaKamrqaFnp05ces89aKlMePF43I5JFkK0yUrvjY1uenYjJHvi6XS50LQ3nN7WeOJM45A+XddxuVx2pIiu6/Z7E4mEvS39nTW+ULQU5SpRKNog6ZjtWCxmJ/dPr0tXLU/f6muaxogJF/OLe/9E1yHDk/7s1KPLsBF4O3QkZlqph6TfcaOJWySnwFsQi0Q56qSfMPGPfySvqAiPx4NlWeTn5xOPx8nPz2+zcdxpw5qeDJM2no2NbnqqeroHns7kl3arpEMW0ymcXS6XXczZsiycTqe93eVyYRhGk23pC96+3LW0vUukQtFGiEajVFZWEovFKC8vR9d1SktLW+34aTeCEAKfz4cQwl5XVFSEEILOnTvb20+8+P849uxzMRv1AB0uF5ZlYpnf9MSdbjd6o2K5AG6vF7fXa/cOg8GgnVairSaYguQF0OPxNGlD+MZdkt7WmHQ19t1tS7Mnv/X++LS/jTLcCkWG+O9//8u1115LRUUF1157LSUlJTz99NOtdvzGE1PSBmRvz44WJgrzNhM33dxx2yqNUyg3/ix7+ny58NmVq0ShyACRSIQ333yTuXPnMnDgQP7yl78wYMAAli5dmm1pikMAkQuTGouKiuRFF12UbRnNEo/H7VlUuUpdXR1OpzNjM8xag507d7JzZylSZiYCoTUoLNxKjx5d9r7jXjBNk82bN9O7d282btxIz549qa+vx7KsA/odmaZJVVUV7du3P2CNmSIcDmOaJsFgcO87Z4mqqiry8/NbPFMxGyxYsICamprddutzwnALISqBMAc5g+A+UIrStj8obfuH0rZ/HGraekgp2+1uQ04YbgAhxHIp5bBs69gdStv+obTtH0rb/vF90qZ83AqFQtHGUIZboVAo2hi5ZLjnZFvAHlDa9g+lbf9Q2vaP7422nPFxKxQKhaJl5FKPW6FQKBQtIOuGWwgxTgixTgixQQiR9aILQogyIcTnQohPhRDLU+uKhRCvCyHWp56LDpKWuUKICiHE6kbrdqtFJPlTqh1XCSGOypK+W4QQW1Pt92mq5F1624yUvnVCiJMzqKubEOJtIcQXQog1QojfpNZnve32oC3r7ZY6l1cI8ZEQ4rOUvltT63sJIZaldCwSQrhT6z2p1xtS23tmQds8IcSmRm03OLU+G/8JhxBipRDi1dTrzLTbt6sTH8wH4AA2Ar0BN/AZcESWNZUBpd9adzdwfWr5euCug6TlOOAoYPXetACnAv8EBDASWJYlfbeQLG/37X2PSH2/HqBX6nt3ZEhXJ+Co1HIA+F/q/Flvuz1oy3q7pc4ngPzUsgtYlmqT54DzUutnA1ekln8NzE4tnwcsyoK2ecAvdrN/Nv4T1wALgVdTrzPSbtnucY8ANshkNZ0EyfqVZ2RZ0+44A5ifWp4PnHkwTiqlfBeobqGWM4CnZJIPSRZz7pQFfc1xBvCslDIupdwEbCD5/WdC13Yp5YrUcgOwFuhCDrTdHrQ1x0Frt5QmKaUMpV66Ug8JnAg8n1r/7bZLt+nzwBghMpPEYw/amuOg/ieEEF2BnwKPp14LMtRu2TbcXYAtjV6Xs+cf8cFAAv8WQnwihLg8ta6DlHJ7ankH0CE70vaoJZfackrq1nRuI7dSVvSlbkGHkOyd5VTbfUsb5Ei7pW73PwUqgNdJ9vJrpZTGbjTY+lLb60jWoD0o2qSU6ba7PdV29wsh0vPYD3bbPQBMA9KpFkvIULtl23DnIsdIKY8CTgGuFEIc13ijTN7b5EQoTi5pacSjQB9gMLAdmJUtIUKIfGAxcLWUsr7xtmy33W605Uy7SSlNKeVgoCvJ3n3/bGn5Nt/WJoQYCMwgqXE4UEyykPlBRQhxGlAhpfzkYJwv24Z7K9C4ZHLX1LqsIaXcmnquAF4k+cPdmb7FSj1XZE9hs1pyoi2llDtTfy4L+Avf3NYfVH1CCBdJw/i0lPKF1OqcaLvdacuVdmuMlLIWeBsYRdLNkE4D3ViDrS+1vQCoOojaxqXcT1ImC5Y/SXba7mjgdCFEGUmX74nAg2So3bJtuD8G+qVGXt0knfSvZEuMEMIvhAikl4GxwOqUpktSu10CvJwdhR0Bo5UAAAF0SURBVLAHLa8AF6dG0kcCdY3cAgeNb/kQzyLZfml956VG03sB/YCPMqRBAE8Aa6WU9zXalPW2a05bLrRbSkc7IURhatkHnETSD/828IvUbt9uu3Sb/gJ4K3U3c7C0fdnoYixI+pAbt91B+V6llDOklF2llD1J2rG3pJQXkKl2+//t2z1uwkAQhuG3g5qOlgNQpUxBC9fIMZByi5wgkVJwBeAANBAgRX5ukibFDIIGJBf2stL7SC7ASPtphEfyjt3GZLXJQUx+v4l9tHnhLCNigv8BfJ7yEHtPK+AHWAKDjvK8E7fNf8T+2NO1LMTk/CXreAAeCuV7zfX3+eccXvx+nvm+gGmLuR6JbZA9sMtjdg+1u5GteN1yrTGwzRxH4Pni2tgQw9EF0Mvv+/n5N8+PCmRbZ+2OwBvnJ086vyZy3Qnnp0paqZtvTkpSZUpvlUiSGrJxS1JlbNySVBkbtyRVxsYtSZWxcUtSZWzcklQZG7ckVeYf2tkbinO+r1AAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## 결과\n", + "\n", + "피터가 늑대와 싸우도록 훈련시키는 데 성공했는지 확인해봅시다!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 1, won: 9 times, drown: 90 times\n" + ] + } + ], + "source": [ + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [ + "이제 익사 사례가 훨씬 줄어들었지만, 피터는 여전히 늑대를 항상 죽일 수 있는 것은 아닙니다. 하이퍼파라미터를 조정하며 실험을 통해 이 결과를 개선할 수 있는지 확인해 보세요.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAcD0lEQVR4nO3df3BV553f8fdHPxHCQgJkIEACrIkd4raxrcZksrOTCVmM3UzwH04Gz86azXrDtHHa7HZnEryZ1tMknkna7XrDrONdN2aDM1kTrzetaYpLKHYm05nasRw7trFNkLExkrGRkQAbJPTjfvvHeSQuQjrge4UkxOc1c9E53/Occ5/nHul+OD+kq4jAzMxsLBWT3QEzM5vaHBRmZpbLQWFmZrkcFGZmlstBYWZmuaomuwPjbd68ebF06dLJ7oaZ2UXlmWeeeScimkdbNu2CYunSpbS2tk52N8zMLiqSDoy1zKeezMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4NihOO9/Tz6XMdkd8PMbMqYdr9wV66vP/I8j734FlcuuIyrFjRMdnfMzCadjyhGePNYLwA9fYOT3BMzs6nBQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0ExhpjsDpiZTRHnDApJWyQdlvTiKMv+XFJImpfmJWmzpDZJz0u6tqjtBkn70mNDUf06SS+kdTZLUqrPkbQrtd8lqWl8hnyO8U7Ek5iZXUTO54jih8DakUVJS4A1wBtF5RuBFemxEbgvtZ0D3AVcD3wcuKvojf8+4EtF6w091yZgd0SsAHaneTMzm2DnDIqI+CXQNcqie4CvceZZmnXAg5F5EmiUtBC4AdgVEV0R0Q3sAtamZQ0R8WREBPAgcHPRtram6a1FdTMzm0AlXaOQtA7oiIjfjFi0CDhYNN+eann19lHqAPMj4lCafguYn9OfjZJaJbV2dna+3+GYmVmO9x0UkmYCfwH8x/HvzujS0caY15cj4v6IaImIlubm5onqlpnZJaGUI4rfAZYBv5H0OrAY+LWkBUAHsKSo7eJUy6svHqUO8HY6NUX6eriEvpqZWZned1BExAsRcXlELI2IpWSni66NiLeA7cBt6e6nVcCxdPpoJ7BGUlO6iL0G2JmWHZe0Kt3tdBvwaHqq7cDQ3VEbiupmZjaBzuf22IeA/wdcKald0u05zXcA+4E24L8BXwaIiC7gW8DT6fHNVCO1+UFa51XgsVT/DvD7kvYBn0nzZmY2warO1SAibj3H8qVF0wHcMUa7LcCWUeqtwNWj1I8Aq8/VPzMzu7D8m9lmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBMYYY8xO6zcwuLQ6KEaTJ7oGZ2dRyPh+FukXSYUkvFtX+i6RXJD0v6b9LaixadqekNkl7Jd1QVF+bam2SNhXVl0l6KtV/Iqkm1WvTfFtavnS8Bm1mZufvfI4ofgisHVHbBVwdEf8c+C1wJ4CklcB64KNpne9LqpRUCdwL3AisBG5NbQG+C9wTEVcA3cDQZ3LfDnSn+j2pnZmZTbBzBkVE/BLoGlH7eUQMpNkngcVpeh2wLSJORcRrQBvw8fRoi4j9EdEHbAPWSRLwaeCRtP5W4OaibW1N048Aq1N7MzObQONxjeKPgcfS9CLgYNGy9lQbqz4XOFoUOkP1M7aVlh9L7c8iaaOkVkmtnZ2dZQ/IzMxOKysoJH0DGAB+PD7dKU1E3B8RLRHR0tzcPJldMTObdqpKXVHSHwGfBVZHDN9M2gEsKWq2ONUYo34EaJRUlY4aitsPbatdUhUwO7U3M7MJVNIRhaS1wNeAz0XEyaJF24H16Y6lZcAK4FfA08CKdIdTDdkF7+0pYJ4AbknrbwAeLdrWhjR9C/B4USCZmdkEOecRhaSHgE8B8yS1A3eR3eVUC+xK15efjIh/HRF7JD0MvER2SuqOiBhM2/kKsBOoBLZExJ70FF8Htkn6NvAs8ECqPwD8SFIb2cX09eMwXjMze5/OGRQRceso5QdGqQ21vxu4e5T6DmDHKPX9ZHdFjaz3Ap8/V//MzOzC8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMyZ+RZGYGDoqzaLI7YGY2xTgozMws1zmDQtIWSYclvVhUmyNpl6R96WtTqkvSZkltkp6XdG3ROhtS+32SNhTVr5P0Qlpns9Jnq471HGZmNrHO54jih8DaEbVNwO6IWAHsTvMANwIr0mMjcB9kb/pkn7V9PdnHnt5V9MZ/H/ClovXWnuM5zMxsAp0zKCLil0DXiPI6YGua3grcXFR/MDJPAo2SFgI3ALsioisiuoFdwNq0rCEinoyIAB4csa3RnsPMzCZQqdco5kfEoTT9FjA/TS8CDha1a0+1vHr7KPW85ziLpI2SWiW1dnZ2ljAcMzMbS9kXs9ORwAW9l/RczxER90dES0S0NDc3X8iumJldckoNirfTaSPS18Op3gEsKWq3ONXy6otHqec9h5mZTaBSg2I7MHTn0gbg0aL6benup1XAsXT6aCewRlJTuoi9BtiZlh2XtCrd7XTbiG2N9hxmZjaBqs7VQNJDwKeAeZLaye5e+g7wsKTbgQPAF1LzHcBNQBtwEvgiQER0SfoW8HRq982IGLpA/mWyO6vqgMfSg5znMDOzCXTOoIiIW8dYtHqUtgHcMcZ2tgBbRqm3AlePUj8y2nOYmdnE8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQjCEu6EcxmZldPBwUI2Qfi2FmZkMcFGZmlstBYWZmuRwUZmaWq6ygkPRnkvZIelHSQ5JmSFom6SlJbZJ+Iqkmta1N821p+dKi7dyZ6nsl3VBUX5tqbZI2ldNXMzMrTclBIWkR8O+Aloi4GqgE1gPfBe6JiCuAbuD2tMrtQHeq35PaIWllWu+jwFrg+5IqJVUC9wI3AiuBW1NbMzObQOWeeqoC6iRVATOBQ8CngUfS8q3AzWl6XZonLV+t7BajdcC2iDgVEa8BbcDH06MtIvZHRB+wLbU1M7MJVHJQREQH8JfAG2QBcQx4BjgaEQOpWTuwKE0vAg6mdQdS+7nF9RHrjFU/i6SNkloltXZ2dpY6JDMzG0U5p56ayP6Hvwz4AFBPdupowkXE/RHREhEtzc3Nk9EFM7Npq5xTT58BXouIzojoB34KfBJoTKeiABYDHWm6A1gCkJbPBo4U10esM1bdzMwmUDlB8QawStLMdK1hNfAS8ARwS2qzAXg0TW9P86Tlj0dEpPr6dFfUMmAF8CvgaWBFuouqhuyC9/Yy+mtmZiWoOneT0UXEU5IeAX4NDADPAvcD/wvYJunbqfZAWuUB4EeS2oAusjd+ImKPpIfJQmYAuCMiBgEkfQXYSXZH1ZaI2FNqf83MrDQlBwVARNwF3DWivJ/sjqWRbXuBz4+xnbuBu0ep7wB2lNNHMzMrj38z28zMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMYQk90BM7MpwkExgia7A2ZmU4yDwszMcjkozMwsl4PCzMxyOSjMzCxXWUEhqVHSI5JekfSypE9ImiNpl6R96WtTaitJmyW1SXpe0rVF29mQ2u+TtKGofp2kF9I6m9Nnc19QrQe6L/RTmJldVMo9ovge8L8j4irgXwAvA5uA3RGxAtid5gFuBFakx0bgPgBJc8g+TvV6so9QvWsoXFKbLxWtt7bM/pqZ2ftUclBImg38HvAAQET0RcRRYB2wNTXbCtycptcBD0bmSaBR0kLgBmBXRHRFRDewC1ibljVExJMREcCDRdsyM7MJUs4RxTKgE/h7Sc9K+oGkemB+RBxKbd4C5qfpRcDBovXbUy2v3j5K/SySNkpqldTa2dlZxpDMzGykcoKiCrgWuC8irgFOcPo0EwDpSOCC/5JzRNwfES0R0dLc3Hyhn87M7JJSTlC0A+0R8VSaf4QsON5Op41IXw+n5R3AkqL1F6daXn3xKHUzM5tAJQdFRLwFHJR0ZSqtBl4CtgNDdy5tAB5N09uB29LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVW62+m2om2ZmdkEqSpz/X8L/FhSDbAf+CJZ+Dws6XbgAPCF1HYHcBPQBpxMbYmILknfAp5O7b4ZEV1p+svAD4E64LH0MDOzCVRWUETEc0DLKItWj9I2gDvG2M4WYMso9Vbg6nL6aGZm5fFvZpuZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMIS74H0c3M7s4OCjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxylR0UkiolPSvpZ2l+maSnJLVJ+kn6mFQk1ab5trR8adE27kz1vZJuKKqvTbU2SZvK7auZmb1/43FE8VXg5aL57wL3RMQVQDdwe6rfDnSn+j2pHZJWAuuBjwJrge+n8KkE7gVuBFYCt6a2ZmY2gcoKCkmLgX8F/CDNC/g08EhqshW4OU2vS/Ok5atT+3XAtog4FRGvAW3Ax9OjLSL2R0QfsC21NTOzCVTuEcVfA18DCml+LnA0IgbSfDuwKE0vAg4CpOXHUvvh+oh1xqqfRdJGSa2SWjs7O8sckpmZFSs5KCR9FjgcEc+MY39KEhH3R0RLRLQ0NzdPdnfMzKaVqjLW/STwOUk3ATOABuB7QKOkqnTUsBjoSO07gCVAu6QqYDZwpKg+pHidsepmZjZBSj6iiIg7I2JxRCwluxj9eET8AfAEcEtqtgF4NE1vT/Ok5Y9HRKT6+nRX1DJgBfAr4GlgRbqLqiY9x/ZS+2tmZqUp54hiLF8Htkn6NvAs8ECqPwD8SFIb0EX2xk9E7JH0MPASMADcERGDAJK+AuwEKoEtEbHnAvTXzMxyjEtQRMQvgF+k6f1kdyyNbNMLfH6M9e8G7h6lvgPYMR59NDOz0vg3s83MLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkoxpD9dREzM3NQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlKjkoJC2R9ISklyTtkfTVVJ8jaZekfelrU6pL0mZJbZKel3Rt0bY2pPb7JG0oql8n6YW0zmZJKmewZmb2/pVzRDEA/HlErARWAXdIWglsAnZHxApgd5oHuBFYkR4bgfsgCxbgLuB6so9QvWsoXFKbLxWtt7aM/pqZWQlKDoqIOBQRv07T7wIvA4uAdcDW1GwrcHOaXgc8GJkngUZJC4EbgF0R0RUR3cAuYG1a1hART0b29zQeLNqWmZlNkHG5RiFpKXAN8BQwPyIOpUVvAfPT9CLgYNFq7amWV28fpT7a82+U1CqptbOzs6yxmJnZmcoOCkmzgH8C/jQijhcvS0cCF/yv60XE/RHREhEtzc3NF/rpzMwuKWUFhaRqspD4cUT8NJXfTqeNSF8Pp3oHsKRo9cWplldfPErdzMwmUDl3PQl4AHg5Iv6qaNF2YOjOpQ3Ao0X129LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVV6rtuKtmVmZhOkqox1Pwn8IfCCpOdS7S+A7wAPS7odOAB8IS3bAdwEtAEngS8CRESXpG8BT6d234yIrjT9ZeCHQB3wWHqYmdkEKjkoIuL/AmP9XsPqUdoHcMcY29oCbBml3gpcXWofzcysfP7NbDMzy+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgGMMF/wNVZmYXCQeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgfFGArhG2TNzMBBMab/+vPfTnYXzMymBAfFGJ450D3ZXTAzmxKmfFBIWitpr6Q2SZsmuz9mZpeaKR0UkiqBe4EbgZXArZJWTmQfBgtT+1rFwGCBvoHC+1pnsBDEJXQNJuLSGu9oLobxXwx9vFSV/JnZE+TjQFtE7AeQtA1YB7w03k+0efc+Hn2u44zaVf/hMXr7z34TvuLyWWfVRn6THzrWS0//IALmN8xgRnUlFcr+hlQEvPbOCQCWzatHQHt3D32DBRY11tFxtIfFTXVUV1Yg4GTfIDNrK6nU2R9Rvu/wewDMm1XL7Lqq4b9RNdQy0j9Kz10oBK8fOQnA7zTXD2+nkNoMtR3p1c4Tw9M1lRX0DRZYPi9bv79QoL27h4UNM6itrkSCrhN9HD3Zz4KGGdRWV9A3UODQsV4AFjTMQILKCtHe3TO83eWpP719g7yZ2i6fV4+Uhduxnn7m1NecHleaCLKbDw6kcS2dOxOACgnpdN+XN2evdSGgQiCJUwODHOw63Ye59TUcOdE3vJ3uk/3MrqumQtA3UKDrZN/w98TyefVUVJz5YrWl/TE0lo7uHhrqqmmYUdqPmkbbGTkKEezvPEF1pVjUWDe8rwEuq62iqb6GqgpxaqBA57un6BssUFNZweKmOoJsnxQiOPJeH8d6+gFY1FhHbXXF8Is+UAj6BgrU11ZSCHi3d4BZtZWcGijQ2z9IVWUFM2sqqa48+/+hEcGrnSe4bEYV82bV0j9YoLJCw/uuvqaSGdWVw/sAsp+RUh3v6efIiT5m1lTSN1BgoBDMrqumb6BAT//gcLs59TXMrqtGguM9A0DwzntZHySYXVdNY101kqgs2ucDg9l2evsLzK2vQYI3j/ayYPYM3u0d4J33TgHZz5okIrLv41MDBebNqh3e1pH3TvFu7wAfnDuT4z39w889ZOHsGcysqSTIfrbf6DrJ5ZdlP1uQ/Vyf7Btk863XsGr53JJfr7FM9aBYBBwsmm8Hrh/ZSNJGYCPABz/4wZKeaH5DLVctaOCNrpP0DwZz62uoqhS9/aeQsh+W9u4eFjXW8eH5sxCj/AAXlWZUV7LnzeME2ZvGrNoqqioqUHqDmlVbxQsdx1j5gQYEvPNe9kP7sSWNdBztYW59DUvmZG94zxzoZs7MGi5vqD3rKdu7e+jpH6SupoKrFjScmRA63a1I8xUSrx85ycqFDSxrrh/9rx/mBMW/XNpE32Dwm4NH+UjquyQOdvXwobn1zJ2VvZGf7Bvk8VcO87EljdRWVzBYCH72/CEAPrakkRnVFQwGw0Exb1YNH1nYMPxDMBQUH1l4ekyvdZ5gyZw6qtIb0FA3h95MD6RxrZg/iwjoHyxQIfFq5wmuuHwWVy64DAIqKkQhHSkOFuKMoLjuQ038/KW3uX7ZHN463svcWTU0zaxhUWMW3Md7+3nu4FE63z3F/IYZw8E1ZOiNeuXCBgI4drKfmsoKrlrYMMoLfQ4l/gd7f+cJls+bxfLm+uGgqKmqYFFTHR+efxmDEVRI/M/fvAlA32CBD8+/jKpKMfT/nc53T/Gr17uA7GfjA411w13qGyiw66W3uemfLUASz7cf5YrLZ6XgLXDkvVO8ffwU1y+bPWr/Xu08wbu9A3zqysuprhADheDNoz3MqKpkUVMdr3a+N9x2xeWzsu+BEh3v7ecXezupTM8DWRj29A8yt76GhY0zeLHjONcsaaS+torBQnC0p4/X3zkdsBFZP4719PPh+ZdRiDjj5//p17s41tPP714xDwQLZs/g7eOnuHLBLN5py4LiqgWnx/D28V5aD3RzxeWz+MDs7HVt7e1noBCsXNjAqfT6DrnuQ010dPec/h5K4VyIGH5tKiXqqitpnFld8muVR1P5cE/SLcDaiPiTNP+HwPUR8ZWx1mlpaYnW1taJ6qKZ2bQg6ZmIaBlt2ZS+RgF0AEuK5henmpmZTZCpHhRPAyskLZNUA6wHtk9yn8zMLilT+hpFRAxI+gqwE6gEtkTEnknulpnZJWVKBwVAROwAdkx2P8zMLlVT/dSTmZlNMgeFmZnlclCYmVkuB4WZmeWa0r9wVwpJncCBElefB7wzjt25GHjMlwaP+dJQzpg/FBHNoy2YdkFRDkmtY/1m4nTlMV8aPOZLw4Uas089mZlZLgeFmZnlclCc6f7J7sAk8JgvDR7zpeGCjNnXKMzMLJePKMzMLJeDwszMcjkoEklrJe2V1CZp02T3p1SSlkh6QtJLkvZI+mqqz5G0S9K+9LUp1SVpcxr385KuLdrWhtR+n6QNkzWm8yWpUtKzkn6W5pdJeiqN7SfpT9UjqTbNt6XlS4u2cWeq75V0w+SM5PxIapT0iKRXJL0s6RPTfT9L+rP0ff2ipIckzZhu+1nSFkmHJb1YVBu3/SrpOkkvpHU2S+fxebtDHzx/KT/I/oT5q8ByoAb4DbBysvtV4lgWAtem6cuA3wIrgf8MbEr1TcB30/RNwGNknyy6Cngq1ecA+9PXpjTdNNnjO8fY/z3wD8DP0vzDwPo0/bfAv0nTXwb+Nk2vB36SplemfV8LLEvfE5WTPa6c8W4F/iRN1wCN03k/k3008mtAXdH+/aPptp+B3wOuBV4sqo3bfgV+ldoqrXvjOfs02S/KVHgAnwB2Fs3fCdw52f0ap7E9Cvw+sBdYmGoLgb1p+u+AW4va703LbwX+rqh+Rrup9iD79MPdwKeBn6UfgneAqpH7mOzzTT6RpqtSO43c78XtptoDmJ3eNDWiPm33cwqKg+nNryrt5xum434Glo4IinHZr2nZK0X1M9qN9fCpp8zQN+CQ9lS7qKVD7WuAp4D5EXEoLXoLmJ+mxxr7xfaa/DXwNaCQ5ucCRyNiIM0X9394bGn5sdT+YhrzMqAT+Pt0uu0HkuqZxvs5IjqAvwTeAA6R7bdnmN77ech47ddFaXpkPZeDYpqSNAv4J+BPI+J48bLI/isxbe6LlvRZ4HBEPDPZfZlAVWSnJ+6LiGuAE2SnJIZNw/3cBKwjC8kPAPXA2knt1CSYjP3qoMh0AEuK5hen2kVJUjVZSPw4In6aym9LWpiWLwQOp/pYY7+YXpNPAp+T9Dqwjez00/eARklDn+JY3P/hsaXls4EjXFxjbgfaI+KpNP8IWXBM5/38GeC1iOiMiH7gp2T7fjrv5yHjtV870vTIei4HReZpYEW6e6KG7MLX9knuU0nSHQwPAC9HxF8VLdoODN35sIHs2sVQ/bZ098Qq4Fg6xN0JrJHUlP4ntybVppyIuDMiFkfEUrJ993hE/AHwBHBLajZyzEOvxS2pfaT6+nS3zDJgBdmFvyknIt4CDkq6MpVWAy8xjfcz2SmnVZJmpu/zoTFP2/1cZFz2a1p2XNKq9BreVrStsU32RZup8iC7e+C3ZHdAfGOy+1PGOH6X7LD0eeC59LiJ7NzsbmAf8H+AOam9gHvTuF8AWoq29cdAW3p8cbLHdp7j/xSn73paTvYG0Ab8I1Cb6jPSfFtavrxo/W+k12Iv53E3yCSP9WNAa9rX/4Ps7pZpvZ+B/wS8ArwI/IjszqVptZ+Bh8iuwfSTHTnePp77FWhJr9+rwN8w4oaI0R7+Ex5mZpbLp57MzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCzX/wfjiuCHCiJzlAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/1-QLearning/solution/notebook.ipynb b/translations/ko/8-Reinforcement/1-QLearning/solution/notebook.ipynb new file mode 100644 index 000000000..75ec15cb8 --- /dev/null +++ b/translations/ko/8-Reinforcement/1-QLearning/solution/notebook.ipynb @@ -0,0 +1,577 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "488431336543f71f14d4aaf0399e3381", + "translation_date": "2025-09-04T02:58:24+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# 피터와 늑대: 강화 학습 입문\n", + "\n", + "이 튜토리얼에서는 경로 탐색 문제에 강화 학습을 적용하는 방법을 배워봅니다. 설정은 러시아 작곡가 [세르게이 프로코피예프](https://en.wikipedia.org/wiki/Sergei_Prokofiev)의 음악 동화 [피터와 늑대](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)에서 영감을 받았습니다. 이 이야기는 어린 개척자 피터가 용감하게 집을 나와 숲의 공터로 가서 늑대를 쫓는 이야기입니다. 우리는 피터가 주변 지역을 탐험하고 최적의 내비게이션 지도를 구축할 수 있도록 돕는 머신 러닝 알고리즘을 훈련시킬 것입니다.\n", + "\n", + "먼저, 유용한 라이브러리들을 가져와 봅시다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## 강화 학습 개요\n", + "\n", + "**강화 학습**(Reinforcement Learning, RL)은 **환경**에서 **에이전트**의 최적 행동을 학습하기 위해 여러 실험을 실행하는 학습 기법입니다. 이 환경 속 에이전트는 **보상 함수**로 정의된 **목표**를 가져야 합니다.\n", + "\n", + "## 환경\n", + "\n", + "간단히 말해, 피터의 세계를 `width` x `height` 크기의 정사각형 보드로 생각해 봅시다. 이 보드의 각 셀은 다음 중 하나일 수 있습니다:\n", + "* **땅** - 피터와 다른 생명체가 걸을 수 있는 곳\n", + "* **물** - 당연히 걸을 수 없는 곳\n", + "* **나무** 또는 **풀** - 휴식을 취할 수 있는 장소\n", + "* **사과** - 피터가 자신을 먹이기 위해 찾으면 기뻐할 만한 것\n", + "* **늑대** - 위험하므로 피해야 할 존재\n", + "\n", + "환경을 다루기 위해 우리는 `Board`라는 클래스를 정의할 것입니다. 이 노트북이 너무 복잡해지지 않도록, 보드와 관련된 모든 코드는 별도의 `rlboard` 모듈로 옮겨 두었습니다. 이제 이 모듈을 가져올 것입니다. 구현의 내부 세부 사항을 더 알고 싶다면 이 모듈 내부를 살펴보세요.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from rlboard import *" + ] + }, + { + "source": [ + "이제 무작위 보드를 만들어보고 어떻게 보이는지 확인해봅시다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "source": [ + "## 행동과 정책\n", + "\n", + "우리의 예시에서, 피터의 목표는 사과를 찾는 것이며, 늑대와 다른 장애물을 피하는 것입니다. 이를 위해 그는 사과를 찾을 때까지 주변을 걸어 다닐 수 있습니다. 따라서, 그는 어떤 위치에서든 다음 행동 중 하나를 선택할 수 있습니다: 위, 아래, 왼쪽, 오른쪽. 우리는 이러한 행동을 사전(dictionary)으로 정의하고, 해당 행동을 좌표 변화 쌍에 매핑할 것입니다. 예를 들어, 오른쪽으로 이동하기(`R`)는 `(1,0)` 쌍에 해당합니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "우리 에이전트(Peter)의 전략은 **정책(policy)**이라고 불리는 것으로 정의됩니다. 가장 간단한 정책인 **랜덤 워크(random walk)**를 살펴보겠습니다.\n", + "\n", + "## 랜덤 워크\n", + "\n", + "먼저 랜덤 워크 전략을 구현하여 문제를 해결해 봅시다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "18" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(m):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(m,policy,start_position=None):\n", + " n = 0 # number of steps\n", + " # set initial position\n", + " if start_position:\n", + " m.human = start_position \n", + " else:\n", + " m.random_start()\n", + " while True:\n", + " if m.at() == Board.Cell.apple:\n", + " return n # success!\n", + " if m.at() in [Board.Cell.wolf, Board.Cell.water]:\n", + " return -1 # eaten by wolf or drowned\n", + " while True:\n", + " a = actions[policy(m)]\n", + " new_pos = m.move_pos(m.human,a)\n", + " if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water:\n", + " m.move(a) # do the actual move\n", + " break\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "source": [ + "랜덤 워크 실험을 여러 번 실행하고 평균적으로 소요된 걸음 수를 확인해 봅시다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 32.87096774193548, eaten by wolf: 7 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " else:\n", + " s += z\n", + " n += 1\n", + " print(f\"Average path length = {s/n}, eaten by wolf: {w} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## 보상 함수\n", + "\n", + "정책을 더 똑똑하게 만들기 위해서는 어떤 움직임이 다른 움직임보다 \"더 나은지\"를 이해해야 합니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "move_reward = -0.1\n", + "goal_reward = 10\n", + "end_reward = -10\n", + "\n", + "def reward(m,pos=None):\n", + " pos = pos or m.human\n", + " if not m.is_valid(pos):\n", + " return end_reward\n", + " x = m.at(pos)\n", + " if x==Board.Cell.water or x == Board.Cell.wolf:\n", + " return end_reward\n", + " if x==Board.Cell.apple:\n", + " return goal_reward\n", + " return move_reward" + ] + }, + { + "source": [ + "## Q-러닝\n", + "\n", + "Q-테이블 또는 다차원 배열을 만듭니다. 우리의 보드가 `width` x `height` 크기를 가지므로, Q-테이블은 `width` x `height` x `len(actions)` 형태의 numpy 배열로 표현할 수 있습니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "source": [ + "Q-테이블을 보드에 시각화하기 위해 plot 함수에 전달하세요:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhU5f3+8fczk8m+BwIYBGQRZIkoiKIsIm6tuwVEZSkiqC1SXHAB259VYhUVqrUVUURA3FGwFLQKrsAXxJZNBQIkICEEkpBl9plznt8fmaRESEBJODPh8/LKlcmZ5dwkmduT5yyP0lojhBAictisDiCEEOLnkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMI1W3EqpK5VS25RSO5RSDzXWeoQQ4lSjGuM4bqWUHdgOXAbsBb4BbtZaf9/gKxNCiFNMY21x9wF2aK13aa39wFvAdY20LiGEOKU0VnFnAT8e9vXe0DIhhBAnKMqqFSulxgPjARwOR6/s7GyrohyTz+ejsrKSZs2aWR2lTmVlZTgcDhISEqyOUqfCwkIyMzOx2+1WR6nTnj17aNOmjdUx6hQMBjl48CCtWrWyOkqdnE4nwWCQ1NRUq6PU6eDBgyQnJxMTE2N1lDp99913eDweddQ7tdYN/gH0BT4+7OuHgYfrenxmZqYOZ7m5uXr27NlWx6jXBx98oFevXm11jHo9/vjjurS01OoYdTJNU0+YMMHqGPUqKSnROTk5Vseo19dff60XL15sdYx6zZo1S+fm5lodo16hXjxqZzbWUMk3QCel1BlKqWhgOPBhI61LCCFOKY0yVKK1DiqlJgAfA3bgVa31d42xLiGEONU02hi31noZsKyxXl8IIU5VcuakEEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsI02eLOy8urvhZ4WDIMgz179lgdo14ul4uDBw9aHaNeBw8exOVyWR2jXnv27MEwDKtj1ElrTV5entUx6uX3+9m3b5/VMepVVlZGWVnZSVmXZTPgNJZt27bx1VdfsXnzZnr06EHPnj3p3bu31bFq+fzzz9m2bRvbtm2ja9euXHnllbRu3drqWLW8/fbbFBQUUFFRQevWrRk5cmRYzRbi8/lYsGABe/fuJSkpiaysLIYPH251rFoKCgpYvnw533//PZ07d+bMM89k0KBBVseqZf369WzYsIFNmzaRnZ1Nv3796NKli9Wxalm6dCn5+fkUFBTQoUMHhgwZElaz62itmTdvHoWFhQC0atWK0aNHo9TRJ69pCE1ui/urr75i7dq1/OlPf2LXrl188MEHVkc6wpw5c3C73TzwwAMsX76cLVu2WB3pCI899hjdunXjhhtu4K9//Stut9vqSLV4PB5mzpzJ9ddfT/fu3XnsscesjnSE7777jmXLljF58mS8Xi+vvPKK1ZGOsHjxYnbt2sWjjz7KunXr+Oqrr6yOdISnn36ajIwMxo4dy4IFC9i/f7/VkWoxTZNp06YxYMAA+vfvz7Rp0zBNs1HX2aSKOy8vj82bNxMTE8O1117LQw89RGxsLKtWrbI6Wo1FixbRt29fPvroIx555BH+/ve/s3DhQsrLy62OVmPKlCn85S9/4aGHHmL16tUsXryY22+/3epYtdx+++1MmTKFMWPGkJqayt///ncefvhhq2PVqKioYP78+XTv3p2rrrqKkSNH0q9fP9577z2ro9VYvXo10dHR7Nq1i9GjR/Pkk0+yZcsWdu3aZXW0Gs8//zx33XUXzz33HPPnz2fBggVMmTIlrIaexo8fzzPPPMOECRMoLS3lvffeY/z48Y26ziY1VNKuXTt69OjBzp07Wb58OfPnz8fr9XLhhRdaHa3GjTfeyOjRo7ntttu4/PLLeeCBB7jllltITk62OlqNadOm0bNnT+bNm0daWho33XQTy5aF15wYL7/8Mpdffjnvv/8+FRUV3H777WzcuNHqWDWSkpIYNWoUb7/9Np9++ikrV65k1apVLFiwwOpoNfr27cuyZcu48MIL+e1vf8tTTz1F9+7dOeOMM6yOVuPuu+9m0KBBPPnkk3Tu3Jnx48fz1FNPYbOFzzbnSy+9RHZ2Nu+//z5Q9R7ftGlTo66zSRW3UoqePXuSl5fHc889h9fr5eKLL27UsaafSynFNddcw8aNG9m2bRuZmZl06NAhrDLabDZGjRrFBx98gM1m49JLLyU+Pt7qWLXExsZy+eWXM2/ePEzTZNSoUWH1ZlZK0b59e1q2bMkLL7yA3+/n2muvDaufs1KKgQMH8vnnn/Pcc88B0LNnz7DLeOutt/Lpp5/yxRdfkJ2dTfPmzcMqo81mY9iwYbz55psADBs2rNF/F5tUcQP07t2b3r17s2rVKi688MKw+gFXGzp0KDfccAPffvst559/vtVxjur++++npKSE0tJSOnXqZHWcI8TFxZGTk0Nubi5paWk0a9bM6khH6NixIzk5Oaxbt45zzjkHh8NhdaQjXHbZZVx66aWsXr2aiy66yOo4RzVu3DhcLhc7d+4kOzvb6jhHsNlsPProo+zduxfgpBxo0OSKu1q4/hJWi4qKCtvSrpaRkUFGRobVMeoVjv9T+ak+ffpYHaFeSqmwf78kJCSEZWkf7mQeGRY+f1sKIYQ4LlLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWFO6JR3pVQ+UAkYQFBr3VsplQ68DbQD8oFhWutDJxZTCCFEtYbY4h6kte6pta6eZuYhYIXWuhOwIvS1EEKIBtIYQyXXAfNCt+cB1zfCOoQQ4pR1osWtgX8rpb5VSlVP+dBCa10Yur0faHGC6xBCCHGYE72saz+tdYFSKhP4RCm19fA7tdZaKXXUqdZDRT8eIDExkdzc3BOM0nj27t1LWVlZWGcsLi7GNM2wzuhyucjLy6O4uNjqKHXy+/1h/T2sqKjA5XKFdcb9+/eH/fulrKyMH3/8Ea2PWk9hob55K0+ouLXWBaHPB5RSHwB9gCKlVCutdaFSqhVwoI7nzgZmA2RkZOjPP//8RKI0qrKyMvbu3Us4Z9y5cyfx8fGUlJRYHaVOxcXFrF69Oqxmi/8pp9MZ1j9nr9fLmoNrWPL5Equj1Cm+MJ7BnsGNPmHuiSgoKODbb79lx44dVkepU73fP631L/oAEoCkw26vBq4EngYeCi1/CJh+rNfKzMzU4Sw3N1fPnj3b6hj1+uCDD/Tq1autjlGvxx9/XJeWllodo06maeoJEyZYHaNeJSUluldOL00Y/9fy65Z68eLFVn+r6jVr1iydm5trdYx6hXrxqJ15IlvcLYAPQlODRQFvaK0/Ukp9A7yjlBoL7AaGncA6hBBC/MQvLm6t9S7g7KMsLwEGn0goIYQQdZMzJ4UQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3IsWLQrraYn8fj9Lly61Oka9CgoKWL9+vdUx6vXtt99SUFBgdYx6LV26FL/fb3WMiFZeXh7WMxMBbNu2jW3btp2UdZ3onJNh5/PPP2fOnDn07duX0aNHc8011zB06FCrY9Uya9Ys1q5dS8+ePRk5ciSTJ08mOzvb6li13HvvvRiGQVpaGs8//zwvvvgiCQkJVseq4Xa7ufPOO2nfvj1lZWUopZg5c6bVsWrZvHkz06dPp3fv3txxxx306dOHu+66y+pYEScnJ4c9e/bQvn175syZw1NPPcVpp51mdawapmkyfvx4mjVrhtaakpISZs+ejc3WeNvFTWqL2zAMtm3bRteuXbnpppu4+uqr2bhxI8Fg0OpoNfx+P2vXrmXo0KGMGDGCrKws8vPzw+qvA4/Hw9dff81dd93FnXfeWTP5azipnux1zJgx3HvvvaxatQqPx2N1rBpaa3bv3k2zZs24+eabue222/i///s/2fL+mXw+H1988QXjxo1jzJgxKKUoKioKq/eL2+1m48aNjBs3jokTJ7J582bcbnejrrNJFXdBQQHbtm2jqKiIUaNGcemllxIdHc1//vMfq6PV+Pe//03Pnj2ZM2cOjz/+OHfeeSf//Oc/qaystDpajRkzZnDPPffwu9/9juXLlzN9+nSmTp1qdaxapk6dyogRIxgzZgwHDx7kj3/8I88++6zVsWo4nU4WL15McnIyw4cP56yzzqJXr158/PHHVkeLKPPnz+fmm29m6tSpvPrqq0yZMoUZM2aE1UTEU6dO5Z577mHcuHFs3ryZZ555ptHfL01qqKRNmzZ07dqV5cuXM2fOHB588EEyMzPp06eP1dFqXH311YwcOZJOnTpx5513cvvtt3P//feTnJxsdbQaU6dO5ayzzmLKlCm0bduWoUOHsm7dOqtj1TJz5kx69+7Nq6++yg8//MC0adPYunWr1bFqJCUlMWzYMKZPn86rr77KjBkz2L17NxMnTrQ6WkQZN24cAwcO5IYbbmDQoEGMGDGC119/HbvdbnW0GjNmzKB9+/a88MIL+P1+7rjjDnbt2tWo62xSxQ1w5ZVXcvrppzN58mRuvfVWOnToYHWkIzzwwAPk5+czbdo0Jk+eTK9evayOdISXXnqJ7du3s2LFCl544QUSExOtjlRLQkICf//731m5ciVZWVnMnj3b6khHOPfcc5k8eTI5OTlce+21DB8+3OpIEenpp58mLy+PefPmkZOTQ+vWra2OVIvNZmPOnDls2rQJgDlz5jTq+DY0weJu3bo1rVu35oILLiA5OZnQLPRhpUePHnTv3p2BAweG1Zb24QYMGEDfvn0JBoPExcVZHecIDoeDK664ggEDBhAVFYXD4bA60hGaNWvGFVdcQd++fUlKSgrL38VI0KdPH3r16sVVV10VdhsQAEopLr30Uvr37w9ATExMo6+zyRV3tZSUFKsj1EspFbalXc3hcIRlIR4uHP+n8lPh/nOOBHa7PSxL+3Ano7CrNamdk0IIcSqQ4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCHLO4lVKvKqUOKKW2HLYsXSn1iVIqN/Q5LbRcKaWeV0rtUEptUkqd25jhhRDiVHQ8W9yvAVf+ZNlDwAqtdSdgRehrgF8BnUIf44EXGyamECKSyOn9jeuYxa21/hIo/cni64B5odvzgOsPWz5fV/k/IFUp1aqhwgohIkM4XS+7KfqlY9wttNaFodv7gRah21nAj4c9bm9omRBCiAZywjsnddX/Wn/2/16VUuOVUuuVUuvDaeYSIYQId7+0uIuqh0BCnw+ElhcApx/2uNahZUfQWs/WWvfWWveOhCu8CSFEuPill3X9EBgNPBn6vOSw5ROUUm8B5wPlhw2p1MkwDBYvXvwLozS+4uJidu7cGdYZt2zZwu7duykqKrI6Sp3279/PRx99FNaXYq2oqAjrn7Pb7SahMIH2i9tbHaVOSflJbHFtCetx7l27dhEVFcWWLVuO/WCLGIZR533HLG6l1JvAxUAzpdRe4P9RVdjvKKXGAruBYaGHLwN+DewA3MCY4wno9yvuuqvFsR9okfh4k9Gj42nRInwz7t69m1mzUigrC9+MHTvGcP31zcNqtvifioqKCuufs9Pp5LyY83iyxZNWR6nT1kNbqbRVhvX3MT4+nifSn8DdonEn9T0RflX3xNLHLG6t9c113DX4KI/VwO+PO1nN82zs39/35z7tpElJ2UGrViX07Ru+GYuKiigraxHW38fWrVfQq1cv0tLSftHzg8Egs2bN4oknnqi1fPbs2fz6178+4emitNa88cYbYf1zLi0t5ZtvvgnrjKZpUlxcHNYZN23aREmPEso7llsdpU6JtronjmiyM+CIpsXv9/Pqq68yceLEI/4Ev/baa/nwww+58soriYqSX2nR9Mkp7yLsBQIBZsyYwaRJk446bqq1ZtSoUSxYsIBgMGhBQiFOLiluEfZsNhuLFy/G5/PV+ZhDhw6xcuXKRp9dW4hwIL/lIuxt2bKFgwcPHvNx+fn55OXlnYREQlhLiluEPYfDcVxj18f7OCEinRS3CHudOnUiKSnpmI9r0aIFWVlyhQXR9Elxi7Bnt9vJycnB4XDU+ZjmzZszadIk7Hb7SUwmhDWkuEXYs9ls9O/fn/PPP/+oW9Tt27fnwgsv5Nxzz5XLiYpTghS3iAhxcXHMnz+fDh061CpnpRTdu3dn3rx5Mr4tThlS3CLsaa0JBoOMGzeOL7/8stax3FprPvzwQ+6++2601mF9fQwhGooUtwhbWmsMw2DDhg1cdNFFrFixos7HvvHGG1x33XXk5uZimqYUuGjS5G9LEZa01rhcLt544w1ee+011q9fX+/jDcNg2bJlaK256aabuPnmm7Hb7TLmLZokKW4RdrTWmKbJww8/zAsvvHDczzNNk2XLlvHRRx9RUFDA5MmTsdlsUt6iyZGhEhF2/H4/d999N7NmzfrZz60eXnn88ceZPn26XLtENElS3CKsuFwuHn74YV566aUTKl23280TTzzBnDlzCAQCDZhQCOtJcYuwEQgE+POf/8zMmTMxTbNmeVRU1HFdPCoqKqrWCThOp5O77rqLWbNmyc5K0aRIcVvE4/GQk5NjdYywMmXKFJ599tkjlo8YMYIzzzzzmM/v378/gwcPPmJM+6GHHuK5555rsJw/1xNPPIHbHb4zrWitmTJlitUx6rV///5fNHTWVElxW+Dee+/l4osvJjs7m7POOosvvvjC6kiWCgaD3H///Tz//PO1trTj4+O5/vrrmTFjBunp6fW+hlKKNm3asHDhQpYtW0Zi4v9mD3G73TzyyCP8/e9/r/X6je2rr76iS5cudO/enUsuuYRJkyadtHUfr2effZbs7GwuvfRSunbtyltvvWV1pCPcdNNNjBkzhujoaDp37szOnTutjmQ5Ke6TrKCgAMMwmDx5MllZWUyZMoXt27efsuOwWmvWrFnDhx9+iN9fNceeUorOnTuzcuVK3nrrLVJTU4/79Zo1a8Zll13GG2+8Qdu2bWu2vl0uF6+99hq5ubknZdgkEAiwbds2br75ZhITE3nnnXcwTZOCgoJGX/fxKikpoby8nHvvvZfY2FhmzpxJQUEBLpfL6mg1du7cSXx8PBMnTuSCCy5g3LhxbNiw4ZQf+pLiPskKCwtJS0tj8+bNbNiwgbZt27J3795T+uiHQCBQa0u4R48e/PWvf6V3797ExMT87MP57HY7l112GTk5ObRp06ZmeTAYrHfm7IYUDAb58ccf0VrzxRdfEB0dTXp6OoWFhSdl/cejtLQUm81Gfn4+69ato2XLllRWVoZVce/atYt27dqxZs0atm7dSufOnfnhhx+kuK0OcKrp3bs3u3btYs2aNZx77rmMHTuWvn37EhcXZ3U0Syil6NOnD48++igZGRmcc845LFiwgEsuueSErvQXGxvLjTfeyDvvvEOLFi3o1KkTjz32GO3btz8px3XHxcVx0UUX8frrr3P99dczevRocnNz6d27d6Ov+3h16tSJYDDI8uXLufrqqxkxYgRZWVlkZmZaHa3GZZddxsqVK8nPzycxMZG77rqLIUOGnPIzHckJOBZ48cUXKSsrY8qUKaxbt67WeOypKDExkZtuuqlmst+fDo2YpnnMsenqk3a01jXFHBcXR58+ffjuu+9QSpGcnHxSL0Q1aNAgvvnmG+69917mzJnzi2e3b0xTp07lnnvuYfz48Xz55ZfEx8dbHekIS5cuJT8/nwULFrB582aSk5OtjmQ5KW4LJCQkkJCQwLx586yOEjYcDgfNmjU76n3BYJCzzz6bdevW1VngsbGxNVuQP71ud0ZGRoPnPR4Oh4O0tDTmzp1ryfqPR1xcHHFxcSxatMjqKHVKSkqiR48eTJ8+3eooYePU/ntDRITo6GgmTpxY79Zyeno6o0aNqneyBSGaCiluERGONcShlJLZb8QpQ4pbCCEijBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhDlmcSulXlVKHVBKbTls2aNKqQKl1IbQx68Pu+9hpdQOpdQ2pdQVjRVcCCFOVcezxf0acOVRls/UWvcMfSwDUEp1BYYD3ULP+YdSSg6uFSfsWBcVOtUvOiROLccsbq31l0Dpcb7edcBbWmuf1joP2AH0OYF8QgAccQ2NqKioWifl2Gw2YmJiTnYsISxxImPcE5RSm0JDKdVXz8kCfjzsMXtDy46glBqvlFqvlFofCHhOIIY4FWRmZtZcjMvhcPDUU09x//3315R3SkqKZdckEeJk+6UXmXoReBzQoc/PArf9nBfQWs8GZgMkJbXQPt8vTCJOCQ6HgzVr1hAMBlFK0bFjR/x+P6NGjUJrTWxs7Em5XKsQ4eAXFbfWuqj6tlLqZWBp6MsC4PTDHto6tEyIE2Kz2Y6Yd9LhcHDWWWdZlEgI6/yioRKlVKvDvrwBqD7i5ENguFIqRil1BtAJWHdiEYUQQhxOHWtvvFLqTeBioBlQBPy/0Nc9qRoqyQfu0FoXhh4/laphkyAwSWu9/FghUlLS9Zln3vtL/w2NzuFw0a1bMW3btrU6Sp3279/Pxo0xeL3hd7H+amlp2+nb94ywvvTq5s2b6dGjh9Ux6hQIBMjPz6dTp05WR6lTaWkpfr+fli1bWh2lTvn5+Xzf/HsCCeE71+v2GdspLy0/6vjfMYv7ZEhKytR+/zarY9QpOTmf005bxdatt1odpU5t237EP/7RnF69elkdpU5//etfGTNmDCkpKVZHqdPUqVPJycmxOkadysrKmD9/PhMnTrQ6Sp3Wr19PSUkJV1wRvqdxLFiwgAEDBoT1xljnzp05cODAUYs7TGbAUfj94bulGAiUYBgxYZ3RMOJISEgIy+mxqjkcDlJSUsI2o9Yau90etvmgKmP1zDrhKj4+HrfbHdYZY2JiSExMDOuM9e1sl1PehRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLjFUVVUVLBy5UpmzJhBWVkZpmlaHakWrTVlZWXMnDmTFStWUFFRYXWkIwQCAcrKyhgzZgwFBQW4XC6rIx3B6/Vy6NAhhgwZQllZGT6fz+pIR3A6nWzZsoUHH3yQsrIyDMOwOlItWmvKy8t58803efPNNykvL6exZxaT4hZH1bt3b5YtW0bz5s3p2LEj5eXlVkeqpby8nI4dO5KRkcFHH30UllO2ff755/Tu3Zu7776bMWPGcMcdd1gd6Qg5OTlcfvnlPPnkk/Tr14/58+dbHekIV111FU8++SSXXHIJ3bp1Izc31+pItZimSadOndi7dy979+6lU6dOjb6hI8UtjrBo0SJuueUWEhISaN26NTNnzmTu3LlWx6pl7ty5TJgwgZ07d3LnnXcyduxY3nvvPatj1fB4PKxatYoRI0bw4YcfMn/+fDp27Mj69eutjlZjx44d2O12rrrqKv71r3+xcOFCCgoKOHDggNXRanz66acMGjSIDh064Ha7efHFF1m0aFFY/QX42muv8bvf/Q6n08mll17Kn/70J1577bVGXacUtzhC586d2b59O/369aNNmzZs2bKF7Oxsq2PVkp2dzY8//kj//v1JTU3l+++/p0uXLlbHqhEVFUXr1q1RStG/f38CgQCHDh2iVatWVkerkZaWhmmatGnThvPOO4+ioiKSkpKIj4+3OlqNdu3asWfPHs4//3zOPPNMtm/fTufOneudj/Fky87OJjc3l/79+9OiRQs2btzY6O8XKW5xhO7du1NQUMD8+fN57733eP/99znvvPOsjlXLeeedx5dffsn69eu55557yMvLo3v37lbHquFwOOjcuTNvvvkmLpeLoUOHopQiKyvL6mg1MjIySElJYebMmXi9XiZNmkRWVhaJiYlWR6vRsWNHXC4Xf/vb31i7di0vv/wy55xzTlgVd69evdi4cSPLly/nmWeeYc2aNY0+dBcms7yLcPPFF1/w3Xff8cMPP4TdmCJAcnIyubm5vPfee1x99dVhVdrV+vfvz9atW8nJyWHlypVhtSVb7b777uPee+9lypQpfP/991bHOaq3336bwsJClixZwrZt26yOcwSbzcaWLVv4/PPPUUoxY8aMRl+nFLeoU7du3ejWrZvVMeo1ZMgQqyMc09SpU62OUC+lFH/5y1+sjlGvVq1aceedd1odo14XX3zxSVuXDJUIIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMMcsbqXU6Uqpz5RS3yulvlNK/SG0PF0p9YlSKjf0OS20XCmlnldK7VBKbVJKndvY/wghhDiVHM8WdxC4T2vdFbgA+L1SqivwELBCa90JWBH6GuBXQKfQx3jgxQZPLYQQp7BjFrfWulBr/Z/Q7UrgByALuA6YF3rYPOD60O3rgPm6yv8BqUqp8LlAgxBCRLifNcatlGoHnAOsBVporQtDd+0HWoRuZwE/Hva0vaFlP32t8Uqp9Uqp9YGA52fGFkKIU9dxF7dSKhFYBEzSWte6ar2uumr4z7pyuNZ6tta6t9a6t8MR93OeKoQQp7TjKm6llIOq0l6otX4/tLioeggk9Ln6Ir4FwOmHPb11aJkQQogGcDxHlShgDvCD1vrwy159CIwO3R4NLDls+ajQ0SUXAOWHDakIIYQ4QcdzdcCLgJHAZqXUhtCyKcCTwDtKqbHAbmBY6L5lwK+BHYAbGNOgiYUQ4hR3zOLWWn8N1HXV8sFHebwGfv/zozTu5JoNI/wzNvYkpQ0h3DOGez6QjA0lEjIejQqH4CkpabpnzxFWx6iT3e4nJcVJdHS61VHqFAxWkJoaFZYX66924MABMjIysNvtVkep0969+4iKOs3qGPUwCNj24ch0WB2kTqbbJDGYSHJystVR6lRaWkpiYiLR0dFWR6nT66+/zqFDh4660RDZX9YAACAASURBVBwWxZ2U1EI7nUVWx6hTSsoOnn76M8aNG2d1lDotXryYFi1acP755+Pz+XA4HP+bUNVmst+3m0PBIrSpiSIaUHgCbuLtyXRI7oYy7URHOzAMA6UUwWAQpRQ2m41gMEh0dHTN5+rXDwaD2O32Wo9VStU83+GoKpfqaaamTZvG73//e9LS0iz6LtVPa82wYRN5772/WR2lTjExpXT/0+V8O+Vbq6PUqeWqlswqnsV1111ndZQ6vfTSSwwePJiOHTtaHaVOLVq0oKio6KjFLTPgNDGGYVBSUkJsUjTrDi0lM7YtQZuXnc6NFPp3U+l1Uukt57S4Dnj8HjIdrcmN/YG8kh1MOH8qfl8ApRROpxOlFDExMTidTpo1a4bT6SQ9PZ3y8nLS09OpqKggISGBsrIyHA4H0dHRREdHExUVhdPpDNuCFiLSSXE3MTvKNrLo0ExUuWK/bzcOHUswqEkgjWYxWaSSRpnbhccMkB7TGkwHy3e+T1xUEo+vfIDh3cdyWvzpJCUlobUmGAySkZGBy+UiJiaG4uJiEhMTqaioIC4uDp/PR2pqKlprDMPA7XYDEB0dTUlJCampqURFya+ZEA1J3lFNTPP4try14r+kx6aT3Tyb9pld2LUvn3lfv0nHM1NonpBI7qZC7FlBLuo6AHswlrioVEori4mJT+LVdS9y1VnX0y3tbKKiHDgcDg4ePEhmZiYul4v0jAxKS0pISUmhvLychIQEKioqcDiqHpuQkIDNZsPlcpGWlobNJhegFKKhSXE3MXHEM/uqV3ng35P51/fL+XjLp8SY0bRIa4n/YAy+ymZ0ymzLvrI8jDKTNRvW0Lp7Ojv276Njhp8ydzlen0GHgV1IjYpDKUViYiJ+vx9fZSHbt35IZUUl6Zmn0az9YAzDIDY2tmYc2+/3A1UzX3u9XuLi4mruE0I0DNkcamJsNhtnpnfkkUumYotS7CzZySHPIRJjE3D73bgDLk7PPJ2zmvUk2dORdsldqdyuUX4TOz72HNjHx5tXkLN0GlC1w840TdAGBd9/zOdvTeLbZY/w7b+fRYX2a5umiWmaNYdW2Ww2tNYRe6iVEOFOiruJcTgcBPwB+rbuy6JbFtEsMQOb3U6ZtxxHdBQ+w8/3e7/jYOVBtu3Zylfr19A2vjvXthjJxhXbOK/L6cRX2nl3+bsEggEAKivKOLD7G778198oc8dw3pA5XHbbQgJG1VElfr+/5giW6p2UpmnK1rYQjUSGSpqY8vLymvHos1p2ZdXEr7nxlSEUlhQSo6OJ1jHEEsPBkoNov0mLtJYY2qDoQDHXnnsTZT+UkRJThi8ljp0/bqfLGd344oNn2PrtUk4/4yz6XTqe7n2upqKigsT4eLxeL+np6RiGQSAQwOl0orUmPj6e4uJiMjIyZOekEA1M3lFNTPXOwqioKLxeLy3iW/Lqza/yz83/5MWVL7KvtBD8mqSoJLpmdSVaRXOg7ADxUXFUVlSiDEgqb0dlchl/XjKJoR1uYscPm0ht2ZVrxv6VjBZt8Xq9xMfH4/f7cTgcuN3umuO34+KqrvRoGAZJSUmyc1KIRiDF3cRU7xAMBAI1J+F0bn4mZw66hz5Z51HkKuKJ956goHgfu4p2kh6bQTTRlBQX43MH8Do93HX9Xdx94QTK4/fy2synSDtgcN/jL5PW/HTcbjdxcXF4vV5iYmJqTsqpHueu3jlZXegxMTEWf0eEaHqkuJsY0zSJiorC7/fX2kmoNfRt35fYuFiu7HoljmgHzkon0XZFwa7tNE/JwKchPr05sdGxpKWmUVFxiG1nbGDQbVfRrlNPlFIYhoHNZsNZfJBAlJ2AYZJxWhY2m62mvIGax8oOSiEanhR3ExMbG1tzXLXP5wOouTZITEwMfr+fpNgkitevJjbgofJAEUn7dlNRdojUHueQ3PMCnPk7yPN4+HH/ATZ/tYoLzu1HoGAP+3K3EhsXR0ViGru/WsGeLRtJbN6K+PZnkpjRjKxu3WjRqXPNafApKSkyVCJEI5DibmJcLhcZGRk4nU5iY2MxTROfz4dSCo/HQ6ynkryFs0hIy8AfF09K85YkXzgQrRQK8OzdjS4vJcYMkpC3nQt9bvSKpewryEfZojgU8BOXmcWZg6+kw+Ar0IbJtlVfsn/LRvb891sqPV6un/JH0po1o7y8nIyMDClvIRqYFHcTk5ycXHWtkthY3G43NpsNh8OB1poEh50Nd48jpX0n0gZcjs0eBdrAX7Cn6sK9WmO3R5HSsQum1iSc3oGONw7HMEx87gqi4hIxtEkgEMRTXoqpwTA1rbufTSutKS8p4cPnZjDnd3cw4bXXSU1NDesrAQoRqWRTqImpqKigWbNmNYfkORwOAoEA3kMlrL39euJPy6LVr36DWVmOWV6KrixHeZ0ojxO8LrSrAqP0IMHSg5iuSoLlJRiVh1B+P/6yUgKHDhGsrCDochF0uwi4XfidlficVcMz1026D+f+Ql747Sh+3LkTwzCs/pYI0eTIFncTExsbi8vlQilFIBBAa43dbqfwn++QfnoHTrviWgLFhdhDh+/ZVGiWDKVQWmNqDVqh0GCaaA2G1gRNMEwTU2tMTehrjWFqAlpjaJOgqTBNzYXDb+GTua/y3WcrOaNzZ6u/JUI0OVLcTUx8fDyFhYWkpKTg8XiIjo7GFvBRuX0TLc7qSbB4PzabqipqG9hC5U1VVaNNE7QKlXboiBSj6tT3qqI2MU0ImCaGCUGtMUJfB7XG0Bob0K7H2axdsoT+vxlCesuW1n5ThGhipLgtorXG6XSSlJTUoK9bXl5OixYt8Hg8JCYmYpomBZ98CD4/phHA8LhQNhsoUPaq0rbbqnZMGpqqLWoTtAnaMDHNqq1wQxuYhgptfWuChknQhKBpEtAQMAwMDQGz6nbLjh3ZnZuL89ChRi1uj8dDVFRUzaQNomkyDAOv10tCQoLVUepUfRTXyTh3QYrbAps3byY/P58lS5YwdOhQevXqRbNmzRrktVNSUigqKiIpKQmXy4Xdbic+xkFltB3T78UMgrbZwAbapsCmsNltKFVV1srUYGq0qTENA7NmSCS0hW1UDY34TU3Q0FXFHdriDoS+9puhYZNgABrpOO5AIMDKlStZs2YNWVlZdO7cmQEDBjTKuoS11q1bR15eHmvXruWKK67goosuIjEx0epYNbTWrFixgk2bNgGQnZ3N4MGDG/U6PbJz0gLTp0/n66+/5pFHHuHpp59m/fr1DfbaHo+nZis+Jiam5tR30+fF9LgwPC5Mj7vqw+vG9HowPW60O/TZ4z7scR4MjxvD4yLocRPwuAl4qnZKBl1OAm4XPpcLv6sSn8uJz+XC63Ljc7nxOisxAoEG+3f9lMvl4ve//z2DBg0iNjaW8ePHN9q6hLUmT57Mvn37GD16NFOmTGHv3r1WR6rFNE3Gjh1Lx44d6dixI2PHjv3ftIGNRIr7JFu6dCm9e/dmx44dPPfcc7zyyissWrSIioqKBnl9u92O2+2umb1Ga02U3UFl7g/4SosxXC6CbidBj7uqgN1OAi43/pqjRJwE3W4Mt5OA20nA5STgqloecDrxOyvxu5z4XU58TidFW7/DU3YIr7MSr7MSj7MSr9OFp9JJoBGL+5577uHhhx/mscceo1u3bkyfPp2cnJxGW5+wxiuvvMJvf/tbPv74Yz766CNef/11cnJywupopfvuu4+//OUvPPfcc0RHR/P6669z3333Neo6ZajkJLv88su54447uP322znvvPOYMWMG11xzTYONdVcfN62UqrmWdkyz5uCIpuKHzagOndAxMWibDW1XaKXxuypRMfHgcGAEgwT8QXxeN2Vbv8MfDOINanymxhs08BomPgOSOnXHiI7GER+P1+UmqBQBQ+MzqoZM9u3ZTfnBg6hGOo572rRpjBw5krlz52Kz2bjrrrv47LPPGmVd4udrqGGCESNGcN1115GTk0ObNm144IEHuOeee8LqpK7HH3+cwYMH8+abbxIbG8tvfvMbPvnkk0ZdpxT3SRYdHc3555/P22+/TW5uLnv27GH48OEN9otefVnXyspKEhISCAaDkN2HjL6XULT8PQyPi9R2HTDi4zFsCrvSGEUFqKgYiI7GX1mOr/gAfqNqHNtnmAQNjT+oCRgGwaAmYJgUbPoGXxCimrXAFwhCQiJEx+LXirLiUnbn5nLxbeNIb9WqQf5dP5WWlkZWVhZz587l0KFD9O3bl/j4+EZZl/j5GuoaNbGxsfTv35+XX36Z9u3bEwwGadmyZVhd5z0hIYEePXowe/ZsALp169boO1GluC1w5513ctttt/Hxxx8zceLEBn3t+Ph4ysvLsdvteL1eoGor3OPzEzQ1PreLyqJ9xDfPxFNWil2b4HWD34dJ1Y5IU4cK24SAofGHdjoGzaojSgz9vx2Wrn0F+AyNxzCJyWiOy+enpOggpgnte2QT10g7keLj41mwYAHr16+nVatWZGVlNcp6hPUeeeQRysvL+c9//sODDz5odZwj2Gw25syZw9atW1FK0fkknLsgxW2R6OhorrnmmgZ/Xb/fT2JiYs0x3IZhYBgGcVlZBO0OCAZQlZXo6Gh0yUHs2kQpW9UZ74ChzaqTasyqk278psYfOmIkYEJAm6EjS0In4WiNQdUx3j6vF4/Tg6kUMYnJeH0+TNNs1D9re/fu3WivLcJHSkoKgwYNsjpGvbp06XLS1hU+A0WiwVT/mXr4n6vtR/wOW7OWuA0Dt9uLq7wcT8DAEzDxBEzcQRN3wMAdNPEENb4g+IImvqCJP1hV4AHDrPowNUbwf1vhfsPEROGqcOHxeAgGTc6+6koG3HqLVd8CIZo02eJuYqKjo/F4PNhstqrxbf43ea8ttTnBPXlobWA43dgME7vSVedMVu/MpOokHKP65JrQlrcvVNp+s2pHZSB04o3fDD0WMKgaQuly0QDs2IiPjQurnUhCNBXyrmpivF4vycnJQNWOnaioKEzTxDAM2o26C5+h8AZNPF5/1dZ2MPQRMPAGzaojRwKhz4bGZ2i8hok/aOILfQ4GNf7Q+HfQ1FXj4IEgXq8Xe2wMthgHV46/g4qKirA6bEuIpkK2uJuYpKQkiouLiY2Nxel0opTC4XBgt9s54/yLWBufiL+yHJuCKJvCZiqU0tVXdf3fae9UbXFXX4/EHyrogAF+E/ymgc+AgFH1OL+h0VEOLhw6nG3/3UDb7t1JSEiQiYKFaATH3OJWSp2ulPpMKfW9Uuo7pdQfQssfVUoVKKU2hD5+fdhzHlZK7VBKbVNKXdGY/wBRm9PpJCUlBa01sbGxOBwODMPANE3cgQCXPDe35nhst1E1tu0JmLhD49wew8ATNA7bAjfxBgz8QQN/9VCJYeIPVp/ebuAzIWiYdLmwH99+9hkTXppNdHQ0Tqez0c8gE+JUdDybQ0HgPq31f5RSScC3Sqnqo8tnaq2fOfzBSqmuwHCgG3Aa8KlS6kyttfzNfBJER0fj9XprzflYPc4cHR1NTGYLWl50CXu+WoEtdGlXRdU4t8aGRtdcytUIXco1GLqwVNU1SXTNIYJ+08RnVI13xySn4PH6Of/Xv6Zl27YYhoHD4Qir422FaCqOucWttS7UWv8ndLsS+AGo76DZ64C3tNY+rXUesAPo0xBhxbHFxsZSWVmJUgq/349pmtjt9qqLTcXHE5Wazml9LsQX1KGjSqq2rD1BXfU5dJSJJ2jiM6rGub0GoY+qrW2fUbWDsmqoxMRUUXS75FI8fj8XXns9ScnJGIZBQkKCFLcQjeBn7ZxUSrUDzgHWhhZNUEptUkq9qpRKCy3LAn487Gl7qb/oRQOqqKigefPmmKZZVdRRUQQCAQKBAIcOHSIhPp5uw0fTetDleMyqoRBXwMDlN3CHDg90h4ZKXKEC9wYMvMEgvoCBr3rHZdDEb5gYdged+w2ktLiEcy+9jKzu3SkrK8PhcFBcXCw7J4VoBMdd3EqpRGARMElrXQG8CHQAegKFwLM/Z8VKqfFKqfVKqfWBgOfnPFXUIzk5mdLSUmw2G263m0AggMPhwOFwkJqaitvtxu5w0OayXxN0xNUct+0xdNWx3Ebo66D+3xEnQRNvUOM1NJ7qMW5TQ2wsmR06oqPsuCvKyerSheSUFFJTUwkEAqSnp8uck0I0guPa5a+UclBV2gu11u8DaK2LDrv/ZWBp6MsC4PTDnt46tKwWrfVsYDZAUlILHboGuThBbreb5NBQRfUs79XHc/v9fmJjYzEMgz43DMVTWsLSRx+h9mjG/47nrjr9nZpT3IM6dBq8aaKVncTkNIiOoTAvn/FPP023/v3xeDwopYiKiqKyspLk5GQpbyEa2PEcVaKAOcAPWusZhy0//OpBNwBbQrc/BIYrpWKUUmcAnYB1DRdZ1CcuLo6Kigq01ni9XoLBIDabDZvNRkJCAl6vF601FRUVDLztDi5/5FGCdkfV1nToeG5P0MSv7HgOW+Y1TPzahjdo4AtqfCjcHi/78/cw8v/9mU7nn191JcKYGGJjYwkGgzLGLUQjOZ4t7ouAkcBmpdSG0LIpwM1KqZ5UXeIiH7gDQGv9nVLqHeB7qo5I+b0cUXLy2O12oqKiiIqKqjnlvfr24fdFRUURHRND31t/S8deF/DJiy9QUXwQqPqB9r3lVr5a+Dpag2lqouLiOb1HD35YswZTg0aR3qolt06ZQvrppxPlcNS8bvU6o6KipLiFaATHLG6t9deEJgL/iWX1PCcHkKvaW8Bms9U7DVpKSgpAzWUnMzMzyczMpNtRpv26fMztvziHzAEpROORU96FECLChMn5yJqYmFKrQ9QpOroCr9dLaWn4ZnS73TidzrDOGAgEKCsra7CL7DcOI6x/F2NiyrAH7MSUNv5M4r9UtDMat9sd1r+LXq+XioqKsM5Y3/tEhcObKD09Xd9///1Wx6iTy+Xi4MGDtGvXzuoodSosLCQmJob09HSro9Rp27ZttG/fPqyHUTZu3MjZZ59tdYw6BQIBvv56F4cONf7F+n+p2NhSzjnHR6tGmv2oIeTl5ZGZmdnoM9WciGeeeYbS0tKj7yTSWlv+kZmZqcNZbm6unj17ttUx6vXBBx/o1atXWx2jXo8//rguLS21OkadTNPUEyZMsDpGvUpKSnSvXjm66pJg4fnRsuXXevHixVZ/q+o1a9YsnZuba3WMeoV68aidKWPcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwTba4V69eHdZTZAWDQdatW2d1jHqVlJSQm5trdYx67dixg5KSEqtj1Oubb74hGAxaHSOiuVwuNm/ebHWMeu3du5eCgoKTsq4wmXOy4axfv54PPviA2NhY/vWvf3HxxRdz2WWXWR2rlnfffZeNGzcSHR3NkiVLGD16NGeeeabVsWp55plnqKiowGazEQgEeOSRR4iLi7M6Vg2Px8O0adNwOByYpklSUhKTJ0+2OlYtO3bsYO7cucTExLBkyRKys7MZNmyY1bEizssvv8zu3btxOBy89dZbTJo0iebNm1sdq4Zpmjz22GM1G4pKKf70pz9hszXednGT2uLWWrNhwwZM0+QPf/gDLVu25PPPPw+rLW+tNf/85z/p3r07d999N0VFRezatSvsMs6bN48bbriB3/72t3zyySe43W6rY9Xi9Xr597//zejRo7nxxhuZP39+2H0Pd+3axf79+5kwYQJnn302H374YVhljARaaxYuXMill17K+PHj2bhxI8XFxWH1fTRNk7fffpvhw4dz8803884772CaZqOus0kVd35+Pps2baKyspJf/epXjB49mtjYWFavXm11tBrvv/8+F1xwAXPnzmXy5MlMmzaNhQsXUlFRYXW0GlOnTiUnJ4fbbruN5cuX88YbbzB+/HirY9Uybtw4Jk2axI033ojP5+P5559nypQpVseqUVlZyfz588nKymLw4MEMHjyYiy66iEWLFlkdLaL87W9/48477+Shhx7ixRdf5B//+AdTp05t9GL8OcaPH8+TTz7JLbfcwvbt20/K+6VJDZWcccYZZGdns27dOv75z3/y1FNPAXDRRRdZnOx/fvOb3zBy5Eh+9atfMXz4cCZMmMDtt99OSkqK1dFqPPHEE3Tr1o0ZM2bQsmVLbrjhBr788kurY9Xyyiuv0K9fPxYuXEhRURGTJk3i+++/tzpWjeTkZEaNGsVLL73EsmXLeP3111m7di0LFy60OlpEmThxIgMHDmTSpEmcd955jBw5kpdeegm73W51tBovv/wynTt3Zt68eQAMGTKEbdu2Neo6m1RxA/Tr1w+tNX/+85/p3r07PXv2tDrSEcaOHcvWrVt5+umnueKKK+jWrZvVkY7wxz/+kS1btrBmzRomTpxIfHy81ZFqiYuL4w9/+AMffPABSUlJ/PGPf7Q60hG6du3KlVdeyTPPPEOnTp24/fbbrY4Uke6//37y8/N55ZVXGDFiBC1btrQ6Ui02m42pU6fyxRdfoJRi6tSpjTq+DU2wuLt06UKXLl3YtWsXZ5xxBkopqyMd4eKLL6Z///78+OOPtGvXzuo4RzV8+HBcLhcul4vMzEyr4xwhJiaGcePGceDAAeLj40lMTLQ60hFat27NuHHjyM/P5/TTTw+rrcRIcs011+Dz+SguLiYrK8vqOEdQSjFmzBjKysoASE1NbfR1Nrnirta+fXurI9TLbreHbWlXS0hIICEhweoY9QrH/6n8VLj/nCNBTExMWJb24U5GYVdrUjsnhRDiVCDFLYQQEeaYxa2UilVKrVNKbVRKfaeU+nNo+RlKqbVKqR1KqbeVUtGh5TGhr3eE7m/XuP8EIYQ4tRzPFrcPuERrfTbQE7hSKXUB8BQwU2vdETgEjA09fixwKLR8ZuhxQgghGsgxi1tXcYa+dIQ+NHAJ8F5o+Tzg+tDt60JfE7p/sArHQzuEECJCHdcYt1LKrpTaABwAPgF2AmVa6+or5+wFqnf5ZgE/AoTuLwcyGjK0EEKcyo6ruLXWhta6J9Aa6AN0OdEVK6XGK6XWK6XWezyeE305IYQ4Zfyso0q01mXAZ0BfIFUpVX0ceGug+nqGBcDpAKH7U4AjrruptZ6tte6tte4dTledE0KIcHc8R5U0V0qlhm7HAZcBP1BV4ENCDxsNLAnd/jD0NaH7V+pwupSXEEJEuOM5c7IVME8pZaeq6N/RWi9VSn0PvKWUmgb8F5gTevwcYIFSagdQCgxvhNxCCHHKOmZxa603AeccZfkuqsa7f7rcCwxtkHRCCCGOIGdOCiFEhJHiFkKICCPFLYQQESYsLutqmiarVq2yOkad9u/fT2FhYVhnzM/P59ChQ2E1pdNPlZaW8s0334T1pWLdbndY/5ydTiexsaW0bBm+GdPStpGfXxnW38fCwkI2bdpEUVGR1VHqVN97OSyKW2tNSckRh3qHjfLycjweT1hndLlczJ1ro7IyfDO2aePn/PMP4fV6rY5Sp0OHgowcGb7fw6goN62u/Ia4B963OkqdovOScbmGhfX7xev18kjZI3ijwvd30ad9dd4XFsVtt9u59tprrY5Rpx07dmAYRlhnNE2TAwdasH9/X6uj1CkjYxOXX345aWlpVkc5Kq01CxZ8Ql5e+P6cY2JKSW75DHnX5lkdpU4tV7WkW3G3sH6/FBYWsm/APso7llsdpU6J9rpndZIxbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3M8//zxaa6tj1Mnn8/Hyyy9bHSPiffrpp+zYscPqGKKRFRcX8+6771odI2w0ueJeunQpAwcOpEWLFgwaNCgsyzEnJ4drrrmG6OhoBg4cyNq1a62OFHGcTicDBw5k1apVPPHEEwwbNszqSKKR3H333dxxxx3s27ePgQMHsnv3bqsjWS4spi5rKH6/n/z8fG644QbOOeccHnvsMf7973/jcrnCZoLa8vJy9uzZw7333stZZ53FoUOHyMvLo3fv3tjtdqvjRYz8/HyaNWvGkCFDaNmyJbfeeiuFhYW0atXK6miiARUXF1NQUMCDDz5IVlYWBQUF5OXl0aZNG5RSVsezTJPa4q7+Ie/fv59nn32WTp064XA42Llzp9XRavz3v/+lffv2LF68mDfeeINBgwaxbt06PB6P1dEiyoIFC+jXrx/Tp09n//79DBs2jCVLllgdSzSwzz77jAEDBvDSSy+xfPlyrr/+ehYvXhzWw6AnQ5Pa4j7ttNPo0KED8+fP5/XXX2fcuHGcffbZZGdnWx2txsUXX8ycOXMAuOGGG7j11lvJyckhMbHuiUHFkR5++GG6devGP/7xD5YvX87s2bPZvn271bFEAxs6dCgDBw6kT58+dO3alTFjxrBkyRJstia1zfmzNaniBhgyZAj9+vVj0qRJTJ8+nebNm1sd6QhPPfUURUVFTJs2jYULF9K6dWurI0WcpKQkVqxYwaJFi+jcuTPLli2zOpJoJPPnzycvL493332XJUuWcMYZZ1gdyXJNrrhTU1NJTU3l3XffxWazheU42GmnnUarVq2YP3/+Kb/l8EvZ7Xa6dOnCww8/jFIqLH/OomG0bduWNm3aMGDAAHm/hDS54q4W7jv6pGwahryRTw3yfqntmL/1SqlYpdQ6pdRGpdR3Sqk/h5a/ppTKU0ptCH30DC1XSqnnlVI7lFKblFLnNvY/QgghTiXHs8XtAy7RWjuVUg7ga6XU8tB9k7XW7/3k8b8COoU+zgdeDH0WQgjRAI65xa2rOENfOkIf9R2Lcx0wP/S8/wNSlVJycK0QQjSQ4xogVErZEnWskwAAIABJREFUlVIbgAPAJ1rr6lP9ckLDITOVUjGhZVnAj4c9fW9omRBCiAZwXMWttTa01j2B1kAfpVR34GGgC3AekA48+HNWrJQar5Rar5RaLyefCCHE8ftZu+S11v+/vTOPs6OqEv/31tvXfr1kIwtJSIyBsCeRiCAkEMBBFmUUdYAfi6BjQAWGwDgBZUYENBBxcADZQhBBkQgCKkhAPsPIEgJkkURCSEhn6e708paq9+rVcn9/1EJ3yNKJSV4/qO/n8z5Vr+7tqtP3vXfq1LnnntMDPA+cLKXc5LpDdOA+YKrbbQMwstefjXCPbX2uu6SUk6WUkxOJxO5JHxAQEPAxpD9RJYOEEDl3PwGcCKz0/NbCidE5A1ju/skTwLludMlRQF5KuWmvSB8QEBDwMaQ/USXDgPlCiBCOov+1lPJJIcQiIcQgQABvAt9w+z8NfA5YDWjA+Xte7ICAgICPLztV3FLKpcDh2zg+fTv9JfCtf1y0gICAgIBtESw7CwgICKgzAsUdEBAQUGcEijsgICCgzggUd0BAQECdESjugICAgDpjQKR1NU2TO++8s9ZibJd8Pk9ra+uAlnHNmjWMGpWkpWVprUXZLtnsWhYsWEAsFtt55xphml1MmjRwP+dQqELDew1MunNSrUXZLslNSf5a+SubN2+utSjbZfny5RyQP4BqQ7XWomyX9833t9s2IBR3KBRixowZtRZju7S2tqIoyoCWMRwOc9RRTRx88MG1FmW73HPPWv7zP4/BMDK1FmW7nHjiEhYuHLifc6FQ4Le/bef8GdteHiGRSGyklAiEfwxAESH/2N5k6dKl9PT0cOyxx+71a+0u+XyeuVPnDujqU9OUadttGxCKWwjBuHHjai3GDnnnnXcGtIzLly9nyJAhA1rGVCpFsTgaXW+stSjbQaIo0QE9hl1dXaRSKcaMGUNnZ6dzMGFQUHtoaMjxVvvzvKQ9SbHSjW0KUkoTqq6i6SoXjv0B8UiCYekRNKaayefzRCIRSqUSLS0tbNmyhWw2i6ZptLS0oKoqoVAIwzCwLItQKISqqn5bQ0MDHR0dtLS0AB8UtWhrayMUCg3ocWxoaGDEiBGMHDmSUqlEIpFAVVUikQjhcJhyuUwmk/HbdF1HCEEkEkHTNLLZLMVikUQigWEYxGIxv4BxNBqlVCqRTqdRVZVkMolpmti2TSwWo1gskslk0DSNeDyObduYpkk4HCYej/sFI3ZUJGRAKO6AgIBdo2yWWFZ+gZKZp7Wwgs7KZuJdGYQdZrAyhuGJg/nbltcIhzJMyhyGkg7xVtdfeXL1I5y0/z8zY/9TGRIfjpSSeDyOruu+EvGUk23bvjLylIjXVwiBpmlEo1F/G41Gazkku0WpVKKhoYFSqURjYyOmaWIYBk1NTXR3d9PY2OgrYSkluq7T0tJCd3c3TU1NaJpGMpmkXC4jhMC2bf+cnZ2dNDQ0kM/nCYfDKIpCV1cXuVyOzs5OstkshUIBIQSxWIxyuUwsFutXpZ9AcQcE1CGKULjt1dsxLJ0R2RGMbRxLLJTi/kULyGaifGL/YXSuU+nUV3DopB6aooMxLJthiQNYsXkpmGEGxYZw0idOA/CVjrevKAq2baMoCqZp9rm2V0bMU+YDtbZrf0gkEpRKJcLhMIVCgVAohKIo5PN5Lr30UiZPnswll1yCpmn+/9zT00M8HqdQKBAOh6lUKoTDjipVFMW/uTU0NFCtVkmlUti2zfz583nuuee48847aWhowDAMv01K2W+lDYHiDgioS2KhJP815eec8cjptEctVoe7SIokTWJ/kpUY2to0WzaUWbm5nVhyGfHOJrqbtpAKNxFWouQLFSrVKkeNOJawjJBKpVBVFSGE8+gfkVQrKpFwCEQcW0pCoRC6rpNKpTBNk0gkgqqqZDKZulXcqqrS2NhIoVAgnU5jWRaGYZDNZnn66ad5/PHHsSyLc889l1wuh67rZLNZ3+IulUpEo1EqlQqAb3Hncjl6enpoaGhgw4YNPPfcc8yePRtd17nvvvvo6ekhm81SKjk1ajxln0gkAos7IOCjSqVSYeyg0fz6S7/mK7/5Mq+vfZ2IGaY52oSsgl21+dFXbuTlZX9lVHYUf1rxJ4aPbGTt+x3EMmk2dXRSqZr86NkbuO7UH6CqKtlsFl3XicgKD845EtusgJB84d/eIJEbim3b5HI5VFUlHA6Tz+dJJpN0d3eTTCZJJpO1HpZdJhKJYJomoVAIy7KcSd1ehYnL5TKzZ89mzpw5PPPMMxx++OG+P9o0TRRFQUrpP3V4bg8pJdFolKVLl3LyySeTz+cBJ4ggFAr5bqVIJAJ88JQTWNwBAR9hkskkHR0dDE/tx/984Q4u/fWltHe3M655PCEZwq5a/OalR0iFUpQrGtFwhLZXw3xy/8lsbH+XQnM7LcZIfvWnR5g5+mQ+96nP0dHRQTwKr//pp+RLBoNHTWb8YScgIkl0XScUCtHV1eVPTjY1NdHR0UFzc3PdWtzhcBjDMFAUBcMw/P/j3nvv9a1ogGq1yle/+lXOOecczjzzTEaPHs1NN92ElBLLsnwFHIlE+PrXv05bWxsPPfQQDz/8sK+0ASzL4q677uLrX/86tm0TDof9eYRQKNR/uffEPx8QELBv0TSNdDoNwOT4ZH51zkOc/oszWNm+ikw4Q0Ik0IVOh76FzR2b6NrSxT9NOZWW6H7YhDgkPZln3voDTbEwMSVCsVgk376a3z8xj/Z1ixk8/AiO+dJccoNHowhBKBTCtm2am5t9i7uzs5NMJlPXFne5XKapqYlCoUA2m8U0TarVKg899BDVat8Y740bN3LTTTfx1FNPkUqlWLx4MZZl9emjKApPPfUUUkreeOOND11PSsldd93F2WefTS6Xo1QqIYQgHo9TrVZ9i39nBCsnAwLqEM86k1KiCIVxTeN57hvPMW7oJyhUCqza/HcWr1vC0vVLyaSzTDloCmWjzPtt6xBhhcKGKscdcArpZJg5D87ivY2reX/1clYue51jTruGL85aQPPQsQicx3hPoXhhgUIIwuEwtm0TCoU+ZC3WiwXu3XhisRhdXV1omgaAYRh+n1tuuaXPGo7ly5fzyiuvfEhpg+PjXrJkSR+lPWTIEObPn++/D4fDDBo0CMMwaGhoIJVKAc5TVOAqCQj4CKMoCpVKBeFaw4ZhMLRhKH+85EmeWvYUTy57mr+u+D82d7ahVVU67RB6qIpdtcGEt1f9jZlTTuLYlrMYPE1w6S1fYUJHiMMmz+ATR55CMt3gK2kv6kEIQbVaJRKJYFkW0WjUn6TcWuF4j/8DHS8MsFAo0NTU5FvcnusDHCW+cOFCGhsbt6msd8aMGTP63AhM02TLli3kcjny+bxvcQfhgAEBH3EqlYrvmiiXy6RSKXp6eshkMkwfN4MvTjmLPy75I5uLm6lWqmTiacpaGb1cBSkwjzcZNWQk06dOp6mxiezmJtb/31uc+IVv0TJ4Pzo7O0mlUhiGQTgc9pW0F58cj8fp6enxF+5kMpm6jOP2wgEjEcdd5E0Q9lbQiUSC3S1ofsEFF3DzzTfzzDPP+MdCoRDZbLZPOCA4C3cCizsg4CNMMpmkUCgAzg/eW43n+WxVVeWkw08i39NDMhql3NPJ+/P/m8rqt4kPG84nv/ufVCMRQsCWzZvY/MZGYqnBjBw1jkJXF42ZDFXDYPXvH+P13yxAROJ88rQvccBx02lsbsayLFpaWiiVSjQ3N/txzPWGruuk02k0TSORSPirGOPxuN+nWq0Si8X8yJNd4fTTTwfoM9EppURVVVKplH88Go32scp3Rn2OdkDAxxxVVf3VfOVymXQ67ccNe9u2N15BtL7H2qd+TSSR4pAf3ApKBBFSsLZs5u05V2MJBbtiY7+9jMGHHMHaR+9n/YvPoxULpEeOYcIZX+Hz18/FNg3+tuhZHjz/K0QbGpl+2eWkh+7H/uPHk8/nSSQS/mRpPdHbfy+l9F08v/vd7xg6dCjFYpF169axZMmSDy1E6g+rV6/myCOPZPXq1f71zjzzTH9OoHfo4a7MCwSKOyCgDonFYn183NVqlXg8jmEYxONxtrz4J9bNncPIsy/ioKtuQAhQV72NpxukEEyacwtSQGXzJhpf/l+q1SohoTB51lUQjqCXNaplDa2zHVtK9j9yCqOOnEq+q4vfXvs9siNHcd5P5pHIZuvW4o5EIui6jqIo/lJ+IUQfC/lnP/sZP/vZz3br/FdccQUbN25k7ty5gDM38Z3vfIdYLIZt20SjUf9msStjGESVBATUIV40R+8FILZtI4Sg44U/8s687zP6q5eQHfsJ9A1r0VvXISoqoqJCRYWySvndlWjvvI1Z7GHw1Gns95nP0jBqDOWOzagb1lPp3IKpqphlDUPT0IslKoU8oVCIz55zLoX167n7X7/ph7HVI15Ypedv9hTp3Llzd9uvvTWe0gbnc5szZw75vDOOpVKJcrns50Hp7zjW520yIOBjjhfVIYTwV/JpmobobKPtdw8y6oyvEWtqwc53oqAghLsiEBCAjQTb2ceWVLUSlpSYNli2xJYSWzr7pre1JRY2hgXRWILPfPVfePynt/LfF5zPlQ/9qrYDspt4y9fj8Tjd3d1IKbn99tv5yU9+0sc10tjYSCgU6hMW2d3dvc1zNjQ0EIlE/Bupbdt+Xykld999N6FQiOuuu86PVLEsa5fCAQOLOyCgDvF82l7muXw+T66hgc3L3iDbMpRUrhm71AMVDaGXUHSNkK6i6Jrz8qzvsgqVEpRVbE1FaiUsrYSplTDVIlW1hFEqUi0VqapF9KKzrZQK2KbBiRdeRHdrK8X29loPyW5RLBbJ5XJUq1UymQx33nkn119/fZ/FNwceeCBLliyhtbWVd999l/b2dhYvXsyUKVM+dL6JEyeyaNEiWltbWbZsGa2trbz66qsceuihfh/Lsvj5z3/OzTffzMaNG1FVFXCs//5a3IHiDgioQ7yERLFYDMuynLC2fA89f/kjSiKOUeyGioYsa1BxFLWia4R1lZCuISoa6Jrfx9JUZFnDLqvYZQ1b0zA1DVMrYWgqVW+rqlTVElW1hK6WMCpVIqk0LzxcnxZ3IpFA0zTC4TBtbW1ce+21fdoPOugg7rjjDpqamnxfeKFQYNCgQcydO5fx48f7fWOxGFdeeSXjx49H13UymQyGYTBkyBDuuecepk6d2ufcc+fORVVVvyLUroQDfuQUt5c74IILLvCTlw80bNumWCxy2WWX+YltBhqWZfHaa69x9913D1gZBzred/Hb3/42hUJhj34XvSRHXqKjarVKRBFU1vyNaHMLdlnFKmuORV12/NqhSplQtYyiawi97Cjtiuq8XIvb0pytqakYmopR9pS25ihsTUVXVfRSiUqphF7RGDp6f4w95A/eFrZts27dOn74wx/u8e+iYRhEo1Fs2+Yb3/jGhxTnpk2buOqqqzjhhBOYNWuWn7/cNE0OP/xwZs6c6fedOXMmxx9/PNVqlXA4jK7rXHPNNZx88snMmjWLdevW9Tm3EIJvfetbfhjgroQafuQU9/z585kwYQKXXXYZhxxyCNdff32tRfoQF198MSeccAJf+tKXGDt2LH/+859rLdKHOOyww7jzzjvRdZ1hw4bR09NTa5HqjkWLFjF27FjOOussZs6cyUUXXbTHzu2Fr3l+VD+kzbawKxpmueQo47JjSVMuIysqlDVk2du6FrbmbM2yo7DNsoqheu4Sz8IuopeKVEsFV2mrVEolKoUCFbW0x/6vbeEpvgkTJjBy5Ej+/ve/77FzewUMQqEQ99xzD7/85S/7tHd1dfHyyy/T1dXFjTfeSCgUQtM0YrGYvzjJI5PJMGjQIJLJpD/Zee2111KpVHj55Zdpa2vrc+7bbruNxx57zI8Z771ac2d8pBR3T08PGzdu5MILL2Tp0qUsXLgQKSWtra21Fs1n5cqVtLS0cO6555LP57n99ttZunQpuq7XWjSfF154geOPP55p06Yxbdo0Zs+ezdNPP11rseoKXdd56623uOCCC3jnnXd47LHHGDx4MCtXrtwj569Wq0SjUd9VEo/HqZQrWKpGpW0jlqo6L011FHC5hKGqGCUNU9UwNdX1ZTvthqpiqk6/qlrC0JxttVTEKKlonZ2UOtpdhV10XyoVtYSuaeyt57HFixdz0EEHcdpppzF48GBuuOEGnn/++T329NI7qVMoFOLFF1/8UJ+JEyeycOFC0uk04XCYv/zlLzz44IM8++yzHHrooZx33nl87Wtf46ijjuKVV17hoYce8hNNxeNxHn/88T4+bo/XXnsN0zT9J4hdeZL4yEWV9K7OMRAf7z3rSFGUD6WSHCj0rn7S25oL2DV61w70FnfsqXGMx+O0t7cjhCCVSjl1EDNpbAmFlSsIjf8kIhEHRUGGBAg3ksQwEbE4lrQxbDBME3XjeiqqSsWyqVoS3ZTotoVuQqR5CGSyVLQyerWKMC2qbj/DllRNi3XLlzNuytSdC70b9P69eBEae/q76H3XS6USd9xxB6eddhqrVq1i1apVAH544I9//GOEEHR2dnL55Zfz6U9/mkcffZQzzzzTT896ySWX8Oijj3LLLbcATl6SOXPm9NFFw4cPZ8aMGTz44IPMnj2bZDK5y9+Nj5TFncvlGDZsGL/4xS846KCD+MIXvoCiKAOqkvOECRPo7OzkvvvuI51Oc+mll3LwwQf7ExQDgWOPPZYXX3yRl156iZdeeombb76ZU045pdZi1RWxWIxDDjmEe++9l7Fjx/LFL36Rjo4OJkyYsEfO7xXrbWhowDRNMpkMRb3KgbN/iNbVwZZlr6Pn875PuqKqaF1bKK1/D62Yp9zTQ/eSl8gveZnSujWom1rRNrWibtxAceN6iq2tFDa8z+YVb7D+5f9ly7ur0QoFSp2daMUi5WIJrVBk5Ssvo0SiHPiZY/bI/7U1Rx55JG+//TYLFy6kra2N//iP/+C4447bYSHdXSEajfo+6Xg8zquvvsq8efNobm72+6xcuZIHHniAT33qU9xwww189rOfpampyb+JeMm4vCXx6XSaz3/+89x7771MmTKFBx54gKVLl/rny+Vy3HrrrbzyyiuMGTPGT9K1KwtwPnIW93nnncc555zDxRdfzNKlS/fYB7wnueuuu9A0jX//939nzZo1A1LGN998kyVLlvDWW2+xadOmASnjQGf69OmsWbOGK664gmeffdZP37mnsCzL/1wcqzGEyDRimDaKqtL1tzdpGPdJFMskZFsIQ8fo2ACbWp1YbRsM26ZqOxZ01XSsaAs3dltCVa9SMSwq+SL6+vVULBszEiM1dD82rl1HsagxeuonmHTssXv0f+vNH/7wB1pbW1mwYAHr16/fo99Fr7Cvrus0NTXR2NjI+vXrqVQq/pMnOFb3e++9x4033siKFSt44oknuO+++5BSkkgk/PDBSZMmceWVV3L11VfzyCOPfOipX1EUyuUymzZtYuLEif4in0gkQqVS6bcB12/FLYQIAYuBDVLKU4UQY4CHgWbgdeAcKWVVCBEDHgCOBDqBL0sp1/b3Ov8o3hLge+65Z19dcpdRFIV0Os1tt91Wa1G2i6IoTJ48mcmTJ9dalLrF+y7Omzdvj5/bW6rtKW8vvWoJsONxqnoFDBO1pxvUAqJURFEECgKJxJI2tnQUt2mD4bo+nC2Yto3pLroxpcS2JZaUWDZYhkGpu4eKViYUiyPl3s2/rSgKo0aN4nvf+94eP3c6nfarsff09BCNRnn33Xf59Kc/zUknnUShUPAnMO+44w6klPz+97/35368avepVAopJVdccQULFizoo7RnzZrllzPzkoOtXr2a/fbbj2w2i2VZVKtVEolEv+XeFYv728DbQNZ9fxNwq5TyYSHEHcCFwP+4224p5TghxNluvy/vwnUCAgJ2gq7rfjSCpmkkk0knzerEg2n8zEza/vQ7bExkZydhYaOYNkIRCFdx27KXIpbS8W1bso8C95W3ZWNKMCzbWV1pSPTuPLaEUDzO56/6Nz9HSr3huZyq1SoNDQ1IKTnmmGOYPn06lUrFr0yjKArjx4/n8ssvB2DevHl897vfxTAMkskk1WrV98HfcsstvtK+7rrr+OY3v0k8HvdXucbjcSqVip/VEfCrxfc3NW6/njmEECOAfwLudt8LYDrwqNtlPnCGu3+6+x63fYYIZrYCAvYoqVSKUqnUJ5d0Q0MDugiR3X8cpg26YVPWypTLVTTLpmzaaKazLZs2FdNR1mVDOhOTtk3VllQtG0NKdFtiWhJTCqquxW3YNkoq7bgSogkM02TaiSfVZdkycNLj9h5Dz+VRKBRIJBIUCgW/uv3EiRP9vzNN068lWalUiEQifYoAe4wfP57GxkYikQiKopDNZimXyzQ0NPghg56lvSv5zPtrcc8DrgIy7vtmoEdK6S3mbwWGu/vDgfUAUkpTCJF3+2/pt1QBAQE7RNM0MplMn/18Pk8mk0EZPR5l0H5UNrdiyCohBCEFNzOgY6tJ2dfqNm3biRLxokUsC8NylHfVdZlULYlpQaW7B1vAITOOJ97UTEdHB7lczpennvDyvNi27StXcCxgrwiwlJJQKNRn8lAI4cddezlMer88vIVS3jHDMPxsjp6Ly/Oj70qI404tbiHEqUC7lPL1fp+1HwghLhZCLBZCLN5TWbgCAj4ueH7XcrnsT3h5j/X7H30c8eGjKFs2FdOmYnkWtk3FNKmYJmXTomxaH7T7StqdqLQkVYsPlLnlKG/DdlwoLaPHsGb5Ck7911lks9m6rH4DH4QCesq5d0y3l4HRC0ccM2ZMn8II3sI5z0Xi+b87OzsBp2TZpEmT/DZvJa2iKFiW1efvYM/HcR8NnCaE+BwQx/Fx/xTICSHCrtU9Atjg9t8AjARahRBhoAFnkrIPUsq7gLsAhgwZMvACrgMCBjDeD9/78XsREJ7Cmfxv1/P7f/k85XKJkBDOxKR0rG4J2IDtZQFEYppOJImjnG1MC6q2o8wN23ajTxwFHstkGTxuAoPGjaNp2DA/xroe8YoEZ7NZ8vk80WiUSCTiVxLq6uoik8mgaRq5XI5jjjmGxx9/HFVVmTVrFiNHjvQVO0Bra6ufCfDII49k2LBhfp50L6dMd3e3X1neK13mhST2l532lFJeA1wDIIQ4DrhSSvk1IcRvgLNwIkvOAx53/+QJ9/1f3fZFciCuhAkIqGMsy/J/6N4jvaZpRKNRyuUyubEHkBw1hvYVb6IIhZCf0tVGoiCFawG6k5OWLd0Uro7LxLCFb2kbtk3FclwmVdsik82hRKOMOfRQMrkchUIBRVHq0ur2sgNWKhVyuRy2bWNZFk1NTX5ZtnK5TCaTQUrpV4EH6OjooKOjY7vn9p6CvNzbiqLQ3d1NKpWiq6vL96F7bhevWHB/+EcCImcDlwshVuP4sL34u3uAZvf45cDV/8A1AgICtkEqlaJYLFIqlQiHw348sqZpNDc3o2kap9x+H7pho5sWZcNy3SPS2VZtyobjPtE9N4olKVtQMQUV06Zq2eiWc9ywbKqmRePwUYw/+hjiyRQzzz6bYrFIS0tL3U5OZjIZuru7iUajdHd3+3HVXgHkLVu2EAqFKBQKaJrGlClTGDly5E7PO3ToUI4//nj/hhCLxVAUxa8H2tLS4keyePH9uzKGu6S4pZQvSClPdffXSCmnSinHSSn/WUqpu8cr7vtxbvuaXblGQEDAzimXyySTSRKJhJ+Ev1Qq+RZePB5HhqMces5FjqK2HMWtGR/4tp3oEsvxf1uylxJ3lrXrpo3u+7sl2aHDGTt5KhvXruWE888nXyyRSCTo6enpU+qrntA0za+4ns1m/ZDGXC7nu0csyyKVShGPxzn66KOZP38+uVxuu+eMRqPcfffdHHfcccRiMYrFIoZhIKX0o1W6u7uduHu3Ag6wS2MYLIcLCKhDvOx0XpRCuVz2V/Cl02mnMEBjEy3TjkUZNIyyKdFMG81yQgI/CAuUH+xbNhXDcqxs0wkR1C2Lqi2JZhsYPG48ne1taMUSYw87jEwmg67rpFKpXcpsN5CIx+Ooqko4HEZVVT8c0LsJFotFQqEQlUrFr0k5ceJE3njjDe6//36y2SyZTIZsNks2m+XWW29l1apVTJs2jUwmQ7VaJZlMEg6H/bwylUqFTCaDaZokk8k++bj7y0duyXtAwMeB3kuxvYiI3rkzvEnLMVOnMfnci1h0648xNNX/e+kuxJHSmaS08PzdYEo3ftu2MW2beFML6SHD0MplYrE4Nz37jC9D70nReqR3eTGP3uXJerf1Tng1ePBgTjnlFN5//31M0/RXRgL+fIOXX9u2bT96pPdnBM78RO+ok/4SKO6AgDrES2zkKYNQKOQXVTAMw99Go1GOufAbWFLy5H/9ANlHQTkRJpbEien2lrVL/NWSphQoliTf3c3oYcO46Mc/RnEz4em67sck72qSpIFCb6XrrW4ExxL30uVCX2vYa+u9cKZ3SJ9hGEQiET9SxCuUAE46Xq/N+8x63yj6S+AqCQioQ7yY7Uql4if39455Vcu9R31FUZj61XM56ye3MeLwKY4/230NnzyV+JChVCzbfUnGH3scuo2zBN6GilbmiBNP4Pwf/YhkYyOxWAzbtkmn0+i6TjqdrsuIEsBXrN5iGE959la63lJ1zwL3Cih4bhUvNttLJx2JRPxizrZtEw6H/fZIJIJpmn3avBverjy11N8tMiAgAICmpibAeYRPJBIIIfxjjY2NCCHYb7/9/Pbp5/4/jvnnL2P1sgBDkQi2bWFbH1ji4WgUo1exXIBoPE40Hvetw2w2ixCC5ubmuo3hBucGGIvF+owhfOAu8dp641Vj31abx4781rvj096aQHEHBNQpvdObegpkZ9tQOt2vc8e3k4J2e+etV7xFTN5+7+NbH+tP274icJUEBAQE1BliICxqbGxslOecc06txdguuq77q6iTozRIAAAFj0lEQVQGKvl8nnA4vMeT9e9J2traaGtrQcqBG4GQy21g//2H77xjjbAsi87OTgYPHlxrUbaLqqpYlkU2m9155xrR2dlJOp0eUJWntmbBggV0d3dv06wfEIpbCNEBqAzcDIItBLLtDoFsu0cg2+7xUZNtfynloG01DAjFDSCEWCylHJDlVgLZdo9Att0jkG33+DjJFvi4AwICAuqMQHEHBAQE1BkDSXHfVWsBdkAg2+4RyLZ7BLLtHh8b2QaMjzsgICAgoH8MJIs7ICAgIKAf1FxxCyFOFkKsEkKsFkLUvOiCEGKtEGKZEOJNIcRi91iTEOJZIcQ77rZxH8lyrxCiXQixvNexbcoiHG5zx3GpEOKIGsn3fSHEBnf83nRL3nlt17jyrRJCnLQX5RophHheCPE3IcQKIcS33eM1H7sdyFbzcXOvFRdCvCqEeMuV7wfu8TFCiFdcOR4RQkTd4zH3/Wq3fXQNZLtfCPFer7E7zD1ei99ESAjxhhDiSff93hm3rasT78sXEALeBcYCUeAt4MAay7QWaNnq2M3A1e7+1cBN+0iWY4EjgOU7kwX4HPAHQABHAa/USL7v45S327rvge7nGwPGuJ97aC/JNQw4wt3PAH93r1/zsduBbDUfN/d6Aki7+xHgFXdMfg2c7R6/A/imu/+vwB3u/tnAIzWQ7X7grG30r8Vv4nLgIeBJ9/1eGbdaW9xTgdXSqaZTxalfeXqNZdoWpwPz3f35wBn74qJSyheBrn7KcjrwgHR4GaeY87AayLc9TgcellLqUsr3gNU4n//ekGuTlHKJu18E3gaGMwDGbgeybY99Nm6uTFJKWXLfRtyXBKYDj7rHtx47b0wfBWYIsXeSeOxAtu2xT38TQogRwD8Bd7vvBXtp3GqtuIcD63u9b2XHX+J9gQSeEUK8LoS42D02REq5yd3fDAypjWg7lGUgjeUs99H03l5upZrI5z6CHo5jnQ2osdtKNhgg4+Y+7r8JtAPP4lj5PVJKcxsy+PK57XmcGrT7RDYppTd2P3TH7lYhhLeOfV+P3TzgKsBLtdjMXhq3WivugchnpJRHAKcA3xJCHNu7UTrPNgMiFGcgydKL/wEOAA4DNgFzayWIECIN/Bb4jpSy0Lut1mO3DdkGzLhJKS0p5WHACBzr/pO1kmVrtpZNCDEJuAZHxilAE04h832KEOJUoF1K+fq+uF6tFfcGoHfJ5BHusZohpdzgbtuBhThf3DbvEcvdttdOwu3KMiDGUkrZ5v64bOAXfPBYv0/lE0JEcBTjL6WUj7mHB8TYbUu2gTJuvZFS9gDPA9Nw3AxeGujeMvjyue0NQOc+lO1k1/0kpVOw/D5qM3ZHA6cJIdbiuHynAz9lL41brRX3a8B4d+Y1iuOkf6JWwgghUkKIjLcPzASWuzKd53Y7D3i8NhLCDmR5AjjXnUk/Csj3cgvsM7byIZ6JM36efGe7s+ljgPHAq3tJBgHcA7wtpbylV1PNx257sg2EcXPlGCSEyLn7CeBEHD/888BZbretx84b07OARe7TzL6SbWWvm7HA8SH3Hrt98rlKKa+RUo6QUo7G0WOLpJRfY2+N296YWd2VF87M799x/Gjfq7EsY3Fm8N8CVnjy4PiengPeAf4MNO0jeX6F89hs4PjHLtyeLDgz57e747gMmFwj+Ra411/qfjmH9er/PVe+VcApe1Guz+C4QZYCb7qvzw2EsduBbDUfN/dahwBvuHIsB67t9dt4FWdy9DdAzD0ed9+vdtvH1kC2Re7YLQce5IPIk33+m3CvexwfRJXslXELVk4GBAQE1Bm1dpUEBAQEBOwigeIOCAgIqDMCxR0QEBBQZwSKOyAgIKDOCBR3QEBAQJ0RKO6AgICAOiNQ3AEBAQF1RqC4AwICAuqM/w9pIihoDh14YgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Q-러닝의 본질: 벨만 방정식과 학습 알고리즘\n", + "\n", + "우리의 학습 알고리즘을 위한 의사 코드 작성:\n", + "\n", + "* 모든 상태와 행동에 대해 동일한 값으로 Q-테이블 Q 초기화\n", + "* 학습률 $\\alpha\\leftarrow 1$ 설정\n", + "* 시뮬레이션을 여러 번 반복\n", + " 1. 랜덤 위치에서 시작\n", + " 1. 반복\n", + " 1. 상태 $s$에서 행동 $a$ 선택\n", + " 2. 행동을 실행하여 새로운 상태 $s'$로 이동\n", + " 3. 게임 종료 조건에 도달하거나 총 보상이 너무 작으면 시뮬레이션 종료 \n", + " 4. 새로운 상태에서 보상 $r$ 계산\n", + " 5. 벨만 방정식에 따라 Q-함수 업데이트: $Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$\n", + " 7. 총 보상을 업데이트하고 $\\alpha$ 감소.\n", + "\n", + "## 탐색 vs. 활용\n", + "\n", + "최적의 접근법은 탐색과 활용 사이의 균형을 유지하는 것입니다. 환경에 대해 더 많이 학습할수록 최적의 경로를 따를 가능성이 높아지지만, 가끔씩은 탐색되지 않은 경로를 선택하는 것이 좋습니다.\n", + "\n", + "## Python 구현\n", + "\n", + "이제 학습 알고리즘을 구현할 준비가 되었습니다. 그 전에, Q-테이블의 임의의 숫자를 해당 행동에 대한 확률 벡터로 변환하는 함수가 필요합니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "source": [ + "우리는 벡터의 모든 구성 요소가 동일한 초기 상황에서 0으로 나누는 것을 방지하기 위해 원래 벡터에 소량의 `eps`를 추가합니다.\n", + "\n", + "실제 학습 알고리즘은 **에포크(epochs)**라고도 불리는 5000번의 실험을 실행합니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " m.random_start()\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " m.move(dpos,check_correctness=False) # we allow player to move outside the board, which terminates episode\n", + " r = reward(m)\n", + " cum_reward += r\n", + " if r==end_reward or cum_reward < -1000:\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "source": [ + "이 알고리즘을 실행한 후, Q-테이블은 각 단계에서 다양한 행동의 매력을 정의하는 값들로 업데이트되어야 합니다. 여기에서 테이블을 시각화하십시오:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXwURd7H8U/NmUzug4Rb7kMRQW4RFRFFlwVdXFRUdlFRQTxQ8FgUFVRQ1xMeZBE8F0VXF1R0PUCUS+VQhKDcoCQkQO7MPdNdzx+ZzMJKAMlMepLUm1deyXSa7u8M5Jea6qpqIaVEURRFqTtMRgdQFEVRfh9VuBVFUeoYVbgVRVHqGFW4FUVR6hhVuBVFUeoYVbgVRVHqmKgVbiHEECHEdiHELiHE/dE6j6IoSkMjojGOWwhhBnYAg4FcYD1wjZTyp4ifTFEUpYGJVou7N7BLSrlHSukHFgHDo3QuRVGUBiVahbsZsP+Ix7mhbYqiKEoNWYw6sRDiZuBmAKvV2qNr165GRTkhn89HRUUFmZmZRkepVmlpKVarlYSEBKOjVCs/P5+srCzMZrPRUar166+/0rJlS6NjVCsYDHL48GGaNGlidJRqOZ1OgsEgqampRkep1uHDh0lOTsZutxsdpVpbt27F4/GIY35TShnxD6Af8NkRjx8AHqhu/6ysLBnLdu7cKefNm2d0jONavHixXLt2rdExjmv69OmyuLjY6BjV0nVdTpgwwegYx1VUVCQff/xxo2Mc1+rVq+WSJUuMjnFcc+fOlTt37jQ6xnGF6uIxa2a0ukrWA+2FEK2FEDbgauDDKJ1LURSlQYlKV4mUMiiEmAB8BpiBV6SUW6NxLkVRlIYman3cUspPgE+idXxFUZSGSs2cVJQo0HWd9evX8/rrr6PretW1HkWJCFW4FSUKunbtyrx58yguLqZJkyZUVFQYHekomqZx4MABo2Mop8iw4YCKUl99/fXXDB48mMmTJ1NYWIjP5+PTTz9l5MiRRkcDKvPt2rWLnJwcunfvzsUXX0zjxo2NjqX8DnWuxb1nzx7effddo2MoSrWCwSAWi4WcnBw++OADrFYrgUDA6Fhhs2fPxul0cvfdd/POO++wfft2oyMpv1OdanEPGzaMuLg4+vTpw5lnnsmKFStielKM0jANGjSICRMmsGTJElwuF4FAgN27dxsdC4BFixYxePBgrrjiCqZMmcK8efOYPHkyPXv2jOnJW0eSUuL1elm4cCGtWrWif//+xMfHGx2rVtWZFveePXuIi4tj7ty5jBgxgksuuYScnByjYynKMeXk5DBr1ixuueUW8vPzSUpKMjoSACNHjmTZsmUsX74cv9/P1KlTGTt2LA6Hw+hoJ83j8dC8eXN8Ph+fffYZnTt3NjpSraszhXvjxo307t2b8vJyXn31VRo3bsyqVavU1XolJpnNZkwmEyaTCYvFghDHnrlc20wmE0OHDuX777/HarWyfft2WrZsGTP5Tsbbb7/No48+Sq9evbj11lu58cYbWbx4sdGxalWd6Sr585//zJlnnklBQQFNmjRh0qRJ5Ofn16n/cErD0q1bN9asWcOWLVs488wzjY4TNnr0aPx+P0888QSnnXYabdu2NTrS79K8eXNeeuklCgoKmDBhAnl5eVx88cVGx6pVdabFDbBixQqGDh2Ky+WioKCAW2+9ldLSUqNjKcoxZWVloes6hYWFRkf5DZvNxvnnn4+UEr/fb3Sc32XAgAF8+umnBINBpk6dyjfffEOfPn2MjlWr6lThzszM5IILLuChhx4iOzub1157jYceeohdu3YZHU1R6pyBAwfi8/n45ptvjI7yu/Xq1YtevXpx0003sWnTJqPj1Lo6VbirVHWPpKamcuedd/Lmm2+yb98+Y0MpilIr5syZw6233sqIESPo3bt3g+wurZOF+0jt2rVjzJgxTJ06FbfbbXQc5RQsXbqUAQMGcPHFFxMIBNA0DU3T1IXnWmAymerUlPwZM2bQoUMHRo0aZXQUQ9X5wg3QqlUr5s6dy+jRo8nPz4/qufbu3RvT/8mDwSD79+8/8Y4xZMiQIXz22We89dZb9OvXj169etG7d282bNjAtm3b2LZtGx6Px+iY9dKDDz7IjBkzcDqdRkc5obKyMg4cOECXLl0aZCv7SHVmVMmJOBwOZs2axaxZsxgzZgzt27eP+DmWL1/OBx98QNeuXenVqxdnnXVWxM9RU2+99RabN2+mU6dODB06tE5MZbZYLFgsFhwOBxs2bAAqJ1lMnDgxXFDOPPPM8ASRgQMH1rmRELHKZrPF1KzO6pSVlTFnzhxGjhxJmzZtDMuxZcsWkpKSaNWq1Unt/9lnn7F//35atWrFRRddFLEc9aZwAzRp0oQxY8awYMECJk6cSHZ2dkSPbzKZeOSRR3jsscc4fPhwjQq3x+Nh3LhxEWm9t23blqpbv6WmpnLXXXdxyy230KlTpxoV7p9++oknn3yyxvmgslX9ewgheP7558OPly5dSlFREQD/+Mc/OHjwIABXXHEFl19+eUQyKrHr4MGDbNu2jQceeMCQ8wcCAW655RaaNm2K1+vF6/Uya9aso1r+q1atYv78+Uf9vbPOOouMjIyI366vXhVugPbt2zNx4kTGjRvHm2++GdFpvAMHDuTiiy9m9+7deDyeGq2ZEh8fz2uvvRaRt3xxcXFs3LgRqBwqdeGFF3LgwAFuuOGGGj3/Ll26MHXq1BrnA0hLS6vRtO+hQ4eGvy4oKAivtvevf/2LRx99FICLLroonNdsNh93NmBVK9NqtZ5yppNR9Uu0Z8+eMTN78n+98cYbXHPNNSxdutToKMek6zp33nknr732mmEZKioq2LFjB4899hgul4sBAwawbNmyo6baDxw4kAcffPCov9e0adOoLCVQ7wo3QHZ2Nm+++SYTJkxg6tSptG7dOiLH/emnn3j//feZM2cOmqZx//331+h4QoiI9dVVFe49e/bwxRdfcMcddzBu3Dj69+9fo+OaTLF3GaRx48bhdxIPPPBA+N9h+fLl/PGPfwQqf2BuvfVWoLI49+3bFyEEUkrWrl3Lhg0b0HWdXr160b9//6j1mWZkZFBSUoKu61E5fiQ0a9aMvLw8o2NUa/PmzWRnZ0f8HfTvcd999/H888+zevVq5syZg9PpZPTo0cycOfOo/Wrr56VeFm6AhIQEpk6dyuuvv871118fkT7RTZs28f777+P1ern44otjsqgtW7YMn89H69atadmyZUxmjKQjf/kNHjyYwYMHA5CXl8ecOXPC+3z55ZdAZd/57NmzmT17NmazmVGjRrF3796YvvN8Q7ZixQpWrFjBP/7xD0NzzJo1i06dOjF//nwmTJjAvffey5NPPmnYRdJ6W7gBWrduzfXXX8/TTz/Nk08+SUpKSo2ON2rUKFavXh3VFlpNTZw4kc2bN9OzZ0+joxiqWbNmPP744wD4/X6WL18OwL333ktFRQULFiwIv/2+9957eeaZZ4yMayghBFOmTOHvf/87kyZNMjpOmJSSzz//nEsvvRS73W5oFqvVyty5c1m3bh3Jycm8/PLLhuap14UbKi/cPfXUU4wePZoFCxaQkZFRo+Ode+65EUoWHTabrcEX7f9ls9m49NJLAejbty/9+/fnxRdfJCkpiT//+c988MEHBic0lhCCbt268eGHHxodJUzTND766COaNm1Kv379jI6D2WxmyJAhnH/++ZhMJsN/kdT7wg2QnJzMK6+8wvTp0xk/fnxUhgoqdUNKSgrdu3dn3rx5CCFo0aIFqampRsdS/kdJSQnz5s3jk09i637jsbLud4Mo3ADp6encdtttvPHGG9x00020bNnS6EiKAUwmEwsXLuSnn35CSskZZ5xhdKSYkJmZSceOHfnmm29iooU7e/ZsbrnlFqNjxKz6feXqf7Rr146xY8dy//33q+nxDdzpp59ea0XbbDajaVqtnOtUpaam0qJFi5i4OUkwGOTDDz9k2LBhRkeJWQ2qcAO0aNGCBQsWMGbMGHJzc42OozQAS5cu5ZJLLjE6Rp3x4IMP8tFHH8XsAIBY0OAKN1T2Uz377LOsXr3a6ChKA2CxWOrEtPKOHTty6NAhiouLDc0xc+ZMmjVrZmiGWNcgCzdUDhe7+uqrjY6hKDGjT58+7Nu3j4KCAqOjKCfQYC5OKopyYjNmzCA5OdnoGMoJqMKtKFEmhKgzt9bKzMw0OoJyEhpsV4mi1BYhhOFTtpX6RRVuRVGUOqZGXSVCiH1ABaABQSllTyFEOvAO0ArYB4yUUpbULKaiKIpSJRIt7oFSym5SyqoFMu4Hlksp2wPLQ48VRVGUCIlGV8lw4PXQ168D6vYkiqIoEVTTwi2Bz4UQG4UQN4e2ZUspq+7YWwAYt/q5oihKPVTT4YDnSinzhBBZwBdCiG1HflNKKYUQx7ypYqjQ3wyQmJjIzp07axglenJzcyktLY3pjIWFhei6HtMZXS4Xe/fupbCw0Ogo1fL7/TH9GpaXl+NyuWI6Y0FBQcz/vJSWlrJ///6I3PM1Wo5316QaFW4pZV7o8yEhxGKgN3BQCNFESpkvhGgCHKrm784D5gFkZGTIr776qiZRoqq0tJTc3FxiOePu3btxOBzhG+rGosLCQtauXWv4WsbH43Q6Y/rf2ev18s3hb/jgq9hdQ9yR72CQZ1BM364tLy+PjRs3smvXLqOjVOu4r5+U8pQ+gAQg6Yiv1wJDgKeB+0Pb7weeOtGxsrKyZCzbuXOnnDdvntExjmvx4sVy7dq1Rsc4runTp8vi4mKjY1RL13U5YcIEo2McV1FRkezxeA9JDP9pvLqxXLJkidEv1XHNnTtX7ty50+gYxxWqi8esmTXp484GVgshfgTWAR9LKT8FZgKDhRA7gYtCj5X/4XQ6ufLKK42OoShKBOzevZu777671s53yl0lUso9wFnH2F4EDKpJqIZAShnT3RqKopy8QCBAaWlprZ1PzZxUFEWpY1ThVhRFqWNU4VYURaljVOFWFEWpY+pV4c7Pz+e1114zOoaiKEpU1avCXVZWpu4jGSFOp5MxY8YYHaNeCwQCBINBo2ModZC6A45yTJqm8euvvxodo17SdZ1vv/2WVatWkZaWRrdu3ejVq5e6q3kdVtv/dvWqxZ2enk7Tpk3JyckxOoqiVMvv93PVVVdxxhlnEBcXx1VXXWV0JKWGZC2veVKvCndWVhYtW7Zk48aNRkdRlGrdd999LFy4kGAwSPv27XnhhReYNm2a0bGUOqReFW5FqQvuv/9+rr76atasWUPr1q156qmnuPPOO42OpdQhqnArSi1LS0sjEAhgs9l44oknaNOmDSkpKUbHUuoQdXFSUWrZ7Nmzef755+nYsSMpKSm0b9/e6EhKHVPvWtzDhg1j48aN7N+/3+goSh2gaVqtXVjSdZ0nn3ySDh06MGrUKHr27KmKtnJK6l3hzsrKoqysDK/Xa3QUJYaVlpaydetWRo4cSU5ODgUFBVE9n9/vZ8GCBbRq1YqhQ4eqoX/1jBoOqCi14IMPPmDcuHE8++yzTJ06leeeey6q56u6g9JVV12FyaR+7Oqb2h4OqPq4lQbj3Xff5aOPPgJgz5496LrO9OnTmTt3LvPmzWPTpk1ROa+UkhdeeIFx48ZF5fh10cyZM9m6dWv4sdVqZd68eVgskSlJK1aswGq1cu6550bkeLGmXhbu+Ph4vF4vUsqYfUvqdruJj483Oka1hBDY7XZ8Pl+t3yPS5/Ph9/tPat9XXnnlpNenGTVqFA8//DAA//73v3G5XFx33XXs3LkTt9tNhw4dTjVytXw+H+PHj2fSpEl07tw54sevq0aPHo3b7Q4/DgaD9O3bF03Tjrl/8+bNeeutt6o9nsViIT4+Hk3T6NatG0OGDMHv93P77bezcePGqL/LMZlMmM1mAoEAVqs1queCelq4X3rpJXr06MGGDRtitnBfeumlrF+/3ugY1UpKSuKee+7hiSee4NFHH43KOaSUrFq16jc3RV21ahUrVqw4qWOMHj36pCdcCSHC/x+6du3Kk08+SadOnZg/fz4jR47E4XD8vidwAsXFxbzwwgvcdtttdOrUKaLHruuaNm161GMpJevWrat2/7y8PIYPH17t9zt27MhVV12Fpmn4/X4uu+wyOnXqRHl5OT/++CPdu3ePWPZjad++Pf369WPhwoX89a9/jeq5oJ4WbiFErfc5/V6x/G4A/lvkovk6SilZsWIFgUDgqO3nn38+Dz30UNTOCzBkyBCGDBnCnDlz+OKLLzCZTBF9rh6Ph9mzZ3PBBRdw9tlnR+y49dWRv1SPpUWLFnz55ZfVfv/nn39m4cKF6LpOeXk5y5cvJy0tjZ49e7Jx48aoF+6q7LVVd+pl4VbqBpPJFO66MMr48eOjclyPx8Pq1auZOnVqVI6vHK1z58489thjBINBXn75ZTIzM/n888955plnyM/PNzpexKnL24oSYYWFhdx444289957RkdpcMxmM9u3byc9PZ2WLVuybdu2mH5ne6rqbYv7wgsv5KuvvuLCCy80OorSgOzcuZO5c+fy8ssvk5ycbHScBkcIQXp6OqNHjzY6SlTV2xb3I488olZcU2pVbm4ub7zxBrfeeiuZmZlGx1HqsXpbuBWlNkkpKSgooLy8XE1jV6Ku3naVKEpt+vnnn5k1axYLFiwwOorSAKgWt6JEwCeffMKCBQsiNvNPUY6n3v4vi4uLY+TIkSxatIirr77a6Dh1zu23386WLVs4fPgw27dvZ8GCBSQmJhodK2ZNmjTJ6AhKA1JvC/dFF11EXl4eFRUVTJkyhfXr15Oenm50rDrB5XKxceNGbr/9dr777jt27NhBcXGxKtyKEiPqZeHesmULrVu35tFHH+WLL74AYN26dQwZMsTgZHXD7NmzmTRpEq1btyYQCHDdddcxbdo05s+fb3Q0RVGop4V7z549tGvXjlatWnHRRRexf/9+fv75Z1W4T9J9991H586dmTx5Mq1bt+aqq65iw4YNRsdSFCXkhBcnhRCvCCEOCSFyjtiWLoT4QgixM/Q5LbRdCCFeFELsEkJsFkIYskjD8OHDWbhwIc8//zx5eXncfffdXH/99UZEqbNeeeUVAL7++mvmz5+vukkUJYacTIv7NWA28MYR2+4HlkspZwoh7g89vg+4FGgf+ugDvBT6XOvWrVvHpk2bWLduHbt37yYpKcmIGHVWv3796NWrF8FgkLi4OKPjKHVMfZxmHktOWLillCuFEK3+Z/Nw4ILQ168DX1FZuIcDb8jKJbK+FUKkCiGaSClrfZWXpKQkBgwYwIABA2r71PWGxWJRw9uUUxLrq3PWdaf6U5l9RDEuALJDXzcDjrxLb25oW/1bnusUrVq1in/+85/s37+fcePGcdlllx13nWFFUWKbruvceeedbNmyBYDvv/+eF154Iao3b6jxkUOt69/961UIcbMQYoMQYoPH46lpjDpB13W2bt1K27ZtyczMpF+/fqxfv77au34oihL7fD4fq1evZtCgQVx00UWsXr0an88X1XOeauE+KIRoAhD6fCi0PQ9occR+zUPbfkNKOU9K2VNK2TOWb+EVSfv27WPHjh389a9/pVevXlx++eXYbLaYvhOOoijHd8899zB37ly6detGt27dmDt3Lvfcc09Uz3mqXSUfAn8BZoY+f3DE9glCiEVUXpQsO5n+bU3TWLJkySlGib7CwkJ2794dkYw2m41Zs2YxYsQIFixYQF5eHgUFBTU+dk5ODr/88gsHDx6sccZoKSgo4NNPP43pe22Wl5fH9P9Ft9tNQn4CbZa0MTpKtZL2JZHjyonpfu49e/ZgsVjIyck58c4nMHjwYCZPnszdd98NwOTJk5k4cWKN/x8d7534CQu3EOJtKi9EZgohcoGHqSzY7wohbgR+AUaGdv8EuAzYBbiBMScT0O8XjBuXfeIdDeJw6PzlLw6ys2ue8cj+7OzsbM4555waHxPgl19+Ye7cFEpLY/d1bNfOzuWXNyIhIcHoKNWyWCwR+XeOFqfTSS97L2ZmzzQ6SrW2lWyjwlQR06+jw+HgifQncGe7T7zzyXgSxjEu/PV4an5nJb+o/obZJzOq5JpqvjXoGPtK4LaTThb+eyYKCvr93r9Wa1JSdtGkSRH9+sVuxoMHD1Jamh3Tr2Pz5svp0aMHNpuNiooK0tJTOVhygKSEFMoDh/i85A32uLdiCliwi0SEbia/4gB904Zwceur8bt9NG/UkvLychISEigpKcHhcBAIBNA0jYSEBKSUxMfHh6foV1RUkJKSEn7s8/lISUnB5/MhpSQuLg6TyRS+v+Zbb70VsX9nv99PIBCI6C+q4uJi1q9fX+OMuq7z6aefkpuby8iRIykvL+fFF19k+vTpNX5HpOs6hYWFMf3zsnnzZorOLKKsXZnRUaqVaKp+7oQa66XUKil1igIH2OPaigmdD/Pn0C7hbPy6HxvxdLD14YDvV8o8pXRK7c5pGV1JtqYxecW1JFkzuK37gzSyNcEWsGEymcJ3iDeZTGiahpQSn8+HEAJN0xBCEAgEwt8XQuD3+8NvQ4PBIDabLeLPc/ny5ezcuZODBw/So0cPLrnkEqxWa8TPc6pcLhcfffQRd999N1dccQVvv/02TZs2ZeXKlVxyySVGx1NOQC3rqtQqieSHQ98xbcMDvLThRczOZpSVBfh280+88ekS1uz4mtxf89j43Y+s3ruCX4p/IefgFuwymXiRzNubXuGzXR/i9FZgs9kQQmA2m4+6S3sgEMBqtaJpGhaLBU3TsNvtCCGwWCwEg8HKLFL+5g7zkTJ+/HhSU1O58MILueuuu3C7I/SWPEKSkpIYPnw4N954I3v27OGBBx5g06ZNdaJo+/1+5s6da3QMQ6nCrdQqkzDTM/NCmgR6sHV7MZu3HuaHzfmUH7BhdzfGtd9B3g4/W384zHc//MDWPetZ+f1XeFxB1u7+hkMVRcxd+38U+wqpqKgAKt+aezweLBYLJpPA4YjH6/VgtVrx+XzExcXhcrnCre2EhIRwEXc4HBF/jg8//DDPP/88bdq0YdeuXbz//vvcfvvtET9PTfXp04cZM2aQkZHBqFGjeOihh4yOdEIzZ85kyJAhJCUlce6557J69WqjIxlCdZUotUrXdRLMDl7844vcsHgM/8n5BN0H8TIOm7Tx/S6NP/cewY2De1HmKsXmsZHr/g/e8iIKi0vYqe0mGDAz/KU/8sXtK4DKkTpxcXF4PW5yls9k1/p/EgxqdO73F3oMnUZFRQUZGRl4vV7i4+MpLCzEbrcTDAZxu91kZGRE9Dn+7W9/o3///owfP54ff/yR119/nXfeeSei54iEtLQ0+vfvT0pKCn379o35ZSHKysrIzc3lxRdfJCEhgbKyMvbu3Uvfvn0b3Axf1eJWapXJZMJut+N1evjHiLlc1ukPWMxm2jRqQ992fenaqgu/HP6FrXk5FFUUk1+UT0LRabi2p3Bmcmc8ZYWge9HKBDe9eBNCCLxeL8XFRVQc3MruraspKffSrMswUpt2o6K8nMTERA4fPowQApfLRWZmZng6f2pqasSfo91uZ+DAgbz77rusXr2atm3bqju+R0BOTg5NmzYN38X93HPP5ccff4y5bqja0LB+TSmGk1Li9/tJS0sjEAjw0og5PBj/EP/e+G9KnaUkmBNwiHh8ws+hom2UlZSRZE1meL/hOCucxJNO0eFDmNIO4D8YQNOCWK1WVix+nkP71lCSv5/uF05kwLCJBIOV3/N4PKSlpaFpGg6Hg7KyMsxmM1JKnE4nKSkpEX+eTz/9NJ9//jnfffddneiCqAv69+/Pq6++yq233sqOHTu44YYbePjhhxvkL0VVuJVaZzKZwhcT0+LTmXbJNKzCzr/WvcvB4kMQABEAoQm6N+9OvDmePfl7iLfEk2TNoG3LTrz9+eu0ubiAV5fMZ/TQv7D+q/fJbtKc4be8QnarruHjVw3zM5vN4VElR04MUavY1S2PPfYY/fv3p23btrz66qs0a9bM6EiGUIVbqXUmkwmn00lCQgIul4tkezIz//AE0y59mCv+70+UlJewa/8espIyKXYWkWhNwuv2QkBy+HARidYEBvcYRm7uDlbJxXw77lXSNMmQgddxWud+WK1W3G43drs9fHHS6XRis9nw+/04HA40TUPX9agO0UtNTUXXdUpLS6PSJdMQNW7cmJSUFL7++uuYGl5Z21ThVmpV1TjrjIwMiouLSU1NxeVyYbPa8Dv9LL1tKfuK9/HRxo9weV2YgiYSbA7KS8tBCjxuL3azjasuuoqeZ/Vk5ebPeXntVM7/w1Wc1XcomqbhdDpJT0+nvLyclJQUSktLyczMpKKigvj4eIqKinA4HEgpcblcUZvh17t3bz766CN++OEHBg4cGJVzNFTRXHmvLlCFW6lVQgjsdjvFxcXEx8dTVlaG1WolGAySmJiIlJJ2We24ffDtSCmxWcwUrF5Gwbp/47DHkTHwUlL7DcJqt1NSUkKgIIinVND/ohHYbDaklKSmplK4bx/rF8ymOPdX0tp2psdfxpKa1Sjc363rOrqux/S6KcpvvfDCC0yePFkVbqMDKA1LVYs7JSWFsrIykpOTcbvdWCyW8Fhs/F5MPi/bpt6O9HtpfsW19HxgBrowYTWb2DvvSYp+3EhQ09lVWIr98CF8OevZsGYlhzZ/T0DT6HzVDXT/09X4fV40r4+3b74eZ7mTYVMfJbl1W7JbtMRkMuFyubDb7Ua/LMpJ2rJlC5MmTWrw1yZU4VZqndlsJhAIhGcxVl1INJvNaBVlHJj3NK5fd9H57mlYk5IJlJbg3bMTBPgkNPvTdZw2+jaCrgqafb2cnjt+pmjNSloNuJAzR91EMOjHVVKCv6IMTYKOZNiURwhqOqsWvsHm1au5Zf5rtDm7B2az2eiXQ1F+N1W4lVolhDhqHZGqNUOklBAM8stLM9AOHqDNtbfiP1xA8HABAklVA0tI8P+6F6+U6EByx86kduuB5g/iKS2i/JfdaFKiSdCkRJcSTQddSoK65OyhwwjoOgsn3c3VM56ifR9DbomqnIJ169Zx2mmnkZWVZXQUw6nCrdQqKSXBYJC0tLSjLk5aLBb2L/4nnl0/0/q6W5oHB38AACAASURBVCHgReggROjjqGNUFnCQaG4Xfikri3WoQGu6RJeEi3dQk2hSJxjap8t5A/F5/cwddwsT3/kXnc8+26BXQ/k9fv75Z5o0aUJ6errRUQynCrdSq0wmE3FxceTn55ORkUFhYSEJCQn43C6Kl31Ix2tvQ3OXIU2AEJhCLXRTqHJLKStb55LKCl5VpHWJrkuCUkfTJZoGwVDhDug6QQlBXUfTBZqu0/mc/hzKzcVTWGjky6Eop0QVbqVWVbW44+PjCQQC4QuDRauXYUtIxFuYh9kkMJkrRw0IM5iPKNy6rGxVS12ApqNLHSlB6qGWtl5VoCUBvbJ7JKhLgpLKAq5XdqMEgjoZzU9jzp138PLWnxCqrzumlZaWkpeXx/nnn290lJjQsMfUxKiHH344vPRofVQ1IqDqs5SSiu/X4mjVDs3jQve4kG4XeF3gcSO8bsw+D2afB+GtfCy9LqTXje5xo7vd6G4XutuF5naiud0E3K4jPpz4Xf/98FZU4HVV0LR9WzSf18iXQjlJhw4dYvv27fTv39/oKDFBFe4Y8vHHH9O5c2fOOeccevXqxdSpU42OFHFV62d7vV4sFgt+vz+0zYTU/OHCrXtcSI8L6XFDqFgLb+XXeDxwxH6610XQE/pwuwm6nQRDRdvvduFzOvG7KvC5nHidbrxOJ16nE09ZWfhGDIpSl6iukig7fPgwW7ZsOal9v/vuOy666CJsNhvvvPMO8+fP5+DBgzF9777fS9d1fD4fqampuN1ukpOT8fv9+H1+ZNFB7KF1TIRZYDIJhFkgTCYq2xiSIKDpOkFdJ6hVdoMEQl8HpCSghT50iT+oE9ShvLwMsyMBvybx60d8PzQJJ5ratGnD3r17GTBgQMwuPdq9e3c2btzIBRdcYHSUY5JSsnXrVk4//XSjo8SM2PyfVI8UFRXx1VdfndS+P/30Ey6Xi5UrV3LTTTfhcDg4fPhwvSrcJpMJm81GUVERjRo1oqSkhKSkJOKSU8j/+lNsJhOkpkKoeGOqHFIS9PsQ9nh0qvqtweeqwF14GL+m4wvq+HWJT9PxBSWayYIlM5sAgrIDuTgaN8Ov6wQ08GkaQR0O5xfg90a3q2TMmDEMGjSIESNGRGUVwkj4+9//To8ePfjhhx+MjnJMUkqmTZsWs/mMoAp3lHXq1Ilp06ad1L7vvvsuDz/8MM8++yzXXHMNXbt2pUuXLlFOWLt0Xcfv99OoUeX089TUVPx+P03+NJrDa5ZTun0LWrOWJGRmoZsEukkQFBDcvxtri7ZIwHPwAIHyMrw+X2W3R1DDr0k8QYkvqOHVdPwI9P2/4sdMfIuWlOXnIxISCGjg1XTKiovZs/Unug29HBr4LDyl7lGFO4ZcfvnlDB48mPHjx/Pee++RmFj9XZ7rMl3XMZvN6LoeXmbV3rQlusVGwOWGvTtB07AlJhKQGmbAX16G2Lyucqy2phHQdPyajl/7b/dIUOqhsdsQ0DS8pcX4gjpFhYV4Ahp+BMktWlFSUsKhvAK8/iBDx41r8NOnY92hQ4fq1bvOSFCFO4bYbDZsNhtvv/220VGiRgiBzWajoqICu92Ox+MJF3HNHo9fl8iAhrm8jKAWQDuwPzQcUCAADRmeZOPXdYKawK8f2Xeth/u8g3rlhJugFkDTIBDU8DidFOcfRJeAMBGfmGD0S6KcwNVXX83SpUuNjhFT1KgSpVZV3QEnNTUVj8dDUlISuq5jsVhode1N+EL91K7iYtzOCnyajlfT8Wg6bk3HG9TxBCsf+zXwhVrdR7W8db1yxqRedfGycpsuoby4BF3XkSYTvUb8CRGnVgdU6h7V4lZqVdWyroWFhSQmJlJaWorNZiMQCNC0/2B+0EGXOroMoFe4IahXXp8UlW0MKfXQJBwIhibb+EMXK/161WgRiV+r/H6gqoBLiYiLw+vxVe6jBel2wQW0bNPG4FdEOZ5gMKgWAjsG1eJWapWUkkAgQGZmJm63m5SUlPCdaCpcbpJ6nVfZyg5qOCucuAOVLWx3QA99LStb3EEdT1DDExpR4g1q+IIaPk3DH5T4NQ2/phMIFfNAUMfldOP3+Ulq1IhLbr0Fc1w8xcXFRr8kynE88sgjPPjggyQkqC6tI6nCrdSqqgk4brcbq9WK1+sNrxIYn5REh1E34g3KUIHW8IZGi3iDGt6gdkTRruxC8QZluHvFp0l8oe4Svybw6+DX5FHjvQNSkt2+PeXFJfT74zB1I4UYp2kaZrNZXUD+H6pwK7VOShle1rVqAoyUEovFQlq7jjS/eFioUIda1cHKvu3/9m9LPIHK7/tC+/lCo0wCoeJd2V2iVRZxXeLXIajpnH7eBWjCwjkjrsRisTTo+xYqdZcq3EqtqiraDoeDQCBAfHx8+CYKHo8HU0IiGV264cdU2erWKrtG3EENd7iIBysvVoYfV7bGvVrlGG6fLvEGKyfb+HUNX6i1rQsTac2aUVFRzpnnnYemabhcLqNfEqUaX375JUlJSfRRa6b/hircSq2qWtb10KFDJCQkUFRUFL4jTmpqKvHx8XS4ajTZfQdUdo34NdwBDXdQr/wI6Lj9El9Q4g3KUHdJZSvcGwSPJvEFK4cEekPdJwFNQ1qsdLlwMOuXf8WMxUuwx8VhtVrJyMiI+nPu2bMn69ati/p56puqbjR1a7nfUqNKlFpVdXEyMTERn89HQkJCeEKO1+tFSolJCDoPu5I936wh4HUf0br472qCOqGbJoQm3ISXbz1iCKA/tCZJEBOtunYngGDAlSPQrDaCwSBSSpxOJ0lJSVF9zjNmzODss89m06ZNUT2P0nCcsMUthHhFCHFICJFzxLZHhBB5QohNoY/LjvjeA0KIXUKI7UKIS6IVXKm7zGYzmqZhtVoJBALh2ZMWiyU89KvlhZfg6HQG3qDEHZThFnf4wmRoe1X/ty9Q2d/tC1+0/G+/d1a7DjjS0tm39SfOHDiQhMRETKHFrGJ14aeGrqysjMWLF3PttdcaHSUmnUxXyWvAkGNsf05K2S308QmAEOJ04GrgjNDfmSOEUIMwlbCqe05WLedadZFSShkuplA5Lf4P0/+OKS3jiIJd1WUicYUuSnoD/y3mHg08oaLt1TR0i5Xk5qdhSUyirLiYP915Bx179w6PUhBCqIuTMSoQCJCXl0fLli2NjhKTTli4pZQrgZMd7DocWCSl9Ekp9wK7gN41yKfUM//bVeJwONB1HZPJhMfjIRAIAJXT/5u2a8/Vc14hqWUrPAE99FF5IdJXNb473Meth0ei+IKVfeB+KfD6A5QXl9D9osFcNGYMcfHxVFRUoGmaujgZw+x2O4MGDTI6RsyqycXJCUKIzaGulLTQtmbA/iP2yQ1t+w0hxM1CiA1CiA2BgKcGMZS6pOpiU2lpKXFxcZSXlwOVM+QSEhKw2+1IKfF6vVRUVNCud1+GTptB9z+NxCdFeJSJ32yh9YALwkMEvUGNuMwsEhs3xatpldPhfQFsDgdX3H47g2+4ASEEXq+X1NRUzGYzFosl6v3byqlJSkrinnvuMTpGzDrVDr6XgOlU3rJ1OvAMcMPvOYCUch4wDyApKVv6fKeYRKlzbDYbWVlZmM1mGjVqFJ5cUdVNYrFYcDgc4W09Bg+hS79z+ePk+4HQXd5NAkdqKs4jZj5abHYQ4qg1tm1xcWS1bIkeGnIYHx+PECI88aY2JnYIIXj//fejfh6l4Tilwi2lPFj1tRDiZaBq6a48oMURuzYPbVOUsCP7sqs+H+l/16YwmUxY09JITEv7zb5p2Y1P6pxVR6w6X23OxBNC0LZt21o7n1L/nVJXiRCiyREPrwCqRpx8CFwthLALIVoD7QE1gFVRYpgQgtGjRxsdQ/kdhJTy+DsI8TZwAZAJHAQeDj3uRmVXyT7gFillfmj/KVR2mwSBu6SU/zlRiJSUdNmhw92n+hyizmp1ccYZhZx22mlGR6lWQUEBP/5ox+v9bas0VqSl7aBfv9YxPZJjy5YtnHnmmUbHqFYgEGDfvn20b9/e6CjVKi4uxu/307jxyb0bMsK+ffv4qdFPBBICRkep1o5nd1BWXHbMt4YnLNy1ISkpS/r9242OUa3k5H08/PCaGo8pPXTo0FGPrVYracd4+38qPv30Uxo1akSPHj0icrxoeP755xkzZkzM3nsRYMqUKTz++OMROZbf7ycQCJCQkBAewZKcnFyjY5aWlvLGG29wxx13RCRjNGzYsIGioiIuuSR2p3G8+eabnHfeeTHdGOvYsSOHDh06ZuGOkdkHAr8/dluKgUARdru9RkX266+/ZvDgweHhbgBnnHEG7733Hp06dapxxvj4eBISEiL2iyAQCLB+/XrOOeeciBwPKn9RpaSkRCxjpFWtmRKJfH6/n0WLFpGenk6LFi1o2bIlL7zwAnfccQetWrWqUcZI/sKPBofDgdvtjumMdrudxMTEiGV0Op3s3LmT7t27R+R4cPzrMGqtkigLBoN8+OGHXHvttUcVbYCtW7cyduxYtmzZQiy88zmS2+3moYceMjpGnaXrOsXFxWRkZPDQQw+FW96lpaVGR1OiIDc3l1mzZtXa+VThjiIpJV9++SW33noreXnHHlyzZs0a/vznP/+mG0Wp2+Li4ujduzdjx45l48aNjBgxgn379tGtWzejoyn1QIx0ldRPUkpKS0uPW5SllOzZs+c3rXGl7rvwwgvZunUrl112GYsWLYrprgOlblEt7ijy+XysWbMGTdOOu18gEGDZsmW1lEqpLWazGYfDEZ74o5YnVSJFFe4oslgstGvX7oSTPcxmM6effnotpVIUpa5ThTuKzGYzTZo0OeFdqi0WC82aHXNJF0VRlN9QhTuKhBAMHjyYUaNGHXe/5557juzs7FpKpShKXacKdxQJIUhKSuJPf/oTN9xww29mDDZp0oRx48Zx3nnnnbBVrig1oWkar732mtExjuk///kPBw8ePPGOSpgq3FEkpUQIwdChQytvtxW6o3kVt9vNmWeeSefOnQ1KqDQEc+bMYfjw4UgpufTSS1m1apXRkQA4ePAgl156KVu2bGHSpEkxPRs01qjhgFFWXl7Oo48+yptvvvmb0SVlZWVMmjSJjIwMhg4dGl7KVFEixe12s2PHDh544AFat26N0+lk79699OvXz9Dbtkkpyc3NpXnz5owePRpN07jxxhspLS0lNTXVsFx1hWpxR4mu6+zbt4/x48fz/PPPEwwGj7mf2+3mmmuu4bnnnqO4uDjmZlAqddsPP/xAdnY2HTt2ZPr06TRp0oQffvghJmZwzp8/n7Fjx/Lhhx/yn//8hxEjRrB48WKjY9UJqsUdYVVdIvPmzWPp0qV89tlnJyzGuq7z5JNPkpOTw9ixY7ngggvC90RUlJro378/b7/9NhMnTuT222+nT58+vPvuu2RmZhqaSwjBfffdxyWXXMKCBQsYP348NpuNDRs2GJqrrlCFO4KqivYrr7zC/fffH74t18moqKhg0aJFrF69mo8++oiuXbuqwn2EYDAYvsmv8vvce++95Ofn89xzz3HvvfcipQxffzFSkyZNWLhwIe+88w6PPfYYmqbxzDPPMHHixGPeYEP5L1W4I0jXdV599VXGjRt3wtmS1cnNzeWcc85h7dq1al0LKpcx3bdvHzNnzmTSpEk0btyY5s2bGx2rTmnZsiUtWrTg9ddfx2w288ADD9C4cWMGDBhgaPG22+307NmTbt26hQv1W2+9xWuvvUbv3r0544wzDP/lEqvUr7UIevPNN7n55ptPuWhX8Xg8XHPNNaxcuTJCyequZcuWMWHCBGbMmMFzzz3HE088YXSkOkkIgc1mw2w289RTT7Fs2TKWLl164r9YCywWS/h2dtdddx2apjFv3jw+/vhjo6PFLFW4I2TBggXcddddR/VnCyFwOBwnbDUIIUhISDhq27Zt27j55pv57rvvopK3LiguLmbt2rUsWLCAl19+mcTERFq0aMHatWuNjlbnTZkyhT179sTkxcCxY8fy9NNPs3v3bj744AOj48QkVbhrSNM03n77bSZPnkxZWdlR32vVqhWzZ88+YX+d1WplyZIlpKSkHDVJZ/v27Vx55ZXs2LGjQY42SU5O5qyzzmLZsmWMGzeOyy67jBdffJFdu3ZRVlbWIF+TSLHb7XTp0oWcnJxqRzwZyW63M3bsWDZv3szKlStj/t+6trt0VOGuASklK1eu5Prrr6ekpCS8vXHjxvTv359vv/2WzMzMk/pHPfvss/n111+55557jmp95+bm0q9fP/Lz86PyHGKZxWKhdevWLF68mBUrVjBnzhzuv/9+9u/fz7XXXsvy5cvZs2eP0THrrAsvvJDmzZvz5ptvxmTxdjgcPPjggyxZsiTmuw1r+xeLKtw1oOs6f//734/q027atCnTpk3jk08+oVGjRid9rKrp8ZMmTeK22247agnQiooK5s6dG/Otjmg477zzWLZsGX6/n48//pg777yTKVOm8N5777FmzRreeOMNHnnkEbxer9FRj+nLL7/kvPPOi8klXYUQjBkzBiEE//d//2d0nGMSQvDMM8+wZs2amOzWqZKZmUnLli354YcfauV8qnDXgBCCVq1ahdcZsVqtTJ8+nVGjRpGcnPy73z4JIcjIyOC+++5j/Pjx4e12u73WR1IkJCQwatSomFnf4qabbjpqpl9cXBwPP/wwo0eP5txzz+XKK6/kiSeeCA91ixUrVqzgvPPOIy4uzugo1frLX/5Cy5YtefLJJ2PqtasihOCuu+7il19+4ZNPPonJjFWFe9OmTbVyPlW4a0AIwfTp05k8eTJt27Zl/fr1jB49+jcXGn/vf7S0tDRmzJjByy+/TJs2bZg9e3a4ZVRbqropYr0rok2bNgwaNIi33nqLjh070r17d7766isOHDhgdLQ6QwjBsGHDaNSoEW+88YbRcY7J4XAwfvx41qxZw9q1a2OyeNcmVbhrQAhBWloajz/+ONu2baNr165HtQqllAQCgZOaOXnkrcuEENjtdm644Qa2b9/O6NGjDV1XItYJIUhOTmbEiBFs2rSJzz77LGbf+scqs9lM+/btyc/P/81F9lhhs9l4/PHH+fDDD/n888+NjmMoVbhrSAiByWTCYrEcs0Xctm1bevTocdxjXHHFFcfsAz3yuGoiwsmbOXMmjz/+uNEx6pwBAwbQt29fHn/88d+sZBlLHnvsMbZu3cq4cePYvHmz0XEMoQp3FAkhaN269QlvSzZo0KDfdK8oihEuuOACRo8ezU033RSTI02g8lrSLbfcwrhx43jxxRcpKCgwOlKtU4U7yk6mtaxa1EosOeOMM7jpppv429/+ZnSUaiUkJNC1a1fmzp3LXXfdxc6dO42OVKtU4VYU5ShCCJo2bUpcXBy7d+82Os5xWSwW5s2bx6uvvsrGjRuNjlNrVOFWFOU3WrVqxXXXXceLL74YE2t3H09ycjITJkxg8eLF7Nixw+g4tUINVVAU5Zg6dOjA1KlTSUpKMjrKCTVt2pTJkycTHx9vdJRaoQq3oijVysjIMDrCSUtJSTE6Qq05YVeJEKKFEGKFEOInIcRWIcSdoe3pQogvhBA7Q5/TQtuFEOJFIcQuIcRmIcTZ0X4SiqIoDcnJ9HEHgXuklKcDfYHbhBCnA/cDy6WU7YHloccAlwLtQx83Ay9FPLWiKEoDdsLCLaXMl1J+H/q6AvgZaAYMB14P7fY6cHno6+HAG7LSt0CqEKJJxJMriqI0UL9rVIkQohXQHfgOyJZSVq01WgBkh75uBuw/4q/lhrb977FuFkJsEEJsCAQ8vzN23XEyix7put7g115QFOXknXThFkIkAu8Dd0kpj7oLrqysOr+r8kgp50kpe0ope1qt9fdKcFxc3FGzIs1mM/Hx8UdNuMnIyFA3R1UU5aSdVLUQQlipLNoLpZT/Dm0+WNUFEvp8KLQ9D2hxxF9vHtrWIFksFrKzs0lOTiYxMZG//vWvbNq0ibPOOguHw0FGRgYZGRlq5qSi1FFSStxuN36/H7/fj9vtjvo76BMOBxSVFWUB8LOU8tkjvvUh8BdgZujzB0dsnyCEWAT0AcqO6FJpcIQQPPjgg0yZMiX82GQysWHDhvA+sdja3rhxIzk5Oezfv581a9bQp08ftUKhohyDruu0atWK1NRUhBA89NBD5Ofnh9fpj4aT+UnsD1wPbBFCVK0S/jcqC/a7QogbgV+AkaHvfQJcBuwC3MCYiCauY6pbhySa/6iRcO2119KtWzf279/Pddddx/fff09aWprRsRQl5ixatIh7772X9PR0hBAUFRWxaNEirr322qid84SFW0q5GqjuffygY+wvgdt+f5TYvzhXFy4gRiLjs88+y7Rp08jIyODrr7/m0ksv5W9/+xtz5syJQMLYfx0jme/aa68lMzMz4s851l9DaDgZTzvtNL799ltGjhyJEIKnnnqKvn37RvX5i1h4cVNS0mS3btcZHaNaZrOfJk2cpKenGx2lWuXl5VgsFhwOR0SOlZCQgKZpBAIBEhISKC4urvHzP3ToEBkZGTH9biM39wAWS1OjYxyHRsB0AGuW1egg1dLdOonBRJKTk42OUq3i4mISExOx2WwRO17Vz0ckflYA/vnPf1JSUnLMRnNMFO6kpGzpdB40Oka1UlJ28fTTKxg7dqzRUaq1ZMkSsrOz6dOnDz6fD6vV+t/F8E06Bb5fKAkeROoSCzZA4Am4cZiTaZt8BkI3Y7NZ0TQNIQTBYDDcHx8MBrHZbOHPVccPBoOYzeaj9q3qGgoGg1itlcWlqqvoscce47bbbovZLhcpJSNH3sF7780yOkq17PZiuky9mI1/i92V8BqvaczcwrkMHz7c6CjV+sc//sGgQYNo166d0VGqlZ2dzcGDB49ZuNXVpnpG0zSKioqIS7KxrmQpWXGnETR52e38kXz/L1R4nVR4y2ga3xaP30OWtTk7435mb9EuJvSZgt8XQAiB0+kM30LN6XSSmZmJ01n5rqOsrIz09PRwy7y0tBSr1YrNZsNms2GxWHA6nTFboBUlGtatW4cQgl69ekX9XKpwG8TlcjF58uSI9RtX2VX6I++XPIcoExT4fsEq4wgGJQmkkWlvRipplLpdePQA6fbmoFv5z+5/E29JYvqX93J1lxtp6mhBUlISUkqCwSAZGRm4XC7sdjuFhYUkJiZSXl5OfHw8Pp+P1NRUpJRomobb7QYq7w9YVFREamqqGo2iNAg5OTmqcNd3uq7z888/R/y4jRynsWj5D6THpdO1UVfaZHViz4F9vL76bdp1SKFRQiI7N+djbhak/+nnYQ7GEW9JpbiiELsjiVfWvcQfOl/OGWlnYbFYsVqtHD58mKysLFwuF+kZGRQXFZGSkkJZWRkJCQmUl5djtVbum5CQgMlkwuVykZaWFpNDHRWlrlOFu56Jx8G8P7zCvZ9P5uOf/sNnOcuw6zay0xrjP2zHV5FJ+6zTOFC6F61U55tN39C8Szq7Cg7QLsNPqbsMr0+j7fmdSLVUzvBMTEzE7/fjq8hnx7YPqSivID2rKZltBqFpGnFxceF+bL/fD1SOTfd6vb+ZJaooSs2p5lA9YzKZ6JDejgcvnILJIthdtJsSTwmJcQm4/W7cARctslrQObMbyZ52tEo+nYodEuHXMePj10MH+GzLch5f+hhQecFO13WQGnk/fcZXi+5i4ycPsvHzZxCh69q6rh+13orJZDqpNVoURTk1qnDXM1arlYA/QL/m/Xh/1PtkJmZgMpsp9ZZhtVnwaX5+yt3K4YrDbP91G6s2fMNpji4My76eH5dvp1enFjgqzPzrP/8iEAwAUFFeyqFf1rPy41mUuu30unIBg29YSECrHFXi9/vDI1iqLlLquh7x1ramaVRUVDBp0iR27twZ7k9XlIZGFe56pqysjKysLIQUdG58OmvuWE1qQir5FQUUlB/kQFk++0ty+WbHN6zatorMtEZoUuPgoUKGnX0VCT+3J8VuISslnt37dyCl5OvFf2f+zBuIS23PoOv+jy69hxIkAYfDgdfrJT09HYfDER6NUlpais1mo7CwEE3TIvbctm7dSufOncMTgmJ5uJmiRJMq3PVM1cVCIQRer5dsR2NeueYVxp8/Hr8eYF/RPrblb8Ov+2nfrAOZ6ZkcKj1EibOYvMMHcHvdJBW3Ij5Z8OgHd/Hvj+az4+fNpDY+nT/e+AJdel+G1+vF4XDg9/uxWq3hBXYA4uPjcTgcaJpGUlJSxC5OaprG0qVLeemllygvL2fWrFmcc845rFy5MiLHV5S6RF2crGeqLggGAoHwJJyOjTrQYeBEejfrxUHXQZ547wnyCg+w5+Bu0uMysGGjqLAQnzuA1+lh3OXjuP2cCZQ5cnntuSdJO6Rxz/SXSWvUArfbTXx8PF6vF7vdHp6UU9XPXVXAqwq63W6PyPMSQtC6dWv27dvH2rVrad++PQcOHKBZs98s9a4o9Z4q3PWMrutYLBb8fv9RFwmlhH5t+hEXH8eQ04dgtVlxVjixmQV5e3bQKCUDnwRHeiPibHGkpaZRXl7C9tabGHjDH2jVvhtCCDRNw2Qy4Sw8TMBiJqDpZDRthslkChdvILxvpC5QmkwmunXrxrBhwygsLOTTTz9lyJAhtG3bNiLHV5S6RBXueiYuLi48rtrn8wH/XYnQbrfj9/tJikuicMNa4gIeKg4dJOnAL5SXlpB6ZneSu/XFuW8Xez0e9hccYsuqNfQ9+1wCeb9yYOc24uLjKU9M45dVy/k150cSGzXB0aYDiRmZNDvjDLLbdwxPg09JSYnoOO7OnTuzc+dOXnjhBZ566ineeuutiB1bUeoSVbjrGZfLRUZGBk6nk7i4OHRdx+fzIYTA4/EQ56lg78K5JKRl4I93kNKoMcnnnI8UAgF4cn9BlhVj14Mk7N3BOT43cvlSDuTtQ5gslAT8xGc1o8OgIbQddAlS09m+ZiUFOT/y6w8bqfB4ufxvD5GWmUlZ2Fk8WgAAIABJREFUWVlU7u5z55138uqrr0b0mEr9smbNGqxWK7179zY6SlSowl3PJCcnV65VEheH2+3GZDJhtVqRUpJgNbPp9rGktGlP2nkXYzJbQGr4836tXLhXSsxmCyntOqFLSUKLtrT709Vomo7PXY4lPhFN6gQCQTxlxegSNF3SvMtZNJGSsqIiPnzhWRaMv4UJr/2T1NTUqK0EWNWqr1rISlGg8iL2gAED6NevH4FAgEmTJvHVV1/Vuxm89evZKJSXl4fXf3Y4HJXjugMBvCVFfHfT5TiaNqPJpSPQK8rQy4qRFWUIrxPhcYLXhXSVoxUfJlh8GN1VQbCsCK2iBOH34y8tJlBSQrCinKDLRdDtIuB24XdW4HNWds8Mv+senAX5zP7raPbv3h3R4YBH+vTTTxk2bFhUjq3UXTt37iQrK4trrrmGBx98kKysLHbt2mV0rIhThbueiYuL+3/2zjs+qir9/+9zpyaTmRRClw6KgFJl7QUUddfG7irY145tXQUEf2tdtwgK2MWGuigKVlx1LevqV3HXgqAUhSU0qSGkTDJzp9xyfn/MzDVR0AAJMwnn/XrNa+6ce+fcZ24yn3nuc55zHqLRKEIIDMPAsixcLhcV/5hHSZdedD5xNMb2LRDXEXEdLa4j4jFEIo4WjyFiUUQstY9YBKlHsPQ6zJiOqUcwYxHsWFq0IxHMSIRENEIyGiERjWLE4hw+9hzK165m+Qf/brbp7pkfJIWiPhdffDGHHXYYTz/9NOvWrePUU0/lrbfeyrZZTY4S7lZGfn4+NTU1AMRisVSWRyJG3f+WUNR3AOb2rRDXU8KdiKIldFxJHVdCR0vGEAkdkdAhFkXGdWQ8itR1ZCyKFdMx9ShmNIoRrcOIRkjqEcxolGQkSjJaR0KvQwO6HzSQz+bPJ1xRkd0Lotgn+OKLLxgzZgznnnsu99xzDwcffDCff/45kydP5ve//322zWtylHC3MsLhMO3bt0dKSUFBAW63my0fvgOJJLZlYMWiyFhKmFMedxRXQsediKLFo4hEWqzjMaSuY0d17FgUK1aHrafE24h9HyYxohESeoREtI5kNEI8EiUWqaVD797UVVURqa5uls8ZCoW46qqrmDFjRrP0r8htTNOkurqaK6+8koEDB/L4449z9913c+mll7Jo0SKEEASDQWeN7NaGGpxsZRQWFlJeXk4wGCQajeJyucj3eajzurCTcWwTpKaBBlIToAk0l4YQIG0QtgRbIm2JbVnYdmoA0rJtLBtMS2JISdKWmJbEtG0MGwzbxki/Tto2pi2wTQOaaaEpTdMIhULU1tY2S/+K3GT58uVs3LiRLVu28Pzzz3PHHXc4a9pnBLpLly5ceumlDdpaG0q4WxmxWIxgMAjgzFqMx+PYiXjKc9bApbmwNbBdAlvTsDWBhsCWacG2bSxbYlvSEW3TlimBtlLbppUS7KRlp8VaYlhg2DIt4jaWikErmojKykruvfde3G43mqax33778c477+z0+NYq2BmUcGeJ6667jmnTpjV5vy6Xy6lOkxmYdLs81K36lrxgISIvD9OlIVwpr1toAoQLAdikRNe0wbItDEumHrbEkDaGCUnLwpQpwU5asG39WvLbdcDQXBgWKU/chqRpNfvg4ZAhQ1iwYAGLFi1iyJAhzXouxd6l/rLAN9xwA5s2beKqq67igAMOoFOn3Cvm/N1337F06VJuvPHGvXI+JdxZYvHixQwaNKjJ+83kTQshnLW0faVtweOl9tuliF59kD4fUtOQLoEUkmS0DuHLB48HyzQxkiaJuE7NiuUkTZO4KUnYkrhpEbdsEhYE+wzA8nrx5OcTj+qYQmBYkoSVCpls/m494YoKRDNWdC8pKUFKSVVVVbOdQ7F77InHW15eztatW7nwwgsBeOCBBxg0aJBzJ5mL6LpOOBymY8eOe+V8SrhbGZllXevq6ggEApimCQcPp81hIyj/50tYsShF3Xth5edjaQKXkFjlmxBuH3i9JOvCJLZvI2ml4tgJy8a0JElTYlgWpikxLJtNS74gYYK7tD0Jw4RAAXj9JKWgZnsV61et4tiLL6NkL/0jK3KLXV2jxrIs5s6di23bfPXVV0SjURYvXtzqQx67ixLuVkZ+fj7hcBiXy0U8HgdSXngskcS0JQk9Sl35ZvLbtiNWU4VL2qn0wGQCm9RApC3Tgm2DYUmS6UFH05aYtsSS3w9YRjdvImFJYpaNr01bookkleUV2Db0POhg8goKmvXznnrqqcydO5fDDz+c/Pz8Zj2XonmYM2cOH330EYMGpRYyu+qqq+jZs2e2zcpplHC3MpLJJAUFBcRiMbxeL5ZlYVkWeZ07Y7o8YBqIujqk14usrMAlbYTQUjPeAUumBiaNTKzaliTTGSOGDYa005klpGLhUmKRGsRMxOPEIjFsIfAVhIgnEti23azTjYcNG8bkyZNJJpNKuFsQyWSSTZs2ceaZZ3LBBRdw7bXX0q9fP+VhNxIl3K2QzG1q/dvVnuddxYa3/4G+aR2WHsdyhxGGhUtKhABE6ngLmU4BpEG2SOo5lS1i2GCZ33vhScvGRhCvjRJLJDBNm6GjT+Loc8/J0hVQ5DoTJkxg48aNfPrpp2ia1urWEmlulHC3MrxeL7FYDE3TUvFtvi/eqxW1xfxuLVJaWBEdzbJxCYlAQmYwE7CldIQ743kn0qKdtFMDlYZtY8iUoFs2mIBFKoTS94ijcaGR78/bK1/I3/zmN8ybN4/LL7+82c+laBruv//+bJvQolE/c62MeDxOKBQCUuuWuN3uVF62ZdH9gitJWIK4aROLJ4kZNjEz/TAs4qadyhwx0s+WJGFJ4pZN0rRJpJ9NU5JMx79NO5UymDRM4vE4Lr8PzefhpMuvoLa2ttkWmarPuHHjnEkYCsW+gPK4WxnBYJDt27fj9/uJRCIIIfB4PLhcLnr84gg+yy8gWRdGE+DWBJotEEJmVnXFkimP2yblcVs2mOmZkqm8bkjakLQtEhYYVjqkYkmk28PhZ45l5eKv6DZgAIFAALdb/YspFE3Nz3rcQoguQogPhBDfCCGWCyGuS7ffLoTYJIT4Kv34Zb333CSEKBNCrBRCnNicH0DRkEgkQmFhIVJK/H4/Ho8Hy7KwbRvdMBhx31NOPrZu2eimTcyw0Y30tmURM616HrhN3LBImlZq0k06RTBpZqa3WyRsMC2bvocfyZcffMA1jz6G1+slEok4pcyam2HDhrFo0aK9ci6FIts0JlRiAuOllP2AQ4GrhRD90vtmSCkHpR9vAaT3jQX6AycBDwshmm8WhqIBXq+XeDzu1HzMZHUIIfB6vfjatafDESPSgpwKk+imRcw0iaWFOhMeiZvfT7pJPdJhEyvlYSes1LGGbeELFRKLJ/nFL39Jh27dsCwLj8ezV7IEhBDcfPPN3HPPPc1+LoUiF/hZ4ZZSbpFSLkpv1wHfAj9VWvt04AUpZUJKuRYoA1pn/aAcxO/3U1dXhxCCZDKJbdu4XK7UYlP5+biLSug0/HASpiRmfO9Zx0yZejZsJ/adsKy0WJN+fC/WCVumQyU2tnDTf8TxxJJJDj/tDIKhEJZlEQgE9mp6l8pMUGSLvZ3GuEv/6UKI7sBg4LN00zVCiCVCiFlCiOJ0W2dgQ723beSnhV7RhNTW1tK2bVts204JtduNYRgYhkF1dTWB/Hz6j72Q/Y4bRcxOedhRwyKatNANKxU2SYdKomkBjxsWcdMkYVgkMgOXZsrztlweDjjyGKq2VzLk+BPoPGAANTU1eDwetm/fvlcGJwG6du3Kk08+uVfOpVD8kF2dKbqnNFq4hRAFwMvAH6SUtcAjQC9gELAF2KUVk4QQlwshFgohFhpGbFfeqvgJQqEQVVVVaJqGrusYhoHH48Hj8VBUVISu67g8Hrqe8EtMT14qrm1KYpZEN1Nx75gp04/vs07ipiRuSWKZGLctwe+nXa/eSLcLvTZM5759CRUWUlRUhGEYlJSUNFvNyR+iaZqzGqJC0dpp1JC/EMJDSrSfk1K+AiClLK+3/3HgjfTLTUCXem/fL93WACnlY8BjAMFge5lI7I75ih+i6zqhdKgiU+U9k8+dTCbx+/1YlsXw0WcSq6rkjdtvpuFd3vf53Knp7zhT3E2ZngZv20jhoiBUDF4fW9au4/K776b/UUcRi8UQQuB2u6mrqyMUCu018VYo9hUak1UigCeBb6WU0+u11189aDSwLL39OjBWCOETQvQA+gCfN53JLRvDMIhEIliWRTQaJZlMNmn/eXl51NbWIqUkHo9jmqYzMy0QCBCPx5FSUltbyzEXX8Gom2/HdHlS3nQ6nztm2iSFi1i9trhlk5QacdMiYUoSCPRYnK3rvuP82+6gzy9+kVqJ0OfD7/djmuZej3ErFPsKjfG4jwDOB5YKIb5Kt/0/4GwhxCBSS1ysA64AkFIuF0LMA74hlZFytZRy7wQ6WwBPP/0006dPZ8OGDRx55JGcdtpp3HnnnU3Wv8vlwu1243a7nbhbZrv+Prfbjdfn47Bzf0fvoYfy3iMPUrs9VR9SAoedcy4fP/csUoJtS9x5+XQ56CC+/e9/sSVIBCUdO3Du//t/lHTpgtvjcfrNnNPtdivhVrR6lixZwrJlyygvL2fBggUMGTKk2dfN+VnhllIuAHb07dtp6WQp5V+Av+yBXa2SiooKtmzZwnPPPccll1zCSy+9xOzZs1mzZk2TrYamaRqlpaU73V9YWAhAIBAAoF27drRr147+Rx/9o2NHXXTpbtvh8Xh2+70KRUvi6quvpnfv3mzYsIErr7ySF198kb59+zbrOVX+1F7E7/eTl5dHTU0N999/P7quY9t2Ti8Qr1Aods5TTz3F7373OyZMmMCwYcN49tlnufvuu5t94lmOzEeW+Hy5W8XE660lHo83SaUVn8/HmDFjmD9/PqNGjeKCCy7A5XLtcd+6rhOJRHK6GoxhGNTU1Oz11Kldw8rp/0WfrwaX4cJXlbsZNN6IF13Xc/p/MR6PU1tbu8c2Hn/88YwbN44TTjiB2267jalTp3LOOedQU1Ozxzb+1PdE5MKXqKSkRE6YMCHbZuyUaDRKRUUF3bt3z7YpO2XLli34fD5KSkqybcpOWblyJT179szpMMrXX3/NwIEDs23GTjEMgwUL1lBdfUC2Tdkpfn8Vgwcn9loZr91h7dq1tGvXzgkZ5iL33HMPVVVVOx4kyhTlzOajXbt2MpdZtWqVfOyxx7Jtxk/y6quvyv/85z/ZNuMnufPOO2VVVVW2zdgptm3La665Jttm/CSVlZVy6NC/yNSSYLn56NBhgXzttdeyfal+kpkzZ8pVq1Zl24yfJK2LO9TMVhnjvuOOO9iwYcPPH6hQKBQtkFYp3GvWrHHqLSoUCkVro1UKt0KhUOxtVqxYwYoVK/bKuXIkq0ShUChaJrZtc+mll9K2bVsgNV/jiSeeaNbVKpVwKxQKxR4QiUT45ptveOWVVwD49a9/TSQScUoINgcqVKJQKBR7wK233srUqVN55513ePfdd5k6dSq33nprs55TedwKhUKxB0ybNo2ePXsyePBghBAsWrSINWvWNOs5lcetyDkyuarjxo1zthWKXEXTNGbNmkXv3r3p1asXs2bNavZqTEq4FTnH9OnT6du3L5deein7778/M2fOzLZJCsVOEUIwcuRI+vXrR//+/Rk5cmSzr4qphFuRU2zbto1oNMrcuXPZvn07zz77LFVVVTm97oVCsbdRwq3IKUzTREqJx+Nh/fr1zJ49u0EVH4VCoYRbkWN06tQJn8/Hb3/7Ww499FAef/xxCgoKfnKNcYViX0MJtyLnmDhxIl9//TVTp06lrq4O27Z5/fXXm32N4+Zg8+bN1NXVZdsMRStDCbci53C5XHi9Xp577jm8Xi/jx4+nrKyMOXPmZNu0XeaRRx5h4cKF2TZD0cpQwq1oEdxwww0kk0meeOKJbJuiUGQdJdyKFoGmaZx33nmYpsmLL76IZan604p9FyXcu8gnn3yS0xNCkskkX375ZbbNaBa8Xi9XXHEFq1ev5vXXX8/pv4PixxiGwdtvv+08DMPItkktFjXlfReYM2cOq1ev5q233mLUqFEcc8wx2TbpR8yYMYNEIsErr7zC5ZdfTrdu3bJtUpMihGDy5Mk8+OCDPPXUU1x88cXZNknRSCzLauBULFiwYIc/vmeffTYDBgzYm6a1OJRw7wIDBw7k1FNP5aGHHuKTTz7hqKOOyrZJDpkvwMiRI+nevTu///3v+e677+jSpctu97l48WKaqhboWWed1ST9ZBg3bhyzZ8/m6aef5sILL2z2mWqKPcfv9/PHP/4RSP2//uc//9lhfv7DDz/Mt99+26Ctc+fO/P3vf//RsUKInf7tpZREo1Fuvvlmpk+f/pPH7imZ79/e+j9slcLdvn17ysvL6d27d5NeyP79+zNq1ChWr15NLBbjxRdfbLK+95SCggKmTp1Kr169GDFiBJs3b+aLL76goKBgt/scMmQIr7/+epPY5/F4uOeee5qkLwC3283555/PQw89xGuvvcZpp52Gy+Vqsv6bipKSEqqqqrBtu9nXr2hJCCE44ogjdrhv+PDhPxL0DRs2MHTo0B8dO3ny5B22h0Ihbr75Zr766ivuueceevbsyRNPPMHxxx/fNB/gB6xatYr//ve/PPzww83S/w9plcI9depUBg8ezJdfftmkwv3hhx8yd+5c/vznP1NaWspNN93UZH3vKa+99hqQuv38xz/+wbhx45g8eTJHHnlkli1rPtxuN9dddx1TpkzhpZdeYsyYMdk26Udcf/31jBw5kuOPP57CwsJsm9MiyMvL+1Fbv379WLx48Y/aZ8yYwZtvvvmj9s6dO7N8+XLOPPNMYrEY9913H0uXLuWoo47C5/M1uc22bWNZFh6Pp8n73hGtUribC9M0uf322xkwYACHHHJIts3ZIVVVVdx3332cfvrp9O7dO9vm7BVuvPFGHn/8cR5//HEuu+yybJuj2Itcf/31O2xfsWIFH374IYZhYBgGbre7VWUiKeHeBY4//nh69OhBz549czameu6557J582a6du2abVP2GkIIfve73zF79mzmzJnD2LFjVVhiH6dv377069eP+fPnc8wxx3DOOefwxBNPNIu3nQ3Uf/cu0qtXr5wVbUiFD/Yl0c7g9Xq56KKL2LRpU85Mj6+pqeHTTz8lHA6zcOFCysrKsm3SPsVjjz3Ge++9x/PPP8/q1aubLb6dDZRwK1oNmqYxceJE1qxZw7PPPpttc/j888+ZMGEC27Zt4+9//zu33XZbtk3ap3C5XIRCIR588EHcbndOO1y7ihJuRavjuuuuw7KsrE6Pj0QivPbaazz55JP06dOHu+66i6FDh/LOO+9kzSZF6+FnhVsI4RdCfC6E+FoIsVwIcUe6vYcQ4jMhRJkQYq4Qwptu96Vfl6X3d2/ej6BQNMTlcnHeeedhGAYvvfRSVgal8vPzGTVqFHPnzmXOnDls3ryZZcuW5VTuv6Ll0hiPOwGMkFIOBAYBJwkhDgWmADOklL2BauCS9PGXANXp9hnp4xSKvYrH42HcuHGUlZUxf/78vT49XtM0unXrxsKFC3n11Vf529/+Rv/+/cnPz9+rdihaJz8r3DJFJP3Sk35IYATwUrr9GeCM9Pbp6dek948UrSm4pGgxZKbH19bWZuX8gwcP5vXXX6e4uJjnnnuO8ePHZ8UOReujUTFuIYRLCPEVsA14D1gN1EgpM9ObNgKd09udgQ0A6f1hoE1TGq1Q7Aq/+93vsjowNWbMmFaThqbIDRol3FJKS0o5CNgPGA703dMTCyEuF0IsFEIsjMVie9qdQqFQ7DPsUlaJlLIG+AA4DCgSQmQm8OwHbEpvbwK6AKT3FwKVO+jrMSnlMCnlsB1NcVUoFArFjmlMVklbIURRejsPOAH4lpSA/zZ92IXA/PT26+nXpPf/W6qFkxUKhaLJaMyU947AM0IIFymhnyelfEMI8Q3wghDiz8Bi4Mn08U8Cs4UQZUAVMLYZ7FYoFIqcoWfPnvztb3/ba+f7WeGWUi4BBu+gfQ2pePcP2+PAmU1inUKhULQAvF4v7du332vnUzMnFQqFooXR6oT77bff5uSTT2b16tX86le/4plnnvn5NykUCkULolUJt2EYrFmzhrPOOotu3bpx3XXXsWrVKuLxeLZNUygUiiYjJ9bjtm2bTz75ZI/72bRpE//5z3+48sorCQaDFBQUEIvFePLJJxk0aNBu97t161a2bNnSJDY2F+vWraO6ujonljPdGVVVVXzxxRcEAoFsm7JTdF3P6b9zJBLB76+iQ4fctbG4eCXr1tXl9HXcsmULS5Ysoby8PNum7JSf+i7nhHBLKams/FGq9y7j9/s566yzqKysZPLkyVRVVTmV2Pek/3A4TCwWaxIbm4toNMpTT2nU1eWujV27JvnFL6pz+g6outrk/PNz9xq63TodT/qCvBtfybYpO8W7NkQ0elZOf1/i8Tg319xM3J27/4sJmdjpvpwQbpfLxWmnnZZtM3ZKWVkZlmXltI22bbNtW3u2bj0s26bslDZtljBq1CiKi4uzbcoOkVIye/Z7rF2bu39nn6+KUId7WHva2mybslM6fNKB/tv75/T3ZcuWLWw+ejPh3uFsm7JTClw7L/TdqmLcCoVCsS+ghFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4s4SUkkQiwWOPPcZHH31EIrHzdQkUCoWiPkq4s0QkEqFTp05YlsXLL7/MgAEDsm2SQqFoIeTEIlP7Ii+++CK33347Q4YM4eSTTyYUCvHmm2/yq1/9KtumKRSKHCcnPe7Fixfz0ksvZduMZqVt27ZUVFTw3nvvsWLFCrZv306bNm2ybZZCoWgB5JxwDx8+nAceeIBVq1bRo0cPIpFItk1qFo477jgeffRRqqurefbZZ/n000859NBDs22WQqFoAeSUcC9atIiDDjqIKVOmMHDgQILBIB9//HG2zWoWAoEA8+bNY/78+Vx//fUsWrQo2yYpFK2eWCzG4sWLs23GHpNTMe7169fTo0cP6urq+Prrr4lEIpxzzjmMGzfOOaZLly5cddVVWbSyaUgmk/zrX/9i1qxZDB06NNvmtDo2btzIV199xSmnnJJtUxQ5wqxZsygrK8Pv97NmzRoYmW2Ldp+cEu7Ro0czYcIEwuEwBxxwAOFwmOeff578/HznmI0bN3Lsscc2eN8VV1zBmDFjGrQJIRBC7A2zd4tkMsmCBQu48847s21Kq+Oiiy4ikUgwcOBA7r77bl5++WVKS0uzbZZiD5BSIqXcoz7mzZvHDTfcwKBBg3jooYeayLLskFPCDbBkyRI+/fRTVq5cyfr16wkEAg0EeEclxB555JEfea333XcfHTp0cF673W569uzZvMbvAhs2bKBz587ZNqPF8N133zW6VuXChQt5+umn6dixI+vWrWPt2rW0adMmp3/IWyNSSsrKyvZYcCFVsPu6667boz5Wr17N5s2bOemkk+jVq9ce25RNck64A4EAI0eOZOTIHd/HuFwuCgoa1mKbOHEiEydObNB24403Nqjg7PP5OOKIIxocc8ABB2RtQPDcc8/lyy+/zMq5WyKzZs1i7drG1VncsmUL9913HyeeeCJnnXUWL7zwAsOGDWtmCxU/xLIspkyZgmEYe9xXhw4d9jg2fdJJJzF27FiOPfZY7r33XhUqyUWmTp3a4HU0GuWFF15o0Pb+++/z+OOPN2gbP348/fr1a3b7FLvG7bff3uhjBw8eTM+ePWnXrh0XX3wxCxYsUN52FnC73TzxxBPZNsPh+uuvZ82aNTz88MNNcheQTVqtcP+QQCDAJZdc0qCturq6gVcO8Ne//pVly5Zx0kkn8de//rVZbJk0aRL33nuvEpNm4pVXXuHbb7/lww8/5J///Cft2rXLtkmKHODEE0/EMAy2bdvGG2+8kW1z9oh9Rrh3RHFxMcXFxQ3ann76aaSUzSqqmzdvpnPnzkq4m4kePXrQvXt3TjrpJDQtpzJeFVnG4/G0irGlfVq4d0Rzf9G/+uorunfv/qMfDEXTkutZRQrFnvCzKiWE8AshPhdCfC2EWC6EuCPd/rQQYq0Q4qv0Y1C6XQgh7hdClAkhlgghhjT3h2hJfP755+y///5qertCodhtGuNxJ4ARUsqIEMIDLBBC/DO9b6KU8oeLipwM9Ek/fgE8kn5WAOeff362TVAoFC2cnxVumRp+zSwY4kk/fmpI9nTg7+n3fSqEKBJCdJRSbtlja1sBeXl52TZBoVC0cBoV0BVCuIQQXwHbgPeklJ+ld/0lHQ6ZIYTwpds6AxvqvX1juk2hUCgUTUCjhFtKaUkpBwH7AcOFEAOAm4C+wCFACTBpV04shLhcCLFQCLEwFovtotkKhUKx77JLKRRSyhrgA+AkKeUWmSIBPAUMTx+2CehS7237pdt+2NdjUsphUsphKnygUCgUjacxWSVthRBF6e084ARghRCiY7pNAGcAy9JveR24IJ1dcigQVvFthUKhaDoak1XSEXhGCOEiJfTzpJRvCCH+LYRoCwjgKyCz9upbwC+BMkAHLmp6sxUKhWLfpTFZJUuAwTtoH7GT4yVw9Z6bplAoFIodoeYDKxQKRQtDCbdCoVC0MJRwKxQKRQtDCbdCoVC0MJRwKxQKRQsjJ5Z1NU2TRx99NNtm7JRwOMzGjRtz2sY1a9bQtWs+paVLsm3KTgmF1jF79mx8Pt/PH5wlTLOKAQNy9+/scsUpXFvIgEcHZNuUnZK/JZ//xv/L1q1bs23KTlm2bBm9wr1IFiazbcpO+c78bqf7ckK4XS7XTmtM5gIbN25E07ScttHtdnPooSUcdNBB2TZlpzz55DruvPMoDCOYbVN2ygknLOKNcU+HAAAgAElEQVTVV3P371xbW8vLL2/jopE7nh4hkUjsVDEQhNMGoAmX09acLFmyhJqaGo4++ugm6c+yLFwu14+294RwOMy04dPYb7/99riv5uIw7bCd7ssJ4RZC0Lt372yb8ZOsWrUqp21ctmwZ7du3z2kbA4EAdXXdSSRytYiERNO8TXoNt2zZQkFBAcFg0/xYVVVVEQgE6NGjB5WVlanGPIPaaA2FhUV8ve0DPtHfoC5ejW0KAloJ0UQUPRHlkp534Pfk0bFgP4oDbQiHw3g8HiKRCKWlpWzfvp1QKISu65SWlhKNRnG5XBiG4QhmNBp19hUWFlJRUUFpaSnwfRGS8vJyXC5Xk1zHzZs3M2nSJO6//35qa2uZO3cuw4YNY9SoUXtUKKOwsJD99tuPLl26EIlEyMvLIxqN4vF4cLvdxGIxgsGgsy+RSCCEwOPxoOs6oVCIuro68vLyMAwDn8/n1LH0er1EIhEKCgqIRqPk5+djmia2bePz+airqyMYDKLrOn6/H9u2MU0Tt9uN3+93PtdPFXXJCeFWKForDz/8MCNGjOC4445r0n5jZoSlsQ+JmGE21i6nMr4Vf1UQYbtpp/Wgc95BfLP9C9yuIAOCg9AKXHxd9V/eKJvLid3OZGS3U2jv74yUEr/fTyKRcEQkI062bTtilBGRzLFCCHRdx+v1Os9er7dJPyPAF198wcEHH8yWLVuYMmUKF154Ie+++y4nnHBCk1Q4ikQiFBYWEolEKC4uxjRNDMOgpKSE6upqiouLHRGWUpJIJCgtLaW6upqSkhJ0XSc/P59YLIYQAtu2nT4rKyspLCwkHA7jdrvRNI2qqiqKioqorKwkFApRW1uLEAKfz0csFsPn8zXqcynhVihaIJrQuP/zhzCsBPuF9qNncU98rgBP/3s2oaCX/bt1pHJ9lMrEcgYOqKHE2w7DsumY14vlW5eA6aatrz0n7n8agCM6mW1N07BtG03TME2zwbkzZeEyYq5pWrOViTv99NM55phjeO+991i1ahUff/wxb731VpOVGMzLyyMSieB2u6mtrcXlcqFpGuFwmGuvvZZhw4ZxxRVXoOu685lramrw+/3U1tbidruJx+O43Skp1TTN+XErLCwkmUwSCASwbZtnnnmG999/n0cffZTCwkIMw3D2SSkbLdqghFuhaJH4XPn8+ZCHOWPu6WzzWpS5q8gX+ZSIbuTHfejrCti+KcaKrdvw5S/FX1lCdcl2Au4S3JqXcG2ceDLJofsdjVt6CAQCRKNRhBCpW3+PJBmP4nG7QPixpcTlcpFIJAgEApimicfjIRqNEgwGm7W+57x581ixYgUPPPAA06dPp2PHjk3WdzQapbi4mNraWgoKCrAsC8MwCIVCvPXWW8yfPx/LsrjgggsoKioikUgQCoUcjzsSieD1eonH4wCOx11UVERNTQ2FhYVs2rSJ999/n0mTJpFIJHjqqaeoqakhFAoRiaRq1GTEPi8vT3ncCkVrJR6P07Ntd+adNY+zXxzDl+u+xGO6aeMtQSbBTtr87ey7+HTpf+ka6so7y9+hc5di1n1XgS9YwJaKSuJJk7+991duO+UOotEooVCIRCKBR8Z59pah2GYchOTXExeTV9QB27YpKioiGo3idrsJh8Pk5+dTXV1Nfn4++fn5zfJZ27dvTzgcJhAI0LVr1ybt2+PxYJomLpcLy7JSg7r1Ck3HYjEmTZrELbfcwrvvvsvgwYOdeLRpmmiahpTSuevIhD2klHi9XpYsWcJJJ51EOBwGUkkELpfLCSt5PB7g+7sc5XErFK2Y/Px8Kioq6BzoxCO/nsm1865lW/U2erfpg0u6sJMWL34yl4ArQCyu43V7KP/cTd9uw9i8bTW1bbZRanTh+XfmMqr7SfzyF7+koqICvxe+fOc+whGDdl2H0WfQ8QhPPolEApfLRVVVlTM4WVJSQkVFBW3atGlWj7s5cbvdGIaBpmkYhuF8jlmzZjleNEAymeScc87h/PPPZ/To0XTv3p0pU6YgpcSyLEeAPR4Pl112GeXl5cyZM4cXXnjBEW1IZcU89thjXHbZZdi2jdvtdsYRdiVbRgm3QtEC0XWdgoICAIb5h/H8+XM4/fEzWLFtJUF3kDyRR0IkqEhsZ2vFFqq2V/GrQ06h1NsJGxcHFwzj3a//SYnPjU/zUFdXR3hbGf94/V62rV9Iu85DOOqsaRS1644mBC6XC9u2adOmjeNxV1ZWEgwGm93jbk5isRglJSXU1tYSCoUwTZNkMsmcOXNIJhvmeG/evJkpU6bw5ptvEggEWLhwIZZlNThG0zTefPNNpJQsXrz4R+eTUvLYY48xduxYioqKiEQiCCHw+/0kk0nH4/851MxJhaIFkvHOpJRoQqN3SR/eH/c+vTvsT228lpVb/8fC9YtYsmEJwYIQh/Q/hJgR47vy9Qi3Ru2mJMf2OpmCfDe3PHsNazeX8V3ZMlYs/ZKjTruJ31wzmzYdeiJI3cZnBCWTFiiEwO12Y9s2LpfrR95iS/HAMz88Pp+PqqoqdF0HwDAM55jp06c3mMOxbNkyPvvssx+JNqRi3IsWLWog2u3bt+eZZ55xXrvdbtq2bYthGBQWFhIIBIDUXZQKlSgUrRhN04jH44i0N2wYBh0KO/D2FW/w5tI3eWPpW/x3+X/YWlmOnoxSabtIuJLYSRtM+HblN4w65ESOLv0t7Q4TXDv9bA6ocDFo2Ej2H3oy+QWFjkhnsh6EECSTSTweD5Zl4fV6nUHKHwpO5vY/18mkAdbW1lJSUuJ43JnQB6RE/NVXX6W4uHiHYv1zjBw5ssEPgWmabN++naKiIsLhsONxq3RAhaKVE4/HndBELBYjEAhQU1NDMBhkRO+R/OaQ3/L2orfZWreVZDxJ0F9ATI+RiCVBCszjTLq278KI4SMoKS4htLWEDf/5mhN+fTWl7TpRWVlJIBDAMAzcbrcj0pn8ZL/fT01NjTNxJxgMNksed3OTSQf0eFLhoswAYX2BzsvLY3cLml988cVMnTqVd99912lzuVyEQqEG6YCQmrijPG6FohWTn59PbW0tkPrCZ2bjZWK20WiUEwefSLimhnyvl1hNJd898yDxsm/xd+xM3+vvJOnx4AK2b93C1sWb8QXa0aVrb2qrqigOBkkaBmX/eIUvX5yN8Pjpe9pZ9Dp2BMVt2mBZFqWlpUQiEdq0aePkMbc0EokEBQUF6LpOXl6eM4vR7/c7xySTSXw+n5N5siucfvrpAA0GOqWURKNRAoGA0+71eht45T9Hy7zaCsU+TjQadWbzxWIxCgoKnLzhzHP54s8QG9ey7s15ePICHHzHDNA8CJeGtX0r394yGUto2HEb+9ultDt4COteepoNH32AXldLQZceHHDG2Zz6p2nYpsE3/36PZy86G29hMSN+fwMFHTrRrU8fwuEweXl5zmBpS6J+/F5K6YR4XnvtNTp06EBdXR3r169n0aJFP5qI1BjKysoYOnQoZWVlzvlGjx7tjAnUTz3clXGBFi3cf//73zn//PNbzECIQtFU+Hy+BjHuZDKJ3+/HMAz8fj/bP3qH9dNuocvYS+l/418RAqIrvyXzVZFCMOCW6UgB8a1bKP50AclkEpfQGHbNjeD2kIjpJGM6euU2bCnpNvQQug4dTriqipdv/SOhLl258J57yQuFWqzH7fF4SCQSaJrmTOUXQjTwkB944AEeeOCB3ep//PjxbN68mWnTpgGpsYk//OEP+Hw+bNvG6/U6Pxa7cg1bZFbJ/PnzGT16NKZp8utf/5rXXnst2ya1OnRd57bbbsu2GYqdkMnmqD8BxLZthBBUfPg2q+69ne7nXEGo5/4kNq0jsXE9Ih5FxKMQj0IsSmz1CvRV32LW1dBu+GF0OvIYCrv2IFaxleimDcQrt2NGo5gxHUPXSdRFiNeGcblcHHP+BdRu2MATV13ppLG1RDJplZl4c0ZIp02btttx7R+SEW1I/d1uueUWwuHUdYxEIsRiMWcdlMZexxb3M2kYBv/73/8488wzOf744/H7/axcuRLDMBqMBCv2DMMwWLBgQbbNUOyETFaHEMKZyafrOqKynPLXnqXrGefiKynFDleioSFEekYgIAAbCXZqG1uS1CNYUmLaYNkSW0psmdo2M8+2xMLGsMDry+PIc85j/n0zePDii5gw5/nsXpDdJDN93e/3U11djZSShx56iHvuuadBaKS4uBiXy9UgLbK6unqHfRYWFuLxeJwfUtu2nWOllDzxxBO4XC5uu+02J1PFsqxdSgdscR73mjVrqKmpYcSIEdx8883O8oqZGJJCsS+QiWlnVp4Lh8MUFRaydeliQqUdCBS1wY7UQFxHJCJoCR1XIoqW0FOPjPcdi0I8ArEoth5F6hEsPYKpRzCjdSSjEYxIHclIHcloHYm61HM8UottGpxwyaVUb9xI3bZt2b4ku0VdXR1FRUUkk0mCwSCPPvoof/rTnxpMvunXrx+LFi1i48aNrF69mm3btrFw4UIOOeSQH/V34IEH8u9//5uNGzeydOlSNm7cyOeff87AgQOdYyzL4uGHH2bq1Kls3ryZaDQKpLz/xnrcLU64DzjgAEpKSrj66quZNGkSp556Kp988kmLnLWlUOwumQWJfD4flmWl0trCNdT839toeX6MumqI68iYDvGUUGsJHXciiiuhI+I6JHTnGEuPImM6diyKHdOxdR1T1zH1CIYeJZl5jkZJRiMkoxES0QhGPIknUMCHL7RMjzsvLw9d13G73ZSXl3Prrbc22N+/f39mzpxJSUmJEwuvra2lbdu2TJs2jT59+jjH+nw+JkyYQJ8+fUgkEgSDQQzDoH379jz55JMMHz68Qd/Tpk0jGo06FaFafTrg2LFjOfTQQ7npppuc2/k//vGPQGrAsqmWfMx1bNsmkUhwww03MGrUqGybo9iLZEIjkPrCJ5NJfJogvuYb2ow8BTsWxdI0XJpIuWcauDQXmga2BGFLsCXSlkjbRloS2wbLtrFtMG2JYUsMaWNYqRCKadupNltiWultCR26d8Noonjw3sYwDPLz84nH44wbN87JLsmwZcsWbrzxRizLom/fvjz44IP4/X50XWfw4MGMGjWKVatWATBq1CiOO+44ksmk84Nw++23s3jxYmzbZv369Q3OLYTg6quv5pVXXsHr9e5SqmGLFO7OnTvTuXNnhgwZQl5eHgBDhgxh7dq1TJw4kcsuu4yePXu2yAkBu8J1113HggULmDlzJhMnTmTKlCnZNkmxl6ifvuaktGkCaVvYcR1TA01zYWsCqQnQBNIlICNMNkhbYts2tpV6Nm0wLRtTgmHamDIV105adkrILRvTtknaAsOSGLaNYdnEo5FsX47dJlPAwO128+STT/J///d/nHPOOc7+qqoqPv30U3r16sVdd92Fy+VC13V8Ph+JRKJBJkgwGKRt27ZOlk8gEODWW2/l5JNPZtGiRT869/3338/ZZ5/doIBFY2mRwp0hI9qZ7X79+nH66adz9913M2TIELp3786vfvWrJj3n888/73g62Wbp0qWMHj2a8vJybrjhhmybo9iLJJNJxzGxLAu/3088XIMV1YmXbyYvVIiludBcAqGBcAkQGjYaNhJTSiw7JcimlfGqJaa0SVpgZDxqKzUYGYvFSBgG+PJI2jIt3GDYFgldpzlzSqSUfPDBB01Ww/KHfWfCEy6Xi48++uhHxxx44IHMnTuXgoIC3G437733Htu2baOoqIiBAwdy4YUXYpomv/jFL/jss89Yt24deXl5nHHGGfj9fubPn88pp5zC119/3aDfL774gjPPPNPx8HclM6dFC/eOOProozn66KN5+eWXWbVqFS+//DK/+c1vmqx/TdNyKhSTsSczbbapyMvL49RTT+XVV19l9OjRTdr3vsTo0aOZPXs2hx56aANHY0/x+/1s27YNIQSBQCBVBzFYgC2hdsVyXH36IvL8oGlpTzudSWKYCJ8fS9op4TVNops3EI9GiVs2SUuSMCUJ2yJhgqdNewiGiOsxEskkwrRIpo8zbEnStFi/bBm9Dxn+80bvJlJKZs6cucPV9pqCTKWfSCTCzJkzOe2001i5ciUrV650zj9t2jTuvvtuhBBUVlZyww03cPjhh/PSSy8xevRoZ3nWK664gpdeeonp06cDqXVJbrnllgai3LlzZ0aOHMmzzz7LpEmTyM/Pb/SqgBlanXBn+M1vfoOu6zzwwAMMGTKEN954g06dOu1xv2PGjGkC65qGxYsX8/LLL3P88cdz4403NmmoxOv1cvDBB/Phhx8q4d4DhgwZwsSJE524Z1ORKdabmSwSDAapi9TRb9JfWH7HH7CWRik9YADS58XSBJYAkdCxa6pxte+EbVrUlS3HMiXxRIKEYZCwbBImxEyLhGkTt2yMrZsxcCEDhbgKi5B6HNPlxrAgadmULV2C5s2n35FHNdln25tkCvv6/X78fj+ff/45paWlnHfeec4xK1asYOXKlXz00UeMGTOGSy65hJKSEifdz7Isp3iCZVkUFBRw6qmnMmvWLGbMmMG6desaOFZFRUXMmDGDa6+9lh49ejhVh3ZlAk6rFW5IrecwceJEJkyYwAUXXMCVV15Jjx496Ny5c7ZNaxLuvfdeEokE48eP5/rrr8+2OYq9jGVZzt1fymt0IYLFGKaNFo1S9c1XFPbui2aZuGwLYSQwKjbBlo2pXG0bDNsmaac86KSZ8qIt0rnbEpKJJHHDIh6uI7FhA3HLxvT4CHToxOZ166mr0+k+fH8GNEMYY2+QKeybSCQoKSmhuLiYDRs2EI/HG9zJSilZu3Ytd911F8uXL+f111/nqaeeQkpJXl6ekz44YMAAJkyYwOTJk5k7d+6Pwh+aphGLxdiyZQsHHnigM8nH4/EQj8edDJOfo9HCLYRwAQuBTVLKU4QQPYAXgDbAl8D5UsqkEMIH/B0YClQCY6SU6xp7nqYm84/9yCOP8Ne//pW8vDyuuOIKOnTokC2TmgxN08jLy+Phhx9Ws0f3MTJTtTPinVleNQLYfj/JRBwMk2hNNURrEZE6NE2gIZBILGljy5RwmzbpmPX3sWszE/+2U/Fw25ZYUmLZYBkGkeoa4noMl8+PlC1n/e0fUlBQ4FRjr6mpwev1snr1ag4//HBOPPFEamtrnQHMmTNnIqXkH//4B4cddhiTJk1yqt0HAgGklIwfP57Zs2c3EO1rrrnG8cgzi4OVlZXRqVMnQqEQlmXt8h3Zrnjc1wHfAqH06ynADCnlC0KImcAlwCPp52opZW8hxNj0cVmPL4RCIe666y6++eabJr1lba1ccsklLF++nMrKSr788ktncEaRGyQSCWcFO13Xyc/PTy2zeuBBFB85ivJ3XsPGRFZW4hY2mmkjNIFIC7ct6wmxlKnYtiUbCLhZb/DSlKkBS0tKTEOSqA5jS3D5/Zx640RnjZSWRibklEwmKSwsRErJUUcdxYgRI4jH405lGk3T6NOnj5MEcO+993L99dc76YTJZNKZJTl9+nRHtG+77TauvPJK/H6/M8vV7/cTj8edVR0Bp1p8YzPhGjXKJoTYD/gV8ET6tQBGAC+lD3kGOCO9fXr6Nen9I0UO/Rz369ePwsLCbJuR01RXV7N69WpuvPFGTj/9dPx+P1u3bs22WYp6BAIBIpFIg7WkCwsLSQgXoW69MW1IGDYxPUYslkS3bGKmjW6mnmOmTdxMiXXMkKmBSdsmmU7/M6QkYUtMS2JKQTLtcRu2jRYoSIUSvHkYpslhJ5zYYifA5efnN7iGmZBHbW0teXl51NbWOtXtDzzwQOd9pmk6tSTj8Tgej6dBEeAMffr0obi4GI/Hg6ZphEIhYrEYhYWFzvooGUdyV9KXG+tx3wvcCATTr9sANVLKzGT+jUAmcNwZ2AAgpTSFEOH08dsbbZUiqzzzzDNcfvnl9O7dm2QyyRlnnMF999232yukKZoeXdcJBoMNtsPhMMFgEK17H7S2nYhv3Yghk7gQuDTSKwOmfDUpG3rdmck1TraIZWFYKfFO2pl8bolpQby6BlvAwSOPw1/ShoqKCoqKihx7WhKZdV4yedSZ0Krb7XaKAEspcblcDQYPhRBO3nVmDZP6jwyZavCZNsMwnDzvTIgrE0fflcywn/W4hRCnANuklF82utdGIIS4XAixUAixsKlW4VI0DX/4wx/405/+xMcff0xxcTHnnXcef/rTn7JtlqIembhrLBZzBrwyt/XdjjgWf+euxCybeDo7JOVh28RNk7hpEjMtYqb1/X5HpNMDlZZM5XNnxDyd523YqRBKafcerFm2nFOuuoZQKNRiJ7tlUgEz4lw/pzuzAmNm9cUePXo0KIzwr3/9C8AJkWTi35WVlUCqZNmAAQOcfZmsE03TsCyrwfug6fO4jwBOE0L8EvCTinHfBxQJIdxpr3s/YFP6+E1AF2CjEMINFJIapGyAlPIx4DGA9u3bt8w1IVsxc+fOZdmyZXz66afMmzevRXpTrZnMFz/z5c9kQGQEZ9jEP/GP804lFovgEiI1MClTXrcEbMDOrAKIxDRTmSQpcbYxLUjaKTE3bDudfZIScF8wRLveB9C2d29KOnZ0yn21RDJFgkOhEOFwGK/Xi8fjcSoJVVVVEQwG0XWdoqIijjrqKObPn080GuWaa66hS5cujrADbNy40VkJcOjQoXTs2NFZJz2zpkx1dbVTWT5TuiyZTDZtOqCU8ibgJgAhxLHABCnluUKIF4HfksosuRCYn37L6+nX/03v/7dsqYv17sMMHDjQ8RbUcrl7RnP8+1uW5XzRM7f0uq7j9XqJxWIU9exFftcebFv+FZrQcDlLutpINKRIe4DpwUnLluklXDPrkQjH0zZsm7iVCpkkbYtgqAjN66XHwIEEi4qora1F07QW6XVnVgeMx+MUFRVh2zaWZVFSUuKUZYvFYgSDQaSUDWZNV1RUUFFRsdO+M3dBmbW3NU2jurqaQCBAVVWVE0PPhF0yxYIbw55MAZwE3CCEKCMVw34y3f4k0CbdfgMweQ/OocgiLpdLiXYT0BzeaCAQoK6ujkgkgtvtdvKRdV2nTZs26LrOyQ89RcKwSZgWMcNKh0dk6jlpEzNS4ZNEJoxiSWIWxE1B3LRJWjYJK9VuWDZJ06K4c1f6HHEU/vwAo8aOpa6ujtLS0hY7OBkMBqmursbr9VJdXe3kVWcKIG/fvh2Xy0VtbS26rnPIIYfQpUuXn+23Q4cOHHfccc4Pgs/nQ9M0px5oaWmpk8kSCAQAduka7pJwSyk/lFKekt5eI6UcLqXsLaU8U0qZSLfH0697p/ev2ZVzKBSKnycWi5Gfn09eXp6zCH9mBmA4HMbv9yPdXgaef2lKqK2UcOvG97HtVHaJlYp/W7KeiKemtSdMm4QT75aEOnSm57DhbF63juMvuohwXYS8vDxqamoalPpqSei67lRcD4VCTkpjUVGREx6xLItAIIDf7+eII47gmWeeoaioaKd9er1ennjiCY499lh8Ph91dXUYhoGU0slWqa6uTuXdpyvgALt0DXNn0Q2FQtFofD4fhmE4WQqxWMyZwVdQUJAqDFBcQulhR6O17UjMlOimjW6lUgK/TwuU329bNnHDSnnZZipFMGFZJG2JN1RIu959qNxWjl4XoeegQQSDQRKJBIFAoMXemfn9fqLRKG63m2g06qQDZn4E6+rqcLlcxONxpyblgQceyOLFi3n66acJhUIEg0FCoRChUIgZM2awcuVKDjvsMILBIMlkkvz8fNxut7OuTGaJAtM0yc/Pb7Aed2Np1VPeFYrWSv2p2JmMiPprZ2QGLXsMP4xhF1zKv2fcjaFHnffL9EQcKVODlBaZeDep5VydCTg2/pJSCtp3RI/F8Pn8THnvXceG+oOiLZH65cUy1C9PVn9fZvlcTdNo164dJ598Mt999x2maTozIwFnvCGzvrZt2072SP2/EaTGJ+pnnTQWJdwKRQvEsiwnVS0jnKZpomkahmE4z16vl6MuGYclJW/8+Q5kA4FKZZhYklROd2Zau/x+XW5TCjRLEq6upnvHjlx6991o6ZXwEomEk5MshGiRld7ri25mdiOkPPHMcrnQ0BvO7Ks/caZ+Sl+m/m0mU8QwDOe9yWTS2Zf5m9X/oWgsKlSiULRAMjnb8XjcWdw/05apWp651dc0jeHnXMBv77mf/QYfkopnpx+dhw3H374DcctOPyR9jj6WhE1qCrwNcT3GkBOO56K//Y384mJ8Ph+2bVNQUEAikaCgoKBFZpQAjrBmJsNkxLO+6Gamqmc88MxKfpmwSiY3WwiBpml4PB6nmLNt27jdbme/x+PBNM0G+zI/eLty19LyfiIVihZCLBajoqKCeDzOxo0bMQyD0tLSJuu/pKQESN3C5+XlIYRw2oqLixFC0KlTJ2f/iAt+x1FnjsGq5wG6PB5s28K2vvfE3V4vRr1iuQBevx+v3+94h6FQCCEEbdq0abE53JD6AfT5fA2uIXwfLsnsq0+mGvuO9mX4qbj17sS0f4gSboWimfj4448ZP34827ZtY/z48bRp04bnnnuuyfqvX9AjIyA/9+xq5EJh/nSK2g/ZWb8tlcwkpsx2/fYftjVm395ChUoUimZA13Xef/99Zs2axYABA3j88cfp37+/U9xaodgTRC5MaiwuLpbnn39+ts3YKYlEwplFlauEw2HcbreTzJ+LlJeXU15eipS5m4FQVLSJbt32vNCGZVmsX7+enj17snr1arp3705tbS22be/R/5FlWVRWVtKuXbs9trG5iEajWJZFKBT6+YMbyf/+9z/233//JuuvsrKSgoKCRs9UzAazZ8+murp6h259Tgi3EKICiJK7KwiWomzbHZRtu4eybfdobbZ1k1K23dGOnBBuACHEQinlsGzbsSOUbbuHsm33ULbtHvuSbSrGrVAoFC0MJdwKhULRwsgl4X4s2wb8BMq23UPZtnso23aPfca2nIlxKxQKheV94zkAAATgSURBVKJx5JLHrVAoFIpGkHXhFkKcJIRYKYQoE0JkveiCEGKdEGKpEOIrIcTCdFuJEOI9IcSq9HPxXrJllhBimxBiWb22HdoiUtyfvo5LhBBDsmTf7UKITenr91W65F1m301p+1YKIU5sRru6CCE+EEJ8I4RYLoS4Lt2e9Wv3E7Zl/bqlz+UXQnwuhPg6bd8d6fYeQojP0nbMFUJ40+2+9Ouy9P7uWbDtaSHE2nrXblC6PRvfCZcQYrEQ4o306+a5bj+sTrw3H4ALWA30BLzA10C/LNu0Dij9QdtUYHJ6ezIwZS/ZcjQwBFj2c7YAvwT+CQjgUOCzLNl3O6nydj88tl/67+sDeqT/7q5msqsjMCS9HQT+lz5/1q/dT9iW9euWPp8ACtLbHuCz9DWZB4xNt88ErkxvXwXMTG+PBeZmwbangd/u4PhsfCduAOYAb6RfN8t1y7bHPRwok6lqOklS9StPz7JNO+J04Jn09jPAGf+/vbMJsaoM4/jvWdgHJYkRMngXqQgtQlQUikRkRGk0kmAWQaCLoE0uWgkiuHNpH4toUSloodCY6NKPEVqFYY02MlaCQg2jA4qjbaSPf4v3OTOHy9xLszjnPQeeH1zu+bhwfvzvPc+97/Pee08dB5X0HXD/f7rsAo4p8T3pYs4DGfx6sQs4KemxpFvATdLzX4XXlKQfffkRMAEspwHZ9XHrRW25uZMk/emri/wmYBAY8e3d2RWZjgBbzar5E48+br2o9Zwwsw6wE/jC142KcstduJcDv5fW/6D/i7gOBJwzsytm9p5vWyZpypfvAMvyqPV1aVKWe31oeqTUVsri50PQdaRPZ43KrssNGpKbD/fHgGngPOlT/gNJf8/jMOvn+2dI16CtxU1Skd0hz+4jMyt+x153dh8D+4Dirxafp6LcchfuJrJJ0npgCHjfzDaXdyqNbRrxVZwmuZT4DFgFrAWmgMO5RMzsWeAU8IGkh+V9ubObx60xuUn6R9JaoEP6dP9SLpduut3M7GVgP8lxI7CUdCHzWjGzN4BpSVfqOF7uwj0JlC+Z3PFt2ZA06ffTwGnSC/duMcTy++l8hj1dGpGlpLt+cv0LfM7csL5WPzNbRCqMX0v61jc3Irv53JqSWxlJD4BLwKukNkPxN9Blh1k/3/8ccK9Gt9e9/SSlC5YfJU92rwFvmtltUst3EPiEinLLXbh/AFb7zOsTpCb92VwyZvaMmS0uloHtwLg77fGH7QHO5DGEPi5ngd0+k/4KMFNqC9RGVw/xLVJ+hd/bPpu+AlgNXK7IwYAvgQlJH5Z2Zc+ul1sTcnOPF8xsiS8/DWwj9eEvAcP+sO7sikyHgVEfzdTldqP0ZmykHnI5u1qeV0n7JXUkvUiqY6OS3qGq3KqYWV3IjTTz+yupj3Ygs8tK0gz+VeB64UPqPV0EfgMuAEtr8jlBGjb/ReqPvdvLhTRz/qnn+DOwIZPfcT/+NX9xDpQef8D9fgGGKvTaRGqDXAPG/LajCdn1ccuemx9rDfCTe4wDB0vnxmXS5Og3wJO+/Slfv+n7V2ZwG/XsxoGvmPvmSe3nhB93C3PfKqkkt/jlZBAEQcvI3SoJgiAIFkgU7iAIgpYRhTsIgqBlROEOgiBoGVG4gyAIWkYU7iAIgpYRhTsIgqBlROEOgiBoGf8BWrDWh9zMdxMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## 정책 확인하기\n", + "\n", + "Q-Table은 각 상태에서 각 행동의 \"매력도\"를 나열하기 때문에, 이를 사용하여 우리 세계에서 효율적인 이동 경로를 정의하는 것은 매우 간단합니다. 가장 간단한 경우, Q-Table 값이 가장 높은 행동을 선택하면 됩니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "def qpolicy_strict(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = list(actions)[np.argmax(v)]\n", + " return a\n", + "\n", + "walk(m,qpolicy_strict)" + ] + }, + { + "source": [ + "위의 코드를 여러 번 실행해보면, 가끔 코드가 멈추는 것처럼 보이고, 노트북에서 중지 버튼을 눌러 중단해야 할 때가 있다는 것을 알 수 있습니다.\n", + "\n", + "> **작업 1:** `walk` 함수에 경로의 최대 길이를 특정 단계 수(예: 100)로 제한하도록 수정하고, 위 코드가 이 값을 가끔 반환하는지 확인하세요.\n", + "\n", + "> **작업 2:** `walk` 함수가 이전에 이미 방문한 장소로 돌아가지 않도록 수정하세요. 이렇게 하면 `walk`가 루프에 빠지는 것을 방지할 수 있지만, 에이전트가 탈출할 수 없는 위치에 \"갇히는\" 상황은 여전히 발생할 수 있습니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 3.45, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 15 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de3xcdZ3/8deHVlBxf1ykPxYBN3XF9Yd3rAKL666i3HdxFRV+/rCrII+foj9FH6th2ZW7UAEREAqFVoHl0gqVFgK9t/RCL6T3W9qm1zSkbdqkSZu0uX5/f8x3kkkykzmTzMyZzHk/H488cuZ7zsx8z5yZz/me7+2Ycw4REYmGY8LOgIiI5I+CvohIhCjoi4hEiIK+iEiEKOiLiETI8LAz0J9TTjnFlZSUhJ0NEZEhZfny5fudcyOSrSvooF9SUkJ5eXnY2RARGVLMbGeqdareERGJEAV9EZEIUdAXEYkQBX0RkQhR0BcRiRAFfRGRCFHQFxGJEAV9EQlswZZadh5oCjsbMggFPThLRArLteOXAbDj3stDzokMlEr6IiIRoqAvIhIhCvoiIhGioC8iEiEK+iIiEaKgLyISIYGCvpndZGbrzWydmb1gZu82s5FmttTMKs1sopkd67c9zj+u9OtLEl7nZp++ycwuzs0uiYhIKmmDvpmdDvw/YJRz7uPAMOBqYAzwoHPuw0A9cJ1/ynVAvU9/0G+HmZ3tn/cx4BLgMTMblt3dERGR/gSt3hkOvMfMhgPvBWqALwMv+fVPA1/zy1f6x/j1F5qZ+fQXnXMtzrntQCXw+cHvgoiIBJU26DvnqoH7gV3Egn0DsBw46Jxr95vtBk73y6cDVf657X779yemJ3lOFzO7wczKzay8trZ2IPskIiIpBKneOYlYKX0k8AHgeGLVMznhnBvnnBvlnBs1YkTS+/qKiMgABane+Qqw3TlX65xrAyYDFwAn+uoegDOAar9cDZwJ4NefABxITE/yHBERyYMgQX8XcJ6ZvdfXzV8IbADmAlf5bUYDU/zyVP8Yv36Oc8759Kt9756RwFnAsuzshoiIBJF2lk3n3FIzewlYAbQDK4FxQBnwopnd5dPG+6eMB541s0qgjliPHZxz681sErETRjtwo3OuI8v7IyIi/Qg0tbJz7lbg1l7J20jS+8Y5dxT4ZorXuRu4O8M8iohIlmhErohIhCjoi4hEiIK+iEiEKOiLiESIgr6ISIQo6IuIRIiCvohIhCjoi8iAHG3r4NDRtrCzIRlS0BeRAbnwgTf5xG0zws6GZEhBX0QGpPrgkbCzIAOgoC8iEiEK+iIiEaKgLyISIQr6IiIRoqAvEhGfu3sW4+ZvDTsbEjIFfZGIqD3Uwm9erwg7GxIyBX0RkQgp2qD/y5dW8/Ly3WFnQ0SkoBRt0J9Uvptf/Hl12NkQESkoRRv0RUSkLwV9EZEIUdAXkUHp7HTc8eoGquqaw86KBKCgLyKDsqGmkQmLtnPj8yvCzooEoKAvIoPiXOx/Z3xBCpqCvohIhCjoi4hEiIK+iEiEKOiLiESIgr6IdGlqaef6p9+mpkG3QixWCvoi0qVsbQ2zNu7jgRmbw86K5IiCvohIhCjoi4hEiIK+iGSFxmYNDQr6IjIoZmHnQDKhoC8iEiEK+iIRN2vDXta/0xB2NiRPFPRFIu76Z8q5/OGFg36d9e80crilPQs5klxS0BeRrHl9bU3YWZA0AgV9MzvRzF4yswoz22hm55vZyWY208y2+P8n+W3NzB42s0ozW2Nm5yS8zmi//RYzG52rnRKR/FGvnaElaEn/IWCac+6jwKeAjUApMNs5dxYw2z8GuBQ4y//dAIwFMLOTgVuBc4HPA7fGTxQiIpIfaYO+mZ0AfBEYD+Cca3XOHQSuBJ72mz0NfM0vXwk842KWACea2WnAxcBM51ydc64emAlcktW9ERGRfgUp6Y8EaoE/mtlKM3vKzI4HTnXOxSvw9gCn+uXTgaqE5+/2aanSezCzG8ys3MzKa2trM9sbERHpV5CgPxw4BxjrnPsM0ER3VQ4AzjkHZKVmzzk3zjk3yjk3asSIEdl4SRER8YIE/d3AbufcUv/4JWIngb2+2gb/f59fXw2cmfD8M3xaqnQREcmTtEHfObcHqDKzv/NJFwIbgKlAvAfOaGCKX54KfNf34jkPaPDVQNOBi8zsJN+Ae5FPE5EhTNMwDC3DA273E+A5MzsW2AZ8j9gJY5KZXQfsBL7lt30duAyoBJr9tjjn6szsTuBtv90dzrm6rOyFiIgEEijoO+dWAaOSrLowybYOuDHF60wAJmSSQREZvLqm1vy8kfrsFzyNyBWJgB88Ux52FqRAKOiLRMDu+uawsyAFQkFfRLJqxa56Gprbws6GpKCgLyJZ9fXH3uI745eEnQ1JQUFfJAKM/ParXFfdmNf3k+AU9EVEIkRBX0QkQhT0RSJAo2YlTkFfRCRCFPRFJJCfvbgy7TZOQ3ILnoK+SAQMtHZnwZZafvJCLNi/suqd7GVIQqOgLyIpXTt+Ga+uVrAvJgr6IhFgaskVT0FfRCRCFPRFJGuc2nELnoK+iAxK4xFNrjaUKOiLSMZmrN/TtVw6eW2IOZFMKeiLSMZueHZ51/Kuuu65+lW7U/gU9EWkj5b2TqrqdOOVYhT0xugiEiGvrn5H/fOLlEr6IpI1ib13Nu05FF5GJCUFfZEICGNs1hWPLMj/m0paCvoikhNtHWrWLUQK+iIiEaKgLxIBmnpH4hT0RUQiREFfRLJGN1EpfAr6IhFgA76NSozTTGpFQ0FfRCRCFPRFRCJEQV8kAtR7R+IU9EUka1T1X/gU9EVEIkRBX0QkQhT0RUQiREFfRNIKWlevKv3Cp6AvEgF567yjltyCp6AvIt1SxOw9jUfzmw/JmcBB38yGmdlKM3vNPx5pZkvNrNLMJprZsT79OP+40q8vSXiNm336JjO7ONs7IyK58ff3zgk7C5IlmZT0fwpsTHg8BnjQOfdhoB64zqdfB9T79Af9dpjZ2cDVwMeAS4DHzGzY4LIvIkFY0NFZGsRV9AIFfTM7A7gceMo/NuDLwEt+k6eBr/nlK/1j/PoL/fZXAi8651qcc9uBSuDz2dgJEREJJmhJ//fAL4FO//j9wEHnXLt/vBs43S+fDlQB+PUNfvuu9CTP6WJmN5hZuZmV19bWZrArIiKSTtqgb2ZXAPucc8vzkB+cc+Occ6Occ6NGjBgx6Nc72NyahVyJDG35qrWZWF6VfiMJVZCS/gXAv5jZDuBFYtU6DwEnmtlwv80ZQLVfrgbOBPDrTwAOJKYneU7OrKw6mOu3EBFvXXVj2FmQNNIGfefczc65M5xzJcQaYuc4574DzAWu8puNBqb45an+MX79HBe7A8NU4Grfu2ckcBawLGt7IiIiaQ1Pv0lKvwJeNLO7gJXAeJ8+HnjWzCqBOmInCpxz681sErABaAdudM51DOL9RSQo9coRL6Og75ybB8zzy9tI0vvGOXcU+GaK598N3J1pJkUk90pKy/i///i3YWdDckwjckWky9pqtYEVOwV9kQhQ7Y7EKeiLiESIgr6ISIQo6ItIl/2HNJix2Cnoi0iXTXsPhZ0FybGiD/pqwBLJYJZNKXpFH/R1Hx8RkW6DGZErIkPYC8t2cYwuACJHQV8kApLF9psnr817PiR8RV+9IyIi3RT0RYpce0cn2/c3hZ0NKRAK+iJF7rfTN9HeqS4NEqOgL1Lkxs3f1ietpuFICDmRQqCgLxIx9U2tnH/PnLCzISFR0BeJmMajbWFnQUJU9EFf3ZBFRLoVfdAXEZFuRR/01WdBRKRb0Qd9ERHppqAvEjGmlq5IU9AXiZjaw0fDzoKESEFfJGK+MXZx2FmQECnoi4hEiIK+iEiEKOiLiERI0Qd99VMQEelW9EFfRES6KeiLiESIgr6ISIQUfdDX3Dsi4SkpLWPmhr1hZ0MSFH3QF5Fw3Tx5TdhZkAQK+iJSMK54ZAGvrKwOOxtFTUFfRArGuupGfjZxVdjZKGoK+iIiEaKgLyI5piGShaTog76+biJhUx+6QlL0QV+kmIydt5XyHXVhZ0OGsLRB38zONLO5ZrbBzNab2U99+slmNtPMtvj/J/l0M7OHzazSzNaY2TkJrzXab7/FzEbnbrdEitOYaRVc9bjmw5eBC1LSbwd+4Zw7GzgPuNHMzgZKgdnOubOA2f4xwKXAWf7vBmAsxE4SwK3AucDngVvjJwoRKWaqZC0kaYO+c67GObfCLx8CNgKnA1cCT/vNnga+5pevBJ5xMUuAE83sNOBiYKZzrs45Vw/MBC7J6t6IiEi/MqrTN7MS4DPAUuBU51yNX7UHONUvnw5UJTxtt09Lld77PW4ws3IzK6+trc0ke0mpCUlEpFvgoG9m7wNeBn7mnGtMXOecc2QpvjrnxjnnRjnnRo0YMSIbLykiIl6goG9m7yIW8J9zzk32yXt9tQ3+/z6fXg2cmfD0M3xaqnQJ2a4DzextPBp2NmQA5lbso76pNexsyBASpPeOAeOBjc653yWsmgrEe+CMBqYkpH/X9+I5D2jw1UDTgYvM7CTfgHuRT5OQffG+uZz7m9lhZ2PIOHC4hY/c8gbLd9aHmo+GI218709vc/0z5aHmQ4aWICX9C4BrgS+b2Sr/dxlwL/BVM9sCfMU/Bngd2AZUAk8CPwJwztUBdwJv+787fJrIkLJsex2tHZ08OX9bqPlo7+gEYPv+plDzIUPL8HQbOOcWkrrP1YVJtnfAjSleawIwIZMMDpY6i4kUp4o9jXz0r/9H2NkYcjQiV2SAXIH0DYuVswqX5aDkNW1dDZf8fgGvrn4n+y9e5BT0RRK0dXRy8+Q1vHPwSMptchHEBsIKJSMh2Lz3sP9/KOScDD0K+iIJFlbu54VlVZROXpt227AL2IVewk9Ue6iF+6ZX0Nk5dPJcrBT0RZKIbhk6N0pfXsOjc7eyeNuBlNsM5CQ2hM57BUNBXySJoRBLhlL1Tkt7rKdRZ5ai9NDZ88KTtveOyFBV03CEdw8fxknHHxto+zte3cDra2vSb1hgIWconKDislUyP9rekZ0XiqCiL+kPpR+EZNf598zh3HuCDzqbsGg7e4bQyOTCOvWkVnuoJeuN34/O3ZrdFywADUfaKCktY/KK3Tl9n6IP+ku2pq5DlOLX6qsV0mkZQMmxd4Gis9PRoYbKotbW0Unj0bYBPW9pP+0ZAFV1zQA8tWD7gPIWVNEH/flb9oedBRkCWgKeHHbXN6dscPw/45fyt//x+oDev2xNDWOmVQzoub2t3FUf+hQR+ZLvsRI3PreCT942I+PnPTBjM98et4RVVQdzkKvMFH3QHyqXwEFtqz3MjPV7eHPz4KedHgp2hDTFQLLAXlXXzBfGzOXBWZuTPuetQVxV3vj8CsbOy06Vxb8+9hbfGPtWVl4r2/oL0YXQE2f5znpKSsvYdyh5Nd+MDXsBOHS0jYbm4CX+LX48wf5DLYPP5CAVfdAvNl9+4E1ueHY5oycsY9Oe4ANTnHM8MGMTW2sP5zB3PTU0t/GRW97gra0Du9qasqqaf7p/XsGc4Pb5H2x8YFCuTHq7ig3vNKbfMI343DyFqqbhCCWlZazYlf2rkpLSMq5/OvOJ6CYsilWtLNnWc1qwlvYO5id8Dz9zx0w+dUfmJf4COK8Vf9AvhA85Vw5lULdYe7iFR+ZUcu1TS3OYo57WVB+ktaOTR+dWDuj5a3c3ALA5g5NbEB2djvumV3DgcOpS1xr/3v3JVcn0ly+v4bKHFwTePlU+CqlRuq2jb5fNBb7q9fmluwb12gcOt9BwpO9vYdbGvUxZVU1JaVngm8nHawZ6X+nd/uoGvjthWdfj9iHcdlP0QV88/x1t7cjfl9X8T2iwwTFZvW1bRydH2wbWbW9h5X4enbuV//hL6lG38SCyac8hLnxgHg3NbRn3QIn3xphbEbvVREt7BzN99UBQN09ew6i7ZiZdly4/zsGsDN8vV+Il55fK+/ZMSfX9aO/opLqf6TDiPnvXLM65M/ln9PNJqwEC30z+mBQf6vo0V15XjX0ra9VzuVb0QX9jzeAvk4tCnho3nHNdpaT472egQb+/oHbxg/P56H9Ny+j1SkrLKCkt66r2SGy8TZXHh+dsYWttE/M27+Prj2VWTx6vfntsXuxKZ8wbm/jBM+Us2x58RvEXllWx/3Dym6QE+VyXpOkxkm+JJfJ0X8k7X9vABffO6feKLP4ZDLTX1KGjbT16bsW/cw/P3pLR65TvrO+3Ib6QxtEVfdCX/Lr0oQV85D/fALp/1Iu3HehRH5oN2wbRwJvs0vxIa/KrhncPHwZAS9vg6sedc131xfXNrextPNrVRS+I3fU9tx1K8+4kSnbV9vKK3Un3J96W03i0fcDvly7WfuK2GVw1tvsqIL791tqe369sxexddc2hF0QV9CWrKvYcoq3D0dreSVtCcE2sDy00zjn+9NaOPul/mLOF494V+4mk68e/Jclsj4mBrLVXo+q5v5nNP/x2Lm+sraEuwO0Oxy/czrZejfDJSo/J6raHghW76lO2v8U/x6q6ZtZV92xraU5xsu56bpK0zk7X4yS6NuE1X1mV+VTN//lK+sn54u58bQOXPhS8vSYXFPSLRF1TKyWlZUxZle62w/kpIZ5z50xGZynQ57JQe8G9c/jof03j8Tf71sfeP2NzmhJed8a++uD8wO+5NKFnyA+fW8H1T7/d9ThVT6U/LtrRI1ik+kxqE7oaPrlgG0OlvfHWqetZVdWzF0/vuYX+4bdzueKRhT3SEk/W2/c3sbhXt9lk1T6Pz9/KF8bMpXJf/72w9h9uCdRu9N9LBtcQvXjrAfb3U4WVbQr6Q1ji1zleCnxm8c5+n7P/cCt3l21Iuu7f/7w6W1njcMvAL8lTmblhL+ffMzvQKNsgU/g6B9UHj/Q7MOtQvGphAJWyiUHLEk4f8WqeuMTGyv5OlIn5vPyRhXz6jljjpXOO7fub+lwxPLN4Z5/3ClviySrx81lX3cg3xqZubA1SnfWl++dxzZNL+p0/6WhbB1NWxkrz6RqJR901i+//6W2f17RvD8SutJLnNfULXPPkEr71xOKuE8xARvxmQkF/CHs2SYAP8uN4MsUw7z8v7+5Z8Vbl/gH3jgni7F9P46kFmd1j9rap66lpOJpy4EyilVka+Tg1fmemJJ9rPCnV55TLevfe9cJfun8eX/ztXAp9OGLQj+QXk7oLII5YQ2lQyX4XcT/87+Vs8lVxQY5PpgPuPnX7DMYmuWpMJd7Yv622iReWVQGwuz59j6XBUNAP2Z/Lq3qMADx0NNbN7y8r00+6NDXhVnHpSiKWQTCo2NPI/35qKXe8lvyKIG5ddQMlpWVU7Mm8Yaq5tYO7yjb2SX9m8Y6uElj85NT7pxkscKTeKNux+N43evbaONjcmlFj3d7G7Fza5+LqKiwvr9jddcP3xiNtVGTweaaavrmj0zF3U3Y7FCQb7Pj62hpeXf0Ozjne3FzLj59fweyKnl1ndx5oYuy8rfwhYQxLR2f3ldwbgWZ7HRgF/ZBNKo+d3edv3k9JaRlPvBkr/T4+L7NScDLlO+oC1PH3ddAPL09X5zlt3R4AZq7PTl/w/Ydb+PWU9fzbhGVZv8roWbebedQ/mqT3jhlcPW5xn0bgrz26iEsfWjDo+e57108Xg4F8JKUvr+XY4cFDVaqj+9XfvZnyOQP9rL/9RN8qqXXVjfzkhZXc/uoGRk9YxmtravoUNK4dv4wx03oOEEzc5IfPrRhQfoJQ0A9ZvAQeH3Y/ZXUsSMd/HLVp5uroXXed+Oiqxxfz0xdXJX3ehnca09ZpLtte1+/8Isf4PAZtLDzgG8ZSXVbHA3PDkTb+/aU1XekT367qdyqGICXcB2Zs6loeSEl/x4G+XUSd6ztcP7ZtrGfI7xPm6Pn62EUZv+c1Ty7J+DmF1B88mR51+gGfU9fcyruGdYeq/u5fHHuT5Mm9u/kmbpbus06V11RjKAC27Es9knxXku66+Tp0kQ76902v6Cqthq3dX9ol/ijmVOzlc3fP6jfg9a6CWbkrWF32ZQ8v4IJ756Td7kfPL2f5zjqfN9czYPsI8+CszYG6HX72rllcO35pj32ctWFv12CpxPTVCXXy2/c3pWzg3LTnEB+/dTpXj1tMSWlZV5fFHz+/ssd2Cyu75/8ZyF2ckp3YZvuRtqkk1gevq85P3+yFBT6rbKdzTCqv4puPv9U1l1E6HZ2OYcd0h8S/T/O9zdbdufIhjJN0pO+cFb8Rw457Lwdi9emfuG0GY77xCb79uQ/mJQ/L/JwgvXvd1DW18vLyWKl/1a6D/ONHRiR9/p/e2sEFHz6Fk49/V1eac65P1UImX67EYLWo8gCLKhez497LueeNCsbN38bW31zGsGOMhN8h5TvquuZS6c/bO+p7/Civf6acn154FjsPNHGMf0Gz5PlNlhZvT4iXuG+auIpLPvbX1DT0bOwdnpDZ219dDxAov73fpxAlhrhbp64PLR9BLN1ex1I/IvntHcEaZ48x65rKIoigIb8+QEFlMIKcexZVdv/W+rZd9f0dZ0OkS/q9xQNFupsYHDjcQklpGTPWd18lHGzu7iff2t5Jc+vgGtX2HWqhLGBjzg+eKSfx4vCuso18NmEukoPNrSlHnCaTagj6hIWxzyVeDdN7npJnl/TfXTSu95e7qr6ZV1a9w+QVvmorgwvd3tVXcyr28cuX1/RIe2T2lh4/nvoMpsSNC3oFJdl3jGU2aCrovQR+Pil7XZSTybTnT++TRK4uWBT0gR8/v4LW9s7AH3KF72b1u5nddbbxngYTFm7n2+MWc/avpw8oLwM90A1Hukst4xdu50BCKebTd8zkn/+wMNnTAnt0bmWfkvZAyyB9Bsz0ehhkIrFMPDAz3SCr3Eo3anSwDg1imoKhIGg1UC7l4yb0fUr6OXqfyAb9xMag19bUUL6zrmtekKDHtyJhyt/EL0W2S4VB7g70/T/1P3f4wRSl29518akGhvxx0Y6u5U/ePp3New91VcfE8hjczyf1LJ33fm5Nw9GkQbrQGylTSTdDoxSG+6YnnzDtD3O2hHInslyN84hs0D/ST5dAw7i7bENXcFr/TgOXPbSAppZ2rnx0Ed9JMid91zzcad73wOEW7nljI3sakg8wStYItauuOdAI04HoPSVtqlvB7T/cQpuflvloWyfP9arKGTc/eBfT19f2bDwP2vAW78Y8kFvkZTK4R6Ip1c3W75+R/E5p2fbq6p5VWLkq6UeqIXfsvK3s2N/EmKs+2e/lfuPRtq6BQb/71qe5/OFY1cijcyt79CpJFHQa4V+9vJZZG/fyxJvbWPirL/VZ37sBEmDyimr+5uTj+fQHT+z/xfMssU5/MCWhZJ9ZssvpeLXQr6cUdmOlSDaoTj8LxkyrYKIfDJVM/ENOFngBHgtwk4T+SqGdnY5ZG7sHMn1hzNy0rxe3dPuBrE1glg2O7M3VHvS7He/WWii3TxTJpVzd9D0SQT9I3VjZmuQ9ZUpKy/p9XlNLO00t7fxrkhts3DRxFfdNr8A5R0enY9r6gY8JGMxNt3NhTsW+rAXfPQ19B9tsTzJf/kBvlCEyFOWqpB+p6p24+Ztr+wSV55buYuQpx2f8WjdNXMU1536wKyAlDsL5y8pYF8QPnPgebvnLuiHbEJlMNieFCtpfeyBdLUWkp0gE/abWDt53XPeuprqhR7IJwNLZuKcxbXfAW/6yDsjtvPAiUlxyNbI4EkH/47dO54pPnpaT166qy+00qCISTWrIHaTXUtTZZ8OOQdyvVUQkmVyV9CMT9HPptlf7n3deRCRTN01MPkPuYCnoi4gUoFkbg08ylwkFfRGRCMl70DezS8xsk5lVmllpvt9fRCTK8hr0zWwY8ChwKXA2cI2ZnZ3PPIiIRFm+S/qfByqdc9ucc63Ai8CV2X6T3fV9b0UmIiL5D/qnA4mT3+z2aV3M7AYzKzez8tragQ3zz/ZNtUVE8u0r/+vUnLxuwQ3Ocs6NA8YBjBo1akAdVT/8P/+q6xaIIiLSLd8l/WrgzITHZ/g0ERHJg3wH/beBs8xspJkdC1wNTM1zHkREIiuv1TvOuXYz+zEwHRgGTHDO6Y4YIiJ5kvc6fefc68Dr+X5fERHRiFwRkUhR0BcRiRAFfRGRCFHQFxGJEAty0/CwmFktsHMQL3EKsD9L2RkKora/oH2OCu1zZv7GOTci2YqCDvqDZWblzrlRYecjX6K2v6B9jgrtc/aoekdEJEIU9EVEIqTYg/64sDOQZ1HbX9A+R4X2OUuKuk5fRER6KvaSvoiIJFDQFxGJkKIM+sV083UzO9PM5prZBjNbb2Y/9eknm9lMM9vi/5/k083MHvb7vsbMzkl4rdF++y1mNjqsfQrCzIaZ2Uoze80/HmlmS/1+TfRTc2Nmx/nHlX59ScJr3OzTN5nZxeHsSTBmdqKZvWRmFWa20czOj8Axvsl/p9eZ2Qtm9u5iO85mNsHM9pnZuoS0rB1XM/usma31z3nYzCxtppxzRfVHbMrmrcCHgGOB1cDZYedrEPtzGnCOX/4rYDOxm8r/Fij16aXAGL98GfAGYMB5wFKffjKwzf8/yS+fFPb+9bPfPweeB17zjycBV/vlx4Ef+uUfAY/75auBiX75bH/sjwNG+u/EsLD3q5/9fRq43i8fC5xYzMeY2G1StwPvSTi+/1Zsxxn4InAOsC4hLWvHFVjmtzX/3EvT5insDyUHH/L5wPSExzcDN4edryzu3xTgq8Am4DSfdhqwyS8/AVyTsP0mv/4a4ImE9B7bFdIfsTuqzQa+DLzmv9D7geG9jzGxezOc75eH++2s93FP3K7Q/oATfAC0XunFfIzj98s+2R+314CLi/E4AyW9gn5WjqtfV5GQ3mO7VH/FWL2T9ubrQ5W/pP0MsBQ41TlX41ftAeJ3UU61/0Ppc/k98Eug0z9+P3DQOdfuHyfmvWu//PoGv/1Q2t+RQC3wR1+l9ZSZHU8RH2PnXDVwP7ALqCF23JZT3Mc5LlvH9XS/3Du9X8UY9IuSmb0PeBn4mXOuMXGdi53mi6LvrZldAexzzi0POy95NJxYFcBY59xngCZil/1diukYA/h67CuJnfA+ABwPXBJqpuR29Y8AAAHSSURBVEIQxnEtxqBfdDdfN7N3EQv4zznnJvvkvWZ2ml9/GrDPp6fa/6HyuVwA/IuZ7QBeJFbF8xBwopnF7/SWmPeu/fLrTwAOMHT2F2IltN3OuaX+8UvETgLFeowBvgJsd87VOufagMnEjn0xH+e4bB3Xar/cO71fxRj0i+rm6741fjyw0Tn3u4RVU4F4K/5oYnX98fTv+p4A5wEN/lJyOnCRmZ3kS1kX+bSC4py72Tl3hnOuhNixm+Oc+w4wF7jKb9Z7f+Ofw1V+e+fTr/a9PkYCZxFr9Co4zrk9QJWZ/Z1PuhDYQJEeY28XcJ6Zvdd/x+P7XLTHOUFWjqtf12hm5/nP8LsJr5Va2I0cOWo4uYxYL5etwC1h52eQ+/IFYpd/a4BV/u8yYvWZs4EtwCzgZL+9AY/6fV8LjEp4re8Dlf7ve2HvW4B9/ye6e+98iNiPuRL4M3CcT3+3f1zp138o4fm3+M9hEwF6NYS8r58Gyv1xfoVYL42iPsbA7UAFsA54llgPnKI6zsALxNos2ohd0V2XzeMKjPKf31bgD/TqDJDsT9MwiIhESDFW74iISAoK+iIiEaKgLyISIQr6IiIRoqAvIhIhCvoiIhGioC8iEiH/H6G+/rPuz7xgAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "처음에는 평균 경로 길이가 증가하는 것을 볼 수 있습니다. 이는 환경에 대해 아무것도 모를 때, 나쁜 상태나 물, 늑대에 갇히기 쉽기 때문일 가능성이 높습니다. 환경에 대한 지식을 더 많이 배우고 이를 활용하기 시작하면 더 오래 탐험할 수 있지만, 여전히 사과가 어디에 있는지 잘 모르는 상태입니다.\n", + "\n", + "충분히 학습한 후에는 에이전트가 목표를 달성하기가 더 쉬워지고, 경로 길이가 줄어들기 시작합니다. 하지만 여전히 탐험을 계속하기 때문에 최적의 경로에서 벗어나 새로운 옵션을 탐색하며 경로가 최적보다 길어지는 경우가 자주 발생합니다.\n", + "\n", + "또한 이 그래프에서 관찰할 수 있는 것은, 어느 시점에서 경로 길이가 갑자기 증가했다는 점입니다. 이는 과정의 확률적 특성을 나타내며, 새로운 값으로 Q-Table 계수를 덮어쓰면서 \"망칠\" 수 있다는 것을 보여줍니다. 이를 최소화하려면 학습률을 줄이는 것이 이상적입니다(즉, 훈련이 끝날 무렵에는 Q-Table 값을 작은 값으로만 조정해야 합니다).\n", + "\n", + "전반적으로, 학습 과정의 성공과 품질은 학습률, 학습률 감소, 할인 계수와 같은 매개변수에 크게 의존한다는 점을 기억하는 것이 중요합니다. 이러한 매개변수는 **하이퍼파라미터**라고 불리며, 훈련 중에 최적화하는 **파라미터**(예: Q-Table 계수)와 구별됩니다. 최적의 하이퍼파라미터 값을 찾는 과정을 **하이퍼파라미터 최적화**라고 하며, 이는 별도의 주제로 다룰 가치가 있습니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "## 연습 문제\n", + "#### 더 현실적인 '피터와 늑대' 세계\n", + "\n", + "우리의 상황에서 피터는 거의 지치거나 배고프지 않은 상태로 자유롭게 이동할 수 있었습니다. 하지만 더 현실적인 세계에서는 피터가 가끔씩 앉아서 쉬어야 하고, 스스로 먹을 것도 챙겨야 합니다. 다음 규칙들을 구현하여 우리의 세계를 더 현실적으로 만들어 봅시다:\n", + "\n", + "1. 한 장소에서 다른 장소로 이동할 때, 피터는 **에너지**를 잃고 약간의 **피로**를 얻게 됩니다.\n", + "2. 피터는 사과를 먹음으로써 에너지를 얻을 수 있습니다.\n", + "3. 피터는 나무 아래나 풀밭에서 쉬면서 피로를 해소할 수 있습니다 (즉, 나무나 풀이 있는 보드 위치 - 초록색 필드로 이동).\n", + "4. 피터는 늑대를 찾아내고 처치해야 합니다.\n", + "5. 늑대를 처치하려면, 피터는 특정 수준의 에너지와 피로 상태를 유지해야 하며, 그렇지 않으면 전투에서 패배합니다.\n", + "\n", + "위의 규칙에 따라 보상 함수를 수정하고, 강화 학습 알고리즘을 실행하여 게임에서 승리하기 위한 최적의 전략을 학습하세요. 그리고 무작위 이동(random walk)과 알고리즘의 결과를 비교하여, 승리와 패배 횟수를 분석해 보세요.\n", + "\n", + "> **Note**: 하이퍼파라미터를 조정해야 할 수도 있습니다. 특히 에포크(epoch) 수를 조정해야 할 가능성이 큽니다. 게임의 성공(늑대와의 전투)은 드문 이벤트이기 때문에, 더 긴 훈련 시간이 필요할 수 있습니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/2-Gym/README.md b/translations/ko/8-Reinforcement/2-Gym/README.md new file mode 100644 index 000000000..abe710b40 --- /dev/null +++ b/translations/ko/8-Reinforcement/2-Gym/README.md @@ -0,0 +1,351 @@ + +# 카트폴 스케이팅 + +이전 강의에서 다룬 문제는 장난감 문제처럼 보일 수 있지만, 실제로는 현실 세계의 시나리오에도 적용될 수 있습니다. 체스나 바둑을 두는 것과 같은 많은 현실 문제도 이와 유사합니다. 왜냐하면 이들 역시 주어진 규칙과 **이산 상태**를 가진 보드 게임과 비슷하기 때문입니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/47/) + +## 소개 + +이번 강의에서는 **연속 상태**를 가진 문제에 Q-러닝 원리를 적용해 보겠습니다. 연속 상태란 하나 이상의 실수로 표현되는 상태를 의미합니다. 이번 강의에서 다룰 문제는 다음과 같습니다: + +> **문제**: 피터가 늑대에게서 도망치려면 더 빨리 움직일 수 있어야 합니다. 이번 강의에서는 피터가 스케이트를 타는 법, 특히 균형을 유지하는 법을 Q-러닝을 통해 배우는 과정을 살펴보겠습니다. + +![위대한 탈출!](../../../../translated_images/escape.18862db9930337e3fce23a9b6a76a06445f229dadea2268e12a6f0a1fde12115.ko.png) + +> 피터와 친구들이 늑대에게서 도망치기 위해 창의력을 발휘합니다! 이미지 제공: [Jen Looper](https://twitter.com/jenlooper) + +우리는 **카트폴(CartPole)** 문제로 알려진 균형 잡기 문제의 단순화된 버전을 사용할 것입니다. 카트폴 세계에서는 좌우로 움직일 수 있는 수평 슬라이더가 있으며, 목표는 슬라이더 위에 세워진 수직 막대를 균형 있게 유지하는 것입니다. + +## 사전 요구 사항 + +이번 강의에서는 **OpenAI Gym**이라는 라이브러리를 사용하여 다양한 **환경**을 시뮬레이션할 것입니다. 이 코드는 로컬 환경(예: Visual Studio Code)에서 실행할 수 있으며, 이 경우 시뮬레이션이 새 창에서 열립니다. 온라인에서 코드를 실행할 경우, [여기](https://towardsdatascience.com/rendering-openai-gym-envs-on-binder-and-google-colab-536f99391cc7)에 설명된 대로 코드를 약간 수정해야 할 수도 있습니다. + +## OpenAI Gym + +이전 강의에서는 게임의 규칙과 상태가 우리가 정의한 `Board` 클래스에 의해 제공되었습니다. 이번에는 **시뮬레이션 환경**을 사용하여 균형 잡기 막대의 물리학을 시뮬레이션할 것입니다. 강화 학습 알고리즘을 훈련시키기 위한 가장 인기 있는 시뮬레이션 환경 중 하나는 [Gym](https://gym.openai.com/)으로, [OpenAI](https://openai.com/)에서 유지 관리합니다. 이 Gym을 사용하면 카트폴 시뮬레이션부터 아타리 게임까지 다양한 **환경**을 생성할 수 있습니다. + +> **참고**: OpenAI Gym에서 제공하는 다른 환경은 [여기](https://gym.openai.com/envs/#classic_control)에서 확인할 수 있습니다. + +먼저 Gym을 설치하고 필요한 라이브러리를 가져옵니다. (코드 블록 1): + +```python +import sys +!{sys.executable} -m pip install gym + +import gym +import matplotlib.pyplot as plt +import numpy as np +import random +``` + +## 연습 - 카트폴 환경 초기화 + +카트폴 균형 문제를 다루기 위해서는 해당 환경을 초기화해야 합니다. 각 환경은 다음과 연관됩니다: + +- **관찰 공간(Observation space)**: 환경에서 얻는 정보의 구조를 정의합니다. 카트폴 문제에서는 막대의 위치, 속도 및 기타 값을 받습니다. + +- **행동 공간(Action space)**: 가능한 행동을 정의합니다. 우리의 경우 행동 공간은 이산적이며, **왼쪽**과 **오른쪽** 두 가지 행동으로 구성됩니다. (코드 블록 2) + +1. 초기화하려면 다음 코드를 입력하세요: + + ```python + env = gym.make("CartPole-v1") + print(env.action_space) + print(env.observation_space) + print(env.action_space.sample()) + ``` + +환경이 어떻게 작동하는지 확인하려면 100단계 동안 짧은 시뮬레이션을 실행해 봅시다. 각 단계에서 `action_space`에서 무작위로 선택한 행동을 제공합니다. + +1. 아래 코드를 실행하고 결과를 확인하세요. + + ✅ 이 코드는 로컬 Python 설치 환경에서 실행하는 것이 권장됩니다! (코드 블록 3) + + ```python + env.reset() + + for i in range(100): + env.render() + env.step(env.action_space.sample()) + env.close() + ``` + + 다음과 유사한 이미지를 볼 수 있을 것입니다: + + ![균형을 잡지 못하는 카트폴](../../../../8-Reinforcement/2-Gym/images/cartpole-nobalance.gif) + +1. 시뮬레이션 중에는 행동을 결정하기 위해 관찰값을 얻어야 합니다. 실제로 `step` 함수는 현재 관찰값, 보상 함수, 시뮬레이션을 계속할 가치가 있는지 여부를 나타내는 `done` 플래그를 반환합니다: (코드 블록 4) + + ```python + env.reset() + + done = False + while not done: + env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + print(f"{obs} -> {rew}") + env.close() + ``` + + 노트북 출력에서 다음과 유사한 결과를 보게 될 것입니다: + + ```text + [ 0.03403272 -0.24301182 0.02669811 0.2895829 ] -> 1.0 + [ 0.02917248 -0.04828055 0.03248977 0.00543839] -> 1.0 + [ 0.02820687 0.14636075 0.03259854 -0.27681916] -> 1.0 + [ 0.03113408 0.34100283 0.02706215 -0.55904489] -> 1.0 + [ 0.03795414 0.53573468 0.01588125 -0.84308041] -> 1.0 + ... + [ 0.17299878 0.15868546 -0.20754175 -0.55975453] -> 1.0 + [ 0.17617249 0.35602306 -0.21873684 -0.90998894] -> 1.0 + ``` + + 시뮬레이션의 각 단계에서 반환되는 관찰 벡터는 다음 값을 포함합니다: + - 카트의 위치 + - 카트의 속도 + - 막대의 각도 + - 막대의 회전 속도 + +1. 이러한 값의 최소값과 최대값을 확인하세요: (코드 블록 5) + + ```python + print(env.observation_space.low) + print(env.observation_space.high) + ``` + + 또한 각 시뮬레이션 단계에서 보상 값이 항상 1임을 알 수 있습니다. 이는 우리의 목표가 가능한 한 오랫동안 막대를 수직에 가깝게 유지하는 것이기 때문입니다. + + ✅ 실제로, 카트폴 시뮬레이션은 100번의 연속적인 시도에서 평균 보상이 195에 도달하면 해결된 것으로 간주됩니다. + +## 상태 이산화 + +Q-러닝에서는 각 상태에서 무엇을 해야 할지를 정의하는 Q-테이블을 구축해야 합니다. 이를 위해 상태는 **이산적**이어야 하며, 정확히 말하면 유한한 개수의 이산 값으로 구성되어야 합니다. 따라서 관찰값을 **이산화**하여 유한한 상태 집합으로 매핑해야 합니다. + +이를 수행하는 방법에는 몇 가지가 있습니다: + +- **구간 나누기**: 특정 값의 범위를 알고 있다면, 이 범위를 여러 개의 **구간**으로 나누고, 값을 해당 구간 번호로 대체할 수 있습니다. 이는 numpy의 [`digitize`](https://numpy.org/doc/stable/reference/generated/numpy.digitize.html) 메서드를 사용하여 수행할 수 있습니다. 이 경우, 선택한 구간 수에 따라 상태 크기를 정확히 알 수 있습니다. + +✅ 값을 특정 유한 범위(예: -20에서 20)로 선형 보간한 다음, 반올림하여 정수로 변환할 수도 있습니다. 이 방법은 상태 크기를 정확히 제어하기 어렵지만, 특히 입력 값의 정확한 범위를 모를 때 유용합니다. 예를 들어, 우리의 경우 관찰값 중 2개는 상한/하한이 정의되어 있지 않아 상태가 무한대로 증가할 수 있습니다. + +이번 예제에서는 두 번째 접근 방식을 사용할 것입니다. 나중에 알게 되겠지만, 상한/하한이 정의되지 않은 값이라도 대부분 특정 유한 범위 내에서 값을 가지므로 극단적인 값의 상태는 매우 드뭅니다. + +1. 모델에서 관찰값을 받아 4개의 정수 값 튜플을 생성하는 함수는 다음과 같습니다: (코드 블록 6) + + ```python + def discretize(x): + return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int)) + ``` + +1. 구간을 사용하는 또 다른 이산화 방법을 탐색해 봅시다: (코드 블록 7) + + ```python + def create_bins(i,num): + return np.arange(num+1)*(i[1]-i[0])/num+i[0] + + print("Sample bins for interval (-5,5) with 10 bins\n",create_bins((-5,5),10)) + + ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter + nbins = [20,20,10,10] # number of bins for each parameter + bins = [create_bins(ints[i],nbins[i]) for i in range(4)] + + def discretize_bins(x): + return tuple(np.digitize(x[i],bins[i]) for i in range(4)) + ``` + +1. 짧은 시뮬레이션을 실행하고 이산화된 환경 값을 관찰해 봅시다. `discretize`와 `discretize_bins`를 모두 시도해 보고 차이가 있는지 확인하세요. + + ✅ `discretize_bins`는 0부터 시작하는 구간 번호를 반환합니다. 따라서 입력 변수 값이 0에 가까울 때, 중간 구간 번호(10)를 반환합니다. 반면, `discretize`는 출력 값의 범위를 신경 쓰지 않으므로 상태 값이 이동되지 않고, 0이 0에 해당합니다. (코드 블록 8) + + ```python + env.reset() + + done = False + while not done: + #env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + #print(discretize_bins(obs)) + print(discretize(obs)) + env.close() + ``` + + ✅ 환경 실행을 확인하려면 `env.render`로 시작하는 줄의 주석을 해제하세요. 그렇지 않으면 백그라운드에서 실행할 수 있으며, 이 방식이 더 빠릅니다. Q-러닝 과정에서는 이 "보이지 않는" 실행 방식을 사용할 것입니다. + +## Q-테이블 구조 + +이전 강의에서는 상태가 0에서 8까지의 숫자 쌍으로 간단히 표현되었기 때문에, Q-테이블을 8x8x2 형태의 numpy 텐서로 표현하는 것이 편리했습니다. 구간 이산화를 사용하는 경우, 상태 벡터의 크기도 알려져 있으므로 동일한 접근 방식을 사용할 수 있습니다. 예를 들어, 상태를 20x20x10x10x2 배열로 표현할 수 있습니다(여기서 2는 행동 공간의 차원이고, 첫 번째 차원은 관찰 공간의 각 매개변수에 대해 선택한 구간 수에 해당합니다). + +그러나 관찰 공간의 정확한 차원을 알 수 없는 경우도 있습니다. `discretize` 함수의 경우, 일부 원래 값이 제한되지 않기 때문에 상태가 특정 한계 내에 머무를 것이라고 확신할 수 없습니다. 따라서 약간 다른 접근 방식을 사용하여 Q-테이블을 딕셔너리로 표현할 것입니다. + +1. *(state, action)* 쌍을 딕셔너리 키로 사용하고, 값은 Q-테이블 항목 값을 나타냅니다. (코드 블록 9) + + ```python + Q = {} + actions = (0,1) + + def qvalues(state): + return [Q.get((state,a),0) for a in actions] + ``` + + 여기서 `qvalues()` 함수도 정의하며, 주어진 상태에 대해 가능한 모든 행동에 해당하는 Q-테이블 값을 반환합니다. Q-테이블에 항목이 없으면 기본값으로 0을 반환합니다. + +## Q-러닝 시작하기 + +이제 피터가 균형을 잡는 법을 배우도록 준비가 되었습니다! + +1. 먼저 몇 가지 하이퍼파라미터를 설정합시다: (코드 블록 10) + + ```python + # hyperparameters + alpha = 0.3 + gamma = 0.9 + epsilon = 0.90 + ``` + + 여기서 `alpha`는 **학습률**로, 각 단계에서 Q-테이블의 현재 값을 어느 정도 조정해야 할지를 정의합니다. 이전 강의에서는 1로 시작한 후 훈련 중에 `alpha`를 낮췄습니다. 이번 예제에서는 단순화를 위해 상수를 유지하며, 나중에 `alpha` 값을 조정해 볼 수 있습니다. + + `gamma`는 **할인 계수**로, 현재 보상보다 미래 보상을 얼마나 우선시해야 하는지를 나타냅니다. + + `epsilon`은 **탐험/활용 계수**로, 탐험과 활용 중 어느 쪽을 선호해야 할지를 결정합니다. 알고리즘에서는 `epsilon` 비율만큼 Q-테이블 값을 기준으로 다음 행동을 선택하고, 나머지 경우에는 무작위 행동을 실행합니다. 이를 통해 이전에 탐색하지 않은 검색 공간 영역을 탐험할 수 있습니다. + + ✅ 균형 잡기 관점에서 보면, 무작위 행동(탐험)은 잘못된 방향으로의 무작위 펀치처럼 작용하며, 막대는 이러한 "실수"에서 균형을 회복하는 법을 배워야 합니다. + +### 알고리즘 개선 + +이전 강의의 알고리즘을 개선하기 위해 다음 두 가지를 추가할 수 있습니다: + +- **평균 누적 보상 계산**: 여러 시뮬레이션에 걸쳐 평균 누적 보상을 계산합니다. 5000번의 반복마다 진행 상황을 출력하며, 해당 기간 동안 평균 누적 보상을 계산합니다. 평균 보상이 195점을 초과하면 문제를 해결한 것으로 간주할 수 있으며, 이는 요구 조건보다 높은 품질입니다. + +- **최대 평균 누적 결과 계산**: `Qmax`를 계산하고, 해당 결과에 해당하는 Q-테이블을 저장합니다. 훈련을 실행하면 때때로 평균 누적 결과가 감소하기 시작하는 것을 알 수 있습니다. 이는 Q-테이블의 기존 학습 값을 더 나쁜 상황을 만드는 값으로 덮어쓸 수 있음을 의미합니다. + +1. 각 시뮬레이션에서 누적 보상을 `rewards` 벡터에 수집하여 나중에 플로팅합니다. (코드 블록 11) + + ```python + def probs(v,eps=1e-4): + v = v-v.min()+eps + v = v/v.sum() + return v + + Qmax = 0 + cum_rewards = [] + rewards = [] + for epoch in range(100000): + obs = env.reset() + done = False + cum_reward=0 + # == do the simulation == + while not done: + s = discretize(obs) + if random.random() Qmax: + Qmax = np.average(cum_rewards) + Qbest = Q + cum_rewards=[] + ``` + +이 결과에서 알 수 있는 점: + +- **목표에 근접**: 100번 이상의 연속 실행에서 평균 보상이 195에 도달하거나 이를 초과했을 가능성이 높습니다. 평균 보상이 더 낮더라도, 공식 기준에서는 100번의 실행만 요구되므로 목표를 달성했을 수 있습니다. + +- **보상이 감소하기 시작**: 때때로 보상이 감소하기 시작하는데, 이는 Q-테이블에서 이미 학습된 값을 더 나쁜 값으로 덮어쓸 수 있음을 의미합니다. + +이 관찰은 훈련 진행 상황을 플로팅하면 더 명확히 보입니다. + +## 훈련 진행 상황 플로팅 + +훈련 중에 각 반복에서 누적 보상 값을 `rewards` 벡터에 수집했습니다. 이를 반복 횟수에 대해 플로팅하면 다음과 같습니다: + +```python +plt.plot(rewards) +``` + +![원시 진행 상황](../../../../translated_images/train_progress_raw.2adfdf2daea09c596fc786fa347a23e9aceffe1b463e2257d20a9505794823ec.ko.png) + +이 그래프에서는 아무것도 알 수 없습니다. 이는 확률적 훈련 과정의 특성상 훈련 세션 길이가 크게 달라지기 때문입니다. 이 그래프를 더 잘 이해하려면, 예를 들어 100번의 실험에 대한 **이동 평균**을 계산할 수 있습니다. 이는 `np.convolve`를 사용하여 편리하게 수행할 수 있습니다: (코드 블록 12) + +```python +def running_average(x,window): + return np.convolve(x,np.ones(window)/window,mode='valid') + +plt.plot(running_average(rewards,100)) +``` + +![훈련 진행 상황](../../../../translated_images/train_progress_runav.c71694a8fa9ab35935aff6f109e5ecdfdbdf1b0ae265da49479a81b5fae8f0aa.ko.png) + +## 하이퍼파라미터 조정 + +학습을 더 안정적으로 만들기 위해 훈련 중에 일부 하이퍼파라미터를 조정하는 것이 좋습니다. 특히: + +- **학습률(`alpha`)**: 초기에는 1에 가까운 값으로 시작한 후, 점차적으로 이 값을 줄일 수 있습니다. 시간이 지나면 Q-테이블에서 좋은 확률 값을 얻게 되며, 이 값을 완전히 덮어쓰지 않고 약간만 조정해야 합니다. + +- **`epsilon` 증가**: 탐험을 줄이고 활용을 늘리기 위해 `epsilon`을 천천히 증가시키는 것이 좋습니다. 낮은 `epsilon` 값으로 시작하여 거의 1에 가까운 값으로 이동하는 것이 합리적일 수 있습니다. +> **Task 1**: 하이퍼파라미터 값을 조정해보고 더 높은 누적 보상을 얻을 수 있는지 확인하세요. 195 이상을 달성하고 있나요? +> **과제 2**: 문제를 공식적으로 해결하려면, 100번의 연속 실행에서 평균 보상이 195에 도달해야 합니다. 훈련 중에 이를 측정하고 문제를 공식적으로 해결했는지 확인하세요! + +## 결과 확인하기 + +훈련된 모델이 실제로 어떻게 작동하는지 보는 것은 흥미로울 것입니다. 시뮬레이션을 실행하고 훈련 중과 동일한 행동 선택 전략을 따라가 봅시다. Q-Table의 확률 분포에 따라 샘플링합니다: (코드 블록 13) + +```python +obs = env.reset() +done = False +while not done: + s = discretize(obs) + env.render() + v = probs(np.array(qvalues(s))) + a = random.choices(actions,weights=v)[0] + obs,_,done,_ = env.step(a) +env.close() +``` + +다음과 같은 결과를 볼 수 있을 것입니다: + +![균형 잡힌 카트폴](../../../../8-Reinforcement/2-Gym/images/cartpole-balance.gif) + +--- + +## 🚀도전 + +> **과제 3**: 여기서는 최종 Q-Table을 사용했지만, 이것이 최상의 결과를 내는 것은 아닐 수 있습니다. 우리가 `Qbest` 변수에 가장 성능이 좋은 Q-Table을 저장해 두었다는 것을 기억하세요! `Qbest`를 `Q`로 복사하여 최상의 Q-Table을 사용해 동일한 예제를 실행해 보고 차이를 확인하세요. + +> **과제 4**: 여기서는 각 단계에서 최상의 행동을 선택하지 않고, 해당 확률 분포에 따라 샘플링했습니다. 항상 Q-Table 값이 가장 높은 최상의 행동을 선택하는 것이 더 합리적일까요? 이를 구현하려면 `np.argmax` 함수를 사용하여 Q-Table 값이 가장 높은 행동 번호를 찾을 수 있습니다. 이 전략을 구현하고 균형 잡기에 개선이 있는지 확인하세요. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/48/) + +## 과제 +[Mountain Car 훈련하기](assignment.md) + +## 결론 + +우리는 이제 에이전트가 게임의 원하는 상태를 정의하는 보상 함수만 제공받고, 탐색 공간을 지능적으로 탐색할 기회를 통해 좋은 결과를 얻는 방법을 배웠습니다. 우리는 Q-Learning 알고리즘을 이산 환경과 연속 환경에서 성공적으로 적용했으며, 이산 행동을 사용했습니다. + +행동 상태도 연속적이고 관찰 공간이 훨씬 더 복잡한 상황, 예를 들어 Atari 게임 화면의 이미지를 다루는 경우를 공부하는 것도 중요합니다. 이러한 문제에서는 좋은 결과를 얻기 위해 종종 신경망과 같은 더 강력한 머신러닝 기술이 필요합니다. 이러한 더 고급 주제는 앞으로 진행될 고급 AI 과정에서 다룰 예정입니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/2-Gym/assignment.md b/translations/ko/8-Reinforcement/2-Gym/assignment.md new file mode 100644 index 000000000..34c10e525 --- /dev/null +++ b/translations/ko/8-Reinforcement/2-Gym/assignment.md @@ -0,0 +1,57 @@ + +# 산악 자동차 훈련하기 + +[OpenAI Gym](http://gym.openai.com)은 모든 환경이 동일한 API를 제공하도록 설계되었습니다. 즉, `reset`, `step`, `render`와 같은 동일한 메서드와 **action space** 및 **observation space**의 동일한 추상화를 제공합니다. 따라서 동일한 강화 학습 알고리즘을 최소한의 코드 변경으로 다양한 환경에 적용할 수 있어야 합니다. + +## 산악 자동차 환경 + +[산악 자동차 환경](https://gym.openai.com/envs/MountainCar-v0/)은 계곡에 갇힌 자동차를 포함합니다: + +목표는 계곡을 빠져나가 깃발을 잡는 것입니다. 이를 위해 각 단계에서 다음 중 하나의 행동을 수행합니다: + +| 값 | 의미 | +|---|---| +| 0 | 왼쪽으로 가속 | +| 1 | 가속하지 않음 | +| 2 | 오른쪽으로 가속 | + +이 문제의 주요 요령은 자동차 엔진이 한 번의 시도로 산을 오를 만큼 강력하지 않다는 점입니다. 따라서 성공하려면 앞뒤로 움직이며 운동 에너지를 축적해야 합니다. + +관찰 공간은 단 두 개의 값으로 구성됩니다: + +| 번호 | 관찰값 | 최소값 | 최대값 | +|-----|--------------|-------|-------| +| 0 | 자동차 위치 | -1.2 | 0.6 | +| 1 | 자동차 속도 | -0.07 | 0.07 | + +산악 자동차의 보상 시스템은 다소 까다롭습니다: + + * 에이전트가 산 정상에서 깃발(위치 = 0.5)에 도달하면 보상으로 0이 주어집니다. + * 에이전트의 위치가 0.5보다 작으면 보상으로 -1이 주어집니다. + +에피소드는 자동차 위치가 0.5를 초과하거나 에피소드 길이가 200을 초과하면 종료됩니다. + +## 지침 + +우리의 강화 학습 알고리즘을 산악 자동차 문제를 해결하도록 수정하세요. 기존 [notebook.ipynb](notebook.ipynb) 코드에서 시작하여 새로운 환경을 대체하고 상태 이산화 함수를 변경하며 기존 알고리즘을 최소한의 코드 수정으로 훈련하도록 시도하세요. 하이퍼파라미터를 조정하여 결과를 최적화하세요. + +> **Note**: 알고리즘이 수렴하도록 하이퍼파라미터 조정이 필요할 가능성이 높습니다. + +## 평가 기준 + +| 기준 | 우수 | 적절 | 개선 필요 | +| -------- | --------- | -------- | ----------------- | +| | CartPole 예제에서 Q-Learning 알고리즘을 성공적으로 수정하여 최소한의 코드 변경으로 깃발을 200단계 이내에 잡는 문제를 해결할 수 있음 | 인터넷에서 새로운 Q-Learning 알고리즘을 채택했지만 잘 문서화되었거나, 기존 알고리즘을 채택했지만 원하는 결과에 도달하지 못함 | 학생이 알고리즘을 성공적으로 채택하지 못했지만 솔루션을 향한 상당한 단계를 밟았음(상태 이산화, Q-테이블 데이터 구조 구현 등) | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/2-Gym/notebook.ipynb b/translations/ko/8-Reinforcement/2-Gym/notebook.ipynb new file mode 100644 index 000000000..c51044562 --- /dev/null +++ b/translations/ko/8-Reinforcement/2-Gym/notebook.ipynb @@ -0,0 +1,394 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.4 64-bit ('base': conda)" + }, + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "coopTranslator": { + "original_hash": "f22f8f3daed4b6d34648d1254763105b", + "translation_date": "2025-09-04T03:05:15+00:00", + "source_file": "8-Reinforcement/2-Gym/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## 카트폴 스케이팅\n", + "\n", + "> **문제**: 피터가 늑대에게서 도망치려면 늑대보다 더 빨리 움직일 수 있어야 합니다. 피터가 스케이트를 배우고, 특히 균형을 유지하는 방법을 Q-러닝을 통해 알아보겠습니다.\n", + "\n", + "먼저 gym을 설치하고 필요한 라이브러리를 가져옵니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 1" + ] + }, + { + "source": [ + "## 카트폴 환경 생성\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 2" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "환경이 어떻게 작동하는지 확인하기 위해 100단계 동안 짧은 시뮬레이션을 실행해 봅시다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "시뮬레이션 중에는 어떻게 행동할지 결정하기 위해 관찰을 얻어야 합니다. 실제로 `step` 함수는 현재 관찰, 보상 함수, 그리고 시뮬레이션을 계속 진행할지 여부를 나타내는 `done` 플래그를 반환합니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 4" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "우리는 이러한 숫자들의 최소값과 최대값을 얻을 수 있습니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "#code block 5" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 6" + ] + }, + { + "source": [ + "다른 구간화를 사용하여 구간화 방법도 탐구해 봅시다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "#code block 7" + ] + }, + { + "source": [ + "이제 짧은 시뮬레이션을 실행하고 해당 이산 환경 값을 관찰해 봅시다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -2, -2)\n(0, 1, -2, -5)\n(0, 2, -3, -8)\n(0, 3, -5, -11)\n(0, 3, -7, -14)\n(0, 4, -10, -17)\n(0, 3, -14, -15)\n(0, 3, -17, -12)\n(0, 3, -20, -16)\n(0, 4, -23, -19)\n" + ] + } + ], + "source": [ + "#code block 8" + ] + }, + { + "source": [ + "## Q-테이블 구조\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 9" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 10" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 22.0, alpha=0.3, epsilon=0.9\n", + "5000: 70.1384, alpha=0.3, epsilon=0.9\n", + "10000: 121.8586, alpha=0.3, epsilon=0.9\n", + "15000: 149.6368, alpha=0.3, epsilon=0.9\n", + "20000: 168.2782, alpha=0.3, epsilon=0.9\n", + "25000: 196.7356, alpha=0.3, epsilon=0.9\n", + "30000: 220.7614, alpha=0.3, epsilon=0.9\n", + "35000: 233.2138, alpha=0.3, epsilon=0.9\n", + "40000: 248.22, alpha=0.3, epsilon=0.9\n", + "45000: 264.636, alpha=0.3, epsilon=0.9\n", + "50000: 276.926, alpha=0.3, epsilon=0.9\n", + "55000: 277.9438, alpha=0.3, epsilon=0.9\n", + "60000: 248.881, alpha=0.3, epsilon=0.9\n", + "65000: 272.529, alpha=0.3, epsilon=0.9\n", + "70000: 281.7972, alpha=0.3, epsilon=0.9\n", + "75000: 284.2844, alpha=0.3, epsilon=0.9\n", + "80000: 269.667, alpha=0.3, epsilon=0.9\n", + "85000: 273.8652, alpha=0.3, epsilon=0.9\n", + "90000: 278.2466, alpha=0.3, epsilon=0.9\n", + "95000: 269.1736, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "#code block 11" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "이 그래프에서는 아무것도 알 수 없습니다. 왜냐하면 확률적 훈련 과정의 특성상 훈련 세션의 길이가 크게 달라지기 때문입니다. 이 그래프를 더 잘 이해하기 위해서는 실험 시리즈에 대해 **이동 평균**을 계산할 수 있습니다. 예를 들어 100번이라고 가정해 봅시다. 이는 `np.convolve`를 사용하여 편리하게 수행할 수 있습니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "#code block 12" + ] + }, + { + "source": [ + "## 하이퍼파라미터를 변경하며 결과 확인하기\n", + "\n", + "이제 훈련된 모델이 실제로 어떻게 작동하는지 보는 것이 흥미로울 것입니다. 시뮬레이션을 실행해 보겠습니다. 훈련 중과 동일한 행동 선택 전략을 따를 것입니다. 즉, Q-테이블의 확률 분포에 따라 샘플링하는 방식입니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 13" + ] + }, + { + "source": [ + "## 결과를 애니메이션 GIF로 저장하기\n", + "\n", + "친구들에게 감동을 주고 싶다면, 균형 막대의 애니메이션 GIF 이미지를 보내는 것도 좋은 방법입니다. 이를 위해 `env.render`를 호출하여 이미지 프레임을 생성한 다음, PIL 라이브러리를 사용해 이를 애니메이션 GIF로 저장할 수 있습니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역을 사용함으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/2-Gym/solution/Julia/README.md b/translations/ko/8-Reinforcement/2-Gym/solution/Julia/README.md new file mode 100644 index 000000000..77af4b70a --- /dev/null +++ b/translations/ko/8-Reinforcement/2-Gym/solution/Julia/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 신뢰할 수 있는 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/2-Gym/solution/R/README.md b/translations/ko/8-Reinforcement/2-Gym/solution/R/README.md new file mode 100644 index 000000000..8565db85e --- /dev/null +++ b/translations/ko/8-Reinforcement/2-Gym/solution/R/README.md @@ -0,0 +1,15 @@ + + + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/2-Gym/solution/notebook.ipynb b/translations/ko/8-Reinforcement/2-Gym/solution/notebook.ipynb new file mode 100644 index 000000000..055c73786 --- /dev/null +++ b/translations/ko/8-Reinforcement/2-Gym/solution/notebook.ipynb @@ -0,0 +1,526 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "5c0e485e58d63c506f1791c4dbf990ce", + "translation_date": "2025-09-04T03:07:48+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/notebook.ipynb", + "language_code": "ko" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## 카트폴 스케이팅\n", + "\n", + "> **문제**: 피터가 늑대에게서 도망치고 싶다면 늑대보다 더 빠르게 움직일 수 있어야 합니다. 우리는 피터가 스케이트를 배우고, 특히 균형을 유지하는 방법을 Q-러닝을 통해 배우는 과정을 살펴볼 것입니다.\n", + "\n", + "먼저 gym을 설치하고 필요한 라이브러리를 가져옵니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: gym in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.18.3)\n", + "Requirement already satisfied: Pillow<=8.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (7.0.0)\n", + "Requirement already satisfied: scipy in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.10.4 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.19.2)\n", + "Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.6.0)\n", + "Requirement already satisfied: pyglet<=1.5.15,>=1.4.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.5.15)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n" + ] + } + ], + "source": [ + "import sys\n", + "!pip install gym \n", + "\n", + "import gym\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random" + ] + }, + { + "source": [ + "## 카트폴 환경 생성\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env = gym.make(\"CartPole-v1\")\n", + "print(env.action_space)\n", + "print(env.observation_space)\n", + "print(env.action_space.sample())" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Discrete(2)\nBox(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)\n0\n" + ] + } + ] + }, + { + "source": [ + "환경이 어떻게 작동하는지 확인하기 위해 100단계 동안 짧은 시뮬레이션을 실행해 봅시다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "for i in range(100):\n", + " env.render()\n", + " env.step(env.action_space.sample())\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/gym/logger.py:30: UserWarning: \u001b[33mWARN: You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.\u001b[0m\n warnings.warn(colorize('%s: %s'%('WARN', msg % args), 'yellow'))\n" + ] + } + ] + }, + { + "source": [ + "시뮬레이션 중에는 어떻게 행동할지 결정하기 위해 관찰을 얻어야 합니다. 실제로 `step` 함수는 현재 관찰, 보상 함수, 그리고 시뮬레이션을 계속 진행할 가치가 있는지 여부를 나타내는 `done` 플래그를 반환합니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " print(f\"{obs} -> {rew}\")\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[ 0.03044442 -0.19543914 -0.04496216 0.28125618] -> 1.0\n", + "[ 0.02653564 -0.38989186 -0.03933704 0.55942606] -> 1.0\n", + "[ 0.0187378 -0.19424049 -0.02814852 0.25461393] -> 1.0\n", + "[ 0.01485299 -0.38894946 -0.02305624 0.53828712] -> 1.0\n", + "[ 0.007074 -0.19351108 -0.0122905 0.23842953] -> 1.0\n", + "[ 0.00320378 0.00178427 -0.00752191 -0.05810469] -> 1.0\n", + "[ 0.00323946 0.19701326 -0.008684 -0.35315131] -> 1.0\n", + "[ 0.00717973 0.00201587 -0.01574703 -0.06321931] -> 1.0\n", + "[ 0.00722005 0.19736001 -0.01701141 -0.36082863] -> 1.0\n", + "[ 0.01116725 0.39271958 -0.02422798 -0.65882671] -> 1.0\n", + "[ 0.01902164 0.19794307 -0.03740452 -0.37387001] -> 1.0\n", + "[ 0.0229805 0.39357584 -0.04488192 -0.67810827] -> 1.0\n", + "[ 0.03085202 0.58929164 -0.05844408 -0.98457719] -> 1.0\n", + "[ 0.04263785 0.78514572 -0.07813563 -1.2950295 ] -> 1.0\n", + "[ 0.05834076 0.98116859 -0.10403622 -1.61111521] -> 1.0\n", + "[ 0.07796413 0.78741784 -0.13625852 -1.35259196] -> 1.0\n", + "[ 0.09371249 0.98396202 -0.16331036 -1.68461179] -> 1.0\n", + "[ 0.11339173 0.79106371 -0.1970026 -1.44691436] -> 1.0\n", + "[ 0.12921301 0.59883361 -0.22594088 -1.22169133] -> 1.0\n" + ] + } + ] + }, + { + "source": [ + "우리는 이러한 숫자들의 최소값과 최대값을 얻을 수 있습니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "print(env.observation_space.low)\n", + "print(env.observation_space.high)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def discretize(x):\n", + " return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int))" + ] + }, + { + "source": [ + "다른 구간화를 사용하여 구간화 방법도 탐구해 봅시다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "def create_bins(i,num):\n", + " return np.arange(num+1)*(i[1]-i[0])/num+i[0]\n", + "\n", + "print(\"Sample bins for interval (-5,5) with 10 bins\\n\",create_bins((-5,5),10))\n", + "\n", + "ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter\n", + "nbins = [20,20,10,10] # number of bins for each parameter\n", + "bins = [create_bins(ints[i],nbins[i]) for i in range(4)]\n", + "\n", + "def discretize_bins(x):\n", + " return tuple(np.digitize(x[i],bins[i]) for i in range(4))" + ] + }, + { + "source": [ + "이제 짧은 시뮬레이션을 실행하고 해당 이산 환경 값을 관찰해 봅시다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -1, -3)\n(0, 0, -2, 0)\n(0, 0, -2, -3)\n(0, 1, -3, -6)\n(0, 2, -4, -9)\n(0, 3, -6, -12)\n(0, 2, -8, -9)\n(0, 3, -10, -13)\n(0, 4, -13, -16)\n(0, 4, -16, -19)\n(0, 4, -20, -17)\n(0, 4, -24, -20)\n" + ] + } + ], + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " #env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " #print(discretize_bins(obs))\n", + " print(discretize(obs))\n", + "env.close()" + ] + }, + { + "source": [ + "## Q-테이블 구조\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "Q = {}\n", + "actions = (0,1)\n", + "\n", + "def qvalues(state):\n", + " return [Q.get((state,a),0) for a in actions]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# hyperparameters\n", + "alpha = 0.3\n", + "gamma = 0.9\n", + "epsilon = 0.90" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 108.0, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v\n", + "\n", + "Qmax = 0\n", + "cum_rewards = []\n", + "rewards = []\n", + "for epoch in range(100000):\n", + " obs = env.reset()\n", + " done = False\n", + " cum_reward=0\n", + " # == do the simulation ==\n", + " while not done:\n", + " s = discretize(obs)\n", + " if random.random() Qmax:\n", + " Qmax = np.average(cum_rewards)\n", + " Qbest = Q\n", + " cum_rewards=[]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "이 그래프에서는 아무것도 알 수 없습니다. 왜냐하면 확률적 훈련 과정의 특성상 훈련 세션의 길이가 크게 달라지기 때문입니다. 이 그래프를 더 잘 이해하기 위해서는 실험 시리즈에 대해 **이동 평균**을 계산할 수 있습니다. 예를 들어 100번이라고 가정해 봅시다. 이는 `np.convolve`를 사용하여 편리하게 수행할 수 있습니다.\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
                                                    ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "def running_average(x,window):\n", + " return np.convolve(x,np.ones(window)/window,mode='valid')\n", + "\n", + "plt.plot(running_average(rewards,100))" + ] + }, + { + "source": [ + "## 하이퍼파라미터를 변경하며 결과 확인하기\n", + "\n", + "이제 훈련된 모델이 실제로 어떻게 작동하는지 보는 것이 흥미로울 것입니다. 시뮬레이션을 실행해 보겠습니다. 훈련 중과 동일한 행동 선택 전략을 따를 것입니다. 즉, Q-테이블의 확률 분포에 따라 샘플링하는 방식입니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "obs = env.reset()\n", + "done = False\n", + "while not done:\n", + " s = discretize(obs)\n", + " env.render()\n", + " v = probs(np.array(qvalues(s)))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + "env.close()" + ] + }, + { + "source": [ + "## 결과를 애니메이션 GIF로 저장하기\n", + "\n", + "친구들에게 감동을 주고 싶다면, 균형 막대의 애니메이션 GIF 이미지를 보내는 것도 좋은 방법입니다. 이를 위해 `env.render`를 호출하여 이미지 프레임을 생성한 다음, PIL 라이브러리를 사용해 이를 애니메이션 GIF로 저장할 수 있습니다:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/8-Reinforcement/README.md b/translations/ko/8-Reinforcement/README.md new file mode 100644 index 000000000..2b0db71e1 --- /dev/null +++ b/translations/ko/8-Reinforcement/README.md @@ -0,0 +1,67 @@ + +# 강화 학습 소개 + +강화 학습(RL)은 지도 학습과 비지도 학습과 함께 기본적인 머신 러닝 패러다임 중 하나로 여겨집니다. RL은 올바른 결정을 내리거나 최소한 그로부터 배우는 데 초점이 맞춰져 있습니다. + +주식 시장과 같은 시뮬레이션 환경을 상상해 보세요. 특정 규제를 적용하면 어떤 일이 발생할까요? 긍정적인 효과가 있을까요, 아니면 부정적인 효과가 있을까요? 부정적인 일이 발생하면 이를 _부정적 강화_로 받아들이고, 이를 통해 배우며 방향을 바꿔야 합니다. 긍정적인 결과가 나오면 _긍정적 강화_를 기반으로 더 발전시켜야 합니다. + +![peter and the wolf](../../../translated_images/peter.779730f9ba3a8a8d9290600dcf55f2e491c0640c785af7ac0d64f583c49b8864.ko.png) + +> 피터와 그의 친구들은 배고픈 늑대에게서 도망쳐야 합니다! 이미지 제공: [Jen Looper](https://twitter.com/jenlooper) + +## 지역 주제: 피터와 늑대 (러시아) + +[피터와 늑대](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)는 러시아 작곡가 [세르게이 프로코피예프](https://en.wikipedia.org/wiki/Sergei_Prokofiev)가 쓴 음악 동화입니다. 이 이야기는 어린 개척자 피터가 늑대를 쫓기 위해 집을 나와 숲으로 나가는 용감한 이야기를 담고 있습니다. 이 섹션에서는 피터를 도울 머신 러닝 알고리즘을 훈련할 것입니다: + +- **탐색**: 주변 지역을 탐험하고 최적의 내비게이션 지도를 구축합니다. +- **학습**: 스케이트보드를 사용하는 방법과 균형을 잡는 방법을 배워 더 빠르게 이동할 수 있도록 합니다. + +[![피터와 늑대](https://img.youtube.com/vi/Fmi5zHg4QSM/0.jpg)](https://www.youtube.com/watch?v=Fmi5zHg4QSM) + +> 🎥 위 이미지를 클릭하여 프로코피예프의 피터와 늑대를 들어보세요 + +## 강화 학습 + +이전 섹션에서는 두 가지 머신 러닝 문제의 예를 보았습니다: + +- **지도 학습**: 우리가 해결하려는 문제에 대한 샘플 솔루션을 제안하는 데이터셋이 있는 경우. [분류](../4-Classification/README.md)와 [회귀](../2-Regression/README.md)는 지도 학습 작업입니다. +- **비지도 학습**: 레이블이 지정된 학습 데이터가 없는 경우. 비지도 학습의 주요 예는 [클러스터링](../5-Clustering/README.md)입니다. + +이 섹션에서는 레이블이 지정된 학습 데이터가 필요하지 않은 새로운 유형의 학습 문제를 소개합니다. 이러한 문제에는 여러 유형이 있습니다: + +- **[반지도 학습](https://wikipedia.org/wiki/Semi-supervised_learning)**: 레이블이 없는 많은 데이터를 사용하여 모델을 사전 훈련할 수 있는 경우. +- **[강화 학습](https://wikipedia.org/wiki/Reinforcement_learning)**: 에이전트가 시뮬레이션 환경에서 실험을 수행하며 행동하는 방법을 배우는 경우. + +### 예제 - 컴퓨터 게임 + +컴퓨터가 체스나 [슈퍼 마리오](https://wikipedia.org/wiki/Super_Mario)와 같은 게임을 하도록 가르치고 싶다고 가정해 보세요. 컴퓨터가 게임을 하려면 각 게임 상태에서 어떤 움직임을 취할지 예측해야 합니다. 이는 분류 문제처럼 보일 수 있지만, 실제로는 그렇지 않습니다. 왜냐하면 상태와 해당 행동이 포함된 데이터셋이 없기 때문입니다. 체스 경기 기록이나 슈퍼 마리오 플레이어의 녹화 데이터와 같은 일부 데이터를 가지고 있을 수 있지만, 이러한 데이터가 가능한 상태를 충분히 포괄하지 못할 가능성이 높습니다. + +기존 게임 데이터를 찾는 대신, **강화 학습**(RL)은 컴퓨터가 여러 번 게임을 하게 하고 결과를 관찰하는 아이디어에 기반합니다. 따라서 강화 학습을 적용하려면 두 가지가 필요합니다: + +- **환경**과 **시뮬레이터**: 게임을 여러 번 플레이할 수 있도록 하는 환경. 이 시뮬레이터는 모든 게임 규칙과 가능한 상태 및 행동을 정의합니다. + +- **보상 함수**: 각 움직임이나 게임 동안 얼마나 잘했는지 알려주는 함수. + +다른 유형의 머신 러닝과 RL의 주요 차이점은 RL에서는 게임이 끝날 때까지 승패를 알 수 없다는 점입니다. 따라서 특정 움직임이 단독으로 좋은지 아닌지 알 수 없으며, 게임이 끝난 후에야 보상을 받습니다. 우리의 목표는 불확실한 조건에서 모델을 훈련할 수 있는 알고리즘을 설계하는 것입니다. 우리는 **Q-러닝**이라는 RL 알고리즘에 대해 배울 것입니다. + +## 학습 내용 + +1. [강화 학습과 Q-러닝 소개](1-QLearning/README.md) +2. [Gym 시뮬레이션 환경 사용](2-Gym/README.md) + +## 크레딧 + +"강화 학습 소개"는 [Dmitry Soshnikov](http://soshnikov.com)가 ♥️를 담아 작성했습니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/9-Real-World/1-Applications/README.md b/translations/ko/9-Real-World/1-Applications/README.md new file mode 100644 index 000000000..a4322adfa --- /dev/null +++ b/translations/ko/9-Real-World/1-Applications/README.md @@ -0,0 +1,159 @@ + +# 후속: 실제 세계에서의 머신 러닝 + +![실제 세계에서의 머신 러닝 요약 스케치노트](../../../../translated_images/ml-realworld.26ee2746716155771f8076598b6145e6533fe4a9e2e465ea745f46648cbf1b84.ko.png) +> 스케치노트 제공: [Tomomi Imura](https://www.twitter.com/girlie_mac) + +이 커리큘럼에서 여러분은 데이터를 학습용으로 준비하고 머신 러닝 모델을 만드는 다양한 방법을 배웠습니다. 회귀, 클러스터링, 분류, 자연어 처리, 시계열 모델 등 고전적인 모델을 연속적으로 구축해왔습니다. 축하합니다! 이제 여러분은 이러한 모델들이 실제로 어떤 용도로 사용되는지 궁금할 것입니다. + +산업에서 AI에 대한 관심이 높아지고 있지만, 이는 주로 딥러닝을 활용하는 경우가 많습니다. 그럼에도 불구하고 고전적인 머신 러닝 모델은 여전히 가치 있는 응용 분야를 가지고 있습니다. 사실, 여러분은 이미 이러한 응용 분야를 사용하고 있을지도 모릅니다! 이번 레슨에서는 8개의 다양한 산업 및 주제 분야에서 이러한 모델들이 어떻게 애플리케이션을 더 성능 좋고, 신뢰할 수 있으며, 지능적이고, 사용자에게 가치 있게 만드는 데 사용되는지 탐구할 것입니다. + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/49/) + +## 💰 금융 + +금융 분야는 머신 러닝을 활용할 수 있는 많은 기회를 제공합니다. 이 분야의 많은 문제는 ML을 사용하여 모델링하고 해결할 수 있습니다. + +### 신용카드 사기 탐지 + +이 과정에서 [k-means 클러스터링](../../5-Clustering/2-K-Means/README.md)에 대해 배웠지만, 이를 신용카드 사기와 관련된 문제를 해결하는 데 어떻게 사용할 수 있을까요? + +k-means 클러스터링은 **이상치 탐지**라는 신용카드 사기 탐지 기술에서 유용하게 사용됩니다. 데이터 세트에 대한 관찰에서의 이상치 또는 편차는 신용카드가 정상적으로 사용되고 있는지 아니면 비정상적인 활동이 있는지를 알려줍니다. 아래 링크된 논문에서 보여지듯이, k-means 클러스터링 알고리즘을 사용하여 신용카드 데이터를 정렬하고 각 거래를 이상치 정도에 따라 클러스터에 할당할 수 있습니다. 그런 다음, 가장 위험한 클러스터를 평가하여 사기 거래와 합법적인 거래를 구분할 수 있습니다. +[참고](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.680.1195&rep=rep1&type=pdf) + +### 자산 관리 + +자산 관리에서는 개인 또는 회사가 고객을 대신하여 투자를 관리합니다. 이들의 목표는 장기적으로 자산을 유지하고 성장시키는 것이므로, 성과가 좋은 투자를 선택하는 것이 중요합니다. + +특정 투자 성과를 평가하는 한 가지 방법은 통계적 회귀를 사용하는 것입니다. [선형 회귀](../../2-Regression/1-Tools/README.md)는 펀드가 특정 벤치마크에 대해 어떻게 성과를 내는지 이해하는 데 유용한 도구입니다. 또한 회귀 결과가 통계적으로 유의미한지, 즉 고객의 투자에 얼마나 영향을 미칠지를 추론할 수 있습니다. 추가 위험 요소를 고려하여 다중 회귀를 사용하여 분석을 확장할 수도 있습니다. 특정 펀드에 대해 이 방법이 어떻게 작동하는지에 대한 예시는 아래 논문에서 확인할 수 있습니다. +[참고](http://www.brightwoodventures.com/evaluating-fund-performance-using-regression/) + +## 🎓 교육 + +교육 분야는 머신 러닝을 적용할 수 있는 매우 흥미로운 영역입니다. 시험이나 에세이에서 부정행위를 감지하거나, 의도적이든 아니든 교정 과정에서의 편향을 관리하는 등의 흥미로운 문제를 해결할 수 있습니다. + +### 학생 행동 예측 + +온라인 공개 강좌 제공업체인 [Coursera](https://coursera.com)는 많은 엔지니어링 결정을 논의하는 훌륭한 기술 블로그를 운영합니다. 이 사례 연구에서, 그들은 낮은 NPS(Net Promoter Score) 평가와 강좌 유지 또는 중도 탈락 간의 상관관계를 탐구하기 위해 회귀선을 그렸습니다. +[참고](https://medium.com/coursera-engineering/controlled-regression-quantifying-the-impact-of-course-quality-on-learner-retention-31f956bd592a) + +### 편향 완화 + +[Grammarly](https://grammarly.com)는 철자 및 문법 오류를 확인하는 글쓰기 도우미로, 제품 전반에 걸쳐 정교한 [자연어 처리 시스템](../../6-NLP/README.md)을 사용합니다. 그들은 기술 블로그에서 머신 러닝에서의 성별 편향을 어떻게 처리했는지에 대한 흥미로운 사례 연구를 발표했습니다. 이는 [공정성 소개 레슨](../../1-Introduction/3-fairness/README.md)에서 배운 내용과 관련이 있습니다. +[참고](https://www.grammarly.com/blog/engineering/mitigating-gender-bias-in-autocorrect/) + +## 👜 소매 + +소매 분야는 고객 여정을 개선하거나 재고를 최적화하는 등 다양한 방식으로 ML의 혜택을 받을 수 있습니다. + +### 고객 여정 개인화 + +가구와 같은 가정용품을 판매하는 Wayfair에서는 고객이 자신의 취향과 필요에 맞는 제품을 찾도록 돕는 것이 중요합니다. 이 기사에서 회사의 엔지니어들은 ML과 NLP를 사용하여 "고객에게 적합한 결과를 제공"하는 방법을 설명합니다. 특히, 그들의 Query Intent Engine은 고객 리뷰에서 엔티티 추출, 분류기 학습, 자산 및 의견 추출, 감정 태깅을 사용하도록 설계되었습니다. 이는 온라인 소매에서 NLP가 작동하는 고전적인 사례입니다. +[참고](https://www.aboutwayfair.com/tech-innovation/how-we-use-machine-learning-and-natural-language-processing-to-empower-search) + +### 재고 관리 + +[StitchFix](https://stitchfix.com)와 같은 혁신적이고 민첩한 회사는 추천 및 재고 관리를 위해 ML을 많이 활용합니다. 그들의 스타일링 팀은 상품 팀과 협력합니다. 실제로 "한 데이터 과학자가 유전 알고리즘을 의류에 적용하여 오늘날 존재하지 않는 성공적인 의류를 예측했습니다. 이를 상품 팀에 제공하여 도구로 사용할 수 있게 했습니다." +[참고](https://www.zdnet.com/article/how-stitch-fix-uses-machine-learning-to-master-the-science-of-styling/) + +## 🏥 의료 + +의료 분야는 연구 작업을 최적화하거나 환자 재입원 관리, 질병 확산 방지와 같은 물류 문제를 해결하기 위해 ML을 활용할 수 있습니다. + +### 임상 시험 관리 + +임상 시험에서의 독성은 제약 회사들에게 주요 관심사입니다. 얼마나 많은 독성이 허용 가능한가요? 이 연구에서는 다양한 임상 시험 방법을 분석하여 임상 시험 결과를 예측할 확률을 예측하는 새로운 접근법을 개발했습니다. 특히, 랜덤 포레스트를 사용하여 그룹 간 약물을 구분할 수 있는 [분류기](../../4-Classification/README.md)를 생성했습니다. +[참고](https://www.sciencedirect.com/science/article/pii/S2451945616302914) + +### 병원 재입원 관리 + +병원 치료는 비용이 많이 들며, 특히 환자가 재입원해야 할 경우 더욱 그렇습니다. 이 논문에서는 [클러스터링](../../5-Clustering/README.md) 알고리즘을 사용하여 재입원 가능성을 예측하는 회사에 대해 논의합니다. 이러한 클러스터는 분석가들이 "공통 원인을 공유할 수 있는 재입원 그룹을 발견"하는 데 도움을 줍니다. +[참고](https://healthmanagement.org/c/healthmanagement/issuearticle/hospital-readmissions-and-machine-learning) + +### 질병 관리 + +최근 팬데믹은 머신 러닝이 질병 확산을 막는 데 어떻게 도움을 줄 수 있는지에 대한 많은 관심을 불러일으켰습니다. 이 기사에서는 ARIMA, 로지스틱 곡선, 선형 회귀, SARIMA의 사용을 확인할 수 있습니다. "이 연구는 바이러스 확산 속도를 계산하고 사망, 회복, 확진 사례를 예측하여 더 나은 준비와 생존을 돕기 위한 시도입니다." +[참고](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979218/) + +## 🌲 생태 및 친환경 기술 + +자연과 생태는 동물과 자연 간의 상호작용이 초점이 되는 민감한 시스템으로 구성됩니다. 이러한 시스템을 정확히 측정하고, 산불이나 동물 개체수 감소와 같은 일이 발생했을 때 적절히 대응하는 것이 중요합니다. + +### 산림 관리 + +이전 레슨에서 [강화 학습](../../8-Reinforcement/README.md)에 대해 배웠습니다. 이는 자연에서 패턴을 예측하는 데 매우 유용할 수 있습니다. 특히, 산불 및 침입종 확산과 같은 생태학적 문제를 추적하는 데 사용할 수 있습니다. 캐나다의 한 연구팀은 위성 이미지를 사용하여 산불 동역학 모델을 구축하기 위해 강화 학습을 사용했습니다. 혁신적인 "공간적 확산 과정(SSP)"을 사용하여 산불을 "풍경의 어느 셀에서든 에이전트"로 간주했습니다. "화재가 특정 위치에서 특정 시점에 취할 수 있는 행동 세트는 북쪽, 남쪽, 동쪽, 서쪽으로 확산하거나 확산하지 않는 것을 포함합니다." + +이 접근법은 해당 마르코프 결정 과정(MDP)의 동역학이 즉각적인 산불 확산에 대한 알려진 함수라는 점에서 일반적인 RL 설정을 뒤집습니다. 아래 링크에서 이 그룹이 사용한 고전 알고리즘에 대해 자세히 읽어보세요. +[참고](https://www.frontiersin.org/articles/10.3389/fict.2018.00006/full) + +### 동물의 움직임 감지 + +딥러닝은 동물 움직임을 시각적으로 추적하는 데 혁신을 가져왔지만(여기에서 [북극곰 추적기](https://docs.microsoft.com/learn/modules/build-ml-model-with-azure-stream-analytics/?WT.mc_id=academic-77952-leestott)를 직접 만들어볼 수 있습니다), 고전적인 ML은 여전히 이 작업에서 중요한 역할을 합니다. + +농장 동물의 움직임을 추적하는 센서와 IoT는 이러한 유형의 시각적 처리를 활용하지만, 더 기본적인 ML 기술은 데이터를 전처리하는 데 유용합니다. 예를 들어, 이 논문에서는 다양한 분류기 알고리즘을 사용하여 양의 자세를 모니터링하고 분석했습니다. 페이지 335에서 ROC 곡선을 확인할 수 있습니다. +[참고](https://druckhaus-hofmann.de/gallery/31-wj-feb-2020.pdf) + +### ⚡️ 에너지 관리 + +[시계열 예측](../../7-TimeSeries/README.md)에 대한 레슨에서, 공급과 수요를 이해하여 도시의 수익을 창출하는 스마트 주차 미터 개념을 언급했습니다. 이 기사는 클러스터링, 회귀 및 시계열 예측을 결합하여 스마트 미터링을 기반으로 아일랜드의 미래 에너지 사용을 예측하는 방법을 자세히 설명합니다. +[참고](https://www-cdn.knime.com/sites/default/files/inline-images/knime_bigdata_energy_timeseries_whitepaper.pdf) + +## 💼 보험 + +보험 분야는 ML을 사용하여 실행 가능한 금융 및 보험 모델을 구축하고 최적화하는 또 다른 분야입니다. + +### 변동성 관리 + +생명 보험 제공업체인 MetLife는 금융 모델에서 변동성을 분석하고 완화하는 방법을 공개적으로 공유합니다. 이 기사에서는 이진 및 서열 분류 시각화를 확인할 수 있습니다. 또한 예측 시각화도 발견할 수 있습니다. +[참고](https://investments.metlife.com/content/dam/metlifecom/us/investments/insights/research-topics/macro-strategy/pdf/MetLifeInvestmentManagement_MachineLearnedRanking_070920.pdf) + +## 🎨 예술, 문화, 문학 + +예술 분야, 예를 들어 저널리즘에서는 많은 흥미로운 문제가 있습니다. 가짜 뉴스를 감지하는 것은 큰 문제로, 이는 사람들의 의견에 영향을 미치고 심지어 민주주의를 위협할 수 있음이 입증되었습니다. 박물관도 유물 간의 연결을 찾거나 자원 계획을 세우는 데 ML을 활용할 수 있습니다. + +### 가짜 뉴스 감지 + +가짜 뉴스를 감지하는 것은 오늘날 미디어에서 고양이와 쥐의 게임이 되었습니다. 이 기사에서 연구자들은 우리가 공부한 여러 ML 기술을 결합하여 시스템을 테스트하고 최적의 모델을 배포할 것을 제안합니다. "이 시스템은 데이터를 기반으로 특징을 추출하기 위해 자연어 처리를 사용하며, 그런 다음 이러한 특징은 Naive Bayes, Support Vector Machine (SVM), Random Forest (RF), Stochastic Gradient Descent (SGD), Logistic Regression(LR)과 같은 머신 러닝 분류기를 학습시키는 데 사용됩니다." +[참고](https://www.irjet.net/archives/V7/i6/IRJET-V7I6688.pdf) + +이 기사는 다양한 ML 도메인을 결합하여 가짜 뉴스가 확산되고 실제 피해를 초래하는 것을 막는 데 도움이 되는 흥미로운 결과를 생성할 수 있음을 보여줍니다. 이 경우, COVID 치료에 대한 소문이 폭력적인 군중 행동을 유발한 것이 계기가 되었습니다. + +### 박물관 ML + +박물관은 컬렉션을 디지털화하고 유물 간의 연결을 찾는 것이 기술 발전으로 인해 점점 더 쉬워지면서 AI 혁명의 최전선에 있습니다. [In Codice Ratio](https://www.sciencedirect.com/science/article/abs/pii/S0306457321001035#:~:text=1.,studies%20over%20large%20historical%20sources.)와 같은 프로젝트는 바티칸 기록 보관소와 같은 접근할 수 없는 컬렉션의 신비를 풀어주는 데 도움을 주고 있습니다. 하지만 박물관의 비즈니스 측면도 ML 모델의 혜택을 받습니다. + +예를 들어, 시카고 아트 인스티튜트는 관객들이 무엇에 관심이 있는지, 언제 전시회를 방문할지를 예측하는 모델을 구축했습니다. 목표는 사용자가 박물관을 방문할 때마다 개별화되고 최적화된 방문 경험을 제공하는 것입니다. "2017 회계연도 동안, 이 모델은 참석 및 입장 예측에서 1% 이내의 정확도를 기록했습니다."라고 Andrew Simnick, 시카고 아트 인스티튜트의 수석 부사장이 말합니다. +[참고](https://www.chicagobusiness.com/article/20180518/ISSUE01/180519840/art-institute-of-chicago-uses-data-to-make-exhibit-choices) + +## 🏷 마케팅 + +### 고객 세분화 + +가장 효과적인 마케팅 전략은 다양한 그룹에 따라 고객을 다르게 타겟팅하는 것입니다. 이 기사에서는 차별화된 마케팅을 지원하기 위해 클러스터링 알고리즘의 사용에 대해 논의합니다. 차별화된 마케팅은 기업이 브랜드 인지도를 높이고, 더 많은 고객에게 도달하며, 더 많은 수익을 창출하는 데 도움을 줍니다. +[참고](https://ai.inqline.com/machine-learning-for-marketing-customer-segmentation/) + +## 🚀 도전 +다른 분야를 찾아보고, 이 커리큘럼에서 배운 기술 중 일부가 해당 분야에서 어떻게 활용되는지 알아보세요. + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/50/) + +## 복습 및 자기 학습 + +Wayfair 데이터 과학 팀은 자사에서 ML을 어떻게 활용하는지에 대한 흥미로운 동영상을 여러 개 제공합니다. [한번 살펴보세요](https://www.youtube.com/channel/UCe2PjkQXqOuwkW1gw6Ameuw/videos)! + +## 과제 + +[ML 스캐빈저 헌트](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/9-Real-World/1-Applications/assignment.md b/translations/ko/9-Real-World/1-Applications/assignment.md new file mode 100644 index 000000000..cb8c9aac9 --- /dev/null +++ b/translations/ko/9-Real-World/1-Applications/assignment.md @@ -0,0 +1,27 @@ + +# 머신러닝 스캐빈저 헌트 + +## 지침 + +이 수업에서는 고전적인 머신러닝을 사용하여 해결된 다양한 실제 사례들에 대해 배웠습니다. 딥러닝, AI의 새로운 기술과 도구, 신경망 활용이 이러한 분야에서 도구 제작 속도를 높이는 데 도움을 주었지만, 이 커리큘럼에서 배운 기술을 활용한 고전적인 머신러닝은 여전히 큰 가치를 지니고 있습니다. + +이 과제에서는 해커톤에 참여한다고 상상해 보세요. 커리큘럼에서 배운 내용을 활용하여 이 수업에서 논의된 분야 중 하나의 문제를 고전적인 머신러닝을 사용해 해결하는 솔루션을 제안하세요. 아이디어를 구현하는 방법을 논의하는 프레젠테이션을 만들어 보세요. 샘플 데이터를 수집하고 개념을 뒷받침할 머신러닝 모델을 구축하면 추가 점수를 받을 수 있습니다! + +## 평가 기준 + +| 기준 | 우수한 사례 | 적절한 사례 | 개선이 필요한 사례 | +| --------- | ---------------------------------------------------------------- | -------------------------------------------- | ----------------------- | +| | 파워포인트 프레젠테이션이 제출됨 - 모델 구축 시 추가 점수 | 혁신적이지 않고 기본적인 프레젠테이션이 제출됨 | 작업이 불완전함 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/9-Real-World/2-Debugging-ML-Models/README.md b/translations/ko/9-Real-World/2-Debugging-ML-Models/README.md new file mode 100644 index 000000000..a538d244e --- /dev/null +++ b/translations/ko/9-Real-World/2-Debugging-ML-Models/README.md @@ -0,0 +1,183 @@ + +# 후기: Responsible AI 대시보드 구성 요소를 활용한 머신러닝 모델 디버깅 + +## [강의 전 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/5/) + +## 소개 + +머신러닝은 우리의 일상에 큰 영향을 미치고 있습니다. AI는 의료, 금융, 교육, 고용 등 개인과 사회에 중요한 영향을 미치는 시스템에 점점 더 많이 도입되고 있습니다. 예를 들어, 의료 진단이나 사기 탐지와 같은 일상적인 의사결정 작업에 시스템과 모델이 사용됩니다. 이처럼 AI의 발전과 빠른 채택은 사회적 기대의 변화와 규제의 증가를 불러오고 있습니다. 우리는 AI 시스템이 기대에 미치지 못하거나 새로운 문제를 드러내는 사례를 지속적으로 목격하고 있으며, 정부는 AI 솔루션을 규제하기 시작했습니다. 따라서 이러한 모델이 공정하고, 신뢰할 수 있으며, 포괄적이고, 투명하며, 책임 있는 결과를 제공하는지 분석하는 것이 중요합니다. + +이 커리큘럼에서는 모델이 Responsible AI 문제를 가지고 있는지 평가하는 데 사용할 수 있는 실용적인 도구를 살펴봅니다. 전통적인 머신러닝 디버깅 기법은 주로 집계된 정확도나 평균 오류 손실과 같은 정량적 계산에 기반합니다. 예를 들어, 모델을 구축하는 데 사용하는 데이터가 특정 인구통계(예: 인종, 성별, 정치적 견해, 종교 등)가 부족하거나 불균형적으로 대표된다면 어떤 일이 발생할 수 있을까요? 또는 모델의 출력이 특정 인구통계를 선호하도록 해석된다면 어떨까요? 이는 민감한 특성 그룹의 과대 또는 과소 대표를 초래하여 모델의 공정성, 포괄성 또는 신뢰성 문제를 야기할 수 있습니다. 또 다른 문제는 머신러닝 모델이 블랙박스로 간주되어 모델의 예측을 이끄는 요인을 이해하고 설명하기 어렵다는 점입니다. 이러한 문제는 데이터 과학자와 AI 개발자가 모델의 공정성이나 신뢰성을 평가하고 디버깅할 적절한 도구가 없을 때 직면하는 도전 과제입니다. + +이 강의에서는 다음을 통해 모델을 디버깅하는 방법을 배웁니다: + +- **오류 분석**: 데이터 분포에서 모델의 오류율이 높은 부분을 식별합니다. +- **모델 개요**: 다양한 데이터 코호트 간의 비교 분석을 수행하여 모델 성능 지표의 격차를 발견합니다. +- **데이터 분석**: 데이터가 특정 인구통계를 과대 또는 과소 대표하여 모델이 특정 데이터를 선호하도록 왜곡될 수 있는 부분을 조사합니다. +- **특성 중요도**: 모델의 예측에 영향을 미치는 주요 특성을 전역 수준 또는 로컬 수준에서 이해합니다. + +## 사전 요구 사항 + +사전 요구 사항으로, [개발자를 위한 Responsible AI 도구](https://www.microsoft.com/ai/ai-lab-responsible-ai-dashboard)를 검토하세요. + +> ![Responsible AI 도구에 대한 GIF](../../../../9-Real-World/2-Debugging-ML-Models/images/rai-overview.gif) + +## 오류 분석 + +전통적인 모델 성능 지표는 주로 올바른 예측과 잘못된 예측을 기반으로 한 계산입니다. 예를 들어, 모델이 89%의 정확도를 가지며 오류 손실이 0.001인 경우 좋은 성능으로 간주될 수 있습니다. 그러나 오류는 데이터셋 전반에 균일하게 분포하지 않을 수 있습니다. 모델이 89%의 정확도를 기록했더라도 특정 데이터 영역에서 모델이 42%의 오류율을 보이는 경우를 발견할 수 있습니다. 특정 데이터 그룹에서 이러한 오류 패턴이 발생하면 공정성이나 신뢰성 문제로 이어질 수 있습니다. 따라서 모델이 잘 작동하는 영역과 그렇지 않은 영역을 이해하는 것이 중요합니다. 모델의 부정확성이 높은 데이터 영역은 중요한 데이터 인구통계일 수 있습니다. + +![모델 오류 분석 및 디버깅](../../../../translated_images/ea-error-distribution.117452e1177c1dd84fab2369967a68bcde787c76c6ea7fdb92fcf15d1fce8206.ko.png) + +RAI 대시보드의 오류 분석 구성 요소는 트리 시각화를 통해 모델 오류가 다양한 코호트에 어떻게 분포되어 있는지 보여줍니다. 이를 통해 데이터셋에서 오류율이 높은 특성이나 영역을 식별하는 데 유용합니다. 모델의 부정확성이 주로 어디에서 발생하는지 확인함으로써 근본 원인을 조사할 수 있습니다. 또한 데이터를 코호트로 나누어 분석을 수행할 수 있습니다. 이러한 데이터 코호트는 특정 코호트에서 모델 성능이 좋은 이유와 다른 코호트에서 오류가 발생하는 이유를 파악하는 데 도움을 줍니다. + +![오류 분석](../../../../translated_images/ea-error-cohort.6886209ea5d438c4daa8bfbf5ce3a7042586364dd3eccda4a4e3d05623ac702a.ko.png) + +트리 맵의 시각적 표시기는 문제 영역을 더 빠르게 찾을 수 있도록 도와줍니다. 예를 들어, 트리 노드의 빨간색 음영이 짙을수록 오류율이 높습니다. + +히트맵은 데이터셋 전체 또는 코호트에서 모델 오류의 기여 요인을 찾기 위해 하나 또는 두 개의 특성을 사용하여 오류율을 조사하는 또 다른 시각화 기능입니다. + +![오류 분석 히트맵](../../../../translated_images/ea-heatmap.8d27185e28cee3830c85e1b2e9df9d2d5e5c8c940f41678efdb68753f2f7e56c.ko.png) + +오류 분석을 사용해야 할 때: + +- 데이터셋 및 여러 입력 및 특성 차원에서 모델 오류가 어떻게 분포되어 있는지 깊이 이해하고자 할 때. +- 집계된 성능 지표를 세분화하여 오류가 있는 코호트를 자동으로 발견하고 이를 기반으로 목표 지향적인 완화 단계를 계획하고자 할 때. + +## 모델 개요 + +머신러닝 모델의 성능을 평가하려면 모델의 행동을 전체적으로 이해해야 합니다. 이는 오류율, 정확도, 재현율, 정밀도, MAE(평균 절대 오차)와 같은 여러 지표를 검토하여 성능 지표 간의 격차를 발견함으로써 가능합니다. 하나의 성능 지표는 훌륭해 보일 수 있지만, 다른 지표에서 부정확성이 드러날 수 있습니다. 또한, 전체 데이터셋이나 코호트 간의 지표를 비교하면 모델이 잘 작동하는 영역과 그렇지 않은 영역을 파악하는 데 도움이 됩니다. 특히, 민감한 특성과 비민감한 특성(예: 환자의 인종, 성별, 나이) 간의 모델 성능을 비교하면 모델이 잠재적으로 불공정한 부분을 발견할 수 있습니다. 예를 들어, 민감한 특성을 가진 코호트에서 모델이 더 많은 오류를 보인다면, 이는 모델이 불공정할 가능성을 나타낼 수 있습니다. + +RAI 대시보드의 모델 개요 구성 요소는 데이터 코호트에서의 데이터 표현 성능 지표를 분석할 뿐만 아니라, 사용자가 서로 다른 코호트 간의 모델 행동을 비교할 수 있는 기능을 제공합니다. + +![RAI 대시보드의 데이터셋 코호트 - 모델 개요](../../../../translated_images/model-overview-dataset-cohorts.dfa463fb527a35a0afc01b7b012fc87bf2cad756763f3652bbd810cac5d6cf33.ko.png) + +이 구성 요소의 특성 기반 분석 기능은 사용자가 특정 특성 내의 데이터 하위 그룹을 세분화하여 세부적으로 이상치를 식별할 수 있도록 합니다. 예를 들어, 대시보드는 사용자가 선택한 특성(예: *"time_in_hospital < 3"* 또는 *"time_in_hospital >= 7"*)에 대해 자동으로 코호트를 생성하는 내장 지능을 제공합니다. 이를 통해 사용자는 더 큰 데이터 그룹에서 특정 특성을 분리하여 해당 특성이 모델의 부정확한 결과에 주요 영향을 미치는지 확인할 수 있습니다. + +![RAI 대시보드의 특성 코호트 - 모델 개요](../../../../translated_images/model-overview-feature-cohorts.c5104d575ffd0c80b7ad8ede7703fab6166bfc6f9125dd395dcc4ace2f522f70.ko.png) + +모델 개요 구성 요소는 두 가지 유형의 격차 지표를 지원합니다: + +**모델 성능의 격차**: 이 지표는 데이터 하위 그룹 간에 선택된 성능 지표 값의 격차(차이)를 계산합니다. 몇 가지 예는 다음과 같습니다: + +- 정확도율의 격차 +- 오류율의 격차 +- 정밀도의 격차 +- 재현율의 격차 +- 평균 절대 오차(MAE)의 격차 + +**선택률의 격차**: 이 지표는 하위 그룹 간의 선택률(유리한 예측)의 차이를 포함합니다. 예를 들어, 대출 승인율의 격차가 이에 해당합니다. 선택률은 각 클래스에서 1로 분류된 데이터 포인트의 비율(이진 분류의 경우) 또는 예측 값의 분포(회귀의 경우)를 의미합니다. + +## 데이터 분석 + +> "데이터를 충분히 괴롭히면, 원하는 답을 얻을 수 있다" - 로널드 코스 + +이 말은 극단적으로 들릴 수 있지만, 데이터는 어떤 결론이든 지지하도록 조작될 수 있다는 점에서 사실입니다. 이러한 조작은 때로는 의도치 않게 발생하기도 합니다. 인간으로서 우리는 모두 편견을 가지고 있으며, 데이터를 다룰 때 자신이 편견을 도입하고 있는지 의식적으로 알기 어려운 경우가 많습니다. AI와 머신러닝에서 공정성을 보장하는 것은 여전히 복잡한 도전 과제입니다. + +데이터는 전통적인 모델 성능 지표에서 큰 블라인드 스팟으로 작용합니다. 높은 정확도 점수를 가지고 있더라도, 이는 데이터셋에 내재된 편향을 항상 반영하지는 않습니다. 예를 들어, 한 회사의 임원직 데이터셋에 여성이 27%, 남성이 73%로 구성되어 있다면, 이 데이터를 기반으로 훈련된 구인 광고 AI 모델은 주로 남성 대상에게 고위직 채용 광고를 타겟팅할 가능성이 높습니다. 데이터의 이러한 불균형은 모델의 예측을 특정 성별에 유리하게 왜곡시켰습니다. 이는 AI 모델에 성별 편향이 존재하는 공정성 문제를 드러냅니다. + +RAI 대시보드의 데이터 분석 구성 요소는 데이터셋에서 과대 또는 과소 대표되는 영역을 식별하는 데 도움을 줍니다. 이를 통해 데이터 불균형이나 특정 데이터 그룹의 부족으로 인해 발생하는 오류와 공정성 문제의 근본 원인을 진단할 수 있습니다. 사용자는 예측 결과와 실제 결과, 오류 그룹, 특정 특성을 기반으로 데이터셋을 시각화할 수 있습니다. 때로는 과소 대표된 데이터 그룹을 발견함으로써 모델이 제대로 학습하지 못하고 있다는 사실을 알게 될 수도 있습니다. 데이터 편향이 있는 모델은 공정성 문제일 뿐만 아니라, 모델이 포괄적이거나 신뢰할 수 없음을 나타냅니다. + +![RAI 대시보드의 데이터 분석 구성 요소](../../../../translated_images/dataanalysis-cover.8d6d0683a70a5c1e274e5a94b27a71137e3d0a3b707761d7170eb340dd07f11d.ko.png) + +데이터 분석을 사용해야 할 때: + +- 다양한 필터를 선택하여 데이터를 여러 차원(코호트)으로 나누어 데이터셋 통계를 탐색하고자 할 때. +- 데이터셋이 다양한 코호트와 특성 그룹에 걸쳐 어떻게 분포되어 있는지 이해하고자 할 때. +- 공정성, 오류 분석, 인과 관계(다른 대시보드 구성 요소에서 도출된)와 관련된 발견이 데이터셋의 분포로 인한 것인지 확인하고자 할 때. +- 대표성 문제, 레이블 노이즈, 특성 노이즈, 레이블 편향 등으로 인한 오류를 완화하기 위해 추가 데이터를 수집할 영역을 결정하고자 할 때. + +## 모델 해석 가능성 + +머신러닝 모델은 블랙박스로 간주되는 경우가 많습니다. 모델의 예측을 이끄는 주요 데이터 특성을 이해하는 것은 어려울 수 있습니다. 모델이 특정 예측을 내리는 이유를 투명하게 제공하는 것은 중요합니다. 예를 들어, AI 시스템이 당뇨병 환자가 30일 이내에 병원에 재입원할 위험이 있다고 예측한다면, 해당 예측을 뒷받침하는 데이터를 제공해야 합니다. 이러한 데이터 지표는 투명성을 제공하여 임상 의사나 병원이 잘-informed된 결정을 내릴 수 있도록 돕습니다. 또한, 개별 환자에 대한 모델의 예측 이유를 설명할 수 있는 것은 건강 규제와 관련된 책임성을 보장합니다. 사람들의 삶에 영향을 미치는 방식으로 머신러닝 모델을 사용할 때, 모델의 행동에 영향을 미치는 요인을 이해하고 설명하는 것이 중요합니다. 모델 해석 가능성과 설명 가능성은 다음과 같은 시나리오에서 질문에 답하는 데 도움을 줍니다: + +- 모델 디버깅: 내 모델이 왜 이 오류를 발생시켰는가? 모델을 어떻게 개선할 수 있을까? +- 인간-AI 협업: 모델의 결정을 어떻게 이해하고 신뢰할 수 있을까? +- 규제 준수: 내 모델이 법적 요구 사항을 충족하는가? + +RAI 대시보드의 특성 중요도 구성 요소는 모델이 예측을 내리는 방식을 디버깅하고 포괄적으로 이해하는 데 도움을 줍니다. 이는 머신러닝 전문가와 의사결정권자가 모델의 행동에 영향을 미치는 특성을 설명하고 규제 준수를 위해 증거를 제시하는 데 유용한 도구입니다. 사용자는 전역 및 로컬 설명을 탐색하여 모델의 예측에 영향을 미치는 특성을 검증할 수 있습니다. 전역 설명은 모델의 전체 예측에 영향을 미친 주요 특성을 나열합니다. 로컬 설명은 개별 사례에 대해 모델의 예측을 이끈 특성을 보여줍니다. 로컬 설명을 평가하는 기능은 특정 사례를 디버깅하거나 감사하여 모델이 정확하거나 부정확한 예측을 내린 이유를 더 잘 이해하고 해석하는 데 유용합니다. + +![RAI 대시보드의 특성 중요도 구성 요소](../../../../translated_images/9-feature-importance.cd3193b4bba3fd4bccd415f566c2437fb3298c4824a3dabbcab15270d783606e.ko.png) + +- 전역 설명: 예를 들어, 당뇨병 병원 재입원 모델의 전체 행동에 영향을 미치는 특성은 무엇인가? +- 로컬 설명: 예를 들어, 60세 이상의 당뇨병 환자가 이전에 입원한 기록이 있는 경우, 병원에 30일 이내에 재입원할 것으로 예측된 이유는 무엇인가? + +다양한 코호트에서 모델의 성능을 조사하는 디버깅 과정에서, 특성 중요도는 특정 특성이 코호트 전반에서 모델의 예측에 어떤 수준의 영향을 미치는지 보여줍니다. 이는 모델의 부정확한 예측을 유도하는 특성의 영향 수준을 비교할 때 이상치를 드러내는 데 도움을 줍니다. 특성 중요도 구성 요소는 특정 특성 값이 모델의 결과에 긍정적 또는 부정적으로 영향을 미쳤는지 보여줄 수 있습니다. 예를 들어, 모델이 부정확한 예측을 내린 경우, 이 구성 요소는 예측을 유도한 특성 또는 특성 값을 세부적으로 조사하고 식별할 수 있는 기능을 제공합니다. 이러한 세부 수준은 디버깅뿐만 아니라 감사 상황에서 투명성과 책임성을 제공하는 데 유용합니다. 마지막으로, 이 구성 요소는 공정성 문제를 식별하는 데 도움을 줄 수 있습니다. 예를 들어, 민감한 특성(예: 인종 또는 성별)이 모델의 예측에 크게 영향을 미친다면, 이는 모델에 인종 또는 성별 편향이 있을 가능성을 나타낼 수 있습니다. + +![특성 중요도](../../../../translated_images/9-features-influence.3ead3d3f68a84029f1e40d3eba82107445d3d3b6975d4682b23d8acc905da6d0.ko.png) + +해석 가능성을 사용해야 할 때: + +- 모델의 예측이 얼마나 신뢰할 수 있는지, 예측에 가장 중요한 특성이 무엇인지 이해하고자 할 때. +- 모델을 먼저 이해하고, 모델이 건강한 특성을 사용하는지 아니면 단순히 잘못된 상관관계를 사용하는지 식별하여 디버깅을 시작하고자 할 때. +- 모델이 민감한 특성이나 이와 높은 상관관계를 가진 특성을 기반으로 예측을 내리는지 이해하여 잠재적인 불공정성을 발견하고자 할 때. +- 로컬 설명을 생성하여 모델의 결과를 설명하고 사용자 신뢰를 구축하고자 할 때. +- AI 시스템의 규제 감사를 완료하여 모델을 검증하고 모델 결정이 인간에게 미치는 영향을 모니터링하고자 할 때. + +## 결론 + +RAI 대시보드의 모든 구성 요소는 사회에 덜 해롭고 더 신뢰할 수 있는 머신러닝 모델을 구축하는 데 도움을 주는 실용적인 도구입니다. 이는 인권에 대한 위협을 예방하고, 특정 그룹을 생애 기회에서 차별하거나 배제하는 것을 방지하며, 신체적 또는 심리적 피해의 위험을 줄이는 데 기여합니다. 또한, 로컬 설명을 생성하여 모델의 결과를 설명함으로써 모델 결정에 대한 신뢰를 구축하는 데 도움을 줍니다. 잠재적인 해악은 다음과 같이 분류될 수 있습니다: + +- **할당**: 예를 들어, 특정 성별이나 인종이 다른 성별이나 인종보다 선호되는 경우. +- **서비스 품질**: 특정 시나리오에 맞춰 데이터를 훈련했지만, 실제 상황이 훨씬 더 복잡한 경우, 이는 성능이 낮은 서비스로 이어질 수 있습니다. +- **고정관념화**: 특정 그룹을 미리 정해진 속성과 연관시키는 경우. +- **비하**: 특정 대상이나 사람을 부당하게 비판하고 낙인찍는 경우. +- **과도하거나 부족한 표현**. 특정 그룹이 특정 직업에서 보이지 않는다는 아이디어는, 그러한 상황을 계속 촉진하는 모든 서비스나 기능이 해를 끼치는 데 기여한다는 것을 의미합니다. + +### Azure RAI 대시보드 + +[Azure RAI 대시보드](https://learn.microsoft.com/en-us/azure/machine-learning/concept-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu)는 Microsoft를 포함한 주요 학술 기관 및 조직에서 개발한 오픈 소스 도구를 기반으로 구축되었습니다. 이는 데이터 과학자와 AI 개발자가 모델의 동작을 더 잘 이해하고, AI 모델에서 발생할 수 있는 바람직하지 않은 문제를 발견하고 완화하는 데 중요한 역할을 합니다. + +- RAI 대시보드 [문서](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu)를 확인하여 다양한 구성 요소를 사용하는 방법을 배워보세요. + +- Azure Machine Learning에서 더 책임 있는 AI 시나리오를 디버깅하기 위한 RAI 대시보드 [샘플 노트북](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks)을 확인해보세요. + +--- +## 🚀 도전 + +통계적 또는 데이터 편향이 처음부터 도입되지 않도록 하기 위해 우리는 다음을 수행해야 합니다: + +- 시스템 작업에 참여하는 사람들의 배경과 관점을 다양화하기 +- 우리 사회의 다양성을 반영하는 데이터셋에 투자하기 +- 편향이 발생했을 때 이를 감지하고 수정하는 더 나은 방법 개발하기 + +모델 구축 및 사용에서 불공정함이 명백한 실제 시나리오를 생각해보세요. 우리가 또 무엇을 고려해야 할까요? + +## [강의 후 퀴즈](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/6/) +## 복습 및 자기 학습 + +이 강의에서는 머신 러닝에서 책임 있는 AI를 통합하는 몇 가지 실용적인 도구를 배웠습니다. + +이 워크숍을 시청하여 주제를 더 깊이 탐구하세요: + +- 책임 있는 AI 대시보드: 실무에서 RAI를 운영화하기 위한 원스톱 솔루션, Besmira Nushi와 Mehrnoosh Sameki + +[![책임 있는 AI 대시보드: 실무에서 RAI를 운영화하기 위한 원스톱 솔루션](https://img.youtube.com/vi/f1oaDNl3djg/0.jpg)](https://www.youtube.com/watch?v=f1oaDNl3djg "책임 있는 AI 대시보드: 실무에서 RAI를 운영화하기 위한 원스톱 솔루션") + +> 🎥 위 이미지를 클릭하면 Besmira Nushi와 Mehrnoosh Sameki의 "책임 있는 AI 대시보드: 실무에서 RAI를 운영화하기 위한 원스톱 솔루션" 비디오를 볼 수 있습니다. + +책임 있는 AI와 더 신뢰할 수 있는 모델을 구축하는 방법에 대해 더 알아보려면 다음 자료를 참조하세요: + +- ML 모델 디버깅을 위한 Microsoft의 RAI 대시보드 도구: [책임 있는 AI 도구 리소스](https://aka.ms/rai-dashboard) + +- 책임 있는 AI 툴킷 탐색: [Github](https://github.com/microsoft/responsible-ai-toolbox) + +- Microsoft의 RAI 리소스 센터: [책임 있는 AI 리소스 – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- Microsoft의 FATE 연구 그룹: [FATE: 공정성, 책임성, 투명성, AI 윤리 - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +## 과제 + +[RAI 대시보드 탐색](assignment.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/9-Real-World/2-Debugging-ML-Models/assignment.md b/translations/ko/9-Real-World/2-Debugging-ML-Models/assignment.md new file mode 100644 index 000000000..41d244491 --- /dev/null +++ b/translations/ko/9-Real-World/2-Debugging-ML-Models/assignment.md @@ -0,0 +1,25 @@ + +# 책임 있는 AI(RAI) 대시보드 탐색 + +## 지침 + +이 강의에서는 데이터 과학자가 AI 시스템에서 오류 분석, 데이터 탐색, 공정성 평가, 모델 해석, 반사실/가정 평가 및 인과 분석을 수행할 수 있도록 돕는 "오픈 소스" 도구를 기반으로 구축된 구성 요소 모음인 RAI 대시보드에 대해 배웠습니다. 이번 과제에서는 RAI 대시보드의 샘플 [노트북](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks)을 탐색하고, 결과를 보고서나 프레젠테이션 형태로 제출하세요. + +## 평가 기준 + +| 기준 | 우수 | 적절 | 개선 필요 | +| -------- | --------- | -------- | ----------------- | +| | RAI 대시보드의 구성 요소, 실행한 노트북, 실행 결과로 도출된 결론을 논의하는 보고서 또는 파워포인트 프레젠테이션이 제출됨 | 결론 없이 보고서만 제출됨 | 보고서가 제출되지 않음 | + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/9-Real-World/README.md b/translations/ko/9-Real-World/README.md new file mode 100644 index 000000000..0639df504 --- /dev/null +++ b/translations/ko/9-Real-World/README.md @@ -0,0 +1,32 @@ + +# 후기: 고전적 머신 러닝의 실제 응용 사례 + +이 커리큘럼 섹션에서는 고전적 머신 러닝의 실제 응용 사례를 소개합니다. 우리는 인터넷을 샅샅이 뒤져서 신경망, 딥러닝, AI를 최대한 배제한 채 이러한 전략을 활용한 응용 사례에 대한 백서와 기사를 찾아냈습니다. 머신 러닝이 비즈니스 시스템, 생태학적 응용, 금융, 예술과 문화 등 다양한 분야에서 어떻게 사용되는지 알아보세요. + +![chess](../../../translated_images/chess.e704a268781bdad85d1876b6c2295742fa0d856e7dcf3659147052df9d3db205.ko.jpg) + +> 사진 제공: Alexis Fauvet on Unsplash + +## 강의 + +1. [머신 러닝의 실제 응용 사례](1-Applications/README.md) +2. [Responsible AI 대시보드 구성 요소를 사용한 머신 러닝 모델 디버깅](2-Debugging-ML-Models/README.md) + +## 크레딧 + +"머신 러닝의 실제 응용 사례"는 [Jen Looper](https://twitter.com/jenlooper)와 [Ornella Altunyan](https://twitter.com/ornelladotcom)을 포함한 여러 팀원이 작성했습니다. + +"Responsible AI 대시보드 구성 요소를 사용한 머신 러닝 모델 디버깅"은 [Ruth Yakubu](https://twitter.com/ruthieyakubu)가 작성했습니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/CODE_OF_CONDUCT.md b/translations/ko/CODE_OF_CONDUCT.md new file mode 100644 index 000000000..a58903b4c --- /dev/null +++ b/translations/ko/CODE_OF_CONDUCT.md @@ -0,0 +1,23 @@ + +# Microsoft 오픈 소스 행동 강령 + +이 프로젝트는 [Microsoft 오픈 소스 행동 강령](https://opensource.microsoft.com/codeofconduct/)을 채택했습니다. + +자료: + +- [Microsoft 오픈 소스 행동 강령](https://opensource.microsoft.com/codeofconduct/) +- [Microsoft 행동 강령 FAQ](https://opensource.microsoft.com/codeofconduct/faq/) +- 질문이나 우려 사항은 [opencode@microsoft.com](mailto:opencode@microsoft.com)으로 연락하세요. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/CONTRIBUTING.md b/translations/ko/CONTRIBUTING.md new file mode 100644 index 000000000..00cad8f1a --- /dev/null +++ b/translations/ko/CONTRIBUTING.md @@ -0,0 +1,24 @@ + +# 기여하기 + +이 프로젝트는 기여와 제안을 환영합니다. 대부분의 기여는 귀하가 기여자 라이선스 계약 (CLA)에 동의해야 하며, 이를 통해 귀하가 기여할 권리를 가지고 있으며 실제로 기여를 사용할 권리를 우리에게 부여한다는 것을 선언해야 합니다. 자세한 내용은 https://cla.microsoft.com을 방문하세요. + +> 중요: 이 저장소의 텍스트를 번역할 때 기계 번역을 사용하지 않도록 주의하세요. 번역은 커뮤니티를 통해 검증될 예정이므로, 능숙한 언어에 대해서만 자원하여 번역해 주시기 바랍니다. + +풀 리퀘스트를 제출하면 CLA 봇이 자동으로 CLA 제공 여부를 판단하고 PR에 적절히 표시(예: 라벨, 댓글)합니다. 봇이 제공하는 지침을 따르기만 하면 됩니다. CLA는 모든 저장소에서 한 번만 제출하면 됩니다. + +이 프로젝트는 [Microsoft 오픈 소스 행동 강령](https://opensource.microsoft.com/codeofconduct/)을 채택했습니다. +자세한 내용은 [행동 강령 FAQ](https://opensource.microsoft.com/codeofconduct/faq/)를 참조하거나 추가 질문이나 의견이 있는 경우 [opencode@microsoft.com](mailto:opencode@microsoft.com)으로 연락하세요. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/PyTorch_Fundamentals.ipynb b/translations/ko/PyTorch_Fundamentals.ipynb new file mode 100644 index 000000000..0ceefcce9 --- /dev/null +++ b/translations/ko/PyTorch_Fundamentals.ipynb @@ -0,0 +1,2830 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "authorship_tag": "ABX9TyOgv0AozH1FKQBD+RkgT2bV", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU", + "coopTranslator": { + "original_hash": "0ca21b6ee62904d616f2e36dc1cf0da7", + "translation_date": "2025-09-04T01:01:07+00:00", + "source_file": "PyTorch_Fundamentals.ipynb", + "language_code": "ko" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EHh5JllMh1rG", + "outputId": "f55755ad-c369-414c-85ec-6e9d4f061a02", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.2.1+cu121'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import torch\n", + "torch.__version__" + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"I am excited to run this\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UPlb-duwXAfz", + "outputId": "cfd687e4-1238-49f4-ab6b-ee1305b740d2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "I am excited to run this\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "print(torch.__version__)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "byWVlJ9wXDSk", + "outputId": "fd74a5c4-4d4a-41b2-ef3c-562ea3e4811f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2.2.1+cu121\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "Osm80zoEYklS" + } + }, + { + "cell_type": "code", + "source": [ + "# scalar\n", + "scalar = torch.tensor(7)\n", + "scalar" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-o8wvJ-VXZmI", + "outputId": "558816f5-1205-4de1-fe1f-2f96e9bd79e6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(7)" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mCZ2tXC4Y_Sg", + "outputId": "2d86dbdc-56e1-45c6-d3dd-14515f2a457a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ssN00By0ZQgS", + "outputId": "490f40d1-5135-4969-a6d3-c8c902cdc473" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "7" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# vector\n", + "vector = torch.tensor([7, 7])\n", + "vector\n", + "#vector.ndim\n", + "#vector.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Bws__5wlZnmF", + "outputId": "944e38f9-5ba1-4ddc-a9c6-cfb6a19bb488" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([7, 7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "vector.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9pjCvnsZZzNG", + "outputId": "e030a4da-8f81-4858-fbce-86da2aaafe52" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([2])" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Matrix\n", + "MATRIX = torch.tensor([[7, 8],[9, 10]])\n", + "MATRIX" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "a747hI9SaBGW", + "outputId": "af835ddb-81ff-4981-badb-441567194d15" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[ 7, 8],\n", + " [ 9, 10]])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XdTfFa7vaRUj", + "outputId": "0fbbab9c-8263-4cad-a380-0d2a16ca499e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX[0]\n", + "MATRIX[1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TFeD3jSDafm7", + "outputId": "69b44ab3-5ba7-451a-c6b2-f019a03d0c96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Tensor\n", + "TENSOR = torch.tensor([[[1, 2, 3],[3,6,9], [2,4,5]]])\n", + "TENSOR" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ic3cE47tah42", + "outputId": "f250e295-91de-43ec-9d80-588a6fe0abde" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]]])" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Wvjf5fczbAM1", + "outputId": "9c72b5b8-bafe-4ae7-9883-b051e209eada" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([1, 3, 3])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mwtXZwiMbN3m", + "outputId": "331a5e36-b1b0-4a5f-a9b8-e7049cbaa8f9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "3" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vzdZu_IfbP3J", + "outputId": "e24e7e71-e365-412d-ff50-fc094b56d2f3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]])" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "A8OL9eWfcRrJ" + } + }, + { + "cell_type": "code", + "source": [ + "random_tensor = torch.rand(3,4)\n", + "random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hAqSDE1EcVS_", + "outputId": "946171c3-d054-400c-f893-79110356888c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.4414, 0.7681, 0.8385, 0.3166],\n", + " [0.0468, 0.5812, 0.0670, 0.9173],\n", + " [0.2959, 0.3276, 0.7411, 0.4643]])" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "g4fvPE5GcwzP", + "outputId": "8737f36b-6864-4059-eaed-6f9156c22306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XsAg99QmdAU6", + "outputId": "35467c11-257c-4f16-99aa-eca930bcbc36" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.size()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cii1pNdVdB68", + "outputId": "fc8d2de6-9215-43de-99f7-7b0d7f7d20fa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_image_tensor = torch.rand(size=(3, 224, 224)) #color channels, height, width\n", + "random_image_tensor.ndim, random_image_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aTKq2j0cdDjb", + "outputId": "6be42057-20b9-4faf-d79d-8b65c42cc27e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([3, 224, 224]))" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor_ofownsize = torch.rand(size=(5,10,10))\n", + "random_tensor_ofownsize.ndim, random_tensor_ofownsize.shape\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IyhDdj-Pd6nC", + "outputId": "43e5e334-6d4d-4b67-f87d-7d364c6d8c67" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([5, 10, 10]))" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "UOJW08uOert_" + } + }, + { + "cell_type": "code", + "source": [ + "zero = torch.zeros(size=(3, 4))\n", + "zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGvXtaXyefie", + "outputId": "d40d3e28-8667-4d2f-8b62-f0829c6162ad" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "zero*random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OyUkUPkDe0uH", + "outputId": "26c2e4be-36ba-4c6c-9a90-2704ec135828" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones = torch.ones(size=(3, 4))\n", + "ones\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "y_Ac62Aqe82G", + "outputId": "291de5d9-b9df-49de-c9d1-d098e3e9f4d8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1., 1., 1., 1.],\n", + " [1., 1., 1., 1.],\n", + " [1., 1., 1., 1.]])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TvGOA9odfIEO", + "outputId": "45949ef4-6649-4b6c-d6af-2d4bfb8de832" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones*zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "--pTyge-fI-8", + "outputId": "c4d9bb7e-829b-43db-e2db-b1a2d64e61f0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "qDcc7Z36fSJF" + } + }, + { + "cell_type": "code", + "source": [ + "one_to_ten = torch.arange(start = 1, end = 11, step = 1)\n", + "one_to_ten" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "w3CZB4zUfR1s", + "outputId": "197fcba1-da0a-4b4a-ed11-3974bd6c01aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 27 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ten_zeros = torch.zeros_like(one_to_ten)\n", + "ten_zeros" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WZh99BwVfRy8", + "outputId": "51ef8bfb-6fa0-4099-ff66-b97d65b2ddea" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "텐서 데이터 유형\n" + ], + "metadata": { + "id": "pGGhgsbUgqbW" + } + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor = torch.tensor([3.0, 6.0,9.0], dtype = None, device = None, requires_grad = False)\n", + "float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JORJl4XkfRsx", + "outputId": "71114171-0f49-481f-b6fc-6cb48e2fb895" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3., 6., 9.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6wOPPwGyfRLn", + "outputId": "f23776a1-b682-404a-9f67-d5bcb0402666" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor = float_32_tensor.type(torch.float16)\n", + "float_16_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tFsHCvmZfOYe", + "outputId": "d3aa305a-7591-47f5-97fd-61bff60b44bd" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float16" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TQiCGTPuwq0q", + "outputId": "98750fce-1ca3-4889-e269-8b753efdea96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor = torch.tensor([3, 6, 9], dtype = torch.int32)\n", + "int_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5hlrLvGUw5D_", + "outputId": "41d890a0-9aee-446c-d906-631ce2ab0995" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9], dtype=torch.int32)" + ] + }, + "metadata": {}, + "execution_count": 33 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ihApD9u3xTNW", + "outputId": "d295eed0-6996-4e0f-8502-ff4b55cd1373" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(0,100,10)" + ], + "metadata": { + "id": "utKhlb_KxWDQ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p78D74E9Rj7Y", + "outputId": "781a1614-a900-41f5-9e5d-358f0b2390aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])" + ] + }, + "metadata": {}, + "execution_count": 36 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.min()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4BcSs5NeRkcj", + "outputId": "3f24a8dc-58e9-4a5f-9834-e85856a34f9d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.max()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hinqvXVLRm4q", + "outputId": "5c7d8a53-3913-4ac1-bba3-5ba8ff68250a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 38 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mean(x.type(torch.float32))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "k7okc0_vRpnB", + "outputId": "91e5494f-dc57-417c-ea4d-25dbc547c893" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 39 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.type(torch.float32).mean()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "29QcDTjHRq10", + "outputId": "62937c6c-78e0-49f2-dde3-1543ee8f7907" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 40 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.sum()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wlpY_G_sbdKF", + "outputId": "475d8258-af65-4011-a258-b93d4d8142d4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(450)" + ] + }, + "metadata": {}, + "execution_count": 41 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmax()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GT6HJzwhbk4n", + "outputId": "2e455c20-c322-4bcf-d07c-1259d3ccefc6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmin()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "egL3oi2Mb19P", + "outputId": "f71fb32f-6338-44a3-b377-75bea0a3ab54" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 43 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p2U8DZKib3DP", + "outputId": "b9f613b9-74e9-45f4-ed01-05babb6a6793" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 44 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[9]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "24qBFlGYcABe", + "outputId": "5813cfcb-7f63-4bd7-ee46-f95ccbfda939" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 45 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(1, 10)\n", + "x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0GPOxEzkcBHO", + "outputId": "aefbd903-4f4c-4d2c-c90f-eccd682fe018" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([9])" + ] + }, + "metadata": {}, + "execution_count": 46 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped = x.reshape(1,9)\n", + "x_reshaped, x_reshaped.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "spmRgQjwddgp", + "outputId": "85a7c55c-2909-4ea2-fc68-386dddc65742" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]]), torch.Size([1, 9]))" + ] + }, + "metadata": {}, + "execution_count": 47 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped.view(1,9)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tH2ahWGydqqP", + "outputId": "65d92263-4fc4-434a-c06d-c5e08436f7fe" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 48 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked = torch.stack([x, x, x, x], dim = 1)\n", + "x_stacked" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jgCeJcaud_-1", + "outputId": "7f293a37-6ef1-43b6-aee5-9d6d91c94f9e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 49 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XhJHIK6cfPse", + "outputId": "06c47b89-3a9e-453e-bcc3-00cbcb0b8b49" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 50 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ej2c3Xxzf0tq", + "outputId": "94024061-eb37-446d-c4a8-e4d16cb6de81" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 52 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4DJYo1a0f5M0", + "outputId": "efca2b47-1b14-44de-9a9a-2c83629d153f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 53 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=-2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "J4iEjn2ah2HL", + "outputId": "22395593-7c16-4162-beae-dd2bbe7bda35" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 55 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "tensor = torch.tensor([1, 2, 3])\n", + "tensor = tensor - 10\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cFfiD7Nth7Z_", + "outputId": "1139e1f8-fc1a-46ca-d636-f2bc4fd2eef6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-9, -8, -7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mul(tensor, 10)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dyA7BM_GHhqE", + "outputId": "0e3b9671-d9e8-4a32-87bb-59bc05986142" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-90, -80, -70])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.sub(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "owtUsZ1KNegI", + "outputId": "189b7b23-0041-4e09-b991-cd209a48506a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-109, -108, -107])" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.add(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "K5STXlQONsyc", + "outputId": "00cbb79a-0a1d-4e21-86ec-5c91c37a2d01" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([91, 92, 93])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.divide(tensor, 2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xqMGnzIUNvp0", + "outputId": "c894cf3e-f148-45f8-cfc8-d78740735306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-4.5000, -4.0000, -3.5000])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(tensor, tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ruGzKpV8NyBc", + "outputId": "fddb63bf-006f-48b6-ae28-287fbcda8bc5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8GS3r9yTeGfD", + "outputId": "c80b12ac-30b5-4f3d-c38c-9e41ba511b0e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "QmuYHqXTemC0", + "outputId": "402fe3ba-70b5-4bb2-c83b-254db84ff810" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 622 µs, sys: 0 ns, total: 622 µs\n", + "Wall time: 516 µs\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "torch.matmul(tensor,tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dGr1fzdNepd8", + "outputId": "97bd6c91-bc25-4b38-cdf5-f22dcdef243e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 424 µs, sys: 998 µs, total: 1.42 ms\n", + "Wall time: 1.43 ms\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.rand(3,2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pGYDoK2gevfo", + "outputId": "2c8783d5-0453-47c5-c7ed-af10d25d6989" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5999, 0.0073],\n", + " [0.9321, 0.3026],\n", + " [0.3463, 0.3872]])" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(torch.rand(3,2), torch.rand(2,3))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KGBGQoB8e2DP", + "outputId": "4c2ef361-a2d0-41ee-c328-3992cbbc138d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.3528, 0.1893, 0.0714],\n", + " [1.2791, 0.7110, 0.2563],\n", + " [0.8812, 0.4553, 0.1803]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch" + ], + "metadata": { + "id": "ib8DMtkBe_LJ" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x = torch.rand(2,9)" + ], + "metadata": { + "id": "nJo8ZBdrQY1b" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wi6oRv4MQfgf", + "outputId": "55c99f55-31f6-4cf5-ba4e-19a47c3a0167" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5894, 0.4391, 0.2018, 0.5417, 0.3844, 0.3592, 0.9209, 0.9269, 0.0681],\n", + " [0.0746, 0.1740, 0.6821, 0.6890, 0.0999, 0.7444, 0.2391, 0.4625, 0.8302]])" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "y=torch.randn(2,3,5)\n", + "y" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zpx8myAUQgoc", + "outputId": "07756d70-56bd-437c-c74e-9aecc1a77311" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[ 1.5552, -0.4877, 0.5175, -1.7958, -0.6187],\n", + " [-0.3359, -1.9710, 0.0112, -1.7578, -1.5295],\n", + " [ 0.0932, 1.4079, 0.9108, 0.3328, -0.6978]],\n", + "\n", + " [[-0.9406, -1.0809, -0.2595, 0.1282, 1.6605],\n", + " [ 1.1624, 1.0902, 1.7092, -0.2842, -1.3780],\n", + " [-0.1534, -1.2795, -0.5495, 0.9902, 0.1822]]])" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original = torch.rand(size=(224,224,3))\n", + "x_original" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "s4U-X9bJQnWe", + "outputId": "657a7a76-962c-4b41-a76b-902d0482266c" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[0.4549, 0.6809, 0.2118],\n", + " [0.4824, 0.9008, 0.8741],\n", + " [0.1715, 0.1757, 0.1845],\n", + " ...,\n", + " [0.8741, 0.6594, 0.2610],\n", + " [0.0092, 0.1984, 0.1955],\n", + " [0.4236, 0.4182, 0.0251]],\n", + "\n", + " [[0.9174, 0.1661, 0.5852],\n", + " [0.1837, 0.2351, 0.3810],\n", + " [0.3726, 0.4808, 0.8732],\n", + " ...,\n", + " [0.6794, 0.0554, 0.9202],\n", + " [0.0864, 0.8750, 0.3558],\n", + " [0.8445, 0.9759, 0.4934]],\n", + "\n", + " [[0.1600, 0.2635, 0.7194],\n", + " [0.9488, 0.3405, 0.3647],\n", + " [0.6683, 0.5168, 0.9592],\n", + " ...,\n", + " [0.0521, 0.0140, 0.2445],\n", + " [0.3596, 0.3999, 0.2730],\n", + " [0.5926, 0.9877, 0.7784]],\n", + "\n", + " ...,\n", + "\n", + " [[0.4794, 0.5635, 0.3764],\n", + " [0.9124, 0.6094, 0.5059],\n", + " [0.4528, 0.4447, 0.5021],\n", + " ...,\n", + " [0.0089, 0.4816, 0.8727],\n", + " [0.2173, 0.6296, 0.2347],\n", + " [0.2028, 0.9931, 0.7201]],\n", + "\n", + " [[0.3116, 0.6459, 0.4703],\n", + " [0.0148, 0.2345, 0.7149],\n", + " [0.8393, 0.5804, 0.6691],\n", + " ...,\n", + " [0.2105, 0.9460, 0.2696],\n", + " [0.5918, 0.9295, 0.2616],\n", + " [0.2537, 0.7819, 0.4700]],\n", + "\n", + " [[0.6654, 0.1200, 0.5841],\n", + " [0.9147, 0.5522, 0.6529],\n", + " [0.1799, 0.5276, 0.5415],\n", + " ...,\n", + " [0.7536, 0.4346, 0.8793],\n", + " [0.3793, 0.1750, 0.7792],\n", + " [0.9266, 0.8325, 0.9974]]])" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted=x_original.permute(2, 0, 1)\n", + "print(x_original.shape)\n", + "print(x_permuted.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DD19_zvbQzHo", + "outputId": "1d64ce1b-eb48-47e3-90b6-7f1340e7f2b2" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "torch.Size([224, 224, 3])\n", + "torch.Size([3, 224, 224])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NnPmMk4ZRF7w", + "outputId": "2cd5da7f-4a23-4a76-8c4a-bb982113f2a4" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z0ylNoAARgTo", + "outputId": "ddca0298-cddf-4048-9b71-a791655e5bed" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]=0.989" + ], + "metadata": { + "id": "RXw0xXsDRi4L" + }, + "execution_count": 13, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1sFdV6wzRo3f", + "outputId": "1cf87d2c-6d88-453a-d136-0f625a2800f1" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xTX-hx2SR1wp", + "outputId": "0d4908c4-c3bc-44e3-8ec6-1487104cc209" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x=torch.arange(1,10).reshape(1,3,3)\n", + "x, x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mZomOe7gR4Q8", + "outputId": "0b3c922f-ec11-46de-b8a5-9f9533d866ad" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]]]),\n", + " torch.Size([1, 3, 3]))" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3y7v4SQvSBs1", + "outputId": "8c53307d-e628-404d-db66-56c6bdffab7c" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hf9uG4xLSNya", + "outputId": "3075bc42-9ffa-426b-8a86-95628ffcd824" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zA4G2Se4SRB3", + "outputId": "324312d2-ed0a-49eb-f81f-e904e53992fe" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(1)" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][2][2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Mwy3zmKKSdbk", + "outputId": "d35172c3-b099-40a6-ddf1-a453c2adfa44" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[:,1,1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fE3nCM1KS7XT", + "outputId": "01f5d755-9737-4235-9f73-dce89ff6ba16" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([5])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,0,:]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "luNDINKNTTxp", + "outputId": "091195ef-2f71-4602-e95f-529a69193150" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,:,2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KG8A4xbfThCL", + "outputId": "5866bc41-9241-4619-be7b-e9206b3f80ab" + }, + "execution_count": 26, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np" + ], + "metadata": { + "id": "CZ3PX0qlTwHJ" + }, + "execution_count": 27, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array = np.arange(1.0, 8.0)" + ], + "metadata": { + "id": "UOBeTumiT3Lf" + }, + "execution_count": 28, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RzcO32E9UCQl", + "outputId": "430def24-c42c-461f-e5e7-398544c695d3" + }, + "execution_count": 29, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1., 2., 3., 4., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.from_numpy(array)\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JJIL0q1DUC6O", + "outputId": "8a3b1d7c-4482-4d32-f34f-9212d9d3a177" + }, + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1., 2., 3., 4., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "array[3]=11.0" + ], + "metadata": { + "id": "j3Ce6q3DUIEK" + }, + "execution_count": 33, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dc_BCVdjUsCc", + "outputId": "65537325-8b11-4f36-fc73-e56f30d6a036" + }, + "execution_count": 34, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 1., 2., 3., 11., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VG1e_eITUta2", + "outputId": "a26c5198-23b6-4a6d-d73a-ba20cd9782b8" + }, + "execution_count": 35, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1., 2., 3., 11., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 35 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.ones(7)\n", + "tensor, tensor.dtype\n", + "numpy_tensor = tensor.numpy()\n", + "numpy_tensor, numpy_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Swt8JF8vUuev", + "outputId": "c9e5bf6a-6d2c-41d6-8327-366867ffdd2d" + }, + "execution_count": 37, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(array([1., 1., 1., 1., 1., 1., 1.], dtype=float32), dtype('float32'))" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "random_tensor_A = torch.rand(3,4)\n", + "random_tensor_B = torch.rand(3,4)\n", + "print(random_tensor_A)\n", + "print(random_tensor_B)\n", + "print(random_tensor_A == random_tensor_B)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGcagTteVFTD", + "outputId": "49405790-08e7-4210-b7f1-f00b904c7eb9" + }, + "execution_count": 38, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.9870, 0.6636, 0.6873, 0.8863],\n", + " [0.8386, 0.4169, 0.3587, 0.0265],\n", + " [0.2981, 0.6025, 0.5652, 0.5840]])\n", + "tensor([[0.9821, 0.3481, 0.0913, 0.4940],\n", + " [0.7495, 0.4387, 0.9582, 0.8659],\n", + " [0.5064, 0.6919, 0.0809, 0.9771]])\n", + "tensor([[False, False, False, False],\n", + " [False, False, False, False],\n", + " [False, False, False, False]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "RANDOM_SEED = 42\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_C = torch.rand(3,4)\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_D = torch.rand(3,4)\n", + "print(random_tensor_C)\n", + "print(random_tensor_D)\n", + "print(random_tensor_C == random_tensor_D)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HznyXyEaWjLM", + "outputId": "25956434-01b6-4059-9054-c9978884ddc1" + }, + "execution_count": 46, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[True, True, True, True],\n", + " [True, True, True, True],\n", + " [True, True, True, True]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!nvidia-smi" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vltPTh0YXJSt", + "outputId": "807af6dc-a9ca-4301-ec32-b688dbde8be8" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Thu May 23 02:57:59 2024 \n", + "+---------------------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |\n", + "|-----------------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|=========================================+======================+======================|\n", + "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", + "| N/A 60C P8 11W / 70W | 0MiB / 15360MiB | 0% Default |\n", + "| | | N/A |\n", + "+-----------------------------------------+----------------------+----------------------+\n", + " \n", + "+---------------------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=======================================================================================|\n", + "| No running processes found |\n", + "+---------------------------------------------------------------------------------------+\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "torch.cuda.is_available()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "L6mMyPDyYh1j", + "outputId": "279c5dd8-c2a8-4fbd-f321-2f5d7c6e90e6" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "device" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "oOdiYa7ZYytx", + "outputId": "d73b04fc-8963-4826-9722-08d118d5ab91" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'cuda'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.cuda.device_count()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vOdsazLqZFM5", + "outputId": "8189cd6a-9017-4663-a652-3e15c517d9c3" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.tensor([1,2,3], device = \"cpu\")\n", + "print(tensor, tensor.device)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cdik9Vw3ZMv0", + "outputId": "044a68fd-83a1-409d-8e3b-655142ca0270" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([1, 2, 3]) cpu\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu = tensor.to(device)\n", + "tensor_on_gpu" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zmp835rrZp-z", + "outputId": "37fa3413-18a3-47bf-ae51-5b36ff85a3ef" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3], device='cuda:0')" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu.numpy()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 159 + }, + "id": "jhriaa8uZ1yM", + "outputId": "bc5a3226-1a12-4fea-8769-a44f21cdc323" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "error", + "ename": "TypeError", + "evalue": "can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtensor_on_gpu\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first." + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_cpu = tensor_on_gpu.cpu().numpy()" + ], + "metadata": { + "id": "LHGXK3GgaOzL" + }, + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "j-El4LlCajfq" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 노력하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다.\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/ko/README.md b/translations/ko/README.md new file mode 100644 index 000000000..caff12f0a --- /dev/null +++ b/translations/ko/README.md @@ -0,0 +1,177 @@ + +[![GitHub license](https://img.shields.io/github/license/microsoft/ML-For-Beginners.svg)](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE) +[![GitHub contributors](https://img.shields.io/github/contributors/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/) +[![GitHub issues](https://img.shields.io/github/issues/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/issues/) +[![GitHub pull-requests](https://img.shields.io/github/issues-pr/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/pulls/) +[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) + +[![GitHub watchers](https://img.shields.io/github/watchers/microsoft/ML-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/ML-For-Beginners/watchers/) +[![GitHub forks](https://img.shields.io/github/forks/microsoft/ML-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/ML-For-Beginners/network/) +[![GitHub stars](https://img.shields.io/github/stars/microsoft/ML-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/ML-For-Beginners/stargazers/) + +### 🌐 다국어 지원 + +#### GitHub Action을 통해 지원 (자동화 및 항상 최신 상태 유지) + +[French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](./README.md) | [Hindi](../hi/README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md) + +#### 커뮤니티에 참여하세요 + +[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr) + +# 초보자를 위한 머신 러닝 - 커리큘럼 + +> 🌍 세계 문화를 통해 머신 러닝을 탐구하며 세계를 여행하세요 🌍 + +Microsoft의 클라우드 옹호자들은 **머신 러닝**에 관한 12주, 26강의 커리큘럼을 기쁘게 제공합니다. 이 커리큘럼에서는 주로 Scikit-learn 라이브러리를 사용하여 **클래식 머신 러닝**이라고도 불리는 것을 배우며, [AI for Beginners 커리큘럼](https://aka.ms/ai4beginners)에서 다루는 딥 러닝은 제외합니다. 이 강의는 ['Data Science for Beginners' 커리큘럼](https://aka.ms/ds4beginners)과 함께 활용할 수 있습니다! + +우리는 세계 여러 지역의 데이터를 활용하여 이러한 클래식 기술을 적용하며 세계를 여행합니다. 각 강의에는 강의 전후 퀴즈, 강의 완료를 위한 작성 지침, 솔루션, 과제 등이 포함되어 있습니다. 프로젝트 기반 학습법을 통해 배우면서 구축하는 방식은 새로운 기술을 효과적으로 익히는 검증된 방법입니다. + +**✍️ 저자들에게 깊은 감사** Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu, Amy Boyd + +**🎨 삽화가들에게도 감사** Tomomi Imura, Dasani Madipalli, Jen Looper + +**🙏 Microsoft Student Ambassador 저자, 리뷰어, 콘텐츠 기여자들에게 특별히 감사드립니다** 특히 Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila, Snigdha Agarwal + +**🤩 Microsoft Student Ambassadors Eric Wanjau, Jasleen Sondhi, Vidushi Gupta에게 R 강의에 대한 추가 감사!** + +# 시작하기 + +다음 단계를 따르세요: +1. **저장소 포크하기**: 이 페이지 오른쪽 상단의 "Fork" 버튼을 클릭하세요. +2. **저장소 클론하기**: `git clone https://github.com/microsoft/ML-For-Beginners.git` + +> [이 과정에 대한 추가 리소스를 Microsoft Learn 컬렉션에서 찾으세요](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +**[학생들](https://aka.ms/student-page)**, 이 커리큘럼을 사용하려면 전체 저장소를 자신의 GitHub 계정으로 포크하고 혼자 또는 그룹으로 연습을 완료하세요: + +- 강의 전 퀴즈로 시작하세요. +- 강의를 읽고 활동을 완료하며 각 지식 확인에서 멈추고 반성하세요. +- 솔루션 코드를 실행하기보다는 강의를 이해하며 프로젝트를 만들어보세요. 그러나 해당 코드는 각 프로젝트 기반 강의의 `/solution` 폴더에 있습니다. +- 강의 후 퀴즈를 풀어보세요. +- 도전을 완료하세요. +- 과제를 완료하세요. +- 강의 그룹을 완료한 후 [토론 게시판](https://github.com/microsoft/ML-For-Beginners/discussions)을 방문하여 적절한 PAT 루브릭을 작성하며 "소리 내어 학습"하세요. PAT는 학습을 심화하기 위해 작성하는 루브릭으로, 학습 진행 평가 도구입니다. 다른 PAT에 반응하여 함께 학습할 수도 있습니다. + +> 추가 학습을 위해 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott) 모듈과 학습 경로를 따르기를 권장합니다. + +**교사들**, 이 커리큘럼을 사용하는 방법에 대한 [몇 가지 제안](for-teachers.md)을 포함했습니다. + +--- + +## 비디오 워크스루 + +일부 강의는 짧은 형식의 비디오로 제공됩니다. 이러한 비디오는 강의 내에서 인라인으로 찾을 수 있으며, [Microsoft Developer YouTube 채널의 ML for Beginners 재생 목록](https://aka.ms/ml-beginners-videos)에서 아래 이미지를 클릭하여 확인할 수 있습니다. + +[![ML for beginners banner](../../translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.ko.png)](https://aka.ms/ml-beginners-videos) + +--- + +## 팀 소개 + +[![Promo video](../../images/ml.gif)](https://youtu.be/Tj1XWrDSYJU) + +**Gif 제작자** [Mohit Jaisal](https://linkedin.com/in/mohitjaisal) + +> 🎥 위 이미지를 클릭하여 프로젝트와 제작자들에 대한 비디오를 확인하세요! + +--- + +## 교육 방법론 + +이 커리큘럼을 제작하면서 두 가지 교육 방법론을 선택했습니다: **프로젝트 기반** 학습과 **빈번한 퀴즈** 포함. 또한, 커리큘럼에 공통 **테마**를 포함하여 일관성을 유지했습니다. + +프로젝트와 연계된 콘텐츠를 보장함으로써 학습 과정이 학생들에게 더 흥미롭고 개념의 유지력이 향상됩니다. 또한, 수업 전 저위험 퀴즈는 학생이 주제를 학습할 의도를 설정하게 하며, 수업 후 두 번째 퀴즈는 개념의 추가 유지력을 보장합니다. 이 커리큘럼은 유연하고 재미있게 설계되었으며 전체 또는 일부로 수강할 수 있습니다. 프로젝트는 작게 시작하여 12주 과정이 끝날 때 점점 복잡해집니다. 이 커리큘럼은 또한 ML의 실제 응용에 대한 후기를 포함하며, 이는 추가 학점으로 사용하거나 토론의 기초로 활용할 수 있습니다. + +> [행동 강령](CODE_OF_CONDUCT.md), [기여](CONTRIBUTING.md), [번역](TRANSLATIONS.md) 지침을 확인하세요. 건설적인 피드백을 환영합니다! + +## 각 강의에는 다음이 포함됩니다 + +- 선택적 스케치노트 +- 선택적 보충 비디오 +- 비디오 워크스루 (일부 강의만 해당) +- 강의 전 워밍업 퀴즈 +- 작성된 강의 +- 프로젝트 기반 강의의 경우, 프로젝트를 구축하는 단계별 가이드 +- 지식 확인 +- 도전 과제 +- 보충 읽기 자료 +- 과제 +- 강의 후 퀴즈 + +> **언어에 대한 참고 사항**: 이 강의는 주로 Python으로 작성되었지만, 많은 강의가 R로도 제공됩니다. R 강의를 완료하려면 `/solution` 폴더로 이동하여 R 강의를 찾으세요. 이들은 `.rmd` 확장자를 포함하며, 이는 `코드 청크`(R 또는 기타 언어)와 `YAML 헤더`(PDF와 같은 출력 형식을 안내)를 `Markdown 문서`에 포함하는 것을 나타냅니다. 따라서 데이터 과학을 위한 뛰어난 저작 프레임워크로 작동하며, 코드, 출력, 생각을 Markdown에 작성할 수 있도록 합니다. 또한, R Markdown 문서는 PDF, HTML, Word와 같은 출력 형식으로 렌더링할 수 있습니다. + +> **퀴즈에 대한 참고 사항**: 모든 퀴즈는 [Quiz App 폴더](../../quiz-app)에 포함되어 있으며, 총 52개의 퀴즈가 각 3문제로 구성되어 있습니다. 강의 내에서 링크되어 있지만, `quiz-app` 폴더의 지침을 따라 로컬에서 실행하거나 Azure에 배포할 수 있습니다. + +| 강의 번호 | 주제 | 강의 그룹 | 학습 목표 | 링크된 강의 | 저자 | +| :-----------: | :------------------------------------------------------------: | :-------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------: | +| 01 | 머신 러닝 소개 | [소개](1-Introduction/README.md) | 머신 러닝의 기본 개념을 배웁니다 | [강의](1-Introduction/1-intro-to-ML/README.md) | Muhammad | +| 02 | 머신 러닝의 역사 | [소개](1-Introduction/README.md) | 이 분야의 역사적 배경을 배웁니다 | [강의](1-Introduction/2-history-of-ML/README.md) | Jen과 Amy | +| 03 | 머신 러닝과 공정성 | [소개](1-Introduction/README.md) | 학생들이 ML 모델을 구축하고 적용할 때 고려해야 할 공정성에 관한 중요한 철학적 문제는 무엇인가요? | [강의](1-Introduction/3-fairness/README.md) | Tomomi | +| 04 | 머신 러닝 기술 | [소개](1-Introduction/README.md) | ML 연구자들이 ML 모델을 구축할 때 사용하는 기술은 무엇인가요? | [강의](1-Introduction/4-techniques-of-ML/README.md) | Chris와 Jen | +| 05 | 회귀 분석 소개 | [Regression](2-Regression/README.md) | 회귀 모델을 위해 Python과 Scikit-learn 시작하기 | +
                                                    • [Python](2-Regression/1-Tools/README.md)
                                                    • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html)
                                                    |
                                                    • Jen
                                                    • Eric Wanjau
                                                    | +| 06 | 북미 호박 가격 🎃 | [Regression](2-Regression/README.md) | 머신러닝 준비를 위해 데이터 시각화 및 정리 |
                                                    • [Python](2-Regression/2-Data/README.md)
                                                    • [R](../../2-Regression/2-Data/solution/R/lesson_2.html)
                                                    |
                                                    • Jen
                                                    • Eric Wanjau
                                                    | +| 07 | 북미 호박 가격 🎃 | [Regression](2-Regression/README.md) | 선형 및 다항 회귀 모델 구축 |
                                                    • [Python](2-Regression/3-Linear/README.md)
                                                    • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html)
                                                    |
                                                    • Jen and Dmitry
                                                    • Eric Wanjau
                                                    | +| 08 | 북미 호박 가격 🎃 | [Regression](2-Regression/README.md) | 로지스틱 회귀 모델 구축 |
                                                    • [Python](2-Regression/4-Logistic/README.md)
                                                    • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html)
                                                    |
                                                    • Jen
                                                    • Eric Wanjau
                                                    | +| 09 | 웹 앱 🔌 | [Web App](3-Web-App/README.md) | 학습된 모델을 사용하는 웹 앱 구축 | [Python](3-Web-App/1-Web-App/README.md) | Jen | +| 10 | 분류 소개 | [Classification](4-Classification/README.md) | 데이터 정리, 준비 및 시각화; 분류 소개 |
                                                    • [Python](4-Classification/1-Introduction/README.md)
                                                    • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) |
                                                      • Jen and Cassie
                                                      • Eric Wanjau
                                                      | +| 11 | 맛있는 아시아 및 인도 요리 🍜 | [Classification](4-Classification/README.md) | 분류기 소개 |
                                                      • [Python](4-Classification/2-Classifiers-1/README.md)
                                                      • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) |
                                                        • Jen and Cassie
                                                        • Eric Wanjau
                                                        | +| 12 | 맛있는 아시아 및 인도 요리 🍜 | [Classification](4-Classification/README.md) | 추가 분류기 |
                                                        • [Python](4-Classification/3-Classifiers-2/README.md)
                                                        • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) |
                                                          • Jen and Cassie
                                                          • Eric Wanjau
                                                          | +| 13 | 맛있는 아시아 및 인도 요리 🍜 | [Classification](4-Classification/README.md) | 모델을 사용하여 추천 웹 앱 구축 | [Python](4-Classification/4-Applied/README.md) | Jen | +| 14 | 클러스터링 소개 | [Clustering](5-Clustering/README.md) | 데이터 정리, 준비 및 시각화; 클러스터링 소개 |
                                                          • [Python](5-Clustering/1-Visualize/README.md)
                                                          • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) |
                                                            • Jen
                                                            • Eric Wanjau
                                                            | +| 15 | 나이지리아 음악 취향 탐구 🎧 | [Clustering](5-Clustering/README.md) | K-Means 클러스터링 방법 탐구 |
                                                            • [Python](5-Clustering/2-K-Means/README.md)
                                                            • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) |
                                                              • Jen
                                                              • Eric Wanjau
                                                              | +| 16 | 자연어 처리 소개 ☕️ | [Natural language processing](6-NLP/README.md) | 간단한 봇을 구축하며 NLP 기본 학습 | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Stephen | +| 17 | 일반적인 NLP 작업 ☕️ | [Natural language processing](6-NLP/README.md) | 언어 구조를 다룰 때 필요한 일반적인 작업을 이해하며 NLP 지식 심화 | [Python](6-NLP/2-Tasks/README.md) | Stephen | +| 18 | 번역 및 감정 분석 ♥️ | [Natural language processing](6-NLP/README.md) | 제인 오스틴과 함께 번역 및 감정 분석 | [Python](6-NLP/3-Translation-Sentiment/README.md) | Stephen | +| 19 | 유럽의 로맨틱 호텔 ♥️ | [Natural language processing](6-NLP/README.md) | 호텔 리뷰를 활용한 감정 분석 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen | +| 20 | 유럽의 로맨틱 호텔 ♥️ | [Natural language processing](6-NLP/README.md) | 호텔 리뷰를 활용한 감정 분석 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen | +| 21 | 시계열 예측 소개 | [Time series](7-TimeSeries/README.md) | 시계열 예측 소개 | [Python](7-TimeSeries/1-Introduction/README.md) | Francesca | +| 22 | ⚡️ 세계 전력 사용 ⚡️ - ARIMA를 활용한 시계열 예측 | [Time series](7-TimeSeries/README.md) | ARIMA를 활용한 시계열 예측 | [Python](7-TimeSeries/2-ARIMA/README.md) | Francesca | +| 23 | ⚡️ 세계 전력 사용 ⚡️ - SVR을 활용한 시계열 예측 | [Time series](7-TimeSeries/README.md) | 서포트 벡터 회귀를 활용한 시계열 예측 | [Python](7-TimeSeries/3-SVR/README.md) | Anirban | +| 24 | 강화 학습 소개 | [Reinforcement learning](8-Reinforcement/README.md) | Q-Learning을 활용한 강화 학습 소개 | [Python](8-Reinforcement/1-QLearning/README.md) | Dmitry | +| 25 | 피터가 늑대를 피하도록 도와주세요! 🐺 | [Reinforcement learning](8-Reinforcement/README.md) | 강화 학습 Gym | [Python](8-Reinforcement/2-Gym/README.md) | Dmitry | +| Postscript | 실제 머신러닝 시나리오 및 응용 | [ML in the Wild](9-Real-World/README.md) | 고전적인 머신러닝의 흥미롭고 유익한 실제 응용 | [Lesson](9-Real-World/1-Applications/README.md) | Team | +| Postscript | RAI 대시보드를 활용한 ML 모델 디버깅 | [ML in the Wild](9-Real-World/README.md) | 책임 있는 AI 대시보드 구성 요소를 활용한 머신러닝 모델 디버깅 | [Lesson](9-Real-World/2-Debugging-ML-Models/README.md) | Ruth Yakubu | + +> [이 과정의 추가 리소스를 Microsoft Learn 컬렉션에서 확인하세요](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +## 오프라인 액세스 + +[Docsify](https://docsify.js.org/#/)를 사용하여 이 문서를 오프라인에서 실행할 수 있습니다. 이 저장소를 포크하고, 로컬 머신에 [Docsify 설치](https://docsify.js.org/#/quickstart)를 완료한 후, 이 저장소의 루트 폴더에서 `docsify serve`를 입력하세요. 웹사이트는 localhost의 포트 3000에서 제공됩니다: `localhost:3000`. + +## PDF + +링크가 포함된 커리큘럼 PDF를 [여기](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf)에서 찾을 수 있습니다. + +## 🎒 다른 과정들 + +우리 팀은 다른 과정도 제작합니다! 확인해보세요: + +- [Generative AI for Beginners](https://aka.ms/genai-beginners) +- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet) +- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript) +- [Generative AI with Java](https://github.com/microsoft/Generative-AI-for-beginners-java) +- [AI for Beginners](https://aka.ms/ai-beginners) +- [Data Science for Beginners](https://aka.ms/datascience-beginners) +- [ML for Beginners](https://aka.ms/ml-beginners) +- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101) +- [Web Dev for Beginners](https://aka.ms/webdev-beginners) +- [IoT for Beginners](https://aka.ms/iot-beginners) +- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners) +- [Mastering GitHub Copilot for Paired Programming](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming) +- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers) +- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/SECURITY.md b/translations/ko/SECURITY.md new file mode 100644 index 000000000..0b7f2dd59 --- /dev/null +++ b/translations/ko/SECURITY.md @@ -0,0 +1,51 @@ + +## 보안 + +Microsoft는 소프트웨어 제품과 서비스의 보안을 매우 중요하게 생각하며, 여기에는 [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), 그리고 [Microsoft의 GitHub 조직들](https://opensource.microsoft.com/)에서 관리하는 모든 소스 코드 저장소가 포함됩니다. + +Microsoft가 소유한 저장소에서 [Microsoft의 보안 취약점 정의](https://docs.microsoft.com/previous-versions/tn-archive/cc751383(v=technet.10)?WT.mc_id=academic-77952-leestott)에 해당하는 보안 취약점을 발견했다고 생각되면, 아래에 설명된 대로 이를 보고해 주시기 바랍니다. + +## 보안 문제 보고 + +**공개 GitHub 이슈를 통해 보안 취약점을 보고하지 마십시오.** + +대신, Microsoft Security Response Center (MSRC)에 [https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report)를 통해 보고해 주시기 바랍니다. + +로그인 없이 제출하고 싶으신 경우, [secure@microsoft.com](mailto:secure@microsoft.com)으로 이메일을 보내주십시오. 가능하다면, 메시지를 Microsoft의 PGP 키로 암호화해 주시기 바랍니다. PGP 키는 [Microsoft Security Response Center PGP Key 페이지](https://www.microsoft.com/en-us/msrc/pgp-key-msrc)에서 다운로드할 수 있습니다. + +보고 후 24시간 이내에 응답을 받을 수 있습니다. 만약 응답을 받지 못한 경우, 원래 메시지가 제대로 전달되었는지 확인하기 위해 이메일로 다시 연락해 주시기 바랍니다. 추가 정보는 [microsoft.com/msrc](https://www.microsoft.com/msrc)에서 확인할 수 있습니다. + +가능한 한 아래에 나열된 정보를 포함하여 문제의 성격과 범위를 더 잘 이해할 수 있도록 도와주십시오: + + * 문제 유형 (예: 버퍼 오버플로우, SQL 인젝션, 크로스 사이트 스크립팅 등) + * 문제와 관련된 소스 파일의 전체 경로 + * 영향을 받은 소스 코드의 위치 (태그/브랜치/커밋 또는 직접 URL) + * 문제를 재현하기 위해 필요한 특별한 구성 + * 문제를 재현하기 위한 단계별 지침 + * 개념 증명 또는 익스플로잇 코드 (가능한 경우) + * 문제의 영향, 특히 공격자가 문제를 어떻게 악용할 수 있는지 + +이 정보는 보고서를 더 신속하게 처리하는 데 도움이 됩니다. + +버그 바운티 프로그램에 보고하는 경우, 더 완전한 보고서는 더 높은 바운티 보상에 기여할 수 있습니다. 현재 진행 중인 프로그램에 대한 자세한 내용은 [Microsoft Bug Bounty Program](https://microsoft.com/msrc/bounty) 페이지를 방문해 주십시오. + +## 선호하는 언어 + +모든 커뮤니케이션은 영어로 진행되는 것을 선호합니다. + +## 정책 + +Microsoft는 [Coordinated Vulnerability Disclosure](https://www.microsoft.com/en-us/msrc/cvd) 원칙을 따릅니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 권위 있는 출처로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/SUPPORT.md b/translations/ko/SUPPORT.md new file mode 100644 index 000000000..f18b3f591 --- /dev/null +++ b/translations/ko/SUPPORT.md @@ -0,0 +1,24 @@ + +# 지원 +## 문제 신고 및 도움 받는 방법 + +이 프로젝트는 GitHub Issues를 사용하여 버그와 기능 요청을 추적합니다. 중복을 피하기 위해 새로운 문제를 신고하기 전에 기존 문제를 검색해 주세요. 새로운 문제의 경우, 버그 또는 기능 요청을 새로운 Issue로 작성해 주세요. + +이 프로젝트 사용에 대한 도움이나 질문이 있다면 Issue를 작성해 주세요. + +## Microsoft 지원 정책 + +이 저장소에 대한 지원은 위에 나열된 리소스에 한정됩니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/docs/_sidebar.md b/translations/ko/docs/_sidebar.md new file mode 100644 index 000000000..8454549a6 --- /dev/null +++ b/translations/ko/docs/_sidebar.md @@ -0,0 +1,57 @@ + +- 소개 + - [머신 러닝 소개](../1-Introduction/1-intro-to-ML/README.md) + - [머신 러닝의 역사](../1-Introduction/2-history-of-ML/README.md) + - [머신 러닝과 공정성](../1-Introduction/3-fairness/README.md) + - [머신 러닝 기법](../1-Introduction/4-techniques-of-ML/README.md) + +- 회귀 + - [필수 도구](../2-Regression/1-Tools/README.md) + - [데이터](../2-Regression/2-Data/README.md) + - [선형 회귀](../2-Regression/3-Linear/README.md) + - [로지스틱 회귀](../2-Regression/4-Logistic/README.md) + +- 웹 앱 만들기 + - [웹 앱](../3-Web-App/1-Web-App/README.md) + +- 분류 + - [분류 소개](../4-Classification/1-Introduction/README.md) + - [분류기 1](../4-Classification/2-Classifiers-1/README.md) + - [분류기 2](../4-Classification/3-Classifiers-2/README.md) + - [응용 머신 러닝](../4-Classification/4-Applied/README.md) + +- 클러스터링 + - [데이터 시각화](../5-Clustering/1-Visualize/README.md) + - [K-평균](../5-Clustering/2-K-Means/README.md) + +- 자연어 처리 (NLP) + - [자연어 처리 소개](../6-NLP/1-Introduction-to-NLP/README.md) + - [자연어 처리 작업](../6-NLP/2-Tasks/README.md) + - [번역과 감정 분석](../6-NLP/3-Translation-Sentiment/README.md) + - [호텔 리뷰 1](../6-NLP/4-Hotel-Reviews-1/README.md) + - [호텔 리뷰 2](../6-NLP/5-Hotel-Reviews-2/README.md) + +- 시계열 예측 + - [시계열 예측 소개](../7-TimeSeries/1-Introduction/README.md) + - [ARIMA](../7-TimeSeries/2-ARIMA/README.md) + - [SVR](../7-TimeSeries/3-SVR/README.md) + +- 강화 학습 + - [Q-러닝](../8-Reinforcement/1-QLearning/README.md) + - [Gym](../8-Reinforcement/2-Gym/README.md) + +- 실제 머신 러닝 + - [응용 사례](../9-Real-World/1-Applications/README.md) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/for-teachers.md b/translations/ko/for-teachers.md new file mode 100644 index 000000000..a2ef1a08e --- /dev/null +++ b/translations/ko/for-teachers.md @@ -0,0 +1,37 @@ + +## 교육자를 위한 안내 + +이 커리큘럼을 교실에서 사용하고 싶으신가요? 자유롭게 활용하세요! + +사실, GitHub Classroom을 사용하면 GitHub 내에서 바로 사용할 수도 있습니다. + +이를 위해 이 저장소를 포크하세요. 각 수업마다 별도의 저장소를 만들어야 하므로, 각 폴더를 개별 저장소로 분리해야 합니다. 이렇게 하면 [GitHub Classroom](https://classroom.github.com/classrooms)이 각 수업을 개별적으로 인식할 수 있습니다. + +이 [상세 가이드](https://github.blog/2020-03-18-set-up-your-digital-classroom-with-github-classroom/)를 참고하면 교실을 설정하는 방법에 대한 아이디어를 얻을 수 있습니다. + +## 현재 상태 그대로 저장소 사용하기 + +GitHub Classroom을 사용하지 않고 현재 상태 그대로 이 저장소를 사용하고 싶으신가요? 그것도 가능합니다. 학생들에게 함께 진행할 수업을 알려주시면 됩니다. + +온라인 형식(Zoom, Teams 등)에서는 퀴즈를 위해 소그룹 방을 만들고, 학생들이 학습 준비를 할 수 있도록 멘토링할 수 있습니다. 그런 다음, 학생들에게 퀴즈를 풀고 특정 시간에 '이슈'로 답변을 제출하도록 요청하세요. 과제를 진행할 때도, 학생들이 공개적으로 협력하며 작업하도록 유도할 수 있습니다. + +더 비공개적인 형식을 선호하신다면, 학생들에게 커리큘럼을 수업별로 포크하여 자신의 GitHub 개인 저장소로 옮기고, 여러분에게 접근 권한을 부여하도록 요청하세요. 그런 다음, 학생들은 퀴즈와 과제를 비공개로 완료하고, 여러분의 교실 저장소에서 이슈를 통해 제출할 수 있습니다. + +온라인 교실 형식에서 이를 활용할 수 있는 다양한 방법이 있습니다. 어떤 방식이 가장 잘 맞는지 알려주세요! + +## 여러분의 의견을 들려주세요! + +이 커리큘럼이 여러분과 학생들에게 잘 맞도록 개선하고 싶습니다. [피드백](https://forms.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR2humCsRZhxNuI79cm6n0hRUQzRVVU9VVlU5UlFLWTRLWlkyQUxORTg5WS4u)을 남겨주세요! + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전이 권위 있는 출처로 간주되어야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/quiz-app/README.md b/translations/ko/quiz-app/README.md new file mode 100644 index 000000000..4d0fb5475 --- /dev/null +++ b/translations/ko/quiz-app/README.md @@ -0,0 +1,127 @@ + +# 퀴즈 + +이 퀴즈는 https://aka.ms/ml-beginners에서 제공하는 ML 커리큘럼의 강의 전후 퀴즈입니다. + +## 프로젝트 설정 + +``` +npm install +``` + +### 개발을 위한 컴파일 및 핫 리로드 + +``` +npm run serve +``` + +### 프로덕션을 위한 컴파일 및 최소화 + +``` +npm run build +``` + +### 파일 린트 및 수정 + +``` +npm run lint +``` + +### 구성 사용자 정의 + +[Configuration Reference](https://cli.vuejs.org/config/)를 참조하세요. + +크레딧: 이 퀴즈 앱의 원본 버전에 감사드립니다: https://github.com/arpan45/simple-quiz-vue + +## Azure에 배포하기 + +다음은 시작하는 데 도움이 되는 단계별 가이드입니다: + +1. GitHub 저장소 포크하기 + 정적 웹 앱 코드가 GitHub 저장소에 있는지 확인하세요. 이 저장소를 포크하세요. + +2. Azure 정적 웹 앱 생성하기 + - [Azure 계정](http://azure.microsoft.com)을 생성하세요. + - [Azure 포털](https://portal.azure.com)로 이동하세요. + - "리소스 생성"을 클릭하고 "Static Web App"을 검색하세요. + - "생성"을 클릭하세요. + +3. 정적 웹 앱 구성하기 + - 기본 설정: + - 구독: Azure 구독을 선택하세요. + - 리소스 그룹: 새 리소스 그룹을 생성하거나 기존 그룹을 사용하세요. + - 이름: 정적 웹 앱의 이름을 입력하세요. + - 지역: 사용자와 가까운 지역을 선택하세요. + + - #### 배포 세부 정보: + - 소스: "GitHub"를 선택하세요. + - GitHub 계정: Azure가 GitHub 계정에 접근할 수 있도록 승인하세요. + - 조직: GitHub 조직을 선택하세요. + - 저장소: 정적 웹 앱이 포함된 저장소를 선택하세요. + - 브랜치: 배포할 브랜치를 선택하세요. + + - #### 빌드 세부 정보: + - 빌드 프리셋: 앱이 빌드된 프레임워크를 선택하세요 (예: React, Angular, Vue 등). + - 앱 위치: 앱 코드가 포함된 폴더를 지정하세요 (예: 루트에 있다면 /). + - API 위치: API가 있다면 위치를 지정하세요 (선택 사항). + - 출력 위치: 빌드 출력이 생성되는 폴더를 지정하세요 (예: build 또는 dist). + +4. 검토 및 생성 + 설정을 검토하고 "생성"을 클릭하세요. Azure가 필요한 리소스를 설정하고 GitHub Actions 워크플로를 저장소에 생성합니다. + +5. GitHub Actions 워크플로 + Azure는 저장소에 자동으로 GitHub Actions 워크플로 파일을 생성합니다 (.github/workflows/azure-static-web-apps-.yml). 이 워크플로는 빌드 및 배포 과정을 처리합니다. + +6. 배포 모니터링 + GitHub 저장소의 "Actions" 탭으로 이동하세요. + 실행 중인 워크플로를 확인할 수 있습니다. 이 워크플로는 정적 웹 앱을 Azure에 빌드하고 배포합니다. + 워크플로가 완료되면 제공된 Azure URL에서 앱이 라이브로 제공됩니다. + +### 워크플로 파일 예시 + +GitHub Actions 워크플로 파일의 예시는 다음과 같습니다: +name: Azure Static Web Apps CI/CD +``` +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened, closed] + branches: + - main + +jobs: + build_and_deploy_job: + runs-on: ubuntu-latest + name: Build and Deploy Job + steps: + - uses: actions/checkout@v2 + - name: Build And Deploy + id: builddeploy + uses: Azure/static-web-apps-deploy@v1 + with: + azure_static_web_apps_api_token: ${{ secrets.AZURE_STATIC_WEB_APPS_API_TOKEN }} + repo_token: ${{ secrets.GITHUB_TOKEN }} + action: "upload" + app_location: "/quiz-app" # App source code path + api_location: ""API source code path optional + output_location: "dist" #Built app content directory - optional +``` + +### 추가 자료 +- [Azure Static Web Apps Documentation](https://learn.microsoft.com/azure/static-web-apps/getting-started) +- [GitHub Actions Documentation](https://docs.github.com/actions/use-cases-and-examples/deploying/deploying-to-azure-static-web-app) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/sketchnotes/LICENSE.md b/translations/ko/sketchnotes/LICENSE.md new file mode 100644 index 000000000..9c515d485 --- /dev/null +++ b/translations/ko/sketchnotes/LICENSE.md @@ -0,0 +1,204 @@ + +Attribution-ShareAlike 4.0 국제 + +======================================================================= + +크리에이티브 커먼즈(Creative Commons) 법인은 법률 회사가 아니며 법률 서비스나 법률 자문을 제공하지 않습니다. 크리에이티브 커먼즈 공공 라이선스를 배포한다고 해서 변호사-의뢰인 관계나 기타 관계가 형성되지 않습니다. 크리에이티브 커먼즈는 라이선스와 관련 정보를 "있는 그대로" 제공합니다. 크리에이티브 커먼즈는 라이선스, 해당 조건에 따라 라이선스된 자료, 또는 관련 정보에 대해 어떠한 보증도 하지 않으며, 사용으로 인해 발생하는 손해에 대해 최대한의 범위에서 책임을 부인합니다. + +크리에이티브 커먼즈 공공 라이선스 사용하기 + +크리에이티브 커먼즈 공공 라이선스는 창작자와 기타 권리 보유자가 저작권 및 아래 공공 라이선스에 명시된 특정 권리가 적용되는 원저작물 및 기타 자료를 공유할 수 있도록 표준화된 조건을 제공합니다. 다음 고려 사항은 정보 제공 목적으로만 제공되며, 포괄적이지 않으며, 라이선스의 일부를 구성하지 않습니다. + + 라이선스 제공자를 위한 고려 사항: 공공 라이선스는 저작권 및 특정 기타 권리에 의해 제한되는 자료를 대중이 사용할 수 있도록 허가할 권한이 있는 사람들이 사용하도록 의도되었습니다. 라이선스는 취소할 수 없습니다. 라이선스를 적용하기 전에 선택한 라이선스의 조건을 읽고 이해해야 합니다. 라이선스를 적용하기 전에 필요한 모든 권리를 확보하여 대중이 기대한 대로 자료를 재사용할 수 있도록 해야 합니다. 라이선스가 적용되지 않는 자료는 명확히 표시해야 합니다. 여기에는 다른 CC 라이선스가 적용된 자료나 저작권의 예외 또는 제한에 따라 사용된 자료가 포함됩니다. 라이선스 제공자를 위한 추가 고려 사항: + wiki.creativecommons.org/Considerations_for_licensors + + 대중을 위한 고려 사항: 공공 라이선스를 사용함으로써 라이선스 제공자는 특정 조건에 따라 라이선스된 자료를 사용할 수 있는 권한을 대중에게 부여합니다. 라이선스 제공자의 허가가 필요하지 않은 경우(예: 저작권의 예외 또는 제한이 적용되는 경우) 해당 사용은 라이선스에 의해 규제되지 않습니다. 공공 라이선스는 저작권 및 라이선스 제공자가 부여할 권한이 있는 특정 기타 권리 하에서만 권한을 부여합니다. 라이선스된 자료의 사용은 여전히 다른 이유로 제한될 수 있습니다. 예를 들어, 다른 사람들이 해당 자료에 대해 저작권 또는 기타 권리를 보유하고 있는 경우가 있습니다. 라이선스 제공자는 모든 변경 사항을 표시하거나 설명할 것을 요청할 수 있습니다. 이는 라이선스에서 요구하지 않지만, 합리적인 경우 이러한 요청을 존중하는 것이 권장됩니다. 대중을 위한 추가 고려 사항: + wiki.creativecommons.org/Considerations_for_licensees + +======================================================================= + +크리에이티브 커먼즈 Attribution-ShareAlike 4.0 국제 공공 라이선스 + +라이선스된 권리(아래 정의됨)를 행사함으로써 귀하는 본 크리에이티브 커먼즈 Attribution-ShareAlike 4.0 국제 공공 라이선스("공공 라이선스")의 조건에 동의하고 이를 준수할 것을 약속합니다. 본 공공 라이선스가 계약으로 해석될 수 있는 범위 내에서, 귀하는 본 조건을 수락함으로써 라이선스된 권리를 부여받으며, 라이선스 제공자는 본 조건에 따라 라이선스된 자료를 제공함으로써 얻는 혜택을 고려하여 귀하에게 해당 권리를 부여합니다. + +섹션 1 -- 정의. + + a. 수정된 자료는 저작권 및 유사 권리가 적용되는 자료로, 라이선스된 자료를 번역, 변경, 배열, 변형 또는 기타 방식으로 수정하여 라이선스 제공자가 보유한 저작권 및 유사 권리 하에서 허가가 필요한 방식으로 생성된 자료를 의미합니다. 본 공공 라이선스의 목적상, 라이선스된 자료가 음악 작품, 공연 또는 음반인 경우, 라이선스된 자료가 움직이는 이미지와 시간적으로 동기화된 경우 항상 수정된 자료가 생성됩니다. + + b. 수정자의 라이선스는 본 공공 라이선스의 조건에 따라 수정된 자료에 대한 귀하의 기여에 대해 귀하가 적용하는 저작권 및 유사 권리를 의미합니다. + + c. BY-SA 호환 라이선스는 creativecommons.org/compatiblelicenses에 나열된 라이선스로, 본 공공 라이선스와 본질적으로 동등한 것으로 크리에이티브 커먼즈가 승인한 라이선스를 의미합니다. + + d. 저작권 및 유사 권리는 저작권 및/또는 저작권과 밀접하게 관련된 유사 권리를 의미하며, 여기에는 공연, 방송, 음반 및 고유 데이터베이스 권리가 포함되며, 권리가 어떻게 명명되거나 분류되는지에 관계없이 포함됩니다. 본 공공 라이선스의 목적상, 섹션 2(b)(1)-(2)에 명시된 권리는 저작권 및 유사 권리에 포함되지 않습니다. + + e. 효과적인 기술적 조치는 적절한 권한 없이 법률에 따라 우회할 수 없는 조치를 의미하며, 이는 1996년 12월 20일 채택된 WIPO 저작권 조약 제11조 및/또는 유사한 국제 협정의 의무를 충족하는 법률에 따라 이루어집니다. + + f. 예외 및 제한은 공정 사용, 공정 거래 및/또는 저작권 및 유사 권리에 대한 귀하의 사용에 적용되는 기타 예외 또는 제한을 의미합니다. + + g. 라이선스 요소는 크리에이티브 커먼즈 공공 라이선스 이름에 나열된 라이선스 속성을 의미합니다. 본 공공 라이선스의 라이선스 요소는 Attribution과 ShareAlike입니다. + + h. 라이선스된 자료는 라이선스 제공자가 본 공공 라이선스를 적용한 예술적 또는 문학적 작품, 데이터베이스 또는 기타 자료를 의미합니다. + + i. 라이선스된 권리는 본 공공 라이선스의 조건에 따라 귀하에게 부여된 권리를 의미하며, 이는 라이선스된 자료의 사용에 적용되는 모든 저작권 및 유사 권리로 제한되며, 라이선스 제공자가 라이선스할 권한을 보유한 권리입니다. + + j. 라이선스 제공자는 본 공공 라이선스 하에서 권리를 부여하는 개인 또는 단체를 의미합니다. + + k. 공유는 복제, 공개 전시, 공개 공연, 배포, 전파, 통신 또는 수입과 같은 라이선스된 권리가 요구되는 방식이나 프로세스를 통해 자료를 대중에게 제공하는 것을 의미하며, 대중이 개별적으로 선택한 장소와 시간에 자료에 접근할 수 있도록 하는 방식도 포함됩니다. + + l. 고유 데이터베이스 권리는 1996년 3월 11일 유럽 의회 및 이사회 지침 96/9/EC에 따라 데이터베이스의 법적 보호에 관한 권리로, 수정 및/또는 후속된 권리뿐만 아니라 세계 어디에서나 본질적으로 동등한 기타 권리를 의미합니다. + + m. 귀하는 본 공공 라이선스 하에서 라이선스된 권리를 행사하는 개인 또는 단체를 의미합니다. 귀하의 의미는 이에 상응합니다. + +섹션 2 -- 범위. + + a. 라이선스 부여. + + 1. 본 공공 라이선스의 조건에 따라, 라이선스 제공자는 귀하에게 다음을 수행할 수 있는 전 세계적, 로열티 무료, 비독점적, 취소 불가능한 라이선스를 부여합니다: + + a. 라이선스된 자료를 전체 또는 일부 복제하고 공유합니다. + + b. 수정된 자료를 생성, 복제 및 공유합니다. + + 2. 예외 및 제한. 귀하의 사용에 예외 및 제한이 적용되는 경우, 본 공공 라이선스는 적용되지 않으며, 귀하는 본 조건을 준수할 필요가 없습니다. + + 3. 기간. 본 공공 라이선스의 기간은 섹션 6(a)에 명시되어 있습니다. + + 4. 미디어 및 형식; 기술적 수정 허용. 라이선스 제공자는 현재 알려진 또는 이후에 생성된 모든 미디어 및 형식에서 라이선스된 권리를 행사할 수 있도록 허용하며, 이를 수행하기 위해 필요한 기술적 수정을 허용합니다. 라이선스 제공자는 효과적인 기술적 조치를 우회하기 위해 필요한 기술적 수정을 포함하여 라이선스된 권리를 행사하기 위해 필요한 기술적 수정을 금지할 권리 또는 권한을 포기하거나 주장하지 않기로 동의합니다. 본 공공 라이선스의 목적상, 섹션 2(a)(4)에 의해 허용된 수정만으로는 수정된 자료가 생성되지 않습니다. + + 5. 하위 수신자. + + a. 라이선스 제공자의 제안 -- 라이선스된 자료. 라이선스된 자료의 모든 수신자는 본 공공 라이선스의 조건에 따라 라이선스된 권리를 행사할 수 있는 라이선스 제공자의 제안을 자동으로 받습니다. + + b. 라이선스 제공자의 추가 제안 -- 수정된 자료. 귀하로부터 수정된 자료를 받은 모든 수신자는 귀하가 적용한 수정자의 라이선스 조건에 따라 수정된 자료에서 라이선스된 권리를 행사할 수 있는 라이선스 제공자의 제안을 자동으로 받습니다. + + c. 하위 제한 없음. 귀하는 라이선스된 자료의 수신자가 라이선스된 권리를 행사하는 것을 제한하는 방식으로 라이선스된 자료에 추가적이거나 다른 조건을 부여하거나 효과적인 기술적 조치를 적용할 수 없습니다. + + 6. 승인 없음. 본 공공 라이선스의 어떠한 내용도 귀하가 라이선스 제공자 또는 섹션 3(a)(1)(A)(i)에 명시된 대로 인정받을 자와 연결되어 있거나, 후원받거나, 승인받거나, 공식적 지위를 부여받았다는 것을 주장하거나 암시할 권한을 부여하는 것으로 해석될 수 없습니다. + + b. 기타 권리. + + 1. 도덕적 권리, 예를 들어 무결성 권리는 본 공공 라이선스 하에서 라이선스되지 않으며, 퍼블리시티, 프라이버시 및/또는 기타 유사한 인격권도 포함되지 않습니다. 그러나 가능한 범위 내에서, 라이선스 제공자는 귀하가 라이선스된 권리를 행사할 수 있도록 필요한 범위 내에서 라이선스 제공자가 보유한 그러한 권리를 포기하거나 주장하지 않기로 동의합니다. + + 2. 특허 및 상표권은 본 공공 라이선스 하에서 라이선스되지 않습니다. + + 3. 가능한 범위 내에서, 라이선스 제공자는 귀하가 라이선스된 권리를 행사하기 위해 직접 또는 수집 단체를 통해 자발적 또는 포기 가능한 법정 또는 강제 라이선스 제도 하에서 로열티를 수집할 권리를 포기합니다. 다른 모든 경우에 라이선스 제공자는 그러한 로열티를 수집할 권리를 명시적으로 보유합니다. + +섹션 3 -- 라이선스 조건. + +귀하가 라이선스된 권리를 행사하는 것은 다음 조건에 명시적으로 따릅니다. + + a. 저작권 표시. + + 1. 귀하가 라이선스된 자료를 공유할 경우(수정된 형태 포함), 다음을 유지해야 합니다: + + a. 라이선스 제공자가 라이선스된 자료와 함께 제공한 경우 다음을 유지합니다: + + i. 라이선스된 자료의 창작자 및 기타 인정받을 자의 식별(필명으로 지정된 경우 포함). + + ii. 저작권 표시. + + iii. 본 공공 라이선스를 참조하는 고지. + + iv. 보증 부인 고지를 참조하는 고지. + + v. 라이선스된 자료에 대한 URI 또는 하이퍼링크(합리적으로 실현 가능한 경우). + + b. 귀하가 라이선스된 자료를 수정한 경우 이를 표시하고 이전 수정 사항에 대한 표시를 유지합니다. + + c. 라이선스된 자료가 본 공공 라이선스 하에 라이선스되었음을 표시하고, 본 공공 라이선스의 텍스트 또는 URI 또는 하이퍼링크를 포함합니다. + + 2. 섹션 3(a)(1)의 조건은 귀하가 라이선스된 자료를 공유하는 매체, 수단 및 맥락에 따라 합리적인 방식으로 충족할 수 있습니다. 예를 들어, 필요한 정보를 포함하는 리소스에 대한 URI 또는 하이퍼링크를 제공함으로써 조건을 충족하는 것이 합리적일 수 있습니다. + + 3. 라이선스 제공자가 요청하는 경우, 섹션 3(a)(1)(A)에 명시된 정보를 합리적으로 실현 가능한 범위 내에서 제거해야 합니다. + + b. 동일조건 공유. + + 섹션 3(a)의 조건 외에도, 귀하가 생성한 수정된 자료를 공유할 경우 다음 조건이 적용됩니다. + + 1. 귀하가 적용하는 수정자의 라이선스는 동일한 라이선스 요소를 포함하는 크리에이티브 커먼즈 라이선스(본 버전 또는 이후 버전) 또는 BY-SA 호환 라이선스여야 합니다. + + 2. 귀하는 귀하가 적용하는 수정자의 라이선스의 텍스트 또는 URI 또는 하이퍼링크를 포함해야 합니다. 귀하가 수정된 자료를 공유하는 매체, 수단 및 맥락에 따라 합리적인 방식으로 이 조건을 충족할 수 있습니다. + + 3. 귀하는 수정자의 라이선스 하에서 부여된 권리 행사를 제한하는 방식으로 수정된 자료에 추가적이거나 다른 조건을 부여하거나 효과적인 기술적 조치를 적용할 수 없습니다. + +섹션 4 -- 고유 데이터베이스 권리. + +라이선스된 권리에 귀하의 라이선스된 자료 사용에 적용되는 고유 데이터베이스 권리가 포함된 경우: + + a. 명확히 하기 위해, 섹션 2(a)(1)는 데이터베이스의 내용 전체 또는 상당 부분을 추출, 재사용, 복제 및 공유할 권리를 귀하에게 부여합니다. + + b. 귀하가 데이터베이스의 내용 전체 또는 상당 부분을 포함하는 데이터베이스를 생성하는 경우... +권리, 그리고 귀하가 Sui Generis Database 권리를 보유한 데이터베이스(그러나 개별 콘텐츠는 제외)는 수정된 자료로 간주됩니다. + +이를 섹션 3(b)의 목적을 포함하여; +c. 귀하가 데이터베이스의 모든 또는 상당 부분의 콘텐츠를 공유하는 경우 섹션 3(a)의 조건을 준수해야 합니다. + +명확성을 위해, 이 섹션 4는 귀하의 의무를 보완하며, 라이선스 권리가 다른 저작권 및 유사 권리를 포함하는 경우 이 공공 라이선스에 따른 귀하의 의무를 대체하지 않습니다. + +--- + +섹션 5 -- 보증의 부인 및 책임 제한. + +a. 라이선스 제공자가 별도로 약속하지 않는 한, 가능한 범위 내에서 라이선스 제공자는 라이선스 자료를 있는 그대로(as-is) 및 이용 가능한 상태(as-available)로 제공하며, 라이선스 자료에 대해 어떠한 종류의 표현이나 보증도 하지 않습니다. 이는 명시적, 묵시적, 법적 또는 기타 보증을 포함하며, 제목, 상품성, 특정 목적에 대한 적합성, 비침해, 잠재적 또는 기타 결함의 부재, 정확성, 오류의 존재 여부(알려졌거나 발견 가능 여부에 관계없이)를 포함하되 이에 국한되지 않습니다. 보증 부인이 전부 또는 일부 허용되지 않는 경우, 이 부인은 귀하에게 적용되지 않을 수 있습니다. + +b. 가능한 범위 내에서, 어떠한 경우에도 라이선스 제공자는 법적 이론(과실 포함) 또는 기타 이유로 인해 이 공공 라이선스 또는 라이선스 자료의 사용으로 발생하는 직접적, 특별한, 간접적, 부수적, 결과적, 징벌적, 모범적 손실, 비용, 경비 또는 손해에 대해 귀하에게 책임을 지지 않습니다. 라이선스 제공자가 그러한 손실, 비용, 경비 또는 손해의 가능성을 알고 있었더라도 마찬가지입니다. 책임 제한이 전부 또는 일부 허용되지 않는 경우, 이 제한은 귀하에게 적용되지 않을 수 있습니다. + +c. 위에서 제공된 보증 부인 및 책임 제한은 가능한 범위 내에서 모든 책임을 절대적으로 부인하고 포기하는 것으로 가장 근접하게 해석되어야 합니다. + +--- + +섹션 6 -- 기간 및 종료. + +a. 이 공공 라이선스는 여기서 라이선스된 저작권 및 유사 권리의 기간 동안 적용됩니다. 그러나 귀하가 이 공공 라이선스를 준수하지 않는 경우, 이 공공 라이선스에 따른 귀하의 권리는 자동으로 종료됩니다. + +b. 섹션 6(a)에 따라 라이선스 자료를 사용할 권리가 종료된 경우, 이는 다음과 같이 복원됩니다: + +1. 위반 사실을 발견한 날로부터 30일 이내에 위반이 수정된 경우, 수정된 날짜를 기준으로 자동으로 복원됩니다; 또는 +2. 라이선스 제공자의 명시적 복원에 따라 복원됩니다. + +명확성을 위해, 이 섹션 6(b)는 귀하의 이 공공 라이선스 위반에 대해 라이선스 제공자가 구제 조치를 취할 권리에 영향을 미치지 않습니다. + +c. 명확성을 위해, 라이선스 제공자는 별도의 조건 또는 약관에 따라 라이선스 자료를 제공하거나 언제든지 라이선스 자료 배포를 중단할 수 있습니다. 그러나 이는 이 공공 라이선스를 종료하지 않습니다. + +d. 섹션 1, 5, 6, 7, 및 8은 이 공공 라이선스 종료 후에도 효력을 유지합니다. + +--- + +섹션 7 -- 기타 조건. + +a. 라이선스 제공자는 귀하가 전달한 추가적이거나 다른 조건에 명시적으로 동의하지 않는 한 이에 구속되지 않습니다. + +b. 여기 명시되지 않은 라이선스 자료에 대한 모든 협정, 이해 또는 합의는 이 공공 라이선스의 조건과 독립적이며 별개입니다. + +--- + +섹션 8 -- 해석. + +a. 명확성을 위해, 이 공공 라이선스는 라이선스 자료를 법적으로 허용된 방식으로 사용할 수 있는 권리를 제한하거나 조건을 부과하지 않습니다. + +b. 가능한 범위 내에서, 이 공공 라이선스의 조항이 집행 불가능하다고 판단되는 경우, 이를 집행 가능하도록 최소한의 범위로 자동 수정합니다. 조항이 수정될 수 없는 경우, 이는 이 공공 라이선스에서 분리되며 나머지 조건의 집행 가능성에 영향을 미치지 않습니다. + +c. 이 공공 라이선스의 조건은 라이선스 제공자가 명시적으로 동의하지 않는 한 포기되지 않으며, 준수하지 않는 경우에도 동의로 간주되지 않습니다. + +d. 이 공공 라이선스의 어떠한 내용도 라이선스 제공자 또는 귀하에게 적용되는 법적 절차 또는 관할권의 특권 및 면제를 제한하거나 포기하는 것으로 해석되지 않습니다. + +--- + +======================================================================= + +Creative Commons는 공공 라이선스의 당사자가 아닙니다. 그럼에도 불구하고, Creative Commons는 자신이 발행한 자료에 공공 라이선스를 적용할 수 있으며, 그러한 경우 "라이선스 제공자"로 간주됩니다. Creative Commons 공공 라이선스의 텍스트는 CC0 공공 도메인 헌신에 따라 공공 도메인에 기증되었습니다. Creative Commons 정책(creativecommons.org/policies)에 명시된 제한된 목적을 제외하고, Creative Commons는 "Creative Commons"라는 상표 또는 기타 상표나 로고를 사전 서면 동의 없이 사용할 권한을 부여하지 않습니다. 이는 공공 라이선스의 무단 수정 또는 라이선스 자료 사용에 관한 기타 협정, 이해 또는 합의를 포함하되 이에 국한되지 않습니다. 명확성을 위해, 이 문단은 공공 라이선스의 일부가 아닙니다. + +Creative Commons는 creativecommons.org에서 연락할 수 있습니다. + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서를 해당 언어로 작성된 상태에서 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다. \ No newline at end of file diff --git a/translations/ko/sketchnotes/README.md b/translations/ko/sketchnotes/README.md new file mode 100644 index 000000000..f9dc63f6f --- /dev/null +++ b/translations/ko/sketchnotes/README.md @@ -0,0 +1,21 @@ + +모든 커리큘럼의 스케치노트를 여기에서 다운로드할 수 있습니다. + +🖨 고해상도로 인쇄하려면 TIFF 버전을 [이 저장소](https://github.com/girliemac/a-picture-is-worth-a-1000-words/tree/main/ml/tiff)에서 이용할 수 있습니다. + +🎨 제작자: [Tomomi Imura](https://github.com/girliemac) (트위터: [@girlie_mac](https://twitter.com/girlie_mac)) + +[![CC BY-SA 4.0](https://img.shields.io/badge/License-CC%20BY--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-sa/4.0/) + +--- + +**면책 조항**: +이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있지만, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 신뢰할 수 있는 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다. \ No newline at end of file